



# Data Science & ML Course Lesson #22 Random Forest

Ivanovitch Silva December, 2018

# Update from repository

git clone https://github.com/ivanovitchm/datascience2machinelearning.git

Or ....

git pull





#### Agenda

- Previously on last class (Decision Trees)
- Ensembles (Random Forest)
- Combining predictions
- Why Ensembling works
- Introduction variation with bagging and random features
- Reducing overfitting using Random Forest
- Case study: US Census, predicting bike rentals





# Decision Tree (classification)





# Receiver Operating Characteristic (ROC)



|           |                              | True condition                                                                                                                                      |                                                                                                                               |  |  |  |  |  |
|-----------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|           | Total population             | Condition positive                                                                                                                                  | Condition negative                                                                                                            |  |  |  |  |  |
| Predicted | Predicted condition positive | True positive, Power                                                                                                                                | False positive, Type I error                                                                                                  |  |  |  |  |  |
| condition | Predicted condition negative | False negative, Type II error                                                                                                                       | True negative                                                                                                                 |  |  |  |  |  |
|           |                              | True positive rate (TPR), Recall,  Sensitivity, probability of detection $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$ | False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\sum False \ positive}{\sum \ Condition \ negative}$ |  |  |  |  |  |

AUC - Area Under Curve

## **Decision Tree Overfitting**







| settings                                        | train AUC | test AUC |
|-------------------------------------------------|-----------|----------|
| default (min_samples_split: 2, max_depth: None) | 0.947     | 0.694    |
| min_samples_split: 13                           | 0.842     | 0.699    |
| min_samples_split: 13, max_depth: 7             | 0.748     | 0.743    |
| min_samples_split: 100, max_depth: 2            | 0.662     | 0.655    |













## Case Study #1: US Census

The target column, or what we want to predict, is whether individuals make less than or equal to 50k a year, or more than 50k a year.

US Census 1994

|   | age | workclass            | fnlwgt | education | education_num | marital_status         | occupation            | relationship  | race  | sex    | capital_gain |
|---|-----|----------------------|--------|-----------|---------------|------------------------|-----------------------|---------------|-------|--------|--------------|
| 0 | 39  | State-gov            | 77516  | Bachelors | 13            | Never-married          | Adm-clerical          | Not-in-family | White | Male   | 2174         |
| 1 | 50  | Self-emp-<br>not-inc | 83311  | Bachelors | 13            | Married-civ-<br>spouse | Exec-<br>managerial   | Husband       | White | Male   | 0            |
| 2 | 38  | Private              | 215646 | HS-grad   | 9             | Divorced               | Handlers-<br>cleaners | Not-in-family | White | Male   | 0            |
| 3 | 53  | Private              | 234721 | 11th      | 7             | Married-civ-<br>spouse | Handlers-<br>cleaners | Husband       | Black | Male   | 0            |
| 4 | 28  | Private              | 338409 | Bachelors | 13            | Married-civ-<br>spouse | Prof-specialty        | Wife          | Black | Female | 0            |

## Combining Model Predictions with Ensembles

```
1 from sklearn.tree import DecisionTreeClassifier
 2 from sklearn.metrics import roc auc score
 4 # features
 5 columns = ["age", "workclass", "education num", "marital status",
              "occupation", "relationship", "race", "sex",
              "hours per week", "native country"]
 9 # model 1
10 clf = DecisionTreeClassifier(random state=1, min samples leaf=2)
11 clf.fit(train[columns], train["high income"])
12
13 # model 2
14 clf2 = DecisionTreeClassifier(random state=1, max depth=5)
15 clf2.fit(train[columns], train["high income"])
16
17 # prediction on model 1
18 predictions = clf.predict(test[columns])
19 print(roc auc score(test["high income"], predictions))
20
21 # prediction on model 2
22 predictions = clf2.predict(test[columns])
23 print(roc auc score(test["high income"], predictions))
```

0.6878964226062301 0.6759853906508785

# Combining our predictions

| Majority \ | Voting |
|------------|--------|
|------------|--------|

| DT1 | DT2 | DT3 | Final | Prediction |
|-----|-----|-----|-------|------------|
| 0   | 1   | 0   | 0     |            |
| 1   | 1   | 1   | 1     |            |
| 0   | 0   | 1   | 0     |            |
| 1   | 0   | 0   | 0     |            |
|     |     |     |       |            |

| settings             | test AUC |
|----------------------|----------|
| min_samples_leaf: 2  | 0.688    |
| max_depth: 2         | 0.676    |
| combined predictions | 0.715    |

| Rounded      | Mean                 | #2 Model | #1 Model |   |  |
|--------------|----------------------|----------|----------|---|--|
| 0.0          | 0.227587             | 0.288507 | 0.166667 | 0 |  |
| 0.0          | 0.144253             | 0.288507 | 0.000000 | 1 |  |
| 0.0          | 0.090459             | 0.180918 | 0.000000 | 2 |  |
| 0.0          | 0.177083             | 0.354167 | 0.000000 | 3 |  |
| 0.0          | 0.020504             | 0.041009 | 0.000000 | 4 |  |
| 0.0          | 0.003437             | 0.006875 | 0.000000 | 5 |  |
| 0.0          | 0.003437             | 0.006875 | 0.000000 | 6 |  |
| 0.0          | 0.239756             | 0.146179 | 0.333333 | 7 |  |
| 0.0          | 0.003437             | 0.006875 | 0.000000 | 8 |  |
| 1.0          | 0.722049             | 0.777431 | 0.666667 | 9 |  |
| 0.0<br>Wotir | 0.020504<br>bability |          |          |   |  |
|              | <u> Dabilit</u>      | FIC      |          |   |  |





# Why Ensembling Works







# Bagging and Pasting



#### Introduction Variation with Bagging

```
1 # We'll build 10 trees
 2 tree count = 10
 4 # Each "bag" will have 60% of the number of original rows
 5 bag proportion = .6
 7 predictions = []
 8 for i in range(tree count):
       # We select 60% of the rows from train, sampling with replacement
10
      # We set a random state to ensure we'll be able to replicate our results
      # We set it to i instead of a fixed value so we don't
      # get the same sample in every loop.
13
      bag = train.sample(frac=bag proportion, replace=True, random state=i)
14
15
      # Fit a decision tree model to the "bag"
16
      clf = DecisionTreeClassifier(random state=1, min samples leaf=2)
17
      clf.fit(bag[columns], bag["high income"])
18
19
       # Using the model, make predictions on the test data
       predictions.append(clf.predict proba(test[columns])[:,1])
21 combined = np.sum(predictions, axis=0) / 10
22 rounded = np.round(combined)
23
24 print(roc auc score(test["high income"], rounded))
```

| settings                          | test AUC |
|-----------------------------------|----------|
| min_samples_leaf: 2               | 0.688    |
| max_depth: 2                      | 0.676    |
| combined predictions              | 0.715    |
| min_samples_leaf: 2, with bagging | 0.732    |

#### Introduction Variation from Random Features

| settings                                             | test AUC |
|------------------------------------------------------|----------|
| min_samples_leaf: 2                                  | 0.688    |
| max_depth: 2                                         | 0.676    |
| combined predictions                                 | 0.715    |
| min_samples_leaf: 2, with bagging                    | 0.732    |
| min_samples_leaf: 2, with bagging and random subsets | 0.734    |



#### Put it All Together

0.7347461391939776



## Reducing Overfitting

```
clf = DecisionTreeClassifier(random_state=1, min_samples_leaf=5)

clf.fit(train[columns], train["high_income"])

predictions = clf.predict(train[columns])
print(roc_auc_score(train["high_income"], predictions))

predictions = clf.predict(test[columns])
print(roc_auc_score(test["high_income"], predictions))
```

```
0.8192570489534683
0.7139325899284541
```



## Reducing Overfitting

- 0.7917047295143252
- 0.7498874343962398



#### Feature Importance

```
for score,name in sorted(zip(clf.feature_importances_,columns),reverse=True):
    print('{} has a importance of {}'.format(name,score))
```

relationship has a importance of 0.35486065267354705 education\_num has a importance of 0.2238305467772321 age has a importance of 0.16626910165605044 hours\_per\_week has a importance of 0.09802596230288446 occupation has a importance of 0.08434714139306755 workclass has a importance of 0.039372047642714826 race has a importance of 0.009447315730049248 native\_country has a importance of 0.009270711003041526 sex has a importance of 0.007713429852542139 marital\_status has a importance of 0.006863090968870699



# Case Study #2: predicting bike rentals

|   | instant | dteday     | season | yr | mnth | hr | holiday | weekday | workingday | weathersit | temp | atemp  | hum  | windspeed | casual | registered | cnt |
|---|---------|------------|--------|----|------|----|---------|---------|------------|------------|------|--------|------|-----------|--------|------------|-----|
| 0 | 1       | 2011-01-01 | 1      | 0  | 1    | 0  | 0       | 6       | 0          | 1          | 0.24 | 0.2879 | 0.81 | 0.0       | 3      | 13         | 16  |
| 1 | 2       | 2011-01-01 | 1      | 0  | 1    | 1  | 0       | 6       | 0          | 1          | 0.22 | 0.2727 | 0.80 | 0.0       | 8      | 32         | 40  |
| 2 | 3       | 2011-01-01 | 1      | 0  | 1    | 2  | 0       | 6       | 0          | 1          | 0.22 | 0.2727 | 0.80 | 0.0       | 5      | 27         | 32  |
| 3 | 4       | 2011-01-01 | 1      | 0  | 1    | 3  | 0       | 6       | 0          | 1          | 0.24 | 0.2879 | 0.75 | 0.0       | 3      | 10         | 13  |
| 4 | 5       | 2011-01-01 | 1      | 0  | 1    | 4  | 0       | 6       | 0          | 1          | 0.24 | 0.2879 | 0.75 | 0.0       | 0      | 1          | 1   |







## **EDA - Exploratory Data Analysis**







#### Feature Engineering

```
def assign label(hour):
    if hour >=0 and hour < 6:
        return 4
    elif hour >=6 and hour < 12:
        return 1
    elif hour >= 12 and hour < 18:
        return 2
    elif hour >= 18 and hour <=24:
        return 3
bike_rentals["time_label"] = bike_rentals["hr"].apply(assign_label)
```



#### Linear Regression vs Decision Tree vs Random Forest

```
from sklearn.linear_model import LinearRegression
predictors = list(train.columns)
predictors.remove("cnt")
predictors.remove("casual")
predictors.remove("registered")
predictors.remove("dteday")
reg = LinearRegression()
req.fit(train[predictors], train["cnt"])
import numpy
predictions = reg.predict(test[predictors])
np.sqrt(np.mean((predictions - test["cnt"]) ** 2))
```

( )

#### Linear Regression vs Decision Tree vs Random Forest

```
from sklearn.tree import DecisionTreeRegressor
reg = DecisionTreeRegressor(min_samples_leaf=2)
reg.fit(train[predictors], train["cnt"])
predictions = req.predict(test[predictors])
np.sqrt(np.mean((predictions - test["cnt"]) ** 2))
```

51.88006941722633





#### Linear Regression vs Decision Tree vs Random Forest

```
from sklearn.ensemble import RandomForestRegressor

reg = RandomForestRegressor(n_estimators=100,min_samples_leaf=2)
reg.fit(train[predictors], train["cnt"])

predictions = reg.predict(test[predictors])

np.sqrt(np.mean((predictions - test["cnt"]) ** 2))
```

38.784474743954746



#### When to use Random Forest

- Strengths of a Random Forest
  - Very accurate predictions
  - Resistance to overfitting
- Weakness
  - They are difficult to interpret
  - They take longer to create

