

教师姓名	沈炜炜	学生姓名		首课时 间		本课时 间	
学习科目	数学	上课年级	高一	教材版本		人教 A 版	
课题名称	平面向量与相关应用						
重点难点 向量共线定理及其运用;向量坐标运算及其运用							

一、向量的基本相关概念

有向线段 带有方向的线段. 用 \overrightarrow{AB} 表示;线段 AB 的长度也叫做有向线段 \overrightarrow{AB} 的长度,记作 $|\overrightarrow{AB}|$. 有向线段包含三要素:起点、方向、长度

向量 既有大小,又有方向的量,用 \overrightarrow{a} , \overrightarrow{AB} , a 表示;向量的大小叫做向量的长度或向量的模,用 |a| 表示.

- 不同于有向线段, 平面向量是自由向量(无源向量);
- 只有大小,没有方向的量称为数量; (物理学中通常称数量为标量,并把向量称为矢量)

零向量 长度为零的向量,其方向是任意的,记作 $\overrightarrow{0}$ 或 0;

相等向量 长度相等且方向相同的向量;

两个向量只能相等或者不相等,不能比较大小.

相反向量 长度相等且方向相反的向量

规定: 0的相反向量为 0

单位向量 长度等于一个单位长度的向量;

与向量 a 方向相同的向量通常记为 $\hat{a} (= \frac{a}{|a|}) (- 般手写为 \hat{a}$ 即可).

平行向量 (共线向量) 方向相同或相反的非零向量叫做平行向量或共线向量;规定零向量与任一向量平行共线. 向量 a、b 平行记作 a \parallel b.

向量平行不具有传递性

向量的夹角 已知两个非零向量 a 和 b,如图,做 $\overrightarrow{OA} = a$, $\overrightarrow{OB} = b$,则 $\angle AOB = \theta$ 叫做向量 a 和 b 的夹角. 记作 $\langle a,b\rangle$ 或 $\langle b,a\rangle$.

- 向量夹角的取值范围: [0,π];
- 当 $\theta = 0^{\circ}$ 时,向量a,b共线且同向;
- 当 $\theta = 90^{\circ}$ 时,向量 a, b 相互垂直,记作 $a \perp b$;
- 当 $\theta = 180^{\circ}$ 时,向量 a, b 共线且反向.

b θ a A

鼓楼校区: 87500166 台江校区: 83310089 金山校区: 87521588 爱琴海校区: 87509388

基础测试

1.1 判断下列结论是否正确 (请在括号中打"√"或" × ")
(1) 向量与有向线段是一样的,因此可以用有向线段来表示向量. ()
(2) a 与 $ b $ 是否相等与 a,b 的方向无关. ()
(3) 若 a // b,b // c, 则 a // c.()
(4) 若向量 \overrightarrow{AB} 与向量 \overrightarrow{CD} 是共线向量,则 A,B,C,D 四点在一条直线上. ()
(5) 若向量 \overrightarrow{AB} 与向量 \overrightarrow{CD} 平行,则直线 \overrightarrow{AB} 与 \overrightarrow{CD} 平行.()
(6) 若向量 a 与任一向量 b 平行,则 $a = 0$. ()
(7) 若两个向量共线,则其方向必定相同或相反. ()
1.2 有下列命题: ①两个相等向量,它们的起点相同,终点也相同; ②若 $ a = b $,则 $a = b$; ③者
$\left \overrightarrow{AB}\right =\left \overrightarrow{CD}\right $,则四边形 $ABCD$ 是平行四边形;④若 $m=n$, $n=k$,则 $m=k$;⑤位移、速率、重力
加速度都是向量;⑥共线的向量,若起点不同,则终点一定不同.其中,错误的个数是(
A. 2 B. 3 C. 4 D. 5
1.3 正方形 $ABCD$ 中,向量 \overrightarrow{AC} 与 \overrightarrow{BC} 的夹角为
1.4 在平面内,若将所有单位向量的起点平移到同一点,则它们的终点构成的图形为

鼓楼校区: 87500166

二、向量的线性运算

§1. 加法

定义 两个向量和的运算;

法则 平行四边形法则或三角形法则

对于零向量与任一向量a,规定

$$a + 0 = 0 + a = a$$

由三角形法则,可得向量不等式(有时称作"三角形不等式"):

$$\Big| |a| - |b| \Big| \leqslant |a + b| \leqslant |a| + |b|$$

若a和b为非零向量,则当a与b反向时,左边等式成立;当a与b同向时,右边等式成立;

运算律 • 交换律: a+b=b+a

• 结合律: (a+b)+c=a+(b+c)

§2. 减法

定义 减去一个向量相当于加上这个向量的相反向量,即

$$a - b = a + (-b)$$

运算法则 三角形法则、平行四边形法则.

对于任意一点 P, $\overrightarrow{AB} = \overrightarrow{PB} - \overrightarrow{PA}$,

§3. 数乘

定义 求实数 λ 与向量 a 的积是一个向量,记作 λa ,长度与方向由以下法则规定:

法则 1) $|\lambda a| = |\lambda| |a|$;

- 2) 当 $\lambda > 0$ 时, λa 的方向与 a 的方向相同;
 - 当 λ <0时, λa 的方向与a的方向相反;

运算律 设 $\lambda, \mu \in \mathbb{R}$,则:

- $\lambda(\mu a) = (\lambda \mu)a$;
- $(\lambda + \mu)a = \lambda a + \mu a$;
- $\lambda(a+b) = \lambda a + \lambda b$.

对于任意向量 a,b 以及任意实数 λ , μ_1 , μ_2 , 恒有:

$$\lambda(\mu_1 \mathbf{a} \pm \mu_2 \mathbf{b}) = \lambda \mu_1 \mathbf{a} \pm \lambda \mu_2 \mathbf{b}$$

定理 (向量共线定理). 向量 a ($a \neq 0$) 与向量 b 共线, 当且仅当存在唯一的实数 λ , 使得 $b = \lambda a$.

证明三点共线的方法: ① $\overrightarrow{AB} = \lambda \overrightarrow{AC}$, 则 A, B, C 三点共线; ② $\overrightarrow{OA} = \lambda \overrightarrow{OB} + \mu \overrightarrow{OC}$, 若 $\lambda + \mu = 1$, 则 A, B, C 三点共线.

基础测试与习题

 $\overrightarrow{A}.\overrightarrow{AD}$

B. \overrightarrow{DC}

 $C \overrightarrow{DB}$

 \overrightarrow{D} . \overrightarrow{AB}

- 2.2 判断下列结论是否正确 (请在括号中打"√"或"ズ")
 - (1) 若向量 b 与向量 a 共线,则存在唯一的实数 λ ,使得 $b = \lambda a$.()
 - (2) 若 $b = \lambda a$,则 a 与 b 共线.()
 - (3) 若 $\lambda a = 0$, 则 a = 0.()
- **2.3** 如图所示,在五边形 ABCDE 中,若四边形 ACDE 是平行四边形,且 $\overrightarrow{AB} = a$, $\overrightarrow{AC} = b$, $\overrightarrow{AE} = c$, 试用向量 a, b, c 表示向量 \overrightarrow{BD} , \overrightarrow{BC} , \overrightarrow{BE} , \overrightarrow{CD} 及 \overrightarrow{CE} .

- **2.4** 1) $3(6a+b)-9(a+\frac{1}{3}b)=$ _____;
 - 2) 若 $2(y \frac{1}{3}a) \frac{1}{2}(c + b 3y) + b = 0$ 其中 a, b, c 为已知向量,则未知向量 $y = ______$
 - 3) 若 a = b + c, 化简 $3(a + 2b) 2(3b + c) 2(a + b) = ____.$

2.7 已知向量 a、b, 且 $\overrightarrow{AB} = a + 2b$, $\overrightarrow{BC} = -5a + 6b$, $\overrightarrow{CD} = 7a - 2b$,则一定共线的三点是...(

- A.A.B.D
- B, A, B, C
- C.B.C.D
- D.A.C.D

A. 一定共线

B. 一定不共线

C. 当且仅当 e_1 与 e_2 共线时共线

D. 当且仅当 $e_1 = e_2$ 时共线

2.9 设向量 a, b 不共线,向量 $\lambda a + b$ 与 a + 2b 共线,则实数 $\lambda = ____$.

- **2.10** 设 a, b 是不共线的两个非零向量.
 - (1) 若 $\overrightarrow{OA} = 2a b$, $\overrightarrow{OB} = 3a + b$, $\overrightarrow{OC} = a 3b$, 求证: A, B, C 三点共线;
 - (2) 若 8a + kb 与 ka + b 共线,求实数 k 的值;
 - (3) 若 $\overrightarrow{OM} = ma$, $\overrightarrow{ON} = nb$, $\overrightarrow{OP} = \alpha a + \beta b$, 其中 m, n, α , β 均为实数,且 m, $n \neq 0$,若 M, P, N 三点共线,求证: $\frac{\alpha}{m} + \frac{\beta}{n} = 1$

2.11 设点 G 为 $\triangle ABC$ 重心,D,E,F 分别为各边中点. 试用向量证明: $AG = \frac{2}{3}AD$.

三、平面向量基本定理及坐标表示

§1. 基底

定理 (平面向量基本定理). 如果 e_1 , e_2 是同一平面内的两个不共线的向量,那么对于这一平面内的任意向量 a, 有且只有一对实数 λ_1 , λ_2 , 使 $a = \lambda_1 e_1 + \lambda_2 e_2$.

其中,不共线的向量 e_1 , e_2 叫做表示这一平面内所有向量的一组基底. 解决向量问题,需要注意两点:一是向量共线定理,一个是平面向量基本定理.

向量的基底的重要性在于一旦有了基底,你就可以将题目中涉及的所有向量都用基底向量唯一的表示出来(坐标表示就是一组特殊的基底),计算和变形都有了方向,便于寻找和发现关系.如果题目没有明确给出基底,那么就需要自己指定了

§2. 坐标表示

在不共线的向量中,垂直是一种重要的情形,把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.

在平面直角坐标系 xOy 中,分别取与 x 轴、y 轴方向相同的两个单位向量 i, j 作为基底. 对于平面内的一个向量 a,由平面向量基本定理可知,有且只有一对实数 x, y 使得

$$a = xi + yj$$

这样,平面内的任一向量 a 都可以由 x, y 唯一确定,我们把有序数对 (x,y) 叫做向量 a 的坐标,记作

$$\boldsymbol{a} = (x, y) \tag{-1}$$

其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,(-1) 式叫做**向量的坐标表示**

三点共线的判定 若 A, B, C 三点共线, 有 $\overrightarrow{OA} = \lambda \overrightarrow{OB} + \mu \overrightarrow{OC} (\lambda + \mu = 1)$. 或 $\overrightarrow{AB} = \lambda \overrightarrow{AC}$.

§3. 平面向量的坐标计算

1. 设点 $A(x_1, y_1)$, $B(x_2, y_2)$, 则 $\overrightarrow{AB} = (x_2 - x_1, y_2 - y_1)$.

一个向量的坐标等于表示此向量的有向线段的终点的坐标减去起始点的坐标.

2. 若 $a = (x_1, y_1), b = (x_2, y_2).$

加法: $a + b = (x_1 + x_2, y_1 + y_2)$

$$a + b = (x_1 i + y_1 j) + (x_2 i + y_2 j)$$

= $(x_1 + x_2) i + (y_1 + y_2) j$

即:
$$a + b = (x_1 + x_2, y_1 + y_2)$$

减法: $a - b = (x_1 - x_2, y_1 - y_2)$. 同加法可得

数乘: $\lambda a = (\lambda x_1, \lambda y_1)$

$$\lambda \boldsymbol{a} = \lambda (x_1 \boldsymbol{i} + y_1 \boldsymbol{j}) = \lambda x_1 \boldsymbol{i} + \lambda y_1 \boldsymbol{j}$$
$$= (\lambda x_1, \lambda y_1)$$

模长
$$|a| = \sqrt{x_1^2 + y_1^2}$$
 $|\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $|a + b| = \sqrt{(a + b)^2} = \sqrt{a^2 + 2a \cdot b + b^2}$

共线 $a \parallel b \Leftrightarrow x_1y_2 = y_2x_1$

由向量共线的性质知 a 与 $b(b \neq 0)$ 共线,当且仅当存在实数 λ 使得 $a = \lambda b$. 用坐标表示为:

$$(x_1, y_1) = \lambda(x_2, y_2)$$

即

$$\begin{cases} x_1 = \lambda x_2 \\ y_1 = \lambda y_2 \end{cases}$$

消去λ得到

$$x_1y_2 - x_2y_1 = 0.$$

垂直 $a \perp b \Leftrightarrow a \cdot b = 0 \Leftrightarrow x_1x_2 + y_1y_2 = 0$

证明. 由向量的数量积性质,当
$$\mathbf{a} \perp \mathbf{b}$$
 时,由 $\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|}$ 得到 $\mathbf{a} \cdot \mathbf{b} = 0$

`性化教育新标杆

基础练习

- **3.2** 设平面向量 a = (3,5), b = (-2,1), 则 $a 2b = \dots$)

-)

- **3.4** 已知平面直角坐标系 xOy 内的三点分别是 A(2,-5), B(3,4), C(-1,-3), D 为线段 BC 的中点,则 向量 \overrightarrow{DA} 的坐标为
- **3.5** 设向量 a = (m, 1), b = (1, m), 如果 a = b 共线且方向相反,那么 m 的值为()
- A. 1

 $B_{.} - 1$

-)

- **3.7** 若向量 $\overrightarrow{OA} = (k,6)$, $\overrightarrow{OB} = (4,5)$, $\overrightarrow{OC} = (1-k,10)$,且 A, B, C 三点共线,则 k =_____

四、平面向量的数量积

§1. 定义

定义 已知两个非零向量 a = b, 我们把数量 $|a||b|\cos\theta$ 叫做 a = b 的数量积(又称点积、内积), 记 作 $a \cdot b$, 即

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

其中 θ 为a与b的夹角.

 $|a|\cos\theta(|b|\cos\theta)$ 叫做向量 a 在 b 方向上 (b 在 a 方向上) 的投影,记作 Pri_ba (或 Pri_ba)

几何意义 两个向量的数量积等于其中一个向量的模长与另一个向量在此向量方向上的投影的乘积 注: $\theta = 0$ 时, $\cos \theta = 1$, 所以有 $a \cdot b = |a| |b|$;

当
$$\theta = 90^{\circ}$$
时,有 $\cos \theta = 0$,所以有 $a \cdot b = 0$

当
$$\theta = 180^{\circ}$$
 时,有 $\cos \theta = -1$,所以有 $a \cdot b = -|a||b|$

数量积计算 已知向量 $a = (x_1, x_2), b = (x_2, y_2), 则:$

$$\therefore \mathbf{a} = x_1 \mathbf{i} + y_1 \mathbf{j}, \ \mathbf{b} = x_2 \mathbf{i} + y_2 \mathbf{j},$$

$$\therefore \boldsymbol{a} \cdot \boldsymbol{b} = (x_1 \boldsymbol{i} + y_1 \boldsymbol{j}) \cdot (x_2 \boldsymbol{i} + y_2 \boldsymbol{j})$$

$$= x_1 x_2 \mathbf{i}^2 + x_1 y_2 \mathbf{i} \cdot \mathbf{j} + x_2 y_1 \mathbf{i} \cdot \mathbf{j} + y_1 y_2 \mathbf{j}^2.$$

$$i^2 = j^2 = 1, i \cdot j = j \cdot i = 0$$

$$\therefore \mathbf{a} \cdot \mathbf{b} = x_1 x_2 + y_1 y_2.$$

鼓楼校区: 87500166 台江校区: 83310089 金山校区: 87521588 爱琴海校区: 87509388

运算律 已知向量 a, b, c 和实数 λ , 则:

• 交換律: $a \cdot b = b \cdot a$;

• 分配律: $(a+b)\cdot c = a\cdot c + b\cdot c$;

• $(\lambda a) \cdot b = \lambda (a \cdot b) = a \cdot (\lambda b)$.

夹角公式 已知向量 a, b, 及它们的夹角 $\langle a,b\rangle = \theta$, 则:

$$\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|} = \frac{x_1 x_2 + y_1 y_2}{\sqrt{x_1^2 + y_1^2} \sqrt{x_2^2 + y_2^2}} \quad (\theta \in [0, \pi]).$$

直接求向量的数量积的方是近年高考的重点,其关键是根据向量的加减法则对向量进行基底分解.分解以后可以直接使用题目的已知条件,要么出现所要求的表达式(此时通过解一元一次方程).分解过程中,往往利用垂直将数量积消掉.整体的思想在数学中占据着极其重要的位置,求解整体的值时,往往不需要分别求出各个元素的值,而是将元素进行有效的分解、整合,提取有效的信息,从而求出整体的值.

§2. 数量积相关补充

②
$$(a \pm b)^2 = |a \pm b|^2 = |a|^2 \pm 2a \cdot b + |b|^2 = a^2 \pm 2a \cdot b + b^2$$
;

③
$$a^2 - b^2 = (a + b) \cdot (a - b) = |a|^2 - |b|^2$$
;

$$||a| - |b|| \le |a \pm b| \le |a| + |b|;$$

⑥ 若点
$$A(x_1, y_1)$$
, $B(x_2, y_2)$, $\mathbb{D} |\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$;

⑦ 柯西-施瓦兹不等式: 若
$$a = (x_1, y_1), b = (x_2, y_2), 则:$$

$$-|a||b| \le a \cdot b \le |a||b| \Leftrightarrow -\sqrt{x_1^2 + y_1^2} \sqrt{x_2^2 + y_2^2} \le x_1 x_2 + y_1 y_2 \le \sqrt{x_1^2 + y_1^2} \sqrt{x_2^2 + y_2^2}$$

- ⑧ 若 |a + b| = |a b|,则 $a \perp b$.对角线相等的平行四边形必然是矩形.
- ⑨ 若 $(a + b) \perp (a b)$, 则 |a| = |b|. 对角线垂直的平行四边形必然是菱形.

⑩ 平面上
$$O$$
, A , B 三点不共线,设 $\overrightarrow{OA} = \mathbf{a} = (x_1, y_1)$, $\overrightarrow{OB} = \mathbf{b} = (x_2, y_2)$, 则 $S_{\triangle OAB} = \frac{1}{2} \sqrt{|\mathbf{a}|^2 |\mathbf{b}|^2 - (\mathbf{a} \cdot \mathbf{b})^2} = \frac{1}{2} |x_1 y_2 - x_2 y_1|$.

① 给定两个长度为 a 的平面向量 \overrightarrow{OA} , \overrightarrow{OB} , 其夹角为 $\theta \in [0,\pi)$, 点 C 在以 O 为圆心的圆弧 AB 上变动,若 $\overrightarrow{OC} = x\overrightarrow{OA} + y\overrightarrow{OB}$, $x,y \in \mathbb{R}$, 则 x + y 的最大值为 $\sqrt{\frac{2}{\cos \theta + 1}}$.

基础练习

4.1 在 △ <i>ABC</i> 中,	$AB = BC = 2$, $\angle B = \frac{3}{2}$	$\frac{\pi}{4}$, AD 是边 BC 上的高,则	$\overrightarrow{AD}\cdot\overrightarrow{AC}$ 的值为()
A. 0	B. 2	C. 4	D. 8	
4.2 已知 △ <i>ABC</i> 中	, AB = AC = BC =	6,平面内一点 M 满足 \overrightarrow{BM}	$\vec{A} = \frac{2}{3}\vec{B}\vec{C} - \frac{1}{3}\vec{B}\vec{A}, \ \ \vec{\square} \ \vec{A}\vec{C} \cdot \vec{M}\vec{B}$	筝等
于			()
A9	B18	C. 12	D. 18	
		a,则 a 与 b 的夹角为	()
A. $\frac{2\pi}{3}$	B. $\frac{\pi}{3}$	C. $\frac{4\pi}{3}$	D. $-\frac{2\pi}{3}$	
4.4 已知 $a = (2, -3)$	3), $b = (1, -2)$, $\perp c$	$\perp a$, $b \cdot c = 1$, 则 c 的坐标	为()
A. $(3, -2)$	B. (3, 2)	C. (-3, -2)	D. (-3, 2)	
4.5 在以 OA 为一注		能的矩形中, $\overrightarrow{OA} = (-3,1)$, \overrightarrow{OA}	$\vec{B} = (-2, k), \text{ 则实数 } k = \dots$)
A. $4\sqrt{3}$	B. $3\sqrt{3}$	C. $\frac{\sqrt{3}}{2}$	D. 4	
4.6 已知点 <i>A</i> (−1, 1	B(1,2), C(-2,-1)), $D(3,4)$,则向量 \overrightarrow{CD} 在 \overrightarrow{AD}	方向上的投影为	
4.7 已知不共线向	量 a , b , $ a =2$, $ b $	$=3$, $\boldsymbol{a}\cdot(\boldsymbol{b}-\boldsymbol{a})=1$, $\mathbb{M} \boldsymbol{b}-\boldsymbol{a} $	- <i>a</i> =	
4.8 已知 a = b =	: 1, a , b 的夹角是直	I角, $c = 2a + 3b$, $d = ka - 4$	$\mathbf{b}, \ \mathbf{c} \perp \mathbf{d}, \ \mathbb{M} \ k = \underline{}$	

五、课后作业

5.1 判断下列结论是	否正确 (请在括号中打	"✓"或" メ ")	
(1) 向量就是有向线	段. ()		
(2) 如果 $ \overrightarrow{AB} > \overrightarrow{CD} $	$ $, 那么 $\overrightarrow{AB} > \overrightarrow{CD}$. ()	
(3) 力、速度和质量	都是向量.()		
(4) 若 a , b 都是单	位向量,则 $a = b$. ()	
(5) 若 $a = b$,且 a	与 b 的起点相同,则终。	点也相同. ()	
(6) 零向量的大小为	70,没有方向.()		
(7) 两个具有公共终	点的向量,一定是共线	向量;	
(8) 两个向量不能比	·较大小,但它们的模能	比较大小;	
(9)λ, μ 为实数,若		线.	_
5.2 (2018 · 安徽淮北	(第一中学最后一卷)设	a, b 都是非零向量,下列四	个条件,使 $\frac{a}{1} = \frac{b}{1}$ 成立当
且仅当			$egin{array}{cccc} oldsymbol{a} & oldsymbol{o} \ \dots & \dots & \dots & \dots \end{array}$
		С. $a // b \perp a = b $	D. a // b 且方向相同
5.3 已知四边形 <i>ABC</i>	CD 是菱形,则下列等式	:中成立的是	()
$A. \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{CA}$	B. $\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{BC}$	C中成立的是 $C.\overrightarrow{AC} + \overrightarrow{BA} = \overrightarrow{AD}$	D. $\overrightarrow{AC} + \overrightarrow{AD} = \overrightarrow{DC}$
		\mathbb{R}), $d = a - b$ 。如果 $c \parallel d$,	
A.k = 1 且 c 与 d同	司向	B. $k = 1$ 且 c 与 d 反向	īJ
C. k = -1且 c 与 d	同向	D. $k = -1$ 且 c 与 d 反	向
5.5 在平行四边形 A.	BCD 中, M, N 分别为	DC, BC 的中点,已知 AM:	$= c$, $\overrightarrow{AN} = d$, 试用 c , d 表
$\overrightarrow{\pi}\overrightarrow{AB} = \underline{\hspace{1cm}}$	$\underline{\hspace{0.5cm}}$, \overrightarrow{AD} = $\underline{\hspace{0.5cm}}$	<u> </u>	
5.6 平面内给定三个	向量 $a = (3,2), b = (-1)$	(1,2), c = (4,1), 则	
(1) 若 $(a + kc)$ // $(2b)$	(b-a),则实数 $k=$	<u> </u>	
(2) 设 $d = (x, y)$ 满瓦	已 $(d-c)$ // $(a+b)$ 且 d	-c =1, $y d=$	
5.7 已知 $ a = 1$, $ b $	= 2, a 与 b 的夹角为 12	20° ,则使 $a + kb$ 与 $ka + b$ 的	夹角为锐角的实数 k 的取值
范围是	<u>_</u> .		
5.8 已知向量 a , b ラ	夹角为 45°,且 a = 1,	$ 2a - b = \sqrt{10}, \text{in } b = $	
		点 E 为 BC 的中点,点 F 在i	
则 $\overrightarrow{AE} \cdot \overrightarrow{BF}$ 的值是_			, .,
		AB 边上的动点,则 $\overrightarrow{DE}\cdot\overrightarrow{CB}$ 的	值为 ; $\overrightarrow{DE} \cdot \overrightarrow{DC}$
的最大值为			,
5.11 化筒:			
	$\overrightarrow{DB} + \overrightarrow{CD} + \overrightarrow{BC}$		
		$\overrightarrow{BO} + \overrightarrow{OA}) - (\overrightarrow{DC} - \overrightarrow{DO} - \overrightarrow{OB})$);
	, 0 (9)	, (= = 0 0 2)	,,

- 5.12 已知向量 $a = (\cos \alpha, \sin \alpha)$, $b = (\cos \beta, \sin \beta)$, 且 a, b 满足关系 $|ka + b| = \sqrt{3} |a kb|(k > 0)$.
- (1) 求将 a 与 b 的数量积用 k 表示的解析式 f(k);
- (2) a 能否和 b 垂直? a 能否和 b 平行? 若不能,则说明理由;若能,则求出对应的 k 值;
- (3) 求 a 与 b 夹角的最大值.

- **5.13** 设点 G 为 $\triangle ABC$ 重心, D, E, F 分别为各边中点.
- (1) 试用向量证明: 三角形三条中线共点; (2) 求 $\overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF}$.

- 5.14 设两个非零向量 a 与 b 不共线
 - (1) 若 $\overrightarrow{AB} = a + b$, $\overrightarrow{BC} = 2a + 8b$, $\overrightarrow{CD} = 3(a b)$, 求证: A, B, D 三点共线;
 - (2) 试确定实数 k, 使 ka + b 与 a + kb 共线.

5.15 已知 $\overrightarrow{OA} = \lambda \overrightarrow{OB} + \mu \overrightarrow{OC}(\lambda, \mu \in \mathbb{R})$,若 $\lambda + \mu = 1$,求证:点 A, B, C 三点共线.

5.16【定比分点坐标公式】如图,设 P 为 $\triangle ABO$ 边 AB 上一点. 设 $\overrightarrow{OA} = a$, $\overrightarrow{OB} = b$

(1)
$$\overrightarrow{R}$$
 \overrightarrow{iE} : $\overrightarrow{OP} = \frac{|\overrightarrow{PB}|}{|b-a|}a + \frac{|\overrightarrow{PA}|}{|b-a|}b$;

(2) 设
$$\overrightarrow{AP} = \lambda \overrightarrow{PB}$$
, 求证: $\overrightarrow{OP} = \frac{a + \lambda b}{1 + \lambda}$

5.17 (2004 年湖北高考题) 在 $Rt\triangle ABC$ 中,已知 BC=a,若长为 2a 的线段 PQ 以点 A 为中点,问 \overrightarrow{PQ} 与 \overrightarrow{BC} 的夹角 θ 取何值时 $\overrightarrow{BP}\cdot\overrightarrow{CQ}$ 的值最大? 并求出这个最大值.

六、部分参考答案

1.1 (2)(5) 正确

2.1 B

2.3 $\overrightarrow{BD} = -a + c + b$; $\overrightarrow{BC} = b - a$; $\overrightarrow{BE} = a - a$;

 $\overrightarrow{CD} = c$; $\overrightarrow{CE} = c - b$.

2.4 (1)9a; (2) $\frac{4}{21}a - \frac{1}{7}b + \frac{1}{7}c$; -a.

2.5 $x = \frac{1}{2}$; $y = -\frac{1}{6}$

2.6 A

2.7 A

2.8 C

2.9 $\frac{1}{2}$

2.10 (1): $\overrightarrow{AB} = a + 2b$, $\overrightarrow{CB} = 2a + 4b$; $\overrightarrow{CB} = \overline{CB} = \overline{CB}$

 $2\overrightarrow{AB}; (2)k = 2\sqrt{2};$

3.1 2a - b

3.2 A

3.3 D

3.4 $\left(1, -\frac{11}{2}\right)$

3.5 B

3.6 B

3.7 $\frac{17}{6}$

4.1 B

4.2 B

4.3 A

4.4 C

4.5 D

4.6 $3\sqrt{5}$

4.7 $\sqrt{3}$

4.8 6

5.1 (5)(8) 正确, 其余皆误.

5.2 D

5.3 C

5.4 D

5.5 $\overrightarrow{AB} = \frac{2}{3}(2d - c), \overrightarrow{AD} = \frac{2}{3}(2c - d)$

5.6 (1) $k = -\frac{16}{13}$; (2) $d = \left(\frac{20 + \sqrt{5}}{5}, \frac{5 + 2\sqrt{5}}{5}\right)$ \mathbb{R} $\left(\frac{20 - \sqrt{5}}{5}, \frac{5 - 2\sqrt{5}}{5}\right)$

5.7 $\left(\frac{5-\sqrt{21}}{2},1\right) \cup \left(1,\frac{5-\sqrt{21}}{2}\right)$

5.8 $3\sqrt{2}$

5.9 $\sqrt{2}$

5.10 1; 1

5.11 $()\overrightarrow{AC}; (20); (30); (40)$

5.12 (1) $f(k) = \frac{k^2 + 1}{4k}(k > 0)$; (2)a 与 b 不可能垂

直; 当 $k = 2 \pm \sqrt{3}$ 时, a // b; (3)60°

5.14 (1) \Re ; (2) $k = \pm 1$

5.17 $\theta = 0$ 时, $\overrightarrow{BP} \cdot \overrightarrow{CQ}$ 取最大值 0.