八进制 3 态非反转透明锁存器

74HC573

高性能硅门 CMOS 器件

SL74HC573 跟 LS/AL573 的管脚一样。器件的输入是和标准 CMOS 输出兼容的;加上拉电阻,他们能和 LS/ALSTTL 输出兼容。

当锁存使能端为高时,这些器件的锁存对于数据是透明的(也就是说输出同步)。当锁存使能变低时,符合建立时间和保持时间的数据会被锁存。

- ×输出能直接接到 CMOS, NMOS 和 TTL 接口上
- ×操作电压范围: 2.0V~6.0V
- ×低输入电流: 1.0uA
- ×CMOS 器件的高噪声抵抗特性

管腿安排:

OUTPUT TO	20 V CC
DO [2	ıs∏ Qu
Di 🛚 3	ıā 🛚 Q
D2 [4	ı≂∐ Q2
D3 [5	16 L O22
D4 [6	15 Q Q4
DS [7	14 Q5
D6 🛚 8	13 Q6
D7 🛚 9	12 7 07
COVED [100	II LATCH

功能表:

	输入			
输出使能	锁存使能	D	Q	
L	Н	H	Н	
L	Н	L	L	
L	L	X	不变	
Н	X	X	Z	

X=不用关心

Z=高阻抗

最大值范围:

符号	参数	值	单位
V_{CC}	DC 供电电压(参考 GND)	-0.5~+7.0	V
V_{IN}	DC 输入电压(参考 GND)	-1.5~VCC+1.5	V
V_{OUT}	DC 输出电压(参考 GND)	-0.5~VCC+0.5	V
I_{IN}	每一个 PIN 的 DC 输入电流	20	mA
I_{OUT}	每一个 PIN 的 DC 输出电流	35	mA
I_{CC}	DC 供电电流,V _{CC} 和 GND 之间	75	mA
P_D	在自然环境下, PDIP 和 SOIC 封装下的	750	mW
	功耗	500	
Tstg	存储温度	-65~+150	°C
T_{L}	引线温度,10秒(PDIP,SOIC)	260	°C

*最大值范围是指超过这个值,将损害器件。

操作最好在下面的推荐操作条件下。

+额定功率的下降——PDIP: -10mW/℃, 65℃~125℃

SOIC: -7 mW/C, $65^{\circ}\text{C} \sim 125^{\circ}\text{C}$

推荐操作条件:

符号	参数	最小	最大	单位
V_{CC}	DC 供电电压(参考 GND)	2.0	6.0	V
$V_{\rm IN}, V_{\rm OUT}$	DC 输入电压,输出电压(参考 GND)	0	V _{CC}	V
T_{A}	所有封装的操作温度	-55	+125	$^{\circ}$
t_r , t_f	输入上升和下降时间 Vcc=2.0V	0	1000	ns
	V _{CC} =4.5V	0	500	
	V _{CC} =6.0V	0	400	

这个器件带有保护电路,以免被高的静态电压或电场损坏。然而,对于高阻抗电路,必须要采取预防以免工作在任何高于最大值范围的条件下工作。 V_{IN} 和 V_{OUT} 应该被约束在 $GND \leqslant (V_{IN}$ 或 $V_{OUT}) \leqslant VCC$ 。

不用的输入管腿必须连接总是连接到一个适合的逻辑电压电平(也就是 GND 或者 V_{CC})。不用的输出管腿必须悬空。

DC 电子特性(电压是以 GND 为参考):

符号	参数	测试条件	V _{CC}	条件限	制		单位
			V	25	≤85	≤125	
				℃~	$^{\circ}$ C	℃	
				-55			
	,			$^{\circ}$ C	5	2)	
V_{IH}	最小高	V _{OUT} =0.1V 或者 V _{CC} -	2.0	1.5	1.5	1.5	V

V
Č.
V
V
1 uA
uA
uA

AC 电子特性 (CL=50pF, 输入 tr=tf=6.0ns):

符号	参数	参数 VCC 条件限制				单
		V	25℃~	≤85	≤125	位
			-55℃	$^{\circ}$	℃	
t _{PLH} ,	输入D到Q,最大延迟(图1	2.0	150	190	225	ns
t_{PHL}	和 5)	4.5	30	38	45	
	Q • 0,000 80 80	6.0	26	33	38	
t _{PLH} ,	锁存使能到 Q 的最大延迟(图	2.0	160	200	240	ns
t_{PHL}	2和图 5)	4.5	32	40	48	
		6.0	27	34	41	-17
t _{PLZ} ,	输出使能到 Q 的最大延迟(图	2.0	150	190	225	ns
t_{PHZ}	3和图 6)	4.5	30	48	45	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		6.0	26	33	38	

t _{PZH} ,	输出使能到 Q 最大延迟(图 3	2.0	150	190	225	ns
t_{PZL}	和图 6)	4.5	30	48	45	
2000		6.0	26	33	38	
t _{TLH} ,	任何输出的最大输出延迟(图	2.0	60	75	90	ns
t_{THL}	1和图5)	4.5	12	15	18	
THE		6.0	10	13	15	
C_{IN}	最大输入电容	: <u></u>	10	10	10	pF
C _{OUT}	最大三态输出电容(在高阻态		15	15	15	pF
	下的输出)					
C_{PD}	功耗电容(使能所有输出)	典型在	E 25℃, V	CC=5V 🖇	条件下	pF
	用于确定没有负载时的动态功		23	3		
	耗: PD=CPDVcc2f+IccVcc					

时序要求($C_L=50pF$,输入 $t_r=t_f=6.0$ ns.):

符号	参数	VCC	限制条件		限制条件			单
		V	25℃~-	≤85	≤125	位		
			55℃	$^{\circ}$ C	$^{\circ}$ C			
tsu	输入D到锁存使能最小建立时	2.0	50	65	75	ns		
	间(图4)	4.5	10	13	15			
		6.0	9	11	13			
t _h	锁存使能到输入 D 最小保持时	2.0	5	5	5	ns		
	间(图4)	4.5	5	5	5			
		6.0	5	5	5			
tw	锁存使能的最小脉宽(图2)	2.0	75	95	110	ns		
	15 55 9 50 1	4.5	15	19	22			
		6.0	13	16	19	55		
t_r , t_f	最大输入上升沿和下降沿时序	2.0	1000	1000	1000	ns		
	(图1)	4.5	500	500	500			
	100.00	6.0	400	400	400			

Figure 2. Switching Waveforms

* Includes all probe and jig capacitance

Figure 5. Test Circuit

Figure 6. Test Circuit

逻辑图:

