Minimum xor

В задачата ще трябва да отговорете на $oldsymbol{Q}$ на брой заявки върху множество от числа $oldsymbol{S}.$

Първоначално множеството S съдържа само 1 елемент - 0 ($S=\{0\}$). При всяка заявка се въвежда едно цяло число P_i , което се добавя към множеството (S не е мултимножество \Longrightarrow ако числото P_i вече се среща в множеството, то не трябва да бъде добавено втори път).

От вас се иска след всяка заявка да изведете по едно цяло число - минималната стойносто която може да се получи чрез прилагане на **хог** (побитово изключващо или: ⊕) на някои 2 елемента принадлежащи на множеството.

По формално казано, след всяка заявака намерете: $min(\{u\oplus v|\{u,v\}\subseteq S\})$.

Hint: Ако имате 3 естествени числа a < b < c, то е вярно поне едно от следните:

- $a \oplus b < a \oplus c$
- $b \oplus c < a \oplus c$

Input Format

Първият ред на стандартния вход съдържа едно цяло число ${\it Q}$ - броя на заявките.

Следват Q на брой цели числа P_i - поредното число което трябва да бъде добавено в множеството S.

Constraints

$$0 \leq Q \leq 10^5$$

$$1 \le P_i \le 10^9$$

Output Format

Изведете $oldsymbol{Q}$ на брой реда с по едно цяло число на всеки ред - търсената стойност за всяка от заявките.

Sample Input 0

Sample Output 0

```
7
3
2
```

Explanation 0

 $S = \{0\} \cup \{7\} = \{0,7\} \implies$ минималният **хог** е: $(0 \oplus 7) = 7$.

 $S = \{0,7\} \cup \{3\} = \{0,7,3\} \implies$ минималният **хог** е $(0 \oplus 3) = 3$.

 $S = \{0,7,3\} \cup \{5\} = \{0,7,3,5\} \implies$ минималният **хог** е: $(7 \oplus 5) = 2$.

 $S = \{0,7,3,5\} \cup \{5\} = \{0,7,3,5\} \implies$ минималният **хог** е: $(7 \oplus 5) = 2$.

 $S = \{0,7,3,5\} \cup \{42\} = \{0,7,3,5,42\} \implies$ минималният **хог** е: $(7 \oplus 5) = 2$.