↑↓⊝**目‡**ୃ∏ି :

import pandas as pd import numpy as np import matplotlib.pyplot as plt import tensorflow from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Layer,Dense,Dropout

[] data=pd.read_csv("/content/thyroidDF.csv")
 data.head()

	age	sex	on_thyroxine	query_on_thyroxine	on_antithyroid_meds	sick	pregnant	thyroid_surgery	I131_treatment	query
0	29	F	f	f	T.	f	f,	f	f	
1	29	F	f	r	1	f	f	ř	f	
2	41	F	f	1	1	f	f	f	f	
3	36	F	f	f	f	f	f	f	f	
4	32	F	f	f	Ţ	f	f	f	f	

5 rows x 31 columns

hypothyroid conditions

hyperthyroid coditions

antithyroid treatment

antityroid treatment

hyperthyroid conditions

general health

binding protein

miscellaneous

replacement therapy

593

436

376

336

281

147

35

19

14

```
Code + Text
```

[]

x.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 2237 entries, 4 to 9169
Data columns (total 30 columns):

Data	2020	No. W.11 Count	Dtune
#	Column	Non-Null Count	Dtype
0	age	2237 non-null	float64
1	sex	2237 non-null	object
2	on_thyroxine	2237 non-null	object
3	query_on_thyroxine	2237 non-null	obj ect
4	on_antithyroid_meds	2237 non-null	object
5	sick	2237 non-null	object
6	pregnant	2237 non-null	object
7	thyroid_surgery	2237 non-null	object
8	I131 treatment	2237 non-null	object
9	query_hypothyroid	2237 non-null	object
10	query_hyperthyroid	2237 non-null	object
11	lithium	2237 non-null	object
12	goitre	2237 non-null	object
13	tumor	2237 non-null	object
14	hypopituitary	2237 non-null	object
15	psych	2237 non-null	object
16	TSH_measured	2237 non-null	object
17	TSH	2087 non-null	float64
18	T3 measured	2237 non-null	object
19	T3	1643 non-null	float64
20	TT4 measured	2237 non-null	object

✓ RAM = -+ Code + Text [] 3 4 4 ••• 2232 2232 2233 2233 2234 2234 2235 2235 2236 2236 2237 rows x 1 columns [] x=data.iloc[:,0:-1] y=data.iloc[:,-1] [] x age sex on_thyroxine query_on_thyroxine on_antithyroid_meds sick pregnant thyroid_surgery I131_treatment qu f f 32 F f

✓ RAM = [] from sklearn.preprocessing import StandardScaler sc = StandardScaler() x_bal = sc.fit_transform(x_bal) x_test_bal= sc.transform(x_test_bal) [] x_bal [] x_test_bal=pd.DataFrame(x_test_bal,columns=columns) [] x_bal=pd.DataFrame(x_bal,columns=columns) [] x_bal [] from sklearn.inspection import permutation_importance results=permutation_importance(rfr,x_bal,y_bal,scoring='accuracy') [] feature_importance=['age','sex','on_thyroxine','query_on_thyroxine','on_antithyroid_meds','sick','pregnant','thyroid_sur importance=results.importances_mean importance=np.sort(importance) for i,v in enumerate(importance):

- Code + Text

+ Code + Text

```
# Code + Text

| Col=['goitre', 'tumor', 'hypopituitary', 'psych', 'TSH', 'T3', 'TT4', 'T4U', 'FTI', 'T8G']
| da=[[0,0,0,0,0.000000,0.0,0.0,1.00,0.0,40.0]]
| da=pd.DataFrame(data-da,columns=col)
| xgbl.predict(([0,0,0,0,0.000000,0.0,0.0,1.00,0.0,40.0]]))
| model.predict(([[0,0,0,0,0.000000,0.0,0.0,1.00,0.0,40.0]]))
| print(classification_report(y_test_bal,y_pred))
| train_score
| y_pred=xgb.predict(x_test_bal)
| print(classification_report(y_test_bal,y_pred))
| train_score=accuracy_score(y_bal,xgb.predict(x_bal))
| train_score=accuracy_score(y_bal,xgb.predict(x_bal))
| train_score
```

print(label_encoder.inverse_transform(xgb1.predict(features)))

[] random_svc.best_params_

```
x=[[float(x)for x in reguest_from.value()]]
print(x)
col=['goitre', 'tumor', 'hypopituitary', 'psych', 'TSH', 'T3', 'TT4', 'T4U', 'FTI', 'TBG']
x=pd.DataFrame(x,columns=col)
print(x)
pred=model.predict(x)
pred=le.inverse_transform(pred)
print(pred[0])
return render_template('submit.html',prediction_text=str(pred))

[] if name =="__main__":
    app.run(debug=False)

[] In [32]: runfile('C:/Users/SmartBridge-PC/Downloads/Thyroid/app.py',wdir='C:/users/SmartBridge-PC/Downloads/Thyroid')
```

[] @app.route("/pred",methods=['POST','GET'])

def predict():

```
data['target'].unique()

[] y['target'].unique()

[] import pickle
    pickle.dump(sv1,open('thyroid_1_model.pk1','wb'))

[] from flask import Flask,render_template,request
    import numpy as np
    import pickle
    import pandas as pd

[] model=pickle.load(open(r"C:\Users\SmartBridge-PC\Downloads\Thyroid\thyroid1_model.pkl",'rb'))
    le=pickle.load(open("label_encoder.pkl",'rb'))
    app=Flask(_name_)

[] @app.route("/")
    def about():
        return render_template('home.html')
```

] pickle.dump(label_encoder,open('label_encoder.pkl','wb'))

```
[ ] model.add(Dense(units=128,activation='relu',input_shape=(10,)))

[ ] model.add(Dense(units=128.activation='relu',kernel_initializer='random_uniform'))
    model.add(Dropout(0.2))
    model.add(Dense(units=256,activation='relu'kernel_initializer='random_uniform'))
    model.add(Dropout(0.2))
    model.add(Dense(units=128,activation='relu'kernel_initializer='random_uniform'))

[ ] model.add(Dense(units=1,activation='sigmoid'))

[ ] model.summary()

[ ] model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy'])

[ ] model.fit(x_bal,y_bal,validation_data=[x_test_bal,y_test_bal],epochs=15)

[ ] rfr1.predict([[0,0,0,0,0.0000000,0.0,0.0,1.00,0.0,40.0]])

[ ] sv.predict([[0,0,0,0,0.0000000,0.0,0.0,1.00,0.0,40.0]])
```

+ Code + Text

✓ RAM =

```
V Disk
+ Code + Text
          i=feature_importance[i]
 []
          print('feature:{:<20}score:{}'.format(i,v))</pre>
      plt.figure(figsize=(10,10))
      plt.bar(x=feature_importance, height=importance)
      plt.xticks(rotation=30,ha='right')
      plt.show()
[ ] x.head()
[ ] x_bal.drop(['age','sex','on_thyroxine','query_on_thyroxine','on_antithyroid_meds','sick','pregnant','thyroid_surgery'])
[ ] x_test_bal.drop(['age', 'sex', 'on_thyroxine', 'query_on_thyroxine', 'on_antithyroid_meds', 'sick', 'pregnant', 'thyroid_surgery'
[ ] x_bal.head()
[ ] data.info()
[ ] import seaborn as sns
    corrmat=x.corr()
    f,ax=plt.subplots(figsize=(9,8))
    sns.heatmap(corrmat,ax=ax,cmap="YIGnBu",linewidths=0.1)
```

+ Code + Text

✓ RAM _

```
[ ] from sklearn.model_selection import train_test_split
     x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.20,random_state=0)
    from imblearn.over_sampling import SMOTE
     y_train.value_counts()
 C+ 841108102
     850503041
     841120013
                 1
     850102019
     850530045
                 1
     850509071
     860916057
     850527065
     861118071
    860707017
    Name: patient_id, Length: 1789, dtype: int64
[ ] os = SMOTE(random_state=0,k_neighbors=1)
    x_bal,y_bal=os.fit_resample(x_train,y_train)
    x_test_bal,y_test_bal=os.fit_resample(x_test,y_test)
```

Disk ____

1 V O U 🗘 🗓 🗓

[]										
	9162	36	F	f	f	f	f	f	ſ	f
	9169	69	М	f	f	f.	f	f	f	ſ
	2237 го	ws × 3	0 columns							
	1				7	1				
[]			er=LabelE encoder.f	ncoder() it_transform(y)						
0	y=pd.D	ataFr	ame(y_dt,	columns=['target'])					
[]	У									
		targ	et							
	0		0							
	1		1							
			2							

DISK _

e	+ Tex	ĸt							✓ RAM Disk	
	32	41	М	f	ř.	f	f	f.	↑ ↓ ⊖ □ ‡	
;	33	71	F	t	'f'	f	f	f	l j	
;	39	55	F	t	f ²	f	ſ	f	f	
ý				12.2	~ 	7,000	1444	***	***	13
9	153	64	M	f	f	f	f	f	f	
9	157	60	М	T/	f	t	f	f	f	
9	158	64	М	f		f	f	f	f	
9	9162	36	F	f	F	f	f	f	f	
9	9169	69	М	f	f	f	f	f	r	

```
V Disk ___
```

```
orject
     21 TT4
                              2140 non-null
[ ]
                                             float64
     22 T4U_measured
                              2237 non-null
                                             object
     23 T4U
                              2059 non-null
                                             float64
     24 FTI_measured
                             2237 non-null
                                             object
     25 FTI
                             2060 non-null
                                             float64
     26 TBG_measured
                             2237 non-null
                                             object
     27 TBG
                             98 non-null
                                             float64
     28 referral_source
                             2237 non-null
                                            object
    29 target
                             2237 non-null
                                            object
   dtypes: float64(7), object(23)
```

memory usage: 541.8+ KB

[] from sklearn.preprocessing import OrdinalEncoder,LabelEncoder
Ordinal_encoder = OrdinalEncoder(dtype='int64')
x.iloc[:,1:16]= Ordinal_encoder.fit_transform(x.iloc[:,1:16])

[] x

	age	sex	on_thyroxine	query_on_thyroxine	on_antithyroid_meds	sick	pregnant	thyroid_surgery	I131_treatment	q
4	32.0	0	0	0	0	0	0	0	0	
18	63.0	0	1	0	0	1	0,	0	0	
32	410	1	0	0	0	0	0	0	0	

+ Code + Text age sex on_thyroxine query_on_thyroxine on_antithyroid_meds sick pregnant thyroid_surgery I131_treatment Ľ÷ M F f M f

ode + ·								✓ RAM Disk	
]	71.0	U		U	U	U	U	U	U
39	55.0	0	1	0	0	0	.0	0	0
	***		S		•••	257	****,	.g	<u></u>
9153	64.0	1	0	0	0	0	0	0	0
9157	60.0	1	0	0	1	0	0	0	0
9158	64.0	1	0	0	0	0	0	0	0
9162	36.0	0	0	O	0	0	0	0	0
9169	69.0	1	0	0	0	0	0	0	c

^[] x.replace(np.nan,'0',inplace=True)

1 V O C I I data['target'].value_counts() hypothyroid conditions 593 general health 436 binding protein 376 replacement therapy 336 miscellaneous 281 hyperthyroid coditions 147 hyperthyroid conditions 35 antithyroid treatment 19 antityroid treatment 14 Name: target, dtype: int64 [] data[data.age>100] age sex on_thyroxine query_on_thyroxine on_antithyroid_meds sick pregnant thyroid_surgery I131_treatment query_ 0 rows x 31 columns [] x=data.iloc[:,0:-1] y=data.iloc[:,-1]

+ Code + Text

✓ Disk = ✓ + Code + Text ↑↓⊖目‡□ⅰ 0 x age sex on_thyroxine query_on_thyroxine on_antithyroid_meds sick pregnant thyroid_surgery I131_treatment qu f f 32 F 4 F 18 63 41 32 M 33 71 f 55 39 f 9153 64 M 60 9157 f f f 9158 64 M

+ Code + Text