Turbocharging Ambient Backscatter Communication

Aaron Parks

Angli Liu Shyamnath Gollakota Joshua R. Smith

Radio Communication Trends

- Range (10s of km)
- Reliability

Our Work

Can we achieve these techniques on battery-free devices?

If Possible, Benefits New Classes of Devices

Challenge: Expensive Digital Computation

- Channel estimation
- Matrix inversion, etc.

Coding (e.g., CDMA)

- Expensive correlation
- Synchronization, etc.

Battery-free devices have orders of magnitude less power

Requires powerintensive ADCs

Our Design Principle

Perform computation in the analog domain

Contributions

- Introduce the first multi-antenna cancellation design for battery-free backscatter devices
 - \triangleright 10 kbps \rightarrow 1 Mbps
- Introduce first analog coding technique for long-range backscatter communication
 - \triangleright 2 feet \rightarrow 20 meters

Ambient Backscatter Communication

No additional power No additional spectrum

Contributions

- Introduce the first multi-antenna cancellation design for battery-free backscatter devices
 - \rightarrow 10 kbps \rightarrow 1 Mbps

- Introduce first analog coding technique for long-range ambient backscatter communication
 - > 2 feet > 20 meters

Multi-Antennas Without Digital Computation

Multi-Antennas Without Digital Computation

Decode b(t) using changes in $\frac{1}{2}$

Division in the Analog Domain

- Commercial analog dividers are power hungry!
 - Build our own.

Multi-antenna design without digital computation

Contributions

- Introduce the first multi-antenna cancellation design for battery-free backscatter devices
 - \rightarrow 10 kbps \rightarrow 1 Mbps

- Introduce first analog coding technique for long-range ambient backscatter communication
 - \triangleright 2 feet \rightarrow 20 meters

How do we Increase Range?

Add redundancy to data for easier decoding

Cross-correlating is too expensive

How do we Increase Range?

Use periodic code

```
Pattern for '1' bit
```

Pattern for '0' bit

Receiver simply correlates with:

No shift

→ Gives I component

☐ ½ symbol delay → Gives Q component

$$|I| + |Q| = N$$

No synchronization required

How do we Increase Range?

Analog implementation

Simple analog implementation \rightarrow Low Power

Our Hardware Prototype

- Integrated multi-antenna and coding implementation
 - 422 uW for multi-antenna
 - 8.9 uW for coding circuit
- Software-defined behavior
 - 0.3 bps to 1 Mbps
- TV , RFID, and solar harvesting

What Gains Can Multiple Antennas Provide?

What Gains Can Multiple Antennas Provide?

- How do we get orders of magnitude gains by adding an antenna?
- Last year (SIGCOMM '13) $\log_2\left(1 + \frac{P_{TAG}}{P_{TV}} + P_{NOISE}\right)$ Average to eliminate big TV signal

- Multi-antenna design
 - Completely cancel TV signal

$$\log_2\left(1 + \frac{P_{TAG}}{P_{NOISE}}\right)$$

Orders of magnitude increase in rate

Can our Analog Code Increase the Range?

Transmitter and receiver in line-of-sight

10-100x improvement across all power levels

Can our Analog Code Increase the Range?

Transmitter and receiver in non-line-of-sight

Conclusions

- Introduce the first multi-antenna and coding designs for battery-free backscatter devices
- Provide orders of magnitude increase in rate and range of ambient backscatter
- Re-design networking primitives with power as a first class citizen
 - Full-duplex (MOBICOM'14), UWB (?), Random access (?), TCP/IP (?), ...