

Symboltabelle: Komplexitäten

Implementierung	Garantiert			Average		
	Suche (get)	Einfügen (put)	Löschen (remove)	Suche (get)	Einfügen (put)	Löschen (remove)
Sequentielle Suche	n	n	n	$\frac{n}{2}$	n	$\frac{n}{2}$
Binäre Suche	$\log_2(n)$	n	n	$\log_2(n)$	$\frac{n}{2}$	$\frac{n}{2}$
Binäre Suchbäume	n	n	n	$1.39 \cdot \log_2(n)$	$1.39 \cdot \log_2(n)$	\sqrt{n}
Ziel	$\log_2(n)$	$\log_2(n)$	$\log_2(n)$	$\log_2(n)$	$\log_2(n)$	$\log_2(n)$

Programmiertechnik II

■ **Herausforderung**: Garantierte Laufzeit ist $O(\log_2(n))!$

Überblick

- 1. 2-3 Bäume
- 2. (Links-Neigende) Rot-Schwarz Bäume (*left-leaning red-black trees*)
 - Rotationen und Farbwechsel
 - Einfügen

Programmiertechnik II

Überblick

1. 2-3 Bäume

- 2. (Links-Neigende) Rot-Schwarz Bäume (*left-leaning red-black trees*)
 - Rotationen und Farbwechsel
 - Einfügen

Programmiertechnik II

2-3 Bäume

- **Idee**: Wir erlauben ein oder zwei Suchschlüssel!
 - **2-Knoten**: Einen Suchschlüssel a und zwei Kinder (Links: alle Knoten kleiner als a; Rechts: alle Knoten größer als a)
 - **3-Knoten**: Zwei Suchschlüssel α und b und drei Kinder (Links: alle Knoten kleiner als α ; Mitte: alle Knoten größer als α aber kleiner als b; Rechts: alle Knoten größer als b)
- Symmetrische Ordnung ergibt weiterhin alle Knoten in richtiger Reihenfolge
- **Satz (Perfekte Balance)**: Jeder Pfad von der Wurzel zu den *null links* hat die gleiche Länge!

John Hopcroft (1939 -)

Programmiertechnik II

2-3 Bäume: Get.

- **Suche** (get) kann genauso ausgeführt werden wir bei binären Suchbäumen
 - **2-Knoten**: Vergleiche den Schlüssel mit dem Knotenschlüssel
 - Wenn Schlüssel und Knotenschlüssel gleich sind: fertig!
 - Suche links weiter wenn der Schlüssel kleiner als der Knotenschlüssel ist
 - Suche rechts weiter wenn der Schlüssel größer als der Knotenschlüssel ist
 - **3-Knoten**: Vergleiche den Schlüssel mit den Knotenschlüsseln
 - Wenn Schlüssel und einer der Knotenschlüssel gleich sind: fertig!
 - Suche links weiter wenn der Schlüssel kleiner als der kleine Knotenschlüssel ist
 - Suche rechts weiter wenn der Schlüssel größer als der große Knotenschlüssel ist
 - Ansonsten suche in der Mitte weiter
- **Satz**: Bei Suchoperationen in einem 2-3 Baum mit n Schlüsseln werden garantiert nicht mehr als $log_2(n)$ Knoten besucht!
 - **Beweis**: Die Höhe des 2-3 Baums liegt zwischen $\log_3(n) = \frac{\log_2(n)}{\log_2 3}$ (wenn alle Knoten 3-Knoten sind) und $\log_2(n)$ (wenn alle Knoten 2-Knoten sind).

Programmiertechnik II

2-3 Bäume: Put

- Einfügen (put) geschieht in zwei Schritten:
 - 1. Einfügen in den Blattknoten
 - 2. Mögliche (temporäre) 4-Knoten auf dem Weg zurück zur Wurzel auflösen
- 6 Regeln zur Auflösung von 4-Knoten

Lokale Transformationen von 2-3 Bäume

■ Einen temporären 4-Knoten aufzulösen ist eine **lokale** Transformation!

Programmiertechnik II

Symboltabelle: Komplexitäten

Implementierung	Garantiert			Average		
	Suche (get)	Einfügen (put)	Löschen (remove)	Suche (get)	Einfügen (put)	Löschen (remove)
Sequentielle Suche	n	n	n	$\frac{n}{2}$	n	$\frac{n}{2}$
Binäre Suche	$\log_2(n)$	n	n	$\log_2(n)$	$\frac{n}{2}$	$\frac{n}{2}$
Binäre Suchbäume	n	n	n	$1.39 \cdot \log_2(n)$	$1.39 \cdot \log_2(n)$	\sqrt{N}
2-3 Bäume	$c \cdot \log_2(n)$	$c \cdot \log_2(n)$	$c \cdot \log_2(n)$	$c \cdot \log_2(n)$	$c \cdot \log_2(n)$	$c \cdot \log_2(n)$
			1		P	rogrammiertechr

Konstante c hängt von der Implementierung ab

Direkte Implementierung ist kompliziert wegen verschiedenen Knotentypen!

Überblick

- 1. 2-3 Bäume
- 2. (Links-Neigende) Rot-Schwarz Bäume (left-leaning red-black trees)
 - Rotationen und Farbwechsel
 - Einfügen

Programmiertechnik II

Darstellung von 2-3 Bäumen mit Binären Suchbäumen

Herausforderung: Wie kann man einen 3-Knoten darstellen?

- **Idee 1**: Regulärer Binärsuchbaum
 - Unmöglich einen 2-Knoten und 3-Knoten zu unterscheiden
 - Keine eindeutige Abbildung von BST zu 2-3 Bäumen möglich

- Zusätzlicher Knoten und Kante notwendig
- Code sehr unübersichtlich mit vielen Spezialfällen

- Elegante Lösung ohne zusätzlichen Knoten und Kante
- Überall in Praxis und Industrie benutzt

Programmiertechnik II

(Links-neigende) Rot-Schwarz Bäume (left-leaning red-black trees)

12/28

Eindeutige Repräsentation von 2-3 Bäume als binäre Suchbäume

2-3 Baum

Eine rote Kante, die einen 3-Knoten darstellt, **muss** die **linke Kante** sein.

korrespondierender Rot-Schwarz Baum

Eigenschaften von links-neigenden Rot-Schwarz Bäumen

- Ein *left-leaning red-black* Baum hat folgende **Eigenschaften**:
 - 1. Kein Knoten hat zwei rote Kanten (das wäre ein temporärer 4-Knoten!)
 - 2. Rote Kanten neigen nach links.
 - 3. Jeder Pfad von der Wurzel zu null links hat die gleiche Anzahl schwarzer Kanten!

Programmiertechnik II

Links-neigende Rot-Schwarz Bäume: Get

Beobachtungen:

- 1 Suche ist identisch zu normalen Suchbäumen!
- 2. Farbe der Kante kann eindeutig in Farbe des Kindknotens kodiert werden!

```
// a helper binary tree node data type
struct Node {
    Key key;
   Value val:
   Node* left;
   Node* right;
   bool red:
    int size;
   // constructor with values
   Node(const Key& k, const Value& v, bool _red, int s) :
        key(k), val(v), red( red), size(s),
       left(nullptr), right(nullptr) {}
};
// returns whether the link from the parent is red
bool is red(const Node* n) const {
    return (n ? n->red : false);
```

```
// use recursion to find the correct node
const Value* get(const Node* n, const Key& key) const {
    if (n == nullptr) return (nullptr);
    if (key < n->key) return (get(n->left, key));
    if (key > n->key) return (get(n->right, key));
    return &(n->val);
}

public:
// gets a value for a given key
const Value* get(const Key& key) const {
    return (get(root, key));
}
```

redblack bst.h

Links-neigende Rot-Schwarz Bäume: Put

- **Grundlegende Strategie**: Erhalte die 1-1 Korrespondenz mit 2-3 Bäumen!
- Konkret:
 - Symmetrische Ordnung: Alle Knoten bleiben in der richtigen Reihenfolge
 - Perfekte Balance: Jeder Pfad von der Wurzel zu null links hat die gleiche Anzahl schwarzer Kanten
- Problemfälle:

Rechts-neigende rote Kante

Zwei rote Kanten

Links-Links Rote Kanten

Links-Rechts Rote Kanten

Programmiertechnik II

Unit 8h – Balancierte Bäume

Lösung: Anwendung von elementaren Operationen Rotation und Farbwechsel

Überblick

- 1. 2-3 Bäume
- 2. (Links-Neigende) Rot-Schwarz Bäume (*left-leaning red-black trees*)
 - Rotationen und Farbwechsel
 - Einfügen

Programmiertechnik II

Elementare Operation: Linksrotation

Invarianten: Symmetrische Ordnung und Perfekte Balance bleiben gewahrt!


```
// make a right-leaning link lean to the left
Node* rotate_left(Node* n) const {
    Node* x = n->right;
    n->right = x->left;
    x->left = n;
    x->red = n->red;
    n->red = true;
    x->size = n->size;
    n->size = size(n->left) + size(n->right) + 1;
    return x;
}
```

redblack_bst.h

Programmiertechnik II

Elementare Operation: Rechtsrotation

Invarianten: Symmetrische Ordnung und Perfekte Balance bleiben gewahrt!


```
// make a left-leaning link lean to the right
Node* rotate_right(Node* n) const {
    Node* x = n->left;
    n->left = x->right;
    x->right = n;
    x->red = n->red;
    n->red = true;
    x->size = n->size;
    n->size = size(n->left) + size(n->right) + 1;
    return x;
}
```

redblack_bst.h

Programmiertechnik II

Elementare Operation: Farbwechsel

■ **Invarianten**: Symmetrische Ordnung und Perfekte Balance bleiben gewahrt (jeder schwarze Pfad wird um eins länger)!

redblack bst.h

Programmiertechnik II

Überblick

- 1. 2-3 Bäume
- 2. (Links-Neigende) Rot-Schwarz Bäume (*left-leaning red-black trees*)
 - Rotationen und Farbwechsel
 - Einfügen

Programmiertechnik II

Warmup 1: Einfügen in einen Baum mit 1 Knoten

Rechts einfügen (B)

Programmiertechnik II

Fall 1: Einfügen in einen Baum mit finalem 2-Knoten

- **Schritt 1**: Färbe die neue Kante rot ← Erhält symmetrische Ordnung und perfekte Balance
- Schritt 2: Wenn die neue Kante eine Rechtskante war: Linksrotation ← Erhält Farbinvarianz

Programmiertechnik II

Warmup 2: Einfügen in einen Baum mit 2 Knoten

Fall 2: Einfügen in einen Baum mit finalem 3-Knoten

Programmiertechnik II

Links-neigende Rot-Schwarz Bäume: Put

return:


```
// uses recursion to put a key-value pair into the tree
Node* put(Node* n, const Key& key, const Value& val) const
    if (n == nullptr) {
        auto node = new Node(key, val, true, 1);
        node->left = nullptr;
                                                                               Füge den neuen Knoten mit einer roten Kante ein
        node->right = nullptr;
        return (node);
    if (key < n->key)
        n->left = put(n->left, key, val);
    else if (key > n->key)
                                                                             Rekursion bis zum Blatt, wo eingefügt wird und update
        n->right = put(n->right, key, val);
                                                                             des neuen Knotens (durch Rotation oder Erzeugen)
    else
        n->val = val;
    // fix-up any right-leaning links
    if (is_red(n->right) && !is_red(n->left)) n = rotate_left(n);
    if (is_red(n->left) && is_red(n->left->left)) n = rotate_right(n
                                                                             Korrektur der 2-3 und links-neigend Eigenschaften auf dem
    if (is_red(n->left) && is_red(n->right)) flip_colors(n);
                                                                             Weg "nach oben"
    n->size = size(n->left) + size(n->right) + 1;
    return (n):
                                                                                                                                 Programmiertechnik II
                                                                                                                                  Unit 8h – Balancierte Bäume
public:
// put a key-value pair into the table
void put(const Key& key, const Value& val) {
    root = put(root, key, val);
    root->red = false:
```

25/28

Links-neigende Rot-Schwarz Bäume: Visualisierung

255 Schlüssel in aufsteigender Reihenfolge

255 Schlüssel in absteigender Reihenfolge

255 Schlüssel in zufälliger Reihenfolge

- Optimalität: Geht's noch besser?
 - Ja, wenn man die Links-Neigung wegnimmt (aber Code komplizierter)
 - Alle balancierten Bäume basieren auf Rotationen und lokalen Transformationen (AVL)
- Knoten löschen sind auch hier komplizierter aber auch durch lokale Transformationen lösbar (Übungsaufgabe?)
- Rot-Schwarz Bäume werden in sehr vielen Standardbibliotheken benutzt (zum Beispiel STL maps)

Programmiertechnik II

Zusammenfassung

2-3 Bäume

- 2-3 Bäume haben zwei Arten von Knoten
- 2-3 Bäume sind *immer* balanciert
- Balance kann allein durch lokale Operationen hergestellt werden

(Links-Neigende) Rot-Schwarz Bäume (left-leaning red-black trees)

- Links-neigende Rot-Schwarz Bäume kodieren die 2- und 3-Knoten eindeutig
- Sind ein Spezialfall von Rot-Schwarz Bäumen, die einfachere Algorithmen erlauben
- Zentrale Operation sind Rotation (links & rechts) und Farbwechsel alles lokale
 Operationen
- Beim Einfügen werden die etwaigen 4-Knoten auf dem Weg "zurück" zur Wurzel wieder behoben
- Balancierte Bäume werden in allen Standardimplementationen von Symboltabellen benutzt (z.B. in der STL)

Programmiertechnik II

Viel Spaß bis zur nächsten Vorlesung!