

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА - Российский технологический университет»

РТУ МИРЭА

Институт искусственного интеллекта Кафедра общей информатики

ОТЧЕТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ № 7 Реализация заданной логической функции от четырех переменных на дешифраторах 4-16, 3-8 и 2-4 по дисциплине

«ИНФОРМАТИКА»

Выполнил студент группы ИМБО-01-22 Ким К.С.

Принял Павлова Е.С.

Ассистент

Практическая работа выполнена «5» ноября 2022 г. Подпись студента

«Зачтено» «5» ноября 2022 г. Подпись преподавателя

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	3
1.1 Персональный вариант	3
2 ПРОЕКТИРОВАНИЕ И РЕАЛИЗАЦИЯ	4
2.1 Предварительная подготовка данных	4
2.2 Схема реализации логической функции на дешифраторе 4-16	4
2.3 Схема реализации логической функции на дешифраторе 3-8	5
2.4 Схема реализации логической функции на дешифраторе 2-4	6
3 ВЫВОДЫ	8
4 ИНФОРМАЦИОННЫЙ ИСТОЧНИК	9

1 ПОСТАНОВКА ЗАДАЧИ

Логическая функция от четырех переменных задана в 16-теричной векторной форме. Восстановить таблицу истинности. По таблице истинности реализовать в лабораторном комплексе логическую функцию на дешифраторах тремя способами: — используя дешифратор 4-16 и одну дополнительную схему «или»; — используя два дешифратора 3-8 и необходимую дополнительную логику; — используя пять дешифраторов 2-4 и одну дополнительную схему «или». Протестировать работу схем и убедиться в правильности их работы. Подготовить отчет о проделанной работе и защитить ее.

1.1 Персональный вариант

Логическая функция от четырех переменных, заданная в 16-теричной форме: 6F5C_{16}

2 ПРОЕКТИРОВАНИЕ И РЕАЛИЗАЦИЯ

2.1 Предварительная подготовка данных

Преобразуем заданную логическую функцию в двоичную запись: 0110 1111 0101 1100_2 - получили столбец значений логической функции, который необходим для восстановления полной таблицы истинности (табл.1).

Таблица 1 – Таблица истинности заданной функции

a	b	c	d	F
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

2.2 Схема реализации логической функции на дешифраторе 4-16

Построим схему реализации логической функции на основе таблицы 1 (рис. 1).

Рисунок 1 – Схема реализации логической функции на дешифраторе 4-16

2.3 Схема реализации логической функции на дешифраторе 3-8

Построим схему реализации логической функции на основе таблицы 2 (рис. 2)

Рисунок 2 - Схема реализации логической функции на дешифраторе 3-8

Таблица 2 – Таблица по распределению областей между дешифраторами 3-8

a	b	С	d	F
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

2.4 Схема реализации логической функции на дешифраторе 2-4

Построим схему реализации логической функции на основе таблицы 3 (рис. 3)

Рисунок 3 - Схема реализации логической функции на дешифраторе 2-4

Таблица 3 - Таблица по распределению областей между дешифраторами 2-4

a	b	С	d	F
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

3 ВЫВОДЫ

Реализована логическая функция с использованием дешифраторов 4-16, 3-8 и 2-4. Для этого была построена таблица истинности по 16-теричной векторной форме задания логической функции, а также несколько логических схем в лабораторном комплексе Logisim. Таким образом, логические схемы можно реализовать разными дешифраторами.

4 ИНФОРМАЦИОННЫЙ ИСТОЧНИК

Информатика: Методические указания по выполнению практических работ / С.С. Смирнов, Д.А. Карпов — М., МИРЭА — Российский технологический университет, 2020. – 102 с.