Билеты к экзамену по DL Магистратура Искусственный Интеллект

Марк Блуменау 31 марта 2025 г.

Предисловие

В случае успешной (дан ответ хотя бы на половину) сдачи 'Основных понятий курса', студенту случайным образом достается билет из представленных ниже. За него можно получить ещё до 4 баллов. Правильные ответы к этим вопросам необходимо расписывать самим. Подразумевается, что ответ на эти вопросы продемонстрирует глубокое понимание тем курса, а не будет сборником ответов на вопросы 'Основных понятий курса'. Подготовьте ручку и листок бумаги, возможно удобнее рисовать для ответа на вопросы.

Для получения оценки 9-10 студенту могут задать дополнительные вопросы. Это могут быть как вопросы из списка ниже, так и задачи/вопросы 'на подумать' от проверяющего. Их может не быть в списке ниже. Гарантируется, что дополнительные вопросы будут по тем темам, которые были освещены в курсе.

Вторая часть экзамена длится до 12 минут суммарно.

Вопросы

1. Линейный слой

Что такое линейный (полносвязный) слой? Напишите формулу. Сформулируйте Универсальную теорему аппроксимации. Зачем нужна нелинейность между линейными слоями? Какие нелинейности вам известны? В чем их плюсы и минусы? Как вычисляется число обучаемых параметров в линейном слое? Как работает backpropagation? Покажите на примере маленькой полносвязной нейросети, расписав формулы.

2. Градиентный спуск и loss-функции

Опишите основные виды градиентного спуска (GD, SGD, mini-batch). Что такое Adam и AdamW? Какие loss-функции применяются для задач классификации и регрессии? Как влияет выбор lr и использование lr-scheduler на процесс обучения?

3. Инициализация

Почему важна правильная инициализация весов в нейронных сетях? Опишите распространённые методы инициализации (Xavier, He) и объясните их принципы. Как неправильная инициализация может привести к затуханию или взрыву градиентов? Можно ли инициализировать веса константой? Что тогда произойдет?

4. Dropout, BatchNorm и инициализация весов

Объясните принцип работы Dropout в режимах train и eval. Что такое BatchNorm и как он влияет на процесс обучения? Как он себя ведет в train и eval режиме? Нужно ли нормализовать данные перед подачей их в нейросеть? Это справедливо только для полносвязных сетей или применимо и к CNN?

5. Операция свёртки в CNN

Запишите формулу свёрточного слоя, укажите, как рассчитывается число параметров (с учётом bias и без bias). Как вычисляется количество операций умножения при свёртке для заданных размеров входного и выходного тензора? Какие еще параметры у сверточных слоев вам известны и как они влияют на работу? Что такое поле восприятия? Как его считать?

6. Архитектуры сверточных нейронных сетей

Какие известные архитектуры CNN вы знаете (AlexNet, VGG, ResNet, Inception)? Можно нарисовать схематично. Какие преимущества и недостатки различных архитектур? Какую архитектуру вы бы предпочли использовать сейчас?

7. Перенос знаний и fine-tuning в CNN

Что такое transfer learning и как его применять в задачах компьютерного зрения? Объясните понятие fine-tuning и приведите пример его использования. Какие особенности следует учитывать при адаптации предобученной модели к новой задаче? Что значит 'заморозить' веса нейронной сети?

8. Pooling и padding

Какие виды pooling вам известны? Зачем нам pooling? Какие существуют виды padding и как они влияют на размер выходного тензора? Приведите примеры, где данные техники применяются для улучшения архитектуры сети.

9. Аугментация данных в задачах компьютерного зрения

Какую роль играет аугментация данных в обучении CNN? Какие виды аугментаций наиболее распространены и в каких областях их использование может быть ограничено? Приведите примеры, расскажите про плюсы и минусы подхода.

10. Детекция

Объясните, в чем разница между задачами классификации, сегментации и детекции в компьютерном зрении. Что такое mAP и как она используется для оценки качества детекции? Расскажите о развитии архитектур для задач детекции и приведите пример модели.

11. Сегментация

Объясните, в чем разница между задачами классификации, сегментации и детекции в компьютерном зрении. Что такое IoU и как оно используется для оценки качества сегментации? Расскажите об отличиях semantic и instance сегментации и приведите пример модели.

12. Рекуррентные нейронные сети (RNN)

Что такое RNN и как они работают? В чём заключается мотивация использования RNN для работы с последовательными данными? Какие проблемы возникают при обучении RNN (затухание/взрыв градиентов) и как их можно решать? Приведите примеры использования RNN в задачах классификации и регрессии на текстовых данных.

13. LSTM и GRU

Объясните, в чем заключаются слабые места стандартных RNN и как LSTM/GRU решают эти проблемы. Расскажите о структуре LSTM и основных компонентах (ячейка памяти, входной/выходной и забывающий гейты). Сравните LSTM и GRU, в чем основные отличия? Запишите формулы для этих слоев.

14. Эмбеддинги для текстовых данных

Что такое эмбеддинги и зачем они нужны в обработке текстов? Опишите модель word2vec, её преимущества и недостатки. Как эмбеддинги влияют на качество обработки естественного языка? Как обучить свои эмбеддинги в PyTorch?