# **ML Assignment 1**

Monsoon 2024 Dr. Jainendra Shukla Rahul Oberoi 2021555

# Section A:

**Ans 1.** As we increase the complexity of the model the <u>bias of the model decreases</u> and the <u>variance of the model increases</u>. Therefore, the model is much more sensitive to outliers and changes predictions even when there are slight changes in the features. Hence, the total error of the model increases and the model overfits.



#### Ans 2.

Spam emails identified as spam or True Positives (TP) = Spam emails identified as legitimate or False Positives (FN) = Legitimate emails identified as legit or True Negatives (TN) = Legitimate emails identified as spam or False Negatives (FP) =

Precision = 
$$\frac{TP}{TP+FP} = \frac{200}{200+20} = \frac{200}{220} =$$
**0.909**

Recall = 
$$\frac{TP}{TP+FN} = \frac{200}{200+50} = \frac{200}{250} =$$
**0.8**

Specificity = 
$$\frac{TN}{TN+FP} = \frac{730}{730+20} = \frac{730}{750} =$$
**0.9733**

F1 Score = 
$$\frac{2*Precision*Recall}{Precision+Recall} = \frac{2*0.909*0.8}{0.909+0.8} = \frac{1.4544}{1.709} = 0.851$$

Accuracy = 
$$\frac{TP + TN}{TP + TN + FP + FN} = \frac{(200 + 730)}{200 + 730 + 20 + 50} = \frac{930}{1000} = 0.93$$

|      | a    |     | χι    | zy   |  |
|------|------|-----|-------|------|--|
|      | 3    | 15  | 9     | 45   |  |
|      | 6    | 30  | 36    | 180  |  |
|      | 10   | 55  | 100   | 550  |  |
|      | 12   | 85  | 225   | 1275 |  |
|      | 18   | 100 | 324   | 1800 |  |
| Σ    | 52   | 285 | 694   | 3850 |  |
| Mean | 10.4 | 57  | 138-8 | 770  |  |
|      | ī    | ÿ   | ኧኒ    | xy   |  |
|      |      |     |       |      |  |
|      |      |     |       |      |  |

$$m = (xy) - (x)(y) = 770 - (10.4)(57)$$

$$x^{2} - (x)^{2} = 138.8 - 108.16$$

$$\Rightarrow 177.2 = 5.78$$

$$30.64$$

$$C = \hat{y} - m\hat{x} = 57 - 5.78 (10.4)$$

$$\Rightarrow 57 - 60.11 = -3.11$$

$$y = 5.78 \times -3.11$$
  $x = 12 \Rightarrow 5.78(12) -3.11$  = 66.25

**Ans 4.** Let the following dataset be the sample points. The two models "f1" and "f2", where "f1" is a higher order polynomial curve and "f2" is a linear curve. The f1 curve fits the data almost perfectly and will give extremely good performance for the training set but might struggle with newer unseen data hence it is **not generalizable**. On the other hand, the f2 linear model may give worse performance on the training set but is much **more generalizable** for unseen data.

| X | Y   |
|---|-----|
| 1 | 2   |
| 2 | 1   |
| 3 | 3   |
| 4 | 1   |
| 5 | 2.5 |



# **Section B:**

Note: There is a significant imbalance in the dataset and class 0 has 3594 entries(~84%) and class 1 has 644 entries (~16%).

**Part a.** The model converges smoothly overall as evident from the consistent increase in the accuracies and smooth loss curves. Additionally, the gap between train loss and val loss is minimal suggesting low overfitting and good generalization. The validation accuracy is slightly higher than the training accuracy, the reason for it could be that the data samples in the validation split are present in the training set and there are fewer unseen data samples which helps the model to make correct predictions. From the graphs, it is clear that the improvement in the accuracies slows down around the 30th epoch mark which is likely to happen as the model approaches minima.



**Part b.** After applying min-max scaling I am able to reduce the losses even further and increase the accuracies a bit, from **83.81%** in the val set to **84.59%.** Since, there is a significant imbalance in the dataset the model is more likely to predict 0 and scaling makes the decision boundary even more sensitive to small differences.

## The plots without scaling are in Part a



**Part c.** As mentioned in **Part b** the dataset imbalance leads to high accuracies as the model just predicts 0 for majority of the entries but low F1 scores as the model isn't able to distinguish properly between the 2 classes. After applying min-max scaling the decision boundary becomes more sensitive which reduces the f1 score to 0 which was already pretty low (0.14) as the model just predicts 0 for the majority of the prediction. The model becomes worse after scaling is clearly evident from ROC-AUC.

|                  | Scores <u>before</u> scaling | Scores <u>after</u> scaling |  |
|------------------|------------------------------|-----------------------------|--|
| Confusion Matrix | [522 16<br>89 09]            | [538 0<br>98 0]             |  |
| F1 Score         | 0.14634146341463417          | 0.0                         |  |
| Precision        | 0.36                         | 0.0                         |  |
| Recall           | 0.09183673469387756          | 0.0                         |  |
| ROC-AUC          | 0.7291935361505197           | 0.31763523253167436         |  |

# Part d.

| Model      | Train Loss | Train Acc. | Val Loss | Val Acc. | Test Loss | Test Acc. |
|------------|------------|------------|----------|----------|-----------|-----------|
| Full Batch | 0.5922     | 0.8392     | 0.5874   | 0.8412   | 0.5874    | 0.8553    |
| Stochastic | 0.5955     | 0.7829     | 0.5942   | 0.7814   | 0.6120    | 0.8396    |
| Batch = 16 | 0.5921     | 0.8328     | 0.5862   | 0.8412   | 0.5808    | 0.8443    |
| Batch = 4  | 0.5878     | 0.7930     | 0.5829   | 0.8003   | 0.5842    | 0.7925    |

## Full Batch Gradient Descent:

It converges the <u>slowest</u> but is the <u>most stable</u>. This is evident from the smooth loss and accuracy graphs.



#### Stochastic Gradient Descent:

It converges the <u>fastest</u> but is the <u>least stable</u>. This is evident from the jagged loss and accuracy graphs.



Mini Batch (Batch Size = 16)

It is <u>faster and less stable</u> than full batch gradient descent but <u>slower and more stable</u> than stochastic gradient descent.



# Mini Batch (Batch Size = 4)

It is a middle ground between full batch and stochastic gradient descent like the previous one.



Part e.

| Fold Number | Train Loss | Train Acc. | Val Loss | Val Acc. |
|-------------|------------|------------|----------|----------|
| 1           | 0.5883     | 0.8334     | 0.5934   | 0.8153   |
| 2           | 0.5884     | 0.8390     | 0.5930   | 0.8181   |
| 3           | 0.5905     | 0.8376     | 0.5902   | 0.8458   |
| 4           | 0.5908     | 0.8352     | 0.5887   | 0.8389   |
| 5           | 0.5915     | 0.8319     | 0.5900   | 0.8476   |

|           | Average | Standard Deviation |
|-----------|---------|--------------------|
| Accuracy  | 0.8323  | 0.0199             |
| Precision | 0.4108  | 0.0442             |
| Recall    | 0.1938  | 0.0389             |
| F1 Score  | 0.2601  | 0.0351             |

# On test set:

| Accuracy  | 0.8428 |
|-----------|--------|
| Precision | 0.4038 |
| Recall    | 0.2333 |
| F1 Score  | 0.2958 |

**Part f.** With early stopping the model stops training at the 57th epoch saving time and compute for the rest of the 43 epochs. However, without early stopping the model keeps training till the 100th epoch (The graphs are above in **Part d**). Early stopping stops whenever the model starts to overfit and generalizes better than an overfitted model (Visible from the accuracy difference on the test set).

Accuracy without early stopping on the test set: **85.53%** Accuracy with early stopping on the test set: **86.64%** 

Therefore, we get better results with less computation.



# Section C:

## Part a.

- 1. From the pair plot, we can see that the majority of the features are tightly grouped, with relatively few outliers. This suggests that most of the data points are concentrated within specific ranges for these features, and there is limited variability or deviation from the norm.
- 2. From the box plot, we can see that there are circles in "Water\_Usage\_Per\_Building", "Water\_Recycled\_Percentage", "Indoor\_Air\_Quality", "Smart\_Devices\_Count", "Green\_Certified" and "Maintenance\_Resolution\_Time", meaning that they contain outliers.
- 3. Additionally, we can see that the range of "Electricity Bill" is very different from the range of the features.
- 4. From the count plots, it is clear that the "Building\_Type", "Building\_Status" and "Maintenance\_Priority" are evenly distributed but "Green\_Certified" is skewed towards 0.
- 5. From the correlation heatmap, we can see that the features aren't very dependent on some other feature.
- 6. From the violin plot, we can see that most of the features show very narrow distributions. Electricity bill has the widest range.

# Pair Plot



## **Box Plot**



## **Violin Plot**

Violin Plots of Numerical Features



# **Correlation Heatmap**



# **Count Plot**









**Part b.** Since string values cannot be plotted on the UMAP, I have label encoded them as we were required to do so in **Part c.** The UMAP splits the data points in two clear clusters.



**Part c.** As the dataset did not have any NaN values so I did not have to do anything with the missing values. I have min-max scaled the numerical features (except the target variable) and label encoded the categorical features. Upon applying linear regression I get the following results:

| Metric      | Train                  | Test                   |  |
|-------------|------------------------|------------------------|--|
| MSE         | 24475013.16847547      | 24278016.155742623     |  |
| RMSE        | 4947.222773281538      | 4927.272689403604      |  |
| MAE         | 4006.32846932936       | 3842.4093125585155     |  |
| R2          | 0.013922520844610209   | 3.7344733075372893e-05 |  |
| Adjusted R2 | -0.0011091480449536562 | -0.0640628254763429    |  |

**Part d.** After applying RFE and only selecting 3 features we can see that there is a slight improvement in the errors meaning that the rest of the features aren't providing much information to the model and in reality, negatively impacting the performance of the model. In comparison to the previous part the model gives better results.

| Metric      | Train                | Test                   |  |
|-------------|----------------------|------------------------|--|
| MSE         | 24598921.045604337   | 23976300.350124482     |  |
| RMSE        | 4959.729936761108    | 4896.560052743607      |  |
| MAE         | 4017.1253534034668   | 3816.722345837314      |  |
| R2          | 0.008930377784842625 | 0.012464411927795571   |  |
| Adjusted R2 | 0.005945228320339169 | 0.00042129500008580845 |  |

**Part e.** One-hot encoding with ridge regression leads to a noticeable improvement in model performance across all metrics when compared to label encoding. This is most likely due to the penalizing term present in ridge regression.

| Metric      | Train                   | Test                |  |
|-------------|-------------------------|---------------------|--|
| MSE         | 24279780.494423226      | 23294434.679618455  |  |
| RMSE        | 4927.451724210317       | 4826.430842726171   |  |
| MAE         | 3981.71251379437        | 3733.689649935618   |  |
| R2          | 0.021788279353217255    | 0.04054908746473351 |  |
| Adjusted R2 | -0.00023900606564586369 | 0.05243734458714244 |  |

**Part f.** For n = (4,5,6) the performance on the train set improves however it worsens on the test set. However, for n = 8 the performance on both the sets improve and even beats the performance of the model in **Part c** by a small margin.

| Dataset | N | MSE                    | RMSE                  | MAE                    | R2                        | Adjusted R2                    |
|---------|---|------------------------|-----------------------|------------------------|---------------------------|--------------------------------|
| Train   | 4 | 24723471.40<br>007696  | 4972.270246<br>082463 | 3999.45500<br>92249247 | 0.00391234<br>9858938846  | -9.2022603<br>93981199e-0<br>5 |
| Test    | 4 | 24640324.9<br>62147772 | 4963.902191<br>03356  | 3854.39180<br>4757433  | -0.01488542<br>6293822945 | -0.03145498<br>427413029       |
| Train   | 5 | 24680344.7<br>4145633  | 4967.931636<br>149629 | 3993.72879<br>32774107 | 0.00564988<br>6281260286  | 0.000648125<br>145854106       |
| Test    | 5 | 24698709.6<br>60744872 | 4969.77963<br>905291  | 3839.817958<br>1959985 | -0.01729017<br>460033999  | -0.03813628<br>473559283       |
| Train   | 6 | 24616414.97<br>0208745 | 4961.493219<br>808805 | 3986.34831<br>38005904 | 0.00822556<br>243068095   | 0.002232967<br>6417425226      |
| Test    | 6 | 24493802.3<br>0529969  | 4949.121367<br>000378 | 3823.887014<br>7468483 | -0.0088504<br>52758148775 | -0.03376034<br>048057219       |

| Train | 8 | 24414396.16<br>8039948 | 4941.09260<br>8729364 | 3978.837103<br>1043093 | 0.01636472<br>8273548956 | 0.008424181<br>175858192  |
|-------|---|------------------------|-----------------------|------------------------|--------------------------|---------------------------|
| Test  | 8 | 24075459.2<br>53332824 | 4906.67496<br>9195822 | 3781.821091<br>0239695 | 0.00838025<br>6142187181 | -0.02453658<br>1828196624 |

**Part g.** The errors reduce from 0.005 to 0.1 alpha value on the test set but then they start increasing.

| Dataset | Alpha | MSE                    | RMSE                   | MAE                    | R2                             | Adjusted R2                |
|---------|-------|------------------------|------------------------|------------------------|--------------------------------|----------------------------|
| Train   | 0.005 | 24476127.32<br>44174   | 4947.335376<br>181546  | 4005.76385<br>22018233 | 0.013877632<br>448635158       | -0.00115472<br>07152575734 |
| Test    | 0.005 | 24259681.02<br>6543718 | 4925.411762<br>13154   | 3840.597618<br>9762887 | 0.00079253<br>18274732973      | -0.06325922<br>895281688   |
| Train   | 0.01  | 24478391.96<br>42343   | 4947.564245<br>5893685 | 4005.22738<br>28058283 | 0.013786392<br>035137873       | -0.00124735<br>19887168383 |
| Test    | 0.01  | 24246459.5<br>5231687  | 4924.06940<br>9778549  | 3839.23780<br>0635025  | 0.00133709<br>77586271149      | -0.06267975<br>494915312   |
| Train   | 0.05  | 24500165.4<br>3664655  | 4949.764179<br>902569  | 4001.923319<br>767777  | 0.012909157<br>337001487       | -0.00213795<br>9167007652  |
| Test    | 0.05  | 24205628.3<br>5381715  | 4919.921580<br>047506  | 3834.80489<br>75247293 | 0.00301885<br>2701353491       | -0.06089019<br>5202405906  |
| Train   | 0.1   | 24523997.70<br>8067063 | 4952.171009<br>574191  | 4000.02986<br>60531626 | 0.011948975<br>376603          | -0.00311277<br>80475341815 |
| Test    | 0.1   | 24200434.8<br>0514653  | 4919.393743<br>658514  | 3832.94038<br>7265711  | 0.00323276<br>4525351594       | -0.06066257<br>1081997685  |
| Train   | 0.5   | 24626508.6<br>71742547 | 4962.510319<br>560308  | 3997.38662<br>58825997 | 0.00781889<br>5774557633       | -0.00730581<br>6180098512  |
| Test    | 0.5   | 24260358.3<br>57730027 | 4925.48052<br>0490364  | 3833.278937<br>04927   | 0.00076463<br>3918220236       | -0.06328891<br>518958613   |
| Train   | 1.0   | 24675958.5<br>5730296  | 4967.490166<br>804859  | 3998.26197<br>0984851  | 0.00582660<br>1912965801       | -0.0093284<br>8037494626   |
| Test    | 1.0   | 24295276.3<br>96878663 | 4929.02387<br>8708508  | 3835.69660<br>9308444  | -0.0006735<br>6988392708<br>32 | -0.06481931<br>154315324   |

**Part h.** We get the best performance on the train set using gradient boosting regressor but the worst performance out of the three parts. This is likely due to the complexity of the model which makes it overfit on the data.

| Metric      | Train               | Test                  |  |
|-------------|---------------------|-----------------------|--|
| MSE         | 14926446.25730777   | 24507135.23925415     |  |
| RMSE        | 3863.4759294329465  | 4950.468183844247     |  |
| MAE         | 3092.7481886865007  | 3839.7324393022955    |  |
| R2          | 0.398626166333897   | -0.009399609491305139 |  |
| Adjusted R2 | 0.38945888228410885 | -0.07410471266382457  |  |