QUI 107 - Prática 1 – Turma						
NOME:	Mat.:					
NOME:	Mat.:					
1. Quais foram as diferenças obser	vadas entre a pipeta graduada e a volumétrica?					
2. Complete as tabelas abaixo com	os resultados dos experimentos 2 e 3.					

2. Complete as tabellas t		· · · · · · · · · · · · · · · · · · ·	
Volume adicionado	Leitura do volume	Volume adicionado	Leitura do volume
com a pipeta /mL*	correspondente na	com a bureta /mL**	correspondente na
	proveta / mL		proveta / mL
10,00		10,00	
+ 10,00		+ 10,00	
+ 10,00		+ 10,00	
+ 10,00		+ 10,00	
+ 10,00		+ 10,00	

^{*} Caso não esteja indicado no aparelho, considere o erro absoluto da pipeta volumétrica de 10 ml = 0,02 mL

3. Compare os volumes totais obtidos com os volumes totais esperados nos experimentos 2 e 3, em termos de exatidão, considerando que a pipeta e a bureta estão calibradas. Comente.

4. (Dual	dos	três :	aparelhos	dos ex	perimen	tos 2	e 3	é o	menos	preciso?	Ext	olia	ne
	2 uui	uob	uco	aparenios	uob ch	Permen			\mathbf{c}	11101100	precise.		JIIY	uc

5. Complete a tabela com os resultados do item 4 da apostila

$V(KMnO_4)$ (mL)	V(bureta) + V(pipeta) (mL)	V(leitura na proveta) (mL)	Erro percentual (%)

6. Identifique o número de algarismos significativos e faça os arredondamentos solicitados.

			· · · · · · · · · · · · · · · · · · ·		
Número	Nº de algarismos.	Arredonde para	Número	Nº de algarismos	Arredonde para
	significativos	dois algarismos		significativos	três algarismos
$2,06 \times 10^{-1}$			$2,065\ 10^{-3}$		
26,01			26,4551		
0,205			67,8149		
0,00215			$9,272 \times 10^{-34}$		

7. Um estudante trouxe uma amostra para o laboratório de química, pulverizou-a, pesou uma certa quantidade, transferiu para um balão volumétrico, adicionou água destilada e aqueceu para dissolvêla. Utilizando uma proveta, ele transferiu três alíquotas, da solução do balão, para três béqueres e titulou usando uma bureta contendo solução de KMnO₄. O restante da solução foi armazenado em um kitasato para posteriores análises. Identifique os erros que o estudante cometeu e corrija-os.

^{**} Caso não esteja indicado no aparelho, considere o erro absoluto da bureta de 25 mL = 0,03 mL

NOME:		Mat.:	
NOME:		Mat.:	
 Complete a tabela 	abaixo:		
Amostra	Conteúdo	Observações Experimentais	Conclusão
Enxofre			
Vinho			
Álcool			
PbI ₂ (aq) em excesso			
KI (aq)			
Pb(NO ₃) ₂ (aq)			
Desconhecida 7	Desconhecido		
Desconhecida 8	Desconhecido		

3. Complete as tabelas e esboce, no verso, os 2 gráficos de T / $^{\circ}$ C x t /minutos:

T (°C) t (min.) T (°C) t (min.) T (°C) t (min.)		Amostra 7 (d	lesconhecida)			Amostra 8 (d	lesconhecida)	
	T (°C)		T (°C)	t (min.)	T (°C)	t (min.)	T (°C)	t (min.)
	1 (C)	t (IIIII.)	1 (0)	t (IIIII.)	1 (C)	t (IIIII.)	1 (0)	t (IIIII.)
						1		

4. Esboce os gráficos: temperatura X tempo, com os dados da tabela anterior.

	QUI 107 - Prá	tica 3 – Turma	
NOME:		Mat.:	
NOME:		Mat.:	
1. Complete a t	abela abaixo (indique os cál	culos no verso da folha).	
Substância	Solubilidade em água / g/L		Condutividade Elétrica da Solução
FeSO ₄ .7H ₂ O			,
$C_{12}H_{22}O_{11}$			
2. As soluções o	de FeSO4 e de C ₁₂ H ₂₂ O ₁₁ são	o iônicas ou moleculares? Ex	xplique.
3. Cálculo da m	assa de KI necessária para p	oreparar 50,00 mL de soluçã	o 0,10 mol/L:
			$m_{KI} = \underline{\hspace{1cm}} g$
4. Cálculo da m	assa de Pb(NO ₃) ₂ necessária	a para preparar 50,00 mL de	solução 0,050 mol/L:
			$m_{Pb(NO3)2} = \underline{\hspace{1cm}} g$
5. Qual é o instr	rumento de medida mais im	portante para o preparo de so	oluções?
		entre KI (aq) e $Pb(NO_3)_2$ (a	5
7. Os reagentes	foram adicionados em prop	orções estequiométricas? Ju	stifique.
		<u> </u>	•
8. Como você p	oderia separar os componer	ntes da mistura obtida?	
9 Que conclusõe	es você pode tirar a respeito	da solubilidade do I ₂ em águ	12 e em CCL2
7. Que conclusor	so voce pode that a respecto		ac com cora.
10. Considerando	o sua resposta à questão ante	erior, como podemos separai	uma mistura de I ₂ e NaCl?

QUI 107 - Prática 4 – Turma_____

NOME:		Mat.:	
NOME:		Mat.:	
Complete a tab			
Experimento	Observações	A reação é endo ou exotérmica?	o- Ocorre prontamente?
1			promamone
Equação:			
2			
Equação:			
3			
Equação:			
4			
Equação:		J	
5			
Equação:			
6			
Equações:			
7			
Equações:			
8			
Equação:			

NOME:				
NOME:		Mat.:		
1. Escreva a equação que descre	eve a primeira reação:			
2. Complete o fluxograma (1) Sólidos e líqu	$Fe(s) + H_2SO_4 (a)$ idos	q) + impurezas	Reação à te Gases	mperatura ambiente
	+ Impurezas (s)			+ Impurezas (g)
	1º procedimento de	purificação =		
Impurezas (s)	2° procedimento	de purificação –		
	2 procedimento	uc purmeação =		
	3° procedimento	de purificação =		
3. Escreva a equação que descre	eve a segunda reação:			
4. Complete o fluxograma (2)	NaOH (s) +	HCl (aq)	Reação à te	emperatura ambiente
1° procedim	ento de purificação =			
2º procedin	nento de purificação =			
- Pressum	reme as parmengue			
<u> </u>				
3° proce	dimento de purificação) =		
1				

- 5. Responda no verso desta folha: Qual a vantagem de se utilizar HCl em excesso?
- 6. Responda no verso desta folha: Se fosse utilizado outro solvente no lugar de etanol, nos dois fluxogramas, quais deveriam ser suas principais propriedades?

	QUI 107 - 1	Prática 6 -	Turma:				
1. Comple	ete as equações que representam	ı as reações	dos metais com	água:			
Na (s) +	- H ₂ O (l) →		$K(s) + H_2O(l)$	\rightarrow			
Mg(s) +	- H ₂ O (l) →		$Ca(s) + H_2O(1)$) →			
	are os experimentos 1, 2 e 3 da a que há de comum entre eles?	postila.					
b) Qua	ais foram as diferenças?						
c) Faç	ea a distribuição eletrônica de Na	a, K, Mg e (Ca.				
	cre Na e K, qual é o elemo perimento e da distribuição eletró		eletropositivo?	Explique	usando	dados	do
e) Aq	jue família da tabela periódica p	ertencem o	Na e o K?				
	re Mg e Ca, qual é o elem perimento e da distribuição eletró		eletropositivo?	Explique	usando	dados	do

g) A que família da tabela periódica pertencem o Mg e o Ca?h) Entre Na e Mg qual é o elemento mais eletropositivo? Explique usando dados do

experimento e da distribuição eletrônica.

:\	Englanda da a		estão o Mg e o Na?	
1)	- Em que periodo r	ia tabeta beriodica.	estado o ivigie o iva /	
-,	Em que periode i	ia tasera perrearea		

- j) Conclusão: Como varia a eletropositividade na tabela periódica?
- 3. Complete e balanceie as equações:

a) NaCl (aq) + Pb(NO₃)₂ (aq)
$$\rightarrow$$

b) KBr (aq) + Pb(NO₃)₂ (aq)
$$\rightarrow$$

c) KI (aq) + Pb(NO₃)₂ (aq)
$$\rightarrow$$

d)
$$X^-(aq) + Pb^{2+}(aq) \rightarrow$$

- 4. Compare os experimentos acima (experimento 4 da apostila).
 - a) O que há de comum entre eles?
 - b) Quais foram as diferenças?
 - c) Faça a distribuição eletrônica do Cl, Br e I.
 - d) A que família na tabela periódica pertencem estes elementos?_____
- 5. Qual é a ordem de eletronegatividade entre os elementos Cl, Br e I? Explique. (Baseie-se nos últimos experimentos da apostila. Escreva as equações das reações.)

QUI 107 - Prática 7 -	Turma:

NOME:	Mat.:
NOME:	Mat.:

1. No primeiro experimento vocês estudaram o seguinte sistema:

1. No primeno experi	mento voces estudaram o segunte sistema	1.
$Cr_2O_7^{2-}$ (aq) + H ₂ O (l)	$2 \text{ CrO}_4^{2-} \text{ (aq)} + 2 \text{ H}^+ \text{ (aq)}$	a) Escreva a expressão da
Cor laranja	Cor amarela	constante de equilíbrio (Kc).

b) O que acontece se adicionamos algumas gotas de solução de NaOH? Explique.

- c) O que acontece se adicionamos algumas gotas de solução de HCl? Explique.
 - 2. No segundo experimento, você estudou um sistema de equilíbrios simultâneos:

$$Cr_2O_7^{2-}(aq) + H_2O(l)$$
 \longrightarrow $2 CrO_4^{2-}(aq) + 2 H^+(aq)$ a) Escreva a expressão da constante de equilíbrio (Kps) para a segunda equação:

b) O que acontece quando é adicionado BaCl₂ (aq) à solução de K₂Cr₂O₇? Explique.

c) O que se observa após a adição de algumas gotas de solução de NaOH ao sistema? Explique.

d) O qı	ne acontece quando é adicionado BaCl ₂ (aq) à solução de K ₂ CrO ₄ ? Explique.
e) O qu	le se observa após a adição de algumas gotas de solução de HCl ao sistema? Explique.
3.	A dissolução do PbI_2 em água pode ser assim descrita: $PbI_2 (s) \longrightarrow Pb^{2+} (aq) + 2 I^{-} (aq)$
a)	O PbI ₂ é mais solúvel a quente ou a frio?
,	A dissolução do PbI ₂ em água é um processo endo- ou exotérmico? Escreva a expressão da constante de equilíbrio para este sistema.
d)	O Kps do PbI ₂ , a 25 °C é 8,3 x 10 ⁻⁹ . O valor do Kps do PbI ₂ a 80 °C é: () menor que 8,3 x 10 ⁻⁹ . Explique. () igual a 8,3 x 10 ⁻⁹ . () maior que 8,3 x 10 ⁻⁹ .
	A dissolução do $Ca(OH)_2$ em água pode ser assim descrita: $Ca(OH)_2 \text{ (s)} $
a)	O Ca(OH) ₂ é muito solúvel em água?
b)	Escreva a expressão da constante de equilíbrio para este sistema.
c) d)	Qual foi o valor de pH da solução? Calcule o valor da constante de equilíbrio para este sistema e <u>compare com o valor tabelado</u> (apostila).

QUI 107 - Prát	tica 8 – Tur	ma
----------------	--------------	----

NOME:	Mat.:
NOME:	Mat ·
TOME:	

1. Complete a tabela abaixo e construa o gráfico de $[C_{12}H_{22}O_{11}]$ versus tempo.

Tubo	[H ₂ SO ₄] mo1 L ⁻¹	[KMnO ₄] mol L ⁻¹	[C ₁₂ H ₂₂ O ₁₁] mo1 L ⁻¹	Tempo s
- 20				
- 20				

2. Qual a relação entre a concentração da sacarose e a velocidade da reação? Explique

3. Porque as concentrações de H₂SO₄ e de KMnO₄ foram mantidas constantes neste experimento?

4. Complete a tabela abaixo:

Tubo nº	$[C_{12}H_{22}O_{11}] \text{ (mol L}^{-1})$	Temperatura (°C)	Tempo (s)

5. Qual a relação observada entre a temperatura e a velocidade da reação? Explique.

QUI 107 - Prática 9 – Turma _____

NOME:	Mat.:
NOME:	Mat.:
1. Que conclusões você tirou dos e	experimentos com a água oxigenada?
2. Esboce um gráfico de Energi conclusões.	ia potencial x Desenvolvimento da reação que explique suas
3. O catalisador altera o ΔH da reaç4. Por que o catalisador não é const	
5. Como o catalisador diminui a en	nergia de ativação de uma transformação química?
6. Escreva a equação da reação de o	oxidação do ácido oxálico.
7. Qual foi o tempo gasto para a re-	alização da oxidação do ácido oxálico?
8. Qual foi o tempo gasto para a r de manganês?	realização da oxidação do ácido oxálico, com a adição de sulfato
9. Na reação da parte A, a cor se repentina, já ao final da reação. Co	e mantém uniforme durante algum tempo, tendo uma variação omo você explica isto?

QUI 107 - Prática 10 – Turma

JIVIL:		Mat.:	
OME:		Mat.:	
Considere a tabela de indie	cadores da apostil	a e complete as tabelas abaixo:	
	•	•	
a) Solução de CH ₃ CO ₂ H (·	b) Solução de HCl 0,1 mol/L:	
Indicador	Cor observada		observada
Azul-de-timol	amarela		ermelha
Alaranjado-de-metila		Alaranjado-de-metila	
Azul-de-bromofenol		Azul-de-bromofenol	
Verde-de-bromocresol		Verde-de-bromocresol	
pH da solução		pH da solução	
	. ~		
c) Solução de NH ₃ 0,1 mo		d) Solução de NaOH 0,1 mol/L:	
Indicador	Cor observada		observada
Azul-de-timol		Azul-de-timol	
Fenolftaleína		Fenolftaleína	
Timolftaleína		Timolftaleína	
Amarelo-de-alizarina		Amarelo-de-alizarina	
pH da solução		pH da solução	
e) Solução de CH ₃ CO ₂ Na	0.1 mol/L:	f) Solução de NH ₄ Cl 0,1 mol/	L:
Indicador	Cor observada		observada
Azul-de-bromotimol		Azul-de-bromofenol	
Azul-de-timol		Verde-de-bromocresol	
Fenolftaleína		Vermelho-de-metila	
Timolftaleína		Azul-de-bromotimol	
pH da solução		pH da solução	
<u> </u>		<u> </u>	
Qual foi o resultado da 1	medida de pH de	cada uma destas soluções feita con	m o papel ind
universal (ou com o poteno		3	1 1
		d) pH =e) pH =	f) pH =
	1 1 ~ /	1 7 -1	
Calcule as concentrações o			1
		nol L ⁻¹) a partir do pH: d) C = e) C = f) C	! =

QUI 107 - Prática 11 – Turma					
NOME:					
Complete as tabelas abai: a) Titulação de HCl (aq)		ol/L	b) Titulação de NaOH 0,	,10 mol/L com l	HCl (aq)
Volume da 1 ^a titulação			Volume da 1 ^a titulação		
Volume da 2 ^ª titulação			Volume da 2 ^a titulação		
Volume da 3 ^a titulação			Volume da 3 ^a titulação		
Volume médio			Volume médio		
[HCl]			[HCl]		
c) Titulação de H ₂ SO ₄ (aq) com NaOH 0,10	mol/L			
Volume da 1 ^a titulação					
Volume da 2 ^a titulação					
Volume da 3 ^a titulação					
Volume médio					
$[H_2SO_4]$					

Cálculos:

QUI 107 - Prática 12 – Turma _____

NOME:	Mat.:
NOME:	Mat.:

1. Complete o quadro abaixo relatando suas observações (reage/não reage)

- 1 1	3 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
	Mg	Zn	Fe	Pb	Cu
Mg ²⁺	X				
Zn^{2+}		X			
Fe ²⁺			X		
Pb ²⁺				X	
Cu ²⁺					X

- 2. O melhor agente redutor é o_____.
- 3. O melhor agente oxidante é _____.
- 4. Calcule os potenciais para cada célula, justificando os resultados experimentais. Escreva no verso desta folha as equações das reações espontâneas. Dados:

Semi-reação	Potencial padrão de redução a 25 °C, E °/ V		
Mg^{2+} (aq) + 2 $e^- \rightarrow Mg$ (s)	- 2,37		
$Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$	- 0,76		
Fe^{2+} (aq) + 2 e^{-} \rightarrow Fe (s)	- 0,45		
Pb^{2+} (aq) + 2 e^{-} \rightarrow Pb (s)	- 0,13		
Cu^{2+} (aq) + 2 e^{-} \rightarrow Cu (s)	+ 0,34		

5. Complete o quadro abaixo com os potenciais calculados (\mathcal{E}^{o}/V)

	Mg	Zn	Fe	Pb	Cu
Mg^{2+}	X				
Zn^{2+}		X			
Fe ²⁺			X		
Pb ²⁺				X	
Cu ²⁺					X

6. Em algumas reações você deve ter observado o aparecimento de bolhas. Utilize as equações abaixo para tentar justificar este fato:

$$2 H_3O^+ + 2 e^- \rightarrow H_2 + 2 H_2O \ (\epsilon^o = 0 V)$$

$$2 H_2O + 2 e^- \rightarrow H_2 + 2 OH^- \quad (\epsilon^o = -0.83 \text{ V})$$