BSRBF-KAN: A combination of B-splines and Radial Basis Functions in Kolmogorov-Arnold Networks

Al Foundations and Big Data

Author: Hoang-Thang Ta

Affiliate: Dalat University, Vietnam

Index

- 1. Introduction
- 2. Related works
- 3. Methodology: Kolmogorov-Arnold Representation Theorem, Kolmogorov-Arnold Networks, and Several KANs
- 4. Experiments: MNIST + Fashion-MNIST, Misclassification Analysis, Ablation Study
- 5. Limitation
- 6. Conclusion
- 7. Questions + Answers

1. Introduction

- Kolmogorov-Arnold Networks (KANs) use learnable activation functions as "edges" to fit training data, as opposed to the fixed activation functions used as "nodes" in multi-layer perceptrons (MLPs).
- KANs are based on the Kolmogorov-Arnold Representation Theorem. Multilayer Perceptrons (MLPs) are based on Universal Approximation Theory.
- → New research trends: novel KANs and integrating KANs with CNNs, RNNs, etc.

1. Introduction

- Propose BSRBF-KAN combines B-splines and radial basis functions (RBFs) within Kolmogorov Arnold Networks (KAN) for improved data fitting.
- BSRBF-KAN shows stability and better convergence compared to MLPs and other networks.
- → Inspire new mathematical function combinations for KAN design.

2. Related works

- Hilbert's 13th problem
 - concerns the solvability of the general 7th-degree polynomial function using continuous functions of only two variables
- Kolmogorov-Arnold Representation Theorem (Vladimir Arnold, 1957)
 - demonstrating that a multivariate continuous function can be represented as a combination of single-variable functions and additions
- Liu, Z., Wang, Y., Vaidya, S., Ruehle, F., Halverson, J., Soljačić, M., Hou, T.Y., Tegmark, M.: Kan: Kolmogorov-arnold networks. arXiv preprint arXiv:2404.19756 (2024)
 - Original KAN (LiuKAN, Spl-KAN), EfficientKAN, FastKAN, FasterKAN, Chebyshev KAN, etc.

Kolmogorov-Arnold Representation Theorem (KART -- Vladimir Arnold, 1957)

- Any multivariate continuous function f defined on a bounded domain can be expressed using a finite number of continuous single-variable functions and additions
- Given $x = x_1, x_2, ..., x_n$ consisting of n variables, a multivariate continuous function f(x) is represented by:

$$f(\mathbf{x}) = f(x_1, ..., x_n) = \sum_{q=1}^{2n+1} \Phi_q \left(\sum_{p=1}^n \phi_{q, p}(x_p) \right)$$
(1)

Kolmogorov-Arnold Networks

- An MLP characterized by affine transformations and non-linear functions.
- From an input x, the network performs the composition of weight matrices by layers (from layer 0 to layer L-1 and the non-linearity (activation function) σ .

$$MLP(\mathbf{x}) = (W_{L-1} \circ \sigma \circ W_{L-2} \circ \sigma \circ \cdots \circ W_1 \circ \sigma \circ W_0)\mathbf{x}$$

$$= \sigma(W_{L-1} \sigma(W_{L-2} \sigma(\cdots \sigma(W_1 \sigma(W_0 \mathbf{x})))))$$
(2)

Kolmogorov-Arnold Networks (based on KART)

• In Equation 1, we must search proper Φ_q and $\varphi_{q,p}$ to solve the problem. A general KAN network consisting of L layers takes x to generate the output as:

$$KAN(\mathbf{x}) = (\Phi_{L-1} \circ \Phi_{L-2} \circ \cdots \circ \Phi_1 \circ \Phi_0)\mathbf{x}$$
(3)

• which Φ_{l} is the function matrix of the l^{th} KAN layer or a set of preactivations.

Kolmogorov-Arnold Networks

• The function matrix Φ_{l} can be represented as a matrix $n_{l+1} \times n_{l}$ of activations as:

$$\mathbf{x}_{l+1} = \underbrace{\begin{pmatrix} \phi_{l,1,1}(\cdot) & \phi_{l,1,2}(\cdot) & \cdots & \phi_{l,1,n_l}(\cdot) \\ \phi_{l,2,1}(\cdot) & \phi_{l,2,2}(\cdot) & \cdots & \phi_{l,2,n_l}(\cdot) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_{l,n_{l+1},1}(\cdot) \phi_{l,n_{l+1},2}(\cdot) & \cdots & \phi_{l,n_{l+1},n_l}(\cdot) \end{pmatrix}}_{\Phi_l} \mathbf{x}_l$$
(5)

Kolmogorov-Arnold Networks

• Example: The structure of KAN(2,3,1)

Implementation of the current KANs

- Original KAN (Spl-KAN, LiuKAN)
 - Liu, Z., Wang, Y., Vaidya, S., Ruehle, F., Halverson, J., Soljačić, M., Hou, T.Y., Tegmark, M.: Kan: Kolmogorov-arnold networks. arXiv preprint arXiv:2404.19756 (2024)
 - The residual activation function $\phi(x)$ as the sum of the base function and the spline function with their corresponding weight matrices w_b and w_s :

$$\phi(x) = w_b b(x) + w_s spline(x)$$
 (6)

- b(x) = silu(x) (activation functions)
- spline(x) = linear combination of B-Splines

Implementation of the current KANs

EfficientKAN

- using B-splines followed by linear combination, reducing memory cost and simplifying computation.
- https://github.com/Blealtan/efficient-kan

FastKAN

 using GRBFs to approximate the 3-order B-spline and employing layer normalization to keep inputs within the RBFs' domain. The RBF has the formula:

$$\phi(r) = e^{-\epsilon r^2} \qquad (9)$$

where r=||x-c|| is the distance between an input vector x and a center c, and ∈ >
 0 controls the width of the Gaussian function.

Implementation of the current KANs

FastKAN

- Li, Z.: Kolmogorov-arnold networks are radial basis function networks. arXiv preprint arXiv:2405.06721 (2024)
- FastKAN uses a special form of RBFs, GRBFs where ∈=0.5 and h controls the width of the Gaussian function:

$$\phi_{RBF}(r) = \exp\left(-\frac{r^2}{2h^2}\right) \tag{8}$$

• The RBF network with N centers can be shown as:

$$RBF(x) = \sum_{i=1}^{N} w_i \phi_{RBF}(r_i) = \sum_{i=1}^{N} w_i \exp\left(-\frac{\|x - c_i\|}{2h^2}\right)$$
(9)

13

Implementation of the current KANs

FasterKAN

- Li, Z.: Kolmogorov-arnold networks are radial basis function networks. arXiv preprint arXiv:2405.06721 (2024)
- Use Reflectional Switch Activation Functions (RSWAFs), which are variants of RBFs:

$$RSWAF(x) = \sum_{i=1}^{N} w_i \phi_{RSWAF}(r_i) = \sum_{i=1}^{N} w_i \left(1 - \left(\tanh\left(\frac{\|x - c_i\|}{h}\right) \right)^2 \right)$$
(11)

- GottliebKAN, which is based on Gottlieb polynomials
 - Teymoor Seydi, S.: Exploring the potential of polynomial basis functions in kolmogorovarnold networks: A comparative study of different groups of polynomials. arXiv e-prints pp. arXiv–2406 (2024)

Implementation of the current KANs

BSBRF-KAN

- Combine B-splines and Gaussian RBFs for interpolation and approximation, ensures smoothness, continuity, and proper derivative handling.
- From an input x, the BSRBF function is represented as:

```
def forward(self, x):

# layer normalization

x = self.layernorm(x)

# base

base_output = F.linear(self.base_activation(x), self.base_weight)

# b_splines

bs_output = self.b_splines(x).view(x.size(0), -1)

# rbfs

rbf_output = self.rbf(x).view(x.size(0), -1)

# combine

bsrbf_output = bs_output + rbf_output

bsrbf_output = F.linear(bsrbf_output, self.spline_weight)

return base_output + bsrbf_output
```

$$BSRBF(x) = w_b b(x) + w_s (BS(x) + RBF(x))$$
 (13)

Configuration + Model Losses

- Each network was trained with 5
 independent runs on MNIST (15
 epochs) and Fashion-MNIST (25
 epochs) using models structured
 as (784, 64, 10), and calculate the
 metric averages.
- For GottliebKAN, we used (784, 64, 64, 10) to be similar to the original design.
- Parameters: batch_size=64, learning_rate=1e-3, weight_decay=1e-4, gamma=0.8, optimize=AdamW, and loss=CrossEntropy.

Fig. 1. The logarithmic values of training losses during a training run over 15 epochs on MNIST and 25 epochs on Fashion-MNIST.

The best metric values in 5 training runs

Table 1. The best metric values in 5 training runs on MNIST and Fashion-MNIST.

Dataset	Model	Train.	Val.	F1	Time	#Params
		Acc.	Acc.		(seconds)	
	BSRBF-KAN	100.0	97.63	97.6	222	459040
	FastKAN	99.94	97.38	97.34	102	459114
MNIST	FasterKAN	98.52	97.38	97.36	93	408224
MNIST	EfficientKAN	99.34	97.54	97.5	122	508160
	GottliebKAN	99.66	97.78	97.74	269	219927
	MLP	99.42	97.69	97.66	273	52512
	BSRBF-KAN	99.3	89.59	89.54	219	459040
	FastKAN	98.27	89.62	89.6	160	459114
Fashion-	FasterKAN	94.4	89.39	89.3	157	408224
MNIST	EfficientKAN	94.83	89.11	89.04	182	508160
	GottliebKAN	93.79	87.69	87.61	241	219927
	MLP	93.58	88.51	88.44	147	52512
	BSRBF-KAN	99.65	93.61	93.57	220.5	459040
Average of	FastKAN	99.11	93.50	93.47	131	459114
MNIST +	FasterKAN	96.46	93.39	93.33	125	408224
Fashion-	EfficientKAN	97.09	93.33	93.27	152	508160
MNIST	GottliebKAN	96.73	92.74	92.68	255	219927
	MLP	96.50	93.10	93.05	210	52512

Train. Acc = Training Accuracy, Val. Acc. = Validation Accuracy

#Params = Parameters Hoang-Thang Ta: BSRBF-KAN

The average metric values in 5 training runs

Dataset	Model	Train. Acc.	Val. Acc.	F1	Time
					(secs)
MNIST	BSRBF-KAN	100.00 ± 0.00	97.55 ± 0.03	97.51 ± 0.03	231
	FastKAN	99.94 ± 0.01	97.25 ± 0.03	97.21 ± 0.03	101
	FasterKAN	98.48 ± 0.01	97.28 ± 0.06	97.25 ± 0.06	93
	EfficientKAN	99.37 ± 0.04	97.37 ± 0.07	97.33 ± 0.07	120
	GottliebKAN	98.44 ± 0.61	97.19 ± 0.22	97.14 ± 0.23	221
	MLP	99.44 ± 0.01	97.62 ± 0.03	97.59 ± 0.03	181
Fashion- MNIST	BSRBF-KAN	99.19 ± 0.03	89.33 ± 0.07	89.29 ± 0.07	211
	FastKAN	98.19 ± 0.04	89.42 ± 0.07	89.38 ± 0.07	162
	FasterKAN	94.40 ± 0.01	89.26 ± 0.06	89.17 ± 0.07	154
	EfficientKAN	94.76 ± 0.06	88.92 ± 0.08	88.85 ± 0.09	183
	GottliebKAN	90.66 ± 1.08	87.16 ± 0.24	87.07 ± 0.25	238
	MLP	93.56 ± 0.05	88.39 ± 0.06	88.36 ± 0.05	148
	BSRBF-KAN	99.60	93.44	93.40	221
Average of	FastKAN	99.07	93.34	93.30	131.5
MNIST +	FasterKAN	96.44	93.27	93.21	123.5
Fashion-	${\bf Efficient KAN}$	97.07	93.15	93.09	151.5
MNIST	GottliebKAN	94.55	92.18	92.11	229.5
	MLP	96.50	93.01	92.98	164.5

Train. Acc = Training Accuracy, Val. Acc. = Validation Accuracy

Hoang-Thang Ta: BSRBF-KAN

4. Experiments Misclassification Analysis

Fig. 2. Heatmap of the misclassified images in the test set by models over MNIST and Fashion-MNIST.

Hoang-Thang Ta: BSRBF-KAN

Ablation Study

Table 3. The performance of BSRBF-KAN by different components on MNIST and Fashion-MNIST.

Dataset	Components	Train. Acc.	Val. Acc	. F1
	Full	100.0	97.53	97.49
MNIST	No BS	- 0.01	- 0.21	- 0.21
	No RBF	- 0.003	- 0.14	- 0.14
	No BS + No RBF = MLP	- 0.55	+ 0.05	+ 0.06
	No BO	- 0.01	- 0.41	- 0.41
	No LN	- 1.7	- 1.5	- 1.52
	No BO + No LN	- 5.16	- 5.97	- 6.08
Fashion- MNIST	Full	99.39	89.43	89.4
	No BS	- 0.16	- 0.39	- 0.37
	No RBF	- 0.34	- 0.14	- 0.15
	No BS + No RBF = MLP	-5.86	-0.81	-0.78
	No BO	- 0.04	- 0.26	- 0.29
	No LN	- 6.12	- 1.1	- 1.13
	No~BO + No~LN	-6.23	-3.29	-3.38

Train. Acc = Training Accuracy, Val. Acc. = Validation Accuracy

No BS = No B-spline, No RBF = No Radial Basis Function

No BO = No Base Output, No LN = No Layer Normalization

5. Limitations

- Experiments were conducted simple datasets (MNIST and Fashion-MNIST)
- The fairness of using the number of parameters (KANs vs. MLP)
- Combining B-splines and Radial Basis Functions was chosen based on observed performance without a formalized mathematical justification or deep analyses.

→ Requirements:

- → Test more datasets and tasks
- → Design models with equal parameter counts for balanced comparisons
- → Explore the theoretical basis for function combinations through mathematical and qualitative analyses.

6. Conclusion + Future works

- The paper introduces BSRBF-KAN, a new Kolmogorov Arnold Network combining Bsplines and RBFs for training.
 - The focus was on understanding KAN combinations rather than optimizing hyperparameters.
- BSRBF-KAN showed competitive performance and rapid convergence on MNIST and Fashion-MNIST,
 - high convergence could lead to overfitting, which can be mitigated.
- Misclassification analysis and an ablation study were conducted to identify critical components.
- Future work involves testing on more datasets and exploring KAN combinations to improve model performance.

SoICT 2024

7. Questions + Answers

- Thank you for listening.
- GitHub: https://github.com/hoangthangta/BSRBF KAN

Session 8B