DIRECT Data Intensive Research Enabling Clean Technologies

Generative Molecules:

Automatic Molecules Design by Deep Generative Models

Yize Chen¹, Xiaoxiao Jia², Jiaxu Qin³

Introduction

Backgrounds

- Molecule discovery/drug design are of key interests
- Deep learning opens the door for learning molecular patterns/distribution

Challenges

- Discrete representation of molecules
- Hard ML problem: learn to generate rather than learn to classify
- Molecular design with targeted properties

Proposed Methods

- One-hot representation of molecules
- Deep Generative Adversarial Networks(GANs) for generative learning
- Deep Q network for reinforcement learning

Dataset Description

Graph	SMILES string
но	CCC[C@@H](O)CC\C=C\C#CC#C\C=C\CO
	COC(=O)C(\C)=C\C1C(C)(C)[C@H]1C(=O)O[C@@H]2C(C)=C(C(=O)C2)CC=CC=C
J. H. J.	O1C=C[C@H]([C@H]1O2)c3c2cc(OC)c4c3OC(=O)C5=C4CCC(=O)5
но он он	OC[C@@H](O1)[C@@H](O)[C@@H](O)[C@@H](O)1

Training set

108,000 molecules from QM9 dataset;

120,000 molecules from ZINC dataset

One-hot encoding

Encode and unify length of encoded vectors.

From Discrete to Continuous

Motivation

- Even with one-hot encoded molecular vector, data is sparse and discrete;
- Gradient descent method requires meaningful gradient updates.

Method 1 Autoencoder

Neural Network

Encode discrete vector to continuous space;
Utilize continuous vector for inference

- Method 2 Policy Gradients
 - Monte Carlo search with rollout policy;
 - Deterministic policy gradients on actions

Generative Adversarial Networks

Minimax game for generator and discriminator

$$\min_{\phi} \mathbb{E}_{Y \sim p_{\text{data}}(Y)} \left[\log D(Y) \right] + \mathbb{E}_{Y \sim p_{G_{\theta}}(Y)} \left[\log(1 - D(Y)) \right]$$

- Wasserstein distance to distinguish generated distribution from training data distribution
- Once trained, generator is able to generate realistic encoded vectors

Policy Gradients for evaluating generated molecules

Calculate the cumulated reward from discriminator

$$J(\theta) = E[R(Y_{1:T})|s_0, \theta] = \sum_{s} G_{\theta}(y_1|s_0) \cdot Q(s_0, y_1)$$

Update generator based on rewards:

$$\nabla_{\theta} J(\theta) \simeq \frac{1}{T} \sum_{t=1,...,T} \mathbb{E}_{y_t \sim G_{\theta}(y_t | Y_{1:t-1})} [\nabla_{\theta} \log G_{\theta}(y_t | Y_{1:t-1}) \cdot Q(Y_{1:t-1}, y_t)]$$

Design Highlights:

- Early stopping during training;
- Stochastic policy update w.r.t long-term rewards;
- Advanced network structures:
 - deep convolutional layers for encoder-decoder networks;
 - LSTM units for policy for discriminator

Implementation

- Keras, Tensorflow as deep learning platforms for LSTM, Conv-net;
- Stochastic gradient descent for optimization;
- RDKit for validating and visualizing generated molecules;

Results

Examples of Generated Molecules

Advantages

- Generated molecules with various modes and structures;
- Generate new structures unique from training sets;
- Conditional generation based on input labels;

Drawbacks

- Invalid generated molecules;
- Hard to generate larger and longer molecules;
- Some generations, e.g.,
 CH4, are repeated
 multiple times

Conclusions & Future Work

Conclusion

- GAN is a powerful generative model for automatically learning molecules patterns and properties;
- Reinforcement learning and autoencoder would help for representing discrete original data;

Future Works:

- Interpolation, conditional generation will help for targeted generation;
- Adding loss terms during training to avoid invalid generated molecules

References:

[1] Gómez-Bombarelli, Rafael, et al. "Automatic chemical design using a data-driven continuous representation of molecules." *ACS Central Science* (2016).

[2] Guimaraes, Gabriel Lima, et al. "Objective-reinforced generative adversarial networks (ORGAN) for sequence generation models." *arXiv preprint arXiv:1705.10843* (2017).

[3] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Kudlur, M. (2016, November). TensorFlow: A System for Large-Scale Machine Learning. In *OSDI* (Vol. 16, pp. 265-283). [4] Goodfellow, Ian, et al. "Generative adversarial nets." *Advances in neural information processing*

systems. 2014.

