PART

DERIVED CATEGORIES OF SHEAVES

- 1 | ABELIAN SHEAVES
- 2 | TRIANGULATED CATEGORIES

2.1 | Adjoint Functor

Two functors $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{C}$ are called an adjoint pair if

$$\operatorname{Hom}_{\mathcal{D}}(F(X), Y) = \operatorname{Hom}_{\mathcal{C}}(X, G(Y))$$

for all $X \in \mathcal{C}$ and $Y \in \mathcal{D}$. F is a left adjoint to G and G is a right adjoint to F. This is denoted by, $F \dashv G$. Adjoints are unique upto isomorphism and is the representative of the functor,

$$X \mapsto \operatorname{Hom}_{\mathcal{D}}(F(X), Y)$$

The isomorphism gives us,

$$\operatorname{Hom}_{\mathcal{C}}(G(X), G(Y)) \cong \operatorname{Hom}_{\mathcal{D}}(F \circ G(X), Y)$$

and similarly, $\operatorname{Hom}_{\mathcal{D}}(F(X), F(Y)) \cong \operatorname{Hom}_{\mathcal{C}}(X, G \circ F(Y)).$

Suppose \mathcal{A} is an abelian category, a complex in \mathcal{A} is a diagram,

$$A^{\bullet} \equiv (\cdots \xrightarrow{d_{i-2}} A^{i-1} \xrightarrow{d_{i-1}} A^{i} \xrightarrow{d_{i}} A^{i+1} \xrightarrow{d_{i+1}} \cdots)$$

in \mathcal{A} , such that $d_i \circ d_{i-1} = 0$.

3 | DERIVED CATEGORIES

REFERENCES