Untitled

Smitesh Patil

2023-02-01

1. Basic measures

```
library(igraph)
## Warning: package 'igraph' was built under R version 4.1.3
##
## Attaching package: 'igraph'
## The following objects are masked from 'package:stats':
##
##
       decompose, spectrum
## The following object is masked from 'package:base':
##
##
       union
library(kableExtra)
## Warning: package 'kableExtra' was built under R version 4.1.3
dib_graph<-read.graph("dib2.graphml",format="graphml")</pre>
1.1 Give the number of nodes and edges
cat("num vertices:", vcount(dib_graph), "\n")
## num vertices: 8969
cat("num edges :", ecount(dib_graph), "\n")
## num edges : 46750
```

1. Strongly connected components

1.2 Is the network strongly or weakly connected. If neither, what is the distribution of component sizes.

```
strong_component = as.data.frame(table(factor(components(dib_graph, mode="strong")$csize)))
names(strong_component)[1] = "Component Size"
kable(strong_component)
```

Component Size	Freq
1	3024
2	180
3	25
4	5
5	1
6	1
5479	1

Answer: The table above shows strongly connected components in the directed network. There is one component with 5479, 6 and 5 nodes and a distribution of component with sizes varying from 1 to 4.

2. Weakly connected components

```
weak_component = as.data.frame(table(factor(components(dib_graph, mode="weak")$csize)))
names(weak_component)[1] = "Component Size"
kable(weak_component)
```

Component Size	Freq
2	30
3	11
4	1
8872	1

Answer: The table above shows weakly connected components in the directed network. There is one component with 8872 and 4 nodes with 30 weakly connected components of size 2 and 11 components with size 3

1.3 What is the diameter of the network?

```
cat("The diameter of the network is: ", diameter(dib_graph, directed = T, unconnected = TRUE, weights="
## The diameter of the network is: 18

1.4 What is the average path length of the network?

cat("The average path length of the network:", mean_distance(dib_graph, directed = T), "\n")
```

The average path length of the network : 6.017593

1.5 What is the clustering coefficient of the network?

```
cat("The clustering coeff of the graph is :", transitivity(dib_graph, type="localaverage"), "\n")
```

The clustering coeff of the graph is : 0.2300017

1.6 What is the in- and out-degree distribution ?

```
deg<-degree(dib_graph, mode = "in")
cat("The in-degree distribution of the graph varies from ", min(deg), "to ", max(deg))</pre>
```

The in-degree distribution of the graph varies from 0 to 473

```
hist(deg,
    breaks=(min(deg)-1):(max(deg))+0.5,
    xlab = "In-degree",
    ylab = "Proportion",
    main = "Histogram of In-Degree Distribution",
    border="black",
    col="white",
    )
```

Histogram of In-Degree Distribution


```
deg<-degree(dib_graph, mode = "out")
cat("The in-degree distribution of the graph varies from ", min(deg), "to ", max(deg))</pre>
```

The in-degree distribution of the graph varies from 0 to 58

```
hist(deg,
    breaks=(min(deg)-1):(max(deg))+0.5,
    xlab = "Out-degree",
    ylab = "Proportion",
```

```
main = "Histogram of Out-Degree Distribution",
border="black",
col="white")
```

Histogram of Out-Degree Distribution


```
clu<-components(dib_graph,mode = "strong")
scc_index <- which.max(clu$csize)

# These are are the vertices in the largest SCC
scc<- V(dib_graph)[which(clu$membership==scc_index)]$name
scc_career<- V(dib_graph)[which(clu$membership==scc_index)]$career
scc_century<- V(dib_graph)[which(clu$membership==scc_index)]$century

IN_component=c()
IN_component_career = c()
IN_component_career = c()
IN_component_century = c()
vertices<-V(dib_graph)
non_SCC <-vertices[!(vertices$name %in% scc)]

for (v in non_SCC){
    dist<- bfs(dib_graph, root=v, mode="out",unreachable =F, dist=T)$dist</pre>
```

```
connected_to_SCC<-!is.nan(dist[scc])</pre>
  if(TRUE %in% connected_to_SCC){
    IN_component<-c(IN_component, V(dib_graph)[v] $name)</pre>
    IN_component_career <- c(IN_component_career, V(dib_graph)[v]$career)</pre>
    IN_component_century <- c(IN_component_century, V(dib_graph)[v]$century)</pre>
}
OUT_component = c()
OUT_component_career = c()
OUT_component_century = c()
non_SCC2 <- vertices[!(vertices$name %in% c(scc, IN_component))]</pre>
for (v in non_SCC2){
  dist<- bfs(dib_graph, root=v, mode="in",unreachable =F, dist=T)$dist</pre>
  connected_to_non_SCC<-!is.nan(dist[scc])</pre>
  if(TRUE %in% connected_to_non_SCC){
    OUT_component<-c(OUT_component, V(dib_graph)[v]$name)</pre>
    OUT_component_career <- c(OUT_component_career, V(dib_graph)[v]$career)
    OUT_component_century <- c(OUT_component_century, V(dib_graph)[v]$century)</pre>
  }
}
tube = c()
tube_career = c()
tube_century = c()
nodes_minus_SCC <- vertices[!(vertices$name %in% scc)]</pre>
g_minus_SCC<-induced_subgraph(dib_graph ,nodes_minus_SCC)</pre>
out = c()
for (v in V(g_minus_SCC)[IN_component]){
  paths <- all_simple_paths (g_minus_SCC, from=v, to = V(g_minus_SCC) [OUT_component], mode = "out", cutoff =
  tube<-c(tube, names(unlist(paths)))</pre>
tube<-unique(tube)</pre>
tube<-tube[!(tube %in% c(IN_component,OUT_component))]</pre>
tube_data = c()
tube_data <- V(dib_graph)[V(dib_graph)$name %in% tube]</pre>
tube_data_career <- tube_data$career</pre>
tube_data_century <- tube_data$century</pre>
length(OUT_component)
```

[1] 223

library(dplyr)

```
##
## Attaching package: 'dplyr'
## The following object is masked from 'package:kableExtra':
##
##
       group_rows
## The following objects are masked from 'package:igraph':
##
       as_data_frame, groups, union
##
## The following objects are masked from 'package:stats':
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
components_prop <- c(length(scc), length(IN_component), length(OUT_component), length(tube))</pre>
prop_table <- prop.table(components_prop) *100</pre>
names(prop table) <- c("SCC", "IN Component", "OUT component", "Tube")</pre>
kable(prop_table, col.names = "Percentage")
```

	Percentage
SCC	64.6718602
IN Component	32.5542965
OUT component	2.6322002
Tube	0.1416431

```
library(dplyr)
scc_career <- trimws(unlist(strsplit(scc_career, split = ",")))
scc_career <- as_tibble(table(scc_career)) %>% arrange(desc(n)) %>% head()

IN_component_career <- trimws(unlist(strsplit(IN_component_career, split = ",")))
IN_component_career <- as_tibble(table(IN_component_career)) %>% arrange(desc(n)) %>% head()

OUT_component_career <- trimws(unlist(strsplit(OUT_component_career, split = ",")))
OUT_component_career <- as_tibble(table(OUT_component_career)) %>% arrange(desc(n)) %>% head()

tube_component_career <- trimws(unlist(strsplit(tube_data_career, split = ",")))
tube_component_career <- as_tibble(table(tube_component_career)) %>% arrange(desc(n)) %>% head()

knitr::kable(list(scc_career, IN_component_career, OUT_component_career, tube_component_career))
```

scc_career	n	IN_component_career	n
Politics	1909	Politics	591
Religion	1004	Religion	487
Literature	587	Literature	312
Military	502	Business and Finance	240
Gentry and Aristocracy	486	Journalism and Broadcasting	224
Administration and Diplomacy	443	Administration and Diplomacy	209
OTTE		. 1	
$OUT_component_career$	n	tube_component_career	n
OUT_component_career Religion	37	tube_component_career Military	3
Religion	37	Military	3
Religion Science and Technology	37 26	Military Science and Technology	3
Religion Science and Technology Politics	37 26 25 20	Military Science and Technology The Sea	3 2 2
Religion Science and Technology Politics Sport	37 26 25 20	Military Science and Technology The Sea Travel and Exploration	3 2 2 2

$scc_century$	n	IN_component_century	n	OUT_component_century	n
19	1871	19	1090	19	112
18	1133	20	789	20	52
20	597	18	419	18	39
17	595	17	170	17	10
16	474	16	120	16	4
15	118	13	36	13	3

tube_data_century	n
20	8
19	3
18	1

induced.subgraph(dib_graph, V(dib_graph)[V(dib_graph)\$century == 18]),

```
induced.subgraph(dib_graph, V(dib_graph)[V(dib_graph)$century == 19]),
                      induced.subgraph(dib_graph, V(dib_graph)[V(dib_graph)$century == 20]))
page_rank <- vector(mode = "list", length = 6)</pre>
katz_centrality <- vector(mode = "list", length = 6)</pre>
eigen_centrality <- vector(mode = "list", length = 6)</pre>
between <- vector(mode = "list", length = 6)</pre>
close <- vector(mode = "list", length = 6)</pre>
names(century_data) <- c("15th century",</pre>
                          "16th century",
                          "17th century",
                          "18th century",
                          "19th century",
                          "20th century")
for(i in 1:length(century_data)){
  page_rank[[i]] <- page_rank(century_data[[i]], directed = TRUE, damping = 0.85)$vector</pre>
  eigen_centrality[[i]] <- eigen_centrality(century_data[[i]], weights=NA)$vector
  page_rank[[i]] <- page_rank[[i]] %>% sort(decreasing = TRUE) %>% head(1)
  eigen_centrality[[i]] <- eigen_centrality[[i]] %>% sort(decreasing = TRUE) %>% head(1)
  between[[i]] <- betweenness(century_data[[i]], weights=NA)</pre>
  between[[i]] <- between[[i]] %>% sort(decreasing = TRUE) %>% head(1)
}
out <- tibble(page_rank = names(unlist(page_rank)),</pre>
               eigen_centrality = names(unlist(eigen_centrality)),
              between = names(unlist(between)))
out <- rotate_df(out)</pre>
colnames(out) <- c("15th century",</pre>
                          "16th century",
                          "17th century",
                          "18th century",
                          "19th century",
                          "20th century")
kable(out)
```

	15th century	16th century	17th century	18th century	19th century
page_rank	Gerald FitzGerald	Hugh O'Neill	James Butler	Daniel O'Connell	Charles Stewart Parnell
eigen_centrality	Gerald FitzGerald	Hugh O'Neill	James II and VII	Wolfe Tone	Éamon De Valera
between	Gerald FitzGerald	Hugh O'Neill	Richard Talbot	Wolfe Tone	Éamon De Valera