Machine Learning

Principal Components Analysis

Kevin Moon (kevin.moon@usu.edu)
STAT/CS 5810/6655

Outline

- Dimensionality Reduction
- Projections
- PCA
 - Projection Perspective
 - Maximum Variance Perspective
 - Connection to SVD
- MDS
 - Connection to PCA

Unsupervised Learning

- On to unsupervised learning!
- We'll come back to supervised learning later.
- There are three main unsupervised learning topics that we will cover in this course:
 - 1. Dimensionality reduction
 - 2. Clustering
 - 3. Density estimation

Dimensionality Reduction

- In dimensionality reduction problems, we observe $x_1, ..., x_n \in \mathbb{R}^d$
 - Notice we do not have labels (unsupervised learning)
- Goal: transform these variables to new ones

$$\boldsymbol{x}_i \to \boldsymbol{\theta}_i \in \mathbb{R}^k$$

where k < d, such that information loss is minimized

Dimensionality Reduction

Reasons for doing dimensionality reduction:

- Computational efficiency
- Visualization (k = 2, 3)
- Compression
- Interpreting data (which dimensions are important?)
- Eliminate rank deficiency
- Eliminate useless/noisy features
- Avoid overfitting

Dimensionality Reduction Types

- Methods for dimensionality reduction can be classified according to:
 - 1. How is information loss quantified?
 - Supervised or unsupervised?
 - 3. Feature selection (select existing features) or feature extraction (form new features from old ones)?
 - 4. Parametric or nonparametric?
 - 5. Linear or nonlinear?
 - 6. Generative or discriminative?

- The first method for dimensionality reduction that we will discuss is principal components analysis (PCA)
 - 1. How is information loss quantified? Least squares
 - 2. Supervised or unsupervised?
 - 3. Feature selection or teature extraction?
 - 4. Parametric or nonparametric?
 - 5. Linear or nonlinear?
 - 6. Generative or discriminative?

Either, although our initial perspective is discriminative

Importance of PCA

PCA is perhaps the most important unsupervised method

- For high-dimensional supervised learning problems, performing PCA first can be very helpful
- Many other dimensionality reduction methods can be framed as learning a different representation of the data and then applying PCA
 - E.g. diffusion maps and kernel PCA (kernel trick applied to PCA)
- Other dimensionality reduction methods use PCA as a preprocessing step
- You should become very familiar with it

Projections

• Let $a_1, \dots, a_k \in \mathbb{R}^d$ be linearly independent column vectors. Denote

$$\mathbf{A} = [\mathbf{a}_1 \cdots \mathbf{a}_k] \qquad (d \times k)$$

• The linear span of a_1, \dots, a_k is the column span of A, written

$$\langle \boldsymbol{A} \rangle = \operatorname{colspan}(\boldsymbol{A})$$

= $\{ \boldsymbol{A}\boldsymbol{\theta} \mid \boldsymbol{\theta} \in \mathbb{R}^k \}$.

• The projection onto $\langle \mathbf{A} \rangle$ is the mapping $\mathbf{P}_A : \mathbb{R}^d \to \langle \mathbf{A} \rangle \subseteq \mathbb{R}^d$

 $P_A x = \text{closest point in}$ $\langle A \rangle$ to x

Projections

- Every point in $\langle A \rangle$ equals $A\theta$ for some $\theta \in \mathbb{R}^k$
- Therefore, $P_A x = A \widehat{\theta}$, where

$$\widehat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} ||\boldsymbol{x} - \boldsymbol{A}\boldsymbol{\theta}||$$

We have previously seen that the solution is

$$\widehat{\boldsymbol{\theta}} = \left(\boldsymbol{A}^T \boldsymbol{A} \right)^{-1} \boldsymbol{A}^T \boldsymbol{x}$$

Therefore,

$$P_{A}x = A\hat{\theta}$$

$$= A(A^{T}A)^{-1}A^{T}x$$

$$\Rightarrow P_{A} = A(A^{T}A)^{-1}A^{T}$$

Properties of Projections

- If $a_1, ..., a_k$ are orthonormal, then $P_A = AA^T (A^TA = I)$
- The orthogonality principle states that

$$\forall x, x - P_A x \in \langle A \rangle^{\perp}$$

• Proof: Let $u \in \langle A \rangle$. Then we can write $u = A\theta$ for some $\theta \in \mathbb{R}^k$. Then

$$\langle \boldsymbol{u}, \boldsymbol{x} - \boldsymbol{P}_{\boldsymbol{A}} \boldsymbol{x} \rangle = \left\langle \boldsymbol{u}, \left(\boldsymbol{I} - \boldsymbol{A} (\boldsymbol{A}^{T} \boldsymbol{A})^{-1} \boldsymbol{A}^{T} \right) \boldsymbol{x} \right\rangle$$

$$= \boldsymbol{\theta}^{T} \boldsymbol{A}^{T} \left(\boldsymbol{I} - \boldsymbol{A} (\boldsymbol{A}^{T} \boldsymbol{A})^{-1} \boldsymbol{A}^{T} \right) \boldsymbol{x}$$

$$= \boldsymbol{\theta}^{T} \boldsymbol{A}^{T} \boldsymbol{x} - \boldsymbol{\theta}^{T} \boldsymbol{A}^{T} \boldsymbol{x}$$

$$= 0.$$

Group Exercise

1. Show that projection matrices are idempotent, that is,

$$P_A^2 = P_A$$
.

Give an intuitive explanation of this property.

2. Let **B** be a $d \times (d - k)$ full rank matrix such that

$$\langle {m B}
angle = \langle {m A}
angle^{\perp}.$$

Determine formulas for

- (a) $\boldsymbol{P}_{A}\boldsymbol{P}_{B}$
- (b) $P_A + P_B$

A = [a,] = R9

• The idea behind PCA is to approximate

$$oldsymbol{x}_i pprox oldsymbol{\mu} + oldsymbol{A}oldsymbol{ heta}_i$$

where

$$oldsymbol{\mu} \in \mathbb{R}^d$$
 $oldsymbol{A} \in \mathcal{A}_k := \{ oldsymbol{A} \in \mathbb{R}^{d imes k} \mid oldsymbol{A}^T oldsymbol{A} = oldsymbol{I}_{k imes k} \}$
 $oldsymbol{ heta}_i \in \mathbb{R}^k, i = 1, \dots, n$

• Example: d = 2, k = 1.

• **Example:** d = 3, k = 2

• Mathematically, we define μ , A, θ_1 , ..., θ_n to be the solution of

$$\min_{\substack{\mu,A,\theta_1,\dots,\theta_n\\A^TA=I}} \sum_{i=1}^n ||x_i - \mu - A\theta_i||^2$$

- PCA gives the least squares rank-k linear approximation to the data set.
- The solution is given in terms of the spectral (or eigenvalue decomposition of the sample covariance matrix:

$$S = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_i - \overline{\mathbf{x}})(\mathbf{x}_i - \overline{\mathbf{x}})^T = U\Lambda U^T$$

PCA Solution

• Note that S is PSD so $\lambda_i \geq 0$:

$$z^{T}Sz = \frac{1}{n} \sum_{i=1}^{n} z^{T} (\boldsymbol{x}_{i} - \overline{\boldsymbol{x}}) (\boldsymbol{x}_{i} - \overline{\boldsymbol{x}})^{T} \boldsymbol{z}$$

$$= \frac{1}{n} \sum_{i=1}^{n} (\mathbf{z}^{T} (\mathbf{x}_{i} - \overline{\mathbf{x}}))^{2} \ge 0$$

A solution to PCA is:

$$\mu = \overline{x}, \quad A = [u_1, ..., u_k]$$

 $\theta_i = A^T(x_i - \overline{x})$

Terminology and Concepts

- Principal components
 - $\theta^{(j)} = j$ th principal component
- Principal eigenvectors/directions
 - $u_i = j$ th principal eigenvector/direction

- Reconstruction of x_i
 - $\hat{\mathbf{x}}_i = \boldsymbol{\mu} + A\boldsymbol{\theta}_i$

• Example: d = 3, k = 2

USU

Example: Handwritten Digits

• Training data

Example: Handwritten Digits

• Reconstruction

reconstructed with 100 bases

reconstructed with 2 bases reconstructed with 10 bases

$$\widehat{oldsymbol{x}}_i = oldsymbol{\mu} + heta_i^{(1)} oldsymbol{u}_1 + heta_i^{(2)} oldsymbol{u}_2 = oldsymbol{0} + heta_i^{(1)} oldsymbol{0} + heta_i^{(2)} oldsymbol{0}$$

Example: Handwritten Digits

• First two PCs

Connection to Projections

- Suppose $\overline{x} = 0$
- Recall that due to orthonormality, the projection matrix is $\boldsymbol{A}\boldsymbol{A}^T$
- The rank-k approximation to x_i is

$$\widehat{\boldsymbol{x}}_{i} = \boldsymbol{A}\boldsymbol{\theta}_{i} = \boldsymbol{A}\boldsymbol{A}^{T}\boldsymbol{x}_{i}$$

$$= \sum_{j=1}^{k} \boldsymbol{u}_{j} \theta_{i}^{(j)}$$

$$\theta_{i}^{(j)} = \boldsymbol{u}_{j}^{T} \boldsymbol{x}_{i}$$

- Intuition:
 - Columns of A define a k dimensional coordinate system for $\langle A \rangle$
 - $\theta_i = A^T x_i$ are the coordinates of \hat{x}_i in the subspace

Connection to Projections

- Suppose $\overline{x} = 0$
- Let \pmb{X} be a random vector of which $\pmb{x}_1, \dots, \pmb{x}_n$ are realizations
- Goal: find the unit vector $\mathbf{a}_1 \in \mathbb{R}^d$ ($\|\mathbf{a}_1\| = 1$) which maximizes the sample variance of

$$\theta^{(1)} = \boldsymbol{a}_1^T \boldsymbol{X}$$

• Sample mean of $\theta^{(1)}$:

$$\frac{1}{n}\sum_{i=1}^{n}\boldsymbol{a}_{1}^{T}\boldsymbol{x}_{i} = \boldsymbol{a}_{1}^{T}\left(\frac{1}{n}\sum_{i=1}^{n}\boldsymbol{x}_{i}\right) = \boldsymbol{a}_{1}^{T}\overline{\boldsymbol{x}}$$

• Sample variance of
$$\theta^{(1)}$$
:
$$\frac{1}{n} \sum_{i=1}^{n} (\mathbf{a}_{1}^{T} \mathbf{x}_{i})^{2} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{a}_{1}^{T} \mathbf{x}_{i}) (\mathbf{x}_{i}^{T} \mathbf{a}_{1})$$

$$= \mathbf{a}_{1}^{T} \left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T}\right) \mathbf{a}_{1}$$

$$= \mathbf{a}_{1}^{T} S \mathbf{a}_{1}$$

The solution of

$$\max_{\boldsymbol{a}_1:\|\boldsymbol{a}_1\|=1}\boldsymbol{a}_1^TS\boldsymbol{a}_1$$

is u_1 (the first eigenvector of S). Thus $\theta^{(1)} = u_1^T X$.

- More generally, we have the following result:
- Theorem: Let $\theta^{(k)} = \boldsymbol{a}_k^T \boldsymbol{X}$ and $\operatorname{var}(\theta^{(k)}) = \frac{1}{n} \sum_{i=1}^n (\boldsymbol{a}_k^T \boldsymbol{x}_i)^2$. A vector \boldsymbol{a}_k that maximizes $\operatorname{var}(\theta^{(k)})$ subject to

$$\circ \|\boldsymbol{a}_k\| = 1$$

$$\circ \ oldsymbol{a}_k \perp oldsymbol{u}_1, \ldots, oldsymbol{u}_{k-1}$$

is
$$a_k = u_k$$
.

• What is the optimized variance of $\theta^{(k)}$?

Optimized Variance

$$var_{samp}(\boldsymbol{u}_{j}^{T}\boldsymbol{X}) = \boldsymbol{u}_{j}^{T}S\boldsymbol{u}_{j}$$

$$= \mathbf{u}_{j}^{T} U \Lambda U^{T} \mathbf{u}_{j}$$

$$= [0, ..., 0, 1, 0, ..., 0] \Lambda \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

$$= \lambda_{i}$$

PCA USU STAT 6655 (Kevin Moon)

Selecting *k*

It can be shown that the optimal objective function for PCA is

$$\min_{\substack{\mu, A, \theta_1, \dots, \theta_n \\ A^T A = I}} \sum_{i=1}^{N} ||x_i - \mu - A\theta_i||^2 = n(\lambda_{k+1} + \dots + \lambda_d)$$

• When k = 0, this specializes to

$$\min_{\mu} \sum_{i=1}^{n} \|x_i - \mu\|^2 = n(\lambda_1 + \dots + \lambda_d)$$

which we call the total variation of the data.

Common heuristic: choose smallest k s.t.

$$\frac{\lambda_1+\cdots+\lambda_k}{\lambda_1+\cdots+\lambda_d}=$$
% of variance explained by the top k PCs

Common threshold is 95%

Connection to SVD

- Assume $\overline{x} = 0$
- Data matrix $(d \times n) X = [x_1, ..., x_n]$
 - Recall that $S = \frac{1}{n}XX^T$
- ullet The singular value decomposition (SVD) of X is

$$X = U\Sigma V^T$$

where $U\left(d\times d\right)$ and $V\left(n\times n\right)$ are orthogonal matrices, and $\Sigma=diag\left(\sigma_{1},\ldots,\sigma_{\min\{d,n\}}\right)$ is $d\times n$

- Then $u_j = j$ th left singular vector = jth principal component
 - Also, $\lambda_j = \frac{1}{n} \sigma_j^2$

Multidimensional Scaling (MDS)

Multidimensional Scaling (MDS)

- Another dimensionality reduction method, typically focused on visualization
- **Example**: Suppose we have the following distance matrix between major cities in the US (3D distances)

```
1 2 3 4 5 6 7 8 9
BOST NY DC MIAM CHIC SEAT SF LA DENV
BOSTON 0 206 429 1504 963 2976 3095 2979 1949
NY 206 0 233 1308 802 2815 2934 2786 1771
DC 429 233 0 1075 671 2684 2799 2631 1616
MIAMI 1504 1308 1075 0 1329 3273 3053 2687 2037
CHICAGO 963 802 671 1329 0 2013 2142 2054 996
SEATTLE 2976 2815 2684 3273 2013 0 808 1131 1307
SF 3095 2934 2799 3053 2142 808 0 379 1235
LA 2979 2786 2631 2687 2054 1131 379 0 1059
DENVER 1949 1771 1616 2037 996 1307 1235 1059
```

- Can we create a 2D representation of this dataset?
- Use MDS

MDS Example

Distance matrix

natrix		1	2	3	4	5	6	7	8	9
		BOST	NY	DC	MIAM	CHIC	SEAT	SF	LA	DENV
1	BOSTON	0	206	429	1504	963	2976	3095	2979	1949
2	NY	206	0	233	1308	802	2815	2934	2786	1771
3	DC	429	233	0	1075	671	2684	2799	2631	1616
4	IMAIM	1504	1308	1075	0	1329	3273	3053	2687	2037
5	CHICAGO	963	802	671	1329	0	2013	2142	2054	996
6	SEATTLE	2976	2815	2684	3273	2013	0	808	1131	1307
7	SF	3095	2934	2799	3053	2142	808	0	379	1235
8	LA	2979	2786	2631	2687	2054	1131	379	0	1059
9	DENVER	1949	1771	1616	2037	996	1307	1235	1059	0

MDS-generated map

MDS

- MDS works by minimizing a loss function between the distances in the high-dimensional space and the distances in the low-dimensional space
- Setup: $x_1, ..., x_n \in \mathbb{R}^d$ are the measurements in the original, high –dimensional space
- Find representations $y_1, ..., y_n \in \mathbb{R}^k$ (k < d) such that the loss function is minimized
- Different loss functions give you different variations on MDS

Metric MDS

- $d_{ij} = ||x_i x_j||$ (pairwise Euclidean distance)
- Metric MDS minimizes the "Stress" function:

$$Stress_{M}(\mathbf{y}_{1},...,\mathbf{y}_{n}) = \left(\frac{\sum_{i=1}^{n} \sum_{j=1}^{n} (d_{ij} - \|\mathbf{y}_{i} - \mathbf{y}_{j}\|)^{2}}{\sum_{i=1}^{n} \sum_{j=1}^{n} d_{ij}^{2}}\right)^{1/2}$$

- The y_i s are the variables that are chosen to minimize the stress.
- Other kinds of distances can be chosen to give different variations

STAT 6655 (Kevin Moon) **PCA** USU

Choosing the dimension k

- If the stress is zero, then there is no distortion of the distances
 - Thus smaller stress ⇒ a better representation
 - Stress decreases as the dimension k increases (less distortion required with higher dimensions)
- However, if the data are noisy, some "distortion" may be ok
- Example: distances from buildings in NYC measured from center of the roof
 - Clearly a 3D dataset
 - But a 3D MDS representation may have nonzero stress/loss

Choosing the dimension k

- How do we know what k should be?
- No surefire answer...
- Common approach is to look at a "scree plot"
- "Elbows" aren't always obvious and so other approaches may be needed
 - E.g., Shepard diagrams (plot of x_i distances vs y_i distances) may be useful

Nonmetric MDS

Recall the stress function for metric MDS:

$$Stress_{M}(\mathbf{y}_{1},...,\mathbf{y}_{n}) = \left(\frac{\sum_{i=1}^{n} \sum_{j=1}^{n} (d_{ij} - ||\mathbf{y}_{i} - \mathbf{y}_{j}||)^{2}}{\sum_{i=1}^{n} \sum_{j=1}^{n} d_{ij}^{2}}\right)^{1/2}$$

- Now let d_{ij} be a measure of dissimilarity (could be Euclidean distance) between the points x_i and x_j
- Let f be some monotonic function
- Nonmetric MDS minimizes the following:

$$Stress_{NM}(f, \mathbf{y}_{1}, ..., \mathbf{y}_{n})$$

$$= \left(\frac{\sum_{i=1}^{n} \sum_{j=1}^{n} (f(d_{ij}) - ||\mathbf{y}_{i} - \mathbf{y}_{j}||)^{2}}{\sum_{i=1}^{n} \sum_{j=1}^{n} ||\mathbf{y}_{i} - \mathbf{y}_{j}||^{2}}\right)^{1/2}$$

STAT 6655 (Kevin Moon) PCA USU

Classical MDs

- A special case of metric MDS
- Let $d_{ij} = \|\mathbf{x}_i \mathbf{x}_j\|$
- Let $D^{(2)} = \begin{bmatrix} d_{ij}^2 \end{bmatrix}$ be the matrix of squared distances
- Double center the matrix: $B = -\frac{1}{2}JD^{(2)}J$
 - $J = I \frac{1}{n} \mathbf{1} \mathbf{1}^T$ (1 is an *n*-dimensional vector of ones)
- Define b_{ij} to be the i,jth entry of B
- Classical MDS minimizes the "Strain" function:

$$Strain(y_1, ..., y_n) = \left(\frac{\sum_{i,j} (b_{ij} - \langle y_i, y_j \rangle)^2}{\sum_{i,j} b_{ij}^2}\right)^{1/2}$$

Classical MDS

• Classical MDS minimizes the "Strain" function:

$$Strain(y_1, ..., y_n) = \left(\frac{\sum_{i,j} (b_{ij} - \langle y_i, y_j \rangle)^2}{\sum_{i,j} b_{ij}^2}\right)^{1/2}$$

- It turns out, this can be solved using eigenvalue decomposition
 - Efficient computation!
 - Strictly assumes that the distances are Euclidean (may be too restrictive sometimes)
- Can be shown that classical MDS and PCA are equivalent (recover one from the other)

Further Reading

- ISL Section 10.2
- ESL Sections 3.4.1, 14.5, and 14.8
- MDS figures:

http://www.analytictech.com/borgatti/mds.htm