Proof by Computer

Hyunjin Lee

Four color theorem

Can any map be colored with just four colors so that no two neighboring areas share the same color?

Simplification of the Problem

- represent regions as points
- represent relationships between adjacent regions as lines

Is every planar map four-colorable?

History

Early Proof Attempts

- Francis Guthrie first proposed the conjecture (1852)
- A proposed proof was given by Alfred Kempe (1879)
- Another proof was offered by Peter Guthrie Tait (1880)
- Kempe's proof was shown to be incorrect by Percy Heawood (1890)
 also proved the Five Color Theorem and further generalized the conjecture.
- Tait's proof was shown to be incorrect by Julius Petersen (1891)
- German mathematician Heinrich Heesch proposed and developed methods for solving mathematical proofs using computers (1950s~1960s)

History

Proof by Computer (1976)

- The infinite number of possible maps was reduced to 1,834 reducible configurations.
- Configurations checked one by one by a computer, taking over a thousand hours.

Proof by Computer

Every Planar Map is Four-Colorable (1989) (741 pages)

- It may not be mathematically elegant, but it is still a valid proof.
- Is there a beautiful proof?

Human vs Machine

Human Mathematician

- Limited patience
- Prone to mistakes
- Needs sleep
- Can come up with beautiful proofs

Computer

- Infinite patience
- Superhuman level of mathematical precision
- Works for (almost) free, doesn't need to rest
- Fast but depends on algorithms

Potential

- In modern mathematics, detailed verification of research results requires the time and effort of outstanding mathematicians
- Controversies exist around proofs like the ABC Conjecture

Moreover

- Computers even can help detect errors in proofs
- Computers might even solve mathematical problems on their own someday

How Can a Computer Solve a Math Problem?

Propositional Logic

A: x is a natural number $(x \in \mathbb{N})$

B:x is greater than 5 (x>5)

 $A \wedge B$: x is a natural number which is greater than 5.

• $x = 6, 7, 8, \cdots$

 $A \lor B$: x is a natural number or is greater than 5.

• $x=1,2,3,\cdots$ or $5.01,5.005,2\pi,\cdots$

Natural Deduction

Inference Rules

Premises, conclusion

$$ullet rac{P \quad P \Rightarrow Q}{Q}$$
 (Modus Ponens)

•
$$\frac{P \quad Q}{P \land Q}$$
 (\land -Introduction)

•
$$\frac{P \wedge Q}{Q}$$
 (\wedge -Elimination Left)

•
$$\frac{P \quad \neg P}{\bot}$$
 (Law of Excluded Middle)

Proof Tree

- Construct a tree-shaped proof based on inference rules
- Analogous to how human solve math problems

$$\frac{A^{-1} \qquad \frac{\overline{(A \to B) \land (B \to C)}^{2}}{A \to B} \qquad \frac{\overline{(A \to B) \land (B \to C)}^{2}}{B \to C}^{2}$$

$$\frac{B}{A \to C}^{-1} \qquad \frac{C}{A \to C}^{-1}$$

$$\frac{\overline{(A \to B) \land (B \to C)}^{2}}{(A \to B) \land (B \to C) \to (A \to C)}^{2}$$

How to Automate It?

- The series of processes must be formalized so that a computer can execute them.
- Construct a formal language for mathematical proof writing, based on inference rules.
- Automate the process using Large Language Model(LLM), proof search algorithm

Formal Proof Assistants

- Write and check mathematical proofs interactively
- Ensure mathematical rigor

Formal Proof Assistants

```
theorem le.antisymm : \forall {a b : \mathbb{Z}}, a \leq b \rightarrow b \leq a \rightarrow a = b :=
take a b : \mathbb{Z}, assume (H<sub>1</sub> : a \leq b) (H<sub>2</sub> : b \leq a),
obtain (n : N) (Hn : a + n = b), from le.elim H_1,
obtain (m : \mathbb{N}) (Hm : b + m = a), from le.elim H_2,
have H_3: a + of_nat (n + m) = a + 0, from
... -- suppressed rest of the proof due to space limitations
have H_6: n = 0, from nat.eq_zero_of_add_eq_zero_right H_5,
show a = b, from
  calc
    a = a + 0 : add_zero
       ... = a + n : H_6
       ... = b : Hn
```

The Lean Theorem Prover (System Description) (CADE 2015)

Large Language Models

Leandojo: Theorem proving with retrieval-augmented language models, 2023.

IMO Grand Challenge

The challenge: build an AI that can win a gold medal in the IMO (2019)

Current Status

Al achieved a silver-medal standard in solving International Mathematical Olympiad problems (AlphaProof and AlphaGeometry teams, July 25, 2024).

Score on IMO 2024 problems

The Future

- Mathematics
- Mathematical logic
- Programming Languages(PL) semantics and syntax
- Machine learning techniques like large language models (Automating proof generation or formalizing natural language proofs)

Moreover...

• Deep understanding of the human brain

Thank you