Universidade do Minho 13 de Julho de 2010

Exame de **Lógica EI**

Lic. Eng. Informática Duração: 2 horas

Nota: Justifique adequadamente cada uma das suas respostas (se nada for dito em contrário).

1. Considere o conjunto T, de fórmulas do Cálculo Proposicional, definido indutivamente pelas seguintes regras:

$$\frac{\varphi \in T}{(\bot \to p_n) \in T} \ n \quad (n \in \mathbb{N}_0) \qquad \frac{\varphi \in T}{(\varphi \lor \bot) \in T} \ r_1 \qquad \frac{\varphi \in T \quad \psi \in T}{(\varphi \leftrightarrow \psi) \in T} \ r_2$$

- (a) Indique uma sequência de formação de $\sigma = ((\bot \to p_0) \lor \bot) \leftrightarrow (\bot \to p_1)$.
- (b) Defina, por recursão estrutural em T, a função $f: T \to \mathbb{N}_0$ que a cada φ faz corresponder o número de ocorrências de conectivos lógicos em φ .
- (c) Calcule $f(\sigma)$, onde f é a função da alínea (b) e σ a fórmula da alínea (a).
- (d) Enuncie o Princípio de Indução Estrutural para T.
- (e) Prove, por indução estrutural em T, que todos os elementos de T são tautologias.
- 2. Apresente uma forma normal conjuntiva e uma forma normal disjuntiva logicamente equivalentes à fórmula do Cálculo Proposicional $(\neg p_0 \lor p_1) \to p_1$.
- 3. Diga se são verdadeiras ou falsas as seguintes afirmações, relativas a uma fórmula arbitrária $\varphi \in \mathcal{F}^{CP}$.
 - (a) Se $\{\varphi\}$ é consistente, então $\neg \varphi$ é uma contradição.
 - (b) Se $\Gamma \subseteq \mathcal{F}^{CP}$ é consistente e $\Gamma \models \varphi$, então φ não é uma contradição.
- 4. Considere as seguintes fórmulas do Cálculo Proposicional:

$$\varphi = (\neg p_1 \land p_2) \rightarrow p_3, \qquad \psi = p_1 \lor p_3.$$

- (a) Construa uma derivação em DNP mostrando que $\psi \vdash \varphi$.
- (b) Mostre que $\not\vdash \varphi$.
- 5. Considere o tipo de linguagem $L = (\{0, m, +\}, \{P, \leq\}, \mathcal{N})$ em que $\mathcal{N}(0) = 0$, $\mathcal{N}(m) = 1$, $\mathcal{N}(+) = 2$, $\mathcal{N}(P) = 1$ e $\mathcal{N}(\leq) = 2$.

Seja ainda $E=(\mathbb{Z},\overline{\ })$ a L-estrutura tal que $\overline{0}$ é o número zero, \overline{m} é a função $\mathbb{Z}\to\mathbb{Z}$ que a cada número n faz corresponder o seu módulo $|n|,\overline{+}$ é a operação de adição em $\mathbb{Z},\overline{P}=\{2n:n\in\mathbb{Z}\}$ (ou seja, \overline{P} é o predicado "é par"), e $\overline{\leq}$ é a relação "menor ou igual" em \mathbb{Z} .

- (a) Das seguintes palavras sobre \mathcal{A}_L , apresente árvores de formação das que pertencem a \mathcal{T}_L ou \mathcal{F}_L , e indique (sem justificar) quais as que não pertencem a nenhum desses conjuntos.
 - (i) $(0+x_1)+(m(x_3))$
- (ii) $\exists_{x_1} ((x_1 \leq 0) \land P(x_1))$
- (iii) $\forall x_2(m(x_2) \vee P(x_2))$
- (b) Considere a L-fórmula $\sigma = \forall_{x_2}(x_1 \leq m(x_2)) \to \exists_{x_0}(x_1 \leq x_0)$. Calcule LIV (σ) e indique um L-termo t tal que x_1 não seja substituível por t em σ .
- (c) Indique, sem justificar, uma L-fórmula que represente, na estrutura E, a afirmação "quaisquer que sejam dois números, se o módulo da soma desses números é menor ou igual a zero, então ambos os números são menores ou iguais a zero".
- (d) Diga se cada uma das seguintes L-fórmulas é válida em E e se é universalmente válida.
 - (i) $\varphi = \exists_{x_0} (x_0 \le x_1)$
- (ii) $\psi = \forall_{x_0} (x_0 \le x_0) \to \forall_{x_0} \exists_{x_1} (x_0 \le x_1)$
- (e) Indique uma L-fórmula que seja consequência semântica da fórmula φ da alínea anterior (e que não seja a própria fórmula φ).

Cotações	1.	2.	3.	4.	5.
	1,25+1,5+1+1+1,5	1,5	1,5+1,5	1,5+1,5	1,25+1+1+2+1