

PATENT

APPLICATION FOR UNITED STATES LETTERS PATENT

for

PWM DIGITAL AMPLIFIER WITH HIGH-ORDER LOOP FILTER

by

Wai L. Lee

EXPRESS MAIL CERTIFICATION

NUMBER: EU826441381US
DATE OF DEPOSIT: 3/26/04

I hereby certify that this paper or fee is being deposited with the United States Postal Service "EXPRESS MAIL POST OFFICE TO ADDRESSEE" service, postage prepaid, under 37 CFR 1.10 on the date indicated above and is addressed to: Assistant Commissioner of Patents, Washington, D.C. 20231 on the date above.

Signature

1 **PWM DIGITAL AMPLIFIER WITH HIGH-ORDER LOOP FILTER**

2

3 Inventor: Wai L. Lee

4 **CROSS REFERENCE TO RELATED APPLICATION**

5 This application claims the benefit of U.S. Provisional Application No. 60/458,889, filed

6 March 29, 2003, by the inventor, which is hereby incorporated.

7

8 **BACKGROUND OF THE INVENTION**

9

10 **1. Field of the Invention**

11 The present invention relates generally to amplifiers. More specifically, the present
12 invention relates to systems for efficient amplification of signals using Class D or PWM (pulse
13 width modulation) digital amplifiers.

14

15 **2. Description of the Related Art**

16 Amplifier designers and manufacturers continue to be pressured to reduce costs, improve
17 efficiency, decrease size & power dissipation, improve output signal quality, reduce
18 electromagnetic and radio frequency emissions, and increase tolerance of noise, distortion, &
19 interference. Although there does not appear to be one complete solution, various signal
20 amplification systems and methods have been proposed to address the various problems.

21 One technique that has been proposed to increase efficiency over traditional linear
22 amplification is pulse-width modulation (PWM). Despite their inherent power efficiency
23 advantages, there are many difficulties that make it difficult for PWM (or Class D) digital
24 amplifiers to achieve high fidelity performance that can compete effectively with conventional
25 linear (or Class AB) analog amplifiers.

1 With PWM amplifiers, power supply noise, jitter, circuit noise, and non-linearities in the
2 modulating carrier waveform may be modulated onto the PWM output. Furthermore, to better
3 compete with traditional solutions, it is desirable to reduce the sensitivity of PWM amplifiers to
4 these noise and error sources in order to relax overall system requirements and reduce system
5 costs. Sophisticated techniques have been proposed to attack each of these noise components
6 with limited success. In many instances, the proposed solution increases size, complexity and
7 cost.

8 Amplifier systems and methods also have the problem in various applications of
9 amplifying signals that have a wide dynamic range. An example of such an application is audio
10 power amplification where there may be a wide dynamic range of audio signal content.
11 Depending upon the design, the amplifier apparatus may be saturated and the amplified signals
12 distorted. In such instances, it is highly desirable for the amplifier to saturate gracefully so that
13 the amplifier comes out of saturation while maintaining stability. When the amplifier is
14 operating in a mode that regularly goes into saturation, the amplifier's overload handling
15 characteristics can dominate in the perceived signal quality, and can make an otherwise
16 acceptable output signal unacceptable. Therefore, it is important for the amplifier to come out of
17 saturation as quickly as possible when the overload condition is no longer present. In PWM
18 amplifiers with sophisticated feedback arrangements, it is very difficult to maintain stability
19 during overload conditions since the closed loop dynamics are disrupted.

20

21

22 SUMMARY OF THE INVENTION

23

24 In accordance with the present invention, a pulse-width modulated signal amplifier and
25 amplification method amplifies an incoming digital signal and produces an output digital signal
26 using a pulse-width amplification technique that includes a feedback loop filter.

27 In accordance with another aspect of the invention, the feedback loop filter uses an
28 integrator filter with a filter order higher than one.

29 In accordance with another aspect of the invention, the feedback loop filter includes a
30 limiter to control overload.

1 In accordance with another aspect of the invention, the feedback loop filter includes a
2 technique that is inherently stable as it recovers from overload.

3

4

5 BRIEF DESCRIPTION OF THE DRAWINGS

6

7 FIG. 1 shows a block diagram of a prior art embodiment of a PWM amplifier.

8 FIG. 2 shows a plot that compares the loop filter frequency response of the prior art
9 PWM amplifier (a) to that of a 3rd order (b) and a 5th order (c) embodiment of the present
10 invention,

11 FIG. 3 shows a 5th order embodiment of a PWM amplifier in accordance with the
12 invention,

13 FIG. 4 shows a block diagram of an alternative embodiment of a PWM amplifier with a
14 generalized Nth order loop filter in accordance with the present invention, and

15 FIG. 5 shows a block diagram of PWM amplifier with a 3rd order loop filter and
16 including overload recovery structure in accordance with the invention.

17 FIG. 6 shows a generalized block diagram of PWM amplifier system in accordance with
18 the present invention.

19

20

21 DESCRIPTION OF THE PREFERRED EMBODIMENTS

22 Referring to FIG. 1, a diagram of prior art pulse-width modulation (PWM) amplifier 101
23 with first order loop filter 103 is shown as disclosed in U.S. Pat. No. 4,504,793. In prior art
24 amplifier 101, pulse-width modulation is accomplished by inputting an input voltage signal E_i
25 and a fed back version of output signal E_o through serially connected integrator circuit 103 (also
26 referred to as a loop filter) and comparator **CMP1** (105). The loop filter output E_w is modified by
27 the difference between the input signal E_i and output signal E_o such that any difference between
28 the input signal E_i and the time-averaged value of the output signal E_o are substantially
29 amplified. Comparator 105 compares loop filter output voltage signal E_w with a pre-determined
30 triangular carrier voltage signal E_c to produce a stream of voltage signal pulses E_p with the same
31 frequency as the carrier signal E_c and pulse-widths that are proportional to the amplitude of E_w.

1 Pulsed signal stream E_p drives the switching output stage 107, such that when a pulse of stream
2 E_p is high (or has a positive voltage) the switches are closed to connect E_o to a positive high
3 voltage supply V_+ , and when E_p is low (or has a negative voltage) the switches are closed to
4 connect E_o to a negative high voltage supply V_- . Ouput voltage stream E_o is passed through low
5 pass filter 109 to reduce transients and then drive speaker LS. The output of a PWM amplifier
6 is a pulse stream with the signal content in the low-frequency audio band and images at integral
7 multiples of the carrier frequency (fs).

8 Integrating filter 103 includes operational amplifier **OPA1** having its positive input
9 terminal connected to ground and its negative input terminal connected to resistors R_i and R_f and
10 capacitor C_1 which are used to integrate the combined input and feedback signals. Switching
11 output stage 107 comprises a set of power switches that operate in the fully 'ON' or fully 'OFF'
12 states so that minimal power loss occurs and very high efficiency can be achieved with PWM
13 amplifier 101. Passive low-pass filter 109 comprising inductor L_1 and capacitor C_2 is used to
14 remove undesirable noise and recover desired signal content from output signal E_o . The filtered
15 output signal is then delivered to speaker LS.

16 Referring to FIG. 2, a plot is shown that describes the performance of the integrating
17 filter stage of respective PWM amplifiers in terms of characteristic curves reflecting gain versus
18 frequency. The plot demonstrates a marked improvement in loop gain over the entire 0-20kHz
19 audio band obtained by selected of the herein described present inventions versus the prior art
20 embodiment of Fig. 1. In stable closed loop operation, any error that is generated by the pulse-
21 width modulation process and the switching output stage is effectively attenuated by the gain
22 $1/(2 \pi f R_f C_1)$ of the integrating filter. Characteristic curve (a) in FIG. 2 shows the frequency
23 response of integrating filter 103 of the prior art. It may be seen that at 1kHz, 43dB of gain is
24 available over integrating filter 103 to suppress noise (and distortions) produced over the
25 comparator 105 and switching output stage 107. However, the integrating filter must roll off to
26 0dB sufficiently below the carrier frequency f_s for stable loop operation. Note that at 10kHz
27 only 23dB is available for noise suppression and at 20kHz this drops to 17dB. If greater noise
28 suppression is desired, for instance at the higher portion of the audio band, the gain-bandwidth
29 product of integrating filter 103 and carrier frequency f_s need to be increased to maintain
30 stability. Curves (b) and (c) in Fig. 2 show an increase of available gain over the prior art in the

1 high-order loop filters of two embodiments of the present invention which are described more
2 fully below.

3 Referring to FIG. 3, a block diagram of PWM amplifier 301 with 5th order loop filter 303
4 is shown which is an embodiment of the present invention. Subtractor 305 takes the difference
5 between the input signal E_i and amplifier output signal E_o and provides the input to loop filter
6 303. The loop filter input signal is integrated over a 5th order integration function comprised of a
7 series chain of integrators 310, 320, ..., 350. Each of the outputs of integrators 310, 320, ... 350
8 are multiplied over respective multipliers 311, 321, ... 351 characterizing filter coefficients A₁,
9 A₂, ... A₅. The outputs of multipliers 311, 321, ... 351 are summed with summer 390. The
10 output of summer 390 comprises output signal E_w of loop filter 303. Loop filter output signal
11 E_w and triangular carrier signal E_c are input to comparator 393 generating pulse-width
12 modulated signal stream E_p. Pulsed signal stream E_p drives the switching output stage 395, such that
13 when a pulse of stream E_p is high (or has a positive voltage) the switches are closed for the
14 width of the pulse and the corresponding pulse of output voltage stream E_o is driven to a voltage
15 of V₊ for the length of the pulse width of the corresponding pulse of pulsed stream E_p, and V₋
16 for all other times. Local feedback multipliers 317 and 318 characterizing coefficients B₁ and
17 B₂ feed back a small amount of signal around consecutive integrators to form resonators.
18 Feedback multiplier 317 feeds back signal from the output of integrator 330 to the input of
19 integrator 320 through summer 370. Feedback multiplier 318 feeds back signal from the output
20 of integrator 350 to the input of integrator 340 through summer 380. The effect of the resonators
21 can be seen in loop filter frequency response (c) of FIG. 2. The resonators cause sharp peaks at
22 frequencies f₁ and f₂, and have the effects of providing very large amount of gain near their
23 resonance frequencies. By strategic placement of resonance frequencies within the band-of-
24 interest, the loop filter gain can be optimally distributed to provide high noise suppression across
25 the entire audio band. Filter coefficients A₁, A₂, ..., A₅ are chosen to match the high frequency
26 response (near unity gain) to that of the prior art single integrator filter thereby providing similar
27 stability characteristics.

28 A 3rd order embodiment of the invention (not shown) can be constructed by taking the
29 embodiment shown in FIG. 3 and removing integrators 340 and 350, multipliers 318, 341, 351,
30 and summer 380.

1 Referring to FIG. 2, curve (b) shows the performance of a 3rd order embodiment of the
2 invention as providing more than 46dB of gain across the entire audio band while the prior art
3 single integrator filter (a) provides less than 17dB near the 20kHz audio band edge. The
4 improvements are even more pronounced for a 5th order embodiment of the invention as shown
5 by curve (c). Figure 2 shows that with the use of the 5th order embodiment of the present
6 invention more than 60dB of gain can be achieved across the entire 20kHz audio band—more
7 than 43dB of improvement over the prior art at 20kHz, and 35dB of improvement at 8kHz. By
8 example, with loop gains of as much as 60dB to suppress noise and distortions, very high fidelity
9 PWM amplifiers can be easily constructed.

10 It may further be appreciated that PWM amplifier 301 with 5th order loop filter 303
11 structure in FIG. 3 can be generalized to arbitrary orders N as determined by the number of
12 integrators connected in series. Moreover, a number of alternative filter structures can be used to
13 implement the desired loop filter response.

14 By example, referring to FIG. 4, a block diagram of PWM amplifier 401 with generalized
15 Nth order loop filter 403 is shown which is a generalized alternative embodiment of the present
16 invention using an alternative loop filter structure. Nth order loop filter 403 incorporates N
17 feedback multipliers characterizing B_N filter coefficients and N feedforward multipliers
18 characterizing A_N filter coefficients that can provide additional freedom in setting the loop filter
19 characteristics. In this embodiment, each integrator 405 has respective feedforward and
20 feedback multipliers 407, 409 attached to its output. Feedforward multipliers 407 multiplies the
21 respective integrator output with respective filter coefficients A_N. Output signals from the
22 feedforward multipliers 407 are summed over summer 411 and input to comparator 413 as signal
23 E_w. Carrier frequency triangular signal E_c is also input to comparator 413 and used to modify
24 signal E_w into pulse-width modulated signal E_p. Pulse-width modulated signal E_p controls the
25 switching of switch 415 to deliver output signal E_o. As in the prior embodiment, output signal
26 E_o is feedback and differenced with incoming signal E_i through subtractor 417. The differenced
27 signal is input to loop filter 403. Feedback multipliers 409 multiplies the respective integrator
28 output with respective filter coefficients B_N. Output signals from feedback multipliers 407 are
29 summed together with the input differenced signal over summer 419 and the result is input to the
30 series of integrators 405.

1 Referring to FIG. 5, a block diagram of PWM amplifier 501 with a 3rd order loop filter
 2 503 is shown which is an alternative embodiment of the present invention. 3rd order loop filter
 3 503 represents yet another alternative circuit design comprising a series of three integrators 505,
 4 507, 509 that produces the loop filter response shown in curve (b) of FIG. 2. Integrators 505,
 5 507, 509 are implemented as active RC integrators with respective operational amplifiers
 6 OPA51, OPA52, and OPA53, input resistors R51, R52, and R53, integrating capacitors C51,
 7 C52, and C53, and zener diodes ZR51, ZR52, and ZR53. The B1 feedback coefficient as
 8 characterized in the previous embodiments is implemented by capacitor C54 that feeds back a
 9 small amount of signal from the OPA53 output to the input of OPA52 after being effectively
 10 inverted by OPA51 in order to feed back signal in the correct polarity.

11 In loop filter 503, integrator output signal Ew2 is passed through a voltage divider
 12 comprised of resistors R55, R58 and to the positive input of opamp 511; output signal Ew3 is
 13 passed through a voltage divider comprised of resistors R56, R57 and to the negative input of
 14 opamp 511. Output signal Ew1 is passed through resistors R54, R57 and combined with the
 15 output signal from opamp 511 to develop loop filter output signal Ew. Loop filter output signal
 16 Ew and carrier signal Ec are input to comparator 513 to develop pulse width modulated signal
 17 Ep. Pulse width modulated signal Ep is delivered to switch 515 to control the operation and
 18 develop amplifier output signal Eo. Output signal Eo is fed back through resistor R59 to the
 19 negative input node of opamp 505 and input signal Ei is passed through resistor R51 to the
 20 negative input node of opamp 505.

21 In one family of PWM amplifiers, carrier signal Ec may be selected as a 2V peak-to-peak
 22 triangular wave with a frequency preferably selected in the range of 300-500kHz. By example,
 23 the component values of PWM amplifier 501 may be as follows:

R52	11 k
R53	22 k
R54	5.1 k
R55	27 k
R56	20 k
R57	10 k
R58	10 k

R59	24 k
C51	1000 pf
C52	100 pf
C53	100 pf
C54	27 pf
V+	+12 v
V-	-12 v

1
2 In this embodiment, ZR51, ZR52, and ZR53 are each implemented with a pair of back-
3 to-back connected zener diodes with a breakdown voltage of 5.1V to provide overload handling
4 that simply clips or saturates and comes back into linear operation immediately when the
5 overload condition is no longer present. The overload handling is accomplished in PWM
6 amplifier 501 by using voltage clamps ZR51, ZR52, and ZR53 to limit the integrator state to
7 within plus or minus of the clamp voltage ($\pm 5.7V$), and by designing the loop filter output
8 summer (OPA54, R54, R55, R56, R57, and R58) to allow sufficient gain for the first integrator,
9 OPA51, to maintain stable closed loop operation even when the two subsequent integrators are
10 still saturated. The voltage clamps are placed across the integrator capacitor; for example ZR52
11 is placed across C52 to limit the integrator output Ew2 to within plus or minus the clamp
12 voltage. The clamp voltage is set sufficiently larger than the maximum expected signal during
13 normal operation so that the voltage clamps do not interfere with normal signal processing
14 except in the event of an overload situation. In an overload event, the integrator may be
15 saturated and its output Ew2 may be clamped, for example at +5.7V. As long as the overload
16 condition exists, Ew1 is negative and Ew2 remains clamped at +5.7V. Once the overload
17 condition is removed and Ew1 crosses zero and turns positive, Ew2 integrates down from +5.7V
18 and the integration function is restored immediately. It is important for the integrators to avoid
19 any delays in the transition from saturation to linear operation because delays will constitute
20 additional dynamic mechanisms that can prevent the system from coming back into stable closed
21 loop operation.

22 In PWM amplifier 501, the output summer is designed to produce signal Ew according to
23 the following equation:

1 $Ew = (2 \times -Ew1) + (1 \times Ew2) + (0.5 \times -Ew3)$

2 The absolute magnitude of gain from the first integrator output Ew1, |2|, is greater than the sum
3 of the absolute magnitudes of gains of the other inputs ($|1| + |0.5| = 1.5$). Therefore, even if Ew2
4 and Ew3 are saturated, there is sufficient gain from the first integrator, Ew1, to override Ew2 and
5 Ew3, and control the loop filter output Ew to enable stable closed loop operation. The sequence
6 of events from an overload recovery is as follows: During overload, the integrators may all be
7 saturated—for example, Ew1 = +5.7V, Ew2 = -5.7V, and Ew3 = +5.7V. Once the overload
8 condition is removed, the first integrator immediately comes out of saturation and Ew1 starts
9 integrating down in voltage. Because the filter output summer gives much higher gain to the
10 Ew1 input, Ew1 is able to control Ew and the system behaves just as in a single integrator
11 system which is inherently stable. As Ew1 continues to integrate toward zero and turns negative,
12 the second integrator immediately comes out of saturation and Ew2 starts moving up from -5.7V.
13 With the first and second integrator operating linearly, the system behaves as a stable 2nd order
14 system, until the third and last integrator comes out of saturation. During the period immediately
15 following the overload condition, the system automatically maintains a stable configuration.
16 With this configuration, the high order loop system exhibits a simple clipping effect when
17 overloaded and is perceived to come back immediately into linear operation when the overload
18 condition is removed.

19

20 Referring to FIG. 6, a generalized block diagram of PWM amplifier system 601 is shown
21 which is an embodiment of the present invention. Loop filter 603 includes an nth order
22 integrator where 'n' is greater than one. Output signal Ew is produced from loop filter 603 and
23 delivered to comparator 605. Comparator 605 also receives carrier signal Ec and uses the carrier
24 signal to generate pulse width modulated signal Ep corresponding to loop output signal Ew.
25 Pulse width modulated signal Ep controls the operation of switch 607 which transmits a high
26 voltage output signal Eo. The signal passing through low pass filter 609 is delivered to output
27 device/s 610, such as a speaker and/or display console eg palm pilot, monitor, etc. Subtractor
28 615 receives input signal Ei, subtracts a fed back version of output signal Eo, and delivers the
29 resulting signal to loop filter 603.

30 The above description of illustrated embodiments of the invention is not intended to be
31 exhaustive or to limit the invention to the precise forms disclosed. While specific embodiments

1 of, and examples for, the invention are described herein for illustrative purposes, various
2 equivalent modifications are possible within the scope of the invention, as those skilled in the
3 relevant art will recognize. For instance, specific component values and voltage supply values
4 are for the sake of illustration and explanation. Various embodiments of the invention may
5 utilize values that are different from what is specified herein. Additionally, the terms used in the
6 following claims should not be construed to limit the invention to the specific embodiments
7 disclosed in the specification and the claims. Also, while the representative range of carrier
8 frequencies are presented by example for audio applications. Other ranges of frequencies may
9 be more desirable for industrial applications such as sensors or measuring instrumentation
10 depending on the types of signal measurements or instrument environments. For example with
11 EEG or EKG equipment, seismic imaging instrument, motor controllers, switching voltage
12 regulators or DC-to-AC power inverters where the signal of interest may be of very low
13 frequencies, a much lower carrier frequency may be desirable. In other applications, such as
14 radio telescope, arbitrary waveform generator for ATE (automatic test equipment) or ultrasound
15 imaging, very high carrier frequencies may be more desirable. Additionally, for different input
16 and carrier frequencies, the herein described circuit blocks may be required to be modified in
17 order to properly perform the described functions. For instance, at very high frequencies,
18 opamps, resistors, capacitors, and inductors perform differently, and the respective blocks would
19 require corresponding modifications in order for given blocks to perform the required functions
20 as described herein.

21

22