

WHAT IS CLAIMED IS:

1 1. A read channel, comprising:
2 an equalizer configured to equalize a digital signal to provide equalized
3 reproduced signals; and
4 a Viterbi detector capable of receiving the equalized reproduced signals and
5 converting the reproduced signals into a digital output signal indicative of data stored on
6 a recording medium;
7 wherein the equalizer is implemented using a coefficient learning circuit that
8 adaptively updates coefficients for the equalizer based upon a cosine function.

1 2. The read channel of claim 1, wherein the coefficient learning circuit
2 adjusts coefficients using a tap coefficient update equation having a first parameter, k, for
3 modifying a magnitude response.

1 3. The read channel of claim 2, wherein the first parameter, k, is adjusted
2 according to $k = k - g * (f(a_{k+1}) + f(a_{k-1})) * e_k$, where k is the cosine equalizer parameter for
3 modifying the magnitude response, g is an update attenuation gain, and e_k is an error
4 signal based on a difference between a noisy equalized signal and a desired noiseless
5 signal.

1 4. The read channel of claim 2, wherein the coefficient learning circuit
2 adjusts coefficients using a tap coefficient update equation having a second parameter, j,
3 for modifying a phase response.

1 5. The read channel of claim 4, wherein the second parameter, j, is adjusted
2 according to $j=j-g*(f(a_{k+2})+f(a_{k-2}))*e_k$, where j is the cosine equalizer parameter for
3 modifying the phase response, g is an update attenuation gain, and e_k is an error signal
4 based on a difference between a noisy equalized signal and a desired noiseless signal.

1 6. The read channel of claim 1, wherein the coefficient learning circuit
2 adjusts coefficients using a tap coefficient update equation having a parameter, j, for
3 modifying a phase response.

1 7. The read channel of claim 1, wherein the coefficient learning circuit
2 adjusts coefficients, w_i , according to $w_i=w_i-g*f(a_{k-i})*e_k$, where g is a provided update
3 attenuation gain and $f(a_{k-i})$ is based on the cosine function.

1 8. The read channel of claim 7, wherein $f(a_{k-i})$ is chosen to be $a_{k-i}-a_{k-i-2}$,
2 wherein written bits that are to be detected, a_{k-i} , are convolved with a PR4 response
3 based upon the cosine function.

1 9. The read channel of claim 7, wherein $f(a_{k-i})$ is chosen to be
2 $a_{k-i} + a_{k-i-1} - a_{k-i-2} - a_{k-i-3}$, wherein written bits that are to be detected, a_{k-i} , are convolved
3 with the EPR4 response based upon the cosine function.

1 10. The read channel of claim 7, wherein $f(a_{k-i})$ is chosen to be $a_{k-i}t_k$, wherein
2 written bits that are to be detected, a_{k-i} , are convolved with t_k based upon the cosine
3 function.

1 11. The read channel of claim 7, wherein $f(a_{k-i})$ is chosen to be $a_{k-i}h_k$, wherein
2 written bits that are to be detected, a_{k-i} , are convolved with h_k based upon the cosine
3 function.

1 12. A waveform equalizer that equalizes a waveform of a reproduction signal
2 obtained by reproducing marks and non-marks recorded on a recording medium,
3 comprising:
4 a delay element that delays a propagation of the reproduced signal;
5 a plurality of multipliers that multiply predetermined coefficients by the
6 reproduction signal and the delayed signal from the delay element;
7 a coefficient learning circuit that adaptively updates the predetermined
8 coefficients for each of the plurality of multipliers; and
9 an adder that adds outputs from the plurality of multipliers;
10 wherein the coefficient learning circuit adaptively updates coefficients for the
11 equalizer based upon a cosine function.

1 13. The waveform equalizer of claim 12, wherein the coefficient learning
2 circuit adjusts coefficients using a tap coefficient update equation having a first
3 parameter, k , for modifying a magnitude response.

1 14. The waveform equalizer of claim 13, wherein the first parameter, k, is
2 adjusted according to $k = k - g * (f(a_{k+1}) + f(a_{k-1})) * e_k$, where k is the cosine equalizer
3 parameter for modifying the magnitude response, g is an update attenuation gain, and e_k
4 is an error signal based on a difference between a noisy equalized signal and a desired
5 noiseless signal.

1 15. The waveform equalizer of claim 13, wherein the coefficient learning
2 circuit adjusts coefficients using a tap coefficient update equation having a second
3 parameter, j, for modifying a phase response.

1 16. The waveform equalizer of claim 15, wherein the second parameter, j, is
2 adjusted according to $j = j - g * (f(a_{k+2}) + f(a_{k-2})) * e_k$, where j is the cosine equalizer parameter
3 for modifying the phase response, g is an update attenuation gain, and e_k is an error signal
4 based on a difference between a noisy equalized signal and a desired noiseless signal.

1 17. The waveform equalizer of claim 12, wherein the coefficient learning
2 circuit adjusts coefficients using a tap coefficient update equation having a parameter, j,
3 for modifying a phase response.

1 18. The waveform equalizer of claim 12, wherein the coefficient learning
2 circuit adjusts coefficients, w_i , according to $w_i = w_i - g * f(a_{k-i}) * e_k$, where g is a provided
3 update attenuation gain and $f(a_{k-i})$ is based on the cosine function.

1 19. The waveform equalizer of claim 18, wherein $f(a_{k-i})$ is chosen to be $a_{k-i} - a_{k-i-2}$,
2 wherein written bits that are to be detected, a_{k-i} , are convolved with a PR4 response
3 based upon the cosine function.

1 20. The waveform equalizer of claim 18, wherein $f(a_{k-i})$ is chosen to be
2 $a_{k-i} + a_{k-i-1} - a_{k-i-2} - a_{k-i-3}$, wherein written bits that are to be detected, a_{k-i} , are convolved
3 with the EPR4 response based upon the cosine function.

1 21. The waveform equalizer of claim 18, wherein $f(a_{k-i})$ is chosen to be $a_{k-i}t_k$,
2 wherein written bits that are to be detected, a_{k-i} , are convolved with t_k based upon the
3 cosine function.

1 22. The waveform equalizer of claim 18, wherein $f(a_{k-i})$ is chosen to be $a_{k-i}h_k$,
2 wherein written bits that are to be detected, a_{k-i} , are convolved with h_k based upon the
3 cosine function.

1 23. A signal processing system, comprising:
2 memory for storing data therein; and
3 a processor, coupled to the memory, for equalizing a digital signal to provide
4 equalized reproduced signals, the processor adaptively updates coefficients for the
5 equalizer based upon a cosine function.

1 24. The signal processing system of claim 23, wherein the processor adjusts
2 coefficients using a tap coefficient update equation having a first parameter, k, for
3 modifying a magnitude response.

1 25. The signal processing system of claim 24, wherein the first parameter, k,
2 is adjusted according to $k = k - g * (f(a_{k+1}) + f(a_{k-1})) * e_k$, where k is the cosine equalizer
3 parameter for modifying the magnitude response, g is an update attenuation gain, and e_k
4 is an error signal based on a difference between a noisy equalized signal and a desired
5 noiseless signal.

1 26. The signal processing system of claim 24, wherein the processor adjusts
2 coefficients using a tap coefficient update equation having a second parameter, j, for
3 modifying a phase response.

1 27. The signal processing system of claim 26, wherein the second parameter,
2 j, is adjusted according to $j = j - g * (f(a_{k+2}) + f(a_{k-2})) * e_k$, where j is the cosine equalizer
3 parameter for modifying the phase response, g is an update attenuation gain, and e_k is an
4 error signal based on a difference between a noisy equalized signal and a desired
5 noiseless signal.

1 28. The signal processing system of claim 23, wherein the processor adjusts
2 coefficients using a tap coefficient update equation having a parameter, j, for modifying a
3 phase response.

1 29. The signal processing system of claim 23, wherein the coefficient learning
2 circuit adjusts coefficients, w_i , according to $w_i = w_i - g * f(a_{k-i}) * e_k$, where g is a provided
3 update attenuation gain and $f(a_{k-i})$ is based on the cosine function.

1 30. The signal processing system of claim 29, wherein $f(a_{k-i})$ is chosen to be
2 $a_{k-i} - a_{k-i-2}$, wherein written bits that are to be detected, a_{k-i} , are convolved with a PR4
3 response based upon the cosine function.

1 31. The signal processing system of claim 29, wherein $f(a_{k-i})$ is chosen to be
2 $a_{k-i} + a_{k-i-1} - a_{k-i-2} - a_{k-i-3}$, wherein written bits that are to be detected, a_{k-i} , are convolved
3 with the EPR4 response based upon the cosine function.

1 32. The signal processing system of claim 29, wherein $f(a_{k-i})$ is chosen to be
2 $a_{k-i}t_k$, wherein written bits that are to be detected, a_{k-i} , are convolved with t_k based upon
3 the cosine function.

1 33. The signal processing system of claim 29, wherein $f(a_{k-i})$ is chosen to be
2 $a_{k-i}h_k$, wherein written bits that are to be detected, a_{k-i} , are convolved with h_k based upon
3 the cosine function.

1 34. A magnetic storage device, comprising:
2 a magnetic storage medium for recording data thereon;
3 a motor for moving the magnetic storage medium;
4 a head for reading and writing data on the magnetic storage medium;
5 an actuator for positioning the head relative to the magnetic storage medium; and
6 a data channel for processing encoded signals on the magnetic storage medium,
7 the data channel comprising an equalizer configured to equalize a digital signal to
8 provide equalized reproduced signals and a Viterbi detector capable of receiving the
9 equalized reproduced signals and converting the reproduced signals into a digital output
10 signal indicative of data stored on a recording medium; wherein the equalizer is
11 implemented using a coefficient learning circuit that adaptively updates coefficients for
12 the equalizer based upon a cosine function.

1 35. The magnetic storage device of claim 34, wherein the equalizer adjusts
2 coefficients using a tap coefficient update equation having a first parameter, k, for
3 modifying a magnitude response.

1 36. The magnetic storage device of claim 35, wherein the first parameter, k, is
2 adjusted according to $k = k - g * (f(a_{k+1}) + f(a_{k-1})) * e_k$, where k is the cosine equalizer
3 parameter for modifying the magnitude response, g is an update attenuation gain, and e_k
4 is an error signal based on a difference between a noisy equalized signal and a desired
5 noiseless signal.

1 37. The magnetic storage device of claim 35, wherein the equalizer adjusts
2 coefficients using a tap coefficient update equation having a second parameter, j, for
3 modifying a phase response.

1 38. The magnetic storage device of claim 37, wherein the second parameter, j,
2 is adjusted according to $j=j-g*(f(a_{k+2})+f(a_{k-2}))*e_k$, where j is the cosine equalizer
3 parameter for modifying the phase response, g is an update attenuation gain, and e_k is an
4 error signal based on a difference between a noisy equalized signal and a desired
5 noiseless signal.

1 39. The magnetic storage device of claim 34, wherein the equalizer adjusts
2 coefficients using a tap coefficient update equation having a parameter, j, for modifying a
3 phase response.

1 40. The magnetic storage device of claim 34, wherein the coefficient learning
2 circuit adjusts coefficients, w_i , according to $w_i=w_i-g*f(a_{k-i})*e_k$, where g is a provided
3 update attenuation gain and $f(a_{k-i})$ is based on the cosine function.

1 41. The magnetic storage device of claim 40, wherein $f(a_{k-i})$ is chosen to be
2 $a_{k-i}-a_{k-i-2}$, wherein written bits that are to be detected, a_{k-i} , are convolved with a PR4
3 response based upon the cosine function.

1 42. The magnetic storage device of claim 40, wherein $f(a_{k-i})$ is chosen to be
2 $a_{k-i} + a_{k-i-1} - a_{k-i-2} - a_{k-i-3}$, wherein written bits that are to be detected, a_{k-i} , are convolved
3 with the EPR4 response based upon the cosine function.

1 43. The magnetic storage device of claim 40, wherein $f(a_{k-i})$ is chosen to be $a_{k-i} \cdot t_k$, wherein written bits that are to be detected, a_{k-i} , are convolved with t_k based upon the
2 cosine function.

1 44. The magnetic storage device of claim 40, wherein $f(a_{k-i})$ is chosen to be $a_{k-i} \cdot h_k$, wherein written bits that are to be detected, a_{k-i} , are convolved with h_k based upon the
2 cosine function.

1 45. A read channel, comprising:
2 means for equalizing a digital signal to provide equalized reproduced signals; and
3 means, coupled to the means for equalizing, for receiving the equalized
4 reproduced signals and converting the reproduced signals into a digital output signal
5 indicative of data stored on a recording medium;
6 wherein the means for equalizing is implemented using means for adaptively
7 updating coefficients for the means for equalizing based upon a cosine function.

1 46. A waveform equalizer that equalizes a waveform of a reproduction signal
2 obtained by reproducing marks and non-marks recorded on a recording medium,
3 comprising:
4 means for delaying propagation of a reproduced signal;
5 means for multiplying predetermined coefficients by the reproduced signal and
6 the delayed signal from the means for delaying;
7 means for adaptively updating the predetermined coefficients for the means for
8 multiplying; and
9 means for adding outputs from the means for multiplying;
10 wherein the means for adaptively updating the predetermined coefficients updates
11 the predetermined coefficients based upon a cosine function.