INF3430/4431 Høsten 2015

Laboppgave 1 Designflyt og VHDL

NB! Før dere starter les: "Obligatoriske og andre innleveringer ved Institutt for Informatikk" på siden http://www.mn.uio.no/ifi/studier/admin/obliger/index.html

Målet med den første laboppgaven er å øve oss i VHDL og bli kjent med designflyten og utviklingsverktøyene Questa (Modelsim) og Xilinx ISE.

NB! Bruk deres private område på nettet (M-disk) for å lagre kilde- og resultatfiler. Dersom nettverksresponsen er dårlig opprett et midlertidig område på lokal harddisk. Husk å slette dette området etterpå.

Alle innleverte VHDL-filer skal følge retningslinjene for indentering som beskrevet i kokeboken.

Tabell 1. Vedlagte filer. Comp_first.do må fylles ut med egen path.

first.vhd	VHDL-kildefil oppgave 1
tb_first.vhd	VHDL-testbenk oppgave 1
comp_first.do	Modelsim kommandofil for kompilering
sim_first.do	Modelsim kommandofil for simulering
delay.vhd	VHDL-kildefil oppgave 3
tb_delay.vhd	VHDL-testbenk oppgave 3
variables_vs_signals.vhd	VHDL-kildefil oppgave 3
tb_variables_vs_signals.vhd	VHDL-testbenk oppgave 3
dff.vhd	VHDL-kildefil oppgave 4

Oppgave 1. Designflyt

a).

Følg opplegget i kokeboken "Designflyt og utviklingsverktøyene Modelsim og Xilinx ISE" Alle nødvendige filer hentes fra websidene til INF3430.

Simulerer kretsen på RTL-nivå og Post-Route (uten timing). Etterpå skal designet lastes ned på testkortet.

Før dere programmerer kretsen ta en titt i PAD-rapporten for å sjekke at pinnenummerene er riktig plassert. Dette betyr å sjekke opp mot pinnetilordning gitt i "Starter Kit Board Users guide": http://www.xilinx.com/support/documentation/boards_and_kits/ug130.pdf

Sjekk Post Place and Route Static Timing Report for å sjekke at "timing constraints" er tilfredsstilt.

Godkjenning:

Ingen spesielle krav.

b).

Forandre VHDL-koden slik at telleren blir en opp/ned teller ved å legge til et signal, "up".

Signalet "up" skal tilordnes SW6 (pin K14). Dersom up='1' skal telleren telle oppover og dersom up='0' skal telleren telle nedover.

I tillegg skal vi legge til et signal "min_count" som gir en puls med varighet 1 klokkeperiode når telleren går til 0 på vei nedover. Min_count skal tilordnes lysdioden LD6. Max_count skal gjøres om slik at den gir en puls på max. verdi på vei oppover.

Legg til nødvendig endring i UCF-filen til Xilinx ISE for at up og min_count skal tilordnes rett pinnenummer.

Gjør om testbenken slik at vi får verifisert at telleren fungerer riktig. Det er f.eks. greit med en tellesekvens fra 0 til 15, for deretter å snu telleretning og telle ned til 0.

Utfør Post-Route simulering (uten timing), verifiser pinneplassering og programmer kretsen når alt synes korrekt.

Godkjenning:

Endret VHDL-fil, testbenk, endret UCF-fil og PAD-rapport.

Oppgave 2.

I denne deloppgaven skal dere konstruere en 2 til 4-bits dekoder. I VHDL læreboka brukes concurrent statements i eksemplet i kapittel 4, men dere skal bruke case statement i en process isteden. Utgangene på dekoderen skal være aktivt lave. Dekoderen skal implementeres på testkortet. Bruk SW1 og 2 som input og LD1, 2, 3 og 4 som output.

Godkjenning:

VHDL-designfil, testbenk, do-fil for kompilering og vising av waveform, samt UCF-fil. Oppgaven må demonstreres for labveilder for å kunne bli godkjent.

Oppgave 3

I denne deloppgaven skal vi se på forskjellen mellom signaler og variabler i VHDL.

a).

Simuler den vedlagte koden i delay.vhd og tb_delay.vhd. Når endrer outdata signalet seg og hva fører til denne forsinkelsen?

b).

Endre delay.vhd slik at alle variabler blir erstattet med signaler (TIPS: signaler kan ikke deklareres inne i en prosess). I tillegg skal tb_delay.vhd endres slik at kretsen bare er i reset fra tiden 100 ns til 200 ns (TIPS: endre bl. a. til verdien '1' fra tid null) og inndata skal nå endre seg fra "00000000" ved 0 ns (dvs. start) til "11110000" ved tid 300 ns og til "00001111" ved tid 400 ns. Når endrer outdata signalet seg nå? Hvorfor er outdata lik "UUUUUUUUU" ved tid 50 ns?

C).

I denne deloppgaven skal den vedlagte koden i variables_vs_signals.vhd og tb_variables_vs_signals.vhd simuleres. Hvorfor blir outdata(7 downto 6) alltid lik outdata(3 downto 2)? Hvorfor blir outdata(5 downto 4) ulik outdata(1 downto 0)?

d).

Nå skal signalene sig1 og sig2 fjernes fra sensitivitetslista i variables_vs_signals.vhd. Hvorfor får outdata(7 downto 6) og outdata(3 downto 2) andre verdier enn i oppgave c?

Oppgave 4

I denne deloppgaven skal vi se på instansiering av komponenter. Den vedlagte koden i dff.vhd er et register med asynchron reset hvor registeret får verdien '0' når signalet rst_n er aktivt lavt (dvs. får verdien '0').

a).

Lag et 8 bits shift register ved å instansiere komponenten dff 8 ganger, og kall denne komponenten for shift8. Bruk "named asociation" ved port map. Lag en testbenk som simulerer shiftregisteret.

b).

Lag et 32 bits shiftregister ved bruk av komponenten dff og generate statementet. Kall denne komponenten for shift32. Bruk "named association" ved port map. Lag en testbenk som simulerer shiftregisteret.

c).

Lag et N bits shiftregister ved å bruke generic statementet. Kall denne komponenten for shiftn. Lag en testbenk som simulerer en instansiering av shiftn med lengden satt til 64 bit.

Godkjenning:

VHDL kildefil og testbenk for de enkelte delspørsmålene