ZSO 6

OPDRACHTEN

Vraag 1

Voor deze opdracht maken we gebruik van een databestand dat door ons werd samengesteld op basis van OESO-gegevens. Voor een reeks landen hebben we twee variabelen opgenomen: - Exptotal: dit is het gemiddeld bedrag dat aan een leerling besteed wordt door de overheid om een leerling van onderwijs te voorzien gedurende de gehele carrière van het plichtonderwijs, uitgedrukt in US Dollars. - Reading: de gemiddelde score voor een internationaal vergelijkbare leestoets afgenomen bij 14-jarigen.

Een wederkerende discussie die je hoort op allerlei beleidsniveaus aangaande onderwijskwaliteit is de vraag naar de rol van de "centen". Zo zijn er mensen die beweren dat grote verschillen tussen landen in cognitieve outputmaten te verklaren zijn vanuit een verschillend budget dat overheden vrijmaken voor onderwijs.

- 1.1 Ga na of de hypothese klopt dat meer uitgaven aan onderwijs doorgaans leidt tot betere leerresultaten van leerlingen. Rapporteer zo volledig mogelijk.
- 1.2 Maak een grafiek met daarin de trend die je kan afleiden op basis van je analyses.
- 1.3 Allicht gaat het gevonden model niet op voor alle landen. Voor welk land is het gehanteerde model het minst geschikt?
- 1.4 De resulterende parameterschattingen zijn vrij klein. We gaan daar een oplossing voor uitwerken. Deel de variabele 'Exptotal' door 1000. Daarnaast centreer je de variabele 'Reading' rond z'n gemiddelde (=voor elk land het algemeen gemiddelde aftrekken). Schrijf je nieuwe variabelen weg in Oecd\$Expend2 en Oecd\$Read2. Doe nu dezelfde analyse opnieuw, maar maak gebruik van deze nieuwe variabelen.

Verandert je algemene conclusie?

Hoe kan je inhoudelijk het intercept en de hellingsgraad interpreteren?

[RESPONS ACHTERAAN DOCUMENT]

RESPONSEN

Vooraleer we de analyses kunnen uitvoeren moeten we uiteraard de data inladen in R en tevens de OLP2 Functies activeren. Dit doen we bijvoorbeeld door gebruk te maken van de commando's load() en source().

```
load("Oecd.RData")
source("OLP2 Functies.R")
library(car)
```

1.1

a) Analyses

We willen het effect nagaan van onderwijsuitgaven ('Exptotal') op de gemiddelde leesscore ('Reading'). Het onderstaande commando geeft als resultaat een regressieanalyse van 'Exptotal' op 'Reading'. Het resultaat wordt weggeschreven in het object met naam 'Modell'. Via summary() roepen we vervolgens de concrete output op.

```
Model1 <- lm(Oecd$Reading ~ Oecd$Exptotal)
summary(Model1)</pre>
```

```
Call:
lm(formula = Oecd$Reading ~ Oecd$Exptotal)
Residuals:
    Min
             1Q Median
                             3Q
                                    Max
-60.811 -8.370 -1.325 15.393 50.153
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
              4.677e+02 1.106e+01 42.283
                                             <2e-16 ***
(Intercept)
Oecd$Exptotal 2.636e-04 1.143e-04
                                     2.306
                                             0.0277 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 25.37 on 32 degrees of freedom
Multiple R-squared: 0.1425,
                               Adjusted R-squared:
F-statistic: 5.319 on 1 and 32 DF, p-value: 0.02772
```

b) Resultaten bespreken met verwijzing naar output

Uit R^2 blijkt dat het gemiddeld bedrag dat aan leerlingen wordt uitgegeven ('Exptotal') 14,25% van de verschillen in leesscore ('Reading') verklaart. De gemiddelde uitgave per leerling heeft dus een groot effect op de leesvaardigheid. Bovendien geeft het resultaat van de F-toets aan dat we dit verband hoogst waarschijnlijk ook in de populatie van landen zullen terugvinden $(F(1,32)=5.319,\ p=0.028)$. De kans dat er geen verschillen in leesscore zijn naar gemiddeld gespendeerd budget per leerling is duidelijk lager dan 0.05. 'Exptotal' zal dus ook in de populatie van landen verschillen in leesprestaties ('Reading') verklaren. De hellingsgraad ($\beta_1=0.000263,\ p=0.028$) geeft aan dat het om een positief verband gaat. Per US Dollar dat een land meer spendeert aan de studieloopbaan van een leerling, stijgt de gemiddelde leesscore met 0.00026 eenheden. Het intercept bedraagt 467.7 (p<0.001). Dus, voor landen die hypothetisch gezien niets zouden spenderen aan onderwijs van leerlingen, zou de gemiddelde leerling een leesscore behalen van 467.7.

1.2

Om een grafiek te maken, maken we gebruik van de volgende commando's (we hebben ervoor gekozen om de regressielijn in rood te tekenen):

```
plot(Oecd$Reading ~ Oecd$Exptotal)
abline(reg=Model1, col="red")
```


1.3

a) Analyses

De vraag naar voor welk land deze regressievergelijking het minst goed past, is eigenlijk de vraag naar welk land (welk punt) het verst afligt van de regressielijn in de bovenstaande plot. Om daar een antwoord op te formuleren kunnen we de voorspelde leesscore voor elk land vergelijken met de waargenomen leesscore. We doen dit stapje voor stapje in R:

```
# STAP1: Voorspelde leesscores berekenen
# (op basis van de coefficienten die we halen uit de regressieanalyse)

Oecd$Voorspeld <- 4.677e+02 + 2.636e-04 * Oecd$Exptotal</pre>
```

Oecd

	Cntry	Exptotal	Reading	Labels	Voorspeld
1	Australia	98630.39	515	Au	493.6990
2	Austria	119925.44	470	Oost	499.3123
3	Belgium	98128.00	506	Bel	493.5665
4	Canada	96541.43	524	Can	493.1483
5	Chile	26942.89	449	Chil	474.8021
6	Czech Republic	61044.58	478	Tsj	483.7914
7	Denmark	122070.41	495	Den	499.8778
8	Finland	87013.15	536	Fin	490.6367
9	France	96822.80	496	Fr	493.2225
10	Germany	91966.32	497	Dui	491.9423
11	Hungary	52432.61	494	Hon	481.5212
12	Iceland	126075.94	500	Ijs	500.9336
13	Ireland	106762.91	496	Ier	495.8427
14	Italy	100902.70	486	Ita	494.2980
15	Japan	95998.90	520	Jap	493.0053
16	Korea	80344.73	539	Kor	488.8789
17	Luxembourg	209406.65	472	Lux	522.8996
18	Mexico	27314.38	425	Mex	474.9001
19	Netherlands	90964.06	508	Ndl	491.6781
20	New Zealand	69117.81	521	Nwz	485.9195
21	Norway	140659.92	503	Nor	504.7780
22	Poland	49479.26	500	Pol	480.7427
23	Portugal	71289.16	489	Por	486.4918
24	Slovak Republic	42626.15	477	Slov	478.9363
25	Spain	91578.95	481	Spa	491.8402
26	Sweden	104826.34	497	Zwe	495.3322
27	Switzerland	147756.32	501	Zwi	506.6486
	United Kingdom	107128.52	494	Uk	495.9391
29	United States	129326.96	500	Usa	501.7906
30	Brazil	19515.95	412	Bra	472.8444
31	Estonia	53447.55	501	Est	481.7888
32	Israel	64802.75	474	Isr	484.7820
33	Russian Federation	n 53657.54	459	Rus	481.8441
34	Slovenia	90042.47	483	Slov	491.4352

STAP 2: De predictiefouten per land berekenen en tonen

Decd\$Predictiefout <- Oecd\$Reading - Oecd\$Voorspeld

predictiefout = waargenomen leesscore - voorspelde leesscore

Decd</pre>

	Cntry	Exptotal	Reading	Labels	Voorspeld	Predictiefout
1	Australia	98630.39	515	Au	493.6990	21.3010294
2	Austria	119925.44	470	Oost	499.3123	-29.3123470
3	Belgium	98128.00	506	Bel	493.5665	12.4334601
4	Canada	96541.43	524	Can	493.1483	30.8516802
5	Chile	26942.89	449	Chil	474.8021	-25.8021448
6	Czech Republic	61044.58	478	Tsj	483.7914	-5.7913511
7	Denmark	122070.41	495	Den	499.8778	-4.8777588
8	Finland	87013.15	536	Fin	490.6367	45.3633329
9	France	96822.80	496	Fr	493.2225	2.7775092
10	Germany	91966.32	497	Dui	491.9423	5.0576769
11	Hungary	52432.61	494	Hon	481.5212	12.4787644
12	Iceland	126075.94	500	Ijs	500.9336	-0.9336169
13	Ireland	106762.91	496	Ier	495.8427	0.1572961
14	Italy	100902.70	486	Ita	494.2980	-8.2979523
15	Japan	95998.90	520	Jap	493.0053	26.9946903
16	Korea	80344.73	539	Kor	488.8789	50.1211281
17	Luxembourg	209406.65	472	Lux	522.8996	-50.8995922
18	Mexico	27314.38	425	Mex	474.9001	-49.9000710
19	Netherlands	90964.06	508	Ndl	491.6781	16.3218731
20	New Zealand	69117.81	521	Nwz	485.9195	35.0805444
21	Norway	140659.92	503	Nor	504.7780	-1.7779551
22	Poland	49479.26	500	Pol	480.7427	19.2572675
23	Portugal	71289.16	489	Por	486.4918	2.5081767
24	Slovak Republic	42626.15	477	Slov	478.9363	-1.9362529
	Spain	91578.95	481	Spa	491.8402	-10.8402115
26	Sweden	104826.34	497	Zwe	495.3322	1.6677756
27	Switzerland	147756.32	501	Zwi	506.6486	-5.6485662
28	United Kingdom	107128.52	494	Uk	495.9391	-1.9390779
29	United States	129326.96	500	Usa	501.7906	-1.7905865
30	Brazil	19515.95	412	Bra	472.8444	-60.8444056
31	Estonia	53447.55	501	Est	481.7888	19.2112253
32	Israel	64802.75	474	Isr	484.7820	-10.7820044
33	Russian Federation	53657.54	459	Rus	481.8441	-22.8441270

34 Slovenia 90042.47 483 Slov 491.4352 -8.4351939

b) Resultaten bespreken met verwijzing naar output

Decd\$Read2 <- Decd\$Reading - mean(Decd\$Reading)</pre>

De bovenstaande output toont dat de voorspelde score voor Brazilië het verste af ligt van de werkelijke leesscore voor dat land. Het verschil bedraagt 60.84 punten. Dus, de gemiddelde Braziliaanse leerlingen doen het opvallend minder goed voor lezen dan wat zou verwacht mogen worden op basis van het budget dat besteed wordt aan onderwijs.

1.4

a) Analyses

Oecd\$Expend2 <- Oecd\$Exptotal/1000</pre>

```
Model2 <- lm(Oecd$Read2 ~ Oecd$Expend2)</pre>
summary(Model2)
Call:
lm(formula = Oecd$Read2 ~ Oecd$Expend2)
Residuals:
    Min
             1Q Median
                             3Q
                                    Max
-60.811 -8.370 -1.325 15.393 50.153
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -23.4513
                         11.0604 -2.120
                                           0.0418 *
                                           0.0277 *
Oecd$Expend2
               0.2636
                          0.1143
                                   2.306
Signif. codes:
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 25.37 on 32 degrees of freedom
Multiple R-squared: 0.1425,
                                Adjusted R-squared:
F-statistic: 5.319 on 1 and 32 DF, p-value: 0.02772
```

b) Resultaten bespreken met verwijzing naar output

De algemene conclusie is net hetzelfde als in de oorspronkelijke analyse. Je zou net zo goed concluderen dat uitgaven een grote invloed hebben op leesprestaties. Dit kan je afleiden uit de R^2 van 0.143 en de p-waarde lager dan 0.05 (F(1,32)=5.319, p = 0.028). Het intercept bedraagt nu echter -23.451 (p=0.042). Dit is een gevolg van het centreren van de afhankelijke variabele 'Reading'. Dit betekent dat een score van 0 op 'Read2' hetzelfde betekent als als land gemiddeld scoren voor lezen. Het intercept bedraagt -23.451, een land dat nul scoort op 'Expend2', dat geen geld uitgeeft aan onderwijs, scoort 23.451 punten lager dan het gemiddelde voor lezen. Het intercept wijkt nog steeds statistische significant af van 0. De hellingsgraad bedraagt 0.264 (p=0.028). Dus, per 1000 USD dat een land meer uitgeeft per kind aan onderwijs stijgt de gemiddelde leesscore voor dat land met 0.264 punten. Want 1 eenheid stijgen op de variabele 'Expend2' staat nu gelijk aan 1000 USD meer uitgeven. Dit effect vinden we vermoedelijk ook de in de populatie terug aangezien de kans dat er in de populatie geen effect van 'Expend2' is, slechts 0.028 bedraagt.