Les réactions acido-basiques

I – Notion d'acide et base selon de Bronsted

1- Exemple de réaction acido-basique :

* Réaction entre l'acide nitrique et l'eau :

La réaction entre l'acide nitrique HNO_3 et l'eau produit des ions nitrate NO_3^- et des ions oxonium H_3O^+ selon la réaction suivante :

$$HNO_{3(l)} + H_2O_{(l)} \longrightarrow NO_{3(aq)}^- + H_3O_{(aq)}^+$$

- On constate au cours de cette équation que l'espèce chimique HNO_3 a perdu un proton H^+ alors que l'espèce H_2O a gagné ce proton.
- Définition :

Une réaction d'acido-basique est caractérisée par un transfert de proton H^+ entre un acide est une base.

2- Définition de l'acide et de base selon Bronsted

On appelle acide une espèce chimique capable de céder un ou plusieurs protons H^+ .

Exemples:

 H_2O ; H_3O^+ ; NH_4^+ ; HCOOH.

On appelle base une espèce chimique capable de capter un ou plusieurs protons H^+ .

Exemples:

 HO^- ; H_2O ; NH_3 ; $HCOO^-$

II- Couples acide / base

1- Définition :

Deux espèces chimiques constituent un couple acide / base s'il est possible de passer de l'un à l'autre par perte ou gain d'un proton H^+ .

Exemples:

acide/base NH_4^+/NH_3 ; H_2O/HO^- ; H_3O^+/H_2O

2- Demi-équation acido-basique :

Soit AH/A^- un couple acide/base.

Si AH est l'un des réactifs il va donner sa base conjuguée : $AH \rightarrow A^- + H^+$

Si A^- est l'un des réactifs il va donner son acide conjugué : $A^- + H^+ \rightarrow AH$

La demi-équation du coupleacide/base AH/A s'écrit :

$$AH \rightleftharpoons A^- + H^+$$

Exemple:

 $NH_4^+ \qquad \rightleftarrows \qquad NH_3 + H^+$ ion ammonium ammoniac

3- Couple acide- base de l'eau :

L'eau a des propriétés acido-basiques :

*c'est un acide: $H_2O \rightleftharpoons HO^- + H^+$

Ion hydroxyde

*c'est une base : $H_3O^+ \Rightarrow H_2O + H^+$

Ion hydronium

4- Notion d'ampholyte :

L'eau se comporte comme un acide dans le couple H_2O/HO^- et comme une base dans le couple H_3O^+/H_2O , on l'appelle ampholyte (ou amphotère).

III- L'équation chimique d'une réaction acido-basique

Si l'acide A_1H réagit sur la base A_2^- , On écrit directement les demi-équations dans le sens où elles se produisent.

$$A_1H \rightleftarrows A_1^- + H^+$$
$$A_2^- + H^+ \rightleftarrows A_2H$$

La combinaison de ces 2 demi-équations donne l'équation de la réaction :

$$A_1H + A_2^- \rightleftarrows A_1^- + A_2H$$

Application 1:

La base NH_3 réagit avec l'acide éthanoïque CH_3COOH .

- 1- Ecrire les couples qui participent dans cette réaction.
- 2- Ecrire l'équation de la réaction.

Solution

1- Les couples participant à cette réaction sont :

$$CH_3COOH/CH_3COO^-$$
 et NH_4^+/NH_3

2- L'équation de la réaction :

$$CH_3COOH_{(aq)} + NH_{3(aq)} \rightarrow CH_3COO^{-}_{(aq)} + NH_{4(aq)}^{+}$$

IV – Indicateurs colorés acido-basiques :

Un indicateur coloré est un couple acide-base dont l'acide HIn et la base In^- n'ont pas la même couleur. Son couple est noté : HIn/In^- .

En présence de l'acide HA, la base de l'indicateur réagit selon la réaction :

$$In^- + HA \longrightarrow HIn + A^-$$

Le mélange prend la couleur de l'espèce acide HIn.

En présence de la base A^- , l'acide de l'indicateur réagit selon la réaction :

$$HIn + A^- \rightarrow In^- + HA$$

Le mélange prend la couleur de l'espèce basique In^- .

Exemples:

Indicateur coloré	Couleur de l'espèce acide	Couleur de l'espèce base	
BBT	jaune	Bleue	
Hélianthine	rose	Jaune	
Phénolphtaléine	incolore	rose	

Exemples de couple acido-basique :

demi-équation	L'acide	sa base conjuguée	couple acido-basique
$CH_3COOH \rightleftharpoons CH_3COO^- + H^+$	CH ₃ COOH	CH ₃ COO ⁻	CH ₃ COOH/CH ₃ COO
$HNO_3 \rightleftharpoons NO_3^- + H^+$	HNO_3	NO ₃	HNO_3/NO_3^-
$NH_4^+ \rightleftharpoons NH_3 + H^+$	NH_4^+	NH_3	NH_4^+/NH_3
<i>HCOOH ≠ HCOO</i> ⁻ + <i>H</i> ⁺	НСООН	HCOO-	НСООН/НСОО-
$H_3O^+ \rightleftarrows H_2O + H^+$	H ₃ O ⁺	H ₂ O	H_3O^+/H_2O
$HIn \rightleftharpoons In^- + H^+$	HIn	In-	HIn/In-

Application 2:

- 1- Ecrire les demi-équations de réactions acido-basiques relatives à :
- a- L'acide nitreux HNO_{2 (aq)}
- b- L'ammoniac $NH_{3(aq)}$
- 2- En déduire l'équation de la réaction entre l'acide nitreux et l'ammonic.

Solution

1-

a- Acide nitreux : $HNO_2 \rightleftharpoons NO_2^- + H^+$

b- Ammonic : $NH_3 + H^+ \rightleftharpoons NH_4^+$

2- Equation de la réaction :

$$HNO_{2(aq)} + NH_{3(aq)} \rightleftharpoons NO_{2(aq)}^{-} + NH_{4(aq)}^{+}$$

Exercice:

On mélange un volume $V_1=12.0~mL$ d'une solution d'acide méthanoïque $HCOOH_{(aq)}$ de concentration $C_1=0.16~mol/L$ avec un volume $V_2=23.0~mL$ d'une solution basique de l'ammoniac $NH_{3~(aq)}$ de concentration $C_2=5\times 10^{-3}~mol/L$.

- 1- Avec quelle verrerie a-t-on pu mesurer les volumes indiqués ?
- 2- Ecrire les couples acide/base étudiés et la demi-équation de chaque couple.
- 3- Ecrire l'équation de la réaction qui peut se produire.
- 3- Etablir la composition finale du système en quantité de matière, puis en concentrations (construire le tableau d'avancement).

Correction

1- Verrerie utilisée pour mesurer les volumes :

Pipettes graduées de 25 mL ou burette de 25 mL .

2- Couples acide/base:

Acide méthanoïque / ion éthanoate : $HCOOH \rightleftharpoons HCOO^- + H^+$

Ion ammonium / ammoniac: $NH_4^+ \rightleftharpoons NH_3 + H^+$

3- Equation de la reaction:

$$HCOOH_{(aq)} + NH_{3(aq)} \rightarrow HCOO^{-}_{(aq)} + NH^{+}_{(aq)}$$

4- Tableau d'avancement:

Calculons la quantité de matière des réactifs à l'état initial:

$$n_i(HCOOH) = C_1.V_1 = 0,16 \times 12 = 1,92 \ mmol$$

 $n_i(NH_3) = C_2.V_2 = 5.10^{-3} \times 23 = 1,15 \ mmol$

Equation de la réaction		$HCOOH_{(aq)} + NH_{3(aq)} \rightarrow HCOO_{(aq)}^{-} + NH_{4(aq)}^{+}$				
Etat du	avancement	Quantité de matière en (mmol)				
système						
Etat initial	x = 0	1,92	1,15	0	0	
Au cours de la	x	1,92 - x	1,15-x	x	x	
transformation						
Etat final	$x = x_{max}$	$1,92-x_{max}$	$1,15-x_{max}$	x_{max}	x_{max}	
	$x_{max} = 1,15$	0,77	0	1,15	1,15	

-Concentration des différentes espèces chimiques :

$$[HCOOH] = \frac{n_f(HCOOH)}{V_1 + V_2} = \frac{C_1V_1 - x_{max}}{V_1 + V_2}$$

$$[HCOOH] = \frac{0.77 \times 10^{-3}}{(12+23) \times 10^{-3}} \approx 2, 2.10^{-2} \ mol/L$$

$$[HCOO^{-}] = [NH_4^{+}] = \frac{x_{max}}{V_1 + V_2}$$

$$[HCOO^{-}] = [NH_4^{+}] = \frac{1,15 \times 10^{-3}}{(12+23) \times 10^{-3}} \approx 3,3.10^{-2} \ mol/L$$