Transfer Learning using AlexNet and Dog Breed Classifier Dataset

You will need to have modified dataset.

- Download the "Dog Breed Identification" dataset from (https://www.kaggle.com/c/dog-breed-identification/data)
- Run "ModifyDataset.mlx" script to modify the dataset into directory wise categories

Import Alex Net

```
net = alexnet;
% You can also grab AlexNet from add-on explorer in the home tab, or file exchange online
```

Access Layers

Visualize the layers of AlexNet, what do we see about this architecture? What do we have to change for this to work for our new data?

```
layers = net.Layers;
layers
```

```
layers =
  25×1 Layer array with layers:
```

```
'data'
                                             227×227×3 images with 'zerocenter' normalization
 1
               Image Input
 2
    conv1'
               Convolution
                                             96 11×11×3 convolutions with stride [4 4] and padding [0 0 0
    'relu1'
    'norm1'
               Cross Channel Normalization
                                             cross channel normalization with 5 channels per element
    'pool1'
               Max Pooling
                                             3×3 max pooling with stride [2 2] and padding [0 0 0 0]
    conv2'
6
               Grouped Convolution
                                             2 groups of 128 5×5×48 convolutions with stride [1 1] and padding
7
    'relu2'
               RelU
                                             RelU
8
    'norm2'
               Cross Channel Normalization
                                             cross channel normalization with 5 channels per element
    'pool2'
9
                                             3×3 max pooling with stride [2 2] and padding [0 0 0 0]
               Max Pooling
    conv3'
10
               Convolution
                                             384 3×3×256 convolutions with stride [1 1] and padding [1 1 1
     'relu3'
11
               ReLU
                                             ReLU
12
    conv4'
               Grouped Convolution
                                             2 groups of 192 3×3×192 convolutions with stride [1 1] and paddi
     'relu4'
13
               ReLU
                                             ReLU
     conv5'
14
               Grouped Convolution
                                             2 groups of 128 3×3×192 convolutions with stride [1 1] and paddi
15
     'relu5'
               ReLU
                                             3×3 max pooling with stride [2 2] and padding [0 0 0 0]
16
     'pool5'
               Max Pooling
17
     'fc6'
               Fully Connected
                                             4096 fully connected layer
    'relu6'
18
               ReLU
                                             ReLU
19
    'drop6'
               Dropout
                                             50% dropout
20
    'fc7'
               Fully Connected
                                             4096 fully connected layer
    'relu7'
21
               ReLU
                                             ReLU
22
    'drop7'
               Dropout
                                             50% dropout
23
    'fc8'
               Fully Connected
                                            1000 fully connected layer
    'prob'
24
               Softmax
    'output'
25
               Classification Output
                                             crossentropyex with 'tench' and 999 other classes
```

Train

Set up training data

```
rootFolder = 'train';
LabelData = readtable('.\labels.csv', 'Format', '%C%C');
BreedLabels = string(transpose(table2cell(unique(LabelData(:,'breed')))));
BreedCount = numel(BreedLabels)

BreedCount = 120

imds = imageDatastore(fullfile(rootFolder, BreedLabels), 'LabelSource', 'foldernames');
%imds = splitEachLabel(imds, 500, 'randomize') % we only need 500 images per class imds.ReadFcn = @readFunctionTrain;
```

Take layers from Alex Net, then add our own

```
layers = layers(1:end-3);

layers(end+1) = fullyConnectedLayer(64, 'Name', 'special_2');
layers(end+1) = reluLayer;
layers(end+1) = fullyConnectedLayer(BreedCount, 'Name', 'fc8_2 ');
layers(end+1) = softmaxLayer;
layers(end+1) = classificationLayer()
```

```
layers =
  27×1 Layer array with layers:
```

24

ReLU

```
'data'
1
                  Image Input
                                                 227×227×3 images with 'zerocenter' normalization
 2
     conv1'
                  Convolution
                                                 96 11×11×3 convolutions with stride [4 4] and padding [0 0
 3
     'relu1'
                  ReLU
                                                 ReLU
 4
     'norm1'
                  Cross Channel Normalization
                                                cross channel normalization with 5 channels per element
     'pool1'
                                                 3×3 max pooling with stride [2 2] and padding [0 0 0 0]
                  Max Pooling
    conv2'
                  Grouped Convolution
                                                2 groups of 128 5×5×48 convolutions with stride [1 1] and pade
     'relu2'
                  ReLU
                                                ReLU
    'norm2'
                  Cross Channel Normalization
                                                cross channel normalization with 5 channels per element
9
    'pool2'
                  Max Pooling
                                                3×3 max pooling with stride [2 2] and padding [0 0 0 0]
    'conv3'
                                                384 3×3×256 convolutions with stride [1 1] and padding [1 1
10
                  Convolution
     'relu3'
11
                  ReLU
                                                ReLU
     conv4'
                  Grouped Convolution
                                                2 groups of 192 3×3×192 convolutions with stride [1 1] and page
12
     'relu4'
13
                  ReLU
                                                ReLU
     'conv5'
                                                2 groups of 128 3×3×192 convolutions with stride [1 1] and page
14
                  Grouped Convolution
     'relu5'
15
                  ReLU
16
     'pool5'
                  Max Pooling
                                                 3×3 max pooling with stride [2 2] and padding [0 0 0 0]
     'fc6'
17
                  Fully Connected
                                                4096 fully connected layer
     'relu6'
18
                  ReLU
                                                ReLU
19
     'drop6'
                  Dropout
                                                50% dropout
20
     'fc7'
                                                4096 fully connected layer
                  Fully Connected
     'relu7'
21
                                                ReLU
                  ReLU
22
     'drop7'
                  Dropout
                                                50% dropout
23
     'special_2'
                  Fully Connected
                                                64 fully connected layer
```

ReLU

```
25 'fc8_2' Fully Connected 120 fully connected layer
26 '' Softmax softmax
27 '' Classification Output crossentropyex
```

Fine-tune learning rates [advanced]

```
layers(end-2).WeightLearnRateFactor = 10;
layers(end-2).WeightL2Factor = 1;
layers(end-2).BiasLearnRateFactor = 20;
layers(end-2).BiasL2Factor = 0;
```

Other training options

```
opts = trainingOptions('sgdm', ...
   'LearnRateSchedule', 'none',...
   'InitialLearnRate', .0001,...
   'MaxEpochs', 20, ...
   'MiniBatchSize', 128);
```

Test GPU before running?

```
gpuDevice()
ans =
 CUDADevice with properties:
                      Name: 'GeForce GTX 1660 Ti'
                     Index: 1
         ComputeCapability: '7.5'
           SupportsDouble: 1
            DriverVersion: 11.1000
            ToolkitVersion: 11
       MaxThreadsPerBlock: 1024
          MaxShmemPerBlock: 49152
       MaxThreadBlockSize: [1024 1024 64]
               MaxGridSize: [2.1475e+09 65535 65535]
                 SIMDWidth: 32
               TotalMemory: 6.4425e+09
          AvailableMemory: 5.2528e+09
      MultiprocessorCount: 24
             ClockRateKHz: 1590000
              ComputeMode: 'Default'
      GPUOverlapsTransfers: 1
    KernelExecutionTimeout: 1
         CanMapHostMemory: 1
          DeviceSupported: 1
           DeviceAvailable: 1
           DeviceSelected: 1
gpuDevice(1);
```

Train!

Please note this may take a few minutes or longer depending on hardware. Training with a GPU is strongly encouraged.

convnet = trainNetwork(imds, layers, opts);

Training on single GPU.

Initializing input data normalization.

Epoch	Iteration	Time Elapsed	Mini-batch	Mini-batch	Base Learning
		(hh:mm:ss)	Accuracy	Loss	Rate
======			.=========		
1	1	00:00:02	0.78%	6.3083	1.0000e-0
1	50	00:00:55	0.78%	4.8987	1.0000e-0
2	100	00:01:48	0.78%	4.8134	1.0000e-0
2	150	00:02:42	0.78%	4.8625	1.0000e-0
3	200	00:03:35	1.56%	4.7766	1.0000e-0
4	250	00:04:29	2.34%	4.6281	1.0000e-0
4	300	00:05:22	7.03%	4.6533	1.0000e-0
5	350	00:06:15	7.03%	4.4769	1.0000e-0
6	400	00:07:09	4.69%	4.5620	1.0000e-0
6	450	00:08:03	7.03%	4.3130	1.0000e-0
7	500	00:08:56	14.84%	4.2020	1.0000e-0
7	550	00:09:51	9.38%	4.1246	1.0000e-0
8	600	00:10:44	13.28%	3.8384	1.0000e-0
9	650	00:11:38	22.66%	3.7281	1.0000e-0
9	700	00:12:32	25.78%	3.3433	1.0000e-0
10	750	00:13:25	28.12%	3.4208	1.0000e-0
11	800	00:14:19	29.69%	3.0885	1.0000e-0
11	850	00:15:14	32.03%	2.8115	1.0000e-0
12	900	00:16:09	32.03%	2.7894	1.0000e-0
13	950	00:17:04	29.69%	2.6385	1.0000e-0
13	1000	00:17:58	40.62%	2.1943	1.0000e-0
14	1050	00:18:52	43.75%	2.2778	1.0000e-0
14	1100	00:19:47	40.62%	2.3786	1.0000e-0
15	1150	00:20:41	34.38%	2.2446	1.0000e-0
16	1200	00:21:35	37.50%	2.3385	1.0000e-0
16	1250	00:22:29	44.53%	2.0821	1.0000e-0
17	1300	00:23:22	39.06%	2.1643	1.0000e-0
18	1350	00:24:16	46.09%	2.0995	1.0000e-0
18	1400	00:25:10	47.66%	2.0064	1.0000e-0
19	1450	00:26:05	46.09%	1.7603	1.0000e-0
19	1500	00:27:01	51.56%	1.9441	1.0000e-0
20	1550	00:27:55	43.75%	2.3045	1.0000e-0
20	1580	00:28:28	51.56%	1.6720	1.0000e-0

Training finished: Max epochs completed.

Test

Set up test data

```
rootFolder = 'test';
testDS = imageDatastore(fullfile(rootFolder, BreedLabels), 'LabelSource', 'foldernames');
testDS.ReadFcn = @readFunctionTrain;
```

Test classifer

```
[labels,err_test] = classify(convnet, testDS, 'MiniBatchSize', 64);
```

Determine overall accuracy

```
confMat = confusionmat(testDS.Labels, labels);
confMat = confMat./sum(confMat,2);
OverallAccuracy = mean(diag(confMat))
```

OverallAccuracy = 0.6869

```
BreedAcc = diag(confMat).';
int confMat = int64(confMat .* 10000)
int_confMat = 120×120 int64 matrix
                                                                0 . . .
  7500
          0
                0
                                        0
                                                        125
     0
        8707
                0
                                              0
                                                                0
     0
              9302
                                                                0
     0
                0
                    7570
                                      187
                                              0
                               о
0
                                     0
0
     0
          0
               135
                      0
                          3919
                                            135
                                                 0
                                                        270
                      0 0
     0
          0
                0
                                6154
                                              0
                                                  128
                                                          0
                                                                0
     0
          0
                0
                     196
                            0 0
                                      7059
                                            0
                                                    0
                                                                0
     0
          0
                0
                      0
                            0
                                                          0
                                                                0
                                 0
                                        0
                                            8364
                                                    0
     0
          0
                      0
                                                  6341
                0
                                 122
                                        0
                                            122
                                                        976
                                                                0
     0
                                                  381
                                                        7905
confusionchart(int_confMat )
```


Predicted Class