Определитель и обратная матрица

Краткий план:

• Определитель на плоскости;

Краткий план:

- Определитель на плоскости;
- Определитель в пространстве.

Рассмотрим оператор преобразования плоскости, $L:\mathbb{R}^2\to\mathbb{R}^2.$

Пара векторов a, b переходит в пару векторов La, Lb.

Рассмотрим оператор преобразования плоскости, $L: \mathbb{R}^2 \to \mathbb{R}^2$.

Пара векторов a, b переходит в пару векторов La, Lb.

Как меняется площадь параллелограмма образованного двумя векторами?

Рассмотрим оператор преобразования плоскости, $L: \mathbb{R}^2 \to \mathbb{R}^2$.

Пара векторов a, b переходит в пару векторов La, Lb.

Как меняется площадь параллелограмма образованного двумя векторами?

Меняется ли направление поворота от первого вектора ко второму?

Идея определителя на картинке

Ориентированная площадь

Определение

Возьмём площадь параллелограмма со сторонами ${\bf a}$ и ${\bf b}$. Если поворот от первого вектора ко второму идёт по часовой стрелке, то дополнительно домножим площадь на (-1).

Полученное число назовём ориентированной площадью параллелограмма и обозначим $S(\mathbf{a}, \mathbf{b})$.

Ориентированная площадь

Определение

Возьмём площадь параллелограмма со сторонами ${\bf a}$ и ${\bf b}$. Если поворот от первого вектора ко второму идёт по часовой стрелке, то дополнительно домножим площадь на (-1).

Полученное число назовём ориентированной площадью параллелограмма и обозначим $S(\mathbf{a}, \mathbf{b})$.

Важен порядок векторов:

$$S(\mathbf{a}, \mathbf{b}) = -S(\mathbf{b}, \mathbf{a}).$$

Ориентированная площадь

Определение

Возьмём любые два вектора ${\bf a}$ и ${\bf b}$, для которых $S({\bf a},{\bf b}) \neq 0$.

Определитель оператора L : $\mathbb{R}^2 \to \mathbb{R}^2$ показывает во сколько раз изменяется ориентированная площадь

$$\det L = \frac{S(La, La)}{S(a, b)}$$

Оператор L :
$$\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} o \begin{pmatrix} a_2 \\ a_1 \end{pmatrix}$$
 отражает относительно

Пределитель отражения Оператор L :
$$\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} o \begin{pmatrix} a_2 \\ a_1 \end{pmatrix}$$
 отражает относительно $x_1 = x_2$.

Оператор L :
$$\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} o \begin{pmatrix} a_2 \\ a_1 \end{pmatrix}$$
 отражает относительно $x_1 = x_2$.

Оператор L :
$$\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} o \begin{pmatrix} a_2 \\ a_1 \end{pmatrix}$$
 отражает относительно $x_1 = x_2$.

Площадь параллелограмма не изменяется.

Меняется направление поворота от первого вектора ко второму.

Оператор L :
$$\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} o \begin{pmatrix} a_2 \\ a_1 \end{pmatrix}$$
 отражает относительно $x_1 = x_2$.

Площадь параллелограмма не изменяется.

Меняется направление поворота от первого вектора ко второму.

$$\det L = \frac{S(La, Lb)}{S(a, b)} = -1$$

Определитель растягивания компонент

Рассмотрим оператор L :
$$\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \rightarrow \begin{pmatrix} 2a_1 \\ -3a_2 \end{pmatrix}$$
.

Определитель растягивания компонент

Рассмотрим оператор L :
$$\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \rightarrow \begin{pmatrix} 2a_1 \\ -3a_2 \end{pmatrix}$$
.

Первый базисный вектор e_1 растягивается в два раза.

Второй базисный вектор ${f e}_2$ растягивается в три раза и отражается.

Меняется направление поворота от первого вектора ко второму.

Определитель растягивания компонент

Рассмотрим оператор L :
$$\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \rightarrow \begin{pmatrix} 2a_1 \\ -3a_2 \end{pmatrix}$$
.

Первый базисный вектор e_1 растягивается в два раза.

Второй базисный вектор ${f e}_2$ растягивается в три раза и отражается.

Меняется направление поворота от первого вектора ко второму.

$$\det \mathbf{L} = \frac{S(\mathbf{L}\mathbf{a}, \mathbf{L}\mathbf{b})}{S(\mathbf{a}, \mathbf{b})} = (-1) \cdot 2 \cdot 3 = -6$$

Оператор $\mathsf{R}:\mathbb{R}^2 \to \mathbb{R}^2$ вращает плоскость.

Оператор $\mathsf{R}:\mathbb{R}^2 \to \mathbb{R}^2$ вращает плоскость.

Оператор $\mathsf{R}:\mathbb{R}^2 \to \mathbb{R}^2$ вращает плоскость.

Оператор $\mathsf{R}:\mathbb{R}^2\to\mathbb{R}^2$ вращает плоскость.

При вращении не изменяется площадь параллелограмма.

При вращении не изменяется направление поворота от первого вектора ко второму.

Оператор $\mathsf{R}:\mathbb{R}^2 \to \mathbb{R}^2$ вращает плоскость.

При вращении не изменяется площадь параллелограмма.

При вращении не изменяется направление поворота от первого вектора ко второму.

$$\det R = \frac{S(Ra, Rb)}{S(a, b)} = 1$$

Оператор $\mathsf{H}:\mathbb{R}^2\to\mathbb{R}^2$ проецирует векторы на прямую ℓ .

Оператор $\mathsf{H}:\mathbb{R}^2 \to \mathbb{R}^2$ проецирует векторы на прямую ℓ .

Оператор $\mathsf{H}:\mathbb{R}^2\to\mathbb{R}^2$ проецирует векторы на прямую ℓ .

Оператор $\mathsf{H}:\mathbb{R}^2 \to \mathbb{R}^2$ проецирует векторы на прямую ℓ .

При проекции любой параллелограмм «складывается» в отрезок нулевой площади.

$$\det \mathbf{H} = \frac{S(\mathbf{Ha}, \mathbf{Hb})}{S(\mathbf{a}, \mathbf{b})} = 0$$

Чем прекрасна ориентированная площадь?

Утверждение

Ориентированная площадь $S(\mathbf{a}, \mathbf{b})$ линейна по каждому аргументу:

$$S(\lambda \mathbf{a}, \mathbf{b}) = \lambda S(\mathbf{a}, \mathbf{b}), \quad S(\mathbf{a} + \mathbf{b}, \mathbf{c}) = S(\mathbf{a}, \mathbf{c}) + S(\mathbf{b}, \mathbf{c})$$

Чем прекрасна ориентированная площадь?

Утверждение

Ориентированная площадь $S(\mathbf{a}, \mathbf{b})$ линейна по каждому аргументу:

$$S(\lambda \mathbf{a}, \mathbf{b}) = \lambda S(\mathbf{a}, \mathbf{b}), \quad S(\mathbf{a} + \mathbf{b}, \mathbf{c}) = S(\mathbf{a}, \mathbf{c}) + S(\mathbf{b}, \mathbf{c})$$

Величина $\det \mathsf{L} = \frac{S(\mathsf{L}\,\mathbf{a}, \mathsf{L}\,\mathbf{b})}{S(\mathbf{a}, \mathbf{b})}$ не зависит от выбора \mathbf{a} и $\mathbf{b}!$

Величина $\det L = \frac{S(\mathbf{L}\mathbf{a}, \mathbf{L}\mathbf{b})}{S(\mathbf{a}, \mathbf{b})}$ не зависит от выбора \mathbf{a} и \mathbf{b} !

Идея доказательства

Обозначим
$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 , $\mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

Величина $\det \mathsf{L} = \frac{S(\mathsf{L}\,\mathbf{a},\mathsf{L}\,\mathbf{b})}{S(\mathbf{a},\mathbf{b})}$ не зависит от выбора \mathbf{a} и $\mathbf{b}!$

Идея доказательства

Обозначим
$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 , $\mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

Возьмём $\mathbf{a}=5\mathbf{e}_1+7\mathbf{e}_2$. Найдём $S(\mathsf{L}\,\mathbf{a},\mathsf{L}\,\mathbf{e}_2)/S(\mathbf{a},\mathbf{e}_2)$:

Величина $\det \mathsf{L} = \frac{S(\mathsf{L}\mathbf{a}, \mathsf{L}\mathbf{b})}{S(\mathbf{a}, \mathbf{b})}$ не зависит от выбора \mathbf{a} и \mathbf{b} !

Идея доказательства

Обозначим
$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 , $\mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

Возьмём $\mathbf{a}=5\mathbf{e}_1+7\mathbf{e}_2$. Найдём $S(\mathsf{L}\,\mathbf{a},\mathsf{L}\,\mathbf{e}_2)/S(\mathbf{a},\mathbf{e}_2)$:

$$\frac{S(\mathsf{L}(5\mathbf{e}_1 + 7\mathbf{e}_2), \mathsf{L}\,\mathbf{e}_2)}{S(5\mathbf{e}_1 + 7\mathbf{e}_2, \mathbf{e}_2)} = \frac{S(\mathsf{L}\,5\mathbf{e}_1, \mathsf{L}\,\mathbf{e}_2) + S(\mathsf{L}\,7\mathbf{e}_2, \mathsf{L}\,\mathbf{e}_2)}{S(5\mathbf{e}_1, \mathbf{e}_2) + S(7\mathbf{e}_2, \mathbf{e}_2)} =$$

Величина $\det L = \frac{S(\mathbf{L}\mathbf{a}, \mathbf{L}\mathbf{b})}{S(\mathbf{a}, \mathbf{b})}$ не зависит от выбора \mathbf{a} и \mathbf{b} !

Идея доказательства

Обозначим
$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 , $\mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

Возьмём $\mathbf{a}=5\mathbf{e}_1+7\mathbf{e}_2$. Найдём $S(\mathsf{L}\,\mathbf{a},\mathsf{L}\,\mathbf{e}_2)/S(\mathbf{a},\mathbf{e}_2)$:

$$\frac{S(\mathsf{L}(5\mathbf{e}_1 + 7\mathbf{e}_2), \mathsf{L}\,\mathbf{e}_2)}{S(5\mathbf{e}_1 + 7\mathbf{e}_2, \mathbf{e}_2)} = \frac{S(\mathsf{L}\,5\mathbf{e}_1, \mathsf{L}\,\mathbf{e}_2) + S(\mathsf{L}\,7\mathbf{e}_2, \mathsf{L}\,\mathbf{e}_2)}{S(5\mathbf{e}_1, \mathbf{e}_2) + S(7\mathbf{e}_2, \mathbf{e}_2)} =$$

$$=\frac{5S(\operatorname{L}\mathbf{e}_1,\operatorname{L}\mathbf{e}_2)+0}{5S(\mathbf{e}_1,\mathbf{e}_2)+0}=\frac{S(\operatorname{L}\mathbf{e}_1,\operatorname{L}\mathbf{e}_2)}{S(\mathbf{e}_1,\mathbf{e}_2)}$$

Ещё один взгляд на определитель

Обозначим
$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 , $\mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

Ещё один взгляд на определитель

Обозначим
$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 , $\mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

Определение

Преобразуем параллелограмм, образованный векторами \mathbf{e}_1 и \mathbf{e}_2 , с помощью оператора L.

Определитель линейного оператора $L: \mathbb{R}^2 \to \mathbb{R}^2$ равен ориентированной площади полученного параллелограмма.

$$\det \mathbf{L} = S(\mathbf{L}\mathbf{e}_1, \mathbf{L}\mathbf{e}_2)$$

Определитель в пространстве

Заменим ориентированную площадь параллелограмма $S(\mathbf{a},\mathbf{b})$ на ориентированный объём параллелепипеда $S(\mathbf{a},\mathbf{b},\mathbf{c})$.

Определитель в пространстве

Заменим ориентированную площадь параллелограмма $S(\mathbf{a}, \mathbf{b})$ на ориентированный объём параллелепипеда $S(\mathbf{a}, \mathbf{b}, \mathbf{c})$.

Определение

Возьмём любые три вектора ${\bf a}, {\bf b}$ и ${\bf c}$, для которых $S({\bf a}, {\bf b}, {\bf c}) \neq 0$.

Определитель оператора L : $\mathbb{R}^3 \to \mathbb{R}^3$ показывает во сколько раз изменяется ориентированный объём

$$\det L = \frac{S(La, La, Lc)}{S(a, b, c)}$$

Обозначим
$$\mathbf{e}_1=\begin{pmatrix}1\\0\\0\end{pmatrix}$$
 , $\mathbf{e}_2=\begin{pmatrix}0\\1\\0\end{pmatrix}$, $\mathbf{e}_3=\begin{pmatrix}0\\0\\1\end{pmatrix}$.

Обозначим
$$\mathbf{e}_1=\begin{pmatrix}1\\0\\0\end{pmatrix}$$
 , $\mathbf{e}_2=\begin{pmatrix}0\\1\\0\end{pmatrix}$, $\mathbf{e}_3=\begin{pmatrix}0\\0\\1\end{pmatrix}$.

Определение

Рассмотрим параллелепипед, образованный а, b и с.

Обозначим
$$\mathbf{e}_1=\begin{pmatrix}1\\0\\0\end{pmatrix}$$
 , $\mathbf{e}_2=\begin{pmatrix}0\\1\\0\end{pmatrix}$, $\mathbf{e}_3=\begin{pmatrix}0\\0\\1\end{pmatrix}$.

Определение

Рассмотрим параллелепипед, образованный а, b и с.

С помощью поворота:

Совместим вектор e_1 с вектором a;

Затем вектор e_2 «положим» в плоскость a, b.

Обозначим
$$\mathbf{e}_1=\begin{pmatrix}1\\0\\0\end{pmatrix}$$
 , $\mathbf{e}_2=\begin{pmatrix}0\\1\\0\end{pmatrix}$, $\mathbf{e}_3=\begin{pmatrix}0\\0\\1\end{pmatrix}$.

Определение

Рассмотрим параллелепипед, образованный а, b и с.

С помощью поворота:

Совместим вектор e_1 с вектором a;

Затем вектор e_2 «положим» в плоскость a, b.

Ориентированный объём $S(\mathbf{a},\mathbf{b},\mathbf{c})$ объявим отрицательным, если векторы \mathbf{e}_3 и \mathbf{c} смотрят в разные полупространства.

Определитель в пространстве

Определитель растягивания компонент

Рассмотрим оператор L :
$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \rightarrow \begin{pmatrix} 2a_1 \\ 3a_2 \\ -5a_3 \end{pmatrix}$$
.

Определитель растягивания компонент

Рассмотрим оператор L :
$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \to \begin{pmatrix} 2a_1 \\ 3a_2 \\ -5a_3 \end{pmatrix}.$$

Базисный вектор \mathbf{e}_1 растягивается в два раза, \mathbf{e}_2 — в три раза, \mathbf{e}_3 — в пять.

Первые два вектора, \mathbf{e}_1 и \mathbf{e}_2 , не изменяют направления при преобразовании.

Третий вектор, e_3 , меняет полупространство, в котором он лежит относительно первых двух.

Определитель растягивания компонент

Рассмотрим оператор L :
$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \to \begin{pmatrix} 2a_1 \\ 3a_2 \\ -5a_3 \end{pmatrix}$$
.

Базисный вектор \mathbf{e}_1 растягивается в два раза, \mathbf{e}_2 — в три раза, \mathbf{e}_3 — в пять.

Первые два вектора, \mathbf{e}_1 и \mathbf{e}_2 , не изменяют направления при преобразовании.

Третий вектор, e_3 , меняет полупространство, в котором он лежит относительно первых двух.

$$\det \mathbf{L} = \frac{S(\mathbf{L}\,\mathbf{a}, \mathbf{L}\,\mathbf{b}, \mathbf{L}\,\mathbf{c})}{S(\mathbf{a}, \mathbf{b}, \mathbf{c})} = (-1) \cdot 2 \cdot 3 \cdot 5 = -30$$

Определитель проекции

Оператор $H:\mathbb{R}^3\to\mathbb{R}^3$ проецирует векторы на плоскость α .

Определитель проекции

Оператор $H: \mathbb{R}^3 \to \mathbb{R}^3$ проецирует векторы на плоскость α . Любой параллелепипед «складывается» в плоскую фигуру нулевого объёма.

Определитель проекции

Оператор $H: \mathbb{R}^3 \to \mathbb{R}^3$ проецирует векторы на плоскость α . Любой параллелепипед «складывается» в плоскую фигуру нулевого объёма.

$$\det \mathbf{H} = \frac{S(\mathbf{Ha}, \mathbf{Hb}, \mathbf{Hc})}{S(\mathbf{a}, \mathbf{b}, \mathbf{c})} = 0$$

Свойства определителя

Краткий план:

• Ориентированный объём в \mathbb{R}^n ;

Краткий план:

- Ориентированный объём в \mathbb{R}^n ;
- Свойства определителя;

Краткий план:

- Ориентированный объём в \mathbb{R}^n ;
- Свойства определителя;
- Явная формула для определителя.

Вектор \mathbf{e}_i содержит на i-м месте единицу, а на остальных — нули.

Вектор \mathbf{e}_i содержит на i-м месте единицу, а на остальных — нули.

1. Верный гипер-объём базового гипер-кубика:

$$S(\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n) = 1$$

Вектор \mathbf{e}_i содержит на i-м месте единицу, а на остальных — нули.

1. Верный гипер-объём базового гипер-кубика:

$$S(\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n) = 1$$

2. Линейность по каждому аргументу:

$$\begin{split} S(\mathbf{a}+\mathbf{b},\mathbf{v}_2,\mathbf{v}_3,\ldots,\mathbf{v}_n) &= S(\mathbf{a},\mathbf{v}_2,\mathbf{v}_3,\ldots,\mathbf{v}_n) + \\ &+ S(\mathbf{b},\mathbf{v}_2,\mathbf{v}_3,\ldots,\mathbf{v}_n) \\ S(\pmb{\lambda}\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3,\ldots,\mathbf{v}_n) &= \pmb{\lambda} S(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3,\ldots,\mathbf{v}_n) \end{split}$$

Вектор \mathbf{e}_i содержит на i-м месте единицу, а на остальных — нули.

1. Верный гипер-объём базового гипер-кубика:

$$S(\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n) = 1$$

2. Линейность по каждому аргументу:

$$\begin{split} S(\mathbf{a}+\mathbf{b},\mathbf{v}_2,\mathbf{v}_3,\ldots,\mathbf{v}_n) &= S(\mathbf{a},\mathbf{v}_2,\mathbf{v}_3,\ldots,\mathbf{v}_n) + \\ &+ S(\mathbf{b},\mathbf{v}_2,\mathbf{v}_3,\ldots,\mathbf{v}_n) \\ S({\color{blue}\lambda}\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3,\ldots,\mathbf{v}_n) &= {\color{blue}\lambda} S(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3,\ldots,\mathbf{v}_n) \end{split}$$

3. Антисимметричность:

$$S(\mathbf{v_1},\mathbf{v_2},\mathbf{v_3},\ldots,\mathbf{v}_n) = -S(\mathbf{v_2},\mathbf{v_1},\mathbf{v_3},\ldots,\mathbf{v}_n)$$

Определитель во всей n-мерности

Определение

Возьмём векторы \mathbf{v}_1 , ..., \mathbf{v}_n , для которых $S(\mathbf{v}_1,\dots,\mathbf{v}_n) \neq 0$.

Определитель оператора $L: \mathbb{R}^n \to \mathbb{R}^n$ показывает во сколько раз изменяется ориентированный гипер-объём произвольного параллелепипеда:

$$\det \mathbf{L} = \frac{S(\mathbf{L}\,\mathbf{v}_1, \dots, \mathbf{L}\,\mathbf{v}_n)}{S(\mathbf{v}_1, \dots, \mathbf{v}_n)}$$

Определитель во всей n-мерности

Определение

Возьмём векторы \mathbf{v}_1 , ..., \mathbf{v}_n , для которых $S(\mathbf{v}_1,\dots,\mathbf{v}_n) \neq 0$.

Определитель оператора L : $\mathbb{R}^n \to \mathbb{R}^n$ показывает во сколько раз изменяется ориентированный гипер-объём произвольного параллелепипеда:

$$\det \mathbf{L} = \frac{S(\mathbf{L}\,\mathbf{v}_1, \dots, \mathbf{L}\,\mathbf{v}_n)}{S(\mathbf{v}_1, \dots, \mathbf{v}_n)}$$

Определение

Определитель оператора $L: \mathbb{R}^n \to \mathbb{R}^n$ показывает во сколько раз изменяется ориентированный гипер-объём базового гипер-кубика:

$$\det \mathbf{L} = S(\mathbf{L}\,\mathbf{e}_1, \dots, \mathbf{L}\,\mathbf{e}_n)$$

Определитель матрицы

Определение

Определителем матрицы называется определитель соответствующего линейного оператора.

Определитель матрицы

Определение

Определителем матрицы называется определитель соответствующего линейного оператора.

В матрице L i-й столбец равен L \mathbf{e}_i , поэтому

$$\det \mathbf{L} = S(\operatorname{col}_1 \mathbf{L}, \operatorname{col}_2 \mathbf{L}, \dots, \operatorname{col}_n \mathbf{L})$$

Определитель матрицы

Определение

Определителем матрицы называется определитель соответствующего линейного оператора.

В матрице L i-й столбец равен L \mathbf{e}_i , поэтому

$$\det \mathbf{L} = S(\operatorname{col}_1 \mathbf{L}, \operatorname{col}_2 \mathbf{L}, \dots, \operatorname{col}_n \mathbf{L})$$

Утверждение

Определитель матрицы можно считать по строкам:

$$\det \mathbf{L} = S(\mathsf{row}_1 \, \mathbf{L}, \mathsf{row}_2 \, \mathbf{L}, \dots, \mathsf{row}_n \, \mathbf{L})$$

Определитель обозначают det L или | L |.

Быстрые признаки равенства нулю

1. Если среди векторов есть два одинаковых, то гипер-объём параллелепипеда равен нулю.

$$S(\mathbf{a}, \mathbf{a}, \mathbf{v}_3, \dots, \mathbf{v}_n) = 0$$

Быстрые признаки равенства нулю

1. Если среди векторов есть два одинаковых, то гипер-объём параллелепипеда равен нулю.

$$S(\mathbf{a}, \mathbf{a}, \mathbf{v}_3, \dots, \mathbf{v}_n) = 0$$

2. Если среди векторов есть один нулевой, то гипер-объём параллелепипеда равен нулю.

$$S(\mathbf{0}, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_n) = 0$$

Принцип Кавальери

«Скашивание» параллелепипеда вбок не изменяет гипер-объём:

$$S(\mathbf{a},\mathbf{b},\mathbf{v}_3,\dots,\mathbf{v}_n) = S(\mathbf{a}+\mathbf{b},\mathbf{b},\mathbf{v}_3,\dots,\mathbf{v}_n)$$

Принцип Кавальери

«Скашивание» параллелепипеда вбок не изменяет гипер-объём:

$$S(\mathbf{a},\mathbf{b},\mathbf{v}_3,\ldots,\mathbf{v}_n) = S(\mathbf{a}+\mathbf{b},\mathbf{b},\mathbf{v}_3,\ldots,\mathbf{v}_n)$$

Принцип Кавальери на матрице

Единственным ненулевым элементом столбца можно «скосить» всю строку:

$$\begin{vmatrix} 0 & 3 & -2 \\ 4 & 2 & 7 \\ 0 & 1 & -5 \end{vmatrix} =$$

Принцип Кавальери на матрице

Единственным ненулевым элементом столбца можно «скосить» всю строку:

$$\begin{vmatrix} 0 & 3 & -2 \\ 4 & 2 & 7 \\ 0 & 1 & -5 \end{vmatrix} = \begin{vmatrix} 0 & 3 & -2 \\ 4 & 0 & 7 \\ 0 & 1 & -5 \end{vmatrix} = \begin{vmatrix} 0 & 3 & -2 \\ 4 & 0 & 7 \\ 0 & 1 & -5 \end{vmatrix}$$

Принцип Кавальери на матрице

Единственным ненулевым элементом столбца можно «скосить» всю строку:

$$\begin{vmatrix} 0 & 3 & -2 \\ 4 & 2 & 7 \\ 0 & 1 & -5 \end{vmatrix} = \begin{vmatrix} 0 & 3 & -2 \\ 4 & 0 & 7 \\ 0 & 1 & -5 \end{vmatrix} = \begin{vmatrix} 0 & 3 & -2 \\ 4 & 0 & 0 \\ 0 & 1 & -5 \end{vmatrix}$$

Принцип Кавальери на матрице

Единственным ненулевым элементом столбца можно «скосить» всю строку:

$$\begin{vmatrix} 0 & 3 & -2 \\ 4 & 2 & 7 \\ 0 & 1 & -5 \end{vmatrix} = \begin{vmatrix} 0 & 3 & -2 \\ 4 & 0 & 7 \\ 0 & 1 & -5 \end{vmatrix} = \begin{vmatrix} 0 & 3 & -2 \\ 4 & 0 & 0 \\ 0 & 1 & -5 \end{vmatrix}$$

Единственным ненулевым элементом строки можно «скосить» весь столбец:

$$\begin{vmatrix} 3 & 3 & -2 \\ 4 & 0 & 0 \\ 2 & 1 & -5 \end{vmatrix} =$$

Принцип Кавальери на матрице

Единственным ненулевым элементом столбца можно «скосить» всю строку:

$$\begin{vmatrix} 0 & 3 & -2 \\ 4 & 2 & 7 \\ 0 & 1 & -5 \end{vmatrix} = \begin{vmatrix} 0 & 3 & -2 \\ 4 & 0 & 7 \\ 0 & 1 & -5 \end{vmatrix} = \begin{vmatrix} 0 & 3 & -2 \\ 4 & 0 & 0 \\ 0 & 1 & -5 \end{vmatrix}$$

Единственным ненулевым элементом строки можно «скосить» весь столбец:

$$\begin{vmatrix} 3 & 3 & -2 \\ 4 & 0 & 0 \\ 2 & 1 & -5 \end{vmatrix} = \begin{vmatrix} 0 & 3 & -2 \\ 4 & 0 & 0 \\ 2 & 1 & -5 \end{vmatrix} = \begin{vmatrix} 0 & 3 & -2 \\ 4 & 0 & 0 \\ 2 & 1 & -5 \end{vmatrix}$$

Принцип Кавальери на матрице

Единственным ненулевым элементом столбца можно «скосить» всю строку:

$$\begin{vmatrix} 0 & 3 & -2 \\ 4 & 2 & 7 \\ 0 & 1 & -5 \end{vmatrix} = \begin{vmatrix} 0 & 3 & -2 \\ 4 & 0 & 7 \\ 0 & 1 & -5 \end{vmatrix} = \begin{vmatrix} 0 & 3 & -2 \\ 4 & 0 & 0 \\ 0 & 1 & -5 \end{vmatrix}$$

Единственным ненулевым элементом строки можно «скосить» весь столбец:

$$\begin{vmatrix} 3 & 3 & -2 \\ 4 & 0 & 0 \\ 2 & 1 & -5 \end{vmatrix} = \begin{vmatrix} 0 & 3 & -2 \\ 4 & 0 & 0 \\ 2 & 1 & -5 \end{vmatrix} = \begin{vmatrix} 0 & 3 & -2 \\ 4 & 0 & 0 \\ 0 & 1 & -5 \end{vmatrix}$$

Утверждение

Для матрицы L размера $n \times n$ четыре свойства эквиваленты:

1. Определитель равен нулю, $\det L = 0$.

Утверждение

Для матрицы L размера $n \times n$ четыре свойства эквиваленты:

- 1. Определитель равен нулю, $\det L = 0$.
- 2. Столбцы матрицы линейно зависимы.

Утверждение

Для матрицы L размера $n \times n$ четыре свойства эквиваленты:

- 1. Определитель равен нулю, $\det L = 0$.
- 2. Столбцы матрицы линейно зависимы.
- 3. Строки матрицы линейно зависимы.

Утверждение

Для матрицы L размера $n \times n$ четыре свойства эквиваленты:

- 1. Определитель равен нулю, $\det L = 0$.
- 2. Столбцы матрицы линейно зависимы.
- 3. Строки матрицы линейно зависимы.
- 4. Ранг матрицы меньше числа столбцов, ${\rm rank}\,{\rm L} < n$.

Определитель композиции

Утверждение

Определитель композиции A и B равен произведению определителей:

$$det(AB) = det A det B$$

Определитель композиции

Утверждение

Определитель композиции A и B равен произведению определителей:

$$det(AB) = det A det B$$

Следствие

$$\det A \det A^{-1} = \det(A \cdot A^{-1}) = \det \mathbf{I} = 1$$

Спокойствие, только спокойствие!

Утверждение

Свойства нормировки, линейности по аргументам и антисимметричности однозначно определяют функцию гипер-объёма $S(\mathbf{v}_1, \dots, \mathbf{v}_n)$.

Спокойствие, только спокойствие!

Утверждение

Свойства нормировки, линейности по аргументам и антисимметричности однозначно определяют функцию гипер-объёма $S(\mathbf{v}_1,\dots,\mathbf{v}_n)$.

Утверждение

Отношение гипер-объёмов $\det \mathbf{L} = \frac{S(\mathbf{L}\mathbf{v}_1,...,\mathbf{L}\mathbf{v}_n)}{S(\mathbf{v}_1,...,\mathbf{v}_n)}$ не зависит от выбора $\mathbf{v}_1,\ldots,\mathbf{v}_n$.

Определение

Перестановкой называют последовательность из n чисел, в которой каждое число от 1 до n встречается ровно один раз.

Определение

Перестановкой называют последовательность из n чисел, в которой каждое число от 1 до n встречается ровно один раз.

Примеры: (12345), (32145), (21354).

Определение

Перестановкой называют последовательность из n чисел, в которой каждое число от 1 до n встречается ровно один раз.

Примеры: (12345), (32145), (21354).

Определение

Перестановку называют чётной, если требуется чётное число смен местами двух чисел, чтобы привести перестановку к $(1234\dots n)$.

Если σ — чётная перестановка, то пишут sign $\sigma=1$, для нечётной пишут sign $\sigma=-1$.

Определение

Перестановкой называют последовательность из n чисел, в которой каждое число от 1 до n встречается ровно один раз.

Примеры: (12345), (32145), (21354).

Определение

Перестановку называют чётной, если требуется чётное число смен местами двух чисел, чтобы привести перестановку к $(1234\dots n)$.

Если σ — чётная перестановка, то пишут sign $\sigma=1$, для нечётной пишут sign $\sigma=-1$.

Примеры:

 $\operatorname{sign}(12345) = 1$, $\operatorname{sign}(32145) = -1$, $\operatorname{sign}(21354) = 1$.

Расстановка ладей!

Рассмотрим квадратную матрицу.

Перестановку σ будем трактовать как инструкцию, какой элемент взять из очередной строки матрицы.

$$(3124) \sim \begin{pmatrix} \cdot & \cdot & * & \cdot \\ * & \cdot & \cdot \\ \cdot & * & \cdot \\ \cdot & \cdot & * \end{pmatrix}$$

Расстановка ладей!

Рассмотрим квадратную матрицу.

Перестановку σ будем трактовать как инструкцию, какой элемент взять из очередной строки матрицы.

$$(3124) \sim \begin{pmatrix} \cdot & \cdot & * & \cdot \\ * & \cdot & \cdot & \cdot \\ \cdot & * & \cdot & \cdot \\ \cdot & \cdot & \cdot & * \end{pmatrix}$$

С помощью $p(\sigma)$ обозначим произведение этих элементов.

Например, $p(3124) = a_{13} \cdot a_{21} \cdot a_{32} \cdot a_{44}$.

Явная формула

Утверждение

Трём свойствам определителя (нормировке, линейности, антисимметричности) удовлетворяет единственная функция

$$\det \mathsf{L} = \sum_{\sigma} \mathsf{sign}(\sigma) \cdot p(\sigma).$$

Перестановку σ трактуем как инструкцию, какой элемент взять из очередной строки матрицы.

C помощью $p(\sigma)$ обозначено произведение этих элементов.

Иллюстрация для 2×2

$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} =$$

Иллюстрация для 2×2

$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = + \begin{pmatrix} a \\ d \end{pmatrix} - \begin{pmatrix} b \\ c \end{pmatrix} = \frac{\operatorname{sign}(12) = 1}{\operatorname{sign}(21) = -1}$$

Иллюстрация для 2×2

$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = + \begin{pmatrix} a \\ d \end{pmatrix} - \begin{pmatrix} b \\ c \end{pmatrix} = ad - bc$$

$$\operatorname{sign}(12)=1 \quad \operatorname{sign}(21)=-1$$

Иллюстрация для 3×3

$$\det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} =$$

Иллюстрация для 3×3

$$\det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = \\ = + \begin{pmatrix} a \\ e \\ i \end{pmatrix} + \begin{pmatrix} c \\ d \\ h \end{pmatrix} + \begin{pmatrix} b \\ f \\ g \end{pmatrix} \\ \text{sign}(123) = 1 \quad \text{sign}(312) = 1 \\ - \begin{pmatrix} c \\ e \\ g \end{pmatrix} - \begin{pmatrix} b \\ d \\ i \end{pmatrix} - \begin{pmatrix} a \\ f \\ h \end{pmatrix} = \\ \text{sign}(321) = -1 \quad \text{sign}(213) = -1 \quad \text{sign}(132) = -1$$

Иллюстрация для 3×3

$$\det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = \\ = + \begin{pmatrix} a \\ e \\ i \end{pmatrix} + \begin{pmatrix} c \\ d \\ h \end{pmatrix} + \begin{pmatrix} b \\ f \\ g \end{pmatrix} \\ \frac{\text{sign}(123) = 1}{\text{sign}(312) = 1} \frac{\text{sign}(231) = 1}{\text{sign}(231) = 1} \\ - \begin{pmatrix} c \\ e \\ g \end{pmatrix} - \begin{pmatrix} b \\ d \\ i \end{pmatrix} - \begin{pmatrix} a \\ f \\ h \end{pmatrix} = \\ \frac{\text{sign}(321) = -1}{\text{sign}(213) = -1} \frac{\text{sign}(132) = -1}{\text{sign}(132) = -1} \\ = aei + cdh + bfg - ceg - bdi - afh$$

Вычисление определителя

Это видеофрагмент с доской, слайдов здесь нет:)

Определитель и транспонирование

Краткий план:

• Транспонирование матрицы;

Краткий план:

- Транспонирование матрицы;
- Определитель и транспонирование;

Краткий план:

- Транспонирование матрицы;
- Определитель и транспонирование;
- Разложение определителя по столбцу или строке.

Определение транспонирования оператора основано на свойстве

$$\langle \mathsf{L}\,\mathbf{a},\mathbf{b}\rangle = \langle \mathbf{a},\mathsf{L}^T\,\mathbf{b}\rangle.$$

Определение транспонирования оператора основано на свойстве

$$\langle \mathsf{L}\,\mathbf{a},\mathbf{b}\rangle = \langle \mathbf{a},\mathsf{L}^T\,\mathbf{b}\rangle.$$

Возьмём, к примеру, $\mathbf{a}=\mathbf{e}_2$ и $\mathbf{b}=\mathbf{e}_3$:

$$\langle \mathsf{col}_2 \, \mathsf{L}, \mathbf{e}_3 \rangle = \langle \mathbf{e}_2, \mathsf{col}_3 \, \mathsf{L}^T \rangle$$

Определение транспонирования оператора основано на свойстве

$$\langle \mathsf{L}\,\mathbf{a},\mathbf{b}\rangle = \langle \mathbf{a},\mathsf{L}^T\,\mathbf{b}\rangle.$$

Возьмём, к примеру, $\mathbf{a}=\mathbf{e}_2$ и $\mathbf{b}=\mathbf{e}_3$:

$$\langle \mathsf{col}_2 \, \mathsf{L}, \mathbf{e}_3 \rangle = \langle \mathbf{e}_2, \mathsf{col}_3 \, \mathsf{L}^T \rangle$$

$$\mathsf{L}_{32} = \mathsf{L}_{23}^T$$

Определение транспонирования оператора основано на свойстве

$$\langle \mathsf{L} \, \mathbf{a}, \mathbf{b} \rangle = \langle \mathbf{a}, \mathsf{L}^T \, \mathbf{b} \rangle.$$

Возьмём, к примеру, $\mathbf{a}=\mathbf{e}_2$ и $\mathbf{b}=\mathbf{e}_3$:

$$\langle \mathsf{col}_2 \, \mathsf{L}, \mathbf{e}_3 \rangle = \langle \mathbf{e}_2, \mathsf{col}_3 \, \mathsf{L}^T \rangle$$

$$\mathsf{L}_{32} = \mathsf{L}_{23}^T$$

Транспонирование меняет местами строки и столбцы матрицы!

Транспонирование матрицы

Пример:

$$\mathsf{L} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{pmatrix}$$

Транспонирование матрицы

Пример:

$$L = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{pmatrix}$$

$$\mathsf{L}^T = \begin{pmatrix} 1 & 5 & 9 \\ 2 & 6 & 10 \\ 3 & 7 & 11 \\ 4 & 8 & 12 \end{pmatrix}$$

Транспонирование матрицы

Пример:

$$L = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{pmatrix}$$

$$\mathbf{L}^T = \begin{pmatrix} 1 & 5 & 9 \\ 2 & 6 & 10 \\ 3 & 7 & 11 \\ 4 & 8 & 12 \end{pmatrix}$$

Заметим, что $L^{TT} = L$.

Явная формула определителя:

$$\det \mathbf{L} = \sum_{\sigma} \mathrm{sign}(\sigma) p(\sigma)$$

Явная формула определителя:

$$\det \mathbf{L} = \sum_{\sigma} \mathrm{sign}(\sigma) p(\sigma)$$

Перестановка диктует, какой элемент выбрать в каждой строке:

$$(3124) \sim \begin{pmatrix} \cdot & \cdot & * & \cdot \\ * & \cdot & \cdot \\ \cdot & * & \cdot \\ \cdot & \cdot & * \end{pmatrix}$$

Явная формула определителя:

$$\det \mathbf{L} = \sum_{\sigma} \mathrm{sign}(\sigma) p(\sigma)$$

Перестановка диктует, какой элемент выбрать в каждой строке:

$$(3124) \sim \begin{pmatrix} \cdot & \cdot & * & \cdot \\ * & \cdot & \cdot \\ \cdot & * & \cdot \\ \cdot & \cdot & * \end{pmatrix}$$

Утверждение

Если в матрице выбран один элемент в каждой строке и в каждом столбце, то при транспонировании это свойство сохраняется.

Утверждение

Чётности перестановок, кодирующих координаты элементов по строкам и по столбцам, одинаковые.

$$\begin{pmatrix} \cdot & \cdot & a & \cdot \\ b & \cdot & \cdot & \cdot \\ \cdot & c & \cdot & \cdot \\ \cdot & \cdot & \cdot & d \end{pmatrix}$$

$$(\mathsf{col}_1 \leftrightarrow \mathsf{col}_3) \sim (\mathsf{row}_1 \leftrightarrow \mathsf{row}_2)$$

Утверждение

Чётности перестановок, кодирующих координаты элементов по строкам и по столбцам, одинаковые.

$$\begin{pmatrix} \cdot & \cdot & a & \cdot \\ b & \cdot & \cdot & \cdot \\ \cdot & c & \cdot & \cdot \\ \cdot & \cdot & \cdot & d \end{pmatrix}$$

$$(\mathsf{col}_1 \leftrightarrow \mathsf{col}_3) \sim (\mathsf{row}_1 \leftrightarrow \mathsf{row}_2)$$

$$\operatorname{sign}(3124) = \operatorname{sign}(2314)$$

Перестановка σ выбирает элемент в каждой строке:

$$\det \mathbf{L} = \sum_{\sigma} \mathrm{sign}(\sigma) p(\sigma)$$

Перестановка σ выбирает элемент в каждом столбце:

$$\det \mathbf{L}^T = \sum_{\sigma} \mathrm{sign}(\sigma) p^T(\sigma)$$

Перестановка σ выбирает элемент в каждой строке:

$$\det \mathbf{L} = \sum_{\sigma} \mathrm{sign}(\sigma) p(\sigma)$$

Перестановка σ выбирает элемент в каждом столбце:

$$\det \mathbf{L}^T = \sum_{\sigma} \mathrm{sign}(\sigma) p^T(\sigma)$$

Утверждение

$$\det \mathsf{L} = \det \mathsf{L}^T$$

Возьмём аддитивность:

$$\begin{vmatrix} -1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = \begin{vmatrix} -1 & 2 & 3 \\ 4 & 0 & 6 \\ 7 & 0 & 9 \end{vmatrix} + \begin{vmatrix} -1 & 0 & 3 \\ 4 & 5 & 6 \\ 7 & 0 & 9 \end{vmatrix} + \begin{vmatrix} -1 & 0 & 3 \\ 4 & 5 & 6 \\ 7 & 0 & 9 \end{vmatrix} + \begin{vmatrix} -1 & 0 & 3 \\ 4 & 0 & 6 \\ 7 & 8 & 9 \end{vmatrix}$$

Возьмём аддитивность:

$$\begin{vmatrix} -1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = \begin{vmatrix} -1 & 2 & 3 \\ 4 & 0 & 6 \\ 7 & 0 & 9 \end{vmatrix} + \begin{vmatrix} -1 & 0 & 3 \\ 4 & 5 & 6 \\ 7 & 0 & 9 \end{vmatrix} + \begin{vmatrix} -1 & 0 & 3 \\ 4 & 5 & 6 \\ 7 & 0 & 9 \end{vmatrix} + \begin{vmatrix} -1 & 0 & 3 \\ 4 & 0 & 6 \\ 7 & 8 & 9 \end{vmatrix}$$

Добавим немного принципа Кавальери:

$$\begin{vmatrix} -1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = \begin{vmatrix} 0 & 2 & 0 \\ 4 & 0 & 6 \\ 7 & 0 & 9 \end{vmatrix} + \begin{vmatrix} -1 & 0 & 3 \\ 0 & 5 & 0 \\ 7 & 0 & 9 \end{vmatrix} + \begin{vmatrix} -1 & 0 & 3 \\ 4 & 0 & 6 \\ 0 & 8 & 0 \end{vmatrix}$$

Возьмём аддитивность:

$$\begin{vmatrix} -1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = \begin{vmatrix} -1 & 2 & 3 \\ 4 & 0 & 6 \\ 7 & 0 & 9 \end{vmatrix} + \begin{vmatrix} -1 & 0 & 3 \\ 4 & 5 & 6 \\ 7 & 0 & 9 \end{vmatrix} + \begin{vmatrix} -1 & 0 & 3 \\ 4 & 5 & 6 \\ 7 & 0 & 9 \end{vmatrix} + \begin{vmatrix} -1 & 0 & 3 \\ 4 & 0 & 6 \\ 7 & 8 & 9 \end{vmatrix}$$

Добавим немного принципа Кавальери:

$$\begin{vmatrix} -1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = \begin{vmatrix} 0 & 2 & 0 \\ 4 & 0 & 6 \\ 7 & 0 & 9 \end{vmatrix} + \begin{vmatrix} -1 & 0 & 3 \\ 0 & 5 & 0 \\ 7 & 0 & 9 \end{vmatrix} + \begin{vmatrix} -1 & 0 & 3 \\ 4 & 0 & 6 \\ 0 & 8 & 0 \end{vmatrix}$$

Взболтаем и переставим столбцы:

$$\begin{vmatrix} -1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = (-1)^{1} \begin{vmatrix} 2 & 0 & 0 \\ 0 & 4 & 6 \\ 0 & 7 & 9 \end{vmatrix} + (-1)^{2} \begin{vmatrix} 5 & 0 & 0 \\ 0 & -1 & 3 \\ 0 & 7 & 9 \end{vmatrix} + (-1)^{3} \begin{vmatrix} 8 & 0 & 0 \\ 0 & -1 & 3 \\ 0 & 4 & 6 \end{vmatrix}$$

Взболтаем и переставим столбцы:

$$\begin{vmatrix} -1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = (-1)^{1} \begin{vmatrix} 2 & 0 & 0 \\ 0 & 4 & 6 \\ 0 & 7 & 9 \end{vmatrix} + (-1)^{2} \begin{vmatrix} 5 & 0 & 0 \\ 0 & -1 & 3 \\ 0 & 7 & 9 \end{vmatrix} + (-1)^{3} \begin{vmatrix} 8 & 0 & 0 \\ 0 & -1 & 3 \\ 0 & 4 & 6 \end{vmatrix}$$

Взболтаем и переставим столбцы:

$$\begin{vmatrix} -1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = (-1)^{1} \begin{vmatrix} 2 & 0 & 0 \\ 0 & 4 & 6 \\ 0 & 7 & 9 \end{vmatrix} + (-1)^{2} \begin{vmatrix} 5 & 0 & 0 \\ 0 & -1 & 3 \\ 0 & 7 & 9 \end{vmatrix} + (-1)^{3} \begin{vmatrix} 8 & 0 & 0 \\ 0 & -1 & 3 \\ 0 & 4 & 6 \end{vmatrix}$$

Снизим размерность:

$$\begin{vmatrix} -1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = (-1)^{1} 2 \begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} + (-1)^{2} 5 \begin{vmatrix} -1 & 3 \\ 7 & 9 \end{vmatrix} + (-1)^{3} 8 \begin{vmatrix} -1 & 3 \\ 4 & 6 \end{vmatrix}$$

Разложение по столбцу

Выберем любой столбец и «пробежимся» вдоль него!

$$\begin{vmatrix} * & a_{12} & * \\ * & a_{22} & * \\ * & a_{32} & * \end{vmatrix} =$$

$$= (-1)^{1+2} {\color{red}a_{12}} \det A_{12}^{\times} + (-1)^{2+2} {\color{red}a_{22}} \det A_{22}^{\times} + (-1)^{3+2} {\color{red}a_{32}} \det A_{32}^{\times}$$

Матрица A_{ij}^{\times} получается из исходной A вычеркиванием строки i и столбца j.

Разложение по столбцу

Выберем любой столбец и «пробежимся» вдоль него!

$$\begin{vmatrix} * & a_{12} & * \\ * & a_{22} & * \\ * & a_{32} & * \end{vmatrix} =$$

$$= (-1)^{1+2} {\color{red}a_{12}} \det A_{12}^{\times} + (-1)^{2+2} {\color{red}a_{22}} \det A_{22}^{\times} + (-1)^{3+2} {\color{red}a_{32}} \det A_{32}^{\times}$$

Матрица A_{ij}^{\times} получается из исходной A вычеркиванием строки i и столбца j.

Утверждение

$$\det \mathbf{L} = \sum_{i=1}^n (-1)^{i+j} a_{ij} \det A_{ij}^\times,$$

Разложение по строке

Можно раскладывать и по строке i:

Утверждение

$$\det A = \sum_{j=1}^n (-1)^{i+j} a_{ij} \det A_{ij}^\times,$$

Определение

Алгебраическим дополнением элемента a_{ij} матрицы A называют величину

$$C_{ij} = (-1)^{i+j} \det A_{ij}^{\times},$$

Матрица A_{ij}^{\times} получается из исходной A вычеркиванием строки i и столбца j.

Это видеофрагмент с доской, слайдов здесь нет:)

Метод Крамера

Это видеофрагмент с доской, слайдов здесь нет:)

Метод Крамера и нахождение обратной матрицы

Это видеофрагмент с доской, слайдов здесь нет:)

Поиск обратной матрицы: итоги

Краткий план:

• Метод Гаусса;

Краткий план:

- Метод Гаусса;
- Метод Крамера;

Краткий план:

- Метод Гаусса;
- Метод Крамера;
- Критерии наличия обратной матрицы.

Если нужно решить две системы уравнений, $A\mathbf{x} = \mathbf{b}$ и $A\mathbf{y} = \mathbf{c}$, то можно решать их одновременно!

Если нужно решить две системы уравнений, $A\mathbf{x} = \mathbf{b}$ и $A\mathbf{y} = \mathbf{c}$, то можно решать их одновременно!

Вместо двух систем

$$\begin{pmatrix}
1 & 3 & 3 & 10 \\
-1 & 1 & 1 & 2 \\
2 & 7 & 1 & 17
\end{pmatrix},
\begin{pmatrix}
1 & 3 & 3 & 10 \\
-1 & 1 & 1 & 6 \\
2 & 7 & 1 & 6
\end{pmatrix}$$

Если нужно решить две системы уравнений, $A\mathbf{x} = \mathbf{b}$ и $A\mathbf{y} = \mathbf{c}$, то можно решать их одновременно!

Вместо двух систем

$$\begin{pmatrix}
1 & 3 & 3 & 10 \\
-1 & 1 & 1 & 2 \\
2 & 7 & 1 & 17
\end{pmatrix},
\begin{pmatrix}
1 & 3 & 3 & 10 \\
-1 & 1 & 1 & 6 \\
2 & 7 & 1 & 6
\end{pmatrix}$$

решаем систему с двойной правой частью:

$$\left(\begin{array}{cc|cc|c}
1 & 3 & 3 & 10 & 10 \\
-1 & 1 & 1 & 2 & 6 \\
2 & 7 & 1 & 17 & 6
\end{array}\right).$$

Решаем систему с двойной правой частью:

$$\left(\begin{array}{ccc|c}
1 & 3 & 3 & 10 & 10 \\
-1 & 1 & 1 & 2 & 6 \\
2 & 7 & 1 & 17 & 6
\end{array}\right)$$

Решаем систему с двойной правой частью:

$$\left(\begin{array}{cc|cccc}
1 & 3 & 3 & 10 & 10 \\
-1 & 1 & 1 & 2 & 6 \\
2 & 7 & 1 & 17 & 6
\end{array}\right)$$

Приводим левую часть к виду единичной матрицы используя гауссовские преобразования:

- перестановку строк;
- домножение строки на ненулевое число;
- прибавление одной строки к другой с любым весом.

Решаем систему с двойной правой частью:

$$\left(\begin{array}{cc|cccc}
1 & 3 & 3 & 10 & 10 \\
-1 & 1 & 1 & 2 & 6 \\
2 & 7 & 1 & 17 & 6
\end{array}\right)$$

Приводим левую часть к виду единичной матрицы используя гауссовские преобразования:

- перестановку строк;
- домножение строки на ненулевое число;
- прибавление одной строки к другой с любым весом.

$$\left(\begin{array}{c|cc|c}
1 & 0 & 0 & 1 & -2 \\
0 & 1 & 0 & 2 & 1 \\
0 & 0 & 1 & 1 & 3
\end{array}\right)$$

Решаем систему с двойной правой частью:

$$\left(\begin{array}{cc|cccc}
1 & 3 & 3 & 10 & 10 \\
-1 & 1 & 1 & 2 & 6 \\
2 & 7 & 1 & 17 & 6
\end{array}\right)$$

Приводим левую часть к виду единичной матрицы используя гауссовские преобразования:

- перестановку строк;
- домножение строки на ненулевое число;
- прибавление одной строки к другой с любым весом.

$$\begin{pmatrix} 1 & 0 & 0 & 1 & -2 \\ 0 & 1 & 0 & 2 & 1 \\ 0 & 0 & 1 & 1 & 3 \end{pmatrix}$$
 Видим ответ: $\mathbf{x} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$, $\mathbf{y} = \begin{pmatrix} -2 \\ 1 \\ 3 \end{pmatrix}$

Для нахождения обратной матрицы для A нужно решить систему $A\cdot B={\sf I}.$

Для примера

$$A = \begin{pmatrix} 3 & 2 & 4 \\ 4 & 3 & 6 \\ 6 & 4 & 9 \end{pmatrix}$$

Для нахождения обратной матрицы для A нужно решить систему $A \cdot B = I$.

Для примера

$$A = \begin{pmatrix} 3 & 2 & 4 \\ 4 & 3 & 6 \\ 6 & 4 & 9 \end{pmatrix}$$

Приписываем справа единичную матрицу I:

$$\left(\begin{array}{c|cccc}
3 & 2 & 4 & 1 & 0 & 0 \\
4 & 3 & 6 & 0 & 1 & 0 \\
6 & 4 & 9 & 0 & 0 & 1
\end{array}\right)$$

Приписываем справа единичную матрицу I:

$$\left(\begin{array}{ccc|c}
3 & 2 & 4 & 1 & 0 & 0 \\
4 & 3 & 6 & 0 & 1 & 0 \\
6 & 4 & 9 & 0 & 0 & 1
\end{array}\right)$$

Если $\det A \neq 0$, то с помощью гауссовских преобразований получаем единичную слева:

$$\left(\begin{array}{ccc|c}
1 & 0 & 0 & 3 & -2 & 0 \\
0 & 1 & 0 & 0 & 3 & -2 \\
0 & 0 & 1 & -2 & 0 & 1
\end{array}\right)$$

Приписываем справа единичную матрицу I:

$$\left(\begin{array}{ccc|c}
3 & 2 & 4 & 1 & 0 & 0 \\
4 & 3 & 6 & 0 & 1 & 0 \\
6 & 4 & 9 & 0 & 0 & 1
\end{array}\right)$$

Если $\det A \neq 0$, то с помощью гауссовских преобразований получаем единичную слева:

$$\left(\begin{array}{c|cc|c}
1 & 0 & 0 & 3 & -2 & 0 \\
0 & 1 & 0 & 0 & 3 & -2 \\
0 & 0 & 1 & -2 & 0 & 1
\end{array}\right)$$

Решение системы, матрицу A^{-1} , читаем справа:

$$A^{-1} = \begin{pmatrix} 3 & -2 & 0 \\ 0 & 3 & -2 \\ -2 & 0 & 1 \end{pmatrix}$$

Метод Крамера

Рассмотрим систему $A\mathbf{x} = \mathbf{b}$ из n уравнений с n неизвестными.

Метод Крамера

Рассмотрим систему $A\mathbf{x} = \mathbf{b}$ из n уравнений с n неизвестными.

Утверждение

Если $\det A \neq 0$, то решение системы единственно и

$$x_i = \frac{\det A_i}{\det A},$$

где матрица A_i получена из матрицы A заменой i-го столбца на правую часть ${\bf b}.$

Метод Крамера для обратной матрицы

Матрица A имеет размер $n \times n$.

Матрица A имеет размер $n \times n$.

Утверждение

Если $\det A \neq 0$, то матрица $B = A^{-1}$ существует и

$$b_{ij} = \frac{(-1)^{i+j} \det \left(A_{ji}^{\times}\right)}{\det A},$$

где матрица A_{ji}^{\times} получена из матрицы A вычёркиванием строки j и столбца i.

Матрица A имеет размер $n \times n$.

Утверждение

Если $\det A \neq 0$, то матрица $B = A^{-1}$ существует и

$$b_{ij} = \frac{(-1)^{i+j} \det \left(A_{ji}^{\times}\right)}{\det A},$$

где матрица A_{ji}^{\times} получена из матрицы A вычёркиванием строки j и столбца i.

Напомним, что $C_{ji}=(-1)^{i+j}\det(A_{ji}^{\times})$ называется алгебраическим дополнением к a_{ji} .

Алгоритм обращения матрицы A.

1. Находим определитель $\det A$. Если $\det A = 0$, то матрица A не обратимая.

Алгоритм обращения матрицы A.

- 1. Находим определитель $\det A$. Если $\det A = 0$, то матрица A не обратимая.
- 2. Для каждого элемента A находим алгебраическое дополнение $C_{ij}=(-1)^{i+j}\det(A_{ij}^{\times}).$ Помещаем все дополнения в матрицу C.

Алгоритм обращения матрицы A.

- 1. Находим определитель $\det A$. Если $\det A = 0$, то матрица A не обратимая.
- 2. Для каждого элемента A находим алгебраическое дополнение $C_{ij}=(-1)^{i+j}\det(A_{ij}^{\times}).$ Помещаем все дополнения в матрицу C.
- 3. Транспонируем матрицу C и получаем присоединённую матрицу $\operatorname{adj} A = C^T.$

Алгоритм обращения матрицы A.

- 1. Находим определитель $\det A$. Если $\det A = 0$, то матрица A не обратимая.
- 2. Для каждого элемента A находим алгебраическое дополнение $C_{ij}=(-1)^{i+j}\det(A_{ij}^{\times}).$ Помещаем все дополнения в матрицу C.
- 3. Транспонируем матрицу C и получаем присоединённую матрицу $\operatorname{adj} A = C^T.$
- 4. Делим матрицу adj A на $\det A$ и получаем $A^{-1}=\operatorname{adj} A/\det A.$

Матрица A размера $n \times n$ называется вырожденной, если:

1. $\det A = 0$;

- 1. $\det A = 0$;
- 2. Система $A\mathbf{x} = \mathbf{0}$ имеет бесконечное количество решений;

- 1. $\det A = 0$;
- 2. Система $A\mathbf{x} = \mathbf{0}$ имеет бесконечное количество решений;
- 3. Система $A\mathbf{x} = \mathbf{b}$ имеет ноль или бесконечное количество решений;

- 1. $\det A = 0$;
- 2. Система $A\mathbf{x} = \mathbf{0}$ имеет бесконечное количество решений;
- 3. Система $A\mathbf{x} = \mathbf{b}$ имеет ноль или бесконечное количество решений;
- 4. rank A < n;

- 1. $\det A = 0$;
- 2. Система $A\mathbf{x} = \mathbf{0}$ имеет бесконечное количество решений;
- 3. Система $A\mathbf{x} = \mathbf{b}$ имеет ноль или бесконечное количество решений;
- 4. rank A < n;
- 5. Столбцы A линейно зависимы;

- 1. $\det A = 0$;
- 2. Система $A\mathbf{x} = \mathbf{0}$ имеет бесконечное количество решений;
- 3. Система $A\mathbf{x} = \mathbf{b}$ имеет ноль или бесконечное количество решений;
- 4. rank A < n;
- 5. Столбцы A линейно зависимы;
- 6. Строки A линейно зависимы;

- 1. $\det A = 0$;
- 2. Система $A\mathbf{x} = \mathbf{0}$ имеет бесконечное количество решений;
- 3. Система $A\mathbf{x} = \mathbf{b}$ имеет ноль или бесконечное количество решений;
- 4. rank A < n;
- 5. Столбцы A линейно зависимы;
- 6. Строки A линейно зависимы;
- 7. A^{-1} не существует;

- 1. $\det A = 0$;
- 2. Система $A\mathbf{x} = \mathbf{0}$ имеет бесконечное количество решений;
- 3. Система $A\mathbf{x} = \mathbf{b}$ имеет ноль или бесконечное количество решений;
- 4. rank A < n;
- 5. Столбцы A линейно зависимы;
- 6. Строки A линейно зависимы;
- 7. A^{-1} не существует;

Матрица A размера $n \times n$ называется невырожденной, если:

1. $\det A \neq 0$;

- 1. $\det A \neq 0$;
- 2. Система Ax = b имеет единственное решение;

- 1. $\det A \neq 0$;
- 2. Система Ax = b имеет единственное решение;
- 3. rank A = n;

- 1. $\det A \neq 0$;
- 2. Система Ax = b имеет единственное решение;
- 3. rank A = n;
- 4. Столбцы A линейно независимы;

- 1. $\det A \neq 0$;
- 2. Система Ax = b имеет единственное решение;
- 3. rank A = n;
- 4. Столбцы A линейно независимы;
- 5. Строки A линейно независимы;

- 1. $\det A \neq 0$;
- 2. Система Ax = b имеет единственное решение;
- 3. rank A = n;
- 4. Столбцы A линейно независимы;
- 5. Строки A линейно независимы;
- 6. A^{-1} существует;

LU-разложение

Краткий план:

• Треугольные квадратные матрицы;

Краткий план:

- Треугольные квадратные матрицы;
- LU-разложение;

Краткий план:

- Треугольные квадратные матрицы;
- LU-разложение;
- Применение LU-разложения.

Определение

Квадратная матрица называется верхнетреугольной, если ниже диагонали у неё стоят нулевые числа, например,

$$\mathsf{U} = \begin{pmatrix} 4 & 5 & -1 & 2 \\ 0 & 0 & 2 & 6 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & -1 \end{pmatrix}.$$

Определение

Квадратная матрица называется верхнетреугольной, если ниже диагонали у неё стоят нулевые числа, например,

$$\mathsf{U} = \begin{pmatrix} 4 & 5 & -1 & 2 \\ 0 & 0 & 2 & 6 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & -1 \end{pmatrix}.$$

При перемножении верхнетреугольных матриц получается верхнетреугольная.

Определение

Квадратная матрица называется верхнетреугольной, если ниже диагонали у неё стоят нулевые числа, например,

$$\mathsf{U} = \begin{pmatrix} 4 & 5 & -1 & 2 \\ 0 & 0 & 2 & 6 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & -1 \end{pmatrix}.$$

При перемножении верхнетреугольных матриц получается верхнетреугольная. Определитель треугольной матрицы равен произведению диагональных элементов.

Определение

Квадратная матрица называется нижнетреугольной, если ниже диагонали у неё стоят нулевые числа, например,

$$\mathsf{L} = \begin{pmatrix} 4 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 3 & 0 & 0 \\ 1 & 2 & 2 & -1 \end{pmatrix}.$$

Определение

Квадратная матрица называется нижнетреугольной, если ниже диагонали у неё стоят нулевые числа, например,

$$\mathsf{L} = \begin{pmatrix} 4 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 3 & 0 & 0 \\ 1 & 2 & 2 & -1 \end{pmatrix}.$$

При перемножении нижнетреугольных матриц получается нижнетреугольная.

Определение

Квадратная матрица называется нижнетреугольной, если ниже диагонали у неё стоят нулевые числа, например,

$$\mathsf{L} = \begin{pmatrix} 4 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 3 & 0 & 0 \\ 1 & 2 & 2 & -1 \end{pmatrix}.$$

При перемножении нижнетреугольных матриц получается нижнетреугольная. Определитель треугольной матрицы равен произведению диагональных элементов.

Гауссовские преобразования

Рассмотрим систему уравнений в матричном виде:

$$\left(\begin{array}{cc|c}
1 & 3 & 3 & 10 \\
-1 & 1 & 1 & 2 \\
2 & 7 & 1 & 17
\end{array}\right)$$

Гауссовские преобразования

Рассмотрим систему уравнений в матричном виде:

$$\left(\begin{array}{cc|c}
1 & 3 & 3 & 10 \\
-1 & 1 & 1 & 2 \\
2 & 7 & 1 & 17
\end{array}\right)$$

Гауссовские преобразования уравнений системы:

- 1. Домножение строки на ненулевое число;
- 2. Перестановка двух строк местами;
- 3. Прибавление к данной строке другой строки, домноженной на произвольное λ .

Гауссовские преобразования

Рассмотрим систему уравнений в матричном виде:

$$\left(\begin{array}{cc|c}
1 & 3 & 3 & 10 \\
-1 & 1 & 1 & 2 \\
2 & 7 & 1 & 17
\end{array}\right)$$

Гауссовские преобразования уравнений системы:

- 1. Домножение строки на ненулевое число;
- 2. Перестановка двух строк местами;
- 3. Прибавление к данной строке другой строки, домноженной на произвольное λ .

Каждое из этих действий можно закодировать умножением на матрицу!

Домножение строки как матрица

Домножим вторую строка матрицы A на 7:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} =$$

Домножение строки как матрица

Домножим вторую строка матрицы A на 7:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = \begin{pmatrix} a & b & c \\ 7d & 7e & 7f \\ g & h & i \end{pmatrix}$$

Левая матрица задаёт веса строк для правой матрицы!

Перестановка строк как матрица

Переставим первую и вторую строки матрицы A:

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} =$$

Перестановка строк как матрица

Переставим первую и вторую строки матрицы A:

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = \begin{pmatrix} d & e & f \\ a & b & c \\ g & h & i \end{pmatrix}$$

Левая матрица задаёт веса строк для правой матрицы!

Прибавление строки как матрица

Из второй строки вычтем первую строку с весом 4:

$$\begin{pmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} =$$

Прибавление строки как матрица

Из второй строки вычтем первую строку с весом 4:

$$\begin{pmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = \begin{pmatrix} a & b & c \\ d - 4a & e - 4b & f - 4c \\ g & h & i \end{pmatrix}$$

Левая матрица задаёт веса строк для правой матрицы!

Прибавление строки как матрица

Из второй строки вычтем первую строку с весом 4:

$$\begin{pmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = \begin{pmatrix} a & b & c \\ d - 4a & e - 4b & f - 4c \\ g & h & i \end{pmatrix}$$

Левая матрица задаёт веса строк для правой матрицы! Прибавлению строки к другой строке ниже соответствует нижнетреугольная матрица.

Вычитание — антоним прибавления

$$\begin{pmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Вычитание — антоним прибавления

$$\begin{pmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Левая матрица отвечает за вычитание первой строки из второй с весом 4.

Вычитание — антоним прибавления

$$\begin{pmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Левая матрица отвечает за вычитание первой строки из второй с весом 4.

Правая матрица отвечает за прибавление первой строки ко второй с весом 4.

Переход к треугольной матрице

С помощью метода Гаусса мы приводим квадратную матрицу к ступенчатому верхнетреугольному виду:

$$A \overset{g_1}{\rightarrow} A_1 \overset{g_2}{\rightarrow} A_2 \overset{g_3}{\rightarrow} \dots A_{k-1} \overset{g_k}{\rightarrow} \mathsf{U}$$

Переход к треугольной матрице

С помощью метода Гаусса мы приводим квадратную матрицу к ступенчатому верхнетреугольному виду:

$$A \overset{g_1}{\rightarrow} A_1 \overset{g_2}{\rightarrow} A_2 \overset{g_3}{\rightarrow} \dots A_{k-1} \overset{g_k}{\rightarrow} \mathsf{U}$$

В матричном виде:

$$U = G_k \cdot G_{k-1} \cdot \dots \cdot G_2 \cdot G_1 A$$

Уменьшим список разрешённых действий!

Алгоритм приведения к ступенчатому виду

- 1. Выберем первое уравнение так, чтобы в нём была переменная x_1 .
- 2. Вычитаем первое уравнение из остальных так, чтобы в них пропала переменная x_1 .
- 3. Зафиксируем первое уравнение и работаем с остальными.

Уменьшим список разрешённых действий!

Алгоритм приведения к ступенчатому виду

- 1. Выберем первое уравнение так, чтобы в нём была переменная x_1 .
- 2. Вычитаем первое уравнение из остальных так, чтобы в них пропала переменная x_1 .
- 3. Зафиксируем первое уравнение и работаем с остальными.

Выводы:

• Можно обойтись без домножения строк на число.

Уменьшим список разрешённых действий!

Алгоритм приведения к ступенчатому виду

- 1. Выберем первое уравнение так, чтобы в нём была переменная x_1 .
- 2. Вычитаем первое уравнение из остальных так, чтобы в них пропала переменная x_1 .
- 3. Зафиксируем первое уравнение и работаем с остальными.

Выводы:

- Можно обойтись без домножения строк на число.
- Все перестановки строк можно сделать в начале.

С помощью метода Гаусса мы приводим квадратную матрицу к ступенчатому верхнетреугольному виду:

$$A \overset{p}{\to} A_1 \overset{\ell_1}{\to} A_2 \overset{\ell_2}{\to} \dots A_{k-1} \overset{\ell_k}{\to} \mathsf{U}$$

С помощью метода Гаусса мы приводим квадратную матрицу к ступенчатому верхнетреугольному виду:

$$A \overset{p}{\to} A_1 \overset{\ell_1}{\to} A_2 \overset{\ell_2}{\to} \dots A_{k-1} \overset{\ell_k}{\to} \mathsf{U}$$

В матричном виде:

$$U = L_k \cdot L_{k-1} \cdot \ldots \cdot L_2 \cdot L_1 \cdot P \cdot A.$$

С помощью метода Гаусса мы приводим квадратную матрицу к ступенчатому верхнетреугольному виду:

$$A \overset{p}{\to} A_1 \overset{\ell_1}{\to} A_2 \overset{\ell_2}{\to} \dots A_{k-1} \overset{\ell_k}{\to} \mathsf{U}$$

В матричном виде:

$$U = L_k \cdot L_{k-1} \cdot \ldots \cdot L_2 \cdot L_1 \cdot P \cdot A.$$

Отменим действия L_i .

$$\mathsf{L}_{1}^{-1} \cdot \mathsf{L}_{2}^{-1} \cdot \ldots \cdot \mathsf{L}_{k-1}^{-1} \cdot \mathsf{L}_{k}^{-1} \cdot \mathsf{U} = \mathsf{P} \cdot A.$$

С помощью метода Гаусса мы приводим квадратную матрицу к ступенчатому верхнетреугольному виду:

$$A \overset{p}{\to} A_1 \overset{\ell_1}{\to} A_2 \overset{\ell_2}{\to} \dots A_{k-1} \overset{\ell_k}{\to} \mathsf{U}$$

В матричном виде:

$$U = L_k \cdot L_{k-1} \cdot \ldots \cdot L_2 \cdot L_1 \cdot P \cdot A.$$

Отменим действия L_i .

$$\mathsf{L}_{1}^{-1} \cdot \mathsf{L}_{2}^{-1} \cdot \ldots \cdot \mathsf{L}_{k-1}^{-1} \cdot \mathsf{L}_{k}^{-1} \cdot \mathsf{U} = \mathsf{P} \cdot A.$$

Гауссовские преобразования эквивалентны разложению

$$L \cdot U = P \cdot A$$
.

Зачем нужно LU-разложение?

Если LU-разложение матрицы A получено, то можно очень быстро

- найти определитель матрицы A;
- решить любую систему $A\mathbf{x} = \mathbf{b}$.

Зачем нужно LU-разложение?

Если LU-разложение матрицы A получено, то можно очень быстро

- найти определитель матрицы A;
- решить любую систему $A\mathbf{x} = \mathbf{b}$.

$$\begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -3 & 5 & 1 \end{pmatrix} \cdot \begin{pmatrix} -2 & 1 & 3 \\ 0 & -1 & 2 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 1 & 3 \\ -4 & 1 & 8 \\ 6 & -8 & 2 \end{pmatrix}$$

Зачем нужно LU-разложение?

Если LU-разложение матрицы A получено, то можно очень быстро

- найти определитель матрицы A;
- решить любую систему $A\mathbf{x} = \mathbf{b}$.

$$\begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -3 & 5 & 1 \end{pmatrix} \cdot \begin{pmatrix} -2 & 1 & 3 \\ 0 & -1 & 2 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 1 & 3 \\ -4 & 1 & 8 \\ 6 & -8 & 2 \end{pmatrix}$$

$$\det A = 1 \cdot 1 \cdot 1 \cdot (-2) \cdot (-1) \cdot 1 = 2$$

• Определитель измеряет изменение площади и объёма.

- Определитель измеряет изменение площади и объёма.
- Свойства определителя.

- Определитель измеряет изменение площади и объёма.
- Свойства определителя.
- Обращение матрицы методом Гаусса.

- Определитель измеряет изменение площади и объёма.
- Свойства определителя.
- Обращение матрицы методом Гаусса.
- Обращение матрицы методом Крамера.

- Определитель измеряет изменение площади и объёма.
- Свойства определителя.
- Обращение матрицы методом Гаусса.
- Обращение матрицы методом Крамера.
- Метод Гаусса как LU-разложение.

- Определитель измеряет изменение площади и объёма.
- Свойства определителя.
- Обращение матрицы методом Гаусса.
- Обращение матрицы методом Крамера.
- Метод Гаусса как LU-разложение.
- Бонус: комплексные числа.

- Определитель измеряет изменение площади и объёма.
- Свойства определителя.
- Обращение матрицы методом Гаусса.
- Обращение матрицы методом Крамера.
- Метод Гаусса как LU-разложение.
- Бонус: комплексные числа.

- Определитель измеряет изменение площади и объёма.
- Свойства определителя.
- Обращение матрицы методом Гаусса.
- Обращение матрицы методом Крамера.
- Метод Гаусса как LU-разложение.
- Бонус: комплексные числа.

Следующая лекция: спектральное разложение и диагонализация.

Комплексные числа

бонусное видео! Это видеофрагмент с доской, слайдов здесь нет:)