Movimiento Browniano

Ejercicios entregables - Semana 1

Lucio Santi lsanti@dc.uba.ar

10 de abril de 2017

Ejercicio. Este ejercicio es para caracterizar la σ -álgebra de Borel \mathcal{B} en $C([0,T],\mathbb{R})$.

- a) Sea (E,d) un espacio métrico separable y completo (polaco). Probar que todo abierto $U \subset E$ se puede escribir como unión numerable de bolas abiertas.
- b) Sea (E,d) un espacio métrico polaco. Probar que existen numerables bolas B_1, \ldots, B_n, \ldots tal que la σ -álgebra de Borel $\mathcal{B}(E)$ verifica

$$\mathcal{B}(E) = \sigma\left(\left\{B_n : n \in \mathbb{N}\right\}\right)$$

c) Para $\omega \in C([0,T],\mathbb{R})$ definimos $\pi_t(\omega) = \omega(t)$. Probar que $\pi_t : C([0,T],\mathbb{R}) \to \mathbb{R}$ es continua.

En $(C([0,T],\mathbb{R}),\|\cdot\|_{\infty})$ definimos la σ -álgebra de Kolmogorov,

$$\mathcal{K} = \sigma\left(\left\{\pi_t^{-1}(B) : t \in [0, T], B \in \mathcal{B}(\mathbb{R})\right\}\right)$$

- d) Probar que las bolas abiertas están en K.
- e) Probar que K = B.

Resolución.

a) Sea $U \subset E$ un conjunto abierto no vacío. Por ser (E,d) un espacio métrico separable, sabemos que existe $S = \{s_1, \ldots, s_n, \ldots\} \subset E$ numerable y denso tal que $U \cap S = V \neq \emptyset$. Podemos entonces escribir $U = V \cup W$, donde W es tal que no posee ningún subconjunto abierto (de lo contrario, un tal subconjunto X satisfaría $X \cap S \neq \emptyset$, de manera que $X \subset V$). Por ser U abierto, para cada $v = s_i \in V$, se tiene que existe $\epsilon_i > 0$ tal que $B_{\epsilon_i}(s_i) \subset U$. Sea $\epsilon = \inf\{\epsilon_n : n \in \mathbb{N}\}$. Dado $w \in W$, tenemos como antes que existe $\delta > 0$ tal que $B_{\delta}(w) \subset U$, de manera que debe existir por lo menos un $s_j \in V$ en $B_{\delta}(w)$. De no ser así, $B_{\delta}(w) \subset W$, pero ya argumentamos que W no puede tener subconjuntos abiertos. Sea $\beta = \min(\delta, \epsilon)$. Luego, por este mismo razonamiento, $s_j \in B_{\beta}(w)$ para cierto $j \in \mathbb{N}$, y $d(s_j, w) = d(w, s_j) < \beta \le \epsilon \le \epsilon_j \Rightarrow w \in B_{\epsilon_j}(s_j)$. Esto sugiere tomar en consideración las bolas

$$B_n = \{x \in E : d(s_n, x) < \epsilon_n\}$$

para cada $n \in \mathbb{N}$. Por todo lo anterior, se observa que $U = \bigcup B_n^{-1}$.

¹Se ve claramente que mi argumento no utiliza la hipótesis de que (E,d) es completo. ¿Es realmente necesaria?

b) Para probar esto, comencemos por extender ligeramente la definición de las bolas abiertas del ítem anterior:

$$B_n = \{x \in E : d(s_n, x) < \epsilon_n\},\$$

 $\epsilon_n = \sup \{d(s_n, w) : w \in U \setminus S \land s_n \in B_{\epsilon}(w), \epsilon > 0, U \subset E \text{ abierto}\} \cup \{\epsilon_0\}$

De esta forma, cada ϵ_n predica sobre todos los conjuntos abiertos, de lo que se desprende que todo abierto U=.

Ejercicio. (1.6 - Mörters y Peres). Sea $\{B(t): t \geq 0\}$ un movimiento browniano standard. Probar que, casi seguramente,

$$\lim_{t \to \infty} \frac{B(t)}{t} = 0$$

Resolución. Sea $X_i = B(t-i+1) - B(t-i)$, $1 \le i \le \lfloor t \rfloor$. Por ser B un movimiento browniano, se tiene que $X_1, \ldots, X_{\lfloor t \rfloor}$ son variables aleatorias iid con $X_i \sim N(0, (t-i+1) - (t-i)) = N(0,1)$. Luego, valiéndonos de la Ley de los Grandes Números,

$$\frac{1}{\lfloor t \rfloor} \sum_{i=1}^{\lfloor t \rfloor} X_i \xrightarrow{\text{c.s.}} E[X_i] = 0$$

cuando $t \to \infty$. A partir de la definición de X_i , tenemos:

$$\frac{1}{\lfloor t \rfloor} \sum_{i=1}^{\lfloor t \rfloor} X_i = \frac{1}{\lfloor t \rfloor} \sum_{i=1}^{\lfloor t \rfloor} B(t-i+1) - B(t-i)$$

$$= \frac{1}{\lfloor t \rfloor} \left(B(t) - B(r) \right)$$

$$= \frac{B(t)}{\lfloor t \rfloor} - \frac{B(r)}{\lfloor t \rfloor}$$

$$\xrightarrow{\text{c.s.}} 0$$

con $r=t-\lfloor t \rfloor$. Pero $0 \le r < 1$, con lo cual $\frac{B(r)}{\lfloor t \rfloor} \xrightarrow[t \to \infty]{} 0$. De esto se desprende que necesariamente $\frac{B(t)}{\lfloor t \rfloor} \xrightarrow[t \to \infty]{} 0$. A su vez, esto implica que $\left| \frac{B(t)}{\lfloor t \rfloor} \right| = \frac{|B(t)|}{\lfloor t \rfloor} \xrightarrow[t \to \infty]{} 0$. Luego,

$$0 \le \frac{|B(t)|}{t} \le \frac{|B(t)|}{|t|} \xrightarrow[t \to \infty]{} 0$$

Se ve entonces que $\left|\frac{B(t)}{t}\right| = \frac{|B(t)|}{t} \xrightarrow[t \to \infty]{} 0$, de lo que se puede concluir que $\frac{B(t)}{t} \xrightarrow[t \to \infty]{} 0$, que es lo que se prentedía demostrar².

 $^{2 \}operatorname{Dada} f: \mathbb{R} \to \mathbb{R} \text{ tal que } |f(x)| \underset{x \to \infty}{\longrightarrow} 0, -|f(x)| \le f(x) \le |f(x)| \Rightarrow f(x) \underset{x \to \infty}{\longrightarrow} 0.$