

TRABAJO FIN DE GRADO

Grado en Ingeniería Informática

Estudio comparativo de métodos de aprendizaje automático en la detección de malware

Autor: Manuel Jesús Mariscal Romero

Directores: D. David Guijo Rubio

D. Víctor Manuel Vargas Yun

agosto, 2025

Resumen

rellenar

Palabras clave: Palabra-1, Palabra-2, Palabra-3, Palabra-4.

Resumen

Abstract

rellenar

Keywords: Palabra-1, Palabra-2, Palabra-3, Palabra-4.

Abstract Abstract

Índice general

Re	esumen		III
Al	bstract		\mathbf{V}
Ín	ndice de figuras		XI
Ín	ndice de tablas	2	XIII
Li	ista de Acrónimos		XV
1.	Introducción		1
	Estado de la técnica 2.1. Aprendizaje automático 2.1.1. Balanceo de datos 2.1.2. Reducción de la dimensionalidad 2.1.3. Métricas de evaluación 2.2. Ciberseguridad 2.2.1. Malware Formunación del problema		3 3 3 5
	-		
4.	Objetivos		9
5.	Metodología de trabajo 5.1. Enfoque metodológico 5.2. Procedimiento seguido 5.3. Técnicas y herramientas empleadas 5.4. Criterios de selección de datos y modelos. 5.4.1. Selección del conjunto de datos 5.4.2. Selección de los modelos 5.5. Procedimientos de evaluación y validación.		11 11 11 11 12

6.	Des	arrollo	y experimentación	13
	6.1.	Model	os utilizados	. 13
	6.2.	Proces	samiento del conjunto de datos	. 14
		6.2.1.	Clasificación multiclase	. 14
		6.2.2.	Reducción del conjunto de datos	
	6.3.	Prepar	ración del entorno	. 21
		6.3.1.	Herramientas y librerías	. 21
		6.3.2.	Hardware	. 22
		6.3.3.	Métricas de evaluación	. 23
		6.3.4.	Protocolo de experimentación y validación	. 23
	6.4.	Impler	mentación y pruebas	. 23
		6.4.1.	Estructura del código	. 23
		6.4.2.	Procedimiento de entrenamiento y evaluación	. 23
		6.4.3.	Preparación y uso de los conjuntos de datos	. 23
		6.4.4.	Métricas y análisis de resultados	. 23
7.	Res	ultado	s y discusión	25
	7.1.		cación binaria	. 25
		7.1.1.	Árboles de decisión	
		7.1.2.	Random forest	
		7.1.3.	K-NN	
		7.1.4.	Máquinas de vectores de soporte	
		7.1.5.	Ridge	
		7.1.6.	Redes neuronales: Perceptrón multicapa	. 27
		7.1.7.	Light Gradient Boosting Machine	. 27
	7.2.	Clasifi	cación multiclase	. 27
		7.2.1.	Árboles de decisión	. 27
		7.2.2.	Random forest	
		7.2.3.	K-NN	. 27
		7.2.4.	Máquinas de vectores de soporte	
		7.2.5.	Ridge	
		7.2.6.	Redes neuronales: Perceptrón multicapa	
		7.2.7.	Light Gradient Boosting Machine	. 28
8.	Con	clusio	nes y recomendaciones	35
Bi	hliog	rafía		37

/				
INDI	CE	CFN	IFP	ΛT

ÍNDICE GENERAL

Α.	Código del programa	39
	A.1. Codificación de las categorías malware	39
	A.2. Reducción de la dimensionalidad	40
	A.3. Pruebas para la elección del conjunto de datos	41

Índice de figuras

0 1	3.6 1	c · /	1	1 'C '/	1		10
b. L.	- Matriz de	confusion	para la	clasificación	multicase	 	- 19

Índice de tablas

6.1.	Codificación de las clases malware	15
6.2.	Clasificación binaria con PCA	17
6.3.	Clasificación binaria con PCA y Undersampling	17
6.4.	Clasificación multiclase con <i>PCA</i>	17
6.5.	Nueva codificación de las clases malware	21
6.6.	Clasificación multiclase con la nueva codificación	21
7.1.	Clasificación binaria con DecisionTreeClassifier	26
7.2.	Clasificación binaria con $RandomForestClassifier$	27
7.3.	Clasificación binara con KNeighborscClassifier	28
7.4.	Clasificación binaria con SVC	29
7.5.	Clasificación binaria con RidgeClassifier	29
7.6.	Clasificación binaria con $MLPClassifier$	30
7.7.	Clasificación binaria con $LGBMClassifier$	30
7.8.	Clasificación multiclase con $Decision Tree Classifier$	31
7.9.	Clasificación multiclase con $RandomForestClassifier$	31
7.10.	Clasificación multiclase con $KNeighborsClasiffier$	32
7.11.	Clasificación multiclase con $Ridge Classifier$	32
7.12.	Clasificación multiclase con $MLPClassifier$	33
7.13.	Clasificación multiclase con <i>LGBMClassifier</i>	33

Introducción

Estado de la técnica

2.1. Aprendizaje automático

- 2.1.1. Balanceo de datos
- 2.1.1.1. Sobremuestreo
- 2.1.1.2. Submuestreo
- 2.1.2. Reducción de la dimensionalidad
- 2.1.2.1. Análisis de componentes principales
- 2.1.2.2. Análisis factorial
- 2.1.2.3. Descomposición en valores singulares

2.1.3. Métricas de evaluación

La elección de métricas de evaluación adecuadas es esencial para valorar de forma precisa el rendimiento de los modelos. No todas las métricas ofrecen la misma información. En esta sección se revisan las métricas más empleadas en la literatura especializada, destacando su utilidad, limitaciones y el tipo de información que aportan para la comparación de modelos.

2.1.3.1. Exactitud

La exactitud o *Accuracy* se corresponde con el porcentaje de aciertos que se han producido, es decir, los patrones clasificados correctamente respecto al total. Se calcula como la suma de verdaderos positivos (TP) y verdaderos negativos (TN) respecto al número total de patrones de entrada (N) [1].

$$CCR = \frac{TP + TN}{N} \tag{2.1}$$

2.1.3.2. Precisión

La precisión es una métrica que evalúa la proporción de patrones clasificados como positivas que realmente pertenecen a la clase positiva, es decir, mide como de confiable es el modelo cuando predice un positivo. Es muy relevante cuando el coste de clasificar erróneamente un negativo como positivo es alto.

$$Precisión = \frac{TP}{TP + FP}$$
 (2.2)

Donde TP representa el número de verdaderos positivos, y FP corresponde al número de falsos positivos.

2.1.3.3. Sensibilidad

También conocida como exhaustividad o recall en inglés, mide la capacidad del modelo para detectar correctamente los positivos de un conjunto de datos. Como se muestra en la ecuación 2.3, se calcula como la proporción entre el número de verdaderos positivos (TP) y la suma de verdaderos positivos y falsos negativos (FN) [1]. Un valor alto de sensibilidad indica que se han obtenido pocos falsos negativos.

Sensibilidad =
$$\frac{TP}{TP + FN}$$
 (2.3)

2.1.3.4. Mínima sensibilidad

La mínima sensibilidad mide cómo de bien se clasifica la clase peor clasificada. Es útil en clasificación multiclase o con conjuntos de datos desbalanceados, ya que permite identificar si existe alguna clase que el modelo no está clasificando correctamente. Un valor alto indica que el modelo mantiene un buen rendimiento en todas las clases, mientras que un valor bajo revela que, al menos, una de ellas presenta un bajo grado de acierto. Si el modelo se deja una clase sin clasificar, el valor será 0.

Sea S_i la sensibilidad de la clase i, con n el número total de clases, la mínima sensibilidad se calcula como se muestra en la ecuación 2.4.

$$MS = \min_{i \in \{1, 2, \dots, n\}} S_i \tag{2.4}$$

Donde la sensibilidad de cada clase S_i se obtiene mediante la ecuación 2.3

2.1.3.5. Valor-F

El valor-F o *F1-score* mide el equilibrio entre la precisión y la sensibilidad [1]. Se calcula como la media armónica entre ambas, lo que penaliza de forma más severa los valores extremos y proporciona una medida equilibrada del rendimiento del modelo. Es especialmente útil en problemas con clases desbalanceadas, ya que evita que un alto rendimiento en una sola métrica distorsione la evaluación global.

2.2. Ciberseguridad

El MS es la mínima sensibilidad calculada por clases. Es decir, mide cómo de bien se clasifica la clase peor clasificada. Es interesante porque un valor alto indica que el modelo es capaz de clasificar correctamente todas las clases. En el momento en el que haya una clase que se clasifique mal, el valor será bajo. Si por ejemplo el modelo se deja una clase sin clasificar, el valor sería 0.

2.2.1. Malware

Formunación del problema

Objetivos

Debe de ser igual a los mencionados en el anteproyecto.

Describir el objetivo principal y los objetivos especificos llevados a cabo para conseguir el objetivo principal.

Metodología de trabajo

- 5.1. Enfoque metodológico
- 5.2. Procedimiento seguido
- 5.3. Técnicas y herramientas empleadas
- 5.4. Criterios de selección de datos y modelos.

5.4.1. Selección del conjunto de datos

En lo que a malware se refiere, BODMAS [2] es uno de los conjuntos de datos más completos en la actualidad, con la ventaja para este proyecto de ya estar procesado y tener una amplia bibliografía. Otra opción interesante puede ser VirusShare [3], ya que cuenta con más de 99 millones de muestras de malware actualizadas pero tiene varios inconvenientes para este proyecto. El primero es que no incluye muestras de software no malicioso y el segundo que necesita un procesamiento previo para extraer las características. Todo esto conlleva un aumento considerable para la realización del proyecto. Otra de las opciones estudiadas ha sido theZoo [4]. En cuanto a este repositorio hemos podido observar que tiene los mismos inconvenientes que VirusShare y no tiene sus ventajas. Por último tenemos Microsoft Malware Classification [5]. En este caso tenemos un conjunto de datos muy amplio con casi medio terabyte, pero además de los inconvenientes ya comentados en los anteriores conjuntos, solo incluye malware que afecta a equipos Windows, lo que limitaría considerablemente el alcance del estudio.

Teniendo en cuenta todo lo comentado hasta ahora sobre los distintos conjuntos

CAPÍTULO 5. METODOLOGÍA DE TRABAJO

de datos considerados, hemos decidido usar BODMAS, ya que es el que mejor se adapta a las necesidades del estudio

5.4.2. Selección de los modelos

5.5. Procedimientos de evaluación y validación.

Desarrollo y experimentación

En esta fase se lleva a cabo la implementación práctica del estudio, haciendo uso de los modelos de aprendizaje automático implementados principalmente en la librería *Scikit-Learn* de *python*. Para ello se realiza un procesamiento de los datos, necesario para obtener un conjunto reducido y otro apto para la clasificación multiclase. Además, se configuran los entornos necesarios para su entrenamiento y evaluación, se establecen las métricas de rendimiento, los procedimientos de prueba y los escenarios de experimentación que permitirán obtener resultados consistentes y comparables. El objetivo es verificar, mediante pruebas controladas, la efectividad de cada método en la detección de *malware*.

La parte experimental se aborda desde dos perspectivas complementarias. En primer lugar, se evalúa la capacidad de los modelos para la detección de *malware* mediante pruebas de clasificación binaria, determinando si un patrón corresponde a software malicioso o legítimo. En segundo lugar, se analiza la viabilidad de realizar una clasificación multinivel sobre esos mismos patrones, identificando el tipo específico de *malware* al que pertenecen, lo que permite un análisis más detallado y aplicable a entornos de ciberseguridad avanzada.

6.1. Modelos utilizados

En este proyecto se han empleado diversos algoritmos de aprendizaje automático, seleccionados en función de los criterios mencionados en el capitulo 5 y con el objetivo de representar diferentes enfoques.

Se han utilizado los siguientes modelos implementados en scikit-learn y LightGBM:

- DecisionTreeClassifier
- RandomForestClassifier

- \blacksquare KNeighborsClassifier
- RidgeClassifier
- MLPClassifier
- *SVC*
- LGBMClassifier (de LightGBM)

Todos los modelos se han ajustado y evaluado utilizando *GridSearchCV*, lo que permite explorar sistemáticamente distintas combinaciones de hiperparámetros y asegurar comparaciones consistentes entre los distintos métodos de clasificación. La descripción teórica de estos modelos se presenta en el capítulo 2.

6.2. Procesamiento del conjunto de datos

Dadas las limitaciones hardware y la cantidad de datos, aproximadamente 135000 patrones y 2400 atributos por cada patrón, es necesario hacer un procesamiento previo del conjunto de datos. Para ello hemos tenido en cuenta varios enfoques. Por un lado, BODMAS nos permite hacer una distinción entre clasificación binaria y clasificación multiclase, pero para ello es necesario reordenar los datos, ya que se encuentran distribuidos en varios archivos. Por otro lado, es necesario reducir la cantidad de datos. A continuación veremos los distintos enfoques.

6.2.1. Clasificación multiclase

El conjunto de datos seleccionado se divide en varios archivos:

- bodmas.npz: incluye la matriz de patrones de entrada en formato de matriz de python y la matriz de salidas deseadas.
- bodmas_metadata.csv: la información relevante para nuestro problema es la columna sha que contiene la función hash de todo el conjunto de datos.
- bodmas_malware_category.csv: contiene la función hash del malware y la categoría a la que pertenece.

Dado que las distintas categorías se encuentran en formato texto, es necesario codificarlas para poder trabajar con ellas. La codificación elegida ha sido la representada en la tabla 6.1.

Codificación N^{o} de patrones Categoría 77142 benign 0 29972 trojan1 2 16697 wormbackdoor3 7331 downloader4 1031 information stealer5 448 6 715 dropper7 821 ransomware 8 rootkit3 9 20 cryptominer10 29 puaexploit 11 12 12 192 virus13 16 p2p-worm 14 trojan-gamethief 6

Tabla 6.1: Codificación de las clases malware.

Para obtener una nueva matriz de salidas deseadas que incluya los tipos de malware, una vez cargados los datos en sus correspondiente variables de python, usamos la función merge [6] perteneciente a la clase pandas. DataFrame para incluir en metadata los datos de mw_category['category'] en las entradas donde coincide la columna sha.

Antes de codificar necesitamos darle una etiqueta a los datos vacíos, los cuales significan que esa muestra es benigna. Para ello usamos la función pandas. DataFrame. fillna [7], que nos permite completar datos vacíos de distintas formas. Para nuestro caso usamos la etiqueta benign. También eliminamos las columnas que no vamos a necesitar, dejando solo la categoría a la que pertenece cada muestra.

Ahora podemos codificar los datos usando la función pandas. Data Frame. map [8]. Este método aplica una función que acepta y devuelve un valor escalar a cada elemento del Data Frame, lo que permite asignar un valor numérico a cada clase.

El código utilizado para esta tarea se encuentra en el Anexo A.1.

6.2.2. Reducción del conjunto de datos

Reducir el número de datos con el que vamos a trabajar tiene el objetivo de principal de disminuir el tiempo que los algoritmos van a necesitar para procesar la

información sin perjudicar la integridad de los datos, ya que los resultados del estudio podrían verse afectados y llevar a unas conclusiones erróneas. Esta tarea se puede enfrentar desde dos planteamientos distintos: condensar el número de patrones o el número de características. Ambos planteamientos se han estudiado de forma teórica en esta memoria en las secciones 2.1.1 y 2.1.2 respectivamente. Las técnicas elegidas son undersampling por simplicidad y PCA porque según el estudio A Low Complexity ML-Based Methods for Malware Classification [9] se obtienen unos resultados algo más precisos que con otros métodos.

El código utilizado se encuentra en el anexo A.2. A continuación se explicarán los pasos seguidos.

6.2.2.1. Número de patrones

Como ya hemos estudiado en la sección 2.1.1.2, el submuestreo o undersampling en inglés, es una técnica para abordar el desbalance de clases en un conjunto de datos, especialmente cuando una de las clases tiene muchos más patrones que la otra. En nuestro caso, el desbalance no es demasiado grande ya que BODMAS contiene 57293 muestras malware y 77142 muestras benignas.

El método Random Under Sampler [10] de la librería Imbalanced learn nos permite varias formas de actuar, siendo la que nos interesa para este estudio la que nos permite elegir manualmente el número de patrones de cada clase. Hemos elegido una cantidad de 15000 patrones en por clase.

6.2.2.2. Número de características

Este método, también conocido como reducción de la dimensionalidad, consiste en reducir el número de variables de las que consta el problema. Para aplicar el método matemático-estadístico de análisis de componentes principales, PCA por sus siglas en inglés, usamos la clase PCA [11] perteneciente a sklearn.decomposition. Esta clase nos permite entrenar el modelo y transformar el conjunto de datos tanto para el conjunto de entrenamiento como para el de test. Para ello será necesario separar previamente los datos, ya que BODMAS no cuenta con esta división.

6.2.2.3. Elección final del nuevo conjunto de datos

Para poder decidir como será el conjunto de entrenamiento final se han hecho distintos conjuntos de datos sobre los que se probarán algunos algoritmos. Los conjuntos son los siguientes:

Clasificación binaria con PCA.

CAPÍTULO 6. DESARROLLO Y EXPERIMENTACIÓN

- Clasificación binaria con PCA y Undersampling con 15000 patrones por clase.
- Clasificación multiclase con *PCA*.

Los resultados obtenidos se reflejan en las tablas 6.2, 6.3 y 6.4 respectivamente.

Tabla 6.2: Clasificación binaria con PCA.

Clasificador	Tiempo (s)	Entrenamiento			Test			
		Acc	MS	F1	Acc	MS	F1	
Decission tree	0.885	1.000	1.000	1.000	0.972	0.971	1.000	
Random forest	25.91	1.000	1.000	1.000	0.984	0.976	1.000	
K-NN	0.095	0.973	0.970	1.000	0.963	0.963	1.000	

Tabla 6.3: Clasificación binaria con PCA y Undersampling.

Clasificador	Tiempo (s)	Entrenamiento			Test		
		Acc	MS	F1	Acc	MS	F1
Decission tree	0.184	1.000	1.000	1.000	0.945	0.936	1.000
Random forest	4.926	1.000	1.000	1.000	0.963	0.957	1.000
K-NN	0.016	0.954	0.948	1.000	0.938	0.931	1.000

Tabla 6.4: Clasificación multiclase con PCA

Clasificador	Tiempo (s)	Entrenamiento			Test		
		Acc	MS	F1	Acc	MS	F1
Decission tree	1.059	0.999	0.895	0.999	0.939	0.000	0.976
Random forest	30.04	0.999	0.895	0.999	0.955	0.000	0.981
K-NN	0.088	0.951	0.000	0.981	0.936	0.000	0.975

En cuanto a la clasificación binaria, hemos decidido usar el conjunto de datos en el que se ha aplicado tanto *PCA* como *undersampling*, ya que, aunque los resultados son similares en ambos conjuntos, el tiempo es considerablemente más bajo y dadas las limitaciones del equipo disponible puede ser beneficioso a la hora de probar algoritmos más complejos.

Para la clasificación multiclase hay varios métodos que podemos usar para reducir el tamaño del conjunto de datos, como el *clustering* o variantes del método de *undersampling* ya utilizado en clasificación binaria. A pesar de ello, estos métodos tienen una mayor complejidad de aplicación y la reducción de las dimensiones no es el

CAPÍTULO 6. DESARROLLO Y EXPERIMENTACIÓN

objeto de este estudio. Por otro lado, esta decisión puede suponer algunos problemas al usar técnicas como GridSearchCV o la validación cruzada, ya que incrementan considerablemente el tiempo de entrenamiento.

También en referencia a la clasificación multiclase, podemos ver en la tabla 6.4 que la métrica de mínima sensibilidad es 0 para todos los casos de test. Como ya se ha explicado en esta memoria, mide cómo de bien se clasifica la clase peor clasificada y un valor de 0 indica que alguna de las clases no se ha clasificado bien. Como podemos ver en la matriz de confusión representada en la imagen 6.1, algunas de las clases con menos patrones tienen dificultades para obtener una buena clasificación debido a la falta de información en el entrenamiento. Algunos clasificadores tienen la opción de asignar un peso a los patrones de cada clase inversamente proporcional al número de patrones de la clase, de manera que todas las clases tengan el mismo peso en el entrenamiento, pero no se consiguen mejores resultados.

Figura 6.1: Matriz de confusión para la clasificación multicase

CAPÍTULO 6. DESARROLLO Y EXPERIMENTACIÓN

Según el estudio Malware Behavior Analysis: Learning and Understanding Current Malware Threats [12], algunos de los tipos de malware que tenemos con menos patrones, se pueden agrupar en algunas de las clases más representadas de nuestro conjunto de datos. En este estudio se comenta que p2p-worm añade un comportamiento específico al comportamiento de un gusano, generando problemas de red y de pérdida de datos. Algo similar pasa con Gamethief trojan. De esta forma podemos agrupar estos patrones a sus respectivas clases similares sin perder efectividad a la hora de clasificar y además eliminar así dos de las clases que nos pueden dar problemas por falta de información.

Por otro lado, se han planteado dos formas de solucionar este problema, aunque ambas presentan inconvenientes:

- Eliminar las clases menos representadas. Tiene el riesgo de no reconocer un nuevo patrón si es de un tipo distinto de *malware*.
- Agruparlas en una nueva clase que represente varios tipos de malware. En este caso estamos suponiendo que los patrones agrupados tienen unas características similares.

Finalmente hemos decidido agrupar las clases con menos de 30 patrones en una nueva categoría otros. Por número de patrones sería recomendable agrupar también la clase virus, pero podría tener demasiado peso en la categoría otros y hemos considerado que es lo suficientemente relevante como para estudiarla por separado. En la tabla 6.6 podemos ver que, aunque mejoramos la mínima sensibilidad, no se producen unas mejoras significativas en la precisión de clasificación pero dada la alta precisión presentada por los modelos y la mejora en la mínima sensibilidad puede considerarse una buena actualización. Podemos ver la nueva codificación en la tabla 6.5

Por último, se han considerado otras opciones para mejorar la clasificación de las clases minoritarias, pero podrían exceder la complejidad de este proyecto:

- Utilizar métodos de sobremuestreo, ya mencionados en la sección 2.1.1.1, que consisten en aumentar la cantidad de patrones de estas clases de forma sintética.
- Utilizar métodos jerárquicos que primero clasifiquen usando la categoría otros, para después dividirla en sus diferentes clases y entrenar un modelo específico.

Codificación N^{o} de patrones Categoría 77142 benign 0 29978 trojan1 2 16713 wormbackdoor3 7331 downloader4 1031 information stealer5 448 6 715 dropper7 ransomware 821 8 virus192 9 64 otros

Tabla 6.5: Nueva codificación de las clases malware.

Tabla 6.6: Clasificación multiclase con la nueva codificación.

Clasificador	Tiempo (s)	Entrenamiento			Test		
		Acc	MS	F1	Acc	MS	F1
Decission tree	1.220	0.998	0.992	0.998	0.938	0.670	0.975
Random forest	31.201	0.998	0.993	0.998	0.953	0.670	0.980
K-NN	0.083	0.951	0.431	0.980	0.936	0.333	0.974

6.3. Preparación del entorno

En esta sección se describe el entorno de trabajo utilizado por el alumno para la implementación de los modelos y la realización de las pruebas. El entorno se debe preparar de forma correcta, ya que puede afectar a la ejecución de los algoritmos y a la reproducibilidad de los experimentos. A continuación, se explican elementos del entorno como el lenguaje de programación, las librerías y las características del equipo.

6.3.1. Herramientas y librerías

El desarrollo y la experimentación de este proyecto se han llevado a cabo empleando un conjunto de herramientas y librerías muy utilizadas en la ciencia de datos. *Python* ha sido el lenguaje de programación de este trabajo, ya que ofrece una fácil implementación de modelos, manipulación de datos y visualización de resultados. Su popularidad en se debe a su sintaxis sencilla, escalabilidad y amplia variedad de herramientas y bibliotecas [13].

CAPÍTULO 6. DESARROLLO Y EXPERIMENTACIÓN

En este proyecto se ha utilizado la versión 3.12 de Python, elegida principalmente por su compatibilidad con las librerías empleadas, en particular, con GridSearchCV, que aprovechan la paralelización de procesos para mejorar el rendimiento. El problema encontrado es que los hilos no se cierran correctamente, es un comportamiento típico asociado a lo que en programación concurrente se denomina $thread\ leakage$ o hilos huérfanos. provoca que la memoria $RAM\ y$ la $CPU\ sigan\ siendo\ consumidas\ incluso\ después de que la ejecución haya terminado. En teoría, este problema no afecta al rendimiento de los clasificadores, pero puede afectar al tiempo de ejecución.$

Las librerías utilizadas para construir un modelo y analizar los datos son *Scikitlearn*, *DLOrdinal*, *Matplotlib*, *NumPy*, *Pandas*, *LightGBM* y *Seaborn*.

6.3.1.1. Scikit-learn

Scikit-learn es un paquete de código abierto en Python que ofrece una gran variedad de métodos de aprendizaje automático rápidos y eficientes, gracias a que usan bibliotecas compiladas en lenguajes como C++, C o Fortran. Tiene detrás una comunidad activa que mantiene la documentación, corrige errores y asegura la calidad. Aunque no incluye todos los algoritmos usados en este proyecto, es una herramienta muy recomendable si necesitamos: transformación de datos, aprendizaje supervisado o evaluación de modelos [14].

6.3.1.2. DLOrdinal

dlordinal [15]

- 6.3.1.3. Matplotlib
- 6.3.1.4. NumPy
- 6.3.1.5. Pandas
- 6.3.1.6. Light GBM
- 6.3.1.7. Seaborn

6.3.2. Hardware

El entrenamiento y evaluación de los modelos se ha realizado en el equipo del estudiante con las siguientes características: procesador *Intel Core i7-4712MQ*, tarjeta gráfica *NVIDIA GeForce 920M*, 16 GB de *RAM* DDR3 y almacenamiento compuesto por un *SSD Crucial MX500* de 250 GB y un *HDD* de 1 TB. Este hardware permite la paralelización de los algoritmos en múltiples núcleos del procesador, lo

que reduce significativamente los tiempos de entrenamiento, pero se encuentra muy limitado respecto al conjunto utilizado para clasificación multiclase y modelos más costosos como puede ser SVM.

6.3.3. Métricas de evaluación

Para evaluar la efectividad de los modelos implementados, se han utilizado las siguientes métricas, cuya descripción teórica se encuentra en la sección 2.1.3:

- Accuracy: proporción de predicciones correctas sobre el total de patrones.
- Mínima Sensibilidad: sensibilidad de la clase peor clasificada.
- *F1-score*: media armónica entre precisión y sensibilidad.

6.3.4. Protocolo de experimentación y validación

texto

6.4. Implementación y pruebas

- 6.4.1. Estructura del código
- 6.4.2. Procedimiento de entrenamiento y evaluación
- 6.4.3. Preparación y uso de los conjuntos de datos
- 6.4.4. Métricas y análisis de resultados

Capítulo 7

Resultados y discusión

7.1. Clasificación binaria

En esta fase se lleva a cabo la implementación práctica del estudio, haciendo uso de los modelos de aprendizaje automático implementados principalmente en la librería *Scikit-Learn* de *python* y descritos en el capítulo 5. Para ello se configuran los entornos necesarios para su entrenamiento y evaluación, se establecen las métricas de rendimiento, los procedimientos de prueba y los escenarios de experimentación que permitirán obtener resultados consistentes y comparables. El objetivo es verificar, mediante pruebas controladas, la efectividad de cada método en la detección de *malware*.

La parte experimental de este proyecto se estudiará desde dos enfoques distintos. Por un lado se evaluarán los modelos seleccionados en la detección de *malware*, es decir, se realizarán pruebas de clasificación binaria donde se estudiará sin un un patrón corresponde a un programa malicioso o no. Por otro, se estudiará si, para estos mismos patrones, es posible realizar una clasificación más exhaustiva y reconocer con que tipo de *malware* se corresponde cada patrón.

CAPÍTULO 7. RESULTADOS Y DISCUSIÓN

Tabla 7.1: Clasificación binaria con DecisionTreeClassifier

	Ent	renamie	ento	Test			
Estado aleatorio	Acc	MS	F1	Acc	MS	F1	
0	1.000	1.000	1.000	0.951	0.942	1.000	
1	1.000	1.000	1.000	0.944	0.935	1.000	
2	1.000	1.000	1.000	0.942	0.935	1.000	
3	1.000	1.000	1.000	0.948	0.938	1.000	
4	1.000	1.000	1.000	0.953	0.946	1.000	
5	0.998	0.997	1.000	0.947	0.936	1.000	
6	0.998	0.997	1.000	0.947	0.941	1.000	
7	1.000	1.000	1.000	0.949	0.946	1.000	
8	0.999	0.998	1.000	0.948	0.937	1.000	
9	1.000	1.000	1.000	0.950	0.940	1.000	
Mean	0.999	0.999	1.000	0.948	0.940	1.000	
STD	0.001	0.001	0.000	0.003	0.004	0.000	

Tabla 7.2: Clasificación binaria con RandomForestClassifier

	Ent	renamie	ento	Test		
Estado aleatorio	Acc	MS	F1	Acc	MS	F1
0	0.980	0.928	0.989	0.939	0.524	0.972
1	0.980	0.929	0.990	0.939	0.500	0.973
2	0.980	0.927	0.989	0.941	0.429	0.974
3	0.979	0.923	0.989	0.939	0.444	0.973
4	0.982	0.931	0.990	0.939	0.500	0.974
5	0.980	0.929	0.990	0.937	0.609	0.971
6	0.978	0.920	0.988	0.938	0.550	0.971
7	0.980	0.929	0.990	0.939	0.562	0.972
8	0.982	0.934	0.991	0.938	0.489	0.971
9	0.989	0.956	0.992	0.936	0.400	0.972
Mean	0.981	0.931	0.990	0.939	0.501	0.972
STD	0.003	0.010	0.001	0.001	0.064	0.001

- 7.1.1. Árboles de decisión
- 7.1.2. Random forest
- 7.1.3. K-NN
- 7.1.4. Máquinas de vectores de soporte
- 7.1.5. Ridge
- 7.1.6. Redes neuronales: Perceptrón multicapa
- 7.1.7. Light Gradient Boosting Machine
- 7.2. Clasificación multiclase
- 7.2.1. Árboles de decisión
- 7.2.2. Random forest
- 7.2.3. K-NN
- 7.2.4. Máquinas de vectores de soporte

En este caso, el proceso de entrenamiento presentó una mayor complejidad y dificultad para obtener resultados comparables con los de otros modelos evaluados,

Tabla 7.3: Clasificación binara con KNeighborsc Classifier

	Ent	renamie	ento	Test		
Estado aleatorio	Acc	MS	F1	Acc	MS	F1
0	1.000	1.000	1.000	0.947	0.935	1.000
1	1.000	1.000	1.000	0.949	0.938	1.000
2	1.000	1.000	1.000	0.939	0.926	1.000
3	1.000	1.000	1.000	0.949	0.937	1.000
4	1.000	1.000	1.000	0.949	0.936	1.000
5	1.000	1.000	1.000	0.946	0.932	1.000
6	1.000	1.000	1.000	0.946	0.931	1.000
7	1.000	1.000	1.000	0.944	0.934	1.000
8	1.000	1.000	1.000	0.947	0.935	1.000
9	1.000	1.000	1.000	0.949	0.940	1.000
Mean	1.000	1.000	1.000	0.947	0.934	1.000
STD	0.000	0.000	0.000	0.003	0.004	0.000

principalmente debido a las limitaciones del equipo utilizado. El elevado tiempo requerido para el entrenamiento sin ajuste de parámetros, junto con los resultados poco satisfactorios obtenidos para las dos semillas empleadas —con una precisión aproximada del 20 %—, motivaron la decisión de no continuar con las máquinas de vectores de soporte para la clasificación multiclase. No obstante, estos resultados no indican que el modelo sea inadecuado para el problema planteado, sino que tiene una mayor exigencia en cuanto a los recursos necesarios para su entrenamiento.

- 7.2.5. Ridge
- 7.2.6. Redes neuronales: Perceptrón multicapa
- 7.2.7. Light Gradient Boosting Machine

Tabla 7.4: Clasificación binaria con SVC

	Ent	renamie	ento	Test		
Estado aleatorio	Acc	MS	F1	Acc	MS	F1
0	0.757	0.656	1.000	0.764	0.672	1.000
1	0.761	0.671	1.000	0.769	0.681	1.000
2	0.766	0.702	1.000	0.757	0.699	1.000
3	0.762	0.700	1.000	0.766	0.704	1.000
4	0.760	0.684	1.000	0.768	0.696	1.000
5	0.761	0.663	1.000	0.753	0.655	1.000
6	0.762	0.702	1.000	0.762	0.683	1.000
7	0.763	0.699	1.000	0.759	0.697	1.000
8	0.766	0.704	1.000	0.758	0.693	1.000
9	0.760	0.662	1.000	0.758	0.666	1.000
Mean	0.762	0.684	1.000	0.762	0.685	1.000
STD	0.003	0.020	0.000	0.005	0.016	0.000

Tabla 7.5: Clasificación binaria con Ridge Classifier

	Ent	renamie	ento	Test		
Estado aleatorio	Acc	MS	F1	Acc	MS	F1
0	0.649	0.549	1.000	0.648	0.530	1.000
1	0.645	0.558	1.000	0.655	0.569	1.000
2	0.652	0.573	1.000	0.645	0.564	1.000
3	0.649	0.567	1.000	0.653	0.570	1.000
4	0.651	0.573	1.000	0.651	0.573	1.000
5	0.647	0.562	1.000	0.648	0.558	1.000
6	0.648	0.556	1.000	0.650	0.573	1.000
7	0.651	0.571	1.000	0.650	0.573	1.000
8	0.651	0.564	1.000	0.639	0.551	1.000
9	0.650	0.563	1.000	0.645	0.551	1.000
Mean	0.649	0.564	1.000	0.648	0.561	1.000
STD	0.002	0.008	0.000	0.005	0.014	0.000

Tabla 7.6: Clasificación binaria con MLPClassifier

	Ent	renamie	ento	Test		
Estado aleatorio	Acc	MS	F1	Acc	MS	F1
0	0.783	0.771	1.000	0.789	0.778	1.000
1	0.788	0.736	1.000	0.792	0.740	1.000
2	0.788	0.750	1.000	0.782	0.739	1.000
3	0.733	0.605	1.000	0.737	0.609	1.000
4	0.767	0.759	1.000	0.769	0.760	1.000
5	0.790	0.736	1.000	0.783	0.730	1.000
6	0.777	0.772	1.000	0.783	0.781	1.000
7	0.774	0.767	1.000	0.770	0.763	1.000
8	0.778	0.704	1.000	0.772	0.705	1.000
9	0.788	0.762	1.000	0.784	0.751	1.000
Mean	0.776	0.736	1.000	0.776	0.736	1.000
STD	0.017	0.051	0.000	0.016	0.050	0.000

Tabla 7.7: Clasificación binaria con LGBMClassifier

	Ent	renamie	ento	Test			
Estado aleatorio	Acc	MS	F1	Acc	MS	F1	
0	0.984	0.981	1.000	0.953	0.952	1.000	
1	0.984	0.980	1.000	0.951	0.947	1.000	
2	0.985	0.983	1.000	0.949	0.946	1.000	
3	0.985	0.982	1.000	0.952	0.951	1.000	
4	0.984	0.981	1.000	0.950	0.945	1.000	
5	0.985	0.981	1.000	0.949	0.948	1.000	
6	0.985	0.982	1.000	0.952	0.949	1.000	
7	0.986	0.984	1.000	0.948	0.947	1.000	
8	0.984	0.979	1.000	0.953	0.952	1.000	
9	0.989	0.989	1.000	0.953	0.950	1.000	
Mean	0.985	0.982	1.000	0.951	0.949	1.000	
STD	0.002	0.003	0.000	0.002	0.002	0.000	

Tabla 7.8: Clasificación multiclase con Decision Tree Classifier

	Ent	renamie	ento	Test		
Estado aleatorio	Acc	MS	F1	Acc	MS	F1
0	0.980	0.928	0.989	0.939	0.524	0.972
1	0.980	0.929	0.990	0.939	0.500	0.973
2	0.980	0.927	0.989	0.941	0.429	0.974
3	0.979	0.923	0.989	0.939	0.444	0.973
4	0.982	0.931	0.990	0.939	0.500	0.974
5	0.980	0.929	0.990	0.937	0.609	0.971
6	0.978	0.920	0.988	0.938	0.550	0.971
7	0.980	0.929	0.990	0.939	0.562	0.972
8	0.982	0.934	0.991	0.938	0.489	0.971
9	0.989	0.956	0.992	0.936	0.400	0.972
Mean	0.981	0.931	0.990	0.939	0.501	0.972
STD	0.003	0.010	0.001	0.001	0.064	0.001

Tabla 7.9: Clasificación multiclase con RandomForestClassifier

	Ent	renamie	ento	Test		
Estado aleatorio	Acc	MS	F1	Acc	MS	F1
0	0.981	0.926	0.990	0.951	0.524	0.977
1	0.981	0.926	0.990	0.953	0.735	0.978
2	0.981	0.926	0.990	0.954	0.429	0.978
3	0.980	0.923	0.990	0.954	0.500	0.978
4	0.981	0.926	0.990	0.954	0.500	0.979
5	0.981	0.927	0.990	0.952	0.638	0.977
6	0.980	0.923	0.990	0.952	0.550	0.977
7	0.981	0.927	0.991	0.954	0.500	0.978
8	0.981	0.926	0.990	0.953	0.471	0.978
9	0.981	0.926	0.990	0.953	0.400	0.978
Mean	0.981	0.926	0.990	0.953	0.525	0.978
STD	0.000	0.002	0.000	0.001	0.098	0.001

Tabla 7.10: Clasificación multiclase con KNeighbors Clasiffier

	Ent	Entrenamiento			Test		
Estado aleatorio	Acc	MS	F1	Acc	MS	F1	
0	0.994	0.811	0.997	0.940	0.524	0.976	
1	0.994	0.794	0.996	0.943	0.500	0.977	
2	0.994	0.811	0.997	0.940	0.357	0.977	
3	0.994	0.815	0.996	0.942	0.389	0.978	
4	0.994	0.810	0.997	0.941	0.375	0.976	
5	0.994	0.807	0.996	0.940	0.435	0.976	
6	0.994	0.802	0.996	0.941	0.500	0.976	
7	0.994	0.849	0.996	0.940	0.500	0.976	
8	0.994	0.817	0.996	0.939	0.529	0.976	
9	0.994	0.834	0.996	0.940	0.400	0.976	
Mean	0.994	0.815	0.996	0.941	0.451	0.976	
STD	0.000	0.016	0.000	0.001	0.067	0.001	

Tabla 7.11: Clasificación multiclase con Ridge Classifier

	Ent	renamie	ento	Test		
Estado aleatorio	Acc	MS	F1	Acc	MS	F1
0	0.189	0.000	0.301	0.186	0.000	0.299
1	0.195	0.000	0.308	0.191	0.000	0.307
2	0.173	0.000	0.284	0.176	0.000	0.287
3	0.172	0.000	0.283	0.172	0.000	0.280
4	0.185	0.000	0.297	0.189	0.000	0.305
5	0.187	0.000	0.300	0.189	0.000	0.303
6	0.170	0.000	0.280	0.166	0.000	0.274
7	0.186	0.000	0.299	0.191	0.000	0.303
8	0.187	0.000	0.300	0.187	0.000	0.301
9	0.171	0.000	0.282	0.173	0.000	0.284
Mean	0.182	0.000	0.293	0.182	0.000	0.294
STD	0.009	0.000	0.010	0.009	0.000	0.012

Tabla 7.12: Clasificación multiclase con MLPClassifier

	Entrenamiento			Test			
Estado aleatorio	Acc	MS	F1	Acc	MS	F1	
0	0.725	0.000	0.885	0.722	0.000	0.883	
1	0.724	0.000	0.901	0.724	0.000	0.900	
2	0.724	0.000	0.885	0.723	0.000	0.885	
3	0.679	0.000	0.885	0.681	0.000	0.888	
4	0.730	0.000	0.904	0.735	0.000	0.902	
5	0.721	0.000	0.888	0.717	0.000	0.884	
6	0.724	0.000	0.889	0.723	0.000	0.888	
7	0.711	0.000	0.885	0.711	0.000	0.884	
8	0.719	0.000	0.910	0.720	0.000	0.910	
9	0.716	0.000	0.886	0.718	0.000	0.885	
Mean	0.717	0.000	0.892	0.718	0.000	0.891	
STD	0.014	0.000	0.009	0.014	0.000	0.009	

Tabla 7.13: Clasificación multiclase con LGBMClassifier

	Entrenamiento			Test			
Estado aleatorio	Acc	MS	F1	Acc	MS	F1	
0	0.938	0.821	0.965	0.916	0.600	0.953	
1	0.936	0.820	0.964	0.916	0.735	0.953	
2	0.890	0.749	0.941	0.884	0.357	0.936	
3	0.323	0.000	0.460	0.327	0.000	0.460	
4	0.888	0.747	0.940	0.880	0.500	0.936	
5	0.938	0.828	0.967	0.917	0.565	0.955	
6	0.893	0.758	0.943	0.881	0.550	0.935	
7	0.936	0.821	0.964	0.917	0.562	0.952	
8	0.891	0.750	0.941	0.880	0.588	0.933	
9	0.893	0.760	0.942	0.883	0.467	0.936	
Mean	0.853	0.706	0.903	0.840	0.492	0.895	
STD	0.187	0.250	0.156	0.181	0.198	0.153	

Capítulo 8

Conclusiones y recomendaciones

CAPÍTULO 8. CONCLUSIONES Y RECOMENDACIONES

Bibliografía

- [1] Joaquim Moré. Evaluación de la calidad de los sistemas de reconocimiento de sentimientos. URL https://openaccess.uoc.edu/server/api/core/bitstreams/6ff15a78-47c1-45ba-9475-442a6e8d19cc/content.
- [2] Bodmas. URL https://whyisyoung.github.io/BODMAS/.
- [3] Virusshare. URL https://virusshare.com/.
- [4] thezoo. URL https://github.com/ytisf/theZoo.
- [5] Microsoft malware classification challenge. URL https://www.kaggle.com/c/malware-classification/data.
- [6] pandas.dataframe.merge. URL https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.merge.html.
- [7] pandas.dataframe.fillna. URL https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.fillna.html.
- [8] pandas.dataframe.map. URL https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.map.html.
- [9] A low complexity ml-based methods for malware classification. URL https://www.researchgate.net/publication/383827671_A_Low_Complexity_ML-Based_Methods_for_Malware_Classification.
- [10] Randomundersampler. URL https://imbalanced-learn.org/stable/references/generated/imblearn.under_sampling.RandomUnderSampler. html.
- [11] sklearn.decomposition.pca. URL https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html.

- [12] Mohamad Zolkipli and Aman Jantan. Malware behavior analysis: Learning and understanding current malware threats. URL https://www.researchgate.net/publication/232657598_Malware_Behavior_Analysis_Learning_and_Understanding_Current_Malware_Threats.
- [13] Reema Patel Akshit J. Dhruv and Nishant Doshi. Python: The most advanced programming language for computer science applications. URL https://www.scitepress.org/Papers/2020/103079/103079.pdf.
- [14] J. Hao and T. K. Ho. Machine learning made easy: A review of scikit-learn package in python programming language. *Journal of Educational and Behavioral Statistics*, 44(3):348–361, 2019. doi: 10.3102/1076998619832248.
- [15] Francisco Bérchez-Moreno, Rafael Ayllón-Gavilán, Víctor M. Vargas, David Guijo-Rubio, César Hervás-Martínez, Juan C. Fernández, and Pedro A. Gutiérrez. dlordinal: A python package for deep ordinal classification. Neurocomputing, 622:129305, 2025. ISSN 0925-2312. doi: https://doi.org/10.1016/j.neucom. 2024.129305. URL https://www.sciencedirect.com/science/article/pii/S0925231224020769.

Anexo A

Código del programa

A.1. Codificación de las categorías malware

```
= load('bodmas/bodmas.npz')
metadata
           = pd.read_csv('bodmas/bodmas_metadata.csv')
mw_category = pd.read_csv('bodmas/bodmas_malware_category.csv')
# Incluimos los valores de 'category' en metadata cuando coinciden
  los valoes de 'sha'
mw_category = metadata.merge(mw_category, on = 'sha', how = 'left')
# Rellenamos los huecos como software benigno
mw_category['category'] = mw_category['category'].fillna('benign')
# Eliminamos todas las columnas excepto 'category'
mw_category = mw_category['category']
# Codificamos las categorias de malware
category = {
  'benign': 0, 'trojan': 1, 'worm': 2, 'backdoor': 3,
 'downloader': 4, 'informationstealer': 5, 'dropper': 6,
 'ransomware': 7, 'rootkit': 8, 'cryptominer': 9, 'pua': 10,
  'exploit': 11, 'virus': 12, 'p2p-worm': 13, 'trojan-gamethief':
mw_category = mw_category.map(category)
y = mw_category.to_numpy()
save('bodmas/bodmas_multiclass.npz', X, y)
```


A.2. Reducción de la dimensionalidad

```
def resampling(X, y, n_components = 5, size = 15000, u = False):
    if u:
        rus = RandomUnderSampler(sampling_strategy = {0: size, 1: size
        })
        # rus = RandomUnderSampler(sampling_strategy = 'majority')
        X, y = rus.fit_resample(X, y)

        X_train, X_test, y_train, y_test = train_test_split(
            X, y, test_size = 0.25, random_state = 1
        )

        pca = PCA(n_components)
        X_train = pca.fit_transform(X_train)
        X_test = pca.transform(X_test)

        return X_train, X_test, y_train, y_test
```


A.3. Pruebas para la elección del conjunto de datos

```
file = {'pca_binary', 'resampling_binary', 'pca_multiclass'}
clf = None
print('clasificador,dataset,n patrones,n caracteristicas,accuracy,
   tiempo')
for i in range(3):
 if i == 0: clf = DecisionTreeClassifier()
 elif i == 1: clf = RandomForestClassifier()
 else: clf = KNeighborsClassifier()
 for train_file in file:
   X_train, y_train = load('bodmas/' + train_file + '_train.npz')
   X_test, y_test = load('bodmas/' + train_file + '_test.npz')
    # Entrenar el modelo
    inicio = time.time()
    clf.fit(X_train, y_train)
    tiempo = time.time() - inicio
    # Predecir sobre el conjunto de prueba
    y_pred = clf.predict(X_test)
    # Evaluar
    accuracy = accuracy_score(y_test, y_pred)
    print(f'{i},{train_file},{X_train.shape},{accuracy:.3f},{tiempo
   :.3f}')
```