

Basics of Health Intelligent Data Analysis

PhD Programme in Health Data Science

Cláudia Camila Dias Pedro Pereira Rodrigues

- 1. Contingency tables
- 2. Chi-squared test
- 3. McNemar test

Categorical X Categorical

• So far we have considered situations involving a continuous variable

• How can we build hypothesis tests that only involve categorical variables?

• To study the relationship between two categorical variables we can use contingency tables (double entry tables or cross tables)

Contingency Tables

Suppose we want to study the relationship between smoking during pregnancy (cigb4) and the mother's age group (mage) - both categorical variables

```
> with(alcohol, CrossTable(mage,cigb4,format="SPSS", digits=1, prop.r=F, prop.t=F, prop.chisq=F, prop.c=F, expected=F))
```

1	cigb4		
mage	No	Yes	Row Total
13-20	13	8	 21
21-30	216	70	286
31-35	79	11	90
36-55	49	6	55
Column Total	357	95	452

Contingency Tables

> with(alcohol, CrossTable(mage,cigb4,format="SPSS", digits=1, prop.r=T, prop.t=T, prop.chisq=F, prop.c=T, expected=F))

	Cell Contents
	Count
	Row Percent
I	Column Percent
l	Total Percent

Total Observations in Table: 452

- 38% of the mothers in age group of 13-20 years, smoked during pregnancy
- 74% of mothers who smoked during pregnancy are in age group of 21-30 years
- 1.3% of mothers smoked and are in age group of 36-55 years

		igb4	10
Row Total	Yes R	No I	mage
21	8	13	13-20
4.6%	38.1%	61.9%	1
	8.4%	3.6%	1
	1.8%	2.9%	1
286	70	216	21-30
63.3%	24.5%	75.5%	1
	73.7%	60.5%	1
	15.5%	47.8%	I
90	11	79	31-35
19.9%	12.2%	87.8%	1
	11.6%	22.1%	1
	2.4%	17.5%	!
55	6	49	36-55
12.2%	10.9%	89.1%	1
	6.3%	13.7%	I
	1.3%	10.8%	1
452	95	357	Column Total
	21.0%	79.0%	1

> with(alcohol, CrossTable(mage,cigb4,format="SPSS", digits=1, prop.r=T, prop.t=F, prop.chisq=F, prop.c=F, expected=F))

Row Percent					
Count 13 8 21		mage	l No		
Total Observations in Table: 452 21-30 216 70 286 75.5% 24.5% 63.3% 31-35 79 11 90 87.8% 12.2% 19.9% 36-55 49 6 55 89.1% 10.9% 12.2% Column Total 357 95 452	Row Percent	13-20	13 61.9%	8 8	21 4.6%
31-35 79 11 90 87.8% 12.2% 19.9% 36-55 49 6 55 89.1% 10.9% 12.2% 			216	70	286
87.8% 12.2% 19.9% 36-55 49 6 55 89.1% 10.9% 12.2% 					
36-55 49 6 55 89.1% 10.9% 12.2% 					
Column Total 357 95 452			49	. 6	55
		Column Total	357	95	452

Looking for the % of smokers in each age group there seems to be a relationship between the variables:

- We find more smokers in younger mothers than in older mothers

Let's assume that the two variables are not associated:

- H₀: % of the smokers are identical in all age groups

or

H₀: Tobacco use is independent of age group

- If H0 were true, which table would we expect to look at?
- In total 21% of mothers smoked during pregnancy, so if smoking is not dependent on age group we should observe the same % of smokers in all age groups.
- If H0 is true, the expected value for the number of smokers in the 21-30 year age group (E22) would be 21% of 286 mothers = 60.1

	Did not smoke	Smoked	Total
13-20			21
21-30		<i>E</i> ₂₂ =21%x286	286
31-35			90
36-55			55
Total	357 <i>(79%)</i>	95 (21%)	452

> with(alcohol, CrossTable(mage,cigb4,format="SPSS", digits=1, prop.r=F, prop.t=F, prop.chisq=F, prop.c=F, expected=T))

Cell Contents

I	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	I
I																				C	0	u	n	t		I
I										E	X	p	e	C	t	e	d		۷	a	l	u	e	S		I
I	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	I

Total Observations in Table: 452

I	cigb4		
mage	No	Yes	Row Total
13-20	13	8	21
1	16.6	4.4	1 1
21-30	216	70	1 286 1
i	225.9	60.1	i i
i-			ii
31-35	79 I	11	90
1	71.1	18.9	i .
36-55	49	6	1 55 1
30-33	43.4	11.6	1 22 1
<u>.</u>	43.4	11.0	I I
Caluma Tatal	257	0.5	452
Column Total	357	95	452

Chi squared statistic: sum of the differences (squared and relativized) between the expected values and observed values of each cell:

$$\chi^2 = \sum \frac{(E - O)^2}{E}$$

- If the statistic value is too large it means that the expected values (assuming true null hypothesis) are quite different from those observed.
- That is, if H0 is true, the probability of obtaining the difference between the expected and observed values we observed (or more extreme), i.e. the p-value, is very small and we should reject H0.
- On the other hand, a chi-squared value close to 0 (expected values identical to those observed) will have a very high associated p-value.

The chi-squared test is then used for independent samples. As in the other tests:

We defined the hypothesis:

H₀: There is no association between the categories of one factor and the categories of the other

We set the level of significance (alpha) - usually 0.05

We get the test statistic with the sample data

$$\chi^2 = \frac{(O-E)^2}{E}$$
 Follows a chi squared distribution with n-1 degree of freedom

O – observed values

E – expected value if H₀ true

We get the p-value

We interpret the value of p

> with(alcohol, CrossTable(mage,cigb4,format="SPSS", digits=1, prop.r=F, prop.t=F, prop.chisq=F, prop.c=F, expected=T, chisq=T))

Cell Contents				
	1	cigb4		
Count	mage	No	Yes	Row Total
Expected Values				
	13-20	13	8	21
Total Observations in Table: 452	 	16.6	4.4	
	21-30			
Statistics for All Table Factors	I	225.9	100000000	
	31-35		-	
Pearson's Chi-squared test	I	71.1	18.9	!
Chi(A) - 12 22000	36-55	49	6	55
Chi^2 = 13.32908 d.f. = 3 p = 0.003976397	30-33	43.4	11.6	
were the second of the second	Column Total	357	95	452
Minimum expected frequency: 4.413717 Cells with Expected Frequency < 5: 1 of 8 (12.5%)				

Assumptions:

At most 20% of expected values are less than 5.

If the assumption is not fulfilled, then

Statistics for All Table Factors

Fisher's Exact Test for Count Data

Alternative hypothesis: two.sided

p = 0.003244598

Minimum expected frequency: 4.413717
Cells with Expected Frequency < 5: 1 of 8 (12.5%)

Fisher's exact test

Based on hypergeometric distribution, the probability of obtaining the found set of values is computed using factorials and binomial coefficients, hence increasing the computational effort.

For hand calculations, the test is only feasible in the case of a 2 \times 2 contingency table. However the principle of the test can be extended to the general case of an $m \times n$ table.

Paired Sample

One hundred patients with frequent headaches were evaluated.

The same 100 patients took one drug A for one month, and drug B the next month.

Patients were asked to record whether or not they had headaches each month.

	A – Without headaches	A – With headaches
B – Without headaches	45	4
B – With headaches	17	34
Total	62	38

Paired Sample

- In this situation, the values in the main diagonal support the null hypothesis (45+34), so we ignore them for the particular test statistic...
- But, if the drugs were identical, found diferences should be random; therefore, V should be identical to U.

	A – Without headaches	A – With headaches
B – Without headaches	45	4 (U)
B – With headaches	17 (V)	34
Total	62	38

Mcnemar's test is based on the statistic

$$\chi^2 = \frac{(V-U)^2}{V+U} = \frac{(17-4)^2}{17+4} \approx 8$$

	A – Without headaches	A – With headaches
B – Without headaches	45	U=4
B – With headaches	V=17	34
Total	62	38


```
> CrossTable(b,a,format="SPSS", digits=1, prop.t=F, mcnemar = T)
```

Cell Contents

I		ı
I	Count	ı
I	Chi-square contribution	ĺ
I	Row Percent	ı
I	Column Percent	ı
ı		ĺ

Total Observations in Table: 100

1	a		
b	com	sem	Row Total
com 	34	17	51
	11.0	6.8	
	66.7%	33.3%	51.0%
	89.5%	27.4%	
sem 	4	45	49
	11.5	7.0	
	8.2%	91.8%	49.8%
	10.5%	72.6%	
Column Total	38	62	100
	38.8%	62.8%	

McNemar's Chi-squared test

Chi^2 = 8.047619 d.f. = 1 p = 0.00455635

McNemar's Chi-squared test with continuity correction

Minimum expected frequency: 18.62