Neil Kale September 21, 2019 Section L

Description

One calm afternoon Calculus Cam decides to launch Hamster Huey into the air using a model rocket. The rocket is launched straight up off the ground, from rest. The rocket engine is designed to burn for specified time while producing non-constant net acceleration given by the equations below. After the engine stops the rocket continues upward in free-fall. A parachute opens after the rocket falls a specified vertical distance from its maximum height. When the parachute opens, assume the rocket instantly stops, and then increases speed to a terminal velocity given by the equation below. Assume the air resistance affects the rocket only during the parachute stage.

Givens

A = -0.9	B = 0	C = 18	
$a_y[t]=At^2+Bt$:+C	m/s	
t _E = 5.1		sec	
h = 137		m	
v _t = -16 m/s		D = 6	
$v_P[t] = v_T(1 - e^{-t/D})$		m/s	
$t_0 = 0 \text{ s}$		$v_3[t] = v_p[t - t_2]$	
$a_2[t] = a_3[t] = -9$	9.8 m/s ²	$t_1 = t_E$	

Diagram

Stage 1: While the rocket burns $(t_0 \rightarrow t_1)$

$$a_1[t] = At^2 + Bt + C$$

 $A = -0.9$
 $B = 0$
 $C = 18$
 $a_1[t] = -0.9t^2 + 18$
Find $v_1[t]$ by integrating a[t]:

$$v_1[t] = \int a[t]dt$$

$$v_1[t] = \int (-0.9t^2 + 18)dt$$

$$v_1[t] = -0.3t^3 + 18t + c$$

$$v_1[0] = 0$$

$$v_1[t] = -0.3t^3 + 18t$$
Find $v_1[t_1]$ via substitution:
$$t_1 = t_E = 5.1 \text{ s}$$

$$v_1[t_1] = -0.3(5.1)^3 + 18(5.1)$$

$$v_1[t_1] = -39.7953 + 91.8$$

$$v_1[t_1] = 52.005 \text{ m/s}$$
Find $y_1[t_1]$ by integrating v[t] then substituting:
$$y_1[t] = \int v[t]dt$$

$$y_1[t] = \int (-0.3t^3 + 18t)dt$$

$$y_1[t] = -0.075t^4 + 9t^2 + c$$

$$y_1[t_0] = y_1[0] = 0$$

$$y_1[t] = -0.075t^4 + 9t^2$$

$$y_1[t_1] = y[5.1]$$

$$y_1[5.1] = -0.075(5.1)^4 + 9(5.1)^2$$

$$y_1[5.1] = 183.35$$

$$y_1[t_1] = 183.35$$

$$y_1[t_1] = 183.35$$

Stage 2: Engine Stop to Parachute Opening $(t_1 \rightarrow t_2)$

Givens:

 $y_2[t] = |v_2[t]dt|$

$$y_2[t_1] = y_1[t_1] = 183.35 \text{ m}$$
 $v_2[t_1] = v_1[t_1] = 52.005 \text{ m/s}$
 $a_2[t] = -9.8 \text{ m/s}^2$
Vertical fall from y_{max} to parachute opening $(t_2) = h$
 $= 137 \text{ m}^*$
Find $v_2[t]$ by integrating $a_2[t]$
 $v_2[t] = \int a_2[t]dt$
 $v_2[t] = \int -9.8 dt$
 $v_2[t_1] = -9.8t + c$
 $v_2[t_1] = -9.8t_1 + c$
 $v_2[t_1] = 52.005 \text{ m/s}$
 $t_1 = 5.1 \text{ s}$
 $52.005 = -9.8 * 5.1 + c$
 $c = 52.005 + 9.8 * 5.1$
 $c = 52.005 + 49.98$
 $c = 101.99$
 $v_2[t] = -9.8t + 101.99$
Find $y_2[t]$ by integrating $v[t]$

$$y_{2}[t] = \int (-9.8t + 101.99)dt$$

$$y_{2}[t] = -4.9t^{2} + 101.99t + c$$

$$y_{2}[t_{1}] = -4.9t_{1}^{2} + 101.99t_{1} + c$$

$$y_{2}[t_{1}] = 183.35 \text{ m/s}$$

$$t_{1} = 5.1 \text{ s}$$

$$183.35 = -4.9(5.1)^{2} + 101.99(5.1) + c$$

$$c = 183.35 + 127.449 - 520.58$$

$$c = -209.35$$

$$y_{2}[t] = -4.9t^{2} + 101.99t - 209.35$$

Find t_{max} :

$$y_{max}$$
 occurs at t_{max} ; $v_2[t_{max}] = 0$
 $-9.8t_{max} + 101.99 = 0$
 $t_{max} = \frac{-101.99}{-9.8}$
 $t_{max} = 10.407 \text{ s}$

Find $y_2[t_{max}]$ by substituting:

$$y_2[t_{max}] = -4.9(10.407)^2 + 101.99(10.407) - 209.35$$

$$y_2[t_{max}] = -4.9(10.407)^2 + 101.99(10.407) - 209.35$$

 $y_2[t_{max}] = -530.712 + 1061.41 - 209.35$

 $y_2[t_{max}] = 321.36 \text{ m}$

Find $y_2[t_2]$:

$$y_2[t_2] = y_2[t_{max}] - h^*$$

$$y_2[t_2] = 321.36 - 137$$

 $y_2[t_2] = 184.36 \text{ m}^*$

Find t_2 :

$$184.36 = -4.9t_2^2 + 101.99t_2 - 209.35$$
$$-4.9t_2^2 + 101.99t_2 - 393.71 = 0$$

Using solve:

 $t_2 = 5.1195$ or 15.695

 $t_2 > t_{max}$

 $t_2 > 10.407$

 $t_2 = 15.695 \text{ s}$

Stage 3: Parachute Opening to Touchdown $(t_2 \rightarrow t_3)$

Givens:

$$v_{P}[t] = v_{T} \left(1 - e^{-t/D} \right)$$

$$D = 6; v_{T} = -16 \text{ m/s}$$

$$v_{P}[t] = -16 \left(1 - e^{-t/6} \right)$$

$$v_{3}[t_{2}] = v_{P}[0]$$

$$v_{3}[t] = v_{P}[t - t_{2}]$$

$$v_{3}[t] = -16 \left(1 - e^{-\frac{t - t_{2}}{6}} \right)$$
Find $y_{3}[t]$ by integrating $v_{3}[t]$

$$y_{3}[t] = \int v_{3}[t] dt$$

$$y_{3}[t] = -16 \int \left(1 - e^{-\frac{t - t_{2}}{6}} \right) dt$$

$$y_{3}[t] = -16 \left(t + 6e^{-\frac{t - t_{2}}{6}} + c \right)$$

$$y_{3}[t] = -16t - 96e^{-\frac{t - t_{2}}{6}} + c$$

$$y_{3}[t_{2}] = y_{2}[t_{2}]$$

$$y_{2}[t_{2}] = 184.36 \text{ m}$$

$$y_{3}[t_{2}] = 184.36 \text{ m}$$

$$y_3[t_2] = -16t_2 - 96e^{-\frac{t_2 - t_2}{6}} + c$$

$$184.36 = -16t_2 - 96e^{-\frac{t_2 - t_2}{6}} + c$$

$$c = 184.36 + 16t_2 + 96e^{-\frac{0}{6}}$$

$$t_2 = 15.695 \text{ s}$$

$$c = 184.36 + 16 * 15.695 + 96$$

$$c = 531.48$$

$$y_3[t] = -16t - 96e^{-\frac{t - t_2}{6}} + 531.48$$
Find t_3 , when the object hits the ground:
$$y_3[t_3] = 0 \text{ m}$$

$$0 = -16t_3 - 96e^{-\frac{t_3 - t_2}{6}} + 531.48$$
Using solve:
$$t_3 = 6.8018 \text{ s or } t_3 = 32.875 \text{ s}$$

$$t_3 > t_2$$

$$t_3 > 15.695 \text{ s}$$

$$t_3 = 32.88 \text{ s}$$

Graph/

Time	Position	Velocity	Acceleration		
(s)	(m)	(m/s)	(m/s²)		
	Stage 1 $(t_0 \rightarrow t_1)$				
0.00	0.00	0.00	18.00		
1.00	8.93	17.70	17.10		
2.00	34.80	33.60	14.40		
3.00	74.93	45.90	9.90		
4.00	124.80	52.80	3.60		
5.00	178.13	52.50	-4.50		
5.10	183.35	52.00	-5.41		
Stage 2 $(t_1 \rightarrow t_2)$					
5.10	183.35	52.01	-9.80		
6.00	226.19	43.19	-9.80		
7.00	264.48	33.39	-9.80		
8.00	292.97	23.59	-9.80		
9.00	311.66	13.79	-9.80		
10.00	320.55	3.99	-9.80		
11.00	319.64	-5.81	-9.80		
12.00	308.93	-15.61	-9.80		
13.00	288.42	-25.41	-9.80		
14.00	258.11	-35.21	-9.80		
15.00	218.00	-45.01	-9.80		
15.70	184.35	-51.82	-9.80		
Stage 3 ($t_2 \rightarrow t_3$)					
15.70	184.36	0.00	-2.67		
16.00	184.24	-0.79	-2.53		
17.00	182.25	-3.13	-2.15		
18.00	178.10	-5.10	-1.82		
19.00	172.14	-6.78	-1.54		
20.00	164.63	-8.19	-1.30		
21.00	155.83	-9.39	-1.10		
22.00	145.91	-10.41	-0.93		
23.00	135.07	-11.26	-0.79		
24.00	123.43	-11.99	-0.67		
25.00	111.12	-12.61	-0.57		
26.00	98.25	-13.13	-0.48		
27.00	84.89	-13.57	-0.41		
28.00	71.13	-13.94	-0.34		
29.00	57.03	-14.26	-0.29		
30.00	42.63	-14.53	-0.25		
31.00	27.99	-14.75	-0.21		
32.00	13.14	-14.94	-0.18		
32.88	0.00	-15.09	-0.15		

