

Course > Week 7... > Compr... > Quiz 7

Quiz 7

Problem 1

1/1 point (graded)

Suppose we use a basis expansion $\Phi(x)$ for the purposes of getting a quadratic decision boundary. For two-dimensional data, we can do this by expanding to five features. What decision boundary is represented by $w\cdot\Phi\left(x\right)+b=0$ for w = (2, 1, 2, -1, 0) and b = -1?

$$\bigcirc 2x_1^2 + x_2^2 + 2x_1 - x_2 - 1 = 0$$

$$\bigcirc 2x_1^2 + x_1 + 2x_2^2 - x_2 - 1 = 0$$

$$\bigcirc 2x_1 + x_1^2 + 2x_2 - x_2^2 - 1 = 0$$

Submit

Problem 2

1/1 point (graded)

True or false: When using a basis expansion of $x \in \mathbb{R}^6$ to get a quadratic boundary, the expanded feature vector $\Phi(x)$ has 36 pairwise features of the form x_1x_6 or x_2x_4 .

Problem 3

1/1 point (graded)

We want to use basis expansion of two-dimensional inputs $x=(x_1,x_2)$ to get a quadratic boundary. If the target boundary is given by the equation $(x_1-2)^2+(x_2-1)^2=16$, what is the coefficient vector, w , and constant, b , such that the boundary has the form $w\cdot\Phi\left(x
ight)+b=0$?

$$lackbox{0.5}{\bullet} w = egin{pmatrix} -4 & -2 & 1 & 1 & 0 \end{pmatrix}, \ b = -11$$

$$igcup w = egin{pmatrix} -4 & -2 & 1 & 1 & 0 \end{pmatrix}$$
 , $b = -16$

$$\bigcirc w = egin{pmatrix} 1 & 1 & -4 & -2 & 5 \end{pmatrix}$$
 , $b = -11$

$$w = (1 \quad -2 \quad 1 \quad -11 \quad 0), \ b = 16$$

Submit

Problem 5

1/1 point (graded)

For 12-dimensional x, what is the dimension of the basis expansion $\Phi\left(x\right)$ that we use for getting a quadratic boundary?

Problem 6

1/1 point (graded)

Given a data set with n data points, each of d dimensions, what is the dimension of the vector, α , which is used in the dual form of the perceptron algorithm?

 $\bigcirc d$

Submit

Problem 7

1/1 point (graded)

Given vectors $v,w\in\mathbb{R}^d$, which of the following expressions can be used in place of $\Phi\left(v\right)\cdot\Phi\left(w\right)$, where Φ is the basis expansion used for a quadratic boundary?

$$\bigcirc 1 + (v \cdot w)^2$$

$$lefter{} lefter{} (1+v\cdot w)^2$$

Problem 8

1/1 point (graded)

Which vector are we solving for when using the dual form of the SVM?

Submit

Problem 9

1/1 point (graded)

Which expression(s) can be used to classify a new point with the kernel SVM? Select all that apply.

$$lacksquare ext{sign}\left(\sum_{i=1}^{n}lpha_{i}y^{(i)}\left(\Phi\left(x^{(i)}
ight)\cdot\Phi\left(x
ight)
ight)+b
ight)$$

$$\prod \operatorname{sign}\left(\sum_{i=1}^n w \cdot \Phi\left(x^{(i)}
ight) + b
ight)$$

$$ightharpoonsign \operatorname{sign}\left(w\cdot\Phi\left(x
ight)+b
ight)$$

Problem 10

1/1 point (graded)

If you are finding a degree 4 decision boundary and if $x \in \mathbb{R}^7$, then the term $x_1x_3x_4x_7^2$ is part of the expanded feature vector, $\Phi(x)$.

Submit

Problem 11

1/1 point (graded)

Which is/are the correct kernel function(s), k(x, z), that is used to find a degree 3decision boundary? (Here Φ refers to the basis expansion for a degree-3 polynomial boundary.)

$$\bigcap k\left(x,z
ight) =x\cdot z$$

$$k(x,z) = \Phi(x) \cdot \Phi(z)$$

$$k(x,z) = (1 + \Phi(x) \cdot \Phi(z))^3$$

Problem 12

1/1 point (graded)

Vectors that produce high values with the kernel function are more similar or less similar than vectors that produce low values?

Problem 13

1/1 point (graded)

True or false: Decision trees typically perform best when they are grown until the training error is 0%.

Problem 14

1/1 point (graded)

Overfitting the data with a decision tree will result in which of the following?

decision boundary is linear.

Submit

© All Rights Reserved