an efficient data structure for Must-Alias Analysis

George Kastrinis

George Balatsouras Kostas Ferles Nefeli Prokopaki Yannis Smaragdakis

an efficient data structure for Must-Alias Analysis

aliasing expressions refer to the same memory

$$x = y$$

 $y.f = z$

an efficient data structure for Must-Alias Analysis

Find the LEGO

Truth

May (Over)

Must (under)

Insights for efficiency

Must-Alias: an Equivalence Relation

Must-Alias: an Equivalence Relation

N aliasing elements \rightarrow \mathbb{N}^2 pairs

Implicit access path extension

May-Alias is NOT an equivalence relation

how much?

an efficient data structure for Must-Alias Analysis

Datalog Naive (the old)

Explicitly represent alias pairs

Explicitly extend access paths (max len)

Java

Datalog Opt

Data structure for implicit representation of both points

Simulated in a purely declarative setup

Time

Speedup

how?

an efficient data structure for Must-Alias Analysis

Alias Graph

- directed graph
- invent abstract objects (nodes) for what a variable points to
- edges represent fields
- access paths are paths in the graph
- paths to same node → aliases
- merge aliasing variables

- one graph per (instruction x calling context)
- copy from one instruction to the next and apply semantics
- up until a fixpoint

b.g ~ c
d.g ~ c
a.f ~ b
c.f ~ b

a.f ~ c.f a.f.g ~ c a.f.g.f ~ b a.f.g ~ b.f

etc

Operations

x.f = z

z = y.g

z = y.g

in method bar

foo(a) {

in method bar

T foo(a) { ...

in method bar

T foo(a) { ...

Algorithms

allAliases(y.f, len)

allAliases (y.f, len)

allAliases (y.f, len)

allAliases(y.f, len)

gc(g)

Max Access Path Length x Time

Max Context Depth x Time

an efficient data structure for Must-Alias Analysis

George Kastrinis

George Balatsouras Kostas Ferles Nefeli Prokopaki Yannis Smaragdakis