

Entwicklung einer Schnittstelle zur automatischen Schlafphasenklassifikation mittels EEG Analysen

Developing an interface for automatic sleep stage classification using EEG analysis

Bachelorarbeit

im Rahmen des Studiengangs Informatik der Universität zu Lübeck

vorgelegt von

Nils Finke

ausgegeben und betreut von

Prof. Dr. rer. nat. Thomas Martinetz

mit Unterstützung von

Dipl.-Ing. Arne Weigenand

Hiermit erkläre ich, dass ich die ausschließlich unter Verwendu	e vorliegende Bache ng der angegebenen	lorarbeit selbstständig und Quellen angefertigt habe.
	Ort, Datum	Unterschrift

Inhaltsverzeichnis

1	Eini	tunrung	1
2		ındlagen des Schlafes sowie der Bestimmung Schlafstadien	2
	2.1	Individualität von Schlafcharakteristika	2
	2.2	Messung von Schlaf basierend auf EEG, EOG und EMG	2
	2.3	Schlafstadienidentifikation nach	
		RECHTSCHAFFEN UND KALES	2
3	Tech	nnische Grundlagen zur Identifikation und	
	Klas	ssifikation von Mustern in Signalen	3
	3.1	FEATURE EXTRACTION durch Nutzung von	
		Permutationsentropien	3
	3.2	FEATURE EXTRACTION durch Wellenform Messungen	3
	3.3	Klassifikation von Attributen mittels	
		SUPPORT VECTOR MASCHINE	3
4		swertung eigener Analysen sowie Vergleich	
	zu a	anderen Klassifikatoren	4
	4.1	Kombination von Feature Extraction-Methoden	4
	4.2	Training der Support Vector Maschine	4
	4.3	Vergleich zu bestehenden Klassifikationslösungen	4
5	Zus	ammenfassung und Ausblick	5

1 Einführung

- 2 Grundlagen des Schlafes sowie der Bestimmung von Schlafstadien
- 2.1 Individualität von Schlafcharakteristika
- 2.2 Messung von Schlaf basierend auf EEG, EOG und EMG
- 2.3 Schlafstadienidentifikation nach RECHTSCHAFFEN UND KALES

- 3 Technische Grundlagen zur Identifikation und Klassifikation von Mustern in Signalen
- 3.1 FEATURE EXTRACTION durch Nutzung von Permutationsentropien
- 3.2 FEATURE EXTRACTION durch Wellenform Messungen
- 3.3 Klassifikation von Attributen mittels SUPPORT VECTOR MASCHINE

- 4 Auswertung eigener Analysen sowie Vergleich zu anderen Klassifikatoren
- 4.1 Kombination von Feature Extraction-Methoden
- 4.2 Training der Support Vector Maschine
- 4.3 Vergleich zu bestehenden Klassifikationslösungen

5 Zusammenfassung und Ausblick

Literatur

[1] Varun Chandola, Varun Mithal, and Vipin Kumar. Comparative evaluation of anomaly detection techniques for sequence data. In *ICDM*, pages 743–748, 2008.