

# Università degli Studi dell'Aquila

Ingegneria



Corso di laurea Magistrale in Ingegneria elettronica

Mattia Ragnoli

# Design, realizzazione e test di un filtro a microstrice accoppiate

## Principio di funzionamento di un filtro a linee accoppiate



- Ordine N  $\rightarrow$  N+1 linee accoppiate
- Valido per linee generiche

# Su quale principio si basa tale struttura?



$$Z_{0e} = Z_0 [1 + J Z_o + (J Z_0)^2]$$

$$Z_{0o} = Z_0 [1 - J Z_o + (J Z_0)^2]$$

Se  $\beta l = \frac{\pi}{2}$  (cioè  $l = \lambda/2$ ) per entrambi i modi even e odd vale l'equivalenza



Sempre se  $\beta l = \frac{\pi}{2}$  vale l'equivalenza:



$$L = \frac{2 Z_0}{\pi \omega_0}$$
  $C = \frac{\pi}{2 Z_0 \omega_0}$   $\omega_0 = 2\pi f_0$ , freq per cui  $l = \lambda/2$ 

Date le precedenti equivalenze:



Ottenuti i Jn ottengo  $Z_{even}$  e  $Z_{odd}$  delle linee accoppiate  $\rightarrow$  sintesi

Per calcolare i Jn:

$$J_{1} = \sqrt{\frac{\pi \Delta}{2 g_{1}}} \frac{1}{Z_{0}}$$

$$J_{n} = \frac{\pi \Delta}{2\sqrt{g_{n-1} g_{n}}} \frac{1}{Z_{0}}$$

$$J_{N+1} = \sqrt{\frac{\pi\Delta}{2 g_{N+1} g_n}} \frac{1}{Z_0}$$

Δ: bw frazionale g: parametri imp. inv.

#### Sviluppo del filtro

$$Z_0 = 50 \Omega$$

$$\Delta = 2.5\%$$

$$\Delta = 2.5\% \qquad f_0 = 4 \text{ GHz}$$

Tipologia: Butterworth, N=4 ed N=5

Dalle tabelle dei coeffienti g ottengo i parametri desiderati per la risposta Butterworth

TABLE 8.3 Element Values for Maximally Flat Low-Pass Filter Prototypes ( $g_0 = 1$ ,  $\omega_c = 1, N = 1 \text{ to } 10$ 

| N  | $g_1$  | <i>g</i> <sub>2</sub> | <i>g</i> 3 | <i>g</i> 4 | <i>g</i> 5 | <b>g</b> 6  | <b>g</b> 7 | <i>g</i> 8 | <b>g</b> 9 | <i>g</i> <sub>10</sub> | <i>g</i> 11 |
|----|--------|-----------------------|------------|------------|------------|-------------|------------|------------|------------|------------------------|-------------|
| 1  | 2.0000 | 1.0000                |            |            |            |             |            |            |            |                        |             |
| 2  | 1.4142 | 1.4142                | 1.0000     |            |            |             |            |            |            |                        |             |
| 3  | 1.0000 | 2.0000                | 1.0000     | 1.0000     |            |             |            |            |            |                        |             |
| 4  | 0.7654 | 1.8478                | 1.8478     | 0.7654     | 1.0000     | <del></del> |            |            |            |                        |             |
| 5  | 0.6180 | 1.6180                | 2.0000     | 1.6180     | 0.6180     | 1.0000      | <b>←</b>   |            |            |                        | I           |
| 6  | 0.5176 | 1.4142                | 1.9318     | 1.9318     | 1.4142     | 0.5176      | 1.0000     |            |            |                        |             |
| 7  | 0.4450 | 1.2470                | 1.8019     | 2.0000     | 1.8019     | 1.2470      | 0.4450     | 1.0000     |            |                        |             |
| 8  | 0.3902 | 1.1111                | 1.6629     | 1.9615     | 1.9615     | 1.6629      | 1.1111     | 0.3902     | 1.0000     |                        |             |
| 9  | 0.3473 | 1.0000                | 1.5321     | 1.8794     | 2.0000     | 1.8794      | 1.5321     | 1.0000     | 0.3473     | 1.0000                 |             |
| 10 | 0.3129 | 0.9080                | 1.4142     | 1.7820     | 1.9754     | 1.9754      | 1.7820     | 1.4142     | 0.9080     | 0.3129                 | 1.0000      |
|    |        |                       |            |            |            |             |            |            |            |                        |             |

Source: Reprinted from G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures, Artech House, Dedham, Mass., 1980, with permission.

#### N=4

| 11-1 |         |      |         |  |  |  |  |
|------|---------|------|---------|--|--|--|--|
| Zoe1 | 63.8908 | Zoo1 | 41.2399 |  |  |  |  |
| Zoe2 | 51.7056 | Zoo2 | 48.4035 |  |  |  |  |
| Zoe3 | 51.0852 | Zoo3 | 48.9600 |  |  |  |  |
| Zoe4 | 51.7056 | Zoo4 | 48.4035 |  |  |  |  |
| Zoe5 | 63.8908 | Zoo5 | 41.2399 |  |  |  |  |

#### N=5

| Zoe1 | 65.7811 | Zoo1 | 40.5733 |  |  |  |
|------|---------|------|---------|--|--|--|
| Zoe2 | 52.0407 | Zoo2 | 48.1135 |  |  |  |
| Zoe3 | 51.1153 | Zoo3 | 48.9323 |  |  |  |
| Zoe4 | 51.1158 | Zoo4 | 48.9319 |  |  |  |
| Zoe5 | 52.0415 | Zoo5 | 48.1129 |  |  |  |
| Zoe6 | 65.7811 | Zoo6 | 40.5733 |  |  |  |

#### Calcolo le impedenze caratteristiche even e odd delle linee

```
q0=1; q1=0.7654; q2=1.8478;
q3=1.8478; q4=0.7654; q5=1;
D=0.025; Zo=50;
J1= sqrt((pi*D)/(2*q1)) * (1/Zo);
Zoe1 = Zo*(1 + (J1*Zo) + (J1*Zo)^2);
Zoo1 = Zo*(1 - (J1*Zo) + (J1*Zo)^2);
J2= ((pi*D)/(2*(sqrt(q1*q2))))*(1/Zo);
Zoe2 = Zo*(1 + (J2*Zo) + (J2*Zo)^2);
Zoo2 = Zo*(1 - (J2*Zo) + (J2*Zo)^2);
J3= ((pi*D)/(2*(sqrt(q2*q3))))*(1/Zo);
Zoe3 = Zo*(1 + (J3*Zo) + (J3*Zo)^2);
Zoo3 = Zo*(1 - (J3*Zo) + (J3*Zo)^2);
J4= ((pi*D)/(2*(sqrt(g3*g4))))*(1/Zo);
Zoe4 = Zo*(1 + (J4*Zo) + (J4*Zo)^2);
Zoo4 = Zo*(1 - (J4*Zo) + (J4*Zo)^2);
J5= sqrt((pi*D)/(2*q5*q4))*(1/Zo);
Zoe5 = Zo*(1 + (J5*Zo) + (J5*Zo)^2);
Zoo5 = Zo*(1 - (J5*Zo) + (J5*Zo)^2);
```

## Simulazione filtro prototipo a linee accoppiate generiche







#### Passaggio a linee a microstrisce



## Come passare da linee generiche a microstrisce?

Le impedenze even e odd dipendono dai parametri delle microstrisce accoppiate → posso trovarli dal grafico o tramite il **sintetizzatore** di AWR



**Discontinuità** di dielettrico:  $\beta_{even}$  e  $\beta_{odd}$  sono diversi in linee a microstrisce



**MSUB** 

Er=2.55 H=0.76 mm T=0.035 mm Rho=0.7118 Tand=0.0019 ErNom=2.55

Per questo lavoro è stato usato il substrato TLX\_8 0300 di Taconic.



#### **MSUB** Modello 1: modello MCLIN AWR – no perdite Er=2.55 H=0.76 mm T=0.035 mm MCLIN ID=TL6 Rho=0 MLIN ID=Feed2 W=2.08335 mm W=1.74111 mm Tand=0 S=0.29291 mm L=13.0377 mm ErNom=2.55 L=8.0000094 mm MCLIN ID=TL5 MSUB=TLX\_8\_0300 MSUB=TLX\_8\_0300 Name=TLX\_8\_0300 W=2.0316 mm S=2.81459 mm L=12.8642 mm PORT P=2 Z=50 Ohm MCLIN ID=TL4 W=2.05427 mm MSUB=TLX\_8\_0300 S=3.8051 mm L=12.8581 mm MSUB=TLX\_8\_0300 MCLIN ID=TL3 W=2.0316 mm S=2.81459 mm L=12.8642 mm MSUB=TLX\_8\_0300 ID=TL1 W=1.74111 mm S=0.29291 mm <u>→</u> DB(|S(1,1)|) L=13.0377 mm filtro ms modello\_no\_offset\_N4 MSUB=TLX\_8\_0300 S param N4 ms NO LOSS DB(|S(2,1)|) ID=Feed1 PORT P=1 W=2.08335 mm filtro ms modello\_no\_offset\_N4 L=8.00001 mm Z=50 Ohm MSUB=TLX\_8\_0300 m1: m2: -10 3987.5 MHz 4015.8 MHz -3 dB -3 dB -20 -30 -40 4000 3800 3900 4100 4200 Frequency (MHz)

#### Solo perdite rame

| D 1''          | _         | 1. 1  | 1       |
|----------------|-----------|-------|---------|
| <b>Perdite</b> | vamo +    | 110 l | OTTVICA |
| 1 CIVIII       | I WIIIC ' | viici |         |

| MSUB                   |
|------------------------|
| Er=2.55                |
| H=0.76 mm              |
| T=0.035 mm · · · · · · |
| Rho=0.7118             |
| Tand=0 · · · · · · · · |
| ErNom=2.55             |
| Name=TLX_8_0300        |
|                        |



MSUB







Distanza OK

PROBLEMA: distanza minima di fresatura non rispettata (MIN dist: 0.2 mm)

#### Si estendono alcuni punti cercando di modificare la lunghezza delle linee il meno possibile

PORT P=2 Z=50 Ohrr





La simulazione EM produce risposta con centrobanda a 4 GHz dimensionando le linee con freq. 4.12 GHz

**Quale delle due è più affidabile?** E' stata data «fiducia» al modello EM **PROBLEMA:** la simulazione EM e la simulazione modello AWR producono risultati con offset in frequenza di circa 100 MHz





# Misure



Output: .s2p file

- ! 3/25/2021 4:59:21 PM
- ! C:\USERS\MATTI\DOCUMENTS\UNIVERSITA\METODI DI PROGETTAZIONE ELETTROMAGNETICA\TESINA FILTRO\4GHZN4\SPARAMN4\_25\_03\_FILLED.S2P ! CHANNEL.1
- ! TR.MEASUREMENT

| ! CORRECTED.DATA<br># GHZ S RI R 50.0 |            |           |           |           |           |           |            |           |  |
|---------------------------------------|------------|-----------|-----------|-----------|-----------|-----------|------------|-----------|--|
| ! FREQ.GHZ                            | S11RE      | S11IM     | S21RE     | S21IM     | S12RE     | S12IM     | S22RE      | S22IM     |  |
| !; PortSelection:                     | Port 12    |           |           |           |           |           |            |           |  |
| 2.000000000                           | -0.8961431 | 0.4219566 | 0.0012121 | 0.0015205 | 0.0011156 | 0.0017113 | -0.8947470 | 0.4160532 |  |
| 2.000400000                           | -0.8958023 | 0.4226803 | 0.0012170 | 0.0015208 | 0.0011290 | 0.0017072 | -0.8942813 | 0.4167988 |  |
| 2.000800000                           | -0.8948580 | 0.4245912 | 0.0012213 | 0.0015307 | 0.0011261 | 0.0017031 | -0.8939692 | 0.4175499 |  |
| 2.001200000                           | -0.8957133 | 0.4229515 | 0.0012316 | 0.0015303 | 0.0011374 | 0.0017126 | -0.8936117 | 0.4182037 |  |
| 2.001600000                           | -0.8947821 | 0.4248238 | 0.0012367 | 0.0015327 | 0.0011387 | 0.0017162 | -0.8934842 | 0.4188855 |  |
| 2.002000000                           | -0.8944988 | 0.4254482 | 0.0012412 | 0.0015285 | 0.0011428 | 0.0017180 | -0.8927935 | 0.4199751 |  |
| 2.002400000                           | -0.8942976 | 0.4260643 | 0.0012507 | 0.0015307 | 0.0011503 | 0.0017158 | -0.8930171 | 0.4199895 |  |
| 2.002800000                           | -0.8938575 | 0.4268279 | 0.0012489 | 0.0015285 | 0.0011523 | 0.0017218 | -0.8923733 | 0.4210781 |  |
| 2.003200000                           | -0.8941478 | 0.4264507 | 0.0012610 | 0.0015324 | 0.0011574 | 0.0017223 | -0.8916491 | 0.4221396 |  |
| 2.003600000                           | -0.8932333 | 0.4282369 | 0.0012603 | 0.0015293 | 0.0011708 | 0.0017220 | -0.8920567 | 0.4220450 |  |
| 2.004000000                           | -0.8929275 | 0.4288519 | 0.0012646 | 0.0015301 | 0.0011672 | 0.0017275 | -0.8916045 | 0.4229805 |  |
| 2.004400000                           | -0.8923500 | 0.4295441 | 0.0012693 | 0.0015277 | 0.0011784 | 0.0017245 | -0.8913860 | 0.4233768 |  |
| 2.004800000                           | -0.8914553 | 0.4313065 | 0.0012676 | 0.0015265 | 0.0011825 | 0.0017285 | -0.8909621 | 0.4243078 |  |
| 2.005200000                           | -0.8923281 | 0.4297595 | 0.0012706 | 0.0015260 | 0.0011867 | 0.0017260 | -0.8905634 | 0.4250216 |  |
| 2.005600000                           | -0.8913345 | 0.4316021 | 0.0012711 | 0.0015272 | 0.0011959 | 0.0017293 | -0.8904660 | 0.4253288 |  |
| 2.006000000                           | -0.8910637 | 0.4322005 | 0.0012673 | 0.0015309 | 0.0011953 | 0.0017361 | -0.8897797 | 0.4265786 |  |
| 2.006400000                           | -0.8913137 | 0.4317921 | 0.0012727 | 0.0015287 | 0.0012037 | 0.0017365 | -0.8895956 | 0.4269475 |  |
| 2.006800000                           | -0.8896632 | 0.4346969 | 0.0012698 | 0.0015334 | 0.0011966 | 0.0017411 | -0.8893471 | 0.4276288 |  |
| 2.007200000                           | -0.8906217 | 0.4330955 | 0.0012761 | 0.0015385 | 0.0012059 | 0.0017393 | -0.8890819 | 0.4283139 |  |
|                                       |            |           |           |           |           |           |            |           |  |



## Simulato VS Misurato



#### Simulato VS Misurato

