Four Equivalent Statements Concerning Baire-1 Functions*

Shi Xiaojie[†]

编者按:本文假定读者熟悉点集拓扑中的基本概念并知道 Tietze 扩张定理、单位分解定理及度量空间都是仿紧的。

In this article, I will give four equivalent statements concerning Baire-1 functions. Let's start with some definitions. (X will be a metric space if not specified otherwise.)

Definition 1 Let f be a function defined on X, we say f is a Baire-1 function if there exist continuous functions $\{f_n\}_{n=1}^{\infty}$ such that $\lim_{n\to\infty} f_n(x) = f(x), \forall x \in X$. The set of all Baire-1 functions defined on X is denoted by $\mathscr{B}_1(X)$.

Definition 2 A set V is called F_{σ} if $V = \bigcup_{n=1}^{\infty} V_n$ for some sequence of closed sets V_n .

Definition 3 2 In set theory, two ordered sets X,Y are said to have the same order type when there exists a bijection $f:X\to Y$ such that both f and its inverse are monotone (order preserving).

An ordinal number, or just ordinal, is the order type of a well-ordered set. The finite ordinals are the natural numbers: $0,1,2,\ldots$ The least infinite ordinal is ω which is identified with the cardinal number \aleph_0 . The set of all countable ordinals constitutes the first uncountable ordinal ω_1 which is identified with the cardinal \aleph_1 .

^{*}本文系 NUS Undergraduate Research Opportunity Program 中的一个项目。指导老师 Denny H. Leung, National University of Singapore. 入选本刊时有删改.

[†]Department of Mathematics, National University of Singapore

¹在通常的定义中 Baire-1 函数不包含连续函数,不过在本文中可以包含。

²编者加。参考 Wikipedia 中 Order type, Ordinal number, Successor ordinal, Limit ordinary 等词条。

The successor of an ordinal number α is the smallest ordinal number greater than α . An ordinal number that is a successor is called a successor ordinal. A limit ordinal is an ordinal number which is neither zero nor a successor ordinal.

Definition 4 Let P be a closed subset of X, $f: X \to \mathbb{R}$, $\epsilon > 0$. $P(f, \epsilon) := \{x \in P : for all open neighborhood <math>U$ of x in X, $\exists x_1, x_2 \in P \cap U$, such that $|f(x_1) - f(x_2)| \ge \epsilon \}$. Define $P^0(f, \epsilon) = P(f, \epsilon)$; $P^{\alpha}(f, \epsilon) = (P^{\alpha-1}(f, \epsilon))(f, \epsilon)$ if α is a successor ordinal; $P^{\alpha}(f, \epsilon) = \bigcap_{\gamma < \alpha} P^{\gamma}(f, \epsilon)$ if α is a limit ordinal.

Define

$$\beta(f,\epsilon) = \begin{cases} \text{the smallest } \alpha < \omega_1 \text{ such that } P^{\alpha}(f,\epsilon) = \emptyset & \text{if such } \alpha \text{ exists} \\ \omega_1 & \text{otherwise.} \end{cases}$$

Define $\beta(f) = \sup_{\epsilon > 0} \beta(f, \epsilon)$.

Note that $P(f, \epsilon)$ is a closed subset of P. If $0 < \epsilon_1 < \epsilon_2$, then $P(f, \epsilon_1) \supset P(f, \epsilon_2)$ and $\beta(f, \epsilon_1) \ge \beta(f, \epsilon_2)$. $\sup_{\epsilon > 0} \beta(f, \epsilon) = \sup_{\epsilon_n} \beta(f, \epsilon_n)$ for any sequence ϵ_n goes to 0. If $\beta(f, \epsilon) < \omega_1, \forall \epsilon > 0$, then $\beta(f) < \omega_1$.

Definition 5 A space X is said to be a Baire space if the following condition holds: Given any countable collection $\{A_n\}$ of closed subsets of X, if each of them has empty interior in X, then their union $\bigcup A_n$ also has empty interior in X.

Theorem 6 (Baire Category Theorem) If X is a complete metric space, then X is a Baire space.

Proof: Let $\{A_n\}$ be as defined in Definition 5, we prove this theorem by showing that any nonempty open set U_0 in X contains a point x that does not lie in any set A_n , thus the interior of $\bigcup A_n$ must be empty, which is what we want.

Since $\operatorname{Int} A_1 = \emptyset$, there exists $y_1 \in U_0$ such that $y_1 \notin A_1$. Then there exists r > 0 such that $B(y_1, r) \cap A_1 = \emptyset$ since A_1 is closed. Since U_0 is open, there exists s > 0 such that $B(y_1, s) \subset U_0$. Let $U_1 = B(y_1, \min\{s, t\}/4)$, then $\overline{U}_1 \subset U_0$ and $\overline{U}_1 \cap A_1 = \emptyset$.

Now U_1 is a nonempty open set in X, we can find $y_2 \in U_1$ such that $y_2 \notin A_2$ since $Int A_2 = \emptyset$. Do the same thing as above, there is an open ball U_2 such that $\overline{U}_2 \subset U_1$ and $\overline{U}_2 \cap A_2 = \emptyset$, we may shrink U_2 (if necessary) so that its radius is

not more than s/8. Inductively, there is a sequence of open sets $\{U_n\}$ such that $\overline{U}_n \subset U_{n-1}$, $\overline{U}_n \cap A_n = \emptyset$ and the radius of U_n is not more than $s/2^{n+1}$.

Consider $\bigcap \overline{U}_n$, claim that $(\bigcap \overline{U}_n) \cap (\bigcup A_n) = \emptyset$; $\bigcap \overline{U}_n \subset U_0$; $\bigcap \overline{U}_n \neq \emptyset$. The first two statements are obvious since $\overline{U}_n \cap A_n = \emptyset$ and $\overline{U}_n \subset U_{n-1}$, respectively. For the third one, notice that if $z_1, z_2 \in U_n$, then $d(z_1, z_2) \leq s/2^n$. Therefore the sequence $\{y_n\}$ we construct is a Cauchy sequence. Since X is complete, there exists $x \in X$ such that $\lim_{n \to \infty} y_n = x$. For each n, since \overline{U}_n is closed and $y_m \in U_n, \forall m \geq n+1$, we have $x \in \overline{U}_n$. Hence $x \in \bigcap \overline{U}_n$.

The point $x \in U_0$ does not lie in any A_n and thus is what we want. \square

Theorem 7 Let X be a complete separable metric space, $f: X \to \mathbb{R}$. The following four statements are equivalent (The first 3 are called Baire Characterization Theorem):

- 1. $f \in \mathcal{B}_1(X)$;
- 2. For all open set U of \mathbb{R} , $f^{-1}(U)$ is F_{σ} ;
- 3. For all closed subset F of X, $f|_F: F \to \mathbb{R}$ has a point of continuity;
- 4. $\beta(f) < \omega_1$.

Proof: $(1) \Rightarrow (2)$

For any open set U of \mathbb{R} , we can write $U = \bigcup_{i=1}^{\infty} V_i$, where $V_i = (a_i, b_i)$ are pairwise disjoint intervals. So we only need to show for any a < b, $f^{-1}(a, b)$ is F_{σ} .

Take arbitrary $c, d \in \mathbb{Q}$ with a < c < d < b, consider the set $\bigcap_{n=N}^{\infty} f_n^{-1}[c, d]$, where $\{f_n\}$ are as defined in Definition 1. Since f_n is continuous for each n, $f_n^{-1}[c, d]$ is closed, thus $\bigcap_{n=N}^{\infty} f_n^{-1}[c, d]$ is closed. Take

$$A = \bigcup_{\substack{a < c < d < b \\ c, d \in \mathbb{O}}} \bigcup_{N=1}^{\infty} \bigcap_{n=N}^{\infty} f_n^{-1}[c, d].$$

A is F_{σ} since \mathbb{Q} is countable. Now it suffices to prove $A = f^{-1}(a,b)$.

On one hand, for any $x \in f^{-1}(a,b)$, a < f(x) < b. Take $c,d \in \mathbb{Q}$ such that a < c < f(x) < d < b. Since $\lim_{n \to \infty} f_n(x) = f(x)$, there exists N such that for $n \ge N$, $f_n(x) \in [c,d]$, hence $x \in \bigcap_{n=N}^{\infty} f_n^{-1}[c,d] \subset A$.

On the other hand, for any $x \in A$, there exist $c, d \in \mathbb{Q}$, $N \in \mathbb{N}$ with a < c < d < b such that $x \in \bigcap_{n=N}^{\infty} f_n^{-1}[c,d]$. Thus for $n \geq N$, $f_n(x) \in [c,d] \subset (a,b)$. Since $\lim_{n\to\infty} f_n(x) = f(x)$, we have $f(x) \in (a,b)$, hence $x \in f^{-1}(a,b)$.

$$(2) \Rightarrow (3)$$

Let F be a closed subset of X, define $F_0 = F$, then F_0 is a Baire space since F_0 is closed (hence complete) and metric. With F_{n-1} defined, we construct E_n, F_n and x_n as follows: (Note that we will use the information about F_n : F_n is closed in F_0 and $Int_{F_0}(F_n)$ is not empty. For F_0 those two are clearly true, for other F_n we will prove them after construction.)

Use countable internals (a_i, b_i) with length $1/2^n$ to cover \mathbb{R} . For each (a_i, b_i) , $f|_{F_0}^{-1}(a_i, b_i) = \bigcup_{j=1}^{\infty} V_{i,j}$, where each $V_{i,j}$ is closed in F_0 . Let $T_{i,j} = V_{i,j} \cap F_{n-1}$, then $T_{i,j}$ is closed in F_0 since F_{n-1} does so. It is easy to show $F_{n-1} = \bigcup_{i=1}^{\infty} \bigcup_{j=1}^{\infty} T_{i,j}$, hence $\operatorname{Int}_{F_0}(\bigcup_{i=1}^{\infty} \bigcup_{j=1}^{\infty} T_{i,j}) = \operatorname{Int}_{F_0}(F_{n-1}) \neq \emptyset$. By the Baire Category Theorem, there exists some $T_{i,j}$ such that $\operatorname{Int}_{F_0}(T_{i,j}) \neq \emptyset$. Let $E_n = T_{i,j}$, then there exists $x_n \in \operatorname{Int}_{F_0}(E_n)$. Since $\operatorname{Int}_{F_0}(E_n)$ is open in F_0 , there exists $B(x_n, \delta_n) \subset \operatorname{Int}_{F_0}(E_n)$ where $\delta_n > 0$.

Let

$$F_n = \overline{B(x_n, \min\{\delta_n/2, 1/2^n\})} \cap F_0,$$

then we verify the two conditions we assume about F_n . For the first one, F_n is certainly closed in F_0 . For the second one, since $x_n \in B(x_n, \min\{\delta_n/2, 1/2^n\})$, we have $x_n \in \operatorname{Int}_{F_0}(F_n)$, therefore $\operatorname{Int}_{F_0}(F_n)$ is not empty.

For each n, it is easy to check that $F_n \subset \operatorname{Int}_{F_0}(E_n) \subset E_n \subset F_{n-1}$ and for $x, y \in E_n$, $|f(x) - f(y)| < 1/2^n$.

Consider the sequence $\{x_n\}$. For n, m > N, $x_n, x_m \in F_N$, hence $d(x_n, x_m) \le 1/2^{N-1}$, therefore $\{x_n\}$ is a Cauchy sequence. Since F_0 is complete, there exists $x \in F_0$ such that $x = \lim_{n \to \infty} x_n$. For each n, since F_n is closed, we have $x \in F_n$, thus $x \in \bigcap_{n=1}^{\infty} F_n \subset \operatorname{Int}_{F_0}(E_n)$ for any n.

Claim that for this $x \in F$, (x, f(x)) is a point of continuity. For any $\epsilon > 0$, let $1/2^n < \epsilon$, then for any $y \in \text{Int}_{F_0}(E_n)$, $|f(x) - f(y)| < 1/2^n < \epsilon$. Therefore, (x, f(x)) is indeed a point of continuity.

$$(3) \Rightarrow (4)$$

First we state a theorem.

Theorem 8 (Cantor-Baire Stationary Principle) Let X be a separable metric space. If there exist $\{F_{\alpha}\}$, $\alpha < \omega_1$, such that F_{α} is a closed subset of X for each α and $\alpha_1 < \alpha_2$ implies $F_{\alpha_2} \subset F_{\alpha_1}$, then there exists $\beta < \omega_1$ such that $F_{\alpha} = F_{\beta}$, $\forall \alpha \geq \beta$.

Proof: Suppose there does not exist such β , then for any $\alpha_1 < \omega_1$, we can find α_2 such that $\alpha_2 > \alpha_1$ and $F_{\alpha_2} \subsetneq F_{\alpha_1}$. So without loss of generality, we can assume that $\alpha_1 < \alpha_2$ actually implies $F_{\alpha_2} \subsetneq F_{\alpha_1}$. If not, we can construct a subset of $\{F_{\alpha} : \alpha < \omega_1\}$ namely F'_{α} ($\alpha < \omega_1$) with $\alpha_2 > \alpha_1$ implies $F'_{\alpha_2} \subsetneq F'_{\alpha_1}$.

Since X is separable, let $X = \overline{\{x_i\}}$. Consider

$$\{B(x_n,q): x_n \in \{x_i\}, q \in \mathbb{Q}^+\}$$

The set is countable, we denote it by $\{O_n\}$.

For each $\alpha < \omega_1$, we show that there exists $O_j \in \{O_n\}$ such that $O_j \cap F_\alpha \neq \emptyset$ and $O_j \cap F_{\alpha+1} = \emptyset$. Since $F_{\alpha+1} \subsetneq F_\alpha$, there exists $x \in F_\alpha \setminus F_{\alpha+1}$. Since $F_{\alpha+1}$ is closed, there exists $B(x,\delta)$ such that $B(x,\delta) \cap F_{\alpha+1} = \emptyset$ and $\delta \in \mathbb{Q}^+$. Since $\{x_n\}$ is dense, there exists $x_i \in \{x_n\}$ such that $x_i \in B(x,\delta/4)$. Then consider $B(x_i,\delta/4)$, we have $x \in B(x_i,\delta/4) \cap F_\alpha$ and $B(x_i,\delta/4) \cap F_{\alpha+1} = \emptyset$. So $B(x_i,\delta/4)$ is just the O_j we want to find.

For each $\alpha < \omega_1$, we can find a corresponding O_{α} and $O_{\alpha} \neq O_{\beta}$ for $\alpha \neq \beta$. This contradicts with $\{O_n\}$ is countable. So we conclude that there exists $\beta < \omega_1$ such that $F_{\alpha} = F_{\beta}$, $\forall \alpha \geq \beta$. \square

Then we use Cantor-Baire Stationary Principle to complete the proof of $(3) \Rightarrow (4)$.

Fix an $\epsilon > 0$, first show that $\beta(f, \epsilon) < \omega_1$. Suppose not, look at $P^{\alpha}(f, \epsilon)$ ($\alpha < \omega_1$). It satisfies the assumption of Cantor-Baire Stationary Principle, so there exists $\beta < \omega_1$ such that $P^{\alpha}(f, \epsilon) = P^{\beta}(f, \epsilon)$, $\forall \alpha \geq \beta$.

Consider $P^{\beta}(f, \epsilon)$, it is a closed subset of X and is nonempty. So it has a point of continuity, namely x. By definition, $x \notin P^{\beta+1}(f, \epsilon)$. We get a contradiction.

So for any
$$\epsilon > 0$$
, $\beta(f, \epsilon) < \omega_1$. Thus, $\beta(f) = \sup_{\epsilon > 0} \beta(f, \epsilon) < \omega_1$. (4) \Rightarrow (1)

First we state two lemmas.

Lemma 9 Let X be a metric space. For a bounded function $f: X \to \mathbb{R}$, define the norm $||f|| = \sup_{x \in X} |f(x)|$. Then for a sequence of bounded functions $\{f_n\}$, if $\sum_{n=1}^{\infty} ||f_n(x)|| < \infty$ and each f_n is Baire-1, then $f(x) = \sum_{n=1}^{\infty} f_n(x)$ exists and f is also Baire-1.

Proof: For any x, $\sum_{n=1}^{\infty} |f_n(x)| < \infty$ since $\sum_{n=1}^{\infty} ||f_n|| < \infty$. Then for any $\epsilon > 0$, there exists N such that for m > N, $\sum_{n=m}^{\infty} |f_n(x)| < \epsilon$. Therefore, $f(x) = \sum_{n=1}^{\infty} f_n(x)$ exists for each $x \in X$.

For each f_i , let $M_i = \sum_{x \in X} \{f_i(x)\}$ and $N_i = \inf_{x \in X} \{f_i(x)\}$. Since f_i is Baire-1, there exists a sequence of continuous functions $\{f_{ij} : j \in \mathbb{N}\}$ which converges to f_i . For each f_{ij} , define f'_{ij} by

$$f'_{ij}(x) = \max\{N_i, \min\{M_i, f_{ij}(x)\}\},\$$

then f'_{ij} is continuous, $||f'_{ij}|| \leq ||f_i||$ and the sequence $\{f'_{ij} : j \in \mathbb{N}\}$ also converges to f_i .

Let $g_i(x) = \sum_{n=1}^{\infty} f'_{ni}(x)$, it is well-defined since

$$\sum_{n=1}^{\infty} ||f'_{ni}|| \le \sum_{n=1}^{\infty} ||f_n|| < \infty.$$

We have $g_i(x) = \lim_{m\to\infty} \sum_{n=1}^m f'_{ni}(x)$ and $\sum_{n=1}^m f'_{ni}(x)$ uniformly converges to $g_i(x)$. Since $\sum_{n=1}^m f'_{ni}(x)$ is continuous for each $m, g_i(x)$ is continuous for each $i \in \mathbb{N}$.

Let $F_m(x) = \sum_{n=1}^m f_n(x)$, $F_{mi}(x) = \sum_{n=1}^m f'_{ni}(x)$. For any $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $\sum_{n=N}^{\infty} ||f_n|| < \epsilon/3$. Therefore $||F_n - f|| < \epsilon/3$, for $n \ge N$. Hence $|F_n(x) - f(x)| < \epsilon/3$ for any $n \ge N$ and $x \in X$. Also we have for $n \ge N$, $x \in X$,

$$|F_{ni}(x) - g_i(x)| \le \sum_{n=N}^{\infty} |f'_{ni}(x)| \le \sum_{n=N}^{\infty} ||f_n|| < \epsilon/3.$$

Then for a fixed $x \in X$, since $F_N(x) = \lim_{i \to \infty} F_{Ni}(x)$, there exists an integer M such that for $i \leq M$, $|F_{Ni}(x) - F_N(x)| < \epsilon/3$. Therefore $|g_i(x) - f(x)| \leq |g_i(x) - F_{Ni}(x)| + |F_{Ni}(x) - F_N(x)| + |F_N(x) - f(x)| < \epsilon/3 + \epsilon/3 + \epsilon/3 = \epsilon$, this implies that $\lim_{i \to \infty} g_i(x) = f(x)$, for any $x \in X$. Thus $\{g_i : i \in \mathbb{N}\}$ is a sequence of continuous functions which converges to f, hence f is Baire-1. \square

Lemma 10 If a sequence of Baire-1 functions $\{f_n\}$ uniformly converges to f, then f is also Baire-1.

Proof: Since $\{f_n\}$ uniformly converges to f, then for any $\epsilon > 0$, there exists an integer N_{ϵ} such that for $n, m \geq N_{\epsilon}$, $||f_n - f_m|| < \epsilon$. Let $M_k = N_{1/2^k}$ for $k \in \mathbb{N}$. It is clear we can choose M_k such that $M_1 < M_2 < \cdots$. Take

$$g_n = \begin{cases} f_{M_1} & if n = 1\\ f_{M_n} - f_{M_{n-1}} & if n \ge 2, \end{cases}$$

then g_n is bounder for $n \geq 2$. We have $\sum_{n=2}^{\infty} ||g_n|| < \infty$, thus by Lemma 9, $\sum_{n=2}^{\infty} g_n$ is Baire-1. Therefore $f = f_{M_1} + \sum_{n=2}^{\infty} g_n$ is Baire-1 since f_{M_1} is Baire-1. \square

We now come back to prove $(4) \Rightarrow (1)$.

If $\beta(f) < \omega_1$, then $\beta(f, \epsilon) < \omega_1$ for any $\epsilon > 0$. Fix arbitrary $\epsilon > 0$. Let X^0 be X; X^{α} be $X^{\alpha-1}(f, \epsilon)$ if α is a successor ordinal; X^{α} be $\bigcap_{\gamma < \alpha} X^{\gamma}(f, \epsilon)$ if α is a limit ordinal. $(P(f, \epsilon)$ is only defined when P is a closed subset of X. So to show each X^{α} is well-defined, we need to show X^{α} is closed in X for any α , we do this by induction. $X^0 = X$ is closed. Assume for any $\gamma < \alpha$, X^{γ} is closed in X. If α is a successor ordinal, $X^{\alpha} = X^{\alpha-1}(f, \epsilon)$ so a closed subset of $X^{\alpha-1}$, therefore X^{α} is closed in X since $X^{\alpha-1}$ is closed in X. If α is a limit ordinal, $X^{\alpha} = \bigcap_{\gamma < \alpha} X^{\gamma}(f, \epsilon)$, this is a intersection of closed sets in X, thus X^{α} is closed in X. So we can conclude for any α , X^{α} is closed in X.)

Since $\beta(f,\epsilon) < \omega_1$, we have

$$X = \bigcup_{\alpha < \beta(f, \epsilon)} X^{\alpha} \setminus X^{\alpha + 1}.$$

Consider on $X^{\alpha} \setminus X^{\alpha+1}$ ($\alpha < \beta(f, \epsilon)$), for each $x \in X^{\alpha} \setminus X^{\alpha+1}$, there exists $\delta_x > 0$ such that for any $y, z \in B_{X^{\alpha}}(x, \delta_x)$, $|f(y) - f(z)| < \epsilon$. The balls form an open covering Λ of $X^{\alpha} \setminus X^{\alpha+1}$. Since $X^{\alpha} \setminus X^{\alpha+1}$ is a metric space hence paracompact, there exists a partition of unity Γ subordinated to the open covering Λ . For any $K_{\beta} \in \Gamma$, we can find a $U_{\beta} \in \Lambda$ such that $\sup K_{\beta} \subset U_{\beta}$. Those U_{β} also form an open covering Λ_0 of $X^{\alpha} \setminus X^{\alpha+1}$. For each $K_{\beta} \in \Gamma$, fix a $x_{\beta} \in \sup K_{\beta}$. Then for any $x \in X^{\alpha} \setminus X^{\alpha+1}$, there exists $x_{\alpha} > 0$ such that $x_{\alpha} \in \sup K_{\beta}$. Therefore $x \in K_{\beta}$ only belongs to finitely many $x \in K_{\beta}$.

Let

$$g^{\alpha}(x) = \sum_{\beta} f(x_{\beta}) K_{\beta}(x),$$

 $K_{\beta}(x) \neq 0$ for only finitely many β . Claim that for any $x \in X^{\alpha} \setminus X^{\alpha+1}$, $|f(x) - g^{\alpha}(x)| < \epsilon$ and also g^{α} is continuous on $X^{\alpha} \setminus X^{\alpha+1}$. In fact, by the definition of partition of unity, $\sum_{\beta} K_{\beta}(x) = 1$, therefore $f(x) = f(x) \sum_{\beta} K_{\beta}(x) = \sum_{\beta} f(x) K_{\beta}(x)$, $|f(x) - g^{\alpha}(x)| = |\sum_{\beta} (f(x) - f(x_{\beta})) K_{\beta}(x)| \leq \sum_{\beta} |f(x) - f(x_{\beta})| K_{\beta}(x)$. Since $x_{\beta} \in B_{X^{\alpha}}(x, \delta_{x})$ for any β , $|f(x) - f(x_{\beta})| < \epsilon$, thus $|f(x) - g^{\alpha}(x)| < \epsilon \sum_{\beta} K_{\beta}(x) = \epsilon$. For any $x \in X^{\alpha} \setminus X^{\alpha+1}$, on $B_{X^{\alpha} \setminus X^{\alpha+1}}(x, r_{x})$, only finitely many supp K_{β} intersect the ball. Thus, $\forall y \in B_{X^{\alpha} \setminus X^{\alpha+1}}(x, r_{x})$, $g^{\alpha}(y) = \sum_{\beta} f(x_{\beta}) K_{\beta}(y)$ with only those finitely

many K_{β} . Since each K_{β} is continuous on $X^{\alpha} \setminus X^{\alpha+1}$, we have g^{α} is continuous at x. So we conclude $g^{\alpha}(x)$ is continuous on $X^{\alpha} \setminus X^{\alpha+1}$.

Define $F_{\epsilon}(x) = g^{\alpha}(x)$ for $x \in X^{\alpha} \setminus X^{\alpha+1}$, $(0 \le \alpha < \beta(f, \epsilon))$. For any $x \in X$, $x \in X^{\alpha} \setminus X^{\alpha+1}$ for some $0 \le \alpha < \beta(f, \epsilon)$, thus $|F_{\epsilon} - f(x)| = |g^{\alpha}(x) - f(x)| < \epsilon$. On each $X^{\alpha} \setminus X^{\alpha+1}$, $F_{\epsilon}(x) = g^{\alpha}(x)$, therefore $F_{\epsilon}(x)$ is continuous on any $X^{\alpha} \setminus X^{\alpha+1}$. Define $f_n(x) = F_{1/2^n}(x)$, then f_n converges to f uniformly.

Fix $\epsilon > 0$, let X^{α} ($\alpha < \beta(f, \epsilon)$) be as defined before. Let $T_{r,\alpha} = X^{\alpha} \setminus N_X(X^{\alpha+1}, r)$ where $N_X(X^{\alpha+1}, r) = \bigcup_{x \in X^{\alpha+1}} B_X(x, r)$. Notice that $T_{r,\alpha}$ is closed in X since we have shown that X^{α} is closed in X for any α . We also define $V_r = \bigcup_{\alpha < \beta(f, \epsilon)} T_{r,\alpha}$. Claim that for any α ,

$$N_X(T_{r,\alpha},r)\cap (V_r\setminus T_{r,\alpha})=\emptyset,$$

where $N_X(T_{r,\alpha},r) = \bigcup_{x \in T_{r,\alpha}} B_X(x,r)$. In fact, it suffices to show $N_X(T_{r,\alpha},r) \cap T_{r,\beta} = \emptyset$ for any $\alpha \neq \beta$. Without loss of generality, assume $\alpha > \beta$. For any $x \in N_X(T_{r,\alpha},r)$, $x \in B_X(y,r)$ for some $y \in T_{r,\alpha} \subset X^{\alpha}$, thus $x \in N_X(X^{\alpha},r)$. Since $\alpha > \beta$, $\alpha \geq \beta + 1$, we have $X^{\alpha} \subset X^{\beta+1}$. Therefore $x \in N_X(X^{\alpha},r) \subset N_X(X^{\beta+1},r)$, $x \notin T_{r,\beta}$. Hence $N_X(T_{r,\alpha},r) \cap T_{r,\beta} = \emptyset$ for any $\alpha \neq \beta$.

Claim that V_r is closed in X for any r. In fact, for a sequence $\{x_n\}$ in V_r , if it is convergent in X, there exists $N \in \mathbb{N}$ such that for $n, m \geq N$, $d(x_n, x_m) < r/2$. Since $x_N \in V_r$, we have $x_N \in T_{r,\alpha}$ for some α . For any n > N, $x_n \in B_X(x_N, r) \subset N_X(T_{r,\alpha}, r)$. Since $N_X(T_{r,\alpha}, r) \cap (V_r \setminus T_{r,\alpha}) = \emptyset$, we have $x_n \notin V_r \setminus T_{r,\alpha}$. Hence $x_n \in T_{r,\alpha}$ for $x_n \in V_r$. So we have for $n \geq N$, $x_n \in T_{r,\alpha}$ for a fixed α . Since $T_{r,\alpha}$ is closed in X, $\{x_n\}$ is convergent in X, we have $\lim_{n\to\infty} x_n \in T_{r,\alpha} \subset V_r$. So V_r is closed in X for any r.

We have shown that F_{ϵ} is continuous on each $X^{\alpha} \setminus X^{\alpha+1}$, so continuous on each $T_{r,\alpha}$. Then we show that F_{ϵ} is continuous on V_r . For any $x \in V_r$, $x \in T_{r,\alpha}$ for some α . Since F_{ϵ} is continuous on $T_{r,\alpha}$, we have for any $\Delta > 0$, there exists $\delta_1 > 0$ such that for $y \in B_{T_{r,\alpha}}(x,\delta_1)$, $|F_{\epsilon}(y) - F_{\epsilon}(x)| < \Delta$. Take $\delta_2 = \min\{r,\delta_1\}$. Since $N_X(T_{r,\alpha},r) \cap (V_r \setminus T_{r,\alpha}) = \emptyset$, $B_{T_{r,\alpha}}(x,\delta_2)$ is actually $B_{V_r}(x,\delta_2)$. So we have for $y \in B_{V_r}(x,\delta_2)$, $|F_{\epsilon}(y) - F_{\epsilon}(x)| < \Delta$. Thus F_{ϵ} is continuous at x, F_{ϵ} is continuous on V_r .

Let $F_{\epsilon}|_{V_r}$ to be $F_{\epsilon,r}$. By Tietze Extension Theorem, $F_{\epsilon,r}$ can be extended from V_r to a continuous map of all of X, namely $\psi_{\epsilon,r}$. Let $\phi_{\epsilon,n}$ to be $\psi_{\epsilon,1/2^n}$. Claim that $\phi_{\epsilon,n}$ converges to F_{ϵ} . In fact, for any $x \in X$, $x \in X^{\alpha} \setminus X^{\alpha+1}$ for

some α . Since $X^{\alpha+1}$ is closed in X, $x \notin X^{\alpha+1}$, then there exists $\delta > 0$ such that $B_X(x,\delta) \cap X^{\alpha+1} = \emptyset$. Take $1/2^N < \delta$, we have $x \notin N_X(X^{\alpha+1},1/2^N)$. Therefore $x \in X^{\alpha} \setminus N_X(X^{\alpha+1},1/2^N) \subset V_{1/2^N}$. For n > N, $\phi_{\epsilon,n}(x) = \psi_{\epsilon,1/2^n}(x)$. Since $x \in V_{1/2^N} \subset V_{1/2^n}$, we have $\psi_{\epsilon,1/2^n}(x) = F_{\epsilon,1/2^n}(x) = F_{\epsilon}(x)$. Thus $\phi_{\epsilon,n}(x)$ converges to $F_{\epsilon}(x)$ for any x. Since each $\phi_{\epsilon,n}$ is continuous, F_{ϵ} is Baire-1. Therefore each f_n we defined before is Baire-1. Since f_n converges to f uniformly, by Lemma10, f is Baire-1, which completes the proof. \square

参考文献

- [1] James Dugundji, Topology
- [2] James R.Munkres, Topology
- [3] Thomas Jech, Set Theory

数学家逸事

有一天,波兰数学家Sierpinski要搬家,他的夫人把行李拿出来以后对他说: "我去叫辆出租车,你在这儿看好行李,总共有10个箱子。"过一会儿,他的夫人回来了,他对夫人说道:"刚才你说有10个箱子,可是我数了只有9个箱子。"

"不对,肯定是10个。"

"说什么呢, 我再数一遍, 0, 1, 2, 3……"