Рабочая тетрадь № 4

Высказывание — это утверждение, которое может принимать два значения: истина, либо ложь.

Если высказывание A ложно, то будем записывать A = 0, иначе A = 1.

Математическая логика не касается вопросов ложности или истинности конкретных высказываний [1]. Здесь высказывания X, Y, Z —переменные, которые могут быть ложными или истинными.

Операции с переменными, принимающими такие значения, называются булевой алгеброй (алгеброй логики).

1. Теоретический материал

Пусть A и B — высказывания. С этими высказываниями можно выполнять следующие основные логические операции:

- отрицание «HE»: ¬А
- конъюнкция «И»: А&В
- дизъюнкция «ИЛИ»: А∨В
- импликация «следует»: $A \rightarrow B$
- эквивалентность: A ~ B.

Элементарные логические операции

p	\overline{p}	q	\overline{q}	$p \lor q$	$p \wedge q$	$p \Rightarrow q$	$p \sim q$	$p \oplus q$
0	1	0	1	0	0	1	1	0
0	1	1	0	1	0	1	0	1
1	0	0	1	1	0	0	0	1
1	0	1	0	1	1	1	1	0

Приоритет выполнения операций:

Сначала выполняются действия в скобках. Затем выполняется операция отрицания (\bar{A}) , далее — конъюнкция (Λ) , дизъюнкция (V), импликация (\Rightarrow) и в последнюю очередь — эквивалентность (\sim) . Однотипные операции выполняются в порядке следования.

Таблица истинности — это набор всевозможных комбинаций переменных с указанием значения логической формулы. Такая таблица, описывает логическую функцию.

2. Пример

Задача:

Приведите таблицу истинности для следующего выражения

$$\bar{A} \lor B \land A \Rightarrow B$$

Решение:

A	В	\overline{A}	$B \wedge A$	$(\overline{A}) \vee (B \wedge A)$	$((\overline{A}) \lor (B \land A)) \Rightarrow B$
0	0	1	0	1	0
0	1	1	0	1	1
1	0	0	0	0	1
		0	1	1	1

Задача:

Для какого из представленных вариантов символьных строк следующее высказывание является ложным:

(Первая буква гласная) $\to \neg$ (Третья буква согласная) ?

- 1) abedc;
- 2) babas;
- 3) becde;
- 4) abcab.

Решение:

Логическое выражение является импликацией. Данная логическая функция ложна только в том случае, когда из истинной левой части высказывания следует ложная правая часть. Левая часть будет истинной для вариантов один и четыре. Правая часть является отрицанием высказывания «третья буква согласная» (что эквивалентно высказыванию «третья буква гласная»). При этом правая часть ложна для вариантов два, три и четыре. Следовательно, правильный вариант расположен под номером 4.

Ответ:

4

Задача:

Какое из представленных выражений равносильно следующему:

$$A \lor \neg(\neg B \land \neg C)$$
?

1) ¬A∨¬B∨¬C;

2) A $\land \neg (B \land C)$;

3) AV¬BV¬C;

4) A V B V C.

Решение:

Задействуем законы де Моргана. Раскрыв скобки запишем:

$$A \lor \neg(\neg B \land \neg C) = A \lor (\neg \neg B \lor \neg \neg C).$$

Теперь применим закон двойного отрицания:

$$A \lor (\neg \neg B \lor \neg \neg C) = A \lor B \lor C.$$

Следовательно, правильный вариант четвертый.

Ответ:

Задача:

По заданному фрагменту таблицы истинности для выражения F определить, какое из перечисленных ниже логических выражений ему соответствует [5].

X	Y	Z	F
1	0	0	0
0	0	1	1
0	1	0	0

1)
$$\neg X \land \neg Y \land Z$$
; 2) $X \lor \neg Y \lor \neg Z$;

3)
$$\neg X \land \neg Y \land Z$$
;

3)
$$\neg X \land \neg Y \land Z$$
; 4) $\neg X \lor \neg Y \lor Z$.

Решение:

Подставим представленные значения X, Y и Z из таблицы во все варианты логических функций.

Для первого выражения получим:

$$\neg 1 \land \neg 0 \land 0 = 0 \land 1 \land 0 = 0;$$

$$\neg 0 \land \neg 0 \land 1 = 1 \land 1 \land 1 = 1;$$

$$\neg 0 \land \neg 1 \land 0 = 1 \land 0 \land 0 = 0.$$

Для второго выражения получим:

$$1 \land 0 \land \neg 0 = 1 \land 0 \land 1 = 0;$$

$$0 \land 0 \land \neg 1 = 0 \land 0 \land 0 = 0;$$

$$0 \wedge 1 \wedge \neg 0 = 0 \wedge 1 \wedge 0 = 0.$$

Для третьего выражения получим:

$$1 \lor \neg 0 \lor \neg 0 = 1 \lor 1 \lor 1 = 1;$$

 $0 \lor \neg 0 \lor \neg 1 = 0 \lor 1 \lor 0 = 1;$
 $0 \lor \neg 1 \lor \neg 0 = 0 \lor 0 \lor 1 = 1.$

Для четвертого выражения получим:

$$\neg 1 \lor \neg 0 \lor 0 = 0 \lor 1 \lor 0 = 1;$$

 $\neg 0 \lor \neg 0 \lor 1 = 1 \lor 1 \lor 1 = 1;$
 $\neg 0 \lor \neg 1 \lor 0 = 1 \lor 0 \lor 0 = 0.$

Таким образом, сопоставив приходим к выводу, что правильный вариант под номером один.

Ответ:

1

Задача:

Найдите наименьшее целое число x>0, при котором логическое выражение $(4>-(4+x)x) \rightarrow (30>x\cdot x)$ является ложным?

Решение:

Импликация ложна только в случае, если левая часть выражения истинна, а правая ложна.

Рассмотрим левую часть. После преобразований можно записать квадратное неравенство $x^2 + 4x + 4 > 0$ или $(x + 2)^2 > 0$. Поскольку x > 0, левая часть импликации истинна всегда. Выражение $(30 > x \cdot x)$ будет ложным для x > 5. ($30 > 5^2$, но $30 < 6^2$). Следовательно наименьшее целое число x большее нуля, для которого высказывание ложно равно 6.

Ответ:

6

Задача:

Перед началом соревнований три зрителя высказали предположения по поводу победителей:

- Коля победит, Петя будет вторым;
- Петя- третий, Ваня- первый;
- Коля будет последним, а первым будет Женя.

Когда турнир окончился, оказалось, что каждый из зрителей был прав только в одном прогнозе из двух. Какое место на соревнованиях заняли

Женя, Ваня, Петя и Коля? В ответе перечислите места участников в указанном порядке имен.

Решение:

Обозначим буквами предсказания каждого зрителя [5].

Первый: А — Коля победит; В — Петя второй.

Второй: С — Петя третий; D — Ваня первый.

Третий: Е — Коля последний; F — Женя первый.

Нетрудно заметить, что истинными одновременно не могут быть выражения В и С; А и Е; А и D; А и F; D и F.

Поскольку из условия известно, что в каждом из прогнозов одно высказывание ложно, а другое истинно, то получаем следующее:

- $A \neg B \lor \neg AB = 1$;
- $C\neg D \lor \neg CD = 1$;
- $E \neg F \lor \neg EF = 1$.

Так как все условия должны быть истинными одновременно справедливо следующее выражение:

$$(A \neg B \lor \neg AB)(C \neg D \lor \neg CD)(E \neg F \lor \neg EF) = 1.$$

Раскроем скобки. Используя логические законы, рассмотренные ранее, получим:

Учитывая, что BC = 0, AE = 0, AD = 0, AF = 0, DF = 0, получаем следующее:

$$\neg AB \neg CDE \neg F = 1$$
.

Представленная конъюнкция равна единице, если все сомножители равны единице, следовательно:

$$A = 0$$
; $B = 1$; $C = 0$; $D = 1$; $E = 1$; $F = 0$.

Вспоминая высказывания каждого из зрителей, получаем, что Петя — второй, Ваня — первый, Коля — последний, т. е. четвертый. Таким образом, Женя на третьем месте. Следовательно, правильный ответ — 3124.

3. Задания				
. Задача:				
Составить табл	ицу истинности	для выражений	[0 0 0 1
\/ 1) AvB⇒A~B				0 0 1 1
$ \bigwedge 2) \bar{A} v (\overline{B \sim A}) \bigoplus B$	(⊕ – исключаю	ощее ИЛИ, сумм	иа по модулк	0100
/ \ 3) AvB⇒C		000	0 0 1	1000
			0.1.0	
Temenue.		1 0 0 1 1 1	101	1100
			110	1111
. Задача:				
Для какого сло	ва истинно выск	азывание:		
\/ (Первая бу	ква гласная V Пя	тая буква согла	асная) → Вто	рая буква
		гласная?		
		тласная:		
/ \ 1) арбуз;	3) кресло;	2) ответ;	4) при	вет.
Решение:				
Ответ:				
. Задача :				
Выоерете логи	неское выражени	ие эквивалентно	е следующе	My:
	¬(-	$\neg A \wedge B) \vee \neg C?$		
	2	D C		
1) ¬A V B V ¬C	; 2) A V = C; 4) A V E	rB∨¬C;		
3) ¬A ∨ ¬B ∨ ¬	C; 4) A V E	3 ∨ ¬C.		
Решение:				
not(not a and b) == a or	not b => 2			
Ответ:				
2) a or not b or not c				
. Задача:				
По заданному	фрагменту та	 ъблицы истинн	 ЮСТИ ДЛЯ 1	выражения F
	кое из перечисл			-
соответствует.	P			1

X	Y	Z	F
0	0	0	0
1	0	1	1
0	1	0	1

- 1) $X \wedge Y \wedge Z$;
- $2) X \wedge Y \vee Z;$
- 3) $\neg X \lor Y \lor \neg Z$; 4) $X \lor Y \land \neg Z$.

Решение:

1 - . 2 - . 3.3-. 2 .=> 4

Ombem:

4) x or y and not z

Задача: 5.

Найдите наибольшее целое число x > 0, для которого ложно выражение:

$$((x+6) \cdot x + 9 > 0) \rightarrow (x \cdot x > 20)$$
.

Решение:

 $(4+6)^*4 + 9 = 49; 4^*4 = 16 \Rightarrow 1 \Rightarrow 0 = 0$

Ответ:

Задача: 6.

Найдите значения логических переменных A, B, C, D, при которых логическое выражение $(\neg(CVB) \land A) \rightarrow ((\neg A \land \neg C) \lor D) = 0$.

Решение:

a,b,c,d = 1,0,0,0

7. Задача:

В соревновании участвовало пять человек: Аня, Надя, Вера, Рита, Саша. Об итогах турнира есть пять высказываний:

- 1. Первое место заняла Аня, а Рита третья.
- 2. Пятая Вера, а вот Надя первая.
- 3. Первая Саша, а Вера- вторая.
- 4. Рита пятая, а Надя была четвертой.
- 5. Надя была четвертой, а первой Аня.

Известно, что в каждом утверждении только одно утверждение из двух истинно. Требуется найти, кто занял первое место, и на каком

	месте была Аня? Ответ следует записать в виде первой буквы имени
	победительницы, и, через запятую, места, занятого Анной.
Pe	шение:
	. 3-> 4-> 5-> 1-> 2
On	пвет:
	,2

			Te	ст 4				
1.	Зада	ние:						
	V Ta	блица, вкл	ючающая всевозм	южные значения	логической функции,			
	/\ на	зывается:						
	Отв	e m:						
	1)	таблица ло	жности;	2) таблица ист	гинности;			
	\bigwedge 3)	таблица зн	ачений;	4) таблица отв	ветов.			
2.	Зада	ние:						
	Зн	ачение лог	ического выражени	ия ¬(А∀В) по зако	ну Моргана равно:			
	Отв	e m:						
	1)	¬A&¬B;	2) ¬A&B	3) A&¬B;	4) ¬A∨¬B.			
3.	Зада	ние:						
	\ \ \ Ka	кое из	перечисленных	имен удовле	створяет истинности			
	ВЬ	ісказывани	я:					
		¬ (I	Первая буква согла	сная \rightarrow Третья бу	ква гласная)?			
	Отв	 e m:						
	1)	Ирина;	2) Сергей;	3) Григорий;	4) Ольга.			
4.	Зада	ние:						
	B	ыберете выј	ражение эквивален	тное следующему	7:			
	X		$\neg A$	∨¬(B∧C)?				
		Ответ:						
_	/ \	$A \wedge \neg B \wedge C$	C; 4) (¬A V	B) A C.				
5.	Зада		1					
	\ /				ги для выражения F			
	/ \	•	-	нных ниже логич	неских выражений ему			
		ответствуе	l'.					

	X	Y	Z	F				
	0	0	0	0				
		1	0	1				
	$/ \setminus \boxed{}$	0	0	1				
	Ответ:							
	1) ¬X v ¬Y v ¬Z;	2) X ∧ Y ∧ Z	······································					
	$\backslash \backslash$ 3) X $\land \neg Y \land \neg Z$;	4) X V Y V Z						
6.	Задание:							
	Для какого из при	веденных значени	ий х выражение (х	$> 2)$ V(x $> 5)$ \rightarrow (x $<$				
	3) истинно.							
	Ответ:							
	1) 5;	2) 3;	3) 4;	4) 2.				
7.	Задание:							
	Для какого из при	веденных значени	й х выражение					
		$\neg((x \ge 2) \rightarrow$	(x > 3)) = 1.					
	Ответ:							
		2) 2;	3) 3;	l) 4.				
8.	Задание:	<i>2) 2</i> ,	3) 3,	.,				
	Сколько разнообразных решений имеет выражение							
			$0 \land (E \lor \neg E) = 0,$					
		AN DACK L	$M(\mathbf{EV} \cdot \mathbf{E}) = 0$					
	/\ A, B, C, D, T — ло	огические перемен	ные?					
	В качестве с	ответа требуется н	аписать количеств	о таких наборов.				
	Ответ:							
9.	Задание:							
	Каково наибольш	ее целое число X,	при котором исти	нно высказывание				
	$(100 < X \cdot X) \rightarrow (100 > (X + 1)(X + 1))$? Ombem:							
10.	Задание:							
10.		 га — Антон. Ми	 хаил. Никопай и	Виктор пришли в				
	Четыре друга — Антон, Михаил, Николай и Виктор пришли в автосалон. Продавец сказал, что осталось только четыре машины:							
	красная, черная, белая и синяя. Каждый из друзей купил по машине.							
	-T			J				

Имеется три утверждения:

- Красную машину купил Антон, а черную Михаил;
- Антон взял черный автомобиль, а Виктор белый;
- Николай забрал черное авто, а Виктор синее.

Кто купил синюю машину, и какой автомобиль выбрал Виктор? Известно, что половина каждого утверждения ложна, а половина истинна.

Ответ требуется записать в виде первой буквы имени, взявшего синий автомобиль, и, через запятую, первую букву цвета машины Виктора.

Ответ:

Реализация задач на языке программирования Python

1. Теоретический материал

В Python существует возможность работы с двоичными разрядами (битами) целых величин. При этом каждый бит числа рассматривается отдельно. Для этого в Python задействованы битовые (поразрядные) операторы, которые реализуют битовые операции.

В побитовых операторах (операциях) операнды рассматриваются как последовательность бит (нулей или единиц). Над разрядами существует возможность выполнять известные логические операции (логическое «ИЛИ», логическое «И», и т.д.).

Битовые операции в Python в порядке убывания приоритета представлены ниже:

Операции	Назначение
~	побитовое НЕ (инверсия);
<<,>>	битовые сдвиги влево и вправо;
&	побитовое И;
۸	побитовое исключающее ИЛИ (XOR);
	побитовое ИЛИ (OR).

В битовой инверсии значение любого бита числа меняется на противоположное. У числа при этом меняется знак со смещением на -1.

Операторы сдвига влево << и сдвига вправо >> сдвигают биты на одну или несколько позиций влево или вправо соответственно.

Битовый оператор И (AND) есть бинарным и выполняет побитовое «И» для каждой пары битов операндов, которые размещаются слева и справа от знака оператора &.

Битовый оператор «исключительное ИЛИ» обозначается ^ и выполняет операцию сложения по модулю 2 для любого бита операндов.

Битовый оператор ИЛИ (OR) символом |. Оператор реализует побитовое логическое сложение.

2. Пример

Задача:

Дано число x = 37, y = 58. Найти $\sim x$, x >> 3, x << 2, x & y, x & y, x & y

Решение (код программы):

x, y = 37, 58 #x в десятичной и двоичной системе print('x = ', x, ' x_bin = ', bin(x)) #y в десятичной и двоичной системе print('y = ', y, ' y_bin = ', bin(y))

#~x в десятичной и двоичной системе a = ~x print('~x =', a, ' ~x_bin = ', bin(a))

#x>>3 в десятичной и двоичной системе b = x >> 3 print('x>>3 =', b, ' (x>>3)_bin = ', bin(b))

#x<<2 в десятичной и двоичной системе c = x << 2 print('x<<2 =', c, ' (x<<2)_bin = ', bin(c))

#х&у в десятичной и двоичной системе

```
d = x & y
print('x&y =', d, ' (x&y)_bin = ', bin(d))

#x^y в десятичной и двоичной системе
e = x ^ y
print('x^y =', e, ' (x^y)_bin = ', bin(e))

#x|y в десятичной и двоичной системе
f = x | y
print('x|y =', f, ' (x|y)_bin = ', bin(f))
```

Задача:

Вытянуть из числа 4,5,6 биты и определить их целочисленное значение.

Решение (код программы):

```
number = int(input('Input number: '))
# фильтр на 4,5,6 биты
number &= 0b1110000
# сдвинуть на 4 разряда вправо
number >>= 4
print('number = ', number)
```

Задача:

Умножить значения двух чисел. В первом числе взять биты, которые размещенные в позициях 0-5. Во втором числе взять биты, которые размещены в позициях 0-7.

Решение (код программы):

```
x = int(input('x = '))
y = int(input('y = '))

# фильтр на 0-5 биты
x &= 0b11111

# фильтр на 0-7 биты
y &= 0b1111111
```

```
# умножить

z = x*y

print('x = ', x)

print('y = ', y)

print('z = ', z)
```

3. Задания

Задача:

Даны два различных числа k и n. Выведите значение $2^k + 2^n$, используя только битовые операции.

Решение (код программы):

 $k,n = [int(i) \ for \ i \ in \ input("k,n \ (k \ n): ").split(" \ ")]$

Задача:

Ввести число n > 0 с клавиатуры. Если число n является точной степенью двойки, вывести "YES", в противном случае "NO".

Решение (код программы):

n = int(input("n: ")) if(bin(n)[2:].count("1") == 1): print("YES") else: print("NO")

Задача:

Даны целые числа a и k. Выведите число, которое получается из a установкой значения k-го бита в 1.

Решение (код программы):

a, k = [int(i) for i in input("a,k (a k): ").split(" ")] print(a | (1 << k))

Задача*:

Дано целые числа n и k. Обнулите в числе n его последние k бит и выведите результат. Рекомендуется сделать эту задачу без использования циклов.

Решение (код программы):

n, k = [int(i) for i in input("a,k (a k): ").split(" ")]print(n & \sim (1 << k))