Address Resolution Protocol (ARP) & Neighbor Discovery Protocol (NDP)

Netzwerkgrundlagen (NWG2)

Markus Zeilinger¹

 $^{1}\mathrm{FH}$ Oberösterreich Department Sichere Informationssysteme

Sommersemester 2023

Wichtiger Hinweis

Alle Materialien, die im Rahmen dieser LVA durch den LVA-Leiter zur Verfügung gestellt werden, wie zum Beispiel Foliensätze, Audio-Aufnahmen, Übungszettel, Musterlösungen, ... dürfen ohne explizite Genehmigung durch den LVA-Leiter NICHT weitergegeben werden!

ARP & NDP in der TCP/IP Protokollfamilie

Anwendungsschicht	Hypertext Transfer Protocol (HTTP)	Domain Name System (DNS)	Simple Mail Transfer Protocol (SMTP)	Internet Message Access Protocol (IMAP)	Post Office Protocol (POP3)	DHCP, SSH, SIP, RTP, SNMP, Telnet,	
Transportschicht	Transmission Control			Quick UDP Internet Connections (QUIC)			
Hansportschicht		Protocol (TCP) User Datagram Protocol (UDP)			ol (UDP)		
Internetschicht	Internet Protocol (IP) v4			1 und v6 Internet Control Message Protocol (ICMP) v4 und v6			
Natarasahlusahasa	Neighbor Discovery Protocol (NDP) z. B. IEEE 802.x (Ethernet, WLAN,)						
Netzanschlussebene							

3 | 30

Replik Routing + Problemdefinition

- ▶ Das Routing trifft (zumeist) auf Basis der Ziel-IP-Adresse eine Entscheidung über die Weiterleitung eines IP-Pakets (s. IP - Routing):
 - (a) Zustellung an das Ziel über die Netzwerktechnologie (z. B. Ethernet).
 - (b) Zustellung an das Gateway über die Netzwerktechnologie (z. B. Ethernet).
- ▶ In jedem Fall wird das Paket in ein z. B. Ethernet Frame eingepackt.
- ▶ Dafür wird eine Quell-MAC-Adresse (des ausgehenden Interfaces) und eine Ziel-MAC-Adresse benötigt.
- ▶ Problem: Doch wie kommt das System an die Ziel-MAC-Adresse zur Ziel-IP-Adresse bzw. zur IP-Adresse des Gateways?

Lösungen + Key Facts

- ► Für IPv4: Address Resolution Protocol (ARP) (RFC 826)
 - Dynamische Auflösung von Protokoll- in Hardware-Adressen (z. B. IPv4- in MAC-Adressen).
 - ▶ Request/Response-Protokoll mit eigenem Nachrichtenformat (direkt über Schicht 2).
 - Zeitlich begrenzter Caching-Mechanismus für erfolgte Auflösungen (Neighbor Cache).
 - Varianten: Proxy ARP, Reverse ARP, Gratuitous ARP
- ► Für IPv6: Neighbor Discovery Protocol (NDP) (RFC 4861)
 - Dynamische Auflösung von IPv6- in MAC-Adressen.
 - Request/Response-Protokoll mittels ICMPv6-Nachrichten (Neighbor Solicitations und Neighbor Advertisements).
 - Zeitlich begrenzter Caching-Mechanismus für erfolgte Auflösungen (Neighbor Cache).
 - Weitere Funktionen: Duplicate Address Detection (DAD), Neighbor Unreachability Detection (NUD), ...

Replik Routing Beispiel I

Replik Routing Beispiel II

#	Netzwerk	Netzmaske	Interface	Next Hop	Metrik
01	0.0.0.0	/0	Gi0/2	10.0.1.10	10
02	0.0.0.0	/0	Gi0/3	10.0.1.6	20
03	10.0.1.0	/30	Gi0/1		
04	10.0.1.4	/30	Gi0/3		
05	10.0.1.8	/30	Gi0/2		
06	192.0.2.0	/24	Gi0/0		
07	185.252.72.0	/24	Gi0/1	10.0.1.2	
08	185.252.73.0	/24	Gi0/1	10.0.1.2	

- ▶ IP-Paket an $192.0.2.10 \rightarrow \text{direkte Route 06}$ wird zur Weiterleitung gewählt.
- ightharpoonup Ermittlung der MAC-Adresse zur Ziel-IP-Adresse 192.0.2.10.

Replik Routing Beispiel III

#	Netzwerk	Netzmaske	Interface	Next Hop	Metrik
01	0.0.0.0	/0	Gi0/2	10.0.1.10	10
02	0.0.0.0	/0	Gi0/3	10.0.1.6	20
03	10.0.1.0	/30	Gi0/1		
04	10.0.1.4	/30	Gi0/3		
05	10.0.1.8	/30	Gi0/2		
06	192.0.2.0	/24	Gi0/0		
07	185.252.72.0	/24	Gi0/1	10.0.1.2	
80	185.252.73.0	/24	Gi0/1	10.0.1.2	

- ightharpoonup IP-Paket an 185.252.72.20 ightharpoonup Gateway Route 07 wird zur Weiterleitung gewählt.
- ightharpoonup Das Gateway 10.0.1.2 ist über die direkte Route 03 erreichbar.
- ightharpoonup ightharpoonup Ermittlung der MAC-Adresse zur IP-Adresse des Gateways 10.0.1.2.

ARP Funktionsweise

- ► Host A $(IPv4_A, MAC_A)$ möchte mit Host B $(IPv4_B, MAC_B)$ kommunizieren. Host B ist über eine direkte Route erreichbar.
- ► Host A muss nun die Hardware Adresse zur IP Adresse IPv4_B von Host B ermitteln.
- ► Host A sendet dazu einen ARP Request als Schicht 2 Broadcast ins Netzwerk: "Who has $IPv4_B$? Tell $IPv4_A$ "!
- Host B erkennt, dass die Frage an ihn gerichtet ist und antwortet mit seiner Hardware Adresse einem ARP Response als Schicht 2 Unicast an Host A: "IPv4_B is at MAC_{R} ".
- Host A empfängt den Response von Host B und speichert die Information (Zuordnung IPv4_B zu MAC_B) in seinem Neighbor Cache.
 - ► Aus Effizienzgründen tut Host B dies beim Empfang des ARP Requests ebenso (Zuordnung $IPv4_A$ zu MAC_A ist im Request enthalten).

ARP Beispiel I

ARP Beispiel II

ARP Beispiel III

192.0.2.1 is at 00:00:5E:00:53:01

ARP Beispiel IV

192.0.2.1 is at 00:00:5E:00:53:01

ARP Nachricht Einbettung

ARP Nachrichtenformat I

 Anmerkung: ARP Nachrichtenformat für die Verwendung von MAC- und IPv4-Adressen.

ARP Nachrichtenformat II

- Hardware Address Type
 - Verwendete Netzwerktechnologie (z. B. 0x0001 für Ethernet) und damit die Schicht-2-Adrese (z. B MAC-Adresse).
- ► Protocol Address Type
 - Verwendetes Schicht-3-Protokoll (z. B. 0x0800 für IPv4) und damit die Schicht-3-Adrese (z. B IPv4-Adresse).
- ► Hardware Address Length
 - Länge der Schicht-2-Adresse (z. B. 6 Bytes für MAC-Adressen).
- Protocol Address Length
 - Länge der Schicht-3-Adresse (z. B. 4 Bytes für IPv4-Adressen).

ARP Nachrichtenformat III

- Opcode
 - ▶ 0x0001 für einen ARP Request, 0x0002 für einen ARP Response.
- ► Sender Hardware/Protocol Address
 - ► Schicht-2- und Schicht-3-Adresse des Senders einer ARP Nachricht.
- ► Target Hardware/Protocol Address
 - ightharpoonup Schicht-2- und Schicht-3-Adresse des Ziels einer ARP Nachricht ightarrow die Target Hardware Address ist im ARP Request auf 0 gesetzt.

ARP Request Beispiel

ARP Response Beispiel

Replik Routing Beispiel IV

Replik Routing Beispiel V

#	Netzwerk	Netzmaske	Interface	Next Hop	Metrik
01	::	/0	Gi0/2	fc01::2	10
02	::	/0	Gi0/3	fc02::2	20
03	fc03::	/64	Gi0/1		
04	fc02::	/64	Gi0/3		
05	fc01::	/64	Gi0/2		
06	2001:db8::	/64	Gi0/0		
07	2a01:2341::	/64	Gi0/1	fc03::2	
08	2a01:2342::	/64	Gi0/1	fc03::2	

- ▶ IP-Paket an 2001:db8::10 → direkte Route 06 wird zur Weiterleitung gewählt.
- $\blacktriangleright \ \to \ \mathsf{Ermittlung} \ \mathsf{der} \ \mathsf{MAC}\text{-}\mathsf{Adresse} \ \mathsf{zur} \ \mathsf{Ziel}\text{-}\mathsf{IP}\text{-}\mathsf{Adresse} \ \mathsf{2001}\text{:}\mathsf{db8}\text{::}10.$

Replik Routing Beispiel VI

#	Netzwerk	Netzmaske	Interface	Next Hop	Metrik
01	::	/0	Gi0/2	fc01::2	10
02	::	/0	Gi0/3	fc02::2	20
03	fc03::	/64	Gi0/1		
04	fc02::	/64	Gi0/3		
05	fc01::	/64	Gi0/2		
06	2001:db8::	/64	Gi0/0		
07	2a01:2341::	/64	Gi0/1	fc03::2	
80	2a01:2342::	/64	Gi0/1	fc03::2	

- ightharpoonup IP-Paket an 2a01:2341::20 ightharpoonup Gateway Route 07 wird zur Weiterleitung gewählt.
- ightharpoonup Das Gateway fc03::2 ist über die direkte Route 03 erreichbar.
- ightharpoonup ightharpoonup Ermittlung der MAC-Adresse zur IP-Adresse des Gateways fc03::2.

NDP Funktionsweise

- ► Host A (*IPv*6_A, *MAC*_A) möchte mit Host B (*IPv*6_B, *MAC*_B) kommunizieren. Host B ist über eine direkte Route erreichbar.
- ► Host A muss nun die Hardware Adresse zur IPv6 Adresse *IP*v6_B von Host B ermitteln.
- ► Host A sendet dazu eine Neighbor Solicitation Nachricht als Multicast ins Netzwerk: "Neighbor Solicitation for *IPv*6_B from *MAC*_A"!
- ► Host B erkennt, dass die Frage an ihn gerichtet ist und antwortet mit seiner Hardware Adresse einer Neighbor Advertisement Nachricht als Unicast an Host A: "IPv6_B is at MAC_B".
- ► Host A empfängt den Response von Host B und speichert die Information (Zuordnung *IPv*6_B zu *MAC*_B) in seinem Neighbor Cache.
 - ▶ Aus Effizienzgründen tut Host B dies beim Empfang des ARP Requests ebenso (Zuordnung *IPv*6_A zu *MAC*_A ist in der Neighbor Solicitation Nachricht enthalten).

23 | 30

NDP Beispiel I

NDP Beispiel II

2001:db8::1 is at 00:00:5E:00:53:01

NDP Beispiel III

2001:db8::1 is at 00:00:5E:00:53:01

NDP Nachricht Einbettung

NDP Neighbor Solicitation Beispiel

NDP Neighbor Advertisement Beispiel

