Основе математичког моделирања

Бацање атомске бомбе Б-2

Студенти: Петар Самарџић, 010/21 Маја Цветковић, 010/19

Професор: др. Зорица Дражић

22.05.2024.

Садржај

1	Модел		2
	1.1	Опис проблема: Бацање атомске бомбе Б-2	2
	1.2	Почетне претпоставке	
2	Рачун		
	2.1	Анализа података	4
		Тренутак избацивања бомбе	
	2.3		
	2.4	Тренутак у ком ударни талас сустигне авион	9
	2.5		
3	Резултати		
	3.1	Опис програма	12
		Резултати за дате удазне податке	

1

Модел

1.1 Опис проблема: Бацање атомске бомбе Б-2

Бомбардер Б-2 лети на висини од $10000\,\mathrm{m}$ брзином $900\,\frac{\mathrm{km}}{\mathrm{h}}$ и у тренутку $t=0\,\mathrm{s}$ креће у вертикални заокрет пречника $1000\,\mathrm{m}$, након којег се враћа у супротном смеру истом брзином.

У неком тренутку $t_1>0$ он избацује атомску бомбу која слободно пада и експлодира на земљи правећи ударни талас брзине $350\,\frac{\mathrm{m}}{\mathrm{s}}$.

Израчунати у ком тренутку и на којој даљини од циља ударни талас стиже авион и одредити оптимално t_1 тако да та даљина буде што већа.

1.2 Почетне претпоставке

Приликом израде математичких модела, физичари често уклањају детаље из стварног света који имају мали утицај на коначне резултате ради поједностављења. Почнимо од претпоставке да је Земља равна и да гравитација делује надоле, нормално на равно тло у свим тачкама. Како је полупречник Земље $R_e=6371\,\mathrm{km}$ [1], закривљење ће бити минимално. Друга претпоставка је да јачина силе земљине теже не зависи од висине, а за гравитациону константу узимамо вредост $g=9.81\,\mathrm{m\over s^2}$ [1]. Ако израчунамо вредност константе на висини $10\,\mathrm{km}$ по формули:

$$g_h = g \left(\frac{R_e}{R_e + h}\right)^2,$$

добијамо вредност $g_h \approx 9.78 \, \frac{\text{m}}{\text{s}^2}$. С обзиром на то да и на површини планете гравитационо убрзање варира у интервалу [9.78, 9.83] $\frac{\text{m}}{\text{s}^2}$ [1] и да је у питању

релативна грешка од свега $\approx 0.3\%$, претпоставка о константној вредности у целом моделу је оправдана.

Цар-бомба (надимак за РДС-202 хидрогенску бомбу) је најјаче и највеће нуклеарно оружје икад детонирано. Ако узмемо у обзир њене димензије [2], дужину од 8 m и пречник 2 m, атомску бомбу из нашег модела можемо посматрати као материјалну тачку. Оправдавамо ово тиме што је ред величина које се јављају у проблему значајно већи.

Четврта претпоставка биће да се све дешава у вакууму, тј. да не постоји отпор средине. Како авион врши вертикални заокрет, а бомба слободно пада, можемо цео проблем посматрати у две димензије. Ударни талас након експлозије бомбе се простире сферно са центром у месту где је бомба пала на тло. На крају, претпоставимо да у сваком тренутку можемо да измеримо положај авиона и бомбе.

Рачун

2.1 Анализа података

Рачунамо да је тренутак t=0 s тренутак када авион креће полукружни маневар. Такође, поставићемо координатни систем тако да је координатни почетак у положају авиона на почетку полукружног маневра, x-оса хоризонтална, а y-оса вертикална. Уведимо следеће ознаке за дате вредности:

- $h = 10000 \,\mathrm{m};$
- $v_a = 900 \, \frac{\mathrm{km}}{\mathrm{h}} = 250 \, \frac{\mathrm{m}}{\mathrm{s}}$ (да бисмо $\frac{\mathrm{km}}{\mathrm{h}}$ пребацили у $\frac{\mathrm{m}}{\mathrm{s}}$, делимо са 3.6);
- $r = \frac{1000}{2}$ m = 500 m (половимо јер нам је дат пречник, а ми ћемо у рачуну користити полупречник);
- $-v_t = 350 \, \frac{\text{m}}{\text{s}}.$

На слици 2.1 се налази визуална репрезентација проблема и датих података.

За почетак, како се ударни талас простире константном брзином, тражење максималног растојања од места детонације до места у ком ударни талас сустигне авион може се свести на проблем тражења времена протеклог између та два тренутка, јер су те две вредности везане линеарним коефицијентом v_t . Сходно томе, у даљем тексту ће се решавати проблем тражења управо тог времена.

Означимо са \tilde{t} тренутак у ком авион завршава полукружни маневар. Приметимо следеће: за наша израчунавања је битно само како се авион кретао током и после избацивања бомбе, не и пре. Стога није од значаја да ли авион избаци бомбу у тренутку $t=\tilde{t}$ или у било ком тренутку $t>\tilde{t}$, јер се од тренутка \tilde{t} креће хоризонтално у истом смеру.

Са тиме на уму, довољно је да урадимо следеће: представићемо време протекло од детонације до тренутка у ком ударни талас стиже авион као функцију од тренутка у ком је избачена бомба, а затим ћемо наћи максимум те функције на интервалу $t_1 \in [0, \tilde{t}]$. Испоставиће се да је та функција непрекидна и стога, пошто је $[0, \tilde{t}]$ компактан, знамо да та функција достиже максимум.

Слика 2.1: Конфигурација проблема

2.2 Тренутак избацивања бомбе

Израчунајмо прво вредност \tilde{t} . Авион брзином v_a пређе пут $r\pi$ (обим полукруга). Дакле, за тај маневар му је потребно $\tilde{t}=\frac{r\pi}{v_a}=2\pi$ s. Означимо са t_1 тренутак у коме је избачена бомба. Израчунајмо угао φ_1 на

Означимо са t_1 тренутак у коме је избачена бомба. Израчунајмо угао φ_1 на полукружници који је авион пребрисао до тог тренутка. Авион је прешао пут $v_a t_1$, и тај пут одогвара кружном луку дужине $r \varphi_1$. Изједначавањем ова два израза закључујемо да је $\varphi_1 = \frac{v_a t_1}{r}$.

Сада желимо да нађемо брзину и положај авиона у тренутку t_1 , јер ће нам

то бити почетни услови за кретање бомбе. Авион се (у релевантном интервалу) креће по кружници полупречника r чији центар има координате (0,r). Положај авиона у зависности од пребрисаног угла је $(r\sin\varphi, r(1-\cos\varphi))$, па убацивањем φ_1 добијамо да је почетни положај бомбе:

$$(x_1, y_1) = (r \sin \varphi_1, r(1 - \cos \varphi_1)).$$

Што се тиче брзине, знамо да је њен интензитет једнак $v_a=250\,\frac{\rm m}{\rm s}$, док правац добијамо тако што вектор положаја авиона у односу на центар кружнице заротирамо за 90° (пошто се авион креће по кружници). Стога, у t_1 ће бомба имати брзину:

$$(v_{1x}, v_{1y}) = (v_a \cos \varphi_1, v_a \sin \varphi_1).$$

Слика 2.2: Тренутак избацивања бомбе

2.3 Тренутак детонације

Означимо са t_2 тренутак у ком бомба експлодира. Да бисмо га нашли морамо да видимо како се бомба креће после t_1 . Она се сада налази само у пољу земљине гравитације, па је њено кретање одређено диференцијалном једначином:

$$m\vec{a} = m\vec{g}$$
,

где је m маса бомбе, \vec{a} вектор убрзања бомбе (функција од времена), а \vec{g} вектор гравитационог убрзања на земљи (9.81 $\frac{\text{m}}{\text{s}^2}$, усмерено вертикално на доле). Прво скратимо m са обе стране:

$$\vec{a} = \vec{q}$$

а затим поделимо ову векторску диференцијалну једначину на две (једна за сваку координату):

$$x_{b}'' = 0$$

$$y_b'' = -g,$$

где су x_b и y_b редом x и y координате бомбе (такође су функције од времена). Проинтегралимо обе једначине једном:

$$x'_{b} = C_{1}$$

$$y_b' = C_2 - gt.$$

Како су x_b' и y_b' брзине бомбе дуж одговарајућих координата, кад убацимо почетне услове $x_b'(t_1)=v_{1x}$ и $y_b'(t_1)=v_{1y}$ добијамо:

$$x'_{b} = v_{1x}$$

$$y_b' = v_{1y} - g(t - t_1).$$

Кад још једном проинтегралимо добијамо:

$$x_b = C_3 + v_{1x}t$$

$$y_b = C_4 + v_{1y}t - \frac{g(t-t_1)^2}{2}.$$

Како су x_b и y_b координате бомбе, кад убацимо почетне услове $x_b(t_1) = x_1$ и $y_b(t_1) = y_1$ добијамо:

$$x_b = x_1 + v_{1x}(t - t_1)$$

$$y_b = y_1 + v_{1y}(t - t_1) - \frac{g(t - t_1)^2}{2}.$$

За визуелизацију кретања система вратити се на слику 2.1.

Бомба ће се овако кретати док се не судари са земљом, тј. док јој y координата не постане -h. Дакле, треба да решимо квадратну једначину:

$$y_1 + v_{1y}(t_2 - t_1) - \frac{g(t_2 - t_1)^2}{2} = -h.$$

Прво пребацујемо све на исту страну:

$$\frac{g}{2}(t_2 - t_1)^2 - v_{1y}(t_2 - t_1) - (y_1 + h) = 0$$

а затим, третирајући ово као квадратну једначину по $t_2 - t_1$, добијамо:

$$t_2 - t_1 = \frac{v_{1y} \pm \sqrt{v_{1y}^2 + 2g(y_1 + h)}}{g}.$$

Добили смо два решења и питање је које да узмемо. Приметимо да је:

$$2g(y_1+h) \ge 2gh > 0,$$

па је:

$$\frac{v_{1y} - \sqrt{v_{1y}^2 + 2g(y_1 + h)}}{g} < \frac{v_{1y} - \sqrt{v_{1y}^2}}{g} = \frac{v_{1y} - v_{1y}}{g} = 0.$$

Дакле, решење са минусом имплицира да је $t_2 < t_1$. Ово је немогуће, с обзиром на то да бомба не може ударити земљу пре него што је избачена из авиона (математичко објашњење је да се бомба креће по изведеним једначинама само за $t > t_1$, па је то додатна рестрикција коју смо увели за t_2). Због тога одбацујемо негативно решење и добијамо

$$t_2 = t_1 + \frac{v_{1y} + \sqrt{v_{1y}^2 + 2g(y_1 + h)}}{q}.$$

Убацивањем t_2 у једначине кретања добијамо координате места експлозије бомбе:

$$(x_2, y_2) = (x_1 + \frac{v_{1x}(v_{1y} + \sqrt{v_{1y}^2 + 2g(y_1 + h)})}{g}, -h).$$

2.4 Тренутак у ком ударни талас сустигне авион

Приметимо да је:

$$t_2 = t_1 + \frac{v_{1y} + \sqrt{v_{1y}^2 + 2g(y_1 + h)}}{g} \ge \frac{\sqrt{2gh}}{g} > 45 \,\mathrm{s} > 2\pi \,\mathrm{s} = \tilde{t}$$

(за претпоследњу неједнакост убацимо дате податке). Дакле, авион ће завршити полукружни сегмент кретања још пре него што се бомба детонира па, због релевантног домена, у овом делу задатка можемо сматрати да је положај авиона

$$(x_a(t), y_a(t)) = (-v_a(t - \tilde{t}), 2r),$$

јер се након полукружног сегмента (тј. након тренутка \tilde{t}) авион креће на висини 2r (од координатног почетка) константном брзином v_a дуж негативног смера x-oce.

Означимо са t_3 време које протекне од детонације бомбе до тренутка у ком ударни талас сустигне авион (ово имплицира да t_3 не сме имати негативну вредност!). Положај авиона у тренутку сустизања је онда:

$$(x_3, y_3) = (x_a(t_2 + t_3), y_a(t_2 + t_3)) = (-v_a(t_2 + t_3 - \tilde{t}), 2r).$$

Ми знамо да се за време t_3 ударни талас кретао од (x_2, y_2) до (x_3, y_3) , и то константном брзином v_t (слика 2.3), па за t_3 важи:

$$v_t t_3 = \sqrt{(x_3 - x_2)^2 + (y_3 - y_2)^2}.$$

Квадрирањем обе стране и убацивањем формула за координате (осим x_2 , она је компликована за баратање сада, а не зависи од t_3) добијамо:

$$v_t^2 t_3^2 = (-v_a(t_2 + t_3 - \tilde{t}) - x_2)^2 + (2r + h)^2.$$

Пребацивањем свега на једну страну и груписањем добијамо:

$$(v_t^2 - v_a^2)t_3^2 - (2v_a(x_2 + v_a(t_2 - \tilde{t})))t_3 - ((x_2 + v_a(t_2 - \tilde{t}))^2 + (h + 2r)^2) = 0.$$

Ово је квадратна једачина по t_3 , па имамо два решења. Питање је које је наше. Уведимо ознаке k_i за коефицијенте, ради краћег записа:

$$k_2 t_3^2 - k_1 t_3 - k_0 = 0.$$

Како је $v_t > v_a$, имамо да важи $k_2 = v_t^2 - v_a^2 > 0$. Затим, приметимо да је:

$$k_0 = (x_2 + v_a(t_2 - \tilde{t}))^2 + (h + 2r)^2 \ge (h + 2r)^2 > 0.$$

Даље, решење наше квадратне једначине је:

$$t_3 = \frac{k_1 \pm \sqrt{k_1^2 + 4k_2k_0}}{2k_2}.$$

Приметимо да за негативно решење важи:

$$\frac{k_1 - \sqrt{k_1^2 + 4k_2k_0}}{2k_2} < \frac{k_1 - \sqrt{k_1^2}}{2k_2} \le 0.$$

Како знамо да t_3 не сме бити негативно, овим одбацујемо то решење и закључујемо да је:

$$t_3 = \frac{k_1 + \sqrt{k_1^2 + 4k_2k_0}}{2k_2}.$$

Слика 2.3: Тренутак у ком ударни талас сустигне авион

2.5 Резиме

Током израде смо уводили разне вредности од којих нам зависи крајње решење: \tilde{t} , φ_1 , x_1 , y_1 , v_{1x} , v_{1y} , t_2 , x_2 , y_2 , x_3 , y_3 , k_2 , k_1 и k_0 . Међутим, једино од чега они заправо зависе је t_1 ; неке везе нису директно дате али увек се можемо вратити до t_1 (нпр. x_1 је уведено као функција од φ_1 , али је φ_1 функција од t_1). Дакле, враћањем смена у коначном решењу можемо добити t_3 као функцију од t_1 . Штавише, у увођењу смена смо се користили само елементарним функцијама: сабирање, одузимање, множење, дељење, квадрирање, кореновање, синус и косинус. Како су елементарне функције непрекидне, као и композиција непрекидних, ми знамо да је крајња функција $t_3(t_1)$ исто непрекидна. Због дискусије у одељку 2.1 нас занима максимум функције на компактном домену, а ми из непрекидности знамо да се он заиста и достиже.

Резултати

3.1 Опис програма

Прво смо у одвојеном фајлу написали улазне податке h, v_a , r, v_t и g. По жељи корисника они могу да се мењају нпр. да бисмо видели шта би се десило на већој почетној висини, или чак на другој планети. Напоменућемо да смо у анализи задатка користили дате вредности како бисмо доносили одређене закључке (нпр. знак од k_2) за које сматрамо да су неопходни за једноставност рада. Општи случај би био компликованији за дискусију (нпр. кад би било $v_a \gg v_t$, ударни талас не би ни дошао до авиона; кад би било $v_a \to 0$, ударни талас би стигао до авиона пре него што он заврши полукруг, ...). Да би се добили тачни резултати за произвољне улазне податке, довољни услови би били $\tilde{t} = \frac{r\pi}{v_a} \le \sqrt{\frac{2h}{g}}$ (услов да бомба не експлодира пре него што авион заврши полукружни маневар) и $v_t > v_a$ (услов за знак k_2 , физички значај услова је да авион "не побегне" таласу).

Главна функција прима као аргумент име фајла са улазним подацима које потом учитава. Затим, користећи једначине изведене у прошлој глави, креира анонимне функције за потребне међукораке и за t_3 , све у зависности од t_1 . На крају користи уграђену функцију fminbnd [3] да би нашла за које t_1 функција $-t_3$ достиже минимум, односно t_3 максимум. Програм прво исцртава два графика:

- 1) зависност t_3 од t_1 на релевантном домену $[0, \tilde{t}];$
- 2) зависност t_3 од φ_1 на релевантном домену $[0,\pi]$,

и потом враћа четири вредности:

1) t_1 *opt* - вредност t_1 за коју t_3 достиже максимум;

- 2) fi_1_opt оптимална вредност φ_1 (сматрамо да је лакше визуализовати резултате преко φ_1 него преко t_1);
- 3) t 3 opt максимална вредност t_3 ;
- 4) d_opt максимална дистанца од места детонације до места где ударни талас сустигне авион.

3.2 Резултати за дате улазне податке

Када у програм убацимо вредности које су нам дате у тексту задатка добијамо зависности са слике 3.1.

Слика 3.1: Графици

Оптимална вредност за t_1 је $1.5610\,\mathrm{s}$ (толеранција итеративног алгоритма функције fminbnd је 10^{-4} [3], па је вредност t_1 дата до те цифре), тј. $0.78050\,\mathrm{rad}$ (близу 45°) за φ_1 . Ови улази нам дају максималне вредности за t_3 и d (споменуту дистанцу), редом $283.56\,\mathrm{s}$ и $99247\,\mathrm{m}$.

Литература

- [1] NASA, Earth Fact Sheet, Објављено 11.01.2024, Приступљено 21.05.2024, https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html
- [2] Atomic Heritage Foundation, Tsar Bomba Nuclear Museum Atomic Heritage Foundation, Објављено 08.08.2014, Приступљено 21.05.2024, https://ahf.nuclearmuseum.org/ahf/history/tsar-bomba/
- [3] MathWorks, *MATLAB fminbnd*, Објављено 27.01.2024, Приступљено 20.05.2024, https://www.mathworks.com/help/matlab/ref/fminbnd.html

Изјава о ауторству

Потписани (име, презиме, број индекса)

Петар Самарџић, 010/21

Маја Цветковић, 010/19

Изјављујемо

да је семинарски рад из предмета Основе математичког моделирања под насловом

Бацање атомске бомбе Б-2

- резултат сопственог истраживачког рада,
- да предложен рад у целини ни у деловима није био предложен за добијање било које оцене/испуњење испитне обавезе, према студијским програмима других (високо)школских установа,
- да су резултати коректно наведени и
- да нисам кршио/ла ауторска права и користио интелектуалну својину других лица.

Потписи студената

У Београду, <u>20.05.2024</u>