

In-Context Deep Learning via Transformer Models

imin Wu*[†] Maojiang Su*[†] Jerry Yao-Chieh Hu*[†] Zhao Song[§] Han Liu

{wwm,maojiangsu2030,jhu}@u.northwestern.edu; magic.linuxkde@gmail.com; hanliu@northwestern.edu

†Northwestern University;

University of California Berkeley

Summary: Goals and Contributions

Goals: Investigate the transformer's capability for in-context learning (ICL) to simulate the training process of deep models.

- An explicit construction of a (2N+4)L-layer transformer capable of simulating L gradient descents of an N-layer ReLU network by ICL.
- The theoretical guarantees for the approximation within any given error and the convergence of the ICL gradient descent.
- Extend the analysis to Softmax-based transformers.
- Validate the findings for multiple-layer neural networks.

Preliminary: Transformer

Assume the input sequence is $H \in \mathbb{R}^{D \times n}$.

ReLU-Attention Layer: An M-head ReLU-attention layer with parameters $\theta = \{Q_m, K_m, V_m\}_{m \in [M]}$ outputs

$$\operatorname{Attn}_{\theta}(H) := H + \frac{1}{n} \sum_{m=1}^{M} (V_m H) \cdot \sigma((Q_m H)^{\top}(K_m H)),$$

where $Q_m, K_m, V_m \in \mathbb{R}^{D \times D}$ and $\sigma(\cdot)$ is ReLU activation function.

MLP Layer: An d'-hidden dimensions MLP layer with parameters $\theta = (W_1, W_2)$ outputs

$$MLP_{\theta}(H) := H + W_2 \sigma(W_1 H)$$

, where $W_1 \in \mathbb{R}^{d' \times D}$, $W_2 \in \mathbb{R}^{D \times d'}$ and $\sigma(\cdot) : \mathbb{R} \to \mathbb{R}$ is element-wise ReLU activation function.

Transformer: An L-layer transformer with parameters $\theta = \{\theta_{\rm Attn}, \theta_{\rm MLP}\}$ outputs

$$\mathrm{TF}^{\mathrm{L}}_{ heta}(H) := \mathrm{MLP}_{ heta_{\mathrm{mlp}}^{(L)}} \circ \mathrm{Attn}_{ heta_{\mathrm{attn}}^{(L)}} \ldots \mathrm{MLP}_{ heta_{\mathrm{mlp}}^{(1)}} \circ \mathrm{Attn}_{ heta_{\mathrm{attn}}^{(1)}}(H),$$

where $\theta=\{\theta_{\mathrm{Attn}},\theta_{\mathrm{MLP}}\}$ consists of Attention layers $\theta_{\mathrm{Attn}}=\{(Q_m^l,K_m^l,V_m^l)\}_{l\in[L],m\in[M^l]}$ and MLP layers $\theta_{\mathrm{MLP}}=\{(W_1^l,W_2^l)\}_{l\in[L]}$.

Problem Setting: In-Context Gradient Descent (ICGD)

Let $\epsilon > 0$ and $L \geq 1$. Consider a model $f(w,x) : \mathbb{R}^{D_w} \times \mathbb{R}^d \to \mathbb{R}^d$ parameterized by $w \in \mathbb{R}^{D_w}$. Given a dataset $\mathcal{D}_n \coloneqq \{(x_i,y_i)\}_{i\in[n]} \stackrel{\mathsf{iid}}{\sim} \mathbb{P}$ with $(x_i,y_i) \in \mathbb{R}^d \times \mathbb{R}^d$, define the empirical risk function:

$$\mathcal{L}_n(w) := \frac{1}{2n} \sum_{i=1}^n \ell(f(w, x_i), y_i),$$

where $\ell: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is a loss function. Let $\mathcal{W} \subseteq \mathbb{R}^{D_w}$ be a closed domain, and $\operatorname{Proj}_{\mathcal{W}}$ denote the projection onto \mathcal{W} . The problem of "ICGD on model $f(w,\cdot)$ " is to find a transformer \mathcal{T} with L blocks, each approximating one step of gradient descent using T layers. For any input $H^{(0)} \in \mathbb{R}^{D \times (n+1)}$, the transformer approximates L gradient descents. Specifically, we consider f(w,x) as **N-layer neural networks**.

One Step ICGD with (2N+4)-layer Transformer

This illustration presents the backpropagation process within an ICGD in a transformer model with 2N+4 layers. It simulates a single gradient descent step for an N-layer neural network, trained with loss \mathcal{L}_n and datasets $\{(x_i,y_i)\}_{i\in[n]}$. The term $p_i(j)$ denotes the output after the j-th layer for input x_i . The terms $r_i'(j)$, $u(p_i(N),y_i)$, and $s_i(j)$ are intermediate gradient terms of gradient $\nabla \mathcal{L}_n(w)$ from the chain rule. The expression $\operatorname{Proj}_{\mathcal{W}}(w-\eta\nabla\mathcal{L}_n(w))$ shows one gradient descent step. Here, η is the learning rate, and \mathcal{W} is the bounded domain for the N-layer NN.

Results 1: ICGD on NN with ReLU-Transformer

(2N+4)L-layer ReLU-transformer is capable of simulating L gradient descents of an N-layer NN by ICL under any given approximation error.

Theorem 1. Fix any $B_v, \eta, \epsilon > 0, L \geq 1$. For any input sequences, there exist upper bounds B_x, B_y such that for any $i \in [n]$, $\|y_i\|_2 \leq B_y$, $\|x_i\|_2 \leq B_x$. Assume functions r(t), r'(t) and u(t,y)[k] are $L_r, L_{r'}, L_l$ -Lipschitz continuous. Suppose $\mathcal W$ is a closed domain such that for any $j \in [N-1]$ and $k \in [K]$,

 $\mathcal{W} \subset \{ w = [v_{j_k}] \in \mathbb{R}^{D_N} : ||v_{j_k}||_2 \le B_v \},\$

and $\operatorname{Proj}_{\mathcal{W}}$ project w into bounded domain \mathcal{W} . Assume $\operatorname{Proj}_{\mathcal{W}} = \operatorname{MLP}_{\theta}$ for some MLP layer with hidden dimension D_w parameters $\|\theta\| \leq C_w$. If functions r(t), r'(t) and u(t,y)[k] are C^4 -smoothness, then for any $\epsilon > 0$, there exists a transformer model $\operatorname{NN}_{\theta}$ with (2N+4)L hidden layers consists of L neural network blocks $\operatorname{TF}_{\theta}^{N+2} \circ \operatorname{EWML}_{\theta}^{N} \circ \operatorname{TF}_{\theta}^{2}$,

$$NN_{\theta} := TF_{\theta}^{N+2} \circ EWML_{\theta}^{N} \circ TF_{\theta}^{2},$$

such that the heads number M^l , parameter dimensions D^l , and the parameter norms B_{θ^l} suffice

$$\max_{l \in [(2N+4)L]} M^l \le \widetilde{O}(\epsilon^{-2}), \ \max_{l \in [(2N+4)L]} D^l \le O(NK^2) + D_w,$$

$$\max_{l \in [(2N+4)L]} B_{\theta^l} \le O(\eta) + C_w + 1,$$

where $O(\cdot)$ hides the constants that depend on d, K, N, the radius parameters B_x, B_y, B_v and the smoothness of r and ℓ . And this neural network such that for any input sequences $H^{(0)}$, $\mathrm{NN}_{\theta}(H^{(0)})$ implements L steps in-context gradient descent: For every $l \in [L]$, the (2N+4)l-th layer outputs $h_i^{((2N+4)l)} = [x_i; y_i; \bar{w}^{(l)}; \mathbf{0}; 1; t_i]$ for every $i \in [n+1]$, and approximation gradients $\bar{w}^{(l)}$ such that

$$\bar{w}^{(l)} = \operatorname{Proj}_{\mathcal{W}}(\bar{w}^{(l-1)} - \eta \nabla \mathcal{L}_n(\bar{w}^{(l-1)}) + \epsilon^{(l-1)}),$$

where $\bar{w}^{(0)} = \mathbf{0}$, and $\|\epsilon^{(l-1)}\|_2 \leq \eta \epsilon$ is an error term.

Result 2: ICGD on NN with Softmax-Transformer

There exists a Softmax-transformer to simulate L gradient descents of an N-layer NN by ICL under any given approximation precision.

Theorem 2. Fix any $B_w, \eta, \epsilon > 0, L \geq 1$. For any input sequences, their exist upper bounds B_x, B_y such that for any $i \in [n]$, $\|y_i\|_{\max} \leq B_y$, $\|x_i\|_{\max} \leq B_x$. Suppose $\mathcal W$ is a closed domain such that $\|w\|_{\max} \leq B_w$ and $\operatorname{Proj}_{\mathcal W}$ project w into bounded domain $\mathcal W$. Assume $\operatorname{Proj}_{\mathcal W} = \operatorname{MLP}_{\theta}$ for some MLP layer. Define $l(w,x_i,y_i)$ as a loss function with L-Lipschitz gradient. Let $\mathcal L_n(w) = \frac{1}{n} \sum_{i=1}^n \ell(w,x_i,y_i)$ denote the empirical loss function, then there exists a Softmax-transformer $\operatorname{NN}_{\theta}$, such that for any input sequences $H^{(0)}$, $\operatorname{NN}_{\theta}(H^{(0)})$ implements L steps incontext gradient descent on $\mathcal L_n(w)$: For every $l \in [L]$, the 4l-th layer outputs $h_i^{(4l)} = [x_i; y_i; \bar w^{(l)}; \mathbf 0; 1; t_i]$ for every $i \in [n+1]$, and approximation gradients $\bar w^{(l)}$ with $\bar w^{(0)} = \mathbf 0$ such that

 $\bar{w}^{(l)} = \operatorname{Proj}_{\mathcal{W}}(\bar{w}^{(l-1)} - \eta \nabla \mathcal{L}_n(\bar{w}^{(l-1)}) + \epsilon^{(l-1)}),$

where $\|\epsilon^{(l-1)}\|_2 \leq \eta \epsilon$ is an error term.

Numerical Studies

Performance of ICL in ReLU-Transformer and Softmax-Transformer: ICL learns 6-layer NN and achieves R-squared values comparable to those from training with prompt samples.

