

User Profiling in Video Games: From Identification to Private Data Inference

Pier Paolo Tricomi

tricomi@math.unipd.it

University of Padua, Italy
18th October 2023

User Profiling?

Create a profile of your users, for:

- Customers analytics
- Marketing strategies
- Custom experience
- Sell data (!)
- ..

The problem (1)

3.09 billion people on Earth are gamers (2022)Video game market generated 200\$ billions (2022) (Amazon + Meta + Google)

The problem (2)

A lot of money involved -> Scams, account take over Many people involved -> Profiling, malicious activities

What to do?

Problems can be reduced uniquely Recognizing/Identifying a player:

- Create a game "fingerprint"
- Ban harmful players from all their account
- Create new "biometric" authentication system

The fingerprint can be the gamer play-style!

Identification intuition - Movement Action & Camera

The Identification Framework

Player Identification – Dota 2 Dataset Creation

- Survey to collect players and their data (matches replays)
- 50 players, 100 matches per player, and 5000 matches in total (balanced dataset)
- Sequences of states
 (cursor and camera positions)
 and actions (attack, move...)
- Sequences of 2 minutes

Туре	Features				
Cursor, Camera Cell	X_mean, X_std, X_changes				
	Y_mean, Y_std, Y_changes				
Camera Vector	X_mean, X_std, X_changes				
	Y_mean, Y_std, Y_changes				
	Z_mean, Z_std, Z_changes				
Action: Move_to_position	n_occurs, X_mean, X_std, Y_mean, Y_std				
Action: Move_to_target	n_occurs				
Action: Attack_move	n_occurs				
Action: Attack_target	n_occurs				
Action: Cast_position	n_occurs				
Action: Cast_target	n_occurs				
Action: Cast_target_tree	n_occurs				
Action: Cast_no_target	n_occurs				
Action: Hold_position	n_occurs				
Action: Drop_item	n_occurs				
Action: Ping_ability	n_occurs				
Action: Continue	n_occurs				

Features

Player Identification – Preliminary Model

Preliminary Model:

- Two LSTM layers (64 unit each, tanh)
- Fully connected layer (64 unit, ReLU)
- Output: Softmax layer (50 unit)

Categorical Crossentropy Loss function Adam optimizer (learning_rate = 0.001) Batch_size = 256, 100 epochs

Model: "sequential"

Layer (type)	Output Shape	Param #	
lstm (LSTM)	(None, 240, 64)	26112	
lstm_1 (LSTM)	(None, 64)	33024	
dense (Dense)	(None, 64)	4160	
dense_1 (Dense)	(None, 50)	3250	

Total params: 66,546 Trainable params: 66,546 Non-trainable params: 0

Preliminary Model Summary

Player Identification – Model selection (2)

Good generalization, low risk of overfitting Stabilize after ~ 70 epochs

Player Identification – Evaluations

Best model on **Validation Set** (Accuracy = 96.48%, loss = 0.179):

- 256 units both LSTM layers
- 128 units dense layer
- learning rate = 0.001

On test set: accuracy = 96.32%, loss = 0.198

Very <u>high generalization</u>, play-style can be considered "<u>unique</u>"

Using only cursor, camera and move action (**common features**): Accuracy = 95.6%, Loss = 0.162

Player Identification – CS: GO Case Study

50 Players, First 10 minutes, 100 matches each

On test set:

- All Features 91.68% Accuracy
- General Features 85.83% Accuracy

Framework generalizes well!

Recap

Identification is possible...

Data is publicly available...

Mmmhh...

Can we infer more information about a video gamer?

Using Machine Learning to violate the Privacy of Video Gamers

Pier Paolo Tricomi, Lisa Facciolo, Giovanni Apruzzese, Mauro Conti. "Attribute Inference Attacks in Online Multiplayer Video Games: a Case Study on Dota2." CODASPY 2023

More Context (1)

- Video Games (VG) are becoming increasingly popular
 - One of the few industries that are constantly improving their profits
- Some competitive VG are denoted as "E-sports"
 - Examples: Dota2, Fortnite, League of Legends
- Some tournaments of such E-sports have very high prize-pools
 - For Dota2, "The International" had a prize pool of 40M \$ in 2021

More Context (2)

- Such prizes attract a lot of players who "play-to-win" and want to get better...
 - Best way of improving at something? Learn from past mistakes!

...which, in the E-sport ecosystem, it can be easily done via <u>Tracking</u>

<u>Websites</u>

A Tracking Website

A Tracking Website

11 months ago

Last Used

24 minutes ago 3 days ago

Somnambula

Why Public?

It is the playerbase who want the statistics collected by TW to be publicly available!

The reasons are various, e.g.:

- 1. Inspecting the profiles of *other* players can be used to learn some of their tricks...
- 2. ...in turn, by having their own profile publicly accessible, a given player can gain visibility if they perform very well...
- 3. ...such "visibility" can lead to invitations to play in top-teams, or to finding new (good) teammates
- 4. The visibility can come either because other players "inspect" a given player's profile, or because of climbing "public ladders"

All such data is public, OK... so what?

I don't have any problems if others know:

- that I win very often...
- ...or that I regularly play with a given hero...
- ...or that I adopt an aggressive playstyle...
- ...or that I communicate in the chat by using DOTA2 jargon...
- ...or that I frequently play on a given day of the week...

...right?

All such data is public, OK... so what?

I don't have any problems if others know:

- that I win very often...
- ...or that I regularly play with a given hero...
- ...or that I adopt an aggressive playstyle...
- ...or that I communicate in the chat by using DOTA2 jargon...
- ...or that I frequently play on a given day of the week...

Problem: such "availability" exposes E-sports' players to the risk of "Attribute Inference Attacks" (AIA)

Attribute Inference Attack 101

Use Machine Learning to Infer Private Data from Public Data

Assumptions:

- In a specific environment, everyone release some public data
- Some people release their "private" data publicly as well (e.g., age, gender)

Method:

- Train a machine learning model that maps public data to private data
- Use such model to predict private data of people not releasing it

Examples:

- Social Media
- E-commerce/streaming platform ratings

Our Threat Model

Our Assessment (1)

- We proactively assess such a threat, because nobody ever did something similar in the E-Sport ecosystem. We focus on Dota2
- We conduct an informed survey, asking ~500 Dota2 players to provide us with private (non-sensitive) information about their real-life (e.g., age, gender, occupation, whether they buy Dota2 content, and OCEAN personality traits)
- We use the handle (i.e., nickname) of such players to collect their (publicly available) Dota2 in-game statistics from popular TW (opendota).

Our Assessment (2)

- We find a correlation (!) between the players in-game statistics and their real life.
 - Such a finding suggests that AIA can be successful!

Gaming and Private Information correlation was already proved in other genres (mainly RPG)

Our Assessment (3)

- We (ethically) perform diverse AIA: we use 80% of our data to train ML models, and predict the personal attributes of the players included in the remaining 20%.
 - Player Level (P): Consider aggregated statistics of one month
 - Match Level (M): Consider all single matches in the last month
 - Reduced Match Level (M⁻): consider at most 30 **single** matches in the last month
- Why need M & M⁻?

Our Assessment (3)

- We (ethically) perform diverse AIA: we use 80% of our data to train ML models, and predict the personal attributes of the players included in the remaining 20%.
 - Player Level (P): Consider aggregated statistics of one month
 - Match Level (M): Consider all single matches in the last month
 - Reduced Match Level (M⁻): consider at most 30 **single** matches in the last month
- Why need M & M⁻?
 - There are players with 200 matches a month, and others with 5 matches a month
 - If we don't tackle this imbalance, classifier would learn only from players with many matches, "hiding" signal of players with less matches
 - O By putting a limit (e.g., 30 matches) we can obtain higher generalization

Results – Correlation (overview)

Table 8: Significant Correlations at different p-values in our three datasets. Each column reports a personal attribute in \mathcal{A} . Rows denote how many features in each dataset (either \mathcal{M} , $\overline{\mathcal{M}}$ or \mathcal{P}) achieve p below the target α (i.e., the correlations are statistically significant).

Dataset	Metric	α	gend.	age	occ.	purch.	extr.	agree.	consc.	neur.	open
	Cram.	< 0.01	17	17	15	18	13	18	17	16	13
	Cram.	0.05	18	19	15	18	14	19	18	19	14
	Cram.	0.1	18	19	17	19	15	19	19	19	16
M	Spear.	0.01	-	88	-	51	44	52	22	70	36
	Spear.	0.05	=	95		65	57	59	35	85	50
	Spear.	0.1	-	99	-	73	62	67	43	87	59
	Cram.	< 0.01	16	12	12	11	15	10	10	14	8
	Cram.	0.05	18	17	18	15	17	11	14	15	11
M	Cram.	0.1	18	17	18	15	18	14	15	20	13
M	Spear.	0.01	-	95	-	43	53	38	25	60	27
	Spear.	0.05	8.7	104	8 =	63	65	54	40	82	47
	Spear.	0.1	-	108	_	69	73	64	53	90	58
	Cram.	< 0.01	2	1	2	1	0	0	0	1	0
	Cram.	0.05	3	3	3	1	0	0	1	1	0
P	Cram.	0.1	4	3	3	1	0	0	1	2	1
P	Spear.	0.01	22	69	_	11	13	2	0	2	0
	Spear.	0.05		97	_	16	27	13	8	22	4
	Spear.	0.1		110	_	26	47	26	16	44	14

Results - Correlation (detail)

Results – Impact: Simple AIA (Aggregated data)

Table 3: Impact of the *simple* AIA (based on \mathcal{P}) as measured by the F1-score. Rows report the attributes and columns our ML models (boldface denotes the best model for a given attribute).

	LR	DT	RF	NN	Dummy
gender	64.97±10.9	59.71±12.7	50.91±5.33	67.24±13.4	51.62±10.9
age	$40.47{\scriptstyle\pm6.30}$	39.38 ± 8.76	$44.08{\scriptstyle\pm6.17}$	28.06 ± 7.59	32.21 ± 5.70
occup.	$53.23{\scriptstyle\pm7.22}$	$47.44{\scriptstyle\pm8.34}$	$56.08 {\pm} 7.88$	$59.89 {\scriptstyle\pm7.15}$	43.76 ± 9.56
purch.	$32.05{\scriptstyle\pm10.1}$	31.74 ± 4.53	$34.40{\scriptstyle\pm8.20}$	32.17 ± 7.19	$31.20{\scriptstyle\pm6.26}$
open.	$28.94{\scriptstyle\pm5.94}$	$40.76{\scriptstyle\pm6.80}$	32.6 ± 7.77	30.89 ± 7.60	$29.59{\scriptstyle\pm2.04}$
consc.	$26.52 {\pm} 5.65$	33.87 ± 8.78	$34.27{\scriptstyle\pm5.60}$	23.83 ± 8.18	33.23 ± 8.94
extrav.	30.15 ± 7.53	36.16±5.14	$36.49{\scriptstyle\pm5.56}$	28.59 ± 5.95	32.27±7.01
agreeab.	29.46±6.29	$34.11{\scriptstyle\pm8.58}$	33.68 ± 6.25	$24.54 {\pm} 9.43$	33.39 ± 7.35
neurot.	$32.38{\scriptstyle\pm6.56}$	$40.76{\scriptstyle\pm6.80}$	32.6 ± 7.74	31.6 ± 8.30	30.07 ± 4.46

Results – Impact: Sophisticated One-to-One AIA

Idea: Build a match-based classifier, and use more matches to predict user's info **Method:** Majority voting considering multiple matches

Fig. 5: Impact of Sophisticated AIA. The inference is done after postprocessing the predictions of the ML model over multiple matches of the same targeted player (x-axis). The accuracy (x-axis) for all attributes (lines) increases as more matches are considered.

Results – Impact: Indiscriminate Many-to-Many AIA

Idea: The attacker is fine with "not completely wrong" predictions **Method:** Consider both first and second predictions as correct

Table 6: Indiscriminate 'many-to-many' AIA (mid column). Compared to the baseline (cf. Fig. 5), the accuracy substantially increases.

	Sophisticated AIA (30 matches)	Indiscriminate AIA (30 matches)	Improvement		
age	67.15±6.87	89.15 ±4.66	+22.00%		
purch.	68.99±3.81	96.13 ±2.86	+27.14%		
open.	51.30±3.87	77.86±3.39	+26.56%		
consc.	53.24±4.88	80.19 ± 4.12	+26.95%		
extrav.	53.78±3.90	81.51 ±4.40	+27.73%		
agreeab.	50.71±4.65	76.84 ±5.59	+26.13%		
neurot.	55.74±3.88	80.64 ± 4.02	+24.90%		

Results – Impact: Targeted Many-to-One AIA

Idea: The attacker wants to be precise in finding a target, not in finding all of them **Method:** Train and validate models to reach high precision

Fig. 6: Targeted 'many-to-one' AIA. We train our ML models by maximizing the *precision* on a single targeted class. Such AIA are very effective after analyzing 10 matches for each player in the test-set.

So What Now?

• Hard counters? Nope!

The entire E-sport ecosystem would be disrupted

Compromise? Yes!

- The users should be informed that having their in-game statistics to be publicly accessible by TW exposes them to AIA
- Access control rules
- Turn TW into social networks
- All of these require effort and collaboration between VG and TW (not easy!)

So What Now?

- What about other games? Many E-sports share the same ecosystem with Dota2
 - AIA are theoretically possible also in other VG, but a correlation has to be found first

Table 7: Overview of E-Sports VG. Numbers are taken from various sources [17, 20, 32, 52, 59].

	Release Year	Genre	Monthly Players	Concurrent Players Avg	Playtime Avg	Age Range (PEGI rec.)	Tournament Revenue	Exemplary TW	Replay System	Max Players per Lobby
League of Legends	2009	MOBA	127 M	700 K	832 H	11-50 (12+)	\$93 M	lolprofile.net	Yes	10
CS:GO	2012	FPS	34 M	560 K	611H	13-40 (18+)	\$134 M	csgostats.gg	Yes	18
Rocket League	2016	Sport	90 M	25 K	315 H	6-35 (3+)	\$18 M	rltracker.pro	Yes	8
Fortnite	2017	Battle Royale	270 M	4 M	1800 H	6-54 (12+)	\$121 M	fortnitetracker.com	Yes	100
PUBG	2018	Battle Royale	510 M	200 K	356 H	12-55 (16+)	\$45 M	pubg.op.gg	Yes	100
Apex Legends	2019	Battle Royale	118 M	195 K	91 H	8-37 (16+)	\$10 M	apex.tracker.gg	No	60
Dota2	2013	MOBA	3.7 M	450 K	1700H	12-50 (12+)	\$283 M	opendota.com	Yes	10

- We sent an email to Valve to inform them of such vulnerability.
 - We are unsure about whether they will take any action in the short-term

Thank you!

Questions?

Pier Paolo Tricomi

tricomi@math.unipd.it