

Visión por Computador

Version 2023-2

Carácterísticas Geométricas

[Capítulo 2]

Dr. José Ramón Iglesias

DSP-ASIC BUILDER GROUP Director Semillero TRIAC Ingenieria Electronica Universidad Popular del Cesar

There are two categories of features: Geometric Features and Intensity Features

b) Segmentation

a) Grayscale image

Geometric Features give information about location, orientation, shape and size. Intensity Features give information about how are the grayvalues.

c) 3D representation of a)

Geometric Features

Area and Perimeter

A = # of gray pixels

L = # of white pixels

Height and width of \Re

$$h = i_{max} - i_{min} + 1$$

$$w = j_{max} - j_{min} + 1$$

Roundness

$$R = \frac{4 \cdot A \cdot \pi}{L^2}$$

Center of Mass

$$(i_m, j_m)$$

Ellipses

Ellipses

Major axis (a)

Minor axis (b)

Orientation (Θ)

Center x_0 , y_0

Area A

Perimeter L

Eccentricity E = b/a

Moments

$$m_{rs} = \sum_{i,j \in \Re} i^r j^s$$
 for $r,s \in \mathcal{N}$

$$\bar{\imath} = \frac{m_{10}}{m_{00}} \qquad \bar{\jmath} = \frac{m_{01}}{m_{00}}$$

$$\mu_{rs} = \sum_{i \in \mathcal{D}} (i - \bar{\imath})^r (j - \bar{\jmath})^s \quad \text{for } r, s \in \mathcal{N}$$

They are invariant against:

- scale,
- rotation and
- location

$$\phi_1 = \eta_{20} + \eta_{02}
\phi_2 = (\eta_{20} - \eta_{02})^2 + 4\eta_{11}^2$$

$$\phi_3 = (\eta_{30} - 3\eta_{12})^2 + (3\eta_{21} - \eta_{03})^2$$

$$\phi_4 = (\eta_{30} + \eta_{12})^2 + (\eta_{21} + \eta_{03})^2$$

$$\phi_5 = (\eta_{30} - 3\eta_{12})(\eta_{30} + \eta_{12})[(\eta_{30} + \eta_{12})^2 - 3(\eta_{21} + \eta_{03})^2] + (3\eta_{21} - \eta_{03})(\eta_{21} + \eta_{03})[3(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2]$$

$$\phi_6 = (\eta_{20} - \eta_{02})[(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2] + 4\eta_{11}(\eta_{30} + \eta_{12})(\eta_{21} + \eta_{03})$$

$$\phi_7 = (3\eta_{21} - \eta_{03})(\eta_{30} + \eta_{12})[(\eta_{30} + \eta_{12})^2 - 3(\eta_{21} + \eta_{03})^2] - (\eta_{30} - 3\eta_{12})(\eta_{21} + \eta_{03})[3(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2]$$

with

$$\eta_{rs} = \frac{\mu_{rs}}{\mu_{00}^t} \qquad t = \frac{r+s}{2} + 1.$$

They are invariant against:

- scale,
- rotation and
- location

They have similar Φ_1 , Φ_2 , ... Φ_7 .

They are invariant against:

- scale,
- rotation and
- location

They have similar Φ_1 , Φ_2 , ... Φ_7 .

Difference between Φ_1 of region i and Φ_1 of region j

Flusser Moments

$$I_1 = rac{\mu_{20}\mu_{02} - \mu_{11}^2}{\mu_{00}^4}$$

Invariante a la transformada afín: líneas paralelas se transforman como líneas paralelas

$$I_2 = \frac{\mu_{30}^2 \mu_{03}^2 - 6\mu_{30}\mu_{21}\mu_{12}\mu_{03} + 4\mu_{30}\mu_{12}^3 + 4\mu_{21}^3\mu_{03} - 3\mu_{21}^2\mu_{12}^2}{\mu_{00}^{10}}$$

$$I_3 = \frac{\mu_{20}(\mu_{21}\mu_{03} - \mu_{12}^2) - \mu_{11}(\mu_{30}\mu_{03} - \mu_{21}\mu_{12}) + \mu_{02}(\mu_{30}\mu_{12} - \mu_{21}^2)}{\mu_{00}^7}$$

$$I_{4} = \frac{(\mu_{20}^{3}\mu_{03}^{2} - 6\mu_{20}^{2}\mu_{11}\mu_{12}\mu_{03} - 6\mu_{20}^{2}\mu_{02}\mu_{21}\mu_{03} + 9\mu_{20}^{2}\mu_{02}\mu_{12}^{2}}{+12\mu_{20}\mu_{11}^{2}\mu_{21}\mu_{03} + 6\mu_{20}\mu_{11}\mu_{02}\mu_{30}\mu_{03} - 18\mu_{20}\mu_{11}\mu_{02}\mu_{21}\mu_{12}} \\ -8\mu_{11}^{3}\mu_{30}\mu_{03} - 6\mu_{20}\mu_{02}^{2}\mu_{30}\mu_{12} + 9\mu_{20}\mu_{02}^{2}\mu_{21} \\ +12\mu_{11}^{2}\mu_{02}\mu_{30}\mu_{12} - 6\mu_{11}\mu_{02}^{2}\mu_{30}\mu_{21} + \mu_{02}^{3}\mu_{30}^{2})/\mu_{00}^{11}$$

Flusser, J., & Suk, T. (1993). <u>Pattern recognition by affine moment invariants</u>. Pattern recognition, 26(1), 167-174.