Jilin Ung // 1149758796	
EC330 Newerth 6	
1. [Binary Search Trees, 10 points] Specify and explain what is the worst-case asymptotic time needed to insert a sequence of log(n) copies each of the numbers 1 through n to an initially empty binary search tree. For example, if n = 10 ¹⁰ , then we will insert ten 1's, followed by ten 2's, followed by ten 3's, etc. Note that we are referring to a standard binary search tree, which is not necessarily balanced.	
Worst-ace rentire: $\theta(n)$	
The height of the free is by (n) +n, where by (n) is the apres of the particle dement being inserted (assuming that in the	
worst case, each apy will be the left doll of the previous copy), and is the number of right child unles that must be traverse	l
before beginning the insertion of a new element (and its apris). Asymphtically, leg (n) + n=11 since a livear broken grows feeler Non	
a legenthmic hindren. Thus the worst case congeptible thre is O(u).	
(i) (2) on bevels	
(T) Q) 3 (# of cight-dull rules	
(1) (2) (4) (4) of right-duld notes (1) (2) (4) (4) of right-duld notes (2) Not must be braversed)	
logla) agres ()	

