Graph Mining SD212 3. PageRank

o. Tugertum

Thomas Bonald

2019 - 2020

Motivation

How to identify the most "important" nodes in a graph, either globally or relatively to some other nodes?

Useful for:

- information retrieval
- content recommendation
- local clustering

We focus on PageRank, originally proposed by Google's founders in 1999 to rank Web pages: popular pages are typically visited more frequently by a random Web surfer.

Outline

- 1. Random walk
- 2. PageRank
- 3. Personalized PageRank
- 4. BiPageRank

Setting

Consider a directed graph G = (V, E):

- ▶ *n* nodes, *m* edges
- A, adjacency matrix
- ▶ $d^+ = A1, d^- = A^T1$, vectors of out-degrees and in-degrees

Random walk

In the **absence** of sinks $(d^+ > 0)$:

- ▶ A Markov chain $X_0, X_1, X_2, ...$ of transition matrix $P = D^{-1}A$ with $D = \text{diag}(d^+)$
- ▶ Probability distribution π_t at time t (row vector)
- ▶ Dynamics $\pi_{t+1} = \pi_t P$

Stationary distribution

If the graph is strongly connected and aperiodic,

$$\lim_{t \to +\infty} \pi_t = \pi \quad \text{with} \quad \pi = \pi P$$

Computation

Stationary distribution

Input:

P, transition matrix K, number of iterations

Do:

For
$$t = 1, \dots, K$$
, $\pi \leftarrow \pi P$

Output:

 π , (approximate) stationary distribution

Complexity: O(Km) in time, O(n) in memory

Example

The case of undirected graphs

We have
$$d = d^+ = d^-$$

Stationary distribution

If the graph is **connected**, the stationary distribution is proportional to the degrees:

$$\pi \propto d$$

Example

Outline

- 1. Random walk
- 2. PageRank
- 3. Personalized PageRank
- 4. BiPageRank

Accounting for sinks

Random walk with forced restarts

$$P_{ij} = \left\{ egin{array}{ll} rac{A_{ij}}{d_i^+} & ext{if } d_i^+ > 0 \ rac{1}{n} & ext{otherwise} \end{array}
ight.$$

PageRank

Random walk with **restarts**:

- Fix $\alpha \in (0,1)$
- ▶ Walk with probability α , restart (e.g., to a random node) with probability $1-\alpha$
- ▶ An irreducible Markov chain with transition matrix:

$$P^{(\alpha)} = \alpha P + (1 - \alpha) \frac{11^T}{n}$$

PageRank

Unique solution to the equations:

$$\pi^{(\alpha)} = \alpha \pi^{(\alpha)} P + (1 - \alpha) \frac{1}{n}$$

Computation

PageRank

Input:

P, transition matrix (with forced restarts)

 α , damping factor

K, number of iterations

Do:

For
$$t=1,\ldots,K$$
, $\pi\leftarrow \alpha\pi P+(1-\alpha)\frac{1}{n}(1,\ldots,1)$

Output:

 π , (approximate) PageRank vector

Example ($\alpha = 0.85$)

Setting the damping factor

- ▶ The path length before restart (in the absence of sinks) has a **geometric distribution** with parameter 1α
- Average path length:

$$\frac{\alpha}{1-\alpha}$$

For $\alpha = 0.85$, we get about 5.7, a typical distance between two nodes in real graphs (cf. the **six degrees of separation**).

Expression of the PageRank vector

Proposition

$$\pi^{(\alpha)} = (1 - \alpha) \sum_{t=0}^{+\infty} \alpha^t \pi_t$$

Limiting cases

▶ No restarts $(\alpha \rightarrow 1)$

$$\pi^{(\alpha)} \to \pi = \lim_{t \to +\infty} \pi_t$$

▶ Frequent restarts $(\alpha \rightarrow 0)$

$$\pi^{(\alpha)} = (1 - \alpha)\pi_0 + \alpha\pi_1 + o(\alpha)$$

Ranking equivalent to neighbor sampling

Outline

- 1. Random walk
- 2. PageRank
- 3. Personalized PageRank
- 4. BiPageRank

Personalization

Personalization

Personalization

Personalized PageRank

Let μ be some distribution on $S \subset V$ (e.g., uniform)

► Forced restarts:

$$P_{ij} = \left\{ egin{array}{ll} rac{A_{ij}}{d_i^+} & ext{if } d_i^+ > 0 \ \mu_j & ext{otherwise} \end{array}
ight.$$

Random restarts:

$$P^{(\alpha)} = \alpha P + (1 - \alpha)1\mu$$

Computation

Personalized PageRank

Input:

P, transition matrix (with forced restarts) μ , personalization row vector α , damping factor K, number of iterations

Do:

$$\pi \leftarrow \mu$$

For $t = 1, \dots, K$, $\pi \leftarrow \alpha \pi P + (1 - \alpha)\mu$

Output:

 π , (approximate) PageRank vector

Expression of the Personalized PageRank vector

Proposition

In the absence of sinks,

$$\pi^{(\alpha)} = \sum_{s \in S} \mu_s \pi_s^{(\alpha)}$$

where $\pi_s^{(\alpha)}$ is the Personalized PageRank vector associated with s

Outline

- 1. Random walk
- 2. PageRank
- 3. Personalized PageRank
- 4. BiPageRank

Case of bipartite graphs

$$A = \begin{bmatrix} 0 & B \\ B^T & 0 \end{bmatrix}$$
 $D = \operatorname{diag}(d) = \begin{bmatrix} D_1 & 0 \\ 0 & D_2 \end{bmatrix}$

BiPageRank

Given a bipartite graph $G = (V_1, V_2, E)$, consider a random walk with restarts in V_1 (e.g., uniform)

Transition matrices:

- $P_1 = D_1^{-1}B$ from V_1 to V_2
- $P_2 = D_2^{-1} B^T$ from V_2 to V_1

BiPageRank

Unique solution to the equations:

$$\pi_1 = \alpha \pi_2 P_2 + (1 - \alpha) \mu_1$$

$$\pi_2 = \alpha \pi_1 P_1$$

with μ_1 uniform on V_1

Computation

BiPageRank

Input:

 P_1 , transition matrix from V_1 to V_2 P_2 , transition matrix from V_2 to V_1 α , damping factor K, number of iterations

Do:

$$\pi_{1} \leftarrow \frac{1}{n_{1}}(1, \dots, 1), \ \pi_{2} \leftarrow 0$$
For $t = 1, \dots, K$,
$$\pi_{1} \leftarrow \alpha \pi_{2} P_{2} + (1 - \alpha) \frac{1}{n_{1}}(1, \dots, 1)$$

$$\pi_{2} \leftarrow \alpha \pi_{1} P_{1}$$

Output:

 π_1, π_2 , BiPageRank vectors

Expression of the BiPageRank vector

Let $\pi(t)$ be the distribution after t time steps of the pure random walk starting from V_1 .

Proposition

$$\pi_1^{(\alpha)} = (1 - \alpha) \sum_{t \in 2\mathbb{N}} \alpha^t \pi_1(t)$$

$$\pi_2^{(\alpha)} = (1 - \alpha) \sum_{t \in 2\mathbb{N} + 1} \alpha^t \pi_2(t)$$

Directed graphs as bipartite graphs

PageRank vs BiPageRank

Consider some target node $s \in V$, and let $\alpha \to 0$

- ► Successors of *s* are best ranked with PageRank
- ▶ Nodes having many common successors with *s* are best ranked with BiPageRank

