

TinyU-Net:

Lighter yet Better U-Net with **Cascaded Multi-Receptive Fields**

Junren Chen¹, Rui Chen², Wei Wang³, Junlong Cheng¹, Lei Zhang^{1*}, Liangyin Chen^{1*}

INTRODUCTION

How to Chase High Performance While Being Lightweight?

Contributions

- Proposing the CMRF module, which enhances feature representation by fusing multi-receptive fields using a cost-effective cascading strategy. Applying the CMRF module to other
- models consistently improves segmentation performance while reducing parameters and computational complexity. Proposing TinyU-Net, a CMRF-based model with only 0.48M parameters, achieving exceptional performance in medical image segmentation with low

parameters and computational complexity.

Low Parameters and Computations Weak Feature Representation

High Parameters and Computations

Strong Feature Representation

METHODOLOGY

MOTIVATION

Standing on the Shoulders of Giants

Cheap Operation

Depthwise convolution (DWConv) and pointwise convolution (PWConv) have low parameter overhead.

Cost-effective Way

Perform convolution operations on part of the feature maps due to redundancies across different channels.

Receptive Field

As the network deepens, the receptive field expands.

Feature Augmentation

The fusion of feature via element-wise addition can improve feature representation.

Table 1. Comparative quantitative results on ISIC2018 dataset.

Model	Params FLOPs		IoU (%)			Dice (%)		
	(M)	(G)	Mean	Lesion	BG	Mean	Lesion	BG
U-Net [3]	24.89	112.91	82.69	76.14	89.23	90.38	86.45	94.31
SegNet [26]	29.44	80.34	83.64	77.53	89.74	91.06	87.35	94.59
DeepLabV3+ [27]	5.81	13.22	83.43	77.35	89.50	91.02	87.23	94.46
TransUNet [4]	93.23	64.48	84.66	78.99	90.32	91.75	88.26	94.91
Swin-Unet [5]	27.15	15.46	83.39	77.28	89.49	90.98	87.19	94.45
UNeXt [7]	1.47	1.15	82.85	76.39	89.31	90.50	86.61	94.35
ConvUNeXt [10]	3.51	14.51	83.96	77.95	89.96	91.24	87.61	94.71
U-Lite [11]	0.88	1.52	84.13	78.12	90.13	91.29	87.72	94.81
CMUNeXt [12]	3.15	14.84	84.62	78.82	90.42	91.62	88.16	94.97
FBSNet [13]	0.60	5.76	84.03	78.12	89.93	91.35	87.72	94.70
TinyU-Net	0.48	3.33	85.49	80.04	90.94	92.18	88.91	95.25

Table 3. Ablation results (IoU (%)) for CMRF on ISIC2018 and NCP datasets, GL. GGO, and LF denote consolidation, ground-glass opacity, and lung field, respectively

Model	Feature extraction	3	NCP				
	block	(M)	(G)	Lesion	CL	GGO	LF
SegNet [26]	Original	29.44	80.34	77.53	63.40	48.44	92.75
	CMRF	0.64	7.02	78.42	63.66	50.60	92.80
CMUNeXt [12]	Original	3.15	14.84	78.82	67.44	57.44	93.73
	CMRF	1.97	12.23	79.16	67.48	57.58	93.74

Table 4. Ablation results (mIoU (%)) for the number of DWConv-BN blocks on NCI

1 2 4 8 mIoU (%) 79.24 79.58 79.77 80.27 79.56 Table 2. Comparative quantitative results on NCP dataset. GL, GGO, LF, and BC

denote consolidation, ground-glass opacity, lung field, and background, respectively.

CONCLUSION

- Problems in existing lightweight models :
 - Weak feature representation due to low parameters and computational complexity.
- > To solve the above problem, we propose the following methods:
 - CMRF: We introduce a novel CMRF module that fuses information from multi-receptive fields in a layer based on a cost-friendly cascading strategy to improve feature representation.
 - TinyU-Net: Building upon our CMRF, we further propose a lightweight TinyU-Net, a simple yet effective U-shaped network, for medical image segmentation.
- > Our TinyU-Net achieves state-of-the-art segmentation performance with a small number of parameters and FLOPs.
- > We believe that the proposed methods can adapt well to limited-resource settings, thereby fostering health equity.