

Vorlesung 186.844 09.01.2016

Überblick

- No Free Lunch Theorem
- II. Quantitative Evaluierung

Einleitung

... eine Frage die sich wahrscheinlich jeder von euch ein oder mehrmals gestellt hat:

Welcher Klassifikator, Trainingsalgorithmus oder welche Methode ist DIE BESTE?

Einleitung

Methode bevorzugt wegen:

- ihrer geringen Komplexität oder
- ihrer Fähigkeit Vorwissen (Priors) zu berücksichtigen

ABER: Es gibt Mustererkennungsprobleme bei denen die obigen oder ähnliche Eigenschaften nicht relevant sind oder gleich für alle zu vergleichenden Methoden sind.

Für das **allgemeine Problem** der Mustererkennung, ohne Annahmen über Art der Muster, Verteilungen, Vorwissen, etc., beantwortet das "No Free Lunch Theorem" folgende Fragen:

Gibt es irgendwelche Gründe einen Klassifikator oder Trainingsalgorithmus einem anderen vorzuziehen?

Gibt es einen Algorithmus oder eine Methode die generell besser ist als der Zufall?

Nein!

"No Free Lunch Theorem" anders formuliert: Es gibt **KEINE kontextunabhängige** oder **anwendungsunabhängige** Gründe einen bestimmten Klassifikator, Trainingsalgorithmus oder eine Methode zu bevorzugen.

Dieses Theorem erinnert uns beim Design eines Mustererkennungssystems auf die wesentlichen Dinge zu achten:

- ✓ Vorwissen
- ✓ Datenverteilung
- ✓ Größe des Trainingsdatensatzes
- ✓ Kosten oder Gewinn der jeweiligen Entscheidung

... mögliche Musterkennungssysteme

Legende (Problemräume)

- + ... Generalisierungsfähigkeit höher als Durchschnitt
- ... Generalisierungsfähigkeit niedriger als Durchschnitt
- 0 ... durchschnittliche Generalisierugnsfähigkeit

Größe der Symbole ... beschreibt die Größe der Abweichung vom Durchschnitt

... unmögliche Musterkennungssysteme

Legende (Problemräume)

- + ... Generalisierungsfähigkeit höher als Durchschnitt
- ... Generalisierungsfähigkeit niedriger als Durchschnitt
- 0 ... durchschnittliche Generalisierugnsfähigkeit

Größe der Symbole ... beschreibt die Größe der Abweichung vom Durchschnitt

Schlussfolgerung

Es gibt **kein** universell einsetzbares, bestes Mustererkennungsssystem.

Was wir tun können:

Evaluieren wie gut ein Mustererkennungssystem für ein bestimmtes Musterkennungsproblem geeignet ist.

II. Quantitative Evaluierung

Für zwei Klassen...

- Klasse w_1 : negativ (links von der Entscheidungsgrenze)
- Klasse w_2 : positive (rechts von der Entscheidungsgrenze)

Für zwei Klassen...

Mögliche Ergebnisse:

- **TP** = True Positive
- FN = False Negative

- TN = True Negativ
- FP = False Positiv

WH: ROC-Kurve

ROC = Receiver Operating Characteristic

TPF = True Positive Fraction

FPF = False Positive Fraction

Area Under Curve

■ AUC ≈ 0,6→ (fast) vollständiger Überlapp der beiden Klassen (Kurven)

Area Under Curve

■ AUC nahe an 1 → Klassen überlappen kaum

Confusion-Matrix

für zwei Klassen

Confusion-Matrix

- für mehr als zwei Klassen
- Idealfall: alle Werte außer jene in der Diagonale sind "0"

Confusion-Matrix

für mehr als zwei Klassen

[Quelle: http://stackoverflow.com]

Precision

Die **Precision** P_i gibt an wieviel Prozent der Muster die als Klasse i klassifiziert wurden auch tatsächlich der Klasse i angehören (Ground-Truth). Die "Precision" der 1. Klasse eines binären Klassifikationsproblems wird folgendermaßen bestimmt:

$$P_1 = \frac{C(1,1)}{C(1,1) + C(2,1)}$$
 wobei

C die Confusion-Matrix ist und ihre Elemente C(i,j) entsprechen der Anzahl an Mustern welche das Klassenlabel i haben (Ground-Truth) und als j klassifiziert wurden.

Anmerkung: Falls die 1. Klasse die "positive" bzw. die "negative" Klasse wäre, könnte man die "Precision" auch wie folgt anschreiben: $\frac{TP}{TP+FP} = \frac{TN}{TN+FN}$

Recall

Recall R_i gibt an wieviel Prozent der Klasse i auch als Klasse i klassifiziert wurden. In einem binären Klassifikationsproblem wird "Recall" folgendermaßen bestimmt:

$$R_1 = \frac{C(1,1)}{C(1,1) + C(1,2)}$$
 wobei

 \mathcal{C} die Confusion-Matrix ist und ihre Elemente $\mathcal{C}(i,j)$ entsprechen der Anzahl an Mustern welche das Klassenlabel i haben (Ground-Truth) und als j klassifiziert wurden.

Anmerkung: Falls die 1. Klasse die "positive" bzw. die "negative" Klasse wäre, könnte man "Recall" auch wie folgt anschreiben: $\frac{TP}{TP+FN} = \frac{TN}{TN+FP}$

Overall Accuracy

Overall Accuracy A gibt (klassenübergreifend) an wieviel Prozent der Muster richtig klassifiziert wurden. Für M Klassen und N Muster berechnet sich die "Overall Accurarcy" wie folgt:

$$A = \frac{1}{N} \sum_{i=1}^{M} C(i, i)$$
 wobei

 \mathcal{C} die Confusion-Matrix ist und die Elemente $\mathcal{C}(i,i)$ liegen auf ihrer Diagonale.

Anmerkung: Der Rest auf 100% entspricht der Fehlklassifikation in Prozent.

