三次方程式 $x^3 + px + q = 0$ の解について

Theorem. $p, q \in \mathbb{R}$ に対して x の三次方程式 $x^3 + px + q = 0$ の解は

$$x = \omega^k \sqrt[3]{-\frac{q}{2} + \sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3}} + \omega^{3-k} \sqrt[3]{-\frac{q}{2} - \sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3}} \ (k = 0, 1, 2)$$

で与えられる. ただし, $\omega = \frac{-1 + \sqrt{3}i}{2}$ である.

Proof. $x^3 - y^3 - z^3 - 3xyz = (x - y - z)(x^2 + y^2 + z^2 + xy - yz + zx)$ であるから, x についての三次方程式 $x^3 - 3yzx - (y^3 + z^3) = 0$ の解は

$$x = y + z, \frac{-1 \pm \sqrt{3}i}{2} \cdot (y + z)$$

つまり $x = \omega^m(y+z) \ (m=0,1,2)$ となる.

また、 $x^3+px+q=0$ と $x^3-3yzx-(y^3+z^3)=0$ を比較することにより、 $yz=-\frac{p}{3},y^3+z^3=-q$ となる. これらを連立することにより, y^3,z^3 を解に持つ t の 2 次方程式は $t^2+qt-\left(\frac{a}{3}\right)^3=0$ より

$$t = -\frac{q}{2} \pm \sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3}$$

となる. 今

$$y^3 = -\frac{q}{2} + \sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3}, z^3 = -\frac{q}{2} - \sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3}$$

とすると、yz は実数より

$$y = \omega^k \sqrt[3]{-\frac{q}{2} + \sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3}}, z = \omega^{3-k} \sqrt[3]{-\frac{q}{2} - \sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3}} \ (k = 0, 1, 2)$$

となる. よって

$$x = \omega^m \left(\omega^k \sqrt[3]{-\frac{q}{2} + \sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3}} + \omega^{3-k} \sqrt[3]{-\frac{q}{2} - \sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3}} \right) \ (m, k = 0, 1, 2)$$

となる. ここで, $\omega^3=1$ であることに注意すると, m を固定したときに k を動かすことによって ω の 冪を 0,1,2 に実現できるので結局

$$x = \omega^k \sqrt[3]{-\frac{q}{2} + \sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3}} + \omega^{3-k} \sqrt[3]{-\frac{q}{2} - \sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3}} \ (k = 0, 1, 2)$$

となることがわかる.

以上より、解の公式が示された. ■