Cours d'Électronique Approche système: Quadripôles

A. Arciniegas F. Boucher V. Gauthier N. Wilkie-Chancellier A. Bouzzit

IUT Ceray-Pontoise, Dep GEII, site de Neuville

Schémas bloc

• Permettent une vue synthétique d'un système (sans vue « composant »),

Schémas bloc

- Permettent une vue synthétique d'un système (sans vue « composant »),
- mais : ne sont pas spécifiques à l'électricité,

Schémas bloc

- Permettent une vue synthétique d'un système (sans vue « composant »),
- mais : ne sont pas spécifiques à l'électricité,
- en particulier : en électronique, une **flèche** (entrée/sortie) = **paire de fils**

Schémas bloc

- Permettent une vue synthétique d'un système (sans vue « composant »),
- mais : ne sont pas spécifiques à l'électricité,
- en particulier : en électronique, une flèche (entrée/sortie) = paire de fils

Solution

Utilisation de quadripôles qui permettent :

• une vue synthétique d'un système de manière similaire aux blocs,

Schémas bloc

- Permettent une vue synthétique d'un système (sans vue « composant »),
- mais : ne sont pas spécifiques à l'électricité,
- en particulier : en électronique, une flèche (entrée/sortie) = paire de fils

Solution

Utilisation de quadripôles qui permettent :

- une vue synthétique d'un système de manière similaire aux blocs,
- de prendre en compte les grandeurs électriques (courant/tension),

Schémas bloc

- Permettent une vue synthétique d'un système (sans vue « composant »),
- mais : ne sont pas spécifiques à l'électricité,
- en particulier : en électronique, une flèche (entrée/sortie) = paire de fils

Solution

Utilisation de quadripôles qui permettent :

- une vue synthétique d'un système de manière similaire aux blocs,
- de prendre en compte les grandeurs électriques (courant/tension),
- d'inclure les lois électriques (Ohm, Kirchhoff...)

Plan du cours

Définitions

2 Cas du quadripôle entrée/sortie en tension

3 Exercice

Représentation sous forme d'une boite noire avec deux paires de fils :

- ullet un couple tension/courant d'entrée V_1 , I_1
- ullet un couple tension/courant de sortie V_2 , I_2

Représentation sous forme d'une boite noire avec deux paires de fils :

- ullet un couple tension/courant d'entrée V_1 , I_1
- ullet un couple tension/courant de sortie V_2 , I_2

Attention!

contrairement aux blocs, pas de sens entrée/sortie,

Représentation sous forme d'une boite noire avec deux paires de fils :

- ullet un couple tension/courant d'entrée V_1 , I_1
- ullet un couple tension/courant de sortie V_2 , I_2

Attention!

- o contrairement aux blocs, pas de sens entrée/sortie,
- Convention quadripôle: tous les courants sont rentrants,

Représentation sous forme d'une boite noire avec deux paires de fils :

- ullet un couple tension/courant d'entrée V_1 , I_1
- ullet un couple tension/courant de sortie V_2 , I_2

Attention!

- o contrairement aux blocs, pas de sens entrée/sortie,
- Convention quadripôle: tous les courants sont rentrants,
- il y a quatre quantités, définir le fonctionnement du quadripôle nécessite de définir 4 – 1 = 3 propriétés.

Définitions : Gain en tension à vide

Caractéristique de transfert :

Définitions : Gain en tension à vide

Caractéristique de transfert :

On définit le gain en tension à vide par :

$$A_0 = \left. \frac{V_2}{V_1} \right|_{I_2=0}$$

<u>attention</u>: pour le calcul ou la mesure, on doit impérativement débrancher la charge en sortie.

(CYU) Électronique - S1 5/

Définitions : Résistance d'entrée

Caractéristique d'entrée :

Définitions : Résistance d'entrée

Caractéristique d'entrée :

On définit la résistance d'entrée par la loi d'Ohm en entrée :

$$R_{\Theta} = \left. \frac{V_1}{I_1} \right|_{I_2 = 0}$$

<u>attention</u>: pour le calcul ou la mesure, on doit impérativement débrancher la charge en sortie.

Définitions : Résistance de sortie

Caractéristique de sortie :

Définitions : Résistance de sortie

Caractéristique de sortie :

On définit la résistance de sortie par la loi d'Ohm en sortie :

$$R_s = \left. \frac{V_2}{I_2} \right|_{I_1 = 0}$$

<u>attention</u>: pour le calcul ou la mesure, on doit impérativement annuler l'excitation en entrée.

Quadripôle en tension

Quadripôle en tension

- entrée : simple résistance,
- sortie : générateur non idéal de tension (générateur de Thévenin).

Quadripôle en tension

- entrée : simple résistance,
- sortie : générateur non idéal de tension (générateur de Thévenin).

Question : que se passe t'il si l'on met un générateur non idéal en entrée et une charge en sortie ? (cf. exercice 1).

Mise en cascade

Mise en cascade

• en entrée et sortie : quadripôles de même type,

Mise en cascade

- en entrée et sortie : quadripôles de même type,
- \bullet à priori, on s'attend à avoir sur la charge R_L la tension d'entrée V_g multipliée par le gain A_0

Mise en cascade

- en entrée et sortie : quadripôles de même type,
- \bullet à priori, on s'attend à avoir sur la charge R_L la tension d'entrée V_g multipliée par le gain A_0

ATTENTION: vrai sous certaines conditions uniquement!

Condition en entrée

(CYU) Électronique - \$1

Condition en entrée

$$V_1 = \frac{R_{in}}{R_{in} + R_g} V_g$$

(CYU) Électronique - S1 10/1:

Condition en entrée

$$V_1 = \frac{R_{in}}{R_{in} + R_{g}} V_g$$

On a tout intérêt à avoir $R_{in}\gg R_{g}$, ou dans l'idéal $R_{in}\to +\infty$ (ainsi $V_1=V_g$)

(CYU) Électronique - \$1

Condition en sortie

(CYU) Électronique - S1 11/12

Condition en sortie

$$V_2 = \frac{R_L}{R_L + R_{out}} A_0 V_1$$

(CYU) Électronique - S1 11/1

Condition en sortie

$$V_2 = \frac{R_L}{R_I + R_{Out}} A_0 V_1$$

On a tout intérêt à avoir $R_{out} \ll R_L$, ou dans l'idéal $R_{out} o 0$ (ainsi $V_2 = A_0 V_1$)

(CYU) Électronique - \$1

Exercice

On considère le schéma suivant :

Calculer le gain en tension créé par ce quadripôle.