Name: S U Swakath Roll No: 180020036 colab link: https://colab.research.google.com/drive/1veZsh2N4K59hfR5a-T633jAOOeyWTzs4?usp=sharing Classification: 1. Linear regression 2. Logistic regression 3. Support vector machine Linear regression 1. Generate 1D data synthetically 2. Take the earlier designed linear regression class 3. Find the fitting line 4. Taking 0.5 as threshold, see the classification In [171... import numpy as np import matplotlib.pyplot as plt # insert your code here #generating class 0 numPoints = 100values = np.linspace(0,0.6,numPoints) dataClass = np.zeros(numPoints) data = np.vstack((values, dataClass)) data = data.T #generating class 1 numPoints = 100values = np.linspace(0.8,1.3,numPoints) dataClass = np.ones(numPoints) data1 = np.vstack((values, dataClass)) data1 = data1.T #merging data data = np.vstack((data, data1)) #plotting print(np.shape(data[:,0])) plt.plot(data[:,0],data[:,1],'.') (200,)Out[171... [<matplotlib.lines.Line2D at 0x7f3d71f09630>] 1.0 0.8 0.6 0.2 1.2 Defining linear regression class # linear regression class class regression: # Constructor def _init_(self, name='reg'): self.name = name # Create an instance variable # def f(x): # return 1/x def grad_update(self,w_old,lr,y,x): # write your code here $w = w_old + (2*lr)*(x@(y-(x.T@w_old)))/(y.shape[0])$ return w def error(self,w,y,x): $\textbf{return} \ (\texttt{np.sum}(\texttt{np.square}(\texttt{y - (x.T@w))))/(y.shape[0])} \textit{# write your code here } \\$ def mat_inv(self,y,x_aug): return (np.linalg.pinv(x_aug@x_aug.T))@(x_aug@y)# write your code here # by Gradien descent def grad_des(self,y,x,lr,eps=0.000001): # write your code here $w_old = np.random.rand(x.shape[0],1)$ error1 = 100001.error2 = 100000.err = [] while (error1 - error2)>eps: error1 = self.error(w_old,y,x) w_old = self.grad_update(w_old, lr, y, x) error2 = self.error(w_old,y,x) err.append(error1) w_pred = w_old return w_pred,err Data augmentation and optimal weight generation In [173... x = data[:,0]y = data[:,1]x=x[:,np.newaxis] # to make this in M \times N format, where M is the dimension $x_aug=np.concatenate((np.ones((1,x.shape[1])), x),axis=0)$ print(x_aug.shape) y=y[:,np.newaxis] ln_reg=regression() w_opt_mi=ln_reg.mat_inv(y,x_aug) $w_{opt}gd = ln_{reg.grad_des(y,x_{aug},0.2,10**(-8))}$ w_opt = w_opt_mi $error = w_opt_gd[1]$ (1, 200)(2, 200)1. Optimal separating plane generation 2. Classification (0.5 as threshold) print(w_opt) In [174... lr=0.01 $x_axis = range(len(error))$ plt.plot(x_axis,error) plt.title('Error in gradent descent') plt.xlabel('Iterations') plt.ylabel('Error') plt.show() $x_plot = np.linspace(0,1.3,1000)$ x_plot=x_plot[:,np.newaxis] $x_plot=x_plot.T$ # to make this in M x N format, where M is the dimension x_augplot=np.concatenate((np.ones((1,x_plot.shape[1])), x_plot),axis=0) $y_plot = w_opt.T@x_augplot$ print(y_plot.shape) print(x_aug.shape) print(x.shape) plt.plot(x_plot.T, y_plot.T, 'g') # insert your code here th = 0.5 $x_{th} = (th - w_{opt}[0])/w_{opt}[1]$ print(x_th) class1 = []class2 = []for point in x.T: if(point<x_th):</pre> class1.append(point) else: class2.append(point) class1 = np.array(class1)class2 = np.array(class2) plt.plot(data[:,0], data[:,1], 'b.') plt.plot(class1, np.zeros(len(class1)), 'r.') plt.plot(class2, np.ones(len(class2)), 'y.') plt.show() [[-0.25988351] [1.12575335]] Error in gradent descent 0.200 0.175 0.150 흔 0.125 0.100 0.075 0.050 20 40 60 80 100 120 140 160 Iterations (1, 1000)(2, 200) (1, 200) [0.675]1.2 1.0 0.8 0.6 0.4 0.2 0.0 -0.20.2 1.0 1.2 Draw back of linear regression based classification 1. Generate data (have outlairs noise) 2. Find the fitting line. 3. Using 0.5 as threshold, see the classification 4. using matrix inversion (home work) import numpy as np In [175... import matplotlib.pyplot as plt # insert your code here #generating class 0 numPoints = 300values = np.linspace(0,0.6,numPoints) dataClass = np.zeros(numPoints) data = np.vstack((values, dataClass)) data = data.T#generating class 1 numPoints = 300values = np.linspace(0.8,1.3,numPoints) dataClass = np.ones(numPoints) data1 = np.vstack((values, dataClass)) data1 = data1.TnumPoints = 100values = np.linspace(3.2,3.6,numPoints) dataClass = np.ones(numPoints) data_temp = np.vstack((values, dataClass)) data_temp = data_temp.T data1 = np.vstack((data1, data_temp)) #merging data data = np.vstack((data,data1)) #plotting print(np.shape(data[:,0])) plt.plot(data[:,0], data[:,1], '.') (700,)Out[175... [<matplotlib.lines.Line2D at 0x7f3d714ec0f0>] 1.0 0.8 0.6 0.4 0.2 0.0 1.0 2.0 Augment data # Augment data In [176... x = data[:,0]y = data[:,1]x=x[:,np.newaxis] # to make this in M \times N format, where M is the dimension X=X.Tprint(x.shape) $x_{aug}=np.concatenate((np.ones((1,x.shape[1])), x),axis=0)$ print(x_aug.shape) y=y[:,np.newaxis] ln_reg=regression() w_opt_mi=ln_reg.mat_inv(y,x_aug) $w_{opt}gd = ln_{reg.grad_des(y,x_{aug},0.2,10**(-8))}$ $w_{opt} = w_{opt_mi}$ error = w_opt_gd[1] (1, 700)(2, 700)1. find optimal weight perform classification (0.5 as threshold) print("Matrix inversion", w_opt) In [177... print("Gradient decent", w_opt_gd[0]) lr=0.01 $x_axis = range(len(error))$ plt.plot(x_axis,error) plt.title('Error in gradent descent') plt.xlabel('Iterations') plt.ylabel('Error') plt.show() $x_plot = np.linspace(0,3,1000)$ x_plot=x_plot[:,np.newaxis] x_plot=x_plot.T # to make this in M \times N format, where M is the dimension $x_{augplot=np.concatenate((np.ones((1,x_plot.shape[1])), x_plot),axis=0)}$ $y_plot = w_opt.T@x_augplot$ print(y_plot.shape) print(x_aug.shape) print(x.shape) plt.plot(x_plot.T, y_plot.T, 'g') # insert your code here th = 0.5 $x_{th} = (th - w_{opt}[0])/w_{opt}[1]$ print(x_th) class1 = []class2 = []for point in x.T: if(point<x_th):</pre> class1.append(point) else: class2.append(point) class1 = np.array(class1) class2 = np.array(class2) plt.plot(data[:,0], data[:,1], 'b.') plt.plot(class1, np.zeros(len(class1)), 'r.') plt.plot(class2, np.ones(len(class2)), 'y.') plt.figure(figsize=(10000, 10000)) plt.show() Matrix inversion [[0.24057767] [0.31086662]] Gradient decent [[0.24079055] [0.31074156]] Error in gradent descent 0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.15 10 30 40 Iterations (1, 1000) (2, 700) (1, 700)[0.83451331] 1.0 0.8 0.6 0.4 0.2 0.0 3.0 3.5 1.0 1.5 2.0 <Figure size 720000x720000 with 0 Axes> logistic regression 1. Error surface (logistic loss vs. MSE) 2. Solve the outlair issue 3. Circularly separable data classification 4. Multiclass classification Error surface (logistic loss vs. MSE) In [178... import numpy as np import matplotlib.pyplot as plt x=np.linspace(-5,5,25)y=np.zeros(x.shape) y[np.where(x>0.7314)]=1plt.plot(x,y,'.') print(np.shape(x))print(np.shape(y)) m = len(x)ones = np.ones((m, 2))ones[:,1:] = np.array([x]).T $x_aug = ones$ print(np.shape(x_aug)) (25,)(25,)(25, 2)1.0 0.8 0.6 0.4 0.2 0.0 $1. \ MSE=\$\frac{1}{2N}\sum_{i=1}^{N}(y^{p}_{i}-y_{i})^2\$, \ where \$y^{p}=\frac{1}{1+e^{-w^{T}x}}\$$ $2. \ Logistic \ loss = \$-\frac{1}{N}\sum_{i=1}^{N}y_{i}\log(y^{p}_{i}) + (1-y_{i})\log(1-y_{i}^{p}) \$$ In [129... import math # search space (only w1 is searched, where as w0 is fixed) $w1_in=10/(x[1]-x[0])$ $w0 = -w1_in*0.7314$ w1=np.linspace(-w1_in,4*w1_in,100) def hypo_func(x,w): power = x@wnp.shape(power) return 1/(1 + np.exp(-1.0*power)) def mse(y,x,w): n,m = np.shape(x) $diff = hypo_func(x,w)-y$ sq = np.square(diff) sum = np.sum(sq)return sum/(2*n) def logisticLoss(y,x,w): n, m = np.shape(x) $yp = hypo_func(x, w)$ h1 = np.where(yp==0, 1e-100, yp)h0 = np.where(yp==1, 0.99999999999999, yp)sum = (-y*np.log(h1)-(1-y)*np.log(1-h0)).mean()return sum $X = x_aug$ Y = np.array([y])Y = Y.Tcost_fn_mse=[] cost_fn_logis=[] for i in range(w1.shape[0]): # MSE w = np.array([[w0],[w1[i]]]) $cost_mse = mse(Y, X, w)$ cost_fn_mse.append(cost_mse) # Cost function using log cost_logis = logisticLoss(Y,X,w) cost_fn_logis.append(cost_logis) # ploting of error surface In [130... plt.figure() plt.plot(w1, np.log(cost_fn_mse)) plt.plot(w1, np.log(cost_fn_logis)) plt.show() 2.5 0.0 -2.5-5.0-7.5-10.0-12.5-15.0-20 100 Solve the outlier issue # logistic regression In [131... import numpy as np import matplotlib.pyplot as plt # insert your code here #generating class 0 numPoints = 300values = np.linspace(0,0.6,numPoints) dataClass = np.zeros(numPoints) data = np.vstack((values, dataClass)) data = data.T #generating class 1 numPoints = 300values = np.linspace(0.8,1.3,numPoints) dataClass = np.ones(numPoints) data1 = np.vstack((values, dataClass)) data1 = data1.TnumPoints = 100values = np.linspace(3.2,3.6,numPoints) dataClass = np.ones(numPoints) data_temp = np.vstack((values, dataClass)) data_temp = data_temp.T data1 = np.vstack((data1, data_temp)) #merging data data = np.vstack((data,data1)) x= data[:,0] y= data[:,1] plt.figure() plt.plot(x,y,'.') plt.show() print(np.shape(x))1.0 0.8 0.6 0.4 0.2 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 (700,)class logis_regression: In [132... # Constructor def __init__(self, name='reg'): self.name = name # Create an instance variable def logis(self,x,w_old): $power = x@w_old$ return 1/(1 + np.exp(-1.0*power))def grad_update(self,w_old,lr,y,x): # write your code here $w = w_old + (lr)*(x@(y-(x.T@w_old)))/(y.shape[0])$ return w def error(self,w,y,x): n,m = np.shape(x) $yp = hypo_func(x, w)$ h1 = np.where(yp==0, 1e-100, yp)h0 = np.where(yp==1, 0.9999999999999, yp)sum = (-y*np.log(h1)-(1-y)*np.log(1-h0)).mean()return sum # by Gradien descent def Regression_grad_des(self,x,y,w_in,lr,eps = 1e-20): $w_old = w_in$ print("Inside function", w_old) error1 = self.error(w_old,y,x) err=[] err.append(error1) i = 1 while (1): w_old = self.grad_update(w_old, lr, y, x) error1 = self.error(w_old,y,x) err.append(error1) if ((err[i-1]-err[i])<eps):</pre> break i+=1 **if** (i%10000 == 0): print("In progress...",i) w_pred = w_old print("Inside fun", w_pred.shape) return w_pred,err # augmentation and data formating In [133... x = data[:,0]y = data[:,1]y=y[:,np.newaxis] print(x.shape) $x_{aug}=np.vstack((np.ones(x.shape[0]),x))$ $x_{aug} = x_{aug}.T$ print(x_aug.shape) print(y.shape) (700,)(700, 2) (700, 1) In [134... log_reg=logis_regression() eps = 10**(-20) $w_{in} = np.array([[-2],[10]])$ w_pred1, err_list=log_reg.Regression_grad_des(x_aug, y, w_in, 0.0001, eps) print(w_pred1) print(len(err_list)) #plt.plot(err) Inside function [[-2] [10]] Inside fun (2, 1)[[-3.5517757] [5.72933409]] 3432 In [135... plt.plot(err_list) plt.show() 0.7 0.4 0.3 0.2 500 1000 1500 2000 2500 3000 3500 In [136... # output computa $x_graph = np.linspace(0,3.7,1000)$ x_graph_all = np.vstack((np.ones(len(x_graph)), x_graph)) print(x_graph.shape) $y_graph = 1/(1 + np.exp(-1*(x_graph_all.T@w_pred1)))$ plt.plot(x_graph, y_graph) # # insert your code here $y_pred = x_aug@w_pred1$ class1 = $np.where(y_pred[:,0]>=0.5)$ class2 = $np.where(y_pred[:,0]<0.5)$ $class1 = x_aug[class1,1]$ $class2 = x_aug[class2,1]$ plt.plot(data[:,0],data[:,1],'b.') plt.plot(class1, np.ones(len(class1)), 'r.') plt.plot(class2, np.zeros(len(class2)), 'y.') plt.figure(figsize=(10000, 10000)) plt.show() (1000,)1.0 0.8 0.6 0.4 0.2 0.0 1.0 1.5 2.0 2.5 3.5 <Figure size 720000x720000 with 0 Axes> Classification of circularly separated data using logistic regression In [137... # Generating circularly separated data import numpy as np import matplotlib.pyplot as plt x1=np.linspace(-3,3,20)y1=np.linspace(-3,3,20)x11, y11=np.meshgrid(x1, y1)plt.plot(x11, y11, '.') plt.show() 2 1 0 -1 -2 -31. Circularly separated data generation x2=x11.flatten()In [138... y2=y11.flatten() circData=np.concatenate((x2[:,np.newaxis],y2[:,np.newaxis]),axis=1) # to make matrix format x = circDataprint("initial x", x.shape) aind=np.where($(x[:,0]**(2)+x[:,1]**(2)) \le 0.9$) bind=np.where((x[:,0]**(2)+x[:,1]**(2))>=2.2) inner=x[aind[0],:] outer=x[bind[0],: print("Inner circle",inner.shape) print("outer Circle", outer.shape) x=np.concatenate((inner,outer)) circData = xprint("Final X", circData.shape) plt.plot(circData[:,0],circData[:,1],'.') plt.show() initial x (400, 2) Inner circle (32, 2) outer Circle (332, 2) Final X (364, 2) 2 1 0 -1As in case of circularly separated data, the boundary is nonlinear, so squred feature is taken. In [139... # perform logistic regression y1=np.zeros((inner.shape[0])) y2=np.ones((outer.shape[0])) y_circ=np.concatenate((y1,y2)) y_circ = y_circ[:,np.newaxis] print(y.shape) $all_x = circData[:,0]$ all_y = circData[:,1] $sqX = np.square(all_x)$ $sqY = np.square(all_y)$ XY = np.multiply(all_x,all_y) ones = np.ones(all_x.shape[0]) print(sqX.shape) print(sqY.shape) print(XY.shape) print(ones.shape) x_aug_circ = np.vstack((ones, sqX, sqY, XY)) $x_{aug_circ} = x_{aug_circ.T}$ print(x_aug_circ.shape) (700, 1)(364,)(364,)(364,)(364,)(364, 4)In [140... log_reg_circ = logis_regression() $w_{in} = np.array([[-1],[3],[3],[0]])$ eps = 1e-20 lr = 0.00001w_pred_circ, err_circ=log_reg_circ.Regression_grad_des(x_aug_circ, y_circ, w_in, lr, eps) plt.plot(err_circ) plt.show() Inside function [[-1] [3] [3] [0]] Inside fun (4, 1)0.09 0.08 0.07 0.06 0.05 500 1000 1500 2000 Plot classification using 0.5 as threshold In [142... y_pred_circ=log_reg.logis(x_aug_circ,w_pred_circ) print(y_pred_circ.shape) # insert your code here ind1 = np.where(y_pred_circ[:,0]>=0.5) ind2 = np.where(y_pred_circ[:,0]<0.5)</pre> ind2= np.array(ind2) ind1= np.array(ind1) print("ins",ind2.shape) x00=circData[ind1[0,:],:] x11=circData[ind2[0,:],:] print(circData.shape) print(x00.shape) print(x11.shape) plt.figure() plt.plot(x00[:,0],x00[:,1],'x',color='y') plt.plot(x11[:,0],x11[:,1],'o',color='r') plt.show() (364, 1)ins (1, 32) (364, 2)(332, 2)(32, 2)3 1 0 -3Multiclass logistic regression 1. Generate 1D data with 3 classes One vs rest classification 1. lets take polynomial of order 2 (by seeing the data distribution) In [143... import numpy as np import matplotlib.pyplot as plt x1=np.linspace(0,0.6,100)x2=np.linspace(1.1, 2.7, 100)x3=np.linspace(3.5,3.8,100) $x_{multi=np.concatenate((x1, x2, x3))}$ print(x.shape)

	<pre>y1=np.zeros(x1.shape) y2=np.ones(x2.shape) y3=np.tile([2],x3.shape) y_multi=np.concatenate((y1,y2,y3)) plt.figure() plt.plot(x_multi,y_multi,'.') plt.show() (364, 2) 200 175 150 125 100</pre>
In [144	0.75 0.50 0.25 0.00 def data_transform(X, degree): X_new=[] for i in range(degree +1): X_new.append(X**i) X_new = np.concatenate(X_new) return X_new
In [145 In [147	<pre>def plot_op(x,y_pred): # insert your code here ind0 = np.where(y_pred[:,0]<0.5) ind1 = np.where(y_pred[:,0]>=0.5) ind0 = np.array(ind0) ind1 = np.array(ind1) x0=x[ind0[0,:],:] x1=x[ind1[0,:],:] plt.plot(x0[:,0],np.zeros((x0).shape),'o',color='y') plt.plot(x1[:,0],np.ones((x1).shape),'x',color='r')</pre>
	<pre># insert your code here log_reg_multi = logis_regression() w_in_1 = np.array([[-3],[4],[1]]) eps = 1e-20 lr = 0.00001 y_class1 = np.concatenate((np.zeros(x1.shape),np.ones(x2.shape),np.ones(x3.shape))) y_class1 = y_class1[:,np.newaxis] w_pred_class1,err_class1=log_reg_multi.Regression_grad_des(x_aug_multi.T,y_class1,w_in_1,lr,eps) plt.plot(err_class1) plt.show print(w_pred_class1)</pre>
	Inside function [[-3] [4] [1]] Inside fun (3, 1) [[-3.05402455] [3.80912007] [0.34159628]] 0.074
In [148	<pre>0.068 0.067 # ploting for class1 plt.figure() plt.plot(x_multi,y_class1[:,0],'.') y_pred_class1=log_reg_multi.logis(x_aug_multi.T,w_pred_class1) plt.plot(x_multi,y_pred_class1) plt.plot(x_multi[:,np.newaxis],y_pred_class1) plt.show()</pre>
In [149	0.8 0.6 0.4 0.2 0.0 0.5 10 15 20 25 3.0 3.5 #Working class 2 w_in_2 = np.array([[3],[-5],[2]])
	<pre>w_In_z = np.drrdy([[s],[-s],[2]]) eps = 1e-20 lr = 0.00001 y_class2 = np.concatenate((np.ones(x1.shape),np.zeros(x2.shape),np.ones(x3.shape))) y_class2 = y_class2[:,np.newaxis] w_pred_class2,err_class2=log_reg_multi.Regression_grad_des(x_aug_multi.T,y_class2,w_in_2,lr,eps) plt.plot(err_class2) plt.show print(w_pred_class2) Inside function [[3] [-5] [2]] Inside fun (3, 1) [[2.95426001]</pre>
	[-5.15775724] [1.40684166]] 0.5
In [150	<pre># ploting class 2 plt.figure() plt.plot(x_multi,y_class2[:,0],'.') y_pred_class2=log_reg_multi.logis(x_aug_multi.T,w_pred_class2) plt.plot(x_multi,y_pred_class2) plot_op(x_multi[:,np.newaxis],y_pred_class2) plt.show()</pre>
In [151	#Working for class3 w_in_3 = np.array([[4],[3],[-1]]) eps = 1e-20 lr = 0.00001
	<pre>y_class3 = np.concatenate((np.ones(x1.shape), np.ones(x2.shape), np.zeros(x3.shape))) y_class3 = y_class3[:,np.newaxis] w_pred_class3, err_class3=log_reg_multi.Regression_grad_des(x_aug_multi.T,y_class3,w_in_3,lr,eps) plt.plot(err_class3) plt.show print(w_pred_class3) Inside function [[4] [3] [-1]] Inside fun (3, 1) [[3.81996569] [2.84274768] [-1.14930366]] 0.6 0.5 0.4 0.3 </pre>
In [152	#Plotting Class3 plt.figure() plt.plot(x_multi,y_class3[:,0],'.') y_pred_class3=log_reg_multi.logis(x_aug_multi.T,w_pred_class3) plt.plot(x_multi,y_pred_class3) plt.plot(x_multi[:,np.newaxis],y_pred_class3) plt.show()
	10 -
In [153	<pre># final classification # insert your code here # as '0' is taken as referance # insert your code here y_pred1 = x_aug_multi.T@w_pred_class1 y_pred2 = x_aug_multi.T@w_pred_class2 y_pred3 = x_aug_multi.T@w_pred_class3 y_final = [] for i in range(y_pred1.shape[0]): if (y_pred1[i,0]<y_pred2[i,0] (y_pred2[i,0]<y_pred1[i,0]="" (y_pred3[i,0]<y_pred1[i,0]="" and="" elif="" else:<="" pre="" y_final.append(0)="" y_final.append(1)="" y_final.append(2)="" y_pred1[i,0]<y_pred3[i,0]):="" y_pred2[i,0]<y_pred3[i,0]):="" y_pred3[i,0]<y_pred2[i,0]):=""></y_pred2[i,0]></pre>
	<pre>y_final.append(4) y_final = np.array(y_final) plt.figure() plt.scatter(x_multi, y_final, c=y_final) plt.show()</pre> 200 175 150 125 100 0.75
In [154	 0.50 0.25 0.00 0.00 0.05 1.0 1.5 2.0 2.5 3.0 3.5 Support vector machine 1. Try to maximize the margin of separation between data. 2. Instead of learning wx+b=0 separating hyperplane directly (like logistic regression), SVM try to learn wx+b=0, such that, the margin between two hyperplanes wx+b=1 and wx+b=-1 (also known as support vectors) is maximum. 3. Margin between wx+b=1 and wx+b=-1 hyperplane is \$\frac{2}{ w }\$\$
	 4. we have a constraint optimization problem of maximizing \$\frac{2}{ w }\$, with constraints wx+b>=1 (for +ve class) and wx+b<=-1 (for -ve class). 5. As \$y_{i}=1\$ for +ve class and \$y_{i}=-1\$ for -ve class, the constraint can be re-written as: \$\$y(wx+b)>=1\$\$ 6. Final optimization is (i.e to find w and b): \$\$\min_{ w }\frac{1}{2} w ,\$\$ \$\$y(wx+b) \gq 1,~\forall ~data \$\$ Acknowledgement: https://pythonprogramming.net/predictions-svm-machine-learning-tutorial/ https://medium.com/deep-math-machine-learning-ai/chapter-3-1-svm-from-scratch-in-python-86f93f853dc
	 Data generation: 1. Generate 2D gaussian data with fixed mean and variance for 2 class.(var=Identity, class1: mean[-4,-4], class2: mean[1,1], No. of data 25 from each class) 2. create the label matrix 3. Plot the generated data
Out[155	<pre>var2=var1 data1=np.random.multivariate_normal(mean1, var1, int(No_sample/2)) data2=np.random.multivariate_normal(mean2, var2, int(No_sample/2)) X=np.concatenate((data1, data2)) print(X.shape) y=np.concatenate((-1*np.ones(data1.shape[0]), np.ones(data2.shape[0]))) print(y.shape) plt.figure() plt.scatter(X[:,0],X[:,1],marker='o',c=y) (50, 2) (50,) <matplotlib.collections.pathcollection 0x7f3d7169c3c8="" at=""></matplotlib.collections.pathcollection></pre>
	Create a data dictionary, which contains both label and data points.
In [156	<pre>postiveX=[] negativeX=[] for i,v in enumerate(y): if v==-1: negativeX.append(X[i]) else: postiveX.append(X[i]) #our data dictionary data_dict = {-1:np.array(negativeX), 1:np.array(postiveX)} SVM training 1. create a search space for w (i.e w1=w2),[0, 0.5*max((abs(feat)))] and for b, [-max((abs(feat)))], max((abs(feat)))], with appropriate</pre>
In [157	 step. we will start with a higher step and find optimal w and b, then we will reduce the step and again re-evaluate the optimal one. In each step, we will take transform of w, [1,1], [-1,1], [1,-1] and [-1,-1] to search arround the w. In every pass (for a fixed step size) we will store all the w, b and its corresponding w , which make the data correctly classified as per the condition \$y(wx+b) \geq 1\$. Obtain the optimal hyperplane having minimum w . Start with the optimal w and repeat the same (step 3,4 and 5) for a reduced step size.
	<pre>class SVM: definit(self, learning_rate=0.001, lambda_param=0.01, n_iters=1000): self.lr = learning_rate self.lambda_param = lambda_param self.n_iters = n_iters self.w = None self.b = None def fit(self, X, y_): n_samples, n_features = X.shape self.w = np.zeros(n_features) self.b = 0</pre>
In [166	<pre>print('inside function') for _ in range(self.n_iters): for idx, x_i in enumerate(X): condition = y_[idx] * (np.dot(x_i, self.w) - self.b) >= 1 if condition: self.w -= self.lr * (2 * self.lambda_param * self.w) else: self.w -= self.lr * (2 * self.lambda_param * self.w - np.dot(x_i, y_[idx])) self.b -= self.lr * y_[idx] return self.w, -1*self.b def predict(self, X): approx = np.dot(X, self.w) - self.b return np.sign(approx)</pre> Training
	<pre># my trainging lr = 1e-4 lambda_param = 1e-4 n_iter = 20000 svm = SVM(lr, lambda_param, n_iter) w, b = svm.fit(X,y) print(w) print(b) inside function [1.15485955 1.08452534] 1.6806999999998313 Visualization of the SVM separating hyperplanes (after training)</pre>
In [162	<pre>def visualize(data_dict,w,b): plt.scatter(X[:,0],X[:,1],marker='o',c=y) def hyperplane_value(x,w,b,v): return (-w[0]*x-b+v) / w[1]</pre>
	<pre>hyp_x_min = np.min([np.min(data_dict[1]), np.min(data_dict[-1])]) hyp_x_max = np.max([np.max(data_dict[1]), np.max(data_dict[-1])]) # (w.x+b) = 1 # positive support vector hyperplane psv1 = hyperplane_value(hyp_x_min, w, b, 1) psv2 = hyperplane_value(hyp_x_max, w, b, 1) plt.plot([hyp_x_min,hyp_x_max],[psv1,psv2], 'k') # (w.x+b) = -1 # negative support vector hyperplane nsv1 = hyperplane_value(hyp_x_min, w, b, -1) nsv2 = hyperplane_value(hyp_x_max, w, b, -1) plt.plot([hyp_x_min,hyp_x_max],[nsv1,nsv2], 'k') # (w.x+b) = 0 # positive support vector hyperplane db1 = hyperplane_value(hyp_x_min, w, b, 0)</pre>
In [167	<pre>hyp_x_max = np.max([np.max(data_dict[1]), np.max(data_dict[-1])]) # (w.x+b) = 1 # positive support vector hyperplane psv1 = hyperplane_value(hyp_x_min, w, b, 1) psv2 = hyperplane_value(hyp_x_max, w, b, 1) plt.plot([hyp_x_min, hyp_x_max], [psv1, psv2], 'k') # (w.x+b) = -1 # negative support vector hyperplane nsv1 = hyperplane_value(hyp_x_min, w, b, -1) nsv2 = hyperplane_value(hyp_x_max, w, b, -1) plt.plot([hyp_x_min, hyp_x_max], [nsv1, nsv2], 'k') # (w.x+b) = 0</pre>
In [167	<pre>hyp_x_max = np.max([np.max(data_dict[1]), np.max(data_dict[-1])]) # (w.x+b) = 1 # positive support vector hyperplane psv1 = hyperplane_value(hyp_x_min, w, b, 1) psv2 = hyperplane_value(hyp_x_max, w, b, 1) plt.plot([hyp_x_min, hyp_x_max], [psv1, psv2], 'k') # (w.x+b) = -1 # negative support vector hyperplane nsv1 = hyperplane_value(hyp_x_min, w, b, -1) nsv2 = hyperplane_value(hyp_x_max, w, b, -1) plt.plot([hyp_x_min, hyp_x_max], [nsv1, nsv2], 'k') # (w.x+b) = 0 # positive support vector hyperplane db1 = hyperplane_value(hyp_x_min, w, b, 0) db2 = hyperplane_value(hyp_x_max, w, b, 0) plt.plot([hyp_x_min, hyp_x_max], [db1, db2], 'y') fig = plt.figure() visualize(data_dict, w, b) plt.show()</pre>
In [167	hyp_x_max = np.max([np.max(data_dict[1]), np.max(data_dict[-1])]) # (w.x+b) = 1 # positive support vector hyperplane pay2 = hyperplane value(hyp_x_max, w, b, 1) pit.plot([npx_min, hyp_x_max], [pay1, pay2], 'k') # (w.x+b) = -1 # nogative support vector hyperplane nsv1 = hyperplane_value(hyp_x_min, w, b, -1) pit.plot([npx_min, hyp_x_mx, w, b, -1) pit.plot([npx_min, hyp_x_mx, w, b, -1) pit.plot([npx_min, hyp_x_mx, w, b, 0) div = hyperplane_value(hyp_x_min, w, b, 0) div = hyperplane_value(hyp_x_mx, w, b, 0) div = hyperplane_value(hyp_x_mx, w, b, 0) pit.plot([npx_min, hyp_x_mx], (ob1, do2], 'y') # (wisualize(data_dict, w, b) pit.show() # See the classification 3. if Saw_(test)+b > 0\$, Sy_(test)=1\$ else \$y_(test)=1\$ No test sample=40 dirata-np.random.multivariate.normal(meani, vari, int(0 test_sample/2)) dirata-np.random.multivariate.normal(meani, vari, int(0 test_sample/2)) y gr=np.concatenate((-1*np.ones(data1.shape[0]),np.ones(data2.shape[0])) # evaluate with the trained model y_pred=vm.predict(test_data) Sum =0 count=0
In [168	<pre>hyp_x_max = np.max([np.max(data_dict[1]), np.max(data_dict[-1])]) # (x.*+b) = 1 # positive support vector hyperplane prove = hyperplane value(hyp x max, w, b, 1) plt.plot([hyp_x_min, hyp_x_max], [psvt, psv2], 'k') # (x.*+b) = -1 # negative support vector hyperplane nexi = hyperplane value(hyp_x_max, w, b, -1) nsv2 = hyperplane value(hyp_x_max, w, b, -1) nsv2 = hyperplane value(hyp_x_max, w, b, -1) nsv2 = hyperplane value(hyp_x_max, w, b, -1) plt.plot([hyp_x_min, hyp_x_max], [nsv1, nsv2], 'k') # (x.**b) = 0 # positive support vector hyperplane db1 = hyperplane value(hyp x min, w, b, 8) db2 = hyperplane value(hyp x min, w, b, 8) db2 = hyperplane value(hyp x min, w, b, 8) plt.plot([hyp_x_min, hyp_x_max], [db1, db2], 'y') fig = plt.figure() visualize(data_dict, w, b) plt.show() ### (See the dissification 3. # Swx_[loss]+b>0S, Sy, [less]=1\$ No.lest_sample=40 datalanp, random_multivariate_normal(mean1, var1, int(No.test_sample/2)) datalanp, concatenate((data1, data2)) y_cran_concatenate((clata1, data2)) y_cran_concatenate((-1*np. nones(data1. shape[0]), np. ones(data2. shape[0]))) # evaluate with the trained mode! y_pred=swm.predict(test_data) sum =0</pre>
In [168	hyp.x_max = p.max([np.max(date_date[1]),np.max(date_date[-1])]) # (w.wh) = 1 # (w.wh) = 0 # (w.wh
In [168	## ## ## ## ## ## ## ## ## ## ## ## ##
In [168	## ## ## ## ## ## ## ## ## ## ## ## ##
In [168	## ## ## ## ## ## ## ## ## ## ## ## ##
In [168	## ## ## ## ## ## ## ## ## ## ## ## ##
In [168	## ## ## ## ## ## ## ## ## ## ## ## ##
In [168	## ## ## ## ## ## ## ## ## ## ## ## ##
In [168	## ## ## ## ## ## ## ## ## ## ## ## ##
In [168	## ## ## ## ## ## ## ## ## ## ## ## ##
In [168	## ## ## ## ## ## ## ## ## ## ## ## ##
In [168	## ## ## ## ## ## ## ## ## ## ## ## ##
In [168	## ## ## ## ## ## ## ## ## ## ## ## ##
In [168	## ## ## ## ## ## ## ## ## ## ## ## ##
In [168	## ## ## ## ## ## ## ## ## ## ## ## ##
In [168	## ## ## ## ## ## ## ## ## ## ## ## ##
In [168	## ## ## ## ## ## ## ## ## ## ## ## ##
In [168	## ## ## ## ## ## ## ## ## ## ## ## ##
In [168	## ## ## ## ## ## ## ## ## ## ## ## ##
In [168	## ## ## ## ## ## ## ## ## ## ## ## ##
In [168	## ## ## ## ## ## ## ## ## ## ## ## ##
In [168	## ## ## ## ## ## ## ## ## ## ## ## ##
In [168	## ## ## ## ## ## ## ## ## ## ## ## ##