Propagation and Antenna Chapter 1.3 - 2.1

Lecture Delivered By:
Ram Krishna Maharjan, Ph.D.
(*Professor*)

Electronics & Computer Engg. Dept., Institute of Engineering (IOE), Tribhuvan University (TU)

1.3 Antenna Theorems

Reciprocity Theorem

1.3 Antenna Theorems

- I. Reciprocity Theorem
- II. Superposition Theorem
- III. Thevenin Theorem
- IV. Maximum Power Transfer Theorem
- V. Compensation Theorem
- VI. Equality of Directional Patterns
- VII.Equivalence of Receiving and Transmitting Impedances

Antenna Reciprocity Theorem

- Mostly an Antenna Performs Transmission as well as Reception
- Same Antenna can be Used for both Functions
- $V_a = V_b$ and $I_a = I_b$

_

Antenna Reciprocity Theorem

Superposition Theorems...

- Field Intensity at a Point due to a number of T_X
 Antennas Equals the Vector sum of the Field
 Intensities due to each of Antennas
- One side a R_{χ} antenna and Other side no. of T_{χ} antennas
- Conditions:
 - Use same type of Antennas
 - Same Frequency Bands
 - Directional Antennas
 - R_x Antenna is within the Far Field Regions of T_x Antennas

Superposition Theorems

- Applicable to only Linear Networks
- Current is Linearly Related to Voltage
- That is as per Ohm's Law
- Current flowing at any Point is Sum of the Currents that would flow if each Generator were Considered Separately
- All other Generators being Replaced at the time by Impedance Equal to their int. Impedances

Thevenin Theorem

- Terminal Voltage A and B (of Generator) can be Replaced by a Single Voltage Source, V_{TH} in Series with a Single Resistance R_{TH} .
- T_X and R_X antennas systems are Equivalent to Generator and Load Equivalent
- So that Thevenin Theorem can be Applied in Both Cases

6

Thevenin Theorem

 Any linear Bilateral Network may be Reduced to a Simplified Two-terminal Circuit consisting of a Single Voltage Source in Series with a Single Resistor as shown in Figure below:

Thévenin Equivalent Circuit

10

Antenna Thevenin Theorem

Thevenin Theorem

The Effect of Applying Thévenin's Theorem

12

Antenna Thevenin Theorem...

Thevenin Theorem for Receiving Antenna

Maximum Power Transfer Theorem

- Maximum Power Transfer can be Possible.
- Maximum Power can be Transferred when

$$Z_g = Z_0 = Z_a$$

Where, $Z_g = Generator Impedance, Z_0 = Characteristic Impedance of <math>T_X$ line and $Z_a = Antenna I/p Impedance$

- An Impedance Connected to Two Terminals of a Network will Absorb Maximum Power from the Netwok when the Impedance is Equal to the Conjugate of the Impedance
- I.e. seen Looking back into the Network from the Two Terminals

15

Maximum Power Transfer Theorem

- It Determines the Value of the Load Impedances which Result in Max. Power Transfer across the Terminals of an Active circuit (Network)
- For Max. Power Transfer, the Load Impedance must be Equal to Complex Conjugate of Source Impedance

i.e.
$$Z_L=Z_S$$

 $R_L+jx_L=R_S+jx_S$
 $R_L=R_S$
 $x_L=-x_S$

Maximum Power Transfer Theorem

 The Max. Power can be Absorbed from a Network equals

$$V_{oc}^2/4R$$
,

Where,

V_{oc} is the Open Circuit Voltage at the Output Terminals and

R is the Resistive Component of the Impedance Looking back from the Output Terminals

16

Compensation Theorem

Compensation or Substitution Theorem:

- Any Impedance in a Network may be Replaced by a Generator with zero Internal Impedance,
- Whose Generated Voltage at Every Instant Equals Instantaneous Potential Difference and
- That Existed across the Impedance because of Current Flowing through it.

Compensation Theorem...

- The Network Impedance, Z may be Replaced by a Compensating Voltage
- Where the Magnitude and Phase of the Source are equal to I Z.
- Note that Currents and Voltages in all other parts of the Network remains Unchanged after Substituting the Compensation Source
- So that this Theorem is also Known as the Substitution Theorem

19

Equality of Directional Patterns

Two (Tx & Rx) Antennas Separated by a Distance R

Equality of Directional Patterns

- The Directional Pattern of a Receiving Antenna is Identical with its Directional Pattern as a Transmitting Antenna
- Radiation Patterns are similar in Both cases of Transmitting and Receiving Antennas
- This method is used for Designing Antennas
- It is very Effective for Measurement of Antenna Parameters

20

Equivalence of Receiving & Transmitting Impedances

 The Impedance of an Isolated Antenna when use for Receiving is the Same as when used for Transmitting

Transmitting and receiving antenna systems

Equivalence of Receiving & Transmitting Impedances

Two-antenna system with conjugate loads

23

Basic Antenna Parameters (Cont..)

1. Isotropic Radiation

- Imaginary/Fictitious Radiation Pattern
- Radiation Uniformly in all Directions
- And Equally also all Directions
- Hypothetical Lossless Radiator
- Beam Angle Area $(\Omega_{\Delta}) = 4\pi$
- Ideal Source Power, $P = P_{+}/4\pi r^{2}$

An Isotropic Antenna

Chap. 2.0 Basic Antenna Parameters

- Isotropic Radiation
- 2. Effective Isotropic Radiated Power (EIRP)
- Power Flux Density (Radiation Power Density)
- 4. Antenna Gain
- Antenna Efficiency
- Receiving Power Intensity
- Antenna Aperture
- Free Space Loss
- 9. Antenna Noise Temperature
- Receiving Noise Power
- Carrier-to-Noise Ratio
- 12. Carrier-to-Noise Density
- 13. Figure of Merit (G/T)
- Bandwidths
- 15. Beamwidths
- 16. Beam Efficiency
- 17. Radiation Patterns
- 18. Directional & Omnidirectional Patterns
- 19. Radiation Patterns Lobes
- 20. Radiation Intensity
- 21. Input Impedance
- 22. Polarization

- Front-to-Back Ratio
- 18. Directivity
- 19. Antenna Impedance
- 20 Radiation Resistance
- 21. Effective Length/Height
- Gain-to- Noise Ratio
- 23. Insertion loss
- Transmission Coefficient t(S)
- 25. Reflection Coefficient ρ(S)
- 26. Numerical Efficiency
- 27. Friis Transmission Equation
- 28 Radiation Patterns
- 29. Beam Area (or Beam Solid Angle) Ω_{Λ}
- 30 Signal-to-Noise Ratio (SNR)
- 31. Antenna Reciprocity
- 32. Voltage standing wave ratio (vswr)
- Antenna Factor (AF)

24

Basic Antenna Parameters (Cont..)

2. Effective Isotropic Radiated Power (EIRP)

- Equivalent Isotropically Radiated Power
- EIRP = P_tG_t/L_{wg} (w) - - (1) Where,

P_t is Transmitting PowerG_t Transmitting Antenna GainL_{wg} is Waveguide (Cable) Loss

- $[EIRP] = [P_t] + [G_t] [L_{wg}]$ (dBw) - (2)
- It is always Measured in T_x terminal

3. Power Flux Density (Radiation Power Density)

- Short Term PFD = EIRP/ $4\pi R^2$ (w/m²) - - (3)
- [PFD] = [P_t] + [G_t] [L_{wg}] [$4\pi R^2$] (dBw/m²) - - (4) Where,

R is Distance Between T_X and R_X

- PFD is Equal to EIRP Reduced by 4π times Sqr. of R
- It is always Measured in Transmission Side
- It is Function of Radiation of T_x antenna
- So that it is also called Radiation Power Density (RPD)

 $F_{r} = A_{r}PFD = \frac{P_{t}G_{t}Ae}{4\pi r^{2}} \quad (Frist formula).$ $O_{r}, F_{r} = \frac{P_{t}A_{t}A_{r}}{2^{2}r^{2}} \quad \text{where } G_{t} = 4\pi A_{t}/2$ $P_{r} = \frac{P_{t}G_{t}G_{r}\lambda^{2}}{(4\pi r)^{2}}, \quad \text{where } A_{r} = \frac{2^{2}G_{r}}{4\pi r}$ $L_{f} = \frac{4\pi r^{2}}{2^{2}}, \quad G_{f} = \frac{1}{L_{f}} = \frac{2}{4\pi r^{2}}$ $f_{r}ee \quad space \quad loss \quad and \quad gain$ $[P_{r}] = [P_{t}] + [G_{t}] - [L_{f}] + [G_{r}] - [L_{w}g]$

Basic Antenna Parameters (Cont..)

- 4. Antenna Gain (G)
- This Antenna Gain is Used for only Aperture Antennas
- Antenna Gain can be for both T_X and T_R antennas
- Only it will be changed λ
- But, usually G is called Receiving Gain
- Here, it will be noted G_r for Receiving Gain
- And, G_t for Transmitting Gain

Basic Antenna Parameters (Cont..) Antenna Gain (G)

- Transmitting and Receiving Antenna Gains
- $G_r = (4\pi/\lambda^2) * A_{eff} - - (5)$ = $(4\pi/\lambda^2) * \eta * (\pi D^2/4)$ = $\eta (\pi D/\lambda)^2 - - - - (6)$

Where,

 $4\pi/\lambda^2$ is Universal Constant η is Antenna Efficiency which equals $\eta = G (\lambda/\pi D)^2$

31

Concept of Efficiencies

Basic Antenna Parameters (Cont..)

5. Antenna Efficiency, η

- It is Defined as the Ratio of Power Radiated to the Total Power (Supplied) in T_x
- It is Defined as the Ratio of Power Received to the Exposed Total signal Power (EMWs) in R_x
- It is Used to relate the Effective Area and Physical Area
- Similarly, for Relating the Gain and Directivity $\eta = G(\theta, \phi)/D(\theta, \phi) = P_t/P_0$

32

Basic Antenna Parameters (Cont..) Antenna Efficiency, η

$$\eta = G (\lambda/\pi D)^{2}$$
 Because,
$$G = \eta (\pi D/\lambda)^{2}$$

- All Signals exposed on the Antenna could not be totally Recovered due to Antenna Efficiency
- The total Efficiency, η_0 is the Product of Various types of Efficiencies
- Efficiency is Unit less or Dimensionless

2/1

Antenna Efficiency, η

In general, the overall efficiency can be written as

$$\eta_0 = \eta_r x \, \eta_c x \, \eta_d x \, \eta_{Sp} x \, \eta_{Sm} x \, \eta_b x \, \eta_{Sc} x \, \eta_i \quad --- (7)$$

Where

 η_0 is Total Efficiency

 η_r is Reflection(Mismatch) Efficiency = $(1 - |\Gamma|^2)$

 η_c is Conduction Efficiency

 η_d is Dielectric Efficiency

35

Basic Antenna Parameters (Cont..)

Antenna Efficiency, n

The Reflection(Mismatch) Efficiency , $\eta_r = (1 - |\Gamma|^2)$ Where,

 Γ is Voltage Reflection Coefficient at the input Terminals of the Antenna

 $[\Gamma = (Z_{in} - Z_0)/(Z_{in} + Z_0)]$ where $Z_{in} = Antenna$ input Impedance,

- Z₀ = Characteristic Impedance of the Transmission Line]
- Voltage Standing Wave Ratio (VSWR)

$$VSWR = (1 + | \Gamma |)/(1 - | \Gamma |) - - - (8)$$

Basic Antenna Parameters (Cont..)

Antenna Efficiency, η

Wherer,

 η_0 is Total Efficiency

 η_{SP} is Spillover Efficiency from Primary Reflector

 η_{sm} is Spillover Efficiency from Main Reflector

 η_b is Blockage Efficiency

 η_{sc} is Scattering Efficiency

 η_i is Illumination Efficiency

Basic Antenna Parameters (Cont..)

6. Receiving Power Intensity

- Received Power(Pr)

= $[P_tG_t/(L_{wg}^* 4\pi R^2)]^*G_r(\lambda/\pi D)^2*(\pi D^2/4)$ - - (10)

= $P_t G_t G_r * (\lambda / 4\pi R)^2 - - - - (11)$

 $P_r/P_t = G_t G_r * (\lambda / 4\pi R)^2 - - - - - (12)$

Eqn. (11) & (12) are called Friis Transmission

Equation

Receiving Power Intensity

• The Eqn. (11) becomes in dBW

$$[P_r] = [P_t] + [G_t] + [G_r] - [L_{free}] - - - - (13)$$

Friis Transmission Equation in Db

The free space loss $(L_{free}) = (4\pi R/\lambda)^2 - - - - (14)$

39

Basic Antenna Parameters (Cont..)

8. Free Space Loss

$$L_{free} = (4\pi R/\lambda)^2 - - - - (14)$$

- Loss due to signal Spreading over Distance
- Loss is Directly Proportional to Frequency
- And Inversely Proportional to Square of the Frequency
- Free Space Loss in dB

$$[L_{free}] = 10 \log (4\pi R/\lambda)^{2}$$

$$= 20 \log (4\pi R/\lambda)$$

$$= 20 \log (4\pi) + 20 \log (R/\lambda)$$

$$= 22 + 20 \log (R/\lambda) \quad (dB) - - - - (15)$$

Basic Antenna Parameters (Cont..)

7. Antenna Aperture

- Antenna Aperture Area can be Effective or Physical
- Effective Area (A_{eff}) is always η times smaller than Physical Area (A_{phy})
- Then,

$$A_{eff} = \eta A_{phy}$$

- Similarly, It is Applied for both in antenna Length as well
- Then, $L_{eff} = \eta L_{phy}$

40

Basic Antenna Parameters (Cont..)

9. Antenna Noise Temperature, T₀

• It is included with System Noise Temperature

$$T_0 = kT_SB$$

Where,

 $k = Boltzmann's Constant=1.381x10^{-23} (J/K)$

T_s = System Noise Temperature

B = Bandwidth of the Frequency being used

Antenna Noise Temperature is in always in R_x side

10. Receiving Noise Power, P_n

- It is always Measured in Receiving side
- It is Counted in $C/N = P_r/P_n$
- The Receiving Noise Power, $P_n = kT_SB$
- Receiving Noise Power is Antenna Noise Temp.
- $P_n = kT_SB$

Where,

 $k = Boltzmann's Constant=1.381x10^{-23} (J/K)$

T_s = System Noise Temperature

B = Bandwidth of the Frequency being used

Basic Antenna Parameters (Cont..)

12. Carrier-to-Noise Density, C/N₀

- It is Measured in after Tuning Circuit with Antenna
- Antenna itself Resonant Circuit Equivalent
- Thus, $C/N_0 = C/N \times B = P_r/P_n \times B = P_r/kT_SB \times B$ $C/N_0 = P_r/kT_S$

Where,

$$C = P_r = P_t G_t G_r^* (\lambda / 4\pi R)^2$$
 (J/K)

$$N_0 = kT_s$$

$$[C/N_0] = [P_t] + [G_t] + [G_r] - [k] - [T_S] - [L_{free}]$$
 (dB Hz)

$$[C/N_0] = [P_t] + [G_t] + [G/T] - [k] - [L_{free}]$$
 (dB Hz)

This is a Ling-Design Formula (Equation)

Basic Antenna Parameters (Cont..)

11. Carrier-to-Noise Ratio, C/N

- It is always Measured in Receiving side
- Carrier-to-Noise Ratio, $C/N = P_r/P_n$
- The Receiving Noise Power, $P_n = kT_sB$
- That is Receiving Noise Power is Antenna Noise Temp.
- C/N is Measured in input of Antenna
- Antenna Catches Desired signal including noise power

44

Basic Antenna Parameters (Cont..)

13. Gain-to-Noise Ratio, G/T

- It is also called Figure of Merit
- Ratio of Receiving antenna Gain to Antenna Temp.
- It is Measured in always RX site
- G/T determines the Quality and signal Strength of Earth Station (ES)
- Very important Factor in Link Design
- Link Design can be Up link or Down Link
- Value of G/T Maintains Standard of ES

14. Bandwidths

- The range of frequencies within which the performance of the antenna,
- With respect to some Characteristic conforms to a specific standard
- BW = $\Delta f = f_2 f_1$; $f_c = (f_{max} + f_{min})/2$
- Fractional Bandwidth (FBW) = $(f_{max} f_{min})/f_c$ = $(f_{max} - f_{min})/(f_{max} + f_{min})/2$
- FBW is always measured in Percentage (%) => 0%<FBW<100%
 FBW < 1 % => Narrow Banwidth

1%< FBW < 20% => BroadBand

20% < FBW < 50% => WideBroad

50%< FBW => Ultra WideBroad

47

Basic Antenna Parameters (Cont..)

15. Beamwidths

- First-null Beamwidth (FNBW)
- Half-power Beamwidth (HPBW) is in 3dB less from peak of major lobe
- Pencil Beamwidth Normally, HPBW≈FNBW/2

First-null beamwidth
(FNBW)

Half-power beamwidth
(HPBW)

Minor lobes

Side lobe

Back lobe

Radiation lobes and beam widths of an antenna pattern

Bandwidth of Signals

48

Radiation Patterns with BW

Linear plot of power pattern and its associated lobes and beam widths.

Beamwidth (BW)....

Half-power Beamwidth (HPBW) = $70 \lambda/D$ (Degree)

Or, BW = $21 \times 10^9/\text{Fd}$

 Pencil Beamwidth is used for Space Communication Normally,

$$\theta_{\text{y}} \approx \text{FNBW/2} = 70 \text{ }\lambda/\text{D}$$

51

Basic Antenna Parameters (Cont..)

Beam Efficiency (BE) ...

Basic Antenna Parameters (Cont..)

16. Beam Efficiency (BE)

- It is used to Judge the Quality of Transmitting and Receiving antennas
- For an antenna with its major lobe directed along the z-axis ($\vartheta = 0$)
- the beam efficiency (BE) is defined by
 BE = Power Transmitted (Received) within cone Angle θ1/
 Power Transmitted (Received) by the Antenna
- BE is dimensionless (Unit less)

52

Basic Antenna Parameters (Cont..)

Beam Efficiency (BE)

• Ratio of Main Beam area to the Total Beam area $\epsilon_{\rm M} = \Omega_{\rm M}/\Omega_{\rm A}$ = Beam Efficiency

Where, $\Omega_{\rm A}$ = $\Omega_{\rm M}$ + $\Omega_{\rm m}$ =

 Ω_A is Total Beam Area (or Beam Solid Angle)

 Ω_{M} is Main Beam Area (or Solid Angle)

 $\Omega_{\rm m}$ is Minor-lobe area (or Solid Angle)

- Ratio of Minor-lobe area to the Total Beam area $\varepsilon_{\rm m} = \Omega_{\rm m}/\Omega_{\rm A} = {\rm Stray \ Factor}$
- It Follows That $\varepsilon_{M} + \varepsilon_{m} = 1$

17. Radiation Patterns

- Mathematical function or a Graphical Representation of the Radiation Properties of the Antenna as a Function of Space Coordinates.
- It is Determined in the Far Field Region
- It is Represented as a Function of the Directional Coordinates.

55

Coordinate system for antenna analysis

Basic Antenna Parameters (Cont..)

Radiation Patterns:

- A trace of the received electric (magnetic) field at a constant radius is called the amplitude field *pattern*.
- On the other hand, a graph of the spatial variation of the power density along a constant radius is called an amplitude power pattern.
- Often the field and power patterns are normalized with respect to their maximum value, yielding normalized field and power patterns.
- Also, the power pattern is usually plotted on a logarithmic scale or more commonly in decibels (dB).

56

Radiation Patterns & Input Impedance

Radiation Patterns...

- Mathematical function or a Graphical Representation of the Radiation Properties of the Antenna as a Function of Space Coordinates.
- It is Determined in the Far Field Region
- It is Represented as a Function of the Directional Coordinates.

Radiation Patterns & Input Impedance

Radiation Properties Include

- —Power Flux Density (PFD),
- Radiation Intensity,
- -Field Strength,
- –Directivity,
- -Phase, or
- -Polarization.

59

Radiation Patterns

Linear plot of power pattern and its associated lobes and beam widths.

Radiation Pattern

Radiation lobes and beam widths of an antenna pattern

60

3D Radiation Patterns

Normalized three-dimensional amplitude *field pattern (in linear scale)*

Radiation Patterns & Input Impedance

Radiation Patterns can be

- 1. Isotropic Radiation Pattern
- 2. Omni-directional Radiation Pattern
- 3. Directional Radiation Pattern

64

Radiation Patterns in 2D

Main labe First sile HPBW Lobes Wide angle Sidelabes Isotropic level -180° Radiation Pattern

Basic Antenna Parameters (Cont..)

18. Directional and Omni-Directional Patterns

- Directional Antenna is Antenna having Radiation Pattern (s) directed Desired Direction (s) rather than other Directions
- Directional antennas can be Unidirectional,
 Bidirectional and Quad directional
- Omni directional Antenna has Radiation uniformly and equally in all direction except upwards
- Vertical antennas have such types of Radiations

Three- and two-dimensional power patterns

Unidirectional End-Fire Radiations

Bidirectional Pattern

Quad-directional Pattern

Travelling & Standing Radiations (a) Traveling wave

Omnidirectional Patterns

(b) Standing wave

Omnidirectional Patterns

Basic Antenna Parameters (Cont..)

19. Radiation Pattern Lobes

- Radiation Pattern Lobes are Sub-classified into
 - 1. Major or Main Lobe
 - 2. Minor Lobe
 - 3. Side Lobes
 - 4. Back Lobes

Radiation Pattern Lobes ...

 Radiation Pattern Lobe is a "Portion of the Radiation Pattern bounded by regions of Relatively Weak Radiation Intensity."

Basic Antenna Parameters (Cont..)

Radiation Pattern Lobes ...

- Usually a Side Lobe is Adjacent to the Main Lobe and occupies the Hemisphere in the Direction of the Main Beam
- A Back Lobe is a Radiation lobe whose axis makes an angle of Approximately 180° with respect to the Main Beam of an Antenna.
- Minor Lobes usually represent Radiation in Undesired Directions
- They should be Minimized
- Side Lobes are Normally the Largest of the Minor Lobes

Basic Antenna Parameters (Cont..)

Radiation Pattern Lobes ...

- Radiation Pattern Lobes are Sub-classified into Major Lobe (Main Beam) and Minor Lobes
- It is defined as "the Radiation lobe containing the direction of Maximum Radiation."
- Minor Lobe is any Lobe except a Major Lobe.
- Side Lobes and Back Lobes are Minor Lobes
- A side lobe is "a radiation lobe in any direction other than the intended lobe."

76

Basic Antenna Parameters (Cont..)

20. Radiation Intensity

- Power Radiated from an Antenna per Unit Solid Angle
- It is Measured in Watts per Steradian or per Square Degree
- The Ratio of the Radiation Intensity $U(\theta, \phi)$, as a Function of angle, to its Maximum value. Thus,

$$P_n(\theta, \varphi) = U(\theta, \varphi)/U(\theta, \varphi)_{max} = S(\theta, \varphi)/S(\theta, \varphi)_{max}$$

Radiation Intensity

- Where as the Poynting vector S depends on the Distance from the Antenna
- That is Varying Inversely as the Square of Distance
- Radiation Intensity is Independent of the Distance
- Assuming in Both Cases, Far Field of Antenna is Applied

$$P_{n}(\theta, \varphi) = [U(\theta, \varphi)/U(\theta, \varphi)_{max}] = [S(\theta, \varphi)/S(\theta, \varphi)_{max}]$$

79

Input Impedance (Z_{in})

Input Impedance:

$$Z_A = R_A + jX_A$$

Where,

Z_A is Antenna Imepedance at Terminals a-b

R_A is Antenna Resistance at Terminals a-b

X_A is Antenna Reactance at Terminals a-b

And,

$$R_{\Delta} = R_{r} + R_{l}$$

R_r = Radiation Resistance of the Antenna

 R_1 = Loss Resistance of the Antenna

Basic Antenna Parameters (Cont..)

21. Input Impedance (Z_{in})

- Impedance Presented by Antenna at itsTerminals
- The Ratio of the Voltage to Current at a Terminals
- Ratio of the Appropriate Components of
- The Electric to Magnetic Fields at a Point Impedance
- Input Impedance is Measured at a pair of Terminals
- That is Input Terminals of the Antenna
- It is Measured as:

$$Z_{in} = R_A + jX_A$$

30

Input Impedance (Cont...)

Radiation Resistance

- Fictitious Resistance
- Equivalent to Same Amount of Power When actually Radiating
- Not actually Measured the Resistance from Antenna
- R_r is Subject to the power that it converts into EMW
- Ratio of power radiated to the square of current at the feed point

Loss Resistance

- Ohmic or Load Resistance
- For Efficient Radiation, R_r must be very Higher than R_r
- Loss Resistance gives Rise to Power Loss

Thank You for Your Present!

Contact Address:

Ram Krishna Maharjan, Ph.D. (*Professor*)

Email: rkmahajn@gmail.com, rkmahajn@ioe.edu.np

Dept. of Electronics & Computer Engg.
Institute of Engineering, Tribhuvan University

