Introduction to Optimization

Lecture 09: Simple constraints and projected gradient. Nonsmooth convex functions and subgradient method.

Let $C \subset \mathbb{R}^N$ be nonempty, closed and convex. For each $x \in \mathbb{R}^N$, the projection of x onto C, denoted by $P_C(x)$, is the point in C, which is the closest to x.

Let $C \subset \mathbb{R}^N$ be nonempty, closed and convex. For each $x \in \mathbb{R}^N$, the projection of x onto C, denoted by $P_C(x)$, is the point in C, which is the closest to x.

1 The positive orthant \mathbb{R}^{N}_{+} .

Let $C \subset \mathbb{R}^N$ be nonempty, closed and convex. For each $x \in \mathbb{R}^N$, the projection of x onto C, denoted by $P_C(x)$, is the point in C, which is the closest to x

- **1** The positive orthant \mathbb{R}^N_+ .
- **2** Balls $\bar{B}(x_0, r)$ and boxes $\prod [a_i, b_i]$.

d'n

Let $C \subset \mathbb{R}^N$ be nonempty, closed and convex. For each $x \in \mathbb{R}^N$, the projection of x onto C, denoted by $P_C(x)$, is the point in C, which is the closest to x

- **1** The positive orthant \mathbb{R}^{N}_{+} .
- **2** Balls $\bar{B}(x_0, r)$ and boxes $\prod [a_i, b_i]$.
- **3** Affine spaces, such as $\{x_0\} + V$, or $\{x \in \mathbb{R}^N : Ax = b\}$.

Ø

Ø

The projected gradient method

Consider the problem

$$\min_{x \in C} f(x),$$

where

- $f: \mathbb{R}^N \to \mathbb{R}$, and
- ullet $C\subset\mathbb{R}^N$ is nonempty, closed, convex and easy to project onto.

The set of solutions is denoted by S, and the optimal value by f^* .

The projected gradient method

Consider the problem

$$\min_{x \in C} f(x),$$

where

- $f: \mathbb{R}^N \to \mathbb{R}$, and
- \bullet $\ {\it C} \subset \mathbb{R}^{\it N}$ is nonempty, closed, convex and easy to project onto.

The set of solutions is denoted by S, and the optimal value by f^* .

Idea: At each iteration, perform a gradient step and then project onto C.

$$x_{n+1} = P_C(x_n - \alpha_n \nabla f(x_n)).$$

4 D > 4 B > 4 E > 4 E > 9 Q C

3/9

Juan PEYPOUQUET Optimization 2023-2

Convergence of the projected gradient method

Theorem

Let f be convex and L-smooth, and suppose $S \neq \emptyset$. Iterate $x_{n+1} = P_C(x_n - \alpha \nabla f(x_n))$ with $0 < \alpha \leq \frac{1}{L}$.

Convergence of the projected gradient method

Theorem

Let f be convex and L-smooth, and suppose $S \neq \emptyset$. Iterate $x_{n+1} = P_C(x_n - \alpha \nabla f(x_n))$ with $0 < \alpha \leq \frac{1}{L}$.

 \bullet x_n converges to a point in S, and

$$f(x_n)-f^*\leq \frac{\operatorname{dist}(x_0,S)^2}{2\alpha n}.$$

2 If f is μ -strongly convex, then

$$f(x_n) - f^* \le \frac{f(x_0) - f^*}{(1 + \alpha \mu)^n}.$$

Break

Nonsmooth convex functions

Let $f: A \subset \mathbb{R}^N \to \mathbb{R}$ be convex. If f is differentiable at x, then

$$f(y) \ge f(x) + \nabla f(x) \cdot (y - x)$$

for all $y \in A$.

Nonsmooth convex functions

Let $f:A\subset\mathbb{R}^N\to\mathbb{R}$ be convex. If f is differentiable at x, then

$$f(y) \ge f(x) + \nabla f(x) \cdot (y - x)$$

for all $y \in A$.

A vector $v \in \mathbb{R}^N$ is a subgradient of f at x if

$$f(y) \ge f(x) + v \cdot (y - x)$$

for all $y \in A$.

Juan PEYPOUQUET

Nonsmooth convex functions

Let $f: A \subset \mathbb{R}^N \to \mathbb{R}$ be convex. If f is differentiable at x, then

$$f(y) \ge f(x) + \nabla f(x) \cdot (y - x)$$

for all $y \in A$.

A vector $v \in \mathbb{R}^N$ is a subgradient of f at x if

$$f(y) \ge f(x) + v \cdot (y - x)$$

for all $y \in A$. The subdifferential of f at x, denoted by $\partial f(x)$, is the set of all the subgradients of f at x.

Juan PEYPOUQUET

A few simple but important examples

Example (A big ice cream cone)

Let $f: \mathbb{R}^N \to \mathbb{R}$ be defined by f(x) = ||x||.

7/9

A few simple but important examples

Example (A big ice cream cone)

Let $f : \mathbb{R}^N \to \mathbb{R}$ be defined by f(x) = ||x||.

Example (The ℓ^1 -norm)

Let $\|\cdot\|_1: \mathbb{R}^N \to \mathbb{R}$ be defined by $\|x\|_1 = |x_1| + \cdots + |x_N|$.

A few simple but important examples

Example (A big ice cream cone)

Let $f: \mathbb{R}^N \to \mathbb{R}$ be defined by f(x) = ||x||.

Example (The ℓ^1 -norm)

Let $\|\cdot\|_1: \mathbb{R}^N \to \mathbb{R}$ be defined by $\|x\|_1 = |x_1| + \cdots + |x_N|$.

Example (The indicator function)

Let $C \subset \mathbb{R}^N$ be nonempty, closed and convex. The indicator function of C is the function $\iota_C : C \to \mathbb{R}$, defined as $\iota_C(x) = 0$ for all $x \in C$.

Convexity, continuity and subdifferentiability

Proposition

If $f:A\subset\mathbb{R}^N\to\mathbb{R}$ is convex, for each $x\in \text{int}(A)$, there exist $L_x,r_x>0$ such that

$$|f(z)-f(y)|\leq L_{x}||z-y||$$

for all $z, y \in B(x, r_x)$. Moreover,

$$\emptyset \neq \partial f(x) \subseteq \bar{B}(0, L_x).$$

Convexity, continuity and subdifferentiability

Proposition

If $f: A \subset \mathbb{R}^N \to \mathbb{R}$ is convex, for each $x \in \text{int}(A)$, there exist $L_x, r_x > 0$ such that

$$|f(z)-f(y)|\leq L_x||z-y||$$

for all $z, y \in B(x, r_x)$. Moreover,

$$\emptyset \neq \partial f(x) \subseteq \bar{B}(0, L_x).$$

Convex functions are continuous and subdifferentiable in the interior of their domains.

The subgradient method

 $x_{n+1} = x_n - \alpha v_n$ with $v_n \in \partial f(x_n)$

The subgradient method

 $x_{n+1} = x_n - \alpha v_n$ with $v_n \in \partial f(x_n)$

Proposition

Let $f: \mathbb{R}^N \to \mathbb{R}$ be convex and Lipschitz-continuous with constant M, a with minimizers, and let (x_n) be defined by the subgradient method. Then,

$$\min_{k=1,\ldots,n} \left(f(x_k) - \min(f) \right) \leq \frac{\alpha M^2}{2} + \frac{dist(x_0,S)^2}{2\alpha(n+1)}.$$

^aRecall that this means that $|f(x) - f(y)| \le M||x - y||$.

Juan PEYPOUQUET

The subgradient method

 $x_{n+1} = x_n - \alpha v_n$ with $v_n \in \partial f(x_n)$

Proposition

Let $f: \mathbb{R}^N \to \mathbb{R}$ be convex and Lipschitz-continuous with constant M, a with minimizers, and let (x_n) be defined by the subgradient method. Then,

$$\min_{k=1,\ldots,n} \left(f(x_k) - \min(f) \right) \leq \frac{\alpha M^2}{2} + \frac{dist(x_0,S)^2}{2\alpha(n+1)}.$$

^aRecall that this means that $|f(x) - f(y)| \le M||x - y||$.

Question

Given $\varepsilon > 0$, after how many iterations can we be sure to have found a point \hat{x} such that $f(\hat{x}) - \min(f) \le \varepsilon$?