

■ 보드 구성

■ 보드 구성

■ 보드 구성

MCU

■ 전원 부

LED

번호	연결된 핀
1	포트 B 0번 핀
2	포트 B 1번 핀
3	포트 B 2번 핀
4	포트 B 3번 핀
5	포트 B 4번 핀
6	포트 B 5번 핀
7	포트 B 6번 핀
8	포트 B 7번 핀
9	포트 M 6번 핀
10	포트 M 7번 핀

■ 7SEGMENT

번호	연결된 핀
Α	포트 H 0번 핀
В	포트 H 1번 핀
С	포트 H 2번 핀
D	포트 H 3번 핀
Е	포트 H 4번 핀
F	포트 H 5번 핀
G	포트 H 6번 핀
DP	포트 H 7번 핀

■ 7SEGMENT & buzzer

번호	연결된 핀
Α	포트 H 0번 핀
В	포트 H 1번 핀
С	포트 H 2번 핀
D	포트 H 3번 핀
E	포트 H 4번 핀
F	포트 H 5번 핀
G	포트 H 6번 핀
DP	포트 H 7번 핀
buzzer	포트 A 7번 핀

LCD

■ 푸시 스위치

S1

번호	연결된 핀
S1	XIRQ 핀
S2	포트 J 0번 핀
S3	포트 J 1 번 핀

INFRARED SENSOR & VR

번호	연결된 핀
발광부	포트 K 0번 핀
수광부	포트 AD 1번 핀
전원브측	
가변저항	포트 AD 0번 핀

MOTOR MODULE

COMMUNICATION

■ 딥 스위치

■ 딥 스위치

_	
번호	제어 부분
SW3	LED ①~® 번 출력 신호
SW4	SCI, CAN, LIN 통신 송수신 신호, Push 스위치 2번, 3번 입력 신호
SW5	PWM 신호, 아날로그-디지털 변환 신호
SW6	텍스트 LCD 출력 및 제어 신호, 부저 출력 신호
SW7	7세그먼트 출력 신호
SW8	DC 모터/스텝 모터 선택 신호
SW9	LED ⑨,⑩번 출력 신호

SW3과 연결된 핀

번호	연결된 핀
1	포트 B 0번 핀
2	포트 B 1번 핀
3	포트 B 2번 핀
4	포트 B 3번 핀
5	포트 B 4번 핀
6	포트 B 5번 핀
7	포트 B 6번 핀
8	포트 B 7번 핀

■ 딥 스위치

SW4와 연결된 핀

번호	연결된 핀
1 =	RXD0 핀
2	TXD0 핀
3	RXD1 핀
4	TXD1 핀
5	RXCAN0 핀
6	TXCAN0 핀
7	포트 J 0번 핀
8	포트 J 1번 핀

SW7과 연결된 핀

번호	연결된 핀
1	포트 H 0번 핀
2	포트 H 1번 핀
3	포트 H 2번 핀
4	포트 H 3번 핀
5	포트 H 4번 핀
6	포트 H 5번 핀
7	포트 H 6번 핀

SW5와 연결된 핀

번호	연결된 핀
1	PWM 0번 핀
2	PWM 1번 핀
3	PWM 2번 핀
4	PWM 3번 핀
5	포트 AD 0번 핀
6	포트 AD 1번 핀
7	포트 AD 2번 핀
8	포트 E 0번 핀

SW8과 연결된 핀

번호	연결된 핀
1	DC 모터 0번 핀
2	스텝 모터 0번 핀
3	DC 모터 1번 핀
4	스텝 모터 1번 핀
5	DC 모터 2번 핀
6	스텝 모터 2번 핀
7	DC 모터 3번 핀

SW6과 연결된 핀

번호	연결된 핀
1	포트 A 0번 핀
2	포트 A 1번 핀
3	포트 A 2번 핀
4	포트 A 3번 핀
5	포트 A 4번 핀
6	포트 A 5번 핀
7	포트 A 6번 핀
8	포트 A 7번 핀

SW9와 연결된 핀

번호	연결된 핀	
1	포트 M 2번 핀	
2	포트 M 3번 핀	
3	포트 M 4번 핀	
4	포트 M 5번 핀	
5	포트 M 6번 핀	
6	포트 M 7번 핀	
7	연결 없음	H
<u> </u>	nbedded obystem	

Codewarrior IDE

- Create New Project
 - File -> New..
 - 'HCS12 Stationery' option
 - Fill project name

- Select project stationery
 - MCU: MC9S12DP256B
 - Select _DP256_K79X

After creating the new project

- Select target
 - Ram Application, Flash Application, Banked_Flash
 - Banked_Flash
 - Large size program
 - Paging technique
 - Flash Application : small program
 - Select Flash Application

Files

- Globals
 - projectglobals.h : global variables and definitions for all files
 - projectvector.c , projectvector.h : interrupt vectors
- Sources : source files ex)main.c
- Drivers : device driver
- Peripherals : declaration of peripheral variables
- Prm : linker parameter file
- Definitions : defines each module as a data structure
 - ex) S12ATD10B8CV2.h : ATD module register data structure
- Startup Code : entry point
 - START12.c
- Debugger Cmd Files : settings for the debugger
- Debugger Project File : settings for the debugger
- Libs : ANSI-C library
 - General ANSI-C library is available

- 23 -

Development Tool

Compile and Download

HW setting

Double click Burner.exe

Click the icon

- Find input file
 - abs file in the 'bin' folder

Set output file directory

Click execute

GUI

Set baud rate, port No. and connect serial communication

- Erase flash
 - Send '1'

- Program flash flash
 - Send '2'

Find .s19 file directory

File download

Register Definition

- Declaration of peripheral variables (per_DP256_K79X.c)
 - Global variables : Regs, Atd0, Pwm, etc..

```
extern tREGISTER Regs
                              (0 \times 00000 + REG_BASE);
extern trace
                           @ (0x0030 + REG BASE)
                             (0 \times 0034 + REG BASE)
extern tCRG
                   Crg
                   Tim0
                             (0 \times 0040 + REG BASE)
extern tTIMER
                   Atd0
                           @ (0x0080 + REG BASE)
extern tATD
                   Pwm
                             (0x00A0 + REG BASE)
extern tPWM
                           @ (0x00C8 + REG BASE)
                   Sci0
extern tSCI
extern tSCI
                   Scil.
                           @ (0x00D0 + REG BASE)
                   Spi0
                             (0 \times 000D8 + REG BASE)
extern tSPI
                   Iic.
                           @ (0x00E0 + REG BASE
extern tIIC
                   Bdlc
extern tBDLC
extern tSPI
                   Spil.
                             (0 \times 00 \text{FO} + \text{REG BASE})
                           @ (0x00F8 + REG BASE
                   Spi2
extern tSPI
                   Flash
extern tFLASH
                             (0 \times 0100 + REG BASE
extern tEEPROM
                   Eeprom @
                             (0 \times 0110 + REG BASE)
                   Atd1
                           @ (0x0120 + REG BASE
extern tATD
extern tMSCAN
                   Can0
                   Can1
                           @ (0x0180 + REG BASE)
extern tMSCAN
                   Can2
                           @ (0x01C0 + REG BASE)
extern tMSCAN
                   Can3
                           @ (0x0200 + REG BASE)
extern tMSCAN
                   Pim
                           @ (0 \times 0240 + REG BASE);
extern tPIM
extern tMSCAN
                   Can4
                             (0 \times 0280 + REG BASE);
```


Register Definition

- Header file for HCS12 register block (S12CPU15V1_2.h)
 - tREGISTER : register data structure
 - porta : Port A data register

```
/*port and internal resource control */
typedef struct
  volatile tPORTA
                            /*port A data register */
  volatile TANDER
                            /*port B data register */
 volatile tDDRA
                    ddra;
                            /*port A data direction register */
  volatile tDDRB
                    ddrb;
                            /*port B data direction register */
           tU08
                    rsv1[4];/*reserved (maintaining memory map) */
 volatile tPORTE
                    porte; /*port E data register */
 volatile tDDRE
                    ddre:
                            /*port E data direction register */
 volatile tPEAR
                            /*port E assignment register */
  volatile tMODE
                    mode;
                            /*mode register */
 volatile tPUCR
                            /*pull-up control register */
                    puer;
 volatile tRDRIV
                    rdriv;
                           /*reduced drive register */
 volatile tEBICTL
                    ebictl: /*external bus control */
                            /*reserved (maintaining memory map) */
 volatile tINITRM
                    initrm; /*initialise internal ram position */
 volatile tINITRG
                    initrg; /*initialise internal register position */
  volatile tINITEE
                    initee; /*initialise internal eeprom position */
  volatile tMISC
                            /*miscellaneous system control register */
  volatile tMTST
                    mtst0;
                           /*memory test */
 volatile tITCR
                    iter;
                            /*interrupt test control */
 volatile tITEST
                    itest;
                            /*interrupt test status */
  volatile tMTST
                            /*memory test */
                    rsv3[2]; /*reserved (maintaining memory map) */
  volatile tPARTID
                             /*word containing part id information */
  volatile tMEMSIZO memsizO; /* */
  volatile tMEMSIZ1 memsiz1; /* */
  volatile tIRQCR
                    irqcr; /*interrupt control register */
  volatile tHPRIO
                            /*highest priority I interrupt */
                    rsv4[8];/*reserved (maintaining memory map) */
  volatile tBKPCT0
                    bkpct0; /*breakpoint control register 0 */
  volatile tBKPCT1
                    bkpct1; /*breakpoint control register 1 */
  volatile tBKP0X
                    bkp0x;
  volatile tBKP0
                    bkp0;
                            /*breakpoint address registers */
  volatile tBKP1X
                    bkp1x;
  volatile tBKP1
                    bkp1;
                            /*breakpoint data registers */
  }tREGISTER:
```


Register Definition

- Port A data register (S12CPU15V1_2.h)
 - pta0 ~ pta7 : 8 pins, 1 bit

```
typedef union uPORTA
  tU08 byte;
  struct
    tU08 pta0
                    :1;
                              /*i/o port pins */
    tU08 pta1
                    :1;
    tUO8 pta2
                    :1:
    tU08 pta3
                    :1;
    tU08 pta4
                    :1;
    tU08 pta5
                    :1;
    tU08 pta6
                    :1;
    tU08 pta7
                    :1:
    Phit:
  |tPORTA;
#define PTA0
                              /*bit masks */
                    0x01
#define PTA1
                    0 \times 02
#define PTA2
                    0 \times 04
#define PTA3
                    0x08
#define PTA4
                    0x10
                                              pta7
                                                               pta5
                                                                               pta3
                                                                                        pta2
                                                                                                pta1
                                                       pta6
                                                                       pta4
                                                                                                        pta0
#define PTA5
                    0 \times 20
#define PTA6
                    0 \times 40
#define PTA7
                    0x80
                                                                                         2
                                               BIT 7
                                                                         4
                                                                                 3
                                                                                                         BIT 0
                                  Read:
                                                                                 3
                                                                                         2
                                               Bit 7
                                                        6
                                                                         4
                                                                                                         Bit 0
                                  Write:
                                  Reset
```


Port Control

- Port Control
 - using memory reference instruction
 - Registers control each port
 - Input port, output port or both
 - Controlled by program code

Port Control

Example) Port B control

```
#include "main.h"

void main ()
{
    Regs.ddrb.byte = 0b11111111;
    Regs.portb.byte = 0b11111110;
    for (;;) {
    }
}
```

- Port B
 - 8 pins
 - Input or output
- Data representation in C language
 - Decimal : 10 (no prefix)
 - Hexadecimal : 0x0A (prefix 0x)
 - Binary: 0b00001010 (prefix 0b)

Port Control

- DDR(Data Direction Register) : data direction setting
 - Input pin : 0
 - Output pin: 1
- DDRB setting
 - Data Direction Register for Port B
 - All pins of Port B are output pin

```
Regs.ddrb.byte = 0b11111111;
Regs.portb.byte = 0b11111110;
for (;;) {
}
```

- Port B value
 - Pin 1:0, Pin 2~8:1

```
Regs.ddrb.byte = 0b111111111;
Regs.portb.byte = 0b111111110;
for (;;) {
}
```

