# Week 11: Graph Mining (Random Graph & Motif Analysis)

Instructor: Daejin Choi (djchoi@inu.ac.kr)



#### **Plan for Today**

- Generating random graph
  - Erdos-Renyi → Cannot mimic the degree distributions!
  - Small world
- Motif, subgraph, graphlet analysis
- Finding motif, graphlets in graph
  - Enumerating → ESU-Tree
  - Counting → Mckay's nauty algorithm



# Generating Random Graph (Erdos-Renyi)

## Simple Algorithm to Generate a Random Graph

- A graph "uniformly" create or select links
- Two variants
  - $G_{np}$ : undirected graph on n nodes where each edge (u, v) appears i.i.d. with probability p
  - G<sub>nm</sub>: undirected graph with n nodes, and m edges picked uniformly at random

What kind of networks do such models produce?



#### **Random Graph Model**

- n and p do not uniquely determine the graph!
  - The graph is a result of a random process
  - We can have many different realizations given the same *n* and *p*





## Properties of $G_{nn}$

Degree distribution:

Avg. path length:

Avg. clustering coef.:

Largest Conn. Comp.: GCC exists when k>1.



 $O(\log n)$ 

 $\overline{k}/n$ 



#### **Degree Distribution**

- Degree distribution of  $G_{np}$  is binomial.
- Let P(k) denote the fraction of nodes with degree k

$$P(k) = \binom{n-1}{k} p^k (1-p)^{n-1-k}$$
Select  $k$  nodes out of  $n$ -1
Probability of having  $k$  edges

Probability of the  $n$ -1- $k$  edges

Select  $k$  nodes out of  $n$ -1

Mean, variance of a binomial distribution

$$\overline{k} = p(n-1)$$

$$\sigma^2 = p(1-p)(n-1)$$

$$\frac{\sigma}{\bar{k}} = \left[ \frac{1 - p}{p} \frac{1}{(n - 1)} \right]^{1/2} \approx \frac{1}{(n - 1)^{1/2}}$$

By the law of large numbers, as the network size increases, the distribution becomes increasingly narrow—we are increasingly confident that the degree of a node is in the vicinity of *k*.



#### Clustering Coefficient of $G_{nn}$

Remember:

$$C_i = \frac{2e_i}{k_i(k_i - 1)}$$

Where e<sub>i</sub> is the number of edges between i's neighbors

• Edges in  $G_{np}$  appear i.i.d. with prob. p

• So, expected 
$$E[e_i]$$
 is  $= p \frac{k_i(k_i-1)}{2}$ 

with prob. p

Each pair is connected Number of distinct pairs of neighbors of node *i* of degree  $k_i$ 

• Then 
$$E[C_i]$$
:  $\frac{p \cdot k_i(k_i - 1)}{k_i(k_i - 1)} = p = \frac{k}{n - 1} \approx \frac{k}{n}$ 

Clustering coefficient of a random graph is small.

If we generate bigger and bigger graphs with fixed avg. degree k (that is we set  $p = k \cdot 1/n$ ), then C decreases with the graph size n.



#### **Simulation to Find GCC**





Fraction of nodes in the largest component

$$G_{np}$$
,  $n=100,000$ ,  $k=p(n-1)=0.5...3$ 



#### Let's back! MSN vs. Random Graph



Avg. path length:

Avg. clustering coef.:

**Largest Conn. Comp.:** 

MSN

6.6

99%

Gnp



 $O(\log n)$ 



 $\overline{k}/n$ 



GCC exists when k>1.





## Real Network vs. $G_{nv}$

- Are real networks like random graphs?
  - Giant connected component: 🙂
  - Average path length:
  - Clustering Coefficient: (
  - Degree Distribution: (
- Problems with the random networks model:
  - Degree distribution differs from that of real networks
  - No local structure clustering coefficient is too low



## Real Network vs. $G_{nv}$

- If  $G_{np}$  is wrong, why did we spend time on it?
  - It will help us calculate many quantities, that can then be compared to the real data
  - It will help us understand to what degree a particular property is the result of some random process

So, while  $G_{np}$  is **WRONG**, it will turn out to be extremely **USEFUL**!



## **The Small-World Model**

#### Random Graph $G_{np}$ Does NOT Reflect Real-World







## Avg. clustering coef.:

0.11

 $\overline{k}/n$ 



## Other examples

| Network     | $h_{actual}$ | $h_{random}$ | C <sub>actual</sub> | $C_{random}$ |
|-------------|--------------|--------------|---------------------|--------------|
| Film actors | 3.65         | 2.99         | 0.79                | 0.00027      |
| Power Grid  | 18.70        | 12.40        | 0.080               | 0.005        |
| C. elegans  | 2.65         | 2.25         | 0.28                | 0.05         |

h ... Average shortest path length

C ... Average clustering coefficient



<sup>&</sup>quot;actual" ... real network

<sup>&</sup>quot;random" ... random graph with same avg. degree

## The Problem Comes from "Edge Locality"

- The major difference is that real-world network has "local structure"
  - Triadic closure: Friend of a friend is my friend



High clustering coefficient

BUT, High diameter (Not Log(n))

- "Simply adding edges" (i.e., uniform triad) does not work
- How can we create a graph with high CC & low Diameter?



#### Creating the Graph w/ High CC and Low Dia.



High clustering High diameter



Low clustering Low diameter

- The point is "how to add edges"
  - Clustering implies edge "locality"
  - Randomness enables "shortcuts"



#### **Solution: The Small World Model**

- Start with a low-dimensional regular lattice
  - (In our case we are using a ring as a lattice)
  - Has high clustering coefficient
- Rewire: Introduce randomness ("shortcuts")
  - Add/remove edges to create shortcuts to join remote parts of the lattice
  - For each edge, with prob. p, move the other endpoint to a random node



#### **The Small World Model**



Rewiring allows us to "interpolate" between a regular lattice and a random graph



#### **The Small World Model**





#### **The Small World: Summary**

- Could a network with high clustering be at the same time a small world?
  - Yes! You don't need more than a few random links

- The Watts Strogatz Model:
  - Provides insight on the interplay between clustering and the small-world
  - Captures the structure of many realistic networks
  - Accounts for the high clustering of real networks
  - Does not lead to the correct degree distribution



## Subgraphs, Motifs, and Graphlets

#### **Subnetworks: A Property of Graph**

Subnetworks, or subgraphs, are the building blocks of networks





 They have the power to characterize and discriminate networks



#### **How to Characterize a Graph from Subgraphs?**

Let's consider all possible (non-isomorphoic) directed subgraphs of size 3





#### How to Characterize a Graph from Subgraphs?

- For each subgraph:
  - Imagine you have a metric capable of classifying the subgraph "significance" [more on that later]
    - Negative values indicate under-representation
    - Positive values indicate over-representation
- We create a network significance profile:
  - A feature vector with values for all subgraph types
- Next: Compare profiles of different networks:
  - Regulatory network (gene regulation)
  - Neuronal network (synaptic connections)
  - World Wide Web (hyperlinks between pages)
  - Social network (friendships)
  - Language networks (word adjacency)



#### **Case Example of Subgraphs**



Networks from the same domain have similar significance profiles



#### **Network Motifs**

 Network motifs: "recurring, significant patterns of interconnections"

- How to define a network motif:
  - Pattern: Small partial subgraph
  - **Recurring**: Found many times, i.e., with high frequency
  - **Significant**: More frequent than expected, i.e., in randomly generated networks
    - Erdos-Renyi random graphs, scale-free networks



#### Why Do We Need Motifs?

#### Motifs:

- Help us understand how networks are structured
- Help us predict operation and reaction of the network in a given situation



#### Examples:

 Feed-forward loops: found in networks of neurons, where they neutralize "biological noise"

- Parallel loops: found in food webs
- Single-input modules: found in gene control networks



Single-input module





## **Motifs: Partial Subgraphs**



**Induced subgraph** of graph G is a graph, formed from a subset X of the vertices of graph G and all of the edges connecting pairs of vertices in subset X.



#### **Motifs: Recurrence**

#### **Motif of interest:**



- Allow overlapping of motifs
- Network on the right has 4 occurrences of the motif:
  - {1,2,3,4,5}
  - {1,2,3,4,6}
  - {1,2,3,4,7}
  - {1,2,3,4,8}





## **Significance of Motif**

 Key idea: Subgraphs that occur in a real network much more frequently than in a random network have functional significance







#### **Significance of Motif**

- Motifs are overrepresented in a network when compared to randomized networks:
  - Z<sub>i</sub> captures statistical significance of motif i:

• 
$$Z_i = (N_i^{real} - \overline{N}_i^{rand}) / std(N_i^{rand})$$

- $N_i^{real}$  is #(subgraphs of type *i*) in network  $G^{real}$
- $N_i^{rand}$  is #(subgraphs of type *i*) in network  $G^{rand}$
- Network significance profile (SP):

$$SP_i = Z_i / \sqrt{\sum_j Z_j^2}$$

- SP is a vector of **normalized Z-scores**
- *SP* emphasizes relative significance of subgraphs:
  - Important for comparison of networks of different sizes
  - Generally, larger networks display higher Z-scores



#### **Configuration Model**

- Goal: Generate a random graph with a given degree sequence k<sub>1</sub>, k<sub>2</sub>, ..., k<sub>n</sub>
- Useful as a "null" model of networks:
  - We can compare the real network  $G^{real}$  and a "random"  $G^{rand}$  which has the same degree sequence as  $G^{real}$
- Configuration model:



We ignore double edges and self-loops when creating the final graph



## **Alternative for Spokes: Switching**

- Start from a given graph G
- #experiments
- Repeat the switching step  $Q \cdot |E|$  times:
  - Select a pair of edges A → B, C → D at random
  - Exchange the endpoints to give A → D, C → B
  - Exchange edges only if no multiple edges or selfedges are generated



- Result: A randomly rewired graph:
  - Same node degrees, randomly rewired edges
- Q is chosen large enough (e.g., Q = 100) for the process to converge



#### **Case Example: Invitation Network in Aion**



#### (a) Motifs Distributions



(b) Normalized Z-scores of Invitation networks.

#### **RECAP: Detecting Motifs**

- Count <u>subgraphs</u> i in G<sup>real</sup>
- Count subgraphs i in random networks  $G^{rand}$
- Configuration model: Each  $G^{rand}$  has the same #(nodes), #(edges) and #(degree distribution) as  $G^{real}$

- Assign Z-score to i:
  - $Z_i = (N_i^{real} \overline{N}_i^{rand}) / std(N_i^{rand})$
- High Z-score: Subgraph i
   is a network motif of G



#### **Variations of Motif Concept**

- Canonical definition:
  - Directed and undirected
  - Colored and uncolored
  - Temporal and static motifs

- Variations on the concept
  - Different frequency concepts
  - Different significance metrics
  - Under-Representation (anti-motifs)
  - Different constraints for null model





much larger than **D** 

**Blogs** 



**F** is **under**represented

#### **Experiments: Detecting Motifs**

| Network                       | Nodes    | Edges      | $N_{\rm real}$ | $N_{\rm rand} \pm {\rm SD}$    | Z score                  | $N_{\rm real}$ | $N_{\rm rand} \pm {\rm SD}$    | Z score         | $N_{\rm real}$ | $N_{\rm rand} \pm {\rm SD}$ | Z score         |
|-------------------------------|----------|------------|----------------|--------------------------------|--------------------------|----------------|--------------------------------|-----------------|----------------|-----------------------------|-----------------|
| Gene regulat<br>(transcriptio |          |            |                | X<br>V<br>Y<br>V               | Feed-<br>forward<br>loop | X              | ₩<br>W                         | Bi-fan          |                |                             |                 |
| E. coli                       | 424      | 519        | 40             | $7 \pm 3$                      | 10                       | 203            | $47 \pm 12$                    | 13              |                |                             |                 |
| S. cerevisiae*                | 685      | 1,052      | 70             | $11 \pm 4$                     | 14                       | 1812           | $300 \pm 40$                   | 41              |                |                             |                 |
| Neurons                       |          |            | \ \ \>         | X<br>Ψ<br>Ψ<br>Z               | Feed-<br>forward<br>loop | X<br>Z         | ₩<br>W                         | Bi-fan          | Y <sub>N</sub> | $\mathbf{K}^{\mathbf{Z}}$   | Bi-<br>parallel |
| C. elegans†                   | 252      | 509        | 125            | 90 ± 10                        | 3.7                      | 127            | $55 \pm 13$                    | 5.3             | 227            | $35 \pm 10$                 | 20              |
| Food webs                     |          |            |                | X<br>W                         | Three<br>chain           | K <sup>2</sup> | "                              | Bi-<br>parallel |                |                             |                 |
|                               |          |            |                | ¥                              |                          | $\nu^{Y}$      | $\nu^{z}$                      |                 |                |                             |                 |
| T 1991 - 15 - 1               | 0.0      | 004        | 2210           | Z                              | 0.1                      | 7205 W         |                                | 25              |                |                             |                 |
| Little Rock<br>Ythan          | 92<br>83 | 984<br>391 | 3219<br>1182   | $3120 \pm 50$<br>$1020 \pm 20$ | 2.1<br>7.2               | 7295<br>1357   | $2220 \pm 210$<br>$230 \pm 50$ | 25<br>23        |                |                             |                 |
| St. Martin                    | 42       | 205        | 469            | $450 \pm 20$                   | NS                       | 382            | $130 \pm 30$                   | 12              |                |                             |                 |
| Chesapeake                    | 31       | 67         | 80             | 82 ± 4                         | NS                       | 26             | $5 \pm 2$                      | 8               |                |                             |                 |
| Coachella                     | 29       | 243        | 279            | $235 \pm 12$                   | 3.6                      | 181            | $80 \pm 20$                    | 5               |                |                             |                 |
| Skipwith                      | 25       | 189        | 184            | $150 \pm 7$                    | 5.5                      | 397            | $80 \pm 25$                    | 13              |                |                             |                 |
| B. Brook                      | 25       | 104        | 181            | $130 \pm 7$                    | 7.4                      | 267            | $30 \pm 7$                     | 32              |                |                             |                 |

Milo et al., Science 2004

**Z-scores of individual motifs for different networks** 



#### **Experiments: Detecting Motifs**

| Network                       | Nodes   | Edges    | $N_{\rm real}$ | $N_{\rm rand} \pm {\rm SD}$ | Z score                                 | $N_{\rm real}$ | $N_{\rm rand} \pm {\rm SD}$ | Zscore                      | $N_{\rm real}$ | $N_{\rm rand} \pm SI$ | Z score                           |
|-------------------------------|---------|----------|----------------|-----------------------------|-----------------------------------------|----------------|-----------------------------|-----------------------------|----------------|-----------------------|-----------------------------------|
| Electronic ci<br>(forward log |         |          | >              | X<br>V<br>Y<br>V<br>Z       | Feed-<br>forward<br>loop                | X<br>Z         | ¥<br>w                      | Bi-fan                      | K X X          | K Z                   | Bi-<br>parallel                   |
| s15850                        | 10,383  | 14,240   | 424            | $2 \pm 2$                   | 285                                     | 1040           | 1 ± 1                       | 1200                        | 480            | 2 ± 1                 | 335                               |
| s38584                        | 20,717  | 34,204   | 413            | $10 \pm 3$                  | 120                                     | 1739           | $6 \pm 2$                   | 800                         | 711            | $9 \pm 2$             | 320                               |
| s38417                        | 23,843  | 33,661   | 612            | $3 \pm 2$                   | 400                                     | 2404           | 1 ± 1                       | 2550                        | 531            | $2 \pm 2$             | 340                               |
| s9234                         | 5,844   | 8,197    | 211            | $2 \pm 1$                   | 140                                     | 754            | 1 ± 1                       | 1050                        | 209            | $1 \pm 1$             | 200                               |
| s13207                        | 8,651   | 11,831   | 403            | $2 \pm 1$                   | 225                                     | 4445           | 1 ± 1                       | 4950                        | 264            | $2 \pm 1$             | 200                               |
| Electronic o<br>(digital frac |         | ipliers) | 1 × ←          | -z                          | Three-<br>node<br>feedback<br>loop      | X<br>Z         | √w<br>w                     | Bi-fan                      | x-<br>↑<br>z < | → Y<br>w              | Four-<br>node<br>feedback<br>loop |
| s208                          | 122     | 189      | 10             | 1 ± 1                       | 9                                       | 4              | 1 ± 1                       | 3.8                         | 5              | 1 ± 1                 | 5                                 |
| s420                          | 252     | 399      | 20             | 1 ± 1                       | 18                                      | 10             | 1 ± 1                       | 10                          | 11             | 1 ± 1                 | 11                                |
| s838‡                         | 512     | 819      | 40             | 1 ± 1                       | 38                                      | 22             | 1 ± 1                       | 20                          | 23             | $1 \pm 1$             | 25                                |
| World Wide                    | Web     |          | 1              | X<br>X<br>X<br>X            | Feedback<br>with two<br>mutual<br>dyads | Z<br>Y ←       | Ŋ<br>→ z                    | Fully<br>connected<br>triad | ✓ X<br>Y←      | <b>√</b><br>> z       | Uplinked<br>mutual<br>dyad        |
| nd.edu§                       | 325,729 | 1.46e6   | 1.1e5          | 2e3 ± 1e2                   | 800                                     | 6.8e6          | 5e4±4e2                     | 15,000                      | 1.2e6          | 1e4 ± 2e              | 2 5000                            |

Milo et al., Science 2004

#### **Z-scores of individual motifs for different networks**



#### What Do We Learn from Prior 2 Slides?

- Network of neurons and a gene network contain similar motifs:
  - Feed-forward loops and bi-fan structures
  - Both are information processing networks with sensory and acting components
- Food webs have parallel loops:
  - Prey of a particular predator share prey
- WWW network has bidirectional links
  - Design that allows the shortest path between sets of related pages

## WE UNDERSTAND HOW NETWORK ARE STRUTURED!



# **Graphlets: Node Feature Vectors**

#### **New Concept: Graphlets**

- Graphlets: connected non-isomorphic subgraphs
  - Induced subgraphs of any frequency



For n = 3, 4, 5, ...10 there are 2, 6, 21, ...11716571 graphlets!



#### **Graphlet Degree Vector (GDV)**

 Next: Use graphlets to obtain a node-level subgraph metric

- Degree counts #(edges) that a node touches:
  - Can we generalize this notion for graphlets? Yes!



 Graphlet degree vector counts #(graphlets) that a node touches

#### **Automorphism Orbit**

- An automorphism orbit takes into account the symmetries of a subgraph
- Graphlet Degree Vector (GDV): a vector with the frequency of the node in each orbit position
- Example: Graphlet degree vector of node v



For a node u of graph G, the automorphism orbit of u is  $Orb(u) = \{v \in V(G); v = f(u) \text{ for some } f = Aut(G)\}.$ 

The Aut denotes an automorphism group of *G*, *i.e.*, an isomorphism from *G* to itself.



#### **Graphlet Degree Vector (GDV)**

- Graphlet degree vector counts #(graphlets) that a node touches at a particular orbit
- Considering graphlets on 2 to 5 nodes we get:
  - Vector of 73 coordinates is a signature of a node that describes the topology of node's neighborhood
  - Captures its interconnectivities out to a distance of 4 hops
- Graphlet degree vector provides a measure of a node's local network topology:
  - Comparing vectors of two nodes provides a highly constraining measure of local topological similarity between them



#### **Graphlet Degree Vector: Example**



| Orbit  | 0 | 1 | 23 | 4 | 5 | 6 | 714 | 15 | 1618 | 19 | 2026 | 27 | 2834 | 35 | 3672 |
|--------|---|---|----|---|---|---|-----|----|------|----|------|----|------|----|------|
| GDV(A) | 1 | 2 | 00 | 3 | 0 | 1 | 00  | 1  | 00   | 1  | 00   | 1  | 00   | 1  | 00   |

#### Graphlet Degree Vector (GDV) of node A:

- i-th element of GDV(A): #(graphlets) that touch A at orbit i
- Highlighted are graphlets that touch node A at orbits 15, 19, 27, and 35 from left to right



### **Finding Motifs and Graphlets**

#### **Finding Motifs and Graphlets**

- Finding size-k motifs/graphlets requires solving two challenges:
  - 1) Enumerating all size-k connected subgraphs
  - 2) **Counting** #(occurrences of each subgraph type)
- Just knowing if a certain subgraph exists in a graph is a hard computational problem!
  - Subgraph isomorphism is NP-complete
- Computation time grows exponentially as the size of the motif/graphlet increases
  - Feasible motif size is usually small (3 to 8)



#### **Computing Subgraphs**

- Network-centric approaches:
  - 1) Enumerating all size-k connected subgraphs
  - 2) Counting #(occurrences of each subgraph type) via graph isomorphisms test

- Algorithms:
  - Exact subgraph enumeration (ESU) [Wernicke 2006]
  - Kavosh [Kashani et al. 2009]
  - Subgraph sampling [Kashtan et al. 2004]



#### **Exact Subgraph Enumeration (ESU)**

- Two sets
  - $V_{subgraph}$ : currently constructed subgraph (motif)
  - $V_{extension}$ : set of candidate nodes to extend the motif
- **Idea**: Starting with a node v, add those nodes u to  $V_{extension}$  set that have two properties:
  - u's node\_id must be larger than that of v
  - u may only be neighbored to some newly added node w but **not** of any node already in  $V_{subaraph}$
- ESU is implemented as a recursive function:
  - The running of this function can be displayed as a treelike structure of depth k, called the ESU-Tree



#### **Exact Subgraph Enumeration (ESU)**

```
Algorithm: EnumerateSubgraphs(G, k) (esu)
Input: A graph G = (V, E) and an integer 1 \le k \le |V|.
Output: All size-k subgraphs in G.
  01 for each vertex v \in V do
          V_{Extension} \leftarrow \{u \in N(\{v\}) : u > v\}
  02
          call ExtendSubgraph(\{v\}, V_{Extension}, v)
      return
EXTENDSUBGRAPH(V_{Subgraph}, V_{Extension}, v)
      if |V_{Subgraph}| = k then output G[V_{Subgraph}] and return
      while V_{Extension} \neq \emptyset do
          Remove an arbitrarily chosen vertex w from V_{Extension}
 E3
          V'_{Extension} \leftarrow V_{Extension} \cup \{u \in N_{excl}(w, V_{Subgraph}) : u > v\}
 E_4
          call ExtendSubgraph (V_{Subgraph} \cup \{w\}, V'_{Extension}, v)
 E5
 E6
      return
```

 $N_{excl}(w, V_{Subgraph}) = N(w) \setminus (V_{Subgraph} \cup N(V_{Subgraph}))$  is exclusive neighborhood: All nodes neighboring w but not of  $V_{Subgraph}$  or  $N(V_{Subgraph})$ 



#### **ESU-Tree Example**



- Nodes in the ESU-tree include two adjoining sets:
  - V<sub>subgraph</sub>: currently constructed subgraph (motif)
  - $V_{\rm extension}$ : Nodes adjacent to  $V_{\rm subgraph}$  whose node\_ids are larger than starting node v



#### **Use ESU-Tree to Count Subgraphs**

- So far, we enumerated all size-k subgraphs in the input graph
- Next step: Count the graphs





#### **Use ESU-Tree to Count Subgraphs**

- So far, we enumerated all size-k subgraphs in the input graph
- Next step: Count the graphs

Classify subgraphs placed in the ESU-Tree leaves into non-isomorphic size-k classes:

- Determine which subgraphs in ESU-Tree leaves are topologically equivalent (isomorphic) and group them into subgraph classes accordingly
- Use McKay's nauty algorithm [McKay 1981]



#### **Graph Isomorphism**

- Graphs G and H are isomorphic if there exists a bijection f: V(G) → V(H) such that:
  - Any two nodes u and v of G are adjacent in G iff f(u) and f(v) are adjacent in H
- Example: Are G and H topologically equivalent?



Need to check 9! possible bijections between node sets Hard computational problem!

| Α | 4 |
|---|---|
| В | 7 |
| С | 1 |
| D | 3 |
| Е | 5 |
| F | 8 |
| G | 2 |
| Н | 9 |
| 1 | 9 |

**G** and **H** are isomorphic!



#### **How to Compute Motifs & Graphlets?**

- Dyad (motifs between 2 nodes) and Triad (motifs among 3 nodes) are already implemented in igraph
  - igraph\_dyad\_census
  - igraph\_triad\_census
- RAND-ESU algorithms are also implemented
  - motifs\_randesu(size=3, cut\_prob=None, callback=None)
  - motifs\_randesu\_estimate(size=3, cut\_prob=None, sample)
  - motifs\_randesu\_no(size=3, cut\_prob=None)
- See document <u>https://igraph.org/python/doc/igraph.GraphBase-</u> class.html in more detail



#### **Summary**

- Generating random graph
  - Erdos-Renyi → Cannot mimic the degree distributions!
  - Small world
- Motif, subgraph, graphlet analysis
- Finding motif, graphlets in graph
  - ESU-Tree

Understanding the algorithms is enough Focus more on what analysis you will do & what the results imply



## Thank you!

Instructor: Daejin Choi (djchoi@inu.ac.kr)