MC358 - Fundamentos matemáticos da computação

Prof. Dr. Hilder Vitor Lima Pereira

01 de outubro de 2023

1 Comentários sobre propriedades do \mathbb{Z}_n

2 Notação assintótica para funções

3 Perguntas, observações, comentários?

Comentários sobre propriedades do \mathbb{Z}_n

Algoritmo de Euclides estendido para achar inversos

Como visto no começo do curso, o seguinte algoritmo calcula o mdc e os coeficientes de Bézout.

```
Algorithm: AlgoEuclidesEstendido

Input: a,b \in \mathbb{N} com a \geq b \geq 0.

Output: (d,u,v) \in \mathbb{Z}^3 tais que d=\operatorname{mdc}(a,b) e d=u\cdot a+v\cdot b

1 if 0==b then

2 \bigcup return (a,1,0)

3 q,r=\operatorname{DivEuc}(a,b)

4 (d,u,v)=\operatorname{AlgoEuclidesEstendido}(b,r)

5 return (d,v,u-q\cdot v)
```

Algoritmo de Euclides estendido para achar inversos

Como visto no começo do curso, o seguinte algoritmo calcula o mdc e os coeficientes de Bézout.

Vamos usá-lo para calcular 7^{-1} (mod 100).

а	b	q	r	d	и	V
100	7					

Mapear para \mathbb{Z}_n pode ser útil

Se uma equação com coeficientes em \mathbb{Z} tem solução inteira, então ela tem solução em \mathbb{Z}_n para todo $n \geq 2$.

Contrapositiva: Se existe $n \ge 2$ tal que a equação não tem solução em \mathbb{Z}_n , então ela não tem solução inteira.

Mapear para \mathbb{Z}_n pode ser útil

Se uma equação com coeficientes em \mathbb{Z} tem solução inteira, então ela tem solução em \mathbb{Z}_n para todo $n \geq 2$.

Contrapositiva: Se existe $n \ge 2$ tal que a equação não tem solução em \mathbb{Z}_n , então ela não tem solução inteira.

Um inteiro x é divisível por n se, e somente se, $x \equiv 0 \pmod{n}$.

Então, para mostrar que uma expressão é divisível por algum valor, podemos mapear a expressão em \mathbb{Z}_n e mostrar que ela é igual zero.

Notação assintótica para funções

Introdução

Podemos ter vários algoritmos diferentes para resolver um mesmo problema. Então, qual algoritmo é melhor?

Introdução

Podemos ter vários algoritmos diferentes para resolver um mesmo problema. Então, qual algoritmo é melhor?

Normalmente, queremos o algoritmo que executa menos operações.

Escrevemos o número de operações como uma função de n, o tamanho da entrada. Por exemplo,

$$f(n) = 2n^2 + 100$$

No entanto, normalmente, não ligamos tanto para as constantes.

lsso nos leva agrupar funções que tem o mesmo comportamento para n grande...

Detalhe técnico

Em toda nossa discussão sobre comportamento assintótico de funções, vamos considerar apenas funções com domínio $\mathbb N$ e que são assintoticamente positivas.

Limitante superior assintótico, ou Big-Oh

Primeira forma de agrupar funções:

$$O(f(n)) = \{g(n) : g(n) \text{ cresce mais lentamente que } f(n)\}$$

Limitante superior assintótico, ou Big-Oh

Primeira forma de agrupar funções:

$$O(f(n)) = \{g(n) : g(n) \text{ cresce mais lentamente que } f(n)\}$$

Definição formal:

$$O(f(n)) = \{g(n) : \exists (n_0, c) \in \mathbb{N} \times \mathbb{R}_{>0} \ (\forall n \ge n_0 \ g(n) \le c \cdot f(n))\}$$

- 1. Para cada f(n), mostre que $f(n) \in O(n^2)$.
 - 1.1 $f(n) = 4n^2$
 - 1.2 $f(n) = 4n^2 + 2n$
 - 1.3 $f(n) = 4n^2 + 2n + 100$

7 | 9

- 1. Para cada f(n), mostre que $f(n) \in O(n^2)$.
 - 1.1 $f(n) = 4n^2$
 - 1.2 $f(n) = 4n^2 + 2n$
 - 1.3 $f(n) = 4n^2 + 2n + 100$
- 2. Prove ou refute que $0,0000001 \cdot n^3 \in O(n^2)$.

- 1. Para cada f(n), mostre que $f(n) \in O(n^2)$.
 - 1.1 $f(n) = 4n^2$
 - 1.2 $f(n) = 4n^2 + 2n$
 - 1.3 $f(n) = 4n^2 + 2n + 100$
- 2. Prove ou refute que $0,0000001 \cdot n^3 \in O(n^2)$.
- 3. Prove ou refute que $\log_{10}(n) \in O(\log_2(n))$.

Limitante inferior assintótico, ou Omega

$$\Omega(f(n)) = \{g(n) : g(n) \text{ cresce mais rapidamente que } f(n)\}$$

Limitante inferior assintótico, ou Omega

$$\Omega(f(n)) = \{g(n) : g(n) \text{ cresce mais rapidamente que } f(n)\}$$

Definição formal:

$$\Omega(f(n)) = \{g(n) : \exists (n_0, c) \in \mathbb{N} \times \mathbb{R}_{>0} \ (\forall n \ge n_0 \ g(n) \ge c \cdot f(n))\}$$

Para cada f(n) e g(n), prove ou refute que $f(n) \in \Omega(g(n))$.

1.
$$f(n) = 4n^2 + 2n + 100 e g(n) = n^2$$

2.
$$f(n) = n^2/4 - 2n - 100 e g(n) = n^2$$

3.
$$f(n) = 2^n e g(n) = n^{1000}$$

4.
$$f(n) = \sqrt{n} e g(n) = \log n$$
.

5.
$$f(n) = n^{\epsilon}$$
, onde $\epsilon \in]0, 1[$, e $g(n) = \log n$.

6.
$$f(n) = n e g(n) = n log n$$
.

- - Perguntas, observações, comentários?