

FEH3A3- PENGOLAHAN SINYAL WAKTU DISKRIT

PERANCANGAN FILTER DIGITAL RESPON IMPULS TERBATAS (FIR)

FAKULTAS TEKNIK ELEKTRO

2 Methods FIR Filter Design

Windowing Method

Frequency Sampling Method

Langkah-langkah Merancang Filter Digital FIR Menggunakan Metode Windowing

- 1. Sketch Magnitude Response of Digital Filter as the specification needed
- 2. Determine the ideal impulse response $h_i(n)$ from Magnitude Response 1st step by Inverse DTFT (look up the table)
- 3. Determine the delay /symmetrical axis (α), filter order (N), Filter length (M)
- 4. Determine and calculate the delayed impulse response in which the delay was determined from 3rd step, from 0 to N (N-filter order with N+1 filter length)
- 5. Calculate the coefficient of the window used from 0 to N (N-filter order with N+1 filter length) (given)
- 6. Multiply the result of 4th and 5th step to determine the overall filter coefficient

N-order Windowing Methods FIR Filter Design

Filter length: N+1

$$h(n) = h_i(n - \alpha)w(n)$$

Steps 1-2 (Several Ideal Magnitude Response

LPF

$$H_{i}(e^{j\omega}) = \begin{cases} 1.e^{-j\alpha\omega}, & |\omega| \le \omega_{c} \\ 0, & \omega_{c} < |\omega| \le \pi \end{cases} \qquad h_{i}(n) = \frac{\sin\left[\omega_{c}(n-\alpha)\right]}{\pi(n-\alpha)}$$

$$h_{i}(n) = \frac{\sin\left[\omega_{c}(n-\alpha)\right]}{\pi(n-\alpha)}$$

Steps 1-2 (Several Ideal Magnitude Response

HPF

$$H_{i}(e^{j\omega}) = \begin{cases} 1.e^{-j\alpha\omega}, \omega_{c} < |\omega| \leq \pi \\ 0, \quad |\omega| \leq \omega_{c} \end{cases} h_{i}(n) = \frac{\sin[\pi(n-\alpha)] - \sin[\omega_{c}(n-\alpha)]}{\pi(n-\alpha)}$$

Steps 1-2 (Several Ideal Magnitude Response)

BPF

$$H_{i}\left(e^{j\omega}\right) = \begin{cases} 0, & 0 \le |\omega| < \omega_{c1} \\ 1.e^{-j\alpha\omega}, \omega_{c1} \le |\omega| \le \omega_{c2} \\ 0, & \omega_{c2} < |\omega| \le \pi \end{cases}$$

$$H_{i}\left(e^{j\omega}\right) = \begin{cases} 0, & 0 \le |\omega| < \omega_{c1} \\ 1.e^{-j\alpha\omega}, \omega_{c1} \le |\omega| \le \omega_{c2} \\ 0, & \omega_{c2} < |\omega| \le \pi \end{cases}$$

BSF

$$H_{i}\left(e^{j\omega}\right) = \begin{cases} 1.e^{-j\alpha\omega}, & 0 \leq |\omega| < \omega_{c1} \\ 0, & \omega_{c1} \leq |\omega| \leq \omega_{c2} \\ 1.e^{-j\alpha\omega}, & \omega_{c2} < |\omega| \leq \pi \end{cases}$$

$$h_{i}(n) = \frac{\sin\left[\omega_{c1}(n-\alpha)\right] - \sin\left[\omega_{c2}(n-\alpha)\right] + \sin\left[\pi(n-\alpha)\right]}{\pi(n-\alpha)}$$

Steps 1-2 (Several Ideal Magnitude Response Filter/Hilbert

$$H_{i}\left(e^{j\omega}\right) = \begin{cases} -j.e^{-j\alpha\omega}, \ 0 < \omega < \pi \\ j.e^{-j\alpha\omega}, \ -\pi < \omega < 0 \end{cases} \quad h_{i}\left(n\right) = \begin{cases} \frac{2}{\pi} \frac{\sin^{2}\left[\frac{\pi(n-\alpha)}{2}\right]}{n-\alpha}, & n \neq \alpha \\ 0, & n \neq \alpha \end{cases}$$

1-2 (Several Ideal Magnitude Response)

Differensiator

$$H_{i}(e^{j\omega}) = \begin{cases} j\omega.e^{-j\alpha\omega}, & 0 < \omega \le \pi \\ -j\omega.e^{-j\alpha\omega}, -\pi < \omega < 0 \end{cases}$$

$$h_{i}(n) = \begin{cases} \frac{\cos[\pi(n-\alpha)]}{\pi(n-\alpha)}, & n \ne \alpha \\ 0, & n = \alpha \end{cases}$$

Respon Filter Ideal Untuk Perancangan FUR-Windowing

Jenis Filter Ideal	Respon Filter Ideal dlm Respon Frekuensi (Frekuensi domain)	Respon Impuls Ideal (Time domain)
LPF	$H_d(e^{j\omega}) = \begin{cases} 1.e^{-j\omega\omega}, & \omega \le \omega_c \\ 0, & \omega_c < \omega \le \pi \end{cases}$	$h_d(n) = \frac{\sin\left[\omega_c(n-\alpha)\right]}{\pi(n-\alpha)}$
HPF	$H_d(e^{j\omega}) = \begin{cases} 1.e^{-j\alpha\omega}, \omega_\epsilon < \omega \le \pi \\ 0, \omega \le \omega_\epsilon \end{cases}$	$h_d(n) = \frac{\sin \left[\pi(n-\alpha)\right] - \sin \left[\omega_d(n-\alpha)\right]}{\pi(n-\alpha)}$
BPF	$H_d(e^{\beta \omega}) = \begin{cases} 0, & 0 \le \omega < \omega_{c1} \\ 1, e^{-j\omega\omega}, \omega_{c1} \le \omega \le \omega_{c2} \\ 0, & \omega_{c2} < \omega \le \pi \end{cases}$	$h_d(n) = \frac{\sin\left[\varpi_{c2}(n-\alpha)\right] - \sin\left[\varpi_{c1}(n-\alpha)\right]}{\pi(n-\alpha)}$
BSF	$H_d(e^{j\omega}) = \begin{cases} 1 e^{-j\omega\omega}, & 0 \le \varpi < \varpi_{c1} \\ 0, & \omega_{c1} \le \varpi \le \varpi_{c2} \\ 1 e^{-j\omega\omega}, & \omega_{c2} < \varpi \le \pi \end{cases}$	$h_d(n) = \frac{\sin\left[\omega_{c1}(n-\alpha)\right] - \sin\left[\omega_{c2}(n-\alpha)\right] + \sin\left[\pi(n-\alpha)\right]}{\pi(n-\alpha)}$
Differensiator	$H_{d}\left(e^{j\omega}\right) = \begin{cases} j\omega e^{-j\omega\omega}, & 0 < \omega \leq \pi \\ -j\omega e^{-j\omega\omega}, & -\pi < \omega < 0 \end{cases}$	$h_d(n) = \begin{cases} \frac{\cos[\pi(n-\alpha)]}{\pi(n-\alpha)}, & n \neq \alpha \\ 0, & n = \alpha \end{cases}$
Hilbert Transform	$H_{d}\left(e^{j\omega}\right) = \begin{cases} -j.e^{-j\alpha\omega}, & 0 < \omega < \pi \\ j.e^{-j\alpha\omega}, & -\pi < \omega < 0 \end{cases}$	$h_d(n) = \begin{cases} \frac{2}{\pi} \frac{\sin^2 \left[\frac{\pi(n-\alpha)}{2} \right]}{n-\alpha}, & n \neq \alpha \\ 0, & n = \alpha \end{cases}$

Steps 3 Determining α , N (Filter Order), M (Filter length)

$$\alpha = \left| \frac{\angle H_i(\omega)}{\omega} \right|$$

$$M = 2\alpha + 1$$
 $N = M - 1$

Example: If
$$H_i(e^{j\omega}) = \begin{cases} 1.e^{-j2\omega}, & |\omega| \le \omega_c \\ 0, & \omega_c < |\omega| \le \pi \end{cases}$$

Then $\alpha = 2$

Steps 4 Calculating $h_i(n-\alpha)$

Calculate $h_i(n-\alpha)$ from n=0 to n=N

Then

$$h_i(n-\alpha)$$

=

$$\begin{bmatrix} h_i(-\alpha) & h_i(-\alpha+1) & h_i(-\alpha+2) & \dots & h_i(-\alpha+N-1) & h_i(-\alpha+N) \end{bmatrix}$$

Steps 5 Calculating w(n)

Example: If window used is rectangular

Then:
$$w(n) = \begin{cases} 1, 0 \le n \le N \\ 0, otherwise \end{cases}$$

$$w(n) = [w(0) \quad w(1) \quad \quad w(N)]$$

Karakteristik Jendela/Window Pada Perancangan

Nama Jendela	Lebar Transisi $\Delta \omega$		Redaman	
	Pendekatan	Nilai Exact	Stopband Minimal (dB)	Rumus
Rectangular	4 n M	1,8 <i>n</i> <i>M</i>	21	$w(n) = \begin{cases} 1, 0 \le n \le M - 1 \\ 0, & otherwise \end{cases}$
Bartlett	8 <i>n</i> <i>M</i>	6,1 <i>n</i>	25	$w(n) = \begin{cases} \frac{2n}{M-1}, & 0 \le n \le \frac{M-1}{2} \\ 2 - \frac{2n}{M-1}, \frac{M-1}{2} \le n \le M-1 \\ 0, & otherwise \end{cases}$
Hanning	<u>8π</u> <u>Μ</u>	6,2π M	44	$w(n) = \begin{cases} 0.5 \left[1 - \cos\left(\frac{2\pi n}{M - 1}\right) \right], & 0 \le n \le M - 1 \\ 0, & otherwise \end{cases}$
Hamming	8я М	6,6π M	53	$w(n) = \begin{cases} 0.54 - 0.46\cos\left(\frac{2\pi n}{M-1}\right), & 0 \le n \le M-1 \\ 0, & \text{otherwise} \end{cases}$
Blackman	12n M	$\frac{11\pi}{M}$	74	$w(n) = \begin{cases} 0.42 - 0.5 \cos\left(\frac{2mn}{M-1}\right) + 0.08 \cos\left(\frac{4mn}{M-1}\right), & 0 \le n \le M-1 \\ 0, & \text{otherwise} \end{cases}$

Steps 6 Calculating h(n)=h_i(n)w(n)

Example:

h(n)

$$\begin{bmatrix} h_i(-\alpha)w(0) & h_i(-\alpha+1)w(1) & \dots & h_i(-\alpha+N)w(N) \end{bmatrix}$$

Rancanglah suatu filter FIR dengan respon frekuensi diinginkan sbb:

$$H(e^{j\omega}) = \begin{cases} e^{-j3\omega}, & -0.5\pi \le \omega \le -\pi \\ 0, & -0.5\pi \le \omega \le 0.5\pi \\ e^{-j3\omega}, & 0.5\pi \le \omega \le \pi \end{cases}$$

Akan dirancang dengan metoda windowing menggunakan window hamming.

$$w(n) = 0.54 - 0.46\cos\left(\frac{2\pi n}{M-1}\right), \ 0 \le n \le M-1$$

Frekuensi pencuplikan yang dipakai 20 kHz.

Tentukan:

- a. Hitunglah koefisien filter digital tersebut!
- b. Apakah filter stabil dan kausal? Jelaskan!
- c. Menurut anda sistem ini berfungsi sbg apa? (LPF, HPF, BPF, BSF, Differensiator, atau Hilbert transform)
- d. Realisasikan filter!

a.
$$\omega_c = 0.5\Pi$$

Panjang filter M= $2\alpha+1=7$ Orde filter N= M-1= 6

$$h(n) = h_d(n).w(n) = \frac{\sin \pi (n-3) - \sin 0.5\pi (n-3)}{\pi (n-3)} \left[0.54 - 0.46\cos \left(\frac{2\pi n}{M-1}\right) \right]$$

$$0.54 - 0.46\cos \left(\frac{2\pi n}{M-1}\right)$$

$$0.54 - 0.46\cos \left(\frac{2\pi n}{M-1}\right)$$

 $h_d(n) = [0.1061 \ 0 \ -0.3183 \ 0.5000 \ -0.3183 \ 0 \ 0.1061]$

 $w(n) = [0.0800 \quad 0.3100 \quad 0.7700 \quad 1.0000 \quad 0.7700 \quad 0.3100 \quad 0.0800]$

 $h(n) = [0.0085 \ 0 \ -0.2451 \ 0.5000 \ -0.2451 \ 0 \ 0.0085]$

b. Filter stabil dan kausal karena jenis fiter adalah FIR yang non rekursif dan BIBO

c. Jika dilihat dari respon magnitudenya maka Filter tersebut berfungsi sebagai HPF

- 1. Sampling
- 2. Hitung dan Gambarkan Respon Magnituda Diskrit Hasil Sampling |H(k)|
- 3. Menghitung koefisien filter digital h(n) sesuai jumlah Koefisien N (Genap atau Ganjil)
- 4. Gambar Struktur Realisasi Sistem

Suatu filter akan dirancang dengan metode sampling frekuensi dengan banyak 4 sampel. Filter dapat meloloskan frekuensi diantara 3 kHz dan 6 kHz. Akan dilakukan perancangan filter tersebut dengan frekuensi sampling sebesar 20 kHz.

- a. Gambarkan respon magnitudo filter yang diinginkan (dari 0 rad/sampel s.d 2π rad/sampel
- b. Hitung dan Gambarkan Respon Magnituda Diskrit Hasil sampling
- c. Hitung Orde Filter
- d. Hitunglah Koefisien Filter Digital

- 1.Tentukan dan Gambar Respon Frekuensi Sistem
- 2. Menentukan jumlah sampling (sesuai kebutuhan). Sampel = N
- 3. Sinyal terdefinisi dari 0 sampai π , dan sinyal harus dicerminkan hingga 2π .
- 4. Jarak antar sampel $\Delta \omega = \frac{2\pi}{N}$. Sampel pertama dimulai dari nol

$$\omega_1 = \frac{2\pi f_1}{F_S} = \frac{2\pi . 3kHz}{20kHz} = 0.3 \text{ }\pi$$

$$\omega_2 = \frac{2\pi f_1}{F_S} = \frac{2\pi .6kHz}{20kHz} = 0.6\pi$$

