REDES NEURONALES

Sistemas de Inteligencia Artificial

Agopian - Rossi - Zannini Grupo 4

Objetivos

• Implementación red neuronal multicapa que tenga la capacidad de aproximar los puntos de terrain8.txt.

• Analizar errores obtenidos para diferentes estructuras de red, configuración y método de aprendizaje.

Análisis del terreno

Conjunto de entrenamiento

• Tomar de los puntos ordenados, aquellos que están en posiciones múltiplos de 2.

• Tomar de los puntos ordenados, aquellos que están en posiciones múltiplos de 4.

Tomar "tiras de x".

Método de entrada

terrain_training_test(net_structure, err, g, g_der, n, betha, learningType, algorithm, graphics, alpha, a, b, K)

- net_structure : array de enteros indicando para cada capa oculta que cantidad de neuronas tiene.
- error : el error máximo que debe tener el entrenamiento.
- g : función de activación
- g_der : derivada de la función de activación
- n : valor de etha
- betha : parametro de la función de activación
- learningType: 1 (Batch), 2 (Incremental)
- algorithm: 1 (original), 2 (momentum), 3 (adaptative etha)
- graphics: valor booleano indicando si graficar el error a medida que avanza el algoritmo.
- alpha: valor utilizado para momentum
- a : valor en el que se aumenta etha
- b : porcentaje en el que se disminuye etha
- K : cantidad de pasos positivos consecutivos antes de modificar el etha en los algoritmos adaptative etha.

Método de entrada

Ejemplo de prueba :

```
[generalization, nets] = terrain_training_test([2 17 1], 0.0005, @tanh_ft, @tanh_ft_der, 0.2, 0.2, 1, 2, false, 0.9)
```

Implementación

CONSIDERACIONES

• Se tomo como aceptable un error menor a 1E-3.

• Se analizaron estructuras con 1 capa oculta.

Modificaciones al algoritmo original

 Los patrones a analizar en incremental se toman de manera aleatoria.

• Implementó momentum y etha adaptativo para batch e incremental.

Momentum

· Reciben adicionalmente un parámetro alpha.

• El deltaW de una iteración se ve afectado por la iteración pasada de la manera alpha * deltaW_{previo}.

Etha adaptativo

- Se reciben adicionalmente 4 valores importante:
 - K: número de pasos positivos consecutivos que deben suceder antes de aumentar el etha.
 - a : valor con el cual se aumentará el etha de la manera etha + a.
 - b : valor con el que se disminuye el etha de la manera etha - b * etha.
 - alpha : parámetro del momentum.

Exponencial vs Tangente Hiperbólica

- Puntos notablemente menores al máximo normalizados en un intervalo pequeño.
- Diferenciación entre errores obtenidos según las distintas funciones de activación.
- Error de orden menor para la tangente hiperbólica.

Análisis de resultados

- Se ejecutaron los 6 algoritmos durante 20000 épocas variando el número de neuronas en la capa oculta de 1 hasta 20.
- Se tomaron y compararon errores de entrenamiento y generalización.
- Se analizaron 5 configuraciones distintas
 - a. etha: 0.3, betha: 0.2, alpha: 0.9, a: 0.2, b: 0.1, K: 5;
 - b. etha: 0.5, betha: 0.4, alpha: 0.9, a: 0.2, b: 0.05, K: 11;
 - c. etha: 0.3, betha: 0.5, alpha: 0.9, a: 0.2, b: 0.1, K: 5;
 - d. etha: 0.2, betha: 0.2, alpha: 0.9, a: 0.2, b: 0.1, K: 5.
 - e. etha: 0.02, betha: 0.5, alpha: 0.9, a: 0.02,b: 0.1, K:5

Batch original

ERROR APRENDIZAJE: 6,1401 E-4

ERROR GENERALIZACIÓN: 5,1996 E-4

ESTRUCTURA: 7 neuronas en capa oculta

ETHA: 0.2

BETHA: 0.2

Batch original

- Output dado por la cátedra
- Output dado por la red neuronal

Batch original

Batch momentum

ERROR APRENDIZAJE: 4,7754 E-5

ERROR GENERALIZACIÓN: 5,6950 E-5

ESTRUCTURA: 17 neuronas en capa oculta

ETHA: 0.2

BETHA: 0.2

ALPHA: 0.9

Batch momentum

- Output dado por la cátedra
- Output dado por la red neuronal

Batch momentum

ERROR APRENDIZAJE: 7,5033 E-4

ERROR GENERALIZACIÓN: 6,3869 E-4

ESTRUCTURA: 12 neuronas en capa oculta

ETHA: 0.5 A: 0.2

BETHA: 0.4 B: 0.05

ALPHA: 0.9 K: 11

- Output dado por la cátedra
 - Output dado por la red neuronal

Incremental original

ERROR APRENDIZAJE: 1,1521 E-4

ERROR GENERALIZACIÓN: 1, 3232 E-4

ESTRUCTURA: 11 neuronas en capa oculta

ETHA: 0.3

BETHA: 0.5

Incremental original

- Output dado por la cátedra
- Output dado por la red neuronal

Incremental original

Incremental momentum

ERROR APRENDIZAJE: 1,414 E-4

ERROR GENERALIZACIÓN: 1,542 E-4

ESTRUCTURA: 11 neuronas capa oculta

ETHA: 0.02

BETHA: 0.5

ALPHA: 0.9

Incremental momentum

- Output dado por la cátedra
- Output dado por la red neuronal

Incremental momentum

Incremental etha adaptativo

ERROR APRENDIZAJE: 7.836E -4

ERROR GENERALIZACIÓN: 6,4465 E-4

ESTRUCTURA: 11 neuronas en la capa oculta

ETHA: 0.02 A: 0.02

BETHA: 0.5 B: 0.1

ALPHA: 0.9 K: 5

Incremental adaptative etha

- Output dado por la cátedra
- Output dado por la red neuronal

Incremental adaptative etha

Podio

BATCH CON MOMENTUM

5,6950 E-5

INCREMENTAL ORIGINAL

1, 3232 E-4

INCREMENTAL CON MOMENTUM

1,542 E-4

• Incremental tiene un descenso de error más rápido que en el caso de batch

• Incremental e incremental momentum muestran un comportamiento similar

• Batch momentum tiene un descenso más pronunciado de error.

• Algoritmos de etha adaptativo poseen notables fluctuaciones

• Un error poco exigente no aproxima rectas

• El error de generalización sigue la misma tendencia que el de entrenamiento

Muchas Gracias

