Sistema de controle de mesa de som - Sistemas digitais e microcontrolados

Giovanna Bughi¹, Gustavo Ratier Cardoso², João Vitor Medeiros³, and Luís Spengler⁴

^{1,2,3,4}Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso do Sul

Conteúdo

1 Problema proposto

Uma mesa de som conecta três microfones numa única caixa de som amplificada, que são: Microfone Presidente, Microfone Diretor e Microfone Coordenador. Sabendo que somente um microfone pode falar por vez. Elabore um circuito lógico combinacional que permita ligar os microfones segundo a prioridade abaixo:

Prioridade 1 : Presidente

Prioridade 2: Diretor

Prioridade 3: Coordenador

Cada Microfone é acionado pelo usuário por um interruptor (liga-desliga) (ChP, ChD, ChC). Cada microfone ao ser acionado tem sua saída comutada (0 ou 1) informando ao circuito lógico, que por sua vez, aciona uma das saídas (SP, SD, SC), para a caixa amplificada. Então, quando o Presidente ligar seu microfone, terá prioridade sobre os demais. Quando o Diretor ligar seu microfone só terá prioridade sobre o Coordenador. O Coordenador só fala quando os demais não estiverem com seus microfones ligados.

1.1 Esboço do esquema proposto

O problema pode ser esboçado de acordo com o texto acima.

1.2 Definição das variáveis de entrada e saída e seus estados em uma tabela verdade

Foi considerado cada usuário do microfone como uma variável, estes sendo as variáveis de entrada (ChP, ChD, ChC). As suas respectivas saídas (SP, SD, SC) foram definidas como variáveis de saída. Obedecendo a prioridade de cada falante, as saídas na tabela verdade abaixo, podem ter

seus estados definidos.

INPUT			OUTPUT		
ChP	ChD	ChC	SP	SD	SC
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	0	1	0
1	0	0	1	0	0
1	0	1	1	0	0
1	1	0	1	0	0
1	1	1	1	0	0

1.3 Obtenção da expressão de saída

1.4 Mapa de Karnaugh

Mapa de Karnaugh para a saída do presidente (SP)

Mapa de Karnaugh para a saída do diretor (SD)

ChPChDChC

Mapa de Karnaugh para a saída do coordenador (SC)

		ChPChD				
		00	01	11	10	
ChC	0	0	0	0	0	
	1		0	0	0	

- 1.5 Simplificação da expressão pelo mapa de Karnaugh
- 1.6 Obtenção do circuito lógico
- 1.7 Implementação do hardware a partir do circuito lógico
- 2 Conclusão