Министерство образования и науки Российской Федерации

Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

	Ут	верждаю
	Зам.	директора
K	Б МГТУ	им. Н.Э. Баумана
	по уче	бной работе
		О.Л. Перерва
‹ ‹	>>	201 г.

Регистрационный номер

Факультет «Фундаментальные науки» (ФНК)

Кафедра «Программное обеспечение ЭВМ, информационные технологии и прикладная математика» ФН1-КФ

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Технологии анализа данных

для направления подготовки 09.03.04 «Программная инженерия» бакалавра (профиль «Разработка программно-информационных систем»)

Автор(ы) программы:

Логинов Б. М., д. ф.-м. н., профессор, <u>fn1kf@bmstu-kaluga.ru</u>

Автор(ы) программы:
Логинов Б. М
Рецензент:
Директор по исследованиям и развитию ООО "НПФ "Эверест"
к.фм.н. Кириллов В.Ю
Программа утверждена на заседании кафедры ФН1-КФ «Программное обеспечение ЭВМ, информационные технологии и прикладная математика» Протокол № от «»201 г.
Заведующий кафедрой ФН1-КФ «Программное обеспечение ЭВМ, информационные технологии и прикладная математика»
Логинов Б. М
Декан факультета ФНК
Галемин Е.К.
Согласовано:
Председатель Методической комиссии КФ МГТУ им. Н.Э. Баумана
Перерва О.Л.

ОГЛАВЛЕНИЕ

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ,	
СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ	
ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ4	4
2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ	5
3. ОБЪЕМ ДИСЦИПЛИНЫ	5
4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ	6
Модуль 1 «Введение в анализ данных»	6
Модуль 2 «Прикладные задачи анализа данных»	8
5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ	
САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ10	0
6. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕГО КОНТРОЛЯ	
УСПЕВАЕМОСТИ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО	
ДИСЦИПЛИНЕ10	0
ДИСЦИПЛИНЕ 7. ПЕРЕЧЕНЬ ОСНОВНОЙ И ДОПОЛНИТЕЛЬНОЙ ЛИТЕРАТУРЫ, НЕОБХОДИМОЙ	
ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ10	0
Основная литература10	0
Дополнительная литература1	_
8. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ	
«ИНТЕРНЕТ», НЕОБХОДИМЫХ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ1	1
9. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ	
ДИСЦИПЛИНЫ1	1
10. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ИСПОЛЬЗУЕМЫХ ПРИ	
ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ, ВКЛЮЧАЯ	
ПЕРЕЧЕНЬ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ	
СИСТЕМ12	2
11. ОПИСАНИЕ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ	
ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ12	2
12. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ, ИСПОЛЬЗУЕМЫЕ ПРИ ОСУЩЕСТВЛЕНИИ	
ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ12	2

Программа разработана в соответствии с учебным планом КФ МГТУ им. Н.Э. Баумана по направлению подготовки 09.03.04 «Программная инженерия» (профиль – «Разработка программно-информационных систем»).

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Для категорий «знания», «умения», «навыки» планируется достижение следующих результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы – формируемыми компетенциями:

- владением навыками моделирования, анализа и использования формальных методов конструирования программного обеспечения (СПК-19);
- владением навыками чтения, понимания и выделения главной идеи прочитанного исходного кода, документации (СПК-21);
- способностью выстраивать логику рассуждений и высказываний, проводить анализ, систематизацию, классификацию, интерпретацию соответствующей информации, формулировать выводы, адекватные полученным результатам (СОК-10)

Результаты обучения по дисциплине, соотнесенные с соответствующей компетенцией					
Обучающийся должен знать:	Обучающийся должен уметь:	Обучающийся должен владеть:			
современные методы анализа данных; прикладные задачи анализа данных;	описывать проблемы анализа данных с точки зрения вычислительной математики; применять общие алгоритмы анализа данных на практике;	навыками работы со специальными инструментами для анализа данных; навыками определения математических аспектов в задачах анализа данных; навыками оценивания правильности используемых методов и их применимость в каждой конкретной ситуации;			

Виды профессиональной деятельности, к которым готовится обучающийся при освоении дисциплины:

- научно-исследовательская.

Обучающийся при освоении дисциплины в соответствии с видом профессиональной деятельности готовится решать следующие **профессиональные задачи**:

- проведение научных исследований, связанных с объектами профессиональной деятельности;
- разработка новых и улучшение существующих методов и алгоритмов обработки данных в информационно-вычислительных системах;
- разработка новых и улучшение существующих формальных методов программной инженерии;
- написание отчетов о проведенной научно-исследовательской работе и публикация научных результатов.

Объектами профессиональной деятельности выпускников, освоивших дисциплину в составе образовательной программы, являются:

- методы и алгоритмы обработки данных в информационно-вычислительных системах.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в Блок БЗ.В. и относится к дисциплинам по выбор вариативной части.

Изучение дисциплины предполагает наличие у обучающихся компетенций, сформированных в результате предшествующего освоения ими программ высшего образования в областях: «Базы данных», «Научно-исследовательская работа», «Технологии обработки больших данных»

3. ОБЪЕМ ДИСЦИПЛИНЫ

		Распределение по семестрам	
Содержание дисциплины	Всего	8 семестр	
		12 недель	
Объем дисциплины, з.е.	2	2	
Объем дисциплины, час.	72	72	
Промежуточная аттестация		Зачет	
Контактная работа обучающихся с	48	48	

Контактная работа обучающихся с преподавателем, час.	48	48
- Лекции (Л)	12	12
- Семинары (С)	-	-
- Практические занятия (ПЗ)	-	-
- Лабораторные работы (ЛР)	36	36

Самостоятельная работа обучающихся, час.	24	24
- Подготовка к выполнению/защите лабораторных работ	14	14
- Выполнение домашних работ	10	10

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Содержание дисциплины, структурированное по видам занятий

		Виды учебных занятий			
Модули и проекты	Лекции, час	Практические занятия (семинары),	Лабораторные работы, час	Самостоятельная работа, час.	Итого
8 семестр	12	-	36	24	72
Модуль 1 «Введение в анализ данных»	6	-	14	10	30
Модуль 2 «Прикладные задачи анализа данных»	6	_	22	14	42

Содержание дисциплины, структурированное по разделам (модулям, темам)

Модуль 1 «Введение в анализ данных»

Содержание дисциплины	Объем в часах	Сроки проведения, недели
Лекции	6	1-6
Практические занятия	-	-
Лабораторные работы	14	1-6
Самостоятельная работа: подготовка к выполнению/защите лабораторных работ	10	1-6
Трудоемкость, час	30	

	Лекции		
	Методологии и технологии анализа данных – 2 часа.		
Л 1.1	Понятие данных. Методы и стадии анализа данных. Задачи анализа данных. Используемые технологии. Сферы применения.		
	Статистические методы анализа данных – 2 часа.		
Л 1.2	Основные понятия математической статистики. Методы анализа данных: дескриптивная статистика, параметрические, непараметрические, номинальные методы (корреляционный, регрессионный, дисперсионный анализы, кластерный, дискриминантный, факторный анализы).		
	Современные программные средства анализа информации – 2 часа.		
Л 1.3	Обзор современных популярных программных средства анализа данных: Statistica, SPSS, Excel, R-Studio, Deductor, Weka и другие; их преимущества и недостатки.		
	Лабораторные работы		
	Знакомство с аналитической платформой Deductor – 2 часа.		
ЛР 1.1	Цель: Ознакомиться с архитектурой, основными частями и пользовательским интерфейсом Deductor. Задачи: 1. Получить навыки импорта данных, парциальной предобработки, восстановления пропущенных данных, удаления аномалий, спектральной		
	обработка, удаления шумов.		
	2. Освоить и закрепить навыки работы в системе Deductor. Обработка данных при факторном и корреляционном анализе – 2 часа		
	Цель:		
ЛР 1.2	Освоить и закрепить навыки применения факторного и корреляционного анализа.		
	Задачи:		
	1. Получить навыки обработки данных при помощи факторного и корреляционного анализа.		
	2. Освоить и закрепить навыки понижения размерности пространства входных		
	факторов.		

	Трансформация данных – 2 часа		
	Цель:		
	Научиться применять разбиение данных, квантование и фильтрацию для		
ЛР 1.3	трансформации данных.		
	Задачи:		
	1. Получить навыки трансформации данных.		
	2. Освоить и закрепить навыки разбиения данных, квантования и фильтрации.		
	Использование стандартных математических функций при анализе и формировке данных — 2 часа		
	Цель:		
ЛР 1.4	Научиться применять стандартные математические функции при анализе и формировке данных.		
J11 1. -	Задачи:		
	1. Получить навыки использования инструмента «Калькулятор».		
	2. Освоить и закрепить навыки использования стандартные математические		
	функции при анализе и формировке данных.		
	Поиск ассоциативных правил для установления зависимостей между		
	событиями – 2 часа		
	Цель:		
HD 1.5	Научиться применять ассоциативные правила и использовать визуализаторы		
ЛР 1.5	«Популярные наборы», «Правила», «Дерево правил», «Что-если».		
	Задачи:		
	1. Получить навыки построения ассоциативных правил.		
	2. Освоить и закрепить навыки использования визуализаторов при построении правил.		
	Прогнозирование временных рядов – 2 часа		
	Цель:		
	Научиться применять методы анализа данных для решения задач прогнозирования		
ЛР 1.6	временных рядов.		
	Задачи:		
	1. Получить навыки прогнозирования временных рядов.		
	2. Освоить и закрепить навыки использования методов прогнозирования.		
ЛР 1.7	Применение скриптов для автоматизации процесса добавления в сценарий		
	ветвей обработки – 2 часа		
	Цель:		
	Научиться применять обработчик «Скрипт» для решения задач прогнозирования.		
	Задачи:		

- 1. Получить навыки использования обработчика «Скрипт».
- 2. Освоить и закрепить навыки прогнозирования временных рядов.

Самостоятельная работа

СР1.1 Подготовка к выполнению/защите лабораторных работ – 10 час.
Изучение методических указаний, составление отчета по лабораторным работам, проработка контрольных вопросов.

Модуль 2 «Прикладные задачи анализа данных»

Содержание дисциплины	Объем в часах	Сроки проведения, недели
Лекции	6	7-12
Практические занятия (семинары)	-	-
Лабораторные работы	22	7-12
Самостоятельная работа:		
■ подготовка к выполнению/защите лабораторных работ	4	7-12
домашняя работа	10	7-11
Трудоемкость, час.	42	

	Лекции
Л 2.1	Методы и алгоритмы решения задач классификации – 2 часа.
	Постановка задачи классификации. Обзор существующих методов: метод дерева
	решений, байесовский классификатор, метод опорных векторов.
Л 2.2	Методы и алгоритмы решения задач кластеризации – 2 часа.
	Постановка задачи кластеризации. Понятие меры близости и способы его
	определения. Классификация алгоритмов кластеризации. Алгоритм к-средних и
	его модификации. Оценки качества моделей.
Л 2.3	Анализ текстовой и графической информации – 2 часа.
	Понятие Text Mining. Задачи Text Mining. Этапы Text Mining. Понятие шаблона,
	извлечение ключевых понятий с помощью шаблонов. Методы классификации
	текстовых документов. Методы кластеризации текстовых документов.
	Аннотирование текстовых документов. Понятие визуального анализа данных.
	Этапы Visual Mining. Методы геометрических преобразований.

	Лабораторные работы
Л.Р. 2.1	Кластерный анализ – 6 часов.
	Цель:
	Научиться использовать методы кластрезации при обработке данных. Задачи:
	1. Получить навыки работы с алгоритмами кластеризации.
	2. Освоить и закрепить навыки применения кластерного анализа.
Л.Р. 2.2	Классификация с помощью деревьев решений – 6 часов.
	Цель: Научиться использовать методы decision trees. Задачи: 1. Получить навыки построения классифицирующих правил типа «ЕСЛИТО»
	(if-then), имеющих вид дерева.
	2. Освоить и закрепить навыки построения деревьев решений.
	Программа интеллектуального анализа данных WEKA – 10 часов.
Л.Р. 2.3	Цель:
	Получить практические навыки работы с программным обеспечением для анализа данных WEKA.
	Задачи:
	1. Ознакомиться с библиотекой WEKA;
	2. Научиться использовать средства программного пакета WEKA в прикладных задачах анализа данных.
	Самостоятельная работа
CP 2.1	Подготовка к выполнению/защите лабораторных работ – 4 час.
	Изучение методических указаний, составление отчета по лабораторным работам, проработка контрольных вопросов.
CP 2.2	Выполнение домашней работы «Работа с WEKA» – 10 час.
	Цель: сформировать практические навыки разработки моделей анализа данных с использованием библиотек WEKA.
	Задачи: получить навыки создания моделей анализа данных на основе библиотек WEKA.

5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

- 1. Абруков, Возможности создания системы поддержки принятия решений и управления вузом с помощью аналитической платформы Deductor [Электронный ресурс] / Абруков, Ефремов, Кощеев. // Интеграция образования. Электрон. дан. 2013. № 1. С. 17-23. Режим доступа: https://e.lanbook.com/journal/issue/289143. (**CP 1.1**).
- 2. Флах, П. Машинное обучение. Наука и искусство построения алгоритмов, которые извлекают знания из данных. [Электронный ресурс] Электрон. дан. М. : ДМК Пресс, 2015. 400 с. Режим доступа: http://e.lanbook.com/book/69955 (CP 1.1, CP 2.2).
- 3. Замятин, А.В. Интеллектуальный анализ данных: учеб. пособие. [Электронный ресурс] Электрон. дан. Томск : ТГУ, 2016. 120 с. Режим доступа: http://e.lanbook.com/book/74565 (CP 2.1)

- 4. Уэс, М. Python и анализ данных. [Электронный ресурс] Электрон. дан. М. : ДМК Пресс, 2015. 482 с. Режим доступа: http://e.lanbook.com/book/73074 (CP 1.1).
- 5. Карау, X. Изучаем Spark: молниеносный анализ данных. [Электронный ресурс] / X. Карау,
- Э. Конвински, П. Венделл, М. Захария. Электрон. дан. М. : ДМК Пресс, 2015. 304 с.
- Режим доступа: http://e.lanbook.com/book/90118 (CP 2.2)

6. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

Фонд оценочных средств приведен в приложении к рабочей программе дисциплины и включает в себя:

- перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы;
- типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы;
- описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания;
- методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

7. ПЕРЕЧЕНЬ ОСНОВНОЙ И ДОПОЛНИТЕЛЬНОЙ ЛИТЕРАТУРЫ, НЕОБХОДИМОЙ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Основная литература

- 1. Юре, Л. Анализ больших наборов данных [Электронный ресурс] / Л. Юре, Р. Ананд, Д.У. Джеффри. Электрон. дан. Москва : ДМК Пресс, 2016. 498 с. Режим доступа: https://e.lanbook.com/book/93571
- 2. Кухаренко Б. Г. Интеллектуальные системы и технологии: учебное пособие [Электронный ресурс] М.: Альтаир-МГАВТ. 2015 115 с. Режим доступа: http://biblioclub.ru/index.php? page=book view red&book id=429758 .
- 3. Кормен, Т.Х. Алгоритмы: построение и анализ. / Т.Х. Кормен, Ч.И. Лейзерсон, Р.Л. Ривест, К. Штайн. М.: «Вильямс», 2013. 1328 с. URL: http://e.lanbook.com/book/74565
- 4. Флах, П. Машинное обучение. Наука и искусство построения алгоритмов, которые извлекают знания из данных. [Электронный ресурс] Электрон. дан. М. : ДМК Пресс, 2015. 400 с. Режим доступа: http://e.lanbook.com/book/69955

Дополнительная литература

- 1. Роберт, И. R в действии. Анализ и визуализация данных в программе R. [Электронный ресурс] / И. Роберт, Кабаков. Электрон. дан. М. : ДМК Пресс, 2014. 588 с. Режим доступа: http://e.lanbook.com/book/58703
- 2. Карау, X. Изучаем Spark: молниеносный анализ данных. [Электронный ресурс] / X. Карау,
- Э. Конвински, П. Венделл, М. Захария. Электрон. дан. М. : ДМК Пресс, 2015. 304 с. Режим доступа:

http://e.lanbook.com/book/90118

3. Боровиков, В.П. Популярное введение в современный анализ данных в системе STATISTICA.Учебное пособие для вузов [Электронный ресурс] : учеб. пособие — Электрон. дан. — Москва : Горячая линия-Телеком, 2013. — 288 с. — Режим доступа: https://e.lanbook.com/book/11828.

8. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ «ИНТЕРНЕТ», НЕОБХОДИМЫХ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

- 1. Научная электронная библиотека http://eLIBRARY.RU.
- 2. Электронно-библиотечная система http://e.lanbook.com.
- 3. Электронно-библиотечная система «Университетская библиотека онлайн» http://biblioclub.ru.
- 4. Электронно-библиотечная система IPRBook http://www.iprbookshop.ru/

9. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Приступая к освоению дисциплины обучающийся должен принимать во внимание следующие положения.

Дисциплина построена по модульному принципу, каждый модуль представляет собой логически завершенный раздел курса.

Лекционные занятия посвящены рассмотрению ключевых, базовых положений курса и разъяснению учебный заданий, выносимых на самостоятельную проработку.

Лабораторные работы предназначены для приобретения умений и навыков для решения практических задач в предметной области дисциплины.

Самостоятельная работа студентов включает проработку лекционного курса, выполнение домашних заданий и пр.. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине приведен в разделе 5.

Оценивание освоения дисциплины ведется в соответствии с Положением о порядке организации и проведения текущего контроля успеваемости и промежуточной аттестации обучающихся. Текущий контроль успеваемости осуществляется по модулям по графику учебного процесса. Промежуточная аттестация по результатам семестра по дисциплине проходит в форме зачета.

10. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ, ВКЛЮЧАЯ ПЕРЕЧЕНЬ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

Информационные технологии:

Предусмотрена возможность асинхронного взаимодействия студентов и преподавателей посредством технологий и служб по пересылке и получению электронных сообщений между пользователями компьютерной сети Интернет. Студентам передаются в электронном виде необходимые для освоения дисциплины перечень основной и дополнительной литературы, перечень учебно-методического обеспечения для самостоятельной работы обучающихся, раздаточный материал и методические указания. Электронная информационнообразовательная среда КФ МГТУ им. Н. Э. Баумана обеспечивает доступ к рабочей программе дисциплины, к изданиям электронных библиотечных систем и электронным образовательным ресурсам, указанным в рабочей программе дисциплины, фиксацию хода образовательного процесса и результатов промежуточной аттестации по дисциплине.

Программное обеспечение:

- 1. https://pandas.pydata.org/pandas-docs/stable/install.html
- 2. https://basegroup.ru/deductor/download
- 3. https://sourceforge.net/projects/weka/

Информационные и справочные системы:

- 1. Научная электронная библиотека http://eLIBRARY.RU.
- 2. Электронно-библиотечная система http://e.lanbook.com.

11. ОПИСАНИЕ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ

- 1. Учебные аудитории КФ МГТУ им. Н.Э. Баумана для проведения занятий лекционного типа и практических занятий укомплектованы специализированной мебелью и средствами обучения, служащими для представления учебной информации большой аудитории.
- 2. Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду.
- 3. Для проведения лабораторных работ используются оборудование и средства технологического оснащения лабораторий кафедры «Программное обеспечение ЭВМ, информационные технологии и прикладная математика» КФ МГТУ им. Н.Э. Баумана:
- 12 ПК подключенных к одной локальной сети;
- дистрибутивы программных пакетов Deductor, WEKA.

12. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ, ИСПОЛЬЗУЕМЫЕ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ

Компетентностный подход при освоении дисциплины реализуется через использование в учебном процессе активных методов обучения — таких взаимных действий преподавателя и обучающихся, которые побуждают последних к активной мыслительной и практической деятельности в процессе овладения изучаемым материалом. При экстрактивном режиме обучения студент выступает только в роли обучаемого, при интерактивном режиме обучения — студент вовлекается во взаимонаправленные информационные потоки: студент — группа студентов — преподаватель.

В интерактивных режимах по дисциплине проводятся:

Поисковая лабораторная работа по теме ЛР1.3, ЛР2.1, ЛР2.3

Формируются умения делать теоретические выводы на основе наблюдаемых явлений, навыки использования методов физического и математического моделирования и анализа при решении конкретных задач. Организуется беседа преподавателя и студентов для обсуждения результатов работы, формулирования обобщений и закономерностей.