Domain and Range of common functions			
Name	Formula/How it looks	Domain	Range
	like		
Constant Func-	f(x) = b, for some fixed	\mathbb{R}	$ \{b\}$
tion	number $b \in \mathbb{R}$.		
Linear Function	f(x) = ax + b, for fixed num-	\mathbb{R}	\mathbb{R}
	bers $a, b \in \mathbb{R}$, with $a \neq 0$.		
Power Function	$f(x) = x^n$, for some $n \in \mathbb{N}$,	\mathbb{R}	\mathbb{R} if n is odd, $\mathbb{R}_{\geq 0} = \mathbb{R}$
	$n \ge 2$.		$[0,+\infty)$ if n is even.
Polynomial	$f(x) = a_n x^n + \ldots + a_1 x + \ldots$	\mathbb{R}	It depends!
Function	a_0 , with a_0, a_1, \ldots, a_n fixed		
	numbers and $a_n \neq 0$.		
Rational Func-	$f(x) = \frac{P(x)}{Q(x)}$, where $P(x)$	$x \in \mathbb{R}$ such that	It depends!
tion	and $Q(x)$ are polynomials.	$Q(x) \neq 0.$	
Exponential	$f(x) = e^x$	\mathbb{R}	$\mathbb{R}_+ = (0, +\infty)$
Logarithm	$f(x) = \ln(x)$	$\mathbb{R}_+ = (0, +\infty)$	$ \mathbb{R} $
Sine	$f(x) = \sin(x)$	\mathbb{R}	$ \left[-1, 1 \right] $
Cosine	$f(x) = \cos(x)$	\mathbb{R}	[-1,1]
Tangent	$f(x) = \tan(x)$	All real numbers but	\mathbb{R}
		$\frac{k\pi}{2}$, where k is an odd	
		integer. (This is where	
		$\cos(x) = 0.$	
Secant	$f(x) = \sec(x) = \frac{1}{\cos(x)}$	All real numbers but	$(-\infty, -1] \cup [1, +\infty)$
		$\frac{k\pi}{2}$, where k is an odd	
		integer. (This is where	
		$\cos(x) = 0.$	/
Cosecant	$f(x) = \csc(x) = \frac{1}{\sin(x)}$	All real numbers but	$(-\infty, -1] \cup [1, +\infty)$
		those of the form $k\pi$,	
		for any integer k . (This	
Catalana		is where $\sin(x) = 0$.)	TD
Cotangent	$f(x) = \cot(x) = \frac{1}{\tan(x)} =$	All real numbers but	$\mid \mathbb{R}$
	$\frac{\cos(x)}{\sin(x)}$	those of the form $k\pi$,	
		for any integer k . (This	
Arcsine or In-	$f(x) = \arcsin(x) \text{ or } f(x) =$	is where $\sin(x) = 0$.) $[-1, 1]$	<u> </u>
verse Sine	$\int (x) = \arcsin(x) \text{ or } f(x) = \sin^{-1}(x)$	[-1, 1]	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
Arc-cosine or In-	$f(x) = \arccos(x) \text{ or } f(x) =$	[-1,1]	$[0,\pi]$
verse Cosine	$\int (x) = \arccos(x) \text{ or } f(x) = \cos^{-1}(x)$	[[+, +]	[[0, "]
Arctangent or In-	$f(x) = \arctan(x) \text{ or } f(x) =$	\mathbb{R}	$\left(-\frac{\pi}{2},+\frac{\pi}{2}\right)$
verse Tangent	$\int (x) = \arctan(x) \text{ or } f(x) = 1$ $\tan^{-1}(x)$		
1 3120 101180110	(~)		