Puntaje para este intento: 87.5 de 100 Entregado el 3 de oct en 20:35 Este intento tuvo una duración de 21 minutos.

Pregunta 1

12.5 / 12.5 pts

Al calcular la integral da como resultado:

O

0

 \circ

Pregunta 2

12.5 / 12.5 pts

Al integrar se obtiene

 \circ

 $\(F(x)=4e^{\frac{1}{3}x^{2}-2x}+c.\)$

 \circ

 $(F(x)=\frac{1}{3}x^{2}-2x}{2}+c.)$

 \circ

 $(F(x)=e^{\frac{1}{3}x^{2}-2x}+c.)$

 \odot

 $(F(x)=2e^{\frac{1}{3}x^{2}-2x}+c.)$

Pregunta 3

12.5 / 12.5 pts

Al integrar $\int x^4 \ln x dx$ obtenemos:

Pregunta 4

12.5 / 12.5 pts

Para integrar una sustitución apropiada sería

C

 $x = 3\tan(t)$

C

 $x = \cos(t)$

(

 $x = 3\sin(t)$

O

 $x = 9 - x^2$

Incorrecto Pregunta 5

0 / 12.5 pts

La integral impropia es:

(•)

Convergente

 \circ

Divergente

Pregunta 6

12.5 / 12.5 pts

Observe la región sombreada

Si no puede ver la imagen, clic aquiEnlaces a un sitio externo.

Cuál integral o integrales son necesarias para calcular el área de la región sombreada

Ö

 \circ

 \odot

$$\int (x^3 + 3x^2) dx$$

Pregunta 7

12.5 / 12.5 pts

Con base en la gráfica

Sino puede ver la imagen, clic aquí Enlaces a un sitio externo.

Enlaces a un sitio externo.

El área de la región de la región sombreada es

 \circ

 $\frac{0}{1} u^2$

Pregunta 8

12.5 / 12.5 pts

La solución de la ecuación diferencial dydx=4x-5 es:

() ()-2v-

y=2x-5x+C

C

y=x2-5+C

(

y=2x2-5x+C

С

y=x22-5x5+C

Puntaje del examen: 87.5 de 100