Generali

Gener	ali	$\rho = q(p - n - N_A +$	$-N_D$	$p = n = n_i$	(T) (intr.)
n	Numero elettroni liberi per unità di volume	, , , ,	2,		
p	Numero di lacune	$\mu_n = -\frac{v}{E}$ $D_n = \frac{KT}{a}$	$-\mu_n$	$p \cdot n = n_i^2 ($	<i>T</i>) (estr.)
$n_i(T)$	Coefficiente di generazione coppie	7			
	elettroni/lacune	$\sigma_n \doteq q\mu_n N_D v =$	dt		
T	Temperatura			do	dE o
K	Costante di Boltzman			$E = -\frac{d\varphi}{dx}$	$\frac{dE}{dx} = \frac{\rho}{\varepsilon}$
N_A	Numero di atomi accettatori per unità di volun	ne			
N_D	Numero di atomi donatori per unità di volume				
ho	Densità di carica, carica per unità di volume				
Ι	Corrente, cariche che passano per tempo	$I = \frac{dQ}{dt}$ $J = \frac{I}{S}$			
Ī	Densità di corrente, corrente per unità di	at 5			dn
	superficie	$J_n = \sigma_n E$	$J_n = q$	$n\mu_n E + qD_n$	$\frac{un}{dx}$
S Ē	Superficie			_	
$ar{E}$	Campo elettrico		$\overline{J} = \overline{J}$,	$n + \overline{J}_p$	
q	Carica elettrone (valore positivo)				
μ_n	Mobilità elettronica carica negativa in un	$\varphi_2 - \varphi_1 = \frac{KT}{a} \ln \frac{n2}{n1}$	(zone d	lrog. div.)	
	materiale	q^{1} q^{1} q^{1}	(======================================		
D_n	Coefficiente di diffusione cariche negative				
\mathcal{E}_{S}	Costante dielettrica silicio				
φ	Potenziale				

Giunzione P-N

Oluliz	EIOTIC I IV		/ / \
w_n	Larghezza regione svuotata lato n	$\frac{w_p}{w_n} = \frac{N_D}{N_A}$	$I_D = I_S \left(e^{\frac{v}{V_T}} - 1 \right)$ (diodo)
W_p	Larghezza p	n A	
ψ_b	Potenziale di barriera dato dalla giunzione tra le		$Q = \tau I_D$ (diodo dinamica)
	due zone neutre (built-in)		O
ψ_{cp}	Potenziale di contatto metallo-semiconduttore p		$Q = \rho S w_p$
ψ_{cn}	Potenziale di contatto n		
I_D	Corrente che attraversa il diodo		
I_S	Corrente di saturazione inversa del diodo (quanta		
	corrente passa quando è in polarizzato inverso)		
V_{γ}	Tensione di soglia del diodo		$O = \left(e^{\frac{V}{V_{\infty}}} - 1 \right)$
τ	Tempo di vita medio dei portatori		$I_D = rac{Q}{\tau} = rac{Q_S \left(e^{rac{V_T}{T}} - 1 ight)}{ au}$
Q	Carica		au $ au$
V_T	Parametro dato (soglia?)		(
			$\left\{ egin{aligned} V < V_{\gamma} & \left\{ egin{aligned} I_{D} = 0 \\ Q pprox 0 \\ V = V_{\gamma} & \left\{ egin{aligned} I_{D} > 0 \\ Q > 0 \end{aligned} \end{aligned} ight.$
			$\begin{cases} \begin{cases} \mathcal{L} & \mathcal{L} \\ I_D > 0 \end{cases} \end{cases}$
			$ V = V_{\gamma} \begin{cases} Q > 0 \end{cases} $
			,

$$I_C = C \frac{dv}{dt}$$

Transistor

α_F	Efficienza di emettitore (polarizzazione diretta)
eta_F	Efficienza collettore, guadagno base-collettore
V_{CESat}	Tensione di saturazione inversa (dato)
A_V	Guadagno
N_{M}	Noise Margin (margine rumore)
N_{ML}	Noise Margin per valore basso
N_{MH}	Noise Margin per valore alto
$V_{iL_{Max}}$	Massima tensione in entrata identificata come
	valore basso
$V_{OH_{\it Min}}$	Minima tensione in uscita con valore alto

$$\alpha_F = \frac{I_C}{I_E} < 1$$
 $\beta_F = \frac{I_C}{I_B} \gg 1$

FET

ε_{OX}	Costante dielettrica dell'ossido nel MOS
$arphi_F$	Potenziale di Fermi (condizione di debole
	inversione)
V_T	Tensione di soglia (Threshold / Thermal)
L	Lunghezza canale
W	Larghezza canale (width)
eta_n	Costante determinata da forma e proprietà
	fisiche del MOS
t_p	Tempo di propagazione dell'invertitore
$\langle P_{CC} \rangle$	Potenza dissipata (cortocircuito)
C_{OX}	Capacità dell'ossido nel MOS
t_{OX}	Spessore (thickness) dell'ossido nel MOS

$$\beta_n = C_{OX} \mu_n \frac{W}{L}$$

$$C_{OX} = \frac{\varepsilon_{OX}}{t_{OX}}$$

Capacità equiv. CMOS per Vdd>>VTn
$$C_L = C_{OX} \cdot w \cdot l$$

$$t_{PHL} = \frac{C_L}{\beta_n \cdot V_{DD}}$$

$$C_L = C_{MOS} + C_{wire} = \alpha C_{OX} \frac{W}{L} + C_{wire}$$

