ITAP: prva domača naloga

Rok oddaje: 18. 25. marec 2020

Rešitve stisnite v ZIP datoteko z imenom ime-priimek.zip, in jih oddajte preko spletne učilnice. Poročilo, s katerim opišete postopek reševanja, ni potrebno, saj bo ocenjevanje temeljilo na kvizu.

Priložite programe, s katerimi ste naloge rešili. Programi za vsako nalogo naj bodo v svoji mapi z imenom naloga<zaporedna številka>. Naloge naj bodo rešene v R, saj bodo kvizi pripravljeni v tem jeziku.

Za reševanje vsake od nalog uporabite predlogo, ki jo najtede na učilnici poleg datotek s podatki in tega besedila. S tem bomo preprečili nerodnosti pri uporabi psevdonaključnih števil.

Če uporabite kodo, ki ste jo našli, navedite vir. Če imate kakšno vprašanje o nalogah, se obrnite na asistenta ali profesorja, lahko pa objavite vprašanje kar na forumu.

1 Najbližji sosedje

V datoteki podatki1.csv se nahajajo podatki, ki jih opisuje 8 stolpcev:

- stolpci x1, ..., x6 podajajo vrednosti vhodnih spremenljivk x_i , $1 \le i \le 6$,
- stolpec y podaja vrednost **kategorične** ciljne spremenljivke $y \in \{0, 1\}$,
- stolpec z podaja napovedi vrednosti y, ki jih interpretiramo kot ocene verjetnosti $P(y=1|(x_1,\ldots,x_6))$.

Primeri, za katere je y=1, so pozitivni, preostali so negativni.

1.1 Pravilno pozitivni

Preštej število pravilno pozitivnih primerov pri izbrani vrednosti odločitvenega praga $\phi = 0.6$.

1.2 Ploščina pod krivuljo

Izračunaj ploščino pod krivuljo ROC, ki jo razpenjanjo vse mogoče vrednosti odločitvenega pragu.

1.3 Pomembna značilka

Ena od značilk x_1, x_2 in x_3 že sama loči oba razreda primerov, tj. obstajajo $i \in \{1, 2, 3\}, y_0 \in \{0, 1\}$ in $\vartheta \in \mathbb{R}$, za katere velja $x_i \leq \vartheta \Rightarrow y = y_0$ in $x_i > \vartheta \Rightarrow y = 1 - y_0$. V resnici obstaja neskončno ustreznih odločitvenih pragov in lahko izberemo poljubnega iz (maksimalnega) intervala $I = [\vartheta_0, \vartheta_1)$. Koliko je dolžina intervala I? (Maksimalnost I pomeni, da je vsak interval primernih pragov vsebovan v I.)

1.4 Predelaj podatke

Ker je značilka x_6 kategorična (z vrednostma a in b) ter je naš vir podatkov ugotovil, da njene vrednosti ne moremo poznati, preden poznamo vrednosti y, naredimo novo ciljno spremenljivko $y' \in \{0,1\} \times \{a,b\}$. Kakšna je velikost najmanjšega od novih razredov?

1.5 Končni model

Naredi model $y' = f(x_1, ..., x_5)$, pri čemer za f uporabiš metodo enega najbližjega soseda. Za učenje uporabi prvih 600 primerov v podatkovju. Ostale uporabi za testiranje. Koliko je mikro priklic tega modela na testni množici? Postopek za izračun mikro priklica podaja Algoritem 1.

Algoritem 1 Mikro priklic(možni razredi Y, dejanske vrednosti \boldsymbol{y} , napovedane vrednosti \boldsymbol{z})

```
1: n = \operatorname{dol\check{z}ina} seznamov \boldsymbol{y} in \boldsymbol{z}
2: p = 0 # število pozitivnih primerov
3: pp = 0 # število pravilno pozitivnih primerov
4: \operatorname{\mathbf{za}} \operatorname{\mathbf{vse}} a \in Y \operatorname{\mathbf{do}}
5: p = p + |\{i \mid \boldsymbol{y}_i = a, \ 1 \leq i \leq n\}|
6: pp = pp + |\{i \mid \boldsymbol{y}_i = a = \boldsymbol{z}_i, \ 1 \leq i \leq n\}|
7: \operatorname{\mathbf{konec}} \operatorname{\mathbf{zanke}}
8: \operatorname{\mathbf{vrni}} pp/p
```

Vidimo torej, da se mikro priklic za ciljne spremenljivke z več kot dvema mogočima vrednostma izračuna podobno kot priklic za dvojiške ciljne spremenljivke. Opazimo lahko tudi, da na koncu algoritma velja p=n, torej lahko v algoritmu nekaj dela privarčujemo.

V premislek: a) Kako bi definirali mikro natančnost? b) Če obstaja mikrorazličica nečesa, potem mora gotovo obstajati tudi makro-različica. Kako bi

torej lahko še povprečili priklic?

2 Linearna regresija

V datoteki podatki
2.csv se nahajajo podatki, ki jih opisuje m+1=21 numeričnih stol
pcev:

- prvih m podaja vrednosti vhodnih spremenljivk x_i , $1 \le i \le m$,
- \bullet zadnji podaja vrednosti ciljne spremenljivke y.

2.1 Osnovna naloga

Uporabi kar vse podatke in zgradi napovedni model s pomočjo linearne regresije. Izračunaj napovedi. Naj bo e_m RMSE (koren srednjega kvadratnega odklona) modela na učni množici. Koliko je e_m ?

2.2 Koristne značilke

Naj bo absolutna vrednost koeficienta za dano značilko ocena za njeno pomembnost pri napovedovanju ciljne spremenljivke. Z $x_{(i)}$ označimo i-to najpomembnejšo (pozor, v splošnem NE velja $x_1 = x_{(1)}$ ipd.). Naj bo X_k množica k najpomembnejših značilk, tj. $X_k = \{x_{(1)}, \ldots, x_{(k)}\}, 1 \le k \le m$. Če imata dve značilki enako pomembnost (kar je zelo malo verjetno), naj ima prednost tista z nižjim indeksom.

Naj bo e_k RMSE modela, ki za učenje uporabi zgolj značilke iz množice X_k , in naj bo k_0 najmanjši indeks, pri katerem se zgodi, da je $e_k \leq 1,1e_m$. Koliko je e_{k_0} ?

2.3 Dodatne značilke

Posumimo, da bi se dalo model še izboljšati, če dodamo za vhodne spremenljivke še kvadrate značilk. Z linearno regresijo najdi torej model

$$y = f(x_1, \dots, x_m, x_{m+1}, \dots, x_{2m}),$$

kjer je $x_{m+i} = x_i^2$. Koliko je pripadajoč RMSE?

2.4 Regularizacija

Začetni problem (z uporabo značilk x_i , $1 \le i \le m$) rešimo še z regularizacijo. Tokrat iščemo vektor parametrov $\boldsymbol{\beta}^*$, v katerem je dosežen minimum izraza

$$\min_{\boldsymbol{\beta}} \|\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}\|_{2}^{2} + \lambda \|\boldsymbol{\beta}\|_{2}^{2}. \tag{1}$$

Reši zgornji problem s prevedbo na standardnega, tj. najdi taka X' in Y', da bo vrednost $\min_{\boldsymbol{\beta}} \|\boldsymbol{Y}' - \boldsymbol{X}'\boldsymbol{\beta}\|_2^2$ dosežena v isti točki kot vrednost (1). Koliko je $\|\boldsymbol{\beta}^*\|_2^2$, če je $\lambda = 0.01$?

2.5 Kako velik λ ?

Naj bo $\beta^*(\lambda)$ rešitev optimizacijskega problema (1) in $\alpha = \|\beta^*(0,01)\|_2^2$. Kateri je najmanjši λ_0 , za katerega je $\|\beta^*(\lambda_0)\|_2^2 < \alpha/10$? (Zadošča, da se tvoja ocena $\hat{\lambda}_0$ od prave vrednosti ne razlikuje za več kot 10^{-7} .)

3 Variance in še kaj

V datoteki **podatki3.csv** se nahajajo podatki s strukturo kot v 2. nalogi. Tokrat je vhodna spremenljivka ena sama.

3.1 Kdo se najbolj prilega?

Za vsak s med 1 in 10 najdi (glede na RMSE) optimalni polinom p_s stopnje s, s pomočjo katerega iz stolpca x napoveš y. Kolikšen je najmanjši RMSE? Naj bo dosežen pri $s = s_0$.

3.2 Prečno preverjanje prvič

Implementiraj funkcijo razbij (podatki, k), ki sprejme množico podatkov in število k, vrne pa razbitje podatkov na k delov, ki jih podajajo množice indeksov vrstic P_j , $1 \le j \le k$. Če so podatki podani v n vrsticah, naj množica P_j vsebuje vse indekse i = qk + j, kjer je $q \in \mathbb{N}$ poljuben in je $1 \le i \le n$. Pri n = 8 in k = 3 tako npr. velja $P_1 = \{1, 4, 7\}$, $P_2 = \{2, 5, 8\}$ in $P_3 = \{3, 6\}$.

Če je k=4, kolikšna je povprečna vrednost vhodne spremenljivke v množici primerov z indeksi iz P_1 ?

3.3 Prečno preverjanje drugič

Naj bo k=4. Za vse s iz prvega podvprašanja ponovi sledeče:

- Zgeneriraj k parov (U_j, T_j) (učne in testne množice), pri čemer so v T_j primeri z indeksi iz množice P_j , v U_j pa PO VRSTI vsi ostali (za j=1 je, če sledimo primeru iz prejšnje podnaloge tako vrstni red primerov v U_j enak 2, 3, 5, 6, 8)
- Za vsako množico U_j najdi optimalen polinom $p_{s,j}$ ter izračunaj njegovo napako $e_{s,j}$ (RMSE) na T_j . Izračunaj $e_s = \sum_{j=1}^k e_{s,j}/k$.

Naj bo najmanjša povprečna napaka dosežena pri stopnji s_1 . Koliko je e_{s_1} ?

Vrstni red v učni množici sicer ne bi smel biti važen, a bodimo previdni ...

Varianca p_{i_0}

Po metodi najmanjših kvadratov (ali ekvivalentno, po metodi največjega verjetja) smo našli oceno \hat{a} za vektor parametrov a pravega modela $y = x^T a + \varepsilon$, kjer je $\varepsilon \sim N(0, \sigma^2)$. (V ta okvir spadajo tudi polinomi zgoraj.) Ob predpostavki, da je šum neodvisen od primera do primera, izpelji formulo za varianco napovedi ocenjenega modela $\hat{y}(x_*) = x_*^T \hat{a}$ oz. natančneje, izračunaj

$$\operatorname{Var}[\hat{y}(\boldsymbol{x}_*) \mid \mathcal{D}] = \mathbb{E}_{\boldsymbol{\varepsilon}} \left[(\hat{y}(\boldsymbol{x}_*) - \mathbb{E}_{\boldsymbol{\varepsilon}}[\hat{y}(\boldsymbol{x}_*) \mid \mathcal{D}])^2 \mid \mathcal{D} \right],$$

kjer smo z $\mathcal{D} = (X, Y)$ označili opažene podatke, tj. dejansko matriko X vrednosti vhodnih spremenljivk in vektor vrednosti Y ciljne spremenljivke.

Nasvet: izrazi \hat{a} z X in Y ter upoštevaj, da je \hat{a} nepristranska ocena za a. Morda ti prav pride tudi zveza $b^2 = bb^T$ za vse skalarje b.

V razmislek: a) Varianca torej sploh ni odvisna od opaženih ciljnih vrednosti. Zanimivo, kajne? b) Smo predpostavko o normalnosti šuma potrebovali?

3.4 Varianca p_{s_0}

Denimo, da je $\sigma = 1.0$. Koliko je varianca napovedi $p_{s_0}(1)$ (polinom iz prve podnaloge)?

3.5 Varianca p_{s_1}

Denimo, da je $\sigma = 1.0$. Koliko je varianca napovedi $p_{s_1}(1)$ (polinom iz tretje podnaloge)?