厦门大学计算机科学系研究生课程《大数据技术基础》

第10章 NoSQL数据库 (2013年新版)

林子雨

厦门大学计算机科学系

E-mail: ziyulin@xmu.edu.cn

主页: http://www.cs.xmu.edu.cn/linziyu

提纲

- □ NoSQL数据库概念
- □ 为什么要使用NoSQL数据库
- □ NoSQL特点和挑战
- □ 对NoSQL的质疑
- □ CAP理论
- □ 最终一致性
- □ NoSQL数据库开源软件
- □参考文献
- □ 附件

本讲义PPT存在配套教材,由林子雨通过大量阅读、收集、整理各种资料后编写而成下载配套教材请访问《大数据技术基础》2013班级网站: http://dblab.xmu.edu.cn/node/423

NoSQL数据库概念

NoSQL概念

•NoSQL: 意即反SQL运动,是一项全新的数据库革命性运动。NoSQL数据库,指的是非关系型的数据库。NoSQL项目的名字上看不出什么相同之处,但是,它们通常在某些方面相同: 它们可以处理超大量的数据。

在NoSQL运动的最新一次聚会中,来自世界各地的150人挤满了CBS Interactive的一间会议室。分享他们如何推翻缓慢而昂贵的关系数据库的暴政,怎样使用更有效和更便宜的方法来管理数据。

关系数据库的缺陷

- ■关系数据库并不适合所有的数据模型
- ■关系数据库扩展难度大
- ■标准化通常会伤害到性能

NoSQL的目标

- ■反标准化,通常是无模式的,文档型存储
- ■以key/value为基础,支持通过key进行查找
- ■水平扩展
- ■内置复制
- ■HTTP/REST或很容易编程的API
- ■支持MapReduce风格的编程
- ■最终一致性

为什么要使用NoSQL数据库

NoSQL特点和挑战

NoSQL特点

- 灵活的可扩展性
- 大数据
- 降低管理难度
- 经济
- 灵活的数据模型

NoSQL五大挑战

- 成熟度
- 支持
- 分析和商业智能化
- 管理
- 专业知识

对NoSQL的质疑

CAP理论

CAP理论的启示

- CAP理论告诉我们,一个分布式系统不可能满足一致性,可用性和分区容错性这三个需求,最多只能同时满足两个。
- ■在一个系统中,可以对某些数据做到CP,对另一些数据做到 AP,就算是对同一个数据,调用者可以指定不同的算法,某些算法可以做到CP,某些算法可以做到AP。

当处理(AP的问题时, 可以有4个选择:

___________ □ 放弃Partition Tolerance

-放弃Availability

___ □ 放弃Consistency

引入BASE

BASE: Basically Availble, Soft-state, Eventual Consistency

- BASE模型反ACID模型,完全不同ACID模型,牺牲高一致性,获得可用性或可靠性
- BASE思想主要强调基本的可用性,如果你需要高可用性,也就是纯粹的高性能,那么就要以一致性或容错性为牺牲

最终一致性

从客户端角度

强一致性

• 要求更新过的数 据能被后续的访 问都能看到

最终一致性

一致性不同类型

• 经过一段时间 后要求能访问 到更新后的数 据

• 能容忍后续的部 分或者全部访问 不到

弱一致性

- •因果一致性:如果进程A通知进程B它已更新了一个数据项,那么进程B的后续访问将返回更新后的值。与进程A无因果关系的进程C的访问遵守一般的最终一致性规则。
- "读己之所写(read-your-writes)"一致性: 当进程A自己更新一个数据项之后,它总是 访问到更新过的值,绝不会看到旧值。这是 因果一致性模型的一个特例。
- •会话(Session)一致性:这是上一个模型的实用版本,它把访问存储系统的进程放到会话的上下文中。只要会话还存在,系统就保证"读己之所写"一致性。
- 单调(Monotonic)读一致性:如果进程已经看到过数据对象的某个值,那么任何后续访问都不会返回在那个值之前的值。
- **埠调写一致性**: 系统保证来自同一个进程的写操作顺序执行。要是系统不能保证这种程度的一致性,就非常难以编程了。

最终一致性

从服务器端角度

- N 数据复制的份数:
- W E 更新数据是需要保证写完成的节点数;
- R 读取数据的时候需要读取的节点数:

如果W+R>N,写的节点和读的节点重叠,则是强一致性。例如对于典型的一主 一备同步复制的关系型数据库, N=2, W=2, R=1, 则不管读的是主库还是备库 的数据,都是一致的。

如果W+R<=N,则是弱一致性。例如对于一主一备异步复制的关系型数据库, N=2, W=1, R=1, 则如果读的是备库,就可能无法读取主库已经更新过的数据, 所以是弱一致性。

最终一致性

从服务器端角度(续)

- 对于分布式系统,为了保证高可用性,一般设置N>=3。不同的N、W、R组合,是在可用性和一致性之间取一个平衡,以适应不同的应用场景。
- 如果N=W,R=1,任何一个写节点失效,都会导致写失败,因此可用性会降低,但是由于数据分布的N个节点是同步写入的,因此可以保证强一致性。
- 如果N=R,W=1,只需要一个节点写入成功即可,写性能和可用性都比较高。但是,读取其他节点的进程可能不能获取更新后的数据,因此是弱一致性。这种情况下,如果W<(N+1)/2,并且写入的节点不重叠的话,则会存在写冲突。

NoSQL与关系数据库的比较

比较标准	RDBMS	NoSQL	备注	
数据库原理	完全支持	部分支持	RDBMS有数学模型支持、NoSQL则没有	
数据规模	大	超大	RDBMS的性能会随着数据规模的增大而降低;NoSQL可以通过添加更多设备以支持更大规模的数据	
数据库模式	固定	灵活	使用RDBMS都需要定义数据库模式,NoSQL则不用	
查询效率	快	简单查询非常高效、 较复杂的查询性能 有所下降	RDBMS可以通过索引,能快速地响应记录查询(point query)和国查询(range query); NoSQL没有索引,虽然NoSQL可以使)MapReduce加速查询速度,仍然不如RDBMS	
一致性	强一致性	若一致性	RDBMS遵守ACID模型; NoSQL遵守BASE (Basically Available soft state、Eventually consistent)模型	
扩展性	一般	好	RDBMS扩展困难; NoSQL扩展简单	
可用性	好	很好	随着数据规模的增大,RDBMS为了保证严格的一致性,只能供相对较弱的可用性;NoSQL任何时候都能提供较高的可用性	
标准化	是	否	RDBMS已经标准化(SQL); NoSQL还没有行业标准	
技术支持	高	低	RDBMS经过几十年的发展,有很好的技术支持; NoSQL在技术支持方面不如RDBMS	
可维护性	复杂	复杂	RDBMS需要专门的数据库管理员(DBA)维护; NoSQL数据库虽然没有DBMS复杂,也难以维护	

典型的NoSQL数据库分类

NoSQL数据库 类型	代表性产品	性能	扩展性	灵活性	复杂性	优点	缺点
键/值数据库	Redis Riak	高	讵	吉	无	查询效率高	不能存储结构化 信息
列式数据库	HBase Cassandra	高	讵	一般	低	查询效率高	功能较少
文档数据库	CouchDB MongoDB	高	可变的	古同	低	数据结构灵活	查询效率较低
图形数据库	Neo4J OrientDB	可 变	可变的	恒	一	支持复杂的图 算法	只支持一定的数 据规模

NoSQL数据库开源软件

Couchbase Membase

Mongodb

Hypertable

主讲教师和助教

主讲教师: 林子雨

单位: 厦门大学计算机科学系 E-mail: ziyulin@xmu.edu.cn

个人网页: http://www.cs.xmu.edu.cn/linziyu数据库实验室网站: http://dblab.xmu.edu.cn

助教: 赖明星

单位:厦门大学计算机科学系数据库实验室2011级硕士研究生(导师:林子雨)

E-mail: mingxinglai@gmail.com 个人主页: http://mingxinglai.com

欢迎访问《大数据技术基础》2013班级网站: http://dblab.xmu.edu.cn/node/423本讲义PPT存在配套教材《大数据技术基础》,请到上面网站下载。

Department of Computer Science, Xiamen University, Sep, 2013