66.75 - 86-09: Procesos Estocásticos

Guía 1: Ejercicio 4

Universidad de Buenos Aires

Abril de 2020

1. Enunciado

Sea Y = X + N, con X y N variables aleatorias independientes.

- 1. ** Demostrar que $f_Y(y) = f_X(y) * f_N(y)$.
- 2. ** Demostrar que $f_{Y|X}(y|x) = f_N(y-x)$.
- 3. \star Si $X \in \{0, 1\}$ es una variable aleatoria Bernoulli con $\mathbb{P}(X = 0) = p$ y $\mathbb{P}(X = 1) = q = 1 p$, expresar y representar $f_Y(y)$ y $f_{Y|X}(y|x)$.

2. Resolución

Para el primer inciso, vamos a proceder a hacer un sencillo cambio de variables de 2 dimensiones:

$$Y = X + N$$
$$Z = X$$

Donde la variable Z se crea convenientemente para facilitar la resolución del problema.

Una vez definidas las variables, se procede a calcular nueva función de densidad conjunta $f_{YZ}(y,z)$, para luego, marginar respecto a la variable Z y obtener así $f_Y(y)$:

$$f_{YZ}(y,z) = \frac{f_{XN}(x,n)}{|J(x,n)|}\Big|_{x=y-z, x=z} = f_X(y-z)f_N(z)$$

Marginamos Z...

$$f_Y(y) = \int_{-\infty}^{\infty} f_{YZ}(y, z) dz = \int_{-\infty}^{\infty} f_X(y - z) f_N(z) dz = f_X(y) * f_N(y)$$

Quedando así demostrado el primer inciso.

Para el segundo inciso, plantearemos los siguiente:

$$f_Y(y) = \int_{-\infty}^{\infty} f_{XY}(x, y) dx = \int_{-\infty}^{\infty} f_{Y/X}(y/x) f_X(x) dx \tag{1}$$

Pero a su vez, como mostramos en el inciso anterior, podemos expresar $f_Y(y)$ convenientemente de la siguiente forma:

$$f_Y(y) = \int_{-\infty}^{\infty} f_{XY}(x, y) dx = \int_{-\infty}^{\infty} f_N(y - x) f_X(x) dx \tag{2}$$

Si vemos, los integrandos de las expresiones y comparten no solo los límites de integración como el diferencial, sino a su vez, el término $f_X(x)$, por lo que, inexorablemente, se debe cumplir que:

$$f_{Y/X}(y/x) = f_N(y-x)$$

Para el último inciso, tenemos:

$$X \sim Ber(p)$$

$$f_X(x) = p\delta(x) + (1-p)\delta(x-1)$$

Por lo que, aplicando la propiedad del inciso 1, $f_Y(y)$ quedaría:

$$f_Y(y) = f_X(y) * f_N(y) = pf_N(y) + (1-p)f_N(y-1)$$

Para el caso de $f_{Y/X}(y/x)$, aplicando la propiedad del inciso 2, quedaría:

$$f_{Y/X}(y/x) = \begin{cases} f_N(y) & x = 0\\ f_N(y-1) & x = 1\\ 0 & \text{otro caso.} \end{cases}$$