Discussion Prompt

Using the same method as above, prove by mathematical induction that $6 \mid 3n^4 + 2n^3 + 7n$ for all $n \in \mathbb{N}$.

Prove that for all $n \in \mathbb{N}$ such that $n \geq a$, $n! < n^n$.

Recall: $n! = n(n-1)(n-a) \cdots (a)(1)$ $5! = 5 \times 4 \times 3 \times 2 \times 1 = 120$ Note: k! = k(k-1)!

Proof: by Induction.

- Base Case: For n=2, LS = a! = a $a! < a^2$ which is true, $1 < a^2 <$
- Inductive Step: Assume $\forall k \in \mathbb{N}$ such that $k \ge 2$, $k! < k^k$ (Inductive Hypothesis, IH)

 We want to show for $k+1 \in \mathbb{N}$, $(k+1)! < (k+1)^k < (k+1)! = (k+1)k!$ $< (k+1)k^k$ (IH) k < k+1 $< (k+1)^1(k+1)^k$ $= (k+1)^{k+1}$

There by completing the inductive step.

Therefore, by mathematical induction $n! < n^n$ $\forall n \in \mathbb{N}, n \geq 2$.

Prove that \text{YneIN, n>6. 3" < n!

Proof: by Induction.

Base Case: For n=7

 $3^{7} = 2187$ $3^{7} < 7!$ \checkmark 7! = 5040

Inductive Step: Assume YKEIN, KZ7,

 $3^k < k!$ (IH)

Then we show for k+1 & IN, 3k+1 < (K+1)!

 $3^{k+1} = 3 \cdot 3^k$

< 3 · k! (IH)

<(k+1)k! (3 < k+1 for k≥7)

= (k+1)!

Therefore, the inductive step is complete.

Therefore thein w. n>6, 3n < n!