Ответы:	4) в	8) б
1) 6	5) a	9) a
2) б	6) в	10) г
3) д	7) б	

- 1. С какой целью измеряется зависимость паразитного напряжения образца от тока образца?
 - а. Чтобы загрузить студента ненужной работой.
 - б. Чтобы потом это напряжение вычитать из измеренного холловского.
 - в. Чтобы построить аппроксимированный график.
 - г. Чтобы проверить работоспособность установки.
 - д. Чтобы откалибровать мультиметр, измеряющий ЭДС Холла.
- 2. Чему равно напряжение на образце при измерении его вольт-амперной характеристики, если напряжение источника питания образца равно U_{no} , ток образца $I_{oбp}$?
 - a. U_{no} .
 - б. $U_{по}$ $R_1*I_{обр}$.
 - B. $U_{\pi o} + R_1 * I_{\sigma \delta p}$.
 - Γ . $U_{\pi o} + R_1 * I_{\sigma \delta p}$.
 - д. $U_{по}$ $R_2*I_{обр}$.
- 3. Как определить тип носителей образа?
 - а. Если ЭДС Холла отрицательная, то электроны, если положительная, то дырки.
 - б. Если ЭДС Холла положительная, то электроны, если отрицательная, то дырки.
 - в. Если ЭДС Холла увеличивается, то дырки, если уменьшается, то электроны.
 - г. Если ЭДС Холла уменьшается, то дырки, если увеличивается, то электроны.
 - д. Воспользоваться правилом буравчика или правилом левой руки.
 - е. Воспользоваться правилом правой руки или правилом левого винта.
- 4. Как определить величину магнитного поля, создаваемого электромагнитом установки?
 - а. Посмотреть в таблице.
 - б. Посмотреть на потолке.
 - в. Ток магнита умножить на расчётный коэффициент.
 - г. К току магнита прибавить расчётный коэффициент.
 - д. Ток магнита разделить на ток образца.
 - е. Ток образца умножить на постоянную Холла.
- 5. По экспериментальным данным вычислите для любых 10 точек постоянную Холла R. Для вычисления постоянной Холла R по экспериментальным данным необходимо использовать следующее выражение:
 - а. $R = \frac{bU_{\rm H}}{IB}$, где U_H поперечная ЭДС, I ток, B напряженность магнитного поля, b толщина полупроводникового образца
 - б. $R = \frac{bU_{\rm H}}{IB}$, где U_H поперечная ЭДС, I ток, B напряженность электрического поля, b толщина полупроводникового образца

- в. $R = \frac{IU_{\rm H}}{bB}$, где U_H поперечная ЭДС, I ток, B- напряженность магнитного поля, b толщина полупроводникового образца
- г. $R = \frac{BU_{\rm H}}{Ib}$, где U_H поперечная ЭДС, I ток, B- напряженность магнитного поля, b толщина полупроводникового образца
- 6. Если учитывать столкновение носителей только на кристаллической решетке, то

a.
$$A = \frac{5\pi}{8}$$

$$6. \quad A = \frac{3\pi}{5}$$

$$B. \quad A = \frac{3\pi}{8}$$

$$\Gamma$$
. $A = \frac{3}{8}$

- 7. По экспериментальным данным вычислите для любых 10 точек концентрацию основных носителей. Для вычисления концентрации основных носителей необходимо использовать следующее выражение:
 - а. Для полупроводника n-типа $n=-\frac{A}{Re}$ (для полупроводника p-типа $p=\frac{A}{Re}$), где $A=\frac{3\pi}{5}$, R постоянная Холла, е заряд электрона
 - б. Для полупроводника n-типа $n=-\frac{A}{Re}$ (для полупроводника p-типа $p=\frac{A}{Re}$), где $A=\frac{3\pi}{8}$, R постоянная Холла, е заряд электрона
 - в. Для полупроводника n-типа $n=\frac{A}{Re}$ (для полупроводника p-типа $p=-\frac{A}{Re}$), где $A=\frac{3\pi}{8}$, R постоянная Холла, е заряд электрона
 - г. Для полупроводника n-типа $n=-\frac{Re}{A}$ (для полупроводника p-типа $p=\frac{Re}{A}$), где $A=\frac{3\pi}{8}$, R постоянная Холла, е заряд электрона
- 8. По экспериментальным данным вычислите для любых 10 точек подвижность основных носителей µ. Для вычисления подвижности основных носителей необходимо использовать следующее выражение:

а.
$$\mu = \frac{5}{3\pi}R\sigma$$
, где R – постоянная Холла, σ – удельная проводимость

б.
$$\mu = \frac{8}{3\pi}R\sigma$$
, где R – постоянная Холла, σ – удельная проводимость

в.
$$\mu = \frac{8}{3\pi} Re$$
, где R – постоянная Холла, e – заряд электрона

г.
$$\mu = \frac{8}{3\pi} Rn$$
, где R – постоянная Холла, n – удельное сопротивление

9. По экспериментальным данным получены следующие значения для постоянной Холла:

а.
$$\sim 2.10^{-2} \text{ м}^3/\text{Кл}$$

б.
$$\sim 2.10^{-2} \text{ Кл/м}^3$$

в.
$$\sim 2 \text{ м}^3/\text{Кл}$$

г.
$$\sim 2.10^{-2} \text{ см}^3/\text{Кл}$$

10. По экспериментальным данным получены следующее значение для концентрации основных носителей заряда:

a.
$$\sim 3 \text{ cm}^{-3}$$

б.
$$\sim 3.10^{17}$$
 см⁻³

B.
$$\sim 3.10^{14} \text{ m}^{-3}$$

г.
$$\sim 3.10^{14} \text{ см}^{-3}$$