基礎コンピュータ工学 令和6年度 前期末試験

(2024.07.29 重村 哲至)

IE1 番 **氏名**

模範解答

1. 空欄を埋める適切な用語や数値を答えなさい.

(2点×5問=10点)

ビットを 4 つ集めたものは (1) , 8 つ集めたものは (2) と呼ばれる.

1 ビットでは(3)種類の情報を表すことができる. 4種類の情報を表すには(4)ビット、8 種類の情報を表すにはには(5)ビットが必要である.

((1)~(2) には用語, (3)~(5) には数値を答えること)

(1)	ニブル	(2)	バイト
(3)	2	(4)	2
(5)	3		

2. 同じ値を 2 進数, 16 進数, 10 進数で書き並べた次の表を 完成しなさい. (3 点×6 問=18 点)

2 進数 (8 桁)		16 進数 (2 桁)	10 進数
0110	0100	64	100
0001	1001	19	25
0111	1010	7A	122
0110	0011	63	99

3. 10 進数と 8 ビット 2 の補数表現 2 進数の対応表を完成しなさい.

(4 点 ×3 問=12 点)

10 進数	8 ビット 2 の補数表現 2 進数		
-100	1001 1100		
127	0111 1111		
-127	1000 0001		

4. 次の 2 進数の計算を 8 桁で行いなさい。但し,8 桁目からの桁上げは無視し,8 桁目への桁借りは自由に行えるものとします。(2 の補数の計算で学んだ 9 ビット目を無視する手順で計算する。)(3 点 $\times 2$ 問=6 点)

$$(1) \begin{array}{c} & 0101 & 0101 \\ + & 1010 & 1011 \\ \hline & 0000 & 0000 \\ \\ & & & & \\ 1111 & 1111 \\ \\ (2) & & & & \\ \hline & & & \\ & & & \\ 1111 & 1101 \\ \\ \end{array}$$

5. 4. の計算で用いた 8 ビット 2 進数が 2 の補数表現を用いて符号付き整数を表していたとします。(1)~(2) の各計算の意味を 10 進数で書くとどのようになるか答えなさい。(5 点 $\times 2$ 問=10 点)

6. 10 進数と固定小数点数形式の 2 進数の対応表を完成しなさい. なお, 2 進数は, 符号無しの 8 ビット 2 進数である. 8 ビットの内容は, 整数部 4 ビット, 小数部 4 ビットとする. (3 点 ×2 問=6 点)

10 進数	8 ビット 2 進数表現 (xxxx.xxxx)		
2.1875	0010.0011		
9.875	1001.1110		

基礎コンピュータ工学 令和6年度 前期末試験

(2024.07.29 重村 哲至)

IE1 番 **氏名**

模範解答

- 7. **下の** ASCII **文字コード表に関する問いに答えなさい.** (2 点 ×2 問=4 点)
- (1) 英小文字「z」の文字コードを 16 進数で答えなさい.

7A 16

(2) 文字コードが 16 進数で「54」の文字を答えなさい.

T

(上位3ビット) 1 2 3 4 5 6 DLE SOH DC1 1 Α Q 2 В R STX DC2 3 C S ETX DC3 4 D T d EOT DC4 % 5 Е ENQ NAK u ACK SYN 6 F 7 BEL ETB G W g 8 Н BS CAN I HTEM J Z SUB В K ESC L FS D M CR GS m N RS SO n ? Ο US

8. 次の回路の真理値表を完成しなさい。 (4 点)

Ē	真理値表			
入	入力			
Α	В	Х		
0	0	1		
0	1	0		
1	0	0		
1	1	0		

9. 次のプログラム実行後の G0, G1, G2, SP, メモリの値 **を 1 6**進数で答えなさい。(3 点 ×5 問=15 点)

番地	データ	GO:	10	16
00	1F			
01	12	G1:	11	16
02	DC			
03	DC	G2:	19	4.0
04	DC	GZ:	12	16
05	D2		10	
06	D6	SP:	12	16
07	DA			
80	FF	[10H]:	11	16

[10H] は、メモリの 10_{16} 番地の内容の意味です。

9. アドレスと機械語を決めなさい. ただし, 00 番地から の連続アドレスにプログラムを配置すること.

(アドレス (5 点)+ 機械語 (10 点)=合計 (15 点))

アドレス	機械語	ラベル	命令	オペランド
00	10 10		LD	GO,10H
02	30 11		ADD	GO,11H
04	20 12		ST	GO,12H
06	14 10		LD	G1,10H
80	24 13		ST	G1,13H
OA	FF		HALT	
• • •				
10	34			
11	12			
12	00			
13	00			