

HarmoniCa: Harmonizing Training and Inference for Better

Feature Caching in Diffusion Transformer Acceleration

Yushi Huang^{1,2*}, Zining Wang^{2,3*}, Ruihao Gong^{2,3+}, Jing Liu⁴, Xinjie Zhang¹, Jinyang Guo³, Xianglong Liu³, Jun Zhang¹⁺ ¹Hong Kong University of Science and Technology ²SenseTime ³Beihang University ⁴Monash University

Feature Caching

High similarity between features across denoising steps enables caching and reusing these features to avoid redundant computations.

Q: How to determine when and where to cache and reuse?

A: Learn an optimal Router (superior than heuristic ways).

Discrepancy between Training & Inference

1. Prior timestep disregard

Infer: x_1 is pertubed by o_0 and o_1 ; Contents of the current cache

are shaped by reuse and update.

Train: x_{t-1} is accurate; contents of the current cache are only determined by DiT (t).

2. Objective mismatch

Infer: Generate high quality x_0 .

Train: Solely align the predicted noise at each denoising step.

$$\mathcal{L}_{LTC}^{(t)} = \mathcal{L}_{MSE}^{(t)} + \beta \sum_{i=0}^{N-1} \mathbf{r}_{t,i}$$

Harmonizing Training & Inference

1. Step-wise denoising training

This mimics the multi-timestep inference stage, which integrates the impact of prior timesteps at t. Moreover, this strategy requires zero training images.

$x_{T-1} \longrightarrow x_0$ 2. Image error proxy-guided objective

The Mean Square Error (MSE) of \mathbf{x}_t for DiT-XL/2 256 ×256 induced by different feature caching methods.

LTC (32.68%)

SDT (34.20%)

The straightforward solution (i.e., direct optimize x_0) incurs $10 \times \text{memory}$ and $5 \times \text{time}$ consumption for training. Thus, we propose a proxy $\lambda^{(t)}$ to consider the trade-off between the error of x_0 and the cache usage at a certain denoising step.

$$\mathcal{L}_{IEPO}^{(t)} = \boldsymbol{\lambda}^{(t)} \mathcal{L}_{MSE}^{(t)} + \beta \sum_{i=0}^{N-1} r_{t,i}$$

$$\mathcal{M}^{(t)} = \begin{cases} 1, j \neq t \\ \frac{1}{r_{j,k}}, j = t \end{cases} \Rightarrow \boldsymbol{\lambda}^{(t)} = \left\| \boldsymbol{x}_0 - \boldsymbol{x}_0^{(t)} \right\|_F^2$$

Random samples for DiT-XL/2 256 \times 256 w/ and w/o feature caching (T=20). We mark the speedup ratio in the brackets. HarmoniCa means our SDT equipped with IEPO.

Experiments

Method	Т	CLIP↑	$FID \!\!\downarrow$	$\text{sFID}{\downarrow}$	CUR(%)↑	Latency(s) \downarrow
Pix	Art- α	256×256	G(cfg=	4.5)		
DPM-Solver++ (Lu et al., 2022b)	20	30.96	27.68	36.39	-	0.553
DPM-Solver++ (Lu et al., 2022b)	15	30.77	31.68	38.92	-	$0.418_{(1.32\times)}$
FORA (Selvaraju et al., 2024)	20	31.10	27.42	37.98	50.00	$0.364_{(1.52\times)}$
HarmoniCa	20	31.13	26.33	37.85	56.01	$0.346_{(1.60\times)}$
IDDPM (Nichol & Dhariwal, 2021)	100	31.25	24.15	33.65	-	2.572
IDDPM (Nichol & Dhariwal, 2021)	75	31.25	24.17	33.73	-	$1.868_{(1.37\times)}$
FORA (Selvaraju et al., 2024)	100	31.25	25.16	33.62	50.00	$1.558_{(1.65\times)}$
HarmoniCa	100	31.17	23.73	32.23	53.24	1.523 _(1.69×)
SA-Solver (Xue et al., 2024)	25	31.31	26.78	38.35	-	0.891
SA-Solver (Xue et al., 2024)	20	31.23	27.45	39.01	-	$0.665_{(1.34\times)}$
HarmoniCa	25	31.27	27.07	38.62	54.19	$0.561_{(1.59\times)}$
Pix	Art- α	512×512	2(cfg =	4.5)		
DPM-Solver++ (Lu et al., 2022b)	20	31.30	23.96	40.34	-	1.759
DPM-Solver++ (Lu et al., 2022b)	15	31.29	25.12	40.37	_	1.291 _(1.36×)
HarmoniCa	20	31.29	24.81	40.18	54.64	1.072 _(1.64×)
SA-Solver (Xue et al., 2024)	25	31.23	25.43	39.84	-	2.263
SA-Solver (Xue et al., 2024)	20	31.19	25.85	40.08	-	$1.738_{(1.30\times)}$
HarmoniCa	25	31.20	25.74	39.99	54.24	1.406 _(1.61×)
PIXA	RT- α 1	0.024×102	24 (cfg =	= 4.5)		
DPM-Solver++ (Lu et al., 2022b)	20	31.10	25.01	37.80	_	9.470
DPM-Solver++ (Lu et al., 2022b)	15	31.07	25.77	42.50	-	$7.141_{(1.32\times)}$
HarmoniCa	20	31.09	23.02	36.24	55.06	5.786 _(1.63×)

Comparison with quantization and pruning.

Method	T	IS↑	FID↓	$sFID\!\!\downarrow$	Latency(s)↓	Latency(s) \downarrow *
DDIM (Zhang et al., 2022)	20	224.37	3.52	4.96	0.658	1.217
EfficientDM (He et al., 2024)	20	172.70	6.10	4.55	0.591 _(1.11×)	$0.842_{(1.45\times)}$
PTQ4DiT (Wu et al., 2024)	20	17.06	71.82	23.16	0.577 _(1.14×)	$0.839_{(1.45\times)}$
Diff-Pruning (Fang et al., 2023) 20	168.10	8.22	6.20	0.458 _(1.44×)	$0.813_{(1.50\times)}$
HarmoniCa	20	206.57	4.88	5.91	0.456 _(1.44×)	$0.815_{(1.49\times)}$

Combination with quantization.

Method	IS↑/CLIP↑	FID↓	sFID↓	CUR(%)↑	Latency(s)↓	#Size(GB)
	DiT-XL/2	256×2	256 (cfg	= 1.5)		
EfficientDM (He et al., 2024)	172.70	6.10	4.55	-	0.591 _(1.11×)	0.64 _(3.93×)
w / HarmoniCa ($\beta=4e^{-8}$)	168.16	6.48	4.32	26.25	$0.473_{(1.40\times)}$	0.64 _(3.93×)
	PIXART-c	$\alpha 256 \times 3$	$256(exttt{cfg}$	= 4.5)		
EfficientDM (He et al., 2024)	30.09	34.84	30.34	-	$0.469_{(1.18\times)}$	0.59 _(1.98×)
w/ HarmoniCa	30.15	34.96	30.55	53.34	$0.299_{(1.85\times)}$	0.59 _(1.98×)
	PIXART-c	α 512 \times 8	$512(exttt{cfg}$	= 4.5)		
EfficientDM (He et al., 2024)	30.71	25.82	41.64	-	$0.461_{(1.20\times)}$	0.59 _(1.98×)
w/ HarmoniCa	30.75	26.15	41.99	53.11	$0.281_{(1.97\times)}$	0.59 _{(1.98×}

(Left) Comparison with addition caching methods on U-ViT; (Right) Training costs for DiT-XL/2 256 ×256.

Method	T	FID↓	Latency(s) \downarrow				
		<u> </u>		Method	#Images	Time(h)	Memory(GB/GPU)
OPM-Solver (Lu et al., 2022a)	20	2.57	7.60	Learning-to-Cache	1.22M	2.15	33.33
Faster Diffusion (Li et al., 2023a)	20	2.82	$5.95_{(1.28\times)}$	$ ext{SDT} + \mathcal{L}_{LTC}^{(t)}$	0	1.47	33.28
DeepCache (Ma et al., 2024b)	20	2.70	$4.68_{(1.62\times)}$	HarmoniCa	0	1.63	33.28
HarmoniCa	20	2.61	$4.60_{(1.65\times)}$				
	DPM-Solver (Lu et al., 2022a) Easter Diffusion (Li et al., 2023a) DeepCache (Ma et al., 2024b)	DPM-Solver (Lu et al., 2022a) 20 Easter Diffusion (Li et al., 2023a) 20 DeepCache (Ma et al., 2024b) 20	DPM-Solver (Lu et al., 2022a) 20 2.57 Easter Diffusion (Li et al., 2023a) 20 2.82 DeepCache (Ma et al., 2024b) 20 2.70	DPM-Solver (Lu et al., 2022a) 20 2.57 7.60 Easter Diffusion (Li et al., 2023a) 20 2.82 5.95 _(1.28×) DeepCache (Ma et al., 2024b) 20 2.70 4.68 _(1.62×)	PPM-Solver (Lu et al., 2022a) 20 2.57 7.60 Easter Diffusion (Li et al., 2023a) 20 2.82 $5.95_{(1.28\times)}$ SDT+ $\mathcal{L}_{LTC}^{(t)}$ DeepCache (Ma et al., 2024b) 20 2.70 $4.68_{(1.62\times)}$ HarmoniCa	PPM-Solver (Lu et al., 2022a) 20 2.57 7.60 $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Class-conditional generation.

Method	T	IS↑	FID↓	sFID↓	Prec.↑	Recall [†]	CUR(%)↑	Latency(s) \downarrow
	D	iT-XL/2 2	56×25	6(cfg=	1.5)			
DDIM (Song et al., 2020a)	50	240.37	2.27	4.25	80.25	59.77	-	1.767
DDIM (Song et al., 2020a)	39	237.84	2.37	4.32	80.22	59.31	-	$1.379_{(1.28\times)}$
Learning-to-Cache (Ma et al., 2024a)	50	233.26	2.62	4.50	79.40	59.15	23.39	$1.419_{(1.25\times)}$
HarmoniCa	50	238.74	2.36	4.24	80.57	59.68	23.68	$1.361_{(1.30\times)}$
DDIM (Song et al., 2020a)	20	224.37	3.52	4.96	78.47	58.33	-	0.658
DDIM (Song et al., 2020a)	14	201.83	5.77	6.61	75.14	55.08	-	$0.466_{(1.41\times)}$
Learning-to-Cache (Ma et al., 2024a)	20	201.37	5.34	6.36	75.04	56.09	35.60	$0.468_{(1.41\times)}$
HarmoniCa	20	206.57	4.88	5.91	75.20	58.74	37.50	$0.456_{(1.44\times)}$
DDIM (Song et al., 2020a)	10	159.93	12.16	11.31	67.10	52.27	-	0.332
DDIM (Song et al., 2020a)	9	140.37	16.54	14.44	62.63	50.08	-	$0.299_{(1.11\times)}$
Learning-to-Cache (Ma et al., 2024a)	10	145.09	14.59	11.58	64.03	52.06	19.11	$0.279_{(1.19\times)}$
HarmoniCa	10	151.83	13.35	11.13	65.22	52.18	22.86	$0.270_{(1.23\times)}$
	D	iT-XL/2 5	12×51	2(cfg =	: 1.5)			
DDIM (Song et al., 2020a)	20	184.47	5.10	5.79	81.77	54.50	-	3.356
DDIM (Song et al., 2020a)	16	173.31	6.47	6.67	81.10	51.30	-	$2.688_{(1.25\times)}$
Learning-to-Cache (Ma et al., 2024a)	20	178.11	6.24	7.01	81.21	53.30	23.57	$2.633_{(1.28\times)}$
HarmoniCa	20	179.84	5.72	6.61	81.33	55.80	25.98	2.574 _(1.30×)

Comparison with Learning-to-Cache with the increase of the speedup ratio.

Visualization results.