Lu Sun

School of Information Science and Technology ShanghaiTech University

February 15, 2022

Today:

- Introduction to machine learning
- Course logistics
- Overview of machine learning
- Overview of supervised learning I

Readings:

- The Elements of Statistical Learning (ESL), Chapters 1--2
- Pattern Recognition and Machine Learning (PRML), Chapter 1
- Deep Learning (DL), Chapters 1--3

Machine Learning

"Machine learning (ML) is the scientific study of algorithms and statistical models that computer systems use to perform a specific task without using explicit instructions, relying on patterns and inference instead."

-----Wikipedia

ML: Study of algorithms that

- improve their performance P
- at some <u>task</u> T
- with experience E

Mr. Tom Hook <tomhook230@outlook.com>

to ▼

Mr. Tom Hook <tomhook230@outlook.com>

to ▼

Mr. Tom Hook <tomhook230@outlook.com>

to ▼

Spam

Spam

Spam

WS

Report this suspicious message Ignore, I trust this message

Tom HookCan we invest in your country.My name is Mr.Tom Hook a banker here; there is an unfinished business transaction in my branch. This is a business that will profit both of us, if you are interested get back to me for more details please because the money needs to invest outside my country. I wait for your quick response

Well-defined ML task: <P, T, E>

Learning to Detect Spam Emails

• Data:

- □ 4601 email messages
- Each is labeled by email (+) or spam (-)
- The relative frequencies of the 57 most commonly occurring words and punctuation marks in the message

• Classify:

- □ label future messages email (+) or spam (-)
- Supervised learning problem on categorical data:
 Binary classification problem

Table: Words with largest difference between spam and email shown.

	spam	email
george	0.00	1.27
you	2.26	1.27
your	1.38	0.44
hp	0.02	0.90
free	0.52	0.07
hpl	0.01	0.43
	0.51	0.11
our	0.51	0.18
re	0.13	0.42
edu	0.01	0.29
remove	0.28	0.01

Learning to Detect Spam Emails

- Examples of rules for prediction:
 - If (%george<0.6) and (%you>1.5)
 then spam
 else email
 - If (0.2.%you-0.3.%george)>0
 then spam
 else email
- Tolerance to errors:
 - Tolerant to letting through some spam (false positive)
 - No tolerance towards throwing out email (false negative)

Table: Words with largest difference between spam and email shown.

	spam	email
george	0.00	1.27
you	2.26	1.27
your	1.38	0.44
hp	0.02	0.90
free	0.52	0.07
hpl	0.01	0.43
!	0.51	0.11
our	0.51	0.18
re	0.13	0.42
edu	0.01	0.29
remove	0.28	0.01

Learning to Recognize Handwritten Digits

Data: images are single digits 16x16 8-bit gray-scale, normalized for size and orientation

Classify: newly written digits

https://cedar.buffalo.edu/~srihari/CSE574/Chap1/1.1%20ML-Overview.pdf

- Non-binary classification problem
- Low tolerance to misclassifications

Learning to Diagnose Prostate Cancer

- Data (by Stamey et al. 1989):
 - Given:

lcavol log cancer volume lweight log prostate weight

age age

lbph log benign hyperplasia amount

svi seminal vesicle invasion

lcp log capsular penetration

gleason gleason score

pgg45 percent gleason scores 4 or 5

• Predict:

lpsa log of prostate specific antigen

• Supervised learning problem on quantitative data: Regression problem.

Learning to Analyze DNA Data

• Data:

 Color intensities signifying the abundance levels of mRNA for a number of genes (6830) in several (64) different cell states (samples).

Red: over-expressed gene

Green: under-expressed gene

Gray: gene with missing values

□ Black: normally expressed gene (according

to some predefined background)

samples

(64)

• Questions:

- 1. Which genes show similar expression over the samples Unsupervised learning
- 2. Which samples show similar expression over the genes Unsupervised learning
- 3. Which genes are highly over or under expressed in certain cancers Supervised learning

genes (100)

Machine Learning – Practice

Text analysis

Speech recognition

Mining databases

Control learning

- Logistic regression
- SVM
- Neural networks
- Hidden Markov models
- Reinforcement learning
- Bayesian methods

•

Object recognition

Machine Learning – Theory

PAC Learning Theory

(by Leslie Valiant, 1984)

examples (m)

hypothesis complexity (H) failure probability (δ)

error rate (ε)

$$m \ge \frac{1}{\varepsilon} \left(\ln|H| + \ln(\frac{1}{\delta}) \right)$$

Other theories for

- Reinforcement learning
- Semi-supervised learning
- •

Defining Artificial Intelligence

What You Will Learn in This Course

- The primary machine learning and optimization algorithms
 - Ridge regression, lasso, logistic regression, SVM, neural networks, graphical models, unsupervised learning, deep learning, reinforcement learning...
 - Convex optimization, gradient methods, proximal methods, ADMM, ...
- Underlying statistical and computational theory
- Enable to apply the algorithms to solve practical problems
- Enough to read and understand related research papers.

Course Logistics

About Me: Lu Sun (孙露)

- Assistant Professor in SIST since Nov., 2019
 - PhD @ Hokkaido University
 - Postdoc @ Kyoto University
 - Email: sunlu1@shanghaitech.edu.cn
 - Homepage: https://faculty.sist.shanghaitech.edu.cn/sunlu/
- Teaching
 - SI151 Optimization and Machine Learning: 2020 Spring, 2021 Spring
 - CS150 Database and Data Mining: 2020 Fall
 - CS150A Database: 2021 Fall

TAs

- Weijia Lin (林维嘉)linwj@shanghaitech.edu.cn
- Xinyi Wang (王 欣奕)wangxy6@shanghaitech.edu.cn
- Zijian Yang (杨子健)yangzj@shanghaitech.edu.cn

General information

- Time: Tue. & Thu., 13:00-14:40
- Online: Blackboard, Piazza & Gradescope
- 16 weeks (64 credit hours)
- Machine learning in weeks 1-12; deep learning in weeks 13-16

All class communication via Piazza

- https://piazza.com/class/kzhualo0mom67j
- announcements and discussion
- read it regularly
- post all questions/comments there
- direct email is not a good idea

Grading

• Homework: 30%

• Course project: 30%

• Final exam: 40%

Highlights

- Please write your HW, project and exam in English
- Submitted to GradeScope:
 - https://www.gradescope.com/courses/370122 (Entry Code:ZR27Y2)
- For late HW or project, the score will be exponentially decreased
- Once any plagiarism or cheating is confirmed, relevant assignments or exams will receive 0 points

Recommended textbooks

- The Elements of Statistical Learning: Data Mining, Inference and Prediction, Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman
- Pattern Recognition and Machine Learning, Christopher Bishop
- **Machine Learning**, Tom M. Mitchell
- **Deep Learning**, Ian Goodfellow and Yoshua Bengio and Aaron Courville
- Convex Optimization, Stephen Boyd and Lieven Vandenberghe

Some useful online resources

• CMU, machine learning course

http://www.cs.cmu.edu/~ninamf/courses/601sp15/lectures.shtml

Stanford, convex optimization course

https://web.stanford.edu/~boyd/cvxbook/

Overview of Machine Learning

Different Classes of Machine Learning Problems

Supervised Learning

Train your model to map the input to the prediction output based on the **ground truth** labels in the training data

Regression

Learning a function for a **continuous** output

Eg. Predicting sales price of house.

Classification

Learning a function for a categorical output

Eg. Classifying cats vs dogs in images.

Regression

Gives a continuous output.

Example: Age and Gender Prediction

https://github.com/ChibaniMohamed/cnn_age_gender

Classification

Gives a discrete output.

Example: Fruit Classification

Some Basic Terminology

<u>Features/ Attributes</u>					<u>Target</u> <u>Variable</u>
Colour	Mass	Shape	Seeds	Country	Fruit
Red	100g	Round	Yes	Canada	Apple
Yellow	647 g	Curved	No	Australia	Banana

Features / attributes: how you would describe the fruit

Target variable: how you want to teach your model to recognize the

fruit. (ground truth)

Unsupervised Learning

Train your model to learn how to difference input data, and make prediction on its own without training labels.

Reinforcement Learning

Your system learns to behave in an evolving environment and make prediction by learning from the outcome of specific actions.

Goal: learn the actions (Good) that **maximize** the reward.

Machine Learning Pipeline

1 Identify Problem

Carefully define the problem you want to solve. What specific question are you trying to answer?

2 Gather Data

Figure out what data is needed and where to retrieve it. Does similar data exist or do we need to generate it?

3 Process Data

Format data that can be interpreted by a computer. That includes cleaning, manipulating and extracting important features to feed into the training model.

4 Train Model

Training the dataset on your selected model. In practice, datasets are split into train, validation and test sets in order to measure model performance.

5 Evaluate Results

Does the trained model solve your initial problem? Does it satisfy your performance requirements?

6 Repeat!

Improve your model by reiterating the process!

Overview of Supervised Learning I

--- Variable Types and Terminology

Variable Types and Terminology

Input: a variable X. If X is a vector, its j-th element is X_j

an observation x_i (scalar or vector)

Model

Typically, we use *i* to denote the index of observations, while use *j* to denote the index of variables.

Variable Types and Terminology

Variable Types and Terminology

Overview of Supervised Learning I

--- Least Squares and Nearest Neighbors

• Given inputs:

$$X^T = (X_1, X_2, \dots, X_p)$$

• Predict output *Y* via the model

$$\hat{Y} = \hat{\beta}_0 + \sum_{j=1}^p X_j \hat{\beta}_j$$

 $\hat{\beta}_0$: bias or intercept

• Include the constant variable 1 in *X*

$$\hat{Y} = X^T \hat{\beta}$$

• Here \hat{Y} is a scalar. If the output \hat{Y} is Kvector, then $\hat{\beta}$ is a $p \times K$ matrix of
coefficients.

Multi-output regression

• Given inputs:

$$X^T = (X_1, X_2, \dots, X_p)$$

• Predict output *Y* via the model

$$\hat{Y} = \hat{\beta}_0 + \sum_{j=1}^p X_j \hat{\beta}_j$$

 $\hat{\beta}_0$: bias or intercept

Include the constant variable 1 in X

$$\hat{Y} = X^T \hat{\beta}$$

• Here \hat{Y} is a scalar. If the output \hat{Y} is K-vector, then $\hat{\beta}$ is a $p \times K$ matrix of coefficients.

- In the (p + 1)-dimensional input-output space, (X, \hat{Y}) represents a hyperplane
- If the constant is included in *X*, then the hyperplane goes through the origin

$$f(X) = X^T \beta$$

is a linear function

• Its gradient

$$f'(X) = \beta$$

is a vector that points in the steepest uphill direction.

For the derivatives of vectors and matrices, please refer to:

• The Matrix Cookbook. Kaare Brandt Petersen and Michael Syskind Pedersen

- In the (p + 1)-dimensional input-output space, (X, \hat{Y}) represents a hyperplane
- If the constant is included in *X*, then the hyperplane goes through the origin

$$f(X) = X^T \beta$$

is a linear function

• Its gradient

$$f'(X) = \beta$$

is a vector that points in the steepest uphill direction.

- Training procedure:
 Method of *least-squares*
- N = # observations
- Minimize the *residual sum of squares*

$$RSS(\beta) = \sum_{i=1}^{N} (y_i - x_i^T \beta)^2$$

Or equivalently,

$$RSS(\beta) = (\mathbf{y} - \mathbf{X}\beta)^{T}(\mathbf{y} - \mathbf{X}\beta)$$
$$= \|\mathbf{y} - \mathbf{X}\beta\|_{2}^{2}$$

• This quadratic function always has a global minimum, but it may not be unique.

- Training procedure:
 Method of *least-squares*
- N = # observations
- Minimize the *residual sum of squares*

$$RSS(\beta) = \sum_{i=1}^{N} (y_i - x_i^T \beta)^2$$

Or equivalently,

$$RSS(\beta) = (\mathbf{y} - \mathbf{X}\beta)^{T}(\mathbf{y} - \mathbf{X}\beta)$$
$$= ||\mathbf{y} - \mathbf{X}\beta||_{2}^{2}$$

• This quadratic function always has a global minimum, but it may not be unique.

Q: What is the difference among $x_i, x_i^T, \mathbf{x}, X$ and **X**?

- Training procedure: Method of *least-squares*
- N = # observations
- Minimize the *residual sum of squares*

$$RSS(\beta) = \sum_{i=1}^{N} (y_i - x_i^T \beta)^2$$

Or equivalently,

$$RSS(\beta) = (\mathbf{y} - \mathbf{X}\beta)^{T}(\mathbf{y} - \mathbf{X}\beta)$$
$$= \|\mathbf{y} - \mathbf{X}\beta\|_{2}^{2}$$

• This quadratic function always has a global minimum, but it may not be unique.

• Differentiating w.r.t. β yields the *normal* equations

$$\mathbf{X}^T(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) = 0$$

• If $\mathbf{X}^T \mathbf{X}$ is nonsingular, then the unique solution is

$$\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

• The fitted value at an arbitrary input x_0 is

$$\hat{y}(x_0) = x_0^T \hat{\beta}$$

• The entire fitted surface is characterized by $\hat{\beta}$.

Example:

- Data on two inputs X_1 and X_2 .
- Output variable has values GREEN (coded 0) and RED (coded 1).
- 100 points per class.
- Regression line is defined by

$$x^T\hat{\beta} = 0.5.$$

• Easy but many misclassifications if the problem is not linear.

• Use observations in the training set closest to the given input.

$$\widehat{Y}(x) = \frac{1}{k} \sum_{x_i \in N_k(x)} y_i.$$

- $N_k(x)$ is the set of the k closest points to x is the training sample
- Average the outcome of the *k* closest training sample points

Taxicab geometry (ℓ_1) versus Euclidean distance (ℓ_2) : In taxicab geometry, the red, yellow, and blue paths all have the same shortest path length of 12. In Euclidean geometry, the green line has length $6\sqrt{2} \approx 8.49$ and is the unique shortest path.

• Use observations in the training set closest to the given input.

$$\widehat{Y}(x) = \frac{1}{k} \sum_{x_i \in N_k(x)} y_i.$$

- $N_k(x)$ is the set of the k closest points to x is the training sample
- Average the outcome of the *k* closest training sample points

• Use observations in the training set closest to the given input.

$$\widehat{Y}(x) = \frac{1}{k} \sum_{x_i \in N_k(x)} y_i.$$

- $N_k(x)$ is the set of the k closest points to x is the training sample
- Average the outcome of the *k* closest training sample points
- Fewer misclassifications

15-nearest neighbors averaging

• Use observations in the training set closest to the given input.

$$\widehat{Y}(x) = \frac{1}{k} \sum_{x_i \in N_k(x)} y_i.$$

- $N_k(x)$ is the set of the k closest points to x is the training sample
- Average the outcome of the *k* closest training sample points
- No misclassifications: overtraining

1-nearest neighbors averaging

 X_2 RED: 1 GREEN: 0 $\hat{Y}=0.5$

Pros:

- Simple algorithm, easy to implement (good baseline)
- No training time
- Easily scalable to multiple classes
- Works for "unusual" data distributions

Cons:

- Expensive query for test instances (time intensive)
- Memory intensive: stores data instead of parameters
- Not suitable for high-dimensional data (curse of dimensionality)

Comparison of the Two Simple Approaches

k - Number of Nearest Neighbors

Comparison of the Two Approaches

Linear regression	k-nearest neighbors
<pre>p parameters (p = #variables)</pre>	$\frac{N}{k}$ parameters (k: hyperparameter) (N = #observations)
Low variance (robust)	High variance (not robust)
High bias (strong assumption)	Low bias (mild assumption)

Appendix

Symbol	Statistics	Machine Learning
\boldsymbol{X}	variable, covariable predictor independent variable	feature attribute
Y	response dependent variable	label
x_i	observation data point	example instance
β	weights coefficients	parameters
$f(\cdot)$	model	learner

Difference between Statistics and Machine Learning in Terminology