#### **ECE 340: Semiconductor Electronics**

**Chapter 4: Excess Carriers in Semiconductors** (part II: diffusion)

Wenjuan Zhu

## Outline

#### Diffusion of carriers



- Diffusion process
  - Diffusion and drift of carriers; built-in fields
  - Diffusion and recombination; the continuity equation
  - Steady state carrier injection; diffusion length
  - The Haynes-Shockley experiment

## Diffusion process

 particles diffuse from regions of higher concentration to regions of lower concentration region, due to random thermal motion



## Diffusion of a pulse of electrons



 A pulse of excess electron injected at x=0 and t=0 will spread out in time. • The net number of electrons passing  $x_0$  from left to right in one mean free time is

$$\frac{1}{2}(n_1lA) - \frac{1}{2}(n_2lA)$$

The rate of electron flow in the +x direction per unit area:

$$\Phi_n(x_0) = \frac{l}{2\tau}(n_1 - n_2)$$

where 
$$n_1 - n_2 \approx \frac{-dn(x)}{dx}l$$





# Electron flux density

Thus the electron flux density:

$$\Phi_n(x_0) = \frac{-l^2}{2\tau} \frac{dn(x)}{dx}$$

Define 
$$D_n = \frac{l^2}{2\tau}$$
 Diffusion coefficient

The electron and hole flux density:

$$\Phi_n(x_0) = -D_n \frac{dn(x)}{dx}$$

$$\Phi_p(x_0) = -D_p \frac{dp(x)}{dx}$$

## Diffusion current

Electron and hole diffusion current:

$$J_n(diff.)$$

$$= -(-q)D_n \frac{dn(x)}{dx}$$

$$= +qD_n \frac{dn(x)}{dx}$$







## Outline

#### Diffusion of carriers

Diffusion process



- Diffusion and drift of carriers; built-in fields
  - Diffusion and recombination; the continuity equation
  - Steady state carrier injection; diffusion length
  - The Haynes-Shockley experiment

## Diffusion and drift current

 If an electric field is present in addition to the carrier gradient, the electron and hole current density:

$$J_n(x) = q\mu_n n(x)\mathcal{E}(x) + qD_n \frac{dn(x)}{dx}$$

drift

diffusion

$$J_p(x) = q\mu_p p(x)\mathcal{E}(x) - qD_p \frac{dp(x)}{dx}$$

The total current density:

$$J(x) = J_n(x) + J_p(x)$$

## Drift and diffusion directions for electrons and holes



# Current contribution from minority carrier

- Minority carriers can contribute significantly to the current through diffusion, since diffusion current is proportional to the gradient of concentration, instead of carrier concentration.
- Minority carrier typically do not contribute much to drift current.

$$J_n(x) = q\mu_n \mathbf{n}(\mathbf{x}) \mathcal{E}(x) + qD_n \frac{d\mathbf{n}(\mathbf{x})}{d\mathbf{x}}$$

$$\mathbf{drift} \qquad \mathbf{diffusion}$$

# Relation of electric field and electron energy

#### **Electrostatic potential:**

$$V(x) = \frac{E(x)}{-q}$$
 electron potential energy

#### **Definition of electric field:**

$$\varepsilon = -\frac{dV(x)}{dx}$$

$$\implies \varepsilon = \frac{1}{q} \frac{dE_c}{dx} = \frac{1}{q} \frac{dE_v}{dx} = \frac{1}{q} \frac{dE_i}{dx}$$



# Balance of diffusion and drift at equilibrium

• At equilibrium, no net current flows in a semiconductor,  $J_p = 0$ ,  $J_n = 0$ :

$$J_p(x) = q\mu_p p(x)\mathcal{E}(x) - qD_p \frac{dp(x)}{dx} = 0$$

$$\Longrightarrow \ \mathcal{E}(x) = \frac{D_p}{\mu_p} \frac{1}{p(x)} \frac{dp(x)}{dx}$$

using 
$$p_0 = n_i e^{(E_i - E_F)/kT}$$

$$\mathcal{E}(x) = \frac{D_p}{\mu_p} \frac{1}{kT} \left( \frac{dE_i}{dx} - \frac{dE_F}{dx} \right)$$

$$= q\mathcal{E}(x)$$
= 0

## **Einstein relation**

$$\implies \frac{D}{\mu} = \frac{kT}{q}$$

#### **Einstein relation**

- This equation is valid for either carrier type.
- At room T,  $D/\mu = 0.026 \text{V}$

## Built-in electric field

 At equilibrium, concentration gradients result in built-in fields, such that the drift current exactly cancels out the diffusion current:

$$n = N_c e^{-(E_c - E_F)/kT}$$

$$\frac{dn}{dx} = -\frac{N_c}{kT} e^{-\frac{E_c - E_F}{kT}} \frac{dE_c}{dx}$$

$$= -\frac{n}{kT} \frac{dE_c}{dx}$$

$$= -\frac{n}{kT} q \mathcal{E}$$



#### Potential Difference Due to Carrier Concentration Gradient

 The ratio of carrier densities (n, p) at two points depends exponentially on the potential difference between these points:

$$E_{\mathrm{F}} - E_{\mathrm{i}1} = kT \ln \left(\frac{n_{\mathrm{1}}}{n_{\mathrm{i}}}\right) \ \Longrightarrow \ E_{\mathrm{i}1} = E_{\mathrm{F}} - kT \ln \left(\frac{n_{\mathrm{1}}}{n_{\mathrm{i}}}\right)$$

Similarly, 
$$E_{i2} = E_F - kT \ln \left( \frac{n_2}{n_i} \right)$$

Therefore 
$$E_{i1} - E_{i2} = kT \left[ \ln \left( \frac{n_2}{n_i} \right) - \ln \left( \frac{n_1}{n_i} \right) \right] = kT \ln \left( \frac{n_2}{n_1} \right)$$

$$V_2 - V_1 = \frac{1}{q} (E_{i1} - E_{i2}) = \frac{kT}{q} \ln \left( \frac{n_2}{n_1} \right)$$

# Gradual-variation, Quasi-neutrality

- Majority carrier distribution does not differ much from the donor (or acceptor) distribution, so that the semiconductor region is nearly neutral or quasi-neutral.  $n \approx N_d$ , or  $p \approx N_a$ .
- This quasi-neutrality approximation is more valid for slowly varying dopant densities. Then:

$$\varepsilon = \frac{kT}{q} \frac{1}{N_a} \frac{dN_a}{dx}$$

$$\varepsilon = -\frac{kT}{q} \frac{1}{N_d} \frac{dN_d}{dx}$$

# Example

- An intrinsic Si sample is doped with donors from one side such that  $N_d = N_0 exp(\frac{-x}{\lambda})$ .
- (a) Find an expression for the built-in field  $\mathcal{E}(x)$  at equilibrium over the range for which  $N_d \gg n_i$ ?
- (b) Sketch a band diagram and indicate the direction of £

## Outline

#### Diffusion of carriers

- Diffusion process
- Diffusion and drift of carriers; built-in fields
- Diffusion and recombination; the continuity equation
  - Steady state carrier injection; diffusion length
  - The Haynes-Shockley experiment

# Recall: Direct recombination and thermal generation

$$\frac{dn(t)}{dt} = \alpha_r n_i^2 - \alpha_r n(t) p(t)$$
Carrier concentration change rate

Thermal generation rate

$$\frac{dn}{dt} = -\frac{\delta n(t)}{\tau_n}$$
 Where  $\tau_n = (\alpha_r p_0)^{-1}$ ,

Note: in this case, assume excess carrier is uniformly distributed in the semiconductor and there is no electric field, i.e. diffusion and drift current are not considered.

## Diffusion and recombination

If we consider both carrier flow by drift/diffusion and thermal generation/recombination process, then:

$$\frac{\partial p}{\partial t} = \frac{1}{q} \cdot \frac{J_p(x) - J_p(x + \Delta x)}{\Delta x} - \frac{\delta p}{\tau_p}$$

$$J_p(x) = \int_{J_p(x)}^{\Delta x} \frac{dx}{dx} \int_{J_p(x)}^{\Delta x} \frac{dx$$

## Continuity equation for holes and electrons

As  $\Delta x$  approaches zero:

$$\frac{\partial p}{\partial t} = \frac{\partial \delta p}{\partial t} = -\frac{1}{q} \frac{\partial J_p}{\partial x} - \frac{\delta p}{\tau_p}$$
 continuity equation for holes 
$$\frac{\partial \delta n}{\partial t} = \frac{1}{q} \frac{\partial J_n}{\partial x} - \frac{\delta n}{\tau_n}$$
 continuity equation for electrons

# Continuity equation if all things considered



# Common simplifications

• Steady State 
$$\frac{d\Delta n}{dt} \rightarrow 0$$

• No concentration gradient  $D_N \frac{\partial^2 \Delta n_p}{\partial x^2} \longrightarrow 0$ 

$$D_N \frac{\partial^2 \Delta n_p}{\partial x^2} \longrightarrow 0$$

- No drift Current E = 0
- No thermal R-G  $\frac{\Delta n}{\tau_n} \rightarrow 0$
- No Light

$$G_L \longrightarrow 0$$

**Steady** state: n(x) is time invariant Transient state: n(x) is time dependent

# Diffusion equation (transient state)

 When the current is carried by diffusion only (negligible drift), using diffusion current:

$$J_n(diff.) = qD_n \frac{\partial \delta n}{\partial x}$$

We obtain the diffusion equation for electrons:

$$\frac{\partial \delta n}{\partial t} = D_n \frac{\partial^2 \delta n}{\partial x^2} - \frac{\delta n}{\tau_n}$$

and similarly for holes:

$$\frac{\partial \delta p}{\partial t} = D_p \frac{\partial^2 \delta p}{\partial x^2} - \frac{\delta p}{\tau_p}$$

## **Outline**

#### Diffusion of carriers

- Diffusion process
- Diffusion and drift of carriers; built-in fields
- Diffusion and recombination; the continuity equation



- Steady state carrier injection; diffusion length
  - The Haynes-Shockley experiment

# Diffusion equation (steady state)

• At steady state,  $\frac{\partial \delta n}{\partial t} = 0$ ,  $\frac{\partial \delta p}{\partial t} = 0$ , the diffusion equation become:

$$\frac{d^2\delta n}{dx^2} = \frac{\delta n}{D_n \tau_n} \equiv \frac{\delta n}{L_n^2}$$

$$\frac{d^2 \delta p}{dx^2} = \frac{\delta p}{D_p \tau_p} \equiv \frac{\delta p}{L_p^2}$$

 $L_n \equiv \sqrt{D_n \tau_n}$ : electron diffusion length

 $L_p \equiv \sqrt{D_p \tau_p}$ : hole diffusion length

# Steady-state injection

Consider an example under steady-state illumination:



• Boundary condition: x = 0,  $\delta p = \Delta p$  $x = \infty$ ,  $\delta p = 0$ 

## **Excess carrier concentration**

Solution of the diffusion equation is:

$$\delta p(x) = \Delta p e^{-x/L_p}$$

 $L_p$  is the average distance a hole diffuses before recombining



# Steady state diffusion current

 The steady state distribution of excess holes cause hole diffusion current:

$$J_{p}(x) = -qD_{p}\frac{dp}{dx} = -qD_{p}\frac{\partial\delta p}{\partial x} = q\frac{D_{p}}{L_{p}}\Delta pe^{-x/L_{p}}$$
$$= q\frac{D_{p}}{L_{p}}\delta p(x)$$

The diffusion current at any x is proportional to the excess concentration at that position.

## Outline

#### Diffusion of carriers

- Diffusion process
- Diffusion and drift of carriers; built-in fields
- Diffusion and recombination; the continuity equation
- Steady state carrier injection; diffusion length



The Haynes-Shockley experiment

# Drift and diffusion of a hole pulse in n type bar



## Diffusion of a pulse without drift and recombination



**Diffusion equation:** 

$$\frac{\partial \delta p(x,t)}{\partial t} = D_p \frac{\partial^2 \delta p(x,t)}{\partial^2 x}$$

**Solution: Gaussian distribution**  $\delta p(x,t) = \left[\frac{\Delta P}{2\sqrt{\pi D_p t}}\right] e^{-x^2/4D_p t}$ 

**Diffusion coefficient:** 
$$D_p = \frac{(\Delta x)^2}{16t_d}$$

# Haynes-Shockley experiment



## Example

• A) Calculate minority carrier diffusion length in silicon with  $N_D = 10^{16}$  cm<sup>-3</sup> and  $\tau_p = 1$  µs. B) Assuming  $10^{15}$  cm<sup>-3</sup> excess holes photogenerated at the surface, what is the diffusion current at 1 µm depth?