ESTRUCTURAS ALGEBRAICAS. Problemas. 23 de Noviembre.

Ejercicio 21. Hoja 4. Dado $\sigma \in S_n$, el tipo de σ en S_n es una tupla $\lambda = (\lambda_1, \dots, \lambda_s)$ donde $\lambda_1 \geq \lambda_2 \geq \dots \lambda_s \geq 1$ y $\lambda_1 + \dots + \lambda_s = n$ si σ admite una expresión como producto de s ciclos disjuntos de longitud λ_i (incluyendo "ciclos de longitud uno"). Por ejemplo, $1 \in S_n$ tiene tipo $(1, \dots, 1) = (1^n)$. La tupla λ es una partición de n, y escribimos $\lambda \in \mathcal{P}(n)$.

- (a) Observa que hay tantos tipos de permutaciones en S_n como $|\mathcal{P}(n)|$ particiones de n.
- (b) Demuestra que dos elementos $\sigma, \tau \in S_n$ tienen el mismo tipo si, y solo si, son conjugados. Deduce que el número de clases de conjugación en S_n es $|\mathcal{P}(n)|$.
- (c) Indica cuántas clases de conjugación hay en S_4 y en S_5 .
- (d) Demuestra que $\{1, (12), (12)(34), (123), (1234)\}$ es un sistema completo de representantes de las clases de conjugación de S_4 .
- (e) Halla $|\operatorname{cl}_{S_4}(\sigma)|$ y calcula el subgrupo $\mathbf{C}_{S_4}(\sigma)$ para los distintos representantes en las clases de conjugación de S_4 .
- (f) Demuestra $|\operatorname{cl}_{S_5}((13)(24))| = 15 \text{ y } \mathbf{C}_{S_5}((13)(24)) \cong \mathsf{D}_8.$

Solución:

- (a) Claramente, cada tipo de permutación da lugar a una partición de n. Veamos que cada partición de n da lugar a un tipo de permutación de S_n . Sea $\lambda_1 + \cdots + \lambda_s = n$ una partición, podemos reordenar los índices de modo que $\lambda_1 \geq \ldots \geq \lambda_s$, dando lugar al tipo de permutación de las permutaciones que se escriben como composición de ciclos disjuntos de longitudes $\lambda_1, \ldots, \lambda_s$.
 - (b) (\Leftarrow) Sea $\sigma \in S_n$ una permutación con tipo (k_1, \ldots, k_s) . Escribimos

$$\sigma = (a_1^1 a_2^1 \dots a_{k_1}^1)(a_1^2 a_2^2 \dots a_{k_2}^2) \dots (a_1^r a_2^r \dots a_{k_r}^r)$$

como descomposición en ciclos disjuntos. Para todo $\alpha \in S_n$, veamos que $\alpha \sigma \alpha^{-1}$ tiene descomposición en ciclos disjuntos:

$$(\alpha(a_1^1) \, \alpha(a_2^1) \, \dots \, \alpha(a_{k_1}^1))(\alpha(a_1^2) \, \alpha(a_2^2) \, \dots \, \alpha(a_{k_2}^2)) \dots (\alpha(a_1^r) \, \alpha(a_2^r) \, \dots \, \alpha(a_{k_r}^r)).$$

Dado $1 \le i, j \le n$, tenemos $\sigma(i) = j$ si y solo si

$$(\alpha \sigma \alpha^{-1})(\alpha(i)) = \alpha(\sigma(i)) = \alpha(j).$$

Por lo que, el par ordenado i, j aparece en la descomposición en ciclos de σ si y solo si el par ordenado $\alpha(i), \alpha(j)$ aparece en la descomposición en ciclos de $\alpha\sigma\alpha^{-1}$. Por tanto, dos elementos conjugados tienen el mismo tipo.

(⇒) Recíprocamente, si

$$\sigma = (a_1^1 \, a_2^1 \, \dots \, a_{k_1}^1)(a_1^2 \, a_2^2 \, \dots \, a_{k_2}^2) \dots (a_1^r \, a_2^r \, \dots \, a_{k_r}^r) \quad \text{y} \quad \tau = (b_1^1 \, b_2^1 \, \dots \, b_{k_1}^1)(b_1^2 \, b_2^2 \, \dots \, b_{k_2}^2) \dots (b_1^r, b_2^r \, \dots \, b_{k_r}^r)$$

tienen el mismo tipo (k_1, k_2, \dots, k_r) , entonces la aplicación $\alpha(a_i^j) := b_i^j$ define una permutación α in S_n . Por lo que probamos anteriormente, concluimos que $\tau = \alpha \sigma \alpha^{-1}$.

- (c) Por el apartado anterior, sabemos que hay tantas clases de conjugación como tipos de permutaciones. Por tanto, en S_4 hay $|\mathcal{P}(4)| = 5$ clases de congujación y en S_5 hay $|\mathcal{P}(5)| = 7$.
 - (d) Escribimos el tipo de cada una de las permutaciones del conjunto del enunciado:

$$\begin{array}{ccccc} (1) & (1\,2) & (1\,2)(3\,4) & (1\,2\,3) & (1\,2\,3\,4) \\ 1+1+1+1 & 1+1+2 & 2+2 & 1+3 & 4 \end{array}$$

Como cada representante tiene un tipo distinto, dan lugar a clases de conjugación distintas. Por el apartado (b) sabemos que hay tantas clases de congujación como particiones de 4. Por tanto, es un sistema completo de representantes.

(e) El orden de cada clase de conjugación es

$$\begin{split} |\mathrm{cl}_{\mathsf{S}_4}((1))| &= 1, \quad |\mathrm{cl}_{\mathsf{S}_4}((1\,2))| = \binom{4}{2}(2-1)! = 6, \quad |\mathrm{cl}_{\mathsf{S}_4}((1\,2)(3\,4))| = \frac{1}{2}\binom{4}{2}\binom{2}{2} = 3, \\ |\mathrm{cl}_{\mathsf{S}_4}((1\,2\,3))| &= \binom{4}{3}(3-1)! = 8, \quad |\mathrm{cl}_{\mathsf{S}_4}((1\,2\,3\,4))| = \binom{4}{4}(4-1)! = 6 \end{split}$$

Recordamos que $|C_{S_4}(\sigma)| = |S_n|/|cl_{S_4}(\sigma)|$. Por lo que, se tiene

$$|\mathsf{C}_{\mathsf{S}_4}((1))| = 24, \quad |\mathsf{C}_{\mathsf{S}_4}((1\,2))| = 4, \quad |\mathsf{C}_{\mathsf{S}_4}((1\,2)(3\,4))| = 8, \quad |\mathsf{C}_{\mathsf{S}_4}((1\,2\,3))| = 3, \quad |\mathsf{C}_{\mathsf{S}_4}((1\,2\,3\,4))| = 4.$$

Claramente, se tiene $C_{S_4}((1)) = S_4$. Para todo σ se tiene que $\sigma \in C_{S_4}(\sigma)$. Además, todos los ciclos disjuntos conmutan, por lo que,

$$\mathsf{C}_{\mathsf{S}_4}((1\,2)) = \langle (1\,2), (3\,4) \rangle \leq \mathsf{C}_{\mathsf{S}_4}((1\,2)(3\,4)), \quad \mathsf{C}_{\mathsf{S}_4}((1\,2\,3)) = \langle (1\,2\,3) \rangle, \quad \mathsf{C}_{\mathsf{S}_4}((1\,2\,3\,4)) = \langle (1\,2\,3\,4) \rangle.$$

Observamos que

$$(1324)(12)(34)(1324)^{-1} = (1324)(12)(34)(1423) = (12)(34).$$

Se puede comprobar que $\langle (12)(34), (1324) \rangle$ tiene más de 4 elementos. Por el Teorema de Lagrange, el orden de este subgrupo divide al orden de $C_{S_4}((12)(34))$. Por tanto, podemos concluir que

$$C_{S_4}((12)(34)) = \langle (12)(34), (1324) \rangle$$
.

(f) Comprobamos que

$$|\operatorname{cl}_{S_5}((1\,3)(2\,4))| = \frac{1}{2} {5 \choose 2} {3 \choose 2} = 15.$$

Como antes, tenemos que

$$\mathbf{C}_{S_5}((1\,3)(2\,4)) = \frac{|\mathsf{S}_5|}{|\mathsf{cl}_{\mathsf{S}_5}((1\,3)(2\,4))|} = \frac{5!}{15} = 8.$$

Podemos interpretar S_4 como subgrupo de S_5 y $(1\,3)(2\,4)$ como un elemento que pertenece a este subgrupo. Observamos que si dos elementos conmutan en S_4 , también lo hacen en S_5 . Por lo que, con esta interpretación, tenemos

$$\mathbf{C}_{S_4}((1\,3)(2\,4)) \le \mathbf{C}_{S_5}((1\,3)(2\,4)).$$

Usando el apartado anterior, podemos afirmar que

$$C_{S_4}((13)(24)) = \langle (13)(24), (1234) \rangle$$
.

y que $C_{S_4}((13)(24))$ tiene 8 elementos. Por lo que, con la interpretación inicial, tenemos

$$\mathbf{C}_{S_4}((1\,3)(2\,4)) = \mathbf{C}_{S_5}((1\,3)(2\,4)).$$

En primer lugar, comprobamos que no es un subgrupo abeliano:

$$(13)(1234) = (12)(34) \neq (14)(23) = (1234)(13).$$

Existen dos clases de isomorfía de grupos no abeliano de orden 8: Q_8 y D_8 . Sabemos que Q_8 solo se puede generar por dos elementos de orden 4. Pero $C_{S_4}((1\,3)(2\,4))$ está generado por un elemento de orden 2 y un elemento de orden 4. Por tanto, $C_{S_5}((1\,3)(2\,4)) \simeq D_8$.