Introdução ao Aprendizado Profundo

Deep Learning 101

María Fernanda Rodríguez Ruiz

Prof. Dr. José Mario De Martino

Maio de 2018

Departamento de Engenharia de Computação e Automação Industrial — LCA Faculdade de Engenharia Eléctrica e de Computação — FEEC Universidade Estadual de Campinas — UNICAMP

Agenda

- 1. Introdução
- 2. Ambiente de Desenvolvimento
- 3. Aprendizado de Máquina
- 4. Aprendizado Profundo
- 5. Revisão Final

Objetivo

 Apresentar as noções básicas que envolvem o conceito de Aprendizado Profundo ou Deep Learning.

Modelos

Apresentar alguns dos modelos do aprendizado de máquina:

- · Regressão linear,
- · Regressão logística,
- Redes neurais artificiais,
- · Redes neurais artificiais profundas, e
- · Redes neurais convolucionais.

Implementação

- · Breve introdução teórica e
- · Implementações **práticas** através de um mesmo problema.
 - Os exemplos serão desenvolvidos fazendo uso do Python e Keras/TensorFlow em Jupyter.

Disciplinas da Inteligência Artificial — IA

Figura 1: Diagrama de Venn da relação entre algumas das disciplinas da Inteligência Artificial [Goodfellow et al., 2016].

Aprendizado de máquina — AM

Disciplina da IA que cria sistemas que **aprendem a partir de dados ou com sua própria experiência** a resolver tarefas específicas sem que estas precisem ser explicitamente programadas [Goodfellow et al., 2016].

Aprendizado profundo
 Técnicas de AM baseada em múltiplos níveis de aprendizagem, para análise de grandes volumes de dados
 [Goodfellow et al., 2016].

Aplicações do AM

Dados

- · Binário
- Séries Temporais
- Texto
- Sons
- Imagens
- ..

Áreas

- Agricultura
- Robótica
- · Ciência
- Entretenimento
- Finanças
- ...

Ambiente de Desenvolvimento

Ambiente de Desenvolvimento

Ferramentas

- · Frameworks (aprendizado de máquina e profundo),
- Python e
- · Jupyter.

Frameworks para aprendizado de máquina e aprendizado profundo

Figura 2: Frameworks¹ de aprendizado profundo de código aberto.

¹The 5 Deep Learning Frameworks — https://heartbeat.fritz.ai/

Frameworks para aprendizado de máquina e aprendizado profundo Operam em 2 níveis de abstrações²:

- Low Level operações matemáticas e primitivas de redes neurais são implementadas (TensorFlow, Theano, PyTorch.)
- High Level primitivas de baixo nível são usados para implementar abstrações de redes neurais, como modelos e camadas (Keras).

²The 5 Deep Learning Frameworks — https://heartbeat.fritz.ai/

TensorFlow³

- Biblioteca de software de código aberto para computação numérica de alto desempenho, do Google.
- Arquitetura flexível em várias plataformas CPUs, GPUs, TPUs, e desde desktops a dispositivos móveis.
- Forte suporte para aprendizado de máquina e aprendizado profundo.

³https://www.tensorflow.org/

Keras⁴

- · API de redes neurais de **alto nível**, escrita em Python.
- · Pode ser executado em cima do TensorFlow, CNTK ou Theano
- · Foi desenvolvida para permitir a **experimentação rápida**.
- Suporta redes convolucionais e redes recorrentes.
- Funciona para CPU e GPU.

⁴https://keras.io/

Python

Python⁵

- · Linguagem de programação interpretada de alto nível.
- Pacotes:
 - NumPy⁶: suporta arrays e matrizes multidimensionais.
 - Matplotlib⁷: biblioteca para gerar gráficos a partir de dados contidos em listas ou matrizes.

⁵https://www.python.org/

⁶http://www.numpy.org/

⁷https://matplotlib.org/

Jupyter

Jupyter notebook⁸

- · Linguagens (kernels):
 - · Julia, Python, R, MATLAB/Octave, Javascript, C,
- Aplicação Web:
 - Ambiente de computação interativo que permite criar (escrever e executar) documentos/código no navegador.
 - Markdown⁹, HTML, LaTeX, PNG, SVG, PDF
- · Documento interativo:
 - · Sequência linear de células

⁸http://jupyter.org/

⁹https://www.markdownguide.org/

Ambiente de desenvolvimento

Fluxo de trabalho Keras

Figura 3: Workflow Keras

Treinamento e avaliação dos modelos.

- 1. Load Data
- 2. Define Model
- 3. Compile Model
- 4. Fit Model
- 5. Evaluate Model

1. Load data

- · Ler dados,
 - · Conjunto de treinamento e
 - · Conjunto de teste.
- · Visualizar dados,
- Pre-processar.

```
X_train, y_train = load_data_train()
X_test, y_test = load_data_test()
```

2. Define model

Dois modelos: **Sequential** e **Functional API**.

Sequential¹⁰ usado para empilhar camadas (layers), model.add()¹¹ usada para adicionar as camadas, input_shape=() especificar a forma de entrada.

```
model = keras.models.Sequential()
model.add(layer1 ..., input_shape=(nFeatures))
model.add(layer2 ... )
```

¹⁰https://keras.io/models

¹¹https://keras.io/layers

3. Compile model

Configurar o processo de aprendizado especificando:

Otimizador¹² que determina como os pesos são atualizados, Função de custo¹³ ou função de perda, Métricas¹⁴ para avaliar durante o treinamento e o teste.

¹² https://keras.io/optimizers

¹³https://keras.io/losses

¹⁴https://keras.io/metrics

4. Fit model

Iniciar o processo de treinamento.

batch_size¹⁵: dividir o conjunto de dados em número de lotes. epochs: número de vezes que é treinado o conjunto de dados completo.

¹⁵Epoch vs Batch Size vs Iterations — https://towardsdatascience.com

5. Evaluate model

Avaliar o desempenho do modelo.

model.evaluate() encontra a perda e as métricas especificadas.

Fornece uma medida quantitativa da precisão.

model.predict() encontra a saída para os dados de teste fornecidos e é útil para verificar as saídas **qualitativamente**.

```
history = model.evaluate(X_test, y_test)
y_pred = model.predict(X_test)
```

Aprendizado de Máquina

Para entender o **aprendizado profundo**, é preciso ter uma sólida compreensão dos princípios básicos do aprendizado de máquina [Goodfellow et al., 2016].

Aprendizado de Máquina

É tudo sobre a criação de um **algoritmo que pode aprender** com os dados para fazer uma previsão [Goodfellow et al., 2016].

Noções matemáticas

Quatro grandes **disciplinas matemáticas**¹⁶ compõem o aprendizado de máquina:

- Estatística é um núcleo de tudo, nos diz qual é o nosso objetivo.
- · Cálculo nos diz como aprender e otimizar nosso modelo.
- Álgebra linear torna a execução dos algoritmos viáveis em conjuntos de dados massivos.
- Probabilidade ajuda a prever a possibilidade de um evento ocorrer.

¹⁶https://github.com/llSourcell/math_of_machine_learning

Aprendizado de Máquina

Pode ser classificada em [Goodfellow et al., 2016]:

- Supervisionado: conjunto de dados de características, associada a um rótulo ou alvo,
- Não supervisionado: conjunto de dados de muitas características que aprendem propriedades úteis da estrutura desse conjunto de dados, e
- Por reforço: algoritmos interagem com um ambiente, portanto há um ciclo de feedback entre o sistema de aprendizado e suas experiências.

Aprendizado supervisionado

Regressão linear

- Algoritmo simples de aprendizado de máquina, resolve um problema de regressão [Goodfellow et al., 2016]:
 - Na estatística, é uma técnica para modelar a relação entre uma variável dependente y, e uma ou mais variáveis independentes x.
- · A saída é uma **função linear** da entrada,

$$\hat{y} = Wx + b \tag{1}$$

- · Hipótese ŷ o valor que o modelo prevê,
- Parâmetros W que determinam como cada característica afeta a previsão, e b que controla o deslocamento fixo da previsão [Goodfellow et al., 2016].

Parâmetros

- Parâmetros são valores que controlam o comportamento do sistema.
 - Objetivo de encontrar o "melhor" conjunto de parâmetros possível W e b, para descrever os dados.
- · Primeiro precisamos definir o erro/custo.

Função de custo

- · Definir uma **medida de desempenho** do modelo.
- Uma maneira de medir o desempenho do modelo é calcular o erro quadrático médio (MSE) no conjunto de teste.
 - Na estatística, o MSE mede a média dos quadrados dos erros ou desvios [Goodfellow et al., 2016].

$$L = MSE = \frac{1}{n} \sum_{i} (y_i - \hat{y}_i)^2$$
 (2)

• **Diferença** entre a hipótese ŷ a partir do valor real y.

Problema de otimização

• Precisamos **minimizar o custo** da hipótese ŷ, em função dos parametros do modelo *W* e *b*:

$$\min_{W,b} L = \min_{W,b} \frac{1}{N} \sum_{i} (y_i - \hat{y}_i)^2$$
 (3)

Possíveis soluções

- Analítica
- · Numérica:
 - · Algoritmos de otimização que iteram sobre o conjunto de dados.

Gradiente descendente

- Em cálculo, é um algoritmo de otimização iterativa de primeira ordem para encontrar o mínimo de uma função [Goodfellow et al., 2016].
 - Gradiente é uma operação que assume uma função de múltiplas variáveis, e retorna um vetor na direção da inclinação máxima no gráfico da função original.

$$\nabla L = \begin{bmatrix} \frac{\partial L}{\partial W} \\ \frac{\partial L}{\partial D} \end{bmatrix} \tag{4}$$

- Se quisermos descer, o que temos a fazer é andar na direção oposta ao gradiente.
- Esta seria a **estratégia para minimizar** as funções de custo.

Taxa de Aprendizagem ϵ

• Escalar positivo que determina o **tamanho do passo** [Goodfellow et al., 2016].

$$\begin{bmatrix} W' \\ b' \end{bmatrix} = \begin{bmatrix} W \\ b \end{bmatrix} - \epsilon \nabla L \tag{5}$$

$$= \begin{bmatrix} W \\ b \end{bmatrix} - \epsilon \begin{bmatrix} \frac{\partial L}{\partial W} \\ \frac{\partial L}{\partial b} \end{bmatrix} \tag{6}$$

- · Poderia ser um problema de duas maneiras:
 - Se o passo é muito pequeno, nos moveremos lentamente para o mínimo,
 - Se o passo é muito grande, podemos acabar pulando além do mínimo.

Back-propagation

Método para calcular o gradiente.

Enquanto **outro** algoritmo, como gradiente descendente, é usado para realizar a **aprendizagem** (otimização) usando esse gradiente [Goodfellow et al., 2016].

Duas fases:

- Forward-propagation
- Back-propagation

Forward-propagation¹⁷

Processo de alimentação dos valores.

A entrada x fornece a informação inicial que se **propaga**, e finalmente produz ŷ [Goodfellow et al., 2016].

Figura 4: Forward-propagation.

¹⁷Everything you need know about neural networks — https://hackernoon.com/

Back-propagation¹⁸

Usamos o valor da função de custo para calcular o erro. O valor do erro é propagado para atrás afim de calcular o gradiente com relação aos pesos.

Os gradientes são calculados usando a regra da cadeia.

Figura 5: Back-propagation.

¹⁸Everything you need know about neural networks — https://hackernoon.com/

Algoritmo Back-propagation¹⁹

- Após Forward-propagation, obtemos um valor de saída que é o valor previsto.
- · Usamos uma função de perda L para calcular o valor do erro.
- · Calculamos o gradiente do erro em relação a cada peso,
- · Subtraímos o valor do gradiente do valor do peso.

Desta forma, nos aproximamos ao mínimo local.

¹⁹Everything you need know about neural networks — https://hackernoon.com/

Problemas com gradiente descendente

O método de **gradiente descedente tradicional** calculará o gradiente de **todo o conjunto de dados**, mas executará apenas uma atualização.

Por isso pode ser muito lento e difícil de controlar para conjuntos de dados muito grandes e que não se encaixam na memória.

Otimizadores²⁰

Existem **extensões** (modificações ao método original) que tentam solucionar os problemas do gradiente descendente.

- Básico [Goodfellow et al., 2016]:
 - · SGD: Stochastic Gradient Descent.
- Taxas de aprendizado adaptativas [Goodfellow et al., 2016]:
 - AdaGrad [Duchi et al., 2011].
 - RMSprop [Hinton, 2012].
 - · Adam [Kingma and Ba, 2014].

 $^{^{20}}$ Types of Optimization Algorithms — https://towardsdatascience.com/

Regressão linear: Código GitHub

Resumo parcial

- · Regressão linear define a relação entre duas variáveis.
- · Como encontrar a "melhor" combinação dos parâmetros?
 - · Função de custo:
 - · Erro quadrático médio
 - · Gradiente descendente
 - · Back-propagation para calcular o gradiente
 - Otimizadores (extensões do gradiente descedente)
- O processo de encontrar a melhor combinação de parâmetros (otimização) é chamado de **treinamento**.

Aprendizado supervisionado

Regressão logística

- Na estatística, é um modelo de regressão em que a variável dependente é categórica.
 - Que a variável dependente seja categórica implica que estamos tratando um problema de classificação.
- · A saída deve estar sempre entre 0 e 1 [Goodfellow et al., 2016].
 - A saída indica a probabilidade de uma entrada pertencer a uma classe.
- · A **probabilidade** é modelada usando a relação

$$\hat{y} = \sigma(Wx + b) \tag{7}$$

• onde σ é chamada de **função de ativação** e limita a saída para o intervalo (0, 1).

Função de ativação 21 σ

Deve ser uma função **sigmóide** para mapear qualquer número real da hipótese para o intervalo (0, 1) [Goodfellow et al., 2016]:

logistic

tanh

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$
 (8) $\sigma(z) = \frac{2}{1 + e^{-2z}} - 1$ (10)

softmax

$$\sigma(z)_i = \frac{e^{z_i}}{\sum_i e^{z_i}} \tag{9}$$

O nome sigmóide vem da forma em S do seu gráfico.

 $^{^{21}}$ Activation functions — https://towardsdatascience.com/

Representação gráfica

Figura 6: Representação gráfica da regressão logística $\hat{y} = \sigma(Wx + b)$.

Função de custo²²

 Para classificação pode-se usar cross entropy cost [Goodfellow et al., 2016]:

$$E(y, \hat{y}) = -\sum_{i=1}^{K} y_i \log(\hat{y})$$
 (11)

- · binary-cross-entropy: problema de classificação binária,
- categorical-cross-entropy: problema de classificação multi-classe.

²²Everything you need to know about Neural Networks — https://hackernoon.com/

Regressão logística: Código GitHub

Resumo parcial

Tabela 1: Regressão linear e regressão logística.

Método	Alvo	Hipótese	Custo
Regressão linear Regressão logística	Contínua Categórica	$\hat{y} = Wx + b$ $\hat{y} = \sigma(Wx + b)$	MSE Cross Entropy

Aprendizado supervisionado

A maioria dos problemas do mundo real **não são linearmente** separáveis.

Para calcular **hipóteses não-lineares**, uma das formas computacionalmente mais eficientes é **conectar pequenas unidades** que fazem "regressão logística"²³.

 $^{^{23}}$ Playing with machine learning — https://medium.com/rocknnull

Aprendizado supervisionado

Redes Neurais Artificiais — RNA

São chamadas de redes porque elas são representadas pela composição de **várias funções** diferentes.

A informação **flui** através de funções conectadas em cadeia [Goodfellow et al., 2016]:

$$\hat{y} = f(x) \tag{12}$$

$$= f^{(2)}(f^{(1)}(x)) \tag{13}$$

- · x: Camada de entrada
- f⁽¹⁾: Camada oculta
- f⁽²⁾: Camada de saída

Camadas

$$f^{(i)}(h) = \sigma_i(W_i h + b_i) \tag{14}$$

- σ_i : função de ativação
- W_i: Matriz de pesos
- *b_i*: Vetor de bias

ou seja,

$$\hat{y} = \sigma_2(W_2\sigma_1(W_1x + b_1) + b_2) \tag{15}$$

Representação gráfica

Figura 7: Representação gráfica de uma redes neurais artificiais com uma camada oculta $\hat{y} = \sigma_2(W_2\sigma_1(W_1x + b_1) + b_2)$.

Funções de ativação²⁴

Introduzem não linearidade nas redes neurais artificiais.

Figura 8: Algumas funções de activação.

²⁴Activation Functions: Neural Networks — https://towardsdatascience.com/

Funções de ativação²⁵

• Para problemas de **regressão** σ_2 : função **identidade**.

$$\sigma(z) = z \tag{16}$$

- · Para problemas de classificação σ_2 : função sigmóide.
 - · logistic,
 - · tanh,
 - · softmax,
 - · etc.

 $^{^{25}}$ Activation Functions: Neural Networks — https://towardsdatascience.com/

Função de custo

· Para problemas de regressão: minimização do MSE.

$$MSE = \frac{1}{n} \sum_{i} (y_i - \hat{y}_i)^2$$
 (17)

· Para problemas de classificação: minimização do cross entropy.

$$E(y,\hat{y}) = -\sum_{i=1}^{K} y_i log(\hat{y})$$
(18)

Redes neurais artificiais: Código GitHub

Resumo parcial

Tabela 2: Regressão linear, regressão logística e RNA.

Método	Alvo	Hipótese	Custo
R. Linear	Contínua	$\hat{y} = Wx + b$	MSE
R. Logística	Categórica	$\hat{y} = \sigma(Wx + b)$	Cross Entropy
RNA	Contínua, Categórica	$\hat{y} = \sigma_2(W_2\sigma_1(W_1X + b_1) + b_2)$	MSE, Cross Entropy

Aprendizado Profundo

Noções básicas

Rede neural + Volume + Poder computacional

Aprendizado Profundo

Noções básicas

Aprendizado profundo

Abordagem do AM, que creceu em sua popularidade e utilidade, como resultado de **computadores poderosos**, **conjuntos de dados** e **técnicas maiores para treinar** redes mais profundas [Goodfellow et al., 2016].

Figura 9: Interesse do aprendizado profundo nos ultimos 6 anos²⁶.

²⁶https://trends.google.com

Aprendizado profundo

Pesquisadores destacados

(a) Geoff Hinton Backpropag.

(b) Yann LeCun CNN.

(c) Yoshua Bengio RNA, GANs.

(d) Ian Goodfellow GANs.

(e) Andrew Ng Google Brain

Figura 10: Pesquisadores destacados de aprendizado profundo.

Aprendizado profundo

Redes neurais artificiais profundas

Representadas pela composição de **várias camadas ocultas** [Goodfellow et al., 2016].

Pesquisadores concordam que o aprendizado profundo envolve mais que duas transformações da entrada para a saída (CAP > 2) [Schmidhuber, 2014].

$$\hat{y} = f(x) \tag{19}$$

$$= f^{(n)}(\dots f^{(2)}(f^{(1)}(x))) \tag{20}$$

$$= \sigma_n(W_n \dots \sigma_2(W_2\sigma_1(W_1x + b_1) + b_2) \dots + b_n)$$
 (21)

- $f^{(1)}$: Camada de entrada
- $f^{(i)} \forall i = [2, n-1]$: C. ocultas
- f⁽ⁿ⁾: Camada de saída

- σ_i : função de ativação
- W_i: Matriz de pesos
- b_i : Vetor de bias

Dificuldades no treinamento

Quanto mais profunda a RNA:

- · Pode ser mais robusta,
- · Porém, pode ser mais difícil de treiná-la.

Problema do gradiente descendente²⁷

Dada uma RNA Profunda com quatro camadas:

$$\hat{y} = f_4(f_3(f_2(f_1(x, z_1), z_2), z_3), z_4), \text{ sendo } z_n : \text{parâmetros camada } n$$
 (22)

usamos **back-propagation** para atualizar, $z_1 = z_1 - \epsilon \frac{\partial L}{\partial z_1}$:

$$\frac{\partial L}{\partial z_1} = \frac{\partial L}{\partial z_4} \frac{\partial z_4}{\partial z_3} \frac{\partial z_3}{\partial z_2} \frac{\partial z_2}{\partial z_1}$$
 (23)

- Se os gradientes forem maiores do que zero, o produto explode para um número muito grande,
- Se os gradientes forem menores do que zero, o produto desvanece para um número muito próximo de zero.

²⁷https://matheusfacure.github.io/2017/07/10/problemas-treinamento/

Função de ativação — ReLU²⁸

Para evitar tais complicações e melhorar a precisão, pode ser usada a função de ativação baseadas em **ReLU** (*Rectified Linear Unit*) no treinamento da RNA Profunda.

$$\sigma(z) = \begin{cases} 0 & \text{para } z < 0 \\ z & \text{para } z \ge 0 \end{cases} \rightarrow \frac{d\sigma}{dz} = \begin{cases} 0 & \text{para } z < 0 \\ 1 & \text{para } z \ge 0 \end{cases}$$
 (24)

As derivadas não vão mais desaparecer ou explodir, porque a derivada da função de ativação é limitada a os valores 0 e 1.²⁹

²⁸The vanishing gradient problem — https://medium.com/@anishsingh20/

²⁹The vanishing gradient problem — https://ayearofai.com/

Redes neurais artificiais profundas: Código GitHub

Resumo parcial

Tabela 3: Regressão linear, regressão logística, RNA e RNA profundas.

Método	Alvo	Hipótese	Custo
R. Linear	Continua	$\hat{y} = Wx + b$	MSE
R. Logística	Categórica	$\hat{y} = \sigma(Wx + b)$	Cross Entropy
RNA	Continua, Categórica	$\hat{y} = f^{(2)}(f^{(1)}(x))$	MSE, Cross Entropy
RNA Profundas	Continua, Categórica	$\hat{y} = f^{(n)}(\dots f^{(2)}(f^{(1)}(x)))$	MSE, Cross Entropy

Aprendizado supervisionado

Redes neuronais convolucionais — Redes convolucionais

Redes neurais que usam a **convolução** no lugar da multiplicação geral da matriz, em **pelo menos uma de suas camadas** [Goodfellow et al., 2016].

- Convolução é uma operação matemática que descreve uma regra de como misturar duas funções ou partes da informação³⁰:
- · Mapa de características I,
- · Kernel de convolução K, e
- Mapa de características transformadas S(i, j).

$$S(i,j) = (i * K)(i,j)$$
 (25)

³⁰https://devblogs.nvidia.com/deep-learning-nutshell-core-concepts/

Redes neuronais convolucionais

Parâmetros

As camadas convolucionais têm parâmetros que são aprendidos para que esses filtros sejam ajustados automaticamente para extrair as informações mais úteis para a tarefa em questão³¹.

- · Entrada é uma matriz multidimensional de dados,
- · Kernel é uma matriz multidimensional de parâmetros,
- Essas matrizes multidimensionais são **tensores** [Goodfellow et al., 2016].
 - · Séries temporais: grade 1D intervalos de tempo regulares,
 - · Dados de imagem: grade 2D de pixels.

³¹https://devblogs.nvidia.com/deep-learning-nutshell-core-concepts/

Redes neuronais convolucionais

Camadas³²

- · Convolution: extrair características da imagem,
- · Pooling: reduzir a dimensão da entrada, e
- Dense/Fully connected: conectar as camadas.

Figura 11: Exemplo de uma rede com varias camadas convolucionais³³.

 $^{^{32}}$ A deeper understanding of CNNs — https://towardsdatascience.com/

³³https://ch.mathworks.com/fr/discovery/convolutional-neural-network.html

Redes neuronais convolucionais

Importância³⁴

Ganharam popularidade através de **competições** como o **ImageNet** e, mais recentemente, eles são usados para **NLP** (Natural Language Processing) e **reconhecimento de fala** também.

 $^{^{34}}$ A deeper understanding of CNNs - https://towardsdatascience.com/

Redes neuronais convolucionais:

Código GitHub

Redes neurais convolucionais

Resumo parcial

Tabela 4: Regressão linear, regressão logística, RNA e RNA profundas.

Método	Alvo	Hipótese	Custo
R. Linear	Continua	$\hat{y} = Wx + b$	MSE
R. Logística	Categórica	$\hat{y} = \sigma(Wx + b)$	Cross Entropy
RNA	Continua, Categórica	$\hat{y} = f^{(2)}(f^{(1)}(x))$	MSE, Cross Entropy
RNA Profundas	Continua, Categórica	$\hat{y} = f^{(n)}(\dots f^{(2)}(f^{(1)}(x)))$	MSE, Cross Entropy
RNA Convolucional	Continua, Categórica	$\hat{y} = f^{(n)}(\dots f^{(2)}_{(*)}(f^{(1)}_{(*)}(x)))$	MSE, Cross Entropy

Revisão Final

Resumo

Resultados MNIST

• **Épocas**: 50

• Batch size: 256

Otimizador: RMSProp

· Camada de saída: 10 unidades softmax

Modelo	Arquitetura	Ativação	Parâmetros	Precisão [%]
LOGREG	[]	[]	7.850	92.79
NN	[32]	[sigmoide]	25.450	96.27
DNN	[128, 64]	[relu, relu]	109.386	97.90
CDNN	[32*, 64*, 128]	[relu, relu, relu]	4.738.826	98.84

^{*:} tamanho do kernel convolucional (3 \times 3)

Regularização³⁵

Usado para superar o problema de *underfitting* e *overfitting*. Na regularização penalizamos a perda adicionando uma norma **L1** (LASSO) ou **L2** (Ridge) no vetor de peso *W*. Essas penalidades são incorporadas na **função de perda** que a rede otimiza³⁶.

- L1: soma do valor absoluto dos coeficientes.
- · L2: soma do valor ao quadrado dos coeficientes.
- Dropout: configura aleatoriamente uma fração de unidades da entrada para 0 a cada atualização durante o tempo de treinamento.

³⁵Everything you need to know about Neural Networks — https://hackernoon.com/

³⁶https://keras.io/regularizers/

Figura 12: The neural network zoo³⁷

³⁷http://www.asimovinstitute.org/neural-network-zoo/

Figura 13: The neural network zoo³⁸

³⁸ http://www.asimovinstitute.org/neural-network-zoo/

Figura 14: The neural network zoo³⁹

³⁹http://www.asimovinstitute.org/neural-network-zoo/

Códigos

https://github.com/mafda/deep_learning_101

Referências i

Duchi, J., Hazan, E., and Singer, Y. (2011).

Adaptive subgradient methods for online learning and stochastic optimization.

Journal of Machine Learning Research, 12(Jul):2121–2159.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). *Deep Learning*.

MIT Press.

Hinton, G. (2012).

Neural networks for machine learning.Coursera, video lectures.

🚺 Kingma, D. P. and Ba, J. (2014).

Adam: A method for stochastic optimization.

CoRR, abs/1412.6980.

Referências ii

Schmidhuber, J. (2014). Deep learning in neural networks: An overview. CoRR, abs/1404.7828.