Lévijevi procesi in njihova uporaba v financah

Anej Rozman

Mentor: doc. dr. Martin Raič

Neskončno deljive porazdelitve

Definicija

Pravimo, da ima realno številska slučajna spremenljivka X neskončno deljivo porazdelitev, če za vsak $n \in \mathbb{N}$ obstaja zaporedje neodvisnih enako porazdeljenih slučajnih spremenljivk $(X_i)_{i=1,\dots,n}$, da velja

$$X \stackrel{d}{=} X_1 + X_2 + \dots X_n,$$

 $kjer \stackrel{d}{=} pomeni enakost v porazdelitvi.$

Nekaj zgledov

Zgled

Normalna porazdelitev je neskončno deljiva.

Naj bo $X\sim N(\mu,\sigma^2)$. Vemo da so linearne kombinacije neodvisnih normalno porazdeljenih slučajnih spremenljivk spet normalno porazdeljene. Torej lahko za poljuben $n\in\mathbb{N}$ zapišemo

$$X \stackrel{d}{=} N(\frac{\mu}{n}, \frac{\sigma^2}{n}) + \dots + N(\frac{\mu}{n}, \frac{\sigma^2}{n}).$$

Nekaj zgledov

Zgled

Poissonova porazdelitev je neskončno deljiva.

Naj bo $X \sim \operatorname{Pois}(\lambda)$. Vemo da so linearne kombinacije neodvisnih Poissonovo porazdeljenih slučajnih spremenljivk spet normalno porazdeljene. Torej lahko za poljuben $n \in \mathbb{N}$ zapišemo

$$X \stackrel{d}{=} \operatorname{Pois}(\frac{\lambda}{n}) + \dots + \operatorname{Pois}(\frac{\lambda}{n}).$$

Compound Poisson process

Izrek

(Lévy-Hinčinova formula) Verjetnostna mera μ na realni osi je neskončno deljiva s karakterističnim eksponentom Φ ,

$$\int_{\mathbb{R}} e^{i\theta x} \mu(dx) = e^{-\Phi(\theta)}, \ za \ \theta \in \mathbb{R},$$

če in samo če obstaja taka trojica (a, σ, Π) , kjer sta $a, \sigma \in \mathbb{R}$ in Π mera na $\mathbb{R}\setminus\{0\}$, ki zadošča $\int_{\mathbb{R}} 1 \wedge x^2\Pi(dx) \leq \infty$, da za vsak $\theta \in \mathbb{R}$ velja

$$\Phi(\theta) = ia\theta + \frac{1}{2}\sigma^2\theta^2 + \int_{\mathbb{R}} (1 - e^{i\theta x} + i\theta x \mathbf{1}_{(|x|<1)}) \Pi(dx).$$

Še več, trojica (a, σ, Π) je enolično določena.