

Architecture Design

Alexander Standaert Wouter Diels

OUTLINE

- REFERENCE ARRAY
- DECODERS + BUFFERS
- VDD/SPEED TEST
- CONDOR
- ARCHITECTURE ANALYSIS
- **CONCLUSION**: Conclusion and Future work

OUTLINE

- REFERENCE ARRAY
- DECODERS + BUFFERS
- VDD/SPEED TEST
- CONDOR
- ARCHITECTURE ANALYSIS
- CONCLUSION : Conclusion and Future work

Decoders

Netlist allows sizing every CMOS gate.

Based on cascading 2-to-4 decoders and

3-to-8 decoders

Decoders

Glitches because NOR-gated output

Solve by using NAND + Inverter Decoder

topology, more area, worth it?

BL Decoders

- BL capacitance increases when more cells per BL
- Delay increases too
- Can't decrease Pull-Up resistance because BL will be charged to VDD
- Limited #WLpB
- No sizing needed for BL decoders

WL Decoders: optimization

- Sizing every CMOS block difficult:
 - Different paths towards output consisting of different amount of stages and logical efforts
- Solution: Minimal decoder with sized inverter chain at output towards WL?

OUTLINE

- REFERENCE ARRAY
- DECODERS + BUFFERS
- VDD/SPEED TEST
- CONDOR
- ARCHITECTURE ANALYSIS
- CONCLUSION : Conclusion and Future work

VDD/SPEED TEST

OUTLINE

- REFERENCE ARRAY
- DECODERS + BUFFERS
- VDD/SPEED TEST
- CONDOR
- ARCHITECTURE ANALYSIS
- CONCLUSION : Conclusion and Future work

CONDOR

- Grid computing system
- Introduced at VISICS by Bert Deknuydt
- Last week we got it working with Mat2Spice and Spectre
- Documentation and new version Mat2Spice can be found on the wiki

https://wiki.esat.kuleuven.be/visics/condor

 It is currently looked into getting it installed in the pc rooms

OUTLINE

- REFERENCE ARRAY
- DECODERS + BUFFERS
- VDD/SPEED TEST
- CONDOR
- ARCHITECTURE ANALYSIS
- **CONCLUSION**: Conclusion and Future work

OUTLINE

- REFERENCE ARRAY
- DECODERS + BUFFERS
- VDD/SPEED TEST
- CONDOR
- ARCHITECTURE ANALYSIS
- CONCLUSION : Conclusion and Future work

Future work

- Determine worst case decoder delay (MonteCarlo)
- Research optimal architecture parameters
 Probably need to trim netlist to achieve acceptable simulation time
- Inverter chain to buffer RefEnable (huge load to drive)
- Optimize decoders? (and calculate decoder area)
- Automate timing signals for Sense Amplifier

Main architecure

Main architecure (cont.)

Local Block

#BLpLB Branches

- →#BLpLB*#WLpB Data cells
- →#BLpLB Ref cells

Global Block Main architecure (cont.)

Architecture parameters

- # Global Blocks
- # BitLines per Local Block
- # WordLines per Branch

Total number of cells = 2*NoGB*NoBLpLB*NoWLpB

Decoders

Netlist allows sizing every CMOS gate.

Based on cascading 2-to-4 decoders and

3-to-8 decoders

Decoders

Glitches because NOR-gated output

Solve by using NAND + Inverter Decoder

topology, more area, worth it?

BL Decoders

- BL capacitance increases when more cells per BL
- Delay increases too
- Can't decrease Pull-Up resistance because BL will be charged to VDD
- Limited #WLpB
- No sizing needed for BL decoders

WL Decoders: optimization

- Sizing every CMOS block difficult:
 - Different paths towards output consisting of different amount of stages and logical efforts
- Solution: Minimal decoder with sized inverter chain at output towards WL?

Timing

- Invertors as delay elements
- Note: in case one Source Line Discharge per Local Block, Discharge gate connected to delayed LBEnable

Timing

- RefEnable: AND-gated Gbenable + Lbenable
- Delayed Gbenable: inverter chain
- RefEnable connected to RefWL

Passgates

- Just n-MOS (justified as long as Vsignal < 1V Vt)
- Low Vt!
- Timing so only one charge injection occurs

Line Drivers

- AND-gates
- Passgates would leave nodes connected to digital circuits floated -> ill-advised

Future work

- Determine worst case decoder delay (MonteCarlo)
- Research optimal architecture parameters
 Probably need to trim netlist to achieve acceptable simulation time
- Inverter chain to buffer RefEnable (huge load to drive)
- Optimize decoders? (and calculate decoder area)
- Automate timing signals for Sense Amplifier