HEAT TRANSFER [CH21204]

January 11, 2023

Convection

(a) Forced convection

(b) Free convection

(c) Conduction

$$\dot{q}_{\rm conv} = h(T_s - T_{\infty})$$
 (W/m²)

$$\dot{Q}_{\rm conv} = hA_s(T_s - T_{\infty}) \qquad (W)$$

 $h = \text{convection heat transfer coefficient, W/m}^2 \cdot ^{\circ}\text{C}$

 T_{∞} = temperature of the fluid sufficiently far from the surface, °C

$$\dot{q}_{\rm conv} = \dot{q}_{\rm cond} = -k_{\rm fluid} \frac{\partial T}{\partial y} \bigg|_{y=0}$$
 (W/m²)

$$\dot{q}_{\rm conv} = h(T_s - T_{\infty})$$
 (W/m²)

Nusselt Number

$$Nu = \frac{hL_c}{k}$$

$$\dot{q}_{\rm conv} = h\Delta T$$

$$\dot{q}_{\rm cond} = k \frac{\Delta T}{L}$$

$$\frac{\dot{q}_{\text{conv}}}{\dot{q}_{\text{cond}}} = \frac{h\Delta T}{k\Delta T/L} = \frac{hL}{k} = \text{Nu}$$

Nusselt number represents the enhancement of heat transfer through a fluid layer as a result of convection relative to conduction across the same fluid layer.