2017-2018 学年第二学期期末考试线性代数 C 试题 (A)

1、(10 分)若 $\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2$ 都是四维列向量,且四阶行列式 $|\alpha_1 \alpha_2 \alpha_3 \beta_1| = m, |\alpha_1 \alpha_2 \beta_2 \alpha_3| = n$,计算四阶行列式 $|\alpha_3 \alpha_2 \alpha_1 (\beta_1 + \beta_2)|$.

2、(10 分) 设
$$A = \begin{pmatrix} 1 & 2 & -1 \\ 1 & -1 & 0 \\ 2 & 3 & 2 \end{pmatrix}$$
, B 是三阶矩阵,且 $BA - E = B - A^2$, 求 B .

3、(10 分) 已知向量 \vec{e}_1 , \vec{e}_2 , \vec{e}_3 不共面,试判断向量 $\alpha = 3\vec{e}_1 + 2\vec{e}_2 - \vec{e}_3$, $\beta = \vec{e}_1 + \vec{e}_2 - \vec{e}_3$, $\gamma = -\vec{e}_1 + 4\vec{e}_2 + 5\vec{e}_3$ 是否共面。

4、(10 分) 设 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ 为 4 阶方阵,其中 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 是 4 维列向量,且 $\alpha_2, \alpha_3, \alpha_4$ 线性无关, $\alpha_4 = \alpha_1 + \alpha_2 + \alpha_3$. 已知向量 $\beta = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4$,试求线性方程组 $Ax = \beta$ 的通解.

5、(12 分) 求由向量组 $\alpha_1 = (1,3,3,1)^T$, $\alpha_2 = (1,4,1,2)^T$, $\alpha_3 = (1,0,2,1)^T$, $\alpha_4 = (1,7,2,2)^T$ 所生成空间的一组基,并求向量组中其它向量在这组基下的坐标向量。

6、(10 分) 设矩阵
$$A = \begin{pmatrix} 1 & 1 & 3 \\ -2 & 0 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$
, 互换 A 的第一、第二列得矩阵 B ,且 $BX = A$,求矩阵 X .

7、(10 分) 若矩阵 $A = \begin{pmatrix} 2 & 2 & 0 \\ 8 & 2 & a \\ 0 & 0 & 6 \end{pmatrix}$ 可以对角化,设与 A 相似的对角矩阵为 Λ ;试求常数 a 的值及

对角矩阵 Λ ,可逆矩阵P使得 $P^{-1}AP = \Lambda$;

8 、 (10 分) 设有向量组 (I): $\alpha_1 = (1,0,2)^T$, $\alpha_2 = (1,1,3)^T$, $\alpha_3 = (1,-1,a+2)^T$ 和向量组 (II): $\beta_1 = (1,2,a+3)$, $\beta_2 = (2,1,a+6)^T$, $\beta_3 = (2,1,a+4)^T$. 试问: 当a 为何值时, 向量组(I)与(II)等价?当a 为何值时, 向量组(I)与(II)不等价。

9、(8分) 设A和B为n阶矩阵,且满足 $A^2 = A$, $B^2 = B$,r(A+B-E) = n,证明: r(A) = r(B). 10、(10分) 设实二次型 $f(x_1,x_2,x_3) = (x_1-x_2+x_3)^2 + (x_2+x_3)^2 + (x_1+ax_3)^2$ 其中a为参数。

(1) 求 $f(x_1, x_2, x_3) = 0$ 的解; (2) 求 $f(x_1, x_2, x_3)$ 的标准形。