FLOATING POINT

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah

Overview

- Notes
 - Homework 5 is due tonight
 - Do not try to modify the given pseudocodes
 - No class on Tuesday Feb 19th
 - Midterm on Thursday Feb 21st
 - In class, including today's lecture

- This lecture
 - Floating point

Hardware for Division (pp. 189-193)

- A comparison requires a subtract; the sign of the result is examined; if the result is negative, the divisor must be added back
- Similar to multiply, results are placed in Hi (remainder) and Lo (quotient)

MIPS Instructions for Division

- MIPS ignores overflow in division
- Signed division (div)

```
div $s2, $s3 computes the division and stores
    it in two "internal" registers that
        can be referred to as hi and lo

mfhi $s0 moves the remainder into $s0
mflo $s1 moves the quotient into $s1
```

Unsigned division (divu)

```
divu $s2, $s3

mfhi $s0

mflo $s1
```

Signed Division

- Simplest solution: convert to positive and adjust sign later
- Note that multiple solutions exist for the equation
 - Dividend = Quotient x Divisor + Remainder

```
+7 div +2 Quo = Rem =

-7 div +2 Quo = Rem =

+7 div -2 Quo = Rem =

-7 div -2 Quo = Rem =
```

Signed Division

- Simplest solution: convert to positive and adjust sign later
- Note that multiple solutions exist for the equation
 - Dividend = Quotient x Divisor + Remainder

```
+7 div +2 Quo = +3 Rem = +1

-7 div +2 Quo = -3 Rem = -1

+7 div -2 Quo = -3 Rem = +1

-7 div -2 Quo = +3 Rem = -1
```

Signed Division

- Simplest solution: convert to positive and adjust sign later
- Note that multiple solutions exist for the equation
 - Dividend = Quotient x Divisor + Remainder

```
+7 div +2 Quo = +3 Rem = +1

-7 div +2 Quo = -3 Rem = -1

+7 div -2 Quo = -3 Rem = +1

-7 div -2 Quo = +3 Rem = -1
```

Convention

- Dividend and remainder have the same sign
- Quotient is negative if signs disagree
- These rules fulfil the equation above

Floating Point Numbers

- □ Example: how to represent 32.5
 - weights smaller than 1

100000.100_{two}

- Normalized scientific notation: leave a single nonzero digit to the left of the point
 - \square 3.25 x 10¹

```
1.00000100_{\text{two}} * 2^5 = (1*2^0 + 1*2^{-6}) * 2^5
```

□ The IEEE 754 standard

Sign-Magnitude Representation

- Since we are only representing normalized numbers, we are guaranteed that the number is of the form 1.xxxx.
- Every 32-bit number has three fields: sign (S), exponent (E),
 and fraction (F)
 - value = $(-1)^{S}$ x (1+F) x 2^{E-127} 1 bit 8 bits 23 bits
- □ Example: 32.5
 - \square 32.5 = 100000.100 = 1.00000100_{two} x 2⁵

Sign-Magnitude Representation

- Since we are only representing normalized numbers, we are guaranteed that the number is of the form 1.xxxx.
- Every 32-bit number has three fields: sign (S), exponent (E),
 and fraction (F)
 - value = $(-1)^{S}$ x (1+F) x 2^{E-127} 1 bit 8 bits 23 bits
- □ Example: 32.5
 - \square 32.5 = 100000.100 = 1.00000100_{two} x 2⁵

Sign-Magnitude Representation

- □ Since we are only representing normalized numbers, we are guaranteed that the number is of the form 1.xxxx.
- Every 32-bit number has three fields: sign (S), exponent (E),
 and fraction (F)
 - value = $(-1)^{S}$ x (1+F) x 2^{E-127} 1 bit 8 bits 23 bits
- Using more bits
 - Increase E bits to represent a wider range of numbers
 - Increase F bits to represent more precision
- Double precision format with 64 bits
 - 1 bit 11 bits 52 bits **S E F**

Single Precision Floating Point

Largest number that can be represented

Smallest number that can be represented

Single Precision Floating Point

- Largest number that can be represented
 - \square 2.0 x $2^{128} = 2.0 \times 10^{38}$
- Smallest number that can be represented
 - \blacksquare 1.0 x $2^{-127} = 2.0 \times 10^{-38}$
- Overflow
 - representing a number larger than the one above
- Underflow
 - representing a number smaller than the one above

- The number "0" has a special code so that the implicit 1 does not get added
 - see discussion of denorms (pg. 222) in the textbook

$$1 \times 2^{-126} \times 0$$

The largest exponent value (with zero fraction) represents +/infinity

The largest exponent value (with non-zero fraction) represents NaN (not a number) – for the result of 0/0 or (infinity minus infinity)

- The number "0" has a special code so that the implicit 1 does not get added
 - see discussion of denorms (pg. 222) in the textbook

The largest exponent value (with zero fraction) represents +/infinity

The largest exponent value (with non-zero fraction) represents NaN (not a number) – for the result of 0/0 or (infinity minus infinity)

- The number "0" has a special code so that the implicit 1 does not get added
 - see discussion of denorms (pg. 222) in the textbook

The largest exponent value (with zero fraction) represents +/infinity

The largest exponent value (with non-zero fraction) represents NaN (not a number) — for the result of 0/0 or (infinity minus infinity)

- The number "0" has a special code so that the implicit 1 does not get added
 - see discussion of denorms (pg. 222) in the textbook

The largest exponent value (with zero fraction) represents +/infinity

The largest exponent value (with non-zero fraction) represents NaN (not a number) – for the result of 0/0 or (infinity minus infinity)

These choices impact the smallest and largest numbers that can be represented

 \square Represent -0.75_{ten} in single- and double-precision formats

value =
$$(-1)^{S}$$
 x $(1 + F)$ x $2^{(E - 127)}$

□ Single

Double

1022

Represent -0.75_{ten} in single- and double-precision formats

$$-0.75 = -1 \times 0.11_{\text{two}} = -1 \times 1.1_{\text{two}} \times 2^{-1} = (-1)^{1} \times (1 + F) \times 2^{(E - 127)}$$

□ Single

0.5

 $\hfill \square$ Represent 3.40625 $_{\rm ten}$ in single- and double-precision formats

value =
$$(-1)^{S}$$
 x $(1 + F)$ x $2^{(E - 127)}$

□ Single

Double

```
1 bit 11 bits 52 bits F
```

 \square Represent 3.40625_{ten} in single- and double-precision formats

$$3.40625 = 11.01101_{\text{two}} = 1.101101_{\text{two}} \times 2^{1} = (-1)^{0} \times (1 + F) \times 2^{(E - 127)}$$

□ Single

Floating Point Addition

- Numbers maintain only 4 decimal digits and 2 exponent digits
 - \blacksquare 9.999 x 10¹ + 1.610 x 10⁻¹
 - Convert to the larger exponent
 - \blacksquare 9.999 x 10¹ + 0.016 x 10¹
 - Add
 - 10.015 x 10¹
 - Normalize
 - \blacksquare 1.0015 x 10²
 - □ Check for overflow/underflow
 - Round
 - \blacksquare 1.002 x 10²
 - Re-normalize

Floating Point Addition

- Numbers maintain only 4 decimal digits and 2 exponent digits
 - \blacksquare 9.999 x 10¹ + 1.610 x 10⁻¹
 - Convert to the larger exponent
 - \blacksquare 9.999 x 10¹ + 0.016 x 10¹
 - Add
 - \blacksquare 10.015 x 10¹
 - Normalize
 - \blacksquare 1.0015 x 10²

If we had more fraction bits,

- Check for overflow/underflow these errors would be minimized
- Round
 - \blacksquare 1.002 x 10²
- Re-normalize

Floating Point Addition

 Numbers maintain only 4 binary digits and 2 exponent digits

```
\blacksquare 1.010 x 2<sup>1</sup> + 1.100 x 2<sup>3</sup>
```

Convert to the larger exponent

$$0.0101 \times 2^3 + 1.100 \times 2^3$$

Add

$$\blacksquare$$
 1.1101 x 2^3

Normalize

Check for overflow/underflow

□ IEEE 754 format

0 10000010 110100000000000000000000