

Módulo 14 - Camada de Transporte

1. O que faz a Camada de Transporte?

- Cria a comunicação lógica entre os apps em hosts diferentes.
- Faz a **segmentação e remontagem** dos dados.
- Usa multiplexação pra lidar com várias conversas ao mesmo tempo.
- Define qual app recebe qual dado via número de porta.

2. TCP vs UDP

Característica	TCP (Transmissão com conexão)	UDP (Sem conexão)
Confiabilidade	✓ Sim	X Não
Ordem correta	✓ Sim	X Não
Controle de fluxo	✓ Sim	X Não
Retransmissão	✓ Sim	X Não
Velocidade	Mais lento	Mais rápido
Exemplo de uso	HTTP, FTP, e-mail, SSH	DNS, VoIP, vídeos ao vivo

3. Como o TCP funciona?

Stateful (com estado)

• Guarda o que foi enviado e confirmado.

Três etapas pra criar a conexão (Three-Way Handshake):

1. **SYN** – cliente inicia.

- 2. **SYN-ACK** servidor responde.
- 3. **ACK** cliente confirma.

Encerramento da conexão (4 etapas):

1.
$$FIN \rightarrow ACK \rightarrow FIN \rightarrow ACK$$

Flags TCP:

Flag	Função
SYN	Início da conexão
ACK	Confirmação
FIN	Fim da conexão
RST	Reset
PSH	Push (envio imediato)
URG	Dados urgentes

4. UDP - Simples, direto ao ponto

- Não garante entrega, nem ordem certa.
- Baixa sobrecarga = mais rápido.
- Ideal para:
 - o Streaming, VoIP, jogos online.
 - o DNS, DHCP, SNMP.

5. Números de Porta e Sockets

• Portas identificam as **aplicações** nos dispositivos.

- Socket = IP + Porta
- Exemplo: 192.168.0.1:80

Grupos de portas:

Faixa	Uso
0 – 1023	Portas bem conhecidas (HTTP=80, DNS=53)
1024 – 49151	Portas registradas
49152 – 65535	Portas dinâmicas/privadas

6. Comando essencial: netstat

Exibe conexões TCP ativas:

netstat

Exemplo de saída:

Proto	Local Address	Foreign Address	State
TCP	192.168.1.2:443	192.168.0.5:51500	ESTABLISHED

7. Controle de fluxo e confiabilidade (TCP)

Números de sequência

• Cada segmento tem seu **número de sequência**, pra reordenar corretamente.

Retransmissão

• Segmentos não confirmados são enviados novamente.

SACK (Selective Acknowledgement)

• Confirma só os pedaços recebidos (evita reenviar tudo).

Janela Deslizante (Sliding Window)

• Regula quantos bytes podem ser enviados antes de receber ACK.

MSS e MTU

• MTU (Ethernet): 1500 bytes

• Cabeçalho IP + TCP: ~40 bytes

• MSS comum: 1460 bytes

8. Congestionamento

- TCP percebe e regula o envio de pacotes pra evitar sobrecarga na rede.
- Usa temporizadores, controle de janela e algoritmos.