Class 7: Hands on with Principal Component Analysis (PCA)

Liana Melikian (A16675734)

#Clustering

We will start today's lab with clustering methods, in particular so-called K-means. The main function for this in R is kmeans()

Let's try it on some made up data where we know what the answer should be.

```
x=rnorm(10000,mean=3)
hist(x)
```

Histogram of x

60 points

```
tmp=c(rnorm(30,mean=3), rnorm(30,-3))
x=cbind(x=tmp,y=rev(tmp))
head(x)
```

```
x y
[1,] 4.110307 -2.461553
[2,] 4.464750 -3.645201
[3,] 2.998319 -4.638297
[4,] 1.985344 -3.640050
[5,] 3.548596 -3.080086
[6,] 1.637930 -3.325448
```

We can pass this to the R plot() function for a quick.

plot(x)


```
k=kmeans(x,centers=2,nstart=20)
k
```

K-means clustering with 2 clusters of sizes 30, 30

Cluster means:

Clustering vector:

Within cluster sum of squares by cluster:

[1] 69.25431 69.25431

(between_SS / total_SS = 87.9 %)

Available components:

- [1] "cluster" "centers" "totss" "withinss" "tot.withinss"
- [6] "betweenss" "size" "iter" "ifault"
- Q1. How many points are in each cluster?

k\$size

- [1] 30 30
- Q2. Cluster membership?

k\$cluster

Q3. Cluster centers?

k\$centers

x y

- 1 -2.824148 2.970697
- 2 2.970697 -2.824148

Q4. PLot my clustering results

```
plot(x,col=k$cluster,pch=16)
```


Q5. Cluster the data again with kmeans() into 4 groups and plot the results.

```
k4=kmeans(x,centers=4, nstart=20)
plot(x,col=k4$cluster, pch=16)
```


K-means is very popular mostly because it is fast and relatively straightforward to run and understand. It has a big limitation in that you need to tell it how many groups (k, or centers) you want.

#Hierarchical clustering

The main function in base R is called hclust(). You have to pass it in a "distance matrix" not just your input data.

You can generate a distance matrix with the dist() function.

```
hc=hclust(dist(x))
hc
```

Call:

hclust(d = dist(x))

Cluster method : complete
Distance : euclidean

Number of objects: 60

plot(hc)

Cluster Dendrogram

dist(x) hclust (*, "complete")

To find the clusters (cluster membership vector) from a hclust() result we can "cut" the tree at a certain height that we like. For this we can use the cutree() function.

```
plot(hc)
abline(h=8,col="red")
```

Cluster Dendrogram

dist(x)
hclust (*, "complete")

```
grps =cutree(hc,h=8)

table(grps)

grps
1 2
30 30
```

Q6. Plot our hclust results.

```
plot(x,col=grps)
```


#PCA Component Analysis

 $\#\#\mathrm{PCA}$ of UK food data

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url)
x</pre>
```

	Х	${\tt England}$	Wales	${\tt Scotland}$	${\tt N.Ireland}$
1	Cheese	105	103	103	66
2	Carcass_meat	245	227	242	267
3	Other_meat	685	803	750	586
4	Fish	147	160	122	93
5	Fats_and_oils	193	235	184	209
6	Sugars	156	175	147	139
7	Fresh_potatoes	720	874	566	1033
8	Fresh_Veg	253	265	171	143
9	Other_Veg	488	570	418	355
10	Processed_potatoes	198	203	220	187
11	Processed_Veg	360	365	337	334
12	${\sf Fresh_fruit}$	1102	1137	957	674
13	Cereals	1472	1582	1462	1494
14	Beverages	57	73	53	47
15	${\tt Soft_drinks}$	1374	1256	1572	1506
16	Alcoholic_drinks	375	475	458	135
17	Confectionery	54	64	62	41

```
Q1.
| dim(x)

[1] 17 5
| head(x)
```

	Х	England	Wales	${\tt Scotland}$	N.Ireland
1	Cheese	105	103	103	66
2	Carcass_meat	245	227	242	267
3	Other_meat	685	803	750	586
4	Fish	147	160	122	93
5	Fats_and_oils	193	235	184	209
6	Sugars	156	175	147	139

Note how the minus indexing works

```
rownames(x) <- x[,1]
x <- x[,-1]
head(x)
```

England	Wales	Scotland	N.Ireland
105	103	103	66
245	227	242	267
685	803	750	586
147	160	122	93
193	235	184	209
156	175	147	139
	105 245 685 147 193	105 103 245 227 685 803 147 160 193 235	245 227 242 685 803 750 147 160 122 193 235 184

```
x <- read.csv(url, row.names=1)
head(x)</pre>
```

	England	Wales	${\tt Scotland}$	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

dim(x)

[1] 17 4

Q2. I prefer the second approach because if the first approach is run more than once, it keeps removing a column with every run until there is an error.

barplot(as.matrix(x), beside=T, col=rainbow(nrow(x)))

Q3.

```
barplot(as.matrix(x), beside=F, col=rainbow(nrow(x)))
```


A pairs plot can be useful if we don't have too many dimensions.

Q5.

pairs(x, col=rainbow(17), pch=16,cex=2)

Q6. There is greater spread between N. Ireland and other countries. It is an outlier compared with the other countries when comparing different foods.

##Principal Component Analysis (PCA)

PCA can help us make sense of these types of datasets. Let's see how it works.

The main function in "base" R is called prcomp(). In this case we want to first take the transpose of our input x so the columns are the food types and the countries are the rows.

head(t(x))

	Cheese	Carcass	_meat	Other_	meat	Fish	Fats_and	oils	Sugars
England	105		245		685	147		193	156
Wales	103		227		803	160		235	175
Scotland	103		242		750	122		184	147
N.Ireland	66		267		586	93		209	139
	Fresh_p	potatoes	Fresl	h_Veg	Other	_Veg	Processed	d_potat	toes
England		720)	253		488			198
Wales		874	1	265		570			203
Scotland		566	3	171		418			220
N.Ireland		1033	3	143		355			187
	Process	sed_Veg	Fresh	_fruit	Cerea	als 1	Beverages	Soft_d	drinks
England		360		1102		1472	57		1374
		300		1102			O,		
Wales		365				1582	73		1256
Wales Scotland				1137	. :				1256 1572
		365		1137	,	1582	73		
Scotland		365 337		1137 957 674	·	1582 1462	73 53		1572
Scotland		365 337 334 Lic_drink		1137 957 674	·	1582 1462	73 53		1572
Scotland N.Ireland		365 337 334 Lic_drink	cs Coi	1137 957 674	nery	1582 1462	73 53		1572
Scotland N.Ireland England		365 337 334 Lic_drink	cs Con 375	1137 957 674	onery 54	1582 1462 1494	73 53		1572

pca=prcomp(t(x))
summary(pca)

Importance of components:

Q7.

pca\$x

PC1 PC2 PC3 PC4 England -144.99315 2.532999 -105.768945 1.042460e-14

```
Wales -240.52915 224.646925 56.475555 9.556806e-13
Scotland -91.86934 -286.081786 44.415495 -1.257152e-12
N.Ireland 477.39164 58.901862 4.877895 2.872787e-13
```

```
plot(pca$x[,1],pca$x[,2], xlab="PC1", ylab="PC2", xlim=c(-270,500))
text(pca$x[,1], pca$x[,2], colnames(x))
```


Q8.

```
plot(pca$x[,1],pca$x[,2], xlab="PC1", ylab="PC2", xlim=c(-270,500))
text(pca$x[,1], pca$x[,2], colnames(x),col=c("orange","red","blue","darkgreen"),pch=16)
```



```
v <- round( pca$sdev^2/sum(pca$sdev^2) * 100 )</pre>
[1] 67 29 4 0
  ## or the second row here...
  z <- summary(pca)
  z$importance
                               PC1
                                         PC2
                                                   PC3
                                                                 PC4
Standard deviation
                        324.15019 212.74780 73.87622 5.551558e-14
                          0.67444
Proportion of Variance
                                     0.29052
                                              0.03503 0.000000e+00
Cumulative Proportion
                          0.67444
                                     0.96497
                                               1.00000 1.000000e+00
  barplot(v, xlab="Principal Component", ylab="Percent Variation")
              9
        Percent Variation
```

Principal Component

The "loadings" tell us how much the original variables (in our case the foods) contribute to the new variables i.e. the PCs.

head(pca\$rotation)

```
PC1
                                 PC2
                                            PC3
                                                        PC4
Cheese
             -0.056955380 -0.01601285 -0.02394295 -0.537717586
Carcass_meat
              0.047927628 -0.01391582 -0.06367111
                                                 0.827327785
Other_meat
             -0.258916658
                          Fish
              -0.084414983
                          0.05075495 -0.03906481 -0.017195729
                                      0.12522257
Fats_and_oils
             -0.005193623
                          0.09538866
                                                 0.039441462
Sugars
                          0.04302170
                                     0.03605745
              -0.037620983
                                                 0.002788534
```

```
## Lets focus on PC1 as it accounts for > 90% of variance
par(mar=c(10, 3, 0.35, 0))
barplot( pca$rotation[,1], las=2 )
```

