

Modern Supply Chain Management & Price Optimization

Jack Xue, PhD & MBA
Microsoft Data Solution Architect

Presented at Indy Azure User Group Meeting

April 25, 2019

Agenda

- What is Supply Chain Management?
- Modern SCM (Harvard Business Review Article)
- Microsoft SCM Offerings
- What is price optimization
- Demo:
 - Price elasticity regression models
 - Price optimization LP solver

Supply Chain Management

- Supply-chain management has been defined as the supply-chain activities of
 - design,
 - planning, n 1982, , a consultant at introduced the term "supply chain management" to the public domain in an interview for the .
 - · execution,
 - control, and monitoring
- with the objective of
 - creating net value,
 - · building a competitive infrastructure,
 - · leveraging worldwide logistics,
 - synchronizing supply with demand and
 - measuring performance globally.
- In 1982, <u>Keith Oliver</u>, a consultant at <u>Booz Allen Hamilton</u> introduced the term "supply chain management" to the public domain in an interview for the <u>Financial Times</u>.

Supply Chain Management – What we learned in school

• Let x, y, and s be respectively the production, end-of-period inventory, and given demand for a single product in period i. Let c and h be respectively the costs of producing and storing x units of the product in period. We minimize

$$C(x,y) \equiv \sum_{i=1}^{n} [c_i(x_i) + h_i(y_i)]$$

$$x_i + y_{i-1} - y_i = s_i, i = 1, ..., n$$

- what products to make and what their designs should be;
- how much, when, where and from whom to buy product;
- how much, when and where to produce product;
- how much and when to ship from one facility to another;
- how much, when and where to store product;
- how much, when and where to charge for products; and
- how much, when and where to provide facility capacity.

Modern Supply Chain Management

 With a digital foundation in place, companies can capture, analyze, integrate, easily access, and interpret high quality, real-time data — data that fuels process automation, predictive analytics, artificial intelligence, and robotics, the technologies that will soon take over supply chain management.

Harvard Business Review

REPRINT HO4EJF PUBLISHED ON HBR.ORG JUNE 15. 2018

TECHNOLOGY
The Death of Supply
Chain Management

by Allan Lyall, Pierre Mercier and Stefan Gstettner

Microsoft SCM Offerings

- https://docs.microsoft.com/en-us/dynamics365/unified-operations/supply-chain/
 - Cost accounting
 - Cost management
 - <u>Inventory management</u>
 - Master planning
 - Procurement and sourcing
 - Product information management
 - Production control
 - Sales and marketing
 - Service management
 - <u>Transportation management</u>
 - Warehouse management

Microsoft SCM Offerings – ML&AI Showcases

- Sales Lead Scoring Jan 30, 2019:
 - https://www.microsoft.com/itshowcase/Article/Content/1091/Microsoft-increases-sales-by-using-Al-for-lead-qualification
- Finance Forecasting 2017:
 - https://www.microsoft.com/itshowcase/blog/financial-forecasting-gets-machine-learningboost/
- Predictive Analytics for Sales Processes 2016:
 - https://www.microsoft.com/itshowcase/Article/Content/847/Using-predictive-analytics-toimprove-sales-processes-and-forecasting

What is the Price Optimization?

The Bayesian-Optimal Pricing Model

Assumptions:

- Single item and single buyer and wants to pay NO MORE than p.
- The cumulative distribution function F (p) is the probability that the buyer pay.
- Also existed function f (p) = F'(p) is the probability density function.

The seller's expected revenue is:

$$R(p) = p \cdot [1 - F(p)]$$

The seller would like to maximize R(p). Per the first-order condition, the optimal price is at dR(p)/dp = 0, thus

$$p* = [1 - F(p*)] / f(p*)$$

What is the Price Optimization - Example

The Bayesian-Optima Price Model

The seller would like to maximize R(p). Per the first-order condition, the optimal price is at dR(p)/dp = 0, thus

$$p* = [1 - F(p*)] / f(p*)$$

For example, if the probability distribution of the buyer's valuation is uniform in [a, a+d], then

$$F(v) = (v - a) / d$$
 and $f(v) = 1 / d$.

The first-order condition is

$$p* = (a + d - p*)$$
, which implies

$$p* = (a + d)/2$$

Demo

Modeling Price Elasticity - Part 1: Own-Price-Elasticity

Modeling Price Elasticity - Part 2: Cross-Price-Elasticity

Modeling Price Elasticity - Part 3: Price Elasticity with Combo and External Factors

Modeling Price Elasticity – Part 4: Price Optimizations

© Microsoft Corporation

What is the Price Elasticity & Optimization?

Price elasticity of demand (PED or E_d) is the rate of change in quantity demanded in response to the rate of change in price.

$$E_d = d Q_d / dP$$

Demo 1 (own price):

Establish a linear model ln(S) = a Ln(P) + B

The price elasticity at price point p1 can be calculated as

$$Ed(p1) = \lim (q2-q1) / (p2 - p1)$$

Demo 2 (cross price): Two products may impact each other's sale

Establish a linear model ln(S) = a Ln(P1) + a Ln(P2) + B

$$E_{di} = \sum \partial Q_{di} / \partial P_{di}$$
, here j=1, ..., n

Demo 3: Price Elasticity with Combo and External Factors

Demo 4 Optimize the price

Predictive problem: $y^=f(x^*)$. Optimization problem: $Y^*=f(x^*)$

In LP problem, R code to use LPSolveAPI to resolve LP

