Title

D. Zack Garza

Contents

Contents

L	Tues	sday, August 25	3
	1.1	Radicals, Degrees, and Affine Varieties	3
	1.2	Ideals, and Properties of $V(\cdot)$	4
	1.3	Statement and Proof of Nullstellensatz	5

Contents 2

1 | Tuesday, August 25

1.1 Radicals, Degrees, and Affine Varieties

Let $k = \bar{k}$ and R a ring containing ideals I, J. Recall the definition of the radical:

Definition 1.1.1 (Radical)

The radical of an ideal $I \subseteq R$ is defined as

$$\sqrt{I} = \left\{ r \in R \mid r^k \in I \text{ for some } k \in \mathbb{N} \right\}.$$

Example 1.1.2: Let

$$I = (x_1, x_2^2) \subset \mathbb{C}[x_1, x_2]$$

= $\{ f_1 x_1 + f_2 x_2 \mid f_1, f_2 \in \mathbb{C}[x_1, x_2] \}$

Then $\sqrt{I} = (x_1, x_2)$, since $x_2^2 \in I \implies x_2 \in \sqrt{I}$.

Given $f \in k[x_1, \dots, x_n]$, take its value at $a = (a_1, \dots, a_n)$ and denote it f(a).

Definition 1.1.3 (Degree of an element of $k[x_1, \dots, x_n]$)

Define $\deg(f)$ as the largest value of $i_1 + \cdots + i_n$ such that the coefficient of $\prod x_j^{i_j}$ is nonzero.

Example 1.1.4: $deg(x_1 + x_2^2 + x_1x_2^3) = 4$

Definition 1.1.5 (Affine Variety)

- 1. Affine *n*-space $\mathbb{A}^n = \mathbb{A}^n_k$ is defined as $\{(a_1, \dots, a_n) \mid a_i \in k\}$.
- 2. Let $S \subset k[x_1, \dots, x_n]$ be a **set** of polynomials.

Then define the **affine variety** of S as

$$V(S) \coloneqq \left\{ x \in \mathbb{A}^n \mid f(x) = 0 \right\} \subset \mathbb{A}^n$$

Example 1.1.6 (Examples of affine varieties):

- Let f(x) = 0, then $\mathbb{A}^n = V(\{f\})$ is an affine variety.
- Any point $(a_1, \dots, a_n) \in \mathbb{A}^n$ is an affine variety, uniquely determined by $V(x_1 a_1, \dots, x_n a_n) = \{a_1, \dots, a_n\}$.

Tuesday, August 25

aNot k^n , since we won't necessarily use the vector space structure (e.g. adding points).

^bWe don't necessarily require S to be an ideal in this definition. We will shortly show that taking the ideal it generates yields the same variety.

• For any finite set $r_1, \dots, r_k \in \mathbb{A}^1$, there exists a polynomial $f \in k[x_1]$ whose roots are r_i .

Remark 1.1.7: We may as well assume S is an ideal by taking the ideal it generates,

$$S \subseteq \langle S \rangle = \left\{ \sum g_i f_i \mid g_i \in k[x_1, \cdots, x_n], f_i \in S \right\}.$$

Claim:

$$V(S) = V(\langle S \rangle)$$
.

It's clear that $V(\langle S \rangle) \subset V(S)$.

Conversely, if f_1, f_2 vanish at $x \in \mathbb{A}^n$, then $f_1 + f_2$ and gf_1 also vanish at x for all $g \in k[x_1, \dots, x_n]$. Thus $V(S) \subset V(\langle S \rangle)$.

1.2 Ideals, and Properties of $V(\cdot)$

See [@useful-algebra-facts] for a review of properties of ideals.

Proposition 1.2.1 (Properties of V).

- 1. If $S_1 \subseteq S_2$ then $V(S_1) \supseteq V(S_2)$.
- 2. $V(S_1) \cup V(S_2) = V(S_1S_2) = V(S_1 \cap S_2)$.
- 3. $\bigcap V(S_i) = V(\bigcup S_i)$.

We thus have a map

 $V: \{ \text{Ideals in } k[x_1, \cdots, x_n] \} \to \{ \text{Affine varieties in } \mathbb{A}^n \} .$

Definition 1.2.2 (The Ideal of a Set)

Let $X \subset \mathbb{A}^n$ be any set, then the ideal of X is defined as

$$I(X) := \left\{ f \in k[x_1, \cdots, x_n] \mid f(x) = 0 \,\forall x \in X \right\}.$$

Example 1.2.3: Let X be the union of the x_1 and x_2 axes in \mathbb{A}^2 , then

$$I(X) = \langle x_1 x_2 \rangle = \{ g x_1 x_2 \mid g \in k[x_1, x_2] \}.$$

Proposition 1.2.4 (I is inclusion-reversing).

If $X_1 \subset X_2$ then $I(X_1) \supset I(X_2)$.

Proof (?).

If $f \in I(X_2)$, then f(x) = 0 for all $x \in X_2$. Since $X_1 \subset X_2$, we have f(x) = 0 for all $x \in X_1$, so $f \in I(X_2)$.

Proposition 1.2.5 (The Image of V is Radical).

I(X) is a radical ideal, i.e. $I(X) = \sqrt{I(X)}$.

Proof(?).

If
$$f(x)^k = 0$$
 for all $x \in X$, then $f(x) = 0$ for all $x \in X$. Then $f^k \in I(X)$ and thus $f \in I(X)$.

These maps thus yield correspondences

$$\left\{ \text{Ideals in } k[x_1, \cdots, x_n] \right\} \xrightarrow{V} \left\{ \text{Affine Varieties} \right\}$$

$$\left\{ \text{Radical Ideals} \right\} \xleftarrow{I} \left\{ \text{Affine Varieties} \right\}.$$

We'll find that if we restrict to radical ideals, this will yield a bijective correspondence.

1.3 Statement and Proof of Nullstellensatz

Theorem $1.3.1 (Hilbert\ Nullstellensatz\ (Zero\ Locus\ Theorem)).$

a. For any affine variety X,

$$V(I(X)) = X.$$

b. For any ideal $J \subset k[x_1, \cdots, x_n]$,

$$I(V(J)) = \sqrt{J}$$
.

Thus there is a bijection between radical ideals and affine varieties.

Fact 1.3.2: Recall the Hilbert Basis Theorem: any ideal in a finitely generated polynomial ring over a field is again finitely generated.

We need to show 4 inclusions, 3 of which are easy.

Proof (of the easy inclusions).

- a. $X \subset V(I(X))$:
- If $x \in X$ then f(x) = 0 for all $f \in I(X)$.
- So $x \in V(I(X))$, since every $f \in I(X)$ vanishes at x.

b. $\sqrt{J} \subset I(V(J))$:

- If $f \in \sqrt{J}$ then $f^k \in J$ for some k.
- Then $f^k(x) = 0$ for all $x \in V(J)$.
- So f(x) = 0 for all $x \in V(J)$.
- Thus $f \in I(V(J))$.
- c. $V(I(X)) \subset X$:
- Need to now use that X is an affine variety.
 - Counterexample: $X = \mathbb{Z}^2 \subset \mathbb{C}^2$, then I(X) = 0. But $V(I(X)) = \mathbb{C}^2 \not\subset \mathbb{Z}^2$.
- By (b), $I(V(J)) \supset \sqrt{J} \supset J$.
- Since $V(\cdot)$ is order-reversing, taking V of both sides reverses the containment.
- So $V(I(V(J))) \subset V(J)$, i.e. $V(I(X)) \subset X$.

Thus the hard direction that remains is

d. $I(V(J)) \subset \sqrt{J}$.

We'll need the following important theorem:

Theorem 1.3.3 (Noether Normalization).

Any finitely-generated field extension $k_1 \hookrightarrow k_2$ is a finite extension of a purely transcendental extension, i.e. there exist t_1, \dots, t_ℓ such that k_2 is finite over $k_1(t_1, \dots, t_\ell)$.

Theorem 1.3.5(1st Version of Nullstellensatz).

Suppose k is algebraically closed and uncountable ^a Then the maximal ideals in $k[x_1, \dots, x_n]$ are of the form $(x_1 - a_1, \dots, x_n - a_n)$.

^aStill true in countable case by a different proof.

Proof.

Let \mathfrak{m} be a maximal ideal, then by the Hilbert Basis Theorem, $\mathfrak{m} = \langle f_1, \cdots, f_r \rangle$ is finitely generated. Let $L = \mathbb{Q}[\{c_i\}]$ where the c_i are all of the coefficients of the f_i if $\mathrm{ch}(K) = 0$, or $\mathbb{F}_p[\{c_i\}]$ if $\mathrm{ch}(k) = p$. Then $L \subset k$. Define $\mathfrak{m}_0 = \mathfrak{m} \cap L[x_1, \cdots, x_n]$. Note that by construction, $f_i \in \mathfrak{m}_0$ for all i, and we can write $\mathfrak{m} = \mathfrak{m}_0 \cdot k[x_1, \cdots, x_n]$.

Claim: \mathfrak{m}_0 is a maximal ideal.

If it were the case that

 $\mathfrak{m}_0 \subsetneq \mathfrak{m}'_0 \subsetneq L[x_1, \cdots, x_n],$

then

$$\mathfrak{m}_0 \cdot k[x_1, \cdots, x_n] \subsetneq \mathfrak{m}'_0 \cdot k[x_1, \cdots, x_n] \subsetneq k[x_1, \cdots, x_n].$$

So far, we've constructed a smaller polynomial ring and a maximal ideal in it. Thus $L[x_1, \cdots, x_n]/\mathfrak{m}_0$ is a field that is finitely generated over either \mathbb{Q} or \mathbb{F}_p . So $L[x_1, \cdots, x_n]/\mathfrak{m}_0$ is finite over some $\mathbb{Q}(t_1, \cdots, t_n)$, and since k is uncountable, there exists an embedding $\mathbb{Q}(t_1, \cdots, t_n) \hookrightarrow k$.

This extends to an embedding of $\varphi: L[x_1, \cdots, x_n]/\mathfrak{m}_0 \hookrightarrow k$ since k is algebraically closed. Letting a_i be the image of x_i under φ , then $f(a_1, \cdots, a_n) = 0$ by construction, $f_i \in (x_i - a_i)$ implies that $\mathfrak{m} = (x_i - a_i)$ by maximality.

 $^{^{}a}$ Here we use the fact that there are only countably many polynomials over a countable field.