Advanced Micro II - Problem set 3 due date: May, 29th

Problem 1 (2p) Consider the monopolist facing demand D(p) and constant marginal costs c, solving:

$$\max_{p \in [c,\infty)} (p-c)D(p).$$

State the weakest conditions on D, such that:

- optimal price is weakly increasing in c.
- margin for optimal price m = p c is weakly increasing / decreasing in c.
- % margin for an optimal price $\hat{m} = \frac{p-c}{p}$ is weakly increasing / decreasing in c
- Discuss the taxation pass-through problem, i.e.: how the incident of a sales $tax\,t$, changes m, \hat{m} ? Is that possible that the monopolists passes more than 100% of the tax change on clients? (interpret the above mentioned changes as a cost change, i.e.: c' = c + t.

Problem 2 (2p) Consider a Cournot duopoly with homogeneous product, where: $\pi_i(q_i, q_j) = q_i P(q_i + q_j) - C(q_i)$, where C is the total costs function, and P is inverse demand. State conditions on P and C, such that it is a submodular game, i.e. BR-ses are strong set order decreasing.

Problem 3 (2p) Consider a QSM game as analyzed during classes. Assume that each $u_i(s_i, s_{-i})$ is additionally increasing in s_{-i} . Prove that the greatest Nash equilibrium Pareto dominates all other NE. Hint: use characterization of the fixed points of a monotone function used in the proof of Tarski fixed point theorem for the greatest selection of then best response map. What is the relation between set Y and the set of Nash Equilibria?

Problem 4 (2p) Let C be a subset of R^l , and T a subset of R. Consider function $F: R^l \times T \to R$, for which $F(x,t) = \bar{F}(x) + f(x_i,t)$, where $f: R \times T \to R$ is supermodular. Let $x'' \in \arg\max_{x \in C} F(x,t'')$ and $x' \in \arg\max_{x \in C} F(x,t')$ for any t'' > t'. Show that, if $x'_i > x''_i$ then $x'' \in \arg\max_{x \in C} F(x,t')$ and $x' \in \arg\max_{x \in C} F(x,t'')$.

Problem 5 (2p) Let $\{f(s,t)\}_{t\in T}$ be a family of density functions on $S\subset R$. T is a poset. Consider

$$v(x,t) = \int_S u(x,s) f(s,t) ds.$$

Prove the following statement. Suppose u has increasing differences and that $\{f(\cdot,t)\}_{t\in T}$ are ordered with t by first order stochastic dominance. Then v has increasing differences in (x,t).