LATYPES OF BONDS

IONIC/ELECTROVALENT BOND

- . Strong electro Static force of attraction between positive and negative ions.
- . Crystalline in nature
- . High M.P and B.P
- . Soluble in Polar Solvents. Eg: NaCl. MgCl, etc.

FAJAN'S RULE

. Covalent nature ∞

covalent

No compounds is 100% ionic or 100%

. Covalent nature ∞ Size of anion

HYDROGEN BOND

- . Bond formed when the -ve end of one molecule attracts the +ve end of other
- 1. Intermolecular: H-Bonding occur within one single molecule.
- 2. Intermolecular: H Bonding between two different molecules of same or diff. compounds.

CO-VALENT BOND

- . Bond formed by mutual Sharing of e-.
- . Low M.P. and B.P.
- . Bad conductor of electricityv
- . Insoluble in Polar Solvents but Soluble in non-polar Solvent. EX: CH4. H2. CL2.

TYPE OF CO-VALENT BOND

. Non-polar covalent bond

. Polar covalent bond

Eg: NH, CHCL

Eg: Cl, CO.

IONIC/ **ELECTROVALENT** BOND

- . Strong electro Static force of attraction between positive and negative ions.
- . Crystalline in nature
- . High M.P and B.P
- . Soluble in Polar Solvents. Eg: NaCl. MgCl, etc.

KOSSEL LEWIS APPROACH Atoms can combine either by transfer of e- or by Sharing of valence e- in order to have an octet in their valence Shell.

BOND

CO-VALENT

OF

THEORIES

Example

LEWIS SYMBOLS

Octet Rule

KOSEL LEWIS APPROCH

Valence e- are represented by dots around the element.

H: Na: : CL : . O . . : N:

CHEMICAL BONDING AND MOLECULAR STRUCTURE

VALENCE BOND THEORY

A covalent bond is formed by the overlapping of two half filled atomic orbitals.

Type of overlapping

Sigma(o) Sidewise overlapping

S-S overlapping

. S-P overlapping

P-P overlap

 $Pi(\pi)$

Sidewise overlapping

Decreasing order of repulsive interaction: $IP - IP > IP - bP > bP \cdot bP$

VSEPR THEORY

HYBRIDISATION The Shape of a molecule depends upon the numbers Concept of mixing of valence shell e- (B.P or L.P) Surrounding in the atomic orbital to central atom form New Lybrid

P-P overlap

Size of cation

Cation

Polarized anion

Type of

No. of

Molecule Bonding pair Lone Pair of e- pair

Polarization of anion by cation

BOND **PARAMETERS**

F.C. = $r - L - \frac{1}{2}B$ FORMAL Equilibrium distance between the nuclei CHARGE of two bonded atom bod length ∞ 1 bond order

No. of Bond BOND ORDER between the two atoms Angle between the BOND ANGLE orbitals containing bonding e- pair around

of the

charge.

Seperation

DIPOLE

MOMENT

charge and distance

M = charge × Distance of

between centres

BOND ENTHALPY

Amount of enrgy required to break one mole of bonds.

AB₂€	2	1	A B B Trigonal planer	Bent	\$0 ₂ 0 ₃
AB ₃ E	3	1	B B B Tetrahedral	Trigonal Pyramidal	NH³
AB ₃ E ₂	2	2	H H B B Tetrahedral	Bent	H ₂ O
AB ₄ E	ч	1	B B B Trigonal bi-pyramidal	see saw	SF ₄
AB ₃ E ₂	3	2	B—A—. B—Trigonal bi-pyramidal	T-Shape	ClF _s
AB _s E	5	1	B B B B A B B Cotahedral	Square Pyramid	XeF _s
AB ₄ E ₂	ч	2	B A B B Octahedral	Square Planner	Xef ₄

Arrangement

Formation of Molecular Orbitals

MOLECULAR ORBITAL THEORY

- . MOT are formed the combinate of atomic orbitals.
- . No. of molecular orbitals = no. of atomic orbital combined.

ELECTRONIC CONFIGURATION

 $(\sigma 1S < \sigma^* 1S < \sigma 2S < \sigma^* 2S < \sigma 2P_{\chi} < (\pi 2P_{\chi} = \pi 2P_{\chi})$ $< (\pi^*2P_x = \pi^*2P_x) < \sigma^*2P_x$ (for O₂, F₂, Ne₂) $(\sigma 1S < \sigma^* 1S < \sigma 2S < \sigma^* 2S < (\pi 2P_x = \pi 2P_x) < \sigma 2P_z)$ $< (\pi^*2P_x = \pi^*2P_y) < \sigma^*2P_z$ (for B₂, C₂, N₂)