#### Lecture #02

# Color

Computer Graphics
Winter term 2016/17

Marc Stamminger / Roberto Grosso

### What is light?

- What is light?
  - visible light = narrow frequency band of electromagnetic spectrum

• Red color:  $4.3 \cdot 10^{14} \text{ hz}$ 

• Violet color:  $7.5 \cdot 10^{14} \text{ hz}$ 





### What is light?

- Alternative model: photons = light particles
- Relationship: wave and particle picture
  - Frequency: f
  - Wavelength:  $\lambda = c / f$  where c = speed of light
  - Photon Energy: E = hf where h = Planck's quantum of action

#### What is color?

- Physical description
  - A spectra of wavelengths
- Psychological perception
  - A stimulus sent from the optic system to the brain.
  - Sensors on the retina of the eye: rods and cones
- Computer graphics
  - Different sets of bases and coordinates, depending on the type of display and application

### Spectrum

• Spectrum: how much energy is emitted per wave length?



- Perceptual Terms
  - **Hue**: The color seen (e.g. red, green, ...) dominant wavelength
  - **Saturation** (purity): Refers to how far a color is from a grey of equal intensity (How intense is the hue? expressed objectively)
  - Brightness: Total light energy quantified as luminance

Hue, Saturation and Brightness



Dominant frequency



### Tristimulus Theory:

- the human eye has tiny light-sensitive sensors in the retina: rods and three different cones.
- Rods are sensors that detect brightness and darkness,
- Cones are sensors that detect colors.
- The cones in the human retina have peak sensitivity to red, green, and blue frequencies
- All other colors visible to the human eye can be represented as combinations of these three primary colors.



- Complementary colors
  - Mixing produces white light.
- Primary colors
  - Base colors of color model (3 colors sufficient)
  - Other colors mixed out of primary colors
  - No finite set can produce all possible visible colors
- Color gamut
  - Set of all colors produced from primary colors

- RGB color model
  - Red, Green and Blue primaries
  - Used (internally) in every monitor
  - Additive: adding primitive colors produces white.
  - Black = (0,0,0), White = (1,1,1) (=Red+Green+Blue)





- CMY color model
  - Cyan, Magenta and Yellow primaries
  - Used (internally) in hardcopy devices (printers)
  - Subtractive (colors subtracted from white background)
    - → Adding primary colors produces black.
  - Black = (1,1,1), White = (0,0,0)
  - Complementary to RGB : C = 1-R, M = 1-G, Y = 1-B





- CMYK color model
  - Modification of CMY-model
  - K for black, additional 'color' channel (for saving ink)
  - No unique presentation: e.g. (1,1,1,0) and (0,0,0,1)
  - Standard conversion CMY -> CMYK
     K = min(C,M,Y), C = C-K,
     M = M-K, Y = Y-K



The RGB/CMY cube





- HSV color model (sometimes HSB or HSL)
  - More intuitive color specification
  - Derived from RGB color model
    - Flatten RGB color cube along the diagonal from white to black
  - Hue, Saturation and Value Primaries
    - User oriented and based on the intuitive appeal of artist's colors (hue, tint, shade).

HSV color model (sometimes HSB or HSL)



- HSV color model
  - Color components
    - Hue (H) range [0, 360]
    - Saturation (S) range [0, 1]
    - Value (V) range [0, 1]



**HSV** hexcone

- Geometric model for HSV
  - circular cone

or

cylinder



• RGB → HSV (cone model)

• 
$$V = \max(R, G, B) = \max$$

• 
$$S = \frac{max - min}{max - min}$$

$$\bullet H = \begin{cases} 60 \frac{G - B}{max - min} & if \max\{R, G, B\} = R \\ 60 \frac{(B - R)}{max - min} + 120 & if \max\{R, G, B\} = G \\ 60 \frac{R - G}{max - min} + 240 & if \max\{R, G, B\} = B \end{cases}$$

$$if \max\{R, G, B\} = R$$

$$if \max\{R, G, B\} = G$$

$$if \max\{R, G, B\} = B$$





- HSV color definition
  - Select hue, S=1, V=1
  - Add black pigments
     i.e. decrease V
  - Add white pigments
     i.e. decrease S
    - Cross section of the HSV hexcone showing regions for shades, tints, and tones



- All models mentioned so far, i.e. RGB, CMY, CMYK, HSV, are device dependent
- Universal model : CIE-XYZ
   CIE = Commission Internationale de l'Eclairage
- Absolute model not device dependent
- Used for calibration and data exchange
- Based on tristimulus theory

- Universal model : CIE-XYZ
  - Measuring its spectral power distribution at each wavelength
  - Multiply by universal three color matching functions (defined 1940 by CIE)
  - Integrate to get the three values *X*, *Y*, *Z*
  - Normalize the tristimulus values x = X/(X + Y + Z),  $y = \cdots$
  - x and y are the chromaticity coordinates.
  - Y is the brightness and x + y + z = 1.

CIE normalized sensitivity curves for the three colors x(red), y(green) And z(blue). Tristimulus curves.



http://de.wikipedia.org/wiki/CIE-Normvalenzsystem

CIE-XYZ color model





CIE XYZ compared to sRGB.



#### • Remark:

- The CIE system was created in 1931.
- The accuracy of the measurements at that time and the experimental protocols used for the standard curves are not conform to the experimental accuracy today.

- sRGB = well-defined "standard" RGB model
- Conversion sRGB -> XYZ
  - X = 0.4124564 R + 0.3575761 G + 0.1804375 B
  - Y = 0.2126729 R + 0.7151522 G + 0.0721750 B
  - $\bullet$  Z = 0.0193339 R + 0.1191920 G + 0.9503041 B

- RGB, XYZ and CMY do not allow us to measure perceived color distance
- Alternative CIELAB or L\*a\*b\*

• 
$$L^* = 116 \cdot \sqrt[3]{\frac{Y}{Y_n}} - 16$$
 perceived brightness

• 
$$a^* = 500 \left( \sqrt[3]{\frac{X}{X_n}} - \sqrt[3]{\frac{Y}{Y_n}} \right)$$
 green-red

• 
$$a^* = 500 \left( \sqrt[3]{\frac{X}{X_n}} - \sqrt[3]{\frac{Y}{Y_n}} \right)$$
 green-red  
•  $b^* = 200 \left( \sqrt[3]{\frac{Y}{Y_N}} - \sqrt[3]{\frac{Z}{Z_N}} \right)$  yellow-blue

(formulae from Wikipedia)

 Euclidean Distance in L\*a\*b\*coordinates proportional to perceived color difference



Color Interpolation:
 Interpolation in different color spaces generates different results

 Half way between red and blue is

→ in RGB: 50% magenta

→ in HSV: 100% magenta



#### **Current Exercise Sheet**



### **Next Lecture**

• #03: Rasterization of lines and polygons