Measuring and Reproducing Urban Soundscapes

Andrew Mitchell

Doctoral Researcher, UCL Institute for Environmental Design & Engineering

The Alan Turing Institute

About me!

- Acoustics Consultant at Newson Brown Acoustics in LA
- Soundscape and Acoustics Consultant at Hoare Lea in London
- PhD Student and PGTA at UCL

Machine Learning and Regression Modelling of Dynamic Urban Soundscapes

Why Soundscape?

Noise Pollution and the dB

- The decibel (dB) is the most commonly used index
- Not well correlated with human perception
- Efforts to improve this include things like adjusted level requirements for different kinds of noise sources and contexts
- Still concentrating on noise control rather than on designing overall environments
- Smart city design should focus on improving quality of life, which is heavily driven by perception, as opposed to strictly noise levels

Soundscape in Legislation and Policy

- European Environmental Noise Directive 2002/49/EC
 - 5 year noise maps
 - "establish common assessment methods for 'environmental noise' [...] to preserve quiet areas"
- Welsh Government Noise and soundscape action plan (2018-2023)
 - "Air quality and soundscape are addressed as a key component of the natural and built environment, placing the issues on an equal footing with other objectives such as housing, transport and economic development."
- ISO 12913 Acoustics Soundscape Parts 1, 2, & 3

Soundscape for Characterisation of Spaces

ISO 12913 Part 1:

The acoustic environment as perceived or experienced and/or understood by a person or people, in context

Soundscape for Characterisation of Spaces

ISO 12913 Part 1:

The acoustic environment as perceived or experienced and/or understood by a person or people, in context

But how do we measure perception?

The Circumplex Model of Soundscape Perception

Axelsson, O., Nilsson, M.E., & Berglund, B. (2010). A principal components model of soundscape perception. The Journal of the Acoustical Society of America, 128(5), 2836-2846. doi.org/10.1121/1.3493436

The Circumplex Model of Soundscape

Perception

ISO/TS 12913-3:2019 Acoustics - Soundscape - Part 3: Data analysis

Putting it into Engineering Practice

But how do we make use of this in engineering and design?

The SSID Project

- Soundscape for Characterisation of Spaces
- Soundscape for Design of Spaces

Requirements of the SSID

- Should be based on objective / measurable factors
- Should be generalisable to many different types of spaces
- Should be practical to implement without an excessive time or labour cost

Soundscape Database and Protocol

For more detailed information, see:

Mitchell, A.; Oberman, T.; et al.. The Soundscape Indices (SSID) Protocol: A Method for Urban Soundscape Surveys—Questionnaires with Acoustical and Contextual Information. Appl. Sci. 2020, 10, 2397.

The SSID Protocol

Design Goals

- Gather in situ soundscape assessments from the public, which can be further analyzed and utilized in designing a soundscape index
- Conduct recordings needed to reproduce the audio-visual environment of a location in a laboratory setting for conducting controlled experiments on soundscape.

Stages of the protocol

1. Recording Stage

Audio-visual recordings with 360 video, spatial audio, and calibrated SLM measurements

2. Questionnaire Stage

Repeated questionnaires with environmental data, continuous SLM, and individual binaural recordings and 360 photos for each group of respondents

Stages of the protocol

Carrying out the Survey

- 1. Each survey includes:
- 2. Questionnaires (min. 100 per location)
- 3. Binaural audio recording for each group of respondents
- 4. Continuous SLM measurements
- 5. Continuous environmental measurements
- 6. 360° Photos
- 7. 360° Video (for lab-based VR)
- 8. Spatial Audio (for lab-based VR)

Equipment used

Equipment used

NTI AUDIO XL2 SOUND LEVEL METER

SQOBOLD HEADPHONES
HOBO TEMPERATURE/RG/LIGHT LOGGER

SQOBOLD BINAURAL RECORDING SYSTEM

GoPro 360 camera and calibrator

MIX-PRO 10 FOR AMBISONIC MICROPHONE

TABLETS AND BATTERIES

SSID Protocol – Questionnaire Stage

- Based on ISO/TS 12913-2:2018 Method A
- Focused on collecting a large-scale database a large and diverse training set is necessary for building a machine learning prediction model
- Enables simultaneous acoustic and environmental data collection
- Organises the location into multiple levels of factors which may influence perception:
 - 1. Individual level
 - 2. Session level
 - 3. Location level

Level of Information	Example Label					Factors Measured at This Level	
Location	RegentsParkJapan			rkJapan		GPS, Architectural typology, visual openness, etc.	
SessionID	Regent	tsParkJapa	n1	RegentsPa	arkJapan2	SLM, session notes, ENV	
GroupID	RPJ101	RPJ102		RPJ201		BIN, PIC	
Questionnaire	1, 2, 3	4, 5		25, 26	•••	QUE, Start & End time	

Perceived Affective Quality (PAQs)

For each of the 8 sca		extent do you a	gree or disag	ree that the p	resent
surrounding sound e	Strongly agree	Somewhat agree	Neither agree nor disagree	Somewhat disagree	Strongly disagree
Pleasant	0	\circ	0	0	0
Chaotic	0	\circ	\circ	\circ	\circ
Vibrant	0	0	0	0	\circ
Uneventful	0	\circ	0	\circ	\circ
Calm	0	\circ	\circ	\circ	\circ
Annoying	0	0	0	\circ	\circ
Eventful	0	\circ	\circ	\circ	\circ
Monotonous	0	\circ	\circ	\circ	\circ

Sound Sources

To what output do you process	utly book the	fallawing fa	tumas af aa	- d-2	
To what extent do you prese	Not at all	A little	Moderately	A lot	Dominates completely
Traffic noise (e.g. cars, buses, trains, airplanes)	0	0	0	0	0
Other noise (e.g. sirens, construction, industry, loading of goods)	0	0	0	0	0
Sounds from human beings (e.g. conversation, laughter, children at play, footsteps)	0	0	0	0	0
Natural sounds (e.g. singing birds, flowing water, wind in vegetation)	0	0	0	0	0

Overall soundscape

Overall, how would you describe the present surrounding sound environment?
Very goodGoodNeither bad nor goodBadVery bad
Overall, to what extent is the present surrounding sound environment appropriate to the present place?
○ Not at all○ Slightly○ Moderately○ Very○ Perfectly
How loud would you say the sound environment is?
○ Not at all○ Slightly○ Moderately○ Very○ Extremely

Case Study Sites

 Over 30 sites surveyed so far in the UK, Italy, Spain, Netherlands and China covering a variety of acoustic environments and non-auditory factors

 3000+ individual responses collected so far

Objective Acoustic Features (from Binaural recordings)

Acoustic (dB-based) features

- L_{eq}, L_{Aeq}, L_{ceq}, etc.
 Equivalent energy level
- L_{Ceq} L_{Aeq}
 Low frequency content
- L_N (L_5 , L_{10} , L_{50} , L_{90} , L_{95})
 Statistical breakdown of L_{eq}
- L₁₀ L₉₀
 Degree of variation, or difference between foreground and background level
- Octave band levels / Spectral Centroid Spectral content

- Psychoacoustic features
- Loudness (N, sones)
- Perceived loudness
- Sharpness (S, acum)
- Spectral content
- Fluctuation Strength (vacil)
- Amplitude modulation, up to 4 Hz
- Roughness (R, asper)
 - Amplitude modulation, 4 70 Hz
- Tonality (T)
 - Perceived presence of a tonal component

Reproduction of the Soundscape

A 12+1 speaker 1st order ambisonic playback system built within a dedicated lab at UCL

Paired with a VR headset, this enables us to fully reproduce the audio visual soundscape within the lab

Current challenges with reproduction

COVID ruins everything

- Online surveys based on binaural recordings
- Hope to be back in the ambisonic lab with participants soon!

Thank you for your attention!

For more detailed information on the protocol, see:
Mitchell, A.; Oberman, T.; et al.. The Soundscape Indices (SSID)
Protocol: A Method for Urban Soundscape Surveys—
Questionnaires with Acoustical and Contextual Information. Appl.
Sci. 2020, 10, 2397.

For more on me and my work, visit:

Google Scholar

Website: https://andrew-mitchell.netlify.app/

And my podcast: https://www.justnoisepod.com/

