

巨量資料分 析期末報告

01057051 陳俞君

使用的數據集來自UCI機器學習資料庫中的Adult數據集。

該數據集包含了許多個體的人口統計信息和收入水平標籤。具體特徵包括年齡、工作類別、教育程度、婚姻狀況、職業、種族、性別、每週工作時數等。

主要目的: 利用機器學習技術來預測個體的收入水平是否超過 50K美元。

通過分析人口統計數據和其他特徵,建構分類模型,識別哪些個體的收入可能會超過此門檻。

New Notebook

Income Predictor Dataset- US Adult

Predict whether income exceeds \$50K/yr based on census data

Data Card Code (8) Discussion (0) Suggestions (0)

About Dataset

The Adult Census Income dataset, extracted from the 1994 US Census Database by Barry Becker, serves as a valuable resource for understanding the intricate interplay between socio-economic factors and income levels. Comprising anonymized information such as occupation, age, native country, race, capital gain, capital loss, education, work class, and more, this dataset offers a comprehensive view of the American demographic landscape.

Usability ①

10.00

License CC0: Public Domain

Expected update frequency

資料集

資料集具32561筆資料及 15 項特徵, 特徵如下:

工作類別(workclass):

私營企業(Private) 自營但不成立公司(Self-emp-not-inc) 自營且成立公司(Self-emp-inc) 聯邦政府(Federal-gov) 地方政府(Local-gov) 州政府(State-gov) 無薪工作(Without-pay)

C. heista bare

從未工作(Never-worked)

教育程度(education):

學士學位(Bachelors) 大專(Some-college) 11年級(11th) 高中畢業(HS-grad) 專業學校(Prof-school) 學術副學士(Assoc-acdm) 職業副學士(Assoc-voc) 9年級(9th) 7至8年級(7th-8th) 12年級(12th) 碩士學位(Masters) 1至4年級(1st-4th) 10年級(10th) 博士學位(Doctorate) 5至6年級(5th-6th) 幼稚園(Preschool)

婚姻狀況(marital.status):

已婚-配偶在場
(Married-civ-spouse)
離婚(Divorced)
未婚(Never-married)
分居(Separated)
喪偶(Widowed)
已婚-配偶不在場
(Married-spouse-absent)
已婚-軍人配偶
(Married-AF-spouse)

資料集

關係(relationship):

妻子(Wife)

孩子(Own-child)

丈夫(Husband)

非家庭成員(Not-in-family)

其他親屬(Other-relative)

未婚(Unmarried)

種族(race):

白人(White) 亞洲-太平洋島民

(Asian-Pac-Islander)

美洲印第安人-愛斯基摩人

(Amer-Indian-Eskimo)

其他(Other) 黑人(Black)

性別(sex):

男性(Male) 女性(Female)

國籍(native.country):

美國(United-States)

柬埔寨(Cambodia)

英國(England)

波多黎各(Puerto-Rico)

加拿大(Canada) 德國(Germany)

美國邊疆(Outlying-US(Guam-USVI-etc))

印度(India)

日本(Japan)

希臘(Greece)

南部(South)

中國(China)

古巴(Cuba) 伊朗(Iran)

洪都拉斯(Honduras)

菲律賓(Philippines)

意大利(Italy)

波蘭(Poland)

牙買加(Jamaica)

越南(Vietnam)

墨西哥(Mexico)

葡萄牙(Portugal)

愛爾蘭(Ireland)

法國(France)

多明尼加共和國(Dominican-Republic)

老撾(Laos)

厄瓜多爾(Ecuador)

台灣(Taiwan)

海地(Haiti)

哥倫比亞(Columbia) 匈牙利(Hungary)

危地馬拉(Guatemala)

尼加拉瓜(Nicaragua) 蘇格蘭(Scotland)

泰國(Thailand)

南斯拉夫(Yugoslavia) 薩爾瓦多(El-Salvador)

特立尼達和多巴哥(Trinadad&Tobago)

秘魯(Peru) 香港(Hong)

荷蘭(Holand-Netherlands)

統計分析

Subtitle here

年齡分佈直方圖:展示了不同年齡段的數據分佈情 況。

主要分布在20~45歲

教育程度分佈條形圖:展示了不同教育 程度的人數分佈。

教育程度(education):由多至少

高中畢業(HS-grad) 學院(Some-college) 學士學位(Bachelors) 碩士學位(Masters) 職業副學士(Assoc-voc) 11年級(11th) 學術副學士(Assoc-acdm) 10年級(10th) 7至8年級(7th-8th) 專業學校(Prof-school) 9年級(9th) 12年級(12th) 博士學位(Doctorate) 5至6年級(5th-6th) 1至4年級(1st-4th) 幼稚園(Preschool)

最高的前三類別由高到低為高中畢業、大學學院)、 學士

平均在每周42小時左右

每周工作小時數的盒圖:展示了每周工作小時數的分佈和異

常值。

收入分佈圓餅圖:展示了收入在兩個範圍(<=50K 和 >50K)中的比例。

熱力圖展示了數據集中主要數值變量之間 的相關性。從圖中可以看出:

變量之間的相關性不明顯。

(越接近1相關性越高)

1. 收入與年齡的關係: 將年齡分段,並分析每個年齡段的 收入分佈情況。

Subtitle here

年齡較大的群體中,高收入(>50K)的人數比例相對較高。

教育程度(education):由多至少

高中畢業(HS-grad) 學院(Some-college) 學士學位(Bachelors) 碩士學位(Masters) 職業副學士(Assoc-voc) 11年級(11th) 學術副學士(Assoc-acdm) 10年級(10th) 7至8年級(7th-8th) 專業學校(Prof-school) 9年級(9th) 12年級(12th) 博士學位(Doctorate) 5至6年級(5th-6th) 1至4年級(1st-4th) 幼稚園(Preschool)

1. 收入與教育程度的關係 分析不同教育程度的收入分佈情況。

Subtitle here

- i. 擁有較高教育程度(如學士、碩士及以上學位)的人群中,高收入者比例較高。
- ii. 教育程度較低(如未完成高中教育)的群體中,低收入(<=50K)的人數比例較高。

1. 收入與每周工作小時數的關係 每周工作小時數與收入的分佈圖。

每周工作小時數較多的人群中,高收入者比例較高。

建立機器學習模型

pandas · seaborn · matplotlib

一、預處理過程

數據清洗:首先,對數據中的缺失值進行處理,將包含缺失值的行刪除並對一些文本數據進行清理,去除多餘的空格。

- 二、特徵工程:使用 pd.get_dummies 方法將分類變量轉換為 多個二元變量(one-hot encoding),以便機器學習算法可以 處理這些數據。
- 三、特徵縮放:使用 StandardScaler 對數值特徵進行標準化,以確保各特徵的值在同一範圍內,有助於模型的收斂。

建立機器學習模型

四、模型訓練與評估

scikit-learn

- 1. 使用多種機器學習算法來訓練模型,包括隨機森林、決策樹、支持向量機、K近鄰算法和XGBoost。
- 2. 使用準確率、混淆矩陣和ROC曲線等指標評估這些模型的性能。

Subtitle here

總結:相關性分析

計算各個數值變量之間的相關性,使用皮爾森相關係數來衡量變量之間的線性關係。

- 1. 教育年數與收入有較高的正相關性,表明受教育程度越高,收入越有可能超過50K。
- 2. 每週工作小時數與收入也有一定的正相關性,表明工作時間越長,收入越高的可能性越大。
- 3. 年齡與收入有中等程度的相關性。

Subtitle her

總結:機器學習預測

隨機森林和XGBoost模型在 準確率和穩定性方面表現較好

總結

本次試著使用Python撰寫程式碼透過以上方法,建構多個機器學習模型,並比較模型的性能。隨機森林和XGBoost模型在準確率和穩定性方面表現較好,在相關性方面,教育年數與收入有較高的正相關性,每週工作小時數與收入也有一定的正相關性。

本次程式碼:

https://drive.google.com/file/d/11kLy7iNriIZ2bqOiDuqSFL4zt4hQs-ax/view?usp=sharing

參考

Income Predictor Dataset- US Adult (使用的資料集 FROM Kaggle)

<u>Titanic - Machine Learning from Disaster</u>鐵達尼號生存預測 (參考模型程式碼寫法)

Subtitle here