Robust linear programming

We consider a linear program in inequality form,

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i$, $i = 1, ..., m$,

in which there is some uncertainty or variation in the parameters c, a_i , b_i . To simplify the exposition we assume that c and b_i are fixed, and that a_i are known to lie in given ellipsoids:

$$a_i \in \mathcal{E}_i = \{ \overline{a}_i + P_i u \mid ||u||_2 \le 1 \},$$

where $P_i \in \mathbf{R}^{n \times n}$. (If P_i is singular we obtain 'flat' ellipsoids, of dimension $\operatorname{rank} P_i$; $P_i = 0$ means that a_i is known perfectly.)

We will require that the constraints be satisfied for all possible values of the parameters a_i , which leads us to the robust linear program

minimize
$$c^T x$$

subject to $a_i^T x \le b_i$ for all $a_i \in \mathcal{E}_i$, $i = 1, \dots, m$. (4.37)

The robust linear constraint, $a_i^T x \leq b_i$ for all $a_i \in \mathcal{E}_i$, can be expressed as

$$\sup\{a_i^T x \mid a_i \in \mathcal{E}_i\} \le b_i,$$

the lefthand side of which can be expressed as

$$\sup\{a_i^T x \mid a_i \in \mathcal{E}_i\} = \overline{a}_i^T x + \sup\{u^T P_i^T x \mid ||u||_2 \le 1\}$$
$$= \overline{a}_i^T x + ||P_i^T x||_2.$$

Thus, the robust linear constraint can be expressed as

$$\overline{a}_i^T x + \|P_i^T x\|_2 \le b_i,$$

which is evidently a second-order cone constraint. Hence the robust LP (4.37) can be expressed as the SOCP

minimize
$$c^T x$$

subject to $\overline{a}_i^T x + \|P_i^T x\|_2 \le b_i$, $i = 1, \dots, m$.

Note that the additional norm terms act as regularization terms; they prevent x from being large in directions with considerable uncertainty in the parameters a_i .

Linear programming with random constraints

The robust LP described above can also be considered in a statistical framework. Here we suppose that the parameters a_i are independent Gaussian random vectors, with mean \overline{a}_i and covariance Σ_i . We require that each constraint $a_i^T x \leq b_i$ should hold with a probability (or confidence) exceeding η , where $\eta \geq 0.5$, i.e.,

$$\mathbf{prob}(a_i^T x \le b_i) \ge \eta. \tag{4.38}$$