This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

библи текв МБА

Союз Советских С циалистических Республик

Государственный комитет Совета Министрое СССР по делам изобретений и открытий

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

Зависимое от авт. свидетельства № -Заявлено 04.11.1971 (№ 1617963/23-4)

с присоединением заявки № --

Приоритет —

Опубликовано 11.VII.1973. Бюллстень № i30

Дата опубликования описания 28.XII.1973

М. Кл. **С 07с 69/54** С 07с 135/00

390070

УДК 547.391.1.07 (088.8)

Авторы изобретения

Р. С. Бурмистрова и З. Г. Попова

Заявитель

СПОСОБ ПОЛУЧЕНИЯ ЦИАНСОДЕРЖАЩИХ ПРОИЗВОДНЫХ АКРИЛОВОЙ КИСЛОТЫ

Изобретение относится к области получения различных полифункциональных соединений циансодержащих производных акриловой кислоты.

Предложенный способ, как и полученные соединения, является новым.

Способ позволяет получать полифункциональные соединения общей формулы

где R — водород, алкил, арил, аралкил;

$$-0$$
 $Y=-5$, -50 , -50

$$-0$$
 \sim $NH-:$ -0 \sim 0 0 \sim 0 \sim

 $n = 1,2, R_1, R_2 - H, \Lambda lk.$

Описанные в литературе соединсния этого класса являются эффективными светостабилизаторами полимерных матсриалов и получаются конденсацией кетонов или альдегидов с

эфирами циануксусной кислоты по Кновенге-10 лю.

Полученные соединения, содержащие иссколько функциональных групп, синтезировать по Кновенгелю практически невозможно.

Предложенный способ заключается в ацилировании оксиароматических соединений, содержащих —NH, —S, —SO₂, SO, CO-группы, хлорангидридом циансодержащих производных акриловой кислоты в присутствии акцептора хлористого водорода при температуре 25-35°C и выдержкой при температурс 40-60°С и выделении продуктов известными ме-

Выход целевых продуктов составляет 75-- 10 85%, считая на соответствующий хлорангид-

Полученные соединения идентифицированы элементарным анализом и спектроскопическими методами.

Во всех соединениях отмечаются интенсивные полосы поглощения при $1730-1755 \ cm^{-1}$; 3370—3400 см-1 и 2205— 2215 см-1, подтверждающие наличие сложноэфирной, вторичной аминной и цианогрупп.

Пример 1. Получение 4-анилинофенилоэфира α-циано-β,β-дифенилакриловой кислоты.

В трехгорлую колбу с мешалкой, термометром и холодильником с хлоркальциевой трубкой загружают 1,85 г (0,01 г моль) п-оксидифениламина, 20 мл абсолютного диоксана, 1,4 мл (0,01 ϵ -моль) триэтиламина и добавлянот при температуре 20—25°C хлорангидрид 30 α-циано-β,β-дифенилакриловой кислоты.

После окончания прибавления хлорангидрида выдерживают при 40-45°C в течение 3 час и при 55-60°С в течение 1 час. После охлажденйя реакционной массы до комнатной темпе- 135 ратуры отфильтровывают выпавшую солянокислую соль триэтиламина, а фильтрат выливают в 150 мл дистиллированной воды. Выпавшее масло быстро закристаллизовывается при промывке 2%-ным раствором карбоната натрия и водой. Кристаллы отфильтровывают и сущат. Выход составляет 3,37 г (81% от теории, считая на хлорангидрид кислоты), т. пл. 151—152°С (из этапола).

Вычислено, %: С 80,77; Н 4,81; N 6,73.

 $C_{28}H_{20}N_2O_2$.

Найдено, %: С 80,79; Н 4,73; N 6,74.

Продукт хорошо растворим в диоксане, бензоле, хлороформе, дихлорэтане, плохо растворим в этаноле, практически не растворим в 50 гексане и воде.

ИКС: vco 1740 см-1, vnh 3370 см-1, vcn 2210 см⁻¹.

Пример 2. Получение 4-аминонафтилфенилового эфира α-циано-β,β-дифенилакрило- 55

В_условиях примера 1 из 2,35 г (0,01 г моль) ... п-оксинеозина и 2,67 г (0,01 г-моль) хлорангидрида α-циано-β,β-дифепилакриловой кислоты в 20 мл абсолютного диоксана в присутствии 1,4 мл (0,01 г моль) триэтиламина получают 3,63 г (77,8% от теории) 4-аминонафтилфенилового эфира α-циано-β-β-дифенилакриловой кислоты с т. пл. 159—160°С (из этанола).

Вычислено, %: С 82,3; Н 4,73; N 6,01. $C_{32}H_{22}N_2O_2$.

Найдено, %: С 82,71; Н 4,78; N 6,58.

Растворимость продукта подобна предыдуицему образцу.

ИКС: vco 1730 см-1, vnн 3410 см-1, vcn 2205 см-1.

Пример 3. Получение продукта ацилирования п-аминофенола хлорангидридом α-циапо-в, в-дифенилакриловой кислоты.

В условиях примера 1 из 0,545 г (0,005 г-·моль) п-аминофенола, 2,67 г (0,01 г моль) хлорангидрида α-циано-β,β-дифенилакриловой кислоты в 20 мл диоксана в присутствии 1,4 мл (0,01 г моль) триэтиламина получают пролукт ацилирования. Выход 2,72 г (80% от теории), т. пл. 238—239°С (из бензола).

Вычислено, %: С 79,8; Н 4,38; N 7,35.

 $C_{38}H_{26}N_3O_3$.

Найдено, %: С 79,36; Н 4,55; N 7,73.

Продукт хорошо растворим в ацетоне, диоксане; плохо растворим в бензоле, практически не растворим в гексане и воде.

ИКС: v_{CO} 1750 c_M^{-1} , v_{CN} 2215 c_M^{-1} . Пример 4. Получение тиобис (фенилового эфира α-циано-β,β-дифенилакриловой кислоты).

В трехгорлую колбу с мешалкой, термометром и холодильником с хлюркальциевой трубкой загружают 1,09 г (0,05 г моль) 4,4-дифенилолсульфида, нилолсульфида, 20 мл диоксана, 1,4 мл (0,01 г. моль) триэтиламина и при 20—25°С добавляют 2,67 г (0,01 г-моль) хлорангидрида α-циано-β,β-дифенилакриловой кислоты. После окончания прибавления хлорангидрида выдерживают в течение 2 час при 35-40°C, 2 час при 45-50°С и 1 час при 60°С. После охлаждения реакционной массы до комнатной температуры отфильтровывают выпавшую соля-40 нокислую соль триэтиламина. Фильтрат выливают в воду. Выпавшие кристаллы отфильтровывают, промывают 2%-ным раствором карбоната натрия и водой до нейтральной реак-

Выход 3,08 г (75% от теории, считая на хлорангидрид кислоты), т. пл. 180-182°C (из уксусной кислоты).

Вычислено, %: С 77,7; Н 4,12; N 4,12; S 4,71.

 $C_{44}H_{28}N_2SO_4$.

Найдено, %: С 77,32; Н 3,97; N 4,01; S 4,35. Продукт хорошо растворим в диоксане, плохо растворим в этаноле и уксусной кислоте, практически не растворим в воде и гексане. ИКС: vco 1755 см-1, vcn 2215 см-1.

Пример 5. Получение тиобис-(3-метил-6трет-бутилфецилового эфира α-циано-β,β-ди-

фенилакриловой кислоты).

В условиях примера 4 из 1,79 г (0,005 г. моль) бис-(2-метил-5-трет-бутил-4-оксифенил)сульфида и 2,67 г хлорангидрида α-циано-β,βдифенилакриловой кислоты в 20 мл диоксана в присутствии 1,4 мл (0,01 г·моль) триэтиламина получают 2,91 г (71% от теории) про-65 дукта ацилирования, т. пл. 204—205°С (из

уксусной кислоты).

Вычислено, %: С 79,02; Н 5,85; N 3,4; S 3,9.

C₅₄H₃₈N₂SO₄.

Найдено, %: С 78,66; Н 5,89, N 3,04; S 4,05. - Растворимость продукта подобна предыдущему образцу.

ИКС: vco 1740 см-1, vcn 2205 см-1, vco 1688

(амид 1).

Пример 6. Получение 3-окси-4-бензоилфенилового эфира а-циано-в, в-дифенилакри-

ловой кислоты.

В условиях примера 4 из 2,15 г (0,01 г моль) 2,4-диоксибензофенона и 2,67 г (0,01 г моль) хлорангидрида α-циано-β,β-дифенилакриловой кислоты в 20 мл диоксана в присутствии 1,4 мл 15 (0.01~г.моль) триэтиламина получают 2,35 г (53% от теории) 3-окси-4-бензоилфенилового эфира α -циано- β , β -дифенилакриловой кислоты, т. пл. $138-139^{\circ}$ С (из этанола).

Вычислено, %: С 78,4; Н 4,28; N 3,15. $C_{29}H_{19}NO_4$.

Найдено, %: С 78,3; Н 4,20; N 3,05.

Продукт хорошо растворим в большинстве 5 органических растворителей (диоксан, бензол, дихлорэтан), плохо растворим в этаполе. ИКС: vco 1755 см-1, vcn 2210 см-1.

Предмет изобретения

1. Способ получения циансодержащих производных акриловой кислоты общей формулы

$$\begin{bmatrix} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

где R — водород, алкил, арил или аралкил;

$$X = 0$$
 $NH = 0$, $-0 = NH = 0$;

$$-0 \xrightarrow{R_1 R_2} -0-, \quad Y=-S, -S0-, -S0_2;$$
 $-0 \xrightarrow{NH-}, -0 \xrightarrow{OH} C$

щийся тем, что оксиароматические соединения, содержащие —NH, —S-, —SO, —SO₂, COгруппы, подвергают взаимодействию с хлорангидридом циансодержащих производных акриловой кислоты в присутствии акцептора 25 хлористого водорода в среде органического

 $n=1,2,\ R_1$ и R_2 — водород, алкил, отличаю- 20 растворителя при нагревании с последующим выделением целевого продукта известными приемами.

2. Способ по п. 1, отличающийся тем, что процесс ведут при температуре 25-35°C с последующей выдержкой при температуре 40-60°C.

Составитель Л. Крючкова

Редактор Е. Хорина

Техред А. Камышникова

Корректор А. Степанова

3301/5 Изд. № 1726 Тираж 523 ЦНИИПИ Государственного комитета Совета Министров СССР

Подписное

по делам изобретений и открытий Москва, Ж-35, Раушская наб., д. 4/5

Типография, пр. Сапунова, 2

WEST

Generate Collection

Print

L1: Entry 33 of 34

File: DWPI

Dec 28, 1973

DERWENT-ACC-NO: 1974-56342V

DERWENT-WEEK: 197431

COPYRIGHT 2003 DERWENT INFORMATION LTD

TITLE: Aromatic esters of alpha-cyano-beta-beta-di phenyl acrylic acids - prepd by esterifying the corresp. hydroxy aromatic cpd. with a substd acrylic acid chloride

PATENT-ASSIGNEE: BURMISTROVA R S ET AL (BURMI)

PRIORITY-DATA: 1971SU-1617963 (February 4, 1971)

PATENT-FAMILY:

PUB-NO PUB-DATE

LANGUAGE

PAGES MAIN

MAIN-IPC

SU 390070 A

December 28, 1973

000

INT-CL (IPC): C07C 69/54; C07C 135/00

ABSTRACTED-PUB-NO: SU 390070A

BASIC-ABSTRACT:

The title esters, general formula where R = H, alkyl, aryl, aralkyl, n = 1-3 and X is: (where Y = -S, -SO-, -SO2, R1 and R2 = H, alkyl) are made by treating the corresp. hydroxyaromatic cpd. with the appropriate acid chloride in an organic solvent in the presence of a HCl acceptor, first at 25-35 degrees C, then at 40-60 degrees C. Similar materials, made by a Knoevenagel reaction inapplicable here, are light stabilisers for polymers. An example describes the prepn. of 4-anilinophenyl alpha-cyano-beta, beta-diphenylacrylate, by reacting together, in 20 ml dioxane/20-25 degrees C, 1.85 g (0.01 g mole) p-hydroxydiphenylamine, the appropriate substd. acylic acid chloride, plus 1.4 ml (0.01 g mole) Et3N. When all the acid chloride has been added the temp. is raised to 40-45 degrees C/3 hrs. and 55-60 degrees C/1 hr, the products filtered, diluted with water, and filtered off, washed and dried, yield 3.37 g (81% on the acid chloride).

ABSTRACTED-PUB-NO: SU 390070A EQUIVALENT-ABSTRACTS:

DERWENT-CLASS: A60 E14

CPI-CODES: A01-D02; A01-D07; A01-D10; A08-A03; E10-A10; E10-A15;

EP. ESPACNET. COM

W	EST
	tion.

Generate Collection Print

L1: Entry 33 of 34

File: DWPI

Dec 28, 1973

DERWENT-ACC-NO: 1974-56342V

DERWENT-WEEK: 197431

COPYRIGHT 2003 DERWENT INFORMATION LTD

TITLE: Aromatic esters of alpha-cyano-beta-beta-di phenyl acrylic acids - prepd by esterifying the corresp. hydroxy aromatic cpd. with a substd acrylic acid chloride

Standard Title Terms (1):

AROMATIC ALPHA CYANO BETA BETA DI PHENYL ACRYLIC ACID PREPARATION ESTERIFICATION

CORRESPOND HYDROXY AROMATIC COMPOUND SUBSTITUTE ACRYLIC ACID CHLORIDE