

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Álgebra III

Los Del DGIIM, losdeldgiim.github.io José Juan Urrutia Milán

Índice general

1.	$\mathbf{Ext}_{\mathbf{c}}$	ensiones de cuerpos y raíces de polinomios	5
	1.1.	Extensiones de cuerpos y elementos algebraicos	Ĝ
		1.1.1. Elementos algebraicos	12
		1.1.2. Ejercicios	15
	1.2.	Extensiones finitas y extensiones algebraicas	16
		1.2.1. Ejercicios	21
	1.3.	Construcciones con regla y compás	24
	1.4.	Homomorfismos de cuerpos	36
	1.5.	Clasificación de los cuerpos finitos	49
	1.6.	El grupo de automorfismos de una extensión	51
	1.7.	Ejercicios	53
2	Eset	ensiones de Galois	63
4.			
	2.1.	Extensiones de Galois	63
	2.2.	Teorema fundamental de la Teoría de Galois	71

Álgebra III Índice general

Antes de proceder con la asignatura de Álgebra III, cuyo principal objetivo es dar solución a las ecuaciones polinómicas mediante el uso y estudio de los cuerpos finitos, recomendamos repasar en anteriores apuntes los siguientes conceptos:

- En los apuntes de Álgebra I los conceptos de: anillo, subanillo, homomorfismo de anillos e ideal; así como la forma en la que se estudiaba que un polinomio era irreducible.
- En los apuntes de Álgebra II los conceptos de: grupo, subgrupo, homomorfismo de grupos y monoide.

Una vez repasados dichos conceptos, estamos en condiciones de comenzar la asignatura.

1. Extensiones de cuerpos y raíces de polinomios

Comenzamos definiendo el objeto de estudio protagonista a lo largo de esta asignatura: los cuerpos, llamados a veces campos, del inglés *fields*.

Notación. Aunque las dos operaciones de los anillos (y también de los cuerpos) no tengan por qué ser una suma y una multiplicación, optaremos por dichas notaciones, junto con las notaciones de "cero" para el elemento neutro de la operación "suma" y de "uno" para el elemento neutro de la operación "producto"; por ser familiares a los anillos a los que estamos acostumbrados. De esta forma, para nosotros un anillo será una tupla $(A, +, 0, \cdot, 1)$, a la que podremos referirnos simplemente por A cuando las dos operaciones y elementos neutros estén claros por el contexto.

Definición 1.1 (Cuerpo). Un cuerpo es un anillo conmutativo A en el que $A \setminus \{0\}$ es un grupo.

Observemos que estamos suponiendo implícitamente que el anillo $\{0\}$ jamás puede ser un cuerpo.

Ejemplo. Algunos ejemplos de los cuerpos más famosos son:

- Q.
- IR.
- C.
- $\blacksquare \mathbb{Z}_p \text{ con } p \text{ primo.}$

Con el objetivo de definir de forma totalmente rigurosa lo que es la característica de un anillo (concepto que puede que se haya mencionado ya en cursos anteriores), nos es necesaria la siguiente proposición:

Proposición 1.1. Sea A un anillo, existe un único homomorfismo de anillos

$$\chi: \mathbb{Z} \to A$$

Además, $Im\chi$ es el menor subanillo contenido en A.

Demostración. Sean $\chi, \varphi : \mathbb{Z} \to A$ dos homomorfismos de anillos, demostremos por inducción que $\chi(k) = \varphi(k)$ para todo $k \in \mathbb{Z}$:

Para k=1. Como χ y φ son homomorfismos de anillos, estos cumplen

$$\chi(1) = 1 = \varphi(1)$$

Para k = 0. De manera análoga, $\chi(0) = 0 = \varphi(0)$.

Supuesto para todo $0 \le s \le k$, vemos que:

$$\chi(k+1) = \chi(k) + \chi(1) = \varphi(k) + \varphi(1) = \varphi(k+1)$$
$$\chi(-(k+1)) = -\chi(k+1) = -\varphi(k+1) = \varphi(-(k+1))$$

Acabamos de probar que $\chi = \varphi$, por lo que en caso de existir solo existe un único homomorfismo $\chi : \mathbb{Z} \to A$. Este se puede calcular exigiendo $\chi(1) = 1$.

Ahora, para ver que $Im\chi$ es el menor subanillo contenido en A, vimos ya en Álgebra I que $Im\chi$ es un subanillo de A. Para ver que es el menor, sea $S\subseteq A$ otro subanillo de A, como subanillo de A que es ha de contener al 1, al 0 y ser cerrado para sumas y opuestos, luego ha de contener también a $n \cdot 1$ y $-(n \cdot 1)$, para todo $n \in \mathbb{N}$. Sin embargo, tenemos que:

$$Im\chi = {\chi(n) : n \in \mathbb{Z}} = {0} \cup \left\{ \sum_{k=1}^{n} \chi(1) : n \in \mathbb{N} \right\} \cup \left\{ \sum_{k=1}^{n} \chi(-1) : n \in \mathbb{N} \right\}$$

Por lo que $Im\chi\subseteq S$.

Definición 1.2 (Característica de un anillo). Sea A un anillo, sabemos por la Proposición anterior que existe un único homomorfismo de anillos

$$\chi: \mathbb{Z} \to A$$

En dicho caso, sabemos de Álgebra I que ker χ es un ideal en \mathbb{Z} , y como todos los ideales de \mathbb{Z} son principales (por ser \mathbb{Z} un Dominio Euclídeo), sabemos que $\exists n \in \mathbb{N}$ de forma que ker $\chi = n\mathbb{Z}$. Dicho número n recibe el nombre de "característica de A" (aunque varios números cumplan esta definición, suele tomarse el más pequeño de ellos que sea positivo, en caso de no ser el ideal trivial), notado por car(A).

Proposición 1.2. La característica de un cuerpo ha de ser un número primo o cero.

Demostración. Supongamos que A es un cuerpo de característica $n \neq 0$, por lo que:

$$\sum_{k=1}^{n} 1 = n \cdot 1 = 0$$

Por reducción al absurdo, supongamos que n no es primo, con lo que puedo encontrar un primo p y $m \neq 0$ de forma que:

$$0 = n \cdot 1 = p \cdot m$$

Como $0 \neq m \in A$, existe $m^{-1} \in A$, que puede multiplicarse a ambos lados de la igualdad, obteniendo que p = 0, contradicción, por lo que n ha de ser primo.

Definición 1.3 (Subcuerpos y extensiones de cuerpos). Si K es un cuerpo, un subcuerpo de K es un subanillo F de K tal que F es un cuerpo. En dicho caso, diremos que K es una extensión del cuerpo F, y se podrá notar por:

$$F \leqslant K$$

Definición 1.4. Sea $F \leq K$ una extensión de cuerpos, decimos que una aplicación $\sigma: K \to K$ es F-lineal si verifica que:

$$\sigma(x+y) = \sigma(x) + \sigma(y) \qquad \forall x, y \in K$$

$$\sigma(a \cdot x) = a \cdot \sigma(x) \qquad \forall a \in F, \forall x \in K$$

Una forma rápida de ver si un subconjunto de un anillo es un subanillo la obtenemos de la siguiente proposición:

Proposición 1.3. Sea A un anillo y $B \subseteq A$, B es un subanillo de A si y solo si se cumplen las tres condiciones siguientes:

- 1. $1 \in B$.
- $2. \ a, b \in B \Longrightarrow a b \in B.$
- 3. $a, b \in B \Longrightarrow a \cdot b \in B$.

Demostración. Por doble implicación:

- \implies) Si B es un subanillo de A, está claro que se cumplen dichas propiedades.
- \iff Supuesto que B cumple dichas propiedades, veamos que B cumple todas las condiciones necesarias para ser un subanillo de A:
 - $1 \in B$.
 - Como $1 \in B$, tenemos que $0 = 1 1 \in B$.
 - Como $0 \in B$, tenemos que si $b \in B$, entonces $-b = 0 b \in B$.
 - Sean $a, b \in B$, como $-b \in B$ tenemos que $a + b = a (-b) \in B$.
 - Finalmente, si $a, b \in B$ es claro que $a \cdot b \in B$.

Es fácil ver (hágase) que las intersecciones arbitrarias de cuerpos siguen siendo cuerpos, propiedad que justifica el concepto que vamos a introducir.

Definición 1.5 (Subcuerpo generado por un conjunto). Sea K un cuerpo y $S \subseteq K$, si consideramos:

$$\Gamma = \{ F \subseteq K : F \leqslant K \text{ y } S \subseteq F \}$$

es decir, el conjunto de todos los subcuerpos de K que contienen a S, definimos el subcuerpo de K generado por S como el subcuerpo:

$$\bigcap_{F \in \Gamma} F$$

Que se caracteriza por ser el menor subcuerpo de K que contiene a S.

 $^{^{1}}$ Recordemos que un subanillo de un anillo es un subconjunto que contiene al 0, al 1, y que es cerrado para opuestos, para la suma y para el producto.

Definición 1.6 (Subcuerpo primo de un cuerpo). Si dado un cuerpo K pensamos en el subcuerpo generado por el conjunto vacío obtenemos el "subcuerpo primo de K", que viene dado por:

$$\bigcap_{F \in \Gamma} F$$

donde $\Gamma = \{F \subseteq K : F \leqslant K\}$. Este es el menor subcuerpo de K.

Proposición 1.4. Sea K un cuerpo de característica p, entonces el subcuerpo primo de K es isomorfo a:

- $\blacksquare \mathbb{Z}_p \ si \ p > 0.$
- \blacksquare \mathbb{Q} si p=0.

Demostración. Si consideramos el único homomorfismo $\chi: \mathbb{Z} \to K$, tenemos que $Im\chi$ es el menor subanillo de K, por lo que estará contenido en el subcuerpo primo de K (al ser este un subanillo de K), que denotaremos por Π ; es decir, $Im\chi \subseteq \Pi$. Aplicando el Primer Teorema de Isomofría sobre χ obtenemos que:

$$\frac{\mathbb{Z}}{p\mathbb{Z}} = \frac{\mathbb{Z}}{\ker \chi} \cong Im\chi$$

Si p > 0 tendremos (vimos anteriormente que p debe ser primo):

$$\mathbb{Z}_p = \frac{\mathbb{Z}}{p\mathbb{Z}} \cong Im\chi$$

Por lo que $Im\chi$ es un subcuerpo de K, y como Π es el menor subcuerpo de K, tenemos que $\Pi \subseteq Im\chi$, lo que nos da la igualdad $\Pi = Im\chi \cong \mathbb{Z}_p$.

Si p = 0 tendremos entonces $\mathbb{Z} \cong Im\chi$, por lo que los cuerpos de fracciones de \mathbb{Z} y de $Im\chi$ (a quien denotaremos por Q) han de ser isomorfos:

$$\mathbb{O} \cong Q$$

Como teníamos que $Im\chi \subseteq \Pi$, podemos calcular Q dentro² de Π , obteniendo que $Q \subseteq \Pi$, pero como Π es el menor subcuerpo de K, tendremos $\Pi \subseteq Q$, lo que nos da la igualdad $\Pi = Q \cong \mathbb{Q}$.

Observación. Si $F \leq K$ extensión, entonces K es un espacio vectorial sobre F.

Definición 1.7. Si $F \leq K$ es una extensión, la dimensión de K sobre F como espacio vectorial recibe el nombre de "grado de la extensión $F \leq K$ ", denotado por:

Si [K:F] es un número finito, decimos que $F \leq K$ es (una extensión) finita. En caso contrario, diremos que es una extensión infinita, denotado por $[K:F] = \infty$.

Ejemplo. Como ejemplos a destacar:

²Si $A \subseteq B$ como subanillo, entonces el cuerpo de fracciones de A está dentro del cuerpo de fracciones de B, pero si B es un cuerpo, coincide con su cuerpo de fracciones.

- $\mathbb{R} \leq \mathbb{C}$ tiene grado de extensión $[\mathbb{C} : \mathbb{R}] = 2$, ya que $\{1, i\}$ es una \mathbb{R} -base de \mathbb{C} .
- Si $[\mathbb{R} : \mathbb{Q}] = n$, entonces tendríamos que $\mathbb{R} \cong \mathbb{Q}^n$ como subespacios vectoriales, por lo que \mathbb{R} no sería numerable. Por tanto, podemos decir que $[\mathbb{R} : \mathbb{Q}] = \infty$.

Ejercicio 1. Demostrar que el cardinal de un cuerpo finito es de la forma p^n , con p primo y $n \ge 1$.

Sea K un cuerpo finito, este no podrá tener característica cero, por lo que su característica será un primo p de forma que su cuerpo primo será isomorfo a \mathbb{Z}_p . De esta forma, K será un espacio vectorial sobre un cuerpo isomorfo a \mathbb{Z}_p , con cierto grado de extensión $n \in \mathbb{N} \setminus \{0\}$, por lo que como espacio vectorial será isomorfo a:

$$\underbrace{\mathbb{Z}_p \times \ldots \times \mathbb{Z}_p}_{n \text{ veces}}$$

Luego K ha de tener cardinal p^n .

Haremos próximamente una clasificacion de cuerpos finitos, en la que cada primo y natural no nulo nos definan un único cuerpo de cardinal p^n .

1.1. Extensiones de cuerpos y elementos algebraicos

Definición 1.8 (Extensión generada por un subconjunto). Sea $F \leq K$ extensión, $S \subseteq K$, definimos la "extensión de F generada por S" como el menor subcuerpo de K que contiene a $F \cup S$, denotado por F(S).

- Si $S = \{s_1, \ldots, s_t\}$, simplificaremos la notación y escribiremos $F(s_1, \ldots, s_t)$.
- Si $K = F(\alpha_1, ..., \alpha_t)$ para ciertos elementos $\alpha_1, ..., \alpha_t \in K$, diremos entonces que $F \leq K$ es una extensión finitamente generada³.

Ejemplo. $\mathbb{Q}(\sqrt{2})$ es el menor subcuerpo de \mathbb{R} que contiene a $\sqrt{2}$, y viene dado por:

$$\mathbb{Q}(\sqrt{2}) = \left\{ a + b\sqrt{2} : a, b \in \mathbb{Q} \right\}$$

Demostración. Veámoslo:

- \supseteq) Sean $a, b \in \mathbb{Q}$, tenemos que $a, b, \sqrt{2} \in \mathbb{Q}(\sqrt{2})$, por lo que $a + b\sqrt{2} \in \mathbb{Q}(\sqrt{2})$.
- \subseteq) Si demostramos que $\{a+b\sqrt{2}: a,b\in\mathbb{Q}\}$ es un cuerpo, entonces tenemos esta inclusión, ya que $\mathbb{Q}(\sqrt{2})$ es el menor subcuerpo de \mathbb{R} que contiene a $\sqrt{2}$. Es evidente que dicho conjunto es un anillo. Para ver que es un cuerpo, dado

³No confundir una extensión finitamente generada con que el conjunto $\{\alpha_1, \dots, \alpha_t\}$ sea un sistema de generadores de K.

 $\alpha=a+b\sqrt{2},$ buscamos calcular un elemento inverso al mismo que sea de la misma forma. Sea:

$$\beta = \frac{a}{a^2 - 2b^2} - \frac{b\sqrt{2}}{a^2 - 2b^2} = \frac{a - b\sqrt{2}}{a^2 - 2b^2} \in \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$$

Observamos que:

$$\alpha\beta = \left(a + b\sqrt{2}\right) \frac{a - b\sqrt{2}}{a^2 - 2b^2} = \frac{\left(a + b\sqrt{2}\right)\left(a - b\sqrt{2}\right)}{\left(a + b\sqrt{2}\right)\left(a - b\sqrt{2}\right)} = 1$$

Por lo que dicho conjunto es un cuerpo, al tener todo elemento un inverso.

Observamos que tenemos $\left[\mathbb{Q}(\sqrt{2}):\mathbb{Q}\right]=2$. Debemos tener en cuenta que aunque este resultado pueda generalizarse a otro más general como que:

$$\mathbb{Q}(\sqrt{n}) = \{a + b\sqrt{n} : a, b \in \mathbb{Q}\} \text{ si } \sqrt{n} \notin \mathbb{Q}$$

En general, esta no es la definición del menor subcuerpo generado por cierto conjunto. Por ejemplo, se tiene que (lo veremos próximamente):

$$\mathbb{Q}\left(\sqrt[3]{2}\right) \neq \{a + b\sqrt[3]{2} : a, b \in \mathbb{Q}\}$$

Definición 1.9 (Cuerpo de descomposición). Sea K un cuerpo, $f \in K[x]$ y $K \leq E$ extensión de cuerpos tal que f se descompone completamente en E[x] como producto de polinomios lineales (es decir, de grado 1) y $E = K(\alpha_1, \ldots, \alpha_t)$ con $\alpha_1, \ldots, \alpha_t \in E$ las raíces de f, entonces diremos que E es un cuerpo de descomposición (o de escisión) de f sobre K.

Ejemplo. Veamos varios ejemplos de cuerpos de descomposición de polinomios:

- Si consideramos $x^2 + 1 \in \mathbb{R}[x]$, como $\mathbb{R} \leq \mathbb{C}$ y se cumple que $\mathbb{C} = \mathbb{R}(i, -i)$, tenemos que \mathbb{C} es un cuerpo de descomposición de $x^2 + 1$.
- Por ejemplo, si $x^2 + 1 \in \mathbb{Q}[x]$, un cuerpo de descomposición en este caso es $\mathbb{Q}(i)$, ya que $\mathbb{Q} \leq \mathbb{Q}(i)$ y $\mathbb{Q}(i) = \mathbb{Q}(i, -i)$.

Observación. Si $f \in \mathbb{Q}[x]$ y tomo⁴ todas sus raíces en \mathbb{C} , digamos $\alpha_1, \ldots, \alpha_t$, entonces un cuerpo de descomposición de f es $\mathbb{Q}(\alpha_1, \ldots, \alpha_t)$

Ejemplo. Si tomamos $x^2 - 2 \in \mathbb{Q}[x]$, entonces un cuerpo de descomposición es $\mathbb{Q}(\sqrt{2})$.

Ejercicio 1.1.1. Si tenemos $F \leq K$ extensión de cuerpos y $S, T \subseteq K$, demostrar que:

$$F(S \cup T) = F(S)(T)$$

Demostración. Veámoslo por doble inclusión:

⁴Fundamentado por el Teorema Fundalmental del Álgebra.

- \subseteq) $F(S \cup T)$ es por definición el menor subucerpo de K que contiene a $F \cup S \cup T$, por lo que para ver esta inclusión hemos de ver que F(S)(T) es un cuerpo que contiene a $F \cup S \cup T$. Para ello, F(S)(T) es por definición el menor subcuerpo de K que contiene a $F(S) \cup T$, y F(S) es a su vez el menor subcuerpo de K que contiene a $F \cup S$. Por tanto, F(S)(T) es un cuerpo que contiene a $F \cup S \cup T$, de donde $F(S \cup T) \subseteq F(S)(T)$.
- ⊇) El menor subcuerpo de K que contiene a $F \cup S \cup T$ ha de contener al menor subcuerpo de K que contiene a $F \cup S$, por lo que $F(S \cup T) \supseteq F(S)$. Como ahora tenemos que $F(S), T \subseteq F(S \cup T)$, tenemos por tanto que el menor subcuerpo de K que contiene a $F(S) \cup T$ está contenido en $F(S \cup T)$, es decir, $F(S)(T) \subseteq F(S \cup T)$.

Ejemplo. Si tomamos $f = x^3 - 2 \in \mathbb{Q}[x]$, este polinomios tiene 3 raíces distintas, ya que su polinomio derivado⁵ tiene como raíces el cero, que no es raíz de f. Las raíces de f son $\sqrt[3]{2}$ y el resto son dos raíces complejas, que se calculan usando las raíces terciarias de la unidad:

$$\omega = e^{\frac{2\pi i}{3}} = \cos\left(\frac{2\pi}{3}\right) + i\operatorname{sen}\left(\frac{2\pi}{3}\right) = \frac{-1}{2} + i\frac{\sqrt{3}}{2}$$

Por lo que $\omega^3 = 1$, de donde $(\sqrt[3]{2}\omega)^3 = 2$. Así que un cuerpo de descomposición de f es $\mathbb{Q}(\sqrt[3]{2}, \omega\sqrt[3]{2}, \omega^2\sqrt[3]{2})$, que es igual a $\mathbb{Q}(\sqrt[3]{2}, \omega)$:

Demostración. Por doble inclusión:

⊆) Como $\mathbb{Q}\left(\sqrt[3]{2},\omega\right)$ es un cuerpo que contiene a ω y a $\sqrt[3]{2}$, este ha de contener también a:

$$\sqrt[3]{2}$$
, $\omega\sqrt[3]{2}$, $\omega^2\sqrt[3]{2}$

Por lo que el menor cuerpo que contiene a todos estos ha de estar contenido en $\mathbb{Q}(\sqrt[3]{2},\omega)$.

⊇) De forma análoga, como $\mathbb{Q}\left(\sqrt[3]{2}, \omega\sqrt[3]{2}, \omega^2\sqrt[3]{2}\right)$ es un cuerpo que contiene a $\sqrt[3]{2}$ y a ω , ya que:

$$\omega = \frac{\omega\sqrt[3]{2}}{\sqrt[3]{2}} \in \mathbb{Q}\left(\sqrt[3]{2}, \omega\sqrt[3]{2}, \omega^2\sqrt[3]{2}\right)$$

Por tanto, el menor cuerpo que contiene a ω y $\sqrt[3]{2}$ ha de estar contenido en $\mathbb{Q}(\sqrt[3]{2},\omega\sqrt[3]{2},\omega^2\sqrt[3]{2})$.

Nos preguntamos ahora por un cuerpo de descomposición de $x^2+x+1\in\mathbb{Z}_2[x]$. Todavía no podemos dar respuesta a esta pregunta, por lo que necesitamos una noción más sofisticada de cuerpos de descomposición, a la que llegaremos desarrollando esta teoría.

⁵Recordamos que α es una raíz múltiple de f si, y solo si, α es una raíz de f'.

Ejemplo. Tomamos $f = x^n - 1 \in \mathbb{Q}[x]$ con $n \ge 1$ y nos preguntamos sobre un cuerpo de descomposición de dicho polinomio, que tiene n raíces, y:

$$f' = nx^{n-1}$$

Por lo que no comparte raíces con f', luego tiene n raíces distintas, todas ellas de multiplicidad 1, que son:

$$\left\{ \left(e^{\frac{2\pi i}{n}}\right)^k : k \in \{0, \dots, n-1\} \right\}$$

Que es un subgrupo cíclico de orden n de $\mathbb{C} \setminus \{0\}$, generado por $e^{\frac{2\pi i}{n}}$. Cada uno de sus generadores se llama raíz n—ésima compleja primitiva de la unidad.

Un cuerpo de descomposición de $x^n - 1 \in \mathbb{Q}[x]$ es $\mathbb{Q}(\eta)$, donde η es una raíz n-ésima compleja primitiva de la unidad.

1.1.1. Elementos algebraicos

Algo que tienen en común todos los números complejos que aparecían en los ejemplos anteriores es que todos ellos son algebraicos sobre \mathbb{Q} :

Definición 1.10 (Elemento algebraico). Sea $F \leq K$ extensión y $\alpha \in K$, diremos que α es algebraico sobre F si $f(\alpha) = 0$ para algún $f \in F[x] \setminus \{0\}$. En caso contrario, diremos que α es trascendente sobre F.

Proposición 1.5. Sean $F \leqslant K$ extensión, $\alpha \in K$ algebraico sobre F. Existe un único polinomio mónico⁶ irreducible $f \in F[x]$ tal que $f(\alpha) = 0$. Además, se tiene un isomorfismo de cuerpos $F(\alpha) \cong \frac{F[x]}{\langle f \rangle}$, donde $\langle f \rangle$ denota el ideal principal generado por f:

$$\langle f \rangle = \{ gf : g \in F[x] \}$$

 $Y \ además, \ \{1, \alpha, \dots, \alpha^{degf-1}\} \ es \ una \ F-base \ de \ F(\alpha). \ Asi, \ [F(\alpha):F] = degf.$

Demostración. Definimos la aplicación "evaluación en α "

$$\begin{array}{ccc} e_{\alpha}: & F[x] & \longrightarrow & K \\ & g & \longmapsto & g(\alpha) \end{array}$$

que es un homomorfismo de anillos por la Propiedad Universal del Anillo de Polinomios, aplicado a la incusión $\iota: F \to K$ y al elemento $\alpha \in K$. Por tanto, su núcleo ker e_{α} es un ideal de F[x]. Como F es un cuerpo, F[x] es un Dominio Euclídeo, luego todo ideal es principal. Sea $f \in F[x]$ el generador mónico de ker e_{α} , sabemos que es el polinomio de menor grado contenido en ker e_{α} . Veamos que f cumple con las condiciones descritas en el enunciado:

• Por la definición de f tenemos que $f \in \ker e_{\alpha}$, luego:

$$0 = e_{\alpha}(f) = f(\alpha)$$

⁶El coeficiente líder es 1.

• Por el Primer Teorema de Isomorfía, e_{α} induce un isomorfismo de anillos:

$$Ime_{\alpha} \cong \frac{F[x]}{\ker e_{\alpha}} = \frac{F[x]}{\langle f \rangle}$$

Donde Ime_{α} será un subanillo de K, que es un dominio de integridad por ser K un cuerpo, de donde $\frac{F[x]}{\langle f \rangle}$ es un dominio de integridad también, luego por un teorema visto en Álgebra I deducimos que f tiene que ser irreducible.

- Para ver la unicidad, si tomamos $h \in F[x]$ un polinomio mónico irreducible con $h(\alpha) = 0$, entonces $h \in \ker e_{\alpha} = \langle f \rangle$, por lo que $\langle h \rangle \subseteq \langle f \rangle$. Como h es irreducible, tenemos que $\langle h \rangle$ es un ideal maximal, de donde $\langle h \rangle = \langle f \rangle$. Por tanto, existe $\lambda \in F$ de forma que $h = \lambda f$, pero como ambos son polinomios mónicos, ha de ser $\lambda = 1$, luego h = f.
- Para ver el isomorfismo, como $\frac{F[x]}{\langle f \rangle}$ es un dominio de integridad, un Teorema de Álgebra I nos decía que entonces $\frac{F[x]}{\langle f \rangle}$ es un cuerpo, de donde el isomorfismo

$$\frac{F[x]}{\langle f \rangle} \cong Ime_{\alpha}$$
$$g + \langle f \rangle \mapsto g(\alpha)$$

nos dice que Ime_{α} es un cuerpo, contenido en $K: Ime_{\alpha} \leq K$.

Sea $a \in F$, podemos ver a dentro de F[x] como el polinomio constantemente igual a a, por lo que $e_{\alpha}(a) = a$, de donde $a \in Ime_{\alpha}$, luego $F \leq Ime_{\alpha}$.

Si consideramos ahora el polinomio identidad $h = x \in F[x]$, tenemos que: $e_{\alpha}(h) = h(\alpha) = \alpha$, por lo que $\alpha \in Ime_{\alpha}$.

En definitiva, Ime_{α} es un cuerpo que contiene a $F \cup \{\alpha\}$, por lo que por definición de $F(\alpha)$ tiene que ser $F(\alpha) \subseteq Ime_{\alpha}$. Para la otra inclusión, si cogemos un elemento de Ime_{α} , este será de la forma $g(\alpha)$ para cierto $g \in F[x]$, que tendrá la forma:

$$g(x) = \sum_{i=1}^{n} g_i x^i \qquad g_i \in F$$

de donde:

$$g(\alpha) = \sum_{i=1}^{n} g_i \alpha^i$$

Con $g_i \in F$ y $\alpha \in F(\alpha)$, luego $g(\alpha) \in F(\alpha)$, lo que nos da la inclusión $Ime_{\alpha} \subseteq F(\alpha)$ que nos faltaba. En definitiva:

$$F(\alpha) = Ime_{\alpha} \cong \frac{F[x]}{\langle f \rangle}$$

■ Para ver que $\mathcal{B} = \{1, \alpha, \dots, \alpha^{degf-1}\}$ es una F-base de $F(\alpha)$, usaremos que $F(\alpha) \cong \frac{F[x]}{\langle f \rangle}$, donde identificaremos F con su imagen por dicho isomorfismo, con lo que podemos comprobar que el isomorfismo es F-lineal:

$$(a + \langle f \rangle)(g + \langle f \rangle) = ag + \langle f \rangle \longmapsto (ag)(\alpha) = ag(\alpha) \qquad \forall a \in F, \forall g \in F[x]$$

De esta forma, vamos a tratar de buscar una F-base de $\frac{F[x]}{\langle f \rangle}$ cuya imagen por el isomorfismo con $F(\alpha)$ sea la base buscada. Para ello, sea $g + \langle f \rangle \in \frac{F[x]}{\langle f \rangle}$, si $degg \geqslant degf$, entonces usando que F[x] es DE, podemos encontrar $q, r \in F[x]$ de forma que:

$$g = fq + r$$
 con $degr < degf$

En dicho caso, tenemos que $g + \langle f \rangle = r + \langle f \rangle$. Por tanto, cualquier elemento $g + \langle f \rangle$ de $\frac{F[x]}{\langle f \rangle}$ puede escribirse como:

$$g(x) = \sum_{i=1}^{degf-1} f_i x^i \qquad f_i \in F \quad \forall i \in \{1, \dots, degf-1\}$$

Luego $B = \{1 + \langle f \rangle, x + \langle f \rangle, \dots, x^{degf-1} + \langle f \rangle \}$ es un F-sistema de generadores de $\frac{F[x]}{\langle f \rangle}$, que además es una F-base por ser sus elementos F-linealmente independientes. Si consideramos su imagen por el isomorfismo obtenemos el conjunto \mathcal{B} . Como los isomorfismos F-lineales transforman F-bases en F-bases (visto en Geometría I), tenemos que \mathcal{B} es una F-base de $F(\alpha)$.

Definición 1.11 (Polinomio irreducible). En las condiciones de la Proposición anterior, dicho único polinomio f recibe el nombre "polinomio irreducible (o mínimo) de α sobre F", y lo notaremos por $Irr(\alpha, F)$.

Observemos que este cumple $[F(\alpha):F]=deg\operatorname{Irr}(\alpha,F)$. A dicho grado lo llamaremos a veces grado de α sobre F.

La notación de mínimo se debe por cómo se ha obtenido f en la demostración anterior: se ha obtenido como un generador de ker e_{α} , y en un cuerpo los generadores de los ideales se escogen tomando el polinomio de menor grado. Al ser mónico, tenemos garantizada su unicidad, por lo que es el polinomio de grado más pequeño del que α es raíz.

Observación. Todo otro polinomio $g \in F[x]$ con $g(\alpha) = 0$ satisface que $g = h \operatorname{Irr}(\alpha, F)$ para $h \in F[x]$, puesto que en dicho caso tendríamos que:

$$g \in \ker e_{\alpha} = \langle f \rangle$$

Ejemplo. Veamos ejemplos de esta última definición:

- Irr $(i, \mathbb{Q}) = x^2 + 1 \in \mathbb{Q}[x]$, que es irreducible en $\mathbb{Q}[x]$ por ser de grado 2 y no tener raíces en \mathbb{Q} . De aquí deducimos que $\{1, i\}$ es una \mathbb{Q} -base de $\mathbb{Q}(i)$.
- $\operatorname{Irr}(\sqrt{2}, \mathbb{Q}) = x^2 2 \in \mathbb{Q}[x]$, que es irreducible en $\mathbb{Q}[x]$ por Eisenstein para p = 2, luego $\{1, \sqrt{2}\}$ es una \mathbb{Q} -base de $\mathbb{Q}(\sqrt{2})$.
- Irr $\left(e^{\frac{2\pi i}{3}}, \mathbb{Q}\right)$. Podríamos pensar primero en el polinomio $x^3 1$, pero este no es irreducible, ya que 1 es una raíz suya:

$$x^3 - 1 = (x - 1)(x^2 + x + 1)$$

Ahora, tenemos que x^2+x+1 es un polinomio del que $e^{\frac{2\pi i}{3}}$ es raíz, y además es un polinomio irreducible, ya que es de grado 2 y no tiene raíces en \mathbb{Q} , por lo que $Irr\left(e^{\frac{2\pi i}{3}},\mathbb{Q}\right)=x^2+x+1$.

Una \mathbb{Q} -base de $\mathbb{Q}\left(e^{\frac{2\pi i}{3}}\right)$ es $\left\{1, e^{\frac{2\pi i}{3}}\right\}$, luego:

$$\left[\mathbb{Q}\left(e^{\frac{2\pi i}{3}}\right):\mathbb{Q}\right] = 2$$

1.1.2. Ejercicios

Ejercicio 1.1.2. Sea $F \leq K$ extensión y $\alpha \in K$ de grado 2 sobre F. Demostrar que $F(\alpha)$ es un cuerpo de descomposición de $Irr(\alpha, F)$.

Si α es de grado 2 sobre F, entonces tenemos que $[F(\alpha):F]=2=deg\ Irr(\alpha,F)$, por lo que tenemos que $\exists a,b\in F$ de forma que:

$$Irr(\alpha, F) = x^2 + ax + b$$

puesto que sabemos que $Irr(\alpha, F)$ es un polinomio mónico. Por la propia definición de $Irr(\alpha, F)$, sabemos que α es raíz de este polinomio, por lo que el Teorema de Ruffini nos dice que $Irr(\alpha, F)$ es divisible entre $(x - \alpha)$ en K[x], luego se cumple que:

$$Irr(\alpha, F) = (x - \alpha)(x - \beta)$$

para cierto $\beta \in K$. En este punto, de la igualdad:

$$x^{2} + ax + b = (x - \alpha)(x - \beta) = x^{2} - (\alpha + \beta)x + \alpha\beta$$

Deducimos que $a = -\alpha - \beta$, por lo que $\beta = -(\alpha + a) \in F(\alpha)$. En definitiva, acabamos de ver que $Irr(\alpha, F)$ se descompone como producto de polinomios de grado 1 en $F(\alpha)[x]$, con $F(\alpha) = F(\alpha, \beta)$, por ser $\beta \in F(\alpha)$; es decir, $F(\alpha)$ es un cuerpo de descomposición de $Irr(\alpha, F)$.

Ejercicio 1.1.3. Calcular $Irr(w, \mathbb{Q}(\sqrt[3]{2}))$, para $w = e^{\frac{2\pi i}{3}}$.

Sabemos que w es una raíz cúbica de la unidad, por lo que es raíz del polinomio mónico:

$$x^3 - 1$$

Sin embargo, este polinomio no es irreducible, ya que 1 es raíz suya. Lo dividimos entre x-1, para obtener:

$$x^3 - 1 = (x - 1)(x^2 + x + 1)$$

Y tenemos que $x^2 + x + 1$ es un polinomio del que w es raíz. Además, este polinomio es irreducible en $\mathbb{Q}(\sqrt[3]{2})[x]$, por ser de grado 2 y ser sus dos raíces complejas (son w y w^2). En definitiva, hemos probado que:

$$Irr(w, \mathbb{Q}(\sqrt[3]{2})) = x^2 + x + 1$$

Ejercicio 1.1.4. Sea p un número primo y $w \neq 1$ una raíz p-ésima compleja de la unidad, calcular $Irr(w, \mathbb{Q})$.

Como w es una raíz cúbica de la unidad, tenemos que w es raíz del polinomio:

$$x^{p} - 1$$

Que no es irreducible, ya que 1 es raíz suya. Si lo dividimos entre x-1, obtenemos:

$$x^{p} - 1 = (x - 1)(x^{p-1} + x^{p-2} + \dots + x + 1)$$

Y la demostración se concluye (hágase) probando que $x^{p-1} + x^{p-2} + \ldots + x + 1$ es un polinomio irreducible, o bien que $[\mathbb{Q}(w) : \mathbb{Q}] = p - 1$, con lo que al final tendremos que:

$$Irr(w, \mathbb{Q}) = x^{p-1} + x^{p-2} + \ldots + x + 1$$

1.2. Extensiones finitas y extensiones algebraicas

El siguiente Lema nos será de gran utilidad siempre que queramos calcular el grado de una extensión:

Lema 1.6 (de la Torre). $Si F \leq K \leq L$ extensión:

$$F\leqslant L \ es \ finita \Longleftrightarrow \left\{ \begin{array}{ll} F\leqslant K \\ & son \ finitas \\ K\leqslant L \end{array} \right.$$

 $Adem \acute{a}s, \ [L:F] = [L:K][K:F].$

Demostración. Por doble implicación:

- \Longrightarrow) Notemos que K es un F-subespacio vectorial de L, del que suponíamos ser un F-espacio vectorial de dimensión finita, por lo que $F \leqslant K$ será también una extensión finita. Como $F \subseteq K$, si tomamos $\{\alpha_1, \ldots, \alpha_t\}$ un sistema de generadores del F-subespacio vectorial L, tendremos entonces que este mismo conjunto es un sistema de generadores del K-subespacio vectorial L, por lo que $K \leqslant L$ también es finita, ya que basta mirar los escalares de F como si fueran escalares de K.
- \iff Sean $\{u_1, \ldots, u_n\}$ una K-base de L y $\{v_1, \ldots, v_m\}$ F-base de K, veamos entonces que:

$$\{u_i v_j : i \in \{1, \dots, n\}, j \in \{1, \dots, m\}\}$$

es una F-base de L:

• Si $\alpha \in L$, tenemos que existen $k_1, \ldots, k_n \in K$ de forma que:

$$\alpha = k_1 u_1 + \ldots + k_n u_n$$

Para cada k_i existen $a_{i,1}, \ldots, a_{i,m} \in F$ de forma que:

$$k_i = a_{i,1}v_1 + \ldots + a_{i,m}v_m$$

de donde:

$$\alpha = u_1(a_{1,1}v_1 + \ldots + a_{1,m}v_m) + \ldots + u_n(a_{n,1}v_1 + \ldots + a_{n,m}v_m)$$

= $a_{1,1}u_1v_1 + a_{1,2}u_1v_2 + \ldots + a_{1,m}u_1v_m + \ldots + a_{n,m}u_nv_m$

Por lo que es un F-sistema de generadores.

■ Si ahora tenemos que $a_{i,j} \in F$ de forma que:

$$\sum_{j=1}^{m} \sum_{i=1}^{n} a_{i,j} v_j u_i = 0$$

Como $\{u_1, \ldots, u_n\}$ es un conjunto K-linealmente independiente y tenemos $a_{i,j}v_j \in K$, tendremos entonces que:

$$\sum_{i=1}^{m} a_{i,j} v_j = 0 \qquad \forall i \in \{1, \dots, n\}$$

Pero como $\{v_1, \ldots, v_m\}$ es un conjunto F-linealmente independiente, tendremos entonces que $a_{i,j} = 0 \quad \forall j \in \{1, \ldots, m\}, \quad \forall i \in \{1, \ldots, n\},$ por lo que el conjunto es F-linealmente independiente.

Para la fórmula entre las dimensiones, si $F \leq K$ o $K \leq L$ no fuera finita, tendríamos entonces que $F \leq L$ no sería finita y viceversa. Supuesto ahora que estamos en el caso en el que todas las extensiones son finitas, hemos visto en la implicación " \iff " que si tenemos una base de L sobre K de n vectores y una base de K sobre F de m vectores, entonces podemos construir una base de K sobre K K sobre

$$n\cdot m=[L:F], \qquad n=[L:K], \qquad m=[K:F]$$

tenemos la fórmula demostrada.

Notación. Cuando tenemos extensiones de cuerpos de la forma:

$$F_1 \leqslant F_2 \leqslant \ldots \leqslant F_s$$

se suele decir que tenemos una torre de cuerpos. A los cuerpos intermedios (aquellos entre F_2 y F_s , ambos incluidos) se les llama a veces <u>subextensiones</u>.

Ejemplo. Sea $w \in \mathbb{C}$, una raíz cúbica primitiva de 1, vimos que $\mathbb{Q}(w, \sqrt[3]{2})$ es un cuerpo de descomposición de $x^3 - 2 \in \mathbb{Q}[x]$. Queremos calcular:

$$\left[\mathbb{Q}\left(w,\sqrt[3]{2}\right):\mathbb{Q}\right]$$

Calculemos mediante una torre:

$$\mathbb{Q} \leqslant \mathbb{Q}\left(\sqrt[3]{2}\right) \leqslant \mathbb{Q}\left(\sqrt[3]{2}\right)(w) = \mathbb{Q}\left(\sqrt[3]{2}, w\right)$$

Sabemos ya que:

$$\left[\mathbb{Q}\left(\sqrt[3]{2}\right):\mathbb{Q}\right]=3$$

ya que $x^3 - 2 \in \mathbb{Q}[x]$ es irreducible por Eisenstein para p = 2. Ahora, por el lema de la Torre:

$$\left[\mathbb{Q}\left(\sqrt[3]{2},w\right):\mathbb{Q}\right]=\left[\mathbb{Q}\left(\sqrt[3]{2}\right)(w):\mathbb{Q}\left(\sqrt[3]{2}\right)\right]\left[\mathbb{Q}\left(\sqrt[3]{2}\right):\mathbb{Q}\right]$$

Sabemos que w es raíz de $x^2 + x + 1 \in \mathbb{Q}(\sqrt[3]{2})[x]$. Es irreducible porque tiene grado 2 y sus raíces no están en $\mathbb{Q}(\sqrt[3]{2})$, de donde:

$$\left[\mathbb{Q}\left(\sqrt[3]{2}\right)(w):\mathbb{Q}\left(\sqrt[3]{2}\right)\right]=2$$

En definitiva:

$$\left[\mathbb{Q}\left(\sqrt[3]{2}, w\right) : \mathbb{Q}\right] = 2 \cdot 3 = 6$$

Una base de $K = \mathbb{Q}(\sqrt[3]{2}, w)$ es:

$$\left\{1, \sqrt[3]{2}, \left(\sqrt[3]{2}\right)^2, w, w\sqrt[3]{2}, w\left(\sqrt[3]{2}\right)^2\right\}$$

Ejemplo. Queremos calcular Irr $(\sqrt{5} + \sqrt{-2}, \mathbb{Q})$, vamos a buscar primero información sobre el grado del polinomio que buscamos.

Su grado es $\left[\mathbb{Q}(\sqrt{5}+\sqrt{-2}):\mathbb{Q}\right]$. Sea $\alpha=\sqrt{5}+\sqrt{-2}\in\mathbb{C}$:

$$\alpha - \sqrt{-2} = \sqrt{5} \Longrightarrow \alpha^2 - 2 - 2\alpha\sqrt{-2} = 5$$

de donde:

$$\sqrt{-2} = \frac{\alpha^2 - 7}{2\alpha} \in \mathbb{Q}(\alpha)$$

de donde $\mathbb{Q}(\sqrt{-2}) \leq \mathbb{Q}(\alpha)$. Haciendo el mismo procedimiento con $\sqrt{5}$, llegamos a que $\sqrt{5} \in \mathbb{Q}(\alpha)$, luego $\mathbb{Q}(\sqrt{5}) \leq \mathbb{Q}(\alpha)$, de donde:

$$\mathbb{Q}\left(\sqrt{5},\sqrt{-2}\right) \leqslant \mathbb{Q}(\alpha) \leqslant \mathbb{Q}\left(\sqrt{5},\sqrt{-2}\right)$$

Luego $\mathbb{Q}(\sqrt{5}, \sqrt{-2}) = \mathbb{Q}(\alpha)$. Ahora podemos considerar:

$$\mathbb{Q} \leqslant \mathbb{Q}\left(\sqrt{5}\right) \leqslant \mathbb{Q}\left(\sqrt{5}\right)\left(\sqrt{-2}\right) = \mathbb{Q}\left(\sqrt{5} + \sqrt{-2}\right)$$

por el lema de la Torre:

$$\left[\mathbb{Q}(\sqrt{5} + \sqrt{-2}) : \mathbb{Q}\right] = \left[\mathbb{Q}\left(\sqrt{5}\right) : \mathbb{Q}\right] \left[\mathbb{Q}\left(\sqrt{5}\right)\left(\sqrt{-2}\right) : \mathbb{Q}\left(\sqrt{5}\right)\right]$$

Sabemos que el primero vale 2 porque x^2-5 es irreducible por Eisenstein. El segundo sabemos que es menor o igual que 2 por ser x^2+2 un posible polinomio, pero por ser su raíz un número imaginario no puede estar en $\mathbb{Q}(\sqrt{5})$, tiene grado 2 y ninguna de sus raíces están en $\mathbb{Q}(\sqrt{5})$. En definitiva:

$$\left[\mathbb{Q}(\sqrt{5} + \sqrt{-2}) : \mathbb{Q}\right] = \left[\mathbb{Q}\left(\sqrt{5}\right) : \mathbb{Q}\right] \left[\mathbb{Q}\left(\sqrt{5}\right)\left(\sqrt{-2}\right) : \mathbb{Q}\left(\sqrt{5}\right)\right] = 2 \cdot 2 = 4$$

Ahora, sabemos que el polinomio tiene grado 4, por lo que si encontramos uno de grado 4 del que α sea raíz, no tenemos que probar que sea irreducible. De:

$$\sqrt{-2} = \frac{\alpha^2 - 7}{2\alpha} \in \mathbb{Q}(\alpha)$$

Elevamos al cuadrado, operamos y:

$$\alpha^4 - 6\alpha^2 + 49 = 0$$

De donde α es raíz de $x^4 - 6x^2 + 49 \in \mathbb{Q}[x]$.

Esta técnica de saber el grado del polinomio irreducible es una técnica muy útil a la hora de calcular el polinomio irreducible.

Proposición 1.7. Sea $F \leqslant K$, $\alpha \in K$, tenemos que α es algebraico sobre F si y solo si existe una torre de cuerpos $F \leqslant L \leqslant K$ tal que $F \leqslant L$ es finita $y \alpha \in L$.

Demostración. Por doble implicación:

- \Longrightarrow) Si α es algebraico sobre F, si tomamos $L=F(\alpha)$ es claro que $F\leqslant L\leqslant K$ así como que $\alpha\in L$. La Proposición 1.5 nos dice que $F\leqslant L$ es finita.
- \Leftarrow Sea L un cuerpo en las condiciones del enunciado, tenemos entonces que como $F \leqslant L$ es finita y $F \leqslant F(\alpha) \leqslant L$ entonces (usando el Lema de la Torre) $F \leqslant F(\alpha)$ es finita, luego el conjunto $\{\alpha^n : n \geqslant 0\}$ no puede ser F-linealmente independiente, si no que tiene que existir $m \in \mathbb{N}$ con $m \geqslant 1$ de forma que α^m dependa linealmente de $1, \alpha, \ldots, \alpha^{m-1}$, es decir, existen $a_0, \ldots, a_{m-1} \in F$ de forma que:

$$\alpha^m = \sum_{i=0}^{m-1} a_i \alpha^i$$

Por lo que tomando el polinomio:

$$f(x) = x^m - \sum_{i=0}^{m-1} a_i x^i \in F[x]$$

Tenemos que $f(\alpha) = 0$, luego α es algebraico sobre F.

Definición 1.12 (Extensión algebraica). Una extensión $F \leq K$ se dice algebraica si todo elemento $\alpha \in K$ es algebraico sobre F.

Teorema 1.8. Una extensión de cuerpos es finita si y solo si es algebraica y finitamente generada.

Demostración. Sea $F \leq K$ una extensión de cuerpos, por doble implicación:

 \Longrightarrow) Tomamos $\{u_1,\ldots,u_t\}$ una F-base de K, tenemos entonces que $K=F(u_1,\ldots,u_t)$. Además, si $\alpha\in K$, tenemos entonces que $F\leqslant F(\alpha)\leqslant K$ con $F\leqslant K$ finita, por lo que por el Lema de la Torre tenemos que $F\leqslant F(\alpha)$ es finita. Tomando $L=F(\alpha)$ y aplicando la Proposición anterior tenemos que α es algebraico sobre F.

 \iff Suponemos que $K = F(\alpha_1, \dots, \alpha_n)$ y que α_i es algebraico sobre F para todo $i \in \{1, \ldots, n\}$. Por el lema de la torre y la Proposición 1.5, tenemos:

$$F \leqslant F(\alpha_1) \leqslant \ldots \leqslant F(\alpha_1, \ldots, \alpha_n)$$

cada uno es una extensión finita del anterior, por lo que $F(\alpha_1,\ldots,\alpha_n) \geqslant F$ es finita.

Observación. Hemos visto que si $\alpha_1, \ldots, \alpha_n \in K$ y α_1 es algebraico sobre F, α_2 es algebraico sobre $F(\alpha_1), \ldots, \alpha_n$ es algebraico sobre $F(\alpha_1, \ldots, \alpha_{n-1}),$ entonces $[F(\alpha_1,\ldots,\alpha_n):F]<\infty.$

Corolario 1.8.1. Si $F \leq K$ extensión y llamamos:

$$\Lambda = \{ \alpha \in K : \alpha \text{ algebraico sobre } F \}$$

Entonces, Λ es un subcuerpo de K y la extensión $F \leqslant \Lambda$ es algebraica.

Demostración. Tenemos que ver que Λ contiene al 0, al 1 y que es cerrada para sumas, productos e inversos:

- $0, 1 \in \Lambda$ es claro.
- Si $\alpha, \beta \in \Lambda$, tenemos entonces que:

$$\alpha - \beta, \alpha\beta \in F(\alpha, \beta)$$

Y como la extensión $F \leqslant F(\alpha, \beta)$ es finita por ser α y β algebraicos sobre F, deducimos que la extensión es algebraica, luego $\alpha - \beta$, $\alpha\beta$ son algebraicos sobre F, es decir, $\alpha - \beta$, $\alpha\beta \in \Lambda$.

• Si $\alpha \in \Lambda$, tenemos entonces que:

$$\alpha^{-1} \in F(\alpha)$$

Y de forma análoga al punto anterior, como $F \leq F(\alpha)$ es finita por ser α algebraico sobre F, deducimos que la extensión es algebraica, luego $\alpha^{-1} \in \Lambda$.

En definitiva, Λ es un cuerpo contenido en K, luego es un subcuerpo de K y es claro que $F \leq K$ es algebraico.

Definición 1.13 (Clausura algebraica). El conjunto Λ del Corolario anterior recibe el nombre de clausura algebraica de F en K.

Ejemplo. Si tomamos $F = \mathbb{Q}$ y $K = \mathbb{C}$, notaremos a la clausura algebraica (en \mathbb{C}) de \mathbb{Q} por \mathbb{Q} , y nos referiremos a sus elementos como los números algebraicos.

Según el corolario, la extensión $[\overline{\mathbb{Q}}:\mathbb{Q}]=\infty$, puesto que para todo $n\in\mathbb{N}$ podemos hacer $\mathbb{Q}(\sqrt[n]{2}) \subset \overline{\mathbb{Q}}$ y $[\mathbb{Q}(\sqrt[n]{2}) : \mathbb{Q}] = n$, que lo sabemos porque:

$$\operatorname{Irr}\left(\sqrt[n]{2},\mathbb{Q}\right) = x^n - 2$$

Ya que $x^n - 2$ es irreducible, por el criterio de Eisenstein.

1.2.1. Ejercicios

Ejercicio 1.2.1. Calcular $Irr(\sqrt{2} + i, \mathbb{Q})$.

Sea $\alpha = \sqrt{2} + i$, observemos que tenemos ya $\mathbb{Q}(\alpha) \leq \mathbb{Q}(\sqrt{2}, i)$. Pero si nos damos cuenta de que:

$$\alpha - \sqrt{2} = i \Longrightarrow \alpha^2 + 2 - 2\alpha\sqrt{2} = -1 \Longrightarrow \sqrt{2} = \frac{\alpha^2 + 3}{2\alpha} \in \mathbb{Q}(\alpha)$$
$$\alpha - i = \sqrt{2} \Longrightarrow \alpha^2 - 1 - 2\alpha i = 2 \Longrightarrow i = \frac{\alpha^2 - 3}{2\alpha} \in \mathbb{Q}(\alpha)$$

Tenemos entonces que $\mathbb{Q}(\sqrt{2},i) \leq \mathbb{Q}(\alpha)$, de donde:

$$\mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt{2}, i)$$

Si ahora tratamos de calcular $[\mathbb{Q}(\alpha) : \mathbb{Q}]$, podemos usar esta última igualdad y el lema de la torre para concluir que:

$$[\mathbb{Q}(\alpha):\mathbb{Q}] = [\mathbb{Q}(\sqrt{2},i):\mathbb{Q}] = [\mathbb{Q}(\sqrt{2},i):\mathbb{Q}(\sqrt{2})][\mathbb{Q}(\sqrt{2}):\mathbb{Q}]$$

- Como $x^2 2$ es irreducible por Eisenstein para p = 2, tenemos que $[\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] = 2$.
- Como $x^2 + 1$ es un polinomio de grado 2 cuyas dos raíces son complejas, tenemos que es irreducible en $\mathbb{Q}(\sqrt{2})$, por lo que $[\mathbb{Q}(\sqrt{2},i):\mathbb{Q}(\sqrt{2})] = 2$.

En definitiva:

$$[\mathbb{Q}(\alpha):\mathbb{Q}]=4$$

Con lo que si encontramos un polinomio mónico de grado 4 del que α sea raíz, habremos encontrado $Irr(\alpha, \mathbb{Q})$. Para ello:

$$2i\alpha = \alpha^2 - 3 \Longrightarrow -4\alpha^2 = \alpha^4 + 9 - 6\alpha^2 \Longrightarrow \alpha^4 - 2\alpha^2 + 9 = 0$$

Por lo que tomando:

$$g(x) = x^4 - 2x^2 + 9 \in \mathbb{Q}[x]$$

Tenemos que $Irr(\alpha, \mathbb{Q}) = g$.

Ejercicio 1.2.2. Calcular $Irr(\sqrt{2} + i\sqrt{3}, \mathbb{Q})$.

Tomando $\alpha = \sqrt{2} + i\sqrt{3}$, procedemos de forma análoga al ejercicio anterior:

$$\alpha - \sqrt{2} = i\sqrt{3} \Longrightarrow \alpha^2 + 2 - 2\alpha\sqrt{2} = -3 \Longrightarrow \sqrt{2} = \frac{\alpha^2 + 5}{2\alpha} \in \mathbb{Q}(\alpha)$$

$$\alpha - i\sqrt{3} = \sqrt{2} \Longrightarrow \alpha^2 - 3 - 2\alpha i\sqrt{3} = 2 \Longrightarrow i\sqrt{3} = \frac{\alpha^2 - 5}{2\alpha} \in \mathbb{Q}(\alpha)$$

De donde podemos escribir:

$$\mathbb{Q}(\sqrt{2}, i\sqrt{3}) \leqslant \mathbb{Q}(\alpha) \leqslant \mathbb{Q}(\sqrt{2}, i\sqrt{3})$$

Tratamos ahora de calcular $[\mathbb{Q}(\alpha):\mathbb{Q}]$ usando el lema de la torre:

$$[\mathbb{Q}(\alpha):\mathbb{Q}] = [\mathbb{Q}(\alpha):\mathbb{Q}(\sqrt{2})][\mathbb{Q}(\sqrt{2}):\mathbb{Q}]$$

- Como hemos visto en el ejercicio anterior, $[\mathbb{Q}(\sqrt{2}):\mathbb{Q}]=2$.
- Como $x^2 + 3$ es un polinomio de grado 2 cuyas raíces son complejas, tenemos que es irreducible en $\mathbb{Q}(\sqrt{2})$, por lo que $[\mathbb{Q}(\sqrt{2}, i\sqrt{3}) : \mathbb{Q}(\sqrt{2})] = 2$.

En definitiva, al igual que antes tenemos que $[\mathbb{Q}(\alpha), \mathbb{Q}] = 4$, buscamos un polinomio mónico de grado 4 del que α sea raíz. Para ello:

$$2\alpha\sqrt{2} = \alpha^2 + 5 \Longrightarrow 8\alpha^2 = \alpha^4 + 25 + 10\alpha^2 \Longrightarrow \alpha^4 + 2\alpha^2 + 25 = 0$$

Por lo que:

$$Irr(\alpha, \mathbb{Q}) = x^4 + 2x^2 + 25$$

Ejercicio 1.2.3. Calcular un cuerpo de descomposición de $x^4 + 14 \in \mathbb{Q}[x]$ y su grado sobre \mathbb{Q} .

Sabemos que f tiene 4 raíces, y como $f' = 4x^3$, sabemos que todas estas son distintas entre sí. Las raíces de f resultan ser el conjunto:

$$\sqrt[4]{-16} = \sqrt[4]{16}\sqrt[4]{-1} = 2\sqrt[4]{-1}$$

Usando la fórmula de De Moivre:

$$\sqrt[n]{e^{i\theta}} = \left\{ e^{i\left(\frac{\theta}{n} + \frac{2k\pi}{n}\right)} : k \in \{0, \dots, n-1\} \right\} = \left\{ e^{i\left(\frac{\theta + 2k\pi}{n}\right)} : k \in \{0, \dots, n-1\} \right\}$$

para nuestro caso tenemos n=4 y $\theta=\pi$:

$$\sqrt[4]{-1} = \left\{ e^{i\frac{\pi}{4}}, e^{i\frac{3\pi}{4}}, e^{i\frac{5\pi}{4}}, e^{i\frac{7\pi}{4}} \right\}$$

donde:

$$e^{i\frac{\pi}{4}} = \cos\frac{\pi}{4} + i\sin\frac{\pi}{4} = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}$$

si usamos ahora que tanto los opuestos como conjugados también son raíces:

$$\sqrt[4]{-1} = \left\{ \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}, \ \frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}, \ -\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}, \ -\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2} \right\}$$

de donde:

$$\sqrt[4]{-16} = 2\sqrt[4]{-1} = \left\{ \sqrt{2} + i\sqrt{2}, \sqrt{2} - i\sqrt{2}, -\sqrt{2} + i\sqrt{2}, -\sqrt{2} - i\sqrt{2} \right\}$$

En definitiva, el cuerpo de descomposición será:

$$K = \mathbb{Q}(\sqrt{2} + i\sqrt{2}, \sqrt{2} - i\sqrt{2}) \stackrel{(*)}{=} \mathbb{Q}(i, \sqrt{2})$$

la inclusión ⊆) está clara, para la otra:

$$\sqrt{2} \in K \Longrightarrow \mathbb{Q}(\sqrt{2}) \leqslant K$$
 $i\sqrt{2} \in K \Longrightarrow i \in K \Longrightarrow \mathbb{Q}(\sqrt{2}, i) \leqslant K$

Finalmente, usando el Lema de la Torre llegamos a que:

$$[K:\mathbb{Q}]=4$$

Ejercicio 1.2.4. Sea $\alpha = \sqrt{2} + \sqrt[3]{2} \in \mathbb{R}$, se pide:

- a) Probar que $\mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt{2}, \sqrt[3]{2})$.
- b) Calcular $Irr(\alpha, \mathbb{Q})$.
- a) Para el primero:

$$\sqrt[3]{2} = \alpha - \sqrt{2} \Longrightarrow 2 = \alpha^3 - 3\alpha^2\sqrt{2} + 3\alpha(\sqrt{2})^2 - (\sqrt{2})^3$$
$$= \alpha^3 - 3\alpha^2\sqrt{2} + 6\alpha - 2\sqrt{2}$$
$$= \alpha^3 + 6\alpha - (3\alpha^2 + 2)\sqrt{2}$$

con lo que:

$$\sqrt{2} = \frac{\alpha^3 + 6\alpha - 2}{3\alpha^2 + 2} \in \mathbb{Q}(\alpha)$$

Como $\sqrt[3]{2} = \alpha - \sqrt{2}$, tenemos entonces que $\sqrt[3]{2} \in \mathbb{Q}(\alpha)$. Así, tenemos que:

$$\mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt{2}, \sqrt[3]{2}) = \mathbb{Q}(\sqrt[3]{2})(\sqrt{2})$$

b) Probamos a calcular primero $[\mathbb{Q}(\alpha):\mathbb{Q}]$. El lema de la Torre nos dice que:

$$[\mathbb{Q}(\alpha):\mathbb{Q}] = [\mathbb{Q}(\alpha):\mathbb{Q}(\sqrt[3]{2})][\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}]$$

Y sabemos que $[\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}]=3$, ya que $x^3-2=Irr(\sqrt[3]{2},\mathbb{Q})$, ya que por Eisenstein, x^3-2 es irreducible para p=2. Además, sabemos que:

$$[\mathbb{Q}(\alpha):\mathbb{Q}(\sqrt[3]{2})] \leqslant 2$$

Ya que $\sqrt{2}$ es raíz de $x^2 - 2$. En consecuencia:

$$[\mathbb{Q}(\alpha):\mathbb{Q}] = [\mathbb{Q}(\alpha):\mathbb{Q}(\sqrt[3]{2})][\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}] \leqslant 6$$

y múltiplo de 3. Si aplicamos el Lema en sentido contrario:

$$[\mathbb{Q}(\alpha):\mathbb{Q}] = [\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}][\mathbb{Q}(\alpha):\mathbb{Q}(\sqrt[3]{2})]$$

Sabemos que $[\mathbb{Q}(\alpha):\mathbb{Q}(\sqrt[3]{2})]=2$, ya que $[\mathbb{Q}(\sqrt{2}):\mathbb{Q}]=2$, al ser $x^2-2\in\mathbb{Q}[x]$ irreducible (también por Eisenstein).

En definitiva, tenemos que $[\mathbb{Q}(\alpha):\mathbb{Q}]$ es múltiplo de 2, de 3 y que es menor o igual que 6, con lo que $[\mathbb{Q}(\alpha):\mathbb{Q}]=6$. Para terminar, elevar la expresión de antes de $\sqrt{2}$ al cuadrado, con lo que obtenemos un polinomio de grado 6 mónico del que α es raíz, con lo que ya sabemos que este es el irreducible.

Ejercicio 1.2.5. Calcular $f = Irr(1 + \sqrt[3]{2}, \mathbb{Q})$. Calcular las raíces complejas de f y un cuerpo de descomposición suyo.

Sea $\alpha = 1 + \sqrt[3]{2}$, tenemos que $\alpha \in \mathbb{Q}(\sqrt[3]{2})$, por lo que $\mathbb{Q}(\alpha) \leq \mathbb{Q}(\sqrt[3]{2})$. Además, como:

$$\sqrt[3]{2} = 1 + \sqrt[3]{2} - 1 \in \mathbb{Q}(\alpha)$$

tenemos que $\mathbb{Q}\left(\sqrt[3]{2}\right) \leqslant \mathbb{Q}(\alpha)$, con lo que $\mathbb{Q}(\alpha) = \mathbb{Q}\left(\sqrt[3]{2}\right)$. Tenemos por tanto que:

$$[\mathbb{Q}:\mathbb{Q}(\alpha)] = [\mathbb{Q}:\mathbb{Q}\left(\sqrt[3]{2}\right)] = 3$$

ya que $x^3 - 2 \in \mathbb{Q}[x]$ es irreducible. Buscamos pues un polinomio de grado 3 del que α sea raíz. Para ello:

$$\alpha - 1 = \sqrt[3]{2} \Longrightarrow \alpha^3 - 3\alpha^2 + 3\alpha - 1 = 2 \Longrightarrow \alpha^3 - 3\alpha^2 + 3\alpha + 1 = 0$$

Con lo que tomando $f = x^3 - 3x^2 + 3x + 1 \in \mathbb{Q}[x]$ tenemos que $f = Irr(\alpha, \mathbb{Q})$. Tenemos que las raíces de f cumplen la relación:

$$(x-1)^3 = 2$$

con lo que x-1 es cada una de las tres raíces cúbicas de 2, que son:

$$\left\{\sqrt[3]{2}, \sqrt[3]{2}e^{\frac{2\pi i}{3}}, \sqrt[3]{2}e^{\frac{4\pi i}{3}}\right\}$$

Y tenemos que:

$$e^{\frac{2\pi i}{3}} = \cos\left(\frac{2\pi}{3}\right) + i \operatorname{sen}\left(\frac{2\pi}{3}\right) = \frac{-1}{2} + i \frac{\sqrt{3}}{2}$$
$$e^{\frac{4\pi i}{3}} = \cos\left(\frac{4\pi}{3}\right) + i \operatorname{sen}\left(\frac{4\pi}{3}\right) = \frac{-1}{2} - i \frac{\sqrt{3}}{2}$$

Por lo que notando $\gamma = \frac{-1}{2} + i\frac{\sqrt{3}}{2}$, tenemos que las raíces de f son:

$$\left\{1+\sqrt[3]{2},1+\sqrt[3]{2}\gamma,1+\sqrt[3]{2}\overline{\gamma}\right\}$$

En definitiva, un cuerpo de descomposición de f es:

$$\mathbb{Q}\left(1+\sqrt[3]{2},1+\sqrt[3]{2}\gamma,1+\sqrt[3]{2}\overline{\gamma}\right)$$

y se verifica que es igual a:

$$\mathbb{Q}\left(\sqrt[3]{2},\gamma\sqrt[3]{2},\gamma^2\sqrt[3]{2}\right)$$

1.3. Construcciones con regla y compás

Esta sección está dedicada a considerar ciertas construcciones geométricas en el plano afín euclídeo y su relación con ciertas extensiones de cuerpos. El origen de estas construcciones geométricas se remonta a los postulados de euclides, un conjunto de reglas que trataba de axiomatizar el trabajo de los matemáticos de la época sobre un plano, un conjunto de normas que nos dicen qué podemos considerar como un punto del plano y qué no. Los puntos del plano se obtendrán como intersecciones de dos elementos geométricos como rectas y circunferencias, estando estos determinados a su vez por dos puntos del plano:

Figura 1.1: Prueba gráfica de que $S \subseteq S^c$.

- Dos puntos a unir en el caso de una recta, que puede alargarse tanto como queramos.
- Dos puntos a considerar en el caso de una circunferencia: uno que juega el papel de "centro" de la circunferencia y otro cuya distancia a dicho punto centro determina el radio de la circunferencia.

No debemos pensar en estos elementos como en conjuntos de puntos (es lo que haría la matemática moderna), sino como meros elementos auxiliares que nos permiten construir más puntos del plano. Trataremos el plano euclídeo como una idea básica inherente al ser humano, y sobre esta idea plantearemos varias definiciones con el lenguaje matemático moderno, con el fin de alcanzar las relaciones con los cuerpos previamente comentada.

En lo que sigue, sea S un conjunto de puntos del plano con al menos dos puntos distintos (ya que bajo los postulados en los que nos basamos con cero o un punto no somos capaces de construir nada más), definimos ahora Γ , el conjunto cuyos elementos son las rectas y circunferencias que pueden trazarse al considerar dos puntos distintos de S. Definimos además S^c , el conjunto de puntos obtenidos al intersecar cualesquiera dos elementos de Γ . Llamaremos a los elementos de S^c puntos constructibles (con regla y compás) a partir de S en un paso. Es claro que $S \subseteq S^c$, ya que si consideramos cualesquiera dos puntos de S y trazamos la recta que los une y las dos circunferencias que estos definen obtenemos dichos dos puntos como intersecciones de la recta y las dos circunferencias, como podemos observar en la Figura 1.1.

Definición 1.14. Dado un conjunto de puntos del plano S, definimos recursivamente:

$$S_0 = S, \quad S_{n+1} = S_n^c \qquad \forall n \in \mathbb{N}$$

Llamamos al conjunto:

$$C(S) = \bigcup_{n \in \mathbb{N}} S_n$$

el conjunto de los puntos constructibles (con regla y compás) a partir de S.

Ejercicio 1.3.1. Construir a partir de tres puntos que no estén en la misma recta un cuarto punto que complete el paralelogramo.

Figura 1.2: Construcción de la mediatriz.

Figura 1.3: Completar el cuarto punto de un paralelogramo.

Para ello, primero necesitamos considerar la construcción de la mediatriz, con la que obtenemos el punto medio entre dos puntos P y Q. Esta viene dada por la Figura 1.2. Una vez sabemos como realizar el punto medio de dos puntos dados, supongamos que tenemos 3 puntos: P, Q y R no alineados y que queremos trazar el cuarto punto que completa el paralelogramo. En dicha situación, trazamos las rectas PQ y PR, así como la recta RQ. Trazamos el punto medio M entre los puntos R y Q, que hemos visto anteriormente cómo hacerlo. Ahora, trazamos la recta PM y la circunferencia con centro M y radio hasta P. El punto de intersección de estos dos últimos elementos geométricos nos dan el punto T que completa el paralelogramo. El procedimiento descrito se encuentra en la Figura 1.3

Lema 1.9. Sean P,Q,R puntos del plano con P y Q distintos, se puede construir con regla y compás a partir de ellos un punto T tal que las rectas PQ y RT son perpendiculares.

Demostración. Distinguimos casos en función de la posición relativa de P, Q y R:

Suponiendo que R está en la recta PQ: Trazamos la recta PQ y la circunferencia con centro R y que pasa por Q (si R=Q, la que pasa por P), que nos da un punto intersección en PQ: S. Trazamos las circunferencias con centro Q y radio hasta S, y centro S y radio hasta Q. Estas dos circunferencias se cortan en dos puntos: T y T'. Uniéndolos, obtenemos lo buscado. El procedimiento descrito se encuentra en la Figura 1.4.

Suponiendo que R no está en la recta PQ: Trazamos la recta PQ así como la circunferencia de centro R y radio hasta Q, que nos da un punto de intersección con PQ: S. Trazamos la circunferencia de centro S y radio hasta Q, obteniendo

Figura 1.4: Trazar recta perpendicular por R.

Figura 1.5: Trazar recta parpendicular por R.

un segundo punto de corte entre las dos circunferencias, T, que unimos con R y obtenemos la situación pedida. El procedimiento se ilustra en la Figura 1.5.

A partir del lema anterior, ya no será necesario recurrir a dichas construcciones cada vez que tengamos dos puntos P y Q que determinan una recta y queramos construir una recta perpendicular a ella que pase por un tercer punto R.

Ejercicio 1.3.2. Dados dos puntos que determinan una recta r y un punto A no contenido en ella, construir el simétrico de A con respecto de r.

Sabemos ya por el lema anterior trazar una recta perpendicular a otra dada pasando por un punto, por lo que trazamos la recta perpendicular a r que pasa por A. Al punto de intersección entre ambas rectas lo nombramos O, y trazando la circunferencia de centro O y radio hasta A obtenemos como intersección con la recta perpendicular a r el punto A', simétrico de A respecto de r.

Si ahora elegimos dos puntos cualesquiera de S: P y Q, podemos realizar la siguiente construcción:

Trazar las dos circunferencias que definen los puntos P y Q, con lo que trazamos la mediatriz, la recta que se obtiene uniendo los puntos de intersección de las dos circunferencias. Nombramos a un punto de dicha intersección T. Trazamos la recta PQ y obtenemos su intersección con la recta previamente trazada en el punto M. A continuación, completamos el cuadrilátero que definen los puntos P, M y T con el punto S, que nos permite considerar la recta PS. Si finalmente obtenemos la intersección de la recta PS con la circunferencia de centro P y radio hasta Q obtenemos el punto R, que pertenece a la recta PS, perpendicular a la recta PQ y el punto R se encuentra a la misma distancia que Q del punto P, corte de las dos rectas perpendiculares.

Hemos obtenido lo que consideraríamos un sistema de referencia ortonormal, y podemos renombrar los puntos P, Q y R como (0,0), (1,0) y (0,1), respectivamente. De esta forma, podemos ver el conjunto C(S) de puntos constructibles a partir de S como un subconjunto de \mathbb{C} . A partir de ahora, supondremos siempre que S es un conjunto que contiene a los números 0 y 1.

La pregunta natural que surge al hacer esta observación es la de fijado un conjunto inicial $S \subseteq \mathbb{C}$, qué puntos de \mathbb{C} son constructibles a partir de S. Es decir, obtener una descripción de C(S).

Observación. Puesto que ahora suponemos que $0,1\in S$, siempre tendremos que $i\in C(S)$, ya que podemos realizar la construcción anterior para $P=0,\ Q=1$ y tomar R=i, por lo que podemos usar siempre que $i\in C(S)$ bajo las hipótesis de $0,1\in S$.

Figura 1.6: Obtención de x, y a partir de z.

Lema 1.10. Dado $z = x + iy \in \mathbb{C}$, tenemos que:

$$z \in C(S) \iff x, y \in C(S)$$

Demostración. Por doble implicación:

- \implies) Supuesto que $z \in C(S)$, vemos que podemos construir x e y de la siguiente forma:
 - Si $z \in \mathbb{R}$, tenemos ya construido x = z y sabemos que $y = 0 \in C(S)$.
 - Si Re(z) = 0, sabemos que $x = 0 \in C(S)$ y tenemos el punto z = iy que construiremos en el siguiente apartado.
 - En otro caso, podemos considerar la recta 01 y trazar la recta perpendicular a ella que pasa por el punto z. Como la intersección de las dos rectas obtenemos el punto x. Ahora, si consideramos la recta 0i y trazamos la recta perpendicular a ella que pasa por el punto z, obtenemos el punto iy. Para obtener y, lo que haremos será considerar la intersección de la recta 01 con la circunferencia de centro 0 y radio hasta iy. El procedimiento se ilustra en la figura 1.6.
- \iff Supuesto que $x, y \in C(S)$, lo que haremos será considerar la recta perpendicular a la recta 0x que pasa por el punto x, obteniendo la recta r. Posteriormente, consideraremos como iy la intersección de la recta 0i con la circunferencia de centro 0 y radio hasta y. Posteriormente, trazamos la recta perpendicular a 0i que pasa por iy, y obtenemos como z la intersección de esta última recta con la recta r. El procedimiento se ilusta en la Figura 1.7.

Proposición 1.11. El conjunto C(S) es un subcuerpo de \mathbb{C} . Además, es cerrado por conjugación, es decir:

$$z \in C(S) \Longrightarrow \overline{z} \in C(S)$$

Demostración. Si probamos que la suma de dos números reales constructibles es constructible, obtenemos por el Lema 1.10 que la suma de dos números complejos constructibles es constructible. Análogamente, si demostramos que el producto de

Figura 1.7: Obtención de z a partir de x e y.

dos números reales constructibles es constructible, tendremos que el producto de dos números constructibles es constructible. Para el inverso, si demostramos que todo conjugado de un número constructible es constructible, tendremos probado que los inversos de los números constructibles serán números constructibles, puesto que va sabemos que el producto de números constructibles es constructible y:

$$z^{-1} = \frac{z\overline{z}}{|z|^2}$$

Por tanto, solo hemos de probar que $C(S) \cap \mathbb{R}$ es un subcuerpo de \mathbb{R} . Sean por tanto $r, r' \in C(S) \cap \mathbb{R}$, veamos que entonces $r' + r, r' - r \in C(S) \cap \mathbb{R}$. Podemos suponer sin pérdida de generalidad que r, r' > 0, y lo que haremos será considerar los puntos r' y ir (que ya sabemos construir), considerar las rectas 0r' y 0(ir) y trazar en cada una de ellas las rectas perpendiculares que pasan por r' y por ir, respectivamente; como punto de intersección de dichas rectas obtendremos el punto z. Finalmente, debemos trazar la circunferencia de centro r' y radio hasta z, obteniendo como puntos de intersección con la recta 0r' los puntos r' + r y r' - r.

Figura 1.8: Obtención de r' + r y r' - r a partir de r y r'.

Por lo que $r + r', r - r' \in C(S) \cap \mathbb{R}$.

Bajo las mismas hipótesis, tratamos de probar que $r \cdot r' \in C(S) \cap \mathbb{R}$, supondremos de la misma forma que r, r' > 0 y lo que haremos será considerar los puntos r', ir.

Trazaremos la recta que une el punto 1 con ir y trazaremos la recta paralela a esta última que pasa por el punto r' (podemos hacerlo ya que podemos trazar la recta perpendicular a 1(ir) que pasa por r' y a su vez la recta perpendicular a esta última que también pasa por r'), obteniendo el punto iy de intersección con la recta 0(ir). De esta forma, hemos probado que el punto y es constructible.

Usando ahora que los triángulos dibujados son semejantes por tener ángulos iguales, tenemos entonces que:

$$\frac{r}{1} = \frac{y}{r'} \implies rr' = y \in C(S)$$

Finalmente, hemos de comprobar que si $r \in C(S) \cap \mathbb{R}$, entonces $r^{-1} \in C(S) \cap \mathbb{R}$. Al igual que antes, podemos suponer que r > 0, consideramos el punto r y las rectas 0r y 0i, y trazar las rectas ri y la paralela a esta última que pasa por el punto 1, obteniendo el punto de intersección iy con la recta 0i, con lo que el punto y es constructible.

Ambos triángulos semejantes, luego:

$$\frac{1}{y} = \frac{r}{1} \implies yr = 1 \implies r^{-1} = y \in C(S) \cap \mathbb{R}$$

Lema 1.12. Si $z \in C(S)$, entonces $\sqrt{z} \in C(S)$.

Demostración. Escribiendo z en forma polar, reducimos el problema al caso |z|=1. Si tomamos r>0 con $r\in C(S)\cap\mathbb{R}$, veamos entonces que $\sqrt{r}\in C(S)\cap\mathbb{R}$. Para ello, consideramos el punto 1+r (anteriormente probamos que era constructible), trazamos el punto medio m entre 0 y 1+r, el punto 1 y la circunferencia de centro m y radio hasta r. Si trazamos la recta perpendicular a 01 que pasa por el punto 1 obtenemos m0, como intersección de esta recta y de la circunferencia. Finalmente, tenemos que obtener m1 como intersección de la recta m2 y la perpendicular a m3 que pasa por m4, así como las rectas m5 y m6 y m7.

Resulta que los triángulos 0, 1, w y w, 1, 1+r que hemos obtenido son semejantes, con lo que tenemos entonces que:

$$\frac{x}{1} = \frac{1+r-1}{x} \implies x^2 = r \implies \sqrt{r} = x \in C(S) \cap \mathbb{R}$$

Una vez hecha esta distinción, si tomamos un número complejo de módulo 1 $z=e^{i\theta}$, tenemos que ver que si $e^{i\theta}\in C(S)\cap\mathbb{R}$, entonces $e^{i\frac{\theta}{2}}\in C(S)\cap\mathbb{R}$. Para ello, lo que haremos será considerar la circunferencia de centro 0 y radio hasta 1, así como el cuarto punto que completa el paralelogramo de vértices z,0,1, que llamaremos z+1. Finalmente, trazamos la recta que une 0 con 1+z, obteniendo un punto de intersección con la circunferencia, que es el punto $e^{i\frac{\theta}{2}}$.

Ejercicio 1.3.3. Sea F un subcuerpo de \mathbb{R} , diremos que $(x,y) \in F \times F$ es un F-punto del plano. Una F-recta será la recta que une dos F-puntos del plano. Una F-circunferencia será la circunferencia determinada por dos F-puntos. Se pide demostrar:

- \blacksquare La intersección de dos F-rectas distintas es, si no vacía, un F-punto
- La intersección de una F-recta y una F-circunferencia o de dos F-circunferencias es, si no vacía, $F(\sqrt{c})$ -puntos, para c > 0.

Teorema 1.13. El menor subcuerpo de \mathbb{C} cerrado para conjugación y extracción de raíces cuadradas que contiene a S es C(S).

Demostración. Sea C' cualquier subcuerpo de $\mathbb C$ cerrado para conjugación, raíces cuadradas y que contiene a S, queremos ver que $C(S) \leqslant C'$. Recordemos que teníamos que:

$$C(S) = \bigcup_{n \in \mathbb{N}} S_n$$

Por lo que basta dem sotrar que $S_n \subseteq C' \quad \forall n \in \mathbb{N}$. Por inducción sobre n:

- Para n = 0. tenemos $S_0 = S \subseteq C'$.
- Supuesto que $S_n \subseteq C'$. tenemos que ver que $S_{n+1} \subseteq C'$. Dado un punto de S_{n+1} , este pertence a $X \cap Y$, donde X, Y son elementos geométricos trazados a partir de S_n .

Por otra parte, X e Y son F-rectas o F-circunferencias, donde $F = C' \cap \mathbb{R}$. El Ejercicio 1.3.3 nos dice que las coordenadas del punto están en $F(\sqrt{c})$, con c > 0 y como C' es estable para raíces cuadradas, tenemos entonces que las coordenadas del punto están en C', de donde $S_{n+1} \subseteq C'$.

Definición 1.15. Sea $F \leq K$ extensión, diremos que K es una torre por raíces <u>cuadradas</u> sobre F si $K = F(u_1, \ldots, u_t)$, donde $u_1^2 \in F$ y $u_{i+1}^2 \in F(u_1, \ldots, u_i)$ para $i \in \{1, \ldots, t-1\}$

Notación. Sea $S \subseteq \mathbb{C}$, denotamos:

$$\overline{S} = \{\overline{z} : z \in S\}$$

Teorema 1.14. Sean $F = \mathbb{Q}(S \cup \overline{S})$ y \mathcal{T} el conjunto de todas las torres por raíces cuadradas sobre F contenidas en \mathbb{C} , entonces:

$$C(S) = \bigcup_{K \in \mathcal{T}} K$$

Demostración. Sea $L = \bigcup_{K \in \mathcal{T}} K$, tenemos que L es un subcuerpo de \mathbb{C} , ya que si $0 \neq \alpha, \beta \in L$, entonces existen $K, E \in \mathcal{T}$ tales que $\alpha \in K$ y $\beta \in E$. Como:

$$K = F(u_1, \dots, u_t), \quad u_{i+1}^2 \in F(u_1, \dots, u_i), \quad i \in \{0, \dots, t-1\}$$

$$E = F(v_1, \dots, v_s), \quad v_{i+1}^2 \in F(v_1, \dots, v_i), \quad i \in \{1, \dots, s-1\}$$

Sea M el menor subcuerpo que contiene a K y E, es evidente que $\alpha-\beta, \alpha\beta, \alpha^{-1} \in M$. De donde:

$$M = F(u_1, \dots, u_t, v_1, \dots, v_s) \in \mathcal{T}$$

Una vez discutido que L es un subcuerpo, notemos que $F \leq C(S)$ y que $L \leq C(S)$ por la construcción de L. Finalmente, con vistas a aplicar el Teorema anterior, queremos ver que L contiene a S y que es cerrado para conjugación y para raíces cuadradas:

 $S \subseteq L$. Sea $z \in L$, queremos ver que $\overline{z} \in L$. Si $z \in L$, entonces $z \in K = F(u_1, \ldots, u_t)$, de donde $\overline{z} \in F(\overline{u_1}, \ldots, \overline{u_t})$, ya que la conjugación es lineal, y tenemos que $F(\overline{u_1}, \ldots, \overline{u_t}) \in \mathcal{T}$, de donde $\overline{z} \in L$.

Ahora, si tomamos un elemento de L, este estará en algún K, ...

Corolario 1.14.1. C(S) es una extensión algebraica de $F = \mathbb{Q}(S \cup \overline{S})$, de hecho, el grado de cada número en C(S) sobre F es una potencia de 2.

Corolario 1.14.2. Todo número constructible $(F = \mathbb{Q})$ tiene grado sobre \mathbb{Q} una potencia de 2.

Y el recíproco de dicho corolario no es cierto, hay números complejos de grado 4 sobre \mathbb{Q} que no son constructibles. Tras ver la teoría de Galois se verá el contraejemplo.

Ejemplo. Supongamos un cuadrado de lado l y una circunferencia de radio 1 centrada en 1. El círculo tiene área π . El área del cuadrado es l^2 . Si l es constructible, entonces l^2 es constructible. Si $l^2=\pi$, entonces π sería constructible, luego sería algebraico, pero esto contradice el Teorema de Lindemann, que dice que π no es algebraico.

Dado un cubo de volumen 1, tampoco se puede construir un cubo de volumen mitad. Además, hay ciertos ángulos no se pueden trisecar, todo esto con regla y compás.

Ejemplo. El ángulo de 60° no se puede trisecar con regla y compás.

$$e^{\frac{i\pi}{3}} = \frac{1}{2} + i\frac{\sqrt{3}}{2}$$

es constructible. Nos preguntamos si $e^{\frac{i\pi}{9}}$ también lo es. Si lo fuera, entonces sería algebraico, de donde su grado sería una potencia de 2. Vemos que:

$$e^{\frac{i\pi}{9}} = \cos\frac{\pi}{9} + i\sin\frac{\pi}{9}$$

de donde usando la fórmula del ángulo triple:

$$\cos(3\alpha) = 4\cos^3\alpha - 3\cos\alpha \qquad \forall \alpha \in \mathbb{R}$$

para $\alpha = \pi/9$, tenemos que:

$$\frac{1}{2} = 4\cos^3\left(\frac{\pi}{9}\right) - 3\cos\left(\frac{\pi}{9}\right)$$

Con lo que $\cos(\pi/9)$ es raíz del polinomio

$$f = 8x^3 - 6x - 1 \in \mathbb{Q}[x]$$

como es de grado 3, que sea irreducible es equivalente a que no tenga ninguna raíz racional. Si r es una raíz de f, entonces 2r es raíz de $x^3 - 3x - 1$. Si $r \in \mathbb{Q}$, entonces

 $2r \in \mathbb{Q}$, de donde⁷ $2r = \pm 1$. Sin embargo, ni 1 ni -1 es raíz de $x^3 - 3x - 1$, con lo que f no tiene raíces reales, por lo que es irreducible sobre \mathbb{Q} , luego:

$$Irr\left(\cos\left(\frac{\pi}{9}\right), \mathbb{Q}\right) = \frac{f}{8}$$

De donde $[\mathbb{Q}\left(\cos\frac{\pi}{9}\right):\mathbb{Q}]=3$ que no es potencia de 2, luego $\cos\left(\frac{\pi}{9}\right)$ no es constructible, de donde $e^{\frac{i\pi}{9}}$ tampoco lo es; es decir, el ángulo de 60° no se puede trisecar.

Observando los coeficientes de $x^3 - 3x - 1$ y la forma que tienen que tener las raíces racionales.

1.4. Homomorfismos de cuerpos

Lema 1.15. Sea F un cuerpo y I un ideal suyo, entonces $I = \{0\}$ o I = F.

Demostración. Supuesto que $I \neq \{0\}$, existe por tanto $a \in I$. Sea $b \in F$, tenemos que:

$$b = b \cdot a^{-1} \cdot a$$

Por lo que $b \in I$, de donde I = F.

Lema 1.16. Sea $\sigma: F \to A$ un homomorfismo de anillos donde F es un cuerpo y A es no trivial, entonces σ es inyectivo y, por tanto, $Im\sigma$ es un cuerpo isomorfo a F y subanillo de A.

Demostración. Solo hemos de probar que ker $\sigma = \{0\}$. Para ello, ker σ es un ideal de F que no es F (ya que $\sigma(1) = 1$), de donde ker $\sigma = \{0\}$. Para ver que $Im\sigma \cong F$, basta aplicar el Primer Teorema de Isomorfía:

$$F = \frac{F}{\ker \sigma} \cong Im\sigma$$

Por ser σ un homomorfismo de anillos tenemos que $Im\sigma$ es subanillo de A.

Definición 1.16 (Homomorfismo de cuerpos). Sea $F \stackrel{\sigma}{\to} K$ un homomorfismo de anillos entre cuerpos, diremos entonces que es un homomorfismo de cuerpos.

Observación. Resulta sorprendente que exigir "buenas propiedades" a una aplicación entre anillos ya nos da una aplicación con "buenas propiedades" entre cuerpos, pero resulta que lo único que nos faltaba era que la aplicación se comporte bien con los inversos, propiedad que queda garantizada al exigir "buenas propiedades" sobre anillos:

$$1 = \sigma(1) = \sigma\left(\alpha\alpha^{-1}\right) = \sigma(\alpha)\sigma\left(\alpha^{-1}\right) \Longrightarrow \sigma\left(\alpha^{-1}\right) = \sigma(\alpha)^{-1}$$

Como por el Lema anterior todo homomorfismo de cuerpos $F \xrightarrow{\sigma} K$ es siempre inyectivo, tendremos siempre una copia de F dentro de K, que en ocasiones identificaremos con el propio F, viendo $\sigma(F)$ como una copia isomorfa de F. Como $\sigma(F) \leq K$ es una extensión de cuerpos, podemos ver K como un $\sigma(F)$ —espacio vectorial. Además, si identificamos F con $\sigma(F)$, podremos ver K como un F—espacio vectorial.

Definición 1.17. Siempre que tengamos $F \stackrel{\sigma}{\to} K$ y $f \in F[x]$ dada por:

$$f = \sum_{i=1}^{n} f_i x^i, \qquad f_i \in F \quad \forall i \in \{1, \dots, n\}$$

Definiremos:

$$f^{\sigma} = \sum_{i=1}^{n} \sigma(f_i) x^i \in K[x]$$

Se verifica que la correspondencia $f \mapsto f^{\sigma}$ es un homomorfismo de anillos entre F[x] y K[x], por la Propiedad Universal del anillo de polinomios.

Ejemplo. Sea $f \in F[x]$, f no constante, sea $p \in F[x]$ un factor irreducible de f, consideramos⁸:

$$K = \frac{F[x]}{\langle p \rangle}$$

como p es irreducible, tenemos que K es un cuerpo. Definimos $\sigma: F \to K$ como:

$$\sigma(a) = a + \langle p \rangle \qquad \forall a \in F$$

que es un homomorfismo de anillos como composición de la inclusión en F[x] con la proyección al cociente:

$$F \stackrel{\iota}{\longleftrightarrow} F[x] \stackrel{p}{\longrightarrow} \frac{F[x]}{\langle p \rangle}$$

Por lo que es un homomorfismo de cuerpos, con:

$$\sigma(F) = \{a + \langle p \rangle : a \in F\} \cong F$$

Sea $\alpha = x + \langle p \rangle \in K$, tenemos que:

$$p^{\sigma}(\alpha) = \sum_{i=1}^{n} (p_i + \langle p \rangle)(x + \langle p \rangle)^i = \sum_{i=1}^{n} p_i x^i + \langle p \rangle = p + \langle p \rangle = 0 + \langle p \rangle$$

Además:

$$\sigma(F)(\alpha) = K$$

- \subseteq) Basta ver que K contiene a $\sigma(F)$ y a α .
- \supseteq) Si tomamos un elemento de K, este será de la forma $g + \langle p \rangle$ para cierta $g \in F[x]$ dada por:

$$\sum_{i=1}^{n} g_i x^i, \qquad g_i \in F, \quad \forall i \in \{1, \dots, n\}$$

Por lo que:

$$g + \langle p \rangle = \sum_{i=1}^{n} g_i x^i + \langle p \rangle = \sum_{i=1}^{n} (g_i + \langle p \rangle)(x + \langle p \rangle)^i \in \sigma(F)(\alpha)$$

Notación. Siempre que estemos trabajando con un cuerpo F y digamos que "existe un homomorfismo $F \stackrel{\sigma}{\to} K$ ", lo que queremos decir en realidad es que existen otro cuerpo K y un homomorfismo de cuerpos entre ellos $\sigma: F \to K$, pero usaremos la primera expresión para abreviar.

Lema 1.17. Si $f \in F[x]$ es no constante y p es un factor irreducible de f, entonces existen $F \stackrel{\sigma}{\to} K$ homomorfismo de cuerpos y $\alpha \in K$ tales que:

$$p^{\sigma}(\alpha) = 0$$
 y $K = \sigma(F)(\alpha)$

Bajo estas condiciones, a menudo identificaremos F con $\sigma(F)$ y en dicho caso, escribiremos $K = F(\alpha)$.

⁸Donde $\langle p \rangle$ es el ideal generado por p.

Demostración. La demostración se deduce del ejemplo anterior.

Proposición 1.18. Sea $f \in F[x]$ con deg $f = n \ge 1$, entonces existe un homomorfismo de cuerpos $\sigma : F \to E$ tal que E es un cuerpo de descomposición de f^{σ} .

Demostración. Suponemos sin pérdida de generalidad que f es mónico. Vamos a ver que existe $F \stackrel{\sigma}{\to} L$ tal que f^{σ} se descompone completamente como producto de factores lineales en L[x]. Para ello, descomponemos f = gh, donde $g \in F[x]$ es producto de polinomios lineales y $h \in F[x]$ es un polinomio sin raíces en F. Por inducción sobre el grado de h (usando el segundo principio de inducción):

- Si degh = 0, tomando L = F y $\sigma = id_F$ se tiene.
- Supuesto que degh > 0 y la hipótesis de inducción, tomamos p un factor irreducible de h, por lo que podemos aplicar el Lema 1.17, con lo que existen $F \xrightarrow{\tau} K$ y $\alpha \in K$ tal que $p^{\tau}(\alpha) = 0$ y $K = \tau(F)(\alpha)$. Observamos que $h^{\tau}(\alpha) = 0$. El polinomio q que habíamos escogido será de la forma:

$$g = (x - \alpha_1) \cdot \ldots \cdot (x - \alpha_t), \qquad \alpha_1, \ldots, \alpha_t \in F$$

Extraemos ahora los factores lineales de h^{τ} en K[x] (sabemos que al menos $s \ge 1$, puesto que α es raíz de h^{τ}):

$$h^{\tau} = (x - \beta_1) \cdot \ldots \cdot (x - \beta_s)k, \qquad k \in K[x], \beta_1, \ldots, \beta_s \in K$$

Con uno de los β_i es α y k sin raíces en K y de grado menor que el de h^{τ} . En definitiva, tenemos que:

$$f^{\tau} = g^{\tau} h^{\tau} = (x - \tau(\alpha_1)) \cdot \dots \cdot (x - \tau(\alpha_s))(x - \beta_1) \cdot \dots \cdot (x - \beta_s)k, \quad degk < degh^{\tau}$$

Aplicando la hipótesis de inducción tomando k como h, existe un homomorfismo $K \xrightarrow{\rho} L$ tal que k^{ρ} se descompone como producto de polinomios lineales en L[x]. En definitiva, tendremos que $(f^{\tau})^{\rho}$ se descompone como producto de polinomios lineales en L[x]. Si tomamos:

$$\sigma = \rho \tau : F \to L$$

tenemos que f^{σ} se descompone como producto de lineales en L[x].

Una vez tenemos que existe $\sigma: F \to L$ de forma que f^{σ} se descompone como producto de polinomios lineales en L[x], si $\gamma_1, \ldots, \gamma_r \in L$ son las raíces de f^{σ} , podemos considerar $E = \sigma(F)(\gamma_1, \ldots, \gamma_r) \leq L$, con lo que la restricción en codominio de σ a E nos da un homomorfismo, donde E es un cuerpo de descomposición de f^{σ} . \square

Definición 1.18. A un homomorfismo $\sigma: F \to E$ como el de la Proposición anterior se le llama cuerpo de descomposición de f.

Respecto a esta última definición, debemos tener claro que antes hablábamos de cuerpo de descomposición de $f \in F[x]$ a una extensión $F \leqslant K$ de forma que K cumplía ciertas propiedades relativas a f. Ahora, lo que hacemos es ver el homomorfismo $F \xrightarrow{\sigma} K$ como una extensión de cuerpos, identificando F con $\sigma(F)$, por lo que al propio homomorfismo (que hace el papel de la extensión) le llamamos ahora cuerpo de descomopsición, si K cumple unas propiedades relativas a f^{σ} .

Ejemplo. Tomamos $f = x^2 + x + 1 \in \mathbb{F}_2[x]$, donde $\mathbb{F}_2 = \{0, 1\}$ es el cuerpo que contiene dos elementos. Como $f(0) = f(1) = 1 \neq 0$, tenemos que f no tiene raíces en \mathbb{F}_2 . Nuestro objetivo es buscar un cuerpo de descomposición suyo.

Observemos que como f es de grado 2 y no tiene raíces en \mathbb{F}_2 , f es irreducible, por lo que repitiendo el ejemplo anterior del que vienen el Lema y la Proposición, podemos tomar el cuerpo:

$$K = \frac{\mathbb{F}_2[x]}{\langle f \rangle}$$

y el homomorfismo de cuerpos:

$$\sigma: \quad \mathbb{F}_2 \quad \longrightarrow \quad K$$
$$\sigma(y) \quad \longmapsto \quad y + \langle f \rangle$$

sabemos ya que:

$$f^{\sigma}(\alpha) = 0$$
 con $\alpha = x + \langle f \rangle$

Si factorizamos f^{σ} (usando que $\alpha^2 + \alpha + 1 = 0$):

$$f^{\sigma} = (x + \alpha)(x + \alpha^2)$$

tenemos que σ es un cuerpo de descomposición de F. Viendo que tenemos una copia isomorfa de \mathbb{F}_2 dentro de K, identificamos \mathbb{F}_2 con $\sigma(\mathbb{F}_2)$, y tenemos $\mathbb{F}_2 \leqslant K$, con lo que:

$$K = \mathbb{F}_2(\alpha), \quad \operatorname{Irr}(\alpha, \mathbb{F}_2) = x^2 + x + 1$$

¿Cuántos elementos tiene K?

En vista de que $[K: \mathbb{F}_2] = 2$ y $|\mathbb{F}_2| = 2$, tenemos que |K| = 4. Para listarlos:

 $\quad \blacksquare \ K=\{0,1,\alpha,1+\alpha\}.$

Donde vemos que $1 + \alpha$ es distinto del resto porque $\{1, \alpha\}$ es una \mathbb{F}_2 -base de K. La condición $\alpha^2 + \alpha + 1 = 0$ también nos dice que $\alpha + 1 = \alpha^2$:

• $K = \{0, 1, \alpha, \alpha^2\}.$

Ejemplo. Al igual que en el ejemplo anterior, buscamos un cuerpo de descomopsición de:

$$f = x^3 + x + 1 \in \mathbb{F}_2[x]$$

que sigue siendo irreducible sobre $\mathbb{F}_2[x]$, por ser de grado 3 y no tener raíces en $\mathbb{F}_2[x]$. De la misma forma, un cuerpo de descomposición de f es de la forma $\mathbb{F}_2(a)$ con a en cierto cuerpo K, siendo a una raíz de f. Tratamos de factorizar f en $\mathbb{F}_2(a)$:

Y tenemos que $a^3 + a + 1 = 0$. Buscamos ahora una raíz de $x^2 + ax + (a^2 + 1)$. Probamos con a^2 (donde usamos que $a^3 + a + 1 = 0$):

$$(a^2)^2 + aa^2 + (a^2 + 1) = a^4 + a^3 + a^2 + 1 = a^4 + a + a^2 = a(a^3 + a + 1) = 0$$

Dividimos ahora entre $x + a^2$:

Y tenemos:

$$a^{6} + a^{2} + 1 = a^{6} + a^{2} + a^{3} + a = a(a^{5} + a + a^{2} + 1) = a(a^{5} + a^{2} + a^{3}) = a^{3}(a^{3} + 1 + a) = 0$$

En definitiva, la factorización de f en $\mathbb{F}_2(a)$ es:

$$x^{3} + x + 1 = (x + a)(x + a^{2})(x + a^{4})$$

con lo que $\mathbb{F}_2(a)$ es un cuerpo de descomposición de f, con:

$$[\mathbb{F}_2(a):\mathbb{F}_2]=deg\operatorname{Irr}(a,\mathbb{F}_2)=3$$

por lo que ahora $|\mathbb{F}_2(a)| = 2^3 = 8$.

Podríamos haber estudiado también $f = x^3 + x^2 + 1$, obteniendo otro cuerpo de 8 elementos. Veremos luego que estos dos cuerpos son isomorfos entre sí, e isomorfos con todo otro cuerpo que contenga 8 elementos, lo que nos permitirá notarlos a todos por \mathbb{F}_8 .

Lema 1.19. Sea $F \stackrel{\sigma}{\to} K$, $p \in F[x]$ irreducible, si $\alpha \in K$ es raíz de p^{σ} , entonces se tiene que:

$$\sigma_{\alpha}: \frac{F[x]}{\langle p \rangle} \longrightarrow \sigma(F)(\alpha)$$

$$g + \langle p \rangle \longmapsto g^{\sigma}(\alpha)$$

es un isomorfismo de cuerpos.

Demostración. Podemos tomar:

$$\overline{\sigma_{\alpha}}: F[x] \longrightarrow \sigma(F)(\alpha)$$
 $g \longmapsto g^{\sigma}(\alpha)$

En el Lema 1.17 vimos que $g^{\sigma}(\alpha) \in \sigma(F)(\alpha)$ siempre que $g \in F[x]$, por lo que $\overline{\sigma_{\alpha}}$ está bien definida $(Im\overline{\sigma_{\alpha}} \subseteq \sigma(F)(\alpha))$, y además es un homomorfismo de cuerpos. Como $p^{\sigma}(\alpha) = 0$, tenemos que $\langle p \rangle \subseteq \ker(\overline{\sigma_{\alpha}})$, pero como p es irreducible, tenemos que $\langle p \rangle$ es maximal, con lo que $\langle p \rangle = \ker(\overline{\sigma_{\alpha}})$. Finalmente, observamos que $\sigma(F) \subseteq Im\overline{\sigma_{\alpha}}$ así como que $\alpha \in Im\overline{\sigma_{\alpha}}$ por ser $x \in F[x]$, de donde concluimos que $\sigma(F)(\alpha) \subseteq Im\overline{\sigma_{\alpha}}$. Si aplicamos ahora el Primer Teorema de Isomorfía para anillos, vemos que:

$$\frac{F[x]}{\langle p \rangle} = \frac{F[x]}{\ker(\overline{\sigma_{\alpha}})} \cong Im\overline{\sigma_{\alpha}} = \sigma(F)(\alpha)$$

Definición 1.19. Si tenemos dos homomorfismos de cuerpos:

$$F \xrightarrow{\tau} E$$

$$K$$

Diremos que un homomorfismo de cuerpos $\eta: K \to E$ es una σ -extensión de τ si:

$$\eta \sigma = \tau$$

Y notaremos al conjunto de todas las σ -extensiones de τ por:

$$Ex(\tau, \sigma) = \{ \eta : K \to E \text{ con } \eta \text{ homomorfismo y } \eta \sigma = \tau \}$$

Notemos que todos estos hacen que el siguiente diagrama sea conmutativo:

$$F \xrightarrow{\tau} E$$

$$\downarrow^{\eta}$$

$$K$$

Proposición 1.20 (Extensión de homomorfismos). Si tenemos dos homomorfismos de cuerpos:

$$F \xrightarrow{\tau} E$$

$$K$$

Si $p \in F[x]$ irreducible $y \alpha \in K$ con $p^{\sigma}(\alpha) = 0$, si $\mathcal{R} \subseteq E$ es el conjunto de todas las raíces de p^{τ} y además $K = \sigma(F)(\alpha)$, tenemos entonces que la aplicación

$$\begin{array}{cccc} : & Ex(\tau,\sigma) & \longrightarrow & \mathcal{R} \\ & \eta & \longmapsto & \eta(\alpha) \end{array}$$

es una biyección.

Demostración. Veamos en primer lugar que dicha aplicación está bien definida. Para ello, sea $\eta \in Ex(\tau, \sigma)$:

$$p^{\tau}(\eta(\alpha)) = p^{\eta\sigma}(\eta(\alpha)) \stackrel{(*)}{=} \eta(p^{\sigma}(\alpha)) = \eta(0) = 0$$

donde en (*) hemos usado que si p es de la forma:

$$p = \sum_{i} p_i x^i, \qquad p_i \in F$$

entonces

$$p^{\eta\sigma}(\eta(\alpha)) = \sum_{i} \eta(\sigma(p_i))\eta(\alpha) = \sum_{i} \eta(\sigma(p_i)\alpha) = \eta\left(\sum_{i} \sigma(p_i)\alpha\right) = \eta(p^{\sigma}(\alpha))$$

Esto prueba que $\eta(\alpha) \in \mathcal{R}$. Veamos ahora que la aplicación enunciada es sobreyectiva¹⁰. Para ello, sea $\beta \in \mathcal{R}$, buscamos una σ -extensión η de τ de forma que $\eta(\alpha) = \beta$. Usando el Lema 1.19, obtenemos los isomorfismos:

$$\sigma_{\alpha}: \frac{F[x]}{\langle p \rangle} \longrightarrow \sigma(F)(\alpha) = K$$

$$g + \langle p \rangle \longmapsto g^{\sigma}(\alpha)$$

$$\tau_{\beta}: \frac{F[x]}{\langle p \rangle} \longrightarrow \tau(F)(\beta) \leqslant E$$

$$g + \langle p \rangle \longmapsto g^{\tau}(\beta)$$

Si tomamos:

$$\eta = i \circ \tau_{\beta} \circ \sigma_{\alpha}^{-1}$$

donde i es la inclusión $\tau(F)(\beta) \leq E$, observamos que:

$$K \xrightarrow{\sigma_{\alpha}^{-1}} \frac{F[x]}{\langle p \rangle} \xrightarrow{\tau_{\beta}} \tau(F)(\beta) \xrightarrow{i} E$$

Comprobemos que $\eta \in Ex(\tau, \sigma)$, ya que si $a \in F$:

$$(\eta \circ \sigma)(a) = (i \circ \tau_{\beta} \circ \sigma_{\alpha}^{-1})(\sigma(a)) = (i \circ \tau_{\beta})(\sigma_{\alpha}^{-1}(\sigma(a))) = (i \circ \tau_{\beta})(a + \langle p \rangle) = i(\tau(a)) = \tau(a)$$

donde hemos aplicado que tanto σ_{α} como τ_{β} aplicado sobre constantes son iguales a σ y a τ , respectivamente, lo que prueba que $\eta \in Ex(\tau, \sigma)$. Ahora:

$$\eta(\alpha) = (i \circ \tau_{\beta})(\sigma_{\alpha}^{-1}(\alpha)) = (i \circ \tau_{\beta})(x + \langle p \rangle) = i(\beta) = \beta$$

Falta probar que la aplicación es inyectiva. Para ello, sean $\eta, \eta' \in Ex(\tau, \sigma)$ de forma que $\eta(\alpha) = \eta'(\alpha)$, entonces como $\sigma(F) \leqslant K = \sigma(F)(\alpha)$ con α algebraico sobre $\sigma(F)$, tenemos que $\{1, \alpha, \alpha^2, \ldots\}$ es un sistema de generadores de $\sigma(F)(\alpha)$, por lo que todo elemento de este cuerpo será de la forma:

$$\sum_{i} \sigma(a_i)\alpha^i \in \sigma(F)(\alpha), \qquad a_i \in F$$

con lo que:

$$\eta\left(\sum_{i}\sigma(a_{i})\alpha^{i}\right) = \sum_{i}\eta(\sigma(a_{i}))\eta(\alpha)^{i} \stackrel{(*)}{=} \sum_{i}\eta'(\sigma(a_{i}))\eta'(\alpha)^{i} = \eta'\left(\sum_{i}\sigma(a_{i})\alpha^{i}\right)$$

donde en (*) usamos que $\eta(\alpha) = \eta'(\alpha)$, así como que η, η' son σ -extensiones de τ , con lo que $\eta \circ \sigma = \tau = \eta' \circ \sigma$. En definitiva, tenemos que $\eta = \eta'$, al ser $\eta(g) = \eta'(g)$ para todo $g \in K$, lo que nos dice que la aplicación es inyectiva.

Obsevemos que en esta última proposición hemos probado además que:

$$\mathcal{R} = \emptyset \iff Ex(\tau, \sigma) = \emptyset$$

⁹Notemos que hemos probado además que $Ex(\tau, \sigma) \neq \emptyset \Longrightarrow \mathcal{R} \neq \emptyset$.

¹⁰Con lo que tendremos $\mathcal{R} \neq \emptyset \Longrightarrow Ex(\tau, \sigma) \neq \emptyset$

Lema 1.21. Sean tres homomorfismos entre cuerpos:

$$F \xrightarrow{\tau} L$$

$$\sigma_1 \downarrow \\ E_1 \xrightarrow{\sigma_2} E_2$$

Se verifica que:

$$Ex(\tau, \sigma_2\sigma_1) = \biguplus_{\eta \in Ex(\tau, \sigma_1)} Ex(\eta, \sigma_2)$$

Demostración. Por doble inclusión:

 \subseteq) Si tomamos $\theta \in Ex(\tau, \sigma_2\sigma_1)$, tenemos entonces que:

$$\theta \sigma_2 \sigma_1 = \tau$$

Por lo que si tomamos $\eta = \theta \sigma_2$, tenemos que:

$$\eta \sigma_1 = \theta \sigma_2 \sigma_1 = \tau \Longrightarrow \eta \in Ex(\tau, \sigma_1)$$

$$\theta \sigma_2 = \eta \Longrightarrow \theta \in Ex(\eta, \sigma_2)$$

 \supseteq) Si $\eta \in Ex(\tau, \sigma_1)$ y tomamos $\theta \in Ex(\eta, \sigma_2)$, tendremos entonces que:

$$\left. \begin{array}{l} \eta \sigma_1 = \tau \\ \theta \sigma_2 = \eta \end{array} \right\} \Longrightarrow \theta \sigma_2 \sigma_1 = \tau \Longrightarrow \theta \in Ex(\eta, \sigma_1 \sigma_2)$$

Hemos probado que

$$Ex(\tau, \sigma_2 \sigma_1) = \bigcup_{\eta \in Ex(\tau, \sigma_1)} Ex(\eta, \sigma_2)$$

Ahora, si $\eta, \eta' \in Ex(\tau, \sigma_1)$ y tenemos que:

$$\theta \in Ex(\eta, \sigma_2) \cap Ex(\eta', \sigma_2) \Longrightarrow \begin{cases} \theta \sigma_2 = \eta \\ \theta \sigma_2 = \eta' \end{cases} \Longrightarrow \eta = \eta'$$

por lo que la unión es disjunta.

Proposición 1.22. Sean dos homomorfismos de cuerpos:

$$F \xrightarrow{\tau} E$$

$$K$$

 $Si[K:\sigma(F)] < \infty, \ entonces \ |Ex(\tau,\sigma)| \leqslant [K:\sigma(F)].$

Demostración. Por inducción sobre $n = [K : \sigma(F)]$ usando el segundo principio de inducción:

• Si n = 1, entonces $\sigma(F) = K$, por lo que σ es un isomorfismo, con lo que $Ex(\tau, \sigma) = \{\tau \sigma^{-1}\}$, ya que si $\eta \in Ex(\tau, \sigma)$, entonces:

$$\eta \sigma = \tau \Longrightarrow \eta = \tau \sigma^{-1}$$

En definitiva, $1 = |Ex(\tau, \sigma)| \leq [K : \sigma(F)] = 1$.

■ Supuesto que n > 1 y la hipótesis de inducción, como $[K : \sigma(F)] = n > 1$, tenemos que existe $\alpha \in K$ de forma que $[\sigma(F)(\alpha) : \sigma(F)] > 1$, con lo que el Lema de la Torre nos dice que $[K : \sigma(F)(\alpha)] < n$.

Sea ahora $\iota : \sigma(F)(\alpha) \to K$ la inclusión en K, podemos tomar:

$$\sigma = \iota \circ \sigma'$$

con $\sigma': F \to \sigma(F)(\alpha)$ la restricción en codominio (o correstricción) de σ . Nos encontramos en la siguiente situación:

$$F \xrightarrow{\tau} E$$

$$\sigma' \downarrow \qquad \sigma$$

$$\sigma(F)(\alpha) \xrightarrow{\iota} K$$

Aplicando el Lema anterior, obtenemos:

$$Ex(\tau, \sigma) = \biguplus_{\eta \in Ex(\tau, \sigma')} Ex(\eta, \iota)$$

Con lo que:

$$|Ex(\tau,\sigma)| = \sum_{\eta \in Ex(\tau,\sigma')} |Ex(\eta,\iota)|$$

Sea $\eta \in Ex(\tau, \sigma')$, por hipótesis de inducción ($[K : \sigma(F)(\alpha)] < n$) tenemos que:

$$|Ex(\eta,\iota)| \leqslant [K:\sigma(F)(\alpha)]$$

con lo que:

$$|Ex(\tau,\sigma)| = \sum_{\eta \in Ex(\tau,\sigma')} |Ex(\eta,\iota)| \leqslant \sum_{\eta \in Ex(\tau,\sigma')} [K : \sigma(F)(\alpha)]$$
$$= |Ex(\tau,\sigma')|[K : \sigma(F)(\alpha)]$$

Sea $p^{\sigma} = Irr(\alpha, \sigma(F))$, la Proposición de extensión nos dice que si \mathcal{R}_{τ} es el número de raíces de p^{τ} en E, entonces:

$$|Ex(\tau, \sigma')| = |\mathcal{R}_{\tau}| \leq degp^{\tau} = [\sigma(F)(\alpha) : \sigma(F)]$$

Por lo que aplicando el Lema de la Torre:

$$|Ex(\tau,\sigma)| \leq |\sigma(F)(\alpha):\sigma(F)|[K:\sigma(F)(\alpha)] = [K:\sigma(F)]$$

Ejercicio 1.4.1. Si Π es el cuerpo primo de un cuerpo K, entonces el único homomorfismo de cuerpos $\sigma: \Pi \to K$ es la inclusión.

Sea $\sigma:\Pi\to K$ un homomorfismo de cuerpos, sea $\iota:\Pi\to K$ el homomorfismo inclusión, vemos que:

- $\sigma(0) = 0 = \iota(0).$
- $\sigma(1) = 1 = \iota(1)$.
- Si $n \in \mathbb{N}$, tenemos que:

$$\sigma\left(\sum_{k=1}^{n} 1\right) = \sum_{k=1}^{n} \sigma(1) = \sum_{k=1}^{n} 1 = \sum_{k=1}^{n} \iota(1) = \iota\left(\sum_{k=1}^{n} 1\right)$$

Distinguimos casos:

Si $\operatorname{car}(K) > 0$. Tendremos entonces que existe un isomorfismo $\Phi : \mathbb{Z}_p \to \Pi$ para $p = \operatorname{car}(K)$. Si $a \in \Pi$, tenemos que existe $b \in \mathbb{Z}_p$ de forma que:

$$a = \Phi(b) = \Phi\left(\sum_{k=1}^{b} 1\right) = \sum_{k=1}^{b} \Phi(1) = \sum_{k=1}^{b} 1$$

por lo que $\sigma(a) = \iota(a)$, para todo $a \in \Pi$, luego $\sigma = \iota$.

Si car(K)=0. Tendremos entonces que existe un isomorfismo $\Phi:\mathbb{Q}\to\Pi.$ Si $a\in\Pi,$ tenemos que existen $z\in\mathbb{Z}, n\in\mathbb{N}\setminus\{0\}$ de forma que:

$$a = \Phi\left(\frac{z}{n}\right) = \Phi(z)(\Phi(n))^{-1} = \Phi\left(sgn(z)\sum_{k=1}^{|z|} 1\right) \left(\Phi\left(\sum_{k=1}^{n} 1\right)\right)^{-1}$$
$$= sgn(z)\left(\sum_{k=1}^{|z|} \Phi(1)\right) \left(\sum_{k=1}^{n} \Phi(1)\right)^{-1} = sgn(z)\left(\sum_{k=1}^{|z|} 1\right) \left(\sum_{k=1}^{n} 1\right)^{-1}$$

por lo que $\sigma(a) = \iota(a)$, para todo $a \in \Pi$, de donde $\sigma = \iota$.

Mostramos a continuación un ejemplo básico de la proposición de extensión.

Ejemplo. ¿Cuántos homomorfismos de cuerpos hay de $\mathbb{Q}(\sqrt[3]{2})$ en \mathbb{C} , y cuáles son?

Para responder a esta pregunta trataremos de reformularla en una que podamos responder usando la teoría de extensiones de homomorfismos. Sea $\eta:\mathbb{Q}\left(\sqrt[3]{2}\right)\to\mathbb{C}$ un homomorfismo de cuerpos, si restringimos η al cuerpo primo de $\mathbb{Q}\left(\sqrt[3]{2}\right)$, que es \mathbb{Q} , el Ejercicio 1.4.1 nos dice que entonces $\eta|_{\mathbb{Q}}$ coincide con la aplicación inclusión $\tau:\mathbb{Q}\to\mathbb{C}$, es decir:

$$\iota \circ \eta = \tau$$

Si tomamos $\sigma = \iota : \mathbb{Q} \to \mathbb{Q}\left(\sqrt[3]{2}\right)$ la aplicación inclusión, estudiar cuántos homomorfismos de cuerpos hay de $\mathbb{Q}\left(\sqrt[3]{2}\right)$ en \mathbb{C} es equivalente a estudiar cuántas σ -extensiones de τ hay.

Por lo que el probelma se reduce a estudiar los elementos del conjuto $Ex(\tau, \sigma)$. Sabemos que:

$$\operatorname{Irr}\left(\sqrt[3]{2},\mathbb{Q}\right) = x^3 - 2$$

Cuyas raíces en \mathbb{C} son:

$$\mathcal{R} = \left\{ \sqrt[3]{2}, w\sqrt[3]{2}, w^2\sqrt[3]{2} \right\}$$

donde w es una raíz cúbica primitiva de la unidad. La Proposición de extensión nos dice entonces que existen exactamente tres homomorfismos de $\mathbb{Q}(\sqrt[3]{2})$ en \mathbb{C} . Les damos nombre a cada uno de ellos:

$$Ex(\tau,\sigma) = \{\eta_0, \eta_1, \eta_2\}$$

donde η_i está determinado (según la proposición de extensión) por:

$$\eta_j\left(\sqrt[3]{2}\right) = w^j \sqrt[3]{2}, \qquad \forall j \in \{0, 1, 2\}$$

Como cada uno de los η_j es un homomorfismo definido sobre $\mathbb{Q}\left(\sqrt[3]{2}\right)$ con base $\{1,\sqrt[3]{2}\}$, es suficiente definirlos sobre 1 (todos cumplirán $\eta_j(1)=1$, por ser homomorfismos) y sobre $\sqrt[3]{2}$. Como ejemplo de esto último, observemos que podemos calcular:

$$\eta_2 \left(\frac{\sqrt[3]{2} + (\sqrt[3]{2})^2}{27} \right) = \frac{\eta_2(\sqrt[3]{2}) + (\eta_2(\sqrt[3]{2}))^2}{\eta_2(27)} = \frac{w^2 \sqrt[3]{2} + (w^2 \sqrt[3]{2})^2}{27}$$

Proposición 1.23. Sean dos homomorfismos de cuerpos:

$$F \xrightarrow{\tau} E$$

$$\downarrow K$$

con σ un cuerpo de descomposición de $f \in F[x]$. Si f^{τ} se descompone como producto de polinomios lineales en E[x], entonces $Ex(\tau,\sigma)$ es no vacío. Además, si f^{σ} tiene deg f raíces distintas, entonces:

$$|Ex(\tau,\sigma)| = [K:\sigma(F)]$$

Demostración. La idea es similar a la de la Proposición 1.22, por inducción sobre $n = [K : \sigma(F)]$:

■ Para n=1, tenemos que $K=\sigma(F)$, con lo que σ es un isomorfismo y tendremos por tanto que $Ex(\tau,\sigma)=\{\tau\sigma^{-1}\}.$

■ Supuesto que n > 1 y la hipótesis de inducción, tenemos que f tiene un factor irreducible $p \in F[x]$ de grado mayor o igual 1. Tomamos una raíz $\alpha \in K$ de p^{σ} , de donde $[K : \sigma(F)(\alpha)] < n$. Si consideramos $\sigma' : F \to \sigma(F)(\alpha)$ y la inclusión $\iota : \sigma(F)(\alpha) \to K$, tenemos que:

$$Ex(\tau, \sigma) = \biguplus_{\eta \in Ex(\tau, \sigma')} Ex(\eta, \iota)$$

con lo que:

$$|Ex(\tau,\sigma)| = \sum_{\eta \in Ex(\tau,\sigma')} |Ex(\eta,\iota)|$$

de la proposición de extensión deducimos que $Ex(\tau, \sigma')$ tiene tantos elementos como raíces de p^{τ} hay en E. Sin embargo, como f^{τ} se factoriza como producto de polinomios de grado 1 en E[x] y p^{τ} es un factor de f^{τ} , en particular $Ex(\tau, \sigma') \neq \emptyset$, lo que nos permite tomar $\eta \in Ex(\tau, \sigma')$, y por hipótesis de inducción obtenemos que $Ex(\eta, \iota)$ es no vacío, con lo que tampoco puede serlo $Ex(\tau, \sigma)$.

Además, si f^{σ} tiene degf raíces distintas, entonces p^{σ} tiene degp raíces distintas, de donde:

$$|Ex(\tau, \sigma')| = \mathcal{R}(p^{\sigma}) = degp^{\sigma} = [\sigma(F)(\alpha) : \sigma(F)]$$

Por hipótesis de inducción (como $[K:\sigma(F)(\alpha)] < n$), para cada $\eta \in Ex(\tau, \sigma')$ tenemos que $|Ex(\eta, \iota)| = [K:\sigma(F)(\alpha)]$, con lo que:

$$|Ex(\tau,\sigma)| = \sum_{\eta \in Ex(\tau,\sigma')} |Ex(\eta,\iota)| = [K : \sigma(F)(\alpha)][\sigma(F)(\alpha) : \sigma(F)] = [K : \sigma(F)]$$

Ejemplo. (Continuación del ejemplo anterior)

Sea $K = \mathbb{Q}(\sqrt[3]{2}, w)$ con w una raíz cúbica primitiva de la unidad, si queremos calcular todos los homomorfismos de K en \mathbb{C} , lo que haremos será considerar las respectivas aplicaciones de inclusión τ, σ_1 y σ_2 , con lo que tenemos:

Y queremos calcular $Ex(\tau, \sigma_1\sigma_2)$. Para ello, trataremos de usar las aplicaciones η_j que ya conocemos, que cumplían:

$$\eta_j \left(\sqrt[3]{2} \right) = w^j \sqrt[3]{2} \qquad \forall j \in \{0, 1, 2\}$$

Calcularemos para cada j todas las σ_2 -extensiones de η_i , ya que:

$$Ex(\tau, \sigma_2\sigma_1) = \biguplus_{\eta \in Ex(\tau, \sigma_1)} Ex(\eta, \sigma_2) = Ex(\eta_0, \sigma_2) \cup Ex(\eta_1, \sigma_2) \cup Ex(\eta_2, \sigma_2)$$

Para ello, necesitamos calcular el polinomio irreducible de w sobre $\mathbb{Q}\left(\sqrt[3]{2}\right)$ y calcular sus raíces en \mathbb{C} , cosa que ya hemos realizado en alguna ocasión:

$$\operatorname{Irr}\left(w,\mathbb{Q}\left(\sqrt[3]{2}\right)\right) = x^2 + x + 1$$
 con raíces w, w^2

Por tanto, tendremos 2 σ_2 extensiones de η_i para cada $j \in \{0, 1, 2\}$:

$$\eta_{j,k}(w) = w^k \qquad k \in \{1, 2\}$$

$$Ex(\tau, \sigma_2\sigma_1) = \{\eta_{j,k} : j \in \{0, 1, 2\}, k \in \{1, 2\}\}\$$

determinadas por

$$\eta_{j,k}\left(\sqrt[3]{2}\right) = w^j \sqrt[3]{2}, \qquad \eta_{j,k}(w) = w^k$$

Sabíamos que teníamos que obtener 6 extensiones, puesto que K es cuerpo de descomposición de x^3-2 , con todas sus raíces distintas y que se descompone como producto de polinomios lineales en \mathbb{C} .

Ejercicio 1.4.2. Sean $F \xrightarrow{\tau} E \xrightarrow{\rho} E$ homomorfismos de cuerpos. Sabemos que E es un $\tau(F)$ -espacio vectorial, se verifica que:

$$\rho \text{ es } \tau(F) - \text{lineal} \iff \rho \tau = \tau$$

 \iff Sea $y \in \tau(F)$ y $z \in E$, tenemos que existe $x \in F$ de forma que $\tau(x) = y$, con lo que:

$$\rho(y \cdot z) = \rho(\tau(x) \cdot z) = \rho(\tau(x)) \cdot \rho(z) = \tau(x) \cdot \rho(z) = y \cdot \rho(z)$$

 \implies) Supuesto que ρ es $\tau(F)$ -lineal, tenemos que:

$$\rho(\tau(x)) = \rho(\tau(x) \cdot 1) = \tau(x) \cdot \rho(1) = \tau(x) \cdot 1 = \tau(x) \qquad \forall x \in E$$

Teorema 1.24 (Unicidad del cuerpo de descomposición).

Sean $\tau: F \to E$ y $\tau': F \to E'$ dos cuerpos de descomposición de $f \in F[x]$. Entonces, existe un isomorfismo de cuerpos $\eta: E \to E'$ tal que $\eta \tau = \tau'$.

Demostración. La Proposición 1.23 nos dice que como f^{τ} y $f^{\tau'}$ se descomponen como producto de polinomios lineales en E[x] y E'[x] de forma respectiva, entonces $Ex(\tau,\tau')$ y $Ex(\tau',\tau)$ son no vacíos, con lo que existen $\eta:E\to E'$ y $\eta':E'\to E$ tales que

$$\eta'\tau' = \tau$$
 $\eta\tau = \tau'$

si observamos que:

$$\eta \eta' \tau' = \tau'$$

el Ejercicio 1.4.2 nos dice que $\eta\eta'$ es $\tau'(F)$ —lineal. Ahora, como E' es de dimensión finita sobre $\tau'(F)$ por ser E' cuerpo de descomposición de $f^{\tau'}$; y como tenemos que $\eta\eta': E' \to E'$ es inyectiva, obtenemos automáticamente que $\eta\eta'$ es biyectiva. De aquí deducimos que η es sobreyectiva, pero como era un homomorfismo de cuerpos, concluimos que η es biyectiva, con lo que η es un isomorfismo.

Ejercicio 1.4.3. Sea $\sigma: F \to E$ un homomorfismo de cuerpos tal que la extensión $\sigma(F) \leq E$ es finita. Demostrar que existe un polinomio $f \in F[x]$ y un homomorfismo de cuerpos $\tau: E \to K$ tal que $\tau \sigma: F \to K$ es cuerpo de descomposición de f.

Como la extensión $\sigma(F) \leq E$ es finita, sabemos entonces que es algebraica y finitamente generada, con lo que existen $\alpha_1, \ldots, \alpha_n \in E$ algebraicos sobre $\sigma(F)$ de forma que $E = \sigma(F)(\alpha_1, \ldots, \alpha_n)$. Obtenemos para todo $i \in \{1, \ldots, n\}$:

$$g_i = \operatorname{Irr}(\alpha_i, \sigma(F))$$

con lo que $g_i(\alpha_i) = 0 \quad \forall i \in \{1, ..., n\}$. Como $\sigma : F \to \sigma(F)$ es un isomorfismo, para cada g_i existe un único polinomio $f_i \in F[x]$ de forma que $f_i^{\sigma} = g_i$. Consideramos:

$$f = \prod_{i=1}^{n} f_i \Longrightarrow f^{\sigma} = \prod_{i=1}^{n} f_i^{\sigma} = \prod_{i=1}^{n} g_i \in \sigma(F)[x]$$

Por la Proposición 1.18, sabemos que podemos encontrar $\theta : \sigma(F) \to K$ cuerpo de descomposición de f^{σ} . Trataremos ahora de extender θ a E. Para ello, si observamos que:

y recordamos que $g_1 \in \sigma(F)[x]$ es irreducible en $\sigma(F)$, la proposición de extensión nos dice que existe existe $\eta_1 \in Ex(\theta, \iota)$ de forma que $\eta_1(\alpha_1)$ es una raíz de g_1^{θ} (y por tanto de $(f^{\sigma})^{\theta}$) en K. Supuesto ahora que:

$$\sigma(F)(\alpha_1, \dots, \alpha_k) \xrightarrow{\eta_k} K$$

$$\sigma(F)(\alpha_1, \dots, \alpha_{k+1})$$

Si tomamos $\operatorname{Irr}(\alpha_{k+1}, \sigma(F)(\alpha_1, \dots, \alpha_k))$ (divisor de g_{k+1}), la proposición de extensión nos garantiza la existencia de $\eta_{k+1} \in Ex(\eta_k, \iota)$ de forma que $\eta_{k+1}(\alpha_{k+1})$ es una raíz de $g_{k+1}^{\eta_k}$. Tomando ahora $\tau = \eta_n$, tenemos $\tau : \sigma(F)(\alpha_1, \dots, \alpha_n) = E \to K$ de forma que $(f^{\sigma})^{\tau}$ se descompone como producto de polinomios lineales en K[x], y si \mathcal{R} es el conjunto de raíces de $(f^{\sigma})^{\tau}$, $K = \sigma(F)(\mathcal{R})$, con lo que K es cuerpo de descomposición de $(f^{\sigma})^{\tau}$.

1.5. Clasificación de los cuerpos finitos

Proposición 1.25. Sea F un cuerpo finito de cardinal¹¹ $q = p^n$ donde $p = \operatorname{car}(F)$, entonces F es cuerpo de descomposición de $x^q - x \in \mathbb{Z}_p[x]$.

 $^{^{11}{\}rm Sabemos}$ que es así por el Ejercicio 1.

Demostración. Llamamos $f = x^q - x$ y consideramos el grupo $F^{\times} = F \setminus \{0\}$, que tiene q - 1 elementos. Por el Teorema de Lagrange para grupos tenemos que todo $\alpha \in F^{\times}$ satisface que $\alpha^{q-1} = 1$, de donde $\alpha^q = \alpha$. Para 0 es trivial, con lo que:

$$\alpha^q = \alpha \quad \forall \alpha \in F$$

es decir, todo elemento de F es raíz de $x^q - x$. Como su polinomio derivado es $qx^{q-1} - 1 = 0$, tenemos entonces que $x^q - x$ tiene exactamente q raíces distintas, que deben ser todos aquellos elementos de F. Como además $\mathbb{Z}_p \leq F$ es el subcuerpo primo, tenemos que F es cuerpo de descomposición de $f \in \mathbb{Z}_p[x]$.

Ejercicio 1.5.1. Sean $a, b \in F$ con F un cuerpo de característica p > 0. Si $q = p^n$, comprobar que $(a - b)^q = a^q - b^q$.

Veamos en primer lugar que:

$$(a-b)^p = \sum_{k=0}^p \binom{p}{k} a^{p-k} (-b)^k = a^p - b^p + \sum_{k=1}^{p-1} \frac{p!}{k!(p-k)!} a^{p-k} (-b)^k \stackrel{(*)}{=} a^p - b^p$$

donde en (*) usamos que para 1 < k < p-1 tenemos que $\binom{p}{k}$ es múltiplo de p. Observemos ahora que:

$$(a-b)^{p^2} = ((a-b)^p)^p = (a^p - b^p)^p = a^{p^2} - b^{p^2}$$

Y por un procedimiento inductivo se termina probando que $(a-b)^q = a^q - b^q$.

Teorema 1.26 (Clasificación de cuerpos finitos). Para cada número primo p y para cada $n \in \mathbb{N} \setminus \{0\}$ existe un único, salvo isomorfismos, cuerpo de cardinal p^n . Además, estos son los únicos cuerpos finitos.

Demostración. Sea $q=p^n$, tomamos como F un cuerpo de descomposición del polinomio $f=x^q-x\in\mathbb{Z}_p[x]$. Sea S el conjunto de las raíces de f en F, veamos que S es un subcuerpo de F, puesto que:

- $1 \in S$.
- Si $a, b \in S$:

$$\begin{vmatrix} a^q - a = 0 \\ b^q - b = 0 \end{vmatrix} \Longrightarrow a^q b^q = ab \Longrightarrow (ab)^q - ab = 0$$

con lo que $ab \in S$, y vemos ahora que:

$$(a-b)^q - (a-b) \stackrel{(*)}{=} a^q - b^q - (a-b) = a-b - (a-b) = 0$$

donde en (*) usamos el Ejercicio 1.5.1, con lo que también $a-b \in S$.

• Ahora, si $a \in S \setminus \{0\}$, tenemos que:

$$(a^{-1})^q = a^{-q} = (a^q)^{-1} = a^{-1} \Longrightarrow (a^{-1})^q - a^{-1} = 0$$

por lo que $a^{-1} \in S$.

Como $\mathbb{Z}_p \leq F$ es el cuerpo primo y $S \leq F$, ha de ser $\mathbb{Z}_p \leq S$. Finalmente, como F es un cuerpo de descomposición de f, ha de ser $F = \mathbb{Z}_p(S) = S$. Además, como el polinomio derivado no comparte raíces con f, tenemos que |F| = q.

Ahora, si tenemos dos cuerpos del mismo cardinal q, la Proposición 1.25 nos dice que ambos cuerpos son cuerpos de descomposición de $x^q - x \in \mathbb{F}_p[x]$, y aplicando el Teorema de unicidad del cuerpo de descomposición, tenemos que son isomorfos.

Sea ahora F cualquier cuerpo, tenemos por el Ejercicio 1 que este tiene cardinal p^n , por lo que tenemos el resultado por lo que acabamos de probar.

Notación. Si F es un cuerpo de $q = p^n$ elementos, lo notaremos por \mathbb{F}_q , y hablaremos "del" cuerpo de q elementos. Como todos los cuerpos de q elementos son isomorfos entre sí, usaremos \mathbb{F}_q como una etiqueta que hace referencia a cualquier cuerpo de q elementos.

Ejemplo. Sabemos ya que:

$$\frac{\mathbb{Z}[i]}{\langle 3 \rangle}, \qquad \frac{\mathbb{F}_3[x]}{\langle x^2 + x + 2 \rangle}$$

son dos cuerpos de 9 elementos, con lo que el Teorema recién probado nos dice que ambos son isomorfos.

1.6. El grupo de automorfismos de una extensión

Definición 1.20 (Grupo de automorfismos de un cuerpo). Sea K un cuerpo, consideramos el conjunto de todos los automorfismos de K:

$$\operatorname{Aut}(K) = \{ \sigma : K \to K \text{ homomorfismo de cuerpos biyectivo} \}$$

Se verifica que Aut(K) es un grupo con la operación composición de aplicaciones, que recibe el nombre de grupo de automorfismos de K.

Si $F \leq K$ es una extensión de cuerpos, consideraremos también:

$$\operatorname{Aut}_F(K) = \{ \sigma \in \operatorname{Aut}(K) : \sigma \text{ es } F - \text{lineal} \}$$

y se verifica que $\operatorname{Aut}_F(K)$ es un subgrupo de $\operatorname{Aut}(K)$, que recibe el nombre de grupo de automorfismos de $F \leq K$.

Ejercicio 1.6.1. Si Π es el subcuerpo primo de K, entonces $\operatorname{Aut}_{\Pi}(K) = \operatorname{Aut}(K)$.

Basta probar la inclusión \supseteq). Para ello, sea $\sigma \in \operatorname{Aut}(K)$, si tomamos $a \in \Pi$ y $b \in K$, tenemos que:

$$\sigma(a \cdot b) = \sigma(a) \cdot \sigma(b) \stackrel{(*)}{=} \iota(a) \cdot \sigma(b) = a \cdot \sigma(b)$$

Donde en (*) hemos usado que $\sigma|_{\Pi} = \iota$, donde $\iota : \Pi \to K$ es la aplicación inclusión, algo que probamos en el Ejercicio 1.4.1, con lo que $\sigma \in \operatorname{Aut}_{\Pi}(K)$.

Proposición 1.27. Si $F \leq K$ es finita, entonces $|\operatorname{Aut}_F(K)| \leq [K:F]$

Demostración. Si llamamos $F \stackrel{\iota}{\to} K$ al homomorfismo inclusión, entonces:

$$\operatorname{Aut}_F(K) = Ex(\iota, \iota)$$

- \subseteq) Si $\sigma \in \operatorname{Aut}_F(K)$, tenemos entonces que σ es F-lineal, y por el Ejercicio 1.4.2, tenemos entonces que $\sigma \circ \iota = \iota$, lo que nos dice que $\sigma \in Ex(\iota, \iota)$.
- \supseteq) Si tomamos $\sigma \in Ex(\iota, \iota)$ como es homomorfismo de cuerpos tenemos que es inyectivo, y como es F-lineal entre dos espacios vectoriales de dimensión finita, ha de ser necesariamente sobreyectivo, con lo que $\sigma \in \operatorname{Aut}_F(K)$

Finalmente, la segunda proposición de extensión nos dice que:

$$|\operatorname{Aut}_F(K)| = |Ex(\iota, \iota)| \leq [K : F]$$

Proposición 1.28. Si $F \leq K$ es cuerpo de descomposición de $f \in F[x]$, entonces:

$$|\operatorname{Aut}_F(K)| \leq [K:F]$$

y si todas las raíces de f en K son simples (es decir, f tiene degf raíces distintas), entonces:

$$|\operatorname{Aut}_F(K)| = [K:F]$$

Demostración. Si $F \leq K$ es un cuerpo de descomposición de $f \in F[x]$, tenemos entonces que si $\alpha_1, \ldots, \alpha_s$ son las raíces de f en K entonces $K = F(\alpha_1, \ldots, \alpha_s)$ es una extensión algebraica y finitamente generada, luego finita, de donde aplicando la Proposición anterior tenemos que $|\operatorname{Aut}_F(K)| \leq [K:F]$.

Si ahora tenemos que todas las raíces de f en K son simples, aplicando la igualdad de la demostración anterior $|\operatorname{Aut}_F(K)| = |Ex(\iota, \iota)|$ para $\iota : F \to K$ la aplicación inclusión, tenemos por la tercera propiedad de extensión que:

$$|\operatorname{Aut}_F(K)| = |Ex(\iota, \iota)| = [K : F]$$

Ejemplo. Según un ejercicio ya visto, tenemos que:

$$\operatorname{Aut}\left(\mathbb{Q}\left(\sqrt[3]{2},w\right)\right)=\operatorname{Aut}_{\mathbb{Q}}\left(\mathbb{Q}\left(\sqrt[3]{2},w\right)\right)$$

con lo que la Proposición nos dice que:

$$\left| \operatorname{Aut}_{\mathbb{Q}} \left(\mathbb{Q} \left(\sqrt[3]{2}, w \right) \right) \right| = 6$$

Por Álgebra II, tenemos que este grupo es isomorfo a C_6 o a S_3 , pero en ejemplos anteriores vimos que:

Aut
$$\left(\mathbb{Q}\left(\sqrt[3]{2}, w\right)\right) = \{\eta_{j,k} : j \in \{0, 1, 2\}, k \in \{1, 2\}\}$$

donde:

$$\begin{cases} \eta_{j,k} \left(\sqrt[3]{2}\right) &= w^j \sqrt[3]{2} \\ \eta_{j,k}(w) &= w^k \end{cases}$$

resulta que tenemos un grupo no conmutativo:

$$\sqrt[3]{2} \xrightarrow{\eta_{1,1}} w\sqrt[3]{2} \xrightarrow{\eta_{1,0}} w\sqrt[3]{2}$$

$$\sqrt[3]{2} \xrightarrow{\eta_{1,0}} w\sqrt[3]{2} \xrightarrow{\eta_{1,1}} w^2\sqrt[3]{2}$$

por lo que es isomorfo a S_3 .

Teorema 1.29. Sea \mathbb{F}_q un cuerpo finito con $q = p^n$ elementos, entonces $Aut(\mathbb{F}_q)$ es un grupo cíclico de orden n.

Demostración. Sabemos por la Proposición 1.25 que \mathbb{F}_q es cuerpo de descomposición de $x^q - x \in \mathbb{F}_q[x]$, así como que las raíces de dicho polinomio son todas distintas (puesto que no comparte raíces con su polinomio derivado). Estamos en las condiciones de aplicar la Proposición 1.28, obteniendo que:

$$|\operatorname{Aut}(\mathbb{F}_q)| = |\operatorname{Aut}_{\mathbb{F}_p}(\mathbb{F}_q)| = [\mathbb{F}_q : \mathbb{F}_p] = n$$

Sea $\tau: \mathbb{F}_q \to \mathbb{F}_q$ la aplicación:

$$\tau(a) = a^p \quad \forall a \in \mathbb{F}_a$$

tenemos por el Ejercicio 1.5.1 que es un homomorfismo de cuerpos, luego un automorfismo (que recibe el nombre de automorfismo de Frobenius). Veamos que su oren es n. Para ello, sea $m \in \mathbb{N} \setminus \{0\}$ de forma que:

$$\tau^m = id_{\mathbb{F}_q}$$

En el Ejercicio 1.7.10 vimos que \mathbb{F}_q^{\times} es cíclico y de orden q-1. Tomamos a como su generador, que será de orden q-1, lo que nos dice entonces que:

$$a = id_{\mathbb{F}_q}(a) = \tau^m(a) = a^{p^m}$$

Usando que el orden de a es $p^n - 1$, deducimos que $p^m - 1 \ge p^n - 1$, luego $m \ge n$, de donde el orden de $\tau \in \operatorname{Aut}(\mathbb{F}_q)$ es n, con lo que $\operatorname{Aut}(\mathbb{F}_q)$ ha de ser cíclico.

1.7. Ejercicios

Ejercicio 1.7.1. Sea $F \leq K$ una extensión de cuerpos de grado 2. Mostrar que, si la característica de F es distinta de dos, existe $\beta \in K$ tal que $\beta^2 \in F$ y $K = F(\beta)$.

Sea $\alpha \in K \setminus F$, tenemos que α tiene grado 2 sobre K, puesto que si fuera de grado 1, entonces existe un polinómico mónico de grado 1 x-a (con $a \in F$) de forma que α es raíz de dicho polinomio, con lo que ha de ser $a=\alpha \notin F$, contradicción. De esta forma, $deg \operatorname{Irr}(\alpha, F)=2$, es decir, existen $a,b \in F$ de forma que α es raíz del polinomio:

$$x^2 + ax + b$$

Por lo que $\alpha^2 + a \cdot \alpha + b = 0$. Como la característica de F no es dos, tenemos que $1 + 1 = 2 \neq 0$, con lo que podemos considerar 2^{-1} . Si tomamos:

$$\beta = \alpha + \frac{a}{2}$$

tenemos que:

$$\beta^2 = \left(\alpha + \frac{a}{2}\right)^2 = \alpha^2 + \alpha \cdot a + \frac{a^2}{4} = -b + \frac{a^2}{4} \in F$$

Y además $\beta \notin F$, pues $\alpha = \beta - \frac{a}{2}$. Como $\beta \in K$, es obvio que $F(\beta) \leqslant K$, y como $[F(\beta):F] = [K:F]$, ha de ser $K = F(\beta)$.

Ejercicio 1.7.2. Calcular un cuerpo de descomposición de $x^4 + 16 \in \mathbb{Q}[x]$.

Tenemos que:

$$x^4 + 16 = 0 \iff x = \sqrt[4]{-16} = 2\sqrt[4]{-1}$$

Si recordamos que:

$$\sqrt[4]{-1} = \left\{ e^{\frac{i}{n}(\pi + 2k\pi)} : k \in \{0, 1, 2, 3\} \right\} = \left\{ e^{\frac{i\pi}{4}}, e^{\frac{3i\pi}{4}}, e^{\frac{5i\pi}{4}}, e^{\frac{7i\pi}{4}} \right\}$$

con:

$$e^{\frac{i\pi}{4}} = \cos\left(\frac{\pi}{4}\right) + i \sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2}$$

$$e^{\frac{3i\pi}{4}} = \cos\left(\frac{3\pi}{4}\right) + i \sin\left(\frac{3\pi}{4}\right) = -\frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2}$$

$$e^{\frac{5i\pi}{4}} = \cos\left(\frac{5\pi}{4}\right) + i \sin\left(\frac{5\pi}{4}\right) = -\frac{\sqrt{2}}{2} - i \frac{\sqrt{2}}{2}$$

$$e^{\frac{7i\pi}{4}} = \cos\left(\frac{7\pi}{4}\right) + i \sin\left(\frac{7\pi}{4}\right) = \frac{\sqrt{2}}{2} - i \frac{\sqrt{2}}{2}$$

Por lo que:

$$\sqrt[4]{-16} = \left\{ \sqrt{2} + i\sqrt{2}, -\sqrt{2} + i\sqrt{2}, -\sqrt{2} - i\sqrt{2}, \sqrt{2} - i\sqrt{2} \right\}$$

Con lo que $\mathbb{Q}\left(\sqrt{2}+i\sqrt{2},\sqrt{2}-i\sqrt{2}\right)$ es un cuerpo de descomposición de x^4+16 , que trataremos de probar que es igual a $\mathbb{Q}\left(i,\sqrt{2}\right)$:

- \subseteq) Es claro que $\mathbb{Q}\left(\sqrt{2}+i\sqrt{2},\sqrt{2}-i\sqrt{2}\right) \leqslant \mathbb{Q}\left(i,\sqrt{2}\right)$.
- \supseteq) Vemos que:

$$\sqrt{2} = \frac{\sqrt{2} + i\sqrt{2} + \sqrt{2} - i\sqrt{2}}{2} \in \mathbb{Q}\left(\sqrt{2} + i\sqrt{2}, \sqrt{2} - i\sqrt{2}\right)$$
$$i = \frac{\sqrt{2} + i\sqrt{2} - \sqrt{2}}{\sqrt{2}} \in \mathbb{Q}\left(\sqrt{2} + i\sqrt{2}, \sqrt{2} - i\sqrt{2}\right)$$

En definitiva, $\mathbb{Q}(i, \sqrt{2})$ es un cuerpo de descomposición de $x^4 + 16$.

Ejercicio 1.7.3. Razonar cuáles de los siguientes números complejos son algebraicos sobre \mathbb{Q} , suponiendo conocido que e y π son trascendentes:

$$\sqrt[5]{4}$$
, $(1 + \sqrt[5]{4})(1 - \sqrt[5]{16})^{-1}$, π^2 , $e^2 - i$, $i\sqrt{i} + \sqrt{2}$, $\sqrt{1 - \sqrt[3]{2}}$, $\sqrt{\pi}$, $\sqrt{2}(\sqrt[3]{2} + \sqrt[5]{2})^{-1}$.

Veamos cada caso:

- $\sqrt[5]{4}$ es algebraico sobre \mathbb{Q} , puesto que es raíz de x^5-4 .
- $(1+\sqrt[5]{4})(1-\sqrt[5]{16})^{-1}$

En el apartado anterior hemos visto que $[\mathbb{Q}(\sqrt[5]{4}):\mathbb{Q}] \leq 5$, con lo que la extensión $\mathbb{Q} \leq \mathbb{Q}(\sqrt[5]{4})$ es finita, luego algebraica y finitamente generada, por lo que todo elemento de este último cuerpo será algebraico sobre \mathbb{Q} . Observemos que:

$$(1+\sqrt[5]{4})\Big(1-\sqrt[5]{16}\Big)^{-1} = (1+\sqrt[5]{4})\Big(1-\sqrt[5]{4}\sqrt[5]{4}\Big)^{-1} \in \mathbb{Q}(\sqrt[5]{4})$$

Por lo que es algebraico sobre \mathbb{Q} .

- π^2
- $e^2 i$
- $\mathbf{I} i\sqrt{i} + \sqrt{2}$
- $\sqrt{1-\sqrt[3]{2}}$

Buscamos un polinomio con coeficientes en \mathbb{Q} del que este elemento sea raíz. Para ello, lo que haremos será ver que este ha de cumplir que:

$$x^2 = 1 - \sqrt[3]{2} \Longrightarrow x^2 - 1 = -\sqrt[3]{2}$$

De donde:

$$(x^2 - 1)^3 = x^6 - 3x^4 + 3x^2 - 1 = -2$$

Por lo que si tomamos $f = x^6 - 3x^4 + 3x^2 + 1 \in \mathbb{Q}[x]$, tenemos que $\sqrt{1 - \sqrt[3]{2}}$ es raíz de f, con lo que es algebraico sobre \mathbb{Q} .

- $-\sqrt{\pi}$
- $\sqrt{2}(\sqrt[3]{2} + \sqrt[5]{2})^{-1}$

Por el Lema de la Torre, tenemos que:

$$\begin{split} & \left[\mathbb{Q} \left(\sqrt{2}, \sqrt[3]{2}, \sqrt[5]{2} \right) : \mathbb{Q} \right] = \\ & \left[\mathbb{Q} \left(\sqrt{2}, \sqrt[3]{2}, \sqrt[5]{2} \right) : \mathbb{Q} \left(\sqrt{2}, \sqrt[3]{2} \right) \right] \left[\mathbb{Q} \left(\sqrt{2}, \sqrt[3]{2} \right) : \mathbb{Q}(\sqrt{2}) \right] \left[\mathbb{Q} \left(\sqrt{2} \right) : \mathbb{Q} \right] \end{split}$$

Con:

- $\left[\mathbb{Q}\left(\sqrt{2}\right):\mathbb{Q}\right]=2$, ya que $\operatorname{Irr}(\sqrt{2},\mathbb{Q})=x^2-2$ por Eisenstein para p=2.
- $\left[\mathbb{Q}\left(\sqrt{2}, \sqrt[3]{2}\right) : \mathbb{Q}\left(\sqrt{2}\right)\right] \leqslant 3$ ya que $x^3 2$ es un polinomio con $\sqrt[3]{2}$ como raíz.

• $\left[\mathbb{Q}\left(\sqrt{2}, \sqrt[3]{2}, \sqrt[5]{2}\right) : \mathbb{Q}\left(\sqrt{2}, \sqrt[3]{2}\right)\right] \leqslant 5$, ya que $x^5 - 2$ es un polinomio con $\sqrt[5]{2}$ como raíz.

En definitiva, la extensión $\mathbb{Q} \leq \mathbb{Q}\left(\sqrt{2}, \sqrt[3]{2}, \sqrt[5]{2}\right)$ es finita, luego algebraica y finitamente generada. En particular, tenemos que:

$$\sqrt{2}(\sqrt[3]{2} + \sqrt[5]{2})^{-1} \in \mathbb{Q}\left(\sqrt{2}, \sqrt[3]{2}, \sqrt[5]{2}\right)$$

Por lo que $\sqrt{2}(\sqrt[3]{2} + \sqrt[5]{2})^{-1}$ es algebraico.

Ejercicio 1.7.4. Sea $F \leq K$ una extensión de cuerpos, $\alpha \in K$ y n natural no nulo. Demostrar que α es algebraico sobre F si, y solo si, α^n es algebraico sobre F.

- \Longrightarrow) Si α es algebraico sobre F entonces la extensión $F \leqslant F(\alpha)$ es algebraica, y tenemos que $\alpha^n \in F(\alpha)$, por lo que α^n es algebraico sobre F.
- \iff Si α^n es algebraico sobre F, entonces existe $f \in F[x]$ de forma que $f(\alpha^n) = 0$. Si f se escribe como:

$$f = \sum_{i=1}^{m} f_i x^i \qquad f_i \in F$$

tenemos entonces que:

$$f(\alpha^n) = \sum_{i=1}^m f_i(\alpha^n)^i = 0$$

Por tanto, si consideramos el polinomio:

$$g = \sum_{k=1}^{m} f_i x^{in} \in F[x]$$

tendremos entonces:

$$g(\alpha) = \sum_{k=1}^{m} f_i \alpha^{in} = \sum_{k=1}^{m} f_i (\alpha^n)^i = 0$$

Por lo que α es algebraico sobre F.

Ejercicio 1.7.5. Sea $F \leq K$ una extensión de cuerpos, $\alpha \in K$ y $\beta = 1 + \alpha^2 + \alpha^5$. Demostrar que α es algebraico sobre F si, y solo si, β es algebraico sobre F:

 \Longrightarrow) Si α es algebraico sobre F entonces la extensión $F \leqslant F(\alpha)$ es algebraica, y tenemos que:

$$\beta = 1 + \alpha^2 + \alpha^5 \in F(\alpha)$$

Por lo que β es algebraico sobre F.

 \iff

Ejercicio 1.7.6. Calcular $Irr(\alpha, \mathbb{Q})$ para los siguientes valores de α :

$$3 + \sqrt{2}, \sqrt{3} - \sqrt[4]{3}, \sqrt[3]{2} + \sqrt[3]{4}$$

a) Para $\alpha = 3 + \sqrt{2}$.

Es claro que $\mathbb{Q}(\alpha) \leq \mathbb{Q}(\sqrt{2})$, así como que:

$$\sqrt{2} = 3 + \sqrt{2} - 3 \in \mathbb{Q}(\alpha)$$

Por lo que $\mathbb{Q}(\sqrt{2}) \leq \mathbb{Q}(\alpha)$. Como Irr $(\sqrt{2}, \mathbb{Q}) = x^2 - 2$ por Eisenstein para p = 2, tenemos que:

$$[Q(\alpha):\mathbb{Q}] = \left[\mathbb{Q}\left(\sqrt{2}\right):\mathbb{Q}\right] = 2$$

Por lo que basta encontrar un polinomio mónico de grado 2 del que α sea raíz.

$$\alpha - 3 = \sqrt{2} \Longrightarrow \alpha^2 - 6\alpha + 9 = (\alpha - 3)^2 = 2 \Longrightarrow \alpha^2 - 6\alpha + 7 = 0$$

Por lo que $Irr(\alpha, \mathbb{Q}) = x^2 - 6x + 7$.

- b) Para $\alpha = \sqrt{3} \sqrt[4]{3}$.
- c) Para $\alpha = \sqrt[3]{2} + \sqrt[3]{4}$.

Ejercicio 1.7.7. Calcular $[E:\mathbb{Q}]$ y una base de E sobre \mathbb{Q} en los siguientes casos:

$$E = \mathbb{Q}\left(\sqrt{6}, i\right), \qquad E = \mathbb{Q}\left(\sqrt[3]{5}, \sqrt{-2}\right), \qquad E = \mathbb{Q}\left(\sqrt{18}, \sqrt[3]{4}\right)$$

- a) Para $E = \mathbb{Q}(\sqrt{6}, i)$.
- b) Para $E = \mathbb{Q}(\sqrt[3]{5}, \sqrt{-2})$.

Tenemos por el Lema de la Torre que:

$$[E:\mathbb{Q}] = \left[E:\mathbb{Q}\left(\sqrt[3]{5}\right)\right] \left[\mathbb{Q}\left(\sqrt[3]{5}\right):\mathbb{Q}\right]$$

con:

- $\left[\mathbb{Q}\left(\sqrt[3]{5}\right):\mathbb{Q}\right]=3$, ya que $\operatorname{Irr}\left(\sqrt[3]{5},\mathbb{Q}\right)=x^3-5$ por Eisenstein para p=5.
- $[E: \mathbb{Q}(\sqrt[3]{5})] = 2$, ya que $\operatorname{Irr}(\sqrt{-2}, \mathbb{Q}) = x^2 + 2$, ya que es de grado 2 y no tiene raíces en $\mathbb{Q}(\sqrt[3]{5}) \leq \mathbb{R}$.

En definitiva, $[E:\mathbb{Q}]=6$, y el Lema de la Torre nos dice que una base suya es:

$$\left\{1, \sqrt[3]{5}, w\sqrt[3]{5}, \sqrt{-2}, \sqrt{-2}\sqrt[3]{5}, w\sqrt{-2}\sqrt[3]{5}\right\}$$

con w una raíz cúbica primitiv de la unidad.

c) Para $E = \mathbb{Q}(\sqrt{18}, \sqrt[3]{4}).$

Ejercicio 1.7.8. Sea $\alpha \in \mathbb{C}$ una raíz del polinomio $x^3 + 3x + 1$. Describir una base de $\mathbb{Q}(\alpha)$ sobre \mathbb{Q} y calcular las coordenadas racionales con respecto de la misma de $(1+\alpha)(1+\alpha+\alpha^2)^{-1}$.

Como $x^3 + 3x + 1$ es un polinomio de grado 3, este es irreducible en $\mathbb{Q}[x]$ si y solo si no tiene raíces en \mathbb{Q} . Como las únicas candidatas a raíces de $x^3 + 3x + 1$ en \mathbb{Q} son 1 y -1 y ninguna de ellas es raíz, concluimos que el polinomio es irreducible en $\mathbb{Q}[x]$, por lo que $\operatorname{Irr}(\alpha, \mathbb{Q}) = x^3 + 3x + 1$, de donde $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 3$. Sabemos también que $\{1, \alpha, \alpha^2\}$ es una \mathbb{Q} -base de $\mathbb{Q}(\alpha)$.

Calculamos las coordenadas en $\mathbb{Q}(\alpha)$ del número mencionado, conociendo que:

$$\alpha^3 + 3\alpha + 1 = 0$$

Ejercicio 1.7.9. Pongamos $\mathbb{F}_4 = \mathbb{F}_2(a)$ con $a^2 + a + 1 = 0$. Comprobar que \mathbb{F}_{16} puede presentarse como $\mathbb{F}_{16} = \mathbb{F}_2(b)$, donde $b^4 + b + 1 = 0$. Determinar todos los homomorfismos de cuerpos $\mathbb{F}_4 \to \mathbb{F}_{16}$ en función de a y b.

Tomamos $x^4+x+1 \in \mathbb{F}_2[x]$, y comprobamos que es irreducible para ello, comporobamos que no tiene raíces y que no puede escribirse como producto de dos polinomios irreducibles de grado 2. Como el único polinomio irreducible de grado 2 en $\mathbb{F}_2[x]$ es x^2+x+1 , basta ver que no es cuadrado del mismo. Como consecuencia:

$$\frac{\mathbb{F}_2[x]}{\langle x^4 + x + 1 \rangle}$$

es un cuerpo, que tiene dimensión 4 (el grado de $x^4 + x + 1$) sobre \mathbb{F}_2 , con lo que el cuerpo "es" \mathbb{F}_{16} . Tomamos $b = x + \langle x^4 + x + 1 \rangle$ y se tiene.

Para ver ahora todos los homomorfismos de cuerpos, conocido:

$$p = Irr(a, \mathbb{F}_2) = x^2 + x + 1$$

tenemos que hay tantos homomorfismos entre dichos cuerpos como raíces de p. La Propiedd de Extensión nos dice que los homomorfismos que me piden están parametrizados por las raíces de p en $\mathbb{F}_2(b)$.

Observemos que en este ejercicio (usando el ejercicio siguiente), cada η por restricción nos da un homomorfismo de grupos $\eta: \mathbb{F}_2^{\times}(a) \to \mathbb{F}_2^{\times}(b)$ como los cardinales son 3 y 15 y 3 divide a 15, hay homomorfismos. Sabemos que $\mathbb{F}_2(a) = \langle a \rangle$ por ser 3 primo. Ahora, no estamos seguros de si $\mathbb{F}_2(b) = \langle b \rangle$, para lo cual hemos de probar que O(b) = 15.

- \bullet $b^2\neq 1,$ ya que $b^2+1=0,$ ya que $\{1,b,b^2,b^3\}$ es una \mathbb{F}_2- base de $\mathbb{F}_{16}.$
- $b^3 \neq 1$ por la misma razón.
- $b^4 = b + 1 \neq 1$, ya que si no b = 0.

• $b^5 = b(b^4) = b(b+1) = b^2 + b \neq 1$, por la misma razón.

En definitiva, O(b) = 15, luego $\mathbb{F}_{16}^{\times} = \langle b \rangle$.

Buscando ahora homomorfismos de grupos, tenemos que llevar a en un elemento de orden 3. Ahora, los candidatos a elementos de orden 3 de \mathbb{F}_{16}^{\times} son los que generan un grupo de orden 5 y 10, es decir, b^5 y b^{10} , y tenemos que comprobar que son raíces de $x^2 + x + 1$.

Finalmente, evalúo p en las candidatas para comprobar que sean raíces:

$$p(b^5) = b^{10} + b^5 + 1 = (b^2 + b)^2 + b^2 + b + 1 = b^4 + b^2 + b^2 + b + 1$$
$$= b^4 + b + 1 = 0$$

Por el Automorfismo de Frobenius, la otra raíz es b^{10} . Sabemos que hay un η para cada raíz del polinomio, obteniendo $\eta_i : \mathbb{F}_4 \to \mathbb{F}_{16}$:

$$\eta_1(a) = b^5, \qquad \eta_2(a) = b^{10}$$

Ejercicio 1.7.10. Demostrar que, si F es un cuerpo, entonces cualquier subgrupo finito de F^{\times} es cíclico. Deducimos que, en particular, \mathbb{F}_q^{\times} es un grupo cíclico de orden q-1. (Pista: usar la descomposición cíclica de un grupo finito abeliano).

Sea G un subgrupo finito de F^{\times} , tomamos la descomposición cíclica de G:

$$G = C_1 \oplus \ldots \oplus C_t$$

Con C_i cíclico para cada $i \in \{1, ..., t\}$, con $|C_{i+1}| \mid |C_i|$. Sea $m = |C_1|$, para todo $g \in G$ tenemos que $g^m = 1$. De esta forma, cada elemento de G es raíz de $x^m - 1 \in F[x]$, que a lo mucho tiene m raíces, con lo que $|G| \leq m \leq |G|$, de donde |G| = m, por lo que todos los grupos cíclicos en los que G se descompone son triviales salvo C_1 , de donde G es cíclico.

Observación. Para \mathbb{F}_q , \mathbb{F}_q^{\times} es un grupo cíclico de orden q-1. A cualquier generador a de \mathbb{F}_q^{\times} se le llama elemento primitivo de \mathbb{F}_q , por lo que:

$$\mathbb{F}_q = \{0, 1, a, \dots, a^{q-2}\}$$

Por lo que $\mathbb{F}_q = \mathbb{F}_p(a)$, con $p = \operatorname{car}(\mathbb{F}_q)$.

Ejercicio 1.7.11. Demostrar que los anillos $\frac{\mathbb{Z}[i]}{\langle 3 \rangle}$ y $\frac{\mathbb{F}_3}{\langle x^2 + x + 2 \rangle}$ son isomorfos sin necesidad de dar un isomorfismo concreto. ¿Serías capaz de darlo? ¿Y de calcularlos todos?

Ejercicio 1.7.12. Se pide:

1. Comprobar que $\sqrt{3} \in \mathbb{Q}\left(\sqrt{1+2\sqrt{3}}\right)$.

Llamamos $\alpha = \sqrt{1 + 2\sqrt{3}}$ y calculamos:

$$\alpha^2 = 1 + 2\sqrt{3} \implies \sqrt{3} = \frac{\alpha^2 - 1}{2} \in \mathbb{Q}(\alpha)$$

De donde también deducimos que $\mathbb{Q}(\sqrt{3}) \leqslant \mathbb{Q}(\alpha)$.

2. Calcular $Irr(\alpha, \mathbb{Q}(\sqrt{3}))$.

Sabemos que α es raíz de $f=x^2-1-2\sqrt{3}\in\mathbb{Q}\left(\sqrt{3}\right)[x]$, con lo que:

$$\left[\mathbb{Q}(\alpha):\mathbb{Q}\left(\sqrt{3}\right)\right]\leqslant 2$$

Supongamos que $\left[\mathbb{Q}(\alpha):\mathbb{Q}\left(\sqrt{3}\right)\right]=1$, con lo que $\alpha\in\mathbb{Q}\left(\sqrt{3}\right)$, de donde $\alpha=a+b\sqrt{3}$ para ciertos $a,b\in\mathbb{Q}$. Si elevamos al cuadrado:

$$1 + 2\sqrt{3} = \alpha^2 = a^2 + 3b^2 + 2ab\sqrt{3}$$

Usando que $\{1, \sqrt{3}\}$ es una base de $\mathbb{Q}(\sqrt{3})$, tenemos entonces que:

$$\begin{cases}
1 = a^2 + 3b^2 \\
2 = 2ab
\end{cases} \Longrightarrow \begin{cases}
b = \frac{1}{a} \\
1 = a^2 + 3\frac{1}{a^2}
\end{cases} \Longrightarrow a^2 = a^4 + 3$$

$$\Longrightarrow a^2 = \frac{1 \pm \sqrt{1 - 12}}{2} \notin \mathbb{Q} \Longrightarrow a \notin \mathbb{Q}$$

Por lo que no es posible $\left[\mathbb{Q}(\alpha):\mathbb{Q}\left(\sqrt{3}\right)\right]=1$, con lo que $\left[\mathbb{Q}(\alpha):\mathbb{Q}\left(\sqrt{3}\right)\right]=2$, de donde deducimos que:

$$Irr\left(\alpha, \mathbb{Q}\left(\sqrt{3}\right)\right) = x^2 - 1 - 2\sqrt{3}$$

3. Calcular los homomofismos de $\mathbb{Q}(\alpha)$ en \mathbb{C} .

Queremos calcular los η que cumplen:

donde τ, ι son la inclusión, es decir, calcular $Ex(\tau, \iota)$.

No conocemos $Irr(\alpha, \mathbb{Q})$, pero hemos hecho el apartado 2, con lo que calculamos primero los homomorfismos de $\mathbb{Q}(\sqrt{3})$ a \mathbb{C} , que son dos por la Proposición de extensión, determinados por:

$$\eta_j(\sqrt{3}) = (-1)^j \sqrt{3}, \quad \forall j \in \{0, 1\}$$

ya que $Irr(\sqrt{3}, \mathbb{Q}) = x^2 - 3$. Cada uno de ellos da lugar a 2 homomorfismos de $\mathbb{Q}(\alpha)$ en \mathbb{C} . Las extensiones de η_0 , digamos $\eta_{0,k}$ con $k \in \{0,1\}$, determinadas por:

$$\eta_{0,k}(\alpha) = (-1)^k \alpha \quad \forall k \in \{0,1\}$$

Las extensiones de η_1 vienen dadas por las raíces en \mathbb{C} de $p^{\eta_1} = x^2 - 1 + 2\sqrt{3}$, que son $\pm \beta$, con $\beta = \sqrt{1 - 2\sqrt{3}}$, con lo que tenemos $\eta_{1,k}$ con $k \in \{0,1\}$ dadas por:

$$\eta_{1,k}(\beta) = (-1)^k \beta$$

4. Calcular $Irr(\alpha, \mathbb{Q})$ y sus raíces en \mathbb{C} .

Sabemos ya que el grado es 4, el polinomio se obtiene elevando $\alpha^2 = 1 + 2\sqrt{3}$ al cuadrado, y las raíces las sacamos por la bicuadrática, que salen $\alpha, -\alpha, \beta, -\beta$.

Ejercicio 1.7.13. Sea $\eta = e^{i\frac{2\pi}{5}} \in \mathbb{C}$, ¿ $Irr(\eta + \overline{\eta}, \mathbb{Q})$?. Llamando $\alpha = \eta + \overline{\eta}$, observamos que $\alpha = \eta + \eta^4$, y ahora:

$$\alpha^2 = \eta^2 + 2 + \eta^8 = \eta^2 + 2 + \eta^3$$

Y ahora como:

$$\eta^4 + \eta^3 + \eta^2 + \eta + 1 = 0$$

tenemos que:

$$\alpha^2 = \eta^2 + 2 + \eta^3 = 2 - 1 - \eta - \eta^4 = 1 - \alpha$$

Por lo que $\alpha^2 + \alpha - 1 = 0$, le calculamos las raíces:

$$\alpha = \frac{-1 \pm \sqrt{5}}{2} \notin \mathbb{Q}$$

Y como es de grado 2 ha de ser irreducible, con lo que:

$$Irr(\eta + \overline{\eta}, \mathbb{Q}) = x^2 + x + 1$$

Y el número η es constructible porque $\eta + \overline{\eta}$ es 2 veces su parte real, y $\sqrt{5}$ es constructible, luego su parte real es constructible. La parte imaginaria la obtenemos del Teorema de Pitágoras, como la raíz cuadrada de cierto número constructible.

Este ejercicio demustra que el pentágono regular es constructible.

2. Extensiones de Galois

2.1. Extensiones de Galois

Del Capítulo anterior recordamos la Proposición 1.27, que nos servirá para comenzar este Capítulo:

Sea
$$F \leq K$$
 una extensión finita, entonces $|\operatorname{Aut}_F(K)| \leq [K:F]$.

Esto nos permite obtener grupos finitos de automorfismos a partir de extensiones finitas, y lo que haremos ahora será describir un procedimiento en sentido contrario.

Ejemplo. Si consideramos Aut $(\mathbb{Q}(\sqrt[3]{2}))$, sabemos que:

$$\left| \operatorname{Aut} \left(\mathbb{Q} \left(\sqrt[3]{2} \right) \right) \right| \leqslant 3$$

Y afirmamos que solo hay uno, ya que si observamos el diagrama:

$$\mathbb{Q} \xrightarrow{\iota} \mathbb{Q} \left(\sqrt[3]{2}\right)$$

$$\uparrow^{\eta}$$

$$\mathbb{Q} \left(\sqrt[3]{2}\right)$$

tenemos que raíces de x^3-2 en $\mathbb{Q}\left(\sqrt[3]{2}\right)$ solo hay 1. Sin embargo, anteriormente vimos que:

$$\left| \operatorname{Aut} \left(\mathbb{Q} \left(\sqrt[3]{2}, w \right) \right) \right| = 6$$

Por lo que la idea intuitiva es que faltan raíces en el cuerpo para poder tener todos los automorfismos.

Definición 2.1. Sea K un cuerpo y $G < \operatorname{Aut}(K)$ subgrupo, definimos el <u>subcuerpo</u> fijo de K bajo (la acción de) G como el conjunto:

$$K^G = \{a \in K : \sigma(a) = a \quad \forall \sigma \in G\}$$

Se verifica que K^G es subcuerpo de K (hágase), con lo que tenemos la extensión $K^G \leqslant K$.

Notación. Para no confundir la notación de "subgrupo" con la de "subcuerpo", siempre que tengamos H un subgrupo de G lo notaremos por H < G.

Proposición 2.1 (Artin). Si G es un subgrupo finito de Aut(K), entonces.

$$\left[K:K^G\right]\leqslant |G|$$

Demostración. Sea n = |G|, suponemos que $G = \{\sigma_1, \ldots, \sigma_n\}$ y tomamos m (con m > n) elementos de $K, \alpha_1, \ldots, \alpha_m \in K$, basta probar que estos son K^G -linealmente dependientes. Para verlo, formamos la matriz:

$$A = (\sigma_j(\alpha_i))_{i,j} = \begin{pmatrix} \sigma_1(\alpha_1) & \sigma_2(\alpha_1) & \cdots & \sigma_n(\alpha_1) \\ \sigma_1(\alpha_2) & \sigma_2(\alpha_2) & \cdots & \sigma_n(\alpha_2) \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_1(\alpha_m) & \sigma_2(\alpha_m) & \cdots & \sigma_n(\alpha_m) \end{pmatrix} \in M_{m \times n}(K)$$

cuyo rango es menor o igual que n, luego menor o igual que m, es decir, existe un vector

$$0 \neq v = (v_1, \dots, v_m) \in K^m$$

tal que vA = 0. Ahora, de entre todos los vectores que cumplen dichas condiciones, tomamos como v aquel con número de componentes no nulas mínimo y tal que alguna componente, digamos la l-ésima (con $1 \le l \le m$), verifique que $v_l \in K^G$. Notemos que esto podemos conseguirlo siempre con $v_l = 1$, tras dividir todas las componentes del vector entre la l-ésima componente. Si escribimos la igualdad vA = 0:

$$\sum_{i} v_i \sigma_j(\alpha_i) = 0 \qquad \forall j \in \{1, \dots, n\}$$

Y observamos que para obtener la dependencia lineal de los α_i falta ver que realmente los coeficientes v_i están en K^G (por ahora solo sabemos que están en K). Para ello, supuesto que $v_{l'} \notin K^G$, tendremos que $v_{l'} \neq \sigma_k(v_{l'})$ para cierto índice k. Tomamos ahora cualquier $\sigma \in G$ y definimos:

$$\sigma(v) = (\sigma(v_1, 1), \dots, \sigma(v_n))$$

Si usamos esto para σ_k :

$$\sigma_k(v) = (\sigma_k(v_1), \dots, \sigma_k(v_m))$$

Aplicamos σ_k a la igualdad anterior, con lo que:

$$\sum_{i} \sigma_k(v_i)\sigma_k(\sigma_j(\alpha_i)) = 0 \qquad \forall j \in \{1, \dots, n\}$$

Observemos que:

$$G = {\sigma_1, \ldots, \sigma_n} = {\sigma_k \sigma_1, \ldots, \sigma_k \sigma_n}$$

y lo que hemos hecho ha sido permutar las ecuaciones, variando los coeficientes, con lo que:

$$\sigma_k(v)A = 0$$

Como vA = 0 y $\sigma_k(v)A = 0$, tenemos que:

$$(v - \sigma_k(v))A = 0, \qquad v - \sigma_k(v) \neq 0$$

ya que si miramos sus componentes l'-ésimas, estas son distintas. Sin embargo, las componentes l-ésimas eran iguales $(v_l = \sigma_k(v_l))$, por lo que hemos obtenido un vector $v - \sigma_k(v)$ que verifica que al multiplicarse por A se obtiene cero y con al menos una componente no nula menos que v, contradicción, que viene de suponer que $v_l \notin K^G$, lo que nos dice que los coeficientes v_i estaban en K^G . Si en la igualdad:

$$\sum_{i} v_i \sigma_j(\alpha_i) = 0 \qquad \forall j \in \{1, \dots, n\}$$

tomamos aquel índice j que verifica que $\sigma_j = Id_K$, tendremos entonces que:

$$\sum_{i} v_i \alpha_i = 0, \qquad v_i \in K^G$$

lo que implica que $\alpha_1, \ldots, \alpha_m$ eran K^G -linealmente dependientes, por lo que:

$$[K:K^G] \leqslant n = |G|$$

Lema 2.2. Para un cuerpo K, tenemos que:

- 1. Si H < G son subgrupos de Aut(K), entonces $K^H \geqslant K^G$.
- 2. Si $F \leq E$ son subcuerpos de K, entonces $\operatorname{Aut}_F(K) > \operatorname{Aut}_E(K)$.
- 3. Si G es subgrupo de Aut(K), entonces $G < Aut_{KG}(K)$.
- 4. Si $F \leq K$, entonces $F \leq F^{\operatorname{Aut}_F(K)}$.

Demostración. Demostramos cada uno de los apartados de forma muy sencilla:

- 1. Sea $a \in K^G$, si tomamos $\sigma \in H < G$, tendremos que $\sigma(a) = a$, con lo que $a \in K^H$.
- 2. Sea $\sigma \in \operatorname{Aut}_E(K)$, si tomamos $\lambda \in F \leq E, x \in K$ observamos que:

$$\sigma(\lambda \cdot x) = \lambda \cdot \sigma(x)$$

Por lo que $\sigma \in \operatorname{Aut}_F(K)$.

3. Sea $\sigma \in G < \operatorname{Aut}(K)$, si tomamos $x \in K$ y $y \in K^G$, observamos que:

$$\sigma(y \cdot x) = \sigma(y) \cdot \sigma(x) = y \cdot \sigma(x)$$

Por lo que $\sigma \in \operatorname{Aut}_{K^G}(K)$.

4. Sea $x \in F$ y $\sigma \in \operatorname{Aut}_F(K)$, entonces:

$$\sigma(x) = \sigma(x \cdot 1) = x \cdot \sigma(1) = x$$

Por lo que $x \in F^{\operatorname{Aut}_F(K)}$.

Veamos ahora dónde se da la igualdad en los apartados 2 y 3, que en general no se dan.

Teorema 2.3. Sea K un cuerpo, si G es un subgrupo finito de Aut(K), entonces:

$$[K:K^G] = |G| \qquad y \qquad G = \operatorname{Aut}_{K^G}(K)$$

Demostración. El Lema anterior nos dice que $G \leq \operatorname{Aut}_{K^G}(K)$, y la Proposición de Artin nos dice que $[K:K^G] \leq |G|$, con lo que en particular la extensión es finita, luego podemos aplicar también la Proposición 1.27 en (*):

$$|G| \leqslant |\operatorname{Aut}_{K^G}(K)| \stackrel{(*)}{\leqslant} [K:K^G] \leqslant |G|$$

Por lo que $G = Aut_{K^G}(K)$.

Ejemplo. Sea $K = \mathbb{Q}(\sqrt[3]{2}, w)$ con w una raíz cúbica primitiva de la unidad, sabemos ya que:

$$Aut(K) = \{ \eta_{j,k} : j \in \{0, 1, 2\}, k \in \{1, 2\} \}$$

donde:

$$\eta_{j,k}(\sqrt[3]{2}) = w^j \sqrt[3]{2} \qquad \eta_{j,k}(w) = w^k$$

Los subgrupos propios de Aut(K) (por el Teorema de Lagrange) son de orden 2 o 3, todos ellos cíclicos, por lo que tenemos que buscar elementos de orden 2 y 3. Son:

$$\langle \eta_{1,1} \rangle \cong \langle \eta_{2,1} \rangle, \qquad \langle \eta_{0,2} \rangle \cong \langle \eta_{1,2} \rangle \cong \langle \eta_{2,2} \rangle$$

Que hemos obtenido ya que por ejemplo:

$$\sqrt[3]{2} \stackrel{\eta_{0,2}}{\longmapsto} \sqrt[3]{2}$$

$$w \longmapsto w^2 \longmapsto w^4 = w$$

$$\sqrt[3]{2} \stackrel{\eta_{1,2}}{\longmapsto} w\sqrt[3]{2} \stackrel{\eta_{1,2}}{\longmapsto} w^2 w\sqrt[3]{2} = \sqrt[3]{2}$$
$$w \longmapsto w^2 \longmapsto w$$

Si el grupo fuera cíclico, tendríamos un único subgrupo por cada divisor, pero como hemos encontrado dos elementos distintos de orden 2 sabemos que no es cíclico.

$$\sqrt[3]{2} \stackrel{\eta_{1,1}}{\longmapsto} w\sqrt[3]{2} \stackrel{\eta_{1,1}}{\longmapsto} ww\sqrt[3]{2} = w^2\sqrt[3]{2} \neq \sqrt[3]{2}$$

hemos encontrado un elemento de orden que no es 2, por lo que ha de ser de orden 3 (puesto que no hay elementos de orden 6 al no ser cíclico). Para calcular el segundo elemento de orden 3 calculamos el cuadrado a $\eta_{1,1}$, obteniendo el $\eta_{2,1}$. Finalmente, tenemos el elemento $\eta_{2,2}$, que automáticamente sabemos que es de orden 2, puesto que es el que queda.

Buscamos ahora calcular $K^{\langle \eta_{1,1} \rangle}$, y sabemos que:

$$[K:K^{\langle \eta_{1,1}\rangle}] = |\langle \eta_{1,1}\rangle| = 3$$

Por lo que aplicando el Lema de la torre (sabiendo que $[K:\mathbb{Q}]=6$):

$$[K^{\langle \eta_{1,1} \rangle} : \mathbb{Q}] = 2$$

buscamos una extensión de grado 2 de \mathbb{Q} que esté dentro de $\mathrm{Aut}(K)$. Heurísticamente, conocemos que $[\mathbb{Q}(w):\mathbb{Q}]=2$, con lo que buscamos razonar que $K^{\langle \eta_{1,1}\rangle}=\mathbb{Q}(w)$, comprobémoslo:

- Sabemos que $\mathbb{Q} \leqslant K^{\langle \eta_{1,1} \rangle}$, por ser $\eta_{1,1}|_{\mathbb{Q}} = \iota$.
- Como $\eta_{1,1}(w) = w$, tenemos que $w \in K^{\langle \eta_{1,1} \rangle}$. De estos dos puntos deducimos que $\mathbb{Q}(w) \leqslant K^{\langle \eta_{1,1} \rangle}$.
- Finalmente, como $[K^{\langle \eta_{1,1} \rangle} : \mathbb{Q}] = 2 = [\mathbb{Q}(w) : \mathbb{Q}]$, ha de ser $\mathbb{Q}(w) = K^{\langle \eta_{1,1} \rangle}$.

Si pensamos ahora en calcular $K^{\langle \eta_{0,2} \rangle}, K^{\langle \eta_{1,2} \rangle}, K^{\langle \eta_{2,2} \rangle}$, lo que haremos será buscar primero extensiones de grado 3 de \mathbb{Q} . Sabemos que los elementos $\sqrt[3]{2}$, $w\sqrt[3]{2}$ y $w^2\sqrt[3]{2}$ tienen grado 3 sobre \mathbb{Q} , y no será difícil comprobar que $\mathbb{Q}(\sqrt[3]{2}), \mathbb{Q}(w\sqrt[3]{2})$ y $\mathbb{Q}(w^2\sqrt[3]{2})$ son los subcuerpos que estábamos buscando.

Definición 2.2 (Polinomio separable). Sea $f \in F[x]$ con $degf \ge 1$, se dice que f es separable si todas sus raíces (en un cuerpo de descomposición de f) son simples.

Observación. Equivalentemente, un polinomio es separable si:

- tiene degf raíces distintas en su cuerpo de descomposición.
- $\mod(f, f') = 1.$

Ejemplo. Para mostrar la abundancia de polinomios separables así como la existencia de polinomios no separables:

- Si F es un cuerpo con car(F) = 0 y f es irreducible, entonces f es separable. Como car(F) = 0 y $degf \ge 1$, tenemos al ser f no constante que $f' \ne 0$, y como f es irreducible tendremos que mcd(f, f') = 1, de donde f es separable.
- Sea $f = x^q x \in \mathbb{F}_p[x]$, donde $q = p^n$, tenemos que f es separable. Como $f' = qx^{q-1} - 1 = -1 \neq 0$, tenemos que mcd(f, f') = 1, por lo que f es separable.
- Sea $\mathbb{F}_p(t)$ el cuerpo de fracciones del anillo de polinomios $\mathbb{F}_p[t]$, si consideramos el polinomio:

$$f = x^p - t \in \mathbb{F}_p(t)[x]$$

tenemos que f es irreducible (por Eisenstein para t) y que f' = 0, con lo que $mcd(f, f') = f \neq 1$, luego f no es separable.

Definición 2.3 (Extensión separable). Una extensión algebraica $F \leq K$ se dice separable si $Irr(\alpha, F)$ es separable, para todo $\alpha \in K$.

Observación. Toda extensión algebraica en característica 0 es separable.

Definición 2.4 (Extensión normal). Una extensión algebraica $F \leq K$ se dice normal si $Irr(\alpha, F)$ se factoriza como producto de polinomios lineales en K[x], para todo $\alpha \in K$.

Ejemplo. Por ejemplo, la extensión $\mathbb{Q} \leq \mathbb{Q}(\sqrt[3]{2})$ no es normal pero sí es separable.

Teorema 2.4. Sea $F \leq K$ una extensión de cuerpos. Son equivalentes:

- i) K es cuerpo de descomposición de un $f \in F[x]$ separable.
- ii) $F \leqslant K$ es finita y $F = K^{\operatorname{Aut}_F(K)}$.
- iii) $F = K^G$ para un subgrupo finito G de Aut(K).
- iv) $F \leqslant K$ es finita, normal y separable.

Demostración. Veamos las equivalencias:

 $i) \Longrightarrow ii)$ Como K es cuerpo de descomposición de cierto $f \in F[x]$, tenemos entonces que si $\alpha_1, \ldots, \alpha_s$ son las raíces de f entonces:

$$K = F(\alpha_1, \dots, \alpha_s)$$

Por lo que $F \leq K$ es finitamente generada. Si observamos ahora la demostración del Teorema 1.8 observamos que solo usaba que los α_i eran algebraicos, por lo que podemos concluir que $F \leq K$ es finita.

Sea $F' = K^{\operatorname{Aut}_F(K)}$, es claro que $F \leqslant F'$. Además, como $F \leqslant K$ es finita, tendremos que $\operatorname{Aut}_F(K)$ es finito. Por el Teorema 2.3 tenemos que tomando $G = \operatorname{Aut}_F(K)$, se tiene que:

$$\operatorname{Aut}_F(K) = \operatorname{Aut}_{F'}(K)$$

K es cuerpo de descomposición de $f \in F[x]$ y como $F \leq F'$, tenemos también que K es cuerpo de descomposición de $f \in F'[x]$. Como f es separable, tenemos que:

$$[K : F] = |\operatorname{Aut}_F(K)| = |\operatorname{Aut}_{F'}(K)| = [K : F']$$

Con $F \leq F'$, por lo que el Lema de la Torre nos dice que F = F'

- $ii) \Longrightarrow iii)$ Si la extensión es finita, tenemos entonces que $\operatorname{Aut}_F(K)$ es finita, con lo que tomando $G = \operatorname{Aut}_F(G)$, tenemos que $F = K^G$.
- $iii) \Longrightarrow iv)$ La Proposición de Artin nos dice que $K^G = F \leqslant K$ es finita.

Sean $\alpha \in K$ y $h = \text{Irr}(\alpha, F) \in F[x]$, como G actúa sobre K, podemos considerar la órbita de α (considerando todos sus elementos distintos):

$$Orb(\alpha) = \{\alpha_1, \dots, \alpha_t\} \subseteq K$$

y podemos considerar el polinomio:

$$g = \prod_{i=1}^{t} (x - \alpha_i) = \sum_{j=0}^{t} a_j x^j \in K[x]$$

veamos que $a_j \in F$ para todo $j \in \{1, ..., t\}$, usando que $F = K^G$. Dado $\sigma \in G$:

$$\prod_{i=1}^{t} (x - \sigma(\alpha_i)) = g^{\sigma} = \sum_{j=0}^{t} \sigma(a_j) x^j$$

y vemos que $g = \prod_{i=1}^{t} (x - \sigma(\alpha_i))$, puesto que al aplicar σ sobre los elementos de la órbita los permuta, con lo que de la igualdad de la derecha deducimos que $\sigma(a_j) = a_j$, para todo $j \in \{1, \ldots, t\}$, con lo que $a_j \in F[x]$ para todo $j \in \{1, \ldots, t\}$, luego $g \in F[x]$.

Por una parte $g(\alpha) = 0$, puesto que $\alpha \in Orb(\alpha)$. Como $h = Irr(\alpha, F)$, tenemos que h divide a g.

Por otra parte, cada α_i es raíz de h, ya que $h(\alpha) = 0$ deducimos que si tomamos $\sigma \in G$, entonces:

$$0 = \sigma(0) = \sigma(h(\alpha)) = h(\alpha_i)$$

Como se cumple para todo $\sigma \in G$, tenemos pues que $h(\alpha_i) = 0$ para todo $i \in \{1, \ldots, t\}$. Como los elementos α_i son distintos, tenemos que $degh \geq t$, pero como g es un polinomio mónico de grado t cuyas raíces son exactamente $Orb(\alpha)$, tenemos que g = h. Hemos probado que la extensión es normal y separable.

 $iv) \Longrightarrow i)$ Como $F \leqslant K$ es finita, tenemos entonces que existen $\alpha_1, \ldots, \alpha_s \in K$ algebraicos de forma que $K = F(\alpha_1, \ldots, \alpha_s)$. Podemos por tanto considerar $f_i = \operatorname{Irr}(\alpha_i, F)$, y tomamos como f el producto de los f_i eliminando repeticiones (es decir, multiplicamos todos los f_i distintos). Como la extensión es normal y separable, cada uno de los f_i se descompone como producto de polinomios lineales mónicos distintos. De donde f es un polinomio separable¹, por lo que K es un cuerpo de descomposición de f.

Este Teorema tiene consecuencias importantes relacionadas con lo que luego llamaremos "extensiones de Galois", que corresponderá con una extensión $F\leqslant K$ que cumple alguno de los apartados anteriores, todos ellos equivalentes.

- El punto i) nos da una forma práctica de comprobar que una extensión es de Galois, para lo cual repetiremos de forma parecida la demostración iv) $\Longrightarrow i$).
- El apartado *ii*) tiene que ver con lo que luego llamaremos "conexión de Galois", que responde a la pregunta de qué le tiene que suceder a una extensión finita para estar en biyección con su grupo de Galois.

Definición 2.5. La órbita de α bajo G que ha aparecido en la demostración, $\{\alpha_1, \ldots, \alpha_s\}$ se llaman conjugados de α bajo G.

Se trata de la generalización del concepto "conjugado" de un número complejo.

¹Notemos que para eso eliminamos antes las repeticiones.

Definición 2.6 (Extensión de Galois). Una extensión $F \leq K$ se dice de Galois si es finita, normal y separable.

El grupo $Aut_F(K)$ recibe el nombre Grupo de Galois de la extensión.

Corolario 2.4.1. En característica 0, si K es cuerpo de descomposición de $f \in F[x]$, entonces $F \leq K$ es de Galois.

Demostración. Consideramos la descomposición de f en irreducibles:

$$f = p_1^{n_1} \cdot \ldots \cdot p_t^{n_t}$$

con p_i distintos. Obsevemos que K es cuerpo de descomposición de $p_1 \cdot \ldots \cdot p_t$, que sí es separable, puesto que cada polinomio irreducible es separable y estos no comparten raíces entre sí. Por el Teorema anterior, la extensión es finita, normal y separable.

Corolario 2.4.2. Si $F \leqslant K$ es de Galois y $F \leqslant E \leqslant K$ es una subextensión, entonces $E \leqslant K$ es de Galois.

Demostración. Como $F \leq K$ es de Galois, entonces K es cuerpo de descomposición de cierto $f \in F[x]$ separable, por lo que K es cuerpo de descomposición de $f \in E[x]$, que sigue siendo separable.

Ejemplo. Si consideramos $\mathbb{Q} \leq \mathbb{Q}\left(\sqrt[3]{2}\right)$, tenemos una extensión finita y separable pero que no es de Galois, porque no es normal. Sin embargo, $\mathbb{Q} \leq \mathbb{Q}\left(\sqrt[3]{2}, w\right)$ sí que es de Galois. En consecuencia, $\mathbb{Q}(\sqrt[3]{2}) \leq \mathbb{Q}\left(\sqrt[3]{2}, w\right)$ es de Galois.

Sabemos que $\mathbb{Q} \leq \mathbb{Q}\left(\sqrt[3]{2}\right)$ no es normal porque $\operatorname{Irr}\left(\sqrt[3]{2},\mathbb{Q}\right) = x^3 - 2$ no se descompone como producto de polinomios lineales en $\mathbb{Q}\left(\sqrt[3]{2}\right)$, ya que $w\sqrt[3]{2}$ es una raíz del polinomio que no está en $\mathbb{Q}\left(\sqrt[3]{2}\right)$.

Corolario 2.4.3. Toda extensión de cuerpos finitos es de Galois.

Demostración. Si tenemos una extensión $F \leq E$ de cuerpos finitos de característica car(F) = p, tenemos entonces que:

$$\mathbb{F}_n \leqslant F \leqslant E$$

con $\mathbb{F}_p \leq E$ de Galois, puesto que el polinomio $x^q - x \in \mathbb{F}_q[x]$ con $q = |E| = p^n$ es separable y E es un cuerpo de descomposición suyo.

Ejemplo. Consideramos $\mathbb{Q} \leqslant E = \mathbb{Q}\left(\sqrt[3]{5}, i\sqrt{5}\right)$, que es una extensión finita, con (por el Lema de la Torre) $[E:\mathbb{Q}]=6$. Si esta extensión fuera de Galois, entonces la raíz $w\sqrt[3]{5}$ de $x^3-5=\operatorname{Irr}(\sqrt[3]{5},\mathbb{Q})$ estaría en E, para $w=\frac{-1}{2}+i\frac{\sqrt{3}}{2}$.

En dicho caso, $i\sqrt{3} \in E$, luego $\mathbb{Q}\left(i\sqrt{3},i\sqrt{5}\right) \leqslant E$. Buscamos calcular:

$$\left[\mathbb{Q}\left(i\sqrt{3},i\sqrt{5}\right):\mathbb{Q}\right]$$

Sabemos que $\left[\mathbb{Q}\left(i\sqrt{3}\right):\mathbb{Q}\right]=2$, así como que $\left[\mathbb{Q}\left(i\sqrt{5},i\sqrt{3}\right):\mathbb{Q}\left(i\sqrt{3}\right)\right]\leqslant 2$:

■ Si $\left[\mathbb{Q}\left(i\sqrt{5},i\sqrt{3}\right)\right]=1$, esto es porque $i\sqrt{5}\in\mathbb{Q}\left(i\sqrt{3}\right)$. En dicho caso, tendríamos que:

$$i\sqrt{5} = a + bi\sqrt{3}$$
 $a, b \in \mathbb{Q}$

de donde a=0, con lo que $i\sqrt{5}=bi\sqrt{3}$, y elevando al cuadrado tendríamos que:

$$-5 = -3b^2$$

de donde $b \in \mathbb{Q}$ es raíz de $3x^2 - 5$, pero:

Opción 1. $3x^2 - 5$ es irreducible por Eisenstein (notemos que es primitivo).

Opción 2. Las posibles raíces racionales del polinomio enunciado son:

$$1, -1, 5, -5, \frac{1}{3}, \frac{-1}{3}, \frac{5}{3}, \frac{-5}{3}$$

y ninguna es raíz.

■ Tenemos por tanto que $\left[\mathbb{Q}\left(i\sqrt{5},i\sqrt{3}\right):\mathbb{Q}\left(i\sqrt{3}\right)\right]=2$, y por el lema de la torre tenemos que $\left[\mathbb{Q}\left(i\sqrt{3},i\sqrt{5}\right):\mathbb{Q}\right]=4$, de donde 4 divide a $6=[E:\mathbb{Q}]$, contradicción que viene de suponer que la extensión es de Galois.

2.2. Teorema fundamental de la Teoría de Galois

Notación. Notaremos:

- Si $F \leq K$ es una extensión y $F \leq E \leq K$ se dice que E es una subextensión de $F \leq K$. Denotamos al conjunto de todas ellas por Subex $(F \leq K)$.
- ullet Si G es un grupo, llamamos $\operatorname{Subgr}(G)$ al conjunto de todos sus subgrupos.
- Si $H \in \text{Subgr}(G)$, denotamos por (G : H) al índice de H en G.

Definición 2.7. Sean (A, \leq) , (B, \leq) dos conjuntos ordenados, un anti-isomorfismo de conjuntos ordenados es una aplicación biyectiva $f: A \to B$ de forma que:

$$a \leqslant a' \Longleftrightarrow f(a) \geqslant f(a')$$

Teorema 2.5. Sea $F \leqslant K$ una extensión de Galois con grupo de Galois G. La aplicación

$$\begin{array}{ccc} : & \mathrm{Subgr}(G) & \longrightarrow & \mathrm{Subex}(F \leqslant K) \\ & H & \longmapsto & K^H \end{array}$$

es un anti-isomorfismo de conjuntos ordenados cuya inversa es

$$\begin{array}{ccc} : & \mathrm{Subex}(F \leqslant K) & \longrightarrow & \mathrm{Subgr}(G) \\ & E & \longmapsto & \mathrm{Aut}_E(K) \end{array}$$

Si $H_1 < H_2$ son subgrupos de G y $E_2 \leqslant E_1$ son sus subextensiones de $F \leqslant K$ correspondientes por la anterior biyección, entonces:

$$(H_2:H_1) = [E_1:E_2]$$

Demostración. La primera aplicación está bien definida, puesto que si $H \in \text{Subgr}(G)$, entonces:

$$\{id_K\} < H < G$$

de donde el Lema 2.2 nos dice que:

$$K = K^{\{1\}} \geqslant K^H \geqslant K^G \stackrel{(*)}{=} F$$

donde en (*) hemos usado el Teorema 2.4. Para la segunda aplicación, si $E \in \text{Subex}(F \leq K)$, tenemos que:

$$F \leqslant E \leqslant K$$

de donde el Lema 2.2 nos dice:

$$\{id_K\} = \operatorname{Aut}_K(K) < \operatorname{Aut}_E(K) < \operatorname{Aut}_F(K) = G$$

por lo que $\operatorname{Aut}_E(K) \in \operatorname{Subgr}(G)$.

Para ver ahora que es biyectiva, demostraremos que las dos aplicaciones son inversas la una de la otra:

• Si $H \in \text{Subgr}(G)$, tenemos entonces que:

$$H \longmapsto K^H \longmapsto \operatorname{Aut}_{K^H}(K) \stackrel{(*)}{=} H$$

donde en (*) hemos usado el Teorema 2.3, puesto que $F \leqslant K$ es finita al ser de Galois.

• Si $E \in \text{Subex}(F \leq K)$, tenemos que:

$$E \longmapsto \operatorname{Aut}_{E}(K) \longmapsto K^{\operatorname{Aut}_{E}(K)} \stackrel{(*)}{=} E$$

donde en (*) usamos el Teorema 2.4.

En consecuencia, la aplicación enunciada es un anti-isomorfismo de conjuntos ordenados.

Para la segunda parte, si $H_1 \subseteq H_2$ son subgrupos de G y $E_2 \leqslant E_1$ son las subextensiones de $F \leqslant K$ correspondientes de dichos subgrupos (es decir, $E_1 = K^{H_1}$, $E_2 = K^{H_2}$), sabemos entonces que:

$$|H_2| = [K:E_2] = [K:E_1][E_1:E_2] = |H_1|[E_1:E_2]$$

de donde:

$$[E_1:E_2] = \frac{|H_2|}{|H_1|} = (H_2:H_1)$$

Definición 2.8 (Conexión de Galois). La biyección del Teorema anterior recibe el nombre "Conexión de Galois".

Ejemplo. Si consideramos la extensión de Galois $\mathbb{Q} \leq \mathbb{Q}\left(\sqrt[3]{2}, w\right)$, vimos anteriormente que Aut $\left(\mathbb{Q}\left(\sqrt[3]{2}, w\right)\right)$ tenía 6 elementos, y en un ejemplo anterior calculábamos Subgr(Aut $\left(\mathbb{Q}\left(\sqrt[3]{2}, w\right)\right)$), obteniendo 6 subgrupos.

Por la Conexión de Galois sabemos ahora que tenemos tantos subcuerpos de $\mathbb{Q}\left(\sqrt[3]{2},w\right)$ como subgrupos de Aut $\left(\mathbb{Q}\left(\sqrt[3]{2},w\right)\right)$ (puesto que \mathbb{Q} es el subcuerpo primo de $\mathbb{Q}\left(\sqrt[3]{2},w\right)$).

Ejemplo. Sea $\mathbb{F}_q = \mathbb{F}_{p^n}$, nos preguntamos por los elementos de dicho cuerpo. La extensión $\mathbb{F}_p \leq \mathbb{F}_{p^n}$ es de Galois por ser una extensión de cuerpos finitos, por lo que podemos tratar de usar la conexión de Galois. Más aún, habíamos visto que:

$$\operatorname{Aut}(\mathbb{F}_{p^n}) = \operatorname{Aut}_{\mathbb{F}_p}(\mathbb{F}_{p^n}) = \langle \tau \rangle$$

cíclico de orden n, con $\tau(\alpha) = \alpha^p$. Los subgrupos están parametrizados por los divisores de n, con lo que:

$$Subgr(Aut(\mathbb{F}_{p^n})) = \{ \langle \tau^d \rangle : d \in Div(n) \}$$

Los subcuerpos de \mathbb{F}_{p^n} son, por la conexión de Galois:

$$\left\{ \mathbb{F}_{p^n}^{\langle \tau^d \rangle} : d \in Div(n) \right\}$$

Vamos a calcular:

$$\left[\mathbb{F}_{p^n}^{\langle \tau^d \rangle} : \mathbb{F}_p\right] = \left(\langle \tau \rangle : \langle \tau^d \rangle\right) = d$$

Por lo que:

$$\left| \mathbb{F}_{p^n}^{\langle \tau^d \rangle} \right| = p^d$$

Y estos son todos.

Cada cuerpo de p^n elementos tiene un subcuerpo de cardinal p^d con $d \in Div(n)$. Por ejemplo, un cuerpo de 64 elementos tiene 4 subcuerpos (cada divisor de 6).

Lema 2.6. Sea $F \leqslant K$ de Galois con grupo G de Galois, sean $H \in \operatorname{Subgr}(G)$ $y \in \operatorname{Subex}(F \leqslant K)$ su correspondencia mediante la conexión de Galois. Si $\sigma \in G$, entonces $\sigma H \sigma^{-1}$ $y \sigma(E)$ son correspondientes por la conexión de Galois.

Demostración. De Álgebra II sabemos que si $H \in \operatorname{Subgr}(G)$ entonces para $\sigma \in G$ tenemos $\sigma H \sigma^{-1} \in \operatorname{Subgr}(G)$, por lo que la pregunta está bien planteada. Tenemos que $E = K^H$ y queremos probar que $\sigma(K^H) = K^{\sigma H \sigma^{-1}}$. Tendremos:

$$\alpha \in K^{\sigma H \sigma^{-1}} \iff \sigma \tau \sigma^{-1}(\alpha) = \alpha \quad \forall \tau \in H \iff \tau \sigma^{-1}(\alpha) = \sigma^{-1}(\alpha) \quad \forall \tau \in H$$
$$\iff \sigma^{-1}(\alpha) \in K^H \iff \alpha \in \sigma(K^H)$$

Teorema 2.7. Sea $F \leq K$ de Galois y G su grupo de Galois, si $H \in \text{Subgr}(G)$ y $E \in \text{Subex}(F \leq K)$ es su correspondencia mediante la conexión:

H es normal en $G \iff F \leqslant E$ es de Galois

En cuyo caso, $\operatorname{Aut}_F(E) \cong G/H$.

Demostración. Si $H \triangleleft G$, el Lema nos dice que $\sigma(E) = E \quad \forall \sigma \in G$. Definimos $r: G \to \operatorname{Aut}_F(E)$ por $r(\sigma) = \sigma|_E$, que:

- Está bien definido.
- \blacksquare r es un homomorfismo de grupos.
- $\ker(r) = \operatorname{Aut}_E(K) = H$.
- \blacksquare r es sobreyectivo, ya que:

$$[E:F] = (G:H) \stackrel{(*)}{=} |Imr| \leqslant |\operatorname{Aut}_F(E)| \leqslant [E:F]$$

Donde en (*) usamos el Primer Teorema de Isomorfía de grupos, con lo que la imagen tiene el mismo cardinal que el conjunto de llegada. Además, obtenemos que (por el Primer Torema de Isomorfía de Grupos):

$$\operatorname{Aut}_F(E) \cong \frac{G}{H}$$

Dado $\alpha \in E^{\operatorname{Aut}_F(E)}$, entonces:

$$\alpha = r(\sigma)(\alpha) = \sigma(\alpha) \quad \forall \sigma \in G$$

de donde $\alpha \in F$, luego $E^{\operatorname{Aut}_F(E)} = F$ y el Teorema (piedra angular) nos dice que $F \leqslant E$ es de Galois. Falta ver que es de Galoois, raices de un polinomio separable, llamamos f al producto de todos los generadores menos algo, aplica σ , que permita las cosas, luego está en E y el Lema dice que es normal.