MTH 412: Functional Analysis Assignment

OKWHAROBO Solomon Monday

January 20, 2024

Contents

1	Normed Linear Space	1
2	Completeness of Normed Linear Space	4
3	Linear maps and Functionals	4
4	Hilbert Spaces	7

 $\begin{array}{c} {\rm Anchor~University} \\ {\rm Department~of~Mathematics} \\ {\rm AUL/SCI/20/00605} \end{array}$

1 Normed Linear Space

Definition 1:

Let X be a vector space over the scalar field $K = \mathcal{R}$, then a function $\|.\|: X \to \mathcal{R}$, defined by

$$f: X \times X \to X$$

and

$$f: K \times X \to X$$

, called respectively addition and scalar multiplication, and are defined for arbitrary $x, y \in X$, $\lambda \in K$ then $x + y \in X$ and $\lambda . x \in X$ such that the following conditions are satisfied:

- 1. x + y = y + x for all $x, y \in X$ (Commutative)
- 2. (x+y)+z=x+(y+z) for all $x,y,z\in X$ (Associative)
- 3. There exists an element $0 \in X$ such that x + 0 = x for all $x \in X$ (Identity)
- 4. For each $x \in X$, there exists an element $-x \in X$ such that x + (-x) = 0 (Inverse)
- 5. $\lambda(x+y) = \lambda x + \lambda y$ for all $\lambda \in K$ and $x, y \in X$ (Distributive)
- 6. $(\lambda + \mu)x = \lambda x + \mu x$ for all $\lambda, \mu \in K$ and $x \in X$ (Distributive)
- 7. $(\lambda \mu)x = \lambda(\mu x)$ for all $\lambda, \mu \in K$ and $x \in X$ (Associative)
- 8. 1.x = x for all $x \in X$ (Identity)

Then X is called a linear space over K or a vector space over K. If K is a set of real numbers X is called a real vector space. If K is a set of complex numbers X is called a complex vector space.

Definition 2:

Let x be a non-empty set, k be a scalar field $(K = \mathcal{R})$. Suppose that we have a function $\|.\|: X \to \mathcal{R}$, then $\|.\|$ is called a norm on X if it satisfies the following conditions:

- 1. $||x|| \ge 0$ for all $x \in X$ and ||x|| = 0 if and only if x = 0.
- 2. $\|\alpha x\| = |\alpha| \|x\|$ for all $x \in X$ and $\alpha \in K$.
- 3. $||x+y|| \le ||x|| + ||y||$ for all $x, y \in X$. (Triangle Inequality)

Proof

Statement:Let $X = \mathbb{R}^2$ for arbitiary \bar{x}, \bar{y} ,

where $\bar{x} = (x_1, x_2)$ and $\bar{y} = (y_1, y_2)$, and with $\alpha \in \mathbb{R}$ define the operation, addition and scalar multiplication as:

$$\bar{x} + \bar{y} = (x_1 + y_1, x_2 + y_2)$$

scalar multiplication:

$$\alpha \bar{x} = (\alpha x_1, \alpha x_2)$$

with these definitions, \mathbb{R}^2 is a vector space. for each $\bar{x} \in X$, we define the maximum norm

$$\|\bar{x}\|_{\infty} = \max\{|x_1|, |x_2|\}$$

is a normed on \mathbb{R}^2 .

N1:

$$\|x\|_{\infty} \ge 0 \quad \text{for all} \quad x \in \mathbb{R}^2$$

$$\|x\|_{\infty} = \max\{|x_1|, |x_2|\} \ge 0 \quad \text{for all} \quad x \in \mathbb{R}^2$$

$$\|x\|_{\infty} = \max\{|x_1|, |x_2|\} = 0 \quad \text{if and only if} \quad x = 0$$

N2:

$$\|\alpha x\|_{\infty} = \max\{|\alpha x_1|, |\alpha x_2|\} = |\alpha| \max\{|x_1|, |x_2|\} = |\alpha| \|x\|_{\infty}$$

N3:

Proof

Let $\bar{x} = (x_1, x_2)$ and $\bar{y} = (y_1, y_2)$ be arbitrary elements of \mathbb{R}^2 and $\alpha \in \mathbb{R}$, $||x + y||_{\infty} \le ||x||_{\infty} + ||y||_{\infty}$, then,

$$||x + y||_{\infty} =$$

$$= ||x_1 + y_1, x_2 + y_2||$$

$$= \max\{|x_1 + y_1|, |x_2 + y_2|\}$$

$$= \max(||x_i|| + ||y_i||)$$

$$= (||x_i||) + \max(||y_i||)$$

$$\leq \max(||x_i||) + \max(||y_i||)$$

$$\leq ||\bar{x}||_{\infty} + ||\bar{y}||_{\infty}$$

$$= ||x + y||_{\infty} \leq ||\bar{x}||_{\infty} + ||\bar{y}||_{\infty}$$

Q2: Prove that $X = \mathbb{R}$ is a Normed Space

Statement:Let $X = \mathbb{R}$ for arbitrary \bar{x} ,

where $\bar{x} = (x_1, x_2, x_3, x_4, \dots x_n) \in \mathbb{R}^n$, and with $\alpha \in \mathbb{R}$, then $\|\bar{x}\|_p = \|(x_1, x_2, x_3, x_4, \dots x_n)\|_p = (\sum_{i=1}^n \|x_i\|^p)^{\frac{1}{p}}$ verify that $\|.\|$ is a norm.

Proof:

N1: ||x|| > 0, iff x = 0

 $(\sum_{i=1}^n \|x_i\|^p)^{\frac{1}{p}} \ge 0 \|\bar{x}\|_p \ge 0$ clearly because absolute value of any value is greater than or equal to 1 **Also**,

if
$$\bar{x} = 0 \implies \forall 1 < i < n \implies (\sum_{i=1}^{n} ||x_i||^p)^{\frac{1}{p}} = 0$$

N2: $\|\alpha \bar{x}\|_p = |\alpha| \|\bar{x}\|$

$$\|\alpha \bar{x}\|_{p} = \|\alpha(x_{1}, x_{2}, x_{3}, x_{4}, \dots x_{n})\|_{p} = \left(\sum_{i=1}^{n} \|x_{i}\|^{p}\right)^{\frac{1}{p}}$$

$$= \left(|\alpha|^{p}\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} \|x_{i}\|^{p}\right)^{\frac{1}{p}}$$

$$= |\alpha| \left(\sum_{i=1}^{n} \|x_{i}\|^{p}\right)^{\frac{1}{p}}$$

$$= |\alpha| \|\bar{x}\|_{p}$$

N3: $||x + y||_p \le ||x||_p + ||y||_p$

We need Holder's inequality

$$\|\bar{x} + \bar{y}\|_{p}^{p} = \|(x_{1} + y_{1}) + (x_{2} + y_{2}) + \dots + (x_{n} + y_{n})\|$$

$$= \sum_{i=1}^{n} |x_{i} + y_{i}|^{p} = \sum_{i=1}^{n} |x_{i} + y_{i}|^{p-1} |x_{i} + y_{i}|$$

$$Applying Holder's Theorem$$

$$\leq \sum_{i=1}^{n} |x_{i}||x_{i} + y_{i}|^{p-1} + \sum_{i=1}^{n} |y_{i}||x_{i} + y_{i}|^{p-1}$$

$$\leq \left[\left(\sum_{i=1}^{n} |x_{i}|^{p} \right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} |x_{i} + y_{i}|^{q(p-1)} \right)^{\frac{1}{q}} \right] + \left[\left(\sum_{i=1}^{n} |y_{i}|^{p} \right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} |x_{i} + y_{i}|^{q(p-1)} \right)^{\frac{1}{q}} \right]$$

$$\leq \left(\|x\|_{p} + \|y\|_{p} \right) \left(\sum_{i=1}^{n} |x_{i} + y_{i}| \right)^{\frac{p}{q}}$$

$$\implies \|\bar{x} + \bar{y}\|_{p} = \|\bar{x}\|_{p} + \|\bar{y}\|_{q}$$
Recall in Holder's inequality: $\frac{1}{p} + \frac{1}{q} = 1, 1 - \frac{1}{p} = \frac{p-1}{p} = 1$

$$p = q(p-1)$$

2 Completeness of Normed Linear Space

Recall that if (E, ||.||) is a normed linear space, the norm ||.|| always induces a matrix ρ on E given by:

 $\rho(x,y) = ||x-y||, \forall x,y \in E, \text{ with this it is clear that } (E,\rho) \text{ becomes a matrix space.}$ Recall also that a sequence x_n in matrix space (E,ρ) is said to be Cauchy if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $\rho(x_n, x_m) < \epsilon$ for all $n, m \ge N$.

3 Linear maps and Functionals

Definition 1:

Let X and Y be two vector spaces over the same scalar field K. A function $T: X \to Y$ is called a linear map or linear transformation if it satisfies the following conditions:

- 1. T(x+y) = T(x) + T(y) for all $x, y \in X$ (Additivity)
- 2. $T(\lambda x) = \lambda T(x)$ for all $\lambda \in K$ and $x \in X$ (Homogeneity)

which is also interpreted as $T(\lambda x + \mu y) = \alpha T(x) + \beta T(y)$ for all $\lambda, \mu \in K$ and $x, y \in X$.

Definition 2:

If in Definition 1, the linear space Y is replaced by the scalar field K, then T is called a linear functional on X. $i.e\ T:X\to K$

Example 1:

Let X = C[a, b] as a space of all real-valued continuous functions on [a, b]. Define $T : X \to \mathcal{R}$ by $Tf(t) = \int_1^0 f(x) dx$ for all $f \in X$. Then T is a linear functional on X.

Solution:

Let
$$f, g \in X$$
 and $\lambda \in \mathcal{R}$, then
$$T(\mu f + \lambda g) = \int_1^0 \mu(f(x) + \lambda g(x)) dx = \int_1^0 \mu f(x) dx + \lambda \int_1^0 g(x) dx = \mu T f + \lambda T g$$
 $\implies T$ is a linear functional on X .

Exercise

- 1. Let $X = l_2$, and for each $x = (x_1, x_2, ...) \in X$, define $T(x) = (0, x, x_2, x_3, ...)$. Show that T is a linear map on X.
- 2. Let X, Y be two vector spaces over the same scalar field K. Show that $T: R \to R$ is a linear function, then $T: R \to R$ be given by T(x) = 3x + 2.

Theorem 1:

Let X and Y be two normed linear spaces over the same scalar field K. If $T: X \to Y$ is a linear map, then:

- 1. T(0) = 0
- 2. The range of T is given as $R(T) = \{y \in Y : y = T(x) \text{ for some } x \in X\}$ is a subspace of Y.
- 3. T is onto one iff $T(0) = 0 \implies x = 0$.
- 4. If T is one to one, then $T^{-1}:R(T)\to X$ is a linear map, and T^{-1} exists in the range R(T)

Proof:

- 1. Since T is a linear map, then $T(\alpha x) = \alpha T(x)$, where $\alpha = 0$, then $T(\alpha.0) = 0$, hence T(0) = 0.
- 2. We need to show that

Bound ...

Definition 3:

Let X, Y, be two normed linear spaces over the same scalar field K. A linear map $T: X \to Y$ is said to be bounded if there exists a constant $K \ge 0$ such that $x \in X$ is given by:

$$||T(x)|| \le K||x||, \forall x \in X$$

Theorem 2:

Let X, Y be two normed linear spaces over the same scalar field K. If $T: X \to Y$ is a linear map, then the following statements are equivalent:

- 1. T is continuous
- 2. T is continuous at 0(origin) i.e if $x_n \in X$, such that $Tx_n \to 0, n \to 0$.
- 3. T is lipshitz i.e \exists a constant $k \ge 0$, such that $\forall x \in X$ on $||T(x)|| \le K||x||, \forall x \in X$.
- 4. if $D = \{x \in X : ||x|| \le 1\}$ is a closed unit disc in X, then T(D) is bounded. That is $\exists M \ge 0$ such that $||T(x)|| \le M$ for all $x \in D$.

Proof:

 $1. 1 \implies 2$:

Let T be continuous at 0, then for every $\epsilon > 0$, there exists $\delta > 0$ such that ||x|| < 1 $\delta \implies ||T(x)|| < \epsilon.$

Let $x_n \in X$ such that $x_n \to 0$ as $n \to \infty$, then $||x_n|| \to 0$ as $n \to \infty$.

Hence, $||T(x_n)|| \to 0$ as $n \to \infty$.

 \implies T is continuous at 0.

 $2. 2 \implies 3$:

Let T be continuous at 0, then for every $\epsilon > 0$, there exists $\delta > 0$ such that ||x|| < 1 $\delta \implies ||T(x)|| < \epsilon.$

Let $x \in X$ be arbitrary, then $||x|| < \delta \implies \frac{||x||}{\delta} < 1$.

- $\Rightarrow ||T(x)|| = ||T(\frac{||x||}{\delta}.\delta)|| = \frac{||x||}{\delta}.||T(\delta)|| < \epsilon.$ $\Rightarrow ||T(x)|| \le \frac{||x||}{\delta}.||T(\delta)|| < \epsilon.$ $\Rightarrow ||T(x)|| \le K||x||, \text{ where } K = ||T(\delta)||.$

- $\implies T$ is lipshitz.
- $3. \ 3 \implies 4$:

Let T be lipshitz, then $||T(x)|| \le K||x||$, for all $x \in X$.

Let $D = \{x \in X : ||x|| \le 1\}$ be a closed unit disc in X, then T(D) is bounded.

- $\implies ||T(x)|| \le K||x|| \le K$, for all $x \in D$.
- $\implies T$ is bounded.
- $4. \ 4 \implies 1$:
- $5. 1 \implies 2:$

Hilbert Spaces 4

Definition 1:

Let E be a linear space, an inner product on E is a function $\langle .,. \rangle : E \times E \to \mathcal{C}$ with values in \mathcal{C} such that the following three conditions are satisfied:

- 1. $\langle x, x \rangle \geq 0$ for all $x \in E$ and $\langle x, x \rangle = 0$ if and only if x = 0 (Positive Definiteness)
- 2. $\langle x, y \rangle = \overline{\langle y, x \rangle}$ for all $x, y \in E$ (Conjugate Symmetry)
- 3. $\langle \lambda x + \mu y, z \rangle = \lambda \langle x, z \rangle + \mu \langle y, z \rangle$ for all $x, y, z \in E$, $\lambda \in \mathcal{C}$

 $x,y,z \in E; \lambda, \mu \in C$

The pair (E, < ., .>) is called an inner product space.

Hilbert Space

A complete inner product space is called a Hilbert Space.

Example 1:

The Linear space \mathbb{R}^n with <,> defined for arbitrary vector $x=(x_1,x_2,\ldots,x_n)$ and y= (y_1, y_2, \dots, y_n) with $x, y \in \mathbb{R}^n$, $\langle x, y \rangle = \sum_{i=1}^n x_i y_i$

$$< x, y > = \sum_{i=1}^{n} x_i y_i$$

Proof:

- 1. $\langle x, x \rangle = \sum_{i=1}^n x_i \cdot x_i = \sum_{i=1}^n x_i^2 \ge 0$ for all $x \in \mathcal{R}^n$ and $\langle x, x \rangle = 0$ if and only if
- 2. $\langle x, y \rangle = \sum_{i=1}^{n} x_i \cdot y_i = \sum_{i=1}^{n} y_i \cdot x_i = \langle y, x \rangle$ for all $x, y \in \mathbb{R}^n$.
- 3. $<\lambda x + \mu y, z> = \sum_{i=1}^{n} (\lambda x_i + \mu y_i).z_i = \lambda \sum_{i=1}^{n} x_i.z_i + \mu \sum_{i=1}^{n} y_i.z_i = \lambda < x, z> +\mu < x$ $y, z > \text{ for all } x, y, \overline{z} \in \mathcal{R}^n \text{ and } \lambda, \mu \in \mathcal{R}.$

Basic Properties of Linear Product Space

from (Def 1), the immediate consequence of I_2 and I_3 is that for arbitrary $x, y, z \in E; \lambda, \mu \in$ C.

$$\left\langle z, \lambda x + \mu y \right\rangle = \overline{\left\langle z, \lambda x + \mu y \right\rangle}$$

$$= \overline{\left\langle (x, z)\lambda + \mu(y, z) \right\rangle}$$

$$= \overline{\lambda} \left\langle x, z \right\rangle + \overline{\mu} \left\langle y, z \right\rangle$$

Proposition 1:

Cauchy-Schwarz Inequality: Let (E, < ., . >) be an inner product space, then for all $x, y \in E$, we have:

 $|\langle x, v \rangle|^2 \le \langle x, x \rangle$. $\langle y, y \rangle$ and $|\langle x, v \rangle|^2 = \langle x, x \rangle$. $\langle y, y \rangle$, if and only if x and y are linearly dependent.

Proof:

Let $x, y \in E$, then for arbitrary $z \in C$, we have: |z| = 1, such that z < x, y >= |z| < x, y > = 1. < x, y >,

set $a = \langle x, x \rangle, b = \langle x, y \rangle$ and $c = \langle y, y \rangle, then for arbitrary scalar <math>t \in \mathcal{R}$, we obtain: $\langle tzx + y, tzx + y \rangle \leq 0$

$$\implies t^2 z \bar{z} < x, x > +tz < x, y > +ty, z < y, y > \ge 0$$

$$\implies t^2 < a > +2t < zx, y > + < y, y > \le 0$$

$$\implies t^2a + 2tb + c \le 0$$

from theory if quadratic equation, we have that $b^2 \le ac \implies < x, y >^2 \le < x, x > . < y, y >$

$$\implies |\langle x, y \rangle|^2 \le \langle x, x \rangle. \langle y, y \rangle$$

Parallelogram Law

Let (E, < ., . >) be an inner product space, then for all $x, y \in E$, we have: $||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$

Consequence: Polarization Identity

Let (E, <...>) be an inner product space, then for all $x, y \in E$, we have:

$$\langle x, y \rangle = \frac{1}{4} \left(||x + y||^2 - ||x - y||^2 + i||x + iy||^2 - i||x - iy||^2 \right)$$

Theorem:

Let E be a Hilbert space, and K be a closed convex subset of E, then K contains a unique vector of minimum norm.

Proof:

Let $\gamma = \inf |x| : x \in K$, choose a sequence $x_{n=1}^{\infty}$ in K such that $||x_n|| \to \gamma$ as $n \to \infty$.using Parallelogram law and the convexity of K, we have the following estimate:

$$||x_n - x_m||_2 = \frac{1}{2} \left(||x_n||^2 + ||x_m||^2 \right) - 4||\frac{x_n + x_m}{2}||^2 \to 0, m, n \to \infty$$

ince $\frac{x_n + x_m}{2} \in K$, so $||\frac{x_n + x_m}{2}||^2|| > \gamma$

since $\frac{x_n+x_m}{2} \in K$, so $||\frac{x_n+x_m}{2}||^2|| \ge \gamma$ Hence the sequence $x_{n_{n=1}}^{\infty}$ is a Cauchy sequence in K and since K is closed, thus the sequence has a limit say $x^* \in K$. Observe that $||x^*|| = ||limx_n|| = \lim ||x_n|| = \gamma$; $u \in k, u \ne x^*$ and $||u|| = \gamma$, then $||x^* - u||^2 = 4\gamma^2 - 4||\frac{x^*+u}{2}||^2 \ge 0$ $4\gamma^2 \ge 4||\frac{x^*+u}{2}||^2||\frac{x^*+u}{2}|| \le \gamma$, and since the convexity of K, we have $\frac{x^*+u}{2} \in K$. Then this is a contradiction, hence $u=x^*$

Norms from Inner Product

let $\phi \neq V$, be a linear space, but necesarily a normed space. Let < ., .> be an inner product on V, then for all $x \in V$, we define a function $\mu : V \times V \to \mathcal{R}$.

 $\rho(x,y) = \begin{cases} 1 & x \neq 0 \\ 0 & x = y \end{cases}$ as a metric on V. if V is a normed linear space, the norm ||.|| can also

induce a metric on V given by $\rho(x,y) = ||x-y||$ for all $x,y \in V$. It can be shown that a a metric ρ on a metric space M, is induced if the following conditions are satisfied:

- 1. $\rho(x,y) \ge 0$ for all $x,y \in M$ and $\rho(x,y) = 0$ if and only if x = y.
- 2. $\rho(x,y) = \rho(y,x)$ for all $x,y \in M$.
- 3. $\rho(x,y) \le \rho(x,z) + \rho(z,y)$ for all $x,y,z \in M$.

Theorem: Jordan-Von Neumann

The norm of a normed linear space is given by an inner product if and only if it satisfies the parallelogram law. that is for all $x, y \in V$, we have: $||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$

Proof:

 (\Longrightarrow) : Assume that the norm is given by an inner product, $||x||^2 = \langle x, x \rangle$, then for all $x, y \in V$, then the parallelogram law is satisfied.

$$||x + x||^{2} + ||x - x||^{2} = 2(||x||^{2} + ||x||^{2})$$

$$||2x||^{2} = 4||x||^{2}$$

$$4||x||^{2} = 4||x||^{2}$$

(\iff): Assume that the norm satisfies the parallelogram law, then for all $x,y \in V$, we have: $||x||^2 = \langle x,x \rangle$ Define for arbitrary $x,y \in E$, $\langle x,y \rangle = \frac{1}{4} \Big(||x+y||^2 - ||x-y||^2 + i||x+iy||^2 - i||x-iy||^2 \Big)$ Observe immediately that $\langle x,x \rangle = ||x||^2$ for all $x \in V$. is satisfied by definition of the above, and we that is indeed an inner product on V.

1.
$$I_1: \langle x, x \rangle = ||x||^2 \geq 0$$
, and $||x||^2 = 0$, iff, $x = 0$

2.
$$I_2$$
: if $\langle x, y \rangle = \langle y, x \rangle \langle x, y \rangle = \frac{1}{4} \left(||x + y||^2 - ||x - y||^2 + i||x + iy||^2 - i||x - iy||^2 \right)$

$$= \frac{1}{4} \left(||y + x||^2 - ||y - x||^2 + i||y + ix||^2 - i||y - ix||^2 \right)$$

$$= \frac{1}{4} \left(||y + x||^2 - ||y - x||^2 - i||y + ix||^2 + i||y - ix||^2 \right)$$

$$= \langle y, x \rangle$$

3. I_3 : if $\langle \lambda x + \mu y, z \rangle = \lambda \langle x, z \rangle + \mu \langle y, z \rangle$ Consider for arbitrary $x, y, z \in E$, and a complex scalar $\lambda \in \mathcal{C}$, we have the following: $\langle x+z,y\rangle = \langle x,y\rangle + \langle z,y\rangle$ $<\lambda x, y> = \lambda < x, y>$ observe that using equation 4, and considering the real and imaginery part seperately, we have: $Re < x + y, z > +Re < x - y, z > = \frac{1}{4} \left\{ ||x + y + z||^2 - ||x + y - z||^2 + ||x - y||^2 \right\}$ $|y+z||^2 - ||x-y-z||^2$ expand: $\frac{1}{4} \left\{ 2||x+z||^2 - 2||x-z||^2 \right\}$ =2Re < x, z >Hence, Re < x + y, z > + Re < x + y, z > = 2Re < x, z >replace y by x: Re < 2x, z > +Re < 0, z > = 2Re < x, z >from the two result, we have: Re < x + y, z > + Re < x - y, z > = Re < 2x, z >Similarly, replacing x by $\frac{1}{2}(x+y)$ and y by $\frac{1}{2}(x-y)$ Re < x, y + z > +Re < x, y - z > = Re < x, 2y >Re < x, z > +Re < y, z > = Re < x + y, z >Similarly, for the imaginery part, we have: Im < x + y, z > + Im < x - y, z >= Im <Similarly, replacing x by $\frac{1}{2}(x+y)$ and y by $\frac{1}{2}(x-y)$ Im < x, z > +Im < y, z > = Im < x + y, z >Hence, we have: $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$ By induction for any positive integer n, we have: $\langle nx, Z \rangle = n \langle x, z \rangle$ $\langle -x, y \rangle = -\langle x, y \rangle$ and from definition, $\langle nx, y \rangle = n \langle x, y \rangle$

Orthonormal Set

Definition 1:

Two vectors $x, y \in E$ are said to be orthogonal if $\langle x, y \rangle = 0$. A set $S \subset E$ is said to be orthogonal if $\langle x, y \rangle = 0$ for all $x, y \in S$ with $x \neq y$, and is written as $x \perp y$, if the inner product is equal to zero. Since $\langle x, y \rangle = \langle y, x \rangle$, it follows that $x \perp y$ if and only if $y \perp x$. Further more $x \perp x$ if and only if x = 0.

Definition 2:

A set S in an inner product space E is called an orthogonal set if $x \perp y$ for all $x, y \in S$ with $x \neq y$. A set S is called an orthogonal set if S is an orthogonal set and ||x|| = 1 for all $x \in S$. example: space l_2

Bessel Inequality

if $\{U_i\}_{i=1}^{\infty}$ is an orthonormal set in an inner product space E, then for all $x \in E$, we have: $\sum_{i=1}^{\infty} |\langle x, u_i \rangle|^2 \le ||x||^2$ furthermore, if $\sum_{i=1}^{\infty} |\langle x, u_i \rangle|^2 = ||x||^2$, then $x = \sum_{i=1}^{\infty} \langle x, u_i \rangle u_i$

The Projection Theory

Using the concept of orthogonality, we shall extend the well known elementary fact, that the shortest distance from a point to a line is the perpendicular distance from the point to the line. Let E be an inner product space, and M be a closed subspace of E. For each $x \in E$, we define the distance from x to M by: $||x - m^*|| = \inf\{||x - m|| : m \in M\}$ Then m^* is unique, in fact m^* is the unique vector in M such that if and only if $x - m^* \perp M$. The vector m^* is called the projection of x on M.

Proof:

 (\Longrightarrow) : Let $m^* \in M$ be the unique, assume for contradiction that this is not the case, then $\exists 0 \neq m_0 \in M$, that is not orthogonal to $(x-m^*)$. without loss of generality, we may assume that $||m_0|| = 1$, then $< x - m^*, m_0 > \neq 0$. Since m_0 is not orthogonal to $(x - m^*)$, we let the inner product $< x - m^*, m_0 > = \alpha \neq 0$. Now, consider the vector $m^* + \lambda m_0$, where $\lambda \in \mathcal{R}$, then:

$$||x - (m^* + \lambda m_0)||^2 = ||x - m^*||^2 + \lambda^2 ||m_0||^2 - 2\lambda < x - m^*, m_0 > = ||x - m^*||^2 + \lambda^2 - 2\lambda \alpha$$

This contradicts the hypothesis that m^* is the unique vector in M such that $x - m^* \perp M$. Hence, m^* is unique.

(\Leftarrow): Let m^* be the unique vector in M such that $x - m^* \perp M$, then for all $m \in M, m \neq m^*$, we compute ||x - m||

$$||x-m||^2 = ||x-m^*+m^*-m||^2 = ||x-m^*||^2 + ||m^*-m||^2 + 2 < x-m^*, m^*-m > = ||x-m^*||^2 + ||m^*-m||^2 + 2 < x-m^*, m^*-m > = ||x-m^*||^2 + ||m^*-m||^2 + 2 < x-m^*, m^*-m > = ||x-m^*||^2 + ||m^*-m||^2 + 2 < x-m^*, m^*-m > = ||x-m^*||^2 + ||m^*-m||^2 + 2 < x-m^*, m^*-m > = ||x-m^*||^2 + ||m^*-m||^2 + 2 < x-m^*, m^*-m > = ||x-m^*||^2 + ||m^*-m||^2 + 2 < x-m^*, m^*-m > = ||x-m^*||^2 + ||m^*-m||^2 + 2 < x-m^*, m^*-m > = ||x-m^*||^2 + ||m^*-m||^2 + 2 < x-m^*, m^*-m > = ||x-m^*||^2 + ||m^*-m||^2 + 2 < x-m^*, m^*-m > = ||x-m^*||^2 + ||m^*-m||^2 + 2 < x-m^*, m^*-m > = ||x-m^*||^2 + ||m^*-m||^2 + 2 < x-m^*, m^*-m > = ||x-m^*||^2 + ||m^*-m||^2 + 2 < x-m^*, m^*-m > = ||x-m^*||^2 + ||m^*-m||^2 + 2 < x-m^*, m^*-m > = ||x-m^*||^2 + ||m^*-m||^2 + 2 < x-m^*, m^*-m > = ||x-m^*||^2 + ||m^*-m||^2 + 2 < x-m^*, m^*-m > = ||x-m^*||^2 + ||m^*-m||^2 + 2 < x-m^*, m^*-m > = ||x-m^*||^2 + ||m^*-m||^2 + 2 < x-m^*, m^*-m > = ||x-m^*||^2 + ||m^*-m||^2 + 2 < x-m^*, m^*-m > = ||x-m^*||^2 + ||m^*-m||^2 + 2 < x-m^*, m^*-m > = ||x-m^*||^2 + ||m^*-m||^2 + 2 < x-m^*, m^*-m > = ||x-m^*||^2 + ||m^*-m||^2 + 2 < x-m^*, m^*-m > = ||x-m^*||^2 + ||m^*-m||^2 + 2 < x-m^*, m^*-m > = ||x-m^*||^2 + ||m^*-m||^2 + 2 < x-m^*, m^*-m > = ||x-m^*||^2 + ||m^*-m||^2 + 2 < x-m^*, m^*-m > = ||x-m^*||^2 + ||m^*-m||^2 + 2 < x-m^*, m^*-m^* > = ||x-m^*||^2 + ||m^*-m||^2 + 2 < x-m^*, m^*-m^* > = ||x-m^*||^2 + ||m^*-m||^2 + 2 < x-m^*, m^*-m^* > = ||x-m^*||^2 + ||m^*-m^*||^2 + ||m^*-m^*||^$$

Hence, $||x - m^*||$ is the minimum distance from x to M.

Theorem: The Projection Theorem

Let H be a Hilbert space, and M be a closed subspace of H. Then for each $x \in H$, there exists a unique vector $m^* \in M$ such that $x - m^* \perp M$. There exists a unique vector $m^* \in M$ such that $||x - m^*|| \leq ||x - m||$. furthermore m^* is the unique vector in M if and only if $(x - m^*) \perp M$.

Proof of Projection Theorem

We shall consider only the existence of a minimum vector m^* , for the uniqueness we say if $x \in M$, then choose $m^* = x$, then there's nothing to prove.

Assume that $x \neq m$, define $\delta = \inf\{||x - m|| : m \in M\}$, we need to generate $m^* \in M$ with $||x - m^*|| = \delta$. Let $\{m_n\}_{n=1}^{\infty}$ be a sequence in M such that $||x - m_n|| \to \delta$ as $n \to \infty$.

Since M is closed, then $m^* = limm_n \in M$, and $||x - m^*|| = \delta$. We need to show that $x - m^* \perp M$. Let $m \in M$, then: By Parallelogram Law

$$||(m_i - x) + (x - m_j)||^2 + ||(m_i - x) - (x - m_j)||^2 = 2(||m_i - x||^2 + ||x - m_j||^2)$$
Rearranging, we have:
$$||m_i - m_j||^2 = 2(||m_i - x||^2 + ||x - m_j||^2) - 4||x - \frac{m_i + m_j}{2}||^2$$
Since $m_i, m_j \in M$, then $\frac{m_i + m_j}{2} \in M$

Since m is a linear subspace, hence by the definition of $\delta ||m_i - m_j||^2 = 2(||m_i - x||^2 + ||x - m_j||^2) - 4\delta^2$

Taking the limit as $i, j \to \infty$ Hence the sequence $m_{n=1}^{\infty}$ is a Cauchy sequence in M, and since M is closed, then $m^* = \lim_n \in M$, and $||x - m^*|| = \delta$. We need to show that $x - m^* \perp M$. Let $m \in M$. It follows that $x - m_j \to x - m_i$ as $j \to \infty$, so that by the uniqueness of the limit, we obtain $||x - m^*|| = \delta = \inf\{||x - m|| : m \in M\}$. The Consequence of projection Theorem is the "Direct Sum"

Direct Sum

Let E be a vector space, E is said to be a direct of two subspaces E_1 and E_2 if $E_1 \cap E_2 = \{0\}$ and $E_1 + E_2 = E$. We write $E = E_1 \oplus E_2$. If E is a direct sum of two subspaces E_1 and E_2 , then for each $x \in E$, there exists a unique pair (x_1, x_2) such that $x = x_1 + x_2$, where $x_1 \in E_1$ and $x_2 \in E_2$. The pair (x_1, x_2) is called the decomposition of x with respect to the direct sum $E = E_1 \oplus E_2$.

Definition:

For a Hilbert space H, let M be a closed subspace of H, then H is said to be the orthogonal direct sum of M and M^{\perp} , and is written as $H = M \oplus M^{\perp}$.

Lemma:

Let X_1 and X_2 be two complete Orthonormal sets with inner product space E, then X_1 and X_2 have the same cardinality.

Cardinality

The dimension of innner product space is the cardinality of any complete orthonormal set in B.

Definition

Let X, Y be normed linear spaces, a linear map $T: X \to Y$ is said to be isometric if it is norm preserving, that is ||Tx|| = ||x|| for all $x \in X$.

The Linear Map T is called an isometric Isomorphism of X, Y if:

- 1. T is injective
- 2. ||Tx|| = ||x||

If T is a bijective isometric isomorphism of X, Y, then X and Y are said to be isometrically isomorphic, and we write $X \cong Y$.

Adjoint Operators on Hilbert Spaces

Definition

Let H be a Hilbert space, and $T: H \to H$ be a linear map, then there exists a unique linear map $T^*: H \to H$ such that $\langle Tx, y \rangle = \langle x, T^*y \rangle$ for all $x, y \in H$. The map T^* is called the adjoint of T.

Definition: Self, Adjoint, and Unitary Operators

Let H be a Hilbert space, and $T: H \to H$ be a linear map, then T is said to be:

- 1. Self Adjoint if $T = T^*$
- 2. Unitary if $T^*T = I$
- 3. Normal if $TT^* = T^*T$