Plan du cours

I.	Vocabulaire	1
11.	Définition de cosinus, sinus et tangente	1
III.	Quelques propriétés	2
IV.	Applications	3
	1. Calcul d'une longueur	3
	2. Calcul d'un angle	3

I. Vocabulaire

Soit ABC un triangle rectangle en A. L'hypoténuse est [BC].

- Si on regarde l'angle \widehat{ABC} :

Le **côté opposé** à l'angle \widehat{ABC} est [AC]. Le **côté adjacent** à l'ange \widehat{ABC} est [AB]. - Si on regarde l'angle \widehat{ACB} :

Le **côté opposé** à l'angle \widehat{ACB} est [AB]. Le **côté adjacent** à l'ange \widehat{ACB} est [AC].

II. Définition de cosinus, sinus et tangente

Définition

Soit ABC un triangle rectangle en A.

- $cos\widehat{ABC} =$
- sinÂBC =
- $tan\widehat{ABC} =$

⊢i i

Moyen mnémotechnique de se souvenir de ces formules :

III. Quelques propriétés

x (en degré)	5	30	45	60	90
COSX					

x (en degré)	5	30	45	60	90
sinx					

Propriété

Dans un triangle rectangle, pour tout angle x, le cosinus et le sinus sont toujours compris entre 0 et 1.

$$0 < cos x < 1$$
 et $0 < sin x < 1$

x (en degré)	5	30	45	60	90
$(cosx)^2$					

x (en degré)	5	30	45	60	90
$(sinx)^2$					

Propriété

Dans un triangle rectangle, pour tout angle aigu de mesure x,

$$(\cos x)^2 + (\sin x)^2 = 1$$

Démonstration:

Propriété

Dans un triangle rectangle, pour tout angle aigu de mesure x,

$$tanx = \frac{sinx}{cosx}$$

Démonstration:

IV. Applications

1. Calcul d'une longueur

(a) Soit IJK un triangle rectangle en K tel que IJ = 8 cm et \widehat{KIJ} = 50°. Calculer KJ.

Le triangle EJK est rectangle en K.

Je connais l'angle \widehat{KIJ} et l'hypoténuse du triangle [IJ] et je cherche la longueur du côté opposé([KJ])

J'utilise donc la formule du sinus :

$$sin\widehat{KIJ} = \frac{\text{côté opposé}}{\text{hypoténuse}}$$
$$sin\widehat{KIJ} = \frac{KJ}{IJ}$$
$$sin50^{\circ} = \frac{KJ}{8}$$

D'après le produit en croix : $KJ = 8 \times sin50^{\circ}$

 $KJ \approx 6,1cm$

(b) Soit DFE un triangle rectangle en E tel que DE = 7 cm et \widehat{DFE} = 56°. Calculer FE.

Le triangle DFE est rectangle en E.

Je connais l'angle \widehat{DFE} et son côté opposé [DE] et je cherche la longueur du côté adjacent([FE])

J'utilise donc la formule de la tangente :

$$tan\widehat{DFE} = \frac{\text{côt\'e oppos\'e}}{\text{côt\'e adjacent}}$$

$$tan\widehat{DFE} = \frac{DE}{FE}$$

$$tan56^{\circ} = \frac{7}{FE}$$

D'après le produit en croix : $FE = \frac{7 \times 1}{tan56}$

2. Calcul d'un angle

(a) Soit LMN rectangle en N tel que LN = 6,5 cm et NM = 3 cm. Calculer \widehat{LMN} puis en déduire la mesure de l'angle \widehat{MLN} .

Calcul de l'angle \widehat{LMN} :

Le triangle LMN est rectangle en N. Je connais [MN] le côté adjacent de \widehat{LMN} et [NL] le côté opposé de \widehat{LMN} et je cherche l'angle \widehat{LMN} .

J'utilise donc la formule de la tangente :

$$tan\widehat{LMN} = \frac{\text{côté opposé}}{\text{côté adjacent}}$$

$$tan\widehat{LMN} = \frac{NL}{MN}$$

$$tan\widehat{LMN} = \frac{6,5}{3}$$

A l'aide de la calculatrice, je trouve :
$$\widehat{LMN} = \arctan(\frac{6, 5}{3})$$
Donc
$$\widehat{LMN} \approx 65, 2^{\circ}$$

Calcul de l'angle $\widehat{\mathit{MLN}}$:

On sait que le triangle MLN est rectangle en N, donc la somme de ses angles aigus vaut 90°.

Donc
$$\widehat{MLN} = 90 - \widehat{LMN}$$

$$\widehat{MLN} = 90 - 65,2$$

$$\widehat{MLN} = 24.8^{\circ}$$

(b) Soit OPQ un triangle rectangle en O tel que OP = 5 cm et QP = 7 cm. Calculer \widehat{OQP} .

Le triangle OPQ est rectangle en O.

Je connais [OP] le côté opposé de \widehat{OQP} et [QP] l'hypoténuse et je cherche l'angle \widehat{OQP} .

J'utilise donc la formule du sinus :

$$sin\widehat{OQP} = \frac{\text{côt\'e oppos\'e}}{\text{hypot\'enuse}}$$
$$sin\widehat{OQP} = \frac{OP}{QP}$$
$$sin\widehat{OQP} = \frac{5}{7}$$

A l'aide de la calculatrice, je trouve :
$$\widehat{OQP} = \arcsin(\frac{5}{7})$$
 Donc
$$\widehat{OQP} \approx 45,6^{\circ}$$