Cartographie Geolocalisation et capteurs

Christophe Vestri

Plan du cours

- 7 janvier : Intro, github, Capteur/Geoloc en HTML5
- 14 janvier: carto/geo, leaflet/mapBox, rest Api
- 25 janvier: 2D/3D: Canvas, WebGL et Three.js
- 1 février: Aframe/AR.js, exercice + projet
- 8 février : Projets

Objectifs du cours

- Bases de geolocalisation et de la cartographie
- Expérimenter quelques méthodes et outils web geo/3D
- Réaliser un projet

https://github.com/vestri/CoursGeo

- Evaluation:
 - Exos des cours (50%)
 - Projet (50%)

Plan Cours 2

- Debugging
- Référentiels
- Exercices

- TD1
- Repères Géographiques et Cartographiques
- Exercices en Html5/javascript
 - Leaflet, openStreetmap
 - MapBox, mapQuest
 - REST API

Debugging

- Référentiels
- Exercices

Outils de debug

- En local:
 - python3 -m http.server
 - http://localhost:8000/ firefox ou chrome
- Smartphone android -> Chrome
- https://developers.google.com/web/tools/chrom e-devtools/javascript
 - Simulation de smartphone (F12)
 - Connecté à un smartphone: <u>chrome://inspect/</u>
- Firefox possible ou autres??

Les Systèmes de Coordonnées de Référence

- Debugging
- Référentiels
- Exercices

Les SCR (Systèmes de Coordonnées de Référence) sont des modèles mathématiques permettant, grâce aux coordonnées, de faire le lien entre un endroit réel sur terre et sa représentation en plan.

En général, les SCR se divisent en systèmes de coordonnées de référence projetées (aussi appelés systèmes de coordonnées de référence cartésiennes ou rectangulaires) et systèmes de coordonnées de référence géographique.

La Cartographie - Licence DAM

- Debugging
- Référentiels
- Exercices

Représentation de la terre

Construction d'un référentiel géographique

Choix d'un ellipsoïde

Choix d'une projection

Système cartésien x,y,z

Système géographique φ,λ

Debugging **Référentiels** Exercices

Système cartographique X,Y

- Un point de la surface terrestre est repéré en fonction d'un ellipsoïde par :
 - sa longitude : λ (Lambda)
 - sa latitude : φ (Phi)

CapteursGitExos

Géolocalisation **Référentiels**

- Différents systèmes:
 - GPS (WGS84),
 - Europe (<u>ETRS89</u>)
 - France (NTF, RGF 93)

Les 3 familles de projections cartographiques :

- a) Projections cylindriques
- b) Projections coniques
- c) Projections planes ou azimutales

Debugging **Référentiels**

Exercices

Chaque <u>projection cartographique</u> a des avantages et des désavantages. La meilleure projection d'une carte dépend de l'échelle de la carte, et pour l'objectif pour laquelle elle sera utilisée.

Les projections et SCR

- Debugging
- Référentiels
- Exercices

Les projections

Distorsions des projections cartographiques

Equidistante: conserve les distances

Equivalente : conserve les surfaces => intérêt : petite échelle

Conforme ou orthomorphique: conserve les formes et les angles

localement

Aphylactique: ne conserve ni angles, ni surfaces

La Cartographie - Licence DAM

Systèmes Géographiques et : Cartographiques https://docs.mail.com/

- Debugging
- Référentiels
- Exercices

https://docs.mapbox.com/mapbox-gl-js/example/

Choix d'une projection cartographique

- DebuggingRéférentiels
- Exercices

- GPS: UTM (Universal Transverse Mercator)
 - Système mondial de 122 projections
 - 60 fuseaux de 6° (entre 80°Sud et 80°Nord) + 2 poles

La France: fuseaux UTM Nord 30, 31 et 32

Systèmes géographique Français

- Debugging
- Référentiels
- Exercices

- RGF93
 - Ellipsoïde GRS80

Projection lambert 93

Systèmes géographique Français

- Debugging
- Référentiels
- Exercices

• Système géographique Français Lambert CC42...

Projection	φ ₀	Ψ1	φ2	X ₀	Y ₀	EPSG
CC42	42°	41.25°	42.75°	1 700 000 m	1 200 000 m	3942
CC43	43°	42.25°	43.75°	1 700 000 m	2 200 000 m	3943
CC44	44°	43.25°	44.75°	1 700 000 m	3 200 000 m	3944
CC45	45°	44.25°	45.75°	1 700 000 m	4 200 000 m	3945
CC46	46°	45.25°	46.75°	1 700 000 m	5 200 000 m	3946
CC47	47°	46.25°	47.75°	1 700 000 m	6 200 000 m	3947
CC48	48°	47.25°	48.75°	1 700 000 m	7 200 000 m	3948
CC49	49°	48.25°	49.75°	1 700 000 m	8 200 000 m	3949
CC50	50°	49.25°	50.75°	1 700 000 m	9 200 000 m	3950

• 9 projections appelées coniques conformes 9 zones

Debugging

Exercices

- Coordonnées GPS: Lat/Lon
 - La salle 202:

43.616513, 7.072094 = 43°36'59.5"N+7°04'19.5"E

- Plus d'infos:
 - Wikipédia
 - IGN: http://geodesie.ign.fr/index.php et
 http://education.ign.fr/dossiers/mesurer-la-terre
 - http://seig.ensg.eu/
 - http://sgcaf.free.fr/pages/techniques/ign_coordonnees.
 htm

- Référentiels
- Exercices

Leafletjs

- <u>leafletjs</u> est une librairie Opensource pour afficher des cartes interactives utiles à la navigation (comme google maps)
- Seulement 33Ko, Tous les browsers
 - Map controls
 - Layers
 - Interaction Features
 - Custom maps

REST API

- REST (representational state transfer)
- Acces simple à des webservices
- https://ensweb.users.info.unicaen.fr/pres/ws/
- https://www.uptrends.fr/qu-est-ce-que/rest-api

Contraintes

- Client-serveur
- Sans état
- Avec/sans cache
- En couche
- Interface uniforme
- (code à la demande)

REST API

Exemple de hierarchie: https://api.gouv.fr/api/api-geo.html

https://blog.octo.com/designer-une-api-rest/

A DI	D : /C .	5 I WID
API	Domaines / Sous domaines	Exemples d'URI
Google	https://accounts.google.com https://www.googleapis.com https://developers.google.com	https://accounts.google.com/o/oauth2/auth https://www.googleapis.com/oauth2/v1/tokeninfo https://www.googleapis.com/calendar/v3/ https://www.googleapis.com/drive/v2 https://maps.googleapis.com/maps/api/js?v=3.exp https://www.googleapis.com/plus/v1/ https://www.googleapis.com/youtube/v3/ https://developers.google.com
Facebook	https://www.facebook.com https://graph.facebook.com https://developers.facebook.com	https://www.facebook.com/dialog/oauth https://graph.facebook.com/me https://graph.facebook.com/v2.0/{achievement-id} https://graph.facebook.com/v2.0/{comment-id} https://graph.facebook.com/act_{ad_account_id}/adgroups https://developers.facebook.com
Twitter	https://api.twitter.com https://stream.twitter.com https://dev.twitter.com	https://api.twitter.com/oauth/authorize https://api.twitter.com/1.1/statuses/show.json https://stream.twitter.com/1.1/statuses/sample.json https://dev.twitter.com
GitHub	https://github.com https://api.github.com https://developer.github.com	https://github.com/login/oauth/authorize https://api.github.com/repos/octocat/Hello-World/git/commits /7638417db6d59f3c431d3e1f261cc637155684cd https://developer.github.com

- Debugging
- Référentiels
- Exercices

Exercices 1

- Avec Leafletjs
 - Récupérez votre position GPS, afficher votre position
 - Afficher une carte locale (utilisez openStreetmap)
 - Affichez un marqueur sur Nice

Testez en local puis publiez sur Github

- Debugging
- Référentiels
- Exercices

Exercices 2

- Avec Leafletjs
 - Tracez le triangle des Bermudes (en rouge)
 - Changer de carte (stamen: http://maps.stamen.com/)
 - Dessiner un cercle autour de votre position avec une rayon représentant la précision estimée
 - Calculez la distance à Marseille, l'afficher
 (https://fr.wikipedia.org/wiki/Distance du grand-cercle)

- Debugging
- Référentiels
- Exercices

Exercices 3

- Avec Leafletjs ou autre, récupérer des données géoréférencées et les afficher sur la carte
 - Geojson sur http://opendata.nicecotedazur.org
 - ou par une RestApi :

https://www.data.gouv.fr/fr/

https://api.gouv.fr/api/api-geo.html

https://www.insee.fr/fr/metadonnees/cog/de

partement/DEP06-alpes-maritimes

https://adresse.data.gouv.fr/api

- Bonus:
 - afficher un trajet/route (google/mapbox/mapQuest)
 - Testez d'autres outils
 - mapQuest (Token: tR2C6osuQcc3RoWnxDMXF6FACtNAzMl8)
 - mapBox, google maps api