BỘ GIÁO DỰC VÀ ĐÀO TẠO

ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẮNG NĂM 2006

ĐỀ CHÍNH THỰC

Môn: TOÁN, khối B

Thời gian làm bài: 180 phút, không kể thời gian phát đề

PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH

Câu I (2 điểm)

Cho hàm số
$$y = \frac{x^2 + x - 1}{x + 2}$$
.

- 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho.
- 2. Viết phương trình tiếp tuyến của đồ thị (C), biết tiếp tuyến đó vuông góc với tiệm cận xiên của (C).

Câu II (2 điểm)

- 1. Giải phương trình: $\cot gx + \sin x \left(1 + tgxtg \frac{x}{2}\right) = 4$.
- 2. Tìm m để phương trình sau có hai nghiệm thực phân biệt: $\sqrt{x^2 + mx + 2} = 2x + 1$. **Câu III** (2 điểm)

Trong không gian với hệ tọa độ Oxyz, cho điểm A(0; 1; 2) và hai đường thẳng:

$$d_1: \frac{x}{2} = \frac{y-1}{1} = \frac{z+1}{-1}, \quad d_2: \begin{cases} x = 1+t \\ y = -1-2t \\ z = 2+t. \end{cases}$$

- 1. Viết phương trình mặt phẳng (P) qua A, đồng thời song song với d_1 và d_2 .
- Tìm tọa độ các điểm M thuộc d₁, N thuộc d₂ sao cho ba điểm A, M, N thẳng hàng.
 Câu IV (2 điểm)
 - 1. Tính tích phân: $I = \int_{\ln 3}^{\ln 5} \frac{dx}{e^x + 2e^{-x} 3}$.
 - 2. Cho x, y là các số thực thay đổi. Tìm giá trị nhỏ nhất của biểu thức:

$$A = \sqrt{(x-1)^2 + y^2} + \sqrt{(x+1)^2 + y^2} + |y-2|.$$

PHẦN TỰ CHỌN: Thí sinh chọn câu V.a hoặc câu V.b Câu V.a. Theo chương trình THPT không phân ban (2 điểm)

- 1. Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C): $x^2 + y^2 2x 6y + 6 = 0$ và điểm M(-3;1). Gọi T_1 và T_2 là các tiếp điểm của các tiếp tuyến kẻ từ M đến (C). Viết phương trình đường thẳng T_1T_2 .
- 2. Cho tập hợp A gồm n phần tử (n≥4). Biết rằng, số tập con gồm 4 phần tử của A bằng 20 lần số tập con gồm 2 phần tử của A. Tìm k∈ {1,2,...,n} sao cho số tập con gồm k phần tử của A là lớn nhất.

Câu V.b. Theo chương trình THPT phân ban thí điểm (2 điểm)

- 1. Giải bất phương trình: $\log_5(4^x + 144) 4\log_5 2 < 1 + \log_5(2^{x-2} + 1)$.
- 2. Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a, $AD = a\sqrt{2}$, SA = a và SA vuông góc với mặt phẳng (ABCD). Gọi M và N lần lượt là trung điểm của AD và SC; I là giao điểm của BM và AC. Chứng minh rằng mặt phẳng (SAC) vuông góc với mặt phẳng (SMB). Tính thể tích của khối tứ diện ANIB.

Cán bộ coi thi không giải thích gì thêm.

Ho và tên thí sinh số báo danh.