MIT OpenCourseWare
http://ocw.mit.edu

5.04 Principles of Inorganic Chemistry II Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

5.04, Principles of Inorganic Chemistry II Prof. Daniel G. Nocera

Lecture 5: Molecular Point Groups 2

The D point groups are distiguished from C point groups by the presence of rotation axes that are perpindicular to the principal axis of rotation.

 $\mathbf{D_n}$: C_n and $n \perp C_2$ (h = 2n)

Example: $Co(en)_3^{3+}$ is in the D_3 point group,

In identifying molecules belonging to this point group, if a C_n is present and one $\pm C_2$ axis is identified, then there must necessarily be $(n-1)\pm C_2$ s generated by rotation about C_n .

 ${f D}_{nd}$: C_n , $n\bot C_2$, $n\sigma_d$ (dihedral mirror planes bisect the $\bot C_2s$)

Example: allene is in the D_{2d} point group,

Two C_2 s bisect σ_d s. The example on the bottom on pg 3 of the Lecture 4 notes was a harbinger of this point group. As indicated there, it is often easier to see these perpendicular C_2 s by reorienting the molecule along the principal axis of rotation.

Note: D_{nd} point groups will contain i, when n is odd

$$S_{10}^2$$
 S_{10}^4 S_{10}^6 S_{10}^8 \parallel \parallel \parallel \parallel \parallel \parallel E C_5 C_5^2 C_5^3 C_5^4 S_{0}^4 (generated with C_5 axis) S_{10}^2 , S_{10}^3 , S_{10}^5 , S_{10}^7 , S_{10}^9 \parallel \parallel

 \mathbf{D}_{nh} : C_{n} , $n \perp C_{2}$, $n \sigma_{v}$, σ_{h} (h = 4n)

when n is even, $\frac{n}{2}\sigma_v$ and $\frac{n}{2}\sigma_v'$

 $\mathbf{C}_{\infty \mathbf{v}}$: \mathbf{C}_{∞} and $\infty \sigma_{\mathbf{v}}$ (h = ∞)

linear molecules without an inversion center

 $\mathbf{D}_{\infty h}$: C_{∞} , $\infty \perp C_2$, $\infty \sigma_{V}$, σ_{h} , i (h = ∞)

linear molecules with an inversion center

when working with this point group, it is often convenient to drop to $D_{2h}\ \mbox{and}$ then correlate up to $D_{\infty h}$

 T_d : E, 8C₃, 3C₂, 6S₄, 6 σ_d (h = 24)

C₂, S₄ through each face

a cubic point group; the cubic nature of the point group is easiest to visualize by inscribing the tetrahedron within a cube

 $\mathbf{O_h}$: E, 8C₃, 6C₂, 6C₄, 3C₂ (=C₄²), i, 6S₄, 8S₆, 3 σ_h , 6 σ_d (h = 48)

C₂, C₄, S₄ through each face

 σ_h bisect faces of cube σ_d contains edges of cube C_2 bisect edges of cube

C₃, S₆ through each corner

a cubic point group; an octahedron inscribed within a cube

O: E, 8C₃, 6C₂, 6C₄, 3C₂ (=C₄²)

A pure rotational subgroup of O_h , contains only the C_n 's of O_h point group

 $T : E, 8C_3, 3C_2$

A pure rotational subgroup of T_d , contains only the C_n 's of T_d point group

O and T are rare point groups; whereas few molecules possess this symmetry, they are mathematically useful for molecules of O_h and T_d , respectively

 $\mathbf{I_h}$: generators are C_3 , C_5 , i (h = 120) \Longrightarrow the icosahedral point group

 $\mathbf{K_h}$: generators are C_{ϕ} , C_{ϕ} , i (h = ∞) the spherical point group

Flow chart for assigning molecular point groups:

