点、线段、极角序

♪ 基本概念

关于计算几何的出题风格:

- 1. 降低复杂度,偏向算法,几何能力上的问题。
- 2. 考察实现:
 - 1. 精度问题。
 - 2. 边界问题。

模板是基础。解决计算几何的问题, 往往就是类似于在搭建积木。

下面给出相关函数的定义以及原理:

♪3 点:

数据成员: x,y

函数成员:

1. 加减乘除:

将点看作一个向量。因此, 可以抽象出和向量相关的加减乘除运算。原理是关于向量的四则运算。

- 2. 判断两点相等。
- 3. 点积:

点积即 $\overrightarrow{a}\cdot\overrightarrow{b}=a_xb_x+a_yb_y=|a||b|cos heta.$

- 1. 使用方向: 计算向量之间的角度。
- 4. 叉积:

叉积即 $\overrightarrow{a} \times \overrightarrow{b} = a_x b_y - a_y b_x = |a||b| sin \theta$ 平行四边形面积。

- 5. 两点之间的距离。
- 6. alpha. 方位角: 求极角。

$$ext{atan2}(y,x) = egin{cases} rctanig(rac{y}{x}ig) & x>0 \ rctanig(rac{y}{x}ig) + \pi & y \geq 0, x < 0 \ rctanig(rac{y}{x}ig) - \pi & y < 0, x < 0 \ +rac{\pi}{2} & y > 0, x = 0 \ -rac{\pi}{2} & y < 0, x = 0 \ ext{undefined} & y = 0, x = 0 \end{cases}$$

注意未定义的情况。

- 7. read (), write(); 快捷的读取打印。
- 8. abs(), 向量的模。
- 9. rot90()。 表示将点逆时针方向旋转90度。

- 10. unit()。 返回当前向量的单位向量。
- 11. quad(), 求点在上象限,还是在下象限。(1,2还是3,4)匹配和极角序排序的函数。

」3 线段:

1. cross (p1 , p2 , p3) : $\overrightarrow{p_1p_2} imes \overrightarrow{p_1p_3} = |(p_2-p_1) imes (p_3-p_1)|$

2. crossOp:

计算 p_3 相对于 p_1p_2 实在顺时针方向上,还是逆时针方向上。作为组件,用于其它的函数。

1. 值域定义如下:

1. -1: 顺时针方向上

2. 0 : 共线

3. 1 : 逆时针方向上:

见如下图: 简洁明了

- 3. 检查两直线的相交情况: (两条直线,一条直线是用两个点来表示的。) chkLL(p1, p2, q1, q2): 其实就是判断不共线。求叉积是否等于0.
- 4. 如果恰有一个交点: 求直线具体的交点: isLL 大致的实现思路:
 - 1. 联立方程。
 - 2. 等比分点公式。(计算几何处理该问题时候的一般策略。)
- 5. 判断[I1, r1], [I2, r2]是否相交: 作为后续的函数的配件。
- 6. 判断线段 p_1p_2 与 q_1q_2 相交。isSS
- 7. 判断线段严格相交;相对于6.去除了端点相交,两线段有公共线段部分。
- 8. isMiddle(dba, db m, db b): 判断m是否在[a, b]之间。
- 9. isMiddle(Pa, Pm, Pb): 推广到了两个维度的向量。保证每一个维度都是在于a, b之间
- 10. 判断点p是否在线段 p_1p_2 上。 onSeg(P p1 , P p2 , P p)

11. 判断点p是否严格在线段 p_1p_2 上。

点与线段之间的关系

- 1. 点到直线上的投影。
- 2. 点关于直线的反射。
- 3. 点到线段的最小距离。
- 4. 两线段之间的距离: 如果是平行的。

♪3 极角序

1. sort. 对极角排序。 极角,是从-Π, Π定义为。1, 2象限顺时针旋转到x>0轴上的角度。符号标记为 正数。3, 4象限逆时针旋转到x>0轴的角度。符号标记为负。

♪2 板子

```
1 typedef double db;
    const db EPS = 1e-9;
3
   // 确定一个数的符号。同时避免精度问题。
4
   inline int sign(db a) { return a < -EPS ? -1 : a > EPS; }
7
   // 避免精度问题。
    inline int cmp(db a, db b) { return sign(a - b); }
9
10
    struct P {
11
        db x, y;
        P() {}
12
13
        P(db _x, db _y) : x(_x), y(_y) {}
14
        P operator+(P p) { return \{x + p. x, y + p. y\}; }
        P operator-(P p) { return \{x - p. x, y - p. y\}; \}
15
        P operator*(db d) { return \{x * d, y * d\}; }
16
        P operator/(db d) { return \{x / d, y / d\}; }
17
18
19
        bool operator < (P p) const {
20
            int c = cmp(x, p. x);
21
            if (c) return c = -1;
22
            return cmp(y, p. y) == -1;
23
        }
24
        bool operator==(P o) const {
25
            return cmp(x, o. x) == 0 && cmp(y, o. y) == 0;
26
27
        }
28
        db dot(P p) { return x * p. x + y * p. y; }
29
        db det(P p) { return x * p.y - y * p.x; }
30
31
32
        db distTo(P p) { return (*this - p).abs(); }
        db alpha() { return atan2(y, x); }
33
        void read() { cin >> x >> y; }
34
```

```
void write() {cout << "(" << x << ", " << y << ")" << endl;}</pre>
35
36
        db abs() { return sqrt(abs2());}
37
        db abs2() { return x * x + y * y; }
        P rot90() \{ return P(-y, x); \}
39
        P unit() { return *this / abs(); }
        int quad() const { return sign(y) == 1 |  (sign(y) == 0 && sign(x) >= 0); }
40
        Prot(db an) { return \{x * \cos(an) - y * \sin(an), x * \sin(an) + y * \cos(an)\}; }
41
42
    };
43
    #define cross (p1, p2, p3) ((p2. x-p1. x)*(p3. y-p1. y)-(p3. x-p1. x)*(p2. y-p1. y))
44
45
    \#define cross0p(p1, p2, p3) sign(cross(p1, p2, p3))
46
47
    // 直线 p1p2, q1q2 是否恰有一个交点
48
    bool chkLL (P p1, P p2, P q1, P q2) {
49
        db a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2);
        return sign(a1 + a2) != 0;
50
51
52
53
    // 求直线 p1p2, q1q2 的交点
    P isLL(P p1, P p2, P q1, P q2) {
54
        db a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2);
55
56
        return (p1 * a2 + p2 * a1) / (a1 + a2);
57
    }
58
59
    // 判断区间 [I1, r1], [I2, r2] 是否相交
60
    bool intersect (db | 1, db r1, db | 12, db r2) {
        if (11 > r1) swap(11, r1); if (12 > r2) swap(12, r2);
61
        return ! ( cmp (r1, | 12) == -1 | | cmp (r2, | 11) == -1 );
62
63
64
65
    // 线段 p1p2, q1q2 相交
    bool isSS(P p1, P p2, P q1, P q2) {
67
        return intersect (p1. x, p2. x, q1. x, q2. x) &&
                 intersect(p1.y, p2.y, q1.y, q2.y) &&
68
69
                cross0p(p1, p2, q1) * cross0p(p1, p2, q2) <= 0 &&
70
                71
72
73
    // 线段 p1p2, q1q2 严格相交
74
    bool isSS strict(P p1, P p2, P q1, P q2) {
        return cross0p (p1, p2, q1) * cross0p (p1, p2, q2) < 0 \& cross0p (q1, q2, p1)
75
76
               * cross0p(q1, q2, p2) < 0;
77
78
79
    // m 在 a 和 b 之间
    bool isMiddle(db a, db m, db b) {
80
81
        /*if (a > b) swap(a, b);
        return cmp(a, m) \langle = 0 \&\& cmp(m, b) \langle = 0;*/
82
        return sign(a - m) == 0 \mid \mid sign(b - m) == 0 \mid \mid (a < m != b < m);
83
    }
84
85
86
    bool isMiddle(P a, P m, P b) {
        return is Middle(a. x, m. x, b. x) && is Middle(a. y, m. y, b. y);
87
    }
88
89
```

```
90 | // 点 p 在线段 p1p2 上
 91
     bool onSeg (P p1, P p2, P q) {
 92
         return crossOp(p1, p2, q) == 0 && isMiddle(p1, q, p2);
 93
 94
    // q1q2 和 p1p2 的交点 在 p1p2 上?
 95
 96
    // 点 p 严格在 p1p2 上
     bool onSeg_strict(P p1, P p2, P q) {
         return cross0p(p1, p2, q) == 0 \& sign((q - p1).dot(p1 - p2)) * sign((q - p2).dot(p1 - p2)) < 0;
 98
 99
100
101
     // 求 q 到 直线p1p2 的投影(垂足) ⚠ : p1 != p2
102
     P proj (P p1, P p2, P q) {
103
         P dir = p2 - p1;
104
         return p1 + dir * (dir. dot(q - p1) / dir. abs2());
105
     }
106
    // 求 q 以 直线p1p2 为轴的反射
107
108 | P reflect (P p1, P p2, P q) {
109
         return proj(p1, p2, q) * 2 - q;
110
111
112
    // 求 q 到 线段p1p2 的最小距离
113
     db nearest (P p1, P p2, P q) {
        if (p1 == p2) return p1.distTo(q);
114
115
         P h = proj(p1, p2, q);
        if (isMiddle(p1, h, p2))
116
            return q.distTo(h);
117
         return min(p1.distTo(q), p2.distTo(q));
118
119
120
121
    // 求 线段p1p2 与 线段q1q2 的距离
122
     db disSS(P p1, P p2, P q1, P q2) {
123
         if (isSS(p1, p2, q1, q2)) return 0;
124
         return min(min(nearest(p1, p2, q1), nearest(p1, p2, q2)), min(nearest(q1, q2, p1), nearest(q1,
     q2, p2)));
125
     }
126
127
    // 极角排序
128
     sort(p, p + n, [\&](P a, P b) {
129
130
         int qa = a. quad(), qb = b. quad();
131
         if (qa != qb) return qa < qb;
132
         else return sign(a. det(b)) > 0;
133 });
```

♪ 例题:

√3 ICPC World Final 2016 G, Oil

```
Oil - UVA 1742 - Virtual Judge (vjudge.net)
```


Figure G.1: Oil layers buried in the earth. This figure corresponds to Sample Input 1.

Input

The input file contains several test cases, each of them as described below.

The first line of input contains a single integer n ($1 \le n \le 2000$), which is the number of oil deposits. This is followed by n lines, each describing a single deposit. These lines contain three integers x_0, x_1 , and y giving the deposit's position as the line segment with endpoints (x_0, y) and (x_1, y) . These numbers satisfy $|x_0|, |x_1| \le 10^6$ and $1 \le y \le 10^6$. No two deposits will intersect, not even at a point.

Output

For each test case, display the maximum amount of oil that can be extracted by a single oil well on a line by itself.

√ solve

签到题: (wf的签到题。)

对任意一个方案进行压缩: 发现都可以转移成经过至少一个端点的方案: (通过平移)。于是就很大程度上优化了, 解的枚举空间:

枚举一个端点,等于枚举了一个极点。于是问题就转换成了旋转经过极点的直线。在某一些斜率范围内,这些某一些线段中地点是被经过地。相当于做一个差分(或者说是扫描线),不断地旋转直线,得到最大值。

引出一些问题:

1. 斜率是离散化的。

因此不能用一个数组来表示, 这是一个扫描线问题。记录一些时间, 根据斜率对这些事件排序即可。

2. 如果记录的是斜率可能造成精度问题:

天然的极角序问题。但是模板中的极度角落的背景是:

一种简洁的统一方式: 将下半方的点投影在上半方区域。也就只是用到了一点点东西。

√4 code

```
#include<bits/stdc++.h>
    using namespace std;
3
    using II = long long;
    #define all(x) (x).begin(),(x).end()
    \#define sz(x) (int)(x).size()
    #define fi first
9
    #define se second
10
11
    const int inf = 1E9 + 7;
    const II INF = 1E18 + 7;
12
13
    const int N = (int) 2E3 + 10;
14
15
    using db = long long;
16
    const db EPS = 0;
17
    inline int sign(db a) { return a < -EPS ? -1 : a > EPS;}
18
19
20
    inline int cmp(db a , db b) {return sign(a - b);}
21
22
    struct P {
23
        db x , y;
24
        P() {}
25
        P(db _x , db _y) : x(_x) , y(_y) {}
        P operator+(P p) {return \{x + p. x, y + p. y\};\}
26
27
        P operator-(P p) {return \{x - p. x, y - p. y\};\}
28
29
        /* 各种情况下返回值的意义:
        */
30
        db det(P p) {return x * p. y - y * p. x;}
31
32
   };
33
   int n;
```

```
array(int , 3) rec[N];
35
    pair < P, int > event[2 * N];
36
37
38
    II solve(P p) {
39
         int cunt = 0;
40
         for (int i = 0; i < n; i++) {
41
             if (rec[i][2] == p. y) continue;
             P p0 = \{rec[i][0], rec[i][2]\};
42
43
             P p1 = \{rec[i][1], rec[i][2]\};
             p0 = p0 - p;
44
45
             p1 = p1 - p;
46
             int len = p1.x - p0.x;
47
             if (p0. y > 0) {
48
                 event[cunt++] = \{p1, len\};
49
                 event[cunt++] = \{p0, -len\};
50
             } else {
51
                 p0. x = -p0. x;
52
                 p1. x = -p1. x;
53
54
                 p0. y = -p0. y;
55
                 p1. y = -p1. y;
56
                 event[cunt++] = \{p0, len\};
                 event[cunt++] = \{p1, -len\};
57
             }
58
59
        }
60
         sort(event, event + cunt, [\&](pair\langle P, int \rangle \& a, pair \langle P, int \rangle \& b) {
61
             // /*首先显然是在同一侧的。*/
62
63
             // int qa = a.fi.quad() , qb = b.fi.quad();
64
             // /*具体实现: */
65
             // if (qa != qb) return qa < qb;</pre>
66
             // /*表示降序; */
             /*按照按照降序: 排序*/
67
68
             auto d = a. fi. det(b. fi);
69
70
             if (d != 0) return d > 0;
71
             else return a. second > b. second;
72
        });
73
         II res = 0, cur = 0;
74
         for (int i = 0; i < cunt; i++) {
75
             cur += event[i].se;
             // cout << event[i].se << "\n";
76
77
             res = max(res , cur);
78
79
         // cout << cunt << "\n";
80
         return res;
81
    };
82
    signed main() {
83
         ios::sync_with_stdio(false);
84
        cin. tie(0);
85
         while (cin >> n) {
86
             for (int i = 0; i < n; i++) {
87
                 int x0 , x1 , y;
88
                 cin >> x0 >> x1 >> y;
89
                 if (x0 > x1) swap(x0, x1);
```

```
90
                rec[i] = \{x0, x1, y\};
            }
91
92
            II ans = 0;
93
            for (int i = 0; i < n; i++) {
                ans = max({ans, max(solve({rec[i][0], rec[i][2]})}), solve({rec[i][1], rec[i][2]})) +
    rec[i][1] - rec[i][0]});
95
           }
96
            cout << ans << "\n";
97
        }
98
```

♪3 锐角三角形

锐角三角形 - 题目 - Daimayuan Online Judge

给 n 个点, 任选三个点组成三角形, 问锐角三角形个数。

√4 solve

关键

- 1. 容斥: 锐角三角形并不好判断: 需要判断两个角才能确定三角形。但是相对而言, 钝角三角形或者直角三角形只需要关注一个角。因此, 可以利用容斥定理将问题转变成单纯的数角问题。
- 2. 怎么数出所有钝角:
 - 1. 枚举一个顶点。
 - 2. 双指针。

细节

- 1. 双指针: 用两个指针扫一遍。分别定位90 和180两个分界。
- 2. 注意去除平角。 平角可能会被计算两次。
 - 1. 做完之后,将平角个数减掉。
 - 2. 只对下半区的点算平角 , 上半区的点不会被计算。
- 3. 为了统一代码风格,实现上使用一个技巧: 将所有点复制一份。这种技巧常用于处理环上的问题。
- 4. 对角度的分析:
 - 1. $[0,\frac{\pi}{2})$
 - 1. $cos\theta > 0$
 - 2. $sin\theta >= 0$
 - 2. $(\frac{\pi}{2}, \pi]$
 - 1. $cos\theta \le 0$
 - 2. $sin\theta > 0$
- 5. 双指针的边界:
 - 1. 可能出现旋转一周的情况。因此注意设置: | < i + cunt , r < i + cunt
 - 2. 如果有很多个共线。不停的旋转时。突然又回到了共线的情况。但是此时是判定为0度角的。事实上就是0度角。但是要注意指针继续往前走, 因此要加一个特判。

√ code

WA点:

1. 内积, 外积可能会爆int。 要注意。

```
#include<bits/stdc++.h>
 2
    using namespace std;
 3
4
    using II = long long;
 5
    using db = II;
7
    // #define int II
8
    const int N = 2010;
9
    const db EPS = 0;
10
    inline int sign(db a) {return a < -EPS ? -1 : a > EPS;}
11
12
    inline int cmp (db a , db b) {return sign(a - b);}
13
14
    struct P {
15
         db x , y;
         P() {};
16
17
         P\,(db\ \_x\ ,\ db\ \_y)\ :\ x\,(\_x)\ ,\ y\,(\_y)\ \{\}
         P operator+(P p) {return \{x + p. x, y + p. y\};\}
18
         P \ \text{operator-} (P \ p) \ \{ \text{return} \ \{ x \ - \ p. \ x \ , \ y \ - \ p. \ y \} \ ; \}
19
         P operator*(db d) {return \{x * d, y * d\};\}
20
21
22
         bool operator == (P o) {
23
             return cmp(x , o. x) == 0 && cmp(y , o. y) == 0;
24
25
         db dot(P p) {return x * p. x + y * p. y;}
26
         db det(P p) {return x * p.y - y * p.x;}
27
28
         int quad() {
29
             return sign(y) == 1 \mid \mid (sign(y) == 0 \&\& sign(x) >= 0);
30
31
    } point[N] , tmp[N * 2];
32
33
34
    int n;
35
    II solve(P o) {
         int cunt = 0;
36
         for (int i = 0; i < n; i++) {
37
              if (point[i] == o)continue;
38
39
             tmp[cunt++] = point[i] - o;
40
         /*升序排序: */
41
42
43
         sort(tmp , tmp + cunt , [&] (P a , P b) {
             int qa = a. quad(), qb = b. quad();
44
45
             if (qa != qb) return qa < qb;
46
             else return sign(a. det(b)) > 0;
47
         });
```

```
/* ! 复制一份。简洁代码: */
48
49
         for (int i = 0; i < cunt; i++) {
             tmp[cunt + i] = tmp[i];
50
51
52
53
         /*检查第一个指针*/
54
         auto checkl = [&] (int pre , int cur) {
55
             /*判断夹角小于90*/
             II Cos = tmp[pre].dot(tmp[cur]);
56
             II Sin = tmp[pre]. det(tmp[cur]);
57
             if (Cos > 0) {
58
59
                 if (Sin > 0) return true;
                 else if (Sin < 0) return false;
60
                 /*如果当前是共线的情况: */
61
62
                // 必须在同一侧:
63
                 else return cur < cunt;
            }
64
65
             return false;
         };
66
         /*检查第二个指针*/
67
68
         auto checkr = [&] (int pre , int cur) {
69
             /*判断夹角小于小于等于180*/
 70
             // int Cos = tmp[pre].dot(tmp[cur]);
             II Sin = tmp[pre]. det(tmp[cur]);
71
 72
             /*小于 180*/
             if (Sin > 0) return true;
 73
 74
             /*判断是180还是0 */
             else if (Sin == 0) return cur < cunt;
 75
 76
             return false;
 77
         };
 78
         int I = 0, r = 0;
 79
80
81
         II res = 0;
         for (int i = 0; i < cunt; i++) {
82
83
            // while (| <= i)|++;
84
             // while (r \le i)r++;
85
             I = \max(I, i + 1);
86
             r = \max(r, i + 1);
             while (I < i + cunt && checkl(i, I)) ++I;
87
             while (r < i + cunt && checkr(i, r)) ++r;
88
             res += r - 1;
89
90
91
         return res:
92
93
     void work() {
94
95
         cin >> n;
96
         for (int i = 0; i < n; i++) {
97
             cin >> point[i].x >> point[i].y;
98
         }
99
         /*容斥*/
         II ans = 1LL * n * (n - 1LL) * (n - 2LL) / 6LL;
100
         // cout << ans << "\n";
101
102
         for (int i = 0; i < n; i++) {
```

```
ans -= solve(point[i]);
103
104
         cout << ans << '\n';</pre>
105
106
107
108
     signed main() {
109
          ios::sync_with_stdio(false);
110
         cin.tie(0);
         int t; cin >> t;
111
         while (t--) {work();}
112
113
```

J³ ICPC EC Final 2021 D, Two Walls

ICPC EC Final 2021 D, Two Walls - 题目 - Daimayuan Online Judge

经运场措势、其实而线段、加、

经两个点、H.B. 问从时间达B,至多格多少次。

√4 solve

不难发现, 最多拐两次。分类讨论如下:

- 1. 0 次:
 - A到B与两条直线没有交点。容易判断。
- 2. 1 次:
 - 1. 两直线不相交:

综上: 分类讨论判断即可。 具体是实现上:

- 1. 判0, AB 直线是和其中两条直线相交:
- 2. 判1:
 - 1. CD 和EF不相交。
 - 2. 在两个相邻的槽位上: 只要不满足完全异样测即可。即。只要对于一条边同侧。(排除0的可能后,共线情况的最优方案显然 也是一个拐点。并入该次讨论:)
- 3. 两个都在内部。 同时处于相对的槽位。 判断是否都在内部:

对图进行一个重新标记: 然后就可以找出和两个点相关的槽点:

调整的方法:

只是重新打个名字而已。对于点之间的相对顺序是不会发生变化的。调整策略如下:

- 1. A在 CD的逆时针方向上。如果不满足就调整。
- 2. A在 EF的顺时针方向上。如果不满足就调整。

调整A之后, B由于是A对角, 其位置自然确定了。

怎么确定两个点都在槽里?

1. 如果两个点都在槽里:

因此将问题成功转换成, 求旋转角度的交集问题。实现方法为:

- 1. 扫描线做法。
- 2. 直接暴力枚举,可能出现的中间值。

√4 code

1

一个明智地追求快乐的人,除了培养生活赖以支撑的主要兴趣之外,总得设法培养其他许多闲情逸致。