Alexandre Carbonneau

October 15, 2021

Alexandre Carbonneau

Topic

• Topic: pricing and hedging derivatives with deep reinforcement learning.

 \Longrightarrow Main topic of my phd thesis.

Quantitative Finance, 2019 https://doi.org/10.1080/14697688.2019.1571683

Deep hedging

H. BUEHLER†§, L. GONON‡*, J. TEICHMANN‡ and B. WOOD†§

†J.P. Morgan, London, UK ‡Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland

(Received 15 February 2018; accepted 9 January 2019; published online 21 February 2019)

• I studied this class of algorithms for both pricing and optimal hedging financial derivatives throughout my thesis.

Outline

- 1) General hedging:
 - Hedging in incomplete markets
 - General idea of deep hedging
 - Motivate global hedging procedures vs greeks
- 2) Market setup and description of deep hedging
- 3) Conclusion and future potential avenues

In the complete market setting (e.g. Black-Scholes market)

 Every derivative can be perfectly hedged, and are thus redundant assets.

⇒ Always exists a self-financing trading strategy which perfectly replicates the option.

In the complete market setting (e.g. Black-Scholes market)

 Every derivative can be perfectly hedged, and are thus redundant assets.

 \implies Always exists a self-financing trading strategy which perfectly replicates the option.

In practice, markets are typically **incomplete**.

In the complete market setting (e.g. Black-Scholes market)

- Every derivative can be perfectly hedged, and are thus redundant assets.
 - ⇒ Always exists a self-financing trading strategy which perfectly replicates the option.

In practice, markets are typically incomplete.

- Most options are not attainable (multiple risk factors, discrete-time trading, market frictions, etc.).
- Residual hedging risk cannot be completely hedged away at a reasonable cost.

In the complete market setting (e.g. Black-Scholes market)

- Every derivative can be perfectly hedged, and are thus redundant assets.
 - ⇒ Always exists a self-financing trading strategy which perfectly replicates the option.

In practice, markets are typically **incomplete**.

- Most options are not attainable (multiple risk factors, discrete-time) trading, market frictions, etc.).
- Residual hedging risk cannot be completely hedged away at a reasonable cost.
- ⇒ Identification of optimal hedging policies is highly relevant!

Greek-based policy

One very popular approach for hedging in incomplete markets is the **greek-based policy**.

 Assets positions depend on the sensitivities of the option value to different risk factors (e.g. delta hedge, delta-rho hedge, delta-gamma hedge etc.)

Greek-based policy

One very popular approach for hedging in incomplete markets is the **greek-based policy**.

 Assets positions depend on the sensitivities of the option value to different risk factors (e.g. delta hedge, delta-rho hedge, delta-gamma hedge etc.)

Issue:

- Suboptimal by design:
 - by-product of choice of pricing kernel (i.e. of the risk-neutral measure).
 - not the result of an optimization procedure over hedging decisions to minimize residual risk.

Variance-optimal hedging (global MSE)

For $\delta := \{\delta_n\}_{n=0}^N$ assets positions at each time-step, S_N the underlying stock price, European derivative of payoff $\Phi(S_N)$ and portfolio value V_N^δ :

$$\delta^* = \arg\min_{\delta} \mathbb{E}\left[(\Phi(S_N) - V_N^{\delta})^2 \right]. \tag{1}$$

 Seminal work of Schweizer (1995) introduced variance-optimal hedging in discrete-time.

Alexandre Carbonneau

Variance-optimal hedging (global MSE)

For $\delta := \{\delta_n\}_{n=0}^N$ assets positions at each time-step, S_N the underlying stock price, European derivative of payoff $\Phi(S_N)$ and portfolio value V_N^{δ} :

$$\delta^* = \arg\min_{\delta} \mathbb{E}\left[(\Phi(S_N) - V_N^{\delta})^2 \right]. \tag{1}$$

 Seminal work of Schweizer (1995) introduced variance-optimal hedging in discrete-time.

Can also generalize to optimize jointly for (V_0, δ) :

$$(\delta^\star, V_0^\star) = rg \min_{\delta, V_0} \mathbb{E}\left[(\Phi(S_N) - V_N^\delta)^2
ight],$$

and V_0^* can be viewed as the production cost of Φ (i.e. a price).

4 D > 4 B > 4 E > 4 E > 9 Q P 7 / 33

Global risk minimization

Most general case we will consider:

$$\delta^* = \arg\min_{\delta} \frac{\rho}{\rho} \left(\Phi(S_N) - V_N^{\delta} \right), \tag{2}$$

where ρ is a risk measure.

Global risk minimization

Most general case we will consider:

$$\delta^* = \arg\min_{\delta} \frac{\rho}{\rho} \left(\Phi(S_N) - V_N^{\delta} \right), \tag{2}$$

where ρ is a risk measure.

- 1) ρ is an **expected penalty**: $\rho(X) = \mathbb{E}[\mathcal{L}(X)]$ where \mathcal{L} is the loss function.
 - Mean-square error (MSE) with $\mathcal{L}(x) = x^2$.
 - Semi- L^p with $\mathcal{L}(x) = x^p \mathbb{1}_{\{x>0\}}$ with p > 0.

Global risk minimization

Most general case we will consider:

$$\delta^* = \arg\min_{\delta} \frac{\rho}{\rho} \left(\Phi(S_N) - V_N^{\delta} \right), \tag{2}$$

where ρ is a risk measure.

- 1) ρ is an **expected penalty**: $\rho(X) = \mathbb{E}[\mathcal{L}(X)]$ where \mathcal{L} is the loss function.
 - Mean-square error (MSE) with $\mathcal{L}(x) = x^2$.
 - Semi- L^p with $\mathcal{L}(x) = x^p \mathbb{1}_{\{x>0\}}$ with p>0.
- 2) ρ is a convex risk measure.
 - Conditional Value-at-Risk (CVaR) at level α with

$$\rho(X) = \mathbb{E}[X|X \ge \mathsf{VaR}_{\alpha}(X)].$$

4 D F 4 P F F F F F F F Alexandre Carbonneau

Buehler et al. (2019a) introduced a novel algorithm called **deep hedging** to optimize global hedging policies represented by neural networks.

 Idea: through many simulations of a synthetic market, optimize neural networks to approximate optimal trading strategies (complex trial-and-error approach).

Buehler et al. (2019a) introduced a novel algorithm called **deep hedging** to optimize global hedging policies represented by neural networks.

 Idea: through many simulations of a synthetic market, optimize neural networks to approximate optimal trading strategies (complex trial-and-error approach).

Key advantages for global hedging over typical numerical schemes:

Buehler et al. (2019a) introduced a novel algorithm called **deep hedging** to optimize global hedging policies represented by neural networks.

 Idea: through many simulations of a synthetic market, optimize neural networks to approximate optimal trading strategies (complex trial-and-error approach).

Key advantages for global hedging over typical numerical schemes:

- Helps to alleviate the curse of dimensionality:
 - ► Feasible procedure for large-scale problems (as compared to dynamic programming).

Buehler et al. (2019a) introduced a novel algorithm called **deep hedging** to optimize global hedging policies represented by neural networks.

 Idea: through many simulations of a synthetic market, optimize neural networks to approximate optimal trading strategies (complex trial-and-error approach).

Key advantages for global hedging over typical numerical schemes:

- Helps to alleviate the curse of dimensionality:
 - Feasible procedure for large-scale problems (as compared to dynamic programming).
- Theoretically founded:
 - ▶ Buehler et al. (2019a) show there exist a neural network which can approximate arbitrarily well optimal hedging decisions under very general conditions.

Neural network representing hedging policy

Figure: Figure 1 of Buehler et al. (2019a)

Alexandre Carbonneau

Benchmarking of hedging strategies

For a sample of hedging errors $\pi := \{\pi_i\}_{i=1}^M$ (e.g. M = 100,000) and ordered values $\{\pi_{[i]}\}_{i=1}^N$:¹

$$\mathsf{RMSE}(\pi) := \sqrt{\frac{1}{M} \sum_{i=1}^{M} \pi_i^2}$$

$$\mathsf{semi\text{-}RMSE}(\pi) := \sqrt{\frac{1}{M} \sum_{i=1}^{M} \pi_i^2 \mathbb{1}_{\{\pi_i > 0\}}}$$

$$\mathsf{VaR}_{\alpha}(\pi) := \pi_{[\alpha M]}$$

$$\mathsf{CVaR}_{\alpha}(\pi) := \frac{1}{(1-\alpha)M} \sum_{i=1}^{M} \pi_{[i]}$$

 $^{^1\}pi_i := \Phi(S_{N,i}) - V_{N,i}^{\delta}$

Benchmarking of hedging strategies

Consider the problem of hedging a short position in an ATM put option of T=60/260 with daily trades in the underlying stock.

Benchmarking of hedging strategies

Consider the problem of hedging a short position in an ATM put option of T=60/260 with daily trades in the underlying stock.

We will consider:

- 1) Black-Scholes discrete-time.
- 2) Merton jump diffusion discrete-time.
- 3) GARCH.

 \Longrightarrow each of the latter entails market incompleteness from different sources.

Benchmark 1: Black-Scholes discrete-time

Table: Hedge short position ATM put option of T = 60/260 with daily trades.

Statistics	Delta hedging	Global MSE		
Mean	0.00	0.00		
RMSE	0.404	-0.3%		
Semi-RMSE	0.292	-1.7%		
$VaR_{0.95}$	0.665	-0.3%		
$VaR_{0.99}$	1.104	-0.7%		
$CVaR_{0.95}$	0.937	-0.7%		
$CVaR_{0.99}$	1.381	-1.7%		

Notes: Hedging statistics under BSM with $\mu = 0.10, \sigma = 0.1898, r = 0.02$ and $S_0 = 100$. Global MSE presented as **% increase** of delta hedging.

Alexandre Carbonneau October 15, 2021

Benchmark 2: Merton jump diffusion discrete-time

Table: Hedge short position ATM put option of T = 60/260 with daily trades.

Statistics	Delta hedging	Global MSE		
Mean	0.05	0.01		
RMSE	0.68	-4%		
Semi-RMSE	0.55	-10%		
$VaR_{0.95}$	1.19	-6%		
$VaR_{0.99}$	2.23	-13%		
$CVaR_{0.95}$	1.83	-11%		
$CVaR_{0.99}$	2.83	-13%		

Notes: Hedging statistics under MJD with

 $[\mu, \sigma, \lambda, \mu_J, \sigma_J] = [0.0875, 0.1036, 92.3862, -0.0015, 0.0160], r = 0.02$ and $S_0 = 100$. Global MSE presented as **% increase** of delta hedging.

Alexandre Carbonneau October 15, 2021

Benchmark 2: Merton jump diffusion discrete-time

Table: Hedge short position ATM put option of T = 60/260 with daily trades.

Statistics	Delta hedging	Global MSE	Global Semi-L ²
Mean	0.05	0.01	-0.01
RMSE	0.68	-4%	4%
Semi-RMSE	0.55	-10%	-13%
$VaR_{0.95}$	1.19	-6%	-11%
$VaR_{0.99}$	2.23	-13%	-17%
$CVaR_{0.95}$	1.83	-11%	-15%
$CVaR_{0.99}$	2.83	-13%	-15%

Notes: Hedging statistics under MJD with $[\mu,\sigma,\lambda,\mu_J,\sigma_J] = [0.0875,0.1036,92.3862,-0.0015,0.0160], r=0.02 \text{ and } S_0 = 100. \text{ Global results presented as } \textbf{\% increase} \text{ of delta hedging.}$

Benchmark 3: GJR-GARCH

Table: RMSE and 95%VaR for call options of maturity T=60,260,780 days for ATM (K=100) and OTM (K=110).

		ATM			ОТМ	
Days to maturity	60	260	780	60	260	780
RMSE						
Global MSE Delta hedging 95% VaR	0.80 17%	1.36 30%	1.73 41%	0.42 12%	1.26 31%	1.85 44%
Global MSE Delta hedging	1.43 18%	2.35 22%	2.71 32%	0.75 -4%	2.21 14%	2.92 25%

Source: Table 3 of Augustyniak et al. (2017) (with dyn. programming)

Alexandre Carbonneau October 15, 2021 16 / 33

Literature review deep hedging

- Buehler et al. (2019a): introduce the deep hedging approach.
- Buehler et al. (2019b): hedge path-dependent contingent claims in the presence of transaction costs.
- Cao et al. (2020): deep hedging provides good approximation of optimal initial capital investments for variance-optimal hedging.
- Horvath et al. (2021): deep hedge in a non-Markovian framework with rough volatility models.
- Imaki et al. (2021): introduce novel neural network architecture for the 'no-transaction band strategy' in the presence of transaction costs.

Alexandre Carbonneau October 15, 2021 17 / 33

Literature review deep hedging

- Gong et al. (2021): reduce trading frequency with a so-called 'price change threshold'.
- Lutkebohmert et al. (2021): deep hedging in the presence of parameter uncertainty for a class of Markov processes.
- Carbonneau and Godin (2021a, 2021b, 2021c): study an option pricing scheme consistent with global hedging strategies obtained with deep hedging.
- Carbonneau (2021): deep hedge very long-term European financial derivatives analoguous to variable annuity guarantees.

- 1) General hedging:
 - Hedging in incomplete markets
 - Motivate global hedging procedures
 - General idea of deep hedging
- 2) Market setup and description of deep hedging
- 3) Conclusion and future potential avenues

Market setup

Discrete-time market:
$$T = \{0 = t_0 < t_1 < ... < t_N = T\}$$
.

Traded assets: time- t_n price:

- Risk-free asset: $B_n = \exp(rt_n)$,
- *D* risky assets: $S_n = [S_n^{(1)}, \dots, S_n^{(D)}].$

Market setup

Discrete-time market:
$$T = \{0 = t_0 < t_1 < ... < t_N = T\}.$$

Traded assets: time- t_n price:

- Risk-free asset: $B_n = \exp(rt_n)$,
- *D* risky assets: $S_n = [S_n^{(1)}, ..., S_n^{(D)}].$

We want to hedge a European derivative.

• Payoff function is $\Phi(S_N^{(1)})$ or $\Phi(S_N^{(1)}, Z_N)$ if path-dependent.

20/33

Alexandre Carbonneau October 15, 2021

Let $\delta := \{\delta_n\}_{n=0}^N$ with $\delta_n := [\delta_n^{(B)}, \delta_n^{(1)}, \dots, \delta_n^{(D)}]^\top$ be a trading strategy.

• δ_n is the number of shares of each asset in the portfolio during $(t_{n-1}, t_n]$.

Trading strategies we consider are **self-financing**.

Let $\delta := \{\delta_n\}_{n=0}^N$ with $\delta_n := [\delta_n^{(B)}, \delta_n^{(1)}, \dots, \delta_n^{(D)}]^\top$ be a trading strategy.

• δ_n is the number of shares of each asset in the portfolio during $(t_{n-1}, t_n]$.

Trading strategies we consider are **self-financing**.

Let $\delta := \{\delta_n\}_{n=0}^N$ with $\delta_n := [\delta_n^{(B)}, \delta_n^{(1)}, \dots, \delta_n^{(D)}]^\top$ be a trading strategy.

• δ_n is the number of shares of each asset in the portfolio during $(t_{n-1}, t_n]$.

Trading strategies we consider are self-financing.

No cash flow injection/withdrawal at intermediate times.

Alexandre Carbonneau

Let $\delta := \{\delta_n\}_{n=0}^N$ with $\delta_n := [\delta_n^{(B)}, \delta_n^{(1)}, \dots, \delta_n^{(D)}]^\top$ be a trading strategy.

• δ_n is the number of shares of each asset in the portfolio during $(t_{n-1}, t_n]$.

Trading strategies we consider are self-financing.

- No cash flow injection/withdrawal at intermediate times.
- Time- t_n portfolio value is denoted as V_n^{δ} :

$$V_n^{\delta} = B_n(V_0 + G_n^{\delta})$$

where V_0 is initial capital investment and G_n^{δ} is the discounted cumulative gains.

Alexandre Carbonneau October 15, 2021 21/33

Hedging optimization problem

Optimization problem: minimize hedging shortfall for a short position in Φ :

$$\delta^* = \arg\min_{\delta} \rho \left(\Phi(S_N^{(1)}, Z_N) - V_N^{\delta} \right), \tag{3}$$

where ρ is a risk measure.

コト 4 個 ト 4 恵 ト 4 恵 ト 9 Q (C)

22 / 33

Hedging optimization problem

Optimization problem: minimize hedging shortfall for a short position in Φ :

$$\delta^* = \arg\min_{\delta} \rho \left(\Phi(S_N^{(1)}, Z_N) - V_N^{\delta} \right), \tag{3}$$

where ρ is a risk measure.

- Closed-form solution unknown for (3).
- Need a numerical scheme.

ロト 4 個 ト 4 重 ト 4 重 ト 1 重 2 からで

22 / 33

For several popular (Markov) dynamics of the traded assets, the optimal globalpolicy has the form

$$\delta_{n+1}^{\star} = f(n, V_n, S_n, Z_n, \underline{I}_n)$$

for some function f and \mathcal{I}_n a vector of variables containing relevant information.

23 / 33

Alexandre Carbonneau October 15, 2021

$$\delta_{n+1}^{\star} = f(n, V_n, S_n, Z_n, \underline{\mathcal{I}}_n)$$

Alexandre Carbonneau

$$\delta_{n+1}^{\star} = f(n, V_n, S_n, Z_n, \underline{I}_n)$$

• asset volatilities (GARCH): $\mathcal{I}_n = \sigma_n$.

Alexandre Carbonneau

$$\delta_{n+1}^{\star} = f(n, V_n, S_n, Z_n, \underline{\mathcal{I}}_n)$$

- asset volatilities (GARCH): $\mathcal{I}_n = \sigma_n$.
- market regimes (regime-switching): $\mathcal{I}_n = \eta_n$ where

$$\eta_n := [\mathbb{P}(h_n = 1 | S_{1:n}), \dots, \mathbb{P}(h_n = K | S_{1:n})]$$

for h_n the regime during $[t_n, t_{n+1})$ with K regimes.

$$\delta_{n+1}^{\star} = f(n, V_n, S_n, Z_n, \underline{\mathcal{I}}_n)$$

- asset volatilities (GARCH): $\mathcal{I}_n = \sigma_n$.
- market regimes (regime-switching): $\mathcal{I}_n = \eta_n$ where

$$\eta_n := [\mathbb{P}(h_n = 1 | S_{1:n}), \dots, \mathbb{P}(h_n = K | S_{1:n})]$$

for h_n the regime during $[t_n, t_{n+1})$ with K regimes.

• proportional transaction costs: $\mathcal{I}_n = \delta_n$ (current asset position).

$$\delta_{n+1}^{\star} = f(n, V_n, S_n, Z_n, \underline{\mathcal{I}}_n)$$

- asset volatilities (GARCH): $\mathcal{I}_n = \sigma_n$.
- market regimes (regime-switching): $\mathcal{I}_n = \eta_n$ where

$$\eta_n := [\mathbb{P}(h_n = 1 | S_{1:n}), \dots, \mathbb{P}(h_n = K | S_{1:n})]$$

for h_n the regime during $[t_n, t_{n+1})$ with K regimes.

- proportional transaction costs: $\mathcal{I}_n = \delta_n$ (current asset position).
- liquidity impact: $\mathcal{I}_n = \{A_n, B_n\}$ (e.g. ask and bid state variables).

(ロト 4回 ト 4 差 ト 4 差 ト) 差 り 9 0 0 0

$$\delta_{n+1}^{\star} = f(n, V_n, S_n, Z_n, \underline{\mathcal{I}}_n)$$

- asset volatilities (GARCH): $\mathcal{I}_n = \sigma_n$.
- market regimes (regime-switching): $\mathcal{I}_n = \eta_n$ where

$$\eta_n := [\mathbb{P}(h_n = 1 | S_{1:n}), \dots, \mathbb{P}(h_n = K | S_{1:n})]$$

for h_n the regime during $[t_n, t_{n+1})$ with K regimes.

- proportional transaction costs: $\mathcal{I}_n = \delta_n$ (current asset position).
- liquidity impact: $\mathcal{I}_n = \{A_n, B_n\}$ (e.g. ask and bid state variables).

 \implies And they add up: regime-swithing + lookback option + transaction costs + liquidity impact:

$$X_n = [n, V_n, S_n, Z_n, \eta_n, \delta_n, A_n, B_n].$$

We approximate the optimal policy function f with a neural network F_{θ} with parameters θ .

• $f(n, V_n, S_n, Z_n, \mathcal{I}_n) \approx F_{\theta}(n, V_n, S_n, Z_n, \mathcal{I}_n)$.

Alexandre Carbonneau

We approximate the optimal policy function f with a neural network F_{θ} with parameters θ .

•
$$f(n, V_n, S_n, Z_n, \mathcal{I}_n) \approx F_{\theta}(n, V_n, S_n, Z_n, \mathcal{I}_n)$$
.

The optimization problem **boils down to optimizing** θ :

$$\min_{\delta} \rho \left(\Phi(S_N^{(1)}, Z_N) - V_N^{\delta} \right) \tag{4}$$

$$pprox \min_{\theta} \rho\left(\Phi(S_N^{(1)}, Z_N) - V_N^{\delta^{\theta}}\right),$$
 (5)

where δ^{θ} is to be understood as the output of F_{θ} .

Alexandre Carbonneau

We approximate the optimal policy function f with a neural network F_{θ} with parameters θ .

•
$$f(n, V_n, S_n, Z_n, \mathcal{I}_n) \approx F_{\theta}(n, V_n, S_n, Z_n, \mathcal{I}_n)$$
.

The optimization problem **boils down to optimizing** θ :

$$\min_{\delta} \rho \left(\Phi(S_N^{(1)}, Z_N) - V_N^{\delta} \right) \tag{4}$$

$$\approx \min_{\theta} \rho \left(\Phi(S_N^{(1)}, Z_N) - V_N^{\delta \theta} \right), \tag{5}$$

where δ^{θ} is to be understood as the output of F_{θ} .

Last step: SGD procedure for (5) with $\hat{\rho}$ as the empirical estimator of ρ estimated with Monte Carlo sampling.

Alexandre Carbonneau October 15, 2021 25/33

Pseudo-code

```
Algorithm 1 Pseudo-code deep hedging
Input: \theta_i
```

```
Output: \theta_{i+1}
```

```
1: for i = 1, \ldots, N_{\text{batch}} do

    Loop over each path of minibatch

            X_{0,i} = [t_0, S_{0,i}, V_{0,i}, \mathcal{I}_{0,i}]
                                                                                                                               ➤ Time-0 feature vector
       for n = 0, ..., N - 1 do
 3:
                  \delta_{n+1,i} \leftarrow \text{time-}t_n \text{ output of } F_{\theta} \text{ with } \theta = \theta_i
 4:
                  \{S_{n+1,i}, V_{n+1,i}, \mathcal{I}_{n+1,i}\} \leftarrow \{S_{n,i}, V_{n,i}, \mathcal{I}_{n,i}\}.
 5:
                                                                                                                          ▶ Update feature variables
                  X_{n+1,i} = [t_{n+1}, S_{n+1,i}, V_{n+1,i}, \mathcal{I}_{n+1,i}]
                                                                                                                          \triangleright Time-t_{n+1} feature vector
 7
            end for
                                                                                                                        \triangleright i^{th} hedging error if \theta = \theta_i
            \pi_{i,i} = \Phi(S_{N,i} - V_{N,i})
 9: end for
10: \eta_i \leftarrow \text{Adam algorithm}
                                                                               \triangleright \widehat{\rho} is estimator of \rho(\pi) computed with \{\pi_{i,i}\}_{i=1}^{N_{\text{batch}}}.
11: \theta_{i+1} = \theta_i - \eta_i \nabla_{\theta} \widehat{\rho}
```

Note: minibatches computation is done in parallel.

26 / 33

Alexandre Carbonneau October 15, 2021

Future potential avenue

- 1) Move beyond static portfolio of options (e.g. pov of market maker).
 - portfolio of different options characteristics (maturity, moneyness etc.) with different initial dates (i.e. time-series).
 - Difficulties:
 - global trading strategies are not additive across different option contracts (unlike the greeks).
 - objective function is not trivial to specify.
 - need to adapt training procedure.

Future potential avenue

- 1) Move **beyond static portfolio** of options (e.g. pov of market maker).
 - portfolio of different options characteristics (maturity, moneyness etc.) with different initial dates (i.e. time-series).
 - Difficulties:
 - global trading strategies are not additive across different option contracts (unlike the greeks).
 - objective function is not trivial to specify.
 - need to adapt training procedure.

2) Data-driven market simulation:

• Some work consider the use of deep learning generative models: e.g. Wiese et al. (2019), Wiese et al. (2020) and Buehler et al. (2020).

Alexandre Carbonneau October 15, 2021 27 / 33

Conclusion

- 1) General hedging:
 - Hedging in incomplete markets
 - Motivate global hedging procedures
 - General idea of deep hedging
- 2) Market setup and description of deep hedging
- 3) Future potential avenues

Thank you!

Augustyniak et al. (2017). Assessing the effectiveness of local and global quadratic hedging under GARCH models. *Quantitative Finance*, 17(9), 1305-1318.

Buehler, H., Gonon, L., Teichmann, J. and Wood, B. (2019a). Deep hedging. *Quantitative Finance*, 19(8):1271-1291.

Buehler, H. et al. (2019b). Deep hedging: hedging derivatives under generic market frictions using reinforcement learning. *Swiss Finance Institute Research Paper*, 19-80.

Buehler, H. et al. (2020). A data-driven market simulator for small data environments. Available at *SSRN 3659275*.

Cao, H. et al. (2020). Discrete-time Variance-optimal Deep Hedging in Affine GARCH Models. Available at *SSRN 3632431*.

Alexandre Carbonneau October 15, 2021 30 / 33

Carbonneau, A. (2021). Deep Hedging of Long-Term Financial Derivatives. *Insurance: Mathematics and Economics*, 99:327-340.

Carbonneau, A. and Godin, F. (2021a). Equal Risk Pricing of Derivatives with Deep Hedging. *Quantitative Finance*, 21(4):593-608.

Carbonneau, A. and Godin, F. (2021b). Deep Equal Risk Pricing of Financial Derivatives with Multiple Hedging Instruments. arXiv preprint arXiv:2102.12694.

Carbonneau, A. and Godin, F. (2021c). Deep equal risk pricing of financial derivatives with non-translation invariant risk measures. arXiv preprint arXiv:2107.11340

4 D > 4 P > 4 B > 4 B > B 900

31 / 33

Gong, Z., Ventre, C. and O'Hara, J. (2021). The Efficient Hedging Frontier with Deep Neural Networks. arXiv preprint arXiv:2104.05280.

Lutkebohmert et al. (2021). Robust deep hedging. arXiv preprint arXiv:2106.10024.

Horvath, B., Teichmann, J. and Zuric, Z. (2021). Deep hedging under rough volatility. arXiv preprint arXiv:2102.01962.

Imaki, S. et al. (2021). No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging. Available at *SSRN 3797564*.

Schweizer, M. (1995). Variance-optimal hedging in discrete time. *Mathematics of Operations Research*, 20(1):1-32.

Wiese, M. et al. (2019). Deep hedging: learning to simulate equity option markets. arXiv preprint arXiv:1911.01700.

Wiese, M. et al. (2020). Quant GANs: deep generation of financial time series. *Quantitative Finance*, 20(9):1419-1440.

33 / 33

Alexandre Carbonneau October 15, 2021