black hat europe 2021

november 10-11, 2021

ARSENAL

InOri

Detecting defacement attacks with deep learning

By Nguyen Hoang, Manh Pham & Dong Duong

Nguyen Hoang

I'm a final year student at the Academy of Cryptography Techniques, majoring in information security.

I used to work as a System administrator, DevOps. I specialize in building and developing CDN systems, but gradually fell in love with security tinkering.

Currently, working as a security solutions consultant and a penetration tester.

Contact: https://www.linkedin.com/in/hoangtrungnguyen

Manh Pham

A security researcher from Vietnam. With over 4 years dedicated in Information security.

Acknowledged by Microsoft, Google, Facebook, Apple, Offensive Security, etc.

Now, I work for NashTech as a Penetration Tester and also join OWASP as a Contributor

Contact: https://linkedin.com/in/manhnho/

Dong Duong

A student from Phan Dinh Phung highschool.

Software developer, Linux system administrator and security researcher.

Recently acknowledged by Microsoft

Contact: https://cu64.github.io/

Agenda

- 1 Motivation
- 2 Building model Machine Learning
- 3 Alert system development
- 4 Experiment and evaluation

- 1 Motivation
- 2 Building model Machine Learning
- 3 Alert system development
- 4 Experiment and evaluation

Motivation

Goals:

- Cause political conflict
- For fun
- Warn the system administrator

DEFACEMENTS STATISTICS 2011–2021

CYBERGATES.ORG

Attack Techniques Observed

Critical web vulnerabilities

Detection Techniques

Hash

Comparing hashes

Signature

- Determine attacker's signature
- Determine web page's signature

Compare differences

- Compare changes in source code
- Compare DOM Tree

Machine Learning

- Anomaly detection
- Image classification

Approach

- 1 Motivation
- 2 Building model Machine Learning
- 3 Alert system development
- 4 Experiment and evaluation

Approach

Training data collection

- Normal website data
 - moz.com/top500
 - github.com/GSA/govt-urls
- Defaced website data
 - mirror-h.org
 - zone.kurd-h.org
 - www.zone-h.org
 - www.xatrix.org/defac.php

Data pre-processing

Dataset

- Clean: 7,277 pics
- Deface: 4,954 pics

Building detection model

Building detection model

My Model

Model optimization

- Reduce overfitting
 - Add Dropout layers
 - Data augmentation
 - Add Batch Normalization layers

Model Evaluation

* Evaluation criteria:

Accuracy

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN} = 98.01$$

False positive rate

$$FPR = \frac{FP}{FP + TN} = 3.73$$

Positive predictive value

$$PPV = \frac{TP}{TP + FP} = 94.00$$

True positive rate

$$TPR = \frac{TP}{TP + FN} = 98.12$$

False negative rate

$$FNR = \frac{FN}{FN + TP} = 1 - TPR = 1.88$$

F1 Score

$$F1 = 2 \times \frac{PPV \times TPR}{PPV + TPR} = 96.02$$

- 1 Motivation
- 2 Building model Machine Learning
- 3 Alert system development
- 4 Experiment and evaluation

Alert system development

Some security solutions for a web application

Alert system development

Diagram of the detection and warning system

URLs reported on Zone-h

Agent deployment

- 1 Motivation
- 2 Building model Machine Learning
- 3 Alert system development
- 4 Experiment and evaluation