### 多変量解析 (特徴空間分割·次元圧縮)

北海道大学 農学研究院 佐藤昌直

### 解析の流れ



### モチベーション:

多次元(例: 多パラメーター)を より少ない指標を使って理解する

1

N個のサンプルをM個(M < N)の グループに分類する

→ 人間が新たな解釈を与える

下記のデータセットに含まれる数値を俯瞰してみましょう。 データの特徴を 読み取れるでしょうか?

```
inputMatrix<- read.delim("~/data/MS/Sato_A_thaliana-P_syrin gae_arvRpt2_6h_expRatio_small.txt", header=TRUE, row.name=1)
head(inputMatrix) #読み込みデータの一部を表示
image(t(inputMatrix)) #カラーコードによって可視化
heatmap(as.matrix(inputMatrix)) #階層クラスタリングで解析し、簡易表示
```

高次元(多パラメーター)データの 認識における問題をどう扱うか?

### クラスタリングによる分類



# 多変量解析のポイント

ポイント

教師有りか無しか (supervised or unsupervised)?

どのような距離行列を使うか?

### トランスクリプトームデータの ある一部について可視化してみる



### 7次元の遺伝子発現データセット



# コンピューターにどうデータを渡せば この問題をどう扱えるか?

**遺伝子発現プロファイル間の** 人間 パターンの比較



(生物学の問題を数学の問題に置き換える)

コンピューター

データの大きさに定義される 次元の空間でのデータポイン トの分布の比較

# 7遺伝子の発現プロファイル間の類似性は 7次元空間での距離によって決まる



# 距離の基準を何にするか **距離尺度**

# ユークリッド距離



# Uncentered Pearson correlation coefficient = $\cos \theta$



### 相関係数 Pearson correlation coefficient



### 距離尺度の違い→解析対象の違い:



遺伝子発現プロファイルの形と大きさ

- **形**:ベクトルの方向
- **大きさ**:ベクトルのサイズ



### どの距離係数を使うか?

- どんなプロファイルを同じプロファイルと定義するか?
- ●距離係数計算の背後にあるものを意識 して選択する。

### 距離係数計算の過程には

- Centering: 平均値をゼロにする
- Scaling: ベクトルの大きさをIにする







#### これらはscaling後は 全く同じプロファイルになる



# これらはcentering, scaling後は全く同じプロファイルになる



### アルゴリズムに注目: 相関係数の場合



# ポイント

### 多変量解析における注意点

### 方法依存的に抽出される特徴:

どのような特徴を認識したいのか/ しているのか意識すること

# 多変量解析の実際

階層クラスタリング

# Agglomerative hierarchical clustering

# Agglomerative hierarchical clustering

# Agglomerative hierarchical clustering



# Agglomerative hierarchical clustering



# Agglomerative hierarchical clustering





# Agglomerative hierarchical clustering





# Agglomerative hierarchical clustering





# Agglomerative hierarchical clustering





# Average linkage



# クラスター定義手法



# **Complete linkage**



# Single linkage



### 階層クラスタリングの欠点

- Bottom-up: 非常に「手順」依存性
- 一つの距離のみを指標とした クラスタリング

### 階層クラスタリングの利点



- クラスター化してより 少数のカテゴリーを示す
- 人間が認識可能なパター ンを示す

# 「手順依存的」な方法の欠点を補うには?

- 偶然、観察されているクラスターを 推定する
  - → 同じ手順を繰り返す
  - **→** クロスバリデーション

# クロスバリデーション

- あるクラスターは必然か偶然か?
- leave-one out validation:サンプルを一つ抜いてクラスタリングしてみる
- 少数の特定遺伝子がクラスタリングに影響 していないか?
- Bootstrap: 遺伝子サブセットでクラスリン グを繰り返してみる

# 多変量解析(I)のまとめ

#### 教師有りか無しか

(supervised or unsupervised)?

- 事前情報、前提はあるか?
- ある場合はk-means法などの利用を検討

#### どのような距離行列を使うか?

- プロファイルの大きさ
- プロファイルの角度 など

# 主成分分析

# 主成分分析とは?

モチベーション:

**多数の遺伝子**で構成される多次元データ (サンプル)の中で相関のある遺伝子群を 使って**新たな軸**を作り、データを見直す

→ 人間が新たな解釈を与える

# 階層クラスタリング、k-means法: プロファイル間の類似性は空間での**1つの距離**によって決まる Gene 1 Gene 2 Gene 4 Gene 5 Gene 6





# PCAは何をするのか?



# PCAは何をするのか?



# PCAの概略(2次元)

1. 各サンプル (1..*n*) の観察値( $x_n, y_n$ )を

$$\begin{vmatrix} u_n = a_1 x_n + b_1 y_n \\ v_n = a_2 x_n + b_2 y_n \end{vmatrix}$$

とおく

2.  $a^2 + b^2 = 1$ ,  $u \ge v$ の相関係数0という制約の下でこれを解いて  $a_n$ ,  $b_n$ を求める。

### PCAで得られる重要な統計量

- 寄与率
- 因子負荷量
- 主成分得点

### 寄与率

• 各主成分が説明する分散の割合



# 負荷量 loadings

- 得られた主成分と元 データのパラメーター の相関
- 各パラメーターがも とのデータの情報を どれだけ有するか



# 主成分得点 scores

各パラメーター の値を各主成分 について標準化 したもの



標準化: 平均0, SD=1

# 主成分分析(まとめ)

- ・主成分分析は**データの分散を説明** する新たな軸を計算する方法
  - ●寄与率
  - 因子負荷量
  - 主成分得点

### 注意点

- 1.デフォルトのprincompでは 返り値loadingsは因子負荷量 ではない。
- 2. 相関を使うか、分散共分散行 列を使うか

# 多次元尺度構成法

Multi-dimensional scaling(MDS), Principle coordinate analysis

#### 多次元尺度構成法とは?

#### モチベーション:

多数の遺伝子で構成される多次元の中で 各サンプル間の違いを低次元で表現する

距離係数を元に次元圧縮するため、非線形の関係にも対応 (PCA: 分散を使う [線形]。計算手法によってはPCAと同義になる)

#### サンプル間の距離をまず計算する



# MDSは何をするのか?



# この定理はサンプルi,jに対し、どこを原点(点k)としても成り立つ



この定理はサンプルi,jに対し、どこを原点(点k)としても成り立つ



$$d_{ij}^2 = d_{ik}^2 + d_{jk}^2 - 2d_{ik}d_{jk}\cos\theta$$

この定理はサンプルi,jに対し、どこを原 点(点k)としても成り立つ

サンプルj。 $d_{ij}$ 。 サンプルi kの位置が意味を持つことはないのか?

例:入力データが野生型・変異体 プロファイルの比であったら?



# 多変量解析(2)のまとめ

### **PCA/MDS**

- ・データがもつ類似性を低次元で表現し、 評価・可視化する
- •**重心の置き方に違い**: 入力データをどのように前処理するか

# 多変量解析をもう一歩進めて: 入力データは何を使うか?



多変量解析をもう一歩進めて: 研究の目的、実験デザイン、多変量解析

#### 目的

- 何を知りたいか線形モデル 明確に
- •実施の制約
  - •予算
  - •時間、労力

#### 実験デザイン

- •比較、因子
- •検出力

#### 多変量解析

- •入力データ前処理
- •距離尺度
- アルゴリズム

多変量解析をもう一歩進めて:

人間の解釈をアシストするデータ取得を心がける

#### 多変量解析の枠組み

モチベーション:

多次元(例: 多パラメーター)を より少ない指標を使って理解する

N個のサンプルをM個(M < N)の グループに分類する

→ 人間が新たな解釈を与える

コントロール、 指標サンプルは 含められるか?

### 今回のトレーニングコースで 扱わなかった重要項目

- 確率分布
- 回帰、相関
- 線形モデルにおける交互作用
- 非線形クラスタリング・次元圧縮
  - self-organization mapなど