Topic 3: Error Detection and Recovery

Cpr E 489 -- D.Q. 3.1

General Error Detection System

- Transmitter (encoder) adds redundancy to user information to become codewords and transmit codewords over communication channel
- All transmitted codewords satisfy certain pattern that is agreed upon between transmitter and receiver
- If a received codeword doesn't satisfy the pattern, it is in error
 - Error detected!

Cpr E 489 -- D.Q. 3.2

Example: Single Parity Check Code

Append an overall parity check bit to k information bits

Information Bits: $(b_{k-1}, ..., b_1, b_0)$

Parity Check Bit: $b_k = (b_{k-1} + ... + b_1 + b_0) \mod 2$

Codeword: $(b_k, b_{k-1}, ..., b_1, b_0)$

- Pattern: all codewords have even # of 1's
- Receiver checks whether # of 1's is even
 - ▶ All errors that change an odd number of bits are detectable
 - ▶ All even-numbered errors are undetectable
- Parity check bit is used in ASCII characters

Cpr E 489 -- D.Q. 3.3

Error Vector

- Suppose we transmit a codeword that has n bits
- Define the error vector $\underline{\mathbf{e}} = [\mathbf{e}_{n-1}, ..., \mathbf{e}_1, \mathbf{e}_0]$ where
 - → e_i = 1 if error occurs to the ith bit position
 - \Rightarrow e_i = 0 otherwise
- Fraction of Undetectable Errors (FUE)
 - ▶ FUE = total # undetectable errors / total # valid errors

Cpr E 489 -- D.Q. 3.4

Error Burst

- Errors can be classified according to:
 - Number of bit error positions: M-bit error
 - ➡ Separation of bit error positions: error burst of length L
 - Error starts at bit position i and ends at bit position (i + L 1)

Cpr E 489 -- D.Q. 3.5