

L2 informatique - Année 2020–2021

TD d'Éléments d'Algorithmique n° 5

Dans ce TD, "trié" signifie "trié par ordre croissant".

* Les exercices marqués d'une étoile sont à faire à la maison.

Exercice 1. Dichotomie.

1. Exécutez l'algorithme de dichotomie récursif vu en cours sur la valeur 42 et chacun des tableaux suivants:

Combien de comparaisons a-t-il fallu faire dans chaque cas?

2. Même question avec l'algorithme itératif. même réponse

Exercice 2. Recherche dans un tableau arbitraire.

Dans cet exercice, on suppose qu'un test d'égalité qui implique des éléments d'un tableau a le même coût qu'une comparaison qui implique des éléments du tableau et on appelle les deux opérations des "comparaisons". On a un tableau de taille n dans lequel on veut effectuer mrecherches. Combien de comparaisons faut-il faire dans le pire des cas :

- 1. si on effectue m recherches séquentielles; $m \cdot n$ comparaisons
- si on effectue m recherches séquentielles; m.n. comparaisons
 si on effectue un tri par insertion suivi de m recherches par dichotomie. O(n²)+(logn) m
- 3. si on effectue un tri faisant $n \log n$ comparaisons (par exemple le tri fusion) suivi de mrecherches par dichotomie? $n \log n + \log n \cdot m = (m+n) \cdot \log n$

Exercice 3. Diviser pour régner.

On dispose d'un tas de n pièces $p_0, p_1 \dots p_{n-1}$ dont exactement une est fausse; toutes les pièces ont le même poids sauf la pièce fausse, qui est plus légère. On dispose d'une balance à deux

- 1. Combien de pesées sont necessaires pour determiner la piece rausse rosque n = 8? n = 9? Si 3 gauches == 3 droites alors n = 8? n = 9? Si 3 gauches == 3 droites alors n = 8? n = 9? Si 3 gauches == 3 droites alors n = 8? n = 9? Si 3 gauches == 3 droites alors n = 8? n = 9? Si 3 gauches == 3 droites alors n = 8? n = 9? 1. Combien de pesées sont nécessaires pour déterminer la pièce fausse lorsque n=4?

lignes et les colonnes sont triées. On veut effectuer une recherche d'un élément x dans ce tableau.

- 1. Écrivez un algorithme qui fait une recherche séquentielle. Combien de comparaisons effectue votre algorithme au pire de cas? si non on compore
 - 2. Écrivez un algorithme qui fait n recherches dichotomiques (une par ligne). Combien de comparaisons effectue cet algorithme au pire de cas? 2. n login (Jans chaque boucle on effective 2)
 - 3. Écrivez un algorithme qui fait m recherches dichotomiques (une par colonne). Combien Par Colonne de comparaisons effectue l'algorithme dans ce cas? 2 m logn

on compare

les trois plus

legères.

les deux restes

(3,3), 2de pièces est une puissance de deux. Combien de pesées fait-il? 3. Même question lorsque le nombre de pièces est une puissance de trois. On compare 4. Et dans le cas général? 3 gaucher et 3 droiter Exercice 4. Recherche dans un tableau bi-dimensionel. Dans cet exercice, on considère un tableau bi-dimensionel T de taille $n \times m$ d'entiers dont les si egoux

- 4. Enfin, proposer un algorithme efficace qui n'effectue qu'au plus $\underline{m+n}$ comparaisons au pire de cas.
 - 5. Exécuter les algorithmes proposés pour l'élément x=14 sur le tableau T suivant :

1_	4	6	7	9
2	7	-8	-9	11
-3-	9	10	13	15
6	10	15	17	20
14	18	19	21	22
			1 7	

Exercice 5. Point fixe*.

Cet exercice est à faire à la maison. Répondez aux deux premieres questions dans un commentaire que vous insèrerez dans le fichier source que vous utilisez pour la dernière question.

On considère un tableau trié T d'entiers relatifs tous distincts. On dit qu'un indice i est un point fixe de T si T[i] = i, un pré-point fixe si $T[i] \le i$, et post-point fixe si $T[i] \ge i$.

- 1. Quels sont les pré- et post-points fixes du tableau T = [-1, 0, 1, 3, 4, 8]?
- 2. Quelle propriété satisfont les ensembles de pré- et post-points fixes d'un tel tableau?
- 3. Déduisez-en un algorithme itératif efficace qui prend en entrée un tableau trié T d'entiers relatifs tous distincts et retourne vrai si et seulement s'il existe un indice i tel que T[i] = i. Combien votre algorithme fait-il de comparaisons dans le cas pire?

Logarithme log x: combien de fois est-ce qu'il faut diviser x par 2 pour que cela fait 1.

Ex.
$$\log_{3} 64$$
 $64/_{2} \rightarrow 32$ (1)
 $32/_{9} \rightarrow 16$ (2)
 $16/_{9} \rightarrow 8$ (3) $\log_{3} 64 = 6$
 $8/_{2} \rightarrow 4$ (4)
 $4/_{2} \rightarrow 2$ (5)
 $2/_{9} \rightarrow 1$ (6)

Autre définition du logarithme: log, x est « le # de bits dans x si x est un nombre binaire.

$$2^{\circ} = 1$$
 $2^{\circ} = 64$
 $2^{\circ} = 2$ $2^{\circ} = 128$
 $2^{\circ} = 4$
 $2^{\circ} = 4$
 $2^{\circ} = 4$
 $2^{\circ} = 32$

Alors, $\log_{2} 512 = 9$

Le logarithme est une fonction qui s'augmente très lentement!

 $10^{\circ} = 10$
 $10^{\circ} = 10$
 $10^{\circ} = 20$
 $10^{\circ} = 30$

Si on assume qu'on effectue ~ 10° operations

n	logn		n		n logn		m ²	
103	10	instantané	10 ³	instantané	264	instantané	10 _e	instantané
104	13		10 ⁴		1,3·10°	_ 11	10s	_"-
10°s	16,5	- (' 	10 ⁵	<i></i>	1,6·10°	_ ''	10,10	10 sec
10 6	20	-11 	[0 ⁶	- <i>u</i>	2.107	_11	10,5	15 min
7 01	23	-11	10 ⁷	<u></u>	2,3-208		10,14	1 jour
108	26,5	_11 —	708	- 11 	2,6.10°	1,6 sec	10 ₁₆	4 mois
109	30	- /ı 	109	1 sec	3.10,10	5 min	10,18	31 ans
10,10	33	-11-	1010	10 sec	3,3.10,1	1 h	1020	0.00
70 71	36,5	_1(_	lo"	1,5 min	3,6.1012	10 h	1022	F73
2012	40	_11—	1012	15 min	4.2013	4,5 jour	10 ²⁴	-15