Comparing Customer Satisfaction Across Different Regions

Use a one-way ANOVA test to compare customer satisfaction scores across different geographical regions identified in the dataset.

H_0

There is no significant difference in customer satisfaction scores across different geographical regions

H

There is no significant difference in customer satisfaction scores across different geographical regions

Customer Personality Analysis

category	Sub-category	Customer Remarks	Order_id	order_date_time	Issue_reported at	issue_responded	Survey_response_Date	Customer_City	connected_handling_time	Agent_name	Supervisor	Manager	Tenure Bucket	Agent Shift	CSAT Score
Product Queries	Life Insurance	NaN	c27c9bb4- fa36-4140- 9f1f- 21009254ffdb	NaN	01/08/2023 11:13	01/08/2023 11:47	01-Aug-23	NaN	NaN	Richard Buchanan	Mason Gupta	Jennifer Nguyen	On Job Training	Morning	5
Product Queries	Product Specific Information	NaN	d406b0c7- ce17-4654- b9de- f08d421254bd	NaN	01/08/2023 12:52	01/08/2023 12:54	01-Aug-23	NaN	NaN	Vicki Collins	Dylan Kim	Michael Lee	>90	Morning	5
Order Related	Installation/demo	NaN	c273368d- b961-44cb- beaf- 62d6fd6c00d5	NaN	01/08/2023 20:16	01/08/2023 20:38	01-Aug-23	NaN	NaN	Duane Norman	Jackson Park		On Job Training	Evening	5
Returns	Reverse Pickup Enquiry	NaN	5aed0059- 55a4-4ec6- bb54- 97942092020a	NaN	01/08/2023 20:56	01/08/2023 21:16	01-Aug-23	NaN	NaN	Patrick Flores	Olivia Wang	John Smith	>90	Evening	5

Variable Selection

Independent Variable: Customer_City

Dependent Variable: cat_score

```
cities = data["Customer_City"].value_counts()
cities
Customer City
HYDERABAD
             722
NEW DELHI
             688
             435
PUNE
             406
MUMBAI
BANGALORE
             352
            . . .
GUNTAKAL
MANSAR
BAGHMARA
HINDORIA
DORAHA
Name: count, Length: 1782, dtype: int64
top_cities = cities[cities.values > 400].index.tolist()
top_cities
['HYDERABAD', 'NEW DELHI', 'PUNE', 'MUMBAI']
```

```
data["CSAT Score"].describe()
count
         85907.000000
             4.242157
mean
            1.378903
std
min
            1.000000
25%
            4.000000
50%
            5.000000
75%
            5.000000
             5.000000
max
Name: CSAT Score, dtype: float64
```

```
categories = data.groupby("category").groups.keys()
print("Total no of Groups: ", data.groupby("category").ngroups)
categories
Total no of Groups: 12
dict_keys(['App/website', 'Cancellation', 'Feedback', 'Offers & Cashback', 'Onboarding related', 'Order Related', 'Others', 'Payments related', 'Product
Queries', 'Refund Related', 'Returns', 'Shopzilla Related'])
dict1 = {}
for category in categories:
   dict1[category] = random.uniform(0, 1)
dict1
{'App/website': 0.5937642826000437,
 'Cancellation': 0.2574987290096903,
 'Feedback': 0.8286538956845502,
 'Offers & Cashback': 0.02046915521766013,
 'Onboarding related': 0.9632905624293855,
 'Order Related': 0.5756678521065155.
 'Others': 0.7195585522159607,
 'Payments related': 0.7472204310770725,
 'Product Queries': 0.8091689172057871,
 'Refund Related': 0.05581143801753485,
 'Returns': 0.6382394963391267,
 'Shopzilla Related': 0.3468240414977014}
```

merged_data["SAT SCORE"] = merged_data["CSAT Score"] * merged_data["SAT_Score"]
merged_data.columns

	category	SAT_Score
0	App/website	0.593764
1	Cancellation	0.257499
2	Feedback	0.828654
3	Offers & Cashback	0.020469
4	Onboarding related	0.963291
5	Order Related	0.575668
6	Others	0.719559
7	Payments related	0.747220
8	Product Queries	0.809169
9	Refund Related	0.055811
10	Returns	0.638239
11	Shopzilla Related	0.346824

	Customer_City	SAT_Score
0	NEW DELHI	0.575668
1	NEW DELHI	0.638239
2	PUNE	0.638239
3	PUNE	0.257499
4	NEW DELHI	0.638239
2246	MUMBAI	0.575668
2247	HYDERABAD	0.575668
2248	MUMBAI	0.575668
2249	PUNE	0.638239
2250	PUNE	0.575668

merged_data.describe()					
	SAT_Score				
count	2251.000000				
mean	0.556527				
std	0.161284				
min	0.020469				
25%	0.575668				
50%	0.575668				
75%	0.638239				
max	0.828654				

```
one_way = final.groupby("Customer_City")["SAT_Score"]
one_way.ngroups
for city, group in one_way:
    print(city + " : \n" + str(group))
    print()
HYDERABAD:
        0.747220
       0.575668
       0.257499
14
       0.638239
       0.828654
23
        0.055811
90
       0.020469
1730
        0.719559
Name: SAT Score, dtype: float64
MUMBAI :
      0.575668
      0.638239
      0.257499
24
      0.828654
38
      0.346824
      0.055811
166
      0.020469
Name: SAT_Score, dtype: float64
```

```
city_groups = []
for city, group in one_way:
    city groups.append(group.tolist())
f statistic, p value = f oneway(*city groups)
print("F-statistic:", f statistic)
print("p-value:", p_value)
F-statistic: 0.20481836264598535
p-value: 0.8921201040656405
```

Conclusion:

```
if p value < 0.05:
    print("""
   1. Data is statistically significant
   2. We have evidence to support the alternative hypothesis
   3. Null Hypothesis is Rejected.
        There is a significant difference in customer satisfaction scores across different geographical regions.
   print("""
   1. Data is statistically not significant
   2. Null Hypothesis is Accepted.
       There is no significant difference in customer satisfaction scores across different geographical regions.
    """)
   1. Data is statistically not significant
   Null Hypothesis is Accepted.
```

There is no significant difference in customer satisfaction scores across different geographical regions.

Conclusion

 H_0

There is no significant difference in customer satisfaction scores across different geographical regions

Null Hypothesis Accepted

Thank You!