$BrownMath.com \rightarrow Stats \ w/o \ Tears \rightarrow Symbols$

Stats without Tears Statistics Symbol Sheet

Updated 14 Feb 2018 Copyright © 2002–2019 by Stan Brown

View or Print:

These pages change automatically for your screen or printer. Underlined text, printed URLs, and the table of contents become live links on screen; and you can use your browser's commands to change the size of the text or search for key words.

Relational Symbols				
=	equals is the same as	≠	is not equal to is different from	
>	is greater than is more than exceeds is above	≥ or >=	is greater than or equal to is at least is not less than	
<	is less than is fewer than is below	≤ or <=	is less than or equal to is at most does not exceed is not greater than is no more than	
A < x < B		x is between A and B, exclusive		
$A \le x \le B$		x is between A and B, inclusive		
A ≈ B		A is approximately equal to B		

Here are symbols for various sample statistics and the corresponding population parameters. They are not repeated in the list below.

sample statistic	population parameter	description	
n N		number of members of sample or population	
ѫ̃ "x-bar"	μ "mu" or μ _x	mean	
M or Med or x̃ "x-tilde"	(none)	median	
s (TIs say Sx)	$σ$ "sigma" or $σ_x$	standard deviation For variance, apply a squared symbol (s ² or σ ²).	
r	ο "rho"	coefficient of linear correlation	
р̂ "p-hat"	р	proportion	
z t χ²	(n/a)	calculated test statistic	

 μ and σ can take subscripts to show what you are taking the mean or standard deviation of. For instance, $\sigma_{\bar{x}}$ ("sigma sub x-bar") is the standard deviation of sample means, or standard error of the mean.

Roman Letters

- b = y intercept of a line. <u>Defined here</u> in Chapter 4. (Some statistics books use b_0 .)
- BD or BPD = binomial probability distribution. <u>Defined here</u> in Chapter 6.
- CI = confidence interval. <u>Defined here</u> in Chapter 9.
- CLT = Central Limit Theorem. <u>Defined here</u> in Chapter 8.
- d = difference between paired data. <u>Defined here</u> in Chapter 11.
- df or V "nu" = degrees of freedom in a Student's t or χ^2 distribution. <u>Defined here</u> in Chapter 9. <u>Defined here</u> in Chapter 12.
- DPD = discrete probability distribution. <u>Defined here</u> in Chapter 6.
- E = margin of error, a/k/a maximum error of the estimate. <u>Defined here</u> in Chapter 9.
- f = frequency. <u>Defined here</u> in Chapter 2.
- f/n = relative frequency. <u>Defined here</u> in Chapter 2.
- HT = hypothesis test. <u>Defined here</u> in Chapter 10.
- H_0 = null hypothesis. <u>Defined here</u> in Chapter 10.
- H_1 or H_a = alternative hypothesis. <u>Defined here</u> in Chapter 10.
- IQR = interquartile range, Q_3 – Q_1 . <u>Defined here</u> in Chapter 3.
- \mathcal{M} = slope of a line. <u>Defined here</u> in Chapter 4. (The TI-83 uses a and some statistics books use b_1 .)
- M or Med = median of a sample. <u>Defined here</u> in Chapter 3.
- n = sample size, number of data points. <u>Defined here</u> in Chapter 2. Also, number of trials in a probability experiment with a binomial model. <u>Defined here</u> in Chapter 6.
- N = population size.
- ND = normal distribution, whose graph is a bell-shaped curve; also "normally distributed". <u>Defined here</u> in Chapter 7.
- p = probability value. The specific meaning depends on context.
 - In geometric and binomial probability distributions, p is the probability of "success" (<u>defined here</u> in Chapter 6) on any one trial and q = (1-p) is the probability of "failure" (the only other possibility) on any one trial.

In hypothesis testing, *p* is the calculated p-value (<u>defined here</u> in Chapter 10), the probability that rejecting the null hypothesis would be a wrong decision.

In tests of population proportions, p stands for population proportion and \hat{p} for sample proportion (see table above).

- P(A) = the probability of event A.
- $P(A^C)$ or $P(not\ A)$ = the probability that A does not happen. <u>Defined here</u> in Chapter 5.

- P(B | A) = the probability that event B will happen, given that event A definitely happens. It's usually read as the probability of B given A. <u>Defined here</u> in Chapter 5.
 Caution! The order of A and B may seem backward to you at first.
- $P80 \text{ or } P_{80} = 80 \text{ th percentile } (Pk \text{ or } P_k = k \text{-th percentile})$ Defined here in Chapter 3.
- q = probability of failure on any one trial in binomial or geometric distribution, equal to (1-p) where p is the probability of success on any one trial. <u>Defined here</u> in Chapter 6.
- Q1 or Q_1 = first quartile (Q3 or Q_3 = third quartile) <u>Defined here</u> in Chapter 3.
- t = linear correlation coefficient of a sample. <u>Defined here</u> in Chapter 4.
- R^2 = coefficient of determination. <u>Defined here</u> in Chapter 4.
- $S = \text{standard deviation of a sample. } \underline{\text{Defined here}}$ in Chapter 3.
- SD (or s.d.) = standard deviation. <u>Defined here</u> in Chapter 3.
- SEM = standard error of the mean (symbol is $\sigma_{\bar{x}}$). Defined here in Chapter 8.
- SEP = standard error of the proportion (symbol is $\sigma_{\hat{\mathbf{p}}}$). Defined here in Chapter 8.
- X (capital X) = a variable.
- χ (lower-case χ) = one data value ("raw score"). As a column heading, χ means a series of data values.
- \bar{X} "x-bar" = mean of a sample. <u>Defined here</u> in Chapter 3.
- \tilde{X} "x-tilde" = median of a sample. <u>Defined here</u> in Chapter 3.
- \hat{y} "y-hat" = predicted average y value for a given x, found by using the regression equation. <u>Defined here</u> in Chapter 4.
- *z* = standard score or z-score. <u>Defined here</u> in Chapter 3.
- z(area) or z_{area} = the z-score, such that that much of the area under the normal curve lies to the right of that z. This is not a multiplication! (See The z Function [URL: https://BrownMath.com/swt/chap07.htm#c07_zFunc].)

Greek Letters

- α "alpha" = significance level in hypothesis test, or acceptable probability of a Type I error (probability you can live with). <u>Defined here</u> in Chapter 10. $1-\alpha$ = confidence level.
- β "beta" = in a hypothesis test, the acceptable probability of a Type II error; 1- β is called the *power* of the test.
- μ mu, pronounced "mew" = mean of a population. <u>Defined here</u> in Chapter 3.
- ν nu: see \underline{df} , above.
- Q rho, pronounced "roe" = linear correlation coefficient of a population.
- σ "sigma" = standard deviation of a population. <u>Defined here</u> in Chapter 3.

- $\sigma_{\overline{x}}$ "sigma-sub-x-bar"; see SEM above.
- $\sigma_{\hat{p}}$ "sigma-sub-p-hat"; see SEP above.
- ∑ "sigma" = summation. (This is upper-case sigma. Lower-case sigma, σ, means standard deviation of a population; see the table <u>near the start of this page</u>.) See ∑ Means Add 'em Up [URL: https://BrownMath.com/swt/chap01.htm#c01_BigSigma] in Chapter 1.
- χ^2 "chi-squared" = distribution for multinomial experiments and contingency tables. <u>Defined here</u> in Chapter 12.

Because this textbook helps you, please donate at BrownMath.com/donate.

Updates and new info: https://BrownMath.com/swt/