Variable Aléatoire Discrète				
Nom	Formule	Espérance	Variance	Notation
Bernoulli	$\begin{cases} P(X=1) = p \\ P(X=0) = 1 - p \end{cases}$	p	p(1 - p)	
$Binomiale^1$	$P(X=i) = \binom{n}{i} p^{i} (1-p)^{n-i}$	np	np(1-p)	$X \sim B(n,p)$
Binomiale négative	$P(X = n) = \binom{n-1}{r-1} p^r (1-p)^{n-r}$	$rac{r}{p}$	$\frac{r(1-p)}{p^2}$	$X \sim Bn(r,p)$
Poisson ²	$P(X=i) = e^{-\lambda} \frac{\lambda^i}{i!}$	λ	λ	$X \sim Po(\lambda)$
1	$P(X=n) = (1-p)^{n-1}p$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$X \sim Geom(p)$
$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	$P(X=i) = \frac{\binom{m}{i} \binom{N-m}{n-i}}{\binom{N}{n}}$	np	$np(1-p)\frac{N-n}{N-1}$	$\frac{d}{dt} X \sim Hpg(n, N, m)$

Théorème.

$$E[aX + b] = aE[X] + b$$

$$Var(X) = E[X^{2}] - (E[X])^{2}$$

$$Var(aX + b) = a^{2}Var(X)$$

Fonctions de répartition et probabilité sur X

Définition. La fonction de répartition F d'une variable aléatoire X est définie pour tout nombre réel $b, -\infty <$ $b < \infty \ par$:

$$F(b) = P(X \le b) = F(b) \lim_{x \to b^{-}} F(x)$$

- 1. P(a < X < b) = F(b) F(a)
- 2. $P(X > b) = 1 P(X \le b) = 1 F(b)$
- 3. $P(X \ge a) = 1 P(X < b) = 1 \lim_{n \to \infty} F\left(b \frac{1}{n}\right)$

Densité de probabilité et fonction de répartition d'une variable aléatoire continue

Définition. Soit la variable aléatoire $X: S \longrightarrow \mathbb{R}$. Si X(S) est un sous-ensemble infini non dénombrable, alors X est une variable aléatoire continue s'il existe une fonction non négative définie sur $\mathbb R$ et vérifiant pour tout ensemble $B \subseteq R$ (la fonction f est appelée densité de probabilité):

$$P(\lbrace X \in B \rbrace) = \int_{B} f(x) \, dx$$

1.
$$f(x) \ge 0$$

²Approximation poissonnienne de lois binomiales : Si n est grand et si p est petit, alors $B(n,p) \approx Po(\lambda)$ ²Processus de Poisson (3 conditions): $P\left(N(t) = k\right) = \binom{n}{k} \left(\frac{\lambda t}{n}\right)^k \left(1 - \frac{\lambda t}{n}\right)^{n-k} \approx e^{-\lambda t} \frac{(\lambda t)^k}{k!}, \quad N(t) = \lambda t$

 $^{^3}n$: sous-ensemble de la population, N: population, m: ensemble ayant une caractéristique (indistinguable entre eux)

$$2. \int_{-\infty}^{\infty} f(x) \, dx = 1$$

3.
$$P(a \le X \le b) = \int_a^b f(x) dx$$

4.
$$P(a \le X \le b) = P(a \le X < b) = P(a < X \le b) = P(a < X < b)$$

5.
$$P(X \le a) = \int_{-\infty}^{a} f(x) dx \quad P(X \ge b) = \int_{b}^{\infty} f(x) dx$$

Définition. Soit X une variable aléatoire continue de densité f(x). La fonction de répartition F_X de X est définie par :

$$F_X(a) = P(X \le a) = \int_{-\infty}^a f(x) dx$$

Variable Aléatoire Continue

Nom **Formule** Espérance Variance Notation $\frac{(\beta - \alpha)^2}{12} \quad X \sim Unif(\alpha, \beta)$ $P\{a \le X \le b\} = \frac{b-a}{\beta-a}$ Uniforme⁴ $P\{X \le a\} = P\left\{\frac{X - \mu}{\sigma} \le \frac{a - \mu}{\sigma}\right\} = \Phi\left(\frac{a - \mu}{\sigma}\right)$ $\sigma^2 \qquad X \sim N(\mu, \sigma^2)$

Exponentielle⁶
$$P\{X \le a\} = 1 - e^{-\lambda a}$$

$$\frac{1}{\lambda} \qquad \frac{1}{\lambda^2} \qquad X \sim Exp(\lambda)$$

$$Gamma^7 \qquad P\{T_n \le t\} = \sum_{i=1}^{\infty} \frac{e^{-\lambda t}(\lambda t)^j}{j!} \qquad \frac{s}{\lambda} \qquad \frac{s}{\lambda^2} \qquad T_n \sim Gam(n, p)$$

Gamma⁷
$$P\{T_n \le t\} = \sum_{j=n}^{\infty} \frac{e^{-\lambda t} (\lambda t)^j}{j!} \qquad \frac{s}{\lambda} \qquad \frac{s}{\lambda^2} \qquad T_n \sim Gam(n, p)$$

Poisson vs Exponentielle

- Poisson : Compte le nombre d'apparition d'un phénomène
- Exponentielle : Compte le temps entre deux apparition d'un phénomène

Correction de continuité et Approximation

Si $X \sim Bin(n, p)$ est approximée par $Y \sim N(np, np(1-p))$, on a :

$$P(X = a) \simeq P(a - 0.5 < Y < a + 0.5)$$

$$P(a < X < b) \simeq P(a + 0.5 < Y < b - 0.5)$$

$$P(a \le X \le b) \simeq P(a - 0.5 < Y < b + 0.5)$$

$${}^{6}f(x) = \begin{cases} \frac{1}{\beta - \alpha} & si \ \alpha \le x \le \beta \\ 0 & sinon \end{cases}$$

⁸Taux de panne :
$$\lambda(t) = \frac{f(t)}{(1 - F(t))}$$
 tel que $F(t) = 1 - \exp\left(-\int_0^t \lambda(t) dt\right)$
⁹Fonction Gamma : $\Gamma(s) = \int_0^\infty e^{-y} y^{s-1} dy$ tel que $\forall n \in \mathbb{N}, \Gamma(n) = (n-1)!$

⁷Variable normale centrée réduite

 $^{^9}$ Si s=n entier, la loi gamma de paramètres (n,λ) décrit le temps d'attente avant la n-ième apparition du phénomène. Notons T_n l'heure à laquelle le n-ième événement se produit et N(t) le nombre d'événements dans l'intervalle [0,t]

- 1. Soit $X \sim Bin(n,p)$ tel que $np \leq 5$, alors l'approximation par une loi de Poisson est adéquate $X \approx Po(\lambda = np)$
- 2. Soit $X \sim Bin(n,p)$ tel que np > 5, alors l'approximation par une loi Normale est adéquate $X \approx N(\mu = np, \sigma^2 = np(1-p))$

Fonction de densité

Fonction de densité			
Nom	Formule		
Exponentielle	$f(x) = \begin{cases} \lambda e^{-\lambda x} &, x \ge 0\\ 0 &, x < 0 \end{cases}$		
Gamma	$f(x) = \begin{cases} \frac{\lambda e^{-\lambda x} (\lambda x)^{s-1}}{\Gamma(x)} &, x \ge 0\\ 0 &, x < 0 \end{cases}$		
Uniforme	$f(x) = \begin{cases} \lambda e^{-\lambda x} & , x \ge 0 \\ 0 & , x < 0 \end{cases}$ $f(x) = \begin{cases} \frac{\lambda e^{-\lambda x} (\lambda x)^{s-1}}{\Gamma(x)} & , x \ge 0 \\ 0 & , x < 0 \end{cases}$ $f(x) = \begin{cases} \frac{1}{\beta - \alpha} & , \alpha < x < \beta \\ 0 & sinon \end{cases}$		
Normale	$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2} , x \in \mathbb{R}$		

Théorème. Soit X une variable aléatoire continue de densité f_X . Soit g une fonction strictement monotone (croissante ou décroissante) et dérivable, donc continue. La densité de la variable aléatoire Y = g(X) est

$$f_Y(y) = \begin{cases} f_X(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right| & \text{si } y = g(x) \text{ pour un } x \text{ quelconque} \\ 0 & \text{si } y \neq g(x) \text{ pour tout } x \end{cases}$$