DAS SIMPSON-PARADOXON

Breno Menezes

ÜBERBLICK / GLIEDERUNG

- Einführung
- Beispiele
- Formelle Definition
- Abschluss

EINFÜHRUNG

EINFÜHRUNG

Entscheidungen werden auf der Grundlage von Daten getroffen

Statistik: Sammlung, Organisation, Analyse, **Interpretation** und Präsentation von Daten

Interpretation ist subjektiv

INTERPRETATION IST SUBJEKTIV

MEDAL TABLE MEDAL TABLE							
				6	9	B	Total
1	Japan		•	13	4	5	22
2	China		*2	12	6	9	27
3	USA			10	11	9	30
4	ROC		*	7	8	6	21
5	Austral	ia	絲	6	1	9	16
886	Great B	Britain		5	6	5	16
8				THE TO			

INTERPRETATION IST SUBJEKTIV

Es besteht die Tendenz zu glauben, dass die allgemeine Regel auch für besondere Fälle gilt

DAS SIMPSON-PARADOXON

"... wird eine Gesamtstichprobe in Teilstichproben unterteilt, so können sich in allen Teilstichproben Zusammenhänge zeigen, die systematisch nicht dem Zusammenhang in der Gesamtstichprobe entsprechen oder gar konträr ausfallen."^[1]

BEISPIEL 1

MEHR GELD MACHT GLÜCKLICHER

MEHR GELD MACHT GLÜCKLICHER

BEISPIEL 2

KRANKENHAUS A ODER B?

Krankenhaus A

Krankenhaus B

900/1000 geheilt

800/1000 geheilt

BESSER INS KRANKENHAUS A GEHEN, ODER?

KRANKENHAUS A ODER B?

Krankenhaus A

Krankenhaus B

Schwere Fälle: 30/100

Einfache Fälle: 870/900

Schwere Fälle: 210/400

Einfache Fälle: 590/600

30% & 96.7%

52.5% & 98.3%

KRANKENHAUS A ODER B?

- Krankenhaus B hat in beiden Fällen bessere Überlebensraten
- Unbeachtete Variablen können die Schlussfolgerung über einen Fakt völlig verändern (Schweregrad)

FORMELLE DEFINITION

Memo: Falls $\Omega = K_1 \uplus \ldots \uplus K_n$, so $\mathbb{P}(B) = \sum_{j=1}^n \mathbb{P}(K_j)\mathbb{P}(B|K_j)$. (Formel von der totalen Wahrscheinlichkeit)

Für Ereignisse $A, B \subset \Omega$ sowie $\Omega = K_1 \uplus \ldots \uplus K_n$ kann Folgendes gelten:

$$\mathbb{P}(B|A\cap K_j) > \mathbb{P}(B|A^c\cap K_j) \text{ für jedes } j=1,\ldots,n$$

und (!)
$$\mathbb{P}(B|A) < \mathbb{P}(B|A^c)$$
. (Simpson-Paradoxon)

KRANKENHAUS A ODER B?

Krankenhaus A

Krankenhaus B

Schwere Fälle: 30/100

Einfache Fälle: 870/900

Schwere Fälle: 210/400

Einfache Fälle: 590/600

30% & 96.7%

P(U)=0.1 * 0.3 + 0.9 * 0.967

P(U) = 0.9

52.5% & 98.3%

P(U)=0.4 * 0.525 + 0.6 * 0.983

P(U) = 0.8

ABSCHLUSS

DAS SIMPSON-PARADOXON

Statistiken ohne Kontext sind gefährlich

Fehler vermeiden:

- Daten Aufteilung
- Fokus auf die richtigen Variablen

DAS SIMPSON-PARADOXON

Fragen?

BRENO MENEZES

breno.amenezes@gmail.com