HARDWARE FOR ARITHMETIC

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah

Overview

- □ Homework is due on Mar. 5th
 - after conversion to binary and normalization, we may end up with too many bits for F

- This lecture
 - Basics of logic design
 - Hardware for arithmetic

Fundamentals of Digital Design

- □ Binary logic: two voltage levels
 - □ high and low; 1 and 0; true and false
- □ Binary arithmetic
 - Based on a 3-terminal device that acts as a switch

Logic Blocks

- A logic block comprises binary inputs and binary outputs
 - Combinational: the output is only a function of the inputs
 - Sequential: the block has some internal memory (state) that also influences the output
- Gate: a basic logic block that implements AND, OR, NOT, etc.

Logic Blocks: Truth Table

- A truth table defines the outputs of a logic block for each set of inputs
 - Example: consider a block with 3 inputs A, B, C and an output E that is true only if exactly 2 inputs are true

A	В	С	E
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Boolean Algebra

 Three primary operators are used to realize Boolean functions

- □ Boolean operations
 - □ OR (symbol +)
 - \blacksquare X = A + B : X is true if at least one of A or B is true
 - AND (symbol .)
 - \blacksquare X = A . B : X is true if both A and B are true
 - NOT (symbol —)
 - $X = \overline{A} : X$ is the inverted value of A

Pictorial Representation

Logic gates

□ What function is the following?

Boolean Algebra Rules

- Identity law

 - \Box A . 1 = A
- Zero and One laws
 - \Box A + 1 = 1
 - \triangle A. 0 = 0
- □ Inverse laws
 - \square A.A = 0
 - $\Box A + \overline{A} = 1$

Commutative laws

$$\Box$$
 A + B = B + A

$$\square$$
 A.B = B.A

□ Associative laws

$$\triangle$$
 A + (B + C) = (A + B) + C

$$\blacksquare$$
 A . (B . C) = (A . B) . C

Distributive laws

$$\blacksquare$$
 A . (B + C) = (A . B) + (A . C)

$$A + (B . C) = (A + B) . (A + C)$$

DeMorgan's Law

$$\Box \overline{A + B} = \overline{A} . \overline{B}$$

$$\Box \overline{A \cdot B} = \overline{A} + \overline{B}$$

Example: Boolean Equation

 Consider the logic block that has an output E that is true only if exactly two of the three inputs A, B, C are true

- Multiple correct equations
 - Two must be true, but all three cannot be true

$$\blacksquare$$
 E = ((A . B) + (B . C) + (A . C)) . (A . B . C)

□ Identify the three cases where it is true

$$\blacksquare$$
 E = (A . B . \overline{C}) + (A . C . \overline{B}) + (C . B . \overline{A})

Implementing Boolean Functions

- □ Can realize any logic block with the AND, OR, NOT
 - Draw the truth table
 - For each true output, represent the corresponding inputs as a product
 - The final equation is a sum of these products

A	В	С	E
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Implementing Boolean Functions

- Can realize any logic block with the AND, OR, NOT
 - Draw the truth table
 - For each true output, represent the corresponding inputs as a product
 - The final equation is a sum of these products

	E	С	В	A
	0	0	0	0
	0	1	0	0
	0	0	1	0
A.B.C	1	1	1	0
	0	0	0	1
A.B.C	1	1	0	1
A.B.C	1	0	1	1
	0	ī	ī	1

Implementing Boolean Functions

- Can realize any logic block with the AND, OR, NOT
 - Draw the truth table
 - For each true output, represent the corresponding inputs as a product
 - The final equation is a sum of these products

	E	С	В	A
	0	0	0	0
	0	1	0	0
	0	0	1	0
A.B.C	1	1	1	0
	0	0	0	1
A.B.C	1	1	0	1
A.B.C	1	0	1	1
	^	1	1	1

Sum of Products

$$E = (\overline{A}.B.C) + (A.\overline{B}.C) + (A.B.\overline{C})$$

Universal Gates

- Universal gate is a logic that can be used to implement any complex function
 - NAND
 - Not of AND
 - \blacksquare A nand B = $\overline{A.B}$

- NOR
 - Not of OR
 - \blacksquare A nor B = A+B

 An n-input decoder takes n inputs, based on which only one out of 2ⁿ outputs is activated

I_0	I_1	I_2	O_0	O ₁	O_2	O_3	O ₄	O ₅	O ₆	O ₇
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

A multiplexer (or selector) reflects one of n inputs on the output depending on the value of the select bits
Example: 2-input mux

A full adder generates the sum and carry for each bit position

0 1 0 1

A	В	C _{in}	Sum	C _{out}
0	0	0		
0	0	ī		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Sum Cout

A full adder generates the sum and carry for each bit position

A	В	C _{in}	Sum	C _{out}
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

	1	O	Ü	1	
	0	1	0	1	
Sum	1	1	1	0	
Cout	0	0	0	1	

A full adder generates the sum and carry for each bit position

A	В	C _{in}	Sum	C _{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

	1	0	0	1	
	0	1	0	1	
Sum	1	1	1	0	
Cout	0	0	0	1	

Equations:

$$Sum = C_{in}.\overline{A}.\overline{B} + B.\overline{C}_{in}.\overline{A} + A.\overline{C}_{in}.\overline{B} + A.B.C_{in}$$

$$Cout = A.B.Cin + A.B.Cin + A.Cin.B + B.Cin.A = A.B + A.Cin + B.Cin$$

A full adder generates the sum and carry for each

bit position

	1	0	0	1	
	0	1	0	1	
Sum	1	1	1	0	
Cout	0	0	0	1	

Equations:

$$Sum = C_{in}.\overline{A}.\overline{B} + B.\overline{C}_{in}.\overline{A} + A.\overline{C}_{in}.\overline{B} + A.B.C_{in}$$

$$Cout = A.B.Cin + A.B.Cin + A.Cin.B + B.Cin.A = A.B + A.Cin + B.Cin$$