Problem Set 7 PHYS 23410

7 Spin

3/2: **1.** In class, we showed that one can find a matrix representation for the components of the spin operator given by

$$\hat{S}_x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} \qquad \qquad \hat{S}_y = \frac{\hbar}{2} \begin{pmatrix} 0 & -i\\ i & 0 \end{pmatrix} \qquad \qquad \hat{S}_z = \frac{\hbar}{2} \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}$$
 (7.1)

- a) Use matrix multiplication to show that they fulfill the proper commutator algebra associated with angular momentum components.
- b) Compute \hat{S}_i^2 (i = x, y, z). If you perform a measurement, what possible values of the components of angular momentum can you get? *Hint*: There are 2 possible values.
- c) Take a generic, well-normalized spin state

$$\chi = \begin{pmatrix} c_+ \\ c_- \end{pmatrix} \tag{7.2}$$

with $|c_{+}|^{2} + |c_{-}|^{2} = 1$. What is the probability of measuring a value of $\hat{S}_{z} = \hbar/2$? Hint: Express χ as a linear combination of eigenstates of \hat{S}_{z} with eigenvalues $\pm 1/2$.

- d) What are the mean values of \hat{S}_x , \hat{S}_y , \hat{S}_z in the state χ ? *Hint*: Use the vector notation to compute the mean values.
- e) Use the result of part (d), together with the values of \hat{S}_i^2 , to show that the uncertainty principle is fulfilled, i.e., that

$$\sigma_{\hat{S}_x}\sigma_{\hat{S}_y} \ge \frac{1}{2} |\langle \chi | [\hat{S}_x, \hat{S}_y] | \chi \rangle | \tag{7.3}$$

Hint: WLOG, let $c_{+} = \cos(\theta_{s}/2)e^{i\alpha}$ and $c_{-} = \sin(\theta_{s}/2)e^{i\beta}$. Hence, $c_{+}c_{-}^{*} + c_{-}c_{+}^{*} = \sin(\theta_{s})\cos(\alpha - \beta)$, $c_{+}c_{-}^{*} - c_{-}c_{+}^{*} = i\sin(\theta_{s})\sin(\alpha - \beta)$, and $|c_{+}|^{2} - |c_{-}|^{2} = \cos(\theta_{s})$.

- f) What are the results of part (d) if you take an eigenstate of \hat{S}_z with eigenvalue $\hbar/2$ ($\theta_s = \alpha = 0$)?
- 2. Consider the interaction of the magnetic moment induced by the spin of a particle with a magnetic field. The Hamiltonian is given by

$$\hat{H} = -\gamma \hat{\vec{S}} \hat{\vec{B}} \tag{7.4}$$

with corresponding Schrödinger equation

$$\hat{H}\chi = i\hbar \frac{\partial \chi}{\partial t} \tag{7.5}$$

- a) Re-derive the solution for $\chi(t)$ we presented in class.
- b) Compute the probabilities of finding the particle with spin up and down in the x- and y-directions. Hint: The probability can be computed as the modulus square of the component of $\chi(t)$ on eigenstates of spin up and down in the x- and y-directions. These components may be determined by computing the inner product of $\chi(t)$ with these particular eigenstates.
- c) Based on these probabilities, compute the mean values of the spin in the x- and y-directions and discuss their behavior in time.