

CS 250 OPERATING SYSTEMS

Lecture 4
Scheduling

Instructor Dr. Dhiman Saha

Processes running in the system

Workload

Measuring the scheduling "quality"

Each job runs for the same amount of time

2 All jobs arrive at the same time

Each job runs for the same amount of time All jobs arrive at the same time

Scheduling Metric

turnaround time

The turnaround time of a job is defined as the **time at which the job completes** minus **the time at which the job arrived** in the system.

$$T_{turnaround} = T_{completion} - T_{arrival}$$

First In, First Out First Come, First Served

FIFO / FCFS

- A, B, and C, arrive at roughly the same time
- $ightharpoonup T_{arrival} = 0$

Classwork

What will the average turnaround time be for these jobs?

How does FIFO perform now?

CW-1 Classwork

Construct a workload to make FIFO perform poorly

average turnaround time?

The Convoy Effect

New Scheduler

How can we develop a better algorithm to deal with our new reality of jobs that run for different amounts of time?

Shortest Job First

SJF

Simple Approach

- ▶ Run the shortest job first, then the next shortest, and so on.
- ▶ Idea borrowed from operations research
- ► Redo the last FIFO workload with SJF
- ► What is the turn around time now?
- What is the improvement?

Point-to-Ponder

Is SJF an **optimal** scheduling algorithm? How?

How does SJF perform now?

CW-2 Classwork

Construct a workload to make SJF perform poorly

Need for a new scheduler

► Again what is the average turnaround time now?

How does SJF perform now?

CW-2 Classwork

Construct a workload to make SJF perform poorly

The Convoy Effect

Need for a new scheduler

► Again what is the average turnaround time now?

Preemptive Scheduling

Preemptive

The scheduler can perform a **context switch**, stopping one running process temporarily and resuming (or starting) another.

- ▶ Using the mechanisms we discussed earlier
- ► The timer interrupt
- ► And context switching

Shortest Time-to-Completion First Preemptive Shortest Job First Shortest Remaining Time First

STCF/PSJF/SRTF

- ► Sometimes we care about when a job starts
- ► Instead of when it finishes

$$T_{response} = T_{firstrun} - T_{arrival}$$

 \blacktriangleright What does $T_{response}$ capture?

► How can we build a scheduler that is sensitive to response time?

Round Robin

Time-slicing

RR

Round Robin

- ► Instead of running jobs to completion, RR runs a job for a time slice (sometimes called a **scheduling quantum**) and
- ▶ Then switches to the next job in the run queue.
- ▶ It repeatedly does so until the jobs are finished.

- ► Avg. Response Time?
- ► Compare with FIFO
- ► What about avg. turn-around time?
- ► How to choose the time-slice?

Round Robin

- ► Instead of running jobs to completion, RR runs a job for a time slice (sometimes called a **scheduling quantum**) and
- ▶ Then switches to the next job in the run queue.
- ▶ It repeatedly does so until the jobs are finished.

- ► Avg. Response Time?
- Compare with FIFO
- ► What about avg. turn-around time?
- ► How to choose the time-slice?

I/O Aware (Overlap)

Next Lecture

- ► Smarter Scheduling
- ► Multi-level feedback queue