EECS 376: Foundations of Computer Science

Lecture 15 - Cook-Levin Theorem and Satisfiability

Plan in this part of the course

Lecture 1:

Define P and NP

Lecture 2: (today)

- Define polynomial-time mapping reduction
- Define NP-hard and NP-complete.
- Show the first NP-complete problem: SAT

Lectures 3 – 4:

Show many NP-complete problems via reductions

The Complexity Class P

Definition:

P is the set of all decision problems that can be decided in polynomial time.

Formally:

- For any problem L, an efficient decider Decide-L for L is s.t.
 - x is a "yes" instance ⇔ Decide-L(x) accepts
 - o x is a "no" instance ⇔ Decide-L(x) rejects (follows from above)
 - Decide-L(x) runs in poly(|x|) time
- P is the set of all decision problems that have efficient deciders

Example: is $gcd(x,y) \le b$?

The Complexity Class NP

Definition:

NP is the set of all decision problems whose yes-instances can be verified in polynomial time.

Formally:

- For any problem L, an efficient verifier Verify-L) for L is s.t.
 - ∘ x is a "yes" instance $\Leftrightarrow \exists C \text{ Verify-L}(x, C)$ accepts
 - o x is a "no" instance $\Leftrightarrow \forall C$ Verify-L(x, C) rejects (follows from above)
 - Verify-L(x, C) runs in poly(|x|) time
- NP is the set of all decision problems that have efficient verifiers
- If Verify-L(x, C) accepts, then C is called a certificate.

Example: Subset Sum, TSP, SAT

Quiz: Explain why $P \subseteq NP$.

Two Possible Worlds

Polynomial-time mapping reduction (also called Karp reduction)

Note: a different type of reduction from **Turing reduction**

Polynomial-time mapping reduction from A to B (denoted $A \le p B$)

Defn: $A \leq_p B$ if there is a poly-time-computable function f where

x is a yes-instance of $A \Leftrightarrow f(x)$ is a yes-instance of B.

In words, given any instance of A, in polynomial time we can construct an instance of B whose yes/no answer is the same.

"Problem B is at least as hard as Problem A"

Polynomial-time mapping reduction from A to B (denoted $A \le p B$)

Defn: A ≤_p B if there is a poly-time-computable function f where

x is a yes-instance of $A \Leftrightarrow f(x)$ is a yes-instance of B.

In words, given any instance of **A**, **in polynomial time** we can construct an instance of **B** whose **yes/no answer is the same**.

fast conversion machine

Instance **f**(**x**) of **B** with same answer

TSP Instance

E.g. SAT Instance

Polynomial-time mapping reduction from A to B (denoted $A \le p B$)

Defn: A ≤_p B if there is a poly-time-computable function f where

x is a yes-instance of $A \Leftrightarrow f(x)$ is a yes-instance of B.

Difference from Turing's reduction

- 1. Polynomial time
- 2. No "flipping" the answer
- 3. To solve A, the reduction makes only **one** call to B

Instance x of A

fast conversion machine

Instance **f**(**x**) of **B** with same answer

TSP Instance

E.g. SAT Instance

NP-hardness and NP-completeness

NP-Hardness and **NP**-Completeness

Informal definition: A problem L is NP-hard if it is at least as hard as EVERY problem in NP.

Formal definition: A problem L is NP-hard if: for EVERY problem X in NP, X ≤_p L.

Showing that some problem is NP-hard seems very strong.

But we will do it soon!

A problem L is NP-complete if

- L \in NP
- L is NP-hard

Exercise

Recall: A ≤p B if

- there is a poly-time-computable function f where
- $x \text{ in } \mathbf{A} \Leftrightarrow f(x) \text{ in } \mathbf{B}$.

A problem **L** is **NP**-hard if for EVERY problem **X** in NP, $\mathbf{X} \leq_p \mathbf{L}$.

Exercise: Suppose $A \leq_p B$

- 1. If $B \in P$, then $A \in P$.
 - O Given an instance x for A, compute an instance f(x) for B in poly time.
 - O As $B \in P$, we can decide f(x) in poly time. Then, return the same answer for A.
- 2. If A is NP-hard, then B is NP-hard
 - O Fact: if $X \leq_p A$ and $A \leq_p B$, then $X \leq_p B$. (see HW.)
 - O For any $X \in NP$, $X \leq_p A$. (A is NP-hard). So, for any $X \in NP$, $X \leq_p B$. (B is NP-hard)
- 3. Suppose L is NP-complete. Then, $L \in P$ iff P = NP
 - O Suppose $L \notin P$. As $L \in NP$, then $P \neq NP$.
 - O Suppose $L \in P$. As L is **NP-hard**, every NP-problem **X** is in **P**. So, **NP** \subseteq **P**.

Two Possible Worlds

The Cook-Levin Theorem (1971): **SAT** is **NP-complete**

Terminology on Formulas

A **Boolean formula** Φ is made up of:

- "literals": variables and their negations (e.g. x, y, z, ¬x, ¬y, ¬z)
- OR: V
- AND: Λ

Example:

$$\Phi 1 = (x \vee y) \wedge (\neg y \vee x \vee \neg z) \wedge (\neg x \vee (y \wedge \neg z))$$

Φ is **satisfiable** if

- \exists a true/false assignment **A** to the variables so that $\Phi(\mathbf{A}) = \text{true}$
- For example, Φ1 is satisfiable.
 - o Assign x = F, y = T, z = F

Satisfiability (SAT)

Input: A Boolean formula Φ

Output: Is Φ satisfiable?

Last time, we showed that SAT is in **NP**.

• Certificate: a true/false assignment C to variables where $\Phi(C)$ = true

• Verifier: Verify(Φ , C): Check that Φ (C) = true

To prove that SAT is **NP**-complete, remain to prove that SAT is **NP**-hard

A problem L is NP-complete if

- L∈NP
- L is NP-hard

Proving SAT is NP-hard

Goal: for every problem L in NP, $L \leq_p SAT$.

Fix a problem **L** in NP.

Let x be an instance of **L** of size |x| = n.

There is an efficient verifier V s.t.

- x is a "yes" instance $\Leftrightarrow \exists C V(x, C)$ accepts
- V(x, C) runs in n^k time (k is a constant)

Important:

 $\varphi_{V,x}$ depends on V and x.

But not on C

Will show: in poly(n) time, can construct a formula $\varphi_{V,x}$ s.t.

- $\exists C V(x, C)$ accepts $\Leftrightarrow \varphi_{V,x}$ is satisfiable
- So, $L \leq_p SAT$, Done.

Recall defn: $A \leq_p B$ if

Overview of Formula Construction

Variables of $\varphi_{V,x}$ is based on the <u>execution tableau</u> of V

Execution Tableau: Visualizing the execution of TM

If a row of the tableau says "#011 q_5 0001#" it means:

- The tape says: "0110001"
- We are in state q₅
- The head is pointing to the symbol right after the state, i.e. 011**0**001

Symbols in tableau consists of $S = \{0,1\} \cup \{\#,\$,\bot\} \cup Q$ Q: set of the states of V^{28}

Overview of Formula Construction

Goal: construct formula $\varphi_{V,x}$ s.t.

$$\exists \mathbf{C} \ V(x, \mathbf{C}) \ \text{accepts} \Leftrightarrow$$

$$\exists$$
 assignment $\mathbf{A} \varphi_{V,x}(\mathbf{A}) = \mathsf{T}$

- Variables of $\varphi_{V,x}$ are $t_{i,j,s}$ for all $i,j \leq n^k$ and each symbol s
- Intention: $t_{i,j,s} = T$ iff symbol in cell (i,j) of the tableau is "s"
- Assignment of $\varphi_{V,x} \Leftrightarrow Values$ in tableau

Overview of Formula Construction

Assignment of $\varphi_{V,x} \Leftrightarrow \text{Values in tableau}$

$$\varphi_{V,x} = \varphi_{start} \wedge \varphi_{cell} \wedge \varphi_{accept} \wedge \varphi_{step}$$

- 1. φ_{start} fixes the value of x in the first row of the tableau
- 2. φ_{accept} checks if the tableau contains the accepting state q_{accept}
- 3. φ_{cell} checks that there is exactly **one symbol per cell**
- 4. φ_{step} checks that the tableau is valid according to transition rules of V

If we can ensure (1) – (4), we have $\exists C V(x, C)$ accepts $\Leftrightarrow \exists$ assignment $A \varphi_{V,x}(A) = T$

(1) φ_{start} fixes the value of x in the first row of the tableau

 $arphi_{start}$ enforces the starting configuration

- Initial state q_o,
- Input x, |x| = n; certificate C, $|C| = m \le n^k$

- \$ a special symbol that separates x and c
- WE DO NOT KNOW c (!!), so we leave a "placeholder"

 $(c_1 \text{ can be either 1 or 0 or } \bot)$

Note: The size of φ_{start} is $O(n^k) = \text{poly}(n)$

(2) φ_{accept} checks if the tableau contains the **accepting state** \mathbf{q}_{accept}

$$\varphi_{accept} = \sqrt{\sum_{1 \le i,j \le n^k} t_{i,j,q_{accept}}}$$

Note: The size of φ_{accept} is $O(n^{2k}) = poly(n)$

(3) ϕ_{cell} checks that there is exactly **one symbol per cell**

Note: The size of φ_{cell} is $O(n^{2k}) = \text{poly}(n)$

33

(4) φ_{step} checks that the tableau is valid according to transition rules of V

Definition: A 2x3 "window" is valid if it could appear in a valid tableau

Example transition rule:

0	q_4	1
0	0	q_5

0	q_4	
0	1	q_5

Theorem:

The whole tableau is valid if and only if every 2x3 window is valid.

Proof Idea:

TM can only move 1 left/right step at each time.

_ '	n-									
Ī	#	q_{st}	W 1	<i>W</i> 2		Wn	Τ		Τ	#
	#									#
	#									#
k					?	?	?]		
					?	?	?]		
	#									#

Exercise after class: see why 2x2 windows do not work

(4) φ_{step} checks that the tableau is valid according to transition rules of *V*

$$\varphi_{step} = \bigwedge_{1 \le i, j \le n^k} \varphi_{window,i,j}$$

$$\varphi_{window,i,j} = (\mathsf{t}_{i,j,o} \land \mathsf{t}_{i,j+1,q4} \land \mathsf{t}_{i,j+2,1} \land \mathsf{t}_{i+1,j,o} \land \mathsf{t}_{i+1,j+1,o} \land \mathsf{t}_{i+1,j+2,q5)} \lor (...) \lor ...)$$

Example of 2x3 valid window

0	q_4	1
0	0	q_5

More valid windows:

0	1	1
0	1	1

0	1	1
q_3	1	1

nothing changes if head isn't around head could enter from the side

(4) φ_{step} checks that the tableau is valid according to transition rules of V

$$\varphi_{step} = \bigwedge_{1 \le i,j \le n^k} \varphi_{window,i,j}$$

$$\varphi_{\text{window},i,j} = \bigvee_{\substack{\binom{s_1,s_2,s_3}{s_4,s_5,s_6}}} \left(\begin{array}{c} t_{i,j,s_1} \wedge t_{i,j+1,s_2} \wedge t_{i,j+2,s_3} \wedge \\ t_{i+1,j,s_4} \wedge t_{i+1,j+1,s_5} \wedge t_{i+1,j+2,s_6} \end{array}\right)$$
valid 2x3 window

Note: the size of $\varphi_{window,i,j}$ is $O(|S|^6) = O(1)$. So, the size of φ_{step} is $O(n^{2k})$

Conclusion: Formula Construction

Assignment of $\varphi_{V,x} \Leftrightarrow \text{Values in tableau}$

$$\varphi_{V,x} = \varphi_{start} \wedge \varphi_{cell} \wedge \varphi_{accept} \wedge \varphi_{step}$$

- 1. φ_{start} fixes the value of x in the first row of the tableau
- 2. φ_{accept} checks if the tableau contains the accepting state q_{accept}
- 3. φ_{cell} checks that there is exactly **one symbol per cell**
- 4. φ_{step} checks that the tableau is valid according to transition rules of V

If we can ensure (1) – (4), we have $\exists C V(x, C)$ accepts $\Leftrightarrow \exists$ assignment $A \varphi_{V,x}(A) = T$

Proving SAT is NP-hard

Goal: for every problem L in NP, $L \leq_p SAT$.

Fix a problem **L** in NP.

Let x be an instance of **L** of size |x| = n.

There is an efficient verifier V s.t.

- x is a "yes" instance $\Leftrightarrow \exists C V(x, C)$ accepts
- V(x, C) runs in n^k time (k is a constant)

Will show: in poly(n) time, can construct a formula $\varphi_{V,x}$ s.t.

- $\exists \mathbf{C} V(x, \mathbf{C})$ accepts $\Leftrightarrow \varphi_{V,x}$ is satisfiable
- So, $L \leq_p SAT$. Done.

Wrap Up

- Define polynomial-time mapping reduction
- Define NP-hard and NP-complete.
- Show the first NP-complete problem: SAT
- SAT \in P iff P = NP
 - Assuming $P \neq NP$, no efficient algorithm for **SAT**.

Next week:

• Assuming $P \neq NP$, no efficient algorithm for many other problems