VARUN MANNAM

Email: vmannam@nd.edu · +1 (574) 292-9036· Profile, LinkedIn, Google Scholar, GitHub, ResearchGate

PROFESSIONAL SUMMARY

Graduate student in electrical engineering from the University of Notre Dame and working on image enhancements of the low power/exposure time images using **deep learning** and volumetric imaging using compressive sensing for fast and accurate real-time imaging. I am also working on machine learning/computer vision research, design on massive complex datasets for real-time image processing. 4.8 years of work experience in wireless communications physical layer research, including software development for WIFI applications (802.11ax) and Bluetooth protocols at National Instruments R&D Austin & India.

TECHNICAL SKILLS

Computer Skills: Python, Java, C/C++, Data Structures, R, MATLAB, LabVIEW, SQL, Java Script

ML tools: Pytorch, TensorFlow, Keras (for deep learning using large-scale datasets and computer vision), statistics.

EDUCATION

University of Notre Dame

Notre Dame, IN

Ph.D., Department of Electrical Engineering

August 2017-Present

Overcoming fundamental limits of 3D in vivo fluorescence imaging using machine learning.

Indian Institute of Technology, Kharagpur, India

IIT KGP, WB, India

M. Tech, Major in electrical engineering

May 2012

Design of bandpass filter using stripline configuration for space applications.

PROFESSIONAL EXPERIENCE

Graduate Student, University of Notre Dame

South Bend, IN

Department of Electrical Engineering

August 2017 – Present

- Biomedical Image processing using Convolutional Neural Networks (CNNs): Designed an algorithm for denoising fluorescence microscopy images and improved the average PSNR by 8.1 dB using a large/complex dataset.
- Compressive Sensing (CS): Designed a compressive sensing algorithm for 3D volume reconstruction where the sample was **imaged with a limited exposure time.**
- Convolutional Neural Networks (CNNs) using The Hadamard Method-An Energy-Efficient Approach: Designed a fast and efficient neural network framework with limited resource availability (memory and ALU operations).

Graduate Research Intern – Summer, Feinstein Institute for Medical Research (FIMR)

Manhasset, NY

Summer graduate research intern, Neural & Data Science Lab, North Well Hospitals

May 2021 – August 2021

Graduate Research Intern – Summer, IBM T.J. Watson Research CenterSummer graduate research intern, Efficient and Resilient Systems, IBM Research AI

Yorktown Heights, NY May 2019 – August 2019

Designed an algorithm for real-time 3D Point-Cloud (Segmentation of objects present in different depths) using
machine learning in Autonomous driving with the team led by Dr. Pradip Bose in the EPOCHS Reference Application
(ERA) project.

National Instruments (Research & Development)

Bangalore, KA, India

Staff Software Engineer, Connectivity (WIFI and Bluetooth) research team

December 2012 - August 2017

- Designed the transmitter and receiver blocks for **802.11ax WIFI** and **Bluetooth** protocols, algorithms to verify Wireless Chips for connectivity, and cellular protocols (**WIFI**, **Bluetooth**, **LTE**, **5G-IoT**, **and GSM**).
- Designed a new synchronization algorithm based on the limited Preamble in **Bluetooth** that performed better than the Correlation method and extended this idea for **Automatic Packet Detection** in the receiver.

Indian Institute of Technology, Kharagpur

Kharagpur, WB, India

Graduate Research Student

July 201 – May 2012

• Designed a narrow-band bandpass filter for communication between moon-rover and satellite for space ISRO.

AWARDS

- SPIE BiOS 3-Minute Poster session, 3rd prize, sponsored by SPIE JBO & Neurophotonics editors.
- Outstanding graduate student teaching award, Massey student travel grant in 2020 University of Notre Dame
- Spotlight award in 2014 and 2015 National Instruments R&D Bangalore, India
- Graduate merit scholarship in 2012 & Gold Medal in Undergraduate for the batch 2010