ETH zürich

Causal structure learning III

Causality
Christina Heinze-Deml
Spring 2019

Announcements

- Course evaluation
- Next week:
 - Normal lecture from 10-11
 - In-class exercise from 11-12
 - Jupyter notebook and R
 - Can also ask questions about the course material and the series

No class on May 29th

Last week

- PC algorithm
- GES algorithm

Today

Restricted SEMs

Score-based causal structure learning

- Constraint-based methods exploit independence statements to infer the graph
- Now: test different graph structures in their ability to fit the data
 - Address structure learning as a model selection problem

Idea:

- Given n i.i.d. observations $\mathcal{D} = (x_V^1, \dots, x_V^n)$, assign a score $\mathcal{S}(\mathcal{D}, G)$ to each graph G
- $S(\mathcal{D}, G)$ measures how well G fits the data
- Search over the space of DAGs to find the graph with the highest score:

$$\hat{G} = \operatorname{argmax}_{G} \mathcal{S}(\mathcal{D}, G)$$

Score-based causal structure learning

- How to search?
 - Number of DAGs with p nodes grows super-exponentially
 - Hence, exhaustive search is often infeasible
 - Use greedy search techniques instead
 - At each step, candidate graph and set of "neighboring graphs"
 - For each neighbor, compute score
 - Take the best-scoring graph as the new candidate graph
 - If no neighbor obtains a better score, search procedure terminates
 - Result may be a local optimum only

Greedy Equivalence Search

- Assumes Markov + faithfulness
- Optimizes the BIC
- Searches over Markov equivalence classes instead of DAGs
- Greedy Equivalence Search (GES):
 - Start with empty graph
 - Two phases:
 - 1. Add edges until a local maximum is reached
 - 2. Remove edges until a local maximum is reached
 - Output is the CPDAG attaining the local maximum in phase 2

Greedy Equivalence Search

- \mathcal{E} : an equivalence class of DAG models
- Neighborhood relation in phase 1 of GES:
 - $\mathcal{E}^+(\mathcal{E})$: neighbors of state \mathcal{E} in phase 1
 - An equivalence class \mathcal{E}' is in $\mathcal{E}^+(\mathcal{E})$ if and only if there is some DAG $G \in \mathcal{E}$ to which we can add a single edge that results in a DAG $G' \in \mathcal{E}'$
- Neighborhood relation in phase 2 of GES:
 - $\mathcal{E}^-(\mathcal{E})$: neighbors of state \mathcal{E} in phase 2
 - An equivalence class \mathcal{E}' is in $\mathcal{E}^-(\mathcal{E})$ if and only if there is some DAG $G \in \mathcal{E}$ from which we can remove a single edge that results in a DAG $G' \in \mathcal{E}'$

Clicker question – Neighborhood relations in GES

Consider the following DAG G:

- True or false?
 - The equivalence class of G, $\mathcal{E}(G)$, contains four DAGs.
 - $\mathcal{E}^+(\mathcal{E})$ contains two equivalence classes with two DAGs each.
 - $\mathcal{E}^+(\mathcal{E})$ contains three equivalence classes with two DAGs each.
 - $\mathcal{E}^-(\mathcal{E})$ contains two equivalence classes with two DAGs each.

- Seen so far:
 - Constraint-based methods: PC, SGS
 - Score-based method: GES
- Estimand: CPDAG

- Constraint-based methods assume Markov condition + faithfulness
 - One-to-one correspondence between d-separations in G and conditional independences in P
 - Can reject all graphs outside the correct Markov equivalence class
 - Because Markov condition and faithfulness only restrict the conditional independences in P, cannot distinguish between two Markov equivalent graphs
 - I.e. under Markov + faithfulness, the Markov equivalence class (MEC) of G is identifiable from P

Example: $X \to Y$, $X \leftarrow Y$ imply the same d-separation: $X \pm Y$

- Score-based methods assume Markov condition and a parametric model
 - E.g. linear Gaussian equations
 - Cannot distinguish between Markov equivalent graphs
 - Search is over Markov equivalence classes instead of DAGs
 - Typically faithfulness or causal minimality is assumed as well

Example: Linear models with additive Gaussian noise

- Consider the two variable case
- $X \rightarrow Y$, $X \leftarrow Y$ imply the same d-separation: $X \pm Y$
- Either graph can induce any distribution

- Alternative to
 - Only assuming Markov + faithfulness
 - Or assuming Markov + faithfulness and linear Gaussian eqs. & S S use structural equation model framework and restrict function class differently
- Recall: In a SEM, each X_i is generated as a function of its graphical parents in G and noise ϵ_i :

$$X_i \leftarrow h_i(X_{\text{pa}(i)}, \epsilon_i), \qquad i \in V$$

where ϵ_i , $i \in V$, are jointly independent

Recall: In a SEM, each X_i is generated as a function of its graphical parents in G and noise ϵ_i :

$$X_i \leftarrow h_i(X_{\text{pa}(i)}, \epsilon_i), \qquad i \in V$$

where ϵ_i , $i \in V$, are jointly independent

- Various options to restrict the function class
- We will refer to this class of models as restricted SEMs

Additive noise models

 We call an SEM an additive noise model (ANM) if the structural assignments are of the form

$$X_i \leftarrow h_i(X_{\text{pa}(i)}) + \epsilon_i, \quad i \in V,$$

i.e., the noise is additive.

- Assume causal minimality; here, this means that each function $h_i(\cdot)$ is not constant in any of its arguments
- Question: Can we now obtain full structure identifiability?

Linear models with additive Gaussian noise

Theorem: Assume that P admits the linear model

$$Y = \alpha X + N_Y, \qquad N_Y \perp \!\!\! \perp X,$$

with continuous random variables X, N_Y and Y. Then there exist $\beta \in \mathbb{R}$ and a random variable N_X such that

$$X = \beta Y + N_X, \qquad N_X \perp \!\!\!\perp Y,$$

if and only if N_Y and X are Gaussian.

- If X = C and Y = E, it is sufficient that C or N_E are non-Gaussian to render the causal direction identifiable
 - Carries over to the multivariate case

Additive noise models

- Will look at:
 - Linear models with non-Gaussian noise
 - Nonlinear models with Gaussian noise

RESIT: Regression with subsequent independence test

- Special case of RESIT for 2 variables
 - 1. Regress Y on X using some (possibly non-linear) regression technique
 - Denote the regression function with $\hat{f}_Y(X)$
 - 2. Test whether $Y \hat{f}_Y(X)$ is independent of X
 - 3. Repeat the procedure with exchanging the roles of X and Y
 - If independence is not rejected for one direction and rejected for the other, infer the former one as the causal direction
 - In practice: Infer direction with higher *p*-value for rejecting independence as causal one
- Alternative: score-based approach
 - See Jupyter notebook next week

Linear SEM

$$X \leftarrow BX + \epsilon$$
 with $B \in \mathbb{R}^{p \times p}$, $X \in \mathbb{R}^p$, $\epsilon \in \mathbb{R}^p$

- Gaussian noise
 - Cannot distinguish between Markov equivalent graphs
 - See previous example: different B matrices generate the same distribution of X
- Non-Gaussian data
 - Not fully determined by mean and covariance
 - Higher moments may contain more information

Linear SEM

$$X \leftarrow BX + \epsilon$$
 with $B \in \mathbb{R}^{p \times p}$, $X \in \mathbb{R}^p$, $\epsilon \in \mathbb{R}^p$

- LiNGAM: Linear Non-Gaussian Acyclic Models
 - ϵ is mean-zero non-Gaussian with positive variance
 - Noise components are mutually independent, i.e. no hidden variables (causal sufficiency)
 - No faithfulness assumption needed
 - Estimand: DAG

• Definition: Given a DAG G, we say that a bijective mapping π

$$\pi$$
: $\{1, ..., p\} \rightarrow \{1, ..., p\}$

is a causal ordering of the variables if it satisfies

$$\pi(i) < \pi(j)$$
 if $j \in desc(i)$

- Because of acyclicity, there is always a causal ordering
 - Not necessarily unique

$$2 \rightarrow 1$$
 $T(2) = 1 T(1) = 2$

2 -> 1
$$\pi(3) = 1$$
 $\pi(2) = 1$
 $\pi(2) = 2$ Or $\pi(1) = 2$
 $\pi(1) = 3$ $\pi(1) = 3$

Linear SEM

$$X \leftarrow BX + \epsilon$$
 with $B \in \mathbb{R}^{p \times p}$, $X \in \mathbb{R}^p$, $\epsilon \in \mathbb{R}^p$

- Due to acyclicity, the diagonal elements of B are zero
 - No self-loops, i.e. no edge from a node to itself
- Permuting the order of the variables using a causal ordering makes B strictly lower triangular
 - I.e. due to acyclicity, always possible to perform simultaneous, equal row and column permutations on B to make it strictly lower triangular

Example

- Goal: based on n i.i.d. observations of $X_{\mathbf{V}}$ estimate B
 - Since non-zeros in B are edges in the DAG, we are also learning the DAG
- Estimation methods:
 - ICA-LiNGAM
 - Can exploit fast ICA methods but issues with local optima
 - DirectLiNGAM
 - Guaranteed convergence as $n \to \infty$

Independent component analysis

- Independent component analysis (ICA)
 - "non-Gaussian variant of factor analysis"
 - "cocktail party problem"
 - ICA model

$$X = AS$$

- $X \in \mathbb{R}^p$: observed variables
- $S \in \mathbb{R}^p$: mutually independent, continuous latent non-Gaussian variables "sources"
- $A \in \mathbb{R}^{p \times p}$: unobserved full-rank mixing matrix
- If S is non-Gaussian, then A is identifiable up to permutation, scaling and sign of the columns

Can write:

$$X = BX + \epsilon$$
$$(I - B)X = \epsilon$$
$$X = (I - B)^{-1}\epsilon$$

- LiNGAM is an instance of the ICA model X = AS with $A = (I B)^{-1}$ and $S = \epsilon$
- Recall: A is identifiable up to permutation, scaling and sign of the columns
 - Can exploit further properties of *B*: "zeros on the diagonal" and "strictly lower triangular"

Example

- ICA-LiNGAM algorithm:
 - 1. Given n i.i.d. observations of $X_{\mathbf{V}}$, use ICA to estimate $W = A^{-1} = (I B)$ up to permutation, scaling and sign of the columns
 - 2. Find unique permutation of the rows of W that yields \widetilde{W} without any zeros on the diagonal
 - Permutation is found by minimizing $\sum_{i} 1/|\widetilde{W}_{ii}|$ (classical linear assignment problem)
 - 3. Divide each row of \widetilde{W} by its diagonal element to yield \widetilde{W}' with only ones on the diagonal
 - 4. Compute $\hat{B} = I \widetilde{W}'$
 - 5. Find causal order by making $\tilde{B} = \tilde{P}\hat{B}\tilde{P}^T$ as close as possible to strictly lower triangular
 - Prune edge weights, e.g. using sparse regression

Recap

- Concepts to know:
 - Structure identifiability
 - Linear models with Gaussian noise
 - Restricted SEMs
 - Additive noise models
 - RESIT
 - LiNGAM

References and acknowledgments

- Restricted SEMs
 - Peters, Janzing and Schölkopf (2017). Elements of Causal Inference. Chapters 4.1.1 4.1.4,
 4.2.1
 - Shimizu (2014). LINGAM: Non-Gaussian Methods for estimating causal structures.
 Behaviormetrika.