Algoritmo de Floyd - Solución

Emily Sanchez Viviana Vargas

 $11\ \mathrm{de}$ septiembre de 2025

1. Introducción

El algoritmo de Floyd-Warshall es un algoritmo para encontrar los caminos más cortos en un grafo ponderado. Fue publicado por Robert Floyd en 1962.

Complejidad temporal: $O(n^3)$ Complejidad espacial: $O(n^2)$

2. Descripción del Problema

Grafo con 5 nodos:

■ Nodo A: A

■ Nodo B: B

■ Nodo C: C

■ Nodo D: D

■ Nodo E: E

3. Procedimiento del Algoritmo

3.1. Matriz de Distancias Inicial D(0)

	A	В	С	D	E
Α	0	6	∞	4	7
В	9	0	7	∞	∞
С	∞	5	0	∞	14
D	8	1	∞	0	15
Ε	2	∞	2	19	0

Cuadro 1: Matriz de distancias inicial D(0)

	A	В	С	D	Е
A	-	A	-	Α	A
В	В	-	В	-	-
С	-	С	-	-	С
D	D	D	-	-	D
Е	Е	-	Ε	Е	-

Cuadro 2: Matriz de caminos inicial P(0)

	A	В	С	D	Е
A	0	6	∞	4	7
В	9	0	7	13	16
С	∞	5	0	∞	14
D	8	1	∞	0	15
Е	2	8	2	6	0

Cuadro 3: Matriz de distancias $\mathrm{D}(1)$ - Cambios resaltados en verde

	A	В	С	D	Ε
A	0	6	13	4	7
В	9	0	7	13	16
С	14	5	0	18	14
D	8	1	8	0	15
E	2	8	2	6	0

Cuadro 4: Matriz de distancias D(2) - Cambios resaltados en verde

	A	В	С	D	E
A	0	6	13	4	7
В	9	0	7	13	16
С	14	5	0	18	14
D	8	1	8	0	15
E	2	7	2	6	0

Cuadro 5: Matriz de distancias $\mathrm{D}(3)$ - Cambios resaltados en verde

	A	В	С	D	Е
A	0	5	12	4	7
В	9	0	7	13	16
С	14	5	0	18	14
D	8	1	8	0	15
Е	2	7	2	6	0

Cuadro 6: Matriz de distancias $\mathrm{D}(4)$ - Cambios resaltados en verde

	A	В	С	D	\mathbf{E}
A	0	5	9	4	7
В	9	0	7	13	16
С	14	5	0	18	14
D	8	1	8	0	15
Е	2	7	2	6	0

Cuadro 7: Matriz de distancias D(5) - Cambios resaltados en verde

3.2. Matriz de Caminos Inicial P(0)

3.3. Iteraciones del Algoritmo

- 3.3.1. Iteración 1 (k = 1) Nodo intermedio: A
- 3.3.2. Iteración 2 (k = 2) Nodo intermedio: B
- 3.3.3. Iteración 3 (k = 3) Nodo intermedio: C
- 3.3.4. Iteración 4 (k = 4) Nodo intermedio: D
- 3.3.5. Iteración 5 (k = 5) Nodo intermedio: E

4. Resultados Finales

4.1. Matriz de Distancias Final D(5)

	A	В	С	D	E
A	0	5	9	4	7
В	9	0	7	13	16
С	14	5	0	18	14
D	8	1	8	0	15
E	2	7	2	6	0

Cuadro 8: Matriz de distancias final D(5)

4.2. Rutas Óptimas

- $A \rightarrow B$: Distancia: 5, Ruta: $A \rightarrow D \rightarrow B$
- $\mathbf{A} \to \mathbf{C}$: Distancia: 9, Ruta: $\mathbf{A} \to \mathbf{E} \to \mathbf{C}$
- $\mathbf{A} \to \mathbf{D}$: Distancia: 4, Ruta: $\mathbf{A} \to \mathbf{D}$
- $\mathbf{A} \to \mathbf{E}$: Distancia: 7, Ruta: $\mathbf{A} \to \mathbf{E}$
- $\mathbf{B} \to \mathbf{A}$: Distancia: 9, Ruta: $\mathbf{B} \to \mathbf{A}$

- $\mathbf{B} \to \mathbf{C}$: Distancia: 7, Ruta: $\mathbf{B} \to \mathbf{C}$
- B \rightarrow D: Distancia: 13, Ruta: B \rightarrow A \rightarrow D
- $\mathbf{B} \to \mathbf{E}$: Distancia: 16, Ruta: $\mathbf{B} \to \mathbf{A} \to \mathbf{E}$
- $\mathbf{C} \to \mathbf{A}$: Distancia: 14, Ruta: $\mathbf{C} \to \mathbf{B} \to \mathbf{A}$
- $\mathbf{C} \to \mathbf{B}$: Distancia: 5, Ruta: $\mathbf{C} \to \mathbf{B}$
- ${\color{red} \bullet}$ ${\bf C}$ \rightarrow ${\bf D}\text{:}$ Distancia: 18, Ruta: C \rightarrow B \rightarrow A \rightarrow D
- $\mathbf{C} \to \mathbf{E}$: Distancia: 14, Ruta: $\mathbf{C} \to \mathbf{E}$
- $\mathbf{D} \to \mathbf{A}$: Distancia: 8, Ruta: $\mathbf{D} \to \mathbf{A}$
- $\mathbf{D} \to \mathbf{B}$: Distancia: 1, Ruta: $\mathbf{D} \to \mathbf{B}$
- $\mathbf{D} \to \mathbf{C}$: Distancia: 8, Ruta: $\mathbf{D} \to \mathbf{B} \to \mathbf{C}$
- $\mathbf{D} \to \mathbf{E}$: Distancia: 15, Ruta: $\mathbf{D} \to \mathbf{E}$
- $E \rightarrow A$: Distancia: 2, Ruta: $E \rightarrow A$
- $\mathbf{E} \to \mathbf{B}$: Distancia: 7, Ruta: $\mathbf{E} \to \mathbf{C} \to \mathbf{B}$
- $E \rightarrow C$: Distancia: 2, Ruta: $E \rightarrow C$
- $\mathbf{E} \to \mathbf{D}$: Distancia: 6, Ruta: $\mathbf{E} \to \mathbf{A} \to \mathbf{D}$