Exercise 1 TDT4171 Sondre Foslien

February 13, 2018

I 5-card Poker Hands

a)

$$52 \cdot 51 \cdot 50 \cdot 49 \cdot 48 = 311875200$$

b)

$$\frac{1}{311875200}$$

c)

$$P(\text{Royal flush}) = 4 \cdot \frac{1}{311875200} = \frac{1}{77968800}$$

$$P(\text{Four of a kind}) = 13 \cdot \frac{1}{311875200} = \frac{1}{23990400}$$

II Bayesian Network Construction

1.

					В	C	P(A B,C)
$\mathbf{p}(\mathbf{D})$	D	P(C D)	D	P(B D)	F	F	0.1
$\frac{1}{0.5}$	F	0.33 0.33	F	0.45	F	${ m T}$	0.2
0.5	\mathbf{T}	0.33	T	0.1	\mathbf{T}	\mathbf{F}	0.3
		!		•	Τ	${ m T}$	0.4

.

3.

P(RainYesterday)	P(CloudSky)
0.25	0.5

RainYesterda	ay CloudSky	P(RainToday RainYesterday,CloudSky)
$\overline{}$ F	F	0.25
\mathbf{F}	${ m T}$	0.5
${ m T}$	F	0.2
${ m T}$	${ m T}$	0.4
RainToday	RainYesterday	P(FloorWet RainToday,RainYesterday)
$\overline{}$ F	F	0.1
\mathbf{F}	${ m T}$	0.5
${ m T}$	\mathbf{F}	0.9
${ m T}$	${ m T}$	0.99

RainToday	CloudSky	P(UseUmbrellaToday RainToday, CloudSky)
\overline{F}	F	0.01
\mathbf{F}	${ m T}$	0.3
${ m T}$	\mathbf{F}	0.9
${ m T}$	${ m T}$	0.99

III Bayesian Network Application

P(MyChoice) 0.33

P(OpenedByOfficial) 0.33

MyChoice	OpenedByOfficial	P(ContainsPrize MyChoice, OpenedByOfficial)
F	F	0.66
\mathbf{F}	${ m T}$	0
${ m T}$	F	0.33
${ m T}$	${ m T}$	0

In the initial choosing you have a 1/3 chance of guessing right. So there is a 2/3 chance of the prize being behind another door. When the official comes and opens one of the other doors the amount of doors which has a 2/3 chance of having the price behind them shrinks to 1. Therefore it is smart to switch.

You can imagine it this way: Say the prize is behind door 1. You choose door 1, the official opens door 2 and you switch to door 3. You loose. But if you had chosen either door 2 or 3 you would have switched to the right door. Therefore the likelihood of switching to the right door is 2/3.