dm25s1

Topic 05 : Exploratory Data Analysis2

Part 01: EDA Pass3

Dr Bernard Butler

Department of Computing and Mathematics, WIT. (bernard.butler@setu.ie)

Autumn Semester, 2025

Outline

- What is EDA Pass 3?
- Datasets = Tips, Titanic and Algae Blooms
- Identifying and resolving issues (missing value, outliers)

Data Mining (Week 5)

EDA Pass3 — Summary

1. Review of previous week

- Second Pass Individual Features and Targe
- 2.1 Target
- 2.2 Individual Features

- Third Pass Relationships Between Features and Targe
- 3.1 Multi-relation Plots

Acknowledgment

A big thanks to Dr Kieran Murphy, who provided some of the slides for today's lecture.

Recall statistical *Levels of Measurement*

Recall statistical *Levels of Measurement*

Туре	Drawn from	Examples	Used to		
Nominal	Finite Set, Unrelated	Manufacturers, Countries, Gender	Categorise with descriptive label		
Ordinal	Finite Set, Ordered	Size (S,M,L), Army Ranks, Satisfaction	Categorise with descriptive label		
Interval	Ordered, Differences matter	Exam Scores, Temperatures (Celsius)	Assign numeric score to		
Ratio	Ordered, Differences and ratios matter	Distance (m), Cost (\$), Temperatures (Kelvin)	Assign numeric score to		

Recall statistical *Levels of Measurement*

Туре	Drawn from	Examples	Used to		
Nominal	Finite Set, Unrelated	Manufacturers, Countries, Gender	Categorise with descriptive label		
Ordinal	Finite Set, Ordered	Size (S,M,L), Army Ranks, Satisfaction	Categorise with descriptive label		
Interval	Ordered, Differences matter	Exam Scores, Temperatures (Celsius)	Assign numeric score to		
Ratio	Ordered, Differences and ratios matter	Distance (m), Cost (\$), Temperatures (Kelvin)	Assign numeric score to		

Generally, *Nominal* and *Ordinal* are considered categorical, *Interval* and *Ratio* are considered Numerical

Recall statistical *Levels of Measurement*

Туре	Drawn from	Examples	Used to		
Nominal	Finite Set, Unrelated	Manufacturers, Countries, Gender	Categorise with descriptive label		
Ordinal	Finite Set, Ordered	Size (S,M,L), Army Ranks, Satisfaction	Categorise with descriptive label		
Interval	Ordered, Differences matter	Exam Scores, Temperatures (Celsius)	Assign numeric score to		
Ratio	Ordered, Differences and ratios matter	Distance (m), Cost (\$), Temperatures (Kelvin)	Assign numeric score to		

Generally, *Nominal* and *Ordinal* are considered categorical, *Interval* and *Ratio* are considered Numerical

But what about a variable which contains *Months of the year*?

Load dataset

- Load dataset
 - Typically either csv or more general "table" format

Load dataset

- Typically either csv or more general "table" format
- Can be local file or url (read over network)

- Load dataset
 - Typically either csv or more general "table" format
 - Can be local file or url (read over network)
- Check variables names

- Load dataset
 - Typically either csv or more general "table" format
 - Can be local file or url (read over network)
- Check variables names
 - Should be meaningful and distinct

Load dataset

- Typically either csv or more general "table" format
- Can be local file or url (read over network)

Check variables names

- Should be meaningful and distinct
- Avoid clashes with reserved words (python or statistical)

- Load dataset
 - Typically either csv or more general "table" format
 - Can be local file or url (read over network)
- Check variables names
 - Should be meaningful and distinct
 - Avoid clashes with reserved words (python or statistical)
- Verify variable types

- Load dataset
 - Typically either csv or more general "table" format
 - Can be local file or url (read over network)
- Check variables names
 - Should be meaningful and distinct
 - Avoid clashes with reserved words (python or statistical)
- Verify variable types
 - Convert strings to categories, possibly grouping, where possible

Load dataset

- Typically either csv or more general "table" format
- Can be local file or url (read over network)

Check variables names

- Should be meaningful and distinct
- Avoid clashes with reserved words (python or statistical)

Verify variable types

- Convert strings to categories, possibly grouping, where possible
- Ensure numeric data is stored as number (watch out for "Unknown" etc.)

- Load dataset
 - Typically either csv or more general "table" format
 - Can be local file or url (read over network)
- Check variables names
 - Should be meaningful and distinct
 - Avoid clashes with reserved words (python or statistical)
- Verify variable types
 - Convert strings to categories, possibly grouping, where possible
 - Ensure numeric data is stored as number (watch out for "Unknown" etc.)
- Identify (and possibly address) missing values

Load dataset

- Typically either csv or more general "table" format
- Can be local file or url (read over network)

Check variables names

- Should be meaningful and distinct
- Avoid clashes with reserved words (python or statistical)

Verify variable types

- Convert strings to categories, possibly grouping, where possible
- Ensure numeric data is stored as number (watch out for "Unknown" etc.)

Identify (and possibly address) missing values

Missing values by row or column

Load dataset

- Typically either csv or more general "table" format
- Can be local file or url (read over network)

Check variables names

- Should be meaningful and distinct
- Avoid clashes with reserved words (python or statistical)

Verify variable types

- Convert strings to categories, possibly grouping, where possible
- Ensure numeric data is stored as number (watch out for "Unknown" etc.)

Identify (and possibly address) missing values

- Missing values by row or column
- Leave blank, impute value, drop row/column?

Second Pass — Individual Features and Target

• Categorical vs numerical target

Second Pass — Individual Features and Target

- Categorical vs numerical target
- Categorical vs numerical features
- Identify (and possibly address) issues

Is it usable?

Second Pass — Individual Features and Target

- Categorical vs numerical target
- Categorical vs numerical features
- Identify (and possibly address) issues
- Relationship to target.

Is it usable?

Is it useful?

df.Survived.describe()

count 891
unique 2
top 0
freq 549
Name: Survived, dtype: int64

df.Survived.describe()

```
count 891
unique 2
top 0
freq 549
Name: Survived, dtype: int64
```

df.Survived.unique()

```
[0, 1]
Categories (2, int64): [0, 1]
```

df.Survived.value_counts(normalize=True, dropna=False)

df.Survived.describe()

Survived 0.616162 0.383838 Name: proportion, dtype: float64

```
891
count
unique
top
freq
         549
Name: Survived, dtype: int64
```

df.Survived.unique()

```
[0, 1]
Categories (2, int64): [0, 1]
```

df.Survived.value_counts(normalize=True, dropna=False)

df.Survived.describe()

Survived

0 0.616162 1 0.383838

Name: proportion, dtype: float64

sns.countplot(x="Survived", data=df);

count 891
unique 2
top 0
freq 549
Name: Survived, dtype: int64

df.Survived.unique()

[0, 1] Categories (2, int64): [0, 1]

df.Survived.value_counts(normalize=True, dropna=False)

df.Survived.describe()

Survived

0.616162

0 383838

Name: proportion, dtype: float64

sns.countplot(x="Survived", data=df);

count 891 unique top 549 frea Name: Survived, dtype: int64

df.Survived.unique()

[0, 1] Categories (2, int64): [0, 1]

- Simplest classification problem (two classes) with both classes nearly equal frequency.
- In a unbalanced classification problem where the minority class occurs about 20% or lower, models can focus on the majority class.

```
targets = [c for c in df.columns if c[0]=="a"]
targets
['a1', 'a2', 'a3', 'a4', 'a5', 'a6', 'a7']
```

```
targets = [c for c in df.columns if c[0]=="a"]
targets
['a1', 'a2', 'a3', 'a4', 'a5', 'a6', 'a7']
```

df[targets].describe()

	a1	a2	a3	a4	a5	a6	a7
count	198.000000	198.000000	198.000000	198.000000	198.000000	198.000000	198.000000
mean	16.996465	7.470707	4.334343	1.997475	5.115657	6.004545	2.487374
std	21.421713	11.065461	6.976788	4.439205	7.511846	11.711053	5.181536
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	1.525000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
50%	6.950000	3.000000	1.550000	0.000000	2.000000	0.000000	1.000000
75%	24.800000	11.275000	4.975000	2.400000	7.500000	6.975000	2.400000
max	89.800000	72.600000	42.800000	44.600000	44.400000	77.600000	31.600000

Dataset: Algae Blooms, Target: a1,..., a7

```
targets = [c for c in df.columns if c[0]=="a"]
targets
             ['a1', 'a2', 'a3', 'a4', 'a5', 'a6', 'a7']
```

plt.figure(figsize=(4,6)) sns.histplot(x="a6", data=df);

df[targets].describe()

	a1	a2	a3	a4	a5	a6	a 7
count	198.000000	198.000000	198.000000	198.000000	198.000000	198.000000	198.000000
mean	16.996465	7.470707	4.334343	1.997475	5.115657	6.004545	2.487374
std	21.421713	11.065461	6.976788	4.439205	7.511846	11.711053	5.181536
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	1.525000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
50%	6.950000	3.000000	1.550000	0.000000	2.000000	0.000000	1.000000
75%	24.800000	11.275000	4.975000	2.400000	7.500000	6.975000	2.400000
max	89.800000	72.600000	42.800000	44.600000	44.400000	77.600000	31.600000

Dataset: Algae Blooms, Target: a1,..., a7

```
targets = [c for c in df.columns if c[0]=="a"]
targets
['a1', 'a2', 'a3', 'a4', 'a5', 'a6', 'a7']
```

plt.figure(figsize=(4,6))
sns.histplot(x="a6", data=df);

df[targets].describe()

	a1	a2	a3	a4	a5	a6	a 7
count	198.000000	198.000000	198.000000	198.000000	198.000000	198.000000	198.000000
mean	16.996465	7.470707	4.334343	1.997475	5.115657	6.004545	2.487374
std	21.421713	11.065461	6.976788	4.439205	7.511846	11.711053	5.181536
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	1.525000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
50%	6.950000	3.000000	1.550000	0.000000	2.000000	0.000000	1.000000
75%	24.800000	11.275000	4.975000	2.400000	7.500000	6.975000	2.400000
max	89.800000	72.600000	42.800000	44.600000	44.400000	77.600000	31.600000

All distributions are heavily skewed to the right, many with outliers (see next slide). All of the zero measurements are probably due to population levels too low to be measured.

```
fig, axs = plt.subplots(1, 7, figsize=(24,6))
for k, c in enumerate(targets):
    sns.boxplot(data=df, y=c, color="lightblue", ax=axs[k])
    axs[k].set_xlabel(c)
```


Dataset: Algae Blooms, Target: a1,..., a7

```
fig, axs = plt.subplots(1, 7, figsize=(24,6))
for k, c in enumerate(targets):
   sns.boxplot(data=df, y=c, color="lightblue", ax=axs[k])
   axs[k].set_xlabel(c)
```


The outliers are likely to be true measurements, but their presence can heavily influence the model training — common strategy is to fit two models (one with the case with target outliers and one without) to assess impact of outliers.

To keep this more manageable we will focus more on the Algae Blooms data set ...

	Season	Size	Speed	max_p	oH min_O	2 mean_C	mean_N	IO3 mean_NH4	mean_oPO4	mean_PO4	mean_Chlor	a1	a2	a
0	winter	small	medium	8.00	9.8	60.800	6.238	578.00000	105.00000	170.00000	50.000	0.0	0.0	0.0
1	spring	small	medium	8.35	8.0	57.750	1.288	370.00000	428.75000	558.75000	1.300	1.4	7.6	4.8
2	autumn	small	medium	8.10	11.4	40.020	5.330	346.66699	125.66700	187.05701	15.600	3.3	53.6	1.9
3	spring	small:	medium	8.07	4.8	77.364	2.302	98.18200	61.18200	138.70000	1.400	3.1	41.0	18.
-		**	٠.									~ ~	~ ~	

Sneak perview

• Three categorical variables Season, Size, and Speed.

Individual Features

To keep this more manageable we will focus more on the Algae Blooms data set ...

	Season	Size	Speed	max_I	pH min_	O2 mean_	Cl mean	_NO3 mean	NH4 mean	_oPO4 mean	PO4 mean	Chlor a1	a2	a
0	winter	small	medium	8.00	9.8	60.800	6.238	578.00	0000 105.00	0000 170.00	0000 50.000	0.0	0.0	0.0
1	spring	small	medium	8.35	8.0	57.750	1.288	370.00	0000 428.75	5000 558.75	5000 1.300	1.4	7.6	4.8
2	autumn	small	medium	8.10	11.4	40.020	5.330	346.66	6699 125.60	6700 187.05	5701 15.600	3.3	53.6	1.9
3	spring	small	medium	8.07	4.8	77.364	2.302	98.182	200 61.182	200 138.70	0000 1.400	3.1	41.0	18.
-		**	••			^-^								

Sneak perview

- Three categorical variables Season, Size, and Speed.
 - No missing values

To keep this more manageable we will focus more on the Algae Blooms data set ...

	Season	Size	Speed	max_j	pH min_	O2 mean_	Cl mean	_NO3 mean	NH4 mean	_oPO4 mean	PO4 mean	Chlor a1	a2	a
0	winter	small	medium	8.00	9.8	60.800	6.238	578.00	0000 105.00	0000 170.00	0000 50.000	0.0	0.0	0.0
1	spring	small	medium	8.35	8.0	57.750	1.288	370.00	0000 428.75	5000 558.75	5000 1.300	1.4	7.6	4.8
2	autumn	small	medium	8.10	11.4	40.020	5.330	346.66	6699 125.66	6700 187.05	701 15.600	3.3	53.6	1.9
3	spring	small	medium	8.07	4.8	77.364	2.302	98.182	200 61.182	200 138.70	0000 1.400	3.1	41.0	18.
-		**	••											

Sneak perview

- Three categorical variables Season, Size, and Speed.
 - No missing values
 - No high cardinality, and reasonable balanced.

To keep this more manageable we will focus more on the Algae Blooms data set ...

	Season	Size	Speed	max_p	oH min_O	2 mean_Cl	mean_N	O3 mean_NH4	mean_oPO4	mean_PO4	mean_Chlor	a1	a2	a
0	winter	small	medium	8.00	9.8	60.800	6.238	578.00000	105.00000	170.00000	50.000	0.0	0.0	0.0
1	spring	small	medium	8.35	8.0	57.750	1.288	370.00000	428.75000	558.75000	1.300	1.4	7.6	4.8
2	autumn	small	medium	8.10	11.4	40.020	5.330	346.66699	125.66700	187.05701	15.600	3.3	53.6	1.9
3	spring	small:	medium	8.07	4.8	77.364	2.302	98.18200	61.18200	138.70000	1.400	3.1	41.0	18.
-	-	**	٠.										~ ~	

Sneak perview

- Three categorical variables Season, Size, and Speed.
 - No missing values
 - No high cardinality, and reasonable balanced.
- Eight numerical variables max_pH, ..., mean_Chlor

To keep this more manageable we will focus more on the Algae Blooms data set ...

	Season	Size	Speed	max_j	pH min_	O2 mean	Cl mean	_NO3 mean	_NH4 mean	_oPO4 mean	_PO4 mean	_Chlor a	1 a2	2 a
0	winter	small	medium	8.00	9.8	60.800	6.238	578.0	0000 105.0	0000 170.0	0000 50.00	0.0	0.0	0.0
1	spring	small 1	medium	8.35	8.0	57.750	1.288	370.0	0000 428.7	5000 558.7	5000 1.300	1.4	7.6	4.8
2	autumn	small 1	medium	8.10	11.4	40.020	5.330	346.6	6699 125.6	6700 187.0	5701 15.60	0 3.3	53.€	3 1.9
3	spring	small 1	medium	8.07	4.8	77.364	2.302	98.18	200 61.18	200 138.7	0000 1.400	3.1	41.0	18.
-		••	**											

> Sneak perview

- Three categorical variables Season, Size, and Speed.
 - No missing values
 - No high cardinality, and reasonable balanced.
- Eight numerical variables max_pH, ..., mean_Chlor
- Missing values present

To keep this more manageable we will focus more on the Algae Blooms data set ...

	Season	Size	Speed	max_pH	min_0	2 mean_Cl	mean_NO3	mean_NH4	mean_oPO4	mean_PO4	mean_Chlor	a1	a2	a
0	winter	small	medium	8.00	9.8	60.800	6.238	578.00000	105.00000	170.00000	50.000	0.0	0.0	0.0
1	spring	small	medium	8.35	8.0	57.750	1.288	370.00000	428.75000	558.75000	1.300	1.4	7.6	4.8
2	autumn	small	medium	8.10	11.4	40.020	5.330	346.66699	125.66700	187.05701	15.600	3.3	53.6	1.9
3	spring	small:	medium	8.07	4.8	77.364	2.302	98.18200	61.18200	138.70000	1.400	3.1	41.0	18.
-		••	••										~ ~	

Sneak perview

- Three categorical variables Season, Size, and Speed.
 - No missing values
 - No high cardinality, and reasonable balanced.
- Eight numerical variables max_pH, ..., mean_Chlor
- Missing values present
- Some variables heavily skewed might need to transform.

To keep this more manageable we will focus more on the Algae Blooms data set ...

	Season	Size	Speed	max_p	H min_	O2 mean_	Cl mean_	NO3	mean_NH4	mean_oPO4	mean_PO4	mean_Chlor	a1	a2	a
0	winter	small	medium	8.00	9.8	60.800	6.238		578.00000	105.00000	170.00000	50.000	0.0	0.0	0.0
1	spring	small	medium	8.35	8.0	57.750	1.288		370.00000	428.75000	558.75000	1.300	1.4	7.6	4.8
2	autumn	small	medium	8.10	11.4	40.020	5.330		346.66699	125.66700	187.05701	15.600	3.3	53.6	1.9
3	spring	small	medium	8.07	4.8	77.364	2.302		98.18200	61.18200	138.70000	1.400	3.1	41.0	18.
•		**	••												

Sneak perview

- Three categorical variables Season, Size, and Speed.
 - No missing values
 - No high cardinality, and reasonable balanced.
- Eight numerical variables max_pH, ..., mean_Chlor
- Missing values present
- Some variables heavily skewed might need to transform.
- Possibility of features being interrelated multicollinearity try principal component analysis.

df.groupby("Season")["a1"].agg(["min","max","mean","count","std"])

	min	max	mean	count	std
Season			\bar{x} n		σ
spring	0.0	89.8	16.649057	53	23.093786
summer	0.0	64.2	16.038636	44	17.920798
autumn	0.0	86.6	17.745000	40	21.611203
winter	0.0	81.9	17.498361	61	22.568256

df.groupby("Season")["a1"].agg(["min","max","mean","count","std"])

	min	max		mean	count	std
Season			\bar{x}	n		σ
spring	0.0	89.8	16.6	49057	53	23.093786
summer	0.0	64.2	16.0	38636	44	17.920798
autumn	0.0	86.6	17.7	45000	40	21.611203
winter	0.0	81.9	17.4	98361	61	22.568256

 Countplot shows no issues with feature Season — all levels approximately equally represented.

df.groupby("Season")["a1"].agg(["min","max","mean","count","std"])

	min	max		mean	count	std
Season			\bar{x}	n		σ
spring	0.0	89.8	16.	649057	53	23.093786
summer	0.0	64.2	16.	038636	44	17.920798
autumn	0.0	86.6	17.	745000	40	21.611203
winter	0.0	81.9	17.	498361	61	22.568256

- Countplot shows no issues with feature Season all levels approximately equally represented.
- Countplots show slightly less spread in a1 for Season="summer" observations.

df.groupby("Season")["a1"].agg(["min","max","mean","count","std"])

	min	max	mean	count	std
Season			\bar{x} n		σ
spring	0.0	89.8	16.649057	53	23.093786
summer	0.0	64.2	16.038636	44	17.920798
autumn	0.0	86.6	17.745000	40	21.611203
winter	0.0	81.9	17.498361	61	22.568256

- Countplot shows no issues with feature Season all levels approximately equally represented.
- Countplots show slightly less spread in a1 for Season="summer" observations.
- No/weak relationship between Season feature and a1 target.

df.groupby("Size")["a1"].agg(["min","max","mean","count","std"])

	min	max	mean	count	std
Size					
small	0.0	89.8	27.255714	70	24.895426
medium	0.0	86.6	11.267857	84	17.163124
large	0.0	56.8	11.611364	44	16.556123

df.groupby("Size")["a1"].agg(["min","max","mean","count","std"])

	min	max	mean	count	std
Size					
small	0.0	89.8	27.255714	70	24.895426
medium	0.0	86.6	11.267857	84	17.163124
large	0.0	56.8	11.611364	44	16.556123

• Countplot shows no issues with feature Size.

df.groupby("Size")["a1"].agg(["min","max","mean","count","std"])

	min	max	mean	count	std
Size					
small	0.0	89.8	27.255714	70	24.895426
medium	0.0	86.6	11.267857	84	17.163124
large	0.0	56.8	11.611364	44	16.556123

- Countplot shows no issues with feature Size.
- Size="small" rivers have higher frequencies of a1 alga ((point) catplot), and observed frequencies for small rivers is much more widespread across the domain of frequencies than for other types of rivers (boxplot).

df.groupby("Speed", observed=False)["a1"].agg(["min","max","mean","count","std"])

	min	max	mean	count	std
Speed					
low	0.0	58.7	9.209091	33	13.164758
medium	0.0	89.8	12.548148	81	21.146986
high	0.0	81.9	24.345238	84	22.209123

df.groupby("Speed", observed=False)["a1"].agg(["min","max","mean","count","std"])

	min	max	mean	count	std
Speed					
low	0.0	58.7	9.209091	33	13.164758
medium	0.0	89.8	12.548148	81	21.146986
high	0.0	81.9	24.345238	84	22.209123

· Countplot shows no issues with feature Speed.

df.groupby("Speed", observed=False)["a1"].agg(["min","max","mean","count","std"])

	min	max	mean	count	std
Speed					
low	0.0	58.7	9.209091	33	13.164758
medium	0.0	89.8	12.548148	81	21.146986
high	0.0	81.9	24.345238	84	22.209123

- Countplot shows no issues with feature Speed.
- Speed="high" rivers have average population of a1 alga ((point) catplot), and observed frequencies is much more widespread across the domain of frequencies than for other types of rivers (boxplot).

Categorical Variables — Dealing with Missing Values

In terms of our three datasets, only Titanic has missing values in categorical features:

Categorical Variables — Dealing with Missing Values

In terms of our three datasets, only Titanic has missing values in categorical features:

• Location of cabin's missing values are important (1st class passengers were most likely to have a cabin) so add new category level "Unknown".

Categorical Variables — Dealing with Missing Values

In terms of our three datasets, only Titanic has missing values in categorical features:

- Location of cabin's missing values are important (1st class passengers were most likely to have a cabin) so add new category level "Unknown".
- Replace Embarked's 2 missing values with mode ("S", 644/891=72%). Note: Use df.Embarked.value_counts(dropna=False) to include missing values in count tables.

Numerical Variables — Dealing with Missing Values

In terms of our three datasets:

Numerical Variables — Dealing with Missing Values

In terms of our three datasets:

• In Titanic, feature Fare appears to have no missing values, but has 15 zero entries. Are these missing values? or free tickets due to age? ...

Numerical Variables — Dealing with Missing Values

In terms of our three datasets:

- In Titanic, feature Fare appears to have no missing values, but has 15 zero entries. Are these missing values? or free tickets due to age? ...
- In Algae Blooms, some of the 8 numeric features have NAs ... next few slides.

Dataset: Algae Blooms, Feature: max_ph

count	197.000000	
mean	8.019975	
std	0.590169	
min	5.600000	
25%	7.700000	
50 %	8.060000	
75%	8.400000	
max	9.700000	
Name:	<pre>max_pH, dtype:</pre>	float64

 \bullet Data is relatively normal — minor issue with (left) outliers.

Dataset: Algae Blooms, Feature: max_ph

max nH

Data is relatively normal — minor issue with (left) outliers.

Dataset: Algae Blooms, Feature: max_ph

max nH

- Data is relatively normal minor issue with (left) outliers.
- ⇒ Will replace (single) NA by mean

df.max_pH = df.max_pH.fillna(df.max_pH.mean())

Dataset: Algae Blooms, Feature: mean_Chlor

Data is not normal, heavily skewed to the right

Dataset: Algae Blooms, Feature: mean_Chlor

- Data is not normal, heavily skewed to the right
- skew
 pean is a poor representative of the central location.

Dataset: Algae Blooms, Feature: mean_Chlor

- Data is not normal, heavily skewed to the right
- skew
 pean is a poor representative of the central location.
- So will replace (single) NA by median, not the mean

df.mean_Chlor = df.mean_Chlor.fillna(df.mean_Chlor.median()

After Target and Individual Feature Pass — Where are we?

Tips

- Reviewed each feature location, spread, shape, issues.
- No missing values
- total_bill, and total_tip have possible outliers.

After Target and Individual Feature Pass — Where are we?

Tips

- Reviewed each feature location, spread, shape, issues.
- No missing values
- total_bill, and total_tip have possible outliers.

Titanic >

- Reviewed each feature location, spread, shape, issues.
- Generated ToDo list for cleaning, feature extraction
 - Identified features that appear to be related to the target.
 - Feature age has missing values.
 - Feature Fare
 - has 15 measurements with value 0 decide missing value or not.
 - distribution has large outliers and is skewed remove/fix outliers and transform.
 - Feature Name has could be used to obtain new feature Title.
 - ...

Tips

- Reviewed each feature location, spread, shape, issues.
- No missing values
- total_bill, and total_tip have possible outliers.

>Titanic >

- Reviewed each feature location, spread, shape, issues.
- Generated ToDo list for cleaning, feature extraction
 - Identified features that appear to be related to the target.
 - Feature age has missing values.
 - Feature Fare
 - has 15 measurements with value 0 decide missing value or not.
 - distribution has large outliers and is skewed remove/fix outliers and transform.
 - Feature Name has could be used to obtain new feature Title.
 - ...

Algae Blooms

- Reviewed each feature location, spread, shape, issues.
- Imputed missing values using feature distributions (mean/median).
- Identified features that appear to be related to the target.

	= pd.read_ .head()	csv('ass	ets/tr	ain.csv')									
	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	1 1	NaN	_	
1	2	1	1	Curnings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599				t) feature rep- e passenger's
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7 004	name	_	e passenger s
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	s	
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	s	

	= pd.read_ .head()	_csv('ass	ets/tr	ain.csv')									
П	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cat	oin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2 1	Nat	J	s
1	2	1	1	Curnings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.28			a (text
	Title	Count		Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.925	name		_
Cap Col	t		4	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.100	0 C12	23	s
Don	1		<u> </u>	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	Nat	,	s
Don	ıa		1	,									
Dr			8										
Jon	kheer		1										
Lad	y		1										
Maj	or		2										
Mas	iter	6	1										
Mis	S	26	0										
MII	2		2										
Mm	e		1										
Mr		75	7										
Mrs		19	7										
Ms			2										
Rev			8										
Sir			1										
the	Countess		1										

Third Pass — Relationships Between Features (and Target)

Correlations

We distinguish later between feature-feature and feature-target correlations

A Selection of Statistical Visualisations and Metrics

Feature

Categorical

nunique, unique, describe,
value_counts, ...

countplot, ...

Categorical Variables — Relationship with (Numerical) Target

sns.countplot(x="Size", data=df);

 Shows the counts of observations in each categorical level using bar (height/width).

Is it usable?

sns.catplot(x="Size", y="a4", data=df, kind='bar');

- Shows the average level (mean) and uncertainty (std)
 of the numerical target (a4) in each categorical level
 of the categorical variable.
- Vertical bar shows 95% confidence interval.

Is it useful?

Example — Dataset: Algae_Blooms, Feature: all numeric

```
fig. axs = plt.subplots(1, 8, figsize=(24,6))
for k. c in enumerate(df.columns[3:11]):
     sns.histplot(data=df, x=c, color="lightblue", ax=axs[k])
     axs[k].set_xlabel(c)
                                                                                            60
                                60
                                               40
                                                              70
 40
                                                                             70
                                                                                                           80
                                                                                            50
                                                              60
                                50
                                                                             60
 30
                                                                                            40
                                                                           50
40
               Count
                              Count 80
Count
20
                                                            40
Count
                                                                                          Count
30
                                                                             30
                                                                                            20
                                20
                                                              20
                                                                             20
 10
                                               10
                 10
                                                                                            10
                                10
                                                              10
                                                                             10
                           10
                                         250
                                                  n
                                                        25
                                                                         20000
                                                                                         500
                                                                                                      500
                                                                                                                        100
                                                                                  mean oPO4
                                                                                                 mean PO4
       max_pH
                       min O2
                                     mean Cl
                                                    mean NO3
                                                                   mean NH4
                                                                                                                mean Chlor
```

Most features are heavily skewed, max_pH appears to be least skewed.

Example — Dataset: Algae_Blooms, Feature: all numeric

```
fig, axs = plt.subplots(1, 8, figsize=(24,6))
for k, c in enumerate(df.columns[3:11]):
    sns.boxplot(data=df, y=c, color="lightblue", ax=axs[k])
    axs[k].set_xlabel(c)
```


- Outliers are much clearer. mean_NH4, mean_N03, and meanCL have clear outliers that need to be addressed.
- On the other hand features like mean_Chlor and mean_oP04 appear to follow a skewed distribution and need to be transformed.

Is there a relationship between feature max_pH and target a1?

Is there a relationship between feature max_pH and target a1?

```
df[["max_pH", "a1"]].corr()
```

	max_pH	a1
max_pH	1.000000	-0.268539
a1	-0.268539	1.000000

Is there a relationship between feature max_pH and target a1?

	max_pH	<u>a1</u>
max_pH	1.000000	-0.268539
a1	-0.268539	1.000000

(Pearson's) Correlation coefficient, r, measures the strength of a **linear** relationship between two numerical variables.

- near zero means no/weak linear relationship.
- near ± 1 zero means strong linear relationship.
- sign indicates direction of relationship

Is there a relationship between feature max_pH and target a1?

(Pearson's) Correlation coefficient, r, measures the strength of a **linear** relationship between two numerical variables.

- near zero means no/weak linear relationship.
- near ± 1 zero means strong linear relationship.
- sign indicates direction of relationship

sns.lmplot(x="max_pH", y="a1", data=df);

Is there a relationship between feature max_pH and target a1?

(Pearson's) Correlation coefficient, r, measures the strength of a **linear** relationship between two numerical variables.

- near zero means no/weak linear relationship.
- near ± 1 zero means strong linear relationship.
- sign indicates direction of relationship

sns.lmplot(x="max_pH", y="a1", data=df);

- Correlation coefficient, r = -0.27, shows (at most) a weak negative linear relationship.
- No obvious relationship visible in scatter plot.

Pearson's correlation coefficient,r

is a measure of linear correlation between two variables. Its value lies between -1 and +1, -1 indicating total negative linear correlation, 0 indicating no linear correlation and 1 indicating total positive linear correlation.

Pearson's correlation coefficient, r

is a measure of linear correlation between two variables. Its value lies between -1 and +1, -1 indicating total negative linear correlation, 0 indicating no linear correlation and 1 indicating total positive linear correlation.

> Spearman's rank correlation coefficient, ho

is a measure of monotonic correlation between two variables, and is therefore better in catching nonlinear monotonic correlations than Pearson's r. Its value also lies between -1 and +1, with values near zero indicating no monotonic relation.

Pearson's correlation coefficient,r

is a measure of linear correlation between two variables. Its value lies between -1 and +1, -1 indicating total negative linear correlation, 0 indicating no linear correlation and 1 indicating total positive linear correlation.

Spearman's rank correlation coefficient, ρ

is a measure of monotonic correlation between two variables, and is therefore better in catching nonlinear monotonic correlations than Pearson's r. Its value also lies between -1 and +1, with values near zero indicating no monotonic relation.

Kendall rank correlation coefficient, τ

measures ordinal association between two variables. Its value lies between -1 and +1 with values near zero indicating no relation.

Pearson's correlation coefficient,r

is a measure of linear correlation between two variables. Its value lies between -1 and +1, -1 indicating total negative linear correlation, 0 indicating no linear correlation and 1 indicating total positive linear correlation.

Spearman's rank correlation coefficient, ρ

is a measure of monotonic correlation between two variables, and is therefore better in catching nonlinear monotonic correlations than Pearson's r. Its value also lies between -1 and +1, with values near zero indicating no monotonic relation.

Kendall rank correlation coefficient, τ

measures ordinal association between two variables. Its value lies between -1 and +1 with values near zero indicating no relation.

\rightarrow Phi-k, ϕk

is a new and practical correlation coefficient that works consistently between categorical, ordinal and interval variables, captures non-linear dependency and reverts to the Pearson correlation coefficient in case of a bivariate normal input distribution. Its value also lies between 0 and +1, with values near zero indicating no relation.

Pearson's Correlation Coefficient — Dataset: Algae Blooms

```
columns = df.columns[:12]
corr = df[columns].corr(numeric_only=True)
corr
```

	max_pH	min_O2	mean_Cl	mean_NO3	mean_NH4	mean_oPO4	mean_PO4	mean_Chlor	a1
max_pH	1.000000	-0.167981	0.136369	-0.130762	-0.093521	0.158769	0.179885	0.445864	-0.268539
min_O2	-0.167981	1.000000	-0.278333	0.099444	-0.087478	-0.416163	-0.487486	-0.153265	0.285564
mean_Cl	0.136369	-0.278333	1.000000	0.225041	0.071913	0.391054	0.457449	0.149856	-0.371171
mean_NO3	-0.130762	0.099444	0.225041	1.000000	0.721444	0.144588	0.168601	0.139679	-0.241211
mean_NH4	-0.093521	-0.087478	0.071913	0.721444	1.000000	0.227237	0.208180	0.088947	-0.132656
mean_oPO4	0.158769	-0.416163	0.391054	0.144588	0.227237	1.000000	0.914365	0.115621	-0.417358
mean_PO4	0.179885	-0.487486	0.457449	0.168601	0.208180	0.914365	1.000000	0.253621	-0.487023
mean_Chlor	0.445864	-0.153265	0.149856	0.139679	0.088947	0.115621	0.253621	1.000000	-0.277987
a1	-0.268539	0.285564	-0.371171	-0.241211	-0.132656	-0.417358	-0.487023	-0.277987	1.000000

Pearson's Correlation Coefficient — Dataset: Algae Blooms

columns = df.columns[:12] corr

cmap = sns.diverging_palette(230, 20, as_cmap=True) corr = df[columns].corr(numeric_o| sns.heatmap(corr, square=True, vmin=-1, vmax=1, cmap=cmap);

	max_pH	min_O2	mean_Cl	mean_NO3	mean_NH4	mean_oPO4	mean_PO4	mean_Chlor	a1
max_pH	1.000000	-0.167981	0.136369	-0.130762	-0.093521	0.158769	0.179885	0.445864	-0.268539
min_O2	-0.167981	1.000000	-0.278333	0.099444	-0.087478	-0.416163	-0.487486	-0.153265	0.285564
mean_Cl	0.136369	-0.278333	1.000000	0.225041	0.071913	0.391054	0.457449	0.149856	-0.371171
mean_NO3	-0.130762	0.099444	0.225041	1.000000	0.721444	0.144588	0.168601	0.139679	-0.241211
mean_NH4	-0.093521	-0.087478	0.071913	0.721444	1.000000	0.227237	0.208180	0.088947	-0.132656
mean_oPO4	0.158769	-0.416163	0.391054	0.144588	0.227237	1.000000	0.914365	0.115621	-0.417358
mean_PO4	0.179885	-0.487486	0.457449	0.168601	0.208180	0.914365	1.000000	0.253621	-0.487023
mean_Chlor	0.445864	-0.153265	0.149856	0.139679	0.088947	0.115621	0.253621	1.000000	-0.277987
a1	-0.268539	0.285564	-0.371171	-0.241211	-0.132656	-0.417358	-0.487023	-0.277987	1.000000

Pearson's Correlation Coefficient — Dataset: Algae Blooms

columns = df.columns[:12] corr

cmap = sns.diverging_palette(230, 20, as_cmap=True) corr = df[columns].corr(numeric_o sns.heatmap(corr, square=True, vmin=-1, vmax=1, cmap=cmap);

	max_pH	min_O2	mean_Cl	mean_NO3	mean_NH4	mean_oPO4	mean_PO4	mean_Chlor	a1
max_pH	1.000000	-0.167981	0.136369	-0.130762	-0.093521	0.158769	0.179885	0.445864	-0.268539
min_O2	-0.167981	1.000000	-0.278333	0.099444	-0.087478	-0.416163	-0.487486	-0.153265	0.285564
mean_Cl	0.136369	-0.278333	1.000000	0.225041	0.071913	0.391054	0.457449	0.149856	-0.371171
mean_NO3	-0.130762	0.099444	0.225041	1.000000	0.721444	0.144588	0.168601	0.139679	-0.241211
mean_NH4	-0.093521	-0.087478	0.071913	0.721444	1.000000	0.227237	0.208180	0.088947	-0.132656
mean_oPO4	0.158769	-0.416163	0.391054	0.144588	0.227237	1.000000	0.914365	0.115621	-0.417358
mean_PO4	0.179885	-0.487486	0.457449	0.168601	0.208180	0.914365	1.000000	0.253621	-0.487023
mean_Chlor	0.445864	-0.153265	0.149856	0.139679	0.088947	0.115621	0.253621	1.000000	-0.277987
a1	-0.268539	0.285564	-0.371171	-0.241211	-0.132656	-0.417358	-0.487023	-0.277987	1.000000

- Categorical variables are not included.
- Suggests best predictors for a1 are mean_P04, mean_oP04, and meanC1.
- mean P04 and mean_oP04 are highly correlated (0.91) could use values of one to estimate missing values of the other.

Spearman's Rank Correlation Coefficient — Dataset: Algae Blooms

```
columns = df.columns[:12]
corr = df[columns].corr(method='spearman', numeric_only=True)
corr
```

	max_pH	min_O2	mean_Cl	mean_NO3	mean_NH4	mean_oPO4	mean_PO4	mean_Chlor	a1
max_pH	1.000000	-0.148676	0.159079	-0.145182	0.026160	0.290245	0.214569	0.394813	-0.247787
min_O2	-0.148676	1.000000	-0.405142	0.057610	-0.348226	-0.457805	-0.519786	-0.217714	0.283418
mean_Cl	0.159079	-0.405142	1.000000	0.530374	0.592052	0.670399	0.713479	0.564915	-0.546845
mean_NO3	-0.145182	0.057610	0.530374	1.000000	0.425010	0.432303	0.451272	0.346805	-0.382403
mean_NH4	0.026160	-0.348226	0.592052	0.425010	1.000000	0.603157	0.646690	0.406656	-0.449194
mean_oPO4	0.290245	-0.457805	0.670399	0.432303	0.603157	1.000000	0.914921	0.510930	-0.671019
mean_PO4	0.214569	-0.519786	0.713479	0.451272	0.646690	0.914921	1.000000	0.554167	-0.656670
mean_Chlor	0.394813	-0.217714	0.564915	0.346805	0.406656	0.510930	0.554167	1.000000	-0.537823
a1	-0.247787	0.283418	-0.546845	-0.382403	-0.449194	-0.671019	-0.656670	-0.537823	1.000000

Spearman's Rank Correlation Coefficient — Dataset: Algae Blooms

columns = df.columns[:12] corr

cmap = sns.diverging_palette(230, 20, as_cmap=T) corr = df[columns].corr(method='spearman', nume sns.heatmap(corr, square=True, vmin=-1, vmax=1,

	max_pH	min_O2	mean_Cl	mean_NO3	mean_NH4	mean_oPO4	mean_PO4	mean_Chlor	a
max_pH	1.000000	-0.148676	0.159079	-0.145182	0.026160	0.290245	0.214569	0.394813	-0.24778
min_O2	-0.148676	1.000000	-0.405142	0.057610	-0.348226	-0.457805	-0.519786	-0.217714	0.283418
mean_Cl	0.159079	-0.405142	1.000000	0.530374	0.592052	0.670399	0.713479	0.564915	-0.54684
mean_NO3	-0.145182	0.057610	0.530374	1.000000	0.425010	0.432303	0.451272	0.346805	-0.38240
mean_NH4	0.026160	-0.348226	0.592052	0.425010	1.000000	0.603157	0.646690	0.406656	-0.44919
mean_oPO4	0.290245	-0.457805	0.670399	0.432303	0.603157	1.000000	0.914921	0.510930	-0.67101
mean_PO4	0.214569	-0.519786	0.713479	0.451272	0.646690	0.914921	1.000000	0.554167	-0.65667
mean_Chlor	0.394813	-0.217714	0.564915	0.346805	0.406656	0.510930	0.554167	1.000000	-0.53782
a1	-0.247787	0.283418	-0.546845	-0.382403	-0.449194	-0.671019	-0.656670	-0.537823	1.000000

Spearman's Rank Correlation Coefficient — Dataset: Algae Blooms

columns = df.columns[:12] corr

cmap = sns.diverging_palette(230, 20, as_cmap=Tr corr = df[columns].corr(method='spearman', nume sns.heatmap(corr, square=True, vmin=-1, vmax=1,

	max_pH	min_O2	mean_Cl	mean_NO3	mean_NH4	mean_oPO4	mean_PO4	mean_Chlor	a1
max_pH	1.000000	-0.148676	0.159079	-0.145182	0.026160	0.290245	0.214569	0.394813	-0.247787
min_O2	-0.148676	1.000000	-0.405142	0.057610	-0.348226	-0.457805	-0.519786	-0.217714	0.283418
mean_Cl	0.159079	-0.405142	1.000000	0.530374	0.592052	0.670399	0.713479	0.564915	-0.546845
mean_NO3	-0.145182	0.057610	0.530374	1.000000	0.425010	0.432303	0.451272	0.346805	-0.382403
mean_NH4	0.026160	-0.348226	0.592052	0.425010	1.000000	0.603157	0.646690	0.406656	-0.449194
mean_oPO4	0.290245	-0.457805	0.670399	0.432303	0.603157	1.000000	0.914921	0.510930	-0.671019
mean_PO4	0.214569	-0.519786	0.713479	0.451272	0.646690	0.914921	1.000000	0.554167	-0.656670
mean_Chlor	0.394813	-0.217714	0.564915	0.346805	0.406656	0.510930	0.554167	1.000000	-0.537823
a1	-0.247787	0.283418	-0.546845	-0.382403	-0.449194	-0.671019	-0.656670	-0.537823	1.000000

Now best predictors for all also include mean Chlor and mean NH4.

Phik Correlation Coefficient — Dataset: Algae Blooms

```
import phik
columns = df.columns[:12]
corr = df[columns].phik_matrix()
corr
```

	Season	Size	Speed	max_pH	min_O2	mean_Cl	mean_NO3	mean_NH4	mean_oPO4	mean_PO4	mean_C
Season	1.000000	0.000000	0.000000	0.000000	0.343496	0.000000	0.000000	0.034202	0.000000	0.093199	0.04536
Size	0.000000	1.000000	0.620101	0.655207	0.270013	0.268198	0.182410	0.000000	0.000000	0.531635	0.17351
Speed	0.000000	0.620101	1.000000	0.445096	0.437356	0.339237	0.000000	0.101348	0.483298	0.594480	0.47973
max_pH	0.000000	0.655207	0.445096	1.000000	0.125231	0.000000	0.000000	0.000000	0.000000	0.175105	0.52813
min_O2	0.343496	0.270013	0.437356	0.125231	1.000000	0.353196	0.000000	0.416999	0.492457	0.535996	0.296370
mean_Cl	0.000000	0.268198	0.339237	0.000000	0.353196	1.000000	0.243887	0.073692	0.443047	0.472824	0.225583
mean_NO3	0.000000	0.182410	0.000000	0.000000	0.000000	0.243887	1.000000	0.642789	0.158463	0.259915	0.368142
mean_NH4	0.034202	0.000000	0.101348	0.000000	0.416999	0.073692	0.642789	1.000000	0.734681	0.776197	0.167533
mean_oPO4	0.000000	0.000000	0.483298	0.000000	0.492457	0.443047	0.158463	0.734681	1.000000	0.954601	0.000000
mean_PO4	0.093199	0.531635	0.594480	0.175105	0.535996	0.472824	0.259915	0.776197	0.954601	1.000000	0.192920
mean_Chlor	0.045361	0.173516	0.479735	0.528134	0.296376	0.225583	0.368142	0.167533	0.000000	0.192920	1.000000
a1	0.000000	0.353390	0.369374	0.372031	0.000000	0.000000	0.000000	0.000000	0.000000	0.221308	0.000000

Phik Correlation Coefficient — Dataset: Algae Blooms

import phik
columns = df.columns[:12]
corr = df[columns].phik_matrix()
corr

cmap = sns.diverging_palette(230, 20, as_cmap=Tr sns.heatmap(corr, square=True, vmin=-1, vmax=1,

	Season	Size	Speed	max_pH	min_O2	mean_Cl	mean_NO3	mean_NH4	mean_oPO4	mean_PO4	mean_C
Season	1.000000	0.000000	0.000000	0.000000	0.343496	0.000000	0.000000	0.034202	0.000000	0.093199	0.04536
Size	0.000000	1.000000	0.620101	0.655207	0.270013	0.268198	0.182410	0.000000	0.000000	0.531635	0.17351
Speed	0.000000	0.620101	1.000000	0.445096	0.437356	0.339237	0.000000	0.101348	0.483298	0.594480	0.47973
max_pH	0.000000	0.655207	0.445096	1.000000	0.125231	0.000000	0.000000	0.000000	0.000000	0.175105	0.52813
min_O2	0.343496	0.270013	0.437356	0.125231	1.000000	0.353196	0.000000	0.416999	0.492457	0.535996	0.29637
mean_Cl	0.000000	0.268198	0.339237	0.000000	0.353196	1.000000	0.243887	0.073692	0.443047	0.472824	0.22558
mean_NO3	0.000000	0.182410	0.000000	0.000000	0.000000	0.243887	1.000000	0.642789	0.158463	0.259915	0.368143
mean_NH4	0.034202	0.000000	0.101348	0.000000	0.416999	0.073692	0.642789	1.000000	0.734681	0.776197	0.16753
mean_oPO4	0.000000	0.000000	0.483298	0.000000	0.492457	0.443047	0.158463	0.734681	1.000000	0.954601	0.00000
mean_PO4	0.093199	0.531635	0.594480	0.175105	0.535996	0.472824	0.259915	0.776197	0.954601	1.000000	0.19292
mean_Chlor	0.045361	0.173516	0.479735	0.528134	0.296376	0.225583	0.368142	0.167533	0.000000	0.192920	1.00000
a1	0.000000	0.353390	0.369374	0.372031	0.000000	0.000000	0.000000	0.000000	0.000000	0.221308	0.00000

Phik Correlation Coefficient — Dataset: Algae Blooms

import phik
columns = df.columns[:12]
corr = df[columns].phik_matrix()
corr

cmap = sns.diverging_palette(230, 20, as_cmap=Tr sns.heatmap(corr, square=True, vmin=-1, vmax=1,

	Season	Size	Speed	max_pH	min_O2	mean_Cl	mean_NO3	mean_NH4	mean_oPO4	mean_PO4	mean_C
Season	1.000000	0.000000	0.000000	0.000000	0.343496	0.000000	0.000000	0.034202	0.000000	0.093199	0.04536
Size	0.000000	1.000000	0.620101	0.655207	0.270013	0.268198	0.182410	0.000000	0.000000	0.531635	0.17351
Speed	0.000000	0.620101	1.000000	0.445096	0.437356	0.339237	0.000000	0.101348	0.483298	0.594480	0.47973
max_pH	0.000000	0.655207	0.445096	1.000000	0.125231	0.000000	0.000000	0.000000	0.000000	0.175105	0.52813
min_O2	0.343496	0.270013	0.437356	0.125231	1.000000	0.353196	0.000000	0.416999	0.492457	0.535996	0.29637
mean_Cl	0.000000	0.268198	0.339237	0.000000	0.353196	1.000000	0.243887	0.073692	0.443047	0.472824	0.22558
mean_NO3	0.000000	0.182410	0.000000	0.000000	0.000000	0.243887	1.000000	0.642789	0.158463	0.259915	0.36814
mean_NH4	0.034202	0.000000	0.101348	0.000000	0.416999	0.073692	0.642789	1.000000	0.734681	0.776197	0.16753
mean_oPO4	0.000000	0.000000	0.483298	0.000000	0.492457	0.443047	0.158463	0.734681	1.000000	0.954601	0.00000
mean_PO4	0.093199	0.531635	0.594480	0.175105	0.535996	0.472824	0.259915	0.776197	0.954601	1.000000	0.19292
mean_Chlor	0.045361	0.173516	0.479735	0.528134	0.296376	0.225583	0.368142	0.167533	0.000000	0.192920	1.00000
a1	0.000000	0.353390	0.369374	0.372031	0.000000	0.000000	0.000000	0.000000	0.000000	0.221308	0.00000

• Now include categorical variables — Season is not related, but Size and Speed are.

sns.boxplot(x="a1", data=df);

.

Multi-Relation Plots

40 a1

sns.boxplot(x="a1", data=df);
sns.boxplot(x="a1", y="Size", data=df);

Multi-Relation Plots

• Reviewed each feature — location, spread, shape, issues.

- Reviewed each feature location, spread, shape, issues.
- Identified any correlation among features and with target.

- Reviewed each feature location, spread, shape, issues.
- Identified any correlation among features and with target.
- Located and resolved missing values.

- Reviewed each feature location, spread, shape, issues.
- Identified any correlation among features and with target.
- Located and resolved missing values.
- Generated list of possible feature engineering tasks.