

Název a adresa školy:	Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01
Názov oporačního programu	
Název operačního programu:	OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5
Registrační číslo projektu:	CZ.1.07/1.5.00/34.0129
Název projektu	SŠPU Opava – učebna IT
Typ šablony klíčové aktivity:	III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (20
	vzdělávacích materiálů)
Název sady vzdělávacích materiálů:	Automatizace IV
Popis sady vzdělávacích materiálů:	Automatizace IV, 4. ročník
Sada číslo:	E-15
Pořadové číslo vzdělávacího materiálu:	12
Označení vzdělávacího materiálu:	VY_32_INOVACE_E-15-12
(pro záznam v třídní knize)	
Název vzdělávacího materiálu:	Sekvenční logické obvody
Zhotoveno ve školním roce:	2011/2012
Jméno zhotovitele:	Ing. Jiří Miekisch

Sekvenční logické obvody

Sekvenční logické obvody jsou obvody, u kterých hodnoty výstupních veličin jsou určeny nejen hodnotami veličin vstupních v daném časovém okamžiku, ale i hodnotami výstupních veličin z předcházejícího časového okamžiku. Sekvenční obvod se skládá z kombinačního logického obvodu a z paměťového obvodu. Na vstup kombinační části přicházejí vstupní signály a vnitřní proměnná z paměťového obvodu. Graficky je tento stav vyjádřen následujícím obrázkem.

Sekvenční logické obvody mají v technické praxi mnohé využití jako paměťové obvody, klopné obvody, čítače událostí, posuvné registry a spoustu dalších aplikací jak v automatizaci, tak ve výpočetní technice. Podle časového řízení dělíme sekvenční logické obvody:

- Asynchronní obvod výstupy obvodu se mění ihned po příchodu vstupních signálů.
- Synchronní obvod výstupy obvodu se mění až po příchodu tzv. synchronizačního (hodinového)
 impulsu na zvláštní vstup označení C (clock).

Klopné obvody

Jsou to sekvenční logické obvody, které se používají v obvodech číslicových zařízení, kde je třeba zachovat po určitou dobu signál s logickou hodnotou 0 nebo 1. Jako elementární paměti pro jeden bit (jednu dvojkovou číslici) se používají bistabilní klopné obvody. Stav klopného obvodu v určitém okamžiku je podmíněn stavem obvodu v okamžiku předchozím. Klopné obvody mají jeden nebo dva řídící vstupy a jeden vstup pro hodinové impulsy (C – clock). Výstupem je signál Q a jeho negace Q non. Lze je realizovat pomocí logických členů typu NAND nebo NOR.

Podle odezvy výstupního signálu dělíme klopné obvody:

- Bistabilní.
- Monostabilní.
- Astabilní.

Bistabilní klopný obvod

BKO je elektronický obvod, u kterého výstup zůstává v jednom z logických stavů tak dlouho, pokud na vstup obvodu nepřijde překlápěcí impuls. V tom okamžiku se změní na výstupu logická úroveň až do příchodu dalšího překlápěcího impulsu. BKO lze přirovnat k dětské houpačce. Pokud nepůsobíme překlápěcí silou, jeden konec houpačky je na zemi a druhý konec ve vzduchu. Když na houpačku vhodně zatlačíme, překlopí se z jednoho stavu do druhého. BKO tím pádem využíváme jako paměťový člen pro jeden bit nebo jako paměťové zařízení.

Monostabilní klopný obvod

MKO má jeden stabilní stav, v němž může setrvat libovolně dlouho a jeden kvazistabilní stav, ve kterém může setrvat pouze přechodně – tzv. doba kmitu. Obvod může být sestaven z diskrétních součástek, anebo může být v integrované podobě, avšak princip bývá vždy podobný. MKO je využíván jako tvarovač signálu, generování přesných časových úseků, prodlužování impulsů atd.

Astabilní klopný obvod

AKO nemá žádný stabilní výstupní stav. Generuje periodicky dva základní logické stavy. Jedná se o klasický generátor obdélníkového průběhu. AKO je nejjednodušším příkladem generátoru obdélníkového průběhu. AKO je obvod, který využívá nabíjecích a vybíjecích proudů kondenzátorů, které jsou pomocí dvou tranzistorů zapojeny do střídajících se překlápěcích režimů. Pro stabilnější generátory obdélníku se dnes používají generátory řízené krystalem a zpracovávané hradly IO.

Čítače

Čítač je obvod, který počítá (čítá) impulsy. Jejich počet určíme ze stavu klopných obvodů, z nichž jsou sestaveny (JK, D). Po vyčerpání všech dovolených stavů jednotlivých KO se čítač vrátí do výchozího stavu. Mohou pracovat v různých kódech - nejčastěji dvojkový a BCD. Podle způsobu čítání je dělíme na čítače vpřed, vzad a vratné čítače. Z hlediska řízení je rozdělujeme na asynchronní a synchronní čítače.

Asynchronní čítače

Každý KO je spuštěn předcházejícím KO, takže poslední KO nemůže změnit stav, dokud předcházející KO své stavy nezmění. Zpoždění jednotlivých KO se sčítá a tím je omezena max. rychlost čítání. Tato se zmenšuje se vzrůstajícím počtem KO.

Výhody: jednoduchost a minimální zatěžování zdroje čítaných impulsů.

Synchronní čítače

Vstupy hodinových impulsů jsou vzájemně propojeny. Všechny stupně čítače, které mají při čítání měnit svůj stav, ho změní najednou. Maximální dosažitelná frekvence je určena zpožděním v jednom stupni čítače. Hlavní nevýhodou je podstatně větší zatěžování zdroje čítaných impulsů.

Posuvné registry

Jsou sestaveny z klopných obvodů JK nebo D a lze do nich vložit informaci a vnějšími řídícími impulsy ji posouvat, popř. ponechat v registru obíhat po dobu, kdy ji není třeba zpracovávat. Počet KO udává délku posuvného registru, a tím i počet řádů dvojkového čísla, které můžeme do registru uložit.

Posuvné registry rozdělujeme:

Podle směru posuvu vložené informace na:

Registry s posuvem vpřed – informace se posouvá zleva doprava.

Vratné registry – lze měnit směr posuvu vnějším řídícím signálem a posouvat informaci vlevo nebo vpravo.

Kruhové registry – informace obíhá ve směru vstup – registr – výstup – vstup, popř. opačným směrem.

Podle uspořádání výstupu na:

Registry se sériovým výstupem – posouvaná informace se objevuje postupně po jednom bitu na jediném výstupu posledního KO obvodu.

Registry s paralelním výstupem – posouvanou informaci lze odebírat současně z výstupů jednotlivých KO.

Posuvný registr se dá použít jako

Paměť pro nejrůznější použití, např. pro ukládání mezivýsledků

Převaděč ze sériového způsobu činnosti na paralelní – informace se sériově posune do posuvného registru, načež se z jednotlivých KO současně odebere.

Převaděč z paralelního způsobu činnosti na sériový – informace se současně vloží do všech KO, načež se postupně (sériově) na výstupu registru snímá.

Zpožďovací člen – výstup z posledního KO je zpožděn proti vstupu prvního KO o počet taktů rovnající se kapacitě registru (počtu KO).

Kruhový čítač – výstup čítače vyvedeme zpět na jeho vstup. Zapíšeme–li jedničku do prvního KO na počátku čítání, pak její poloha v posuvném registru určuje počet hodinových impulsů přivedených na vstup.

Otázky a úkoly pro zopakování učiva

- 1. Co je sekvenční logický obvod?
- 2. Popište druhy klopných obvodů?
- 3. Co je čítač?

4. Co je posuvný registr.

Seznam použité literatury

ANTOŠOVÁ, M., DAVÍDEK, V.: Číslicová technika. 4. vydání. České Budějovice: KOOP, 2009.
 ISBN: 978-80-7232-394-4.