অফ্টম অধ্যায়

ফাংশন ও ফাংশনের লেখচিত্র (Functions and graph of Functions)

8.1. অৰয় ও ফাংশন

ভাৰয়: মনে করি, A দ্বারা কলেজের কয়েকজন শিক্ষার্থীর সেট এবং B দ্বারা শিক্ষার্থীদের নিজয় পাঠ্যপুস্তকের সেট সূচিত করা হলো। ভেনচিত্রের সাহায্যে নিচে A ও B সেট দেখানো হলোঃ

উপরের 'তীর চিহ্ন' পর্যবেক্ষণ করে আমরা সহজেই বলতে পারি A সেটের প্রত্যেকটি উপাদানের সাথে B সেটের একাধিক উপাদানের অবয় রয়েছে। কারণ একজন শিক্ষার্থীর একাধিক পাঠ্যপুস্তক থাকতে পারে।

(খ) মনে করি, A দারা শিক্ষার্থীদের এবং B দারা কলেজের ছাত্রাবাসগৃলির সেট সূচিত করা হলো। নিচে ভেনচিত্র ও তীরচিহ্ন দারা A সেট থেকে B সেটে অনুয় দেখানো হলো। একটি ছাত্রাবাসে একাধিক শিক্ষার্থী বাস করতে পারে। সূতরাং A সেটের একাধিক উপাদান B সেটের যে কোন অনন্য (unique) উপাদানের সাথে অনুয় রয়েছে।

(গ) মনে করি, A দারা শিক্ষার্থীদের এবং B দারা তাদের রোল নন্দরের সেট সূচিত করা হলো। তেনচিত্র ও তীরচিহ্ন দারা নিচে A সেট থেকে B সেটে তা দেখানো হলো। একজন শিক্ষার্থীর কেবল একটি রোল নন্দর থাকতে পারে। সূতরাং A সেটের প্রত্যেকটি উপাদানের সাথে B সেটের যে কোন অনন্য উপাদানের অবয় রয়েছে।

(क) থেকে (গ) উদাহরণের অন্বয়কে ক্রমজোড়ের সেটের মাধ্যমে প্রকাশ করা যায়।

অবয়: ফাঁকা (Empty) নয় এরূপ দুইটি সেট A এবং B হলে, গুণজ্ব সেট $A \times B$ অথবা এর উপসেটকে A সেট থেকে B সেটে একটি অনুয় বলা হয়।

যদি এ অনুয়কে R দারা সূচিত করা হয়, তবে $R \subseteq A \times B$.

মনে করি, A সেট থেকে B সেটে R একটি অনুয়। তাহলে, $R \subseteq A \times B$.

এখন যদি, $a \in A$, $b \in B$ এবং $(a,b) \in R$ হয়, তবে আমরা বলি 'b' এর সাথে 'a' অন্বিত (Related) এবং লেখি a R b.

আবার যদি $(a,b) \notin R$, তাহলে আমরা বলি b এর সাথে a অন্বিত নয় এবং লেখি $a \not \! R b$.

মন্তব্য : দুইটি সেটের মাঝখানে '⊆' ব্যবহার করা হলে বুঝতে হবে যে প্রথম সেটটি দিতীয় সেটের উপসেট অথবা সমান।

অৰয়ের ডোমেন এবং রেঞ্জ : মনে করি, $R \subseteq A \times B$. তাহলে, আমরা জানি R কে বলা হয় A সেট থেকে B সেটে একটি অনুয়। এখানে

R এর ডোমেন = $\{a: (a, b) \in R\}$; R এর রেঞ্চ = $\{b: (a, b) \in R\}$.

উদাহরণ 1. মনে করি, $A = \{1, 2\}$ এবং $B = \{2, 3, 4\}$ তাহলে,

 $A \times B = \{(1, 2), (1, 3), (1,4), (2, 2), (2, 3), (2, 4)\}.$

A সেট থেকে B সেটে একটি অনুয় R_1 হলে,

 $R_1 = \{(1, 2), (2, 3), (2, 4)\}$ [$:: R_1$ হলো $A \times B$ এর একটি উপসেট]

উদাহরণ 2. মনে করি, N হলো সব যাভাবিক সংখ্যার সেট এবং অনুয় R_{\odot}

 $= \{(a, b) : a \in \mathbb{N}, b \in \mathbb{N}, b$ এর একটি উৎপাদক $a \}$.

তাহলে, $2R_2$ 6, 6 K 2 2, $5R_2$ 15, 7 K 2 18. ইত্যাদি।

বিপরীত অবয় : A সেট থেকে B সেটে একটি অনুয় যদি R , অর্থাৎ $R=\{(a,b):a\in A,b\in B\}$ হয় , তবে B সেট থেকে A সেটের অনুয় হচ্ছে R এর বিপরীত অনুয় , যা R^{-1} দ্বারা প্রকাশ করা হয়।

সুতরাৎ, $R^{-1} = \{(b, a) : (a, b) \in R\}$.

ফাংশন (Function)

অনুচ্ছেদ 8.1 এর উদাহরণ (খ) ও (গ) থেকে দেখা যাছে A সেটের প্রত্যেকটি উপাদানের সাথে B সেটের যে কোন অনন্য উপাদান সম্পর্কিত। এ ধরনের অন্বয়কে (Relation) বলা হয় A সেট থেকে B সেটে একটি ফাংশন (a function of A into B). এ ফাংশনকে সাধারণত f দারা প্রকাশ করা হয় এবং লেখা হয়: $f: A \rightarrow B$.

মন্তব্য : $f:A \rightarrow B$ কে সাধারণভাবে বলা হয় A সেট থেকে B সেটে চিত্রণ (Mapping of A into B).

সংজ্ঞা : একটি অনয় (Relation) যদি এরূপ হয় যে A সেটের প্রত্যেক উপাদান B সেটের অনন্য (Unique) উপাদানের সাথে সংশ্লিফ (Associated) থাকে, তাহলে ঐ অনয়কে A সেট থেকে B সেটে একটি ফাংশন বলা হয়।

মন্তব্য : ফাংশনের সংজ্ঞা ক্রমজোড়ের সাহাব্যেও দেওয়া যায়। যদি কোন অৰয়ে একই প্রথম উপাদানবিশিক দুইটি ভিনু ক্রমজোড় না থাকে, তবে ঐ অবয়কে ফাংশন বলা হয়।

সংজ্ঞা : যদি $(a,b)\in f:A o B$ হয়, তবে b-কে f এর অধীনে a এর প্রতিচ্ছবি (image) বলা হয় এবং b=f(a) লেখা হয়।

উদাহরণ। মনে করি, x হলো \mathbf{R} সেটের উপাদান এবং \mathbf{R} হলো বাস্তব সংখ্যার সেট। $f: \mathbf{R} \to \mathbf{R}$ কে $f(x) = x^2$ দারা সংজ্ঞায়িত করা হলো। যেহেতু $-3 \in \mathbf{R}$, $\therefore -3$ এর প্রতিচ্ছবি $f(-3) = (-3)^2 = 9$.

8.2. ফাংশনের ডোমেন ও রেঞ্চ (Domain and range of a function).

মনে করি, A সেট থেকে B সেটে f একটি ফাংশন, অর্থাৎ $f:A\to B$. তাহলে f এর অধীনে A সেটের প্রত্যেকটি উপাদানের প্রতিচ্ছবি B সেটের উপাদানের অন্তর্জুক্ত থাকে। A সেটের সব উপাদানের প্রতিচ্ছবিগুলো দারা গঠিত সেটকে

f এর রেঞ্জ বলা হয়। A সেটকে f এর ডোমেন বলা হয়। এক্ষেত্রে রেঞ্জকে f(A) দ্বারা প্রকাশ করা হয়। সূতরাং, $f(A)\subset B$.

সাধারণভাবে, f এর ডোমেন ও রেঞ্জকে যথাক্রমে ডোম f এবং রেঞ্জ f দারা প্রকাশ করা হয়।

উদাহরণ। (a) মনে করি R বাস্তব সংখ্যার সেট এবং $f: \mathbf{R} \to \mathbf{R}$ কে $f(x) = x^2$ সূত্র দ্বারা সংজ্ঞায়িত করা হলো। তাহলে, ফাংশন f এর রেঞ্জ হলো সব ধনাত্মক বাস্তব সংখ্যা এবং $\Theta($ শূনা) দ্বারা গঠিত সেট।

(b) R বাস্তব সংখ্যার সেট এবং $f:R\to R$ কে $f(x)=\sqrt{1-x^2}$ দারা সংজ্ঞায়িত করা হলে, f এর ডোমেন ও রেঞ্চ নির্ণয় করতে হবে।

সমাধান : $-1 \le x \le 1$ এর সীমাবন্ধতার মধ্যে f(x) এর মান বাস্তব হবে । $\therefore f(x)$ এর ডোমেন : $-1 \le x \le 1$.

আবার, ডোমেনের যেকোনো মানের জন্য f এর প্রতিচ্ছবি 0 থেকে 1 হবে।

- ∴ f এর রেঞ্ছ : 0 থেকে 1.
- (c) নিচের স্কেচ থেকে $f:A \to B$ এর ডোমেন ও রেঞ্জ নির্ণয় করতে হবে।

 $\therefore f: A \rightarrow B$ এর ডোমেন $: \{a, b, c, d\}$ এবং রেঞ্চ $: \{x, y\}.$

8.3. ফাপেনের প্রকারভেদ

এক–এক ফাংশন (One-One function) ঃ

মনে করি, প্রদন্ত ফাংশন হলো $f:A\to B$. যদি $a_1\in A$ ও $a_2\in A$ এর ক্ষেত্রে $a_1\neq a_2$ হলে, $f(a_1)\neq f(a_2)$ হয়, তবে f কে এক—এক ফাংশন বলা হয়। যেমন, $f:\mathbf{R}\to\mathbf{R}$ কে $f(x)=x^3$ সূত্র দারা সংজ্ঞায়িত করলে f এক—এক ফাংশন হবে; কারণ x=3, -3 হলে, f(3)=27 এবং f(-3)=-27; এবং অনুরূপভাবে দেখানো যায় যে প্রত্যেক বাস্তব সংখ্যার জন্য এদের প্রতিচ্ছবি ভিন্ন বাস্তব সংখ্যা হবে।

সংক্ষা: যদি f ফাংশন এর অধীনে তার ডোমেনের তিনু তিনু সদস্যের প্রতিচ্ছবি তিনু তিনু হয়, তবে f কে এক—এক ফাংশন বলা হয়।

সার্বিক ফাংশন (Onto function)

মনে করি, প্রদন্ত ফাংশন হলো $f:A \to B$. তাহলে, f এর রেঞ্জ f(A) হবে B এর উপসেট। যদি f(A)=B হয়, অর্থাৎ B এর সব উপাদানই A এর কমপক্ষে একটি উপাদানের প্রতিচ্ছবি হয়, তবে f কে সার্বিক ফাংশন বলা হয়। উদাহরণ। মনে করি, A=[-1,1] এবং $f:A \to A$ কে $f(x)=x^3$ দ্বারা সংজ্ঞায়িত করা হলো। তাহলে, f একটি সার্বিক ফাংশন, কারণ f(A)=A.

সংযোজিত ফাংশন (Composition function):

মনে করি, A সেট থেকে B সেটে বর্ণিত ফাংশনকে f এবং B সেট থেকে C সেটে বর্ণিত ফাংশনকে g দারা সূচিত করা হলো।

A সেট থেকে B সেটে বর্ণিত ফাংশনকে নিচের চিত্রের সাহায্যে প্রকাশ করা যায়:

এবং f এবং g ফাংশনদমকে একত্রে নিচের চিত্রের সাহায্যে দেখানো যেতে পারেঃ

যদি $a \in A$ হয়, তবে f এর অধীনে a—এর প্রতিচ্ছবি অর্থাৎ f(a) হবে B সেটের একটি উপাদান। যেহেতু ফাংশন g এর ডোমেন B এবং B এর একটি উপাদান f(a). স্তরাং g এর অধীনে f(a) এর প্রতিচ্ছবি হবে g (f(a)); অর্থাৎ g(f(a)) হবে C এর একটি উপাদান। এভাবে A সেটের প্রত্যেকটি উপাদানকে C সেটের যে কোন অনন্য (unique) উপাদানের সাথে সংশ্রিষ্ট করা যেতে পারে। অর্থাৎ A সেট থেকে C সেটে একটি ফাংশন পাওয়া যাবে।

এ নতুন ফাংশনকে বলা হয় f এর সাথে g এর সংযোজিত ফাংশন। এটিকে সাধারণত $(g \circ f)$ বা gf দ্বারা সূচিত করা হয়। সংক্ষেপে, $x \in A$ হলে, $(g \circ f)(x) \equiv g(f(x))$.

উদাহরণ। A, B, C এর প্রত্যেকে বাস্তব সংখ্যার সেট। $f:A \rightarrow B$ কে $f(x)=x^2$ দ্বারা এবং $g:B \rightarrow C$ কে g(x)=x+5 দ্বারা সংজ্ঞায়িত করা হলো।

এখন $2 \in A$ হলে, $(g \circ f)(2) = g(f(2)) = g(4) = 9$.

মস্তব্য: সংজ্ঞা থেকে $(f \circ g)(x) \equiv f(g(x))$ এবং $(g \circ f)(x) \equiv g(f(x))$. সূতরাং $(f \circ g) \neq (g \circ f)$.

অভেদক ফাংশন (identity function) ঃ

মনে করি, A একটি সেট এবং $f:A\to A$ কে f(x)=x দ্বারা সংজ্ঞায়িত করা হলো। তাহলে, A সেটের প্রত্যেকটি উপাদানের প্রতিচ্ছবি ঐ একই উপাদান হবে। এ ধরনের ফাংশনকে অভেদ ফাংশন বলা হয়। অভেদ ফাংশনকে সাধারণত I_A দ্বারা সূচিত করা হয়।

ধ্ৰ ফাংশন (constant function) ঃ

যদি ফাংশন f এর অধীনে A সেটের প্রত্যেকটি উপাদানের প্রতিচ্ছবি B সেটের কেবল একটি উপাদান হয়, তবে $f:A \to B$ কে ধ্রুব ফাংশন বলা হয়। অন্যভাবে বলা যায় যে ফাংশন f একটি ধ্রুব ফাংশন, যদি f এর রেঞ্জে কেবল একটি উপাদান অন্তর্ভুক্ত থাকে।

উদাহরণ। মনে করি, $f: \mathbb{R} \to \mathbb{R}$ কে f(x) = 7 ঘারা সংজ্ঞায়িত করা হলো। তাহলে, f একটি ধ্র ফাংশন; কারণ x এর যে কোন বাস্তব মানের জন্য f(x) এর মান সব সময় 7 হবে।

একটি ফাংশনের বিপরীত (Inverse of a function)

মনে করি, A সেট থেকে B সেটে f একটি ফাংশন এবং $b \in B$. তাহলে, f এর অধীনে A সেটের যে সকল উপাদানের প্রত্যেকের প্রতিচ্ছবি b হবে ঐ উপাদানগুলোর সেটকে b এর বিপরীত (inverse of b) বলা হয় এবং $f^{-1}(b)$ দারা প্রকাশ করা হয়। গাণিতিকভাবে, যদি $f:A \to B$ হয়,তবে $f^{-1}(b) = \{x : x \in A, f(x) = b \}$.

উদাহরণ। মনে করি, $f: \mathbb{R} \to \mathbb{R}$ (\mathbb{R} বাস্তব সংখ্যার সেট) কে $f(x) = x^2$ সূত্র দ্বারা সংক্রায়িত করা হলো। তাহলে, f(2) = 4 এবং f(-2) = 4. যেহেতু -2 এবং 2 এর উভয়ের প্রতিচ্ছবি 4, সূতরাং $f^{-1}(4) = \{2, -2\}$. জাবার $f^{-1}(-9) = \emptyset$ (ফাঁকা সেট), কারণ \mathbb{R} এ কোন উপাদান নেই যার বর্গ হলো -9.

বিপরীত ফাংশন (Inverse function):

ধরি, A সেট থেকে B সেটে f একটি ফাংশন। তাহলে, $f^{-1}(b)$ দ্বারা A সেটের এমন এক বা একাধিক উপাদান সূচিত করে যার বা যাদের প্রতিচ্ছবি হচ্ছে b. b যদি A সেটের কোন উপাদানের প্রতিচ্ছবি না হয় তবে $f^{-1}(b)$ একটি ফাঁকা সেট। যদি $f:A\to B$ এক—এক এবং সার্বিক উভয় ধরনের ফাংশন হয়, তবে প্রত্যেকটি $b\in B$ এর জন্য $f^{-1}(b)$ এর অনন্য উপাদান A সেটে অন্তর্ভুক্ত থাকবে। সূতরাং প্রত্যেকটি $b\in B$ এর জন্য A সেটে অনন্য (Unique) উপাদান পাওয়া যায়। তাহলে, f^{-1} হলো B সেট থেকে A সেটে একটি ফাংশন। এ ফাংশনকে f^{-1} : $B\to A$ দ্বারা সূচিত করা হয়। f^{-1} কে f এর বিপরীত ফাংশন বলা হয়। সূতরাং $f:A\to B$ এক—এক এবং সর্বগ্রাহী উভয় ধরনের ফাংশন না হলে বিপরীত ফাংশন বিদ্যমান থাকে না।

উদাহরণ। মনে করি, $f: \mathbf{R} \to \mathbf{R}$ কে $f(x) = x^3 + 7$ দারা সংজ্ঞায়িত করা হয়েছে। তাহলে f এক–এক এবং সার্বিক উভয় ধরনের ফাংশন। অতএব, f এর বিপরীত ফাংশন f^{-1} বিদ্যমান।

এখন f এর অধীনে x এর প্রতিচ্ছবি y হলে, আমরা পাই, $y=f(x)=x^3+7$... (i) সুতরাং f^{-1} এর অধীনে y এর প্রতিচ্ছবি x হলে, $x=f^{-1}(y)$

(i) থেকে আমরা পাই, $x^3 = y - 7$

বা,
$$x = \sqrt[3]{y-7}$$

$$\therefore f^{-1}(y) = \sqrt[3]{y-7}.$$

সূতরাং f(x) এর বিপরীত ফাংশন $f^{-1}(x) = \sqrt[3]{x-7}$.

8.4 সর্বদা প্রয়োজনীয় (Elementary) ফাংশনের ক্ষেচ

8.4.1 বিঘাত ফাংশনের স্কেচ:

মনে করি, $y = 4 + 3x - x^2$

বৈশিষ্ট্য: (i) কেচা

- (i) স্কেচটি একটি পরাবৃত্ত যার অক্ষটি y-অক্ষের সমান্তরাল।
- (ii) স্কেচটি x-জক্ষকে দুইটি বিন্দুতে এবং y-জক্ষকে একটি বিন্দুতে ছেদ করে।
- (iii) স্কেচটি x-অক্ষের নিচের দিকৈ ভৃতীয় ও চতুর্থ চর্তুভাগে অসীম পর্যন্ত বিস্তৃত।

8.4.2 সূচক ফাংশনের ক্ষেচ:

মনে করি, $y=e^x$.

বৈশিক্ট্য: (i) সম্পূর্ণ স্কেচটি x-অক্ষের উপরিভাগে অবস্থিত।

- (ii) স্কেচটি x-অক্ষের ধনাত্মক ও ঋণাত্মক উভয়দিকে অসীম পর্যন্ত বিস্তৃত।
- (iii) যেহেতু $y \to 0$, যখন $x \to -\infty$. সুতরাং ন্কেচটি x-অক্ষকে ছেদ করবে না।

8.4.3. লগারিদম ফাংশলের ক্রেচ:

মনে করি, $y = \ln x$.

বৈশিষ্ট্য : (i) কেবল x>0 হলেই $\ln x$ সংজ্ঞায়িত। সূতরাং স্কেচের সব অংশই y-অক্ষের ডানদিকে থাকবে।

(ii) x এর মান যতই ক্ষুদ্র হবে স্কেচটি ততই y-অক্ষের ঋণাত্মক দিকে অগ্রসর হবে কিন্তু কখনই yঅক্ষকে ছেদ করবে না।

8.4.4. ত্রিকোণমিতিক ফাংশনের ক্রেচ:

নিচে $\sin x$, $\cos x$, $\tan x$, $\cot x$, $\csc x$ এর ক্লেচ অঞ্জন করা হলো :

cos x এর স্কেচ

8.4.5. পরম মান ফাংশনের স্কেচ:

মনে করি, y = |x-2|

8.5. ফাংশন ও রূপান্তরিত ফাংশনের ক্লেচ

মনে করি, A সেট থেকে B সেটে বর্ণিত ফাংশন হলো f, অর্থাৎ $f:A\to B$. তাহলে, f থেকে ক্রমজোড় (a,b) পাই, যেখানে ক্রমজোড়ের প্রথম উপাদান $a\in A$ এবং ক্রমজোড়ের দ্বিতীয় উপাদান b হলো a এর প্রতিচ্ছবি অর্থাৎ $b\in B$.

এভাবে প্রান্ত সব ক্রমজোড়ের প্রতিরূপী বিন্দুগুলো কার্তেসীয় সমতলে স্থানাজ্ঞিত করে f এর চিত্ররূপ নির্ণয় করা যায়। এ চিত্ররূপকেই f এর লেখচিত্র বলা হয়। এ লেখচিত্রকে সাধারণভাবে f^* দ্বারা সূচিত করা হয়। অর্থাৎ $f^* = \{(a,b): a \in A, b = f(a)\}$

মন্তব্য : ফাংশনের শেখচিত্রে $A \times B$ এর কয়েকটি উপাদান অন্তর্ভূক্ত থাকে । $\therefore f \colon A \to B$ এর শেখচিত্র f^* হলো $A \times B$ এর উপসেট।

উদাহরণ। নিচের চিত্র দারা f:A o B কে সংজ্ঞায়িত করা হলোঃ

তাহলে, f(a) = 3, f(b) = 4, f(c) = 4 এবং f(d) = 7. সূতরাং, $f^* = \{(a,3),(b,4),(c,4),(d,7)\}$. উপরের চিত্র থেকে লক্ষ করি:

- (1) A সেটে একটি মান প্রদানের ফলে B সেট থেকে একটি প্রতিসঞ্জী মান পাওয়া গেছে।
- (2) A সেটে একটি মান প্রদানের জন্য B সেট থেকে অনন্য (unique) মান নির্ণীত হয়েছে।

f এর এ দুইটি বৈশিক্ট্যের জন্য f এর লেখচিত্র থেকে নিচের দুইটি বৈশিক্ট্য পাওয়া যায় st

- (i) প্রত্যেকটি $a \in A$ এর জন্য শেখচিত্রে একটি ক্রমজোড় (a,b) পাওয়া যায়, অর্থাৎ $(a,b) \in f^*$.
- (ii) প্রত্যেকটি $a \in A$ এর জন্য f^* সেটের ক্রমজোড়গুলোর কেবল একটি ক্রমজোড়ে a প্রথম উপাদান হিসাবে থাকে। অর্থাৎ, $(a, b) \in f^*$ এবং $(a, c) \in f^*$ হলে, b = c.

8.5.1 একটি প্রদন্ত কাংশনের ক্ষেচ অঞ্জন করে উক্ত কাংশনের রূপান্তরিত কাংশনের ক্ষেচ অঞ্জন করা : উদাহরণ : $f(x)=x^2$ এর ক্ষেচ থেকে রূপান্তরিত $g(x)=(x-2)^2$ এবং $g(x)+3=(x-2)^2+3$ এর ক্ষেচ অঞ্জন কর :

সমাধান : (i) $f(x) = x^2$ কেচ নিচে অজ্ঞকন করা হলো :

(ii) এখন ক্লেচটি আনুভূমিক দিকে + 2 একক সরালে $g(x) = (x-2)^2$ এর ক্লেচ পাওয়া যাবে। ক্লেচটি হলো:

(iii) উপরের (ii) এর স্কেচ উল্লেখভোবে + 3 একক সরালে $g(x) + 3 = (x - 2)^2 + 3$ এর স্কেচ পাওয়া যাবে। পাশে স্কেচটি অঞ্জন করা হলো। স্কেচটি হলো :

8.6 ফাংশন ও তার বিপরীত ফাংশনের ক্রেচ:

মনে করি, একটি ফাংশন g(x)=2x-4, যেখানে $x\in R$ এবং $x\geq 0$ দারা সম্ভায়িত। এখন g(x) এর বিপরীত ফাংশন $g^{-1}(x)$ নির্ণয় করি।

মনে করি,
$$y = 2x - 4$$

$$\Rightarrow y + 4 = 2x$$

$$\Rightarrow x = \frac{y + 4}{2}$$

$$\therefore g^{-1}(x) = \frac{x + 4}{2},$$
 যেখানে $x \ge -4$.

পাশে একই লেখচিত্রে g(x) এবং $g^{-1}(x)$ এর ক্ষেচ অঞ্জন করা হলো :

পাশের চিত্র দুইটি থেকে লক্ষ করি :

(i) g(x) এর ডোমেনের সেটের একটি উপাদান 0 এর জন্য g(x) এর রেজের উপাদান -4, যা $g^{-1}(x)$ এর ডোমেনের একটি উপাদান 1

 $(ii)\ g^{-1}(x)$ এর ভোমেনের সেটের একটি উপাদান 0 এর জন্য $g^{-1}(x)$ এর রেঞ্জের উপাদান 2, যা g(x) এর ভোমেনের একটি উপাদান 1

এতাবে দেখানো যায় যে, g(x) এর ডোমেনের সেটের প্রত্যেক উপাদানের রেঞ্জ হবে $g^{-1}(x)$ এর ডোমেনের সেটের উপাদান এবং বিপরীতক্রমে ।

8.7. ত্রিকোণমিতিক ফাংশনের পর্যায় নির্ণয়

ত্রিকোণমিতিক ফাংশন F এর ডোমেনের দুইটি উপাদান (সদস্য) θ এবং $(\theta+P)$, যেখানে P>0, এর জন্য F $(\theta+P)=F$ (θ) হলে, F কে বলা হয় পর্যায়বৃত্ত ফাংশন (Periodic function). যদি P ধনাত্মক ও ক্ষুদ্রতম পর্যায় (period) হয়, তবে P কে মৌলিক পর্যায় বলা হয়।

সূতরাং, আমরা দ্বিতীয় অধ্যায়ের আলোচনা থেকে সহজেই বলতে পারি ছয়টি ত্রিকোণমিতিক ফাংশনই পর্যায়বৃত্ত ফাংশন (Periodic function).

প্রতিজ্ঞা: সাইন, কোসাইন, সেকেন্ট এবং কোসেকেন্ট ফাংশনের প্রত্যেকের মৌলিক পর্যায় 2π এবং টেনজেন্ট ও কোটেনজেন্ট ফাংশনের মৌলিক পর্যায় π .

প্রমাণ : (ক) মনে করি, θ $(0 \le \theta \le 2\pi)$ এবং $(\theta + 2\pi)$ হলো সাইন ফাংশনের ডোমেনের দুইটি সদস্য। এখন $\sin (\theta + 2\pi) = \sin \theta$.

্র সাইন ফাংশনের পর্যায় 2π.

আবার যদি P একটি বাস্তব সংখ্যা হয় যেন $0 < P < 2\pi$, তাহলে,

 $\sin (\theta + P) = \sin \theta \cos P + \cos \theta \sin P$ (i)

এখন (i) এর ডান পক্ষ = $\sin \theta$ হতে পারে যদি একই সংগে $\sin P = 0$ এবং $\cos P = 1$.

কিন্তু $0 < P < 2\pi$ ব্যবধিতে P এর এমন কোন মান নেই যেন একই সংগে $\sin P = 0$ এবং $\cos P = 1$ হতে পারে।

সূতরাং, P অর্থাৎ 2π অপেক্ষা ক্ষুদ্রতর ধনাত্মক বাস্তব সংখ্যা সাইন ফাংশনের পর্যায় হতে পারে না।

∴ সাইন ফাংশনের মৌলিক পর্যায় 2π হবে।

অনুরূপভাবে দেখানো যায় যে কোসাইন ফাংশনের মৌলিক পর্যায় 2π .

(খ) মনে করি, θ $(0 \le \theta \le 2\pi)$ এবং $(\theta + 2\pi)$ হলো সেকেন্ট ফাংশনের ডোমেনের দুইটি সদস্য। এখন $\sec (\theta + 2\pi) = \sec \theta$ ∴ সেকেন্ট ফাংশনের পর্যায় 2π .

আবার যদি $\,P\,$ একটি বাস্তব সংখ্যা হয় যেন $\,0 < P < 2\pi$, তাহলে

$$\sec (\theta + P) = \frac{1}{\cos (\theta + P)} = \frac{1}{\cos \theta \cos P - \sin \theta \sin P} \dots (ii)$$

এখন ডানপক্ষ, $\sec\theta=\frac{1}{\cos\theta}$ হতে পারে যদি একই সংগে $\cos P=1$ এবং $\sin P=0$. কিন্তু তা সম্ভব নয়। সূতরাং, P অর্থাৎ 2π অপেক্ষা ক্ষুদ্রতর ধনাত্মক কোন বাস্তব সংখ্যা সেকেন্ট ফাংশনের পর্যায় হতে পারে না।

∴ সেকেন্ট ফাংশনের মৌলিক পর্যায় 2π.

অনুরূপভাবে দেখানো যায় যে কোসেকেন্ট ফাংশনের মৌলিক পর্যায় 2π .

(গ) জাবার $\tan (\theta + \pi) = \tan \theta$ এবং $\cot (\theta + \pi) = \cot \theta$.

সূতরাং , টেনজেন্ট ফাংশন ও কোর্টেনজেন্ট ফাংশনের মৌলিক পর্যায় π .

সমস্যা ও সমাধান:

উদাহরণ 1. ফাংশন f কে $f(x)=x^2$, যেখানে $-2 \le x \le 8$, যারা সংজ্ঞায়িত করা হলো। f(2), f(y-5) এবং f(-5) এর মান নির্ণয় কর।

সমাধান: $f(2) = (2)^2 = 4$.

 $f(y-5)=(y-5)^2=y^2-10y+25$. কিন্তু এ সূত্রটি সত্য হবে যদি $-2 \le y-5 \le 8$, অর্থাৎ $3 \le y \le 13$.

f(-5) এর মান সংজ্ঞায়িত নয়, কারণ -5 ফাংশনের ডোমেনের অন্তর্ভুক্ত নয়।

উদাহরণ 2. R বাস্তব সংখ্যার সেট এবং $f: \mathbb{R} \to \mathbb{R}$ কে $f(x) = x^3$ দারা সংজ্ঞায়িত করা হলো। f এর রেঞ্চ নির্ণয় কর।

সমাধান: প্রত্যেকটি বাস্তব সংখ্যা a এর একটি ঘনমূল $\sqrt[3]{a}$ আছে, যা একটি বাস্তব সংখ্যা।

$$\therefore f(\sqrt[3]{a}) = (\sqrt[3]{a})^3 = a.$$

অর্থাৎ প্রত্যেকটি বাস্তব সংখ্যা (বাস্তব সংখ্যার সেটের একটি উপাদান) থেকে যে প্রতিচ্ছবি পাওয়া যায় তাও বাস্তব সংখ্যা। সুতরাং f এর রেঞ্জ হলো বাস্তব সংখ্যার সেট।

উদাহরণ 3.~A,~B,~C এর প্রত্যেকটি বাস্তব সংখ্যার সেট। f:A ou B এবং g:B ou C ফাংশেনহয়কে যথাক্রমে

f(x) = x + 1 এবং $g(x) = x^2 + 2$ ছারা সংজ্ঞায়িত করা হলো। সংযোজিত ফাংশন (gof) নির্ণয় কর। সমাধান : আমরা জ্ঞানি (gof)(x) = g(f(x)).

:.
$$(gof)(x) = g(x+1) = g(z)$$
 $[z = x + 1]$ $\{(z)\}$
= $z^2 + 2$ $[:: g(x) = x^2 + 2]$
= $(x+1)^2 + 2 = x^2 + 2x + 3$.

উদাহরণ 4. R বাস্তব সংখ্যার সেট, $A={\rm R}-\{3\}, B={\rm R}-\{1\}$ এবং $f:A\to B$ কে $f(x)=\frac{x-2}{x-3}$

দারা সংজ্ঞায়িত করা হলো। প্রমাণ কর যে, f এক-এক এবং সর্বগ্রাহী উত্তয় ধরণের ফাংশন। যে সূত্র দারা f^{-1} কে সংজ্ঞায়িত করা যায় তা নির্ণয় কর।

সমাধান : (i) মনে করি, x_1 এবং x_2 দুইটি ভিন্ন ভিন্ন বাস্তব সংখ্যা, যেখানে $x_1 \neq 3$ এবং $x_2 \neq 3$.

তাহলে, $f(x_1) = f(x_2)$ হলে, আমরা পাই

$$\frac{x_1-2}{x_1-3}=\frac{x_2-2}{x_2-3}\Rightarrow (x_1-2)(x_2-3)=(x_1-3)(x_2-2)\Rightarrow x_1=x_2$$
 : f এক এক ফাংশন।

আবার মনে করি, $y = \frac{x-2}{x-3}$, যেখানে $y \in R$ $(y \ne 1)$

তাহলৈ,
$$y(x-3) = x-2 \implies x = \frac{3y-2}{y-1}$$

$$\therefore f\left(\frac{3y-2}{y-1}\right) = \frac{\frac{3y-2}{y-1}-2}{\frac{3y-2}{y-1}-3} = y \quad \text{with } f(A) = B.$$

সুতরাং f হলো সার্বিক ফাংশন।

(ii) মনে করি,
$$y = \frac{x-2}{x-3}$$

তাহলে,
$$y(x-3) = x-2$$
 বা, $yx-3y = x-2$ বা, $x(y-1) = 3y-2$

বা,
$$x = \frac{3y-2}{y-1}$$
 : $f^{-1}(y) = \frac{3y-2}{y-1}$ चर्चा९, $f^{-1}(x) = \frac{3x-2}{x-1}$.

প্রশ্নমালা 8.1

- 1. (a) $A = \{1, 2, 3, 4\}$ সেট থেকে $B = \{1, 2, 5\}$ সেটে F একটি অনুয়, যেখানে $F = \{(x, y) \ \ x \in A, y \in B, x < y\}$, F সেট নির্ণয় কর।
 - (b) নিচের ফাংশনগুলি এক এক এবং সার্বিক কিনা তা কারণসহ উল্লেখ কর ${\bf 8}$ (i) $f_1:R\to R,\ f_1(x)=x^5$ দ্বারা সংজ্ঞায়িত। (ii) $f:R\to R,\ f(x)=x^3+5$ দ্বারা সংজ্ঞায়িত। (iii) $f:R\to R,\ f(x)=x^3+5$ দ্বারা সংজ্ঞায়িত।
- 2. মনে কর, একটি ফাংশনকে $-1 \le x \le 7$ ব্যবধিতে $f(x) = x^2 + 3$ দারা সংজ্ঞায়িত করা হলো। তাহলে, মান নির্ণয় করঃ
 - (i) f(5) (ii) f(-7) (iii) f(-0.5) (iv) f(t-3).
- 3. (i) $f: \mathbf{R} \to \mathbf{R}$ কে $f(x) = \begin{cases} x^2 + 3x, & x \ge 2 \\ x + 2, & x < 2. \end{cases}$ দ্বারা সংজ্ঞায়িত করা হলো। f(7), f(0), f(5) এবং f(-2) নির্ণয় কর।
 - (ii) $f: \mathbf{R} \to \mathbf{R}$ কে $f(x) = \begin{cases} x^2 3x, \, \text{যখন } x \ge 2 \\ x + 2, \, \text{যখন } x < 2. \end{cases}$ দারা সংজ্ঞায়িত করা হলো।

f(0), f(−1), f(2), f(4), f(−4), f(5) ও f(−2) এর মান নির্ণয় কর ৷

4. মনে কর, বাস্তব সংখ্যার সেট R এবং $f: \mathbb{R} \to \mathbb{R}$ কে নিচের সূত্র দ্বারা সংজ্ঞায়িত করা হলোঃ $f(x) = \begin{cases} 3x - 1 & \text{যদ } x > 3 \\ x^2 - 2 & \text{पদ } -2 \le x \le 3 \\ 2x + 3 & \text{पদ } x < -2. \end{cases}$

মান নির্ণিয় কর : (ক) f(2) (খ) f(4) (গ) f(-1) (ঘ) f(-3) (ঙ) f(4.5) (চ) f(0).
[রা. চ. '০৮; ঢা. চ. '১২; কু. '১৩]

- 5. সব বাস্তব সংখ্যার সেট R এবং $A = \{-3, -1, 0, 1, 3\}$, $f : A \to R$ কে $f(x) = x^2 + x + 1$ ছারা সংজ্ঞায়িত হলে, f এর রেঞ্জ (Range) নির্ণয় কর।
- 6. $A = \{1, 2, 3\}$ এবং $B = \{1, 2, 3, 4, 5, 6\}$ এবং $f \wr A \to B$ কে f(x) = x + 1 দ্বারা সংজ্ঞায়িত করা হলো। f এর ডোমেন এবং রেঞ্জ নির্ণয় কর। [কু. '১২]
- 7. মনে কর, $A = \{-2, -1, 0\}, f : A \rightarrow \mathbb{R}$, (যেখানে \mathbb{R} বাস্তব সংখ্যার সেট) এবং f কে $f(x) = x^2 + 1$ দ্বারা সংজ্ঞায়িত করা হলো। f এর রেঞ্জ নির্ণয় কর।
- 8. মনে কর, $A=\{-4,-3,-2,0,3,4\}$ এবং $f:A\to B$ কে $f(x)=x^2+x-3$ দারা সংজ্ঞায়িত করা হলো। f এর রেঞ্জ নির্ণয় কর।
- 9. f: R → R, কে (i) f(x) = x⁵, (ii) f(x) = cos x· (iii) f(x) = x² + 1 দ্বারা সংজ্ঞায়িত করা হলো। f
 এর রেঞ্জ নির্ণয় কর।

 [কু. '০৭]
- 10. $A = \{-2, -1, 0, 1, 2, 5\}$ এবং $f: A \rightarrow \mathbb{R}$ কে $f(x) = x^2 + 1$ দ্বারা সংজ্ঞায়িত করা হলো। f এর রেঞ্জ নির্ণয় কর।

- 11. মনে কর সেট $A = \{ -4, -2, 0, 2, 4 \}$ এবং $f : A \to \mathbb{R}$ ফাংশনটি $f(x) = x^2 + 2x + 3$ দারা সংজ্ঞায়িত। f এর রেঞ্জ নির্ণয় কর।
- 12. X, Y বাস্তব সংখ্যার সেট \mathbb{R} এর দুইটি উপসেট এবং $f : X \to Y$, যেখানে $f(x) = \frac{x-3}{2x+1}$, ফাংশন f এর ডোমেন এবং রেঞ্জ নির্ণয় কর। [সি. '১১; কু. '১০; দি. '১২; য. '১৩]
- 13. মনে কর, $f: \mathbb{R} \to \mathbb{R}$ কে $f(x) = x^2 4x + 3$ দারা সংজ্ঞায়িত করা হলো। মান নির্ণয় কর ঃ (ক) f(4) (খ) f(-3) (গ) f(y-2z).
- 14. (ক) $f: R \to \mathbb{R}$, ফাংশনটি f(x) = 2x 3 দ্বারা সংজ্ঞায়িত হলে, প্রমাণ কর যে, ফাংশনটি এক—এক এবং সার্বিক। f^{-1} নির্ণয় কর।
 - (খ) $f: R \left\{-\frac{1}{2}\right\} \to \mathbb{R} \left\{\frac{1}{2}\right\}$ ফাংশনটি $f(x) = \frac{x-3}{2x+1}$ হলে, $f^{-1}(x)$ নির্ণয় কর।
- 15. $A = \{x : -1 \le x \le 1\}, f : A \to A$ এবং $g : A \to A$ কে যথাক্রমে $f(x) = x^4$ এবং $g(x) = x^3$ ছারা সংজ্ঞায়িত করা হলো। f এবং g এর মধ্যে কোন্টি সার্বিক ফাংশন ?
- 16. $f: \mathbb{R} \to \mathbb{R}$ কে $f(x) = x^2 + 1$ দারা সংজ্ঞায়িত করা হলো। মান নির্ণয় কর ৪

(4) $f^{-1}(5)$ (4) $f^{-1}(0)$ (7) $f^{-1}(10)$.

- 17. (i) বাস্তব সংখ্যার দুইটি ফাংশন f এবং g কে যথাক্রমে $f(x) = x^2 + 2x 3$ এবং g(x) = 3x 4 দারা সংজ্ঞায়িত করা হলো। যে সূত্রদয় দারা g o f এবং f o g ফাংশনদয়কে সংজ্ঞায়িত করা যায় তা নির্ণয় কর এবং প্রাপ্ত সূত্রদয় থেকে (g o f)(2) এবং (f o g) (2) এর মান নির্ণয় কর। [f, '১০, '১৩; ব. দি.'১২।
 - (ii) $f(x) = x^2$, $g(x) = x^3 + 1$ হলে, $(f \circ g)$, $(g \circ f)$ এবং $(f \circ g)(2)$ এর মান নির্ণয় কর। [ঢা.'১১; ব. '০১]
 - (iii) $f(x) = x^2 + 3x + 1$ এবং g(x) = 2x 3 হলে, (ক) $(f \circ g)(x)$, (খ) $(g \circ f)(x)$, [সি.'১০]
 - (す) (f o f) (x), (च) (gof) (2) এবং (७) (fog) (2) নির্ণয় কর। [রা.'১৩]
 - (iv) $f: \mathbb{R} \to \mathbb{R}$, যেখানে $f(x) = x^2$ এবং $g(x) = x^3 + 1$, যখনx = -3 হলে, দেখাও যে, $f \circ g \neq g \circ f$.
 - (v) $f: \mathbb{R} \to \mathbb{R}$ এবং $g: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 2 |x|$ এবং $g(x) = x^2 + 1$ হলে, $(f \circ g) (-2), (f \circ g) (5), (g \circ f) (-4)$ এবং $(g \circ f) (3)$ নির্ণয় কর। [সি.'০৮]
- 18. $f: \mathbb{R} \to \mathbb{R}$ এবং $g: \mathbb{R} \to \mathbb{R}$ কে যথাক্রমে f(x) = 2x 5 এবং $g(x) = x^2 + 6$ ঘারা সংজ্ঞায়িত করা হলো। মান নির্ণয় কর ঃ
 - (i) f(7) (ii) g(-2) (iii) (gof)(2), [st.'50] (fog)(2) (iv) (fog)(5) [st.'50] (v) g(t-1) (vi) f(g(t-1)) (vii) f(g(x+2)) (viii) g(g(x)).
- 19. $f(x) = \sqrt{x}$, $g(x) = x^2 1$ হলে, সংযোজিত ফাংশন (i) fog (ii) gof নির্ণয় কর। প্রত্যেকটি সংযোজিত ফাংশনের ডোমেন ও রেঞ্জ নির্ণয় কর।
- 20. $f: \mathbf{R} \to \mathbf{R}$ কে $f(x) = x^2$ দ্বারা সূত্রায়িত করা হলো। মান নির্ণয় কর :
 - (\P) $f^{-1}(36)$, $f^{-1}(16)$, $f^{-1}(-16)$
 - (4) $f^{-1}([-\infty,0])$ (4) $f^{-1}([1,16])$.

- 21. $f: \mathbf{R} \to \mathbf{R}$ কে $f(x) = x^2 7$ দারা সংজ্ঞায়িত করা হলো। $f^{-1}(2)$ এর মানকে সেটে প্রকাশ কর। রি.'১০
- 22. $M = \{1, 2, 3, 4\}$ এবং $f: M \rightarrow \mathbb{R}$ কে $f(x) = x^2 + 2x 1$ দারা সংজ্ঞায়িত করা হলো। f^* নির্ণয় কর।
- 23. নিচের সূত্রগুলোর প্রত্যেকটি $f: \mathbf{R} \to \mathbf{R}$ কে সংজ্ঞায়িত করে। কার্তেসীয় সমতল, $\mathbf{R} \times \mathbf{R}$ এ সূত্রগুলোর শেখচিত্র অজ্জন কর : (ক) f(x) = 2x 1 (খ) $f(x) = x^2 2x 1$ (গ) f(x) = x 3 |x|.
- 24. $y=3x-5, (x\in R)$ এর স্কেচ অঙ্কন করে ঐ স্কেচ থেকে y=|3x-5| এর স্কেচ অঙ্কন কর।
- 25. $y = \cos x \ (x \in R)$ এর স্কেচ অঞ্জন করে ঐ স্কেচ থেকে $y = \cos 2x$ এবং $y = \cos 2x + 3$ এর স্কেচ অঞ্জন করে।
- 26. যদি g(x) ফাংশেনকে g(x)=3x-6 $(x\in R, x\geq 2)$ দারা সংজ্ঞায়িত করা হয়, তাহলে,
 - (i) $g^{-1}(x)$ নির্ণয় কর।
 - (ii) একই শেখচিত্রে উভয় ফাংশনের কেচ অঞ্চন কর।
 - (iii) স্কেচ দুইটি থেকে কি ধরনের সম্পর্ক পরিলক্ষিত হয়?
- 27. নিচের ফাংশন f(x) থেকে একই লেখচিত্রে f(x) এবং $f^{-1}(x)$ এর স্কেচ জঙ্কন কর। $f^{-1}(x)$ সূত্র ও এর সমীকরণও নির্ণয় কর।
 - (i) $f(x) = 2x 5 \ (x \in R)$
 - (ii) $f(x) = 5 x \ (x \in R)$
 - (iii) $f(x) = x^2 + 3 \ (x \in \mathbb{R}, \ x \ge 0)$
- 28. নিচের ফাংশনগুলির মৌলিক পর্যায় (যদি থাকে) নির্ণয় কর :
 - (i) $2\cos\frac{\theta}{2}$; (ii) $\frac{1}{2}\cos\frac{2\theta}{3}$; (iii) $\sin\left(2\pi+\frac{\pi}{4}\right)$; (iv) $\cos\left(\frac{\theta}{2}+\frac{\pi}{4}\right)$; (v) $7\sec\frac{\theta}{8}$.

প্রশুমালা 8.2

সৃজনশীল প্রশ্ন :

- 1. (a) এক-এক ফাংশনের সংজ্ঞা লেখ।
 - (b) $f: R \to R$ ফাংশনকে $f(x) = x^2$ দ্বারা সংজ্ঞায়িত করা হলো। প্রমাণ কর যে, f(x) এক-এক ফাংশন
 - (c) সেট $A=R-\{1\}$ এবং সেট $B=R-\{1\}$ এবং $f:A\to B$ কে $f(x)=\frac{x+2}{x-1}$ দ্বারা সংজ্ঞায়িত করা হলো। $f^{-1}(x)$ নির্ণয় কর।
- 2. (a) উদাহরণের মাধ্যমে অনুয় ও ফাংশনের পার্থক্য ব্যাখ্যা কর।
 - (b) সেট $A = \{2, 3, 4, 5\}, B = \{1, 5, 6, 7, 13, 15, 22\}$ এবং $f: A \to B$ ফাংশনকৈ $f(x) = x^2 3$ দ্বারা সংজ্ঞায়িত করা হলো। ফাংশনটির রেঞ্জ নির্ণয় কর।
 - (c) বাস্তব সংখ্যার দুইটি ফাংশন f এবং g কে যথাক্রমে f(x)=2x+1 এবং $g(x)=x^2+1$ দারা সংজ্ঞায়িত করা হলো। প্রমাণ কর যে, (gof) $(2) \neq (fog)$ (2);

3. (a) উদাহরণের মাধ্যমে অভেদ ফাংশন ব্যাখ্যা কর।

> (b) ফাংশন f কে $f(x) = \frac{2x+1}{x-5} \{x \in R, x \neq 5\}$ দারা সংজ্ঞায়িত করা হলো $|f|^2$ এর ডোমেন ও রেঞ্জ নির্ণয় কর ।

> (c) ফাংশন f কে f(x)=2x-3 $\{x\in R, x\geq \frac{3}{2}\}$ ঘারা সংজ্ঞায়িত করা হলো। একই লেখচিত্রে f এবং f^{-1} এর স্কেচ অঙ্কন কর।

वर्गिवाहनी श्रम :

4. $f(x) = \frac{x+2}{x+3} \{x \in \mathbb{R}, x \ge 3\}, f \text{ as as}$

 $(a)^{\frac{5}{6}}$

(b) R

(c) $\frac{5}{6}$ এর চেয়ে বৃহত্তর সব বাস্তব সংখ্যা (d) $\frac{5}{6}$ এর **স্কুণ্রতর** সব বাস্তব সংখ্যা।

5. f(x) = 2x - 3 এবং $g(x) = x^2 - 2$ হলে, (gof)(-5) এর মান —

(a) 43

(b) 167

(c) - 43

(d) - 167

f এবং g বাস্তব সংখ্যার ফাংশন। $f(x)=x^2-2$ এবং g(x)=x+3 দ্বারা সংজ্ঞায়িত। (fog) (x) এর

(a) $x^2 + 9x + 7$ (b) $x^2 + 1$

 $(c) x^2 - 9x + 7$ $(d) x^2 + 2x + 3$

7. $f: R \to R$ কে f(x) = 5x - 3 দ্বারা সংজ্ঞায়িত করা হলো। $f^{-1}(3)$ এর মান—

(b) - 12

 $(c)\frac{6}{5}$

 $(d) - \frac{6}{5}$

8. $f(x) = \cos x$ এবং $g(x) = x^2$ হলে, $f \circ g\left(\frac{\sqrt{\pi}}{2}\right)$ এর মান—

(a) $\cos x^2$ (b) $\frac{1}{\sqrt{2}}$

(c) 1

(d) $\frac{\sqrt{3}}{2}$

9. $f(x) = \frac{x+3}{2x-1} \{x \in \mathbb{R}, x \neq \frac{1}{2} \}$ হলে, $f^{-1}(x)$ এর মান —

(a) $\frac{2x-1}{x+3}$; $x \neq -3$

(b) $\frac{x+3}{2x-1}$, $x \neq \frac{1}{2}$

(c) $\frac{2x-1}{x+3}$

(d) $\frac{x+3}{2x-1}$

10. f(x) = 2x + 1 এবং g(x) = x - 3 হলে, (gof)(2) এর ক্ষেত্রে কোন দুইটি সঠিক স

(a) 2

(b) (gof) (2) = (fog) (2)

(c) - 1

 $(d) (fog) (2) \neq (gof) (2)$

💥 💢 উত্তরমালা 💥 💥

প্রশুমালা 8.1

1. (a) {(1, 2), (1, 5), (2, 5), (3, 5), (4, 5)}. (b) (i), (ii), (iii) ফাংশনগুলো এক এক এবং সার্বিক কারণ তিনু তিনু বাস্তব সংখ্যার প্রতিচ্ছবি তিনু তিনু বাস্তব সংখ্যা এবং f(R)=R. 2.(i) 28; (ii) সংজ্ঞায়িত নয়; (iii) 3.25; (iv) $t^2 - 6t + 12$, $\sqrt[3]{6}$ $2 \le t \le 10$ $\sqrt[3]{8}$ (i) 70, 2, 40, 0.(ii) 2, 1, -2, 4, -2, 10, 0. 4. (ক) 2, (খ) 11, (গ) -1, (ঘ) -3, (ছ) 12.5, (চ) -2. 5. {7, 1, 3, 13}. 6. ডোমেন ={ 1, 2, 3 } এবং রেঞ্চ = $\{2, 3, 4\}$. 7. $\{5, 2, 1\}$. 8. $\{-3, -1, 3, 9, 17\}$. 9. (i) R রেজ = $\mathbb{R} - \left\{ \frac{1}{2} \right\}$. 13. (ক) 3, (খ) 24, (গ) $y^2 - 4yz + 4z^2 - 4y + 8z + 3$. 14. (ক) $\frac{x+3}{2}$ (খ) $\frac{x+3}{1-2x}$. 15. g সার্বিক ফাংশন। 16. (ক) $\{-2,2\}$, (খ) Ø, (গ) $\{3,-3\}$. **17.** (i) $(g \ of)(x) = 3x^2 + 6x - 13$, $(f \ o \ g)(x) = 9x^2 - 18x + 5$, $(g \ of)(2) = 11$, $(f \ og)(2) = 5$; (ii) $(f \circ g)(x) = x^6 + 2x^3 + 1$, $(g \circ f)(x) = x^6 + 1$, 81. (iii) $(\mathbf{\overline{4}})(f \circ g)(x) = 4x^2 - 6x + 1$, (4) $(gof)(x) = 2x^2 + 6x - 1$, (4) $(fof)(x) = x^4 + 6x^3 + 14x^2 + 15x + 4$. (8) 19, (8) 5. (iv) 15, 624, 65, 10. 18. (i) 9, (ii) 10, (iii) 7, 15; (iv) 57, (v) t^2-2t+7 . (vi) $2t^2 - 4t + 9$, (vii) $2x^2 + 8x + 15$, (viii) $x^4 + 12x^2 + 42$. 19. (i) $\sqrt{x^2 - 1}$; ডোমেন, $x \le -1$ অথবা, $x \ge 1$; রেঞ্জ ঃ সকল অঝণাতাক বাস্তব সংখ্যার সেট 1(ii) x-1, ডোমেন ঃ \mathbf{R} , রেঞ্জঃ \mathbf{R} . 20. (ক) {6,-6}, {4, -4},Ø; (খ) [-1,1]; (গ) {0}; (ঘ) {x ঃ 1 ≤ x ≤ 4 অথবা - 4 ≤ x ≤ -1}. **21.** $\{-3,3\}$. **22.** $\{(1,2),(2,7),(3,14),(4,23)\}$. **27.** (i) $f^{-1}(x) = \frac{x+5}{2}$; (ii) $f^{-1}(x) = 5-x$; (iii) $f^{-1}(x) = \sqrt{x-3}$. 28. (i) 6π ; (ii) $\frac{3\pi}{2}$; (iii) π ; (iv) 4π ; (v) 16π .

প্রশ্নমালা 8.2

1. (c) $\frac{x+2}{x-1}$; 2. (b) {1, 6, 13, 22}; 3. (b) ডোমেন : $R - \{2\}$; রেজ : $R - \{5\}$; 4. c. 5. b. 6. a. 7. c. 8. b. 9. b. 10. (a) এবং (d).

ব্যবহারিক

- 8.8. অক্ষরেখার সাপেকে বিন্দু ও রেখাংশের প্রতিচ্ছবি নির্ণয় (তৃতীয় অধ্যায় দুষ্টব্য ।)
- 8.9. নির্দিষ্ট রেখার সাপেক্ষে বিন্দু ও রেখাংশের প্রতিচ্ছবি নির্ণয় (তৃতীয় অধ্যায় দ্রুষ্টব্য।)

8.10. ফাংশন ও রূপাস্তরিত ফাংশনের লেখচিত্র অজ্ঞ্বন

মনে করি, $f(x)=\cos x$ এবং রূপান্তরিত ফাংশন $g(x)=\cos 2x$ এবং $g(x)-1=\cos 2x-1$ এর শেখচিত্র অঞ্জন করতে হবে।

তারিখ:

সমস্যা নং 8.10.1	

সমস্যা : $f(x) = \cos x$ এর শেখচিত্র অঞ্জন করতে হবে।

সমাধান: তত্ত্ব: $f(x) = y = \cos x$, যখন $-180^{\circ} \le x \le 180^{\circ}$.

কার্যপদ্ধতি:

1. ছক কাগজে x-অক্ষ এবং y-অক্ষ অজ্ঞকন করি।

2. x-এর তিনু তিনু মানের জন্য $y = \cos x$ থেকে y এর আনুষ্ঠািক মান বের করি।

3. x-অক্ষের দিকে ক্ষুদ্রতর বর্গক্ষেত্রের 1 বাহুর দৈর্ঘ্য $=10^\circ$ এবং y-অক্ষের দিকে 10 বাহুর দৈর্ঘ্য =1 ধরি

4. প্রাপ্ত (x, y) বিন্দুগুলি ছক কাগন্ধে স্থাপন করে সাবদীলভাবে বিন্দুগুলি সংযুক্ত করে লেখচিত্রটি অঞ্জন করি

यनायन :

	`,	 _				· ,·			
x	– 180°	– 150°	- 120°	- 90°	- 60°	- 30°	0	30°	60°
Ņ	- 1	- 0.87	- 0.5	0	0.5	0.87	1	0.87	0.5
x	90°	120°	150°	180°					
у	0	- 0.5	- 0.87	- 1					

লেখচিত্র অজ্ঞান:

সমস্যা নং 8.10.2

তারিখ:

সমস্যা : $g(x) = \cos 2x$ এর শেখচিত্র জ্জ্জন করতে হবে।

সমাধান : তত্ত্ব : $g(x) = y = \cos 2x$, যখন $-180^{\circ} \le x \le 180^{\circ}$.

কার্যপদ্ধতি:

- 1. ছক কাগজে x-অক্ষ ও y-অক্ষ অভকন করি।
- 2. x এর ভিন্ন ভিন্ন মানের জন্য $y = \cos 2x$ এর আনুষঞ্জিক মান নির্ণয় করি।
- 3. x-অক্ষের দিকে ক্ষুদ্রতর বর্গক্ষেত্রের 1 বাহুর দৈর্ঘ্য = 5° এবং y-অক্ষের দিকে 10 বাহুর দৈর্ঘ্য = 1 ধরি।
- 4. প্রাণ্ড (x, y) বিন্দুগুলি ছক কাগছে স্থাপন করে সাবলীলভাবে বিন্দুগুলি সংযুক্ত করে লেখচিত্র অঙকন করি।

यमायम :

x	- 180°	– 150°	- 135°	- 120°	- 90°	- 60°	- 30°	0
y	1	0.5	0	- 0.5	- 1	- 0.5	0.5	1
x	30°	45°	60°	90°	120°	135°	150°	180°
y	0.5	0	- 0.5	- 1	- 0.5	0	0.5	1

লেখচিত্র অন্ধন :

সমস্যা নং 8.10.3

তারিখ :

সমস্যা : $g(x) = \cos 2x - 1$ এর শেখচিত্র জঙ্কন করতে হবে।

সমাধান: তত্ত্ব: $g(x) - 1 = y = \cos 2x - 1$, যখন $-180^{\circ} \le x \le 180^{\circ}$.

কার্যপন্ধতি:

1. ছক কাগভে x-অক্ষ ও y-অক্ষ অন্তকন করি।

2. x এর ভিন্ন ভিন্ন মানের জন্য $y = \cos 2x - 1$ এর আনুষঙ্গিক মান নির্ণয় করি।

3. x-অক্ষের দিকে ক্ষুদ্রতর বর্গক্ষেত্রের 1 বাহুর দৈর্ঘ্য $=6^\circ$ এবং y-অক্ষের দিকে 10 বাহুর দৈর্ঘ্য =1 ধরি।

4. প্রাপ্ত (x, y) বিন্দুগুলি ছক কাগজে স্থাপন করে সাবলীলভাবে বিন্দুগুলি সংযুক্ত করে শেখচিত্র অঞ্চন করি।

कनाकन :

x	– 180°	– 150°	- 135°	– 120°	- 90°	– 60°	- 30°	0
у	0	- 0.5	- 1	- 1.5	- 2	- 1.5	- 0.5	0
x	30°	60°	90°	120°	135°	150°	180°	
у	- 0.5	- 1.5	- 2	- 1.5	- 1	- 0.5	0	

পেং অজ্ঞান :

8.11. একই লেখচিত্রে ফাশেন ও তার বিপরীত ফাশেনের লেখচিত্র অজ্ঞ্বন

সমস্যা নং 8.11 তারিখ:

সমস্যা : f(x) = 2x + 1 এবং এর বিপরীত ফাংশনের লেখ অঞ্জন করতে হবে।

তত্ত্ব: মনে করি, y = f(x) = 2x + 1..... (i)

তাহলে,
$$x = \frac{1}{2}(y - 1)$$

বা, $y = \frac{1}{2}(x-1)$ [y কে x দারা প্রতিস্থাপন করে]

f এর বিপরীত ফাংশন, $f^{-1}(x) = \frac{1}{2}(x-1)$ (ii)

কাৰ্যপদ্ধতি:

- 1. ছক কাগন্ধে x-আক ও y-আক এবং মূলবিন্দু O চিহ্নিত করি। উভয় অক্ষের দিকে ক্ষুদ্রতম দশ বর্গের বাহুর দৈর্ঘ্যকে 1(একক) ধরে (i) সমীকরণ থেকে প্রাশ্ত A(0, 1) এবং $B\left(\frac{-1}{2}, 0\right)$ বিন্দু দুইটি স্থাপন করি। এ বিন্দু দুইটি স্থাপে করে y = f(x) এর শেখ AB অভকন করি।
- 2. (ii) নং সমীকরণ থেকে একই ক্ষেপে প্রাণ্ড দুইটি বিন্দু C(1,0) এবং $D\left(0,\frac{-1}{2}\right)$ ছক কাগজে স্থাপন করে $f^{-1}(x)$ এর শেখ CD অস্কন করি।

লেখ অম্বন:

8.12.1. বিঘাত ফাংশনের লেখচিত্র অঞ্জন

अअभगा नर	8.12.1	া তারেব :
		<u> </u>

সমস্যা : $f(x) = 4 + 3x - x^2$ এর শেখচিত্র অঞ্জন করতে হবে।

সমাধান : তত্ত্ব : $y = f(x) = 4 + 3x - x^2$, যখন $x \in R$

কার্যপন্ধতি:

- 1. ধরি, $y = f(x) = 4 + 3x x^2$, যা দ্বিঘাত ফাংশন। সুতরাং এর শেখ পরাবৃত্ত (Parabola) আকৃতির হবে। প্রদত্ত সমীকরণটিকে নিম্মরূপে শেখা যায় : $y \frac{25}{4} = -\left(x \frac{3}{2}\right)^2$
- 2. ছক কাগজে x জক্ষ ও y জক্ষ জন্তকন করি। y = 0 বসিয়ে, $4 + 3x x^2 = 0$ $\Rightarrow (x + 1)(x 4) = 0$ $\therefore x = -1, 4$. জাবার, x = 0 বসিয়ে, y = 4.
 - x ফাংশনের লেখটি x- অক্ষের সাথে (-1,0) ও (4,0) এবং y --অক্ষের সাথে (0,4) বিন্দৃতে ছেদ করে।
- 3. প্রদত্ত সমীকরণে x এর বিভিন্ন বাস্তব মান বসিয়ে y এর মান নির্ণয় করি।
- 4. x-অক্ষের দিকে ক্ষুদ্রতম 5 ঘরের দৈর্ঘ্যকে একক এবং y-অক্ষের দিকে ক্ষুদ্রতম 5 ঘরের দৈর্ঘ্যকে 2 একক ধরি। এরপর উক্ত ক্কেল অনুসারে ছক কাগজে বিন্দগুলি স্থাপন করি। চিহ্নিত বিন্দৃগুলো যুক্ত করে প্রদন্ত ফাংশনের লেখ অজ্জন করি।

कन সংকলন :

x	0	1	2	3	4	5	- i	- 2	- 3
y	4	6	6	4	0	- 6	0	<u>-</u> 6	- 14

লেখ অঞ্জন :

8.12.2 : সূচক ফাংশনের লেখচিত্র অঞ্জন

সমস্যা নং ৪.12.2	

সমস্যা : $f(x) = e^x$ এর শেখচিত্র অঞ্চন করতে হবে।

नगाथान :

তত্ত্ব : ধরি, $y = f(x) = e^x$, যখন $x \in R$ এবং e একটি অমূলদ সংখ্যা যা 2 < e < 3.

কার্যপন্ধতি:

 $1. y = f(x) = e^x$ এ x এর বিভিন্ন বাস্তব মান বসিয়ে y এর মান নির্ণয় করি।

2. x-অক্ষের দিকে ক্ষুদ্রতম 10 ঘরের দৈর্ঘ্য = $1 \otimes y$ -অক্ষের দিকে ক্ষুদ্রতম 5 ঘরের দৈর্ঘ্যকে একক ধরি। ছক কাগজে x-অক্ষ ও y-অক্ষ চিহ্নিত করে প্রাপ্ত বিন্দুগুলি স্থাপন করি। উক্ত বিন্দুগুলি সাবলীলভাবে সংযুক্ত করি। প্রাপ্ত বক্তরেখাটি নির্ণেয় লেখচিত্র।

कम সংকলন :

x] – 3	- 2	- 1	- 0.5	0	0.5	1	1.5	2	3
y	.049	0.135	0.367	0.61	1	1.65	2.71	4.48	7.38	20.08

লেখ অংকন :

সমস্যা নং 8.12.3(a)

তারিখ :

সমস্যা : $y = f(x) = \ln x$ এর শেখচিত্র জঙ্কন করতে হবে।

সমাধান :

তম্ব : ধরি, $y = f(x) = \ln x$, যখন $x \in \mathbb{R}$ এবং x > 0.

কার্যপন্ধতি:

 $\mathbf{1.}\ y = f(x) = \ln x$ এ x এর বাস্তব ও ধনাতাক মান বসিয়ে y এর মান নির্ণয় করি।

2. x-অক্ষের দিকে ক্ষুদ্রতম 1() ঘরের দৈর্ঘ্য = । ও y-অক্ষের দিকে ক্ষুদ্রতম 5 ঘরের দৈর্ঘ্যকে একক ধরি। ছক কাগজে x-অক্ষ ও y-অক্ষ চিহ্নিত করে প্রাশ্ত বিন্দুগুলি স্থাপন করি। উক্ত বিন্দুগুলি সাবলীলভাবে সংযুক্ত করি। প্রাশ্ত বক্ররেখাটি নির্ণেয় লেখচিত্র।

कन সংকলন :

x	0.25	0.75	1	1.25	1.50	2	2.25	2.50	3
у	-1.38	- 0.28	0	0.22	0.41	0.69	0.81	0.92	1.1

লেখ অজ্ঞান :

সমস্যা নং 8.12.3(b)

তারিখ:

সমস্যা : $y = f(x) = \log_2 x$ এর শেখ অঞ্জন করতে হবে।

সমাধান :

 $\mathbf{ve}: y = f(x) = \log_2 x,$

 $\Rightarrow y = log_2 x = log_{10} x \times log_2 \ 10 = \frac{log_{10} x}{log_{10} 2}$, যখন x যেকোন ধনাজুক বাস্তব সংখ্যা।

কার্যপন্ধতি:

1. $y=rac{\log_{10}x}{\log_{10}2}$ ফাংশনে x এর বিভিন্ন ধনাত্মক বাস্তব মান নিয়ে y এর মান নির্ণয় করি।

2. উভয় অক্ষরেখার ক্ষুদ্রতম 10 ঘরের বাহুর দৈর্ঘ্যকে একক ধরি। ছক কাগজে x- অক্ষ ও y- অক্ষচিহ্নিত করে প্রাণ্ড (x, y) বিন্দুগুলি স্থাপন করি। চিহ্নিত বিন্দুগুলি সাবলীলভাবে সংযুক্ত করলে প্রাণ্ড বক্ররেখাটি নির্ণেয় লেখচিত্র।

कन সংকলन :

x	≤ 0	0.125	0.25	0.5	1	2	3	4	8	12	16
у	মান বিদ্যমান নেই	- 3	- 2	- 1	0	1	1.59	2	3	3.	4

লেখ অজ্জন :

8.12.4. ত্রিকোণমিতিক ফাংশনের লেখচিত্র অজ্জন। ষষ্ঠ অধ্যায় অনুচ্ছেদ 6.8 দ্রুইব্য

8.12.5 . পরমমান ফাশেনের লেখচিত্র অঞ্চন

সমস্যা নং 8.12.5	তারিখ :

সমস্যা : f(x) = |x| ; $x \in R$ এর শেখচিত্র অঞ্জন করতে হবে।

তত্ত্ব : f(x) = |x|, যখন x এর যেকোনো বাস্তব মানের জন্য y এর মান সর্বদা ধনাত্মক অথবা শূন্য হবে। পরম মানের সংজ্ঞা থেকে f(x) = |x| কে নিম্নরূপে শেখা যায় :

$$y = \begin{cases} x \text{ যখন } x > 0 \\ x \text{ যখন } x < 0 \\ 0 \text{ যখন } x = 0 \end{cases}$$

কার্যপন্ধতি:

 $\mathbf{1.}\;y=\left|x\right|$ সমীকরণে x এর ভিন্ন ভিন্ন বাস্তব মান বসিয়ে y এর মান নির্ণয় করি।

2. ছক কাগজে $x ensuremath{\,^\circ} y$ অক্ষের দিকে ক্ষুদ্রতম পাঁচ বর্গের দৈর্ঘ্য = 1 একক ধরে উপরোক্ত পন্থতিতে প্রাণ্ড সকল (x, y) বিন্দু স্থানাজ্ঞায়িত করি। অতঃপর উক্ত বিন্দুগুলি পেন্দিল দ্বারা সংযোজন করে ফাংশনটির লেখচিত্র অক্ষন করি।

कन्रश्वन :

x	- 3	- 2	- 1	0	1	2	3	
у	3	2	1	0	1	2	3	

লেখ অক্কন :

