

Wyższa Szkoła Oficerska Sił Powietrznych

Katedra Nauk Ogólnokształcących

SPRAWOZDANIE

z ćwiczenia przeprowadzonego w zintegrowanym laboratorium fizyki, mechaniki i termodynamiki.

Temat ćwiczenia: Badanie własności mikrofal

Słuchacz: Igor Buhaj, Łukasz Kusek, Patryk Łudzik

Grupa: C9D

Cwiczenie zaliczono:							

1 Krótki opis ćwiczenia

Celem ćwiczenia jest wykazanie, że w przypadku mikrofal spotykamy takie same zależności jak w przypadku dyfrakcji i polaryzacji światła.

W doświadczeniu należało udowodnić, że dane źródło fal jest spolaryzowane liniowo. Tak więc na podstawie odczytu kąta polaryzacji względem prętów siatki oraz wartości napięcia na czujniku można wyciągnąć wnioski o rodzaju polaryzacji.

W doświadczeniu wykorzystany był zestaw pomiarowy składający się z: emitera mikrofal z klistronem, dipola odbiorczego mikrofal, zasilacza do nadajnika mikrofal, siatki polaryzacyjnej, półkolistej skali, woltomierza i uniwersalnego wzmacniacza pomiarowego.

2 Tabela odczytów i pomiarów

α	0	30°	45°	60°	90°
$\sin^2 \alpha$	0	0, 25	0, 5	0,75	1
I(V)	0	0, 32	0,54	0,64	0,82

3 Opracowanie pomiarów i wyniki. Ocena błędów

Wykorzystując wzór opisujący zależność natężenia fali przechodzącej przez siatkę od kąta polaryzacji względem prętów siatki

$$I(\alpha) = I_0 \sin^2 \alpha$$

Obliczyliśmy, korzystając z metody najmniejszych kwadratów, maksymalne I_0

$$I_0 = 0.88V$$

z błędem

$$\delta_{I_0} = 0,05657V$$

co daje błąd względny

$$\varepsilon_{I_0} = 6.428\%$$

Tak przybliżoną funkcję $I(\alpha)$ oraz punkty pomiarowe zostały przedstawione na wykresie [1].

4 Wnioski i spostrzeżenia

Obliczona maksymalna wartość I_0 jest większa od maksymalnej wartości zmierzonej. Różnice te wynikają z niedokładnie zmierzonych wartości bądź przy mniejszych kątach, bądź przy pomiarze maksymalnego I_0 . Przyczyna błędów bierze się z zakłóceń zewnętrznych pojawiających się w polu elektromagnetycznym, a także od położenia czujnika względem źródła tych fal.

W doświadczeniu wykazaliśmy, że fala jest spolaryzowana liniowo, ponieważ wartość natężenia fali padającej na siatkę osiąga wartość 0 dla kąta $\alpha=0^{\circ}$, a dla kąta $\alpha=90^{\circ}$ osiągnęliśmy maksymalną wartość. Pozostałe odczyty wpasowują się w liniowość funkcji $I(\alpha)$. Potwierdza to, że w siatce pole elektryczne może powstać tylko w kierunku prostopadłym do drutów, natomiast w kierunku równoległym do drutów pole wywołuje prądy i energia fali zostaje zużyta na ciepło Joule'a i fala zostaje pochłonięta.

Rysunek 1: Wykres $I(\alpha) = I_0 \sin^2 \alpha$