Excercise 10.6

Q1. Prove that the line of centres of two intersecting circles subtends equal angles at the two points of intersection.

Solution

Figure 1:

Construction

Symbol	Values	Description
A	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	Center of circle 1
r_1	3 units	Radius of the circle 1
В	$\begin{pmatrix} 4 \\ 0 \end{pmatrix}$	Center of circle 2
r_2	2 units	Radius of circle 2
\mathbf{e}_1	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	Standard basis vector 1
\mathbf{e}_2	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$	Standard basis vector 2

Verification:

The two circle equations are given by:

$$||x||^2 - 9 = 0 \tag{1}$$

$$||x||^2 - 8\mathbf{e}_1 + 12 = 0 \tag{2}$$

Equation of two conics is given by:

$$\mathbf{x}^{\mathsf{T}}\mathbf{V}_{i}\mathbf{x} + 2\mathbf{u}_{i}^{\mathsf{T}}\mathbf{x} + f_{i} = 0, \quad i = 1, 2$$
(3)

Represent the two circles in conic form:

$$\mathbf{x}^{\mathsf{T}}\mathbf{x} - 9 = 0 \tag{4}$$

$$\mathbf{x}^{\mathsf{T}}\mathbf{x} + 2(-4 \quad 0) + 12 = 0 \tag{5}$$

On comparing above two equations with (3), we get:

$$\mathbf{V}_1 = \mathbf{I}, \mathbf{u}_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, f_1 = -9 \tag{6}$$

$$\mathbf{V}_2 = \mathbf{I}, \mathbf{u}_2 = \begin{pmatrix} -4\\0 \end{pmatrix}, f_2 = 12 \tag{7}$$

The intersection of the given conics is obtained as

$$\mathbf{V}_1 + \mu \mathbf{V}_2 = \begin{pmatrix} \mu + 1 & 0 \\ 0 & \mu + 1 \end{pmatrix} \tag{8}$$

$$\mathbf{u}_1 + \mu \mathbf{u}_2 = \begin{pmatrix} 4\\0 \end{pmatrix} \tag{9}$$

$$f_1 + \mu f_2 = -21 \tag{10}$$

This conic is a single straight line if and only if,

$$\begin{vmatrix} \mathbf{V}_1 + \mu \mathbf{V}_2 & \mathbf{u}_1 + \mu \mathbf{u}_2 \\ (\mathbf{u}_1 + \mu \mathbf{u}_2)^\top & f_1 + \mu f_2 \end{vmatrix} = 0$$
 (11)

Substituting equation (8),(9) and (10) in equation (11):

$$\Rightarrow \begin{vmatrix} 1+\mu & 0 & -4\mu \\ 0 & 1+\mu & 0 \\ -4\mu & 0 & -9+12\mu \end{vmatrix} = 0 \tag{12}$$

Solving the above equation we get,

$$\mu = -1 \tag{13}$$

Thus, the parameters for a straight line can be expressed as

$$\mathbf{V} = \mathbf{V}_1 + \mu \mathbf{V}_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \tag{14}$$

$$\mathbf{u} = \mathbf{u}_1 + \mu \mathbf{u}_2 = \begin{pmatrix} 4 \\ 0 \end{pmatrix},\tag{15}$$

$$f = f_1 + \mu f_2 = -21 \tag{16}$$

The conic equation is given by:

$$\mathbf{x}^{\mathsf{T}}\mathbf{V}\mathbf{x} + 2\mathbf{u}^{\mathsf{T}}\mathbf{x} + f = 0, \tag{17}$$

By substituting (14), (15) and (16) in conic equation (17), we get:

$$\begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + 2 \begin{pmatrix} 4 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} - 21 = 0 \tag{18}$$

By solving above equation (18), we get point of contact \mathbf{q} :

$$\mathbf{q} = \begin{pmatrix} \frac{21}{8} \\ 0 \end{pmatrix} \tag{19}$$

The points of intersection of line is given by:

$$L: \quad \mathbf{x} = \mathbf{q} + \kappa \mathbf{m} \quad \kappa \in \mathbb{R} \tag{20}$$

with the conic section, we have:

$$\mathbf{x}_i = \mathbf{q} + \kappa_i \mathbf{m} \tag{21}$$

where,

$$\kappa_{i} = \frac{1}{\mathbf{m}^{T} \mathbf{V} \mathbf{m}} \left(-\mathbf{m}^{T} \left(\mathbf{V} \mathbf{q} + \mathbf{u} \right) \pm \sqrt{\left[\mathbf{m}^{T} \left(\mathbf{V} \mathbf{q} + \mathbf{u} \right) \right]^{2} - \left(\mathbf{q}^{T} \mathbf{V} \mathbf{q} + 2 \mathbf{u}^{T} \mathbf{q} + f \right) \left(\mathbf{m}^{T} \mathbf{V} \mathbf{m} \right)} \right)$$
(22)

On substituting the below values in (22)

$$\mathbf{m} = \mathbf{e}_2, \mathbf{V} = \mathbf{I}, \mathbf{u} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{q} = \begin{pmatrix} \frac{13}{5} \\ 0 \end{pmatrix}, f = -9$$
 (23)

We get,

$$\kappa_i = -\frac{29}{20}, +\frac{29}{20} \tag{24}$$

The intersecting points C and D are given by:

$$\mathbf{C} = \mathbf{q} + \kappa_1 \mathbf{m} = \begin{pmatrix} \frac{21}{8} \\ -\frac{29}{20} \end{pmatrix} \tag{25}$$

$$\mathbf{D} = \mathbf{q} + \kappa_2 \mathbf{m} = \begin{pmatrix} \frac{21}{8} \\ \frac{29}{20} \end{pmatrix} \tag{26}$$

Check whether the intersection angles $\angle ADB$ and $\angle ACB$ are equal or not:

1. Finding ∠ADB:

$$\mathbf{A} - \mathbf{D} = \begin{pmatrix} -\frac{21}{8} \\ -\frac{29}{20} \end{pmatrix}, \mathbf{B} - \mathbf{D} = \begin{pmatrix} \frac{11}{8} \\ -\frac{21}{8} \end{pmatrix}$$
 (27)

$$(\mathbf{A} - \mathbf{D})^{\top} (\mathbf{B} - \mathbf{D}) = -\frac{3}{2}$$
 (28)

$$\|\mathbf{A} - \mathbf{D}\| \|\mathbf{C} - \mathbf{D}\| = 6 \tag{29}$$

$$\cos(\angle ADB) = \frac{(\mathbf{A} - \mathbf{D})^{\top}(\mathbf{B} - \mathbf{D})}{\|\mathbf{A} - \mathbf{D}\| \|\mathbf{B} - \mathbf{D}\|}$$
(30)

$$\angle ADB = 104^{\circ} \tag{31}$$

2. Finding $\angle ACB$:

$$\mathbf{A} - \mathbf{C} = \begin{pmatrix} -\frac{21}{8} \\ \frac{29}{20} \end{pmatrix}, \mathbf{B} - \mathbf{C} = \begin{pmatrix} \frac{11}{8} \\ \frac{29}{20} \end{pmatrix}$$
 (32)

$$(\mathbf{A} - \mathbf{C})^{\top} (\mathbf{B} - \mathbf{C}) = -\frac{3}{2}$$
 (33)

$$\|\mathbf{A} - \mathbf{C}\| \|\mathbf{B} - \mathbf{C}\| = 6 \tag{34}$$

$$\cos(\angle ACB) = \frac{(\mathbf{A} - \mathbf{C})^{\top} (\mathbf{B} - \mathbf{C})}{\|\mathbf{A} - \mathbf{C}\| \|\mathbf{B} - \mathbf{C}\|}$$
(35)

$$\angle ACB = 104^{\circ} \tag{36}$$

Hence, both the intersecting angles are equal to each other, which satisfies the above condition.