Stata: Simple Introduction

- Stata is well documented online (including the official documentation in pdf format)
- I use the tutorial: http://data.princeton.edu/stata/ as a starter for the one here

- Many others available
- Also see Stata Corporation youtube page: https://www.youtube.com/user/statacorp

Outline:

- Creating a "log" file to document your work
- Importing .csv (or .xls) files
- Examining the data for issues
- Saving dataset in Stata format
- Merging 2 Stata datasets
- Summary statistics
- Scatterplot of data
- Generating new variables
- Linear regression
- Post estimation commands (predicted values, hypothesis tests, linear combination of coefficients)
- Plotting scatterplot and fitted regression line

Creating a log file

. log using "C:\Teaching\ESM 296\Logfile.txt", text replace

name: <unnamed>

log: C:\Teaching\ESM 296\Logfile.txt

log type: text

opened on: 23 Jan 2017, 19:24:52

- The log file will collect all the commands and output created in a Stata session
- □ It is formatted in Courier New font

Importing .xls or .csv files

Importing a .xls file

. import excel "C:\Teaching\ESM 296\LifeExpectancy_2012.xlsx",
sheet("Data") firstrow

- □ I used the drop menus to locate my .xls file on my computer
- You need to specify if the first row are actual variables or the variable names (as it is often the case). "firstrow" command

If you know the location, you can type in the full directory name instead of using

Examining the data as a spreadsheet

. Just press the "Data Editor" menu...

Examining the data

. list

+	+		+	
	CountryName	Count~de	LifeExp	
1.	Aruba	ABW	72.836	
2.	Andorra	AND	.	
3.	Afghanistan	AFG	58.524	
4.	Angola	AGO	50.024	
5.	Albania	ALB	74.843	
6.	Arab World	ARB	68.370386	
7.	United Arab Emirates	ARE	75.95	
8.	Argentina	ARG	72.066	
9.	Armenia	ARM	70.796	
10.	American Samoa	ASM	.	
11.	Antigua and Barbuda	ATG	73.234	
12.	Australia	AUS	79.9	

Saving in Stata (.dta) format

. save "C:\Teaching\ESM 296\LifeExpectancy_2012.dta"

If you want to overwrite (be careful) an existing dataset, add the ",replace" to the above command

Merging 2 .dta files:

- . use "C:\Teaching\ESM 296\LifeExpectancy_2012.dta", clear
- . merge 1:1 CountryName using "C:\Teaching\ESM 296\PM25_2012.dta"

Also can be done by using the "Data" -> "Combine datasets" -> ... menus

Both datasets need to be sorted by the "merging" variable, here "CountryName" -> sort Countryname...

Summary statistics

. summ (or summarize)

Variable	Obs	Mean	Std. Dev.	Min	Max
CountryName	0				
CountryCode	0				
LifeExp	246	68.39469	7.852758	47.457	81.6
PM25	240	27.54711	19.86892	3.2	131.4
_merge	264	3	0	3	3

Scatterplot of variables

. graph twoway scatter LifeExp PM25

Olivier Deschenes, UCSB, ESM 296, Winter 2018

Generating new variables

```
. gen ln_LifeExp=log(LifeExp)
(18 missing values generated)
```

Simple linear regression

. reg ln_LifeExp PM25, robust

Linear regression					Number of obs	=	235
					F(1, 233)	=	9.22
					Prob > F	=	0.0027
					R-squared	=	0.0636
					Root MSE	=	.11658
I		Robust					
$ln_LifeExp \mid$	Coef.	Std. Err.	t	P> t	[95% Conf.	Int	cerval]
+							
PM25	001524	.0005018	-3.04	0.003	0025127	(0005352
_cons	4.256063	.0147634	288.28	0.000	4.226976	4	.285149

Post estimation commands (1)

```
. predict ln_LE_fit, xb
(24 missing values generated)
```

Creates new Stata variable (ln_LE_fit) with fitted values from regression

Scatterplot of data and fitted regression line

. graph twoway (scatter ln_LifeExp PM25) (lfit ln_LifeExp PM25)

Olivier Deschenes, UCSB, ESM 296, Winter 2018

Post estimation commands (2)

. test PM25=-0.003

(1) PM25 = -.003

F(1, 233) = 8.65

Prob > F = 0.0036

Hypothesis tests ...

Post estimation commands (3)

. lincom 5*PM25

```
(1) 5*PM25 = 0

ln_LifeExp | Coef. Std. Err. t P>|t| [95% Conf. Interval]

(1) | -.0076198 .0025092 -3.04 0.003 -.0125635 -.0026761
```

Linear combination of regression coefficient(s) and associated standard errors

Closing the log file

. log close

name: <unnamed>

log: C:\Teaching\ESM 296\Logfile.txt

log type: text

closed on: 23 Jan 2017, 20:14:15