FLIP FLOPS SEQUENTIAL LOGIC CIRCUITS

Made By: Rohnak Agarwal, CSE, 2ND Year, 3RD SEM, 2019.

<u>Made on</u>: 13-12-2019

Sources: 1. Rashmi mam's notes

2. Google

 $\underline{\text{Notations}} \colon \ \ Q_{n+1} \ \colon \text{Present State}$

Q_n: Past/ Previous state

Note: Characteristic table is same as state table, but without the CLK column.

1.SR Latch

(No Clock Pulse)

Transistor Diagram:

S-R Flip Flop

Gate (circuit) diagram: (Active High)

Truth Table (Active High):

S	R	Q_{n+1}	$\overline{\mathbb{Q}_{n+1}}$	Remarks
0	0	Q_n	$\overline{Q_n}$	No change
0	1	0	1	Reset
1	0	1	0	Set
1	1	?	?	Forbidden

Gate (circuit) diagram: (Active Low)

Truth Table (Active Low):

	Ī	R	Q_{n+1}	$\overline{Q_{n+1}}$	Remarks
- \	0	0	?	?	Forbidden
	0	1	1	0	Set
	1	0	0	1	Reset
	1	1	Q _n	$\overline{\mathbb{Q}_{n}}$	No change

2. SR Flip Flop (Set Reset Flip Flop) (With Clock pulse)

Gate (circuit) diagram: (Active High)

Truth Table (Active High):

CLK	S	R	Q_{n+1}	$\overline{\mathbf{Q}_{n+1}}$	Remarks
\	d	d	Q _n	$\overline{\mathbb{Q}_{\mathrm{n}}}$	No change
1	0	0	Q _n	$\overline{Q_n}$	No change
1	0	1	0	1	Reset
1	1	0	1	0	Set
1	1	1	?	?	Forbidden

State Table:

		1	
In	put	Output	
Q_n	S	R	Q_{n+1}
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	?
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	?

Gate (circuit) diagram: (Active High)

<u>Truth Table</u> (Active High):

CLK	S	R	Q_{n+1}	$\overline{Q_{n+1}}$	Remarks
↓	d	d	Q _n	$\overline{Q_n}$	No change
1	0	0	Qn	$\overline{Q_n}$	No change
↑	0	1	0	1	Reset
1	1	0	1 5	7)	Set
1	1	1	?	7 ?	Forbidden

K-map for State Table:

State Equation:

$$Q_{n+1} = Q_n \bar{R} + S\bar{R}$$

Excitation table:						
In	puts	Output s				
Q_n	Q_{n+1}	S	R			
0	0	0	d			
0	1	1	0			
1	0	0	1			

Exci	tation [·]	table	<u>:</u>	<u>Equation</u>	on for	<u>S:</u>
Inputs		Output		Q(n+	1)	
		S		(u)ò	0	1
Q_n	Q_{n+1}	S	R	0	0	1
0	0	0	d	U	U	1
0	1	1	0	1	0	Х
1	0	0	1			
1	1	d	0	$S = Q_n$	ı+1	

ion for S: +1)			Equation Q(n+	on for 1)	<u>R:</u>
0	1		(E)	0	1
0	1		0	Х	0
0	Х		1	1	0
		•			

$$S = Q_{n+1} R = \overline{Q_{n+1}}$$

3. D Flip Flop Truth table:

(Delay Flip Flop)

÷	Tatil table.							
	CLK	D	Q_{n+1}					
	\rightarrow	d	Q_n					
	↑	0	0					
	↑	1	1					

State table:

Inp	uts	Output
Q_n D		Q_{n+1}
0	0	0
0	1	1
1	0	0
1	1	1

Excitation Table:

In	puts	Output
Q_n	Q_{n+1}	D
0	0	0
0	1	1
1	0	0
1	1	1

State equation:

$$Q_{n+1} = D$$

$$D = Q_{n+1}$$

4. JK Flip Flop

(Jolly Koggler Flip Flop)

Truth table:

CLK	J	K	Q_{n+1}	$\overline{Q_{n+1}}$	Remarks
\rightarrow	d	d	Q _n	$\overline{Q_n}$	No change
↑	0	0	Q _n	$\overline{Q_n}$	No change
↑	0	1	0	1	Reset
↑	1	0	1	0	Set
↑	1	1	$\overline{\mathbb{Q}_{\mathrm{n}}}$	Q_n	Inversion

State table:

_	ale labie.			
	Inputs			Output
	Q_n	J	K	Q_{n+1}
	0	0	0	0
	0	0	1	0
	0	1	0	1
	0	1	1	1
	1	0	0	1
	1	0	1	0
	1	1	0	
	1	1	1	0

State equation:

$$Q_{n+1} = JQ_n + Q_n \overline{K}$$

Excitation table:

-			
Inputs		Output s	
Q_n	Q_{n+1}	7	K
0	0	0	đ
0	1	1	d
1	0	d	1
1	1	d	0

$$J=Q_{n+1}$$

Equation of K: Q(n+1)

$$K = \overline{Q_{n+1}}$$

5. T Flip Flop

(Toggle Flip Flop)

Truth table:

-				
	CLK	Т	Q_{n+1}	
	\downarrow	d	Q_n	
	↑	0	Q_n	
	↑	1	$\overline{Q_n}$	

State table:

Inputs		Output
Q_n	Т	Q_{n+1}
0	0	0
0	1	1 🔏
1	0	1
1	1	0

Excitation Table:

Excitation rabio.		
Inputs		Output
Q_n	Q_{n+1}	+ 7
0	0	0
0	1	1 📉
1	0	1
1	1	0

State equation:

$$Q_{n+1} = T\overline{Q_n} + \overline{T}Q_n = T \oplus Q_n$$

$$T = Q_n \overline{Q_{n+1}} + \overline{Q_n} Q_{n+1} = Q_n \oplus Q_{n+1}$$

