Message-Passing Neural Networks (MPNNs) and their applications

- Definitions
- Examples
- Architectures
- 3D Generation

Definitions

Graphs

A graph $G = (G_0, G_1)$ may be defined as

- $G_0 = \{i, j, k...\}$ set of vertices
- $G_1 \rightarrow G_0 \times G_0$ set of edges, e.g. $G_1 = \{(i, j), (j, k), ...\}$ subset of $G_0 \times G_0$.

Features $x \in F(G)$ usually also map the elements of G to node- and edge-feature spaces:

$$G_0 \rightarrow F_0$$

$$(x_i) \in F_0$$

$$(x_{ij}) \in F_1$$

Definitions

Hypergraphs

In general, d-graphs $G = (G_0, G_1, ..., G_{d-1})$ also include higher-order relations:

- $G_0 = \{i, j, k...\}$ set of vertices
- $G_1 \rightarrow G_0 \times G_0$ set of edges,

•••

- ...
- $G_d \rightarrow G_0 \times ... \times G_0$ set of **d-faces** or hyperedges

For instance, including **2-faces** = triangles in a 3D structure is necessary to compute **angles**.

... **3-faces** = tetrahedra in a 3D chain ...

torsion angles

Examples

Examples

Web: Pages and links,

Networking: Hosts and routing,

- Telecoms: Bits and checksums,

Advertising: Users and content,

- ...

- Chemistry: Atoms in organic molecules

- Material Sciences: Atoms in periodic crystals

- Biology: Amino Acid (AA) sequences in proteins

- ..

Deepmind crystal

Hemoglobin

Examples

Example Tasks

Classification	Regression	Feature prediction	Generation
$F(G) \rightarrow K = \{0, 1,\}$	$F(G) \to R \text{ or } R^d$	$G \rightarrow F(G)$	$N(0, 1) \rightarrow F(G)$
Toxicity, binding	Energy, band gaps,	Recommendation systems	Drug discovery
Clustering	chemical properties	Error correction	Material discovery
	Likelihood estimation (e.g. critic)	AA sequence to 3D structure	
	(e.g. critic)	An sequence to ob structure	

Graph Convolutional Networks (GCNs)

Graph gradient / differential

$$d: F(G_0) \rightarrow F(G_1)$$

$$d(x)_{ii} = w_{ii}(x_i - x_i)$$

Graph divergence / codifferential

$$d^*: F(G_1) \rightarrow F(G_0)$$

$$d^*(v)_j = \sum_{i>j} v_{ij} - \sum_{j>i} v_{ji}$$

Graph Laplacian and its polynomials

$$L = d^*d : F(G_0) \rightarrow F(G_0)$$

$$L(x)_j = x_j$$
 - average over neighbours $(x)_j$

$$P(L) = \sum_{k} p_{k} L^{k}$$
: local filter of range k

$$P(L)(x) = \sum_{k} p_{k} L^{k}(x)$$

Message-Passing Neural Networks (MPNNs)

Message function

$$M: F(G_0) \rightarrow F(G_1)$$

$$M_{ij} = f_{\theta}(x_i, x_j)$$

Update function

$$U: F(G_1) \to F(G_0)$$

$$U(M)_{j} = \sum_{i>j} M_{ij}$$

Message-Passing layers and their iterations

$$\mathsf{UM}:\mathsf{F}(\mathsf{G}_0)\to\mathsf{F}(\mathsf{G}_0)$$

Message-Passing Neural Networks (MPNNs)

Message function		Update function	
$M: F(G) \rightarrow F(G)$	+	$U:F(G)\to F(G)$	
$M_{ij} = f_{\theta}(x_i, x_j, x_{ij})$		$U(x, M)_{j} = \frac{x_{j}}{\sum_{i>j}} M_{ij}$	

Note that many different algorithms fall under the umbrella of MPNNs

Graph Convolution is a particular case of message-passing

Shouldn't edge features be updated as well?

Message-Passing on Hypergraphs

Nerve: ordered chains

$$N_kG = \{a_0 > ... > a_k\}$$

a₀ contains a₁ contains ...

$$N_1G = \{a > b\}$$

hypergraph ij ijk jk

Messages:

$$M: F(G) \rightarrow F(N_1G)$$

$$M_{a > b} = f_{\theta}(x_a, x_b)$$

Update function

$$U: F(N_1G) \rightarrow F(G)$$

$$U(M)_{b} = \sum_{a>b} M_{a>b} - \sum_{b>c} M_{b>c}$$

partial order

Implementation Details


```
from torch_scatter import scatter

out = scatter(src, idx, dim=0)

>>> for x, i in zip(src, idx):
    out[i] += x
```

N.B: This is equivalent to a sparse matrix-vector product: sparse CSR matrices are optimal for this task.

However, handling sparse (node) / dense (feature) dimensions and reshapes quickly become cumbersome.

3D Generation

Diffusion Models (aka Annealed Importance Sampling)

Forward process:

$$x_{00} \sim N(0, 1)$$

Backward process:

$$x_{t-1} \sim g_{\theta}(x_{t-1} | x_t, t)$$

...
 $x_0 \sim g_{\theta}(x_0 | x_1, t)$

Stochastic Differential Equations (SDEs) in the continuous limit:

$$dx_t = -rac{1}{2}eta(t)x_tdt + \sqrt{eta(t)}dW_t \ x_{t-dt} = x_t + rac{1}{2}eta(t)x_tdt + eta(t)f_ heta(x_t,t)dt + \sqrt{eta(t)}dW_t$$

3D Generation

Equivariance?

SO(3) and E(3) act on R^{3xN}

- > For regression tasks, predictions should not depend on molecule presentation.
- > For generation tasks, position updates should be E(3) equivariant.

Instead of working with atomic positions directly, we should work with local Euclid invariants:

0: none

1: lengths

2: angles, areas

3: torsion angles, volumes

 ∇

1: edge vectors

2: rotations

0: none

3: torsions

• •

3D Generation

Equivariance?

Other approaches rely on **spherical harmonics** as angular activation functions:

$$r \rightarrow Y_{lm}(r)$$
 for $l < l_{max}$, $m = -l$, ..., $+l$

Steeper learning curve!

See:

- <u>e3nn</u> (torch + jax)
- <u>e3x</u> (jax / by Google)

Spherical Harmonics (from e3nn)

Spherical harmonics Y_{lm} span the space H_l of degree-l harmonic polynomials, i.e. homogeneous polynomials with zero laplacian.

Warning: choosing a privileged basis of quantum numbers on H₁ may break the equivariance...

References

Extensive review on 3D structures:

- A Hitchhiker's Guide to Geometric GNNs for 3D Atomic Systems (Duval 2023)

Higher order MPNNs:

- MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields (Batatia et al 2022)

Deepmind nature paper:

- Scaling deep learning for materials discovery (Merchant et al 2023)

General review on GNNs:

- A Gentle Introduction to Graph Neural Networks

For more references and these slides: → github.com/opeltre/gnn

Technical case

https://github.com/opeltre/gnn

QM7 and QM9 datasets may be found here

- http://quantum-machine.org/datasets/

Respectively consist of ~7k and ~130k organic molecules with:

- atomic positions
- atomization energy (QM7) and more (QM9) obtained by quantum simulations

The small QM7 dataset may be used for simple regression tasks on atomization energy.

Bigger datasets such as the QM9 (~130k molecules) are probably more suited for generation tasks.