Introduction

Oh hey, it's another one of these independent studies. Me and a friend are going to be going through William Fulton's *Algebraic Curves*. It will be hard, it will be long, and it might not work out for me, but who cares.

Contents

oduction
ne Algebraic Sets
Algebraic Preliminaries
Affine Space and Algebraic Sets
The Ideal of a Set of Points
The Hilbert Basis Theorem
rreducible Components of an Algebraic Set
Algebraic Subsets of the Plane
Hilbert's Nullstellensatz
Modules and Finiteness
ntegral Elements
Gield Extensions

Affine Algebraic Sets

Algebraic Preliminaries

We will assume all rings are commutative with unity, where $\mathbb Z$ is the integers, $\mathbb Q$ is the rationals, $\mathbb R$ is the reals, and $\mathbb C$ is the complex numbers.

Any integral domain R has a quotient field K, which contains R as a subring, and any element in K may be written as a not necessarily unique ratio of two elements of R. Any one-to-one ring homomorphism from R to a field L extends uniquely to a ring homomorphism from K to L.

If R is a ring, then R[x] is the ring of polynomials with coefficients in R. The degree of a nonzero polynomial $\sum a_i x^i$ is the largest integer d such that $a_d \neq 0$. The polynomial is monic if $a_d = 1$.

The ring of polynomials in n variables over R is $R[x_1,\ldots,x_n]$. We write R[x,y] and R[x,y,z] if n=2 and 3 respectively. Monomials in $R[x_1,\ldots,x_n]$ are of the form $x^{(i)} := x_1^{i_1}x_2^{i_2}\cdots x_n^{i_n}$, where i_j are nonnegative integers, and the degree of the monomial is $i_1+\cdots i_n$. Every $F\in R[x_1,\ldots,x_n]$ has a unique expression $F=\sum a_{(i)}x^{(i)}$, where $x^{(i)}$ are monomials, and $a_{(i)}\in R$. We say F is homogeneous of degree d if all $a_{(i)}$ are zero except for monomials of degree d. The polynomial F is written as $F=F_0+F_1+\cdots F_d$, where F_i is a form of degree i, and $d=\deg(F)$ for $F_d\neq 0$.

The ring R is a subring of R[$x_1, ..., x_n$], and the ring R[$x_1, ..., x_n$] is characterized by the following: if $\varphi \colon R \to S$ is a ring homomorphism, and $s_1, ..., s_n$ are elements in S, then there is a unique extension of φ to a ring homomorphism $\overline{\varphi} \colon R[x_1, ..., x_n] \to S$ such that $\overline{\varphi}(x_i) = s_i$. The image of F under $\overline{\varphi}$ is written F($s_1, ..., s_n$). The ring R[$x_1, ..., x_n$] is canonically isomorphic to R[$x_1, ..., x_{n-1}$][x_n].

An element $a \in R$ is called irreducible if it is not a unit or zero, and any factorization a = bc with $b, c \in R$ is such that either b or c is a unit. A domain R is a unique factorization domain (UFD) if every nonzero element in R can be factored uniquely up to units and ordering.

If R is a UFD with quotient field K, then any irreducible element $F \in R[x]$ remains irreducible when considered in K[x].

Theorem (Gauss's Lemma for \mathbb{Z}): If $F \in \mathbb{Z}[x]$ is a monic polynomial that is irreducible, then F is irreducible in $\mathbb{Q}[x]$.

If F and G are polynomials in R[x] with no common factors in R[x], then they have no common factors in K[x].

If R is a UFD, then R[x] is also a UFD, and consequently $k[x_1,...,x_n]$ is a UFD for any field k. The quotient field of $k[x_1,...,x_n]$ is written $k(x_1,...,x_n)$ is called the field of rational functions in n variables over k.

If $\varphi \colon R \to S$ is a ring homomorphism, $\ker(\varphi) := \varphi^{-1}(0)$. The kernel is an ideal in R. An ideal in R is proper if $I \neq R$, and a proper ideal is known as maximal if it is not contained in any larger proper ideal.^I An ideal \mathfrak{p} is prime if, whenever $\mathfrak{ab} \in \mathfrak{p}$, then $\mathfrak{a} \in \mathfrak{p}$ or $\mathfrak{b} \in \mathfrak{p}$.^{II}

Let k be a field and I a proper ideal in $k[x_1, \ldots, x_n]$. The canonical homomorphism π from $k[x_1, \ldots, x_n]$ to $k[x_1, \ldots, x_n]/I$ restricts to a ring homomorphism from k to $k[x_1, \ldots, x_n]/I$. We regard k as a subring of $k[x_1, \ldots, x_n]/I$, which is a vector space over k.

If R is an integral domain, then char(R), the characteristic of R, is the smallest integer p such that

$$\underbrace{1+1\cdots+1}_{p \text{ times}} = 0$$

If p exists, we say char(R) = p, else 0.

Note that if $\varphi \colon \mathbb{Z} \to R$ is the unique ring homomorphism from \mathbb{Z} to R^{III} then $\ker(\varphi) = \langle p \rangle$, so $\operatorname{char}(R)$ is prime or 0.

If R is a ring, and $F \in R[x]$, and α is a root of F, then $F = (x - \alpha)G$ for some unique polynomial $G \in R[x]$. A field k is algebraically closed if any nonconstant $F \in k[x]$ has a root.

Exercise (Exercise 1.1): Let R be an integral domain.

- (a) If F and G are forms of degree r and s respectively in $R[x_1, ..., x_n]$, show that FG is a form of degree r + s.
- (b) Show that any factor of a form in $R[x_1,...,x_n]$ is also a form.

Solution:

(a) Let H = FG, where F is a form of degree F and G is a form of degree G. Note that since G are forms, we know that $F = F_F$, where G is the form with degree G is the form with degree G.

Exercise (Exercise 1.2): Let R be a UFD and K the quotient field of R. Show that every element $z \in K$ may be written as z = a/b, where $a, b \in R$ have no common factors. This representative is unique up to units of R.

Solution: Since K = Frac(R), we know that every $z \in K$ is of the form $z = \frac{a}{b}$. Since R a unique factorization domain, gcd(a, b) is unique and well-defined. Set $c \cdot gcd(a, b) = a$ and $d \cdot gcd(a, b) = b$. Then,

$$z = \frac{d}{b}$$

$$= \frac{c \cdot \gcd(a, b)}{d \cdot \gcd(a, b)}$$

$$= \frac{c}{d}.$$

 $^{^{\}mathrm{I}}$ Alternatively, an ideal I is maximal if the quotient ring R/M is a field.

^{II}Alternatively, an ideal \mathfrak{p} is prime if R/\mathfrak{p} is an integral domain.

 $^{{}^{\}text{III}}$ This is because ${}^{\mathbb{Z}}$ is initial in the category of rings. See Aluffi.

We show that this is unique up to units. Suppose

$$z = \frac{c}{d}$$
$$= \frac{c'}{d'}$$

Then, by the properties of the field of fractions, we know that

$$c'd = cd'$$

and since R is a UFD, we know that gcd(c, d) = gcd(c', d') = 1, so $c = u_1c'$ and $d = u_2d'$.

Exercise (Exercise 1.3): Let R be a principal ideal domain, and let P be a nonzero proper prime ideal in R.

- (a) Show that P is generated by an irreducible element.
- (b) Show that P is maximal.

Solution:

(a) Since P is principal, we know that $P = \langle \alpha \rangle$ for some $\alpha \in R$. We know that α cannot be a unit, as otherwise P = R, contradicting the assumption that P is proper, and that $\alpha \neq 0$ as P is not zero.

Suppose toward contradiction that $\langle a \rangle \subsetneq \langle b \rangle$ for some $b \in R$. Then, a = bc for some $c \in R$. If $c \notin \langle a \rangle$, then since $\langle a \rangle$ is prime, we must have $b \in \langle a \rangle$, contradicting strict inclusion. Thus, $c \in \langle a \rangle$, so c = at for some $t \in R$. Therefore, we have a = abt, so $bt = 1_R$, and $\langle b \rangle = R$.

(b) Since R is a PID, and P is prime, we know that $P = \langle \alpha \rangle$ is generated by an irreducible element. Thus, if $\langle \alpha \rangle \subseteq \langle b \rangle$, then $\alpha = bc$ for some $c \in R$. Since we have unique factorization (as all PIDs are UFDs), and α is irreducible, this means either b or c is a unit. If b is a unit, then $\langle b \rangle = R$, and if c is a unit, then $\langle b \rangle = \langle \alpha \rangle$. Thus, $\langle \alpha \rangle$ is maximal.

Exercise (Exercise 1.4): Let k be an infinite field, $f \in k[x_1, ..., x_n]$. Suppose $F(a_1, ..., a_n) = 0$ for all $a_1, ..., a_n \in k$. Show that f = 0.

Exercise (Exercise 1.5): Let k be any field. Show that there are an infinite number of irreducible monic polynomials in k[x].

Solution: Suppose F_1, \ldots, F_n were all the irreducible monic polynomials in k[x]. Consider the polynomial $P = F_1 F_2 \cdots F_n + 1$. We note that P is monic. We will show that P is irreducible.

Suppose toward contradiction that P were reducible. We know that k[x] is a principal ideal domain, so $P \in \langle F_i \rangle$ for some irreducible monic F_i . However, we know that, for any F_i , $1 \le i \le n$, $P \nmid F_i$, as, applying the division algorithm to P, we get

$$P = (F_i) \prod_{j \neq i} F_j + 1,$$

where $r \neq 0$. Thus, P is not reducible and monic, so there are infinitely many irreducible monic polynomials in k[x].

Exercise (Exercise 1.6): Show that any algebraically closed field is infinite.

Solution: Note that if k is any field, then there are infinitely many irreducible monic polynomials in k[x]. If k is algebraically closed, then (x - a), for $a \in k$, is the only irreducible monic polynomial. Since there are infinitely many irreducible monic polynomials in k[x], there are infinitely many $a \in k$ such that (x - a) is irreducible in k[x]. Thus, k is infinite

Exercise (Exercise 1.7): Let k be any field, and $F \in k[x_1, ..., x_n]$, with $a_1, ..., a_n \in k$.

(a) Show that

$$F = \sum \lambda_{(i)}(x_1 - a_1)^{i_1} \cdots (x_n - a_n)^{i_n},$$

where $\lambda_{(i)} \in k$.

(b) If $F(\alpha_1,\ldots,\alpha_n)=0$, show that $F=\sum_{i=1}^n(x_i-\alpha_i)G_i$ for some not necessarily unique $G_i\in k[x_1,\ldots,x_n]$.

Solution:

(a) We let

$$G = F(x_1 + a_1, x_2 + a_2, ..., x_n + a_n).$$

Then, since $G \in k[x_1, ..., x_n]$, we have

$$\mathsf{G} = \sum \lambda_{(\mathfrak{i})} x_1^{\mathfrak{i}_1} \cdots x_n^{\mathfrak{i}_n}.$$

Then, we have

$$F = \sum \lambda_{(i)} (x_1 - \alpha_1)^{i_1} \cdots (x_n - \alpha_n)^{i_n}.$$

(b) Note that if $F(a_1, \ldots, a_n) = 0$, then $(x_i - a_i) \mid F(a_1, \ldots, a_{i-1}, x_i, a_{i+1}, \ldots, a_n)$. Thus, we have

$$F(\alpha_1,\ldots,\alpha_{i-1},x_i,\alpha_{i+1},\ldots,\alpha_n) = (x_i - \alpha_i) \underbrace{g(\alpha_1,\ldots,\alpha_{i-1},x_i,\alpha_{i+1},\ldots,\alpha_n)}_{G_i}.$$

This yields

$$F(x_1,\ldots,x_n) = \sum_{i=1}^n (x_i - a_i)G_i.$$

Affine Space and Algebraic Sets

Definition. If k is a field, then when we write $\mathbb{A}^n(k)$, or \mathbb{A}^n , to be the cartesian product of k with itself n times.

We call $\mathbb{A}^n(k)$ the affine n-space over k. Its elements are called points. We call $\mathbb{A}^1(k)$ the affine line and $\mathbb{A}^2(k)$ the affine plane.

Definition. If $F \in k[x_1, ..., x_n]$, then $P = (a_1, ..., a_n) \in \mathbb{A}^n(k)$ is called a zero of F if $F(P) = (a_1, ..., a_n) = 0$.

If F is not constant, then the zeros of F are called the hypersurface defined by F, defined by V(F). A hypersurface in $\mathbb{A}^2(k)$ is called an affine plane curve.

If F is a polynomial of degree 1, then V(F) is called a hyperplane in $\mathbb{A}^n(k)$; if n = 2, then an affine hyperplane is a line.

Definition. If S is any set of polynomials in $k[x_1,...,x_n]$, then $V(S) = \{P \in \mathbb{A}^n \mid F(P) = 0 \text{ for all } F \in S\}$. In other words, $V(S) = \bigcap_{F \in S} V(F)$. If $S = \{F_1,...,F_r\}$, we write $V(F_1,...,F_r)$.

A subset $X \subseteq \mathbb{A}^n(k)$ is an affine algebraic set (or algebraic set) if X = V(S) for some S.

Proposition:

- (1) If I is the ideal in $k[x_1, ..., x_n]$ generated by S, then V(S) = V(I); thus, every algebraic set is equal to V(I) for some ideal I.
- (2) If $\{I_{\alpha}\}$ is a collection of ideals, then $V(\bigcup_{\alpha} I_{\alpha}) = \bigcap_{\alpha} V(I_{\alpha})$.
- (3) If $I \subseteq J$, then $V(I) \supseteq V(J)$.
- (4) For any polynomials F, G, $V(FG) = V(F) \cup V(G)$. Furthermore, $V(I) \cup V(J) = V(\{FG \mid F \in I, G \in J\})$.
- (5) We have that $V(0) = \mathbb{A}^n(k)$, $V(1) = \emptyset$, $V(x_1 a_1, ..., x_n a_n) = \{(a_1, ..., a_n)\}$ for $a_i \in k$. Thus, any finite subset of $\mathbb{A}^n(k)$ is an algebraic set.

Exercise (Exercise 1.8): Show that the algebraic subsets of $\mathbb{A}^1(k)$ are just the finite subsets together with $\mathbb{A}^1(k)$ itself.

Solution: Since k[x] is a principal ideal domain, we know that the zero set V(S) for any $S \subseteq k[x]$ is of the form $V(\langle f \rangle) = V(f)$, where $f \in k[x]$. Since f is a polynomial, f has finitely many roots, so there are finitely many elements in the algebraic subset.

Additionally, since $0 \in k[x]$, we know that k is also an algebraic subset.

Exercise (Exercise 1.14): Let F be a nonconstant polynomial in $k[x_1, ..., x_n]$, where k is algebraically closed. Show that $\mathbb{A}^n(k) \setminus V(F)$ is infinite if $n \ge 1$ and that V(F) is infinite if $n \ge 2$. Conclude that the complement of any proper algebraic set is infinite.

Solution: We know that k is infinite as k is algebraically closed.

Let
$$F \in k[x_1, ..., x_n] \cong k[x_1, ..., x_{n-1}][x_n]$$
.

In the base case with n=1, we know that there are finitely many roots in $\mathbb{A}^1(k)$, so we have the base case. If $n\geqslant 2$, then we write $F=\sum G_ix_n^i$. We know that since F is nonzero, then there is at least one nonzero G_i . We showed in Exercise 1.4 that there is some $a_1,\ldots,a_{n-1}\in k$ such that $G_i(a_1,\ldots,a_{n-1})\neq 0$. Thus, $F(a_1,\ldots,a_{n-1},x_n)$ is not the zero polynomial, meaning there are finitely many roots, and thus infinitely many non-roots.

Thus, there are infinitely many $a_1, \ldots, a_n \in k$ with $a_1, \ldots, a_n \neq 0$.

We write $F = \sum G_i x_n^i$. We know that if all the G_i are constant, then we have a single-variable polynomial in x_n , and any choice of $a_1, \ldots, a_{n-1} \in k$ provide other elements of V(F). We assume that there is some G_i that is a nonconstant polynomial in x_1, \ldots, x_{n-1} .

Since G_i is nonzero, we may use the previous paragraph to state that G_i has infinitely many non-roots, and for each choice of those a_1, \ldots, a_{n-1} , we have a polynomial in x_n . This polynomial has a root, meaning there are infinitely many roots.

Exercise (Exercise 1.15): Let $V \subseteq \mathbb{A}^n(k)$ and $W \subseteq \mathbb{A}^m(k)$ be algebraic sets. Show that

$$V \times W = \{(a_1, \dots, a_n, b_1, \dots, b_m) \mid (a_1, \dots, a_n) \in V, (b_1, \dots, b_m) \in W\}$$

is an algebraic set in $\mathbb{A}^{n+m}(k)$. It is called the product of V and W.

Solution: Consider the set of polynomials in $k[x_1, \ldots, x_n, x_{n+1}, \ldots, x_{n+m}]$ given by $P = F(x_1, \ldots, x_n) + G(x_{n+1}, \ldots, x_m)$, where F is a polynomial in the ideal whose algebraic set is V and G is an ideal in the algebraic set whose ideal is W. Then, the collection of zeros are those of the form $(a_1, \ldots, a_n, b_1, \ldots, b_m)$, where $(a_1, \ldots, a_n) \in V$ and $(b_1, \ldots, b_m) \in W$.

Solution (A Real Solution): We have that V and W are defined by $\{F_1, \ldots, F_r\}$ and $\{G_1, \ldots, G_s\}$ for some polynomials. We define $V \times W$ to be the algebraic set defined by the polynomials in $\{F_1, \ldots, F_r, G_1, \ldots, G_s\}$ that are constant with respect to the other variables.

The Ideal of a Set of Points

Definition. If $X \subseteq \mathbb{A}^n(k)$, then the polynomials that vanish on X form an ideal in $k[x_1, ..., x_n]$, called the ideal of X, or I(X).

$$I(X) := \{ F \in k[x_1, ..., x_n] \mid F(a_1, ..., a_n) = 0 \text{ for all } (a_1, ..., a_n) \in X \}.$$

The following hold.

- If $X \subseteq Y$, then $I(X) \supseteq I(Y)$.
- We have $I(\emptyset) = k[x_1, \dots, x_n]$, $I(\mathbb{A}^n(k)) = \langle 0 \rangle$ if k is infinite, and $I(\{(\alpha_1, \dots, \alpha_n)\}) = \langle x_1 \alpha_1, \dots, x_n \alpha_n \rangle$ for $\alpha_1, \dots, \alpha_n \in k$.
- We have $I(V(S)) \supseteq S$ for any set S of polynomials, and $V(I(X)) \supseteq X$ for any set X of points.
- We have V(I(V(S))) = V(S) for any set of polynomials S, and I(V(I(X))) = I(X) for any set X of points. If V is an algebraic set, V = V(I(V)) and if I is the ideal of an algebraic set, then I = I(V(I)).

Definition. If I is any ideal in a ring R, we define the radical of I, written $rad(I) = \{a^n \mid a \in I \text{ for some } n > 0\}$. We have that rad(I) is an ideal containing I. An ideal I is called a radical ideal if I = rad(I).

• We have I(X) is a radical ideal for any $X \subseteq \mathbb{A}^n(k)$.

Exercise (Exercise 1.16): Let V and W be algebraic sets in $\mathbb{A}^n(k)$. Show that V = W if and only if I(V) = I(W).

Solution: Let V = W. Then, if $F \in I(V)$, then F = 0 on W, so $F \in I(W)$, and vice versa.

Suppose I(V) = I(W). We know that V(I(V)) = V and V(I(W)) = W. Thus, if $(a_1, ..., a_n) \in V$, we know that for all $F \in I(W)$, that $F(a_1, ..., a_n) = 0$ as $F \in I(V)$, meaning $(a_1, ..., a_n) \in V(I(W)) = W$. By symmetry, we have V = W.

Exercise (Exercise 1.17):

- (a) Let V be an algebraic set in $\mathbb{A}^n(k)$ and $P \in \mathbb{A}^n(k)$ not a point in V. Show that there is a polynomial $F \in k[x_1, ..., x_n]$ such that F(Q) = 0 for all $Q \in V$ but F(P) = 1.
- (b) Let $P_1, ..., P_r$ e distinct points in $\mathbb{A}^n(k)$ not in an algebraic set V. Show that there are polynomials $F_1, ..., F_r \in I(V)$ such that $F_i(P_i) = \delta_{ij}$.
- (c) With P_1, \ldots, P_r and V as in (b), and $a_{ij} \in k$ for $1 \le i, j \le r$, show that there are $G_i \in I(V)$ such that $G_i(P_j) = a_{ij}$ for all i and j.

Solution:

- (a) We know that there is some $F \in I(V)$ such that $F(P) \neq 0$. Letting a = F(P), we have that $\frac{1}{a}F(P) = 1$.
- (b) We find $F_i \in I(V \cup \{P_{-i}\})$, where $\{P_{-i}\} = \{P_1, \dots, P_r\} \setminus \{P_i\}$. Applying (a) to F_i , we get that $F_i(P_i) = 1$ and $F_i(P_j) = 0$ for $j \neq i$. By symmetry, this holds for F_1, \dots, F_r .
- (c) With P_1, \ldots, P_r and V as in (b), find F_1, \ldots, F_r as in (b). Then, $G_i = \sum_j a_{ij} F_j$ yields our desired outcome.

Exercise (Exercise 1.18): Let I be an ideal in a ring R. If $a^n \in I$ and $b^m \in I$, show that $(a + b)^{n+m} \in I$. Show that rad(I) is a (radical) ideal. Show that any prime ideal is radical.

Solution:

· Applying binomial theorem, we have

$$(a+b)^{n+m} = \sum_{k=0}^{n+m} \binom{n+m}{k} a^{n+m-k} b^k$$

$$\in I,$$

where $a^0 = b^0 := 1$.

- We have $I \subseteq rad(I)$, since we can take n = 1. If $a, b \in rad(I)$, we know that there is some n such that $a^n, b^m \in I$, so by the same logic as above, $(a b)^{n+m} \in I$, meaning $a b \in rad(I)$. Now, if $a \in rad(I)$ and $a \in I$, then we have that $a^n \in I$ for some $a \in I$ for some $a \in I$ as $a \in I$ is an ideal, so $a \in I$ so $a \in rad(I)$, so $a \in rad(I)$, so $a \in rad(I)$ is an ideal.
- Let I be prime, and let $a \in rad(I)$. Then, $a^n \in I$ for some n > 0, meaning $(a) \left(a^{n-1}\right) \in I$. Then, either $a \in I$, or $a^{n-1} \in I$, so by the implicit inductive hypothesis, we have $a \in I$, so $rad(I) \subseteq I$, so rad(I) = I.

Exercise (Exercise 1.20): Show that for any ideal I in $k[x_1, ..., x_n]$, V(I) = V(rad(I)), and $rad(I) \subseteq I(V(I))$.

Solution:

• Clearly, $V(rad(I)) \subseteq V(I)$ because $I \subseteq rad(I)$. We know that if $P \in V(I)$, then there is some polynomial $F \in I$ such that F(P) = 0.

Exercise (Exercise 1.21): Show that any $I = \langle x_1 - \alpha_1, \dots, x_n - \alpha_n \rangle \subseteq k[x_1, \dots, x_n]$ is a maximal ideal, and that the natural homomorphism from k to $k[x_1, \dots, x_n]/I$ is an isomorphism.

Solution: Note that $\langle x_1 - a_1, \dots, x_n - a_n \rangle \subseteq k[x_1, \dots, x_n]$ is isomorphic to $\langle x_1, \dots, x_n \rangle \subseteq k[x_1 + a_1, \dots, x_n + a_n]$, $k[x_1, \dots, x_n]/I \cong k$.

The Hilbert Basis Theorem

Earlier, we allowed any algebraic set V(S) to be defined by an arbitrary set $\{F_i\}_{i\in I}\subseteq k[x_1,\ldots,x_n]$. However, the Hilbert Basis Theorem will show that a finite number will do.

Theorem: Every algebraic set is the intersection of a finite number of hypersurfaces.

Proof. We know that V(I) is the algebraic set for some $I \subseteq k[x_1, ..., x_n]$. It is enough to show that I is finitely generated, as if $I = \langle F_1, ..., F_n \rangle$, then $V(I) = V(F_1) \cap \cdots \cap V(F_n)$.

Now, to prove this, we need to show that any arbitrary ideal $I \subseteq k[x_1, ..., x_n]$ is finitely generated. This is where the Hilbert Basis Theorem comes into play.

Definition. If R is a commutative ring, with identity, we say R is Noetherian if every ideal of R is finitely generated.

Note that all PIDs are Noetherian.

Now, we may state and prove the Hilbert Basis Theorem.

Theorem (Hilbert Basis Theorem): If R is a Noetherian ring, then $R[x_1, ..., x_n]$ is a Noetherian ring.

Proof. Since $R[x_1,...,x_n]$ is canonically isomorphic to $R[x_1,...,x_{n-1}][x_n]$. The theorem will follow by induction if we can prove that R[x] is Noetherian whenever R is Noetherian.

Let $I \subseteq R[x]$ be an ideal. We wish to find a finite set of generators for I.

Let $F = a_d x^d + \cdots a_1 x + a_0 \in R[x]$ with $a_d \neq 0$. We call a_d the leading coefficient of F. Let J be the set of leading coefficients of polynomials in I. Then, $J \subseteq R$ is an ideal, so there are polynomials $F_1, \ldots, F_r \in I$ whose leading coefficients generate J.

Select N larger than the degree of each F_i . For each $m \le N$, let J_m be the ideal in R consisting of all leading coefficients of polynomials $F \in I$ with $deg(F) \le m$. Let $\{F_{m_j}\}$ be the finite set of polynomials in I with degree $\le m$ such that their leading coefficients generate J_m . Let I' be the ideal generated by F_i and F_{m_j} for each i, m_j . It is enough to show that I = I'.

Suppose $I' \subsetneq I$. Let G be an element of I of minimal degree such that $G \notin I'$. If deg(G) > N, then we may find Q_i such that $\sum Q_i F_i$ and G have the same leading term. However, this means $deg(G - \sum Q_i F_i) < deg(G)$, so $G - \sum Q_i F_i \in I'$, meaning $G \in I'$. Similarly, if $deg(G) = m \leqslant N$, then we may lower the degree by subtracting $\sum Q_j F_{m_j}$ for some Q_j .

Exercise (Exercise 1.22): Let I be an ideal in a ring R, π : R \rightarrow R/I the canonical projection.

- (a) Show that for every ideal $J' \subseteq R/I$, that $\pi^{-1}(J') = J$ is an ideal of R containing I. Furthermore, show that for every ideal $J \subseteq R$, that $\pi(J) = J'$ is an ideal of R/I. This establishes a natural correspondence between ideals of R/I and ideals of R that contain I.
- (b) Show that J' is a radical ideal if and only if J is radical. Similarly, show this for J prime and maximal.
- (c) Show that J' is finitely generated if J is. Conclude that R/I is Noetherian if R is Noetherian. Thus, we get that $k[x_1,...,x_n]/I$ is Noetherian for any ideal $I \subseteq k[x_1,...,x_n]$ by the Hilbert Basis Theorem.

Solution:

(a) We know that $I \subseteq \pi^{-1}(J')$, as $I = \pi^{-1}(0+I) \subseteq \pi^{-1}(J')$. Notice that, if $a, b \in \pi^{-1}(J')$ and $r \in R$, then $a+I, b+I \in J'$ and $r+I \in R/I$. Then, $a-b+I \in J'$, so $a-b \in \pi^{-1}(J')$, and $ra+I \in J'$, so $ra \in \pi^{-1}(J')$, so $\pi^{-1}(J')$ is an ideal of R.

Now, let a+I, $b+I\in\pi(J)$. Then, we know that there exist $c_1,c_2\in J$ such that $a-c_1,b-c_2\in I$. Thus, $(a-b)+(c_2-c_1)\in I$. Since we have $c_2-c_1\in J$ as J is an ideal, so $\pi(a-b)=\pi(c_2-c_1)$, and $(a-b)+I\in\pi(J)$. Now, let $a+I\in\pi(J)$, and let $r+I\in R/I$. Then, there exist $c_1\in R$, $c_2\in J$ such that $r-c_1\in I$ and $a-c_2\in I$, meaning that $\pi(c_1c_2)=\pi(ra)=ra+I\in\pi(J)$.

(b) Let J be maximal. Then, $R/J \cong (R/I)/(\pi(J))$, is a field, meaning $\pi(J) \subseteq R/I$ is also maximal. This gives both directions.

Similarly, if J is prime, then $R/J \cong (R/I)/(\pi(J))$ is an integral domain, so $\pi(J) \subseteq R/I$ is also an integral domain. This gives both directions.

Let J be a radical ideal. Then, $J = \bigcap \{ \mathfrak{p} \mid J \subseteq \mathfrak{p}, \mathfrak{p} \text{ is prime} \}$. We know that for all $\mathfrak{p}, \pi(\mathfrak{p}) \subseteq R/I$ is prime. We know that $\pi(J) \subseteq \pi(\mathfrak{p})$ if and only if $J \subseteq \mathfrak{p}$, so $\pi(J) = \bigcap \{\pi(\mathfrak{p}) \mid J \subseteq \mathfrak{p}, \mathfrak{p} \text{ is prime} \}$. In the reverse direction, we se that if $\mathfrak{a} \in \pi^{-1}(J)$, then $\mathfrak{a} + I \in J$, so $\mathfrak{a}^n + I \in J$ for some $\mathfrak{n} \in \mathbb{N}$, so $\mathfrak{a}^n \in \pi^{-1}(J)$, so $\pi^{-1}(J)$ is a radical ideal.

(c) Letting $\langle a_1, \dots, a_n \rangle = J$, then we know that $\langle \pi(a_1), \dots, \pi(a_n) \rangle = \pi(J)$. Thus, $\pi(J)$ is finitely generated.

Since R is an ideal, if R is Noetherian, then R/I is Noetherian, so by the Hilbert Basis Theorem, any ring of the form $k[x_1, ..., x_n]/I$ is Noetherian.

Irreducible Components of an Algebraic Set

An algebraic set can be the union of several smaller algebraic sets. If $V \subseteq \mathbb{A}^n$ is such that $V = V_1 \cup V_2$, where V_1, V_2 are algebraic sets and $V_i \neq V$ for each i, then we say V is reducible. Else, we say V is irreducible.

Proposition: An algebraic set V is irreducible if and only if I(V) is prime.

Proof. If I(V) is not prime, then we have $F_1F_2 \in I(V)$ with $F_i \notin I(V)$. Then, $V = (V \cap V(F_1)) \cup (V \cap V(F_2))$, with $V \cap V(F_i) \subsetneq V$, meaning V is irreducible.

If $V = V_1 \cup V_2$ with $V_i \subseteq V$, then $I(V_i) \supseteq I(V)$. Let $F_i \in I(V_i)$ with $F_i \notin I(V)$. Then, $F_1F_2 \in I(V)$, so I(V) is not prime.

Now, we want to show that an algebraic set is a finite union of irreducible algebraic sets. To see this, we need to show an equivalent definition of a Noetherian ring.

Lemma: Let \mathcal{I} be a nonempty collection of ideals in a Noetherian ring R. Then, \mathcal{I} has a maximal member.

Proof. We will choose an ideal from each subset of \mathfrak{I} . Letting I_0 be the chosen ideal for \mathfrak{I} itself, we let $\mathfrak{I}_1 = \{I \in \mathfrak{I} \mid I \supsetneq I_0\}$, with I_1 as the chosen ideal of \mathfrak{I}_1 . Continuing, we define

$$\mathfrak{I}_{\mathfrak{j}} = \big\{ \mathbf{I} \in \mathfrak{I} \mid \mathbf{I} \supsetneq \mathbf{I}_{\mathfrak{j}-1} \big\},\,$$

and select $I_i \in \mathcal{I}_i$. It suffices to show that some \mathcal{I}_n is empty.

Define $I = \bigcup_{n=0}^{\infty} I_n$ to be an ideal of R, and let F_1, \ldots, F_r be generators of I. We must have $F_i \in I_n$ for all i if n is sufficient large. Then, $I_n = I$, meaning $I_{n+1} = I_n$, which is a contradiction.

Effectively, we have shown that every Noetherian ring satisfies the ascending chain condition on its ideals.

It follows that any collection of algebraic sets $\{V_{\alpha}\}$ in $\mathbb{A}^n(k)$ has a minimal element, by selecting the maximal member of $\{I(V_{\alpha})\}$.

Theorem: Let V be an algebraic set in $\mathbb{A}^n(k)$. Then, there rae unique irreducible algebraic sets V_1, \ldots, V_m such that $V = V_1 \cup \cdots \cup V_m$, and $V_i \nsubseteq V_j$ for all $i \neq j$.

Proof. Let \mathcal{I} be the set of algebraic sets in $\mathbb{A}^n(k)$ such that V is not the union of a finite number of irreducible algebraic sets. We wish to show that \mathcal{I} is empty.

If not, let V be a minimal member of \mathbb{J} . Since $V \in \mathbb{J}$, V is not irreducible, so $V = V_1 \cup V_2$ with $V_i \subseteq V$, meaning $V_i \notin \mathbb{J}$, so $V_i = V_{i,1} \cup \cdots V_{i,m_i}$, with $V_{i,j}$ irreducible. However, $V = \bigcup_{i,j} V_{i,j}$, which is a finite union.

Thus, any algebraic set V may be written as $V = V_1 \cup \cdots \cup V_m$ with V_i irreducible. To obtain the second condition, we may discard any V_i with $V_i \subseteq V_j$ with $i \neq j$.

To show uniqueness, let $V = W_1 \cup \cdots \cup W_m$ be another decomposition. Then, $V_i = \bigcup_j (W_j \cap V_i)$, so $V_i \subseteq W_{j(i)}$ for some j(i). Similarly, $W_{j(i)} \subseteq V_k$ for some k. However, this means $V_i \subseteq V_k$, so i = k, so $V_i = W_{j(i)}$. Likewise, $W_j = V_{i(j)}$ for some i(j).

We call V_i the irreducible components of V, and $V = V_1 \cup \cdots \cup V_m$ is the decomposition of V into irreducible components.

Exercise (Exercise 1.25):

- (a) Show that $V(y-x^2) \subseteq \mathbb{A}^2(\mathbb{C})$ is irreducible; in fact, $I(V(y-x^2)) = \langle y-x^2 \rangle$.
- (b) Decompose $V(y^4-x^2,y^4-x^2y^2+xy^2-x^3)\subseteq \mathbb{A}^2(\mathbb{C})$ into irreducible components.

Solution:

(a) Suppose there exists $g \in \mathbb{C}[x,y]$ such that $g|y-x^2$, meaning there exists $f \in \mathbb{C}[x,y]$ such that $fg=y-x^2$. Since $y-x^2$ has degree in y equal to 1, one of either f or g has degree in y equal to zero.

Therefore, without loss of generality, $f \in \mathbb{C}[x]$. Then, $g = yh_1 + h_2$, where $h_1, h_2 \in \mathbb{C}[x]$. Note that $h_1 \neq 0$, then $fg = fyh_1 + fh_2 = yfh_1 + fh_2$; since $fh_1 \neq 0$, we must have $fh_1 = 1$, so f is constant, so g is some constant multiple of $y - x^2$, so $y - x^2$ is irreducible. Thus, $\langle y - x^2 \rangle$ is maximal, hence prime, so $I(V(y - x^2)) = \langle y - x^2 \rangle$.

(b) Factoring, we see that both polynomials vanish whenever $y^2 + x = 0$. Finding all pairs, we get

$$V = V(y^2 - x, y^2 + x) \cup V(y^2 - x, y - x) \cup \cdots$$
$$= V(y^2 + x) \cup V(x - 1, y - 1) \cup V(x - 1, y + 1).$$

Solution:

(a) Let $g \in I(V)$. Then,

$$g(x,y) = f_0(x) + (y - x^2)f_1(x,y),$$

wherein we order y > x and do polynomial long division over y. This yields $f_0(x) = 0$ for all x, so that I(V) is prime.

Exercise (Exercise 1.29): Show that $\mathbb{A}^n(k)$ is irreducible if k is infinite.

Solution: We know that any polynomial that vanishes on $\mathbb{A}^n(k)$ is the zero polynomial, and $k[x_1, \ldots, x_n]$ is an integral domain, so $\langle 0 \rangle \subseteq k[x_1, \ldots, x_n]$ is a prime ideal.

Algebraic Subsets of the Plane

Exercise (Exercise 1.30): Let $k = \mathbb{R}$.

- (a) Show that $I(V(x^2 + y^2 + 1)) = \langle 1 \rangle$.
- (b) Show that every algebraic subset of $\mathbb{A}^2(\mathbb{R})$ is equal to V(F) for some $F \in \mathbb{R}[x,y]$.

Solution:

- (a) Since $x^2 + y^2 + 1 = 0$ if and only if $x^2 + y^2 = -1$, which means $V(x^2 + y^2 + 1) = \emptyset$. Thus, $I(V(x^2 + y^2 + 1)) = \mathbb{R}[x, y] = \langle 1 \rangle$.
- (b) Consult Brown.

Exercise (Exercise 1.31):

- (a) Find the irreducible components of $V(y^2 xy x^2y + x^3)$ in $\mathbb{A}^2(\mathbb{R})$, and in $\mathbb{A}^2(\mathbb{C})$.
- (b) Do the same for $V(y^2 x(x^2 1))$, and for $V(x^3 + x x^2y y)$.

Hilbert's Nullstellensatz

Given an algebraic set V, we have a criterion for determining whether or not V is irreducible. However, we do not have a way to describe V in terms of the set that defines V. This is what the Nullstellensatz, or zero locus theorem, will tell us.

We assume throughout this section that k is algebraically closed.

Theorem (Weak Nullstellensatz): If I is a proper ideal in $k[x_1, ..., x_n]$, then $V(I) \neq \emptyset$.

Proof. We may assume that I is a maximal ideal, as $J \supseteq I$ is maximal and $V(J) \subseteq V(I)$.

Thus, $L = k[x_1, ..., x_n]/I$ is a field, and k is a subfield of L.

Suppose we knew that k = L. For each i, there is $a_i \in k$ such that $x_i - a_i \in I$. However, $\langle x_1 - a_1, \dots, x_n - a_n \rangle$ is a maximal ideal. Thus, $I = \langle x_1 - a_1, \dots, x_n - a_n \rangle$, and $V(I) = \{(a_1, \dots, a_n)\} \neq \emptyset$.

Now, we have reduced the problem to showing that if an algebraically closed field k is a subfield of a field L, and there is a ring homomorphism of $k[x_1, ..., x_n]$ onto L that is the identity on k, then k = L.

Theorem (Hilbert's Nullstellensatz): Let I be an ideal in $k[x_1, ..., x_n]$ with k algebraically closed. Then, I(V(I)) = rad(I).

Remark: In concrete terms, if F_1, \ldots, F_r , G are in $k[x_1, \ldots, x_n]$, and G vanishes wherever F_1, \ldots, F_r vanish, then there is some equation $G^N = A_1F_1 + \cdots A_rF_r$ for some N > 0 and $A_i \in k[x_1, \ldots, x_n]$.

Proof. We can see that $rad(I) \subseteq I(V(I))$. Now, let G be in the ideal $I(V(F_1, \ldots, F_r))$, where $F_i \in k[x_1, \ldots, x_n]$. Let $J = \langle F_1, \ldots, F_r, x_{n+1}G - 1 \rangle \subseteq k[x_1, \ldots, x_n, x_{n+1}]$.

Then, $V(J) \subseteq \mathbb{A}^{n+1}(k)$ is empty, since G vanishes wherever all the G_i are zero. Applying the weak Nullstellensatz to J, we have $1 \in J$, so there is an equation $1 = \sum A_i(x_1, \ldots, x_{n+1})F_i + B(x_1, \ldots, x_{n+1})(x_{n+1}G - 1)$. Now, let $y = 1/x_{n+1}$, and multiply the equation by a high power of y such that $y^N = \sum C_i(x_1, \ldots, x_n, y)F_i + D(x_1, \ldots, x_n, y)(g - y)$ in $k[x_1, \ldots, x_n, y]$. Now, substituting G for y, we obtain our desired result. \square

Corollary: If I i a radical ideal in $k[x_1, ..., x_n]$, then I(V(I)) = I. Thus, there is a one-to-one correspondence between radical ideals and algebraic sets.

Corollary: If I is a prime ideal, then V(I) is irreducible. Thus, there is a one-to-one correspondence between prime ideals and irreducible algebraic sets. The maximal ideals correspond to points.

Corollary: Let F be a nonconstant polynomial in $k[x_1, \ldots, x_n]$, and $F = F_1^{n_1} \cdots F_r^{n_r}$ is a decomposition into irreducible factors. Then, $V(F) = V(F_1) \cup \cdots \cup V(F_r)$ is the decomposition of V(F) into irreducible components, and $I(V(F)) = \langle F_1, \ldots, F_r \rangle$. There is a one-to-one correspondence between irreducible polynomials $F \in k[x_1, \ldots, x_n]$ and irreducible hypersurfaces in $\mathbb{A}^n(k)$.

Corollary: Let I be an ideal in $k[x_1,...,x_n]$. Then, V(I) is a finite set if and only if $k[x_1,...,x_n]/I$ is a finite-dimensional vector space over k. If so, the number of points in V(I) is at most $\dim_k(k[x_1,...,x_n]/I)$.

Proof. Let $P_1, \ldots, P_r \in V(I)$. Let $F_1, \ldots, F_r \in k[x_1, \ldots, x_n]$ such that $F_i(P_j) = \delta_{ij}$. Let $\overline{F_i}$ be the residue of F_i in $k[x_1, \ldots, x_n]/I$.

If $\sum \lambda_i \overline{F_i} = 0$, where $\lambda_i \in k$, then $\sum \lambda_i F_i \in I$, so that $\lambda_j = (\sum \lambda_i F_i)(P_j) = 0$, meaning the $\overline{F_i}$ are linearly independent over k, and $\dim_k(k[x_1, \dots, x_n]/I)$.

Now, conversely, if $V(I) = \{P_1, \dots, P_r\}$ is finite, let $P_i = (a_{i1}, \dots, a_{in})$, and define F_j by $F_j = \prod_{i=1}^r (x_i - a_{ij})$ for $j = 1, \dots, n$.

Then, $F_j \in I(V(I))$, so $F_j^N \in I$ for some N > 0, and we may take N large enough such that N works for all F_j . Taking residues in I, we have $\overline{F_j}^N = 0$, so that $\overline{x_j}^{rN}$ is a k-linear combination of $\overline{1}, \overline{x_j}, \ldots, \overline{x_j}^{rN-1}$. Thus, by induction, $\overline{x_j}^s$ is a k-linear combination of $1, \overline{x_j}, \ldots, \overline{x_j}^{rN-1}$ for all s, so the set $\left\{\overline{x_1}^{m_1} \ldots \overline{x_n}^{m_n} \mid m_i < rN\right\}$ generates $k[x_1, \ldots, x_n]/I$ as a k-vector space.

Exercise (Exercise 1.33):

- (a) Decompose $V(x^2 + y^2 1, x^2 z^2 1) \subseteq \mathbb{A}^3(\mathbb{C})$ into irreducible components.
- (b) Let $V = \left\{ \left(t, t^2, t^3\right) \in \mathbb{A}^3(\mathbb{C}) \mid t \in \mathbb{C} \right\}$. Find I(V) and show that V is irreducible.

Solution:

(a)

Exercise (Exercise 1.36): Let $I = \langle y^2 - x^2, y^2 + x^2 \rangle \subseteq \mathbb{C}[x, y]$. Find V(I) and $\dim_{\mathbb{C}}(\mathbb{C}[x, y]/I)$.

Exercise (Exercise 1.37): Let K be any field, $F \in K[x]$ a polynomial of degree n > 0. Show that the residues $\overline{1}, \overline{x}, \ldots, \overline{x}^{n-1}$ form a basis for $K[x]/\langle F \rangle$ over K.

Exercise (Exercise 1.38): Let $R = k[x_1, ..., x_n]$ with k algebraically closed. Let V = V(I). Show that there is a natural one-to-one correspondence between algebraic subsets of V and radical ideals in $k[x_1, ..., x_n]/I$, and that irreducible algebraic sets (points) correspond to prime ideals (maximal ideals).

Modules and Finiteness

Definition. Let R be a ring. An R-module is a commutative group M with a scalar multiplication $R \times M \rightarrow M$ satisfying

- (i) (a + b)m = am + bm for $a, b \in R, m \in M$;
- (ii) a(m + n) = am + an for $a \in R$, $m, n \in M$;
- (iii) (ab)m = a(bm) for $a, b \in R, m \in M$;
- (iv) $1_R m = m$ for $m \in M$, where 1_R is the multiplicative unit for R.

Example.

- (1) A **Z**-module is an abelian group.
- (2) If R is a field, an R-module is an R-vector space.
- (3) The multiplication in R makes any ideal of R into an R-module.
- (4) If $\varphi \colon R \to S$ is a ring homomorphism, we define $r \cdot s$ by the equation $r \cdot s \coloneqq \varphi(r)s$, which makes S into an R-module. If R is a subring of S, then S is an R-module.

Definition. A subgroup N of an R-module M is called a submodule if $am \in N$ for all $a \in R$ and $m \in N$.

If S is a set of elements of an R-module M, the submodule generated by S is defined to be

$$\left\{ \sum r_i s_i \mid r_i \in R, s_i \in S \right\};$$

it is the smallest submodule of M that contains S. If $S = \{s_1, ..., s_n\}$ is finite, the submodule generated by S is denoted $\sum Rs_i$.

The module M is said to be finitely generated if $M = \sum Rs_i$ for some $s_1, ..., s_n \in M$.

Definition. Let R be a subring of S.

(a) We say S is module-finite over R if S is finitely generated as an R-module. If S and R are fields, then we denote the dimension of S over R by [R : S].

(b) Let $v_1, ..., v_n \in S$, and $\varphi \colon R[x_1, ..., x_n] \to S$ be the ring homomorphism taking x_i to v_i . The image of φ is written $R[v_1, ..., v_n]$, which is a subring of S containing R and $V_1, ..., V_n$.

Explicitly, we write

$$R[\nu_1,\ldots,\nu_n] = \Big\{ \sum a_{(i)} \nu_1^{i_1} \cdots \nu_n^{i_n} \ \Big| \ a_{(i)} \in R \Big\}.$$

The ring S is ring-finite over R if $S = R[v_1, ..., v_n]$ for some $v_1, ..., v_n \in S$.

(c) Suppose R = K and S = L are fields. If $v_1, \ldots, v_n \in L$ and $K(v_1, \ldots, v_n)$ is the quotient field of $K[v_1, \ldots, v_n]$. Consider $K(v_1, \ldots, v_n) \subseteq L$ as a subfield, which is the smallest subfield of L containing K and v_1, \ldots, v_n .

We say L is a finitely generated extension of K if $L = K(v_1, ..., v_n)$ for some $v_1, ..., v_n \in L$.

Exercise (Exercise 1.41):

Exercise (Exercise 1.42):

Exercise (Exercise 1.43):

Exercise (Exercise 1.44):

Exercise (Exercise 1.45):

Integral Elements

Definition. Let R be a subring of a ring S. An element $v \in S$ is said to be integral over R if there is a monic polynomial $f = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0 \in R[x]$ such that f(v) = 0.

If R and S are fields, then we say ν is algebraic over R if ν is integral over R.

Proposition: Let R be a subring of an integral domain S, with $v \in S$. The following are equivalent:

- (i) ν is integral over R;
- (ii) R[v] is module-finite over R;
- (iii) there is a subring R' of S containing R[v] that is module-finite over R.

Proof. If $0 = v^n + a_{n-1}v^{n-1} + \dots + a_1v + a_0 = 0$, then $v^n \in \sum_{i=0}^{n-1} Rv^i$, so $v^m \in \sum_{i=0}^{n-1} Rv^i$ for all m, so $R[v] = \sum_{i=0}^{n-1} Rv^i$.

Now, to show (ii) implies (iii), all we need to is take R' = R[v].

To show (iii) implies (i), we let $R' = \sum_{i=1}^{n} Rw_i$, so that $vw_i = \sum_{j=1}^{n} a_{ij}w_j$ for some $a_{ij} \in R$. Then,

$$\sum_{i=1}^{n} (\delta_{ij} v - a_{ij}) w_j = 0$$

for all i, where δ_{ij} is the Kronecker delta function.

If we consider these equations in the quotient field of S, then (w_1, \dots, w_n) is a nontrivial solution, so

$$\det(\delta_{ij}\nu - a_{ij}) = 0.$$

Since ν only appears on the diagonal of this matrix, we have the form $0 = \nu^n + a_{n-1}\nu^{n-1} + \cdots + a_1\nu + a_0$, where $a_i \in R$. Thus, ν is integral over R.

Corollary: The set of elements of S that are integral over R is a subring of S containing R.

Proof. If a, b are integral over R, then b is integral over $R[a] \supseteq R$, so R[a, b] is module-finite over R, and $a \pm b$, $ab \in R[a, b]$, so they are integral over R.

П

- **Exercise** (Exercise 1.46):
- **Exercise** (Exercise 1.47):
- **Exercise** (Exercise 1.48):
- **Exercise** (Exercise 1.49):
- **Exercise** (Exercise 1.50):

Field Extensions

Let K be a subfield of L, and suppose L = K(v) for some $v \in L$. Let $\varphi \colon K[x] \to L$ be the homomorphism mapping $x \mapsto v$. Let $\ker(\varphi) = \langle f \rangle$ for some $f \in k[x]$. Then, $k[x]/\langle f \rangle \cong K[v]$, so $\langle f \rangle$ is prime.

We may consider two cases.

Case 1: If f = 0, then $K[v] \cong K[x]$, so K(v) = L is isomorphic to k(X), and thus L is not ring-finite or module-finite over K.

Case 2: If $f \neq 0$, then we may assume f is monic, meaning $\langle f \rangle$ is monic, and f is irreducible, so $\langle f \rangle$ is maximal, and $K[\nu]$ is a field. Thus, $K[\nu] = K(\nu)$, and $f(\nu) = 0$. Therefore, ν is algebraic over K, and $L = K[\nu]$ is module-finite over K.

To finish the proof of the Nullstellensatz, we must prove that if a field L is a ring-finite extension of an algebraically closed field k, then L=k.

Thus, it is enough to show that L is module-finite over k — we already know that any ring-finite extensions are already module-finite. Now, we will show that this is always true, proving the Nullstellensatz.

Proposition: If L is ring-finite over a subfield K, then L is module-finite over K.

Proof. Let $L = K[v_1, ..., v_n]$. The case for n = 1 is taken care of by above, so we assume the result holds for all extensions generated by n - 1 elements. Let $K_1 = K(v_1)$; by induction, $L = K_1[v_2, ..., v_n]$ is module-finite over K_1 . Assume towards contradiction that v_1 is not algebraic over K.

Each v_i satisfies an equation $v_i^{n_i} + a_{i,n_i-1}v_i^{n_i-1} + \cdots = 0$, where $a_{ij} \in K_1$. Letting $a \in K[v_1]$ — a multiple of the denominators of a_{ij} — we have equations $(av_i)^{n_i} + aa_{i,n_i-1}(av_i)^{n_i-1} + \cdots = 0$.

Therefore, for any $z \in L$, there is some N such that $a^N z$ is integral over $K[v_1]$. This must hold for all $z \in K(v_1)$; however, since $K(v_1)$ is isomorphic to the field of rational functions in one variable over K, this is impossible.

- **Exercise** (Exercise 1.51):
- **Exercise** (Exercise 1.52):
- **Exercise** (Exercise 1.53):

Exercise (Exercise 1.54):