Universidad Tecnológica Metropolitana.

Departamento de Computación e Informática.

Computación Paralela y Distribuida. Docente: Sebastián Salazar Molina. Ayudante: Fernando Rubilar Zepeda.

Proyecto Paralelo

11 de mayo de 2019

RESUMEN

Se solicita desarrollar una aplicación en C/C++ usando openmpi y/o openmp, que permita entregar La planificación académica por sala y por día de la semana:

- Cada bloque corresponde a 2 horas pedagógicas.
- La planilla de Docentes, dispone de la disponibilidad de cada profesor, por cada día de semana.
- La planilla de Salas, contiene la información de las salas disponibles.
- La planilla de Cursos, tiene la información de los profesores que dictan las asignaturas, junto a horas pedagógicas que a la semana se requieren cubrir.
- La implementación debe ser en paralelo usando OpenMPI / OpenMP.
- La fecha de entrega tope es el **27/06/2019** hasta las 23:59:59.999 horas.

Restricciones.

Hay que cumplir un con algunas restricciones:

- Se pueden juntar hasta 4 bloques en un mismo día.
- Los laboratorios sólo pueden ser usados por asignaturas cuyo código comiencen con INF.
- La asignación de sala debe ser coherentes en todos los niveles.

Ejecución

mpirun --hostfile maquinas.txt programa -s salas.xlsx -c cursos.xlsx -d docentes.xlsx

Parametros.

El hostfile debe tener el listado de ips que contendrá el cluster.

La ejecución debe ser por línea de comandos:

- El argumento -s debe seguirle la ruta al archivo Excel de las salas.
- El argumento -c debe seguirle la ruta al archivo Excel de los cursos.
- El argumento -d debe seguirle la ruta al archivo Excel de los docentes.

Salida

La salida esperada es una planilla en formato xlsx que tenga el horario, en el siguiente formato:

Se debe generar una planilla cuyas hojas corresponde a las salas de la semana en la cual, cada filas serán los bloques y cada columna serán los días de la semana.

La celda estará compuesta por el código del cursos separado por un guión por el ID del profesor.

ESPECIFICACIONES

Equipo.

El proyecto deberá ser realizado grupalmente, se debe usar github para mantener el código del proyecto.

Código.

El código debe estar disponible en un repositorio github para el cuál debo tener acceso (pueden agregarme por su cuenta, a mi guthub personal: **sebasalazar**).

Lenguaje de programación.

El proyecto se debe realizar en **C/C++** y será compilado en una máquina Linux de 64 bits, específicamente:

- Kubuntu 18.04 LTS de 64 bits.
- GCC 7.3.0
- Make 4.1
- Cmake 3.10.2
- OpenMPI 2.1.1

EVALUACIÓN

Documentación.

Parte de la evaluación consiste en la documentación de las funciones. Que debe ser clara, concisa y descriptiva de lo que se el código realiza.

Código

El código debe ser claro, fácil de leer, ordenado y cumplir con buenas prácticas de programación, se inspeccionará el código con cppcheck¹.

Resultados.

Un criterio de evaluación importante es el tiempo de ejecución de la tarea. Menos es mejor. La evaluación es porcentual.

¹ http://cppcheck.sourceforge.net/