Mathematik 1

Mathematik 1

1 Allgemeines

Dreiecksungleichung	$ x + y \le x + y $ $ x - y \le x - y $				
Cauchy-Schwarz-Ungleichung:	$ \langle x, y \rangle \le x \cdot y $				

Arithmetische Summenformel
$$\sum_{k=1}^n k = \frac{n(n+1)}{2}$$
 Geometrische Summenformel
$$\sum_{k=0}^n q^k = \frac{1-q^{n+1}}{1-q}$$

$$k=0$$

$${\it Bernoulli-Ungleichung} \qquad \qquad (1+a)^n \geq 1 + na$$

Binomialkoeffizient
$$\begin{pmatrix} n \\ k \end{pmatrix} = \frac{n!}{k!(n-k)!}$$
$$\begin{pmatrix} n \\ 0 \end{pmatrix} = \begin{pmatrix} n \\ n \end{pmatrix} = 1$$

Binomische Formel
$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

Äquivalenz von Masse und Energie $E=mc^2$

Wichtige Zahlen:
$$\sqrt{2}=1,41421$$
 $\pi=$ ist genau 3 $e=2,71828$ $\pi=3,14159$

2 Komplexe Zahlen

Eine komplexe Zahl $z=a+b\mathbf{i},\ z\in\mathbb{C},\quad a,b\in\mathbb{R}$ besteht aus einem Realteil $\Re(z)=a$ und einem Imaginärteil $\Im(z)=b$, wobei $\mathbf{i}=\sqrt{-1}$ die immaginären Einheit ist. Es gilt: $i^2=-1$ $i^4=1$

2.1 Kartesische Koordinaten

Rechenregeln

$$z_1 + z_2 = (a_1 + a_2) + (b_1 + b_2)\mathbf{i}$$

 $z_1 \cdot z_2 = (a_1 \cdot a_2 - b_1 \cdot b_2) + (a_1 \cdot b_2 + a_2 \cdot b_1)\mathbf{i}$

Konjugiertes Element von
$$z = a + b\mathbf{i}$$
:

$$\overline{z} = a - b\mathbf{i}$$
 $z\overline{z} = |z|^2 = a^2 + b^2$
 $e^{\overline{i}\overline{x}} = \epsilon$

Inverses Element:
$$z^{-1} = \frac{1}{z} \frac{\overline{z}}{\overline{z}z} = \frac{\overline{z}}{a^2 + b^2} = \frac{a}{a^2 + b^2} - \frac{b}{a^2 + b^2} \mathbf{i}$$

2.2 Polarkoordinaten

$$z = a + b\mathbf{i} \neq 0$$
 in Polarkoordinaten:

$$z = r(\cos(\varphi) + \mathbf{i}\sin(\varphi)) = r \cdot e^{\mathbf{i}\varphi}$$

$$r = |z| = \sqrt{a^2 + b^2} \quad \varphi = \arg(z) = \begin{cases} +\arccos\left(\frac{a}{r}\right), & b \ge 0 \\ -\arccos\left(\frac{a}{r}\right), & b < 0 \end{cases}$$

$$\begin{array}{ll} \text{Multiplikation:} \ z_1 \cdot z_2 = r_1 \cdot r_2 (\cos(\varphi_1 + \varphi_2) + \mathrm{i} \sin(\varphi_1 + \varphi_2)) \\ \text{Division:} \ \frac{z_1}{z_2} = \frac{r_1}{r_2} (\cos(\varphi_1 - \varphi_2) + \mathrm{i} \sin(\varphi_1 - \varphi_2)) \end{array}$$

n-te Potenz:
$$z^n = r^n \cdot e^{n\varphi \mathbf{i}} = r^n(\cos(n\varphi) + \mathbf{i}\sin(n\varphi))$$

n-te Wurzel:
$$\sqrt[n]{z} = z_k = \sqrt[n]{r} \left(\cos\left(\frac{\varphi + 2k\pi}{n}\right) + \mathrm{i}\sin\left(\frac{\varphi + 2k\pi}{n}\right)\right)$$

 $k = 0, 1, \dots, n-1$

Logarithmus:
$$\ln(z) = \ln(r) + \mathbf{i}(\varphi + 2k\pi)$$
 (Nicht eindeutig!)

Anmerkung: Addition in kartesische Koordinaten umrechnen(leichter)!

3 Funktionen

Eine Funktion f ist eine Abbildung, die jedem Element x einer Definitionsmenge D genau ein Element y einer Wertemenge W zuordnet. $f: D \to W, x \mapsto f(x) := y$

Injektiv:
$$f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

Surjektiv: $\forall y \in W \exists x \in D : f(x) = y$
(Alle Werte aus W werden angenommen.)

Bijektiv(Eineindeutig): f ist injektiv und surjektiv $\Rightarrow f$ umkehrbar. Ableitung der Umkehrfunktion

$$f$$
 stetig, streng monoton, an x_0 diff'bar und $y_0=f(x_0)$
$$\Rightarrow \left(f^{-1}\right)(y_0)=\frac{1}{f'(x_0)}=\frac{1}{f'(f^{-1}(y_0))}$$

3.1 Symmetrie einer Funktion f

Achsensymmetrie (gerade Funktion):
$$f(-x) = f(x)$$

Punktsymmetrie (ungerade Funktion): $f(-x) = -f(x)$

Regeln für gerade Funktion
$$g$$
 und ungerade Funktion u : $g_1 \pm g_2 = g_3$ $u_1 \pm u_2 = u_3$ $g_1 \cdot g_2 = g_3$ $u_1 \cdot u_2 = g_3$ $u_1 \cdot g_1 = u_3$

3.2 Kurvendiskussion von $f: I = [a, b] \rightarrow \mathbb{R}$

Kandidaten für Extrama (lokal, global)

- 1. Randpunkte von I
- 2. Punkte in denen f nicht diffbar ist
- 3. Stationäre Punkte (f'(x) = 0) aus (a, b)

Lokales Maximum

wenn x_0 stationärer Punkt ($f'(x_0) = 0$) und

•
$$f''(x_0) < 0$$
 oder

•
$$f'(x) > 0, x \in (x_0 - \varepsilon, x_0)$$

 $f'(x) < 0, x \in (x_0, x_0 + \varepsilon)$

wenn x_0 stationärer Punkt ($f'(x_0) = 0$) und

•
$$f''(x_0) > 0$$
 oder

•
$$f'(x) < 0, x \in (x_0 - \varepsilon, x_0)$$

 $f'(x) > 0, x \in (x_0, x_0 + \varepsilon)$

$$f'(x) \stackrel{\leq}{\underset{(<)}{\leq}} 0 \to f$$
 (streng) Monoton steigend, $x \in (a,b)$ $f'(x) \stackrel{\leq}{\underset{(<)}{\leq}} 0 \to f$ (streng) Monoton fallend, $x \in (a,b)$

$$f''(x) \stackrel{\geq}{\geq} 0 \rightarrow f$$
 (strikt) konvex, $x \in (a,b)$

$$f''(x) \stackrel{\leq}{=} 0 \rightarrow f \text{ (strikt) konkav, } x \in (a,b)$$

 $f''(x_0)=0$ und $f'''(x_0)\neq 0 \to x_0$ Wendepunkt $f''(x_0)=0$ und Vorzeichenwechseln an $x_0\to x_0$ Wendepunkt

3.3 Asymptoten von f

Horizontal:
$$c = \lim_{x \to \infty} f(x)$$

Horizontal:
$$c=\lim_{x\to\pm\infty}f(x)$$

Vertikal: \exists Nullstelle a des Nenners : $\lim_{x\to a^{\pm}}f(x)=\pm\infty$

Polynomasymptote
$$P(x)$$
: $f(x) := \frac{A(x)}{Q(x)} = P(x) + \frac{B(x)}{Q(x)} \xrightarrow{>0}$

3.4 Wichtige Sätze für stetige Fkt. $f:[a,b]\to\mathbb{R}, f\mapsto f(x)$

Zwischenwertsatz:
$$\forall y \in [f(a), f(b)] \exists x \in [a, b] : f(x) = y$$

Satz von Rolle: Falls $f(a) = f(b)$, dann $\exists x_0 : f'(x_0) = 0$

Mittelwertsatz: Falls f diffbar, dann $\exists x_0: f'(x_0) = \frac{f(b) - f(a)}{t}$ Regel von L'Hospital:

$\lim_{x \to a} \frac{f(x)}{g(x)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} / \begin{bmatrix} \infty \\ \infty \end{bmatrix} \to \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$

3.5 Polynome $P(x) \in \mathbb{R}[x]_n$

$$P(x)=\sum_{i=0}^n a_i x^i=a_n x^n+a_{n-1} x^{n-1}+\ldots+a_1 x+a_0$$
 Lösungen für $ax^2+bx+c=0$

$$x_{1/2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 $x_1 + x_2 = -\frac{b}{a}$ $x_1 x_2 = \frac{c}{a}$

3.6 Trigonometrische Funktionen

$$\begin{split} f(t) &= A \cdot \cos(\omega t + \varphi_0) = A \cdot \sin(\omega t + \frac{\pi}{2} + \varphi_0) \\ & \sin(-x) = -\sin(x) & \cos(-x) = \cos(x) \\ & \sin^2 x + \cos^2 x = 1 & \tan x = \frac{\sin x}{\cos x} \\ e^{ix} &= \cos(x) + i\sin(x) & e^{-ix} = \cos(x) - i\sin(x) \\ \sin(x) &= \frac{1}{2i} \left(e^{ix} - e^{-ix} \right) & \cos(x) = \frac{1}{2} \left(e^{ix} + e^{-ix} \right) \\ \sinh(x) &= \frac{1}{2} (-e^{-x} + e^x) & \cosh(x) = \frac{1}{2} (e^{-x} + e^x) \end{split}$$

Additionstheoreme

$$\cos(x+y) = \cos x \cos y - \sin x \sin y$$

$$\cos\left(x - \frac{\pi}{2}\right) = \sin x \qquad \sin\left(x + \frac{\pi}{2}\right) = \cos x$$

$$\sin(x+y) = \sin x \cos y + \cos x \sin y$$

$$\sin 2x = 2\sin x \cos x$$

$$\cos 2x = \cos^2 x - \sin^2 x = 2\cos^2 x - 1$$

x	0	30	45	60	90	120	135	150	180	270	360
x	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$	$\frac{2}{3}\pi$	$\frac{3}{4}\pi$	$\frac{5}{6}\pi$	π	$\frac{3}{2}\pi$	2π
sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1	0
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	1	0	$-\frac{1}{2}$	$-\frac{1}{\sqrt{2}}$	$-\frac{\sqrt{3}}{2}$	-1	0	1
tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	` '	$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$	0	٠.	0

3.7 Potenzen/Logarithmus

$$\ln(u^r) = r \ln u$$

4 Folgen

Eine Folge ist eine Abbildung $a: \mathbb{N}_0 \to \mathbb{R}, \ n \to a(n) =: a_n$ explizite Folge: (a_n) mit $a_n = a(n)$ rekursive Folge: (a_n) mit $a_0 = f_0$, $a_{n+1} = a(a_n)$

4.1 Monotonie

Im Wesentlichen gibt es 3 Methoden zum Nachweis der Monotonie. Für (streng) monoton fallend gilt:

1.
$$a_{n+1} - a_n \leq 0$$

$$2. \frac{a_n}{a_{n+1}} \stackrel{\geq}{\geq} 1 \qquad \vee \qquad \frac{a_{n+1}}{a_n} \stackrel{\leq}{\leq} 1$$

3. Vollständige Induktion: $\forall n \in \mathbb{N} : a_{n+1} \leq a_n$

 (a_n) ist Konvergent mit Grenzwert a, falls: $\forall \epsilon > 0 \ \exists N \in \mathbb{N}_0$: $|a_n - a| < \epsilon \ \forall n > N$

Eine Folge konvergiert gegen eine Zahl $a:(a_n)\stackrel{n\to\infty}{\longrightarrow} a$

- Der Grenzwert a einer Folge (an) ist eindeutig.
- Ist (a_n) Konvergent, so ist (a_n) beschränkt
- Ist (a_n) unbeschränkt, so ist (a_n) divergent.
- Das Monotoniekriterium: Ist (a_n) beschränkt und monoton, so

• Das Cauchy-Kriterium: Eine Folge
$$(a_n)$$
 konvergiert gerade dann, wenn: $\forall \epsilon > 0 \ \exists \ N \in \mathbb{N}_0 : |a_n - a_m| < \epsilon \ \forall n, m > N$

Regeln für konvergente Folgen
$$(a_n) \stackrel{n \to \infty}{\longrightarrow} a$$
 und $(b_n) \stackrel{n \to \infty}{\longrightarrow} b$:

Regelin fur konvergente Folgen
$$(a_n) \to a$$
 und $(b_n) \to b$:
$$(a_n + b_n) \xrightarrow{n \to \infty} a + b \quad (a_n b_n) \xrightarrow{n \to \infty} ab \quad (\frac{a_n}{b_n}) \xrightarrow{n \to \infty} \frac{a}{b}$$

$$(\lambda a_n) \xrightarrow{n \to \infty} \lambda a \qquad (\sqrt{a_n}) \xrightarrow{n \to \infty} \sqrt{a} \quad (|a_n|) \xrightarrow{n \to \infty} |a|$$

Grenzwert bestimmen:

- · Wurzeln: Erweitern mit binomischer Formel
- Brüche: Zähler und Nenner durch den Koeffizient höchsten Grades
- Rekursive Folgen: Fixpunkte berechnen. Fixpunkte sind mögliche Grenzwerte. Monotonie durch Vergleich a_{n+1} und a_n zeigen. Beschränktheit mit Induktion beweisen.

4.3 Wichtige Regeln

$$a_n = q^n \xrightarrow{n \to \infty} \begin{cases} 0 & |q| < 1 \\ 1 & q = 1 \\ \pm \infty & q < -1 \\ + \infty & q > 1 \end{cases}$$

$$a_n = \frac{1}{n^k} \to 0 \quad \forall k \ge 1$$

$$a_n = \left(1 + \frac{c}{n}\right)^n \to e^c$$

$$a_n = n\left(c^{\frac{1}{n}} - 1\right) = \ln c$$

$$a_n = \frac{n^2}{2^n} \to 0 \qquad (2^n \ge n^2 \quad \forall n \ge 4)$$

$$\lim_{n \to \infty} n^{\frac{1}{n}} = \lim_{n \to \infty} \sqrt[n]{n} = 1$$

4.4 Limes Inferior und Superior

Der Limes superior einer Folge $x_n \subset \mathbb{R}$ ist der größte Grenzwert konvergenter Teilfolgen x_{n_k} der Folge x_n

Der Limes inferior einer Folge $x_n \subset \mathbb{R}$ der kleinste Grenzwert konvergenter Teilfolgen x_{n_k} der Folge x_n

5 Reihen

$$\sum_{n=1}^{\infty}\frac{1}{n}=\infty \qquad \qquad \sum_{n=0}^{\infty}q^n=\frac{1}{1-q} \qquad |q|<1$$
 Harmonische Reihe Geometrische Reihe

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} = \begin{cases} \text{konvergent}, & \alpha > 1\\ \text{divergent}, & \alpha \le 1 \end{cases}$$

5.1 Konvergenzkriterien

 $\sum_{n=0}^{\infty} a_n$ divergiert, falls $a_n \not\to 0$ oder Minorante: $\exists \sum_{n=0}^{\infty} b_n (divergiert) \quad \land \quad a_n \ge b_n \quad \forall n \ge n_0$

 $\sum_{n=0}^{\infty} (-1)^n a_n$ konvergiert, if (a_n) monoton fallende Nullfolge

oder Majorante: $\exists \sum_{n=0}^{\infty} b_n = b \land a_n \leq b_n \quad \forall n \geq n_0$

Absolute Konvergenz($\sum_{n=0}^{\infty}|a_n|=a$ konvergiert), falls:

- 1. Majorante: $\exists \sum_{n=0}^{\infty} b_n = b \land |a_n| \le b_n \quad \forall n \ge n_0$ 2. Quotienten und Wurzelkriterium (BETRAG nicht vergessen!)

$$\rho := \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \qquad \qquad \rho := \lim_{n \to \infty} \sqrt[n]{|a_n|} \qquad \forall n > N$$

$$\text{Falls} \begin{cases} \rho < 1 \Rightarrow \sum_{n=0}^{\infty} a_n \text{ konvergiert absolut} \\ \rho > 1 \Rightarrow \sum_{n=0}^{\infty} a_n \text{ divergiert} \\ \rho = 1 \Rightarrow \sum_{n=0}^{\infty} a_n \text{ keine Aussage möglich} \end{cases}$$

Jede absolute konvergente Reihe $(\sum_{n=0}^\infty |a_n|)$ ist konvergent $(\sum_{n=0}^\infty a_n)$

6 Potenzreihen

$$f(x) = \sum_{n=0}^{\infty} a_n \cdot (x - c)^n$$

6.1 Konvergenzradius

$$\begin{split} R &= \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|a_n|}} \\ R &= \liminf_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \frac{1}{\lim\sup_{n \to \infty} \sqrt[n]{|a_n|}} \\ & \left\{ \text{konvergiert absolut} \quad |x - c| < 1 \right\} \end{split}$$

$$f(x) \begin{cases} \text{konvergiert absolut} & |x-c| < R \\ \text{divergiert} & |x-c| > R \\ \text{keine Aussage m\"{o}glich} & |x-c| = R \end{cases}$$

Bei reellen Reihen gilt:

 $\Rightarrow x$ konvergiert im offenen Intervall I=(c-R,c+R) \Rightarrow Bei x=c-R und x=c+R muss die Konvergenz zusätzlich

 \Rightarrow Bei x=c-R und x=c+R muss die Konvergenz zusätzlich überprüft werden.

Substitution bei
$$f(x) = \sum_{n=0}^{\infty} a_n \cdot x^{\lambda n}$$

 $w = x^{\lambda} \to x = w^{\frac{1}{\lambda}} \to R = (R_w)^{\frac{1}{\lambda}}$

6.2 Wichtige Potenzreihen

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^{n}$$

$$e^{z} = \sum_{n=0}^{\infty} \frac{z^{n}}{n!}$$

$$\sin(z) = \sum_{n=0}^{\infty} (-1)^{n} \frac{z^{2n+1}}{(2n+1)!} = \frac{e^{iz} - e^{-iz}}{2i}$$

$$\cos(z) = \sum_{n=0}^{\infty} (-1)^{n} \frac{z^{2n}}{(2n)!} = \frac{e^{iz} + e^{-iz}}{2}$$

7 Ableitung und Integral

f diffbar, falls f stetig und $\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0)$ exist

7.1 Ableitungsregeln:

Linearität:
$$(\lambda f + \mu g)'(x) = \lambda f'(x) + \mu g'(x) \quad \forall \lambda, \mu \in \mathbb{R}$$
 Produktregel: $(f \cdot g)' = f'g + fg'$ Quotientenregel $\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$ Kettenregel: $(f(g(x)))' = f'(g(x))g'(x)$ Potenzreihe: $f:]\underbrace{-R + a, a + R}_{\subseteq D} = \mathbb{R}, f(x) = \sum_{n=0}^{\infty} a_n(x-a)^n$ $\subseteq D$ $\Rightarrow f'(x) = \sum_{n=0}^{\infty} na_n(x-a)^{n-1}$

7.2 Newton-Verfahren

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 mit Startwert x_0

7.3 Integrationsmethoden:

- Anstarren + Göttliche Eingebung
- Partielle Integration: $\int uv' = uv \int u'v$
- Substitution: $\int f(\underline{g(x)}) \underbrace{g'(x) dx}_{dt} = \int f(t) dt$
- Logarithmische Integration: $\int \frac{g'(x)}{g(x)} dx = \ln |g(x)|$
- Integration von Potenzreihen: $f(x)=\sum_{k=0}^\infty a_k(x-a)^k$ Stammfunktion: $F(x)=\sum_{k=0}^\infty \frac{a_k}{k+1}(x-a)^{k+1}$
- $\begin{array}{l} \bullet \ \ \text{Brechstange:} \ t = \tan(\frac{x}{2}) \quad \text{d}x = \frac{2}{1+t^2} \, \text{d}t \\ \sin(x) \to \frac{2t}{1+t^2} \quad \cos(x) \to \frac{1-t^2}{1+t^2} \end{array}$

7.4 Integrationsregeln

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$
$$\int \lambda f(x) + \mu g(x) dx = \lambda \int f(x) dx + \mu \int g(x) dx$$

	. , , , , ,	
F(x)	f(x)	f'(x)
$\frac{1}{q+1}x^{q+1}$	x^q	qx^{q-1}
$\frac{q+1}{2\sqrt{ax^3}}$	_	_ a
3	\sqrt{ax}	$2\sqrt{ax}$
$x \ln(ax) - x$	$\ln(ax)$	$\frac{1}{x}$
e^x	e^x	e^x
$\frac{a^x}{\ln(a)}$	a^x	$a^x \ln(a)$
$-\cos(x)$	sin(x)	$\cos(x)$
$\sin(x)$	$\cos(x)$	$-\sin(x)$
$-\ln \cos(x) $	$\tan(x)$	$\frac{1}{\cos^2(x)}$
$\ln \sin(x) $	$\cot(x)$	$\frac{-1}{\sin^2(x)}$
$x \arcsin(x) + \sqrt{1 - x^2}$	$\arcsin(x)$	$\frac{1}{\sqrt{1-x^2}}$
$x \arccos(x) - \sqrt{1 - x^2}$	arccos(x)	$-\frac{1}{\sqrt{1-x^2}}$
$x \arctan(x) - \frac{1}{2} \ln \left 1 + x^2 \right $	arctan(x)	$\frac{1}{1+x^2}$
$x \operatorname{arccot}(x) + \frac{1}{2} \ln \left 1 + x^2 \right $	$\operatorname{arccot}(x)$	$-\frac{1}{1+x^2}$
$x\sinh^{-1}(x) - \sqrt{x^2 + 1}$	$\sinh^{-1}(x)$	$\frac{1}{\sqrt{x^2+1}}$
$x\cosh^{-1}(x) - \sqrt{x^2 - 1}$	$ \cosh^{-1}(x) $	$\frac{1}{\sqrt{x^2-1}}$
$\frac{1}{2}\ln(1-x^2) + x\tanh^{-1}(x)$	$\tanh^{-1}(x)$	$\frac{1}{1-x^2}$
$\sinh(x)$	$\cosh(x)$	sinh(x)
$\cosh(x)$	sinh(x)	$\cosh(x)$
	-	

7.5 Rotationskörper

Volumen: $V=\pi\int_a^bf(x)^2\mathrm{d}x$ Oberfläche: $O=2\pi\int_a^bf(x)\sqrt{1+f'(x)^2}\mathrm{d}x$

7.6 Uneigentliche Integrale

böse
$$\int_{ab}^{b} f(x) dx = \lim_{b \to b \text{ ose obs}} \int_{ab}^{b} f(x) dx$$

Majoranten-Kriterium: $|f(x)| \leq g(x) = \frac{1}{x^{\alpha}}$

$$\int\limits_{1}^{\infty} \frac{1}{x^{\alpha}} \, \mathrm{d}x \left\{ \begin{matrix} \frac{1}{\alpha-1}, & \alpha > 1 \\ \infty, & \alpha \leq 1 \end{matrix} \right. \qquad \int\limits_{0}^{1} \frac{1}{x^{\alpha}} \, \mathrm{d}x \left\{ \begin{matrix} \frac{1}{\alpha-1}, & \alpha < 1 \\ \infty, & \alpha \geq 1 \end{matrix} \right.$$

Cauchy-Hauptwert

$$\begin{aligned} \mathsf{CHW} & \int\limits_{-\infty}^{\infty} f(x) \mathrm{d}x = \lim_{b \to \infty} \int\limits_{-b}^{b} f(x) \mathrm{d}x \\ \mathsf{CHW} & \int\limits_{a}^{b} f(x) \mathrm{d}x = \lim_{\varepsilon \to 0+} \begin{pmatrix} c - \varepsilon \\ \int\limits_{a}^{\varepsilon} f(x) \mathrm{d}x + \int\limits_{c+\varepsilon}^{b} f(x) \mathrm{d}x \end{pmatrix} \end{aligned}$$

7.7 Laplace-Transformation von $f:[0,\infty[\to\mathbb{R},\ s\mapsto f(s)]$

$$\mathcal{L} f(s) = F(s) = \int_{0}^{\infty} e^{-st} f(t) dt = \lim_{b \to \infty} \int_{0}^{b} e^{-st} f(t) dt$$

7.8 Integration rationale Funktionen

Gegeben: $\int \frac{A(x)}{Q(x)} dx$ $A(x), Q(x) \in \mathbb{R}[x]$

- 1. Falls, $\deg A(x) \geq \deg Q(x) \Rightarrow \operatorname{Polynomdivision}$: $\frac{A(x)}{Q(x)} = P(x) + \frac{B(x)}{Q(x)} \text{ mit } \deg B(x) < \deg Q(x)$
- 2. Zerlege ${\cal Q}(x)$ in unzerlegbare Polynome
- 3. Partialbruchzerlegung $\frac{B(x)}{Q(x)} = \frac{\dots}{(x-a_n)} + \dots + \frac{\dots}{\dots}$
- 4. Integriere die Summanden mit folgenden Funktionen

$$\int \frac{1}{(\lambda)^m} dx \begin{cases} \frac{2}{\sqrt{\beta}} \arctan \frac{2x+p}{\sqrt{\beta}}, & m = 1\\ \\ \frac{2x+p}{(m-1)(\beta)(\lambda)^{m-1}} + \frac{2(2m-3)}{(m-1)(\beta)} \int \frac{dx}{(\lambda)^{m-1}}, & m \ge 2 \end{cases}$$

$$\int \frac{Bx+C}{(\lambda)^m} dx \begin{cases} \frac{B}{2} \ln(\lambda) + (C - \frac{Bp}{2}) \int \frac{dx}{\lambda}, & m = 1\\ \frac{-B}{2(m-1)(\lambda)^{m-1}} + (C - \frac{Bp}{2}) \int \frac{dx}{(\lambda)^{m-1}}, & m \geq 2 \end{cases}$$

Häufige Integrale nach Partialbruchzerlegung

$$\int \frac{1}{x} dx = \ln|x| \qquad \int \frac{1}{x^2} dx = -\frac{1}{x}$$

$$\int \frac{1}{a+x} dx = \ln|a+x| \qquad \int \frac{1}{(a+x)^2} dx = -\frac{1}{a+x}$$

$$\int \frac{1}{a-x} dx = -\ln|a-x| \qquad \int \frac{1}{(a-x)^2} dx = \frac{1}{a-x}$$

7.9 Paratialbruchzerlegung

$$\frac{B(x)}{Q(x)} = \frac{\dots}{(x - x_0)} + \dots + \frac{\dots}{\dots}$$

Ansatz

- *n*-fache reelle Nullstelle x_0 : $\frac{A}{x-x_0} + \frac{B}{(x-x_0)^2} + \dots$
- *n*-fache komplexe Nullstelle: $\frac{Ax+B}{x^2+nx+a} + \frac{Ax+B}{(x^2+nx+a)^2}$

Berechnung von A, B, C, \ldots

- Nullstellen in x einsetzen (Terme fallen weg)
- Ausmultiplizieren und Koeffizientenvergleich

8 Taylor-Entwicklung

Man approximiert eine m-mal diffbare Funktion $f:I=[a,b]\to \mathbb{R}$ in $x_0\in I$ mit dem m-ten Taylorpolynom:

$$T_m(x_0; x) = \sum_{i=0}^{m} \frac{f^{(i)}(x_0)}{i!} (x - x_0)^i$$

Taylor-Entw. von Polynomen/Potenzreihen sind die Funktionen selbst. Für $m \to \infty$: Taylorreihe.

Konvergenzradius: $R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \frac{1}{\sqrt[n]{|a_n|}}$

8.1 Das Restglied - die Taylorformel

Für (m+1)-mal stetig diffbare Funktionen gilt $\forall x \in I:$ $R_{m+1}(x):=f(x)-T_{m,f,x_0}(x)=$ $=\frac{1}{m!}\int_{x_0}^x(x-t)^mf^{(m+1)}(t)\mathrm{d}t \quad \text{(Integraldarst.)}$ $=\frac{f^{(m+1)}(\xi)}{(m+1)!}(x-x_0)^{m+1} \quad \xi\in[x,x_0] \text{ (Lagrange)}$ Fehlerabschätzung: Wähle ξ und x so, dass $R_{m+1}(x)$ maximal wird

9 Elementarfunktionen

- Exponential funktion $e^x = \sum_{k=1}^{m} \frac{x^k}{k!}$
- Trigonometrische Funktionen $\sin x = \sum_{k=0}^{m} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$ $\cos x = \sum_{k=0}^{m} (-1)^k \frac{x^{2k}}{(2k)!}$
- Logarithmusfunktion

$$\ln(1+x) = \sum_{k=1}^{m} \frac{(-1)^{k+1}}{k} x^k$$