A NOTE ON POSITIVE ENERGY THEOREM FOR SPACES WITH ASYMPTOTIC SUSY COMPACTIFICATION

Xianzhe Dai

February 7, 2008

Abstract

We extend the positive mass theorem in [D] to the Lorentzian setting. This includes the original higher dimensional Positive Energy Theorem whose spinor proof is given in [Wi1] and [PT] for dimension 4 and in [Z1] for dimension 5.

1 Introduction and statement of the result

In this note, we formulate and prove the Lorentzian version of the positive mass theorem in [D]. There we prove a positive mass theorem for spaces which asymptotically approach the product of a flat Euclidean space with a compact manifold which admits a nonzero parallel spinor (such as a Calabi-Yau manifold or any special honolomy manifold except the quaternionic Kähler). This is motivated by string theory, especially the recent work [HHM]. The application of the positive mass theorem of [D] to the study of stability of Ricci flat manifolds is discussed in [DWW].

In general relativity, a spacetime is modeled by a Lorentzian 4-manifold (N, g) together with an energy-momentum tensor T satisfying Einstein equation

$$R_{\alpha\beta} - \frac{1}{2}g_{\alpha\beta}R = 8\pi T_{\alpha\beta}.\tag{1.1}$$

The positive energy theorem [SY1], [Wi1] says that an isolated gravitational system with nonnegative local matter density must have nonnegative total energy, measured at spatial infinity. More precisely, one considers a complete oriented spacelike hypersurface M of N satisfying the following two conditions:

a). M is asymptotically flat, that is, there is a compact set K in M such that M-K is the disjoint union of a finite number of subsets M_1, \ldots, M_k and each M_l is diffeomorphic to $(\mathbb{R}^3 - B_R(0))$. Moreover, under this diffeomorphism, the metric of M_l is of the form

$$g_{ij} = \delta_{ij} + O(r^{-\tau}), \quad \partial_k g_{ij} = O(r^{-\tau-1}), \quad \partial_k \partial_l g_{ij} = O(r^{-\tau-2}).$$
 (1.2)

Furthermore, the second fundamental form h_{ij} of M in N satisfies

$$h_{ij} = O(r^{-\tau - 1}), \quad \partial_k h_{ij} = O(r^{-\tau - 2}).$$
 (1.3)

Here $\tau > 0$ is the asymptotic order and r is the Euclidean distance to a base point.

b). M has nonnegative local mass density: for each point $p \in M$ and for each timelike vector e_0 at p, $T(e_0, e_0) \ge 0$ and $T(e_0, \cdot)$ is a nonspacelike co-vector. This implies the dominant energy condition

$$T^{00} \ge |T^{\alpha\beta}|, \quad T^{00} \ge (-T_{0i}T^{0i})^{\frac{1}{2}}.$$
 (1.4)

The total energy (the ADM mass) and the total (linear) momentum of M can then be defined as follows [ADM], [PT] (for simplicity we suppress the dependence here on l (the end M_l))

$$E = \lim_{R \to \infty} \frac{1}{4\omega_n} \int_{S_R} (\partial_i g_{ij} - \partial_j g_{ii}) * dx_j,$$

$$P_k = \lim_{R \to \infty} \frac{1}{4\omega_n} \int_{S_R} 2(h_{jk} - \delta_{jk} h_{ii}) * dx_j$$
(1.5)

Here ω_n denotes the volume of the n-1 sphere and S_R the Euclidean sphere with radius R centered at the base point.

Theorem 1.1 (Schoen-Yau, Witten) With the assumptions as above and assuming that M is spin, one has

$$E - |P| \ge 0$$

on each end M_l . Moreover, if E = 0 for some end M_l , then M has only one end and N is flat along M.

Now, according to string theory [CHSW], our universe is really ten dimensional, modelled on $\mathbb{R}^{3,1} \times X$ where X is a Calabi-Yau 3-fold. This is the so called Calabi-Yau compactification, which motivates the spaces we now consider.

Thus, we consider a Lorentzian manifold N (with signature $(-,+,\cdots,+)$) of dim N=n+1, with a energy-momentum tensor satisfying the Einstein equation. Then let M be a complete oriented spacelike hypersurface in N. Furthermore the Riemannian manifold (M^n,g) with g induced from the Lorentzian metric decomposes $M=M_0\cup M_\infty$, where M_0 is compact as before but now $M_\infty\simeq (\mathbb{R}^k-B_R(0))\times X$ for some radius R>0 and X a compact simply connected spin manifold which admits a nonzero parallel spinor. Moreover the metric on M_∞ satisfies

$$g = \overset{\circ}{g} + u, \quad \overset{\circ}{g} = g_{\mathbb{R}^k} + g_X, \quad u = O(r^{-\tau}), \quad \overset{\circ}{\nabla} u = O(r^{-\tau-1}), \quad \overset{\circ}{\nabla} \overset{\circ}{\nabla} u = O(r^{-\tau-2}), \quad (1.6)$$

and the second fundamental form h of M in N satisfies

$$h = O(r^{-\tau - 1}), \quad \stackrel{\circ}{\nabla} h = O(r^{-\tau - 2}).$$
 (1.7)

Here $\overset{\circ}{\nabla}$ is the Levi-Civita connection of $\overset{\circ}{g}$ (extended to act on all tensor fields), $\tau > 0$ is the asymptotical order.

The total energy and total momentum for such a space can then be defined by

$$E = \lim_{R \to \infty} \frac{1}{4\omega_k vol(X)} \int_{S_R \times X} (\partial_i g_{ij} - \partial_j g_{aa}) * dx_j dvol(X),$$

$$P_k = \lim_{R \to \infty} \frac{1}{4\omega_k vol(X)} \int_{S_R \times X} 2(h_{jk} - \delta_{jk} h_{ii}) * dx_j dvol(X).$$
(1.8)

Here the * operator is the one on the Euclidean factor, the index i, j run over the Euclidean factor while the index a runs over the full index of the manifold.

Then we have

Theorem 1.2 Assuming that M is spin, one has

$$E - |P| \ge 0$$

on each end M_l . Moreover, if E = 0 for some end M_l , then M has only one end. In this case, when k = n, N is flat along M.

In particular, this result includes the original higher dimensional Positive Energy Theorem whose spinor proof is given in [Wi1] and [PT] for dimension 4 and in [Z1] for dimension 5.

Acknowledgement: This work is motivated and inspired by the work of Gary Horowitz and his collaborators [HHM]. The author is indebted to Gary for sharing his ideas and for interesting discussions. The author would also like to thank Xiao Zhang and Siye Wu for useful discussion.

2 The hypersurface Dirac operator

We will adapt Witten's spinor method [Wi1], as given in [PT], to our situation. The crucial ingredient here is the hypersurface Dirac operator on M, acting on the (restriction of the) spinor bundle of N. Let S be the spinor bundle of N and still denote by the same notation its restriction on (or rather, pullback to) M. Denote by ∇ the connection on S induced by the Lorentzian metric on N. The Lorentzian metric on N also induces a Riemannian metric on M, whose Levi-Civita connection gives rise to another connection, ∇ on S. The two, of course, differ by a term involving the second fundamental form.

There are two choices of metrics on S, which is another subtlety here. Since part of the treatment in [PT] is special to dimension 4, we will give a somewhat detailed account here.

Let SO(n,1) denote the identity component of the groups of orientation preserving isometries of the Minkowski space $\mathbb{R}^{n,1}$. A choice of a unit timelike covector e^0 gives rise to injective homomorphisms α , $\hat{\alpha}$, and a commutative diagram

$$\alpha: SO(n) \to SO(n,1)$$

$$\uparrow \qquad \uparrow$$

$$\hat{\alpha}: Spin(n) \to Spin(n,1).$$

$$(2.9)$$

We now fix a choice of unit timelike normal covector e^0 of M in N. Let F(N) denote the SO(n,1) frame bundle of N and F(M) the SO(n) frame bundle of M. Then $i^*F(N) = F(M) \times_{\alpha} SO(n,1)$, where $i: M \hookrightarrow N$ is the inclusion. If N is spin, then we have a principal Spin(n,1) bundle $P_{Spin(n,1)}$ on N, whose restriction on M is then $i^*P_{Spin(n,1)} = P_{Spin(n)} \times_{\hat{\alpha}} Spin(n,1)$, where $P_{Spin(n)}$ is the principal Spin(n) bundle of M. Thus, even if N is not spin, $i^*P_{Spin(n,1)}$ is still well-defined as long as M is spin. Similarly, when N is spin, the spinor bundle S on N is the associated bundle $P_{Spin(n,1)} \times_{\rho_{n,1}} Spin(n,1) \times_{\rho_{n,1}} S$

Similarly, when N is spin, the spinor bundle S on N is the associated bundle $P_{Spin(n,1)} \times_{\rho_{n,1}} \Delta$, where $\Delta = \mathbb{C}^{2^{[\frac{n+1}{2}]}}$ is the complex vector space of spinors and

$$\rho_{n,1}: Spin(n,1) \to GL(\Delta)$$
(2.10)

is the spin representation. Its restriction to M is given by $i^*P_{Spin(n,1)} \times_{\rho_{n,1}} \Delta = P_{Spin(n)} \times_{\rho_n} \Delta$ with

$$\rho_n: Spin(n) \xrightarrow{\hat{\alpha}} Spin(n,1) \xrightarrow{\rho_{n,1}} GL(\Delta)$$
(2.11)

Again, the restriction is still well defined as long as M is spin.

Let e^0 , e^i ($i = 1, \dots, n$ will be the range for the index i in this section) be an orthonormal basis of the Minkowski space $\mathbb{R}^{n,1}$ of dimension n+1 such that $|e^0| = -1$.

Lemma 2.1 There is a positive definite hermitian inner product $\langle \ , \ \rangle$ on Δ which is Spin(n)-invariant. Moreover, $(s,s')=\langle e^0\cdot s,s'\rangle$ defines a hermitian inner product which is also Spin(n)-invariant but not positive definite. In fact

$$(v \cdot s, \ s') = (s, \ v \cdot s')$$

for all $v \in \mathbb{R}^{n,1}$.

Proof. Detailed study via Γ matrices [CBDM, p10-11] shows that there is a positive definite hermitian inner product $\langle \ , \ \rangle$ on Δ with respect to which e^i is skew-hermitian while e^0 is hermitian. It follows then that $\langle \ , \ \rangle$ is Spin(n)-invariant. We now show that $(s,s')=\langle e^0\cdot s,s'\rangle$ defines a Spin(n)-invariant hermitian inner product. Since e^0 is hermitian with respect to $\langle \ , \ \rangle$, $(\ , \)$ is clearly hermitian. To show that $(\ , \)$ is Spin(n)-invariant, we take a unit vector v in the Minkowski space: $v=a_0e^0+a_ie^i, a_0, a_i\in\mathbb{R}$ and $-a_0^2+\sum_{i=1}^n a_i^2=1$. Then

$$(vs, vs') = \langle e^{0}vs, vs' \rangle$$

$$= a_{0}^{2} \langle e^{0}e^{0}s, e^{0}s' \rangle + a_{i}a_{0} \langle e^{0}e^{i}s, e^{0}s' \rangle + a_{0}a_{i} \langle e^{0}e^{0}s, e^{i}s' \rangle + a_{i}a_{j} \langle e^{0}e^{i}s, e^{j}s' \rangle$$

$$= a_{0}^{2} \langle s, e^{0}s' \rangle - a_{i}a_{j} \langle e^{j}e^{0}e^{i}s, s' \rangle$$

$$= a_{0}^{2} \langle e^{0}s, s' \rangle + a_{i}a_{j} \langle e^{0}e^{j}e^{i}s, s' \rangle$$

$$= a_{0}^{2} \langle e^{0}s, s' \rangle - a_{i}^{2} \langle e^{0}s, s' \rangle$$

$$= -(s, s')$$

Consequently, (,) is Spin(n)-invariant. The above computation also implies that v- acts as hermitian operator on Δ with respect to (,).

Thus the spinor bundle S restricted to M inherits an hermitian metric (,) and a positive definite metric \langle , \rangle . They are related by the equation

$$(s, s') = \langle e^0 \cdot s, s' \rangle. \tag{2.12}$$

Now the hypersurface Dirac operator is defined by the composition

$$\mathcal{D}: \ \Gamma(M,S) \xrightarrow{\nabla} \Gamma(M,T^*M \otimes S) \xrightarrow{c} \Gamma(M,S), \tag{2.13}$$

where c denotes the Clifford multiplication. In terms of a local orthonormal basis e_1, e_2, \dots, e_n of TM,

$$\mathfrak{D}\psi = e^i \cdot \nabla_{e_i} \psi,$$

where e^i denotes the dual basis.

The two most important properties of hypersurface Dirac operator are the self-adjointness with respect to the metric $\langle \ , \ \rangle$ and the Bochner-Lichnerowicz-Weitzenbock formula [Wi1], [PT].

Lemma 2.2 Define a n-1 form on M by $\omega = \langle \phi, e^i \cdot \psi \rangle \text{int}(e_i) dvol$, where dvol is the volume form of the Riemannian metric g. We have

$$[\langle \phi, \mathcal{D}\psi \rangle - \langle \mathcal{D}\phi, \psi \rangle] dvol = d\omega.$$

Thus $\mathfrak D$ is formally self adjoint with respect to the L^2 metric defined by $\langle \ , \ \rangle$ (and dvol).

Proof. Since ω is independent of the choice of the orthonormal basis, we do our computation locally using a preferred basis. For any given point $p \in M$, choose a local orthonormal frame e_i of TM near p such that $\nabla e_i = 0$ at p. Extend e_0, e_i to a neighborhood of p in N by parallel translating along e_0 direction. Then, at p, $\nabla_{e_i}e^j = -h_{ij}e^0$ and $\nabla_{e_i}e^0 = -h_{ij}e^j$. Therefore (again at p),

$$d\omega = \nabla_{e_i} \langle \phi, e^i \cdot \psi \rangle dvol$$

$$= [((\nabla_{e_i} e^0) \cdot \phi, e^i \cdot \psi) + (e^0 \cdot \nabla_{e_i} \phi, e^i \cdot \psi) + (e^0 \cdot \phi, (\nabla_{e_i} e^i) \cdot \psi) + (e^0 \cdot \phi, e^i \cdot \nabla_{e_i} \psi)]dvol$$

$$= [-h_{ij}(e^j \cdot \phi, e^i \cdot \psi) + (e^i \cdot e^0 \cdot \nabla_{e_i} \phi, \psi) - h_{ii}(e^0 \cdot \phi, e^0 \cdot \psi) + \langle \phi, \mathcal{D}\psi \rangle]dvol$$

$$= [-h_{ij}(e^i \cdot e^j \cdot \phi, \psi) - \langle \mathcal{D}\phi, \psi \rangle - h_{ii}(e^0 \cdot \phi, e^0 \cdot \psi) + \langle \phi, \mathcal{D}\psi \rangle]dvol$$

$$= [-\langle \mathcal{D}\phi, \psi \rangle + \langle \phi, \mathcal{D}\psi \rangle]dvol$$

Now the Bochner-Lichnerowicz-Weitzenbock formula.

Lemma 2.3 One has

$$\mathcal{D}^{2} = \nabla^{*}\nabla + \mathcal{R},$$

$$\mathcal{R} = \frac{1}{4}(R + 2R_{00} + 2R_{0i}e^{0} \cdot e^{i} \cdot) \in End(S).$$
(2.14)

Here the adjoint ∇^* is with respect to the metric \langle , \rangle .

Proof. We again do the computation in the frame as in the proof of Lemma 2.2. Then

$$\mathcal{D}^{2} = e^{i} \cdot e^{j} \cdot \nabla_{e_{i}} \nabla_{e_{j}} + e^{i} \cdot \nabla_{e_{i}} e^{j} \cdot \nabla_{e_{j}}$$

$$= -\nabla_{e_{i}} \nabla_{e_{i}} + \frac{1}{4} (R + 2R_{00} + 2R_{0i}e^{0} \cdot e^{i} \cdot) - h_{ij}e^{i} \cdot e^{0} \cdot \nabla_{e_{j}}.$$

Now

$$d[\langle \phi, \psi \rangle \operatorname{int}(e_{i}) \, dvol] = e_{i} \langle \phi, \psi \rangle \, dvol$$

$$= (\nabla_{e_{i}} e^{0} \cdot \phi, \psi) + \langle \nabla_{e_{i}} \phi, \psi \rangle + \langle \phi, \nabla_{e_{i}} \psi \rangle$$

$$= -h_{ij} (e^{j} \cdot \phi, \psi) + \langle \nabla_{e_{i}} \phi, \psi \rangle + \langle \phi, \nabla_{e_{i}} \psi \rangle$$

$$= -h_{ij} \langle e^{0} \cdot e^{j} \cdot \phi, \psi \rangle + \langle \nabla_{e_{i}} \phi, \psi \rangle + \langle \phi, \nabla_{e_{i}} \psi \rangle$$

This shows that $\nabla_{e_i}^* = -\nabla_{e_i} - h_{ij}e^j \cdot e^0$. The desired formula follows.

3 Proof of the Theorem

By the Einstein equation,

$$\mathcal{R} = 4\pi (T_{00} + T_{0i}e^0 \cdot e^i \cdot).$$

It follows then from the dominant energy condition (1.4) that

$$\mathcal{R} \ge 0. \tag{3.15}$$

Now, for $\phi \in \Gamma(M, S)$ and a compact domain $\Omega \subset M$ with smooth boundary, the Bochner-Lichnerowicz-Weitzenbock formula yields

$$\int_{\Omega} [|\nabla \phi|^{2} + \langle \phi, \Re \phi \rangle - |\mathcal{D}\phi|^{2}] \, dvol(g) = \int_{\partial \Omega} \sum \langle (\nabla_{e_{a}} + e_{a} \cdot \mathcal{D})\phi, \, \phi \rangle \operatorname{int}(e_{a}) \, dvol(g) (3.16)$$

$$= \int_{\partial \Omega} \sum \langle (\nabla_{\nu} + \nu \cdot \mathcal{D})\phi, \, \phi \rangle \, dvol(g|_{\partial \Omega}), \qquad (3.17)$$

where e_a is an orthonormal basis of g and ν is the unit outer normal of $\partial\Omega$. Also, here $\operatorname{int}(e_a)$ is the interior multiplication by e_a .

Now let the manifold $M = M_0 \cup M_\infty$ with M_0 compact and $M_\infty \simeq (\mathbb{R}^k - B_R(0)) \times X$, and (X, g_X) a compact Riemannian manifold with nonzero parallel spinors. Moreover, the metric g on M satisfies (1.6). Let e_a^0 be the orthonormal basis of g which consists of $\frac{\partial}{\partial x_i}$ followed by an orthonormal basis f_α of g_X . Orthonormalizing e_a^0 with respect to g gives rise an orthonormal basis e_a of g. Moreover,

$$e_a = e_a^0 - \frac{1}{2}u_{ab}e_b^0 + O(r^{-2\tau}). {(3.18)}$$

This gives rise to a gauge transformation

$$A: SO(\overset{\circ}{g}) \ni e_a^0 \to e_a \in SO(g)$$

which identifies the corresponding spin groups and spinor bundles.

We now pick a unit norm parallel spinor ψ_0 of $(\mathbb{R}^k, g_{\mathbb{R}^k})$ and a unit norm parallel spinor ψ_1 of (X, g_X) . Then $\phi_0 = A(\psi_0 \otimes \psi_1)$ defines a spinor of M_{∞} . We extend ϕ_0 smoothly inside. Then $\nabla^0 \phi_0 = 0$ outside the compact set.

Lemma 3.1 If a spinor ϕ is asymptotic to ϕ_0 : $\phi = \phi_0 + O(r^{-\tau})$, then we have

$$\lim_{R \to \infty} \Re \int_{S_R \times X} \sum \langle (\nabla_{e_a} + e_a \cdot D) \phi, \ \phi \rangle \operatorname{int}(e_a) \, dvol(g) = \omega_k vol(X) \langle \phi_0, \ E \phi_0 + P_k dx^0 \cdot dx^k \cdot \phi_0 \rangle,$$

where \Re means taking the real part.

Proof. Recall that $\bar{\nabla}$ denote the connection on S induced from the Levi-Civita connection on M. We have

$$\nabla_{e_a} \psi = \bar{\nabla}_{e_a} \psi - \frac{1}{2} h_{ab} e^0 \cdot e^b \cdot \psi. \tag{3.19}$$

By the Clifford relation,

$$\langle (\nabla_{e_a} + e_a \cdot D)\phi, \ \phi \rangle = -\frac{1}{2} \langle [e^a \cdot, e^b \cdot] \nabla_{e_b} \phi, \ \phi \rangle.$$

Hence

$$\int_{S_R \times X} \sum \langle (\nabla_{e_a} + e_a \cdot D) \phi, \ \phi \rangle \operatorname{int}(e_a) \, dvol(g) =$$

$$-\frac{1}{2} \int_{S_R \times X} \langle [e^a \cdot, e^b \cdot] \overline{\nabla}_{e_b} \phi, \ \phi \rangle \operatorname{int}(e_a) \, dvol(g) + \frac{1}{4} \int_{S_R \times X} \langle [e^a \cdot, e^b \cdot] h_{bc} e^0 \cdot e^c \cdot \phi, \ \phi \rangle \operatorname{int}(e_a) \, dvol(g).$$

Using (3.18) and the asymptotic conditions (1.7), the second term in the right hand side can be easily seen to give us

$$\lim_{R \to \infty} \frac{1}{4} \int_{S_R \times X} \langle 2(h_{ac} - \delta_{ac}h_{bb})e^0 \cdot e^c \cdot \phi, \ \phi \rangle \operatorname{int}(e_a) \, dvol(g) = \omega_k vol(X) \langle \phi_0, \ P_k dx^0 \cdot dx^k \cdot \phi_0 \rangle.$$

The first term is computed in [D] to limit to

$$\omega_k vol(X)\langle \phi_0, E\phi_0 \rangle$$
.

The following lemma is standard [PT], [Wi1].

Lemma 3.2 If

$$\langle \phi_0, E\phi_0 + P_k dx^0 \cdot dx^k \cdot \phi_0 \rangle \ge 0$$

for all constant spinors ϕ_0 , then

$$E - |P| > 0.$$

As usual, the trick to get the positivity now is to find a harmonic spinor ϕ asymptotic to ϕ_0 . Then the left hand side of (3.16) will be nonnegative since $\mathcal{R} \geq 0$. Passing to the right hand side will give us the desired result.

Lemma 3.3 There exists a harmonic spinor ϕ on (M, g) which is asmptotic to the parallel spinor ϕ_0 at infinity:

$$\mathcal{D}\phi = 0, \quad \phi = \phi_0 + O(r^{-\tau}).$$

Proof. The proof is essentially the same as in [D]. We use the Fredholm property of \mathcal{D} on a weighted Sobolev space and $\mathcal{R} \geq 0$ to show that it is an isomorphism. The harmonic spinor ϕ can then be obtained by setting $\phi = \phi_0 + \xi$ and solving $\xi \in O(r^{-\tau})$ from the equation $\mathcal{D}\xi = -\mathcal{D}\phi_0$.

The rest of the Theorem follows as in [PT].

References

- [ADM] S. Arnowitt, S. Deser, C. Misner, Coordinate invariance and energy expressions in general relativity, Phys. Rev. 122(1961), 997-1006.
- [CHSW] P. Candelas, G. Horowitz, A. Strominger, E. Witten, Vacuum configurations for superstrings, Nucl. Phys. B258(1985), 46-
- [CBDM] Y. Choquet-Bruhat, C. DeWitt-Morette, Analysis, Manifolds and Physics, Part II: 92 Applications, North-Holland, 1989
- [D] X. Dai, A Positive Mass Theorem for Spaces with Asymptotic SUSY Compactification, Comm. Math. Phys., 244(2004), 335-345.
- [DWW] X. Dai, X. Wang, G. Wei, On the Stability of Riemannian Manifold with Parallel Spinors, preprint
- [HHMa] T. Hausel, E. Hunsicker, R. Mazzeo, *Hodge cohomlogy of gravitational instantons*, to appear in Duke Math J.
- [HHM] T. Hertog, G. Horowitz, K. Maeda, Negative energy density in Calabi-Yau compactifications, JHEP **0305**, 060 (2003).
- [LM] H. Lawson, M. Michelsohn, Spin Geometry, Princeton Math. Series, vol. 38, Princeton University Press, 1989.
- [LP] J. Lee, T. Parker, The Yamabe problem, Bull. Amer. Math. Soc. 17(1987), 31-81.
- [PT] T. Parker, C. Taubes, On Witten's proof of the positive energy theorem, Commun. Math. Phys. 84(1982), 223-238.
- [SY1] R. Schoen, S.T. Yau, On the proof of the positive mass conjecture in general relativity, Commun. Math. Phys. 65(1979), 45-76.
- [SY2] R. Schoen, S.T. Yau, The energy and the linear momentum of spacetimes in general relativity, Commun. Math. Phys. 79(1981), 47-51.
- [SY3] R. Schoen, S.T. Yau, *Proof of the positive mass theorem. II*, Commun. Math. Phys. 79(1981), 231-260.
- [Wi1] E. Witten, A new proof of the positive energy theorem, Commun. Math. Phys. 80(1981), 381-402.
- [Z1] X. Zhang, Positive mass conjecture for five-dimensional Lorentzian manifolds, J. Math. Phys. 40(1999), 3540-3552.
- [Z2] X. Zhang, Angular momentum and positive mass theorem, Commun. Math. Phys. 206(1999), 137-155.