PROJECT EXECUTION STEPS

The project titled "UPI Fraud Detection Using Machine Learning" follows a structured execution process involving data collection, preprocessing, machine learning model training, web development using Flask, integration with MySQL via XAMPP, and deployment through a user-friendly interface. Below are the detailed steps followed during the execution phase of the project.

Step 1: Dataset Collection and Preparation

- Collect a dataset containing transaction records with features
- Clean the dataset:
 - o Handle missing/null values.
 - Encode categorical variables (Label Encoding / One-Hot Encoding).
- Split the data into training and testing sets using:

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

Step 2: Model Training

- Train the following ML models using the prepared data:
 - Decision Tree
 - Random Forest
 - XGBoost Classifier
 - Gradient Boosting
- Evaluate each model's performance using metrics:
 - o Accuracy, Precision, Recall, F1-score, Confusion Matrix
- Example (Random Forest):

from sklearn.ensemble import RandomForestClassifier

model = RandomForestClassifier()

model.fit(X_train, y_train)

Step 3: Web Application Development (Flask)

- Build a web interface using **Flask** with the following pages:
 - o Home Page
 - User Registration & Login
 - Dataset Upload
 - Model Selection
 - Prediction Output

Step 4: Backend Web Application (Flask Framework)

- A lightweight web app is developed using **Flask**.
- Functionalities include:
 - User Registration & Login with MySQL integration
 - o **Dataset Upload** for model input
 - Model Selection page for choosing ML algorithms
 - Prediction Page to display fraud detection results
- Flask routes and HTML templates manage navigation between:
 - o /register, /login, /upload, /select_model, /predict

Step 5: Database Integration Using XAMPP & MySQL

- **XAMPP** is used to run **Apache** and **MySQL** locally.
- **phpMyAdmin** is used to:
 - Create a database named upi_fraud_detection
 - Define tables for user data and logs

Step 6: Real-Time Prediction Flow

- After model training and selection:
 - Users can input transaction details manually or upload new data.
 - The selected model predicts whether the transaction is Fraudulent (1)
 or Legitimate (0).
- Results are displayed directly on the prediction page:
 - Transaction Successful: Details Verified and Processed
 - **X Transaction Failed: Fraudulent Pattern Detected**

Step 7: Testing and Evaluation

- Various types of software testing were performed:
 - Unit Testing for individual components
 - o **Integration Testing** for combined workflows
 - Functional Testing for UI and backend flow
 - White Box & Black Box Testing to ensure reliability
 - Acceptance Testing to verify against project requirements

Step 8: Final Deployment and Execution

- Steps to run the complete system:
 - 1. Launch **XAMPP**, start **Apache** and **MySQL**.
 - 2. Open **phpMyAdmin** and ensure the database is active.
 - 3. In terminal, activate the Anaconda environment:
 - conda activate upi_fraud_env
 - 4. Run the Flask application:
 - python app.py
 - 5. Open a browser and go to:

http://localhost:5000

