

EGZAMIN MATURALNY W ROKU SZKOLNYM 2017/2018

MATEMATYKA

POZIOM PODSTAWOWY

FORMUŁA DO 2014 ("STARA MATURA")

+

FORMUŁA OD 2015 ("NOWA MATURA")

ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ

ARKUSZ MMA-P1

CZERWIEC 2018

Egzaminatorze!

- Oceniaj prace zdających uczciwie i z zaangażowaniem.
- Stosuj przyjęte zasady oceniania w sposób obiektywny. Pamiętaj, że każda merytorycznie poprawna odpowiedź, spełniająca warunki określone w poleceniu, musi zostać pozytywnie oceniona, nawet jeżeli nie została przewidziana w przykładowych odpowiedziach w zasadach oceniania.
- Konsultuj niejednoznaczne rozwiązania zadań z innymi egzaminatorami lub przewodniczącym zespołu egzaminatorów. W przypadku niemożności osiągnięcia wspólnego stanowiska, rozstrzygajcie na korzyść zdającego.
- Przyznając punkty, nie kieruj się emocjami.
- Informuj przewodniczącego o wszystkich nieprawidłowościach zaistniałych w trakcie oceniania, w tym podejrzeń o niesamodzielność w pisaniu pracy.

Klucz punktowania zadań zamkniętych

Nr zad.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Odp.	Α	D	D	С	В	Α	D	В	В	В	С	D	В	В	С	D	A	D	A	C	D	С	A	A	C

Schemat oceniania zadań otwartych

Zadanie 26. (0-2)

Rozwiąż nierówność 2x(1-x)+1-x<0.

Rozwiązanie

Rozwiązanie nierówności kwadratowej składa się z dwóch etapów.

Pierwszy etap polega na obliczeniu pierwiastków trójmianu kwadratowego.

Drugi etap polega na zapisaniu zbioru rozwiązań nierówności.

Realizacja pierwszego etapu

• wyłączamy czynnik (1-x) przed nawias i zapisujemy lewą stronę nierówności w postaci iloczynowej (1-x)(2x+1) < 0, a następnie zapisujemy pierwiastki trójmianu kwadratowego y = (1-x)(2x+1)

$$x_1 = 1 \text{ oraz } x_2 = -\frac{1}{2}$$

albo

• wyłączamy czynnik (1-x) przed nawias i zapisujemy lewą stronę nierówności w postaci

iloczynowej (1-x)(2x+1) < 0, a następnie zapisujemy alternatywę dwóch układów nierówności

$$\begin{cases} 1 - x > 0 \\ 2x + 1 < 0 \end{cases} \text{ lub } \begin{cases} 1 - x < 0 \\ 2x + 1 > 0 \end{cases}$$

i równoważnie

$$\begin{cases} x < 1 \\ x < -\frac{1}{2} \end{cases} \text{ lub } \begin{cases} x > 1 \\ x > -\frac{1}{2} \end{cases}$$

albo

• zapisujemy lewą stronę nierówności w postaci $-2x^2 + x + 1 < 0$ obliczamy wyróżnik tego trójmianu:

$$\Delta = 1 - 4 \cdot (-2) \cdot 1 = 9$$
 i stąd $x_1 = \frac{-1 - 3}{-4} = 1$ oraz $x_2 = \frac{-1 + 3}{-4} = -\frac{1}{2}$

albo

• podajemy je bezpośrednio, np. zapisując pierwiastki trójmianu $x_1 = 1$, $x_2 = -\frac{1}{2}$ lub zaznaczając je na wykresie.

Realizacja drugiego etapu

Zapisujemy zbiór rozwiązań nierówności: $\left(-\infty, -\frac{1}{2}\right) \cup \left(1, +\infty\right)$.

Schemat oceniania

• obliczy lub poda pierwiastki trójmianu kwadratowego $x_1 = 1$, $x_2 = -\frac{1}{2}$ i na tym zakończy lub błędnie zapisze zbiór rozwiązań nierówności

albo

zapisze alternatywę dwóch układów nierówności

$$\begin{cases} x < 1 \\ x < -\frac{1}{2} \end{cases} \text{ lub } \begin{cases} x > 1 \\ x > -\frac{1}{2} \end{cases}$$

i na tym zakończy lub dalej popełni błędy,

albo

• zaznaczy na wykresie miejsca zerowe funkcji f(x) = 2x(1-x) + (1-x) i na tym zakończy lub błędnie zapisze zbiór rozwiązań nierówności,

albo

 realizując pierwszy etap popełni błąd (ten sam błąd popełniony wielokrotnie traktujemy jak jeden błąd), ale otrzyma dwa różne pierwiastki trójmianu kwadratowego i konsekwentnie do popełnionego błędu rozwiąże nierówność.

Zdający otrzymuje2 p. gdy:

• zapisze zbiór rozwiązań nierówności: $\left(-\infty, -\frac{1}{2}\right) \cup \left(1, +\infty\right)$ lub $x \in \left(-\infty, -\frac{1}{2}\right) \cup \left(1, +\infty\right)$, lub $x < -\frac{1}{2}$ lub x > 1

albo

• sporządzi poprawną ilustrację geometryczną (oś liczbowa, wykres) i zapisze zbiór rozwiązań nierówności w postaci: $x < -\frac{1}{2}$, x > 1,

albo

• poda zbiór rozwiązań nierówności w postaci graficznej z poprawnie zaznaczonymi końcami przedziałów.

Zadanie 27. (0-2)

Wykresem funkcji kwadratowej f określonej wzorem $f(x) = x^2 + bx + c$ jest parabola, na której leży punkt A = (0, -5). Osią symetrii tej paraboli jest prosta o równaniu x = 7. Oblicz wartości współczynników b i c.

Rozwiązanie (I sposób)

Ponieważ prosta o równaniu x = 7 jest osią symetrii paraboli, która jest wykresem funkcji f, więc pierwsza współrzedna wierzchołka tej paraboli jest równa 7, czyli

$$-\frac{b}{2a} = 7,$$
$$-\frac{b}{2} = 7.$$

Stad b = -14.

Wykres funkcji przechodzi przez punkt A = (0, -5), więc wyraz wolny c we wzorze funkcji jest równy c = -5.

Odpowiedź. Wartości współczynników b i c są równe: b = -14, c = -5.

Rozwiązanie (II sposób)

Ponieważ prosta o równaniu x = 7 jest osią symetrii paraboli, która jest wykresem funkcji f, więc wzór funkcji możemy zapisać w postaci kanonicznej

$$f(x) = (x-7)^2 + q$$
.

Punkt A = (0, -5) leży na tym wykresie, wiec f(0) = -5, czyli

$$-5 = (0-7)^{2} + q,$$

$$-5 = 49 + q,$$

$$q = -54.$$

Zatem $f(x) = (x-7)^2 - 54$. Przekształcając tę postać kanoniczną do postaci ogólnej, otrzymujemy

$$f(x) = x^2 - 14x + 49 - 54$$
,
 $f(x) = x^2 - 14x - 5$.

Odpowiedź. Wartości współczynników b i c są równe: b = -14, c = -5.

Rozwiązanie (III sposób)

Ponieważ prosta o równaniu x = 7 jest osią symetrii paraboli, która jest wykresem funkcji f, więc jeśli punkt A = (0, -5) leży na tej paraboli, to jego obraz w symetrii osiowej względem tej prostej również leży na tej paraboli. Obrazem punktu A = (0, -5) w tej symetrii jest punkt A' = (14, -5).

Zatem
$$f(0) = -5 i f(14) = -5$$
, czyli

$$\begin{cases} 0^{2} + b \cdot 0 + c = -5 \\ 14^{2} + b \cdot 14 + c = -5 \end{cases}$$

$$\begin{cases} c = -5 \\ 14^{2} + 14b - 5 = -5 \end{cases}$$

$$\begin{cases} c = -5 \\ 14b = -14^{2} \end{cases}$$

$$\begin{cases} c = -5 \\ b = -14 \end{cases}$$

Odpowiedź. Wartości współczynników b i c są równe: b = -14, c = -5.

Schemat oceniania I, II i III sposobu rozwiązania

• obliczy wartość współczynnika b: b = -14

albo

- obliczy lub poda wartość współczynnika c: c = -5 albo
- zapisze układ równań z niewiadomymi b i c: $0^2 + b \cdot 0 + c = -5$ i $14^2 + b \cdot 14 + c = -5$ albo
- zapisze wzór funkcji f w postaci $f(x) = (x-7)^2 + q$ oraz równanie $-5 = (0-7)^2 + q$ i na tym poprzestanie lub dalej popełnia błędy

Zadanie 28. (0-2)

Wykaż, że reszta z dzielenia sumy kwadratów czterech kolejnych liczb naturalnych przez 8 jest równa 6.

Rozwiązanie

Niech n, n+1, n+2, n+3 będą czterema kolejnymi liczbami naturalnymi. Sumujemy kwadraty tych liczb i odpowiednio tę sumę porządkujemy:

$$n^{2} + (n+1)^{2} + (n+2)^{2} + (n+3)^{2} = 4n^{2} + 12n + 14 =$$

$$= 4n^{2} + 12n + 8 + 6 = 4(n^{2} + 3n + 2) + 6 = 4(n+1)(n+2) + 6$$

Oczywiście liczba postaci 4(n+1)(n+2) jest podzielna przez 4. Ponadto n+1 i n+2 to dwie kolejne liczby całkowite, więc jedna z nich jest parzysta. Zatem iloczyn 4(n+1)(n+2) jest podzielny przez 4 i przez 2, czyli jest podzielny przez 8. Stąd wynika, że liczba 4(n+1)(n+2)+6 przy dzieleniu przez 8 daje resztę równą 6. To kończy dowód.

Schemat oceniania

$$4(n^2+3n+2)+6$$

i na tym zakończy lub dalej popełni błędy.

Uwaga:

Jeśli zdający sprawdza prawdziwość twierdzenia dla sumy kwadratów konkretnych czterech liczb naturalnych, to otrzymuje **0 punktów**.

Zadanie 29. (0-2)

Dany jest prostokąt ABCD. Na boku CD tego prostokąta wybrano taki punkt E, że |EC|=2|DE|, a na boku AB wybrano taki punkt F, że |BF|=|DE|. Niech P oznacza punkt przecięcia prostej EF z prostą BC (zobacz rysunek). Wykaż, że trójkąty AED i FPB są przystające.

Rozwiązanie (I sposób) "cecha kąt-bok-kąt przystawania"

Dorysowujemy odcinek FG, taki że punkt G jest środkiem odcinka EC. Ponieważ |EC|=2|DE|, więc otrzymujemy równość |DE|=|EG|=|GC|.

Zatem |GC| = |FB|, a skoro $| \ll GCB| = | \ll FBC| = 90^{\circ}$, więc $| \ll FGC| = 90^{\circ}$, skąd wynika, że trójkąt FEG jest prostokątny.

Ponieważ |AD| = |FG|, $| \not < ADE| = | \not < FGE| = 90^\circ$ i |DE| = |EG|, więc z cechy bkb wnioskujemy, że trójkąty AED i FEG są przystające. Niech $| \not < DAE| = \alpha$. Wtedy z przystawania tych trójkątów wnosimy, że $| \not < EFG| = \alpha$. Ponieważ odcinki PC i FG są równoległe, więc $| \not < FPB| = | \not < EFG| = \alpha$ (kąty odpowiadające).

Ponieważ $| < FPB | = | < EFG | = \alpha |BF| = |DE|$, $| < PBF | = 90^\circ = | < ADE|$ oraz, zatem na mocy cechy kbk trójkąty AED i PFB są przystające.

Schemat oceniania I sposobu rozwiązania

Uwaga:

Jeżeli zdający wprowadza do zadania dodatkowe założenia niewynikające z treści tego zadania

i korzysta z tych założeń, to otrzymuje **0 punktów** za całe rozwiązanie.

Rozwiązanie (II sposób) – "przechodniość przystawania"

Dorysowujemy odcinek FG, taki, że punkt G jest środkiem odcinka EC. Ponieważ |EC|=2|DE|, więc otrzymujemy równość |DE|=|EG|=|GC|.

Zatem |GC| = |FB|, a skoro $| \ll GCB| = | \ll FBC| = 90^{\circ}$, więc $| \ll FGC| = 90^{\circ}$, skąd wynika, że trójkąt FEG jest prostokątny.

Ponieważ |AD| = |FG|, $| \angle ADE| = | \angle FGE| = 90^{\circ}$ i |DE| = |EG|, więc z cechy *bkb* wnioskujemy, że trójkąty *AED* i *FEG* są przystające.

Niech $| \not \sim DAE | = \alpha$. Zatem $| \not \sim EFG | = \alpha$. Ponieważ FG | | PC, więc $| \not \sim FPB | = \alpha = | \not \sim EFG |$. Trójkąty EFG i FPB są trójkątami przystającymi na mocy cechy kbk, gdyż są to trójkąty prostokątne, mają jeden kąt ostry równej miary oraz |BF| = |EG|. Skoro trójkąt AED jest przystający do trójkąta FEG, a trójkąt FEG jest przystający do trójkąta PFB, więc z przechodniości relacji przystawania wynika, że trójkąty AED i PBF są przystające.

Schemat oceniania II sposobu rozwiązania

Uwaga:

Jeżeli zdający wprowadza do zadania dodatkowe założenia niewynikające z treści tego zadania

i korzysta z tych założeń, to otrzymuje **0 punktów** za całe rozwiązanie.

Rozwiązanie (III sposób) – "podobieństwo trójkątów"

Trójkąty *PBF* i *PCE* są podobne na podstawie cechy *kkk*, bo są to trójkąty prostokątne i kąt *FPB* jest wspólnym kątem obu tych trójkątów.

Skala podobieństwa tych trójkątów jest równa 2, gdyż z treści zadania wiadomo, że |BF| = |DE| oraz |EC| = 2|DE|. Wynika stąd, że |CP| = 2|BP|, a zatem |PB| = |BC| = |AD|. Ponieważ zachodza równości

$$|PB| = |AD|$$
, $| \angle PBF| = 90^{\circ} = | \angle ADE|$, $|BF| = |DE|$,

więc trójkąty AED i PBF są przystające na mocy cechy bkb przystawania trójkątów. To kończy dowód.

Schemat oceniania III sposobu rozwiazania Zdający otrzymuje1 p. gdy uzasadni, że trójkąty *PBF* i *PCE* są trójkątami podobnymi i skala podobieństwa tych jest równa 2 i na tym zakończy lub dalej popełni błędy. gdy przeprowadzi pełne, poprawne rozumowanie. Uwaga: Jeżeli zdający wprowadza do zadania dodatkowe założenia niewynikające z treści tego zadania i korzysta z tych założeń, to otrzymuje **0 punktów** za całe rozwiązanie. Zadanie 30. (0-2) Kąt α jest ostry i $\sin \alpha + \cos \alpha = \sqrt{2}$. Oblicz wartość wyrażenia $tg\alpha + \frac{1}{tg\alpha}$. Rozwiązanie I sposób Równanie $\sin \alpha + \cos \alpha = \sqrt{2}$ podnosimy obustronnie do kwadratu $\sin^2 \alpha + \cos^2 \alpha + 2 \sin \alpha \cos \alpha = 2$, a następnie korzystając z tożsamości $\sin^2 \alpha + \cos^2 \alpha = 1$ otrzymujemy $1+2\sin\alpha\cos\alpha=2$, zatem $\sin\alpha\cos\alpha=\frac{1}{2}$. Następnie korzystamy ze związku między funkcjami tego samego kąta $tg\alpha = \frac{\sin \alpha}{\cos \alpha}$ i przekształcamy wyrażenie $tg\alpha + \frac{1}{tg\alpha}$: $tg\alpha + \frac{1}{tg\alpha} = \frac{\sin\alpha}{\cos\alpha} + \frac{\cos\alpha}{\sin\alpha} = \frac{\sin^2\alpha + \cos^2\alpha}{\sin\alpha\cos\alpha} = \frac{1}{\sin\alpha\cos\alpha} = \frac{1}{\underline{1}} = 2.$ Schemat oceniania • przekształci wyrażenie $tg\alpha + \frac{1}{tg\alpha}$ do postaci $\frac{1}{\sin \alpha \cos \alpha}$ albo • wyznaczy wartość wyrażenia $\sin \alpha \cos \alpha = \frac{1}{2}$ i na tym zakończy lub dalej popełnia błędy. Zdający otrzymuje2 p. gdy obliczy wartość wyrażenia $tg\alpha + \frac{1}{tg\alpha}$: 2.

Rozwiązanie II sposób

Z równania $\sin \alpha + \cos \alpha = \sqrt{2}$ wyznaczamy jedną z funkcji trygonometrycznych w zależności od drugiej, np. sinus kąta w zależności od cosinusa kąta: $\sin \alpha = \sqrt{2} - \cos \alpha$. Następnie korzystając z tożsamości $\sin^2 \alpha + \cos^2 \alpha = 1$ otrzymujemy:

$$(\sqrt{2} - \cos \alpha)^2 + \cos^2 \alpha = 1$$
, stąd otrzymujemy równanie kwadratowe

$$2\cos^2\alpha - 2\sqrt{2}\cos\alpha + 1 = 0.$$

Równanie można zapisać w postaci $(\sqrt{2}\cos\alpha - 1)^2 = 0$,

zatem rozwiązaniem tego równania jest $\cos \alpha = \frac{\sqrt{2}}{2}$.

Stad
$$\sin \alpha = \frac{\sqrt{2}}{2}$$
.

Następnie korzystamy ze związku między funkcjami tego samego kąta $tg\alpha = \frac{\sin \alpha}{\cos \alpha}$

i przekształcamy wyrażenie $tg\alpha + \frac{1}{tg\alpha}$.

Otrzymujemy
$$tg\alpha + \frac{1}{tg\alpha} = \frac{\sin\alpha}{\cos\alpha} + \frac{\cos\alpha}{\sin\alpha} = \frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}} + \frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}} = 2$$
.

Schemat oceniania

• przekształci wyrażenie $tg\alpha + \frac{1}{tg\alpha}$ do postaci $\frac{\sin\alpha}{\cos\alpha} + \frac{\cos\alpha}{\sin\alpha}$,

albo

• wyznaczy wartość $\cos \alpha = \frac{\sqrt{2}}{2}$ i $\sin \alpha = \frac{\sqrt{2}}{2}$,

i na tym zakończy lub dalej popełnia błędy.

Zadanie 31. (0-2)

Rzucamy cztery razy symetryczną monetą. Po przeprowadzonym doświadczeniu zapisujemy liczbę uzyskanych orłów (od 0 do 4) i liczbę uzyskanych reszek (również od 0 do 4). Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że w tych czterech rzutach liczba uzyskanych orłów będzie większa niż liczba uzyskanych reszek.

Rozwiązanie (I sposób)

Zbiór zdarzeń elementarnych tego doświadczenia losowego zawiera wszystkie ciągi czteroelementowe, postaci (r_1, r_2, r_3, r_4) , w których r_i oznacza wyrzucenie orła (O) albo

wyrzucenie reszki (R) w i-tym rzucie , dla i = 1, 2, 3, 4 . Jest to model klasyczny i liczba wszystkich zdarzeń elementarnych jest równa

$$|\Omega| = 2^4 = 16$$
.

Niech A oznacza zdarzenie polegające na tym, że w tych czterech rzutach wypadnie więcej orłów niż reszek. Oznacza to, że otrzymamy cztery orły albo trzy orły i jedną reszkę. Zdarzeniu A sprzyja zatem 5 zdarzeń elementarnych:

$$(O,O,O,R)$$
, (O,O,R,O) , (O,R,O,O) , (R,O,O,O) , (O,O,O,O) .

Szukane prawdopodobieństwo zajścia zdarzenia A jest więc równe:

$$P(A) = \frac{|A|}{|\Omega|} = \frac{5}{16}.$$

Schemat oceniania I sposobu rozwiązania

zapisze, że liczba wszystkich zdarzeń elementarnych tego doświadczenia jest równa $2^4 = 16$ albo

wypisze poprawnie 5 zdarzeń elementarnych sprzyjających zajściu zdarzenia A i na tym zakończy lub dalej popełnia błędy.

Uwaga:

Jeżeli zdający błędnie zapisze wynik P(A) jako liczbę większą od 1 lub mniejszą od 0, to otrzymuje **0 punktów** za całe rozwiązanie.

Rozwiązanie (II sposób) "metoda drzewka"

Rysujemy czteroetapowe drzewko ilustrujące dane doświadczenie.

Niech A oznacza zdarzenie polegające na tym, że w tych czterech rzutach wypadnie więcej orłów niż reszek. Zaznaczamy (linia pogrubiona) wszystkie gałęzie, które dotyczą szukanego zdarzenia, czyli ciągów:

$$(O,O,O,O)$$
, (O,O,O,R) , (O,O,R,O) , (O,R,O,O) , (R,O,O,O) .

Zatem szukane prawdopodobieństwo zajścia zdarzenia A jest równe:

$$P(A) = 5 \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{5}{16}$$
.

Schemat oceniania II sposobu rozwiązania

Uwaga:

Jeżeli zdający błędnie zapisze wynik P(A) jako liczbę większą od 1 lub mniejszą od 0, to otrzymuje **0 punktów** za całe rozwiązanie.

Zadanie 32. (0-5)

Dany jest ostrosłup prawidłowy czworokątny o wysokości H=16. Cosinus kąta nachylenia krawędzi bocznej do płaszczyzny podstawy tego ostrosłupa jest równy $\frac{3}{5}$. Oblicz pole powierzchni bocznej tego ostrosłupa.

Rozwiązanie (I sposób)

Sporządzamy pomocniczy rysunek i wprowadzamy niezbędne oznaczenia.

Obliczymy długości dwóch boków trójkąta prostokątnego o przeciwprostokątnej *b* oraz przyprostokątnych długości 16 i *x*. Zapisujemy w tym celu układ równań:

$$x^2 + 16^2 = b^2$$
 i $\cos \alpha = \frac{x}{b} = \frac{3}{5}$.

Następnie zapisujemy równanie z jedną niewiadomą, np. $\left(\frac{3}{5}b\right)^2 + 16^2 = b^2$, skąd wynika, że b = 20.

A zatem x=12. Teraz obliczamy długość krawędzi podstawy ostrosłupa: $\frac{a\sqrt{2}}{2}=12$, stąd $a=12\sqrt{2}$. Korzystając z twierdzenia Pitagorasa obliczamy wysokość ściany bocznej: $h^2+\left(6\sqrt{2}\right)^2=20^2$, stąd $h=2\sqrt{82}$. Obliczamy wreszcie pole powierzchni bocznej ostrosłupa: $P_b=4\cdot\frac{1}{2}ah=48\sqrt{164}=96\sqrt{41}$.

Rozwiązanie (II sposób)

Przyjmijmy oznaczenia jak na rysunku w I sposobie rozwiązania. Obliczamy długości dwóch boków trójkąta prostokątnego o przeciwprostokątnej b oraz przyprostokątnych długości 16 oraz x. Tym razem obliczymy sinus kąta α , $\sin\alpha=\frac{4}{5}$, a następnie zapisujemy zależność $\frac{4}{5}=\frac{16}{b}$, z której otrzymujemy b=20. Następnie, korzystając z twierdzenia Pitagorasa, zapisujemy równanie $x^2+16^2=20^2$, a stąd x=12. Teraz obliczamy długość krawędzi podstawy ostrosłupa: $a\sqrt{2}=24$, stąd $a=12\sqrt{2}$. Korzystając ponownie z twierdzenia Pitagorasa obliczamy wysokość ściany bocznej: $h^2+\left(6\sqrt{2}\right)^2=20^2$, stąd $h=2\sqrt{82}$. Obliczamy pole powierzchni bocznej ostrosłupa

$$P_b = 4 \cdot \frac{1}{2} ah = 48\sqrt{164} = 96\sqrt{41}$$
.

Rozwiązanie (III sposób)

Przyjmijmy oznaczenia jak na rysunku w I sposobie rozwiązania. Najpierw obliczymy długość boku x trójkąta prostokątnego o przeciwprostokątnej b oraz przyprostokątnych długości x i 16. Korzystamy z faktu, że $\cos\alpha=\frac{3}{5}$ i obliczamy najpierw sinus, a następnie tangens kąta α , $\operatorname{tg}\alpha=\frac{4}{3}$. Teraz zapisujemy zależność $\operatorname{tg}\alpha=\frac{H}{x}=\frac{16}{x}$, z której wynika, że $\frac{16}{x}=\frac{4}{3}$, czyli x=12. Następnie z równości $a\sqrt{2}=24$ obliczamy długość krawędzi podstawy $a=12\sqrt{2}$. Wreszcie z twierdzenia Pitagorasa obliczamy wysokość ściany bocznej ostrosłupa: $h^2=H^2+\left(\frac{a}{2}\right)^2$ i stąd $h=2\sqrt{82}$. Szukane pole powierzchni bocznej ostrosłupa jest zatem równe $P_b=4\cdot\frac{1}{2}ah=48\sqrt{164}=96\sqrt{41}$.

Schemat oceniania I, II i III sposobu rozwiązania

• zapisze równość wynikającą z treści zadania oraz z definicji cosinusa kąta ostrego, np. $\frac{x}{b} = \frac{3}{5}$

albo

- zapisze równość wynikającą z treści zadania oraz twierdzenia Pitagorasa $x^2 + 16^2 = b^2$, albo
 - obliczy sinus kąta nachylenia krawędzi bocznej do płaszczyzny podstawy tego ostrosłupa, $\sin \alpha = \frac{4}{5}$

albo

• obliczy tangens kąta nachylenia krawędzi bocznej do płaszczyzny podstawy tego ostrosłupa, $tg\alpha = \frac{4}{3}$

i na tym zakończy lub dalej popełni błędy.

albo

•
$$\frac{4}{5} = \frac{16}{b}$$

albo

$$\bullet \quad \frac{16}{x} = \frac{4}{3}$$

i na tym zakończy lub dalej popełni błędy.

$$P_b = 4 \cdot \frac{1}{2} ah = 48\sqrt{164} = 96\sqrt{41}$$
.

Uwagi:

- 1. Akceptujemy poprawnie zastosowane zaokraglenia liczb rzeczywistych.
- 2. Jeżeli zdający założy, że x = 3 oraz b = 5 i doprowadzi rozwiązanie do końca otrzymując

$$P_b = 4 \cdot \frac{1}{2} ah = 2 \cdot 3\sqrt{2} \cdot \sqrt{7} = 6\sqrt{14}$$
,

to za całe rozwiązanie otrzymuje 1 punkt.

- 3. Jeżeli zdający przyjmuje, że podany kąt jest kątem nachylenia ściany bocznej ostrosłupa do płaszczyzny jego podstawy, otrzymując a = 12 oraz h = 20 i obliczy pole powierzchni bocznej $P_b = 4 \cdot \frac{1}{2} ah = 2 \cdot 24 \cdot 20 = 960$, to za takie rozwiązanie może otrzymać maksymalnie **2 punkty**.
- 4. Jeżeli zdający przyjmuje, że powierzchnia boczna tego ostrosłupa jest trójkątem równobocznym, to za takie rozwiązanie może otrzymać maksymalnie **3 punkty**.

- 5. Jeżeli zdający zapisuje błędną zależność wynikającą z definicji cosinusa danego kąta, to za całe rozwiązanie może otrzymać maksymalnie **3 punkty**.
- 6. Jeżeli zdający popełnia błędy nieprzekreślające poprawności rozumowania, np.: błędy rachunkowe, błędy w przepisywaniu, itp. i doprowadza rozwiązanie konsekwentnie do końca, to może otrzymać maksymalnie **4 punkty**.

Zadanie 33. (0-4)

W ciągu arytmetycznym (a_n) , określonym dla liczb naturalnych $n \ge 1$, wyraz szósty jest liczbą dwa razy większą od wyrazu piątego, a suma dziesięciu początkowych wyrazów tego ciągu jest równa $S_{10} = \frac{15}{4}$. Oblicz wyraz pierwszy oraz różnicę tego ciągu.

Rozwiązanie (I sposób)

Oznaczmy rozpatrywany ciąg arytmetyczny przez (a_n) , gdzie $n \ge 1$, a różnicę tego ciągu przez r.

Zapisujemy zależność między wyrazami piątym i szóstym: $a_6 = 2a_5$. Stąd

$$a_1 + 5r = 2(a_1 + 4r)$$
, czyli $a_1 = -3r$.

Zapisujemy kolejną zależność

$$S_{10} = \frac{a_1 + a_{10}}{2} \cdot 10 = \frac{15}{4}$$

a stad

$$5(2a_1+9r)=\frac{15}{4}$$
, czyli $2a_1+9r=\frac{3}{4}$.

Zapisujemy równanie z jedną niewiadomą, $2 \cdot (-3r) + 9r = \frac{3}{4}$, skąd otrzymujemy $r = \frac{1}{4}$.

Ostatecznie więc $r = \frac{1}{4}$ i $a_1 = -\frac{3}{4}$.

Schemat oceniania I sposobu rozwiazania

$$a_1 + 5r = 2(a_1 + 4r)$$
 lub $\frac{2a_1 + 9r}{2} \cdot 10 = \frac{15}{4}$

i na tym zakończy lub dalej popełni błędy.

np.
$$a_1 + 5r = 2(a_1 + 4r)$$
 i $\frac{2a_1 + 9r}{2} \cdot 10 = \frac{15}{4}$

i na tym zakończy lub dalej popełni błędy.

Pokonanie zasadniczych trudności zadania......3 p.

Zdający zapisze równanie z jedną niewiadomą np. $2 \cdot (-3r) + 9r = \frac{3}{4}$ i na tym zakończy lub dalej popełni błędy.

Poziom podstawowy Rozwiązanie pełne Zdający obliczy i zapisze, że $r = \frac{1}{4}$ i $a_1 = -\frac{3}{4}$. Uwaga: Jeżeli zdający popełnia błędy nieprzekreślające poprawności rozumowania, np.: błędy rachunkowe, błedy w przepisywaniu, itp. i doprowadza rozwiazanie konsekwentnie do końca, to może otrzymać maksymalnie 3 punkty. Rozwiązanie (II sposób) Oznaczmy rozpatrywany ciąg arytmetyczny przez (a_n) , gdzie $n \ge 1$, a różnicę tego ciągu przez r. Zapisujemy zależność między wyrazami piątym i szóstym: $a_6 = 2a_5$. Stąd $a_5 + r = 2a_5$, czyli $a_5 = r$. Zauważamy, że $a_1 = a_5 - 4r$ oraz $a_{10} = a_5 + 5r$ i zapisujemy kolejną zależność $S_{10} = \frac{a_1 + a_{10}}{2} \cdot 10 = \frac{a_5 - 4r + a_5 + 5r}{2} \cdot 10 = \frac{15}{4}$. Po uwzględnieniu zależności $a_5 = r$, mamy $\frac{-3r+6r}{2} \cdot 10 = \frac{15}{4}$, czyli $r = \frac{1}{4}$. Stąd wynika, że $a_1 = a_5 - 4r = r - 4r = -3r = -3 \cdot \frac{1}{4} = -\frac{3}{4}$. Schemat oceniania II sposobu rozwiazania Rozwiązanie, w którym postęp jest wprawdzie niewielki, ale konieczny na drodze Zdający zapisze równanie z dwiema niewiadomymi a_5 i r, np. $a_5 + r = 2a_5$ lub równanie $\frac{a_5 - 4r + a_5 + 5r}{2} \cdot 10 = \frac{15}{4}$ i na tym zakończy lub dalej popełni błędy. Rozwiązanie, w którym jest istotny postęp2 p. Zdajacy zapisze dwa równania z dwiema niewiadomymi a_5 i r, np. $a_5 + r = 2a_5$ i równanie $\frac{a_5 - 4r + a_5 + 5r}{2} \cdot 10 = \frac{15}{4}$ i na tym zakończy lub dalej popełni błędy. Pokonanie zasadniczych trudności zadania......3 p. Zdający zapisze równanie z jedną niewiadomą np. $\frac{-3r+6r}{2} \cdot 10 = \frac{15}{4}$ lub $a_5 + \left(\frac{3}{4} - 2a_5\right) = 2a_5$ i na tym zakończy lub dalej popełni błędy. Zdający obliczy i zapisze, że $r = \frac{1}{4}$ i $a_1 = -\frac{3}{4}$.

Uwaga:

Jeżeli zdający popełnia błędy nieprzekreślające poprawności rozumowania, np.: błędy rachunkowe, błędy w przepisywaniu, itp. i doprowadza rozwiązanie konsekwentnie do końca, to może otrzymać maksymalnie **3 punkty**.

Zadanie 34. (0-4)

Punkty A = (-1,1) i C = (1,9) są wierzchołkami trójkąta równoramiennego ABC, w którym |AC| = |BC|. Podstawa AB tego trójkąta zawiera się w prostej o równaniu $y = \frac{1}{2}x + \frac{3}{2}$. Oblicz współrzędne wierzchołka B tego trójkąta.

Rozwiązanie (I sposób)

Prosta przechodząca przez punkt C = (1,9) i prostopadła do prostej AB zawiera wysokość CD trójkąta ABC. Współczynnik kierunkowy a_{CD} tej prostej jest równy

$$a_{CD} = -\frac{1}{a_{AB}} = -\frac{1}{\frac{1}{2}} = -2$$
.

Zatem prosta CD ma równanie postaci

$$y = -2(x-1)+9$$
,
 $y = -2x+11$.

Obliczmy współrzędne spodka D wysokości CD, rozwiązując układ równań

$$y = \frac{1}{2}x + \frac{3}{2}$$
 oraz $y = -2x + 11$.

Stad otrzymujemy

$$\frac{1}{2}x + \frac{3}{2} = -2x + 11,$$

$$\frac{5}{2}x = \frac{19}{2},$$

$$x = \frac{19}{5}.$$

Zatem
$$y = -2 \cdot \frac{19}{5} + 11 = \frac{17}{5}$$
, wiec $D = \left(\frac{19}{5}, \frac{17}{5}\right) = \left(3\frac{4}{5}, 3\frac{2}{5}\right) = \left(3, 8; 3, 4\right)$.

Ponieważ trójkąt ABC jest równoramienny i |AC| = |BC|, więc punkt D jest środkiem podstawy AB tego trójkąta. Ze wzorów na współrzędne środka odcinka otrzymujemy

$$\frac{x_A + x_B}{2} = x_D \text{ oraz } \frac{y_A + y_B}{2} = y_D,$$

$$\frac{-1 + x_B}{2} = \frac{19}{5} \text{ oraz } \frac{1 + y_B}{2} = \frac{17}{5},$$

$$x_B = \frac{43}{5} = 8\frac{3}{5} \text{ oraz } y_B = \frac{29}{5} = 5\frac{4}{5}.$$

Zatem
$$B = \left(\frac{43}{5}, \frac{29}{5}\right) = \left(8\frac{3}{5}, 5\frac{4}{5}\right)$$
.

Uwaga

Zdający może wyznaczyć współrzędne punktu *B*, korzystając z równości wektorów:

$$\overrightarrow{AD} = \overrightarrow{DB}$$

$$\overrightarrow{AD} = \left[\frac{19}{5} + 1, \frac{17}{5} - 1\right] = \left[\frac{24}{5}, \frac{12}{5}\right] \text{ i } \overrightarrow{DB} = \left[x_B - \frac{19}{5}, y_B - \frac{17}{5}\right]$$

$$x_B = \frac{19}{5} + \frac{24}{5} = \frac{43}{5} = 8\frac{3}{5} \text{ oraz } y_B = \frac{12}{5} + \frac{17}{5} = \frac{29}{5} = 5\frac{4}{5}.$$

Rozwiązanie (II sposób)

Punkt *B* leży na prostej o równaniu $y = \frac{1}{2}x + \frac{3}{2}$, więc współrzędne tego punktu można zapisać w postaci $B = \left(x_B, \frac{1}{2}x_B + \frac{3}{2}\right)$.

Równość |AC| = |BC| możemy, korzystając ze wzoru na długość odcinka, zapisać w postaci

$$\sqrt{(1-(-1))^2 + (9-1)^2} = \sqrt{(1-x_B)^2 + \left(9 - \left(\frac{1}{2}x_B + \frac{3}{2}\right)\right)^2},$$

$$\left(\sqrt{68}\right)^2 = \left(\sqrt{(1-x_B)^2 + \left(9 - \left(\frac{1}{2}x_B + \frac{3}{2}\right)\right)^2}\right)^2,$$

$$68 = (1-x_B)^2 + \left(\frac{15}{2} - \frac{1}{2}x_B\right)^2,$$

$$68 = 1 - 2x_B + x_B^2 + \frac{225}{4} - \frac{15}{2}x_B + \frac{1}{4}x_B^2,$$

$$\frac{5}{4}x_B^2 - \frac{19}{2}x_B - \frac{43}{4} = 0,$$

$$5x_B^2 - 38x_B - 43 = 0.$$

$$\Delta = (-38)^2 - 4 \cdot 5 \cdot (-43) = 2304, \ \sqrt{\Delta} = \sqrt{2304} = 48,$$

$$x_B = \frac{38 - 48}{2 \cdot 5} = -1 \ \text{lub} \ x_B = \frac{38 + 48}{2 \cdot 5} = \frac{86}{10} = \frac{43}{5} = 8\frac{3}{5}.$$

Pierwsze z otrzymanych rozwiązań to współrzędna wierzchołka A, zatem $x_B = \frac{43}{5} = 8\frac{3}{5}$, więc współrzędne punktu B są równe

$$B = \left(\frac{43}{5}, \frac{1}{2} \cdot \frac{43}{5} + \frac{3}{2}\right) = \left(\frac{43}{5}, \frac{43+15}{10}\right) = \left(\frac{43}{5}, \frac{58}{10}\right) = \left(\frac{43}{5}, \frac{29}{5}\right) = \left(8\frac{3}{5}, 5\frac{4}{5}\right).$$

Rozwiązanie (III sposób)

Punkt *B* jest punktem przecięcia okręgu o środku w punkcie C i promieniu |AC| z prostą *AB* o równaniu $y = \frac{1}{2}x + \frac{3}{2}$.

Obliczamy długość promienia okręgu

$$r = |AC| = \sqrt{(1 - (-1))^2 + (9 - 1)^2} = \sqrt{2^2 + 8^2} = \sqrt{68} = 2\sqrt{17}$$

Zatem równanie okręgu możemy zapisać w postaci

$$(x-1)^2 + (y-9)^2 = 68$$
.

Współrzędne punktu B obliczamy rozwiązując układ równań

$$\begin{cases} (x-1)^2 + (y-9)^2 = 68 \\ y = \frac{1}{2}x + \frac{3}{2} \end{cases}$$
$$(x-1)^2 + \left(\frac{1}{2}x + \frac{3}{2} - 9\right)^2 = 68$$

$$(x-1)^{2} + \left(\frac{1}{2}x - \frac{15}{2}\right)^{2} = 68$$

$$x^{2} - 2x + 1 + \frac{1}{4}x^{2} - \frac{15}{2}x + \frac{225}{4} = 68,$$

$$5x^{2} - 38x - 43 = 0,$$

$$\Delta = (-38)^{2} - 4 \cdot 5 \cdot (-43) = 2304, \ \sqrt{\Delta} = \sqrt{2304} = 48,$$

$$x = \frac{38 - 48}{2 \cdot 5} = -1 \text{ lub } x = \frac{38 + 48}{2 \cdot 5} = \frac{86}{10} = \frac{43}{5} = 8\frac{3}{5}.$$

Pierwsze z otrzymanych rozwiązań to współrzędna wierzchołka A, zatem $x_B = \frac{43}{5} = 8\frac{3}{5}$, więc współrzędne punktu B są równe

$$B = \left(\frac{43}{5}, \frac{1}{2} \cdot \frac{43}{5} + \frac{3}{2}\right) = \left(\frac{43}{5}, \frac{43+15}{10}\right) = \left(\frac{43}{5}, \frac{58}{10}\right) = \left(\frac{43}{5}, \frac{29}{5}\right) = \left(8\frac{3}{5}, 5\frac{4}{5}\right).$$

- zapisze, że spodek *D* wysokości *CD* jest środkiem boku *AB* trójkąta *ABC* albo
- zapisze równanie prostej *CD*: y = -2x + 11 albo
- zapisze współrzędne punktu B w zależności od jednej zmiennej, np.: $B = \left(x_B, \frac{1}{2}x_B + \frac{3}{2}\right)$ i na tym poprzestanie lub dalej popełnia błędy albo
- zapisze równanie okręgu o środku w punkcie C i promieniu |AC|, np.: $(x-1)^2 + (y-9)^2 = 68$ i na tym poprzestanie lub dalej popełnia błędy.

- obliczy współrzędne spodka D wysokości CD trójkąta ABC: $D = \left(\frac{19}{5}, \frac{17}{5}\right)$ albo
 - zapisze równanie z jedną niewiadomą, np.: $\left(\sqrt{68}\right)^2 = \left(\sqrt{\left(1-x_B\right)^2 + \left(9-\left(\frac{1}{2}x_B + \frac{3}{2}\right)\right)^2}\right)^2$

albo

• zapisze układ równań z dwiema niewiadomymi:

$$\int \sqrt{(1-x_B)^2 + (9-y_B)^2} = \sqrt{68}$$

$$\int y_B = \frac{1}{2}x_B + \frac{3}{2}$$

alho

zapisze układ równań z dwiema niewiadomymi (równanie okręgu i prostej):

$$\begin{cases} (x-1)^2 + (y-9)^2 = 68 \\ y = \frac{1}{2}x + \frac{3}{2} \end{cases}$$

i na tym poprzestanie lub dalej popełnia błędy.