МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное автономное бюджетное образовательное учреждение высшего образования

«Севастопольский государственный университет»

кафедра Информационных систем

Лисянский Александр Игоревич

Институт информационных технологий и управления в технических системах

курс 2 группа ИС-м-21-о

09.04.02 Информационные системы и технологии (уровень магистра)

ОТЧЁТ о практической работе №1 «ИССЛЕДОВАНИЕ АСПЕКТОВ ИНЖЕРЕНИИ ТРЕБОВАНИЙ К КОРПОРАТИВНОЙ СИСТЕМЕ»

Отметка о за	чёте	
		(дата)
Руководитель і	практикума	
проф.	_	<u> </u>
(лолжность)	(полпись)	(инициалы фамилия)

Севастополь 2017

Цель работы:

- изучить основные аспекты инженерии требований.
- получить практические навыки в построении моделей требований к корпоративной информационной системе.

Ход работы

Необходимо определить функциональные и нефункциональные требования.

Список функциональных требований:

- реализация метода построения расписаний обработки партий данных;
- реализация метода построения составов комплектов при условии заданной периодичности выпуска;
 - реализация метода оптимизации составов партий.

Список нефункциональных требований:

- требование к скорости получения результатов;
- высокая достоверность полученных результатов;
- возможность работы с несколькими типами данных на входе.

Исходя из имеющихся списков требований, составим таблицу 1, определяющую функциональные и нефункциональные требования.

Таблица 1. Функциональные и нефункциональные требования

Модуль построения расписаний обработки партий	
данных	
Модуль построения составов комплектов при условии	
заданной периодичности выпуска	
Модуль оптимизации составов партий	
Требование к скорости получения результатов	
Высокая достоверность полученных результатов	
Возможность работы с несколькими типами данных на	
входе	
Использование различных методов формирования	
решений в каждом из модулей	
Сравнение результатов при использовании различных	
методов формирования решения	

Далее необходимо определить критерии требований из таблицы 1. В качестве критериев были выбраны «Полнота», «Осуществимость», и

«Однозначность». Опишем выбранные требования по этим критериям. Результат описания представлен в таблице 2.

Таблица 2. Критерии требований

Требовани	Критерии		
Я	Полнота	Осуществимость	Однозначность
	+	+	+
K	Точные данные	Существуют методы	Результаты составов партий,
получению	демонстрируют	жадной стратегии,	расписание обработки
точных	правильное	гарантирующие точный	партий и составы комплектов
данных	функционирование	результат	составлены в соответствии с
	системы		
	+	+	+
K		Существуют методы	Время, необходимое на
скорости		жадной стратегии,	оптимизацию составов
получения		гарантирующие	партий данных и построения
результата		результат за конечное	расписаний их обработки
		число шагов	
Возможно	-	+	+
сть работы	Не указано точное	Методы жадной	Предполагается работа с
С	кол-во типов и само	стратегии предполагают	различными типами данных
нескольки	перечисление	наличие в системе	на входе
ми типами	типов	нескольких типов	
данных на		данных	
входе			
Функция	+	+	+
построен	Составляется на	Методы заранее	Методы заранее известны
ия	основе заранее	известны	
расписани	известных методов		
Я			
Функция	+	+	+
построен	Составляется на	Методы заранее	Методы заранее известны
ия	основе заранее	известны	
составов	известных методов		
комплекто			
В			
Функция	+	+	+
оптимиза	Составляется на	Методы заранее	Методы заранее известны
ции	основе заранее	известны	
составов	известных методов		
партий			

Выводы: было выяснено, что нефункциональное требование «Возможность работы с несколькими типами данных на входе» необходимо уточнить, чтобы оно удовлетворяло требованиям полноты.

Требование было перефразировано в «Возможность работы с заранее известными несколькими типами данных».

Далее необходимо сравнить применимость моделей качества. Для этого были выбраны модели качества:

- модель Боема;
- модель FURPS+;
- модель Гецци.

В таблице 3 представлено краткое описание моделей а так же сравнительный анализ применимости этих моделей качества для разрабатываемой системы.

Таблица 3. Сравнение моделей качества

Модель	Основные особенности	Подходит ли для
		исследуемой системы
Боэма	Модель Боэма пытается качественно	Подходит, но не идеально,
	определить качество программного	поскольку качество
	обеспечения заданным набором показателей	описывается через
	и метрик. В этой модели практичность	качество.
	описывает, как легко, надежно и эффективно	
	программный продукт может быть	
	использован, сопровождаемость	
	характеризует насколько легко изменить и	
	повторно протестировать программный	
	продукт, и мобильность описывает, как	
	программный продукт может	
	использоваться, даже при изменении	
	программных и аппаратных средств.	
FURPS+	Функциональность, Практичность,	Неоправданно сложная
	Надежность, Производительность,	
	Эксплуатационная пригодность и т.д.	
Гецци	Различают качество процесса и продукта.	Да, подходит к
	Хар-ки: целостность, надежность и	обозначенным критериям.
	устойчивость, производительность,	
	практичность, верифицируемость,	
	сопровождаемость, возможность	
	многократного использования, мобильность,	
	понятность, возможность взаимодействия	

Выводы

В ходе выполнения практической работы были определены основные требования к корпоративной информационной системе, были получены практические навыки в построении моделей требований для выбранной корпоративной ИС. После определения критериев требований было определено, что одно из требований, а именно «Возможность работы с

несколькими типами данных на входе», требует уточнения. В результате уточнения было решено переименовать требование в «Возможность работы с заранее известными несколькими типами данных». После чего было проведено сравнение моделей качества и была выбрана оптимальная модель качества, а именно модель Гецци.