## 1 Moučný červ (Tribolium)

Aby bylo možné počítat populace moučných červů, je nutné znát jejich životní cyklus. Z fundamentáního pozorování jejich vývoje lze tento cyklus odhadnout. Prvotní fází je vajíčko (L), z nějž se po 2 týdnech vylíhne larva (P). Po dalších dvou týdnech se z larvy stává dospělý červ (A). Vývoj jednotlivých fází lze popsat vztahy

Larva: 
$$L_{n+1} = bA_n$$
  
Kukla:  $P_{n+1} = L_n(1 - \mu_l)$  (1)  
Brouk:  $A_{n+1} = P_n(1 - \mu_p) + A_n(1 - \mu_a)$ ,

kde  $\mu_l$  je úmrtnost larev,  $\mu_p$  úmrtnost kukel a  $\mu_a$  úmrtnost brouků. Spodní indexy jsou pak ordinálním číslováním populace.

Pokud zahrneme kanibalismus, který se u těchto druhů často vyskytuje, dostaneme:

požírání larev: 
$$L_{n+1} = bA_n e^{-c_{la}A_n - c_{ll}L_n}$$
  
požírání kukel:  $P_{n+1} = L_n(1 - \mu_l)$  (2)  
požírání brouků:  $A_{n+1} = P_n(1 - \mu_p)e^{-c_{pa}A_n} + A_n(1 - \mu_a)$ ,

kde koeficienty byly zjištěny experimentálně jako

$$\begin{split} c_{la} &= 0.009 \text{ (A požírá L)} \\ c_{ll} &= 0.012 \text{ (L požírá L)} \\ c_{pa} &= 0.004 \text{ (A požírá P)} \\ \mu_{l} &= 0.267 \\ \mu_{p} &= 0 \\ \mu_{a} &= 0.0036 \text{ (základní úmrtnost)} \\ b &= 7.48 \text{ počet nových larev na 1 dospělého brouka za jednotku času, což je 14 dní)} \end{split}$$

Všechny tyto parametry jsou tzv. řídící parametry systému.

## 1.1 Bifurkační diagram

Systém popsaný rovnicemi 2 tvoří pro některý interval řídících parametrů chaotický systém, tzn. že malé změny v počátečních podmínkách způsobí, že po několika desítkách až stovkách cyklech může být rozdíl v počtu jedinců velký. Pro vizualizaci limitních stavů systému pro různé řídící parametry se využívá bifurkační diagram. Bifurkační diagram generujeme dostatečným počtem iterací systému (tím se dostaneme do limitního stavu) a následně uložením několika posledních hodnot pro danou hodnotu řídícího parametru (řádově desítky hodnot). Na bifurkačním diagramu pak vidíme zdvojování period (pro jednu hodnotu parametru dostáváme více limitních hodnot) a pokud systém přejde do chaotického režimu, dostáváme pro jednu hodnotu řídícího parametru velké množství limitních hodnot. V našem případě byla zvolena osa x pro úmrtnost brouků  $\mu_a$  a osa y pro počet jedinců po 200-230 cyklech.



Graf 1: Bifurkační diagram

Z grafu 1 je patrné, že k první bifurkaci dochází při  $\mu_a=0.1$ , kde se perioda 1 mění na periodu 2. Druhá bifurkace je v bodě  $\mu_a=0.6$ , perioda 2 se mění na 1. ke třetí bifurkaci dochází při  $\mu_a=0.954$ , kde se systém začíná chovat chaoticky.

## 1.2 Nalezení největšího Ljapuova exponentu

Pro nalezení největšího Ljapuova exponentu pro  $\mu_a \in [0,1]$  jsme nejdříve systém s počátečními podmínkami  $L_0 = 100, P_0 = 100, A_0 = 100$  iterovali 400 generací aby jsme se při určování Ljapunova exponentu nacházeli na atraktoru. V konfiguračním prostoru jsme pak vytvořili druhou orbitu  $\vec{x_b}$  přičtením vektoru  $\vec{d_0} = (0,0,10^{-8})$  ke stavovému vektoru  $\vec{x_a}$  obdrženému po 400 iteracích od počátečních podmínek. Obě orbity jsme následně iterovali 3000 generací s tím, že po každé iteraci jsme uložili hodnotu  $d = \frac{|\vec{x_b} - \vec{x_a}|}{|d_0|}$  a korigovali druhou orbitu vzorcem  $x_{bkor} = \vec{x_a} + \frac{1}{d}(\vec{x_b} - \vec{x_a})$ . Korigováním druhé orbity jsme zajistili, že vektor  $x_{bkor}$  je vždy ve vzdálenosti  $|\vec{d_0}|$  od vektoru  $\vec{x_a}$ , ale ve směru  $\vec{x_b} - \vec{x_a}$ . Z uložených hodnot d jsme určili průměr všech log(d), který je maximálním Ljapunovým exponentem.



Graf 2: Maximální Ljapunovy exponenty pro parametr $\mu_a$ 



Graf 3: Ljapunovy exponenty pro paremetr $\mu_a,$ přiblížení na chaotický režim

25. září 2019, Daniel Rod, Michal Grňo, Jan Střeleček