plan

deepwaterooo

2021年10月29日

目录

1	Weekly Plan	5
	1.1 总结题型	5
	1.2 比赛	6
	1.3 数据规模与算法	6

Chapter 1

Weekly Plan

1.1 总结题型

- 我可能有一点儿傻做题,而不太懂得总结与作笔记。所以在现在刷得已经差不多,我需要更多的时间花在巩固与总结题型,把做题的经历真正转化为解题的分析能力。所以接下来一两周可能会对重要题型作相关的分析与总结,希望能够显著提升我做题和比赛中的解题命中率。
- 这周刷得跟上一周差不多。计划接下来几周,每天刷 10 个题左右,一周 60-70 个题目,边刷边记错题进小本,到接下来的周六刷到 1150 左右;
- dynamic programming, graph, segment tree 等等剩下来的题目都是高难度的精华,需要好好练习和消化
- 这个周主要复习了基础的部分,hashing, hashtable string two pointers, 以前很讨厌字符串,这个周写字符串看来,感觉基础的只要自己能够想得清楚的,都能很快实现出来,写得还比较得心应手。TreeMap, TreeSet 也用得比较顺一点儿了
- 写树的题目, dfs, bfs graph 各种 node, 现在也是写得很顺心了, 只是通过不断地测试加强巩固
- 完成打基础的部分: hashing, hashmap, string, two pointer, sliding window, 这些基础部分的题目,希望扫完
- 如果某天头脑比较清醒、精力比较好的时候,会试图去慢速解决自己平时困难的地方: 动态规划/ hashmap/hashing 中数数组的个数,不常用的算法等
- 数组相关的 segemnt tree, binary index tree 等的基础,希望能够理解得再彻底一些,到能活学活用的程度
- Deque 双端队列 O(n)解法的概念在建立,还需要很多的练习和熟悉
- 最讨厌扫描线,几个双数怎么也数不清楚 heap 等。。。。。。这个周扫几个出去
- 如果说以前是迷迷糊糊刷题求 AC, 现在基本的概念在建立,希望从以前代码和题目的算法效率向代码优化中等偏优,寻求高效、最优解法的提升
- bit manipulation, bitmasks 基础知识基本掌握,还剩几道难题 take my time 慢慢解(感觉现在对 bit 操作,相对自信得心应手得多了!)
- union find 的几个题,基本算是基本扫完吧,剩下的几下慢慢写。。。。。。
- 很喜欢现在自己搭建出来的 window 刷题环境: WSL system, Zsh power shell, emacs configurations, locally everything, except Leetcode server is too slow, have to tolerant its latency......
- 至昨天晚上我终于意识到确定右侧单耳耳鸣,搬到现居住处后发病的(感觉现居住处到处都是电磁波干扰、洗衣烘衣的车床,厨房的冰箱,曾整小时整小时开过的洗手间风扇等),已经有几个周了。对于自 2013 年秋天野鸡大学的住宿环境以来,备受各种居住环境的困扰,尤其是 2019 年 9 月 10 月以来,我自小的听力受损,现在单侧耳鸣,可能的原因有家族遗传性高血压、遗传性脑血管肿瘤(外公舅舅和妈妈都受此脑溢血困扰过,大我五岁的亲姐姐前几个月也刚发此重病一次)等等。今天在网上稍搜索了一下相关信息,回想这几年的居住环境噪音和人为打扰与睡眠干扰、心里戚戚很不是滋味,希望我不至于会失去听力。
- But my suffering is still only my/a personal suffering. Unless I could find an appropriate job, nobody cares if you are sick or not. 因此,自信是本能,向往强大也是一种本能的向往。Anything happens, 我还是必须努力努力刷题,直到找到合适的工作. 所以会近几周把剩下的一点儿题目刷完(hard and medium only, keep easy untouched dont care)不喜欢数字,也数字无缘,不打算写数组题目,如果一定要写,可能也只会把难题写一写吧

1.2 比赛

• 会尽量多参加一些比赛,比赛时的效率还是相对好一点儿,所以每周一次、每半月一次,以及以后 codeforces 上的比赛,希望都能够尽量地多参加一些。

1.3 数据规模与算法

Complexity					
O(n)					
O(n logn)					
O(n ^ 2)					
O(n ^ 4)					
O(2 ^ n)					

Elements

1.3. 数据规模与算法

数据结构	时间复杂度								空间复杂度
	平均					最差			
	访问 搜索 插入 删除		访问	搜索	插入	删除			
顺序表	O(1)	O(n)	O(n)	O(n)	O(1)	O(n)	O(n)	O(n)	O(n)
栈	O(n)	O(n)	O(1)	O(1)	O(n)	O(n)	O(1)	O(1)	O(n)
单链表	O(n)	O(n)	O(1)	O(1)	O(n)	O(n)	O(1)	O(1)	O(n)
双链表	O(n)	O(n)	O(1)	O(1)	O(n)	O(n)	O(1)	O(1)	O(n)
跳表	$O(\log(n))$	$O(\log(n))$	$O(\log(n))$	$O(\log(n))$	O(n)	O(n)	O(n)	O(n)	$O(n \log(n))$
散列表	-	O(1)	O(1)	O (1)	-	O(n)	O(n)	O(n)	O(n)
二叉搜索树	$O(\log(n))$	$O(\log(n))$	$O(\log(n))$	$O(\log(n))$	O(n)	O(n)	O(n)	O(n)	O(n)
笛卡尔树	_	$O(\log(n))$	$O(\log(n))$	$O(\log(n))$	-	O(n)	O(n)	O(n)	O(n)
<u>B-树</u>	$O(\log(n))$	O(n)							
红黑树	$O(\log(n))$	O(n)							
伸展树	-	$O(\log(n))$	$O(\log(n))$	$O(\log(n))$	-	$O(\log(n))$	$O(\log(n))$	$O(\log(n))$	O(n)
AVL 树	$O(\log(n))$	O(n)							

算法	时间复杂度							空	空间复杂度		
	最佳		平均				最差			最差	
快速排序	$O(n \log$	$n\log(n)$		$O(n\log(n))$			$O(n^2)$			$O(\log(n))$	
归并排序	$O(n \log$	og(n)		$O(n\log(n))$			0	$(n \log(n))$		O(n)	
Timsort	O(n)	(n)		$O(n\log(n))$			$O(n\log(n))$			O(n)	
堆排序	$O(n \log$	$n\log(n)$		$O(n\log(n))$			0	$(n \log(n))$		O(1)	
冒泡排序	O(n)			$O(n^2)$			$O(n^2)$		<i>O</i> (1)	
插入排序	O(n)		$O(n^2)$			$O(n^2)$		O(1)		
选择排序	$O(n^2$	•)		$O(n^2)$			$O(n^2)$		O(1)		
希尔排序	O(n	n)		$O((n\log(n))^2)$			$O((n\log(n))^2)$		<i>O</i> (1)		
桶排序	O(n +	O(n+k)		O(n+k)			$O(n^2)$			O(n)	
基数排序	O(nk	()		O(nk)			O(nk)		0(O(n+k)	
节点 / 边界管理	里 存储		增加顶点增		增加	□边界		移除顶点	移除边界	查询	
邻接表	O(V)	+ E	O(1)		0	(1)	O(V + E)		O(E)	O(V)	
邻接矩阵	0($O(V ^2)$		$O(V ^2)$		O(1) O(1		$O(V ^2)$	<i>O</i> (1)	O(1)	
类型		时间复杂度									
	建堆	查找最大	值	分离最为	大值	提升	键	插入	删除	合并	
(排好序的) 链表	-	O(1)		O(1)		O(n)		O(n)	O(1)	O(m+n)	
(未排序的) 链表	_	O(n)		O(n)		O(1)		O(1)	O(1)	O(1)	
二叉堆	O(n)	O(1)		O(log(n))	O(log	(n))	$O(\log(n))$	$O(\log(n))$	O(m+n)	
二项堆	-	O(1)) O(lo		n))	O(log	(n))	O(1)	$O(\log(n))$	$O(\log(n))$	
斐波那契堆	_	O(1)) O(lo		n))	O(1)		O(1)	$O(\log(n))$	<i>O</i> (1)	