A CSP PRIMER

Let Γ be a set of relation symbols. We assume that there is a function $r \colon \Gamma \to \mathbb{Z}^+$ giving the arity of each member of Γ . We seldom mention the r. By a Γ -structure we mean a relational structure $\mathbb{A} = \langle A, \Gamma^{\mathbb{A}} \rangle$ in which $\Gamma^{\mathbb{A}} = \langle \gamma^{\mathbb{A}} \colon \gamma \in \Gamma \rangle$ and, for every $\gamma \in \Gamma$, $\gamma^{\mathbb{A}} \in \operatorname{Rel}_{r(\gamma)}(A)$. If $\Gamma_0 \subseteq \Gamma$ then $\mathbb{A}|_{\Gamma_0} = \langle A, \Gamma_0^{\mathbb{A}} \rangle$.

Definition 1. Let \mathbb{A} be a Γ -structure. $CSP(\mathbb{A})$ is the following problem. *Instance:* A finite subset Γ_0 of Γ and a Γ_0 -structure $\mathbb{B} = \langle B, \Gamma_0^{\mathbb{B}} \rangle$. *Query:* Is $Hom(\mathbb{B}, \mathbb{A}|_{\Gamma_0}) \neq \emptyset$?

When the subset Γ_0 is clear from \mathbb{B} , we often do not mention it explicitly.

We say that the Γ -structure \mathbb{A} is tractable if $CSP(\mathbb{A})$ lies in P. Sometimes an apparently weaker notion presents itself. We say that \mathbb{A} is locally tractable if, for every finite subset Γ_0 of Γ , $CSP(\mathbb{A}|_{\Gamma_0})$ is tractable. Obviously, every tractable structure is locally tractable. I believe the converse is open.

Clones and Relational Clones. Let A be a finite set. Recall the Galois correspondence between Op(A) and Rel(A) induced by the preservation relation (see pages 89–90 in my book). In the book, I call the two polarities \mathcal{F} and \mathcal{R} . In this document, I use Pm and Inv instead. Thus

$$\operatorname{Pm}(\Gamma) = \{ f \in \operatorname{Op}(A) : f \mid : \Gamma \}$$
$$\operatorname{Inv}(F) = \{ \gamma \in \operatorname{Rel}(A) : F \mid : \gamma \}.$$

 $\operatorname{Pm}(\Gamma)$ are the polymorphisms of Γ and $\operatorname{Inv}(F)$ are the relations invariant under F.

Under this Galois connection, the closed sets of operations are the clones. I don't talk much about the closed sets of relations in the book. Here is a brief discussion. By definition, if Γ is a set of relations, then its closure, $\overline{\Gamma} = \text{Inv}(\text{Pm}(\Gamma))$. We shall call this the *relational clone* generated by Γ . This definition does not help us understand how the members of the closure are built from the members of Γ .

A primitive-positive formula is a formula with free variables x_1, \ldots, x_n of the form

$$\exists y_1 \exists y_2 \dots, \exists y_m \text{ (conjunction of atomic formulas)}$$

An atomic formula is either an equality between variables or an expression of the form $(z_1, \ldots, z_t) \in \alpha$, where the z's are variables and α is a relation. Each primitive-positive formula defines a relation consisting of those values that, when substituted for the x's, make the formula true.

For example, the formula $\exists y((x_1,y) \in \alpha \land (y,x_2) \in \beta \land x_1 = y)$ defines the binary relation $(\alpha \cap \delta) \circ \beta$, where $\delta = \{(x,x) : x \in A\}$. Note that δ lives in every relational clone.

Theorem 2 (Bodnarčuk et al.; Geiger, 1968). Let Γ be a set of relations on a finite set A. Then $\overline{\Gamma}$ consists precisely of those relations that are ppdefinable from Γ .

Theorem 3. Let Γ be a set of relation symbols, and $\Delta \subseteq \Gamma$.

- $(1) \ \operatorname{CSP}\langle A, \Delta^A \rangle \leq_p \operatorname{CSP}\langle A, \Gamma^A \rangle.$
- (2) $CSP\langle A, \Gamma \rangle \equiv_{p} CSP\langle A, \overline{\Gamma} \rangle$

Definition 4. Let $\mathbb{A} = \langle A, \Gamma^{\mathbb{A}} \rangle$ be a relational structure. Then $Alg(\mathbb{A}) = \langle A, Pm(\Gamma^{\mathbb{A}}) \rangle$. We will typically denote this algebra as **A**.

It follows from Theorem ?? that if $Alg(\mathbb{A}) = Alg(\mathbb{B})$ then $CSP(\mathbb{A}) \equiv_p CSP(\mathbb{B})$. It is because of this relationship that algebras determine the complexity of the corresponding constraint satisfaction problem.

The core of a structure.

Lemma 5. Let S be a finite semigroup, and $a \in S$. Then there is k > 0 such that $a^{2k} = a^k$.

Proof. Since S is finite, there are m > n > 0 such that $a^m = a^n$. Let r = m - n. Then it is easy to argue by induction on k that for all $k \ge n$, $a^k = a^{k+r}$. Pick k = jr > n for a sufficiently large j. Then $a^{2k} = a^{k+jr} = a^k$.

Let A be a structure (either algebraic or relational). A substructure B is a retract of A if there is a morphism $h \colon A \to B$ such that $h \upharpoonright_B$ is the identity on B. The map h is called a retraction. Note that if h is a retraction map, then $h \in \operatorname{End}(A)$ and $h \circ h = h$. Conversely, if h is an idempotent endomorphism of A then h(A) is a retract of A.

Lemma 6. Let \mathbb{A} be a relational structure and suppose that \mathbb{B} is a retract of \mathbb{A} . Then $CSP(\mathbb{A}) \equiv_p CSP(\mathbb{B})$.

Proof. Let h be the retraction of A onto B. Then $g \in \operatorname{Hom}(\mathbb{C}, \mathbb{A}) \implies h \circ g \in \operatorname{Hom}(\mathbb{C}, \mathbb{B})$. Conversely, if $g \in \operatorname{Hom}(\mathbb{C}, \mathbb{B})$ then $g \in \operatorname{Hom}(\mathbb{C}, \mathbb{A})$. \square

A finite structure A is called a core if it has no proper retracts.

Lemma 7. A structure A is a core if and only if every endomorphism is an automorphism.

Proof. Let A be a core and suppose $h \in \text{End}(A)$. By Lemma 5, there is an integer k such that $g = h^k$ is idempotent. So g(A) is a retract of A. Therefore, by the assumption, g(A) = A. So g, hence h, is a permutation of A, i.e., $h \in \text{Aut}(A)$.

Let A be a finite structure. Then a core of A is a minimal retract of A. Note that if B is a core of A, then B is itself a core.

Theorem 8. Let A be a finite structure, B_1 and B_2 cores of A. Then $B_1 \cong B_2$.

Proof. Let h_i be the retraction onto B_i , for i = 1, 2. Define $g_1 = h_1 \upharpoonright_{B_2}$ and $g_2 = h_2 \upharpoonright_{B_1}$. Then $g_1 \circ g_2 \in \operatorname{End}(B_1)$. Since B_1 is a core of A we have $g_1 \circ g_2 \in \operatorname{Aut}(B_1)$. By finiteness, there is a positive integer n such that $(g_1 \circ g_2)^n = \operatorname{id}_{B_1}$. Hence $(g_1 \circ g_2)^{n-1} \circ g_1 = g_2^{-1}$ so g_2 is an isomorphism of B_1 with B_2 .

Reducing to Idempotence. Start with a Γ -structure \mathbb{A} . Assume \mathbb{A} is a core. thus $\operatorname{End}(\mathbb{A}) = \operatorname{Aut}(\mathbb{A})$. Let $A = \{a_1, a_2, \dots, a_k\}$. Define

$$\rho^{\mathbb{A}} = \{ (g(a_1), \dots, g(a_k)) : g \in \operatorname{Aut}(\mathbb{A}) \} \in \operatorname{Rel}_k(A) \text{ and}$$

$$\delta^A = \{ (x, x) : x \in A \} \in \operatorname{Rel}_2(A).$$

Lemma 9. Both $\rho^{\mathbb{A}}$ and δ^A are members of $\overline{\Gamma^A}$ (the relational clone generated by Γ^A).

Proof. Recall that $\overline{\Gamma^A} = \text{Inv}(\text{Pm}(\Gamma))$. So we want to show that if $f \in \text{Pm}(\Gamma)$ then f preserves ρ^A and δ^A . For δ^A this is trivial. In fact, every operation preserves δ^A . Assume that f is n-ary and

$$(g_i(a_1), \dots, g_i(a_k)) \in \rho^{\mathbb{A}}, \text{ for } i = 1, \dots, k.$$

Then

$$(f(g_1(a_1), \dots, g_n(a_1)), \dots (f(g_1(a_k), \dots, g_n(a_k))) = (h(a_1), \dots, h(a_k)) \in \rho^{\mathbb{A}}$$

where $h = f[g_1, \dots, g_n] \in \operatorname{Pm}_1(\mathbb{A}) = \operatorname{Aut}(\mathbb{A}).$

Now, let $\Theta = \{ \theta_a : a \in A \}$ be a set of new unary relation symbols. Let us define two new structures

$$\mathbb{A}^+ = \langle A, \Gamma^A \cup \Theta^A \rangle \quad \text{where } \theta_a^{\mathbb{A}^+} = \{a\}$$
$$\mathbb{A}' = \langle A, \Gamma^A \cup \{\delta^A, \rho^{\mathbb{A}}\} \rangle.$$

Thus \mathbb{A}^+ is a $(\Gamma \cup \Theta)$ -structure and \mathbb{A}' is a $(\Gamma \cup \{\delta, \rho\})$ -structure. We shall show that

(1)
$$\operatorname{CSP}(\mathbb{A}') \leq_p \operatorname{CSP}(\mathbb{A}) \leq_p \operatorname{CSP}(\mathbb{A}^+) \leq_p \operatorname{CSP}(\mathbb{A}')$$

from which it will follow that \mathbb{A} and \mathbb{A}^+ yield polynomially equivalent constraint satisfaction problems.

The first reduction follows from the fact that δ^A and ρ^A lie in the relational clone generated by Γ^A . The second reduction is trivially true. So only the third needs work.

Consider an instance $\left[\Gamma_0^{\mathbb{B}} \cup \Theta^{\mathbb{B}}, \mathbb{B}\right]$ of $CSP(\mathbb{A}^+)$. We shall construct, in polynomial time, an instance $\left[\Gamma_0^B \cup \{\delta^{\mathbb{B}'}, \rho^{\mathbb{B}'}\}, \mathbb{B}'\right]$ such that

(2)
$$\operatorname{Hom}(\mathbb{B}, \mathbb{A}^+|_{\Gamma_0 \cup \Theta}) \neq \emptyset \iff \operatorname{Hom}(\mathbb{B}', \mathbb{A}'|_{\Gamma_0, \cup \{\delta, \rho\}}) \neq \emptyset.$$

First, let $Y = \{y_1, \ldots, y_k\}$ be a set disjoint from B. (Recall that we assumed at the outset that $A = \{a_1, \ldots, a_k\}$.) Set $B' = B \cup Y$ and $\rho^{\mathbb{B}'} = \{(y_1, \ldots, y_k)\}$. Now, for each $i \leq k$ recall that θ_{a_i} is a unary relation symbol. Thus $\theta_{a_i}^{\mathbb{B}}$ must be a unary relation on B, say $\theta_{a_i}^{\mathbb{B}} = \{b_1, \ldots, b_m\}$. Define $\pi_i = \{(b_1, y_i), (b_2, y_i), \ldots, (b_m, y_i)\}$. Finally, define $\delta^{\mathbb{B}'} = \bigcup_i \pi_i$. Note that $\delta^{\mathbb{B}'}$ is a binary relation, as it should be.

Now we must verify the equivalence in (2). Suppose first that $f \in \text{Hom}(\mathbb{B}, \mathbb{A}^+)$. Extend f to a mapping f' on B' by defining $f'(y_i) = a_i$ for $i \leq k$. Since f preserves the relations in Γ_0 , so does f'. For ρ ,

$$(y_1, \ldots, y_k) \in \rho^{\mathbb{B}'} \implies (f'(y_1), \ldots, f'(y_k)) = (a_1, \ldots, a_k) \in \rho^{\mathbb{A}}$$
 as desired. Finally to see that f' preserves δ ,

$$(b, y_i) \in \delta^{\mathbb{B}'} \implies b \in \theta_{a_i}^{\mathbb{B}} \implies f(b) \in \theta_{a_i}^{\mathbb{A}} \implies f'(b) = f(b) = a_i \implies (f'(b), f'(y_i)) \in \delta^A.$$

Thus f' is a homomorphism from \mathbb{B}' to \mathbb{A}' .

Conversely, let $f \in \text{Hom}(\mathbb{B}', \mathbb{A}')$. Since f preserves ρ and $\rho^{\mathbb{B}'} = \{(y_1, \ldots, y_k)\}$, we must have $(f(y_1), \ldots, f(y_k)) \in \rho^{\mathbb{A}}$. Hence, there is $g \in \text{Aut}(\mathbb{A})$ such that $f(y_i) = g(a_i)$, for $i = 1, \ldots, k$. Let $h = g^{-1} \circ f$. Thus $h(y_i) = a_i$, for $i \leq k$. We shall show that h is a homomorphism from \mathbb{B} to \mathbb{A}^+ .

Since both f and g preserve Γ_0 , so does h. To show that h preserves Θ , let $i \leq k$ and $b \in \theta_{a_i}$. Then $(b, y_i) \in \delta^{\mathbb{B}'}$, so $(f(b), f(y_i)) \in \delta^A$ by assumption. Therefore $f(b) = f(y_i)$. Thus $h(b) = h(y_i) = a_i$, which means that h preserves θ_{a_i} .

Putting all of this together, we have proved the following theorem.

Theorem 10. If \mathbb{A} is a finite core, then $CSP(\mathbb{A}) \equiv_p CSP(\mathbb{A}^+)$.