

Data Visualization with Python

Cheat Sheet: Maps, Waffles, WordCloud and Seaborn

Function Description Syntax			Example	Visual
Foliun	n			
Map	Create a map object with specified center coordinates and zoom level.	<pre>folium.Map(location=[lat, lon], zoom_start=n)</pre>	<pre>world_map = folium.Map() canada =folium.Map(location=[56.130, -106.35], zoom_start=4)</pre>	
Marke	Add a marker to the map with custom icon, popup, and tiles Tiles as Stamen Toner	<pre>folium.Marker(location=[lat , lon], popup='Marker Popup', tiles='Stamen Toner').add_to(map)</pre>	<pre>folium.Marker(location=[556.130, -106.35], tooltip='Marker', tiles='Stamen Toner').add_to(world_map)</pre>	
	Tiles as Stamen Terrair	folium.Marker(location=[lat , lon], popup='Marker Popup', tiles='Stamen Terrain').add_to(map)	<pre>folium.Marker(location=[556.130, -106.35], tooltip='Marker', tiles='Stamen Terrain').add_to(world_map)</pre>	
Circle	Add a circle to the map with specified radius, color, and fill opacity.	folium.features.CircleMarker(location=[lat, lon], radius=n, color='red', fill_opacity=n).add_to(map)	<pre>folium.features.CircleMarker(location= [56.130, -106.35], radius=1000, color='red', fill_opacity=0.5).add_to(world_map)</pre>	

Function Description Syntax

Example

Visual

Chorpleth	Create a choropleth map based on a GeoJSON file and a specified data column.	<pre>folium.Choropleth(geo_data='path/to/geojson_file' data=df, columns=['region', 'value_column'], key_on='feature.properties.id', fill_color='YlGnBu', fill_opacity=0.7, line_opacity=0.2, legend_name='Legend').add_to(map)</pre>
-----------	--	--

world_map.choropleth(geo_data=world_geo,
'data=df_can, columns=['Country',
 'Total'],
 key_on='feature.properties.name',
 fill_color='YlOrRd',
 fill_opacity=0.7,line_opacity=0.2,
 legend_name='Immigration to Canada')

PyWaffle

Waffle

```
plt.figure(FigureClass = Waffle,rows = 20, columns plt.figure(FigureClass = Waffle,rows = 20, columns = 30, columns = 30, values = values) values and waffle_chart = waffle.Waffle(values=[value1, categories. value2, ...], rows=n, columns=n) plt.figure(FigureClass = Waffle,rows = 20, columns = 30, values = df_dsn['Total'], cmap_name = 'tab20', legend = {'labels': label,'loc': 'lower left', 'bbox_to_anchor':(0,-0.1),'ncol': 3})
```

```
Denmark (3901) Norway (2327) Sweden (5866)
```

```
Add a legend
                            waffle_chart.legend(loc='upper left',
Legend
            to the waffle
                            bbox to anchor=(1, 1))
            chart.
            Add a title to
Title
             the waffle
                            waffle_chart.set_title('Waffle Chart Title')
             chart.
            Add labels to
                            waffle chart.set labels(['Label 1', 'Label 2',
            the waffle
Labels
                            ...])
            chart.
```

WordCloud

WordCloud

Create a word cloud object based on text

data.

wordcloud = WordCloud().generate(text_data)

alice wc = WordCloud(background color='white', max_words=2000, mask=alice_mask, stopwords=stopwords) alice wc.generate(alice novel) plt.imshow(alice_wc, interpolation='bilinear')

Generate the

word cloud Generate

wordcloud.generate(text data) based on the

text data.

Display the word cloud

using Display

plt.imshow(wordcloud, interpolation='bilinear')

matplotlib or other plotting libraries.

Set various

options for the wordcloud =

word cloud, **Options**

WordCloud(font_path='path/to/font_file',

background color='white', such as font, colormap='Blues', mask=mask_image,

colors, mask, stopwords=stopwords).generate(text data)

and stopwords.

Seaborn

Function Description Syntax Create a bar plot to visualize the relationship sns.barplot(x='x_variable', y='y_variable', between a barplot data=dataframe) categorical variable and a numeric variable.

Example

Visual

of each category in a categorical

data=df_can)

variable. Create a scatter plot with a linear

Create a count plot to display the frequency

> sns.regplot(x='year', y='total', data=df tot)

sns.countplot(x='Continent',

regression line regplot

to visualize the sns.regplot(x='x_variable', y='y_variable', data=dataframe) relationship

between two numeric variables.

Author(s)

countplot

Dr. Pooja

Changelog

Version Changed by Change Description Date

2023-06-18 0.1 Dr. Pooja Initial version created