Analyse II

David Wiedemann

7 2 1 1	1		• •
Table	DAD (mat	IDTOS
$\pm aint$, ucs	TIII CUU.	10100

1	Inté	grales généralisées	2
\mathbf{L}^{i}	ist (of Theorems	
	1	Definition (Intégrales généralisées (sur un intervalle borné non	
		$ferm\'e)\)\ \dots$	2
	2	Definition (Integrale sur un intervalle borne ouvert)	2

Lecture 1: Introduction

Mon 22 Feb

Intégrales généralisées 1

Peut-on définir une intégrale sur un intervalle ouvert plutot que sur un intervalle fermé? ie.

$$f: [a, b] \to \mathbb{R} \text{ c.p.m.}$$

Definition 1 (Intégrales généralisées (sur un intervalle borné non fermé))

Soit $f : [a, b] \to \mathbb{R}$ continue par morceaux (a < b).

En particulier, f est c.p.m. sur tout intervalle [a, x], a < x < b Soit F(x) =

On dit que l'integrale generalisee $\int_a^b f(x)dx$ existe (ou converge) si $\lim_{x\to b} F(X)$ existe, dans ce cas, on note

$$\int_{a}^{b} f(t)dt = \lim_{x \to b} F(x) - F(a)$$

 $Si \lim_{x\to b^{-}} F(x)$ n'existe pas, alors on dit que

$$\int_{a}^{b} f(t)dt$$

diverge. Definition analogue pour le cas [a, b].

On souhaite definir $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}tan(x)dx=0$. Dans certains cas cette integrale vaut 0. Mais si on calcule

$$\lim_{\epsilon \to 0} \int_{-\frac{\pi}{2\epsilon} + \epsilon^2} \frac{\pi}{2} - \epsilon tan(t) dt = \lim_{\epsilon \to 0+} (-\ln(\cos(\frac{\pi}{2} - \epsilon)) + \ln(\cos(-\frac{\pi}{2} + \epsilon^2))) = -\infty$$

Il faut donc une definition qui est coherente.

Definition 2 (Integrale sur un intervalle borne ouvert)

Soit $f:]a, b[\to \mathbb{R} \ c.p.m \ et \ c \in]a, b[$.

Si les integrales generalisees $\int_a^c f(t)dt$ et $\int_c^b f(t)dt$ existent, alors on definit l'in-

$$\int_{a}^{b} f(t)dt = \int_{a}^{c} f(t)dt + \int_{c}^{b} f(t)dt$$

Si une des deux integrales diverge, alors le tout diverge.