MAT-II-001

B.Sc. II Semester (NEP) Degree Examination

MATHEMATICS

Algebra - II And Calculus - II

Paper: MAT-DSCT - 2.1

Time: 2 Hours

Maximum Marks: 60

Instructions to Candidates:

Answer All the sections.

SECTION-A

Answer any FIVE of the following.

 $(5 \times 2 = 10)$

- 1. a. If S and T be two subsets of R such that $S \subseteq T$ and $S \neq \phi$ then prove that If T is bounded above then $SupS \leq SupT$.
 - b. Find the order of each element of multiplicative group G where $G = \{1,-1,i,-i\}$.
 - c. Find all the right cosets of the subgroup $H = \{0,3\}$ in the group $(Z_6,+_6)$.
 - d. If $x = r \cos \theta$, $y = r \sin \theta$ then prove that $\left(\frac{\partial r}{\partial x}\right)^2 + \left(\frac{\partial r}{\partial y}\right)^2 = 1$.
 - e. If $u = \frac{x+y}{2}$, $v = \frac{x-y}{2}$ then show that $\frac{\partial(u,v)}{\partial(x,y)} = \frac{1}{2}$.
 - f. Evaluate $\int_{c} (x+y)dx + (y-x)dy$ along the parabola $y^2 = x$ from (1,1) to (4,2).
 - g. Evaluate ${}_{0}\int^{1}{}_{0}\int^{1}\frac{dxdy}{\sqrt{(1-x^{2})(1-y^{2})}}$.

SECTION-B

Answer any FOUR of the following.

 $(4 \times 5 = 20)$

- 2. Show that A set A is a neighbourhood of a point a If and only if there exists a positive integer n such that the open interval $\left(a \frac{1}{n}, a + \frac{1}{n}\right) \subset A$.
- 3. Show that every subgroup of cyclic group is a cyclic.

[Contd....

- 4. Show that a subset H of a group G is subgroup of G if and only if HH⁻¹=H.
- 5. If $u = Tan^{-1}(x^4 + y^4 + x^3y + xy^3)$ show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \sin 2u$.
- 6. If $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$, $z = r \cos \theta$ Then show that $\frac{r(x, y, z)}{r(r, \theta, \phi)} = r^2 \sin \theta$.
- 7. Evaluate $\iint_R x^2 y^2 dx dy$ where R is the circle $x^2 + y^2 = 1$.

SECTION-C

Answer any THREE of the following.

 $(3 \times 10 = 30)$

- 8. a. Show that every subset of a countable set is countable.
 - b. Show that every open set is a union of open intervals.
- 9. a. State and prove Lagranges theorem.
 - b. Find the number of generators of cyclic group of order 60.
- 10. If u = x + y, v = xy then verify J.J' = 1.
- 11. a. Evaluate $\int_{0}^{a} \sqrt{a^2 x^2} x^2 dy dx$ by changing into polar Co-ordinate.
 - b. Evaluate $\int_{0}^{1/2} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2-y^2}} xyz \, dx \, dy \, dz.$
- 12. a. Evaluate $\iint \frac{x^2 y^2}{x^2 + y^2} dx dy$ outside the circle $x^2 + y^2 = a^2$ and inside the circle $x^2 + y^2 = b^2 (b > a)$.
 - b. Find the volume of the tetrahedron bounded by the Co-ordinate planes and the plane x+y+z=1.