BME Gépészmérnöki Kar	STATIKA	Név: Vári Gergő	
Műszaki Mechanikai Tanszék	4. HÁZI FELADAT	Neptun kód: MQHJ0H	
2024/25 I.	Határidő: lásd Moodle	Késés 🗆	Javítás 🗆
Nyilatkozat: Aláírásommal igazolom, hogy tettem el, az abban leírtak saját megértéseme	Aláírás: L=	11	

Csak a formai követelményeknek megfelelő feladatokat értékeljük! Javítás vagy pótlás csak a Moodle-ben megadott határidőig lehetséges!

Feladatkitűzés

A vázolt statikailag határozott megtámasztású rúdszerkezet egy L-alakú rúdból és egy egyenes rúdból áll, melyek a *C* csuklóban csatlakoznak egymáshoz. A szerkezetet az állandó intenzitású *p* megoszló erőrendszer és az **F** koncentrált erő terheli.

- 1. Készítsen méretarányos ábrát a szerkezetről és határozza meg a rúdszerkezet reakcióit!
- 2. Írja fel a vízszintes rudakból álló rész és a függőleges rúd igénybevételi függvényeit! Egyértelműen jelölje mindkét (vízszintes és függőleges) rúd esetén az alkalmazott koordinátarendszer origóját!
- 3. A jellegzetes értékek feltüntetésével rajzolja meg minden egyes rúdszakasz igénybevételi ábráit! Parabolaív esetén a kezdő és végpontokban szerkessze meg az érintőket! Továbbá a parabolaívek esetén számítsa ki a lokális szélsőérték helyét (x^*) és értékét $(M_h(x^*))$ és jelölje ezeket az igénybevételi ábrán!

Adatok

а	b	С	k	p	F
[m]	[m]	[m]	[m]	[kN/m]	[kN]
0.6	0.6	0.5	0.1	5	4

(Rész)eredmények

A táblázatba a vízszintes helyzetű rúd igénybevételeinek abszolút értelemben vett szélsőértékeit ($V(x_V)$, és $M_h(x_{M_h})$) és azok helyét/tartományát(x_V illetve x_{M_h}) be kell írni az előjelkonvenciónak megfelelően!

A_x [kN]	A_y [kN]	M_A [kNm]	x_V [m]	$V(x_V)$ [kN]	x_{M_h} [m]	$M_h(x_{M_h})$ [kNm]
6.25	1.5	0.9	1.2	2.5	0	0.9

 $(|V(x_V)| \ge |V(x)|, |M_h(x_{M_h})| \ge |M_h(x)|, \forall x \in [0, a+b+c].)$

B_x [kN]	B_y [kN]
-6.25	0

Lokális szélsőérték:	$V(x^{\star})$	x* [m]	$M_h(x^*)$ [kNm]
	0	0.9	-0.225

Statika 4. HF

Vári Gergő

2024. november 16.

1. Reakcióerők meghatározása

1.1. Méretarányos ábra

A kényszerek ábrázolásra kerültek az esetleges félreértések elkerülése érdekében. Egy darab külső erő jelenik meg illetve C és B között pedig egy megoszló erő.

$$a = 0.6[\mathrm{m}]$$

$$b = 0.6[\mathrm{m}]$$

$$c=0.5[\mathrm{m}]$$

$$k = 0.1[kN]$$

$$p=5[\mathrm{kN}]$$

$$F = 4[kN]$$

1.2. SZTÁ

1.3. Egyensúlyi egyenletek

$$\begin{split} F_{\mathrm{p}}(x) &= p \times x \\ F_{\mathrm{p_{max}}} &= F_{\mathrm{p}}(b+c) = 5.5 [\mathrm{kN}] \end{split}$$

$$\begin{split} &\sum F_{\mathbf{x}} := 0 = A_{\mathbf{x}} + B_{\mathbf{x}} \\ &\sum F_{\mathbf{y}} := 0 = A_{\mathbf{y}} + F - F_{\mathbf{p}_{\max}} \\ &\sum M_{\mathbf{z}}^{\scriptscriptstyle{\Lambda}} := 0 = M_{\mathsf{A}} - F_{\mathsf{p}}(a + \frac{b+c}{2}) + F \times (a+b) - B_{\mathbf{x}} \times k \end{split}$$

$$A_{\rm y} = F_{\rm p_{\rm max}} - F = 1.5[\rm kN]$$

3 ismeretlen és 2 egyenlet maradt tehát a szerkezetet részekre kell bontanunk.

1.4. Részek vizsgálata

A C pontban kettévágva a rácsszerkezetet részenként vizsgálhatom (így ezen pont mindkét ábrának része). Az ebben a pontban ébredő belső reakcióerőket a két részen ellentétesen veszem fel **Newton III. törvénye** (hatás-ellenhatás) miatt.

1.4.1.

$$\begin{split} \sum F_{\rm x} &:= 0 = A_{\rm x} + C_{\rm x} \\ \sum F_{\rm y} &:= 0 = A_{\rm y} + C_{\rm y} \\ \sum M_{\rm z}^{_{\rm C}} &:= 0 = -A_{\rm y} \times a + M_{\rm A} \end{split}$$

1.4.2.

2. Igénybevételi függvények

3. Igénybevételi ábrák

3.1. Vízszintes rúd

3.2. Függöleges rúd

