Classifying human written text from GPT-2 generated text

Group 3: Millie, Komal and Zoe

Introduction

Primary task

- Binary classification to differentiate fake text from human-generated text.
- Models Logistic Regression, Convolutional Neural Network and BERT.

Background

 GPT-2 models (117M, 345M, 762M and 1542M) released in stages because weaponizing language models is a serious concern.

Project motivation

 Contribute to the field of fake text detection by building classification models designed for the primary task.

Previous Works

Understanding Convolutional Neural Networks for Text Classification (2018)

- a. Talks about the challenges involved with using CNN for text classification since unlike images text is discrete data.
- b. Authors demonstrated binary classification task for sentiment analysis

Factuality Classification Using the Pre-trained Language Representation Model BERT (2019)

- a. Factuality detection: task of assigning factual tag to verbal events present in a dataset
- b. Used multi-layer bidirectional BERT model to showcase multilingual fact classification.

Previous Works

DocBERT: BERT for Document Classification (2019)

- a. Used logistic regression and SVM (both inherently discriminative) for baselines to highlight the effectiveness of BERT.
- b. showcased that even though BERT is generative it can give high performance in classification tasks.

Is BERT Really Robust? A Strong Baseline for Natural Language Attack on Text Classification and Entailment (2020)

Classification Task: Is this a positive or negative review? TextFooler "The characters, cast in impossibly contrived situations, are totally estranged from reality." Negative! SOTA NLP models (e.g. BERT, LSTM, CNN)

Data

- Human generated text consists of 250K documents from the WebText dataset, which is a collection of text from blogs and papers.
- The GPT-2 generated text includes two 250K documents, labeled
 Temperature-1 and Top-k40 (hyperparameters of the GPT-2 model that affect the randomness in output).
- Top-K 40: Conditionally generated samples from the paper use top-k random sampling with k = 40.
- Sampled the first 50K human generated texts and the first 50K GPT-2 generated text of Top-K 40 configuration.

Summary Statistics on Dataset

Summary statistics for 100k dataset

	100k dataset	50	k GPT-2	50k Webtext
average words/document	560		522	597
maximum words		0	1	4301
minimum words	Train	30118	29882	2
average sentences/docum ents	Validation	9876	10124	23
maximum sentences	Test	10006	9994	257
minimum sentences	1		1	1
vocabulary size	296067		NA	NA

Model, Results and Analysis

- Computing infrastructure: GPU from Google Colab
- Logistic Regression
- Convolutional Neural Network
- BERT

Logistic Regression

• F1 score : 88 %

 Marginally better at predicting GPT2 as compared to WebText

	precision	recall	f1-score	support
Webtext	0.88	0.88	0.88	10006
GPT-2	0.88	0.88	0.88	9994
accuracy			0.88	20000
macro avg	0.88	0.88	0.88	20000
weighted avg	0.88	0.88	0.88	20000

Confusion matrix, without normalization [[8843 1163] [1195 8799]]

Logistic Regression Analysis

Test string 1 (GPT2): "James Harden is shooting 29 percent down the floor when guarded by Kawhi Leonard in this series, including just 10 percent from three. When not guarded by Leonard, Harden is shooting nearly 50 percent."

```
array([[0.11316767, 0.88683233]])
```

Test String 2 (WebText): "COPYRIGHT NOTICE

This project is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License.

Feel free to use, copy, modify, publish and distribute, including commercial products or services."

```
array([[0.97010162, 0.02989838]])
```

CNN - engineering

- Code source adapted from the CNN tutorial
- Tokenizer spacy for english

- Optimizer is Adam with a learning rate of 0.0001
- Loss function is CrossEntropyLoss

CNN - results

- F-score: 80.41%
- Model had difficulty correctly identifying GPT-2 text

Overall f-score: 0.8041

			n report:	Classification
support	f1-score	recall	precision	
9994	0.83	0.93	0.75	Webtext
10006	0.78	0.68	0.91	GPT-2
20000	0.81			accuracy
20000	0.80	0.81	0.83	macro avg
20000	0.80	0.81	0.83	weighted avg

Confusion matrix, without normalization [[9306 688] [3170 6836]]

CNN - analysis

word	score	word	score
1 pendleton	0.74	cooke	-12.57
2 sandwiched	0.72	unsigned	-4.37
3 c'mon	0.69	prev	-1.52
4 leland	0.67	mick	-1.1
5 yeager	0.64	laird	-1.01
6 intermediate	0.62	mel	-0.89
7 weaves	0.61	capito	-0.82
8 aseptic	0.61	536	-0.79
9 steered	0.61	bsi	-0.71
10 straightening	0.6		-0.7

Findings: sequence length and repetition are important teatures.

BERT - engineering

- Code source BertForSequenceClassification from the
 huggingface pytorch implementation
- Tokenizer BertTokenizer included with BERT (bert-based-uncased version)
- On the output of the final (12th)
 transformer, only the first embedding (the
 [CLS] token) is used by the classifier.

BERT - engineering

Model -

```
BertForSequenceClassification(
  (bert): BertModel(
    (embeddings): BertEmbeddings(
      (word embeddings): Embedding(30522, 768, padding idx=0)
      (position embeddings): Embedding(512, 768)
      (token type embeddings): Embedding(2, 768)
      (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise affine=True)
      (dropout): Dropout(p=0.1, inplace=False)
(pooler): BertPooler(
      (dense): Linear(in features=768, out features=768, bias=True)
      (activation): Tanh()
  (dropout): Dropout(p=0.1, inplace=False)
  (classifier): Linear(in features=768, out features=2, bias=True)
```

Optimizer is AdamW with learning rate = 2e-5 and epsilon = 1e-8

BERT - experiment on MAX LEN

- To examine how the truncating affect BERT's performance, we tried to set the MAX LEN = 32, 64, 128.
- Our model performed consistently well across all sequence lengths.
- Training BERT on longer sentences made the model more prone to

BERT performance by sequence length: overfitting.

Max	Precision		Recall		F1 score	
length	Webtext	GPT-2	Webtext	GPT-2	Webtext	GPT-2
32	0.85	0.97	0.97	0.83	0.91	0.89
64	0.89	0.98	0.98	0.88	0.93	0.92
128	0.85	0.99	0.99	0.82	0.91	0.90

BERT - results

- F-score: 90.33%
- Model had difficulty correctly identifying GPT-2 text
- Error rate = 9.6%

Macro Fl score: 0.9032845296211757

Classification report:

precision	recall	fl-score	support
0.99	0.82	0.90	10006
0.85	0.99	0.91	9994
		0.90	20000
0.92	0.90	0.90	20000
0.92	0.90	0.90	20000
	0.99 0.85	0.99 0.82 0.85 0.99 0.92 0.90	0.99 0.82 0.90 0.85 0.99 0.91 0.92 0.90 0.90

Confusion matrix, without normalization [[9869 125] [1796 8210]]

BERT - analysis

The shorter
 Webtext documents
 were more prone to
 wrong predictions
 than GPT-2 data.

 At around 1000 tokens, there is a spike in wrong predictions for both sources, showing that truncating documents adversely affect BERT's performance.

Conclusion

• BERT is better but at a high training cost.

Model	Epochs	Training Time	F-score on Test Set
LR	1	< 1 minute	88.23%
CNN	20	11 minutes	80.41%
BERT	4	1.5 hour	90.34%

Future Direction

- More models to try!
 - fastText
 - GLTR
 - o GPT-2
 - o RoBERTa
 - o etc!

References

Understanding Convolutional Neural Networks for Text Classification	https://www.aclweb.org/anthology/W18-5408/
Factuality Classification Using the Pre-trained Language Representation Model BERT (2019)	http://ceur-ws.org/Vol-2421/FACT_paper_3.pdf
DocBERT: BERT for Document Classification (2019)	https://arxiv.org/abs/1904.08398
Is BERT Really Robust? A Strong Baseline for Natural Language Attack on Text Classification and Entailment (2020)	https://arxiv.org/abs/1907.11932
Image on slide 3	
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (2019)	https://arxiv.org/pdf/1810.04805.pdf
Image on slide 13	