Neuroinformatic techniques for provenance & data sharing

Camille Maumet

GlaxoSmithKline - Neurophysics Workshop on Skeptical Neuroimaging

January 14th, 2014

Outline

- 1. Data sharing: current practice in neuroimaging
- 2. How to become less skeptical?
- 3. Neuroinformatics techniques for provenance and data sharing

Outline

- 1. Data sharing: current practice in neuroimaging
- 2. How to become less skeptical?
- 3. Neuroinformatics techniques for provenance and data sharing

Overview of a neuroimaging study

Neuroimaging and data sharing

Sharing data with my collaborators

Neuroimaging and data sharing

A neuroimaging publication

Methods section: metadata in free-form text.

General technical implementation
A single scanner session included the four paradigms separately implemented with the same parameters: a simple block design alternated a rest condition as control and the language task, starting with rest, with a preliminary period of signal acquisition for MRs signal stabilization which was later discarded during data processing. Each paradigm included three 27-s blocks of each condition and had a total duration of 2 min 48 s. The scanner session, including the anatomical acquisition and the four language paradigms, had a duration of about 30-35 min. All subjects performed the tasks in the same order, as during the preparation step, in order to avoid the mix of auditory and visual tasks and the resulting complication for the child. Words required by the tasks were one-to-three-syllable words highly frequent in the lession of French 8 years old children (Lambert and Chesnet, 2001).

During the rest condition, a red cross was displayed on the projection screen and children were asked "part to work", to "think

Table 2 Task comparisons (-) and conjunctions (C). Auditory language Categ-Def Left Hemisphere Inf Instal-Oper Precental 18-1-38** Mid frontal 33-1-06 SMA 3-1-06 SMA 3-1-06 SMA 18-1-06 SMA 18-1-06 SMA 18-1-06 SMA 2-1-06 SMA 2-1-06 SMA 2-1-06 SMA 2-1-06 SMA 3-1-06 SMA 18-1-06 Instal 3-1-06 Instal 3-

Table

Results section:

2D plot(s) of the detections

A s imple	I technical implementation ingle scanner session included the four paradigms separately nented with the same parameters: a simple block design
with i	ited a rest condition as control and the language task, starting est, with a preliminary period of signal acquisition for MRI stabilization which was later discarded during data processing.
Each p total anator durati same of auc	aradigm included three 27-s blocks of each condition and had a buration of 2 min 48. The scanner session, including the incal acquisition and the four language paradigms, had a on of about 30-35 min. All subjects performed the tasks in the order, as during the preparation step, in order to avoid the mis itory and visual tasks and the resulting complication for the
highly	Words required by the tasks were one-to-three-syllable words frequent in the lexicon of French 8 years old children (Lambert sesnet, 2001).
Du	ring the rest condition, a red cross was displayed on the tion screen and children were asked "not to work", to "think nothing" and, because of the complexity of this instruction, to

Description of the detections

listen to the poise of the scanner and fix attention on the red cross

	Auditory language tasks			Visual language tasks	
	Categ-Def	Def-Categ	Categ C Def	Ph-s-Ph-d	Ph
Left Hemisphere					
Inf frontal-Oper			348-4.10(4)		82
Precentral	18-3.38(5)		348-5.09		82
Mid frontal	33-3.66				-
SMA			1433-5.48		35
Cingulate			1433-5.08(3)		-
Med sup frontal	174-4.69				
Ral operculum				36 - 431	
Innula			396-4.87 ^(X)		58
Sup temporal			351-381(1)		91
Mid temporal		1658-4.67(1)	351-5.67(2)		10
Inf parietal		1658-5.18(4)			
Sup parietal					97
Postcentral					901
Sup occipital					
Mid occipital				146-4.43	14
Inf occipital					14
Fusiform.				397-5.44	14

Table of local maxima

Outline

- 1. Data sharing: current practice in neuroimaging
- 2. How to become less skeptical?
- 3. Neuroinformatics techniques for provenance and data sharing

Reproducibility

Full provenance

Meta-analysis: analyzing the analyses

Coordinate-Based Meta-Analysis (CBMA)

Image-Based Meta-Analysis (IBMA).

How to become less skeptical?

- Reproducibility
 - Confirm results by re-running an analysis
- Provenance
 - Needed for reproducibility
 - Avoid selection bias.
- Meta-analysis
 - Strengthen results by combining studies.
- What do we need?
 - Sharing data, meta-data and provenance.

Data sharing: obstacles

- Psychological
 - "My" data
- Ethical constraints
- Technical: difficulties to share data with enough metadata to be really useful
 - Available data versus usable data.

"Less than a few percents of acquired neuroimaging data is available in public repositories" [Poline 2012]

Outline

- 1. Data sharing: current practice in neuroimaging
- 2. How to become less skeptical?
- 3. Neuroinformatics techniques for provenance and data sharing

A standard format for meta-data

- Sharing data across the data sharing tools...
- First attempt of an agnostic format: XML-Based
 Clinical Experiment Data Exchange Schema
 (XCEDE): www.xcede.org
 - Describes subject, study, activation
 - Limited provenance encoding
 - Initiative of the BIRN
- Neurolmaging Data Model NI-DM:

www.nidm.nidash.org

- Based on web-semantic tools.
- Initiative of the BIRN and INCF

Three major players

- Bottom-up approach.
- Lean on existing analysis software (SPM, FSL, AFNI) to disseminate the standard.

Automatically created with <u>Neurotrends</u> based on over 16 000 journal articles

Work in progress

 Define a format to represent the results of a neuroimaging study with a focus on meta-analysis.

Term name	Definition	Example	BIRNLex or NIDM Concept ID	
BonferroniCorrection	Bonferroni correction for multiple statistical tests			
chi-squareStatistic	A statistical parameter drawn from a chi-square statistic		nidm:nidm_81	
FDR	False Discovery Rate correction		nidm:nidm_82	
FWER	Family-wise Error Rate correction		nidm:nidm_83	
Scan Image	An image that is the outut of an MRI or CT or PET scan		nidm:nidm_84	
SliceOrder	The temporal order in which the 2D slices were acquired by the imaging systems		nidm:nidm_85	
Voxel	volumetric pixel		nidm:nidm_86	
Z-Statistic	A statistical parameter drawn from a normal or z distribution		nidm:nidm_87	
extentThresh	Minimum cluster size used when thresholding a statistic image	Svoxels	nidm:nidm_88	
errorDegreesOfFreedom	Degrees of freedom of the error.	73	nidm:nidm_89	
effectDegreesOfFreedom	Degrees of freedom of the effect.	1	nidm:nidm 90	
StatisticMap	A map (2D or 3D structured dataset) whose value at each location is a statistic.		nidm:nidm_91	
voxelSize	3D size of a voxel measured in voxelUnits.	[2 2 4]	nidm:nidm_92	
cluster	A group of neighboring image elements (voxels or vertices)		nidm:nidm_93	
qValueFDR	p-value adjusted for the search volume, controlling for the False Discovery Rate	0.000154	nidm:nidm_94	
pValueFWE	p-value adjusted for the search volume, controlling for the Familiywise Error Rate	0.00554	nidm:nidm_95	
gValueUncorrected	Uncorrected p-value	0.0542	nidm:nidm_96	

Vocabulary

Data model

Neuroimaging terms

Define a vocabulary to support the format.

Term name	Definition	Example	BIRNLex or NIDM Concept ID	synonyms and related urls	Parent term
cluster	A group of neighboring image elements (voxels or vertices)		nidm:nidm_93	http://ncicb.nci.nih.gov/xml/ow/EVS/Thesaurus.owl#C43 or http://purl.obolibrary.org/obo/OBI_0000251	
qValueFDR	p-value adjusted for the search volume, controlling for the False Discovery Rate p-value adjusted for the search volume, controlling	0.000154	nidm:nidm_94	http://purl.obolibrary.org/obo/OBI_0001442	p-value i.e. nidm:nidm_0011
pValueUncorrected	Uncorrected p-value		nidm:nidm_96	http://purl.obolib p-value i.e.	nidm:nidm_0011
SelectionProcedure	reported		nidm:nidm_97		
clusterSizeInVoxels	Number of voxels contained in a cluster.	40	nidm:nidm_98		
softwareVersion	Name and Number specifying software version.	SPM99, SPM2, SPM5, SPM8, SPM12b, FSL5.0.0	nidm:nidm_99		nidm:Software
softwareRevision	Software revision number.	v5417	nidm:nidm_100		
clusterSizeInVertices	Number of vertices contained in a cluster.	10	nidm:nidm_101		
clusterSizeInResels	Number of resels contained in a cluster.		nidm:nidm 102		
voxelUnits	Units associated to each dimensions of some N- dimentional data.	('mm' 'mm' 's')	nidm:nidm_103		
ReselSizeIn/WorldUnits	Volume of a resel, a resolution element, expressed in units. It expresses the smoothness of the noise, with smoother images having larger resels.		nidm:nidm_104	http://en.wikipedia.org/wiki/Resel	
			nidm:nidm_105		
Мар	2D or 3D structured dataset.		nidm:nidm_106		
fileName	Name associated with a file (without path).		nidm:nidm_107		
numberOfDimensions	Number of Dimensions of some N-dimentional data.	3	nidm:nidm_108		
dimensions	Dimensions of some N-dimentional data.	[64 64 20]	nidm:nidm_109		
coordinateSystem	Type of coordinate system.	nidm:mniCoordinateSystem	nidm:nidm_110		
searchVolumeInVoxels	Total number of voxels within the search volume.	68656	nidm:nidm_111	Synonyms of nidm:volumeInVoxels	
searchVolumeInResels	Total number of resels within the search volume.		nidm:nidm 112	Synonyms of nidm:volumeInResels	

Data model

Based on PROV-DM a W3C recommendation to encode wasDerivedFrom provenance. www.w3.org/TR/prov-dm/ **Entity** wasAttributedTo wasGeneratedBy **Agent** used wasAssociatedWith **Activity**

Data model

22

Data model: activities

Data model: agent

24

software_id

Data model: entities

Data model: entities

Conclusion

- Data sharing is one key to reduce skepticism.
- There is already a number of technical solutions for data sharing in neuroimaging.
- A meta-data standard would beneficiate to all of these efforts
 - NI-DM: http://nidm.nidash.org

Q & A

This work is supported by the **Welcome**trust

