Name	ID#

MSE 333

Principles of Materials Characterization and Analysis Prof. Kannan M. Krishnan

Mid-Term

60 Minutes + 20 mins (for online submission issues)

This is a closed book exam

If something is not clear, make your best assumption and state it. The time for each problem is proportional to its points. Use it wisely.

Honor Code

I have not provided or taken help from anyone or any others sources (books, course pack, web sites, class or other written notes etc.)

Signature Date

Some formulas you may need --

$$\mathbf{a}^* = 2\pi (\mathbf{b} \times \mathbf{c}) / \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$$

$$\mathbf{b}^* = 2\pi (\mathbf{c} \times \mathbf{a}) / \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a})$$

$$\mathbf{c}^* = 2\pi (\mathbf{a} \times \mathbf{b}) / \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b})$$

$$E_{kin} = hf - |E_{B}|$$

$$E_{kin} = hf - |E_{B}| - \Phi$$

$$E_{n} = -\frac{m_{e}Z^{2}e^{4}}{8\varepsilon_{0}^{2}h^{2}} \frac{1}{n^{2}} = -13.606 \frac{Z^{2}}{n^{2}} \text{ (eV)}$$

$$\lambda = \frac{h}{p}$$

$$I_{x} = I_{0} \exp(-\mu x)$$

$$N(E) = 4\pi \left(\frac{2m_{e}}{h^{2}}\right)^{3/2} E^{1/2}$$

$$E_{vib} = \frac{1}{2}A(R - R_{0})^{2}$$

$$E_{vib,n} = (n + 1/2)hf_{vib}$$

$$\mu_{Ind} = \alpha_0 E_0 \cos(2\pi f_I t) + \frac{\alpha_1 E_0}{2} \left[\cos 2\pi (f_I - f_{int}) t + \cos 2\pi (f_I + f_{int}) t \right]$$

$$E = hf = \frac{hc}{\lambda}$$

$$n\lambda = 2d \sin \theta$$

Name	ID#	
For problems 1-7, pick all that is con HWs; Note that there will be negative	rrect (similar to your Test-your-knowledge grading for wrong answers.	ge exercises in the
 In materials characterization, the pr (a) Are the same (b) Are different (c) May be the same or may be 	-	(2 points)
2. Vibrational modes of any molecul(a) are continuous in energy(b) are quantized in energy(c) can be used to probe the sp	oring constant or the strength of the bond	(2 points)
(ii) The reciprocal lattice atta	tion experiment nains fixed/unchanged in the laboratory frame ached to the crystal rotates in the laboratory fra acident beam and any reciprocal lattice vector	ame of reference
4. H and He cannot be detected by Au (i) No one has tried to do s (ii) It is too expensive to m (iii) Their electronic structu	so?	(2 points) by.
5. [1/3 ½ 1] and [2 3 6] refer to (i) two different planes (ii) the same line (iii) a family of parallel planes pa	assing through the origin.	(2 points)
6. It is best to use (i) PES to probe filled levels in the (ii) inverse PES to probe unfilled (iii) XAS to probe unoccupied levels.	levels in the conduction band	(2 points)
7. The maximum number of electron (i) 4 (ii) 6 (iii) 20 (iv) 8 (v) 14	ns in the L -shell ($n = 2$) is	(2 points)
8. The three broad categories of technology (a)	niques for materials characterization are	(6 points)
(b)		

9. Plot the **Energy** (E) vs. **Wave-vector** (k) for

(10 points)

- (a) A free particle of mass, m, whose energy is entirely kinetic.
- (b) An electromagnetic wave traveling in vacuum

(a)

(*b*)

- 10. For the Na atom, the binding energies of the various electrons are -1.071 keV (1s), -63.4 eV (2s), -30.7 eV (2p) and -5.14 eV (3s).
 - (a) Calculate the energy of the K_{α} X-ray line for Na.

(5 points)

(b) If $1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$, $h = 6.62 \times 10^{-34} \text{ Js}$ and $c = 3 \times 10^8 \text{ m/s}$ calculate the wavelength of this x-ray photon. (9 points)

(c) Can we use Na K_{α} for x-ray crystallography of real materials? Explain in a brief sentence or two. (6 points)

Name	ID#	
11. What is the key difference between		(10 points)
(a) Infra-red and Raman Spectroscop	ies	
(b) Rayleigh scattering and Raman sp	pectroscopy	

12. For X-ray photoelectron spectroscopy

The binding energy of a core-level of an **elemental metal**, work function ~ 5 eV, is -711 eV.

- (i) If Al-K (\sim 1486 eV) is used to probe this element at what energy of the photoelectron would the peak for this core-level appear in an XPS experiment, assuming $E_B=0$ at the Fermi level? State your assumption clearly
- (ii) Now, where would the peak appear if we assume $E_B=0$ at the Vacuum level?
- (iii) If we use Mg K (~1251 eV) instead, where would the peak appear in (i).

(10 points)

Name	ID#
tunic	1DII

13. For a <u>two-dimensional</u> *hexagonal* unit cell, calculate its reciprocal lattice vectors. (hint: assume a hypothetical *c-axis* normal to the page). Draw the real lattice and the reciprocal lattice (label them clearly) on the same figure below. (10 points)

Name	ID#

Name	ID#

14. BONUS Question

(a) What is Law of diffraction in **reciprocal space**? Show it in a figure and define/describe all the variables.

(10 points)

(b) How is this related to the Bragg Law in real space? Illustrate this also with a figure.