Final 37810

Shiting Zhu, Lijing Wang, Jingting Li November 1, 2015

Question 1

Metropolis Hastings

- 1. The algorithm is Metropolis-Hastings. We first choose the new phi based on the proposal function
- Step 0: Pick a start point ϕ_0 , which is a random number from uniform distribution (0,1)
- Step 1: Pick a new candidate(ϕ_{new}) from the jumping distribution, which is Beta($c\phi_{old}$,c(1- ϕ_{old})). Notice the ϕ_{new} cannot be either 0 or 1, otherwise it will loop in 0 or 1 forever. For this step we used a function called phi in the r code.

Step 2: Calculate the accaptance probability. Since the jumping distribution is not symmetric in this question, so $\frac{P(\phi_{new})}{P(\phi_n)} = \frac{dbeta(\phi_{new},6,4)}{dbeta(\phi_n,6,4)}$ and $\frac{Q(\phi_{new}*|\phi_n)}{Q(\phi_n|\phi_{new})} = \frac{dbeta(\phi_{new},c\phi_n,c(1-\phi_n))}{dbeta(\phi_n,c\phi_{new},c\phi_{new})}$ $A(\phi_n->\phi_{new}) = \min(1, \frac{\frac{P(\phi_{new})}{Q(\phi_n|\phi_{new})}}{\frac{P(\phi_n)}{Q(\phi_new*|\phi_n)}}).$

```
library(coda)
Alpha <- 6
Beta <- 4
# Use the proposal function to get new phi, noticeing phi cannot be 0 or 1
phi <- function(c,oldphi){</pre>
 newphi = 0
  # Making sure new phi is neither 0 nor 1
  while (newphi == 0 \mid \mid newphi == 1){
  newphi = rbeta(1,c*oldphi,c*(1-oldphi))
  }
  return(newphi)
}
run_metropolis_MCMC <- function(startvalue,c,iterations){</pre>
  chain = rep(0, iterations+1)
  chain[1] = startvalue
  for (i in 1:iterations){
    phi = phi(c,chain[i])
    posterior = dbeta(phi,Alpha,Beta)/dbeta(chain[i],Alpha,Beta)
    proposal = dbeta(phi,c*chain[i],c*(1-chain[i]))/dbeta(chain[i],c*phi,c*(1-phi))
    probab = posterior/proposal
    if (runif(1) < probab){</pre>
      chain[i+1] = phi
    }else{
      chain[i+1] = chain[i]
    }
 }
  return(chain)
```

```
startvalue = runif(1)
chain = run_metropolis_MCMC(startvalue,1, 10000)
acceptance = 1-mean(duplicated(chain))

par(mfrow=c(1,3)) #1 row, 3 columns

traceplot(as.mcmc(chain), type="l", main = "Trace plot: c = 1", xlab="Step", ylab="y")
acf(chain, main = "Acf plot: c = 1")
hist(chain, main = "Histogram: c = 1", xlab="y")
```



```
Cs <- c(0.1, 2.5, 10)
result <- sapply(Cs, run_metropolis_MCMC, startvalue = startvalue, iterations = 10000)

graph <- function(Cs){
    n = length(Cs)
    par(mfrow = c(n, 3))
    for( i in 1:n ) {
        traceplot(as.mcmc(result[,i]), type="l", main = paste("Trace plot: c = ", Cs[i]), xlab="Step", ylab="acf(result[,i], main = paste("Acf plot: c = ", Cs[i]))
        hist(result[,i], main = paste("Histogram: c = ", Cs[i]), xlab="y")
    }
}
graph(Cs)</pre>
```


Question 2

Gibbs Sampling

```
Gibbs_<-function(x0,y0,iterations,B=5,burnIn=0)</pre>
## 5 parameters are needed in this function, with B=5 and burnIn=0 by default
{
  if(x0>0&&x0<B&&y0>0&&y0<B)
## to check whether the starting values are in the domain.
    x<-c(x0,rep(NA,iterations-1))</pre>
## Initialize the Markov chain
    y<-c(y0,rep(NA,iterations-1))
## Initialize the Markov chain
    for(i in 1:(iterations-1))
      x[i+1] < -(-log(1-runif(1)*(1-exp(-y[i]*B)))/y[i])
## use inverse transform sampling to draw sample from conditional distribution
## p(x^{i+1}|y^{i})
      y[i+1] < -(-log(1-runif(1)*(1-exp(-x[i+1]*B)))/x[i+1])
## use inverse transform sampling to draw sample from conditional distribution
## p(y^{i+1}|x^{i+1})
    }
    if(burnIn>0)
```

```
x<-x[-(1:burnIn)]
    y<-y[-(1:burnIn)]
    print(length(x))

## discard the first bunch of draws for the burn-in process
    }
    return(data.frame(x,y))
}
else
    stop("Initial values incorrect")

## print the information for incorrect starting values
}</pre>
```

To estimate the marginal distribution generated from the conditional distributions using Gibbs sampling, we first pick up the starting values for X and Y. Denote them as x0 and y0. iterations stands for the number of draws we want to get from Gibbs sampling. B is the number given in the exercise, which is 5 here. burnIn is the number of draws we want to discard for the burn-in process, the default for burnIn is 0.

In this case, both the conditional distribution of X|Y and Y|X are truncated exponential distribution. The domains of both conditional pdf's are [0,B]. So the starting values should satisfy 0 < x0 < B and 0 < y0 < B. Therefore I put a restriction if (x0>0&&x0<B&&y0>0&&y0<B) on the input of starting values to check if they satisfy the requirement.

Since

$$p(x|y) \propto ye^{-yx}, 0 < x < B$$
$$p(y|x) \propto xe^{-yx}, 0 < y < B$$

Consider p(x|y) only. To get samples using inverse transform sampling, first we need to figure out the normalizing constant for the conditional pdf and then the inverse function of cdf.

The normalizing constant can be calculated using the formula $c=\frac{1}{\int f(x|y)\,\mathrm{d}x}$, if $p(x|y)\propto f(x|y)$. In this case, $f(x|y)=ye^{-yx}, 0< x< B$. Therefore $c=\frac{1}{\int_0^B ye^{-yx}\,\mathrm{d}x}=\frac{1}{1-e^{-By}}$.