

DESCRIPTION

The HY6264A is a high-speed, low power and 8,192x8-bits CMOS static RAM fabricated using Hyundai's high performance twin tub CMOS process technology. This high reliability process coupled with innovative circuit design techniques, yields maximum access time of 70ns. The HY6264A has a data retention mode that guarantees data to remain valid at the minimum power supply voltage of 2.0 volt. Using the CMOS technology, supply voltage from 2.0 to 5.5 volt has little effect on supply current in the data retention mode. Reducing the supply voltage to

minimize current drain is unnecessary for the HY6264A Series.

FEATURES

- Fully static operation and Tri-state outputs
- TTL compatible inputs and outputs
- Low power consumption
- Battery backup(L/LL-part)
 - -2.0V(min.) data retention
- Standard pin configuration
 - -28 pin 600 mil PDIP
 - -28 pin 330 mil SOP

Product	Voltage	Speed	Operation	Standby Current(uA)		Temperature	
No.	(V)	(ns)	Current(mA)		L	LL	(°C)
HY6264A	5.0	70/85/100	50	1mA	100	10	0~70(Normal)

Note 1. Current value is max.

PIN CONNECTION

BLOCK DIAGRAM

PIN DESCRIPTION

Pin Name	Pin Function	Pin Name	Pin Function
/CS1	Chip Select 1	I/O1-I/O8	Data Input/Output
CS2	Chip Select 2	Vcc	Power(+5V)
/WE	Write Enable	Vss	Ground
/OE	Output Enable	NC	No Connect
A0-A12	Address Inputs		

ORDERING INFORMATION

PART NO.	SPEED	POWER	PACKAGE
HY6264AP	70/85/100		PDIP
HY6264ALP	70/85/100	L-part	PDIP
HY6264ALLP	70/85/100	LL-part	PDIP
HY6264AJ	70/85/100		SOP
HY6264ALJ	70/85/100	L-part	SOP
HY6264ALLJ	70/85/100	LL-part	SOP

ABSOLUTE MAXIMUM RATING (1)

Symbol	Parameter	Rating	Unit
Vcc, Vin, Vout	Power Supply, Input/Output Voltage	-0.5 to 7.0	V
TA	Operating Temperature	0 to 70	°C
Tstg	Storage Temperature	-65 to 125	°C
Po	Power Dissipation	1.0	W
lout	Data Output Current	50	mA
TSOLDER	Lead Soldering Temperature & Time	260 •10	°C•sec

Note

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is stress rating only and the functional operation of the device under these or any other conditions above those indicated in the operation of this specification is not implied. Exposure to the absolute maximum rating conditions for an extended period may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

TA=0°C TO 70°C

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	4.5	5.0	5.5	V
ViH	Input High Voltage	2.2	-	Vcc+0.5	V
VIL	Input Low Voltage	-0.5(1)	-	0.8	V

Note

1.VIL = -3.0V for pulse width less than 50ns

TRUTH TABLE

/CS1	CS2	/WE	/OE	MODE	I/O OPERATION
Н	X	X	Χ	Standby	High-Z
X	L	X	Х		High-Z
L	Н	Н	Н	Output Disabled	High-Z
L	Н	Н	L	Read	Data Out
L	Н	L	Χ	Write	Data In

Note

1. H=VIH, L=VIL, X=Don't Care

DC ELECTRICAL CHARACTERISTICS

 $Vcc = 5.0V\pm10\%$, TA = 0°C to 70°C (Normal) unless otherwise specified

Symbol	Parameter	Test Condit	tion	Min	Тур	Max	Unit
ILI	Input Leakage Current	Vss ≤ VIN ≤ Vcc		-1	-	1	uA
ILO	Output Leakage Current	Vss ≤ Vout ≤ Vcc /CS	1=VIH or	-1	-	1	uA
		CS2=VIL or /OE = VIH (or/ WE = VIL				
Icc	Operating Power Supply	/CS1 = VIL, CS2=VIH,		-	30	50	mΑ
	Current	VIN = VIH or VIL, II/O =	0mA				
ICC1	Average Operating	/CS1 = VIL, CS2=VIH	Min. Duty	-	30	50	mΑ
	Current	Cycle = 100%, II/O = 0mA					
ISB	TTL Standby Current	/CS1 = VIH or CS2=V	IL	-	0.4	2	mΑ
	(TTL Input)						
ISB1	CMOS Standby Current	/CS1 ≥ Vcc - 0.2V,		-	-	1	mΑ
	(CMOS Input)	CS2 < 0.2V,or	L	-	2	100	uA
		CS2 ≥Vcc-0.2V	LL	-	1	10	uA
Vol	Output Low Voltage	IOL = 2.1mA		-	-	0.4	V
Vон	Output High Voltage	IOH = -1.0mA	·	2.4	-	-	V

Note: Typical values are at Vcc = 5.0V, TA = 25°C

AC CHARACTERISTICS

 $Vcc = 5.0V\pm10\%$, TA = 0°C to 70°C (Normal), unless otherwise noted

#	# Symbol Boromotor		-70		-85		-10		
#	Symbol	nbol Parameter		Max	Min	Max	Min	Max	Unit —
	READ	CYCLE							
1	tRC	Read Cycle Time	70	-	85	-	100	-	ns
2	tAA	Address Access Time	-	70	-	85	-	100	ns
3	tACS	Chip Select Access Time	-	70	-	85	-	100	ns
4	tOE	Output Enable to Output Valid	-	45	-	50	-	55	ns
5	tCLZ	Chip Select to Output in Low Z	10	-	10	-	10	-	ns
6	tOLZ	Output Enable to Outputin Low Z	5	-	5	-	5	-	ns
7	tCHZ	Chip Deselection to Output in High Z	0	30	0	35	0	35	ns
8	tOHZ	Out Disable to Output in High Z	0	30	0	35	0	35	ns
9	tOH	Output Hold from Address Change		-	5	-	10	-	ns
	WRITE	CYCLE							
10	tWC	Write Cycle Time	70	-	85	-	100	-	ns
11	tCW	Chip Selection to End of Write	55	-	60	-	70	-	ns
12	tAW	Address Valid to End of Write	55	-	60	-	70	-	ns
13	tAS	Address Set-up Time	0	-	0	-	0	-	ns
14	tWP	Write Pulse Width	50	-	55	-	60	-	ns
15	tWR	Write Recovery Time	0	-	0	-	0	-	ns
16	tWHZ	Write to Output in High Z	0	30	0	35	0	35	ns
17	tDW	Data to Write Time Overlap	35	-	35	-	40	-	ns
18	tDH	Data Hold from Write Time	0	-	0	-	0	-	ns
19	tOW	Output Active from End of Write	5	-	5	-	5	-	ns

AC TEST CONDITIONS

 $TA = 0^{\circ}C$ to $70^{\circ}C$ (Normal), unless otherwise specified.

PARAMETER	Value
Input Pulse Level	0.8V to 2.4V
Input Rise and Fall Time	5ns
Input and Output Timing Reference Level	1.5V
Output Load	CL = 100pF + 1TTL Load

AC TEST LOADS

Note: Including jig and scope capacitance

CAPACITANCE

Temp = 25° C, f= 1.0MHz

Symbol	Parameter	Condition	Max.	Unit
CIN	Input Capacitance	VIN = 0V	6	pF
CI/O	Input/Output Capacitance	VI/O = 0V	8	рF

Note: These parameter are sampled and not 100% tested

TIMING DIAGRAM

READ CYCLE 1(Note 1)

Note(READ CYCLE):

- 1.tcHz and toHz are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels.
- 2.At any given temperature and voltage condition, tCHZ max. is less than tCLZ min. both for a given device and from device to device.
- 3./WE is high for the read cycle.

READ CYCLE 2(Note 1,2,3)

Note(Read Cycle)

- 1./WE is high for the read cycle.
- 2. Device is continuously selected /CS=VIL, CS2=VIH.
- 3./OE=VIL.

WRITE CYCLE 1(/WE Controlled)

WRITE CYCLE 2 (/CS1Controlled)

WRITE CYCLE 3 (CS2 Controlled)

Notes(Write Cycle):

- 1. A write occurs during the overlap of a low /CS1 and high CS2 and a low /WE. A write begins at the latest transition among /CS1 going low, CS2 going high and /WE going low: A write ends at the earliest transition among /CS1 going high, CS2 going low and /WE going high. tWP is measured from the beginning of write to the end of write.
- 2. tCW is measured from the later of /CS1 going low or CS2 going high to end of write.
- 3. tAS is measured from the address valid to the beginning of write.
- 4. tWR is measured from the end of write to the address change. tWR1 is applied in case a write ends as /CS1, or /WE going high, and tWR2 is applied in case a write ends at CS2 going low.
- 5. If /OE, CS2 and /WE are in the read mode during this period, and the I/O pins are in the output low-Z state, inputs of opposite phase of the output must not be applied because bus contention can occur.
- 6. If /CS1 goes low simultaneously with /WE going low or after /WE going low, the outputs remain high impedance state.
- 7. DOUT is the read data of the new address.
- 8. When /CS1 is low and CS2 is high,I /O pins are in the output state. The input signals in the opposite phase leading to the outputs should not be applied.

DATA RETENTION CHARACTERISTICS.

Symbol	Parameter	Test Condition		Min	Тур	Max	Unit
VDR	Vcc for Data Retention	/CS1≥Vcc-0.2V, CS2; Â .2V		2	-	-	V
		or≥Vcc-0.2V, Vss≤VIN≤Vcc					
ICCDR	Data Retention Current	Vcc = 3.0V, /CS1≥Vcc-0.2V	L	-	1	50	uA
		CS2 <u><</u> 0.2V or <u>></u> Vcc-0.2V	LL	-	1	5	uA
		Vss <u><</u> Vin <u><</u> Vcc					
tCDR	Chip Disable to Data	See Data Retention Timing		0	-	-	ns
	Retention Time	Diagram					
tR	Operating Recovery Time			tRC(2)	-	-	ns

Note

- 1. Typical values are under the condition of TA=25°C.
- 2.tRC is read cycle time

DATA RETENTION TIMING DIAGRAM 1

DATA RETENTION TIMING DIAGRAM 2

RELIABILITY SPEC.

TEST MODE		TEST SPEC.
ESD	HBM	≥ 2000V
	MM	<u>> 2</u> 50V
LATCH - U	P	≤ -100mA
		≥100mA

PACKAGE INFORMATION

28pin 600mil Dual In-Line Package(P)

28pin 330mil Small Outline Package(J)

