Test case: 2D Lennard-Jones fluid versus lammps output

October 26, 2018

FIG. 1. Positions read in by the subroutine read_state_lammps in the file_writer module, after being dumped by dump (...) x y z (...) in lammps.in input script. Difference between LAMMPS output and the imported Fortran positions shown—should be zero to machine precision, which it is.

FIG. 2. Positions after a single time step at $\Delta t = 0.001$, as compared to the LAMMPS trajectory positions.

Positions

Loading initial positions from a LAMMPS output file gives equal positions to within machine precision, c.f. Fig. 1. After a single time step at $\Delta t = 0.001$, positions deviate from the LAMMPS trajectories by between 10^{-15} and 10^{-16} , as seen in Fig. 2.

Note that the first 100 points represent the x coordinate of all N=100 particles, the subsequent 100 points reprents the y coordinate, while the last 100 are the z component of the positions. Since we are working in 2D, the positions and forces in the z-direction should always vanish.

articles, the subher y coordinate, component of the g in 2D, the position should always 10^{-13} 10^{-13} 10^{-13} 10^{-13} 10^{-15}

 10^{-1}

 10^{-3}

 10^{-5}

FIG. 3

Forces

The initial forces—calculated at the exact positions of the LAMMPS particles—deviate from the LAMMPS values by up to 10^{-12} , c.f. Fig. 3.

FIG. 4

FIG. 5

Energies

Total energies calculated deviate from

FIG. 6