Counting Equivalence Classes of Matrices under Row Permutations

Bajtek Rogue

October 30, 2025

Problem

Let $n, m \in \mathbb{N}_+$, and let $\operatorname{Mat}_{n \times n}(\mathbb{Z}_m)$ denote the set of all $n \times n$ matrices with entries in $\mathbb{Z}_m = \{0, 1, \dots, m-1\}$. Given $\mathbf{A}, \mathbf{B} \in \operatorname{Mat}_{n \times n}(\mathbb{Z}_m)$, we say that they are **equivalent** if we can obtain \mathbf{B} by permuting the rows of \mathbf{A} . We wish to find the number of equivalence classes of matrices under this relation.

Solution

Let S_n denote the symmetric group on n elements. For $\sigma \in S_n$, we define its **permutation matrix** P_{σ} as follows:

$$[\mathbf{P}_{\sigma}]_{i,j} = \begin{cases} 1 & \text{if } i = \sigma(j), \\ 0 & \text{otherwise.} \end{cases}$$

Then we have $\mathbf{A} \sim \mathbf{B}$ if and only if $\mathbf{P}_{\sigma} \mathbf{A} = \mathbf{B}$ for some $\sigma \in \mathbf{S}_n$.

Next, let us define a group action $\theta: S_n \times \operatorname{Mat}_{n \times n}(\mathbb{Z}_m) \to \operatorname{Mat}_{n \times n}(\mathbb{Z}_m)$ by $\theta(\sigma, \mathbf{A}) = \mathbf{P}_{\sigma} \mathbf{A}$.

Verification of Group Action

Let us verify that this is indeed a group action. Take any $\mathbf{A} \in \mathrm{Mat}_{n \times n}(\mathbb{Z}_m)$.

Identity: If id is the identity permutation, then $\mathbf{P}_{\mathrm{id}} = \mathcal{I}_n$, where \mathcal{I}_n is the $n \times n$ identity matrix. Thus

$$\theta(\mathrm{id}, \mathbf{A}) = \mathbf{P}_{\mathrm{id}} \mathbf{A} = \mathcal{I}_n \mathbf{A} = \mathbf{A}.$$

Compatibility: To verify compatibility with the group operation, take $\sigma, \tau \in S_n$. Notice that

$$[\mathbf{P}_{\sigma}\mathbf{P}_{ au}]_{i,j} = \sum_{k=1}^{n} [\mathbf{P}_{\sigma}]_{i,k} [\mathbf{P}_{ au}]_{k,j} = \sum_{k=1}^{n} \mathbf{1}_{i=\sigma(k)} \mathbf{1}_{k= au(j)} = \mathbf{1}_{i=\sigma(au(j))} = [\mathbf{P}_{\sigma\circ au}]_{i,j}.$$

We then have

$$\theta(\sigma, \theta(\tau, \mathbf{A})) = \theta(\sigma, \mathbf{P}_{\tau}\mathbf{A}) = \mathbf{P}_{\sigma}\mathbf{P}_{\tau}\mathbf{A} = \mathbf{P}_{\sigma \circ \tau}\mathbf{A} = \theta(\sigma \circ \tau, \mathbf{A}).$$

Therefore, θ is a group action.

Orbits and Fixed Points

Recall that the **orbit** of **A** under the action of S_n is

$$\operatorname{Orb}_{S_n}(\mathbf{A}) = \{ \mathbf{B} \in \operatorname{Mat}_{n \times n}(\mathbb{Z}_m) : \exists \sigma \in S_n \mid \mathbf{B} = \theta(\sigma, \mathbf{A}) \},$$

the set of fixed points of σ is

$$\operatorname{Fix}_{S_n}(\sigma) = \{ \mathbf{A} \in \operatorname{Mat}_{n \times n}(\mathbb{Z}_m) : \theta(\sigma, \mathbf{A}) = \mathbf{A} \},$$

and the **set of orbits** is

$$\operatorname{Mat}_{n\times n}(\mathbb{Z}_m)/\operatorname{S}_n = \{\operatorname{Orb}_{\operatorname{S}_n}(\mathbf{A}) : \mathbf{A} \in \operatorname{Mat}_{n\times n}(\mathbb{Z}_m)\}.$$

Now $\mathbf{A} \sim \mathbf{B}$ if and only if $\mathbf{B} \in \operatorname{Orb}_{S_n}(\mathbf{A})$. Thus we wish to find the number of orbits of θ .

Application of Burnside's Lemma

By Burnside's lemma, we have

$$|\mathrm{Mat}_{n\times n}(\mathbb{Z}_m)/\mathrm{S}_n| = \frac{1}{|\mathrm{S}_n|} \sum_{\sigma\in\mathrm{S}_n} |\mathrm{Fix}_{\mathrm{S}_n}(\sigma)|.$$

Let us compute $|\operatorname{Fix}_{S_n}(\sigma)|$. Suppose σ has k disjoint cycles in its cycle decomposition. For \mathbf{A} to be fixed by σ , each row belonging to the same cycle must be identical. Since there are m^n ways to choose each row of a matrix \mathbf{A} , and we have k independent cycles, we have

$$|\operatorname{Fix}_{S_n}(\sigma)| = (m^n)^k.$$

Recall that there are exactly $\begin{bmatrix} n \\ k \end{bmatrix}$ permutations in S_n having k disjoint cycles, where $\begin{bmatrix} n \\ k \end{bmatrix}$ is the (unsigned) Stirling number of the first kind. Let us write $x^{\overline{n}} = x(x+1)\cdots(x+n-1)$ for the rising factorial. Recall the identity

$$\sum_{k=0}^{n} {n \brack k} x^k = x^{\overline{n}}.$$

Finally, we have

$$\frac{1}{|S_n|} \sum_{\sigma \in S} |\operatorname{Fix}_{S_n}(\sigma)| = \frac{1}{n!} \sum_{k=0}^n {n \brack k} (m^n)^k = \frac{1}{n!} (m^n)^{\overline{n}}.$$

Hence the number of equivalence classes of matrices under row permutations is

 $\boxed{\frac{1}{n!}(m^n)^{\overline{n}}}.$