Projektovanje baza podataka

Projektovanje šeme relacione BP

Metod dekompozicije

Sadržaj

- Osnovni projektantski kriterijumi
- Spojivost bez gubitaka
- Očuvanje skupa ograničenja
- Metoda dekompozicije

- U teoriji RMP polazi se od pretpostavke
 - da jedna šema relacije (*U*, *OGR*) predstavlja inicijalni model realnog sistema
- Projektovanje šeme BP
 - može se vršiti dekomponovanjem (rastavljanjem)
 šeme relacije (*U*, *OGR*) na više drugih šema relacija relacione šeme BP (*S*, *I*)

itt

- Šema BP (S, I) treba da zadovolji sledeće kriterijume u odnosu na (U, OGR)
 - (K1)
 - da predstavlja dekompoziciju ŠUR

$$(\forall N_i \in S)(R_i \neq \emptyset) \land \cup_{N_i \in S}(R_i) = U$$

- -(K2)
 - da se garantuje spojivost bez gubitaka informacija

$$r(\mathbf{U}, \mathbf{OGR}) = \triangleright \triangleleft_{N_i \in S}(r_i(R_i))$$

itt

- Šema BP (S, I) treba da zadovolji sledeće kriterijume u odnosu na (U, OGR)
 - -(K3)
 - skup svih ograničenja da bude ekvivalentan polaznom skupu ograničenja OGR

$$\bigcup_{N_i \in S} (O_i) \cup I \equiv OGR$$

- (K4) **□**
 - da se otklone sve anomalije ažuriranja

- U praksi je, često, nemoguće, ili nepotrebno strogo ispoštovati kriterijume K1-K4
 - kriterijumi se mogu, po potrebi, "oslabiti"

- Pojmovi relacionog MP, važni za projektovanje relacione šeme BP
 - funkcionalna zavisnost $X \rightarrow Y$, $XY \subseteq U$ $(\forall u, v \in r)(u[X] = v[X] \Rightarrow u[Y] = v[Y])$
 - projekcija skupa fz \boldsymbol{F} na skup obeležja $X \subseteq \boldsymbol{U}$ $\boldsymbol{F}|_X = \{V \rightarrow W \mid \boldsymbol{F}|= V \rightarrow W \land VW \subseteq X\}$
 - projekcija relacije r na skup obeležja $X \subseteq R$ $\pi_X(r(R)) = \{t[X] \mid t \in r(R)\}$
 - prirodni spoj relacija $r_1(R_1, \mathbf{F}_1)$ i $r_2(R_2, \mathbf{F}_2)$ $r_1 \triangleright \triangleleft r_2 = \{t \mid t[R_1] \in r_1 \land t[R_2] \in r_2\}$

Sadržaj

- Osnovni projektantski kriterijumi
- Spojivost bez gubitaka
- Očuvanje skupa ograničenja
- Metoda dekompozicije

- Motivacija problema
 - prirodni spoj služi za dobijanje odgovora na upite koji traže spajanje baznih relacija
 - bazne relacije su dobijene od hipotetičke univerzalne relacije
 - dekomponovanjem, primenom operatora projekcije
 - prirodnim spajanjem relacija bi se morala dobiti hipotetička univerzalna relacija
 - nažalost, nije uvek tako

Primer

```
- (U, F), U = \{N, I, P\}, F = \{N \rightarrow I, P \rightarrow I\}
```

- N nastavnik
- / institut
- P predmet

semantika fz

- nastavnik radi na tačno jednom institutu
- predmet pripada tačno jednom institutu

Moguća dekompozicija (*U*, *F*)

Polazna relacija

Bazne relacije

r	N	1	P
	n_1	i ₁	p_1
	n_1	i ₁	p_2
	n_2	i ₁	p_1
	n_3	i ₂	p_3

r(NI)	N	1
	n_1	i ₁
	n_2	i ₁
	n_3	i ₂

r(PI)	Р	1
	p_1	<i>i</i> ₁
	p_2	<i>i</i> ₁
	p_3	i_2

Posmatra se upit

SELECT N, I, P

FROM Nastavnik NATURAL JOIN Predmet

(alternativno, WHERE Nastavnik.I = Predmet.I)

$r(NI) \rhd \lhd r(PI)$	N	1	Р
	n_1	i ₁	p_1
	n_1	<i>i</i> ₁	p_2
	n_2	<i>i</i> ₁	p_1
	n_2	i ₁	p_2
	n_3	<i>i</i> ₂	p_3

r	N	1	Р
	n_1	i ₁	p_1
	n_1	i ₁	p_2
	n_2	i ₁	p_1
	n_3	i ₂	p_3

$r(NI) \rhd \lhd r(PI)$	N	1	Р
	n_1	i ₁	p_1
	n_1	i ₁	p_2
	n_2	<i>i</i> ₁	p_1
	n_2	i ₁	p_2
	n_3	i ₂	p_3

Javila se lažna torka

$$(n_2, i_1, p_2)$$

- što predstavlja gubitak informacije
 - zbog viška podataka
- ne zna se koje torke predstavljaju tačne, a koje lažne podatke
 - $r(NPI) \neq r(NI) \rhd \lhd r(PI)$

Druga moguća dekompozicija (*U*, *F*)

r(NI)	N	1
	n_1	<i>i</i> ₁
	n_2	i ₁
	n_3	i ₂

r(NP)	N	P
	n_1	p_1
	n_1	p_2
	n_2	p_1
	n_3	p_3

$r(NI) \rhd \lhd r(NP)$	N	1	Р
	n_1	i ₁	p_1
	n_1	i ₁	p_2
	n_2	i ₁	p_1
	n_3	i ₂	p_3

r	N	1	Р
	n_1	i ₁	p_1
	n_1	<i>i</i> ₁	p_2
	n_2	i ₁	p_1
	n_3	i ₂	p_3

$r(NI) \rhd \lhd r(NP)$	N	1	Р
	n_1	i ₁	p_1
	n_1	i ₁	p_2
	n_2	i ₁	p_1
	n_3	i ₂	p_3

it

- Spojivost bez gubitaka je, u slučaju primene drugog načina dekomponovanja, očuvana
- Zapažanje
 - ključ šeme relacije Nastavnik sadržan je u šemi relacije Povera:

$$N \subseteq NI \cap NP$$

it

- Pravilo za dekomponovanje i spajanje bez gubitaka za dve šeme relacije
 - pri projektovanju šeme BP, polazni (*U*, *F*) treba dekomponovati na šeme relacije

$$(R_1, F_1) i (R_2, F_2)$$

- tako da bude zadovoljeno
 - $R_1 \cup R_2 = U$
 - $K_1 \subseteq R_1 \cap R_2$ ili $K_2 \subseteq R_1 \cap R_2$ - K_1 - ključ šeme relacije (R_1, F_1) , K_2 - ključ šeme relacije (R_2, F_2)
 - jedna šema relacije mora sadržati ključ druge šeme relacije
- relacije nad (R_1, F_1) i (R_2, F_2) se smeju spajati samo ako važi

$$K_1 \subseteq R_1 \cap R_2$$
 ili $K_2 \subseteq R_1 \cap R_2$

Teorema o spojivosti bez gubitaka

- dati su (\boldsymbol{U} , \boldsymbol{F}), (R_1 , F_1) i (R_2 , F_2), tako da je
 - $R_1 \cup R_2 = U$
 - $F_1 = F|_{R1} i F_2 = F|_{R2}$
- ⊳ \triangleleft (R_1 , R_2) označava zavisnost spoja
 - kojom se garantuje spojivost bez gubitaka za (*U*, *F*), (*R*₁, *F*₁) i (*R*₂, *F*₂)
- važi implikacija
 - $F \models \triangleright \triangleleft (R_1, R_2)$ ako
 - $\mathbf{F} \models R_1 \cap R_2 \rightarrow R_1 \setminus R_2 \vee \mathbf{F} \models R_1 \cap R_2 \rightarrow R_2 \setminus R_1$

- Dokaz teoreme o spojivosti bez gubitaka
- $R_1 \cap R_2 \rightarrow R_1 \backslash R_2 \in F^+ \lor R_1 \cap R_2 \rightarrow R_2 \backslash R_1 \in F^+$
- $F \not\models \bowtie(R_1, R_2) \Rightarrow r \subset r_1 \bowtie r_2, r_1 = \pi_{R_1}(r), r_2 = \pi_{R_2}(r)$

r	$R_1 \cap R_2$	$R_1 \backslash R_2$	$R_2 \backslash R_1$
t	1	2	3

r ₁	$R_1 \cap R_2$	$R_1 \backslash R_2$
$t[R_1]$	1	2

r ₂	$R_1 \cap R_2$	$R_2 \backslash R_1$
$t[R_2]$	1	3

Dokaz teoreme o spojivosti bez gubitaka

$r_1 \bowtie r_2$	$R_1 \cap R_2$	$R_1 \backslash R_2$	$R_2 \backslash R_1$
u	1	2	4
V	1	5	3

kontradikcija sa

$$R_1 \cap R_2 \rightarrow R_1 \backslash R_2 \in F^+ \lor R_1 \cap R_2 \rightarrow R_2 \backslash R_1 \in F^+$$

Sadržaj

- Osnovni projektantski kriterijumi
- Spojivost bez gubitaka
- Očuvanje skupa ograničenja
- Metoda dekompozicije

Očuvanje skupa ograničenja

Dekompozicija (*U*, *F*)

- očuvava spojivost bez gubitaka informacija, ali
- ne očuvava polazni skup fz

Očuvanje skupa ograničenja

Dekompozicija (*U*, *F*)

- očuvava polazni skup fz, ali
- ne očuvava spojivost bez gubitaka informacija

Očuvanje skupa ograničenja

Treće rešenje: dekompozicija (*U*, *F*)

- očuvava polazni skup fz i
- očuvava spojivost bez gubitaka informacija

Sadržaj

- Osnovni projektantski kriterijumi
- Spojivost bez gubitaka
- Očuvanje skupa ograničenja
- Metoda dekompozicije

Korak rastavljanja pri dekompoziciji

- postupak obezbeđuje spoj bez gubitaka, jer
 - X je sigurno superključ u (R_1, F_1) i prenet je u $R_2 \Rightarrow$
 - ključ od (R_1, \mathbf{F}_1) sigurno je prenet u R_2

Kriterijumi izbora fz X→Y∈F

- po kojoj se realizuje jedan korak rastavljanja
 - (A) da je X→Y netrivijalna fz, takva da ne obuhvata ceo U
 - obezbeđenje progresa algoritma

$$(Y \subseteq X) \land (XY \subset U)$$

- (B) da je X→Y na kraju mogućih "lanaca izvođenja"
 - da se, u budućim koracima rastavljanja, obezbede što bolji uslovi za očuvanje polaznog skupa fz

$$(\forall W \rightarrow V \in F)((X)_{F}^{+} \neq (W)_{F}^{+} \Rightarrow X \rightarrow W \notin F^{+})$$

(C) da se očuvava ekvivalentnost s polaznim skupom fz F

$$F \equiv (F|_{XY} \cup F|_{(U \setminus Y)X})$$

- Strategije izbora fz $X \rightarrow Y \in F$
 - idealno je da se postigne ispunjenje svih uslova, ali to nije uvek moguće
 - S1: Idealna strategija
 - (A) ∧ (B) ∧ (C)
 - S2: Strategija očuvanja polaznog skupa fz
 - (A) ∧ (C)
 - S3: Strategija obezbeđenja progresa algoritma
 - (A) ∧ (B)

Primer

 analiza šeme relacije Student i njena dekompozicija do BCNF

$$F = \{BRI \rightarrow IME + PRZ + BPI, IME + PRZ \rightarrow BRI, OZP \rightarrow NAP, NAS \rightarrow OZP + NAP, BRI + OZP \rightarrow OCE + NAS\}$$

- Ključ: BRI+OZP
- BRI+OZP→IME+PRZ+BPI
 - nepotpuna fz neprimarnog obeležja od ključa
- šema relacije Student nije u 2NF

- Dekompozicija polazne šeme relacije Student
 - na osnovu fz BRI→IME+PRZ+BPI
 - Student({BRI, IME, PRZ, BPI},{BRI→IME+PRZ+BPI, IME+PRZ→BRI}),
 - *K* = {*BRI*, *IME*+*PRZ*}

(BCNF)

- Ostalo1({BRI, OZP, NAP, NAS, OCE}, {OZP→NAP, BRI+OZP→OCE+NAS, NAS→OZP+NAP})
 - *K* = {*BRI*+*OZP*, *BRI*+*NAS*}
- primenjena strategija S1
 - polazni skup fz F je očuvan

Analiza šeme relacije Ostalo1

$$F_1 = \{OZP \rightarrow NAP, NAS \rightarrow OZP + NAP,$$

 $BRI+OZP \rightarrow OCE+NAS$

- Ključ: BRI+OZP
- BRI+OZP→NAP
 - nepotpuna fz neprimarnog obeležja od ključa
- šema relacije Ostalo1 nije u 2NF

- Dekompozicija šeme relacije Ostalo 1
 - na osnovu fz OZP→NAP
 - Predmet({ OZP, NAP}, { OZP→NAP})
 - K = { *OZP*}

(BCNF)

- Ostalo2({BRI, OZP, NAS, OCE}, {BRI+OZP→OCE+NAS, NAS→OZP})
 - *K* = {*BRI*+*OZP*, *BRI*+*NAS*}
- primenjena strategija S1
 - polazni skup fz F₁ je očuvan ⇒ očuvan polazni skup fz F

Analiza šeme relacije Ostalo2

$$F_2 = \{NAS \rightarrow OZP, BRI + OZP \rightarrow OCE + NAS\}$$

- Ključevi: BRI+OZP, BRI+NAS
- BRI+NAS→OZP
 - nepotpuna fz od ključa
- šema relacije Ostalo2 je u 3NF
- šema relacije Ostalo2 nije u BCNF

- Dekompozicija šeme relacije Ostalo2
 - na osnovu fz BRI+OZP→OCE
 - $Ispit(\{BRI, OZP, OCE\}, \{BRI+OZP\rightarrow OCE\})$
 - *K* = {*BRI*+*OZP*}

(BCNF)

- Ostalo3({BRI, OZP, NAS}, {BRI+OZP→NAS, NAS→OZP})
 - *K* = {*BRI*+*OZP*, *BRI*+*NAS*}
- primenjena strategija S1
 - polazni skup fz F_2 je očuvan \Rightarrow očuvan polazni skup fz F_1

Analiza šeme relacije Ostalo3

$$F_3 = \{NAS \rightarrow OZP, BRI + OZP \rightarrow NAS\}$$

- Ključevi: BRI+OZP, BRI+NAS
- BRI+NAS→OZP
 - nepotpuna fz od ključa
- šema relacije Ostalo3 je u 3NF
- šema relacije Ostalo3 nije u BCNF

- Dekompozicija šeme relacije Ostalo3
 - na osnovu fz NAS→OZP
 - Povera({NAS, OZP}, {NAS→OZP})
 - *K* = {*NAS*}

(BCNF)

- Pohađa({BRI, NAS}, {})
 - *K* = {*BRI*+*NAS*}

(BCNF)

- primenjena strategija S3
 - Skup fz F₃ nije očuvan ⇒ izgubljena fz BRI+OZP→NAS

- Dobijen je skup šema relacija u BCNF
 - u notaciji N(R, K)
 - Student({BRI, IME, PRZ, BPI}, {BRI, IME+PRZ})
 - Predmet({ OZP, NAP}, { OZP})
 - Ispit({BRI, OZP, OCE}, {BRI+OZP})
 - Povera({NAS, OZP}, {NAS})
 - Pohađa({BRI, NAS}, {BRI+NAS})

- Objedinjavanje šema relacija sa ekvivalentnim ključevima
 - može dovesti do degradacije postignute normalne forme
 - šeme relacije sa ekvivalentnim ključevima
 - *Ispit*({*BRI*, *OZP*, *OCE*}, {*BRI*+*OZP*}) i
 - Pohađa({BRI, NAS}, {BRI+NAS})
 - objedinjuju se u jednu
 - *Ispit*({*BRI*, *OZP*, *NAS*, *OCE*}, {*BRI*+*OZP*, *BRI*+*NAS*})

(3NF)

- Nadoknađena je, prethodno izgubljena fz
 - BRI+OZP→NAS

- Konačan skup šema relacija u 3NF
 - Student({BRI, IME, PRZ, BPI}, {BRI, IME+PRZ}) (BCNF)

 - Povera({NAS, OZP}, {NAS})

(BCNF)

• Dekompozicija polazne, univerzalne relacije

Student

BRI	IME	PRZ	BPI	OZP	NAP	NAS	OCE
159	Ivo	Ban	13	P1	Mat	Han	09
159	Ivo	Ban	13	P2	Fiz	Kun	08
013	Ana	Tot	09	P1	Mat	Pap	06
119	Eva	Kon	15	P3	Hem	Kiš	07
159	Ivo	Ban	13	P3	Hem	Kiš	10
119	Eva	Kon	15	P1	Mat	Han	09
159	Ivo	Ban	13	P4	Mat	Car	10
037	Eva	Tot	01	P4	Mat	Car	10

Dekompozicija polazne, univerzalne relacije

BRI	IME	PRZ	BPI
159	Ivo	Ban	13
013	Ana	Tot	09
119	Eva	Kon	15
037	Eva	Tot	01

Predmet

OZP	NAP
P1	Mat
P2	Fiz
P3	Hem
P4	Mat

Povera

NAS	OZP	
Han	P1	
Kun	P2	
Pap	P1	
Kiš	P3	
Car	P4	

Student

Ispit

BRI	OZP	NAS	OCE
159	P1	Han	09
159	P2	Kun	08
013	P1	Pap	06
119	P3	Kiš	07
159	P3	Kiš	10
119	P1	Han	09
159	P4	Car	10
037	P4	Car	10

- Analiza anomalija ažuriranja
 - pokazuje se da su one, uglavnom, izbegnute
- Kreiranje šeme BP
 - definisanje međurelacionih ograničenja
 - Povera[OZP] ⊆ Predmet[OZP]
 - Ispit[BRI] ⊆ Student[BRI]
 - Ispit[(NAS, OZP)] ⊆ Povera[(NAS, OZP)]
 - obezbeđuje i očuvanje fz NAS→OZP u šemi relacije Ispit

Sadržaj

- Osnovni projektantski kriterijumi
- Spojivost bez gubitaka
- Očuvanje skupa ograničenja
- Metoda dekompozicije

Literatura

- Pavle Mogin, Ivan Luković, Miro Govedarica:
 Principi projektovanja baza podataka
 - Poglavlja 2.2 i 2.3

Pitanja i komentari

jektovanje baza podataka

Projektovanje šeme relacione BP

Metod dekompozicije