1. (a) Let $\mathcal{B} = \{U_i\}_1^{\infty}$ be a countable basis for X, then for each U_i assign some $x_i \in U_i$. Let $y \in X$, and V a neighborhood of y, then since \mathcal{B} contains a neighborhood base for y, we have some $x_i \in U_i \subset V$, hence $V \cap \{x_i\}_1^{\infty} \neq \emptyset$. Since V was arbitrary we can conclude that $y \in \{x_i\}_1^{\infty}$. Since Y was arbitrary $X = \{x_i\}_1^{\infty}$.

(b) Let $\{x_i\}_1^{\infty}$ be a countable dense subset of X, now define $\mathcal{B} := \{N_{\frac{1}{n}}(x_i) \mid n, i \in \mathbb{N}\}$, where $N_r(x) := \{y \in X \mid d(x,y) < r\}$. There is an obvious bijection $\mathcal{B} \to \mathbb{N} \times \mathbb{N}$, $N_{\frac{1}{n}}(x_i) \mapsto (n,i)$ so in particular \mathcal{B} is countable. Now let $y \in X$, and let U be a neighborhood of y. Then $U \supset N_r(y)$ for some r > 0. Then there exists some $x_i \in N_r(y)$ by density, by definition of the set, $d(x_i, y) < r$, so that $N_{r-d(x_i,y)}(x_i) \subset N_r(y)$ by the triangle inequality. Since we have $0 < r - d(x_i,y)$, we may choose N, such that $\frac{1}{N} < r - d(x_i,y)$ which gives the desired inclusion to prove that \mathcal{B} is a basis.

$$N_{\frac{1}{N}}(x_i) \subset N_{r-d(x_i,y)}(x_i) \subset N_r(y) \subset U \quad \Box$$

2. (a) Since we are in a metric space we may use the $\epsilon - \delta$ definition of continuity, where it is tautological that the function $d(x,\cdot): X \to X$, since continuity is defined in terms of the distance function. Given this it suffices to show that for $x_1, x_2 \in X$, $|d_F(x_1) - d_F(x_2)| \le d(x_1, x_2)$ to show continuity. Without loss of generality we may assume that $d_F(x_1) \ge d_F(x_2)$. Note that for any $y \in F$, $d(x_1, y) \le d(x_1, x_2) + d(x_2, y)$, so in particular we have for any $y \in F$ that $d_F(x_1) \le d(x_1, x_2) + d(x_2, y)$, which of course implies that $d_F(x_1) \le d(x_1, x_2) + d_F(x_2)$, taken together we get the desired inequality to prove continuity of d_F :

$$|d_F(x_1) - d_F(x_2)| = d_F(x_1) - d_F(x_2) \le d(x_1, x_2) + d_F(x_2) - d_F(x_2) = d(x_1, x_2)$$

 $x \in F \implies d_F(x) = 0$ is immediate from d(x,x) = 0. Since F^c is open, any $x \in F^c$ has some neighborhood $N_{\epsilon}(x) \subset F^c$, $\epsilon > 0$ implying that $d_F(x) \ge \epsilon > 0$.

- (b) The difference of continuous functions is continuous, we have from part (a) that bd_{F_i} are continuous which implies continuity of g. Now let $x \in F_2 \subset F_1^c$, then by part (a), we have $d_{F_2}(x) = 0$, $d_{F_1}(x) > 0$, so that $g(x) = d_{F_1}(x) > 0$. If $x \in F_1 \subset F_2^c$, then by part (a) we have $d_{F_1}(x) = 0$ and $d_{F_2}(x) > 0$, implying that $g(x) = -d_{F_2}(x) < 0$.
- (c) Metric spaces are Hausdorff and hence T_1 , so it suffices to show that any two closed sets can be separated by disjoint open sets. Let F_1, F_2 be disjoint closed sets and define g as in (b), we can use from part (b) that g is continuous. This implies that $g^{-1}(0,\infty)$ and $g^{-1}(-\infty,0)$ are open. Furthermore, we have from part (b) that $F_1 \subset g^{-1}(-\infty,0)$ and $F_2 \subset g^{-1}(0,\infty)$ we are done since these sets are disjoint:

$$g^{-1}(-\infty,0) \cap g^{-1}(0,\infty) = g^{-1}((-\infty,0) \cap (0,\infty)) = g^{-1}\emptyset = \emptyset \quad \Box$$

3. This follows simply by rewriting the sets S and \hat{S} .

$$S \stackrel{\text{def}}{=} \{ W \cap \bigcup_{\alpha \in A} \bigcap_{i=1}^{n} f_{\alpha,i}^{-1}(U_{\alpha,i}) \mid A \text{ is an arbitrary index set, } n \in \mathbb{N}, U_{\alpha,i} \in Y_{\alpha,i} \}$$

$$\tilde{S} \stackrel{\text{def}}{=} \{ \bigcup_{\alpha \in A} \bigcap_{i=1}^{n} f_{\alpha,i}|_{W}^{-1}(U_{\alpha,i}) \mid A \text{ is an arbitrary index set, } n \in \mathbb{N}, U_{\alpha,i} \in Y_{\alpha,i} \}$$

Then we can write

$$W \cap \bigcup_{\alpha \in A} \bigcap_{i=1}^{n} f_{\alpha,i}^{-1}(U_{\alpha,i}) = \bigcup_{\alpha \in A} \bigcap_{i=1}^{n} \left(f_{\alpha,i}^{-1}(U_{\alpha,i}) \cap W \right) = \bigcup_{\alpha \in A} \bigcap_{i=1}^{n} \left(f_{\alpha,i}^{-1}(U_{\alpha,i} \cap f(W)) \right) = \bigcup_{\alpha \in A} \bigcap_{i=1}^{n} f_{\alpha,i}|_{W}^{-1}(U_{\alpha,i})$$

So that S and \tilde{S} define the same set.

- **4.** (a) \implies (b) This follows from the f_i being continuous on the weak topology they generate. C.f. Notes Prop 1.59.
- (b) \Longrightarrow (a) Suppose for contraposition that $x_{\alpha} \not\to x$. Then there exists some neighborhood U of x, such that for any $\alpha_0 \in A$, there exists some $\alpha \ge \alpha_0$, such that $x_{\alpha} \notin U$. We may assume without loss of

generality that U is an open neighborhood by passing to an open subset containing x. By definition of the weak topology, $U = \bigcup_{i \in I} \bigcap_{j=1}^N f_{i_j}^{-1}(U_{i_j})$ for open $U_{i_j} \in \mathcal{T}(Y_{i_j})$, x must lie in some $\bigcap_{j=1}^N f_{i_j}^{-1}(U_{i_j})$, so we may once again without loss of generality rechoose $U = \bigcap_{j=1}^N f_{i_j}^{-1}(U_{i_j})$. Now suppose for $j=2,\ldots,N$ there exists some α_0^j , such that for any $\alpha \geq \alpha_0^j$ we have $f_{i_j}(x_\alpha) \in U_{i_j}$, then taking $\gamma \geq \alpha_0^j$, $\forall j \in 2,\ldots,N$, we have for any α_0 , there exists some $\alpha \geq \alpha_0, \gamma$, such that $x_\alpha \notin U$, implying that $x_\alpha \notin \bigcap_{j=1}^N f_{i_j}^{-1}(U_{i_j})$, and since x_α lies in $f_{i_2}^{-1}(U_{i_2}),\ldots,f_{i_N}^{-1}(U_{i_N})$ we must have that $x_\alpha \notin f_{i_1}^{-1}(U_{i_1})$, equivalently $f_{i_1}(x_\alpha) \notin U_{i_1}$. But U_{i_1} is open and contains $f_{i_1}(x)$, so we necessarily have $f_{i_1}(x_\alpha) \not \to f_{i_1}(x)$.

- **5.** (a) \Longrightarrow (b) Let (x,y) be an accumulation point of $\{(x,x)\}$, then there is a $(x_{\alpha},x_{\alpha})_{\alpha\in A}\to (x,y)$, from this we may define the net $(x_{\alpha})_{\alpha\in A}$, where we say $x_{\alpha}\leq x_{\alpha'}$ when $(x_{\alpha},x_{\alpha})\leq (x_{\alpha'},x_{\alpha'})$. Then if U is a neighborhood of x, $U\times X$ is a neighborhood of (x,y), so for some α_0 we have for all $\alpha\geq\alpha_0$, $(x_{\alpha},x_{\alpha})\in U\times X$, implying that $x_{\alpha}\in U$ for all $\alpha\geq\alpha_0$, i.e. $x_{\alpha}\to x$. By the same argument we find that $x_{\alpha}\to y$, but since X is Hausdorff we know that nets have unique limits, and hence x=y, implying that $(x,y)\in\{(x,x)\}$, i.e. $\mathrm{acc}\{(x,x)\}\subset\{(x,x)\}$ is closed.
- (b) Let $x \neq y \in X$, then $(x,y) \in \{(x,x)\}^c$ is open. Since $\{U \times V \mid U, V \text{ open in } X\}$ is a basis for the product topology, we have $\{(x,x)\}^c = \bigcup_{\alpha \in A} U_\alpha \times V_\alpha$, then for some $U \times V$, we have $(x,y) \in U \times V$, and furthermore $U \cap V = \emptyset$, since $U \times V \subset \{(x,x)\}^c$. Since U,V are open in X and we have $x \in U, y \in V$ proves that X is Hausdorff.
- **6.** Suppose that $x \in \overline{\{x \in X \mid f(x) = g(x)\}}$, equivalently there is some net $x_{\alpha} \to x$, such that $f(x_{\alpha}) = g(x_{\alpha})$, $\forall \alpha$. By continuity of f, g we have $f(x_{\alpha}) \to f(x)$, $g(x_{\alpha}) \to g(x)$. Define a new net y_{α} , where $y_{\alpha} = f(x_{\alpha}) = g(x_{\alpha})$, such that $y_{\alpha'} \geq y_{\alpha}$ when $\alpha' \geq \alpha$, then $y_{\alpha} \to f(x)$, $y_{\alpha} \to g(x)$, since Y is Hausdorff, nets in Y have unique limits implying that f(x) = g(x), so that $x \in \{x \in X \mid f(x) = g(x)\}$, which suffices to show that $\{x \in X \mid f(x) = g(x)\} = \{x \in X \mid f(x) = g(x)\}$.