Búsqueda en Grafos

Miguel Raggi

Escuela Nacional de Estudios Superiores UNAM

1 de abril de 2020

Índice:

- Búsqueda en Grafos
 - Introduccion
 - Busqueda No informada
- 2 Algoritmo
 - Repeticiones
 - Consideraciones Finales
- 3 Búsqueda Informada y A*
 - Heurística
 - A*
 - Consistencia
 - Eficiencia óptima
 - Consideraciones

Índice:

- 1 Búsqueda en Grafos
 - Introduccion
 - Busqueda No informada
- 2 Algoritmo
 - Repeticiones
 - Consideraciones Finales
- 3 Búsqueda Informada y A*
 - Heurística
 - A*
 - Consistencia
 - Eficiencia óptima
 - Consideraciones

Motivación

Motivación

Situación:

■ Sea *G* una digrafo (grafo dirigido).

Situación:

■ Sea *G* una digrafo (grafo dirigido).

■ Estamos paraditos en un nodo inicial y queremos un camino a un nodo objetivo.

Situación:

■ Sea *G* una digrafo (grafo dirigido).

- Estamos paraditos en un nodo inicial y queremos un camino a un nodo objetivo.
- En vez de nodo objetivo podríamos tener un test: ¿Estoy en un nodo objetivo?

Situación:

■ Sea *G* una digrafo (grafo dirigido).

- Estamos paraditos en un nodo inicial y queremos un camino a un nodo objetivo.
- En vez de nodo objetivo podríamos tener un test: ¿Estoy en un nodo objetivo?
- Quizás cada arista tiene asociado un costo no-negativo y queremos el camino de menor costo.

■ Camino en: laberinto, ciudad, videojuego.

- Camino en: laberinto, ciudad, videojuego.
- Resolver: juego del 15, sudoku, cubo de rubik.

- Camino en: laberinto, ciudad, videojuego.
- Resolver: juego del 15, sudoku, cubo de rubik.
- Bien-colorear una gráfica.

- Camino en: laberinto, ciudad, videojuego.
- Resolver: juego del 15, sudoku, cubo de rubik.
- Bien-colorear una gráfica.
- En lo que resta: pensar camino en mapa.

Búsqueda no informada sin costos.

Si no tenemos ninguna información acerca del problema, lo único que podemos hacer es buscar todos los posibles caminos en alguna manera ordenada.

Búsqueda no informada sin costos.

- Si no tenemos ninguna información acerca del problema, lo único que podemos hacer es buscar todos los posibles caminos en alguna manera ordenada.
- Describiremos un algoritmo general de búsqueda, y todos los algoritmos que veremos serán versiones del siguiente.

Índice:

- Búsqueda en Grafos
 - Introduccion
 - Busqueda No informada
- 2 Algoritmo
 - Repeticiones
 - Consideraciones Finales
- 3 Búsqueda Informada y A*
 - Heurística
 - A*
 - Consistencia
 - Eficiencia óptima
 - Consideraciones

Mantenemos una estructura de datos que llamaremos frontera, en donde guardaremos caminos.

 Mantenemos una estructura de datos que llamaremos frontera, en donde guardaremos caminos.

■ Empezaremos con el camino trivial únicamente.

 Mantenemos una estructura de datos que llamaremos frontera, en donde guardaremos caminos.

- Empezaremos con el camino trivial únicamente.
- En cada paso, escogemos (y quitamos) un camino P de la frontera, vemos si su último nodo es "nodo objetivo", y si no, lo reemplazamos con todos los caminos P+toda arista que sale del último nodo de P.

Mantenemos una estructura de datos que llamaremos frontera, en donde guardaremos caminos.

- Empezaremos con el camino trivial únicamente.
- En cada paso, escogemos (y quitamos) un camino P de la frontera, vemos si su último nodo es "nodo objetivo", y si no, lo reemplazamos con todos los caminos P+toda arista que sale del último nodo de P.
- Repetimos hasta que hayamos encontrado un nodo objetivo o la frontera esté vacía.

Vamos a pensar que el digrafo es un árbol así:

Empezamos sólo con el nodo inicial en la frontera

Expandimos

Escogemos un camino de la frontera

Expandimos.

Algoritmo

- Entrada: Un grafo G, un nodo inicial i y una prueba que dice si un nodo es objetivo.
- Salida: Un camino de *i* a un nodo objetivo.
- frontera = $\{i\}$
- Mientras (frontera no vacía):
 - \blacksquare Escoge un camino P y quítalo de frontera.
 - si (último nodo de P es nodo objetivo) (llamemos al último nodo ℓ).
 - ¡Terminamos! regresa P
 - si no:
 - Para cada vecino n de ℓ , añadimos $\ell \longrightarrow n$ a una copia de P y ponemos este nuevo camino en la frontera.

Algoritmo

- Entrada: Un grafo G, un nodo inicial i y una prueba que dice si un nodo es objetivo.
- Salida: Un camino de *i* a un nodo objetivo.
- \blacksquare frontera = $\{i\}$
- Mientras (frontera no vacía):
 - \blacksquare Escoge un camino P y quítalo de frontera.
 - si (último nodo de P es nodo objetivo) (llamemos al último nodo ℓ).
 - ¡Terminamos! regresa P
 - si no:
 - Para cada vecino n de ℓ , añadimos $\ell \longrightarrow n$ a una copia de P y ponemos este nuevo camino en la frontera.

¿Cómo escoger P?

Algoritmo

- Entrada: Un grafo G, un nodo inicial i y una prueba que dice si un nodo es objetivo.
- Salida: Un camino de *i* a un nodo objetivo.
- frontera = $\{i\}$
- Mientras (frontera no vacía):
 - \blacksquare Escoge un camino P y quítalo de frontera.
 - si (último nodo de P es nodo objetivo) (llamemos al último nodo ℓ).
 - ¡Terminamos! regresa P
 - si no:
 - Para cada vecino n de ℓ , añadimos $\ell \longrightarrow n$ a una copia de P y ponemos este nuevo camino en la frontera.

¿Cómo escoger P?

Nota: En la práctica hay varias mejoras.

■ Cada camino lo exploro sólo una vez, pero podría ser que llegue al mismo nodo de varias maneras diferentes.

- Cada camino lo exploro sólo una vez, pero podría ser que llegue al mismo nodo de varias maneras diferentes.
- Si hay ciclos, incluso podría volverse infinito este proceso.

- Cada camino lo exploro sólo una vez, pero podría ser que llegue al mismo nodo de varias maneras diferentes.
- Si hay ciclos, incluso podría volverse infinito este proceso.
- Podemos ir guardando los nodos ya explorados, para no repetir.

- Cada camino lo exploro sólo una vez, pero podría ser que llegue al mismo nodo de varias maneras diferentes.
- Si hay ciclos, incluso podría volverse infinito este proceso.
- Podemos ir guardando los nodos ya explorados, para no repetir.
- ¿Conviene?

- Cada camino lo exploro sólo una vez, pero podría ser que llegue al mismo nodo de varias maneras diferentes.
- Si hay ciclos, incluso podría volverse infinito este proceso.
- Podemos ir guardando los nodos ya explorados, para no repetir.
- ¿Conviene? ¡Depende del problema!

- Cada camino lo exploro sólo una vez, pero podría ser que llegue al mismo nodo de varias maneras diferentes.
- Si hay ciclos, incluso podría volverse infinito este proceso.
- Podemos ir guardando los nodos ya explorados, para no repetir.
- ¿Conviene? ¡Depende del problema! Casi siempre sí.

- Cada camino lo exploro sólo una vez, pero podría ser que llegue al mismo nodo de varias maneras diferentes.
- Si hay ciclos, incluso podría volverse infinito este proceso.
- Podemos ir guardando los nodos ya explorados, para no repetir.
- ¿Conviene? ¡Depende del problema! Casi siempre sí.
- Ejercicio: ¿Cómo cambiaría el pseudo-código para no explorar nodos más de una vez? (suponer no costos)

Profundo, Ancho, Dijkstra

■ Si el camino que escogemos es siempre el más reciente (frontera es una pila), tendremos entonces búsqueda a lo profundo (DFS).

Profundo, Ancho, Dijkstra

- Si el camino que escogemos es siempre el más reciente (frontera es una pila), tendremos entonces búsqueda a lo profundo (DFS).
- Si el camino que escogemos es siempre el más viejo (frontera es una cola), tendremos entonces búsqueda a lo ancho (BFS).

Profundo, Ancho, Dijkstra

- Si el camino que escogemos es siempre el más reciente (frontera es una pila), tendremos entonces búsqueda a lo profundo (DFS).
- Si el camino que escogemos es siempre el más viejo (frontera es una cola), tendremos entonces búsqueda a lo ancho (BFS).
- Si el camino que escogemos es siempre el de menor costo (utilizando una cola de prioridad), tenemos Dijkstra.

■ Notemos que verificamos si un nodo es objetivo cuando es el que sacamos de la frontera, NO cuando lo estamos metiendo por ser vecino de alguien. Importa cuando consideramos costo.

- Notemos que verificamos si un nodo es objetivo cuando es el que sacamos de la frontera, NO cuando lo estamos metiendo por ser vecino de alguien. Importa cuando consideramos costo.
- A veces nos importa el camino entero, y a veces sólo en último nodo. En el caso que solo nos importe el último nodo, es mejor guardar en la frontera sólo el último nodo, claro.

- Notemos que verificamos si un nodo es objetivo cuando es el que sacamos de la frontera, NO cuando lo estamos metiendo por ser vecino de alguien. Importa cuando consideramos costo.
- A veces nos importa el camino entero, y a veces sólo en último nodo. En el caso que solo nos importe el último nodo, es mejor guardar en la frontera sólo el último nodo, claro.
- Cuando se implementa el algoritmo, es buena idea hacer una función Vecinos(nodo) que regrese los vecinos de un nodo.

- Notemos que verificamos si un nodo es objetivo cuando es el que sacamos de la frontera, NO cuando lo estamos metiendo por ser vecino de alguien. Importa cuando consideramos costo.
- A veces nos importa el camino entero, y a veces sólo en último nodo. En el caso que solo nos importe el último nodo, es mejor guardar en la frontera sólo el último nodo, claro.
- Cuando se implementa el algoritmo, es buena idea hacer una función Vecinos(nodo) que regrese los vecinos de un nodo.
- La estructura de datos "frontera" importa. En python, para Busqueda a lo Profundo podemos utilizar la lista, porque sirve bien como stack, pero para una queue es mejor utilizar la estructura deque.
- Para Dijkstra usamos el módulo heapq.

Una optimización

■ Un problema con el algoritmo de búsqueda como lo vimos hasta ahora es que hacemos muchas copias de los caminos.

Una optimización

- Un problema con el algoritmo de búsqueda como lo vimos hasta ahora es que hacemos muchas copias de los caminos.
- Podemos hacerlo mejor: A cada nodo le guardamos su costo y su "padre", y al final reconstruimos el camino.

Una optimización

- Un problema con el algoritmo de búsqueda como lo vimos hasta ahora es que hacemos muchas copias de los caminos.
- Podemos hacerlo mejor: A cada nodo le guardamos su costo y su "padre", y al final reconstruimos el camino.
- Veamos cómo implementarlo.

Índice:

- Búsqueda en Grafos
 - Introduccion
 - Busqueda No informada
- 2 Algoritmo
 - Repeticiones
 - Consideraciones Finales
- 3 Búsqueda Informada y A*
 - Heurística
 - A*
 - Consistencia
 - Eficiencia óptima
 - Consideraciones

Búsqueda Informada

Si tenemos más información del problema, podemos hacerlo (mucho) mejor.

Búsqueda Informada

Si tenemos más información del problema, podemos hacerlo (mucho) mejor. Idea: ¿cómo resolvemos los humanos el problema?

Búsqueda Informada

Si tenemos más información del problema, podemos hacerlo (mucho) mejor. Idea: ¿cómo resolvemos los humanos el problema?

Heurística: Definición

■ Una heurística, intuitivamente, es una aproximación rápida del costo que le hace falta a un nodo para llegar a un nodo objetivo.

Heurística: Definición

- Una heurística, intuitivamente, es una aproximación rápida del costo que le hace falta a un nodo para llegar a un nodo objetivo.
- Formalmente,

Definición

Una heurística es una función $h:V(G)\to\mathbb{R}^{\geq 0}$ tal que

 $h(n) \approx m$ ínimo costo de n a algún nodo objetivo.

Heurística Admisible

Definición

Decimos que una heurística h es admisible si es una subestimación del costo real. Es decir, si para cada nodo n tenemos que

 $h(n) \le el$ costo real de n a un nodo objetivo.

Heurística Admisible

Definición

Decimos que una heurística h es admisible si es una subestimación del costo real. Es decir, si para cada nodo n tenemos que

 $h(n) \le el$ costo real de n a un nodo objetivo.

Entre más grande sea la heurística, mejor, siempre y cuando siga siendo admisible.

Ejemplos de heurísticas

Piensa: Da una heurística admisible para los siguientes problemas:

Ejemplos de heurísticas

Piensa: Da una heurística admisible para los siguientes problemas:

Resolver un laberinto.

Ejemplos de heurísticas

Piensa: Da una heurística admisible para los siguientes problemas:

- Resolver un laberinto.
- El juego del 15.

■ Intuitivamente, los nodos con heurística baja son los que dicen "me falta poco para llegar".

- Intuitivamente, los nodos con heurística baja son los que dicen "me falta poco para llegar".
- lacksquare Para que h sea admisible, h(g) debe ser 0 si g es un nodo objetivo.

- Intuitivamente, los nodos con heurística baja son los que dicen "me falta poco para llegar".
- Para que h sea admisible, h(g) debe ser 0 si g es un nodo objetivo.
- El hecho de que la heurística sea admisible lo usaremos para probar que, usando el algoritmo A*, de verdad obtenemos un camino óptimo.

- Intuitivamente, los nodos con heurística baja son los que dicen "me falta poco para llegar".
- lacksquare Para que h sea admisible, h(g) debe ser 0 si g es un nodo objetivo.
- El hecho de que la heurística sea admisible lo usaremos para probar que, usando el algoritmo A*, de verdad obtenemos un camino óptimo.
- La heurística 0 siempre es una heurística admisible, y en este caso A* se convierte en Dijkstra.

El algoritmo A* (léase: A-estrella)

■ Al hacer el algoritmo de búsqueda usual, siempre escogeremos el camino P con mínimo...

El algoritmo A* (léase: A-estrella)

■ Al hacer el algoritmo de búsqueda usual, siempre escogeremos el camino P con mínimo...

$$c(P) + h(\ell)$$

donde ℓ es el último nodo de P y c(P) es el costo acumulado de P.

El algoritmo A* (léase: A-estrella)

■ Al hacer el algoritmo de búsqueda usual, siempre escogeremos el camino P con mínimo...

$$c(P) + h(\ell)$$

donde ℓ es el último nodo de P y c(P) es el costo acumulado de P.

lacksquare Si para dos caminos P y P' ocurre que

$$c(P) + h(\ell) = c(P') + h(\ell'),$$

podemos escoger cuál va primero. Por esto, pensamos en A* como un conjunto de algoritmos.

■ ¿Qué estructura de datos utilizamos para la frontera?

- ¿Qué estructura de datos utilizamos para la frontera?
- Queremos:

- ¿Qué estructura de datos utilizamos para la frontera?
- Queremos:
 - Insertar caminos.

- ¿Qué estructura de datos utilizamos para la frontera?
- Queremos:
 - Insertar caminos.
 - Ver el camino de menor costo.

- ¿Qué estructura de datos utilizamos para la frontera?
- Queremos:
 - Insertar caminos.
 - Ver el camino de menor costo.
 - Quitar el camino de menor costo.

- ¿Qué estructura de datos utilizamos para la frontera?
- Queremos:
 - Insertar caminos.
 - Ver el camino de menor costo.
 - Quitar el camino de menor costo.
- ¡Cola de prioridad!

- ¿Qué estructura de datos utilizamos para la frontera?
- Queremos:
 - Insertar caminos.
 - Ver el camino de menor costo.
 - Quitar el camino de menor costo.
- ¡Cola de prioridad!
 - Usualmente implementado como una binary heap.

Propiedades de A*

Teorema (A* es óptimo)

Si h es una heurística admisible, el camino que encuentra cualquier algoritmo de tipo A^* es óptimo.

Propiedades de A*

Teorema (A* es óptimo)

Si h es una heurística admisible, el camino que encuentra cualquier algoritmo de tipo A^* es óptimo.

Demostración:

Propiedades de A*

Teorema (A* es óptimo)

Si h es una heurística admisible, el camino que encuentra cualquier algoritmo de tipo A^* es óptimo.

Demostración:

Supón que no. Sea P el camino encontrado y sea Q un camino mejor.

Propiedades de A*

Teorema (A* es óptimo)

Si h es una heurística admisible, el camino que encuentra cualquier algoritmo de tipo A^* es óptimo.

- Supón que no. Sea P el camino encontrado y sea Q un camino mejor.
- $h(p) + c(P) \le h(x) + c(X)$

Propiedades de A*

Teorema (A* es óptimo)

Si h es una heurística admisible, el camino que encuentra cualquier algoritmo de tipo A^* es óptimo.

- Supón que no. Sea P el camino encontrado y sea Q un camino mejor.
- $h(p) + c(P) \le h(x) + c(X)$
- ¡Contradicción!

Optimizaciones prácticas

- No guardar caminos en la frontera, sólo encontrar costos y después reconstruir el camino.
- 2 Si hay empate entre dos caminos (es decir, su costo+heurística es igual), expandir primero el de menor heurística.
- 3 Utilizar estructuras de datos más avanzadas que una binary heap para la cola de prioridad.

 \blacksquare Decimos que una heurística h es consistente si para cualquier arista $p \to n$ tenemos que

$$h(p) \le c(p \to n) + h(n)$$
 (pizarrón)

 \blacksquare Decimos que una heurística h es consistente si para cualquier arista $p \to n$ tenemos que

$$h(p) \le c(p \to n) + h(n)$$
 (pizarrón)

■ Es razonable: En una heurística no consistente hay aristas $p \to n$ en la que la heurística de p contiene más información que la heurística de su hijo n!

 \blacksquare Decimos que una heurística h es consistente si para cualquier arista $p \to n$ tenemos que

$$h(p) \le c(p \to n) + h(n)$$
 (pizarrón)

- Es razonable: En una heurística no consistente hay aristas $p \rightarrow n$ en la que la heurística de p contiene más información que la heurística de su hijo n!
- \blacksquare Si h heurística, podemos definir h' heurística consistente como

$$h'(n) = \max\{h(p) - c(p,n) : p \text{ nodo con camino a } n \text{ } \}$$

 \blacksquare Decimos que una heurística h es consistente si para cualquier arista $p \to n$ tenemos que

$$h(p) \le c(p \to n) + h(n)$$
 (pizarrón)

- Es razonable: En una heurística no consistente hay aristas $p \to n$ en la que la heurística de p contiene más información que la heurística de su hijo n!
- \blacksquare Si h heurística, podemos definir h' heurística consistente como

$$h'(n) = \max\{h(p) - c(p, n) : p \text{ nodo con camino a } n \}$$

Desgraciadamente no siempre podemos hacer esto al correr un algoritmo si la gráfica no es un árbol.

 \blacksquare Decimos que una heurística h es consistente si para cualquier arista $p \to n$ tenemos que

$$h(p) \le c(p \to n) + h(n)$$
 (pizarrón)

- Es razonable: En una heurística no consistente hay aristas $p \to n$ en la que la heurística de p contiene más información que la heurística de su hijo n!
- \blacksquare Si h heurística, podemos definir h' heurística consistente como

$$h'(n) = \max\{h(p) - c(p, n) : p \text{ nodo con camino a } n \}$$

- Desgraciadamente no siempre podemos hacer esto al correr un algoritmo si la gráfica no es un árbol.
- Consistente $+ h(\mathsf{nodo\ objetivo}) = 0 \implies \mathsf{admisible}, \mathsf{pero\ no\ al\ rev\'es}.$ (Ejercicio!)

■ Heurística del taxista en un laberinto?

■ Heurística del taxista en un laberinto? Sí.

- Heurística del taxista en un laberinto? Sí.
- Heurística del juego del 15?

- Heurística del taxista en un laberinto? Sí.
- Heurística del juego del 15? Sí.

- Heurística del taxista en un laberinto? Sí.
- Heurística del juego del 15? Sí.
- Heurística del tiempo en distancia lineal en la gráfica de una ciudad?

- Heurística del taxista en un laberinto? Sí.
- Heurística del juego del 15? Sí.
- Heurística del tiempo en distancia lineal en la gráfica de una ciudad? Sí.

- Heurística del taxista en un laberinto? Sí.
- Heurística del juego del 15? Sí.
- Heurística del tiempo en distancia lineal en la gráfica de una ciudad? Sí.
- En la siguiente gráfica:

- Heurística del taxista en un laberinto? Sí.
- Heurística del juego del 15? Sí.
- Heurística del tiempo en distancia lineal en la gráfica de una ciudad? Sí.
- En la siguiente gráfica:

Un poco de teoría

Proposición

Intuitivamente: Mejores heurísticas (i.e. más grandes pero admisibles) producen mejores algoritmos.

Teorema (A* es óptimamente eficiente)

■ Intuitivamente: Si la heurística es consistente, suponiendo que sabemos cómo lidiar con "empates", A* es más rápido que cualquier algoritmo de búsqueda óptimo, en el sentido que A* expande menos (o igual) caminos.

Teorema (A* es óptimamente eficiente)

- Intuitivamente: Si la heurística es consistente, suponiendo que sabemos cómo lidiar con "empates", A* es más rápido que cualquier algoritmo de búsqueda óptimo, en el sentido que A* expande menos (o igual) caminos.
- Formalmente: Sea B un algoritmo de búsqueda* óptimo. Para cada digráfica con costos G y heurística consistente (y admisible) h, existe un algoritmo de tipo A* que expande menor o igual número de caminos que B.

Teorema (A* es óptimamente eficiente)

- Intuitivamente: Si la heurística es consistente, suponiendo que sabemos cómo lidiar con "empates", A* es más rápido que cualquier algoritmo de búsqueda óptimo, en el sentido que A* expande menos (o igual) caminos.
- Formalmente: Sea B un algoritmo de búsqueda* óptimo. Para cada digráfica con costos G y heurística consistente (y admisible) h, existe un algoritmo de tipo A* que expande menor o igual número de caminos que B.

st Nota: Formalmente, un algoritmo de búsqueda B es una función que me dice en cada situación qué camino expandir.

Teorema (A* es óptimamente eficiente)

- Intuitivamente: Si la heurística es consistente, suponiendo que sabemos cómo lidiar con "empates", A* es más rápido que cualquier algoritmo de búsqueda óptimo, en el sentido que A* expande menos (o igual) caminos.
- Formalmente: Sea B un algoritmo de búsqueda* óptimo. Para cada digráfica con costos G y heurística consistente (y admisible) h, existe un algoritmo de tipo A* que expande menor o igual número de caminos que B.
- * Nota: Formalmente, un algoritmo de búsqueda B es una función que me dice en cada situación qué camino expandir. Es decir, $B: \mathcal{X} \to \mathcal{C}$, donde
 - lacktriangleright es el espacio de situaciones (i.e. Digráficas con heuristicas + algunos caminos marcados como siendo frontera consistentemente).
 - $lue{\mathcal{C}}$ es el espacio de caminos en la frontera.

Demostración:

■ Supongamos que es falso: Sea B un algoritmo de búsqueda óptimo que en cierta digráfica G con una heurística h consistente explora menos nodos que todo algoritmo de tipo A^* .

- Supongamos que es falso: Sea B un algoritmo de búsqueda óptimo que en cierta digráfica G con una heurística h consistente explora menos nodos que todo algoritmo de tipo A*.
- La idea será construir una gráfica G' tal que:

- Supongamos que es falso: Sea B un algoritmo de búsqueda óptimo que en cierta digráfica G con una heurística h consistente explora menos nodos que todo algoritmo de tipo A*.
- La idea será construir una gráfica G' tal que:
 - lacktriangle Restringida a los nodos explorados por B será idéntica a G (incluyendo la heurística).

- Supongamos que es falso: Sea B un algoritmo de búsqueda óptimo que en cierta digráfica G con una heurística h consistente explora menos nodos que todo algoritmo de tipo A*.
- La idea será construir una gráfica G' tal que:
 - Restringida a los nodos explorados por B será idéntica a G (incluyendo la heurística).
 - Habrá un camino a un nodo objetivo que tendrá menor costo que el camino que *B* regresó.

- Supongamos que es falso: Sea B un algoritmo de búsqueda óptimo que en cierta digráfica G con una heurística h consistente explora menos nodos que todo algoritmo de tipo A*.
- La idea será construir una gráfica G' tal que:
 - lacktriangle Restringida a los nodos explorados por B será idéntica a G (incluyendo la heurística).
 - Habrá un camino a un nodo objetivo que tendrá menor costo que el camino que *B* regresó.
- lacktriangle Observemos cómo quedó la frontera después de correr el algoritmo B, justo antes de encontrar el camino objetivo P. Sea p el último nodo de P.

■ Dado que B le gana a todos los algoritmos tipo A^* , existe un camino que A^* hubiera expandido antes que P.

- Dado que B le gana a todos los algoritmos tipo A^* , existe un camino que A^* hubiera expandido antes que P.
- Sea Q un camino de menor costo que A* hubiera expandido, pero que no fue expandido por B. Sea q el último nodo de Q.

- Dado que B le gana a todos los algoritmos tipo A^* , existe un camino que A^* hubiera expandido antes que P.
- Sea Q un camino de menor costo que A* hubiera expandido, pero que no fue expandido por B. Sea q el último nodo de Q.
- Es claro por la minimalidad de Q, que Q está en la frontera de B:

■ Como A* hubiera expandido a Q antes de expandir a P, sabemos que

$$c(Q) + h(q) < c(P) + h(p) = c(P)$$

lacktriangle Como A* hubiera expandido a Q antes de expandir a P, sabemos que

$$c(Q) + h(q) < c(P) + h(p) = c(P)$$

■ Construimos a G' así: Es igual a G en los nodos expandidos por B, pero le agregaremos un nodo más, que llamaremos ℓ . Será un nodo objetivo que sale del último nodo q de Q, cuya arista tiene un costo c = h(q).

Veamos que la heurística sigue siendo consistente (y por lo tanto admisible).

- Veamos que la heurística sigue siendo consistente (y por lo tanto admisible).
- En todas las aristas "viejas" ya era consistente y no cambiamos nada.

- Veamos que la heurística sigue siendo consistente (y por lo tanto admisible).
- En todas las aristas "viejas" ya era consistente y no cambiamos nada.
- En la nueva arista $h(q) \le h(\ell) + c = 0 + h(q)$.

- Veamos que la heurística sigue siendo consistente (y por lo tanto admisible).
- En todas las aristas "viejas" ya era consistente y no cambiamos nada.
- En la nueva arista $h(q) \le h(\ell) + c = 0 + h(q)$.
- Consistente $+ h(\ell) = 0$ implica admisible.

lacksquare Para los nodos que no tienen camino a q es claro.

- lacktriangle Para los nodos que no tienen camino a q es claro.
- lacktriangle Dado un nodo n con camino a q, por la consistencia de h tenemos que

$$c = h(q) \ge h(n) - c(n,q)$$

donde c(n,q) es el mínimo costo de n a q.

- lacktriangle Para los nodos que no tienen camino a q es claro.
- lacktriangle Dado un nodo n con camino a q, por la consistencia de h tenemos que

$$c = h(q) \ge h(n) - c(n,q)$$

donde c(n,q) es el mínimo costo de n a q.

- lacktriangle Para los nodos que no tienen camino a q es claro.
- lacktriangle Dado un nodo n con camino a q, por la consistencia de h tenemos que

$$c = h(q) \ge h(n) - c(n,q)$$

donde c(n,q) es el mínimo costo de n a q.

Así que la heurística sigue siendo admisible.

■ Sabemos que A* hubiera expandido primero a q que a p. Es decir,

$$h(q) + c(Q) < h(p) + c(P) = c(P)$$

lacksquare Sabemos que A* hubiera expandido primero a q que a p. Es decir,

$$h(q) + c(Q) < h(p) + c(P) = c(P)$$

■ ¡Terminamos! En G' el algoritmo B hubiera regresado a P.

■ Sabemos que A* hubiera expandido primero a q que a p. Es decir,

$$h(q) + c(Q) < h(p) + c(P) = c(P)$$

- ¡Terminamos! En G' el algoritmo B hubiera regresado a P.
- Sin embargo, si consideramos el camino $Q' = Q \rightarrow \ell$, tenemos que:

$$c(Q') = c(Q) + \frac{c(q \to \ell)}{c(Q)}$$
$$= c(Q) + \frac{h(q)}{c(P)!!!!!}$$

■ Sabemos que A* hubiera expandido primero a q que a p. Es decir,

$$h(q) + c(Q) < h(p) + c(P) = c(P)$$

- ¡Terminamos! En G' el algoritmo B hubiera regresado a P.
- Sin embargo, si consideramos el camino $Q' = Q \rightarrow \ell$, tenemos que:

$$c(Q')$$
 = $c(Q) + c(q \rightarrow \ell)$
 = $c(Q) + h(q)$
 < $c(P)!!!!!$

Esto contradice el hecho de que B es óptimo.

- Dar un contraejemplo al teorema anterior significaría dar un algoritmo B que pudiéramos probar que es óptimo y una gráfica para la cual B explora menos nodos que cualquier A^* .
- Veamos que si le quitamos la parte de "consistente" a la heurística, entonces podemos dar un algoritmo *B* con esas propiedades.
- B será Dijkstra SALVO en una situación particular. Además, habrá otra situación en donde B actuará como Dijkstra, pero diremos manualmente qué nodo expandir primero en un caso donde hay empate.

Los nodos verdes son los que B expandirá:

lacktriangle Es claro que B es óptimo, pues casi siempre B actúa como Dijkstra.

- lacktriangle Es claro que B es óptimo, pues casi siempre B actúa como Dijkstra.
- La segunda situación sí es diferente a lo que haría cualquier algoritmo tipo Dijkstra, pero no hay problema: No es posible que haya un camino con costo menor a 9, pues la heurística del nodo inicial es 9!

- lacktriangle Es claro que B es óptimo, pues casi siempre B actúa como Dijkstra.
- La segunda situación sí es diferente a lo que haría cualquier algoritmo tipo Dijkstra, pero no hay problema: No es posible que haya un camino con costo menor a 9, pues la heurística del nodo inicial es 9!
- En la siguiente gráfica, B expande menos nodos que cualquier algoritmo tipo A*:

Fin

¡Gracias por venir!