Digital Image Processing

Week-02

Contents

- Image Resolution
- Relationship between pixels
- Connectivity
- Connected Component Analysis

Spatial & Gray Level Resolution

Spatial Resolution

Spatial Resolution

Intensity Level Resolution

- Intensity level resolution refers to the number of intensity levels used to represent the image
 - The more intensity levels used, the finer the level of detail in an image
 - Intensity level resolution is usually given in terms of the number of bits used to store each intensity level

Intensity Level Resolution

Number of Bits	Number of Intensity Levels	Examples
1	2	0, 1
2	4	00, 01, 10, 11
4	16	0000, 0101, 1111
8	256	00110011, 01010101
16	65,536	1010101010101010

Intensity Level Resolution

Intensity Level Resolution er pixel) 128 grey levels (7 bpp) 64 grey levels (6 bpp) 32 grey levels

Resolution: How much is enough?

- How many samples and gray levels are required for a good approximation?
 - Quality of an image depends on number of pixels and graylevel number
 - The more these parameters are increased, the closer the digitized array approximates the original image
 - But: Storage & processing requirements increase rapidly as a function of N, M, and k

Resolution: How much is enough?

 Depends on what is in the image and what you would like to do with it

Relationships between pixels

 Neighbors of pixel are the pixels that are adjacent pixels of an identified pixel

4- Neighbors of a Pixel −N₄(p)

(x-1,y), (x+1,y), (x, y-1), (x, y+1)

Diagonal Neighbors of a Pixel –N_D(p)

$$(x-1,y-1), (x+1,y-1), (x-1,y+1), (x+1,y+1)$$

8- Neighbors of a Pixel $-N_8(p)$

$$N_8(p) = N_4(p) \cup N_D(p)$$

Determine different regions in the image

- Establishing boundaries of objects and components in an image
- Group the same region by assumption that the pixels being the same color or equal intensity
- Two pixels p & q are connected if
 - They are adjacent in some sense
 - If their gray levels satisfy a specified criterion of similarity

V: Set of gray levels used to define the criterion of similarity

4-connectivity

$$(p,q) \in V$$
, and $q \in N_4(p)$

Set of gray levels $V = \{1\}$

V: Set of gray levels used to define the criterion of similarity

8-connectivity

If gray level

$$(p,q) \in V$$
, and $q \in N_8(p)$

Set of gray levels $V = \{1\}$

V: Set of gray levels used to define the criterion of similarity

m-connectivity (Mixed Connectivity)

If gray level

- $(p,q) \in V$, and q satisfies one of the following:
 - a. $q \in N_4(p)$ or
 - b. $q \in N_D(p)$ And $N_4(p) \cap N_4(q)$ has no pixels whose values are from V

Example: m – Connectivity

Set of gray levels V = {1}

Note: Mixed connectivity can eliminate the multiple path connections that often occurs in 8-connectivity

Paths

- Path: Let coordinates of pixel p: (x, y), and of pixel q: (s, t)
- ◆ A path from p to q is a sequence of distinct pixels with coordinates: $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$ where $(x_0, y_0) = (x, y) & (x_n, y_n) = (s, t), and (x_i, y_i) is adjacent to <math>(x_{i-1}, y_{i-1})$ $1 \le i \le n$

Test Yourself

Consider the image segment shown.

- (a) Let V = {0,1} and compute the lengths of the shortest 4-,8-, and m-path between p and q. If a particular path does not exist between these two points, explain why.
- **(b)** Repeat for $V = \{1, 2\}$.

```
3 1 2 1 (q)
2 2 0 2
1 2 1 1
(p)1 0 1 2
```

Distance Metrics

 Let pixels p, q and z have coordinates (x,y), (s,t) and (u,v) respectively.

- D is a distance function or metric if
 - $D(p,q) \ge 0$ and
 - D(p,q) = 0 iff p = q and
 - D(p,q) = D(q,p) and
 - $D(p,z) \le D(p,q) + D(q,z)$

City block distance (D₄ distance)

$$D_4(p,q) = |x-s| + |y-t|$$

- Diamond with center at (x,y)
- $D_4 = 1$ are the 4 neighbors of pixel p(x,y)

Chessboard distance (D₈ distance)

$$D_8(p,q) = \max(|x-s|,|y-t|)$$

- 2 2 2 2 2
- 2 1 1 1 2
- 2 1 0 1 2
- 2 1 1 1 2
- 2 2 2 2 2

- Square centered at p(x,y)
- $D_8 = 1$ are the 8 neighbors of pixel p(x,y)

Euclidean Distance

$$D_e(p,q) = \sqrt{(x-s)^2 + (y-t)^2}$$

A circle with radius *r* centered at (x,y)

Distance Maps

Connected Component Analysis

 Process the image from left to right, top to bottom:

1.) If the next pixel to process is 1

i.) If only one of its neighbors (top or left) is 1, copy its label.

ii.) If both are 1 and have the same label, copy it.

iii.) If they have different labels

- Copy the label from the left.
- Update the equivalence table.

iv.) Otherwise, assign a new label.

Re-label with the smallest of equivalent labels

Pass 2

Same algorithm but examine also the upper diagonal neighbors of *p*

Label 2

Today's Learning Outcomes

- Image resolution is purely dependent on the type of application and available resources
- Relationship between pixels is important
- Connected component analysis is one of the fundamental concept in image analysis

What's Next

- Image Enhancement
- Mathematical Transformation

Readings from Book (4th Edn.)

• Chapter – 2

Acknowledgements

- Statistical Pattern Recognition: A Review A.K Jain et al., PAMI (22) 2000
- Pattern Recognition and Analysis Course A.K. Jain, MSU
- Pattern Classification" by Duda et al., John Wiley & Sons.
- Digital Image Processing", Rafael C. Gonzalez & Richard E. Woods, Addison-Wesley, 2018
- Machine Vision: Automated Visual Inspection and Robot Vision", David Vernon, Prentice Hall, 1991
- www.eu.aibo.com/
- Advances in Human Computer Interaction, Shane Pinder, InTech, Austria, October 2008