Rendimiento

Resumen

- Rendimiento: Un ordenador tiene más rendimiento que otro si puede ejecutar una tarea en menos tiempo.
 - Rendimiento = inversa del tiempo de ejecución
 - Cociente de rendimientos=inversa cociente de tiempos de ejecución
 - Se suele expresar en porcentajes
- Productividad: Un ordenador tiene más productividad que otro si puede ejecutar más tareas en el mismo tiempo.

- Tiempo transcurrido: Tiempo total necesario para completar una tarea, incluyendo accesos a discos, a memoria, E/S, etc...
- Tiempo de CPU: Tiempo que la CPU emplea en una determinada tarea. No incluye el tiempo de E/S ni de atención a otros programas.
- Tiempo de CPU de usuario: Tiempo que la CPU pasa en el programa del usuario.
- Tiempo de CPU de sistema: Tiempo que la CPU pasa ejecutando tareas de sistema operativo en beneficio del programa del usuario.
- Rendimiento del sistema: En este caso utilizamos como base el tiempo transcurrido en un sistema sin cargas (monotarea).
- Rendimiento de CPU: En este caso se utiliza como base el tiempo de CPU.

Rendimiento CPU

- Tiempo de ejecución de CPU en función de
 - Ciclos de reloj
 - Periodo de reloj o frecuencia de reloj
- Considerando instrucciones de programa queda en función de
 - Número de instrucciones
 - Ciclos por instrucción
 - Periodo de reloj

¿Cómo afecta cada componente al tiempo de ejecución?

Componente	Parámetro	
Algoritmo	Número de instrucciones, CPI	Dependiendo del algoritmo necesitaremos más o menos instrucciones. El algoritmo puede favorecer instrucciones más rápidas o no (afecta al CPI)
Lenguaje	Número de instrucciones, CPI	El lenguaje implementa el algoritmo. Idem del anterior.
Compilador	Número de instrucciones, CPI	El compilador efectúa la traducción a lenguaje máquina. Idem de los anteriores
Arquitectura del juego de instrucciones	Número de instrucciones, CPI, frecuencia de reloj	El juego de instrucciones afecta a los tres parámetros

- Acelerar el caso común: Se debe favorecer el caso frecuente sobre el infrecuente.
 - Overflow es infrecuente, por tanto la suma sin overflow (add unsigned) debe ser más rápida que con overflow (add).
- "La mejora obtenida en el rendimiento al utilizar algún modo de ejecución más rápido está limitada por la fracción de tiempo en que se pueda utilizar ese modo más rápido

- La aceleración depende de dos factores:
 - Fracción mejorada: La fracción de tiempo durante la cual puede utilizarse la mejora.
 - Aceleración mejorada: Cuanto más rápido se ejecuta la tarea si sólo se utiliza el modo mejorado.

Aceleración del rendimiento

 Tiempo de ejecución sin mejora= Tiempo de ejecución antiguo – Tiempo de ejecución con mejora.

```
Tejec_{sinmejora}
= Tejec_{antiguo} - Tejec_{con mejora}
Tejec_{sinmejora} = Tejec_{antiguo} * (1 - Fm)
```

Aceleración del rendimiento

Tiempo de ejecución con mejora=Tiempo de ejecución antiguo*Fracción de tiempo durante la cual se puede utilizar la mejora

 $Tejec_{conmejora} = Tejec_{antiguo} * \frac{Tejec_{con mejora}}{Tejec_{antiguo}}$

- Tiempo de ejecución nuevo= Tiempo antiguo durante la fracción que no se utiliza la mejora + tiempo nuevo durante el cual se utiliza la mejora
- El tiempo nuevo durante el cual se utiliza la mejora es 1/AM multiplicado por el tiempo antiguo.
 - Si se ejecuta el doble de rapido tarda ½ del tiempo antiguo

Aceleración del rendimiento

$$AG = \frac{T_{antiguo}}{T_{nuevo}} = \frac{1}{\left((1 - Fm) + \left(\frac{Fm}{Am}\right)\right)}$$

Resumen de Rendimiento (1)

- Definición:
- o Rendimiento $_{X}=\frac{1}{Tiempo_de_ejecuci\'on_{X}}$
- Condición:
- O Si
 - Rendimiento_X > Rendimiento_Y
- Entonces
 - o Tiempo_de_ejecucion_X < Tiempo_de_ejecucion_Y

Resumen de Rendimiento (2)

- Si X es más rápida que Y
 - $\frac{Rendimiento_X}{Rendimiento_Y} = n = 1 + \frac{(m)}{100}$
 - $\frac{\text{Tiempo_de_ejecución}_{Y}}{\text{Tiempo_de_ejecucion}_{X}} = n = 1 + \frac{(m)}{100}$
 - 0 N=1.5 → m=50
 - El ordenador x es 1.5 veces más rápido
 - El ordenador X es un 50% más rápido

Resumen de Rendimiento (3)

- o $Tiempo_{CPU_{programa}} = NumCiclosReloj_{CPU_{programa}} \times PeriodoReloj_{CPU_{programa}} \times PeriodoReloj_{CPU_{programa}$
- $o Tiempo_{CPU_{programa}} = \frac{NumCiclosReloj_{CPU_{programa}}}{FrecuenciaReloj}$
- Podemos disminuir el tiempo
 - Reduciendo el periodo de reloj == aumentar la frecuencia de reloj
 - Reducir el número de ciclos de reloj

Resumen de Rendimiento (4)

- $Num Ciclos Reloj_{CPU_{programa}} = Num Instrucciones_{programa} \times Promedio Ciclos Reloj_{instruccion}$
- \bullet $Tiempo_{CPU_{programa}} = NumCiclosReloj_{CPU_{programa}} \times PeriodoReloj$
- σ Tiempo_{CPUprograma} = NumInstrucciones_{programa} × CPI_{instruccion} × PeriodoReloj
- $o \frac{instrucciones}{programa} \times \frac{ciclos}{instruccion} \times \frac{Segundos}{ciclo} = \frac{Segundo}{programa}$
- Podemos disminuir el tiempo
 - Reduciendo el periodo de reloj == aumentar la frecuencia de reloj
 - Reducir el número de ciclos de reloj que tarda cada instrucción
 - Reducir el número de instrucciones de cada programa