Teoremario de Topología

Wilfredo Gallegos

30 de mayo de 2023

1. Contenido

Definición 1.1 Sea $X \neq \emptyset$ una clase τ de subconjuntos de X es una Topología sobre X si cumple:

- 1. \emptyset , $X \in \tau$
- 2. La uni'on de una clase arbitraria de conjuntos en τ es un miembro de τ
- 3. La intersecci'on de una clase finita de miembres de τ está en τ Los miembros de τ son los abiertos de X

Nota:

- 1. El par (X, τ) es un espacio topologíco
- 2. a los elementos de X se le llaman puntos

2. Teoremas-Lemas-Corolarios

Teorema 1 Los enunciados siguientes so neguivalentes

- 1. Una familia β de subconjuntos abiertos del espacio topológico (X, τ) es una base para τ si cada abierto de τ es unión de miembros de β
- 2. $\beta \subset \tau$ es una base para τ , ssi $\forall G \in \tau$, $\forall p \in G \exists B_p \in \beta \ni p \in B_p \subset G$

Teorema 2 Sea β una familia de subconjuntos de un conjunto no vacio X. Entonces β es una clase para una topología τ sobre X ssi se cumplen

- 1. $X=\cup_{b\in\beta}B$
- 2. $\forall B, B^* \in \beta$ se tiene que $B \cap B^*$ la unión de miembros de $\beta \Leftrightarrow si \ p \in B \cap B^* \exists B_p \in \beta \ni p \in B_p \subset B \cap B^*$

Teorema 3 Sea X cualquier conjunto no vacío y sea S una clase arbitriaria de subconjuntos de X, Entonces S puede construirse en la subbase abierta para una topología sobre X en el sentido que las intersecciones finitas de los miembros de S producen una base para dicha topología.

Lema 1 Si S es subbase de las topologías τ y τ^* sobre $X \Rightarrow \tau = \tau^*$

Teorema 4 Sea X un subconjunto no vacio y sea S una clase de subconjuntos de X. La topología τ sobre X, generado por S, y la intersección de todoas las topologías sobre X que contienen a S.

Teorema 5 Lindelof Sea X un espacio segundo contable si un abierto no-vacio G de X se puede representar como unión de una clase $\{G_1\}$ de abiertos de $X \Rightarrow G$ puede representarse como unión contable de los G_i

Teorema 6 Todo espacio m'etrico es de Hausdorff

Teorema 7 Si X es un espacio de Hausdorff, entonces cada sucesión de puntos (X_n) en X converga a lo más a un punto de X.

Teorema 8 Cada subconjunto finito $A \subset X$ en un Hausdorff es cerrado

Teorema 9 Composición de mapeos continuos es un mapeo continuo

Teorema 10 un mapeo $f: X \to Y$ entre espacios topológicos es continuo ssi es continuo en cada punto de X.

Teorema 11 Sea $\{f_i: X \to (Y_i, \tau_i)\}$ una colección de mapeos definidos sobre un conjunto no vacío X sobre los espacios topológicos (Y_i, τ_i) , sea

$$S = \cup_i \{ f^{-1}(H) : H \in \tau_i \}$$

y definimos τ como la topología sobre X generada por S, entonces:

- 1. Todas las f_i son continuas con respecto a τ
- 2. Si τ^* es la intersección de todas las topologías sobre X con respecto a las cuales las f_i son continuas, entonces $\tau = \tau^*$
- 3. τ es la topología menos fina sobre X tales que las f_i son continuas
- 4. S es una subbase para τ

Compactos

Teorema 12 Todo subespacio cerrado de un espacio compacto es compacto

Teorema 13 Cualquier imagen continua de un espacio compacto es compacto

Referencias