

Plano de Ensino para o Ano Letivo de 2020

IDENTIFICAÇÃO						
Disciplina:				Có	digo da Disciplina:	
Técnicas de Engenharia para Altas Frequências II				EEN942		
Course:						
Engineering Techniques for Hi	gh Frequencies					
Materia:						
Las Técnicas de Ingeniería de	Alta Frecuencia					
Periodicidade: Semestral	Carga horária total:	80	Carga horária sema	nal: 02	2 - 00 - 02	
Curso/Habilitação/Ênfase:	•	•	Série:	Períod	0:	
Engenharia Eletrônica			6	Notur	no	
Professor Responsável:		Titulação - Graduaç	ção		Pós-Graduação	
Eduardo Victor dos Santos Pouzada		Engenheiro em Elétrica e Eletrônica		Doutor		
Professores:		Titulação - Graduaç	ção		Pós-Graduação	
Eduardo Victor dos Santos Pouzada		Engenheiro em Elétrica e Eletrônica		Doutor		
			dades, e Atitude		204.01	

OBJETIVOS - Conhecimentos, Habilidades, e Atitudes

Conhecimentos:

Aprofundar e aplicar a conceituação de circuitos de alta frequência à dispositivos passivos não convencionais.

Apresentar a conceituação de ressoadores de alta frequência.

Apresentar a conceituação de antenas como dispositivos (e região) de transição entre ondas guiadas e ondas propagantes.

Estudar os principais parâmetros de antenas: diagrama de radiação, diretividade, ganho, impedância.

Operar instrumentos de laboratório específicos da área de altas frequências.

Estudar antenas lineares simples e antenas planares simples.

Estudar o princípio das redes de antenas.

Apresentar os conceitos fundamentais de propagação em meio aberto.

Habilidades e Atitudes:

Entender os princípios básicos que regem o funcionamento das antenas. Habilidade de analisar, equacionar e resolver problemas desta área.

Aprender noções básicas de diversas configurações de antenas.

Realizar projetos de algumas antenas e redes de geometria simples.

Compreender o funcionamento de alguns circuitos planares de alta frequência e sua utilização como antena.

Utilizar ferramentas computacionais de simulação no auxílio a projetos.

Aplicar os conhecimentos teóricos à problemas práticos e compreender a limitação dos modelos empregados.

2020-EEN942 página 1 de 9

parâmetros principais.

EMENTA

Dispositivos passivos, lineares, de alta frequência: modelagem por matriz de espalhamento. Relação entre parâmetros de espalhamento e matriz ABCD, matriz de impedância e matriz de admitância. Modelagem de dispositivos de duas portas. Ressoadores. Fator de qualidade. Estruturas ressonantes. Microlinhas de transmissão e topologias de casamento de impedância. Antenas: fundamentos e

Antenas: funções potencial auxiliar A e F, regiões próxima e distante. Teoremas: dualidade, reciprocidade e reação. Fórmula de Friis.

Antenas lineares simples e antenas planares simples. Redes de antenas.

SYLLABUS

Passive, linear, high frequency devices: scattering matrix modeling.

Relationship between scattering parameters and ABCD matrix, impedance matrix and admittance matrix. Two-port device modeling. Resonators. Quality factor. Resonant structures. Microtrip line and impedance matching topologies. Fundamentals of antennas and its main parameters. Antennas: auxiliary potential functions A and F, near and far regions. Theorems: duality, reciprocity and reaction. Friis formula. Simple linear antennas and simple planar antennas. Antenna arrays.

TEMARIO

Dispositivos pasivos, lineales, de alta frecuencia: modelado de matriz de dispersión. Relación entre parámetros de dispersión y matriz ABCD, matriz de impedancia y matriz de admitancia. Modelado de dispositivos de dos puertas. Resonadores. Factor de calidad. Estructuras resonantes. Microlíneas de transmisión y topologías de adaptación de impedancia. Antenas: fundamentos y parámetros principales. Antenas: funciones potenciales auxiliares A y F, regiones cercanas y lejanas. Teoremas: dualidad, reciprocidad y reacción. La fórmula de Friis. Antenas lineales simples y antenas planas simples. Redes de antenas.

ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM - EAA

Aulas de Teoria - Não

Aulas de Laboratório - Sim

LISTA DE ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM

- Project Based Learning

METODOLOGIA DIDÁTICA

Aulas teóricas expositivas com eventual auxilio de recursos computacionais (simuladores).

Aulas práticas (laboratório) com uso de instrumentos específicos da área de altas frequência ou uso de kit didático; ambas as abordagens facilitam a compreensão no desenvolvimento de projetos.

2020-EEN942 página 2 de 9

CONHECIMENTOS PRÉVIOS NECESSÁRIOS PARA O ACOMPANHAMENTO DA DISCIPLINA

- 1. Álgebra complexa e representação fasorial de grandezas harmônicas.
- 2. Funções complexas de argumento real.
- 3. Teoria de circuitos elétricos.
- 4. Eletromagnetismo básico (campos variantes no espaço e tempo).
- 5. Equações de Maxwell (EM) e grandezas associadas.

CONTRIBUIÇÃO DA DISCIPLINA

A contribuição principal desta disciplina é a de desenvolver no futuro profissional a compreensão do comportamento de alguns dispositivos e de antenas (operando em frequências elevadas).

A utilização de estruturas planares de microfita permitirá o projeto e a implementação de antenas simples.

A utilização de modelagem computacional (simulação) favorece e simplifica as etapas de projeto e a compreensão dos modelos teóricos, pois a complexidade do ambiente laboratorial de tópicos desta natureza demanda atenção, tempo e detalhes que divergem do objeto central de estudo.

BIBLIOGRAFIA

Bibliografia Básica:

BALANIS, Constantine A. Antenna theory: analysis and design. 3. ed. Hoboken, NJ: John Wiley, 2005. 1117 p.

FOOKS, E. H; ZAKAREVICIUS, R. A. Microwave engineering using microstrip circuits. New York: Prentice Hall, 1990. 333 p.

POZAR, David M. Microwave and RF wireless systems. New York: John Wiley, 2001. 366 p.

POZAR, David M. Microwave engineering. 4. ed. Hoboken, NJ: John Wiley, c2012. 700 p.

Bibliografia Complementar:

MAKAROV, Sergey N. Antenna and EM modeling with MATLAB. New York: Wiley-Interscience, c2002. 273 p.

MONGIA, Rayesh K et al. RF and microwave coupled-line circuits. 2. ed. Boston: Artech House, c2007. 549 p.

RIOS, Luiz Gonzaga; PERRI, Eduardo Barbosa. Engenharia de antenas. 2. ed. São Paulo, SP: Edgard Blücher, 2002. 236 p.

2020-EEN942 página 3 de 9

STUTZMAN, Warren L; THIELE, Gary A. Antenna theory and design. 2. ed. Hoboken, NJ: John Willey, 1998. 648 p.

AVALIAÇÃO (conforme Resolução RN CEPE 16/2014)

Disciplina semestral, com trabalhos e provas (duas e uma substitutiva).

Pesos dos trabalhos:

 $k_1: 1,0 \quad k_2: 1,0$

Peso de MP($k_{_{\rm P}}$): 6,0 Peso de MT($k_{_{\rm T}}$): 4,0

INFORMAÇÕES SOBRE PROVAS E TRABALHOS

Serão realizadas duas provas regimentais e trabalhos.

A nota referente a "trabalho" será composta pela média aritmética obtida das avaliações de atividades propostas como, por exemplo, (1) atividades práticas (projetos) desenvolvidos em sala de laboratório e fora dele, (2) apresentação de seminário, (3) resolução de listas de exercícios.

2020-EEN942 página 4 de 9

OUTRAS INFORMAÇÕ	DES

2020-EEN942 página 5 de 9

SOFTWARES NECESSÁRIOS PARA A DISCIPLINA

1. QucsStudio (software livre)
http://dd6um.darc.de/QucsStudio/qucsstudio.html
2. Smith Chart Calculator (software livre)
https://sourceforge.net/projects/gnssmithchart/
3. COMSOL Multiphysics.
5. COMBOL MUICIPHYSICS.
4. MATLAB.
4. MAILAB.

2020-EEN942 página 6 de 9

2020-EEN942 página 7 de 9

	PROGRAMA DA DISCIPLINA	
Nº da	Conteúdo	EAA
semana		
22 L	Dia não letivo (cf. Calendário Escolar).	0
22 T	Dia não letivo (cf. Calendário Escolar0.	
23 L	Semana de provas (PS1 do primeiro semestre).	0
23 Т	Semana de provas (PS1 do primeiro semestre).	
24 L	Modelagem de dispositivos de duas portas.	11% a 40%
24 T	Matriz de espalhamento. Relação entre parâmetros de espalhamento	
	e matriz ABCD, matriz de impedância e matriz de admitância.	
25 L	Exemplos de aplicação.	41% a 60%
25 T	Aplicações das matrizes a estruturas de duas portas.	
26 L	Aplicações em cavidades ressoanentes: geometria retangular e	11% a 40%
	geometria circular.	
26 T	Ressoadores. Fator de qualidade. Estruturas ressonantes.	
27 L	Simulação de geometria em microfita.	41% a 60%
27 Т	Microlinhas de transmissão: geometria de microfita (microstrip).	
	Parâmetros de modelagem.	
28 L	Simulação/medição de microfita.	61% a 90%
28 Т	Microfitas: implementação de topologias de casamento.	
29 L	Antenas: fundamentos e parâmetros principais.	1% a 10%
29 Т	Antenas: fundamentos e parâmetros principais.	
30 L	Período de provas (P1 semestral).	0
30 T	Período de provas (P1 semestral).	
31 L	Antenas: funções potencial auxiliar A e F, regiões próxima e	0
	distante. Teoremas: dualidade, reciprocidade e reação. Fórmula de	
	Friis.	
31 T	Antenas: funções potencial auxiliar A e F, regiões próxima e	
	distante. Teoremas: dualidade, reciprocidade e reação. Fórmula de	
	Friis.	
32 L	Antenas lineares.	11% a 40%
32 T	Antenas lineares.	
33 L	Multiplicação de diagrama de radiação.	11% a 40%
33 T	Redes de antenas.	
34 L	Simulação de antenas planares.	11% a 40%
34 T	Antenas planares.	
35 L	Seminários.	91% a
		100%
35 T	Seminários.	
36 L	Exemplos de antenas especiais para alta potência.	41% a 60%
36 T	Visita ao Laboratório de Microondas (LMO-IMT).	0.7.2
37 L	Seminários.	91% a
25 -		100%
37 T	Seminários.	
38 L	Período de provas (P2 semestral).	0
38 T	Período de provas (P2 semestral).	0
39 L	Período de provas (P2 semestral).	0

2020-EEN942 página 8 de 9

INSTITUTO MAUÁ DE TECNOLOGIA

39 T Período de provas (P2 semestral).	
40 L Propagação: fundamentos.	1% a 10%
40 T Propagação: fundamentos.	
41 L (Período de provas substitutivas - na semana 42).	0
41 T Propagação: fundamentos.	
Legenda: T = Teoria, E = Exercício, L = Laboratório	

2020-EEN942 página 9 de 9