Общие принципы и математика в РТЕХ

Дерзай знать

28 апреля 2018 г.

1 Цель работы:

1) измерение количества подведенного тепла и вызванного им нагрева твердого тела; 2)определение теплоемкости по экстраполяции отношения $\Delta Q/\Delta T$ к нулевым потерям тепла.

2 В работе используются:

калориметр с нагревателем и термометром сопротивления; амперметр; вольтметр; мост постоянного тока; источник питания 36 В.

Описание работы

В предлагаемой работе измерение теплоемкости твердых тел производится по обычной схеме. Исследуемое тело помещается в кало- риметр. Измеряется ΔQ — количество тепла, подведенного к телу, и ΔT изменение температуры тела, произошедшее в результате подвода тепла. Теплоемкость определяется по формуле

$$C = \frac{\Delta Q}{\Delta T} = \frac{P\Delta t - \lambda (T - T_k)\Delta t}{\Delta T} = \frac{P - \lambda (T - T_k)}{\Delta T/\Delta t}$$

 $\frac{\Delta T}{\Delta t} = f(T)$ -строим график и проводим касательную при $T = T_k$

Тогда
$$C=\frac{P}{(\Delta T/\Delta t)_k}$$
 Дополнительно $R_t=R_o(1+\alpha\Delta T); \ \frac{dR}{dt}=R_o\alpha\frac{dT}{dt}$
$$C=\frac{PR_k\alpha}{(dR/dt)_k(1+\alpha\Delta T_k)}$$

3 Экспериментальная установка:

Рис. 1. Схема устройства калориметра

4 Ход работы

1) Подготовим мост постоянного тока и определим R при комнатной температуре:

 $R = 18.04\Omega$ $T_k = 28^{\circ}\text{C}$ $\alpha = 4.28*10^{-3}K^{-1}$ $R_0 = 18.5\Omega$

- 2) Включим источник тока и снимем зависимость сопротивления термометра от времени для пустого калориметра, а также с латунью и алюминием внутри. Для этого проверим балансировку моста и установим на нем сопротивление, немного большее ($\sim 0.5\%$) чем это необходимо для балансировки.
 - 3) Показания запишем в таблицы:

Пусто	й калоримотр			Алюм	Алюминий	
Пустой калориметр		Латунь		R, Ω	t, c	
R, Ω	t, c	R, Ω	t, c	18.53	0	
18.37	0	18.65	0	18.62	114	
18.46	69	18.74	53	18.71	210	
18.68	245	18.83	187	18.80	354	
18.77	330	18.92	350	18.89	471	
18.86	452	19.01	497	18.98	636	
18.95	551	19.11	673	19.07	807	
19.04	674					
19.14	810	19.21	864	19.17	955	
19.24	943	19.31	1108	19.27	1159	
19.34	1092	19.41	•	19.36	1316	
15.04	1032			19.46	1566	

3) Построим графики по данным таблицам:

- 4) Используя полученные зависимости, построим графики зависимости $\frac{\triangle R}{\triangle t}$ от R
- 5) Для этого разделим кривые на отрезки и найдем для каждого из них коэффицент наклона.

Получили:

6) Посчитаем для каждого из получнных графиков теплоемкость по формуле:

$$C = \frac{PR_k \alpha}{(dR/dt)_k (1 + \alpha \Delta T_k)}$$

$$C_0 = 455 \frac{Joule}{K}$$
 $C_1 = 666 \frac{Joule}{K}$

$$C_2 = 931 \frac{Joule}{K}$$

 $C_0{=}455~rac{Joule}{K}$ $C_1{=}666~rac{Joule}{K}$ $C_2{=}931~rac{Joule}{K}$ Зная, что массы тел из латуни и алюминия равны соответственно 878 ± 0.1 g и 294.7 ± 0.1 g получаем:

$$C_L=240\pm0.3~\frac{Joule}{K*kg}$$

$$C_L(\text{Tabl}) = 377 \frac{Joule}{K*kg}$$

 $C_{Al}(\text{Tabl}) = 897 \frac{Joule}{K*kg}$

$$C_L = 240 \pm 0.3 \frac{Joule}{K*kg}$$
 $C_{Al} = 1615 \pm 0.3 \frac{Joule}{K*kg}$

$$C_{Al}(Tabl)=897 \frac{Joule}{K*kg}$$

Наша первая строчка.

Вторая строчка.

Важное можно выделить жирным

Эстеты могут воспользоваться курсивом

Прагматичные могут подчеркнуть

Можно даже в рамочку

Дефис – не тире.

Кавычки это не Shift+2. Кавычки это «так»

5 Мир формул

Наша первая формула 100 + 100 = 200, ага.

$$100 + 100 = 200$$

$$a^2 + b^2 = c^2 (1)$$

Теорему Пифагора (1) вы знаете с 8 класса¹. Эта теорема упоминается на странице 8.

Дроби 5.1

 $\frac{1}{3} + \frac{1}{3} = \frac{2}{3}$. Вот вам и дроби 2 . Так некрасиво. Kрасиво так:

$$\frac{1}{3} + \frac{1}{3} = \frac{2}{3}$$

¹Определенно знали

² А это с пятого класса.

5.2 Скобки

$$(2+3)\cdot 5 = 25$$

$$\left[\frac{4}{2} + 3\right] \cdot 5 = 25$$

$$\{2+3\} \cdot 5 = 25$$

5.3 Индексы

$$m_1, m_{12}, c^2, c^{22}$$

5.4 Стандартные функции

$$\sin x = 0$$

$$\operatorname{arctg} x = \sqrt[5]{3}$$

$$\log_{x-1} (x^2 - 3x - 4) \ge 2$$

$$\lg 10 = \ln e$$

5.5 Функции покрупнее

$$\sum_{i=1}^{n} a_i + b_i$$

$$\sum_{i=1}^{n} a_i + b_i$$

$$I = \int r^2 dm$$

$$I = \int r^2 dm$$

$$I = \int_0^1 r^2 dm$$

$$I = \int_{0}^{1} r^2 dm$$

5.6 Символы

$$2\times 2\neq 5$$

$$x\cap y, x\cup y$$

$$x \in (-\infty; 0),$$

$$\triangle ABC = \triangle A_1 B_1 C_1 \Rightarrow \angle A = \angle A_1$$

 \odot

Вторая часть! Ура!!!

Мы надеемся, что вы уже активно готовитесь к сдаче коллоквиума и вовсю смотрите программу «Мама, я Гейне!». Потому что если нет, то Таежный брат Владислав вас найдет. Так что вперед.

- Общие вопросы;
- Работа с текстом;
- Математика
 - Дроби;
 - Скобки;
 - Многое другое
- 1. Общие вопросы;
- 2. Математика
- 3. Работа с текстом;
 - Дроби;
 - Скобки;
 - Многое другое

5.7 Диакритические знаки

$$\dot{x} = 0,$$

$$\tilde{a} = \overline{bcde},$$

$$\overrightarrow{a}(0, 3, 4),$$

$$\underbrace{1 + 2 + 3 + \dots + n}_{n} = N,$$

$$(x - 1)(x + 1) > 0 \stackrel{x>0}{\Longleftrightarrow} x - 1 > 0,$$

5.8 Буквы других алфавитов и математические шрифты

$$\begin{split} \sin\alpha &= 0,\\ \omega &= \frac{2\pi}{T},\\ \epsilon, \varepsilon, \varphi \\ \overrightarrow{a} &= \mathbf{a},\\ x &\in R,\\ x &\in \mathbb{R},\\ m_{\text{rpy3a}} &= 15 \text{ kg} \end{split}$$

5.9 Матрицы

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

6 Группировка формул

$$2 \times a = 4,$$

 $-3 \times b = 6,$
 $-100 \times c = 110.$ (2)

$$2 \times a = 4, \quad 3 \times x = 11,$$

$$-3 \times b = 6, \quad -123 \times y = 123,$$

$$-100 \times c = 110, \quad -100z = 0.$$

$$\begin{cases} 2 \times a = 4, \\ -3 \times b = 6, \\ -100 \times c = 110. \end{cases}$$
(3)

$$\begin{bmatrix} 2 \times a = 4, \\ -3 \times b = 6, \\ -100 \times c = 110. \end{bmatrix}$$
$$2 \times a = 4$$
$$-3 \times b = 6$$
$$-100 \times c = 110$$
$$\Rightarrow -6ab = 24$$

Рис. 1: Дерзай знать!

Наш логотип представлен на рисунке 1

Рис. 2: Дерзай знать!

Наш векторный логотип представлен на рисунке 2

Таблица 1: Погрешности

Tassinga 1. 11st pellinsetin									
Погр	ешности	Подробнейший комментарий нашего дорогого Та-							
		pun namero dopororo 1a-							
			ежного брата						
Систематическая	Случайная	Итог							
$\sigma_1 = 0,04$	$\sigma_2 = 0,03$	$\sigma = 0.05$							
	v		1 -						

7 Таблицы

8 Картинки и таблицы в тексте

Рис. 3: Таежный брат

Юрлов Владислав Витальевич, дата рождения: 31.10.1997, паспорт: серия 2434 номер 1212121, проживает по адресу Москва, улица Тверская, дом 1, кв

789, прописан по адресу: США, Нью-Йорк, Бродвей, дом 156, квартира 457. Судимостей не имеет, справка о состоянии здоровья предоставлена. Подано заявление о приеме на работу в качестве совместителя, на должность ведущего «Мама, я Гейне!» Основное место работы: ведущий консультант Tesla Motors, США. Прилагаются рекомендации о приеме на работу от: Илон Маск, Дональд Трамп.

Бесполезная таблица. Бесполезная таблица.

A	B	C
1	2	3

Таблица Бесполезная таблица

2:

Список иллюстраций

2	Дерзай знать!	
Спи	сок таблиц	
1	Погрешности	

9 Ссылки

- С.М. Львовский. LATEX: подробное описание;
- Топовый курс от ВШЭ.