

Fundamental of Mobile Robot AUT-710

Exercise 4

Widhi Atman 10.3.2023, **RN201**, 10:15 - Finish

Exercises Plan

- Exercise 4: Implementation of model + Basic Control
 - SI Go-to-goal → Proportional Control
 - SI Trajectory Tracking → Proportional + Feedforward Control
 - Unicycle Go-to-goal → Proportional Control for Orientation

Deadline: Monday 20.3.2022 at 23:59

- Exercise 5: Collision Avoidance with SI model
- Exercise 6: Control of Unicycle
- Mini Projects (optional)

10 point

20 point

20 point

Bonus up to 20 point

Tools and Grouping

Python: Matplotlib, Numpy, Cvxopt
I provided base scripts for the exercise in Python
https://github.com/TUNI-IINES/FunMoRo_control

Not recommended, but you are free to use other language or software tools that you preferred (e.g., Matlab, C++), given that you prepare it yourself.

Work in a group of 2 (same as before)

Flowchart of Simulator

Parameter Setting (for Exercise 4)

Time sampling T = 10ms

^{*} the visualizer is optional

Exercise 4.1 – Scenario

Model: omnidirectional mobile robot (single-integrator model)

Initial Position: $x[0] = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T$ Goal: static at $x^d = \begin{bmatrix} -2 & 1 & 0 \end{bmatrix}^T$.

Control Objective:

- Reach the goal

Exercise 4.1 (3 point)

base code omnidirectional.py

With the objective to design control input u to reach the goal,

- Implement proportional control with static k within 0~3. Plot *time series* of v_x and p_x with 3 set of different k.
- Implement proportional control with time-varying k b. Plot *time series* of v_x and p_x with 3 pair of parameter v_0 and β .

 $u = k(x^d - x), k > 0$

Discuss how the variation of k, v_0 and β affects the control input and state trajectory. What do you think is the appropriate value of k, or v_0 and β ?

Exercise 4.2 – Scenario

Model: omnidirectional mobile robot (single-integrator model)

Initial Position: $x[0] = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T$

Goal: moving at

$$x^{d}[t] = [-\cos(2t) - \sin(2t) \quad 0]^{T}$$

Control Objective:

Track the moving goal

Exercise 4.2 (2 point)

base_code_omnidirectional.py

Track the moving goal by designing proportional control with feedforward term

$$u = k(x^d(t) - x) + \dot{x}^d(t), \ k > 0$$

Describe your design process and show the result by plotting:

- time series of control input u
- time series of error $(x^d x)$,
- time series of state trajectory x vs x^d , and
- XY **trajectory** of the robot (or final snapshot of the simulator).

* Remember to modify the x^d in the simulator.

Exercise 4.3 – Scenario

$$(p_x, p_y) \qquad x = \begin{bmatrix} p_x \\ p_y \\ \theta \end{bmatrix} \ u = \begin{bmatrix} v \\ \omega \end{bmatrix}$$

Model: unicycle mobile robot

Initial Position: $x[0] = \begin{bmatrix} 0 & 0 & -\frac{\pi}{2} \end{bmatrix}^T$

Goal: fixed position at $x^d = \begin{bmatrix} -1 & 1 & * \end{bmatrix}^T$

* can be any orientation at the goal position

Control Objective:

Reach the goal (by designing ω)

with
$$v = \begin{cases} 0, & \text{if distance to goal} < 0.05m \\ 1, & \text{otherwise} \end{cases}$$

Exercise 4.3 (5 point)

$$(p_x, p_y) \qquad x = \begin{bmatrix} p_x \\ p_y \\ \theta \end{bmatrix} \ u = \begin{bmatrix} v \\ \omega \end{bmatrix}$$

- Design a proportional control for the orientation to reach the goal position. Describe your design approach and your observation.
 - Show the result by plotting:
 - time series of control input u
 - time series of error $(x^d x)$,
 - time series of state trajectory x vs x^d , and
 - XY **trajectory** of the robot (or final snapshot of the simulator).
- b. Find the minimum k in the proportional controller that ensure the robot can reach the goal. Describe the problem with small gain k and analyze what affects the minimum k value.

Hint1: Compute desired angle θ^d towards goal position that constantly changes as the robot moves

Hint2: remember to ensure that $\overline{e}_{\theta} \in [-\pi, \pi]$

Question?

- Consult them via
 - Exercise sessions on 10.3.2023 and 17.3.2023
 - Teams channel