Esame scritto di Geometria 2

UNIVERSITÀ DEGLI STUDI DI TRENTO CORSO DI LAUREA IN MATEMATICA A.A. 2014/2015 Giugno 2015

Esercizio 1

Sia \mathbb{E}^3 lo spazio euclideo con un sistema di coordinate cartesiane (x, y, z) di centro O. Si considerino i seguenti oggetti:

$$P_k: (1,2,k) \quad Q: (0,1,1) \quad s: x-y+z=y+z-3=0$$

e si indichi con r_k la retta passante per P_k e Q.

- Si dica per quali valori del parametro k si ha $r_k||s$;
- Per i valori di k per cui r_k ed s sono incidenti, ricavare il punto di intersezione R_k tra le due rette e l'angolo convesso formato dalle due rette.
- Per i valori di k per cui r_k ed s sono incidenti, siano A e B due punti rispettivamente su r_k e su s in modo che
 - il triangolo $\stackrel{\triangle}{ABR_k}$ sia retto in B;
 - $d(A,R_k) = 5\sqrt{2};$
 - l'ascissa di A sia positiva.

Ricavare le coordinate dei punti A e B e l'area del triangolo $\stackrel{\triangle}{ABR_k}$.

Esercizio 2

Sia \mathbb{P}^3 lo spazio proiettivo complesso e sia $[x_0, x_1, x_2, x_3]$ un sistema di coordinate proiettive. Si consideri, al variare del parametro $k \in \mathbb{C}$, la quadrica \mathcal{Q}_k di equazione

$$\mathcal{Q}_k: x_0^2 - (2k-2)x_0x_1 + 2x_0x_2 + (1-k)x_1^2 + 2kx_2x_3 - kx_3^2 = 0.$$

- Si dica per quali valori di k, \mathcal{Q}_k è non degenere.
- Si scriva, al variare di k, la forma canonica della quadrica \mathcal{Q}_k .
- Scrivere una proiettività che manda $\mathcal{Q} := \mathcal{Q}_1$ nella sua forma canonica.

Esercizio 3

Si consideri la funzione $f: \mathbb{R} \to [-1, 1]$ tale che

$$f(x) = \begin{cases} -x & \text{se } x \in [-1, 1] \\ 1 & \text{se } x > 1 \\ -1 & \text{se } x < -1 \end{cases}$$

e supponiamo di munire [-1,1] della topologia indotta da quella euclidea.

- Si ricavi la topologia τ su \mathbb{R} in modo che sia la meno fine che rende f continua;
- Si dica se $X = (\mathbb{R}, \tau)$ è compatto;
- Dire se X è T_2 e ricavare quali sono gli elementi dell'insieme

$$\left\{P \in X \mid \lim_{n \to \infty} \left(1 - \frac{1}{n}\right) = P\right\}.$$

Esercizio 4

Sia $X = \mathbb{R}^* = \mathbb{R} \setminus \{0\}$ e si consideri l'applicazione $d: X \times X \to \mathbb{R}$ tale che

$$d(x,y) = \left| \frac{1}{y} - \frac{1}{x} \right|.$$

- Dimostrare che (X,d) è uno spazio metrico;
- Si dica se la successione $\{1/n\}_{n\geq 1}$ ha limite e se la successione $\{2^n\}_{n\geq 1}$ è di Cauchy;
- Si dica se (X,d) è completo.

Soluzione dell'esercizio 1

La giacitura della retta r_k è generata dal vettore che unisce Q a P_k cioè dal vettore

$$d_k = P_k - Q = (1, 2, k) - (0, 1, 1) = (1, 1, k - 1).$$

Se S è un sottospazio affine (euclideo) e se indichiamo con G(S) la giacitura di S abbiamo

$$G(r_k) = <(1,1,k-1)>.$$

A partire da delle equazioni parametriche per r_k

$$r_k: \begin{cases} x = t \\ y = 1 + t \\ z = 1 + (k - 1)t \end{cases}$$

possiamo ricavare delle equazioni cartesiane

$$r_k: \begin{cases} x = t \\ y = 1 + x \\ z = 1 + (k - 1)x \end{cases} \begin{cases} y - x - 1 = 0 \\ z - (k - 1)x - 1 = 0 \end{cases}$$

Ricaviamo delle equazioni parametriche per la retta s:

$$s: \left\{ \begin{array}{l} x - y + z = 0 \\ y + z - 3 = 0 \end{array} \right. \left\{ \begin{array}{l} x - y + z = 0 \\ y = 3 - z = 0 \end{array} \right. \left\{ \begin{array}{l} x - 3 + z + z = 0 \\ y = 3 - z = 0 \end{array} \right. \left\{ \begin{array}{l} x = 3 - 2t \\ y = 3 - t \\ z = t \end{array} \right.$$

Abbiamo anche quindi una rappresentazione per la giacitura di s: G(s) = <(-2, -1, 1)>.

Le rette r_k e s sono parallele se e solo se i generatori delle giaciture sono proporzionali. Siccome

$$Rk\left(\begin{bmatrix} 1 & 1 & k-1 \\ -2 & -1 & 1 \end{bmatrix}\right) = 2$$

abbiamo che le due rette non sono mai parallele.

Per ricavare la posizione reciproca di r_k e s possiamo prima di tutto vedere se si intersecano. Le eventuali intersezioni si ricavano come soluzioni del sistema

$$r_k \cap s: \left\{ \begin{array}{l} y - x - 1 = 0 \\ z - (k - 1)x - 1 = 0 \\ x - y + z = 0 \\ y + z - 3 = 0 \end{array} \right. \left\{ \begin{array}{l} y = x + 1 \\ z = (k - 1)x + 1 \\ x + 2z - 3 = 0 \\ x - 2y + 3 = 0 \end{array} \right. \left\{ \begin{array}{l} y = x + 1 \\ x - 2x - 2 + 3 = 0 \\ x + 2z - 3 = 0 \\ z = (k - 1)x + 1 \end{array} \right.$$

$$\begin{cases} x = 1 \\ y = 1 + 1 \\ 1 + 2z - 3 = 0 \\ z = (k - 1) + 1 \end{cases} \begin{cases} x = 1 \\ y = 2 \\ z = 1 \\ z = k \end{cases}$$

che ha soluzione se e solo se k = 1. Abbiamo quindi che r_k e s sono sghembe per $k \neq 1$ (avevamo già visto che non erano parallele) e che si intersecano nel punto $R_1(1,2,1)$ se k = 1.

Per ricavare l'angolo tra le rette r_1 e s calcoliamo il coseno dell'angolo formato tra le direttrici delle rette. Questo vale

$$\cos(\theta) = \frac{\langle d_1, (-2, -1, 1) \rangle}{||d_1|| \cdot ||(-2, -1, 1)||} = \frac{\langle (1, 1, 0), (-2, -1, 1) \rangle}{||(1, 1, 0)|| \cdot ||(-2, -1, 1)||} = \frac{-3}{\sqrt{2}\sqrt{6}} = -\frac{\sqrt{3}}{2}.$$

Siccome $\theta = \pi \pm \frac{\pi}{6}$ è maggiore di $\frac{\pi}{2}$ abbiamo che l'angolo formato dalle due rette è $\frac{\pi}{6}$.

I punti di r_1 a distanza $5\sqrt{2}$ da R_1 sono tali che

$$5\sqrt{2} = d(R_1, R_1 + td_1) = d((1, 2, 1), (1 + t, 2 + t, 1)) = |t|\sqrt{2}$$

da cui ricaviamo $t=\pm 5$. Per t=-5 abbiamo $R_1-5d_1=(1,2,1)-(5,5,0)=(-4,-3,1)$ la cui ascissa è negativa. Si ha quindi

$$A = R_1 + 5d_1 = (1, 2, 1) + (5, 5, 0) = (6, 7, 1).$$

Sappiamo dal punto precedente che l'angolo in R_1 deve valere $\frac{\pi}{6}$ da cui ricaviamo facilmente che i cateti del triangolo sono lunghi rispettivamente $5\sqrt{2}\cos(\pi/6)$ e $5\sqrt{2}\sin(\pi/6)$. L'area vale perciò $25\sqrt{3}/4$. Il punto B è la proiezione ortogonale di A su s. Per ottenerlo basta proiettare il vettore $\overrightarrow{R_1A}$ in modo ortogonale sulla giacitura di s ottenendo il vettore $\overrightarrow{R_1B}$. Chiamiamo per semplicità v il vettore (-2, -1, 1) il quale genera la giacitura di s. Abbiamo quindi:

$$\overrightarrow{R_1B} = \frac{\langle 5d_1, v \rangle}{|v|^2} v = \frac{\langle (5, 5, 0), (-2, -1, 1) \rangle}{|(-2, -1, 1)|^2} v = -\frac{15}{6} v = \frac{5}{2} (2, 1, -1) = \left(5, \frac{5}{2}, -\frac{5}{2}\right).$$

Abbiamo quindi che il punto $B \stackrel{.}{\epsilon}$

$$B = R_1 + \overrightarrow{R_1B} = (1,2,1) + \left(5, \frac{5}{2}, -\frac{5}{2}\right) = \left(6, \frac{9}{2}, -\frac{3}{2}\right).$$

Soluzione dell'esercizio 2

La matrice associata alla quadrica è

$$A_k := \begin{bmatrix} 1 & 1-k & 1 & 0 \\ 1-k & 1-k & 0 & 0 \\ 1 & 0 & 0 & k \\ 0 & 0 & k & -k \end{bmatrix}$$

e ha determinante

$$\left| \begin{bmatrix} 1-k & 1-k & 0 \\ 1 & 0 & k \\ 0 & 0 & -k \end{bmatrix} \right| - k \left| \begin{bmatrix} 1 & 1-k & 0 \\ 1-k & 1-k & 0 \\ 1 & 0 & k \end{bmatrix} \right| = -k \left| \begin{bmatrix} 1-k & 1-k \\ 1 & 0 \end{bmatrix} \right| - k(1-k) \left| \begin{bmatrix} 1 & 1 & 0 \\ 1-k & 1 & 0 \\ 1 & 0 & k \end{bmatrix} \right| = -k \left| \begin{bmatrix} 1-k & 1-k \\ 1 & 0 \end{bmatrix} \right| - k(1-k) \left| \begin{bmatrix} 1 & 1 & 0 \\ 1-k & 1 & 0 \\ 1 & 0 & k \end{bmatrix} \right| = -k \left| \begin{bmatrix} 1-k & 1-k \\ 1 & 0 \end{bmatrix} \right| - k(1-k) \left| \begin{bmatrix} 1 & 1 & 0 \\ 1-k & 1 & 0 \\ 1 & 0 & k \end{bmatrix} \right| = -k \left| \begin{bmatrix} 1-k & 1-k \\ 1 & 0 \end{bmatrix} \right| - k(1-k) \left| \begin{bmatrix} 1 & 1 & 0 \\ 1-k & 1 & 0 \\ 1 & 0 & k \end{bmatrix} \right| = -k \left| \begin{bmatrix} 1-k & 1-k \\ 1 & 0 \end{bmatrix} \right| - k(1-k) \left| \begin{bmatrix} 1 & 1 & 0 \\ 1-k & 1 & 0 \\ 1 & 0 & k \end{bmatrix} \right| = -k \left| \begin{bmatrix} 1-k & 1-k \\ 1 & 0 \end{bmatrix} \right| - k(1-k) \left| \begin{bmatrix} 1 & 1 & 0 \\ 1-k & 1 & 0 \\ 1 & 0 & k \end{bmatrix} \right| = -k \left| \begin{bmatrix} 1-k & 1-k \\ 1 & 0 \end{bmatrix} \right| - k(1-k) \left| \begin{bmatrix} 1 & 1 & 0 \\ 1-k & 1 & 0 \\ 1 & 0 & k \end{bmatrix} \right| = -k \left| \begin{bmatrix} 1-k & 1-k \\ 1 & 0 \end{bmatrix} \right| - k(1-k) \left| \begin{bmatrix} 1-k & 1-k \\ 1 & 0 \end{bmatrix} \right| - k(1-k) \left| \begin{bmatrix} 1-k & 1-k \\ 1 & 0 \end{bmatrix} \right| - k(1-k) \left| \begin{bmatrix} 1-k & 1-k \\ 1 & 0 \end{bmatrix} \right| - k(1-k) \left| \begin{bmatrix} 1-k & 1-k \\ 1 & 0 \end{bmatrix} \right| - k(1-k) \left| \begin{bmatrix} 1-k & 1-k \\ 1 & 0 \end{bmatrix} \right| - k(1-k) \left| \begin{bmatrix} 1-k & 1-k \\ 1 & 0 \end{bmatrix} \right| - k(1-k) \left| \begin{bmatrix} 1-k & 1-k \\ 1 & 0 \end{bmatrix} \right| - k(1-k) \left| \begin{bmatrix} 1-k & 1-k \\ 1 & 0 \end{bmatrix} \right| - k(1-k) \left| \begin{bmatrix} 1-k & 1-k \\ 1 & 0 \end{bmatrix} \right| - k(1-k) \left| \begin{bmatrix} 1-k & 1-k \\ 1 & 0 \end{bmatrix} \right| - k(1-k) \left| \begin{bmatrix} 1-k & 1-k \\ 1 & 0 \end{bmatrix} \right| - k(1-k) \left| \begin{bmatrix} 1-k & 1-k \\ 1 & 0 \end{bmatrix} \right| - k(1-k) \left| \begin{bmatrix} 1-k & 1-k \\ 1 & 0 \end{bmatrix} \right| - k(1-k) \left| \begin{bmatrix} 1-k & 1-k \\ 1 & 0 \end{bmatrix} \right| - k(1-k) \left| \begin{bmatrix} 1-k & 1-k \\ 1 & 0 \end{bmatrix} \right| - k(1-k) \left| \begin{bmatrix} 1-k & 1-k \\ 1 & 0 \end{bmatrix} \right| - k(1-k) \left| \begin{bmatrix} 1-k & 1-k \\ 1 & 0 \end{bmatrix} \right| - k(1-k) \left| \begin{bmatrix} 1-k & 1-k \\ 1 & 0 \end{bmatrix} \right| - k(1-k) \left| \begin{bmatrix} 1-k & 1-k \\ 1 & 0 \end{bmatrix} \right| - k(1-k) \left| \begin{bmatrix} 1-k & 1-k \\ 1 & 0 \end{bmatrix} \right| - k(1-k) \left| \begin{bmatrix} 1-k & 1-k \\ 1 & 0 \end{bmatrix} \right| - k(1-k) \left| \begin{bmatrix} 1-k & 1-k \\ 1 & 0 \end{bmatrix} \right| - k(1-k) \left| \begin{bmatrix} 1-k & 1-k \\ 1 & 0 \end{bmatrix} \right| - k(1-k) \left| \begin{bmatrix} 1-k & 1-k \\ 1 & 0 \end{bmatrix} \right| - k(1-k) \left| \begin{bmatrix} 1-k & 1-k \\ 1 & 0 \end{bmatrix} \right| - k(1-k) \left| \begin{bmatrix} 1-k & 1-k \\ 1 & 0 \end{bmatrix} \right| - k(1-k) \left| \begin{bmatrix} 1-k & 1-k \\ 1 & 0 \end{bmatrix} \right| - k(1-k) \left| \begin{bmatrix} 1-k & 1-k \\ 1 & 0 \end{bmatrix} \right| - k(1-k) \left| \begin{bmatrix} 1-k & 1-k \\ 1 & 0 \end{bmatrix} \right| - k(1-k) \left| \begin{bmatrix} 1-k & 1-k \\ 1 & 0 \end{bmatrix} \right| - k(1-k) \left| \begin{bmatrix} 1-k & 1-k \\ 1 & 0 \end{bmatrix} \right| - k(1-k) \left| \begin{bmatrix} 1-k & 1-k \\ 1 & 0 \end{bmatrix} \right| - k(1-k) \left| \begin{bmatrix} 1-k & 1-k \\ 1 & 0 \end{bmatrix} \right| - k(1-k) \left| \begin{bmatrix} 1-k & 1-k \\ 1 & 0 \end{bmatrix} \right| - k(1-k) \left| \begin{bmatrix} 1-k & 1-k \\ 1 & 0 \end{bmatrix}$$

$$k(1-k) - k^2(1-k)(1-1+k) = k(1-k)(1-k^2) = k(1-k)^2(1+k)$$

che si annulla per $k \in \{-1,0,1\}$. Questi sono esattamente i valori per cui \mathcal{Q}_k è degenere.

Sostituiamo i valori appena ricavati:

$$A_{-1} := \begin{bmatrix} 1 & 2 & 1 & 0 \\ 2 & 2 & 0 & 0 \\ 1 & 0 & 0 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix} \quad A_{0} := \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad A_{1} := \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

Si vede facilmente che A_0 ha rango 3 mentre, sommando alla terza colonna di A_1 la quarta, si deduce che $Rk(A_1) = 2$. Per quanto riguarda A_{-1} , se sottraiamo alla prima colonna la seconda e sommiamo alla terza la quarta otteniamo la matrice

$$\begin{bmatrix} -1 & 2 & 1 & 0 \\ 0 & 2 & 0 & 0 \\ 1 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

che ha rango 3. Di conseguenza, la forma canonica di \mathcal{Q}_k è

$$\begin{cases}
se k = 1 & x_0^2 + x_1^2 = 0 \\
se k = -1, 0 & x_0^2 + x_1^2 + x_2^2 = 0 \\
se k \neq 0, \pm 1 & x_0^2 + x_1^2 + x_2^2 + x_3^2 = 0
\end{cases}$$

poichè la forma canonica, per le quadriche proiettive complesse, è determinata dal rango della matrice rappresentativa.

Poniamo k = 1. L'equazione della quadrica diventa quindi

$$0 = x_0^2 + 2x_0x_2 + 2x_2x_3 - x_3^2$$

che si scrive facilmente come

$$0 = x_0^2 + 2x_0x_2 + x_2^2 - x_2^2 + 2x_2x_3 - x_3^2 = (x_0 + x_2)^2 + (i(x_2 - x_3))^2.$$

Una proiettività che riduce la quadrica nella sua forma canonica è quindi

$$\begin{cases} X_0 = x_0 + x_2 \\ X_1 = i(x_2 - x_3) \\ X_2 = x_1 \\ X_3 = x_3 \end{cases}$$

Soluzione dell'esercizio 3

La topologia cercata è

$$\tau = \{ f^{-1}(A) | A \in \tau_e \}.$$

Se f è continua infatti è necessario che tutti gli insiemi del tipo $f^{-1}(A)$ con $A \in \tau_e$ siano aperti. Rimane da mostrare che τ è effettivamente una topologia ma questo segue facilmente dal fatto che l'unione (rispettivamente l'intersezione) di controimmagini è la controimmagine dell'unione (rispettivamente dell'intersezione). Più in dettaglio, la topologia è composta da tutti gli aperti della topologia euclidea che sono contenuti in (-1,1) e degli insiemi del tipo

- $A \operatorname{con} A \in \tau_e \operatorname{e} A \subset (-1,1)$;
- $A \cup (1, +\infty)$ con $A \in \tau_e$ che non contiene 1 ma che contiene -1;
- $A \cup (-\infty, -1)$ con $A \in \tau_e$ che non contiene -1 ma che contiene 1;
- $A \cup (-\infty, -1) \cup (1, +\infty)$ con $A \in \tau_e$ che contiene $\{\pm 1\}$.

Sia $\mathscr{U} = \{U_i\}_{i \in I}$ un ricoprimento aperto di $X = (\mathbb{R}, \tau)$. Si ha quindi $U_i = f^{-1}(A_i)$ con $A_i \in \tau_e$. Siccome \mathscr{U} è un ricoprimento avremo che gli A_i devono coprire l'immagine di f, cioè [-1,1]. Siccome [-1,1] è compatto per (\mathbb{R}, τ_e) , esisterà una collezione finita A_{i_1}, \ldots, A_{i_n} che costituisce un ricoprimento finito. Questo mostra che $\{f^{-1}(A_{i_j})\}_{j=1..n}$ è un sottoricoprimento finito di \mathscr{U} : (\mathbb{R}, τ) è compatto.

Dalla descrizione fatta degli aperti di X, abbiamo che ogni intorno aperto che contiene 2 contiene anche 3 (e viceversa): X non è T_1 e quindi nemmeno T_2 . Occupiamoci di ricavare i limiti della successione $x_n = 1 - 1/n$. Sia $x \in (-1,1)$ e sia $\delta = \min(|1-x|,|x+1|)$ (il minimo delle distanze euclidee di x da 1 e -1). Posto $\varepsilon = \delta/2$ si ha che $(x - \varepsilon, x + \varepsilon)$ è un aperto di X (controimagine di $(-x - \varepsilon, -x + \varepsilon)$) che sontiene x e al più un numero finito di elementi della successione: questo mostra che nessun elemento di (-1,1) è limite della successione. Analoga conclusione se x = -1 o x > 1: l'intorno aperto $U = f^{-1}((1/2,3/2)) = [-1,-1/2) \cup (1,+\infty)$ di x è disgiunto dai punti della successione. Sia invece x un punto in $(-\infty,-1) \cup \{1\}$. Ogni intorno U di x è del tipo $U = f^{-1}(V)$ con $-1 \in V \in \tau_e$. In particolare, esiste ε tale che $(-1-\varepsilon,-1+\varepsilon) \subset V$. Quindi $(1-\varepsilon,1]$ è contenuto in U. Questo ci dice che per n >> 0 si ha $x_n \in U$. Di conseguenza

$$\left\{P \in X \mid \lim_{n \to \infty} \left(1 - \frac{1}{n}\right) = P\right\} = (-\infty, -1) \cup \{1\}.$$

Soluzione dell'esercizio 4

Valgono chiaramente proprietà di annullamento e di simmetria quindi rimane da verificare la disuguaglianza triangolare. Questa vale infatti, presi $x, y, z \in \mathbb{R}^*$ si ha

$$d(x,z) = \left| \frac{1}{z} - \frac{1}{x} \right| = \left| \frac{1}{z} - \frac{1}{y} + \frac{1}{y} - \frac{1}{x} \right| \le \left| \frac{1}{z} - \frac{1}{y} \right| + \left| \frac{1}{y} - \frac{1}{x} \right| = d(x,y) + d(y,z).$$

Poniamo $x_n = \frac{1}{n}$ e verifichiamo che $\{x_n\}_{n\geq 1}$ non ha limite perchè non è di Cauchy. Per farlo basta osservare che, se $n\neq m$, si ha

$$d(x_n, x_m) = \left| \frac{1}{\frac{1}{m}} - \frac{1}{\frac{1}{n}} \right| = |m - n| \ge 1$$

da cui si vede che la distanza tra due termini qualsiasi della successione non può essere controllata da una quantità arbitrariamente piccola.

Poniamo ora $y_n = 2^n$ e consideriamo la seconda successione. Si considerino y_n e y_m con $n \neq m$ (assumiamo inoltre, senza perdita di generalità, che n > m). Allora

$$d(y_n, y_m) = \left| \frac{1}{2^m} - \frac{1}{2^n} \right| = \frac{2^n - 2^m}{2^{n+m}} \le \frac{2^n}{2^{n+m}} = 2^{-m}$$

Di conseguenza, se $1 > \varepsilon > 0$ e se poniamo $N(\varepsilon) = \log_2(\varepsilon^{-1})$ abbiamo che per ogni $n, m > N(\varepsilon)$ si ha $d(y_m, y_n) \le 2^{-\min(n, m)} \le 2^{-N(\varepsilon)} = \varepsilon$. Questo mostra che la successione è di Cauchy.

Mostriamo che (\mathbb{R}^*, d) non è completo. Per farlo mostriamo che la successione $\{y_n\}_{n\geq 1}$ è di Cauchy ma non ha limite. Per assurdo supponiamo che a sia il limite della successione. Avremo

$$d(y_n, a) = |2^{-n} - a^{-1}|$$

la quale converge ad a^{-1} . Ma questo è impossibile perchè $d(y_n, a)$ deve convergere a 0 essendo a il limite. Quindi $\{y_n\}_{n\geq 1}$ è una successione di Cauchy che non ha limite: X non è completo.