Versuch 242 10. Januar 2022

Spannungsverstärker

Physikalisches Anfängerpraktikum II

Juan Provencio Betreuer/in: Jana Wolf

Inhaltsverzeichnis

1	Ziel des Versuches	2						
2	Grundlagen							
	2.1 Charakteristische Größen eines Verstärkers	2						
	2.2 Gegengekoppelter Spannungsverstärker	3						
3	Versuchsaufbau	5						
	3.1 Materialen und Geräte	5						
	3.2 Aufbau	5						
4	Messung und Auswertung	7						
	4.1 Messprotokoll	7						
	4.2 Auswertung	10						
5	Zusammenfassung und Diskussion	14						
	5.1 Zusammenfassung	14						
6	Quellen	16						

1 Ziel des Versuches

Mit diesem Versuch wollen wir uns mit einem wichtigen Werkzeug der Elektrotechnik vertraut machen, und zwar mit dem Spannungsverstärker. Ein solches Instrument dient der Verstärkung von Signalen, die sonst zum Beispiel zu klein zu messen wären.

2 Grundlagen

2.1 Charakteristische Größen eines Verstärkers

1. Der Eingangswiderstand

$$R_i = \frac{U_E}{I_E} \tag{1}$$

Bei einem Verstärker soll der Eingangswiderstand möglichst groß um den Messwertaufnehmer möglichst wenig zu belasten.

2. Der Ausgangswiderstand

$$R_a = \frac{U_A}{I_A} \tag{2}$$

Im Gegenteil sollte der Ausgangswiderstand möglichst klein sein, damit die Ausgangsspannung möglichst wenig von äußeren Belastungen beeinflusst wird.

3. Spannungsverstärkung

$$V_o = -\frac{U_A}{U_E} \tag{3}$$

gibt das Verhältnis zwischen der Eingangs- und Ausgangsspannung an. Das Minuszeichen kommt dadurch zustande, dass der Verstärker invertiert betrieben wird.

Die Verstärkung nimmt mit zunehmender Frequenz ab, aber ist in einem gewissen Bereich nahezu konstant. Graphisch wird dieser Zusammenhang in einem sogenannten "Bodediagramm" dargestellt (Abbildung 1)

Abbildung 1: Frequenzgang des Operationsverstärkers

2.2 Gegengekoppelter Spannungsverstärker

Man kann allerdings die Eigenschaften des Verstärkers verändern, indem man durch die sogenannte Gegenkopplung die Verstärkungsfaktoren und der Frequenzgang verändert. Dafür eird ein Teil der auslaufenden Spannung durch einen Gegenkopplungswiderstand zurück in den Verstärker gebracht

Abbildung 2: Gegenkopplung des Verstärkers

Bei dieser Anordnung gilt die Knotenregel:

$$I_1 + I_2 = I_E$$
 $|R_E, R_g \ll R_i \implies I_E \approx 0$ (4)

$$I_1 + I_2 = \frac{U_1 - U_E}{R_E} + \frac{U_A - U_E}{R_g} = 0 (5)$$

Daraus folgt nach Einsetzen von $V_o = -\frac{U_A}{U_E}$:

$$\frac{U_1}{U_A} = -\left[\frac{1}{V_0} + \frac{R_E}{R_G} \left(1 + \frac{1}{V_0}\right)\right] \tag{6}$$

Für kleine Frequenzen ist $\frac{1}{V_0} \ll \frac{R_E}{R_G}$ und man kann den obigen Ausdruck vereinfachen zu

$$V' = \frac{R_G}{R_E} = -\frac{U_A}{U_1} \tag{7}$$

Abbildung 3: Bodediagramm mit Gegenkopplung

Da V_0 mit hohen Frequenzen sinkt, ist die obige Annäherung nur begrenzt gültig. Hohe Frequenzen führen dann doch zu großer Verstärkung. Schaltet man allerdings einen Kondensator parallel zum Gegenwiderstand, so werden die großen Frequenzen stark gegengekoppelt und daher wenig verstärlt

3 Versuchsaufbau

3.1 Materialen und Geräte

- Schaltungskästchen mit Operationsverstärker $\mu A741$
- Sinus-Rechteck-Generator
- Zweikanaloszillograph

3.2 Aufbau

Abbildung 4: Aufbau zu Schaltung 1 (a)

Abbildung 5: Aufbau zu Schaltung 1 (b)

Abbildung 6: Aufbau zu Schaltung 2

4 Messung und Auswertung

4.1 Messprotokoll

```
Hessprotokal Y242 Spanningsverstärker
10.01.2021
Plike Brandt
Juan Provencio
Texau (gabe 1: DC-Stelling
Wir messen die Busgangsamplitude bei verschiedenen un, Ra.
Tabelle 1: Ausgangeampitude bei Ra= 48,7 k 12121.
                                          IVI AU
  UE [W]
                 UA [W]
    -250
                                            4,15 10,01
                   100205 10 14
    -200
-150
-100
-50
                   731
                                             3,40 20,01
                    1011
                    331
    -004 SO
                                             -0,67 t 0,01
-1,48 t 0,01
           400
    200 200
                             words ausverhen Ac geloppett
 Iarelle 2: Ausgangsamplitude bei 2 n= 2741612 = 21
   U= [#]
                  Up [V]
   -250
                   14,4 ± 0,1
                  14 4 10,1

14 4 10,1

14 0 10,1

1 33 10,01

5 0 3 2 0,01

- 4,19 10,01

- 4,19 10,01
   -200
-150
-100
-50
    ·50
    200
 Teilas Egabe 2: AC-Stellung
 Tabelle 3: Husgangsamplitude tappedent
                    UA[N] (274 ST)
                                               U_[V](680KR)
                                                7,4 t 0,2

5, to ± 0,05

4,30 ± 0,05

3,6 ± 0,05

2,3 ± 0,05

1,6 ± 0,05
                                                          0,02
```

Abbildung 7: Messprotokoll 1

100	JA [V] [686		VA TY] (2	
300			2 2 0	
	5,6		2,32	
8 700	5,6		2,29	
8700 1000	5,4		2 24	
13000	5,6 5,4 5,4 ± 0 4,4 3,2	0-	2, 24 2, 24 2, 24 2, 08	+ 0.05
17000	5,4 ±0	.05	2'08	
210000	4,4			
230000	12		1,10	
170000	n a		0,64	
150 000	0,8		0.32	
200 000	04		0 24	
250 000	0,4		0,64	
- 0 00				1 50.
latelle 5: Au	sgangsamplihide	mit Va=	TVs Cir ravial	be begun
Francus (H	ed U (w) I (se	12)	marki	
100	1,24			
300	124			
700	1, 14			
1000	1,24			
3500	1,22	± 0.05		
1000	1,22	19,00		
30 000	1 22			
70 000	カコマ			
150 000	0.46			
200 000	6 36			
250 000	0, 46			
T 1 11 - 6 - 14		0 = 4	18 7 10 1 0	- 510.5
	A fin UG = 1 Vss		THE TOTAL PROPERTY OF THE PROP	= 560 pF
Frequent (tel Un [my]	AV	A [MY] K	opplungshan
				Sattor
100	1230		5	
300	1230		3	
700	1230		2	
1 000	1 120			
3000	870			
7006	710		5	
10000	170		5	
30 000			5	
120 000	126		5	
200 000	45		5	
250 000	36		5	
		111		

Abbildung 8: Messprotokoll 2

Abbildung 9: Messprotokoll 3

4.2 Auswertung

4.2.1 Aufgabe 1: Verstärkung bei Gleich- und Wechselstrom

Die Spannung U_A wurde bei 8 verschiedenen (DC) Spannungen U_1 zwischen $\pm 0,25\,\mathrm{V}$ gemessen mit dem Eingangsschalter in Stellung S1 für folgende Gegenkopplungswiderstände: S2 in Stellung 3: $R_G=48,7\,\mathrm{k}\Omega\pm2\%$ entspricht, S2 in Stellung 2: $R_G=274\,\mathrm{k}\Omega$. Zusätzlich wurde die Messung mit (AC) Wechselspannung für den Widerstand in Stellung 2 und in Stellung 1: $R_G=680\,\mathrm{k}\Omega$ wiederholt. Die Ergebnisse der Messungen sind auf folgende Diagramme 1, 2 aufgetragen.

Diagramm 1: Ausgangsspannung als Fkt. von Eingangsspannung bei DC-Stellung

Die Steigung des geraden Fits entspricht dem umgekehrten Verstärkungsfaktor nach dem Verhältnis aus Gleichung 3. Dafür haben wir folgende Werte experimentell erhalten:

$$\left| V_{o \text{ exp}}^{3} \right| = 16,04(11)$$
 | RG 3 (8)
 $\left| V_{o \text{ exp}}^{2} \right| = 90,7(8)$ | RG 2 (9)

Aus der Theorie hätte man nach gemäß Gleichung 7 folgende Werte erwartet:

$$\begin{vmatrix} V_{o \text{ theo}}^{3} \end{vmatrix} = 16, 2(3)$$
 | RG 3 (10)
 $\begin{vmatrix} V_{o \text{ theo}}^{2} \end{vmatrix} = 91, 3(1,7)$ | RG 2 (11)

Diagramm 2: Ausgangsspannung als Fkt. von Eingangsspannung bei AC-Stellung

Hier erhalten wir folgende Werte:

Und

$$\left| V_{3_{o \, \text{theo}}}^{2} \right| = 91, 3(1, 8)$$
 | RG 2 (14)
 $\left| V_{3_{o \, \text{theo}}}^{1} \right| = 227(5)$ | RG 1 (15)

4.2.2 Aufgabe 2: Frequenzgänge

Wir nehmen den Frequenzgang des gegengekoppelten Verstärkers bei verschiedenen Frequenzen und Einstellungen von Eingangsspannung, Gegenkopplungskondensatoren und Widerstände. Diese sind jeweils für die entsprechenden Messwerte auf Diagramm 3 dargestellt.

Diagramm 3: Frequenzgang für Verschiedene Einstellungen

Hierzu ist eine qualitative Analyse erforderlich. Dazu werden wir während der Diskussion kommen.

4.2.3 Aufgabe 3: Verstärkung von Rechtecksignalen

In diesem Aufgabenteil haben wir ein Rechteckssignal (Abbildung 10) durch den Spannungsverstärker geschickt. Folgende sind unsere Beobachtungen zu den verschiedenen Einstellungen:

Abbildung 10: Rechtecksignal ohne Kondensator

Abbildung 11: Klein R, klein C — Abbildung 12: Klein R, klein C

An diesen zwei Bildern erkennt man, dass die Kapazität C den Verlauf der Spannungskurve beeinflusst, denn der Auf- und Entladevorgang des Kondensators drastisch anders ist. Allerdingsbleibt die Amplitude näherungsweise gleich.

Vergleichen wir nun Abbildung 12 mit einer Einstellung mit gleichem Kondensator, aber größerem Widerstand (Abbildung 13), so erkennt man, dass die Amplitude mit zunehmendem Widerstand größer wird.

Abbildung 13: R groß, C groß

5 Zusammenfassung und Diskussion

5.1 Zusammenfassung

In diesem Versuch wurde insgesamt die Funktionsweise eines Spannungsverstärkers untersucht. Dafür haben wir als erstes die Eingangsspannung variiert und dabei die Ausgangsspannung bei DC- und AC gemessen. Als nächstes wurde die Frequenz der Eingangsspannung (AC) variiert und den Einfluss dieses Effektes auf die Ausgangsspannung untersucht. Schließlich haben wir die Wirkung verschiedener Widerstands- und Kondensatoreinstellungen auf den Verlauf der Spannungskurve qualitativ beschrieben.

5.1.1 Diskussion

Im Folgenden wollen wir die von uns bestimmten Ergebnissen tiefer untersuchen und mit den Erwartungen vergleichen.

Tabelle 8: Vergleich der experimentellen und theoretischen Werten

Messung	$V_{o, exp}$	$\frac{\Delta V_{o,\text{exp}}}{V_{o,\text{exp}}} \ [\%]$	$V_{o,\mathrm{theo}}$	$\frac{\Delta V_{o,\text{theo}}}{V_{o,\text{theo}}} \ [\%]$	σ
RG 3 (DC)	16,04(11)	0,7	16,2(3)	1,9	0,5
RG 2 (DC)	90,7(8)	0,9	91,3(1,7)	1,9	0,3
RG 2 (AC)	~ 70		91,3(1,8)	2	12
RG 1 (AC)	176,3(1,8)	1	227(5)	2,2	10

Hier sind zwei Sachen besonders merkwürdig. Als erstes scheinen die Messungen bei Gleichstrom alle ziemlich gut gelungen zu sein, mit σ -Abweichungen von unter 1 zwischen der Theorie und den experimentellen Werten. Dies trotz des kleinen relativen Fehlers, der bei beiden unter 1% liegt. Allerdings tauchen ein paar Auffälligkeiten beim Wechselstrom auf. Als erstes ist klar, die σ -Abweichungen sind inakzeptablen, weit über des tolerierbaren 3- σ -Bereiches. Bei der Interpolierung der Steigung durch Python ist auch der abgeschätzte Fehler interessant. Bei allen anderen Geraden erhalten wir Fehlern in der Größenordnung von etwa 1% der Steigung, allerdings bei der Stellung RG 2 erhalten wir einen Fehler in der Größenordnung 10^{-14} , was absoluter Irrsin ist. Trotz mehreren Checks auf die Richtigkeit des Codes, finden wir auf unserer Seite nichts, was zu einer falschen Angabe des Fehlers geführt haben könnte.

Die vorhin besprochenen Ergebnisse sind desto merkwürdiger im Angesichts der χ^2 Analysen auf dem Python-Skript. Die Anpassung der DC-Kurven ist nach der χ^2 -Analyse wird mit einer Fitwahrscheinlichkeit von 0% in beiden Fällen bewertet. Bei der AC-Anpassung wird für RG 2 eine Fitwahrscheinlichkeit von 100% angegeben, und eine χ^2 -Summe in der Größenordnung von 10^{-28} , was ohne Übertreibung sehr klein ist. Bei der Anpassung von RG 1 ist die Analyse jedoch realistischer, wir erhalten eine Fitwahrscheinlichkeit von 15%.

Die großen Abweichungen deuten darauf hin, dass es zu systematischen Fehlern bei der Durchführung gekommen ist. Beide Verstärkungen scheinen bei der AC-Anpassung deutlich kleiner zu sein. Eine mögliche Hypothese ist, dass in der Berechnung der theoretischen Werte einige Annahmen gemacht worden sind, die nicht gültig sind und deswegen die Erwartungswerte verfälscht haben. Beispielsweise haben wir anngenommen, dass für kleine Frequenzen einige Terme weggelassen werden können, diese hätten aber zu einem sogar größeren Wert geführt, was die obige Hypothese ausschließt. Eine weitere Erklärung könnte das Alter der Kohlenwiderstände und die Effekte des so-

genannten "Drifting", dies lässt sich aber ebenfalls ausschließen, da die Messungen mit den selben Widerständen für DC-Strom gut gelungen sind.

6 Quellen

Wagner, J., Universität Heidelberg (2021). Physikalisches Praktikum PAP 2.2 für Studierende der Physik B.Sc..

Anhang

Auswertung

```
In [1]:
```

```
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
from numpy import exp, sqrt, log
from scipy.optimize import curve_fit
from scipy.optimize import curve_fit
from scipy.stats import chi2
```

Werte

```
# Widerstände
RG3 = 48.7 \# kOhm
sig_RG3 = 0.02 * RG3
RG2 = 274 \# kOhm
sig RG2 = 0.02 * RG2
RG1 = 680 \# kOhm
sig RG1 = 0.02 * RG1
RE = 3
# Tabelle 1: RG3
UE1 = np.array([-0.25, -0.2, -0.15, -0.1, -0.05, 0.05, 0.1, 0.2]) \# V
UA1 = np.array([4.15, 3.40, 2.58, 1.72, 1.00, -0.67, -1.43, -3.17]) # V
sig UA1 = np.ones(8) * 0.01
# Tabelle 2: RG2
UE2 = UE1
UA2 = np.array([14.4, 14.4, 14.0, 9.33, 5.03, -4.19, -8.40, -13.6])
sig UA2 = sig UA1
# Tabelle 3
UG = np.array([1, 0.8, 0.6, 0.5, 0.4, 0.2]) / 10 # 10^-1 mitberücksichtigt
UA3_2 = np.array([7.1, 5.70, 4.30, 3.6, 2.9, 1.6]) # V, RG2
sig~UA3~2 = np.array([0.2, 0.05, 0.05, 0.05, 0.05, 0.05])
UA3_1 = np.array([17.8, 14.4, 10.8, 9.0, 7.2, 5.4]) # V, RG1
sig UA3 1 = np.ones(6) * 0.05
# Tabelle 4
f4 = np.array([0.1, 0.3, 0.7, 1, 3, 7, 10, 30, 70, 150, 200, 250]) # kHz
UA4 2 = np.array([2.32, 2.24, 2.24, 2.24, 2.24, 2.08, 2.00, 1.10, 0.64,
                  0.32, 0.24, 0.15]) # V, RG2
sig_UA4_2 = np.ones(len(UA4_2)) * 0.05
UA4 1 = np.array([5.6, 5.6, 5.4, 5.4, 5.4, 4.4, 3.2, 1.2, 0.8, 0.4, 0.4,
sig UA4 1 = np.ones(len(UA4 1)) * 0.05
# Tabelle 5
f5 = f4
\#UG = 1 \# Vss
UA5 = np.array([1.24, 1.24, 1.24, 1.24, 1.24, 1.22, 1.22, 1.08, 0.78, 0.46, 0.36,
               0.301) \# V
# Tabelle 6: RG3
f6 = f4
CG = 560 \# pF
UA6 = np.array([1.23, 1.23, 1.23, 1.22, 1.14, .87, .71, .27, .126, .064, .045,
               .036]) # V
sig_UA6 = np.array(len(UA6)) * 0.005
# Tabelle 7: RG3
f7 = np.array([.3, .5, .7, 1, 3, 7, 10, 13, 15, 17]) # kHz
CE = 47 \# nF
UA7 = np.array([.4, .6, .76, .91, 1.2, 1.24, 1.24, 1.22, 1.22, 1.18]) # V
sig UA7 = np.ones(len(UA7)) * 0.01
```

Aufaabe 1

```
In [3]:
```

```
# Plot: Tabelle 1, 2
plt.figure(0, figsize = (12, 7))
plt.errorbar(UE1, UA1, yerr = sig_UA1, fmt = '.', capsize = 2,
             label = 'Messwerte: RG3')
plt.errorbar(UE2, UA2, yerr = sig_UA2, fmt = '.', capsize = 2,
            label = 'Messwerte: RG2')
plt.title('Ausgangsspannung in Abhängigkeit der (DC) Eingangsspannung',
         size = 16)
plt.xlabel('Eingangsspannung $U_E$ [V]', size = 14)
plt.ylabel('Ausgangsspannung $U_A$ [V]', size = 14)
# Fit
def line(x, a, b):
   return a * x + b
xmin1 = 0
xmax1 = -1
popt1, pcov1 = curve_fit(line, UE1[xmin1:xmax1], UA1[xmin1:xmax1])
xmin2 = 2
xmax2 = -2
popt2, pcov2 = curve fit(line, UE2[xmin2:xmax2], UA2[xmin2:xmax2])
# Fitparameter
a1 = popt1[0]
sig al = sqrt(pcov1[0,0])
b2 = popt1[1]
sig_b1 = sqrt(pcov1[1,1])
a2 = popt2[0]
sig a2 = sqrt(pcov2[0,0])
b2 = popt2[1]
sig b2 = sqrt(pcov2[1,1])
# Back tu ze plot
# RG3
plt.plot(UE1, line(UE1, *popt1), label = 'Bester Fit: RG3', color = 'cyan')
plt.text(-0.09, -5, 'Fitparameter: RG3')
plt.text(-0.09, -7, 'a 1 = ' + str(np.round(a1, 2)) + 'spm$'
         + str(np.round(sig a1, 2)))
# RG2
plt.plot(UE2, line(UE2, *popt2), label = 'Bester Fit: RG2', color = 'yellow')
plt.text(-0.09, 20, 'Fitparameter: RG2')
plt.text(-0.09, 17, '$a_2 = $' + str(np.round(a2, 1)) + '$\pm$'
         + str(np.round(sig a2, 1)))
plt.axvline(UE2[xmin2], ls = '--', color = 'gray')
plt.axvline(UE2[xmax2], ls = '--', color = 'gray',
            label = 'Zum Fitten von RG2 berücksichtigter Bereich')
plt.legend(loc = 'upper right')
plt.savefig('images/242/V242Diagramm1.png')
plt.show()
```

```
# Ergebnisse:
print('Verstärkung: RG3')
print('Experimentell: V3_o = ', np.abs(np.round(a1, 2)), '+/-', np.round(sig_a1, 2
))
print('Theoretisch: V3_o = ', np.round(RG3 / RE, 1), '+/-', np.round(sig_RG3 / RE, 1
))
print('\nVerstärkung: RG2')
print('Experimentell: V2_o = ', np.abs(np.round(a2, 1)), '+/-', np.round(sig_a2, 1
))
print('Theoretisch: V2_o = ', np.round(RG2 / RE, 1), '+/-', np.round(sig_RG2 / RE, 1
))
```


Verstärkung: RG3

Experimentell: $V3_0 = 16.04 +/- 0.11$

Theoretisch: $V3_o = 16.2 +/- 0.3$

Verstärkung: RG2

Experimentell: $V2_o = 90.7 +/- 0.8$ Theoretisch: $V2_o = 91.3 +/- 1.8$

```
In [4]:
```

```
# Güte des Fits: RG3
chi2_= np.sum((line(UE1[xmin1:xmax1], *popt1) - UA1[xmin1:xmax1]) ** 2
              / sig_UA1[xmin1:xmax1] ** 2)
dof = len(sig UA1[xmin1:xmax1]) - 2 #dof:degrees of freedom, Freiheitsgrad
chi2_red = chi2_/dof
print("chi2 =", chi2_)
print("chi2_red =",chi2_red)
prob = np.round(1 - chi2.cdf(chi2_,dof),2) * 100
print("Wahrscheinlichkeit =", prob, "%")
chi2 = 59.72463768115931
chi2 red = 11.944927536231862
Wahrscheinlichkeit = 0.0 %
```

In [5]:

```
# Güte des Fits: RG2
chi2_= np.sum((line(UE2[xmin2:xmax2], *popt2) - UA2[xmin2:xmax2]) ** 2
              / sig_UA2[xmin2:xmax2] ** 2)
dof = len(sig_UA2[xmin2:xmax2]) - 2 #dof:degrees of freedom, Freiheitsgrad
chi2 red = chi2 /dof
print("chi2 =", chi2_)
print("chi2_red =",chi2_red)
prob = np.round(1 - chi2.cdf(chi2,dof),2) * 100
print("Wahrscheinlichkeit =", prob, "%")
```

```
chi2 = 288.9714285714292
chi2 red = 144.4857142857146
Wahrscheinlichkeit = 0.0 %
```

```
# Plot: Tabelle 3
plt.figure(1, figsize = (12, 7))
plt.errorbar(UG, UA3_2, yerr = sig_UA3_2, fmt = '.', capsize = 2,
             label = 'Messwerte: RG2', color = 'orange')
plt.errorbar(UG, UA3_1, yerr = sig_UA3_1, fmt = '.', capsize = 2,
             label = 'Messwerte: RG1', color = 'green')
plt.title('Ausgangsspannung in Abhängigkeit der (AC) Eingangsspannung',
         size = 16)
plt.xlabel('Eingangsspannung U_1 = \frac{U_G}{10} [V]', size = 14)
plt.ylabel('Ausgangsspannung $U_A$ [V]', size = 14)
# Fit
xmin3 2 = 0
xmax3_2 = -1
popt3_2, pcov3_2 = curve_fit(line, UG[xmin3_2:xmax3_2], UA3_2[xmin3_2:xmax3_2])
xmin3 1 = 0
xmax3 1 = -2
popt3 1, pcov3 1 = curve fit(line, UG[xmin3 1:xmax3 1], UA3 1[xmin3 1:xmax3 1])
# Fitparameter
a3_2 = popt3_2[0]
sig_a3_2 = sqrt(pcov3_2[0,0])
b3 2 = popt3 2[1]
sig_b3_2 = sqrt(pcov3_2[1,1])
a3 1 = popt3 1[0]
sig_a3_1 = sqrt(pcov3_1[0,0])
b3_1 = popt3_1[1]
sig_b3_1 = sqrt(pcov3_1[1,1])
# Back 2 the ploture
# RG2
plt.plot(UG, line(UG, *popt3_2), label = 'Bester Fit: RG2', color = 'yellow')
plt.text(0.08, 12, 'Fitparameter: RG2')
plt.text(0.08, 11, '$a_{3_2} = $' + str(np.round(a3_2, 15)) + '$\pm$'
         + str(np.round(sig_a3_2, 15)))
# RG1
plt.plot(UG, line(UG, *popt3 1), label = 'Bester Fit: RG1', color = 'lightgreen')
plt.text(0.05, 16, 'Fitparameter: RG1')
plt.text(0.05, 15, '$a {3_1} = $' + str(np.round(a3 1, 1)) + '$\pm$'
         + str(np.round(sig_a3_1, 1)))
plt.axvline(UG[xmin3_1], ls = '--', color = 'gray')
plt.axvline(UG[xmax3 1], ls = '--', color = 'gray')
plt.legend(loc = 'upper left')
plt.savefig('images/242/V242Diagramm2.png')
plt.show()
# Ergebnisse
print('Verstärkung: RG2')
print('Experimentell: V3_2_o = ', np.abs(np.round(a3_2, 14)), '+/-',
      np.round(sig_a3_2, 14))
```



```
Verstärkung: RG2
Experimentell: V3_2_o = 69.9999999999999999 +/- 1e-14
Theoretisch: V3_2_o = 91.3 +/- 1.8

Verstärkung: RG1
Experimentell: V3_1_o = 176.3 +/- 1.8
Theoretisch: V3_1_o = 227.0 +/- 5.0
```

```
In [7]:
```

```
# Güte des Fits: RG2
chi2_= np.sum((line(UG[xmin3_2:xmax3_2], *popt3_2) - UA3_2[xmin3_2:xmax3_2]) ** 2
              / sig_UA3_2[xmin3_2:xmax3_2] ** 2)
dof = len(sig UA3 2[xmin3 2:xmax3 2]) - 2 #dof:degrees of freedom, Freiheitsgrad
chi2_red = chi2_/dof
print("chi2 =", chi2_)
print("chi2_red =",chi2_red)
prob = np.round(1 - chi2.cdf(chi2_,dof),2) * 100
print("Wahrscheinlichkeit =", prob, "%")
chi2 = 3.1554436208840468e-28
chi2 red = 1.0518145402946823e-28
Wahrscheinlichkeit = 100.0 %
In [8]:
# Güte des Fits: RG1
chi2_= np.sum((line(UG[xmin3_1:xmax3_1], *popt3_1) - UA3_1[xmin3_1:xmax3_1]) ** 2
              / sig UA3 1[xmin3 1:xmax3 1] ** 2)
dof = len(sig_UA3_1[xmin3_1:xmax3_1]) - 2 #dof:degrees of freedom, Freiheitsgrad
chi2 red = chi2 /dof
print("chi2 =", chi2 )
print("chi2_red =",chi2_red)
prob = np.round(1 - chi2.cdf(chi2_,dof),2) * 100
print("Wahrscheinlichkeit =", prob, "%")
```

```
chi2 = 3.7966101694915038
chi2_red = 1.8983050847457519
Wahrscheinlichkeit = 15.0 %
```

Aufgabe 2

In [9]:

```
# Plot
plt.figure(figsize = (12, 7))
plt.loglog()
plt.plot(f4, UA4 2, 'D--',
                           label = 'Messwerte: RG1, C = 22 $\\mu$F, UG = 0.3 V')
plt.plot(f4, UA4_1, 's--', color = 'green',
                           label = 'Messwerte: RG2, C = 22 \%, Mu\F, 
plt.plot(f5, UA5, '>--', color = 'orange',
                           label = 'Messwerte: RG3, C = 22  \ \\mu\F, UG = 1  V')
plt.plot(f6, UA6, '*--', color = 'deeppink',
                           label = 'Messwerte: RG3, CG = 560 pF, UG = 1 V')
plt.plot(f7, UA7, 'o--', color = 'teal',
                           label = 'Messwerte: RG3, CE = 47 nF, UG = 1 V')
plt.title('Frequenzgang bei unterschiedlichen Einstellungen', size = 16)
plt.xlabel('Frequenz $f$ [kHz]', size = 14)
plt.ylabel('Ausgangsspannung $U_A$ [V]', size = 14)
plt.legend(loc = 'best')
plt.savefig('images/242/V242Diagramm3.png')
plt.show()
```


In []: