

INSTITUTO POLITÉCNICO NACIONAL

ESCUELA SUPERIOR DE CÓMPUTO

DATA MINING

Proyecto Final

Equipo #4:

- García Cruz Octavio Arturo
- Sampayo Hernández Mauro
- Flores Ponce Alan Marcelo

Grupo:

3CV15

Profesora:

Fabiola Ocampo Botello

Fecha:

20 de junio de 2023

Índice

CONJUNTOS DE DATOS	1
i. FUENTES DE DATOS	1
ii. DESCRIPCIÓN DE DATOS	2
iii. TRATAMIENTO DE DATOS.	5
I. CLASIFICACIÓN DE ARBOLES:	22
I.1 Descripción del ejercicio	22
I.2 Diccionarios de Datos.	22
I.2.1 Diccionario de Datos CART	22
I.2.2 Diccionario de datos C4.5	23
I.3 Resultados	30
I.4 Análisis de los resultados	33
II. Multi Clasificación. Bagging y Boosting	36
II.1 Descripción del ejercicio	36
II.2 Diccionario de datos	36
II.2.1 Diccionario de datos Random Forest.	36
II.2.3 Diccionario de datos Gradient Boost.	37
II.3. Resultados	38
II.4. Análisis de los resultados.	42
III. Agrupamiento (Jerárquico y No Jerárquico)	45
III.1 Descripción del ejercicio	45
III.2. Diccionario de Datos	45
III.2.1 Diccionario de Datos Jerárquico	45
III.2.2 Diccionario No Jerárquico	46
III.3. Resultados.	47
III.4 Análisis de Resultados	52
IV. Reglas de Asociación	54
IV.1 Descripción del ejercicio	54
IV.2 Diccionario de Datos	54
IV.3 Resultados	55
IV.4 Análisis de Resultados	56
V. Regresión Lineal	58
V.1 Descripción del ejercicio	58
V.2 Diccionario de Datos.	58
V.3 Resultados	58
V.4 Análisis de Resultados	59

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE CÓMPUTO

Unidad de Aprendizaje: Minería de datos Ciclo escolar: 2023–2

Proyecto Final

CONJUNTOS DE DATOS

i. FUENTES DE DATOS

1. **Conjunto de datos 1**. Afluencia en estaciones del STC de la CDMX. El conjunto de datos que se usara es proporcionado por el Gobierno de la Ciudad de México el cual proporciona información sobre la afluencia diaria en diferentes estaciones del sistema de transporte colectivo (Metro).

A su vez usaremos un segundo conjunto de datos que nos proporciona los ingresos percibidos por cada día en cada estación del Metro de la ciudad de México.

Link del conjunto de datos afluencia:

https://datos.cdmx.gob.mx/ne/dataset/afluencia-diaria-del-metro-cdmx

Autor: SEMOVI (Secretaría de Movilidad)

Link del conjunto de datos ingresos:

https://datos.cdmx.gob.mx/ne/dataset/ingresos-del-sistema-de-transporte-colectivo-metro

Autor: SEMOVI (Secretaría de Movilidad)

2. **Conjunto de datos 2**. FIFA World Cup Attendance 1930-2022 El conjunto presentado en el siguiente enlace presenta la asistencia de aficionados a la Copa Mundial de la FIFA desde 1930.

Link del conjunto:

https://www.kaggle.com/datasets/rajkumarpandey02/fifa-world-cup-attendance-19302022

Autor: Raj Kumar Pandey

3. **Conjunto de datos 3.** Credit Cards Aprovals

En este conjunto de datos encontraremos las características de personas que hicieron una petición para tramitar una tarjeta de crédito, y si la misma les fue aprobada o no.

Link del conjunto:

 $\underline{https://www.kaggle.com/datasets/samuelcortinhas/credit-card-approval-clean-data}$

Autor: Samuel Cortinhas

ii. DESCRIPCIÓN DE DATOS

Conjunto de Afluencia

Este conjunto está formado por un total de 955,305 registros; A continuación, se describe el significado de cada columna en el conjunto de datos:

Nombre	Significado	Tipo	Dominio
Fecha	La fecha en la que se registró la afluencia.	Date	01/01/2010
			31/05/2023
Año	La fecha en la que se registró la afluencia.	Numérico	2010 - 2023
Mes	El mes correspondiente a la	Categórico	Enero -
	fecha.		Diciembre
Línea	La línea del sistema de	Categórico	Linea 1 –
	transporte público		Línea 12
			Linea A
			Linea B
Estación	El nombre de la estación	Categórico	Nombre de la
	donde se registró la afluencia		estación
Afluencia	El número de personas que	Numérico	Numero
	utilizaron esa estación en		entero
	particular en el día		Positivo
	especificado		

Conjunto de Ingresos

Este conjunto está formado por un total de 151,260 registros; A continuación, se describe el significado de cada columna en el conjunto de datos:

Nombre	Significado	Tipo	Dominio
Fecha	La fecha en la que se registró	Date	01/01/2010
	la afluencia.		-
			31/05/2023
Tipo_ingreso	El tipo de ingreso registrado	Categórico	Forma de
			pago
Ingreso	El valor numérico que	Numérico	Numero
	representa la cantidad de		entero
	ingresos registrados para esa		positivo
	línea en particular en el día		
	especificado.		
Línea	La línea del sistema de	Categórico	Línea 1 –
	transporte público.		Línea 12
			Linea A
			Linea B

Conjunto de FIFA World Cup Attendance

Nombre	Significado	Tipo	Dominio
Game(s)	Última fase a la que llegó el equipo anfitrión, resultado y equipo con el que se enfrentó	Texto	Texto
Venue	Estadio de inauguración y clausura	Categórico	Nombre del estadio sede
Number	Número de asistencia en el torneo	Numérico	Número no especificado
Host	Anfintrion de la Copa del Mundo	Categórico	Sede elegida por la FIFA
Total_Attendance	Asistencia total de personas	Numérico	Numero entero Positivo
Year	El año que se disputo el mundial	Numérico	1930 – 2022
Avarage_Attendace	Promedio de personas con asistencia en vivo	Numérico	Numero entero Positivo
Matches	Número total de partidos Jugados	Numerico	Numero entero Positivo

Conjunto de Credit Cards Aprovals

Nombre	Significado	Tipo	Dominio
Genders	Genero de la persona	Categórico	Masculino
deliders	deficio de la persona	Categorico	Femenino
Age	Edad del solicitante	Numérico	0-99
Debt	Deuda pendiente (la característica se ha escalado)	Numérico	0-10
Married	Estado civil	Numérico	0- Soltero, divorciado, etc. 1- Casado
BankCustomer	Cliente del banco	Numérico	0- No tiene cuenta 1- Tiene cuenta
Industry	Sector de la industria en el que trabaja	Categórico	Nombre del sector
Ethnicity	Etnia del solicitante	Categórico	Asiático, Latino, Blanco, Negro, etc.
YearsEmployed	Años trabajando	Numérico	0-30
PriorDefault	Valor predeterminado con anterioridad.	Numérico	0- Sin valor 1- Con valor
Employed	Estado laboral	Numérico	0- Con empleo 1- Desempleado
CreditScore	Puntaje de crédito (esta función se ha escalado)	Numérico	0 – 99
DriversLicense	Licencia de conducir	Numérico	0- No tiene licencia 1- Tiene licencia
Citizen	Ciudadanía del solicitante	Categórico	Por nacimiento Por otras vías
ZipCode	Código postal	Numérico	00000 – 00XXX
Income	Ingresos del solicitante (previamente escalados)	Numérico	0 – 999,999
Approved	Aprobación de expedición de tarjeta	Numérico	0- No aprobado 1- Aprobado

iii. TRATAMIENTO DE DATOS.

Tratamiento de datos Ingresos

Diagrama de Tratamiento de datos

1) Cargaremos nuestro conjunto de datos (ingresos_stc_0123).

2) Nuestro conjunto de datos pasara por el nodo String Date & Time para cambiar el formato de la fecha.

3) Aplicaremos el no extract date & time el cual se encargará de extraer el año y el mes y los pondrá en columnas separadas.

4) Nodo de python:

Este código se encarga de darle un tratamiento mas profundo a los datos contenidos en algunos de las columnas del conjunto de datos, con el objetivo de hacer su significado más claro.

```
import knime.scripting.io as knio
# Lista Auxiliar de Meses
meses = {"Enero", "Febrero", "Marzo", "Abril", "Mayo", "Junio", "Julio",
"Agosto",
           "Septiembre", "Octubre", "Noviembre", "Diciembre"}
# Conversion de KNIME a DataFrame
ingreso = knio.input tables[0].to pandas()
# ----- TRATAMIENTO DE DATOS ------
  Rellena todos los valores NaN de INGRESO con Os
ingreso['ingreso'] = ingreso['ingreso'].fillna(0)
   Reemplaza el NUMERO DE MES por el NOMBRE DEL MES
ingreso['Month (number)'] = ingreso['Month
(number) '].replace(list(range(1, 13)), meses)
   Agrega la Leyenda "Linea " a los numeros de linea
lineas toReplace = ingreso['linea'].unique() # obtener el dominio de
new lineas = []  # lista auxiliar
# guardar "Linea #" en 'new lineas', usando los valores contenidos en
'lineas toReplace'
for l in lineas toReplace:
   new lineas.append('Linea ' + 1)
# Reemplazar los valores de 'lineas toReplace', por los de 'new linea'
ingreso['linea'] = ingreso['linea'].replace(lineas toReplace, new lineas)
  Reemplazamiento de un solo valor de RIPO INGRESO, para mejorar su
claridad
ingreso['tipo ingreso'] = ingreso['tipo ingreso'].replace('Tarjetas',
'Compra de Tarjetas')
# ----- TRATAMIENTO DE DATOS ------- TRATAMIENTO DE DATOS
# Tabla de Salida
knio.output tables[0] = knio.Table.from pandas(ingreso)
```

5) Group by:

Este nodo nos permitira saber la suma los ingresos totales registrados por cada mes del año.

Tratamiento de datos Afluencia de datos

1) Carga del conjunto de datos afluenciastc_simple_05_2023

2) Group by

Obtiene la Afluencia total que se registra por cada mes.

Tratamiento de datos Ingresos y Afluencia de datos

1) Inner join

Se usa para juntar ambos conjuntos de datos con sus respectivos tratamientos hechos.

2) Colum filter

Se usa para eliminar datos que se encuentren repetidos.

3) Colum Rename

Se usa para renombrar el nombre de los atributos.

Conjunto de Datos Final generado con el Tratamiento de Datos realizado

Nombre	Significado	Tipo	Dominio
Línea	Número de línea del sistema del transporte público.	Categórico	Línea 1 – Línea 12 Línea A Línea B
Estacion	Nombre de la estación donde se encuentra la afluencia.	Categórico	Nombre de la estación.
Afluencia	Número de personas que utilizaron esa estación en particular en el día especificado.	Numérico	Numero entero Positivo.
TipoIngreso	El valor numérico que representa la cantidad de ingresos registrados para esa línea en particular en el día especificado.	Categórico	Forma de pago.
Año	La fecha en la que se registró la afluencia.	Numérico	2010 – 2023
Mes	El mes correspondiente a la fecha.	Categórico	Enero – Diciembre
Ingreso	El valor numérico que representa la cantidad de ingresos registrados para esa línea en particular en el día especificado.	Numérico	Numero entero positivo.

<u>Tratamiento al conjunto de FIFA World Cup Attendance</u>

Diagrama de tratamiento

1) Aplicación de Row Filter

Eliminamos el renglón que se encargaba de sumar el número total de asistencia durante cada una de las sedes del mundial.

2) Aplicación de Column Filter

Apartamos las columnas de "Numbre", "Venue" y "Game(s)" ya que no las necesitaremos para nuestros modelos de predicción.

Tenemos una tabla ya tratada de la siguiente manera:

Row ID	S Year	S Hosts	Total_Attendance	Matches	Average_Attendance
0	1930	Uruguay	590549	18	32808
1	1934	Italy	363000	17	21353
2	1938	France	375700	18	20872
3	1950	Brazil	1045246	22	47511
4	1954	Switzerland	768607	26	29562
5	1958	Sweden	819810	35	23423
6	1962	Chile	893172	32	27912
7	1966	England	1563135	32	48848
8	1970	Mexico	1603975	32	50124
9	1974	West Germany	1865753	38	49099
10	1978	Argentina	1545791	38	40679
11	1982	Spain	2109723	52	40572
12	1986	Mexico	2394031	52	46039
13	1990	Italy	2516215	52	48389
14	1994	United States	3587538	52	68991
15	1998	France	2785100	64	43517
16	2002	South Korea Japan	2705197	64	42269
17	2006	Germany	3359439	64	52491
18	2010	South Africa	3178856	64	49670
19	2014	Brazil	3429873	64	53592
20	2018	Russia	3031768	64	47371
21	2022	Qatar	3404252	64	53191

<u>Tabla con el Tratamiento de Datos realizado</u>

Nombre	Significado	Tipo	Dominio
Host	Anfintrion de la Copa del Mundo	Categórico	Sede elegida por la FIFA
Total_Attendance	Asistencia total de personas	Numérico	Numero entero Positivo
Year	El año que se disputo el mundial	Numérico	1930 – 2022
Avarage_Attendace	Promedio de personas con asistencia en vivo	Numérico	Numero entero Positivo
Matches	Número total de partidos Jugados	Numerico	Numero entero Positivo

<u>Tratamiento al conjunto de Credit Cards Aproval</u>

1) Se inserta un nodo de Python para renombrar valores en columnas.

```
import knime.scripting.io as knio
# Lista Auxiliar
binary = [0, 1]
# Conversion de KNIME a DataFrame
credit = knio.input tables[0].to pandas()
# ----- TRATAMIENTO DE DATOS -----
# 0=Female, 1=Male
credit['Gender'] = credit['Gender'].replace(binary, ['Female','Male'])
# 0=Single/Divorced/etc, 1=Married
credit['Married'] = credit['Married'].replace(binary,
['Single/Divorced/etc','Married'])
# 0=does not have a bank account, 1=has a bank account
credit['BankCustomer'] = credit['BankCustomer'].replace(binary, ['does
not have a bank account', 'has a bank account'])
# 0=no prior defaults, 1=prior default
credit['PriorDefault'] = credit['PriorDefault'].replace(binary, ['no
prior defaults','prior default'])
# 0=not employed, 1=employed
credit['Employed'] = credit['Employed'].replace(binary, ['not
employed','employed'])
# 0=no license, 1=has license
credit['DriversLicense'] = credit['DriversLicense'].replace(binary, ['no
license','has license'])
# 0=not approved, 1=approved
credit['Approved'] = credit['Approved'].replace(binary, ['NOT
APPROVED', 'APPROVED'])
# ----- TRATAMIENTO DE DATOS ------- TRATAMIENTO DE DATOS
# Tabla de Salida
knio.output tables[0] = knio.Table.from pandas(credit)
```

S Gereber	D Apr	D Debt	8 Marred	S Bank Customer	5 Industry	S Eliverty	D transf	S Prorbelish	S Employed	Outlistore	S Omeral)	S Crawn	1 2pCode	1 300	S Approved
Nale	30,63	a	Married	has a bank account.	Industrials	White:	1.25	prior default	englayed	1	no license	Bythrts	202	0	APPRIONED
Female	58.67	4.46	Married	has a bank account:	Hoterals	Black	3.04	prior default	employed	6	ina license	EVENT)	43	380	APPRIOVED:
Penale	24.5	0.5	Marned	has a bank account.	Platerials	Black	1.5	prior defeult	not employed	10	no license	Dybirth	390	824	APPRIONED
Male	27.83	1,54	Married	has a bank account	Drobetriele	Street	3.76	pror default	employed	5	has loanse	byterte	100	3	APPROVED.
Male	26.17	5.625	Married	has a bank account.	Industrials	White	1.71	prior default	not employed	,0	no ficerue	ByOtherMoore	120	10	APPRIONED.
htale	32.08	4	Married	has a bank account	Communicati	virite	2.5	prior default	not employed	0	has license	ByBirth	360	0	APPROVED
Male	33.17	1.04	Married	that a bank account:	Transport	Back	9.5	prior default	not employed	0	has license	EvBriti	364	31285	APPRIONED :
Persole	22.92	11.585	Married	has a bank account.	Information	White	0.04	prior default	not employed	0	no luerue	DyBrth	90	1249	APPROVED
Male	54.42	0.5	Single (Diversed	does not have a be	Prunciela	Deck	3.96	pror default	not employed	0	no luerne	Dybyth	190	314	APPROVED .
Male	40.9	4.915	Single (Diverces).	does not have a ba .	Industrials	ofvir.	3.165	pror default	not engloyed	0	Pup korese	Bythr fire	32	1442	AMMILICATED :
Male	22.00	0.83	Married	has a bank account.	Energy	Red	2.168	ing prior defaults	not employed	0	has icense	Evertin	125	D	APPRIONED.
Male	29.92	1.835	Married	has a bank account	Energy	Red	4.335	prior default	not employed	0	no forme	Evity to	390	200	APPROVED
Pierusie	38.25	6.	Married	has a bank account.	Financials	infets .	1	ptor default	not employed	0	has lorme	Dybrin	0	0	APPROVED
Male	46.08	5.04	Manned	has a bank account.	Pinancials	Strike	0.04	ina prior defaulta	not employed	0	ing hierne	Dybritis	0	2690	APPROVED
Fertile	45.83	100.5	Married	has a bank account.	Materials	White	5	prior default	engiosed	2	has kierse	Bybrbi	0	D	APPRICATED 1
Hale	36.67	4.405	Single Divorced	iddes not have a ba	Financials	White	0.25	prior default	lengiqued	10	has keesse	ByBirth	130	0	APPROVED.
Hale .	26.29	0.875	Married	has a bank account.	Communicat.	While	0.96	prior default	employed	3	has loense	Dyferth	296	0	APPRICATED:
Percuie	23.25	5.875	Married	hat a bank account	Materials.	White -	3.17	jotor defeat	amplesed	100	ino lowrani	Dybrin	120	246	APPROVED:
Male:	21.83	0.25	Married	has a bank account	Real Estate	Mack	0.665	prox default	not employed	0	has learne	Eybrth	0	0	APPRIORED
Fenale	19.17	0.505	Married	has a hank account.	Inforwation	Sec	0.75	prior default	employed	7	ina koerse	Bythrhi	90	0	APPRICATO
Hale	25	11.25	Married	has a bank account:	Everoy	virtute	2.5	prior default	explosed	37	no license	ByEyrth	200	1208	APPROVED .
Male	23.25	1	Macried	has a bank account	Ererge	Sofiete	20,635	jotor default	not employed:	0	no loense	ByOtherNears	300	0	APPROVED.
Person	47.75	8	Married	has a bank account.	Erwrov	Street	7.875	pror defeat	employed	16	has loanse	bytirty	10	1260	APPROVED.
Female	27.42	14.5	Manned	has a bank account	1/10 tex	Mark.	3.065	pror defeat	employed	5	ina foerne	EvBrth	120	11	APPRICATED
Female	41.17	4.1	Married	has a bank account.	Materials	offste :	0.1	prior default	exposed	3	has lowuse	Bythrift	145	0	APPRICKED.
Female	15.83	0.585	Macried	has a bank account:	Energy	Back	1.5	prior default	resposed	2	no license	Events	100	D.	APPROVED
Percole	47	13	Martied	fras a liark account.	ContumerCo.	Asian	5.165	prior default	employed	9	has lorme	Bytheto	70	0	APPROVED
Male	156,58	18.5	Married	has a bank account.	Real Estate	Appen	15	ptor defeat	amployed	17	has lowner	Dyfirth	10	0	APPROVED
Male	57,42	0.5	Married	has a bank account.	Education	Mack	7	prox default	ampleved	3	no forme	Eybrth	10	0	APPROVED
Male	42.08	1.04	Married	has a back account.	Industrials	White	5	prior default	explored	6	has lorene	ByBirth	900	10000	APPROVED:
Hale	29.25	34.79	Married	has a bank account	ConsumerSt	White	5.04	prior default	employed	5	hastcense	Pylints .	368	D	APPRIONED.
Male	42	3.72	Married	has a bank account	Lithius	Back	7.96	prior default.	amployed	8	na lorner	Byfirth	g	0	APPROVED.
Main	49.5	7,585	Married	has a bank account.	ConsumerOL.	Appen	7.585	prior default	employed	15	has known	Dythrib	10	5000	APPROVED
Penale	36.75	\$.125	Married	has a bank account.	Erkeation	Milita	5	prior default	not employed	0	has keesse	Everti-	0	4000	APPRIONED
Femile	22.58	10.75	Married	has a bank account	Materials	Militar	0.415	prior default	employed	5	has lowise	ByByth	10	560	APPROVED
Male	27.83	1.5	Married	has a back account	Industrials	Stitute	12	prior default	employed	11	has license	ByByth:	434	38	APPROVED
Male	27.25	1.585	Macried	has a bank account	Information	Mack	1.835	prior default	employed	12	has lowner	Evert	583	713	APPRICATED.
Pemake	23	11,75	Married	has a bank account.	Utilities	Mark	0.5	prior defeat.	amployed	2	has leanne	Events	300	1951	APPROVED
Male	27.75	0.585	Single Divorced	does not have a bo.	Information	White	0.25	prior default	employed	2	no lumbe	Eytirth	260	500	APPROVED.
Male	54.58	9.415	Married	has a bank account.	Healthcare	Latino	14.415	prior default	employed	in	has icense	ByBrth	30	300	APPROVED
Male	34.17	9.17	Married	has a bank account	Energy	Volute	4.5	prior default	employed	12	has lowne	Byllyth	id .	721	APPROVED.
Male	26.42	15	Macred	has a back account.	Ererpy	Black	5.338	prior default.	employed	11	no licerus	DyDyDy	it	2263	APPRICATO -

<u>Tabla con el Tratamiento de Datos Realizado</u>

Nombre	Significado	Tipo	Dominio
Genders	Conora do la norgana	Catagórica	Masculino
Genders	Genero de la persona	Categórico	Femenino
Age	Edad del solicitante	Numérico	0-99
Debt	Deuda pendiente (la característica se ha escalado)	Numérico	0-10
Married	Estado civil	Categórico	Soltero/ divorciado Casado
BankCustomer	Cliente del banco	Categórico	No tiene cuenta Tiene cuenta
Industry	Sector de la industria en el que trabaja	Categórico	Nombre del sector
Ethnicity	Etnia del solicitante	Categórico	Asiático, Latino, Blanco, Negro, etc.
YearsEmployed	Años trabajando	Numérico	0-30
PriorDefault	Valor predeterminado con anterioridad.	Categórico	Sin valor Con valor
Employed	Estado laboral	Categórico	Con empleo Desempleado
CreditScore	Puntaje de crédito (esta función se ha escalado)	Numérico	0 – 99
DriversLicense	Licencia de conducir	Categórico	No tiene licencia Tiene licencia
Citizen	Citizen Ciudadanía del solicitante		Por nacimiento Por otras vías
ZipCode	Código postal	Numérico	0 – 999
Income Ingresos del solicitante (previamente escalados)		Numérico	0 – 999,999
Approved	Aprobación de expedición de tarjeta	Categórico	No aprobado Aprobado

I. Clasificación. Árboles

Equipo 4

Data Mining 3CV15

I. CLASIFICACIÓN DE ARBOLES:

I.1 Descripción del ejercicio

CART, es un algoritmo creado por Breiman en 1984. El algoritmo CART construye árboles de clasificación y regresión. El árbol de clasificación es construido por CART mediante la división binaria del atributo. El índice de Gini se utiliza para seleccionar el atributo de división. CART también se utiliza para análisis de regresión con la ayuda de un árbol de regresión. La función de regresión de CART se puede utilizar al pronosticar una variable dependiente dado un conjunto de predictores variable durante un período de tiempo determinado. CART tiene una velocidad de procesamiento promedio y admite tanto continuo como datos de atributos nominales, aunque el atributo objetivo tiene que ser nominal.

Para esta sección usamos un Árbol de Clasificación tipo CART para poder predecir la Afluencia Registrada en cada línea del STCM de la CDMX por cada mes entre los años 2012-2023.

C4.5, es un algoritmo desarrollado por JR Quinlan en 1993, como una extensión (mejora) del algoritmo ID3 que desarrolló en 1986. El algoritmo C4.5 genera un árbol de decisión a partir de los datos mediante particiones realizadas recursivamente.

El objetivo para nuestro árbol C4.5 es predicir a que línea de Metro pertenece una estación (principalmente aquellas que son correspondencia), de acuerdo con su afluencia.

I.2 Diccionarios de Datos.

I.2.1 Diccionario de Datos CART

Nombre	Significado	Tipo	Dominio
Línea	Número de línea del sistema del transporte público.	Categórico	Línea 1 – Línea 12 Línea A Línea B
Afluencia	Número de personas que utilizaron esa estación en particular en el día especificado.	Numérico	Numero entero Positivo.
Año	La fecha en la que se registró la afluencia.	Numérico	2010 - 2023
Mes	El mes correspondiente a la fecha.	Categórico	Enero – Diciembre

I.2.2 Diccionario de datos C4.5

Nombre	Significado	Tipo	Dominio
Línea	Número de línea del sistema del transporte público.	Categórico	Línea 1 – Línea 12 Línea A Línea B
Afluencia	Número de personas que utilizaron esa estación en particular en el día especificado.	Numérico	Numero entero Positivo.
Estacion	Estación de la línea del metro	Categórico	Nombre de estación

CART

1) GroupBy

Para poder empezar con nuestro árbol de decisión juntamos lo que son las líneas (Metro), Año y Mes; En función de la suma de la afluencia de ese mismo Mes y Año.

2) X-Partitioner

Este nodo se usará para dividir un conjunto de datos en subconjuntos por medio de un muestreo aleatorio. El número de validaciones se establecerá en 10.

3) Simple Regression Tree Learner

Para este nodo se especificara nuestra Columna Destino la cual será sum(Afluencia) y se incluirán los parámetros de línea y mes.

4) Simple Regression Tree Predictor

El nodo "Simple Regression Tree Predictor" toma el modelo de árbol de decisión entrenado y aplica las reglas de división para asignar una predicción numérica a cada instancia de datos de entrada.

5) X-Aggregator

Recopila el resultado de un nodo predictor, compara la clase predicha y la clase real y genera las predicciones para todas las filas y las estadísticas de iteración.

6) Numeric score

Este análisis nos proporcionará las estadísticas generadas por nuestro árbol de decisión. El coeficiente de determinación (r^2) se utiliza como medida de precisión. En nuestro caso de estudio, se observan algunas inconsistencias en el árbol, sin embargo, al examinar las estadísticas, se puede apreciar un nivel de predicción satisfactorio, ya que el valor de r^2 se acerca a uno.

Conforme se señaló previamente, este conjunto de datos fue sometido a una operación de agrupamiento (group by) con el propósito de consolidar las líneas de datos por año y mes, y se realizó una suma de la variable "afluencia". Esto permitió la preparación del conjunto de datos que se empleó posteriormente para entrenar nuestro modelo de árbol de decisiones, utilizando los datos pertenecientes a los conjuntos de ingresos y afluencia.

C4.5

1) ColumnFilter

Para poder empezar con nuestro árbol de decisión, eliminamos las columnas de datos que resulten innecesarios.

2) X-Partitioner

Este nodo se usara para dividir un conjunto de datos en subconjuntos basados en una variable objetivo la cual será *Línea*. El número de validaciones se establecerá en 10.

3) Decision Tree Learner

Para este nodo se especificara como variable objetivo a la columna Línea.

4) Simple Regression Tree Predictor

El nodo "Decision Tree Predictor" toma el modelo de árbol de decisión entrenado para asignar una predicción categórica a cada instancia de datos de entrada.

5) X-Aggregator

Recopila el resultado de un nodo predictor, compara la clase predicha y la clase real y genera las predicciones para todas las filas y las estadísticas de iteración.

6) Score

Este análisis nos proporcionará la matriz de confusión generada por nuestro árbol de decisión. En nuestro caso de estudio, se observan algunas inconsistencias en el árbol potencialmente debido a las estaciones que pertenecen a más de una línea de metro, sin embargo, al examinar las estadísticas, se puede apreciar un nivel de predicción satisfactorio, ya que el valor de precisión es del 96%.

Row ID	1 Lines 1	1 Linea 6	1 Linea 9	1 Lines E	Lines 5	1 Lines 7	Linea 3	Linea 4	Linea 2	Linea B	Unes 12	I Linea A
Lines 1	7810	0	66	123	10	10	19	30	52	67	0	23
Linea 6	0	4323	0	0	29	42	0	116	0	0	0	0.
Linea 9	98	0	4487	20	197	0	0	(84	(7	0	0	27
Linea B	40	0	12	7589	0	0	10	35	25	37	52	0
Linea 5	58	79	23	0	5061	0	0	63	0	22	0	14
Linea 7	0	82	0	0	0	5612	10	0	0	0	46	0
Lines 3	52	4	135	0	15	0	8335	0	7	40	40	0
Linea 4	3	43	1	12	90	0	0	3858	0	93	0	0
Linea 2	106	0	12	143	0.	4	51	0	9457	0	67	0
Lines 8	11	0	0	13	121	0	10	0	10	B462	10	0
Lines 12	0	0	0	30	0	12	0	0	0	0	9158	0
Linea A	33	0	11	0	103	0	10	0	0	0	0	3953

I.3 Resultados

a) Diagrama generado

Como se puede observar, el árbol generado es muy grande por lo que se mostrará una imagen parcial de lo que se generó en los resultados.

C4.5

Como se puede observar, el árbol generado es muy grande por lo que se mostrará una imagen parcial de lo que se generó en los resultados y además agregamos una captura de la predicción de datos.

b) Medidas Obtenidas

CART

C4.5

Row ID	\$ Rule	D Record count	D further of correct
Revi1	\$Estacion\$ = "Babuena" AND \$Aftuencie\$ <= 1406.5 => "Lines 1"	21	21
Row2	SEstacionS = "Baldenas" AND SAfluenciaS <= 3406.5 => "Linea 1"	0	0
Raw 3	\$Estacion\$ = "Boulevard Puerto Aéreo" AND \$Affuencia\$ <= 3406.5 => "Linea 1"	23	23
Row4	\$Estacion\$ = "Candelarie" AND \$Affuence\$ <= 3406.5 => "Lines 1"	23	23
Row5	\$Estacion\$ = "Chapultopec" AND \$Afluencia\$ <= 3406.5 => "Linea 1"	0	0
Rawb	\$Estacion\$ = "Cuauhtémoc" AND \$Affuenda\$ <= 3496.5 => "Linea 1"	0	0
Rowi7	Statacon\$ = "Gorez Pariae" AND \$Afluentia\$ <= 3406.5 => "Lines 1"	22	22
Revill	\$Estacion\$ = "Insurgentes" AND \$Affuencia\$ <= 3406.5 => "Linea 1"	7	2
Rowlin	\$Estacion\$ = "Isabel la Católica" AND \$Affuencia\$ <= 3406.5 => "Linea 1."	24	24
Row 10	\$Estacion\$ = "Juanacatán" A/ED \$Afsancia\$ <= 3406.5 => "Linea 1"	3	3
Rpw11	\$Estacions = "Merced" AND \$Affuencias <= 3406.5 => "Linea 1"	26	26
Row12	\$Estacion\$ = "Moctenima" AND \$Aftiencia\$ <= 3406.5 => "Linea 1"	21	21
Row 13	\$Estacion\$ = "Observatorio" AND \$Affuencie\$ <= \$406.5 => "Linea 1"	10	0
Raw14	\$Estacion\$ = "Pantitán" AND \$Afluenca\$ <= 3406.5 => "Linea 1"	19	29
Rom 15	Statacion\$ = "Pino Suires" AND \$Aftuencie\$ <= 3495.5 => "Lines 1"	19	19
Rpw 16	\$Estacion\$ = "Salto del Agua" AND \$Affuencia\$ <= 3406.5 => "Linea 1"	24	24
Row 17	\$Estacion\$ = "San Lazaro" AND \$Afluencia\$ <= 3406.5 => "Unea 1"	20	20
Row 18	Stirtacion\$ = "Seville" AHD \$Afturncia\$ <= 3406.5 => "Linea 1"	0	0
Row18	sEstacons = "Tacubaya" AND \$Aftuenda\$ <= 3406.5 => "Linea 1"	0	0
Row20	\$Estacion\$ = "Zeragoza" AND \$Affuencia\$ <= 3406.5 => "Lines I"	21	21
Rpw21	\$Estacion\$ = "Atlaico" AND \$Aftuencia\$ <= 3406.5 => "Linea 12"	93	93
Row22	\$Estadon\$ = "Calle 11" AND \$Affuenda\$ <= 3406.5 => Tunea 12"	141	141
Rpw23	Statecons = "Culturatin" AND SAftuencias <= 3406.5 => "Lines 12"	153	153
Row24	\$Estacion\$ = "Eje Central" ANO \$Affuencia\$ <= 3406.5 => "Linea 12"	39	89
Row25	\$Estacion\$ = "Ermita" AND \$Affuencia\$ <= 3406.5 => "Linea 12"	92	92
Row26	\$Estacion\$ = "Hospital 20 de Novembre" AND \$Aftuencie\$ <= 3406.5 => "Linea 12"	92	92
Row27	\$Estacion\$ = "Insurgentes Sur" ANO \$Affuencia\$ <= 3406.5 => "Linea 12"	89	89
Row26	\$Estacion\$ = "Lonas Estrela" AND \$Aftuencia\$ <= 3406.5 => "Lines 12"	142	142
Row 29	\$Estacion\$ = "Mexicaltango" AND \$Afluencie\$ <= 3406.5 => "Linea 12"	92	92
Rani 30	\$Estacion8 = "Mixcoac" AND \$Affuenda8 <= 3406.5 => "Linea 12"	98	95
Row31	\$Estacion\$ = "Nopolera" ME/ \$Affuencia\$ <= 3405.5 => "Linea 12"	190	190
Row32	\$Estacion\$ = "Olivos" AND \$Afkiencia\$ <= 3406.5 => "Linea 12"	148	146
Row33	\$Estacion\$ = "Parque de los Venados" ANO \$Afluencia\$ <= 3406.5 => "Unea 12"	95	95
Row34	\$Estacion\$ = "Periferco Oriente" AVD \$Afluencia\$ <= 3406.5 => "Linea 12"	138	138
Raw35	\$Estadon\$ = "San Andrés Toniatlàn" AND \$Affuencia\$ <= 3406.5 => "Linea 12"	139	139
Rpm36	\$Estacion\$ = "Tezonco" AND \$Affuencia\$ <= 3406.5 => "Linea 12"	153	153
Raw37	\$Estacion\$ = "Tielterco" AND \$Afluencia\$ <= 3406.5 => "Linea 12"	158	158
Row38	\$Estacon\$ = "Tildhuac" AND \$Affuencia\$ <= 3406.5 => "Linea 12"	146	148
Row39	\$Estacion\$ = "Zapata" AND \$Aftuencia\$ <= 3406.5 >> "Lines 12"	92	92
Row40	\$Estacion\$ = "Zapotitlán" AND \$Afluencia\$ <= 5406.5 => "Linea 12"	147	147
Rom#1	\$Estacion\$ = "Afende" AND \$Aftuencie\$ <= 3406.5 => "Linea 2"	9	g .
Row42	\$Estacion\$ = "Bellas Artes" AVD \$Aftuencia\$ <= 3406.5 => "Lines I"	0	0

c) Descripción de las características de los resultados generados

<u>CART</u>

En este caso, encontramos que la precisión en la regresión es un tanto alta, por lo que se puede entender que, a pesar de que existen algunos errores, podemos decir que la confianza en la predicción del árbol es alta.

C4.5

Encontramos un error mínimo, no mayor al 4% en el árbol, por lo que podemos concluir que existe una gran confianza en la precisión del árbol y que por lo tanto una forma de conocer a que tipo de línea pertenecen las estaciones especialmente las que cuentan con múltiples correspondencias pueden ser aplicadas a través del árbol C4.5.

d) Tipo de muestra que utilizó para prueba y entrenamiento

<u>CART</u>

Para este caso en particular no se realiza un particionamiento para prueba y entrenamiento ya que no se realiza algún tipo de configuración como tal. Sin embargo, configuramos el árbol para que partir de cierto número de datos ingresados se puedan hacer las particiones para su predicción.

C4.5

En el caso del árbol C4.5 se asigna un valor para el número mínimo de particiones con el cual, nosotros asignamos un valor mínimo de 10 datos.

I.4 Análisis de los resultados

CART

Con base en el análisis previo, se puede llegar a la conclusión de que el coeficiente de determinación (r^2) representa el nivel de precisión de nuestro árbol de decisiones. En este caso, se observa que el árbol presenta una precisión moderada, dado que su valor de estimación es de 0.731, el cual se encuentra muy próximo a uno. Para una mejor comprensión, se adjunta a continuación una gráfica que compara los valores originales con aquellos predichos por nuestro árbol.

Es importante destacar que este árbol de decisiones tiene la capacidad de determinar la afluencia generada por una línea de metro en un mes específico del año. Esto significa que el modelo es capaz de predecir la cantidad de pasajeros que se espera utilizarán dicha línea durante ese período. Esta información resulta valiosa para la planificación y gestión eficiente de los recursos y servicios del sistema de transporte.

C4.5

En este ejercicio podemos concluir que, a través de la predicción del árbol, hallamos una alta precisión en la predicción de la pertenencia de una estación con respecto a su línea (en especial las de más de una correspondencia).

Linea \ Pre	Linea 1	Lines 6	Linea 9	Lines 8	Unea 5	Lines ?	Lines 3	Lines 4	Linea 2	Lines B	Lines 12	Linea A	
Linea 1	7896	0	76	115	10	9	18	19	49	67	0	21	
Lines 6	0	4342	0	0	37	42	0	133	0	0	0	0	
Linea 9	98	jo	4599	18	135	0	0	96	6	0	(0	26	
inea (I)	54	0	22	7612	0	0	0	34	25	56	83	0.	
Jines 5	78	83	70	0	9044	0	0	64	0	21	0	22	
Lines 7	0	83	0	0	0	5661	10	0	0	0	52	0	
Linea 3	56	3	120	0	15	D	8411	0	10	40	39	0	
Linea 4	0	30	0	12	95	0	0	3910	0	93	0	0.	
Linea 2	100	0	13	147	0	3	55	0	9547	0	71	0	
Linea D	6	0	0.	12	324	0	2	0	0	8547	0	0	
Linea 12	0	0	0	26	0	11	0	10	2	0	8241	0.	
Linea A	20	0	39	0	73	0	0	0	0	0	0	4008	
Correct classified: 77,818							Wrong classified: 2,909						
Accuracy: 96.396%							Error: 3.604%						
		Cohe	en's kappe (ki):	0.96%									

Row ID	TruePo	I FalsePo	. Truelie	I FaiseN	D Recall	D Precision	D Sensitivity	D Specificity	D F-meas	D Accuracy	D Cohen'
Linea 1	7896	412	72035	384	0.954	0.95	0.954	0.994	0.952	7	2
Linea 6	4342	199	75974	212	0.953	0.956	0.953	0.997	0.955	7	9
Linea 9	4599	340	75419	369	0.926	0.931	0.926	0,996	0.928	?	þ
Linea 8	7612	330	72531	254	0.968	0.958	0.968	0.995	0.963	9	5
Linea 5	5044	489	74856	338	0.937	0.912	0.937	0.994	0.924	1	2
Linea 7	5661	65	74866	135	0.977	0.989	0.977	0.999	0.983	,	Į.
Linea 3	8411	75	71958	283	0.967	0.991	0.967	0.999	0.979	7	7
Linea 4	3910	336	76251	230	0.944	0.921	0.944	0.996	0.933	7	9
Linea 2	9547	92	70699	389	0.961	0.99	0.961	0.999	0.975	2	2
Linea B	8547	257	71779	144	0.983	0.971	0.983	0.996	0.977	9	b
Linea 12	8241	245	72202	39	0.995	0.971	0.995	0.997	0.983	7	2
Linea A	4008	69	76518	132	0.968	0.983	0.968	0.999	0.976	7	6
Overall	7	7	7	7	7	- 5	7	7	7	0.964	0.96

II. Multi Clasificación. *Bagging y Boosting*

Equipo 4

Data Mining 3CV15

II. Multi Clasificación. Bagging y Boosting

II.1 Descripción del ejercicio

Random Forest

Los modelos Random Forest están formados por un conjunto de árboles de decisión individuales, cada uno entrenado con una muestra ligeramente distinta de los datos de entrenamiento generados mediante bootstrapping.

La predicción de una nueva observación se obtiene agregando las predicciones de todos los árboles individuales que forman el modelo.

Boosting

También llamada potenciación del gradiente es una técnica de machine learning utilizada para el análisis de la regresión y en la clasificación estadística; este produce un modelo predictivo; Al igual que otros modelos de boosting, va construyendo nuevos modelos considerando en cada nueva iteración los errores cometidos anteriormente.

II.2 Diccionario de datos II.2.1 Diccionario de datos Random Forest.

Nombre	Significado	Significado Tipo	
Línea	Número de línea del sistema del transporte público.	Categórico	Línea 1 – Línea 12 Línea A Línea B
Estacion	Nombre de la estación donde se encuentra la afluencia.	Categórico	Nombre de la estación.
Afluencia	Número de personas que utilizaron esa estación en particular en el día especificado.	Numérico	Numero entero Positivo.
Año	La fecha en la que se registró la afluencia.	Numérico	2010 - 2023
Mes	El mes correspondiente a la fecha.	Categórico	Enero – Diciembre

El conjunto de datos utilizado en este estudio está compuesto por los conjuntos de ingresos y afluencia. Para llevar a cabo el análisis, se aplicó una técnica de filtrado de columnas (Column Filter) con el fin de seleccionar y separar los atributos relevantes para el estudio, que incluyen la línea del

metro, la estación, la afluencia, así como los campos relacionados con los años y meses. Esta acción de filtrado permitió aislar y enfocar los datos necesarios para realizar el análisis específico requerido, descartando aquellas variables que no eran reelevantes para el ejercicio en cuestión.

II.2.3 Diccionario de datos Gradient Boost.

Nombre	Significado Tipo		Dominio
Genders	Genero de la persona	Categórico	Masculino
acriacis	deficio de la persona	Categorico	Femenino
			Soltero/
Married	Estado civil	Categórico	divorciado
			Casado
BankCustomer	Cliente del banco	Categórico	No tiene cuenta
Dankeustonici	Cheffic der barico	Categorico	Tiene cuenta
Industry	Sector de la industria en	Categórico	Nombre del
mustry	el que trabaja	Categorico	sector
			Asiático,
Ethnicity	Etnia del solicitante	Categórico	Latino, Blanco,
			Negro, etc.
PriorDefault	Valor predeterminado	Categórico	Sin valor
Filoi Delault	con anterioridad.	Categorico	Con valor
Employed	Estado laboral	Categórico	Con empleo
Employed	Estado laborar	Categorico	Desempleado
			No tiene
DriversLicense	Licencia de conducir	Categórico	licencia
			Tiene licencia
Citizen	Ciudadanía del	Cotegórico	Por nacimiento
CILIZEII	solicitante	Categórico	Por otras vías
Approved	Aprobación de	Categórico	No aprobado
Approved	expedición de tarjeta	Categorico	Aprobado

II.3. Resultados.

a) Diagrama generado

Random Forest

Aquí tenemos uno de los 100 modelos que se generan.

R2: 0.569 Mean absolute error: 268,680.41

Mean squared error: 137,976,742,572.67

Root mean squared error: 371,452.208

Mean signed difference: 3,397.829

Mean absolute percentage error: NaN Adjusted R²: 0.569

Gradient Boost

b) Medidas obtenidas

Random Forest

Gradient Boost

Debido a que knime no genera el modelo de clasificación no es posible colocar el diagrama y por ende tampoco es posible obtener medidas, ni describir resultados. Es por eso por lo que solo mostramos captura de las carpetas que generan el modelo en la sección del diagrama

c) Descripción de las características

Random Forest

Al tener un valor de r^2 con porcentajes cercanos al 50% de precisión podemos observar que aún existen errores en que pueden afectar en la predicción del modelo y que aún faltarían por analizar más información para generar un modelo con una mayor precisión y confianza.

Gradient Boost

En este caso percibimos que existe un porcentaje de precisión alto y por lo tanto se puede tener una gran confianza en que la predicción para saber si una tarjeta de crédito es aceptada o no.

Approved	APPROVED	NOT APPR	
APPROVED	51	10	
NOT APPRO	5	72	
Correct c	lassified: 123	Wro	ong classified: 15
55.72272	lassified: 123		ong classified: 15
Accurac		E	-

d) Tipo de muestra que se utilizó para prueba y entrenamiento

Random Forest

Se asignó un porcentaje de 80% para entrenamiento y un 20% para prueba

Gradient Boost

Se asignó un porcentaje de 80% para entrenamiento y un 20% para prueba

II.4. Análisis de los resultados.

Random Forest

Con base en el análisis previo, se puede llegar a la conclusión de que el coeficiente de determinación (r^2) representa el nivel de precisión de nuestro árbol de decisiones. En este caso, se observa que el árbol presenta una precisión mediana, dado que su valor de estimación es de 0.559, es decir poco más de la mitad. Para una mejor comprensión, se adjunta a continuación una gráfica que compara los valores originales con aquellos predichos por nuestro árbol.

Al analizar los resultados obtenidos, se puede observar que nuestras predicciones presentan una exactitud que oscila entre aproximadamente entre la mitad y un poco más de la mitad de la precisión de nuestros datos. Es relevante destacar que nuestro modelo de Random Forest ha sido aplicado para calcular la afluencia de cada estación del sistema de metro en un mes específico. Esta técnica nos permite realizar estimaciones y pronósticos respecto a la cantidad de personas que utilizarán cada estación durante ese período.

Gradient Boost

Approved	APPROVED	NOT APPR			
APPROVED	51	10			
NOT APPRO	5	72			
Correct classified: 123 Wrong classified: 15					
Accuracy: 8	9.13%	Error: 10.87%			
Cohen's kap	pa (κ):				

Por otro lado, con relación al algoritmo de Boosting, se ha aplicado para predecir dadas las características de algunas personas que pidieron algún tipo de tarjeta de crédito y saber si es que se les fueron aprobadas o no. Al analizar los resultados obtenidos en este ejercicio, se puede observar que la precisión del modelo es del 89.13%. Esta alta precisión indica que el modelo es capaz de realizar predicciones con un nivel muy elevado de exactitud y confiabilidad.

Además, es importante destacar que el error del modelo es un tanto menor, aproximadamente del 10.87%. Esta baja tasa de error nos indica que el modelo es muy preciso y confiable en la asignación de las aprobaciones y negaciones de tarjetas de crédito. En consecuencia, podemos afirmar que el modelo es capaz de realizar predicciones con un alto nivel de exactitud y confiabilidad, lo cual es fundamental para la toma de decisiones y la solución de problemas.

III. Agrupamiento (Jerárquico y No Jerárquico)

Equipo 4
Data Mining
3CV15

III. Agrupamiento (Jerárquico y No Jerárquico)

III.1 Descripción del ejercicio

Para llevar a cabo el análisis de agrupamiento jerárquico, utilizaremos el conjunto de Fifa World Cup. Este conjunto será sometido a un proceso de agrupamiento jerárquico con el objetivo de identificar estructuras y relaciones entre los elementos. Por otro lado, para el análisis de agrupamiento no jerárquico, continuaremos empleando el conjunto de datos con el que hemos trabajado previamente. Este conjunto se utilizará para aplicar técnicas de agrupamiento no jerárquico con el fin de descubrir patrones y relaciones entre los elementos, sin una estructura jerárquica específica.

III.2. Diccionario de Datos III.2.1 Diccionario de Datos Jerárquico

Conjunto de datos FIFA World Cup Attendance 1930-2022 Mediante la utilización del nodo Column Filter, procederemos a aplicar un filtrado de datos con el objetivo de reducir y seleccionar el conjunto de datos de manera precisa. Esta operación permitirá obtener un subconjunto de datos que se ajuste a los criterios y atributos deseados para nuestro análisis.

De esta manera, garantizaremos que el conjunto de datos final utilizado en nuestro trabajo se encuentre adecuadamente filtrado y optimizado para cumplir con los objetivos y requerimientos específicos del estudio.

Nombre	Significado	Tipo	Dominio
Host	Anfintrion de la Copa del Mundo Categório		Sede elegida por la FIFA
Total_Attendance	Asistencia total de personas	Numérico	Numero entero Positivo
Year	El año que se disputo el mundial	Numérico	1930 – 2022
Avarage_Attendace	Promedio de personas con asistencia en vivo	Numérico	Numero entero Positivo
Matches	Número total de partidos Jugados	Numerico	Numero entero Positivo

III.2.2 Diccionario No Jerárquico

Conjunto de datos Ingresos y Afluencia.

Nombre	Significado	Significado Tipo	
Linea	Número de línea del sistema del transporte público.	Categórico	Línea 1 – Línea 12 Línea A Línea B
Estacion	Nombre de la estación donde se encuentra la afluencia.	Categórico	Nombre de la estación.
Afluencia	Número de personas que utilizaron esa estación en particular en el día especificado.		Numero entero Positivo.
TipoIngreso	El valor numérico que representa la cantidad de		Forma de pago.
Año	La fecha en la que se registró la afluencia.	Numérico	2010 - 2023
Mes	Mes El mes correspondiente a la fecha. Categórico		Enero – Diciembre
Ingreso	El valor numérico que representa la cantidad de		Numero entero positivo.

III.3. Resultados.

a) Diagrama generado

<u>Jerárquico</u>

No Jerárquico

b) Medidas obtenidas. Silueta.

Silueta modelo Jerárquico

Silueta modelo No Jerarquico

c) Descripción de las características de los resultados generados

Dendograma (Jerárquico)

El dendrograma nos brinda la posibilidad de visualizar las variaciones en la asistencia de público entre las distintas ediciones. Esta representación gráfica nos permite analizar y comparar de manera sistemática la diferencia en términos de afluencia entre cada Copa Mundial.

En el dendrograma, se pueden identificar los diferentes niveles de agrupamiento y la distancia relativa entre ellos. Estas agrupaciones reflejan similitudes o disparidades en las asistencias registradas en cada edición del torneo.

No Jerárquico (Scatter Plot)

En el Scatter Plot presente, se muestra la relación entre la afluencia en el sistema de transporte público del metro y los ingresos percibidos. Asimismo, se pueden identificar los distintos grupos de pago generados en función de dicha afluencia.

El gráfico permite visualizar la relación entre estas dos variables, lo cual nos proporciona información sobre cómo la afluencia en el metro puede influir en los ingresos generados. Al observar el gráfico, es posible identificar patrones y tendencias en la distribución de los grupos de pago en relación con la afluencia registrada.

d) Tipo de muestra que utilizó para prueba y entrenamiento.

No Jerárquico

Con relación al conjunto de datos no jerárquico, se realizó una partición de los datos con el propósito de llevar a cabo un proceso de entrenamiento y evaluación del modelo. Específicamente, se asignó el 70% de los datos para el entrenamiento del modelo, con el objetivo de obtener resultados más precisos y robustos. El 30% restante de los datos se reservó para realizar pruebas y evaluar el rendimiento del modelo en datos no vistos previamente. Esta estrategia de partición de datos se llevó a cabo con el fin de evitar el sobreajuste del modelo y evaluar su capacidad para generalizar y realizar predicciones precisas en datos nuevos.

III.4 Análisis de Resultados

No Jerárquico

A través del análisis anterior, podemos observar que nuestro enfoque de agrupamiento no jerárquico revela la cantidad de ingresos percibidos en función de la afluencia, y los clasifica en grupos según su forma de pago. Por consiguiente, podemos inferir que la forma de pago más lucrativa en el Metro de la ciudad es a través de la venta de boletos. Esto nos lleva a deducir que mucha gente confia más en este tipo de pago, ya que los ingresos generados por la compra de tarjetas y otros métodos de pago no son equivalentes a los obtenidos por la venta de boletos.

<u>Jerarquico</u>

A través de análisis previo podemos inferir que el análisis jerárquico nos permite examinar el nivel de asistencia en cada Copa Mundial de la FIFA. Este enfoque nos revela patrones o tendencias en términos de la cantidad de espectadores presentes en cada edición del torneo, identificando picos de asistencia en eventos específicos o variaciones en la participación a lo largo del tiempo.

IV. Reglas de Asociación

Equipo 4

Data Mining 3CV15

IV. Reglas de Asociación

IV.1 Descripción del ejercicio

Las reglas de asociación son un conjunto de técnicas que permiten establecer o encontrar relaciones de nuestro interés en un conjunto de datos, estas son utilizadas en su mayoría en áreas mercadológicas para recomendar algún producto o servicio que pueda ser de interés del comprador.

A través de este estudio se pretende encontrara las reglas de asociación fuertes para poder hallar las reglas para poder determinar si el banco aprobara o no la expedición de una tarjeta de crédito a los solicitantes, mostrando todos los antecedentes que conllevan a la respuesta de nuestro algoritmo.

IV.2 Diccionario de Datos

Nombre	Significado Tipo		Dominio
Genders	Genero de la persona	Categórico	Masculino
Genders	deficio de la persona	Categorico	Femenino
			Soltero/
Married	Estado civil	Categórico	divorciado
			Casado
BankCustomer	Cliente del banco	Categórico	No tiene cuenta
DankCustomer	Cheffite del baffeo	Categorico	Tiene cuenta
Industry	Sector de la industria en	Categórico	Nombre del
Industry	el que trabaja	Categorico	sector
			Asiático,
Ethnicity	Etnia del solicitante	Categórico	Latino, Blanco,
			Negro, etc.
PriorDefault	Valor predeterminado	Categórico	Sin valor
Thorberault	con anterioridad.	Categorico	Con valor
Employed	Estado laboral	Categórico	Con empleo
Employed	Estado laborar	Categorico	Desempleado
			No tiene
DriversLicense	Licencia de conducir	Categórico	licencia
			Tiene licencia
Citizen	Ciudadanía del	Categórica	Por nacimiento
CILIZEII	solicitante	Categórico	Por otras vías
Approved	Aprobación de	Cotegórico	No aprobado
Approved	expedición de tarjeta	Categórico	Aprobado

IV.3 Resultados

a) Diagrama generado

Row ID	S combined string
Row0	"Male", "Married", "has a bank account", "Industrials", "Write", "prior default", "employed", "no license", "ByBirth", "APPROVED"
Row1	"Female", "Married", "has a bank account", "Materiain", "Black", "prior default", "employed", "no license", "ByBirth", "APPROVED"
Row2	"Female", "Married", "has a bank account", "Materials", "Black", "prior default", "not employed", "no license", "ByBirth", "APPROVED"
Row3	"Male", "Married", "has a bank account", "Industrials", "White", "prior default", "employed", "has license", "bytinth", "APPROVED"
Row4	"Male", "Married", "has a bank account", "Industrials", "White", "prior default", "not employed", "no license", "ByOtherMeans", "APPROVED"
Row5	"Male", "Married", "has a bank account", "CommunicationServices", "White", "prior default", 'not employed", "has keense", "Bytinth", "APPROVED"
Row6	"Male", "Married", "has a bank account", "Transport", "Black", "prior default", "not employed", "has license", "ByBirth", "APPRIOVED"
Row7	"Female", "Married", "has a bank account", "InformationTechnology", "White", "prior default", "not employed", "ha license", "ByBirth", "APPROVED"
Row8	"Male", "Single/Divorced/etc", "does not have a bank account", "Financials", "Black", "prior default", "not employed", "no license", "ByBirth", "APPROVED"
Row9	"Male", "Single (Divorced/intr.", "does not have a bank account", "Industrials", "Write", "prior default", "not employed", "has license", "ByEirth", "APPROVED"
Row10	"Nale", "Married", "has a bank account", "Energy", "Black", "no prior defaults", "hot employed", "has license", "ByErth", "APPROVED"
Row11	"Male", "Married", "has a bank account", "Energy", "Black", "prior default", "not employed", "no license", "ByBirth", "APPROVED"
Row12	"Fenale", "Married", "has a bank account", "Financials", "White", "prior default", "not employed", "has license", "byBrith", "APPROVED"
Row13	"Male", "Married", "has a bank account", "Financials", "White", "no prior defaults", "not employed", "no license", "byfürth", "APPROVED"
Row14	"Female", "Married", "has a bank account", "Materials", "White", "prior default", "employed", "has keense", "ByBirth", "APPROVED"
Row15	"Male", "Single/Divorced/etc", "does not have a bank account", "Financials", "White", "prior default", "employed", "has kcense", "ByBirth", "APPROVED"
Row16	"Male", "Married", "has a bank account", "CommunicationServices", "White", "prior default", "employed", "has keense", "ByGrth", "APPROVED"
Row17	"Female", "Married", "has a bank account", "Materials", "White", "prior default", "employed", "no license", "ByBirth", "APPROVED"
Row18	"Male", "Married", "has a bank account", "Real Estate", "Black", "prior default", "not employed", "has keense", "ByBrth", "APPROVED"
Row19	"Female", "Harried", "has a bank account", "InformationTechnology", "Black", "prior default", "employed", "ho kcense", "BySirth", "APPROVED"
Row20	"Male", "Married", "has a bank account", "Energy", "White", "prior default", "employed", 'no license", "ByBirth", "APPROVED"
Row21	"Male", "Married", "has a bank account", "Energy", "White", "prior default", "not employed", "no license", "ByOtherMeans", "APPROVED"
Row22	"Female", "Harried", "has a bank account", "Energy", "White", "prior default", "employed", "has kcense", "ByBirth", "APPROVED"
Row23	"Female", "Married", "has a bank account", "Utilities", "Black", "prior default", "employed", "no license", "bytfirth", "APPROVED"
Row24	"Female", "Married", "has a bank account", "Materials", "White", "prior default", "employed", "has keense", "Bytlirth", "APPROVED"
Row25	"Female", "Married", "has a bank account", "Energy", "Black", "prior default", "employed", "no license", "ByBirth", "APPRIOVED"
Row26	"Female", "Married", "has a bank account", "ConsumerDiscretionary", "Asian", "prior default", "employed", "has license", "ByBirth", "APPROVED"
Row27	"Male", "Married", "has a bank account", "Real Estate", "Asian", "prior default", "employed", "has license", "ByBirth", "APPROVED"
Row28	"Male", "Married", "has a bank account", "Education", "Black", "prior default", "employed", "no kcense", "BySirth", "APPROVED"
Row29	"Male", "Married", "has a bank account", "Industrials", "White", "prior default", "employed", "has license", "ByBirth", "APPROVED"
Row30	"Male", "Married", "has a bank account", "ConsumerStaples", "White", "prior default", "employed", "has license", "ByBirth", "APPROVED"
Row31	"Male", "Harried", "has a bank account", "Utilities", "Black", "prior default", "employed", "no license", "Bytirth", "APPROVED"
Row32	"Male", "Married", "has a bank account", "ConsumerDiscretionary", "Asian", "prior default", "employed", "has keense", "ByBirth", "APPROVED"
Row33	"Female", "Married", "has a bank account", "Education", "White", "prior default", "not employed", "has license", "Byllinth", "APPROVED"
Row34	"Yemale", "Married", "has a bank account", "Materials", "White", "prior default", "employed", "has license", "ByBirth", "APPROVED"
Row35	"Male", "Married", "has a bank account", "Industrials", "White", "prior default", "employed", "has license", "ByBirth", "APPROVED"
Row36	"Male", "Married", "has a bank account", "InformationTechnology", "Black", "prior default", "employed", "has icense", "ByEirth", "APPROVED"
Row37	"Female", "Married", "has a bank account", "Utilities", "Black", "prior default", "employed", "has icense", "ByBirth", "APPROVED"
Row38	"Male", "Single/Divorced/etc", "does not have a bank account", "InformationTechnology", "White", "prior default", "employed", "no license", "ByBirth", "APPROVED"
Row39	"Male", "Married", "has a bank account", "Healthcare", "Latino", "prior default", "employed", "has license", "ByBirth", "APPROVED"
Row40	"Male", "Married", "has a bank account", "Energy", "White", "prior default", "employed", "has license", "Byfirth", "APPROVED"
Row41	"Male", "Harried", "has a bank account", "Energy", "Black", "prior default", "employed", "no license", "by6irth", "APPROVED"

b) Medidas obtenidas

5 Consequent	[_] Antecedent	I I Iterdetiupper	D Relative Herriet	D HuleConfidence No.	D AbsenteBubyS	D Relativeledy	D Rules IT	D Wester	D Absolutetes	. D.
Real Estate*	["has kenner", "no prior defaults", "NOT APPROVED",]	8	1.159	10.7	26	t0.9	3,453	(245.30)	30	4.346
"Riguil Distate"	"has license", his prior defaults", "NOT APPROVED",]	10	1.449	10:3	79.7	19.1	2.371	237.11	30	14,548
"Real Extate"	"Tras ticense", "so prior defaults", "not employed",]	9 :	1.304	10.6	803	12	13.494	249.4	30	4.340
"Real Distale"	"has license", 'no prior defaults", 'not employed",	9.	1.304	12:9	70	10.1	2.957	295.71	30	4.348
"leal Estate"	["has forme", "no prior defaults", "not employed",]	9	1.304	12.9	70	10.1	2.957	295.71	30	4.34
"Real Extets"	"has license", 'no prior defaults", 'not exployed",]	9	L304	12.5	72	19.4	2.875	287.5	30	1.34
"lical Estate"	["has learner", "to prior defaults", "not employed"]	11	1,594	16.4	106	15.4	2.387	238,68	30	6.34
"Real Estate"	["has license", "no prior defaults", "White"]	9.	1.304	10.4	95	12.3	2.436	243.53	50	4.34
"lieal Estate"	["has lones", "NOT APPROVED", "not employed",]	10	1.440	DEA.	80	11.8	2.875	287.5	30	4.34
"Real Estata"	["has loense", "HOT APPRIORED", "yot employed",]	90	1,449	16.2	36	14.2	3.347	234.69	30	4.346
Treat Estate*	"has learner", "NOT APPROVED", "not employed",	1	1.159	11.4	70	16.1	2,629	262.86	30	4.346
Rose Extein"	["has looke", "NOT APPRIORED", "not employed",]	62	1.730	10.8	30	12.9	3.501	140.11	30	4.348
"Real Estate"	"has learne", "NOT APPROVED", "not employed",)	8	L.159	IL4	70	10.1	2.679	262.66	30	14.348
Treat Exterior	["has lowse", "NOT APPROVED", "not employed",]	52	1.739	13.5	90	12.9	3.901	310.11	30	4.340
"Real Estate"	"has learne", "NOT APPROVED", "not employed",	- 10	1,159	11.4	70	10.1	2.629	262.86	30	14.548
"Real Exterior"	["sex loanse", "hOT APPROVED", "not employed",]	12	1.739	13.5	99	12.9	12,101	T40.11	30	4.34
"Resel Distate"	"has license", "NOT APPROVED", "not employed")	53	1.884	16.1	129	18.7	2.318	231.78	30	14,548
"Real Extate"	["has license", "NOT APPROVED", "White",]	9 :	1.304	11.4	79	11.4	2.62	262.05	30	4.34
Real Extelle"	"has kerse", "NOT APPROVED", "White",]	9.	1.304	11.4	79	LL4	2.62	362.03	30	4.54
"leal Estate"	("has former", "NOT APPROVED", "White",]	9	1.304	11.4	70	11.4	2.62	267.00	30	4.34
"Real Extelle"	["has loored", 'NOT APPROVED", 'Male",]	9	L304	10.8	93	12	(2,494	249.4	50	1.346
"Fleel Estate"	"has lorrer", "NOT APRICHED", "Yele",	9.0	1,304	10.0	33	12	2:494	249.4	30	14.34
"Read Extern"	[has license", high APPROVED", hase",]	9	1,304	10.8	83	12	3.494	249.4	80	4.346
"Real Estate"	"has learner", 'hot ampleyed", 'White',]	9	1.304	11.1	0.1	11.7	2.556	155.56	30	4.34
"Kend Cutato"	Than loonse', 'not employed', 'White', I	9	1.30+	12.2	N.	16.7	2.797	129.70	30	4.34
"Real Extate"	"has leance", "not employed", "White",	9	1.304	12.2	74		(2,797	279.73	30	4.348
"Rissel Einstein:"	["has license", "not employed", "White",]	9	1,304	12.2	74	16.7	2,797	129.70	30	4.340
"Real Estate"	("has learne", "not employed", "White")	12	1.730	11.4	106	15.2	2.679	262.66	30	4,34
Treal Exterior	[Truss license", "not employed", "Male",]	10	1,449	16.5	95	12.8	2.421	242.11	30	4.34
"Rend Estate"	"has learner", "vot employed", "Male",	10	1, 949	10.5	95	13.8	2.421	(242.11	30	4.34
"Real Extore"	["hus linense", "not employed", "Male",]	90	L-449	10.4	196	13.9	2.396	229.58	30	4.34
"Resel Distate"	Thas license", 'not employed", 'Married']	13	1.884	10:3	126	18.1	2.373	237.3	30	14,548
Yeal Extate*	"has license", "not employed", "Married")	13	1.854	10.3	126	16.1	2.373	237.3	30	4.340
Real Drists	"has license", 'not employed", has a bank account."	13	1,884	16.2	128	18.6	2.536	223.59	50	1.34
"Real Estate"	['no prior defealts', 'NOT APPROVED', 'not employed',]	97	1.304	11.5	78	11.3	2.654	7365.36	30	4.34
"Real Extelle"	['no prior defaults', 'NOT APPROVED', 'not employed',]	9	L304	11.5	16	11.3	2,654	265.38	30	4.346
'Real Estate'	"no prior defeats", TyOT APPROVED", "not employed",]	9	1,304	11.5	76	11.3	2.654	365.38	30	14.34
Real Extate*	I'no prior defaults", "NOT APPROVED", "not employed",]	11	1.594	12.2	90	13	2.811	281.11	30	4.346
"Real Estate"	["no prior defaulte", "NOT APPROVED", "not employed",]	13	1.994	12.3	100	15.4	2.621	262.00	30	4.34
"Real Catalas"	["to prior defaults", "NOT APPROVED", "not employed",]	11:	1,994	13.2	30	13	2.911	281.11	30	4.346
Total Extent	"ho prior defaults", "NOT APPROVED", "not employed"]	13	1.884	12.1	106	15.4	0.821	252.08	30	4.348

c) Descripción de las características de los resultados generados

Tarjetas aprobadas

Tarjetas no aprobadas

d) Tipo de muestra que se utilizó para prueba y entrenamiento

Se configura la regla para que cuente con un soporte de 15 y una confianza de 40, todo esto con valores mínimos, así como establecer el valor mínimo para poder generar un tamaño mínimo de 5.

IV.4 Análisis de Resultados

Para este caso, encontramos que existen características distintas en cuanto a la aprobación y no aprobación de las tarjetas de crédito. A pesar de que existen datos que tienen en común como lo son el género o la etnia, es claro que se refleja que las aprobaciones tienden a ir más hacía personas que cuentan con empleo, así como las personas las cuales ya son clientes del banco o se encuentran en un estado civil de "Casados".

V. Regresión Lineal

Equipo 4

Data Mining 3CV15

V. Regresión Lineal

V.1 Descripción del ejercicio

Tan, Steinbach y Kumar (2013), definen a la regresión lineal como "una técnica de modelado predictivo". Además, Carollo (2012) establece que "El objetivo de un modelo de regresión es tratar de explicar la relación que existe entre una variable dependiente y un conjunto de variables independientes".

Con lo anterior, crearemos un modelo para tratar de predecir el promedio de asistencia a las copas del mundo según los datos brindados en el dataset. Teniendo en cuenta los partidos que se juegan y la sede en la que se encuentra cada evento.

V.2 Diccionario de Datos.

Nombre	Significado	Tipo	Dominio
Avarage_Attendace	Promedio de personas con asistencia en vivo	Numérico	Numero entero Positivo
Matches	Número total de partidos Jugados	Numerico	Numero entero Positivo

V.3 Resultados

a) Diagrama Generado

b) Medidas obtenidas

 Statistics on Linear Regression

 Variable
 Coeff.
 Std. Err.
 t-value
 P>|t|

 Matches
 432.3442
 119.6202
 3.6143
 0.0017

 Intercept
 23,704.6924
 5,632.0908
 4.2089
 0.0004

 R-Squared: 0.3951
 Adjusted R-Squared: 0.3649

c) Descripción de las características de los resultados generados

En el punto anterior podemos observar algunos datos, como por ejemplo el coeficiente de nuestra ecuación, es positivo por lo que nuestra recta tiene una relación lineal positiva. También tenemos otro dato como por ejemplo el punto donde intercepta en nuestra coordenada Y, con un valor de 23,704.6924 y coeficiente de determinación igual a 0.3951, entre otros datos.

d) Tipo de muestra que se utilizó para prueba y entrenamiento

En este punto no se coloca algún tipo de configuración para particionar los datos para prueba y entrenamiento, sino que como el mismo tema lo dice, se trata de asignar una variable dependiente a una independiente, por la cual esta generará una ecuación que explique el comportamiento lineal de los datos brindados.

V.4 Análisis de Resultados

Con los resultados anteriores observamos que contamos con un valor de R^2 un tanto bajo, con lo que se puede concluir que el porcentaje de certeza de nuestra ecuación Y = 432.3442X + 23,704.6924 cuenta con un 39.51% de precisión por lo que se concluye que a pesar de que los datos que predijo nuestro algoritmo no fueron desatinados, si se necesitan más datos para poder aumentar el porcentaje de precisión de este mismo con respecto a los datos reales.

Row ID	S Year	S Hosts	Total_A	Matches	Averag	D Predcti
0	1930	Uruguay	390549	18	32808	31,486.887
1	1934	Italy	363000	17	21353	31,054.543
2	1938	France	375700	18	20872	31,485.887
3	1950	Brazil	1045246	22	47511	33,216.264
4.	1954	Switzerland	768607	26	29562	34,945.64
5	1958	Sweden	819810	35	23423	38,836.738
6	1962	Chile	893172	32	27912	37,539.705
7	1966	England	1563135	32	48848	37,539.705
8	1970	Mexico	1603975	32	50124	37,539,705
9	1974	West Germany	1865753	38	49099	40,133.77
10	1978	Argentina	1545791	38	40679	40,133.77
11	1982	Spain	2109723	52	40572	46,186.589
12	1986	Mexico	2394031	52	46039	46,186.589
13	1990	Italy	2516215	52	48389	46, 186.589
14	1994	United States	3587538	52	68991	46,186.589
15	1998	France	2785100	64	43517	51,374.718
16	2002	South Korea	2705197	64	42269	51,374.718
17	2006	Germany	3359439	64	52491	51,374.718
18	2010	South Africa	3178856	64	49670	51,374.718
19	2014	Brazi	3429873	64	53992	51,374.718
20	2018	Russia	3031768	64	47371	51,374.718
21	2022	Qeter	3404252	64	53191	51,374.718