

Carpooling Study Based on NYC Yellow Taxi Dataset

Contents

- 1. Background & Objectives
- 2. EDA
- 3. Carpooling Study
- 4. Conclusion

Introduction: idea and concept

A glimpse during EDA

Low travelling efficiency

Dilemma of traditional taxis

Objectives

Analysis on the *potential* of carpooling.

Development of a feasible carpooling algorithm *strategy*.

Analysis on *benefits* of carpooling.

Foundation of the research

Explanatory Data Analysis

EDA: Data Preparation

To simplify the calculations and facilitate subsequent research, we've made the following preparations:

- 1 Filling in *missing values*
- 2 Adding columns: trip_duration avg_speed avg_speed
 - Data cleaning.
 - Elimination of extreme values
 - Elimination of unreasonable values

EDA: Data Preparation

Correlation among all the variables

With analysis and comparison of the correlations among all the variables, we selected those *highly correlated* variables and considered them of analytical value for subsequent research.

EDA: Distribution of different hours

The *number* of taxis

The *average speed*i.e. the *worse* the *congestion*.

EDA: Distribution of other variables

EDA: Distribution of taxi count and average speed in different locations

Pick up location ID

Model and algorithm for identifying and analyzing Car-pooling strategies

Introduction: idea and concept

Taxi car-pooling potentials & general car-pool criteria:

- Single passenger
- 2 Same pick-up place
- 3 Same drop-off place
- 4 Same departure time

General assumptions of the model

All potential car-poolers are single passengers.

All passengers with a potential car-pool partner are willing to car-pool.

Each car-pool represents a merge of several trips that retains the trip distance and trip duration of the first trip being merged.

The car-pool strategy algorithm

Separate time zones

Example: pick-up time 01:36 am

Car-poolers arrangement

Identify and group potential car-pool trips

CAR-POOL CRITERIA

1 Passenger count = 1

DATA

- 2 Same pick-up Location ID
- 3 Same drop-off Location ID
- 4 Same time zone for pick-up time

Group 1 PU ID = 1

DO ID = 1

Time-zone = 0

len(Group)≥2

Group 11638 PU ID = 263

DO ID = 263

Time-zone = 72

Apply the car-pool strategy

New data after car-pooling

- Non car-pooler
- 1 "Hailer" car-pooler
- 2 Kille takan" ai-Dooler

Carpooling's role in Congestion Reduction

Geographical Approach

Problem Simplification

ID zones

Hotspots representing corresponding ID zones

Result: Decentralization of demand

Quantifying Congestion

hour

Quantifying Carpooling

Interval: 10 min Car-pooler: 2

Total Trips

Mileage(mile) per day

-13.1% -61436 +6426

Fuel Saved(L) per day

Cost saved(\$) per passenger

+5.28

Avg speed(mile/hr)

Quantifying Carpooling

Interval	Car-pooler	Total Trips	Mileage(mile)	Fuel Saved(L)	Cost saved(\$)	Waiting time(min)
10 min	2	-13.1%	-61436	6426	5.28	+4'51''
10 min	3	-17.2%	-79858	8353	7.25	-
20 min	2	-18.0%	-89898	9409	5.51	+5'44''
20 min	3	-23.8%	-117897	12333	7.55	+7'31''
20 min	2	-20.7%	-107078	11201	6.71	+6'42''
30 min	3	-27.4%	-140824	14731	7.73	-
		•	Per day	Per day	Per trip	•

= ≈ 30,000 Barrels

Carpooling's role in Competitiveness

New Fare Calculation Method

II. Decrease of demand

III. Reallocation of Idle Drivers

IV. Keff(%) boost in income

New Fare Calculation Method: Inequation

$$\left\{ (1 + K_{eff}) \left(\sum_{\text{those who car pool}} K \times \text{original fare } + \sum_{\text{those who don't car pool}} \text{original fare} \right) \geq \sum_{\text{everyone}} \text{original fare}$$

$$0 \leq K \leq 1$$

The taxi drivers should earn no less than their original income

The passengers should not pay more than how much they originally pay.

New Fare Calculation Method: Solution

Conclusion: Advantages and Limits

30,000 Barrels saved per year

Smarter and more flexible

Longer Waiting time +5'

Lower maintenance cost & longer life span of taxis

Higher income for drivers

Heavier Burden On Privacy Protection

Average speed +1.4 miles/hr

A more attractive pricing strategy

Higher dependency on smart phones

END THANK YOU