ANALISI MATEMATICA 1

Area dell'Ingegneria dell'Informazione

Appello del 5.7.2021

TEMA 1

Esercizio 1 [8 punti] Sia data la funzione

$$f(x) = \log\left(1 + \sqrt{1 - x^2}\right).$$

- (i) Determinare il dominio naturale di f, studiare il segno e la simmetria di f e calcolare i limiti agli estremi del dominio;
- (ii) Studiare la derivabilità di f e calcolare la derivata prima, studiare gli intervalli di monotonia individuando gli eventuali punti di massimo/minimo assoluto/relativo;
- (iii) abbozzare il grafico di f.

Svolgimento. (i). Per determinare il dominio bisogna imporre che il radicando sia nonnegativo e l'argomento del logaritmo sia positivo. La disuguaglianza $1-x^2 \ge 0$ ha come soluzioni $x \in [-1,1]$. Per questi valori di x, è ovvio che l'argomento del logaritmo sia positivo. Quindi

$$dom(f) = [-1,1].$$

Per individuare eventuali simmetrie, osserviamo che vale

$$f(-x) = \log\left(1 + \sqrt{1 - (-x)^2}\right) = f(x);$$

la funzione è pari.

Studiamo il segno della funzione: $f(x) \ge 0$ equivale a

$$1 + \sqrt{1 - x^2} \ge 1$$
 cioè $\sqrt{1 - x^2} \ge 0$.

Poiché $\sqrt{\ldots}$ è sicuramente nonnegativo, deduciamo che la funzione è sempre nonnegativa e si annulla solo in $x = \pm 1$ che sono pertanto punti di minimo assoluto (con $f(\pm 1) = 0$).

Per il teorema sull'algebra delle funzioni continue e per quello sulla composizione di funzioni continue, $f \in C^0(dom(f))$. Ne deduciamo

$$\lim_{x \to 1^{-}} f(x) = f(1) = 0$$

ed analogamente, per simmetria, $\lim_{x\to -1^+} f(x) = 0$.

(ii). In (-1,1), per il teorema sull'algebra delle derivate e quello sulla derivata della funzione composta, otteniamo che la f è derivabile. La derivabilità in ± 1 va studiata separatamente. Abbiamo

$$f'(x) = \frac{1}{1 + \sqrt{1 - x^2}} \cdot \frac{-x}{\sqrt{1 - x^2}}.$$

Poiché vale $\lim_{x\to 1^-} f'(x) = -\infty$ (e per simmetria $\lim_{x\to -1^+} f'(x) = +\infty$), concludiamo che f non è derivabile in $x=\pm 1$. Inoltre, gli intervalli di crescenza sono determinati da $f'\geq 0$ cioè $x\leq 0$. Ne deduciamo che

Figure 1: grafico dell'esercizio 1

- f è crescente in [-1,0]
- f è decrescente in [0, -1]
- x = 0 è l'unico punto di massimo assoluto
- $x = \pm 1$ sono punti di minimo assoluto (già lo sapevamo).

(iii). Si veda il grafico in figura 1.

Esercizio 2 [8 punti] Si trovino le soluzioni complesse dell'equazione

$$\operatorname{Im}(z^2) + |z|^2 \operatorname{Re}\left(\frac{1}{z}\right) = 0,$$

e le si disegnino sul piano complesso.

Svolgimento. Innanzitutto notiamo che l'equazione ha senso solo per $z \neq 0$. Per tali valori di z risolviamo l'equazione usando la forma algebrica dei numeri complessi: z = x + iy con $x, y \in \mathbb{R}$. Abbiamo

$$z^{2} = (x^{2} - y^{2}) + 2ixy,$$
 $|z|^{2} = x^{2} + y^{2},$ $\frac{1}{z} = \frac{x - iy}{x^{2} + y^{2}}.$

L'equazione iniziale diventa

$$2xy + x = 0$$
 cioè $x(2y + 1) = 0$

che ha soluzioni

$$x = 0$$
 e $y = -\frac{1}{2}$

che formano le due rette (per $z \neq 0$) nel grafico in Figura 2.

Esercizio 3 [8 punti]

Sia

$$f_{\alpha}(x) := \frac{\arctan x}{1 + x^{2\alpha}}.$$

Figure 2: grafico dell'esercizio 2

(i) Calcolare

$$\int f_1(x) dx = \int \arctan x \left(\frac{1}{1+x^2}\right) dx.$$

(ii) Studiare al variare di $\alpha \in [0, \infty)$ la convergenza di

$$\int_{1}^{+\infty} f_{\alpha}(x) \, dx.$$

Svolgimento. (i). Usando la sostituzione arctanx=t (ricordarsi: $(\arctan x)'=\frac{1}{1+x^2}$) otteniamo

$$\int \arctan x \left(\frac{1}{1+x^2}\right) dx = \int t dt = \frac{t^2}{2} + c = \frac{\arctan^2 x}{2} + c, \qquad c \in \mathbb{R}.$$

(ii). Osserviamo $f \in C^0([1, +\infty))$ (e f > 0 su $[1, +\infty)$); quindi l'integrale è improprio solo per $x \to +\infty$. Studiamo l'asintoticità di f_α per $x \to +\infty$:

$$f_{\alpha}(x) \sim \frac{\pi}{2} \cdot \frac{1}{1 + x^{2\alpha}} \sim \frac{\pi}{2} \cdot \frac{1}{x^{2\alpha}} \quad \text{per } x \to +\infty.$$

Applicando il criterio del confronto asintotico per gli integrali impropri (e ricordando che $\int_1^{+\infty} x^a dx$ converge se e solo se a < -1) otteniamo che l'integrale di partenza è convergente se e solo se $\alpha > 1/2$.

Esercizio 4 [8 punti]

(i) Calcolare al variare di $\alpha \in \mathbb{R}$ il limite

$$\lim_{n\to\infty} \frac{2\log[\cos(1/n)] + \alpha[\sin(1/n)]^2}{(1/n)^2}.$$

(ii) Dedurre il comportamento della serie

$$\sum_{n=1}^{\infty} \left\{ 2 \log[\cos(1/n)] + [\sin(1/n)]^2 \right\}.$$

Svolgimento. (i). Usando gli sviluppi di Mc Laurin di $\cos x$ e di $\log(1+x)$, per $n \to +\infty$ abbiamo

$$\begin{aligned} \log[\cos(1/n)] &= \log\left[1 + \left(-\frac{1}{2}\frac{1}{n^2} + o\left(\frac{1}{n^3}\right)\right)\right] \\ &= -\frac{1}{2}\frac{1}{n^2} + o\left(\frac{1}{n^3}\right) + + o\left(-\frac{1}{2}\frac{1}{n^2} + o\left(\frac{1}{n^3}\right)\right) \\ &= -\frac{1}{2}\frac{1}{n^2} + o\left(\frac{1}{n^2}\right). \end{aligned}$$

Inoltre, usando lo sviluppo di Mc Laurin di $\sin x$, per $n \to +\infty$ abbiamo

$$[\sin(1/n)]^2 = \left[\frac{1}{n} + o\left(\frac{1}{n^2}\right)\right]^2 = \frac{1}{n^2} + o\left(\frac{1}{n^3}\right).$$

Deduciamo che il numeratore verifica

num. =
$$(\alpha - 1)\frac{1}{n^2} + o\left(\frac{1}{n^2}\right)$$
;

conseguentemente vale

$$\lim_{n \to \infty} \frac{2\log[\cos(1/n)] + \alpha[\sin(1/n)]^2}{(1/n)^2} = \alpha - 1 \qquad \forall \alpha \in \mathbb{R}.$$

(ii). Osserviamo che il punto precedente con $\alpha = 1$ dà

$$\lim_{n \to +\infty} \frac{2\log[\cos(1/n)] + [\sin(1/n)]^2}{(1/n)^2} = 0$$

cioè

$$2\log[\cos(1/n)] + [\sin(1/n)]^2 = o[(1/n)^2]$$
 per $n \to +\infty$.

Ne deduciamo in particolare che il termine della nostra serie è definitivamente positivo. Inoltre, applicando il criterio del confronto asintotico e ricordando che $\sum (1/n)^2$ è convergente, otteniamo che la serie è convergente.

NB: con log si indica il logaritmo in base e.

Tempo a disposizione: 1 ore e 30 minuti.

È vietato tenere con sé, anche spenti, telefoni e calcolatrici di qualsiasi tipo e usare libri e appunti. Ogni affermazione deve essere adeguatamente giustificata.