

Instituto Federal de Santa Catarina Campus Jaraguá do Sul - Rau Disciplina.: Introdução à Programação INSTITUTO FEDERAL Prof. Frank Juergen Knaesel, MSc.

Lista de Exercícios – Parte 1 Estruturas de Seleção

Parte 1 - IF ... ELSE

1. Construa um algoritmo que mostre a mensagem "FRIO" se a temperatura informada for inferior a 22°C, caso contrário, mostre a mensagem "QUENTE"

Entrada	Saída
17	FRIO
28	QUENTE

2. Faça um algoritmo que leia dois números A e B e imprima o maior deles

Entrada	Saída
A 7 B 8	8
A 9 B 6	9

3. Crie um algoritmo que leia o número total de aulas e o número de faltas de um aluno. Em seguida, calcule o percentual de frequência.

Com base nessa frequência, o sistema deve mostrar as mensagens:

- → se a frequência for igual ou superior a 75% "FREQUENCIA SUFICIENTE"
- → caso contrário, "FREQUENCIA INSUFICIENTE"

Entrada	Saída
Aulas 80 Faltas 25	Presencas 55 Frequencia 68.75 INSUFICIENTE
Aulas 40 Faltas 4	Presencas 36 Frequencia 90 SUFICIENTE

4. Construa um programa que determine o valor a ser descontado de um salário, a título de contribuição para a previdência social (INSS).

Caso o salário seja inferior a R\$ 2.000,00, o percentual de desconto é de 7.5%. Caso contrário (else), o percentual de desconto é de 11%

Obs: USE APENAS DUAS VARIÁVEIS: SALARIO E VAL INSS

 \rightarrow Arredondar para duas casas decimais: x = round(valor*100)/100;

Entrada	Saída
1850.00	138.75
2300.00	253.00

5. Desenvolva um algoritmo que leia o valor de vendas do mês de um representante e que determine a comissão que receberá. Se o valor das vendas for abaixo de R\$ 50.000,00 a comissão será de 2.5% sobre o valor das vendas, senão a comissão será de 3.2%.

Obs: USE APENAS DUAS VARIÁVEIS: VENDAS E COMISSAO

Ao final, arredonde o valor da comissão para 2 casas decimais.

Arredondamento em Python.:

```
valor = 123.456789
valor = round(valor, 2)
print("valor ", valor)
// 123.46
```

Arredondamento em Linguagem C:

Na linguagem C o arredondamento é sempre para o inteiro mais próximo.

```
Para definir o número de casas fazemos uma gambiarra, multiplicando por 100 e depois dividindo
```

```
valor = 123.456789;
valor = round(valor*100)/100;
print("valor %f", valor);
// 123.460000
```

Entrada	Saída
49923.55	1248.090000
50110.34	1603.530000

6. Uma determinada empresa pretende diminuir a amplitude da distribuição de renda de forma gradativa aos seus colaboradores. Aqueles que ganham até 2000 receberão 3% de aumento. O restante dos funcionários não receberá aumento. Leia o nome e o salário atual de um funcionário. Em seguida determine e mostre o novo salário dele com 2 casas decimais.

Entrada		Saída
Nome Salario	Fulano 1500	Novo Salario 1545.00
Nome Salario	Beltrano 2200	Novo Salario 2200.00

7. Faça um algoritmo que leia um número e determine se este número é par ou ímpar.

Entrada	Saída
77	ÍMPAR
123	ÍMPAR
256	PAR
64	PAR

8. Uma empresa do ramo financeiro deseja saber se um determinado cliente possui limite disponível para um determinado empréstimo. O cliente deve informar sua renda líquida, o valor que deseja tomar empréstimo e o número de parcelas. Considere uma taxa de juros de 2.5% a.m. O software deve calcular o valor de cada parcela com base na seguinte fórmula:

Val. Parcela=Val. Solicitado*
$$\frac{(1+Taxa)^{Num. Parcelas}}{Num. Parcelas}$$

O valor máximo da parcela que um cliente pode assumir é de 30% do Salário Liquido. Se o valor da parcela calculada for superior à parcela máxima, o empréstimo não é liberado. Caso contrário (else), o empréstimo é liberado.

O programa deverá mostrar na saída o Valor Máximo da Parcela, o Valor Calculado da Parcela e a mensagem Empréstimo Liberado ou Margem Insuficiente

Entrada	Saída
Salário: 2000	Parcela Maxima.: 600.00
Val.Solicitado.: 5000	Valor.Parcela: 560.37
Num.Parcelas: 12	Empréstimo Liberado
Salário: 1800	Parcela Maxima.: 540.00
Val.Solicitado.: 7000	Valor.Parcela: 606.53
Num.Parcelas: 18	Margem Insuficiente

- Modifique o programa acima, colocando o cálculo do valor da parcela em uma função separada; e outra função para determinar a parcela máxima.
- 9. Crie um algoritmo que peça o nome, a altura e o peso de duas pessoas e apresente o nome da mais leve e o nome da mais alta.

Entrada	Saída
Fulano 1.78 93	Mais Leve.: Ciclano
Ciclano 1.82 88	Mais Alta.: Ciclano
Fulano 1.78 88	Mais Leve.: Fulano
Ciclano 1.82 93	Mais Alta.: Ciclano
Fulano 1.82 93	Mais Leve.: Ciclano
Ciclano 1.78 88	Mais Alta.: Fulano
Fulano 1.82 88	Mais Leve.: Fulano
Ciclano 1.78 93	Mais Alta.: Fulano

Parte 2 IF ELSE Encadeados

10. Ler um valor e dizer se este é positivo, negativo ou zero

Entrada	Saída
99	POSITIVO
-123	NEGATIVO
0	ZERO

11. Elabore um algoritmo que leia dois números e mostre qual é o maior, qual é o menor ou se eles são iguais.

Entrada	Saída
3 7	Maior: 7 Menor: 3
6 4	Maior: 6 Menor: 4
5 5	Iguais.: 5

12. Desenvolva um algoritmo que leia o valor de vendas do mês de um vendedor de automóveis usados e que determine a comissão que receberá de acordo com a tabela abaixo. O sistema deve exibir a mensagem valor inválido caso este seja menor que 0 (zero).

Intervalo em milhares (R\$)	Percentual de Comissão
Menos de 100	2,0%
Entre 100 e 200	2,5%
Acima de 200	3,0%

Entrada	Saída
-12345	Valor Inválido
75000	1500.00
150000	3750.00
300000	9000.00

- 13. Um hotel cobra R\$ 60.00 a diária e mais uma taxa de limpeza. A taxa de limpeza é de:
 - R\$ 8.00 por diária, se o número de diárias for até 5
 - R\$ 6.50 por diária, se o número de diárias for até 15
 - R\$ 5.50 por diária, se o número de diárias for superior a 15

Construa um algoritmo que mostre o total da conta de um cliente.

- * Formate os números com 2 casas decimais
- ** Se o número de diárias informado for menor que 0, atribuir o valor 0 à conta do cliente.

Entrada	Saída
-5	Total.: 0.00
4	Total.: 272.00
7	Total: 465.50
17	Total.: 1113.50

14. Desenvolva um algoritmo que leia dois números inteiros e o tipo da operação: (A)dição, (S)ubtração, (M)ultiplicação, (D)ivisão, (R)esto. Caso a operação informada não seja nenhuma das anteriores, o programa deve mostrar a mensagem: "Operação Inválida". Caso seja válida, execute a operação e mostre o resultado.

Entrada	Saída
5 3 A	8.00
5 3 S	2.00
5 3 M	15.00
5 3 D	1.67
5 3 R	2.00
5 3 X	Operação Inválida

- 15. Crie um algoritmo/programa que leia a idade de uma pessoa e informe a sua classe eleitoral:
 - → não eleitor (menor que 16)
 - → eleitor facultativo (16 ou 17 anos / menor que 18)

- → eleitor obrigatório (18 a 64 anos / menor que 65)
- → eleitor facultativo (65 ou mais / else)

Entrada	Saída
15	Não eleitor
17	Facultativo
41	Obrigatório
67	Facultativo

16. Escrever um programa para ler um peso na Terra, e o número de um planeta, e imprimir o valor do seu peso equivalente neste planeta segundo a tabela abaixo. Mostre o peso com apenas uma casa decimal.

Número	Gravidade Relativa	Planeta
1	0,37	Mercúrio
2	0,88	Vênus
3	0,38	Marte
4	2,64	Júpiter
5	1,15	Saturno
6	1,17	Urano

Entrada	Saída
Peso na Terra.: 2105 Planeta: 3	Peso equivalente em Marte.: 799.9
Peso na Terra.: 95 Planeta: 4	Peso equivalente em Jupiter.: 250.8
Peso na Terra.: 100 Planeta: 99	Planeta inválido

- 17. Elabore um programa em linguagem C que contenha duas funcionalidades:
 - a) que converta um ângulo de graus para radianos ('R')
 - b) que converta um ângulo de radianos para graus ('G')

Para converter radianos para graus, divida o valor encontrado por π e multiplique por 180, ou seja: $qraus=180. radianos/\pi$

* no programa principal, leia o valor de um ângulo e também que tipo de conversão deseja fazer. Em seguida faça a conversão conforme o tipo solicitado.

Se a opção informada pelo usuário não for 'R' nem 'G' mostrar "Opção Inválida"

Entrada	Saída
45 'R'	0.785398
1 'G'	57.295780
90 'X'	Opção Inválida

- 18. Elabore um programa que calcule a média aritmética de 3 notas de um aluno. Arredonde esta média para uma casa decimal. Em seguida, mostre as mensagens
 - "APROVADO" caso a média seja igual ou superior a 7
 - "EM EXAME" se estiver entre 5 e 7
 - senão mostre a mensagem "REPROVADO"

Entrada	Saída
7 8 9	8.0 APROVADO
3 4 5	4.0 REPROVADO
5 6 7.9	6.3 EM EXAME
4 5 6	5.0 EM EXAME
6 7 8	7.0 APROVADO

Parte 3 IF ELSE Aninhados

19. Construa um programa que determine a necessidade calórica de um Cachorro ou Gato. O usuário informará se o animal é um (C)ão ou (G)ato, se permanece (D)entro ou (F)ora de casa, bem como o seu peso em Kg. Vamos supor que a energia necessária em repouso seja:

Calorias = $70 * Peso \land 0.75$

Esse valor (Calorias) você vai multiplicar pelo fator conforme a tabela abaixo:

	Cachorro	Gato
Dentro	1.6	1.2
Fora	1.8	1.4

Obs 1.: Não use operadores lógicos (caso já os conheça), para responder o exercício

Use os dados a seguir para realizar o teste:

Entrada	Saída
Animal.: (G)ato Morada.: (D)entro Peso: 5	Seu gato precisa 280 kCal
Animal.: (C)ão Morada.: (F)ora Peso: 5	Seu cachorro precisa 421 kCal

20. Construa um algoritmo/programa para calcular as raízes de uma equação do 2º grau, sendo que os valores dos coeficientes A, B, e C devem ser fornecidos pelo usuário através do teclado.

$$\Delta = b^2 - 4.a.c$$
 $x_1 = \frac{-b - \sqrt{\Delta}}{2.a}$ $x_2 = \frac{-b + \sqrt{\Delta}}{2.a}$

- → Lembre-se de que não é possível calcular a raiz de um número negativo e portanto, não existem raízes para a equação.
 - → Ou seja, se o delta for menor que zero, mostre uma mensagem de erro, caso contrário, continue o cálculo
- → Se o delta é igual a zero, as duas raízes são iguais e portanto você deve escrever o resultado como mostrado no caso abaixo:

Entrada	Saída
-1 3 -2	Delta = 1 As raizes são: 2 e 1
1 4 4	Delta = 0 Existe apenas uma raiz: x = −2
1 2 3	A equação não possui raízes válidas

- 21. Escreva um algoritmo que, para uma conta bancária, o usuário informe seu saldo. Suponha que a seguir o cliente fará um (D)epósito ou um (S)aque (Tipo da Operação) de um determinado valor. Dadas estas informações, determine o novo saldo e se este for negativo, exiba uma mensagem.: "SALDO DEVEDOR"
 - → Imprima o saldo sempre com duas casas decimais
 - → Se a operação não for nem (S)aque nem (D)eposito, mostrar a msg "Operação Inválida"

Entrada	Saída
Saldo: 135.78 Operação: D Val.Oper: 180.00	Novo Saldo.: 315.78
Saldo: -180.00 Operação: D Val.Oper: 90.00	Novo Saldo.: -90.00 SALDO DEVEDOR
Saldo: 300.00 Operação: S Val.Oper: 90.00	Novo Saldo.: 210.00
Saldo: 90.00 Operação: S Val.Oper: 110.00	Novo Saldo.: -20.00 SALDO DEVEDOR
Saldo: 123.45 Operação: Z Val.Oper: 99.45	OPERAÇÃO INVÁLIDA

- 22. Usando números aleatórios, construa o jogo "Pedra-Papel-Tesoura", considerando 1=Pedra, 2=Papel, 3=Tesoura, e determine o vencedor.
 - Pedra quebra Tesoura, Tesoura corta Papel, Papel embrulha a Pedra.

Tabela 1: Exemplo de código fonte Portugol para números aleatórios

```
import random  #importa a biblioteca de números aleatórios
x=random.randint(1,3)  #armazena em x um número aleatório inteiro entre 1 e 3
print(x)  #imprime o número aleatório gerado na instrução anterior
```

Tabela 2: Geração de Números Aleatórios Inteiros em Python3

```
#include <stdlib.h> #importa a biblioteca stdlib.h
void main() {
    srand(time(NULL)); # inicializa a semente aleatória
    int x = rand(); # armazena em x um número aleatório entre 0 e 32767
    int y = rand() % 30 + 1; # armazena em y um número aleatório entre 1 e 30
    printf("x = %d \n", x); # imprime o valor da variável x
    printf("y = %d \n", y); # imprime o valor da variável y
}
```

Tabela 3: Geração de Números Aleatórios em C

Entrada	Saída
1 1	Empate
2 2	Empate
3 3	Empate
1 3	Pedra quebra tesoura - Vencedor A
3 1	Pedra quebra tesoura - Vencedor B
2 3	Tesoura corta papel - Vencedor B
3 2	Tesoura corta papel - Vencedor A
1 2	Papel embrulha pedra - Vencedor B
2 1	Papel embrulha pedra - Vencedor A

- 23. Criar um algoritmo/programa que a partir da idade e peso do paciente calcule a dosagem de determinado medicamento em gotas. Considere que o medicamento em questão possui 500 mg por ml, e que cada ml corresponde a 20 gotas.
 - → Crie uma **função** que receba a dosagem em miligramas e **retorne** o resultado da conversão para gotas.
 - Adultos ou adolescentes desde 12 anos, inclusive, se tiverem peso igual ou acima de 60 quilos devem tomar 1000 mg; com peso abaixo de 60 quilos devem tomar 875 mg.
 - Para crianças e adolescentes abaixo de 12 anos a dosagem é calculada pelo peso corpóreo conforme a tabela a seguir:

0	5 a 9Kg	125mg
0	> 9 a 16Kg	250mg
0	> 16 a 24 Kg	375mg
0	> 24 a 30Kg	500mg
0	> 30Kg	750mg

Entrada		Saída
Idade: 11	Peso: 35	Dosagem.: 30 gotas
Idade: 3	Peso: 7	Dosagem.: 5 gotas
Idade: 40	Peso: 95	Dosagem.: 40 gotas
Idade: 9	Peso: 20	Dosagem.: 15 gotas

24. Tux e seus amigos foram jogar boliche no Boliche do Duke. Para calcular a pontuação de um jogador, Duke usa algumas regras doidas.

No Boliche do Duke há 12 pinos.

SE são derrubados todos os pinos na primeira jogada a pontuação é de 30 pontos.

SENÃO o jogador tem direito a um segundo arremesso

SE na primeira jogada forem derrubados uma quantidade ímpar de pinos, a pontuação da primeira jogada e igual ao número de pinos derrubados vezes 2

SENÃO (par) a pontuação é o número de pinos multiplicado por 1,5.

SE após a segunda jogada o jogador derrubar todos os pinos restantes, recebe 2 pontos por pino dessa segunda jogada e mais um bônus de 5 pontos.

SENÃO (se restarem pinos na segunda tentativa), recebe apenas 1 ponto por pino derrubado.

Faça um programa que solicite ao usuário o número de pinos derrubados na primeira jogada e, se necessário, na segunda jogada, calcule e retorne a pontuação total de um jogador após o(s) arremesso(s).

Entrada	Saída
1ª jogada 12	1ª: 30 pontos 2ª: 0 pontos To: 30 pontos
1ª jogada 11 2ª jogada 1	1ª: 22 pontos 2ª: 7 pontos To: 29 pontos
1ª jogada 10 2ª jogada 2	1ª: 15 pontos 2ª: 9 pontos To: 24 pontos
1ª jogada 9 2ª jogada 2	1ª: 18 pontos 2ª: 2 pontos To: 20 pontos
1ª jogada 10 2ª jogada 1	1ª: 15 pontos 2ª: 1 pontos To: 16 pontos

Parte 4 IF ELSE com Operadores Lógicos

25. Crie um algoritmo que leia 3 notas, o número total de aulas e o número de **faltas** de um aluno. Em seguida, o programa deve determinar a média aritmética simples das três notas e calcular o percentual de frequência

$$media = \frac{n1+n2+n3}{3}$$
 $freq = \frac{presencas}{total de aulas}$

Ao final, deve mostrar uma mensagem "APROVADO" caso ele tenha frequencia suficiente (>=75%) **E** a média seja maior ou igual a 6,0; caso contrário deve mostrar a mensagem "REPROVADO"

Entrada	Saída
Notas 7 9 10	Média 8.7
Aulas 80	Frequencia 69%
Faltas 25	REPROVADO
Notas 7 8 10	Média 8.3
Aulas 40	Frequencia 90%
Faltas 4	APROVADO
Notas 4 6 7	Média 5.7
Aulas 40	Frequencia 85%
Faltas 6	REPROVADO
Notas 4 5 7	Média 5.3
Aulas 40	Frequencia 60%
Faltas 16	REPROVADO

26. Em uma prova de vestibular, um candidato prestou provas de 3 áreas diferentes: exatas, humanas e redação. Elabore um programa que permita ao usuário informar estas três notas.

O vestibulando estará ELIMINADO se tirar menos que 6.0 em qualquer uma das três notas. Caso contrário ele estará CLASSIFICADO.

Utilize o operador lógico OR (| |)

Entrada				Saída
Exatas	8	Humanas 9	Redacao 4	ELIMINADO
Exatas	8	Humanas 9	Redacao 6.7	CLASSIFICADO
Exatas	8	Humanas 5	Redacao 9	ELIMINADO
Exatas	5.3	Humanas 3	Redacao 8	ELIMINADO

27. Considere que em um exame de seleção, foram feitas duas provas: Português e Matemática. Para cada candidato tem-se um registro com seu nome e as notas. Construa um algoritmo que leia estes dados de entrada e calcule sua média.

Além disso, o algoritmo deve exibir uma mensagem contendo:

Nome, Média, APROVADO/REPROVADO

A média deve ser arredondada para 1 casa decimal

A mensagem "APROVADO" será selecionada caso a média seja igual ou superior a 7,0 e todas as notas sejam acima de 6,0.

Caso contrário o programa deve informar a mensagem "REPROVADO"

Entrada	Saída
Fulano 8.0 9.0	Fulano, 8.5, APROVADO
Fulano 5.5 9.0	Fulano, 7.3, REPROVADO
Fulano 6.8 6.6	Fulano, 6.7, REPROVADO

28. Desenvolva um algoritmo que, a partir da altura e do peso de uma pessoa, determine seu Índice de Massa Corporal, que é calculado a partir da divisão do peso pelo quadrado da altura. Em seguida exiba sua classificação de acordo com a tabela:

Classificação	Faixa de Peso
INVÁLIDO	< 12
MAGRO	12 ≤ imc < 25
NORMAL	25 ≤ imc < 30
SOBREPESO	30 ≤ imc < 35
OBES0	imc ≥ 35

Depois que você conseguir fazer usando operadores lógicos, tente resolver usando a técnica demonstrada no vídeo de "eliminação de condição redundante pelo encadeamento com ELSE"

29. Elabore um algoritmo que leia três números e que mostre qual o menor deles

Entrada	Saída
5 7 9	menor 5
3 7 5	menor 3
7 5 2	menor 2
1 1 2	menor 1

- 30. Crie um algoritmo que leia dois números e determine se estes são múltiplos entre si.
 - * Um número A é múltiplo de um número B quando o resto da divisão de A por B for zero
 - ** Um número B é múltiplo de um número A quando o resto da divisão de B por A for zero

Entrada	Saída
3 5	Não Múltiplo
3 6	Múltiplo
9 3	Múltiplo
10 3	Não Múltiplo

- 31. Desenvolva um algoritmo que leia um ano de nascimento e usando uma **função**, retorne **true** se este ano foi bissexto ou **false** caso contrário.
 - * Um ano bissexto ocorre de quatro em quatro anos.
 - ** Exceto anos múltiplos de 100 que não são múltiplos de 400

Entrada	Saída	
1977	Não Bissexto	
2016	Bissexto	
2000	Bissexto	
1800	Não Bissexto	

32. Ler os valores correspondentes aos lados de um triângulo e determine se o triângulo é válido ou não. Para ser válido a soma de dois lados quaisquer deve ser maior que o outro lado

Entrada	Saída
2 3 4	Válido
2 4 4	Válido
3 3 3	Válido
1 1 2	Inválido
3 2 1	Inválido
2 5 2	Inválido

- 33. Ler os lados de um triângulo e se ele for válido determinar o tipo:
 - equilátero.: possui todos os lados iguais
 - isósceles.: possui 2 lados iguais e outro diferente
 - escaleno.: possui todos os lados diferentes

Entrada	Saída
3 3 3	Equilátero
3 3 1	Isósceles
3 1 3	Isósceles
1 3 3	Isósceles
3 4 2	Escaleno

34. Elabore um algoritmo que receba três valores de entrada e imprima-os em ordem crescente

Entrada	Saída
2 3 4	2 3 4
2 4 3	2 3 4
3 2 4	2 3 4
3 4 2	2 3 4
4 2 3	2 3 4
4 3 2	2 3 4

^{*} Depois que você tiver resolvido o exercício usando operadores lógicos, assista o vídeo de como melhorar o desempenho eliminando condições redundantes

35. Ler os ângulos internos de um triângulo, verificar se ele é válido e classificá-lo como:

Acutângulo.: todos os ângulos internos são menores que 90º

Retângulo.: possui um ângulo interno de exatamente 90°

Obtusângulo.: possui um ângulo interno maior que 90°

* Um triângulo é válido quando a soma dos seus ângulos internos for igual a 180º

Entrada	Saída
90 30 30	Inválido
65 55 60	Acutângulo
80 20 80	Acutângulo
90 45 45	Retângulo
60 30 90	Retângulo
100 40 40	Obtusângulo
30 40 110	Obtusângulo

36. Crie um algoritmo que leia o dia e mês de nascimento de alguém. Em seguida, passe estes valores para uma função que determine/mostre a estação do ano em que a pessoa nasceu com base na seguinte tabela:

Estação	Data de Início
PRIMAVERA	23/set
VERÃO	21/dez
OUTONO	20/mar
INVERNO	21/jun

37. Ler os lados de um triângulo e classificá-los como: Acutângulo.: todos os ângulos internos são menores que 90º Retângulo.: possui um ângulo interno de exatamente 90º Obtusângulo.: possui um ângulo interno maior que 90º

Para calcular os ângulos, use as fórmulas abaixo

$$\alpha A = a\cos(\frac{a^{2}-b^{2}-c^{2}}{-2.b.c})$$

$$\alpha B = a\cos(\frac{b^{2}-a^{2}-c^{2}}{-2.a.c})$$

$$\alpha C = a\cos(\frac{c^{2}-a^{2}-b^{2}}{-2.a.b})$$

- * As funções trigonométricas da linguagem C trabalham com radianos, por tanto é preciso converter os ângulos de graus para radianos antes de usar as funções trigonométricas. Use as funções que criamos em uma questão anterior.
- ** Em python3, para usar a função arco-cosseno (acos) usamos:

import math
x = math.acos(argumento)

** Na linguagem C, para usar a função arco-cosseno (acos) usamos:

#include <math.h>
float x = acos(argumento)

Entrada	Saída
3 4 5	Graus: a=36.87 b=53.13 c=90.00 Retangulo
4 4 4	Graus: a=60.00 b=60.00 c=60.00 Acutangulo
2 3 4	Graus: a=28.96 b=46.57 c=104.48 Obtusangulo

- 38. Faça um programa que leia o salário bruto e do número de dependentes de um colaborador, calcule o salário líquido descontando o INSS e IRPF. O cálculo funciona assim:
 - primeiro calcula-se o INSS de acordo com a tabela a seguir
 - porém, existe um **valor máximo** a ser pago **que não pode ultrapassar a última faixa** portanto, se o salário for superior à última faixa da tabela, considere 11% de 5.189,82
 - em seguida calculamos a dedução de R\$ 189,59 para cada dependente
 - a base de cálculo do IRPF será o salário bruto descontado do INSS e da dedução por dependentes
 - com a base de cálculo, calculamos o valor do IRPF multiplicando a base de cálculo pelo percentual e depois descontando a parcela a deduzir, como base a tabela a seguir.

Faixa	Percentual INSS
até 1.556,94	8%
de 1.556,95 até 2.594,92	9%
de 2.594,93 até 5.189,82	11%
Acima de 5.189,82	570,88

Base de Cálculo (R\$)	Alíquota (%)	Parcela a Deduzir do IRPF (R\$)
Até 1.903,98	-	-
De 1903,99 até 2.826,65	7,5%	142,80
De 2.826,66 até 3.751,05	15%	354,80
De 3.751,06 até 4.664,68	22,5%	636,13
Acima de 4.664,68	27,5%	869,36

Entrada	Saída
Sal.Bruto. : 1000 Dependentes.: 0	Sal.Bruto: 1000,00 Val.INSS: 80,00 Val.IRPF: 0,00 Sal.Liquido.: 920,00
Sal.Bruto: 1700 Dependentes.: 1	Sal.Bruto: 1700.00 Val.INSS: 153.00 Val.IRPF: 0.00 Sal.Liquido.: 1547.00
SalBruto: 3000 Dependentes.: 2	Sal.Bruto: 3000.00 Val.INSS: 330.00 Val.IRPF: 29.01 Sal.Liquido.: 2640.99
SalBruto: 6000 Dependentes.: 3	Sal.Bruto: 6000.00 Val.INSS: 570.88 Val.IRPF: 467.24 Sal.Liquido.: 4961.88

39. Desenvolva um algoritmo/programa que leia três valores inteiros correspondentes ao dia, mês e ano de uma determinada data. Em seguida o programa deve mostrar a data por extenso.

Entrada	Saída
21 5 1977	21 de Maio de 1977
5 6 2006	5 de Junho de 2006

- 40. Um clube de futebol pretende classificar seus atletas em categorias e para isso ele contratou você para resolver este problema usando um programa de computador. Assim, a partir da leitura do nome e da idade, classifique-o de acordo com a tabela abaixo.
 - * Mostre uma mensagem "Idade Inválida" caso não pertença a nenhuma categoria.

Idade	Categoria
5 a 10	Infantil
11 a 15	Juvenil
16 a 20	Júnior
21 a 25	Profissional

Entrada	Saída
3	Idade Inválida
7	Infantil
15	Juvenil
18	Júnior
21	Profissional
36	Idade Inválida

- 41. Faça um algoritmo que leia dois números e uma operação (A)dição, (S)ubtração, (M)ultiplicação, (D)ivisão, (Q)uociente Inteiro, (R)esto. A seguir execute a operação desejada, e informe uma mensagem caso a operação seja inválida.
 - → Use toupper() para converter a operação desejada para maiúscula, a fim de diminuir a qtde de comandos case;
 - → Use apenas uma variável float para armazenar o 'res'ultado, a fim de facilitar o printf;

Entrada	Saída
5 3 A	8.00
5 3 S	2.00
5 3 M	15.00
5 3 D	1.67
5 3 Q	1.00
5 3 R	2.00
5 3 X	Operação Inválida

42. Suponha que você comprou um novo smartphone e você deseja conhecer as várias condições de pagamento. Construa um algoritmo que receba o valor da venda, escolha a condição de pagamento no menu e mostre o total da venda final conforme condições mostradas na tabela abaixo:
* Se a opção informada não estiver entre as abaixo, o programa deve mostrar uma mensagem "Opção Inválida"

Opção	Descrição	Cálculo
A	Venda a Vista	desconto de 10%
В	Venda a Prazo 30 dias	desconto de 5%
С	Venda a Prazo 60 dias	mesmo preço
D	Venda a Prazo 90 dias	acréscimo de 5%
E	Venda com cartão de débito	desconto de 8%
F	Venda com cartão de crédito	desconto de 7%

Entrada	Saída
500 X	Operação Inválida
600 A	540.00
700 B	665.00
800 C	800.00
900 D	945.00
1000 E	920.00
1100 F	1023.00

43. Elabore um algoritmo que leia a primeira letra do estado civil de uma pessoa e mostre uma mensagem com a sua descrição (Solteiro, Casado, Viúvo, Divorciado). Mostre uma mensagem de erro, se necessário.

Entrada	Saída
X	Inválido
S	Solteiro
С	Casado
V	Viúvo
D	Divorciado

44. Considerando os números de 1 a 7 como dias da semana (1=Domingo), crie um algoritmo que contenha uma função que receba um número inteiro como parâmetro e mostre o dia da semana por extenso. Exiba mensagem de erro caso necessário.

Entrada	Saída
1	Domingo
2	Segunda
4	Quarta
7	Sábado
0	Inválido
8	Inválido

45. Construa um algoritmo que mostre um número de 0 a 9 lido pelo teclado, e mostre seu correspondente por extenso.

Entrada	Saída
0	Zero
3	Três
7	Sete
Х	Inválido