化学 C 2015 年度 期末試験問題

以下の設問に答えよ、解答は解答用紙の指定欄に記入すること、有効数字3桁で示しなさい。 3.571分

- 1. エチレン $100 \,\mathrm{g}$ が $25.0 \,\mathrm{C}$ で、 $3.00 \,\mathrm{x}10^{-2} \,\mathrm{m}^3$ の体積を占めるとき、その圧力を(a)理想気体、および(b)ファンデルワールス気体として計算せよ. ただし、 $R=8.314 \,\mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$ 、 $a=453 \,\mathrm{x}10^{-3} \,\mathrm{Pa} \,\mathrm{m}^6 \,\mathrm{mol}^{-2}$ 、 $b=57.1 \,\mathrm{x}10^{-6} \,\mathrm{m}^3 \,\mathrm{mol}^{-1}$ である.
- 2. Ar CO_2 のファンデルワールス定数から、(a)分子半径はどちらが大きいか、(b)臨界温度はどちらが大きいかを推定せよ.

$a/(atm dm^6 mol^{-2}) b/(10^{-2} dm^3 mol^{-1})$									
(Ar)	1.337	3.20							
(Ar) CO ₂	3.610	4.29							
He	0.0341	2.38							
Xe	4.137	5.16							

- 3. $N_2O_4 \rightarrow 2NO_2$ のように解離する四酸化二窒素を 1.0358 g を 347.6 cm³ の容器に入れた. この時の圧力は、101.45 kPa、温度は 45.0 であった.理想気体を仮定して解離度はいくらになるか計算せよ.
- 4. $ZnS(s) + 1/2O_2(g) \rightarrow ZnO(s) + S(g)$ の 298 K における $\Delta_r \mathring{H}$ は 123.1 kJ mol⁻¹, ZnO(s)の $\Delta_f \mathring{H}$ は 351 kJ mol⁻¹ である. また, 硫黄の蒸気への昇華エンタルピーは 278.8 kJ mol⁻¹ である. ZnS(s) の $\Delta_f \mathring{H}$ を求めよ.
- 5. つぎの反応の標準反応ギブスエネルギーは 400 K で-3580 J mol⁻¹ である。

$$PCl_3(g)+Cl_2(g)=PCl_5(g)$$

1.00 mol の PCl₃ と 2.00 mol の Cl₂ を混合し、400 K で反応させ平衡に達したとき、PCl₅ の生成量はいくらになるか。

6. 次の反応の 298 K における $\Delta_r H$, $\Delta_r S$, $\Delta_r G$ を計算し、298 K で反応が自然に起こるが示しなさい.

7200

- (a) $2C_2H_6(g) + 7O_2(g) \rightarrow 4CO_2(g) + 6H_2O(1)$
- (b) $CO_2(g) + H_2(g) \rightarrow CO(g) + H_2O(g)$

	co	$H_2O(g)$	H ₂ O(l)	CO_2	C_2H_6	O_2	H ₂
Δ _t H [⊕] (k) mot¹	-110.53	-241.82	-285.83	-393.51	-84.68	0	0
ΔS _m / J K ⁻¹ mol ⁻¹	197.67	188.83	69.91	213.74	229.60	205.14	130.68

- 7. アンモニアの分解反応 $NH_3(g)$ \rightleftarrows $1/2N_2(g)$ + $3/2H_2(g)$ の 400 K における平衡定数 K_p は 1.63×10^{-2} である. K_p の定義式を書きなさい. また、400 K における標準反応ギブズエネルギー $\Delta_r G^{\bullet}$ を求めよ.
- 8. CS₂ → CS + S の解離反応は 1 次反応大あり、その速度定数は 1000 K において 2.94×10 (s) である.
- (a) 1000 K で 10 時間加熱すると CS2 の何%が解離するか求めよ.
- (b)この反応の半減期を求めよ.
- 9. ある化学反応において 400 K から 410 K に変化させると反応速度が 1.48 倍になった. (a)この反応の活性化エネルギーを求めよ.
- (b)300 K から 310 K に温度を変化させた場合、この反応速度は何倍になるか求めよ.
- 10. 全ての角度が 90°の結晶系を示しなさい. そのうち底心格子がブラベ格子でないものを示し、その理由を述べなさい.
- 11. 八面体錯体において d 軌道に電子が 4 個の電子が低スピン状態(a), 6 個の電子が高スピン状態(b)で存在する場合それぞれについて、(1)結晶場安定化エネルギーと(2)不対電子数を求めよ. また、(a)と(b)では、どちらの結晶場が強いか示しなさい.

元素の周期表2012年版

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
* * 1.00764~		*			•						`						² He ~924 4002602
3 Li 1/7-74 6.838~	* Be *******		## # #		元本記 1 12) ^{3.7}	9 34 '						5 B **7# *0.808~ *0.821	⁶ C * * 12,0096~ 12,0116	⁷ N # # 14.00643 14.00728	8 O # # 15 99933~ 15 99977	9 F 7v# 18.9984032	10 Ne ***> **1797
11 Na + + + + + + + + + + + + + + + + + + +	¹² Mg ₹₹₩ 24.2050											13 AI 7124=74 26 96 16366	14 Si 74* 28 084-	16 P 9 > 30.873762	16 S a # 32.066 32.076	17 CI * * 35.446- 36.467	18 Ar <eat 848.80</eat
19 K 2004 2008	20 Ca 50.078	21 Sc 200000 41 985912	22 Ti *3:>	23 V 111274 508415	24 Cr 2014 51.9961	25 Mn 4252 34.938048	²⁶ Fe * 55.845	27 Co	28 Ni =>7% 58,6934	29 Cu * 63.546	30 Zn * * 85.36	31 Ga #//?** 69 723	32 Ge 4/1.4=34 7263()	33 As : * 74.92160	³⁴ Se **≻*	35 Br * * 79.904	36 Kr クリプトン 83.798
37 Ab 45274 854678	³⁸ Sr 21-02-734 87.82	4 × + 17 × 4 × 4 × 4 × 4 × 4 × 4 × 4 × 4 × 4 ×	40 Zr 543=74 91,224	⁴¹ Nb =#7 82 90638	⁴² Mo モリプテン 95.86	** Tc* ********* (98)	4 Ru	45 Rh 2574 102,80550	46 Pd 45999A 19642	47 Ag	48 Cd 5F29A 112411	49 In 42224 114818	⁵⁰ Sn * * 118.710	51 Sb 7>7+5> 121,780	52 Te +444. 127.60	53 317# 126,90447	54 Xe ++/> 131.293
55 Cs +5-74 132,8054519	56 Ba ,10,724 137,327	57~71 ランタノイド	72 Hf 172=94 17848	⁷³ Ta タンタル 180.94788	74 W タングステン 183.64	75 Re 6274 186.207	⁷⁶ Os #23.74 190.29	77 Ir 49994 182217	⁷⁶ Pt	78 Au # 196.966589	* # * #	997A 204.382~ 204.365	⁸² Pb ** ***	88 Bi* EXYX 208.98040	84 Po* ***********************************	85 At* 729+> (210)	**Rn* **> (222)
87 F/* フランシウム (223)	** Ra* ****** ****	88~103 79∓/4ド	104 Rf* 344-201 (207)	106 DD *	106Sg* :#-#94 :2711	107Bh* #1/74 (272)	108 Hs* ^>>>> ^>>>>	109 Mt*	110 Ds* 4-624475 (281)	111Rg*	112 Cn* 3445544 2866	113 Uut* 32/32+9/34 1284)	(289) コレロピウム 114 FI*	115 Uup' 7292474 1288	E company of the con-		118 Uno* 120221112 (294)