EE 254

Electronic Instrumentation

Dr. Tharindu Weerakoon

Dept. of Electrical and Electronic Engineering

Faculty of Engineering, University of Peradeniya

Content (Brief)

2. Op-Amp Applications

- ** Linear Applications
 - Inverting amplifiers
 - Noninverting amplifiers
 - Differential amplifiers
 - Summing amplifiers
 - Integrators
 - Differentiators
 - Low/ High pass filters
 - Instrumentational amplifiers

- ** Nonlinear Applications
 - Precision rectifiers
 - Peak detectors
 - Schmitt-trigger comparator
 - Logarithmic amplifiers

- (1) Precision Rectifiers
- 2 Peak Detectors
- 3 Logarithmic Amplifiers

1 Precision Half-Wave Rectifier

$$v_o = v_I$$

1 Precision Half-Wave Rectifier

 v_O

Simple half-wave rectifier circuit

2 Peak Detector

- An interesting application of the $V_{in} \sim$ op-amp is in a peak detector circuit.
- This circuit is used to detect the peak of the input voltage and store that peak voltage on a capacitor.
- For example, to detect and store the maximum value of a voltage surge

3 Logarithmic Amplifier

The diode current

$$i_D = I_S(e^{v_D/V_T} - 1)$$

If the diode is sufficiently forward biased, the (−1) term is negligible

$$i_D \cong I_S e^{v_D/V_T}$$

The input current
$$i_1 = \frac{v_I}{R}$$

3 Logarithmic Amplifier

 $\mathsection{$\%$}$ The output voltage, since v_1 is at virtual ground

$$v_O = -v_D$$

$$i_1 = \frac{v_I}{R_1} = i_D = I_S e^{-v_O/V_T}$$

$$\ln\left(\frac{v_I}{I_S R_1}\right) = -\frac{v_O}{V_T}$$

$$v_{I} \circ \underbrace{\begin{array}{c} + & v_{D} - \\ D_{1} & \vdots \\ 0 \\ \vdots \\ v_{1} = 0 \end{array}}_{l_{1}} v_{0}$$

$$v_O = -V_T \ln \left(\frac{v_I}{I_S R_1} \right)$$

3 Logarithmic Amplifier

$$v_O = -V_T \ln \left(\frac{v_I}{I_S R_1} \right)$$

The output voltage is proportional to the log of the input voltage.

Analyze the disadvantages of this circuit configuration and explain the solutions to overcome them.

4 Antilog or Exponential Amplifier

Solution Example using a diode as the current through the diode is in exponential form.

 $v_I > 0$ and v_1 is virtually ground.

$$i_D \cong I_S e^{v_I/V_T}$$
 $i_D = I_S \left[e^{\left(\frac{v_D}{nV_T}\right)} - 1 \right]$

and $v_O = -i_2 R = -i_D R$

or

 $v_O = -I_S R \cdot e^{v_I/V_T}$

The output voltage is an exponential function of the input voltage.

 v_T is the Thermal voltage approximately 0.026 V at room temperature. The parameter I_S is the **reverse-bias saturation current.** For silicon pn junctions, typical values are in the range of 10^{-18} to 10^{-12} A.

Design Examples

Summing Op-Amp Circuit Design

How to design a circuit such that the output is:

$$v_O = -a_1 v_{I1} - a_2 v_{I2} + a_3 v_{I3} + a_4 v_{I4}$$

Determine the output voltage in terms of input voltages and resistors in the circuit.

Summing Op-Amp Circuit Design

The output terms due to the inputs given to the inverting terminal v_{I1} and v_{I2} .

to the inverting terminal
$$v_{I1}$$
 and v_{I2} .

$$v_O(v_{I1}) = -\frac{R_F}{R_1}v_{I1} \qquad v_O(v_{I2}) = -\frac{R_F}{R_2}v_{I2} \qquad v_{I3} \qquad v_{I4} \qquad v_{I4}$$

The output terms due to the inputs given to the non v_{I4} .

inputs given to the non-inverting terminal
$$v_{I3}$$
 and $v_2(v_{I3}) = \frac{R_B \| R_C}{R_A + R_B \| R_C} v_{I3} = v_1(v_{I3})$

$$v_O(v_{I3}) = \left(1 + \frac{R_F}{R_1 \| R_2}\right) v_1(v_{I3}) = \left(1 + \frac{R_F}{R_1 \| R_2}\right) \left(\frac{R_B \| R_C}{R_A + R_B \| R_C}\right) v_{I3}$$

$$v_O(v_{I3}) = \left(1 + \frac{R_F}{R_N}\right) \left(\frac{R_P}{R_A}\right) v_{I3}$$

$$R_N = R_1 || R_2$$
 where,

$$R_P = R_A ||R_B||R_C$$

Summing Op-Amp Circuit Design

 $\mbox{\$}$ The output voltage due to v_{I4} is similarly determined.

$$v_O(v_{I4}) = \left(1 + \frac{R_F}{R_N}\right) \left(\frac{R_P}{R_B}\right) v_{I4}$$

Applying superposition theorem, the total output voltage can be computed as a sum of the individual terms.

$$v_O = -\frac{R_F}{R_1}v_{I1} - \frac{R_F}{R_2}v_{I2} + \left(1 + \frac{R_F}{R_N}\right) \left[\frac{R_P}{R_A}v_{I3} + \frac{R_P}{R_B}v_{I4}\right]$$

Design Example 01: Summing Amplifier

Design a summing op-amp to produce the output

$$v_O = -10v_{I1} - 4v_{I2} + 5v_{I3} + 2v_{I4}$$

The smallest resistor value allowable is $20k\Omega$. Consider the circuit in Figure below.

Design Example 01: Summing Amplifier

Solution:

First we determine the values of resistors R_1 , R_2 , and R_F . (associated with the inverting terms)

$$v_O = -10v_{I1} - 4v_{I2} + 5v_{I3} + 2v_{I4}$$

$$v_O = -\frac{R_F}{R_1}v_{I1} - \frac{R_F}{R_2}v_{I2} + \left(1 + \frac{R_F}{R_N}\right) \left[\frac{R_P}{R_A}v_{I3} + \frac{R_P}{R_B}v_{I4}\right]$$

Then,
$$\frac{R_F}{R_1} = 10$$
 and $\frac{R_F}{R_2} = 4$

The resistors R_1 will be the smallest value and set it as $20k\Omega$.

Then,
$$R_F = 200 \,\mathrm{k}\Omega$$
 and $R_2 = 50 \,\mathrm{k}\Omega$

Design Example 01: Summing Amplifier

Solution:

The multiplying factor in the noninverting terms;

$$\left(1 + \frac{R_F}{R_1 \| R_2}\right) = \left(1 + \frac{200}{20 \| 50}\right) = 15$$

We then need;

$$(15)\left(\frac{R_P}{R_A}\right) = 5 \quad \text{and} \quad (15)\left(\frac{R_P}{R_B}\right) = 2$$

Then;
$$\frac{R_B}{R_A} = \frac{5}{2}$$

If we choose $R_A = 80k\Omega$, then $R_B = 200k\Omega$, $R_P = 26.67k\Omega$, and R_C becomes $R_C = 50k\Omega$.

 R_3 represents Resistance the transducer, and parameter δ is the

$$v_{O1} = \left[\frac{R_2(1+\delta)}{R_2(1+\delta) + R_1} - \frac{R_2}{R_1 + R_2} \right] V^+$$

input response of the transducer. $R_1 \longrightarrow R_1 \longrightarrow R_1$ The output voltage v_{01} is a measure of δ . If v_{01} is an open-circuit voltage. $R_3 = R_2(1+\delta) \longrightarrow R_2$

Bridge Circuit

Which can be reduced to;

$$v_{O1} = \delta \left(\frac{R_1 \| R_2}{R_1 + R_2} \right) V^+$$

Design an amplifier system that will produce an output voltage of $\pm 5V$ when the resistance R_3 deviates by $\pm 1\%$ from the value of R_2 . This would occur, for example, in a system where R_3 is a thermistor whose resistance is given by;

$$R_3 = 200 \left[1 + \frac{(0.040)(T - 300)}{300} \right] k\Omega$$

where T is the absolute temperature. For R_3 to vary by $\pm 1\%$ means the temperature is in the range $225 \le T \le 375K$. Consider biasing the bridge circuit at $V^+ = 7.5V$ using a $5.6\,V$ Zener diode. Assume $\pm 10V$ is available for biasing the op-amp and reference voltage source, and that $R_1 = R_2 = 200k\Omega$.

Solution:

With
$$R_1 = R_2$$
, $v_{O1} = \delta \left(\frac{R_1 || R_2}{R_1 + R_2} \right) V^+$ $v_{O1} = \left(\frac{\delta}{4} \right) V^+$

For
$$V^+ = 7.5 V$$
 and $\delta = 0.01$ (1%), the maximum output voltage, $v_{O1} = 0.01875 V$

If the output is to be +5 V, the gain of the amplifier must be $\frac{5}{0.01875}$ = 266.7

Solution Let's consider the instrumentation amplifier below; the output voltage:

$$v_O = \frac{R_4}{R_3} \left(1 + \frac{2R_2}{R_1} \right) (v_{I2} - v_{I1})$$

We would like the ratios R'_4/R'_3 and R'_2/R'_1 to be the same order of magnitude.

If set $R_3' = 15 k\Omega$ and $R_4' = 187 k\Omega$, then $R_4'/R_3' = 12.467$ and $R_2'/R_1' = 10.195$.

$$\frac{v_O}{v_{O1}} = \frac{R_4'}{R_3'} \left(1 + \frac{2R_2'}{R_1'} \right) = 266.7$$

If set $R_2' = 200 k\Omega$ then $R_1' = 19.62 k\Omega$

The complete design of the instrumentation amplifier:

22

Ex. 03: Current-to-Voltage Converter

A current-to-voltage converter is shown in Figure below. The current source has a finite output resistance R_S , and the op-amp has a finite open-loop differential gain A_{od} .

a) Show that the input resistance is given by:

$$R_{\rm in} = \frac{R_F}{1 + A_{od}}$$

b) If $R_F = 10k\Omega$ and $A_{od} = 1000$, determine the range of R_S such that the output voltage deviates from its ideal value by less than 1 percent.

Ex. 04: Current-to-Voltage Converter

Figure below shows a phototransistor that converts light intensity into an output current. The transistor must be biased as shown. The transistor output versus input characteristics are shown. Design a current-to-voltage converter to produce an output voltage between 0 and 8 V for an input light intensity between 0 and $20 \, mW/cm^2$. Power supplies of +10V and -10V are available.

