

LYCÉE LA MARTINIÈRE MONPLAISIR LYON

SCIENCES INDUSTRIELLES POUR L'INGÉNIEUR

CLASSE PRÉPARATOIRE M.P.S.I.

Année 2020 - 2021

C6: Analyse fréquentielle des systèmes asservis

C6-1 - Introduction à l'analyse fréquentielle des systèmes asservis

30 Mars 2021

Table des matières

I Définition de l'analyse fréquentielle	2
II Intérêts de l'étude fréquentielle	2
III Définition du support du cours	4
IV Caractérisation de la sortie correspondante à une entrée harmonique	5

Compétences

- Analyser; Apprécier la pertinence et la validité des résultats : Grandeurs utilisées : unités du système international homogénéité des grandeurs
- **Modéliser**; Identifier et caractériser les grandeurs physiques : Caractéristiques des grandeurs physiques : nature physique caractéristiques fréquentielles caractéristiques temporelles
- **Modéliser**; Proposer un modèle de connaissance et de comportement : Systèmes linéaires continus et invariants : Modélisation par équations différentielles Calcul symbolique fonction de transfert; gain, ordre, classe, pôles, zéros
- **Résoudre**; Procéder à la mise en oeuvre d'une démarche de résolution numérique : Signaux canoniques d'entrée : signaux sinusoïdaux

Compétences

- Modéliser :
 - o Identifier et caractériser les grandeurs physiques : caractéristiques fréquentielles
 - o Systèmes linéaires continus et invariants
 - o Signaux canoniques d'entrée : signaux sinusoïdaux
 - o Schémas blocs, fonctions de transferts
- Résoudre : Procéder à la mise en oeuvre d'une démarche de résolution analytique
 - Réponse fréquentielle;

C6: C6-1

Définition de l'analyse fréquentielle

Définition 1 : Analyse fréquentielle ou harmonique

L'analyse fréquentielle d'un système linéaire, continu et invariant consiste à étudier la réponse (s(t)) vis à vis d'une entrée (e(t)) de type harmonique ou sinusoïdale :

$$e(t) = e_0 \sin(\omega t) = e_0 \sin(2\pi f t)$$
 (1)

Ce signal est caractérisé par :

- sa **fréquence** f,
- ou sa **pulsation** $\omega = 2\pi f$,
- son **amplitude** e_0 .

II. Intérêts de l'étude fréquentielle

Définition 2 : Décomposition en série de Fourier

Tout signal **périodique** se décompose en une **somme de signaux harmoniques** (e.g. sinusoïdale). Par exemple un signal périodique et impaire de fréquence f peut se décomposer de la façon suivante:

$$e(t) = a_0 + \sum_{k=1}^{+\infty} a_k \cdot \sin(2\pi \ k \ f \ t)$$
 (2)

où les coefficients a_k représente les différentes amplitudes des fonctions harmonique constituant la décomposition.

Remarque 1:

Dans la pratique, pour reconstituer un signal, on peut effectuer une décomposition finie en série de Fourier $(\tilde{e}(t))$ en prenant n termes :

$$\tilde{e}(t) = a_0 + \sum_{k=1}^{n} a_k \cdot \sin(2\pi \ k \ f \ t)$$
(3)

La précision de la décomposition sera alors d'autant plus fidèle au signal de départ que le nombre de termes (n) sera grand.

C6: C6-1

Exemple 1 : Reconstitution d'un signal carré périodique

Prenons l'exemple d'un signal de tension (e(t)) de type créneau d'une période T =1/f égale à 1 s et d'amplitude égale à 1V. On peut effectuer une décomposition finie $\tilde{e}(t)$ (équation 3) avec différentes valeurs de n (e.g. $\{1,5,20\}$). La figure suivante compare la "richesse" des différentes décompositions finies en série de Fourier de e(t). On remarque bien que plus n est grand plus le signal reconstitué $(\tilde{e}(t))$ se rapproche du signal initial (e(t)).

Propriété 1 : Étude d'un signal quelconque

Pour étudier la réponse d'un système vis-à-vis d'un signal quelconque, il faudra alors être capable de caractériser la réponse fréquentielle sur une plage de fréquence (f) ou de pulsation (ω) étendue. On peut également choisir cette méthode d'analyse pour vérifier le comportement d'un système vis à vis d'une entrée harmonique caractérisée par différentes valeurs de fréquence (f) ou de pulsation C6: C6-1

III. Définition du support du cours

Exemple 2 : Suspension de véhicule

On modélise une suspension d'un véhicule par un ressort de raideur k et un amortisseur de coefficient d'amortissement c, montés en parallèles. On ramène le poids du véhicule à une masse globale m. Dans un premier temps, nous prendrons comme valeurs numériques des différents paramètres :

- m = 100 kg,
- $c = 1,13kN \cdot s \cdot m^{-1}$,
- $k = 80kN.m^{-1}$.

On note respectivement e(t) et s(t) les déplacements verticaux (suivant \overrightarrow{y}) du châssis et de l'habitacle par rapport à la position d'équilibre du système. La rotation constante de la roue avec une vitesse angulaire ω entraîne un déplacement horizontal du véhicule à vitesse constante selon la direction $-\overrightarrow{x}$. Ainsi le repère $R_0\left(O,\overrightarrow{x},\overrightarrow{y}\right)$ peut être supposé comme galiléen. L'axe de la roue est légèrement excentrée par rapport à son centre. Ceci provoque donc un déplacement du châssis en fonction de la vitesse de rotation de la roue

$$e(t) = e_0 \sin(\omega t)$$
.

On se propose de modéliser la réponse en déplacement vertical (suivant \vec{y}) de l'habitacle (s(t)) en fonction de la pulsation ω .

Le Principe Fondamental de la Dynamique en résultante suivant la direction \vec{y} appliqué à l'habitacle par rapport au repère R_0 donne l'équation différentielle suivante :

$$-c\left(\frac{d(s(t)-e(t))}{dt}\right)-k(s(t)-e(t))=m\frac{d^2s(t)}{dt^2}.$$

La fonction de transfert du système H(p) = S(p)/E(p) est égale à (forme canonique) :

Avec $\tau = 2 \xi/\omega_0$.

C6: C6-1

IV. Caractérisation de la sortie correspondante à une entrée harmonique

La transformée de Laplace de l'entrée harmonique (e(t)) équation 1) est donnée par :

$$E(p) = \frac{e_0 \cdot \omega}{p^2 + \omega^2}$$

Dans le domaine de Laplace la sortie S(p) du système soumis à une entrée harmonique s'écrit :

On obtient alors avec une transformée de Laplace inverse :,

$$S(t) = e_0 \left[\frac{G}{2j} \left(-e^{-j(\varphi + \omega t)} + e^{j(\varphi + \omega t)} \right) + e^{at} Q(t) \right] = e_0 \left[G \sin(\omega t + \varphi) + e^{at} Q(t) \right]$$

Or, on rappelle que a < 0 (ici $a = -\frac{c}{2m}$) et donc $e^{a t} Q(t)$ tend vers 0 en $+\infty$. Cette partie s'annule donc une fois que le régime est permanent ou établi et représente le **régime transitoire**.

Définition 3 : Réponse fréquentielle en régime permanent

Ainsi, en **régime établi** ou permanent la sortie s(t) est égale à :

- $(3) \begin{array}{c} 0.06 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.06 \\ 0.06 \\ 0.00$
- $G = \frac{s_0}{e_0} = |H(j \omega)|$ caractérise le **gain** (c'est à dire le facteur d'amplitude du sinus),
- $\varphi = arg(H(j \omega))$ est le **déphasage** (c'est à dire l'avance ou le retard du sinus).

R

Remarque 2 : Cas général

Dans le cas général d'un système linéaire continu invariant, sous les hypothèses de **stabilité** et avec des **conditions initiales nulles** le résultat précédent est encore valable.

Conclusion:

L'étude fréquentielle d'un système linéaire continu et invariant revient à étudier le gain fréquentielle G, ainsi que la phase φ de la fonction de transfert H(p) en fonction de la pulsation ω ou de la fréquence f.

On utilisera pour cela des outils des outils graphiques appelés "lieux de transfert".