TD 2 – Signal processing: Fourier, filtering, FFT

The following exercises are meant to illustrate chapter 2 of Gabriel Peyré's Mathematics of Data course (mathematical-tours. github. io). Some of them are adapted from the past years' exams.

Please refer to Geert-Jan Huizing (huizing@ens.fr) for questions regarding these exercises and their solutions.

Exercises

- We denote as $\Sigma_n \stackrel{\text{\tiny def.}}{=} \{a \in \mathbb{R}^n_+; \sum_i a_i = 1\}$ the probability simplex.
- We identify the indices $\{1,\ldots,n\}$ with the elements of $\mathbb{Z}/n\mathbb{Z}$ (i.e. we consider periodic indices).
- We define the convolution between $f \in \mathbb{C}^n$ and $g \in \mathbb{C}^n$ by $(f \star g)_i = \sum_j f_{i-j}g_j$
- For all $f \in \mathbb{C}^n$, we recall that the discrete Fourier transform is defined as

$$\forall k \in \mathbb{Z}/n\mathbb{Z}, \hat{f}_k \stackrel{\text{def.}}{=} \sum_{p=0}^{n-1} f_p e^{-2i\pi kp/n}.$$

[★] Common Fourier Transforms

Compute the discrete Fourier transforms of the following signals $f \in \mathbb{C}^n$.

- 1. Frequency shift. $f_p = x_p e^{2i\pi p\tau/n}$ (use \hat{x}_k and τ to express \hat{f}_k).
- 2. Geometric progression. $f_p = a^p$.
- 3. Window. f is a window of size W = 2K + 1 centered around 0:

$$f_p = 1/W$$
 if $\min(p, n - p) \le K$
= 0 otherwise.

[**] Total Variation (from exam 2020)

- 1. Let $f \in \mathbb{C}^n$. Bound $|\hat{f}_k|$ using $||f||_1$ (the l^1 norm of f).
- 2. We define the total variation of f as

$$||f||_V \stackrel{\text{def.}}{=} \sum_{i=0}^{n-1} |f_{i+1} - f_i|.$$

Determine the set of f such that $||f||_V = 0$. Show that $||\cdot||_V$ statisfies the triangular inequality (it is a semi-norm).

- 3. Write $||f||_V$ as $||f \star h||_1$, where $h \in \mathbb{C}^n$.
- 4. Compute \hat{h} the discrete Fourier transform of h, and compute $|\hat{h}_k|$.
- 5. Bound $|\hat{f}_k|$ using $||f||_V$, n, and k.

[**] Markov Chains (from exam 2018)

- 1. Show that a matrix $P \in \mathbb{R}_+^{n \times n}$ such that $P^{\top} \mathbb{1}_n = \mathbb{1}_n$ defines a linear map $a \in \Sigma_n \mapsto Pa \in \Sigma_n$ from the simplex to itself.
- 2. We denote $T_{\tau}: a \mapsto (a_{i-\tau})_i$ the translation operator for $\tau \in \mathbb{Z}/n\mathbb{Z}$. Show that P commutes with T_{τ} for all τ if and only if there exists $h \in \Sigma_n$ such that $Pa = h \star a$.
- 3. Starting from some $a^{(0)} \in \Sigma_n$, we define $a^{(l+1)} \stackrel{\text{def.}}{=} Pa^{(l)}$. Show that if $\forall k \neq 0, |\hat{h}_k| < 1$, then $a^{(l)} \to a^*$ as $l \to +\infty$. What is a^* ?

$[\star \star \star]$ Hadamard-Walsh Transform (from exam 2017)

We denote $G = (\mathbb{Z}/2\mathbb{Z})^p$, which is a group with $n \stackrel{\text{def.}}{=} 2^p$ elements. An element $x \in G$ is written as $x = (x_i)_{i=1}^p$ with $x_i \in \{0,1\}$ and is equivalently represented as $0 \le x < n$ where the x_i is the binary writing of x in base 2. We denote $\mathbb{R}[G]$ the vector space of functions $f: G \to \mathbb{R}$, endowed with the canonical inner product $\langle f, g \rangle \stackrel{\text{def.}}{=} \sum_{x \in G} f(x)g(x)$.

- 1. For $\omega \in G$, we denote $\psi_{\omega}(x) \stackrel{\text{def.}}{=} (-1)^{\sum_{i} x_{i} \omega_{i}}$. Show that $(\psi_{\omega})_{\omega \in G}$ is an orthogonal basis of $\mathbb{R}[G]$.
- 2. We denote $\hat{f}(\omega) \stackrel{\text{def.}}{=} \langle f, \psi_{\omega} \rangle$ the Hadamard-Walsh transform of f. We denote $f_0, f_1 : (\mathbb{Z}/2\mathbb{Z})^{p-1} \to \mathbb{R}$ defined as

$$f_0(x_1, \ldots, x_{p-1}) \stackrel{\text{def.}}{=} f(x_1, \ldots, x_{p-1}, 0)$$
 and $f_1(x_1, \ldots, x_{p-1}) \stackrel{\text{def.}}{=} f(x_1, \ldots, x_{p-1}, 1)$

Find a relation between \hat{f} and (\hat{f}_0, \hat{f}_1) . Write in pseudo-code a fast recursive algorithm to compute \hat{f} from f. What is the complexity of this algorithm ?