PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: (11) International Publication Number: WO 96/10637 C12N 15/12, C07K 14/705, C12N 5/10 **A1** (43) International Publication Date: 11 April 1996 (11.04.96) (81) Designated States: CA, JP, US, European patent (AT, BE, CH, (21) International Application Number: PCT/GB95/02323

(30) Priority Data:

(22) International Filing Date:

9420010.2

1 October 1994 (01.10.94)

29 September 1995 (29.09.95)

GB

(71) Applicant (for all designated States except US): MERCK SHARP & DOHME LIMITED [GB/GB]; Hertford Road, Hoddesdon, Hertordshire EN11 9BU (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): LE BOURDELLES, Beatrice [FR/GB]; Terlings Park, Eastwick Road, Harlow, Essex CM20 2QR (GB). WHITING, Paul, John [GB/GB]; Terlings Park, Eastwick Road, Harlow, Essex CM20 2QR (GB).

(74) Agent: HISCOCK, Ian, James; Merck & Co., Inc., European Patent Dept., Terlings Park, Eastwick Road, Harlow, Essex CM20 2QR (GB).

DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: HUMAN ALPHA4 RECEPTOR SUBUNIT OF THE GABA-A RECEPTOR

(57) Abstract

The present invention relates to the cloning of novel cDNA sequences encoding the α_4 and δ receptor subunits of the human GABAA receptor; to stably co-transfected eukaryotic cell lines capable of expressing a human GABAA receptor, which receptor comprises at least one of the novel α_4 and δ receptor subunits; and to the use of such cell lines in screening for and designing medicaments which act upon the human GAGAA receptor.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE		GR	Greece	NL	Netherlands
BF	Belgium Burkina Faso	HU	Hungary	NO	Norway
		IE	Ireland	NZ	New Zealand
BG	Bulgaria Benin	IT	Italy	PL	Poland
BJ		JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic	KP	of Korea	SE	Sweden
CG	Congo	***	•	SI	Slovenia
CH	Switzerland	KR	Republic of Korea		
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon		•		

HUMAN ALPHA 4 RECEPTOR SUBUNIT OF THE GABA-A RECEPTOR

This invention concerns the cloning of a novel cDNA sequence encoding a particular subunit of the human GABAA receptor. In addition, the invention relates to a stable cell line capable of expressing said cDNA and to the use of the cell line in a screening technique for the design and development of subtype-specific medicaments.

5

10

15

20

25

30

Gamma-amino butyric acid (GABA) is a major inhibitory neurotransmitter in the central nervous system. It mediates fast synaptic inhibition by opening the chloride channel intrinsic to the GABAA receptor. This receptor comprises a multimeric protein of molecular size 230-270 kDa with specific binding sites for a variety of drugs including benzodiazepines, barbiturates and β-carbolines, in addition to sites for the agonist ligand GABA (for reviews see Stephenson, *Biochem. J.*, 1988, 249, 21; Olsen and Tobin, *Faseb J.*, 1990, 4, 1469; and Sieghart, *Trends in Pharmacol. Sci.*, 1989, 10, 407).

Molecular biological studies demonstrate that the receptor is composed of several distinct types of subunit, which are divided into four classes (α, β, γ and δ) based on their sequence similarities. To date, six types of α (Schofield et al., Nature (London), 1987, 328, 221; Levitan et al., Nature (London), 1988, 335, 76; Ymer et al., EMBO J., 1989, 8, 1665; Pritchett & Seeberg, J. Neurochem., 1990, 54, 802; Luddens et al., Nature (London), 1990, 346, 648; and Khrestchatisky et al., Neuron, 1989, 3, 745), three types of β (Ymer et al., EMBO J., 1989, 8, 1665), three types of γ (Ymer et al., EMBO J., 1990, 9, 3261; Shivers et al., Neuron, 1989, 3, 327; and Knoflach et al, FEBS Lett., 1991, 293, 191) and one δ subunit (Shivers et al., Neuron, 1989, 3, 327) have been identified.

The differential distribution of many of the subunits has been characterised by in situ hybridisation (Sequier et al., Proc. Natl. Acad. Sci. USA, 1988, 85, 7815; Malherbe et al., J. Neurosci., 1990, 10, 2330; Shivers

5

10

15

20

25

30

et al., Neuron, 1989, 3, 327; and Wisden et al, J. Neurosci., 1992, 12, 1040) and this has permitted it to be speculated which subunits, by their co-localisation, could theoretically exist in the same receptor complex.

Various combinations of subunits have been co-transfected into cells to identify synthetic combinations of subunits whose pharmacology parallels that of bona fide GABAA receptors in vivo (Pritchett et al., Science, 1989, 245, 1389; Malherbe et al., J. Neurosci., 1990, 10, 2330; Pritchett and Seeberg, J. Neurochem., 1990, 54, 1802; and Luddens et al., Nature (London), 1990, 346, 648). This approach has revealed that, in addition to an α and β subunit, either γ_1 or γ_2 (Pritchett et al., Nature (London), 1989, 338, 582; Ymer et al., EMBO J., 1990, 9, 3261; and Malherbe et al., J. Neurosci., 1990, 10, 2330) or γ_3 (Herb et al., Proc. Natl. Acad. Sci. USA, 1992, 89, 1433; Knoflach et al., FEBS Lett., 1991, 293, 191; and Wilson-Shaw et al., FEBS Lett., 1991, 284, 211) is also generally required to confer benzodiazepine sensitivity, and that the benzodiazepine pharmacology of the expressed receptor is largely dependent on the identity of the α and γ subunits present. Receptors containing a δ subunit (i.e. αβδ) do not appear to bind benzodiazepines (Shivers et al., Neuron, 1989, 3, 327). Combinations of subunits have been identified which exhibit the pharmacological profile of a BZ $_1$ type receptor $(\alpha_1\beta_1\gamma_2)$ and a BZ₂ type receptor $(\alpha_2\beta_1\gamma_2 \text{ or } \alpha_3\beta_1\gamma_2, \text{ Pritchett } \textit{et al., Nature (London)},$ 1989, 338, 582), as well as two GABAA receptors with a novel pharmacology, α₅β₂γ₂ (Pritchett and Seeberg, J. Neurochem., 1990, 54, 1802) and $\alpha_6\beta_2\gamma_2$ (Luddens et al., Nature (London), 1990, 346, 648). Although the pharmacology of these expressed receptors appears similar to that of those identified in brain tissue by radioligand binding, it has nonetheless not been shown that these receptor subunit combinations exist in vivo.

A combination of subunits comprising either the human α_4 GABAA receptor subunit and/or the δ GABAA receptor subunit has not hitherto been possible due to the non-availability of the human α_4 cDNA or human

WO 96/10637 - 3 - PCT/GB95/02323

 δ cDNA. This has consequently limited the use of cell lines in screening for subtype-specific medicaments, it being impossible to study the pharmacological profile of subunit combinations comprising the α_4 subunit and/or the δ subunit.

We have now ascertained the cDNA sequence of the α_4 subunit and the δ subunit of the human GABAA receptor. These nucleotide sequences, together with their deduced amino acid sequences corresponding thereto, are depicted in Figures 2 and 3 of the accompanying drawings.

5

10

15

20

25

30

The present invention accordingly provides, in a first aspect, a DNA molecule encoding the α_4 subunit of the human GABAA receptor comprising all or a portion of the sequence depicted in Figure 2, or a modified human sequence.

The present invention also provides, in another aspect, a DNA molecule encoding the δ subunit of the human GABAA receptor comprising all or a portion of the sequence depicted in Figure 3, or a modified human sequence.

The sequencing of the novel cDNA molecules in accordance with the invention can conveniently be carried out by the standard procedure described in accompanying Example 1; or may be accomplished by alternative molecular cloning techniques which are well known in the art, such as those described by Maniatis et al. in Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, New York, 2nd edition, 1989.

In another aspect, the invention provides a recombinant expression vector comprising the nucleotide sequence of the human GABAA receptor α_4 subunit together with additional sequences capable of directing the synthesis of the said human GABAA receptor α_4 subunit in cultures of stably co-transfected eukaryotic cells.

The present invention also provides a recombinant expression vector comprising the nucleotide sequence of the human GABAA receptor δ subunit together with additional sequences capable of directing the

WO 96/10637 - 4 - PCT/GB95/02323

synthesis of the said human GABAA receptor δ subunit in cultures of stably co-transfected eukaryotic cells.

5

10

15

20

25

30

The term "expression vectors" as used herein refers to DNA sequences that are required for the transcription of cloned copies of recombinant DNA sequences or genes and the translation of their mRNAs in an appropriate host. Such vectors can be used to express eukaryotic genes in a variety of hosts such as bacteria, blue-green algae, yeast cells, insect cells, plant cells and animal cells. Specifically designed vectors allow the shuttling of DNA between bacteria-yeast, bacteria-plant or bacteria-animal cells. An appropriately constructed expression vector should contain: an origin of replication for autonomous replication in host cells, selective markers, a limited number of useful restriction enzyme sites, a high copy number, and strong promoters. A promoter is defined as a DNA sequence that directs RNA polymerase to bind to DNA and to initiate RNA synthesis. A strong promoter is one which causes mRNAs to be initiated at high frequency. Expression vectors may include, but are not limited to, cloning vectors, modified cloning vectors, specifically designed plasmids or viruses.

The term "cloning vector" as used herein refers to a DNA molecule, usually a small plasmid or bacteriophage DNA capable of self-replication in a host organism, and used to introduce a fragment of foreign DNA into a host cell. The foreign DNA combined with the vector DNA constitutes a recombinant DNA molecule which is derived from recombinant technology. Cloning vectors may include plasmids, bacteriophages, viruses and cosmids.

The recombinant expression vector in accordance with the invention may be prepared by inserting the nucleotide sequence of the GABAA α_4 subunit or the GABAA δ subunit into a suitable precursor expression vector (hereinafter referred to as the "precursor vector") using conventional recombinant DNA methodology known from the art. The precursor vector may be obtained commercially, or constructed by

standard techniques from known expression vectors. The precursor vector suitably contains a selection marker, typically an antibiotic resistance gene, such as the neomycin or ampicillin resistance gene. The precursor vector preferably contains a neomycin resistance gene, adjacent the SV40 early splicing and polyadenylation region; an ampicillin resistance gene; and an origin of replication, e.g. pBR322 ori. The vector also preferably contains an inducible promoter, such as MMTV-LTR (inducible with dexamethasone) or metallothionin (inducible with zinc), so that transcription can be controlled in the cell line of this invention. This reduces or avoids any problem of toxicity in the cells because of the chloride channel intrinsic to the GABAA receptor.

5

10

15

20

25

30

One suitable precursor vector is pMAMneo, available from Clontech Laboratories Inc. (Lee et al., Nature, 1981, 294, 228; and Sardet et al., Cell, 1989, 56, 271). Alternatively the precursor vector pMSGneo can be constructed from the vectors pMSG and pSV2neo.

The recombinant expression vector of the present invention is then produced by cloning the GABAA receptor α_4 subunit cDNA or the GABAA receptor δ subunit cDNA into the above precursor vector. The receptor subunit cDNA is subcloned from the vector in which it is harboured, and ligated into a restriction enzyme site, e.g. the Hind III site, in the polylinker of the precursor vector, for example pMAMneo or pMSGneo, by standard cloning methodology known from the art, and in particular by techniques analogous to those described herein. Before this subcloning, it is often advantageous, in order to improve expression, to modify the end of the α_4 or δ subunit cDNA with additional 5' untranslated sequences, for example by modifying the 5' end of the α_4 or δ subunit DNA by addition of 5' untranslated region sequences from the α_1 subunit DNA.

One suitable expression vector of the present invention is illustrated in Fig. 1 of the accompanying drawings, in which R represents the nucleotide sequence of the α_4 or δ subunit of the GABAA receptor, and

WO 96/10637 - 6 - PCT/GB95/02323

the remainder of the expression vector depicted therein is derived from the precursor vector pMSGneo.

According to a further aspect of the present invention, there is provided a stably co-transfected eukaryotic cell line capable of expressing a GABAA receptor, which receptor comprises the alpha-4 receptor subunit, at least one beta receptor subunit and the delta receptor subunit.

5

10

15

20

25

30

In another aspect of the present invention, there is provided a stably co-transfected eukaryotic cell line capable of expressing a GABAA receptor, which receptor comprises the alpha-4 receptor subunit, at least one beta receptor subunit and at least one gamma receptor subunit.

In a further aspect of the present invention, there is provided a stably co-transfected eukaryotic cell line capable of expressing a GABAA receptor, which receptor comprises at least one alpha receptor subunit, at least one beta receptor subunit and the delta receptor subunit.

This is achieved by co-transfecting cells with three expression vectors, each harbouring cDNAs encoding for an α_4 , β or δ GABAA receptor subunit, or for an α_4 , β or γ GABAA receptor subunit, or for an α , β or δ GABAA receptor subunit. In a further aspect, therefore, the present invention provides a process for the preparation of a eukaryotic cell line capable of expressing a GABAA receptor, which comprises stably co-transfecting a eukaryotic host cell with at least three expression vectors, one such vector harbouring the cDNA sequence encoding the α_4 GABAA receptor subunit another such vector harbouring the cDNA sequence encoding a beta GABAA receptor subunit, and a third such vector harbouring the cDNA sequence encoding the delta GABAA receptor subunit. The stable cell-line which is established expresses an $\alpha_4\beta\delta$ GABAA receptor.

The present invention also provides a process for the preparation of a eukaryotic cell line capable of expressing a GABAA receptor, which comprises stably co-transfecting a eukaryotic host cell with at least three expression vectors, one such vector harbouring the cDNA sequence

encoding the α_4 GABAA receptor subunit another such vector harbouring the cDNA sequence encoding a beta GABAA receptor subunit, and a third such vector harbouring the cDNA sequence encoding a gamma GABAA receptor subunit. The stable cell-line which is established expresses an $\alpha_4\beta\gamma$ GABAA receptor.

5

10

15

20

25

30

Similarly, the present invention provides a process for the preparation of a eukaryotic cell line capable of expressing a GABAA receptor, which comprises co-transfecting a eukaryotic host cell with at least three expression vectors, one such vector harbouring the cDNA sequence encoding an alpha GABAA receptor subunit, another such vector harbouring the cDNA sequence encoding a beta GABAA receptor subunit, and a third such vector harbouring the cDNA sequence encoding the δ GABAA receptor subunit. The stable cell line which is established expresses an $\alpha\beta\delta$ GABAA receptor.

Each receptor thereby expressed, comprising a unique combination of α_4 , β and δ subunits, or α_4 , β and γ subunits, or α , β and δ subunits, will be referred to hereinafter as a GABAA receptor "subunit combination". Pharmacological and electrophysiological data confirm that the recombinant $\alpha_4\beta\gamma$ receptor expressed by the cells of the present invention has the properties expected of a native GABAA receptor.

Expression of the GABAA receptor may be accomplished by a variety of different promoter-expression systems in a variety of different host cells. The eukaryotic host cells suitably include yeast, insect and mammalian cells. Preferably the eukaryotic cells which can provide the host for the expression of the receptor are mammalian cells. Suitable host cells include rodent fibroblast lines, for example mouse Ltk-, Chinese hamster ovary (CHO) and baby hamster kidney (BHK); HeLa; and HEK293 cells. It is necessary to incorporate the α_4 subunit, at least one β and the δ subunit into the cell line in order to produce the required receptor, or alternatively the α_4 subunit and at least one β and one γ subunit or alternatively at least one α , one β and the δ subunit. Within

WO 96/10637 - 8 - PCT/GB95/02323

this limitation, the choice of receptor subunit combination is made according to the type of activity or selectivity which is being screened for.

In order to employ this invention most effectively for screening purposes, it is preferable to build up a library of cell lines, each with a different combination of subunits. Typically a library of 5 or 6 cell line types is convenient for this purpose. Preferred subunit combinations include: $\alpha_4\beta_3\gamma_2$, $\alpha_4\beta_3\delta$ and $\alpha_6\beta_3\delta$. Another preferred subunit combination is $\alpha_4\beta_2\gamma_2$.

5

10

15

20

25

30

As stated above, for each cell line of the present invention, three such vectors will be necessary, one containing the α_4 subunit, one containing a β subunit, and the third containing the δ subunit, or alternatively, one containing the α_4 subunit, one containing a β subunit, and the third containing a γ subunit, or alternatively, one containing an α subunit, one containing a β subunit and one containing the δ subunit.

Cells are then co-transfected with the desired combination of three expression vectors. There are several commonly used techniques for transfection of eukaryotic cells *in vitro*. Calcium phosphate precipitation of DNA is most commonly used (Bachetti *et al.*, *Proc. Natl. Acad. Sci. USA*, 1977, 74, 1590-1594; Maitland *et al.*, *Cell*, 1977, 14, 133-141), and represents a favoured technique in the context of the present invention.

A small percentage of the host cells takes up the recombinant DNA. In a small percentage of those, the DNA will integrate into the host cell chromosome. Because the neomycin resistance gene will have been incorporated into these host cells, they can be selected by isolating the individual clones which will grow in the presence of neomycin. Each such clone is then tested to identify those which will produce the receptor. This is achieved by inducing the production, for example with dexamethasone, and then detecting the presence of receptor by means of radioligand binding.

In a further aspect, the present invention provides protein preparations of GABAA receptor subunit combinations, especially human

GABAA receptor subunit combinations, derived from cultures of stably transfected eukaryotic cells. The invention also provides preparations of membranes containing subunit combinations of the GABAA receptor, especially human GABAA receptor subunit combinations, derived from cultures of stably transfected eukaryotic cells.

The cell line, and the membrane preparations therefrom, according to the present invention have utility in screening and design of drugs which act upon the GABAA receptor, for example benzodiazepines, barbiturates, β-carbolines and neurosteroids. The present invention accordingly provides the use of the cell line described above, and membrane preparations derived therefrom, in screening for and designing medicaments which act upon the GABAA receptor. Of particular interest in this context are molecules capable of interacting selectively with GABAA receptors made up of varying subunit combinations. As will be readily apparent, the cell line in accordance with the present invention, and the membrane preparations derived therefrom, provide ideal systems for the study of structure, pharmacology and function of the various GABAA receptor subtypes.

The following non-limiting Examples illustrate the present invention.

EXAMPLE 1

5

10

15

20

25

30

ISOLATION AND SEQUENCING OF cDNAS ENCODING THE HUMAN GABAA RECEPTOR α_4 SUBUNIT

a) cDNA libraries

cDNAs were cloned from human foetal brain and adult hippocampus cDNA libraries. All cDNA libraries were constructed in the lambdaZAP vector, and were purchased from Stratagene (San Diego, California). For screening, the cDNA libraries were plated according to the manufacturer's instructions, at 40,000 pfu per 137 mm plate. Filter lifts were taken using Hybond N filters (Amersham) according to the manufacturer's instructions.

5

10

15

20

25

30

Biochemicals).

b) Isolation of cDNA encoding human a4 subunit

A human α₄ probe was first generated by polymerase chain reaction (PCR) using oligonucleotide primers (synthesised on an Applied Biosystems 380B synthesizer) derived from the bovine α₄ sequence (Ymer et al, FEBS Lett., 1989, 258, 119): 5 TTTCAGGAATTCCAGTGCTGAGAGAGAAAAGCATCCTGAAAC3' (bp 1121-1160, containing an EcoRI restriction enzyme site) SEQ. ID. NO.:1, and 5 ATCCAGAAGCTTGTGGAGCAGAGGGAGTAGTAGTGGC3' (antisense, bp 1540-1577, incorporating a HindIII restriction enzyme site) SEQ. ID. NO.:2. PCR was performed as described, for example, by Whiting et al in Proc. Natl. Acad. Sci., USA, 1990, 87, 9966, using a human foetal brain cDNA library as a template. The PCR product was digested with EcoRI and HindIII and subcloned into similarly digested pBluescript SK- and its identity confirmed by DNA sequencing using standard techniques and the Sequenase II enzyme (United States

A human foetal brain cDNA library was screened using ³²P labelled human α_4 probe DNA as described above. A single cDNA clone, approximately 2500bp, was obtained. DNA sequencing indicated that this cDNA clone contained 3' untranslated sequences and 3' coding region up to bp 1162 of the bovine cDNA sequence. The missing 5' sequence was obtained by anchored PCR using human brain 5'-RACE-Ready cDNA (CLONTECH, Palo Alto, CA), according to the manufacturer's instructions. The antisense oligonucleotides used for nested PCR were 5'ATTGGCATTTGTATTCTGCAGAGG3' SEQ. ID. NO.:3, and 5'GGAAGATTTGCTTGAATGGTTTTGG3' SEQ. ID. NO.:4. A 1200bp PCR

product was obtained. DNA sequencing confirmed that this cDNA contained the missing 5' sequence of the α_4 cDNA, extending to 130bp 5' of the initiating ATG codon.

A full length α₄ cDNA was generated by PCR using oligonucleotide primers generated from sequences of the 5' and 3' untranslated region: 5' sense primer 5'CCTGGATCCGTGAACAGGCTTGAAGTATG3' (incorporating a <u>Bam</u>HI restriction enzyme site) SEQ. ID. NO.:5; 3' antisense primer 5'ACGAATTCACATTAGACTTTCTGATTTCTC3' (incorporating an <u>Eco</u>RI restriction enzyme site) SEQ. ID. NO.:6. PCR was performed using human brain thalamus cDNA. A 1500bp product was generated which was subcloned into the cloning/eukaryotic expression vector pcDNA/Amp (Invitrogen). The cDNA was sequenced completely on both strands using an Applied Biosystems 373A DNA sequencer and dye terminator chemistry according to the manufacturer's instructions.

The complete nucleotide sequence of the cDNA encoding the human α_4 subunit, together with the deduced amino acid sequence corresponding thereto is shown in Fig. 2 of the accompanying drawings SEQ. ID. NOS.:7 and 8.

EXAMPLE 2

ISOLATION AND SEQUENCING OF cDNAS ENCODING THE HUMAN GABAA RECEPTOR δ SUBUNIT

25

30

5

10

15

20

a) cDNA libraries

As described in Example 1(a).

b) Isolation of cDNA encoding human δ subunit

A rat δ subunit probe was first generated by PCR using oligonucleotide primers derived from the rat δ subunit sequence (Shivers

et al, Neuron, 1989, 3, 327):

5'AGCCCGAATTCCATGGACGTTCTGGGCTGGCTG3' (bp 18-51, incorporating an EcoRI restriction enzyme site) SEQ. ID. NO.:9 and 5'GGTTTCCAAGCTTACTTTGGAGAGGTAGC3' (bp 1357-1390, incorporating a HindIII restriction enzyme site) SEQ. ID. NO.:10. PCR was performed as described, for example, by Whiting et al, Proc. Natl. Acad. Sci., USA, 1990, 87, 9966, using rat brain cDNA as template. A 1400bp product was obtained, subcloned into pBluescript SK- and its identity confirmed by DNA sequencing. A human hippocampus cDNA library was screened using 32 P labelled rat δ subunit probe DNA as described above. A single clone was obtained containing an 1800bp insert. DNA sequencing indicated that this cDNA contained the complete coding region of the human δ subunit. The cDNA was sequenced completely on both strands using an Applied Biosystems 373A DNA sequencer and dye terminator chemistry according to the manufacturer's instructions.

The complete nucleotide sequence of the cDNA encoding the human δ subunit, together with the deduced amino acid sequence corresponding thereto is shown in Fig. 3 of the accompanying drawings SEQ. ID. NOS.:11 and 12.

20

5

10

15

EXAMPLE 3

EXPRESSION OF HUMAN α_4 cDNA IN XENOPUS OOCYTES

25

30

The human α_4 cDNA (Example 1, Fig. 2) was subcloned into the eukaryotic expression vector, pCDNA I Amp (Invitrogen, San Diego CA). Expression of this cDNA was investigated using the *Xenopus* oocyte system. Methods for preparation of *Xenopus* oocytes, nuclear injection of cDNAs, and eletrophysiological recordings from oocytes expressing

WO 96/10637 - 13 - PCT/GB95/02323

recombinant GABAA receptors, are well documented (see, for instance, Hadingham et al., Mol. Pharmacol., 1993, 44, 1211-1218).

5

10

15

When co-expressed with β_2 and γ_2 cDNAs (Hadingham et al., Mol. Pharmacol., 1993, 44, 1211-1218) minimal expressed of GABAA gated chloride currents were observed (10-50nA whole cell currents as measured under voltage clamped conditions). To increase the efficiency of expression the α_4 cDNA was re-engineered so as to replace the 5' untranslated sequence and signal peptide with the corresponding α_1 sequence. PCR was performed using the α_1 cDNA (Schofield et al., Nature (London), 1987, 328, 221) as template. Primers were (i) 5'TAATGAGTTTAAACCATAGCTTCTTCCAGT3' (bp12-35 of α_1 incorporating a BamHI site) SEQ. ID. NO.:11, and (ii) 5'CATGATGGATCCGCCCGCTCAGAC3' (bp 269-305 incorporating a PmeI site) SEQ. ID. NO.:12. The BamHI-PmeI cut PCR fragment was subcloned into similarly cut α_4 pCDNA I Amp. When this α_4 construct was co-expressed in Xenopus oocytes with β_2 and γ_2 cDNAs robust

GABAA gated currents of up to 1000nA whole cell current were obtained.

- 14 -

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT:
 - (A) NAME: Merck Sharp & Dohme Limited
 - (B) STREET: Terlings Park
 - (C) CITY: Harlow
 - (D) STATE: Essex
 - (E) COUNTRY: England
 - (F) POSTAL CODE (ZIP): CM20 2QR
- (ii) TITLE OF INVENTION: Novel Cloned GABA-A Receptor Subunit cDNA Sequences and Stably Co-transfected Cell Lines
 - (iii) NUMBER OF SEQUENCES: 14
 - (iv) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPO)
- (2) INFORMATION FOR SEQ ID NO: 1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 40 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

TTTCAGGAAT TCCAGTGCTG AGAGAAAAGC ATCCTGAAAC

- (2) INFORMATION FOR SEQ ID NO: 2:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 237 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

ATCCAGAAGC TTGTGGAGCA GAGGGAGTAG TAGTGGC

- (2) INFORMATION FOR SEQ ID NO: 3:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- 16 -

- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

ATTGGCATTT GTATTCTGCA GAGG

- (2) INFORMATION FOR SEQ ID NO: 4:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

GGAAGATTTG CTTGAATGGT TTGG

- (2) INFORMATION FOR SEQ ID NO: 5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 29 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

WO 96/10637

- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

CCTGGATCCG TGAACAGGCT TGAAGTATG

- (2) INFORMATION FOR SEQ ID NO: 6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 30 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

ACGAATTCAC ATTAGACTTT CTGATTTCTC

- (2) INFORMATION FOR SEQ ID NO: 7:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1707 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA

- 18 -

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 39..1703

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

GGATCCGTGA ACAGCTTGAA GTATGGCATG TTGCAAAG ATG GTT TCT GCC AAG AAG GTA MET Val Ser Ala Lys Lys Val CCC GCG ATC ACT CTG TCC GCC GGG GTC AGT TTC GCC CTC CTG CGC TTC CTG TGC Pro Ala Ile Thr Leu Ser Ala Gly Val Ser Phe Ala Leu Leu Arg Phe Leu Cys CTG GCG GTT TGT TTA AAC GAA TCC CCA GGA CAG AAC CAA AAG GAG GAG AAA TTG Leu Ala Val Cys Leu Asn Glu Ser Pro Gly Gln Asn Gln Lys Glu Glu Lys Leu TGC ACA GAA AAT TTC ACC CGC ATC CTG GAC AGT TTG CTC GAT GGT TAT GAC AAC Cys Thr Glu Asn Phe Thr Arg Ile Leu Asp Ser Leu Leu Asp Gly Tyr Asp Asn AGG CTG CGT CCT GGA TTT GGG GGT CCT GTT ACA GAA GTG AAA ACT GAC ATA TAT Arg Leu Arg Pro Gly Phe Gly Gly Pro Val Thr Glu Val Lys Thr Asp Ile Tyr GTC ACC AGC TTT GGA CCT GTT TCT GAT GTT GAA GTG GAA TAC ACA ATG GAT GTG Val Thr Ser Phe Gly Pro Val Ser Asp Val Glu Val Glu Tyr Thr MET Asp Val TTC TTC AGG CAG ACA TGG ATT GAC AAA AGA TTA AAA TAT GAC GGC CCC ATT GAA Phe Phe Arg Gln Thr Trp Ile Asp Lys Arg Leu Lys Tyr Asp Gly Pro Ile Glu ATT TTG AGA TTG AAC AAT ATG ATG GTA ACG AAA GTG TGG ACC CCT GAT ACT TTC Ile Leu Arg Leu Asn Asn MET MET Val Thr Lys Val Trp Thr Pro Asp Thr Phe TTC AGG AAT GGA AAG AAA TCT GTC TCA CAT AAT ATG ACA GCT CCA AAT AAG CTT Phe Arg Asn Gly Lys Lys Ser Val Ser His Asn MET Thr Ala Pro Asn Lys Leu TTT AGA ATT ATG AGA AAT GGT ACT ATT TTA TAC ACA ATG AGA CTC ACC ATA AGT Phe Arg Ile MET Arg Asn Gly Thr Ile Leu Tyr Thr MET Arg Leu Thr Ile Ser - 19 -

		554			563			572			581			590			599
GCG Ala	GAG Glu	TGT Cys	CCC Pro	ATG MET	AGA Arg	TTG Leu	GTG Val	GAT Asp	TTT Phe	CCC Pro	ATG MET	GAT Asp	GGT Gly	CAT His	GCA Ala	TGC Cys	CCT Pro
		608			617			626			635			644			653
GTG Val	AAA Lys	TTC Phe	GGG Gly	AGT Ser	TAT Tyr	GCC Ala	TAT Tyr	CCA Pro	ĀĀĢ Lys	AGT Ser	GAG Glu	ATG MET	ATC Ile	TAT Tyr	ACC Thr	TGG Trp	ACA Thr
		662			671			680			689			698		-	707
ĀĀĀ	GGT	CCT	GAG	ĀĀĀ	TCA	GTT	GAA	GTT	CCG	ĀĀĢ	GAG	TCT	TCC	ĀGC	TTA	GTT	CAA
Lys	Gly	Pro	Glu	Lys	Ser	Val	Glu	Val	Pro	Lys	Glu	Ser	Ser	Ser	Leu	Val	Gln
		716			725			734			743			752			761
TAT Tyr	GAT Asp	TTG Leu	ATT Ile	GGG Gly	CAA Gln	ACC Thr	GTA Val	TCA Ser	AGT Ser	GAA Glu	ACC Thr	ATC Ile	ĀĀĀ Lys	TCA Ser	ATT Ile	ACG Thr	GGT Gly
		770			779			788			797			806			815
GAA	TAT	ATT	GTT	ATG	ACG	GTT	TAC	TTC	CAC	CTC	AGA	ccc	AAG	ATG	GGT	TAT	
Glu	Tyr	Ile	Val	MET	Thr	Val	Tyr	Phe	His	Leu	Arg	Arg	Lys	MET	Gly	Tyr	Phe
		824			833			842			851			860			869
ATG	ATT	CAG	ACC	TAT	ATT	CCG	TGC	ATT	ATG	ACA	GTG	ATT	CTT	TCT	CAA	GTT	TCA
*****	116	878	1111	IAT	Ile	PIO	Cys		MEI	Thr		116	Leu		GIN	Val	
					887			896			905			914			923
Phe	Trp	ATA Ile	AAT Asn	AAA Lys	GAA Glu	TCA Ser	GTT Val	CCC Pro	GCT Ala	AGG Arg	ACC Thr	GTA Val	TTT Phe	GGA Gly	ATA Ile	ACA Thr	ACT Thr
		932			941			950			959			968			977
GTC	CTC	ACC	ATG	ACC	ACA	CTA	AGC	ATC	AGT	GCA	CGA	CAT	TCT	TTG	ccc	ĀĀĀ	GTG
Val	Leu	Thr	MET	Thr	Thr	Leu	Ser	Ile	Ser	Ala	Arg	His	Ser	Leu	Pro	Lys	Val
		986			995		1	1004		:	1013		1	1022		1	.031
TCC	TAT	GCT	ACC	GCC Ala	ATG MET	GAC	TGG	TTC	ATA	GCT	GTC	TGC	TTT	GCT	TTT	GTA	TTT
		1040	****		1049	лэр		1058	116		1067	Cys			rne		
77.00			7.DC		TTT									1076		-	.085
Ser	Ala	Leu	Ile	Glu	Phe	Ala	Ala	Val	Asn	Tyr	Phe	Thr	Asn	Ile	Gln	MET	GAA Glu
	1	.094		:	1103		1	112		1	121		1	130		1	139
ĀĀĀ	GCC	ĀĀĀ	AGG	ĀĀG	ACA	TCA	AAG	ccc	CCT	CAG	GAA	GTT	ccc	GCT	GCT	CCA	GTG
Lys	Ala	Lys	Arg	Lys	Thr	Ser	Lys	Pro	Pro	Gln	Glu	Val	Pro	Ala	Ala	Pro	Val
		.148			1157			166			175		_	184			193
CAG Gln	AGA Arg	GAG Glu	AAG Lys	CAT His	CCT Pro	GAA Glu	GCC Ala	CCT Pro	CTG Leu	CAG Gln	AAT Asn	ACA Thr	AAT Asn	GCC Ala	AAT Asn	TTG Leu	AAC Asn
	1	.202		1	211		1	.220		1	229		1	.238		1	247
ĀTG	ĀGĀ	AAA	ĀGĀ	ACA	AAT	GCT	TTG	GTT	CAC	TCT	GAA	TCT	GAT	GTT	GGC	AAC	AGA
MET	Arg	Lys	Arg	Thr	Asn	Ala	Leu	Val	His	Ser	Glu	Ser	Asp	Val	Gly	Asn	Arg

- 20 -

1256	1:	265	1274		1283		1292		1301
ACT GAG GTG	GGA AAC	CAT TCA	AGC AAA	TCT	TCC ACA	GTT	GTT CAA	GAA	TCT TCT
Thr Glu Val	Gly Asn	His Ser	Ser Lys	Ser	Ser Thr	Val	Val Gin	GIU	Ser Ser
1310	1	319	1328		1337		1346		1355
AAA GGC ACA	CCT CGG	TCT TAC	TTA GCT	TCC	AGT CCA	AAC	CCA TTC	AGC	CGT GCA
Lys Gly Thr	Pro Arg	Ser Tyr	Leu Ala	Ser	Ser Pro	Asn	Pro Phe	Ser	Arg Ala
1364	1	373	1382		1391		1400		1409
AAT GCA GCT	<u> </u>	ATA TOT	<u> </u>	AGA	GCA CTT	CCA	TCT GCT	TCT	CCT ACT
Asn Ala Ala	Glu Thr	Ile Ser	Ala Ala	Arg	Ala Leu	Pro	Ser Ala	Ser	Pro Thr
1418		.427	1436		1445		1454		1463
TCT ATC CGA			550 550	776		<u> </u>	CCA TCT	CCT	TOT ACT
Ser Ile Arg	Thr Glv	TVr MET	Pro Arg	LVS	Ala Ser	Val	Gly Ser	Ala	Ser Thr
1472		481	1490		1499		1508		1517
_						. —			
CGT CAC GTG Arg His Val	TTT GGA	TCA AGA	CTG CAG	AGG	ATA AAC	ACC	ACA GTT	AAT	ACC ATA
Arg His Val	Phe Gly	Ser Arg	ren Gin	Arg	IIe Lys	1111	IIII VAI	7311	1111 110
1526	1	1535	1544		1553	3	1562		1571
GGG GCT ACT	GGG AAG	TTG TCA	GCT ACT	CCT	CCT CCZ	TCG	GCT CCA	CCA	CCT TCT
Gly Ala Thr	Gly Lys	Leu Ser	Ala Thr	Pro	Pro Pro	Ser	Ala Pro	Pro	Pro Ser
1580	1	1589	1598		160	7	1616		1625
GGA TCT GGC	ACA AGT	AAA ATA	GAC AAA	TAT	<u>ढ्ट</u> टढ	TTA	CTC TTT	CCA	GTC ACA
Gly Ser Gly	Thr Ser	Lys Ile	Asp Lys	Tyr	Ala Ar	, Ile	Leu Phe	Pro	Val Thr
1634	:	1643	1652	!	166	1	1670)	1679
TTT GGG GCA	<u> </u>	ATG GTT	<u> </u>	GTT	GTT TA	TTA	TCT AAC	GAC	ACT ATG
Phe Gly Ala	Phe Asn	MET Val	Tyr Trp	Val	Val Ty	r Leu	Ser Lys	Asp	Thr MET
1688		1697	170						
GAG AAA TCA Glu Lys Ser				C					

(2) INFORMATION FOR SEQ ID NO: 8:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 554 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

MET Val Ser Ala Lys Lys Val Pro Ala Ile Thr Leu Ser Ala Gly Val Ser Phe Ala Leu Leu Arg Phe Leu Cys Leu Ala Val Cys Leu Asn Glu Ser Pro Gly Gln Asn Gln 20 25 30 Lys Glu Glu Lys Leu Cys Thr Glu Asn Phe Thr Arg Ile Leu Asp Ser Leu Leu Asp 40 45 50 55 Gly Tyr Asp Asn Arg Leu Arg Pro Gly Phe Gly Gly Pro Val Thr Glu Val Lys Thr
60 65 70 75 Asp Ile Tyr Val Thr Ser Phe Gly Pro Val Ser Asp Val Glu Val Glu Tyr Thr MET 80 85 90 95 Asp Val Phe Phe Arg Gln Thr Trp Ile Asp Lys Arg Leu Lys Tyr Asp Gly Pro Ile Glu Ile Leu Arg Leu Asn Asn MET MET Val Thr Lys Val Trp Thr Pro Asp Thr Phe Phe Arg Asn Gly Lys Lys Ser Val Ser His Asn MET Thr Ala Pro Asn Lys Leu Phe Arg Ile MET Arg Asn Gly Thr Ile Leu Tyr Thr MET Arg Leu Thr Ile Ser Ala Glu Cys Pro MET Arg Leu Val Asp Phe Pro MET Asp Gly His Ala Cys Pro Val Lys Phe Gly Ser Tyr Ala Tyr Pro Lys Ser Glu MET Ile Tyr Thr Trp Thr Lys Gly Pro Glu Lys Ser Val Glu Val Pro Lys Glu Ser Ser Leu Val Gln Tyr Asp Leu Ile Gly Gln Thr Val Ser Ser Glu Thr Ile Lys Ser Ile Thr Gly Glu Tyr Ile Val MET Thr Val Tyr Phe His Leu Arg Arg Lys MET Gly Tyr Phe MET Ile Gln Thr Tyr Ile Pro Cys Ile MET Thr Val Ile Leu Ser Gln Val Ser Phe Trp Ile Asn Lys Glu Ser Val Pro Ala Arg Thr Val Phe Gly Ile Thr Thr Val Leu Thr MET Thr Thr Leu Ser Ile Ser Ala Arg His Ser Leu Pro Lys Val Ser Tyr Ala Thr Ala MET Asp Trp Phe Ile Ala Val Cys Phe Ala Phe Val Phe Ser Ala Leu Ile Glu Phe Ala Ala Val Asn Tyr Phe Thr Asn Ile Gln MET Glu Lys Ala Lys Arg Lys Thr Ser Lys Pro Pro Gln Glu Val Pro Ala Ala Pro Val

- 22 -

355 360 365

Gln Arg Glu Lys His Pro Glu Ala Pro Leu Gln Asn Thr Asn Ala Asn Leu Asn 385

MET Arg Lys Arg Thr Asn Ala Leu Val His 395

Thr Glu Val Gly Asn His Ser Ser Lys Ser Ser Thr Val Val Gln Glu Ser Asp Val 400

Lys Gly Thr Pro Arg Ser Tyr Leu Ala Ser Ser Pro Asn Pro Pro Pro Ser Arg Ala Ser Pro Thr 445

Asn Ala Ala Glu Thr Ile Ser Ala Ala Arg Ala Leu Pro Ser Ala Ser Pro Thr 4460

Arg His Val Phe Gly Ser Arg Leu Gln Arg Ile Lys Thr Thr Val Asn Thr Ile Gly Ala Thr Gly Lys Leu Ser Ala Thr Pro Pro Pro Ser Ala Pro Pro Pro Pro Ser Ala Pro Pro Pro Ser Ser Gly Thr Ser Lys Ile Asp Lys Tyr Ala Arg Ile Leu Phe Pro Val Thr Phe Gly Ala Phe Asn MET Val Tyr Trp Val Val Tyr Leu Ser Lys Asp Thr MET 530

Glu Lys Ser Glu Ser Leu MET

(2) INFORMATION FOR SEQ ID NO: 9:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 33 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

AGCCCGAATT CCATGGACGT TCTGGGCTGG CTG

(2) INFORMATION FOR SEQ ID NO: 10:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 29 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

GGTTTCCAAG CTTACTTTGG AGAGGTAGC

(2) INFORMATION FOR SEQ ID NO: 11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1555 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 47..1405

- 24 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

10	20	30	40	49	58
GAATTCCCCA AGTT	TGCGCG GACCC	CGTCC CGAGCC	CGCC GCGGCC A M	TG GAC GCG C ET Asp Ala P	ro Ala
67	76	85	94	103	112
CGG CTG CTG GCC Arg Leu Leu Ala	CCG CTC CTG Pro Leu Leu	CTC CTC TGC Leu Leu Cys	GCG CAG CAG Ala Gln Gln	CTC CGC GGC Leu Arg Gly	ACC AGA Thr Arg
121	130	139	148	157	166
GCG ATG AAT GAC Ala MET Asn Asp	ATC GGC GAC lle Gly Asp	TAC GTG GGC Tyr Val Gly	TCC AAC CTG Ser Asn Leu	GAG ATC TCC Glu Ile Ser	TGG CTC Trp Leu
175	184	193	202	211	220
Pro Asn Leu Asp	GGG CTG ATA Gly Leu Ile	GCC GGT TAC Ala Gly Tyr	GCC CGC AAC Ala Arg Asn	TTC CGG CCT Phe Arg Pro	GGC ATC Gly Ile
229	238	247	256	265	274
GGA GGC CCC CCC Gly Gly Pro Pro	GTG AAT GTG Val Asn Val	GCC CTT GCC Ala Leu Ala	CTG GAG GTG Leu Glu Val	GCC AGC ATC Ala Ser Ile	GAC CAC Asp His
283	292	301	310	319	328
ATC TCA GAG GCC Ile Ser Glu Ala	AAC ATG GAG A Asn MET Glu	TAC ACC ATO	ACG GTG TTC Thr Val Phe	CTG CAC CAG Leu His Gln	AGC TGG Ser Trp
337	346	355	364	373	382
CGG GAC AGC AGC Arg Asp Ser Arc	G CTC TCC TAC g Leu Ser Tyr	ASD His Th	AAC GAG ACC Asn Glu Thr	CTG GGC CTG Leu Gly Leu	GAC AGC Asp Ser
391	400	409	418	427	436
CGC TTC GTG GAG Arg Phe Val As	C AAG CTG TGG p Lys Leu Trp	CTG CCC GAG	ACC TTC ATC o Thr Phe Ile	GTG AAC GCC Val Asn Ala	AAG TCG Lys Ser
445	454	463	472	481	490
GCC TGG TTC CA Ala Trp Phe Hi	GAC GTG ACC	GTG GAG AAC r Val Glu As	AAG CTC ATC n Lys Leu Ile	CGG CTG CAG Arg Leu Gln	CCC GAC Pro Asp
499	508	517	526	535	544
GGG GTG ATC CT Gly Val Ile Le	G TAC AGC ATO u Tyr Ser Ile	CGA ATC AC e Arg Ile Th	TCC ACT GTG r Ser Thr Val	GCC TGC GAC Ala Cys Asp	ATG GAC MET Asp
553	5 6 2	571	580	589	598
CTG GCC AAA TT Leu Ala Lys Ph	C CCC ATG GAG	GAG GAG GA p Glu Gln Gl	G TGC ATG CTG u Cys MET Leu	GAC CTG GAG Asp Leu Glu	AGC TAC Ser Tyr
607	616	625	634	643	652
GGT TAC TCA TC Gly Tyr Ser Se	G GAG GAC ATO	C GTC TAC TA e Val Tyr Ty	C TGG TCG GAG r Trp Ser Glu	AGC CAG GAG Ser Gln Glu	CAC ATC
661	670	679	688	697	706

CAC His	GGG Gly	CTG Leu	GAC Asp	AAG Lys	CTG Leu	CAG Gln	CTG Leu	GCG Ala	CAG Gln	TTC Phe	ACC Thr	ATC	ACC Thr	AGC Ser	TAC	CGC Ara	TTC Phe
	715			724			733			742			751			760	
ACC Thr	ACG Thr	GAG Glu	CTG Leu	ATG MET	AAC	TTC Phe	AAG Lys	TCC Ser	GCT Ala	GGC Gly	CAG Gln	TTC Phe	CCA Pro	CGG Arg	CTC Leu	AGC Ser	CTG Leu
	769			778			787			796			805	,		814	
CAC	TTC	CAC	CTG	CGG	ĀGG	AAC	CGC	GGC	GTG	TAC	ATC	ATC	CAA	TCC	TAC	ATG	ccc
H15	Pne	His	Leu	Arg	Arg	Asn	Arg	Gly	Val	Tyr	Ile	Ile	Gln	Ser	Tyr	MET	Pro
	823			832			841			850			859			868	
Ser	GTC Val	Leu	Leu	GTC Val	GCC Ala	ATG MET	TCC Ser	TGG Trp	GTC Val	TCC Ser	TTC Phe	TGG Trp	ATC Ile	AGC Ser	CAG Gln	GCG Ala	GCG Ala
	877			886			895			904			913			922	
GTG Val	CCC	GCC	AGG	GTG	TCT	CTA	GGC	ATC	ACC	ĀCG	GTG	CTG	ACG	ĀTG	ACC	ACG	CTC
٧۵١	Pro 931	Ala	Arg	940	ser	Leu		lle	Thr		Val	Leu		MET	Thr	Thr	Leu
ATIC		200				===	949			958			967			976	
MET	GTC Val	Ser	Ala	Arg	Ser	Ser	Leu	Pro	Arg	GCA Ala	TCA Ser	GCC Ala	ATC Ile	AAG Lys	GCA Ala	CTG Leu	GAC Asp
	985			994		1	.003		1	012		1	021		1	.030	
GTC	TAC	TTC	TGG	ATC	TGC	TAT	GTC	TTC	GTG	TTT	GCC	GCC	CTG	GTG	GAG	TAC	GCC
	Tyr 1039	2116		.048	Cys			Pne			Ala			Val			Ala
		<u> </u>					057			.066			075			.084	
Phe	GCT Ala	His	Phe	Asn	Ala	QEA QEA	Tyr	Arg	AAG Lys	AAG Lys	CAG Gln	AAG Lys	GCC Ala	AAG Lys	GTC Val	AAG Lys	GTC Val
	1093		1	102		1	111		1	120		1	129		1	138	
TCC	AGG	CCG	AGG	GCA	GAG	ATG	GAC	GTG	ĀGG	AAC	GCC	ATT	GTC	CTC	\overline{TTC}	TCC	CTC
	1119	110	Arg	\sim					7	>	• 1 .	- 1		CIC			
	1147							vai	Arg	Asn	Ala	Ile	Val	Leu	Phe	Ser	Leu
$\overline{\tau}$	1147 दिंग	ccc	1	156		1	165		Arg 1	Asn 174	Ala	Ile 1	Val 183	Leu	Phe 1	Ser 1 9 2	
TCT Ser	GCT Ala	GCC Ala	1 <u>GGC</u>	156 GTC	ĀCG	1 CAG	165 GAG	cīg	Arg 1	Asn 174 ATC	Ala	Ile 1	Val 183	Leu	Phe 1	Ser 192	GTC
ser	GCT	GCC Ala	1 GGC Gly	156 GTC	ACG Thr	CAG Gln	165 GAG	CTG Leu	Arg 1 GCC Ala	Asn 174 ATC	TCC Ser	Ile 1 CGC Arg	Val 183	CAG Gln	Phe 1 CGC Arg	Ser 192	GTC
ccc	GCT Ala 1201 GGG	ALA AAC	GGC Gly 1 CTG	GTC Val 210	ACG Thr	CAG Gln 1	GAG Glu 219	CTG Leu	Arg 1 GCC Ala 1 TCG	Asn 174 ATC Ile 228 GTG	TCC Ser	Ile 1 CGC Arg 1	Val 183 CGG Arg 237	CAG Gln	Phe 1 CGC Arg 1	Ser 192 CGC Arg 246	GTC Val
CCG Pro	GCT Ala 1201 GGG Gly	ALA AAC	GGC Gly 1 CTG Leu	TS6 GTC Val 210 ATG MET	ACG Thr	CAG Gln 1	GAG Glu 219 TAC Tyr	CTG Leu	Arg 1 GCC Ala 1 TCG Ser	ASN 174 ATC Ile 228 GTG Val	TCC Ser	Ile 1 CGC Arg 1 GTG Val	Val 183 CGG Arg 237 GAG	CAG Gln	Phe 1 GGC Arg 1 GGG GGY	Ser 192 CGC Arg 246 GAG	GTC Val
CCG Pro	GCT Ala 1201 GGG Gly 1255	AAC Asn	GGC Gly 1 CTG Leu	GTC Val 210 ATG MET 264	ACG Thr GGC Gly	TCC Ser	GAG Glu 219 TAC Tyr 273	CTG Leu AGG Arg	l GCC Ala 1 TCG Ser	Asn 174 ATC Ile 228 GTG Val	TCC Ser GGG Gly	1 TGGC Arg 1 TGGG Val	Val 183 CGG Arg 237 GAG Glu 291	CAG Gln ACA	Phe 1 GGC Arg 1 GGG Gly	Ser 192 CGC Arg 246 GAG Glu	GTC Val ACG Thr
CCG Pro	GCT Ala 1201 GGG Gly	AAC Asn	GGC Gly 1 CTG Leu 1 GGG	GTC Val 210 ATG MET 264	ACG Thr GGC Gly	TCC Ser	GAG Glu 219 TAC Tyr 273	CTG Leu AGG Arg	Arg 1 GCC Ala 1 TCG Ser 1	Asn 174 ATC Ile 228 GTG Val 282	TCC Ser GGG Gly	Ile 1 CGC Arg 1 GTG Val	Val 183 CGG Arg 237 GAG Glu 291	CAG Gln ACA Thr	Phe 1 CGC Arg 1 GGG GGY	Ser 192 CGC Arg 246 GAG Glu 300	GTC Val ACG Thr
CCG Pro	GCT Ala 1201 GGG Gly 1255	AAC Asn	GGC Gly 1 CTG Leu 1 GGG Gly	GTC Val 210 ATG MET 264	ACG Thr GGC Gly	CAG Gln 1 TCC Ser 1 CGC Arg	GAG Glu 219 TAC Tyr 273	CTG Leu AGG Arg	Arg 1 GCC Ala 1 TCG Ser 1 GGC Gly	Asn 174 ATC Ile 228 GTG Val 282	TCC Ser GGG Gly	Tile 1 GGC Arg 1 GTG Val 1 GGC GGC GGL	Val 183 CGG Arg 237 GAG Glu 291	CAG Gln ACA Thr	Phe 1 CGC Arg 1 GGG Gly 1 GCC Ala	Ser 192 CGC Arg 246 GAG Glu 300	GTC Val ACG Thr
CCG Pro	GCT Ala 1201 GGG Gly 1255 AAG Lys	AAC Asn GAG Glu	1 GGC Gly 1 GGG Gly 1 GGG Gly 1 GGGG GIY	TS6 GTC Val 210 ATG MET 264 GCA Ala 318	ACG Thr GGC Gly GCC Ala	TCC Ser 1 CGC Arg 1 ACC	GAG Glu 219 TAC Tyr 273 TCA Ser 327	AGG Arg GGA Gly	Arg 1 GCC Ala 1 TCG Ser 1 GGC Gly ATT	ASN 174 ATC Ile 228 GTG Val 282 CAG Gln 336	TCC Ser GGG Gly	The 1 GGC Arg 1 GTG Val 1 GGC GGC 1:	Val 183 CGG Arg 237 GAG Glu 291 ATC Ile 345	CAG Gln ACA Thr	Phe 1 GGC GGy 1 GCC Ala 1	Ser 192 CGC Arg 246 GAG Glu 300 CGG Arg	GTC Val ACG Thr
CCG Pro AAG Lys	GCT Ala 1201 GGG Gly 1255 AAG Lys	AAC Asn GAG Glu	I GGG Gly 1 GGG Gly 1 GGG Gly 1 GAC Asp	TS6 GTC Val 210 ATG MET 264 GCA Ala 318	ACG Thr GGC Gly GCC Ala	TCC Ser 1 CGC Arg 1 ACC Thr	GAG Glu 219 TAC Tyr 273 TCA Ser 327	AGG Arg GGA Gly	Arg 1 GCC Ala 1 TCG Ser 1 GGC Gly 1 ATT Ile	ASN 174 ATC Ile 228 GTG Val 282 CAG Gln 336	TCC Ser GGG Gly	Ile 1 CGC Arg 1 GTG Val 1 GGC GGV Arg	Val 183 CGG Arg 237 GAG Glu 291 ATC Ile 345	CAG Gln ACA Thr	Phe 1 GGC GGy 1 GCC Ala 1	Ser 192 CGC Arg 246 GAG Glu 300 CGG Arg	GTC Val ACG Thr

- 26 -

GCG TTT GCG GCC GTC AAT GTC ATC TAC TGG GCG GCA TAC GCC ATG TGA GCACAGGACT Ala Phe Ala Ala Val Asn Val Ile Tyr Trp Ala Ala Tyr Ala MET .

1425

1435

1445

1455

1465

1475

CAGGCCACCC TCGCTTGTCC TGGCGCCCGG CGGCAGCTGC CCAGAAACTT CCTGGGAGAA

1485

1495

1505

1515

1525

1535

AGAGCCCTCG GGCTGCCTTC CCCTCTGCGT GTTTCGAAGT GGGATGACAG TCGGCCACGG

1545 155

AAAACAAGAG GAAGCCTCGG

(2) INFORMATION FOR SEQ ID NO: 12:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 452 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

MET Asp Ala Pro Ala Arg Leu Leu Ala Pro Leu Leu Leu Leu Cys Ala Gln Gln

Leu Arg Gly Thr Arg Ala MET Asn Asp Ile Gly Asp Tyr Val Gly Ser Asn Leu Glu

Ser Trp 40 Pro Asn Leu Asp Gly Leu Ile Ala Gly Tyr Ala Arg Asn Phe Arg

Gly Ile Gly Gly Pro Pro Val Asn Val Ala Leu Ala Leu Glu Val Ala Ser Ile

Trp Arg Asp Ser Arg Leu Ser Tyr Asn His Thr MET Thr Val Phe Leu His Gln Ser

Arg Phe Val Asp Lys Leu Trp Leu Pro Asp Thr Phe Ile Val Asn Ala Lys Ser

In Cys Ala Gln Gln

Leu Cys Ala Gln Gln

Leu Cys Ala Gln Gln

Leu Glu

Ser Asn Leu Glu

Asn Phe Arg

Asp Tyr Ala Asp Lys Leu Trp Leu Pro Asp Thr Phe Ile Val Asn Ala Lys Ser

Ile Cys Ala Gln Gln

Leu Glu

Ser Asn Leu Glu

Ser Asn Leu Glu

Ser Ile

Tyr Asn His Thr Asn Glu Thr Leu Gly Leu Asp Ser

Ilo Ser

Ala Trp Phe His Asp Val Thr Val Glu Asn Lys Leu Ile Arg Leu Gln Pro Asp Gly Val Ile Leu Tyr Ser Ile Arg Ile Thr Ser Thr Val Ala Cys Asp MET Asp 150 165 Leu Ala Lys Phe Pro MET Asp Glu Gln Glu Cys MET Leu Asp Leu Glu Ser Tyr Gly Tyr Ser Ser Glu Asp Ile Val Tyr Tyr Trp Ser Glu Ser Gln Glu His Ile 190 195 200 His Gly Leu Asp Lys Leu Gln Leu Ala Gln Phe Thr Ile Thr Ser Tyr Arg Phe Thr Thr Glu Leu MET Asn Phe Lys Ser Ala Gly Gln Phe Pro Arg Leu Ser Leu 225 230 235 His Phe His Leu Arg Arg Asn Arg Gly Val Tyr Ile Ile Gln Ser Tyr MET Pro 240 255 250 Ser Val Leu Leu Val Ala MET Ser Trp Val Ser Phe Trp Ile Ser Gln Ala Ala Val Pro Ala Arg Val Ser Leu Gly Ile Thr Thr Val Leu Thr MET Thr Leu 285 MET Val Ser Ala Arg Ser Ser Leu Pro Arg Ala Ser Ala Ile Lys Ala Leu Asp 295 300 305 310 Val Tyr Phe Trp Ile Cys Tyr Val Phe Val Phe Ala Ala Leu Val Glu Tyr Ala Phe Ala His Phe Asn Ala Asp Tyr Arg Lys Lys Gln Lys Ala Lys Val Lys Val 330 345 Ser Arg Pro Arg Ala Glu MET Asp Val Arg Asn Ala Ile Val Leu Phe Ser Leu Ser Ala Ala Gly Val Thr Gln Glu Leu Ala Ile Ser Arg Arg Gln Arg Arg Val Pro Gly Asn Leu MET Gly Ser Tyr Arg Ser Val Gly Val Glu Thr Gly Glu Thr 385 390 395 400 Lys Lys Glu Gly Ala Ala Arg Ser Gly Gly Gln Gly Gly Ile Arg Ala Arg Leu 405 415 Arg Pro Ile Asp Ala Asp Thr Ile Asp Ile Tyr Ala Arg Ala Val Phe Pro Ala 420 425 430 435 Ala Phe Ala Ala Val Asn Val Ile Tyr Trp Ala Ala Tyr Ala MET 445

(2) INFORMATION FOR SEQ ID NO: 13:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 30 base pairs

- 28 -

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

TAATGAGTTT AAACCATAGC TTCTTCCAGT

- (2) INFORMATION FOR SEQ ID NO: 14:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

CATGATGGAT CCGCCCGCTC AGAC

WO 96/10637

5

CLAIMS:

- 1. A stably co-transfected eukaryotic cell line capable of expressing a human GABAA receptor, which receptor comprises the alpha-4 receptor subunit, at least one beta receptor subunit and the delta receptor subunit.
- A stably co-transfected eukaryotic cell line capable of expressing a human GABAA receptor, which receptor comprises the
 alpha-4 receptor subunit, at least one beta receptor subunit and at least one gamma receptor subunit.
 - 3. A stably co-transfected eukaryotic cell line capable of expressing a human GABAA receptor, which receptor comprises at least one alpha receptor subunit, at least one beta receptor subunit and the delta receptor subunit.
 - 4. A cell line as claimed in any one of claims 1 to 3 wherein the cell line is a rodent fibroblast cell line.
- 20

25

15

5. A process for the preparation of a eukaryotic cell line capable of expressing a human GABAA receptor, which comprises stably co-transfecting a rodent fibroblast host cell with at least three expression vectors, one such vector harbouring the human cDNA sequence encoding the alpha-4 receptor subunit, another such vector harbouring the human cDNA sequence encoding a beta receptor subunit, and a third such vector harbouring the human cDNA sequence encoding the delta receptor subunit.

WO 96/10637

PCT/GB95/02323

- A process for the preparation of a eukaryotic cell line capable 6. of expressing a human GABAA receptor, which comprises stably co-transfecting a rodent fibroblast host cell with at least three expression vectors, one such vector harbouring the human cDNA sequence encoding the alpha-4 receptor subunit, another such vector harbouring the human cDNA sequence encoding a beta receptor subunit, and a third such vector harbouring the human cDNA sequence encoding a gamma receptor subunit.
- A process for the preparation of a eukaryotic cell line capable 10 7. of expressing a human GABAA receptor, which comprises stably co-transfecting a rodent fibroblast host cell with at least three expression vectors, one such vector harbouring the human cDNA sequence encoding an alpha receptor subunit, another such vector harbouring the human cDNA sequence encoding a beta receptor subunit, and a third such vector 15 harbouring the human cDNA sequence encoding the delta receptor subunit.
 - A process as claimed in any one of claims 5 to 7 wherein the 8. eukaryotic cell line is a rodent fibroblast cell line.
 - A DNA molecule encoding the α_4 subunit of the human 9. GABAA receptor comprising all or a portion of the sequence depicted in Figure 2 herein SEQ. ID. NO.: 7.

10.

5

20

25

A DNA molecule encoding the δ subunit of the human GABAA receptor comprising all or a portion of the sequence depicted in Figure 3 herein SEQ. ID. NO.: 10.

- 31 -

11. A recombinant expression vector comprising the nucleotide sequence of the human α_4 GABAA receptor subunit together with additional sequences capable of directing the synthesis of the said human α_4 GABAA receptor subunit in cultures of stably co-transfected eukaryotic cells.

5

10

15

30

- 12. A recombinant expression vector comprising the nucleotide sequence of the human δ GABAA receptor subunit together with additional sequences capable of directing the synthesis of the said human δ GABAA receptor subunit in cultures of stably co-transfected eukaryotic cells.
- 13. A protein preparation of human GABA_A receptor subunit combinations comprising the human α_4 GABA_A receptor subunit derived from a culture of stably co-transfected eukaryotic cells.

14. A protein preparation of human GABAA receptor subunit combinations comprising the human δ GABAA receptor subunit derived from a culture of stably co-transfected eukaryotic cells.

- 15. A membrane preparation containing GABA_A receptor subunit combinations comprising the human α₄ GABA_A receptor subunit derived from a culture of stably co-transfected eukaryotic cells.
- 16. A membrane preparation containing GABA_A receptor subunit
 25 combinations comprising the human δ GABA_A receptor subunit derived
 from a culture of stably co-transfected eukaryotic cells.
 - 17. A preparation as claimed in claim 13 or 14 wherein the subunit combination derived is the $\alpha_4\beta_3\delta$ subunit combination of the human GABAA receptor.

18. A preparation as claimed in claim 13 wherein the subunit combination derived is the $\alpha_4\beta_3\gamma_2$ subunit combination of the human GABAA receptor.

5

- 19. A preparation as claimed in claim 13 wherein the subunit combination derived is the $\alpha_4\beta_2\gamma_2$ subunit combination of the human GABAA receptor.
- 10 20. A preparation as claimed in claim 14 wherein the subunit combination derived is the $\alpha_6\beta_3\delta$ subunit combination of the human GABAA receptor.
- 21. A preparation as claimed in claim 15 or 16 wherein the subunit combination derived is the $\alpha_4\beta_3\delta$ subunit combination of the human GABAA receptor.
 - 22. A preparation as claimed in claim 15 wherein the subunit combination derived is the $\alpha_4\beta_3\gamma_2$ subunit combination of the human GABAA receptor.
 - 23. A preparation as claimed in claim 15 wherein the subunit combination derived is the $\alpha_4\beta_2\gamma_2$ subunit combination of the human GABAA receptor.

25

20

24. A preparation as claimed in claim 16 wherein the subunit combination derived is the $\alpha_6\beta_3\delta$ subunit combination of the human GABAA receptor.

- 33 -

25. The use of the cell line as claimed in any one of claims 1 to 3, and membrane preparations derived therefrom, in screening for and designing medicaments which act upon the human GABAA receptor.

FIGURE 2

		10			20			30									
GGA	ATCC	STGA	ACA	<u> </u>		CM 3 M				:	41 > <u></u>			50			59
				3011	JAA (GTAT	iGCAT	rg T	rgcal	AAG 1	ATG MET	GTT Val	TCT G	GCC Ala	AAG : Lys :	AAG Lys	GTA Val
		6			7			8 6			9			10			113
Pro	GCC Ala	ATO Ile	AC'	r CTC	TCO Ser	GCC r Ala	GGG Gly	GTO Val	ĀG: Sei	TTO Phe	G GC e Ala	C CTO	CTC	G CGG	TTC	CTC	G TGC
		122			131			140			14:			158			
CTG	GCG	GTT	TGT	TTA	ĀĀ	GAA	TCC	CCA	. दुदुब	CAG	-		776			-	167
Leu	Ala	. Val	L Cys	Leu	Asr	ı Glu	Ser	Pro	Gly	, Glr	Ası	n Glr	Lys	Gli	J GAG	AAA Lys	TTG Leu
		176			185			194			203			212			221
TGC	ACA	GAA	TAA	TTC	ACC	CGC	ATC	CTG	GAC	AGT	TTC	G CTC	GAT	GGT	TAT	GAC	
cys	1111			Phe	Thr	Arg	Ile	Leu	Asp	Ser	Lei	ı Lev	Asp	Gly	Tyr	Asp	AAC Asn
		230			239			248			257			266			275
AGG Arg	CTG Leu	CGT	CCT	GGA Glv	TTT	GGG	GGT	CCT	GTT	ACA	GAA	GTG	AAA	ACT	GAC	ATA	TAT
		284		1	293		Gry			THE			Lys	Thr	Asp	Ile	Tyr
<u>লেন</u>	ACC			705				302			311			320			329
Val	Thr	Ser	Phe	GGA	Pro	GTT Val	TCT Ser	GAT Asp	GTT Val	GAA Glu	GTG Val	GAA Glu	TAC Tyr	ACA Thr	ATG	GAT	GTG Val
		338			347			356			365		_	374			383
TTC	TTC	AGG	CAG	ACA	TGG	ATT	GAC	ĀĀĀ	ĀĢĀ	TTA	AAA	ጥልጥ	GAC		<u> </u>	3.00	
Phe	Phe	Arg	Gln	Thr	Trp	Ile	Asp	Lys	Arg	Leu	Lys	Tyr	GAC Asp	Gly	Pro	Ile	GAA Glu
		392			401			410			419			428			437
ATT	TTG	AGA	TTG	ĀĀC	AAT	ATG	ATG	GTA	ACG	ĀĀĀ	GTG	TGG	ACC	CCT	GAT	ACT	<u>TTC</u>
116	beu	9	Leu	Asn	ASII	MET	MET	Val	Thr	Lys	Val	Trp	ACC Thr	Pro	Asp	Thr	Phe
		446			455			464			473			482			491
Phe	AGG Arg	AAT Asn	GGA Gly	AAG Lvs	AAA	TCT Ser	GTC Val	TCA	CAT	AAT	ATG	ACA	GCT Ala	CCA	ĀĀŦ	AAG	CTT
		500	_	-	509			518		11511		1111	AId		Asn	Lys	
$\overline{\mathtt{T}}\overline{\mathtt{T}}\overline{\mathtt{T}}$	ĀĢĀ		ĀTG	NCN.		CCE	3.0m		-		527			536			545
TTT Phe	Arg	Ile	MET	Arg	Asn	Gly	Thr	Ile	Leu	TAC Tyr	ACA Thr	ATG MET	AGA Arg	CTC	ACC Thr	ATA	AGT
		554			563			572			581			590			599
GCG Ala	GAG	TGT	CCC	ATG	ĀGĀ	TTG	GTG	GAT	$\overline{\mathtt{T}}\overline{\mathtt{T}}\overline{\mathtt{T}}$	CCC	ATG	GAT	ददन		<u> </u>		
Ala			Pro	MET	Arg	Leu	Val	Asp	Phe	Pro	MET	Asp	Gly	His	Ala	Cys	Pro
		608			617			626			635			644			653
GTG Z	AAA Lys	TTC Phe	GGG Gly	AGT Ser	TAT Tyr	GCC Ala	TAT Tyr	CCA Pro	AAG Lys	AGT Ser	GAG Glu	ATG MET	ATC Ile	TAT Tyr	ACC Thr	TGG Trp	ACA Thr

3/7

FIGURE 2 (CONTINUED)

		662			671			680			689			698			707
AAA Lys	GGT Gly	CCT Pro	GAG Glu	AAA Lys	TCA Ser	GTT Val	GAA Glu	GTT Val	CCG Pro	AAG Lys	GAG Glu	TCT Ser	TCC Ser	AGC Ser	TTA Leu	GTT Val	CAA Gln
		716			725			734			743			752			761
TAT Tyr	GAT Asp	TTG Leu	ATT Ile	GGG Gly	CAA Gln	ACC Thr	GTA Val	TCA Ser	AGT Ser	GAA Glu	ACC Thr	ATC Ile	ĀĀĀ Lys	TCA Ser	ATT Ile	ACG Thr	GGT Gly
		770			779			788			797			806			815
GAA Glu	TAT Tyr	ATT Ile	GTT Val	ATG MET	ACG Thr	GTT Val	TAC Tyr	TTC Phe	CAC His	CTC Leu	AGA Arg	CGG Arg	ĀĀG Lys	ATG MET	GGT Gly	TAT Tyr	TTT Phe
		824			833			842			851			860			869
ATG MET	ATT Ile	CAG Gln	ACC Thr	TAT Tyr	ATT Ile	CCG Pro	TGC Cys	ATT Ile	ATG MET	ACA Thr	GTG Val	ATT Ile	CTT Leu	TCT Ser	CAA Gln	GTT Val	TCA Ser
		878			887			896			905			914			923
TTT Phe	TGG Trp	ATA Ile	AAT Asn	AAA Lys	GAA Glu	TCA Ser	GTT Val	CCC Pro	GCT Ala	AGG Arg	ACC Thr	GTA Val	TTT Phe	GGA Gly	ATA Ile	ACA Thr	ACT Thr
		932			941			950			959			968			977
GTC Val	CTC Leu	ACC Thr	ATG MET	ACC Thr	ACA Thr	CTA Leu	AGC Ser	ATC Ile	AGT Ser	GCA Ala	CGA Arg	CAT His	TCT Ser	TTG Leu	CCC Pro	AAA Lys	GTG Val
		986			995		:	1004		:	1013		1	1022		;	1031
TCC Ser	TAT Tyr	GCT Ala	ACC Thr	GCC Ala	ATG MET	GAC Asp	TGG Trp	TTC Phe	ATA Ile	GCT Ala	GTC Val	TGC Cys	TTT Phe	GCT Ala	TTT Phe	GTA Val	TTT Phe
		1040			1049		:	1058			1067			1076			1085
TCG Ser	GCC Ala	CTT Leu	ATC Ile	GAG Glu	TTT Phe	GCT Ala	GCT Ala	GTC Val	AAC Asn	TAT Tyr	TTC Phe	ACC Thr	AAT Asn	ATT Ile	CAA Gln	ATG MET	GAA Glu
		1094															
ĀĀĀ Lvs					1103		•	1112			1121			1130			1139
1	GCC Ala	ĀĀĀ Lys	AGG Arg	AAG	ACA	TCA Ser	AAG	CCC	CCT Pro	CAG	GAA	GTT	<u>ccc</u>	1130 <u>GCT</u>	GCT	CCA	
, ,	Ala	AAA Lys 1148	AGG Arg	AAG Lys	ACA	TCA Ser	ĀĀĢ Lys	CCC	Pro	CAG Gln	GAA	GTT	CCC Pro	1130 <u>GCT</u>	GCT	CCA Pro	GTG
CAG	Ala	Lys 1148	Arg	AAG Lys	ACA Thr 1157	Ser	AAG Lys	CCC Pro 1166	Pro CTG	CAG Gln	GAA Glu 1175 AAT	GTT Val	CCC Pro	GCT Ala 1184	GCT Ala	CCA Pro	GTG Val
CAG	Ala	Lys 1148	Arg AAG Lys	AAG Lys	ACA Thr 1157	GAA Glu	AAG Lys GCC Ala	CCC Pro 1166	Pro CTG Leu	CAG Gln CAG Gln	GAA Glu 1175 AAT	GTT Val	CCC Pro	GCT Ala 1184	GCT Ala	CCA Pro TTG Leu	GTG Val 1193
CAG Gln	Ala AGA Arg	Lys 1148 GAG Glu 1202	Arg AAG Lys	AAG Lys CAT His	ACA Thr 1157 CCT Pro 1211	GAA Glu	AAG Lys GCC Ala	CCC Pro 1166 CCT Pro 1220	CTG Leu	CAG Gln CAG Gln	GAA Glu 1175 AAT Asn 1229	GTT Val ACA Thr	CCC Pro AAT Asn	GCT Ala 1184 GCC Ala 1238	GCT Ala AAT Asn	CCA Pro TTG Leu	GTG Val 1193 AAC Asn
CAG Gln	Ala AGA Arg	Lys 1148 GAG Glu 1202	Arg AAG Lys AGA Arg	AAG Lys CAT His	ACA Thr 1157 CCT Pro 1211	GAA Glu GCT Ala	AAG Lys GCC Ala TTG	CCC Pro 1166 CCT Pro 1220	CTG Leu	CAG Gln CAG Gln	GAA Glu 1175 AAT Asn 1229	GTT Val ACA Thr	CCC Pro AAT Asn GAT Asp	GCT Ala 1184 GCC Ala 1238	GCT Ala AAT Asn	CCA Pro TTG Leu	GTG Val 1193 AAC Asn 1247
CAG Gln ATG MET	AGA Arg	Lys 1148 GAG Glu 1202 AAAA Lys 1256	Arg AAG Lys AGA Arg	AAG Lys CAT His	ACA Thr 1157 CCT Pro 1211 AAT Asn 1265	GAA Glu GCT Ala	AAG Lys GCC Ala TTG Leu	CCC Pro 1166 CCT Pro 1220 GTT Val 1274	CTG Leu CAC His	CAG Gln CAG Gln TCT Ser	GAA Glu 1175 AAT Asn 1229 GAA Glu 1283	GTT Val ACA Thr TCT Ser	CCC Pro AAT Asn GAT Asp	GCT Ala 1184 GCC Ala 1238 GTT Val 1292	GGC Gly	TTG Leu	GTG Val 1193 AAC Asn 1247 AGA Arg
CAG Gln ATG MET	AGA Arg	Lys 1148 GAG Glu 1202 AAAA Lys 1256	Arg AAG Lys AGA Arg GGA Gly	AAG Lys CAT His	ACA Thr 1157 CCT Pro 1211 AAT Asn 1265	GAA Glu GCT Ala	AAG Lys GCC Ala TTG Leu AGC Ser	CCC Pro 1166 CCT Pro 1220 GTT Val 1274	CTG Leu CAC His	CAG Gln CAG Gln TCT Ser	GAA Glu 1175 AAT Asn 1229 GAA Glu 1283	GTT Val ACA Thr TCT Ser	GAT Asp	GCT Ala 1184 GCC Ala 1238 GTT Val 1292	GGC Gly	TTG Leu	GTG Val 1193 AAC Asn 1247 AGA Arg 1301

FIGURE 2 (CONTINUED)

		1364			1373			1382			1391			1400			1409
AAT Asn	GCA Ala	GCT	GAA	ACC	ATA		GCN	CCA	NC N			005					
		1418									1445			1454			1463
TCT Ser	ATC Ile	CGA Arg	ACT Thr	GGA Gly	TAT Tyr	ATG MET	CCT Pro	CGA Arg	ĀĀĢ Lys	GCT Ala	TCA Ser	GTT Val	GGA Gly	TCT Ser	GCT Ala	TCT Ser	ACT Thr
		1472		:	1481		:	1490		:	1499		1	1508		:	1517
CGT Arg	CAC His	GTG Val	TTT Phe	GGA Gly	TCA Ser	AGA Arg	CTG Leu	CAG Gln	AGG Arg	ATA Ile	AAG Lys	ACC Thr	ACA Thr	GTT Val	ĀĀT Asn	ACC Thr	ATA Ile
		-												.562			571
GGG Gly	GCT Ala	ACT Thr	GGG Gly	AAG Lys	TTG Leu	TCA Ser	GCT Ala	ACT Thr	CCT Pro	CCT Pro	CCA Pro	TCG Ser	GCT Ala	CCA Pro	CCA Pro	CCT Pro	TCT Ser
	:	1580		3	1589		1	1598		1	1607		1	616		1	625
GGA Gly	TCT Ser	GGC Gly	ACA Thr	AGT Ser	ĀĀĀ Lys	ATA Ile	GAC Asp	ĀĀĀ Lys	TAT Tyr	GCC Ala	CGT Arg	ATT Ile	CTC Leu	TTT Phe	CCA Pro	GTC Val	ACA Thr
	1	1634		1	1643		1	652		1	661		1	670		1	679
TTT Phe	GGG Gly	GCA Ala	TTT Phe	AAC Asn	ATG MET	GTT Val	TAT Tyr	TGG Trp	GTT Val	GTT Val	TAT Tyr	TTA Leu	TCT Ser	AAG Lys	GAC Asp	ACT Thr	ATG MET
	1	688		1	697			1707									
GAG Glu	AAA Lys	TCA Ser	GAA Glu	AGT Ser	CTA Leu	ATG MET	TGA	ATTO									

Figure 3

10	20	30	40 49 59	
GAATTCCCCA AGT	TTGCGCG GACCC	CGTCC CGAGC	20 49 58 > CCGCC GCGCC ATG GAC GCG CCC GC	
67		COTOC CGAGC	MET Asp Ala Pro Al	.a
	76	85	94 103 112	
CGG CTG CTG GCC Arg Leu Leu Ala	CCG CTC CTG Pro Leu Leu	CTC CTC TGC Leu Leu Cys	\overline{C} \overline{GCG} \overline{CAG} \overline{CAG} \overline{CTC} \overline{CGC} \overline{GGC} \overline{ACC} \overline{A} \overline{C} \overline{A} \overline{C} \overline{A} \overline{C} \overline{A} \overline{C}	.GA
121	130	139	148 157 166	- 9
GCG ATG AAT GAC Ala MET Asn Asp	ATC GGC GAC o Ile Gly Asp	TAC GTG GGC	TCC AAC CTG GAG ATC TCC TGG C Ser Asn Leu Glu Ile Ser Trp L	TC
175	184	193	222	eu
CCC AAC CTG GAC	GGG CTG ATA			
_	1	a dry ryr	GCC CGC AAC TTC CGG CCT GGC AT Ala Arg Asn Phe Arg Pro Gly II	rc le
229	238	247	256 265 274	
GGA GGC CCC CCC Gly Gly Pro Pro	GTG AAT GTG Val Asn Val	GCC CTT GCC Ala Leu Ala	CTG GAG GTG GCC AGC ATC GAC CALEU Glu Val Ala Ser Ile Asp Hi	AC
283		301	310 319 328	
ATC TCA GAG GCC	AAC ATG GAG	TAC ACC ATG		_
	Asn MET Glu	Tyr Thr MET	ACG GTG TTC CTG CAC CAG AGC TG Thr Val Phe Leu His Gln Ser Tr	G D
337	346	355	364 373 382	
CGG GAC AGC AGG	CTC TCC TAC	AAC CAC ACC		_
_	-1-	Asn His Thr	AAC GAG ACC CTG GGC CTG GAC AG Asn Glu Thr Leu Gly Leu Asp Se	r
391		409	418 427 436	
CGC TTC $\overline{\text{GTG}}$ $\overline{\text{GAC}}$ Arg Phe Val Asp	AAG CTG TGG (Lys Leu Trp 1	CTG CCC GAC Leu Pro Asp	ACC TTC ATC GTG AAC GCC AAG TCC Thr Phe Ile Val Asn Ala Lys Ser	<u>G</u>
445		163	472 481 490	•
GCC TGG TTC CAC	GAC GTG ACG	TG GAG AAC		_
Ala Trp Phe His	Asp Val Thr V	al Glu Asn	AAG CTC ATC CGG CTG CAG CCC GAC Lys Leu Ile Arg Leu Gln Pro Asp	
499	508 5	517	526 535 544	
GGG GTG ATC CTG	TAC AGC ATC C	GA ATC ACC	TCC ACT GTG GCC TGC GAC ATG GAC	=
550		rg Ile Thr	TCC ACT GTG GCC TGC GAC ATG GAC Ser Thr Val Ala Cys Asp MET Asp	5
			580 589 598	
CTG GCC AAA TTC T Leu Ala Lys Phe I	CCC ATG GAC G Pro MET Asp G	AG CAG GAG T lu Gln Glu	TGC ATG CTG GAC CTG GAG AGC TAC Cys MET Leu Asp Leu Glu Ser Tyr	.
			634 643 652	
GGT TAC TCA TCG	GAG GAC ATC G	TC TAC TAC		
GIY TYR Ser Ser (Glu Asp Ile V	al Tyr Tyr 1	IGG TCG <u>GAG</u> <u>AGC CAG GAG CAC ATC</u> Irp Ser Glu Ser Gln Glu His Ile	

Figure 3 (continued)

661		670			679)		688	3		697	,		706	5
CAC GGG His Gly	CTG GA	C AAG	CTG Leu	CAG	CTG	GCC	CAG	TTC	ACC	ATC	ACC	AGO	TAC		
715	•	724			733		. GII	742		tite	751		Tyr		
ACC ACG	GAG CT	ATG	AAC	TTC	AAG	TCC	GCT			<u> </u>			CE C	760	
Thr Thr	Glu Let	_	Asn	Phe	Ly S	361	Ala	Gly	Gln	Phe	Pro	Arg	Leu	Ser	Leu
	<u> </u>	778	V05		787			796			805			814	
CAC TTC His Phe	His Let	Arg	Arg	AAC Asn	CGC Arg	GGC Gly	GTG Val	TAC Tyr	ATC Ile	ATC Ile	CAA Gln	TCC Ser	TAC Tvr	ATG MET	CCC
823		832			841			850			859			868	
TCC GTC Ser Val	CTG CTG	GTC Val	GCC Ala	ATG	TCC	TGG	GTC	TCC	TTC	TGG	ATC	ĀGC	CAG	GCG	GCG
877		886			895	Пр	vai	904	Pne	Trp	Ile	Ser	Gln	Ala	Ala
GTG CCC Val Pro	GCC AGG	GTG	TCT	CTA	000	ATC	ACC		ਫਜਫ	टकट	913	200	.	922	
	Ala Arg		Ser	Leu	Gly	Ile	Thr	Thr	Val	Leu	Thr	MET	Thr	ACG Thr	CTC Leu
931	To	940			949			958			967			976	
ATG GTC MET Val	Ser Ala	CGC Arg	TCC Ser	TCC Ser	CTG Leu	CCA Pro	CGG Arg	GCA Ala	TCA Ser	GCC :	ATC Ile	AAG	GCA Ala	CTG	GAC
985		994			003			012			021	-,0		030	ASP
GTC TAC TAC TAC TAC	TTC TGG	ATC I	TGC	TAT	GTC	TTC	GTG	TTT	GCC	GCC 7	CTG	GTG			GCC
Val Tyr 1	•	1048	cys	- y -	vai 057	Pne	vai	Pne	Ala	Ala 1	Leu	Val	Glu	Tyr	Ala
TTT GCT (CAT TTC	<u> </u>	300 7		77.0	NCC		066			075 .			084	
	His Phe	Asn A	Ala i	Asp '	Tyr .	Arg	Lys	Lys	Gln	AAG (GCC Ala	AAG Lys	GTC : Val :	AAG Lys	GTC Val
1093		102			111			120			129		1:	138	
TCC AGG (Ser Arg E	CCG AGG	GCA C	GAG A	ATG (SAC (GTG :	AGG . Arg .	AAC A	GCC :	ATT C	TC (CTC	TTC 7	rcc :	CTC
1147		156			165			174			.83	ueu .		.92	Leu
TCT GCT G Ser Ala A	GCC GGC	GTC A	CG C	AG C	AG C	TG (GCC Z	ATC 7	rcc (CGC C	GG C	CAG (TC
Ser Ala A		210	nr e		91u 1 219	Leu Z			Ser 1	Arg A	rg (Sln A	Arg A	rg '	/al
CCG GGG A	AC CTG	ATC C	द्धार न		13 C 3	उट्ट न	,,,,	228			37 _			46	
	sn Leu	MET G	ly s	er I	yr A	ig S	Ser V	al G	Sly (al G	AG A lu T	CA (SGG G	AG A	ACG Thr
1255		264			73			82		12			13	00	
AAG AAG G Lys Lys G	AG GGG	GCA G Ala A	CC C la A	GC T	CA G er G	GA G	GC C	AG G	ily G	GC A	TC C	GT G	CC C	GG C	TC eu

Figure 3 (continued)

1309	1318		327 133	- 104		54
	C GAC GCA e Asp Ala	GAC ACC A Asp Thr I	TT GAC ATT TA	C GCC CGC GC r Ala Arg Al		
1363	1372	13				
GCG TTT GC Ala Phe Al	G GCC GTC Ala Val	AAT GTC A	TC TAC TGG GC le Tyr Trp Al	_	>	1415 CACAGGACT
1425	143		445 145			3.405
CAGGCCACCC	TCGCTTGT	CC TGGCGCCC	CGG CGGCAGCTG			1485 AGAGCCCTCG
1495	150	_	515 152	1535	1545	1555
GGCTGCCTTC	CCCTCTGCG	T GTTTCGA	AGT GGGATGACA	TCGGCCACGG	AAAACAAGAG	

INTERNATIONAL SEARCH REPORT

Inter: 'mal Application No PC1/GB 95/02323

CLASSIFICATION OF SUBJECT MATTER C 6 C12N15/12 C07K14 A. CLAS C07K14/705 C12N5/10 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 6 C12N C07K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X US,A,5 166 066 (CARTER DONALD B) 24 3,4,7,8, November 1992 10,12, 14, 16, 25 see page 1, column 1, line 24 - page 1, column 1, line 30 see page 3, column 1, line 54 - page 4, column 1, line 55 see page 6, column 1, line 31 - page 6, column 1, line 41; claims 1-20 WO, A, 94 13799 (MERCK SHARP & DOHME 1-25 ; HADINGHAM KAREN LOUISE (GB); WHITING PAUL **JOH) 23 June 1994** see the whole document WO, A, 92 22652 (MERCK SHARP & DOHME) 23 1-25 December 1992 see the whole document X Further documents are listed in the continuation of box C. ĺΧ Patent family members are listed in annex. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the 'A' document defining the general state of the art which is not considered to be of particular relevance invention 'E' earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date 'L' document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone which is cited to establish the publication date of another "Y" document of particular relevance; the claimed invention citation or other special reason (as specified) cannot be considered to involve an inventive step when the document is combined with one or more other such docu-'O' document referring to an oral disclosure, use, exhibition or other means ments, such combination being obvious to a person skilled document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 27. 02. 96 7 February 1996 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Nauche, S

INTERNATIONAL SEARCH REPORT

Inter onal Application No
PCI/GB 95/02323

		PC1/GB 95/02323
(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.
ategory *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim 140.
A	NATURE, JUL 29 1993, 364 (6436) P448-50, ENGLAND, NAKATSU Y ET AL 'A cluster of three GABAA receptor subunit genes is deleted in a neurological mutant of the mouse p locus.'	
A	FEBS LETT, SEP 9 1991, 289 (2) P227-30, NETHERLANDS, WISDEN W ET AL 'Cloning, pharmacological characteristics and expression pattern of the rat GABAA receptor alpha 4 subunit.'	
A	FEBS LETT, NOV 20 1989, 258 (1) P119-22, NETHERLANDS, YMER S ET AL 'Sequence and expression of a novel GABAA receptor alpha subunit.'	
٨	J BIOL CHEM, APR 29 1994, 269 (17) P12993-8, UNITED STATES, TOGEL M ET AL 'gamma-Aminobutyric acidA receptors displaying association of gamma 3-subunits with beta 2/3 and different alpha-subunits exhibit unique pharmacological properties.'	
A	BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 167, no. 1, 28 February 1990 ORLANDO, FL US, pages 174-182, ZHAO-YANG ZHAO ET AL; 'Isolation of distantly related members in a multigene family using the polymerase chain reaction technique'	
A	CURRENT OPINION IN NEUROBIOLOGY, vol. 2, no. 3, June 1992 pages 263-269, WISDEN, W.; SEEBURG, P.H. 'GABA(a) receptor channels: from subunits to functional entities' see abstract	

1

INTERNATIONAL SEARCH REPORT

nformation on patent family members

Inter onal Application No
PC i /GB 95/02323

Patent document cited in search report	Publication date	Patent mem		Publication date
US-A-5166066	24-11-92	NONE		
WO-A-9413799	23-06-94	AU-B- CA-A- EP-A-	5655494 2151236 0673419	04-07-94 23-06-94 27-09-95
WO-A-9222652	23-12-92	AU-B- AU-B- CA-A- EP-A- JP-T-	663090 1921192 2109193 0589930 6508023	28-09-95 12-01-93 12-12-92 06-04-94 14-09-94

DERWENT-ACC-NO: 1996-209359

DERWENT-WEEK: 200703

COPYRIGHT 2009 DERWENT INFORMATION LTD

TITLE: DNA encoding alpha-4 and delta subunit

(s) of the human GABAa receptor also stably co-transfected eukaryotic cells expressing receptors contg. these subunit

(s), used for screening and designing

drugs

INVENTOR: LE BOURDELLES B; WHITING P J

PATENT-ASSIGNEE: MERCK SHARP & DOHME LTD[MERI]

PRIORITY-DATA: 1994GB-020010 (October 1, 1994)

PATENT-FAMILY:

PUB-NO	PUB-DATE	LANGUAGE
WO 9610637 A1	April 11, 1996	EN
EP 783576 A1	July 16, 1997	EN
JP 10506534 W	June 30, 1998	JA
US 6455276 B1	September 24, 2002	EN
US 20030013158 A1	January 16, 2003	EN
US 7157249 B2	January 2, 2007	EN

DESIGNATED-STATES: CA JP US AT BE CH DE DK ES FR GB GR

IE IT LU MC NL PT SE AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

APPLICATION-DATA:

PUB-NO	APPL-DESCRIPTOR	APPL-NO	APPL-DATE
WO1996010637A1	N/A	1995WO- GB02323	September 29, 1995
EP 783576A1	N/A	1995EP- 932842	September 29, 1995
EP 783576A1	N/A	1995WO- GB02323	September 29, 1995
JP 10506534W	N/A	1995WO- GB02323	September 29, 1995
US 6455276B1	N/A	1995WO- GB02323	September 29, 1995
JP 10506534W	N/A	1996JP- 511525	September 29, 1995
US 6455276B1	N/A	1997US- 809802	June 19, 1997
US20030013158A1	N/A	2002US- 211673	August 2, 2002
US 7157249B2	Based on	2002US- 211673	August 2, 2002

INT-CL-CURRENT:

TYPE	IPC DATE
CIPP	C07H21/04 20060101
CIPP	C12N15/09 20060101
CIPS	C07K14/705 20060101
CIPS	C07K14/705 20060101
CIPS	C07K14/715 20060101
CIPS	C12N15/12 20060101
CIPS	C12N15/63 20060101
CIPS	C12N5/10 20060101
CIPS	C12N5/16 20060101

ABSTRACTED-PUB-NO: WO 9610637 A1

BASIC-ABSTRACT:

New stably co-transfected eukaryotic cells are able to express a human GABAa receptor consisting of: (a) the ? 4, ? one ? and the ? subunits; (b) the ?4, ? one ? and ? one ? subunits; or (c) ? one ?, ? one ? and the ? subunits.

USE - The co-transfected cell lines and membrane prepns. are used to screen for, or design, subtype-specific drugs that act on human GABAa receptors (claimed), e.g. benzodiazepines, barbiturates, ?-carbolines and neurosteroids.

ADVANTAGE - Construction of recombinant receptors contg. the ?4 and ? subunit becomes possible for the first time.

TITLE-TERMS: DNA ENCODE ALPHA DELTA HUMAN

RECEPTOR STABILISED CO TRANSFECTED EUKARYOTIC CELL EXPRESS CONTAIN

SCREEN DESIGN DRUG

ADDL-INDEXING-TERMS: GAMMA AMINO BUTYRIC ACID

DERWENT-CLASS: B04 D16

CPI-CODES: B04-E02D; B04-E08; B04-F0200E; B11-

C08E4; B12-K04F; D05-H09; D05-H12A; D05-

H12E; D05-H14B2; D05-H17A4;

CHEMICAL-CODES: Chemical Indexing M1 *01* Fragmentation

Code M423 M710 N102 N135 N136 N137 P831

Q233 V752 V753 V754

Chemical Indexing M6 *02* Fragmentation Code P831 Q233 R515 R521 R537 R614 R627

R633 R639

SECONDARY-ACC-NO:

CPI Secondary Accession Numbers: 1996-066806