FCT/Unesp – Presidente Prudente Departamento de Matemática e Computação

Técnicas de Visualização para Dados Multivariados Parte 3

Prof. Danilo Medeiros Eler danilo.eler@unesp.br

Sumário

- Parte 1
 - Técnicas Orientadas a Pixel
 - Técnicas Iconográficas
- Parte 2
 - Técnicas Baseadas em Grafos
 - Técnicas Hierárquicas
- Parte 3
 - Técnicas de Projeção Geométrica

Técnicas de Projeção Geométrica

Técnicas de Projeção Geométrica

- Técnicas de Projeção Geométrica procuram transformar o espaço multidimensional dos dados
- Geralmente, utilizam recursos geométricos para representar o relacionamento entre as instâncias ou os atributos
 - Por exemplo, linhas, pontos e plano

Técnicas de Projeção Geométrica

- As técnicas de Projeção Geométrica mais conhecidas são
 - Gráficos de Dispersão
 - Matriz de Gráficos de Dispersão
 - Coordenadas Paralelas
 - RadViz
 - Projeções Multidimensionais
 - Técnicas Baseadas em Força
 - Redução de Dimensionalidade
 - Decomposição Espectral

- Gráficos de Dispersão (scatterplots) são uma das técnicas de visualização mais antigas e mais utilizadas para análise de dados
- Podem representar os dados por meio de
 - Um subconjunto de dimensões: o usuário pode selecionar alguns atributos ou desenvolver métodos para encontrar dimensões que contenham informações úteis

- Gráficos de Dispersão (scatterplots) são uma das técnicas de visualização mais antigas e mais utilizadas para análise de dados
- Podem representar os dados por meio de
 - Redução de dimensionalidade: técnicas de projeção podem se utilizadas para transformar o espaço multidimensional

- Gráficos de Dispersão (scatterplots) são uma das técnicas de visualização mais antigas e mais utilizadas para análise de dados
- Podem representar os dados por meio de
 - Dimensão embutida: outros atributos podem ser apresentados por meio de cor, tamanho e forma
 - Múltiplos gráficos: essa abordagem permite a combinação de diferentes dimensões
 - Uma estratégia conhecia é a Matriz de Gráficos de Dispersão

Exemplo para o conjunto Iris

Matriz de Gráficos de Dispersão

- Matriz de Gráficos de Dispersão apresenta diversos Gráficos de Dispersão, permitindo determinar a correlação entre dois atributos
- Além disso, é possível observar o relacionamento entre as instâncias por meio da combinação dos diversos atributos dos dados

Matriz de Gráficos de Dispersão

Exemplo para o conjunto Iris

 Coordenadas Paralelas (Inselberg, 1985) é uma das técnicas de visualização mais conhecidas e estudadas

 Ela ainda é foco de estudo de muitos pesquisadores e de diversas variações para melhorar a análise de

dados multivariada

 A ideia básica da técnica é que eixos paralelos são posicionados para representar as dimensões do conjunto de dados

 Em seguida, cada instância é desenhada como uma linha cruzando cada eixo na posição proporcional ao

valor de sua dimensão

Iris setosa

	sepal length	sepal width	petal length	petal width
100	5.1	3.5	1.4	0.2
	4.9	3	1.4	0.2
	•••	•••		
	5.9	3	5.1	1.8

Iris versicolor

Iris virginica

sepal	sepal	petal	petal
length	width	length	width
5.1	3.5	1.4	0.2
4.9	3	1.4	0.2
5.9	3	5.1	1.8

sepal	sepal	petal	petal
length	width	length	width
5.1	3.5	1.4	0.2

sepal	sepal	petal	petal
length	width	length	width
5.1	3.5	1.4	0.2
4.9	3	1.4	0.2
5.9	3	5.1	1.8

sepal	sepal	petal	petal
length	width	length	width
5.1	3.5	1.4	0.2
4.9	3	1.4	0.2
5.9	3	5.1	1.8

sepal	sepal	petal	petal
length	width	length	width
5.1	3.5	1.4	0.2

sepal	sepal	petal	petal
length	width	length	width
5.1	3.5	1.4	0.2
4.9	3	1.4	0.2
5.9	3	5.1	1.8

Exemplo do conjunto de dados Iris

Normalização por todos os atributos

Normalização por atributo

Conjunto de dados de carros

- Conjunto ImageClef 2006
 - □ 1000 instâncias e 96 atributos

- Conjunto ImageClef 2006
 - 1000 instâncias e 96 atributos
 - Utilização de transparência

- Alguns sistema permitem que os eixos sejam automaticamente ordenados
 - Por exemplo, baseado na correlação das características

r = coeficiente de correlação

 Conjunto de 270 imagens de tomografia com características computadas por Matrizes de Covariância

Sem ordenação dos eixos

Ordenação baseada na correlação

 RadViz é uma técnica dirigia por forças baseada na lei de equilíbrio de Hooke

- Para um conjunto de dados N-dimensional, N âncoras são posicionadas em uma circunferência
- Elas representam o final de molas conectadas para cada instância

- Para simplificar os cálculos e melhorar o entendimento do algoritmo, essas âncoras são posicionadas em um círculo de raio 1.0 centrado na origem
 - □ Assim, dado uma instância D = (d₀, d₁, ..., d⋈-1) e um conjunto de vetores unitários A, onde Aj representa a j-ésima âncora, o ponto p que representa a posição da instância na circunferência é dado por

$$p = \frac{\sum_{j=0}^{N-1} (d_j A_j)}{\sum_{j=0}^{N-1} d_j}$$

$$p = \frac{\sum_{j=0}^{N-1} (d_j A_j)}{\sum_{j=0}^{N-1} d_j} \quad \text{Ax} = [1, 0, -1, 0]$$

$$\text{Ay} = [0, 1, 0, -1]$$

Atributo 1	Atributo 2	Atributo 3	Atributo 4
10	10	10	10
10	0	10	0
10	10	5	5
10	0	5	0

$$p = \frac{\sum_{j=0}^{N-1} (d_j A_j)}{\sum_{j=0}^{N-1} d_j} \quad \text{Ax} = [1, 0, -1, 0]$$
$$\text{Ay} = [0, 1, 0, -1]$$

Atributo 1	Atributo 2	Atributo 3	Atributo 4
10	10	10	10
10	0	10	0
10	10	5	5
10	0	5	0

At2

$$Px = 10 * 1 + 10 * 0 + 10 * (-1) + 10 * 0 = 10 - 10 = 0$$

$$10 + 10 + 10 + 10$$

$$40$$

$$Py = 10 * 0 + 10 * 1 + 10 * 0 + 10 * (-1) = 10 - 10 = 0$$

$$10 + 10 + 10 + 10$$

$$40$$

$$p = \frac{\sum_{j=0}^{N-1} (d_j A_j)}{\sum_{j=0}^{N-1} d_j} \quad \text{Ax} = [1, 0, -1, 0]$$

$$\text{Ay} = [0, 1, 0, -1]$$

Atributo 1	Atributo 2	Atributo 3	Atributo 4
10	10	10	10
10	0	10	0
10	10	5	5
10	0	5	0

$$Px = 10 * 1 + 10 * 0 + 10 * (-1) + 10 * 0 = 10 - 10 = 0$$

$$10 + 10 + 10 + 10$$

$$Py = 10 * 0 + 10 * 1 + 10 * 0 + 10 * (-1) = 10 - 10 = 0$$

$$10 + 10 + 10 + 10$$

$$40$$

$$p = \frac{\sum_{j=0}^{N-1} (d_j A_j)}{\sum_{j=0}^{N-1} d_j} \quad \text{Ax} = [1, 0, -1, 0]$$

$$\text{Ay} = [0, 1, 0, -1]$$

Atributo 1	Atributo 2	Atributo 3	Atributo 4
10	10	10	10
10	0	10	0
10	10	5	5
10	0	5	0

$$Px = 10 * 1 + 0 * 0 + (10) * (-1) + 0 * 0 = 10 - 10 = 0 = 0$$

$$10 + 0 + (10) + 0$$

$$20$$

$$20$$

$$Py = 10 * 0 + 0 * 1 + (10) * 0 + 0 * (-1) = 0 + 0 = 0$$

$$10 + 0 + (10) + 0$$

$$20$$

$$p = \frac{\sum_{j=0}^{N-1} (d_j A_j)}{\sum_{j=0}^{N-1} d_j} \quad \text{Ax} = [1, 0, -1, 0]$$
$$\text{Ay} = [0, 1, 0, -1]$$

Atributo 1	Atributo 2	Atributo 3	Atributo 4
10	10	10	10
10	0	10	0
10	10	5	5
10	0	5	0

$$Px = 10 * 1 + 0 * 0 + (10) * (-1) + 0 * 0 = 10 - 10 = 0 = 0$$

$$10 + 0 + (10) + 0$$

$$20$$

$$20$$

$$Py = 10 * 0 + 0 * 1 + (10) * 0 + 0 * (-1) = 0 + 0 = 0$$

$$10 + 0 + (10) + 0$$

$$20$$

$$p = \frac{\sum_{j=0}^{N-1} (d_j A_j)}{\sum_{j=0}^{N-1} d_j} \quad \text{Ax} = [1, 0, -1, 0]$$

$$\text{Ay} = [0, 1, 0, -1]$$

Atributo 1	Atributo 2	Atributo 3	Atributo 4
10	10	10	10
10	0	10	0
10	10	5	5
10	0	5	0

$$Px = 10 * 1 + 10 * 0 + 5 * (-1) + 5 * 0 = 10 - 5 = 0,16$$

$$10 + 10 + 5 + 5$$

$$30$$

$$Py = 10 * 0 + 10 * 1 + 5 * 0 + 5 * (-1) = 10 - 5 = 0,16$$

$$10 + 10 + 5 + 5$$

$$30$$

$$p = \frac{\sum_{j=0}^{N-1} (d_j A_j)}{\sum_{j=0}^{N-1} d_j} \quad \text{Ax} = [1, 0, -1, 0]$$

$$\text{Ay} = [0, 1, 0, -1]$$

Atributo 1	Atributo 2	Atributo 3	Atributo 4
10	10	10	10
10	0	10	0
10	10	5	5
10	0	5	0

$$Px = 10 * 1 + 10 * 0 + 5 * (-1) + 5 * 0 = 10 - 5 = 0,16$$

$$10 + 10 + 5 + 5$$

$$30$$

$$Py = 10 * 0 + 10 * 1 + 5 * 0 + 5 * (-1) = 10 - 5 = 0,16$$

$$10 + 10 + 5 + 5$$

$$30$$

$$p = \frac{\sum_{j=0}^{N-1} (d_j A_j)}{\sum_{j=0}^{N-1} d_j} \quad \text{Ax} = [1, 0, -1, 0]$$
$$\text{Ay} = [0, 1, 0, -1]$$

Atributo 1	Atributo 2	Atributo 3	Atributo 4
10	10	10	10
10	0	10	0
10	10	5	5
10	0	5	0

$$Px = 10 * 1 + 0 * 0 + 5 * (-1) + 0 * 0 = 10 - 5 = 0,33$$

$$10 + 0 + 5 + 0$$

$$15$$

$$Py = 10 * 0 + 0 * 1 + 5 * 0 + 0 * (-1) = 0 - 0 = 0$$

$$10 + 0 + 5 + 0$$

$$15$$

$$p = \frac{\sum_{j=0}^{N-1} (d_j A_j)}{\sum_{j=0}^{N-1} d_j} \quad \text{Ax} = [1, 0, -1, 0]$$
$$\text{Ay} = [0, 1, 0, -1]$$

Atributo 1	Atributo 2	Atributo 3	Atributo 4
10	10	10	10
10	0	10	0
10	10	5	5
10	0	5	0

$$Px = 10 * 1 + 0 * 0 + 5 * (-1) + 0 * 0 = 10 - 5 = 0,33$$

$$10 + 0 + 5 + 0$$

$$15$$

$$Py = 10 * 0 + 0 * 1 + 5 * 0 + 0 * (-1) = 0 - 0 = 0$$

$$10 + 0 + 5 + 0$$

$$15$$

RadViz

Exemplo para conjunto Iris

RadViz

Exemplo para conjunto de carros

RadViz

Exemplo para conjunto de carros

- Técnicas de Projeção Multidimensional são utilizadas como uma maneira de manipular o crescimento das dimensões dos conjuntos de dados
- Essas técnica auxiliam a identificar estruturas e relacionamentos nos conjuntos de dados original
 - Procuram manter as relações presentes no espaço multidimensional no espaço projetado

Projeção Multidimensional do conjunto Iris

- Multidimensional Scaling (MDS) é uma importante classe de algoritmos de projeção multidimensional utilizada em visualização de informação
- Existem diferentes variações e algoritmos de MDS

- A ideia básica de uma técnica de MDS proposta por Kruskal (1978) segue os seguintes passos
 - Dada uma Matriz com N instâncias e M dimensões, cria-se uma matriz Dm de dimensão N x N com a similaridade entre cada par de instâncias
 - A distância Euclidiana pode ser utilizada como medida

DADOS

 ID
 At1
 At2
 At3
 At4

 1
 5
 3
 1
 0

 2
 4
 3
 9
 0

 3
 2
 3
 5
 2

 4
 8
 2
 2
 9

 5
 8
 2
 2
 7

	1	2	3	4	5
1	0,0	8,0	8,0	9,5	7,7
2	8,0	0,0	4,5	12,1	10,7
3	8,0	4,5	0,0	10,4	9,0
4	9,5	12,1	10,4	0,0	2,0
5	7,7	10,7	9,0	2,0	0,0

Dm

- A ideia básica de uma técnica de MDS proposta por Kruskal (1978) segue os seguintes passos
 - Assumindo que os dados são projetados em um espaço de dimensão K, cria-se uma matriz L de dimensão N x K com as posições das instâncias no espaço projetado
 - Podem ser aleatoriamente espalhados no espaço K ou utilizar outra técnica para isso (e.g., PCA, Fastmap)

ID	At1	At2
1	1	1
2	1	2
3	2	1
4	2	4
5	4	4

- A ideia básica de uma técnica de MDS proposta por Kruskal (1978) segue os seguintes passos
 - Calcule uma matriz Dk de dimensão N x N com as similaridades entre os pares de pontos de L (espaço projetado)

L

ID	At1	At2
1	1	1
2	1	2
3	2	1
4	2	4
5	4	4

	1	2	3	4	5
1	0,0	1,0	1,0	3,1	4,2
2	1,0	0,0	1,4	2,2	3,6
3	1,0	1,4	0,0	3,0	3,6
4	3,1	2,0	3,0	0,0	2,0
5	4,2	3,6	3,6	2,0	0,0

- A ideia básica de uma técnica de MDS proposta por Kruskal (1978) segue os seguintes passos
 - Calcule o valor do stress (S) medido a partir das diferenças entre Dm e Dk
 - Exemplos de função de stress

$$S = \sum_{ij} (d_{ij} - \bar{d}_{ij})^2$$

$$S = \sum_{ij} (d_{ij} - \bar{d}_{ij})^2 \qquad S = \sum_{ij} \frac{(d_{ij} - d_{ij})^2}{\sum_{ij} d_{ij}^2}$$

Dm

	1	2	3	4	5
1	0,0	8,0	8,0	9,5	7,7
2	8,0	0,0	4,5	12,1	10,7
3	8,0	4,5	0,0	10,4	9,0
4	9,5	12,1	10,4	0,0	2,0
5	7,7	10,7	9,0	2,0	0,0

	1	2	3	4	5
1	0,0	1,0	1,0	3,1	4,2
2	1,0	0,0	1,4	2,2	3,6
3	1,0	1,4	0,0	3,0	3,6
4	3,1	2,0	3,0	0,0	2,0
5	4,2	3,6	3,6	2,0	0,0

- A ideia básica de uma técnica de MDS proposto por Kruskal (1978) segue os seguintes passos
 - Calcule uma matriz Dk de dimensão N x N com as similaridades entre os pares de pontos de L (espaço projetado)
 - Calcule o valor do stress (S) medido a partir das diferenças entre Dm e Dk
 - Exemplos de função de stress

$$S = \sum_{ij} (d_{ij} - \bar{d}_{ij})^2 \qquad S = \sum_{ij} \frac{(d_{ij} - d_{ij})^2}{\sum_{ij} d_{ij}^2}$$

- Se o stress S é suficientemente pequeno ou nenhuma mudança significante ocorreu em iterações recentes, o algoritmo termina
- 6. Caso contrário, tenta movimentar as instâncias projetadas (matriz L) na direção que diminuirá os níveis de stress
- 7. Retorne ao passo 3

L

MDS proposto por Kruskal (1978)

2,0

0,0

υm		
	0	

	1	2	3	4	5
1	0,0	8,0	8,0	9,5	7,7
2	8,0	0,0	4,5	12,1	10,7
3	8,0	4,5	0,0	10,4	9,0
4	9,5	12,1	10,4	0,0	2,0

9,0

Comparando	1	<>	2
Dm = 8.0			
Dk = 1.0			

ID	At1	At2
1	1	1
2	1	2
3	2	1
4	2	4
5	4	4

Dk

10,7

7,7

	1	2	3	4	5
1	0,0	1,0	1,0	3,1	4,2
2	1,0	0,0	1,4	2,2	3,6
3	1,0	1,4	0,0	3,0	3,6
4	3,1	2,0	3,0	0,0	2,0
 5	4,2	3,6	3,6	2,0	0,0

Atenção! As distâncias do desenho são ilustrativas

L

MDS proposto por Kruskal (1978)

	1	2	3	4	5
1	0,0	8,0	8,0	9,5	7,7
2	8,0	0,0	4,5	12,1	10,7
3	8,0	4,5	0,0	10,4	9,0
4	9,5	12,1	10,4	0,0	2,0
5	7,7	10,7	9,0	2,0	0,0

Comparando 1 <--> 2 Dm = 8,0 Dk = 1,0

ID	At1	At2
1	1	1
2	1	2
3	2	1
4	2	4
5	4	4

	1	2	3	4	5
1	0,0	1,0	1,0	3,1	4,2
2	1,0	0,0	1,4	2,2	3,6
3	1,0	1,4	0,0	3,0	3,6
4	3,1	2,0	3,0	0,0	2,0
5	4,2	3,6	3,6	2,0	0,0

L

MDS proposto por Kruskal (1978)

	1	2	3	4	5
1	0,0	8,0	8,0	9,5	7,7
2	8,0	0,0	4,5	12,1	10,7
3	8,0	4,5	0,0	10,4	9,0
4	9,5	12,1	10,4	0,0	2,0
5	7,7	10,7	9,0	2,0	0,0

Comparando 1 <--> 2 Dm = 8,0 Dk = 1,0

ID	At1	At2
1	1	1
2	2	2
3	2	1
4	2	4
5	4	4

	1	2	3	4	5
1	0,0	1,0	1,0	3,1	4,2
2	1,0	0,0	1,4	2,2	3,6
3	1,0	1,4	0,0	3,0	3,6
4	3,1	2,0	3,0	0,0	2,0
5	4,2	3,6	3,6	2,0	0,0

L

MDS proposto por Kruskal (1978)

	1	2	3	4	5
1	0,0	8,0	8,0	9,5	7,7
2	8,0	0,0	4,5	12,1	10,7
3	8,0	4,5	0,0	10,4	9,0
4	9,5	12,1	10,4	0,0	2,0
5	7,7	10,7	9,0	2,0	0,0

Comparando 1 <	<> 3
Dm = 8.0	
Dk = 1,0	

ID	At1	At2
1	1	1
2	2	2
3	2	1
4	2	4
5	4	4

	1	2	3	4	5
1	0,0	1,0	1,0	3,1	4,2
2	1,0	0,0	1,4	2,2	3,6
3	1,0	1,4	0,0	3,0	3,6
4	3,1	2,0	3,0	0,0	2,0
5	4,2	3,6	3,6	2,0	0,0

L

MDS proposto por Kruskal (1978)

Dm

	1	2	3	4	5
1	0,0	8,0	8,0	9,5	7,7
2	8,0	0,0	4,5	12,1	10,7
3	8,0	4,5	0,0	10,4	9,0
4	9,5	12,1	10,4	0,0	2,0
5	7,7	10,7	9,0	2,0	0,0

Comparando 1 <--> 3Dm = 8,0 Dk = 1,0

ID	At1	At2
1	1	1
2	2	2
3	2	1
4	2	4
5	4	4

	1	2	3	4	5
1	0,0	1,0	1,0	3,1	4,2
2	1,0	0,0	1,4	2,2	3,6
3	1,0	1,4	0,0	3,0	3,6
4	3,1	2,0	3,0	0,0	2,0
5	4,2	3,6	3,6	2,0	0,0

L

MDS proposto por Kruskal (1978)

	1	2	3	4	5
1	0,0	8,0	8,0	9,5	7,7
2	8,0	0,0	4,5	12,1	10,7
3	8,0	4,5	0,0	10,4	9,0
4	9,5	12,1	10,4	0,0	2,0
5	7,7	10,7	9,0	2,0	0,0

Comparando 1 <--> 3 Dm = 8,0 Dk = 1,0

ID	At1	At2
1	1	1
2	2	2
3	3	1
4	2	4
5	4	4

	1	2	3	4	5
1	0,0	1,0	1,0	3,1	4,2
2	1,0	0,0	1,4	2,2	3,6
3	1,0	1,4	0,0	3,0	3,6
4	3,1	2,0	3,0	0,0	2,0
 5	4,2	3,6	3,6	2,0	0,0

L

MDS proposto por Kruskal (1978)

Dm

	1	2	3	4	5
1	0,0	8,0	8,0	9,5	7,7
2	8,0	0,0	4,5	12,1	10,7
3	8,0	4,5	0,0	10,4	9,0
4	9,5	12,1	10,4	0,0	2,0
5	7,7	10,7	9,0	2,0	0,0

Comparando 1 <--> 4 Dm = 9,5 Dk = 3,1

ID	At1	At2
1	1	1
2	2	2
3	3	1
4	2	4
5	4	4

	1	2	3	4	5
1	0,0	1,0	1,0	3,1	4,2
2	1,0	0,0	1,4	2,2	3,6
3	1,0	1,4	0,0	3,0	3,6
4	3,1	2,0	3,0	0,0	2,0
5	4,2	3,6	3,6	2,0	0,0

L

MDS proposto por Kruskal (1978)

	1	2	3	4	5
1	0,0	8,0	8,0	9,5	7,7
2	8,0	0,0	4,5	12,1	10,7
3	8,0	4,5	0,0	10,4	9,0
4	9,5	12,1	10,4	0,0	2,0
5	7,7	10,7	9,0	2,0	0,0

Comparando 1 <--> 4 Dm = 9,5 Dk = 3,1

ID	At1	At2
1	1	1
2	2	2
3	3	1
4	2	4
5	4	4

	1	2	3	4	5
1	0,0	1,0	1,0	3,1	4,2
2	1,0	0,0	1,4	2,2	3,6
3	1,0	1,4	0,0	3,0	3,6
4	3,1	2,0	3,0	0,0	2,0
5	4,2	3,6	3,6	2,0	0,0

L

MDS proposto por Kruskal (1978)

	1	2	3	4	5
1	0,0	8,0	8,0	9,5	7,7
2	8,0	0,0	4,5	12,1	10,7
3	8,0	4,5	0,0	10,4	9,0
4	9,5	12,1	10,4	0,0	2,0
5	7,7	10,7	9,0	2,0	0,0

Comparando 1 <--> 4 Dm = 9,5 Dk = 3,1

ID	At1	At2
1	1	1
2	2	2
3	3	1
4	2	4,5
5	4	4

	1	2	3	4	5
1	0,0	1,0	1,0	3,1	4,2
2	1,0	0,0	1,4	2,2	3,6
3	1,0	1,4	0,0	3,0	3,6
4	3,1	2,0	3,0	0,0	2,0
5	4,2	3,6	3,6	2,0	0,0

ı

MDS proposto por Kruskal (1978)

Dm

	1	2	3	4	5
1	0,0	8,0	8,0	9,5	7,7
2	8,0	0,0	4,5	12,1	10,7
3	8,0	4,5	0,0	10,4	9,0
4	9,5	12,1	10,4	0,0	2,0
5	7,7	10,7	9,0	2,0	0,0

Comparando 1 <--> 5 Dm = 7,7 Dk = 4,2

ID	At1	At2
1	1	1
2	2	2
3	3	1
4	2	4,5
5	4	4

	1	2	3	4	5
1	0,0	1,0	1,0	3,1	4,2
2	1,0	0,0	1,4	2,2	3,6
3	1,0	1,4	0,0	3,0	3,6
4	3,1	2,0	3,0	0,0	2,0
5	4,2	3,6	3,6	2,0	0,0

MDS proposto por Kruskal (1978)

	1	2	3	4	5
1	0,0	8,0	8,0	9,5	7,7
2	8,0	0,0	4,5	12,1	10,7
3	8,0	4,5	0,0	10,4	9,0
4	9,5	12,1	10,4	0,0	2,0
5	7,7	10,7	9,0	2,0	0,0

Comparando 1 <--> 5 Dm = 7,7 Dk = 4,2

ID	At1	At2
1	1	1
2	2	2
3	3	1
4	2	4,5
5	4	4

	1	2	3	4	5
1	0,0	1,0	1,0	3,1	4,2
2	1,0	0,0	1,4	2,2	3,6
3	1,0	1,4	0,0	3,0	3,6
4	3,1	2,0	3,0	0,0	2,0
5	4,2	3,6	3,6	2,0	0,0

L

MDS proposto por Kruskal (1978)

	1	2	3	4	5
1	0,0	8,0	8,0	9,5	7,7
2	8,0	0,0	4,5	12,1	10,7
3	8,0	4,5	0,0	10,4	9,0
4	9,5	12,1	10,4	0,0	2,0
5	7,7	10,7	9,0	2,0	0,0

Comparando 1 <--> 5 Dm = 7,7 Dk = 4,2

ID	At1	At2
1	1	1
2	2	2
3	3	1
4	2	4,5
5	4,2	4,2

	1	2	3	4	5
1	0,0	1,0	1,0	3,1	4,2
2	1,0	0,0	1,4	2,2	3,6
3	1,0	1,4	0,0	3,0	3,6
4	3,1	2,0	3,0	0,0	2,0
5	4,2	3,6	3,6	2,0	0,0

L

MDS proposto por Kruskal (1978)

Dm	
----	--

	1	2	3	4	5
1	0,0	8,0	8,0	9,5	7,7
2	8,0	0,0	4,5	12,1	10,7
3	8,0	4,5	0,0	10,4	9,0
4	9,5	12,1	10,4	0,0	2,0
5	7,7	10,7	9,0	2,0	0,0

Comparando 4 <--> 5 Dm = 2,0 Dk = 2,3

ID	At1	At2
1	1	1
2	2	2
3	3	1
4	2	4,5
5	4,2	4,2

	1	2	3	4	5
1	0,0	1,0	1,0	3,1	4,2
2	1,0	0,0	1,4	2,2	3,6
3	1,0	1,4	0,0	3,0	3,6
4	3,1	2,0	3,0	0,0	2,3
5	4,2	3,6	3,6	2,3	0,0

ı

MDS proposto por Kruskal (1978)

	1	2	3	4	5
1	0,0	8,0	8,0	9,5	7,7
2	8,0	0,0	4,5	12,1	10,7
3	8,0	4,5	0,0	10,4	9,0
4	9,5	12,1	10,4	0,0	2,0
5	7,7	10,7	9,0	2,0	0,0

Comparando 4 <--> 5 Dm = 2,0 Dk = 2,3

ID	At1	At2
1	1	1
2	2	2
3	3	1
4	2	4,5
5	4,2	4,2

	1	2	3	4	5
1	0,0	1,0	1,0	3,1	4,2
2	1,0	0,0	1,4	2,2	3,6
3	1,0	1,4	0,0	3,0	3,6
4	3,1	2,0	3,0	0,0	2,3
5	4,2	3,6	3,6	2,3	0,0

L

MDS proposto por Kruskal (1978)

Dm

	1	2	3	4	5
1	0,0	8,0	8,0	9,5	7,7
2	8,0	0,0	4,5	12,1	10,7
3	8,0	4,5	0,0	10,4	9,0
4	9,5	12,1	10,4	0,0	2,0
5	7,7	10,7	9,0	2,0	0,0

Comparando 4 <--> 5 Dm = 2,0 Dk = 2,3

ID	At1	At2
1	1	1
2	2	2
3	3	1
4	2	4,5
5	3,7	4,3

	1	2	3	4	5
1	0,0	1,0	1,0	3,1	4,2
2	1,0	0,0	1,4	2,2	3,6
3	1,0	1,4	0,0	3,0	3,6
4	3,1	2,0	3,0	0,0	1,7
5	4,2	3,6	3,6	1,7	0,0

- A ideia básica de uma técnica de MDS proposto por Kruskal (1978) segue os seguintes passos
 - Calcule uma matriz Dk de dimensão N x N com as similaridades entre os pares de pontos de L (espaço projetado)
 - Calcule o valor do stress (S) medido a partir das diferenças entre Dm e Dk
 - Exemplos de função de stress

$$S = \sum_{ij} (d_{ij} - \bar{d}_{ij})^2 \qquad S = \sum_{ij} \frac{(d_{ij} - d_{ij})^2}{\sum_{ij} d_{ij}^2}$$

- Se o stress S é suficientemente pequeno ou nenhuma mudança significante ocorreu em iterações recentes, o algoritmo termina
- 6. Caso contrário, tenta movimentar as instâncias projetadas (matriz L) na direção que diminuirá os níveis de stress
- 7. Retorne ao passo 3

$$X \in \mathbb{R}^m$$
 f $Y \in \mathbb{R}^{k=\{1,2,3\}}$

$$\delta: x_i, x_i \to \mathbb{R}, x_i, x_i \in X$$

d:
$$y_i, y_i \rightarrow \mathbb{R}, y_i, y_i \in Y$$

$$f \colon X \to Y, |\delta(x_i, x_j) - d(f(x_i), f(x_j))| \approx 0, \ \forall \ x_i, x_j \in X$$

Projeção MDS do conjunto Iris

- Exemplo de iterações de uma técnica de MDS
 - Os valores de stress são, respectivamente,
 - 0,17; 0,016; 0,009; 0,006; 0,005; 0,005

Inicialmente projetado com Nearest Neighbor Projection (NNP)

- Exemplo de iterações de uma técnica de MDS
 - Os valores de stress são, respectivamente,
 - 0,03; 0,001; 0,001

Inicialmente projetado com Fastmap

- Ward, M., Grinstein, G. G., Keim, D.
 - Interactive data visualization foundations, techniques, and applications. Natick, Mass., A K Peters, 2010.
 - Capítulos 8 e 9
- Daniel A. Keim
 - Designing Pixel-Oriented Visualization Techniques: Theory and Applications. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 6, NO. 1, 2000
- Daniel A. Keim and Hans-Peter Kriegel
 - VisDB: Database Exploration Using Multidimensional Visualization. IEEE Computer Graphics and Applications, vol. 14, no. 5, pp. 40-49, Sept. 1994

- Maria Cristina Ferreira de Oliveira e Haim Levkowitz
 - From visual data exploration to visual data mining: a survey. IEEE
 Transactions on Visualization and Computer Graphics 9 (3), 378-394, 2003
- Tese de Doutorado
 - Milton Hirokazu Shimabukuro, Visualizações Temporais em uma Plataforma de Software Extensível e Adaptável, ICMC/USP, 2004
- Ronald M Pickett, Georges G. Grinstein
 - Iconographic Displays for Visualizing Multidimensional Data,
 Proceedings of IEEE International Conference on Systems, Man,
 and Cyernetics, Beijing and Shenyang, China, 514-419, 1998

- Alfred Inselberg
 - "The Plane with Parallel Coordinates." The Visual Computer 1:2 (1985), 69–91
- Patrick Hoffman, Georges Grinstein, Kenneth Marx, Ivo Grosse, and Eugene Stanley
 - "DNA Visual and Analytic Data Mining." In VIS '97:
 Proceedings of the 8th Conference on Visualization '97,
 pp. 437–ff. Los Alamitos, CA: IEEE Computer Society
 Press, 1997.
- Brian Johnson and Ben Shneiderman
 - "Tree-Maps: A Space-Filling Approach to the Visualization of Hierarchical Information Structures." In VIS '91: Proceedings of the 2nd Conference on Visualization '91, pp. 284–291. Los Alamitos, CA: IEEE Computer Society Press, 1991.

- John Stasko and Eugene Zhang.
 - "Focus+Context Display and Navigation Techniques for Enhancing Radial, Space-Filling Hierarchy Visualizations." In Proceedings of the IEEE Symposium on Information Visualization, pp. 57–65. Los Alamitos, CA: IEEE Computer Society, 2000.
- George G. Robertson, Jock D. Mackinlay, and Stuart K. Card.
 - "Cone Trees: Animated 3D Visualizations of Hierarchical Information." In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 189–194. New York: ACM Press, 1991.

- A. Astel, K. Astel, M. Biziuk, J. Namieśnik.
 - Clasification of Drinking Water Samples Using the Chernoff's Faces Visualization Approach, Polish J. of Environ. Stud. Vol. 15, No. 5 (2006), 691-697

Shneiderman

Bem Shneiderman. The eyes have it: a task by data type taxonomy for information visualization. In Proceedings of the 1996 IEEE Symposium on Visual Languages, pp. 336-343. Washington, DC: IEEE Computer Society, 1996

Keim

 Daniel A. Keim. Information Visualization and Visual Data Mining. IEEE Transactions on Visualization and Computer Graphics, 8:1 (2002), 1-8

- J. B. Kruskal and M. Wish
 - Multidimensional Scaling. Quantitative Applications in the Social Sciences Series, Newbury Park: Sage Publications, 1978.
- História da Treemap
 - http://www.cs.umd.edu/hcil/treemap-history/

