On a pair of commutative contractions (1963) by Tsuyoshi Andô

Yeetang Kwok and Bradley Hsu March 2022

Setup

Let T be a contraction a Hilbert space D. A unitary operator \boldsymbol{U} is called a *unitary dilation* of T if \boldsymbol{U} acts on a Hilbert space R containing D as a subspace, and

$$T^n f = PU^n f$$
 $(f \in D)$

Where ${\bf P}$ is the orthogonal projection from R onto D. Note that there exists a unitary dilation of any contraction.

Theorem

Let T_1 , T_2 be a pair of commutative contractions. Then there exists a pair of commutative unitary operators U_1 , U_2 on a Hilbert space R containing D as a subspace such that

$$T_1^{n_1}T_2^{n_2}f = PU_1^{n_1}U_2^{n_2}f$$
 $(f \in D; n_1, n_2 = 1, 2, ...)$

Where \mathbf{P} is the orthogonal projection from R onto D.

Reduction of the problem

First, replace "unitary" by "isometric" as the unitary operators in question can be readily obtained. Second, if U_1 , U_2 are isometries on $R \supset D$ such that

$$(1)T_if = PU_1f$$
 $(f \in D; i = 1, 2)$

and

$$(2)U_i(R\ominus D)\subset R\ominus D \qquad (i=1,2)$$

then the theorem is necessarily satisfied. Thus it suffices to prove the following proposition instead of the theorem.

Reduction of the problem

For any pair of commutative contractions T_1 , T_2 there exists a pair of commutative isometries U_1 , U_2 with the properties above.

Say R is the orthogonal sum of countably many copies of D where, for elements $f_n \in D$, the sequence

$$\phi = \{f_n\}_0^\infty \in R$$

(I think this assumes R is infinite dimensional)

Thus inner products/norms are:

$$||\phi||^2 = \sum_{0}^{\infty} ||f_n||^2$$

In other words - say

$$a_d = \{f_0 \dots f_n\} \in D$$

Then you can lift a_d into R by tacking on a bunch of zeros at the end, i.e.

$$a_r = \{a_d, 0, \dots\} = \{f_1 \dots f_n, 0, \dots\} \in R$$

Say R is the orthogonal sum of countably many copies of D where, for elements $f_n \in D$, the sequence

$$\phi = \{f_n\}_0^\infty \in R$$

(I think this assumes R is infinite dimensional)

Thus inner products/norms are:

$$||\phi||^2 = \sum_{0}^{\infty} ||f_n||^2$$

Now define operators V_i , $i \in (1,2)$ as $g = V_i f$ iff

$$\{g_0,g_1,g_2,\ldots,g_n\}=\{T_if_0,Z_if_0,0,\ldots f_{n-2}\}$$

Where Z_i is defined as

$$Z_i = (I - T_i^* T_i)^{1/2}$$

And

$$||Z_i f||^2 = ||f||^2 - ||T_i f||^2, (f \in D; i \in (1, 2))$$

Now consider norm V

$$||V_i f||^2 = ||T_1 f_0||^2 + ||Z_i f_0||^2 + \dots + ||f_n||^2 \dots$$

We have

$$||Z_i f||^2 = ||f||^2 - ||T_i f||^2, (f \in D; i \in (1, 2))$$

So

$$||V_i f||^2 = ||f||^2$$

And V_i are isometries (and therefore unitary).

Similarly, V satisfies (1) and (2) but for V_i instead of U_i

So we have

$$||Z_i f||^2 = ||f||^2 - ||T_i f||^2, (f \in D; i \in (1, 2))$$

Plug in $T_i f$ for f and we have

$$||Z_2T_1f||^2 + ||Z_1f||^2 = ||T_1f||^2 - ||T_2T_1f||^2 + ||f||^2 - ||T_1f||^2$$

= $||f||^2 - ||T_2T_1f||^2$

Similarly,
$$||Z_1T_2f||^2 + ||Z_2f||^2 = ||f||^2 - ||T_1T_2f||$$

And T_1 , T_2 are commutative, so we have

$$||Z_1T_2f||^2 + ||Z_2f||^2 = ||Z_2T_1f||^2 + ||Z_1f||^2$$

$$||Z_1T_2f||^2 + ||Z_2f||^2 = ||Z_2T_1f||^2 + ||Z_1f||^2$$

Construct spaces M_1 and M_2

$$M_1 = \{Z_2 T_1 f, 0, Z_1 f, 0\}$$

 $M_2 = \{Z_1 T_2 f, 0, Z_2 f, 0\}$

Then there's an isometry W between M_1 and M_2 .

Now consider G, that's the orthogonal sum of four copies of D. We can extend W to a unitary operator on G.

$$||Z_1T_2f||^2 + ||Z_2f||^2 = ||Z_2T_1f||^2 + ||Z_1f||^2$$

Construct spaces M_1 and M_2

$$M_1 = \{Z_2 T_1 f, 0, Z_1 f, 0\}$$

 $M_2 = \{Z_1 T_2 f, 0, Z_2 f, 0\}$

Then there's an isometry W between M_1 and M_2 .

Now consider G, that's the orthogonal sum of four copies of D. We can extend W to a unitary operator on G.

Let ${m W}$ be the operator on R defined as follows: $g_n = {m W} f_n$ iff $g_0 = f_0$ and

$$\{g_{4n-3},g_{4n-2},g_{4n-1},g_{4n}\} = W\{f_{4n-3},f_{4n-2},f_{4n-1},f_{4n}\}$$

Then the unitarity of \boldsymbol{W} follows from the unitarity of W on G, and both \boldsymbol{W} and \boldsymbol{W}^* have the second property.

Finally the isometries $\emph{\textbf{U}}_1$ and $\emph{\textbf{U}}_2$ in question are defined by

$$U_1 = WV_1$$
 and $U_2 = V_2W^*$

Note that U_1 and U_2 are also isometries that satisfy (1) and (2) because W and V satisfy (1) and (2)

Now we just have to prove the commutativity of U_1 and U_2 $\{g_n\} \equiv U_1U_2\{f_n\} \equiv WV_1V_2W^*\{f_n\}$ $\{h_n\} \equiv U_2U_1\{f_n\} \equiv V_2WW^*V_1\{f_n\} \equiv V_2V_1\{f_n\}$ using the definitions of W and U_i 's to show that

$$g_0 = T_1 T_2 f_0$$

$$\{g_1, g_2, g_3, g_4\} = W\{Z_1 T_2 f_0, 0, Z_2 f_0, 0\}$$

$$g_n = f_{n-4}$$

$$h_0 = T_2 T_1 f_0$$

$$\{h_1, h_2, h_3, h_4\} = \{Z_2 T_1 f_0, 0, Z_1 f_0, 0\}$$

$$h_n = f_{n-4} \qquad (n > 4)$$

Since
$$T_1T_2=T_2T_1$$

$$W\{Z_1T_2f_0,0,Z_2f_0,0\}=\{Z_2T_1f_0,0,Z_1f_0,0\}$$

by the definition of W, it follows that $U_1U_2\{f_n\}=U_2U_1\{f_n\}$