Feuille d'exercices 2 : grammaires

Exercice 1

On considère le langage L défini inductivement comme suit :

Base : a, b, ϵ

Règle : si x est dans L alors axa et bxb sont dans L.

- 1. Quel est le langage défini?
- 2. Utiliser cette définition pour donner une grammaire reconnaissant ce langage.

Exercice 2

On considère la grammaire G = (N, T, P, S) telle que $N = \{S, A, B\}$, $T = \{a, b\}$, $P = \{S \rightarrow aB, S \rightarrow bA, A \rightarrow aS, A \rightarrow a, A \rightarrow bAA, B \rightarrow b, B \rightarrow bS, B \rightarrow aBB\}$

- 1. Donner les règles de production sous forme factorisée.
- 2. Montrer que $\omega = abab$ est dans L(G).
- 3. Quel est le langage engendré par G?

Exercice 3

Pour chacune des trois grammaires et pour chacun des mots ci-dessous, déterminer si le mot appartient au langage engendré par la grammaire. Si oui, donner une dérivation correspondante ainsi qu'un arbre syntaxique.

 $G_1: S \to aSb|ab$ $G_2: S \to aS|bS|a$

 $G_3: S \to aAS|a|\epsilon; A \to SbA|SS|ba$

 $\omega_1 = ab, \omega_2 = aabb, \omega_3 = abba, \omega_4 = baa, \omega_5 = abaaba.$

Exercice 4

Etant données les règles de production suivantes :

 $S \to AA, A \to AAA|bA|Ab|a$

- 1. Donner formellement la grammaire G correspondante sous forme de quadruplet.
- 2. Quel est le langage L(G) engendré?
- 3. L(G) est-il un langage rationnel? Si oui, donner une grammaire régulière G' équivalente à G.

Exercice 5

On considère le langage L sur l'alphabet $\Sigma = \{a, b\} : L = \{ab, ba\}.$

Donner une grammaire reconnaissant L^* .

Même question pour $L' = \{aa, b\}$.

Exercice 6

Donner une grammaire engendrant l'ensemble des mots sur l'alphabet $\Sigma = \{a, b\}$ qui sont formés d'un 'a' suivi d'un nombre quelconque de 'b'.

Exercice 7

Montrer que la grammaire G suivante est ambigüe et donner une grammaire équivalente G' qui n'est pas ambigüe.

$$S \to XaX X \to aX|bX|\epsilon.$$

Exercice 8

On considère la grammaire suivante :

$$S \to A|a$$

$$A \to AB$$

 $B \rightarrow b$

- 1. Quel est le langage engendré par cette grammaire?
- 2. Donner une grammaire équivalente plus simple.

Exercice 9

- 1. Donner une grammaire sur l'alphabet $\Sigma = \{0,1\}$ engendrant les nombres binaires.
- 2. Donner une grammaire sur l'alphabet $\Sigma = \{0,1\}$ engendrant les nombres binaires sans zéro inutile.

Exercice 10

Donner une grammaire pour le langage BP (mots bien parenthésés).

Exercice 11

Donner une grammaire pour les langages des palindromes de longueur paire et des palindromes de longueur impaire sur $\{a,b\}$.

Exercice 12

Donner une grammaire engendrant le langage $a^n b^n, n \ge 1$.

Exercice 13

Donner une grammaire engendrant le langage des mots sur $\Sigma = \{a, b\}$ sans occurrence du facteur 'ab'.

Exercice 14

Soit L le langage sur $\Sigma = \{a, b\}$ des mots de la forme $\alpha a^{|\alpha|}$, avec $\alpha \in \Sigma^*$. Donner une grammaire engendrant L.

.