1 二項関係

Definition: 集合 X 上の同値関係 $R \subset X \times X$

(4): 等号関係の一般化

 $\begin{cases} 反射律: & xRx \quad (\forall x \in X) \\ 対称律: & xRy \Rightarrow yRx \quad (\forall x, y \in X) \\ 推移律: & xRy, yRz \Rightarrow xRz \quad (\forall x, y, z \in X) \end{cases}$

Example: 同値関係の例 R

- 1. =
- 2. 合同, 相似 (幾何)
- 3. $x \equiv y \pmod{p}$

Definition: 同値類

$$[a] = \{x \in X \mid xRa\} \quad (a \in X, R : \text{relation on a set } X)$$

Definition: 商集合

(キ): 同値類集合の集合

$$X/R = \{ [a] \mid a \in X \}$$

Definition: 自然な射影

$$\gamma: X \longmapsto X/R, \ \gamma(x) = [x] \quad (x \in X)$$

Definition: 集合 $X \perp \mathcal{O}$ 順序関係 $R \subset X \times X$ $(xRy \Leftrightarrow x \leq y)$

争: 大小関係の一般化

Definition: 順序集合 (X,<)

≤ は X 上の順序関係.

Example: 順序集合の例

- 1. (\mathbb{R}, \leq) は順序集合, $(\mathbb{R}, <)$ は順序集合でない.
- 2. $(2^X, \subset)$

Definition: 順序部分集合 $(M, \leq_M) \subset (X, \leq)$

$$M \subset X, a \leq_M b \Leftrightarrow a \leq b$$

Definition: 半順序, 全順序

 $\exists (x,y) \in R \quad (x,y \in X) \Rightarrow R \text{ is partial order, } (X,R) \text{ is partially ordered set}$ $\forall (x,y) \in R \quad (x,y \in X) \Rightarrow R \text{ is total order, } (X,R) \text{ is totally ordered set}$

2 半順序集合

Definition: 最大値 (最小値), 上限 (下限) and 上界 (下界)

$$\max A = \mathbf{M} \Leftrightarrow a \le \mathbf{M} \quad (\mathbf{M} \in A, \ \forall a \in A)$$

s is one of upper bounds of $A \Leftrightarrow a \leq s$ $(\forall a \in A)$

sup $A = M' \Leftrightarrow \min S = M'$ (S is a set of upper bounds of A)

$$\Leftrightarrow \begin{cases} \forall a \in A, \ a \leq \mathbf{M'} \\ \forall \epsilon > 0, \ \exists a \in A \text{ s.t. } \mathbf{M'} - \epsilon < a \end{cases}$$

Example: 半順序集合の例 $\{y\} \le \{x,z\}$ の順序は定義されていない.

 $\max S : None , \min S : \phi$ $\sup S : \{x, y, z\} , \inf S : \phi$

Theorem: 最大値, 最小値, 極大値, 極小値 は一意に存在する.

- P: 最大値, 最小値の一意性は順序関係の反対称律を使う.
- P: 極大値, 極小値の一意性は最大値, 最小値の一意性を使う.

Theorem: 集合 A に最大 (最小) 値が存在するならば、 $\max A = \sup A$ ($\min A = \inf A$).

P: sup(inf) の 2 つめの定義を使う.

Axiom: 上限と下限の存在 (実数の連続性)

$$A\subset\mathbb{R},\ A\neq\phi,\ \begin{cases} A\ \text{が上に有界}\Rightarrow \sup A\in\mathbb{R}\ \text{が存在}\ A\ \text{が下に有界}\Rightarrow \inf A\in\mathbb{R}\ \text{が存在} \end{cases}$$

Definition: 完備束

半順序集合 X, $\forall X' \subset X$, $\exists \sup X'$, $\inf X'$.

3 点列

Definition: 点列は写像 $x: \mathbb{N} \longmapsto X$ である. **Definition:** 部分点列は合成写像 $x \circ \iota : \mathbb{N} \longmapsto X$

ただし, $\iota: \mathbb{N} \longrightarrow \mathbb{N}$ は $i \leq j \Rightarrow \iota(i) \leq \iota(j)$ を満たす.

Example: 点列と部分点列の概要

Fig. 1 点列

Definition: 点列の極限

 α は点列の極限値である. \Leftrightarrow

$$\forall \epsilon > 0, \ \exists N \in \mathbb{N} \text{ s.t. } n \geq N \Rightarrow |x_n - \alpha| < \epsilon$$

Theorem: 数列 (a_n) が拡大実数系に極限をもつとき, その部分列の極限と一致する.

(*): 元の数列が振動する場合などは、部分列極限は複数存在する.

Definition: 上極限,下極限

Definition: 上に有界,下に有界 点列 $\{x_n\}$ は上に有界である. \Leftrightarrow

 $\exists M \in \mathbb{R}, \ \forall i \in \mathbb{N}, \ x_i \leq M$

Definition: Cauchy 列

igoplus: 十分大きな $N\in\mathbb{N}$ を選ぶと $n,\ m\geq N$ において x_n と x_m の差をいくらでも小さくできる列. $\{x_n\}$ が Cauchy 列である. \Leftrightarrow

$$\forall \epsilon > 0, \ \exists N \in \mathbb{N} \text{ s.t. } n, \ m \ge N \Rightarrow |x_n - x_m| < \epsilon$$

Example: Cauchy 列の例

Theorem: $\{x_n\}$, $\{y_n\}$ が Cauchy 列 \Rightarrow

 $\{x_n + y_n\}$, $\{x_n \cdot y_n\}$ は Cauchy 列.

Theorem: 点列 x_n が収束する $\Rightarrow x_n$ は Cauchy 列.

Theorem: 点列 x_n が Cauchy 列 $\Rightarrow x_n$ は有界.

4 実数

4.1 № の定義と Z, ① の構成

Axiom: ペアノの公理

(キ): 自然数の定義

後者を与える関数 S を定義する. (ex. S(1)=2)

- 1. 0 は自然数.
- 2. 全ての自然数 n に対し, S(n) は自然数.
- 3. 全ての自然数 n に対し, S(n) = 0 とならない.
- 4. $a, b \in \mathbb{N}, a \neq b \Rightarrow S(a) \neq S(b)$
- 5. Φ を単項述語関数とする.
 - Φ(0) が真.
 - 全ての自然数 n に対し, $\Phi(n)$ が真ならば $\Phi(S(n))$ は真.

(数学的帰納法)

Definition: 整数と有理数

$$\mathbb{Z} = \mathbb{N} \cup -\mathbb{N}, \ \mathbb{Q} = \{\frac{b}{a} \mid a, \ b \in \mathbb{Z}, \ a \neq 0\}$$

4.2 ℝの構成

4.2.1 デデキント切断

Definition: ②上のデデキント切断

$$A \cup B = \mathbb{Q}, \ A \cap B = \phi, \ A \neq \phi, \ B \neq \phi, \ a \in A, \ b \in B \Rightarrow a < b$$

Definition: 実数 α をデデキント切断の境界値 $\alpha = \langle A \mid B \rangle$ として定義する.

(主): 有理数全体集合のデデキント切断の境界値を実数と定義.

4.2.2 有理数の Cauchy 列を用いた完備化

Definition: Cauchy 列の同値関係

$$\{a_n\} \sim \{b_n\} \Leftrightarrow \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \alpha$$

 $\Leftrightarrow \forall \epsilon > 0, \ \exists N \in \mathbb{N} \text{ s.t. } n \ge N \Rightarrow |a_n - b_n| < \epsilon$

Definition: \mathbb{R}

全単射 $\Phi:(S/\sim) \longmapsto \mathbb{R}$ (S is the set of all Cauchy Sequences on \mathbb{Q}) を定義.

$$\Phi([\{a_n\}]) = \lim_{n \to \infty} a_n \in \mathbb{R}$$

(季): ℚ 上の Cauchy 列の同値類と実数の間に 1 対 1 写像を定義する.

Example: ネイピア数
$$e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$$
, $a_n = (1 + \frac{1}{n})^n$ は Cauchy 列.

4.3 実数の性質

4.3.1 有理数の稠密性/無理数の稠密性

Theorem: 有理数の稠密性

(4): 2つの実数の間に有理数が存在.

$$\forall x, y \in \mathbb{R}, x < y \Rightarrow \exists r \in \mathbb{Q} \text{ s.t. } x < r < y$$

※ 他の表現: $\forall \epsilon > 0, \ a \in \mathbb{R}, \ \exists r \in \mathbb{Q}, \ |a-r| < \epsilon$

Theorem: 無理数の稠密性

(♣): 2つの実数の間に無理数が存在.

 $\forall x, y \in \mathbb{R}, x < y \Rightarrow \exists q \in \mathbb{R} \setminus \mathbb{Q} \text{ s.t. } x < q < y$

Theorem: アルキメデスの性質 (有理数の稠密性と同値)

 $\forall a, b \in \mathbb{R}, 0 < a < b \Rightarrow \exists n \in \mathbb{N} \text{ s.t. } b < na$

Theorem: $\mathbb{N} \subset \mathbb{R}$ は上に有界でない. (有理数の稠密性と同値)

Theorem: $\lim_{n\to\infty}\frac{1}{n}=0$ (有理数の稠密性と同値)

4.3.2 実数の完備性

Axiom: R 上の全ての Cauchy 列は収束する.

Axiom: カントールの区間縮小定理

4.3.3 実数の連続性

(半): 有理数の稠密性 (4.3.1) & 実数の完備性 (4.3.2) と同値

Axiom: 実数の連続性

 $A\subset\mathbb{R},\ A\neq\phi,\ \begin{cases} A\ \text{が上に有界}\Rightarrow \sup A\in\mathbb{R}\ \text{が存在}\ A\ \text{が下に有界}\Rightarrow \inf A\in\mathbb{R}\ \text{が存在} \end{cases}$

Theorem: デデキントの定理 (実数の連続性と同値)

実数集合上の全ての切断 $\langle A \mid B \rangle$ に対し、

 $\alpha \in A, \ \beta \in B \Rightarrow \exists \gamma \in \mathbb{R} \ s.t. \ \alpha \leq \gamma \leq \beta, \ \gamma \text{ is } \max A \text{ or } \min B$

ただし、ℝ上のデデキント切断は

 $A \cup B = \mathbb{R}, \ A \cap B = \phi, \ A \neq \phi, \ B \neq \phi, \ a \in A, \ b \in B \Rightarrow a < b$

(辛): ℝの数直線を二つに切断するイメージ.

Theorem: 単調有界数列の収束定理 (実数の連続性と同値)

数列 (a_n) が単調増加かつ上に有界ならば (a_n) は収束する.

数列 (a_n) が単調減少かつ下に有界ならば (a_n) は収束する.

Theorem: ボルツァーノ-ワイアシュトラウスの定理 (実数の連続性と同値)

任意の有界数列 (a_n) が収束する部分列をもつ.

以下の言い換えが可能.

- $A \subset \mathbb{R}$ が点列コンパクト $\Leftrightarrow A$ が有界閉集合.
- 距離化可能空間に置いてコンパクトと点列コンパクトは同値より, $A \subset \mathbb{R}$ がコンパクト $\Leftrightarrow A$ が有界閉集合. (ハイネボレルの定理)

5 濃度

Definition: 集合 A の濃度. |A|, card A, #A etc...

 $|A| = \left\{ egin{array}{ll} n \in \{0\} \cup \mathbb{N} & :$ 有限集合の濃度 (others) & : 無限集合の濃度 $ex. \left\{ egin{array}{ll} lpha_0 & : 可算無限集合の濃度 \ lpha & : 連続体の濃度 \end{array}
ight.$

Definition: $|A| = |B| \Leftrightarrow A \sim B \Leftrightarrow \exists f \ ($ 全単射 $) : A \longmapsto B$

集合 S 上の同値関係 $R = \{(A, B) \mid |A| = |B| \} \subset S \times S$

Definition: $|A| \leq |B| \Leftrightarrow \exists f \ ($ 单射 $) : A \longmapsto B$

集合 S 上の順序関係 $R = \{(A,B) \mid |A| \leq |B|\} \subset S \times S$

(P): 反対称律は Bernstein の定理を用いる.

Theorem: $\aleph_0 < \aleph$

 \mathbb{P} : $\mathbb{N} \not\sim [0,1)$ をカントールの対角線論法で示す.

Theorem: $|X| < |\mathfrak{P}(X)|$

 \mathbb{P} : $X \subset \mathfrak{P}(X)$ より, $|X| \leq |\mathfrak{P}(X)|$ は明らか. $|X| \neq |\mathfrak{P}(X)|$ を対角線論法で示す.

1. ∪

$$|A \cup B| = |A| + |B|$$

$A \cup B$	有限	可算	非可算
有限	有限	可算	非可算
可算		可算	非可算
非可算			非可算

$$2. \times$$

$$|A \times B| = |A| \cdot |B|$$

$ A \times B $	有限	可算	非可算
有限	有限	可算	非可算
可算		可算	非可算
非可算			非可算

$$|A^B| = |A|^{|B|}$$

$ A^B $	有限	可算	非可算
有限	有限	非可算	非可算
可算	可算	非可算	非可算
非可算	非可算	非可算	非可算

Example:

$$A = \{1, 2, 3\}, |A| = 3$$

$$\aleph_0 = |\mathbb{N}| = |\mathbb{N}^2| = |\mathbb{Z}| = |\mathbb{Q}|$$

$$\aleph = |\mathbb{R}| = |[a, b]| = |(a, b)| = |[a, b)|$$

= $\aleph_1 = |\mathfrak{P}(\mathbb{N})|$ (連続体仮説)

6 選択公理と Zorn の補題