Atividade 01

Métodos Numéricos para Equações Diferenciais Ordinárias e Problemas de Valor Inicial

Licenciatura em Engenharia Informática

Alunos:

Francisco Ruivo - 2021142022

Daniel Rodrigues - 2021142013

2021 / 2022

Índice

Conteúdo

1.	Introdução	3				
	1.1 Equação diferencial: definição e propriedades	3				
	1.2 Definição de PVI	4				
2. Métodos Numéricos para resolução de PVI						
	2.0.1 Cálculo do Passo	5				
	2.1 Método de Euler	6				
	2.1.1 Fórmulas	6				
	2.1.2 Algoritmo/Função Matlab	7				
	2.2 Método de Euler Melhorado ou Modificado	8				
	2.2.1 Fórmulas	8				
	2.2.2 Algoritmo/Função	9				
	2.3.0 Método de Runge-Kutta de Ordem 2	.10				
	2.3.1 Fórmulas	.10				
	2.3.2 Algoritmo/Função	11				
	2.4 Método de Runge-Kutta de Ordem 4	12				
	2.4.1 Fórmulas	12				
	2.4.2 Algoritmo/Função	13				
	2.5 Função ODE45 do Matlab	14				
	2.5.1 Fórmulas	14				
	2.5.2 Algoritmo/Função	.14				
3. E	exemplos de aplicação e teste dos métodos	15				
	3.1 Exercício 3 do Teste Farol	15				
	3.1.1 PVI - Equação Diferencial de 1ª ordem e Condições Iniciais	15				
	3.1.2 Exemplos de output - App com gráfico e tabela	17				
	3.2 Problemas de aplicação do livro	18				
	3.2.1 Modelação matemática do problema	18				
	3.2.2 Resolução através da App desenvolvida	20				
	3.3 Problemas de aplicação da alínea 2.b do teste Farol	22				
	3.3.1 Modelação matemática do problema	22				
	3.3.2 Resolução através da App desenvolvida	23				
4.C	onclusão	24				
5. E	Bibliografia	25				
6. <i>A</i>	Autoavaliação e heteroavaliação	26				

1. Introdução

1.1 Equação diferencial: definição e propriedades

É uma equação que envolve derivadas de uma ou mais funções com respeito a uma ou mais variáveis independentes.

Uma ED pode ser classificada quanto ao tipo, à ordem e linearidade da mesma.

Também há a EDO(equações diferenciais ordinárias) quando a função incógnita depende apenas de uma variável.

A forma geral de uma EDO de ordem n é F(x,y,y',...,y(n))=0 em que y é uma função real da variável x (definida num certo intervalo $I \subseteq R$ e F) é uma função real de n+2 variáveis x,y,y',...,y(n).

Uma equação diferencial diz-se de derivadas parciais se a função incógnita depender de duas ou mais variáveis.

1.2 Definição de PVI

Um P.V.I. (Problema de Valor Inicial) trata-se de uma equação diferencial que é acompanhada do valor da função num determinado ponto, chamado de valor inicial ou condição inicial. Muitas vezes é associado a problemas reais, com aplicação em muitas áreas científicas, sendo que geralmente a equação diferencial dada é uma equação evolutiva que descreve como o sistema irá evoluir ao longo do tempo, caso as condições iniciais se verifiquem.

Um P.V.I. pode ser, matematicamente, representado da seguinte forma:

$$\{y' = f(t, y) \mid t \in [a, b] \mid y(a) = y_0 \mid n = \alpha, a, b, y_0 \in R \mid e \mid \alpha \in N\}$$

Onde:

- t = intervalo de iteração;
- n = número de iterações (no caso de uso de métodos numéricos para aproximação da solução);
- $y_0 = \text{valor inicial.}$

Estes PVIs podem ser resolvidos de uma forma exata ou aproximada, e o nosso trabalho trata exatamente a segunda forma, através do uso de Métodos Numéricos

2. Métodos Numéricos para resolução de PVI

2.0.1 Cálculo do Passo

O valor do passo, **h**, será usado por todos os Métodos Numéricos implementados. Assim, a fim de evitar repetição desnecessária, decidimos apresentar aqui a sua definição e fórmula de cálculo.

Este valor é o tamanho de cada subintervalos no intervalo original [a, b], e pode ser calculado da seguinte forma:

$$h = \frac{b - a}{n}$$

Onde:

- $h \rightarrow \text{Tamanho de cada subintervalo (passo)}$;
- $b \rightarrow \text{Limite esquerdo do intervalo}$;
- $a \rightarrow \text{Limite direito do intervalo}$;
- $n \rightarrow \text{Número de subintervalos}$;

2.1 Método de Euler

2.1.1 Fórmulas

O método de Euler é um procedimento numérico de primeira ordem (y') para aproximar a solução da equação diferencial y' = f(t,y) que satisfaz a condição inicial: $y(t_0) = y_0$

O Método de Euler para resolver um PVI é dado pelas seguintes equações:

Fórmula Geral:

$$y_{i+1} = y_i + h * f(x_i, y_i), i = 0, 1, 2, ..., n - 1$$

onde:

- $y_{i+1} \rightarrow \text{Pr\'oximo valor aproximado da solução do problema original (na abscissa <math>t_{i+1}$);
- $y_i \rightarrow \text{Valor aproximado da solução do problema original na abscissa atual;}$
- h → Valor de cada subintervalo (passo);
- $f(t_i, y_i) \rightarrow \text{Valor da equação em } t_i, \text{ e } y_i;$

2.1.2 Algoritmo/Função Matlab

```
%INPUT:
% f - função do 2.º membro da Equação Diferencial
% [a, b] - extremos do intervalo da variável independente t
% n - número de subintervalos ou iterações do método
% y0 - condição inicial t=a -> y=y0
%OUTPUT:
% y - vector das soluções aproximações
% y(i+1) = y(i)+h*f(t(i),y(i)), i = 0,1,...,n-1
%Alunos:
% 10/04/2021 - Francisco Ruivo .: a2021142024@isec.pt
% 10/04/2021 - Daniel Rodrigues .: a2021142013@isec.pt
function y = NEuler(f,a,b,n,y0)
h = (b-a)/n;
t(1) = a;
y(1) = y0;
for i=1:n
   y(i+1)=y(i)+h*f(t(i),y(i));
   t(i+1)=t(i)+h;
end
```

2.2 Método de Euler Melhorado ou Modificado

O método de Euler melhorado é em tudo semelhante ao método de Euler tradicional, a única diferença é que este método utiliza uma média das inclinações em cada ponto para cada iteração, ou seja, tendo um x0 e um x1 este método calcula a inclinação em x0 a inclinação em x1 e consegue assim um resultado mais aproximado.

2.2.1 Fórmulas

Sugestão: Fórmula do método de Euler Melhorado

$$y_{i+1} = y_i + hf(t_i, y_i)$$

 $y_{i+1} = y_i + \frac{h}{2} (f(t_i, y_i) + f(t_{i+1}, y_{i+1})), i = 0, 1, ..., n - 1$

onde:

- $y_{i+1} \rightarrow \text{Pr\'oximo valor aproximado da solu\'ção do problema original (na abscissa <math>t_{i+1}$);
- y_i → Valor aproximado da solução do problema original na abscissa atual;
- $t_i \rightarrow \text{Valor da abscissa atual};$
- $h \rightarrow \text{Valor de cada subintervalo (passo)};$
- $f(t_i, y_i) \rightarrow \text{Valor da equação em } t_i, \text{ e } y_i.$

2.2.2 Algoritmo/Função

- 1. Definir e calcular o passo h;
- 2. Atribuir o primeiro valor de y (condição inicial) do PVI;
- 3. Cálculo do valor intermediário y+1;
- 4. Cálculo da aproximação final de y+1 no ponto de integração.

```
% No Input/entrada temos:
% f - funcao da equacao diferencial em t e y
% a - limite esquerdo do intervalo da função
\% b - limite direito do intervalo da função
\% n - nº de subintervalos da função
% y0 - Valor inicial do PVI
% No OUTPUT/Saida
% y-obtemos o valor das soluções aproximadas
function y=NEulerMelhorado(f,a,b,n,y0)
h=(b-a)/n;
t=a:h:b;
                                                                 %valor de cada subintervalo
                                                                 %alocação de memoria
y(1)=y0;
for i = 1:n
                                                                  %o primeiro valor de y é sempre y0
                                                                  %numero de interações que vai ser igual ao valor de n
   y(i+1) = y(i)+h*f(t(i),y(i));
                                                                  %Cálculo do valor intermediário y+1
   y(i+1) = y(i)+(h/2)*(f(t(i),y(i))+f(t(i+1),y(i+1)));
                                                                 %Cálculo da aproximação final de y+1 no ponto de integração
```

2.3.0 Método de Runge-Kutta de Ordem 2

É um método de passo simples que requer apenas derivadas de primeira ordem e pode fornecer aproximações precisas. Isto deve-se em muito à sua fórmula que considera para cada iteração dois valores denominados normalmente por "k" onde o primeiro é a inclinação no início do intervalo, o segundo é a inclinação no final do intervalo, assim fazendo uma "média" das inclinações obtém-se a inclinação para cada iteração, tornando este método eficiente.

2.3.1 Fórmulas

O Método de RK2 para resolver um PVI é dado pelas seguintes equações:

$$y_{i+1} = y_i + \frac{1}{2}(k_1 + k_2), i = 0, 1, 2, ..., n - 1$$

onde:

- $y_{i+1} \rightarrow \text{Pr\'oximo valor aproximado da solu\'ção do problema original (na abscissa <math>t_{i+1}$);
- y_i → Valor aproximado da solução do problema original na abscissa atual;

Cálculo de k1 e k2:

$$k_2 = h * f(t_{i+1}, y_i + k_1)$$
 $k_1 = f(t_i, y_i)$

- → Inclinação no início do intervalo
- $h \rightarrow \text{Valor de cada subintervalo (passo)}$;
- $f(t_i, y_i) \rightarrow \text{Valor da equação em } t_i$, e y_i ;
- $k_2 \rightarrow$ Inclinação no fim do intervalo;
- $t_i \rightarrow \text{Valor da abscissa atual};$
- h → Tamanho de cada subintervalo (passo);
- y_i → Valor aproximado da solução do problema original na abscissa atual;

2.3.2 Algoritmo/Função

- 1. Definir e calcular o passo h;
- 2. Criar um vetor y para guardar a solução;
- 3. Atribuir o primeiro valor de y que é igual ao ao valor inicial do PVI;
- 4. Cálculo da inclinação no início do intervalo;
- 5. Cálculo da inclinação no final do intervalo;
- 6. Cálculo da média das inclinações;
- 7. Cálculo do método RK2.

```
% y'=f(t,y), t=[a,b], y(a)=y0
y(i+1)=y(i)+ 1/2*(k1+k2)
% No Input/entrada temos:
% f - funcao da equacao diferencial em t e y
% a - limite esquerdo do intervalo da função
% b - limite direito do intervalo da função
% n - nº de subintervalos da função
% y0 - Valor inicial do PVI
% No OUTPUT/Saida
% y-obtemos o valor das soluções aproximadas
%Alunos:
% 14/04/2022 Daniel Rodrigues
% 14/04/2022 Francisco Ruivo
function y = NRK2(f,a,b,n,y0)
h = (b-a)/n;
                                   %Calculo do passo/valor dos subintervalos
t = a:h:b;
                                   %alocação de memoria
y = zeros(1,n+1);
                                   %alocação de memoria
y(1) = y0;
                                   %o primero valor y é sempre y0
for i = 1:n
                                  %O numero de iterações é igual a n
   k1 = h*f(t(i),y(i));
                                  %Inclinação no inicio do intervalo
   k2 = h*f(t(i+1),y(i)+k1); %Inclinação no ponto final do intervalo
    v(i+1) = v(i)+(k1+k2)/2:
                                  %Aproximação do método de RK2
```

2.4 Método de Runge-Kutta de Ordem 4

O método de Runge-Kutta de ordem 4, não necessita do cálculo de qualquer derivada de f, mas depende de outra função que é definida avaliando f em diferentes pontos.

2.4.1 Fórmulas

O Método de RK2 para resolver um PVI é dado pelas seguintes equações:

Método de Runge-Kutta de 4ª ordem
$$k_1 = hf(t_i, y_i); \ k_2 = hf(t_i + \frac{h}{2}, y_i + \frac{1}{2}k_1); \ k_3 = hf(t_i + \frac{h}{2}, y_i + \frac{1}{2}k_2); \ k_4 = hf(t_i + h, y_i + k_3)$$

$$y_{i+1} = y_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4), \quad i = 0, ..., n-1$$

- y_{i+1} → representa a aproximação pelo método RK4 de y(xn+1), que é determinado pelo valor atual de y(n) somado com o produto do tamanho do intervalo (h) e uma inclinação estimada, inclinação essa que é calculada pela média ponderada de inclinações como é representada em baixo;
- y_i →Valor aproximado da solução do problema original na abscissa atual;

$$\operatorname{inclinação} = rac{k_1 + 2k_2 + 2k_3 + k_4}{6}.$$

- k_1 \rightarrow Inclinação no início do intervalo;
- k_2 -Inclinação no ponto médio do intervalo;
- k_3 \rightarrow Inclinação no ponto médio do intervalo;
- k_4 \rightarrow Inclinação no final do intervalo.

2.4.2 Algoritmo/Função

- 8. Definir e calcular o passo h;
- 9. Criar um vetor y para guardar a solução e atribuir y(1) = y0;
- 10. Atribuir o valor de y;
- 11. Cálculo da inclinação no início do intervalo;
- 12. Cálculo da inclinação no ponto médio do intervalo;
- 13. Cálculo da inclinação no ponto médio do intervalo;
- 14. Cálculo da inclinação no final do intervalo;
- 15. Cálculo do método RK4.

```
% f - Função da equação diferencial, em t e y
% a - Limite esquerdo do intervalo
% b - Limite direito do intervalo
% n - Numero de sub-intervalos
    y0 - Valor (condição) Inicial do PVI
%OUTPUT:
% y - vector das soluções aproximadas
function y = NRK4(f,a,b,n,y0)
h = (b-a)/n;
                %valor de cada subintervalo/calculo do passo
t=a:h:b;
                 %alocação de memoria
y=zeros(1,n+1); %alocação de memoria
y(1)=y0;
                 %o primeiro valor de y0 é sempre y
                 %numero de iterações vai ser igual a n
k1 = h*f(t(i), y(i)); % inclinação no inicio do intervalo
k2 = h*f(t(i) + (h/2), y(i) + ((1/2)*k1)); %inclinacao no ponto medio do intervalo k3 = h*f(t(i) + (h/2), y(i) + ((1/2)*k2)); %inclinacao no ponto medio do intervalo k4 = h*f(t(i+1), y(i) + k3); %inclinação no final do intervalo
y(i+1)=y(i)+(1/6)*(k1+2*k2+2*k3+k4); %aproximação do método e RK4
t(i+1)=t(i)+h; %corresponde ao t(i)+h segundo a formula de nrk4 em k1
end
end
```

2.5 Função ODE45 do Matlab 2.5.1 Fórmulas

A função ODE45 é uma das funções nativas do MATLAB, e é baseada num método de Runge-Kutta. Para resolver um PVI com uma EDO de ordem 2, pode ser chamada da seguinte forma:

$$[t, y] = ode45(f, t, y0)$$

- t →Vetor das abcissas;
- f→Equação diferencial em t e em y;
- $y_0 \rightarrow Valor$ inicial do PVI.

2.5.2 Algoritmo/Função

- 1. Definir e calcular o passo h;
- 2. Aproximação através da função ODE45.

3. Exemplos de aplicação e teste dos métodos

3.1 Exercício 3 do Teste Farol

3.1.1 PVI - Equação Diferencial de 1^a ordem e Condições Iniciais

3.1.2 Exemplos de output - App com gráfico e tabela

3.2 Problemas de aplicação do livro

3.2.1 Modelação matemática do problema

Exercício 1: a)

1-
a)
$$(mdN = mg - Kv^2, K > 0)$$

At
 $K = 0,125$
 $m = 5$
 $q = 32 + 1/3^2$
 $q = 3 + 1/3^2$
 $q = 4$
 $q = 4$

Exercício 2: a)

Neste exercício é pedido que usemos h = 0.5.Para este efeito, decidi fazer o intervalo t = [0,5] com n = 10. No enunciado pede para usarmos um método de Runge-Kutta sem especificar qual. Decidi usar o método de ordem 2. Deste modo, obtemos a seguinte solução:

封
2 dA = A (2/28-0,0432A)
Q)(A) = A(2,128-0,0432A) (A)=A(2,128-0,0432A)
Q(QA = A(2,128-0,0432A) (A=A(2,128-0,0432A)) $Q(QA = A(2,128-0,0432A) (A=A(2,128-0,0432A))$
t (days) 1 1 2 1 5 14 15
A(observed) 2,78 13,53 36,30 47,50 49,40
A (epsenda) + 751 +3636 32064 44923 48-11758

3.2.2 Resolução através da App desenvolvida

Exercício 1: b) c)

Exercício 2: b) c)

t	Exata	RK2	erroRK2
0	0.2400	0.2400	0
0.5000	0.6891	0.6273	0.0618
1.0000	1.9454	1.6232	0.3222
1.5000	5.2446	4.0931	1.1514
2.0000	12.6436	9.6855	2.9581
2.5000	24.6379	19.8967	4.7411
3.0000	36.6283	32.0861	4.5422
3.5000	44.0210	40.5413	3.4797
4.0000	47.3164	44.9223	2.3941
4.5000	48.5710	47.0947	1.4763
5.0000	49.0196	48.1758	0.8438

3.3 Problemas de aplicação da alínea 2.b do teste Farol

3.3.1 Modelação matemática do problema

3.3.2 Resolução através da App desenvolvida

	Exata	Euler	erroEuler
C	6.0000	6.0000	0 -
0.0909	1.0032	-4.9091	5.9123
0.1818	0.2368	4.1152	3.8784
0.2727	0.1545	-3.1729	3.3274
0.3636	0.1795	2.8790	
0.4545	0.2168	-1.9929	2.2097
0.5455	0.2499	2.0609	1.8110
0.6364	0.2752	-1.2024	1.4776
0.7273	0.2916	1.5052	1.2136
0.8182	0.2983	-0.6897	0.9881
0.9091	0.2953	1.1086	0.8133
1.0000	0.2824	-0.3782	0.6606 ▼

4.Conclusão

Com a elaboração deste trabalho concluímos que foram desenvolvidos bastantes conhecimentos sobre métodos numéricos e a aplicação dos mesmos. Para além da componente matemática que este trabalho possui, também se desenvolveu bastante conhecimento em programação com MatLab. O facto de lidar com os pequenos desafios e limitações que esta linguagem de programação nos proporciona desenvolveu também o nosso trabalho de investigação para resolução dos mesmos.

Concluímos, por fim, que os Métodos Numéricos para a resolução de Problemas de Valor Inicial são muito úteis, especialmente quando usados num contexto real e prático, pois originam aproximações com erro mínimo (dependendo do método usado).

Como regra geral, verificamos o esperado: quanto maior for o número de subintervalos n, menor é o erro de todos os Métodos.

5. Bibliografia

- http://cee.uma.pt/edu/acn/docs/acn_formul5.pdf
- http://www.mat.uc.pt/~alma/aulas/anem/sebenta/cap6.pdf
- http://www.mat.uc.pt/~alma/aulas/matcomp/documentos/IntroducaoaMatlabParte20
 3.pdf
- http://www.mat.uc.pt/~amca/MPII0607/folha3.pdf
- https://en.wikipedia.org/wiki/Heun%27s_method
- https://pt.qwe.wiki/wiki/Heun%27s_method
- https://pt.wikipedia.org/wiki/M%C3%A9todo_de_Euler
- https://www.codecogs.com/latex/eqneditor.php?lang=en-us
- https://www.ime.unicamp.br/~valle/Teaching/MS211/Aula21.pdf
- https://www.youtube.com/watch?v=HuRzoQjkZEs

6. Autoavaliação e heteroavaliação

									óruns	25	20	20	5	10	5	100 15	Trab	&At
isec Engenharia			Aulas Frequentadas				acebook	Aulas+Gab+F	Matlab		ramp			cipaçãoD	[5]	[Q		
2021/2022 »« Licenciaturas em Eng. Informática »« 1ºA /2ºSem		adorEstudante	24.fev a 29.		29.ab	9.abril		1 1		윤	유	9	ho - on	4	, s	i <u>F</u>		
Análise Matemática II			€ 9 Semanas				Gabin	Fórun	- Assi	Trabalho	Trabalho	Trabalho	tt00Trabalho	tt0STrab_1	-Testes	ktividadesP	abalhos&At [0	Trabalhos&At (0,
NºAluno Nome Completo do Aluno	LEI (N	Trab	T(9)	TP(9)	P(9)		U	ш	AGF	AtOIT	AtOZTI	At03T	At00	AtOS	Mini-T	Ativi	Trab	Trab
202114204 Francisco Carreira Ruivo	н		8	9	8	25	0	0	0	4,5			5				1,38	5,50
2021142013 Daniel Ferreira Rodrigues	×		9	8	9	26	0	0	0	4,5			5				1,38	5,50
		<u> </u>	<u> </u>			0			0					<u> </u>			0,00	0,00
#		0	2	2	2	2	0	0	0	2	0	0	2			0	0	

Observações:

- 1 Autoavaliação e heteroavaliação das atividades e trabalhos
- 2 As atividades avaliadas de 0 a 5 valores. O parâmetro Trab&At = média ponderada das atividades
- 4 Critérios de Avaliação » consultar FUC de AM2
- 5 A nota final é arredondada às unidades de N = 60%*Trab&At+40%*E
- $\underline{\text{6 Se}}$ os exames forem presenciais, então N = max(60%*Trab&At+40%*E; 100*E)