Endogenous Economic Growth

Harrod-Domar Model

- Capital accumulation and growth
- Assumptions
- ① Close economy (No trade)
- 2 Capital and Labor used in fixed proportion (No substitution)
- 3 Capital is the limited factor but Labor is unlimited supply (Population growth does not matter)
- 4 Constant return to scale for two factors
- ⑤ Technology: Fixed quantity of additional capital leads to fixed proportional increase in output (*k*=∠/*K*/∠/*Y*=Incremental Capital Output Ratio: ICOR)
- →No marginal decrease in capital

Review: H-D Model

- ICOR: k = 2K/2/Y, Then 2Y = 1/k/2/K
- Saving function: S=sY (s:Saving ratio, s=S/Y)
- Investment function: $I = \sqrt{K = S}$
- Then Growth rate of $y = \angle YYY$ So, $y = \angle YYY = \frac{1}{k^*} \angle KYY = \frac{1}{k^*} \frac{X}{Y} = \frac{1}{k^*} \frac{X}{Y} = \frac{1}{k^*} \frac{X}{X} = \frac{1}{k^*} \frac{X}{X$
- Therefore, y(Growth rage) ↑ if s (Saving ratio) ↑ or ICOR
 (k) ↓
- If there is depreciation of capital, $I \equiv \angle K + \delta$ (depreciation rate) K = S
- Then, y=s/k-δ (Zero or negative growth happens if s is insufficient to cover depreciation

2008 Country Name	Gross fixed capital formation (% of GDP)	GDP growth (annual %)	ICOR
India	32.9	4.9	6.7
South Africa	22.6	3.6	6.3
China	40.8	9.6	4.2
Brazif	19.1	5.2	3.7

Solow Model

- Long-term equilibrium and Income convergence
- Assumptions:
 - ① Closed economy (No trade)
 - ② Income=C:Consumption +S:Saving
 - 3 Population=Laborers (Increases at constant rate)
 - 4 Technology= Constant (No innovation)
- Gross production=Gross income
- *Diminishing Marginal product of capital* (If capital stock per capita *k* is smaller, the production increases faster but if larger *k* then slower growth
- Capital stock per capita k ↓
 - 1) By capital wastage
 - 2) By L (Population) ↑

Solow model

4. The Steady State (k*) Long-run equilibrium of the economy

At k*:

Investment=depreciation, capital won't change

- Below k* (k₁):
 investment >depreciation,
 the capital stock grows.
- Above k* (k₂):
 depreciation > investment,
 the capital stock shrinks.

 $\Delta k = sf(k) - \delta k$; In the steady state capital is not changing $\rightarrow \Delta k = 0 \rightarrow sf(k^*) - \delta k^* = 0 \rightarrow sf(k^*) = \delta k^*$

Solow equilibrium

- Pace of *k* increase falls, while the loss for *k* goes up with depreciation and population size
- Equilibrium k^* k increases until k^* but after k^* loss for k surpasses then goes back to k^*
- However, then per capita income of y converges into k^* , then no y increases
- Change of technology is important (Exogenous)

How to measure technological progress?: Total Factor Productivity (TFP)

- GDP=Constant*Technology level*Capital stock (K)^{1/3}*Labor(L)^{2/3}
- ⇒Growth rate=Technology progress rate +1/3*Capital stock growth rate + 2/3 Labor*

growth rate, THEN,

Technology progress (Total Factor Productivity: TFP) =Growth rate- 1/3*Capital stock growth rate- 2/3 Labor*growth rate, OR,

Technology level=GDP/K^{1/3}*L^{2/3}

AK Model

- Y:GDP, K: Capital Stock, C:Consumption, I:Investment, S: Saving, s̄: Saving rate, A:Productivity of Capital (Yt/Kt:Constant), s̄=St/Yt(t: time)
- No trade (export, import)
- Production Function: Yt=AKt (How much input in K will get how much Production Y)
 - ⇒ If A (Constant) is larger, better technology/ efficiency 1/A: Incremental Capital Output Ratio: ICOR)

From Demand side, Yt=Ct+It (Disregarding the government expenditure and net trade)

Investment adds capital stock:

Capital accumulation $\triangle K_{t+1}=K_{t+1}-K_{t}=I_{t}$

<u>From Distribution side</u>, Yt=Ct+St, Saving is decided by $St=\bar{S}Yt$

(Saving rate: $0 \le \bar{s} \le 1$)

 $\Rightarrow \angle K_{t+1} = K_{t+1} - K_t = I_t = S_t = S_t = S_t + S_t = S_t$

Liner model and Solow model: Marginal product of capital

- If we consider AK model by per capita Y: $y_t = Y_t/L_t = AK_t/L_t = AK_t$ \Rightarrow Linear
- ≠Solow model: Marginal product of capital diminishes (Without labor input increase, k increase will diminish contribution for Y)
- \Rightarrow Capital deepening: k increase, then y increase, but A(y/k) drops
- \Rightarrow AK model: Growth rate is by $\overline{s}A$

Implications from AK model

- $\triangle K_{t+1} / K_t = \bar{s}A$ $Y_t = AK_t$ where A is constant Then, Growth rate of Y is the growth rate of K: $\triangle Y_{t+1} / Y_t (growth \ rate) = \bar{s}A$ ($\triangle Y_{t+1} = A \triangle K_{t+1}$, then, $\triangle Y_{t+1} / Y_t = \triangle K_{t+1} / K_{Kt} = \bar{s}A$)
- \Rightarrow Larger \bar{s} realizes higher growth
- \Rightarrow larger A boots growth ($Productivity \leftarrow Technology$)
- Capital stock: *K* includes not only physical capital but others like human capital, knowledge)
- AK model: Saving rate and Capital productivity are to decides growth
- ⇒ Then how we explain economic catch-up?

AK model

The AK model in a diagram

Where, investment (i)=s f(k) and depreciation= δk

- Production Function: Yt=AKt
 (How much input in K will get how much Production Y)
- ⇒ If A (Constant) is larger, better technology/ efficiency (1/A: Incremental Capital Output Ratio: ICOR)
- From Demand side, Yt=Ct+It
- From Distribution side, Yt=Ct+St, and Saving is decided by St=\$\overline{S}\$Yt

(Saving rate: $0 \le \bar{s} \le 1$)

$$\Rightarrow \angle K_{t+1} = K_{t+1} - K_t = I_t = S_t = \overline{S}Y_t = \overline{S}AK_t \Rightarrow \angle K_{t+1} / K_t = \overline{S}A$$

How we see "technology": AK model

- Solow model: Technology is Exogenous
 ≠ Endogenous), but is it so?
- What, if K includes technological knowledge
- AK model: If Capital (K) includes technological knowledge, skills, human capitals, K does not follow declining "marginal productivity of capital" in Solow model)
 - ⇒Linear growth, without equilibrium

How we see "technology": Romer model

- Romer model: Increasing knowledge, skill (=Innovation) promotes growth
- Newly added knowledge: Constant*number of researchers*present knowledge
- Technology progress rate (equilibrium per capita GDP growth)=Constant(Newly added knowledge/Present knowledge stock: R&D efficiency rate)
 *Researchers
- → Long-run per capita GDP (y) growth depends on R&D efficiency rate and Population (larger researchers by larger population)

Implications and Discussions from Romer model

- Nature of Knowledge: No competition and exclusiveness (IPR protection/ transaction is limited) \(\neq \text{Goods} \)
- ⇒Externality exists, Market failure (Social optimum unattained by the market)
- ⇒Rationales for government intervention (Human capital growth, Innovation subsidies/supports)
- ⇒Innovation in developing economy includes copying/ reverse engineering (government supports?)
- ⇒Human capital volume: Large population economies for scale effects?

Implications and Discussions from Romer model(2)

- However, easy copying time may be over as R&D level goes higher, making additional knowledge becomes difficult: Diminishing growth rate (Technology progress rate)
 - \Rightarrow Precisely not R&D population but the growth rate of R&D population may be more important (Jones)

Solow model and Endogenous model

(Source: Textbook P.239 in the second edition)

Model structure	Solow model	Endogenous growth model
Production function	Y = Af(K, L)	$Y = f(K, A(L_{\lambda})L_{\gamma})$
Technological change ΔA Origin of technological change	Hicks neutral, exogenous International public good	Labor-saving, endogenous
Market structure	Perfect competition	Firm investment of L _y in R&D Monopoly power (patents)
Returns to scale	Constant	Increasing due to $\Delta A = A\delta L_A$
Model predictions		
Income growth across countries	Convergence	Divergence
Predicted international labor flows	From MDCs to LDCs	From LDCs to MDCs

Suggested textbooks

- Timothy Taylor (2012) The Instant Economist: Everything You Need to Know About How the Economy Works, Plume original version
- Timothy Taylor, Steven A. Greenlaw, David Shapiro(2017) Principles of Macroeconomics 2e), OpenStax
- Dilip Mookherjee, Debraj Ray (2001) Readings in the Theory of Economic Development, John Wiley & Sons
- Debraj Ray (1998) Development Economics, Princeton University

Suggested Readings

- Romer, Paul (1990) "Endogenous Technological Change", Journal of Political Economy 98(5):s.71-102.
- Akerlof, George and Robert Shiller (2009) "Animal Spirits: How human psychology drives the economy, and Why it matters for global capitalism", Princeton University Press.
- Paul Krugman (1994) "The Myth of Asia's Miracle," Foreign Affairs 73 (November/December 1994): 6, 62-79.