MATH3405 Differential Equations

Appendix A
Existence and Continuous Dependence of Solutions

MATH3405 Differential Equations

Existence of Solutions

We shall establish the existence of solutions of of a first order ODE

$$\dot{x} = f(t, x). \tag{1}$$

The method is readily generalized to system of 1st order ODEs. In particular, it covers the existence of solutions of higher order ODEs.

Existence of Solutions

Picard Iteration and Fixed Point Continuation of Solutions

Continuous Dependence of Solutions

MATH3405 Differential Equations

Existence of Solutions

Picard Iteration and Fixed Point

Recall that $\varphi(t)$ is a solution of the IVP

$$\dot{x} = f(t, x), \ x(t_0) = x_0$$
 (2)

if and only if it is a solution of the integral equation

$$x(t) = x_0 + \int_{t_0}^{t} f(s, x(s)) ds.$$

Definition 1 (Picard Iterates)

The Picard iteration of the IVP (2) is defined by

$$\varphi_0 \equiv x_0$$
 and $\varphi_{n+1}(t) = x_0 + \int_{t_0}^t f(s, \varphi_n(s)) ds.$ (3)

Existence of Solutions

Picard Iteration and Fixed Point

Example 2

Consider the IVP $\dot{x} = x$, x(0) = 1.Then

$$\varphi_1(t) = 1 + \int_0^t x_0 ds = 1 + t$$

$$\varphi_2(t) = 1 + \int_0^t 1 + s ds = 1 + \left[s + \frac{s^2}{2} \right]_0^t = 1 + t + \frac{t^2}{2}$$

and in general

$$\varphi_n(t) = 1 + t + t^2/2 + t^3/3! + \dots + t^n/n!$$

Note that

$$\varphi(t) := \lim_{n \to \infty} (1 + t + t^2/2 + t^3/3! + \dots + t^n/n!) = e^t$$

is a solution of the IVP.

3/14

MATH3405 Differential Equations

Existence of Solutions

Picard Iteration and Fixed Point

Example 4

Consider the sequence

$$\varphi_n(t) = \begin{cases} nt & \text{if } 0 \le t \le 1/n \\ 1 & \text{if } 1/n < t \le 1. \end{cases}$$

Though every $\varphi_n(t)$ is continuous, $\varphi(t) \coloneqq \lim_{n \to \infty} \varphi_n(t)$ is discontinuous at t = 0.

MATH3405 Differential Equations

Existence of Solutions

Picard Iteration and Fixed Point

Example 3

Consider the IVP $\dot{x} = x^2$, x(0) = 1. Then

$$\varphi_1(t) = 1 + \int_0^t x_0^2 ds = 1 + t$$

$$\varphi_2(t) = 1 + \int_0^t (1+s)^2 ds = 1 + t + t^2 + \frac{t^3}{3}$$

Though every approximation is continuous on \mathbb{R} , it will not converge to a solution of the IVP over \mathbb{R} !

In fact, the solution of the IVP is $x(t) = \frac{1}{1-t}$ which is defined on $(-\infty, 1)$.

4/14

6/14

MATH3405 Differential Equations

Existence of Solutions

Picard Iteration and Fixed Point

Example 5

Consider the sequence of differentiable functions $\{t^n\}$, $t \in [0,1]$.

The pointwise limit

$$\lim_{n\to\infty} t^n = \begin{cases} 0 & \text{if } 0 \le t < 1\\ 1 & \text{if } t = 1, \end{cases}$$

is discontinuous at t = 1.

5/14

MATH3405 Differential Equations

Existence of Solutions

Picard Iteration and Fixed Point

Lemma 6

Let $\{\varphi_n\}$ be the Picard iterates of the IVP (2). If f is continuous on $R := [t_0 - a, t_0 + a] \times [x_0 - b, x_0 + b]$, and if

$$M = \max_{(t,x) \in R} |f(t,x)|(>0) \text{ and } h = \min\{a,b/M\},$$

the the graphs of $\{\varphi_n\}$ on $[t_0 - h, t_0 + h]$ will remain in R.

7/14

MATH3405 Differential Equations

Existence of Solutions

Picard Iteration and Fixed Point

Clearly, φ is a solution of the above IVP if and only if φ is a fixed point of T:

$$T\varphi = \varphi$$
.

An application of the Banach's fixed point theorem leads to

Theorem 7 (Cauchy–Peano Existence Theorem)

If $f: \mathbb{R}^2 \to \mathbb{R}$ is continuous on a neighbourhood containing (t_0, x_0) , then there exists an h > 0 and a solution $x = \varphi(t)$ to the IVP (2) on $[t_0 - h, t_0 + h]$.

MATH3405 Differential Equations

Existence of Solutions

Picard Iteration and Fixed Point

Let C be set of all continuous functions $\varphi(t)$ on $I = [t_0 - h, t_0 + h]$ such that

1.
$$|\varphi(t) - x_0| \le b$$
 for all $t \in I$;

2.
$$|\varphi(t_1) - \varphi(t_2)| \le M|t_1 - t_2|$$
 for all $t_1, t_2 \in I$.

Define $T: \mathcal{C} \to \mathcal{C}$ by

$$T(\varphi(t)) = x_0 + \int_{t_0}^t f(s, \varphi(s)) ds.$$

Clearly, $\varphi(t)$ is a fixed point of T if and only if $\varphi(t)$ is a solution of the IVP (2) on $[t_0 - h, t_0 + h]$.

8/14

MATH3405 Differential Equations

Existence of Solutions

Continuation of Solutions

Let's continue with the IVP $\dot{x} = f(t, x)$, $x(t_0) = x_0$. Suppose that f is continuous in some open set G and $(t_0, x_0) \in G$.

The existence theorem asserts that the IVP has a solution φ_0 over some interval $[t_0 - h_0, t_0 + h_0]$ and the graph of φ_0 remains in G. We may then consider the IVP

$$\dot{x} = f(t, x), \ x(t_1) = x_1, \quad \text{where } t_1 = t_0 + h_0 \text{ and } x_1 = \varphi_0(t_1).$$

As $(t_1, x_1) \in G$, we may apply the existence theorem again and conclude that it has a solution φ_1 over $[t_1 - h_1, t_1 + h_1]$ and the graph of φ_1 remains in G.

We can continue this process up to some maximal interval $[t_0 + t_R)$. The same process can be performed on the left hand side of t_0 and finally, the IVP has a solution defined over some maximal interval $(t_0 - t_L, t_0 + t_R)$.

9/14

Theorem 8

Let $G = (A, B) \times \mathbb{R}$ where $A, B \in \mathbb{R} \cup \{\pm \infty\}$. If f(t, x) is continuous on G and there is L > 0 such that

$$|f(t,x)| \le L|x|$$
 for all $x \in \mathbb{R}$,

then a maximal solution of the IVP (2) is defined on (A, B).

Corollary 9

Every solution of a 1st order linear ODE (system) is defined on the whole real line.

11/14

MATH3405 Differential Equations

Continuous Dependence of Solutions

Theorem 11

Suppose that f(t,x) is Lipschitz with respect to x with Lipschitz constant L. Let φ_0 be the solution of the IVP

$$\dot{x} = f(t,x), \quad x(t_0) = x_0$$

over some interval $[t_0 - h_0, t_0 + h]$. Suppose that $\delta > 0$ is small enough so that there is $0 < h(< h_0)$ such that for any $x_1 \in [x_0 - \delta, x_1 + \delta]$, the IVP

$$\dot{x} = f(t,x), \quad x(t_0) = x_1$$

has a unique solution φ_1 on $[t_0 - h, t_0 + h]$. Then

$$|t-t_0| \le h \implies |\varphi_1(t)-\varphi_0(t)| \le |x_1-x_0|e^{Lh}$$
.

MATH3405 Differential Equations

Continuous Dependence of Solutions

Theorem 10 (Gronwall's Inequality)

Let $u:[a,b] \to (0,\infty)$ and $v:[a,b] \to [0,\infty)$ be continuous. If there is c>0 such that

$$v(x) \le c + \int_a^x u(t)v(t) dt$$
 for all $x \in [a,b]$,

then

$$v(x) \le c \exp\left(\int_a^x u(t) dt\right)$$
 for all $x \in [a, b]$.

12/14

MATH3405 Differential Equations

Continuous Dependence of Solutions

Theorem 12

Let G be an open region in \mathbb{R}^2 and $I = [-\varepsilon, \varepsilon]$ for some $\varepsilon > 0$. Suppose that

- 1. $(t_0, x_0, 0) \in G \times I$;
- 2. $f(t, x, \lambda)$ is Lipschits with respect to (x, λ) on $G \times I$: there is L > 0 such that

$$|f(t, x_1, \lambda_1) - f(t, x_2, \lambda_2)| \le L(|x_1 - x_2| + |\lambda_1 - \lambda_2|)$$
 on $G \times I$;

3. there is h > 0 such that for every $\lambda \in I$, the solution φ_{λ} of the IVP

$$\dot{\mathbf{x}} = f(t, \mathbf{x}, \lambda), \ \mathbf{x}(t_0) = \mathbf{x}_0,$$

is defined on $[t_0 - h, t_0 + h]$.

Then

$$|t-t_0| \le h \implies |\varphi_{\lambda}(t)-\varphi_0(t)| \le \varepsilon he^{Lh}.$$