This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

(19)日本国特許庁 (JP)

· (12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-292306

(43)公開日 平成5年(1993)11月5日

H 0 4 N 1/40 B 4 1 J 2/525 G 0 3 G 15/01 G 0 6 F 15/66	D S 310	9068-5C 8420-5L				
G 0 3 G 15/01	_	8420-5L				
•	_	8420-5L		•		
G 0 6 F 15/66	3 1 0	8420-5L				
		7339-2C	B 4 1 J	3/ 00	1	В
			審查請求 未請求	請求項の数1	1(全 18 頁)) 最終頁に続く
(21)出願番号	特顧平4-118420		(71)出願人	000005496		
				富士ゼロック	ス株式会社	
(22)出願日	平成 4年(1992) 4月10日			東京都港区赤坂	反三丁目 3 都	₽5号
			(72)発明者	喜多 伸児		
				神奈川県海老名	名市本郷 227	4番地富士ゼロッ
				クス株式会社治	每老名事業)	斤内
			(72)発明者	小勝 斉		
				神奈川県海老名	名市本郷 227	4番地富士ゼロッ
				クス株式会社は	每老名事業)	斤内
			(74)代理人	弁理士 小田	富士雄	(外1名)

(54)【発明の名称】 カラー画像処理方法および装置

(57) 【要約】

【目的】本発明は、経験的なパラメーター調整を必要とせず、簡便な演算により正確な色再現が行え、しかも無彩色領域と有彩色領域の間で不自然な彩度ギャップが生じない墨加刷,下色除去を行うカラー画像処理装置を提供することをその目的とする。

【構成】本発明によれば、カラー画像入力装置で読み込まれた3色色信号について画像モードおよび代表色等の情報に応じて墨を含んだ4色の画像出力信号を生成するカラー画像処理方法において、原稿読取情報を知覚的に等歩的な均等色空間上の3変数色信号で現される色を、前記画像出力信号のうちいずれか2色および墨で実質的に相当する色へ変換しようとした場合における前記墨の量を求め、この墨量を画像出力信号における最大値とし、前記入力手段からの入力情報に応じて実際の墨量を決定し、ついて知覚的に等歩的な均等色空間上での前記3変数色信号における最大値とし、前記入力に対して実際の墨量を決定し、から3色の前記画像出力信号の各々の色量を決定している。

カラー画像処理方法および装置

【特許請求の範囲】

0 ...

【請求項1】カラー画像入力装置で読み込まれた3色色信号について画像モードおよび代表色等の情報に応じて 墨を含んだ4色の画像出力信号を生成するカラー画像処理方法において、

原稿読取情報を知覚的に等歩的な均等色空間上の3変数 色信号に変換し、

この均等色空間上の3変数色信号で現される色を、前記画像出力信号のうちいずれか2色および墨で実質的に相当する色へ変換する場合における前記墨の量を求め、この墨量を画像出力信号における最大値とし、前記入力手段からの入力情報に応じて実際の墨量を決定し、ついで知覚的に等歩的な均等色空間上での前記3変数色信号を用いて前記決定された実際の墨量にたいする墨を除いた3色の前記画像出力信号の各々の色量を決定することを特徴とするカラー画像処理方法。

【請求項2】画像モードの情報は、注目画素に対する周囲画素の明度勾配に応じて判別されることを特徴とする請求項1記載のカラー画像処理方法。

【請求項3】画像モードおよび代表色等の情報は、注目 画素に対する周囲画素の明度勾配から自動的に判別され ることを特徴とする請求項1記載のカラー画像処理方 法。

【請求項4】前記画像出力信号を出力装置の階調特性にあわせて非線形に更に補正することを特徴とする請求項1記載のカラー画像処理方法。

【請求項5】カラー画像入力装置で読み込まれた3色色信号について画像モードおよび代表色等の情報に応じて 墨を含んだ4色の画像出力信号を生成するカラー画像処理装置において、

原稿読取情報を知覚的に等歩的な均等色空間上の3変数 色信号に変換する手段と、

この均等色空間上の3変数色信号で現される色を、前記画像出力信号のうちいずれか2色および墨で実質的に相当する色へ変換する場合における前記墨の量を求める手段と、

この墨量を画像出力信号における最大値とし、前記入力 手段からの入力情報に応じて実際の墨量を決定する手段 と、さらに知覚的に等歩的な均等色空間上での前記3変 数色信号を用いて前記決定された実際の墨量に対する墨 を除いた3色の前記画像出力信号の各々の色量を決定す る手段とを備えたことを特徴とするカラー画像処理装 置。

【請求項6】画像モードの情報が、注目画素に対する周 囲画素の明度勾配から自動的に判別される手段をさらに 備えたことを特徴とする請求項1記載のカラー画像処理 装置。

【請求項7】画像モードおよび代表色等の情報が、注目 画素に対する周囲画素の明度勾配から自動的に判別され る手段をさらに備えたことを特徴とする請求項1記載の カラー画像処理装置。

【請求項8】前記画像出力信号を出力装置の階調特性にあわせて非線形に更に補正する手段をさらに備えたことを特徴とする請求項1記載のカラー画像処理装置。

05 【請求項9】前記均等色空間上の3変数色信号は明度-色度信号であり、前記3変数色信号としての明度-色度 信号から前記墨盤の最大値を求めるテーブルを備えたこ とを特徴とする請求項5記載のカラー画像処理装置。

【請求項10】前記均等色空間上の3変数色信号は明度 10 一色度信号であり、この明度 - 色度信号の上位ビットを アドレスとして前記墨量の最大値の上位ビットを求める テーブルを備えたことを特徴とする請求項5記載のカラ 一画像処理装置。

【請求項11】前記最大値の墨量を求める手段が予め分 15 割された色度領域に対応する数種の色変換係数を有し、 これら数種の色変換係数による墨+2色への色変換を並 列実行し、前記2色の出力信号が共に正となる場合の色 変換後の墨量を選択するよう構成されていることを特徴 とする特許請求の範囲第5項に記載のカラー画像処理装 20 置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、画像入力装置で読み込まれた3色信号を墨を含む複数色のカラー画像記録信号 に変換するカラー画像処理方法および装置に関し、特に、画像記録信号における墨信号と所謂下色除去量を決定するカラー画像処理装置および装置に関する。 【0002】

【従来の技術】印刷技術においてはカラー原画の記録再 生の際には通常4色印刷が用いられている。すなわち、 黄、マゼンタ、シアン、墨の各色の印刷インクに対する 色分解版をとうして印刷が行われている。これは、黄. マゼンタ、シアンの3色印刷の場合、例えば、インクが 理想的な発色特性を持っておらず、画像のコントラスト 35 に乏しい再生画像しか得られないためである。また、こ の4色印刷の際、黄、マゼンタ、シアンの印刷インクに 対していわゆる100%下色除去が行われる場合があ る。これは画像を黄、マゼンタ、シアンの3色のうちの 2色と墨とで再生する方式であり、低明度部における色 40 再現領域が広くなるとともに、高明度部におけるグレー 安定性を高く維持することができるようになる。また下 色除去によって高価なカラーインクの消費量が減少し、 ランニングコストが低下するという利点もある。このよ うに下色除去を4色印刷で行うことには種々の利点があ 45 るが、4色印刷を行う場合に下色除去量と墨量を入力画 像信号に応じていかに決定するかが甚だ難しい。

【0003】例えば一般に、墨は他のカラーインクに対してコントラストが大きいために画像の荒れが比較的目立ちやすく、画像の人肌部には入れにくい。また、文字の原のなけて真画像に対して一般に関係を名くし、文字の

50 画像では写真画像に対して一般に墨量を多くし、文字の

鮮鋭性を上げる必要がある。この問題を解決するため に、印刷のカラースキャナーにおいて下色除去量と黒量 を決定する方法が、特開昭57-173838号公報、 特開昭58-190951号公報および、特開昭58-211757号公報等に開示されている。特開昭57-173838号公報は、下色除去を無彩色領域と有彩色 領域で区別して行うことを示しており、この方式は無彩 色領域を墨のみで再現し、さらに無彩色領域から有彩色 領域への移行領域において墨量を勾配をもって変化させ るものである。また、特開昭58-190951号公報 および、特開昭58-211757号公報には、入力画 像階調値に依存して墨量、下色除去量を決定する方法が 示されている。この方法は、使用されている黒インクの 上色に対応するグレイレベルまでは完全な無彩色構造を 実現し、このグレイレベル以上のシャドウ部においてカ ラーインクを連続的に増加させるものである。すなわ ち、墨インクにより再現可能な一定濃度値まではグレイ 部を墨インクのみで再現し、それ以上のグレイ濃度値で は他の3色のインクを等量ずつ加えることにより高濃度 のグレイを再現する。

【0004】また、インクジェット、感熱転写記録、レーザーカラーゼログラフィー等のディジタルカラー記録方式における下色除去量と墨量とを決定する方法が、例えば特開昭59-161981号公報等に開示されている。特開昭59-161981号公報に示される方法では黄、マゼンタ、アンの3色信号の最小値に、ある定数を乗じて墨量を得、この墨量を各々の色信号から引く下色除去方法が示されている。また、特開昭59-163973号公報では、複数色のインクの分光反射率に基ずき、墨と組み合せるべき2色の色インクを決定し、前記色インクと墨が重ならないように記録を行うことにより、簡便な演算で墨量、下色除去量の決定を行うようにすることが示されている。

[0005]

【発明が解決しようとする課題】しかしながら、前記特開昭57-173838号公報に示されるような下色除去を無彩色領域と有彩色領域で区別して行う方法にお整係数を必要とする。これらの係数の決定は依然としの職したといできず、前記した墨量、下色にしかできず、前記した墨量、下色、特別昭58-190951号公報に依存して墨量、下色除ままた、では、グレイ再現部における処理方法しか述べられてらず、無彩色領域に移行するような場合は、グレイ再現部における処理方法しかがられてらず、無彩色領域がら有彩色領域に移行するような場合、すなわち、一般の絵柄のように彩度がなだらかに変ップの生じるおそれがある。また、特別昭59-161981

号公報に示される方法は、一般に定率下色除去、下色付加と呼ばれるもので、この場合には正確な色再現が行えないという問題がある。この、正確な色再現が行えない理由については、例えば『印刷におけるスミ入れの考察 05 (I)』、第1回色彩工学コンファレンス論文集 、光学4学会、 1984 、 1-7等で述べられている。さらに、特開昭59-163973号公報に示される方法においては、平均的加法混色の原理に基ずいたは、算を行っているため、実際の記録時には正確な色再現が行えないという問題がある。これは、紙内部での光浸透、光拡散が原因であることが知られており、例えば、J.A.C. ユール(Yule)著『カラーリプロダクションの理論』、 印刷学会出版部 、 1971 、 p247~p248に記載されている。

15 【0006】本発明は、前記した従来技術の欠点に鑑み、経験的なパラメーター調整を必要とせず、簡便な演算により正確な色再現が行え、しかも無彩色領域と有彩色領域の間で不自然な彩度ギャップが生じない墨加刷、下色除去を行うカラー画像処理装置を提供することをその目的とする。また、本発明は種々の画像記録方式(印刷,インクジエット,感熱転写記録,レーザーゼログラフィー等)に依存せず、いわゆるデバイス・インデペンデントな墨加刷、下色除去を行うカラーに像処理装置を提供することをその目的とする。さらに、25 本発明は色再現以外の処理との整合性を向上することによって、写真画像では画像の荒れを低減し、文字画像に

対しては黒文字品質を向上させるカラー画像処理装置を

[0007]

提供することをその目的とする。

【課題を解決するための手段】本発明によれば、カラー 画像入力装置で読み込まれた3色色信号について画像モ ードおよび代表色等の情報に応じて墨を含んだ4色の画 像出力信号を生成するカラー画像処理方法において、原 稿読取情報を知覚的に等歩的な均等色空間上の3変数色 35 信号に変換し、この均等色空間上の3変数色信号で現さ れる色を、前記画像出力信号のうちいずれか2色および 墨で実質的に相当する色へ変換する場合における前記墨 の量を求め、この墨量を画像出力信号における最大値と し、前記入力手段からの入力情報に応じて実際の墨量を 40 決定し、ついで知覚的に等歩的な均等色空間上での前記 3変数色信号を用いて前記決定された実際の墨量にたい する墨を除いた3色の前記画像出力信号の各々の色量を 決定している。本発明の第二の発明によれば、画像モー ドの情報は、注目画素に対する周囲画素の明度勾配に応 45 じて自動的に判別される。本発明の第三の発明によれ ば、画像モードおよび代表色等の情報は、注目画素に対 する周囲画素の明度勾配から自動的に判別される。本発 明の第四の発明によれば、前記画像出力信号を出力装置 の階調特性にあわせて非線形に更に補正している。ま 50 た、本発明のカラー画像処理装置によれば、カラー画像 入力装置で読み込まれた3色色信号について画像モードおよび代表色等の情報に応じて墨を含んだ4色の画像出力信号を生成するものにおいて、原稿読取情報を知覚的に等歩的な均等色空間上の3変数色信号に変換する手段と、この均等色空間上の3変数色信号で現される色を、前記画像出力信号のうちいずれか2色および墨で実質的に相当する色へ変換しようとした場合における前記墨の屋を求める手段と、この墨量を画像出力信号における最大値とし、前記入力手段からの入力情報に応じて実際の墨量を決定する手段と、さらに知覚的に等歩的な均等色空間上での前記3変数色信号を用いて前記決定された実際の墨量に対する墨を除いた3色の前記画像出力信号の各々の色量を決定する手段とを備えている。

【0008】本発明の第六の発明によれば、画像モード の情報が、注目画素に対する周囲画素の明度勾配から自 動的に判別される手段をさらに備えている。本発明の第 七の発明によれば、画像モードおよび代表色等の情報 が、注目画素に対する周囲画素の明度勾配から自動的に 判別される手段をさらに備えている。本発明の第八の発 明によれば、画像出力信号を出力装置の階調特性にあわ せて非線形に更に補正する手段をさらに備えている。さ らに他の発明によれば、前記均等色空間上の3変数色信 号は明度-色度信号であり、前記3変数色信号としての 明度-色度信号から前記墨量の最大値を求めるテーブル をさらに備えている。さらに他の発明によれば、均等色 空間上の3変数色信号は明度-色度信号であり、この明 度-色度信号の上位ビットをアドレスとして墨量の最大 値の上位ビットを求めるテーブルをさらに備えている。 さらに他の発明によれば、最大値の墨量を求める手段が 予め分割された色度領域に対応する数種の色変換係数を 有し、これら数種の色変換係数による墨+2色への色変 換を並列実行し、前記2色の出力信号が共に正となる場 合の色変換後の墨量を選択するよう構成されている。墨 量の決定に当たっては、数種の色変換係数を用いた演算 方式によっても、テーブル方式によってもよい。

【0009】好ましくは、墨量調整手段で設定される墨量(K)が墨量演算手段で演算される生成可能な墨量最大値(Kmax)と調整係数(α)を用いて

$$K = \alpha \times Kmax$$
 ($\hbar \hbar l = 0 \le \alpha$
 ≤ 1)

であるようにするのが良い。また、好ましくは、調整係数 (α) が明度 — 色度信号生成手段によって生成される色度信号と絵文字判別手段から出力される絵文字判別信号を用いて決定されるようにするのが良い。また、好ましくは、調整係数 (α) が色度信号から生成される彩度信号 (C*) に対して

$$\alpha = \alpha_0 + \gamma \times C*$$
 ($\hbar \ell$)

で決定されるようにするのが良い。また、好ましくは、 上記係数 α₀とγが絵文字判別信号に応じて切り換え可 能に構成されるようにするのが良い。明度 - 色度信号としては、たとえば1976 CIE L*a*b*を揚げることができる。また、好ましくは、階調補正手段に入力する出力装置用3色カラー画像信号が等価中性灰色明度信号であるようにするのが良い。また、好ましくは、階調補正手段が等価中性灰色明度信号から3色カラー単色明度信号への第1の変換、3色カラー単色明度信号への記録信号への第2の変換からなるようにするのが良い。また、好ましくは、色変換テーブルがよりによりに対応する2つのアドレスから2組の出力装置用3色信号の上位R bitを出力するようにするのが良い。また、好ましくは、補間演算手段が特許請求の範囲第10項に記載の2組の3色信号に対応した3X3の補間演算と墨量の下位P

[5 bitに対応した一次独立な線形補間演算からなるようにするのが良い。

[0010]

【作用】本発明においては、カラー画像入力装置からの 3 色信号を知覚的に等歩度な輝度・色度分離信号に変換 20 する。 具体的には 1976 CIE L*a*b*信号 等がこれに相当し、この信号をもとに後述する墨加刷、 下色除去を行うことによって人間の感覚に適合した処理 が可能であり、しかも画像入力装置の特性に依存しない 形で処理構成を一般化することができる。次に、輝度・ 25 色度分離信号からフルブラック再現での墨量を求める。 すなわち、例えば、L*a*b*信号を黄、マゼンタ、 シアンの3色のうちの2色と墨とで忠実に再現する場合 の墨量を求めるのである。この演算は3入力-3出力で の演算であり、従来の3色の入力色信号から墨を含む4 30 色の出力色信号を生成する場合と異なり、出力信号は一 意に決定される。また、ここで演算された墨量は入力色 を忠実に再現する場合に設定可能な墨の最大量を意味 し、4色再現の場合に設定しうる墨量の範囲を規定す る。最大値の墨量を求める手段としては、均等色空間上 35 の3変数色信号を明度-色度信号とし、3変数色信号と しての明度-色度信号から前記墨量の最大値を求めるテ ープル方式でも、予め分割された色度領域に対応する数 種の色変換係数を設け、これら数種の色変換係数による 墨+2色への色変換を並列実行し、前記2色の出力信号 40 が共に正となる場合の色変換後の墨量を選択するような 演算方式によってもよい。

【0011】一方、その範囲の中で実際に墨量をどのくらいに調整するかは、主に色再現以外の要素から決定される。例えば、入力色の彩度、色相に応じて墨量の調整 係数をコントロールするが、これは主に肌色、草の緑、空の青といった記憶色が位置する中間彩度領域に墨が入って画像に荒れが発生するのを防止するためである。また、画像が写真画像か文字画像かを判定し、その判定結果によっても墨量の調整係数をコントロールする。文字 画像では黒文字の品質が重要であるため、墨量を設定可

能な範囲内で大きくし、墨量の黄、マゼンタ、シアンの 3 色に対する使用比率を上げて墨一色での再現範囲を拡 大する。これによって画像出力装置でのミスレジストレ ーションによる黒文字品質の低下を減少させたり、画像 入力装置での3色信号間の位置ずれによる黒文字品質の 低下を減少させる。このような、色再現以外の要素から 決定された墨量の調整係数と忠実色再現から一意に決定 される墨の最大量との積で墨の出力信号がまず決定され る。次に、決定された墨の出力信号と入力色を表すし* a*b*信号から黄、マゼンタ、シアンの3色出力信号 が決定される。この場合も、既に墨の出力信号が決定さ れていることから、この演算は3入カー3出力での演算 となり、3色出力信号は一意に決定される。これによ り、入力色に対して墨を含む4色の出力信号は測色的な 忠実再現を満足するものとなり、3色出力信号を決定し た後に墨加刷、下色除去を行う従来方式のようにその配 分によって忠実再現が崩れてしまうという欠点を除去す

【0012】このように本発明では、色再現の要素から決定される墨量の設定範囲の中で、色再現以外の画質向 20 上を考慮した墨加刷量をまず決定し、その墨加刷量に対して忠実再現を満足するための3色出力信号を決定するので、忠実な色再現と色以外の画質向上を両立させることができる。また、一連の処理がすべてデバイス・インデペンデントであり、かつ、人間の感性にマッチした知 25 覚的に等歩度な輝度・色度分離信号のもとに実行されることから、本発明は画像記録方式に依存することなく適用可能であり、かつ、必要な調整は人間の感性と良く一致した形で実現される。

[0013]

【実施例】以下、図面を参照しながら実施例に基ずいて本発明の特徴を具体的に説明する。図1は本発明のカラー画像処理装置を実施するための一例の構成を示す実施例である。図において、1は原稿情報を3色に分解して読み取るカラーの画像入力装置であり、読み取られた原稿情報は、例えば、入力装置1内に設けられたA/D変換器(図示せず)によりディジタル信号に変換され、3色色信号R、G、Bとしてパラレルに出力される。色信号R、G、Bは、図示しない等価中性明度変換回路によ

り、等価中性明度信号R_E, G_E, B_Eに変換された後、 明度・色度分離手段2に入力される。明度・色度分離手 段2は入力信号座標系R_E, G_E. B_Eを知覚的に等歩度 であり、かつ、デバイス・インデペンデントな座標系に 05 変換するための手段であって、その座標空間としては、 1976 CIE L*a*b*系が適当であるので、 以下の例ではこの表色系を使用した場合について説明す る。入力信号座標系 { R_E, G_E, B_E}を { L* , a* , b* } 表色系に変換するに 10 は、次のような手段を取り得る。簡単な方法としては、 従来行われている非線形マスキング法を適用することで ある。すなわち、誤差を最小とするような高次の多項式 で近似し、その多項式を用い (R_e , G_e, B_e }から { L * , a * , b * } への変換を 15 行う。非線形マスキング法によるときの変換を一般式で 示すと

$$L * = \Psi_{1} \quad (R_{E} , G_{E} , B_{E})$$

$$a * = \Psi_{a} \quad (R_{E} , G_{E} , B_{E})$$

$$b * = \Psi_{b} \quad (R_{E} , G_{E} , B_{E})$$
(1)

【0014】となる。但し、この方法では(1)式で示す多項式が、例えば、3 組の { $R_{E}{}^{i}$, $G_{E}{}^{i}$, $B_{E}{}^{i}$ } と { $L*^{i}$, $a*^{i}$, $b*^{i}$ } ($i=1,\ldots,N$) の対応する実験データをもとに

25 近似計算されるため、その実験データの等歩度性によって局所的な誤差が左右される。この欠点を補う方法としては、例えば、特開平1-176561号公報、特開平1-159251号公報、特開平1-235642号公報、特開平2-02330 776号公報に開示されるような、ダイレクトルックアップテーブル法が用いうる。これらの方法では、上記実験データの対応を、 $\{R_{\rm E}^i, G_{\rm E}^i, B_{\rm E}^i\}$ を

アドレスとし、 { L* i , a* i , b* i } をその内容とするテーブルで構成する。さらに、その格 35 子点間の内挿処理は、各々その格子点で異なる補正係数 をもとに演算される。例えば、入力信号座標系の i 1 点を { R_{E}^{0} , G_{E}^{0} , B_{E}^{0} } とするとき、内挿処理 後の変換点 { L* 0 , a* 0 , b* 0 } は

$$L *^{0} = \alpha_{1}^{i} \cdot (R_{E}^{0} - R_{E}^{i}) + \beta_{1}^{i} \cdot (G_{E}^{0} - G_{E}^{i}) + \gamma_{1}^{i} \cdot (B_{E}^{0} - B_{E}^{0}) + L *^{i}$$

$$a *^{0} = \alpha_{a}^{i} \cdot (R_{E}^{0} - R_{E}^{i}) + \beta_{a}^{i} \cdot (G_{E}^{0} - G_{E}^{i}) + \gamma_{a}^{i} \cdot (B_{E}^{0} - B_{E}^{0}) + a *^{i}$$

$$b *^{0} = \alpha_{b}^{i} \cdot (R_{E}^{0} - R_{E}^{i}) + \beta_{b}^{i} \cdot (G_{E}^{0} - G_{E}^{i}) + \gamma_{b}^{i} \cdot (B_{E}^{0} - B_{E}^{0}) + b *^{i}$$

(2)

ここで、

$$\alpha_{1}^{i} = (L *^{i+1} - L *^{i}) / (R_{E}^{i+1} - R_{E}^{i})$$
 $\alpha_{a}^{i} = (a *^{i+1} - a *^{i}) / (R_{E}^{i+1} - R_{E}^{i})$
 $\alpha_{b}^{i} = (b *^{i+1} - b *^{i}) / (R_{E}^{i+1} - R_{E}^{i})$

で表される。上式の補正係数 α , β , γ は格子点データ によって既知であるから、この場合、例えば、ダイレク トルックアップテーブルを $\{R_{\epsilon}^{i}, G_{\epsilon}^{i}, B_{\epsilon}^{i}\}$ } をアドレスとし、{ L*i , a*i , b* i , α_{1}^{i} , α_{a}^{i} , α_{b}^{i} , β_{1}^{i} , β_{a}^{i} β_b^i 、 γ_i^i 、 γ_a^i 、 γ_b^i)をその内 容とするテーブルで構成すれば、内挿処理をも含めた演 るよりも改善される。

【0015】明度・色度分離手段2から出力される (L* , a* , b* }信号はフルブラック色変 換手段3に入力される。フルブラック色変換手段3は

$$\begin{array}{rclcrcl} C_{1}^{i} & = & t^{i}_{11} \cdot L * + t^{i}_{12} & \cdot & a * + t^{i}_{13} \cdot b * \\ C_{2}^{i} & = & t^{i}_{21} \cdot L * + t^{i}_{22} & \cdot & a * + t^{i}_{23} \cdot b * \\ K^{i} & = & t^{i}_{31} \cdot L * + t^{i}_{32} \cdot a * + t^{i}_{33} \cdot b * \\ (\text{CCT}, i = 1, 2, 3) \end{array}$$

で表す演算を行う。ここで上式の C_1^i 、 C_2^i は変換 回路8-1~8-3から出力されるカラー信号を表し、 例えば、変換回路8-1ではC₁, C₂, がシアン, マゼンタであり、変換回路8-2では C_i^2 , C_i^2 が マゼンタ、黄であり、変換回路8-3では C_1^3 , C_2^3 が黄、シアンである。一方、Kiは墨信号であり、変 換回路8-1~8-3から各々出力される。

【0016】後段部3-2は、前段部3-1から出力さ れる C_1^i , C_2^i の符号を判定する正負判定器 9-1~9-3と、その結果に基ずき、変換回路8-1~8-3から出力される墨信号K¹を切り換えて出力するセレ クター10からなる。正負判定器9-1~9-3はC.i , C, のいずれか一方でも負の時、出力信号をOF Fとし、C₁ , C₂ の両方が正の時のみ、出力信号 をONとする。セレクター10は、正負判定器9-1~ 入力ポートに対応する墨信号Kiを出力する。これによ って、入力画像信号 { L* , a* , b* } 信号をフルブラック、すなわち、黄、マゼンタ、シアン の3色のうちの2色と墨とで再現する場合の墨量Kma

$$\Delta L * = | \Sigma_{i,j} a_{ij} \cdot L *_{ij} |$$

ただし、

上式のΔL* はブロック内の輝度変化が小さいとき小

タ、シアンの3色のうちの2色と墨への変換を並列実行 10 する前段部3-1と並列実行した演算結果から真の墨量 を選択する後段部3-2からなる。このようなフルプラ ック色変換手段3の一例を図2を参照して説明する。前 段部3-1は{ L* , a* , b* }信号を 黄、マゼンタ、シアンの3色のうちの2色と墨への変換 算が実行でき、局所的な誤差が非線形マスキング法によ 15 を行う3個の変換回路8-1~8-3から成る。この変 換には、例えば、線形1次マスキング法をもちいること ができる。その時、変換回路 $8-1\sim8-3$ は予め設定 されたマスキング係数 { tin~tin } を用い

{ L*. a* , b* }信号から黄、マゼン

25 xが算出される。墨量Kmaxは、入力画像信号を黄. マゼンタ、シアン、墨の4色で忠実再現する場合に設定 可能な墨の上限値を表す。一方、図1において、明度・ 色度分離手段2から出力される (L* , a*, b * } 信号は絵/文字分離手段7と墨量調整手段4に 30 入力され、墨量調整係数αが決定される。絵/文字分離 手段7は注目画素の輝度信号を、図示しないラインメモ リーに蓄えられた周辺画素の輝度信号と比較することに より、注目画素が絵部か文字部かの判定結果を出力す る。墨量調整手段4は注目画素の色度信号と絵/文字分 35 離手段7からの判定結果をもとに、墨量調整係数αを出 力する。以下、その動作の一例を、図3および図4にし たがって説明する。

(4)

【0017】図3は絵/文字分離手段7の動作例の概念 図である。周辺画素の輝度信号し*22と、図示しないラ 9-3からのON/OFF信号を検知し、ONとなった 40 インメモリーに蓄えられた周辺画素の輝度信号し*;~ L*uを3X3ブロックとする画像輝度信号11は、同 じく3 X 3 ブロックのエッジ検出フィルター12 との以 下のようなコンボルージョンがとられる。

おり、エッジ検出フィルターの係数 a ji としては通常の さく、輝度変化が大きいとき大きくなるよう設定されて 50 ラプラシアンフィルターが用いえる。ΔL* は、予め 設定された文字判別用閾値 Δ L * taと、コンパレーター 13によって比較される。その時、△L*≧△L*,,で あれば注目画素は文字部、 Δ L * < Δ L * , であれば注 目画素は絵部と判定され、その結果は墨量調整手段4に 出力される。

【0018】図4は墨量調整手段4の動作例を示す図で ある。明度・色度分離手段から出力される { a* , b* } 信号から1976CIE L*a*b*系メ トリッククロマC*が彩度生成器15により生成され る。墨量調整係数αは係数セレクター17から供給され る係数 α_0 、 γ と彩度信号C*を用いて墨量調整係数生 成器16によって

$$\alpha = \alpha_0 + \gamma \times C *$$
(6)

で演算される。係数セレクター17は2組の係数セット $\{T\alpha_0, Tr\}, \{I\alpha_0, Ir\}$ をもち、絵 /文字分離手段7からの判定結果(T/I Flag) に応じて一方を選択し、墨量調整係数生成器16に送出 する。このように設定された墨量調整係数αとフルプラ ック色変換手段3から出力される墨量Kmaxを用いて 乗算器18により実際の墨量信号Kが決定され、出力さ れる。この時、式(6)で示される墨量調整係数αと彩 度信号C*との関係は、例えば図5のように設定され る。この図において実線は絵部での墨量調整係数αと彩 度信号 C * との関係、破線は文字部での墨量調整係数 α と彩度信号C*との関係を表す。一般に文字を再現する 場合、文字の滑らかさや色の識別性が要求される。出力 装置の記録位置ずれや多重転写性の影響を出来るだけ軽 減し、文字再現の要求を満足するには、黒文字を墨一色 で再現し、色文字には墨が入らない墨量処理が望まし い。一方、絵を再現する場合、滑らかな階調再現と低粒

状性が要求される。一般に、各色出力装置の基本性能が 同一の場合、黄、マゼンタ、シアン画像に比べて、墨の 画像の粒状性が最も悪い。また滑らかな階調再現に対し ても墨量はできるだけ緩やかに変化することが望まし 05 Vi

【0019】図6は、墨量を決定するためのフルブラッ ク色変換手段の他の例の構成を示す図である。明度・色 度分離手段2から出力される { L* , a* ,

- 10 フルブラック色変換手段3は L* , a* , b* } 信号の上位Q bitからフルブラック再現時 の墨の上位R bitを出力するテーブル変換部3-1 1と墨の下位R'bitを補間演算によって決定する 補間演算部3-12からなる。前段部3-11はL*
- , a* , b*に対して各32段階の代表点をも ち、フルブラック再現時の墨量Kmax'を8bit精 度で記憶する。すなわち、アドレスが5bit×3、出 カ8bitのテーブルとなり、汎用256K bit ROM1個で構成される。後段部3-12は入力 { L 20 * , a* , b* } 信号の下位3bitと前段部 3-1からの墨量出力Kmax'をもとに、テーブル内 の格子点間の補間演算を行い、8bit精度での墨量K maxを算出する。このようなフルブラック色変換手段 3の動作を図6を参照して説明する。点順次の画像デー 25 夕 {L*₀ , a*₀ , b*₀} は上位5bitと
- 下位3bitに分けられ上位5bitがアドレスとして 前段部3-1に入力する。そのアドレスを {L, a, b) とするとき、テーブルから当該アドレスの近傍格子 点である、以下の8点のKmax¹の内容が出力され

そのとき補間演算は画像データ【L*。、 a * , b*。}の下位3bitを用いて、例えば以下のよう に実行される。

(1) { L* , a* , b* } 空間での点 $X \{L*a, a*a, b*a\}$ に対して、それを 包含する部分空間の各頂点 Po~Poの重み係数wi (i=0,..,7)を決定する。

(2) 各頂点P₀~P₇に相当する墨量と重み係数wi の線形演算によって、点X {L*。, a*。, b *。} に対応する墨量Kmaxを算出する。

【0020】手順(1)における重み係数の算出法は幾 50 W₁ = U*1×U*a×Ub/2⁴⁰³

40 つか考えられるが、最も簡単な方法は、求めるべき修正 値の点の反対の頂点と、点Xで作られる直方体の体積を 求めるべき修正値における重み係数とするものである。 例えば、図7においては、点Xに対する修正点P₇の重 み係数は点 $X \ge P_0$ で作られる直方体の体積を $P_0 \sim P_1$

45 で張られる空間の体積で除算したものとなる。 {L*。 , a*。, b*。)の下位3bitを各々Ul, Ua, Ubとすると、修正点Prの重み係数Wrは、Ul ×Ua×Ub/2¹⁰³となる。同様に各点の重みは $W_0 = U * 1 \times U * a \times U * b / 2^{103}$

 $W_2 = U * I \times U a \times U * b \cdot / 2^{403}$

 $W_3 = U * I \times U a \times U b / 2^{403}$

 $W_4 = U I \times U * a \times U * b / 2^{403}$

 $W_{ij} = U l \times U * a \times U b / 2^{403}$

 $W_6 = U \times U \times U \times b / 2^{403}$

 $W_{\tau} = U I \times U a \times U b / 2^{403}$

$$X = \sum_{i=0,...,7} W_i \times P_i$$

(9) 式によって、補間演算手段 3-2 は前段部テーブル 3-1 から出力される 8 b i t の格子点データと入力画像データ $\{L*_0$. $a*_0$. $b*_0\}$ の下位 3 b i t を用いて 1 6 b i t 精度の演算を行い、最終的に 8 b i t の墨量Kmaxを出力する。このとき、前段部 3-1 のテーブルの内容としては、予め後述する方法によって、入力画像信号 $\{L*$, a* . b*

}信号をフルブラック、すなわち、黄、マゼンタ、シアンの3色のうちの2色と墨とで再現する場合の墨量が記憶されている。したがって、フルブラック色変換手段3から出力される墨量Kmaxは、入力画像信号を黄、マゼンタ、シアン、墨の4色で忠実再現する場合に設定可能な墨の上限値を表す。

(ここで、U*i はUi の3bitでの補数を表す。)

(8)

となる。その時、手順(2)では $P_0 \sim P_7$ の対応点 P_0 05 $\sim P_7$ と各点の重み係数 $W_0 \sim W_7$ を用いて補正点Xが以下のように算出される。

(9

 $T \alpha_0 > I \alpha_0$, $T \gamma | > I \gamma$

10 (10)

という関係になる。以上のステップによって、図1の墨 量調整手段(2)より墨量信号ENLkが出力される。 { L* , a* , b* }信号と墨量信号EN Lkは色変換テーブル5-1に入力され、補間演算手段 15 5-2を経て黄信号ENLy, マゼンタ信号ENLm, シアン信号ENL c に変換される。その過程を図8~図 9を用いて詳細に述べる。色変換テーブル5-1は各色 8段階の代表点をもち、C、M、Y、K各色8bitの 出力色空間を8x8x8x8=4096の代表点で分割 20 されたものとし、{L* , a* , b*, EN Lk } をアドレスとして {ENLy, ENLm, EN Lclをその内容として記憶する。第6図はテーブル5 -1の一例を示す。アドレスはENLk , L* , a* , b*の順に上位から下位へと設定されてい 25 る。個々のアドレスには後述する方法で予め算出された {ENLy, ENLm, ENLc} が各色6bitの形 で記憶されており、全体としてアドレス12bit、出 カ6bitの3個のテーブルとなり、汎用256Kbi t ROM3個で構成される。

30 【0022】点順次の画像データ {ENLk₀, L*₀, a*₀, b*₀} は上位3bitと下位5bitに分けられ上位3bitがアドレスとして色変換テーブル5-1に入力する。そのアドレスを {k, L, a, b}とするとき、テーブルから以下の16点の {ENL y, ENLm, ENLc}の内容が出力される。

{k, L, a, b} P 00 $\{k, L, a, b+1\}$ $\{k, L, a+1, b\}$ $\{k, L, a+1, b+1\}$ P_{01} $\{k, L+1, a, b\}$ $\{k, L+1, a, b+1\}$ P 06 $\{k, L+1, a+1, b\}$ P 07 $\{k, L+1, a+1, b+1\}$ P_{10} $\{k+1, L, a, b\}$ P_{11} $\{k+1, L, a, b+1\}$ $\{k+1, L, a+1, b\}$ P_{12} $\{k+1, L, a+1, b+1\}$ P_{13} P_{11} {k+1, L+1, a, b} $\{k+1, L+1, a, b+1\}$ P 16 $\{k+1, L+1, a+1, b\}$

 P_{17} {k+1, L+1, a+1, b+1} (11)

【0023】図8は色変換テーブル5-1から選択され た16点での { L* , a* ,b* }空間と {ENLy, ENLm, ENLc} 空間での対応関係を 示す。 {k, L, a, b} を代表点とする { L* , a * , b * } 空間での部分空間はP₀₀ {k, L, a, b}、P₁₀ {k+1, L, a, b}を代表点 とする2つの (ENLy, ENLm, ENLc) 空間で の部分空間に射影される。そのとき補間演算は画像デー 夕 $\{ENLk_0, L*_0, a*_0, b*_0\}$ の下 位5bitを用いて、例えば以下のように実行される。 { L* , a* , b* }空間での点 $X \{L*_0, a*_0, b*_0\}$ に対して、それを 包含する部分空間の各頂点Po~Piの重み係数wi (i=0, ..., 7) を決定する。

- (2) P_n~P_iの重み係数を2つの{ENLy, EN Lm, ENLc } 空間 (k=k₁, k₂に対応) に適用 し、補正点 X1, X2を算出する。
- (3) 補正点X1, X2をENLk₀の下位5bit を用いて更に補間する。

手順(1)における重み係数の算出法は幾つか考えられ るが、最も簡単な方法は、求めるべき修正値の点の反対 の頂点と、点Xで作られる直方体の体積を求めるべき修 正値における重み係数とするものである。例えば、図8

 $X i = \sum_{i=0...7} W_i \times P_{i,i}$

さらに、補正点Xi (i=1, 2)を用いて、手順

 $Xp = (Uk \times X_1 + Uk \times X_2) / 2^6$

で算出される。補間演算手段5-2は上記手順(1)~ (3) を16 bitの乗算器、累算器で実行する。式 (11)、(12)及び(13)で現れる除算は6bi t のシフト演算で実行する。これによって、補間演算手 段 5 - 2 は色変換テーブル 5 - 1 から出力される 6 b i tの格子点データと入力画像データ {ENLk。, L *₀ , a *₀ , b *₀ } の下位 5 b i t を用いて 1 6 b i t精度の演算を行い、最終的に各色8 b i tの {ENLy, ENLm, ENLc} データを出力する。 これらのデータは図1に示す2段の階調補正手段6-1、6-2を介して先に算出された墨信号と共に記録装 置に送信され、図示しない記録装置が色順次に入力カラ 一画像を記録する。

【0025】階調補正手段6-1、6-2は必ずしも必 要とされるものではないが、前述の色変換テーブル5-1の容量を削減し、補間演算手段5-2の精度を向上す るために有効である。また、色変換テーブル5-1の変 換係数が記録装置の入出力特性に極力依存せず、本発明 の記録装置に対する汎用性を確保する意味でも有効であ る。その理由について、図9~図10を用い詳細に説明 する。一般に、色変換テーブル5-1での測色空間 { L* , a* , b* } と記録色空間 (C ,

の { L* , a* , b* } 空間においては、点 Xに対する修正点P₇の重み係数は点XとP₆で作られる 直方体の体積をP_n~P_iで張られる空間の体積で除算し

05 たものとなる。 $\{ENLk_0, L*_0, a*_0,$ b*n の下位5bitを各々Uk, Ul, Ua, U bとすると修正点P,の重み係数W,は、Ul×Ua×U b/2⁶⁰³となる。同様に各点の重みは

 $W_n = U * 1 \times U * a \times U * b / 2^{603}$

 $10 \ W_1 = U * 1 \times U * a \times U b / 2^{603}$

 $W_{1} = U * 1 \times U a \times U * b / 2^{603}$

 $W_3 = U * 1 \times U a \times U b / 2^{6D3}$

 $W_1 = U1 \times U * a \times U * b / 2^{603}$

 $W_i = U l \times U * a \times U b / 2^{603}$

15 $W_6 = U 1 \times U a \times U * b / 2^{603}$

 $W_t = U1 \times Ua \times Ub / 2^{603}$

(ここで、U*i はUi の5bitでの補数を表 す。)

(12)

(i = 1, 2)

(3) では、最終修正点 X p が

20 【0024】となる。その時、手順(2)ではP₀~P₇ の対応点 $P_{i0} \sim P_{i7}$ (i=1, 2) と各点の重み係数 $W_0 \sim W_7$ を用いて補正点Xi (i = 1, 2) が以下の ように算出される。

(13)

(14)

範囲の中で均等に変化させ、実際に記録サンプルを作成 し、それを市販の測色計で計測し、回帰修正を行ってテ 30 ーブルとする。例えば、本実施例の場合、図1の記録用 信号Yout, Mout, Cout, Kout各色8b itの出力色空間から均等に8x8x8x8=4096 の代表点を抽出した場合に相当する。しかしながら、一 般に記録装置の入出力特性は図8に示すような非線形な 35 特性である。図8はGrayの出力を測色値L*を濃淡 反転させて8bitに割り付けた測色信号値、入力を3 色でGrayを再現するために必要とされる8bitの 記録用信号値とした場合の、一般的な入出力特性であ

40 【0026】このような非線形特性を補正せずに色変換 テーブル5-1、補間演算手段5-2を作成すると、図 5に示すような { L* , a* , b* }ー { C, M, Y, 空間の写像に縮退が生じる。 すなわち、図5で前提とした、写像による局所領域形状 45 の保存、および、領域内の線形補間性が満足されなくな る。また、Gray軸(a*=b*=0)に対する { C , M , Y } 空間でのCMY3色の関係が一 定でなく、Gray近傍での連続性が保存されない。こ れを回避するためには、色変換テーブル5-1での分割 M , Y } の対応を得る場合、記録用信号を可変 50 点を増やすことや、連続性を補償するためのスムージン

6d ENLy=ENLm=ENLc=p (12) · すなわち、階調補正手段6-1によって測色空間と記録 色空間の間でのGrayベクトルが互いに線形に定義さ れる。本発明では色変換テーブル作成前、記録用信号 {Yout, Mout, Cout, Kout} &8bi tの範囲で変化させた単色記録サンプルを作成する。そ れを市販の測色計で計測し、階調補正手段6-2の{Y out, Mout, Cout, Kout} → {Ly, L m, Lc, Lk}対応を決定する。さらに、記録サンプ ルがGray近傍となるような記録用信号Ly, Lm, Lcの組合せで記録サンプルを作成し、同じく測色計で の計測から {Ly, Lm, Lc} → {ENLy, ENL m, ENLc } の対応を決定する。以上の作業ののち、 色変換テーブル5-1作成用の記録サンプルを採取す る。その際、記録色空間は {ENLy, ENLm, EN Lc}空間とし、該空間内で等間隔にサンプリングし、 階調補正手段6-1,6-2によって実際の記録用信号 に変換して記録サンプルを得、測色計での計測から測色 空間 { L* , a*, b* } 内での対応点を得 て、テーブル化する。このように階調補正手段6-1. 6-2を介してテーブルを構成することにより、テーブ ルで規定された写像の線形性が向上し、色変換テーブル 5-1の容量を削減し、補間演算手段5-2の精度を向

[0028]

上するために有効である。

【発明の効果】以上説明したように、本発明によれば、

忠実な色再現を前提として決定される墨量の設定範囲の 中で、色再現以外の画質向上を考慮した墨加刷量をまず 決定し、その墨加刷量に対して忠実再現を満足するため の3色出力信号を決定するので、忠実な色再現と色以外 05 の画質向上を両立させることができる。また、一連の処 理がすべてデバイス・インデペンデントであり、かつ、 人間の感性にマッチした知覚的に等歩度な輝度・色度分 離信号のもとに実行されることから、本発明は画像記録 方式に依存することなく適用可能であり、かつ、必要な ようなことから、本発明に係わるカラー画像処理装置は 印刷スキャナー、ビデオプリンター、ディジタルカラー コピー、カラープルーフシステムなどの広範囲な分野で の画像処理装置として極めて好適である。

【図面の簡単な説明】

【図1】図1は本発明のカラー画像処理装置を実施する ための一例の図である。

【図2】図2は本発明で用いられるフルブラック色変換 20 手段の一例の図である。

【図3】図3は、絵/文字分離手段の動作を示す概念図

【図4】図4は、墨量調整手段の構成を詳細に示す図で

【図5】図5は、は墨量調整係数の絵/文字部における 設定例をしめす図である。

【図6】図6は本発明で用いられるフルブラック色変換 手段の他の例の図である。

【図7】図7は、図3のフルブラック色変換手段のテー 30 ブル内補間動作をしめす図である。

【図8】図8は、色変換テーブルの一例の構成を詳細に 示す図である。

【図9】図9は、テーブルから選択された16点での { L* , a* , b*}空間と{ENLy, E

35 NLm、ENLc }空間での対応関係を示す図である。 【図10】第10図は、一般的な記録装置の入出力特性 を示す図である。

【図11】図11は、階調補正手段の入出力特性を示す 図である。

【符号の説明】

2. 均等色空間上の3変数色信号への変換手

3. フルブラック色変換手段、

45 4..... 墨量調整手段、

5-1... 色変換テーブル、

5-2...補間演算手段、

6. 階調補正手段。

[図2] 10 正負判定 正負判定 $\mathbf{K}_{\mathbf{2}}$ K3 $\mathbf{K}_{\mathbf{1}}$ M_2 ౮ ບົ \mathbf{M}_1 Y CC_2 ဌ္ဌ CC1 8-2 8 8.1 25 *****3 ***** • <u>څ</u>

•

*

【図7】

テープル内補間動作例

【図9】

- 16 -

2001 05 17 20:07

【図11】

フロントページの続き

(51) Int. Cl. ⁵	識別記号	庁内整理番号	FI	技術表示箇所
G06F 15/68	3 1 0	9191-5L		
H O 4 N 1/46		9068-5C		