Projektowanie Algorytmów i Metody Sztucznej Inteligencji Projekt 3

Prowadzący: Marta Emirsajłow

Maksymilian Kadukowski 248974

28 Maj 2020

1 Wstęp

1.1 Cel ćwiczenia

Celem ćwiczenia jest zapoznanie się z metodami implementacji sztucznej inteligencji w grach.

2 Gra

W ramach wykonania ćwiczenia zostały zaimplementowane szachy wraz z prostą sztuczną inteligencją opartą o algorytm MinMax. Gra rozgrywa się zgodnie z ogólnie znanymi zasadami (każda figura porusza się zgodnie z zasadami, nie dopuszcza się ruchu w którego wyniku gracz powoduje swój szach, pion po przejściu do końca planszy jest promowany do dowolnej figury). Niestety, czas nie pozwolił na implementację roszady.

2.1 GUI

Do implementacji interfejsu graficznego użyte zostały bilbioteki Qt5 oraz SFML.

2.2 Sztuczna inteligencja

Jako sztuczna inteligencja zaimplementowany został wcześniej wspomniany algorytm MinMax.

2.2.1 Algorytm MinMax

Zakładając, że posiadamy funkcje pozwalająca na ocenę stanu gry w każdym momencie oraz dwóch teoretycznych graczy, z których jeden chce zmaksymalizować, a drugi zminimalizować tą funkcję, to można wygenerować stany gry do pewnej głębokości n (ograniczonej przez moc obliczeniową). Przechodząc po kolei po takim drzewie ruchów można, zakładając oczywiście alternatywne priorytety algorytmu przy każdej rekursji, ocenić, który ruch da największy pewny zysk.

Figura	Wartość
Pion	1
Wieża	5
Skoczek	5
Goniec	5
Królowa	20
Król	1000

Tabela 1: Wartości figur

2.2.2 Implementacja

W grze zaimplementowane jest algorytm w wersji opisanej powyżej - generujemy do pewnej głębokości n możliwe stany, oceniamy wartość szachownicy w aktualnej odnodze, i pamiętając o przemiennym maksymalizowaniu i minimalizowaniu wyniku, oddajemy końcową wartość początkowego ruchu.

2.2.3 Funkcja oceniająca stan gry

Funkcja oceniająca stan gry jest bardzo prosta. Oceniając stan gry dla gracza o kolorze x dodajemy wartości wszystkich aktualnych figur na szachownicy w tym kolorze oraz odejmujemy wartości wszystkich figur w kolorze przeciwnika. Wartości figur przedstawione zostały w tabeli 1. Jak widać, dzięki takim wartościom algorytm będzie preferował zbicie zwykłej figury do zbicia piona, zbicie królowej do zbicia zwykłej figury, oraz zbicie króla do zbicia czegokolwiek innego.

3 Podsumowanie

Ćwiczenie przybliżyło mi metody implementacji sztucznej inteligencji oraz, pośrednio, trudy związane z implementacją GUI. Końcowa implementacja sztucznej inteligencji (o głębokości 3, ponieważ brak wiedzy o optymalizacji algorytmu MinMax powodował dość wolne działanie dla większych liczb) była na tyle dobra, aby pokonać niezbyt dobrego szachistę, jakim jest jej twórca.

Bibliografia

- [1] Strona wikipedii dla zasad gry. https://en.wikipedia.org/wiki/Chess
- [2] Implementacja oraz zasady działania algorytmu https://www.geeksforgeeks.org/minimax-algorithm-in-game-theory-set-1-introduction/https://en.wikipedia.org/wiki/Minimax
- [3] Boilerplate dla zintegrowania biblioteki SFML do Qt5 https://github.com/SFML/SFML/wiki/Tutorial:-Integrating-SFML-into-Qt