

Fachgebiet
Nachrichtenübertragung

Sikora

Elvira Fleig, Rolf Jongebloed

Rechenübung Signale & Systeme (WiSe 2023/2024)

Fouriertransformation, Amplituden- und Phasenspektren (4. Termin)

13.11 - 19.11.2023

Hinweise

- Die Aufgabenblätter zur Rechenübung stehen jeweils vor dem jeweiligen Termin auf dem ISIS-Portal zum Download bereit.
- Aufgaben, die mit [HA] bzw. [AK] beginnen, sind Hausaufgaben bzw. alte Klausuraufgaben, die als Hausaufgabe bearbeitet werden sollen. Diese werden zusätzlich in den freiwilligen Tutorien vorgerechnet bzw. besprochen.

1 Fouriertransformation

1.1 Berechne die jeweiligen Fouriertransformierten der folgenden Signale.

a) [AK]:

 $\mathbf{A}^{u_2(t)}$

B-

-B

$$V(jw) = \frac{4Aj}{Tw^2} \sin(w^2_3T) - \frac{6Aj}{Tw^2} \sin(wT)$$

$$U_{2}'(t) = B6(t+2T) + B6(t-2T) - \frac{B}{T} \prod_{2T}(t)$$

 $U_{10}(t) = Be^{\frac{1}{2}M^{2}T} + Be^{-\frac{1}{2}M^{2}T} - \frac{B}{T} \cdot 2t \cdot 2i(M \cdot T)$
 $= B \cdot 2005(M \cdot 2T) - 2B \cdot 2i(MT)$

$$(N_2(M) = \frac{3M}{2B} \cdot (0000MJ) - SI(MJ))$$

2 Seite(n) output.tex

Ableitung im Zeitbereich

2 Amplituden- und Phasenspektren

2.1 Bestimme die Amplituden- und Phasenspektren der folgenden Signale aus Aufgabe 1.1.

a) [HA]:
$$u_{2}(t)$$
b) $u_{4}(t)$

$$= \frac{2B}{N} \left(\text{SichT} - \text{cos(2MT)} \right) \cdot \text{j}$$

$$= \frac{(M \cdot \{U_{2}(j_{M})\})}{N} \cdot \left(\text{SichT} - \text{cos(2MT)} \right) \cdot \text{j}$$

$$= \frac{(M \cdot \{U_{2}(j_{M})\})}{N} \cdot \left(\text{SichT} - \text{cos(2MT)} \right) \cdot \text{j}$$

$$= \frac{(M \cdot \{U_{2}(j_{M})\})}{N} \cdot \left(\text{SichT} - \text{cos(2MT)} \right) \cdot \text{j}$$

$$= \frac{(M \cdot \{U_{2}(j_{M})\})}{N} \cdot \left(\text{SichT} - \text{cos(2MT)} \right) \cdot \text{j}$$

$$= \frac{2B}{N} \left(\text{SichT} - \text{cos(2MT)} \right) \cdot \text{j}$$

$$= \frac{2B}{N} \left(\text{SichT} - \text{cos(2MT)} \right) \cdot \text{j}$$

$$= \frac{2B}{N} \left(\text{SichT} - \text{cos(2MT)} \right) \cdot \text{j}$$

$$= \frac{2B}{N} \left(\text{SichT} - \text{cos(2MT)} \right) \cdot \text{j}$$

$$= \frac{2B}{N} \left(\text{SichT} - \text{cos(2MT)} \right) \cdot \text{j}$$

d)
$$u_4(t) = A \sqcap_T (3 \cdot (t - t_0))$$

e)

$$u(a:t) \sim \frac{7}{(a)} \cdot u(j\frac{w}{a})$$

$$\Box_{\tau}(t) \circ \neg \neg \tau \cdot si(\omega \cdot \frac{\tau}{2})$$

e.)
$$U_{s}(t) = \frac{D}{A} U_{A}(t) * \delta_{3\tau}(t)$$

$$= \frac{D}{A} \cdot \frac{2A_j}{N^2 T} \cdot \left(2 \cdot \text{Sin}\left(\frac{3}{2} \text{WT}\right) - 3 \cdot \text{Sin}(\text{WT})\right) \cdot \frac{2\pi}{37} \cdot \delta_{\frac{2\pi}{37}}(\text{W})$$

= D.
$$\frac{4A\pi J}{3N^3T^2} \left(28in\left(\frac{1}{2}NT\right) - 3sin(WT)\right) \frac{2\pi}{3T}$$
 (W)

$$A(w) = \left| \frac{AT}{3} \cdot Si \left(\frac{wT}{6} \right) \right|$$

$$L_{\Lambda}(j\omega) \cdot L_{2}(j\omega) = A_{\Lambda}(\omega) \cdot e^{j\varphi_{\Lambda}(\omega)} \cdot A_{2}(\omega) \cdot e^{j\varphi_{2}(\omega)}$$

$$= A_{\Lambda}(\omega) \cdot A_{2}(\omega) \cdot e^{j(\varphi_{\Lambda}(\omega) + \varphi_{2}(\omega))}$$

$$U_{n} = O + j \cdot \underbrace{D \cdot 4\pi}_{3\omega^{2}T^{2}} \cdot \left(2 \cdot \sin\left(\frac{3}{2}\omega \cdot T\right) - 3 \cdot \sin\left(\omega T\right)\right)$$

$$= \text{Re}(\omega)$$

$$= \text{Im}(\omega)$$

$$A_{\Lambda}(\omega) = \frac{D \cdot 4\pi}{3\omega^2 T^2} \cdot (2\sin(\frac{3}{2}\omega T) - 3\sin(\omega T)$$

1. Eine Ableitung im Zeitbereich entspricht ...

= A. e - into . 1 T. s; (N . T)

= = = = = = Si(NT)

- einer Multiplikation des Spektrums U(jω) mit jω im Frequenzbereich. -> Abbildungssatz
- einer Addition des Spektrums U(jω) mit jω im Frequenzbereich.
- einer Division des Spektrums U(jω) mit jω im Frequenzbereich.
- 2. Die Fouriertransformierte eines zur y-Achse symmetrischen Deltaimpulspaares ist ...
- eine Sinusfunktion.
- eine Cosinusfunktion.
- ein Deltaimpulspaar.
- 3. Die Fouriertransformierte einer Rechteckfunktion ist eine ...
- Sinus-Funktion
- Konstantwert-Funktion
- Si-funktion

$$(\omega)_{2} = G_{\frac{2\pi}{31}}(\omega) = H_{G_{\frac{2\pi}{31}}}(\omega) = A_{2}(\omega)$$

Prof. Dr.-Ing.
Sikora

Signale & Systeme

Fouriertransformation

9. November 2016

Voraussetzungen: $\int\limits_{-\infty}^{\infty}|u(t)|\mathrm{d}t<\infty$, $u(t)\in\mathbb{C}$, absolut integrierbar

Definition: Analyse $U(j\omega) \equiv \mathcal{F}\{u(t)\} = \int_{-\infty}^{\infty} u(t) e^{-j\omega t} dt$

Synthese $u(t) \equiv \mathcal{F}^{-1}\{U(j\omega)\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} U(j\omega) e^{j\omega t} d\omega$

 $U(j\omega)$ ist die Fouriertransformierte bzw. das Fourierspektrum der Zeitfunktion u(t). Funktionen im Frequenzbereich werden (hier) mit Großbuchstaben, Zeitfunktion mit Kleinbuchstaben gekennzeichnet.

Amplitudenspektrum, Phasenspektrum:

komplexes Spektrum	Amplitudenspektrum	Phasenspektrum
$U(j\omega) \equiv A(j\omega) e^{j \varphi(w)}$	$A(\omega) \equiv U(j\omega) $	$\varphi(\omega) \equiv \arg\{U(j\omega)\}$

Abbildungssätze:

Eigenschaft	Zeitbereich	Frequenzbereich
Linearität	$a \cdot u(t) + b \cdot v(t)$	$a \cdot U(j\omega) + b \cdot V(j\omega)$
Ähnlichkeitssatz	$u(a \cdot t)$	$\frac{1}{ a } \cdot U\left(j\frac{\omega}{a}\right)$
Zeitverschiebung	$u(t-t_0)$	$U(j\omega)\cdot e^{-j\omega t_0}$
Modulation	$u(t) \cdot e^{j\omega_0 t}$	$U(j(w-w_0))$
Vertauschungssatz	u(t) $U(t)$	$U(j\omega) \\ 2\pi \cdot u(-j\omega)$
Produkt im Zeitbereich	$u(t) \cdot v(t)$	$\frac{1}{2\pi} U(j\omega) * V(j\omega)$
Faltung im Zeitbereich	u(t) * v(t)	$U(j\omega)\cdot V(j\omega)$
Ableitung im Zeitbereich	$\frac{\mathrm{d}^n}{\mathrm{d}t^n} u(t)$	$(j\omega)^n \cdot U(j\omega)$
Integration im Zeitbereich	$\int_{-\infty}^{t} u(t) \mathrm{d}t$	$\frac{U(j\omega)}{j\omega} + \pi U(0) \delta(\omega)$
Symmetrieeigenschaften	$u(t) \in \mathcal{R}$ u(-t) = u(t) u(-t) = -u(t)	$U(-j\omega) = U^*(j\omega)$ $U(-j\omega) = U(j\omega)$ $U(-j\omega) = -U(j\omega)$

Satz von Parseval: $W_u = \frac{1}{2\pi} \int_{-\infty}^{\infty} \underbrace{|U(j\omega)|^2}_{\text{EDS}} d\omega = \int_{-\infty}^{\infty} u^2(t) dt$ EDS: Energiedichtespektrum

Wiener-Khintchine Beziehung: $r_{uu}(\tau) = \int\limits_{-\infty}^{\infty} u(t) \cdot u(t+\tau) \, \mathrm{d}t \quad \leftrightarrow \quad |U(j\omega)|^2$

2 Seite(n) Fouriertransformation.tex

Rechteckfunktion

Deltaimpuls (Dirac-Stoß)

Deltakamm

Sinus / Kosinus

