Shivam Sharma Total MLAssist - Personalised DPP

Question Paper Analysis:

Weak Topic Analysis:

Practice Questions:

Vector:

17.	Let $\vec{u} = \hat{i} + \hat{j}$, $\vec{v} = \hat{i} - \hat{j}$ and $\vec{w} = \hat{i} + 2\hat{j} + 3\hat{k}$. If \hat{n} is a unit vector such that $\vec{u}.\hat{n} = 0$ and $\vec{v}.\hat{n} = 0$, then $ \vec{w}.\hat{n} $ is equal to							
	(A) 1	(B) 2	(C) 3	(D) 0				
39.	Given an equilateral triangle ABC with side length equal to 'a'. Let M and N be two poi							
	respectively on the side AB and AC such that $\overline{AN} = \overline{KAC}$ and $\overline{AM} = \frac{\overline{AB}}{3}$. If \overline{BN} and \overline{CM}							
	are orthogonal then the value of K is equal to							
	(A) $\frac{1}{5}$	(B) $\frac{1}{4}$	(C) $\frac{1}{3}$	(D) $\frac{1}{2}$				
51.	Let $\vec{a}=\hat{i}+\hat{j},\;\vec{b}=\hat{j}+\hat{k}\;\&\;\vec{c}=\alpha\vec{a}+\beta\vec{b}$. If the vectors , $\hat{i}-2\hat{j}+\hat{k}$, $3\hat{i}+2\hat{j}-\hat{k}$ and \vec{c} are coplanated as							
	then $\frac{\alpha}{\beta}$ is							
	(A) 1	(B) 2	(C) 3	(D) - 3				
12.	If the vectors $\overrightarrow{AB} = 3\hat{i} + 4\hat{k}$ and $\overrightarrow{AC} = 5\hat{i} - 2\hat{j} + 4\hat{k}$ are the sides of a triangle ABC, then the							
	length of median thro (1) $\sqrt{18}$	_	(3) √33	(4) √45				
	(1) V10	(2) 1/2	(3) ¥33					
				-				
2.	Let \bar{p} is the p.v. of the orthocentre & \bar{g} is the p.v. of the centroid of the triangle ABC where							

(C) 1/3

(D) 2/3

circumcentre is the origin. If $\,\vec{p}\,=K\,\,\vec{g}\,$, then K=

(B) 2

(A) 3

Functions:

6.	Let $f \colon A \to B$ and $g \colon B \to C$ be two functions and gof : $A \to C$ is defined. Then which of the								
	following statement(s) is true?								
	(A) If gof is onto then f must be onto.								
	(B) If f is into and g is onto then gof must be onto function.								
	(C) If gof is one-one then g is not necessarily one-one.								
	(D) If f is injective	and g is surjective	e then gof must be l	oijective mapping.					
	MULTIPLE CORRECT TYPE								
	$x^2 - 4$	if x < 3	3 .	т					
35.	Let α , β and γ be three positive real numbers, let $f(x) = \alpha x^5 + \beta x^3 + \gamma x$, $x \in R$ and g : that $g(f(x)) = x$ for all $x \in R$. If a_1, a_2, a_3, a_n be in arithmetic progression with m								
	the value of $f\left(g\right)$	$\frac{1}{n}\sum_{i=1}^{n} f(a_i)$ is e	equal to	[1	JEE - Main 2022				
	(A) 0	(B) 3	(C) 9	(D) 27					
6.	The maximum value of the function defined by $f(x) = \min(e^x, 2 + e^2 - x, 8)$ is α then integral value of x satisfying the inequality $\frac{x(x-[\alpha])}{x^2-[\alpha]x+12} < 0$, is								
	[Note: [k] denotes greatest integer function less than or equal to k.								
	(A) 1	(B) 3	(C) 5	(D) 6					
2.	Find the domain & range of the following functions. (Read the symbols [*] and {*} as greater integers and fractional part functions respectively.) (i) $y = \log_{\sqrt{5}} (\sqrt{2}(\sin x - \cos x) + 3)$ (ii) $y = \frac{2x}{1+x^2}$								
	(iii) $f(x) = \frac{x^2 - 3x + x^2}{x^2 + x - x^2}$ (iv) $f(x) = \frac{x}{1 + x }$ (v) $y = \sqrt{2 - x} + \frac{x}{1 + x^2}$ (vi) $f(x) = \frac{\sqrt{x + 4} - x^2}{x - 5}$	$\sqrt{1+x}$							

10. Let $f: R \to R$ and $g: R \to R$ be two non-constant differentiable functions.

If $f'(x) = (e^{(f(x))-g(x)})g'(x)$ for all $x \in R$, and f(1) = g(2) = 1, then which of the following statement(s) is (are) TRUE? [JEE Ad. 2018]

(A)
$$f(2) < 1 - \log_e 2$$

(B)
$$f(2) > 1 - \log_e 2$$

(C)
$$g(1) > 1 - \log_e 2$$

(D)
$$g(1) < 1 - \log_e 2$$