1 Probability Distributions

Probability Density Function (PDF):

$$\mathbb{P}\left[a \le X \le b\right] = \int_{a}^{b} f_X(x)dx \tag{1}$$

Important properties include $\int_{-\infty}^{\infty} f_X(x) dx = 1$ and $f_X(x) \ge 0$.

Example: Uniform Distribution. $f_X(x) = \frac{1}{b-a}$ for $x \in [a, b]$, 0 otherwise.

Cumulative distribution function (CDF):

$$\mathbb{P}\left[X \le a\right] = \int_{-\infty}^{a} f_X(x) dx = F_X(a) \tag{2}$$

2 Population Statistics

Expected Value and Mean (1st moment):

$$\mu_X = \mathbb{E}[X] = \int_{-\infty}^{\infty} x f_X(x) dx \tag{3}$$

Example. What is $\mathbb{E}[X]$ if X is uniformly distributed over [a, b]?

Variance (2nd moment):

$$\sigma_X^2 = \mathbb{V}[X] = \mathbb{E}[(X - \mu_X)^2] = \int_{-\infty}^{\infty} (x - \mu_X)^2 f_X(x) dx$$
 (4)

Example. What is V[X] if X is uniformly distributed over [a, b]?

Exam Practice: Using the above definitions, show that $\mathbb{V}[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$.

3 Sample Statistics

We cannot directly measure population distributions; instead we gather samples and *infer* distribution properties.

Sample Mean:

Sample Variance:

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$
 (5) $s_x^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$ (6)

Sample Standard Deviation:

$$s_x = \sqrt{s_x^2}$$
 (7) $s_{x,y} = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})$ (8)

4 Error Propagation

Note: The following formulas are written for random variables and population statistics. The sample formulas also apply for sample statistics.

Addition. Consider $Z = c_1 X + c_2 Y$,

Subtraction. Consider $Z = c_1 X - c_2 Y$,

$$\sigma_Z^2 = c_1^2 \sigma_X^2 + c_2^2 \sigma_Y^2 + 2c_1 c_2 \sigma_{X,Y}$$
 (9)
$$\sigma_Z^2 = c_1^2 \sigma_X^2 + c_2^2 \sigma_Y^2 - 2c_1 c_2 \sigma_{X,Y}$$
 (10)

Multiplication. Consider $Z = X \cdot Y$,

$$\sigma_Z^2 \approx (\mathbb{E}[Z])^2 \left[\left(\frac{\sigma_X}{\mathbb{E}[X]} \right)^2 + \left(\frac{\sigma_Y}{\mathbb{E}[Y]} \right)^2 + \frac{2\sigma_{X,Y}}{\mathbb{E}[X] \, \mathbb{E}[Y]} \right] \tag{11}$$

Division. Consider Z = X/Y,

$$\sigma_Z^2 \approx (\mathbb{E}[Z])^2 \left[\left(\frac{\sigma_X}{\mathbb{E}[X]} \right)^2 + \left(\frac{\sigma_Y}{\mathbb{E}[Y]} \right)^2 - \frac{2\sigma_{X,Y}}{\mathbb{E}[X] \, \mathbb{E}[Y]} \right] \tag{12}$$

Differentiable Function. Consider Z = g(X, Y),

$$\sigma_Z^2 \approx \left| \frac{\partial g}{\partial X} \right|^2 \sigma_X^2 + \left| \frac{\partial g}{\partial Y} \right|^2 \sigma_Y^2 + 2 \frac{\partial g}{\partial X} \frac{\partial g}{\partial Y} \sigma_{X,Y} \tag{13}$$

Exam Practice. Use the definition of mean and variance to prove the addition and subtraction rules, e.g., $\mathbb{V}[c_1X + c_2Y] = c_1^2 \mathbb{V}[X] + c_2^2 \mathbb{V}[Y] + 2c_1c_2 \text{cov}(X,Y)$. For simplicity, assume X and Y are linearly independent, i.e., $f_Z(x,y) = f_X(x)f_Y(y)$ and cov(X,Y) = 0.