Критерий Коши сходимости числовой последовательности

Определение предела последовательности предполагает известным предел последовательности (a), с которым сравнивается общий член последовательности (x_n). Возникает вопрос: как узнать, имеет ли последовательность какой-либо предел, не имея представления о значении этого предела. Ответ на этот вопрос дает

Критерий Коши. Последовательность x_n , $n \in \mathbb{N}$, сходится тогда и только тогда, когда для $\forall \varepsilon > 0 \ \exists N = N(\varepsilon) \in \mathbb{N}$, такое что для $\forall m,n > N(\varepsilon) (|x_n - x_m| < \varepsilon)$. (Мы видим, что сравниваются не общий член последовательности и предел, а два члена последовательности с достаточно большими номерами. Условие, приведенное в формулировке критерия Коши называется условием фундаментальности последовательности).

 $\lim_{n\to\infty}x_n=a.$

Доказательство. 1. Необходимость. Пусть $\exists \lim x_n = a$, то есть, последовательность сходится. Докажем ее фундаментальность. В соответствии с определением предела для $\forall \varepsilon > 0 \ \exists N(\varepsilon) \in \mathbb{N}$ тчо для $\forall n > N(\varepsilon) (|x_n - a| < \frac{\varepsilon}{2})$. Возьмем любые $m,n>N(\varepsilon)$. Тогда $|x_n-x_m|=|x_n-a+a-x_m|\le |x_n-a|+|x_m-a|<rac{\varepsilon}{2}+rac{\varepsilon}{2}=\varepsilon$. То есть из сходимости следует фундаментальность. 2. Достаточность. Пусть последовательность $x_n, n \in \mathbb{N}$, фундаментальна. Покажем сначала, что из фундаментальности следует ограниченность. В условии фундаментальности примем $\varepsilon = 1$ и найдем $N \in \mathbb{N}$ такое, что $\forall m, n > N (|x_n - x_m| < 1)$. Следовательно, при m = N + 1 имеем: $(\mid\! x_{N+1} - x_n\!\mid\! <\! \varepsilon)$ при $\forall n\!>\!N$. Из неравенства $\mid\!\mid\! x_n\!\mid\! -\mid\! x_{N+1}\!\mid\! \leq\!\mid\! x_{N+1} - x_n\!\mid\! <\!1$ при $\forall n > N$ получим неравенство: $|x_n| < 1 + |x_{N+1}|$ при $\forall n > N$. Следовательно, для всех членов последовательности справедлива оценка $|x_n| < \max\{|x_1|+1,|x_2|+1,...,|x_N|+1,1+|x_{N+1}|\}$ для $\forall n \in \mathbb{N}$. Итак, ограниченность доказана. Воспользуемся теперь первым основным свойством пределов последовательности и выберем из ограниченной последовательности x_n , $n \in \mathbb{N}$, сходящуюся подпоследовательность x_{n_k} , $k\in\mathbb{N}$, где $\lim_{k\to\infty}x_{n_k}=a$. Взяв теперь в условии фундаментальности $m=n_k$ при достаточно больших значениях $k > K(\varepsilon) \in \mathbb{N}$, получим $\forall k > K(\varepsilon), \, \forall n > N(\varepsilon) \, (|x_n - x_{n_k}| < \varepsilon).$ Переходя к пределу при $k \to \infty$ в последнем неравенстве, получим $\forall n > N(\varepsilon) (|x_n - a| \le \varepsilon)$. В силу

произвольности ε выполнение последнего неравенства обеспечивает то, что

Предел функции в точке

Пусть a — предельная точка множества определения функции f(x). Существуют два определения предела функции в точке: $b = \lim_{x \to a} f(x)$.

- 1. Определение Гейне: для любой последовательности $x_n, n \in \mathbb{N}$, такой что $\lim_{n \to \infty} x_n = a$ справедливо: $\lim_{n \to \infty} f(x_n) = b$.
- 2. Определение Коши: для $\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0$ такое, что для $\forall x, |x-a| < \delta$, справедливо ($|f(x)-b| < \varepsilon$).

Для чего нужны два определения? Первое определение не является конструктивным, так как мы не сможем проверить всевозможные числовые последовательности, сходящиеся к точке *а*. Однако, это определение очень удобно для построения контрпримеров. Доказывать же существование предела в точке удобно с помощью второго определения.

Для того, чтобы пользоваться двумя определениями, докажем их эквивалентность, то есть покажем, что из условий первого определения следует выполнение условий второго определения и наоборот.

 $2\Longrightarrow 1$. Пусть справедливы условия второго определения и пусть $\lim_{n\to\infty} x_n = a$. Из определения предела числовой последовательности для любого $\varepsilon>0$ и определенного в соответствии с условием второго предела значения $\delta(\varepsilon)>0$ найдем такое значение $N=N(\delta(\varepsilon))=N(\varepsilon)\in \mathbb{N}$, что $|x_n-a|<\delta(\varepsilon)$ для любого $n>N(\varepsilon)$. Следовательно, в соответствии с условием определения 2 $|f(x_n)-b|<\varepsilon$ при $\forall n>N(\varepsilon)$. Последнее является установлением того факта, что $\lim_{n\to\infty} f(x_n)=b$. То есть выполнение условий второго определения обеспечивает выполнение условий первого определения.

 $1\Rightarrow 2$ доказывается от противного. Пусть выполняются условия первого определения, но условия второго определения нарушаются, то есть, $\exists \varepsilon_0 > 0$ такое, что для $\forall \delta > 0$ $\exists x_0$ такое, что $|x_0 - a| < \delta$ и $(|f(x_0) - b| \ge \varepsilon_0)$. В силу произвольности $\delta > 0$ возьмем $\delta = \frac{1}{n}$ и найдем при каждом значении $n \in \mathbb{N}$ такое значение x_n , что $|x_n - a| < \frac{1}{n}$ и $(|f(x_n) - b| \ge \varepsilon_0)$. Мы видим, что нашли последовательность x_n , $n \in \mathbb{N}$, такую, что $\lim_{n \to \infty} x_n = a$ и $\lim_{n \to \infty} f(x_n) \ne b$. Последнее показывает невыполнимость условий первого определения. Мы пришли к противоречию.

Из определения Гейне и свойств пределов последовательностей следует справедливость свойств пределов функций, аналогичных свойствам пределов последовательностей. Приведем некоторые из них.

Свойства пределов функций

- 1) если $b = \lim_{x \to a} f(x)$ и $c = \lim_{x \to a} g(x)$, то $b + c = \lim_{x \to a} (f(x) + g(x))$;
- 2) если $b = \lim_{x \to a} f(x)$ и $k \in \mathbb{R}$, то $kb = \lim_{x \to a} (kf(x))$;
- 3) если $b = \lim_{x \to a} f(x)$ и $c = \lim_{x \to a} g(x)$, то $b \cdot c = \lim_{x \to a} (f(x) \cdot g(x))$;
- 4) если $b = \lim_{x \to a} f(x)$ и $c = \lim_{x \to a} g(x)$, причем $c \neq 0$, то $\frac{b}{c} = \lim_{x \to a} (\frac{f(x)}{g(x)})$;
- 5) если $f(x) \ge 0$ при любых x, лежащих в некоторой окрестности точки a, то $\lim_{x\to a} f(x) = b \ge 0$;
- 6) если $f(x) \le h(x) \le g(x)$ при любых x, лежащих в некоторой окрестности точки a, причем $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = b$, то $\lim_{x\to a} h(x) = b$ (теорема о двух полицейских).

Пример 1. Покажем, что $\limsup_{x\to 0} \sin x = 0$. Пусть x>0. Сравним площади сектора радиуса 1 раствора x и вписанного в него равнобедренного треугольника с той же вершиной, представленных на рисунке.

Площадь треугольника равна $\frac{\sin x}{2}$, площадь сектора равна $\frac{x}{2}$. Треугольник вписан в сектор, значит площадь треугольника меньше площади

сектора. Следовательно, $\sin x < x$ для любого x > 0. Пользуясь нечетностью функции $\sin x$, получим $\sin x > x$ для любого x < 0. Таким образом, $|\sin x| < |x|$ для $x \ne 0$. Для $\forall \varepsilon > 0 \ \exists \delta(\varepsilon) = \varepsilon$ такое что $|\sin x| < \varepsilon$ при $|x| < \delta(\varepsilon) = \varepsilon$. Таким образом, $\limsup_{x \to 0} x = 0$ в соответствии с определением Коши.

Пример 2. Покажем, что $\lim_{x\to 0} \cos x = 1$.

Воспользуемся оценкой в неравенстве $0 \le |\cos x - 1| = 2\sin^2 \frac{x}{2} \le \frac{x^2}{2}$. Теперь из теоремы о двух полицейских следует $|\cos x - 1| \to 0$ при $x \to 0$. Следовательно, $\cos x \to 1$ при $x \to 0$.

Первый замечательный предел

Докажем, что справедлива формула: $\lim_{x\to 0} \frac{\sin x}{x} = 1$. Прежде всего, заметим, что вследствие нечетности функции $\sin x$ отношение $\frac{\sin x}{x}$ при x, близком к 0, положительно при любом знаке x. Достаточно предположить, что x приближается к 0, оставаясь положительным. В противном случае мы сменим знак x, что не повлияет на результат.

Используем геометрическое доказательство. Рассмотрим сектор круга радиуса 1 с углом при вершине, равным x. BM - дуга граничной окружности сектора, <math>A -его вершина, AB = AM = 1. BD -отрезок касательной к дуге BM в точке B. BC -перпендикуляр, опущенный из точки B на отрезок AM.

В силу последовательной вложимости друг в друга треугольника ABM, сектора ABM и треугольника ABD соответствующие соотношения имеют место между площадями этих фигур: $S_{\Delta ABM} < S_{cekmABM} < S_{\Delta ABD}$. Имеем $S_{\Delta ABM} = \frac{1}{2}\sin x$, $S_{cekmABM} = \frac{1}{2}x$, $S_{\Delta ABD} = \frac{1}{2}\operatorname{tg} x$. Поэтому получаем неравенство $\sin x < x < \operatorname{tg} x$. Если мы поделим все части этого неравенства на $\sin x$, то в силу предположения о знаке x знаки неравенства не изменятся. Поэтому мы имеем $1 < \frac{x}{\sin x} < \frac{1}{\cos x}$. А теперь устремим x к нулю и применим теорему о двух полицейских. Мы получим $\lim_{x\to 0} \frac{x}{\sin x} = 1$

. Осталось применить свойство 4) для получения предела обратной величины: $\lim_{x\to 0} \frac{\sin x}{x} = 1$.