14) Arellano-Bond Estimator

Vitor Kamada

July 2018

Dynamic Model

$$y_{it} = \gamma_1 y_{i,t-1} + \dots + \gamma_p y_{i,t-p} + x'_{it} \beta + \alpha_i + \epsilon_{it}$$

$$Corr(y_{i,t-1}, \epsilon_{i,t-1}) \neq 0$$

$$Corr(y_{i,t-1}, \bar{\epsilon}_i) \neq 0$$

$$Corr(y_{i,t-1} - \bar{y}_i, \epsilon_{it} - \bar{\epsilon}_i) \neq 0$$

2/16

Vitor Kamada ECO 7110 Econometrics II July 2018

IV Estimation in the FD Model

$$\Delta y_{it} = \gamma_1 \Delta y_{i,t-1} + ... + \gamma_p \Delta y_{i,t-p} + \Delta x'_{it} \beta + \Delta \epsilon_{it}$$

$$Corr(y_{i,t-1} - y_{i,t-2}, \epsilon_{it} - \epsilon_{i,t-1}) \neq 0$$

$$Corr(\Delta \epsilon_{it}, \Delta y_{i,t-k}) = 0 \text{ for } k \geq 2$$

Anderson and Hsiao (1981):

 $y_{i,t-2}$ as IV for $\Delta y_{i,t-1}$

3/16

Vitor Kamada ECO 7110 Econometrics II July 2018

Arellano and Bond (1991): Additional Lags as IV

$$\Delta y_{it} = \alpha + \gamma_1 \Delta y_{i,t-1} + \gamma_2 \Delta y_{i,t-2} + \Delta \epsilon_{it}$$
$$t = 4, 5, 6, 7$$

t=4 : two IVs $(y_{i1} ext{ and } y_{i2})$ uncorrelated with $\Delta \epsilon_{i4}$

t=5: three IVs (y_{i1}, y_{i2}, y_{i3}) uncorrelated with $\Delta \epsilon_{i5}$

Total IVs: 2+3+4+5=14

Panel Study of Income Dynamics 1976-82 (PSID)

Variable	Obs	Mean	Std. Dev.	Min	Max
exp	4,165	19.85378	10.96637	1	51
wks	4,165	46.81152	5.129098	5	52
occ	4,165	.5111645	.4999354	0	1
ind	4,165	.3954382	. 4890033	0	1
south	4,165	.2902761	. 4539442	0	1
smsa	4,165	. 6537815	.475821	0	1
ms	4,165	.8144058	.3888256	0	1
fem	4,165	.112605	.3161473	0	1
union	4,165	.3639856	.4812023	0	1
ed	4,165	12.84538	2.787995	4	17
blk	4,165	.0722689	.2589637	0	1
lwage	4,165	6.676346	.4615122	4.60517	8.537
id	4,165	298	171.7821	1	595
t	4,165	4	2.00024	1	7

Arellano-Bond Estimation

xtabond lwage, lags(2) vce(robust)

```
Number of obs
Arellano-Bond dynamic panel-data estimation
                                                                            2380
Group variable: id
                                              Number of groups
                                                                             595
Time variable: t
                                              Obs per group:
                                                                 min =
                                                                 avg =
                                                                 max =
Number of instruments =
                                                                         1253.03
                             15
                                              Wald chi2(2)
                                              Prob > chi2
                                                                          0.0000
                                                                     =
One-step results
```

Une-step results

(Std. Err. adjusted for clustering on id)

lwage	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
lwage L1. L2.	.5707517 .2675649	.0333941	17.09 11.03	0.000	.5053005 .2200082	.6362029 .3151216
_cons	1.203588	.164496	7.32	0.000	.8811814	1.525994

Two-Step GMM Estimation

xtabond lwage, lags(2) twostep vce(robust)

Number of instruments = 15 Wald chi2(2) = 1974.40 Prob > chi2 = 0.0000 Two-step results

(Std. Err. adjusted for clustering on id)

lwage	Coef.	WC-Robust Std. Err.	z	P> z	[95% Conf.	Interval]
lwage L1.	.6095931	.0330542	18.44	0.000	.544808	.6743782
L2.	.2708335	.0279226	9.70	0.000	.2161061	.3255608
_cons	.9182262	.1339978	6.85	0.000	.6555952	1.180857

xtabond lwage, lags(2) vce(robust) maxldep(2)

```
Wald chi2(2)
Number of instruments =
                                                                            1557 28
                                                   Prob > chi2
                                                                              0.0000
One-step results
                                        (Std. Err. adjusted for clustering on id)
                               Robust.
                     Coef.
                              Std. Err.
                                                              [95% Conf. Interval]
       lwage
                                                   P> | z |
       lwage
         L1.
                  .6570311
                              .0304257
                                           21.59
                                                   0.000
                                                               .5973978
                                                                            .7166643
         T.2.
                  .2113461
                              .0258261
                                            8.18
                                                                .160728
                                                   0.000
                                                                            .2619643
                                            6.76
       _cons
                  .9972351
                              .1475037
                                                   0.000
                                                               .7081331
                                                                           1.286337
```

July 2018

Type of Regressors

Predetermined or weakly exogenous regressors:

$$E(x_{it}\epsilon_{is}) \neq 0 \text{ for } s < t$$

$$E(x_{it}\epsilon_{is})=0$$
 for $s\geq t$

 x_{it} is instrumented by $x_{i,t-1}, x_{i,t-2}, ...$

Contemporaneously endogenous regressors:

$$E(x_{it}\epsilon_{is}) \neq 0$$
 for $s \leq t$

$$E(x_{it}\epsilon_{is})=0$$
 for $s>t$

 x_{it} is instrumented by $x_{i,t-2},...$

Baltagi and Khanti-Akom (1990)

wks: weeks worked

occ: dummy for blue-collar occupation

ind: industry

smsa: metropolitan statistical area

ms: marital status

ed: education

xtabond lwage occ south smsa ind, lags(2) maxldep(3) pre(wks,lag(1,2)) endogenous(ms,lag(0,2)) endogenous(union,lag(0,2)) twostep vce(robust) artests(3)

lwage	Coef.	WC-Robust Std. Err.	z	P> z	[95% Conf.	Interval]
lwage						
L1.	.611753	.0373491	16.38	0.000	.5385501	.6849559
L2.	. 2409058	.0319939	7.53	0.000	.1781989	.3036127
wks	0450754	0000500	4.04	0.050	0004400	202122
	0159751	.0082523	-1.94	0.053	0321493	.000199
L1.	.0039944	.0027425	1.46	0.145	0013807	.0093695
ms	.1859324	.144458	1.29	0.198	0972	.4690649
union	1531329	.1677842	-0.91	0.361	4819839	.1757181
occ	0357509	.0347705	-1.03	0.304	1038999	.032398
south	0250368	.2150806	-0.12	0.907	446587	.3965134
smsa	0848223	.0525243	-1.61	0.106	187768	.0181235
ind	.0227008	.0424207	0.54	0.593	0604422	.1058437
_cons	1.639999	.4981019	3.29	0.001	.6637377	2.616261

If ϵ_{it} are serially uncorrelated, then:

$$Cov(\epsilon_{it} - \epsilon_{i,t-1}, \epsilon_{i,t-1} - \epsilon_{i,t-2})$$

 $-Cov(\epsilon_{i,t-1}, \epsilon_{i,t-1}) \neq 0$ but

 $\Delta \epsilon_{it}$ not correlated $\Delta \epsilon_{i,t-k}$ for $k \geq 2$

estat abond

z	Prob > z
-4.5244	0.0000
-1.6041	0.1087
.35729	0.7209
	-4.5244 -1.6041

HO: no autocorrelation

Test of Overidentifying Restrictions

```
quietly xtabond lwage occ south smsa ind, lags(2) maxldep(3) pre(wks,lag(1,2)) endogenous(ms,lag(0,2)) /// endogenous(union,lag(0,2)) twostep artests(3)
```

estat sargan

```
Sargan test of overidentifying restrictions
H0: overidentifying restrictions are valid
chi2(29) = 39.87571
Prob > chi2 = 0.0860
```

Wooldridge (2010): Dynamic Airfare Equation

$$t = 1997,1998, 1999, and 2000$$

$$\textit{Ifare}_{\textit{it}} = \theta_t + \beta_1 \textit{Ifare}_{\textit{i},t-1} + \beta_2 \textit{concen}_{\textit{it}} + c_\textit{i} + u_\textit{it}$$

$$\Delta$$
Ifare_{it} = $\eta_t + \rho \Delta$ Ifare_{i,t-1} + $\gamma \Delta$ concen_{it} + Δu_{it}

t = 1999 and 2000

t = 1999: $Ifare_{i,1997}$

t = 2000: $Ifare_{i,1998}$, $Ifare_{i,1997}$

4□▶ 4₫▶ 4½▶ 4½▶ ½ 900°

reg d(Ifare I.Ifare concen) y99 y00, vce(cluster id)

D.lfare	Coef.	Robust Std. Err.	t	P> t
lfare LD.	1264673	.0267104	-4.73	0.000
concen D1.	.0762671	.0527226	1.45	0.148
y99	0473536	.0050308	-9.41	0.000
y00 _cons	.0624434	(omitted) .0032977	18.94	0.000

Vitor Kamada ECO 7110 Econometrics II July 2018 15/16

xtabond Ifare concen, lags(1) noconsta diffva(y99 y00) vce(robust)

lfare	Coef.	Robust Std. Err.	Z	P> z
lfare L1.	. 3326355	.0633024	5.25	0.000
concen y99 y00	.1519406 .0051715 .0577598	.057848 .0043914 .0038228	2.63 1.18 15.11	0.009 0.239 0.000