Projeto Integrador de Engenharia 2

Drone Auxiliar de Mapeamento Terrestre

Eletrônica

Ponto de Controle 02

Pontos Trabalhados

- 1. Conexões entre componentes presentes em cada frente do projeto, e os métodos de comunicação usados entre estes;
- 2. Diagramas de blocos dos circuitos de cada frente.

Central de Controle

Diagrama de Blocos das Conexões entre os componentes eletrônicos presentes na central de controle.

Drone

Diagrama de blocos das conexões entre os componentes eletrônicos presentes no drone.

Energia

Ponto de Controle 02

Pontos Trabalhados

1. Dimensionamento do Sistema de Carregamento Off-Grid

Estrutura

Ponto de Controle 02

Modelo Estrutural

Requisitos (peso)	Drone de asa fixa	Drone de asa rotativa
Preço (x2)	1 x 2 = 2	2 x 2 = 4
Tamanho/Portabilidade (x 1)	1 x 2 = 2	2 x 2 = 4
Facilidade de pilotagem (x 1)	1 x 2 = 2	2 x 2 = 4
Eficiência de área mapeada (x 3)	2 x 3 = 6	1 x 3 = 3
Estabilidade (x 3)	2 x 3 = 6	1 x 3 = 3
Área de decolagem e pouso (x 2)	1 x 2 = 2	2 x 2 = 4
Capacidade de carga (x 2)	1 x 2 = 2	2 x 2 = 4
Total	22	26

Material da Estrutura

- Impressão 3D
 - o PEEK
 - o PLA
 - o ABS
 - o PETG

Ideia Inicial da Estrutura Drone

Ideia Inicial da Estrutura

Central de Controle

Simulações

- Método dos Elementos Finitos
- Critério de Falha
 - Von Misses
- Material Ortotrópico

Braço do drone

Geometria

PETG			H = x; V	= y; F = z		H = y; V = x; F = z			
		20) N	30	30 N		20 N		N
Perfil	Massa (g)	σ(MPa)	Δmáx (mm)	σ(MPa)	Δmáx (mm)	σ(MPa)	Δmáx (mm)	σ(MPa)	Δmáx (mm)
Quadrado 30x30x3 (mm)	61,722	1,8898	0,40048	2,8348	0,60072	1,9788	0,40053	2,9682	0,60079
Circular 25x2,5 (mm)	33,663	3,7117	1,2913	5,5676	1,937	3,8016	1,2907	5,7024	1,936
Circular 15x3,5 (mm)	24,088	11,161	6,1723	16,742	9,2584	11,527	6,168	17,29	9,252

Braço do Drone

Material e Direções Ortotrópicas

			H = x; V = y; F = z				H = y; V = x; F = z			
		20 N		30 N		20 N		30 N		
Perfil	Massa (g)	σ(MPa)	Δmáx (mm)	σ(MPa)	Δmáx (mm)	σ(MPa)	Δmáx (mm)	σ(MPa)	Δmáx (mm)	
Quadrado 30x30x3 (mm) ABS	50,544	1,786	0,31052	2,679	0,46578	1,8527	0,30514	2,779	0,4577	
Quadrado 30x30x3 (mm) PETG	61,722	1,8898	0,40048	2,8348	0,60072	1,9788	0,40053	2,9682	0,60079	

Braço do Drone

Frame v1

Frame v2

Frame v3

Frame Geometria

PETG H = x; V			= y; F = z		H = y; V = x; F = z				
		20	20 N 30 N		20 N		30 N		
Perfil	Massa (g)	σ(MPa)	Δmáx (mm)	σ(MPa)	Δmáx (mm)	σ(MPa)	Δmáx (mm)	σ(MPa)	Δmáx (mm)
Frame v1	330,83	188,4	20,977	282,59	31,465	212,13	21,455	318,19	32,183
Frame v2	275,04	35,628	6,7446	53,442	10,117	33,542	6,8224	50,314	10,234
Frame v3	321,36	4,0409	0,73034	6,0614	1,0955	4,2286	0,76582	6,3429	1,1018

Frame

Material e Direções Ortotrópicas

		H = x; V = y; F = z				H = y; V = x; F = z			
		20 N		30 N		20 N		30 N	
Perfil	Massa (g)	σ(MPa)	Δmáx (mm)	σ(MPa)	Δmáx (mm)	σ(MPa)	Δmáx (mm)	σ(MPa)	Δmáx (mm)
Frame v3 ABS	263,16	4,3032	0,69691	6,4549	1,0454	4,265	0,73058	6,3975	1,0959
Frame v3 PETG	321,36	4,0409	0,73034	6,0614	1,0955	4,2286	0,76582	6,3429	1,1018

Fator de segurança

PETG				
Tensão de escoamento	18,6 MPa			
Tensão admissível	12,4 MPa			
Braço do drone (Força de 30 N)				
Tensão Máx. encontrada	2.83 MPa			
Fator de segurança	4,38			
Frame (Força de 30 N)				
Tensão Máx. encontrada	6,06 MPa			
Fator de segurança	2.05			

Autonomia de Voo, Motores e Hélices

Software - E -cal

Geral	Peso do aeromodelo:	Nº de rotores:	Tamanho do quadro:	Limite de inclinação		Elevação:	Temperatura do ar.	Pressão (QNH):
	1200 g sem bateria	4	441 mm	em voo:		50 m ASL	25 °C	1013	hPa
	42.3 oz	simples 🗸	17.36 pol.	sem limite 🕶		164 pés ASL	77 °F	29.91	polHg
Célula de bateria	Tipo (C cont. / C máx) - condição de carga:	Configuração:	Capacidade da célula:	descarga máxima:	Resistência	Tensão:	Taxa C:	Peso da c	élula:
	LiPo 8000mAh - 65/100C	3 S 1 P	8000 mAh	85% 🕶	0.00145 Ohm	3.7 V	65 C cont.	223	9
			8000 mAh total				100 C máx	7.9	oz
ESC	Tipo:	Corrente:	Resistência:	Peso:		Acessórios	Fuga de corrente:	Peso:	
	max 50A	50 A cont.	0.005 Ohm	65 g			0 A	0	9
		50 A máx.		2.3 oz				0	oz
Motor	Fabricante - Tipo (Kv) - refrigeração:	Kv (sem torque):	Corrente sem carga:	Limite (até 15s):	Resistência:	Tamanho do invólucro:	# polos magnéticos:	Peso:	
	Spitz - C3548-05 (900) -	900 rpm/V	2.2 A @ 10 V	1000 W V	0.033 Ohm	48 mm	14	172	9
	boa procurar	Assistente-Propulsor-KV				1.89 pol.		6.1	oz
Hélice	Tipo - torção no nariz:	Diâmetro:	Passo:	# pás:	PConst / TConst:	Relação de engrenagem	C C		
	DJI • • •	10 pol.	4.5 pol.	2	1.10 / 1.0	1 :1		calcular	
		254 mm	114.3 mm			10 C			***

Autonomia de Voo, Motores e Hélices

Geometria Otimizada

Validação da Geometria

Perfil	Massa (g)	σ(MPa)	Δmáx (mm)
Braço 30303 PETG HX	61,722	0,43372	0,09191
Frame v3 PETG HX	321,36	0,92739	0,16761
Montagem	403,61	1,009	0,1609

Perfil do Braço Escolhido

Frame Escolhido

Geometria Montada

Validação do ator de segurança

PETG				
Tensão admissível	12,4 MPa			
Braço do drone (Força de 4,59 N)			
Tensão Máx. encontrada	0, 43 MPa			
Fator de segurança	28,84			
Frame (Forç	a de 4,59 N)			
Tensão Máx. encontrada	0,93 MPa			
Fator de segurança	13,33			
Montagem (Força de 4,59 N)				
Tensão Máx. encontrada	1,01 MPa			
Fator de segurança	12,27			

Classificação do Drone

- E94-001B
- E94-002A

Software

Ponto de controle 02

Pontos trabalhados

- Mapeamento do terreno com base nos dados fornecidos pelo LiDAR;
- Calcular menor rota de emergência para o Damte;
- Enviar impulsos elétricos responsáveis por fazer o drone voltar até o ponto inicial;
- Salvar as posições do drone ao longo do tempo utilizando Blockchain;
- Criar uma imagem baseada nos pontos gerados pelo mapeamento;
- Enviar impulsos elétricos responsáveis por fazer o drone voltar até o ponto onde ocorreu a situação de emergência.

Mapeamento do terreno

Mapear o terreno com base nos dados do Lidar.

Situação de emergência

Sinal de emergência.

Situação de emergência

Retorno ao local de emergência utilizando Blockchain.

Situação de emergência

Calcular menor rota e voltar ao ponto inicial.

Criação de Imagem

Criar uma imagem usando Pointcloud.

Obrigado!