25-01-2023 Shift-1

EE24BTECH11004 - ANKIT JAINAR

- 1) Let M be the maximum value of the product of two positive integers when their sum is 66. Let the sample space $S = \{x \in \mathbb{Z} : x(66 - x) \ge \frac{5}{9}M\}$ and the event $A = \{x \in S : x \text{ is a multiple of 3}\}$. Then P(A) is equal to:

 - a) $\frac{15}{44}$ b) $\frac{1}{3}$ c) $\frac{1}{5}$ d) $\frac{7}{22}$
- 2) Let a, b, and c be three non-zero vectors such that $b \cdot c = 0$ and $a = \frac{b \times c}{2} b$. If d is a vector such that $b \cdot d = a \cdot b$, then $(a \times b) \cdot (c \times d)$ is equal to:

 - a) $\frac{3}{4}$ b) $\frac{1}{2}$ c) $-\frac{1}{4}$ d) $\frac{1}{4}$
- 3) Let y = y(x) be the solution curve of the differential equation $e^{2y} \frac{dy}{dx} = \frac{1 + xy + (1 + \log x)}{x}$ with x > 0, and y(1) = 3. Then $\frac{2y(x)}{9}$ is equal to:
 - a) $\frac{2}{3}e^{x}(5-2x+2\log x)$
 - b) $\frac{2}{3}e^{x}(2x+2\log x-3)$
 - c) $\frac{2}{3}e^{x}(3x (1 + \log x) + 2)$
 - d) $\frac{2}{3}e^x(7 + 3x 2\log x)$
- 4) The value of $\lim_{n\to\infty} \frac{1+2-3+4+5-6+\cdots+(3n-2)+(3n-1)-3n}{\sqrt{2n^4+4n+3}-\sqrt{n^4+5n+4}}$ is:

 - b) $3(\sqrt{2} + 1)$
 - c) $\frac{3}{2}(\sqrt{2}+1)$
- 5) The points of intersection of the line ax + by = 0, $(a \ne b)$ and the circle $x^2 + y^2 2x = 0$ are $A(\alpha, 0)$ and $B(1,\beta)$. The image of the circle with AB as diameter in the line x + y + 2 = 0 is:
 - a) $x^2 + y^2 + 5x + 5y + 12 = 0$
 - b) $x^2 + y^2 + 3x + 5y + 8 = 0$
 - c) $x^2 + y^2 + 3x + 3y + 4 = 0$
 - d) $x^2 + y^2 5x 5y + 12 = 0$
- 6) The mean and variance of the marks obtained by the students n a test are 10 and 4, respectively. Later, the marks of one of the students is increased from 8 to 12. If the new mean of the marks is 10.2, then their new variance is equal to:
 - a) 4.04
 - b) 4.08
 - c) 3.96
 - d) 3.92
- 7) Let $y(x) = (1+x)(1+x^2)(1+x^4)(1+x^8)(1+x^{16})$. Then y' y'' at x = -1 is equal to:
 - a) 976
 - b) 464

- c) 496
- d) 944
- 8) The vector $\mathbf{a} = -\hat{i} + 2\hat{j} + \hat{k}$ is rotated through a right angle, passing through the y-axis in its way, and the resulting vector is **b**. Then the projection of $3\mathbf{a} + \sqrt{2}\mathbf{b}$ on $\mathbf{c} = 5\hat{i} + 4\hat{j} + 3\hat{k}$ is:
 - a) $3\sqrt{2}$
 - b) 1
 - c) $\sqrt{6}$
 - d) $2\sqrt{3}$
- 9) The minimum value of the function $f(x) = \int_0^2 e^{|x-t|} dt$ is:
 - a) 2(e-1)
 - b) 2e 1
 - c) 2
 - d) e(e-1)
- 10) Consider the lines L_1 and L_2 given by

$$L_1: \frac{x-1}{2} = \frac{y-3}{1} = \frac{z-2}{2}$$

$$L_2: \frac{x-2}{1} = \frac{y-2}{2} = \frac{z-3}{3}$$

A line L_3 having direction ratios 1, -1, -2, intersects L_1 and L_2 at the points P and Q respectively. Then the length of line segment PQ is:

- a) $2\sqrt{6}$
- b) $3\sqrt{2}$
- c) $4\sqrt{3}$
- d) 4
- 11) Let x = 2 be a local minima of the function $f(x) = 2x^4 18x^2 + 8x + 12$, $x \in (-4, 4)$. If M is the local maximum value of the function f in (-4,4), then M is:
 - a) $12\sqrt{6} \frac{33}{2}$ b) $12\sqrt{6} \frac{31}{2}$

 - c) $18\sqrt{6} \frac{33}{2}$ d) $18\sqrt{6} \frac{31}{2}$
- 12) Let $z_1 = 2 + 3i$ and $z_2 = 3 + 4i$. The set $S = \{z \in \mathbb{C} : |z z_1| |z z_2| = |z_1 z_2|\}$ represents a:
 - a) straight line with sum of its intercepts on the coordinate axes equals 14
 - b) hyperbola with the length of the transverse axis 7
 - c) straight line with the sum of its intercepts on the coordinate axes equals -18
 - d) hyperbola with eccentricity 2
- 13) The distance of the point $(6, -2\sqrt{2})$ from the common tangent y = mx + c, m > 0, of the curves $x = 2y^2$ and $x = 1 + y^2$ is:

 - a) $\frac{1}{3}$ b) 5
 - c) $\frac{14}{3}$
 - d) $5\sqrt{3}$
- 14) Let S_1 and S_2 be respectively the sets of all $a \in \mathbb{R} \setminus \{0\}$ for which the system of linear equations:

$$ax + 2ay - 3az = 1$$

$$(2a+1)x + (2a+3)y + (a+1)z = 2$$

$$(3a+5)x + (a+5)y + (a+2)z = 3$$

has a unique solution and infinitely many solutions. Then:

- a) $n(S_1) = 2$ and S_2 is an infinite set
- b) S_1 is an infinite set and $n(S_2) = 2$
- c) $S_1 = \emptyset$ and $S_2 = \mathbb{R} \setminus \{0\}$
- d) $S_1 = \mathbb{R} \setminus \{0\}$ and $S_2 = \emptyset$ 15) Let $f(x) = \int \frac{2x}{(x^2+1)(x^2+3)} dx$. If $f(3) = \frac{1}{2}(\log_e 5 \log_e 6)$, then f(4) is equal to:
 - a) $\frac{1}{2}(\log_e 17 \log_e 19)$
 - b) $\log_e 17 \log_e 18$
 - c) $\frac{1}{2}(\log_e 19 \log_e 17)$
 - d) $\log_e 19 \log_e 20$