

23.07.13 유하영

Attention

언어 모델

Count based word Representation

Bag of Words

TF-IDF

통계적 언어 모델 = 자기회귀 언어 모델

N-gram

seq2seq

: 2개의 RNN을 연결해서 사용하는 Encoder, Decoder 구조

je suis étudiant

I am a student.

기계 번역기
(SEQUENCE TO SEQUENCE)

Je suis étudiante.

seq2seq

Encoder

시점 t 시점 t+1

Decoder

시점 t

시점 t+1

seq2seq의 한계

입력 시퀀스의 모든 정보를 context vector에 압축하게 되면

정보손실 및 번역품질이 떨어질 가능성 존재

Attention mechanism time step in the becoder in the

전체 입력문장(Encoder) 다시한번 참고

뉴진스 - attention

h_i : 시점 t=1에서의 Encoder 은닉상태

시점(t) = 1

각 시점에서의 Encoder 은닉상태 값

시점(t) = 1

Attention score

2) Attention Distribution

3) 각 인코더의 어텐션 가중치와 은닉상태를 가중 합하여 Attention value를 구하기

= 보정**된 컨텍스트 벡터**

$$a_t = \sum_{i=1}^N lpha_i^t h_i$$

4) 어텐션 값과 t 시점의 디코더 은닉상태를 연결 (concatenate)

seq2seq의 성능을 보정하기 위한 목적

-> 어텐션 스스로가 기존의 seq2seq을 대체하는 방법

->Transformer