Calcul Vectoriel dans \mathbb{R}^2 et \mathbb{R}^3

Dans cette feuille, on notera $\vec{i} = (1,0); \ \vec{j} = (0,1) \ \mathrm{dans} \ \mathbb{R}^2$ et

$$\vec{i} = (1, 0, 0); \ \vec{j} = (0, 1, 0); \vec{k} = (0, 0, 1)$$

dans \mathbb{R}^3 . Si $\mathbf{x} = (u, v, w)$ on notera sa norme (ou sa longueur) par

$$\|\mathbf{x}\| = \sqrt{u^2 + v^2 + w^2}.$$

Si \mathbf{x} , \mathbf{y} sont deux vecteurs, on notera par \mathbf{x} . \mathbf{y} leur produit scalaire et $\mathbf{x} \wedge \mathbf{y}$ leur produit vectoriel.

Exercice 1. Se donnant $\mathbf{a} = 9\vec{i} + 7\vec{j}$, $\mathbf{b} = 11\vec{i} - 3\vec{j}$, $\mathbf{c} = -8\vec{i} - \vec{j}$, exprimer les vecteurs suivants en fonction de \vec{i} et \vec{j} .

1.
$$a - 2b$$

2.
$$a + b + c$$

3.
$$2a - b + c$$

Correction exercice 1. On trouve $\mathbf{a} - 2\mathbf{b} = -13\vec{i} + 13\vec{j}$, $\mathbf{a} + \mathbf{b} + \mathbf{c} = 12\vec{i} + 3\vec{j}$, $2\mathbf{a} - \mathbf{b} + \mathbf{c} = -\vec{i} + 16\vec{j}$.

Exercice 2. Se donnant les vecteurs $\mathbf{a} = (1, 3, 2)$, $\mathbf{b} = (1, -5, 6)$, $\mathbf{c} = (2, 1, -2)$, trouver les coefficients pq, r tels que

$$p\mathbf{a} + q\mathbf{b} + r\mathbf{c} = (4, 10, -8).$$

Correction exercice 2. En calculant coordonnées par coordonnées, on a

$$p\mathbf{a} + q\mathbf{b} + r\mathbf{c} = (4, 10, -8) \Leftrightarrow \begin{cases} p + q + 2r &= 4\\ 3p - 5q + r &= 10\\ 2p + 6q - 2r &= -8 \end{cases}$$

En faisant $L_2 \leftarrow L_2 - 3L_1$ et $L_3 \leftarrow L_3 - 2L_1$ on a alors

$$\begin{cases} p+q+2r &= 4 \\ -8q-5r &= -2 \\ 4q-6r &= -16 \end{cases}$$

En faisant $L_3 \leftarrow 2L_3 + L_2$ on a ensuite

$$\begin{cases} p+q+2r &= 4 \\ -8q-5r &= -2 \\ -17r &= -34 \end{cases}$$

En "remontant" dans le système on trouve p=1, q=-1, r=2.

Exercice 3. Pour chacun des vecteurs \mathbf{a} suivants, calculer $\|\mathbf{a}\|$ et trouver l'unique vecteur unitaire associé.

1.
$$\mathbf{a} = 3\vec{i} - \vec{j} + 2\vec{k}$$

1.
$$\mathbf{a} = 3\vec{i} - \vec{j} + 2\vec{k}$$
. 2. $\mathbf{a} = -2\vec{i} - 6\vec{j} - \vec{k}$. 3. $\mathbf{a} = \vec{i} - 2\vec{k}$.

$$3. \ \mathbf{a} = \vec{i} - 2\vec{k}.$$

Dans chaque cas, on calcule $\|\mathbf{a}\|$ puis $\vec{n} = \frac{\mathbf{a}}{\|\mathbf{a}\|}$. On trouve Correction exercice 3.

$$\vec{n} = \left(\frac{3}{\sqrt{14}}, \frac{-1}{\sqrt{14}}, \frac{2}{\sqrt{14}}\right), \ \vec{n} = \left(\frac{-2}{\sqrt{41}}, \frac{-6}{\sqrt{41}}, \frac{-1}{\sqrt{41}}\right), \ \vec{n} = \left(\frac{1}{\sqrt{5}}, 0, \frac{-2}{\sqrt{5}}\right).$$

Exercice 4. Trouver les vecteurs \mathbf{x} de norme donnée dans les directions suivantes :

- 1. de norme 8 dans la direction $\vec{i} + 2\vec{j} + 4\vec{k}$,
- 2. de norme 5 dans la direction opposée au vecteur $-\vec{i} + 2\vec{j} + 3\vec{k}$.

1) On a $\|\vec{i} + 2\vec{j} + 4\vec{k}\| = \sqrt{21}$, donc Correction exercice 4.

$$\mathbf{x} = \frac{8}{\sqrt{21}}(\vec{i} + 2\vec{j} + 4\vec{k}) = \frac{8}{\sqrt{21}}\vec{i} + \frac{16}{\sqrt{21}}\vec{j} + \frac{32}{\sqrt{21}}\vec{k}.$$

2) De la même facon, $\|-\vec{i}+2\vec{j}+3\vec{k}\|=\sqrt{14},$ donc

$$\mathbf{x} = \frac{5}{\sqrt{14}}(\vec{i} - 2\vec{j} - 3\vec{k}) = \frac{5}{\sqrt{14}}\vec{i} + \frac{-10}{\sqrt{14}}\vec{j} + \frac{-15}{\sqrt{14}}\vec{k}.$$

Exercice 5. Se donnant $\mathbf{a} = (5, 4, -3)$ et $\mathbf{b} = (2, -1, 2)$ trouver

$$(\mathbf{a} + 2\mathbf{b}).(2\mathbf{a} - \mathbf{b}).$$

On trouve $\mathbf{a} + 2\mathbf{b} = (9, 2, 1), 2\mathbf{a} - \mathbf{b} = (8, 9, -8), d'où$ Correction exercice 5.

$$(\mathbf{a} + 2\mathbf{b}).(2\mathbf{a} - \mathbf{b}) = 72 + 18 - 8 = 82.$$

Exercice 6. Trouver l'angle entre les vecteurs $\mathbf{a} = \vec{i} - \vec{j} + 3\vec{k}$ et $\mathbf{b} = \vec{i} + 2\vec{j} + 2\vec{k}$.

On calcule $\mathbf{a}.\mathbf{b} = 5$ puis $\|\mathbf{a}\|^2 = 11$, $\|\mathbf{b}\|^2 = 9$, ainsi Correction exercice 6.

$$\cos(\theta) = \frac{\mathbf{a.b}}{\|\mathbf{a}\| \|\mathbf{b}\|} = \frac{5}{3\sqrt{11}}, \ \theta = \arccos\left(\frac{5}{3\sqrt{11}}\right).$$

Exercice 7. Montrer que les vecteurs $\mathbf{a} = 2\vec{i} - 3\vec{j} + \vec{k}$ et $\mathbf{b} = 2\vec{i} + \vec{j} - \vec{k}$ sont orthogonaux.

Correction exercise 7. On a $\mathbf{a}.\mathbf{b} = 4 - 3 - 1 = 0$, ces vecteurs sont donc orthogonaux.

Exercice 8. Se donnant quatre points A = (1, 1, 1), B = (0, 2, 5), C = (-3, 3, 2) et D = (-1, 1, -6) dans \mathbb{R}^3 , calculer l'angle entre les vecteurs \overrightarrow{AB} et \overrightarrow{CD} . Interprétation géométrique.

Correction exercice 8. On a $\overrightarrow{AB} = (-1, 1, 4)$ et $\overrightarrow{CD} = (2, -2, -8)$. Puis on obtient $\|\overrightarrow{AB}\|^2 = 18$ et $\|\overrightarrow{CD}\|^2 = 72$. Le produit scalaire

$$\overrightarrow{AB}.\overrightarrow{CD} = -36.$$

Si θ est l'angle entre \overrightarrow{AB} et \overrightarrow{CD} , on a

$$\cos(\theta) = -\frac{36}{\sqrt{18 \times 72}} = -1,$$

donc $\theta = \pi$, et les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont donc colinéaires. On déduit de ceci que les quatres points A, B, C, D sont coplanaires (dans un même plan affine).

Exercice 9. Se donnant $\mathbf{a} = \vec{i} + \lambda \vec{j} + 3\vec{k}$ et $\mathbf{b} = 2\vec{i} - \vec{j} + 5\vec{k}$, trouver la valeur de λ pour que \mathbf{a} et \mathbf{b} soient orthogonaux.

Correction exercise 9. On a $\mathbf{a}.\mathbf{b} = 0$ ssi $2 - 2\lambda + 15 = 0$ et donc $\lambda = 17/2$.

Exercice 10. Se donnant $\mathbf{a} = (2, 1, -3)$ et $\mathbf{b} = (3, -2, 1)$ calculer $\mathbf{a} \wedge \mathbf{b}$ ainsi que $\|\mathbf{a} \wedge \mathbf{b}\|$.

Correction exercice 10. La méthode usuelle des produits en croix donne $\mathbf{a} \wedge \mathbf{b} = (-5, -11, -7)$, puis on a $\|\mathbf{a} \wedge \mathbf{b}\|^2 = 195$.

Exercice 11. Sachant que les vecteurs \mathbf{a} et \mathbf{b} vérifient $\|\mathbf{a}\| = 4$, $\|\mathbf{b}\| = 5$ et $\mathbf{a}.\mathbf{b} = -6$, trouver $\|\mathbf{a} \wedge \mathbf{b}\|$.

Correction exercice 11.

On sait que

$$\mathbf{a} \wedge \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \sin(\theta) \vec{n},$$

où \vec{n} est le vecteur directement orthonormal au plan (orienté) défini par les vecteurs \mathbf{a}, \mathbf{b} , et où θ est l'angle entre \mathbf{a}, \mathbf{b} . On a donc

$$\|\mathbf{a} \wedge \mathbf{b}\| = 20 |\sin \theta|.$$

Mais

$$\cos \theta = \frac{\mathbf{a.b}}{\|\mathbf{a}\| \|\mathbf{b}\|} = -3/10.$$

En utilisant $\cos^2 \theta + \sin^2 \theta = 1$, on a

$$|\sin\theta| = \sqrt{1 - 9/100} = \frac{\sqrt{91}}{10},$$

d'où

$$\|\mathbf{a} \wedge \mathbf{b}\| = 2\sqrt{91}.$$

On peut aussi interpréter $\|\mathbf{a} \wedge \mathbf{b}\|$ comme l'aire du parallélogramme défini par \mathbf{a}, \mathbf{b} .