RC522 RFID Module

Overview

In this lesson, you will learn to how to apply the RC522 RFID Reader Module on MEGA2560 R3. This module uses the Serial Peripheral Interface (SPI) bus to communicate with controllers such as Arduino, Raspberry Pi, beagle board, etc.

Component Required:

- 1 x Mega2560 R3
- 1 x RC522 RFID module
- 7 x F-M wires (Female to Male DuPont wires)

Component Introduction

RC522

The MFRC522 is a highly integrated reader/writer for contactless communication at

13.56 MHz. The MFRC522 reader supports ISO 14443A / MIFARE® mode.

The MFRC522's internal transmitter part is able to drive a reader/writer antenna designed to communicate with ISO/IEC 14443A/MIFARE® cards and transponders without additional active circuitry. The receiver part provides a robust and efficient implementation of a demodulation and decoding circuitry for signals from ISO/IEC 14443A/MIFARE® compatible cards and transponders. The digital part handles the complete ISO/IEC 14443A framing and error detection (Parity & CRC). The MFRC522 supports MIFARE® Classic (e.g. MIFARE® Standard) products. The MFRC522 supports contactless communication using MIFARE® higher transfer speeds up to 848 kbit/s in both directions.

Various host interfaces are implemented:

- SPI interface
- Serial UART (similar to RS232 with voltage levels according pad voltage supply)
- I2C interface.

The figure below shows a typical circuit diagram, using a complementary antenna connection to the MFRC522.

Connection

Schematic

Wiring diagram

Code

After wiring, please open the program in the code folder-" RC522 RFID Module "and press UPLOAD to upload the program. See "Blink" for details about program uploading if there are any errors.

Before you can run this, make sure that you have installed the < rfid > library or re-install it, if necessary. Otherwise, your code won't work.

For details about loading the library file, see "Arduino IDE useful manual.pdf"

					Arduino Leonardo/Micro Pin								
							RST/Reset	RSI	9	5	D9	RESEI/ICSP-5	RSI
							SPI SS	SDA (SS)	10	53	D10	10	10
SPI MOSI	MOSI	11 / ICSP-4	51	D11	ICSP-4	16							
SPI MISO	MISO	12 / ICSP-1	50	D12	ICSP-1	14							
SPI SCK	SCK	13 / ICSP-3	52	D13	ICSP-3	15							

#define RST_PIN 5 // Configurable, see typical pin layout above

#define SS_PIN 53 // Configurable, see typical pin layout above

The locations of SPI pin vary with different chips, and you have to make a minor

modification of the function.

Open the monitor then you can see the data as blow:

Click the Serial Monitor button to turn on the serial monitor. The basics about the serial monitor are set out in detail in "Arduino IDE useful manual.pdf"

