LA CHEAT SHEET NOV WEEK 3

QSNACK (PIECE OF CAKE) EDITION

<u>Definition.</u> Let $\beta = \{u_1, u_2, \dots, u_n\}$ be a basis for FDVS V. For $x \in V$, let a_1, a_2, \dots, a_n be the unique scalars \ni

$$x = \sum_{i=1}^{n} a_i u_i$$

the coordinate vector of x relative to β , denoted $[x]_{\beta}$, by

$$[x]_{\beta} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$

<u>Definition.</u> V and W are FDVS with basis $\beta = \{v_1, v_2, \dots, v_n\}$ and $\gamma = \{w_1, w_2, \dots, w_m\}$, respectively. Let $T: V \to W$ be linear. Then for each $j, 1 \le j \le n$, there exist unique scalars $a_{ij} \in F, 1 \le i \le m, \exists$

$$T(v_j) = \sum_{i=1}^{m} a_{ij} w_i \text{ for } 1 \le j \le n$$

Let $A_{ij} = a_{ij}$, the matrix $A = [T]^{\gamma}_{\beta}$ is call the matrix representation of T in the ordered bases β and γ . If V = W and $\beta = \gamma$, then we write $A = [T]_{\beta}$

Theorem. Let V and W be FDVS with basis β and γ , respectively, and let $T, U: V \to W$ be linear transformations. Then

- (a) $[T + U]^{\gamma}_{\beta} = [T]^{\gamma}_{\beta} + [U]^{\gamma}_{\beta}$
- (b) $[aT]^{\gamma}_{\beta} = a[T]^{\gamma}_{\beta}$ for all scalars a.