Dos de las aplicaciones más, desta ca das de la representación de un vector mediante con ponentes, son:

i) Facilità la sama orràfica de Vectores: Si se tienen vectores de diversas orientas ones, es más faitil somarlos si se expresen en termos de sus componentes rectangulares

ii) Permite sustituir las operaciones graficas por oberaciones algebraias

Suma Analitica de Vectores

La representación mediante componentes ractouopularis bernite sustituir la operación gráfica por una operación elgebrasca. Así:

De la figura: Cx = Ax + Bx y Cq = Aq + By Ademas:

$$Cx = Ax + Bx$$

$$C = \sqrt{(Ax + Bx^2 + (Ay + By)^2}$$

$$Cy = Ay + By$$

$$\theta_c = tg^3 \frac{Ay + By}{Ax + Bx}$$

Este resuitado se puede y enevalrar para el caso de mas de 2 vectores:

$$R = \sum_{k=1}^{\infty} A_{kk}$$

$$R = R_{x} + R_{y} = (\sum_{k=1}^{\infty} A_{kx}) + (\sum_{k=1}^{\infty} A_{ky})$$

$$R_{x} = \sum_{k=1}^{\infty} A_{kx} = \sum_{k=1}^{\infty} A_{kx} \cos \theta_{k}$$

$$R_{y} = \sum_{k=1}^{\infty} A_{ky} = \sum_{k=1}^{\infty} A_{kx} \sin \theta_{k}$$

$$R = \sqrt{R_{x}^{2} + R_{y}^{2}} + R_{y}^{2}$$

$$R = \sqrt{R_{x}^{2} + R_{y}^{2}} + R_{y}^{2}$$

$$R = \sqrt{R_{x}^{2} + R_{y}^{2}} + R_{y}^{2}$$