Projeto de Churn Redes Neurais

Arthur Fernandes Scanoni João Marcos Alcântara Vanderley Kennedy Edmilson Cunha Melo Mateus Elias de Andrade Pereira Rafael dos Reis de Labio

Dataset

Customers churned in telecom services

Dataset

Carregamento e Exploração Inicial

- Dataset de churn telecom com
 7.043 clientes e 21 features
- Distribuição desbalanceada:
 73.4% No Churn vs 26.6% Yes
 Churn
- Identificação de 11 valores ausentes na coluna 'TotalCharges'

- Tratamento de Dados Ausentes
 - Conversão de 'TotalCharges' para formato numérico
 - Preenchimento com mediana (R\$ 1,397.47) dos valores ausentes
 - Zero valores ausentes após tratamento


```
Tratando valores ausentes na coluna 'TotalCharges'...
   - Mediana calculada: 1397.47

    Valores ausentes preenchidos com sucesso!

🔍 Verificação pós-tratamento (não deve haver mais NaNs):
gender
SeniorCitizen
Partner
Dependents
tenure
PhoneService
MultipleLines
InternetService
OnlineSecurity
OnlineBackup
DeviceProtection
TechSupport
StreamingTV
StreamingMovies
Contract
PaperlessBilling
PaymentMethod
MonthlyCharges
TotalCharges
Churn
dtype: int64
```

- Codificação de Variáveis
 - LabelEncoder aplicado em 16 variáveis categóricas
 - Conversão da variável alvo 'Churn':
 No=0, Yes=1
 - Matriz final: 20 features (16 categóricas + 4 numéricas)


```
Codificando variáveis categóricas...
    gender
    Partner
    Dependents
    PhoneService
    MultipleLines
    InternetService
    OnlineSecurity
    OnlineBackup
    DeviceProtection
    TechSupport
    StreamingTV
    StreamingMovies
    Contract
    PaperlessBilling
 PaymentMethod

▼ Churn (0=No, 1=Yes)

Shape final: X=(7043, 19), y=(7043,)
```

cin.ufpe.br

- Correlação
 - Tenure (Ocupação)
 - MonthlyCharges
 - TotalCharges
 - Churn_numeric

- Divisão Estratificada dos Dados
 - Treinamento: 4.224 amostras (60%)
 - Validação: 1.408 amostras (20%)
 - Teste: 1.411 amostras (20%)
 - Distribuição de classes preservada em todos os conjuntos

```
    Dividindo os dados...
    Treinamento: 4,225 amostras (60.0%)
    Validação: 1,409 amostras (20.0%)
    Teste: 1,409 amostras (20.0%)

    Distribuição de classes:
    Treinamento − Classe 0: 3,104 (73.5%) | Classe 1: 1,121 (26.5%)
    Validação − Classe 0: 1,035 (73.5%) | Classe 1: 374 (26.5%)
    Teste − Classe 0: 1,035 (73.5%) | Classe 1: 374 (26.5%)
```


- Normalização e Balanceamento
 - StandardScaler aplicado apenas nos dados numéricos
 - Oversampling básico para balancear classes de treino
 - Dados balanceados: 5.161 Classe 0 e
 5.161 Classe 1

```
i Distribuição original (treinamento): Classe 0 = 3,104, Classe 1 = 1,121
i Distribuição balanceada: Classe 0 = 3,104, Classe 1 = 3,104
▼ Oversampling aplicado com sucesso!
```

```
# Normalização usando StandardScaler
   print(" Normalizando dados...")
   scaler = StandardScaler()
   X_train_scaled = scaler.fit_transform(X_train)
  X_val_scaled = scaler.transform(X_val)
   X test scaled = scaler.transform(X test)
   print("♥ Normalização concluída")
   print("A Scaler ajustado apenas no conjunto de treinamento")
   # Verificando normalização
   print(f"\n Estatísticas pós-normalização (treinamento):")
   print(f" Média (primeiras 5 features): {np.mean(X_train_scaled, axis=0)[:5]}")
   print(f" Desvio padrão (primeiras 5): {np.std(X_train_scaled, axis=0)[:5]}")
Normalizando dados...
Normalização concluída
A Scaler ajustado apenas no conjunto de treinamento
Estatísticas pós-normalização (treinamento):
  Média (primeiras 5 features): [-5.71797705e-17 9.92237193e-17 -6.72703182e-18 1.01746356e-16
-1.34540636e-17]
  Desvio padrão (primeiras 5): [1. 1. 1. 1. 1.]
```


Experimentos

Random Forest

Parâmetros Iniciais

```
rf_model = RandomForestClassifier(
    n_estimators=100,  # 100 árvores no ensemble
    max_depth=10,  # Profundidade máxima = 10
    max_features='sqrt',  # √(features) por split
    min_samples_leaf=5,  # Mínimo 5 amostras por folha
    random_state=42,  # Reprodutibilidade
    n_jobs=-1  # Usar todos os CPUs
)
```


Random Forest

Treinamento

```
# Fazendo predições com Random Forest
print(" Fazendo predições...")
y train pred rf = rf model.predict(X train scaled)
y val pred rf = rf model.predict(X val scaled)
y test pred rf = rf model.predict(X test scaled)
# Probabilidades para métricas KS e ROC-AUC
y train proba rf = rf model.predict proba(X train scaled)[:, 1]
y val proba rf = rf model.predict proba(X val scaled)[:, 1]
y test proba rf = rf model.predict proba(X test scaled)[:, 1]
print(" Predições concluídas!")
Fazendo predições...
 Predições concluídas!
```


Avaliação

ROC-AUC: 0.8373
F1-Score: 0.6290

Cross-Entropy: 0.4719

Matriz de Confusão: [[TN: 790, FP: 245] [FN: 90, TP: 284]]

MSE: 0.1569

Random Forest

Otimização

```
Primeiramente, vamos definir a função que o Optuna vai otimizar usando cross-validation com a métrica KS.

def objective(trial):
    """Função objetivo para Optuna - otimiza parâmetros sugestivos"""

# Parâmetros sugestivos
params = {
        'n_estimators': trial.suggest_int('n_estimators', 50, 500, step=25),
        'max_depth': trial.suggest_int('max_depth', 3, 25),
        'max_features': trial.suggest_int('max_features', ['sqrt', 'log2', 0.3, 0.5]),
        'min_samples_leaf': trial.suggest_int('min_samples_leaf', 1, 20),
        'random_state': 42,
        'n_jobs': -1,
        'class_weight': 'balanced'
}
```

```
MELHORES PARÂMETROS:
    n_estimators: 425
    max_depth: 19
    max_features: sqrt
    min_samples_leaf: 20
Melhor KS Score: 0.5641
```


Comparações Finais

```
COMPARAÇÃO BASELINE VS OTIMIZADO:
     Métrica Baseline Otimizado Melhoria Pct
                                         1.9200
                0.5226
                           0.5326
                           0.8359
     ROC-AUC
                0.8329
                                         0.3700
    F1-Score
                0.6232
                           0.6266
                                         0.5500
         MSE
                0.1579
                           0.1627
                                         2.9900
                0.4777
Cross-Entropy
                           0.4896
                                         2.4800
```


Random Forest

Comparações Finais

MLP

- Modelo: MLPClassifier
- Tuning: Análise sistemática de hiperparâmetros + Optuna (para otimização avançada)
- Estrutura da rede: [10], [50], [100], [50,25], [100,50], [100,100], [100,50,25], [200,100,50]
- Funções de ativação: Logistic (Sigmoid), ReLU, Tanh
- Taxa de aprendizado: 0.0001, 0.001, 0.01, 0.1 + Estratégias adaptativas (Reduz pela pquando loss para de melhorar)
- Otimizadores: ADAM, SGD, L-BFGS + configurações específicas
- Regularização: 0.00001, 0.0001, 0.001 (L2 penalty)
- Loss: Cross-entropy (log-loss)
- Métricas: KS Score (principal), ROC-AUC, F1-Score, MSE

MLP

Implementação dos Experimentos

```
print(" 5 TESTE 2: Funções de Ativação")
print("=" * 50)
# Funções de ativação para testar (conforme especificado no projeto)
activation_functions = [
    ('logistic', 'Logistica (Sigmoide)'),
    ('tanh', 'Tangente Hiperbólica'),
    ('relu', 'ReLU (Rectified Linear Unit)')
# Usar a melhor arquitetura encontrada anteriormente (ou uma padrão)
best_architecture = (100, 50) # 2 camadas como padrão
activation_results = ()
for activation, name in activation functions:
    results, model = test_mlp_configuration(
        hidden_layers=best_architecture,
        activation=activation,
        config_name=f"Ativação {name}"
```


MLP

Implementação dos Experimentos

```
TESTE 1: Número de Camadas e Neurônios
                                    5 TESTE 2: Funções de Ativação
                                                                            TESTE 3: Taxa de Aprendizagem
                                                                                _____
Testando 1 camada - 10 neurônios:
                                    Testando Ativação Logistica (Sigmoide):
                                                                            Testando LR Taxa Baixa (0.001):
 Camadas: (10.)
                                     Camadas: (100, 50)
                                                                              Camadas: (100, 50)
 Ativação: relu
                                     Ativação: logistic
                                                                              Ativação: relu
 Taxa aprendizado: 0.001
                                     Taxa aprendizado: 0.001
                                                                             Taxa aprendizado: 0.001
 Regularização (alpha): 0.0001
                                     Regularização (alpha): 0.0001
                                                                             Regularização (alpha): 0.0001
 Otimizador: adam
                                     Otimizador: adam
                                                                              Otimizador: adam
 Dados: Balanceado
                                     Dados: Balanceado
                                                                             Dados: Balanceado
ROC-AUC: 0.8266
                                     ROC-AUC: 0.8311
                                                                             ROC-AUC: 0.7769
F1-Score: 0.6070
                                     F1-Score: 0.6181
                                                                             F1-Score: 0.5545
MSE: 0.1714
                                     MSE: 0.1742
                                                                             MSE: 0.2142
Cross-Entropy: 0.5103
                                     Cross-Entropy: 0.5158
                                                                             Cross-Entropy: 0.8143
■ Matriz de Confusão:
                                     Matriz de Confusão:
                                                                             Matriz de Confusão:
   [[TN: 748, FP: 287]
                                        [[TN: 745, FP: 290]
                                                                                [[TN: 786, FP: 249]
    [FN: 86, TP: 288]]
                                        [FN: 77, TP: 297]]
                                                                                [FN: 135, TP: 239]]
 Convergiu em 89 iterações
                                     Convergiu em 45 iterações
                                                                              Convergiu em 156 iterações
 Convergiu em 84 iterações
                                     Convergiu em 156 iterações
 Convergiu em 87 iterações
```


MLP Otin

Otimizações

```
# Espaço de busca
n_layers = trial.suggest_int("n_layers", 1, 2)
units1 = trial.suggest_categorical("units1", [10, 32, 64, 128])
units2 = trial.suggest_categorical("units2", [16, 32, 64, 128]) if n_layers == 2 else 0
activation = trial.suggest_categorical("activation", ["relu", "tanh", "sigmoid"])

Opt_name = trial.suggest_categorical("optimizer", ["adam", "rmsprop", "adadelta", "sgd"])

Ir = trial.suggest_float("learning_rate", 1e-4, 1e-1, log=True)
dropout = trial.suggest_float("dropout", 0.0, 0.5)

12_alpha = trial.suggest_float("l2_alpha", 1e-6, 1e-2, log=True)
batch_size = trial.suggest_categorical("batch_size", [32, 64, 128])
patience = trial.suggest_categorical("patience", [10, 20])
```

Melhores parametros

n_iayers	I
units1	10
activation	"tanh"
optimizer	"adadelta"
learning_rate	0.014737337784272326
dropout	0.023095576748070612
l2_alpha	0.0001714155043478194
batch_size	32
patience	cin.ufpe.b
	CIII. GIPC.D

n lovere

MLP Otimizações

■ TESTE - MLP OTIMIZADA

@ KS (Principal): 0.5146

ROC-AUC: 0.8283 F1-Score: 0.6084 MSE: 0 1732 F1-Score: 0.6084

MSE: 0.1732

Cross-Entropy: 0.5131

Matriz de Confusão: [[TN: 748, FP: 287] [FN: 85, TP: 289]]

📊 VALIDAÇÃO - MLP OTIMIZADA

@ KS (Principal): 0.5238

■ ROC-AUC: 0.8280 F1-Score: 0.6206

MSE: 0.1698

Cross-Entropy: 0.5052

Matriz de Confusão: [[TN: 760, FP: 275] [FN: 82, TP: 292]]

cin.ufpe.br

Gradient Boost

Experimentação inicial

```
gb model = GradientBoostingClassifier(
   n estimators=100, # Número de árvores
   # Profundidade máxima das árvores
   max depth=6,
   min samples split=20, # Mínimo de amostras para dividir um nó
   min samples leaf=5, # Mínimo de amostras em uma folha
   subsample=0.8,
                          # Fração de amostras para cada árvore
   max features='sqrt', # Número de features consideradas
   random state=42,
   verbose=0
print("Treinando Gradient Boosting...")
gb model.fit(X train balanced, y train balanced)
```

```
AVALIAÇÃO DO GRADIENT BOOSTING
TREINAMENTO
 KS (Principal): 0.7953
 ROC-AUC: 0.9573
 F1-Score: 0.8060
 MSE: 0.0889
 Cross-Entropy: 0.2939
 Matriz de Confusão:
     [[TN: 2680, FP: 424]
     [FN: 78, TP: 1043]]
VALIDAÇÃO
 KS (Principal): 0.4955
 ROC-AUC: 0.8280
 F1-Score: 0.6105
 MSE: 0.1582
 🔥 Cross-Entropy: 0.4751
 Matriz de Confusão:
     [[TN: 824, FP: 211]
 Matriz de Confusão:
     [[TN: 816, FP: 219]
      [FN: 112, TP: 262]]
```

cin.ufpe.br

Gradient Boost

Gradient Boosting

Variação dos parâmetros

- Loss: deviance
- · Learning rate
- Número de estimadores
- Subsample
- Criterion: friedman mse
- Min_samples_leaf
- Max depth

```
learning rate = trial.suggest float('learning rate', 0.01, 0.3)
n estimators = trial.suggest int('n estimators', 50, 300)
subsample = trial.suggest float('subsample', 0.5, 1.0)
min samples leaf = trial.suggest int('min samples leaf', 1, 20)
max depth = trial.suggest int('max depth', 2, 10)
criterion = trial.suggest categorical('criterion', ['friedman mse'])
loss = trial.suggest categorical('loss', ['log loss'])
# Modelo
model = GradientBoostingClassifier(
    learning rate=learning rate,
    n estimators=n estimators,
    subsample=subsample,
    min samples leaf=min samples leaf,
    max depth=max depth,
    criterion=criterion,
    loss=loss.
    random state=42
```

```
Melhores hiperparâmetros encontrados:
{'learning_rate': 0.013078175960039679, 'n_estimators': 111, 'subsample': 0.5013015627577913, 'min_samples_leaf': 13, 'max_depth': 4, 'criterion': 'friedman_mse', 'loss': 'log_loss'}
Melhor KS (validação): 0.5393
```

Gradient Boosting

cin.ufpe.br

Centro de

Gradient Boost

Variação dos parâmetros - resultados

Hyperparameter Importances

Optimization History Plot

XGBoost

Variação dos parâmetros

```
# Hiperparâmetros a serem otimizados
learning rate = trial.suggest float('learning rate', 0.01, 0.3)
n estimators = trial.suggest int('n estimators', 50, 300)
subsample = trial.suggest float('subsample', 0.5, 1.0)
min child weight = trial.suggest int('min child weight', 1, 20)
max depth = trial.suggest int('max depth', 2, 10)
colsample bytree = trial.suggest float('colsample bytree', 0.5, 1.0)
gamma = trial.suggest float('gamma', 0, 5)
reg alpha = trial.suggest float('reg alpha', 0, 2)
reg lambda = trial.suggest float('reg lambda', 0, 2)
# Modelo
model = XGBClassifier(
    learning rate=learning rate,
    n estimators=n estimators,
    subsample=subsample,
    min child weight=min child weight,
    max depth=max depth,
    colsample bytree=colsample bytree,
    gamma=gamma,
    reg alpha=reg alpha,
    reg lambda=reg lambda,
    use label encoder=False,
    eval metric='logloss',
    random state=42
```


XGBoost

Centro de Informática

Variação dos parâmetros - resultados

```
Melhores hiperparâmetros encontrados para XGBoost:
{'learning_rate': 0.058527884594206596, 'n_estimators': 81, 'subsample': 0.635738428162489, 'min_child_weight': 16, 'max_depth': 8,
'colsample bytree': 0.6913496408383459, 'gamma': 1.2203162237179979, 'reg alpha': 1.8072366886606457, 'reg lambda': 1.634653986989167}
```

Melhor KS (validação): 0.5444

```
VALIDAÇÃO

SKS (Principal): 0.5444

ROC-AUC: 0.8412
F1-Score: 0.6371
MSE: 0.1615
Cross-Entropy: 0.4842

Matriz de Confusão:
[[TN: 778, FP: 257]
[FN: 79, TP: 295]]
```

XGBoost

Centro de Informática

Variação dos parâmetros - resultados

cin.ufpe.br

XGBoost Variação dos parâmetros - resultados

Hyperparameter Importances

Optimization History Plot

TabPFN

- Configuração do Modelo:
 - Modelo: TabPFN (Tabular Prior-Fitted Network)
 - Tuning: N\u00e3o aplic\u00e1vel (modelo pr\u00e9-treinado)
 - Estrutura: Transformer pré-treinado para dados tabulares
 - Device: CUDA (GPU acelerada)
 - N_ensemble_configurations: Padrão (32)
 - o Preprocessing: Dados originais

TabPFN

Características Técnicas

- Prior Knowledge: Aprende padrões de múltiplos datasets durante pré-treinamento
- Few-shot Learning: Excelente performance com poucos dados
- Auto-balancing: Lida internamente com desbalanceamento de classes
- No hyperparameter tuning: Modelo zero-shot para dados tabulares
- o Inference: Rápida predição sem necessidade de treino adicional

TabPFN

Implementação dos Experimento:

```
tabpfn_model = TabPFNClassifier(device='cuda')
   tabpfn model.fit(X train, y train)
   print("☑ TabPFN treinado com sucesso!")
Implementando TabPFN...
Treinando TabPFN...

▼ TabPFN treinado com sucesso!
```

```
print("M Fazendo predições com TabPFN...")

y_train_pred_tabpfn = tabpfn_model.predict(X_train)
y_val_pred_tabpfn = tabpfn_model.predict(X_val)
y_test_pred_tabpfn = tabpfn_model.predict(X_test)

y_train_proba_tabpfn = tabpfn_model.predict_proba(X_train)[:, 1]
y_val_proba_tabpfn = tabpfn_model.predict_proba(X_val)[:, 1]
y_test_proba_tabpfn = tabpfn_model.predict_proba(X_test)[:, 1]

print("  Predições concluídas!")

M Fazendo predições com TabPFN...
  Predições concluídas!
```

TabFPN

Avaliação de Performance


```
TREINAMENTO
 ■ ROC-AUC: 0.8667
 F1-Score: 0.6161
 MSE: 0.1261
 Cross-Entropy: 0.3897
 Matriz de Confusão:
    [[TN: 2830, FP: 274]
     [FN: 500, TP: 621]]
₩ VALIDAÇÃO
 KS (Principal): 0.5361

■ ROC-AUC: 0.8404

 F1-Score: 0.5918
 Cross-Entropy: 0.4253
 Matriz de Confusão:
    [[TN: 945, FP: 90]
     [FN: 179, TP: 195]]
 TESTE

■ ROC-AUC: 0.8514

 F1-Score: 0.5967
 MCF. A 1220
```


STab

- Modelo: STab (Self-supervised Transformer for Tabular Data)
- Tuning: Optuna (otimização de hiperparâmetros com MedianPruner para early stopping)
- Estrutura: Transformer customizado para dados tabulares (múltiplas camadas de atenção + feed-forward)
- Device: CUDA (GPU acelerada)
- Preprocessing: Conversão para tensores float32, normalização e envio para GPU
- Avaliação: Métrica principal = KS; secundárias = ROC-AUC, F1-Score, MSE, Cross-Entropy

STabVariação dos parâmetros

n_layers - Número de camadas Transformer

n_heads - Número de cabeças de atenção

d_model- Dimensão dos embeddings internos

dropout - Taxa de dropout para regularização

learning_rate – Taxa de aprendizagem

batch_size- Tamanho do lote no treino

activation – Função de ativação nas camadas feedforward

weight_decay- Regularização L2

max_epochs – Número máximo de épocas (com possibilidade de *early stopping*)

Comparando KS dos melhores modelos

MLP: 0.5238

Random Forest: 0.5362

Stab: 0.5312

TabFN: 0.5342

Gradient Boosting: 0.5322

XgBoost: 0.5439