MP* KERICHEN 2020-2021

DS nº4 facultatif

Pour les élèves préparant l'X ou les ENS.

Étude des matrices bistochastiques

La présente étude peut se compléter par l'exercice 35 du chapitre II, et par le Dm bis numéro 4

Dans tout le problème, \mathbf{R} désigne le corps des nombres réels et \mathbf{N} l'ensemble des entiers naturels et n un entier strictement positiif. On note \mathbf{R}^n , l'ensemble des n-uplet $(x_1,...,x_n)$ de réel. Pour $i=1,\ldots,n$ la i^{e} composante d'un élément x de \mathbf{R}^n sera noté x_i . Pour z et y dans \mathbf{R}^n , $z \cdot y$ désigne le produit scalaire canonique de z et de y, c'est-à-dire que l'on a $z \cdot y = \sum_{i=1}^n z_i y_i$. De même, $\|z\|$ désigne la norme euclidienne de z, c'est-à-dire que l'on a $\|z\|^2 = \sum_{i=1}^n z_i^2$.

On note $\mathcal{M}_n(\mathbf{R})$, l'ensemble des matrices carrées de dimension n à coefficients réels. Une matrice $(a_{i,j})_{\substack{i=1,\ldots,n\\j=1,\ldots,n}}$ de $\mathcal{M}_n(\mathbf{R})$ est dite bistochastique si, pour tout couple (i,j) d'éléments de $\{1,\ldots,n\}$, on a

- 1. $a_{i,j} \geq 0$;
- 2. $\sum_{i=1}^{n} a_{i,j} = 1$;
- 3. $\sum_{i=1}^{n} a_{i,j} = 1$.

On note \mathcal{B}_n l'ensemble des matrices bistochastiques de dimension n. Une matrice A de $\mathcal{M}_n(\mathbf{R})$ est dite de permutation si elle est bistochastique et si tous ses coefficients sont égaux à zéro ou un.

Pour tout couple de réels (i,j), on note $\delta_{i,j}$ la quantité égale à 1 si i=j et 0 sinon. Par ailleurs, on note e le vecteur de \mathbf{R}^n dont toutes les coordonnées sont égales à 1.

La partie II est indépendante de la partie I et la partie IV des parties II et III.

I. Préliminaires

1. Montrer que si $A=(a_{i,j})_{\substack{i=1,\ldots,n\\j=1,\ldots,n}}$ est une matrice de permutation de $\mathcal{M}_n(\mathbf{R})$, alors il existe une permutation σ de $\{1,\ldots,n\}$ telle que pour tout couple (i,j) d'éléments de $\{1,\ldots,n\}$ on ait

$$a_{i,j} = \delta_{\sigma(i),j}$$
.

- 2. Montrer que si A est une matrice de permutation alors A a un déterminant égal à 1 ou à -1. Déterminer l'inverse de A.
- 3. Montrer que le produit de deux matrices bistochastiques est une matrice bistochastique.
- 4. Montrer que si A est une matrice bistochastique et a un vecteur ligne de A, alors $||a|| \le 1$ et que l'égalité n'est obtenue que si a est un vecteur de la base canonique de \mathbb{R}^n .
- 5. En déduire que les seules matrices bistochastiques d'inverse bistochastique sont les matrices de permutation.

II. Polyèdres convexes

Un demi-espace de \mathbb{R}^n est un sous-ensemble H pour lequel il existe un vecteur x de \mathbb{R}^n et un réel a tels que

$$H = \{y \in \mathbf{R}^n | x \cdot y \le a\}$$
. Pour entier $m \ge 1$, soit $S_m = \left\{\lambda \in \mathbf{R}^n | \sum_{j=1}^m \lambda_j = 1 \text{ et } \forall i \in \{1 \cdot m\}, \lambda_i \ge 0\right\}$.

 $H = \{y \in \mathbf{R}^n | x \cdot y \le a\}. \text{ Pour entier } m \ge 1, \text{ soit } S_m = \left\{\lambda \in \mathbf{R}^n | \sum_{j=1}^m \lambda_j = 1 \text{ et } \forall i \in \{1 \cdot m\}, \lambda_i \ge 0\right\}.$ On rappelle qu'une partie K de \mathbf{R}^n est dit convexe si pour tout entier $m \ge 1$, pour tout $\lambda \in S$ et toute famille $(x_i)_{i=1,\dots,m}$ d'éléments de K on a $\sum_{i=1}^m \lambda_i x_i \in \mathbf{K}$.

Par ailleurs, si L est un sous-ensemble de \mathbb{R}^n , on appelle enveloppe convexe, notée $\operatorname{co}(L)$, le plus petit convexe contenant L. C'est évidemment l'intersection de tous les ensembles convexes contenant L et on admettra que co(L) est l'ensemble des barycentres d'éléments de L à coefficients positifs :

$$co(L) = \left\{ \sum_{i=1}^{m} \lambda_i x_i | m \in \mathbf{N}^*, (x_i)_{i=1,...,m} \in L^m \text{ et } (\lambda_i)_{i=1,...,m} \in S_m \right\}.$$

On dit qu'un sous-ensemble K de \mathbf{R}^n est un polyèdre convexe si K est non vide, borné et si K est l'intersection d'un nombre fini de demi-espaces. On appelle dimension d'un polyèdre convexe la dimension de l'espace affine qu'il engendre. On dit que s est un sommet du polyèdre convexe K si $s \in K$ et si pour tout couple (y,z)d'éléments de K et tout $t \in]0,1[$, si s=ty+(1-t)z alors y=z=s.

- 1. Montrer que S_n , est un polyèdre convexe de \mathbf{R}^n . Déterminer sa dimension et ses sommets.
- 2. Soit K un polyèdre convexe de \mathbb{R}^n et soit H un hyperplan de \mathbb{R}^n avec $H = \{y \in \mathbb{R}^n | x \cdot y = a\}$, où x est un élément de \mathbb{R}^n et a un réel. On suppose que $H \cap K \neq \emptyset$ et que $K \cap \{y \in \mathbb{R}^n | x \cdot y > a\} = \emptyset$. Un tel Hest appelé hyperplan d'appui de K.

Montrer que l'ensemble des sommets du polyèdre $H \cap K$ est égal à l'intersection de l'ensemble des sommets de K et de H.

- 3. Soit k un point de la frontière de K, polyèdre convexe, montrer qu'il existe un hyperplan d'appui de K contenant k.
- 4. Montrer que K, polyèdre convexe, est égal à l'enveloppe convexe de sa frontière.
- 5. En déduire, par récurrence sur n, que tout polyèdre convexe est l'enveloppe convexe de ses sommets.

III. L'ensemble B_n , des matrices bistochastiques

Dans cette partie on identifie $\mathcal{M}_n(\mathbf{R})$ et \mathbf{R}^{n^2} en identifiant une matrice $(a_{i,j})_{\substack{i=1,\ldots,n\\j=1,\ldots,n}} \in \mathcal{M}_n(\mathbf{R})$ et le n^2 -uplet de ses coefficients, énumérés par exemple une ligne après l'autre :

$$(a_{1,1}, a_{1,2}, \ldots, a_{1,n}, a_{2,1}, \ldots, a_{2,n}, \ldots, a_{n,1}, \ldots, a_{n,n})$$

On admet sans discussion que ce qui suit est indépendant du mode d'énumération.

- 1. Montrer que \mathcal{B}_n , est un polyèdre convexe de dimension au plus $(n-1)^2$.
- 2. On se propose de montrer que l'ensemble des sommets de \mathcal{B}_n , est égal à l'ensemble des matrices de permutation.
 - (a) Montrer que toute matrice de permutation est un sommet de \mathcal{B}_n .
 - (b) Soit M un élément de \mathcal{B}_n . On suppose qu'aucun coefficient de M n'est égal à 1. Montrer qu'il existe une matrice A dont la somme des coeficients de chaque ligne et de chaque colonne est nulle et telle que M + A et M - A soient éléments de \mathcal{B}_n , (Faute de mieux on pourra se limiter au cas n = 2). En déduire que si $S = (s_{i,j})_{i=1,\dots,n}$ est un sommet de \mathcal{B}_n , alors il existe un couple (i,j) d'éléments $j=1,\dots,n$ de $\{1,...,n\}$ tel que pour tout élément k de $\{1,...,n\}$ on a $s_{i,k}=\delta_{k,j}$ et $s_{k,j}=\delta_{i,k}$.
 - (c) Conclure grâce à une récurrence.
- 3. Soit un entier $d \geq 1$. Montrer que si un élément x de \mathbf{R}^d s'écrit

$$x = \sum_{i=1}^{m} \lambda_i x_i,$$

avec $(x_1,...,x_m) \in (\mathbf{R}^d)^m$ et $(\lambda_1,...,\lambda_m) \in S_m$, alors il existe $\mu \in S_{d+1}$ et $(y_i)_{i=1,...,d+1}$ une famille d'éléments de $\{x_1,\ldots,x_m\}$, (i.e. $\{y_1,\ldots,y_{d+1}\}\in\{x_1,\ldots,x_m\}$) tels que

$$x = \sum_{i=1}^{d+1} \mu_i y_i,$$

4. En déduire que toute matrice A de \mathcal{B}_m , il existe un entier naturel $m \leq (n-1)^2 + 1$ des matrices de permutation de taille $n, A_1, A_2, ..., A_m$ et $\lambda \in S_m$, tels que :

$$A = \sum_{i=1}^{m} \lambda_i A_i.$$

IV. Orbite d'un vecteur x de \mathbb{R}^n

Dans cette partie il semble que l'énoncé considère \mathbb{R}^n comme l'ensemble des vecteurs-colonnes à n lignes. Nous n'avons pas corrigé cette maladresse.

1. Soient $x \in \mathbf{R}^n$ tel que :

$$x_1 \leq x_2 \cdots \leq x_{n-1} \leq x_n$$

et i et j deux éléments de $\{1,\dots,n\}$ tels que i < j. Soit un réel $\varepsilon > 0$ et soit $y \in \mathbf{R}^n$ tel que :

- $y_i = x_i + \varepsilon \le x_j$;
- $y_j = x_j \varepsilon \ge x_i$;
- Pour tout élément k de $\{1,\ldots,n\}$ distinct de i et de $j,\,y_k=x_k$.

Montrer qu'il existe $A_{i,j,\varepsilon} \in \mathcal{B}_n$ telle que $y = A_{i,j,\varepsilon}x$.

2. On rappelle que pour une fonction ϕ de **R** dans **R** convexe, pour tout entier $m \geq 1$, tout élément a de \mathbf{R}^m et tout élément λ de S_m , on a :

$$\phi\left(\sum_{i=1}^{m} \lambda_i a_i\right) \le \sum_{i=1}^{m} \lambda_i \phi(a_i)$$

Soient des éléments x et y de \mathbb{R}^n et $A \in \mathcal{B}_n$, tels que y = Ax, montrer que pour toute fonction convexe ϕ on a:

$$\sum_{i=1}^{n} \phi(x_i) \ge \sum_{i=1}^{n} \phi(y_i)$$

- 3. Supposons, à présent, que x et y soient deux vecteurs de \mathbf{R}^n tels que : $x_1 \leq \cdots \leq x_n$ et $y_1 \leq \cdots \leq y_n$ et tels que pour toute fonction convexe ϕ on ait $\sum_{i=1}^{m} \phi(x_i) \ge \sum_{i=1}^{m} \phi(y_i)$. Montrer que l'on a alors : — Pour tout tout entier k tel que $1 \le k < n, x_1 + ... + x_k \le y_1 + ... + y_k$;

 - $x_1 + \dots + x_n = y_1 + \dots + y_n$.

Lorsque deux vecteurs x et y vérifient ces dernières relations on dit que y domine x.

4. Soient x et y deux vecteurs de \mathbb{R}^n tels que $x_1 \leq \cdots \leq x_n$ et $y_1 \leq \cdots \leq y_n$. L'objet de cette question est (P) Si y domine x alors il existe $A \in \mathcal{B}_n$, telle que y = Ax. On notera $a = \frac{x_1 + x_2 + \dots + x_n}{n}$.

- (a) Vérifier la propriété (P) pour n=1 ainsi que dans le cas général si $x_1=a$ ou $x_n=a$.
- (b) On suppose, à présent, que $x_1 < a < x_n$, et que la propriété (P) est démontrée pour tout entier strictement plus petit que n. Montrer que s'il existe un élément k de $\{1,\ldots,n_1\}$ et que $x_1+\ldots+x_k=$ $y_1 + ... + y_k$ alors il existe $A_k \in \mathcal{B}_k$ et $A_{n-k} \in \mathcal{B}_{n-k}$ tels que $y(k) = A_k x_k$ et $y_{n_k} = A_{n_k} x_{n-k}$, où pour tout élément z de \mathbb{R}^n , z_k désigne le vecteur $(z_1,...,z_k)$ et z_{n-k} le vecteur $(z_{k+1},...,z_n)$. Conclure dans ce cas.
- (c) On suppose à présent que toutes les inégalités sont strictes, c'est-à-dire que $z_l + ... + x_k < y_1 + ... + y_k$, pour k = 1, ..., n - 1 et $x_1 < a < x_n$. Soit i l'indice de la plus grande coordonnée de x inférieure strictement à a et j l'indice de la plus petite coordonnée de x strictement supérieure à a. Soit $\bar{\varepsilon}$ le plus grand réel ε tel que $A_{i,i\varepsilon}x$ soit dominé par y. Montrer que si $\bar{\varepsilon} \leq \min\{(x-a_i)(x-a_j)\}$ alors la propriété (**P**) est vraie, (on remarquera que, dans ce cas, $A_{i,j\varepsilon}x$ sature au moins l'une des inégalités).
- (d) Dans le cas contraire (c'est-à-dire si $\bar{\varepsilon} \geq \min\{(a-x_i)(x_i-a)\}$), montrer qu'il suffit alors de vérifier la propriété (\mathbf{P}) pour un vecteur x' bien choisi ayant strictement plus de coordonnées égales à aque x. Conclure.
- 5. On note \mathcal{I}_k l'ensemble des sous ensembles I de $\{1,...,n\}$ à k éléments. Soient x et y dans \mathbb{R}^n . Montrer qu'une condition nécessaire et suffisante pour qu'il existe $A \in \mathcal{B}_n$, telle que y = Ax est

$$\min_{I \in I_k} \sum_{i \in I} x_i \le \min_{I \in I_k} \sum_{i \in I} y_i \text{ et } \sum_{i=1}^n x_i = \sum_{i=1}^n y_i.$$