Design and Analysis of Algorithms

Section VI: Graph Algorithms

Chapter 22: Elementary Graph Algorithms

- Check if a network is connected?
 - Phone Network ->
 - Can Caller In California Call India?
- Movie Network
 - Graph of actors/actresses
 - Edge between actors/actresses if they appear together in a movie
 - Bacon Number
 - How many hops to get from actor 1 to Kevin Bacon??

- I'm in Arad, Romania!
 - Sight Seeing
 - Photos
- WAIT:
 - I have a non-refundable
 - ticket leaving out of Bucharest tomorrow!!!
- I NEED TO GET TO BUCHAREST!

- Driving Directions:
- Cities connected w/ Roads
- Find a path from one city to another city?

- Solving Sudoku:
 - Incomplete puzzles connect by directed edge w/ addition of one number.
 - Goal is to find a path from start configuration to a completed puzzle

- Compute the "pieces" of a graph
 - Useful for internet analysis

Representations

Binary Search Trees

Figure 12.1 Binary search trees. For any node x, the keys in the left subtree of x are at most x. key, and the keys in the right subtree of x are at least x. key. Different binary search trees can represent the same set of values. The worst-case running time for most search-tree operations is proportional to the height of the tree. (a) A binary search tree on 6 nodes with height 2. (b) A less efficient binary search tree with height 4 that contains the same keys.

- Linked Data Structure
- Each node has pointers (along with key value and satellite data):
 - p: Parent
 - left: Left Subtree
 - right: Right Subtree

Hash Tables w/ Chaining!

Graph Representations Undirected

590 Chapter 22 Elementary Graph Algorithms

Graph Representations Directed

Graph Representations:

Breadth-first Search

	1	2	3	4	5			
1	0	1	0 1 0 7 1 0	0	1			
2	1	0	1	1	1			
3	0	1 ,	0	1	0			
4	0	1	1	0	1			
5	1	1	0	1	0			
	(c)							

- G=(V,E)
 - G.V
 - All nodes in graph.
 - G.Adj[u]
 - All nodes adjacent to u in graph.
- Nodes $u \in V$
 - u.color
 - white, gray, black
 - u.d
 - Distance from start node
 - $u.\pi$
 - Predecessor graph

BFS

```
BFS(G, s)
    for each vertex u \in G.V - \{s\}
       u.color = WHITE
 3
   u.d = \infty
   u.\pi = NIL
 5 \quad s.color = GRAY
 6 s.d = 0
 7 s.\pi = NIL
 8 Q = \emptyset
   ENQUEUE(Q, s)
   while Q \neq \emptyset
10
        u = \text{DEQUEUE}(Q)
11
        for each v \in G.Adj[u]
12
13
            if v.color == WHITE
14
                 v.color = GRAY
15
                 v.d = u.d + 1
16
                 \nu.\pi = u
17
                 ENQUEUE(Q, \nu)
18
        u.color = BLACK
```

BFS

```
BFS(G, s)
    for each vertex u \in G. V - \{s\}
        u.color = WHITE
       u.d = \infty
       u.\pi = NIL
 5 \quad s.color = GRAY
 6 s.d = 0
 7 s.\pi = NIL
 8 Q = \emptyset
    ENQUEUE(Q, s)
    while Q \neq \emptyset
10
        u = \text{DEQUEUE}(Q)
11
        for each v \in G.Adj[u]
12
            if v.color == WHITE
13
14
                 v.color = GRAY
15
                 v.d = u.d + 1
                                  Predecessor Subgraph
16
                 v.\pi = u
17
                 ENQUEUE(Q,
        u.color = BLACK
18
                                                                 13
```


Shortest Path

```
PRINT-PATH (G, s, v)

1 if v == s

2 print s

3 elseif v.\pi == NIL

4 print "no path from" s "to" v "exists"

5 else PRINT-PATH (G, s, v.\pi)

6 print v
```

Shortest Path: s->u

```
PRINT-PATH (G, s, v)

1 if v == s

2 print s

3 elseif v.\pi == NIL

4 print "no path from" s "to" v "exists"

5 else Print-Path (G, s, v.\pi)

6 print v
```


Look @ BFS Proofs

- Given our graph G=(V,E) w/ s∈V
- $\delta(s, v)$ shortest-path distance from s to v
 - minimum number of edges in any path from vertex s to vertex v.
 - any path of length $\delta(s, v)$ is a **shortest path**

Lemma 22.1

 Let G=(V,E) be a directed or undirected graph, and let s∈V be an arbitrary vertex. Then, for any edge (u,v)∈E

$$\delta(u, v) \le \delta(s, u) + 1$$

- There is definitely a path from S-->U->V
 - This path has distance $\delta(s, u) + 1$
- $\delta(s, v)$ the shortest-path distance cannot be greater than the path we know about.

Lemma 22.2

- Let G=(V,E) be a directed or undirected graph, and suppose that BFS is run on G from a given source vertex s∈V.
- THEN: Upon termination, for each vertex $v \in V$, the value of v.d computed by BFS satisfies $v.d \geq \delta(s,v)$.

Lemma 22.2 w/ Proof

- Let G=(V,E) be a directed or undirected graph, and suppose that BFS is run on G from a given source vertex $s\in V$, Then upon termination, for each vertex $v\in V$, the value of v.d computed by BFS satisfies v. $d \geq \delta(s,v)$.
- Proof by INDUCTION w/ Enqueue Ops
- Base case w/ s.d=0, and other vertices v.d=∞

Lemma 22.2 w/ Proof

- Consider a white vertex w/ Line 13
- It is adjacent to gray vertex u.
- By Inductive Hypothesis $u.d \geq \delta(s,u)$
- NOW w/
 - Lemma 22.1
 - Line 15 assignment

```
BFS(G, s)
   for each vertex u \in G.V - \{s\}
         u.color = WHITE
       u.d = \infty
        u.\pi = NIL
   s.color = GRAY
   s.d = 0
   s.\pi = NIL
    Q = \emptyset
    ENQUEUE(Q, s)
    while Q \neq \emptyset
10
11
         u = \text{DEQUEUE}(Q)
12
         for each v \in G.Adj[u]
13
             if v.color == WHITE
14
                  v.color = GRAY
15
                  v.d = u.d + 1
16
                  \nu.\pi = u
17
                 ENQUEUE(Q, \nu)
18
         u.color = BLACK
```

```
v.d = u.d + 1

\geq \delta(s,u) + 1

\geq \delta(s,v)
```

- v is Enqueued only once, since it turn Gray the first time.
 - v.d is never changes again!

Lemma 22.3 w/ Corollary 22.4

Suppose that during the execution of BFS on a graph G=(V,E), the queue Q contains vertices
 <v₁, v₂, ..., v_r>, where v₁ is the head of Q and v_r is the tail. THEN

$$v_r$$
. $d \le v_1$. $d + 1$
 v_i . $d \le v_{i+1}$. $d + 1$, $i = 1, 2, ..., r - 1$

• Corollary 22.4: Suppose that vertices v_i and v_j are enqueued during the execution of BFS, and that v_i is enqueued befor v_j . THEN v_i . $d \le v_j$. d at the time v_j is enqueued.

FINALLY Correctness of BFS w/ Theorem 22.5

- Let G=(V,E) be a directed or undirected graph, and suppose that BFS is run on G from a given source vertex s∈V.
- THEN: BFS discovers every vertex $v \in V$ that is reachable from the source s, and upon termination, $v.d=\delta(s,u)$, $\forall v \in V$
- MOREOVER: any v≠s, reachable from s, one of the shortest paths from s to v is a shortest path from s->>v.π->v.
- PROOF BY CONTRADICTION!

Proof By Contradiction

- Assume some vertex v is gets the incorrect v.d
- By Lemma 22.2 $v.d \ge \delta(s,u) + 1 = u.d + 1$
- Let u be the vertex right before v on the shortest path, so:
 - $-\delta(s,v) = \delta(s,u) + 1$
- Because of how we chose v, u.d must equal $\delta(s,u)$
- So v.d must be greater than u.d+1

Proof By Contradiction

```
while Q \neq \emptyset
10
         u = \text{DEQUEUE}(Q)
11
         for each v \in G.Adj[u]
12
13
             if v.color == WHITE
14
                  v.color = GRAY
15
                  v.d = u.d + 1
16
                  \nu.\pi = u
                  ENQUEUE(Q, \nu)
17
         u.color = BLACK
18
```

- v.d > u.d + 1
- Now when u was dequeued
 - If v was WHITE:
 - line 15 sets v.d=u.d+1
 - CONTRADICTION
 - If v was BLACK it was already dequeued so by Cor 22.4: $v.d \le u.d$
 - If v was GRAY: it must have been grayed when dequeuing some node w which was removed earlier than u
 - so by Cor 22.4 w. $d \le u$. d so v. d = w. $d + 1 \le u$. d + 1 CONTRADICTION!

Graph Representations: Chapter 22 Elementary Graph Algorithms Depth-first Search

	1	2	3	4	5		
1	0	1	0	0 1 1 0 1	1		
1 2 3 4 5	1	0	1	1	1		
3	0	1 ,	0	1	0		
4	0	1	1	0	1		
5	1	1	0	1	0		
(c)							

- Time
- G=(V,E)
 - G.V
 - All nodes in graph.
 - G.Adj[u]
 - All nodes adjacent to u in graph.
- Nodes $u \in V$
 - u.color
 - white, gray, black
 - u.d
 - Discovery time
 - u.f
 - Finish time
 - $\mathsf{u}.\pi$
 - Predecessor graph

DFS

```
DFS(G)
   for each vertex u \in G.V
  u.color = WHITE
 u.\pi = NIL
4 time = 0
5 for each vertex u \in G.V
6
       if u.color == WHITE
           DFS-VISIT(G, u)
DFS-VISIT(G, u)
                               /\!/ white vertex u has just been discovered
 1 time = time + 1
 2 u.d = time
 3 u.color = GRAY
 4 for each v \in G.Adj[u] // explore edge (u, v)
 5
        if v.color == WHITE
          \nu.\pi = u
            DFS-VISIT(G, \nu)
 8 u.color = BLACK
                             // blacken u; it is finished
   time = time + 1
10
   u.f = time
```

DFS Example

DFS

```
DFS(G)
   for each vertex u \in G.V
  u.color = WHITE
 u.\pi = NIL
4 time = 0
5 for each vertex u \in G.V
6
       if u.color == WHITE
           DFS-VISIT(G, u)
DFS-VISIT(G, u)
                                /\!/ white vertex u has just been discovered
 1 time = time + 1
 2 u.d = time
 3 u.color = GRAY
 4 for each v \in G.Adj[u] // explore edge (u, v)
 5
        if v.color == WHITE
          \nu.\pi = u
            DFS-VISIT(G, \nu)
 8 u.color = BLACK
                             // blacken u; it is finished
   time = time + 1
10
   u.f = time
```

Edge Types

- Tree Edges: Edges in the depth-first forest
- Back Edges: Nontree edges connecting a vertex to a ancestor
- Forward Edges: Nontree edges connecting a vertex to a descendant
- Cross Edges: All others (generalized cousins).

Edge Types

Determining Edge Types

- When first exploring an edge (u, v)
- If color V:
 - WHITE: tree edge
 - GRAY: back edge
 - BLACK: forward edge or cross edge
 - u.d < v.d: forward edge
 - u.d > v.d: cross edge

Determining Edge Types: Tree Edge

When first exploring an edge (u, v)

• If color V:

– WHITE: tree edge

Determining Edge Types: Tree Edge

Determining Edge Types: Tree Edge

Determining Edge Types: Back Edge

- When first exploring an edge (u, v)
- If color V:
 - WHITE: tree edge
 - GRAY: back edge

DFS Example: X Finishes

DFS Example: y Finishes

DFS Example: v Finishes

DFS Example: u Discovers Forward Edge

- When first exploring an edge (u, v)
- If color V:
 - WHITE: tree edge
 - GRAY: back edge
 - BLACK: forward edge or cross edge
 - u.d < v.d: forward edge // u.d=1 & x.d=4
 - u.d > v.d: cross edge

DFS Example: u Finishes

- When first exploring an edge (u, v)
- If color V:
 - WHITE: tree edge
 - GRAY: back edge
 - BLACK: forward edge or cross edge
 - u.d < v.d: forward edge // u.d=1 & x.d=4
 - u.d > v.d: cross edge

DFS Example: w discovered @ Time = 9

- When first exploring an edge (u, v)
- If color V:
 - WHITE: tree edge
 - GRAY: back edge
 - BLACK: forward edge or cross edge
 - u.d < v.d: forward edge // u.d=1 & x.d=4
 - u.d > v.d: cross edge

DFS Example: Cross Edge

- When first exploring an edge (u, v)
- If color V:
 - WHITE: tree edge
 - GRAY: back edge
 - BLACK: forward edge or cross edge
 - u.d < v.d: forward edge
 - u.d > v.d: cross edge // w.d=9 & y.d=3

DFS Example: z discovered @ time=10

- When first exploring an edge (u, v)
- If color V:
 - WHITE: tree edge
 - GRAY: back edge
 - BLACK: forward edge or cross edge
 - u.d < v.d: forward edge
 - u.d > v.d: cross edge

DFS Example: Back Edge

- When first exploring an edge (u, v)
- If color V:
 - WHITE: tree edge
 - GRAY: back edge
 - BLACK: forward edge or cross edge
 - u.d < v.d: forward edge
 - u.d > v.d: cross edge

DFS Example: z finishes

- When first exploring an edge (u, v)
- If color V:
 - WHITE: tree edge
 - GRAY: back edge
 - BLACK: forward edge or cross edge
 - u.d < v.d: forward edge
 - u.d > v.d: cross edge

DFS Example: z finishes

- When first exploring an edge (u, v)
- If color V:
 - WHITE: tree edge
 - GRAY: back edge
 - BLACK: forward edge or cross edge
 - u.d < v.d: forward edge
 - u.d > v.d: cross edge

Another DFS Example

Discovery/Finish Times

Redrawn Graph

Topological Sort

- Given Directed Acyclic Graph (DAG) G=(V, E)
- Linearly order vertices v ∈ V such that if G contains and edge (u, v) then u appears before v in ordering.

Henry A. Bumstead

Henry A. Bumstead

From Wikipedia, the free encyclopedia

Henry Andrews Burnstead (1870–1920) was an American physicist who taught at Yale from 1897 to 1920.^[1] In 1918 he was scientific attache to the U.S. embassy in London. In 1920 he was Chairman of the National Research Council.

Contents [hide]

- 1 Education
- 2 Career
- 3 Personal life
- 4 See also
- 5 Notes
- 6 External links
- In World War I Bumstead was selected to serve as the head of the Scientific Section in London under Admiral William Sims, Commander of the American Forces countering the U-boat campaign in the North Atlantic:[3]
- In 1920 Bumstead was elected Chairman of the <u>National Research Council</u>. [4] He was a member of the <u>Connecticut Academy of Arts and</u> <u>Sciences</u>.

H.a. Bunstead

- Professor Bumstead topologically sorts his clothing when getting dressed.
- Each directed edge (u,v) means that garment u must be put on before garment v.
- The discovery and finishing times from a depthfirst search are shown next to each vertex.

Topological-Sort(G)

- 1 call DFS(G) to compute finishing times νf for each vertex ν
- 2 as each vertex is finished, insert it onto the front of a linked list
- 3 **return** the linked list of vertices

Finding Strongly Connected Components

- Classic Use for DFS!
- We want to decompose a graph into its Strongly Connected Components:

Example

 Every Node is Reachable from Every Other Node w/ Strongly Connected Components

 The maximal set of vertices C ⊆ V such that for every pair of vertices u and v in C, we have both u -->-> v and v -->-> u.

G^T:

The Transpose of a Graph

 Our algorithm for finding strongly connected components will utilize the Transpose of a graph.

Example Graph G

•
$$G^T = (V, ET)$$

- $E^T = \{u,v\}: (v,u) \in E\}$

Example Graph G

- $G^T = (V, E^T)$
 - $E^{T} = \{u,v\}: (v,u) \in E\}$
 - RED Edges!

G and G^t

G & G^T have SAME connected components!

G & G^T have SAME connected components!

STRONGLY-CONNECTED-COMPONENTS (G)

- 1 call DFS(G) to compute finishing times u.f for each vertex u
- 2 compute G^{T}
- 3 call DFS(G^T), but in the main loop of DFS, consider the vertices in order of decreasing u.f (as computed in line 1)
- 4 output the vertices of each tree in the depth-first forest formed in line 3 as a separate strongly connected component

STRONGLY-CONNECTED-COMPONENTS (G)

- 1 call DFS(G) to compute finishing times u.f for each vertex u
- 2 compute G^{T}
- 3 call DFS(G^T), but in the main loop of DFS, consider the vertices in order of decreasing u.f (as computed in line 1)
- 4 output the vertices of each tree in the depth-first forest formed in line 3 as a separate strongly connected component

1. RUN DFS to compute finishing times!

STRONGLY-CONNECTED-COMPONENTS (G)

- 1 call DFS(G) to compute finishing times u.f for each vertex u
- 2 compute G^{T}
- 3 call DFS(G^T), but in the main loop of DFS, consider the vertices in order of decreasing u.f (as computed in line 1)
- 4 output the vertices of each tree in the depth-first forest formed in line 3 as a separate strongly connected component
 - 1. RUN DFS to compute finishing times!
 - 2. Compute G^T

STRONGLY-CONNECTED-COMPONENTS (G)

- 1 call DFS(G) to compute finishing times u.f for each vertex u
- 2 compute G^T
- 3 call DFS(G^T), but in the main loop of DFS, consider the vertices in order of decreasing u.f (as computed in line 1)
- 4 output the vertices of each tree in the depth-first forest formed in line 3 as a separate strongly connected component
 - 1. RUN DFS to compute finishing times!
 - 2. Compute G[™]
 - 3. Run DFS on G^T using finishing time from 1.
 - 4. Out the depth-first tree forest.
 - These will be the strongly connected components.

- After the DFS w/ G^T
 - Finish Times = [(4, 6), (5, 3), (9, 4), (10, 1), (11, 7), (12, 9), (16, 2), (17, 5), (18, 8)

- After the DFS w/ G^T
 - Finish Times = [(4, 6), (5, 3), (9, 4), (10, 1), (11, 7), (12, 9), (16, 2), (17, 5), (18, 8)

- - Finish Times = [(4, 6), (5, 3), (9, 4), (10, 1), (11, 7), (12, 9), (16, 2), (17, 5),(18, 8)
- Second DFS w/ Node Ordering
- Second DFS Vertex Ordering:
 - [8, 5, 2, 9, 7, 1, 4, 3, 6]

Graph G w/ Final Tree Edges

Final Tree Edges produced by Second DFS

Graph G w/ Final Tree Edges

Final Tree Edges produced by Second DFS

Follow the Leader

- 3 nodes have 7 as leader
- 3 nodes have 8 as leader
- 3 nodes have 9 as leader

Number of nodes with leader is Size of Clique

Acyclic Component G (GSCC)

- Key Idea: Component Graph
 - Constructed contracting edges within strongly connected components.