

Agenda

- 1. Unstructured vs. Structured Data
- 2. Conventional Text Analysis
- 3. Basics of neural network
- 4. Deep Learning
- 5. CNNs Image Recognition
- 6. Drug Discovery

Structured vs. Unstructured Data

- Structured Data
 - Databases
- Unstructured Data
 - Social Media
 - Audio
 - Video
- •80% of business related information originates in unstructured format, primarily text

Text Analysis - Overview

ThoughtWorks[®]

Text Analysis - Techniques

Pre-Processing:

Sentiment Analysis

Tokenization

TF * IDF

Lemmatization

Supervised Vs. Unsupervised

N-Grams

Stanford Core-NLP

POS Tagging

LingPipe

NER (Named Entity Recognition)

SentiWordNet

Topic Modeling

LDA (Latent Dirichlet Allocation)

DMR (Dirichlet Multinomial Regression)

Evaluation

Comparison vs. Humans

Typically text analytics models are evaluated against

humans-assigned values

More than one correct answer possible

Text Analysis - Techniques

Pre-Processing:

Sentiment Analysis

Tokenization

TF * IDF

Lemmatization

Supervised Vs. Unsupervised

N-Grams

Stanford Core-NLP

POS Tagging

LingPipe

NER (Named Entity Recognition)

SentiWordNet

Topic Modeling

LDA (Latent Dirichlet Allocation)

DMR (Dirichlet Multinomial Regression)

Evaluation

Comparison vs. Humans

Typically text analytics models are evaluated against

humans-assigned values

More than one correct answer possible

•How to capture the context?

Deep Learning vs. Scale

Machine Learning vs Deep Learning

- Machine Learning to Deep Learning
- Machine learning
 - uses algorithms, parses data, learns from data and predicts
 - limited to human fed inputs
- Deep learning
 - continually analyzes data to draw conclusions, like us!
 - structures algorithms in layers to create an artificial "neural network"
 that can learn and make intelligent decisions on its own
- Deep learning is a subfield of machine learning.

Deep Learning

- Hierarchical learning
 - anything is a concept defined in relation to simpler concepts, defined in relation to more simpler concepts and so on...
 - hence can analyze even unstructured data!

Technically:

A stack of layers of neurons! or Deep Neural Network

A simple neuron!

Prediction = σ (Weights * Inputs + Bias)

Training in neural network

1. Score input

```
Prediction = \sigma(Weights * Inputs + Bias)

(Sigmoid [0, 1])

(tanH [-1, 1])

(ReLU [0, x])

(Leaky ReLU [0.1x, x])
```

2. Calculate loss

(Mean Squared Error for continuous outputs) (Logistic loss for classification)

3. Apply Adjustments to weight

(Gradient descent) (RMS prop) (Adam Optimizer)

Deep Neural Networks

Forward Propagation

Convolutional Neural Network

- A subclass of Deep Neural Network
- Mimics object identification by Human
- Constrained architecture to:
 - Leverage temporal and spatial structure of domain
 - Reduce computation

Excels at understanding complex concepts as a combination of smaller and smaller pieces of information!

ThoughtWorks[®]

CNN/ ConvNet

Algorithm CNN

INPUT: Training dataset T, say images with labels

TRAINING

For every image in T, do

Create Input Vector for neural network

(20* 20 RGB image has input array length of 20* 20* 3)

Collect all Features

For every feature in Features, do:

CONVOLUTION POOLING ACTIVATION

Collect all the output matrices

FULLY CONNECTED LAYER: Transform into one D array PROBABILITY CONVERSION using SOFTMAX OUTPUT LABEL = Label with max probability value

Find ERROR using LOSS FUNCTION
Find weight update (delta W) and BACK PROPAGATE to update weights

Trained model can do classification of new data.

AtomNets

- Deep CNN based
- Structure based drug design
- Drug Design:
 - Target Protein
 - Ligands to targets
 - Design ligands that are binders

Learning:

- DUD-E dataset
- Recognize basic chemical structures on its own like Hydrogen bonding, Carbon structures.

Candidate treatment for Ebola, awaiting animal trials!

Deep Learning Resources/References:

- Machine Learning Andrew Ng https://www.coursera.org/learn/machine-learning/home/welcome
- Deep Learning Andrew Ng https://www.coursera.org/specializations/deep-learning
- Convolutional Neural Networks http://yann.lecun.com/exdb/lenet/
- Deep Learning http://deeplearning.net/
- Deep Residual Learning https://arxiv.org/abs/1512.03385
- Automated Image Captioning Andrej Karpathy https://cs.stanford.edu/people/karpathy/sfmltalk.pdf
- The Unreasonable effectiveness of RNNs Andrej Karpathy http://karpathy.github.io/2015/05/21/rnn-effectiveness/
- Machine Learning 101 https://docs.google.com/presentation/d/1kSuQyW5DTnkVaZEjGYCkfOxvzCqGEFzWBy4e9Uedd9k/preview?imm_mid=0f9b7e&cmp=em-data-na-na-newsltr_20171213&slide=id.g168a3288f7_0_58
- Machine Learning Mastery https://machinelearningmastery.com/
- Wikipedia https://en.wikipedia.org/

Thank You!

Questions?

Feedback at: bit.ly/XconfTalkFeedback

