DM545/DM871 Linear and Integer Programming

Lecture 13 Network Flows, Cntd

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Outline

1. Duality in Network Flow Problems

2. Network Simplex

				.,				
	X _e 1	X_{e_2}	• • •	x_{ij}		X_{e_m}		
	C _{e1}	C _{e2}	: :	Cij	:::_			
1	-1						=	b_1
2							=	b_2
:	:	100					=	:
i	1			-1			=	b_i
:	:	$\{ (x_i)_i \}$					=	:
j				1			=	b_j
:	:	197					=	:
n							=	b_n
e_1	1						≤ ≤	u_1
e_2		1					\leq	u_2
:	:	100					≤ ≤	:
(i,j)				1			\leq	u ij
:	:	100					≤ ≤	:
e_m						1	\leq	u_m

3

Outline

1. Duality in Network Flow Problems

2. Network Simple:

4

Shortest Path - Dual LP

$$z = \min \sum_{ij \in A} c_{ij} x_{ij}$$

$$\sum_{j:j:j\in A} x_{ji} - \sum_{j:ij\in A} x_{ij} = 1$$

$$\sum_{j:ji\in A} x_{ij} - \sum_{j:ij\in A} x_{ji} = 0$$

$$\sum_{i:ii\in A} x_{ji} - \sum_{i:ij\in A} x_{ij} = -1$$

$$x_{ii} \geq 0$$

for
$$i = s$$

$$\forall i \in V \setminus \{s, t\}$$

for
$$i = t$$

$$\forall ij \in A$$

$$(\pi_s)$$

$$(\pi_i)$$

$$(\pi_t)$$

$$g^{LP} = \max \pi_s - \pi_t$$
 $\pi_j - \pi_i \le c_{ij}$

$$\forall ij \in A$$

Hence, the shortest path can be found by potential values π_i on nodes such that $\pi_s = z, \pi_t = 0$ and $\pi_j - \pi_i \le c_{ij}$ for $ij \in A$

Maximum (s, t)-Flow

Adding a backward arc from t to s:

$$z = \max_{j:ji \in A} x_{ts}$$

$$\sum_{j:ji \in A} x_{ij} - \sum_{j:ij \in A} x_{ji} = 0 \qquad \forall i \in V \qquad (\pi_i)$$

$$x_{ij} \le u_{ij} \qquad \forall ij \in A \qquad (w_{ij})$$

$$x_{ij} \ge 0 \qquad \forall ij \in A$$

Dual problem:

$$g^{LP} = \min \sum_{ij \in A} u_{ij} w_{ij}$$

$$\pi_i - \pi_j + w_{ij} \ge 0 \qquad \forall ij \in A$$

$$\pi_t - \pi_s \ge 1$$

$$w_{ij} \ge 0 \qquad \forall ij \in A$$

5

	X _e 1	X_{e_2}	 x_{ij}	 X_{e_m}		
	C _{e1}	C _{e2}	 Cij	 C_{e_m}		
1	-1				=	b_1
2					=	b_2
:		100			=	:
i	1		 -1		=	b_i
:	:	100			=	:
j			 1		=	b_j
:	:	100			=	:
n					=	b_n
e_1	1		 	 		u_1
e_2	 	1			≤ ≤	u_2
:		100			<	:
(i,j)			1		≤ ≤	иij
•	:	100			<	:
e_m				1	≤ ≤	u_m

$$g^{LP} = \min \sum_{ij \in A} u_{ij} w_{ij}$$

$$\pi_i - \pi_j + w_{ij} \ge 0$$

$$\pi_t - \pi_s \ge 1$$

$$w_{ii} \ge 0$$

$$\forall ij \in A$$

$$(2)$$

$$(3)$$

$$(4)$$

- Without (3) all potentials would go to 0.
- Keep w low because of objective function
- Keep all potentials low \leadsto (3) $\pi_s=0, \pi_t=1$
- Cut C: on left =1 on right =0. Where is the transition?
- Vars w identify the cut $\rightsquigarrow \pi_i \pi_i + w_{ii} \ge 0 \rightsquigarrow w_{ii} = 1$

$$w_{ij} = egin{cases} 1 & \textit{if ij} \in C \ 0 & \textit{otherwise} \end{cases}$$

for those arcs that minimize the cut capacity $\sum_{ij \in A} u_{ij} w_{ij}$

• Complementary slackness: $w_{ij} = 1 \implies x_{ij} = u_{ij}$

Theorem

A strong dual to the max (st)-flow is the minimum (st)-cut problem:

$$\min_{X} \left\{ \sum_{ij \in A: i \in X, j \notin X} u_{ij} : s \in X \subset V \setminus \{t\} \right\}$$

•

Max Flow Algorithms

Optimality Condition

- Ford Fulkerson augmenting path algorithm $O(m|x^*|)$
- Edmonds-Karp algorithm (augment by shortest path) in $O(nm^2)$
- Dinic algorithm in layered networks $O(n^2m)$
- Karzanov's push relabel $O(n^2m)$

Min Cost Flow - Dual LP

Duality Network Simplex

$$\min \sum_{ij \in A} c_{ij} x_{ij}
\sum_{j:ji \in A} x_{ij} - \sum_{j:ij \in A} x_{ji} = b_i \qquad \forall i \in V \qquad (\pi_i)
x_{ij} \le u_{ij} \qquad \forall ij \in A \qquad (w_{ij})
x_{ij} \ge 0 \qquad \forall ij \in A$$

Dual problem:

$$\max \sum_{i \in V} b_i \pi_i - \sum_{ij \in E} u_{ij} w_{ij}$$

$$-c_{ij} - \pi_i + \pi_j \le w_{ij}$$

$$w_{ij} \ge 0$$

$$\forall ij \in E$$

$$\forall ij \in A$$

$$(3)$$

- define reduced costs $\bar{c}_{ij} = c_{ij} + \pi_i \pi_j$, hence (2) becomes $-\bar{c}_{ij} \leq w_{ij}$
- $u_e = \infty$ then $w_e = 0$ (from obj. func) and $\bar{c}_{ij} \geq 0$ (from 2)
- $u_e < \infty$ then $w_e \ge 0$ and $w_e \ge -\bar{c}_{ij}$ then $w_e = \max\{0, -\bar{c}_{ij}\}$, hence w_e is determined by others and irrelevant
- Complementary slackness th. for optimal solutions: each primal variable \times the corresponding dual slack must be equal 0, ie, $x_e(\bar{c}_e + w_e) = 0$;
 - $x_e > 0$ then $-\bar{c}_e = w_e = \max\{0, -\bar{c}_e\}$, $x_e > 0 \implies -\bar{c}_e \ge 0$ or equivalently (by negation) $\bar{c}_e > 0 \implies x_e = 0$

each dual variable \times the corresponding primal slack must be equal 0, ie, $w_e(x_e - u_e) = 0$;

•
$$w_e > 0$$
 then $x_e = u_e$
 $-\bar{c}_e > 0 \implies x_e = u_e$ or equivalently $\bar{c}_e < 0 \implies x_e = u_e$

Hence:

$$ar{c}_e > 0$$
 then $x_e = 0$
 $ar{c}_e < 0$ then $x_e = u_e \neq \infty$

Min Cost Flow Algorithms

The conditions derived can be used to define a solution approach for the minimum cost flow problem.

Directed cycle ≡ circuit

Note that if a set of potentials $\pi_i, i \in V$ are given, and the cost of a circuit wrt. the reduced costs for the edges $(\bar{c}_{ij} = c_{ij} + \pi_j - \pi_j)$ are calculated, the cost remains the same as the original costs as the potentials are "telescoped" to 0.

Theorem (Optimality conditions)

Let x be feasible flow in N(V, A, l, u, b) then x is min cost flow in N iff N(x) contains no directed cycle of negative cost.

Note that a (directed) circuit with negative cost in N(x) corresponds to a negative cost cycle in N, if costs are added for forward edges and subtracted for backward edges.

- Cycle canceling algorithm with Bellman Ford Moore for negative cycles $O(nm^2UC)$, $U = \max |u_e|$, $C = \max |c_e|$
- Build up algorithms $O(n^2 mM)$, $M = \max |b(v)|$

Duality Network Simplex

Outline

1. Duality in Network Flow Problems

2. Network Simplex

 $x \ge 0$ • A is not full-rank: adding all rows \leadsto null vector, i.e., the rows of A are not linearly indep.

- Since we assume that total supply equal total demand, i.e., $\sum_{i \in V} b_i = 0$ then $\operatorname{rank}[A] = \operatorname{rank}[A \ b]$.
- Hence, one of the equations can be canceled.

- assume network N is connected
- cycle: here, a set of arcs forming a closed path (i.e., a path in which the first and the last node of the path coincide) when ignoring their orientation
- spanning tree: here, a tree that reaches everynode (it coincides with the classical notion of spanning tree if one disregards arc orientation).

Theorem (Spanning Trees)

For an undirected graph D' = (N, A'), the following are equivalent:

- (a) G' = (N, E) is a tree (acyclic and connected);
- (b) G' = (N, E) is acyclic and has n 1 arcs; and
- (c) G' = (N, E) is connected and has n 1 arcs.

Since we know that the matrix A is not full-rank, a basis of A consists of only n-1 linearly independent columns of A. These columns correspond to a collection of arcs of the flow network.

Theorem

Given a connected flow network, letting A be its incidence matrix, a submatrix B of size $(n-1) \times (n-1)$ is a basis of A **if and only if** the arcs associated with the columns of B form a spanning tree.

Proof:

if columns from A correspond to a spanning tree \implies they are lin. indep., B is upper triangular if a subset of columns of A are a basis \implies they are n-1 and acyclic

Hence, all basic feasible solutions explored by the simplex algorithm are spanning trees of the flow network.

As for any LP, also in min-cost flow problems there are feasible, infeasible and degenerate bases. (feasible if $x_B = A_B^{-1}b \ge 0$).

Example

Example

- solve $Bx_B = b$ in value of variables to check feasibility; easy because of structure or because done by updates.
- solve $\pi^T B = c_B^T$ in π (dual potential variables to derive reduced costs); easy because of structure of B.
- calculate $\bar{c}_{ij} = c_{ij} + \pi_i \pi_i$

```
\pi_1 - \pi_4 = 12
\pi_2 - \pi_4 = 10
\pi_3 - \pi_2 = 13
\pi_3 - \pi_5 = 7
\pi_4 - \pi_6 = 8
\pi_5 - \pi_7 = 9
\pi_5 - \pi_8 = 13
      \pi_3 = 0
\pi_3 = 0 and \pi_3 - \pi_5 = 7 \Rightarrow \pi_5 = -7
\pi_5 = -7 and \pi_5 - \pi_8 = 13 \Rightarrow \pi_8 = -20
\pi_5 = -7 and \pi_5 - \pi_7 = 9 \Rightarrow \pi_7 = -16
\pi_3 = 0 and \pi_3 - \pi_2 = 13 \Rightarrow \pi_2 = -13
\pi_2 = -13 and \pi_2 - \pi_4 = 10 \Rightarrow \pi_4 = -23
\pi_4 = -23 and \pi_4 - \pi_6 = 8 \Rightarrow \pi_6 = -31
\pi_4 = -23 and \pi_1 - \pi_4 = 12 \Rightarrow \pi_1 = -11
d_{12} = c_{12} - \pi_1 + \pi_2 = 12 - (-11) + (-13) = 10
d_{25} = c_{25} - \pi_2 + \pi_5 = 9 - (-13) + (-7) = 15
d_{AE} = c_{AE} - \pi_A + \pi_E = 4 - (-23) + (-7) = 20
ds_4 = cs_4 - \pi s + \pi_4 = 3 - (-7) + (-23) = -13
d_{47} = c_{47} - \pi_4 + \pi_7 = 6 - (-23) + (-16) = 13
d_{67} = c_{67} - \pi_6 + \pi_7 = 7 - (-31) + (-16) = 22
d_{87} = c_{87} - \pi_8 + \pi_7 = 3 - (-20) + (-16) = 7
d_1 = 0 - \pi_1 = -(-11) = 11
d_2 = 0 - \pi_2 = -(-13) = 13
```


How much can we increase the flow θ through (54)? Until (32) reaches zero

- It can be proved that, because the basis corresponds to a tree, the equations can always be solved by simple substitution.
- The order of substitution can always be found by "walking around the tree".
- Efficient implementations further reduce the cost of determining π by updating it as they walk around the tree, rather than computing it anew at each iteration.
- When the network simplex steps are to be carried out by a computer, it is not so obvious how
- A few concise and clever data structures are used to represent the basis tree in a way that
 allows the walk around the tree and finding the circuit induced by the entering arc efficiently.
- The data structures can themselves be efficiently updated as the tree changes from iteration to iteration.