Ministerul Educației Naționale Olimpiada de Informatică – etapa națională Slobozia, Ialomita, 10-14 aprilie 2014 Sursa: babilon.pas, babilon.cpp, babilon.c

Clasa a V-a

Problema 2 : babilon 100 puncte

Babilonienii au dezvoltat un sistem pozițional de scriere a numerelor, în care orice număr natural se poate reprezenta utilizând semnele $\overline{}$ (unu), $\stackrel{\checkmark}{}$ (zece) și spații.

Valorile k-√ ₹ {2, 3, ..., 9} se obțin scriind semnul de k ori (scrierea babiloniană a lui 3 este YYY).

Numerele 11, 12, ..., 59 se obțin ca succesiuni de semne urmate de semne (43 se reprezintă ca

Sistemul folosește gruparea unităților câte șaizeci. Astfel, pentru a scrie numărul șaizeci se folosește același semn ca pentru unu, dar valoarea sa este dată de poziția în care se găsește semnul .

Babilonienii nu foloseau cifra **0**. Pentru poziționarea corectă a semnelor se utiliza spațiu . (60 se

reprezintă ca Tu, 3600 se reprezintă ca Tuu etc.).

Se codifică scrierea babiloniană a unui număr utilizând cifra **1** în locul semnului , cifra **2** în locul semnului și cifra **3** în loc de spațiu, ca în exemplele de mai jos:

Scrierea babiloniană	$\mathbb{Y} \sqcup \mathbb{Y} \mathbb{Y}$	Υ<	Υ∢∢ΥΥΥΥ	Υ≺∟ΥΥΥ
Codificarea scrierii babiloniene	1311	12	1221111	123111
Valoarea zecimală a numărului	1*60+2=62	1*60+10=70	1*60+20+4=84	1*60*60+10*60+3=4203

Cerință

Dându-se un număr natural **n** și un șir de **n** cifre **= {1, 2, 3}**, reprezentând codificarea scrierii babiloniene a unui număr natural, să se determine:

- a) numărul maxim de cifre 1 aflate pe poziții consecutive în codificarea scrierii babiloniene date;
- b) numărul natural din sistemul zecimal corespunzător scrierii babiloniene date.

Date de intrare

Fișierul de intrare **babilon.in** va conține:

- pe prima linie un număr natural $p (1 \le p \le 2)$;
- pe a doua linie un număr natural n;
- pe a treia linie **n** cifre separate prin câte un spațiu, reprezentând codificarea scrierii babiloniene a unui număr natural.

Date de ieșire

Dacă valoarea lui **p** este **1**, atunci se va rezolva **numai punctul a**) din cerință. În acest caz, fișierul de ieșire **babilon.out** va conține pe prima linie un număr natural reprezentând numărul maxim de cifre **1** aflate pe poziții consecutive în codificarea scrierii babiloniene date.

Dacă valoarea lui **p** este **2**, atunci se va rezolva **numai punctul b)** din cerință. În acest caz, fișierul de ieșire **babilon.out** va conține pe prima linie numărul natural corespunzător scrierii babiloniene date.

Restricții și precizări

- $2 \le n \le 109$;
- se garantează faptul că numărul de cifre al rezultatului de la **punctul b)** (numărul zecimal) este mai mic decât 20;
- 30% din teste vor avea pe prima linie valoarea 1, iar restul de 70% din teste vor avea pe prima linie valoarea 2.

Problema 2 **babilon** pag. 1 din 2

Clasa a V-a

Exemple

babilon.in	babilon.out	Explicații
1 8	3	1 1 3 2 1 1 1 2
1 1 3 2 1 1 1 2		Cea mai lungă secvență de cifre 1 are lungimea 3.
2 7	7213	YY⊔∢YYY
1 1 3 2 1 1 1		2 10+3
		2 se înmulțește de două ori cu 60 (o dată pentru că este
		urmat de spațiu și încă o dată pentru că precede o grupă care
		începe cu semnul (,), apoi se adună valoarea 13 .
		2*60*60+10+3=7213
2 9	11541	<u> </u>
1 1 1 2 1 1 2 2 1		3 12 21
		3 se înmulțește cu 60 de două ori pentru că este precedat de
		două grupe care încep cu semnul (, apoi se adună 12
		înmulțit cu 60 și la final se adună 21 .
		3*60*60+12*60+21=11541

Timp maxim de executare/test: 0,1 secunde. **Memorie totală disponibilă**: 2 MB, din care 2 MB pentru stivă.

Dimensiune maximă a sursei: 5 KB.

Problema 2 **babilon** pag. 2 din 2