Fair Classification with Adversarial Debiasing

Advanced Machine Learning

Academic Year 2019/2020

Can algorithms take decisions?

Should algorithms take decisions?

Should algorithms take decisions in sensible domains?

THE RESEARCH QUESTION

Is an accurate classifier also fair?

Is it possible to develop a fair classifier?

RAW DATA

- 48842 records with 14 attributes regarding social, demographic and financial aspects of U.S. citizens.
- 2 sensitive attributes: Race (Black, White), Sex (Male, Female)
- 1 binary class variable: Income (1 if $Income \ge 50K$, 0 otherwise)

CLEANING

- Records with race different than black or white were discarded from the analysis.
- Few missing data (0.071%) removed

FINAL DATASETS

- 28750 records
- X: 12 features
- Z: 2 sensible attributes
- y: 1 class variable

Explanatory Data Analysis

Q

Explanatory Data Analysis

DATA:

Adult Census Income Dataset

Explanatory Data Analysis

Preprocessing

- "education" attribute removed because redundant
- Less represented countries grouped into "others"
- Standardization
- Training-Vaidation-Test split:
 - Training set: 16100 samples
 - Validation set: 4025 samples
 - Test set: 8625 samples

CORRELATION MATRIX

between the sensitive attributes and training features

ARCHITECTURE

$$\min\left(\frac{P(\hat{y}=1|z=1)}{P(\hat{y}=1|z=0)}, \frac{P(\hat{y}=1|z=0)}{P(\hat{y}=1|z=1)}\right) \ge \frac{p}{100}$$

Pivotal Property

Good proxy for disparate impact

Threshold for fairness: $p \ge 80$

ARCHITECTURE

OBJECTIVE

 $min_{\theta_{clf},\theta_{adv}}[Loss_y(\theta_{clf} - \lambda Loss_Z(\theta_{clf},\theta_{adv})]$

HYPERPARAMETERS

• LOSS FUNCTION: Binary Crossentropy

• OPTIMIZER: Adam (LR, B_1, B_2: default)

• WEIGHTS: balanced

WEIGHTS Z: balanced

• EPOCHS: 300

• EARLY STOPPING: P-rule Sex: 80%

P-rule Race: 80%

HYPERPARAMETERS

- $-\lambda_{race}$
- $-\lambda_{sex}$

SCENARIO

- Deterministic
- Run objective: quality
- Initial Random configurations: 5
- Further configurations: 45
- Acquisition Function: El

SURROGATE FUNCTION

$$rac{\Delta p - rule_0/|\Delta acc|}{100} + rac{\Delta p - rule_1/|\Delta acc|}{100} \Big)$$

FAIR CLASSIFIER

Training iteration #1

- ROC AUC: 0.91 - Accuracy: 0.7933

- race: 53%-rule - sex: 39%-rule

Training iteration #0

- ROC AUC: 0.91 - Accuracy: 0.7933

- race: 53%-rule - sex: 39%-rule

COMPARISON

		BASELINE	FAIR
Classification Metrics	Accuracy	0,793	0,77
	AUC	0,91	0,87
	F-1	0,67	0,64
Validation Metrics	P-rule Sex	53%	83%
	P-rule Race	39%	81%

EVALUATIONS

HYPEROPTIMIZATION

BASELINE CLASSIFIER

- Good classification performances
- Low fairness performances
- Indirect discrimination

FAIR CLASSIFIER

- Good fairness performances
- Low accuracy waste
- Disparate treatment needed to avoid disparate impact

HYPEROPTIMIZATION

- Task-specific
- Unable to optimized different objectives simultaneously
- Good performances

ADVERSARIAL NETWORK

- Optimization of other <u>hyperparameters</u>
- Preprocessing fair representation of Data (VAE)

HYPEROPTIMIZATION

- Multi-objective optimization
- Use of constraints

"It's easier to make an algorithm fair than a man!"

Thanks

Raffaele Anselmo - 846842 Lorenzo Pastore - 847212