耦合摆实验 - 实验报告

トレセン学園高等部二年生 アドマイヤベガ 1

1 摘要

本实验通过耦合摆的实验,研究了耦合摆的运动规律.通过对耦合摆的振动进行观察和测量, 练习振动与波动的理论知识,并了解频谱分析和三角函数拟合的相关知识.

2 实验原理

对于 n 耦合摆, 摆长为 l, 质量为 m, 重力加速度为 g, 弹簧的劲度系数为 k, 则设 $\omega_p = \sqrt{g/l}$, $\omega_s = \sqrt{k/m}$. 通过计算,可以证明,当模数 $\kappa = 1 \sim (N-1)$ 时,第 n 个摆球的振幅 $x_\kappa(n)$ 可以写成:

$$x_{\kappa}(n,N) = \frac{\sin\left(\pi\kappa\frac{n-n_0}{N}\right)}{\sqrt{\sum_{n=1}^{N}\sin^2\left(\pi\kappa\frac{n-n_0}{N}\right)}}$$
(2.1)

其中 n_0 为振幅为 0 的波节位置. 由此还能得到波数和频率:

$$k = \frac{\pi \kappa}{N}, \quad \lambda = \frac{2N}{\kappa} \tag{2.2}$$

同时,对于每一个摆球列运动方程,代入通解,得到色散关系:

$$\omega^2 = \omega_p^2 + 4\omega_s^2 \sin^2\left(\frac{\pi\kappa}{2N}\right) \tag{2.3}$$

对于耦合摆的通带, 定义:

$$C = \cos k = 1 + \frac{\omega_p^2 - \omega^2}{2\omega_a^2} \tag{2.4}$$

在通带之外,|C| > 1,因此这可以作为一个通带的判据. 在实验中,可以用线性拟合的方式测量 C 值:

$$x_{\kappa}(n,t) = A_{\kappa}(C - \sqrt{C^2 - 1})^n e^{\mathrm{i}(\omega t + \varphi_0)}$$

$$\tag{2.5}$$

3 实验仪器及实验步骤

本实验用到的器材有: 耦合摆, 由 15 个相同摆长和相同摆球质量的单摆等距排列、通过劲度系数相同的弹簧连接而成; 信号源; 耦合摆实验仪; 位置检测器 (PSD); 示波器; 小锤子; BNC接头连接线 (3 根).

实验步骤为:

- 1. 用小锤子激发振动, 起振之后用示波器的 FFT 功能分析振动的频谱, 确定 10 个以上的固有频率;
 - 2. 计算固有频率理论值进行比较:
 - 3. 求出衰减系数和 C 的实验值, 并与理论值比较;
- 4. 选取之前测出的 4 个固有频率, 测量各球振幅, 并使用三角函数拟合振幅曲线, 计算波长的实验值, 并验证色散关系.

4 实验数据处理

4.1 测量固有频率

测量固有频率的实验数据如下表所示:

序号	第1组(Hz)	第 2 组 (Hz)	第 3 组 (Hz)	理论值 (Hz)	波数 k (m ⁻¹)
0	0.732	0.732		0.704608969	0.000
1	0.816	0.82	0.816	0.798653728	0.209
2			0.944	1.027516903	0.419
3	1.02	1.02	1.024	1.316068883	0.628
4			1.128	1.623893938	0.838
5	1.28	1.284	1.284	1.931636883	1.047
6	1.58	1.582	1.58	2.228628401	1.257
7	1.932	1.868	1.868	2.507931813	1.466
8	2.12		2.148	2.764455573	1.676
9	2.412		2.416	2.994186374	1.885
10	2.652	2.652	2.588	3.193855905	2.094
11	2.88	2.88	2.872	3.360789352	2.304
12	3.064	3.064		3.492835422	2.513
13	3.232	2.228		3.588334656	2.723
14	3.336	3.332		3.64610598	2.932
15		3.436		3.665441691	3.142
16			3.88	3.64610598	3.351
17			4.064	3.588334656	3.560

表 1: 测量固有频率

已知弹簧劲度系数 $k=18.9\,\mathrm{N/metre}$, 摆长 $l=0.5\,\mathrm{m}$, 摆球质量 $0.148\,\mathrm{kg}$,重力加速度 $g=9.8\,\mathrm{m/s^2}$,则理论值为:

$$\omega_p = \sqrt{\frac{g}{l}} = 4.4272 \,\text{rad/s}, \quad \omega_s = \sqrt{\frac{k}{m}} = 11.301 \,\text{rad/s}$$
(4.1)

与实验值相比,差距比较大,这是因为耦合摆中摆球上方的悬片以及摆球间弹簧的质量不可 忽略、摆动有阻尼等因素的影响.

观察上面的几个固有频率值,选取 0.82 Hz、1.284 Hz、1.58 Hz、2.88 Hz 四个频率作为验证色散关系所要测量的频率.

4.2 衰减系数测量

选择测试频率为 0.66 Hz, 测量得到数据如下表所示:

序号	幅度 A (m V_{pp})	相位 (°)	ln(A)
0	880.000	-122.000	6.780
1	720.000	-120.000	6.579
2	620.000	-116.000	6.430
3	540.000	-115.000	6.292
4	480.000	-111.000	6.174
5	440.000	-108.000	6.087
6	360.000	-112.000	5.886
7	304.000	-113.000	5.717
8	264.000	-111.000	5.576
9	232.000	-96.000	5.447
10	208.000	-92.000	5.338

表 2: 衰减系数测量

振幅-摆球序号关系图如下:

图 1: 振幅 - 摆球序号关系

对 $\ln(A)$ - 序号作直线拟合,可以得到衰减系数: $C-\sqrt{C^2-1}=e^{0.1431}$,解得 C=1.010,而实验值可以根据 (2.4) 计算得到,为 C=1.009 (其中频率值代入的是实验测量到的结果). 可见,实验与理论符合得比较好.

4.3 验证色散关系

分别取 4 种频率进行测试, 得到如下四组结果:

表 3: 频率 0.82 Hz

序号 幅度 (mV_{pp}) 幅度 (标正负号) 相位 (°) -232 -488-1000 -1520-2080 -2080 -2280 -2080

表 5: 频率 1.58 Hz

序号	幅度 (mV_{pp})	相位 (°)	幅度 (标正负号)
0	3440	22	3440
1	1100	11	1100
2	1560	-157	-1560
3	3040	-146	-3040
4	2720	-150	-2720
5	560	-127	-560
6	2240	23	2240
7	3560	23	3560
8	2160	11	2160
9	320	-157	-320
10	1880	-185	-1880
11	2560	-157	-2560
12	1580	-146	-1580
13	1000	34	1000
14	2560	22	2560

表 4: 频率 1.284 Hz

序号 幅度 (mV _{pp}) 相位 (°) 幅度 (标正负量 0 7600 120 7600	글)
1 1700 100 1700	
1 4560 120 4560	
2 328 31 328	
3 3360 -83 -3360	
4 9200 -54 -9200	
5 6720 -83 -6720	
6 5680 -36 -5680	
7 480 -92 -480	
8 4960 129 4960	
9 7680 129 7680	
10 6800 118 6800	
11 4720 135 4720	
12 140 271 -140	
13 4720 -55 -4720	
14 5200 -72 -5200	

表 6: 频率 2.88 Hz

	Г		
序号	幅度 (mV_{pp})	相位 (°)	幅度 (标正负号)
0	572	12	572
1	760	-169	-760
2	136	-16	136
3	816	24	816
4	536	-157	-536
5	584	-159	-584
6	784	12	784
7	92	20	92
8	728	-165	-728
9	440	16	440
10	504	24	504
11	544	-151	-544
12	92	318	92
13	640	8	640
14	408	-163	-408

用 Origin Pro 进行三角函数拟合的结果如下面的图片所示:

用 Origin Pro 进行拟合, 得到如下数据:

表 7: 验证色散关系

f (Hz)	k (rad / 摆球间距)	λ (摆球间距)	ω^2	$\sin(k/2)^2$
0.820	0.254	24.737	26.545	0.016
1.284	0.631	9.958	65.086	0.096
1.580	0.835	7.525	98.554	0.164
2.880	1.885	3.333	327.449787	0.654529614

再进行一次直线拟合,得到线性度为 r = 0.99998,证明线性关系被很好地满足.

5 分析与讨论

如果考虑阻尼,则色散关系应该修改为:

$$\omega^2 = \omega_p^2 - \beta^2 + 4\omega_s^2 \sin^2(k/2)$$
 (5.1)

这也是频率的实验值和理论值有较大差异的原因之一. 另外的因素可能是弹簧质量不可忽略,以及摆球微小的质量差异等.

6 原始数据截图

l&B.2 测	则试固有频率, 》	则了3组数据;计算	算固有频率理论值					
序号	第1组 (Hz)	第2组 (Hz)	第3组 (Hz)	理论值 (Hz)	k	波长(理论值)		
0	0.732	0.732		0.704608969	0.000	#DIV/0!		
1	0.816	0.82	0.816	0.798653728	0.209	30		
2			0.944	1.027516903	0.419	15	弹簧劲度系数	18.9 N/m
3	1.02	1.02	1.024	1.316068883	0.628	10	摆长L:	0.500 m
4			1.128	1.623893938	0.838	7.5		
5	1.28	1.284	1.284	1.931636883	1.047	6	摆球质量m:	0.148 kg
6	1.58	1.582	1.58	2.228628401	1.257	5	重力加速度g:	9.8 m/s
7	1.932	1.868	1.868	2.507931813	1.466	4.285714286		
8	2.12		2.148	2.764455573	1.676	3.75	单摆fp参考值:	0.704608969 Hz
9	2.412		2.416	2.994186374	1.885	3.333333333	振子fs参考值:	1.79854031 Hz
10	2.652	2.652	2.588	3.193855905	2.094	3		
11	2.88	2.88	2.872	3.360789352	2.304	2.727272727		
12	3.064	3.064		3.492835422	2.513	2.5		
13	3.232	2.228		3.588334656	2.723	2.307692308		
14	3.336	3.332		3.64610598	2.932	2.142857143		
15		3.436		3.665441691	3.142	2		
16			3.88	3.64610598	3.351	1.875		
17			4.064	3.588334656	3.560	1.764705882		

	Hz	0.82		Hz	1.284		Hz	1.58		Hz	2.88	
序号	幅度 (mVpp)	相位 (*)	幅度(标正负号)	幅度 (mVpp)	相位 (°)	幅度(标正负号)	幅度 (mVpp)	相位(°)	幅度(标正负号)	幅度 (mVpp)	相位 (°)	幅度(标正负号)
0	2840	69	2840	7600	120	7600	3440	22	3440	572	12	572
1	2520	64	2520	4560	120	4560	1100	11	1100	760	-169	-760
2	2640	64	2640	328	31	328	1560	-157	-1560	136	-16	136
3	2160	64	2160	3360	-83	-3360	3040	-146	-3040	816	24	816
4	1840	70	1840	9200	-54	-9200	2720	-150	-2720	536	-157	-536
5	1480	61	1480	6720	-83	-6720	560	-127	-560	584	-159	-584
6	820	70	820	5680	-36	-5680	2240	23	2240	784	12	784
7	232	139	-232	480	-92	-480	3560	23	3560	92	20	92
8	488	247	-488	4960	129	4960	2160	11	2160	728	-165	-728
9	1000	253	-1000	7680	129	7680	320	-157	-320	440	16	440
10	1520	247	-1520	6800	118	6800	1880	-185	-1880	504	24	504
11	1560	241	-2080	4720	135	4720	2560	-157	-2560	544	-151	-544
12	2080	246	-2080	140	271	-140	1580	-146	-1580	92	318	92
13	2280	240	-2280	4720	-55	-4720	1000	34	1000	640	8	640
14	2080	238	-2080	5200	-72	-5200	2560	22	2560	408	-163	-408

rigin三角函数	女拟合结果:							
Freq (Hz)								
	拟合参数	参数标准偏差	拟合参数	参数标准偏差	拟合参数	参数标准偏差	拟合参数	参数标准偏差
y0	258.60872	63.61111	24.68506	278.83608	134.77447	87.32667	33.56274	26.44689
xc	-5.65043	0.65439	-2.91156	0.20705	5.17236	0.04766	-1.32767	0.05509
w	12.36474	0.60563	4.98075	0.0951	3.76405	0.04197	1.66692	0.00977
A	2476.93198	62.25636	7661.04758	382.76844	3142.69515	114.37339	780.4653	37.42742
r^2	0.99383		0.96734		0.98228		0.96905	
k	0.254076726		0.630746906		0.834630957		1.884669122	

拟合结果汇总,	验证色散关系:					
f (Hz)	k (rad/摆球间距)	λ(摆球间距)	w^2	sin(k/2)^2	f^2	4*sin(k/2)^2
0.820	0.254	24.737	26.545	0.016	0.6724	0.064169886
1.284	0.631	9.958	65.086	0.096	1.6487	0.385124081
1.580	0.835	7.525	98.554	0.164	2.4964	0.657644635
2.880	1.885	3.333	327.449787	0.654529614	8.2944	2.618118457

测试频率:	0.660	Hz	
序号	幅度 (mVpp)	相位 (°)	ln(A)
0	880.000	-122.000	6.780
1	720.000	-120.000	6.579
2	620.000	-116.000	6.430
3	540.000	-115.000	6.292
4	480.000	-111.000	6.174
5	440.000	-108.000	6.087
6	360.000	-112.000	5.886
7	304.000	-113.000	5.717
8	264.000	-111.000	5.576
9	232.000	-96.000	5.447
10	208.000	-92.000	5.338
拟合结果:	-0.143091369	6.743127649	
	0.002903381	0.017176631	
	0.996308377	0.030450912	
	2428.952101	9	
	2.252265382	0.008345322	
衰减系数:			
C实验值:	1.01025505		
C理论值:	1.00940936		