JOD 2+00 135KB UP 703-205-8000 November 19,2003 3449-02389 2052

This is to certify that the following application annexed hereto is a true copy from the records of the Korean Intellectual Property Office.

출원 번호

10-2003-0001425

Application Number

PATENT-2003-0001425

출 원 년 월 일

2003년 01월 09일

Date of Application

JAN 09, 2003

출 원 인 : Applicant(s)

엘지.필립스디스플레이(주)

LG.PHILIPS DISPLAYS KOREA CO., LTD.

2003 년 01 월 22 일

특 허 청

COMMISSIONER

【서지사항】

【서류명】 특허출원서

【권리구분】 특허

【수신처】 특허청장

【참조번호】 0001

【제출일자】 2003.01.09

【국제특허분류】 H04N

【발명의 명칭】 음극선관용 편향요크

【발명의 영문명칭】 DEFLECTION YOKE FOR CRT

【출원인】

【명칭】 엘지 .필립스디스플레이(주)

【출원인코드】 1-2001-027916-5

【대리인】

【성명】 허용록

 【대리인코드】
 9-1998-000616-9

 【포괄위임등록번호】
 2001-039416-7

【발명자】

【성명의 국문표기】 주형달

【성명의 영문표기】J00,Hyung Dal【주민등록번호】741116-1780716

【우편번호】 305-330

【주소】 대전광역시 유성구 지족동 열매마을 4단지 405동 1303호

【국적】 KR

【발명자】

【성명의 국문표기】 양우영

【성명의 영문표기】YANG, Woo Young【주민등록번호】731114-1683321

【우편번호】 718-830

【주소】 경상북도 칠곡군 석적면 141번지 3공단 부영아파트

111-405

【국적】 KR

【우선권주장】

 【출원국명】
 KR

 【출원종류】
 특허

【출원번호】

10-2002-0071952

[출원일자]

2002.11.19

【증명서류】

미첨부

【심사청구】

청구

【취지】

특허법 제42조의 규정에 의한 출원, 특허법 제60조의 규정

에 의한 출원심사 를 청구합니다. 대리인

허용록 (인)

【수수료】

【기본출원료】

20 면

29,000 원

【가산출원료】

19 면

1

22

19,000 원

【우선권주장료】

건

26,000 원

【심사청구료】

항

813,000 원

【합계】

887,000 원

【첨부서류】

1. 요약서·명세서(도면)_1통

【요약서】

【요약】

본 발명은 음극선관용 편향요크에 관한 것으로서, 특히 음극선관용 편향요크의 페라이트 코아의 두께를 실험을 통한 최적화 설계를 기반으로 하여 경량화 및 박막화 함으로써, 편향요크의 무게와 부피를 줄이고 재료비를 절감시킬 수 있도록 한 음극선관용 편향요크에 관한 것이다.

본 발명은 상기한 목적을 달성하기 위하여 패널과 펀넬 및 전자 방출수단을 갖고 상기 전자 방출수단에서 발사된 전자빔을 편향시키는 편향요크를 포함하는 음극선관에 있어서, 상기 편향요크는 전자빔의 수평 편향을 위한 수평 편향코일과, 전자빔의 수직 편향을 위한 수직 편향코일과, 상기 수평 편향코일 및 수직 편향코일을 지지함과 동시에 서로를 절연시키는 홀더와, 상기 수평 편향코일 및 수직 편향코일에서 생성된 자계의 귀한 경로 상에서의 누설 자속을 감소시키는 페라이트 코아를 포함하고, 상기 편향요크의 페라이트 코아는 두께가 6mm이내이고 두께가 최대인 지점과 최소인 지점이 존재하며, 상기 두께가 최대인 지점의 두께는 3mm 이상인 것을 특징으로 한다.

【대표도】

도 5

【색인어】

음극선관, 페라이트 코아, 두께

【명세서】

【발명의 명칭】

음극선관용 편향요크{DEFLECTION YOKE FOR CRT}

【도면의 간단한 설명】

도 1은 일반적인 음극선관의 개략적인 구성을 나타낸 도면.

도 2는 음극선관용 편향요크의 구성을 나타낸 사시도.

도 3은 원형 페라이트 코아 및 사각형 페라이트 코아의 구성을 나타낸 도면.

도 4는 본 발명의 수평 편향코일과 페라이트 코아의 상대 위치 및 코아 두께 계산의 배경을 설명하기 위한 도면.

도 5는 본 발명의 페라이트 코아의 두께를 나타내는 단면도.

도 6은 페라이트 코아의 네크측 끝단의 두께 및 내경을 나타내는 사시도.

도 7은 페라이트 코아의 네크측 끝단의 두께 및 내경을 근사 원형, 원형 코아에 대해서 각각 나타낸 개략도.

도 8은 페라이트 코아의 스크린측 끝단에서 페라이트 코아 길이의 1/3인 지점의 두 께와 네크측 끝단의 두께를 나타내는 개략도.

도 9는 기존의 분할형 페라이트 코아에 클램프를 고정시키는 구조를 개략적으로 나타낸 사시도.

도 10은 본 발명에 따른 분할형 페라이트 코아에 클램프를 고정시키는 구조를 개략 적으로 나타낸 사시도.

<도면의 주요 부분에 대한 부호의 설명>

11: 진공관 12: 형광체 스크린

13: 전자총 14: 새도우 마스크

15: 편향요크 16: 전자빔

21: 수평 편향코일 22: 수직 편향코일

23: 홀더 24: 페라이트 코아

25a,25b: 캔슬코일 26a,26b: 인출선

27 : 보드 31 : 원형 페라이트 코아

32 : 사각형 페라이트 코아 52 : 원형 페라이트 코아의 단면

53 : 사각형 페라이트 코아의 단면

71 : 타원형 페라이트 코아의 네크측 단면

72 : 원형 페라이트 코아의 네크측 단면

92,92 : 분할형 페라이트 코아

93 : 홈 95 : 클램프

103 : 돌기부

【발명의 상세한 설명】

【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

<26> 본 발명은 음극선관용 편향요크에 관한 것으로서, 특히 음극선관용 편향요크의 페라이트 코아의 두께를 실험을 통한 최적화 설계를 기반으로 하여 경량화 및 박막화 함으

로써, 편향요크의 무게와 부피를 줄이고 재료비를 절감시킬 수 있도록 한 음극선관용 편향요크에 관한 것이다.

- <27> 더욱 상세하게는 본 발명은 음극선관용 편향요크의 페라이트 코아에 관한 것으로, 불필요한 페라이트 코아 재료와 이와 상응하는 페라이트 코아 비용을 줄이면서 기존의 페라이트 코아와 동등한 수준의 특성을 갖는 페라이트 코아에 관한 것이다.
- <28> 일반적인 음극선관의 개략적인 구성을 도 1에 단면도로 나타내었다.
- <29> 음극선관은 진공관 전면에 형광체 스크린이 구비되고 이 것과 대향하는 목 부분에 전자총과 편향수단을 구비하여, 전자총에서 출력된 전자빔을 편향시켜서 전자빔이 형광 체 스크린을 타격하도록 함으로써 영상을 디스플레이하고 있다.
- <30> 도 1에 나타낸 바와 같이 일반적으로 음극선관은 판넬과 펀넬이 결합되고 밀봉되어 그 내부가 진공상태로 유지되며 하나의 진공관(tube)(11)을 이룬다.
- <31> 상기 판넬의 내면에는 형광체가 구비된 형광체 스크린(12)이 형성되고, 이 스크린(12)에 대향하는 펀넬의 네크부에는 전자총(13)이 설치된다.
- 성기 형광체 스크린(12)과 전자총(13) 사이에는 형광체 스크린(12)에 근접하여 색선별 작용을 하는 섀도우 마스크(14)가 소정의 간격을 두고 설치되며, 상기 펀넬의 넥크부에는 전자총(13)에서 방출된 전자빔(16)의 편향을 위한 편향요크(15)가 설치된다.
- <33> 상기한 바와 같이 구성된 음극선관의 동작을 간략하게 살펴보면, 전자총(13)에서 방출된 전자빔(16)은 편향요크(15)에 의해서 수직 및 수평방향으로 편향되고, 수평 및 수직방향으로 편향된 전자빔(16)은 섀도우 마스크(14)의 빔 통과공을 통과하여 전면의 형광체 스크린(12)을 타격함으로써 소정의 영상을 디스플레이하게 된다.

- <34> 도 2에 상기 편향요크의 상세한 구성을 나타내었다.
- 도 2를 참조하면 종래의 편향요크(15)는, 전자빔을 수평 방향으로 편향시켜 주기 위한 수평 편향코일(21)과, 전자빔을 수직 방향으로 편향시켜 주기 위한 수직 편향코일 (22)과, 상기 수직 및 수평 편향코일(21)(22)에서 생성된 자계의 귀환 경로 상에서의 손 실을 줄여주기 위한 페라이트 코아(24)와, 상기 수평 및 수직 편향코일(21)(22)과 페라 이트 코아(24)를 지지해 주고 또 상호간에 절연을 확보해 주기 위한 홀더(23)와, 상기 편향요크(15)의 스크린측과 네크측에서 발생되는 누설 자계를 상쇄시켜 주기 위하여 상 기 홀더(23)의 스크린측 끝단 상하에 설치한 캔슬 코일(25a,25b)을 포함하고, 상기 캔슬 코일(25a,25b)에서 인출선(26a,26b)을 이용해서 수평 편향코일(21)에 연결하며, 상기 인출선(26a,26b)을 수평 편향코일(21)에 연결하기 위한 단자와 전자빔이 스크린의 소정 의 위치에 도달하도록 도와주는 보정회로를 구비한 보드(27)가 포함된다.
- <36> 상기 수평 편향코일(21)에는 일반적으로 15.75kHz 또는 그 이상의 주파수를 갖는 수평 편향전류를 흘려주어 상기 수평 편향전류에 따라 수평 편향코일(21)에서 발생하는 자계를 이용해서 음극선관 내부의 전자빔(16)이 수평 방향으로 편향되도록 한다.
- 또한, 상기 수직 편향코일(22)에는 일반적으로 60Hz의 주파수를 갖는 수직 편향전류를 흘려주고, 상기 수직 편향전류에 따라 수직 편향코일(22)에서 발생하는 자계를 이용해서 음극선관 내부의 전자빔(16)이 수직 방향으로 편향되도록 한다.
- <38> 이와 같이 편향요크(15)는 전자빔(16)을 수직 및 수평 방향으로 편향시켜 화면상의 한 점에 모아지도록 함으로써 영상이 디스플레이된다.

- 현재 상기 수평 편향코일(21)과 수직 편향코일(22)에 의한 비균일 자계를 이용해서 R,G,B 3개의 전자빔(16)이 별도의 부가회로 및 부가장치를 이용하지 않은 상태에서도 화면에서 컨버젼스를 이룰 수 있도록 해주는 셀프 컨버젼스 형태의 편향요크가 주로 개발되고 있다.
- 즉, 수평 편향코일(21) 및 수직 편향코일(22)의 권선 분포를 조정해서 편향요크의 스크린부, 중간부, 네크부 각각의 부위별로 바렐형 혹은 핀-쿠션형 자계를 만들어 줌으로써 3개의 전자빔(16)이 위치에 따라서 각각 다른 편향력을 경험하게 해주어 전자빔의 출발지점으로부터 도착 지점인 스크린까지의 각각 다른 거리에서도 동일한 지점으로 3개의 전자빔이 모아져서 해당 형광체를 정확하게 타격할 수 있도록 해주고 있다.
- 여기서 스크린부는 편향요크에서 스크린에 인접하여 상대적으로 단면의 직경이 큰부분을 말하고 네크부는 상기 스크린부의 반대편으로서 상대적으로 단면의 직경이 작은부분을 의미한다.
- <42> 또한, 중간부는 상기 스크린부와 네크부의 중간에 위치한 부분을 의미한다.
- <43> 이하에서 설명하는 편향요크, 편향코일, 홀더 및 페라이트 코아에서 설명되는 스크 . 린부, 네크부, 스크린측 끝단, 네크측 끝단과 같은 용어도 같은 의미로 사용하도록 한다.
- 한편, 상기한 바와 같이 수평 및 수직 편향코일(21)(22)에 전류를 흘려주어 자계를 만들어 주는 경우 수평 및 수직 편향코일(21)(22)의 자계만으로는 전자빔(16)을 화면의 전면에 편향시키기 어렵기 때문에 고 투자율의 페라이트 코아(24)를 사용하여 자계의 귀

환 경로 상에서의 손실을 최소화함으로써 자계 효율을 높이고 자기력 증대를 기하고 있다.

- 스45> 그런데, 상기 편향요크(15)의 스크린부와 네크부에서는 전자빔을 화면의 수평방향과 수직방향으로 편향시키기 위한 주 편향자계 이외의 불필요한 누설 자계가 발생하여인체에 악영향을 준다.
- <46> 따라서, 음극선관 편향요크에서의 누설 자계를 감소시킬 수 있는 수단이 요구된다.
- 즉, 음극선관 주변에서 발생하는 누설 자계를 소정치 이하로 억제하는 것이 요구되고 있으며, 특히 주파수 범위가 5Hz 내지 2kHz인 극저주파대(ELF)와, 2kHz 내지 400kHz 까지인 초저주파대(VLF)에서의 누설 자계는 인체에 악영향을 미치기 때문에 이러한 누설 자계 감소를 위한 수단이 필요하다.
- 더구나, 상기 누설 자계는 음극선관의 전장 길이를 축소하기 위한 연구의 일환으로 고편향각 구현을 위하여 편향요크의 스크린부의 반경 및 경사각을 증가시킴으로써 그 발 생량도 대폭 증가되는 경향이 있다.
- 즉, 최근 들어 음극선관은 전장 길이를 축소하기 위한 연구가 집중적으로 이루어지고 있는데, 이를 위해서는 고편향각을 구현하는 편향요크 기술이 필요하고, 편향각이 증가될수록 편향요크 스크린부의 반경 및 경사각이 증가되어 수평 편향코일에서 발생되는 불필요한 누설 자계의 양이 대폭 증가되는 경향이 있다.
- <50> 상기 누설 자계를 감소시키는 수단으로 홀더(23)의 스크린 상하에 캔슬 코일
 (25a,25b)을 설치하여 누설 자계를 상쇄시키는 방법을 사용하거나, 페라이트 코아(24)의

스크린측 끝단으로부터 수평 편향코일의 스크린측 끝단까지의 간격을 증가시키는 방법이 사용되고 있다.

- <51> 상기 누설 자계를 감소시키는 수단으로 홀더(23)의 스크린부 상하에 캔슬코일 (25a,25b)을 설치하는 방법을 적용한 편향요크 구조를 상기 기술한 도2에 나타내었다.
- <52> 즉, 상기 홀더(23)의 상, 하 스크린부에 1쌍의 캔슬코일(25a,25b)을 부착하여 캔슬코일(25a,25b)에서 발생하는 자계가 상기 누설 자계를 상쇄시키도록 한 것이다.
- 즉, 상기 캔슬코일(25a,25b)은 수평 편향회로에 결선하는데, 그 결선방향은 수평 편향코일(21)의 스크린부에서 발생하는 누설 자계와 캔슬코일(25a,25b)에 흐르는 수평 편향전류에 의해서 생성되는 주 편향 자계가 서로 반대 방향이 되어 상쇄되도록 결선함 으로써, 편향요크(15)의 스크린부와 네크부에서 발생되는 누설 자계를 상쇄시키는 것이 다.
- 악사 설명한 바와 같이, 수평 편향코일 및 수직 편향코일(21)(22)에 전류를 흘려주어 자계를 만들어 주는 경우 코일의 자계만으로는 전자빔(16)을 화면의 전면에 편향시키기 어렵기 때문에 고투자율의 페라이트 코아(24)를 사용하여 자계의 귀환 경로 상에서의 손실을 최소화함으로써 자계 효율을 높이고 자기력 증대를 기하고 있다.
- 따라서, 페라이트 코아(24)는 고투자율 확보를 위해 기본적으로 산화철(Fe₂0₃)과
 몇 가지의 첨가물(Mn, Mg 등)로 구성된다.
- 또한, 페라이트 코아(24)의 형상은 대부분 음극선관 제품에 사용되는 원형 페라이트 코아와, 최근에 효율을 보다 증가시키기 위하여 사각형 모양의 페라이트 코아도 사용하고 있다.

- <57> 도3의 (a)에 원형 페라이트 코아(31)를 개략적으로 나타내었고, (b)에 사각형 페라이트 코아(32)를 개략적으로 나타내었다.
- -58> 그런데 페라이트 코아(24)의 두께와 위치는 편향요크의 감도와 누설자계에 큰 영향을 미치므로, 이를 적절하게 설계하는 것은 편향요크의 품위에 큰 영향을 미치는 중요한요소가 된다.
- 악서 기술한 바와 같이 페라이트 코아(24)를 설치하게 되면 자계를 차폐하는 효과가 있기 때문에 편향요크의 편향효율이 증가하고 누설자계가 감소하게 되며, 이를 위하여 그 형상은 편향요크를 둘러싼 닫혀진 형태가 된다.
- 이러한 페라이트 코아(24)의 좋은 특성을 만족하기 위해서는 투자율(μ)이 높아야 하며(300이상), 와전류(Eddy Current)에 의한 손실을 줄이기 위하여 높은 전기 저항을 가져야 한다.
- '61' 그러나, 종래의 기술에 따른 음극선관용 편향요크의 페라이트 코아 구조에서는 다음과 같은 문제점이 있다.
- 즉, 현재까지 대부분의 편향요크에 사용되는 원형/원추형의 페라이트 코아는 두께가 6mm이상인 두꺼운 구조를 가지고 있으며, 사각형의 페라이트 코아의 경우 대각선 쪽의 모서리 부분의 두께는 8mm이상의 구조를 가지고 있다.
- <63> 그러나 편향요크용 페라이트 코아 구조에서는 페라이트 코아의 두께가 일정 두께 이상이 되면 그 이상의 두께는 사실상 필요없는 마진(Margin)의 의미를 갖는다.
- <64> 이와 같이 종래에는 필요한 페라이트 코아 두께보다 더 두껍게 설계되고 있기 때문에 페라이트 코아에 사용되는 재료가 더 많이 들어 코아 재료비에 불필요한 낭비가 있을

뿐만 아니라, 불필요하게 두꺼운 페라이트 코아 구조를 사용하므로 그에 따라 편향요크 자체의 무게 및 부피가 증가하는 문제점 및, 이에 따른 편향요크의 품위 및 운송 등에 많은 낭비요소가 있다.

【발명이 이루고자 하는 기술적 과제】

- 본 발명의 목적은 기존의 페라이트 코아와 동등한 수준의 특성을 가지면서 그 부피와 중량을 대폭 줄여서 경량화, 박막화가 가능하도록 한 음극선관용 편향요크를 제공하는데 있다.
- 본 발명의 또 다른 목적은 페라이트 코아의 두께를 실험을 통해 감소시켜 가면서 편향능력에 손상을 주지 않는 범위에서 최적의 두께를 갖도록 박막화 및 경량화시켜 줌으로써, 재료비를 줄이고 부피와 무게를 줄여서 품위 및 운송에 있어서의 낭비 요소를 제거할 수 있도록 한 음극선관용 편향요크를 제공하는데 있다.
- (67) 본 발명의 또 다른 목적은 수평 편향코일, 수직 편향코일, 수평 편향코일 및 수직 편향코일을 지지함과 동시에 서로를 절연시키는 홀더와 누설 자속을 잡아주는 페라이트 코아를 구비한 음극선관용 편향요크에 있어서, 기존의 페라이트 코아의 중량 및 부피를 대폭 줄이면서, 기존의 페라이트 코아와 동등 수준의 특성을 갖는 페라이트 코아 구조를 제공하고. 또한 본 발명의 코아를 편향요크에 적용하였을 때 야기될 수 있는 구조상의 취약점(박막화에 따른 문제)을 해결할 수 있는 수단을 제공하는데 있다.

【발명의 구성 및 작용】

<68> 본 발명은 상기한 목적을 달성하기 위하여 패널과 편넬 및 전자 방출수단을 갖고 상기 전자 방출수단에서 발사된 전자빔을 편향시키는 편향요크를 포함하는 음극선관에

있어서, 상기 편향요크는 전자빔의 수평 편향을 위한 수평 편향코일과, 전자빔의 수직 편향을 위한 수직 편향코일과, 상기 수평 편향코일 및 수직 편향코일을 지지함과 동시에 서로를 절연시키는 홀더와, 상기 수평 편향코일 및 수직 편향코일에서 생성된 자계의 귀환 경로 상에서의 누설 자속을 감소시키는 페라이트 코아를 포함하고, 상기 편향요크의 페라이트 코아는 두께가 6mm이내이고 두께가 최대인 지점과 최소인 지점이 존재하며, 상기 두께가 최대인 지점의 두께는 3mm 이상인 것을 특징으로 한다.

(69) 또한, 본 발명은 패널과 펀넬 및 전자 방출수단을 갖고 상기 전자 방출수단에서 발사된 전자빔을 편향시키는 편향요크를 포함하는 음극선관에 있어서, 상기 편향요크는 전자빔의 수평 편향을 위한 수평 편향코일과, 전자빔의 수직 편향을 위한 수직 편향코일과, 상기 수평 편향코일 및 수직 편향코일을 지지함과 동시에 서로를 절연시키는 흘더와, 상기 수평 편향코일 및 수직 편향코일에서 생성된 자계의 귀환 경로 상에서의 누설 자속을 감소시키는 페라이트 코아를 포함하고, 상기 편향요크의 페라이트 코아는 두께가 6mm이내이고 두께가 최대인 지점과 최소인 지점이 존재하며, 상기 페라이트 코아의 길이를 Lf라고 할 때 상기 두께가 최대인 지점은 페라이트 코아의 네크측 끝단에서 1/2Lf 사이에 존재하는 것을 특징으로 한다.

또한, 본 발명은 패널과 편넬 및 전자 방출수단을 갖고 상기 전자 방출수단에서 발사된 전자빔을 편향시키는 편향요크를 포함하는 음극선관에 있어서, 상기 편향요크는 전자빔의 수평 편향을 위한 수평 편향코일과, 전자빔의 수직 편향을 위한 수직 편향코일과, 상기 수평 편향코일 및 수직 편향코일을 지지함과 동시에 서로를 절연시키는 홀더와, 상기 수평 편향코일 및 수직 편향코일에서 생성된 자계의 귀환 경로 상에서의 누설 자속을 감소시키는 페라이트 코아를 포함하고, 상기 편넬은 편향요크가 장착되

는 요크 장착부가 형성되고, 상기 펀넬의 요크장착부는 내면의 단면형상 또는 내면 및 외면의 단면형상이 네크측에서 스크린측으로 향할수록 점차 원형에서 비원형형상으로 변 형되고, 상기 페라이트 코아의 두께가 최대인 지점의 두께는 3mm~6mm인 것을 특징으로 한다.

- <71> 상기한 바와 같이 구성되는 본 발명의 음극선관용 편향요크를 첨부된 도면을 참조하여 바람직한 실시예를 들어 설명한다.
- 의반적으로 페라이트 코아의 두께가 얇아짐에 따라 수직 편향의 경우 수직 인덕턴스 값이 작아지면서, 기존의 전류를 인가할 경우 약간의 화면 사이즈가 작아지는 변화가생기지만, 이는 기존의 수직 편향코일의 동선 굵기를 줄이면서, 권선(Turn) 수를 늘인다면 감도 및 재료비 상승 없이 화면 사이즈 변화의 문제점을 해결할 수 있다.
- <73> 따라서, 페라이트 코아의 두께를 감소할 만한 충분한 기술적 이유가 있다고 연구되었다.
- <74> 물론 현재까지 이렇게 두꺼운 페라이트 코아를 사용하였던 이유는 페라이트 코아 재료비가 편향요크 생산에 큰 문제가 되지 않았기 때문이다.
- 그러나, 현재 음극선관 시장을 살펴보면 가격 경쟁력(Cost Down)이 가장 시급한 상황임을 인식할 때, 불필요한 재료비를 줄이는 것과 박막화(Thin Core) 및 경량화를 통한무게와 부피 감소, 이를 통한 운송과 취급 등의 낭비요소 제거는 매우 중요한 일이라고볼 수 있다.

- <76> 일반적으로 페라이트 코아의 중량에 따른 재료비는 중량 10% 당, 페라이트 코아 가격이 5%정도 감소된다. 따라서, 본 발명에서 제시하는 페라이트 코아 구조를 선택할 경우 페라이트 코아 중량을 30% 이상 줄일 수 있다.
- <77> 또, 페라이트 코아의 두께가 얇아지면 편향요크(특히 수평 편향코일)에서 발생하는 누설자계의 양을 줄일 수 있다.
- <78> 따라서 기존보다 얇은 페라이트 코아 두께를 사용할 경우, 현재 누설 자계(VLMF)를 줄이기 위한 캔슬코일의 권선 수를 줄일 수 있으며 그 만큼의 재료비를 절약할 수 있다.
- <79> 도4에서 (a)는 본 발명의 수평 편향코일과 페라이트 코아의 상대 위치를 나타내는 개략도이다.
- Kh는 수평 편향코일의 길이로서 수평 편향코일의 네크측 끝단 위치를 0, 스크린측 끝단 위치를 Lh라고 표기하였다. Lf는 페라이트 코아(24)의 네크측 끝단 위치(Lfs)로부터 스크린측 끝단 위치(Lff) 까지의 길이를 표현한다.
- 본 발명에서 페라이트 코아(24)의 박막화 진행에 따라 상기 Lh와 Lf의 비를 최적화해야 하며, 다음에 설명할 실험 예를 기반으로 할 때 Lf가 0.1Lh ~ 0.9Lh의 범위 내에존재하고, Lf는 총 길이 35mm이상 55mm이하에서 선택되는 것이 바람직하다.
- <82> 도4에서 (b)는 본 발명에서 박막 페라이트 코아의 구현을 위한 페라이트 코아 두께 계산의 이론적 배경을 설명하기 위한 도면이다.
- <83> 본 발명은 음극선관에 사용되는 페라이트 코아의 최소 두께를 설계함에 있어, 페라이트 코아 내면의 자속의 양을 이용하여 그 두께를 정하는 방법에 기반을 둔다.

- 즉, 페라이트 코아의 내경을 2a, 페라이트 코아의 외경을 2b, 페라이트 코아의 네 크측 영역(직선부)에서 길이 c만큼의 원통을 고려할 때, 페라이트 코아 내부의 코일이 있는 영역에서 페라이트 코아 영역으로 들어오는 자속(φ_{in})과 페라이트 코아의 포화 자 속밀도(B_m) 사이에는 φ_{in} ≤ φ_m, [여기서, φ_m = c·(b-a)B_m; 페라이트 코아의 최대 자속밀도] 의 관계가 성립해야 한다.
- '85' 상기 자속과의 관계에서 b-a는 코아 두께 t에 해당하므로, 결국 t≥[(\$\varphi_{in})/(B_m·c
)]의 관계를 가짐을 알 수 있다.
- (%6) 따라서, 본 발명에서는 이러한 페라이트 코아 두께와 자속 및 페라이트 코아의 네 크측 영역(직선부)에서의 길이와의 관계를 기반으로 하여 최적의 페라이트 코아 두께를 다음과 같이 설계한다.
- 본 발명에서는 적절한 페라이트 코아의 두께를 선택하기 위하여 현재 가장 널리 사용되고 있는 17인치 모니터에 사용되는 페라이트 코아의 두께(6.8mm)를 여러 가지로 변경시켜가면서 실험하고 이를 검토하였다.
- V용 편향요크와 모니터용 편향요크에서 각각의 음극선관의 편향각이 같으면 편향요크 내부에서는 거의 같은 자계를 가지게 된다.
- 물론, 자계의 세기를 조절하는 방식이 다르긴 하지만, 자계의 측면에서 본다면 코일에서 만드는 자계의 크기가 대부분 비슷하며, 그 자계를 수용하는 페라이트 코아 역시 같은 구조 및 위치라면 같은 역할을 하게 되며, 같은 용량의 자계만 수용하면 된다.
- <90> 따라서 본 발명에 따른 실험에서는 모니터용 편향요크의 페라이트 코아를 대상으로 하였으나, 이를 TV용 편향요크의 페라이트 코아에 같이 적용할 수 있다.

- 또한, 상기 편향요크가 장착되는 편넬의 요크장착부는 내면의 단면형상 또는 내면 및 외면의 단면형상이 네크측에서 스크린측으로 향할 수록 점차 원형에서 비원형형상으로 변형될 수 있으며, 원형으로 유지될 수도 있다.
- <92> 도 5는 본 발명의 페라이트 코아의 두께를 나타내는 단면도이고, 도 6은 페라이트 코아의 네크측 끝단의 두께 및 내경을 나타내는 사시도이다.
- <93> 도 5의 (a)는 페라이트 코아(24)의 네크측 끝단의 두께 Tn 및 스크린측으로의 두께 t1, t2, t3,...tn, 페라이트 코아의 길이 Lf, 페라이트 코아의 네크측 끝단의 직경 Dn에 대해서 보여준다.
- <94> 도 5의 (b)는 원형 형상의 페라이트 코아(52) 단면과 그 두께 t1,t2,t3,...에 대해서 보여주며, 도5의 (c)는 사각형 형상의 페라이트 코아(53) 단면과 그 두께 t1,t2,t3에 대해서 보여준다.
- <95> 도 6은 원형 페라이트 코아의 사시도로서, 상기 Tn 및 Dn에 대해서 표현하였다.
- 본 발명에 따른 실험에서는 페라이트 코아의 두께를 기존 6.8mm로부터 시작해서 각 각 0.5mm씩 줄이면서 페라이트 코아의 외면을 가공하여 최고 3.5mm까지 두께를 줄였다.
- <97> 즉, 페라이트 코아의 두께가 6.8mm에서 3.3mm까지의 두께로 총 8개의 샘플을 준비하여, 샘플에 따른 자기적 특성 및 화면에 미치는 영향과 신뢰성(발열 특성) 등을 검토하였다.

<98>

【丑 1】

샘플	6.8mm	6.3mm	5.8mm	5.3mm	4.8mm	4.3mm	3.8mm	3.3mm
	Normal	0.5mm 감소	1.0mm 감소	1.5mm 감소	2.0mm 감소	2.5mm 감소	3.0mm 감소	3.5mm 감소
Lh(mH)	0.136	0.136	0.135	0.135	0.135	0.135	0.135	0.134

- <99> 표 1은 이와 같은 본 발명에 따른 실험에 있어서, 페라이트 코아의 두께에 따른 수 평 편향코일 인덕턴스 값의 변화를 보여준다.
- <100> 표 1에서 보듯이 페라이트 코아의 두께에 따른 편향요크의 인덕턴스값의 변화가 거의 없으며, 다만 3.5mm 감소 시에 수평편향 인덕턴스의 0.002mH(대략 1%) 저하가 나타남을 보이고 있다.
- <101> 또, 노멀 페라이트 코아를 사용하였을 경우와 동일한 전류를 인가하였을 때, 각각의 두께에 따른 화면 사이즈 변화도 거의 없었으며, 컨버젼스의 변화도 문제가 되지 않을 정도의 양이었다.
- <103> 따라서, 발열에 대한 검토를 하였는데 발열 실험의 경우 페라이트 코아의 두께가 얇아질수록 페라이트 코아 표면의 온도가 증가하는 현상을 보였으나, 코일내부의 온도는 거의 일정하였다.
- <104> 물론 온도는 코일 내부 온도(100도)가 가장 높고, 페라이트 코아 온도(80도 ~ 100 도), 대기 온도의 순서였다.

<105> 즉, 페라이트 코아의 온도가 올라감에 따라 페라이트 코아 특성이 저하된다면 큰 문제가 발생할 수 있으나, 기존에 사용되는 페라이트 코아의 퀴리 온도가 130도 이상임 을 감안할 때, 퀴리 온도까지의 투자율의 특성은 온도가 올라갈수록 좋아지는 방향이므 로 이 부분에도 큰 문제점이 없는 것으로 연구되었다.

<106> 그리고, 수직편향 코일의 경우, 페라이트 코아에 더 가까이 위치한 관계로 코아 두 께에 따른 인덕턴스 감소가 조금 있었다.

<107> 【班 2】

샘플	6.8mm	6.3mm	5.8mm	5.3mm	4.8mm	4.3mm	3.8mm	3.3mm
	Normal	0.5mm 감소	1.0mm 감소	1.5mm 감소	2.0mm 감소	2.5mm 감소	3.0mm 감소	3.5mm 감소
Lh(mH)	6.335	6.300	6.313	6.306	6.254	6.237	6.210	6.065

<108> 표 2는 페라이트 코아 두께의 따른 수직 편향코일 인덕턴스 값을 보여준다.

조 전 2에서 보듯이 페라이트 코아의 두께가 기존 6.8mm에서 3.5mm로 감소되면 수직 편향코일의 인덕턴스는 0.27mH(대략 4%) 정도 감소를 나타내었다.

<110> 또, 이 경우에는 전자빔의 수직편향 사이즈의 감소가 있었다.

시키의 제라이트 코아 두께의 감소에 따른 수직 편향 코일의 인덕턴스 감소분 4%를 보정하는 방법은 앞서 설명한 바와 같이, 수직 편향코일의 권선 수(100Turn)의 경우 4 Turn ~
6 Turn 정도만 증가시켜 수직 인덕턴스를 보정한다면, 전력의 큰 손실 없이, 또 특별한 샤시의 변경없이 기존과 동일한 편향 역할을 할 수 있게 만들 수 있다.

<112> 페라이트 코아 두께를 기존 6.8mm에서 3.4mm로 50%를 줄일 수 있는 장점에 비교한 다면 이 정도의 문제(side effect)는 감수할 만한 양이라 판단된다.

- <113> 그리고 수직 편향 코일의 4 Turn정도의 증가에 따른 코일의 재료비 문제도, 사용하는 코일의 두께를 조금만 줄인다면 이 것 역시 해결 가능하다. '
- 만약 페라이트 코아 두께를 3mm 감소한 경우를 본다면 기존의 수직 편향코일 인덕 턴스와 비교해 볼 때, 기존 6.8mm의 두께일 때 6.335mH에서 3.8mm일 때 6.210mH로 약 2% 정도의 차이밖에 나타내지 않으며, 화면 사이즈의 변화도 3.5mm 두께 감소한 페라이트 코아의 경우에 비하여 훨씬 줄어들게 되며 이에 대한 보정량도 훨씬 줄게 되는 것을 알 수 있다.
- <115> 물론, 앞서 설명한 바와 같이 페라이트 코아 두께의 감소로 인한 수직편향에 따른 컨버젼스의 임계적인 변화 역시 없었다.
- <116> 상기 기술한 바와 같이 페라이트 코아의 두께는 수평 편향코일의 경우 현 두께(7mm 기준)의 50% 이상 감소가 가능하다는 것을 알 수 있으며, 수직 편향코일의 경우 적당한 수직편향의 보정량을 기준으로 정하는 것이 타당하다고 판단된다.
- <117> 기존의 수직편향에 거의 문제가 없으며 적당한 두께를 수직 인덕턴스의 5%정도로 본다면 최대 감소 두께를 3.0mm 정도에서 결정하는 것이 적당하다고 판단된다.
- 이렇게 제시된 페라이트 코아의 두께를 바탕으로 몇 가지 기술적 보완(코일 턴수나 코일 두께 등에 대한 고려)을 한다면, 필요한 페라이트 코아의 특성을 거의 동등하게 유 지하면서 페라이트 코아의 재료비를 혁신적으로 줄일 수 있는 페라이트 코아를 제작할 수 있다.
- <119> 지금까지 기술한 상기 표1 및 표2의 실험 결과와 그 분석 결과에 따른다면, 본 발명에서 페라이트 코아는 도 9와 도 10에 도시된 바와같이 분할형 페라이트 코아와 같이

결합을 위한 오목한 부분과 볼록한 부분을 제외한 모든 지점의 두께 중에서 그 최대값이 3mm ~ 6mm 에서 선택되는 것이 바람직하는 것을 알 수 있다.

- 또한, 앞서 기술한 바와 같이 본 발명에 따른 박막형 페라이트 코아에서 페라이트 코아의 길이 Lf가 0.1Lh ~ 0.9Lh 의 범위 내에서 선택되는 것이 박막화된 이후에도 그특성의 저하없이 기존 두께의 페라이트 코아 능력과 동등한 수준의 효과를 가질 수 있게 한다.
- <121> 더욱 바람직하게는 페라이트 코아의 모든 지점의 두께 중에서 그 최대값이 4mm ~
 6mm 내에서 선택되는 것이 좋다.
- <122> 또한, 페라이트 코아의 특성에 영향을 미치지 않는 범위에서 재료비를 최소한으로 . 하기 위한 페라이트 코아의 두께는 모든 지점의 두께 중에서 그 최대값이 4mm ~ 5.5mm 내에서 선택되는 것이 보다 바람직하다.
- <123> 또한, 앞서 기술한 박막형 폐라이트 코아에서 폐라이트 코아의 네크측 끝단의 두께 Tn이 4mm 이상 5mm 이하에서 선택되는 것이 바람직하다.
- 한편, 본 발명에 따른 페라이트 코아는 그 모양이 네크측 끝단에서부터 스크린측 끝단까지 모두 원형인 경우에 적용될 수 있을 뿐만 아니라, 네크측 끝단의 단면이 원형 이든 사각형이든 상관없이 페라이트 코아의 스크린측 끝단의 단면이 사각형인 경우에도 적용될 수 있다.
- 후자의 경우는 도 9와 도 10에 도시된 바와같이 분할형 페라이트 코아와 같이 결합을 위한 오목한 부분 및 돌기부를 제외한 페라이트 코아의 모든 지점의 두께 중에서 최대값이 3mm ~ 6mm 내에서 선택되는 것이 바람직하다.

- <126> 또한, 페라이트 코아의 스크린측 끝단의 단면이 사각형인 페라이트 코아에서는 페라이트 코아의 길이 Lf가 수평 편향 코일의 길이 Lh에 대해서, 0.1Lh ~ 0.9Lh 내에 존재하며, Lf는 총길이 35mm 이상 55mm 이하에서 선택되는 것이 바람직하다.
- <127> 특히, 스크린측 끝단의 단면이 사각형인 페라이트 코아의 경우에서는 도 9와 도 10에 도시된 바와같이 페라이트 코아의 분할형 페라이트 코아와 같이 결합을 위한 오목한 부분 및 돌기부를 제외한 두께 중에서 최대값이 4mm ~ 6mm 내의 범위에서 선택하는 것이 더욱 바람직하다.
- <128> 또한, 페라이트 코아의 특성에 영향을 미치지 않는 범위에서 재료비를 최소한으로 하기 위한 페라이트 코아의 두께는 모든 지점의 두께 중에서 그 최대값이 4mm ~ 5.5mm 내에서 선택되는 것이 보다 바람직하다.
- <129> 또한, 스크린측 끝단의 단면이 사각형인 페라이트 코아의 경우에도 페라이트 코아의 네크측 끝단 두께 Tn 중에서 가장 큰 값이 4mm이상 5mm이하에서 선택되는 것이 바람직하다.
- <130> 본 발명의 페라이트 코아는 TV용과 모니터용 모두에 적용될 수 있다. 모니터의 경우 최대 주파수 80kHz이내의 수평주파수가 사용되며, TV에서는 48kHz이내의 수평주파수가 사용된다.
- <131> 모니터의 편향코일의 경우 주로 새들/새들 타입(Saddle/Saddle Type)(전자는 수평 편향코일 타입, 후자는 수직 편향코일 타입, Saddle Type은 말안장형 코일을 의미함: 이하 동일)을 가지며, TV의 편향코일의 경우 새들/새들 타입(Saddle/Saddle Type)과 새들/

환상 타입(Saddle/Toroidal Type)(전자는 수평편향 코일 타입, 후자는 수직 편향코일 타입, Toroidal Type은 페라이트 코아에 직접 코일을 감은 타입을 의미함)을 가진다.

- <132> 각각의 타입에 관계없이 페라이트 코아의 두께도 본 발명의 페라이트 코아를 적용할 수 있는데, 이는 상기 기술하였듯이, 내부 자계의 크기가 크게 차이가 나지 않는다면 페라이트 코아의 두께가 크게 달라질 필요가 없기 때문이다.
- <133> 따라서 모니터 용과, TV용으로 사용되었던 기존 페라이트 코아에 본 발명의 페라이트 코아 두께를 적용하였을 때, 각각의 타입에 해당되는 페라이트 코아의 새로운 특징이나타나게 되며, 이러한 특징은 앞서 기술한 바 및 다음에 기술할 특징들로 설명된다.
- <134> 한편, 대부분의 경우 페라이트 코아 네크측 끝단의 두께는 전체 두께와 비교하여 보았을 때 아주 큰 두께를 가진다. 왜냐하면 페라이트 코아의 네크측 끝단은 다른 부분 보다 온도가 높으므로 그 만큼 방열 특성이 우수하여야 하기 때문이다.
- <135> 따라서, 본 발명의 페라이트 코아를 사용하였을 때도 네크측 끝단의 두께는 대략 4
 ~ 5mm정도의 큰 두께를 가져야 할 것으로 판단되며, 페라이트 코아 두께 중에서 가장 큰 두께를 가진 부분과 비교하여도, 적어도 80% 이상의 두께를 가져야 할 것이다.
- <136> 즉, 네크측 끝단의 두께는 페라이트 코아의 가장 큰 두께이거나 만약 얇아지더라도 최대 두께의 80%이하로 얇아지게 되면 방열 특성이 나빠질 것이라 예상되므로 적어도 페 라이트 코아 두께 중에서 가장 큰 두께를 가진 부분과 비교하여도 80% 이상의 두께를 가 지도록 한다.
- <137> 도 7은 네크측 끝단의 페라이트 코아 내경 및 두께 최대값에 대해서 보여준다.

- <138> 도 7의 (a)는 완벽한 원형이 아닌 경우의 페라이트 코아(71)를 보여주고 있으며, 도 7의 (b)는 완벽한 원형인 경우의 페라이트 코아(72)를 보여주고 있다.
- <139> 도 7에서 네크측 끝단의 페라이트 코아 내경(Dn)의 최대값(Max.Dn), 네크측 끝단의 두께 Tn의 최대값 Max.Tn을 놓고 볼 때, 상기 기술한 본 발명의 특징과 장점을 확보하면 서 박막형으로 페라이트 코아를 설계하기 위한 조건이 선택되어야 한다.
- *140> 바람직하게는 도 7의 (a), (b)와 같은 원형 및 타원형 페라이트 코아에서 페라이트 코아의 최대 두께와 네크측 끝단 두께의 최대값 Max.Tn의 비 [(페라이트 코아의 최대 두께)/(Max.Tn)]가 1.0 이상 1.2 이하에서 선택되는 것이 좋다.
- 또한, 모니터용 편향요크의 경우에는 네크측 끝단의 내경 Dn 중에서 가장 큰 값을 Max.Dn이라고 할 때, Max.Dn과 페라이트 코아의 최대 두께의 비; [Max.Dn/(페라이트 코아의 최대 두께)]가 7.0 이상 10.5 이하에서 선택되는 것이 바람직하며, TV용 편향요크의 경우는 그 비[Max.Dn/(페라이트 코아의 최대 두께)]가 9.0 이상 12.5 이하에서 선택되는 것이 바람직하다.
- 도 8은 페라이트 코아의 스크린측 끝단에서 네크측으로의 1/3지점의 두께와 네크측 끝단의 두께를 나타내는 개략도로서, 앞서 기술한 바와 같이 본 발명에 따라 최적화된 박막형 페라이트 코아(24)에서 페라이트 코아의 스크린측 끝단에서 네크측으로의 1/3 지점의 두께(T_1/3s)와 네크측 끝단 두께 Tn의 최대값 Max.Tn의 관계를 표현한다.
- <143> 즉, 스크린측 끝단의 단면이 원형인 경우나 타원형인 경우 공히, 페라이트 코아의 스크린측 끝단에서 네크측으로의 1/3 지점의 두께와 Max.Tn의 비 [(페라이트 코아의 스

크린부 측의 1/3 지점의 두께)/Max.Tn)]가 0.8 이상 1.0 이하에서 선택되는 것이 바람직하다.

- 한편, 본 발명과 같이 페라이트 코아의 두께가 얇아져서 박막화되면, 분할형 페라이트 코아의 경우에는 페라이트 코아를 고정시키는 홈이 페라이트 코아의 단면적을 줄이는 중요한 요인이 될 수 있다.
- <145> 도 9는 기존의 분할형 페라이트 코아 구조를 나타낸 도면으로서, 분할형 페라이트 코아(91,92)를 연결하기 위한 연결부에 오목한 홈(93)을 형성하고 여기에 클램프(95)를 삽입하여 페라이트 코아를 고정시키는 구조를 보여주고 있다.
- <146> 이와 같이 홈(93)과 클램프(95)를 이용해서 분할형 페라이트 코아를 고정시키는 구조에 본 발명의 박막화를 적용하여 페라이트 코아 두께를 줄이게 되면, 상기 홈(93) 부분의 페라이트 코아 두께가 다른 곳 보다 더욱 얇아지게 된다.
- <147> 그런데 페라이트 코아의 두께는 페라이트 코아가 수용할 수 있는 자속의 수와 직접적으로 관련이 있기 때문에, 홈이 존재하는 부분의 페라이트 코아의 단면에서는 실제 원하는 수용 자속 수를 모두 수용하지 못하는 경우가 발생할 수 있다.
- <148> 따라서 페라이트 코아의 두께를 본 발명에서 제안한 것처럼 최적으로 줄이려고 한다면, 분할형 페라이트 코아의 결합 홈 부분에 대하여 보완 설계를 하는 것이 필요하다.
- <149> 따라서 본 발명에서는 도 10에 나타낸 바와 같이 얇아진 페라이트 코아(91,92) 두 께에서, 결합 홈 부분의 단점을 보완하기 위하여 돌기부(103)를 구비하고 클램프(95)를 상기 돌기부(103)를 이용해서 체결하였다.

<150> 돌기부(103)가 존재하면 페라이트 코아의 단면적이 넓어지는 효과가 있으므로, 원하는 자속을 수용하는 데 전혀 문제가 없게 된다.

<151> 물론 돌기부의 구조의 경우 충격에 약하지 않을 정도의 안정된 두께를 확보하여야 한다.

【발명의 효과】

- <152> 본 발명은 음극선관용 편향요크의 페라이트 코아를 최적 설계를 통해 박막화 및 경량화 하였다. 따라서, 기존에 필요 이상으로 두꺼운 페라이트 코아의 불필요한 페라이트 코아 재료와 이와 상응하는 페라이트 코아 비용을 줄이면서 기존의 페라이트 코아와 동등 수준의 특성을 가질 수 있는 페라이트 코아를 제공할 수 있다.
- <153> 본 발명의 최적화된 박막 페라이트 코아를 포함하는 편향요크는 TV용 음극선관 뿐만 아니라 모니터용 음극선관에도 적용 가능하며, 분할형 페라이트 코아의 박막화 및 경량화에 따른 구조적 취약점(연결부의 취약 구조)을 돌기부 및 클램프 결합 구조로 변경함으로써 간단히 극복하였다.
- <154> 또한 본 발명에 따른 페라이트 코아 구조를 적용한 편향요크는 박막화 및 경량화를 통해서 편향요크의 부피와 무게를 줄일 수 있기 때문에, 편향요크를 포함하는 음극선관 의 경량화에 기여할 수 있고, 취급과 운송 등에 있어서도 박막 경량화된 취급과 운송이 가능하여, 이와 상응하는 비용절감 및 취급 등의 용이함을 제공할 수 있다.

【특허청구범위】

【청구항 1】

패널과 편넬 및 전자 방출수단을 갖고 상기 전자 방출수단에서 발사된 전자빔을 편 향시키는 편향요크를 포함하는 음극선관에 있어서,

상기 편향요크는 전자빔의 수평 편향을 위한 수평 편향코일과, 전자빔의 수직 편향을 위한 수직 편향코일과, 상기 수평 편향코일 및 수직 편향코일을 지지함과 동시에 서로를 절연시키는 홀더와, 상기 수평 편향코일 및 수직 편향코일에서 생성된 자계의 귀환 경로 상에서의 누설 자속을 감소시키는 페라이트 코아를 포함하고,

상기 편향요크의 페라이트 코아는 두께가 6mm이내이고 두께가 최대인 지점과 최소 인 지점이 존재하며,

상기 두께가 최대인 지점의 두께는 3mm 이상인 것을 특징으로 하는 음극선관용 편향요크.

【청구항 2】

패널과 편넬 및 전자 방출수단을 갖고 상기 전자 방출수단에서 발사된 전자빔을 편 · 향시키는 편향요크를 포함하는 음극선관에 있어서,

상기 편향요크는 전자빔의 수평 편향을 위한 수평 편향코일과, 전자빔의 수직 편향을 위한 수직 편향코일과, 상기 수평 편향코일 및 수직 편향코일을 지지함과 동시에 서로를 절연시키는 홀더와, 상기 수평 편향코일 및 수직 편향코일에서 생성된 자계의 귀환 경로 상에서의 누설 자속을 감소시키는 페라이트 코아를 포함하고.

상기 편향요크의 페라이트 코아는 두께가 6mm이내이고 두께가 최대인 지점과 최소 인 지점이 존재하며,

상기 페라이트 코아의 길이를 Lf라고 할 때 상기 두께가 최대인 지점은 페라이트 코아의 네크측 끝단에서 1/2Lf 사이에 존재하는 것을 특징으로 하는 음극선관용 편향요 크.

【청구항 3】

패널과 편넬 및 전자 방출수단을 갖고 상기 전자 방출수단에서 발사된 전자빔을 편 향시키는 편향요크를 포함하는 음극선관에 있어서,

상기 편향요크는 전자빔의 수평 편향을 위한 수평 편향코일과, 전자빔의 수직 편향을 위한 수직 편향코일과, 상기 수평 편향코일 및 수직 편향코일을 지지함과 동시에 서로를 절연시키는 홀더와, 상기 수평 편향코일 및 수직 편향코일에서 생성된 자계의 귀환 경로 상에서의 누설 자속을 감소시키는 페라이트 코아를 포함하고,

상기 펀넬은 편향요크가 장착되는 요크 장착부가 형성되고.

상기 편넬의 요크장착부는 내면의 단면형상 또는 내면 및 외면의 단면형상이 네크 측에서 스크린측으로 향할수록 점차 원형에서 비원형형상으로 변형되고,

상기 페라이트 코아의 두께가 최대인 지점의 두께는 3mm~6mm인 것을 특징으로 하는 음극선관용 편향요크.

【청구항 4】

제 1항 내지 제 3항 중 어느 한 항에 있어서.

상기 페라이트 코아의 두께가 최소인 지점의 두께는 2mm이상인 것을 특징으로 하는음극선관용 편향요크.

【청구항 5】

제 1항 내지 제 3항 중 어느 한 항에 있어서.

상기 페라이트 코아의 두께가 최대인 지점의 두께는 4mm~6mm인 것을 특징으로 하는음극선관용 편향요크.

【청구항 6】

제 1항 내지 제 3항 중 어느 한 항에 있어서,

상기 수평편향 코일의 길이를 Lh(네크측 끝단위치: 0, 스크린측 끝단위치: Lh)라고 하고, 페라이트 코아의 길이를 Lf(네크측 끝단위치: Lfs, 스크린측 끝단위치: Lff)라고 할 때, 페라이트 코아의 네크측 끝단에서부터 스크린측 끝단이 수평 편향코일의 0.1 Lh ~ 0.9 Lh 내에 형성되는 것을 특징으로 하는 음극선관용 편향요크.

【청구항 7】

제 1항 내지 제 3항 중 어느 한 항에 있어서,

상기 페라이트 코아의 길이를 Lf(네크측 끝단위치 : Lfs, 스크린측 끝단위치 : Lff)라고 할 때, 상기 Lf는 35mm이상 55mm 이하인 것을 특징으로 하는 음극선관용 편향요크.

【청구항 8】

제 1항 내지 제 3항 중 어느 한 항에 있어서,

상기 페라이트 코아의 단면의 형상은 원형 또는 타원형인 것을 특징으로 하는 음국 선관용 편향요크.

【청구항 9】

제 1항 내지 제 3항 중 어느 한 항에 있어서,

상기 페라이트 코아의 네크측 끝단의 두께 Tn은 4mm이상 5mm이하 인 것을 특징으로 하는 음극선관용 편향요크.

【청구항 10】

제 1항 내지 제 3항 중 어느 한 항에 있어서.

상기 페라이트 코아의 최대 두께와 네크측 끝단 두께의 최대값의 비[(페라이트 코아의 최대 두께)/(Max. Tn: 네크측 끝단의 두께 최대값)]는 1.0 이상 1.2 이하인 것을 특징으로 하는 음극선관용 편향요크.

【청구항 11】

제 1항 내지 제 3항 중 어느 한 항에 있어서,

상기 페라이트 코아의 스크린측 끝단에서 페라이트 코아 길이의 1/3인 지점의 두께와 네크측 끝단 두께의 최대값의 비 [(페라이트 코아의 스크린측 끝단에서 페라이트 코아 길이의 1/3인 지점의 두께)/(Max. Tn: 네크측 끝단의 두께 최대값)]는 0.8이상 1.0이하 인 것을 특징으로 하는 음극선관용 편향요크.

【청구항 12】

제 1항 내지 제 3항 중 어느 한 항에 있어서.

상기 페라이트 코아는 분할형인 것을 특징으로 하는 음극선관용 편향요크.

【청구항 13】

제 12항에 있어서,

상기 페라이트 코아는 볼록한 돌기부가 형성되어 클램프로 결합되는 것을 특징으로 하는 음극선관용 편향요크.

【청구항 14】

제 1항 내지 제 3항 중 어느 한 항에 있어서,

상기 편향요크를 적용한 음극선관은 모니터용인 것을 특징으로 하는 음극선관용 편 향요크.

【청구항 15】

제 14항에 있어서,

상기 페라이트 코아의 네크측 끝단의 내경 중 가장 큰 값을 Max.Dn이라 하면

Max.Dn과 페라이트 코아의 최대 두께의 비 [Max.Dn/(페라이트 코아의 최대 두께)]는 7.0
이상 10.5 이하인 것을 특징으로 하는 음극선관용 편향요크.

【청구항 16】

제 1항 내지 제 3항 중 어느 한 항에 있어서,

상기 편향요크를 적용한 음극선관은 TV용인 것을 특징으로 하는 음극선관용 편향요 크.

【청구항 17】

제 16항에 있어서.

상기 페라이트 코아의 네크측 끝단의 내경 중 가장 큰 값을 Max.Dn이라 하면

Max.Dn과 페라이트 코아의 최대 두께의 비 [Max.Dn/(페라이트 코아의 최대 두께)]는 9.0
이상 12.5 이하인 것을 특징으로 하는 음극선관용 편향요크.

【청구항 18】

제 1항 또는 제 3항에 있어서,

상기 페라이트 코아의 길이를 Lf라고 할 때 상기 두께가 최대인 지점은 페라이트 코아의 네크측 끝단에서 1/2Lf 사이에 존재하는 것을 특징으로 하는 음극선관용 편향요 크.

【청구항 19】

제 18항에 있어서,

상기 페라이트 코아의 두께가 최대인 지점의 두께는 4mm이상 5.5mm이하 인 것을 특징으로 하는 음극선관용 편향요크.

【청구항 20】

제 1항 내지 제 3항 중 어느 한 항에 있어서.

상기 수평 편향코일의 형상은 새들 타입인 것을 특징으로 하는 음극선관용 편향요 크.

【청구항 21】

제 1항 내지 제 3항 중 어느 한 항에 있어서,

상기 수직 편향코일의 형상은 새들 타입인 것을 특징으로 하는 음극선관용 편향요 크.

【청구항 22】

제 1항 내지 제 3항 중 어느 한 항에 있어서,

상기 수직 편향코일의 형상은 트로이달 타입인 것을 특징으로 하는 음극선관용 편 향요크.

[도 2]

[도 3]

[도 4]

[도 5]

[도 6]

[도 7]

[도 8]

[도 9]

[도 10]

