Scientific Computing Final Project AI CUP 2020 - 歌聲轉譜競賽

組別:我係快樂欸甘蔗 man

資工二 B07902142 許庭維

資工二 B07902144 彭約博

資工三 B06902136 賴冠毓

/*我們並未使用 ML 相關的方法,所以 report 中並無提及 model 相關資料,而是按照老師在社團中說明的 report 寫法*/

1. 想法和方法

我們的想法很簡單,基本上就是把一首歌曲跑完,每次根據前一個音與當前音符之間音高(pitch)的差距,來判斷是否為兩個不同的聲音。

而當疑似出現破音(爆音)或雜訊的時候,我們再透過當前音符與前後一個音符之間 pitch 的比較,來決定是否該視此音為爆音,而將它排除掉。

最後如果當前的音和上個音 pitch 一樣,則檢查這個音的開始時間,減去上個音的結束時間,如果是 0 或是負值,代表這兩個應該要是同個音,就把這個音刪除,並且把上一個音的結束時間設成這個音的結束時間。

2. 如何逐步驗證方法的適用性

這很顯而易見。要判斷兩個不同的音,在不考慮響度(振幅)、音色的情況下, 能作為依據的就是音高(頻率)了。

而破音的部分,就算是歌手,也可能不小心失誤,更何況雜訊這種外界的不可 抗力因素了,所以這在現實生活中是的確可能發生的情況。

舉例來說:有一段歌聲是 Re So So Si Do Si La

如果在Si中途產生了一段雜訊Mi,不做特殊處理的話會變成Si Mi Si,但這段歌聲並沒有Mi,而我們的方法便是將Mi跟前後兩個音符Si去比較,發現差異極大,而順利將Mi這個雜訊剔除。

最後檢查如果當前的音和上個音 pitch 一樣,而當前音的開始時間與上個音的結束時間的差是 0 或是負值,代表這兩個應該要是同個音(0 表示從後面被截斷,負值表示從中間被抽離),只是不小心被我們分割了,要把兩個音重新併起來。

3. 如何根據你的發現來逐步調整方法

最早我們只完全根據前一個「音符」與當前音符之間 pitch 的差距,來判斷是

否為兩個不同的聲音,但我們隨後就發現了這樣會導致比對的次數過高,只要 pitch 差不超過 1,可以視為同一段(個)音,所以我們額外紀錄了前一個音的 pitch,若當前音符與前一個「音」的 pitch 不超過 1,即可視為同一個音,直接進入下個音符的比較。

而不久後我們也發覺疑似有破音、雜訊的可能,而例子在驗證方法的適用性中 提過了,我們便根據這個例子,將我們的 code 升級成可以處理雜訊的情況。 最後我們觀察 json 檔時,有時候明明應該要是同一個音的,卻不小心被我們分 割成兩個音,所以我們才又去檢查這個音的開始時間與上個音的結束時間的 差,來判斷這兩個音是否為同個音。

- 4. Improvement over the baseline method
- (1)判斷時間加快(不需每個音符皆比較、比較前一個音高即可)
- (2)有能力處理雜訊這種常見的惱人情況

5. Insight and conclusions

在與其他組討論的時候,我們發現到雜訊是個相當關鍵的因素。 有些組別使用效率比我們更好的 DP,但卻沒有考慮雜訊的情況,因此排名落後 我們,所以做 project 還是需要考慮真實可能發生的所有情況會比較好。 不過我們的 code 似乎也還有優化的空間,也許可以試著改用去跟整首歌平均 pitch 做比較。

6. Division of labor (請列出組員之間如何分工)

系級	學號	姓名	工作
資工二	B07902142	許庭維	提出演算法、優化算法
資工二	B07902144	彭約博	樂理知識、實作 code 並測試
資工三	B06902136	賴冠毓	撰寫 report、統整與總結