

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа <u>Р3130</u>	Студент <u>Неграш А. В.</u>
Работа выполнена <u>01.06.20 10:00</u>	Преподаватель Соловьёв Д.П.

Рабочий протокол и отчет по лабораторной работе № 3.12V «Опыт Милликена»

1. Цель работы.

- 1) Исследование движения заряженных капель в электрическом и гравитационном полях.
- 2) Определение величины элементарного заряда.

2. Задачи, решаемые при выполнении работы.

- 1) Измерение скоростей движения капель масла при различных напряжениях и направлениях электрического поля.
- 2) Определение радиуса и заряда капель.

3. Объект исследования.

Заряженная капля масла в электрическом и гравитационном полях.

4. Метод экспериментального исследования.

Статический

5. Рабочие формулы и исходные данные.

$$\vec{F}_{mg} = m\vec{g} = \rho_o V \vec{g},$$

$$\vec{F}_A = -\rho V \vec{g}$$

$$\vec{F}_v = -6\pi \eta r \vec{v},$$

$$F_{mq} + F_v - F_A - F_E = 0,$$

$$v_1 = \frac{1}{6\pi\eta r} \left(qE + \frac{4}{3}\pi r^3 \left(\rho_o - \rho \right) g \right)$$

$$v_2 = \frac{1}{6\pi\eta r} \left(qE - \frac{4}{3}\pi r^3 \left(\rho_o - \rho \right) g \right)$$

$$r = C_r \sqrt{v_1 - v_2},$$

$$C_r = \frac{3}{2} \sqrt{\frac{\eta}{(\rho_o - \rho) g}}$$

$$q = C_q \frac{(v_1 + v_2)\sqrt{v_1 - v_2}}{U},$$

$$C_q = \frac{9}{2}\pi d\sqrt{\frac{\eta^3}{(\rho_o - \rho)\,g}}$$

$$\langle e \rangle = \frac{1}{N} \sum_{i=1}^{N} e_i$$

$$\vec{F}_E = q\vec{E},$$

$$\sigma_e = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (e_i - \langle e \rangle)^2}$$

6. Измерительные приборы.

№	Наименование	Предел измерений	Цена деления	Класс <u>Ди</u> точности	
1	Шкала в поле зрения	1,396*10-3 м	5,33*10 ⁻⁵ м/дел	-	0
	микроскопа				

7. Схема установки (Реальная и виртуальная).

8. Результаты прямых измерений и их обработки.

Параметры лабораторного стенда

Ускорение свободного падения	$g = 9.81 \text{ m/c}^2$
Плотность масла	$ ho_0 = 875,3 \ { m Kr/m}^3$
Плотность воздуха	$ ho = 1,29 \ \kappa \Gamma / \text{м}^3$
Вязкость воздуха	$\eta = 1.81 * 10^{-5} H * c/m^2$
Расстояние между обкладками конденсатора	$d = 6 \text{ MM} = 0.6 * 10^{-2} \text{ M}$

Таблица данных

№	U , B	t ₁ , c	t ₂ , c	v_1 , 10^{-3} m/c	v_2 , 10^{-3}m/c	r, 10 ⁻⁵ м	q , 10^{-19} Кл	n	е , 10 ⁻¹⁹ Кл
1	172	12.63	7.43	0.084	0.144	1.68	0.00000397	4	0.00000099
2	126	11.47	9.9	0.093	0.108	0.84	0.00000238	2	0.00000119
3	222	4.6	6.87	0.232	0.155	1.91	0.00000594	6	0.00000099
4	270	16.88	25.55	0.063	0.042	1.01	0.00000701	1	0.00000070
5	101	13.78	7.93	0.077	0.134	1.65	0.00000617	6	0.00000103
6	111	6.87	6.13	0.155	0.174	0.94	0.00000500	5	0.0000100
7	121	8.15	16.27	0.131	0.066	1.76	0.00000511	5	0.00000102
8	134	5.85	4.98	0.182	0.214	1.22	0.00000650	6	0.00000108
9	144	4.43	4.75	0.241	0.224	0.88	0.00000507	5	0.00000101
10	154	6.72	11.20	0.159	0.095	1.74	0.00000512	5	0.00000102
11	164	3.93	3.60	0.271	0.296	1.09	0.00000672	6	0.00000112
12	184	5.32	7.18	0.200	0.149	1.57	0.00000532	5	0.00000107
13	194	5.38	4.58	0.198	0.233	1.28	0.00000509	5	0.00000102
14	208	5.76	4.88	0.185	0.218	1.26	0.00000437	4	0.0000109
15	216	6.63	5.62	0.161	0.190	1.17	0.00000340	3	0.00000113
16	228	7.75	5.58	0.138	0.191	1.59	0.00000411	4	0.00000103
17	236	5.27	3.72	0.202	0.287	2.00	0.00000741	7	0.0000106
18	246	9.40	6.47	0.113	0.165	1.56	0.00000316	3	0.00000105
19	264	5.73	10.52	0.186	0.101	2.01	0.00000390	4	0.0000098
20	292	9.45	6.02	0.113	0.177	1.75	0.00000310	3	0.0000108

9. Расчет результатов косвенных измерений.

$$\langle e \rangle = \frac{1}{N} \sum_{i=1}^{N} e_i = \frac{0.00000099 + 0.00000119 + .. + 0.00000108}{20} = 1.0311 * 10^{-12}$$

10. Расчет погрешностей измерений.

$$\sigma_e = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (e_i - \langle e \rangle)^2} = \sqrt{\frac{1}{380} * (0.00000099 * 10^{-19} - 1.0311 * 10^{-12})^2 + \dots}$$

$$= 1.422 * 10^{-16}$$

11. Графики.

Графическое представление результатов эксперимента

12. Окончательные результаты.

Оценочное значение заряда электрона согласно опыту:

$$e = 1.422 * 10^{-16} \pm 1.031 * 10^{-12}$$

13. Выводы и анализ результатов работы.

Итак, в процессе работы было получено оценочное значение заряда электрона. Табличное значение заряда электрона $e = 1.602 * 10^{-19}$, что входит в диапазон погрешности.

Погрешность вызвана неточной компьютерной модели, округлением, а также человеческим фактором при использовании секундомера.