

Expected Value Framework

For Data Science Projects

CS5056 Data Analytics

Francisco J. Cantú, Héctor Ceballos Tecnológico de Monterrey April 7, 2021

Februrary-June, 2021

Expected Value

- The expected value method provides a framework that is extremely useful in organizing thinking about data-analytic problems.
- Specifically, it decomposes data-analytic thinking into:
 - (i) The structure of the problem
 - (ii) The elements of the analysis that can be extracted from the data, and
 - (iii) The elements of the analysis that need to be acquired from other sources (e.g., business knowledge of subject matter experts)

Expected Value Framework

One of the most difficult and most critical parts of implementing data science in business is quantifying the return-on-investment or ROI

The Expected Value Framework, is a method that connects the machine learning classification model to ROI

3 REASONS YOU NEED TO LEARN THE EXPECTED VALUE FRAMEWORK

REASON 2: THE SOLUTION IS MAXIMIZING FOR EXPECTED VALUE

REASON 3: EXPECTED VALUE CAN TEST FOR VARIABILITY IN ASSUMPTIONS (ANALYSIS OF SCENARIOS)

Expected Value

- Suppose that X is a discrete random variable with Probability Mass Function MF $p_X(x)$ and $g: R \to R$ is an arbitrary function
- g(X) is a random variable, and we define the expectation or expected
 value of g(X) as:

$$E[g(X)] \triangleq \sum_{x \in Val(X)} g(x)p_X(x)$$

Expected Value

If X is a continuous random variable with PDF fX(x), then the expected value of g(X) is defined as:

$$E[g(X)] \triangleq \int_{-\infty}^{\infty} g(x) f_X(x) dx$$

- Intuitively, the expectation of g(X) can be thought of as a "weighted average" of the values that g(x) can taken on for different values of x, where the weights are given by pX(x) or fX(x)
- As a special case of the above, note that the expectation, E[X] of a random variable itself is found by letting g(x) = x; this is also known as the mean of the random variable X.

Expected Value Framework

- Example 1: Provost, F. & Fawcett, T. (2013). *Data Science for Business*, pp 194-202
- Example 2: Explain the "So What?" Behind
 Machine Learning Models with the Expected
 Value Framework (Part 2 of 3).
 https://blogs.oracle.com/ai-and-datascience/post/explain-the-quotso-whatquot-behind-machine-learning-models-with-the-expected-value-framework-part-2-of-3
- Case Study 1: Bancomer
- Case Study 2: TV Azteca
- Case Study 3: Metalsa

$$p(h, a) = count(h, a) / T$$

T = 110

$$p(\mathbf{Y}, \mathbf{p}) = 56/110 = 0.51$$
 $p(\mathbf{Y}, \mathbf{n}) = 7/110 = 0.06$
 $p(\mathbf{N}, \mathbf{p}) = 5/110 = 0.05$ $p(\mathbf{N}, \mathbf{n}) = 42/110 = 0.38$

Costs and Benefits

Costs and Benefits

- A false positive occurs when we classify a consumer as a likely responder and therefore target her, but she does not respond. We've said that the cost of preparing and mailing the marketing materials is a fixed cost of \$1 per consumer. The benefit in this case is negative: b(Y, n) = -1.
- A false negative is a consumer who was predicted not to be a likely responder (so was not offered the product), but would have bought it if offered. In this case, no money was spent and nothing was gained, so b(N, p) = 0.
- A true positive is a consumer who is offered the product and buys it. The benefit in this case is the profit from the revenue (\$200) minus the product-related costs (\$100) and the mailing costs (\$1), so b(Y, p) = 99.
- A true negative is a consumer who was not offered a deal and who would not have bought it even if it had been offered. The benefit in this case is zero (no profit but no cost), so b(N, n) = 0.

Expected profit =
$$p(Y, p) \cdot b(Y, p) + p(N, p) \cdot b(N, p)$$

+ $p(N, n) \cdot b(N, n) + p(Y, n) \cdot b(Y, n)$

$$p(x, y) = p(y) \cdot p(x \mid y)$$

Expected profit =
$$p(Y \mid p) \cdot p(p) \cdot b(Y, p) + p(N \mid p) \cdot p(p) \cdot b(N, p) + p(N \mid n) \cdot p(n) \cdot b(N, n) + p(Y \mid n) \cdot p(n) \cdot b(Y, n)$$

Expected profit =
$$p(p) \cdot p(Y \mid p) \cdot b(Y, p) + p(N \mid p) \cdot c(N, p) + p(n) \cdot p(N \mid n) \cdot b(N, n) + p(Y \mid n) \cdot c(Y, n)$$

$$T = 110$$

$$P = 61$$

$$N = 49$$

$$p(p) = 0.55 p(n) = 0.45$$

tp rate =
$$56/61 = 0.92$$

fp rate =
$$7/49 = 0.14$$

fn rate =
$$5/61 = 0.08$$

tn rate =
$$42/49 = 0.86$$

```
Expected profit = p(p) \cdot p(Y \mid p) \cdot b(Y, p) + p(N \mid p) \cdot c(N, p) + p(n) \cdot p(N \mid n) \cdot b(N, n) + p(Y \mid p) \cdot c(Y, n)

= 0.55 \cdot 0.92 \cdot b(Y, p) + 0.08 \cdot b(N, p) + 0.45 \cdot 0.86 \cdot b(N, n) + 0.14 \cdot p(Y, n)

= 0.55 \cdot 0.92 \cdot 99 + 0.08 \cdot 0 + 0.45 \cdot 0.86 \cdot 0 + 0.14 \cdot -1

= 50.1 - 0.063

\approx $50.04
```

This expected value means that if we apply this model to a population of prospective customers and mail offers to those it classifies as positive, we can expect to make an average of about \$50 profit per consumer.

Other Example with Expected Value Framework

	Actual Purchase	Actual Non-purchase
Predicted Purchase	True Positive (TP)	False Positive (FP)
Predicted Non- purchase	False Negative (FN)	True Negative (TN)

Other Example with Expected Value Framework

$$E[X] = P(TP,p) * V(TP,p) + P(FN,p) * V(FN,p) + P(FP,n) * V(FP,n) + P(TN,n) * V(TN,n)$$

$$P(TP,p) = P(TP|p) * P(p)$$

$$E[X] = P(p) * [P(TP|p) * V(TP,p) + P(FN|p) * V(FN,p)] + P(n) * [P(FP|n) * V(FP,n) + P(TN|n) * V(TN,n)]$$

	Actual Purchase	Actual Non- purchase	TOTAL
Predicted Purchase	1000	1500	2500
Predicted Non- purchase	500	8000	8500
TOTAL	1500	9500	11,000

	Actual Purchase	Actual Non- purchase
Predicted Purchase	1000/1500 = .67	1500/9500 = .16
Predicted Non- purchase	500/1500 = .33	8000/9500 = .84
TOTAL	1500	9500

	Actual Purchase	Actual Non- purchase
Predicted Purchase	\$305	-\$15
Predicted Non- purchase	\$0	\$0

Other
Example
with
Expected
Value
Framework

Let's plug all of this into our Expected Value equation:

Let's circle back to the original statement we wanted to make about our model:

"If I apply this model to a new set of data on prospective customers and target my marketing efforts towards only those prospects predicted as purchasers, I can expect to make, on average, \$26.55 profit per customer."

Francisco J. Cantú-Ortiz, PhD

Professor of Computer Science and Artificial Intelligence Tecnológico de Monterrey Enago-Academy Advisor for Strategic Alliances

E-mail: fcantu@itesm.mx, fjcantor@gmail.com

Cel: +52 81 1050 8294, SNI-2 CVU: 9804

Personal Page: http://semtech.mty.itesm.mx/fcantu/ Facebook: fcantu; Twitter: @fjcantor; Skype: fjcantor

Orcid: 0000-0002-2015-0562

Scopus ID:6701563520

Researcher ID: B-8457-2009

https://www.researchgate.net/profile/Francisco_Cantu-Ortiz

https://scholar.google.com.mx/citations?hl=es&user=45-uuK4AAAAJ

https://itesm.academia.edu/FranciscoJavierCantuOrtiz

Ave. Eugenio Garza Sada No. 2501, Monterrey N.L., C.P. 64849, México