Université Cheikh Anta Diop de Dakar

Office du Baccalauréat

Premier groupe. Corrigé de l'épreuve n° 13 G 26 A 01. Année 2013

Exercice 1:

- 1. (a) $r = \frac{cov(X, Y)}{\sigma_X \sigma_Y}$, r = -0.973. Il y a une forte corrélation.
 - (b) La droite de régression de Y en X est : $y=ax+b \text{ avec } a=\frac{cov(X,Y)}{V(X)} \text{ et } b=\overline{Y}-a\overline{X}$ y=-0,874x+4,12
 - (c) Si x = 6 alors y = -1, 124. Cette équation ne permet pas d'estimer le degré de salinité car au 6ième mois de pluie le degré de salinité ne peut être négatif.
- 2. Soit $Z = \ln(Y 1)$

(a)
$$\begin{bmatrix} x_i & 0 & 1 & 2 & 3 & 4 \\ z_i & 1,182 & 0,875 & 0,010 & -1,83 & -4,61 \end{bmatrix}$$

(b)
$$r = \frac{cov(X, Z)}{\sigma_X \sigma_Z}, r = -0,944.$$

- (c) La droite de régression de Z en X est : $z = ax + b \text{ avec } a = \frac{cov(X,Z)}{V(X)} \text{ et } b = \overline{Z} a\overline{X}$ z = -1,428x + 1,982 On a $z = \ln(y-1)$ et z = -1,428x + 1,982 d'où $\ln(y-1) = -1,428x + 1,982$ $y-1 = e^{-1,428x+1,982}$ Ainsi $y = e^{-1,428x+1,982} + 1$.
- (d) Si x=6 alors y=1,001. Le degré de salinité estimé au 6ième est positif, il est très proche de celui du quatrième mois et lui est inférieur. Donc l'équation $y=e^{-1,428x+1,982}+1$ nous permet de faire cette estimation.

1

Exercice 2:

Le plan est muni d'un repère orthonormal direct $(O, \overrightarrow{e_1}, \overrightarrow{e_2})$.

 $S = S(O, \frac{\pi}{2}, \frac{\sqrt{2}}{2})$ est la similitude de centre O, d'angle $\frac{\pi}{2}$ et de rapport $\frac{\sqrt{2}}{2}$.

1.
$$z' - z_O = \frac{\sqrt{2}}{2} e^{i\frac{\pi}{2}} (z - z_O)$$
 or $z_O = 0$ donc $z' = i\frac{\sqrt{2}}{2}z$.

2. (a)
$$z_1 = i\frac{\sqrt{2}}{2}z_0 = i\frac{\sqrt{2}}{2}(1+i) = i\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}$$

$$z_2 = i\frac{\sqrt{2}}{2}z_1 = -\frac{1}{2} - \frac{1}{2}i$$

$$z_3 = i\frac{\sqrt{2}}{2}z_2 = -i\frac{\sqrt{2}}{4} + \frac{\sqrt{2}}{4}$$

(b)
$$z_n = i \frac{\sqrt{2}}{2} z_{n-1}, n \ge 1.$$

(c) On voit que, d'après (b), $(z_n)_{n\in\mathbb{N}}$ est une suite géomètrique de premier terme $z_0=1+i$ et de raison $q=i\frac{\sqrt{2}}{2}$,

d'où
$$z_n = (i\frac{\sqrt{2}}{2})^n z_0$$

Ce qui donne $z_n = (i\frac{\sqrt{2}}{2})^n(1+i), n \ge 0.$

(d)
$$a_n = |z_n|, a_n = \sqrt{2}(\frac{\sqrt{2}}{2})^n$$

 $a_{n+1} = \sqrt{2}(\frac{\sqrt{2}}{2})^{n+1}$
 $a_{n+1} = \sqrt{2}(\frac{\sqrt{2}}{2})^n \frac{\sqrt{2}}{2}$
ainsi $a_{n+1} = \frac{\sqrt{2}}{2}a_n, n \ge 0$.

D'où $(a_n)_{n\in\mathbb{N}}$ est une suite géomètrique de premier terme $a_0=\sqrt{2}$ et de raison $q=\frac{\sqrt{2}}{2}$.

(e) (a_n) converge vers zéro car sa raison $q = \frac{\sqrt{2}}{2}$ est dans]0;1[.

Problème:

PARTIE A.

- 1. Soit $\lim_{x\to 0} \frac{e^x x 1}{x} = \lim_{x\to 0} \left[\frac{e^x 1}{x} \frac{x}{x} \right]$ or $\lim_{x\to 0} \frac{e^x 1}{x} = 1$ et $\lim_{x\to 0} \frac{x}{x} = 1$ donc $\lim_{x\to 0} \frac{e^x x 1}{x} = 1 1 = 0$ En conclusion $\lim_{x\to 0} \frac{e^x x 1}{x} = 0$.
- 2. $k:]0; +\infty[\longrightarrow \mathbb{R}$ $x \mapsto x(1 - \ln x)$
 - (a) $x \mapsto \ln x$ continue sur $]0; +\infty[$ et $x \mapsto 1$ continue sur \mathbb{R} , donc continue sur $]0; +\infty[$, d'où $x \mapsto (1 \ln x)$ est continue sur $]0; +\infty[$ par somme. or $x \mapsto x$ est continue sur $]0; +\infty[$ d'où par produit $x \mapsto x(1-\ln x)$ est continue sur $]0; +\infty[$.
 - (b) $K:]0; +\infty[\longrightarrow \mathbb{R}$ $x\mapsto \frac{3}{4}x^2 \frac{1}{2}x^2\ln x$ $x\mapsto \frac{3}{4}x^2$ est dérivable sur \mathbb{R} , donc elles est dérivable sur $]0; +\infty[$ et $x\mapsto \frac{1}{2}x^2\ln x$ est dérivable sur $]0; +\infty[$ par produit, donc K est dérivable sur $]0; +\infty[$ par somme. Calcul de K'(x): $\overline{K'(x) = (\frac{3}{4}x^2)' \frac{1}{2}(x^2\ln x)' = \frac{3}{2}x \frac{1}{2}(2x\ln x + x^2(\frac{1}{x}))}$ $= \frac{3}{2}x x\ln x \frac{1}{2}x = x \ln x$

PARTIE B.

d'où K'(x) = k(x).

$$Soit f(x) = \begin{cases} e^x - x - 1, & \text{si } x \le 0 \\ x \ln x, & \text{si } x > 0 \end{cases}$$
 (1)

- 1. si $x \leq 0$ alors $e^x x 1$ existe et si x > 0 alors $x \ln x$ existe d'où f(x) existe ssi $x \in]-\infty; 0] \cup]0; +\infty[$ $D_f =]-\infty; +\infty[.$ $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} e^x x 1 = +\infty$ $\lim_{x \to 0^-} f(x) = f(0) = 0,$ $\lim_{x \to 0^+} f(x) = \lim_{0^+} x \ln x \text{ or } \lim_{x \to 0^+} x \ln x = 0, \text{ d'où } \lim_{x \to 0^+} f(x) = 0$ $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x \ln x = +\infty$
- 2. (a) f est définie en 0 car dans $[0; +\infty[$ $f(x) = e^x x 1$ et $x \mapsto e^x x 1$ est définie en 0 et prend la valeur 0 on a alors f(0) = 0. $\lim_{x \to 0^-} f(x) = 0 \text{ et } \lim_{x \to 0^+} f(x) = 0,$ d'où $\lim_{x \to 0^-} f(x) = \lim_{0^+} f(x) = f(0)$ Ainsi f est continue en 0.
 - (b) $\lim_{x\to 0^-} \frac{f(x)-f(0)}{x} = \lim_{x\to 0^-} \frac{e^x-x-1}{x} = 0$ d'après la partie A. $\lim_{x\to 0^+} \frac{f(x)-f(0)}{x} = \lim_{x\to 0^+} \ln x = -\infty$ Donc f n'est pas dérivable en 0 car ne l'étant pas en 0 à droite. Interprétation graphique : La courbe représentative de f, (\mathcal{C}_f) , admet au point d'abscisse 0 une demi-tangente d'équation x=0 à gauche et une demi-tangente d'équation y=0 à droite.
- 3. $x \mapsto e^x$ et $x \mapsto -x 1$ sont continues sur \mathbb{R} donc sur $]-\infty;0[$, $x \mapsto x \ln x$ continue sur $]0;+\infty[$ par produit et f est continue en 0, donc \underline{f} est continue sur $\underline{\mathbb{R}}$. $x \mapsto e^x$ et $x \mapsto -x 1$ sont dérivables sur $\underline{\mathbb{R}}$ donc sur $]-\infty;0[$, $x \mapsto x \ln x$ dérivable sur $]0;+\infty[$ par produit donc \underline{f} est dérivable sur $\underline{\mathbb{R}} \setminus \{0\}$.
- 4. Pour x < 0, $f'(x) = e^x 1$ or si x < 0 alors $e^x < 1$ d'où f'(x) < 0 pour x < 0.

 Pour x > 0, $f'(x) = \ln x + 1$ or $\ln x + 1 \ge 0$ si $x \in [\frac{1}{e}; +\infty[$ et $\ln x + 1 \le 0$ si $x \in]0; \frac{1}{e}]$ d'où $f'(x) \ge 0$ pour $x \in [\frac{1}{e}; +\infty[$ et $f'(x) \le 0$ pour $x \in]0; \frac{1}{e}]$.

5. Dressons son tableau de variations.

- 6. $f(x) (-x 1) = e^x$ d'où $\lim_{x \to -\infty} f(x) (-x 1) = \lim_{x \to -\infty} e^x = 0$ donc $\Delta : y = -x 1$ est asymptote à (\mathcal{C}_f) au voisinage de $-\infty$.
- 7. $\lim_{\substack{x \to +\infty \\ +\infty \text{ or}}} f(x) = +\infty \text{ donc } (\mathcal{C}_f)$ admet une branche infinie au voisinage de $\lim_{\substack{x \to +\infty \\ x \to +\infty}} \frac{f(x)}{x} = \lim_{\substack{x \to +\infty \\ x \to +\infty}} \ln x = +\infty \text{ donc } (\mathcal{C}_f)$ admet une branche parabolique de direction (y'0y) au voisinage de $+\infty$.

8. Traçons la courbe (C_f) de f dans un repère orthonormé $(0, \overrightarrow{i}, \overrightarrow{j})$ d'unité graphique 2cm

9. Soit h la restriction de f à $\left[\frac{1}{e}; +\infty\right[$.

- (a) Dressons le tableau de variations de h. $\Box \texttt{Tableaudevariation1E3.jpg}$ h est continue et strictement croissante sur $[\frac{1}{e}; +\infty[$, donc elle est bijective. Elle réalise une bijection de $[\frac{1}{e}; +\infty[$ vers $J=[-\frac{1}{e}; +\infty[$ d'après le tableau de variations de f.
- (b) Pour la courbe $(C_{h^{-1}})$ de h^{-1} , bijection réciproque de h, voir figure.
- 10. (a) Ce domaine est l'ensemble des points M(x,y) tels que : $\frac{1}{e} \le x \le e$ et $h(x) \le y \le x$. On a donc : $\mathcal{A}_1 = \int_{\frac{1}{e}}^e (x h(x)) dx = \int_{\frac{1}{e}}^e (x x \ln x) dx = \int_{\frac{1}{e}}^e k(x) dx$ d'après la PARTIE A. $\mathcal{A}_1 = [K(x)]_{\frac{1}{e}}^e = (K(e) K(\frac{1}{e})) \times 4cm^2$ $\mathcal{A}_1 = (e^2 \frac{5}{e^2})cm^2$
 - (b) Ce domaine est le symétrique, par rapport à la première bissectrice, du domaine d'aire \mathcal{A}_1 de la question 10)a) d'où $\mathcal{A}_2 = \mathcal{A}_1 = (e^2 \frac{5}{e^2})cm^2$.