Predmet: Linearni algebra 2

Ukol: 4. Verze: 1.

Autor: David Napravnik

Prezdivka: DN

zadani

Urcete 55. mocninu matice A

reseni

spocteme vlastni cisla:

$$\begin{bmatrix} 2 - \lambda & 1 & 0 \\ 1 & 2 - \lambda & -1 \\ 1 & 1 & 1 - \lambda \end{bmatrix}$$

$$(2 - \lambda)^2 (1 - \lambda) - 1 - 1 + \lambda + 2 - \lambda$$

$$4 - 4\lambda + \lambda^2 - 4\lambda + 4\lambda^2 - \lambda^3$$

$$-\lambda^3 + 5\lambda^2 - 8\lambda + 4$$

$$(\lambda - 2)(-\lambda^2 + 3\lambda - 2)$$

$$-(\lambda - 2)^2 (\lambda - 1)$$

$$\lambda_1 = 1$$

$$\lambda_2 = 2$$

dopocteme vlastni vektory:

$$\text{pro } \lambda_1 \begin{bmatrix} 2-1 & 1 & 0 \\ 1 & 2-1 & -1 \\ 1 & 1 & 1-1 \end{bmatrix} = [1, -1, 0]^T \\
 \text{pro } \lambda_2 \begin{bmatrix} 2-2 & 1 & 0 \\ 1 & 2-2 & -1 \\ 1 & 1 & 1-2 \end{bmatrix} = [1, 0, 1]^T$$

dopocteme posledni vektor z druheho:
$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & -1 \\ 1 & 1 & -1 \end{bmatrix} * v_3 = [1, 0, 1]^T => v_3 = [0, 1, 0]^T$$

$$R = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$R^{-1} = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 1 \\ 1 & 1 & -1 \end{bmatrix}$$

$$A^{55} = RJ^{55}R^{-1}$$

$$J = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$$

$$J^x = \begin{bmatrix} 1^x & 0 & 0 \\ 0 & 2^x & 2^{x-1}x \\ 0 & 0 & 2^x \end{bmatrix}$$

$$J^{55} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2^{55} & 55 * 2^{54} \\ 0 & 0 & 2^{55} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2^{55} & 55 * 2^{54} \\ 0 & 0 & 2^{55} \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \\ 1 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 2^{54} * 55 + 1 & 2^{54} * 55 & -2^{54} * 55 + 2^{55} - 1 \\ 2^{55} - 1 & 2^{55} & 1 - 2^{55} \\ 2^{54} * 55 & 2^{54} * 55 & 2^{55} - 2^{54} * 55 \end{bmatrix}$$

zadani

Ukazte, ze rozklad $B = QAQ^T$, kde A je diagonalni a Q ortogonalni, existuje pouze pro symetricke matice

reseni

z definice ortogonality: $Q \in \mathbb{R}^{n \times n}$; $Q^T = Q^{-1}$

transponovanim B se transponuje i jeji rozklad
$$B^T=(QAQ^T)^T=Q^TA^T(Q^T)^T=Q^TA^TQ=Q^TAQ$$

 $Q^TA^TQ=Q^TAQ$ | nebotAje diagonalni, neboli $A=A^T$

 $Q^TAQ = QAQ^T \Rightarrow B = B^T$ | matice B musi byt nutne symetricka, pro matice, ktere nejsou symetricke to zrejme neplati

zadani

Najdete matici 3. radu, ktera ma jediny vlastni vektor $v = [1, 2, 3]^T$

reseni

Abychom meli jen jeden vektor, pouzijeme libovolnou Jordanovu matici, ktera je tvorena jen jednou Jordanovou bunkou:

$$J = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

pak sestavime matici S, aby obsahovala vektor $[1,2,3]^T$ a byla regularni:

$$S = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix}$$

vyslednou matici M pak ziskame pomoci rovnosti $M = SJS^{-1}$, S^{-1} existuje, nebot je S regularni

$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix}^{-1} = M = \begin{bmatrix} -1 & 1 & 0 \\ -7 & 3 & 1 \\ -6 & 3 & 1 \end{bmatrix}$$

zadani

Dokazte: Vlastni cisla antisymticka matice jsou ryze imaginarni

reseni

necht A je antisymetricka matice a predpokladejme ze $\lambda \in \mathbb{C}$ je vlastni cislo s komplexnim vlastnim vektorem v

$$\begin{aligned} Ax &= \lambda x \\ \overline{x}^T Ax &= \lambda \overline{x}^T x = \lambda ||x||^2 \mid \\ \overline{x}^T Ax &= (Ax)^T \overline{x} = x^T A^T \overline{x} \\ x^T A^T \overline{x} &= -x^T A \overline{x} \\ A \overline{x} &= \overline{\lambda} \overline{x} \\ -\overline{\lambda} ||x^2|| &= \lambda ||x^2|| \\ ||x|| &\neq 0 \\ -\overline{\lambda} &= \lambda \\ -\overline{\lambda} &= -a + ib = a + ib = \lambda \end{aligned}$$

coz znamena ze λ je ryze imaginarni (nebo nula)

zadani

Dokazte: Pokud je matice D antisymetricka, pak I + D je regularni (kde I je jednotkova matice)

reseni

Z predchozi ulohy vime, ze vlastni cisla antisymetricke matice jsou ryze imaginarni (nebo nulove) tudiz pro kazde z nich plati: $\lambda_x+1\neq 0$

a matice radu nje regularni prave kdyz manvlastnich cisel a zadne z nich neni nulove