

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NASIONALE SENIOR SERTIFIKAAT

GRAAD 12

WISKUNDE V3

FEBRUARIE/MAART 2013

MEMORANDUM

PUNTE: 100

Hierdie memorandum bestaan uit 11 bladsye.

NSS - Memorandum

VRAAG 1

Tyd geneem om taak te voltooi (in sekondes)	23	21	19	9	15	22	17	14	21	18
Getal foute gemaak	2	4	5	9	7	3	7	8	3	5

Spreidiagram wat tyd geneem om taak te voltooi en getal foute gemaak, toon

Tyd geneem (in sekondes)

1.1	Sien spreidiagram hierbo.	✓✓✓ al 10 punte is
		korrek gestip.
		2 punte indien 5–9
		punte korrek gestip
		is.
		1 punt indien 1–4
		punte korrek gestip
		is.
		(3)
1.2	Wanneer meer tyd geneem word om die taak te voltooi, maak die	✓ verduideliking
	leerders minder foute.	(1)
	OF	
	Wanneer minder tyd geneem word om die taak te voltooi, maak die	
	leerders meer foute.	
1.3	a = 14,71 (14,705811)	$\checkmark \checkmark a$
	b = -0.53 (-0.525464)	✓ b
	$\hat{y} = 14,71 - 0.53x$	✓ vergelyking
		(4)
1.4	r = -0.96 (-0.959074)	✓✓ antwoord
		(2)

	1 (BB 1)Tellioralidatii	
1.5	$\hat{y} \approx 14,71 - 0,53(13)$	✓ vervanging
	≈ 7,82	✓ antwoord
		(2)
	≈ 8	
1.6	Daar is 'n sterk negatiewe verhouding tussen die veranderlikes.	✓ sterk negatief
		(1)
		[13]

		T
2.1	Die staafgrafiek toon 'n betekenisvolle daling in die getal renosters wat in	1
	2012 doodgemaak is. Dit skep die indruk dat daar geen krisis in die getal renosters is wat deur wilddiewe doodgemaak word nie. In plaas daarvan	✓ geen krisis nie
	skep dit die indruk dat die probleem onder beheer is.	(1)
2.2	Die eerste twee stawe toon die getal renosters wat in 'n volle jaar	(1)
	doodgemaak is. Die staaf vir 2012 weerspieël die getal renosters wat in	✓ 2012-staaf is
	die eerste 113 dae van die jaar doodgemaak is. Dus kan hierdie grafiek nie	nie vir 'n volle
	gebruik word om die getal renosters wat elke jaar doodgemaak word te	jaar nie
	vergelyk nie.	(1)
2.3.1	Jy kan die bestaande getalle vir 2012 gebruik om die totale getal renosters	✓ projekteer die
	wat in 2012 doodgemaak sal word, te projekteer. Indien die tempo	totale getal vir die jaar
	waarteen renosters doodgemaak word, konstant sal bly vir die jaar, dan sal	die jaar
	$\frac{168}{113} \times 365 = 543$ renosters in 2012 doodgemaak word.	(1)
	113	(-)
	OF	
	Jy kan die getal wat per dag doodgemaak word, bereken en hierdie	
	inligting op 'n grafiek voorstel.	
2.3.2		
	Getal renoster wat elke jaar	
	doodgemaak word	
	₲ 600 —	✓ korrekte
	NO N	skalering van die
	200	y-as
		(1 1.
	8 400 	✓ korrekte
	8 300	hoogte van stawe
	e a la l	
	200	
	So I I I I I I I I I	(2)
	<u>2</u> 100	
	5 0	
	2010 2011 2012	
	Jaar	
	OF	

3.1	Laat die getal leerders wat eerste gemeet is, <i>x</i> wees. Die totale maat van alle hoogtes is 1,6 <i>x</i> .	✓ 1,6x	
	Laat die hoogte van die laaste leerder y wees.	,	
	$\frac{1,6x+1,45+1,63+y}{x+3} = 1,6$	√vergelyking	
	1,6x + 3,08 + y = 1,6x + 4,8 $y = 1,72$	√ 1,72	
	OF		(3)
	Omdat die gemiddeld nie verander nie		
	$\frac{y+1,45+1,63}{3}=1,6$	✓ ✓ vergelyking	
	y = 1,72	√ 1,72	(2)
			(3)

3.2.1	90 = 72 + 2(9) ∴ 90 lê op 2 standaardafwykings regs van die gemiddeld. ⇒ 48% van die studente het tussen 72 en 90 punte behaal.	✓2 s.a. vanaf gemid ✓48%
		(2)
3.2.2	45 = 72 - 3(9)	✓berekening van die
	∴ 45 lê op 3 standaardafwykings links van die gemiddeld.	getal s.a.'s vanaf gemid ✓ 16%
	63 = 72 - 9	V 10%
	∴ 63 lê op 1 standaardafwyking links van die gemiddeld. Die area tussen 1 s.a. en 3 s.a. is ongeveer 16%.	✓29
	∴ 16% van 184 = ongeveer 29 studente het tussen 45 en 63 punte	
	behaal.	(3)
		[8]

NSS – Memorandum

VRAAG 4

4.1	Omdat A en C onderling uitsluitend is, is daar geen snyding van A en	√ √0	
	C nie \therefore P(A en C) = 0.		(2)
4.2	Omdat B en C onafhanklik is, is $P(B \text{ en } C) = P(B).P(C)$. P(B en C) = (0,4)(0,2) = 0,08	\checkmark P(B en C) = P(B).P(C). \checkmark 0,08	
			(2)
4.3	Omdat A en B onafhanklik is, is $P(A \text{ en B}) = P(A).P(B)$. P(A en B) = (0,3)(0,4) = 0,12	√ 0,12	
	P(A of B) = P(A) + P(B) - P(A en B) $= 0.3 + 0.4 - 0.12$ $= 0.58$	✓ formule ✓ vervanging ✓ 0,58	
			(4)
			[8]

VRAAG 5

5.1	Getal rangskikkings	
	= 7!	√7
	= 5040	√ 7!
		(2)
5.2	Getal rangskikkings	
	= 5!	√5
	= 120	√ 5!
		(2)
5.3	Getal rangskikkings	✓ 3!
	$=3!\times5!$	✓ 5!
	= 720	✓ antwoord
		(3)
		[7]

6.1		
0.1	L $x-5$ $13-x$ x $29-x$ $32+x$ 45	$ \begin{array}{c} \checkmark x - 5 \\ \checkmark 13 - x \\ \checkmark x - 3 \\ \checkmark 29 - x \\ \checkmark 50 - x \\ \checkmark 32 + x \end{array} $ (6)
6.2	x-5+13-x+x-3+x+29-x+50-x+32+x+45=174 $x+161=174$ $x=13$	✓addisie ✓ 174 ✓ vereenvoudiging (3)
	16 13 37 45 M 45	
6.3.1	P(M en P nie L nie) = $\frac{37}{174}$ = 0,21 (0,21264)	✓37 ✓ 174 (2)
6.3.2	P(slegs M of P of L) = $\frac{8+10+45}{174} = \frac{21}{58} = 0,36$	✓8 + 10 + 45 ✓ antwoord (2) [13]

Kopiereg voorbehou

DBE/Feb.-Mrt. 2013

VRAAG 7

$T_1 = -1$; $T_2 = 5$. $T_3 = T_1 + 3T_2 - 4 = -1 + 3(5) - 4 = 10$	✓ vervanging ✓ 10
$T_4 = T_2 + 3T_3 - 4 = 5 + 3(10) - 4 = 31$	✓ 31
$T_5 = T_3 + 3T_4 - 4 = 10 + 3(31) - 4 = 99$	√ 99
	[4]

VRAAG 8

8.1	$\hat{V} = 180^{\circ} - 120^{\circ} = 60^{\circ}$ [Teenoorst hoeke van koordevierh is supp]	✓60° ✓ rede	
			(2)
8.2	$\hat{KOU} = 2(60^{\circ}) = 120^{\circ}$ [Hoek by middelp = tweekeer hoek by omtr]	✓120°	
		✓ rede	
			(2)
8.3	$\hat{U}_2 = \frac{180^\circ - 120^\circ}{2} = 30^\circ$ [Basishoeke van gelykb drieh ΔUOS ;	√ 30°	
	$\frac{O_2}{2} = \frac{O_2}{2} = \frac{O_2}{2} = \frac{O_2}{O_2} = \frac{O_2}$	✓ rede	
	OU = OK = radiusse		(2)
8.4	$\hat{K}_1 = 48^{\circ} + 30^{\circ} = 78^{\circ}$ [raaklynkoordteorie]	√ 78°	
		✓ rede	
			(2)
8.5	$\hat{K}_2 = 90^{\circ} - 78^{\circ} = 12^{\circ}$ [raaklyn \perp radius]	√ 12°	
	<u> </u>	✓ rede	
			(2)
			[10]

9.1 Konstrueer VZ en WY $\frac{\text{oppervlakte } \Delta XVW}{\text{oppervlakte } \Delta VWY} = \frac{XV}{VY} \text{ (gelyke hoogtelyne)}$ $\frac{\text{oppervlakte } \Delta XVW}{\text{oppervlakte } \Delta WVZ} = \frac{XW}{WZ} \text{ (gelyke hoogtelyne)}$ $\text{oppervlakte } \Delta YVW = \text{oppervlakte } \Delta VWZ \text{ (VW || YZ)}$ $\text{oppervlakte } \Delta XVW \text{ is gemeenskaplik}$ $\frac{XW}{WZ} = \frac{XV}{VY}$

√ konstruksie

- $\checkmark \frac{\text{oppervlakte } \Delta XVW}{\text{oppervlakte } \Delta VWY} = \frac{XV}{VY}$
- $\checkmark \frac{\text{oppervlakte } \Delta XVW}{\text{oppervlakte } \Delta WVZ} = \frac{XW}{WZ}$
- ✓ oppervlakte $\Delta YVW =$ oppervlakte ΔVWZ
- ✓ VW || YZ
- ✓ gevolgtrekking

(6)

9.2.1	$\frac{\text{oppervlakte } \Delta PRA}{\text{oppervlakte } \Delta QRA} = \frac{PA}{QA} \text{(gelyke hoogtelyne)}$	$\checkmark \frac{\text{oppervlakte } \Delta PRA}{\text{oppervlakte } \Delta QRA} = \frac{PA}{QA}$
	oppervlakte ΔPRA 3	✓ antwoord
	$\frac{1}{\text{oppervlakte } \Delta QRA} = \frac{1}{5}$	(2)
9.2.2	$\frac{BD}{DQ} = \frac{CA}{AQ} \qquad (AR \parallel CB)$ $\frac{PC}{CA} = \frac{1}{2} \qquad (AR \parallel CB)$ $PC = y \text{ eenhede}$ $CA = 2y \text{ eenhede}$ $CQ = 5y \text{ eenhede}$ $\frac{BD}{BQ} = \frac{2}{7}$	$ \frac{BD}{DQ} = \frac{CA}{AQ} $ ✓ rede $ \frac{PC}{CA} = \frac{1}{2} $ ✓ CQ = 5y eenhede $ \frac{BD}{BQ} = \frac{2}{5} $ (5)
		[13]

NSS – Memorandum

VRAAG 10

10.1	$\hat{A}_2 = x$ (\angle e in dieselfde seg)	$\checkmark \hat{A}_2 = x$
		✓ rede
	$\hat{\mathbf{D}}_2 = x$ (\angle e teenoorst = sye)	$\checkmark \hat{\mathbf{D}}_2 = x$
		✓ rede
	$\hat{E}_2 = x$ (= koorde = \angle e) of (\angle e in dieselfde seg)	$\checkmark \hat{E}_2 = x$
		✓ rede
	$\hat{A}_3 = x$ (raaklynkoordteorie)	$\checkmark \hat{A}_3 = x$
		✓ rede
10.2		(8)
10.2	In \triangle ABE en \triangle DFE	, <u>^</u> _
	1. $\hat{E}_2 = \hat{E}_1$ (= x)	$\checkmark \hat{E}_2 = \hat{E}_1$
	2. $\hat{D}_3 = 90^{\circ}$ (\angle e in halfsirkel)	$\checkmark \hat{D}_3 = 90^{\circ}$
	$B\hat{A}E = 90^{\circ}$ (raaklyn \perp rad)	✓ rede
	$\hat{BAE} = \hat{D}_3$	✓ BÂE = 90°
	\triangle ABE $\parallel \triangle$ DFE $(\angle \angle \angle)$	✓ rede
		DE AE
	$\frac{BE}{FE} = \frac{AE}{DE} \qquad (\Delta e)$	$\checkmark \frac{BE}{FE} = \frac{AE}{DE}$
	BE.DE = AE.FE	FE DE ✓ Δe
		(7)
10.3	$\hat{D}_1 = 90^{\circ} - x$ (\(\sigma \) e op reguitlyn)	$\checkmark \hat{\mathbf{D}}_1 = 90^{\circ} - x$
	$\hat{\mathbf{B}}_1 = 90^\circ - x (\angle \operatorname{som} \Delta)$	✓ rede
	$\hat{\mathbf{B}}_1 = \hat{\mathbf{D}}_1$	$\checkmark \hat{B}_1 = 90^{\circ} - x$
	$D_1 - D_1$	✓ rede
		(4)
		[19]

TOTAAL: 100