Nanopore automata

Ian $\mathrm{Holmes}^{1,2,\ast}$

1 Lawrence Berkeley National Laboratory, Berkeley, CA, USA

2 Department of Bioengineering, University of California, Berkeley, CA, USA

Contents

1	Abs	Abstract							
2	Specification								
	2.1	Parameterization algorithm	2						
	2.2	Reference search algorithm	3						
	2.3	Implementation	3						
	2.4	Evaluation	3						
3 Methods									
	3.1	Null model	3						
	3.2	Homology model	5						
	3.3	Baum-Welch algorithm	6						
	3.4	Viterbi algorithm	6						
4	Res	Results							
5	Discussion								
6	Acknowledgments								
7	Figure Legends								
8 Appendix									
	8.1	Exponential distribution	10						
	8.2	Gamma distribution	10						

8.3	Normal distribution	10
8.4	Transition table for nanopore transducer	12

1 Abstract

State machine algorithms for aligning Nanopore reads.

2 Specification

Initial goal (Preliminary Results) is simple reusable code for aligning a segmented nanopore read (with segment currents summarized) to a reference sequence.

Longer-term goals (Specific Aims) include

- quasi-hierarchical series of models for processed \rightarrow raw data (raw, FAST5, FASTQ, FASTA)
- transducer intersection-style models for read-pair alignment, suitable for long-read assemblers
- systematic strategies for approximation/optimization algorithms, climbing the hierarchy (starting with k-mer or FM-index approaches)
- transducer intersection models for aligning reads from different sequencing technologies, for improved assembly
- transducer-based versions of Rahman & Pachter's CGAL

2.1 Parameterization algorithm

Given the following inputs

- Reference genome (FASTA)
- Segment-called reads (FAST5/HDF5)

Perform the following steps

• Perform Baum-Welch to fit a rich model

Rich model incorporates segment statistics.

2.2 Reference search algorithm

Given the following inputs

- Reference genome
- Segment-called reads (FAST5/HDF5)
- Parameterized rich model

Perform the following steps

• Perform Viterbi alignment

2.3 Implementation

Libraries etc.

HDF5...

2.4 Evaluation

Strategy...

Data sets...

3 Methods

Model & inference algorithms.

3.1 Null model

 \bullet Output alphabet: \Re (real numbers signifying current readings)

- K current samples (ticks). Sequence is $y_1 \dots y_K$
 - partitioned into a sequence of L events: $E_1 \dots E_L$
- Parameters: $p^{\text{NullEvent}}, p^{\text{NullTick}}, \mu^{\text{Null}}, \tau^{\text{Null}}$
- Gaussian emissions: $y_n \sim \text{Normal}(\mu^{\text{Null}}, \tau^{\text{Null}})$
- Probability is

$$\begin{split} P(E_1 \dots E_L, y_1 \dots y_K) dy_1 \dots dy_K \\ &= (1 - p^{\text{NullEvent}}) \prod_{\text{events:} E_l} p^{\text{NullEvent}} \left(1 - p^{\text{NullTick}}\right) \prod_{\text{ticks:} y_k \in E_l} p^{\text{NullTick}} P(y_k | \mu^{\text{Null}}, \tau^{\text{Null}}) dy_k \end{split}$$

3.2 Homology model

- \bullet Order-N Mealy transducer.
- Input alphabet: $\Omega = \{A, C, G, T\}$ (nucleotides)
- Output alphabet: real numbers partitioned into events, as with null model
- States: Start, End, { Match_{x_1...x_N}, Delete_{x_1...x_N}: x_1...x_N \in \Omega^N}
- $$\begin{split} \bullet \ \ & \text{Parameters: } p^{\text{StartEvent}}, p^{\text{BeginDelete}}, p^{\text{ExtendDelete}}, \\ & \{p^{\text{Skip}}_{x_1...x_N}, p^{\text{MatchEvent}}_{x_1...x_N}, p^{\text{MatchTick}}_{x_1...x_N}, \mu^{\text{Match}}_{x_1...x_N}, \tau^{\text{Match}}_{x_1...x_N} : x_1 \dots x_N \in \Omega^N \} \end{split}$$

Transducer can *skip* an individual base (no event emissions for that base), or can *delete* a run of bases (no event emissions during the run).

The transition weights for this transducer are shown in Section 8.4.

3.3 Baum-Welch algorithm

As usual.

3.4 Viterbi algorithm

As usual.

- 4 Results
- 5 Discussion

6 Acknowledgments

7 Figure Legends

8 Appendix

8.1 Exponential distribution

$$x \sim \text{Exponential}(\kappa)$$

$$P(x|\kappa) = \kappa \exp(-\kappa x)$$

$$E[x] = \kappa^{-1}$$

$$Var[x] = \kappa^{-2}$$

Rate parameter κ .

8.2 Gamma distribution

$$x \sim \operatorname{Gamma}(\alpha, \beta)$$

$$P(x|\alpha, \beta) = \frac{x^{\alpha-1}\beta^{\alpha} \exp(-x\beta)}{\Gamma(\alpha)}$$

$$\operatorname{E}[x] = \alpha/\beta$$

$$\operatorname{Var}[x] = \alpha/\beta^{2}$$

Shape parameter α , rate parameter β . $\Gamma()$ is the gamma function

$$\Gamma(\alpha) = \int_0^\infty z^{\alpha - 1} \exp(-z) dz$$

Note $\Gamma(n) = (n-1)!$ for positive integer n.

8.3 Normal distribution

$$x \sim \text{Normal}(\mu, \tau)$$

Mean μ , precision τ (precision is reciprocal of variance).

$$P(x|\mu,\tau) = \sqrt{\frac{\tau}{2\pi}} \exp\left(-\frac{\tau}{2}(x-\mu)^2\right)$$

8.4 Transition table for nanopore transducer

The following table gives the transition weights for the transducer introduced in Section 3.2.

Source	Destination	Weight	Absorbs	Emits
Start	Start	$p^{ m StartEvent}$		$\{y_s^{(k)}: 1 \le k \le K_s\},$
		$\times (p^{\text{NullTick}})^{K_s} (1 - p^{\text{NullTick}})$		$K_s \sim \text{Geometric}(p^{\text{NullTick}}),$
		$\times \prod_{k=1}^{K_s} P(y_s^{(k)} \mu^{\text{Start}}, \tau^{\text{Start}}) dy_s^{(k)}$		$y_s^{(k)} \sim \text{Normal}(\mu^{\text{Null}}, \tau^{\text{Null}})$
Start	Start	1	$x\in\Omega$	
Start	$\mathrm{Match}_{x_1x_N}$	$(1 - p^{\text{StartEvent}})$	$x_1 \dots x_N \in \Omega^N$	$\{y_m^{(k)}: 1 \le k \le K_m\},$
		$\times (p_{x_1x_N}^{\text{MatchTick}})^{K_m} (1 - p_{x_1x_N}^{\text{MatchTick}})$		$K_m \sim \text{Geometric}(p_{x_1x_N}^{\text{MatchTick}}),$
		$\times \prod_{k=1}^{K_m} P(y_m^{(k)} \mu_{x_1x_N}^{\text{Match}}, \tau_{x_1x_N}^{\text{Match}}) dy_m^{(k)}$		$y_m^{(k)} \sim \text{Normal}(\mu_{x_1x_N}^{\text{Match}}, \tau_{x_1x_N}^{\text{Match}})$
$\mathrm{Match}_{x_1x_N}$	$\mathrm{Match}_{x_1x_N}$	$p_{x_1x_N}^{ ext{MatchEvent}}$		$\{y_m^{(k)}: 1 \le k \le K_m\},$
		$\times (p_{x_1x_N}^{\text{\tiny MatchTick}})^{K_m} (1 - p_{x_1x_N}^{\text{\tiny MatchTick}})$		$K_m \sim \text{Geometric}(p_{x_1x_N}^{\text{MatchTick}}),$
		$\times \prod_{k=1}^{K_m} P(y_m^{(k)} \mu_{x_1x_N}^{\text{Match}}, \tau_{x_1x_N}^{\text{Match}}) dy_m^{(k)}$		$y_m^{(k)} \sim \text{Normal}(\mu_{x_1x_N}^{\text{Match}}, \tau_{x_1x_N}^{\text{Match}})$
$\mathrm{Match}_{x_1x_N}$	$\mathrm{Skip}_{x_2x_{N+1}}$	$(1-p_{x_1x_N}^{ ext{MatchEvent}})$	$x_{N+1} \in \Omega$	
		$\times (1-p^{^{\mathrm{BeginDelete}}})p^{^{\mathrm{Skip}}}_{x_2x_{N+1}}$		
$\mathrm{Match}_{x_1x_N}$	$\mathrm{Match}_{x_2x_{N+1}}$	$(1-p_{x_1x_N}^{ ext{MatchEvent}})$	$x_{N+1} \in \Omega$	$\{y_m^{(k)}: 1 \le k \le K_m\},$
		$\times (1-p^{\text{\tiny BeginDelete}})(1-p^{\text{\tiny Skip}}_{x_2x_{N+1}})$		$K_m \sim \text{Geometric}(p_{x_2x_{N+1}}^{\text{MatchTick}}),$
		$\times (p_{x_2x_{N+1}}^{\text{MatchTick}})^{K_m} (1 - p_{x_2x_{N+1}}^{\text{MatchTick}})$		$y_m^{(k)} \sim \text{Normal}(\mu_{x_2x_{N+1}}^{\text{Match}}, \tau_{x_2x_{N+1}}^{\text{Match}})$
		$\times \prod_{k=1}^{N_m} P(y_m^{(k)} \mu_{x_2x_{N+1}}^{\text{Match}}, \tau_{x_2x_{N+1}}^{\text{Match}}) dy_m^{(k)}$		
$\mathrm{Match}_{x_1x_N}$	$\mathrm{Delete}_{x_2x_{N+1}}$	$(1 - p_{x_1 \dots x_N}^{\text{MatchEvent}})$	$x_{N+1} \in \Omega$	
		$ imes p^{ ext{BeginDelete}}$		
$\mathrm{Match}_{x_1x_N}$	End	$1-p_{x_1\dots x_N}^{\text{\tiny MatchEvent}}$		
$\mathrm{Skip}_{x_1x_N}$	$\mathrm{Skip}_{x_2x_{N+1}}$	$p_{x_2x_{N+1}}^{ ext{Skip}}$	$x_{N+1} \in \Omega$	
$\operatorname{Skip}_{x_1x_N}$	$\mathrm{Match}_{x_2x_{N+1}}$	$(1-p^{\mathrm{Skip}}_{x_2x_{N+1}})$	$x_{N+1} \in \Omega$	$\{y_m^{(k)}: 1 \le k \le K_m\},$
		$\times (p_{x_2x_{N+1}}^{\text{MatchTick}})^{K_m} (1 - p_{x_2x_{N+1}}^{\text{MatchTick}})$		$K_m \sim \text{Geometric}(p_{x_2x_{N+1}}^{\text{MatchTick}}),$
		$\times \prod_{k=1}^{N_m} P(y_m^{(k)} \mu_{x_2x_{N+1}}^{\text{Match}}, \tau_{x_2x_{N+1}}^{\text{Match}}) dy_m^{(k)}$		$y_m^{(k)} \sim \text{Normal}(\mu_{x_2x_{N+1}}^{\text{Match}}, \tau_{x_2x_{N+1}}^{\text{Match}})$
$\mathrm{Delete}_{x_1x_N}$	$\mathrm{Delete}_{x_2x_{N+1}}$	$p^{ m\scriptscriptstyle ExtendDelete}$	$x_{N+1} \in \Omega$	
$\mathrm{Delete}_{x_1x_N}$	$\mathrm{Match}_{x_2x_{N+1}}$	$(1-p^{ m\scriptscriptstyle ExtendDelete})$	$x_{N+1} \in \Omega$	$\{y_m^{(k)}: 1 \le k \le K_m\},$
		$\times (p_{x_2x_{N+1}}^{\text{MatchTick}})^{K_m} (1 - p_{x_2x_{N+1}}^{\text{MatchTick}})$		$K_m \sim \text{Geometric}(p_{x_2x_{N+1}}^{\text{MatchTick}}),$
		$\times \prod_{k=1}^{K_m} P(y_m^{(k)} \mu_{x_2x_{N+1}}^{\text{Match}}, \tau_{x_2x_{N+1}}^{\text{Match}}) dy_m^{(k)}$		$y_m^{(k)} \sim \text{Normal}(\mu_{x_2x_{N+1}}^{\text{Match}}, \tau_{x_2x_{N+1}}^{\text{Match}})$
End	End	1	$x \in \Omega$	