Открытая командная румынская олимпиада по физике, 2017

Теоретическая часть - Октябрь 27, 2017

Теоретическая задача 1: Два парадокса

Парадокс - это утверждение, которое явно ложно или противоречиво, если пытаться его рассмотреть с двух сторон

А. Где недостающая энергия?

4 балла

Тело (рассматриваемое как материальная точка) с массой m покоится на склоне (рис 1). При отпускании тело начинает скатываться к основанию склона и продолжает двигаться вправо по горизонтальной плоскости. Угол между наклонной и горизонтальной плоскостями гладок (величина скорости тела не меняется, меняется лишь направление). Вначале тело находится на высоте h над землёй. Высота h и величина ускорения свободного падения q известны. Трения нет

А1 Найдите скорость тела v_0 на горизонтальной плоскости (0,3 балла)

Рассмотрим теперь тот же процесс, но в системе отсчета, движущейся вправо с постоянной скоростью v_0 относительно земли. В такой модели конечная энергия тела равна нулю, а его начальная энергия положительна

А2 Куда «исчезла» энергия? Подробно распишите компоненты недостающей энергии (3,7 балла)

В. Где недостающий импульс?

6 баллов

В1 Импульс электромагнитных волн

Энергия, передаваемая электромагнитной волной за единицу времени на единицу поверхности, называется вектором Пойнтинга и имеет формулу $\vec{S}=\frac{1}{\mu_0} \; \vec{E} \times \vec{B}$, где μ_0 - магнитная проницаемость воздуха. Электрическая проницаемость воздуха $_0$ также известна

В1 Выведите объемную плотность импульса электромагнитной волны p_V . Выразите результат в форме вектора $(\overrightarrow{p_V})(0,9)$

В2 Парадокс Фейнмана

На Рис. 2 показаны две длинные концентрические цилиндрические оболочки длиной l. Внутренний цилиндр имеет радиус a и электрический заряд +Q, равномерно распределенный по его поверхности. Внешний цилиндр имеет радиус b ($b \ll l$) и электрический заряд -Q равномерно распределенный по его поверхности. Цилиндры изготовлены из одинакового материала, имеющего поверхностную плотность . Концентрически с ними расположен длинный соленоид радиусом R (a < R < b), имеющий n оборотов на единицу длины и несущий электрический ток зарядом i. Соленоид фиксирован, но цилиндрические оболочки могут свободно и независимо вращаться вокруг своей общей оси. Изначально вся система покоится

В2.1 Угловые скорости

B2.1 Когда ток в соленоиде начинает постепенно снижаться до нуля, цилиндры начинают вращаться. Найдите значение конечных угловых скоростей (их величину и направление) обоих цилиндров, когда тока на соленоиде не будет (2,6 балла)

Учтите: цилиндрические оболочки настолько тяжелые, что не создают собственное магнитное поле вращением

В2.2 Парадокс Фейнмана

B2.2 Поскольку ни одна внешняя сила не действовала на систему, ее импульс должен был сохраниться. Откуда «появился» момент импульса? Подробно распишите этот парадокс численно (1,3 балла)

В2.3 Радиальная спица

B2.3 Вместо того, чтобы уменьшать ток через соленоид, цилиндры жестко связаны с радиальной спицей незначительной массы (нам сейчас не интересен способ осуществить это на практике). Спица является слабым проводником, чтобы пренебречь током смещения. Определите общий импульс цилиндров в этом случае, а также их угловые скорости (1,2 балла)

предложено

Доц. Проф. Себастьяном ПОПЕСКУ, д-ром наук Физический факультет Ясского университета имени Александру Иона Кузы, РУМЫНИЯ