EPICODE-CS0124 S3/L1 - Pratica

Flaviano Sedici

Pratica

Traccia:

Si considerino 4 processi, che chiameremo P1,P2,P3,P4, con i tempi di esecuzione e di attesa input/output dati in tabella. I processi arrivano alle CPU in ordine P1,P2,P3,P4. Individuare il modo più efficace per la gestione e l'esecuzione dei processi, **tra i metodi visti nella lezione teorica**. Abbozzare un diagramma che abbia sulle ascisse il tempo passato da un instante «0» e sulle ordinate il nome del Processo.

Processo	Tempo di esecuzione	Tempo di attesa	Tempo di esecuzione dopo attesa
P1	3 secondi	2 secondi	1 secondo
P2	2 secondi	1 secondo	-
P3	1 secondi	-	-
P4	4 secondi	1 secondo	-

1. Analisi dei processi

1.1. Mono-tasking

1.2. Multi-Tasking

1.3. Time-sharing

2. Conclusioni

A valle dell'analisi, non considerando quando nell'ultimo secondo sono presenti slot di attesa, come nel caso del multi-tasking e del mono-tasking, abbiamo quindi i seguenti risultati:

- Mono-tasking 14 secondi (+1 di attesa alla fine = 15)
- Multi-tasking 11 secondi (+1 di attesa alla fine = 12)
- · Time-sharing 11 secondi

Vista la parità tra Time-sharing e Multi-tasking, volendo definire il processo più efficiente, possiamo assegnare al Time-sharing il titolo, in quanto nell'intero periodo temporale assorbe anche le pause in attesa dell'input esterno.