→ SURUTHIS

225229141

PML LAB 5

Diabetes Classification Using Logistic Regression

```
import pandas as pd
import numpy as np
import warnings
warnings.filterwarnings("ignore")
db = pd.read_csv("/content/diabetes.csv")
                                                                  + Code -
                                                                            + Text
```

→ STEP 1: UNDERSTAND DATA

db.head()

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction
0	6	148	72	35	0	33.6	0.627
1	1	85	66	29	0	26.6	0.351
2	8	183	64	0	0	23.3	0.672
3	1	89	66	23	94	28.1	0.167
4	0	137	40	35	168	43.1	2.288

db.shape

(768, 9)

Pregnancies - Number of time Pregnant

Glucose-Plasma Glucose concentration over 2 hours in an oral glucose tolerance test

BloodPressure - Diastolic BloodPressure

SkinThickness - Triceps Skin Fold Thickness

Insulin - 2 - Hour Serum Insulin

BMI - Body Mass Index (weight in kg / (height in m)2)

DiabetesPedigreeFunction - a function which scores likelihood of diabetes based on Family History

db.columns

db.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 768 entries, 0 to 767 Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64
1.0	(7) (6)(0) (1)(6)(7)		

dtypes: float64(2), int64(7)

memory usage: 54.1 KB

Pregnancies Glucose BloodPressure SkinThickness	int64 int64 int64 int64
Insulin	int64
BMI	float64
DiabetesPedigreeFunction	float64
Age	int64
Outcome	int64
dtype: object	

<pre>db.value_counts()</pre>	db.value	counts()
------------------------------	----------	----------

Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome	
0	57	60	0	0	21.7	0.735	67	0	1
	67	76	0	0	45.3	0.194	46	0	1
5	103	108	37	0	39.2	0.305	65	0	1
	104	74	0	0	28.8	0.153	48	0	1
	105	72	29	325	36.9	0.159	28	0	1
2	84	50	23	76	30.4	0.968	21	0	1
	85	65	0	0	39.6	0.930	27	0	1
	87	0	23	0	28.9	0.773	25	0	1
		58	16	52	32.7	0.166	25	0	1
17	163	72	41	114	40.9	0.817	47	1	1
Length: 768,	dtype: i	nt64							

db.isnull().sum()

Pregnancies 0
Glucose 0
BloodPressure 0
SkinThickness 0
Insulin 0
BMI 0
DiabetesPedigreeFunction 0
Age 0
Outcome 0
dtype: int64

→ STEP 2 : BUILDING LOGISTIC REGRESSION MODEL

features = db.drop("Outcome",axis = 1)
features

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	${\tt DiabetesPedigreeFunction}$	Age
0	6	148	72	35	0	33.6	0.627	50
1	1	85	66	29	0	26.6	0.351	31
2	8	183	64	0	0	23.3	0.672	32
3	1	89	66	23	94	28.1	0.167	21
4	0	137	40	35	168	43.1	2.288	33
763	10	101	76	48	180	32.9	0.171	63
764	2	122	70	27	0	36.8	0.340	27
765	5	121	72	23	112	26.2	0.245	30
766	1	126	60	0	0	30.1	0.349	47
767	1	93	70	31	0	30.4	0.315	23

768 rows × 8 columns

label = db[['Outcome']]
label

```
1
                 0
       2
       3
                 0
      763
from \ sklearn.model\_selection \ import \ StratifiedShuffleSplit
from sklearn.metrics import accuracy_score
sss= StratifiedShuffleSplit(n_splits=4,test_size = 0.25,random_state = 42)
sss.get_n_splits(features,label)
scores = []
for train_index,test_index in sss.split(features,label):
 x_train,x_test = features.iloc[train_index],features.iloc[test_index]
 y_train,y_test = label.iloc[train_index],label.iloc[test_index]
from sklearn.linear_model import LogisticRegression
log_reg = LogisticRegression()
log_reg.fit(x_train,y_train)
     LogisticRegression()
log_reg.fit(x_train, y_train)
y_pred = log_reg.predict(x_test)
y_pred = log_reg.predict(x_test)
from sklearn.metrics import mean_squared_error
from sklearn.metrics import f1_score
from sklearn.metrics import precision_score
from \ sklearn.metrics \ import \ recall\_score
from sklearn.metrics import roc_auc_score
mean_squared_error(y_pred,y_test)
     0.234375
```

→ STEP 3 - PREDICT ON NEW SAMLPE

Outcome

0

```
new_person = [[6,200,90,10,25,23.3,0.672,42]]
log_reg.predict(new_person)
array([1])
```

→ COMPUTE CLASIFICATION METRICS

```
def calculate_score(test, pred):
    accuracy = accuracy_score(test, pred)
    precision = precision_score(test, pred)
    recall = recall_score(test, pred)
    roc_auc = roc_auc_score(test, pred)
    return accuracy, precision, recall, roc_auc

calculate_score(y_test, y_pred)
```

 $(0.765625,\ 0.6896551724137931,\ 0.5970149253731343,\ 0.7265074626865671)$

print('accuracy_score : ',accuracy_score(y_test, y_pred))
print('precision_score : ',precision_score(y_test,y_pred))
print('recall_score : ',recall_score(y_test, y_pred))
print('roc_auc_score : ',roc_auc_score(y_test, y_pred))

accuracy_score : 0.765625

precision_score : 0.6896551724137931
recall_score : 0.5970149253731343
roc_auc_score : 0.7265074626865671

→ STEP 4 - CORRELATION

from sklearn.metrics import confusion_matrix
from sklearn.metrics import ConfusionMatrixDisplay

db.corr()

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesF
Pregnancies	1.000000	0.129459	0.141282	-0.081672	-0.073535	0.017683	
Glucose	0.129459	1.000000	0.152590	0.057328	0.331357	0.221071	
BloodPressure	0.141282	0.152590	1.000000	0.207371	0.088933	0.281805	
SkinThickness	-0.081672	0.057328	0.207371	1.000000	0.436783	0.392573	
Insulin	-0.073535	0.331357	0.088933	0.436783	1.000000	0.197859	
ВМІ	0.017683	0.221071	0.281805	0.392573	0.197859	1.000000	
DiabetesPedigreeFunction	-0.033523	0.137337	0.041265	0.183928	0.185071	0.140647	
Age	0.544341	0.263514	0.239528	-0.113970	-0.042163	0.036242	
Outcome	0.221898	0.466581	0.065068	0.074752	0.130548	0.292695	

```
cm = confusion_matrix(y_test,y_pred)
```

 cm

```
array([[107, 18],
[ 27, 40]])
```

```
import seaborn as sns
import matplotlib.pyplot as plt
```

```
sns.heatmap(cm,annot=True)
plt.xlabel("ytest")
plt.ylabel("ypred")
```


→ INTERPRETATION -

True negative: 40 Samples are correctly identified as 1(having diabetes)

True positive: 107 Samples are correctly identified as 0 (not having diabetes)

False negative :27 samples are misclassified as 1(having diabetes) despite being 0(not having diabetes)

False positive: 18 samples are misclassified as 0 (not having diabetes) despite being 1 (having diabetes)

sns.heatmap(db.corr(),annot=True)

from sklearn.metrics import classification_report
print(classification_report(y_test,y_pred))

	precision	recall	f1-score	support
0 1	0.80 0.69	0.86 0.60	0.83 0.64	125 67
accuracy macro avg weighted avg	0.74 0.76	0.73 0.77	0.77 0.73 0.76	192 192 192

from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler

→ STEP 5 - MINMAX SCALER

```
minmax = MinMaxScaler()

#xtrain
scaled_x_train_minmax = minmax.fit_transform(x_train)

# xtest
scaled_x_test_minmax = minmax.transform(x_test)

log_reg_minmax = LogisticRegression()

log_reg_minmax.fit(scaled_x_train_minmax,y_train)
    LogisticRegression()

y_pred_minmax = log_reg_minmax.predict(scaled_x_test_minmax)

calculate_score(y_test,y_pred_minmax)

(0.765625, 0.7115384615384616, 0.5522388059701493, 0.7161194029850746)
```

→ STEP 6 - STANDARD SCALER

```
#xtrain
scaled_x_train_norm = scale.fit_transform(x_train)

# xtest
scaled_x_test_norm = scale.transform(x_test)

log_reg_norm = LogisticRegression()

log_reg_norm.fit(scaled_x_train_norm,y_train)
    LogisticRegression()
```

```
calculate_score(y_test,y_pred_norm)
     (0.765625, 0.6964285714285714, 0.582089552238806, 0.7230447761194031)

calculate_score(y_test,y_pred)
     (0.765625, 0.6896551724137931, 0.5970149253731343, 0.7265074626865671)

calculate_score(y_test,y_pred_minmax)
     (0.765625, 0.7115384615384616, 0.5522388059701493, 0.7161194029850746)

auc_ss = roc_auc_score(y_test,y_pred_norm)
auc_ss
```

→ STEP 7 - PLOT ROC CURVE

0.7230447761194031

y_pred_norm = log_reg_norm.predict(scaled_x_test_norm)

from sklearn.metrics import plot_roc_curve, auc
plot_roc_curve(log_reg,scaled_x_test_norm,y_test)

<sklearn.metrics._plot.roc_curve.RocCurveDisplay at 0x7f8d5fedc5e0>

predict() is used to predict the actual class (in your case one of 0, 1, or 2).

predict_proba() is used to predict the class probabilities From the example output that you shared,

predict() would output class 0 since the class probability for 0 is 0.6. [0.6, 0.2, 0.2] is the output of predict_proba that simply denotes that the class probability for classes 0, 1, and 2 are 0.6, 0.2, and 0.2 respectively

```
pred_prob=log_reg_minmax.predict_proba(scaled_x_test_norm)
```

```
# scaled_x_test_norm # co eff
# y_test
# pred_prob1 # calculating class - probability for each sample
```

from sklearn.metrics import roc_curve

Returns: --fpr ndarray of shape (>2,)

Increasing false positive rates such that element i is the false positive rate of predictions with score >= thresholds[i].

--tpr ndarray of shape (>2,)

Increasing true positive rates such that element i is the true positive rate of predictions with score >= thresholds[i].

--thresholds ndarray of shape = (n_thresholds,)

Decreasing thresholds on the decision function used to compute fpr and tpr. thresholds[0] represents no instances being predicted and is arbitrarily set to $max(y_score) + 1$.

```
fpr, tpr, thresholds = roc_curve(y_test, pred_prob[:,1], pos_label=1)
plt.plot(fpr,tpr,linestyle='--',color='orange',label='MinMaxScaler values')
```

```
[<matplotlib.lines.Line2D at 0x7f8d73794a00>]
      1.0
      0.8
      0.6
 roc_auc = auc(fpr, tpr)
      02
from sklearn.metrics import RocCurveDisplay
display = RocCurveDisplay(fpr=fpr, tpr=tpr, roc_auc=roc_auc,
                                      estimator_name='Minmax Log Reg')
display.plot()
plt.show()
         1.0
         0.8
      True Positive Rate
         0.6
         0.4
         0.2
                                      Minmax Log Reg (AUC = 0.83)
         0.0
                              False Positive Rate
```

▼ Step-8. Comparison with KNN classifier

```
from sklearn.neighbors import KNeighborsClassifier
knn=KNeighborsClassifier(n_neighbors=4)
knn=knn.fit(x_train,y_train)
knn_y_pred=knn.predict(x_test)
from sklearn.preprocessing import MinMaxScaler
m=MinMaxScaler()
m_x_train=m.fit_transform(x_train)
m_x_{train}
                        , 0.52525253, 0.52459016, ..., 0.50074516, 0.18201285,
            [0.47058824, 0.5959596, 0.59016393, ..., 0.3442623, 0.59571734,
            [0.58823529, 0.9040404 , 0.57377049, ..., 0.52309985, 0.04925054,
             0.26666667],
            [0.
                        , 0.54040404, 0.49180328, ..., 0.39344262, 0.02055675,
             0.03333333],
            [0.05882353, 0.61616162, 0.52459016, ..., 0.52309985, 0.25995717,
            [0.64705882, 0.42929293, 0.60655738, \ldots, 0.4485842, 0.09207709,
             0.23333333]])
m_x_test=m.transform(x_test)
m_x_test
     array([[0.17647059, 0.65151515, 0.75409836, ..., 0.54247392, 0.37815846,
             0.18333333],
            [0.05882353, 0.46969697, 0.45901639, ..., 0.33532042, 0.14218415,
             0.01666667],
            [0.11764706, 0.78282828, 0.42622951, ..., 0.57675112, 0.06638116,
             0.06666667],
            [0.05882353, 0.43939394, 0.49180328, ..., 0.55439642, 0.18158458,
             0.01666667],
            [0.05882353,\ 0.57575758,\ 0.54098361,\ \dots,\ 0.56780924,\ 0.08736617,
            [0.58823529,\ 0.67171717,\ 0.55737705,\ \dots,\ 0.4023845\ ,\ 0.06852248,
             0.25
m_knn=KNeighborsClassifier()
m_knn=m_knn.fit(m_x_train,y_train)
```

▼ Classification Metrics

m_y_pred=m_knn.predict(m_x_test)

```
calculate_score(y_test,m_y_pred)
(0.734375, 0.66, 0.4925373134328358, 0.6782686567164178)
```

▼ AUC Scores

```
knn_auc=print(roc_auc_score(y_test,m_y_pred))
knn_auc
```

0.6782686567164178

▼ Step-9. Update ROC Curve

```
pred_p2=m_knn.predict_proba(m_x_test)

from sklearn.metrics import roc_curve
fpr2,tpr2,thresh2=roc_curve(y_test,pred_p2[:,1],pos_label=1)

plt.plot(fpr,tpr,linestyle='--',color='red',label='MinMaxScaler values')
plt.plot(fpr2,tpr2,linestyle='--',color='blue',label='KNN Classifier')
plt.title('ROC Curve')
plt.legend(loc='best')
plt.savefig('ROC',dpi=300)
plt.show()
```


▼ Step-10. Regularization

```
from sklearn.linear_model import LogisticRegressionCV
model1=LogisticRegressionCV(Cs=10,cv=4,penalty='11',solver='liblinear')
model2=LogisticRegressionCV(Cs=10,cv=4,penalty='12')

model1.fit(scaled_x_train_minmax,y_train)
model2.fit(scaled_x_train_minmax,y_train)

LogisticRegressionCV(cv=4)

rg_y_pred1 = model1.predict(scaled_x_test_minmax)
rg_y_pred2 = model2.predict(scaled_x_test_minmax)
```

▼ AUC SCORE OF L1

```
from sklearn.metrics import roc_auc_score
l1_auc = roc_auc_score(y_test, rg_y_pred1)
l1_auc = (' LOR L1 MINMAX AUC', l1_auc)
l1_auc
```

▼ AUC SCORE OF L2

```
from sklearn.metrics import roc_auc_score

12_auc = roc_auc_score(y_test, rg_y_pred2)

12_auc = (' LOR L2 MINMAX AUC', 12_auc)

12_auc
```

(' LOR L2 MINMAX AUC', 0.7155820895522387)

▼ Step 11: Update ROC curve

```
pred_prb7 = model1.predict_proba(scaled_x_test_minmax)
pred_prb8 = model2.predict_proba(scaled_x_test_minmax)
fpr,tbr,threshold = roc_curve(y_test, pred_prob[:,1],pos_label=1)
fpr1,tbr1,threshold1 = roc_curve(y_test, pred_p2[:,1],pos_label=1)
fpr2,tbr2,threshold2= roc_curve(y_test, pred_prb7[:,1],pos_label=1)
fpr3,tbr3,threshold3 = roc_curve(y_test, pred_prb8[:,1],pos_label=1)
plt.plot(fpr, tbr, linestyle='-', color='red', label='LogisticRegression')
plt.plot(fpr1, tbr1, linestyle='-', color='orange', label='KNN')
plt.plot(fpr3, tbr3, linestyle='-', color='green', label='12')
plt.plot(fpr2, tbr2, linestyle='-', color='black', label='11')
plt.annotate(xy=[0.5,0.3],s= auc_ss)
plt.annotate(xy=[0.5,0.2],s= knn_auc)
plt.annotate(xy=[0.5,0.1],s= l1_auc)
plt.annotate(xy=[0.7,0],s= 12_auc)
plt.title('Receiver Operating Characteristic')
plt.legend(loc = 'best')
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()
```

