

Two Perpendicular Coordinate lines that interest at the O- point these lines are called coordinate axes in the plane.

Origin 🔽

The coordinate system is the point in the plane where x and y are both zero

Coordinate pair

The ordered pair (a,b) is assigned to the point P

P(31) 7(310) = [913]

Quadrant

Coordinate axes divide into four regions is called quadrant

Increment and straight lines

When particles move from one point to another point, the net changes is called increment

Example: 01

In going from the point A(4,-3) to the point B(2,5) the increments in the x and y

Example: 02

Absolute Value

The absolute value of a number x, denoted by |x|, is defined by the formula

$$|x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0. \end{cases}$$

EXAMPLE 2 Finding Absolute Values

$$|3| = 3$$
, $|0| = 0$, $|-5| = -(-5) = 5$, $|-|a|| = |a|$

Geometrically, the absolute value of x is the distance from x to 0 on the real number line. Since distances are always positive or 0, we see that $|x| \ge 0$ for every real number x, and |x| = 0 if and only if x = 0. Also,

$$|x - y|$$
 = the distance between x and y

on the real line (Figure 1.2).

Since the symbol \sqrt{a} always denotes the *nonnegative* square root of a, an alternate definition of |x| is

$$|x| = \sqrt{x^2}$$
.

It is important to remember that $\sqrt{a^2} = |a|$. Do not write $\sqrt{a^2} = a$ unless you already know that $a \ge 0$.

The absolute value has the following properties. (You are asked to prove these properties in the exercises.)

FIGURE 1.2 Absolute values give distances between points on the number line.

Absolute Value Properties

1.
$$|-a|=|a|$$
 A number and its additive inverse or negative have the same absolute value.

2.
$$|ab| = |a||b|$$
 The absolute value of a product is the product of the absolute values.

$$\frac{|a|}{|b|} = \frac{|a|}{|b|}$$
 The absolute value of a quotient is the quotient of the absolute values.

10 Chapter 1: Preliminaries

FIGURE 1.7 Coordinate increments may be positive, negative, or zero (Example 1).

HISTORICAL BIOGRAPHY*

René Descartes (1596–1650)

Increments and Straight Lines

When a particle moves from one point in the plane to another, the net changes in its coordinates are called *increments*. They are calculated by subtracting the coordinates of the starting point from the coordinates of the ending point. If x changes from x_1 to x_2 , the increment in x is

$$\Delta x = x_2 - x_1.$$

EXAMPLE 1 In going from the point A(4, -3) to the point B(2, 5) the increments in the x- and y-coordinates are

$$\Delta x = 2 - 4 = -2, \qquad \Delta y = 5 - (-3) = 8.$$

From C(5, 6) to D(5, 1) the coordinate increments are

$$\Delta x = 5 - 5 = 0, \qquad \Delta y = 1 - 6 = -5.$$

See Figure 1.7.

Given two points $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$ in the plane, we call the increments $\Delta x = x_2 - x_1$ and $\Delta y = y_2 - y_1$ the run and the rise, respectively, between P_1 and P_2 . Two such points always determine a unique straight line (usually called simply a line) passing through them both. We call the line P_1P_2 .

Any nonvertical line in the plane has the property that the ratio

$$m = \frac{\text{rise}}{\text{run}} = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

has the same value for every choice of the two points $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$ on the line (Figure 1.8). This is because the ratios of corresponding sides for similar triangles are equal.

y . •