Scarcity of finite orbits for rational functions over a number fields.

Sebastian Troncoso

 $Birming ham\text{-}Southern\ College$

Spring Southeastern Sectional Meeting Vanderbilt University, Nashville, TN

April 15, 2018.

Let $\phi: \mathbb{P}^n \to \mathbb{P}^n$ be an endomorphism defined over a number field K.

Let $\phi: \mathbb{P}^n \to \mathbb{P}^n$ be an endomorphism defined over a number field K.

Periodic point: $\phi^m(P) = P$ for some $m \ge 1$.

Let $\phi: \mathbb{P}^n \to \mathbb{P}^n$ be an endomorphism defined over a number field K.

Periodic point: $\phi^m(P) = P$ for some $m \ge 1$.

Preperiodic point: $\exists m \geq 0$ such that $\phi^m(P)$ is periodic.

The set of K-rational preperiodic points is denoted by $PrePer(\phi, K)$.

Let $\phi: \mathbb{P}^n \to \mathbb{P}^n$ be an endomorphism defined over a number field K.

Periodic point: $\phi^m(P) = P$ for some $m \ge 1$.

Preperiodic point: $\exists m \geq 0$ such that $\phi^m(P)$ is periodic.

The set of K-rational preperiodic points is denoted by $PrePer(\phi, K)$.

Tail point: A point that is preperiodic but not periodic.

Examples:

We can view $\mathbb{P}^1(K)$ as $K \cup \infty$ and endomorphism of \mathbb{P}^1 as rational functions.

 \mathbb{Q} -rational tail points (red) and \mathbb{Q} -rational periodic points (green) of $\phi_c(z)=z^2+c$.

• Is the set $PrePer(\phi, K)$ finite?

• Is the set $PrePer(\phi, K)$ finite? **Yes**.

• Is the set $PrePer(\phi, K)$ finite? **Yes**.

Theorem (Northcott 1950)

Let $\phi: \mathbb{P}^n \to \mathbb{P}^n$ be an endomorphism of degree ≥ 2 defined over a number field K. Then ϕ has only finitely many preperiodic points in $\mathbb{P}^n(K)$.

• Is the set $PrePer(\phi, K)$ finite? **Yes**.

Theorem (Northcott 1950)

Let $\phi: \mathbb{P}^n \to \mathbb{P}^n$ be an endomorphism of degree ≥ 2 defined over a number field K. Then ϕ has only finitely many preperiodic points in $\mathbb{P}^n(K)$.

- How large is the set $PrePer(\phi, K)$?
- Can we give an explicit bound?
- How is the bound depending on ϕ ?

We can deduce from the original proof of Northcott's theorem a bound for $|\operatorname{PrePer}(\phi,K)|$ depending on

- $D = [K : \mathbb{Q}]$
- ullet The dimension n of the projective space
- The degree d of ϕ .
- ullet height of the coefficients of ϕ

Example

Consider
$$f(x) = (x-1)(x-2)(x-3)...(x-d) + x$$
.

Example

Consider
$$f(x) = (x-1)(x-2)(x-3)...(x-d) + x$$
.
Notice that f has at least d periodic points.

- $1 \circlearrowleft$
- 2 🔿
 - :
- d ♂

Example

Consider
$$f(x) = (x-1)(x-2)(x-3)...(x-d) + x$$
.
Notice that f has at least d periodic points.

- $1 \circlearrowleft$
- 2 🔿
 - :
- d ♂

The Dream:

Give explicit bounds for $|\operatorname{PrePer}(\phi, K)|$ in terms of:

The Dream:

Give explicit bounds for $|\operatorname{PrePer}(\phi, K)|$ in terms of:

- $D = [K : \mathbb{Q}]$
- The dimension *n* of the projective space
- The degree d of ϕ .

The Dream:

Give explicit bounds for $|\operatorname{PrePer}(\phi, K)|$ in terms of:

- $D = [K : \mathbb{Q}]$
- The dimension *n* of the projective space
- The degree d of ϕ .

Conjecture (Uniform Boundedness Conjecture - Morton-Silverman 1994)

There exists a bound B = B(D, n, d) such that if K/\mathbb{Q} is a number field of degree D, and $\phi : \mathbb{P}^n \to \mathbb{P}^n$ is an endomorphism of degree $d \geq 2$ defined over K, then

$$|\mathsf{PrePer}(\phi, K)| \leq B$$
.

Goal:

• Give an explicit bound for $|\operatorname{PrePer}(\phi, K)|$.

• To do so we need an extra parameter.

• Instead of the height of ϕ we use a weaker and more natural parameter.

ullet This parameter is the number of places of bad reduction of ϕ

• For simplicity in the notation we will defined good reduction only for rational maps $\phi: \mathbb{P}^1 \to \mathbb{P}^1$.

- For simplicity in the notation we will defined good reduction only for rational maps $\phi: \mathbb{P}^1 \to \mathbb{P}^1$.
- Let K be a number field, \mathcal{O}_K its ring of algebraic integers, $\mathfrak p$ a non zero prime ideal of \mathcal{O}_K and $\mathcal{O}_{\mathfrak p}$ the local ring at $\mathfrak p$.

- For simplicity in the notation we will defined good reduction only for rational maps $\phi: \mathbb{P}^1 \to \mathbb{P}^1$.
- Let K be a number field, \mathcal{O}_K its ring of algebraic integers, \mathfrak{p} a non zero prime ideal of \mathcal{O}_K and $\mathcal{O}_{\mathfrak{p}}$ the local ring at \mathfrak{p} .
- Write ϕ in normal form:

$$\phi([x:y]) = [F(x,y): G(x,y)],$$

where F(x, y) and G(x, y) are coprime homogeneous polynomials of the same degree, with coefficients in $\mathcal{O}_{\mathfrak{p}}$ and at least one a \mathfrak{p} -unit.

- For simplicity in the notation we will defined good reduction only for rational maps $\phi: \mathbb{P}^1 \to \mathbb{P}^1$.
- Let K be a number field, \mathcal{O}_K its ring of algebraic integers, \mathfrak{p} a non zero prime ideal of \mathcal{O}_K and $\mathcal{O}_{\mathfrak{p}}$ the local ring at \mathfrak{p} .
- Write ϕ in normal form:

$$\phi([x:y]) = [F(x,y): G(x,y)],$$

where F(x,y) and G(x,y) are coprime homogeneous polynomials of the same degree, with coefficients in $\mathcal{O}_{\mathfrak{p}}$ and at least one a \mathfrak{p} -unit.

• We say ϕ has **good reduction** at \mathfrak{p} if F and G do not have a common zero module \mathfrak{p} in \mathbb{P}^1 .

Theorem

Let $\phi: \mathbb{P}^1 \to \mathbb{P}^1$ be a rational map of degree $d \geq 2$ defined over a number field K and $[K:\mathbb{Q}] = D$. Suppose ϕ has good reduction outside a finite set of places S, including all archimedean ones. Let s = |S|. Then

Theorem

Let $\phi: \mathbb{P}^1 \to \mathbb{P}^1$ be a rational map of degree $d \geq 2$ defined over a number field K and $[K:\mathbb{Q}] = D$. Suppose ϕ has good reduction outside a finite set of places S, including all archimedean ones. Let s = |S|. Then

• $|PrePer(K, \phi)| \le d^{2^{16s}(s \log(s))^D}$ J.K. Canci and L. Paladino (2015).

Theorem

Let $\phi: \mathbb{P}^1 \to \mathbb{P}^1$ be a rational map of degree $d \geq 2$ defined over a number field K and $[K:\mathbb{Q}] = D$. Suppose ϕ has good reduction outside a finite set of places S, including all archimedean ones. Let s = |S|. Then

- $|PrePer(K, \phi)| \le d^{2^{16s}(s \log(s))^D}$ J.K. Canci and L. Paladino (2015).
- $|PrePer(K, \phi)| \le 5 \left(2^{16sd^3}\right) + 3$ S. Troncoso (2017).

Theorem

Let $\phi: \mathbb{P}^1 \to \mathbb{P}^1$ be a rational map of degree $d \geq 2$ defined over a number field K and $[K:\mathbb{Q}] = D$. Suppose ϕ has good reduction outside a finite set of places S, including all archimedean ones. Let s = |S|. Then

- $|PrePer(K, \phi)| \le d^{2^{16s}(s \log(s))^D}$ J.K. Canci and L. Paladino (2015).
- $|PrePer(K, \phi)| \le 5 \left(2^{16sd^3}\right) + 3$ S. Troncoso (2017).
- $|\mathit{PrePer}(K, \phi)| \leq \alpha d^2 + \beta d + \gamma$ where α , β and γ are roughly 2^{78s} .

 J.K. Canci, S. Troncoso and S. Vishkautsan (submitted).

• Logarithmic *v*-adic distance between points in $\mathbb{P}^1(K)$.

• Logarithmic v-adic distance between points in $\mathbb{P}^1(K)$.

• Study the distance between tail point and periodic.

• Logarithmic *v*-adic distance between points in $\mathbb{P}^1(K)$.

• Study the distance between tail point and periodic.

The set of tail points and the set of periodic points bound each other.

• Logarithmic *v*-adic distance between points in $\mathbb{P}^1(K)$.

Study the distance between tail point and periodic.

The set of tail points and the set of periodic points bound each other.

• Number of solution of the *S*-unit equation.

• Logarithmic *v*-adic distance between points in $\mathbb{P}^1(K)$.

Study the distance between tail point and periodic.

The set of tail points and the set of periodic points bound each other.

• Number of solution of the *S*-unit equation.

Get a bound for the set of preperiodic point under a mild hypothesis

• Logarithmic v-adic distance between points in $\mathbb{P}^1(K)$.

Study the distance between tail point and periodic.

The set of tail points and the set of periodic points bound each other.

• Number of solution of the *S*-unit equation.

• Get a bound for the set of preperiodic point under a mild hypothesis

We use big theorems to lift the mild hypothesis and get the theorem.
 (Riemann-Hurwitz, Baker's Theorem, Kisaka's analysis on Baker's Theorem)

THANK YOU