

Matemática Discreta 1

Regras de Inferência e Argumentos

AULA 3b

Professor: Luiz Augusto Laranjeira

luiz.laranjeira@gmail.com

Recordando ...

Implicação

Regras de Inferência

Argumentos

Implicação Lógica

$$\circ P(p,q,r,...) \Rightarrow Q(p,q,r,...)$$

 Na tabela verdade de P e Q não pode haver uma linha em que P tenha valor V e Q tenha valor F.

Recordando ...

Implicação

Regras de Inferência

Argumentos

Nota 2

Os símbolos → e => são distintos:

- O símbolo → é de operação lógica
- 2)O símbolo => é de *relação*, pois estabelece que a condicional

$$P(p,q,r,...) \rightarrow Q(p,q,r,...)$$

Recordando ...

Implicação

Regras de Inferência

Argumentos

Teorema 2

A proposição P(p,q,r,...) implica a proposição Q(p,q,r,...), isto é

$$P(p,q,r,...) \Rightarrow Q(p,q,r,...)$$

Se e somente se a condicional

$$P(p,q,r,...) \rightarrow Q(p,q,r,...)$$

é tautológica.

Regras de Inferência

Implicação

Regras de Inferência

Argumentos

<u>Definição</u>:

Regras de Inferência são implicações lógicas utilizadas para executar os passos de uma dedução ou demonstração.

Implicação

Regras de Inferência

Argumentos

р	q	p•q	p + q	$p \leftrightarrow q$
V	V	V	V	V
V	F	F	V	F
F	V	F	V	F
F	F	F	F	V

Regras de Inferência

Adição:

Exemplo 1 (cont.)

Implicação

Regras de Inferência

Argumentos

р	q	p•q	p + q	$p \leftrightarrow q$
V	V	V	V	V
V	F	F	V	F
F	V	F	V	F
F	F	F	F	V

Regras de Inferência

$$p \cdot q \Rightarrow p + q$$

$$p \cdot q \Rightarrow p \leftrightarrow q$$

Regras de Inferência

Argumentos

Exemplo 2

р	q	p + q	~ p	(p + q) • ~p
V	V	V	F	F
V	F	V	F	F
F	V	V	V	V
F	F	F	V	F

Regra do Silogismo Disjuntivo (1)

$$(p + q) \cdot \sim p \Rightarrow q$$

Regras de Inferência

Argumentos

Exemplo 2 (cont.)

р	q	p + q	~ p	(p + q) • ~p
V	V	V	F	F
V	F	V	F	F
F	V	V	V	V
F	F	F	V	F

Regra de Simplificação (aplicação)

$$(p + q) \cdot \sim p \Rightarrow (p + q) \in (p + q) \cdot \sim p \Rightarrow \sim p$$

Regras de Inferência

Argumentos

Exemplo 3

р	q	p + q	~q	(p + q) • ~q
V	V	V	F	F
V	F	V	V	V
F	V	V	F	F
F	F	F	V	F

Regra do Silogismo Disjuntivo (2)

$$(p + q) \cdot \neg q \Rightarrow p$$

Regras de Inferência

Argumentos

Exemplo 4

р	q	$p \to q$	(p → q) • p
V	V	V	F
V	F	V	F
F	V	V	V
F	F	F	F

Regra Modus Ponens (Modo que afirma)

$$(p \rightarrow q) \cdot p \Rightarrow q$$

Regras de Inferência

Argumentos

Exemplo 5

р	q	$p \rightarrow q$	~q	$(p \rightarrow q) \cdot q$	~р
V	V	V	F	F	F
V	F	F	V	F	F
F	V	V	F	F	V
F	F	V	V	V	V

Regra Modus Tollens (Modo que nega)

$$(p \rightarrow q) \cdot \sim q = > \sim p$$

Regras de Inferência

Argumentos

Exemplo 5 (cont.)

р	q	$p \to q$	~q	(p → q) • ~q	~ p
V	V	V	F	F	F
V	F	F	V	F	F
F	V	V	F	F	V
F	F	V	V	V	V

$$\sim p => (p \rightarrow q)$$

Implicação

Regras de Inferência

Argumentos

р	q	r	p→q	q→r	(p→q).(q→r)	p→r
V	V	V	V	V	V	V
V	V	F	V	F	F	F
V	F	V	F	F	F	V
V	F	F	F	V	F	F
F	V	V	V	V	V	V
F	V	F	V	V	V	V
F	F	V	V	F	F	V
F	F	F	V	V	V	V

Regra do Silogismo Hipotético

$$(p \rightarrow q) \cdot (q \rightarrow r) => (p \rightarrow r)$$

Implicação

Regras de Inferência

Argumentos

As condicionais p → (p + q) e p → q tem tabelas verdade idênticas:

р	q	p + q	$p \rightarrow q$	~ p	$p \rightarrow (p + q)$
V	V	V	V	F	V
V	F	V	F	F	F
F	V	V	V	V	V
F	F	F	V	V	V

Por conseguinte elas são equivalentes:

$$p \rightarrow (p + q) <=> p \rightarrow q$$

Daí:
$$p \rightarrow q => p \rightarrow (p + q)$$
 e
 $p \rightarrow (p + q) => p \rightarrow q$

(Regra de Absorção)

Implicação

Regras de Inferência

Argumentos

As condicionais p → (p • q) e p → q tem tabelas verdade idênticas:

р	q	p • q	p → q	p → (p • q)
V	V	V	V	V
V	F	F	F	F
F	V	F	V	V
F	F	F	V	V

Por conseguinte elas são equivalentes:

$$p \rightarrow (p \cdot q) <=> p \rightarrow q$$

$$p \rightarrow q = > p \rightarrow (p \cdot q)$$

$$p \rightarrow (p \cdot q) = p \rightarrow q$$

(Regra de Absorção)

Implicação

Regras de Inferência

Argumentos

A bicondicional $p \leftrightarrow q$ e a conjunção $(p \rightarrow q) \cdot (q \rightarrow p)$ têm tabelas verdade idênticas

р	q	$p \leftrightarrow q$	$p \to q$	$q \rightarrow p$	(p→q) • (q→p)
V	V	V	V	V	V
V	F	F	F	V	F
F	V	F	V	F	F
F	F	V	V	V	V

Por conseguinte elas são equivalentes:

$$p \leftrightarrow q <=> (p \rightarrow q) \cdot (q \rightarrow p)$$

Daí:
$$p \leftrightarrow q = > (p \rightarrow q)$$
 e $p \leftrightarrow q = > (q \rightarrow p)$

Regras de Inferência

Argumentos

Exercício 1

Mostre que a bicondicional p ↔ q e a disjunção (p • q) + (~p • ~q) são equivalentes.

Regras de Inferência

Argumentos

(p • q) + (
$$\sim$$
p • \sim q)

Regras de Inferência

Argumentos

(p • q) + (
$$\sim$$
p • \sim q)

$$((p \cdot q) + \sim p) \cdot ((p \cdot q) + \sim q)$$

Regras de Inferência

Argumentos

(p • q) + (
$$\sim$$
p • \sim q)

((p • q) +
$$\sim$$
p) • ((p • q) + \sim q)

((p +
$$\sim$$
p) • (q + \sim p)) • ((p + \sim q) • (q + \sim q))

Regras de Inferência

Argumentos

(p • q) + (
$$\sim$$
p • \sim q)

$$((p \cdot q) + \sim p) \cdot ((p \cdot q) + \sim q)$$

((p +
$$\sim$$
p) • (q + \sim p)) • ((p + \sim q) • (q + \sim q))

(V •
$$(q + \sim p)$$
) • $((p + \sim q) • V)$

Regras de Inferência

Argumentos

(p • q) + (
$$\sim$$
p • \sim q)

((p • q) +
$$\sim$$
p) • ((p • q) + \sim q)

((p +
$$\sim$$
p) • (q + \sim p)) • ((p + \sim q) • (q + \sim q))

(V •
$$(q + \sim p)$$
) • $((p + \sim q) • V)$

5)
$$(q + \sim p) \cdot (p + \sim q)$$

Regras de Inferência

Argumentos

(p • q) + (
$$\sim$$
p • \sim q)

((p • q) +
$$\sim$$
p) • ((p • q) + \sim q)

((p +
$$\sim$$
p) • (q + \sim p)) • ((p + \sim q) • (q + \sim q))

(V •
$$(q + \sim p)$$
) • $((p + \sim q) • V)$

$$(q + \sim p) \cdot (p + \sim q)$$

6)
$$(\sim p + q) \cdot (\sim q + p)$$

Regras de Inferência

Argumentos

(p • q) + (
$$\sim$$
p • \sim q)

((p • q) +
$$\sim$$
p) • ((p • q) + \sim q)

((p +
$$\sim$$
p) • (q + \sim p)) • ((p + \sim q) • (q + \sim q))

(V •
$$(q + \sim p)$$
) • $((p + \sim q) • V)$

(q +
$$\sim$$
p) • (p + \sim q)

6)
$$(\sim p + q) \cdot (\sim q + p)$$

$$(p \rightarrow q) \bullet (q \rightarrow p)$$

Regras de Inferência

Argumentos

(p • q) + (
$$\sim$$
p • \sim q)

((p • q) +
$$\sim$$
p) • ((p • q) + \sim q)

((p +
$$\sim$$
p) • (q + \sim p)) • ((p + \sim q) • (q + \sim q))

(V •
$$(q + \sim p)$$
) • $((p + \sim q) • V)$

$$(q + \sim p) \cdot (p + \sim q)$$

6)
$$(\sim p + q) \cdot (\sim q + p)$$

(p
$$\rightarrow$$
 q) • (q \rightarrow p) <=> (p \leftrightarrow q)

Regras de Inferência

Argumentos

Exercício 2

Mostre que a negação da bicondicional \sim (p \leftrightarrow q) e a disjunção exclusiva p \oplus q, também expressa como (p \bullet \sim q) + (\sim p \bullet q), são equivalentes.

Regras de Inferência

Argumentos

$$^{1)} \sim (p \leftrightarrow q) <=> \sim ((p \rightarrow q) \cdot (q \rightarrow p))$$

Regras de Inferência

Argumentos

$$^{1)} \sim (p \leftrightarrow q) <=> \sim ((p \rightarrow q) \cdot (q \rightarrow p))$$

$$\sim ((\sim p + q) \cdot (\sim q + p))$$

Regras de Inferência

Argumentos

$$\sim (p \leftrightarrow q) <=> \sim ((p \rightarrow q) \cdot (q \rightarrow p))$$

$$\sim ((\sim p + q) \cdot (\sim q + p))$$

$$\sim (\sim p + q) + \sim (p + \sim q)$$

Regras de Inferência

Argumentos

$$^{1)} \sim (p \leftrightarrow q) <=> \sim ((p \rightarrow q) \cdot (q \rightarrow p))$$

$$\sim ((\sim p + q) \cdot (\sim q + p))$$

$$\sim (\sim p + q) + \sim (p + \sim q)$$

(p •
$$\sim$$
q) + (\sim p • q)

Regras de Inferência

Argumentos

$$^{1)} \sim (p \leftrightarrow q) <=> \sim ((p \rightarrow q) \cdot (q \rightarrow p))$$

$$\sim ((\sim p + q) \cdot (\sim q + p))$$

$$\sim (\sim p + q) + \sim (p + \sim q)$$

(p •
$$\sim$$
q) + (\sim p • q)

(p • ~q) + (~p • q)
$$\leq > p \oplus q$$

Regras de Inferência

Argumentos

$$^{1)} \sim (p \leftrightarrow q) <=> \sim ((p \rightarrow q) \cdot (q \rightarrow p))$$

$$\sim ((\sim p + q) \cdot (\sim q + p))$$

$$\sim (\sim p + q) + \sim (p + \sim q)$$

(p •
$$\sim$$
q) + (\sim p • q)

(p •
$$\sim$$
q) + (\sim p • q) <=> p \oplus q

$$_{6)}$$
 ~ $(p \leftrightarrow q) <=> p \oplus q$

Regras de Inferência

Argumentos

Exercício 3

Mostre que a expressão seguinte é uma tautologia:

$$(p \rightarrow q) \cdot (r \rightarrow s) \cdot (p + r) \rightarrow (q + s)$$

Regra do Dilema Construtivo

$$(p \rightarrow q) \cdot (r \rightarrow s) \cdot (p + r) => (q + s)$$

Regras de Inferência

Argumentos

Exercício 4

Mostre que a expressão seguinte é uma tautologia:

$$(p \rightarrow q) \bullet (r \rightarrow s) \bullet (\sim q + \sim s) \rightarrow (\sim p + \sim r)$$

Regra do Dilema Destrutivo

$$(p \rightarrow q) \cdot (r \rightarrow s) \cdot (\sim q + \sim s) = > (\sim p + \sim r)$$

Regras de Inferência (resumo)

IV. Regra da Absorção:
$$p \rightarrow q \implies p \rightarrow (p + q)$$
 e

$$p \rightarrow q \implies p \rightarrow (p \cdot q)$$

VI. Modus Ponens:
$$(p \rightarrow q) \cdot p \Rightarrow q$$

VII. Modus Tollens:
$$(p \rightarrow q) \cdot \sim q \Rightarrow \sim p$$

VIII.Silogismo Disjuntivo:
$$(p + q) \cdot \neg p \Rightarrow q \cdot e \cdot (p + q) \cdot \neg q \Rightarrow p$$

IX. Silogismo Hipotético:
$$(p \rightarrow q) \cdot (q \rightarrow r) \Rightarrow (p \rightarrow r)$$

X. Dilema Construtivo:
$$(p \rightarrow q) \cdot (r \rightarrow s) \cdot (p + r) \Rightarrow (q + s)$$

XI. Dilema Destrutivo:
$$(p \rightarrow q) \cdot (r \rightarrow s) \cdot (\sim q + \sim s) \Rightarrow (\sim p + \sim r)$$

Argumentos

Implicação

Regras de Inferência

Argumentos

Definição (recordação):

Sejam P_1 , P_2 , ..., P_n ($n \ge 1$) e Q proposições quaisquer, simples ou compostas.

Chama-se <u>argumento</u> à afirmação que a sequência finita de proposições P_1 , P_2 , ..., P_n (chamadas premissas), têm como consequência ou acarretam a proposição final Q (chamada conclusão).

Um argumento de premissas P₁, P₂, ..., P_n e conclusão Q é indicado por:

$$P_1, P_2, ..., P_n \vdash G$$

Diz-se que P₁, P₂, ..., P_n acarretam Q, ou que Q decorre de P₁, P₂, ..., P_n.

Validade de um Argumento

Implicação

Regras de Inferência

Argumentos

<u>Definição</u>:

Um argumento $P_1, P_2, ..., P_n \longmapsto Q$ diz-se **válido** se e somente se a conclusão Q é verdadeira todas as vezes que as premissas $P_1, P_2, ..., P_n$ são verdadeiras.

Um argumento que não é válido é chamado sofisma.

Critério de Validade

Implicação

Regras de Inferência

Argumentos

Teorema:

Um argumento $P_1, P_2, ..., P_n \longrightarrow Q$ é **válido** se e somente se a condicional

$$(P_1 \cdot P_2 \cdot ... \cdot P_n) \rightarrow Q$$

é tautológica.

Diz-se que ao argumento $P_1, P_2, ..., P_n \longrightarrow Q$ *corresponde* a condicional $(P_1 \bullet P_2 \bullet ... \bullet P_n) \rightarrow Q$, ou que esta é a condicional *associada ao* argumento.

Como consequência do teorema pode-se também expressar um argumento válido como:

$$(P_1 \cdot P_2 \cdot \dots \cdot P_n) \Rightarrow Q$$

Implicação

Regras de Inferência

Argumentos

Argumentos Válidos e

Regras de Inferência

As regras de inferência vistas até aqui são todas argumentos válidos.

Regras de Inferência (resumo)

IV. Regra da Absorção:
$$p \rightarrow q \Rightarrow p \rightarrow (p + q)$$

$$p \rightarrow q \implies p \rightarrow (p \cdot q)$$

VI. Modus Ponens:
$$(p \rightarrow q) \cdot p \Rightarrow q$$

VII. Modus Tollens:
$$(p \rightarrow q) \cdot \sim q \Rightarrow \sim p$$

VIII.Silogismo Disjuntivo:
$$(p + q) \cdot \neg p \Rightarrow q \cdot e \cdot (p + q) \cdot \neg q \Rightarrow p$$

IX. Silogismo Hipotético:
$$(p \rightarrow q) \cdot (q \rightarrow r) \Rightarrow (p \rightarrow r)$$

X. Dilema Construtivo:
$$(p \rightarrow q) \cdot (r \rightarrow s) \cdot (p + r) \Longrightarrow (q + s)$$

XI. Dilema Destrutivo:
$$(p \rightarrow q) \cdot (r \rightarrow s) \cdot (\sim q + \sim s) \Rightarrow (\sim p + \sim r)$$

Uso das Regras de Inferência

Método Dedutivo

Regra Modus Tollens

$$(1) q \cdot r \rightarrow s P$$

$$(3) \sim (q \cdot r) \qquad \qquad C$$

Regra do Dilema Construtivo

$$(1) (p \cdot q) \rightarrow \sim r \qquad \mathbf{P}$$

(2)
$$s \rightarrow t$$

$$(3) (p \cdot q) + s$$
 P
 $(4) \sim r + t$ Q

Regra do Silogismo Hipotético

(1)
$$|x| = 0 \rightarrow x = 0$$

(2)
$$x = 0 \rightarrow x + 1 = 1$$

(3)
$$|x| = 0 \rightarrow x + 1 = 1$$
 Q

Regra Modus Ponens

P
$$(1) x \in (A \cap B) \rightarrow x \in A$$

$$(2) x \in (A \cap B)$$

$$(3) x \in A$$

Verificar a validade do argumento:

$$p \cdot q, p+r \rightarrow s \longmapsto p \cdot s$$

 $(1) p \cdot q$

P

(2) $p + r \rightarrow s$

P

$$p \cdot q, p + r \rightarrow s \longmapsto p \cdot s$$

(1)
$$p \cdot q$$
 P
(2) $p + r \rightarrow s$ P
(3) p 1 - SIMP

$$p \cdot q, p+r \rightarrow s \mid p \cdot s$$

Verificar a validade do argumento:

$$p \cdot q, p+r \rightarrow s \mid p \cdot s$$

2,4 - **MP**

(5) s

$$p \cdot q, p+r \rightarrow s \vdash p \cdot s$$

(2)
$$p+r \rightarrow s$$

$$(3)$$
 p

$$(4) p + r$$

$$(5)$$
 s

$$2,4 - MP$$

$$x=y \rightarrow x=z, x\neq y \rightarrow x < z, x < z \rightarrow y > z, y\neq z \bullet x \neq z \longmapsto y > z$$

- $(1) X = Y \rightarrow X = Z$
- (2) $x \neq y \rightarrow x < z$
- $(3) X < Z \rightarrow Y > Z P$
- (4) $y \neq z \cdot x \neq z$

$$x=y \rightarrow x=z, x\neq y \rightarrow x < z, x < z \rightarrow y > z, y\neq z \bullet x \neq z \longmapsto y > z$$

(2)
$$x \neq y \rightarrow x < z$$

$$(3) x < z \rightarrow y > z P$$

(4)
$$y \neq z \cdot x \neq z$$

(5)
$$X \neq Z$$
 4 - SIMP

Verificar a validade do argumento:

$$x=y \rightarrow x=z, x\neq y \rightarrow x < z, x < z \rightarrow y > z, y\neq z \bullet x \neq z \longmapsto y > z$$

$$(1) X = Y \rightarrow X = Z \qquad \mathbf{P}$$

(2)
$$x \neq y \rightarrow x < z$$

$$(3) x < z \rightarrow y > z P$$

(4)
$$y \neq z \cdot x \neq z$$

$$(5) x \neq z$$

4 - SIMP

(6)
$$x \neq y$$

1,5 - MT

$$x=y \rightarrow x=z, x\neq y \rightarrow x < z, x < z \rightarrow y > z, y\neq z \bullet x \neq z \longmapsto y > z$$

(2)
$$x \neq y \rightarrow x < z$$

$$(3) x < z \rightarrow y > z P$$

(4)
$$y \neq z \cdot x \neq z$$

(5)
$$X \neq Z$$
 4 - SIMP

(6)
$$x \neq y$$
 1,5 - MT

(7)
$$X < Z$$
 2,6 - MP

$$x=y \rightarrow x=z, x\neq y \rightarrow x < z, x < z \rightarrow y > z, y\neq z \bullet x \neq z \longmapsto y > z$$

$$(1) X = Y \rightarrow X = Z \qquad \mathbf{P}$$

(2)
$$x \neq y \rightarrow x < z$$

$$(3) x < z \rightarrow y > z P$$

(4)
$$y \neq z \cdot x \neq z$$

(5)
$$X \neq Z$$
 4 - SIMP

(6)
$$x \neq y$$
 1,5 - MT

(7)
$$X < Z$$
 2,6 - MP

(8)
$$y > z$$
 3,7 - MP