Passing The Message Experiment Graphical Representation

Author: <u>Jiangshan Luo</u>

Student ID: <u>U6488845</u>

Course: COMP2310

Submission Date : 2017-10-26

Content

1. Router

- 1.1 Router Entity
- 1.2 Message Queue For Client/Forwarded Message
- 1.3 Power Down Notification
- 1.4 Graceful Degradation (After Shutdown)
- 2. Distance Vector Algorithm
 - 2.1 Global
 - 2.2 Individual
- 3. Network Message Passing
 - 3.1 Ideal Network Condition
 - 3.2 With Routers Dropping Out
- 4. Control Flow Graph

Apologies:

I'm using the Windows OS and struggling to import the SVG Images into my Word Office. Instead, I use the PDF format directly which is also the Vector Image, but I couldn't maintain a Content Index and a universal size for every image.

Ī

Router Entity

Routing Table

Destination	Next Hop	Distance	Power Down Check
Router 0	Router 3	10	False
Router 1	Router 2	5	False
•••	•••	•••	•••
Router x	Router y	Infinite	True

Listen List Configuration Client Messages Shut Down Requirement Distance Vector Messages Power Down Notifications

Forwarded Messages

Router

Send List Forwarded Messages Distance Vector Messages Power Down Notifications Forwarded Messages

Message Queue For Client_Forwarded Message

Power Down Notification

Neighbor Routing Table

			,
Destination	Next Hop	Distance	Power Down Check
Router 0	Router 3	10	False
Router 1	Router 7	5	False
•••	•••	•••	•••
Power Down Router	Infinite	Infinite	True

Neighbor Routing Table

Destination	Next Hop	Distance	Power Down Check
Router 0	Router 10	11	False
Router 1	Router 3	3	False
•••	•••	•••	•••
Power Down Router	Infinita	Infinite	True
Router			True

Neighbor Routing Table

Destination	Next Hop	Distance	Power Down Check
Router 0	Router 10	10	False
Router 1	Router 6	20	False
•••	•••	•••	•••
Power Down Router	Infinita	Infinite	True
Router	minite	minite	True

Graceful Degradation

Graceful Degradation:

After receives the Shutdown Call, the router will keep listening until there isn't any potential call in the network but keep silence. That's to simulate the real world router, which already doesn't exist.

Distance Vector Algorithm(Global)

Router 0

Router 1

Router 2

Router 3

Wire

Router

A Send Distance Vector

Messages To B

Distance Vector Algorithm:

Table and notify its neighbors.

Every time a router finds a shorter path, it will update its Routing

Routing Table

Destination	Next Hop	Distance	Power Down Check
Router 0	Router 0	0	False
Router 1	Router 1	1	False

Routing Table

Destination	Next Hop	Distance	Power Down Check
Router 0	Router 0	1	False
Router 1	Router 1	0	False
Router 2	Router 2	1	False

Routing Table

1 1 1 1 1 1 1	Destination	Next Hop	Distance	Power Down Check
! ! ! ! ! ! !	Router 1	Router 1	1	False
 	Router 2	Router 2	0	False
! ! ! ! !	Router 3	Router 3	1	

Routing Table

Destination	Next Hop	Distance	Power Down Check
Router 2	Router 2	1	False
Router 3	Router 3	0	False

Routing Table

Destination	Next Hop	Distance	Power Down Check
Router 0	Router 0	0	False
Router 1	Router 1	1	False
Router 2	Router 1	2	False

Routing Table

Destination	Next Hop	Distance	Power Down Check
Router 0	Router 0	0	False
Router 1	Router 1	1	False
Router 2	Router 2	1	False
Router 3	Router 2	2	False

Routing Table

Destination	Next Hop	Distance	Power Down Check
Router 0	Router 1	2	False
Router 1	Router 1	1	False
Router 2	Router 2	0	False
Router 3	Router 3	1	False

Routing Table

	I		
Destination	Next Hop	Distance	Power Down Check
Router 1	Router 2	2	False
Router 2	Router 2	1	False
Router 3	Router 3	0	False

Destination	Next Hop	Distance	Power Down Chec
Router 0	Router 0	0	False
Router 1	Router 1	1	False
Router 2	Router 1	2	False
Router 3	Router 1	3	False

Routing Table					
Destination	Next Hop	Distance	Power Down Check		
Router 0	Router 0	3	False		
Router 1	Router 1	2	False		
Router 2	Router 2	1	False		
Router 3	Router 3	0	False		

Distance Vector Algorithm(Individual)

Ideal Network Condition

With Routers Dropping Out

R1: I Cannot Reach Router 2 Anymore

Control Flow Graph

