74HC595 芯片中文资料

8位串行输入/输出或者并行输出移位寄存器,具有高阻关断状态。三态。

特点

- 8位串行输入
- 8位串行或并行输出

存储状态寄存器,三种状态

输出寄存器可以直接清除

100MHz 的移位频率

输出能力

并行输出, 总线驱动

串行输出;标准

中等规模集成电路

应用

串行到并行的数据转换

Remote control holding register.

描述

595 是告诉的硅结构的 CMOS 器件,

兼容低电压 TTL 电路, 遵守 JEDEC 标准。

595 是具有 8 位移位寄存器和一个存储器, 三态输出功能。

移位寄存器和存储器是分别的时钟。

数据在 SCHcp 的上升沿输入,在 STcp 的上升沿进入的存储寄存器中去。如果两个时钟连在一起,则移位寄存器总是比存储寄存器早一个脉冲。

移位寄存器有一个串行移位输入(Ds),和一个串行输出(Q7'),和一个异步的低电平复位,存储寄存器有一个并行8位的,具备三态的总线输出,当使能0E时(为低电平),存储寄存器的数据输出到总线。

参考数据

符号	参数	条件	TYP		单
			НС	HCt	位
tPHL/tPLH	传输延时		16	21	Ns
	SHcp 到 Q7'	CL=15pF	17	20	Ns
	STcp 到 Qn	Vcc=5V	14	19	Ns
	MR 到 Q7'				
fmax	STcp 到 SHcp		100		MHz
	最大时钟速度		57	57	
CL	输入电容	Notes 1	3. 5	3. 5	pF
CPD	Power	Notes2	115	115 130	
	dissipation				
	capacitance				
	per package.				

CPD 决定动态的能耗,

 $PD = CPD \times VCC \times f1 + \sum (CL \times VCC2 \times f0)$

F1=输入频率,CL=输出电容 f0=输出频率(MHz) Vcc=电源电压引脚说明

符号	引脚	描述
Q0Q7	15, 1, 7	并行数据输出
GND	8	地
Q7'	9	串行数据输出
MR	10	主复位(低电平)
SHCP	11	移位寄存器时钟输
		入
STCP	12	存储寄存器时钟输
		入
OE	13	输出有效(低电平)
DS	14	串行数据输入
VCC	16	电源

输入			输出		TH 台L			
SHCP	STCP	0E	MR	DS	Q7'	Qn	功能	
×	×	L	↓	×	L	NC	MR 为低电平时 紧紧影响移位寄存 器	
×	↑	L	L	×	L	L	空移位寄存器 到输出寄存器	
×	×	Н	L	×	L	Z	清空移位寄存器,并行输出为高阻状态	
↑	×	L	Н	Н	Q6'	NC	逻辑高电平移 入移位寄存器状态 0,包含所有的移位 寄存器状态移入, 例如,以前的状态 6 (内部 Q6")出现 在串行输出位。	
×	↑	L	Н	×	NC	Qn'	移位寄存器的 内容到达保持寄存 器并从并口输出	
↑	1	L	Н	×	Q6'	Qn'	移位寄存器内 容移入,先前的移 位寄存器的内容到 达保持寄存器并输 出。	

H=高电平状态 L=低电平状态 ↑=上升沿 ↓=下降沿

Z=高阻 NC=无变化 \times =无效

当 MR 为高电平, OE 为低电平时,数据在 SHCP 上升沿进入移位寄存器,在 STCP 上升沿输出到并行端口。

74595 的数据端:

QA--QH: 八位并行输出端,可以直接控制数码管的 8 个段。

QH': 级联输出端。我将它接下一个 595 的 SI 端。

SI: 串行数据输入端。

74595 的控制端说明:

/SCLR(10 脚): 低点平时将移位寄存器的数据清零。通常我将它接 Vcc。 SCK(11 脚): 上升沿时数据寄存器的数据移位。QA-->QB-->QC-->...-->QH; 下 降沿移位寄存器数据不变。(脉冲宽度: 5V 时,大于几十纳秒就行了。)

RCK(12 脚): 上升沿时移位寄存器的数据进入数据存储寄存器,下降沿时存储寄存器数据不变。通常我将RCK置为低点平,当移位结束后,在RCK端产生一个正脉冲(5V时,大于几十纳秒就行了。我通常都选微秒级),更新显示数据。/G(13 脚): 高电平时禁止输出(高阻态)。如果单片机的引脚不紧张,用一个引脚控制它,可以方便地产生闪烁和熄灭效果。比通过数据端移位控制要省时省力。

注: 74164 和 74595 功能相仿,都是 8 位串行输入转并行输出移位寄存器。74164 的驱动电流(25mA)比 74595(35mA)的要小,14 脚封装,体积也小一些。

74595 的主要优点是具有数据存储寄存器,在移位的过程中,输出端的数据可以保持不变。这在串行速度慢的场合很有用处,数码管没有闪烁感。

与 164 只有数据清零端相比,595 还多有输出端时能/禁止控制端,可以使输出为高阻态。

另外,据网上报价,贴片164每只1元钱,贴片5950.8元/只。

74HC595 是具有 8 位移位寄存器和一个存储器,三态输出功能。 移位寄存器和存储器是分别的时钟。数据在 SCHcp 的上升沿输入,在 STcp 的上升沿进入的存储寄存器中去。如果两个时钟连在一起,则移位寄存器总是比存储寄存器早一个脉冲。移位寄存器有一个串行移位输入(Ds),和一个串行输出(Q7'),和一个异步的低电平复位,存储寄存器有一个并行 8 位的,具备三态的总线输出,当使能 0E 时(为低电平),存储寄存器的数据输出到总线。

程序说明:

每当 spi_shcp 上升沿到来时, spi_ds 引脚当前电平值在移位寄存器中左移一位,在下一个上升沿到来时移位寄存器中的所有位都会向左移一位,

同时 Q7'也会串行输出移位寄存器中高位的值,

这样连续进行8次,就可以把数组中每一个数(8位的数)送到移位寄存器:

然后当 spi_stcp 上升沿到来时,移位寄存器的值将会被锁存到锁存器里,并从 $Q1^7$ 引脚输出