Etude de suites récurrentes

Exercice 1 [02304] [Correction] Étudier la suite (u_n) définie par

$$u_0 = a \in \mathbb{R} \text{ et } \forall n \in \mathbb{N}, u_{n+1} = u_n^2$$

Exercice 2 [02305] [Correction] Étudier la suite (u_n) définie par

$$u_0 \in \mathbb{R} \text{ et } \forall n \in \mathbb{N}, u_{n+1} = u_n^2 + 1$$

Exercice 3 [02303] [Correction] Étudier la suite (u_n) définie par

$$u_0 = 1$$
 et $\forall n \in \mathbb{N}, u_{n+1} = \sqrt{1 + u_n}$

Exercice 4 [02306] [Correction] Étudier la suite (u_n) définie par

$$u_0 > 1 \text{ et } \forall n \in \mathbb{N}, u_{n+1} = 1 + \ln(u_n)$$

Exercice 5 [02307] [Correction] Étudier la suite (u_n) définie par

$$u_0 \in \mathbb{R} \text{ et } \forall n \in \mathbb{N}, u_{n+1} = e^{u_n} - 1$$

Exercice 6 [02308] [Correction] Étudier la suite (u_n) définie par

$$u_0 > 0$$
 et $\forall n \in \mathbb{N}, u_{n+1} = \frac{1}{2 + u_n}$

Exercice 7 [02309] [Correction] Soit (u_n) la suite réelle définie par

$$u_0 = a \in [-2; 2] \text{ et } \forall n \in \mathbb{N}, u_{n+1} = \sqrt{2 - u_n}$$

a) Justifier que la suite (u_n) est bien définie et

$$\forall n \in \mathbb{N}, u_n \in [-2; 2]$$

- b) Quelles sont les limites finies possibles pour (u_n) ?
- c) Montrer que $(|u_n 1|)$ converge puis que $\lim |u_n 1| = 0$. En déduire $\lim u_n$.

Exercice 8 [02310] [Correction]

Soit $a \in \mathbb{C}$ tel que 0 < |a| < 1 et (u_n) la suite définie par

$$u_0 = a \text{ et } \forall n \in \mathbb{N}, u_{n+1} = \frac{u_n}{2 - u_n}$$

Montrer que (u_n) est bien définie et $|u_n| < 1$. Étudier la limite de (u_n) .

Exercice 9 [02312] [Correction]

Soit a > 0 et (u_n) la suite définie par $u_0 > 0$ et

$$\forall n \in \mathbb{N}, u_{n+1} = \frac{1}{2} \left(u_n + \frac{a}{u_n} \right)$$

- a) Étudier la convergence de la suite (u_n) .
- b) On pose pour tout $n \in \mathbb{N}$

$$v_n = \frac{u_n - \sqrt{a}}{u_n + \sqrt{a}}$$

Calculer v_{n+1} en fonction de v_n , puis v_n en fonction de v_0 et n.

c) Montrer que, si $u_0 > \sqrt{a}$, on a

$$\left| u_n - \sqrt{a} \right| \le 2u_0 \cdot v_0^{2^n}$$

Ainsi, u_n réalise une approximation $\operatorname{de}\sqrt{a}$ à la précision $2u_0.v_0^{2^n} \underset{n \infty}{\to} 0$. On peut alors par des calculs élémentaires, déterminer une approximation de \sqrt{a} .

Exercice 10 [02313] [Correction]

On considère l'équation $\ln x + x = 0$ d'inconnue x > 0.

a) Montrer que l'équation possède une unique solution α .

Enoncés

b) Former, par l'algorithme de Newton, une suite récurrente réelle (u_n) convergeant vers α .

Exercice 11 [02311] [Correction]

Déterminer le terme général de la suite (u_n) définie par :

$$u_0 = a > 0, u_1 = b > 0 \text{ et } \forall n \in \mathbb{N}, u_{n+2}u_n = u_{n+1}^2$$

À quelle condition (u_n) converge?

Exercice 12 [02301] [Correction]

Soit $a \in \mathbb{R}_+^*$. On définit une suite (u_n) par

$$u_0 = a \text{ et } \forall n \in \mathbb{N}, u_{n+1} = \sqrt{\sum_{k=0}^n u_k}$$

- a) Déterminer la limite de (u_n) .
- b) Déterminer la limite de $u_{n+1} u_n$.

Exercice 13 [00094] [Correction]

Établir

$$\sqrt{1 + \sqrt{1 + \sqrt{1 + \cdots}}} = 1 + \frac{1}{1 + \frac{1}{1 + \cdots}}$$

Exercice 14 [03229] [Correction]

Soit (u_n) une suite réelle vérifiant

$$\forall n \in \mathbb{N}, u_n \in [1/2; 1]$$

Soit (v_n) la suite déterminée par

$$v_0 = u_0 \text{ et } \forall n \in \mathbb{N}, v_{n+1} = \frac{v_n + u_{n+1}}{1 + u_{n+1}v_n}$$

Montrer que la suite (v_n) converge et déterminer sa limite.

Exercice 15 [00328] [Correction]

Étudier la suite définie par

$$u_0 \in \mathbb{R}_+ \text{ et } \forall n \in \mathbb{N}, u_{n+1} = 1 + \frac{1}{4}u_n^2$$

Exercice 16 [00330] [Correction]

Soient a > 0,

$$u_1 = \sqrt{a}, u_2 = \sqrt{a + \sqrt{a}}, u_3 = \sqrt{a + \sqrt{a + \sqrt{a}}},$$

Montrer que (u_n) est convergente.

Exercice 17 [00331] [Correction]

Soit

$$f \colon x \mapsto \frac{x^3 + 1}{3}$$

et (u_n) la suite définie par

$$u_0 \in \mathbb{R} \text{ et } \forall n \in \mathbb{N}, u_{n+1} = f(u_n)$$

- a) Justifier que l'équation f(x) = x possède trois racines réelles (qu'on n'exprimera pas).
- b) Étudier le signe de f(x) x ainsi que la monotonie de f.
- c) Préciser le comportement de (u_n) en discutant selon la valeur de u_0 .

Exercice 18 [00332] [Correction]

Soient

$$f \colon x \mapsto \frac{x^3 + 3ax}{3x^2 + a}$$

(avec a > 0) et (u_n) la suite définie par

$$u_0 > 0$$
 et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$

Étudier les variations de f, le signe de f(x) - x et en déduire le comportement de (u_n) .

Exercice 19 [00333] [Correction]

Soient $u_0 \in [0; 1[$ et pour tout $n \in \mathbb{N}$,

$$u_{n+1} = u_n - u_n^2$$

Montrer que (u_n) est monotone de limite nulle. Déterminer les limites des suites dont les termes généraux sont les suivants

$$\sum_{k=0}^{n} u_k^2 \text{ et } \prod_{k=0}^{n} (1 - u_k)$$

Exercice 20 [00334] [Correction]

Soit $f: [a;b] \to [a;b]$ une fonction de classe \mathcal{C}^1 telle que

$$\forall x \in [a; b], |f'(x)| < 1$$

- a) Montrer que f admet un point fixe unique α .
- b) Montrer, pour tout $u \in [a; b]$, la convergence vers α de la suite (u_n) définie par

$$u_0 = u \text{ et } \forall n \in \mathbb{N}, u_{n+1} = f(u_n)$$

Exercice 21 [00335] [Correction]

Soit $f: [a;b] \to [a;b]$ une fonction 1 lipschitzienne et $\alpha \in [a;b]$. On considère la suite définie par

$$u_0 = \alpha$$
 et $u_{n+1} = \frac{u_n + f(u_n)}{2}$

Montrer que (u_n) converge vers un point fixe de f.

Exercice 22 [00329] [Correction]

Soit (u_n) la suite définie par

$$u_0 \in]0; 4[$$
 et $\forall n \in \mathbb{N}, u_{n+1} = 4u_n - u_n^2$

- a) Montrer que (u_n) est bornée. Quelles sont les limites possibles de (u_n) ?
- b) Montrer que si (u_n) converge alors (u_n) est soit stationnaire égale à 0, soit stationnaire égale à 3.
- c) En posant $u_0 = 4\sin^2\alpha$, déterminer les valeurs de u_0 pour lesquelles la suite (u_n) est stationnaire.

Exercice 23 [00336] [Correction]

Soient $\rho \in \mathbb{R}_+$ et $\theta \in [-\pi; \pi]$.

On considère la suite complexe $(z_n)_{n\in\mathbb{N}}$ définie par

$$z_0 = \rho e^{i\theta}$$
 et $\forall n \in \mathbb{N}, z_{n+1} = \frac{z_n + |z_n|}{2}$

- a) Exprimer z_n à l'aide d'un produit.
- b) Déterminer la limite de la suite $(z_n)_{n\in\mathbb{N}}$.

Exercice 24 [00338] [Correction]

Soit (u_n) une suite de réels positifs telle que

$$\forall n \in \mathbb{N}, u_{n+2} \le \frac{1}{2}(u_n + u_{n+1})$$

Montrer que (u_n) converge. On pourra commencer par étudier la monotonie de $v_n = \max(u_{n+1}, u_n)$.

Exercice 25 [00337] [Correction]

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ les suites récurrentes réelles définies par :

$$u_0, v_0 \in \mathbb{R}_+ \text{ et } \forall n \in \mathbb{N}, u_{n+1} = \sqrt{u_n v_n}, v_{n+1} = \frac{u_n + v_n}{2}$$

Montrer que les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ convergent vers une même limite.

Exercice 26 [00326] [Correction]

Pour $\alpha \in [0, \pi/2]$, on étudie les suites (u_n) et (v_n) définies par

$$\begin{cases} u_0 = \cos \alpha \\ v_0 = 1 \end{cases} \text{ et } \forall n \in \mathbb{N}, \begin{cases} u_{n+1} = (u_n + v_n)/2 \\ v_{n+1} = \sqrt{u_{n+1}v_n} \end{cases}$$

a) Établir que pour tout $n \in \mathbb{N}$,

$$u_n = v_n \cos \frac{\alpha}{2^n}$$
 et $v_n = \prod_{k=1}^n \cos \frac{\alpha}{2^k}$

b) Étudier $\sin \frac{\alpha}{2^n} v_n$ et en déduire les limites de (u_n) et (v_n) .

Enoncés

Exercice 27 [02783] [Correction]

Soit $(x_n)_{n\in\mathbb{N}^*}$ une suite de réels positifs. On pose, pour tout n>0,

$$y_n = \sqrt{x_1 + \sqrt{x_2 + \dots + \sqrt{x_n}}}$$

- a) Ici $x_n = a$ pour tout n, où a > 0. Étudier la convergence de (y_n) .
- b) Même question dans le cas où $x_n = ab^{2^n}$ pour tout n, avec b > 0.
- c) Montrer que (y_n) converge si, et seulement si, la suite $(x_n^{2^{-n}})$ est bornée.

Exercice 28 [03165] [Correction]

Soient (a_n) une suite réelle positive, bornée et (u_n) la suite récurrente définie par

$$u_0 > 0$$
 et $u_{n+1} = \frac{1}{u_n + a_n + 1}$ pour tout $n \in \mathbb{N}$

Montrer que la suite (u_n) converge si, et seulement si, la suite (a_n) converge.

Exercice 29 [00844] [Correction]

Montrer que la suite réelle (x_n) définie par $x_0 \in [a;b]$ et

$$\forall n \in \mathbb{N}, x_{n+1} = \frac{1}{2} \left(f(x_n) + x_n \right)$$

où f est 1-lipschitzienne de [a;b] dans [a;b], converge vers un point fixe de f.

Corrections

Exercice 1 : [énoncé]

On a $u_0 = a$, $u_1 = a^2$, $u_2 = a^4$, par récurrence $u_n = a^{2^n}$.

Pour |a| < 1 alors $u_n \to 0$, pour |a| = 1, $u_n \to 1$ et pour |a| > 1, $u_n \to +\infty$.

Exercice 2 : [énoncé]

La suite (u_n) est bien définie et supérieure à 1 à partir du rang 1 car la fonction itératrice $f: x \mapsto x^2 + 1$ est définie sur \mathbb{R} et à valeurs dans $[1; +\infty[$.

 $u_{n+1}-u_n=u_n^2-u_n+1\geq 0$ car le discriminant de x^2-x+1 est $\Delta=-3<0$. La suite (u_n) est croissante.

Si celle-ci converge vers un réel ℓ alors en passant à la limite la relation d'itération : $\ell=\ell^2+1$.

Or cette équation ne possède pas de racines réelles. Par suite (u_n) diverge, or elle est croissante, donc (u_n) diverge vers $+\infty$.

Exercice 3: [énoncé]

Pour tout $n \ge 1$

$$u_{n+1} - u_n = \frac{u_n - u_{n-1}}{\sqrt{1 + u_n} + \sqrt{1 + u_{n-1}}}$$

Puisque $u_1 - u_0 = \sqrt{2} - \sqrt{1} \ge 0$, la suite (u_n) est croissante.

Si (u_n) converge vers ℓ alors $u_{n+1} = \sqrt{1 + u_n}$ donne à la limite $\ell = \sqrt{1 + \ell}$ donc $\ell^2 - \ell - 1 = 0$ et $\ell \ge 0$.

Par suite

$$\ell = \frac{1 + \sqrt{5}}{2} = \alpha$$

Par récurrence on montre aisément que $\forall n \in \mathbb{N}, u_n \leq \alpha$ et par suite (u_n) converge vers α .

Exercice 4: [énoncé]

La suite (u_n) est bien définie et à valeurs strictement supérieure à 1 car sa fonction itératrice $f: x \mapsto 1 + \ln x$ est définie sur $[1; +\infty[$ à valeurs dans $[1; +\infty[$. Pour $n \ge 1: u_{n+1} - u_n = \ln(u_n) - \ln(u_{n-1})$ est du signe de $u_n - u_{n-1}$. La suite (u_n) est monotone et de monotonie déterminée par le signe de $u_1 - u_0 = 1 + \ln u_0 - u_0$.

Étudions la fonction $g(x) = x \mapsto 1 + \ln x - x$ définie sur $[1; +\infty[$. g est dérivable, $g'(x) = \frac{1}{x} - 1 \le 0$ ne s'annulant qu'en $[1; +\infty[$. strictement négative sur $[1; +\infty[$.

La suite (u_n) est décroissante. De plus elle est minorée par 1, donc elle converge vers un réel $\ell \geq 1$.

En passant la relation d'itération à la limite, on obtient $\ell=1+\ln\ell$ i.e. $g(\ell)=0$. Par l'étude de la fonction g, on conclut $\ell=1$.

Finalement (u_n) converge vers 1.

Exercice 5 : [énoncé]

La suite (u_n) est bien définie car sa fonction itératrice $f: x \mapsto e^x - 1$ est définie sur \mathbb{R} .

Pour $n \ge 1$, $u_{n+1} - u_n = e^{u_n} - e^{u_{n-1}}$ est du signe de $u_n - u_{n-1}$.

La suite (u_n) est monotone et de monotonie déterminée par le signe de $u_1 - u_0 = e^{u_0} - u_0 - 1$.

Étudions la fonction $g(x) = e^x - x - 1$ définie sur \mathbb{R} .

g est dérivable et $g'(x) = e^x - 1$ du signe de x. g(0) = 0 donc g est positive.

Si $u_0 = 0$ alors (u_n) est constante égale à 0.

Si $u_0 > 0$ alors (u_n) est croissante. Si (u_n) converge vers un réel ℓ alors $\ell = \mathrm{e}^\ell - 1$ donc $\ell = 0$.

Or (u_n) est minorée par $u_0 > 0$ donc ne peut converger vers 0. Par suite (u_n) diverge vers $+\infty$.

Si $u_0 < 0$ alors (u_n) est croissante et majorée par 0 donc (u_n) converge vers la seule limite finie possible 0.

Exercice 6 : [énoncé]

La suite (u_n) est bien définie et strictement positive car de fonction itératrice $f \colon x \mapsto \frac{1}{2+x}$ définie sur \mathbb{R}_+^* et à valeurs dans \mathbb{R}_+^* . Si la suite (u_n) converge, sa limite ℓ vérifie $\ell = \frac{1}{2+\ell}$ et $\ell \geq 0$ donc $\ell = -1 + \sqrt{2}$.

$$|u_{n+1} - \ell| = \left| \frac{1}{2 + u_n} - \frac{1}{2 + \ell} \right| = \frac{|u_n - \ell|}{(2 + u_n)(2 + \ell)} \le \frac{1}{4} |u_n - \ell|$$

Par récurrence, on montre $|u_n - \ell| = \frac{1}{4n} |u_0 - \ell|$ et on conclut $u_n \to \ell$.

Exercice 7: [énoncé]

- a) L'application $x \mapsto \sqrt{2-x}$ est définie de [-2;2] vers $[0;2] \subset [-2;2]$.
- b) Supposons $u_n \to \ell$. Puisque $\forall n \ge 1, u_n \in [0; 2]$, à la limite $\ell \in [0; 2]$. La relation $u_{n+1} = \sqrt{2 - u_n}$ donne à la limite $\ell = \sqrt{2 - \ell}$ donc $\ell^2 + \ell - 2 = 0$ d'où $\ell = 1$ ou $\ell = -2$. Or $\ell > 0$ donc $\ell = 1$.

c)

$$|u_{n+1} - 1| = \frac{|u_n - 1|}{1 + \sqrt{2 - u_n}} \le |u_n - 1|$$

donc $(|u_n - 1|)$ est décroissante et par suite converge vers $\alpha \ge 0$. Si $\alpha > 0$ alors

$$1 + \sqrt{2 - u_n} = \frac{|u_n - 1|}{|u_{n+1} - 1|} \to 1$$

 $\operatorname{donc}\sqrt{2-u_n} \to 0$ puis $u_n \to 2$. C'est impossible. Nécessairement $|u_n-1| \to 0$ et donc $u_n \to 1$.

Exercice 8 : [énoncé]

Par récurrence montrons u_n existe et $|u_n| < 1$.

Pour n = 0: ok

Supposons la propriété établie au rang $n \ge 0$.

Par HR, u_n existe et $|u_n| < 1$ donc $2 - u_n \neq 0$ d'où $u_{n+1} = \frac{u_n}{2 - u_n}$ existe et

$$|u_{n+1}| \le \frac{|u_n|}{|2 - u_n|} \le \frac{|u_n|}{2 - |u_n|} < 1$$

Récurrence établie.

$$|u_{n+1}| \le \frac{|u_n|}{2 - |u_n|} \le |u_n|$$

donc $(|u_n|)$ est décroissante d'où $|u_n| \le |a|$ puis

$$|u_{n+1}| \le \frac{|u_n|}{2 - |a|}$$

puis

$$|u_n| \le \left(\frac{1}{2 - |a|}\right)^n |a| \to 0$$

Par suite $u_n \to 0$.

Exercice 9 : [énoncé]

La suite (u_n) est bien définie et à valeurs dans \sqrt{a} ; $+\infty$ [à partir du rang 1 car de fonction itératrice

$$f \colon x \mapsto \frac{1}{2} \left(x + \frac{a}{x} \right)$$

définie sur \mathbb{R}_+^* et à valeurs dans \sqrt{a} ; $+\infty$ [.

Si (u_n) converge vers un réel ℓ alors $\ell = \frac{1}{2} \left(\ell + \frac{a}{\ell} \right)$ et $\ell \geq 0$ donc $\ell = \sqrt{a}$.

$$|u_{n+1} - \sqrt{a}| = \frac{1}{2} \left| u_n + \frac{a}{u_n} - \sqrt{a} \right| = \frac{(u_n - \sqrt{a})^2}{2 |u_n|} = \frac{|u_n - \sqrt{a}|}{2} \frac{|u_n - \sqrt{a}|}{u_n}$$

Pour $n \geq 1$,

$$\frac{|u_n - \sqrt{a}|}{u_n} = \frac{u_n - \sqrt{a}}{u_n} \le 1$$

donc

$$\left| u_{n+1} - \sqrt{a} \right| \le \frac{1}{2} \left| u_n - \sqrt{a} \right|$$

Par récurrence :

$$\left|u_n - \sqrt{a}\right| \le \frac{1}{2^{n-1}} \left|u_1 - \sqrt{a}\right|$$

donc $u_n \to \sqrt{a}$.

b)

$$v_{n+1} = \frac{u_{n+1} - \sqrt{a}}{u_{n+1} + \sqrt{a}} = \frac{u_n^2 - 2\sqrt{a}u_n + a}{u_n^2 + 2\sqrt{a}u_n + a} = \left(\frac{u_n - \sqrt{a}}{u_n + \sqrt{a}}\right)^2 = v_n^2$$

donc $v_n = v_0^{2^n}$.

c)

$$|u_n - \sqrt{a}| \le v_n |u_n + \sqrt{a}| \le 2u_0 v_n = 2u_0 v_0^{2^n}$$

Exercice 10 : [énoncé]

- a) $f: x \mapsto \ln x + x$ réalise une bijection strictement croissante de \mathbb{R}_+^* vers \mathbb{R} . L'équation proposée possède une unique solution $\alpha = f^{-1}(0)$.
- b) L'algorithme de Newton, propose de définir la suite (u_n) par la relation :

$$u_{n+1} = u_n - \frac{f(u_n)}{f'(u_n)} = u_n - \frac{\ln u_n + u_n}{1/u_n + 1} = \frac{u_n(1 - \ln u_n)}{u_n + 1}$$

La fonction f est de classe C^2 , $f'(x) = \frac{1}{x} + 1$ et $f''(x) = -\frac{1}{x^2}$ ne s'annulent pas.

Pour $u_0 > 0$ tel que $f(u_0)f''(u_0) \ge 0$, la suite converge vers α .

Exercice 11 : [énoncé]

Par récurrence, on montre que u_n existe et $u_n > 0$. La relation de récurrence donne alors

$$\frac{u_{n+2}}{u_{n+1}} = \frac{u_{n+1}}{u_n}$$

La suite (u_{n+1}/u_n) est constante égale à $u_1/u_0 = b/a$. La suite (u_n) est donc géométrique de raison b/a et finalement

$$u_n = a \left(\frac{b}{a}\right)^n$$

La suite (u_n) converge si, et seulement si, $b \leq a$.

Exercice 12: [énoncé]

a) Pour $n \ge 1$:

$$u_{n+1} - u_n = \sqrt{\sum_{k=0}^n u_k} - \sqrt{\sum_{k=0}^{n-1} u_k} = \frac{u_n}{\sqrt{\sum_{k=0}^n u_k} + \sqrt{\sum_{k=0}^{n-1} u_k}} \ge 0$$

donc $(u_n)_{n>1}$ est croissante.

Supposons $u_n \to \ell \in \mathbb{R}$. On a $\ell \ge u_1 = \sqrt{a} > 0$

En passant la relation précédente à la limite : $0 = \frac{\ell}{\ell + \ell} = \frac{1}{2}$. C'est absurde. Par suite $u_n \to +\infty$.

b)

$$u_{n+1} - u_n = \frac{u_n}{u_{n+1} + u_n}$$

donc

$$\frac{u_{n+1}}{u_n} - 1 = \frac{1}{u_{n+1} + u_n} \to 0$$

Par suite $u_{n+1} \sim u_n$ et

$$u_{n+1} - u_n = \frac{1}{u_{n+1}/u_n + 1} \to \frac{1}{2}$$

Exercice 13: [énoncé]

Posons (u_n) la suite déterminée par $u_0 = 1$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = \sqrt{1 + u_n}$. La suite (u_n) est bien définie et à valeurs positive.

Si celle-ci converge, c'est vers $\ell \geq 0$ vérifiant $\ell = \sqrt{1+\ell}$ i.e.

$$\ell = \frac{1 + \sqrt{5}}{2}$$

(c'est le nombre d'Or). On a

$$|u_{n+1} - \ell| = \sqrt{1 + u_n} - \sqrt{1 + \ell} = \frac{|u_n - \ell|}{\sqrt{1 + u_n} + \sqrt{1 + \ell}} \le \frac{|u_n - \ell|}{2}$$

Par récurrence, on obtient

$$|u_n - \ell| \le \frac{1}{2^n} |u_0 - \ell|$$

et donc $u_n \to \ell$.

Ainsi

$$\sqrt{1+\sqrt{1+\sqrt{1+\cdots}}}=\ell$$

Posons (v_n) la suite déterminée par $v_0 = 1$ et pour tout $n \in \mathbb{N}$, $v_{n+1} = 1 + \frac{1}{v_n}$. La suite (v_n) est bien définie et à valeurs supérieures à 1.

Si celle-ci converge, c'est vers $\ell' \geq 1$ vérifiant $\ell' = 1 + \frac{1}{\ell'}$. On retrouve $\ell' = \ell$. On a

$$|v_{n+1} - \ell| = \left| \frac{1}{v_n} - \frac{1}{\ell} \right| \le \frac{|v_n - \ell|}{|v_n| \ell} \le \frac{|v_n - \ell|}{\ell}$$

Par récurrence, on obtient

$$|v_n - \ell| \le \frac{1}{\ell^n} |v_0 - \ell|$$

et donc $v_n \to \ell$ car $\ell > 1$.

Ainsi

$$1 + \frac{1}{1 + \frac{1}{\dots}} = \ell$$

Exercice 14 : [énoncé]

On vérifie sans difficultés que la suite (v_n) est définie et que ses termes sont positifs.

De plus, on vérifie par récurrence que

$$\forall n \in \mathbb{N}, v_n \leq 1$$

car

$$(1 - u_{n+1})(1 - v_n) \ge 0 \implies \frac{v_n + u_{n+1}}{1 + u_{n+1}v_n} \le 1$$

On a alors

$$v_{n+1} - v_n = \frac{u_{n+1}(1 - v_n^2)}{1 + u_{n+1}v_n} \ge 0$$

et la suite (v_n) est donc croissante et majorée. Par conséquent celle-ci converge vers une certaine limite $\ell \in \mathbb{R}$.

Dans le cas où la suite (u_n) est constante égale à 1, on observe que $\ell=1$. Peut-être est-ce encore vrai dans le cas général? Pour le voir, étudions la suite $(1-v_n)$. On a

$$0 \le 1 - v_{n+1} = \frac{(1 - u_{n+1})(1 - v_n)}{1 + u_{n+1}v_n} \le \frac{1}{2}(1 - v_n)$$

donc par récurrence

$$0 \le 1 - v_n \le \frac{1}{2^n} (1 - v_0)$$

et on en déduit

$$v_n \to 1$$

Exercice 15: [énoncé]

Si (u_n) converge sa limite ℓ vérifie $\ell = 1 + \ell^2/4$ d'où $\ell = 2$.

$$u_{n+1} - u_n = \frac{1}{4}(u_n - 2)^2 \ge 0$$

 (u_n) est croissante.

Si $u_0 > 2$ alors (u_n) diverge vers $+\infty$.

Si $u_0 \in [0; 2]$ alors on vérifie aisément que (u_n) est majorée par 2 et on conclut $u_n \to 2$.

Exercice 16: [énoncé]

 $u_{n+1} \ge u_n$ donc (u_n) est croissante. Par récurrence montrons $u_n \le a+1$. La relation est vraie pour n=1 et l'hérédité s'obtient par $u_{n+1} = \sqrt{a+u_n} \le \sqrt{2a+1} \le a+1$.

Exercice 17 : [énoncé]

- a) Il suffit de dresser le tableau de variation de f. On note $\alpha < \beta < \gamma$ ces trois racines

c) $u_n \le u_{n+1} \implies f(u_n) \le f(u_{n+1})$ donc $u_0 \le f(u_0) \implies (u_n)$ croissante. De même $u_n \ge u_{n+1} \implies f(u_n) \ge f(u_{n+1})$ donc $u_0 \ge f(u_0) \implies (u_n)$ décroissante.

Les seules limites finies possibles pour (u_n) sont α, β, γ .

Enfin si $u_0 \le \alpha$ (resp. β , γ) alors pour tout n, $u_n \le \alpha$ (resp. β , γ) et de même pour \ge .

Au final on peut conclure:

 $u_0 \in]-\infty; \alpha[$ donne (u_n) décroissant vers $-\infty$.

 $u_0 = \alpha$ donne (u_n) constante égale à α .

 $u_0 \in]\alpha; \gamma[$ donne (u_n) convergeant vers β .

 $u_0 = \gamma$ donne (u_n) constante égale à γ .

 $u_0 \in \gamma; +\infty$ donne (u_n) croissant vers $+\infty$.

Exercice 18 : [énoncé]

f'(x) est du signe de $3(x^2 - a)^2$ donc f est croissante et par suite (u_n) est monotone.

Les racines de l'équation f(x) = x sont $0,\sqrt{a}$ et \sqrt{a} . Ce sont les seules limites possibles pour (u_n) .

f(x) - x est du signe de $ax - x^3 = -x(x - \sqrt{a})(x + \sqrt{a})$.

Si $u_0 \in]0; \sqrt{a}]$ la suite est croissante est majorée par \sqrt{a} donc converge vers \sqrt{a} Si $u_0 \in [\sqrt{a}; +\infty[$ la suite est décroissante et minorée par \sqrt{a} donc converge vers \sqrt{a} .

Exercice 19: [énoncé]

 $u_{n+1} - u_n = -u_n^2 \le 0$ donc (u_n) est décroissante. Aisément, on montre que $u_n \in]0; 1[$ pour tout $n \in \mathbb{N}$ et donc on peut conclure que (u_n) converge. Sa limite ℓ vérifie

$$\ell = \ell - \ell^2$$

d'où $\ell=0$.

$$\sum_{k=0}^{n} u_k^2 = \sum_{k=0}^{n} u_k - u_{k+1} = u_0 - u_{n+1} \to u_0$$

 $_{
m et}$

$$\prod_{k=0}^{n} (1 - u_k) = \prod_{k=0}^{n} \frac{u_{k+1}}{u_k} = \frac{u_{n+1}}{u_0} \to 0$$

Exercice 20 : [énoncé]

- a) Soit $g \colon [a\,;b] \to \mathbb{R}$ définie par g(x) = f(x) x. g est continue, $g(a) \ge 0$ et $g(b) \le 0$ donc g s'annule en un point α qui est alors point fixe de f. Si α et β sont deux points fixes distincts alors par application du théorème des accroissements finis, il existe $c \in [a\,;b]$ tel que f'(c) = 1 ce qui est incompatible avec les hypothèses.
- b) La fonction $x \mapsto |f'(x)|$ est continue sur le segment [a;b], elle y admet donc un maximum en un point $c \in [a;b]$ et en posant k = |f'(c)| on a

$$\forall x \in [a; b], |f'(x)| \le k \text{ avec } k \in [0; 1]$$

Par l'inégalité des accroissements finis, f est k lipschitzienne et alors par récurrence :

$$\forall n \in \mathbb{N}, |u_n - \alpha| \le k^n |u - \alpha| \to 0$$

d'où le résultat.

Exercice 21 : [énoncé]

$$u_{n+1} - u_n = \frac{(f(u_n) - f(u_{n-1})) + (u_n - u_{n-1})}{2}$$

Puisque f est 1 lipschitzienne on a

$$|f(u_n) - f(u_{n-1})| \le |u_n - u_{n-1}|$$

donc $u_{n+1} - u_n$ est du signe de $u_n - u_{n-1}$, (en fait la fonction itératrice est croissante).

Par suite (u_n) est monotone et étant bornée elle converge vers un $\ell \in [a;b]$. La relation

$$u_{n+1} = \frac{u_n + f(u_n)}{2}$$

donne à la limite

$$\ell = \frac{\ell + f(\ell)}{2}$$

donc $f(\ell) = \ell$.

Exercice 22 : [énoncé]

a) On observe que $x \mapsto 4x - x^2$ est une application de [0;4] dans lui-même. Par suite $u_n \in [0;4]$ pour tout $n \in \mathbb{N}$. Si (u_n) converge alors, en posant ℓ sa limite, on a $\ell = 4\ell - \ell^2$ d'où $\ell = 0$ ou $\ell = 3$.

- b) Supposons que $u_n \to 0$. S'il existe un rang n tel que $u_n = 0$ alors la suite (u_n) est stationnaire égale à 0. Sinon on a $u_n > 0$ pour tout $n \in \mathbb{N}$ et donc $u_{n+1} u_n \sim 3u_n > 0$. Ainsi, à partir d'un certain rang, la suite est strictement croissante. De même si $u_n \to 3$ sans être stationnaire égale à 3, on observe que la suite $|u_n 3|$ est strictement croissante à partir d'un certain rang.
- c) On obtient aisément $u_n = 4 \sin^2 2^n \alpha$. La suite est stationnaire si, et seulement si, il existe $n \in \mathbb{N}$ tel que $u_n = 0$ ou 3 i.e. $\sin^2(2^n \alpha) = 0, \sqrt{3}/2, -\sqrt{3}/2$ soit encore $2^n \alpha = k\pi/3$ avec $k \in \mathbb{Z}$. Ainsi les u_0 pour lesquels la suite est stationnaire sont les $\sin(k\pi/3.2^n)$ avec $k \in \mathbb{Z}$ et $n \in \mathbb{N}$.

Exercice 23: [énoncé]

a) $z_1 = \frac{\rho e^{i\theta} + \rho}{2} = \rho \cos \frac{\theta}{2} e^{i\frac{\theta}{2}}$. Par ce principe:

$$z_n = \rho \cos \frac{\theta}{2} \cos \frac{\theta}{4} \cdots \cos \frac{\theta}{2^n} e^{i\frac{\theta}{2^n}}$$

b) $e^{i\frac{\theta}{2^n}} \to 1$ et

$$\cos\frac{\theta}{2}\cos\frac{\theta}{4}\cdots\cos\frac{\theta}{2^n} = \frac{\sin\theta}{2^n\sin\frac{\theta}{2^n}} \to \frac{\sin\theta}{\theta} \text{ (ou 1 si } \theta = 0)$$

Finalement $z_n \to \frac{\sin \theta}{\theta}$.

Exercice 24 : [énoncé]

On a $u_n \leq v_n$ et $u_{n+1} \leq v_n$, $v_{n+1} = \max(u_{n+2}, u_{n+1})$ avec $u_{n+2} \leq \frac{1}{2} (u_n + u_{n+1}) \leq v_n$ et $u_{n+1} \leq v_n$ donc (v_n) est décroissante. (v_n) est décroissante et minorée par 0 donc (v_n) converge. On a $u_{n+1} \leq v_n$.

$$v_{n+1} \le \max\left(\frac{1}{2}(u_{n+1} + u_n), u_{n+1}\right) = \max\left(\frac{1}{2}(u_{n+1} + u_n), \frac{1}{2}(u_{n+1} + u_{n+1})\right) = \frac{1}{2}u_{n+1} + \frac{1}{2}u_{n+1} +$$

donc $2v_{n+1} - v_n \le u_{n+1} \le v_n$ donc (u_n) converge vers la même limite que (u_n) .

Exercice 25 : [énoncé]

Les suites (u_n) et (v_n) sont bien définies et à termes positifs.

Sachant

$$\forall a, b \in \mathbb{R}_+, \sqrt{ab} \le \frac{a+b}{2}$$

on a

$$\forall n \geq 1, u_n \leq v_n$$

puis

$$u_{n+1} \ge u_n$$
 et $v_{n+1} \le v_n$

Les suites $(u_n)_{n\geq 1}$ et $(v_n)_{n\geq 1}$ sont respectivement croissante et décroissante et on a

$$\forall n \geq 1, u_0 \leq u_n \leq v_n \leq v_0$$

Par convergence monotone, (u_n) et (v_n) convergent vers des limites ℓ et ℓ' . En passant la relation

$$v_{n+1} = \frac{u_n + v_n}{2}$$

à la limite on obtient $\ell = \ell'$.

Exercice 26: [énoncé]

- a) Exploiter $1 + \cos x = 2\cos^2\frac{x}{2}$ et raisonner par récurrence.
- b)

$$\sin\frac{\alpha}{2^n}v_n = \frac{1}{2^n}\sin\alpha$$

via $\sin a \cos a = \frac{1}{2} \sin 2a$. Par suite

$$v_n \sim \frac{\sin \alpha}{2^n \sin(\alpha/2^n)} \to \frac{\sin \alpha}{\alpha}$$

et aussi

$$u_n \to \frac{\sin \alpha}{\alpha}$$

Exercice 27: [énoncé]

Notons que la suite (y_n) est croissante, elle est donc convergente si, et seulement si, elle est majorée.

a) Ici $y_{n+1} = \sqrt{a + y_n}$. Soit ℓ la racine positive de l'équation $\ell^2 - \ell - a = 0$ i.e.

$$\ell = \frac{1 + \sqrt{1 + 4a}}{2}$$

On remarque que $y_1 = \sqrt{a} \le \ell$ et on montre par récurrence $y_n \le \ell$. La suite (y_n) est croissante et majorée donc convergente.

- b) On observe que la nouvelle suite (y_n) est désormais égale à b fois la précédente, elle est donc convergente.
- c) Si (y_n) converge vers ℓ alors $x_n^{2^{-n}} \leq y_n \leq \ell$ donc $(x_n^{2^{-n}})$ est bornée. Si $(x_n^{2^{-n}})$ est bornée par une certain M alors $x_n \leq M^{2^n}$, la suite (y_n) définie par (x_n) est alors inférieure à celle obtenue par (M^{2^n}) , cette dernière étant convergente, la suite (y_n) converge.

Exercice 28 : [énoncé]

Posons

$$M = \sup_{n \in \mathbb{N}} a_n$$

On vérifie aisément que la suite (u_n) est bien définie et que pour tout $n \geq 2$

$$\frac{1}{M+2} \le u_n \le 1$$

Supposons la convergence de la suite (u_n) . Sa limite est strictement positive. En résolvant l'équation définissant u_{n+1} en fonction de u_n , on obtient

$$a_n = \frac{1}{u_{n+1}} - u_n - 1$$

On en déduit que la suite (a_n) converge.

Inversement, supposons que la suite (a_n) converge vers une limite ℓ , $\ell \geq 0$. Considérons la suite (v_n) définie par

$$v_0 = 1$$
 et $v_{n+1} = \frac{1}{v_n + \ell + 1}$ pour tout $n \in \mathbb{N}$

On vérifie que la suite (v_n) est bien définie et à termes strictement positifs. L'équation

$$x = \frac{1}{x + \ell + 1}$$

possède une racine L>0 et on a

$$|v_{n+1} - L| \le \frac{|v_n - L|}{1 + L}$$

ce qui permet d'établir que la suite (v_n) converge vers L. Considérons ensuite la suite (α_n) définie par

$$\alpha_n = u_n - v_n$$

On a

$$\alpha_{n+1} = \frac{\alpha_n + (\ell - a_n)}{(u_n + a_n + 1)(v_n + \ell + 1)}$$

et donc

$$|\alpha_{n+1}| \le k \left(|\alpha_n| + |a_n - \ell| \right)$$

avec

$$k = \frac{1}{m+1} \in [0;1[$$

où m > 0 est un minorant de la suite convergente (v_n) . Par récurrence, on obtient

$$|\alpha_n| \le k^n |\alpha_0| + \sum_{p=0}^{n-1} k^{n-p} |a_p - \ell|$$

Soit $\varepsilon > 0$.

Puisque la suite (a_n) converge vers ℓ , il existe p_0 tel que

$$\forall p \ge p_0, |a_p - \ell| \le \varepsilon$$

et alors

$$\sum_{p=p_0}^{n-1} k^{n-p} |a_p - \ell| \le \varepsilon \sum_{k=1}^{+\infty} k^p = \frac{k\varepsilon}{1-k}$$

Pour n assez grand

$$\sum_{p=0}^{p_0-1} k^{n-p} |a_p - \ell| = C^{te} k^n \le \varepsilon \text{ et } k^n |\alpha_0| \le \varepsilon$$

et on en déduit

$$|\alpha_n| \le 2\varepsilon + \frac{k\varepsilon}{1-k}$$

Ainsi $\alpha_n \to 0$ et par conséquent

$$u_n \to L$$

Exercice 29 : [énoncé]

La fonction itératrice de cette suite récurrente est

$$g \colon x \mapsto \frac{1}{2} \left(f(x) + x \right)$$

On vérifie aisément que cette fonction est définie sur [a;b] et à valeurs dans [a;b]. On en déduit que la suite (x_n) est bien définie et que c'est une suite d'éléments de [a;b]. On a

$$x_{n+1} - x_n = \frac{(f(x_n) - f(x_{n-1})) + (x_n - x_{n-1})}{2}$$

Puisque f est 1-lipschitzienne, on a

$$|f(x_n) - f(x_{n-1})| \le |x_n - x_{n-1}|$$

et donc $x_{n+1} - x_n$ est du signe de $x_n - x_{n-1}$. Par conséquent, la suite (x_n) est monotone et sa monotonie découle du signe de $x_1 - x_0$. La suite (x_n) étant de plus bornée, elle converge vers une certaine limite ℓ avec $\ell \in [a;b]$. La relation

$$x_{n+1} = \frac{x_n + f(x_n)}{2}$$

donne à la limite sachant f continue

$$\ell = \frac{\ell + f(\ell)}{2}$$

donc $f(\ell) = \ell$.