Nonlinear Programming Assignment 002

NGUYEN QUAN BA HONG

Students at Faculty of Math and Computer Science, Ho Chi Minh University of Science, Vietnam

email. nguyenquanbahong@gmail.com
blog. www.nguyenquanbahong.com *

June 21, 2018

Abstract

This assignment aims at solving some selected problems for the final exam of the course $Theory\ of\ Nonlinear\ Programming.$

^{*}Copyright \odot 2016-2018 by Nguyen Quan Ba Hong, Student at Ho Chi Minh University of Science, Vietnam. This document may be copied freely for the purposes of education and non-commercial research. Visit my site www.nguyenquanbahong.com to get more.

Contents

1	Directional, Gâteaux & Fréchet Differentiable Functions	3
2	Tangent Cones & Asymptotic Contingent Cones	5
3	Theory of Optimality Conditions	20

1 Directional, Gâteaux & Fréchet Differentiable Functions

Problem 1. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a mapping defined by

$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^4} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$
 (1.1)

- 1. Is f directional differentiable at $x_0 = (0,0)$?
- 2. Is f Gâteaux differentiable at $x_0 = (0,0)$?

SOLUTION.

1. Let $d \in \mathbb{R}^2$ be a vector $d = (d_1, d_2)^T$, and $x_0 = (0, 0)$. If d = (0, 0), we have $f'(x_0; d) = 0$ from the definition of directional derivative. If $d \neq (0, 0)$, we compute

$$\lim_{t \to 0} \frac{f(x_0 + td) - f(x_0)}{t} = \lim_{t \to 0} \frac{f(td_1, td_2) - f(0, 0)}{t}$$
(1.2)

$$= \lim_{t \to 0} \frac{d_1 d_2^2}{d_1^2 + t^2 d_2^4}.$$
 (1.3)

We consider the following two cases depending on d_1 . If $d_1 = 0$ (hence $d_2 \neq 0$ due to the assumption $d \neq (0,0)$), then the term in the limit in (1.3) equals zero, so this limit also equals zero. If $d_1 \neq 0$, then

$$\lim_{t \to 0} \frac{d_1 d_2^2}{d_1^2 + t^2 d_2^4} = \frac{d_2^2}{d_1}.$$
(1.4)

Combining both cases, we deduces that f is directional differentiable at x_0 and its directional derivative is given by

$$f'(x_0; d) = \begin{cases} 0, & \text{if } d_1 = 0, \\ \frac{d_2^2}{d_1} & \text{if } d_1 \neq 0. \end{cases}$$
 (1.5)

where $d := (d_1, d_2) \in \mathbb{R}^2$.

2. The directional derivative $f'(x_0; d)$ given by (1.5) is not linear in term of the variable d. Hence, f is not Gâteaux differentiable at x_0 .

This completes our solution.

Problem 2. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a mapping defined by

$$f(x,y) = \begin{cases} \frac{x^3y}{x^4 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$
 (1.6)

- 1. Is f directional differentiable at $x_0 = (0,0)$?
- 2. Is f Gâteaux differentiable at $x_0 = (0,0)$?

- 3. Is f Fréchet differentiable at $x_0 = (0,0)$? SOLUTION.
 - 1. Let $d \in \mathbb{R}^2$ be a vector $d = (d_1, d_2)^T$, and $x_0 = (0, 0)$. If d = (0, 0), we have $f'(x_0; d) = 0$ by the definition of directional derivative. If $d \neq (0, 0)$, we compute

$$\lim_{t \to 0} \frac{f(x_0 + td) - f(x_0)}{t} = \lim_{t \to 0} \frac{f(td_1, td_2) - f(0, 0)}{t}$$
(1.7)

$$= \lim_{t \to 0} \frac{t d_1^3 d_2}{t^2 d_1^4 + d_2^2}.$$
 (1.8)

We consider the following two cases depending on d_2 . If $d_2 = 0$ (hence $d_1 \neq 0$ due to the assumption $d \neq (0,0)$), then the term in the limit in (1.8) equals zero, so this limit also equals zero. If $d_2 \neq 0$, then

$$\lim_{t \to 0} \left| \frac{t d_1^3 d_2}{t^2 d_1^4 + d_2^2} \right| \le \lim_{t \to 0} \left| \frac{t d_1^3}{d_2} \right| = 0, \tag{1.9}$$

i.e., the limit in (1.8) also equals zero in this case. Combining both cases, we deduce that f is directional differentiable at x_0 and its directional derivative is given by $f'(x_0; d) = 0$ for all $d \in \mathbb{R}^2$.

2. From the above result, we have

$$f'(x_0; d) = 0 = (0 \ 0) d, \ \forall d \in \mathbb{R}^2,$$
 (1.10)

which is linear in d. Hence, f is Gâteaux differentiable at $x_0 = (0,0)$.

3. We claim that f is not Fréchet differentiable at $x_0 = (0,0)$. To this end, we suppose for the contrary that f is Fréchet differentiable at $x_0 = (0,0)$, by definition of Fréchet differentiability, there exists a linear function l: $\mathbb{R}^2 \to \mathbb{R}$, $l(x) = \langle l, x \rangle = l_1 x_1 + l_2 x_2$ such that

$$\lim_{\|h\| \to 0} \frac{f(x_0 + h) - f(x_0) - \langle l, h \rangle}{\|h\|} = 0.$$
 (1.11)

Denote $h = (h_1, h_2)^T \in \mathbb{R}^2$, then (1.11) becomes

$$\lim_{\|h\| \to 0} \frac{1}{\|h\|} \left(\frac{h_1^3 h_2}{h_1^4 + h_2^2} - l_1 h_1 - l_2 h_2 \right) = 0. \tag{1.12}$$

In particular, if we take $h=(h_1,0)$ for which $h_1\neq 0$ and $h_1\to 0$, then (1.12) gives $\lim_{h_1\to 0}\frac{l_1h_1}{|h_1|}=0$, thus, $l_1=0$. Similarly, taking $h=(0,h_2)$ for which $h_2\neq 0$ and $h_2\to 0$ gives $l_2=0$. Substituting $l_1=l_2=0$ back to (1.12) gives

$$\lim_{\|h\| \to 0} \frac{h_1^3 h_2}{(h_1^4 + h_2^2) \sqrt{h_1^2 + h_2^2}} = 0.$$
 (1.13)

But (1.13) is not true since, for instance, taking $h_2 = h_1^2$ in (1.13), i.e., $h = (h_1, h_1^2)$, for which $h_1 \neq 0$ and $h_1 \rightarrow 0$, gives

$$\lim_{h_1 \to 0} \frac{1}{2\sqrt{1+h_1^2}} = 0,\tag{1.14}$$

which is absurd, since the limit in the left-hand side of (1.14) is $\frac{1}{2}$.

This contradiction ends our proof.

Problem 3. Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be a mapping defined by

$$f(x,y) = (x^3, y^2).$$
 (1.15)

Consider $x_0 = (0,0), y_0 = (1,1).$

Does there exist any $z \in [x_0, y_0] = \{tx_0 + (1-t)y_0 | t \in [0, 1]\}$ such that

$$||f(y_0) - f(x_0)|| = \nabla f(z) [y_0 - x_0].$$
 (1.16)

SOLUTION. We compute

$$\nabla f(x,y) = (3x^2, 2y), \quad \forall (x,y) \in \mathbb{R}^2, \tag{1.17}$$

$$[x_0, y_0] = \{tx_0 + (1 - t)y_0 | t \in [0, 1]\}$$
(1.18)

$$= \{(1-t, 1-t) \mid t \in [0, 1]\}$$
(1.19)

$$= \{(t,t) | t \in [0,1] \}, \tag{1.20}$$

$$||f(y_0) - f(x_0)|| = ||(1,1) - (0,0)|| = \sqrt{2},$$
 (1.21)

Hence, putting z=(t,t) for $t\in[0,1],$ (1.16) is equivalent to the following quadratic equation

$$3t^2 + 2t = \sqrt{2},\tag{1.22}$$

which has a root $t_0 = \frac{1}{3} \left(\sqrt{1 + 3\sqrt{2}} - 1 \right) \in [0, 1]$. Hence, $z_0 = (t_0, t_0)$ satisfies the requirement.

2 Tangent Cones & Asymptotic Contingent Cones

Definition 2.1 (Contingent set of first and second orders). Let X be a normed space, $M \subset X$ and $x_0 \in X$.

1. The contingent cone (or, tangent cone, Bouligand cone) of M at x_0 is determined by

$$T(M, x_0) = \{ u \in X | \exists t_n \to 0^+, \exists u_n \to u, x_0 + t_n u_n \in M, \ \forall n \in \mathbb{N} \}.$$
(2.1)

2. The second-order contingent set of M at x_0 in the direction u is determined by

$$T^{2}(M, x_{0}, u) = \left\{ \begin{array}{l} w \in X | \exists t_{n} \to 0^{+}, \exists w_{n} \to w, \\ x_{0} + t_{n}u + \frac{1}{2}t_{n}^{2}w_{n} \in M, \ \forall n \in \mathbb{N} \end{array} \right\}.$$
 (2.2)

3. The asymptotic contingent cone of second order of M at x_0 in the direction u is determined by

$$T''(M, x_0, u) = \left\{ \begin{array}{l} w \in X | \exists (t_n, r_n) \to (0^+, 0^+) : \frac{t_n}{r_n} \to 0, \\ \exists w_n \to w, x_0 + t_n u + \frac{1}{2} t_n r_n w_n \in M, \ \forall n \in \mathbb{N} \end{array} \right\}.$$
(2.3)

Problem 4. Let

$$M = \{(x_1, x_2) \in \mathbb{R}^2 | x_1 + x_2^2 \le 0\},$$
(2.4)

and $x_0 = (0,0)$.

- 1. Compute $T(M, x_0)$.
- 2. Consider u = (0,1), compute $T^{2}(M, x_{0}, u)$ and $T''(M, x_{0}, u)$.

SOLUTION.

1. Setting $X = \mathbb{R}^2$, we notice that $x_0 = (0,0) \in M$. We claim that

$$T(M, x_0) = \widehat{T}(M, x_0) := \{(x, y) \in \mathbb{R}^2 | x \le 0 \}.$$
 (2.5)

To prove (2.5), we prove the following inclusions.

(a) Prove $T(M, x_0) \subset \widehat{T}(M, x_0)$. Taking $u = (x, y) \in T(M, x_0)$, by (2.1), there exist a sequence of positive reals $\{t_n\}_{n=1}^{\infty}$ such that $t_n \to 0^+$ and a sequence $\{u_n\}_{n=1}^{\infty} \subset \mathbb{R}^2$ such that $u_n \to u$ as $n \to \infty$ and $x_0 + t_n u_n \in M$ for all $n \in \mathbb{N}$. Set $u_n := (x_n, y_n)$, the fact $u_n \to u$ implies that $x_n \to x$ and $y_n \to y$, and the fact $x_0 + t_n u_n \in M$ for all $n \in \mathbb{N}$ gives

$$t_n x_n + t_n^2 y_n^2 \le 0, \quad \forall n \in \mathbb{N}. \tag{2.6}$$

Since $t_n > 0$ for all $n \in \mathbb{N}$, (2.6) then implies

$$x_n + t_n y_n^2 \le 0, \ \forall n \in \mathbb{N}. \tag{2.7}$$

We see at a glance from (2.7) that $x_n \leq 0$ for all $n \in \mathbb{N}$. Hence $x \leq 0$ (since $x_n \to x$ as $n \to \infty$). Now let $n \to \infty$ in (2.7) and use the given limits $x_n \to x, y_n \to y$ and $t_n \to 0^+$, we obtain $x \leq 0$ as just mentioned. Hence, $u \in \widehat{T}(M, x_0)$ and our first inclusion is proved.

(b) Prove $\widehat{T}(M,x_0) \subset T(M,x_0)$. Taking $u=(x,y) \in \mathbb{R}^2$ satisfying $x \leq 0$, we claim that $u \in T(M,x_0)$. To this end, we now choose $x_n = x - \frac{1}{n} < 0, y_n = y$ for all $n \in \mathbb{N}$. This choice ensures that $u_n := (x_n,y_n) \to u := (x,y)$ as $n \to \infty$. It then suffices to prove that there exists a sequence of positive reals $\{t_n\}_{n=1}^{\infty}$ such that $t_n \to 0^+$ and $x_0 + t_n u_n \in M$ for all $n \in \mathbb{N}$. The latter gives, using (2.7) again,

$$x - \frac{1}{n} + t_n y^2 \le 0, \quad \forall n \in \mathbb{N}. \tag{2.8}$$

If y = 0, (2.8) holds obviously for all $t_n > 0$, thus, we can choose an arbitrary sequence t_n 's of positive reals satisfying $t_n \to 0^+$. If $y \neq 0$, (2.8) is equivalent to

$$t_n \le \frac{\frac{1}{n} - x}{y^2}, \ \forall n \in \mathbb{N}.$$
 (2.9)

The term in the right-hand side of (2.9) is positive for all $n \in \mathbb{N}$. Hence we can choose t_n 's satisfying (2.9) and $t_n \to 0^+$ as $n \to \infty$. This choice implies that $u \in T(M, x_0)$, i.e., the second inclusion is also proved.

Combining these, we conclude that (2.5) holds, i.e.,

$$T(M, x_0) = \{(x, y) \in \mathbb{R}^2 | x \le 0 \}. \tag{2.10}$$

2. Compute $T^2(M, x_0, u)$. First, we claim that

$$T^{2}(M, x_{0}, u) = \widehat{T}^{2}(M, x_{0}, u) := \{(x, y) \in \mathbb{R}^{2} | x \le -2 \}.$$
 (2.11)

To prove (2.11), we prove the following inclusions.

(a) Prove $T^2(M, x_0, u) \subset \widehat{T}^2(M, x_0, u)$. Taking $w = (x, y) \in T^2(M, x_0, u)$, by (2.2), there exist a sequence of positive reals $\{t_n\}_{n=1}^{\infty}$ such that $t_n \to 0^+$ and a sequence $\{w_n\}_{n=1}^{\infty} \subset \mathbb{R}^2$ such that $w_n \to w$ as $n \to \infty$ and $x_0 + t_n u + \frac{1}{2} t_n^2 w_n \in M$ for all $n \in \mathbb{N}$. Set $w_n := (x_n, y_n)$, the fact $w_n \to w$ implies that $x_n \to x$ and $y_n \to y$, and the fact $x_0 + t_n u + \frac{1}{2} t_n^2 w_n \in M$ for all $n \in \mathbb{N}$ gives

$$\frac{1}{2}t_n^2x_n + \left(t_n + \frac{1}{2}t_n^2y_n\right)^2 \le 0, \ \forall n \in \mathbb{N}.$$
 (2.12)

Since $t_n > 0$ for all $n \in \mathbb{N}$, (2.12) implies that

$$\frac{x_n}{2} + 1 + t_n y_n + \frac{1}{4} t_n^2 y_n^2 \le 0, \ \forall n \in \mathbb{N}.$$
 (2.13)

Now let $n \to \infty$ in (2.13) and use the given limits $x_n \to x, y_n \to y$ and $t_n \to 0^+$, we obtain $x \le -2$. Hence, $w \in \widehat{T}(M, x_0, u)$ and our first inclusion is proved.

(b) Prove $\widehat{T}^{2}(M, x_{0}, u) \subset T^{2}(M, x_{0}, u)$.

PROOF 1. Taking w=(x,y) satisfying $x\leq -2$, we claim that $w\in T^2(M,x_0,u)$. To this end, we now choose $x_n:=x-\frac{1}{n}\leq -2-\frac{1}{n}$ and $y_n:=y$ for all $n\in\mathbb{N}$. This choice ensures that $w_n:=(x_n,y_n)\to w:=(x,y)$ as $n\to\infty$. It then suffices to prove that there exists a sequence of positive reals $\{t_n\}_{n=1}^\infty$ such that $t_n\to 0^+$ and $x_0+t_nu+\frac{1}{2}t_n^2w_n\in M$ for all $n\in\mathbb{N}$. The latter is equivalent to, using (2.13) again,

$$t_n^2 y^2 + 4t_n y + 2\left(x - \frac{1}{n}\right) + 4 \le 0, \ \forall n \in \mathbb{N}.$$
 (2.14)

We consider the following cases depending on y. If y=0, then (2.14) obviously holds for all sequence t_n 's since $x \leq -2$. If $y \neq 0$, consider the left-hand side of (2.14) as a quadratic equation in t_n , its discriminant is given by

$$\Delta' = 4y^2 - y^2 \left[2\left(x - \frac{1}{n}\right) + 4 \right]$$
 (2.15)

$$= 2\left(\frac{1}{n} - x\right)y^2 \ge 0. {(2.16)}$$

Thus, its two roots are given by

$$t_{n,1} = \frac{-2y - |y|\sqrt{2\left(\frac{1}{n} - x\right)}}{y^2},\tag{2.17}$$

$$t_{n,2} = \frac{-2y + |y|\sqrt{2\left(\frac{1}{n} - x\right)}}{y^2}.$$
 (2.18)

Since $x \leq -2$, it is easy to verify that $t_{n,1} < 0 < t_{n,2}$. If we choose a sequence t_n 's such that $t_n \to 0^+$ and $0 < t_n \leq t_{n,2}$ then $x_0 + t_n u + \frac{1}{2} t_n^2 w_n \in M$ for all $n \in \mathbb{N}$. Hence, $w \in T^2(M, x_0, u)$ and the second inclusion is also proved.

PROOF 2. Use the same settings as Proof 1, we arrive at the inequality (2.14). We now define, for each $n \in \mathbb{N}$, the function

$$F_n(t) := y^2 t^2 + 4yt + 2\left(x - \frac{1}{n}\right) + 4, \ t > 0.$$
 (2.19)

It is obvious to check F(t) is continuous, and

$$F_n(0) = 2\left(x - \frac{1}{n}\right) + 4 = 2\left(x + 2\right) - \frac{2}{n} < 0.$$
 (2.20)

Thus, by continuity of F_n , we can choose $t_n > 0$ small enough such that (2.14) holds. And the chosen sequence t_n 's indicates that $w \in T^2(M, x_0, u)$, i.e., the second inclusion is proved.

Combining these inclusions, we conclude that (2.11) holds, i.e.,

$$T^{2}(M, x_{0}, u) = \{(x, y) \in \mathbb{R}^{2} | x \le -2 \}. \tag{2.21}$$

Compute $T''(M, x_0, u)$. We claim that

$$T''(M, x_0, u) = \widehat{T}''(M, x_0, u) := \{(x, y) \in \mathbb{R}^2 | x \le 0\}.$$
 (2.22)

To prove (2.22), we also prove the following two inclusions as before.

(a) Prove $T''(M, x_0, u) \subset \widehat{T}''(M, x_0, u)$. Taking $w = (x, y) \in T''(M, x_0, u)$, by (2.3), there exist two sequences of positive reals $\{t_n\}_{n=1}^{\infty}$ and $\{r_n\}_{n=1}^{\infty}$ such that $t_n \to 0^+, r_n \to 0^+$ and $\frac{t_n}{r_n} \to 0$ as $n \to \infty$ and a sequence $\{w_n\}_{n=1}^{\infty} \subset \mathbb{R}^2$ such that $w_n \to w$ and $x_0 + t_n u + \frac{1}{2} t_n r_n w_n \in M$ for all $n \in \mathbb{N}$. Set $w_n := (x_n, y_n)$, the fact that $w_n \to w$ implies that $x_n \to x$ and $y_n \to y$ as $n \to \infty$, and the fact $x_0 + t_n u + \frac{1}{2} t_n r_n w_n \in M$ for all $n \in \mathbb{N}$ gives

$$\frac{1}{2}t_n r_n x_n + \left(t_n + \frac{1}{2}t_n r_n y_n\right)^2 \le 0, \quad \forall n \in \mathbb{N}.$$
 (2.23)

Since $t_n, r_n > 0$ for all $n \in \mathbb{N}$, (2.23) implies that

$$\frac{x_n}{2} + \frac{t_n}{r_n} + t_n y_n + \frac{1}{4} t_n r_n y_n^2 \le 0, \quad \forall n \in \mathbb{N}.$$
 (2.24)

Now let $n \to \infty$ in (2.24) and use the given limits $x_n \to x, y_n \to y, t_n \to 0^+, r_n \to 0^+$ and $\frac{t_n}{r_n} \to 0^+$ as $n \to \infty$, we obtain $x \le 0$. Hence, $w \in \widehat{T}''(M, x_0, u)$ and our first inclusion is proved. (b) Prove $\widehat{T}''(M, x_0, u) \subset T''(M, x_0, u)$.

PROOF 1. Taking w=(x,y) satisfying $x\leq 0$, we claim that $w\in T''(M,x_0,u)$. To this end, we choose $x_n:=x-\frac{1}{n}<0, y_n=y$ and $t_n\leq \frac{1}{n^2}$ and $r_n=2nt_n$ for all $n\in \mathbb{N}$, where t_n will be constrained more strictly as follows. This choice ensures that $w_n:=(x_n,y_n)\to w:=(x,y), t_n\to 0^+, r_n\to 0^+$ and $\frac{t_n}{r_n}\to 0$ as $n\to\infty$. It then suffices to prove that there exists a sequence of positive reals $\{t_n\}_{n=1}^\infty$ such that $t_n\leq \frac{1}{n^2}$ (in order for $r_n\to 0^+$) and $x_0+t_nu+\frac{1}{2}t_nr_nw_n\in M$ for all $n\in \mathbb{N}$. The latter is equivalent to, using (2.24) again,

$$\frac{1}{2}\left(x - \frac{1}{n}\right) + \frac{1}{2n} + t_n y + \frac{n}{2}t_n^2 y^2 \le 0, \quad \forall n \in \mathbb{N},$$
 (2.25)

i.e.,

$$ny^2t_n^2 + 2yt_n + x \le 0, \quad \forall n \in \mathbb{N}. \tag{2.26}$$

We consider the following cases depending on y. If y=0, then (2.26) obviously holds for all sequences t_n 's since $x \leq 0$. Thus we can choose a sequence of positive reals t_n 's satisfying $t_n \leq \frac{1}{n^2}$ for all $n \in \mathbb{N}$ arbitrarily in this case. If $y \neq 0$, consider the left-hand side of (2.26) as a quadratic equation in t_n , its discriminant is given by

$$\Delta' = (1 - nx) y^2 \ge 0. (2.27)$$

Thus, its two roots are given by

$$t_{n,1} = \frac{-y - |y|\sqrt{1 - nx}}{ny^2},$$
 (2.28)

$$t_{n,2} = \frac{-y + |y|\sqrt{1 - nx}}{nv^2}. (2.29)$$

Since $x \leq 0$, it is easy to verify that $t_{n,1} < 0 < t_{n,2}$. If we choose a sequence t_n 's such that

$$0 < t_n \le \min\left\{\frac{1}{n^2}, t_{n,2}\right\}, \quad \forall n \in \mathbb{N}, \tag{2.30}$$

then $x_0+t_nu+\frac{1}{2}t_nr_nw_n\in M$ for all $n\in\mathbb{N}$. Hence, $w\in T''(M,x_0,u)$ and the second inclusion is also proved.

PROOF 2. We choose $x_n := x - \frac{1}{n}, y_n := y, t_n = r_n^2$ for all $n \in \mathbb{N}$, where r_n 's is a sequence of positive reals such that $r_n \to 0^+$ as $n \to \infty$. This choice ensures that $w_n := (x_n, y_n) \to w := (x, y), t_n \to 0^+, r_n \to 0^+$ and $\frac{t_n}{r_n} = r_n \to 0^+$ as $n \to \infty$. With these settings, (2.24) becomes

$$\frac{1}{2}\left(x - \frac{1}{n}\right) + r_n\left(1 + \frac{1}{2}r_n y\right)^2 \le 0, \quad \forall n \in \mathbb{N}.$$
 (2.31)

Define

$$F_n(r) = \frac{1}{2} \left(x - \frac{1}{n} \right) + r \left(1 + \frac{1}{2} r y \right)^2, \quad r > 0.$$
 (2.32)

It is obvious that $F_n(r)$ is continuous and $F(0) = \frac{1}{2} \left(x - \frac{1}{n}\right) < 0$ since $x \leq 0$. By continuity of F, we can choose $r_n > 0$ small enough such that (2.31) holds. And the chosen sequence r_n 's indicates that $w \in T''(M, x_0, u)$, i.e., the second inclusion is also proved.

Combining these inclusions, we conclude that (2.22) holds, i.e.,

$$T''(M, x_0, u) = \{(x, y) \in \mathbb{R}^2 | x \le 0 \}.$$
 (2.33)

This completes our solution.

Problem 5. Let

$$M = \{(x_1, x_2) \in \mathbb{R}^2 | x_1^3 - x_2^2 = 0\}, \qquad (2.34)$$

and $x_0 = (0,0)$.

- 1. Compute $T(M, x_0)$.
- 2. Consider u = (1,0), compute $T^{2}(M, x_{0}, u)$ and $T''(M, x_{0}, u)$.

SOLUTION. Setting $X = \mathbb{R}^2$, we notice that $x_0 = (0,0) \in M$.

1. We claim that

$$T(M, x_0) = \widehat{T}(M, x_0) := \{(x, 0) \in \mathbb{R}^2 | x \ge 0\}.$$
 (2.35)

To prove (2.35), we prove the following inclusions.

(a) Prove $T(M, x_0) \subset \widehat{T}(M, x_0)$. Taking $u = (x, y) \in T(M, x_0)$, by (2.1), there exist a sequence of positive reals $\{t_n\}_{n=1}^{\infty}$ such that $t_n \to 0^+$ and a sequence $\{u_n\}_{n=1}^{\infty} \subset \mathbb{R}^2$ such that $u_n \to u$ as $n \to \infty$ and $x_0 + t_n u_n \in M$ for all $n \in \mathbb{N}$. Set $u_n := (x_n, y_n)$, the fact that $u_n \to u$ implies that $x_n \to x$ and $y_n \to y$, and the fact $x_0 + t_n u_n \in M$ for all $n \in \mathbb{N}$ gives

$$t_n^3 x_n^3 - t_n^2 y_n^2 = 0, \ \forall n \in \mathbb{N}.$$
 (2.36)

Since $t_n > 0$ for all $n \in \mathbb{N}$, (2.36) then implies

$$t_n x_n^3 = y_n^2, \ \forall n \in \mathbb{N}. \tag{2.37}$$

We see at a glance from (2.37) that $x_n \geq 0$ for all $n \in \mathbb{N}$. Hence, $x \geq 0$ (since $x_n \to x$ as $n \to \infty$). Now let $n \to \infty$ in (2.37) and use the given limits $x_n \to x, y_n \to y$ and $t_n \to 0^+$, we obtain y = 0. Hence, $u \in \widehat{T}(M, x_0)$ and our first inclusion is proved.

(b) Prove $\widehat{T}(M, x_0) \subset T(M, x_0)$. Taking u = (x, 0) for which $x \geq 0$, we claim that $u \in T(M, x_0)$. To this end, we now choose $x_n := x + \frac{1}{n} > 0, y_n = \frac{1}{n^2}$ for all $n \in \mathbb{N}$. This choice ensures that $u_n := (x_n, y_n) \to u := (x, 0)$ as $n \to \infty$. It then suffices to prove that there exists a sequence of positive reals $\{t_n\}_{n=1}^{\infty}$ such that $t_n \to 0^+$ and $x_0 + t_n u_n \in M$ for all $n \in \mathbb{N}$. The latter gives, using (2.37) again,

$$t_n \left(x + \frac{1}{n} \right)^3 = \frac{1}{n^4}, \quad \forall n \in \mathbb{N}.$$
 (2.38)

i.e.,

$$t_n = \frac{1}{n^4 \left(x + \frac{1}{n}\right)^3}, \quad \forall n \in \mathbb{N}.$$
 (2.39)

It is easy to check that $t_n > 0$ (since $x \ge 0$) and $t_n \to 0^+$ as $n \to \infty$. Hence, $u \in T(M, x_0)$ and the second inclusion is also proved.

Combining these inclusions, we conclude that (2.35) holds, i.e.,

$$T(M, x_0) = \{(x, 0) \in \mathbb{R}^2 | x \ge 0\}. \tag{2.40}$$

2. Compute $T^2(M, x_0, u)$. First, we claim that

$$T^2(M, x_0, u) = \emptyset. \tag{2.41}$$

Indeed, suppose for the contrary that there exists $w=(x,y)\in T^2(M,x_0,u)$, by (2.2), there exist a sequence of positive reals $\{t_n\}_{n=1}^{\infty}$ such that $t_n\to 0^+$ and a sequence $\{w_n\}_{n=1}^{\infty}\subset\mathbb{R}^2$ such that $w_n\to w$ as $n\to\infty$ and $x_0+t_nu+\frac{1}{2}t_n^2w_n\in M$ for all $n\in\mathbb{N}$. Set $w_n:=(x_n,y_n)$, the fact $w_n\to w$ implies that $x_n\to x$ and $y_n\to y$, and the fact $x_0+t_nu+\frac{1}{2}t_n^2w_n\in M$ for all $n\in\mathbb{N}$ gives

$$\left(t_n + \frac{1}{2}t_n^2 x_n\right)^3 = \frac{1}{4}t_n^4 y_n^2, \forall n \in \mathbb{N}.$$
 (2.42)

Since $t_n > 0$ for all $n \in \mathbb{N}$, (2.42) implies

$$\left(1 + \frac{1}{2}t_n x_n\right)^3 = \frac{1}{4}t_n y_n^2, \ \forall n \in \mathbb{N}.$$
 (2.43)

Now let $n \to \infty$ in (2.43) and use the given limits $x_n \to x, y_n \to y$ and $t_n \to 0^+$, we obtain 1 = 0, which is absurd. This contradiction implies that (2.41) is true.

Compute $T''(M, x_0, u)$. We claim that $T''(M, x_0, u) = \mathbb{R}^2$. To prove this, taking $w = (x, y) \in \mathbb{R}^2$ arbitrarily, we claim that $w \in T''(M, x_0, u)$. The event $x_0 + t_n u + \frac{1}{2}t_n r_n w_n \in M$ for all $n \in \mathbb{N}$ is equivalent to the following equality

$$\left(1 + \frac{1}{2}r_n x_n\right)^3 = \frac{r_n^2 y_n^2}{4t_n}, \ \forall n \in \mathbb{N}.$$
 (2.44)

We now consider the following cases depending on y.

¹If x = 0, then $t_n = \frac{1}{n} \to 0$ as $n \to \infty$. If x < 0, then $t_n \to \frac{1}{n^3} \lim_{n \to \infty} \frac{1}{n^4} = 0$ as $n \to \infty$.

(a) Case $y \neq 0$. In this case, we choose $x_n := x$ and t_n, r_n for which

$$\frac{r_n^2}{t_n} = \frac{4}{y^2}, \quad \forall n \in \mathbb{N},\tag{2.45}$$

i.e., $t_n = \frac{r_n^2 y^2}{4}$ for all $n \in \mathbb{N}$. This choice ensures that $x_n \to x, t_n \to 0^+$ and $\frac{t_n}{r_n} = \frac{r_n y^2}{4} \to 0^+$ as $n \to \infty$ provided $r_n \to 0^+$. If now suffices to choose r_n 's and y_n 's in order that $r_n \to 0^+, y_n \to y$ as $n \to \infty$ and (2.44) holds. We consider the following cases depending on x.

- Case x=0. We choose $y_n:=y$ for all $n\in\mathbb{N}$ and an arbitrarily sequence of positive reals r_n 's such that $r_n\to 0^+$ as $n\to\infty$. With this setting, it is easy to verify that (2.44) holds (both sides of this equality equal 1) and other conditions for $T''(M,x_0,u)$ meet. Hence, $w\in T''(M,x_0,u)$ in this case.
- Case $x \neq 0$. In this case, (2.44) becomes

$$\left(1 + \frac{1}{2}r_n x\right)^3 = \frac{y_n^2}{y^2}, \quad \forall n \in \mathbb{N}. \tag{2.46}$$

i.e.,

$$r_n = \frac{2}{x} \left(\sqrt[3]{\frac{y_n^2}{y^2}} - 1 \right), \quad \forall n \in \mathbb{N}.$$
 (2.47)

If x > 0, we choose

$$y_n = y + \frac{\operatorname{sign}(y)}{n}, \ \forall n \in \mathbb{N},$$
 (2.48)

to ensure that $y_n \to y$ and

$$r_n = \frac{2}{x} \left(\sqrt[3]{\frac{\left(|y| + \frac{1}{n}\right)^2}{y^2}} - 1 \right) \to 0^+, \ \forall n \in \mathbb{N}.$$
 (2.49)

Similarly, if x < 0, the choice

$$y_n = y - \frac{\operatorname{sign}(y)}{n}, \forall n \in \mathbb{N},$$
 (2.50)

ensures that $y_n \to y$ and

$$r_n = \frac{2}{x} \left(\sqrt[3]{\frac{\left(|y| - \frac{1}{n}\right)^2}{y^2}} - 1 \right) \to 0^+, \ \forall n \in \mathbb{N}.$$
 (2.51)

We can write both (2.48) and (2.50) in a more compact form

$$y_n = y + \frac{\operatorname{sign}(xy)}{n}, \ \forall n \in \mathbb{N},$$
 (2.52)

to ensure that $y_n \to y$ and $r_n \to 0^+$ as $n \to \infty$. Hence, we also have $w \in T''(M, x_0, u)$ in this case.

(b) Case y = 0. In this case, we choose $x_n := x, y_n := \frac{1}{n}$ for all $n \in \mathbb{N}$, (2.44) then becomes

$$\left(1 + \frac{1}{2}r_n x\right)^3 = \frac{r_n^2}{4n^2 t_n}, \ \forall n \in \mathbb{N}.$$
 (2.53)

We now consider the following cases depending on x.

• Case x=0. Choose r_n 's as an arbitrary sequence of positive reals satisfying $r_n \to 0^+$ as $n \to \infty$, and then choose t_n as follows,

$$t_n = \frac{r_n^2}{4n^2}, \quad \forall n \in \mathbb{N}. \tag{2.54}$$

This choice ensures that (2.53) holds and $t_n \to 0^+$ and $\frac{t_n}{r_n} = \frac{r_n}{4n^2} \to 0^+$ as $n \to \infty$. Thus, $w \in T''(M, x_0, u)$ in this case.

• Case x > 0. We choose t_n such that

$$\frac{r_n^2}{4n^2t_n} = 1 + \frac{1}{n}, \ \forall n \in \mathbb{N},$$
 (2.55)

i.e.,

$$t_n = \frac{r_n^2}{4n(n+1)}, \quad \forall n \in \mathbb{N}. \tag{2.56}$$

Provided $r_n \to 0^+$ as $n \to \infty$, this choice of t_n 's ensures that $t_n \to 0^+$ and $\frac{t_n}{r_n} = \frac{r_n}{4n(n+1)} \to 0^+$ as $n \to \infty$. Substituting the chosen t_n 's into (2.53) yields

$$\left(1 + \frac{1}{2}r_n x\right)^3 = 1 + \frac{1}{n}, \ \forall n \in \mathbb{N},$$
 (2.57)

i.e.,

$$r_n = \frac{2}{x} \left(\sqrt[3]{1 + \frac{1}{n}} - 1 \right), \quad \forall n \in \mathbb{N}.$$
 (2.58)

It is easy to verify that $r_n \to 0^+$ as $n \to \infty$. Thus, $w \in T''(M, x_0, u)$ in this case.

• Case x < 0. This case can be handled similarly with some modifications. We choose t_n such that

$$\frac{r_n^2}{4n^2t_n} = 1 - \frac{1}{n}, \ \forall n \in \mathbb{N}.$$
 (2.59)

i.e.,

$$t_n = \frac{r_n^2}{4n(n-1)}, \ \forall n \in \mathbb{N} : n > 1.$$
 (2.60)

 $(t_1>0 \text{ is arbitrary})$ Provided $r_n\to 0^+$ as $n\to\infty$, this choice of t_n 's ensures that $t_n\to 0^+$ and $\frac{t_n}{r_n}=\frac{r_n}{4n(n-1)}\to 0^+$ as $n\to\infty$. Substituting the chosen t_n 's into (2.53) yields

$$\left(1 + \frac{1}{2}r_n x\right)^3 = 1 - \frac{1}{n}, \ \forall n \in \mathbb{N},$$
 (2.61)

i.e.,

$$r_n = \frac{2}{x} \left(\sqrt[3]{1 - \frac{1}{n}} - 1 \right), \quad \forall n \in \mathbb{N}.$$
 (2.62)

It is easy to verify that $r_n \to 0^+$ as $n \to \infty$. Thus, $w \in T''(M, x_0, u)$ in this case.

Remark 2.2. In both cases x > 0, x < 0, we can set in a more compact form as follows. Choose

$$t_n = \frac{r_n^2}{4n\left(n + \operatorname{sign}(x)\right)}, \ \forall n \in \mathbb{N},$$
 (2.63)

and then (2.53) gives

$$r_n = \frac{2}{x} \left(\sqrt[3]{1 + \frac{\operatorname{sign}(x)}{n}} - 1 \right), \ \forall n \in \mathbb{N}.$$
 (2.64)

The second inclusion is also proved.

Combining these inclusions, we conclude that $T''(M, x_0, u) = \mathbb{R}^2$. This completes our solution.

The following problem gives us some basic properties of contingent cone of first order.

Problem 6. Let X be a normed space, $M \subset X$ and $x_0 \in X$.

- 1. If $T(M, x_0) \neq \emptyset$ then $x_0 \in \overline{M}$ (where \overline{M} is the closure of the set M).
- 2. $T(M, x_0)$ is a closed cone.
- 3. $T(M, x_0) \subset \overline{cone(M x_0)}$. Moreover, if M is a convex set then
- 4. $T(M,x_0) = \overline{\operatorname{cone}(M-x_0)}$, and hence, $T(M,x_0)$ is a convex set.
- 5. $T(M, x_0) = \{v \in X | \forall t_n \to 0^+, \forall v_n \to v, x_0 + t_n v_n \in M \}$

SOLUTION.

1. Suppose that $T(M, x_0) \neq \emptyset$, we can take, for instance, $u \in T(M, x_0)$. Then there exist a sequence of positive reals $\{t_n\}_{n=1}^{\infty}$ such that $t_n \to 0^+$ and a sequence $\{u_n\}_{n=1}^{\infty} \subset X$ such that $u_n \to u$ and $x_0 + t_n u_n \in M$ for all $n \in \mathbb{N}$. Set $x_n := x_0 + t_n u_n \in M$. Since $u_n \to u$, there exists $N \in \mathbb{N}$ such that

$$n \ge N \Rightarrow ||u_n - u|| \le 1. \tag{2.65}$$

We now prove that $x_n \to x_0$ as $n \to \infty$. Indeed, for $n \ge N$,

$$||x_n - x_0|| = ||t_n u_n|| = t_n ||u_n|| \le t_n (||u|| + 1).$$
 (2.66)

Since $t_n \to 0^+$, (2.66) implies that $x_n \to x_0$ as $n \to \infty$, i.e., $x_0 \in \overline{M}$.

2. We first prove that $T(M, x_0)$ is a cone. Let $u \in T(M, x_0)$ arbitrarily, we need to prove that $tu \in T(M, x_0)$ for all t > 0. By (2.1), there exist a sequence of positive reals $\{t_n\}_{n=1}^{\infty}$ such that $t_n \to 0^+$ and a sequence $\{u_n\}_{n=1}^{\infty} \subset X$ such that $u_n \to u$ and $x_0 + t_n u_n \in M$ for all $n \in \mathbb{N}$. Fix t > 0 arbitrarily, if we set $v_n := tu_n$ and $s_n = \frac{t_n}{t}$ for all $n \in \mathbb{N}$, then $s_n \to 0^+$, $v_n \to tu$ and $x_0 + s_n v_n = x_0 + t_n u_n \in M$ for all $n \in \mathbb{N}$, i.e., $tu \in T(M, x_0)$. Since t > 0 and $u \in T(M, x_0)$ are chosen arbitrarily, this implies that $T(M, x_0)$ is a cone.

To prove that $T(M,x_0)$ is closed, let $\{u_n\}_{m=0}^{\infty} \subset T(M,x_0)$ such that $u_m \to u$ as $m \to \infty$. We need to prove that $u \in T(M,x_0)$. To this end, by definition (2.1), for each $m \in \mathbb{N}$, there exist a sequence $t_{m,n} \to 0^+$ as $n \to \infty$ and a sequence $\{u_{m,n}\}_{n=0}^{\infty} \subset X$ such that $u_{m,n} \to u_m$ as $n \to \infty$ and $x_0 + t_{m,n}u_{m,n} \in M$ for all $n \in \mathbb{N}$, in addition, $||u_{m,m} - u_m|| \le \frac{1}{m}$ for all $m \in \mathbb{N}^2$. We claim that

$$u_{m,m} \to u \text{ and } x_0 + t_{m,m} u_{m,m} \in M, \ \forall m \in \mathbb{N}.$$
 (2.69)

The latter is obvious since $x_0 + t_{m,n}u_{m,n} \in M$ for all $m, n \in \mathbb{N}$. We now prove the former in (2.69). With the help of triangle inequality for the norm of X,

$$||u_{m,m} - u|| \le ||u_{m,m} - u_m|| + ||u_m - u|| \tag{2.70}$$

$$\leq \frac{1}{m} + ||u_m - u|| \to 0 \text{ as } m \to \infty,$$
 (2.71)

i.e., $u \in T(M, x_0)$. Hence, $T(M, x_0)$ is a closed cone.

3. The convex conical hull of $M-x_0$ is given by (see, e.g., [1], Def. 4.19, p.94)

cone
$$(M - x_0) := \left\{ \sum_{i=1}^k \lambda_i x_i : x_i \in M - x_0, \lambda_i > 0, k \ge 1 \right\}.$$
 (2.72)

$$n \ge N \Rightarrow ||u_{m,n} - u_m|| \le \frac{1}{m}. \tag{2.67}$$

Hence, we can drop all the terms $u_{m,1},\ldots,u_{m,n-1}$ from the sequence. Re-indexing $\widehat{u}_{m,n}:=u_{m,N+n-1}$ for all $n\in\mathbb{N}$, we have, in particular,

$$\|\widehat{u}_{m,m} - u_m\| = \|\widehat{u}_{m,N+m-1} - u_m\| \le \frac{1}{m}.$$
 (2.68)

We now ignore the old sequence $\{u_{m,n}\}_{n=0}^{\infty}$ and use the new sequence, by abuse notation, $\{u_{m,n}\}_{n=0}^{\infty}$ which is exactly $\{\widehat{u}_{m,n}\}_{n=0}^{\infty}$ just defined.

This is possible, since for each $m \in \mathbb{N}$, there exists a sequence $\{u_{m,n}\}_{n=0}^{\infty} \subset X$ such that $u_{m,n} \to u_m$ as $n \to \infty$. By definition of limits, there exists $N \in \mathbb{N}$ such that

Take $u \in T(M, x_0)$ arbitrarily, we need to prove that $u \in \overline{\operatorname{cone}(M - x_0)}$. By (2.1) again, there exist a sequence of positive reals $\{t_n\}_{n=1}^{\infty}$ such that $t_n \to 0^+$ and a sequence $\{u_n\}_{n=1}^{\infty} \subset X$ such that $u_n \to u$ and $x_0 + t_n u_n \in M$ for all $n \in \mathbb{N}$. The fact that $x_0 + t_n u_n \in M$ for all $n \in \mathbb{N}$ gives us $t_n u_n \in M - x_0$ for all $n \in \mathbb{N}$. Choosing $k = 1, \lambda_1 = \frac{1}{t_n} > 0, x_1 = t_n u_n \in M - x_0$ in (2.72) gives $u_n \in \operatorname{cone}(M - x_0)$ for all $n \in \mathbb{N}$. Combining this with the fact that $u_n \to u$, we conclude that $u \in \overline{\operatorname{cone}(M - x_0)}$. Therefore,

$$T(M, x_0) \subset \overline{\operatorname{cone}(M - x_0)}.$$
 (2.73)

4. FIRST PROOF. We now assume (until the end of the proof of this problem) that M is a convex set and $x_0 \in M^3$. To prove $T(M, \underline{x_0}) = \overline{\text{cone}(M - x_0)}$, due to (2.73), it suffices to prove that $T(M, x_0) \supset \overline{\text{cone}(M - x_0)}$. First, we need the following lemma (see, e.g., [2], Lemma 2.4.11, p.41).

Lemma 2.3. Let M be a nonempty convex set and $x_0 \in M$. Then

$$M - x_0 \subset T(M, x_0). \tag{2.74}$$

Proof of Lemma 2.3. Let $u \in M$. We need to show that $u-x_0 \in T(M, x_0)$. To this end, choose $\{t_n\}_{n=1}^{\infty} \subset [0,1]$ such that $t_n \to 0^+$, and put $u_n := u - x_0$ (hence $u_n \to u - x_0$ obviously) and put

$$x_n := x_0 + t_n (u - x_0) (2.75)$$

$$= (1 - t_n) x_0 + t_n u \in M, \ \forall n \in \mathbb{N},$$
 (2.76)

as M is convex. By (2.1),
$$u - x_0 \in T(M, x_0)$$
.

Return to our proof, since we have proved that $T(M,x_0)$ is a closed cone, we only need to prove prove that $T(M,x_0) \supset \operatorname{cone}(M-x_0)$. Using the fact that the convex conical hull of an arbitrary nonempty set is the intersection of all closed convex cones that contain that sets, it suffices to prove that $T(M,x_0)$ is convex (and thus is a closed convex cone). Take $u,v\in T(M,x_0)$, we need to prove that $\lambda u+(1-\lambda)v\in T(M,x_0)$ for all $\lambda\in[0,1]$. But since $T(M,x_0)$ is a cone, we deduce that $\lambda u\in T(M,x_0)$ and $(1-\lambda)v\in T(M,x_0)$. Hence, it suffices to prove the following stronger statement⁴

$$u + v \in T(M, x_0), \forall u, v \in T(M, x_0).$$
 (2.77)

By (2.1), there exists sequences of positive reals $\{t_n\}_{n=1}^{\infty}$, $\{s_n\}_{n=1}^{\infty}$ such that $t_n \to 0^+$ and $s_n \to 0^+$ and sequences $\{u_n\}_{n=1}^{\infty}$, $\{v_n\}_{n=1}^{\infty}$ such that $u_n \to u, v_n \to v$ and

$$x_0 + t_n u_n \in M, \quad x_0 + s_n v_n \in M, \quad \forall n \in \mathbb{N}. \tag{2.78}$$

Since M is convex, it is deduced from (2.78) that

$$\alpha (x_0 + t_n u_n) + (1 - \alpha) (x_0 + s_n v_n) \in M, \ \forall \alpha \in [0, 1], n \in \mathbb{N}.$$
 (2.79)

 $^{^3{\}rm The}$ definition of tangent cone in [1] also requires this.

⁴A cone K is convex if and only if $K + K \subset K$. (see, e.g., [2], Proposition 2.4.2, p.38.)

In particular, choosing $\alpha = \frac{s_n}{t_n + s_n}$ in (2.79) gives

$$x_0 + \frac{t_n s_n}{t_n + s_n} (u_n + v_n) \in M, \quad \forall n \in \mathbb{N}.$$
 (2.80)

Hence, if we choose $w_n := u_n + v_n \to u + v$ and $r_n := \frac{t_n s_n}{t_n + s_n} \to 0^{+5}$. By (2.1), $u + v \in T(M, x_0)$. This completes our proof.

SECOND PROOF. We have the following result (see, e.g., [2], Proposition 2.4.8, p.40)

$$cone S = \mathbb{R}_{+} (conv S) = conv (\mathbb{R}_{+} S), \qquad (2.81)$$

for an arbitrary nonempty set S. Since M is convex, $M-x_0$ is also convex (as a Minkowski sum of convex sets), hence conv $(M-x_0)=M-x_0$ (see [1], Corollary 4.12, p.91) and

$$\overline{\operatorname{cone}(M-x_0)} = \overline{\mathbb{R}_+ \left(\operatorname{conv}(M-x_0)\right)} = \overline{\mathbb{R}_+ \left(M-x_0\right)}.$$
 (2.82)

It suffices to prove $\overline{\mathbb{R}_+(M-x_0)} \subset T(M,x_0)$. By Lemma 2.3, we have $M-x_0 \subset T(M,x_0)$. Since $T(M,x_0)$ is a closed cone, this yields $\overline{\mathbb{R}_+(M-x_0)} \subset T(M,x_0)$. A direct consequence of this fact is that $T(M,x_0)$ is a closed convex cone.

5. (Need correcting) Suppose the set in the right-hand side is nonempty, i.e., there exists $v \in X$ such that

$$\forall t_n \to 0^+, \forall v_n \to v, x_0 + t_n v_n \in M, \ \forall n \in \mathbb{N}.$$
 (2.83)

If we take t_1 and v_1 arbitrarily, then $x_0 + t_1v_1$ still belongs to M. Hence, M = X? Should (2.83) be corrected as " $\forall t_n \to 0^+, \forall v_n \to v, x_0 + t_nv_n \in M$ for n large enough"? This problem needs correcting.

We end our proof here.

The following problem gives us some basic properties of second-order contingent set.

Problem 7. Let X be a normed space, $M \subset X$ and $x_0, u \in X$.

- 1. If $u \notin T(M, x_0)$ then $T^2(M, x_0, u)$ and $T''(M, x_0, u)$ are empty sets.
- 2. $T^{2}(M, x_{0}, 0) = T''(M, x_{0}, 0) = T(M, x_{0}).$
- 3. $T''(M, x_0, u)$ is a cone while $T^2(M, x_0, u)$ is not a cone in general.
- 4. If X is finite dimensional and $u \in T(M, x_0)$ then

$$T^{2}(M, x_{0}, u) \cup T''(M, x_{0}, u) \neq \emptyset.$$
 (2.84)

SOLUTION.

⁵Indeed,
$$0 < r_n = t_n \underbrace{\frac{s_n}{t_n + s_n}}_{<1} < t_n \to 0^+ \text{ as } n \to \infty.$$

1. Suppose that $u \notin T(M, x_0)$, we claim that

$$T^{2}(M, x_{0}, u) = T''(M, x_{0}, u) = \emptyset.$$
(2.85)

To prove $T^2(M, x_0, u) = \emptyset$, we suppose for the contrary that there exists a $w \in T^2(M, x_0, u)$. By (2.2), there exist a sequence of positive reals $\{t_n\}_{n=1}^{\infty}$ such that $t_n \to 0^+$ as $n \to \infty$ and a sequence $\{w_n\}_{n=1}^{\infty} \subset X$ such that $w_n \to w$ as $n \to \infty$ and $x_0 + t_n u + \frac{1}{2}t_n^2 w_n \in M$ for all $n \in \mathbb{N}$. To obtain a contradiction, we now prove that $u \in T(M, x_0)$. Indeed, setting $u_n := u + \frac{1}{2}t_n w_n$ for all $n \in \mathbb{N}$, it is obvious to verify that $u_n \to u$ as $n \to \infty$ and $x_0 + t_n u_n \in M$ for all $n \in \mathbb{N}$, i.e., $u \in T(M, x_0)$. This contradiction implies that $T^2(M, x_0, u) = \emptyset$.

Similarly, to prove $T''(M,x_0,u)=\emptyset$, we suppose for the contrary that there exists a $w\in T''(M,x_0,u)$. By (2.3), there exist two sequences of positive reals $\{t_n\}_{n=1}^{\infty}$, $\{r_n\}_{n=1}^{\infty}$ such that $t_n\to 0^+, r_n\to 0^+$ and $\frac{t_n}{r_n}\to 0$ as $n\to\infty$ and a sequence $\{w_n\}_{n=1}^{\infty}\subset X$ such that $w_n\to w$ and $x_0+t_nu+\frac{1}{2}t_nr_nw_n\in M$ for all $n\in\mathbb{N}$. To obtain a contradiction, we now prove that $u\in T(M,x_0)$ as above. Indeed, setting $u_n:=u+\frac{1}{2}r_nw_n$ for all $n\in\mathbb{N}$, it is obvious to verify that $u_n\to u$ as $n\to\infty$ and $x_0+t_nu_n\in M$ for all $n\in\mathbb{N}$, i.e., $u\in T(M,x_0)$. This contradiction implies that $T''(M,x_0,u)=\emptyset$. Hence, (2.85) holds.

2. We claim that

$$T^{2}(M, x_{0}, 0) = T''(M, x_{0}, 0) = T(M, x_{0}).$$
 (2.86)

Prove $T^2(M, x_0, 0) = T''(M, x_0, 0)$. Taking $w \in T^2(M, x_0, 0)$, by (2.2), there exist a sequence of positive reals $\{t_n\}_{n=1}^{\infty}$ such that $t_n \to 0^+$ as $n \to \infty$ and a sequence $\{w_n\}_{n=1}^{\infty} \subset X$ such that $w_n \to w$ as $n \to \infty$ and

$$x_0 + \frac{1}{2}t_n^2 w_n \in M, \quad \forall n \in \mathbb{N}. \tag{2.87}$$

Setting $\hat{t}_n = t_n \sqrt{t_n}, r_n = \sqrt{t_n}$ for all $n \in \mathbb{N}$, this choice ensures that $\hat{t}_n \to 0^+, r_n \to 0^+, \frac{\hat{t}_n}{r_n} = t_n \to 0$ as $n \to \infty$. Moreover, (2.87) can be rewritten as

$$x_0 + \frac{1}{2}\widehat{t}_n r_n w_n \in M, \quad \forall n \in \mathbb{N}.$$
 (2.88)

i.e., $w \in T''(M, x_0, u)$. Notice that this argument is reversible (choose $t_n = \sqrt{t_n r_n}$ for all $n \in \mathbb{N}$ for the converse inclusion). Hence $T^2(M, x_0, 0) = T''(M, x_0, 0)$.

Prove $T^{2}(M, x_{0}, 0) = T(M, x_{0})$. Briefly, this equality is easily deduced from

$$x_0 + t_n w_n \in M \Leftrightarrow x_0 + \frac{1}{2} \hat{t}_n^2 w_n \in M, \tag{2.89}$$

which holds by choosing $t_n := \frac{1}{2} \hat{t}_n^2 \to 0^+$ for the inclusion $T^2(M, x_0, 0) \subset T(M, x_0)$ and $\hat{t}_n = \sqrt{2t_n}$ for the converse.

Prove $T''(M, x_0, 0) = T(M, x_0)$. (This part is unnecessary but I also provide it here for completeness) Similarly, this equality is easily deduced from

$$x_0 + t_n w_n \in M \Leftrightarrow x_0 + \frac{1}{2} \hat{t}_n r_n w_n \in M, \tag{2.90}$$

which holds by choosing $t_n := \frac{1}{2} \widehat{t}_n r_n$ for the inclusion $T''(M, x_0, 0) \subset T(M, x_0)$ and, for instance, $\widehat{t}_n = 2t_n^{\frac{2}{3}}, r_n = t_n^{\frac{1}{3}}$ for the converse.

3. To prove that $T''(M, x_0, u)$ is a cone, taking $w \in T''(M, x_0, u)$, we will prove that $tw \in T''(M, x_0, u)$ for all t > 0. Fix t > 0 arbitrary, by (2.3), there exist two sequences of positive reals $\{t_n\}_{n=1}^{\infty}$, $\{r_n\}_{n=1}^{\infty}$ such that $t_n \to 0^+, r_n \to 0^+$ and $\frac{t_n}{r_n} \to 0$ as $n \to \infty$ and a sequence $\{w_n\}_{n=1}^{\infty} \subset X$ such that $w_n \to w$ and $x_0 + t_n u + \frac{1}{2}t_n r_n w_n \in M$ for all $n \in \mathbb{N}$. By setting $\widehat{r}_n := \frac{r_n}{t}$ and $\widehat{w}_n := tw_n$, we have $\widehat{w}_n \to tw$ and

$$x_0 + t_n u + \frac{1}{2} t_n \widehat{r}_n \widehat{w}_n \in M, \quad \forall n \in \mathbb{N},$$
 (2.91)

i.e., $tw \in T''(M, x_0, u)$. Since t > 0 and $w \in T''(M, x_0, u)$ are chosen arbitrarily, we conclude that $T''(M, x_0, u)$ is a cone.

To prove that $T^{2}\left(M,x_{0},u\right)$ is not a cone in general, we go back to the setting of Problem 4. We have proved that

$$T^{2}(M, x_{0}, u) = \{(x, y) \in \mathbb{R}^{2} | x \le -2 \}.$$
 (2.92)

Taking $w:=(x,y)\in T^2\left(M,x_0,u\right)$, we have $x\leq -2$. But this does not implies that $tw\in T^2\left(M,x_0,u\right)$ for all t>0. Indeed, choosing $t:=-\frac{1}{x}>0$ yields tx=-1>-2, i.e., $tw\notin T^2\left(M,x_0,u\right)$. It follows that $T^2\left(M,x_0,u\right)$ is not a cone in general.

4. Since X is finite-dimensional, we can assume that $X = \mathbb{R}^n$ without loss of generality. In [4], Remark 7, p.88, the authors have proved the following stronger results, from which (2.84) follows directly.

Theorem 2.4. Let $M \subset \mathbb{R}^n$, $x_0 \in \overline{M}$ and $u \in \mathbb{R}^n$.

- 1. $0 \in T''(M, x_0, u) \Leftrightarrow u \in T(M, x_0)$.
- 2. If $T^{2}(M, x_{0}, u) = \emptyset$ and $u \in T(M, x_{0})$, then there exists $w \in T''(M, x_{0}, u)$, $w \neq 0$, such that $w^{T}u = 0$.

Proof of Theorem 2.4.

1. Prove $0 \in T''(M, x_0, u) \Rightarrow u \in T(M, x_0)$. Let $0 \in T''(M, x_0, u)$, then there exist two sequences of positive reals $\{t_n\}_{n=1}^{\infty}$, $\{r_n\}_{n=1}^{\infty}$ such that $t_n \to 0^+, r_n \to 0^+$ and $\frac{t_n}{r_n} \to 0$ as $n \to \infty$ and a sequence $\{w_n\}_{n=1}^{\infty} \subset X$ such that $w_n \to 0$ and $x_0 + t_n u + \frac{1}{2}t_n r_n w_n \in M$ for all $n \in \mathbb{N}$. By setting $u_n := u + \frac{1}{2}r_n w_n$ for all $n \in \mathbb{N}$, we have $u_n \to u$ as $n \to \infty$ and $x_0 + t_n u_n \in M$ for all $n \in \mathbb{N}$, i.e., $u \in T(M, x_0)$.

Prove $u \in T(M, x_0) \Rightarrow 0 \in T''(M, x_0, u)$. If $T(M, x_0) = \{0\}$, then u = 0 and by the result obtained in Problem 7.2, $T''(M, x_0, u) = T(M, x_0) = \{0\}$ and the conclusion is true.

If $T(M, x_0) \neq \{0\}$, choose $u \in T(M, x_0) \setminus \{0\}$. We have two cases depending on $T^2(M, x_0, u)$.

(a) Case $T^2(M, x_0, u) \neq \emptyset$. Pick $w \in T^2(M, x_0, u)$, then there exist a sequence of positive reals $\{t_n\}_{n=1}^{\infty}$ such that $t_n \to 0^+$ as $n \to \infty$ and a sequence $\{w_n\}_{n=1}^{\infty} \subset X$ such that $w_n \to w$ as $n \to \infty$ and $x_0 + t_n u + \frac{1}{2}t_n^2 w_n \in M$ for all $n \in \mathbb{N}$. Setting $r_n := \sqrt{t_n}$, $\widehat{w}_n := \sqrt{t_n} w_n$ for all $n \in \mathbb{N}$, we have $r_n \to 0^+$, $\frac{t_n}{r_n} = \sqrt{t_n} \to 0^+$, $\widehat{w}_n \to 0$ as $n \to \infty$ and

$$x_0 + t_n u + \frac{1}{2} t_n r_n \widehat{w}_n = x_0 + t_n u + \frac{1}{2} t_n^2 w_n \in M, \ \forall n \in \mathbb{N}.$$
 (2.93)

i.e., $0 \in T''(M, x_0, u)$.

- (b) Case $T^2(M, x_0, u) = \emptyset$. As $u \in T(M, x_0) \setminus \{0\}$, there exist a sequence of positive real $\{t_n\}_{n=1}^{\infty}$ such that $t_n \to 0^+$ and a sequence $\{u_n\}_{n=1}^{\infty} \in X$ such that $u_n \to u$ as $n \to \infty$ and $x_n := x_0 + t_n u_n \in M$ for all $n \in \mathbb{N}$. By Lemma 3.4, [5], p.129, there exists a subsequence, denoted again t_n 's (and also x_n 's), such that either
 - $\frac{x_n x_0 t_n u}{\frac{1}{2}t_n^2} \to w$ for some $w \in T^2(M, x_0, u) \cap u^{\perp}$ or
 - there exists a sequence $r_n \to 0^+$ such that $\frac{t_n}{r_n} \to 0$ and

$$\frac{x_n - x_0 - t_n u}{\frac{1}{2} t_n r_n} \to w, \tag{2.94}$$

for some $w \in T''(M, x_0, u) \cap u^{\perp} \setminus \{0\}.$

As $T^2(M, x_0, u) = \emptyset$, the second condition is satisfied. Hence, as $T''(M, x_0, v) \neq \emptyset$, being this set a closed cone, we conclude that $0 \in T''(M, x_0, u)$.

2. At the same time we have proved this part of Theorem 2.4. Indeed, the assumptions of part (1) imply that $u \neq 0$, as if u = 0, then $T^2(M, x_0, 0) = T(M, x_0) \neq \emptyset$, in contradiction with the assumption.

We end the proof of Theorem 2.4 here.

3 Theory of Optimality Conditions

In this section, we will discuss about the theory of optimality conditions for the following problems

$$(P): \quad \min f(x) \text{ s.t. } x \in \Omega. \tag{3.1}$$

where $f: \mathbb{R}^n \to \mathbb{R}$ and $\Omega \subseteq \mathbb{R}^n$.

Definition 3.1. Consider the problem $(P), m \in \mathbb{N}^*$,

1. $x_0 \in \Omega$ is called *local minimizer* of (P) if there exists a neighborhood U of x_0 such that

$$f(x) \ge f(x_0), \ \forall x \in U \cap \Omega.$$
 (3.2)

2. $x_0 \in \Omega$ is called *strictly local minimizer of order* m of (P) if there exist a neighborhood U of x_0 and a positive real number α such that

$$f(x) \ge f(x_0) + \alpha ||x - x_0||^m, \quad \forall x \in U \cap \Omega.$$
 (3.3)

Theorem 3.2 (First-order necessary optimality condition).

If x_0 is a local minimizer of (P) then

$$\langle \nabla f(x_0), u \rangle \ge 0, \quad \forall u \in T(\Omega, x_0).$$
 (3.4)

Theorem 3.3 (First-order sufficient optimality condition).

1. If f is a convex function, Ω is a convex set and

$$\langle \nabla f(x_0), u \rangle \ge 0, \quad \forall u \in T(\Omega, x_0),$$
 (3.5)

then x_0 is a minimizer of (P).

2. If for all $u \in T(\Omega, x_0)$ satisfying ||u|| = 1, $\langle \nabla f(x_0), u \rangle > 0$ holds then x_0 is a strictly local minimizer of first order of (P).

We consider some exercises which apply the first order optimality conditions.

Problem 8 (Fermat's rule). Use Theorem 3.2, prove that if x_0 is a local minimizer of (P) and $x_0 \in \text{int } \Omega$ then $\nabla f(x_0) = 0$, then apply this result to find solutions of the following problems.

- 1. (P): $\min x^2 + 3y^2 2xy 4x 8y \text{ s.t. } (x, y) \in \mathbb{R}^2$.
- 2. (P): $\min xyze^{-x-y-z}$ s.t. $(x, y, z) \in \mathbb{R}^3$.

SOLUTION. Since x_0 is a local minimizer of (P), by Definition 3.1 and Theorem 3.2, there exists a neighborhood U of x_0 such that

$$f(x) \ge f(x_0), \ \forall x \in U \cap \Omega,$$
 (3.6)

and

$$\langle \nabla f(x_0), u \rangle \ge 0, \quad \forall u \in T(\Omega, x_0).$$
 (3.7)

Since $x_0 \in \text{int } \Omega$, there exists a positive real r > 0 such that $B_r(x_0) \subset \Omega$.

We claim that if $x_0 \in \text{int } \Omega$ then $T(\Omega, x_0) = \mathbb{R}^n$. To prove this claim, for arbitrary $u \in \mathbb{R}^n$, we will prove that $u \in T(\Omega, x_0)$. Indeed, we can take an arbitrary sequence $\{u_n\}_{n=1}^{\infty} \in \mathbb{R}^n$ such that $u_n \to u$ as $n \to \infty$. We now choose a sequence of positive reals $\{t_n\}_{n=1}^{\infty}$ whose each term t_n is small enough such that

$$x_0 + t_n u_n \in B_r(x_0). \tag{3.8}$$

For instance, we can take t_n 's satisfying

$$0 < t_n < \frac{r}{\|u_n\|}, \ \forall n \in \mathbb{N}, \tag{3.9}$$

in order that (3.8) holds for all $n \in \mathbb{N}$. Thus, $u \in T(\Omega, x_0)$. And this yields $T(\Omega, x_0) = \mathbb{R}^n$ as we claimed.

Use this result, we now can proceed as the proof of Theorem 2.7, [1], p.35 as follows. If $d \in \mathbb{R}^n$, then

$$f'(x_0; d) = \lim_{t \to 0} \frac{f(x_0 + td) - f(x_0)}{t} = \langle \nabla f(x_0), d \rangle.$$
 (3.10)

By theorem 3.2, since $T(M, x_0) = \mathbb{R}^n$, we have

$$\langle \nabla f(x_0), d \rangle \ge 0, \quad \forall d \in T(M, x_0) = \mathbb{R}^n.$$
 (3.11)

In particular, picking $d = -\nabla f(x_0)$ gives $-\|\nabla f(x_0)\|^2 \ge 0$, that is, $\nabla f(x_0) = 0$

We now apply this result to find solutions of the above problems.

1. Setting $\Omega = \mathbb{R}^n$, and

$$f(x,y) = x^2 + 3y^2 - 2xy - 4x - 8y, \ \forall (x,y) \in \mathbb{R}^2.$$
 (3.12)

By Fermat's rule, we consider the equation $\nabla f(x_0, y_0) = 0$, i.e.,

$$\nabla f(x_0, y_0) = (2x_0 - 2y_0 - 4, 6y_0 - 2x_0 - 8) = 0.$$
 (3.13)

This gives a linear system of equations

$$x_0 - y_0 = 2, (3.14)$$

$$x_0 - 3y_0 = -4. (3.15)$$

Solving this yields $x_0 = 5, y_0 = 3$.

Check. The point $(x_0, y_0) = (5, 2)$ is a global minimizer of f(x, y). Indeed, since $f(x_0, y_0) = f(5, 3) = -22$, it suffices to prove

$$f(x,y) + 22 \ge 0, \ \forall (x,y) \in \mathbb{R}^2.$$
 (3.16)

Fixed $y \in \mathbb{R}$, we set

$$F_y(x) := f(x,y) + 22, \quad \forall x \in \mathbb{R}. \tag{3.17}$$

The first derivative of $F_{u}(x)$ is

$$\frac{d}{dx}F_{y}(x) = 2(x - y - 2), \quad \forall x \in \mathbb{R}.$$
(3.18)

By surveying the sign of $\frac{d}{dx}F_y(x)$, it follows from (3.18) that

$$\min_{x \in \mathbb{R}} F_y(x) = F_y(y+2) = 2(y-3)^2 \ge 0.$$
 (3.19)

Hence,

$$\min\left(f\left(x,y\right)+22\right) = \min_{y \in \mathbb{R}} \min_{x \in \mathbb{R}} F_y\left(x\right) \tag{3.20}$$

$$= \min_{y \in \mathbb{R}} 2(y-3)^2$$
 (3.21)

$$=0, (3.22)$$

which is attained at y = 3 (and thus) x = y + 2 = 5.

2. Setting $\Omega = \mathbb{R}^3$, and

$$f(x, y, z) = xyze^{-x-y-z}, \ \forall (x, y, z) \in \mathbb{R}^3.$$
 (3.23)

We have

$$\nabla f(x, y, z) = e^{-x - y - z} (yz (1 - x), zx (1 - y), xy (1 - z)), \qquad (3.24)$$

for all $(x, y, z) \in \mathbb{R}^3$. The equation $\nabla f(x_0, y_0, z_0) = 0$ gives the following system of equations

$$y_0 z_0 (1 - x_0) = 0, (3.25)$$

$$z_0 x_0 (1 - y_0) = 0, (3.26)$$

$$x_0 y_0 (1 - z_0) = 0. (3.27)$$

The roots of this system are (1,1,1), (a,0,0) for all $a \in \mathbb{R}$ and their permutations.

If exactly two in three numbers x_0, y_0, z_0 is equal to 0 (for instance, $(x_0, y_0, z_0) = (a, 0, 0)$ for some nonzero $a \in \mathbb{R}$) then we can choose in a neighborhood of (x_0, y_0, z_0) a point (x, y, z) for which xyz < 0 6 (for instance, choose $(x, y, z) = \left(a, \frac{\operatorname{sign}(a)}{n}, -\frac{1}{n}\right)$ with n small enough), and thus f(x, y, z) < 0. But $f(x_0, y_0, z_0) = 0$, we deduce that (x_0, y_0, z_0) is not a local minimizer of f. We only need to consider the remaining cases, i.e., $(x_0, y_0, z_0) = (0, 0, 0)$ and $(x_0, y_0, z_0) = (1, 1, 1)$.

For $(x_0, y_0, z_0) = (0, 0, 0)$, we choose $x_n = y_n = \frac{1}{n}, z_n = -\frac{2}{n}$. This choice ensures that $x_n + y_n + z_n = 0$ and (x_n, y_n, z_n) lies in any given neighborhood of (0, 0, 0) provided n is large enough. We then have

$$f(x_n, y_n, z_n) = -\frac{2}{n^3} < 0 = f(0, 0, 0).$$
 (3.28)

This implies that (0,0,0) is not a local minimizer.

For $(x_0, y_0, z_0) = (1, 1, 1)$, we choose $x_n = 1 + \frac{2}{n}$, $y_n = z_n = 1 - \frac{1}{n}$. This choice ensures that $x_n + y_n + z_n = 3$ and (x_n, y_n, z_n) lies in any given neighborhood of (1, 1, 1) if n is large enough. By Cauchy inequality, we have

$$x_n y_n z_n = \left(1 + \frac{2}{n}\right) \left(1 - \frac{1}{n}\right)^2 \le \left(\frac{1 + \frac{2}{n} + 1 - \frac{1}{n} + 1 - \frac{1}{n}}{3}\right)^3 = 1.$$
(3.29)

Since $x_n \neq y_n$, the equality does not hold and thus this gives us $x_n y_n z_n < 1$. We then have

$$f(x_n, y_n, z_n) = \frac{x_n y_n z_n}{e^3} < \frac{1}{e^3} = f(1, 1, 1).$$
 (3.30)

This implies that (1,1,1) is not a local minimizer. In face, we can use Hessian matrix of f to prove that (1,1,1) is a local maximizer. Finally, we conclude that there does not exist any local minimizers of (P).

⁶This is easily handled by considering the signs of the three coordinates.

Furthermore, the fact that f has no global minimizer can be easily demonstrated by choosing x = -n, y = n - 1, y = 2 for $n \in \mathbb{N}$,

$$f(-n, n-1, 2) = -2n(n-1)e \to -\infty \text{ as } n \to +\infty.$$
 (3.31)

This completes our solution.

Problem 9. Consider the following problem

(P):
$$\min x^2 - y \text{ s.t. } (x, y) \in \Omega = \{(x, y) \in \mathbb{R}^2 | x + y^3 \ge 0\}.$$
 (3.32)

- 1. Compute the tangent cone of Ω at the point $x_0 = (0,0)$.
- 2. Apply the first-order necessary optimality condition, check whether $x_0 = (0,0)$ is a local minimizer of (P) or not.

SOLUTION. Setting $X = \mathbb{R}^2$, $f(x,y) = x^2 - y$ for $(x,y) \in \mathbb{R}^2$, we notice that $x_0 = (0,0) \in \Omega$.

1. We claim that

$$T(\Omega, x_0) = \widehat{T}(\Omega, x_0) := \{(x, y) \in \mathbb{R}^2 | x \ge 0\}.$$
 (3.33)

To prove (3.33), we prove the following inclusions.

(a) Prove $T(\Omega, x_0) \subset \widehat{T}(\Omega, x_0)$. Taking $u = (x, y) \in T(M, x_0)$, there exist a sequence of positive reals $\{t_n\}_{n=1}^{\infty}$ such that $t_n \to 0^+$ and a sequence $\{u_n\}_{n=1}^{\infty} \subset \mathbb{R}^2$ such that $u_n \to u$ as $n \to \infty$ and $x_0 + t_n u_n \in \Omega$ for all $n \in \mathbb{N}$. Set $u_n := (x_n, y_n)$, the face $u_n \to u$ implies that $x_n \to x$ and $y_n \to y$, and the fact $x_0 + t_n u_n \in \Omega$ for all $n \in \mathbb{N}$ gives

$$t_n x_n + t_n^3 y_n^3 \ge 0, \quad \forall n \in \mathbb{N}. \tag{3.34}$$

Since $t_n > 0$ for all $n \in \mathbb{N}$, (3.34) then implies

$$x_n + t_n^2 y_n^3 \ge 0, \quad \forall n \in \mathbb{N}. \tag{3.35}$$

Now let $n \to \infty$ and use the given limits $x_n \to x, y_n \to y$ and $t_n \to 0^+$, we obtain $x \ge 0$. Hence, $u \in \widehat{T}(\Omega, x_0)$ and our first inclusion is proved.

(b) $\operatorname{Prove} \widehat{T}(\Omega, x_0) \subset T(\Omega, x_0)$. Taking $u = (x, y) \in \mathbb{R}^2$ satisfying $x \geq 0$, we claim that $u \in T(\Omega, x_0)$. To this end, we now choose $x_n = x + \frac{1}{n}, y_n = y$ for all $n \in \mathbb{N}$. This choice ensures that $u_n := (x_n, y_n) \to u := (x, y)$ as $n \to \infty$. It then suffices to prove that there exists a sequence of positive reals $\{t_n\}_{n=1}^{\infty}$ such that $t_n \to 0^+$ and $x_0 + t_n u_n \in \Omega$ for all $n \in \mathbb{N}$. The latter gives, using (3.35) again,

$$x + \frac{1}{n} + t_n^2 y^3 \ge 0, \quad \forall n \in \mathbb{N}. \tag{3.36}$$

We consider the following cases depending on the sign of y. If $y \ge 0$, then (3.36) holds for all positive reals t_n 's. Thus we can take an

arbitrary sequence of positive reals $\{t_n\}_{n=1}^{\infty}$ such that $t_n \to 0^+$, this means $u \in T(\Omega, x_0)$ in this case. If y < 0, (3.36) gives

$$t_n \le \sqrt{-\frac{1}{y^3} \left(x + \frac{1}{n}\right)}, \quad \forall n \in \mathbb{N}.$$
 (3.37)

The term in the right-hand side of (3.37) is positive for all $n \in \mathbb{N}$. Hence we can choose t_n 's satisfying (3.37) and $t_n \to 0^+$ as $n \to \infty$. This choice implies that $u \in T(\Omega, x_0)$, i.e., the second inclusion is also proved.

Combining these, we conclude that (3.33) holds, i.e.,

$$T(\Omega, x_0) = \{(x, y) \in \mathbb{R}^2 | x \ge 0 \}.$$
 (3.38)

2. We have $\nabla f(x,y) = (2x,-1)$ for all $(x,y) \in \mathbb{R}^2$. In particular, $\nabla f(x_0) = \nabla f(0,0) = (0,-1)$. Consider $u := (0,1) \in T(\Omega,x_0)$, we have

$$\langle \nabla f(x_0), u \rangle = \langle (0, -1), (0, 1) \rangle = -1 < 0.$$
 (3.39)

By the first-order necessary optimality condition, this implies that x_0 is not a local minimizer of f.

This completes our solution.

Problem 10. Consider the following problem

(P):
$$\min x + y^2 \text{ s.t. } (x, y) \in \Omega = \{(x, y) \in \mathbb{R}^2 | x - \sqrt{|y|} = 0\}.$$
 (3.40)

- 1. Compute the tangent cone of Ω at the point $x_0 = (0,0)$.
- 2. Apply the first-order sufficient optimality condition, check whether x_0 is a strictly local minimizer of first order of (P) or not.
- 3. Use definition, prove that x_0 is a strictly local minimizer of first order of (P).

SOLUTION. Setting $X = \mathbb{R}^2$, $f(x,y) = x + y^2$ for all $(x,y) \in \mathbb{R}^2$, we notice that $x_0 = (0,0) \in \Omega$.

1. We claim that

$$T(\Omega, x_0) = \widehat{T}(\Omega, x_0) := \{(x, y) \in \mathbb{R}^2 | x \ge 0, y = 0\}.$$
 (3.41)

To prove (3.41), we prove the following inclusions.

(a) Prove $T(\Omega, x_0) \subset \widehat{T}(\Omega, x_0)$. Taking $u := (x, y) \in T(\Omega, x_0)$, there exist a sequence of positive reals $\{t_n\}_{n=1}^{\infty}$ such that $t_n \to 0^+$ and a sequence $\{u_n\}_{n=1}^{\infty} \subset \mathbb{R}^2$ such that $u_n \to u$ as $n \to \infty$ and $x_0 + t_n u_n \in M$ for all $n \in \mathbb{N}$. Set $u_n := (x_n, y_n)$, the fact that $u_n \to u$ implies that $x_n \to x$ and $y_n \to y$, and the fact $x_0 + t_n u_n \in M$ for all $x_0 \in \mathbb{N}$ gives

$$t_n x_n = \sqrt{|t_n y_n|}, \ \forall n \in \mathbb{N}.$$
 (3.42)

We see at a glance from (3.42) that $x_n \geq 0$ for all $n \in \mathbb{N}$. Hence, $x \geq 0$ (since $x_n \to x$ as $n \to \infty$). Now squaring both sides of (3.42) yields

$$t_n^2 x_n^2 = t_n |y_n|, \quad \forall n \in \mathbb{N}. \tag{3.43}$$

Since $t_n > 0$ for all $n \in \mathbb{N}$, (3.43) then implies

$$t_n x_n^2 = |y_n|, \quad \forall n \in \mathbb{N}. \tag{3.44}$$

Now let $n \to \infty$ in (3.44) and use the given limits $x_n \to x, y_n \to y$ and $t_n \to 0^+$, we obtain y = 0. Hence, $u \in \widehat{T}(\Omega, x_0)$ and our first inclusion is proved.

(b) Prove $\widehat{T}(\Omega, x_0) \subset T(\Omega, x_0)$. Taking u := (x, 0) for which $x \geq 0$, we claim that $u \in T(\Omega, x_0)$. To this end, we now choose $x_n := x + \frac{1}{n}, y_n := \frac{1}{n^3}$ for all $n \in \mathbb{N}$. This choice ensures that $u_n := (x_n, y_n) \to u := (x, 0)$ as $n \to \infty$. It then suffices to prove that there exists a sequence of positive reals $\{t_n\}_{n=1}^{\infty}$ such that $t_n \to 0^+$ and $x_0 + t_n u_n \in \Omega$ for all $n \in \mathbb{N}$. The latter gives, using (3.44) again,

$$t_n \left(x + \frac{1}{n} \right)^2 = \frac{1}{n^3}, \quad \forall n \in \mathbb{N}.$$
 (3.45)

i.e.,

$$t_n = \frac{1}{n^3 \left(x + \frac{1}{n}\right)^2}, \quad \forall n \in \mathbb{N}. \tag{3.46}$$

It is easy to check that $t_n > 0$ (since $x \ge 0$) and $t_n \to 0^+$ as $n \to \infty$. Hence, $u \in T(\Omega, x_0)$ and the second inclusion is also proved.

Combining these inclusions, we conclude that (3.41) holds, i.e.,

$$T(\Omega, x_0) = \{(x, y) \in \mathbb{R}^2 | x \ge 0, y = 0\}. \tag{3.47}$$

2. Taking $u \in T(\Omega, x_0)$ satisfying ||u|| = 1, i.e., $u := (x, 0), x \ge 0$ for which |x| = 1. The only point satisfying these assumptions is $u_0 := (1, 0)$.

We have $\nabla f(x,y) = (1,2y)$ for all $(x,y) \in \mathbb{R}^2$. In particular, $\nabla f(x_0) = \nabla f(0,0) = (1,0)$. Thus,

$$\langle \nabla f(x_0), u_0 \rangle = \langle (1, 0), (1, 0) \rangle = 1 > 0.$$
 (3.48)

By the first-order sufficient optimality condition, (3.48) implies that x_0 is a strictly local minimizer of first order of (P).

3. By definition 3.1.2, to show that $x_0 \in \Omega$ is a strictly local minimizer of first order of (P), it suffices to prove that there exists a neighborhood U of x_0 and a positive real number α such that

$$x + y^2 \ge \alpha \sqrt{x^2 + y^2}, \quad \forall (x, y) \in U \cap \Omega. \tag{3.49}$$

We now choose

$$\alpha = \frac{1}{\sqrt{2}},\tag{3.50}$$

$$U := B(x_0; 1) = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 \le 1 \},$$
 (3.51)

and then prove that (3.49) holds in this setting. Indeed, since $(x,y) \in \Omega$, $x \ge 0$ and $x^2 = |y|$. Substituting $y^2 = x^4$ into (3.49), we need to prove

$$x + x^4 \ge \frac{1}{\sqrt{2}} \sqrt{x^2 + x^4}, \ \forall x \in [0, 1].$$
 (3.52)

By squaring both sides, (3.52) is equivalent to

$$2(1+x^3)^2 \ge 1+x^2, \ \forall x \in [0,1]$$
 (3.53)

i.e.,

$$1 + 4x^3 + 2x^6 \ge x^2, \ \forall x \in [0, 1].$$
 (3.54)

The last inequality (3.54) is obviously true, since

RHS =
$$x^2 \le 1 \le 1 + \underbrace{4x^3 + 2x^6}_{>0}$$
 = LHS. (3.55)

Thus, (3.49) holds for our setting.

This completes our proof.

When we consider second-order optimality conditions (i.e., "proposed solutions" satisfy first-order optimality conditions), we continue to consider in the "critical direction" u satisfying

$$\langle \nabla f(x_0), u \rangle = 0. \tag{3.56}$$

Theorem 3.4 (Second-order necessary optimality condition).

If x_0 is a local minimizer of (P) and u satisfies $\langle \nabla f(x_0), u \rangle = 0$, then we have

- 1. $\langle \nabla f(x_0), w \rangle + \nabla^2 f(x_0)(u, u) > 0 \text{ for all } w \in T^2(\Omega, x_0, u).$
- 2. $\langle \nabla f(x_0), w \rangle \geq 0$ for all $w \in T''(\Omega, x_0, u)$.

Theorem 3.5 (Second-order sufficient optimality condition).

If for all $u \in T(\Omega, x_0)$ for which ||u|| = 1 we have

- 1. $\langle \nabla f(x_0), w \rangle + \nabla^2 f(x_0)(u, u) > 0$ for all $w \in T^2(\Omega, x_0, u)$.
- 2. $\langle \nabla f(x_0), w \rangle > 0$ for all $w \in T''(\Omega, x_0, u)$ for which ||w|| = 1.

then x_0 is a strictly local minimizer of second order of (P).

Here are some problems to apply second-order optimality conditions.

Problem 11. Consider the following problem

(P)
$$\min x^3 - y^2 \text{ s.t. } (x, y) \in \Omega = \{(x, y) \in \mathbb{R}^2 | xy > 0\}.$$
 (3.57)

- 1. Compute the tangent cone of Ω at $x_0 = (0,0)$.
- 2. Apply the first-order necessary optimality condition, check if $x_0 = (0,0)$ is a local minimizer of (P) or not.
- 3. Apply the second-order necessary optimality condition, check if $x_0 = (0,0)$ is a local minimizer of (P) or not.

SOLUTION. Setting $Xx = \mathbb{R}^2$, $f(x,y) = x^3 - y^2$ for all $(x,y) \in \mathbb{R}^2$, we notice that $x_0 = (0,0) \in \Omega$.

1. We claim that

$$T(\Omega, x_0) = \Omega = \{(x, y) \in \mathbb{R}^2 | xy \ge 0\}$$
(3.58)

To prove (3.58), we prove the following inclusions.

(a) Prove $T(\Omega, x_0) \subset \Omega$. Taking $u := (x, y) \in T(\Omega, x_0)$, there exist a sequence of positive reals $\{t_n\}_{n=1}^{\infty}$ such that $t_n \to 0^+$ and a sequence $\{u_n\}_{n=1}^{\infty} \subset \mathbb{R}^2$ such that $u_n \to u$ as $n \to \infty$ and $x_0 + t_n u_n \in M$ for all $n \in \mathbb{N}$. Set $u_n := (x_n, y_n)$, the fact that $u_n \to u$ implies that $x_n \to x$ and $y_n \to y$, and the fact $x_0 + t_n u_n \in M$ for all $n \in \mathbb{N}$ gives

$$t_n^2 x_n y_n \ge 0, \quad \forall n \in \mathbb{N}. \tag{3.59}$$

Since $t_n \geq 0$ for all $n \in \mathbb{N}$, (3.59) then implies

$$x_n y_n \ge 0, \ \forall n \in \mathbb{N}.$$
 (3.60)

Now let $n \to \infty$ in (3.60) and use the given limits $x_n \to x, y_n \to y$ and $t_n \to 0^+$, we obtain $xy \ge 0$. Hence, $u \in \Omega$ and our first inclusion is proved.

- (b) Prove $\Omega \subset T(\Omega, x_0)$. Taking $u := (x, y) \in \Omega$, i.e., $xy \geq 0$, we claim that $u \in T(\Omega, x_0)$. To this end, we consider the following cases depending on the common sign of x and y.
 - Case $x \ge 0, y \ge 0$. We can choose $x_n := x + \frac{1}{n}, y_n := y + \frac{1}{n}$ for all $n \in \mathbb{N}$ and an arbitrary sequence of positive reals t_n 's such that $t_n \to 0^+$ as $n \to \infty$. These choices will ensure that (3.59) holds. Thus, $u \in T(\Omega, x_0)$ in this case.
 - Case $x \leq 0, y \leq 0$. Similarly, we can choose that $x_n := x \frac{1}{n}, y_n := y \frac{1}{n}$ for all $n \in \mathbb{N}$ and an arbitrary sequence of positive reals t_n 's such that $t_n \to 0^+$ as $n \to \infty$. Hence, we also deduce that $u \in T(\Omega, x_0)$ in this case.

What we have just proved is the second inclusion.

Combining these inclusions, we conclude that (3.58) holds.

2. We have $\nabla f(x,y) = (3x^2, -2y)$ for all $(x,y) \in \mathbb{R}^2$. In particular, $\nabla f(x_0) = \nabla f(0,0) = (0,0)$. Thus,

$$\langle \nabla f(x_0), u \rangle = 0, \quad \forall u \in \Omega \equiv T(\Omega, x_0),$$
 (3.61)

which satisfies the conclusion of Theorem 3.2. However, we can not deduce from (3.61) that x_0 is a local minimizer of (P).

3. We claim that x_0 is not a local minimizer of (P). Suppose for the contrary that x_0 is a local minimizer of (P), we have $\langle \nabla f(x_0), u \rangle = 0$ for all $u \in \Omega$ by above argument. Compute

$$\nabla^{2} f(x,y) = \begin{pmatrix} 6x & 0 \\ 0 & -2 \end{pmatrix}, \forall (x,y) \in \mathbb{R}^{2}.$$
 (3.62)

In particular,

$$\nabla^2 f(x_0) = \nabla^2 f(0,0) = \begin{pmatrix} 0 & 0 \\ 0 & -2 \end{pmatrix}. \tag{3.63}$$

Denote $u := (x, y) \in \Omega$, we have

$$\langle \nabla f(x_0), w \rangle + \nabla^2 f(x_0)(u, u) = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
 (3.64)

$$= -2y^2 \le 0, (3.65)$$

for all $w \in T^2(\Omega, x_0, u)$, which contradicts to the second-order necessary optimality condition. Therefore, x_0 is not a local minimizer of (P).

This completes our proof.

Problem 12. Consider the following problem

(P)
$$\min x^3 + y^2 \text{ s.t. } (x, y) \in \Omega = \{(x, y) \in \mathbb{R}^2 | x - y^2 \ge 0\}.$$
 (3.66)

- 1. Compute the tangent cone of Ω at $x_0 = (0,0)$.
- 2. Prove that x_0 satisfies the first-order necessary optimality condition.
- 3. Use definition, prove that x_0 is not a strictly local minimizer of first order of (P).
- 4. Use definition, check if x_0 is a strictly local minimizer of second order of (P).
- 5. Apply the second-order necessary optimality condition, check if $x_0 = (0,0)$ is a strictly local minimizer of second order of (P) or not.

SOLUTION. Setting $X = \mathbb{R}^2$, $f(x,y) = x^3 + y^2$ for all $(x,y) \in \mathbb{R}^2$. We notice that $x_0 = (0,0) \in \Omega$.

1. We claim that

$$T\left(\Omega,x_{0}\right)=\widehat{T}\left(\Omega,x_{0}\right):=\left\{ (x,y)\in\mathbb{R}^{2}|x\geq0\right\} .\tag{3.67}$$

To prove (3.67), we prove the following inclusions.

(a) Prove $T(\Omega, x_0) \subset \widehat{T}(\Omega, x_0)$. Taking $u := (x, y) \in T(\Omega, x_0)$, there exist a sequence of positive reals $\{t_n\}_{n=1}^{\infty}$ such that $t_n \to 0^+$ and a sequence $\{u_n\}_{n=1}^{\infty} \subset \mathbb{R}^2$ such that $u_n \to u$ as $n \to \infty$ and $x_0 + t_n u_n \in M$ for all $n \in \mathbb{N}$. Set $u_n := (x_n, y_n)$, the fact that $u_n \to u$ implies

that $x_n \to x$ and $y_n \to y$, and the fact $x_0 + t_n u_n \in M$ for all $n \in \mathbb{N}$ gives

$$t_n x_n \ge t_n^2 y_n^2, \quad \forall n \in \mathbb{N}. \tag{3.68}$$

Since $t_n > 0$ for all $n \in \mathbb{N}$, (3.68) implies that

$$x_n \ge t_n y_n^2, \ \forall n \in \mathbb{N}.$$
 (3.69)

Let $n \to \infty$ in (3.69), we obtain $x \ge 0$. Hence, $u \in \widehat{T}(\Omega, x_0)$ and our first inclusion is proved.

(b) Prove $\widehat{T}(\Omega, x_0) \subset T(\Omega, x_0)$. Taking u := (x, y) for which $x \geq 0$, we claim that $u \in T(\Omega, x_0)$. To this end, we choose $x_n := x + \frac{1}{n}, y_n := y$ for all $n \in \mathbb{N}$. If y = 0 then (3.69) obviously holds, $x + \frac{1}{n} \geq 0$ for all $n \in \mathbb{N}$, and we can choose an arbitrary sequence of positive reals t_n 's for which $t_n \to 0^+$. If $y \neq 0$, (3.69) gives

$$t_n \le \frac{1}{y^2} \left(x + \frac{1}{n} \right), \ \forall n \in \mathbb{N}.$$
 (3.70)

The right-hand side of (3.70) is positive. Thus, we can choose an arbitrary sequence of positive reals t_n 's satisfying (3.70) and $t_n \to 0^+$ as $n \to \infty$. In both cases, we deduce that $u \in T(\Omega, x_0)$ and our inclusion is also proved.

Combining these inclusions, we conclude that (3.67) holds, i.e.,

$$T(\Omega, x_0) = \{(x, y) \in \mathbb{R}^2 | x \ge 0\}. \tag{3.71}$$

2. We have $\nabla f(x,y) = (3x^2, 2y)$ for all $(x,y) \in \mathbb{R}^2$. In particular, $\nabla f(x_0) = \nabla f(0,0) = (0,0)$. We then have

$$\langle \nabla f(x_0), u \rangle = \langle (0, 0), (x, y) \rangle = 0, \quad \forall u \in T(\Omega, x_0),$$
 (3.72)

i.e., x_0 satisfies the first-order necessary optimality condition.

3. Solution 1. Suppose for the contrary that x_0 is a strictly local minimizer of first order of (P), by definition 3.1, there exist a neighborhood U of x_0 and a positive real number α such that

$$x^3 + y^2 \ge \alpha \sqrt{x^2 + y^2}, \quad \forall (x, y) \in U \cap \Omega. \tag{3.73}$$

For x > 0 small enough, $(x, \sqrt{x}) \in U \cap \Omega$ holds. Then (3.73) gives

$$\alpha \le \frac{x^3 + x}{\sqrt{x^2 + x}} = \sqrt{x} \cdot \frac{x^2 + 1}{\sqrt{x + 1}} \to 0 \text{ as } x \to 0,$$
 (3.74)

which contradicts the positivity of α . This contradiction implies that x_0 is not a strictly local minimizer of first order of (P).

Solution 2. Similarly, for x>0 small enough, $(x,0)\in U\cap\Omega$ holds. Then (3.73) gives

$$\alpha \le x^2 \to 0 \text{ as } x \to 0, \tag{3.75}$$

which also contradicts the positivity of α . Therefore, x_0 is not a strictly local minimizer of first order of (P).

4. Similarly, suppose for the contrary that x_0 is a strictly local minimizer of second order of (P), by definition 3.1, there exists a neighborhood U of x_0 and a positive real number α such that

$$x^3 + y^2 \ge \alpha \left(x^2 + y^2\right), \quad \forall (x, y) \in U \cap \Omega. \tag{3.76}$$

For x > 0 small enough, $(x, 0) \in U \cap \Omega$ holds. Then (3.76) gives

$$\alpha \le x \to 0 \text{ as } x \to 0, \tag{3.77}$$

which contradicts the positivity of α . Therefore, x_0 is not a strictly local minimizer of second order of (P).

5. We claim that x_0 is not a strictly local minimizer of second order of (P). To show this, we suppose for the contrary that x_0 is a strictly local minimizer of second order of (P), and thus, is a local minimizer of (P). We has showed that $\langle \nabla f(x_0), u \rangle = 0$ for all $u \in \Omega$ in (2). Thus,

$$\langle \nabla f(x_0), w \rangle + \nabla^2 f(x_0)(u, u) = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
(3.78)
= $2y^2$, (3.79)

$$=2y^2, (3.79)$$

for all $u := (x,y) \in \Omega$ and for all $w \in T^2(\Omega,x_0,u)$. Hence, for u = $(x,0), x \ge 0, (3.78)$ -(3.79) gives

$$\langle \nabla f(x_0), w \rangle + \nabla^2 f(x_0)(u, u) = 0,$$
 (3.80)

which contradicts the second-order necessary condition. This contradiction illustrates that x_0 is not a strictly local minimizer of second order of (P).

This ends our proof.

THE END

References

- [1] O. Güler, Foundations of Optimization, Graduate Texts in Mathematics 258, Springer.
- [2] Tim Hoheisel, $Convex\ Analysis,$ University of Würzburg, Germany, Lecture Notes, Summer term 2016.
- [3] Akhtar A. Khan, Christiane Tammer, Constantin Zălinescu, Set-valued Optimization, An Introduction with Applications, Vector Optimization, Springer.
- [4] G. Giorgi, B. Jiménez, V. Novo, An Overview of Second Order Tangent Sets and Their Application to Vector Optimization, Bol. Soc. Esp. Mat. Apl. no **52** (2010), 73–96.
- [5] B. Jiménez, V. Novo, Optimality conditions in differentiable vector optimization via second order tangent sets, Appl. Math. Optim., 49 (2004), no. 2, 123-144.