Machine Learning

- computer algorithms
- applied to data to generate info
- volume, velocity, variety
- e.g. risk classification of motor insurance policyholders via in-car monitoring devices
- e.g. detection of possible fraudulent insurance claims
- e.g. cause codes of insurance claims
- e.g. chatbots for customer inquiries
- e.g. targeted ads on websites

Machine Learning

$$t = f(x_1, x_2, x_3, ...)$$

t: target value

 x_i : *i*th features / covariates / explanatory variables

f: target function

- approximation of unknown f
- mapping function which mimics f
- estimation of weights / coefficients /
 parameters via minimisation of error function
- iterative estimation procedure
- regression as a specific example
- machine learning on forecast performance
- statisticians on parameter significance

Training / Validation / Testing

- splitting data set into training set and testing set
- further splitting training set into *fitting* set and validation set
- using fitting set to estimate parameters
- using validation set to adjust parameters and avoid overfitting
- AIC, BIC, L1 / L2 penalty as alternative
- using testing set to provide unbiased
 evaluation of forecast performance
- rule-of-thumb : 60% / 20% / 20%

Types of Machine Learning

Decision Tree

Height > 180cm

K-Means Clustering

Types of Traditional Data

DATA TYPES				
NUMERICAL (ie numbers)		CATEGORICAL (ie not numbers)		
		(DICHOTOMOUS)		
\downarrow	↓ ↓	↓	↓	↓
Age last birthday	Exact age	Alive / Dead	Customer name	Date of birth (DD/MM/YY)
Number of children	Salary	Male / Female	Type of claim	Month (Jan, Feb, Mar,)
Number of claims	Claim amount	Claim / No claim	Occupation	Exam grade (A, B, C,)
		Pass / Fail	Marital status	Size (S, M, L, XL)
			Country	Agree/Don't
			Colour of car	know/Disagree

Data Preparation

- surveys, censuses, admin systems,
 specific databases, etc
- spreadsheet, Access, R, Python, etc
- data cleaning (errors, missing values, etc)
- exploratory data analysis
- scaling of features
- features engineering
- detailed documentation

Neural Network (NN)

- 3 layers of neurons in general
- input layer : features / covariates /explanatory variables
- hidden layer: most of learning
- output layer : output values
- each neuron receiving input from some neurons, and firing output to other neurons
- strengths of connections (weights / coefficients / parameters) between neurons changing epoch by epoch
- learning based on both architecture and weights of network

Neural Network (NN)

- universal approximators
- supervised learning
- FNN, RNN, LSTM, GRU, etc
- 1-layer feedforward neural network :

$$y_j = f(a_{0,j} + a_{1,j} x)$$

$$z = f(b_0 + \sum_j b_j y_j)$$

x : feature value from input layer into hidden layer

 y_j : intermediate value from jth neuron in (single) hidden layer into output layer

z : output value from output layer

f: activation function (e.g. logistic)

 $a_{0,j}, a_{1,j}, b_0, b_j$: weights

Feedforward Neural Network (FNN)

– 1-layer FNN :

Feedforward Neural Network (FNN)

- network too small → inadequate modelling capacity
- network too large → overfitting and poor generalisation
- 1 or 2 hidden layers adequate for most commercial and financial applications
- rule of thumb : number of training samples around 10 times number of weights
- weights estimated by backpropagation

Backpropagation

- error function $e = 0.5 \Sigma_k (z_k t_k)^2 / n$
- $-x_k$, t_k normalised to small values
- initial values of weights in hidden
 layer randomised as Uniform(-1, 1)
- initial values of weights in output layer randomised as -1 or 1 with equal chance
- in each epoch, for each weight :

$$\varepsilon^* = \varepsilon + \lambda$$
 if $g \frac{\partial}{\partial w} e > 0$ [update $\varepsilon^* = \varepsilon \phi$ otherwise learning rate] $w^* = w - \varepsilon \frac{\partial}{\partial w} e$ [update weights] $g^* = \theta g + (1 - \theta) \frac{\partial}{\partial w} e$ [update weights] $\lambda = 0.1$ $\phi = 0.5$ $\theta = 0.7$

Backpropagation

$$f(s) = \frac{\exp(s)}{1 + \exp(s)}$$

$$\frac{\partial}{\partial s} f(s) = \frac{\exp(s)}{(1 + \exp(s))^2} = f(s)(1 - f(s))$$

$$\frac{\partial e}{\partial b_0} = \frac{1}{n} \sum_{k} (z_k - t_k) \frac{\partial z_k}{\partial b_0} = \frac{1}{n} \sum_{k} (z_k - t_k) z_k (1 - z_k)$$

$$\frac{\partial e}{\partial b_{i}} = \frac{1}{n} \sum_{k} (z_{k} - t_{k}) \frac{\partial z_{k}}{\partial b_{i}} = \frac{1}{n} \sum_{k} (z_{k} - t_{k}) z_{k} (1 - z_{k}) y_{j,k}$$

$$\frac{\partial e}{\partial a_{0,j}} = \frac{1}{n} \sum_{k} (z_k - t_k) \frac{\partial z_k}{\partial y_{j,k}} \frac{\partial y_{j,k}}{\partial a_{0,j}}$$

$$= \frac{1}{n} \sum_{k} (z_k - t_k) z_k (1 - z_k) b_j y_{j,k} (1 - y_{j,k})$$

$$\frac{\partial e}{\partial a_{1,j}} = \frac{1}{n} \sum_{k} (z_k - t_k) \frac{\partial z_k}{\partial y_{j,k}} \frac{\partial y_{j,k}}{\partial a_{1,j}}$$

$$= \frac{1}{n} \sum_{k} (z_k - t_k) z_k (1 - z_k) b_j y_{j,k} (1 - y_{j,k}) x_k$$

$$x = seq(0.1,0.2,0.001)*pi$$

$$obs=sin(x*20)$$

$$t=(obs-(-1))/(1-(-1))*(0.9-0.1)+0.1$$

(Note: It is a toy problem without noises.)


```
logistic<-function(s) {
if (s>700) { logistic=1 }
if (s<=700) { logistic=exp(s)/(1+exp(s)) }
logistic }

e<-numeric()
a<-array(NA,c(2,hids))
for (i in 1:2) { for (j in 1:hids) {
a[i,j]=runif(1,-1,1) } }
b=-1+rbinom(hids+1,1,0.5)*2</pre>
```

```
epsilona<-array(0.5,c(2,hids))
epsilonb=rep(0.5,hids+1)
lambda=0.1; phi=0.5; theta=0.7
for (k in 1:n) {
for (j in 1:hids) {
y[j,k]=logistic(a[2,j]+a[1,j]*x[k]) }
z[k]=logistic(b[hids+1]+sum(b[1:hids]*y[1:
hids,k])) }
for (h in 1:epoch) {
da<-array(0,c(2,hids))
db<-rep(0,hids+1)
```

```
for (k in 1:n) {
p=(z[k]-t[k])*z[k]*(1-z[k])/n
for (j in 1:hids) { db[j]=db[j]+p*y[j,k] }
db[hids+1]=db[hids+1]+p
for (j in 1:hids) {
q=(z[k]-t[k])*z[k]*(1-z[k])*b[j]*y[j,k]*(1-z[k])*b[j]*y[j,k]*(1-z[k])*b[j]*y[j,k]*(1-z[k])*b[j]*y[j,k]*(1-z[k])*b[j]*y[j,k]*(1-z[k])*b[j]*y[j,k]*(1-z[k])*b[j]*y[j,k]*(1-z[k])*b[j]*y[j,k]*(1-z[k])*b[j]*y[j,k]*(1-z[k])*b[j]*y[j,k]*(1-z[k])*b[j]*y[j,k]*(1-z[k])*b[j]*y[j,k]*(1-z[k])*b[j]*y[j,k]*(1-z[k])*b[j]*y[j,k]*(1-z[k])*b[j]*y[j,k]*(1-z[k])*b[j]*y[j,k]*(1-z[k])*b[j]*y[j,k]*(1-z[k])*b[j]*y[j,k]*(1-z[k])*b[j]*y[j,k]*(1-z[k])*b[j]*y[j,k]*(1-z[k])*b[j]*y[j,k]*(1-z[k])*b[j]*y[j,k]*(1-z[k])*b[j]*y[j,k]*(1-z[k])*b[j]*y[j,k]*(1-z[k])*b[j]*y[j,k]*(1-z[k])*b[j]*y[j,k]*(1-z[k])*b[j]*y[j,k]*(1-z[k])*b[j]*y[j,k]*(1-z[k])*b[j]*y[j,k]*(1-z[k])*b[j]*y[j,k]*(1-z[k])*b[j]*y[j,k]*(1-z[k])*b[j]*y[j,k]*(1-z[k])*b[j]*y[j,k]*(1-z[k])*b[j]*y[j,k]*(1-z[k])*b[j]*y[j,k]*(1-z[k])*b[j]*y[j,k]*(1-z[k])*b[j]*y[j,k]*(1-z[k])*b[j]*y[j,k]*(1-z[k])*b[j]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[j,k]*y[
y[j,k])/n
da[1,j]=da[1,j]+q*x[k]
da[2,j]=da[2,j]+q }
```

```
if (h>1) {
for (i in 1:2) { for (j in 1:hids) {
if (ga[i,i]*da[i,j]>0) {
epsilona[i,j]=epsilona[i,j]+lambda }
if (ga[i,j]*da[i,i]<=0) {
epsilona[i,j]=epsilona[i,j]*phi }
}}
for (j in 1:(hids+1)) {
if (gb[j]*db[j]>0) {
epsilonb[j]=epsilonb[j]+lambda }
if (gb[i]*db[i]<=0) {
epsilonb[j]=epsilonb[j]*phi }
}}
```

```
a=a-epsilona*da
b=b-epsilonb*db
if (h==1) { ga=da; gb=db }
if (h>1) {
ga=theta*ga+(1-theta)*da
gb=theta*gb+(1-theta)*db }
for (k in 1:n) {
for (j in 1:hids) {
y[j,k] = logistic(a[2,j] + a[1,j] * x[k]) 
z[k]=logistic(b[hids+1]+sum(b[1:hids]*y[1:
hids,k])) }
```

hids = 1; epoch = 10000; $t \in [0.1, 0.9]$

hids = 1; epoch = 100000; $t \in [0.1, 0.9]$

hids = 3; epoch = 10000; $t \in [0.1, 0.9]$

hids = 3; epoch = 100000; $t \in [0.1, 0.9]$

hids = 5; epoch = 10000; $t \in [0.1, 0.9]$

hids = 5; epoch = 100000; $t \in [0.1, 0.9]$

hids = 5; epoch = 10000; $t \in [0.3, 0.7]$

hids = 5; epoch = 100000; $t \in [0.3, 0.7]$

