The Representation Technique Cryptanalysis for Dlog, SubsetSum, Decoding

Alexander May

Ruhr-University Bochum

Summer School Kaliningrad, July 2019

Lecture 1 1/11

Discrete Logarithms

DLP: Discrete Logarithm Problem

Given: Generator g for $G = \langle g \rangle$ with $2^{n-1} \leq |G| < 2^n$, $\beta = g^x$

Find: $x = \operatorname{dlog}_{q} \beta \in \mathbb{Z}_{|G|}$

Examples:

- $G = (\mathbb{Z}, +) = \langle 1 \rangle$, $X = \text{dlog}_1 \beta = \beta$
- G = (E(p), +), best algorithm $\tilde{\mathcal{O}}(\sqrt{|G|}) = \tilde{\mathcal{O}}(2^{\frac{n}{2}})$.
- $G = (\mathbb{Z}_p^*, \cdot)$, best algorithm sub-exponential
- G generic: $\Omega(\sqrt{|G|})$

Variants: small *x*, small Hamming weight *x*, faulty *x*, many *x*

Lecture 1 2/11

DLP Enumeration

Algorithm Brute-Force DLP

Input: g, β

- 0 x = 0.
- **2** While $(g^x \neq \beta)$ do x = x + 1;

Output: $x = d\log_a \beta$

Runtime:

- Need *x* iterations of while-loop, each costs one group operation.
- $\mathcal{O}(x) = \mathcal{O}(|G|) = \mathcal{O}(2^n)$ group operations.
- Each group operation costs usually $\mathcal{O}(\log^c n)$ bit operations.
- Notice: Brute-Force not bad for small x.

Lecture 1 3/11

Reaching Square Root Complexity

Idea:

- Write $x = x_1 + x_2 2^{n/2}$ with $0 \le x_1, x_2 < 2^{n/2}$.
- Use identity $g^{x_1} = \beta \cdot (g^{-2^{\frac{n}{2}}})^{x_2}$.

Algorithm Meet-in-the-Middle DLP

Input: g, β

- For $0 \le i < 2^{n/2}$ do store (i, g^i) in list L.
- Sort list L according to second entry.
- **o** For $0 \le i < 2^{n/2}$ do if $\exists (i, \beta \cdot (g^{-2^{\frac{n}{2}}})^j) \in L$, output $x = i + j2^{n/2}$.

Output: $x = dlog_g \beta$

Correctness: MitM terminates iff $(i, j) = (x_1, x_2)$.

Run time: $\tilde{\mathcal{O}}(2^{\frac{n}{2}}) = \tilde{\mathcal{O}}(\sqrt{|G|})$. But also memory $\tilde{\Theta}(\sqrt{|G|})$.

Exercise: Modify MitM such that it has runtime $\tilde{\mathcal{O}}(x)$.

Lecture 1 4 / 11

Multiple Discrete Logarithms

Multiple DLP

Given: Generator g for $G = \langle g \rangle$ with $2^{n-1} \leq |G| < 2^n$,

 $\beta_1 = q^{x_1}, \ldots, \beta_k = q^{x_k}$

Find: X_1, \ldots, X_k

Easy: $\tilde{\mathcal{O}}(k \cdot \sqrt{|G|})$.

Exercise: Show that Multiple DLP can be solved in $\tilde{\mathcal{O}}(\sqrt{k \cdot |G|})$.

Lecture 1 5/11

Small Weight Discrete Logarithms

Small weight DLP

Given: Generator g for $G = \langle g \rangle$ with $2^{n-1} \leq |G| < 2^n$,

 $\beta = g^x$ with known Hamming weight $\operatorname{wt}(x) = \alpha n, \ \alpha \in [0, 1]$

Find: x

Algorithm Brute-Force Small weight DLP

Input: g, β, α

• For all x with $\operatorname{wt}(x) = \alpha n$ do if $(g^x = \beta)$ output x;

Output: $x = d\log_q \beta$

Run time: $\tilde{\mathcal{O}}(\binom{n}{\alpha n})$. How good is that?

Lecture 1 6 / 11

Bounding Binomial Coefficients

Theorem Binomials

We have
$$\binom{n}{\alpha n} = \tilde{\Theta}(2^{H(\alpha)n})$$
 with $H(\alpha) = -\alpha \log(\alpha) - (1 - \alpha) \log(1 - \alpha)$.

By Stirling's formula $n! \sim \sqrt{2\pi n \cdot (\frac{n}{a})^n}$ we have

Corollary

For
$$0 \le \alpha \le \beta \le 1$$
: $\binom{\beta n}{\alpha n} = \binom{\beta n}{\alpha \frac{1}{\beta} \beta n} = \tilde{\Theta}(2^{H(\frac{\alpha}{\beta}) \cdot \beta n})$.

7/11

Small weight Discrete Logarithms

Brute-Force Small Weight DLP: $\tilde{\mathcal{O}}(\binom{n}{\alpha n}) = \tilde{\mathcal{O}}(2^{H(\alpha)n}), \ \alpha = \frac{1}{2} : \tilde{\mathcal{O}}(2^n).$

Exercise 1: Assume that we get the promise $x = x_1 + x_2 2^{n/2}$ with

$$0 \le x_1, x_2 < 2^{n/2} \text{ and } \operatorname{wt}(x_1) = \operatorname{wt}(x_2) = \alpha \cdot \frac{n}{2}.$$

Devise a MitM algorithm with run time $\tilde{\mathcal{O}}(2^{\frac{H(\alpha)}{2}n})$.

Exercise 2: Do Exercise 1 without promise.

Lecture 1 8/11

Faulty Discrete Logarithms

Faulty DLP

Given: Generator g for $G = \langle g \rangle$ with $2^{n-1} \leq |G| < 2^n$,

 $\beta = q^x$, faulty \tilde{x} with αn , $\alpha \in [0, 1]$ many $1 \to 0$ -bits of x

Find: x

Mini Exercise: Show how Faulty DLP relates to Small weight DLP.

Lecture 1 9/11

Discrete Logarithms

Lecture 1 10 / 11

Discrete Logarithms

Lecture 1 11 / 11