MSO201A: PROBABILITY & STATISTICS

Problem Set #9

- [1] Let $\{X_n\}$ be a sequence of random variables with $E(X_n) \to c$ and $V(X_n) \to 0$ as $n \to \infty$. Show that $X_n \xrightarrow{p} c$.
- [2] Let $\{X_n\}$ be a sequence of random variables with $E(X_n) = \mu_n$ and finite variance such that $\frac{1}{n^2}V\left(\sum_{i=1}^n X_i\right) \to 0$ as $n \to \infty$. Show that WLLN holds and $\bar{X}_n \xrightarrow{p} \bar{\mu}_n = \frac{1}{n}\sum_{i=1}^n \mu_i$.
- [3] Let $X_1, X_2, ... X_n$ be a random sample from U(0,1). Let $Y_n = \min(X_1, ..., X_n)$ and $Z_n = \max(X_1, ..., X_n)$. Show that (a) $\sqrt{Y_n} \xrightarrow{p} 0$, (b) $Z_n^2 \xrightarrow{p} 1$ and (c) $Y_n^2 Z_n^2 \xrightarrow{p} 0$.
- [4] Let $X_1, X_2, ..., X_n$ be i.i.d. N(0,1). Show that $\bar{X}_n / S_n \xrightarrow{p} 0$, where $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ and $S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i \bar{X}_n)^2$.
- [5] Suppose $Y_n \sim Bin(n, p)$, show that $(1-Y_n/n) \xrightarrow{p} 1-p$.
- [6] Let $\{X_n\}$ be a sequence of independent random variables with

$$P(X_n = x) = \begin{cases} 1/2, & x = -n^{1/4}, n^{1/4} \\ 0, & \text{otherwise.} \end{cases}$$

Show that $\bar{X}_n \xrightarrow{p} 0$.

[7] Let $\{X_n\}$ be a sequence of i.i.d. random variables with mean μ and finite variance. Show that

(a)
$$\frac{2}{n(n+1)} \sum_{i=1}^{n} i X_i \xrightarrow{p} \mu$$

(b)
$$\frac{6}{n(n+1)(2n+1)} \sum_{i=1}^{n} i^2 X_i \xrightarrow{p} \mu$$

- [8] Let $\{X_n\}$ be a sequence of i.i.d. random variables with U(0,1) distribution and $Z_n = \left(\prod_{i=1}^n X_i\right)^{1/n}$. Show that $Z_n \xrightarrow{p} e^{-1}$.
- [9] Let $\{X_n\}$ be a sequence of uncorrelated random variables with $E(X_n) = \mu_n$ and $V(X_n) = \sigma_n^2$. Show that if $\sum_{i=1}^n \sigma_i^2 \to \infty$ as $n \to \infty$, then WLLN holds for $\{X_n\}$.
- [10] Let $\{X_n\}$ be a sequence of i.i.d. random variables with U(0,1) distribution. Find c such that $\bar{X}_n \xrightarrow{p} c$.
- [11] Let $\{X_n\}$ be a sequence of $N\left(\frac{1}{n}, 1 \frac{1}{n}\right)$. Show that $X_n \xrightarrow{L} Z$, where $Z \sim N(0, 1)$.

- [12] Let $\{X_n\}$ be a sequence of i.i.d. random variables with $E(X_i) = \mu$, $Var(X_i) = \sigma^2$ and $E(X_i \mu)^4 = \sigma^4 + 1$. Find $\lim_{n \to \infty} P \left[\sigma^2 \frac{1}{\sqrt{n}} \le \frac{(X_1 \mu)^2 + \dots + (X_n \mu)^2}{n} \le \sigma^2 + \frac{1}{\sqrt{n}} \right]$.
- [13] Let $X_1, X_2, ... X_n$ be i.i.d. B(1, p), $S_n = \sum_{i=1}^n X_i$. Find n which would guarantee $P\left(\left|\frac{S_n}{n} p\right| \ge 0.01\right) \le 0.01$, no matter whatever the unknown p may be.
- [14] Let $X_1, ..., X_n$ be i.i.d. from a distribution with mean μ and finite variance σ^2 . Prove that $\frac{\sqrt{n}(\bar{X}_n \mu)}{S_n} \xrightarrow{L} Z, \text{where } Z \sim N(0,1).$
- [15] The p.d.f. of a random variable X is

$$f(x) = \begin{cases} 1/x^2 & x \ge 1\\ 0 & \text{otherwise} \end{cases}$$

Consider a random sample of size 72 from the distribution having the above p.d.f. Compute, approximately, the probability that more than 50 of these observations are less than 3.

- [16] Let $X_1, ..., X_{100}$ be i.i.d. from Poisson (3) distribution and let $Y = \sum_{i=1}^{100} X_i$. Using CLT, find an approximate value of $P(100 \le Y \le 200)$.
- [17] Let $X \sim Bin(100, 0.6)$. Find an approximate value of $P(10 \le X \le 16)$.
- [18] The p.d.f. of X_n is given by

$$f_n(x) = \begin{cases} \frac{1}{\overline{\ln}} e^{-x} x^{n-1} & x > 0\\ 0 & \text{otherwise} \end{cases}$$

Find the limiting distribution of $Y_n = X_n / n$.

[19] Let \bar{X} denote the mean of a random sample of size 64 from the Gamma distribution with density

$$f_n(x) = \begin{cases} \frac{1}{p\alpha^p} e^{-x/\alpha} x^{p-1} & x > 0\\ 0 & \text{otherwise.} \end{cases}$$

With $\alpha = 2$, p = 4. Compute the approximate value of $P(7 < \overline{X} < 9)$.

[20] $X_1,...,X_n$ is a random sample from U(0,2). Let $Y_n = \overline{X}_n$, show that $\sqrt{n}(Y_n-1) \xrightarrow{\mathcal{L}} N(0,1/3)$.