

目錄

01

資料集的敘述

02

資料集的前處理程式碼

03

神經網路架構與參數調整

04

學習成果評估

05

結論與心得

Reset-Both)

資料集的敘述

Check out the beta version of the new UCI Machine Learning Repository we are currently testing! Contact us if

Internet Firewall Data Data Set

Download Data Folder Data Set Description

Abstract: this data set was collected from the internet traffic records on a university's firewall.

Data Set Characteristics:	Multivariate	Number of Instances:	65532	Area:	Computer
Attribute Characteristics:	N/A	Number of Attributes:	12	Date Donated	2019-02-04
Associated Tasks:	Classification	Missing Values?	N/A	Number of Web Hits:	26612

Source:

Fatih Ertam, fatih.ertam '@' firat.edu.tr, Firat University, Turkey.

Data Set Information:

There are 12 features in total. Action feature is used as a class, There are 4 classes in total. These are allow, action, drop an

Attribute Information:

Source Port, Destination Port, NAT Source Port, NAT Destination Port, Action, Bytes, Bytes Received, Packets, Elaps

Relevant Papers:

F. Ertam and M. Kaya, "Classification of firewall log files with multiclass support vector machine,†in 6th International Sy

Citation Request:

If you have no special citation requests, please leave this field blank

ABOUT THE PROJECT

蒐集防火牆設備生成的數據,檢查生成的數據所使用的策略來允許或阻止 流量,希望能夠透過機器學習來找出 有問題的地方。

Dataset 網址

這是一個 Classification 的任務

FEATURES AND DESCRIPTION 1

01

Source Port

Client Source Port

02

Destination Port

Client Destination Port

03

NAT Source Port

Network Address Translation Source
Port

04

NAT Destination Port

Network Address Translation

Destination Port

05

Elapsed Time (sec)

Elapsed Time for flow

06

Bytes

Total Bytes

FEATURES AND DESCRIPTION 2

07

Bytes Sent

Bytes Sent

pkts_sent

10

Packets Sent

08

Bytes Received

Bytes Received

11

pkts_received

Packets Received

09

Packets

Total Packets

12

Action

Class (allow, deny, drop, reset-both)

資料觀察

我們可以發現到當Action 不是 allow 的時候,NAT Source Port、NAT Destination Port、Bytes Received、Packets、Elapsed Time(sec)、pkts_sent、pkts_received 有明顯的改變;而 Source Port 和 Destination Port 並沒有什麼影響。

				İ			İ		1		
Source Port	Destination Port	NAT Source Port	NAT Destination Port	Action	Bytes	Bytes Sent	Bytes Received	Packets	Elapsed Time (sec)	pkts_sent	pkts_received
50816	443	50681	443	allow	134	60	74	3	6		2 1
50057	80	26007	80	allow	1570	754	816	10	16		5 4
52146	80	44068	80	allow	366	240	126	7	33		5 2
54139	53	64934	53	allow	168	78	90	2	31		1 1
49410	53	29049	53	allow	177	94	83	2	31		1 1
53994	16605	15809	16605	allow	70	70	0	2	8	1	2 0
35242	8635	35242	8635	allow	138	78	60	2	6		1 1
52148	80	27900	80	allow	366	240	126	7	33		5 2
49900	443	28761	443	allow	1820	1101	719	18	73	10	8
43931	53	36161	53	allow	168	78	90	2	31		1 1
51048	445	0	0	drop	70	70	0	1	0		1 0
51045	445	0	0	drop	70	70	0	1	0		1 0
13394	23	0	0	deny	60	60	0	1	0		1 0
61078	57470	0	0	deny	62	62	0	1	0		1 0
55725	445	0	0	drop	70	70	0	1	0		1 0
55723	445	0	0	drop	70	70	0	1	0		1 0
55724	445	0	0	drop	70	70	0	1	0		1 0
51125	445	0	0	drop	66	66	0	1	0		1 0
51123	445	0	0	drop	66	66	0	1	0		1 0
51122	445	0	0	drop	66	66	0	1	0		1 0
1024	21854	0		reset-both	157	157	0	1	C		1 0
11317	53563	0		reset-both	143	143	0	1	C)	1 0

Allow

允許網路通過。

Drop

降低網路流量,會漸漸覆蓋掉預設的拒絕指令,但並不會送出 TCP Reset 指令至Host / Application。

Deny

阻止網路通過並強制拒絕應用程序。

Reset-Both

送出 TCP Reset 指令至 client 端與 server 端。

防 牆 安 全 政 策

(Action)

資料數量分析

整體數據極度不平衡,尤其是 Reset-Both 只佔據了 0.2% 而已,數量小到可以忽略其存在,而又因為這份資料集是從防火牆蒐集而來的,不像 image 可以旋轉縮放等等,可以做 Data Augmentation。

各參數之間的 Pearson相關係數

從 Pearson 相關係數的熱力圖裡,我們可以發現與 Action 最有相關的居然是 NAT Source Port,其他幾乎都低於 0.1。

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

-0.4

- -0.6

資料集的 前處理程式碼

資料清理

我們在其中一項資料發現極端值,它可能會影響到訓練的成果,因此需要刪除此筆異常值資料,且我們沒有發現有值缺失,所以不需要補空值。

	Source Port	Destination Port	NAT Source Port N	AT Destination Port	Bytes	Bytes Sent	Bytes Received	Packets 1	Elapsed Time (sec)	pkts_sent	pkts_received	Action
10221	52125	80	4380	1 80	2178	1003	1175	5 10	15	6	4	0
10222	57235	15187	23270	15187	1.269E+09	948477220	320881795	1036116	9283	747520	288596	0
10222	50/10	11/2	761	1/12	14040	600	12///	7 10	25	6	12	Λ

資料正規化

我們使用 Excel 的取代功能,把 Action 裡的 allow、deny、drop 和 Reset-Both 分别替换成 0、1、2、3。

					pkts_received	pkts_sent	Elapsed Tir	Packets	Bytes Rece	Bytes Sent	Bytes	Action	IAT Destii	NAT Source	Destination N	Source Por
	2			71777 (0	1	1	30	2	83	94	177	allow	53	54587	53	57222
×	,			尋找及取代	9	10	17	19	3168	1600	4768	allow	3389	56258	3389	56258
			Ĉ(P)	尋找(<u>D</u>) 取代	1	1	1199	2	120	118	238	allow	50321	43265	50321	6881
~			Allow	尋找目標(<u>N</u>):	7	8	17	15	1889	1438	3327	allow	3389	50553	3389	50553
~			o	取代成(E):	18	13	16	31	18580	6778	25358	allow	443	45848	443	50002
<u>D</u> >>	選項(I):				9	12	16	21	2366	1595	3961	allow	443	39975	443	51465
					3	3	7	6	180	140	320	allow	47094	45469	47094	60513
關閉	找下一個(F)	全部尋找(1)	取代(<u>R</u>)	全部取代(<u>A</u>)	11	12	96	23	4643	3269	7912	allow	443	21285	443	50049
					0	1	5	1	0	70	70	allow	58774	2211	58774	52244
					16	15	75	31	6582	1674	8256	allow	443	16215	443	50627
					5	7	35	12	318	378	696	allow	80	45378	80	43676
					12	10	15	22	7072	870	7942	allow	443	16680	443	52190
					7	9	31	16	1166	3639	4805	allow	80	20479	80	50690
					1	1	30	2	82	86	168	allow	53	45448	53	55597
					10	9	75	19	6342	950	7292	allow	443	45916	443	49164
					14	13	28	27	8390	2532	10922	allow	443	63451	443	36887
					1	1	30	2	132	78	210	allow	53	33288	53	1939
					1	1	30	2	93	102	195	allow	53	33175	53	50281
					1	1	30	2	83	94	177	allow	53	51448	53	57222
					1	1	30	2	83	94	177	allow	53	57885	53	56710

資料標準化

在大數據資料中,是用不同資料欄位與資料值所組成,他們可能分佈 狀況可能都不盡相同,因此必須將特徵資料按比例縮放,讓資料落在 某一特定的區間。

我們使用 Matlab 裡的normalize,使得資料分佈區間在 [0,1] 之間。

predicator = normalize([port, Byte, other])

predicator = 65531×11

	1	2	3	4	5	6	7	8	9	10	11
8	0.0431	-0.5488	0.0911	-0.2288	-0.0264	-0.0048	-0.0307	-0.0203	0.1009	-0.0133	-0.0240
9	0.1870	2.6100	-0.7770	5.7606	-0.0294	-0.0081	-0.0329	-0.0273	-0.2021	-0.0214	-0.0298
10	0.0810	-0.5488	-0.1396	-0.2288	-0.0263	-0.0065	-0.0298	-0.0178	0.0310	-0.0111	-0.0214
11	-0.3747	-0.5685	1.1877	-0.2660	-0.0292	-0.0078	-0.0328	-0.0238	-0.1022	-0.0170	-0.0272
12	0.1834	-0.5488	-0.1185	-0.2288	-0.0264	-0.0073	-0.0296	-0.0206	-0.1688	-0.0148	-0.0235
13	0.0851	-0.5685	0.0544	-0.2660	-0.0276	-0.0044	-0.0324	-0.0225	-0.1155	-0.0155	-0.0261
14	0.4067	-0.5699	1.1909	-0.2688	-0.0294	-0.0081	-0.0329	-0.0269	-0.1189	-0.0214	-0.0293
15	-0.0149	-0.5488	1.2122	-0.2288	-0.0267	-0.0072	-0.0299	-0.0216	0.0310	-0.0155	-0.0246

神經網路架構與參數調整

參數

- _ 20層隱藏層
- _ 使用 patternnet
- 80 / 10 / 10 · Train / Validation / Test
- 4層輸出層

學習成果評估

Confusion Matrix

Accuracy : 98.3%

Precision : **73.025%**

Recall : 73.825%

F1 Score : 73.423%

*我的模型的 Precision 比論文的模型都高

TABLE III. EVALUATION RESULTS

Method	F ₁ Score	Precision	Recall
SVM Linear	75.4	67.5	85.3
SVM Polynomial	53.6	61.8	47.4
SVM RBF	76.4	63.0	97.1
SVM Sigmoid	74.8	60.3	98.5

*論文只有計算 F1 Score、Precision、Recall 而已,沒有給 Confusion Matrix,所以無法得知其 Accuracy

ROC Curve

我的model

論文的model

結論與心得

我的模型的 Precision 比論文的模型都還要高,但 Precision 和 Recall 本身就是相輔相成的數值,這代表我的模型較能預測為 Positive 的結果。

回到這份 Dataset 的主軸 - 分析防火牆設備生成的數據,來產生指令(Allow、Deny、Drop、Reset-Both)

為了安全著想,我們應該更在乎準確率,「寧可錯殺一萬,不可放過萬一」。 所以我認為我的模型比論文的模型還要更適合,儘管兩者的F1 score 並沒有 太大的差距。

THANKS