Estimación de centroides con PPMs

Gerardo Martín

El centroide

- Presencias asociadas a condiciones ambientales
- Condiciones ambientales tienen valores variables
- Coordenadas de las condiciones ambientales más frecuentes

Temperatura anual promedio Bio 1

$$\mu = 25.34$$

$$\sigma = 3.89$$

Rango = 17.3 - 35.39

Condiciones en las que se observa con mayor frecuencia

Condiciones ocupadas por el bicho

Temperatura mínima $\mu = 15.5$

Precipitación anual $\mu = 1024.7$

La distribución normal

Función que describe la frecuencia de los valores de una variable

 Podemos estimar μ y σ con las fórmulas de siempre

Desviación estándar

$$\mu = \frac{\sum_{i=1}^{n} X_i}{n}$$

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x - \mu)^2}{n - 1}}$$

Con μ, caracterizamos el máximo de las curvas de frecuencia

Implicaciones para poblaciones

- Mayor frecuencia de observación → ¿más individuos en esas condiciones?
- ¿Mayor abundancia en centroide?

Problemas de estimación de centroide

Algunas variables dificultan (log-normales, izq), ó impiden caracterizar la región con más puntos de presencia

Ecological Modelling

journal homepage: www.elsevier.com/locate/ecolmodel

Discrepancies between point process models and environmental envelopes identify the niche centroid – geography configuration

Gerardo Martín ^{1,*}, Carlos Yáñez-Arenas ², Xav

Elipsoides tienen menos error que PPMs, pero PPMs puede caracterizarlo con mayor precisión

 $^{^{\}rm 1}$ Departamento de Sistemas y Procesos Naturales, Escuela Nacional de Estudios : 97357, México

² Laboratorio de Ecología Geográfica, Unidad de Conservación de la Biodiversidad Papacal, Yucatán 97302, México

Razones....

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

Es una ecuación cuadrática, con coeficientes μ y σ

Con PPMs podemos ajustar curvas cuadráticas

$$\log \lambda(x) = \alpha + \beta x + \beta' x^2$$

 λ = densidad de observaciones

 α = intercepto

 β y β ' = efecto de x sobre λ

Utilizando los coeficientes para encontrar coordenadas del centroide

$$d\frac{\lambda}{dx_i} = \beta_i + 2\beta' x_i$$

$$d\frac{\lambda}{dx} = 0$$

$$x_i^* = -\frac{\beta_i}{2\beta_i'}$$
Addesign rections a property of a part of the property of a part of the property of th

 X_i

Utilizando derivación, podemos encontrar el punto máximo para cada *xi* (variable bioclimática, p. ej.).

Requerimientos

$$\beta'$$
<0

Si $\beta > 0 \rightarrow$ caracterizamos un mínimo, no máximo

Aplicación

Densidad pob 0.56 (MPP) vs 0.52 (Elipsoide)

PPM MVE • 257.3 • 128.1 max 20 45 40 35 min 30

-115

-105 -100

Calamospiza melanocorys

-110

-105

Dist entre centroides 0.28

Correlación entre favorabilidades 0.94

Aplicación

Densidad pob 0.04 (MPP) vs 0.006 (Elipsoide)

Dist entre centroides 405.8

Species	Variable	β	β '
Callipepla californica	bio8	-0.014 **	$-4.5 imes 10^{-05}$
	bio11	0.028 ***	$-1.3 imes 10^{-04}$ ***
	bio12	0.001 **	-8.4×10^{-07} ***
Calamospiza melanocorys	bio5	0.13 ***	-2.1×10^{-04} ***
	bio7	0.38 ***	-4.4×10^{-04} ***
	bio16	0.046 ***	$-1.3 imes 10^{-04}$ ***

			-	-		
Species	Centroid coordinates		Distance between centroids	Correlation		
PPM		MVE		Surfaces (r)	Abundance (ρ)	
					PPM	MVE
Callipepla californica	-155.02, 104.9, 828.8	28.6, 20.6, 686.9	405.8	0.87***	0.04	0.006
Calamospiza melanocorys	309.9, 434.0, 176.6	297.2, 433.2, 181.0	0.28	0.94***	0.56***	0.52***

Implicaciones

- PPMs reproducen mejor favorabilidad
- Elipsoides, error más pequeño
- Diferencias en favorabilidad estimada → centroide ausente de zona geográfica ocupada

Tutorial