

Metody programowania 2015/2016 Program 4 Tomek i przyjaciele

P04

Opis

Na Wyspie Sodor trwał gorący i słoneczny dzień. Do stacji przyjechały pociągi, by pożegnać swojego przyjaciela Tomka, który po długoletniej pracy odchodzi na emeryturę. Z tej okazji Gruby Zawiadowca zorganizował zabawę, w której brały udział wszystkie pociągi. W czasie zabawy Gruby Zawiadowca podawał polecenia, które mieli wykonywać zaproszeni goście.

Twoim zadaniem jest przeprowadzić symulacje zabawy używając ściśle określonych struktur danych do reprezentacji obiektów:

- Listy podwójnej cyklicznej z głową do reprezentacji pojedynczego pociągu,
- Listy pojedynczej bez głowy do reprezentacji zbioru pociągów.

Każdy pociąg ma swoja nazwę i co najmniej jeden wagon. Źródłem informacji jest poniższa lista poleceń Grubego Zawiadowcy dotycząca imprezy:

a.	New T1 W	– tworzy nowy pociąg o nazwie ${\bf T1}$ z jednym wagonem o nazwie ${\bf W}$ wstawia go do listy pociągów.
b.	InsertFirst T1 W	– wstawia wagon o nazwie $f w$ na początek pociągu o nazwie $f T1$
c.	InsertLast T1 W	– wstawia wagon o nazwie ${f w}$ na koniec pociągu o nazwie ${f T1}$
d.	Display T1	– wypisuje opis pociągu o nazwie T1
e.	Trains	– wypisuje aktualną listę pociągów, biorących udział w zabawie.
f.	Reverse T1	– odwraca kolejność wagonów w pociągu o nazwie T1
g.	Union T1 T2	 dołącza pociąg o nazwie o nazwie T2 na koniec pociągu o nazwie T1 i usuwa pociąg T2 z listy pociągów
h.	DelFirst T1 T2	 usuwa pierwszy wagon z pociągu o nazwie T1 i tworzy z niego nowy pociąg o nazwie T2 i jeśli to był jedyny wagon w T1 to T1 przestaje istnieć (jest usuwany z listy pociągów).
i.	DelLast T1 T2	 usuwa ostatni wagon z pociągu o nazwie T1 i tworzy z niego nowy pociągu o nazwie T2, przy czym, jeśli to był jedyny wagon w T1 to T1 przestaje istnieć (jest usuwany z listy pociągów).

Wejście

Pierwsza linia wejścia zawiera liczbę całkowitą z – liczbę zestawów danych, których opisy występują kolejno po sobie.

Pierwsza linia każdego zestawu zawiera liczbę całkowitą n ($1 \le n \le 10^6$) będącą liczbą poleceń, zaś każde polecenie umieszczone jest w osobnej linii i zawiera od jednego do trzech słów.

Pierwsze słowo jest nazwą polecenia i jest zawsze zakończone spacją, zaś pozostałe słowa, jeśli występują są jego parametrami, oddzielonymi pojedynczą spacją.

Nazwy pociągów i wagonów spełniają wymogi identyfikatorów stosowanych w programowaniu w języku Java, zaś nazwy poleceń są traktowane jako słowa zastrzeżone.

Metody programowania 2015/2016 Program 4 Tomek i przyjaciele

P04

Przykładową listę trzech pociągów ilustruje poniższy rysunek:

Wyjście

- W reakcji na polecenia Display znajdujące się na wejściu wypisz kolejno opisy pociągów.
 Opis pociągu rozpoczyna się jego nazwą, zakończoną znakiem ':' i spacją, po której występują nazwy wagonów rozdzielanych znakiem spacji w kolejności od pierwszego do ostatniego wagonu.
- W reakcji na polecenia Trains znajdujące się na wejściu wypisz aktualną listę pociągów.
 Opis listy rozpoczyna się słowem Trains, zakończonym znakiem ':' i spacją, następnie występują nazwy pociągów rozdzielanych znakiem spacji w kolejności od pierwszego do ostatniego pociągu na liście.

Wymagania implementacyjne

- 1. Jedynym możliwym importem jest java.util.Scanner.
- 2. W szczególności zabronione są zarówno w całości jak i w jakiejkolwiek części importy **java.util.AbstractList** oraz **java.awt.List**.
- 3. Wszystkie wymienione polecenia, poza *Display* oraz *Trains* muszą działać w czasie *O*(1) nie licząc pomocniczych operacji związanych z wyszukiwaniem zadanego pociągu i używać jak najmniej pamięci.
- 4. Wszystkie pomocnicze operacje jak np. wstawianie nowego pociągu, wyszukiwanie zadanego pociągu lub usuwanie pociągu zaimplementuj tak, aby zawierały minimalną liczbę przeglądów list.

Metody programowania 2015/2016 Program 4 Tomek i przyjaciele

P04

- 5. Program powinien sprawdzać czy wszystkie polecenia są sensowne np.
 - (a) czy nie utworzą drugiego pociągu o tej samej nazwie, w przeciwnym przypadku program wypisuje komunikat: Train *name* already exists
 - (b) czy nie zostaną użyte do łączenia, odwracania wypisywania, wstawiania lub usuwania wagonów nieistniejących pociągów, w przeciwnym przypadku wypisuje komunikaty: Train name does not exist

Przykład danych

Wejście:	Wynik:
1	
21	T1: W1 W2
New T1 W1	Train T1 already exists
InsertLast T1 W2	T1: W0 W1 W2
Display T1	Train T5 does not exist
New T1 W0	T1: W1 W2
InsertFirst T1 W0	T2: W0
Display T1	T1: W1
Display T5	T3: W2
DelFirst T1 T2	Train T6 does not exist
Display T1	Train T2 already exists
Display T2	Train T9 does not exist
DelLast T1 T3	Train T1 does not exist
Display T1	Train T1 does not exist
Display T3	T9: Z0
DelLast T6 T1	Trains: T9 T3 T2
DelFirst T1 T2	
Union T9 T8	
Reverse T1	
Display T1	
New T9 Z0	
Display T9	
Trains	