背景和数据

某项疟疾疗法引入前后的坦桑尼亚家庭调查数据。其中包括血样数据,是否生过病,生病时长,生病后是否找过政府或者 NGO 看病,所在群体的被误诊水平。明尼苏达公路建设合同数据,包括每天的工作计划,实际工作的或者延误的小时数,气象数据以及对逾期惩罚的规定。

柏林在 1936, 1986, 2006 年的众多片区数据,包括地价、就业、交通、公共设施建设等。

题目	作者	期刊	背景和数据	方法	结论	贡献&其他
Learning,	Achyuta	RES, 2014	 某项疟疾疗法引入前后的	上 - 先构建理论模型,	新技术的错配在坦桑尼亚怎样	在采用新技术时,
Misallocation, and	Adhvaryu	KES, 2014	北	九构建基比模型, 再回归检验, Y:	影响新疟疾疗法的学习和使用。	learning 很重要, 但缺少
Technology	Adiivaryu		其中包括血样数据,是否	提西克福·	误诊高的群体 learning 低,而疗法	对影响 learning rate 因
Adoption:			生过病,生病时长,生病	X: 其他人被诊断	差异显著会提高就诊可能性。	素的研究。
Evidence from			上	的情况,其他控制	误诊降低了 learning rate,人们	
New Malaria			NGO 看病, 所在群体的被	· 变量	通过观察已接受治疗者的治疗效	义,要提高诊断质量。
Therapy in			误诊水平。	文里	果来学习新治疗方法,误诊增加	强调了资源最优配置
Tanzania					不不子刀刺和刀刀石,灰厚相加 了 noise。	是 promote adoption via
I anzama					」,noise。 上 误诊降低了治疗方法的预期疗	learning 的重要机制,之
					一	前被忽视。
Moral Hazard,	Gregory Lewis	RES, 2014	明尼苏达公路建设合同数	通过数据知道完成	工作总是恰好在 deadline 完成,对	对合同设计的改进,以
Incentive		RES, 2014	据,包括每天的工作计划,	工程的工作量,将	于外部环境的负面冲击,施工方	內晉阿及[[] 的以 <i>进</i> ,以
	Patrick Bajari					
Contracts, and			实际工作的或者延误的小	实际工作效率与最	提高了努力程度。	
Risk: Evidence			时数,气象数据以及对逾	优效率比较。	发现 deadline 惩罚的合同不是总	
from Procurement			期惩罚的规定。	反事实分析,和无	福利最优的,每天收10%的交通	
				逾期惩罚的合同或	延误成本的合同总福利更高。外	
				者按照工期一直收	部冲击的方差并不大。	
				交通延误费的合同		
				比较。		10 1 - 1 N 1 1 N 1 1 1 1 1 1 1 1 1 1 1 1 1
The Economics of	Gabriel Ahlfeldt	Econometrica	柏林在 1936, 1986, 2006	新提出的计量模	生产和发展密度随位置不同而有	提出了城市内部结构模
Density: Evidence	Stephen Redding	, 2015	年的众多片区数据,包括	型。	差异,这些差异源于同地区的劳	型,新的计量模型能很
From the Berlin	Daniel Sturm		地价、就业、交通、公共		动力等其他资源影响。东西德隔	好地解释数据,能刻画
Wall	Nikolaus Wolf		设施建设等。		离重新分配了地价和就业, 合并	城市内各个地区的异质
					以后这些资源又逐渐统一。	性。
					生产外部性(生产场所对周围资	
					源的利用)在城市合并后由于交	
					通时间增加而下降。	