UNIWERSYTET ZIELONOGÓRSKI

Wydział Informatyki, Elektrotechniki i Automatyki

Praca dyplomowa

Kierunek: Informatyka

Analiza porównawcza bibliotek uczenia maszynowego języka C++ na potrzeby zastosowań w biostatystyce

Kacper Wojciechowski

Promotor: Prof. dr hab. inż. Dariusz Uciński

Pracę	akceptu	lé:
(data	i podpis	promotora

Streszczenie

DO NAPISANIA

Słowa kluczowe: uczenie maszynowe, C++, biblioteka, sieci neuronowe, głębokie uczenie maszynowe, płytkie uczenie maszynowe.

Spis treści

1.	Wst	ер	1
	1.1.	Wprowadzenie	1
		Cel i zakres pracy	
	1.3.	Struktura pracy	2
2.	Ucz	enie maszynowe w ujęciu praktycznym	3
	2.1.	Problemy współczesnego uczenia maszynowego	3
	2.2.		
		nowego	5
	2.3.	Biblioteki - co mają na celu ?	6
3.	Inży	vnieria danych eksperymentalnych i testowe szablony modeli	7
	3.1.	Omówienie danych eksperymentalnych	7
		Charakterystyka i przetwarzenie danych	
		3.2.1. Analiza rozkładu danych	
		3.2.2. Czyszczenie danych	Ĝ
3.3. Szablony docelowych modeli dla zadanych danych eksperymen			10
		3.3.1. Regresja logistyczna	10
		3.3.2. Głęboka sieć neuronowa	
		3.3.3. Maszyna wektorów nośnych	

Spis rysunków

2.1.	Schemat perceptronu - Simplelearn	4
2.2.	Multithreading in modern C++ - Modernes C++	5
3.1.	Histogram rozkładu zmiennej odpowiedzi	8
3.2.	Przykłady histogramów zmiennych decyzyjnych	8
3.3.	Przykład analizy obserwacji odstających dla poszczególnych klas zmien-	
	nej odpowiedzi	9

Spis tabel

Rozdział 1

Wstęp

1.1. Wprowadzenie

We współczesnym stanie techniki coraz częściej można spotkać się z urządzeniami i programami o inteligentnych funkcjach, takich jak predykcja na podstawie zestawu danych, rozpoznawanie obrazu, rozpoznawanie mowy i przetwarzanie języka naturalnego. Znajdują one zastosowanie w różnych dziedzinach codziennego życia, m.in. w medycynie. W zależności od potrzeb techniki uczenia maszynowego można wykorzystać do zastosowań medycznych dla zadań takich jak np. rozpoznawanie komórek rakowych na skanach rezonansem magnetycznym, podejmowanie decyzji na podstawie zbioru objawów obecnych u pacjenta, lub przewidywanie norm związków naturalnie występujących w organiźmie ludzkim w zależności od okoliczności.

Jedną z istotnych dziedzin medycyny jest biostatystyka, polegająca na wykorzystaniu analizy statystycznej do wnioskowania na podstawie zbiorów danych, takich jak wyniki morfologiczne, wyniki innych przeprowadzonych badań, informacji o nawykach żywieniowych i stylu życia pacjenta. Szczególnie istotną formą systemów operujących w tej dziedzinie są systemy eksperckie, wykorzystujące techniki płytkiego i głębokiego uczenia maszynowego w celu wspierania diagnozy stawianej przez wykwalifikowanych lekarzy.

U podstaw wyżej wymienionych zagadnień leży implementacja rozwiązań opartych o teorię uczenia maszynowego, oraz wszelkie związane z tym problemy. W związku z tym na przestrzeni lat powstało wiele gotowych bibliotek i framework'ów mających na celu wsparcie programistów w szybkim i prawidłowym wprowadzaniu rozwiązań sztucznej inteligencji w różnych językach, począwszy od języka C++, przez Python, po środowiska takie jak Matlab.

Istotnym krokiem w przygotowywaniu produktu wykorzystującego sztuczną inteligencję jest wybór narzędzi dokonywany na etapie projektowania, tak, aby oferowały one możliwości adekwatne do wymagań funkcjonalnych przygotowywanego produktu. Niniejsza praca dokonuje analizy porównawczej bibliotek uczenia maszynowego dla języka C++ w kontekście zastosowań w dziedzinie biostatystyki.

2 Wstep

1.2. Cel i zakres pracy

Celem pracy jest przeprowadzenie analizy i przygotwanie zestawienia bibliotek do uczenia maszynowego dla języka C++, obrazując przykłady bazujące na zestawie danych biostatystycznych.

Zakres pracy obejmował:

- Przegląd dostępnych bibliotek języka C++;
- Inżynierię i kształtowanie danych;
- Płytkie i głębokie uczenie nadzorowane;
- Kwestie wydajnościowe w dopasowywaniu i wdrażaniu modeli;
- Badania praktyczne w oparciu o zestaw danych medycznych i biologicznych.

1.3. Struktura pracy

DO NAPISANIA

Rozdział 2

Uczenie maszynowe w ujęciu praktycznym

2.1. Problemy współczesnego uczenia maszynowego

Na uczenie maszynowe składają się zaawansowane techniki algorytmiczne i złożone struktury danych przeprowadzające obliczenia na zadanym przez użytkownika zestawie danych uczących, testujących, i danych otrzymywanych w trakcie użytkowania wytworzonego modelu.

Do podstawowych form modeli należą modele produkowane w wyniku technik takich jak regresja liniowa i nieliniowa, regresja logistyczna czy liniowa analiza dyskryminacyjna. W ich wyniku tworzone są modele w postaci wielomianów, które później wymagają stosunkowo bardzo małych nakładów mocy obliczeniowej w celu ewaluacji wyników na podstawie zadanego zestawu danych.

Bardziej zaawansowanymi metodami uczenia maszynowego są drzewa decyzyjne, stanowiące strukturę opartą o logikę drzewa. Każdy z poziomów drzewa odpowiada najlepszemu na danym etapie predyktorowi z dostępnych regresorów, powodując rozgałęzienie na poszczególne wartości lub zakresy. Proces obliczania wartości zmiennej wyjściowej odbywa się poprzez przejście przez drzewo od korzenia do jednego z końcowych liści.

Do najbardziej zaawansowanych, aczkolwiek także najbardziej wymagających obliczeniowo i pamięciowo technik uczenia maszynowego należą techniki uczenia głębokiego wykorzystujące sieci neuronowe, jak np. głębokie sieci neuronowe (ang. Deep Neural Network, DNN) i konwolucyjne sieci neuronowe (ang. Convolutional Neural Network, CNN). U podstaw tych metod leży struktura sieci neuronowej, składająca się z warstwy wejściowej, jednej lub więcej warstw ukrytych posiadających perceptrony, oraz jednej warstwy wyjściowej. Każdy węzeł z poprzedniej warstwy połączony jest z każdym węzłem w następnej warstwie, lecz perceptrony znajdujące się w tej samej warstwie są wzajemnie niezależne. Każde połączenie posiada przypisaną wagę użytą do przeliczenia wartości wchodzącej do danego perceptronu z danego sąsiada z poprzedniej warstwy. Wewnątrz peceptronu obliczana jest suma iloczynów wyjść z poprzednich perceptronów i wag odpowiadających połączeniom, a następnie dla uzyskanej sumy obliczana jest wartość funkcji aktywacyjnej, która stanowi wartość wyjściową perceptronu. Przykładowa sieć wykorzystująca pojedynczy perceptron w pojedynczej warstwie ukrytej przedstawiona została na rys. 2.1.

Rysunek 2.1. Schemat perceptronu - Simplelearn

Bardziej rozbudowane metody wykorzystujące sieci neuronowe, jak np. CNN, wymagają dodatkowych kroków obliczeniowych związanych z wstępnym przetworzeniem danych wejściowych, aby były one przyswajalne dla wykorzystywanej sieci.

Analizując struktury danych wymagane przez poszczególne omówione powyżej rodzaje modeli, wyróżnić można następujące problemy napotykane podczas implementacji metod uczenia maszynowego:

- Wymagania wydajnościowe są one ściśle powiązane ze złożonością obliczeniową wykorzystanych metod, wydajnością zastosowanego języka i wydajnością zastosowanej platformy sprzętowej. Docelowym efektem jest minimalizacja czasu wymaganego na uczenie modelu (chodź tutaj tolerowane są także długie czasy, szczególnie w przypadku dużych zestawów danch uczących) i czasu propagacji modelu (w przypadku czego minimalizacja czasu propagacji stanowi priorytet).
- Wymagania pamięciowe wynikają one z wykorzystywanych platform sprzętowych i ich ograniczeń pamięciowych. Przykładem powyższego dylematu jest zastosowanie modeli uczenia maszynowego na platformach mobilnych i platformach systemów wbudowanych, gdzie obecne rozmiary pamięci RAM i pamięci masowej (szczególnie w przypadku platform wbudowanych) potrafią być wyraźnie ograniczone w stosunku do systemów komputerowych.

W trakcie rozwoju technologii uczenia maszynowego, postawiono stanowcze kroki w kierunku rozwiązywania powyższych problemów, aby sprostać narastającym wymaganiom związanym z coraz to nowymi i bardziej skomplikowanymi zastosowaniami sztucznej inteligencji. Dokonywano tego poprzez między innymi optymalizację algorytmów, dobór platform sprzętowych o wysokim taktowaniu, możliwym zrównolegleniu operacji, oraz wykorzystaniu wysoko wydajnych języków programowania, w szczególności języków mających możliwość wykorzystania wsparcia ze strony niskopoziomowych operacji.

2.2. Język C++ jako narzędzie do rozwiązania problemów uczenia maszynowego

Dostępne są różne języki i środowiska wspierające uczenie maszynowe, począwszy od języków takich jak Python, C++, Java czy Matlab. Jednak spośród wymienionych kandydatów szczególnie istotnym wyborem jest język C++.

C++ to język imperatywny charakteryzujący się silnym typowaniem, łączący programowanie niskopoziomowe dla konkretnych architektur z wysokopoziomowym programowaniem, w związku z czym oferuje programistom dużą kontrolę nad wykorzystaniem pamięci i możliwość optymalizacji w postaci m.in. dostosowywania wykorzystanych typów danych do wymagań funkcjonalnych tworzonej sieci, kontroli lokalizacji zmiennych (programista decyduje czy zmienna lub struktura znajdzie się na stosie czy stercie) oraz optymalizację czasów wywołań funkcji poprzez sugerowanie kompilatorowi utworzenia funkcji inline. W przeciwieństwie do języków skryptowych których kod jest interpretowany w trakcie wykonywania, takich jak Python i język środowiska Matlab, C++ jest językiem kompilowanym. Oznacza to, że program napisany w C++ przetwarzany jest z postaci tekstu do wykonawczego kodu binarnego dostosowanego do wybranej architektury procesora. Usuwa to całkowicie nadmiar złożoności obliczeniowej wykonywanego programu związanej z interpretacją poleceń i tłumaczeniem ich na język procesora danej platformy w trakcie wykonywania programu, gdyż jest to wykonywane tylko raz, na etapie kompilacji, dodatkowo pozwalając na zastosowanie przez kompilator mechanizmów optymalizacji dostępnych dla wybranej platformy.

Część mechanizmów z języka C++, wywodzących się jeszcze z języka C, pozwala na wykorzystanie wstawek kodu źródłowego w języku Assembler dla wybranego procesora, co zwiększa wydajność programu kosztem przenośności kodu. Dodatkowo niektóre platformy oferują API modułów akceleracji sprzętowej (jak np. system Android udostępniający Neural Networks API, NNA dla sieci neuronowych), co oferuje dodatkowe przyspieszenie czasu działania programu.

Rysunek 2.2. Multithreading in modern C++ - Modernes C++

Jedną z popularnych technik mających na celu znaczne zwiększenie wydajności modeli sztucznej inteligencji jest zrównoleglenie przetwarzania. Dostępność mechanizmów wielowątkowych dla procesorów (wprowadzonych w standardzie C++11 i

dalej rozwijanych, jak przedstawiono na rys.2.2.), oraz kompatybilność języka C++ z językiem CUDA pozwala wykonywać wiele obliczeń równolegle poprzez wykorzystanie wielu rdzeni lub oddelegowaniu części przetwarzania do karty (lub wielu kart) graficznej (gdzie ilość procesorów GPU znacząco przewyższa ilość rdzeni CPU). Dodatkowym atutem wykorzystania języka C++ przy tworzeniu modelu sztucznej inteligencji jest łatwa integracja z programami dedykowanymi do wysokiej wydajności, napisanymi w tym języku.

Wymienione wyżej mechanizmy i cechy charakterystyczne języka umożliwiają programistom znaczną optymalizację przygotowywanych rozwiązań sztucznej inteligencji, co przekłada się na bardziej efektywne zużycie pamięci, zabezpieczenie przed przeładowaniem stosu procesora, oraz krótsze czasy propagacji utworzonych modeli.

2.3. Biblioteki - co mają na celu?

Implementacja mechanizmów pozwalających na tworzenie rozwiązań sztucznej inteligencji, z racji na swoją złożoność, wymagania dotyczące kompetencji twórców oraz konieczność optymalizacji jest czasochłonna i kosztowna. Tu z pomocą przychodzą biblioteki utworzone przez korporacje oraz społeczność programistów open source. Stanowią one gotowe zbiory mechanizmów (najczęściej pisane w sposób obiektowy, a więc ubrane w klasy posiadające określone zestawy metod), które są na bieżąco optymalizowane przez grupy programistów wykorzystujące je w prywatnych projektach lub pracy zawodowej. Oferują one możliwość wykorzystania gotowych modeli utworzonych w innych technologiach, a czasem także bezpośrednie przygotowanie modelu na podstawie odpowiednio sformatowanego i odpowiednio przystosowanego zestawu danych.

Użycie gotowych bibliotek nie tylko oszczędza koszta i przyspiesza tworzenie pożądanego rozwiązania sztucznej inteligencji, lecz także zapewnia większą niezawodność, gdyż elementy zawarte w bibliotece są implementowane, dokładnie testowane i poprawiane przez programistów o wysokich kompetencjach, jak m.in. w przypadku biblioteki TensorFlow posiadającej wsparcie od pracowników Google.

Więszkość bibliotek przeznaczonych do uczenia maszynowego, nawet wykorzystywanych w językach takich jak Python, napisana jest w języku C++, oferując API dostępne dla określonych języków docelowych. Niestety nie wszystkie biblioteki napisane w ten sposób oferują dostęp do całego API w języku C++ dla wykorzystujących je programów zewnętrznych, lub bywa on utrudniony i skomplikowany, co sprawia że w powszechnej praktyce część bibliotek dedykowanych dla języka C++ operuje na modelach przygotowanych w ramach innej, lub czasem nawet tej samej biblioteki, napisanch w innym języku. Częstym przypadkiem jest tutaj wykorzystanie właśnie języka Python do utworzenia grafu modelu lub modelu w formacie ONNX (ang. Open Neural Network Exchange).

W ramach analizy porównawczej w niniejszej pracy, porównywane będą biblioteki oferujące zarówno tworzeie modeli w ramach języka C++, jak i wymagające wykorzystania modeli z innego źródła.

Rozdział 3

Inżynieria danych eksperymentalnych i testowe szablony modeli

3.1. Omówienie danych eksperymentalnych

W celu zestawienia funkcjonalnego bibliotek uczenia maszynowego w języku C++ i przedstawienia przykładów konieczne było wybranie danych eksperymentalnych możliwych do wykorzystania jako porównawczy punkt odniesienia. Jako w/w dane wybrano bazę dotyczącą diagnostyki raka piersi, w której zamieszczono wyniki obrazowania określone w sposób liczbowy. Dane mają następującą strukturę:

- 1) ID numer identyfikacyjny pacjentki;
- 2) Diagnosis [Malignant M / Benign B] charakter nowotworu, **zmienna odpowiedzi**;
- 3) Dane klasyfikujące:
 - a) Radius średnica guza;
 - b) Texture tekstura guza;
 - c) Perimeter obwód guza;
 - d) Area pole guza;
 - e) Smoothness gładkość, miara lokalnych różnic w promieniu guza;
 - f) Compactness zwartość, wykorzystywana do oceny stadium guza;
 - g) Concavity stopień wklęsłości miejsc guza;
 - h) Concave points punkty wklęsłości guza;
 - i) Symmetry symetria guza, pomagająca w ocenie charakteru przyrostu guza.
 - j) Fractal dimention ("coastline approximation" 1) wymiar fraktalny pozwalający na ilościowy opis złożoności komórek nerwowych, umożliwiający stwierdzenie nowotworzenia się zbioru komórek.

Dla każdej ze zmiennych odpowiedzi została zebrana średnia wartość, odcyhelenie standardowe oraz średnia trzech największych pomiarów, gdzie każdy zestaw ustawiony jest sekwencyjnie (np. kolumna 3 - średni promień, kolumna 12 - odchylenie standardowe promienia, kolumna 22 - średnia trzech największych pomiarów promienia). Każda ze zmiennych ma charakter ciągły.

3.2. Charakterystyka i przetwarzenie danych

W celu przeprowadzenia procesu uczenia maszynowego, jednym z najistotniejszych kroków jakie należy podjąć jest wstępne zaznajomienie się z zestawem danych i jego analiza pod kątem rozkładu poszczególnych zmiennych oraz prawdopodobieństw. W tym celu wykorzystane zostało oprogramowanie JMP.

3.2.1. Analiza rozkładu danych

Rysunek 3.1. Histogram rozkładu zmiennej odpowiedzi

Rysunek 3.2. Przykłady histogramów zmiennych decyzyjnych

Proces analizy rozkładu rozpoczęty został od przyjrzenia się zmiennej odpowiedzi (*Diagnosis*). Rysunek 3.1 przedstawia uzyskany histogram, wraz z tabelą określającą ilość obserwacji danej klasy i współczynnik prawdopodobieństwa przynależności odpowiedzi do danej klasy. Zauważyć można, że dla użytego zestawu danych ilość

zarejestrowano 357 obserwacji łagodnego raka piersi, a jego prawdopodobieństwo przynależności do klasy Benign wynosi $\approx 62,7\%$, natomiast do klasy Malignant przynależało 212 obserwacji z prawodpodobieństwem $\approx 37,3\%$.

Podczas analizy histogramów zmiennych decyzyjnych, stwierdzono że znaczna ilość ma charakter prawostronnie skośny oraz występują dla nich obserwacje odstające, o czym informuje znajdujący się po prawej stronie histogramu wykres okienkowy (ang. box graph), co przedstawiono na rysunku 3.2. Wyjątkiem okazała się zmienna Mean Largest Concave Points), która mimo lekkiej skośności, okazała się nie posiadać obserwacji odstających. Na podstawie tych informacji stwierdzono, że aby przygotować dane w odpowiedni sposób do procesu uczenia należy przeprowadzić ich czyszczenie oraz normalizację.

3.2.2. Czyszczenie danych

Na pełny zestaw danych składa się 569 obserwacji. Podczas wstępnej analizy nie stwierdzono istnienia brakujących wartości, w związku z czym głównym problemem okazały się obserwacje odstające. Do usunięcia obserwacji odstających wykorzystano wykresy okienkowe, gdzie oś Y reprezentowała zmienną odpowiedzi, natomiast oś X czyszczoną zmienną decyzyjną. Pozwoliło to na zachowanie relatywnego stosunku poszczególnych klas (co okazało się niemożliwe przy pierwszej próbie usunięcia wprost obserwacji odstających bez uwzględnienia poszczególych klas, skutkując w prawie całkowitym wyeliminowaniu klasy *Malignant*). Przykładowy wykres został przedstawiony na rysunku 3.3.

Rysunek 3.3. Przykład analizy obserwacji odstających dla poszczególnych klas zmiennej odpowiedzi

3.3. Szablony docelowych modeli dla zadanych danych eksperymentalnych

Ze względu na dychotomiczny charakter zmiennej odpowiedzi, wybrany został przedstawiony poniżej zestaw metod dla których wykonano i przedstawiono testy praktyczne. Szablony struktury rozwiązań, takie jak np. wybór zmiennych uczestniczących w procesie uczenia, lub struktura sieci neuronowej zostały ustalone w sposób empiryczny z wykorzystaniem programu do uczenia maszynowego JMP.

- 3.3.1. Regresja logistyczna
- 3.3.2. Głęboka sieć neuronowa
- 3.3.3. Maszyna wektorów nośnych