Units

Definition

Let R be a ring with unity $1 \neq 0$ and $a \in R$. To say that $a^{-1} \in R$ is a *multiplicative inverse* of a means:

$$aa^{-1} = a^{-1}a = 1$$

Theorem

Let R be a ring with unity $1 \neq 0$. $0 \in R$ does not have a multiplicative inverse.

Proof

$$\begin{array}{l} \mathsf{ABC:}\, 0^{-1} \in R \\ 00^{-1} = 1 \\ \mathsf{But}\, 00^{-1} = 0 \\ 0 = 1 \end{array}$$

CONTRADICTION!

 \therefore 0 has no multiplicative inverse.

Definition

Let R be a ring with unity $1 \neq 0$. To say that $a \in R$ is a *unit* means that a has a multiplicative inverse $a^{-1} \in R$.

Theorem

Let R be a ring with unity $1 \neq 0$. $\forall a \in R, a$ is a unit $\implies a^{-1}$ is unique.

<u>Proof</u>

Assume a is a unit in R

Let b and b' be multiplicative inverses of a in R

$$ab = ba = 1$$

 $ab' = b'a = 1$
 $ab = ab'$
 $b(ab) = b(ab')$
 $(ba)b = (ba)b'$
 $1b = 1b'$
 $b = b'$

Theorem

Let R be a ring with unity $1 \neq 0$ and let $R^* = \{a \in R \mid a \text{ is a unit}\}. \ \langle R, \cdot \rangle$ is a group.

Proof

$$(1)(1)=1$$
, so $1\in R^*$ and $R^*\neq\emptyset$

Assume $a,b\in R^*$

$$\exists a^{-1}, b^{-1} \in R^*$$

$$(b^{-1}a^{-1})(ab) = b^{-1}(a^{-1}a)b = b^{-1}1b = b^{-1}b = 1$$

$$(ab)(b^{-1}a^{-1}) = a(bb^{-1})a^{-1} = a1a^{-1} = aa^{-1} = 1$$

 $b^{-1}a^{-1} = (ab)^{-1}$

 $ab \in R^*$

 $\therefore R^*$ is closed under the operation.

Assume $a \in R^*$

By definition, $a^{-1} \in R^*$

- $\therefore R^*$ is closed under inverses.
- $\therefore R^*$ is a group.

Example

$$R = M_n(\mathbb{R})$$

$$R^* = LR_n(\mathbb{R})$$

$$R = \mathbb{Z}$$

$$R^* = \{-1, 1\}$$

$$R = \mathbb{Z}_n$$

$$R^* = \{ a \in \mathbb{Z}_n \mid (a, n) = 1 \}$$

Theorem

$$u \in \mathbb{Z}_n$$
 is a unit $\iff (u, n) = 1$

Proof

$$\implies$$
 Assume $u \in \mathbb{Z}_n$ is a unit

$$\exists v \in \mathbb{Z}_n, uv = 1$$

$$\exists k \in \mathbb{Z}, uv = kn + 1$$

$$uv - kn = 1$$

Let
$$d = (u, n)$$

 $d \mid u$ and $d \mid n$

So $d \mid uv - kn$

Thus $d \mid 1$

d = 1

 $\therefore (u, n) = 1.$

$$\iff$$
 Assume $(u, n) = 1$

uv - kn = 1 has solutions in R

$$uv = kn + 1$$

$$uv = 1$$

But Z_n is commutative,

So
$$vu = 1$$

Thus, u has multiplicative inverse v

 $\therefore u$ is a unit.