hhl-non-hermitian

December 17, 2022

1 ECE 396 - HHL Algorithm

2 Start by Defining the Functions Necessary for Constructing the Circuit

First, import the necessary packages.

```
[5]: import numpy as np
from numpy import pi
import scipy
from qiskit.extensions import UnitaryGate
from qiskit import ClassicalRegister, QuantumCircuit, QuantumRegister, execute,
Aer
from qiskit.visualization import plot_histogram
```

2.1 Defining the 3x3 Matrix

We need to define a 3×3 invertible but non-hermitian A in Qiskit. That is, the following two qualities must hold:

$$AA^{-1} = A^{-1}A = I_n$$

$$A \neq A^{\dagger}$$

If we restric ourselves to only real values, the matrix we can choose must then follow the two qualities: invertible and $A \neq A^T$.

One such matrix is the following:

$$A = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & -1 \\ 0 & 0.13 & 1.3 \end{pmatrix}$$

```
[6]: # A = np.matrix([[1, 0, 0], [0, 1, -1], [0, 1, 1]]) # gets 1.4 but only 2_\ \( \text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tikitet{\text{\text{\text{\text{\text{\text{\text{\text{\text{\titil\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texit{\text{\text{\text{\text{\texi\tex{\text{\text{\text{\texiti\texi{\text{\texi{\texi{\text{\text{\text{\text{\texi{\texi{\te
```

```
# define a 3x3 zero matrix for aid in construction
         zero = np.matrix([[0, 0, 0], [0, 0, 0], [0, 0, 0]])
         # construct A' to be a hermitian matrix
         Ap = np.vstack((np.hstack((zero, A)), np.hstack((A.getH(), zero))))
         A_p = np.pad(Ap, ((0, 2), (0, 2)))
         # pad
         A_p[-1][-1], A_p[-2][-2] = 1, 1
         eig_val, eig_vec = scipy.linalg.eig(A_p)
         A_p /= max(np.real(eig_val)) # rescale matrix so that eigenvalues are_
      \rightarrowbetween -1 and 1
         return A_p
     A_p = hermitian_and_pad_matrix(A)
     eig_val, eig_vec = scipy.linalg.eig(A_p)
     kappa = np.linalg.cond(A_p)
     print(f"Kappa = {kappa}")
     print("-"*30)
     print(f"Eigen Values:")
     for e_val in eig_val:
         print(e_val)
    Kappa = 1.9216644857061569
    Eigen Values:
    (-0.99999999999996+0i)
    (-0.737773583800078+0j)
    (-0.5214430145579314+0j)
    (0.99999999999987+0j)
    (0.521443014557931+0j)
    (0.7377735838000786+0j)
    (0.5203822037812851+0j)
    (0.5203822037812851+0j)
[7]: A
[7]: matrix([[ 1. , 1. , 0. ],
             [-1., 1., -1.],
             [ 0. , 0.13, 1.3 ]])
```

Before I can use the HHL algorithm, we need to convert the non-hermitian matrix into a hermitian matrix form. We can complete this by performing the operation defined in the article. That is, define:

$$A' = \begin{pmatrix} 0 & A \\ A^{\dagger} & 0 \end{pmatrix}$$

A' is now hermitian and can be used to solve $A' \cdot y = \begin{bmatrix} b \\ 0 \end{bmatrix}$; where $y = \begin{bmatrix} 0 \\ x \end{bmatrix}$

HHL requires that the matrix A is a $2^n x 2^n$ matrix. Our A' is currently 6x6, so we need to pad it to extend it to 8x8. Our padding constraints need to maintain invertibility and hermitian-ness. To accomplish this, we pad the matrix to have 1's along the diagonal of the 2 added dimensions. For consistency, let's continue to call this matrix A'. We perform this logic in the helper function hermitian_and_pad_matrix().

Let's inspect the eigenvalues of this matrix. HHL requires positive eigenvalues and also it is necessary for conditional rotation.

```
[8]: eig_val, eig_vec = scipy.linalg.eig(A_p)

print("-"*30)
print(f"Eigen Values:")
for e_val in eig_val:
    print(e_val)
print("-"*30)
print(f"Eigen Vectors:")
print(eig_vec)
```

```
Eigen Values:
(-0.999999999999996+0j)
(-0.737773583800078+0j)
(-0.5214430145579314+0j)
(0.999999999999997+0j)
(0.521443014557931+0j)
(0.7377735838000786+0j)
(0.5203822037812851+0j)
(0.5203822037812851+0j)
```

Eigen Vectors:

```
0.
                 0.
                             ]
[ \ 0.55991979 \ -0.00451201 \ -0.43182112 \ \ 0.55991979 \ -0.43182112 \ -0.00451201 
  0.
                 0.
                             ]
Γ0.
                 0.
                                0.
                                              0.
                                                             0.
                                                                            0.
                 0.
  1.
                             1
Γ0.
                 0.
                                0.
                                                             0.
                                                                            0.
                                              0.
  0.
                 1.
                             ]]
```

Similarly, we initialize and pad the b solution vector.

```
[9]: # initialize the b solution vector
b = np.array([1, 3, 2])

# pad the b array with 0's to be 8 by 1

def pad_b(b):
    return np.append(b, [0, 0, 0, 0])

b_p = pad_b(b)
```

```
[10]: print(A_p.shape)
print(b_p.shape)
```

```
(8, 8)
(8,)
```

Before implementing HHL ourselves, let's test it using Qiskit's pre-made model of HHL to be sure that our inputs work and to save to compare to in later testing stages.

```
[11]: # from qiskit.algorithms.linear_solvers.hhl import HHL

# backend = Aer.get_backend('aer_simulator')
# hhl = HHL(quantum_instance=backend)

# accurate_solution = hhl.solve(A_p, b_p)
```

2.2 Implementing the HHL algorithm

2.2.1 Defining parameters

Some parameters should be chosen based on the conditional number of the matrix A. That is, C, used in conditional rotation should be on the order of $1/\kappa$ where κ is the conditional number of the matrix A. If κ is too large, some of the rows of A will be very linearly dependent and thus the inverse of A is very unstable.

```
[12]: kappa = np.linalg.cond(A_p)
print(f"Kappa = {kappa}")
```

Kappa = 1.9216644857061569

We have 3 parameters for HHL. - T is used during the exponentiation of the matrix A' ($e^{i \cdot A' \cdot T}$). T needs to be relatively large so that the Fourier transofrm of the conditional Hamiltonian evolution of A' (Eq 3 in the reference paper) has an α that acts as a sync function. - C is used during conditional rotation. C needs to be on the order of $1/\kappa$ where κ is the conditional number of A' as described previously. - n_{eig} is used during QPE and defines the number of qubits used to estimate the eigenvalues of A' up to n_{eig} bits of precision.

```
[13]: T = 150 # Used in hamiltonian evolution. Needs to be relatively large so that alpha in Eq (3) approximates as sync functions

# C = 1/2 # Used in conditional rotation. Needs to be on the order of 1/kappa where kappa is the conditional number of A

n_eig = 8 # Used in QPE, number of qubits to estimate the eigenvalues of A, defines the precision of the eigenvalues up to n_eig bits

n = 3 # 2**n x 2**n A. This defines the number of qubits needed for the dimensions of this problem. Specifically 8 dimensions can be encoded with 3 qubits.
```

2.2.2 Loading The Data

```
[14]: def construct_registers(n_eig, n, b_p):
          aux = QuantumRegister(1, 'aux') # for conditional eigenvalue inversion
          n_l = QuantumRegister(n_eig, 'nl') # stores binary representation of the
       ⇔eigenvalues
          n b = QuantumRegister(n, 'nb') # contains the vector solution
          c = ClassicalRegister(n + n_eig + 1, 'c') # 3 for n b, n_eiq for n_l, and 1_l
       ⇔for the auxiliary
          return aux, n_l, n_b, c
      \# aux, n_l, n_b, c = construct\_registers(n_eig, n, b_p)
      def construct_init_circ(n_eig, n, b_p):
          # state preparation of b: |0> -> |b>
          init_circ = QuantumCircuit(aux, n_l, n_b, c)
          b_p = b_p/scipy.linalg.norm(b_p) # normalize b, so it is ready for loading.
          init_circ.initialize(b_p, n_b)
          return init_circ
      # init_circ = construct_init_circ(n_eig, n, b_p)
```

2.2.3 Quantum Phase Estimation

We'll start by converting A' to be a unitary operator by exponentiating it $e^{i \cdot A' \cdot T}$ and using Qiskit to convert to a unitary operator.

```
[15]: def convert_Ap_to_gate(A_p, T):
    # convert to unitary matrix through exponentiation
    U_mat = scipy.linalg.expm(1j*A_p*T)

# convert to a unitary operator with Qiskit
    U = UnitaryGate(U_mat)
    U.name = "$U$"
    return U
# U = convert_Ap_to_gate(A_p, T)
```

The following is the circuit implementation for QPE.

```
[16]: def construct_qpe_circ(U):
          qpe_circ = QuantumCircuit(aux, n_l, n_b, c)
          gpe circ.barrier()
          # First, perform a hadamard on all the memory qubits.
          qpe_circ.h(n_1)
          # Apply powers of controlled U on the target qubits
          for i in range(n_eig):
              Upow = U.power(2**(n_eig-1-i))
              ctrl_Upow = Upow.control()
              qpe_circ.append(ctrl_Upow, [n_1[i], n_b[0], n_b[1], n_b[2]])
          qpe_circ.barrier()
          # Compute the inverse quantum fourier transform
          for qubit in range(n_eig//2):
              qpe_circ.swap(n_l[qubit], n_l[n_eig-qubit-1])
          for i in range(n_eig):
              for m in range(i):
                  qpe\_circ.cp(-pi/(2**(i-m)), n_1[n_eig-1-m], n_1[n_eig-1-i])
              qpe_circ.h(n_l[n_eig-1-i])
              qpe_circ.barrier()
          qpe_circ.barrier()
          return qpe_circ
      # qpe_circ = construct_qpe_circ(U)
```

Testing our QPE through repeated measurement. To test our QPE implementation and inspect the estimated phase of the exponentiated matrix, we repeatedly measure the encoded qubits

 n_l .

```
[17]: def construct_qpe_measure_circ(init_circ, qpe_circ):
    measure_circ = init_circ.compose(qpe_circ)
    measure_circ.measure(n_1, c[:n_eig])

    return measure_circ

# measure_circ = construct_qpe_measure_circ(init_circ, qpe_circ)
```

To test working condition, let's measure the n_l qubits to see if the eigenvalues of A are being sufficiently encoded.

```
[18]: def evaluate_QPE(measure_circ):
    nShots = 10000

    backend_qasm = Aer.get_backend('qasm_simulator')
    # perform constant_full_circuit just 1 time and plot the histogram of_u
    states!
    res = execute(measure_circ, backend_qasm,shots=nShots).result()
    counts = res.get_counts();
    return counts

# counts = evaluate_QPE(measure_circ)

# plot_histogram(counts, figsize=(30, 15))
```

```
[19]: # actual_b_j = scipy.linalg.solve(eig_vec, b_p)**2

# need to compare to estimated b_j,
#
```

Evaluating the outputs of QPE to match the expected eigenvalues of the matrix.

```
[21]: def calculate_lmd_dec(bit_str):
    lmd = 0
    for ind, i in enumerate(bit_str[::-1]):
        lmd += int(i)/2**(ind+1)

    return lmd

def binaryToDec(n):
    return int(n, 2)

# 10 classical register, only consider the top 6: i[0][4:]
```

```
def get_top_ev_bin(counts):
    return [i[0][-n_eig:] for i in sorted(counts.items(), key=lambda i: i[1],
    reverse=True)[:10]]

# top_ev_bin = get_top_ev_bin(counts)
# print(top_ev_bin)

def get_top_ev_dec(top_phase):
    return [binaryToDec(i[::-1]) for i in top_phase]

# top_dec = get_top_ev_dec(top_ev_bin)
# print(top_dec)
```

Manual construction of which lambdas correspond to negative eigenvalues

```
[24]: # currently written for [19, 45, 5, 59, 17, 47, 48, 16, 58, 6]
# correspondance = [1, -1, -1, 1, -1, 1, -1, 1, -1]
```

We can see in this comparison between the real eigenvalues and those that QPE output. For example, two such arrays could have that: 43 = 43, 21 = 20 or 19, 44 = 44, 20 = 20 or 19, 1 = 1, 63 = 62 with some slight approximation errors. In this way, we have verified that the QPE algorithm is successful.

2.2.4 Eigenvalue inversion.

Using the eigenvalues output from QPE, we can construct a circuit that rotates conditionally based on these eigenvalues.

Because of arcsin in rotation the parameter C must be smaller than the smallest eigenvalue. Let's calculate C to be bounded by the minimum λ .

```
[25]: def calculate_min_C(correspondance, top_ev_bin):
    C = calculate_lmd_dec(top_ev_bin[0])
    for neg, ev in zip(correspondance, top_ev_bin):
        eigenvalue = calculate_lmd_dec(ev)
        # if the lambda corresponds to a negative eigenvalue, invert it
        if neg == -1:
            eigenvalue = -1*(1 - eigenvalue)
        lambda_j = eigenvalue * (2*pi/T)
        C = min(C, abs(lambda_j)-0.0001)
    return C
# C = calculate_min_C(correspondance, top_ev_bin)
# C
```

The following is the circuit construction.

```
[26]: # circuit construction
from qiskit.circuit.library.standard_gates import UGate
import math

def theta_angle(C, eigenvalue_bin, neg):
    eigenvalue = calculate_lmd_dec(eigenvalue_bin)
    # if the lambda corresponds to a negative eigenvalue
    if neg == -1:
        eigenvalue = -1*(1 - eigenvalue)
        lambda_j = eigenvalue * (2*pi/T)

    ratio = C/lambda_j
    return math.asin(ratio)

def construct_eig_invert_circ(correspondance, eigenvalues_bin):
    C = calculate_min_C(correspondance, eigenvalues_bin)
    eig_invert_circ = QuantumCircuit(aux, n_l)
```

```
for neg, ev_bin in zip(correspondance, eigenvalues_bin):
    rot_angle = theta_angle(C, ev_bin, neg)
    cu_gate = UGate(rot_angle*2, 0, 0).control(n_eig, ctrl_state = ev_bin)
    wiring = [i for i in range(1, n_eig+1)]+[0]
    eig_invert_circ.append(cu_gate, wiring)
    return eig_invert_circ

# eig_invert_circ = construct_eig_invert_circ(correspondance, top_ev_bin)
# eig_invert_circ.draw('mpl')
```

2.2.5 Reverse QPE.

```
[27]: def construct_rev_qpe_circ():
    return qpe_circ.inverse()

# rev_qpe_circ = construct_rev_qpe_circ()
# rev_qpe_circ.draw('mpl')
```

2.2.6 Putting it all together

We can summarize each of the circuit parts as the following. - init_circ defines the loading of data $|b\rangle$ into the n_b qubits. - qpe_circ defines the circuit for quantum phase estimation, encoding the eigenvalues of A' into the n_l qubits. - eig_invert_circ defines the eigenvalue inversion circuit. - reverse_qpe_circ defines the reverse qpe circuit.

We need to repeatedly measure this circuit until we see the auxiliary qubit in the 1 state. After experimentation, as seen in the following cell, this should occur every 3/4th of the time.

Let's measure both the auxiliary qubit and the n_l qubits to measure for failures.

```
[29]: def checkFailed(class_regs):
          # input 10 classical registers, check if the outputs faield
          return class_regs[-1] == '0' or any([i != '0' for i in class_regs[3:-1]])
      def measure_all(full_circuit, nShots=10000):
          backend_qasm = Aer.get_backend('qasm_simulator')
          # perform constant_full_circuit just 1 time and plot the histogram of \Box
       ⇔states!
          res = execute(full_circuit, backend_qasm, shots=nShots).result()
          final_counts = res.get_counts()
          # remove the failures
          numFailed = sum([val for key, val in final_counts.items() if_
       ⇔checkFailed(key)])
          delItem = []
          for key, val in final_counts.items():
              if checkFailed(key):
                  delItem.append(key)
          for item in delItem:
              final_counts.pop(item)
          return final_counts, numFailed
      # nShots = 10000
      # final_counts, numFailed = measure_all(full_circuit, nShots)
      # plot_histogram(final_counts)
```

However, a lot of these measurements failed, so delete the measurements where the auxiliary qubit is measured to be in the 0 state (conditional rotation failed). And where the n_l registers aren't in the $|0\rangle$ state (inverse QPE failed).

```
[30]: def get_x_hhl(nShots, numFailed):
    x_hhl = [i[1]/(nShots - numFailed) for i in sorted(final_counts.items(),
    key=lambda i: i[0], reverse=False)]
    x_hhl = [0, 0, 0] + x_hhl + [0, 0]
    return x_hhl

# x_hhl = get_x_hhl(nShots, numFailed)
# x_hhl
```

```
[31]: def get_x_actual(A_p, b_p):
```

```
x_actual = scipy.linalg.solve(A_p, b_p)

x_norm = (x_actual/scipy.linalg.norm(x_actual))**2

return [round(i, 3) for i in (x_norm)]

# x_actual = get_x_actual(A_p, b_p)

# x_actual
```

3 Use the following cells for testing it out!

Inputs and Constants:

HHL Algo

```
[34]: # plot_histogram(counts, figsize=((20, 7))) # uncomment to see the histogram
```

```
[39]: # previous was [77, 179, 180, 76, 66, 190, 22, 234, 235, 21] correspondance = [-1, 1, 1, -1, 1, -1, 1, -1]
```

After manually constructing the correspondance array. Continue building the circuit.

```
# Step 3: conditional rotation

# compute C to be barely less than the minimum experimental eigenvalues
eig_invert_circ = construct_eig_invert_circ(correspondance, top_ev_bin)

# step 4: inverse QPE
rev_qpe_circ = construct_rev_qpe_circ()

# step 5: measure the auxiliary qubit to check for failures
full_circuit = construct_full_circuit(init_circ, qpe_circ, eig_invert_circ, userev_qpe_circ)
```

```
# full_circuit.draw('mpl') # uncomment to see the full circuit design
```

Results!

```
[41]: nShots = 10000
    final_counts, numFailed = measure_all(full_circuit, nShots)

plot_histogram(final_counts)

x_hhl = get_x_hhl(nShots, numFailed)
x_actual = get_x_actual(A_p, b_p)

print(f"Percentage of Failed Measurements: {numFailed/nShots*100}% Failed")
print(f"|x> from HHL: {x_hhl}")
print(f"|x> from actual: {x_actual}")

Percentage of Failed Measurements: 30.240000000000000% Failed
|x> from HHL: [0, 0, 0, 0.1979644495412844, 0.6397649082568807,
0.16227064220183487, 0, 0]
|x> from actual: [0.0, 0.0, 0.0, 0.238, 0.618, 0.144, 0.0, 0.0]
[42]: full_circuit.draw('mpl')
```

[42]:

