ства RGB, что позволило существенно сократить время работы программы, по сути сведя функцию g к обращению к трехмерной матрице. Пример результата использования функции g представлен выше (см. рисунок 2.3).

2.2.3 Наложение карты абсолютных температур на оптические снимки

Заключительным этапом подготовки данных является преобразование изображения в оттенках серого в матрицу абсолютных температур и наложение полученной матрицы на оптический снимок. Изображение в оттенках серого является двумерной матрицей A, с высотой h и длинной w. Элементом массива является число от 0 до 255, которое является нормированным значением температуры. Перед восстановлением абсолютных температур необходимо провести изменение размера матрицы относительных температур, для корректного сопоставления. Для этого воспользуемся методом билинейной интерполяции. Данный метод представляет из себя обобщение линейной интерполяции одной переменной для функций двух переменных. Функция билинейной интерполяции интерполирует значения исходной функции двух переменных в произвольной подматрице по четырём её значениям в угловых элементах подматрицы и экстраполирует функцию на всю остальную поверхность. Данная функция имеет вид:

$$F(x,y) = b_1 + b_2 x + b_3 y + b_4 x y, (2.6)$$

где x и y – координаты элемента матрицы; b_1 , b_2 , b_3 и b_4 – некоторые неизвестные коэффициенты. Необходимо найти значение этих коэффициентов. Приведем один из способов вычисления этих коэффициентов. Для этого подставим в уравнение 2.6 координаты и значения угловых элементов подматрицы. Тогда необходимо решить систему из четырех уравнений (2.7):