M 384: Assignment 1

Nathan Stouffer

Problem. Derive the integration of the derivative theorem from the differentiation of the integral theorem.

Proof. So we must show that $\frac{d}{dx} \int_a^x g(t) dt = g(x)$ for all continuous functions g on [a,b] with $a \leq b$ implies that $\int_a^b f'(x) dx = f(b) - f(a)$ for all $f \in C^1$ on [a,b]. Take $F(x) \in C^1[a,b]$, then F has a continuous derivative F' = f defined on [a,b]. By the differentiation of the integral theorem, we have $\frac{d}{dx} \int_a^x f(t) dt = f(x)$. Then $f(x) = F'(x) = \frac{d}{dx} F(x)$ so we must have $F(x) = \int_a^x F'(t) dt$ an arbitrary C^1 function on [a,b].

Then we can compute the value of $F(b)-F(a)=\int_a^bF'(x)dx-\int_a^aF'(x)dx=\int_a^bF'(x)dx+0$. So we have shown that $F(b)-F(a)=\int_a^bF'(x)dx$ holds for any C^1 function defined on [a,b], which is the integration of the derivative theorem.

Problem. Prove the integral mean value theorem: if f is continuous on [a,b] then there exists y in (a,b) such that $\int_a^b f(x)dx = (b-a)f(y)$.

Proof. Suppose we have some continuous function f defined on [a,b]. Then let $F(x) = \int_a^x f(t)dt$, we know $F(x) \in C^1[a,b]$ and F' = f by the differentiation of the integral theorem. Since F(x) is differentiable on [a,b], the mean value theorem tells us there exists $y \in (a,b)$ such that

$$F'(y) = f(y) = \frac{F(b) - F(a)}{b - a} = \frac{\int_a^b f(x)dx - \int_a^a f(x)dx}{b - a} = \frac{\int_a^b f(x)dx - 0}{b - a} = \frac{\int_a^b f(x)dx}{b - a}$$

So we have $f(y) = \frac{\int_a^b f(x)dx}{b-a}$ and we can multiply both sides by b-a to obtain $\int_a^b f(x)dx = (b-a)f(y)$ for some $y \in (a,b)$ as desired.

Problem. Let f be a C^1 function on the line, and let $g(x) = \int_0^1 f(xy)y^2 dy$. Prove that g is a C^1 function and establish a formula for g'(x) in terms of f.

Proof. First define $h(x,y)=f(xy)y^2$ then $g(x)=\int_0^1 h(x,y)dy$. Since f(xy) and y^2 are continuous functions, Theorem 6.1.8 tells us that $\int_0^1 h(x,y)dy$ is a continuous function. Further, the fact that each of $f(xy),y^2$ is C^1 means that g(x) is C^1 since C^1 is closed under multiplication. Then the conditions for Theorem 6.1.7 are met (since the constant functions 0 and 1 are certainly C^1) so we can give the derivative formula:

$$g'(x) = \int_0^1 \frac{\partial h}{\partial x}(x, y) dy = \int_0^1 f'(xy) y^3 dy$$

Problem. For a continuous, positive function w(x) on [a, b], define the weighted average operator A_w to be

$$A_w(f) = \int_a^b f(x)w(x)dx / \int_a^b w(x)dx$$

for continous functions f. Prove that A_w is linear and lies between the maximum and minimum values of f.

Proof. First we prove that A_w is linear. A_w is linear if $A_w(c_1f+c_2g)=c_1A_w(f)+c_2A_w(g)$ for $c_1,c_2\in\mathbb{R}$ and continuous functions f,g on [a,b]. Towards proving linearity, let f,g be continuous functions on [a,b] and $c_1,c_2\in\mathbb{R}$. Then, using properties of integrals and functions,

$$A_{w}(c_{1}f + c_{2}g) = \frac{\int_{a}^{b} [c_{1}f + c_{2}g](x)w(x)}{\int_{a}^{b} w(x)dx}$$

$$= \frac{\int_{a}^{b} c_{1}f(x)w(x) + c_{2}g(x)w(x)dx}{\int_{a}^{b} w(x)dx}$$

$$= \frac{\int_{a}^{b} c_{1}f(x)w(x)dx + \int_{a}^{b} c_{2}g(x)w(x)dx}{\int_{a}^{b} w(x)dx}$$

$$= \frac{c_{1}\int_{a}^{b} f(x)w(x)dx + c_{2}\int_{a}^{b} g(x)w(x)dx}{\int_{a}^{b} w(x)dx}$$

$$= \frac{c_{1}\int_{a}^{b} f(x)w(x)dx}{\int_{a}^{b} w(x)dx} + \frac{c_{2}\int_{a}^{b} g(x)w(x)dx}{\int_{a}^{b} w(x)dx}$$

$$= c_{1}A_{w}(f) + c_{2}A_{w}(g)$$

So A_w is linear. Now we must show that $A_w(f)$ lies in between the maximum and minimum values of f. Let $F^+ = \sup_{x \in [a,b]} f(x)$ and $F^- = \inf_{x \in [a,b]} f(x)$, so we must show that $A_w(f) \in [F^-, F^+]$ which is equivalent to $F^- \le A_w(f) \le F^+$. Since $\int_a^b w(x) dx$ is a postive number, let $W = \int_a^b w(x) dx$. If multiply the desired inequality by W, we must equivalently show that $WF^- \le \int_a^b f(x) w(x) dx \le WF^+$.

Now it is certainly true that $\int_a^b f(x)w(x)dx \leq \int_a^b F^+w(x)dx$, but then F^+ is a constant so $\int_a^b F^+w(x)dx = F^+\int_a^b w(x)dx = F^+W$ so $\int_a^b f(x)w(x)dx \leq WF^+$. Similarly, $\int_a^b f(x)w(x)dx \geq \int_a^b F^-w(x)dx = F^-\int_a^b w(x)dx = F^-W$. Then we have $WF^- \leq \int_a^b f(x)w(x)dx \leq WF^+$, which was the goal.