1

Gate Assignment

EE:1205 Signals and Systems Indian Institute of Technology, Hyderabad

Kunal Thorawade EE23BTECH11035

Question: In the circuit shown below, the amplitudes of the voltage across the resistor and the capacitor are equal. What is the value of the angular frequency ω_o (in rad/s)? (Round off the answer to one decimal place.) (GATE BM 32 2023)

Solution:

Parameter	Value	Description
v(t)	$100\cos\left(\omega_{0}t\right)$	Input Voltage
R	1 kΩ	Resistance
C	100μF	Capacitance
ω_0	?	Angular Frequency
$Z_R = R$	10^{3}	Impedance for resistor
$Z_C = \frac{1}{j\omega C}$	$\frac{10^4}{j\omega_0}$	Impedance for capacitor

TABLE 1 Parameter Table

$$R \stackrel{\mathcal{F}}{\longleftrightarrow} R \tag{1}$$

$$C \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{i\omega_0 C} \tag{2}$$

(3)

$$V(\omega)$$
 $N(\omega)$
 $N(\omega)$

$$|V_R(\omega)| = |V_C(\omega)| \tag{4}$$

$$\implies |Z_R| = |Z_C| \tag{5}$$

$$10^3 = \frac{10^4}{\omega_0} \tag{6}$$

$$\therefore \omega_0 = 10.0 \tag{7}$$