#### M4GB: An Efficient Gröbner Bases Algorithm

Rusydi H. Makarim<sup>1,2</sup> Marc Stevens<sup>2</sup>

<sup>1</sup>Mathematics Institute, University Leiden

<sup>2</sup>Cryptology Group, Centrum Wiskunde en Informatica (CWI)

ISSAC 2017 - Kaiserslautern, 27th July 2017

#### Motivation

#### Multivariate Quadratic (MQ) Problem

```
Given quadratic polynomials f_1, \ldots, f_m \in \mathbb{F}[x_1, \ldots, x_n], find a v = (v_1, \ldots, v_n) \in \mathbb{F}^n such that f_i(v_1, \ldots, v_n) = 0 for all i \in \{1, \ldots, m\}
```

- Gröbner Bases Algorithms
- M4GB Algorithm
- Fukuoka MQ Challenges
- 4 Implementation Results
- Solving MQ Challenges

#### Table of Contents

- Gröbner Bases Algorithms
- M4GB Algorithm
- Fukuoka MQ Challenges
- 4 Implementation Results
- 5 Solving MQ Challenges



- repeat

- **⑤** G ← F
- repeat

- $\bigcirc$   $G \leftarrow F$
- repeat
- for all  $(h_1, h_2) \in G' \times G'$  and  $h_1 \neq h_2$

- $\bigcirc$   $G \leftarrow F$
- repeat
- **o** for all  $(h_1,h_2) \in G' \times G'$  and  $h_1 \neq h_2$

```
Input : F = \{f_1, \dots, f_m\} \subset \mathbb{F}[x_1, \dots, x_n]

Output : A Gröbner basis G of \langle f_1, \dots, f_m \rangle

① G \leftarrow F

② repeat

③ G' \leftarrow G

① for all (h_1, h_2) \in G' \times G' and h_1 \neq h_2

③ r \leftarrow \text{FULLReduce}(\text{Spoly}(h_1, h_2), G')

① if r \neq 0
```

```
Input : F = \{f_1, \dots, f_m\} \subset \mathbb{F}[x_1, \dots, x_n]

Output : A Gröbner basis G of \langle f_1, \dots, f_m \rangle

① G \leftarrow F

② repeat

③ G' \leftarrow G

④ for all (h_1, h_2) \in G' \times G' and h_1 \neq h_2

⑤ r \leftarrow \text{FullReduce}(\text{Spoly}(h_1, h_2), G')

⑥ if r \neq 0

② G \leftarrow G \cup \{r\}
```

```
Input : F = \{f_1, \dots, f_m\} \subset \mathbb{F}[x_1, \dots, x_n]
Output: A Gröbner basis G of \langle f_1, \ldots, f_m \rangle
  \bullet G \leftarrow F
  repeat
         G' \leftarrow G
          for all (h_1, h_2) \in G' \times G' and h_1 \neq h_2
             r \leftarrow \text{FULLReduce}(\text{Spoly}(h_1, h_2), G')
  5
  if r \neq 0
                G \leftarrow G \cup \{r\}
  1 until G = G'
```

```
Input : F = \{f_1, \dots, f_m\} \subset \mathbb{F}[x_1, \dots, x_n]
Output: A Gröbner basis G of \langle f_1, \ldots, f_m \rangle
  \bullet G \leftarrow F
  repeat
         G' \leftarrow G
          for all (h_1, h_2) \in G' \times G' and h_1 \neq h_2
             r \leftarrow \text{FULLReduce}(\text{Spoly}(h_1, h_2), G')
  5
  if r \neq 0
                G \leftarrow G \cup \{r\}
  1 until G = G'
```

return G

```
Input : F = \{f_1, \dots, f_m\} \subset \mathbb{F}[x_1, \dots, x_n]
Output: A Gröbner basis G of \langle f_1, \ldots, f_m \rangle
  \bullet G \leftarrow F
     repeat
         G' \leftarrow G
         for all (h_1, h_2) \in G' \times G' and h_1 \neq h_2
            r \leftarrow \text{FULLReduce}(\text{Spoly}(h_1, h_2), G')
  5
  G \leftarrow G \cup \{r\}
  \bullet until G = G'
  return G
```

#### **Improvement**

Detect zero reduction in advance – Buchberger's 1st and 2nd criterion (e.g. using Gebauer-Möller installation)

```
Input: F = \{f_1, \dots, f_m\} \subset \mathbb{F}[x_1, \dots, x_n]

Output: A Gröbner basis G of \langle f_1, \dots, f_m \rangle

① G \leftarrow F, \tilde{F}_0^+ \leftarrow F
```

- $\mathbf{2} d \leftarrow \mathbf{0}$
- **3**  $P \leftarrow \{(f_i, f_j) : f_i, f_j \in F, i > j\}$

```
Input: F = \{f_1, \dots, f_m\} \subset \mathbb{F}[x_1, \dots, x_n]
Output: A Gröbner basis G of \langle f_1, \dots, f_m \rangle
```

- $\mathbf{2} d \leftarrow \mathbf{0}$
- **3**  $P \leftarrow \{(f_i, f_j) : f_i, f_j \in F, i > j\}$
- **4** while  $P \neq \{\}$

- 2 d ← 0
- **3**  $P \leftarrow \{(f_i, f_j) : f_i, f_j \in F, i > j\}$
- $d \leftarrow d + 1$

```
Input : F = \{f_1, \dots, f_m\} \subset \mathbb{F}[x_1, \dots, x_n]

Output : A Gröbner basis G of \langle f_1, \dots, f_m \rangle

① G \leftarrow F, \tilde{F}_0^+ \leftarrow F

② d \leftarrow 0

③ P \leftarrow \{(f_i, f_j) : f_i, f_j \in F, i > j\}

① while P \neq \{\}

③ d \leftarrow d + 1

① P_d \leftarrow \text{SELECT}(P) //P_d \subseteq P
```

```
Input : F = \{f_1, ..., f_m\} \subset \mathbb{F}[x_1, ..., x_n]
Output: A Gröbner basis G of \langle f_1, \ldots, f_m \rangle
  \mathbf{Q} d \leftarrow \mathbf{0}
  3 P \leftarrow \{(f_i, f_i) : f_i, f_i \in F, i > j\}
  4 while P \neq \{\}
  d \leftarrow d + 1
  6 P_d ← SELECT(P)
                                                             //P_d \subseteq P
  P \leftarrow P \setminus P_d
  8 L_d ← Left(P_d) ∪ Right(P_d)
         F_d \leftarrow \text{SymbPreprocessing}(L_d, G)
                                                            //Construction of a coefficient matrix
```

```
Input : F = \{f_1, ..., f_m\} \subset \mathbb{F}[x_1, ..., x_n]
Output: A Gröbner basis G of \langle f_1, \ldots, f_m \rangle
  \mathbf{Q} d \leftarrow \mathbf{0}
  6 P \leftarrow \{(f_i, f_i) : f_i, f_i \in F, i > i\}
  4 while P \neq \{\}
  d \leftarrow d + 1
  6 P_d ← SELECT(P)
                                                              //P_d \subseteq P
  P \leftarrow P \setminus P_d
  8 L_d ← Left(P_d) ∪ Right(P_d)
        F_d \leftarrow \text{SymbPreprocessing}(L_d, G)
                                                             //Construction of a coefficient matrix
  10
         \tilde{F}_d \leftarrow \text{GAUSSIANELIMINATION}(F_d)
                                                             //Main reduction step
```

 $\tilde{F}_d^+ \leftarrow \{ f \in \tilde{F}_d : \mathsf{LM}(f) \not\in \mathsf{LM}(F_d) \}$ 

**a** 

```
Input : F = \{f_1, ..., f_m\} \subset \mathbb{F}[x_1, ..., x_n]
Output: A Gröbner basis G of \langle f_1, \ldots, f_m \rangle
  \mathbf{Q} d \leftarrow \mathbf{0}
  3 P \leftarrow \{(f_i, f_i) : f_i, f_i \in F, i > i\}
  4 while P \neq \{\}
  d \leftarrow d + 1
  6 P_d ← SELECT(P)
                                                             //P_d \subseteq P
  P \leftarrow P \setminus P_d
  8 L_d ← Left(P_d) ∪ Right(P_d)
  9
        F_d \leftarrow \text{SymbPreprocessing}(L_d, G)
                                                            //Construction of a coefficient matrix
         \tilde{F}_d \leftarrow \text{GAUSSIANELIMINATION}(F_d)
  10
                                                            //Main reduction step
```

for  $h \in \tilde{F}_{J}^{+}$ 

12

```
Input : F = \{f_1, ..., f_m\} \subset \mathbb{F}[x_1, ..., x_n]
Output: A Gröbner basis G of \langle f_1, \ldots, f_m \rangle
  \bigcirc d \leftarrow 0
  6 P \leftarrow \{(f_i, f_i) : f_i, f_i \in F, i > i\}
  4 while P \neq \{\}
  d \leftarrow d + 1
  6 P_d ← SELECT(P)
                                                                 //P_d \subseteq P
  P \leftarrow P \setminus P_d
  8 L_d ← Left(P_d) ∪ Right(P_d)
  9
        F_d \leftarrow \text{SymbPreprocessing}(L_d, G)
                                                                //Construction of a coefficient matrix
          \tilde{F}_d \leftarrow \text{GAUSSIANELIMINATION}(F_d)
  10
                                                                //Main reduction step
         \tilde{F}_d^+ \leftarrow \{f \in \tilde{F}_d : \mathsf{LM}(f) \not\in \mathsf{LM}(F_d)\}
  •
```

 $P \leftarrow P \cup \{(h,g) : g \in G\}$ 

B

```
Input : F = \{f_1, ..., f_m\} \subset \mathbb{F}[x_1, ..., x_n]
Output: A Gröbner basis G of \langle f_1, \ldots, f_m \rangle
  \bigcirc d \leftarrow 0
  6 P \leftarrow \{(f_i, f_i) : f_i, f_i \in F, i > i\}
  4 while P \neq \{\}
  d \leftarrow d + 1
  6 P_d ← SELECT(P)
                                                                   //P_d \subseteq P
  O P \leftarrow P \setminus P_d
  8 L_d ← Left(P_d) ∪ Right(P_d)
  9
         F_d \leftarrow \text{SymbPreprocessing}(L_d, G)
                                                                  //Construction of a coefficient matrix
          \tilde{F}_d \leftarrow \text{GAUSSIANELIMINATION}(F_d)
  10
                                                                  //Main reduction step
          \tilde{F}_d^+ \leftarrow \{f \in \tilde{F}_d : \mathsf{LM}(f) \not\in \mathsf{LM}(F_d)\}
  •
          for h \in \tilde{F}_{\mathfrak{a}}^+
  12
```

```
Input : F = \{f_1, ..., f_m\} \subset \mathbb{F}[x_1, ..., x_n]
Output: A Gröbner basis G of \langle f_1, \ldots, f_m \rangle
  \bigcirc d \leftarrow 0
  6 P \leftarrow \{(f_i, f_i) : f_i, f_i \in F, i > i\}
  4 while P \neq \{\}
  d \leftarrow d + 1
  6 P_d ← SELECT(P)
                                                                    //P_d \subseteq P
  O P \leftarrow P \setminus P_d
  8 L_d ← Left(P_d) ∪ Right(P_d)
  9
         F_d \leftarrow \text{SymbPreprocessing}(L_d, G)
                                                                   //Construction of a coefficient matrix
          \tilde{F}_d \leftarrow \text{GAUSSIANELIMINATION}(F_d)
  10
                                                                   //Main reduction step
          \tilde{F}_d^+ \leftarrow \{f \in \tilde{F}_d : \mathsf{LM}(f) \not\in \mathsf{LM}(F_d)\}
  •
          for h \in \tilde{F}_{J}^{+}
  12
  B
             P \leftarrow P \cup \{(h,g) : g \in G\}
  14
             G \leftarrow G \cup \{h\}
```

return G

```
Input : F = \{f_1, ..., f_m\} \subset \mathbb{F}[x_1, ..., x_n]
Output: A Gröbner basis G of \langle f_1, \ldots, f_m \rangle
  \bigcirc d \leftarrow 0
  6 P \leftarrow \{(f_i, f_i) : f_i, f_i \in F, i > i\}
  4 while P \neq \{\}
  d \leftarrow d + 1
  6 P_d ← SELECT(P)
                                                                   //P_d \subseteq P
  O P \leftarrow P \setminus P_d
  8 L_d ← Left(P_d) ∪ Right(P_d)
  9
         F_d \leftarrow \text{SymbPreprocessing}(L_d, G)
                                                                  //Construction of a coefficient matrix
          \tilde{F}_d \leftarrow \text{GAUSSIANELIMINATION}(F_d)
  10
                                                                  //Main reduction step
          \tilde{F}_d^+ \leftarrow \{f \in \tilde{F}_d : \mathsf{LM}(f) \not\in \mathsf{LM}(F_d)\}
  •
         for h \in \tilde{F}_{J}^{+}
  12
   B
             P \leftarrow P \cup \{(h,g) : g \in G\}
             G \leftarrow G \cup \{h\}
```

• Replace uf with u'f' s.t. LM(uf) = LM(u'f') where u, u' are monomials

- Replace uf with u'f' s.t. LM(uf) = LM(u'f') where u, u' are monomials
- ullet More reductions are already applied on f'

- Replace uf with u'f' s.t. LM(uf) = LM(u'f') where u, u' are monomials
- ullet More reductions are already applied on f'
- Requires all previously constructed intermediate matrices and their corresponding (reduced) row echelon form

- Replace uf with u'f' s.t. LM(uf) = LM(u'f') where u, u' are monomials
- More reductions are already applied on f'
- Requires all previously constructed intermediate matrices and their corresponding (reduced) row echelon form
- Rewriting reductors

# $F_4$ : Advantages and Disadvantages

# $F_4$ : Advantages and Disadvantages

#### Advantages

Parallel reduction of S-polynomials with efficient linear algebra

# $F_4$ : Advantages and Disadvantages

#### Advantages

Parallel reduction of S-polynomials with efficient linear algebra

#### Disadvantages

- Normal selection strategy ⇒ Many critical pairs processed ⇒ Large intermediate matrices
- The cost of having SIMPLIFY function: high memory consumption

## Table of Contents

- Gröbner Bases Algorithms
- M4GB Algorithm
- Fukuoka MQ Challenges
- 4 Implementation Results
- 5 Solving MQ Challenges

- Let g be a reductor of  $f \in \mathbb{F}[x_1, \dots, x_n]$
- The term of f corresponding to LM(g) will be eliminated
- Less monomials in  $Tail(g) \Rightarrow less operations$

- Let g be a reductor of  $f \in \mathbb{F}[x_1, \dots, x_n]$
- The term of f corresponding to LM(g) will be eliminated
- Less monomials in  $Tail(g) \Rightarrow less operations$

## M4GB Main Strategy

The tail of every polynomial must be fully reduced

• M4GB is an extension of Buchberger's algorithm

- M4GB is an extension of Buchberger's algorithm
- Two main differences :

- M4GB is an extension of Buchberger's algorithm
- Two main differences :
  - M4GB Reduction : prioritizes reduction on tail of reductors (recursive)
    - MulfullReduce(G, t, f)

- M4GB is an extension of Buchberger's algorithm
- Two main differences :
  - M4GB Reduction : prioritizes reduction on tail of reductors (recursive)
    - MULFULLREDUCE(G, t, f)
  - Reduction on tail of all polynomials using new element found in the ideal
    - UPDATEREDUCE (G, P, f)

MulFullReduce(G,t,f)



- $0 \quad h \leftarrow 0$
- **2** for all  $s \in \text{Term}(f)$

MulFullReduce(G,t,f)

- **2** for all  $s \in \text{Term}(f)$
- $r \leftarrow t \cdot s$

MULFULLREDUCE(G,t,f)

- **2** for all  $s \in \text{Term}(f)$
- 0  $r \leftarrow t \cdot s$
- 4 if  $\exists g \in G : \mathsf{LT}(g) \mid r$  then

② for all 
$$s \in \text{Term}(f)$$

$$r \leftarrow t \cdot s$$

$$(G,g) \leftarrow \text{GetReductor}(G,r)$$

MULFULLREDUCE(G,t,f)

- of for all  $s \in \text{Term}(f)$
- $3 \quad r \leftarrow t \cdot s$
- 4 if  $\exists g \in G : \mathsf{LT}(g) \mid r$  then
- $(G,g) \leftarrow \operatorname{GETREDUCTOR}(G,r)$
- $h \leftarrow h (r/\mathsf{LT}(g)) \cdot \mathsf{Tail}(g)$

```
    h ← 0
    for all s ∈ Term(f)
    r ← t ⋅ s
    if ∃g ∈ G : LT(g) | r then
    (G, g) ← GETREDUCTOR(G, r)
    h ← h − (r/LT(g)) ⋅ Tail(g)
    else
```

 $h \leftarrow h + r$ 

```
    h ← 0
    for all s ∈ Term(f)
    r ← t ⋅ s
    if ∃g ∈ G : LT(g) | r then
    (G, g) ← GETREDUCTOR(G, r)
    h ← h − (r/LT(g)) ⋅ Tail(g)
    else
```

```
① h \leftarrow 0
② for all s \in \text{Term}(f)
③ r \leftarrow t \cdot s
③ if \exists g \in G : \text{LT}(g) \mid r \text{ then}
⑤ (G,g) \leftarrow \text{GETREDUCTOR}(G,r)
⑥ h \leftarrow h - (r/\text{LT}(g)) \cdot \text{Tail}(g)
④ else
③ h \leftarrow h + r
④ return (G,h)
```

return (G, h)

```
MULFULLREDUCE(G, t, f)

1 h \leftarrow 0
2 for all s \in \text{Term}(f)
3 r \leftarrow t \cdot s
1 if \exists g \in G : \text{LT}(g) \mid r \text{ then}
6 (G, g) \leftarrow \text{GETREDUCTOR}(G, r)
1 h \leftarrow h - (r/\text{LT}(g)) \cdot \text{Tail}(g)
1 else
2 h \leftarrow h + r
2 return (G, h)
```

```
GetReductor(G, r)
```

**1** if 
$$\exists g \in G : LM(g) = LM(r)$$
 then

```
 \begin{aligned} & \text{MulFullReduce}(G,t,f) \\ \textbf{1} & h \leftarrow 0 \\ \textbf{2} & \text{for all } s \in \text{Term}(f) \\ \textbf{3} & r \leftarrow t \cdot s \\ \textbf{3} & \text{if } \exists g \in G : \text{LT}(g) \mid r \text{ then} \\ \textbf{3} & (G,g) \leftarrow \text{GetReductor}(G,r) \\ \textbf{4} & h \leftarrow h - (r/\text{LT}(g)) \cdot \text{Tail}(g) \\ \textbf{6} & \text{else} \\ \textbf{3} & h \leftarrow h + r \\ \textbf{9} & \text{return } (G,h) \end{aligned}
```

```
GetReductor(G, r)
```

- ① if  $\exists g \in G : LM(g) = LM(r)$  then
- e return (G,g)

return (G, h)

 $h \leftarrow 0$ ② for all  $s \in \text{Term}(f)$  $r \leftarrow t \cdot s$ ③ if  $\exists g \in G : \text{LT}(g) \mid r \text{ then}$  $(G,g) \leftarrow \text{GETREDUCTOR}(G,r)$  $h \leftarrow h - (r/\text{LT}(g)) \cdot \text{Tail}(g)$ ② else  $h \leftarrow h + r$ 

MulFullReduce(G, t, f)

- e return (G,g)
- **3** f ← REDUCESEL(G, r)

MulFullReduce(G,t,f)

- $0 \quad h \leftarrow 0$
- 2 for all  $s \in \text{Term}(f)$
- $r \leftarrow t \cdot s$
- **4** if  $\exists g \in G : LT(g) \mid r$  then
  - $(G,g) \leftarrow \text{GetReductor}(G,r)$
- else
- $b \leftarrow b + r$
- oreturn (G, h)

- **1** if  $\exists g \in G : LM(g) = LM(r)$  then

MULFULLREDUCE(G,t,f)

- $0 h \leftarrow 0$
- 2 for all  $s \in \text{Term}(f)$
- $r \leftarrow t \cdot s$
- - $(G,g) \leftarrow \text{GetReductor}(G,r)$
- else
- $b \leftarrow b + r$
- oreturn (G, h)

- **1** if  $\exists g \in G : LM(g) = LM(r)$  then
- 2 return (G,g)
- (G, h) ← MULFULLREDUCE(G, r/LT(f), Tail(f))
- **5** return  $(G \cup \{r+h\}, r+h)$

- $S \leftarrow \mathsf{Mono}(\mathsf{Tail}(G \cup H)) \setminus \mathsf{LM}(H)$

- $S \leftarrow \mathsf{Mono}(\mathsf{Tail}(G \cup H)) \setminus \mathsf{LM}(H)$
- **3** while  $\exists u \in S : \mathsf{LM}(f) \mid u \mathsf{ do }$

- $S \leftarrow \mathsf{Mono}(\mathsf{Tail}(G \cup H)) \setminus \mathsf{LM}(H)$
- **3** while  $\exists u \in S : \mathsf{LM}(f) \mid u \mathsf{ do }$
- Find the largest monomial  $u \in S$  s.t.  $LM(f) \mid u$

- **3** while  $\exists u \in S : \mathsf{LM}(f) \mid u \mathsf{do}$
- Find the largest monomial  $u \in S$  s.t.  $LM(f) \mid u$
- (G, h) ← MULFULLREDUCE(G, u/LT(f), Tail(f))

- **③** while  $\exists u \in S : LM(f) \mid u$  do
- Find the largest monomial  $u \in S$  s.t.  $LM(f) \mid u$
- $(G, h) \leftarrow \text{MULFULLReduce}(G, u/\text{LT}(f), \text{Tail}(f))$

- **③** while  $\exists u \in S : LM(f) \mid u$  do
- Find the largest monomial  $u \in S$  s.t.  $LM(f) \mid u$
- $(G, h) \leftarrow \text{MULFULLReduce}(G, u/\text{LT}(f), \text{Tail}(f))$
- S ← Mono(Tail( $G \cup H$ )) \ LM(H)

- **③** while  $\exists u \in S : LM(f) \mid u$  do
- **9** Find the largest monomial  $u \in S$  s.t.  $LM(f) \mid u$
- (G, h) ← MULFULLREDUCE(G, u/LT(f), Tail(f))

- while  $H \neq \{\}$  do

- **③** while  $\exists u \in S : LM(f) \mid u$  do
- Find the largest monomial  $u \in S$  s.t.  $LM(f) \mid u$
- $(G, h) \leftarrow \text{MULFULLReduce}(G, u/\text{LT}(f), \text{Tail}(f))$
- $S \leftarrow \mathsf{Mono}(\mathsf{Tail}(G \cup H)) \setminus \mathsf{LM}(H)$
- **3** while  $H \neq \{\}$  do
- Select  $h \in H$  such that LM(h) = min(LM(H))

- **③** while  $\exists u \in S : LM(f) \mid u$  do
- **9** Find the largest monomial  $u \in S$  s.t.  $LM(f) \mid u$
- $(G, h) \leftarrow \text{MULFULLREDUCE}(G, u/\text{LT}(f), \text{Tail}(f))$
- $S \leftarrow \mathsf{Mono}(\mathsf{Tail}(G \cup H)) \setminus \mathsf{LM}(H)$
- **3** while  $H \neq \{\}$  do
- Select  $h \in H$  such that LM(h) = min(LM(H))

### UPDATEREDUCE (G, P, f)

- $S \leftarrow \mathsf{Mono}(\mathsf{Tail}(G \cup H)) \setminus \mathsf{LM}(H)$
- **③** while  $\exists u \in S : LM(f) \mid u$  do
- **9** Find the largest monomial  $u \in S$  s.t.  $LM(f) \mid u$
- $(G, h) \leftarrow \text{MULFULLReduce}(G, u/\text{LT}(f), \text{Tail}(f))$

- **3** while  $H \neq \{\}$  do
- Select  $h \in H$  such that LM(h) = min(LM(H))

### UPDATEREDUCE (G, P, f)

- **③** while  $\exists u \in S : LM(f) \mid u$  do
- **o** Find the largest monomial  $u \in S$  s.t.  $LM(f) \mid u$
- $(G, h) \leftarrow \text{MULFULLReduce}(G, u/\text{LT}(f), \text{Tail}(f))$

- **3** while  $H \neq \{\}$  do
- Select  $h \in H$  such that LM(h) = min(LM(H))



### UPDATEREDUCE (G, P, f)

while 
$$\exists u \in S : \mathsf{LM}(f) \mid u$$
 do

- **o** Find the largest monomial  $u \in S$  s.t.  $LM(f) \mid u$
- $(G, h) \leftarrow \text{MULFULLReduce}(G, u/\text{LT}(f), \text{Tail}(f))$
- $\bullet \qquad H \leftarrow H \cup \{u+h\}$
- **3** while  $H \neq \{\}$  do
- Select  $h \in H$  such that LM(h) = min(LM(H))

M4GB is efficient when polynomials in G are maintained based on the uniqueness of their leading monomial i.e., if  $f,g \in G$  s.t. LM(f) = LM(g) then f = g

M4GB is efficient when polynomials in G are maintained based on the uniqueness of their leading monomial i.e., if  $f,g \in G$  s.t. LM(f) = LM(g) then f = g

• M: associative array that maintain all polynomials

M4GB is efficient when polynomials in G are maintained based on the uniqueness of their leading monomial i.e., if  $f,g \in G$  s.t. LM(f) = LM(g) then f = g

- M: associative array that maintain all polynomials
- L: a set of monomials that mark which polynomials in M that constitute a minimal basis

### Table of Contents

- Gröbner Bases Algorithms
- 2 M4GB Algorithm
- Fukuoka MQ Challenges
- 4 Implementation Results
- 5 Solving MQ Challenges

 A series of open public challenge to solve MQ problems over finite field.

- A series of open public challenge to solve MQ problems over finite field.
- Random and dense polynomials

- A series of open public challenge to solve MQ problems over finite field.
- Random and dense polynomials
- Goal: understand its practical difficulty

- A series of open public challenge to solve MQ problems over finite field.
- Random and dense polynomials
- Goal: understand its practical difficulty

https://www.mqchallenge.org



| $\mathbb{F}_2$ | $\mathbb{F}_{2^8}$ | $\mathbb{F}_{31}$ |
|----------------|--------------------|-------------------|
|                |                    |                   |
|                |                    |                   |
| IV             | V                  | VI                |
|                |                    |                   |

|           | $\mathbb{F}_2$ | $\mathbb{F}_{2^8}$ | $\mathbb{F}_{31}$ |
|-----------|----------------|--------------------|-------------------|
| m=2n      |                |                    |                   |
| 111 — 211 |                |                    |                   |
|           | IV             | V                  | VI                |
|           |                |                    |                   |

|                   | $\mathbb{F}_2$ | $\mathbb{F}_{2^8}$ | $\mathbb{F}_{31}$ |
|-------------------|----------------|--------------------|-------------------|
| m=2n              |                |                    |                   |
|                   |                |                    |                   |
| $n \approx 1.5 m$ | IV             | V                  | VI                |
|                   |                |                    |                   |

|                   | $\mathbb{F}_2$ | $\mathbb{F}_{2^8}$ | $\mathbb{F}_{31}$ |
|-------------------|----------------|--------------------|-------------------|
| m=2n              |                |                    |                   |
| 111 — 211         | <i>n</i> ≥ 55  | <i>n</i> ≥ 35      | <i>n</i> ≥ 34     |
| $n \approx 1.5 m$ | IV             | V                  | VI                |
| $\sim 1.5m$       |                |                    |                   |

|                  | $\mathbb{F}_2$ | $\mathbb{F}_{2^8}$ | $\mathbb{F}_{31}$ |  |
|------------------|----------------|--------------------|-------------------|--|
| m=2n             |                |                    |                   |  |
| 111 — 211        | <i>n</i> ≥ 55  | <i>n</i> ≥ 35      | <i>n</i> ≥ 34     |  |
| $n \approx 1.5m$ | IV             | V                  | VI                |  |
| $n \sim 1.5m$    | <i>m</i> ≥ 55  | <i>m</i> ≥ 16      | <i>m</i> ≥ 16     |  |

|                   | $\mathbb{F}_2$ | $\mathbb{F}_{2^8}$ | $\mathbb{F}_{31}$ |
|-------------------|----------------|--------------------|-------------------|
| m=2n              |                |                    |                   |
|                   | <i>n</i> ≥ 55  | <i>n</i> ≥ 35      | <i>n</i> ≥ 34     |
| $n \approx 1.5 m$ | IV             | V                  | VI                |
| $11 \sim 1.5111$  | $m \ge 55$     | <i>m</i> ≥ 16      | <i>m</i> ≥ 16     |

#### Parameter Choice

|                   | $\mathbb{F}_2$ | $\mathbb{F}_{2^8}$ | $\mathbb{F}_{31}$ |
|-------------------|----------------|--------------------|-------------------|
| m=2n              |                |                    |                   |
|                   | <i>n</i> ≥ 55  | <i>n</i> ≥ 35      | <i>n</i> ≥ 34     |
| $n \approx 1.5 m$ | IV             | V                  | VI                |
| $11 \sim 1.5111$  | <i>m</i> ≥ 55  | <i>m</i> ≥ 16      | <i>m</i> ≥ 16     |

#### Parameter Choice

• Time to solve : at least one month

|                   | $\mathbb{F}_2$ | $\mathbb{F}_{2^8}$ | $\mathbb{F}_{31}$ |
|-------------------|----------------|--------------------|-------------------|
| m=2n              |                |                    |                   |
|                   | <i>n</i> ≥ 55  | <i>n</i> ≥ 35      | <i>n</i> ≥ 34     |
| $n \approx 1.5 m$ | IV             | V                  | VI                |
| $11 \sim 1.5111$  | <i>m</i> ≥ 55  | <i>m</i> ≥ 16      | <i>m</i> ≥ 16     |

#### Parameter Choice

- Time to solve : at least one month
- Using Magma 2.19-9

|                   | $\mathbb{F}_2$ | $\mathbb{F}_{2^8}$ | $\mathbb{F}_{31}$ |
|-------------------|----------------|--------------------|-------------------|
| m=2n              |                |                    |                   |
|                   | <i>n</i> ≥ 55  | <i>n</i> ≥ 35      | <i>n</i> ≥ 34     |
| $n \approx 1.5 m$ | IV             | V                  | VI                |
|                   | <i>m</i> ≥ 55  | <i>m</i> ≥ 16      | <i>m</i> ≥ 16     |

#### Parameter Choice

- Time to solve : at least one month
- Using Magma 2.19-9
- CPU Used: Four 6-cores Intel(R) Xeon(R) CPU E5-4617 @ 2.9GHz and 1TB of RAM

### Table of Contents

- Gröbner Bases Algorithms
- M4GB Algorithm
- Fukuoka MQ Challenges
- Implementation Results
- 5 Solving MQ Challenges

• Implemented using C++11



- Implemented using C++11
- Comparison with existing implementations
  - FGb C Interface Implementation by Jean-Charles Faugère<sup>1</sup>
  - Magma v2.20-6 Implementation by Allan Steel
  - OpenF4 v1.0.1 Open source implementation by Coladon, Vitse and Joux<sup>2</sup>.

<sup>&</sup>lt;sup>1</sup>Available at http://www-polsys.lip6.fr/~jcf/FGb/C/index.html

- Implemented using C++11
- Comparison with existing implementations
  - FGb C Interface Implementation by Jean-Charles Faugère<sup>1</sup>
  - Magma v2.20-6 Implementation by Allan Steel
  - OpenF4 v1.0.1 Open source implementation by Coladon, Vitse and Joux<sup>2</sup>.
- Test cases
  - $lue{1}$  Dense quadratic polynomials with coefficients in  $\mathbb{F}_{31}$
  - ② m = 2n and m = n + 1.

<sup>&</sup>lt;sup>1</sup>Available at http://www-polsys.lip6.fr/~jcf/FGb/C/index.html

|    |    | CPU time Ratio |        |       |     |
|----|----|----------------|--------|-------|-----|
| n  | m  | M4GB           | OpenF4 | Magma | FGb |
| 20 | 40 |                |        |       |     |
| 21 | 42 |                |        |       |     |
| 22 | 44 |                |        |       |     |
| 23 | 46 |                |        |       |     |
| 24 | 48 |                |        |       |     |
| 25 | 50 |                |        |       |     |
| 26 | 52 |                |        |       |     |
| 27 | 54 |                |        |       |     |

|    |    | Memory Usage Ratio |  |  |  |
|----|----|--------------------|--|--|--|
| n  | m  |                    |  |  |  |
| 20 | 40 |                    |  |  |  |
| 21 | 42 |                    |  |  |  |
| 22 | 44 |                    |  |  |  |
| 23 | 46 |                    |  |  |  |
| 24 | 48 |                    |  |  |  |
| 25 | 50 |                    |  |  |  |
| 26 | 52 |                    |  |  |  |
| 27 | 54 |                    |  |  |  |

|    |    | CPU time Ratio |        |       |     |  |
|----|----|----------------|--------|-------|-----|--|
| n  | m  | M4GB           | OpenF4 | Magma | FGb |  |
| 20 | 40 | 1              |        |       |     |  |
| 21 | 42 | 1              |        |       |     |  |
| 22 | 44 | 1              |        |       |     |  |
| 23 | 46 | 1              |        |       |     |  |
| 24 | 48 | 1              |        |       |     |  |
| 25 | 50 | 1              |        |       |     |  |
| 26 | 52 | 1              |        |       |     |  |
| 27 | 54 | 1              |        |       |     |  |

|    | •  | Memory Usage Ratio |                      |  |  |  |  |
|----|----|--------------------|----------------------|--|--|--|--|
|    |    |                    | Welliory Osage Natio |  |  |  |  |
| n  | m  |                    |                      |  |  |  |  |
| 20 | 40 |                    |                      |  |  |  |  |
| 21 | 42 |                    |                      |  |  |  |  |
| 22 | 44 |                    |                      |  |  |  |  |
| 23 | 46 |                    |                      |  |  |  |  |
| 24 | 48 |                    |                      |  |  |  |  |
| 25 | 50 |                    |                      |  |  |  |  |
| 26 | 52 |                    |                      |  |  |  |  |
| 27 | 54 |                    |                      |  |  |  |  |

|    |    | CPU time Ratio |        |       |     |  |
|----|----|----------------|--------|-------|-----|--|
| n  | m  | M4GB           | OpenF4 | Magma | FGb |  |
| 20 | 40 | 1              | 3.61   |       |     |  |
| 21 | 42 | 1              | 2.78   |       |     |  |
| 22 | 44 | 1              | 2.70   |       |     |  |
| 23 | 46 | 1              | 2.15   |       |     |  |
| 24 | 48 | 1              | 4.03   |       |     |  |
| 25 | 50 | 1              | -      |       |     |  |
| 26 | 52 | 1              | -      |       |     |  |
| 27 | 54 | 1              | -      |       |     |  |

|    |    | Memory Usage Ratio |  |  |  |  |
|----|----|--------------------|--|--|--|--|
| n  | m  |                    |  |  |  |  |
| 20 | 40 |                    |  |  |  |  |
| 21 | 42 |                    |  |  |  |  |
| 22 | 44 |                    |  |  |  |  |
| 23 | 46 |                    |  |  |  |  |
| 24 | 48 |                    |  |  |  |  |
| 25 | 50 |                    |  |  |  |  |
| 26 | 52 |                    |  |  |  |  |
| 27 | 54 |                    |  |  |  |  |

|    |    |      | CPU time Ratio |       |     |  |  |
|----|----|------|----------------|-------|-----|--|--|
| n  | m  | M4GB | OpenF4         | Magma | FGb |  |  |
| 20 | 40 | 1    | 3.61           | 4.07  |     |  |  |
| 21 | 42 | 1    | 2.78           | 2.94  |     |  |  |
| 22 | 44 | 1    | 2.70           | 3.81  |     |  |  |
| 23 | 46 | 1    | 2.15           | 3.00  |     |  |  |
| 24 | 48 | 1    | 4.03           | 12.19 |     |  |  |
| 25 | 50 | 1    | -              | 13.93 |     |  |  |
| 26 | 52 | 1    | -              | 11.83 |     |  |  |
| 27 | 54 | 1    | -              | 8.8   |     |  |  |

|    |    | Memory Usage Ratio |  |  |  |  |
|----|----|--------------------|--|--|--|--|
| n  | m  |                    |  |  |  |  |
| 20 | 40 |                    |  |  |  |  |
| 21 | 42 |                    |  |  |  |  |
| 22 | 44 |                    |  |  |  |  |
| 23 | 46 |                    |  |  |  |  |
| 24 | 48 |                    |  |  |  |  |
| 25 | 50 |                    |  |  |  |  |
| 26 | 52 |                    |  |  |  |  |
| 27 | 54 |                    |  |  |  |  |

|    |    | CPU time Ratio |        |       |       |  |
|----|----|----------------|--------|-------|-------|--|
| n  | m  | M4GB           | OpenF4 | Magma | FGb   |  |
| 20 | 40 | 1              | 3.61   | 4.07  | 8.25  |  |
| 21 | 42 | 1              | 2.78   | 2.94  | 5.89  |  |
| 22 | 44 | 1              | 2.70   | 3.81  | 7.35  |  |
| 23 | 46 | 1              | 2.15   | 3.00  | 6.46  |  |
| 24 | 48 | 1              | 4.03   | 12.19 | 25.31 |  |
| 25 | 50 | 1              | -      | 13.93 | 27.2  |  |
| 26 | 52 | 1              | -      | 11.83 | 23.20 |  |
| 27 | 54 | 1              | -      | 8.8   | 16.49 |  |

|    | •  | Memory Usage Ratio |                      |  |  |  |  |
|----|----|--------------------|----------------------|--|--|--|--|
|    |    |                    | Welliory Osage Natio |  |  |  |  |
| n  | m  |                    |                      |  |  |  |  |
| 20 | 40 |                    |                      |  |  |  |  |
| 21 | 42 |                    |                      |  |  |  |  |
| 22 | 44 |                    |                      |  |  |  |  |
| 23 | 46 |                    |                      |  |  |  |  |
| 24 | 48 |                    |                      |  |  |  |  |
| 25 | 50 |                    |                      |  |  |  |  |
| 26 | 52 |                    |                      |  |  |  |  |
| 27 | 54 |                    |                      |  |  |  |  |

|    |    | CPU time Ratio |        |       |       |  |
|----|----|----------------|--------|-------|-------|--|
| n  | m  | M4GB           | OpenF4 | Magma | FGb   |  |
| 20 | 40 | 1              | 3.61   | 4.07  | 8.25  |  |
| 21 | 42 | 1              | 2.78   | 2.94  | 5.89  |  |
| 22 | 44 | 1              | 2.70   | 3.81  | 7.35  |  |
| 23 | 46 | 1              | 2.15   | 3.00  | 6.46  |  |
| 24 | 48 | 1              | 4.03   | 12.19 | 25.31 |  |
| 25 | 50 | 1              | _      | 13.93 | 27.2  |  |
| 26 | 52 | 1              | -      | 11.83 | 23.20 |  |
| 27 | 54 | 1              | -      | 8.8   | 16.49 |  |

|    |    | Memory Usage Ratio |     |       |        |  |
|----|----|--------------------|-----|-------|--------|--|
| n  | m  | M4GB               | FGb | Magma | OpenF4 |  |
| 20 | 40 |                    |     |       |        |  |
| 21 | 42 |                    |     |       |        |  |
| 22 | 44 |                    |     |       |        |  |
| 23 | 46 |                    |     |       |        |  |
| 24 | 48 |                    |     |       |        |  |
| 25 | 50 |                    |     |       |        |  |
| 26 | 52 |                    |     |       |        |  |
| 27 | 54 |                    |     |       |        |  |

|    |    | CPU time Ratio |        |       |       |  |
|----|----|----------------|--------|-------|-------|--|
| n  | m  | M4GB           | OpenF4 | Magma | FGb   |  |
| 20 | 40 | 1              | 3.61   | 4.07  | 8.25  |  |
| 21 | 42 | 1              | 2.78   | 2.94  | 5.89  |  |
| 22 | 44 | 1              | 2.70   | 3.81  | 7.35  |  |
| 23 | 46 | 1              | 2.15   | 3.00  | 6.46  |  |
| 24 | 48 | 1              | 4.03   | 12.19 | 25.31 |  |
| 25 | 50 | 1              | -      | 13.93 | 27.2  |  |
| 26 | 52 | 1              | -      | 11.83 | 23.20 |  |
| 27 | 54 | 1              | -      | 8.8   | 16.49 |  |

|    |    |      | Memory Usage Ratio |       |        |  |
|----|----|------|--------------------|-------|--------|--|
| n  | m  | M4GB | FGb                | Magma | OpenF4 |  |
| 20 | 40 | 1    |                    |       |        |  |
| 21 | 42 | 1    |                    |       |        |  |
| 22 | 44 | 1    |                    |       |        |  |
| 23 | 46 | 1    |                    |       |        |  |
| 24 | 48 | 1    |                    |       |        |  |
| 25 | 50 | 1    |                    |       |        |  |
| 26 | 52 | 1    |                    |       |        |  |
| 27 | 54 | 1    |                    |       |        |  |

|    |    | CPU time Ratio |        |       |       |  |
|----|----|----------------|--------|-------|-------|--|
| n  | m  | M4GB           | OpenF4 | Magma | FGb   |  |
| 20 | 40 | 1              | 3.61   | 4.07  | 8.25  |  |
| 21 | 42 | 1              | 2.78   | 2.94  | 5.89  |  |
| 22 | 44 | 1              | 2.70   | 3.81  | 7.35  |  |
| 23 | 46 | 1              | 2.15   | 3.00  | 6.46  |  |
| 24 | 48 | 1              | 4.03   | 12.19 | 25.31 |  |
| 25 | 50 | 1              | -      | 13.93 | 27.2  |  |
| 26 | 52 | 1              | -      | 11.83 | 23.20 |  |
| 27 | 54 | 1              | -      | 8.8   | 16.49 |  |

|    |    | Memory Usage Ratio |      |       |        |  |
|----|----|--------------------|------|-------|--------|--|
| n  | m  | M4GB               | FGb  | Magma | OpenF4 |  |
| 20 | 40 | 1                  | 1.53 |       |        |  |
| 21 | 42 | 1                  | 1.36 |       |        |  |
| 22 | 44 | 1                  | 2.32 |       |        |  |
| 23 | 46 | 1                  | 2.32 |       |        |  |
| 24 | 48 | 1                  | 2.35 |       |        |  |
| 25 | 50 | 1                  | 1.88 |       |        |  |
| 26 | 52 | 1                  | 1.38 |       |        |  |
| 27 | 54 | 1                  | 1.2  |       |        |  |

|    |    | CPU time Ratio |        |       |       |  |
|----|----|----------------|--------|-------|-------|--|
| n  | m  | M4GB           | OpenF4 | Magma | FGb   |  |
| 20 | 40 | 1              | 3.61   | 4.07  | 8.25  |  |
| 21 | 42 | 1              | 2.78   | 2.94  | 5.89  |  |
| 22 | 44 | 1              | 2.70   | 3.81  | 7.35  |  |
| 23 | 46 | 1              | 2.15   | 3.00  | 6.46  |  |
| 24 | 48 | 1              | 4.03   | 12.19 | 25.31 |  |
| 25 | 50 | 1              | _      | 13.93 | 27.2  |  |
| 26 | 52 | 1              | -      | 11.83 | 23.20 |  |
| 27 | 54 | 1              | -      | 8.8   | 16.49 |  |

|    |    | Memory Usage Ratio |      |       |        |  |
|----|----|--------------------|------|-------|--------|--|
| n  | m  | M4GB               | FGb  | Magma | OpenF4 |  |
| 20 | 40 | 1                  | 1.53 | 4.96  |        |  |
| 21 | 42 | 1                  | 1.36 | 4.77  |        |  |
| 22 | 44 | 1                  | 2.32 | 3.8   |        |  |
| 23 | 46 | 1                  | 2.32 | 3.35  |        |  |
| 24 | 48 | 1                  | 2.35 | 13.38 |        |  |
| 25 | 50 | 1                  | 1.88 | 13.4  |        |  |
| 26 | 52 | 1                  | 1.38 | 7.57  |        |  |
| 27 | 54 | 1                  | 1.2  | 5.86  |        |  |

|    |    | CPU time Ratio |        |       |       |  |
|----|----|----------------|--------|-------|-------|--|
| n  | m  | M4GB           | OpenF4 | Magma | FGb   |  |
| 20 | 40 | 1              | 3.61   | 4.07  | 8.25  |  |
| 21 | 42 | 1              | 2.78   | 2.94  | 5.89  |  |
| 22 | 44 | 1              | 2.70   | 3.81  | 7.35  |  |
| 23 | 46 | 1              | 2.15   | 3.00  | 6.46  |  |
| 24 | 48 | 1              | 4.03   | 12.19 | 25.31 |  |
| 25 | 50 | 1              | -      | 13.93 | 27.2  |  |
| 26 | 52 | 1              | -      | 11.83 | 23.20 |  |
| 27 | 54 | 1              | -      | 8.8   | 16.49 |  |

|    |    | Memory Usage Ratio |      |       |        |
|----|----|--------------------|------|-------|--------|
| n  | m  | M4GB               | FGb  | Magma | OpenF4 |
| 20 | 40 | 1                  | 1.53 | 4.96  | 58.08  |
| 21 | 42 | 1                  | 1.36 | 4.77  | 54.88  |
| 22 | 44 | 1                  | 2.32 | 3.8   | 63.57  |
| 23 | 46 | 1                  | 2.32 | 3.35  | 66.16  |
| 24 | 48 | 1                  | 2.35 | 13.38 | 244.26 |
| 25 | 50 | 1                  | 1.88 | 13.4  | -      |
| 26 | 52 | 1                  | 1.38 | 7.57  | -      |
| 27 | 54 | 1                  | 1.2  | 5.86  | -      |

### Graph for m = 2n





15

|    |    |      | CPU Ti   | me Ratio    |     |
|----|----|------|----------|-------------|-----|
| n  | m  | M4GB | OpenF4   | Magma       | FGb |
| 10 | 11 |      |          |             |     |
| 11 | 12 |      |          |             |     |
| 12 | 13 |      |          |             |     |
| 13 | 14 |      |          |             |     |
| 14 | 15 |      |          |             |     |
| 15 | 16 |      |          |             |     |
|    |    |      | Memory U | Jsage Ratio | )   |
| n  | m  |      |          |             |     |
| 10 | 11 |      |          |             |     |
| 11 | 12 |      |          |             |     |
| 12 | 13 |      |          |             |     |
| 13 | 14 |      |          |             |     |
|    |    |      |          |             |     |

|    |    |      | CPU Ti | me Ratio |     |
|----|----|------|--------|----------|-----|
| n  | m  | M4GB | OpenF4 | Magma    | FGb |
| 10 | 11 | 1    |        |          |     |
| 11 | 12 | 1    |        |          |     |
| 12 | 13 | 1    |        |          |     |
| 13 | 14 | 1    |        |          |     |
| 14 | 15 | 1    |        |          |     |
| 15 | 16 | 1    |        |          |     |

|    | Memory Usage Ratio |  |  | ) |  |
|----|--------------------|--|--|---|--|
| n  | m                  |  |  |   |  |
| 10 | 11                 |  |  |   |  |
| 11 | 12                 |  |  |   |  |
| 12 | 13                 |  |  |   |  |
| 13 | 14                 |  |  |   |  |
| 14 | 15                 |  |  |   |  |
| 15 | 16                 |  |  |   |  |

15

|    |    |      | CPU Time Ratio |             |     |  |  |
|----|----|------|----------------|-------------|-----|--|--|
| n  | m  | M4GB | OpenF4         | Magma       | FGb |  |  |
| 10 | 11 | 1    | 3.05           |             |     |  |  |
| 11 | 12 | 1    | 3.36           |             |     |  |  |
| 12 | 13 | 1    | 2.64           |             |     |  |  |
| 13 | 14 | 1    | 2.96           |             |     |  |  |
| 14 | 15 | 1    | 3.2            |             |     |  |  |
| 15 | 16 | 1    | 2.98           |             |     |  |  |
|    |    |      | Memory U       | Jsage Ratio | )   |  |  |
| n  | m  |      |                |             |     |  |  |
| 10 | 11 |      |                |             |     |  |  |
| 11 | 12 |      |                |             |     |  |  |
| 12 | 13 |      |                |             |     |  |  |
| 13 | 14 |      |                |             |     |  |  |

15

16

|    |    | CPU Time Ratio |          |             |     |  |
|----|----|----------------|----------|-------------|-----|--|
| n  | m  | M4GB           | OpenF4   | Magma       | FGb |  |
| 10 | 11 | 1              | 3.05     | 3.36        |     |  |
| 11 | 12 | 1              | 3.36     | 4.3         |     |  |
| 12 | 13 | 1              | 2.64     | 4.24        |     |  |
| 13 | 14 | 1              | 2.96     | 4.92        |     |  |
| 14 | 15 | 1              | 3.2      | 7.15        |     |  |
| 15 | 16 | 1              | 2.98     | 7.12        |     |  |
|    |    |                | Memory U | Jsage Ratio | )   |  |
| n  | m  |                |          |             |     |  |
| 10 | 11 |                |          |             |     |  |
| 11 | 12 |                |          |             |     |  |
| 12 | 13 |                |          |             |     |  |
| 13 | 14 |                |          |             |     |  |
| 1/ | 15 |                |          |             |     |  |

|                |                | CPU Time Ratio |          |             |       |
|----------------|----------------|----------------|----------|-------------|-------|
| n              | m              | M4GB           | OpenF4   | Magma       | FGb   |
| 10             | 11             | 1              | 3.05     | 3.36        | 5.1   |
| 11             | 12             | 1              | 3.36     | 4.3         | 8.08  |
| 12             | 13             | 1              | 2.64     | 4.24        | 9.63  |
| 13             | 14             | 1              | 2.96     | 4.92        | 11.03 |
| 14             | 15             | 1              | 3.2      | 7.15        | 14.88 |
| 15             | 16             | 1              | 2.98     | 7.12        | 15    |
|                |                |                |          |             |       |
|                |                |                | Memory U | Jsage Ratio | )     |
| n              | m              |                | Memory U | Jsage Ratio | )     |
| n<br>10        | m<br>11        |                | Memory U | Jsage Ratio | )     |
|                |                |                | Memory U | Jsage Ratio | )     |
| 10             | 11             |                | Memory U | Jsage Ratio |       |
| 10<br>11       | 11<br>12       |                | Memory U | Jsage Ratio |       |
| 10<br>11<br>12 | 11<br>12<br>13 |                | Memory U | Jsage Ratio |       |

|    |    |      | CPU Ti | me Ratio |       |
|----|----|------|--------|----------|-------|
| n  | m  | M4GB | OpenF4 | Magma    | FGb   |
| 10 | 11 | 1    | 3.05   | 3.36     | 5.1   |
| 11 | 12 | 1    | 3.36   | 4.3      | 8.08  |
| 12 | 13 | 1    | 2.64   | 4.24     | 9.63  |
| 13 | 14 | 1    | 2.96   | 4.92     | 11.03 |
| 14 | 15 | 1    | 3.2    | 7.15     | 14.88 |
| 15 | 16 | 1    | 2.98   | 7.12     | 15    |

|    |    | Memory Usage Ratio |     |       |        |
|----|----|--------------------|-----|-------|--------|
| n  | m  | M4GB               | FGb | Magma | OpenF4 |
| 10 | 11 |                    |     |       |        |
| 11 | 12 |                    |     |       |        |
| 12 | 13 |                    |     |       |        |
| 13 | 14 |                    |     |       |        |
| 14 | 15 |                    |     |       |        |
| 15 | 16 |                    |     |       |        |

|    |    |      | CPU Ti | me Ratio |       |
|----|----|------|--------|----------|-------|
| n  | m  | M4GB | OpenF4 | Magma    | FGb   |
| 10 | 11 | 1    | 3.05   | 3.36     | 5.1   |
| 11 | 12 | 1    | 3.36   | 4.3      | 8.08  |
| 12 | 13 | 1    | 2.64   | 4.24     | 9.63  |
| 13 | 14 | 1    | 2.96   | 4.92     | 11.03 |
| 14 | 15 | 1    | 3.2    | 7.15     | 14.88 |
| 15 | 16 | 1    | 2.98   | 7.12     | 15    |

|    | Memory Usage Ratio |      |     | )     |        |
|----|--------------------|------|-----|-------|--------|
| n  | m                  | M4GB | FGb | Magma | OpenF4 |
| 10 | 11                 | 1    |     |       |        |
| 11 | 12                 | 1    |     |       |        |
| 12 | 13                 | 1    |     |       |        |
| 13 | 14                 | 1    |     |       |        |
| 14 | 15                 | 1    |     |       |        |
| 15 | 16                 | 1    |     |       |        |

|    |    | CPU Time Ratio |        |       |       |  |
|----|----|----------------|--------|-------|-------|--|
| n  | m  | M4GB           | OpenF4 | Magma | FGb   |  |
| 10 | 11 | 1              | 3.05   | 3.36  | 5.1   |  |
| 11 | 12 | 1              | 3.36   | 4.3   | 8.08  |  |
| 12 | 13 | 1              | 2.64   | 4.24  | 9.63  |  |
| 13 | 14 | 1              | 2.96   | 4.92  | 11.03 |  |
| 14 | 15 | 1              | 3.2    | 7.15  | 14.88 |  |
| 15 | 16 | 1              | 2.98   | 7.12  | 15    |  |

|    |    | Memory Usage Ratio |      |       |        |
|----|----|--------------------|------|-------|--------|
| n  | m  | M4GB               | FGb  | Magma | OpenF4 |
| 10 | 11 | 1                  | 1.94 |       |        |
| 11 | 12 | 1                  | 3.12 |       |        |
| 12 | 13 | 1                  | 3.61 |       |        |
| 13 | 14 | 1                  | 4.36 |       |        |
| 14 | 15 | 1                  | 4.39 |       |        |
| 15 | 16 | 1                  | 4.92 |       |        |

|    |    | CPU Time Ratio |        |       |       |  |
|----|----|----------------|--------|-------|-------|--|
| n  | m  | M4GB           | OpenF4 | Magma | FGb   |  |
| 10 | 11 | 1              | 3.05   | 3.36  | 5.1   |  |
| 11 | 12 | 1              | 3.36   | 4.3   | 8.08  |  |
| 12 | 13 | 1              | 2.64   | 4.24  | 9.63  |  |
| 13 | 14 | 1              | 2.96   | 4.92  | 11.03 |  |
| 14 | 15 | 1              | 3.2    | 7.15  | 14.88 |  |
| 15 | 16 | 1              | 2.98   | 7.12  | 15    |  |

|    |    | Memory Usage Ratio |      |       |        |
|----|----|--------------------|------|-------|--------|
| n  | m  | M4GB               | FGb  | Magma | OpenF4 |
| 10 | 11 | 1                  | 1.94 | 1.88  |        |
| 11 | 12 | 1                  | 3.12 | 4     |        |
| 12 | 13 | 1                  | 3.61 | 3.68  |        |
| 13 | 14 | 1                  | 4.36 | 3.8   |        |
| 14 | 15 | 1                  | 4.39 | 4.42  |        |
| 15 | 16 | 1                  | 4.92 | 3.97  |        |

|    |    | CPU Time Ratio |        |       |       |  |
|----|----|----------------|--------|-------|-------|--|
| n  | m  | M4GB           | OpenF4 | Magma | FGb   |  |
| 10 | 11 | 1              | 3.05   | 3.36  | 5.1   |  |
| 11 | 12 | 1              | 3.36   | 4.3   | 8.08  |  |
| 12 | 13 | 1              | 2.64   | 4.24  | 9.63  |  |
| 13 | 14 | 1              | 2.96   | 4.92  | 11.03 |  |
| 14 | 15 | 1              | 3.2    | 7.15  | 14.88 |  |
| 15 | 16 | 1              | 2.98   | 7.12  | 15    |  |

|    |    | Memory Usage Ratio |      |       |        |
|----|----|--------------------|------|-------|--------|
| n  | m  | M4GB               | FGb  | Magma | OpenF4 |
| 10 | 11 | 1                  | 1.94 | 1.88  | 5.94   |
| 11 | 12 | 1                  | 3.12 | 4     | 21.31  |
| 12 | 13 | 1                  | 3.61 | 3.68  | 47.19  |
| 13 | 14 | 1                  | 4.36 | 3.8   | 103    |
| 14 | 15 | 1                  | 4.39 | 4.42  | 133.84 |
| 15 | 16 | 1                  | 4.92 | 3.97  | 140.26 |

## Graph for m = n + 1





#### Table of Contents

- Gröbner Bases Algorithms
- M4GB Algorithm
- Fukuoka MQ Challenges
- 4 Implementation Results
- Solving MQ Challenges

## Solved MQ Challenges

|                   | $\mathbb{F}_2$ | $\mathbb{F}_{2^8}$ | $\mathbb{F}_{31}$ |
|-------------------|----------------|--------------------|-------------------|
| m=2n              |                |                    | III               |
| 111 — 211         | <i>n</i> ≥ 55  | <i>n</i> ≥ 35      | <i>n</i> ≥ 34     |
| $n \approx 1.5 m$ | IV             | V                  | VI                |
| $H \approx 1.5 H$ | $m \ge 55$     | <i>m</i> ≥ 16      | <i>m</i> ≥ 16     |

## Solved MQ Challenges

|                   | $\mathbb{F}_2$ | $\mathbb{F}_{2^8}$ | $\mathbb{F}_{31}$ |
|-------------------|----------------|--------------------|-------------------|
| m=2n              |                |                    |                   |
| III = ZII         | <i>n</i> ≥ 55  | <i>n</i> ≥ 35      | <i>n</i> ≥ 34     |
| $n \approx 1.5 m$ | IV             | V                  | VI                |
| $n \approx 1.5m$  | <i>m</i> ≥ 55  | <i>m</i> ≥ 16      | <i>m</i> ≥ 16     |

(n > m)

$$\bar{F} = F(x_1, \ldots, x_m, a_1, \ldots, a_{n-m})$$

$$F \longrightarrow F$$

$$(n > m) \qquad (\# \text{var} = m)$$







 $\bar{G}_i$  is the reduced Gröbner basis of  $\bar{F}_i$ 



 $ar{G}_i$  is the reduced Gröbner basis of  $ar{F}_i$ 

Assume  $ar{F}$  has a unique solution in  $\mathbb{F}_q^m \Rightarrow \exists i \in \{1,\dots,q^k\}$  such that

$$\bar{G}_i = \{x_1 + \underline{c_1}, \dots, x_m + \underline{c_m} : c_1, \dots, c_m \in \mathbb{F}_q\}$$



 $\bar{G}_i$  is the reduced Gröbner basis of  $\bar{F}_i$ 

Assume  $ar{\mathcal{F}}$  has a unique solution in  $\mathbb{F}_q^m \Rightarrow \exists i \in \{1,\dots,q^k\}$  such that

$$\bar{G}_i = \{x_1 + c_1, \dots, x_m + c_m : c_1, \dots, c_m \in \mathbb{F}_q\}$$

#### Solution

$$(-c_1,\ldots,-c_m,a_1,\ldots,a_{n-m})\in\mathbb{F}_q^n$$

| Туре | n/m | Machine Used | # Node | Duration |
|------|-----|--------------|--------|----------|
|      |     |              |        |          |
|      |     |              |        |          |
|      |     |              |        |          |
|      |     |              |        |          |
|      |     |              |        |          |
|      |     |              |        |          |
|      |     |              |        |          |

- A) Intel(R) Core(TM) i7-2600K CPU @3.40GHz and 16GB RAM (Desktop)
- B) Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz and 128GB RAM (NUMA)

| Туре | n/m   | Machine Used | # Node | Duration |
|------|-------|--------------|--------|----------|
| V    | 24/16 |              |        |          |
| V    | 25/17 |              |        |          |
| V    | 27/18 |              |        |          |
|      |       |              |        |          |
|      |       |              |        |          |
|      |       |              |        |          |
|      |       |              |        |          |

- A) Intel(R) Core(TM) i7-2600K CPU @3.40GHz and 16GB RAM (Desktop)
- B) Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz and 128GB RAM (NUMA)

| Туре | n/m   | Machine Used | # Node | Duration        |
|------|-------|--------------|--------|-----------------|
| V    | 24/16 | А            | 1      | pprox 9.3 hours |
| V    | 25/17 |              |        |                 |
| V    | 27/18 |              |        |                 |
|      |       |              |        |                 |
|      |       |              |        |                 |
|      |       |              |        |                 |
|      |       |              |        |                 |

- A) Intel(R) Core(TM) i7-2600K CPU @3.40GHz and 16GB RAM (Desktop)
- B) Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz and 128GB RAM (NUMA)

| Туре | n/m   | Machine Used | # Node | Duration          |
|------|-------|--------------|--------|-------------------|
| V    | 24/16 | Α            | 1      | pprox 9.3 hours   |
| V    | 25/17 | В            | 1      | pprox 46.33 hours |
| V    | 27/18 | В            | 2      | pprox 10.9 days   |
|      |       |              |        |                   |
|      |       |              |        |                   |
|      |       |              |        |                   |
|      |       |              |        |                   |

- A) Intel(R) Core(TM) i7-2600K CPU @3.40GHz and 16GB RAM (Desktop)
- B) Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz and 128GB RAM (NUMA)

| Туре | n/m   | Machine Used | # Node | Duration          |
|------|-------|--------------|--------|-------------------|
| V    | 24/16 | Α            | 1      | pprox 9.3 hours   |
| V    | 25/17 | В            | 1      | pprox 46.33 hours |
| V    | 27/18 | В            | 2      | pprox 10.9 days   |
| VI   | 24/16 |              |        |                   |
| VI   | 25/17 |              |        |                   |
| VI   | 27/18 |              |        |                   |
| VI   | 28/19 |              |        |                   |

- A) Intel(R) Core(TM) i7-2600K CPU @3.40GHz and 16GB RAM (Desktop)
- B) Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz and 128GB RAM (NUMA)

| Туре | n/m   | Machine Used | # Node | Duration          |
|------|-------|--------------|--------|-------------------|
| V    | 24/16 | Α            | 1      | pprox 9.3 hours   |
| V    | 25/17 | В            | 1      | pprox 46.33 hours |
| V    | 27/18 | В            | 2      | pprox 10.9 days   |
| VI   | 24/16 | А            | 1      | pprox 1.2 hours   |
| VI   | 25/17 |              |        |                   |
| VI   | 27/18 |              |        |                   |
| VI   | 28/19 |              |        |                   |

- A) Intel(R) Core(TM) i7-2600K CPU @3.40GHz and 16GB RAM (Desktop)
- B) Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz and 128GB RAM (NUMA)

| Туре | n/m   | Machine Used | # Node | Duration          |
|------|-------|--------------|--------|-------------------|
| V    | 24/16 | А            | 1      | pprox 9.3 hours   |
| V    | 25/17 | В            | 1      | pprox 46.33 hours |
| V    | 27/18 | В            | 2      | pprox 10.9 days   |
| VI   | 24/16 | Α            | 1      | pprox 1.2 hours   |
| VI   | 25/17 | В            | 1      | pprox 9.87 hours  |
| VI   | 27/18 | В            | 1      | pprox 31.48 hours |
| VI   | 28/19 | В            | 2      | pprox 7.61 days   |

- A) Intel(R) Core(TM) i7-2600K CPU @3.40GHz and 16GB RAM (Desktop)
- B) Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz and 128GB RAM (NUMA)

#### **New Record**

|   | Туре | n/m   | Machine Used | # Node | Duration              |
|---|------|-------|--------------|--------|-----------------------|
| Ì | VI   | 30/20 | В            | 2      | $pprox 11.32 \; days$ |

#### Future Work

- Implementation for sparse system of equations
- Vectorization / Parallelization using GPU
- Larger finite field
- Adapting signature in M4GB

https://github.com/cr-marcstevens/m4gb

Question ?