Генерация графовых задач для ОГЭ / ЕГЭ. Архитектура + описание проекта и mvp.

MVP: будет описан в виде интерфейса в конце документа

ЦА: репетиторы, школьники

Техническое задание (ТЗ) для разработки программы тренировки к экзамену по графам

1. Введение

Целью данного проекта является создание интерфейса, который позволит экзаменаторам тренироваться к экзамену по теме "Графы", а именно 1 задание ЕГЭ, 4,9 задания ОГЭ. Программа будет предоставлять пользователю возможность выбирать различные задания, готовиться по теории, работать с ними и получать обратную связь о правильности своих ответов.

2. Основные функции программы

- 1. Выбор задания:
- Пользователь должен иметь возможность выбрать один из трех типов заданий, связанных с графами.
 - Задания могут включать, но не ограничиваться:
 - Задание на определение свойств графа.
 - Задание на нахождение определенных путей в графе.
 - Задание на построение графа по заданным условиям.
- 2. Генерация задания:
- После выбора типа задания программа должна динамически генерировать задание и отображать его в основном окне.
- Задание должно быть представлено в текстовом формате или в виде графической схемы (при необходимости).
- 3. Отображение теории:

- Для каждого типа задания должно быть предусмотрено отдельное окно (или диалог), в котором будет представлена теоретическая информация о графах, необходимая для выполнения задания.
- Теория должна быть доступна пользователю перед началом выполнения задания.

4. Ввод ответа:

- Пользователь должен иметь возможность вводить свой ответ в отдельном текстовом поле.
- Поле ввода должно быть достаточно широким для удобного ввода текстовой информации.

5. Проверка ответа:

- После нажатия кнопки "Отправить ответ", программа должна проверить введенный ответ на правильность.
- Если ответ правильный, поле ввода должно подсвечиваться зеленым цветом, если неверный красным.
- Программа должна также выводить сообщение с результатом проверки (например, "Ваш ответ верный!" или "Попробуйте еще раз.").

6. Переход к следующему заданию:

- После проверки ответа и получения обратной связи от программы, пользователь должен иметь возможность перейти к следующему заданию.
- При этом программа должна заново генерировать новое задание, а также очищать поле ввода для нового ответа.

3. Интерфейс пользователя

1. Главное окно:

• Заголовок окна: "Тренировочный экзамен по графам".

- Элементы интерфейса:
- Выпадающий список (ComboBox) для выбора типа задания (3 варианта).
 - Кнопка "Начать" для генерации задания.
 - Область для отображения задания (QTextEdit или QLabel).
- Кнопка "Теория", открывающая окно с теоретическим материалом.
 - Поле ввода для ответа (QLineEdit или QTextEdit).
 - Кнопка "Отправить ответ".

2. Окно теории:

- Отдельное окно или диалог, отображающее текст с теоретической информацией о графах и выбранном задании.
- 3. Обратная связь:
- Подсветка поля ввода (зеленый/красный) в зависимости от правильности ответа.
- 4. Технические требования
- 1. Язык программирования: Python.
- 2. Библиотеки: PyQt5 для создания графического интерфейса.
- 3. Совместимость: Программа должна работать на операционных системах Windows, macOS и Linux.

5. Сроки выполнения

• Этапы разработки и тестирования программы должны быть завершены в течение 4 недель с момента начала работы над проектом.

I 6. Заключение

Данная программа будет полезна экзаменаторам, позволяя им эффективно готовиться к экзамену по теме "Графы". Удобный интерфейс и функциональность программы обеспечат качественную подготовку и возможность самопроверки знаний. Задачи:

3 алгоритма

- **☀**1 задача ЕГЭ 1 вид
- 🔆 4 задача ОГЭ отдельный вид
- 🔆 9 задача ОГЭ от начальной до конечной
 - 1 вид

2 категории

- номера этих вершин

	1	2	3	4	5	6
1		*		*		
2	*			*		*
3				*	*	
4	*	*	*		*	*
5			*	*		
6		*		* ege.s	damg	ia.ru

- состояние этих вершин, длину между ними

	П1	П2	ПЗ	П4	П5	П6	П7
П1		45		10			
П2	45			40		55	
ПЗ					15	60	
Π4	10	40				20	35
П5			15			55	
П6		55	60	20	55		45
П7				35		45	

Между населенными пунктами А, В, С, D, Е построены дороги, протяженность которых (в километрах) приведена в таблице:

	Α	В	С	D	E
Α		1			
В	1		2	2	7
С		2			3
D		2			4
E		7	3	oge . sdar	mgia.ru

Определите длину кратчайшего пути между пунктами А и Е. Передвигаться можно только по дорогам, протяженность которых указана в таблице.

Рассчитать количество путей от начальной до конечной точки через весовые ребра

3 вид

1 Тип 9 № <u>10258</u> і́

На рисунке — схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, И, К, Л. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из пункта А в пункт Л, проходящих через пункт

Разделение обязанностей Функции + классы

• метод решения

Краткое описание проекта

Цель нашего проекта - создать десктопное приложение для генерации и решения графовых задач из ОГЭ и ЕГЭ.

Целевая аудитория: школьники, готовящиеся к экзаменам и репетиторы, преподаватели, готовящие к ОГЭ и ЕГЭ.

Пользователь полученного продукта сможет генерировать условия задач 4 и 9 из ОГЭ и задачи 1 из ЕГЭ, а также проверять ответ на правильность и смотреть правильное решение. В придачу получит бесценный блок теории по графам.

Архитектура проекта

Проект должен быть реализован под архитектуру бек - фронт. Он должен включать в себя:

- Генерацию и решение задач (бек);
- Десктопное приложение (фронт).

При разработке следует придерживаться следующих принципов:

- 1. SOLID
 - а. S принцип единой ответственности
 - b. O принцип открытости / закрытости
 - с. L принцип заменяемости
 - d. I принцип разделения интерфейсов
 - е. D принцип инверсии зависимостей
- 2. KISS пусть всё будет простым до безобразия
- 3. DRY не повторяйтесь

Десктопное приложение должно иметь кнопки, поле для ввода ответа и места для отображения здания и решения, поэтому была выбрана библиотека PyQt на Python.

Для генерации и решения задач необходима простота кода, поэтому выбран Python.

USM

Доска с задачами:

https://m-yozhka.lukit.ru/project/PFPVUYAS

Схема классов

Первый класс генерирует текст задачи и матрицу для неё.

Второй класс решает задачу в зависимости от её номера.

Третий класс реализует интерфейс - отображение задач.

Четвертый класс является контроллером - соединяющим интерфейс и бек.

API

Генерация задач:

- Генерируется условие по шаблону в зависимости от номера 1, 4, 9 (Может сделать Enum?)
- Генерирует матрицу для задачи в зависимости от номера 1, 4, 9 Решение задач:
 - Решает задачу по матрице в зависимости от номера 1, 4, 9 и типа условия задачи

Контроллер:

- Связывает работу интерфейса и генератора
- Проверяет повтор заданий
- Возвращает сгенерированную теорию

Интерфейс:

- Отображает вид
- Для задач 1, 9 генерирует красивый вид графа

Роли в команде

Савченко Вероника - отвечает за сборку приложения, Team Lead, Front Серяков Сергей - Backend, генерация заданий Корецкая Анна - Интерфейс, документация Хижняк Юрий - Генерация текстов Рылкин Максим - Генерация заданий