

Machine Learning Methodology

Kai-Uwe Kühnberger Universität Osnabrück 08.01.2021

Machine Learning Methodology: Schedule

- Machine Learning:
 - What is it?
 - Concepts and Methodologies
- Example: Health Prediction
- Important Concepts
 - Similarity and Distance
 - Classification and Features
- Clustering methods
- Properties of Hypotheses

What is Machine Learning?

- Machine learning…
 - ... is any change of a system which enables the system to solve a similar task better next time. [Simon]
 - ... is the construction or change of representations of perceptions. [Michalski]
 - ... [are] algorithms [to] improve their performance with experience. [Langley, 1996]
 - ... means acquiring a program by any means other than explicit programming. [Valiant, 1984]
 - ... is an approximation problem
 - If the learner can't compress the data, he or she doesn't learn [Li and Vitanyi, 1997]

Machine Learning is Everywhere

Amazons Alexa

Smart home: heating, lightening, entertainment, shades etc.

Autonomous Google Car

Autonomous Daimler Truck

Boston Dynamics Big Dog, Softbank's Pepper at Munich Airport

Machine Learning is Everywhere

- Which tools and services are or will be available soon or significantly further improved?
 - Predictive maintenance in industry
 - Autonomous mobility
 - Improved quality of products
 - Improved weather forecasts
 - Artificial assistants
 - Document management
 - Smart homes
 - Individual risk assessments in the health area
 - Automation of consultancy services

•

Machine Learning is Everywhere

What is the basis of future developments in Al?

Human generated data and IoT generated data are growing exponentially.

BIG DATA (Deep) Machine Learning

New Applications

Source: Storagenewsletter (2017)

Examples of Learning

- Conceptualizations of learning
 - How can we learn? Here are the classical three learning types:
 - "Find patterns in the data"
 - Unsupervised learning
 - "By trial-and-error and feedback from the environment"
 - Reinforcement learning
 - "With an experienced teacher"
 - Supervised learning
- Perhaps one needs more learning types:
 - Learning step by step (until we run).
 - By example
 - Analogical learning
 - Learning guided by conceptualizations
 - Transfer learning
 - With networks or case-based reasoning
 - Etc.

Domains for Learning (Examples)

- Classification learning:

 E.g. learning to classify text into text genres, to recognize objects in an image, to interpret a gesture.
- Reinforcement learning:

 E.g. learning to grasp something, to hit the baseball with a bat, to find a policy to reach the next level in a computer game.
- Skill acquisition:

 E.g. learning how to solve problems, how to drive cars, how to play the piano.
- Discovery:
 E.g. learning laws from empirical data.
- Meta-learning:E.g. learning how to learn.

- Concrete examples for learning applications.
 - Credit risk management.
 - Speech recognition.
 - Text Mining.
 - Text Classification.
 - Face recognition.
 - Image recognition.
 - Bioinformatics.
 - Elevator group control.
 - Playing chess, go...
 - Etc.

Induction vs. Deduction

- Deductive reasoning:
 - The conclusion is entailed by the premises.
 - Entailment is defined by the semantics of the logical calculus.

- Traditional syllogism.
 - Premise 1:
 - A lizard is a reptile.
 - Premise 2:
 - All reptiles have a scaly skin.
 - Conclusion:
 - Lizards have a scaly skin.

- Inductive reasoning:
 - The conclusion is obtained by a generalization of the premises.
 - Different notions of generalization lead to different machine learning approaches.

- Inductive inference:
 - Premise 1:
 - A lizard is a reptile.
 - Premise 2:
 - Lizards have a scaly skin.
 - Conclusion:
 - All reptiles have a scaly skin.

Methodologies used for Machine Learning

- High-level descriptions (knowledge), symbolic computations.
 - Examples: inductive learning, inductive logic programming, decision/regression tree learning, version space.
- Sub-symbolic computations (biologically inspired).
 - Examples: Neural networks, connectionist systems, deep (reinforcement) learning, recurrent NNs.
- Survival of the fittest.
 - Examples: Genetic algorithms (biologically inspired by evolution).
- Learning by statistical algorithms.
 - Example: Markov decision processes, Markov logic networks, Bayesian learning,
- Further approaches: Support vector machines.

Example

Health Prediction in a Study Project

Participants: Kai Fritsch, Carolin Gaß, Alexander Höreth, Inga Ibs, Ann-Christin Meisener, Tim Patzelt, Justin Shenk, Geeske Sieckmann, Andrea Suckro

Predicting Health Issues

- One-year study project
- Data:
 - Data provided by a Berlin-based company
 - Anonymous Data of 360,000 patient entries from 8 different hospitals
 - Types of available and anonymous data: age, gender, date of entrance and discharge, diagnosis, treatments etc.
 - Diagnosis and treatment is coded in ICD codes and OPS codes.
 - Additionally, lab tests were available.
 - This results in significantly more than 50 millions feature-value pairs.
- Task:
 - Predictions of ICD (diagnosis), OPS (treatment), and DRG (payments) codes, length of stay of patients etc.
 - Prediction of missing lab values (e.g. in blood tests)
- Problems: Data was not consistent; no standard formats; different IDs, different units for blood tests etc.

Distribution of Data

Preprocessing & Feature Selection

- Normalization of lab values
- Balancing data sets is required because there are significantly more entries with normal values than entries with abnormal values
 - This can result sometimes in rather small sets, although the original set was rather large.
- Data set divided into training set (50%), test set (25%), and validation set (25%).
- Etc.
- Feature selection:
 - The idea is to find a maximal set of patients relative to a subset of test features of cardinality n.

Predicting ICD Codes: N17

- Task: Prediction of N17 (acute kidney failure)
- Methods used for ICD classification include
 - Logistic regression (LR)
 - Support Vector Machines (SVM)
 - Decision trees (DT)
 - Random forests (RF)
- Pre-processing: collect all data in the unified relational database, unify lab test identifiers and fix encoding problems.
- Problem: find task tailored subsets of data such that
 - Only records with common and discriminating features are used
 - Dropping erroneous records quite often results in small subsets. This leads to the challenge of limited and unbalanced datasets.

Predicting ICD Codes: N17

Figure 1. AKF Decision Tree

 Features that could be relevant for detecting N17 in a decision tree.

Predicting ICD Codes: N17

Scores	SVM	LR	DT	RF	
True Positive	0.866	0.881	0.851	0.805	
True Negative	0.925	0.927	0.882	0.957	
False Positive	0.075	0.073	0.118	0.042	
False Negative	0.134	0.119	0.149	0.195	

- Results for predicting N17 (acute kidney failure) based on an appropriate feature set.
- Predictions of other ICD-Codes are sometimes more difficult, e.g. ICD code I10 (essential primary hypertension) shows around 0.24 false negatives for the best algorithm.

Clustering and Classification

Similarity Distances

Classification, Clustering & Reinforcement Learning

- Classification (supervised learning):
 - Classes are given, training data consists of data plus corresponding class
 - For a new, unseen example, decide to which class it belongs to.
- Clustering (unsupervised learning):
 - Given is a set of examples (without class membership).
 - Partition the set of examples into interesting subsets of similar elements.
 - Try to find descriptions / definitions of these subsets
- Reinforcement Learning
 - Given is a set of actions, sensor data, and a reward provided by the environment.
 - Find an optimal policy to reach a goal by maximizing the expected future reward.

Classification & Clustering

- Mathematical background for all approaches:
 - Similarity between examples / input
 - Distance between examples / input
 - Feature spaces
 - Classification functions
- These principles are independent from concrete learning methods.

Similarity <=> Distance

- Similarity measures
 - $sim: U \times U \rightarrow [0,1]$
 - sim(x, x) = 1
 - If sim(x, y) = 1, then x and y are indiscernible (indistinguishable)
 - sim(x, y) = sim(y, x) [?]
 - Example "cosine similarity" in a (positive) vector space:

$$cos(\mathbf{x}, \mathbf{y}) = (\mathbf{x} \cdot \mathbf{y}) / |\mathbf{x}||\mathbf{y}|$$

- Distance measures → metric spaces
 - $d: U \times U \rightarrow \Re$
 - $d(x, y) \ge 0$
 - d(x, x) = 0
 - d(x, y) = d(y, x)
 - $d(x, z) \le d(x, y) + d(y, z)$ (triangle inequality)
 - $x \neq y => d(x, y) > 0$
 - Example Euclidian distance: $d(\mathbf{x},\mathbf{y}) = ((x_1 y_1)^2 + (x_2 y_2)^2 + ... + (x_n y_n)^2)^{1/2}$

Similarity <=> Distance

- Translation between similarity measures and distance measures:
 - sim(x, y) = 1 / (1 + d(y, x)) or $sim(x, y) = e^{-d(y, x)}$
 - d(x, y) = [1/sim(y, x)] 1 or d(x, y) = log sim(y, x) (provided $sim(y, x) \neq 0$)
- Problems
 - Where do these measures come from, if U is not a metric space?
 - What does it mean that two chairs are similar?
 - Which properties do similarity / distance measures have?
 - Triangle inequality?
 - Is similarity transitive?
 - Is similarity symmetric?
 - Similarity judgments may have none of these properties! (Tversky, 1977)
 - For a discussion of these concepts with respect to human-inspired concepts of similarity and distance compare Quesada (2008).

Classification

Classification

Feature spaces

- Vector space model
 - Embed *D* into \Re^n to inherit the topology of \Re^n
 - $r: D \to \Re^n$
 - $r(x) = (f_1, ..., f_n)$
 - The dimensions of \Re^n may have an interpretation.
 - They are called features.
- Example: Documents
 - Features are (normalized) words
 - Consider function values dependent on the number of occurrences of the words in the documents, e.g. TF-IDF (term frequency times inverse document frequency)
 - Similarity measure: cosine
 - Application: clustering the results of a search engine

Feature spaces: Example

- Term frequency tf can be defined in many ways:
 - Boolean frequency
 - Raw count frequency f(t,d): number of times a word occurs in a document
 - Below: *tf* is logarithmically scaled term frequency
- idf is a measure how much information a word provides

$$sim(v_1, v_2) = cos(\theta) = \frac{v_1 v_2}{\|v_1\| \|v_2\|}$$

$$tf(t_i, d_j) = 1 + \log f(t_i, d_j)$$

$$tf - idf(t_i, d_j, D) = tf(t_i, d_j) \log \frac{|D|}{|\{d \in D \mid t_i \in d\}|}$$

(Dis-)Similarity Matrix

	I ₁		 l _i	 I _{n-1}	I _n
I ₁	0	$d(I_1,I_2)$	 $d(I_1,I_i)$	 $d(I_1,I_{n-1})$	$d(I_1,I_n)$
I ₂	$d(l_2, l_1)$	0	 $d(I_2,I_i)$	 $d(I_2,I_{n-1})$	$d(I_2,I_n)$
l _i	$d(I_i,I_1)$	$d(I_i,I_2)$	 0	 $d(I_i,I_{n-1})$	$d(I_i,I_n)$
I _{n-1}	$d(I_{n-1},I_1)$	$d(I_{n-1},I_2)$	 $d(I_{n-1},I_i)$	 0	$d(I_{n-1},I_n)$
I _n	$d(I_n,I_1)$	$d(I_n,I_2)$	 $d(I_n,I_i)$	 $d(I_n,I_{n-1})$	0

Clustering

Putting things together which are similar

Clustering

- Centroid models
 - Use the centroid (mean representation of all elements) to represent a cluster
 - Use minimal distance to the centroids for classification
- Prototype models
 - Use one (or more) elements as prototypes
 - Use minimal distance to the prototypes for classification
- k-means
 - Use k initial clusters (k initial centroids)
 - Classify each element and compute new centroids
 - Repeat until clusters don't change
- Hierarchical models
 - Single link
 - Complete link

Clustering Using k-Means

Distance Based Clustering Method: Voronoi

Diagrams

Hierarchical Clustering

- Top down clustering:
 - Start with one cluster containing all elements.
 - Select a cluster and split it until the intended number of clusters is reached.
- Bottom up:
 - Start with one cluster per element.
 - Join the nearest clusters.
 - Different distance measures for clusters are possible.
 - Minimal distance between elements of each cluster is considered (single link clustering).
 - Maximal distance between elements of each cluster is considered (complete link clustering).
 - Mean distance between elements of each cluster.
- Results are trees of subsets (dendrograms).
- No pre-assumed number of clusters necessary.

Hierarchical Clustering

Complete link distance

Single-link distance

Mean / average distance

Kai-Uwe Kühnberger - IKW

Clustering

- Quality of clustering
- Maximize: Intra-class similarity
 - Minimize mean distance of elements of a class.
- Maximize: Inter-class dissimilarity
 - Maximize mean distance of elements of different classes

Examples and Hypotheses

Different Kinds of Hypotheses.

We could think about...

- ... Different hypotheses that only take correct examples into account (but miss perhaps some of the correct ones)
- ... Hypotheses that take into account definitely all correct examples (but include perhaps some false ones)

- Concepts we need for assessing hypotheses:
 - A machine learning algorithm A is given.
 - A receives a sample s of examples encoded in a language L_E .
 - $s = [\langle x_1, t(x_1) \rangle, \langle x_2, t(x_2) \rangle, \dots, \langle x_n, t(x_n) \rangle].$
 - t is a target concept.
 - A has background knowledge Σ encoded in L_{Σ} .
 - A outputs a hypothesis h encoded in L_H .
 - $\Sigma \cup \{h\} \models E^+$ (completeness)
 - $\Sigma \cup \{h\} \not\models E^{-}$ (correctness)
- Goal:
 - The goal is to approximate a target concept t by a hypothesis h.
 - We assume that the new theory shall explain more observations than the old theory (with less complexity).

The intuitive meaning of correctness and completeness:

- Correctness:
 - Hypothesis covers no negative example.
- Completeness:
 - Hypotheses covers all positive examples.
- General strategy:
 - Specialize incorrect and generalize incomplete hypotheses.
 - An algorithm doing precisely this is version space learning

- In case where there is no complete and correct hypothesis h, precision and coverage are used to describe the quality of h.
 - Precision (measures the "degree of correctness"):
 - The number of positive examples supported by *h* divided by all examples supported by *h* (true positives TP divided by sum of true positives TP and false positives FP).

$$pre(h) = \frac{|\{e \in E^+ | \Sigma \cup \{h\} \vDash e\}|}{|\{x \mid \Sigma \cup \{h\} \vDash x\}|} = \frac{TP}{TP + FP}$$

- Sensitivity / recall (measures the "degree of completeness"):
 - The number of positive examples supported by h divided by all positive examples (true positives TP divided by sum of true positives TP and false negatives FN).

$$rec(h) = \frac{|\{e \in E^+ | \Sigma \cup \{h\} \models e\}|}{|E^+|} = \frac{TP}{TP + FN}$$

In different fields different notions are used.

- Further properties of hypotheses:
 - Accuracy (measures the "proportion of correct classifications"):
 - The sum of the number of true positives TP and true negatives FP divided by the sum of all data points).

$$acc(h) = \frac{TP + TN}{TP + TN + FP + FN}$$

 F₁ score (measures the harmonic mean of precision and sensitivity/recall):

$$F_1(h) = \frac{2TP}{2TP + FP + FN}$$

• A parameterized version of the F_1 score is the F_β score that allows to set a bias to recall and precision, e.g. that recall is β times more important than precision.

Remark concerning Hypothesis Spaces

- We saw that a machine learning algorithm A needs:
 - A language L_F to encode the sample.
 - A language L_E to encode the background knowledge.
 - A language L_H to encode the hypotheses.
 - Notice:
 - L_E must be suitable to encode the sample data, e.g. vectors of real numbers / integers / nominal values (in general: all kinds of scales).
 - L_{Σ} can, for example, be the language of predicate logic.
 - The quality of the modeling depends highly on the language L_H .
 - This language is usually quite restricted: often only conjunctions of equations can be expressed (i.e. value(A) = x).
 - On *H* we have a subsumption relation: $h_1 < h_2$ iff $h_1(x) \rightarrow h_2(x)$

Examples and Hypotheses

Assume the hypothesis space is restricted to rectangles in the plane (subranges for two attributes).

In the example, it is not possible to get a consistent hypothesis *h* which is complete and correct.

By changing the language – allowing more general shapes of areas – this problem can be potentially solved.

Examples and Hypotheses

Notice:

Even a change of the base of the coordinate system can solve the problem.

This corresponds to the possibility to combine features.

In machine learning particularly non-linear combinations of features can improve learning quality.

References

General

- Langley, P. (1996). Elements of Machine Learning, Morgan Kaufmann.
- Li, M. & Vitanyi, P. (1997). An Introduction to Kolmogorov Complexity and Its Applications; Springer.
- Valiant, L. (1984). A Theory of the Learnable,
 Communications of the ACM; pp. 1134-1142.

Similarities

- Quesada, J. (2008). Human Similarity Theories for the Semantic Web. In: Nature inspired Reasoning for the Semantic Web, 2008.
- Tversky (1977). Features of Similarity; Psychological Review 84(4):327-352.