Федеральное государственное автономное образовательное учреждение высшего образования «Научно-образовательная корпорация ИТМО»

Факультет программной инженерии и компьютерной техники Направление подготовки 09.03.04 Программная инженерия

Отчёт по лабораторной работе N2

По дисциплине «Методы оптимизации» (четвёртый семестр)

Студент:

Дениченко Александр Р3212

Практик:

Селина Елена Георгиевна

Данные

Варинат 8

$$f(x) = \frac{x^7}{7} - x^3 + \frac{x^2}{2} - x$$
$$[a, b] = [1, 1.5]$$
$$\epsilon = 0.05$$

1 Метод половинного деления

Начальные значения границ:

$$[a,b] = [1,1.5]$$

Произошло выполнение предиката:

Номер итерации	a	b	x_1	x_2	$f(x_1)$	$f(x_2)$	b-a
1	1.225	1.500	1.225	1.275	-1.722	-1.752	0.275
2	1.225	1.388	1.338	1.388	-1.742	-1.682	0.162
3	1.225	1.331	1.281	1.331	-1.754	-1.746	0.106
4	1.253	1.331	1.253	1.303	-1.743	-1.755	0.078

Таблица 1: Ручной подсчёт

$$b - a > 2 \cdot \epsilon$$

Поэтому подсчитаем ответ:

$$x = \frac{b+a}{2} = \frac{1.331 + 1.253}{2} = 1.292$$
$$y = f(x) = -1.756$$

2 Метод золотого сечения

Просчитаем первую итерацию:

$$x_1 = a + 0.382 \cdot (b - a) = 1.191; \ x_2 = a + 0.618 \cdot (b - a) = 1.309;$$

$$f(x_1) = -1.686; \ f(x_2) = -1.754$$

Так как

$$f(x_1) > f(x_2)$$

То оставляем интервал:

$$[x_1, b]$$
 [1.191, 1.5]

На второй итерации x_1 полагаем равным x_2 , который вычисляется по формуле

$$x_2 = a + 0.618 \cdot (b - x_1) = 1.191 + 0.618 \cdot (1.5 - 1.309) = 1.30903$$

Так же вычисляем зничение функции в точке x_2 :

$$f(x_2) = -1.75443$$

Значение функции в x_1 уже было вычислено на предыдущем шаге. Далее повторяем для 5 итераций и на каждой итерации проверяем:

$$f(x_1) < f(x_2) \implies [a, x_2]; \ x_2 = x_1; \ x_1 = a + 0.382(x_2 - a)$$

$$f(x_1) \ge f(x_2) \implies [x_1, b]; \ x_1 = x_2; \ x_2 = a + 0.618 \cdot (b - x_1)$$

Iter.	a	b	x_1	x_2	$f(x_1)$	$f(x_2)$	b-a
1	1.000	1.500	1.191	1.309	-1.6855	-1.75444	0.500
2	1.191	1.500	1.309	1.30903	-1.75444	-1.75443	0.309
3	1.191	1.30903	1.229704	1.309	-1.72569	-1.75444	0.118038
4	1.2297	1.30903	1.309	1.22972	-1.75444	-1.72571	0.07933
5	1.2297	1.22972	1.25571	1.309	-1.74404	-1.75444	$2.3 \cdot 10^{-5}$

Таблица 2: Ручной подсчёт

На 5 итерации получили абсолютную разницу границ интервала меньше чем заданная погрешность, тогда ответ:

$$x = \frac{a-b}{2} = \frac{1.22972 - 1.2297}{2} = 1.22971$$

3 Метод хорд

Для перовой итерации:

$$x = a - \frac{f'(a)}{f'(a) - f'(b)}(b - a) = 1 - \frac{-2}{-2 - 5.141}(1.5 - 1) = 1.140$$
$$|f'(1.140)| = 1.564$$

 $1.564 > \epsilon = >$ продолжаем цикл

Итерация	a	b	f'(a)	f'(b)	x	f'(x)
1	1.000	1.5	-2.000	5.141	1.140	1.564
2	1.140	1.5	-1.564	5.141	1.224	0.908
3	1.224	1.5	-0.908	5.141	1.265	0.433
4	1.265	1.5	-0.433	5.141	1.284	0.186
5	1.284	1.5	-0.186	5.141	1.291	0.077

Таблица 3: Ручной подсчёт

Пяти итераций недостаточно, но критерий для сравнения понижается на каждом шаге, что говорит о сходимости метода

4 Метод Ньютона (касательных)

Взяли начальное приближение $x_0 = 1.25$

Первая итерация:

$$F(1.250) = f'(1.250) = -0.623$$

$$F'(1.250) = f''(1.250) = 11.811$$

$$x_1 = x_0 - \frac{F(x_0)}{F'(x_0)} = 1.25 - \frac{-0.623}{11.811} = 1.303$$

Итерация	x	F(x)	F'(x)	x_k	f'(x)
1	1.250	-0.623	11.811	1.303	0.62
2	1.303	0.099	15.696	1.296	0.099
3	1.296	0.002	15.192	1.296	0.002

Таблица 4: Ручной подсчёт

Так как

$$|f'(x_3)| = 0.002 < \epsilon$$

тогда ответ

$$x = 1.296; \ y = -1.756$$