Wprowadzenie do teorii zbiorów

Lista zadań nr 2.

- 1. Niech $\langle X, \leq_X \rangle, \langle Y, \leq_Y \rangle$ będą zbiorami dobrze uporządkowanymi i niech $h: X \to Y$ będzie bijekcją. Czy jeśli $(\forall a, b \in X)(a \leq_X b \Rightarrow h(a) \leq_Y h(b))$, to h jest izomorfizmem porządkowym?
- 2. Pokazać, że $Tran(x) \Rightarrow Tran(\mathcal{P}(x)) \wedge Tran(\bigcup x)$.
- 3. Pokazać, że $Tran(x \cup \{x\}) \Rightarrow Tran(x)$.
- 4. Czy $Tran(\mathcal{P}(x)) \Rightarrow Tran(x)$? Czy $Tran(\bigcup x) \Rightarrow Tran(x)$?
- 5. Pokazać, że $Tran(x) \Leftrightarrow \bigcup x \subseteq x$.
- 6. Pokazać, że $Tran(\omega)$.
- 7. Pokazać, że dla liczb porządkowych α, β mamy $\alpha \in \beta \Leftrightarrow \alpha \subsetneq \beta$.
- 8. Pokazać, że $On(\alpha) \Rightarrow On(\alpha \cup \{\alpha\})$.
- 9. Pokazać, że jeśli A jest zbiorem liczb porządkowych, to $\bigcup A$ jest najmniejszą liczbą porządkową, która jest większa lub równa od wszystkich elementów zbioru A.
- 10. Pokazać, że A jest zbiorem liczb porządkowych, to $Tran(A) \Rightarrow On(A)$.
- 11. Pokazać, że jeśli A jest niepustym zbiorem liczb porządkowych, to

$$(\exists \alpha \in A)(\forall \beta \in A)(\alpha \neq \beta \Rightarrow \alpha \in \beta).$$

12. Pokazać, że $On(\omega)$.