Đường đi ngắn nhất

Trần Vĩnh Đức

Ngày 14 tháng 2 năm 2017

Nội dung

1 Đồ thị có trọng số

- 2 Thuật toán Dijkstra
 - Slides Demo của Kevin Wayne

Mô hình đường bay với trọng số là khoảng cách

Mô hình đường bay với trọng số là thời gian bay

Mô hình hệ thống đường bay với trọng số là giá vé

Đồ thị có trọng số

• Đồ thị với mỗi cạnh được gán một trọng số.

Đồ thị có trọng số

- Đồ thị với mỗi cạnh được gán một trọng số.
- lacktriangle Ký hiệu (V, E, w) trong đó (V, E) là đồ thị và

$$w: E \longrightarrow \mathbb{R}^+$$

là một hàm từ tập cạnh E lên tập số dương (trọng số).

Đồ thị có trọng số

- Đồ thị với mỗi cạnh được gán một trọng số.
- Ký hiệu (V, E, w) trong đó (V, E) là đồ thị và

$$w: E \longrightarrow \mathbb{R}^+$$

là một hàm từ tập cạnh E lên tập số dương (trọng số).

Trọng số hay độ dài của đường đi

$$p: v_0 \to v_1 \to v_2 \to \cdots \to v_k$$

là tổng

$$w(p) = w(v_0 \to v_1) + w(v_1 \to v_2) + \dots + w(v_{k-1} \to v_k).$$

Nội dung

1 Đồ thị có trọng số

- 2 Thuật toán Dijkstra
 - Slides Demo của Kevin Wayne

Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley
Copyright © 2013 Kevin Wayne
http://www.cs.princeton.edu/~wayne/kleinberg-tardos

4. GREEDY ALGORITHMS II

- Dijkstra's algorithm demo
- improved Dijkstra's algorithm demo

SECTION 4.4

4. GREEDY ALGORITHMS II

- Dijkstra's algorithm demo
- ▶ improved Dijkstra's algorithm demo

- Initialize $S = \{ s \}, d(s) = 0.$
- Repeatedly choose unexplored node v which minimizes

$$\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e,$$

add v to S; set $d(v) = \pi(v)$.

- Initialize $S = \{ s \}, d(s) = 0.$
- Repeatedly choose unexplored node ν which minimizes

$$\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e,$$

add v to S; set $d(v) = \pi(v)$.

- Initialize $S = \{ s \}, d(s) = 0.$
- Repeatedly choose unexplored node ν which minimizes

$$\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e,$$

add v to S; set $d(v) = \pi(v)$.

- Initialize $S = \{ s \}, d(s) = 0.$
- Repeatedly choose unexplored node v which minimizes

$$\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e,$$

add v to S; set $d(v) = \pi(v)$.

- Initialize $S = \{ s \}, d(s) = 0.$
- Repeatedly choose unexplored node v which minimizes

$$\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e,$$

add v to S; set $d(v) = \pi(v)$.

- Initialize $S = \{ s \}, d(s) = 0.$
- Repeatedly choose unexplored node v which minimizes

$$\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e,$$

add v to S; set $d(v) = \pi(v)$.

В

- Initialize $S = \{ s \}, d(s) = 0.$
- Repeatedly choose unexplored node v which minimizes

$$\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e,$$

add v to S; set $d(v) = \pi(v)$.

- Initialize $S = \{ s \}, d(s) = 0.$
- Repeatedly choose unexplored node v which minimizes

$$\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e,$$

add v to S; set $d(v) = \pi(v)$.

SECTION 4.4

4. GREEDY ALGORITHMS II

- Dijkstra's algorithm demo
- improved Dijkstra's algorithm demo

- Initialize $\pi(s) = 0$.
- Repeatedly choose $u \notin S$ with minimum $\pi(v)$.
 - for each edge (u, v) leaving u, set $\pi(v) = \min \{ \pi(v), \pi(u) + \ell(u, v) \}$
 - add u to S

- Initialize $\pi(s) = 0$.
- Repeatedly choose $u \notin S$ with minimum $\pi(v)$.
 - for each edge (u, v) leaving u, set $\pi(v) = \min \{ \pi(v), \pi(u) + \ell(u, v) \}$
 - add u to S

- Initialize $\pi(s) = 0$.
- Repeatedly choose $u \notin S$ with minimum $\pi(v)$.
 - for each edge (u, v) leaving u, set $\pi(v) = \min \{ \pi(v), \pi(u) + \ell(u, v) \}$
 - add u to S

- Initialize $\pi(s) = 0$.
- Repeatedly choose $u \notin S$ with minimum $\pi(v)$.
 - for each edge (u, v) leaving u, set $\pi(v) = \min \{ \pi(v), \pi(u) + \ell(u, v) \}$
 - add u to S

- Initialize $\pi(s) = 0$.
- Repeatedly choose $u \notin S$ with minimum $\pi(v)$.
 - for each edge (u, v) leaving u, set $\pi(v) = \min \{ \pi(v), \pi(u) + \ell(u, v) \}$
 - add u to S

- Initialize $\pi(s) = 0$.
- Repeatedly choose $u \notin S$ with minimum $\pi(v)$.
 - for each edge (u, v) leaving u, set $\pi(v) = \min \{ \pi(v), \pi(u) + \ell(u, v) \}$
 - add u to S

- Initialize $\pi(s) = 0$.
- Repeatedly choose $u \notin S$ with minimum $\pi(v)$.
 - for each edge (u, v) leaving u, set $\pi(v) = \min \{ \pi(v), \pi(u) + \ell(u, v) \}$
 - add u to S

- Initialize $\pi(s) = 0$.
- Repeatedly choose $u \notin S$ with minimum $\pi(v)$.
 - for each edge (u, v) leaving u, set $\pi(v) = \min \{ \pi(v), \pi(u) + \ell(u, v) \}$
 - add u to S

- Initialize $\pi(s) = 0$.
- Repeatedly choose $u \notin S$ with minimum $\pi(v)$.
 - for each edge (u, v) leaving u, set $\pi(v) = \min \{ \pi(v), \pi(u) + \ell(u, v) \}$
 - add u to S

			d		
0	∞	∞	∞	∞	∞
	4a	∞	2a	∞	∞

а	b	С	d	e	z
0			∞	∞	∞
	4a	∞	2a	∞	∞
	4a	∞		5d	∞

а	b	С	d	е	z
0	∞	∞	$_{\infty}$	∞	∞
	4a	∞	2a	∞	∞
	4a	∞		5d	∞
		7b		5 d	∞
		7b			6 <i>e</i>

■ Đường đi ngắn nhất: $z \leftarrow e \leftarrow d \leftarrow a$.

Thuật toán Dijkstra(Đồ thị G có trọng số, một đỉnh a)

```
for v \in V do
    L[v] = \infty
    Truoc[v] = -1
end
L[a] = 0
S = \emptyset
while S \neq V do
    Tìm đỉnh u \notin S có nhãn L[u] nhỏ nhất
    S = S \cup \{u\}
    for v \in V \setminus S do
        if L[u] + w(u, v) < L[v] then
          L[v] = L[u] + w(u, v)
           Truoc[v] = u
        end
    end
end
```

Ví dụ

