## Esame di Algebra e Geometria del 15/01/2018

Nome Cognome.....

Con Soluzione

Si risolvano i seguenti esercizi, motivando tutti i passaggi e scrivendo le definizioni che si ritengono opportune:

[.../6] 1. Sia 
$$X = \{a, b, c\}$$
 e  $Y = \{1, 2, 3, 4\}$ .

- a) Quanti elementi ha l'insieme  $\mathcal{P}(\mathcal{P}(X) \times Y)$ ?
- b) Si consideri la funzione  $g: X \to Y$  definita nel seguente modo:

$$q(a) = 2$$
  $q(b) = 3$   $q(c) = 3$ .

La funzione g è iniettiva e/o suriettiva? Perché?

- c) Che cos'è una relazione d'equivalenza? E un insieme quoziente? Scrivere un esempio di relazione d'equivalenza sull'insieme X.
- d) La relazione  $S = \{(1,1),(2,2),(3,3),(4,4),(1,2),(1,3),(3,4),(1,4)\}$  è una relazione d'equivalenza sull'insieme Y? E' una relazione d'ordine? Disegnare il diagramma di Hasse.

## Svolgimento.

- a)  $|\mathcal{P}(\mathcal{P}(X) \times Y)| = 2^{2^3 \cdot 4} = 2^{32}$ .
- b) La funzione g non è iniettiva perché g(b) = g(c) e non è suriettiva perché l'elemento 4 di Y non ha controimmagine.
- c) Una relazione d'equivalenza è una relazione binaria che è riflessiva, simmetrica e transitiva. Un esempio di relazione d'equivalenza su X è  $\mathcal{R} = \{(a,a),(b,b),(c,c),(a,b),(b,a)\}$ . L'insieme quoziente è l'insieme delle classi d'equivalenza, per esempio per la relazione  $\mathcal{R}$  descritta prima l'insieme quoziente è  $\{[a],[c]\}$  dove  $[a] = \{a,b\}$  e  $[c] = \{c\}$ .
- d) La relazione S non è una relazione d'equivalenza perché non è simmetrica: infatti per esempio  $(1,3) \in S$  ma  $(3,1) \notin S$ . Però è una relazione d'ordine perché è antisimmetrica: se  $x \neq y$  e  $(x,y) \in S$  allora  $(y,x) \notin S$ . Il diagramma di Hasse (dove non si disegnano gli archi che esprimono la riflessività e gli archi che possono essere ricavati dalla proprietà transitiva) è:



## [.../4] 2. Provare per induzione che, per $n \geq 1$ :

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}.$$

**Svolgimento.** Base di induzione n = 1:

$$\sum_{k=1}^{1} \frac{1}{k(k+1)} = \frac{1}{2}$$

$$\frac{1}{1+1} = \frac{1}{2}$$

quindi la base di induzione è verificata. Supponiamo che il risultato valga per n, cioè che vale (base di induzione):

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}$$

e dimostriamolo per n+1, cioè dimostriamo che

$$\sum_{k=1}^{n+1} \frac{1}{k(k+1)} = \frac{n+1}{n+2}.$$

Si ha:

$$\sum_{k=1}^{n+1} \frac{1}{k(k+1)} = \sum_{k=1}^{n} \frac{1}{k(k+1)} + \frac{1}{(n+1)(n+2)} =$$

per ipotesi di induzione

$$= \frac{n}{n+1} + \frac{1}{(n+1)(n+2)} = \frac{n(n+2)+1}{(n+1)(n+2)} = \frac{n^2+2n+1}{(n+1)(n+2)} = \frac{(n+1)^2}{(n+1)(n+2)} = \frac{n+1}{n+2}$$

[.../4] 3. Scrivere la tabella moltiplicativa di  $\mathbb{Z}_5$  e determinare gli elementi invertibili di  $\mathbb{Z}_5$ . Che struttura algebrica è  $(\mathbb{Z}_5, \cdot)$ ?

**Svolgimento.**  $\mathbb{Z}_5 = \{[0]_5, [1]_5, [2]_5, [3]_5, [4]_5\}$ . La tabella moltiplicativa è :

|         | $[0]_5$ | $  [1]_5  $ | $[2]_5$   | $ [3]_5 $ | $[4]_5$ |
|---------|---------|-------------|-----------|-----------|---------|
| $[0]_5$ | $[0]_5$ | $[0]_5$     | $[0]_5$   | $[0]_5$   | $[0]_5$ |
| $[1]_5$ | $[0]_5$ | <b>1</b> 5  | $[2]_5$   | $[3]_5$   | $[4]_5$ |
| $[2]_5$ | $[0]_5$ | $[2]_5$     | $[4]_5$   | $[1]_{5}$ | $[3]_5$ |
| $[3]_5$ | $[0]_5$ | $[3]_5$     | $[1]_{5}$ | $[4]_5$   | $[2]_5$ |
| $[4]_5$ | $[0]_5$ | $[4]_5$     | $[3]_5$   | $[2]_5$   | $[1]_5$ |

Gli elementi inveritibili sono  $[1]_5, [2]_5, [3]_5, [4]_5$ . La struttura  $(\mathbb{Z}_5, \cdot)$  non è un gruppo perché  $[0]_5$  non è invertibile, ma è un monoide perché l'operazione è associativa e c'è l'elemento neutro che è  $[1]_5$ ,

[.../4] 4. Dare la definizione di sottospazio vettoriale e di base. Dire se  $\{(x,3x) \mid x \in \mathbb{R}\}$  è un sottospazio vettoriale di  $\mathbb{R}^2$  e trovare una sua base.

**Svolgimento**. Un sottospazio vettoriale U di uno spazio V è un sottoinsieme di V che è chiuso per somma e per prodotto esterno. Cioè se  $u_1, u_2 \in U$  allora anche  $u_1 + u_2 \in U$  e  $r \cdot u_1 \in U$  (per ogni r). Una base per uno spazio V è un insieme di vettori linearmente indipendenti che generano lo spazio V.

L'insieme  $U = \{(x, 3x) \mid x \in \mathbb{R}\}$  è un sottospazioni di  $\mathbb{R}^2$  perché se considero due vettori  $u_1 = (x_1, 3x_1)$  e  $u_2 = (x_2, 3x_2)$  che appartengono a U, la loro somma è  $(x_1 + x_2, 3(x_1 + x_2))$  che è ancora un elemento di U. Analogamente, il prodotto esterno  $r \cdot (x_1, 2x_1) = (rx_1, 3rx_1)$  è ancora un elemento di U. Una base di U è l'insieme  $\{(1,3)\}$ : infatti ogni elemento di U è una combinazione lineare di (1,3).

$$\begin{cases} 2x & -y & = & 0 \\ 3x & +y & -z & = & 5 \\ x & & +z & = & 1 \end{cases}$$

**Svoglimento.** Il teorema di Rouchè-Capelli afferma che un sistema di equazioni lineari Ax = B ha soluzioni se e solo se rango della matrice A è uguale al rango della matrice A|B. In particolare, se tale rango è uguale al numero di incognite, allora il sistema ha una sola soluzione, altrimenti il sistema ha infinite soluzioni che dipendono da n-r parametri, dove n è il numero di incognite e r è il rango delle matrici A e A|B.

La matrice dei coefficienti associata al sistema è

$$\begin{pmatrix}
2 & -1 & 0 \\
3 & 1 & -1 \\
1 & 0 & 1
\end{pmatrix}$$

Dato che tale matrice ha determinante diverso da 0, allora ha rango 3. Quindi anche la matrice completa ha rango 3 e il sistema ha una sola soluzione, che può essere determinata con il metodo di Cramer. La soluzione è (1,2,0).

## [.../6] 6. Si consideri l'applicazione lineare $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita da

$$f(x, y, z) = (3x + y + z, 2y, 3x + 2y + z)$$
.

Trovare la dimensione di Im f e Ker f. Trovare inoltre gli autovalori di f e, per ogni autovalore, la sua molteplicità algebrica e geometrica, lo spazio degli autovettori e una sua base. Dire se esiste una base di  $\mathbb{R}^3$  fatta da autovettori di f.

Svolgimento. La matrice associata ad f nella base canonica è

$$\begin{pmatrix}
3 & 1 & 1 \\
0 & 2 & 0 \\
3 & 2 & 1
\end{pmatrix}$$

che ha rango 2. Quindi dim Imf = 2 e dim Kerf = 1. Per trovare gli autovalori si calcola il determinante di

$$\begin{pmatrix}
3-\lambda & 1 & 1 \\
0 & 2-\lambda & 0 \\
3 & 2 & 1-\lambda
\end{pmatrix}$$

Usando la seconda riga si ottiene che il polinomio caratteristico è

$$(2 - \lambda)((3 - \lambda)(1 - \lambda) - 3) = (2 - \lambda)(3 + \lambda^2 - 4\lambda - 3) = (2 - \lambda)\lambda(\lambda - 4).$$

Ci sono quindi gli autovalori  $\lambda=2,\ \lambda=0$  e  $\lambda=4,$  tutti con molteplicità algebrica 1. Essendoci 3 autovalori, la matrice è diagonalizzabile, cioé esiste una base formata da autovettori.

Calcoliamo l'autospazio relativo a  $\lambda = 2$ . Dobbiamo risolvere il sistema

$$\begin{cases} 3x + y + z = 2x \\ 2y = 2y + z = 2z \end{cases} \begin{cases} x + y + z = 0 \\ 0 = 0 \\ 3x + 2y + z = 2z \end{cases}$$

che ha come matrice associata

$$\begin{pmatrix}
1 & 1 & 1 \\
0 & 0 & 0 \\
3 & 2 & -1
\end{pmatrix}$$

che ha rango 2. Il sistema ha quindi  $\infty^1$  soluzioni che si ottengono risolvendo il sistema

$$\begin{cases} x + y = -z \\ 3x + 2y = z \end{cases} \begin{cases} y = -x - z \\ 3x - 2x - 2z = z \end{cases} \begin{cases} x = 3z \\ y = -4z \end{cases}$$

Quindi  $V_2 = \{(3z, -4z, z) \mid z \in \mathbb{R}\}$  e dim  $V_2 = 1$ , quindi la molteplicità geometrica di  $\lambda = 2$  è 1.

Calcoliamo l'autospazio relativo a  $\lambda = 0$  (che poi coincide con Kerf). Dobbiamo risolvere il sistema

$$\begin{cases} 3x + y + z = 0 \\ 2y = 0 \\ 3x + 2y + z = 0 \end{cases}$$

che ha come matrice associata

$$\begin{pmatrix}
3 & 1 & 1 \\
0 & 2 & 0 \\
3 & 2 & 1
\end{pmatrix}$$

che già sappiamo avere rango 2. Il sistema ha quindi  $\infty^1$  soluzioni che si ottengono risolvendo il sistema

$$\begin{cases} 3x + y = -z \\ 2y = 0 \end{cases} \begin{cases} y = 0 \\ x = -1/3z \end{cases}$$

Quindi  $V_0 = \{(-1/3z, 0, z) \mid z \in \mathbb{R}\}$  e dim  $V_0 = 1$ , quindi la molteplicità geometrica di  $\lambda = 0$  è 1.

Calcoliamo l'autospazio relativo a  $\lambda = 4$ . Dobbiamo risolvere il sistema

$$\begin{cases}
-x & +y & +z & = 0 \\
-2y & = 0 \\
3x & +2y & -3z & = 0
\end{cases}$$

che ha come matrice associata

$$\begin{pmatrix}
-1 & 1 & 1 \\
0 & -2 & 0 \\
3 & 2 & -3
\end{pmatrix}$$

che ha rango 2. Il sistema ha quindi  $\infty^1$  soluzioni che si ottengono risolvendo il sistema

$$\begin{cases} -x & +y & = & -z \\ -2y & = & 0 \end{cases} \begin{cases} y & = & 0 \\ x & = & z \end{cases}$$

Quindi  $V_4 = \{(z,0,z) \mid z \in \mathbb{R}\}$  e dim  $V_4 = 1$ , quindi la molteplicità geometrica di  $\lambda = 4$  è 1.

Totale: [.../28]