CSC236 Week 4

Larry Zhang

Announcements

- PS2 due on Friday
- This week's tutorial: Exercises with big-Oh
- PS1 feedback
 - People generally did well
 - Writing style need to be improved. This time the TAs are lenient, next time they will be more strict.
- Read the feedback post on Piazza.

Recap: Asymptotic Notations

- Algorithm Runtime: we describe it in terms of the number of steps as a function of input size
 - Like n², nlog(n), n, sqrt(n), ...
- Asymptotic notations are for describing the growth rate of functions.
 - constant factors don't matter
 - only the highest-order term matters

Big-Oh, Big-Omega, Big-Theta

- O(f(n)): The set of functions that grows no faster than f(n)
 - asymptotic upper-bound on growth rate
- $\Omega(f(n))$: The set of functions that grows no slower than f(n)
 - asymptotic lower-bound on growth rate
- Θ(f(n)): The set of functions that grows no faster and no slower than f(n)
 - asymptotic tight-bound on growth rate

growth rate ranking of typical functions

$$f(n) = n^{n}$$

$$f(n) = 2^{n}$$

$$f(n) = n^{3}$$

$$f(n) = n^{2}$$

$$f(n) = n \log n$$

$$f(n) = n$$

$$f(n) = \sqrt{n}$$

$$f(n) = \log n$$

$$f(n) = 1$$

grow fast

grow slowly

The formal mathematical definition of big-Oh

Chicken grows slower than turkey, or chicken size is in O(turkey size).

What it really means:

- Baby chicken might be larger than baby turkey at the beginning.
- But after certain "breakpoint", the chicken size will be surpassed by the turkey size.
 - From the **breakpoint on**, the chicken size will **always** be smaller than the turkey size.

Definition of big-Oh

Function f(n) = O(g(n)) ("f is big oh of g") iff

- (i) There is some positive $n_0 \in N$
- (ii) There is some positive $c \in R$

such that

$$\forall n \geq n_0, f(n) \leq cg(n)$$

Beyond the **breakpoint** n_0 , f(n) is upper-bounded by cg(n), where c is some wisely chosen constant multiplier.

Side Note

Both ways below are fine

- $f(n) \in O(g(n))$, i.e., f(n) is **in** O(g(n))
- f(n) = O(g(n)), i.e., f(n) is O(g(n))

Both means the same thing, while the latter is a slight abuse of notation.

```
Function f(n) = O(g(n)) ("f is big oh of g") iff

(i) There is some positive n_0 \in N

(ii) There is some positive c \in R

such that

\forall n \geq n_0, f(n) \leq cg(n)
```

Knowing the definition, now we can write proofs for big-Oh. The key is finding n₀ and c

Example 1

Prove that 100n + 10000 is in $O(n^2)$

Need to find the n₀ and c such that 100n + 10000 can be upper-bounded by n² multiplied by some c.

underestimate and simplify

overestimate and simplify large

c n²

Pick c = 10100

10100n²

100n² + 10000n²

 $\# \cos n >= 1$

 $100n^2 + 10000$

 $\# \cos n >= 1$

100n + 10000

Function f(n) = O(g(n)) ("f is big oh of g") iff

- (i) There is some positive $n_0 \in N$
- (ii) There is some positive $c \in R$ such that

$$\forall n \geq n_0, f(n) \leq cg(n)$$

Pick $n_0 = 1$

Write up the proof

Proof:

Choose $n_0=1$, c = 10100,

then for all $n \ge n_0$,

100n + 10000 <= 100n² + 10000n² # because n >= 1

 $= 10100n^2$

 $= cn^2$

Therefore by definition of big-Oh, 100n + 10000 is in O(n²)

Proof that 100n + 10000 is in $O(n^2)$

Function f(n) = O(g(n)) ("f is big oh of g") iff

- (i) There is some positive $n_0 \in N$
- (ii) There is some positive $c \in R$ such that

$$\forall n \geq n_0, f(n) \leq cg(n)$$

Quick note

The choice of n₀ and c is not unique.

There can be many (actually, infinitely many) different combinations of n₀ and c that would make the proof work.

It depends on what inequalities you use while doing the upper/lower-bounding.

Example 2

Prove that $5n^2 - 3n + 20$ is in $O(n^2)$

underestimate and simplify large

c n²

Pick c = 25

25n²

 $5n^2 + 20n^2$

 $\# \cos n >= 1$

 $5n^2 + 20$

remove a negative term

 $5n^2 - 3n + 20$

Pick $n_0 = 1$

estimate and simplify

over-

small

choose some breakpoint (n₀=1 often works), then we can assume $n \ge 1$

under-estimation tricks

- \rightarrow remove a positive term
 - $3n^2 + 2n \ge 3n^2$
- multiply a negative term
 - $5n^2 n \ge 5n^2 n*n = 4n^2$

over-estimation tricks

- remove a negative term
 - $3n^2 2n \le 3n^2$
- multiply a positive term
 - $5n^2 + n \le 5n^2 + n*n = 6n^2$

After simplification, **choose a** *c* that connects both sides.

The formal mathematical definition of big-Omega

Definition of big-Omega

```
Function f(n) = \Omega(g(n)) iff

(i) There is some positive n_0 \in N

(ii) There is some positive c \in R

such that
\forall n \geq n_0, cg(n) \leq f(n)

This means that g(n) is a lower bound on f(n).
```

Example 3

Prove that $2n^3 - 7n + 1 = \Omega(n^3)$

underestimate and simplify

overestimate and simplify

large

small

Prove that $2n^3 - 7n + 1 = \Omega(n^3)$

$$n^3 + n^3 - 7n + 1$$

n³

Pick c = 1

c n³

Pick $n_0 = 3$

Prove that $2n^3 - 7n + 1$ is in $\Omega(n^3)$

Write up the proof

Proof:

Choose $n_0 = 3$, c = 1,

then for all $n \ge n_0$,

$$2n^{3} - 7n + 1 = n^{3} + (n^{3} - 7n) + 1$$

>= $n^{3} + 1$ # because n >= 3
>= $n^{3} = cn^{3}$

Therefore by definition of big-Omega, $2n^3 - 7n + 1$ is in $\Omega(n^3)$

Takeaway

Additional trick learned

- Splitting a higher order term
- Choose n₀ to however large you need it to be

$$n^3 + n^3 - 7n + 1$$

The formal mathematical definition of big-Theta

Definition of big-Theta

Function $f(n) = \Theta(g(n))$ iff f(n) = O(g(n)) and $f(n) = \Omega(g(n))$. This means that g(n) is a **tight bound** on f(n).

In other words, if you want to prove big-Theta, just prove **both** big-Oh and big-Omega, separately.

Exercise for home

Prove that
$$2n^3 - 7n + 1 = \Theta(n^3)$$

Summary of Asymptotic Notations

- We use functions to describe algorithm runtime
 - Number of steps as a function of input size
- Big-Oh/Omega/Theta are used for describing function growth rate
- A proof for big-Oh and big-Omega is basically a chain of inequality.
 - Choose the n₀ and c that makes the chain work.

Now we can analyze algorithms more like a pro

```
def foo(lst):
1    result1 = 1
2    Result2 = 6
3    for i in range(len(lst)):
4       for j in range(len(lst)):
5         result1 += i*j
6         result2 = lst[j] + i
7    return
```

- Let n be the length of lst
- The outer loop iterates n times
- For each iteration of outer loop, the inner loop iterates n times
- Each iteration of inner loops takes 2 steps.
- Line 1 and 2 does some constant work
- So the overall runtime is 2 + n * n * 2= 2n² + 2 = Θ(n²)

NEW TOPIC

Recursion

To really understand the math of recursion, and to be able to analyze runtimes of recursive programs.

Recursively Defined Functions

The functions that describe the runtime of recursive programs

Definition of functions

The usual way: define a function using a closed-form.

$$T_0(n)=2^n-1$$

Another way: using a recursive definition

$$T_1(n) = \begin{cases} 1, & \text{if } n = 1 \\ 2T_1(n-1) + 1, & \text{if } n > 1 \end{cases}$$

You will get this when analyzing the runtime of recursive programs.

A function defined in terms of itself.

Let's work out a few values for T₀(n) and T₁(n)

$$T_0(n)=2^n-1$$

$$T_1(n) = \begin{cases} 1, & \text{if } n = 1 \\ 2T_1(n-1) + 1, & \text{if } n > 1 \end{cases}$$

Maybe T₀(n) and T₁(n) are equivalent to each other.

	T₀(n)	T ₁ (n)
n=1	1	1
n=2	3	3
n=3	7	7
n=4	15	15
n=5	31	31

$$T_0(n) = 2^n - 1$$
 $T_1(n) = \begin{cases} 1, & \text{if } n = 1 \\ 2T_1(n-1) + 1, & \text{if } n > 1 \end{cases}$

Every **recursively** defined function has an equivalent **closed-form** function.

And we like closed-form functions.

- It is easier to evaluate
 - Just need n to know f(n)
 - Instead of having to know f(n-1) to know f(n)
- It is easier for telling the growth rate of the function
 - $T_0(n)$ is clearly $\Theta(2^n)$, while $T_1(n)$ it not clear.

Our Goal:

Given a **recursively** defined function, find its equivalent **closed-form** function

Method #1 Repeated Substitution

Repeated substitution: Steps

Step 1: **Substitute** a few time to find a pattern

Step 2: **Guess** the recurrence formula after k substitutions (in terms of k and n)

For each base case:

Step 3: solve for k

Step 4: **Plug** k back into the formula (from Step 2) to find a **potential** closed form. ("Potential" because it might be wrong)

Step 5: **Prove** the potential closed form is equivalent to the recursive definition using induction.

Example 1

Step 1

$$T_1(n) = \begin{cases} 1, & \text{if } n = 1 \\ 2T_1(n-1) + 1, & \text{if } n > 1 \end{cases}$$

Substitute a few times to find a pattern.

$$k = 1$$

$$T(n) = 2T(n-1) + 1$$

$$k=2$$

$$T(n) = 2(2T(n-2)+1)+1$$

= $4T(n-2)+3$

$$k = 3$$

$$T(n) = 4(2T(n-3)+1)+3$$

= $8T(n-3)+7$

$$k = 4$$

$$T(n) = 8(2T(n-4)+1)+7$$

= $16T(n-4)+15$

Step 2:

Guess the recurrence formula after k substitutions

$$k = 1$$

$$k = 2$$

$$T(n) = 2T(n-1) + 1$$

$$= 2(2T(n-2) + 1) + 1$$

$$= 4T(n-2) + 3$$

$$k = 3$$

$$T(n) = 4(2T(n-3) + 1) + 3$$

$$= 8T(n-3) + 7$$

$$k = 4$$

$$T(n) = 8(2T(n-4) + 1) + 7$$

$$= 16T(n-4) + 15$$

The guess:
$$T(n) = 2^k T(n-k) + 2^k - 1$$

$$T_1(n) = \begin{cases} 1, & \text{if } n = 1 \\ 2T_1(n-1) + 1, & \text{if } n > 1 \end{cases}$$

Step 3: Consider the base case

What we have now:
$$T(n) = 2^k T(n-k) + 2^k - 1$$

We want this to be T(1), because we know clearly what T(1) is.

So, let n - k = 1, and solve for k

This means you need to make n-1 substitutions to reach the base case n=1

$$T_1(n) = \begin{cases} 1, & \text{if } n = 1 \\ 2T_1(n-1) + 1, & \text{if } n > 1 \end{cases}$$

Step 4: plug k back into the guessed formula

Guessed formula: $T(n) = 2^k T(n-k) + 2^k - 1$

For Step 3, we got k = n - 1

Substitute k back in, we get ...

$$T(n) = 2^{k} T(n-k) + 2^{k} - 1$$
$$= 2^{n-1} T(1) + 2^{n-1} - 1$$
$$= 2^{n-1} + 2^{n-1} - 1$$

 $= 2^{n} - 1$

This is the "potential" closed-form of T(n).

Step 5: Drop the word "potential" by proving it

Prove
$$T_1(n) = \begin{cases} 1, & \text{if } n = 1 \\ 2T_1(n-1) + 1, & \text{if } n > 1 \end{cases}$$
 is equivalent to $T_0(n) = 2^n - 1$

Use induction!

Define predicate: P(n): $T_1(n) = T_0(n)$

Base case: n=1 $T(1) = 1 = 2^1 - 1$

Induction step: suppose that n > 1 and that $T(n-1) = 2^{n-1} - 1$

$$T(n) = 2T(n-1) + 1$$
 # by def of T(n)
= $2(2^{n-1} - 1) + 1$ # by I.H.
= $2^n - 2 + 1$
= $2^n - 1$

We have officially found that the closed-form of the recursively defined function

$$T_1(n) = \begin{cases} 1, & \text{if } n = 1 \\ 2T_1(n-1) + 1, & \text{if } n > 1 \end{cases}$$

is

$$T_0(n)=2^n-1$$

Repeated substitution: Steps

Step 1: **Substitute** a few time to find a pattern

Step 2: **Guess** the recurrence formula after k substitutions (in terms of k and n)

For each base case:

Step 3: solve for k

Step 4: **Plug** k back into the formula (from Step 2) to find a **potential** closed form. ("Potential" because it might be wrong)

Step 5: **Prove** the potential closed form is equivalent to the recursive definition using induction.

Example 2

Find the closed form of ...

$$T(n) = \begin{cases} 0, & \text{if } n = 1 \\ 2, & \text{if } n = 2 \\ 2T(n-2), & \text{if } n > 2 \end{cases}$$

Something new: there are **two** base cases, they may give us "**two**" closed forms!

Step 1: Repeat substitution

$$T(n) = \begin{cases} 0, & \text{if } n = 1 \\ 2, & \text{if } n = 2 \\ 2T(n-2), & \text{if } n > 2 \end{cases}$$

$$k = 1$$
 $T(n) = 2T(n-2)$
 $k = 2$ $T(n) = 2(2T(n-4))$
 $= 4T(n-4)$
 $k = 3$ $T(n) = 4(2T(n-6))$
 $= 8T(n-6)$

Step 2: Guess the formula after k substitutions

$$T(n)=2^kT(n-2k)$$

Step 3: Solve for k, for each base case

Base case #1: n = 1, we want to see T(1), so

Let
$$n-2k=1$$

$$k=\frac{n-1}{2}$$

$$T(n) = \begin{cases} 0, & \text{if } n = 1 \\ 2, & \text{if } n = 2 \\ 2T(n-2), & \text{if } n > 2 \end{cases}$$

$$T(n)=2^kT(n-2k)$$

Step 4: Plug k back into the formula

$$T(n) = 2^k T(n-2k)$$

$$= 2^{\frac{n-1}{2}} T(1)$$

$$= 0$$

Potential closed form #1

Step 3 again

$$T(n) = \begin{cases} 0, & \text{if } n = 1 \\ 2, & \text{if } n = 2 \\ 2T(n-2), & \text{if } n > 2 \end{cases}$$

Base case #2: n = 2, we want to see T(2), so

Let
$$n-2k=2$$
 $k=\frac{n-2}{2}$

$$k=\frac{n-2}{2}$$

$$T(n)=2^kT(n-2k)$$

Step 4 again: Plug k back into the formula

$$T(n) = 2^k T(n-2k)$$

$$= 2^{\frac{n-2}{2}} T(2)$$

$$= 2^{\frac{n-2}{2}} 2$$

$$= 2^{\frac{n}{2}}$$

Potential closed form #2

What we have so far

$$T(n) = \begin{cases} 0, & \text{if } n = 1 \\ 2, & \text{if } n = 2 \\ 2T(n-2), & \text{if } n > 2 \end{cases}$$

Starting from n=1, add by 2 each time, we have T(n) = 0

Starting from n=2, add by 2 each time, we have $T(n) = 2^{n/2}$ In other words,

$$T(n) = \begin{cases} 0 & \text{if } n \text{ is odd} \\ 2^{n/2} & \text{if } n \text{ is even} \end{cases}$$

This is the complete potential closed form.

Step 5: Prove it.

Try it yourself!

$$T(n) = \begin{cases} 0, & \text{if } n = 1 \\ 2, & \text{if } n = 2 \\ 2T(n-2), & \text{if } n > 2 \end{cases}$$

is equivalent to

$$T(n) = \begin{cases} 0 & \text{if } n \text{ is odd} \\ 2^{n/2} & \text{if } n \text{ is even} \end{cases}$$

Summary

Find the closed form of a recursively defined function

- Method #1: Repeated substitution
 - It's nothing tricky, just follow the steps!
 - Take care of all base cases!
 - It's a bit tedious sometimes, we will learn faster methods later.