16/32 BIT MICROCONTROLLER **TLCS-900 Family TOSHIBA**

The Family Key Features

- •CPU-core: 16/32 Bit
- High-speed processing,
- → Min. inst. exec. time:
- →200ns (@10MHz) TLCS-900,900/L
- →160ns (@12.5MHz) TLCS-900/H,900/L1
- → 50ns ((@20MHz) TLCS-900/H2
- Large linear address space (16M bytes)
- Powerful instruction set
- Regular instruction sets and many addressing modes
- Many bit-processing operations
- Powerful real-time processing
- using register banks
- High-speed data transfer using µDMA
- For systems using both 8- and 16-bit buses
- dynamic bus sizing function

TLCS-900 CPU CORES

The Road Map

TOSHIBA

The Family Key Features

ITEM	H2	H & L1	Stand.& L
Max. operating frequency (external) Min. instruction cycle	20 MHz (@10 MHz) 50 nsec	12.5 MHz (@25 MHz) 160 nsec	10 MHz (@20 MHz) 200 nsec
time uDMA Speed	0,25 usec	0,64 usec	1,6 usec
MULA instruction Dynamic Bus Sizing	0.6 usec 8/16/32 Bit	1.52 usec 3.1 usec 8/16 Bit	

LOW VOLTAGE OPERATION

TLCS-900/L Low power consumption

TOSHIBA

TLCS-900/L1 Low power consumption

TLCS-900/L: DUAL CLOCK SYSTEM

The operation modes

- TLCS-900/L:
- 4 types of Stand-by mode

Operation mode	CPU	A/D (С	Peripheral I/O (Timer,SIO)	Oscillator
NORMAL		0	O	0	0
RUN		x	O	0	o
IDLE2		х	Х	0	o
IDLE1		х	Х	X	o
STOP		х	Х	X	x

o = operate x = stop

HIGH SPEED OPERATION

TLCS-900/H Performance 2 x TLCS-900

Method • 32 bit ALU

4bit barrel Shifter

< Comparison table of states >

TOSHIBA

THE 32 BIT TLCS-900/H2 CSIC like RISC

Core comparison "H" V "H2"

High Performance with RISC Technology

900/H2 900/H

Minimum Execution Instruction Ti	me 50ns	160ns	
Internal Clock Frequency	20MHz	12.5MHz	
Clock Per Instruction	1 CPI	2 CPI	
Internal Data bus	32	16	
External Data bus	32	16	
Performance Ratio	4		

CPU - CORE Architecture

The register configuration (1)

Maximum Mode

- Optimum for systems with program capacity above 64K bytes
 - Program counter: 32 bits (lower 24 bits are output as address bus)
- Large capacity data space
 - → 16Mbyte addressing can be specified by any general-purpose register
- 32-bit transfer / arithmetic can be executed by general-purpose register
- High Speed image processing/address calculation,etc

The register configuration (2)

Minimum Mode

- Optimum for systems with program capacity less than 64K bytes
 - Program counter: 16 bits
- Large number of bank registers
 - ► 16 bits x 4 registers x 8 banks
- Large data capacity
 - Expandable up to 16M bytes
 - Accessible to data area above 64K bytes using XIX, XIY, XIZ, XSP registers
- Capable of addressing with WA, BC, DE, HL, registers.

Instruction set examples

Filter operation instruction

- MULA: 16 Bits x 16 Bits/32 Bits-32Bits (3.1us @ 20MHz) (signed multiplication-addition arithmetic)
- MINC: Modulo increment...For circulating buffer pointer increment (Increments lower n bit only. 1 <= n <= 16)
- MDEC: Modulo decrement...For circulating buffer pointer decrement (Decrements lower n bit only. 1 <= n <= 16)

Logical operation instructions

AND/OR/XOR: And/or/exclusive-or of 8, 16, and 32 bits

Instruction set examples

continued......

- Bit operation instructions
- BIT/SET/RES/CHG: Bit test/set/reset/invert
- **aDctars** Tower bit Transfer between carry flag
- ANDCF: And of carry flag and any given bit
- ORCF: Or of carry flag and any given bit
- XORCF: Exclusive-or of carry flag and any

given bit

BS1: Searches bit pattern for 1.

High -Speed Processing

Family	900 & 900/L 10 MHz	900/H & 900/L1 12.5 MHz	900/H2 20 MHz	Function
Instruction				
LD r, #8	200ns	160 ns	50 ns	8-bit transfer
LD XHL, xrr	400ns	160 ns	50 ns	32-bit transfer
AND XHL, (mem)	400ns	320 ns	100 ns	16-bit operation
ADD HL, rr	700ns	160 ns	50 ns	32-bit operation
SET b, (mem)	800ns	560 ns	200 ns	bit set
MUL HL, #16	2.6µs	1.2 µs	450 ns	16 bits * 16 bits
DIV XHL, #8	3.0µs	1.84 µs	650 ns	32 bits / 16 bits
MULA rr	3.1µs	1.52 µs	600 ns	16*16 +32 bits
CALL #24	1.2 µs	800 ns	200 ns	Direct Call
JP #24	700 ns	480 ns	100 ns	Direct Jump

TLCS-900 The memory map 000000H (n)₂₅₆ **Built-in I/O** 64k 16M 000080H byte byte byte 000100H **Internal RAM** (n n) H000800 008200H (8100H **Internal ROM** 900/L) 010000H

900/L 256 byte reserved

TOSHIBA

(R) (-Ŕ)

(R+) (R+d)

(R+R)

(n n n)

FFFFFFH

The Interrupt (1)

- Priority level (0 to 7) can be set for each interrupt source.
- Non-maskable interrupts
 - Software interrupts (SWI0 to 7)
 - NMI pins
 - Watchdog timer
 - Privileged or undefined instruction violation
- Maskable interrupts
 - External pins (INT 0,1,2,..)
 - Internal I/Os: DMA
 - Timer
 - SIO
 - A/D converter

High-speed µDMA

- DMA implemented using CPU block executed directly from microcode
- Speed equivalent to DMA controller
 - 1- 2- byte transfer:
 - 1.6us (@20MHz) TLCS-900,900/L
 - 640ns (@25MHz) TLCS-900/H
- Supports 4-channels, 16Mbyte address space
- Maximum number of transfer blocks: 64k words
- Many transfer modes:

_	1) I/O to memory : bytes	(R-
		,_
-	2) I/O to memory :	(R-
	bytes	
_	3) memory to I/O:	(R)
	bytes	
<u> </u>	4) memory to I/O:	(R)
	hvies	\ /

5) I/O to I/O bytes

TOSHIBA (R)

PERIPHERALS

* Under Development

CES 16BIT V1.2

The Peripherals

TOSHIBA

The chip select image

000000H

7F00H

8000H

400000H

H000008

C00000H

FFFFFFH

/CS0

B0C1,0="00"

B0C1,0="01"

B0C1,0="10"

B0C1,0="11"

/CS1

B1C1,0="00"

B1C1,0="01"

B1C1,0="10"

B1C1,0="11"

/CS2

B2C1,0="00"

B2C1,0="01"

B2C1,0="10"

B2C1,0="11"

The Prescaler

8 Bit Timer

By cascading two 8-bit timers, a 16-bit timer can be configured.

- 8-bit interval timer mode (x2)
- 16-bit interval timer mode (x1)
- 8-bit programmable square wave
 - (PPG: variable duty with variable cycle) output mode (x1)
- 8-bit PWM
 - (Pulse width Modulation): Variable duty with constant cycle) output mode (x1)

16 Bit Timers /event counters

- 16 bit interval timer mode
- 16-bit event counter mode
- 16-bit programmable square wave output

(PPG) mode

- Frequency measurement mode
- Pulse width measurement mode
- Time difference measurement mode
- A timer event counter consists of the following:
 - → 16-bit up counter
 - → two 16-bit timer registers
 - **▶** two 16-bit capture registers
 - two comparators
 - capture input control
 - → timer F/F and its control circuit

A/D Converter

- 4 to 16 channel 8 or 10 bit resolution (by Product)
- Successive approximation system
- High speed conversion
 - 16μs to 3 μs (by product)
- 4 conversion modes
 - Single channel mode
 - Channel scan mode
 - Single mode
 - Repeat mode
 - Flag/Interrupt operation

Serial I/O

- UART mode (x2): 7/8 & 9 bit modes, internal BRG/timer O clock
 - Max. baud rate: 500 kbps@ 16MHz using o1
- Synchronous (I/O interface) mode: 8 bits internal/external clock
 - Max clock: 1.25Mbps
- 2C-Bus Interface

The pattern generator

- 2 channels, 4bits/channel
- General purpose pattern generation
- Hardware stepper motor control (eg. 4-phase 1-step/2-step excitation)

Difference between PG0 &

PG1	PG0	PG1
Trigger	From	From
Signal	Timer 4	Timer 5

The Watch dog timer

- Generates NMI to CPU
- WDTOUT signal for application
- 22 stage binary counter <wdtp1,0> choice of 4 outputs

(2¹⁶ /fc, 218 /fc 220 /fc, 222 /fc)

examples: 2¹⁶ /fc = 32,768 states (approx. 3.3ms @ 20MHz); 222 /fc = 2M states (approx. 210ms @ 20MHz)

THE ROAD MAP

Standard family line up

TLCS-900 TLCS-900/L- DEVELOPMENT TREND **128K ROM** TMP93PW46AF 100-pin **128K ROM** 4K RAM TMP93PW40F /romless LARGE TMP93CW46AF 4K RAM 100-pin TMP93CW41DF **MEMORY** TMP93PW20AF TMP93CW40DF TMP93CS20F **LCD 40x4** 64K ROM TMP93PS40F 64K ROM. 144-pin 2K RAM 100 PIN TMP93PS42F TMP93CS41F TMP93CS40F TMP93CS42F TMP93Px44F TMP93CM41F TMP93CS45F TMP93PW32F TMP93CM40F TMP93CS32F TMP93Cx44F 20MHz 32KROM/'less 100-pin 2K RAM 80 PIN 64K/128K ROM 64K ROM, 2K RAM 2K/4K RAM 2 x UART + 1 x 12C 64-pin LOW PIN COUNT **TOSHIBA CES 16BIT V1.2**

TLCS-900/H Development trend

TLCS-900/H CPU CORE

* UNDER DEVELOPMENT

TMP95C061BF

25MHz 100-pin ROM/RAM 'less

TMP95C001F

25MHz 64 pin MPU type **TMP95C063F**

25MHz 100-pin ROM/RAM 'less

TLCS-900/H2 Development trend

** Under Planning

THE PRODUCTS

TMP96C141 group

- TLCS-900 core
 - Min. Instruction Exec. Time = 200ns (@20MHz)
- Address Space

Program : 16M Byte

Data : 16M Byte

- μDMA : 1.6μs / 2Byte
- Dynamic Bus Sizing
- Peripherals
 - 16bit Timer x 2ch Capture x4, Compare x4
 - Serial I/O : 2ch. (Clocked I/O or UART)
- Package: QFP80

Memory variation

Type ROM (byte)	RAM (I	byte)	
TMP96C141BF 47	-	1024	
TMP96CM40F 32K	1024	65	
TMP96PM40F 32k(C	TP)	1024	

65

FMP90C041BF * 47

TMP93Cx40F group

- TLCS-900/L core
 - Min. Instruction Exec. Time 200ns(@20MHz)
- **Linear address space**
 - **Program/Data:16M Byte**
- **Dynamic Bus Sizing**
- **Low Power Operation**
 - **Clock Gear**
 - **Dual Clock**
 - 4 stand-by modes
- **10bit A/D Converter**
- 2 UARTS/SIO
- Package:
 - 100 pin LQFP
 - 100 pin VQFP

Memory variation

I WIF93FW4UI

4096

Туре	ROM (b	yte)	RAM (byte)	
TMP	93CM40F	32k	2048	
TMP	93CM41F	-	2048	
TMP	93CS40F/[ÞF	64k	
	2048			
TMP	93PS40F/[F	64k(OTP)	
	2048		i i	
TMP	93CW41F	-	4096	
TI	MP93CW4 (F	128k	
	4096			
				TOCII

Input

Outpu

quent

SIO1

TMP93Cx32F

- Clock Gear
- 4 stand-by mode
- 10bit A/D Converter
 - 6. ch, Conv. Time = 8μs, External trigger
- LED drive : 2ch x 10 mA
- Package : 64 pin QFP

Memory variation

Type ROM(byte)	RAM(byte)	
TMP93CS32F 64K TMP93PW32F 128K(O	2048 TP) 4096	

- TLCS-900/L core
- LCD driver
 - 40 seg. X 4 com.
- 10bit A/D Converter
 - Conv. Time = 8 μs
 - External trigger
- 32 kHz Timer
- Low Power Operation
 - Clock-Gear function
 - Dual-clock (20MHz,32kHz)
 - 4 stand-by mods
- Package:
 - 144 QFP (20 x 20 x 1.4t)

TMP93CS20F

Memory variation

Туре	ROM(byte)	RAM(byte)	
	CS20F64K PW20AF	2048 128K(OTP)	
	4096		

TMP95C061BF

- TLCS-900/H core
 - Min.InstructionExec.Time=160ns(@25MHz)
- Easy Bus Interface
 - Separate bus (Address / Data)
 - DRAM Controller
- Memory Access Time
 - (@25MHz,0-WAIT)
 - ROM :100ns
 - DRAM: 70ns
- Package: 100pin QFP

TMP95Cx64F

- TLCS-900/H Core
- A/D converter : 10bit
 - External trigger
- 8 Bit D/A converter
- UART/SIO: 3 channel
 - Baud-rate clock input pin
- Package
 - 100 pin LQP

Memory variation

Type ROM(byte)	RAM(byte)	
	2K 128K 4K K(OTP) 4K K(FLASH) 8K 2K	

Analog

Timer

Timer

Input

Input Pulse

Timer/Count

SIO0 SIO1

SIO₃

Inputs

Output

Output

TMP91CW10F

- TLCS-900/L1 core
 - Vcc = 2.7V, @16MHz
 - Vcc = 2.0V @10MHz
- A/D C: 10 bit x 8ch.
 - 20 usec (@2.7V, @25MHz)
- Low Power Operation
 - Clock Gear
 - Dual Clock
 - 4 stand-by modes
- Package:
 - 100 pin LQFP

Memory variation

Type ROM	(byte) RAM(b	yte)
TMP91CU10F TMP91PW10F		
4N		

- TLCS-900/H2 core
 - 50ns (@20MHz)
- Dynamic Bus Sizing
 - 8/16/32bit bus
- µDMA
 - (8ch): 300ns / 4 Byte
- PLL
 - Xin x4 internal clock
- Internal I/O
 - 2 ch. DRAM controller
 - 16bit Timer (4ch),
 - 8ch Capture
 - 8ch Compare
- Package
 - 160Pin-QFP
 - 144Pin QFP (ext. 16 Bit BUS)

TMP94C241BF

Memory variation

Type RC	M(byte) RA	M(byte)
TMP94C251 TMP94C241 TMP94CS40	- 20	48

TLCS-900 **16-BIT MICROCONTROLLERS WITH FLASH MEMORY ON BOARD TOSHIBA CES_16BIT_V1.2**

FLASH MCU ROAD MAP

TMP95FY64F

- TLCS-900/H core
- On chip Flash:
 - 256K (16K x 1, 8K x 2, 32K x 1, 64K x 3Blocks)
- A/D C: 10 bit x 8 ch.
 - with external trigger
- D/A Converter
 - 8 bit x 2 channel
- SIO/UART x 3 ch.
 - External Baudrate generator
- Package:
 - 100 pin LQFP

Memory variation

Type ROI	M(byte)	RAM(byte)
TMP95CS64	F 64K	2K
TMP95CW64	F 128K	4K
TMP95C265	-	2K
TMP95PW64	F 128K (O	OTP)
4K		
TMP95FY64	F 256(FL/	ASH)
8K		

USP 4,382,279 owned by BULL CP8

Under Development

Analog

Inpu

TMP91FY13F

- TLCS-900/L1 core
 - 2.7 to 3.3 V operation
- On chip Flash, 3V:
 - 256K (16K x 1, 8K x 2, 32K x 1, 64K x 3 Blocks)
- A/D C: 10 bit x 12 ch.
 - with external trigger
- 32 kHz Timer
- SIO
 - UART x 3 ch.
 - Synch. x 2 ch.
 - I2C Bus x 1 ch.
- Package:
 - 120 pin LQFP

Memory variation

TMP91CY13F 256K 4K TMP91FY13F 256(FLASH)	

TMP91FY14F

Under Development

- TLCS-900/L1 core
 - 5V operation
- On chip Flash:
 - 256K (16K x 1, 8K x 2, 32K x 1, 64K x 3 Blocks)
- ROM correction
- A/D C: 10 bit x 16 ch.
 - with external trigger
- 32 kHz Timer
- PWM: 12 Bit x 3 ch.
- SIO
 - UART/Synch. x 4 ch.
- Package:
 - 100 pin LQFP

Memory variation

Туре	ROM(byte)	RAM(byte)	
TMP91	CW13F 128	K 4K	
TMP91	FY13F 256	(FLASH) 4K	

ON BOARD PROGRAMMING

- 3 types of Programming to support various process of development
 - > Trial : Programming by EPROM Writer Prepare sockets for EPROM writer
 - > Evaluation : ON Board Programming by PC
 Easy Mode set using Programming Tool
 - > Shipment: ON Board Programming by Programming Tool Insert PC card with new data into Programming Tool

ON BOARD PROGRAMMING

- Boot Procedure suitable for on board programming
- Three Mode to support Effective Development of Software

Checksum: Release Software engineer from complicated Past-record Management of Program

Programming in the lump: Can Reprogram efficiently using Erase in the lump

RAM Loader : Insure Security against illegal Reading and

Cope flexibly with each user's Boot Sequence

On Chip TCAN Controller MCU

TCAN FEATURES

TCAN features short list

- 2.0B active
- Full-CAN Controller
- 16 Mailboxes (15 Receive&Transmit+1 Rec.-only)
- Baudrate up to 1MBit / s
- Extended Prescaler
- Bit Timing Parameter like AN82527
- Built in Time-Stamp Counter
- Readable Error Counters
- Warning Level IRQ, Error passive IRQ, Bus-off IRQ
- Local Loop Back Test Mode (Self Acknowledge)
- Built-in mechanism for internal Re-Arbitration
- Sleep Mode
- Wake-up on CAN-bus activity

CAN MCU ROAD MAP

TMP95CS54F

Under development

- TLCS-900/H core
- On chip Flash
- CAN
 - 2.0B, FULL CAN
 - 16 Mailboxes
 - Time stamp
- Internal I/O
 - 10 Bit A/D C x 8ch.
 - SIO/UART x 2 ch.
 - Timer (16Bit x2, 8Bit x8)
 - SEI x 1 ch.
- Package:
 - 100 pin LQFP

Memory variation

Туре	ROM(I	oyte)	RAM(byte)
TMP95C TMP95P		64K 64K (O	2K TP)	
TMP95F	Y54AF 4K	256K(F	LASH)	

The round picture

Pin and S/W compatible 16 Bit MCU's

TMP91CP8xF

Under development

- TLCS-900/L1 core, 5V
- CAN
 - 2.0B, FULL CAN
 - 16 (8) Mailboxes
 - Time stamp
- Internal I/O
 - A/D C: 10 bit x 12 ch.
 - SIO/UART x 2 ch.
 - Timer (16Bit x2, 8Bit x4)
 - PWM: 16 Bit x 4 ch.
 - SEI x 1 ch.
 - ABZ phase measurement x 1ch.
- Package :
 - 80 pin QFP
 - 100 pin QFP

Memory variation

Туре	ROM(oyte)	RAM(byte)
TMP91C	P80FC 2K	P82F	48	
TMP91P	P80F/I 2K	PP82F	48K (OTP)

An

Starter-Kit TOPAS-900

Features

- Toshiba's C compiler, assembler, linker
- Toshiba's Windows UDE debugger
- Program development using high level language
- Simple program download to the TLCS-900 board
- C level program test with UDE debugger/ROM monitor
 - Single Step, Breakpoints, Symbolic Debugging
- Easy switch to Toshiba emulator (RTE model 15/25)

Supported MCU's

- TLCS-900/L standard : TMP93CS41F
- TLCS-900/H FLASH: TMP95FY64F
- TLCS-900/H CAN: TMP95CS54F

TOPAS900 CAN: Starter kit for CAN MCU

