

Autoencoders

PhD(e). Jonnatan Arias Garcia – jonnatan.arias@utp.edu.co – jariasg@uniquindio.edu.co

PhD. David Cardenas peña - dcardenasp@utp.edu.co

PhD. Hernán Felipe Garcia - hernanf.garcia@udea.edu.co

Autoenconders

- El aprendizaje supervisado utiliza etiquetas explícitas/salida correcta para entrenar una red.
 - Por ejemplo, clasificación de imágenes.
- El aprendizaje no supervisado se basa únicamente en datos.
 - Por ejemplo, embeddings de palabras CBOW y skip-gram: la salida se determina implícitamente a partir del orden de las palabras en los datos de entrada.
 - El punto clave es producir un embedding útil de palabras.
 - El embedding codifica la estructura, como la similitud de palabras y algunas relaciones.
 - Todavía es necesario definir una pérdida: esta es una supervisión implícita.

Autoenconders

- Los autocodificadores están diseñados para reproducir su entrada, especialmente para imágenes.
 - El punto clave es reproducir la entrada de una codificación aprendida.

Autoenconders: Estructura

- Codificador (Encoder): comprime la entrada en un espacio latente de dimensiones generalmente más pequeñas. h = f(x)
- Decodificador (Decoder): reconstruye la entrada a partir del espacio latente. r = g(f(x)) con r lo más cerca posible de x

Autoenconders: Aplicaciones

• Eliminación de ruido: ingrese imagen limpia + ruido y entrene para reproducir la imagen limpia.

Autoenconders: Aplicaciones

• Coloración de imágenes: ingrese blanco y negro y entrene para producir imágenes en color

Autoenconders: Aplicaciones

• Remover marcas de agua

Autoenconders: Propiedades

- Datos específicos: los codificadores automáticos solo pueden comprimir datos similares a los que se han entrenado.
- Con pérdidas (Lossy): Las salidas descomprimidas se degradarán en comparación con las entradas originales.
- Aprendizaje automáticamente a partir de ejemplos: Es fácil entrenar instancias especializadas del algoritmo que funcionarán bien en un tipo específico de entrada.

Autoenconders: Capacidad

- Al igual que con otras NN, el sobreajuste es un problema cuando la capacidad es demasiado grande para los datos.
- Los autocodificadores abordan esto a través de una combinación de:
 - Capa de cuello de botella: menos grados de libertad que en las salidas posibles.
 - Entrenamiento para eliminar el ruido.
 - Dispersión a través de la regularización.
 - Penalización contractiva.

Autoenconders: Bottleneck layer

- Supongamos que las imágenes de entrada son *nxn* y el espacio latente es *m < nxn*.
- Entonces el espacio latente no es suficiente para reproducir todas las imágenes.
- Necesita aprender una codificación que capture las características importantes de los datos de entrenamiento, suficientes para una reconstrucción aproximada.

Bottleneck layer en Keras

- input_img = Input(shape=(784,))
- encoding_dim = 32
- encoded = Dense(encoding_dim, activation='relu')(input_img)
- decoded = Dense(784, activation='sigmoid')(encoded)
- autoencoder = Model(input_img, decoded)
- Maps 28x28 images into a 32 dimensional vector.
- Can also use more layers and/or convolutions.

Autoencoders: Denoising

- El autoencoder básico se entrena para minimizar la pérdida entre x y la reconstrucción g(f(x)).
- Los autoencoders de eliminación de ruido se entrenan para minimizar la pérdida entre x y g(f(x+w)), donde w es ruido aleatorio.
- Las mismas arquitecturas posibles, diferentes datos de entrenamiento. Kaggle tiene un conjunto de datos sobre documentos dañados.

Autoencoders: Denoising

- Los autoencoders de eliminación de ruido no pueden simplemente memorizar la relación de entrada y salida.
- De forma intuitiva, un autoencoder de eliminación de ruido aprende una proyección de una vecindad de nuestros datos de entrenamiento en los datos de entrenamiento.

Sparse Autoencoders

- Construye una función de pérdida para penalizar las activaciones dentro de una capa.
- Normalmente regularizar los pesos de una red, no las activaciones.
- Los nodos individuales de un modelo entrenado que se activan dependen de los datos.
 - Diferentes entradas darán como resultado activaciones de diferentes nodos a través de la red.
- Active selectivamente las regiones de la red en función de los datos de entrada.

Sparse Autoencoders

- Construya una función de pérdida para penalizar las activaciones de la red.
 - **Regularización L1:** Penaliza el valor absoluto del vector de activaciones a en la capa h para observación I

$$\mathcal{L}\left(x,\hat{x}\right) + \lambda \sum_{i} \left| a_{i}^{(h)} \right|$$

• **Divergencia KL:** Utilice la entropía cruzada entre la activación media y la activación deseada

$$\mathcal{L}\left(x,\hat{x}\right) + \sum_{j} KL\left(\rho||\hat{\rho}_{j}\right)$$

Autoencoders Contractivos

- Organice entradas similares para que tengan activaciones similares.
 - Es decir, la derivada de las activaciones de la capa oculta es pequeña con respecto a la entrada.
- Los autoencoders de eliminación de ruido hacen que la función de reconstrucción (codificador + decodificador) resista pequeñas perturbaciones de la entrada
- Los autoencoders contractivos hacen que la función de extracción de características (es decir, el codificador) resista las perturbaciones infinitesimales de la entrada.

$$\mathcal{L}\left(x,\hat{x}\right) + \lambda \sum_{i} \left\| \nabla_{x} a_{i}^{(h)}\left(x\right) \right\|^{2}$$

Autoencoders Contractivos

• Los autocodificadores contractivos hacen que la función de extracción de características (es decir, el codificador) resista las perturbaciones infinitesimales de la entrada.

Autoencoders Contractivos

- Tanto el autoencoders (AE) de eliminación de ruido como el autoencoders contractivo pueden funcionar bien
 - Ventaja de eliminar el ruido del codificador automático: más simple de implementar, requiere agregar una o dos líneas de código al codificador automático normal, sin necesidad de calcular Jacobian de la capa oculta
 - Ventaja del AE contractivo: el gradiente es determinista, puede usar optimizadores de segundo orden (gradiente conjugado, LBFGS, etc.) podría ser más estable que el AE de eliminación de ruido, que utiliza un gradiente muestreado.
- Para obtener más información sobre los AE's contractivos: }
 - Autocodificadores contractivos: invariancia explícita durante la extracción de características. Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot y Yoshua Bengio, 2011.