SE328:Topology

Hyosang Kang¹

 1 Division of Mathematics School of Interdisciplinary Studies DGIST

Week 02

Definition

A topology on a set X is a collection \mathcal{T} of subsets of X having the following properties:

- 1. \emptyset and X are in \mathcal{T} .
- 2. An arbitrary union of elements is in \mathcal{T} .
- 3. A finite intersection of elements is in \mathcal{T} .

A element of \mathcal{T} is called an **open** set of X. If X admits such collection \mathcal{T} , we say X a topological space.

Example

If \mathcal{T} contains all subsets of X, then we call \mathcal{T} the **discrete** topology on X. Define a discrete topology on \mathbb{Z} .

Let \mathcal{T} be the collection of all subsets of X such that X - U is finite. Then \mathcal{T} is called a **finite complement** topology. (Why is it a topology?)

Definition

Let $\mathcal{T}, \mathcal{T}'$ be two topology on X. If $\mathcal{T} \subset \mathcal{T}'$, then we say \mathcal{T} is coarser than \mathcal{T} , and \mathcal{T}' is finer than \mathcal{T} .

Definition

A basis of the topology \mathcal{T} is a collection \mathcal{B} of subsets of X satisfying

- 1. For each $x \in X$, there is at least one basis element containing x.
- 2. If $x \in B_1 \cap B_2$ for $B_1, B_2 \in \mathcal{B}$, then there is $B_3 \in \mathcal{B}$ such that $x \in B_3 \subset B_1 \cap B_2$.

If a collection of subsets of X satisfies the above conditions, then the **topology generated by** \mathcal{B} is the collection of subset U satisfying that if $x \in U$ then there is $B \in \mathcal{B}$ such that $B \subset U$.

The collection of one-point sets is the basis of the discrete topology.

Example

Let $B_r(x)$ be the ball of radius r centered at $x \in \mathbb{R}^n$, namely,

$$B_r(x) = \{ y \in \mathbb{R} \mid |y - x| < r \}$$

Then two topology generated by

$$\mathcal{B}_1 = \{ B_r(x) \mid r \in \mathbb{R}, x \in \mathbb{R}^n \}$$

$$\mathcal{B}_2 = \{(a_1, b_1) \times \cdots \times (a_n, b_n) \mid a_i, b_i \in \mathbb{R}, a_i < b_i, \}$$

are the same topology on \mathbb{R}^n .

Lemma

Let \mathcal{B} be a basis for a topology \mathcal{T} . Then \mathcal{T} is the collection of all unions of elements of \mathcal{B} .

Lemma

Let \mathcal{C} be a collection of open sets of X such that for each open set U of X and each $x \in U$, there is an element $C \in \mathcal{C}$ such that $x \in C \subset U$. Then \mathcal{C} is a basis for the topology of X.

Lemma

Let $\mathcal{B}, \mathcal{B}'$ be bases for the topology $\mathcal{T}, \mathcal{T}'$. The followings are equivalent:

- 1. \mathcal{T}' is finer than \mathcal{T} .
- 2. For each $x \in X$ and a basis element $B \in \mathcal{B}$ containing x, there is $B' \in \mathcal{B}'$ such that $x \in B' \subset B$.

- 1. Let $\mathcal{B} = \{(a,b) \mid a,b \in \mathbb{R}\}$. The topology generated by \mathcal{B} is called the **standard topology** on \mathbb{R} .
- 2. Let $\mathcal{B}' = \{[a,b) \mid a,b \in \mathbb{R}\}$. The topology generated by \mathcal{B}' is called the **lower limit topology** on \mathbb{R} .
- 3. Let $K = \{1/n \mid n \in \mathbb{Z}_+\}$, and $\mathcal{B}'' = \{(a,b) K \mid a,b \in \mathbb{R}\}$. The toplogy generated by \mathcal{B}'' is called the **K- toplogy** on \mathbb{R} .

Lemma

The lower limit topology and K-topology are strictly finer than the standard topology, but not comparable with each other.

Definition

A subbasis \mathcal{S} for a topology of X is a collection of subsets of X whose union equals X. The topology generated by the subbasis \mathcal{S} is the collection of all union of finite intersections of elements of \mathcal{S} .

Example

Let \mathcal{A} be a (sub)basis for a topology on X. Show that the topology generated by \mathcal{A} is the intersection of all topologies on X that contains \mathcal{A} .

Consider the following topologies on \mathbb{R} .

- 1. \mathcal{T}_1 : the standard topology.
- 2. \mathcal{T}_2 : the K-topology
- 3. \mathcal{T}_3 : the finite complement topology.
- 4. \mathcal{T}_4 : the upper limit topology, having all sets (a, b] as basis.
- 5. \mathcal{T}_5 : the topology having all sets $(-\infty, a)$ as a basis.

Determine which topolgy contains the other.