Midterm: Solutions

1. Consider the 2×2 matrix

$$A = \frac{1}{\sqrt{10}} \begin{pmatrix} 2\\1 \end{pmatrix} \begin{pmatrix} 1 & -1 \end{pmatrix} + \frac{2}{\sqrt{10}} \begin{pmatrix} -1\\2 \end{pmatrix} \begin{pmatrix} 1 & 1 \end{pmatrix}.$$

- (a) What is an SVD of A? Express it as $A = USV^{\top}$, with S the diagonal matrix of singular values ordered in decreasing fashion. Make sure to check all the properties required for U, S, V.
- (b) Find the semi-axis lengths and principal axes of the ellipsoid

$$\mathcal{E}(A) = \{ Ax : x \in \mathbb{R}^2, \|x\|_2 \le 1 \}.$$

Hint: Use the SVD of A to show that every element of $\mathcal{E}(A)$ is of the form $y = U\bar{y}$ for some element \bar{y} in $\mathcal{E}(S)$. That is, $\mathcal{E}(A) = \{U\bar{y} : \bar{y} \in \mathcal{E}(S)\}$. (In other words the matrix U maps $\mathcal{E}(S)$ into the set $\mathcal{E}(A)$.) Then analyze the geometry of the simpler set $\mathcal{E}(S)$.

- (c) What is the set $\mathcal{E}(A)$ when we append a zero vector after the last column of A, that is A is replaced with $\tilde{A} = [A, 0] \in \mathbb{R}^{2 \times 3}$?
- (d) Same question when we append a row after the last row of A, that is, A is replaced with $\tilde{A} = [A^{\top}, 0]^{\top} \in \mathbb{R}^{3 \times 2}$. Interpret geometrically your result.

Solution:

(a) We have

$$A = \sigma_1 u_1 v_1^\top + \sigma_2 u_2 v_2^\top = USV^\top,$$

where $U = [u_1, u_2], V = [v_1, v_2]$ and $S = \operatorname{diag}(()\sigma_1, \sigma_2)$, with $\sigma_1 = 2, \sigma_2 = 1$, and

$$u_1 = \frac{1}{\sqrt{5}} \begin{pmatrix} -1 \\ 2 \end{pmatrix}, \quad u_2 = \frac{1}{\sqrt{5}} \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \quad v_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad v_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

The triplet (U, S, V) is an SVD of A, since S is diagonal with non-negative elements on the diagonal, and U, V are orthogonal matrices $(U^{\top}U = V^{\top}V = I_2)$. To check this, we first check that the Euclidean norm of u_1, u_2, v_1, v_2 is one. (This is why we factored the term $\sqrt{10}$ into $\sqrt{2} \cdot \sqrt{5}$.) In addition, $u_1^{\top}u_2 = v_1^{\top}v_2 = 0$. Thus, U, V are orthogonal, as claimed.

(b) We have, for every $x, y := Ax = US(V^{\top}x)$ hence $y = U\bar{y}$, with $\bar{y} = S\bar{x}$ and $\bar{x} = V^{\top}x$. Since V is orthogonal, $\|\bar{x}\|_2 = \|x\|_2$. In fact, when x runs the unit Euclidean sphere, so does \bar{x} . Thus every element of $\mathcal{E}(A)$ is of the form $y = U\bar{y}$ for some element \bar{y} in $\mathcal{E}(S)$. To analyze $\mathcal{E}(A)$ it suffices to analyze $\mathcal{E}(S)$ and then transform the points of the latter set via the mapping $\bar{y} \to U\bar{y}$. Since

$$\mathcal{E}(S) = \left\{ \sigma_1 \bar{x}_1 e_1 + \sigma_1 \bar{x}_2 e_2 : \bar{x}_1^2 + \bar{x}_2^2 \le 1 \right\},\,$$

with e_1, e_2 the unit vectors, we have

$$\mathcal{E}(A) = \left\{ \sigma_1 \bar{x}_1 u_1 + \sigma_1 \bar{x}_2 u_2 : \bar{x}_1^2 + \bar{x}_2^2 \le 1 \right\}.$$

In the coordinate system defined by the orthonormal basis (u_1, u_2) the set is an ellipsoid with semi-axis lengths (σ_1, σ_2) , and principal axes given by the coordinate axes. In the original system the principal axes are u_1, u_2 .

(c) When we append a zero column after the last column of A we are doing nothing to $\mathcal{E}(A)$. Indeed, the condition

$$y = Ax$$
 for some $x \in \mathbb{R}^2$, $||x||_2 \le 1$

is the same as

$$y = (A \ 0) z \text{ for some } z \in \mathbb{R}^3, \|z\|_2 \le 1.$$

Geometrically, the projection of a 3-dimensional unit sphere on the first two coordinates is the 2-dimensional unit sphere. Hence we loose nothing if the 2D sphere used to generate the points x is replaced by the projection of the 3D sphere.

(d) Here we append a row after the last row of A, replacing A with

$$\tilde{A} = \begin{pmatrix} A \\ 0 \end{pmatrix} \in \mathbb{R}^{3 \times 2}.$$

The set $\mathcal{E}(\tilde{A})$ is the set of points of the form $(y,0) \in \mathbb{R}^3$ where $y \in \mathcal{E}(A)$. This means that we are simply embedding the ellipsoid $\mathcal{E}(A)$ into a 3D space, instead of the original 2D one. The set $\mathcal{E}(\tilde{A})$ is now a degenerate (flat) ellipsoid in \mathbb{R}^2 , entirely contained on the plane defined by the first two unit vectors in \mathbb{R}^2 .

- 2. Student scores and duality. We are given a $n \times m$ matrix M that contains the scores of n sudents on an exam with m parts, so that $M_{i,j}$ is the score on student i on part j.
 - (a) Someone hypothesizes that the score M_{ij} is simply the product of two variables, the *i*-th student overall academic ability a_i , and the difficulty level of part j, d_j . If that is the case, what is the rank and an SVD of M, in terms of the vectors a, d?
 - (b) How would you test the above hypothesis, on real-world data, and estimate vectors a, d? Describe precisely the steps you would take.
 - (c) We define an n-vector b, with b_i the largest score, across the whole exam, of student i. Similarly we define an m-vector s, with s_j the smallest score, across students, for part j. Show that for every $i, j, s_j \leq b_i$. Hint: show that M_{ij} is between the two quantities.
 - (d) Show that

$$d^* := \max_{1 \le j \le m} \min_{1 \le i \le n} M_{ij} \le \min_{1 \le i \le n} \max_{1 \le j \le m} M_{ij} := p^*.$$

How does this relate to weak duality? Discuss.

(e) Assume that M satisfies the hypothesis of part 2a, with positive vectors a, d. Does strong duality hold (that is, $p^* = d^*$) in that case? Justify your answer.

Solution:

(a) The hypothesis implies that $M = ad^{\top}$, hence M is rank-one. An SVD is

$$M = \sigma u v^{\top}$$
.

with $\sigma = ||a||_2 \cdot ||d||_2$, $u = a/||a||_2$, $v = d/||d||_2$. Here, u is a left singular vector, and v is a right singular vector, both associated with the only non-zero singular value σ .

(b) We can solve the rank-one approximation problem

$$\min_{a,d} \|M - ad^{\top}\|_F$$

At optimum, a (resp. d) will be (proportional to) the left (resp. right) singular vector associated with the largest singular value of M. If the above quantity is small with respect to $||M||_F$, we can say that the hypothesis (approximately) hold.

(c) We have for every i, j

$$s_j = \min_k \ M_{kj} \le M_{ij} \le \max_h \ M_{ih} = b_i,$$

which proves the result. This is a special case of weak duality, applied to a function of two discrete variables $(i, j) \to M_{ij}$.

(d) The result follows immediately, since $s_j \leq b_i$ for every i, j then for every i:

$$d^* = \max_{1 \le j \le m} s_j \le b_i.$$

Since the above is true for every i, we have

$$p^* = \min_{1 \le i \le n} \ p_i \ge d^*.$$

(e) If $M = ad^{\top}$, then

$$d^* = \max_{1 \le j \le m} \min_{1 \le i \le n} M_{ij}$$

$$= \max_{1 \le j \le m} \min_{1 \le i \le n} a_i d_j$$

$$= \max_{1 \le j \le m} \left(d_j \cdot \min_{1 \le i \le n} a_i \right) \text{ (since } d > 0)$$

$$= \left(\max_{1 \le j \le m} d_j \right) \cdot \left(\min_{1 \le i \le n} a_i \right).$$

A similar reasoning shows that p^* is equal to the same quantity, hence strong duality holds.

3. Optimization over a dome. We are given two n-vectors a, y, and a scalar c, and consider the following optimization problem:

$$p^* := \max_{x} a^{\top} x : ||x||_2 \le 1, \ y^{\top} x \ge c.$$
 (1)

- (a) Is the problem convex, as stated? Justify your answer.
- (b) Show that problem (1) is feasible if and only if $c \leq ||y||_2$, which we henceforth assume.
- (c) Interpret problem (1) geometrically; in particular, explain why $r^* = ||a||_2$ when $c \le -||y||_2$ and $r^* = +\infty$ (that is, the problem is infeasible) when $c > ||y||_2$.
- (d) Show that

$$p^* = \max_{x} \min_{\lambda \ge 0} a^{\top} x + \lambda (y^{\top} x - c) : ||x||_2 \le 1.$$

Hint: fix x and compute the minimum in the above.

(e) Assuming that strong duality holds, show that the problem can be reduced to a one-dimensional search:

$$p^* = \min_{\lambda \ge 0} \|a + \lambda y\|_2 - c\lambda.$$

Solution:

- (a) As stated, the problem is convex, since it involves the maximization of a linear function over a convex set.
- (b) The problem is feasible if and only if

$$c \ge \max_{x: \|x\|_2 \le 1} y^{\mathsf{T}} x = \|y\|_2.$$

(c) The problem is to maximize a linear function over a set that is the intersection between a sphere (of radius one and center 0) and a half-space. The feasible set is a dome, and assuming a is normalized so that $||a||_2 = 1$, we are searching for the vector x in the dome with the smallest angle with a.

Due to the Cauchy-Shwartz inequality, we have

$$-|y||_2 \le x^{\mathsf{T}} y \le ||y||_2.$$

Hence, the dome is the full sphere when $c \leq -\|y\|_2$, in which case the problem reduces to

$$p^* = \max_{x : \|x\|_2 \le 1} a^\top x = \|a\|_2.$$

On the other hand, when $c > ||y||_2$ the problem is infeasible, because the dome is actually empty in that case.

(d) For fixed x, we have

$$\min_{\lambda \ge 0} \ a^\top x + \lambda (y^\top x - c) = \begin{cases} a^\top x & \text{if } y^\top x \ge c, \\ -\infty & \text{otherwise,} \end{cases}$$

which proves the result.

(e) Assuming strong duality:

$$p^* = \min_{\lambda \ge 0} \max_{x} a^{\top} x + \lambda (y^{\top} x - c) : ||x||_2 \le 1$$

= $\min_{\lambda \ge 0} g(\lambda),$

where g is the dual function:

$$g(\lambda) = \max_{x} a^{\top} x + \lambda (y^{\top} x - c) : ||x||_{2} \le 1$$
$$= \max_{\|x\|_{2} \le 1} x^{\top} (a + \lambda y) - c\lambda$$
$$= \|a + \lambda y\|_{2} - c\lambda,$$

as claimed.