Paper 1		
Question	Scheme	Marks
number		
1	$b^2 - 4ac \ge 0$	
	$b^{2} - 4ac \ge 0$ $(k+5)^{2} - 4k(3k+6) \ge 0$	M1
	$k^2 + 10k + 25 - 12k^2 - 24k \ge 0$	M1
	$11k^2 + 14k - 25 \le 0$	A1
	$(11k + 25)(k - 1) \le 0$	M1
	[Critical values are $-\frac{25}{11}$ and 1]	
	$-\frac{25}{11} \le k \le 1 \text{ oe}$	M1A1
Total 6 marks		

Mark	Notes
M1	Uses $b^2 - 4ac$ on the given quadratic equation with correct a, b and c;
	a = 3(k+2)
	b = k + 5 $c = k$
	c = k
	and a correct substitution to obtain $(k+5)^2 - 4 \times 3 \times (k+2)(k)$
	Note: Accept for this mark any inequality, equals sign and even $b^2 - 4ac$ used on its own.
M1	For attempting to expand the brackets and form a 3TQ in terms of <i>k</i> . Allow as a minimum at least one term correct.
	$k^2 + 10k + 25 - 12k^2 - 24k \Rightarrow (-11k^2 - 14k + 25)$
	,
	M0M1 is possible here. For the correct 3TQ with the correct inequality.
	Note: Allow $>$ or $<$ in place of \geqslant and \leqslant for this mark
	$-11k^2 - 14k + 25 \ge 0$ or $11k^2 + 14k - 25 \le 0$
M1	For an attempt to solve their 3TQ, (provided it is a 3TQ) in terms of k by any acceptable
	method. See General Guidance for the definition of an attempt by factorisation, formula or
	completing the square.
	Use of calculators: if their 3TQ is incorrect, do not award this mark if working is not seen.
	$(11k+25)(k-1) = 0 \Rightarrow k = 1, -\frac{25}{11}$
M1	For forming the correct inequality with their critical values, provided they have been
	obtained from a 3TQ, must be a closed region.
	$\left(-\frac{25}{11} \leqslant k \leqslant 1\right)$
	ft their values from their $-11k^2 + 14k - 25 \ge 0$ or $11k^2 - 14k + 25 \le 0$
A1	For the correct inequality.
	$-\frac{25}{11} \leqslant k \leqslant 1$
	11