

CS 380

Introduction to Computer Graphics

LAB (4)

2018.04.02

Review Hello 3D

Full affine transformation Translation Rotation

$$\begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & d \\ 0 & 1 & 0 & h \\ 0 & 0 & 1 & l \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c & 0 \\ e & f & g & 0 \\ i & j & k & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

$$\begin{bmatrix} l & t \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} i & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} l & 0 \\ 0 & 1 \end{bmatrix} \qquad A = TL$$

Quaternion

- Quaternion is implemented in quat.h
- All operations are already implemented in provided code.

- Why not using an Euler(x, y, z) rotation or a rotation matrix?
 - Euler rotation: Gimbal lock problem
 - Rotation matrix: 9 elements (too much computation)

Quaternion Input

Constructors

```
Quat() : q_{1,0,0,0} {} Quat(const double w, const Cvec3& v) : q_{w,v[0],v[1],v[2]} {} Quat(const double w, const double x, const double y, const double z) : q_{w,v[0],v[1]} {}
```

– For given axis and angle θ

$$x = \sin\left(\frac{\theta}{2}\right) \cdot axis.x, \ y = \sin\left(\frac{\theta}{2}\right) \cdot axis.y, \ z = \sin\left(\frac{\theta}{2}\right) \cdot axis.z, \ w = \cos\left(\frac{\theta}{2}\right)$$

Static Constructors

```
static Quat makeXRotation(const double ang)
static Quat makeYRotation(const double ang)
static Quat makeZRotation(const double ang)
```

Apply Quaternion on Vector

KAIST

• Perform the following triple quaternion multiplication: $\begin{bmatrix} \theta \end{bmatrix} \begin{bmatrix} \theta \end{bmatrix}^{-1}$

multiplication:
$$\begin{bmatrix} \cos\left(\frac{\theta}{2}\right) \\ \sin\left(\frac{\theta}{2}\right)\hat{\mathbf{k}} \end{bmatrix} \begin{bmatrix} 0 \\ \hat{\mathbf{c}} \end{bmatrix} \begin{bmatrix} \cos\left(\frac{\theta}{2}\right) \\ \sin\left(\frac{\theta}{2}\right)\hat{\mathbf{k}} \end{bmatrix}^{-1}$$

- Result is of form: $\begin{bmatrix} 0 \\ \hat{c}' \end{bmatrix}$
- The vector multiplication is already implemented in skeleton code

```
Cvec4 operator * (const Cvec4& a) const {
   const Quat r = *this * (Quat(0, a[0], a[1], a[2]) * inv(*this));
   return Cvec4(r[1], r[2], r[3], a[3]);
}
```

Apply Quaternion on Vector

KAIST

• Perform the following triple quaternion multiplication: $\begin{bmatrix} \alpha(\theta) \end{bmatrix}$

$$\begin{bmatrix} \cos\left(\frac{\theta}{2}\right) \\ \sin\left(\frac{\theta}{2}\right)\hat{\mathbf{k}} \end{bmatrix} \begin{bmatrix} 0 \\ \hat{\mathbf{c}} \end{bmatrix} \begin{bmatrix} \cos\left(\frac{\theta}{2}\right) \\ \sin\left(\frac{\theta}{2}\right)\hat{\mathbf{k}} \end{bmatrix}$$

- Result is of form:
- The vector multiplication is already implemented in skeleton code

```
Cvec4 operator * (const Cvec4& a) const {
   const Quat r = *this * (Quat(0, a[0], a[1], a[2]) * inv(*this));
   return Cvec4(r[1], r[2], r[3], a[3]);
}
```

Task 1: Rigid Body Transformation 15T

- Define RigTForm class
 - Translation t (3D point vector) and rotation r (4D
 Quaternion vector)
 - Rigid body transformation class
- Computationally efficient than matrix multiplication.
- RigTForm's role is much similar to Matrix4 class, but it is a very helpful utility class for further implementation.

Task 1: Rigid Body Transformation 15T

- Implement manipulations
 - Inversion inline RigTForm inv(const RigTForm& tform)
 - Multiplication RigTForm operator * (const RigTForm& a) const {
 - Conversion to matrix inline Matrix4 rigTFormToMatrix(const RigTForm& tform)
 - Conversion from a translation vector explicit RigTForm(const Cvec3& t)
 - Conversion form a quaternion explicit RigTForm(const Quat& r)
 - Multiplication with a vector Cvec4 operator * (const Cvec4& a) const
- Alternate Matrix4 class with RigTForm class in asst2.cpp.
- After you replace Matrix4 by RigTForm, everything should behave same as before.

Task 1: (Hint)

RigTForm inversion

- Rotation is just inverse of the quaternion
- Translation is affected by rotation of itself.
- $v = RT^{-1}(RT(v))$

RigTForm multiplication

- Rotation is just multiplication of two quaternions
- Translation of first RigTForm is affected by rotation of second RigTForm.
- (Translation is always affected by previous rotation)

Task 2: Arcball

- Implement the arcball interface
 - Draw a sphere to represent the arcball
 - Implement an arcball function in openGL functions
- Compute rotation
 - Compute two 3D vectors on the screen space.
- Two helper functions in skeleton code
 - getScreenSpaceCoord
 - getScreenToEyeScale
- The radius of the sphere should be 0.25 * min(g_windowWidth, g_windowHeight).

Draw Wireframe Mode

Draw a wire framed sphere for arcball visualization

```
// switch to wire frame mode
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);

// draw something
g_sphere->draw(curSS);

// switch back to solid mode
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);

(If you do not switch back to "GL_FILL", then all
objects may be drawn in wireframe)
```


getScreenSpaceCoord

KAIST

 Convert a 3D vector of the point to a 2D point on a screen space (in pixel units).

getScreenSpaceCoord

- Why use it?
 - Mouse position is given as 2D point on a screen space
 - Arcball is a 3D object.
 - We should convert one of two points (mouse position, arcball position) to the other coordinate to calculate arcball manipulation.

getScreenToEyeScale

KAIST

 Arcball size should not be changed in Screen Space even if size of the cube is changed in screen space due to translation

Arcball Rotation

- Sphere origin o center of sphere, projection of a frame origin
- s₁ clicked screen coordinate
- s₂ dragged mouse screen coordinate

Arcball Rotation (hint)

KAIST

- v₁, v₂ the directional vectors
- $V_{1x} = S_x O_{x}$, $V_{1y} = S_y O_{y}$, $v_{1x}^2 + v_{1y}^2 + v_{1z}^2 = r^2$

Arcball Rotation (hint)

KAIST

 When you drag outside of the arcball, use nearest point of the arcball for manipulation.

KAIST

 Translate the object as same as the mouse movement.

Use g_arcballScale.

 Wherever the object is, the object should follow a mouse pointer.

Active Object

When 'v' is pressed

Red-box is an active object

Blue-box is an active object

Sky is an active object

Sky Mode

- This is mode is only effective when sky is an active object
- When 'm' is pressed

World-sky frame

World-sky frame (Ego-motion)

KAIST

 When scene is minified, the translation should also be magnified to follow mouse cursor

- Perspective (원근감)
 - For same size of objects, far objects look smaller

- Also, for same translation, far objects look translate smaller than near objects.
- However, translation of HW3 should be same as translation of mouse cursor.
- We will learn perspective projection next week VISUAL

- There is a statement in HW3 document:
 - "When the arcball is not in use (e.g., in ego motion),
 g_arcballScale may not be correctly defined, so feel free to fall back to the hard-coded number in that case."
- Which means translation should not be scaled in sky-sky mode.

