HW 1 CHEM 362

Available: Jan. 16, 2008 Due: Jan. 25, 2008

1. Write an equation that can be used to define the mean S-F bond energy in SF₆. How is this value likely to be related in magnitude to the energy of the process?

$$SF_6(g) \rightarrow SF_5(g) + F(g)$$

2. What is a qualitative definition of entropy and how does it relate to the tendency for reactions to occur?

What will be the signs of ΔS for the following reactions?

- a. $H_2O(1) \rightarrow H_2O(g)$
- b. $P_4(g) + 10 F_2(g) \rightarrow 4 PF_5(g)$
- c. $I_2(g) + Cl_2(g) \rightarrow 2 ICl(g)$
- d. $BF_3(g) + NH_3(g) \rightarrow H_3NBF_3(g)$
- e. $CO_2(g) \rightarrow CO_2(s)$
- 3. Prepare graphs of the concentration of reactant A as a function of time if A disappears in a first-order fashion. Assume that $[A]_{initial} = 1 \text{ M}$ and $k = 1 \times 10^{-3} \text{ M}^{-1} \text{s}^{-1}$. How should the data for a first-order reaction be plotted in order to obtain a straight line?
- 4. What do you suppose is the main thermodynamic reason why the following reaction has an equilibrium constant >1?

$$BCl_3(g) + BBr_3(g) \rightarrow BCl_2Br(g) + BClBr_2(g)$$

- 5. What is the value of an equilibrium constant that has a ΔG° value of zero? Draw a Reaction Profile for such a system.
- 6. The conversion of diamond into graphite is a spontaneous reaction (thermodynamically favored). Why doesn't diamond eventually change into graphite?
- 7. What were the two bold postulates made by Bohr that allowed him to derive an equation for the energies of an electron in the H atom?

 What does the term Bohr radius mean?
- 8. State the quantum numbers for the following orbitals:

- 9. State the Pauli Exclusion Principle in the form relevant to atomic structure. Show how it leads to the conclusion that, in a given principal shell, there can be only two *s*, six *p*, ten *d*, and fourteen *f*, electrons.
- 10. Why is the first ionization enthalpy of the O atom lower than that of the N atom?
- 11. Prepare dot density diagrams similar to that found of page 41 of Chapter 2 (Fig. 2-3) for:
 - a. $2p_x$ orbital
 - b. 3*s* orbital
 - c. $3d_{xy}$ orbital

Remember that one must take both the shape and function $r^2[R(r)]^2$ into consideration.

12.	Arrange the following in order of increasing <i>second</i> ionization energy (i.e. put the lowest ionization energy first).					
	₁₉ K	₅₆ B	a	$_{49}In$		₅₂ Te
13.	In what way(s) do 3d and 4d orbitals differ?					
14.	Which member of the following pairs has the lower electron affinity?					
	₈ O or ₇ N	₃₇ R	b or 55Cs	33As or 32G	e	₁₉ K ⁺ or ₁₁ Na
15.	Based on their ground state electronic configurations, list what you would expect as common oxidation states for:					
	₈₁ Tl	₈₂ Pb	₃₄ Se	₅₈ Ce	92 U	
16.	What are the different types of radii that must be considered when discussing the elements? Tell how they are defined and how the values are determined.					