

PRÁCTICAS DE ORDENADOR "ÓPTICA ELECTROMAGNÉTICA"

- Enlace web JOptics: http://www.ub.edu/javaoptics/

Programa que se utiliza: "Polarización y Leyes de Fresnel"

(No se debe actualizar Java, simplemente, descargar y ejecutar)

OBJETIVOS

-Realizar simulaciones para obtener diferentes tipos de luz polarizada, analizando las características que deben tener las dos ondas planas que se superponen en cada caso, a nivel de amplitudes y desfase.

-Estudiar cómo cambia el estado de polarización de la luz cuando incide en un medio dieléctrico, homogéneo e isótropo, al reflejarse y transmitirse, en condiciones de reflexión externa e interna, para diferentes ángulos de incidencia.

I. INTRODUCCIÓN TEÓRICA

Antes de utilizar el programa, y a partir de la documentación que aportan los autores*, se deben tener en cuenta los criterios de signos que utilizan para polarización, en función de la forma en la que escriben la fase de las ondas y también el planteamiento inicial en la orientación de los campos, para deducir las ecuaciones de Fresnel. Todo ello permitirá comprender los resultados que posteriormente se verán en las simulaciones.

- **1.-** Deducir el criterio de signos para polarización dextrógira y levógira. (Problema 7.9)
- **2.-** Justificar los signos en la definición de los Parámetros de Stokes.
- **3.-** Deducir el coeficiente r_p e interpretar los signos en las ecuaciones de Fresnel. (Problema 8.11)

^{*} En la página web ver: "Apuntes de Teoría" (2.2 y 2.3)y también en la cuarta pestaña del applet abierto.

II. POLARIZACIÓN

Simular diferentes estados de polarización y en cada caso:

- a) Justificar los parámetros elegidos para conseguirlo: amplitudes y desfase.
- b) Explicar la información que aportan los valores de los parámetros de Stokes.
- c) Deducir el valor del desfase mediante la gráfica inferior correspondiente a la representación de la vibración las ondas componentes.
 - -Luz linealmente polarizada a $\alpha = 60^{\circ}$
 - -Luz linealmente polarizada a $\alpha = -30^{\circ}$
 - -Luz circular dextrógira
 - -Luz elípticamente polarizada, dextrógira con semieje mayor horizontal
 - -Luz elípticamente polarizada, levógira con semieje mayor vertical
 - -Luz elípticamente polarizada dextrógira con inclinación $\psi=30^\circ$; $tg2\psi=\frac{2A_pA_scos\delta}{A_p^2-A_s^2}$

III.- DIELECTRICOS

<u>LUZ INCIDENTE</u>: Luz elípticamente polarizada, dextrógira con semieje mayor horizontal. Para realizar este apartado se tomaran los siguientes valores: Ap=0.83; As=0.5; $\delta=90^{\circ}$

- a) Analizar los Cambios en la luz reflejada: Semiejes de elipse de polarización y sentido de giro.
 - Calcular amplitudes reflejadas: Apr, Asr
 - Calcular desfase total de la onda reflejada: δr-total (interpretar signos de rp y rs)
- b) Analizar Cambios en la luz transmitida: Semiejes de elipse de polarización y sentido de giro.
 - Calcular amplitudes transmitidas: Apt, Ast
 - Calcular desfase total de la onda transmitida: δt-total (interpretar signos de tp y ts)

REFLEXIÓN EXTERNA: Simular una interfase dada por: **ni=1**; **nt=1,7** y para diferentes ángulos de incidencia deducir los cambios producidos en cada caso.

REFLEXIÓN INTERNA: Simular una interfase dada por: **ni =1,7; nt =1** y para diferentes ángulos de incidencia y deducir los cambios producidos en cada caso. Calcular el ángulo límite y observar qué sucede para ángulos mayores que éste.

REFLEXIÓN EXTERNA								
θi	Apr = rp Api	Asr = rs Asi	$\delta r = \delta sr - \delta pr$	δr -tot = δi + δr	Tipo de luz reflejada			
45°								
59,5°								
80°								
	Apt= tp Api	Ast= ts Asi	$\delta t = \delta st - \delta pt$	$\delta t\text{-tot} = \delta i + \delta t$	Tipo de luz transmitida			
45°								
59,5°								
80°								

REFLEXIÓN INTERNA								
θi	Apr = rp Api	Asr = rs Asi	$\delta r = \delta sr - \delta pr$	$\delta r\text{-tot} = \delta i + \delta r$	Tipo de luz reflejada			
25°								
30,5°								
35,4°								
36°								
	Apt= tp Api	Ast= ts Asi	$\delta t = \delta st - \delta pt$	$\delta t\text{-tot} = \delta i + \delta t$	Tipo de luz transmitida			
25°								
30,5°								
35,4°								
36°								