Local definitions of formations of finite groups

L.A. Shemetkov

Department of Mathematics, F. Scorina Gomel State University, Gomel 246019, Belarus; E-mail: shemetkov@gsu.by

Abstract

A problem of constructing of local definitions for formations of finite groups is discussed in the article. The author analyzes relations between local definitions of various types. A new proof of existence of an ω -composition satellite of an ω -solubly saturated formation is obtained. It is proved that if a non-empty formation of finite groups is \mathfrak{X} -local by Förster, then it has an \mathfrak{X} -composition satellite.

2000 Mathematics Subject Classification: 20D10

Keywords: Frattini subgroup, saturated formation, satellite

1. Introduction

We consider only finite groups. So, all group classes considered are subclasses of the class \mathfrak{E} of all finite groups. Recall that a formation is a group class closed under taking homomorphic images and subdirect products (see [1]). A formation \mathfrak{F} is said to be p-saturated (p a prime) if the condition:

 $G/N \in \mathfrak{F}$ for a G-invariant p-subgroup N of $\Phi(G)$

always implies $G \in \mathfrak{F}$. A formation \mathfrak{F} is said to be \mathfrak{N}_p -saturated if the condition

 $G/\Phi(N) \in \mathfrak{F}$ for a normal p-subgroup N of G

always implies $G \in \mathfrak{F}$.

If a formation is p-saturated for any prime p, then it is called saturated. Clearly, every p-saturated formation is \mathfrak{N}_p -saturated. The converse is not true: there is an extensive class of \mathfrak{N}_p -saturated formations which are not p-saturated. However, as it is established in [2], between local definitions of these two types of formations there is a close connection.

The concept of local definitions of saturated formations was considered for the first time by W. Gaschütz [1]. Following [3], we formulate it in the general form.

A local definition is a map $f:\mathfrak{E} \to \{\text{formations}\}\$ together with a f-rule which decide whether a chief factor is f-central or f-eccentric in a group. In addition, we follow the agreement that the local definition f does not distinguish between non-identity groups with the same (up to isomorphism) set of composition factors. Therefore, for any fixed prime p, f is not distinguish between any two non-identity p-groups; we will denote through f(p) a value of f on non-identity p-groups.

If a class \mathfrak{F} coincides with the class of all groups all of whose chief factors are f-central, we say that f is a local definition of \mathfrak{F} . It generalises the concept of nilpotency. Thus, the problem of finding local definitions for group classes is equivalent to a problem of finding classes of generalized nilpotent groups.

In this paper we analyze relations between local definitions of different types and give a new proof of a theorem on a local definition of a formation which is \mathfrak{N}_p -saturated for any p in a set ω of primes.

2. Preliminaries

We use standard notations and definitions [4]. We say that a map f does not distinguish between \mathfrak{H} -groups if f(A) = f(B) for any two groups A and B in \mathfrak{H} . Following Gaschütz, the \mathfrak{F} -residual $G^{\mathfrak{F}}$ of a group G is the least normal subgroup with quotient in \mathfrak{F} . The Gaschütz product $\mathfrak{F} \circ \mathfrak{H}$ of formations \mathfrak{F} and \mathfrak{H} is defined as the class of all groups G such that $G^{\mathfrak{H}} \in \mathfrak{F}$. If \mathfrak{F} is closed under taking of normal subgroups, then $\mathfrak{F} \circ \mathfrak{H}$ coincides with the class $\mathfrak{F}\mathfrak{H}$ of all extensions of \mathfrak{F} -groups by \mathfrak{H} -groups.

 \mathbb{P} is the set of all primes; $\operatorname{Char}(\mathfrak{X})$ is the set of orders of all simple abelian groups in \mathfrak{X} . A group G is called a pd-group if its order is divisible by a prime p; C_p is a group of order p; if $\omega \subseteq \mathbb{P}$, then $\omega' = \mathbb{P} \setminus \omega$; an ωd -group (a chief ωd -factor) is a group (a chief factor) being pd-group for some $p \in \omega$; $G_{\omega d}$ is the largest normal subgroup all of whose G-chief factors are ωd -groups ($G_{\omega d} = 1$ if all minimal normal subgroups in G are ω' -groups). If \mathfrak{H} is a class of groups, then \mathfrak{H}_{ω} is the class of all ω -groups in \mathfrak{H}_{ω} . A chief factor H/K of G is called a chief \mathfrak{H}_{ω} -factor if $H/K \in \mathfrak{H}_{\omega}$. The socle $\operatorname{Soc}(G)$ of a group $G \neq 1$ is the product

of all minimal normal subgroups of G.

[A]B is a semidirect product with a normal subgroup A; $O_{\omega}(G)$ is the largest normal ω -subgroup in G; $\pi(G)$ is the set of all primes dividing the order of a group G; $\pi(\mathfrak{F}) = \cup_{G \in \mathfrak{F}} \pi(G)$; \mathfrak{N} is the class of all nilpotent groups; \mathfrak{A} is the class of all abelian groups; $\mathrm{Com}(G)$ is the class of all groups that are isomorphic to composition factors of a group G; $\mathrm{Com}(\mathfrak{F}) = \cup_{G \in \mathfrak{F}} \mathrm{Com}(G)$; $\mathrm{Com}^+(\mathfrak{F})$ is the class of all abelian groups in $\mathrm{Com}(\mathfrak{F})$; $\mathrm{Com}^-(\mathfrak{F})$ is the class of all non-abelian groups in $\mathrm{Com}(\mathfrak{F})$; (G) is the class of all groups isomorphic to G; \mathfrak{F} is the class of all simple (abelian and non-abelian) groups; if \mathfrak{L} is a subclass in \mathfrak{F} , then $\mathfrak{L}' = \mathfrak{F} \setminus \mathfrak{L}^+$ is the class of all abelian groups in \mathfrak{L} , $\mathfrak{L}^- = \mathfrak{L} \setminus \mathfrak{L}^+$. E \mathfrak{F} is the class of all groups G such that $\mathrm{Com}(G) \subseteq \mathfrak{F}$; $G_{\mathrm{E}\mathfrak{F}}$ is the E \mathfrak{F} -radical of G, the largest normal E \mathfrak{F} -subgroup in G. If $G \in \mathfrak{F}$, then $G^S(G)$ is the intersection of centralizers of all chief $\mathrm{E}(G)$ -factors of $\mathrm{G}(G)$ in place of $\mathrm{C}^S(G)$.

Lemma 2.1 (see [3], Lemmas 2–3). (a) If S is a non-abelian simple group, then $C^S(G)$ is the E(S)'-radical of G, the largest normal subgroup not having composition factors isomorphic to S.

(b) Let p be a prime, and \mathfrak{H} be the class of all groups all of whose chief p-factors are central. Then $C^p(G)$ is the $G_{\mathfrak{H}}$ -radical of G, for every group G.

The following three lemmas are reformulations of Lemmas IV.4.14–IV.4.16 in [4] whose proofs use only p-solubly saturation.

Lemma 2.2. Let \mathfrak{F} be an \mathfrak{N}_p -saturated formation, p a prime. If $C_p \in \text{Com}(\mathfrak{F})$, then $\mathfrak{N}_p \subseteq \mathfrak{F}$.

Lemma 2.3. Let \mathfrak{F} be an \mathfrak{N}_p -saturated formation containing \mathfrak{N}_p , p a prime. Let N be an elementary abelian normal p-subgroup in G such that $[N](G/N) \in \mathfrak{F}$. Then $G \in \mathfrak{F}$.

Lemma 2.4. Let p be a prime, and let \mathfrak{F} be an \mathfrak{N}_p -saturated formation containing \mathfrak{N}_p . Let N be an elementary abelian normal p-subgroup in G such that $G/N \in \mathfrak{F}$ and $[N](G/C_G(N)) \in \mathfrak{F}$. Then $G \in \mathfrak{F}$.

Proof. Set M = [N](G/N), $C = C_G(N)$. Evidently, $C/N = C_{G/N}(N)$. In the group M we have $C_M(N) = N \times C/N$ and C/N is normal in M. Hence $M/(C/N) \simeq [N](G/C) \in \mathfrak{F}$. Since $M/N \in \mathfrak{F}$, it follows that $M/N \cap (C/N) \simeq M \in \mathfrak{F}$. Now we apply Lemma 2.3.

Lemma 2.5. Let \mathfrak{F} be an \mathfrak{N}_p -saturated formation containing \mathfrak{N}_p , p a prime.

Let $H \in \mathfrak{F}$ and let $C^p(H) \leq L \leq H$. If N is an irreducible $\mathbb{F}_p(H/L)$ -module, then $[N](H/L) \in \mathfrak{F}$.

Lemma 2.6 (see [4], Proposition IV.1.5). Let \mathfrak{F} be a formation and $G \in \mathfrak{F}$. Let S, R, K be normal subgroups in G such that $S \subseteq R$ and $K \subseteq C_G(R/S)$. Then $[R/S](G/K) \in \mathfrak{F}$.

Lemma 2.7 (see [5] or [6], Theorem 7.11). If $H/\Phi(G) = \operatorname{Soc}(G/\Phi(G))$, then $C_G(H) \subseteq H$.

Lemma 2.8 (see [4], Lemma IV.4.11). Let p be a prime, $L = \Phi(O_p(G))$. Then $C^p(G/L) = C^p(G)/L$.

3. Local and ω -local satellites

The following type of a local definition was proposed by W. Gaschütz [1].

Definition 3.1. Let f be a local definition such that

$$f(A) = \bigcap_{p \in \pi(A)} f(p)$$

for any group $A \neq 1$. Let an f-rule be defined as follows: a chief factor H/K of a group G is f-central if $G/C_G(H/K) \in f(H/K)$. Then f is called a local satellite.

Definition 3.2 (see [4], p. 387). Let A be a group of operators for a group G, and f a local satellite.

- (i) We say that A acts f-centrally on an A-composition factor H/K of G if $A/C_A(H/K) \in f(p)$ for every prime $p \in \pi(H/K)$.
- (ii) We say that A acts f-hypercentrally on G if A acts f-centrally on every A-composition factor of G.

The convenient notation LF(f) for a group class with a local satellite f was introduced by Doerk and Hawkes [4]. Clearly, LF(f) is a non-empty formation (we have always $1 \in LF(f)$).

The following proposition is evident.

Proposition 3.1. Let f be a local satellite and $\pi = \{p \in \mathbb{P} \mid f(p) \neq \emptyset\}$. Then LF(f) consists precisely of π -groups G satisfying the following condition: $G/O_{p',p}(G) \in f(p)$ for any $p \in \pi(G)$. Thus, if $\pi = \emptyset$, we have LF(f) = (1). If $\pi \neq \emptyset$, we have that

$$LF(f) = \mathfrak{E}_{\pi} \bigcap (\bigcap_{p \in \pi} (\mathfrak{E}_{p'} \mathfrak{E}_p f(p))).$$

We remember the reader that a formation \mathfrak{F} is saturated if $G/\Phi(G) \in \mathfrak{F}$ always implies $G \in \mathfrak{F}$ (by definition, the empty set is a saturated formation). W. Gashütz has shown that every formation with a local satellite is saturated. This fact follows also from the following theorem of P. Schmid.

Theorem 3.1 (see [4], Theorem IV.6.7). Let f be a local satellite, and let A be a group of operators for a group G. If A acts f-hypercentrally on $G/\Phi(G)$, then A acts likewise on G.

The following remarkable result is known as the Gaschütz-Lubeseder-Schmid theorem, see [4], Theorem IV.4.6.

Theorem 3.2. A non-empty formation has a local satellite if and only if it is saturated.

It is straightforward to verify that if \mathfrak{F} is a non-empty formation, then \mathfrak{NF} is a formation with a local satellite f such that $f(p)=\mathfrak{F}$ for every prime p. Evidently, the formation $\mathfrak{A}_p\times\mathfrak{N}_{p'}$ of all nilpotent groups with an abelian Sylow p-subgroup is not saturated, but for every prime $q\neq p$, $G/(\Phi(G)\cap O_q(G))\in \mathfrak{A}_p\times\mathfrak{N}_{p'}$ always implies $G\in \mathfrak{A}_p\times\mathfrak{N}_{p'}$. One more fact of the same sort is the following. Consider a saturated formation of the form $\mathfrak{M}\circ\mathfrak{H}$. Here \mathfrak{H} can be non-saturated, but for every prime $p\in \mathbb{P}\setminus\pi(\mathfrak{M})$, $G/(\Phi(G)\cap O_p(G))\in\mathfrak{H}$ always implies $G\in\mathfrak{H}$. The facts of such kind lead to the concept of a ω -saturated formation [11].

Definition 3.3. Let ω be a set of primes. A formation \mathfrak{F} is called ω -saturated if for every prime $p \in \omega$, $G/(\Phi(G) \cap O_p(G)) \in \mathfrak{F}$ always implies $G \in \mathfrak{F}$.

The problem of finding of local definitions of ω -saturated formations was considered in [7] and [3]. While solving this problem the following concept of small centralizer was useful (see [8]).

Definition 3.4. Let H/K be a chief factor of a group G. The *small* centralizer $c_G(H/K)$ of H/K in G is the subgroup generated by all normal subgroups N of G such that $Com(NK/K) \cap Com(H/K) = \emptyset$.

With the help of Definition 3.4 we can introduce the concept ' ω -saturated satellite' as follows.

Definition 3.5. Let ω be a set of primes, and f a local definition which does not distinguish between all non-identity ω' -groups; if $\omega' \neq \emptyset$, we denote

through $f(\omega')$ a value of f on non-identity ω' -groups. In addition, we assume that

$$f(A) = \bigcap_{p \in \pi(A) \cap \omega} f(p)$$

for any ωd -group A. Let an f-rule be defined by the following way: a chief factor H/K of G is f-central in G if either H/K is an ωd -group and $G/C_G(H/K) \in f(H/K)$ or else H/K is an ω' -group and $G/c_G(H/K) \in f(\omega')$. Then f is called an ω -local satellite. We denote by $LF_{\omega}(f)$ the class of all groups all of whose chief factors are f-central. By definition, $1 \in LF_{\omega}(f)$.

Clearly, if $\omega = \mathbb{P}$, then an ω -local satellite f is a local satellite, and $LF_{\omega}(f) = LF(f)$. If $\omega \neq \mathbb{P}$ and $f(\omega') = \varnothing$, then $LF_{\omega}(f) = LF(h)$ where h(p) = f(p) if $p \in \omega$, and $h(p) = \varnothing$ if $p \in \omega'$.

Lemma 3.1 (see [3], Lemma 1). Let \mathfrak{L} be a subclass in \mathfrak{J} , and $\{S_i \mid i \in I\}$ be the set of all $E\mathfrak{L}$ -factors of a group G. Then $\bigcap_{i \in I} c_G(S_i)$ is the $E(\mathfrak{L}')$ -radical $G_{E(\mathfrak{L}')}$ of G.

Remark 3.1. In Lemma 3.1 the set $\{c_G(S_i) \mid i \in I\}$ can be empty. We always follow the agreement that the intersection of an empty set of subgroups of G coincides with G.

The following proposition is similar to Proposition 3.1.

Proposition 3.2. Let f be an ω -local satellite, and ω a proper subset in \mathbb{P} . Let $\pi = \{ p \in \omega \mid f(p) \neq \emptyset \}$. Then:

- (1) if $\pi = \emptyset$ and $f(\omega') = \emptyset$, then $LF_{\omega}(f) = (1)$;
- (2) if $\pi = \emptyset$ and $f(\omega') \neq \emptyset$, then $LF_{\omega}(f) = \mathfrak{E}_{\omega'} \cap f(\omega')$;
- (3) if $f(\omega') \neq \emptyset$, then $LF_{\omega}(f)$ consists precisely of groups G such that $G/G_{\omega d} \in f(\omega')$ and $G/O_{p',p}(G) \in f(p)$ for any $p \in \pi(G) \cap \omega$.

Proof. Statements (1) and (2) are evident.

Prove (3). Assume that $f(\omega') \neq \emptyset$, and let $G \in LF_{\omega}(f)$. Let \mathfrak{T} be the set of all chief ω' -factors in G. If a chief factor H/K of G is an ω' -group, then $G/c_G(H/K) \in f(\omega')$. Therefore, $G/\bigcap_{H/K \in \mathfrak{T}} c_G(H/K) \in f(\omega')$. By Lemma 3.1, $\bigcap_{H/K \in \mathfrak{T}} c_G(H/K) = G_{\omega d}$. So, $G/G_{\omega d} \in f(\omega')$. If $p \in \omega$ and H/K is an chief pd-factor, then $G/C_G(H/K) \in f(p)$, and we have $G/O_{p',p}(G) \in f(p)$.

Conversely, let G be a group such that $G/G_{\omega d} \in f(\omega')$ and $G/O_{p',p}(G) \in f(p)$ for any $p \in \pi(G) \cap \omega$. Clearly, we have that all G-chief ωd -factors are f-central. Let H/K be a G-chief ω' -factor of G. Then $G_{\omega d}K/K \subseteq c_G(H/K)$, and $G/G_{\omega d} \in f(\omega')$ implies $G/c_G(H/K) \in f(\omega')$.

The following result extends Theorem 3.2 to ω -saturated formations.

Theorem 3.3 (see [7], Theorem 1). Let ω be a set of primes. A non-empty formation has a ω -local satellite if and only if it is ω -saturated.

4. Composition and £-composition satellites

Gaschütz's main idea [1] was to study groups modulo p-groups, and he implemented it through local satellites of soluble formations. While considering non-soluble formations, we have to follow the following principle: study groups modulo p-groups and simple groups. That approach was proposed in the lecture [9] at the conference in 1973; in that lecture composition satellites were considered under the name 'primarily homogeneous screens'.

Definition 4.1. Let f be a local definition, and let an f-rule be defined as follows: a chief factor H/K of a group G is f-central if $G/C_G(H/K) \in f(H/K)$. Then f is called a composition satellite. We denote by CF(f) the class of all groups all of whose chief factors are f-central.

Definition 4.2. Let A be a group of operators for a group G, and f a composition satellite.

- (i) We say that A acts f-centrally on an A-composition factor H/K of G if $A/C_A(H/K) \in f(H/K)$.
- (ii) We say that A acts f-hypercentrally on G if it acts f-centrally on every A-composition factor of G.

As an example, we consider the class \mathfrak{N}^* of all quasinilpotent groups (for the definition of a quasinilpotent group, see [12], Definition X.13.2). It is easy to check that $\mathfrak{N}^* = CF(f)$ where f is a composition satellite such that f(p) = (1) for every prime p, and f(S) = form(S) for every non-abelian simple group S. Here form(S) is a least formation containing S; it consists of all groups represented as a direct product $A_1 \times \cdots \times A_n$ with $A_i \simeq S$ for any i. The formation \mathfrak{N}^* is non-saturated, but it is solubly saturated.

As pointed out in [4], formations with composition satellites were also considered—in different terminology—by R. Baer in his unpublished manuscript. By R. Baer, a formation \mathfrak{F} is called *solubly saturated* if the condition $G/\Phi(G_{\mathfrak{S}}) \in \mathfrak{F}$ always implies $G \in \mathfrak{F}$ (here $G_{\mathfrak{S}}$ is the soluble radical of G). The question of the coincidense of the family of non-empty solubly saturated formations and the family of formations with composition satellites was solved by the following result due to R. Baer.

Theorem 4.1 (see [4], Theorem IV.4.17). A non-empty formation has a composition satellite if and only if it is solubly saturated.

A composition satellite h is called *integrated* if $h(S) \subseteq CF(h)$ for any simple group S. If $\mathfrak{F} = CF(f)$, then $\mathfrak{F} = CF(h)$ where $h(S) = f(S) \cap \mathfrak{F}$ for any simple group S. Thus, if a formation has a composition satellite, then it has an integrated composition satellite.

- **Remark 4.1.** Let $\{CF(f_i) \mid i \in I\}$ be a family of formations having composition satellites. Let $f = \bigcap_{i \in I} f_i$ be a composition satellite such that $f(S) = \bigcap_{i \in I} f_i(S)$ for every $S \in \mathfrak{J}$. Clearly, $CF(f) = \bigcap_{i \in I} CF(f_i)$.
- **Remark 4.2.** Let \mathfrak{X} be a set of groups. Let $\{\mathfrak{F}_i \mid i \in I\}$ be the class of all formations \mathfrak{F}_i satisfying the following two conditions: 1) $\mathfrak{X} \subseteq \mathfrak{F}_i$; 2) \mathfrak{F}_i has a composition satellite. Set $\mathrm{cform}(\mathfrak{X}) = \cap_{i \in I} \mathfrak{F}_i$. By Remark 4.1, $\mathrm{cform}(\mathfrak{X})$ has a composition satellite. In the subsequent we will use that notation $\mathrm{cform}(\mathfrak{X})$.
- **Remark 4.3.** Assume that a non-empty formation \mathfrak{F} has an composition satellite. Let $\{f_i \mid i \in I\}$ be the class of all composition satellites of \mathfrak{F} . Having in mind Remarks 4.1 and 4.2 we see that $f = \bigcap_{i \in I} f_i$ is a composition satellite of \mathfrak{F} ; f is called the *minimal composition satellite* of \mathfrak{F} .
- **Lemma 4.1.** Let \mathfrak{X} be a set of groups, and S a simple group. Then $\mathfrak{H} = \mathrm{Q}(G/C^S(G) \mid G \in \mathrm{form}(\mathfrak{X}))$ is a formation, and $\mathrm{Com}(\mathfrak{H}) \subseteq \mathrm{Com}(\mathfrak{X})$.
- **Proof.** By Proposition IV.1.10 in [4], \mathfrak{H} is a formation. By Lemma II.1.18 in [4], form(\mathfrak{X}) = QR₀ \mathfrak{X} . Therefore, inclusion Com(\mathfrak{H}) \subseteq Com(\mathfrak{X}) is valid. \square
- **Lemma 4.2.** Let \mathfrak{X} be a non-empty set of groups, and f be a composition satellite such that $f(S) = \mathbb{Q}(G/C^S(G) \mid G \in \text{form}(\mathfrak{X}))$ if $S \in \text{Com}(\mathfrak{X})$, and $f(S) = \emptyset$ if $S \in \mathfrak{J} \setminus \text{Com}(\mathfrak{X})$. Then f is the minimal composition satellite of $\text{cform}(\mathfrak{X})$.
- **Proof.** Let f_1 be the minimal composition satellite of $\mathfrak{F} = \operatorname{cform}(\mathfrak{X})$ (see Remark 4.3). We will prove that $f_1 = f$.
- Since $\mathfrak{X} \subseteq \mathfrak{F}$, $G/C^S(G) \in f_1(S)$ for any group $G \in \mathfrak{X}$ and any $S \in \text{Com}(G)$ and therefore $f(S) \subseteq f_1(S)$. So $CF(f) \subseteq \mathfrak{F} \subseteq CF(f_1)$. On the other hand, $\mathfrak{X} \subseteq CF(f)$. Thus $\mathfrak{F} = CF(f)$ and $f = f_1$.

The following theorem proved independently in [13] and [14] was the first important result on composition formations.

Theorem 4.2. Let f be an integrated composition satellite. Let A be a group of automorphisms of a group G. If A acts f-hypercentrally on G, then $A \in CF(f)$.

Applying Theorem 4.2 to the formation $\mathfrak U$ of all supersoluble groups, we have the following result.

Theorem 4.3 (see [13], Theorem 2.4). Let A be a group of automorphisms of a group G. Assume that there exists a chain of A-invariant subgroups

$$G = G_0 > G_1 > \dots > G_n = 1$$

with prime indices $|G_{i-1}:G_i|$. Then A is supersoluble.

In 1968 S.A. Syskin tried to prove Theorem 4.3 in the soluble universe, but his proof [15] is false.

In [2] there has been begun studying of local definitions of ω -solubly saturated formations.

Definition 4.3. Let ω be a set of primes. A formation $\mathfrak F$ is called:

(1) ω -solubly saturated if the condition

$$G/N \in \mathfrak{F}$$
 for G-invariant ω -subgroup N in $\Phi(G_{\omega-\mathfrak{S}})$

always implies $G \in \mathfrak{F}$ (here $G_{\omega - \mathfrak{S}}$ is the ω -soluble radical of G);

(2) \mathfrak{N}_{ω} -saturated if for every prime $p \in \omega$, the condition $G/\Phi(O_p(G)) \in \mathfrak{F}$ always implies $G \in \mathfrak{F}$.

Later we will establish that the p-solubly saturation is equivalent to the \mathfrak{N}_p -saturation, and therefore a formation \mathfrak{F} is ω -solubly saturated if and only if it is p-solubly saturated for every $p \in \omega$.

Definition 4.4. Let \mathfrak{L} be a class of simple groups. Let f be a local definition which does not distinguish between all non-identity $E(\mathfrak{L}')$ -groups; if $\mathfrak{L}' \neq \emptyset$, we denote by $f(\mathfrak{L}')$ an value of f on non-identity $E(\mathfrak{L}')$ -groups. Let f-rule be defined as follows: a chief factor H/K of a group G is f-central in G if either H/K is an $E\mathfrak{L}$ -group and $G/C_G(H/K) \in f(H/K)$ or H/K is a $E(\mathfrak{L}')$ -group and $G/c_G(H/K) \in f(H/K) = f(\mathfrak{L}')$. Then f is called an \mathfrak{L} -composition satellite. We denote by $CF_{\mathfrak{L}}(f)$ the class of all groups all of whose chief factors are f-central. By definition, $1 \in CF_{\mathfrak{L}}(f)$.

Clearly, if $\mathfrak{L} = \mathfrak{J}$, then an \mathfrak{L} -composition satellite f is a composition satellite, and $CF_{\mathfrak{L}}(f) = CF(f)$. If $\mathfrak{L} \neq \mathfrak{J}$ and $f(\mathfrak{L}') = \emptyset$, then $CF_{\mathfrak{L}}(f) = CF(h)$ where h(S) = f(S) if $S \in \mathfrak{L}$, and $h(S) = \emptyset$ if $S \in \mathfrak{L}'$.

Proposition 4.1. Let \mathfrak{L} be a class of simple groups, and f an \mathfrak{L} -composition satellite. Let $\mathfrak{K} = \{S \in \mathfrak{L} \mid f(S) \neq \emptyset\}$. Then:

- (1) if $\mathfrak{K} = \emptyset$ and $f(\mathfrak{L}') = \emptyset$, then $CF_{\mathfrak{L}}(f) = (1)$;
- (2) if $\mathfrak{K} = \emptyset$ and $f(\mathfrak{L}') \neq \emptyset$, then $CF_{\mathfrak{L}}(f) = E(\mathfrak{L}') \cap f(\mathfrak{L}')$;
- (3) if $f(\mathfrak{L}') \neq \emptyset$, then $CF_{\mathfrak{L}}(f)$ consists precisely of groups G such that $G/G_{\mathbb{E}\mathfrak{L}} \in f(\mathfrak{L}')$ and $G/C^S(G) \in f(S)$ for every $S \in \text{Com}(G) \cap \mathfrak{L}$.

Proof. Statements (1) and (2) are evident.

Prove (3). Assume that $f(\mathfrak{L}') \neq \emptyset$, and let $G \in CF_{\mathfrak{L}}(f)$. Let \mathfrak{T} be the set of all chief $E(\mathfrak{L}')$ -factors in G. If a chief factor H/K of G is an $E(\mathfrak{L}')$ -group, then $G/c_G(H/K) \in f(\mathfrak{L}')$. Therefore, $G/\bigcap_{H/K \in \mathfrak{T}} c_G(H/K) \in f(\mathfrak{L}')$. By Lemma 3.1, $\bigcap_{H/K \in \mathfrak{T}} c_G(H/K) = G_{E\mathfrak{L}}$. So, $G/G_{E(\mathfrak{L})} \in f(\mathfrak{L}')$. If $S \in \mathfrak{L}$ and H/K is an chief $E(\mathfrak{L})$ -factor, then $G/C_G(H/K) \in f(S)$, and we have $G/C^S(G) \in f(S)$.

Conversely, let G be a group such that $G/G_{\mathbb{E}\mathfrak{L}} \in f(\mathfrak{L}')$ and $G/C^S(G) \in f(S)$ for every $S \in \text{Com}(G) \cap \mathfrak{L}$. Clearly, all chief $\mathbb{E}\mathfrak{L}$ -factors of G are f-central. Let H/K be a chief $\mathbb{E}(\mathfrak{L}')$ -factor of G. Then $G_{\mathbb{E}\mathfrak{L}} \subseteq c_G(H/K)$, and therefore $G/G_{\mathbb{E}\mathfrak{L}} \in f(\mathfrak{L}')$ implies $G/c_G(H/K) \in f(\mathfrak{L}')$.

An \mathfrak{L} -composition satellite f is called *integrated* if $f(S) \in CF_{\mathfrak{L}}(f)$ for every $S \in \mathfrak{F}$. If $\mathfrak{F} = CF_{\mathfrak{L}}(f)$, then $\mathfrak{F} = CF_{\mathfrak{L}}(h)$ where $h(S) = f(S) \cap \mathfrak{F}$ for any simple group S. Thus, if a formation has an \mathfrak{L} -composition satellite, then it has an integrated \mathfrak{L} -composition satellite.

Lemma 4.3. If $\mathfrak{F} = CF_{\mathfrak{L}}(f)$, then $\mathfrak{F} = CF_{\mathfrak{L}}(h)$ where h is an integrated \mathfrak{L} -composition satellite such that $h(S) = \mathfrak{F}$ for every $S \in (\mathfrak{L}^+)'$.

Proof. We can assume without loss of generality that f is integrated. Let $\mathfrak{H} = CF_{\mathfrak{L}}(h)$ where h(S) = f(S) if $S \in \mathfrak{L}^+$, and $h(S) = \mathfrak{F}$ if $S \in (\mathfrak{L}^+)'$. Evidently, $\mathfrak{F} \subseteq \mathfrak{H}$. Assume that $\mathfrak{H} \not\subseteq \mathfrak{F}$, and choose a group G of minimal order in $\mathfrak{H} \setminus \mathfrak{F}$. Then $L = G^{\mathfrak{F}}$ is a unique minimal normal subgroup in G, and G is not G-central. Clearly, G is a unique minimal normal subgroup in G, and G is not G-central. Clearly, G is a unique minimal normal subgroup in G, and G is not G-central. Clearly, G is a unique minimal normal subgroup in G, and G is not G-central. Clearly, G is a unique minimal normal subgroup in G, and G is not G-central. Clearly, G is a unique minimal normal subgroup in G, and G is not G-central. Clearly, G is a unique minimal normal subgroup in G, and G is not G-central. Clearly, G is a unique minimal normal subgroup in G is non-abelian. Let G is non-abelian.

Theorem 4.4 (see [16], Theorem 2). Let \mathfrak{F} be a non-empty formation, \mathfrak{L} a class of simple groups. The following statements are equivalent:

- (1) \mathfrak{F} has an \mathfrak{L} -composition satellite;
- (2) \mathfrak{F} has an \mathfrak{L}^+ -composition satellite.

Proof. (1) \Rightarrow (2). Let $\mathfrak{F} = CF_{\mathfrak{L}}(f)$. Applying Lemma 4.3 we can suppose

that f is integrated and $f(S) = \mathfrak{F}$ for every $S \in (\mathfrak{L}^+)'$. Let $\mathfrak{H} = CF_{\mathfrak{L}^+}(h)$ where h is an \mathfrak{L}^+ -composition satellite such that h(S) = f(S) if $S \in \mathfrak{L}^+$, and $h(S) = \mathfrak{F}$ if $S \in \mathfrak{L}' \cup \mathfrak{L}^- = (\mathfrak{L}^+)'$. We will prove that $\mathfrak{F} = \mathfrak{H}$.

If G is a group of minimal order in $\mathfrak{F} \setminus \mathfrak{H}$, then $L = G^{\mathfrak{H}}$ is a unique minimal normal subgroup in G, and L is not h-central. Clearly, $c_G(L) = 1$, and $C_G(L) = 1$ if L is non-abelian. Applying Definition 4.4 we see that L is h-central, a contradiction. Thus $\mathfrak{F} \subseteq \mathfrak{H}$.

Let G be a group of minimal order in $\mathfrak{H} \setminus \mathfrak{F}$. Then $L = G^{\mathfrak{F}}$ is a unique minimal normal subgroup in G, and L is not f-central. Clearly, $c_G(L) = 1$, and $C_G(L) = 1$ if L is non-abelian. Applying again Definition 4.4 we see that L is f-central, and we arrive at a contradiction. Thus $\mathfrak{H} \subseteq \mathfrak{F}$.

 $(2) \Rightarrow (1)$. Let $\mathfrak{F} = CF_{\mathfrak{L}^+}(f)$. Applying Lemma 4.3 we can suppose that f is integrated and $f((\mathfrak{L}^+)') = \mathfrak{F}$. Let h be an \mathfrak{L} -composition satellite such that h(S) = f(S) if $S \in \mathfrak{L}^+$, and $h(S) = \mathfrak{F}$ if $S \in (\mathfrak{L}^+)'$. It is easy to see that $\mathfrak{F} = CF_{\mathfrak{L}}(h)$.

Remark 4.4. It follows from Theorem 4.4 that every non-empty formation \mathfrak{F} with the property $\text{Com}^+(\mathfrak{F}) \cap \mathfrak{L} = \emptyset$ has an \mathfrak{L} -composition satellite.

Remark 4.5. When $\mathfrak{L} = \mathfrak{L}^+$ and $\omega = \pi(\mathfrak{L})$, we usually use the term ' ω -composition satellite' and the notations $CF_{\omega}(f)$, $f(\omega')$ in place of the term ' \mathfrak{L} -composition satellite' and the notations $CF_{\mathfrak{L}}(f)$, $f(\mathfrak{L}')$, respectively.

Theorem 4.5 (see [2], Theorems 3.1 and 3.2). Let \mathfrak{F} be a non-empty formation, ω a set of primes. The following statements are pairwise equivalent:

- (1) \mathfrak{F} is \mathfrak{N}_{ω} -saturated;
- (2) \mathfrak{F} is ω -solubly saturated;
- (3) cform(\mathfrak{F}) $\subseteq \mathfrak{N}_{\omega'}\mathfrak{F}$;
- (4) $\mathfrak{F} = CF_{\omega}(f)$ where f is a ω -composition satellite satisfying the following conditions:
 - (i) $f(p) = Q(G/C^p(G) \mid G \in \mathfrak{F})$ if $p \in \omega$ and $C_p \in Com(\mathfrak{F})$;
 - (ii) $f(p) = \emptyset$ if $p \in \omega$ and $C_p \notin \text{Com}(\mathfrak{F})$;
 - (iii) $f(S) = \mathfrak{F}$ if $S \in \mathfrak{J} \setminus \{C_p \mid p \in \omega\}$.

Proof. (1) \Rightarrow (3). Set $\mathfrak{H} = \operatorname{cform}(\mathfrak{F})$. Fix $p \in \omega$. Since $\mathfrak{H} \subseteq \mathfrak{NF}$, it is sufficient to show that $\mathfrak{H} \subseteq \mathfrak{N}_{p'}\mathfrak{F}$. Let G be a group of minimal order in $\mathfrak{H} \setminus \mathfrak{N}_{p'}\mathfrak{F}$. Clearly, G is monolithic and $L = \operatorname{Soc}(G)$ is the $\mathfrak{N}_{p'}\mathfrak{F}$ -residual of G. Since $\mathfrak{F} \subseteq \mathfrak{N}_{p'}\mathfrak{F}$, it follows that $G^{\mathfrak{F}} \geq L$. Since $G \in \mathfrak{H} \subseteq \mathfrak{NF}$, we have

 $G^{\mathfrak{F}} \in \mathfrak{N}$. Since G is monolithic and $G \notin \mathfrak{N}_{p'}\mathfrak{F}$, it follows that $G^{\mathfrak{F}}$ is a p-group. From $G/L \in \mathfrak{N}_{p'}\mathfrak{F}$ it follows that $(G/L)^{\mathfrak{F}} = G^{\mathfrak{F}}/L$ is a p'-group. Therefore, $G^{\mathfrak{F}} = L = G^{\mathfrak{N}_{p'}\mathfrak{F}}$. By Lemma 4.2, \mathfrak{H} has a composition satellite h such that $h(p) = \mathbb{Q}(A/C^p(A) \mid A \in \mathfrak{F})$. Since L is a p-group, we have $C_p \in \mathrm{Com}(G)$. Now from Lemma 4.1 it follows that $C_p \in \mathrm{Com}(\mathfrak{F})$. Thus, applying Lemma 2.2, it follows that $\mathfrak{N}_p \subseteq \mathfrak{F}$. Since h is a composition satellite of \mathfrak{H} , we have that $G/C_G(L) \in h(p)$. Therefore $[L](G/C_G(L)) \in \mathfrak{H}$, and $G/C_G(L)$ acts fixed-point-free on L. It follows that $G/C_G(L) \simeq T/N$, $T = A/C^p(A)$, $A \in \mathfrak{F}$. If $C_p \notin \mathrm{Com}(A)$, then $A = C_p(A)$, T = 1 and $G = L \in \mathfrak{F}$. Assume that $C_p \in \mathrm{Com}(A)$. Since $G/C_G(L) \simeq T/N$, we can consider L as an irreducible $\mathbb{F}_p(T/N)$ -module. Then L becomes an irreducible \mathbb{F}_pT -module by inflation (see [4], p. 105). Since $T = A/C^p(A)$, we have by Lemma 2.5 that $[L]T \in \mathfrak{F}$. By Lemma 2.6 it then follows that $[L](T/N) \in \mathfrak{F}$. From this and $T/N \simeq G/C_G(L)$ we deduce that $[L](G/C_G(L) \in \mathfrak{F}$. Hence, by Lemma 2.4 it follows that $G \in \mathfrak{F}$.

 $(3)\Rightarrow (2)$. It is sufficient to consider only the case $\omega=\{p\}$. Let H be a p-soluble normal subgroup in G, $L=O_p(H)\cap\Phi(H)$, and $G/L\in\mathfrak{F}$. We need to prove that $G\in\mathfrak{F}$. If $O_{p'}(H)\neq 1$, then $LO_{p'}(H)/O_{p'}(H)\leq\Phi(H/O_{p'}(H))$, and by induction we have $G/O_{p'}(H)\in\mathfrak{F}$. From this and $G/L\in\mathfrak{F}$ it follows that $G\in\mathfrak{F}$. Assume that $O_{p'}(H)=1$. By Lemma 4.2, $\mathfrak{H}=\mathrm{cform}(\mathfrak{F})$ has a composition satellite h such that $h(p)=\mathrm{Q}(A/C^p(A)\mid A\in\mathfrak{F})$. Let t be a local satellite such that t(p)=h(p) and $t(q)=\mathfrak{E}$ for every prime $q\neq p$. Since $G/L\in\mathfrak{F}\subseteq\mathfrak{H}$ and $L=\Phi(H)$, G acts t-hypercentrally on $H/\Phi(H)$. By Theorem 3.1, G acts t-hypercentrally on $L=\Phi(H)$. But then G acts t-hypercentrally on $L=\Phi(H)$, and we get $G\in\mathfrak{H}\subseteq\mathfrak{H}$. Thus, $G^{\mathfrak{F}}\in\mathfrak{N}_{p'}\cap\mathfrak{N}_p=(1)$. So, $G\in\mathfrak{F}$, as required.

 $(1) \Rightarrow (4)$. Assume that \mathfrak{F} is \mathfrak{N}_{ω} -saturated. Let h be the minimal composition satellite of $\mathfrak{H} = \operatorname{cform}(\mathfrak{F})$. Let $\mathfrak{M} = CF_{\omega}(f)$ where f is an ω -composition satellite satisfying the following conditions:

- 1) f(p) = h(p) if $p \in \omega$;
- 2) $f(S) = \mathfrak{F}$ if $S \in \mathfrak{J} \setminus \{C_p \mid p \in \omega\}$.

Inclusion $\mathfrak{F} \subseteq \mathfrak{M}$ is evident. Assume that the converse inclusion is false, and let G be a group of minimal order in $\mathfrak{M} \setminus \mathfrak{F}$. Then $L = G^{\mathfrak{F}}$ is a unique minimal normal subgroup in G. If L is not an abelian ω -group, it follows from $G \in \mathfrak{M}$ and $c_G(L) = 1$ that $G \simeq G/c_G(L) \in \mathfrak{F}$. Therefore L is an p-group for some $p \in \omega$, and we have $G/C^p(G) \in f(p) = h(p)$. Thus $G \in \mathfrak{H}$. Since $(1) \Rightarrow (3)$, we get $G \in \mathfrak{N}_{p'}\mathfrak{F}$, and therefore $G^{\mathfrak{F}} \in \mathfrak{N}_{p'} \cap \mathfrak{N}_p = (1)$. So $\mathfrak{F} = \mathfrak{M}$. We notice that by Lemma 4.2 we have $f(p) = h(p) = \emptyset$ if $p \in \omega$ and $C_p \notin \text{Com}(\mathfrak{F})$.

 $(4) \Rightarrow (1)$. Let $G/L \in \mathfrak{F}$ and $L = \Phi(O_p(G))$, $p \in \omega$. By Lemma 2.8, $C^p(G)/L = C^p(G/L)$. Applying Proposition 4.1 to G/L, we have $G/O_p(G) \simeq (G/L)/O_p((G/L)) \in \mathfrak{F}$ and $G/C^p(G) \simeq (G/L)/C^p(G/L) = (G/L)/C^p(G/L) \in f(p)$. But then by Proposition 4.1 we get $G \in \mathfrak{F}$.

Corollary 4.5.1. If a non-empty formation \mathfrak{F} is p-solubly saturated and $C_p \in \text{Com}(\mathfrak{F})$, then \mathfrak{F} has an p-composition satellite f such that $f(p') = \mathfrak{F}$ and $f(p) = Q(G/C^p(G) \mid G \in \mathfrak{F})$.

Corollary 4.5.2. If a non-empty formation \mathfrak{F} is solubly saturated, then $\mathfrak{F} = CF(f)$ where f is a composition satellite satisfying the following conditions:

- (i) $f(p) = Q(G/C^p(G) \mid G \in \mathfrak{F})$ if $p \in \omega$ and $C_p \in Com(\mathfrak{F})$;
- (ii) $f(S) = \mathfrak{F}$ for every $S \in \text{Com}^-(\mathfrak{F})$;
- (iii) $f(S) = \emptyset$ for every $S \in \mathfrak{J} \setminus \text{Com}(\mathfrak{F})$.

Theorem 4.6 (see [2], Theorem 3.1(b)). Let \mathfrak{F} be a non-empty ω -saturated formation, and h be the minimal composition satellite of $\operatorname{cform}(\mathfrak{F})$. Then $\mathfrak{F} = LF_{\omega}(f)$ where f is an ω -local satellite such that f(p) = h(p) for every $p \in \omega$.

Proof. We may suppose without loss of generality that $\omega \subseteq \pi(\mathfrak{F})$. By Lemma 4.2, $h(S) = \mathrm{Q}(H/C^S(H) \mid H \in \mathfrak{F})$ if $S \in \mathrm{Com}(\mathfrak{F})$, and $h(S) = \emptyset$ if $S \in \mathfrak{F} \setminus \mathrm{Com}(\mathfrak{F})$.

Let p be a prime in ω , and S be a non-abelian pd-group in $Com(\mathfrak{F})$. We will now prove that $h(S) \subseteq h(p)$. Consider $R = H/C^S(H)$, $H \in \mathfrak{F}$. By Lemma 2.1, $C^S(H)$ is the largest normal subgroup not having composition factors isomorphic to S. Clearly, $O_{p',p}(R) = 1$. Let $A_p(R)$ be the p-Frattini module, i. e., the kernel of the universal Frattini, p-elementary R-extension:

$$1 \to A_p(R) \xrightarrow{\mu} E \xrightarrow{\varepsilon} R \to 1.$$

Here $E/A_p(R) \simeq R$, and $A_p(R)$ is an elementary abelian p-group contained in $\Phi(E)$. Let N_1, \ldots, N_t be all minimal normal subgroups in E contained in $A_p(R)$. Since \mathfrak{F} is p-saturated, we have $E \in \mathfrak{F} \subseteq \operatorname{cform}(\mathfrak{F})$, and therefore $E/\cap_i C_E(N_i) \in h(p)$. Since N_1, \ldots, N_t are simple submodules of the $\mathbb{F}_p R$ -module $A_p(R)$, it follows that $R/\operatorname{Ker}(R \text{ on } (N_1 \ldots N_t)) \in h(p)$. By theorem of Griess and P. Schmid, $\operatorname{Ker}(R \text{ on } (N_1 \ldots N_t)) = O_{p',p}(R)$ (see [17] or [4], p. 833). Since $O_{p',p}(R) = 1$, it follows that $R \in h(p)$. Thus, $h(S) = \operatorname{Q}(H/C^S(H) \mid H \in \mathfrak{F}) \subseteq h(p)$ if $S \in \operatorname{Com}(\mathfrak{F})$ and $p \in \omega \cap \pi(S)$.

Let f be an ω -local satellite such that f(p) = h(p) if $p \in \omega$, and $f(\omega') = \mathfrak{F}$ if $\omega' \neq \emptyset$. We will prove now that $\mathfrak{F} = LF_{\omega}(f)$.

Let G be a group of minimal order in $\mathfrak{F} \setminus LF_{\omega}(f)$. Then $L = G^{LF_{\omega}(f)}$ is a unique minimal normal subgroup in G, and L is not f-central in G. If L is an ω' -group, then $c_G(L) = 1$ and $G \simeq G/c_G(L) \in f(\omega') = \mathfrak{F}$. If L is a non-abelian pd-group for some $p \in \omega$ and $S \in \text{Com}(L)$, then $C_G(L) = 1$ and we have $G \simeq G/C_G(L) \in h(S) \subseteq h(p) \subseteq \mathfrak{F}$. Assume that L is a p-group, $p \in \omega$. Since L is not f-central, $L \not\subseteq Z(G)$. By Lemma 2.1 we have $C^p(G) = 1$. So $G \in h(p) = Q(H/C^p(H) \mid H \in \mathfrak{F})$, i. e., L is f-central, a contradiction. Thus, $\mathfrak{F} \subseteq LF_{\omega}(f)$.

Let G be a group of minimal order in $LF_{\omega}(f)\setminus \mathfrak{F}$. Then $L=G^{\mathfrak{F}}$ is a unique minimal normal subgroup in G. Clearly, $c_G(L)=1$, and $C_G(L)=1$ if L is non-abelian. Hence, it follows from $G\in LF_{\omega}(f)$ that if L is an ω' -group, then $G\in f(\omega')=\mathfrak{F}$, and if L is a non-abelian pd-group for some $p\in \omega$, then $G\in f(p)=h(p)\subseteq \mathfrak{F}$, and we get a contradiction. Assume that L is a p-group, $p\in \omega$. Evidently, L is not contained in $\Phi(G)$ (recall that \mathfrak{F} is p-saturated). By Lemma 2.7, $L=C_G(L)$. Since L is f-central, we obtain that G=[L]T where $T\in f(p)$. Therefore, $T\simeq R/K$ where $R=H/C^p(H)$ for some $H\in \mathfrak{F}$. Now we can consider L as an irreducible \mathbb{F}_pR -module by inflation (see [4], p. 105). By Lemma 2.5 we have $[L]R\in \mathfrak{F}$. Since K acts identically on L, it follows from Lemma 2.6 that $[L](R/K)\simeq LT=G\in \mathfrak{F}$, and we again arrive at a contradiction. So $LF_{\omega}(f)=\mathfrak{F}$.

Corollary 4.6.1. If a non-empty formation \mathfrak{F} is ω -saturated, then \mathfrak{F} has an ω -local satellite f such that $f(p) = \mathbb{Q}(G/C^p(G) \mid G \in \mathfrak{F})$ if $p \in \omega \cap \pi(\mathfrak{F})$, $f(p) = \emptyset$ if $p \in \omega \setminus \pi(\mathfrak{F})$, and $f(\omega') = \mathfrak{F}$ if $\omega' \neq \emptyset$.

Corollary 4.6.2. If a non-empty formation \mathfrak{F} is saturated, then $\mathfrak{F} = LF(f)$ where f is a local satellite such that $f(p) = \mathbb{Q}(G/C^p(G) \mid G \in \mathfrak{F})$ for every $p \in \pi(\mathfrak{F})$, and $f(p) = \emptyset$ for every prime $p \notin \pi(\mathfrak{F})$.

4. \mathfrak{X} -local formations

In 1985 Förster [18] introduced the concept ' \mathfrak{X} -local formation' in order to obtain a common extension of Theorem 3.2 and 4.1.

Definition 5.1. Let \mathfrak{X} be a class of simple groups such that $\operatorname{Char}(\mathfrak{X}) = \pi(\mathfrak{X})$. Consider a map

$$f: \pi(\mathfrak{X}) \cup \mathfrak{X}' \longrightarrow \{\text{formations}\}\$$

which does not distinguish between any two non-identity isomorphic groups. Denote through $LF_{\mathfrak{X}}(f)$ the class of all groups G satisfying the following conditions:

- (i) if H/K is a chief EX-factor of a group G, then $G/C_G(H/K)$ belongs to f(p) for any $p \in \pi(H/K)$;
- (ii) if G/L is a monolithic quotient of G and $Soc(G/L) \in E(\mathfrak{X}')$, then $G/L \in f(S)$ where $S \in Com(Soc(G/L))$.

The class $LF_{\mathfrak{X}}(f)$ is a formation; it is called an \mathfrak{X} -local formation.

 \mathfrak{X} -local formations were investigated in [20, 19, 21, 22, 23]. In [24] it was proved with help of some lemmas in [22] that every \mathfrak{X} -local formation has a \mathfrak{X}^+ -composition satellite. Now we give a direct proof of that fact.

Theorem 5.1. Let \mathfrak{F} be a non-empty formation, \mathfrak{X} a class of simple groups such that $\operatorname{Char}(\mathfrak{X}) = \pi(\mathfrak{X})$. Let \mathfrak{L} be a class of simple groups such that $\mathfrak{L}^+ = \mathfrak{X}^+$.

- (1) If \mathfrak{F} is an \mathfrak{X} -local formation, then \mathfrak{F} has an \mathfrak{L} -composition satellite.
- (2) If \mathfrak{F} has an \mathfrak{L} -composition satellite, then \mathfrak{F} is an \mathfrak{X}^+ -local formation.

Proof. Set $\omega = \operatorname{Char}(\mathfrak{X})$. Evidently, $\mathfrak{L}^- \cup \mathfrak{L}' = \mathfrak{X}^- \cup \mathfrak{X}' = (\mathfrak{L}^+)' = (\mathfrak{X}^+)'$.

(1) Let \mathfrak{F} be a \mathfrak{X} -local formation, $\mathfrak{F} = LF_{\mathfrak{X}}(f)$. Consider an \mathfrak{L} -composition satellite h such that $h(p) = f(p) \cap \mathfrak{F}$ if $p \in \omega$, and $h(S) = \mathfrak{F}$ if $S \in \mathfrak{L}^- \cup \mathfrak{L}'$. We will prove that $\mathfrak{F} = CF_{\mathfrak{L}}(h)$.

Suppose that $\mathfrak{F} \not\subseteq CF_{\mathfrak{L}}(h)$. Let G be a group of minimal order in $\mathfrak{F} \setminus CF_{\mathfrak{L}}(h)$. Then G is monolithic, and $G/M \in CF_{\mathfrak{L}}(h)$ where M is the socle of G. Clearly, M is the $CF_{\mathfrak{L}}(h)$ -residual of G, and every chief factor between G and L is h-central. Assume that M is an $E(\mathfrak{L}^- \cup \mathfrak{L}')$ -group. Since $G \in \mathfrak{F}$, we have that $G \in h(S)$ where $S \in \text{Com}(M)$. Since $c_G(L) = 1$, we have that M is h-central in G, and so $G \in CF_{\mathfrak{L}}(h)$. Assume now that M is a p-group, $p \in \omega$. Since $G \in \mathfrak{F}$, we have $G/C_G(M) \in f(p) \cap \mathfrak{F} = h(p)$, i. e., M is h-central. We see that $G \in CF_{\mathfrak{L}}(h)$, a contradiction. Thus, $\mathfrak{F} \subseteq CF_{\mathfrak{L}}(h)$.

Suppose now that $CF_{\mathfrak{L}}(h) \not\subseteq \mathfrak{F}$. Choose a group G of minimal order in $CF_{\mathfrak{L}}(h) \setminus \mathfrak{F}$. Then G is monolithic, and $G/M \in \mathfrak{F}$ where $M = G^{\mathfrak{F}}$ is the socle of G. Assume that M is an $E(\mathfrak{L}^- \cup \mathfrak{L}')$ -group. Then from $c_G(L) = 1$ and h-centrality of L it follows that $G/c_G(M) \simeq G \in \mathfrak{F}$. Assume that M is a p-group, $p \in \omega$. Then

$$G/C_G(M) \in h(p) = \mathfrak{F} \cap f(p) \subseteq f(p).$$

We see that all the chief factors and all the quotients of G satisfies conditions (1) and (2) of Definition 5.1. So, $G \in \mathfrak{F}$, a contradiction. Thus, $\mathfrak{F} = CF_{\mathfrak{L}}(h)$.

(2) Let \mathfrak{F} be a formation having an \mathfrak{L} -composition satellite. By Lemma 4.3, $\mathfrak{F} = CF_{\mathfrak{L}}(f)$ where f is an \mathfrak{L} -composition satellite such that $f(S) = \mathfrak{F}$

for every $S \in \mathfrak{L}^- \cup \mathfrak{L}'$. Consider an \mathfrak{X}^+ -local formation $\mathfrak{H} = LF_{\mathfrak{X}^+}(h)$ where h(p) = f(p) for any $p \in \omega$, and $h(S) = \mathfrak{F}$ for every $S \in (\mathfrak{X}^+)'$. It easy to check that $\mathfrak{F} = \mathfrak{H}$.

References

- W. Gaschütz, "Zur Theorie der endlichen auflösbaren Gruppen", Math. Z., 80, No. 4, 300–305 (1963).
- [2] L. A. Shemetkov, "Frattini extensions of finite groups and formations", Comm. Algebra, 25, No. 3, 955–964 (1997).
- [3] L. A. Shemetkov, "On partially saturated formations and residuals of finite groups", *Comm. Algebra*, **29**, No. 9, 4125–4137 (2001).
- [4] K. Doerk, and T. Hawkes, *Finite Soluble Groups*, Walter de Gruyter, Berlin–New York (1992).
- [5] P. Schmid, "Über die Automorphismengruppen endlicher Gruppen", Arch. Math., 23, No. 3, 236–242 (1972).
- [6] L. A. Shemetkov, Formation of finite groups [in Russian], Nauka, Moscow (1978).
- [7] L. A. Shemetkov, and A. N. Skiba, "Multiply ω -local formations and Fitting classes of finite groups", *Siberian Advances in Mathematics*, **10**, No. 2, 112–141 (2000).
- [8] A. Ballester-Bolinches, and L. A. Shemetkov, "On lattices of p-local formations of finite groups", *Math. Nachr.*, **186**, No. 1, 57–65 (1997).
- [9] L. A. Shemetkov, "Two directions in the development of the theory of nonsimple finite groups" (a lecture delivered at the Twelth All-Union Algebra Colloquium held in Sverdlovsk in September, 1973), Russian Math. Surveys, 30, No. 2, 186–206 (1975).
- [10] L. A. Shemetkov, "On the product of formations" [in Russian], Dokl. Akad. Nauk BSSR, 28, No. 2, 101–103 (1984).
- [11] L. A. Shemetkov, and A. N. Skiba, "On partially local formations" [in Russian], *Dokl. Akad. Nauk Belarus*, **39**, No. 3, 9–11 (1995).
- [12] B. Huppert, and N. Blackburn, *Finite Groups* II, Springer-Verlag, Berlin–Heidelberg–New York (1982).

- [13] L. A. Shemetkov, "Graduated formations of finite groups", Math. USSR Sbornik, 23, No. 4, 593–611 (1974); translated from Matem. Sbornik, 94, No. 4, 628–648 (1974).
- [14] P. Schmid, "Locale Formationen endlicher Gruppen", Math. Z., 137, No. 1, 31–48 (1974).
- [15] S. A. Syskin, "Over-solvable groups of automorphisms of finite solvable groups", Algebra and Logic, 7, No. 3, 193–194 (1968); translated from Algebra Logika, 7, No. 3, 105–107 (1968).
- [16] L. A. Shemetkov, and A. N. Skiba, "Multiply \(\mathcal{L}\)-composition formations of finite groups", *Ukrainian Math. Journal*, 52, No. 6, 898–913 (2000).
- [17] R. L. Griess, and P. Schmid, "Frattini module", Arch. Math., bf 30, No. 3, 256–266 (1978).
- [18] P. Förster, "Projective Klassen endlicher Gruppen IIa. Gesättigte Formationen: ein allgemeiner Satz von Gaschütz-Lubeseder-Baer Typ", Publ. Sec. Mat. Univ. Autònoma Barcelona, 29, No. 2-3, 39-76 (1985).
- [19] A. Ballester, "Remarks on formations", Isr. J. Math., 73, No. 1, 97–106 (1991).
- [20] A. Ballester-Bolinches, C. Calvo, and R. Esteban-Romero, "X-saturated formations of finite groups", *Comm. Algebra*, 33, No. 4, 1053–1064 (2005).
- [21] A. Ballester-Bolinches, C. Calvo, and R. Esteban-Romero, "Products of formations of finite groups", J. Alqebra, 299, No. 2, 602–615 (2006).
- [22] A. Ballester-Bolinches, C. Calvo, and L.A. Shemetkov, "On partially saturated formations of finite groups", *Shornik: Mathematics*, **198**, No. 6, 757–775 (2007); translated from *Matem. Shornik*, **198**, No. 6, 3–24 (2007).
- [23] A. Ballester-Bolinches, and L. M. Ezquerro, *Classes of finite groups*, Springer, Dordrecht (2006).
- [24] L. A. Shemetkov, "A note on X-local formations", *Problems in Physics*, *Mathematics and Technics*, **4**(5), 64–65 (2010).