(A) $I_0 / 8$

(B) $I_0 / 4$

(C) 3 I₀ / 8

(D) 3 I₀ / 4

				(A 卷)		(本试卷共	4 页)
题号	7	A-	_	四	五	六	总分	
得分		129						
得分			、选择是	题 (本题	满分 30	分,每小	、题 3 分)	
阅卷人		1.	一小球	沿斜面向]上运动,	其运动	方程为 $S=5+$	4t - t
Date)到最高,			
(A) t=4	s (B)	t= 2s (C	t)t = 8 s	(D) t	= 5 s	5 ta-5	A # 44 F []
							转动惯量为J。	
							转动的角速度多	
		(B) $\left(1/\sqrt{3}\right)$					[
			,					
						位于个十	1. 当用导线将	內有人
接后,则						بدر ج	-	
(A) 增大			III - PECANE 1976 - 540					
					与屏幕的	可距离为	D(D>>d),单	色光
长为 λ,								
ELLE THO	1) [40]) λd/D	DECK S					
5. 用铁锤	把质量很	小的钉子	一敲入木	板,设木	板对钉	子的阻力	与钉子进入木	板的海
度成正比。	在铁锤	敲打第一	次时, 俞	 能把钉子	敲入 1.0	0cm。如	1果铁锤第二次	敲打
速度与第一	一次完全	相同, 那	么第二社	欠敲入多	深:			
(A)0.41cr	n (B	0.50cm	(C) ().73cm	(D) 1.0	00cm	[
6. 在以下	运动形式	戊中,加油	速度保持	不变的运	运动是:			
(A)单摆的	为运动(B)匀速率	圆周运动	b (C)抛化	本运动(1	D)圆锥拐	選运动 []
7. 如果两	个偏振片	 堆叠在	一起,且	偏振化力	万向之间	夹角为 6	50°, 光强为 Io	的自然
光垂直入	計在偏振	诗 上。	出射光	品为				

8. 面积为 S 和 $2S$ 的两圆线圈 1、 2 如图放置,通有相同的电流 I 。线圈 1 的电流所产生
的通过线圈 2 的磁通用 ϕ_{21} 表示,线圈 2 的电流所产生的通过线圈 1 的磁通用 ϕ_{12} 表示,
则 21 和 12 的大小关系为:
则 $_{21}$ 和 $_{12}$ 的大小关系为: (A) $\phi_{21}=2\ \phi_{12}$ (B) $\phi_{21}>\phi_{12}$ (C) $\phi_{21}=\phi_{12}$ (D) $\phi_{21}=\frac{1}{2}\ \phi_{12}$ [
9. 一绝热容器被隔板分成两半,一半是真空,另一半是理想气体.若把隔板抽出,气体将
进行自由膨胀, 达到平衡后
(A) 温度不变, 熵增加 (B) 温度升高, 熵增加
(C) 温度降低, 熵增加 (D) 温度不变, 熵不变 []
10. 一定量的理想气体,在容积不变的条件下,当温度升高时,分子的平均碰撞次数 Z
和平均自由程λ的变化情况是
(A) Z 不变, λ增大 (B) Z 增大, λ 不变
(C) Z和 λ 都増大 (D) Z 和 λ 都不变 []
得分 二、填空题(共30分,每空2分)
阅卷人 1. 质量为 $m=10kg$ 的质点在力 $F=120t+40(N)$ 的作用下,沿 x 轴作直
线运动。已知 $t=0$ 时, $x_0=5m$, $v_0=6ms^{-1}$ 。则质点在任意时刻的速度
v(t)=。
2.一人从 10m 深的井中提水, 起始时桶中装有 10kg 的水, 桶的质量为 1kg, 由于水桶漏
水,每升高 $1m$ 要漏 $0.2kg$ 的水,水桶匀速从井中提到井口,人所作的功 $W=$ 。
3.单原子理想气体在等压下膨胀所作的功为 W,则传递给气体的热量是。
4. 说明下式的物理意义, $f(v)$ 表示麦克斯韦速率分布函数, v_p 表示气体分子最可几速率
$\int\limits_{v_p}^{\infty}f(v)dv$ 是 的概率。
5. 平行单色光垂直入射在缝宽为 $a=0.15$ mm 的单缝上.缝后有焦距为 $f=400$ mm 的凸透
镜,在其焦平面上放置观察屏幕.现测得屏幕上中央明纹两侧的两个第三级暗纹之间的距
离为 8mm,则入射光的波长。
6. 一束单色光垂直入射在光栅上, 衍射光谱中共出现 5条明纹.若此光栅缝宽度与不透光

部分宽度相等	,则在中央明纹一侧的两条明纹分别是第级和第级谱线。
7.当一束自然	光在两种介质分界面处发生反射和折射时, 若反射光为完全偏振光,
则折射光为_	偏振光,且反射光线和折射光线之间的夹角为。
8. 一平行板目	自容器 C_0 ,若在电量 q_0 保持不变的条件下,使电容器两极板间距离
增大一倍, 贝	其电容 C/C ₀ =; 电容器的能量 W/W ₀ =。
9. 在没有自由	电荷与传导电流的变化电磁场中:
$\oint_I \vec{H} \cdot d\vec{l} =$	$\oint_{l} \vec{E} \cdot d\vec{l} = \underline{\hspace{1cm}}.$
10. 如果在固	定端 $x=0$ 处的反射波方程为 $y_2 = A\cos 2\pi (\nu t - x/2)$,入射波方程为
$v_i = A\cos[2\pi]$	$(\nu t + x/\lambda) \pm \pi$],则形成的驻波表达式为。
得分	三、计算题(本题10分)
阅卷人	一 一 一 轻绳绕过一定滑轮,滑轮轴光滑,滑轮的质量为 <i>Mi</i> 4,均匀
分布 在其	上,绳子的 A 端有一质量为 M 的人抓住了绳端,而绳的另一端 B
	为 $M/4$ 的重物。已知滑轮对 O 轴的转动惯量 $J=MR^2/4$,设人从静止
开始以相对	绳匀速向上爬时,绳与滑轮间无相对滑动。求 B 端重物上升的加速
度。	
	$(o \square)$

 四、计算题(本题 10 分)

有一定量的理想气体,从初状态 A(p1, V1),经过一个等容过程

达到压强为 $p_1/4$ 的 B 态,再经过一个等压过程达到状态 C,最后经等温过程而完成一个循环.求该循环过程中系统对外作的功和所吸收的热量。

得分	
阅卷人	

五、计算题 (本题 10 分)

半径为 R,带电量为 q 的均匀带电球体,求: (1)带电球体内外的电场分布; (2)带电球体内外的电势分布。

得分 阅卷人 六、计算题 (本题 10 分)

某质点作简谐振动,周期为 2s,振幅为 0.06m,开始计时(t=0),质点恰好处在 A/2 处且向负方向运动,求(1)该质点的振动方程; (2)此振动

以速度 u=2m/s 沿 X 轴正方向传播时,形成的波动方程; (3)该波的波长。