ANÁLISE DE SEMELHANÇA DE SÉRIES TEMPORAIS

por Emanuel Victor da Silva Favorato

VARIÁVEIS DO MODELO

- 'casos': corresponde ao número de notificações semanais.
- 'tempmed': é a temperatura média em uma determinada semana
- 'Precipitação': se refere à precipitação semanal acumulada
- 'Rt': é a taxa de propagação da doença dada por:

$$R_t = rac{C_t}{\sum_{k=1}^{\infty} w_k C_{t-k}}$$

Onde:

- C_t: Número de casos novos no dia t.
- w_k : Função de distribuição dos intervalos de geração (probabilidade de transmissão em k dias após a infecção).
- $\sum_{k=1}^{\infty} w_k$: Soma normalizada dos pesos ao longo do tempo (normalmente, os pesos são baseados em uma distribuição gama ou log-normal que representa o intervalo de geração).

CAUSALIDADE DE GRANGER

- Avalia se uma série antecede a outra.
- Neste teste, as hipóteses nula e alternativa visam compreender qual série leva à outra.
- Um teste F é executado para avaliar o sentido da causalidade.

Teste de Causalidade de Granger			
Direção	Hipótese Nula	Estatística F	P-valor
$Ovo \to Galinha$	Ovo não Granger-causa Galinha	4,17622	0,00641*
$Galinha \to Ovo$	Galinha não Granger-causa Ovo	0,28166	0,88813
Nota : séries na primeira diferenca: amostra 1931 a 1983: 4 defasagens: níveis de significância: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '			

Dados: Zeileis e Hothorn (2002). **Elaboração**: analisemacro.com.br

ANÁLISE DE COINTEGRAÇÃO

- Avalia se, no longo prazo, as séries caminham juntas.
- Hipóteses do teste:

Hipótese nula (H_0): $\gamma=0$ (resíduo não estacionário, sem cointegração). Hipótese alternativa (H_1): $\gamma<0$ (resíduo estacionário, cointegração presente).

- Na prática, queremos saber se $y_t = \alpha + \beta x_t + \varepsilon_t$.
- A análise é feita pelo teste de Johansen baseado em modelos vetoriais autorregressivos (VAR).

$$\Delta Y_t = \Pi Y_{t-1} + \sum_{i=1}^{k-1} \Gamma_i \Delta Y_{t-i} + arepsilon_t$$

Onde:

- Y_t : Vetor de séries temporais.
- Π : Matriz de cointegração. Seu posto (rank) determina o número de relações cointegrantes.

LINKS

- Causalidade de Granger:
 https://analisemacro.com.br/data-science/o-ovo-ou-a-galinha-teste-de-causalidade-de-granger-na-granja/.
- Análise de Cointegração:
 https://analisemacro.com.br/econometria-e-machine-learning/modelos-multivariados-aplicados-a-series-temporais-cointegração/

