Általános információk, a diplomaterv szerkezete

A diplomaterv szerkezete a BME Villamosmérnöki és Informatikai Karán:

- 1. Diplomaterv feladatkiírás
- 2. Címoldal
- 3. Tartalomjegyzék
- 4. A diplomatervező nyilatkozata az önálló munkáról és az elektronikus adatok kezeléséről
- 5. Tartalmi összefoglaló magyarul és angolul
- Bevezetés: a feladat értelmezése, a tervezés célja, a feladat indokoltsága, a diplomaterv felépítésének rövid összefoglalása
- 7. A feladatkiírás pontosítása és részletes elemzése
- 8. Előzmények (irodalomkutatás, hasonló alkotások), az ezekből levonható következtetések
- A tervezés részletes leírása, a döntési lehetőségek értékelése és a választott megoldások indoklása
- 10. A megtervezett műszaki alkotás értékelése, kritikai elemzése, továbbfejlesztési lehetőségek
- 11. Esetleges köszönetnyilvánítások
- 12. Részletes és pontos irodalomjegyzék
- 13. Függelék(ek)

Felhasználható a következő oldaltól kezdődő LATF-Xdiplomatervsablon dokumentum tartalma.

A diplomaterv szabványos méretű A4-es lapokra kerüljön. Az oldalak tükörmargóval készüljenek (mindenhol 2,5 cm, baloldalon 1 cm-es kötéssel). Az alapértelmezett betűkészlet a 12 pontos Times New Roman, másfeles sorközzel, de ettől kismértékben el lehet térni, ill. más betűtípus használata is megengedett.

Minden oldalon – az első négy szerkezeti elem kivételével – szerepelnie kell az oldalszámnak.

A fejezeteket decimális beosztással kell ellátni. Az ábrákat a megfelelő helyre be kell illeszteni, fejezetenként decimális számmal és kifejező címmel kell ellátni. A fejezeteket decimális aláosztással számozzuk, maximálisan 3 aláosztás mélységben (pl. 2.3.4.1.). Az ábrákat, táblázatokat és képleteket célszerű fejezetenként külön számozni (pl. 2.4. ábra, 4.2. táblázat vagy képletnél (3.2)). A fejezetcímeket igazítsuk balra, a normál szövegnél viszont használjunk sorkiegyenlítést. Az ábrákat, táblázatokat és a hozzájuk tartozó címet igazítsuk középre. A cím a jelölt rész alatt helyezkedjen el.

A képeket lehetőleg rajzoló programmal készítsék el, az egyenleteket egyenlet-szerkesztő segítségével írják le (A IATFX ehhez kézenfekvő megoldásokat nyújt).

Az irodalomjegyzék szövegközi hivatkozása történhet sorszámozva (ez a preferált megoldás) vagy a Harvard-rendszerben (a szerző és az évszám megadásával). A teljes lista névsor szerinti

sorrendben a szöveg végén szerepeljen (sorszámozott irodalmi hivatkozások esetén hivatkozási sorrendben). A szakirodalmi források címeit azonban mindig az eredeti nyelven kell megadni, esetleg zárójelben a fordítással. A listában szereplő valamennyi publikációra hivatkozni kell a szövegben (a IATEX-sablon a BibTEX segítségével mindezt automatikusan kezeli). Minden publikáció a szerzők után a következő adatok szerepelnek: folyóirat cikkeknél a pontos cím, a folyóirat címe, évfolyam, szám, oldalszám tól-ig. A folyóiratok címét csak akkor rövidítsük, ha azok nagyon közismertek vagy nagyon hosszúak. Internetes hivatkozások megadásakor fontos, hogy az elérési út előtt megadjuk az oldal tulajdonosát és tartalmát (mivel a link egy idő után akár elérhetetlenné is válhat), valamint az elérés időpontját.

Fontos:

- A szakdolgozatkészítő / diplomatervező nyilatkozata (a jelen sablonban szereplő szövegtartalommal) kötelező előírás, Karunkon ennek hiányában a szakdolgozat/diplomaterv nem bírálható és nem védhető!
- Mind a dolgozat, mind a melléklet maximálisan 15 MB méretű lehet!

Jó munkát, sikeres szakdolgozatkészítést, ill. diplomatervezést kívánunk!

FELADATKIÍRÁS

A feladatkiírást a tanszéki adminisztrációban lehet átvenni, és a leadott munkába eredeti, tanszéki pecséttel ellátott és a tanszékvezető által aláírt lapot kell belefűzni (ezen oldal *helyett*, ez az oldal csak útmutatás). Az elektronikusan feltöltött dolgozatban már nem kell beleszerkeszteni ezt a feladatkiírást.

Budapesti Műszaki és Gazdaságtudományi Egyetem

Villamosmérnöki és Informatikai Kar Távközlési és Médiainformatikai Tanszék

Mély neuronháló alapú orosz nyelvű beszédfelismerő fejlesztése

SZAKDOLGOZAT

Készítette

Dobsinszki Gergely

Konzulens

dr. Mihajlik Péter

Tartalomjegyzék

Ki	Civonat				
Αl	bstract	ii			
1.	. Bevezetés	1			
	1.1. Gépi beszédfelismerés	. 1			
	1.2. Út az end to end alapú gépi beszédfelismerésig	. 2			
	1.3. Az orosz nyelv	. 2			
	1.4. Megoldások	. 3			
	1.5. Összefoglaló	. 3			
	1.6. Diplomaterv felépítése	. 4			
2.	. Feladatkiírás pontosítása és elemzése				
3.	Elméleti összefoglaló	7			
4.	Tervezés	8			
5.	Összefoglalás	9			
6.	. I₄T _E X-eszközök	10			
	6.1. A szerkesztéshez használatos eszközök	. 10			
	6.2. A dokumentum lefordítása Windows alatt	. 10			
	6.3. Eszközök Linuxhoz	. 12			
7.	A dolgozat formai kivitele	14			
	7.1. A dolgozat kimérete	. 14			
	7.2 A dolgozat pyolyo	1.4			

	7.3.	A dokumentum nyomdatechnikai kivitele	15	
8. A LaTEX-sablon használata				
	8.1.	Címkék és hivatkozások	16	
	8.2.	Ábrák és táblázatok	17	
	8.3.	Felsorolások és listák	19	
	8.4.	Képletek	20	
	8.5.	Irodalmi hivatkozások	22	
	8.6.	A dolgozat szerkezete és a forrásfájlok	26	
	8.7.	Alapadatok megadása	29	
	8.8.	Új fejezet írása	29	
	8.9.	Definíciók, tételek, példák	29	
Κċ	iszön	etnyilvánítás	30	
Fü	iggele	ék	31	
	F.1.	A TeXstudio felülete	31	
	F.2.	Válasz az "Élet, a világmindenség, meg minden" kérdésére	32	
Irc	odalo	mjegyzék	31	

HALLGATÓI NYILATKOZAT

Alulírott *Dobsinszki Gergely*, szigorló hallgató kijelentem, hogy ezt a

szakdolgozatot meg nem engedett segítség nélkül, saját magam készítettem, csak

a megadott forrásokat (szakirodalom, eszközök stb.) használtam fel. Minden olyan

részt, melyet szó szerint, vagy azonos értelemben, de átfogalmazva más forrásból

átvettem, egyértelműen, a forrás megadásával megjelöltem.

Hozzájárulok, hogy a jelen munkám alapadatait (szerző(k), cím, angol és

magyar nyelvű tartalmi kivonat, készítés éve, konzulens(ek) neve) a BME VIK

nyilvánosan hozzáférhető elektronikus formában, a munka teljes szövegét pedig

az egyetem belső hálózatán keresztül (vagy autentikált felhasználók számára)

közzétegye. Kijelentem, hogy a benyújtott munka és annak elektronikus verziója

megegyezik. Dékáni engedéllyel titkosított diplomatervek esetén a dolgozat szövege

csak 3 év eltelte után válik hozzáférhetővé.

Budapest, 2020. október 20.

Dobsinszki Gergely hallgató

Kivonat

Jelen dokumentum egy diplomaterv sablon, amely formai keretet ad a BME Villamosmérnöki és Informatikai Karán végző hallgatók által elkészítendő szakdolgozatnak és diplomatervnek. A sablon használata opcionális. Ez a sablon IŁTEX alapú, a TeXLive TEX-implementációval és a PDF-LŁTEX fordítóval működőképes.

Abstract

This document is a LaTeX-based skeleton for BSc/MSc theses of students at the Electrical Engineering and Informatics Faculty, Budapest University of Technology and Economics. The usage of this skeleton is optional. It has been tested with the TeXLive TeX implementation, and it requires the PDF-LaTeX compiler.

Bevezetés

A bevezető tartalmazza a diplomaterv-kiírás elemzését, történelmi előzményeit, a feladat indokoltságát (a motiváció leírását), az eddigi megoldásokat, és ennek tükrében a hallgató megoldásának összefoglalását.

A bevezető szokás szerint a diplomaterv felépítésével záródik, azaz annak rövid leírásával, hogy melyik fejezet mivel foglalkozik.

1.1. Gépi beszédfelismerés

Az automatikus gépi beszédfelismerés régóta foglalkoztatja az emberek fantáziáját. Személyi asszisztens formájában már találkozhatott vele bármilyen sci-fi- és film kedvelő. De ott lapul a zsebünkben is a technológia, az okostelefonjaink, melyek a legtöbb ember számára a mindennapok részét képzik, rendelkeznek beszédfelismerő funkcióval. Legyen az egy személyi asszisztens, amivel például könnyedén beállíthatóak emlékeztetők, vagy egy egyszerű Google Search-ön alapuló keresés, melyet begépelés hang segítségével is el lehet végezni. Nappalinkban is egyre inkább hódít, jó példa rá az Amazon Alexa-ja, aminek a segítségével több okos eszköz is kezelhető a lakóterünkben.

Ezek a technológiák mind automatikus beszédfelismerésen alapszanak, amelyet alkalmazva az ember kizárólag hang interfész segítségével tud kommunikálni a géppel, mintha csak egy másik emberrel csevegne. Ez a megközelítés nagy szabadságot nyújt a kommunikáló számára, nem köti többé billentyűzet, egér, érintőképernyő de még monitor, kijelző sem. Egyre inkább pontosodó, esetenként

még az emberi prezicitáson is túlmutató, felismerés nyújtotta lehetőségek felhasználási területe egyre bővül, egyre inkább bekerül a köztudatba és mindennapjainkba.

1.2. Út az end to end alapú gépi beszédfelismerésig

A fonográf, egy Thomas Eddison által jegyzett 1877-es találmány, volt az első eszköz mely hang rögzítésére alkalmas volt. A módszer finomításával és térhódításával, illetve a számítógépek megjelenésével, és a digitalizácóval megjele. Az első komoly eredményeket felmutató kutatási projektett a beszédfelismerés területén az Egyesült Államokbeli Fejlett Védelmi Kutatási Projektek Ügynöksége (DARPA) finanszírózta. A kutatás célja egy 1000 szavat felismerni képes program megalkotása volt, melyet a kitűzött 5 éven belül sikerült is megalkotni https://en.wikipedia.org/wiki/Timeline_of_speech_and_voice_recognition.

Az 1980-as években egy újabb technológia a rejtett Markov modell forradalmasította a gépi beszédfelismerést. Segítségével pontosítható volt az ismeretlen hangok szóként való felismerésének a valószínűsége. A modell napjainkban is nagy sikerességnek örvend, rendkívül elterjedten használják különböző elemekkel, akkusztikus- és nyelv modellekkel, párosítva a lehető legpercízebb beszédfelismerés végett.

A neurális hálók térhóditásával 2010-es években megjelent egy alternatív, folyamatosan terjedő megközelítés az end-to-end alapú beszédfelismerés. Segítségével kiküszöbölhető a komplex, több elemből álló módszerek alkalmazása, és egy egységből felépülő modell állítható elő.

1.3. Az orosz nyelv

Világszerte egyik legelterjedtebb nyelv az angol, mely nem csak a közösségi, társadalmi és politikai, hanem a tudományos életet is uralja. Nem meglepő, hogy ezt a nyelvet tekintjük alapnak a besédfelismerő rendszerek pontosággának mérésekor is, ezen a nyelven vannak a legkiterjettebb szabadon elérhető beszéd adatbázis is.

Számos nyelvet beszélnek világszerte az angol mellett, sokak számára viszont az angol nem az anyanyelvük, estleg egyáltalán nem beszélik azt. Beszédfelismerés során tehát szükséges egyéb hivatalos nyelveket is vizsgálni és kutatni.

Oroszország politikai és kulturális befolyása a világ ügyeibe vitathatatlan, így az orosz nyelv is fontos szerepet tölt be a nemzetközi porondon. Az end-to-end technológia és a neurális hálók által nyújtott lehetőségek megkönnyítik a nyelvek közti átállást, így egy angoltól eltérő nyelv vizsgálata és kutatása gördülékenyen megvalósítható egy angol nyelvű példa alapján.

1.4. Megoldások

A beszédfelismerő rendszereket pontosságuk alapján tudjuk rangsorolni. Egy nemzetközileg elismert pontossági mérőszám a WER (Word Error Rate). Ezt a pontosságot szokás szerint egy publikusan elérhető, angol nyelvű hangoskönyv felolvasásokat tartalamzó adatbázison, a LibriSpeech-en¹ mérik.

Különböző, alacsony hibaarányú modellek léteznek, de ez egyik lekiemelkedőbb közülök az Nvidia QuartzNet² modelje, mely alacsonyszámú paraméterek mellett képes igen nagy preciziót fenntartani. Míg a QuartzNet bonyolultsága, paramétereinek a száma csupán töredéke a legtöbb SOTA modellének, a WER száma megközelíti azokét (1.1-es táblázat).

A modellekben elterjedt a konvolúciós- (CNN) és rekurrens neurális rétegek (RNN) használata.

1.5. Összefoglaló

Megoldásomban az Nvidia QuartzNet alapján indultam el, annak alacsony paraméterszámát figyelembe véve. Egy Pytorch alapú toolkit-et, az Nvidia NeMo-t (Neural Modules) használva kísérleteztem QuartzNet kombinációkkal.

Főként az ingyenesen hozzáférhető Mozilla Common Voice adatbázist haszálva tanítottam orosz nyelvre a legsikeresebbnek ítélt, 15x5 architektúrájú modellt.

¹LibriSpeech oldala: http://www.openslr.org/12/

²Az Nvidia ismertető oldala: https://developer.nvidia.com/blog/develop-smaller-speech-recognition-models-with-nvidias-nemo-framework/

Model	Aug	LM	clean WER(%)	other WER(%)	Million Parameters
wav2letter++	Speed	ConvLM	3.26	10.47	208
	Perturb				
LAS	SpecAugment	RNN	2.5	5.8	360
Time-Depth	Dropout,	N/A (greedy)	5.36	15.64	37
Separable	Label				
Convolutions	Smoothing				
		4-gram	4.21	11.87	
		ConvLM	3.28	9.84	
Multi-	Speed	4-gram	2.93	8.32	23
Stream Self-	Perturb				
Attention					
		4-LSTM	2.20	5.82	
QuartzNet-	Spec Cutout,	N/A (greedy)	3.90	11.28	19
15x5	Speed				
	Perturb				
		6-gram	2.96	8.07	
		Transformer-XL	2.69	7.25	

1.1. táblázat. Angol nyelven tanult SOTA beszédfelismerő modellek és paramétereik.

A modellt nem véletlenszerűen beállított súlyokkal, hanem transfer learning-et alkalmazva, egy előre tanított angol modellbeli súlyokkal inicilaizáltam.

Az eredmény finomítása végett próbálkoztam több tanítóadat beiktatásával, mellyel a validációs adathalmaz WER értéke csökkent, így javult. Sajnos a több tanítóadat lényeges megnövelte a tanítás idejét így erőforrások szűkében csökkentette a kísérletezésre jutó időt, ezért ezt a módszert csak kis mértékben alkalmaztam.

(Augmentáció, Language Model...?)

1.6. Diplomaterv felépítése

A bevezető szokás szerint a diplomaterv felépítésével záródik, azaz annak rövid leírásával, hogy melyik fejezet mivel foglalkozik.

FŐ RÉSZ

A feladatkiírás elemzése fejezetben a sarkalatos pontok kerülnek részletezésre, kifejtésre. Ezen pontok kidolgozásának lehetőségei, esetleges nehézségei kerülnek említésre a felsorakoztatva a tervezés előtt felmerült, megvalósított és elvetett ötleteket.

Az előzmények és irodalomkutatás rész az eddigi megoldásokat részletezi és veti össze, röviden értékelve azok sikerességét. A levonható következtetések fényében felsorakoztat néhány későbbi tervezésbeli döntést.

A tervezés fejeztet magába foglalja az előzetes döntéseket, a lehetséges kísérletek várható eredményét, a döntési lehetőségeket értékelve és az azok mögötti ötleteket, esetleges alternatívákkal kiegészítve. A végső soron válaszott megoldások alátámasztása és indoklása is megjelenik a részben.

Az összefoglaló tartalmazza az elért eredmények bemutatását, azok értékelését és a végső következtetések levonását.

FŐ RÉSZ VÉGE

Feladatkiírás pontosítása és elemzése

Elméleti összefoglaló

Tervezés

Összefoglalás

IAT_FX-eszközök

6.1. A szerkesztéshez használatos eszközök

Ez a sablon TeXstudio 2.8.8 szerkesztővel készült. A TeXstudio egy platformfüggetlen, Windows, Linux és Mac OS alatt is elérhető LaTeX-szerkesztőprogram számtalan hasznos szolgáltatással (6.1. ábra). A szoftver ingyenesen letölthető¹.

A TeXstudio telepítése után érdemes még letölteni a magyar nyelvű helyesírásellenőrző-szótárakat hozzá. A TeXstudio az OpenOffice-hoz használatos formátumot tudja kezelni. A TeXstudio beállításainál a General fülön a Dictionaries résznél tudjuk megadni, hogy melyik szótárat használja.

Egy másik használható Windows alapú szerkesztőprogram a LEd² (LaTeX Editor), a TeXstudio azonban stabilabb, gyorsabb, és jobban használható.

6.2. A dokumentum lefordítása Windows alatt

A TeXstudio és a LEd kizárólag szerkesztőprogram (bár az utóbbiban DVInézegető is van), így a dokumentum fordításához szükséges eszközöket nem tartalmazza. Windows alatt alapvetően két lehetőség közül érdemes választani: MiKTeX (http://miktex.org/) és TeX Live (http://www.tug.org/texlive/) programcsomag. Az utóbbi működik Mac OS X, GNU/Linux alatt és Unix-

¹A TeXstudio hivatalos oldala: http://texstudio.sourceforge.net/

²A LEd hivatalos oldala: http://www.latexeditor.org/

6.1. ábra. A TeXstudio LATEX-szerkesztő.

származékokon is. A MiKTeX egy alapcsomag telepítése után mindig letölti a használt funkciókhoz szükséges, de lokálisan hiányzó TeX-csomagokat, míg a TeX Live DVD ISO verzóban férhető hozzá. Ez a dokumentum TeX Live 2008 programcsomag segítségével fordult, amelynek DVD ISO verziója a megadott oldalról letölthető. A sablon lefordításához a disztribúcióban szereplő magyar.ldf fájlt a http://www.math.bme.hu/latex/változatra kell cserélni, vagy az utóbbi változatot be kell másolni a projekt-könyvtárba (ahogy ezt meg is tettük a sablonban) különben anomáliák tapasztalhatók a dokumentumban (pl. az ábraés táblázat-aláírások formátuma nem a beállított lesz, vagy bizonyos oldalakon megjelenik alapértelmezésben egy fejléc). A TeX Live 2008-at még nem kell külön telepíteni a gépre, elegendő DVD-ről (vagy az ISO fájlból közvetlenül, pl. DaemonTools-szal) használni.

Ha a MiKTeX csomagot használjuk, akkor parancssorból a következő módon tudjuk újrafordítani a teljes dokumentumot:

A texify parancs a MiKTex programcsomag miktex/bin alkönyvtárában található. A parancs gondoskodik arról, hogy a szükséges lépéseket (fordítás, hivatkozások generálása stb.) a megfelelő sorrendben elvégezze. A -p kapcsoló hatására PDF-et generál. A fordítást és az ideiglenes fájlok törlését elvégezhetjük a sablonhoz mellékelt manual_build.bat szkript segítségével is.

A TEX-eszközöket tartalmazó programcsomag binárisainak elérési útját gyakran be kell állítani a szerkesztőprogramban, például TeXstudio esetén legegyszerűbben az Options / Configure TeXstudio... / Commands menüponttal előhívott dialógusablakban tehetjük ezt meg.

A PDF-ETEX használata esetén a generált dokumentum közvetlenül PDFformátumban áll rendelkezésre. Amennyiben a PDF-fájl egy PDF-nézőben (pl.
Adobe Acrobat Reader vagy Foxit PDF Reader) meg van nyitva, akkor a fájlleírót a
PDF-néző program tipikusan lefoglalja. Ilyen esetben a dokumentum újrafordítása
hibaüzenettel kilép. Ha bezárjuk és újra megnyitjuk a PDF dokumentumot, akkor
pedig a PDF-nézők többsége az első oldalon nyitja meg a dokumentumot, nem a
legutóbb olvasott oldalon. Ezzel szemben például az egyszerű és ingyenes Sumatra
PDF nevű program képes arra, hogy a megnyitott dokumentum megváltozását
detektálja, és frissítse a nézetet az aktuális oldal megtartásával.

6.3. Eszközök Linuxhoz

Linux operációs rendszer alatt is rengeteg szerkesztőprogram van, pl. a KDE alapú Kile jól használható. Ez ingyenesen letölthető, vagy éppenséggel az adott Linux-disztribúció eleve tartalmazza, ahogyan a dokumentum fordításához szükséges csomagokat is. Az Ubuntu Linux disztribúciók alatt például legtöbbször a texlive-* csomagok telepítésével használhatók a LATEX-eszközök. A jelen sablon fordításához szükséges csomagok (kb. 0,5 GB) az alábbi paranccsal telepíthetők:

\$ sudo apt-get install texlive-latex-extra texlive-fonts-extra texlive-fonts-recommended
texlive-xetex texlive-science

Amennyiben egy újabb csomag hozzáadása után hiányzó fájlra utaló hibát kapunk a fordítótól, telepítenünk kell az azt tartalmazó TeX Live csomagot. Ha pl. a bibentry csomagot szeretnénk használni, futtassuk az alábbi parancsot:

```
$ apt-cache search bibentry
texlive-luatex - TeX Live: LuaTeX packages
```

Majd telepítsük fel a megfelelő TeX Live csomagot, jelen esetben a texlive-lualatex-et. (Egy LaTeX csomag több TeX Live csomagban is szerepelhet.)

Ha gyakran szerkesztünk más I⁴TEXdokumentumokat is, kényelmes és biztos megoldás a teljes TeX Live disztribúció telepítése, ez azonban kb. 4 GB helyet igényel.

sudo apt-get install texlive-full

A dolgozat formai kivitele

Az itt található információk egy része a BME VIK Hallgatói Képviselet által készített "Utolsó félév a villanykaron" c. munkából lett kis változtatásokkal átemelve. Az eredeti dokumentum az alábbi linken érhető el: http://vik.hk/hirek/diplomafelev-howto-2015.

7.1. A dolgozat kimérete

Szakdolgozat esetében minimum 30, 45 körüli ajánlott oldalszám lehet az iránymutató. De mindenképp érdemes rákérdezni a konzulensnél is az elvárásokra, mert tanszékenként változóak lehetnek az elvárások.

Mesterképzésen a Diplomatervezés 1 esetében a beszámoló még inkább az Önálló laboratóriumi beszámolókhoz hasonlít, tanszékenként eltérő formai követelményekkel, – egy legalább 30 oldal körüli dolgozat az elvárt – és az elmúlt fél éves munkáról szól. De egyben célszerű, ha ez a végleges diplomaterv alapja is. (A végleges 60-90 oldal körülbelül a hasznos részre nézve)

7.2. A dolgozat nyelve

Mivel Magyarországon a hivatalos nyelv a magyar, ezért alapértelmezésben magyarul kell megírni a dolgozatot. Aki külföldi posztgraduális képzésben akar részt venni, nemzetközi szintű tudományos kutatást szeretne végezni, vagy multinacionális cégnél akar elhelyezkedni, annak célszerű angolul megírnia diplomadolgozatát. Mielőtt a

hallgató az angol nyelvű verzió mellett dönt, erősen ajánlott mérlegelni, hogy ez mennyi többletmunkát fog a hallgatónak jelenteni fogalmazás és nyelvhelyesség terén, valamint – nem utolsó sorban – hogy ez mennyi többletmunkát fog jelenteni a konzulens illetve bíráló számára. Egy nehezen olvasható, netalán érthetetlen szöveg teher minden játékos számára.

7.3. A dokumentum nyomdatechnikai kivitele

A dolgozatot A4-es fehér lapra nyomtatva, 2,5 centiméteres margóval (+1 cm kötésbeni), 11–12 pontos betűmérettel, talpas betűtípussal és másfeles sorközzel célszerű elkészíteni.

Annak érdekében, hogy a dolgozat külsőleg is igényes munka benyomását keltse, érdemes figyelni az alapvető tipográfiai szabályok betartására [?].

A LATEX-sablon használata

Ebben a fejezetben röviden, implicit módon bemutatjuk a sablon használatának módját, ami azt jelenti, hogy sablon használata ennek a dokumentumnak a forráskódját tanulmányozva válik teljesen világossá. Amennyiben a szoftverkeretrendszer telepítve van, a sablon alkalmazása és a dolgozat szerkesztése LATEX-ben a sablon segítségével tapasztalataink szerint jóval hatékonyabb, mint egy WYSWYG (What You See is What You Get) típusú szövegszerkesztő esetén (pl. Microsoft Word, OpenOffice).

8.1. Címkék és hivatkozások

A LATEX dokumentumban címkéket (\label) rendelhetünk ábrákhoz, táblázatokhoz, fejezetekhez, listákhoz, képletekhez stb. Ezekre a dokumentum bármely részében hivatkozhatunk, a hivatkozások automatikusan feloldásra kerülnek.

A sablonban makrókat definiáltunk a hivatkozások megkönnyítéséhez. Ennek megfelelően minden ábra (figure) címkéje fig: kulcsszóval kezdődik, míg minden táblázat (table), képlet (equation), fejezet (section) és lista (listing) rendre a tab:, eq:, sec: és lst: kulcsszóval kezdődik, és a kulcsszavak után tetszőlegesen választott címke használható. Ha ezt a konvenciót betartjuk, akkor az előbbi objektumok számára rendre a \figref, \tabref, \eqref, \sectref és \listref makrókkal hivatkozhatunk. A makrók paramétere a címke, amelyre hivatkozunk (a kulcsszó nélkül). Az összes említett hivatkozástípus, beleértve az \url kulcsszóval

bevezetett web-hivatkozásokat is a hyperref¹ csomagnak köszönhetően aktívak a legtöbb PDF-nézegetőben, rájuk kattintva a dokumentum megfelelő oldalára ugrik a PDF-néző vagy a megfelelő linket megnyitja az alapértelmezett böngészővel. A hyperref csomag a kimeneti PDF-dokumentumba könyvjelzőket is készít a tartalomjegyzékből. Ez egy szintén aktív tartalomjegyzék, amelynek elemeire kattintva a nézegető behozza a kiválasztott fejezetet.

8.2. Ábrák és táblázatok

Használjunk vektorgrafikus ábrákat, ha van rá módunk. PDFLaTeX használata esetén PDF formátumú ábrákat lehet beilleszteni könnyen, az EPS (PostScript) vektorgrafikus képformátum beillesztését a PDFLaTeX közvetlenül nem támogatja (de lehet konvertálni, lásd később). Ha vektorgrafikus formában nem áll rendelkezésünkre az ábra, akkor a veszteségmentes PNG, valamint a veszteséges JPEG formátumban érdemes elmenteni. Figyeljünk arra, hogy ilyenkor a képek felbontása elég nagy legyen ahhoz, hogy nyomtatásban is megfelelő minőséget nyújtson (legalább 300 dpi javasolt). A dokumentumban felhasznált képfájlokat a dokumentum forrása mellett érdemes tartani, archiválni, mivel ezek hiányában a dokumentum nem fordul újra. Ha lehet, a vektorgrafikus képeket vektorgrafikus formátumban is érdemes elmenteni az újrafelhasználhatóság (az átszerkeszthetőség) érdekében.

Kapcsolási rajzok legtöbbször kimásolhatók egy vektorgrafikus programba (pl. CorelDraw) és onnan nagyobb felbontással raszterizálva kimenthatők PNG formátumban. Ugyanakkor kiváló ábrák készíthetők Microsoft Visio vagy hasonló program használatával is: Visio-ból az ábrák közvetlenül PDF-be is menthetők.

Lehetőségeink Matlab ábrák esetén:

• Képernyőlopás (*screenshot*) is elfogadható minőségű lehet a dokumentumban, de általában jobb felbontást is el lehet érni más módszerrel.

¹Segítségével a dokumentumban megjelenő hivatkozások nem csak dinamikussá válnak, de színezhetők is, bővebbet erről a csomag dokumentációjában találunk. Ez egyúttal egy példa lábjegyzet írására.

- A Matlab ábrát a File/Save As opcióval lementhetjük PNG formátumban (ugyanaz itt is érvényes, mint korábban, ezért nem javasoljuk).
- A Matlab ábrát az Edit/Copy figure opcióval kimásolhatjuk egy vektorgrafikus programba is és onnan nagyobb felbontással raszterizálva kimenthatjük PNG formátumban (nem javasolt).
- Javasolt megoldás: az ábrát a File/Save As opcióval EPS vektorgrafikus formátumban elmentjük, PDF-be konvertálva beillesztjük a dolgozatba.

Az EPS kép az epstopdf programmal² konvertálható PDF formátumba. Célszerű egy batch-fájlt készíteni az összes EPS ábra lefordítására az alábbi módon (ez Windows alatt működik).

```
@echo off
for %%j in (*.eps) do (
  echo converting file "%%j"
  epstopdf "%%j"
)
echo done .
```

Egy ilyen parancsfájlt (convert.cmd) elhelyeztük a sablon figures\eps könyvtárába, így a felhasználónak csak annyi a dolga, hogy a figures\eps könyvtárba kimenti az EPS formátumú vektorgrafikus képet, majd lefuttatja a convert.cmd parancsfájlt, ami PDF-be konvertálja az EPS fájlt.

Ezek után a PDF-ábrát ugyanúgy lehet a dokumentumba beilleszteni, mint a PNG-t vagy a JPEG-et. A megoldás előnye, hogy a lefordított dokumentumban is vektorgrafikusan tárolódik az ábra, így a mérete jóval kisebb, mintha raszterizáltuk volna beillesztés előtt. Ez a módszer minden – az EPS formátumot ismerő – vektorgrafikus program (pl. CorelDraw) esetén is használható.

A képek beillesztésére a 6. fejezetben mutattunk be példát (6.1. ábra). Az előző mondatban egyúttal az automatikusan feloldódó ábrahivatkozásra is láthatunk példát. Több képfájlt is beilleszthetünk egyetlen ábrába. Az egyes képek közötti horizontális és vertikális margót metrikusan szabályozhatjuk (8.1. ábra). Az ábrák elhelyezését számtalan tipográfiai szabály egyidejű teljesítésével a fordító maga végzi, a dokumentum írója csak preferenciáit jelezheti a fordító felé (olykor ez bosszúságot is okozhat, ilyenkor pl. a kép méretével lehet játszani).

²a korábban említett IAT_FX-disztribúciókban megtalálható

8.1. ábra. Több képfájl beillesztése esetén térközöket is érdemes használni.

A táblázatok használatára a 8.1 táblázat mutat példát. A táblázatok formázásához hasznos tanácsokat találunk a booktabs csomag dokumentációjában.

Órajel	Frekvencia	Cél pin
CLKA	$100~\mathrm{MHz}$	FPGA CLK0
CLKB	$48~\mathrm{MHz}$	FPGA CLK1
CLKC	$20 \mathrm{\ MHz}$	Processzor
CLKD	$25~\mathrm{MHz}$	Ethernet chip
CLKE	$72 \mathrm{\ MHz}$	FPGA CLK2
XBUF	20 MHz	FPGA CLK3

8.1. táblázat. Az órajel-generátor chip órajel-kimenetei.

8.3. Felsorolások és listák

Számozatlan felsorolásra mutat példát a jelenlegi bekezdés:

• első bajusz: ide lehetne írni az első elem kifejését,

- második bajusz: ide lehetne írni a második elem kifejését,
- ez meg egy szakáll: ide lehetne írni a harmadik elem kifejését.

Számozott felsorolást is készíthetünk az alábbi módon:

- 1. *első bajusz:* ide lehetne írni az első elem kifejését, és ez a kifejtés így néz ki, ha több sorosra sikeredik,
- 2. második bajusz: ide lehetne írni a második elem kifejését,
- 3. ez meg egy szakáll: ide lehetne írni a harmadik elem kifejését.

A felsorolásokban sorok végén vessző, az utolsó sor végén pedig pont a szokásos írásjel. Ez alól kivételt képezhet, ha az egyes elemek több teljes mondatot tartalmaznak.

Listákban a dolgozat szövegétől elkülönítendő kódrészleteket, programsorokat, pszeudo-kódokat jeleníthetünk meg (8.1. kódrészlet).

```
\begin{enumerate}
  \item \emph{első bajusz:} ide lehetne írni az első elem kifejését,
  és ez a kifejtés így néz ki, ha több sorosra sikeredik,
  \item \emph{második bajusz:} ide lehetne írni a második elem kifejését,
  \item \emph{ez meg egy szakáll:} ide lehetne írni a harmadik elem kifejését.
  \end{enumerate}
```

8.1. lista. A fenti számozott felsorolás LATEX-forráskódja

A lista keretét, háttérszínét, egész stílusát megválaszthatjuk. Ráadásul különféle programnyelveket és a nyelveken belül kulcsszavakat is definiálhatunk, ha szükséges. Erről bővebbet a listings csomag hivatalos leírásában találhatunk.

8.4. Képletek

Ha egy formula nem túlságosan hosszú, és nem akarjuk hivatkozni a szövegből, mint például a $e^{i\pi}+1=0$ képlet, szövegközi képletként szokás leírni. Csak, hogy másik példát is lássunk, az $U_i=-d\Phi/dt$ Faraday-törvény a rot $E=-\frac{dB}{dt}$ differenciális alakban adott Maxwell-egyenlet felületre vett integráljából vezethető le. Látható, hogy a IATEX-fordító a sorközöket betartja, így a szöveg szedése esztétikus marad szövegközi képletek használata esetén is.

Képletek esetén az általános konvenció, hogy a kisbetűk skalárt, a kis félkövér betűk (\mathbf{v}) oszlopvektort – és ennek megfelelően \mathbf{v}^T sorvektort – a kapitális félkövér betűk (\mathbf{V}) mátrixot jelölnek. Ha ettől el szeretnénk térni, akkor az alkalmazni kívánt jelölésmódot célszerű külön alfejezetben definiálni. Ennek megfelelően, amennyiben \mathbf{y} jelöli a mérések vektorát, ϑ a paraméterek vektorát és $\hat{\mathbf{y}} = \mathbf{X}\vartheta$ a paraméterekben lineáris modellt, akkor a *Least-Squares* értelemben optimális paraméterbecslő $\hat{\vartheta}_{LS} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$ lesz.

Emellett kiemelt, sorszámozott képleteket is megadhatunk, ennél az equation és a eqnarray környezetek helyett a korszerűbb align környezet alkalmazását javasoljuk (több okból, különféle problémák elkerülése végett, amelyekre most nem térünk ki). Tehát

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u},\tag{8.1}$$

$$\mathbf{y} = \mathbf{C}\mathbf{x},\tag{8.2}$$

ahol **x** az állapotvektor, **y** a mérések vektora és **A**, **B** és **C** a rendszert leíró paramétermátrixok. Figyeljük meg, hogy a két egyenletben az egyenlőségjelek egymáshoz igazítva jelennek meg, mivel a mindkettőt az & karakter előzi meg a kódban. Lehetőség van számozatlan kiemelt képlet használatára is, például

$$\begin{split} \dot{\mathbf{x}} &= \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}, \\ \mathbf{y} &= \mathbf{C}\mathbf{x}. \end{split}$$

Mátrixok felírására az $\mathbf{A}\mathbf{x} = \mathbf{b}$ inhomogén lineáris egyenlet részletes kifejtésével mutatunk példát:

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}.$$
 (8.3)

A \frac utasítás hatékonyságát egy általános másodfokú tag átviteli függvényén keresztül mutatjuk be, azaz

$$W(s) = \frac{A}{1 + 2T\xi s + s^2 T^2}. (8.4)$$

A matematikai mód minden szimbólumának és képességének a bemutatására természetesen itt nincs lehetőség, de gyors referenciaként hatékonyan használhatók a következő linkek:

http://www.artofproblemsolving.com/LaTeX/AoPS_L_GuideSym.php,

http://www.ctan.org/tex-archive/info/symbols/comprehensive/
symbols-a4.pdf,

ftp://ftp.ams.org/pub/tex/doc/amsmath/short-math-guide.pdf.

Ez pedig itt egy magyarázat, hogy miért érdemes align környezetet használni:

http://texblog.net/latex-archive/maths/eqnarray-align-environment/.

8.5. Irodalmi hivatkozások

Egy LATEX dokumentumban az irodalmi hivatkozások definíciójának két módja van. Az egyik a \thebibliograhy környezet használata a dokumentum végén, az \end{document} lezárás előtt.

 $\verb|\begin{the bibliography}{9}|$

\bibitem{Lamport94} Leslie Lamport, \emph{\LaTeX: A Document Preparation System}. Addison Wesley, Massachusetts, 2nd Edition, 1994.

\end{thebibliography}

Ezek után a dokumentumban a \cite{Lamport94} utasítással hivatkozhatunk a forrásra. A fenti megadás viszonylag kötetlen, a szerző maga formázza az irodalomjegyzéket (ami gyakran inkonzisztens eredményhez vezet).

Egy sokkal professzionálisabb módszer a BiBTEX használata, ezért ez a sablon is ezt támogatja. Ebben az esetben egy külön szöveges adatbázisban definiáljuk a forrásmunkákat, és egy külön stílusfájl határozza meg az irodalomjegyzék kinézetét. Ez, összhangban azzal, hogy külön formátumkonvenció határozza meg a folyóirat-, a könyv-, a konferenciacikk- stb. hivatkozások kinézetét az

irodalomjegyzékben (a sablon használata esetén ezzel nem is kell foglalkoznia a hallgatónak, de az eredményt célszerű ellenőrizni). felhasznált hivatkozások adatbázisa egy .bib kiterjesztésű szöveges fájl, amelynek szerkezetét a A 8.2 kódrészlet demonstrálja. A forrásmunkák bevitelekor a sor végi vesszők külön figyelmet igényelnek, mert hiányuk a BiBTEX-fordító hibaüzenetét eredményezi. A forrásmunkákat típus szerinti kulcsszó vezeti be (@book könyv, @inproceedings konferenciakiadványban megjelent cikk, @article folyóiratban megjelent cikk, @techreport valamelyik egyetem gondozásában megjelent műszaki tanulmány, @manual műszaki dokumentáció esetén stb.). Nemcsak a megjelenés stílusa, de a kötelezően megadandó mezők is típusról-típusra változnak. Egy jól használható referencia a http://en.wikipedia.org/wiki/BibTeX oldalon található.

```
@book{Wettl04,
           = {Ferenc Wettl and Gyula Mayer and Péter Szabó},
 publisher = {Panem Könyvkiadó},
 title
           = {\LaTeX~kézikönyv},
           = \{2004\},
 vear
}
@article{Candy86,
 author = {James C. Candy},
 journaltitle = {{IEEE} Trans.\ on Communications},
              = \{01\},
 month
 note
               = {\doi{10.1109/TCOM.1986.1096432}},
              = \{1\},
 number
              = \{72 - -76\},
 pages
 title
               = {Decimation for Sigma Delta Modulation},
 volume
               = \{34\},
 year
               = \{1986\},
}
@inproceedings{Lee87,
           = {Wai L. Lee and Charles G. Sodini},
 booktitle = {Proc. \ of the IEEE International Symposium on Circuits and Systems},
 location = {Philadelphia, PA, USA},
           = \{05 \sim 4 - - 7\},
 month
           = \{459 - -462\},
 pages
            = {A Topology for Higher Order Interpolative Coders},
 vol
           = \{2\},
            = \{1987\},
 year
}
@thesis{KissPhD,
  author = {Peter Kiss},
```

```
institution = {Technical University of Timi\c{s}oara, Romania},
             = \{04\},
 month
  title
              = {Adaptive Digital Compensation of Analog Circuit Imperfections for Cascaded Delta-
    Sigma Analog-to-Digital Converters},
             = {phdthesis},
              = \{2000\},
 year
@manual{Schreier00,
 author
              = {Richard Schreier},
 month
              = \{01\},
              = {\url{http://www.mathworks.com/matlabcentral/fileexchange/}},
 organization = {Oregon State University},
 title
              = {The Delta-Sigma Toolbox v5.2},
 year
              = \{2000\},
}
@misc{DipPortal,
 author
              = {{Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar
 howpublished = {\url{http://diplomaterv.vik.bme.hu/}},
              = {Diplomaterv portál (2011. február 26.)},
@incollection{Mkrtychev:1997,
           = {Mkrtychev, Alexey},
 booktitle = {Logical Foundations of Computer Science},
           = \{10.1007/3-540-63045-7\ 27\},
 editor = {Adian, Sergei and Nerode, Anil},
           = {978-3-540-63045-6}.
 isbn
           = \{266-275\},
 pages
 publisher = {Springer Berlin Heidelberg},
 series
          = {Lecture Notes in Computer Science},
 title
           = {Models for the logic of proofs},
           = {http://dx.doi.org/10.1007/3-540-63045-7_27},
 url
           = {1234},
 volume
 year
            = \{1997\},
```

8.2. lista. Példa szöveges irodalomjegyzék-adatbázisra BibTFX használata esetén.

A stílusfájl egy .sty kiterjesztésű fájl, de ezzel lényegében nem kell foglalkozni, mert vannak beépített stílusok, amelyek jól használhatók. Ez a sablon a BiBTeX-et használja, a hozzá tartozó adatbázisfájl a mybib.bib fájl. Megfigyelhető, hogy az irodalomjegyzéket a dokumentum végére (a \end{document} utasítás elé) beillesztett \bibliography{mybib} utasítással hozhatjuk létre, a stílusát pedig

ugyanitt a \bibliographystyle{plain} utasítással adhatjuk meg. Ebben az esetben a plain előre definiált stílust használjuk (a sablonban is ezt állítottuk be). A plain stíluson kívül természetesen számtalan más előre definiált stílus is létezik. Mivel a .bib adatbázisban ezeket megadtuk, a BiBTEX-fordító is meg tudja különböztetni a szerzőt a címtől és a kiadótól, és ez alapján automatikusan generálódik az irodalomjegyzék a stílusfájl által meghatározott stílusban.

Az egyes forrásmunkákra a szövegből továbbra is a \cite paranccsal tudunk hivatkozni, így a 8.2. kódrészlet esetén a hivatkozások rendre \cite{Wett104}, \cite{Candy86}, \cite{Lee87}, \cite{KissPhD}, \cite{Schreirer00}, \cite{Mkrtychev:1997} és \cite{DipPortal}. Az egyes forrásmunkák sorszáma az irodalomjegyzék bővítésekor változhat. Amennyiben az aktuális számhoz illeszkedő névelőt szeretnénk használni, használjuk az \acite{} parancsot.

Az irodalomjegyzékben alapértelmezésben csak azok a forrásmunkák jelennek meg, amelyekre található hivatkozás a szövegben, és ez így alapvetően helyes is, hiszen olyan forrásmunkákat nem illik az irodalomjegyzékbe írni, amelyekre nincs hivatkozás.

Mivel a fordítási folyamat során több lépésben oldódnak fel a szimbólumok, ezért gyakran többször is le kell fordítani a dokumentumot. Ilyenkor ez első 1-2 fordítás esetleg szimbólum-feloldásra vonatkozó figyelmeztető üzenettel zárul. Ha hibaüzenettel zárul bármelyik fordítás, akkor nincs értelme megismételni, hanem a hibát kell megkeresni. A .bib fájl megváltoztatáskor sokszor nincs hatása a változtatásnak azonnal, mivel nem mindig fut újra a BibTeX fordító. Ezért célszerű a változtatás után azt manuálisan is lefuttatni (TeXstudio esetén Tools/Bibliography).

Hogy a szövegbe ágyazott hivatkozások kinézetét demonstráljuk, itt most sorban meghivatkozzuk a [?], [?], [?], [?], [?] és a [?]³ forrásmunkát, valamint a [?] weboldalt.

Megjegyzendő, hogy az ékezetes magyar betűket is tartalmazó .bib fájl az inputenc csomaggal betöltött latin2 betűkészlet miatt fordítható. Ugyanez a .bib fájl hibaüzenettel fordul egy olyan dokumentumban, ami nem tartalmazza

³Informatikai témában gyakran hivatkozunk cikkeket a Springer LNCS valamely kötetéből, ez a hivatkozás erre mutat egy helyes példát.

a \usepackage[latin2]{inputenc} sort. Speciális igény esetén az irodalmi adatbázis általánosabb érvényűvé tehető, ha az ékezetes betűket speciális latex karakterekkel helyettesítjük a .bib fájlban, pl. á helyett \', {a}-t vagy ő helyett \\H{o}-t írunk.

Irodalomhivatkozásokat célszerű először olyan szolgáltatásokban keresni, ahol jó minőségű bejegyzések találhatók (pl. ACM Digital Library, DBLP, IEEE Xplore, SpringerLink) és csak ezek után használni kevésbé válogatott forrásokat (pl. Google Scholar). A jó minőségű bejegyzéseket is érdemes megfelelően tisztítani. A sablon angol nyelvű változatában használt plainnat beállítás egyik sajátossága, hogy a cikkhez generált hivatkozás a cikk DOI-ját és URL-jét is tartalmazza, ami gyakran duplikátumhoz vezet – érdemes tehát a DOI-kat tartalmazó URL mezőket törölni.

8.6. A dolgozat szerkezete és a forrásfájlok

A diplomatervsablonban a TeX fájlok két alkönyvtárban helyezkednek el. Az include könyvtárban azok szerepelnek, amiket tipikusan nem kell szerkesztenünk, ezek a sablon részei (pl. címoldal). A content alkönyvtárban pedig a saját munkánkat helyezhetjük el. Itt érdemes az egyes fejezeteket külön TEX állományokba rakni.

A diplomatervsablon (a kari irányelvek szerint) az alábbi fő fejezetekből áll:

- 1. 1 oldalas *tájékoztató* a szakdolgozat/diplomaterv szerkezetéről (include/guideline.tex), ami a végső dolgozatból törlendő,
- 2. feladatkiírás (include/project.tex), a dolgozat nyomtatott verzójában ennek a helyére kerül a tanszék által kiadott, a tanszékvezető által aláírt feladatkiírás, a dolgozat elektronikus verziójába pedig a feladatkiírás egyáltalán ne kerüljön bele, azt külön tölti fel a tanszék a diplomatervhonlapra,

⁴https://dl.acm.org/

⁵http://dblp.uni-trier.de/

⁶http://ieeexplore.ieee.org/

⁷https://link.springer.com/

⁸http://scholar.google.com/

 $^{^9}$ https://github.com/FTSRG/cheat-sheets/wiki/BibTeX-Fixing-entries-from-common-sources

- 3. címoldal (include/titlepage.tex),
- 4. tartalomjegyzék (thesis.tex),
- 5. a diplomatervező *nyilatkozat*a az önálló munkáról (include/declaration.tex),
- 6. 1-2 oldalas tartalmi *összefoglaló* magyarul és angolul, illetve elkészíthető még további nyelveken is (content/abstract.tex),
- 7. bevezetés: a feladat értelmezése, a tervezés célja, a feladat indokoltsága, a diplomaterv felépítésének rövid összefoglalása (content/introduction.tex),
- 8. sorszámmal ellátott *fejezetek*: a feladatkiírás pontosítása és részletes elemzése, előzmények (irodalomkutatás, hasonló alkotások), az ezekből levonható következtetések, a tervezés részletes leírása, a döntési lehetőségek értékelése és a választott megoldások indoklása, a megtervezett műszaki alkotás értékelése, kritikai elemzése, továbbfejlesztési lehetőségek,
- 9. esetleges köszönetnyilvánítások (content/acknowledgement.tex),
- 10. részletes és pontos *irodalomjegyzék* (ez a sablon esetében automatikusan generálódik a thesis.tex fájlban elhelyezett \bibliography utasítás hatására, a 8.5. szakaszban leírtak szerint),
- 11. függelékek (content/appendices.tex).

A sablonban a fejezetek a thesis.tex fájlba vannak beillesztve \include utasítások segítségével. Lehetőség van arra, hogy csak az éppen szerkesztés alatt álló .tex fájlt fordítsuk le, ezzel lerövidítve a fordítási folyamatot. Ezt a lehetőséget az alábbi kódrészlet biztosítja a thesis.tex fájlban.

```
\includeonly{
  guideline,%
  project,%
  titlepage,%
  declaration,%
  abstract,%
  introduction,%
  chapter1,%
  chapter2,%
```

```
chapter3,%
acknowledgement,%
appendices,%
}
```

Ha az alábbi kódrészletben az egyes sorokat a % szimbólummal kikommentezzük, akkor a megfelelő .tex fájl nem fordul le. Az oldalszámok és a tartalomjegyék természetesen csak akkor billennek helyre, ha a teljes dokumentumot lefordítjuk.

8.7. Alapadatok megadása

A diplomaterv alapadatait (cím, szerző, konzulens, konzulens titulusa) a thesis.tex fájlban lehet megadni.

8.8. Új fejezet írása

A főfejezetek külön content könyvtárban foglalnak helyet. A sablonhoz 3 fejezet készült. További főfejezeteket úgy hozhatunk létre, ha új TEX fájlt készítünk a fejezet számára, és a thesis.tex fájlban, a \include és \includeonly utasítások argumentumába felvesszük az új .tex fájl nevét.

8.9. Definíciók, tételek, példák

Definíció 1 (Fluxuskondenzátor térerőssége). Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Példa 1. Példa egy példára. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Tétel 1 (Kovács tétele). Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Köszönetnyilvánítás

Ez nem kötelező, akár törölhető is. Ha a szerző szükségét érzi, itt lehet köszönetet nyilvánítani azoknak, akik hozzájárultak munkájukkal ahhoz, hogy a hallgató a szakdolgozatban vagy diplomamunkában leírt feladatokat sikeresen elvégezze. A konzulensnek való köszönetnyilvánítás sem kötelező, a konzulensnek hivatalosan is dolga, hogy a hallgatót konzultálja.

Függelék

F.1. A TeXstudio felülete

F.1.1. ábra. A TeXstudio L^AT_EX-szerkesztő.

F.2. Válasz az "Élet, a világmindenség, meg minden" kérdésére

A Pitagorasz-tételből levezetve

$$c^2 = a^2 + b^2 = 42. (F.2.1)$$

A Faraday-indukciós törvényből levezetve

$$\operatorname{rot} E = -\frac{dB}{dt} \longrightarrow U_i = \oint_{\mathbf{L}} \mathbf{Edl} = -\frac{d}{dt} \int_{A} \mathbf{Bda} = 42.$$
 (F.2.2)