Universidad Tecnológica de La Habana "José Antonio Echeverría"

Facultad de Ingeniería Informática

Aplicación web de código abierto para la gestión y autenticación de usuarios basada en Directorio Activo.

Autor: Carlos Daniel Vilaseca Illnait

Tutores: Dra. C. Raisa Socorro Llanes,

Dra. C. Lisandra Bravo Ilisastigui

La Habana, Cuba, Septiembre 2024

Resumen

El documento presenta una solución propuesta para la gestión y autenticación de usuarios basada en Directorio Activo a través de LDAP. Se abordan temas como la historia detrás de esta propuesta, la selección del cliente LDAP que permita la comunicación con el directorio desde la aplicación, cómo se logra que la solución sea configurable y personalizable, las pruebas realizadas y los desafíos encontrados.

Palabras clave: gestión de usuarios, código abierto, Directorio Activo, LDAP, personalización.

Abstract

The document presents a proposed solution for user management and authentication based on Active Directory through LDAP. It addresses topics such as the history behind this proposal, the selection of the LDAP client that allows communication with the directory from the application, how to make the solution configurable and customizable, the tests performed and the challenges encountered.

Keywords: user management, open source, Active Directory , LDAP, personalization.

Índice

Introdu	cción	1
Capítul	o 1 Fundamentación teórica	7
1.1	Gestión de usuarios y Directorio Activo	7
1.2	Protocolo Ligero de Acceso a Directorios (LDAP)	9
1.3	Tecnologías y herramientas existentes	11
	1.3.1 Herramientas de gestión de AD	11
	1.3.2 Frameworks para el desarrollo web	13
	1.3.3 Clientes LDAP	15
1.4	Archivos de configuración	20
Capítul	o 2 Solución propuesta	25
Capítul	o 3 Validación de la solución	26
Conclu	siones	27
Recom	endaciones	28
Siglario)	33
Anexos	S	34
Índic	e de tablas	
1	Algunos atributos del esquema de usuario en el AD	8
2	Comparación de tecnologías existentes en cuanto a capacidad	
	de personalización y facilidad de uso	12
3	Comparación entre frameworks de desarrollo web	14
4	Tabla comparativa entre distintos clientes LDAP	19

5	Comparación entre distintos estándares de archivos de configuración	24
Índic	ce de figuras	
1	Organización jerárquica de recursos en un AD	8
2	2 Ejemplo de esquema JSON con varias propiedades de	
	distintos tipos	21
3	Ejemplo de archivo JSON aplicando el esquema	22
4	Ejemplo de archivo YAML aplicando el esquema	23
5	Ejemplo de archivo .env	23
6	Comparación de sintaxis entre YAML y JSON	34
7	Compañías que usan Directorio Activo hoy en dia en el mundo	
	(90 000+)	35

Introducción

La gestión de usuarios y la autenticación en entornos de red son procesos esenciales en cualquier organización [1]-[3]. Los directorios activos desempeñan un papel clave al centralizar y asegurar el control de accesos a los diferentes servicios y recursos empresariales [3]. Actualmente, estas herramientas son ampliamente utilizadas en empresas de diversos tamaños para gestionar usuarios, grupos y unidades organizativas de manera unificada (Figura 7).

Un Directorio Activo (AD por sus siglas en inglés) es una base de datos jerárquica utilizada para almacenar y gestionar información sobre los recursos de la red, como usuarios, dispositivos y servicios. Proporciona una estructura centralizada que permite a los administradores controlar permisos y acceso a los recursos de manera segura y eficiente [4]-[6]. En este contexto, el protocolo LDAP (Lightweight Directory Access Protocol) se utiliza para interactuar con los directorios activos, facilitando la búsqueda, consulta y modificación de la información almacenada en ellos [4], [7]-[11].

Cada empresa establece sus propias políticas y controles de seguridad, los cuales influyen en cómo se debe gestionar la información y la estructura organizativa mediante un AD. La implementación de un AD debe, por tanto, adaptarse a los requerimientos específicos de cada entidad, presentando un desafío cuando se buscan soluciones que armonicen con sus necesidades y regulaciones de seguridad [3]-[5].

Existen dos grandes grupos de directorios activos en el mercado: los de pago y los de código abierto. Las soluciones comerciales, como las ofrecidas por Microsoft, destacan por su facilidad de uso y alto nivel de integración, pero también generan una dependencia tecnológica significativa y pueden no ser viables para organizaciones con presupuestos limitados. En contraste, los directorios activos de código abierto eliminan la necesidad de costosas licencias y ofrecen independencia tecnológica, aunque suelen ser más

complejos de implementar y mantener [1], [8], [12].

A pesar de las ventajas que ofrecen las soluciones de software libre y código abierto (SLCA), estas suelen presentar desafíos significativos en términos de personalización y simplicidad. Su enfoque en satisfacer necesidades específicas puede generar complejidades técnicas que demandan recursos especializados para su personalización y mantenimiento. La falta de flexibilidad para adaptarse a los requerimientos particulares de cada empresa puede comprometer tanto la seguridad como la funcionalidad organizacional. Además, las restricciones arquitectónicas inherentes y los diseños originales que no consideraron la personalización pueden hacer que estas herramientas sean menos intuitivas y más difíciles de ajustar [13]-[15].

A partir de esta situación problemática se identifica como problema a resolver: Las soluciones de AD de código abierto y libres (SLCA) presentan un nivel insuficiente de adaptabilidad y facilidad de uso, lo que dificulta su implementación y personalización en entornos específicos. Para solucionar el problema se tiene como objeto de estudio los servicios de AD y las herramientas asociadas para su administración, con un enfoque particular en su integración y gestión mediante el protocolo LDAP. El campo de acción se delimita a los sistemas de AD y las herramientas de gestión de tipo SLCA basadas en LDAP.

Como hipótesis se plantea que desarrollar una herramienta de gestión de AD de código abierto que ofrezca un mayor nivel de personalización a través de archivos de configuración permitirá mejorar la adaptabilidad y facilidad de uso, sin comprometer la seguridad y estabilidad, en comparación con las soluciones de SLCA existentes.

Para demostrar esta hipótesis se plantea como objetivo general crear una consola de administración de código abierto para AD que demuestre una mejora en la personalización y facilidad de uso en comparación con las herramientas de gestión existentes.

A partir de este objetivo general, se derivan los siguientes objetivos

específicos y tareas:

- 1. Analizar los requisitos de la aplicación y la personalización del sistema:
 - 1.1. Documentar los requisitos funcionales y no funcionales que debe cumplir la aplicación.
 - 1.2. Analizar diferentes casos de uso para identificar las opciones de personalización.
 - 1.3. Documentar los requisitos de personalización, incluyendo la interfaz de usuario y ajustes de seguridad.

2. Seleccionar tecnologías adecuadas:

- 2.1. Evaluar diferentes clientes LDAP disponibles en el mercado, considerando factores como compatibilidad, rendimiento y facilidad de integración.
- 2.2. Elegir el cliente LDAP que mejor se alinee con los requisitos funcionales y no funcionales previamente definidos.

3. Seleccionar tecnologías adecuadas:

- 3.1. Evaluar diferentes clientes LDAP disponibles en el mercado, considerando factores como compatibilidad, rendimiento y facilidad de integración.
- 3.2. Elegir el cliente LDAP que mejor se alinee con los requisitos funcionales y no funcionales previamente definidos.
- 4. Implementar la arquitectura y funciones básicas de la aplicación:
 - 4.1. Establecer la arquitectura base del proyecto y configurar el ambiente de desarrollo necesario.
 - 4.2. Configurar el cliente LDAP seleccionado y las herramientas asociadas para iniciar el desarrollo.

- 4.3. Desarrollar mecanismos de autenticación que interactúen con el AD utilizando el cliente LDAP seleccionado.
- 4.4. Implementar funcionalidades críticas para la gestión de usuarios y grupos utilizando el cliente LDAP, incluyendo operaciones de lectura, eliminación y actualización.
- 5. Realizar pruebas para asegurar el correcto funcionamiento del sistema:
 - 5.1. Diseñar y ejecutar pruebas de integración que verifiquen el correcto funcionamiento del sistema en su conjunto, desde la autenticación hasta la gestión de recursos.
 - 5.2. Documentar los resultados de las pruebas y realizar los ajustes necesarios basados en los hallazgos.
 - 5.3. Extender el conjunto de pruebas de integración para abarcar nuevas funcionalidades y garantizar la estabilidad y compatibilidad del sistema ante cambios y actualizaciones futuras.incluyendo operaciones de lectura, eliminación y actualización.
- 6. Simplificar y documentar el proceso de despliegue:
 - 6.1. Identificar y documentar estrategias y herramientas que simplifiquen el proceso de instalación y configuración inicial de la aplicación.
 - 6.2. Utilizar contenedores Docker para simplificar el proceso de puesta en marcha de la aplicación.
 - 6.3. Elaborar documentación detallada del proceso de despliegue.

7. Desplegar documentación:

- 7.1. Crear y estructurar la documentación técnica que incluya la descripción del sistema, la arquitectura, y las guías de desarrollo.
- 7.2. Documentar referencias de API y/o archivos de configuracion que sean claras y accesibles.

7.3. Publicar la documentación en un sitio web accesible.

8. Desplegar demo:

- 8.1. Configurar el servidor donde se va a desplegar.
- 8.2. Configurar Docker para simplificar el despliegue.
- 8.3. Configurar CI/CD para despliegues automáticos.
- 8.4. Ejecutar el primer despliegue exitoso.

Como valor práctico con la realización de este trabajo se espera un diseño de software de una herramienta para la gestión de AD que sea personalizable y fácil de desplegar.

La estructura del informe se organiza de la siguiente manera:

Capítulo 1 Fundamentación teórica. En este capítulo se presenta una explicación teórica sobre los conceptos y tecnologías fundamentales para la gestión de usuarios y AD. Se analizarán en profundidad temas como la importancia de la gestión de usuarios en entornos digitales, los principios de seguridad y autenticación, y el funcionamiento de los directorios activos y LDAP. También se abordarán las diferentes herramientas existentes para la gestión de AD, sus ventajas y limitaciones, y se establecerá el marco teórico que sustenta la propuesta de solución planteada en este trabajo.

Capítulo 2 Descripción de la propuesta de solución. Este capítulo aporta una explicación detallada sobre la propuesta de solución a los problemas identificados en la gestión de AD. Se describirá la arquitectura de la aplicación web de código abierto propuesta, sus funcionalidades principales, y cómo se abordarán los requisitos de personalización y simplicidad de despliegue. Además, se explicarán las decisiones de diseño y las tecnologías seleccionadas para el desarrollo de la herramienta, así como los beneficios esperados en términos de seguridad, estabilidad y facilidad de uso.

Capítulo 3 Validación de la propuesta de solución. Este capítulo está dedicado

a la validación de la propuesta de solución mediante la realización de pruebas exhaustivas. Se diseñarán y ejecutarán pruebas de integración para verificar el correcto funcionamiento del sistema en su conjunto, desde la autenticación hasta la gestión de recursos. Los resultados de estas pruebas se documentarán y se realizarán los ajustes necesarios basados en los hallazgos.

Capítulo 1 Fundamentación teórica

El propósito de este capítulo es proporcionar una base sólida sobre los conceptos y tecnologías fundamentales para la gestión de usuarios y AD, que sustentan la propuesta de solución planteada. Se explorará la importancia de una gestión eficaz de usuarios en entornos digitales, abordando los principios clave de seguridad y autenticación que son esenciales para proteger la integridad y confidencialidad de los datos. Asimismo, se detallarán los conceptos de AD y LDAP, explicando su funcionamiento y relevancia en la administración de identidades y accesos. Además, se realizará un análisis exhaustivo de las herramientas existentes para la gestión de AD, evaluando sus ventajas y limitaciones, con el objetivo de establecer un marco teórico robusto que guíe el desarrollo de una solución personalizable y fácil de desplegar.

1.1. Gestión de usuarios y Directorio Activo

En la administración de sistemas informáticos, la gestión de usuarios es un componente esencial para asegurar el correcto funcionamiento y la seguridad de la infraestructura tecnológica de una organización. El AD es una herramienta crucial en este ámbito, ya que permite la centralización y automatización de la gestión de usuarios, dispositivos y recursos. Este epígrafe aborda los conceptos fundamentales de la gestión de usuarios, las ventajas y características del AD, así como su implementación y administración [1], [2]. Un AD es una base de datos central que se utiliza para administrar y organizar los recursos de una red de computadoras. La gestión de usuarios es una función importante en un AD, ya que permite crear, eliminar y editar los perfiles de los usuarios en un dominio. Además, también implica la asignación de permisos y roles, que determinan el nivel de acceso y las acciones que cada usuario puede realizar en la red [8], [12], [16].

En la Figura 1 a continuación se muestra como se organizan jerárquicamente los recursos dentro de un AD.

Figura 1: Organización jerárquica de recursos en un AD

El esquema de AD contiene definiciones formales de cada clase de objeto que se puede crear en un directorio. Por ejemplo, en el caso de los usuarios, el esquema define atributos como el nombre, apellido, nombre para mostrar, nombre de inicio de sesión, dirección de correo electrónico, número de teléfono [4], [9], [17]. En la Tabla 1 se muestran algunos atributos del esquema de usuario de un AD, así como ejemplos de valores que pueden tomar estos atributos [18].

Tabla 1: Algunos atributos del esquema de usuario en el AD

Atributo	Descripción	Ejemplo
displayName	Nombre para mostrar	Juan Pérez
	del usuario, puede ser	
	diferente al nombre real	

distinguishedName	Nombre único del objeto	CN=jperez,	
	en el directorio, incluye	OU=Dirección,	
	la ruta completa	DC=ejemplo, DC=com	
givenName	Nombre del usuario	Juan	
mail	Dirección de correo	juan.perez@ejemplo.com	
	electrónico del usuario		
objectSid	Identificador de	S-1-5-21-1234567890-	
	seguridad (SID) del	1234567890-	
	usuario	1234567890-1234	
sAMAccountName	Nombre de inicio de	jperez	
	sesión compatible con		
	versiones anteriores de		
	Windows		
sn	Apellido del usuario	Pérez	
telephoneNumber	Número de teléfono del	+34 123 456 789	
	usuario		
userPrincipalName	Nombre de inicio de	jperez@ejemplo.com	
	sesión del usuario		

1.2. Protocolo Ligero de Acceso a Directorios (LDAP)

LDAP es un estándar de protocolo utilizado para acceder y gestionar información almacenada en directorios de manera eficiente y segura. En el contexto de la administración de sistemas informáticos, LDAP desempeña un papel fundamental al facilitar la búsqueda, autenticación y gestión de usuarios, dispositivos y otros recursos [6], [7].

Este epígrafe explora los principios fundamentales de LDAP, incluyendo su arquitectura, funcionamiento y principales características. Se examinará cómo LDAP permite la estructuración jerárquica de la información mediante la utilización de entradas y atributos, lo cual facilita la organización y el acceso

a datos.

Arquitectura de LDAP

LDAP se basa en una arquitectura cliente-servidor, donde el cliente LDAP envía solicitudes al servidor LDAP para realizar diversas operaciones, como búsquedas, actualizaciones y autenticaciones de información almacenada en el directorio. Esta arquitectura facilita la gestión centralizada y eficiente de los datos [4], [6], [7].

- Cliente LDAP: Es el software que realiza peticiones de búsqueda, modificación o consulta de información almacenada en el servidor LDAP.
- Servidor LDAP: Es el software que almacena la base de datos de directorio y responde a las peticiones de los clientes LDAP. El servidor LDAP gestiona y organiza la información en forma de entradas almacenadas en un árbol de directorio.
- Protocolo de Comunicación: LDAP define cómo se comunican el cliente y el servidor a través de un protocolo eficiente y ligero, diseñado principalmente para la lectura, búsqueda y modificación de información en directorios.
- **Eficiencia**: permite búsquedas rápidas y eficientes de información en grandes volúmenes de datos.
- Seguridad: soporta protocolos de seguridad como TLS (Transport Layer Security) para proteger la integridad y confidencialidad de los datos transmitidos.
- Escalabilidad: capacidad para manejar grandes cantidades de datos y usuarios dentro de un directorio, adaptándose a las necesidades de crecimiento de una organización.
- Interoperabilidad: estándar abierto compatible con una amplia gama de plataformas y sistemas de directorio.

Aplicaciones de LDAP

LDAP se utiliza ampliamente en la autenticación de usuarios, control de acceso y gestión de identidades en sistemas operativos, aplicaciones web y servicios de correo electrónico. Su flexibilidad y robustez lo convierten en una herramienta fundamental para la integración y administración de infraestructuras de TI empresariales [6], [7], [10].

1.3. Tecnologías y herramientas existentes

En el ámbito de la gestión de AD, existen diversas tecnologías y herramientas diseñadas para facilitar esta tarea esencial en la administración de sistemas informáticos. Estas herramientas no solo permiten una gestión más eficiente de los recursos y usuarios dentro de una organización, sino que también contribuyen a mejorar la seguridad y el control de acceso.

Este epígrafe se centrará en revisar algunas de las herramientas existentes para la gestión de AD, detallando sus principales funcionalidades y características. Asimismo, se analizarán las ventajas y limitaciones de estas soluciones.

1.3.1. Herramientas de gestión de AD

Para gestionar efectivamente un Directorio Activo (AD), es crucial contar con herramientas que simplifiquen las tareas administrativas y ofrezcan opciones flexibles de personalización y configuración. La capacidad de personalización se refiere a la flexibilidad que ofrece la herramienta para ajustar su interfaz y funcionalidades según las necesidades específicas del usuario u organización [19]. Por otro lado, la facilidad de uso está relacionada con la simplicidad con la que una herramienta puede ser operada y configurada, asegurando una experiencia de administración eficiente y sin complicaciones [20].

En la Tabla 2 se presentan algunas herramientas para la gestión de AD, resaltando sus características principales en términos de personalización y facilidad de uso [21]-[24].

Tabla 2: Comparación de tecnologías existentes en cuanto a capacidad de personalización y facilidad de uso

Herrameinta	Capacidad de	Facilidad de uso
	personalización	
	(interfaz y apariencia)	
RSAT	Limitada, la	Alta, ya que es familiar
	personalización se	para administradores
	limita a ajustes mínimos	de Windows, pero
	dentro del entorno de	requiere conocimientos
	Windows	previos de AD
Webmin	Moderada, permite	Moderada, la interfaz
	cierta personalización	es intuitiva, pero la
	a través de temas y	configuración de
	ajustes de interfaz, pero	módulos puede ser
	con limitaciones en	compleja para usuarios
	la profundidad de las	sin experiencia técnica
	modificaciones	
samba4-manager	Limitada, diseñada	Baja, debido a la
	específicamente	complejidad de
	para la gestión de	la configuración y
	Samba4, con opciones	el mantenimiento
	de personalización	en entornos no
	limitadas	homogéneos

ADWebmanager	Limitada,	diseñada		Alta,	diseñada	para
	para	funciones		simpli	ficar	tareas
	comunes	de AD,		comunes de gestión de		
	con mínima	as opciones		AD, c	on una cu	rva de
	de persona	alización de		apren	dizaje redu	cida
	interfaz					

1.3.2. Frameworks para el desarrollo web

En el ámbito del desarrollo web, los frameworks juegan un papel crucial al proporcionar estructuras y herramientas que simplifican y aceleran la creación de aplicaciones. Estos frameworks ofrecen una base sólida para la implementación de funcionalidades complejas, facilitando la interacción entre el diseño front-end y la lógica de negocio back-end. Esta sección explora diversos frameworks destacados en el panorama actual, analizando sus características, ventajas y aplicaciones específicas en el desarrollo web moderno.

La Tabla 3 presenta una comparación detallada de tres frameworks populares en el desarrollo web: SvelteKit, Next.js y Nuxt.js. Esta comparación se enfoca en varias características clave que influyen en la elección de un framework para proyectos web, tales como eficiencia, flexibilidad, escalabilidad, curva de aprendizaje y comunidad. Al analizar estos aspectos, se puede obtener una visión más clara de las fortalezas y debilidades de cada framework, ayudando a los desarrolladores a tomar decisiones informadas al seleccionar la herramienta más adecuada para sus necesidades específicas.

Tabla 3: Comparación entre frameworks de desarrollo web

Característica	Sveltekit	Next.js	Nuxt.js
Eficiencia	Alto	Buena eficiencia	Eficiencia en el
	rendimiento	con renderizado	desarrollo de
	con	del lado del	aplicaciones web,
	compilación	servidor y en	con facilidades
	previa y sitios	el cliente	para la creación de
	estáticos		aplicaciones universal
			y estáticamente
			generadas
Flexibilidad	Gran	Flexible para	Flexible y adaptable
	flexibilidad en	la creación de	a diferentes tipos
	personalización	diferentes tipos de	de proyectos, con
	у	aplicaciones web	un enfoque en la
	configuración		simplicidad y facilidad
			de uso
Escalabilidad	Altamente	Buena capacidad	Puede escalar
	escalable	de escalar	adecuadamente para
	para	y manejar	manejar proyectos de
	proyectos	proyectos de	diversos tamaños y
	de diferentes	gran envergadura	complejidades
	tamaños		
Curva de	Muy baja,	Moderada,	Moderada,
aprendizaje	con sintaxis	requiere	especialmente para
	simple y	familiarizarse	aquellos que están
	familiar	con sus conceptos	familiarizados con
		y funcionalidades	Vue.js

Comunidad	En	Amplia comunidad	Comunidad activa y
	crecimiento,	de desarrolladores,	en crecimiento, con
	con soporte	con gran cantidad	soporte y recursos
	activo y	de recursos y	disponibles
	recursos	soporte en línea	
	disponibles		

Es importante destacar que realizar una comparación exhaustiva de todos los frameworks disponibles es complicado por varias razones:

- Abundancia de opciones: Actualmente, existen cientos de frameworks de desarrollo web, cada uno con características y ventajas únicas.
- Complejidad inherente: Los frameworks son complejos y ofrecen una amplia gama de características, lo que dificulta una comparación exhaustiva y detallada.
- Variabilidad en los requisitos: Las aplicaciones web tienen requisitos diversos, lo que significa que un framework ideal para una aplicación puede no serlo para otra.

Por lo tanto, es difícil determinar que un framework sea superior a otro de manera generalizada. La elección del mejor framework para una aplicación específica depende en gran medida de los requisitos particulares de esa aplicación y de las preferencias del equipo de desarrollo. En última instancia, la selección de un framework adecuado se basa en su capacidad para resolver los problemas específicos de desarrollo que se presentan en el contexto de la aplicación deseada.

1.3.3. Clientes LDAP

LDAP se ha consolidado como un estándar esencial en la administración de AD. Su capacidad para gestionar y acceder a información jerárquica de

manera eficiente ha hecho que múltiples aplicaciones y servicios adopten clientes LDAP para interactuar con los directorios.

En este epígrafe, se proporciona una definición de cliente LDAP basada en la literatura, se exponen sus características principales, se explica la importancia del uso de estos clientes y se exploran diversos clientes LDAP disponibles, analizando sus características, ventajas y limitaciones.

¿Qué es un cliente LDAP?

Un cliente LDAP es una aplicación o herramienta que permite a los usuarios y sistemas interactuar con un servidor de AD. Su función principal es facilitar la comunicación con el directorio, permitiendo que se realicen operaciones como búsquedas, modificaciones, adiciones y eliminaciones de entradas en la base de datos del directorio. Estos clientes actúan como intermediarios que traducen las solicitudes de los usuarios o aplicaciones a un formato comprensible para el directorio, simplificando la interacción y mejorando la eficiencia en la administración de datos.

Capacidades de los clientes LDAP

- Búsquedas: Los clientes LDAP pueden realizar búsquedas en el directorio para encontrar información específica basada en varios criterios. Esto es crucial para aplicaciones que necesitan recuperar datos de manera rápida y eficiente.
- Modificaciones: Permiten actualizar la información existente en el directorio. Las modificaciones pueden incluir cambios en atributos de una entrada o actualizaciones de múltiples entradas simultáneamente.
- Adiciones: Los clientes LDAP facilitan la adición de nuevas entradas en el directorio. Esto es útil para la incorporación de nuevos usuarios, dispositivos o cualquier otra entidad que necesite ser gestionada dentro del directorio.
- Eliminaciones: También soportan la eliminación de entradas del

directorio, ayudando a mantener la información actualizada y eliminando datos obsoletos o incorrectos.

Abstracción de la lógica

La abstracción de la lógica en la interacción con el directorio mediante un cliente LDAP es fundamental por varias razones:

- Simplicidad y Eficiencia: Al utilizar un cliente LDAP, los desarrolladores y administradores no necesitan conocer los detalles específicos del protocolo LDAP. Esto simplifica el desarrollo y la administración, permitiendo centrarse en la lógica de negocio en lugar de en los detalles técnicos.
- Interoperabilidad: Los clientes LDAP son compatibles con múltiples sistemas y aplicaciones, lo que facilita la integración de diversas soluciones en una infraestructura común. Esto es crucial para la interoperabilidad entre sistemas heterogéneos.
- Seguridad: Al centralizar las peticiones a través de un cliente LDAP, es posible implementar políticas de seguridad consistentes, como autenticación y autorización, garantizando que solo usuarios y aplicaciones autorizadas puedan acceder y modificar la información del directorio.

Comparación entre clientes LDAP existentes

La elección del cliente LDAP adecuado es crucial para gestionar eficientemente un AD. Con la creciente variedad de opciones disponibles, es fundamental entender las diferencias y capacidades de cada cliente LDAP. En la Tabla 4 se comparan varios clientes LDAP, evaluando aspectos clave que pueden influir en la elección de una solución:

 Dependencia de Idapjs: Indica si el cliente LDAP tiene dependencia de la biblioteca Idapjs. Esto es relevante debido a la descontinuación de Idapjs, que hasta el 14 de Mayo de 2024 era ampliamente utilizada. Esta evaluación asegura la selección de soluciones que ofrecen una base estable y sostenible, minimizando riesgos asociados con la obsolescencia y garantizando la compatibilidad a largo plazo con el ecosistema LDAP.

- Soporte TypeScript: La compatibilidad con TypeScript no solo permite el desarrollo más seguro y estructurado de aplicaciones modernas, sino que también mejora significativamente la detección de errores en tiempo de desarrollo.
- Calidad de la documentación: La disponibilidad y calidad de la documentación afecta directamente la rapidez con la que los desarrolladores pueden familiarizarse con el cliente LDAP y resolver problemas.
- Comunidad: Una comunidad activa y un soporte sólido aseguran que los problemas se resuelvan rápidamente y que el cliente LDAP se mantenga actualizado con las mejores prácticas. El nivel de actividad de la comunidad y la frecuencia de las actualizaciones pueden variar, impactando la estabilidad y la confianza en el uso a largo plazo del cliente.
- Facilidad de uso: Evalúa la simplicidad y la curva de aprendizaje del cliente LDAP. Una alta facilidad de uso reduce el tiempo de integración y minimiza errores durante la implementación. Esto incluye si el cliente provee abstracciones y/o funciones de alto nivel, lo cual puede facilitar significativamente su uso.

Tabla 4: Tabla comparativa entre distintos clientes LDAP

Cliente LDAP	Dependencia	Soporta	Calidad de	la	Comunidad y soporte	Facilidad de uso
	de Idapjs	TypeScript	documentación		(en julio 2024)	
Idapts	No	Sí	Excelente, documentaci	ón	Activa y sólida, ultima	Alta, fácil de usar y
			completa y fácil de entend	er,	publicación en Mayo	aprender, con una curva
			con ejemplos detallados.		2024 y más de 24 mil	de aprendizaje baja. Provee
					descargas semanales.	abstracciones para la
						composición de filtros
ldap-client	No	No	Buena, documentaci	ón	Baja, última publicación	Media, requiere algún
			adecuada, pero básio	a.	2016, con 20 descargas	tiempo de aprendizaje,
			Cubre la mayoría de l	os	semanales.	pero es manejable. No
			casos de uso comune	es,		provee abstracciones para
			aunque carece de ejempl	os		la composición de filtros
			avanzados.			
activedirectory	Sí	No	Buena, documentaci	ón	Moderada, ultima	Media, interfaz familiar,
			adecuada, con suficier	ite	publicación 2016,	provee funciones de más
			información para	la	con 10 mil descargas	alto nivel específicas para
			configuración y uso básic	o,	semanales	la busqueda de usuarios y
			aunque podría mejorar	en		grupos.
			detalle y ejemplos.			
ldap-ts-client	Sí	Sí	Escasa, documentación c	on	Baja, ultima publicación	Baja, debido a la falta de
			poca información disponit	ole	2022, con 51 descargas	documentacion.
			y pocos ejemplos.		semanales	

1.4. Archivos de configuración

Los archivos de configuración desempeñan un papel fundamental en el desarrollo y la operación de sistemas informáticos modernos al proporcionar una forma estructurada de definir variables y ajustes clave que modifican y parametrizan el comportamiento de los sistemas. Además, facilitan la modificación del sistema sin necesidad de acceder y modificar directamente el código fuente, lo que promueve la flexibilidad y la mantenibilidad.

Este epígrafe explora diversas técnicas y formatos utilizados para la configuración de aplicaciones, destacando su importancia en la gestión eficiente de la infraestructura y la personalización de comportamientos. Se analiza el uso de archivos de variables de entorno (.env) [25], así como de JSON [26], [27] y YAML [28], [29] en combinación con JSON Schema [30], [31] para la validación y estructuración de configuraciones. Aunque existen otros formatos como TOML [20], estos no tienen soporte para JSON Schema, lo cual carece de la capa adicional de seguridad y estructuración que es fundamental en muchos entornos de desarrollo. Este epígrafe proporciona una visión comprehensiva para comprender cómo estos archivos facilitan la configuración flexible y robusta

JSON Schema

JSON Schema o Esquema JSON es un estándar para la definición y validación de la estructura de documentos en distintos formatos. Proporciona un marco para especificar las propiedades requeridas, los tipos de datos, las restricciones de valores y otras reglas que los datos deben cumplir. JSON Schema no es un archivo de configuración por sí mismo, sino más bien una interfaz para asegurar que los archivos de configuración cumplan con las especificaciones esperadas [30], [31].

El uso de JSON Schema mejora la seguridad y la robustez de los sistemas al validar automáticamente la configuración antes de su aplicación, evitando errores y asegurando la conformidad con los requisitos del sistema [30], [31].

En la Figura 2 se muestra un ejemplo de JSON Schema donde se definen 4 propiedades simples de disintos tipos y distintas restricciones. Por ejemplo prop1 se define como una cadena de caracteres, prop2 como un entero con valor máximo 100 y valor mínimo 0, prop3 un booleano, y prop4 como un arreglo que debe tener elementos únicos y un máximo de 3 elementos. A cada una de estas propiedades se les puede proveer de una descripción lo cual ayuda en la comprensión del propósito de la propiedad.

```
"$id": "test.schema.json",
"description": "Example json schema",
"title": "ExampleConfig",
"type": "object",
'properties": {
    "prop1": {
    "type": "string",
        "default": "default value for prop1",
        "description": "This is the first property for ExampleConfig @default \"default value for prop1\""
         "type": "integer",
        "default": 10,
        "minimum": 0,
        "maximum": 100,
        "description": "This is the second property for ExampleConfig @default 10"
     'prop3": {
        "type": "boolean",
        "default": true,
"description": "This is the third property for ExampleConfig @default true"
    "prop4": {
    "type": "array",
        "maxItems": 3,
        "uniqueItems": true,
        "default": [1, 2, 3],
        "description": "This is the fourth property for ExampleConfig @default [1,2,3]"
```

Figura 2: 2 Ejemplo de esquema JSON con varias propiedades de distintos tipos

JSON + JSON Schema

Los archivos JSON son ampliamente utilizados para la configuración de aplicaciones debido a su simplicidad y compatibilidad con muchas herramientas y lenguajes de programación [26]. Cuando se combinan con JSON Schema, estos archivos pueden ser validados para asegurar que cumplen con las especificaciones esperadas. Esto permite definir configuraciones de manera clara y estructurada, garantizando que los datos

sean consistentes y conformes a los requisitos del sistema [27], [30].

En la Figura 3 se muestra un ejemplo de archivo JSON aplicando el esquema definido en la Figura 2. Se puede ver como establecer el esquema dota al archivo JSON de autocompletado en las propiedades, además de validaciones según las restricciones del esquema.

Figura 3: Ejemplo de archivo JSON aplicando el esquema

YAML + JSON Schema

YAML es un formato de serialización de datos más legible que JSON (Figura 6) y ampliamente utilizado en la configuración de aplicaciones. Su sintaxis limpia y sencilla lo hace ideal para archivos de configuración [28], [29]. Al igual que JSON, los archivos YAML pueden ser validados utilizando JSON Schema, proporcionando una capa adicional de seguridad y estructuración. Esto combina la legibilidad de YAML con la robustez de la validación de JSON Schema, haciendo que las configuraciones sean tanto claras como seguras [30].

En la Figura 4 se muestra un ejemplo de archivo YAML aplicando el esquema definido en la Figura 2. Se puede ver como establecer el esquema dota al archivo YAML de autocompletado en las propiedades, además de validaciones dependiendo de las restricciones del esquema.

Figura 4: Ejemplo de archivo YAML aplicando el esquema

Variables de entorno (.env)

Las variables de entorno son una técnica comúnmente utilizada para configurar aplicaciones. Estos archivos, generalmente con la extensión .env, permiten definir variables clave en un formato sencillo de clave-valor (Figura 5), facilitando la gestión de configuraciones sensibles y específicas del entorno, como credenciales de acceso, URLs de servicios externos, y configuraciones de depuración [25].

```
ORIGIN="http://localhost:5173"
PUBLIC_BASE_DN="DC=local,DC=com"
PUBLIC_LDAP_DOMAIN="local.com"

SAMBA_DC_REALM=${PUBLIC_LDAP_DOMAIN}

# openssl rand --hex 32

SECRET_KEY=8e558d3d1138af3425058cb690bdc8916bda42ff283db39500cfb0cb452b4ba

# A path to the configuration file. If a URL is provided, it must use the file: protocol.

CONFIG_PATH="app.config.dev.json"
```

Figura 5: Ejemplo de archivo .env

En la Tabla 5 se examinan aspectos como la facilidad de implementación, el soporte de tipos de datos, la capacidad de validación, la popularidad en diversos contextos de desarrollo, la complejidad de la sintaxis y el soporte nativo en el lenguaje Javascript. Esta información permitirá una comprensión detallada de cuándo y cómo utilizar cada formato para mejorar la configuración y la gestión de aplicaciones [25], [32], [33].

Tabla 5: Comparación entre distintos estándares de archivos de configuración

Característica	.env	JSON + JSON schema	YAML + JSON schema	
Facilidad de	Alta: Requiere	Media: Estructurado	Alta: Fácil de usar	
uso	mínimo conocimiento	pero con una sintaxis	con herramientas	
	técnico.	muy estricta.	y bibliotecas bien	
			soportadas.	
Soporte de	Ninguno, todo son	Completo: Admite	Completo: Soporta	
tipos	cadenas de texto	tipos como cadenas,	varios tipos de datos,	
		números, booleanos,	incluidos mapas y	
		arrays, objetos, y más	listas.	
Validación de	No: No tiene	Sí: Puede validar datos	No: No tiene	
datos	capacidad de	contra un esquema	capacidad de	
	validación	definido	validación intrínseca	
Complejidad	Muy Baja: Sintaxis	Media: Sintaxis	Baja: Sintaxis simple	
de sintaxis	muy simple y directa	detallada y estructurada	y directa	
Uso en	Variables de	Definición y validación	Configuración,	
aplicaciones	entorno: Ideal para	de datos: Ideal para	automatización:	
	configuraciones	garantizar que los datos	Utilizado para definir	
	sensibles al entorno	sean consistentes	configuraciones	
		y conformes a las	complejas y scripts	
		especificaciones	de automatización	
Popularidad	Alta: Ampliamente	Alta: Ampliamente	Alta: Popular	
	utilizado en	utilizado para validación	en DevOps y	
	aplicaciones web	de datos y definición de	administración de	
	y de software	esquemas	sistemas	
Soporte	Sí	Sí	No, se necesitan	
nativo			dependencias extra	
			para parsearlo	
			primero.	

Capítulo 2 Solución propuesta

Capítulo 3 Validación de la solución

Conclusiones

Al finalizar trabajo se llegó a las siguientes conclusiones:

A pesar de la robustez de las soluciones existentes, muchas de ellas presentan limitaciones en cuanto a personalización y facilidad de uso. La propuesta de una consola de administración que permita a los administradores gestionar usuarios y grupos de manera centralizada, al tiempo que se adapta a las necesidades específicas de cada organización, representa un avance significativo en este campo.

Los objetivos planteados se han cumplido mediante un enfoque sistemático que incluyó la identificación de requisitos, la selección de tecnologías adecuadas, la implementación de funcionalidades críticas y la realización de pruebas. Los resultados obtenidos demuestran que la solución propuesta no solo es viable, sino que también ofrece ventajas en términos de adaptabilidad.

En conclusión, esta investigación no solo contribuye al campo de la gestión de usuarios y directorios, sino que también establece un marco para futuras investigaciones y desarrollos en este ámbito. La combinación de flexibilidad, y facilidad de uso posiciona a la solución propuesta como una alternativa para organizaciones que buscan mejorar su gestión de identidades en un entorno digital en constante evolución.

Recomendaciones

- Extender aun más las opciones de configuración.
- Extender las pruebas realizadas para hacerlas exaustivas.
- Incluir mas atributos del esquema de usuarios en los formularios.
- Incluir vistas para otros tipos de objetos del directorio como las computadoras.

Referencias

- [1] M. A. Thakur y R. Gaikwad, "User identity and Access Management trends in IT infrastructure- an overview", en 2015 International Conference on Pervasive Computing (ICPC), Pune, India: IEEE, ene. de 2015, págs. 1-4, ISBN: 978-1-4799-6272-3. DOI: 10.1109/PERVASIVE.2015.7086972. visitado 11 de jun. de 2024. dirección: http://ieeexplore.ieee.org/document/7086972/.
- [2] A. Josang et al., "Local user-centric identity management", *Journal of Trust Management*, vol. 2, n.º 1, pág. 1, dic. de 2015, ISSN: 2196-064X. DOI: 10.1186/s40493-014-0009-6. visitado 11 de jun. de 2024. dirección: http://www.journaloftrustmanagement.com/content/2/1/1.
- [3] J. M. Kizza, "Access control and authorization", en *Guide to Computer Network Security*. Cham: Springer International Publishing, 2024, págs. 195-214, Series Title: Texts in Computer Science, ISBN: 978-3-031-47548-1 978-3-031-47549-8. DOI: 10.1007/978-3-031-47549-8_9. visitado 11 de jun. de 2024. dirección: https://link.springer.com/10.1007/978-3-031-47549-8_9.
- [4] R. Harrison, Lightweight Directory Access Protocol (LDAP): Authentication Methods and Security Mechanisms, jun. de 2006. visitado 15 de mayo de 2024. dirección: https://datatracker.ietf.org/doc/html/rfc4513.
- [5] M. A. Thakur y R. Gaikwad, "User identity and lifecycle management using LDAP directory server on distributed network", en 2015 International Conference on Pervasive Computing (ICPC), Pune, India: IEEE, ene. de 2015, págs. 1-3, ISBN: 978-1-4799-6272-3. DOI: 10.1109/PERVASIVE.2015.7086970. visitado 11 de jun. de 2024. dirección: http://ieeexplore.ieee.org/document/7086970/.
- [6] G. Carter, *LDAP system administration*, 1st ed. Beijing; Sebastopol, CA: O'Reilly, 2003, 294 págs., OCLC: ocm52331373, ISBN: 978-1-56592-491-8.

- [7] J. Sermersheim, "Lightweight Directory Access Protocol (LDAP): The Protocol", www.rfc-editor.org, jun. de 2006. DOI: 10 . 17487 / RFC4511. dirección: https://www.rfc-editor.org/rfc/rfc4511.
- [8] A. Bartlett, Samba 4 -Active Directory, 2005. dirección: https://www.samba.org/samba/news/articles/abartlet_thesis.pdf.
- [9] R. E. Voglmaier, *The ABCs of LDAP*. CRC Press, nov. de 2003.
- [10] RedHat, What is LDAP authentication?, 3 de jun. de 2022. dirección: https://www.redhat.com/en/topics/security/what-is-ldap-authentication.
- [11] R. Janice. "LDAP authentication with microsoft entra ID microsoft entra", visitado 28 de jun. de 2024. dirección: https://learn.microsoft.com/en-us/entra/architecture/auth-ldap.
- [12] A. Imanudin, *Active Directory Berbasis Linux Samba 4*. Excellent Publishing, oct. de 2019.
- [13] R. M. Stallman y J. Gay, *Free software, free society*. Boston (Mass.): Free software foundation, 2002, ISBN: 978-1-882114-98-6.
- [14] J. Feller y B. Fitzgerald, *Understanding Open Source software development*, 1. publ. London Munich: Addison-Wesley, 2002, 211 págs., ISBN: 978-0-201-73496-6.
- [15] E. S. Raymond y B. Young, *The cathedral and the bazaar: musings on linux and open source by an accidental revolutionary*, Revised edition. Beijing Cambridge Farnham Köln Sebastopol Tokyo: O'Reilly, 2001, 241 págs., ISBN: 978-0-596-00108-7 978-0-596-00131-5.
- [16] Dansimp. "Active directory accounts", visitado 30 de jun. de 2024. dirección: https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/manage/understand-default-user-accounts.
- [17] T. Howes y M. Smith, *LDAP: programming directory-enabled applications with lightweight directory access protocol* (Macmillan technology series). Indianapolis, Ind: Macmillan Technical Publishing, 1997, 462 págs., ISBN: 978-1-57870-000-4.

- [18] K. Derdus. "User profile attributes in azure active directory b2c", visitado 3 de jul. de 2024. dirección: https://learn.microsoft.com/en-us/azure/active-directory-b2c/user-profile-attributes.
- [19] A. Van Der Hoek, "Configurable software architecture in support of configuration management and software deployment", en *Proceedings of the 21st international conference on Software engineering*, Los Angeles California USA: ACM, 16 de mayo de 1999, págs. 732-733, ISBN: 978-1-58113-074-4. DOI: 10.1145/302405.303002. visitado 9 de sep. de 2024. dirección: https://dl.acm.org/doi/10.1145/302405.303002.
- [20] M. Sheppard y C. Vibert, "Re-examining the relationship between ease of use and usefulness for the net generation", *Education and Information Technologies*, vol. 24, n.º 5, págs. 3205-3218, sep. de 2019, ISSN: 1360-2357, 1573-7608. DOI: 10.1007/s10639-019-09916-0. visitado 9 de sep. de 2024. dirección: http://link.springer.com/10.1007/s10639-019-09916-0.
- [21] S. Graber, *stgraber/samba4-manager*, original-date: 2015-09-20T19:41:21Z, 28 de jun. de 2024. visitado 28 de jun. de 2024. dirección: https://github.com/stgraber/samba4-manager.
- [22] V. S. G. Jerez, *VicentGJ/AD-webmanager*, original-date: 2020-09-30T20:15:22Z, 13 de jun. de 2024. visitado 28 de jun. de 2024. dirección: https://github.com/VicentGJ/AD-webmanager.
- [23] D. Han, Remote server administration tools windows server, 3 de mayo de 2024. visitado 10 de jun. de 2024. dirección: https://learn.microsoft.com/en-us/troubleshoot/windows-server/system-management-components/remote-server-administration-tools.
- [24] M. Karzyński, Webmin Administrator's Cookbook. Packt Publishing Ltd, mar. de 2014.
- [25] N. Pandey. "A Guide to Node Environment Variables [Process.env Node]", visitado 2 de jul. de 2024. dirección: https://www.knowledgehut.com/blog/web-development/node-environment-variables.
- [26] J. Erickson. "What is JSON?", What Is JSON? Oracle, visitado 2 de jul. de 2024. dirección: https://www.oracle.com/database/what-is-json/.

- [27] T. Bray, "The JavaScript object notation (JSON) data interchange format", RFC Editor, RFC7158, mar. de 2014, RFC7158. DOI: 10.17487/rfc7158. visitado 2 de jul. de 2024. dirección: https://www.rfc-editor.org/info/rfc7158.
- [28] O. Ben-Kiki, C. Evans e I. döt Net, "YAML Ain't Markup Language (YAML™) revision 1.2.2", 1 de oct. de 2021. visitado 3 de jul. de 2024. dirección: https://yaml.org/spec/1.2.2/.
- [29] RedHat. "What is YAML?", visitado 2 de jul. de 2024. dirección: https://www.redhat.com/en/topics/automation/what-is-yaml.
- [30] L. Attouche, M.-A. Baazizi, D. Colazzo, G. Ghelli, C. Sartiani y S. Scherzinger, *Witness generation for JSON schema*, sep. de 2022. DOI: 10. 14778/3565838.3565852. visitado 2 de jul. de 2024. dirección: https://dl.acm.org/doi/10.14778/3565838.3565852.
- [31] J. Schema, JSON Schema What is a schema?, ago. de 2024. visitado 10 de nov. de 2024. dirección: https://json-schema.org/understanding-json-schema/about.
- [32] AWS. "YAML vs JSON Difference Between Data Serialization Formats AWS", visitado 3 de jul. de 2024. dirección: https://aws.amazon.com/compare/the-difference-between-yaml-and-json/.
- [33] M. Eriksson y V. Hallberg, "Comparison between JSON and YAML for data serialization", Tesis doct., School of Computer Science y Engineering Royal Institute of Technology, 2011. visitado 3 de jul. de 2024. dirección: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=636a2b04d98c0af8e9d6f59148352dd63af4f0c1.

Siglario

AD: Directorio Activo (Active Directory)

API: Interfaz de Programación de Aplicaciones (Application Programming Interface)

e2e: Pruebas de extremo a extremo (End-to-End)

JSON: Notación de Objetos JavaScript (JavaScript Object Notation)

LDAP: Protocolo Ligero de Acceso a Directorios (Lightweight Directory Access Protocol)

LDAPS: Protocolo Ligero de Acceso a Directorios Seguro (Lightweight Directory Access Protocol Secure)

SLCA: Software Libre y Código Abierto (Free and Open-Source Software)

Sveltekit: Framework de desarrollo web

YAML: Lenguaje de Marcado de Datos (YAML Ain't Markup Language)

Anexos

```
yamL

simple-property: a simple value

object-property:
a-property: a value
another-property: another value

array-property:
- item-1-property-1: one
item-1-property-2: 2
- item-2-property-1: three
item-2-property-2: 4

# no comment in JSON
```

```
"simple-property": "a simple value",

"object-property": {
    "a-property": "a value",
    "another-property": "another value"
},

"array-of-objects": [
    { "item-1-property-1": "one",
        "item-1-property-2": 2 },
    { "item-2-property-1": "three",
        "item-2-property-2": 4 }
]
```

Figura 6: Comparación de sintaxis entre YAML y JSON

35

List of companies using Active Directory

Figura 7: Compañías que usan Directorio Activo hoy en dia en el mundo (90 000+)