http://exo7.emath.fr/

- o Les nombres réels
- o Propriétés de l'ensemble IR
- o Suites numériques
- o **Fonctions**
- o Limites de fonctions
- o Fonctions continues
- o Dérivée d'une fonction
- o Fonctions dérivables
- o Fonctions usuelles
- o Fonctions circulaires et hyperboliques inverses

Les nombres réels

```
Vidéo ■ partie 1. L'ensemble des nombres rationnels ℚ
Vidéo ■ partie 2. Propriétés de ℝ
Vidéo ■ partie 3. Densité de ℚ dans ℝ
Vidéo ■ partie 4. Borne supérieure
Fiche d'exercices ♦ Propriétés de ℝ
```

Motivation

Voici une introduction, non seulement à ce chapitre sur les nombres réels, mais aussi aux premiers chapitres de ce cours d'analyse.

Aux temps des Babyloniens (en Mésopotamie de 3000 à 600 avant J.C.) le système de numération était en base 60, c'est-à-dire que tous les nombres étaient exprimés sous la forme $a + \frac{b}{60} + \frac{c}{60^2} + \cdots$. On peut imaginer que pour les applications pratiques c'était largement suffisant (par exemple estimer la surface d'un champ, le diviser en deux parties égales, calculer le rendement par unité de surface,...). En langage moderne cela correspond à compter uniquement avec des nombres rationnels \mathbb{Q} .

Les pythagoriciens (vers 500 avant J.C. en Grèce) montrent que $\sqrt{2}$ n'entre pas ce cadre là. C'est-à-dire que $\sqrt{2}$ ne peut s'écrire sous la forme $\frac{p}{q}$ avec p et q deux entiers. C'est un double saut conceptuel : d'une part concevoir que $\sqrt{2}$ est de nature différente mais surtout d'en donner une démonstration.

Le fil rouge de ce cours va être deux exemples très simples : les nombres $\sqrt{10}$ et $1, 10^{1/12}$. Le premier représente par exemple la diagonale d'un rectangle de base 3 et de hauteur 1 ; le second correspond par exemple au taux d'intérêt mensuel d'un taux annuel de 10%. Dans ce premier chapitre vous allez apprendre à montrer que $\sqrt{10}$ n'est pas un nombre rationnel mais aussi à encadrer $\sqrt{10}$ et $1, 10^{1/12}$ entre deux entiers consécutifs.

Pour pouvoir calculer des décimales après la virgule, voire des centaines de décimales, nous aurons besoin d'outils beaucoup plus sophistiqués :

- une construction solide des nombres réels,
- l'étude des suites et de leur limites,
- l'étude des fonctions continues et des fonctions dérivables.

Ces trois points sont liés et permettent de répondre à notre problème, car par exemple nous verrons en étudiant la fonction $f(x) = x^2 - 10$ que la suite des rationnels (u_n) définie par $u_0 = 3$ et $u_{n+1} = \frac{1}{2} \left(u_n + \frac{10}{u_n} \right)$ tend très vite vers $\sqrt{10}$. Cela nous permettra de calculer des centaines de décimales de $\sqrt{10}$ et de certifier qu'elles sont exactes :

 $\sqrt{10} = 3.1622776601683793319988935444327185337195551393252168...$

1. L'ensemble des nombres rationnels Q

1.1. Écriture décimale

Par définition, l'ensemble des nombres rationnels est

$$\mathbb{Q} = \left\{ \frac{p}{q} \mid p \in \mathbb{Z}, q \in \mathbb{N}^* \right\}.$$

On a noté $\mathbb{N}^* = \mathbb{N} \setminus \{0\}$.

Par exemple : $\frac{2}{5}$; $\frac{-7}{10}$; $\frac{3}{6} = \frac{1}{2}$.

Les nombres décimaux, c'est-à-dire les nombres de la forme $\frac{a}{10^n}$, avec $a \in \mathbb{Z}$ et $n \in \mathbb{N}$, fournissent d'autres exemples :

$$1,234 = 1234 \times 10^{-3} = \frac{1234}{1000}$$
 $0,00345 = 345 \times 10^{-5} = \frac{345}{100000}$

Proposition 1.

Un nombre est rationnel si et seulement s'il admet une écriture décimale périodique ou finie.

Par exemple:

$$\frac{3}{5} = 0,6$$
 $\frac{1}{3} = 0,3333...$ $1,179\,325\,325\,325...$

 $\frac{3}{5} = 0, 6 \qquad \frac{1}{3} = 0,3333... \qquad 1,179\underbrace{325325325...}_{1,179325325325...}$ Nous n'allons pas donner la démonstration mais le sens direct (\Longrightarrow) repose sur la division euclidienne. Pour la réciproque (\iff) voyons comment cela marche sur un exemple : Montrons que $x=12,34\,2021\,2021\ldots$ est un rationnel.

L'idée est d'abord de faire apparaître la partie périodique juste après la virgule. Ici la période commence deux chiffres après la virgule, donc on multiplie par 100 :

$$100x = 1234, 2021, 2021, \dots (1)$$

Maintenant on va décaler tout vers la gauche de la longueur d'une période, donc ici on multiplie encore par 10000 pour décaler de 4 chiffres :

$$10\,000 \times 100x = 1234\,2021, 2021\dots \tag{2}$$

Les parties après la virgule des deux lignes (1) et (2) sont les mêmes, donc si on les soustrait en faisant (2)-(1) alors les parties décimales s'annulent :

$$10\,000 \times 100x - 100x = 12\,342\,021 - 1234$$

donc $999\,900x = 12\,340\,787$ donc

$$x = \frac{12340787}{999900}$$
.

Et donc bien sûr $x \in \mathbb{Q}$.

1.2. $\sqrt{2}$ n'est pas un nombre rationnel

Il existe des nombres qui ne sont pas rationnels, les *irrationnels*. Les nombres irrationnels apparaissent naturellement dans les figures géométriques : par exemple la diagonale d'un carré de côté 1 est le nombre irrationnel $\sqrt{2}$; la circonférence d'un cercle de rayon $\frac{1}{2}$ est π qui est également un nombre irrationnel. Enfin $e=\exp(1)$ est aussi irrationnel.

Nous allons prouver que $\sqrt{2}$ n'est pas un nombre rationnel.

Proposition 2.

 $\sqrt{2} \notin \mathbb{Q}$

Démonstration. Par l'absurde supposons que $\sqrt{2}$ soit un nombre rationnel. Alors il existe des entiers $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$ tels que $\sqrt{2} = \frac{p}{q}$, de plus –ce sera important pour la suite– on suppose que p et q sont premiers entre eux (c'est-à-dire que la fraction $\frac{p}{q}$ est sous une écriture irréductible).

En élevant au carré, l'égalité $\sqrt{2} = \frac{p}{q}$ devient $2q^2 = p^2$. Cette dernière égalité est une égalité d'entiers. L'entier de gauche est pair, donc on en déduit que p^2 est pair; en terme de divisibilité 2 divise p^2 .

Mais si 2 divise p^2 alors 2 divise p (cela se prouve par facilement l'absurde). Donc il existe un entier $p' \in \mathbb{Z}$ tel que p = 2p'.

Repartons de l'égalité $2q^2 = p^2$ et remplaçons p par 2p'. Cela donne $2q^2 = 4p'^2$. Donc $q^2 = 2p'^2$. Maintenant cela entraîne que 2 divise q^2 et comme avant alors 2 divise q.

Nous avons prouvé que 2 divise à la fois p et q. Cela rentre en contradiction avec le fait que p et q sont premiers entre eux. Notre hypothèse de départ est donc fausse : $\sqrt{2}$ n'est pas un nombre rationnel.

Comme ce résultat est important en voici une deuxième démonstration, assez différente, mais toujours par l'absurde.

Autre démonstration. Par l'absurde, supposons $\sqrt{2} = \frac{p}{a}$, donc $q\sqrt{2} = p \in \mathbb{N}$. Considérons l'ensemble

$$\mathcal{N} = \{ n \in \mathbb{N}^* \mid n\sqrt{2} \in \mathbb{N} \}.$$

Cet ensemble n'est pas vide car on vient de voir que $q\sqrt{2}=p\in\mathbb{N}$ donc $q\in\mathcal{N}$. Ainsi \mathcal{N} est une partie non vide de \mathbb{N} , elle admet donc un plus petit élément $n_0=\min\mathcal{N}$.

Posons

$$n_1 = n_0 \sqrt{2} - n_0 = n_0 (\sqrt{2} - 1),$$

il découle de cette dernière égalité et de $1 < \sqrt{2} < 2$ que $0 < n_1 < n_0$.

De plus $n_1\sqrt{2} = (n_0\sqrt{2} - n_0)\sqrt{2} = 2n_0 - n_0\sqrt{2} \in \mathbb{N}$. Donc $n_1 \in \mathcal{N}$ et $n_1 < n_0$: on vient de trouver un élément n_1 de \mathcal{N} strictement plus petit que n_0 qui était le minimum. C'est une contradiction.

Notre hypothèse de départ est fausse, donc $\sqrt{2} \notin \mathbb{Q}$.

Exercice 1.

Montrer que $\sqrt{10} \notin \mathbb{Q}$.

On représente souvent les nombres réels sur une « droite numérique » :

Il est bon de connaître les premières décimales de certains réels $\sqrt{2} \simeq 1,4142...$ $\pi \simeq 3,14159265...$ $e \simeq 2,718...$

Il est souvent pratique de rajouter les deux extrémités à la droite numérique.

Définition 1.

$$\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\}$$

Mini-exercices.

- 1. Montrer que la somme de deux rationnels est un rationnel. Montrer que le produit de deux rationnels est un rationnel. Montrer que l'inverse d'un rationnel non nul est un rationnel. Qu'en est-il pour les irrationnels?
- 2. Écrire les nombres suivants sous forme d'une fraction : 0, 1212 ; 0, 12 12 ...; 78, 33 456 456 ...
- 3. Sachant $\sqrt{2} \notin \mathbb{Q}$, montrer $2 3\sqrt{2} \notin \mathbb{Q}$, $1 \frac{1}{\sqrt{2}} \notin \mathbb{Q}$.
- 4. Notons D l'ensemble des nombres de la forme $\frac{a}{2^n}$ avec $a \in \mathbb{Z}$ et $n \in \mathbb{N}$. Montrer que $\frac{1}{3} \notin D$. Trouver $x \in D$ tel que 1234 < x < 1234,001.
- 5. Montrer que $\frac{\sqrt{2}}{\sqrt{3}} \notin \mathbb{Q}$.
- 6. Montrer que $\log 2 \notin \mathbb{Q}$ ($\log 2$ est le logarithme décimal de 2 : c'est le nombre réel tel que $10^{\log 2} = 2$).

Les nombres réels 2. Propriétés de $\mathbb R$ 4

2. Propriétés de ${\mathbb R}$

2.1. Addition et multiplication

Ce sont les propriétés que vous avez toujours pratiquées. Pour $a,b,c\in\mathbb{R}$ on a :

$$a + b = b + a$$

$$0 + a = a$$

$$a + b = 0 \iff a = -b$$

$$(a + b) + c = a + (b + c)$$

$$a \times (b + c) = a \times b + a \times c$$

$$a \times b = 0 \iff (a = 0 \text{ ou } b = 0)$$

$$a \times b = b \times a$$

$$1 \times a = a \text{ si } a \neq 0$$

$$ab = 1 \iff a = \frac{1}{b}$$

$$(a \times b) \times c = a \times (b \times c)$$

On résume toutes ces propriétés en disant que :

Propriété (R1).

 $(\mathbb{R}, +, \times)$ *est un* **corps commutatif**.

2.2. Ordre sur $\mathbb R$

Nous allons voir que les réels sont ordonnés. La notion d'ordre est générale et nous allons définir cette notion sur un ensemble quelconque. Cependant gardez à l'esprit que pour nous $E = \mathbb{R}$ et $\mathcal{R} = \leq$.

Définition 2.

Soit *E* un ensemble.

- 1. Une *relation* \mathcal{R} sur E est un sous-ensemble de l'ensemble produit $E \times E$. Pour $(x, y) \in E \times E$, on dit que x est en relation avec y et on note $x\mathcal{R}y$ pour dire que $(x, y) \in \mathcal{R}$.
- 2. Une relation \mathcal{R} est une relation d'ordre si
 - \mathcal{R} est *réflexive*: pour tout $x \in E$, $x\mathcal{R}x$,
 - \mathscr{R} est antisymétrique : pour tout $x, y \in E$, $(x \mathscr{R} y \text{ et } y \mathscr{R} x) \Longrightarrow x = y$,
 - \mathscr{R} est *transitive*: pour tout $x, y, z \in E$, $(x \mathscr{R} y \text{ et } y \mathscr{R} z) \Longrightarrow x \mathscr{R} z$.

Définition 3.

Une relation d'ordre \mathcal{R} sur un ensemble E est *totale* si pour tout $x, y \in E$ on a $x\mathcal{R}y$ ou $y\mathcal{R}x$. On dit aussi que (E, \mathcal{R}) est un *ensemble totalement ordonné*.

Propriété ($\mathbb{R}2$).

La relation \leq *sur* \mathbb{R} *est une relation d'ordre, et de plus, elle est totale.*

Nous avons donc:

- pour tout $x \in \mathbb{R}$, $x \leqslant x$,
- pour tout $x, y \in \mathbb{R}$, si $x \leqslant y$ et $y \leqslant x$ alors x = y,
- pour tout $x, y, z \in \mathbb{R}$ si $x \leq y$ et $y \leq z$ alors $x \leq z$.

Remarque.

Pour $(x, y) \in \mathbb{R}^2$ on a par définition :

$$x \le y \iff y - x \in \mathbb{R}_+$$

 $x < y \iff (x \le y \text{ et } x \ne y).$

Les opérations de $\mathbb R$ sont compatibles avec la relation d'ordre \leqslant au sens suivant, pour des réels a,b,c,d:

$$(a \leqslant b \text{ et } c \leqslant d) \implies a + c \leqslant b + d$$

$$(a \leqslant b \text{ et } c \geqslant 0) \implies a \times c \leqslant b \times c$$

$$(a \leqslant b \text{ et } c \leqslant 0) \implies a \times c \geqslant b \times c.$$

Les nombres réels 2. Propriétés de \mathbb{R} $\mathbf{5}$

On définit le maximum de deux réels a et b par :

$$\max(a, b) = \begin{cases} a & \text{si } a \geqslant b \\ b & \text{si } b > a. \end{cases}$$

Exercice 2.

Comment définir $\max(a, b, c)$, $\max(a_1, a_2, \dots, a_n)$? Et $\min(a, b)$?

2.3. Propriété d'Archimède

Propriété (ℝ3, Propriété d'Archimède).

 \mathbb{R} est archimédien, c'est-à-dire :

$$\forall x \in \mathbb{R} \ \exists n \in \mathbb{N} \ n > x$$

« Pour tout réel x, il existe un entier naturel n strictement plus grand que x. »

Cette propriété peut sembler évidente, elle est pourtant essentielle puisque elle permet de définir la partie entière d'un nombre réel :

Proposition 3.

Soit $x \in \mathbb{R}$, il existe un unique entier relatif, la partie entière notée E(x), tel que :

$$E(x) \leqslant x < E(x) + 1$$

Exemple 1.

- E(2,853) = 2, $E(\pi) = 3$, E(-3,5) = -4.
- $E(x) = 3 \iff 3 \leqslant x < 4$.

Remarque.

- On note aussi E(x) = [x].
- Voici le graphe de la fonction partie entière $x \mapsto E(x)$:

Pour la démonstration de la proposition 3 il y a deux choses à établir : d'abord qu'un tel entier E(x) existe et ensuite qu'il est unique.

Démonstration.

Existence. Supposons $x \ge 0$, par la propriété d'Archimède (Propriété $\mathbb{R}3$) il existe $n \in \mathbb{N}$ tel que n > x. L'ensemble $K = \left\{k \in \mathbb{N} \mid k \le x\right\}$ est donc fini (car pour tout k dans K, on a $0 \le k < n$). Il admet donc un plus grand élément $k_{max} = \max K$. On a alors $k_{max} \le x$ car $k_{max} \in K$, et $k_{max} + 1 > x$ car $k_{max} + 1 \notin K$. Donc $k_{max} \le x < k_{max} + 1$ et on prend donc $E(x) = k_{max}$.

Unicité. Si k et ℓ sont deux entiers relatifs vérifiant $k \le x < k+1$ et $\ell \le x < \ell+1$, on a donc $k \le x < \ell+1$, donc par transitivité $k < \ell+1$. En échangeant les rôles de ℓ et k, on a aussi $\ell < k+1$. On en conclut que $\ell-1 < k < \ell+1$, mais il n'y a qu'un seul entier compris strictement entre $\ell-1$ et $\ell+1$, c'est ℓ . Ainsi $k=\ell$.

Le cas x < 0 est similaire.

Exemple 2.

Encadrons $\sqrt{10}$ et $1, 1^{1/12}$ par deux entiers consécutifs.

• Nous savons $3^2 = 9 < 10$ donc $3 = \sqrt{3^2} < \sqrt{10}$ (la fonction racine carrée est croissante). De même $4^2 = 16 > 10$ donc $4 = \sqrt{4^2} > \sqrt{10}$. Conclusion : $3 < \sqrt{10} < 4$ ce qui implique $E(\sqrt{10}) = 3$.

• On procède sur le même principe. $1^{12} < 1, 10 < 2^{12}$ donc en passant à la racine 12-ième (c'est-à-dire à la puissance $\frac{1}{12}$) on obtient : $1 < 1, 1^{1/12} < 2$ et donc $E(1, 1^{1/12}) = 1$.

2.4. Valeur absolue

Pour un nombre réel x, on définit la valeur absolue de x par :

$$|x| = \begin{cases} x & \text{si } x \geqslant 0 \\ -x & \text{si } x < 0 \end{cases}$$

Voici le graphe de la fonction $x \mapsto |x|$:

Proposition 4.

1.
$$|x| \ge 0$$
; $|-x| = |x|$; $|x| > 0 \iff x \ne 0$

2
$$\sqrt{x^2} = |x|$$

3.
$$|xy| = |x||y|$$

3.
$$|xy| = |x||y|$$

4. Inégalité triangulaire $|x+y| \le |x| + |y|$

5. Seconde inégalité triangulaire
$$||x| - |y|| \le |x - y|$$

Démonstration des inégalités triangulaires.

- $-|x| \le x \le |x|$ et $-|y| \le y \le |y|$. En additionnant $-(|x|+|y|) \le x+y \le |x|+|y|$, donc $|x+y| \le |x|+|y|$.
- Puisque x = (x-y)+y, on a d'après la première inégalité : $|x| = |(x-y)+y| \le |x-y|+|y|$. Donc $|x|-|y| \le |x-y|$, et en intervertissant les rôles de x et y, on a aussi $|y|-|x| \le |y-x|$. Comme |y-x|=|x-y| on a donc $||x| - |y|| \leqslant |x - y|.$

Sur la droite numérique, |x-y| représente la distance entre les réels x et y; en particulier |x| représente la distance entre les réels x et 0.

De plus on a:

- $|x-a| < r \iff a-r < x < a+r$.
- Ou encore, comme on le verra bientôt, $|x-a| < r \iff x \in]a-r, a+r[$.

Exercice 3.

Soit $a \in \mathbb{R} \setminus \{0\}$ et $x \in \mathbb{R}$ tel que |x-a| < |a|. Montrer que $x \neq 0$ et ensuite que x est du même signe que a.

Mini-exercices.

- 1. On munit l'ensemble $\mathscr{P}(\mathbb{R})$ des parties de \mathbb{R} de la relation \mathscr{R} définie par $A\mathscr{R}B$ si $A \subset B$. Montrer qu'il s'agit d'une relation d'ordre. Est-elle totale ?
- 2. Soient x, y deux réels. Montrer que $|x| \ge ||x+y| |y||$.
- 3. Soient x_1, \dots, x_n des réels. Montrer que $|x_1 + \dots + x_n| \le |x_1| + \dots + |x_n|$. Dans quel cas a-t-on égalité?
- 4. Soient x, y > 0 des réels. Comparer E(x + y) avec E(x) + E(y). Comparer $E(x \times y)$ et $E(x) \times E(y)$.
- 5. Soit x > 0 un réel. Encadrer $\frac{E(x)}{x}$. Quelle est la limite de $\frac{E(x)}{x}$ lorsque $x \to +\infty$?
- 6. On note $\{x\} = x E(x)$ la partie fractionnaire de x, de sorte que $x = E(x) + \{x\}$. Représenter les graphes des fonctions $x \mapsto E(x)$, $x \mapsto \{x\}$, $x \mapsto E(x) \{x\}$.

3. Densité de $\mathbb Q$ dans $\mathbb R$

3.1. Intervalle

Définition 4.

Un *intervalle de* \mathbb{R} est un sous-ensemble I de \mathbb{R} vérifiant la propriété :

$$\forall a, b \in I \ \forall x \in \mathbb{R} \ (a \leq x \leq b \implies x \in I)$$

Remarque.

- Par définition $I = \emptyset$ est un intervalle.
- $I = \mathbb{R}$ est aussi un intervalle.

Définition 5.

Un *intervalle ouvert* est un sous-ensemble de \mathbb{R} de la forme $]a,b[=\{x\in\mathbb{R}\mid a< x< b\},$ où a et b sont des éléments de $\overline{\mathbb{R}}$.

Même si cela semble évident il faut justifier qu'un intervalle ouvert est un intervalle (!). En effet soient a', b' des éléments de a, b et $a \in \mathbb{R}$ tel que $a' \le x \le b'$. Alors on a $a < a' \le x \le b' < b$, donc $a \in \mathbb{R}$ tel que $a' \in \mathbb{R$

La notion de voisinage sera utile pour les limites.

Définition 6.

Soit a un réel, $V \subset \mathbb{R}$ un sous-ensemble. On dit que V est un *voisinage* de a s'il existe un intervalle ouvert I tel que $a \in I$ et $I \subset V$.

3.2. Densité

Théorème 1.

- 1. \mathbb{Q} est dense dans \mathbb{R} : tout intervalle ouvert (non vide) de \mathbb{R} contient une infinité de rationnels.
- 2. $\mathbb{R}\setminus\mathbb{Q}$ est dense dans \mathbb{R} : tout intervalle ouvert (non vide) de \mathbb{R} contient une infinité d'irrationnels.

1. Tout intervalle contient un rationnel.

On commence par montrer l'affirmation :

$$\forall a, b \in \mathbb{R} \ (a < b \implies \exists r \in \mathbb{Q} \ a < r < b)$$
 (3)

Donnons d'abord l'idée de la preuve. Trouver un tel rationnel $r=\frac{p}{q}$, avec $p\in\mathbb{Z}$ et $q\in\mathbb{N}^*$, revient à trouver de tels entiers p et q vérifiant $qa . Cela revient à trouver un <math>q\in\mathbb{N}^*$ tel que l'intervalle ouvert]qa,qb[contienne un entier p. Il suffit pour cela que la longueur qb-qa=q(b-a) de l'intervalle dépasse strictement 1, ce qui équivaut à $q>\frac{1}{b-a}$.

Passons à la rédaction définitive. D'après la propriété d'Archimède (propriété $\mathbb{R}3$), il existe un entier q tel que $q>\frac{1}{b-a}$. Comme b-a>0, on a $q\in\mathbb{N}^*$. Posons p=E(aq)+1. Alors $p-1\leqslant aq< p$. On en déduit d'une part $a<\frac{p}{q}$, et d'autre part $\frac{p}{q}-\frac{1}{q}\leqslant a$, donc $\frac{p}{q}\leqslant a+\frac{1}{q}< a+b-a=b$. Donc $\frac{p}{q}\in]a$, b[. On a montré l'affirmation (3).

2. Tout intervalle contient un irrationnel.

Partant de a, b réels tels que a < b, on peut appliquer l'implication de l'affirmation (3) au couple $(a - \sqrt{2}, b - \sqrt{2})$. On en déduit qu'il existe un rationnel r dans l'intervalle $]a - \sqrt{2}, b - \sqrt{2}[$ et par translation $r + \sqrt{2} \in]a, b[$. Or $r + \sqrt{2}$ est irrationnel, car sinon comme les rationnels sont stables par somme, $\sqrt{2} = -r + r + \sqrt{2}$ serait rationnel, ce qui est faux d'après la proposition 2. On a donc montré que si a < b, l'intervalle]a, b[contient aussi un irrationnel.

3. Tout intervalle contient une infinité de rationnels et d'irrationnels.

On va déduire de l'existence d'un rationnel et d'un irrationnel dans tout intervalle]a,b[le fait qu'il existe une infinité de chaque dans un tel intervalle ouvert. En effet pour un entier $N \ge 1$, on considère l'ensemble de N sous-intervalles ouverts disjoints deux à deux :

$$\left]a,a+\frac{b-a}{N}\right[,\quad \left]a+\frac{b-a}{N},a+\frac{2(b-a)}{N}\right[,\quad \dots\quad \left]a+\frac{(N-1)(b-a)}{N},b\right[.$$

Chaque sous-intervalle contient un rationnel et un irrationnel, donc]a,b[contient (au moins) N rationnels et N irrationnels. Comme ceci est vrai pour tout entier $N \ge 1$, l'intervalle ouvert]a,b[contient alors une infinité de rationnels et une infinité d'irrationnels.

Mini-exercices.

- 1. Montrer qu'une intersection d'intervalles est un intervalle. Qu'en est-il pour une réunion ? Trouver une condition nécessaire et suffisante afin que la réunion de deux intervalles soit un intervalle.
- 2. Montrer que l'ensemble des nombres décimaux (c'est-à-dire ceux de la forme $\frac{a}{10^n}$, avec $n \in \mathbb{N}$ et $a \in \mathbb{Z}$) est dense dans \mathbb{R} .
- 3. Construire un rationnel compris strictement entre 123 et 123,001. Ensuite construire un irrationnel. Sauriez-vous en construire une infinité? Et entre π et π + 0,001?
- 4. Montrer que si $z = e^{i\alpha}$ et $z' = e^{i\beta}$ sont deux nombres complexes de module 1, avec $\alpha < \beta$, il existe un entier $n \in \mathbb{N}^*$ et une racine n-ième de l'unité $z = e^{i\gamma}$ avec $\alpha < \gamma < \beta$.

4. Borne supérieure

4.1. Maximum, minimum

Définition 7.

Soit A une partie non vide de \mathbb{R} . Un réel α est un *plus grand élément* de A si : $\alpha \in A$ et $\forall x \in A \ x \leqslant \alpha$.

S'il existe, le plus grand élément est unique, on le note alors max A.

Le *plus petit élément* de *A*, noté min *A*, s'il existe est le réel α tel que $\alpha \in A$ et $\forall x \in A \ x \geqslant \alpha$.

Le plus grand élément s'appelle aussi le *maximum* et le plus petit élément, le *minimum*. Il faut garder à l'esprit que le plus grand élément ou le plus petit élément n'existent pas toujours.

Exemple 3.

- $\max[a, b] = b$, $\min[a, b] = a$.
- L'intervalle]a, b[n'a pas de plus grand élément, ni de plus petit élément.
- L'intervalle [0, 1[a pour plus petit élément 0 et n'a pas de plus grand élément.

Exemple 4.

Soit $A = \left\{1 - \frac{1}{n} \mid n \in \mathbb{N}^*\right\}$.

Notons $u_n = 1 - \frac{1}{n}$ pour $n \in \mathbb{N}^*$. Alors $A = \{u_n \mid n \in \mathbb{N}^*\}$. Voici une représentation graphique de A sur la droite numérique :

- 1. A n'a pas de plus grand élément : Supposons qu'il existe un plus grand élément $\alpha = \max A$. On aurait alors $u_n \leqslant \alpha$, pour tout u_n . Ainsi $1 \frac{1}{n} \leqslant \alpha$ donc $\alpha \geqslant 1 \frac{1}{n}$. À la limite lorsque $n \to +\infty$ cela implique $\alpha \geqslant 1$. Comme α est le plus grand élément de A alors $\alpha \in A$. Donc il existe n_0 tel que $\alpha = u_{n_0}$. Mais alors $\alpha = 1 \frac{1}{n_0} < 1$. Ce qui est en contradiction avec $\alpha \geqslant 1$. Donc A n'a pas de maximum.
- 2. $\min A = 0$: Il y a deux choses à vérifier tout d'abord pour n = 1, $u_1 = 0$ donc $0 \in A$. Ensuite pour tout $n \ge 1$, $u_n \ge 0$. Ainsi $\min A = 0$.

4.2. Majorants, minorants

Définition 8.

Soit *A* une partie non vide de \mathbb{R} . Un réel *M* est un *majorant* de *A* si $\forall x \in A \ x \leq M$. Un réel *m* est un *minorant* de *A* si $\forall x \in A \ x \geq m$.

Exemple 5.

- 3 est un majorant de]0, 2[;
- $-7, -\pi, 0$ sont des minorants de $]0, +\infty[$ mais il n'y a pas de majorant.

Si un majorant (resp. un minorant) de A existe on dit que A est majorée (resp. minorée).

Comme pour le minimum et le maximum il n'existe pas toujours de majorant ni de minorant, en plus on n'a pas l'unicité.

Exemple 6.

Soit A = [0, 1[.

- 1. les majorants de A sont exactement les éléments de $[1, +\infty[$,
- 2. les minorants de A sont exactement les éléments de $]-\infty,0]$.

4.3. Borne supérieure, borne inférieure

Définition 9.

Soit *A* une partie non vide de \mathbb{R} et α un réel.

- 1. α est la *borne supérieure* de A si α est un majorant de A et si c'est le plus petit des majorants. S'il existe on le note sup A.
- 2. α est la *borne inférieure* de A si α est un minorant de A et si c'est le plus grand des minorants. S'il existe on le note infA.

Exemple 7.

Soit A = [0, 1].

1. $\sup A = 1$: en effet les majorants de A sont les éléments de $[1, +\infty[$. Donc le plus petit des majorants est 1.

2. $\inf A = 0$: les minorants sont les éléments de $]-\infty,0]$ donc le plus grand des minorants est 0.

Exemple 8.

- $\sup[a,b]=b$,
- $\inf[a,b] = a$,
- $\sup]a, b[=b,$
-]0,+∞[n'admet pas de borne supérieure,
- $\inf]0, +\infty [= 0.$

Théorème 2 ($\mathbb{R}4$).

Toute partie de \mathbb{R} non vide et majorée admet une borne supérieure.

De la même façon : Toute partie de \mathbb{R} non vide et minorée admet une borne inférieure.

Remarque.

C'est tout l'intérêt de la borne supérieure par rapport à la notion de plus grand élément, dès qu'une partie est bornée elle admet toujours une borne supérieure et une borne inférieure. Ce qui n'est pas le cas pour le plus grand ou plus petit élément. Gardez à l'esprit l'exemple A = [0, 1].

Proposition 5 (Caractérisation de la borne supérieure).

Soit A une partie non vide et majorée de \mathbb{R} . La borne supérieure de A est l'unique réel $\sup A$ tel que

- (i) $si \ x \in A$, $alors \ x \leqslant sup A$,
- (ii) pour tout $y < \sup A$, il existe $x \in A$ tel que y < x

Exemple 9.

Reprenons l'exemple de la partie $A = \{1 - \frac{1}{n} \mid n \in \mathbb{N}^*\}.$

- 1. Nous avions vu que $\min A = 0$. Lorsque le plus petit élément d'une partie existe alors la borne inférieure vaut ce plus petit élément : donc $\inf A = \min A = 0$.
- 2. *Première méthode pour* sup *A*. Montrons que sup A=1 en utilisant la définition de la borne supérieure. Soit M un majorant de A alors $M\geqslant 1-\frac{1}{n}$, pour tout $n\geqslant 1$. Donc à la limite $M\geqslant 1$. Réciproquement si $M\geqslant 1$ alors M est un majorant de A. Donc les majorants sont les éléments de $[1,+\infty[$. Ainsi le plus petit des majorants est 1 et donc sup A=1.
- 3. Deuxième méthode pour $\sup A$. Montrons que $\sup A = 1$ en utilisant la caractérisation de la borne supérieure.
 - (i) Si $x \in A$, alors $x \le 1$ (1 est bien un majorant de A);
 - (ii) pour tout y < 1, il existe $x \in A$ tel que y < x: en effet prenons n suffisamment grand tel que $0 < \frac{1}{n} < 1 y$. Alors on a $y < 1 - \frac{1}{n} < 1$. Donc $x = 1 - \frac{1}{n} \in A$ convient.

Par la caractérisation de la borne supérieure, $\sup A = 1$.

Démonstration.

- 1. Montrons que sup A vérifie ces deux propriétés. La borne supérieure est en particulier un majorant, donc vérifie la première propriété. Pour la seconde, fixons $y < \sup A$. Comme $\sup A$ est le plus petit des majorants de A alors y n'est pas un majorant de A. Donc il existe $x \in A$ tel que y < x. Autrement dit $\sup A$ vérifie également la seconde propriété.
- 2. Montrons que réciproquement si un nombre α vérifie ces deux propriétés, il s'agit de sup A. La première propriété montre que α est un majorant de A. Supposons par l'absurde que α n'est pas le plus petit des majorants. Il existe donc un autre majorant y de A vérifiant $y < \alpha$. La deuxième propriété montre l'existence d'un élément x de A tel que y < x, ce qui contredit le fait que y est un majorant de A. Cette contradiction montre donc que α est bien le plus petit des majorants de A, à savoir sup A.

Nous anticipons sur la suite pour donner une autre caractérisation, très utile, de la borne supérieure.

Proposition 6.

Soit A une partie non vide et majorée de R. La borne supérieure de A est l'unique réel sup A tel que

- (i) sup A est un majorant de A,
- (ii) il existe une suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de A qui converge vers sup A.

Remarques historiques

- Les propriétés $\mathbb{R}1$, $\mathbb{R}2$, $\mathbb{R}3$ et le théorème $\mathbb{R}4$ sont intrinsèques à la construction de \mathbb{R} (que nous admettons).
- Il y a un grand saut entre Q et R: on peut donner un sens précis à l'assertion « il y a beaucoup plus de nombres irrationnels que de nombres rationnels », bien que ces deux ensembles soient infinis, et même denses dans R.
 D'autre part, la construction du corps des réels R est beaucoup plus récente que celle de Q dans l'histoire des mathématiques.
- La construction de ℝ devient une nécessité après l'introduction du calcul infinitésimal (Newton et Leibniz vers 1670). Jusqu'alors l'existence d'une borne supérieure était considérée comme évidente et souvent confondue avec le plus grand élément.
- Ce n'est pourtant que beaucoup plus tard, dans les années 1860-1870 (donc assez récemment dans l'histoire des mathématiques) que deux constructions complètes de ℝ sont données :
 - Les coupures de Dedekind : \mathscr{C} est une coupure si $\mathscr{C} \subset \mathbb{Q}$ et si $\forall r \in \mathscr{C}$ on a $r' < r \implies r' \in \mathscr{C}$.
 - Le suites de Cauchy : ce sont les suites $(u_n)_{n\in\mathbb{N}}$ vérifiant la propriété

$$\forall \epsilon > 0 \ \exists N \in \mathbb{N} \qquad (m \geqslant N \ , n \geqslant N) \Longrightarrow |u_m - u_n| \leqslant \epsilon \ .$$

Les réels sont l'ensemble des suites de Cauchy (où l'on identifie deux suites de Cauchy dont la différence tend vers 0).

Mini-exercices.

- 1. Soit *A* une partie de \mathbb{R} . On note $-A = \{-x | x \in A\}$. Montrer que min $A = -\max(-A)$, c'est-à-dire que si l'une des deux quantités a un sens, l'autre aussi, et on a égalité.
- 2. Soit *A* une partie de \mathbb{R} . Montrer que *A* admet un plus petit élément si et seulement si *A* admet une borne inférieure qui appartient à *A*.
- 3. Même exercice, mais en remplaçant min par inf et max par sup.
- 4. Soit $A = \{(-1)^n \frac{n}{n+1} \mid n \in \mathbb{N}\}$. Déterminer, s'ils existent, le plus grand élément, le plus petit élément, les majorants, les minorants, la borne supérieure et la borne inférieure.
- 5. Même question avec $A = \left\{ \frac{1}{1+x} \mid x \in [0, +\infty[\right\}.$

Propriétés de $\mathbb R$

1 Les rationnels \mathbb{Q}

Exercice 1

- 1. Démontrer que si $r \in \mathbb{Q}$ et $x \notin \mathbb{Q}$ alors $r + x \notin \mathbb{Q}$ et si $r \neq 0$ alors $r.x \notin \mathbb{Q}$.
- 2. Montrer que $\sqrt{2} \notin \mathbb{Q}$,
- 3. En déduire : entre deux nombres rationnels il y a toujours un nombre irrationnel.

Indication ▼ Correction ▼ Vidéo ■ [000451]

Exercice 2

Montrer que $\frac{\ln 3}{\ln 2}$ est irrationnel.

Indication ▼ Correction ▼ Vidéo ■ [000461]

Exercice 3

- 1. Soit $N_n = 0, 1997 \, 1997 \dots 1997 \, (n \text{ fois})$. Mettre N_n sous la forme $\frac{p}{q}$ avec $p, q \in \mathbb{N}^*$.
- 2. Soit $M = 0, 1997 1997 1997 \dots$ Donner le rationnel dont l'écriture décimale est M.
- 3. Même question avec : P = 0,11111...+0,22222...+0,33333...+0,44444...+0,55555...+0,66666...+0,77777...+0,88888...+0,99999...

Indication ▼ Correction ▼ Vidéo ■ [000459]

Exercice 4

Soit $p(x) = \sum_{i=0}^{n} a_i \cdot x^i$. On suppose que tous les a_i sont des entiers.

- 1. Montrer que si p a une racine rationnelle $\frac{\alpha}{\beta}$ (avec α et β premiers entre eux) alors α divise a_0 et β divise a_n .
- 2. On considère le nombre $\sqrt{2} + \sqrt{3}$. En calculant son carré, montrer que ce carré est racine d'un polynôme de degré 2. En déduire, à l'aide du résultat précédent qu'il n'est pas rationnel.

Indication ▼ Correction ▼ Vidéo ■ [000457

2 Maximum, minimum, borne supérieure...

Exercice 5

Le maximum de deux nombres x, y (c'est-à-dire le plus grand des deux) est noté $\max(x, y)$. De même on notera $\min(x, y)$ le plus petit des deux nombres x, y. Démontrer que :

$$\max(x,y) = \frac{x+y+|x-y|}{2}$$
 et $\min(x,y) = \frac{x+y-|x-y|}{2}$.

Trouver une formule pour $\max(x, y, z)$.

Indication ▼ Correction ▼ Vidéo ■ [000464]

Exercice 6

Déterminer la borne supérieure et inférieure (si elles existent) de : $A = \{u_n \mid n \in \mathbb{N}\}$ en posant $u_n = 2^n$ si n est pair et $u_n = 2^{-n}$ sinon.

Indication ▼

Correction ▼

Vidéo 📕

[000465]

Exercice 7

Déterminer (s'ils existent) : les majorants, les minorants, la borne supérieure, la borne inférieure, le plus grand élément, le plus petit élément des ensembles suivants :

$$[0,1] \cap \mathbb{Q} , \quad]0,1[\cap \mathbb{Q} , \quad \mathbb{N} , \quad \left\{ (-1)^n + \frac{1}{n^2} \mid n \in \mathbb{N}^* \right\}.$$

Correction ▼

Vidéo 📕

[000466]

Exercice 8

Soient *A* et *B* deux parties bornées de \mathbb{R} . On note $A + B = \{a + b \mid (a, b) \in A \times B\}$.

- 1. Montrer que $\sup A + \sup B$ est un majorant de A + B.
- 2. Montrer que $\sup(A+B) = \sup A + \sup B$.

Indication ▼

 $\texttt{Correction} \; \blacktriangledown$

Vidéo

[000476]

Exercice 9

Soit A et B deux parties bornées de \mathbb{R} . Vrai ou faux?

- 1. $A \subset B \Rightarrow \sup A \leqslant \sup B$,
- 2. $A \subset B \Rightarrow \inf A \leqslant \inf B$,
- 3. $\sup(A \cup B) = \max(\sup A, \sup B)$,
- 4. $\sup(A+B) < \sup A + \sup B$,
- 5. $\sup(-A) = -\inf A$,
- 6. $\sup A + \inf B \leq \sup (A + B)$.

Indication ▼

Correction ▼

Vidéo

[000477]

3 Divers

Exercice 10

Soit x un réel.

- 1. Donner l'encadrement qui définit la partie entière E(x).
- 2. Soit $(u_n)_{n\in\mathbb{N}^*}$ la suite définie par $u_n=\frac{E(x)+E(2x)+\ldots+E(nx)}{n^2}$. Donner un encadrement simple de $n^2\times u_n$, qui utilise $\sum_{k=1}^n k$.
- 3. En déduire que (u_n) converge et calculer sa limite.
- 4. En déduire que \mathbb{Q} est dense dans \mathbb{R} .

Indication ▼

Correction ▼

Vidéo 📕

[005982]

Exercice 11

Soit $f: \mathbb{R} \to \mathbb{R}$ telle que

$$\forall (x,y) \in \mathbb{R}^2 \quad f(x+y) = f(x) + f(y).$$

Montrer que

```
1. \forall n \in \mathbb{N}  f(n) = n \cdot f(1).
```

2.
$$\forall n \in \mathbb{Z}$$
 $f(n) = n \cdot f(1)$.

3.
$$\forall q \in \mathbb{Q}$$
 $f(q) = q \cdot f(1)$.

4. $\forall x \in \mathbb{R}$ $f(x) = x \cdot f(1)$ si f est croissante.

Vidéo 🔳

Indication ▼ Correction ▼

[000497]

Indication pour l'exercice 1 A

- 1. Raisonner par l'absurde.
- 2. Raisonner par l'absurde en écrivant $\sqrt{2} = \frac{p}{q}$ avec p et q premiers entre eux. Ensuite plusieurs méthodes sont possibles par exemple essayer de montrer que p et q sont tous les deux pairs.
- 3. Considérer $r + \frac{\sqrt{2}}{2}(r' r)$ (faites un dessin!) pour deux rationnels r, r'. Puis utiliser les deux questions précédentes.

Indication pour l'exercice 2 ▲

Raisonner par l'absurde!

Indication pour l'exercice 3 ▲

- 1. Mutiplier N_n par une puissance de 10 suffisament grande pour obtenir un nombre entier.
- 2. Mutiplier *M* par une puissance de 10 suffisament grande (pas trop grande) puis soustraire *M* pour obtenir un nombre entier.

Indication pour l'exercice 4 A

- 1. Calculer $\beta^n p(\frac{\alpha}{\beta})$ et utiliser le lemme de Gauss.
- 2. Utiliser la première question avec $p(x) = (x^2 5)^2 24$.

Indication pour l'exercice 5 ▲

Distinguer des cas.

Indication pour l'exercice 6 ▲

 $\inf A = 0$, A n'a pas de borne supérieure.

Indication pour l'exercice 8 ▲

Il faut revenir à la définition de la borne supérieure d'un ensemble borné : c'est le plus petit des majorants. En particulier la borne supérieure est un majorant.

Indication pour l'exercice 9 A

Deux propositions sont fausses...

Indication pour l'exercice 10 ▲

- 1. Rappelez-vous que la partie entière de x est le plus grand entier, inférieur ou égal à x. Mais il est ici préférable de donner la définition de E(x) en disant que $E(x) \in \mathbb{Z}$ et que x vérifie un certain encadrement...
- 2. Encadrer E(kx), pour k = 1, ..., n.
- 3. Rappelez-vous d'abord de la formule $1+2+\cdots+n$ puis utilisez le fameux théorème des gendarmes.
- 4. Les u_n ne seraient-ils pas des rationnels?

Indication pour l'exercice 11 ▲

- 1. $f(2) = f(1+1) = \cdots$, faire une récurrence.
- 2. $f((-n)+n) = \cdots$.

- 3. Si $q = \frac{a}{b}$, calculer $f(\frac{a}{b} + \frac{a}{b} + \dots + \frac{a}{b})$ avec b termes dans cette somme.
- 4. Utiliser la densité de \mathbb{Q} dans \mathbb{R} : pour $x \in \mathbb{R}$ fixé, prendre une suite de rationnels qui croit vers x, et une autre qui décroit vers x.

Correction de l'exercice 1 ▲

1. Soit $r = \frac{p}{q} \in \mathbb{Q}$ et $x \notin \mathbb{Q}$. Par l'absurde supposons que $r + x \in \mathbb{Q}$ alors il existe deux entiers p', q' tels que $r + x = \frac{p'}{q'}$. Donc $x = \frac{p'}{q'} - \frac{p}{q} = \frac{qp' - pq'}{qq'} \in \mathbb{Q}$ ce qui est absurde car $x \notin \mathbb{Q}$.

De la même façon si $r \cdot x \in \mathbb{Q}$ alors $r \cdot x = \frac{p'}{q'}$ Et donc $x = \frac{p'}{q'} \frac{q}{p}$. Ce qui est absurde.

2. *Méthode* "classique". Supposons, par l'absurde, que $\sqrt{2} \in \mathbb{Q}$ alors il existe deux entiers p,q tels que $\sqrt{2} = \frac{p}{q}$. De plus nous pouvons supposer que la fraction est irréductible (p et q sont premiers entre eux). En élevant l'égalité au carré nous obtenons $q^2 \times 2 = p^2$. Donc p^2 est un nombre pair, cela implique que p est un nombre pair (si vous n'êtes pas convaincu écrivez la contraposée "p impair $\Rightarrow p^2$ impair"). Donc $p = 2 \times p'$ avec $p' \in \mathbb{N}$, d'où $p^2 = 4 \times p'^2$. Nous obtenons $q^2 = 2 \times p'^2$. Nous en déduisons maintenant que q^2 est pair et comme ci-dessus que q est pair. Nous obtenons ainsi une contradiction car p et q étant tous les deux pairs la fraction $\frac{p}{q}$ n'est pas irréductible et aurait pu être simplifiée. Donc $\sqrt{2} \notin \mathbb{Q}$.

Autre méthode. Supposons par l'absurde que $\sqrt{2} \in \mathbb{Q}$. Alors $\sqrt{2} = \frac{p}{q}$ pour deux entiers $p, q \in \mathbb{N}^*$. Alors nous avons $q \cdot \sqrt{2} \in \mathbb{N}$. Considérons l'ensemble suivant :

$$\mathscr{N} = \left\{ n \in \mathbb{N}^* \mid n \cdot \sqrt{2} \in \mathbb{N} \right\}.$$

Cet ensemble \mathcal{N} est une partie de \mathbb{N}^* qui est non vide car $q \in \mathcal{N}$. On peut alors prendre le plus petit élément de $\mathcal{N}: n_0 = \min \mathcal{N}$. En particulier $n_0 \cdot \sqrt{2} \in \mathbb{N}$. Définissons maintenant n_1 de la façon suivante : $n_1 = n_0 \cdot \sqrt{2} - n_0$. Il se trouve que n_1 appartient aussi à \mathcal{N} car d'une part $n_1 \in \mathbb{N}$ (car n_0 et $n_0 \cdot \sqrt{2}$ sont des entiers) et d'autre part $n_1 \cdot \sqrt{2} = n_0 \cdot 2 - n_0 \cdot \sqrt{2} \in \mathbb{N}$. Montrons maintenant que n_1 est plus petit que n_0 . Comme $0 < \sqrt{2} - 1 < 1$ alors $n_1 = n_0(\sqrt{2} - 1) < n_0$ et est non nul.

Bilan: nous avons trouvé $n_1 \in \mathcal{N}$ strictement plus petit que $n_0 = \min \mathcal{N}$. Ceci fournit une contradiction. Conclusion: $\sqrt{2}$ n'est pas un nombre rationnel.

3. Soient r, r' deux rationnels avec r < r'. Notons $x = r + \frac{\sqrt{2}}{2}(r' - r)$. D'une part $x \in]r, r'[$ (car $0 < \frac{\sqrt{2}}{2} < 1$) et d'après les deux premières questions $\sqrt{2}\left(\frac{r' - r}{2}\right) \notin \mathbb{Q}$ donc $x \notin \mathbb{Q}$. Et donc x est un nombre irrationnel compris entre r et r'.

Correction de l'exercice 2 A

Par l'absurde supposons que $\frac{\ln 3}{\ln 2}$ soit un rationnel. Il s'écrit alors $\frac{p}{q}$ avec $p\geqslant 0, q>0$ des entiers. On obtient $q\ln 3=p\ln 2$. En prenant l'exponentielle nous obtenons : $\exp(q\ln 3)=\exp(p\ln 2)$ soit $3^q=2^p$. Si $p\geqslant 1$ alors 2 divise 3^q donc 2 divise 3, ce qui est absurde. Donc p=0. Ceci nous conduit à l'égalité $3^q=1$, donc q=0. La seule solution possible est p=0, q=0. Ce qui contredit $q\neq 0$. Donc $\frac{\ln 3}{\ln 2}$ est irrationnel.

Correction de l'exercice 3 ▲

- 1. Soit p = 19971997...1997 et $q = 100000000...0000 = 10^{4n}$. Alors $N_n = \frac{p}{q}$.
- 2. Remarquons que $10\,000 \times M = 1997, 1997\,1997\dots$ Alors $10\,000 \times M M = 1997$; donc $9999 \times M = 1997$ d'où $M = \frac{1997}{9999}$.
- 3. $0,111...=\frac{1}{9},0,222...=\frac{2}{9}$, etc. D'où $P=\frac{1}{9}+\frac{2}{9}+\cdots+\frac{9}{9}=\frac{1+2+\cdots+9}{9}=\frac{45}{9}=5$.

Correction de l'exercice 4 A

1. Soit $\frac{\alpha}{\beta} \in \mathbb{Q}$ avec $\operatorname{pgcd}(\alpha, \beta) = 1$. Pour $p(\frac{\alpha}{\beta}) = 0$, alors $\sum_{i=0}^{n} a_i \left(\frac{\alpha}{\beta}\right)^i = 0$. Après multiplication par β^n nous obtenons l'égalité suivante :

$$a_n\alpha^n + a_{n-1}\alpha^{n-1}\beta + \dots + a_1\alpha\beta^{n-1} + a_0\beta^n = 0.$$

En factorisant tous les termes de cette somme sauf le premier par β , nous écrivons $a_n\alpha^n + \beta q = 0$. Ceci entraı̂ne que β divise $a_n\alpha^n$, mais comme β et α^n sont premier entre eux alors par le lemme de Gauss

 β divise a_n . De même en factorisant par α tous les termes de la somme ci-dessus, sauf le dernier, nous obtenons $\alpha q' + a_0 \beta^n = 0$ et par un raisonnement similaire α divise a_0 .

2. Notons $\gamma = \sqrt{2} + \sqrt{3}$. Alors $\gamma^2 = 5 + 2\sqrt{2}\sqrt{3}$ Et donc $(\gamma^2 - 5)^2 = 4 \times 2 \times 3$, Nous choisissons $p(x) = (x^2 - 5)^2 - 24$, qui s'écrit aussi $p(x) = x^4 - 10x^2 + 1$. Vu notre choix de p, nous avons $p(\gamma) = 0$. Si nous supposons que γ est rationnel, alors $\gamma = \frac{\alpha}{\beta}$ et d'après la première question α divise le terme constant de p, c'est-à-dire 1. Donc $\alpha = \pm 1$. De même β divise le coefficient du terme de plus haut degré de p, donc β divise 1, soit $\beta = 1$. Ainsi $\gamma = \pm 1$, ce qui est évidemment absurde!

Correction de l'exercice 5

Explicitons la formule pour $\max(x,y)$. Si $x \ge y$, alors |x-y| = x-y donc $\frac{1}{2}(x+y+|x-y|) = \frac{1}{2}(x+y+x-y) = x$. De même si $x \le y$, alors |x-y| = -x+y donc $\frac{1}{2}(x+y+|x-y|) = \frac{1}{2}(x+y-x+y) = y$.

Pour trois éléments, nous avons $\max(x, y, z) = \max(\max(x, y), z)$, donc d'après les formules pour deux éléments :

$$\begin{aligned} \max(x, y, z) &= \frac{\max(x, y) + z + |\max(x, y) - z|}{2} \\ &= \frac{\frac{1}{2}(x + y + |x - y|) + z + \left|\frac{1}{2}(x + y + |x - y|) - z\right|}{2}. \end{aligned}$$

Correction de l'exercice 6

 $(u_{2k})_k$ tend vers $+\infty$ et donc A ne possède pas de majorant, ainsi A n'a pas de borne supérieure (cependant certains écrivent alors $\sup A = +\infty$). D'autre part toutes les valeurs de (u_n) sont positives et $(u_{2k+1})_k$ tend vers 0, donc $\inf A = 0$.

Correction de l'exercice 7 ▲

- 1. $[0,1] \cap \mathbb{Q}$. Les majorants : $[1,+\infty[$. Les minorants : $]-\infty,0]$. La borne supérieure : 1. La borne inférieure : 0. Le plus grand élément : 1. Le plus petit élément 0.
- 2. $]0,1[\cap \mathbb{Q}]$. Les majorants : $[1,+\infty[$. Les minorants : $]-\infty,0]$. La borne supérieure : 1. La borne inférieure : 0. Il nexiste pas de plus grand élément ni de plus petit élément.
- 3. N. Pas de majorants, pas de borne supérieure, ni de plus grand élément. Les minorants : $]-\infty,0]$. La borne inférieure : 0. Le plus petit élément : 0.
- 4. $\left\{(-1)^n + \frac{1}{n^2} \mid n \in \mathbb{N}^*\right\}$. Les majorants : $\left[\frac{5}{4}, +\infty\right[$. Les minorants : $\left]-\infty, -1\right]$. La borne supérieure : $\frac{5}{4}$. La borne inférieure : -1. Le plus grand élément : $\frac{5}{4}$. Pas de plus petit élément.

Correction de l'exercice 8 ▲

- 1. Soient A et B deux parties bornées de \mathbb{R} . On sait que $\sup A$ est un majorant de A, c'est-à-dire, pour tout $a \in A$, $a \le \sup A$. De même, pour tout $b \in B$, $b \le \sup B$. On veut montrer que $\sup A + \sup B$ est un majorant de A + B. Soit donc $x \in A + B$. Cela signifie que x est de la forme a + b pour un $a \in A$ et un $b \in B$. Or $a \le \sup A$, et $b \le \sup B$, donc $x = a + b \le \sup A + \sup B$. Comme ce raisonnement est valide pour tout $x \in A + B$ cela signifie que $\sup A + \sup B$ est un majorant de A + B.
- 2. On veut montrer que, quel que soit $\varepsilon > 0$, $\sup A + \sup B \varepsilon$ n'est pas un majorant de A + B. On prend donc un $\varepsilon > 0$ quelconque, et on veut montrer que $\sup A + \sup B \varepsilon$ ne majore pas A + B. On s'interdit donc dans la suite de modifier ε . Comme $\sup A$ est le plus petit des majorants de A, $\sup A \varepsilon/2$ n'est pas un majorant de A. Cela signifie qu'il existe un élément a de A tel que $a > \sup A \varepsilon/2$. Attention : $\sup A \varepsilon/2$ n'est pas forcément dans A; $\sup A$ non plus. De la même manière, il existe $b \in B$ tel que $b > \sup B \varepsilon/2$. Or l'élément x défini par x = a + b est un élément de A + B, et il vérifie $x > (\sup A \varepsilon/2) + (\sup B \varepsilon/2) = \sup A + \sup B \varepsilon$. Ceci implique que $\sup A + \sup B \varepsilon$ n'est pas un majorant de A + B.

3. $\sup A + \sup B$ est un majorant de A + B d'après la partie 1. Mais, d'après la partie 2., dès qu'on prend un $\varepsilon > 0$, $\sup A + \sup B - \varepsilon$ n'est pas un majorant de A + B. Donc $\sup A + \sup B$ est bien le plus petit des majorants de A + B, c'est donc la borne supérieure de A + B. Autrement dit $\sup(A + B) = \sup A + \sup B$.

Correction de l'exercice 9 A

- 1. Vrai.
- 2. Faux. C'est vrai avec l'hypothèse $B \subset A$ et non $A \subset B$.
- 3. Vrai.
- 4. Faux. Il y a égalité.
- 5. Vrai.
- 6. Vrai.

Correction de l'exercice 10 ▲

1. Par définition est l'unique nombre $E(x) \in \mathbb{Z}$ tel que

$$E(x) \leqslant x < E(x) + 1$$
.

2. Pour le réel kx, (k = 1, ..., n) l'encadrement précédent s'écrit $E(kx) \le kx < E(kx) + 1$. Ces deux inégalités s'écrivent aussi $E(kx) \le kx$ et E(kx) > kx - 1, d'où l'encadrement $kx - 1 < E(kx) \le kx$. On somme cet encadrement, k variant de 1 à n, pour obtenir :

$$\sum_{k=1}^{n} (kx - 1) < \sum_{k=1}^{n} E(kx) \le \sum_{k=1}^{n} kx.$$

Ce qui donne

$$x \cdot \sum_{k=1}^{n} k - n < n^2 \cdot u_n \leqslant x \cdot \sum_{k=1}^{n} k.$$

3. On se rappelle que $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$ donc nous obtenons l'encadrement :

$$x \cdot \frac{1}{n^2} \cdot \frac{n(n+1)}{2} - \frac{1}{n} < u_n \le x \cdot \frac{1}{n^2} \cdot \frac{n(n+1)}{2}.$$

 $\frac{1}{n^2} \cdot \frac{n(n+1)}{2}$ tend vers $\frac{1}{2}$, donc par le théorème des gendarmes (u_n) tend vers $\frac{x}{2}$.

4. Chaque u_n est un rationnel (le numérateur et le dénominateur sont des entiers). Comme la suite (u_n) tend vers $\frac{x}{2}$, alors la suite de rationnels $(2u_n)$ tend vers x. Chaque réel $x \in \mathbb{R}$ peut être approché d'aussi près que l'on veut par des rationnels, donc \mathbb{Q} est dense dans \mathbb{R} .

Correction de l'exercice 11 ▲

- 1. Calculons d'abord f(0). Nous savons f(1) = f(1+0) = f(1) + f(0), donc f(0) = 0. Montrons le résultat demandé par récurrence : pour n = 1, nous avons bien $f(1) = 1 \times f(1)$. Si f(n) = nf(1) alors f(n+1) = f(n) + f(1) = nf(1) + f(1) = (n+1)f(1).
- 2. 0 = f(0) = f(-1+1) = f(-1) + f(1). Donc f(-1) = -f(1). Puis comme ci-dessus f(-n) = nf(-1) = -nf(1).
- 3. Soit $q = \frac{a}{b}$. Alors $f(a) = f(\frac{a}{b} + \frac{a}{b} + \dots + \frac{a}{b}) = f(\frac{a}{b}) + \dots + f(\frac{a}{b})$ (b terms dans ces sommes). Donc $f(a) = bf(\frac{a}{b})$. Soit $af(1) = bf(\frac{a}{b})$. Ce qui s'écrit aussi $f(\frac{a}{b}) = \frac{a}{b}f(1)$.

4. Fixons $x \in \mathbb{R}$. Soit (α_i) une suite croissante de rationnels qui tend vers x. Soit (β_i) une suite décroissante de rationnels qui tend vers x:

$$\alpha_1 \leqslant \alpha_2 \leqslant \alpha_3 \leqslant \ldots \leqslant x \leqslant \cdots \leqslant \beta_2 \leqslant \beta_1.$$

Alors comme $\alpha_i \leqslant x \leqslant \beta_i$ et que f est croissante nous avons $f(\alpha_i) \leqslant f(x) \leqslant f(\beta_i)$. D'après la question précédent cette inéquation devient : $\alpha_i f(1) \leqslant f(x) \leqslant \beta_i f(1)$. Comme (α_i) et (β_i) tendent vers x. Par le "théorème des gendarmes" nous obtenons en passant à la limite : $xf(1) \leqslant f(x) \leqslant xf(1)$. Soit f(x) = xf(1).

Les suites

```
Vidéo ■ partie 1. Premières définitions
Vidéo ■ partie 2. Limite
Vidéo ■ partie 3. Exemples remarquables
Vidéo ■ partie 4. Théorèmes de convergence
Vidéo ■ partie 5. Suites récurrentes
Fiche d'exercices ♦ Suites
```

Introduction

L'étude des suites numériques a pour objet la compréhension de l'évolution de séquences de nombres (réels, complexes ...). Ceci permet de modéliser de nombreux phénomènes de la vie quotidienne. Supposons par exemple que l'on place une somme S à un taux annuel de 10%. Si S_n représente la somme que l'on obtiendra après n années, on a

$$S_0 = S$$
 $S_1 = S \times 1, 1$... $S_n = S \times (1, 1)^n$.

Au bout de n=10 ans, on possédera donc $S_{10}=S\times(1,1)^{10}\approx S\times 2,59$: la somme de départ avec les intérêts cumulés.

1. Définitions

1.1. Définition d'une suite

Définition 1.

- Une *suite* est une application $u : \mathbb{N} \to \mathbb{R}$.
- Pour $n \in \mathbb{N}$, on note u(n) par u_n et on l'appelle n-ème terme ou terme général de la suite.

La suite est notée u, ou plus souvent $(u_n)_{n\in\mathbb{N}}$ ou simplement (u_n) . Il arrive fréquemment que l'on considère des suites définies à partir d'un certain entier naturel n_0 plus grand que 0, on note alors $(u_n)_{n\geq n_0}$.

Exemple 1.

- $(\sqrt{n})_{n\geq 0}$ est la suite de termes : 0, 1, $\sqrt{2}$, $\sqrt{3}$,...
- $((-1)^n)_{n\geqslant 0}$ est la suite qui alterne $+1, -1, +1, -1, \dots$
- La suite $(S_n)_{n\geqslant 0}$ de l'introduction définie par $S_n=S\times (1,1)^n$,
- $(F_n)_{n\geqslant 0}$ définie par $F_0=1$, $F_1=1$ et la relation $F_{n+2}=F_{n+1}+F_n$ pour $n\in\mathbb{N}$ (suite de Fibonacci). Les premiers termes sont 1, 1, 2, 3, 5, 8, 13, ... Chaque terme est la somme des deux précédents.
- $\left(\frac{1}{n^2}\right)_{n\geq 1}$. Les premiers termes sont 1, $\frac{1}{4}$, $\frac{1}{9}$, $\frac{1}{16}$, ...

Les suites ${f 1}.$ Définitions ${f 2}$

1.2. Suite majorée, minorée, bornée

Définition 2.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite.

- $(u_n)_{n\in\mathbb{N}}$ est *majorée* si $\exists M\in\mathbb{R} \ \forall n\in\mathbb{N} \ u_n\leqslant M$.
- $(u_n)_{n\in\mathbb{N}}$ est minorée si $\exists m\in\mathbb{R} \ \forall n\in\mathbb{N} \ u_n\geqslant m$.
- $(u_n)_{n\in\mathbb{N}}$ est bornée si elle est majorée et minorée, ce qui revient à dire :

$$\exists M \in \mathbb{R} \quad \forall n \in \mathbb{N} \quad |u_n| \leq M.$$

1.3. Suite croissante, décroissante

Définition 3.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite.

- $(u_n)_{n\in\mathbb{N}}$ est *croissante* si $\forall n\in\mathbb{N}$ $u_{n+1}\geqslant u_n$.
- $(u_n)_{n\in\mathbb{N}}$ est *strictement croissante* si $\forall n\in\mathbb{N}$ $u_{n+1}>u_n$.
- $(u_n)_{n\in\mathbb{N}}$ est décroissante si $\forall n\in\mathbb{N}$ $u_{n+1}\leqslant u_n$.
- $(u_n)_{n \in \mathbb{N}}$ est strictement décroissante si $\forall n \in \mathbb{N}$ $u_{n+1} < u_n$.
- $(u_n)_{n\in\mathbb{N}}$ est *monotone* si elle est croissante ou décroissante.
- $(u_n)_{n\in\mathbb{N}}$ est *strictement monotone* si elle est strictement croissante ou strictement décroissante.

Voici un exemple d'une suite croissante (mais pas strictement croissante) :

Remarque.

- $(u_n)_{n\in\mathbb{N}}$ est croissante si et seulement si $\forall n\in\mathbb{N}$ $u_{n+1}-u_n\geqslant 0$.
- Si $(u_n)_{n\in\mathbb{N}}$ est une suite à termes strictement positifs, elle est croissante si et seulement si $\forall n\in\mathbb{N}$ $\frac{u_{n+1}}{u_n}\geqslant 1$.

Exemple 2.

- La suite $(S_n)_{n\geqslant 0}$ de l'introduction est strictement croissante car $S_{n+1}/S_n=1, 1>1$.
- La suite $(u_n)_{n\geqslant 1}$ définie par $u_n=(-1)^n/n$ pour $n\geqslant 1$, n'est ni croissante ni décroissante. Elle est majorée par 1/2 (borne atteinte en n=2), minorée par -1 (borne atteinte en n=1).

Les suites 2. Limites 3

• La suite $\left(\frac{1}{n}\right)_{n\geqslant 1}$ est une suite strictement décroissante. Elle est majorée par 1 (borne atteinte pour n=1), elle est minorée par 0 mais cette valeur n'est jamais atteinte.

Mini-exercices.

1. La suite $\left(\frac{n}{n+1}\right)_{n\in\mathbb{N}}$ est-elle monotone ? Est-elle bornée ?

2. La suite $\left(\frac{n\sin(n!)}{1+n^2}\right)_{n\in\mathbb{N}}$ est-elle bornée?

3. Réécrire les phrases suivantes en une phrase mathématique. Écrire ensuite la négation mathématique de chacune des phrases. (a) La suite $(u_n)_{n\in\mathbb{N}}$ est majorée par 7. (b) La suite $(u_n)_{n\in\mathbb{N}}$ est constante. (c) La suite $(u_n)_{n\in\mathbb{N}}$ est strictement positive à partir d'un certain rang. (d) $(u_n)_{n\in\mathbb{N}}$ n'est pas strictement croissante.

4. Est-il vrai qu'une suite croissante est minorée? Majorée?

5. Soit x > 0 un réel. Montrer que la suite $\left(\frac{x^n}{n!}\right)_{n \in \mathbb{N}}$ est décroissante à partir d'un certain rang.

2. Limites

2.1. Introduction

Pour un trajet au prix normal de 20 euros on achète une carte d'abonnement de train à 50 euros et on obtient chaque billet à 10 euros. La publicité affirme « 50% de réduction ». Qu'en pensez-vous ?

Pour modéliser la situation en termes de suites, on pose pour un entier $n \ge 1$:

$$u_n = 20n$$
$$v_n = 10n + 50$$

 u_n est le prix payé au bout de n achats au tarif plein, et v_n celui au tarif réduit, y compris le prix de l'abonnement. La réduction est donc, en pourcentage :

$$1 - \frac{v_n}{u_n} = \frac{u_n - v_n}{u_n} = \frac{10n - 50}{20n} = 0, 5 - \frac{5}{2n} \xrightarrow[n \to +\infty]{} 0, 5$$

Il faut donc une infinité de trajets pour arriver à 50% de réduction!

2.2. Limite finie, limite infinie

Soit $(u_n)_{n\in\mathbb{N}}$ une suite.

Définition 4.

La suite $(u_n)_{n\in\mathbb{N}}$ a pour *limite* $\ell\in\mathbb{R}$ si : pour tout $\epsilon>0$, il existe un entier naturel N tel que si $n\geqslant N$ alors $|u_n-\ell|\leqslant \epsilon$:

$$\forall \epsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n \in \mathbb{N} \qquad (n \geqslant N \implies |u_n - \ell| \leqslant \epsilon)$$

On dit aussi que la suite $(u_n)_{n\in\mathbb{N}}$ tend vers ℓ . Autrement dit : u_n est proche d'aussi près que l'on veut de ℓ , à partir d'un certain rang.

Définition 5.

1. La suite $(u_n)_{n\in\mathbb{N}}$ tend vers $+\infty$ si:

$$\forall A > 0 \quad \exists N \in \mathbb{N} \quad \forall n \in \mathbb{N} \quad (n \geqslant N \Longrightarrow u_n \geqslant A)$$

2. La suite $(u_n)_{n\in\mathbb{N}}$ tend vers $-\infty$ si :

$$\forall A > 0 \quad \exists N \in \mathbb{N} \quad \forall n \in \mathbb{N} \quad (n \geqslant N \Longrightarrow u_n \leqslant -A)$$

Remarque.

- 1. On note $\lim_{n\to+\infty} u_n = \ell$ ou parfois $u_n \xrightarrow[n\to+\infty]{} \ell$, et de même pour une limite $\pm\infty$.
- 2. $\lim_{n\to+\infty} u_n = -\infty \iff \lim_{n\to+\infty} -u_n = +\infty$.
- 3. On raccourcit souvent la phrase logique en :

$$\forall \epsilon > 0 \quad \exists N \in \mathbb{N} \qquad (n \geqslant N \implies |u_n - \ell| \leqslant \epsilon).$$

Noter que N dépend de ϵ et qu'on ne peut pas échanger l'ordre du « pour tout » et du « il existe ».

4. L'inégalité $|u_n - \ell| \le \epsilon$ signifie $\ell - \epsilon \le u_n \le \ell + \epsilon$. On aurait aussi pu définir la limite par la phrase : $\forall \epsilon > 0 \quad \exists N \in \mathbb{N} \quad (n \ge N \implies |u_n - \ell| < \epsilon)$, où l'on a remplacé la dernière inégalité large par une inégalité stricte.

Définition 6.

Une suite $(u_n)_{n\in\mathbb{N}}$ est *convergente* si elle admet une limite *finie*. Elle est *divergente* sinon (c'est-à-dire soit la suite tend vers $\pm \infty$, soit elle n'admet pas de limite).

On va pouvoir parler de *la* limite, si elle existe, car il y a unicité de la limite :

Proposition 1.

Si une suite est convergente, sa limite est unique.

Démonstration. On procède par l'absurde. Soit $(u_n)_{n\in\mathbb{N}}$ une suite convergente ayant deux limites $\ell\neq\ell'$. Choisissons $\epsilon>0$ tel que $\epsilon<\frac{|\ell-\ell'|}{2}$.

Comme $\lim_{n\to+\infty} u_n = \ell$, il existe N_1 tel que $n \geqslant N_1$ implique $|u_n - \ell| < \epsilon$.

De même $\lim_{n\to+\infty} u_n = \ell'$, il existe N_2 tel que $n \geqslant N_2$ implique $|u_n - \ell'| < \epsilon$.

Notons $N = \max(N_1, N_2)$, on a alors pour ce N:

$$|u_N - \ell| < \epsilon$$
 et $|u_N - \ell'| < \epsilon$

2. Limites 5 LES SUITES

Donc $|\ell-\ell'| = |\ell-u_N+u_N-\ell'| \le |\ell-u_N| + |u_N-\ell'|$ d'après l'inégalité triangulaire. On en tire $|\ell-\ell'| \le \epsilon + \epsilon = 2\epsilon < |\ell-\ell'|$. On vient d'aboutir à l'inégalité $|\ell - \ell'| < |\ell - \ell'|$ qui est impossible. Bilan : notre hypothèse de départ est fausse et donc $\ell = \ell'$.

2.3. Propriétés des limites

Proposition 2.

- 1. $\lim_{n \to +\infty} u_n = \ell \iff \lim_{n \to +\infty} (u_n \ell) = 0 \iff \lim_{n \to +\infty} |u_n \ell| = 0,$ 2. $\lim_{n \to +\infty} u_n = \ell \implies \lim_{n \to +\infty} |u_n| = |\ell|.$

Démonstration. Cela résulte directement de la définition.

Proposition 3 (Opérations sur les limites).

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites convergentes.

- 1. $Si \lim_{n \to +\infty} u_n = \ell$, où $\ell \in \mathbb{R}$, alors pour $\lambda \in \mathbb{R}$ on a $\lim_{n \to +\infty} \lambda u_n = \lambda \ell$.
- 2. $Si \lim_{n \to +\infty} u_n = \ell$ et $\lim_{n \to +\infty} v_n = \ell'$, où $\ell, \ell' \in \mathbb{R}$, alors

$$\lim_{n\to+\infty} (u_n + v_n) = \ell + \ell'$$

$$\lim_{n\to+\infty} (u_n \times v_n) = \ell \times \ell'$$

3. Si $\lim_{n\to+\infty} u_n = \ell$ où $\ell \in \mathbb{R}^* = \mathbb{R} \setminus \{0\}$ alors $u_n \neq 0$ pour n assez grand et $\lim_{n\to+\infty} \frac{1}{u_n} = \frac{1}{\ell}$.

Nous ferons la preuve dans la section suivante.

Nous utilisons continuellement ces propriétés, le plus souvent sans nous en rendre compte.

Exemple 3.

Si $u_n \to \ell$ avec $\ell \neq \pm 1$, alors

$$u_n(1-3u_n) - \frac{1}{u_n^2-1} \xrightarrow[n \to +\infty]{} \ell(1-3\ell) - \frac{1}{\ell^2-1}.$$

Proposition 4 (Opérations sur les limites infinies).

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites telles que $\lim_{n\to+\infty}v_n=+\infty$.

- lim_{n→+∞} 1/_{ν_n} = 0
 Si (u_n)_{n∈ℕ} est minorée alors lim_{n→+∞} (u_n + ν_n) = +∞.
 Si (u_n)_{n∈ℕ} est minorée par un nombre λ > 0 alors lim_{n→+∞} (u_n × ν_n) = +∞. 4. Si $\lim_{n\to+\infty} u_n = 0$ et $u_n > 0$ pour n assez grand alors $\lim_{n\to+\infty} \frac{1}{u_n} = +\infty$.

La suite (\sqrt{n}) tend vers $+\infty$, donc la suite $(\frac{1}{\sqrt{n}})$ tend vers 0.

2.4. Des preuves!

Nous n'allons pas tout prouver mais seulement quelques résultats importants. Les autres se démontrent de manière tout à fait semblable.

Commençons par prouver un résultat assez facile (le premier point de la proposition 4) :

«
$$Si$$
 $\lim u_n = +\infty$ $alors$ $\lim \frac{1}{u_n} = 0$. »

 $Dcute{e}monstration.$ Fixons $\epsilon>0$. Comme $\lim_{n\to+\infty}u_n=+\infty$, il existe un entier naturel N tel que $n\geqslant N$ implique $u_n\geqslant \frac{1}{\epsilon}.$ On obtient alors $0\leqslant \frac{1}{u_n}\leqslant \epsilon$ pour $n\geqslant N$. On a donc montré que $\lim_{n\to+\infty}\frac{1}{u_n}=0.$

Afin de prouver que la limite d'un produit est le produit des limites nous aurons besoin d'un peu de travail.

Proposition 5.

Toute suite convergente est bornée.

Les suites 2. Limites 6

Démonstration. Soit $(u_n)_{n\in\mathbb{N}}$ une suite convergeant vers le réel ℓ . En appliquant la définition de limite (définition 4) avec $\epsilon = 1$, on obtient qu'il existe un entier naturel N tel que pour $n \ge N$ on ait $|u_n - \ell| \le 1$, et donc pour $n \ge N$ on a

$$|u_n| = |\ell + (u_n - \ell)| \le |\ell| + |u_n - \ell| \le |\ell| + 1.$$

Donc si on pose

$$M = \max(|u_0|, |u_1|, \cdots, |u_{N-1}|, |\ell| + 1)$$

on a alors $\forall n \in \mathbb{N} \ |u_n| \leq M$.

Proposition 6.

Si la suite $(u_n)_{n\in\mathbb{N}}$ est bornée et $\lim_{n\to+\infty} v_n = 0$ alors $\lim_{n\to+\infty} (u_n \times v_n) = 0$.

Exemple 5.

Si $(u_n)_{n\geqslant 1}$ est la suite donnée par $u_n=\cos(n)$ et $(v_n)_{n\geqslant 1}$ est celle donnée par $v_n=\frac{1}{\sqrt{n}}$, alors $\lim_{n\to+\infty}(u_nv_n)=0$.

Démonstration. La suite $(u_n)_{n\in\mathbb{N}}$ est bornée, on peut donc trouver un réel M>0 tel que pour tout entier naturel n on ait $|u_n|\leqslant M$. Fixons $\epsilon>0$. On applique la définition de limite (définition 4) à la suite $(v_n)_{n\in\mathbb{N}}$ pour $\epsilon'=\frac{\epsilon}{M}$. Il existe donc un entier naturel N tel que $n\geqslant N$ implique $|v_n|\leqslant \epsilon'$. Mais alors pour $n\geqslant N$ on a :

$$|u_n v_n| = |u_n||v_n| \leqslant M \times \epsilon' = \epsilon.$$

On a bien montré que $\lim_{n\to+\infty} (u_n \times v_n) = 0$.

Prouvons maintenant la formule concernant le produit de deux limites (voir proposition 3).

«
$$Si \quad \lim u_n = \ell \quad et \quad \lim v_n = \ell' \quad alors \quad \lim u_n v_n = \ell \ell'$$
. »

Démonstration de la formule concernant le produit de deux limites. Le principe est d'écrire :

$$u_n v_n - \ell \ell' = (u_n - \ell) v_n + \ell (v_n - \ell')$$

D'après la proposition 6, la suite de terme général $\ell(\nu_n - \ell')$ tend vers 0. Par la même proposition il en est de même de la suite de terme général $(u_n - \ell)\nu_n$, car la suite convergente $(\nu_n)_{n \in \mathbb{N}}$ est bornée. On conclut que $\lim_{n \to +\infty} (u_n \nu_n - \ell \ell') = 0$, ce qui équivaut à $\lim_{n \to +\infty} u_n \nu_n = \ell \ell'$.

2.5. Formes indéterminées

Dans certaines situations, on ne peut rien dire à priori sur la limite, il faut faire une étude au cas par cas.

Exemple 6.

1. « $+\infty-\infty$ » Cela signifie que si $u_n \to +\infty$ et $v_n \to -\infty$ il faut faire faire l'étude en fonction de chaque suite pour déterminer $\lim (u_n + v_n)$ comme le prouve les exemples suivants.

$$\lim_{n \to +\infty} (e^n - \ln(n)) = +\infty$$

$$\lim_{n \to +\infty} (n - n^2) = -\infty$$

$$\lim_{n \to +\infty} \left(\left(n + \frac{1}{n} \right) - n \right) = 0$$

Les suites 2. Limites 7

2. « $0 \times \infty$ »

$$\lim_{n \to +\infty} \frac{1}{\ln n} \times e^n = +\infty$$

$$\lim_{n \to +\infty} \frac{1}{n} \times \ln n = 0$$

$$\lim_{n \to +\infty} \frac{1}{n} \times (n+1) = 1$$

3. «
$$\frac{\infty}{\infty}$$
», « $\frac{0}{0}$ », « 1^{∞} », ...

2.6. Limite et inégalités

Proposition 7.

1. Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites convergentes telles que : $\forall n\in\mathbb{N}$, $u_n\leqslant v_n$. Alors

$$\lim_{n\to+\infty}u_n\leqslant\lim_{n\to+\infty}v_n$$

- 2. Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites telles que $\lim_{n\to+\infty}u_n=+\infty$ et $\forall n\in\mathbb{N},\ v_n\geqslant u_n$. Alors $\lim_{n\to+\infty}v_n=+\infty$.
- 3. Théorème des « gendarmes » : si $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ sont trois suites telles que

$$\forall n \in \mathbb{N} \quad u_n \leqslant v_n \leqslant w_n$$

et $\lim_{n\to+\infty} u_n = \ell = \lim_{n\to+\infty} w_n$, alors la suite $(v_n)_{n\in\mathbb{N}}$ est convergente et $\lim_{n\to+\infty} v_n = \ell$.

Remarque.

- 1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite convergente telle que : $\forall n\in\mathbb{N}, u_n\geqslant 0$. Alors $\lim_{n\to+\infty}u_n\geqslant 0$.
- 2. Attention, si $(u_n)_{n\in\mathbb{N}}$ est une suite convergente telle que : $\forall n\in\mathbb{N}, u_n>0$, on ne peut affirmer que la limite est strictement positive mais seulement que $\lim_{n\to+\infty}u_n\geqslant 0$. Par exemple la suite $(u_n)_{n\in\mathbb{N}}$ donnée par $u_n=\frac{1}{n+1}$ est à termes strictement positifs, mais converge vers zéro.

Démonstration de la proposition 7.

1. En posant $w_n = v_n - u_n$, on se ramène à montrer que si une suite $(w_n)_{n \in \mathbb{N}}$ vérifie $\forall n \in \mathbb{N}, w_n \geqslant 0$ et converge, alors $\lim_{n \to +\infty} w_n \geqslant 0$. On procède par l'absurde en supposant que $\ell = \lim_{n \to +\infty} w_n < 0$. En prenant $\epsilon = |\frac{\ell}{2}|$ dans la définition de limite (définition 4), on obtient qu'il existe un entier naturel N tel que $n \geqslant N$ implique $|w_n - \ell| < \epsilon = -\frac{\ell}{2}$. En particulier on a pour $n \geqslant N$ que $w_n < \ell - \frac{\ell}{2} = \frac{\ell}{2} < 0$, une contradiction.

- 2. Laissé en exercice.
- 3. En soustrayant la suite $(u_n)_{n\in\mathbb{N}}$, on se ramène à montrer l'énoncé suivant : si $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont deux suites telles que : $\forall n\in\mathbb{N}$, $0\leqslant u_n\leqslant v_n$ et $\lim_{n\to+\infty}v_n=0$, alors (u_n) converge et $\lim_{n\to+\infty}u_n=0$. Soit $\epsilon>0$ et N un entier naturel tel que $n\geqslant N$ implique $|v_n|<\epsilon$. Comme $|u_n|=u_n\leqslant v_n=|v_n|$, on a donc : $n\geqslant N$ implique $|u_n|<\epsilon$. On a bien montré que $\lim_{n\to+\infty}u_n=0$.

Exemple 7 (Exemple d'application du théorème des « gendarmes »).

Trouver la limite de la suite $(u_n)_{n\in\mathbb{N}}$ de terme général :

$$u_n = 2 + \frac{(-1)^n}{1 + n + n^2}$$

Mini-exercices.

- 1. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_n=\frac{2n+1}{n+2}$. En utilisant la définition de la limite montrer que $\lim_{n\to+\infty}u_n=2$. Trouver explicitement un rang à partir duquel 1,999 $\leqslant u_n \leqslant 2,001$.
- 2. Déterminer la limite ℓ de la suite $(u_n)_{n\in\mathbb{N}^*}$ de terme général : $\frac{n+\cos n}{n-\sin n}$ et trouver un entier N tel que si $n\geqslant N$, on ait $|u_n - \ell| \le 10^{-2}$.
- 3. La suite $(u_n)_{n\in\mathbb{N}}$ de terme général $(-1)^n e^n$ admet-elle une limite? Et la suite de terme général $\frac{1}{u_n}$?
- 4. Déterminer la limite de la suite $(u_n)_{n\geqslant 1}$ de terme général $\sqrt{n+1}-\sqrt{n}$. Idem avec $v_n=\frac{\cos n}{\sin n+\ln n}$. Idem avec

3. Exemples remarquables

3.1. Suite géométrique

Proposition 8 (Suite géométrique).

On fixe un réel a. Soit $(u_n)_{n\in\mathbb{N}}$ la suite de terme général : $u_n=a^n$.

- Si a = 1, on a pour tout n ∈ N : u_n = 1.
 Si a > 1, alors lim_{n→+∞} u_n = +∞.
 Si -1 < a < 1, alors lim_{n→+∞} u_n = 0.

- 4. Si $a \leq -1$, la suite $(u_n)_{n \in \mathbb{N}}$ diverge.

Démonstration.

- 1. est évident.
- 2. Écrivons a=1+b avec b>0. Alors le binôme de Newton s'écrit $a^n=(1+b)^n=1+nb+\binom{n}{2}b^2+\cdots+\binom{n}{k}b^k+\cdots+b^n$. Tous les termes sont positifs, donc pour tout entier naturel n on a : $a^n \ge 1 + nb$. Or $\lim_{n \to +\infty} (1 + nb) = +\infty$ car b > 0. On en déduit que $\lim_{n \to +\infty} a^n = +\infty$.
- 3. Si a=0, le résultat est clair. Sinon, on pose $b=|\frac{1}{a}|$. Alors b>1 et d'après le point précédent $\lim_{n\to+\infty}b^n=+\infty$. Comme pour tout entier naturel n on $a:|a|^n=\frac{1}{h^n}$, on en déduit que $\lim_{n\to+\infty}|a|^n=0$, et donc aussi $\lim_{n\to+\infty}a^n=0$.
- 4. Supposons par l'absurde que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers le réel ℓ . De $a^2\geqslant 1$, on déduit que pour tout entier naturel n, on a $a^{2n} \geqslant 1$. En passant à la limite, il vient $\ell \geqslant 1$. Comme de plus pour tout entier naturel n on a $a^{2n+1}\leqslant a\leqslant -1$, il vient en passant de nouveau à la limite $\ell\leqslant -1$. Mais comme on a déjà $\ell\geqslant 1$, on obtient une contradiction, et donc (u_n) ne converge pas.

3.2. Série géométrique

Proposition 9 (Série géométrique).

Soit a un réel, $a \neq 1$. En notant $\sum_{k=0}^{n} a^k = 1 + a + a^2 + \cdots + a^n$, on a:

$$\sum_{k=0}^{n} a^k = \frac{1 - a^{n+1}}{1 - a}$$

Démonstration. En multipliant par 1-a on fait apparaître une somme télescopique (presque tous les termes s'annulent):

$$(1-a)(1+a+a^2+\cdots+a^n) = (1+a+a^2+\cdots+a^n) - (a+a^2+\cdots+a^{n+1}) = 1-a^{n+1}.$$

Remarque.

Si $a \in]-1,1[$ et $(u_n)_{n \in \mathbb{N}}$ est la suite de terme général : $u_n = \sum_{k=0}^n a^k$, alors $\lim_{n \to +\infty} u_n = \frac{1}{1-a}$. De manière plus frappante, on peut écrire :

$$1 + a + a^2 + a^3 + \dots = \frac{1}{1 - a}$$

Enfin, ces formules sont aussi valables si $a \in \mathbb{C} \setminus \{1\}$. Si a = 1, alors $1 + a + a^2 + \cdots + a^n = n + 1$.

Exemple 8.

L'exemple précédent avec $a = \frac{1}{2}$ donne

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = 2.$$

 $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots=2.$ Cette formule était difficilement concevable avant l'avènement du calcul infinitésimal et a été popularisée sous le nom du paradoxe de Zénon. On tire une flèche à 2 mètres d'une cible. Elle met un certain laps de temps pour parcourir la moitié de la distance, à savoir un mètre. Puis il lui faut encore du temps pour parcourir la moitié de la distance restante, et de nouveau un certain temps pour la moitié de la distance encore restante. On ajoute ainsi une infinité de durées non nulles, et Zénon en conclut que la flèche n'atteint jamais sa cible!

L'explication est bien donnée par l'égalité ci-dessus : la somme d'une infinité de termes peut bien être une valeur finie!! Par exemple si la flèche va à une vitesse de 1 m/s, alors elle parcoure la première moitié en 1 s, le moitié de la distance restante en $\frac{1}{2}$ s, etc. Elle parcoure bien toute la distance en $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots = 2$ secondes!

3.3. Suites telles que $\left|\frac{u_{n+1}}{u_n}\right| < \ell < 1$

Théorème 1.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels non nuls. On suppose qu'il existe un réel ℓ tel que pour tout entier naturel n (ou seulement à partir d'un certain rang) on ait :

$$\left|\frac{u_{n+1}}{u_n}\right| < \ell < 1.$$

Alors $\lim_{n\to+\infty} u_n = 0$.

Démonstration. On suppose que la propriété $\left|\frac{u_{n+1}}{u_n}\right| < \ell < 1$ est vraie pour tout entier naturel n (la preuve dans le cas où cette propriété n'est vraie qu'à partir d'un certain rang n'est pas très différente). On écrit

$$\frac{u_n}{u_0} = \frac{u_1}{u_0} \times \frac{u_2}{u_1} \times \frac{u_3}{u_2} \times \dots \times \frac{u_n}{u_{n-1}}$$

ce dont on déduit

$$\left|\frac{u_n}{u_0}\right| < \ell \times \ell \times \ell \times \cdots \times \ell = \ell^n$$

et donc $|u_n| < |u_0|\ell^n$. Comme $\ell < 1$, on a $\lim_{n \to +\infty} \ell^n = 0$. On conclut que $\lim_{n \to +\infty} u_n = 0$.

Corollaire 1.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels non nuls.

$$Si \lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = 0$$
, alors $\lim_{n \to +\infty} u_n = 0$.

Exemple 9.

Soit $a \in \mathbb{R}$. Alors $\lim_{n \to +\infty} \frac{a^n}{n!} = 0$.

Démonstration. Si a=0, le résultat est évident. Supposons $a\neq 0$, et posons $u_n=\frac{a^n}{n!}$. Alors

$$\frac{u_{n+1}}{u_n} = \frac{a^{n+1}}{(n+1)!} \cdot \frac{n!}{a^n} = \frac{a}{n+1}.$$

Pour conclure, on peut ou bien directement utiliser le corollaire : comme $\lim \frac{u_{n+1}}{u_n} = 0$ (car a est fixe), on a $\lim u_n = 0$. Ou bien, comme $\frac{u_{n+1}}{u_n} = \frac{a}{n+1}$, on déduit par le théorème que pour $n \geqslant N > 2|a|$ on a :

$$\left| \frac{u_{n+1}}{u_n} \right| = \frac{|a|}{n+1} \leqslant \frac{|a|}{N+1} < \frac{|a|}{N} < \frac{1}{2} = \ell$$

et donc $\lim_{n\to+\infty} u_n = 0$.

Remarque.

- 1. Avec les notations du théorème, si on a pour tout entier naturel n à partir d'un certain rang : $\left|\frac{u_{n+1}}{u_n}\right| > \ell > 1$, alors la suite $(u_n)_{n \in \mathbb{N}}$ diverge. En effet, il suffit d'appliquer le théorème à la suite de terme général $\frac{1}{|u_n|}$ pour voir que $\lim_{n \to +\infty} |u_n| = +\infty$.
- 2. Toujours avec les notations du théorème, si $\ell=1$ on ne peut rien dire.

Exemple 10.

Pour un nombre réel a, a > 0, calculer $\lim_{n \to +\infty} \sqrt[n]{a}$.

On va montrer que $\lim_{n\to+\infty} \sqrt[n]{a} = 1$. Si a=1, c'est clair. Supposons a>1. Écrivons a=1+h, avec h>0. Comme

$$\left(1 + \frac{h}{n}\right)^n \geqslant 1 + n\frac{h}{n} = 1 + h = a$$

(voir la preuve de la proposition 8) on a en appliquant la fonction racine *n*-ème, $\sqrt[n]{\cdot}$:

$$1+\frac{h}{n}\geqslant \sqrt[n]{a}\geqslant 1.$$

On peut conclure grâce au théorème « des gendarmes » que $\lim_{n\to+\infty} \sqrt[n]{a}=1$. Enfin, si a<1, on applique le cas précédent à $b=\frac{1}{a}>1$.

3.4. Approximation des réels par des décimaux

Proposition 10.

Soit $a \in \mathbb{R}$. Posons

$$u_n = \frac{E(10^n a)}{10^n}.$$

Alors u_n est une approximation décimale de a à 10^{-n} près, en particulier $\lim_{n\to+\infty} u_n = a$.

Exemple 11.

 $\pi = 3,14159265...$

$$u_0 = \frac{E(10^0 \pi)}{10^0} = E(\pi) = 3$$

$$u_1 = \frac{E(10^1 \pi)}{10^1} = \frac{E(31,415...)}{10} = 3, 1$$

$$u_2 = \frac{E(10^2 \pi)}{10^2} = \frac{E(314,15...)}{100} = 3, 14$$

$$u_3 = 3, 141$$

Démonstration. D'après la définition de la partie entière, on a

$$E(10^n a) \leq 10^n a < E(10^n a) + 1$$

donc

$$u_n \leqslant a < u_n + \frac{1}{10^n}$$

ou encore

$$0\leqslant a-u_n<\frac{1}{10^n}.$$

Or la suite de terme général $\frac{1}{10^n}$ est une suite géométrique de raison $\frac{1}{10}$, donc elle tend vers 0. On en déduit que $\lim_{n\to+\infty}u_n=a$.

LES SUITES

Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ de la proposition 10 est croissante.

Remarque.

- 1. Les u_n sont des nombres décimaux, en particulier ce sont des nombres rationnels.
- 2. Ceci fournit une démonstration de la densité de \mathbb{Q} dans \mathbb{R} . Pour $\epsilon > 0$, et $I =]a \epsilon, a + \epsilon[$, alors pour n assez grand, $u_n \in I \cap \mathbb{Q}$.

Mini-exercices.

- 1. Déterminer la limite de la suite $(u_n)_{n\in\mathbb{N}}$ de terme général 5^n-4^n .
- 2. Soit $v_n = 1 + a + a^2 + \dots + a^n$. Pour quelle valeur de $a \in \mathbb{R}$ la suite $(v_n)_{n \ge 1}$ a pour limite 3 (lorsque $n \to +\infty$)?
- 3. Calculer la limite de $\frac{1+2+2^2+\cdots+2^n}{2^n}$.
- 4. Montrer que la somme des racines n-èmes de l'unité est nulle.
- 5. Montrer que si $\sin(\frac{\theta}{2}) \neq 0$ alors $\frac{1}{2} + \cos(\theta) + \cos(2\theta) + \cdots + \cos(n\theta) = \frac{\sin((n+\frac{1}{2})\theta)}{2\sin(\frac{\theta}{2})}$ (penser à $e^{i\theta}$).
- 6. Soit $(u_n)_{n\geqslant 2}$ la suite de terme général $u_n=\ln(1+\frac{1}{2})\times\ln(1+\frac{1}{3})\times\cdots\times\ln(1+\frac{1}{n})$. Déterminer la limite de $\frac{u_{n+1}}{u_n}$. Que peut-on en déduire?
- 7. Déterminer la limite de $\frac{\pi^n}{1\times 3\times 5\times \cdots \times (2n+1)}$ (où $\pi=3,14\ldots$).
- 8. Soit a un réel. Montrer que pour tout $\epsilon > 0$ il existe un couple $(m,n) \in \mathbb{Z} \times \mathbb{N}$ (et même une infinité) tel que $\left|a \frac{m}{2^n}\right| \leq \epsilon$.

4. Théorème de convergence

4.1. Toute suite convergente est bornée

Revenons sur une propriété importante que nous avons déjà démontrée dans la section sur les limites.

Proposition 11.

Toute suite convergente est bornée.

La réciproque est fausse mais nous allons ajouter une hypothèse supplémentaire pour obtenir des résultats.

4.2. Suite monotone

Théorème 2.

Toute suite croissante et majorée est convergente.

Remarque.

Et aussi:

- Toute suite décroissante et minorée est convergente.
- Une suite croissante et qui n'est pas majorée tend vers +∞.
- Une suite décroissante et qui n'est pas minorée tend vers $-\infty$.

Démonstration du théorème 2. Notons $A = \{u_n | n \in \mathbb{N}\} \subset \mathbb{R}$. Comme la suite $(u_n)_{n \in \mathbb{N}}$ est majorée, disons par le réel M, l'ensemble A est majoré par M, et de plus il est non vide. Donc d'après le théorème \mathbb{R}^4 du chapitre sur les réels, l'ensemble A admet une borne supérieure : notons $\ell = \sup A$. Montrons que $\lim_{n \to +\infty} u_n = \ell$. Soit $\epsilon > 0$. Par la caractérisation de la borne supérieure, il existe un élément u_N de A tel que $\ell - \epsilon < u_N \leqslant \ell$. Mais alors pour $n \geqslant N$ on a $\ell - \epsilon < u_N \leqslant \ell$, et donc $|u_n - \ell| \leqslant \epsilon$.

4.3. Deux exemples

La limite $\zeta(2)$

Soit $(u_n)_{n\geqslant 1}$ la suite de terme général :

$$u_n = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}.$$

- La suite $(u_n)_{n\geqslant 1}$ est croissante : en effet $u_{n+1}-u_n=\frac{1}{(n+1)^2}>0$.
- Montrons par récurrence que pour tout entier naturel $n \ge 1$ on a $u_n \le 2 \frac{1}{n}$.
 - Pour n = 1, on a $u_1 = 1 \le 1 = 2 \frac{1}{1}$.
 - Fixons $n \ge 1$ pour lequel on suppose $u_n \le 2 \frac{1}{n}$. Alors $u_{n+1} = u_n + \frac{1}{(n+1)^2} \le 2 \frac{1}{n} + \frac{1}{(n+1)^2}$. Or $\frac{1}{(n+1)^2} \le \frac{1}{n(n+1)} = \frac{1}{(n+1)^2}$. $\frac{1}{n} - \frac{1}{n+1}$, donc $u_{n+1} \leqslant 2 - \frac{1}{n+1}$, ce qui achève la récurrence.
- Donc la suite $(u_n)_{n\geqslant 1}$ est croissante et majorée par 2 : elle converge.

On note $\zeta(2)$ cette limite, vous montrerez plus tard qu'en fait $\zeta(2) = \frac{\pi^2}{6}$.

Suite harmonique

C'est la suite $(u_n)_{n\geq 1}$ de terme général :

$$u_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}.$$

Calculons $\lim_{n\to+\infty} u_n$.

- La suite $(u_n)_{n\geqslant 1}$ est croissante : en effet $u_{n+1}-u_n=\frac{1}{n+1}>0$. Minoration de $u_{2^p}-u_{2^{p-1}}$. On a $u_2-u_1=1+\frac{1}{2}-1=\frac{1}{2}$; $u_4-u_2=\frac{1}{3}+\frac{1}{4}>\frac{1}{4}+\frac{1}{4}=\frac{1}{2}$, et en général :

$$u_{2^{p}} - u_{2^{p-1}} = \underbrace{\frac{1}{2^{p-1} + 1} + \frac{1}{2^{p-1} + 2} + \dots + \frac{1}{2^{p}}}_{2^{p-1} = 2^{p} - 2^{p-1} \text{ termes } \geqslant \frac{1}{2^{p}}} > 2^{p-1} \times \frac{1}{2^{p}} = \frac{1}{2}$$

• $\lim_{n\to+\infty} u_n = +\infty$. En effet

$$u_{2^p} - 1 = u_{2^p} - u_1 = (u_2 - u_1) + (u_4 - u_2) + \dots + (u_{2^p} - u_{2^{p-1}}) \geqslant \frac{p}{2}$$

donc la suite $(u_n)_{n\geq 1}$ est croissante mais n'est pas bornée, donc elle tend vers $+\infty$.

4.4. Suites adjacentes

Définition 7.

Les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont dites *adjacentes* si

- (u_n)_{n∈ℕ} est croissante et (v_n)_{n∈ℕ} est décroissante,
 pour tout n ≥ 0, on a u_n ≤ v_n,
- 3. $\lim_{n\to+\infty} (\nu_n u_n) = 0.$

Théorème 3.

Si les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont adjacentes, elles convergent vers la même limite.

Il y a donc deux résultats dans ce théorème, la convergence de (u_n) et (v_n) et en plus l'égalité des limites. Les termes de la suites sont ordonnées ainsi :

$$u_0 \leqslant u_1 \leqslant u_2 \leqslant \cdots \leqslant u_n \leqslant \cdots \leqslant v_n \leqslant \cdots \leqslant v_2 \leqslant v_1 \leqslant v_0$$

Démonstration.

- La suite $(u_n)_{n\in\mathbb{N}}$ est croissante et majorée par v_0 , donc elle converge vers une limite ℓ .
- La suite $(v_n)_{n\in\mathbb{N}}$ est décroissante et minorée par u_0 , donc elle converge vers une limite ℓ' .
- Donc $\ell' \ell = \lim_{n \to +\infty} (v_n u_n) = 0$, d'où $\ell' = \ell$.

Exemple 12.

Reprenons l'exemple de $\zeta(2)$. Soient (u_n) et (v_n) les deux suites définies pour $n \geqslant 1$ par

$$u_n = \sum_{k=1}^n \frac{1}{k^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}$$
 et $v_n = u_n + \frac{2}{n+1}$.

Montrons que (u_n) et (v_n) sont deux suites adjacentes :

- 1. (a) (u_n) est croissante car $u_{n+1} u_n = \frac{1}{(n+1)^2} > 0$.
 - (b) (v_n) est décroissante : (v_n) est décroissante : $v_{n+1} - v_n = \frac{1}{(n+1)^2} + \frac{2}{n+2} - \frac{2}{n+1} = \frac{n+2+2(n+1)^2 - 2(n+1)(n+2)}{(n+2)(n+1)^2} = \frac{-n}{(n+2)(n+1)^2} < 0$
- 2. Pour tout $n \geqslant 1$: $v_n u_n = \frac{2}{n+1} > 0$, donc $u_n \leqslant v_n$.
- 3. Enfin comme $v_n u_n = \frac{2}{n+1}$ alors $\lim (v_n u_n) = 0$.

Les suites (u_n) et (v_n) sont deux suites adjacentes, elles convergent donc vers une même limite finie ℓ . Nous avons en plus l'encadrement $u_n \le \ell \le v_n$ pour tout $n \ge 1$. Ceci fournit des approximations de la limite : par exemple pour $n = 3, 1 + \frac{1}{4} + \frac{1}{9} \le \ell \le 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{2} \text{ donc } 1,3611... \le \ell \le 1,8611...$

Exercice 2.

Soit $(u_n)_{n\geqslant 1}$ la suite de terme général :

$$u_n = 1 + \frac{1}{2^3} + \frac{1}{3^3} + \dots + \frac{1}{n^3}.$$

Montrer que la suite $(u_n)_{n\geqslant 1}$ converge (on pourra considérer la suite $(v_n)_{n\geqslant 1}$ de terme général $v_n=u_n+\frac{1}{n^2}$).

Remarque.

On note $\zeta(3)$ cette limite. On l'appelle aussi constante d'Apéry qui a prouvé en 1978 que $\zeta(3) \notin \mathbb{Q}$.

4.5. Théorème de Bolzano-Weierstrass

Définition 8.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite. Une *suite extraite* ou *sous-suite* de $(u_n)_{n\in\mathbb{N}}$ est une suite de la forme $(u_{\phi(n)})_{n\in\mathbb{N}}$, où $\phi:\mathbb{N}\to\mathbb{N}$ est une application strictement croissante.

Exemple 13.

Soit la suite $(u_n)_{n\in\mathbb{N}}$ de terme général $u_n=(-1)^n$.

- Si on considère $\phi: \mathbb{N} \to \mathbb{N}$ donnée par $\phi(n) = 2n$, alors la suite extraite correspondante a pour terme général $u_{\phi(n)} = (-1)^{2n} = 1$, donc la suite $(u_{\phi(n)})_{n \in \mathbb{N}}$ est constante égale à 1.
- Si on considère $\psi: \mathbb{N} \to \mathbb{N}$ donnée par $\psi(n) = 3n$, alors la suite extraite correspondante a pour terme général $u_{\psi(n)} = (-1)^{3n} = ((-1)^3)^n = (-1)^n$. La suite $(u_{\psi(n)})_{n \in \mathbb{N}}$ est donc égale à $(u_n)_{n \in \mathbb{N}}$.

Proposition 12.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite. Si $\lim_{n\to+\infty}u_n=\ell$, alors pour toute suite extraite $(u_{\phi(n)})_{n\in\mathbb{N}}$ on a $\lim_{n\to+\infty}u_{\phi(n)}=\ell$.

Démonstration. Soit $\epsilon > 0$. D'après la définition de limite (définition 4), il existe un entier naturel N tel que $n \ge N$ implique $|u_n - \ell| < \epsilon$. Comme l'application ϕ est strictement croissante, on montre facilement par récurrence que pour tout n, on a $\phi(n) \ge n$. Ceci implique en particulier que si $n \ge N$, alors aussi $\phi(n) \ge N$, et donc $|u_{\phi(n)} - \ell| < \epsilon$. Donc la définition de limite (définition 4) s'applique aussi à la suite extraite.

Corollaire 2.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite. Si elle admet une sous-suite divergente, ou bien si elle admet deux sous-suites convergeant vers des limites distinctes, alors elle diverge.

Exemple 14.

Soit la suite $(u_n)_{n\in\mathbb{N}}$ de terme général $u_n=(-1)^n$. Alors $(u_{2n})_{n\in\mathbb{N}}$ converge vers 1, et $(u_{2n+1})_{n\in\mathbb{N}}$ converge vers -1 (en fait ces deux sous-suites sont constantes). On en déduit que la suite $(u_n)_{n\in\mathbb{N}}$ diverge.

Exercice 3.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite. On suppose que les deux sous-suites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ convergent vers la même limite ℓ . Montrer que $(u_n)_{n\in\mathbb{N}}$ converge également vers ℓ .

Terminons par un résultat théorique très important.

Théorème 4 (Théorème de Bolzano-Weierstrass).

Toute suite bornée admet une sous-suite convergente.

Exemple 15

- 1. On considère la suite $(u_n)_{n\in\mathbb{N}}$ de terme général $u_n=(-1)^n$. Alors on peut considérer les deux sous-suites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$.
- 2. On considère la suite $(v_n)_{n\in\mathbb{N}}$ de terme général $v_n=\cos n$. Le théorème affirme qu'il existe une sous-suite convergente, mais il est moins facile de l'expliciter.

Démonstration du théorème 4. On procède par dichotomie. L'ensemble des valeurs de la suite est par hypothèse contenu dans un intervalle [a,b]. Posons $a_0=a,\ b_0=b,\ \phi(0)=0$. Au moins l'un des deux intervalles $\left[a_0,\frac{a_0+b_0}{2}\right]$ ou $\left[\frac{a_0+b_0}{2},b_0\right]$ contient u_n pour une infinité d'indices n. On note $[a_1,b_1]$ un tel intervalle, et on note $\phi(1)$ un entier $\phi(1)>\phi(0)$ tel que $u_{\phi(1)}\in [a_1,b_1]$.

En itérant cette construction, on construit pour tout entier naturel n un intervalle $[a_n,b_n]$, de longueur $\frac{b-a}{2^n}$, et un entier $\phi(n)>\phi(n-1)$ tel que $u_{\phi(n)}\in[a_n,b_n]$. Notons que par construction la suite $(a_n)_{n\in\mathbb{N}}$ est croissante et la suite $(b_n)_{n\in\mathbb{N}}$ est décroissante.

Comme de plus $\lim_{n\to+\infty}(b_n-a_n)=\lim_{n\to+\infty}\frac{b-a}{2^n}=0$, les suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ sont adjacentes et donc convergent vers une même limite ℓ . On peut appliquer le théorème « des gendarmes » pour conclure que $\lim_{n\to+\infty}u_{\phi(n)}=\ell$. \square

Mini-exercices.

- 1. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=1$ et pour $n\geqslant 1$, $u_n=\sqrt{2+u_{n-1}}$. Montrer que cette suite est croissante et majorée par 2. Que peut-on en conclure ?
- 2. Soit $(u_n)_{n\geqslant 2}$ la suite définie par $u_n=\frac{\ln 4}{\ln 5}\times\frac{\ln 6}{\ln 7}\times\frac{\ln 8}{\ln 9}\times\cdots\times\frac{\ln (2n)}{\ln (2n+1)}$. Étudier la croissance de la suite. Montrer que la suite (u_n) converge.
- 3. Soit $N\geqslant 1$ un entier et $(u_n)_{n\in\mathbb{N}}$ la suite de terme général $u_n=\cos(\frac{n\pi}{N})$. Montrer que la suite diverge.
- 4. Montrer que les suites de terme général $u_n = \sum_{k=1}^n \frac{1}{k!}$ et $v_n = u_n + \frac{1}{n \cdot (n!)}$ sont adjacentes. Que peut-on en déduire ?
- 5. Soit $(u_n)_{n\geqslant 1}$ la suite de terme général $\sum_{k=1}^n \frac{(-1)^{k+1}}{k}$. On considère les deux suites extraites de terme général $v_n=u_{2n}$ et $w_n=u_{2n+1}$. Montrer que les deux suites $(v_n)_{n\geqslant 1}$ et $(w_n)_{n\geqslant 1}$ sont adjacentes. En déduire que la suite

 $(u_n)_{n\geqslant 1}$ converge. 6. Montrer qu'une suite bornée et divergente admet deux sous-suites convergeant vers des valeurs distinctes.

5. Suites récurrentes

Les suites récurrentes définies par une fonction forment une catégorie essentielle de suites.

Ce paragraphe est l'aboutissement de notre étude des suites, mais sa lecture nécessite aussi la maîtrise préalable de l'étude de fonctions (voir « Limites et fonctions continues »).

5.1. Suite récurrente définie par une fonction

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction. Une *suite récurrente* est définie par son premier terme et une relation permettant de calculer les termes de proche en proche :

$$u_0 \in \mathbb{R}$$
 et $u_{n+1} = f(u_n)$ pour $n \ge 0$.

Une suite récurrente est donc définie par deux données : un terme initial u_0 , et une relation de récurrence $u_{n+1} = f(u_n)$. La suite s'écrit ainsi:

$$u_0$$
, $u_1 = f(u_0)$, $u_2 = f(u_1) = f(f(u_0))$, $u_3 = f(u_2) = f(f(f(u_0)))$,...

Le comportement d'une telle suite peut très vite devenir complexe.

Exemple 16.

Soit $f(x) = 1 + \sqrt{x}$. Fixons $u_0 = 2$ et définissons pour $n \ge 0$: $u_{n+1} = f(u_n)$. C'est-à-dire $u_{n+1} = 1 + \sqrt{u_n}$. Alors les premiers termes de la suite sont :

2,
$$1+\sqrt{2}$$
, $1+\sqrt{1+\sqrt{2}}$, $1+\sqrt{1+\sqrt{1+\sqrt{2}}}$, $1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{2}}}}$,...

Une suite récurrente donnée n'est pas forcément convergente. Lorsqu'elle admet une limite, l'ensemble des valeurs possibles est restreint par le résultat essentiel suivant.

Proposition 13.

Si f est une fonction continue et la suite récurrente (u_n) converge vers ℓ , alors ℓ est une solution de l'équation :

$$f(\ell) = \ell$$

Si on arrive à montrer que la limite existe, cette proposition affirme qu'elle est à chercher parmi les solutions de l'équation $f(\ell) = \ell$.

Une valeur ℓ , vérifiant $f(\ell) = \ell$ est un *point fixe* de f. La preuve est très simple et utilise essentiellement la continuité de la fonction f:

Démonstration. Lorsque $n \to +\infty$, $u_n \to \ell$ et donc aussi $u_{n+1} \to \ell$. Comme $u_n \to \ell$ et que f est continue alors la suite $(f(u_n)) \to f(\ell)$. La relation $u_{n+1} = f(u_n)$ devient à la limite (lorsque $n \to +\infty$) : $\ell = f(\ell)$.

Nous allons étudier en détail deux cas particuliers, celui ou la fonction est croissante, puis celui ou la fonction est décroissante.

5.2. Cas d'une fonction croissante

Commençons par remarquer que pour une fonction croissante, le comportement de la suite (u_n) définie par récurrence est assez simple :

- Si $u_1 \geqslant u_0$ alors (u_n) est croissante.
- Si $u_1 \le u_0$ alors (u_n) est décroissante.

La preuve est facile par récurrence : par exemple si $u_1 \geqslant u_0$, alors comme f est croissante on a $u_2 = f(u_1) \geqslant f(u_0) = u_1$. Partant de $u_2 \geqslant u_1$ on en déduit $u_3 \geqslant u_2$,...

Voici le résultat principal:

Proposition 14.

Si $f:[a,b] \to [a,b]$ une fonction continue et **croissante**, alors quelque soit $u_0 \in [a,b]$, la suite récurrente (u_n) est monotone et converge vers $\ell \in [a,b]$ vérifiant $f(\ell) = \ell$.

Il y a une hypothèse importante qui est un peu cachée : f va de l'intervalle [a, b] dans lui-même. Dans la pratique, pour appliquer cette proposition, il faut commencer par choisir [a, b] et vérifier que $f([a, b]) \subset [a, b]$.

Démonstration. La preuve est une conséquence des résultats précédents. Par exemple si $u_1 \ge u_0$ alors la suite (u_n) est croissante, comme par ailleurs elle est majorée par b, elle converge vers un réel ℓ . Par la proposition 13, on a $f(\ell) = \ell$. Si $u_1 \le u_0$, (u_n) est une décroissante et minorée par a, et la conclusion est la même. □

Exemple 17.

Soit $f : \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \frac{1}{4}(x^2 - 1)(x - 2) + x$ et $u_0 \in [0, 2]$. Étudions la suite (u_n) définie par récurrence : $u_{n+1} = f(u_n)$ (pour tout $n \ge 0$).

- 1. Étude de *f*
 - (a) f est continue sur \mathbb{R} .
 - (b) f est dérivable sur \mathbb{R} et f'(x) > 0.
 - (c) Sur l'intervalle [0,2], f est strictement croissante.
 - (d) Et comme $f(0) = \frac{1}{2}$ et f(2) = 2 alors $f([0,2]) \subset [0,2]$.
- 2. Graphe de *f*

Voici comment tracer la suite : on trace le graphe de f et la bissectrice (y=x). On part d'une valeur u_0 (en rouge) sur l'axe des abscisses, la valeur $u_1=f(u_0)$ se lit sur l'axe des ordonnées, mais on reporte la valeur de u_1 sur l'axe des abscisses par symétrie par rapport à la bissectrice. On recommence : $u_2=f(u_1)$ se lit sur l'axe des ordonnées et on le reporte sur l'axe des abscisses, etc. On obtient ainsi une sorte d'escalier, et graphiquement on conjecture que la suite est croissante et tend vers 1. Si on part d'une autre valeur initiale u_0' (en vert), c'est le même principe, mais cette fois on obtient un escalier qui descend.

3. Calcul des points fixes.

Cherchons les valeurs x qui vérifient (f(x) = x), autrement dit (f(x) - x = 0), mais

$$f(x) - x = \frac{1}{4}(x^2 - 1)(x - 2) \tag{1}$$

Donc les points fixes sont les $\{-1,1,2\}$. La limite de (u_n) est donc à chercher parmi ces 3 valeurs.

4. Premier cas : $u_0 = 1$ ou $u_0 = 2$.

Alors $u_1 = f(u_0) = u_0$ et par récurrence la suite (u_n) est constante (et converge donc vers u_0).

- 5. Deuxième cas : $0 \le u_0 < 1$.
 - Comme $f([0,1]) \subset [0,1]$, la fonction f se restreint sur l'intervalle [0,1] en une fonction $f:[0,1] \to [0,1]$.
 - De plus sur [0,1], $f(x)-x \ge 0$. Cela se déduit de l'étude de f ou directement de l'expression (1).
 - Pour $u_0 \in [0, 1[$, $u_1 = f(u_0) \ge u_0$ d'après le point précédent. Comme f est croissante, par récurrence, comme on l'a vu, la suite (u_n) est croissante.
 - La suite (u_n) est croissante et majorée par 1, donc elle converge. Notons ℓ sa limite.
 - D'une part ℓ doit être un point fixe de $f: f(\ell) = \ell$. Donc $\ell \in \{-1, 1, 2\}$.
 - D'autre part la suite (u_n) étant croissante avec $u_0 \ge 0$ et majorée par 1, donc $\ell \in [0,1]$.
 - Conclusion : si $0 \le u_0 < 1$ alors (u_n) converge vers $\ell = 1$.
- 6. Troisième cas : $1 < u_0 < 2$.

La fonction f se restreint en $f:[1,2] \to [1,2]$. Sur l'intervalle [1,2], f est croissante mais cette fois $f(x) \le x$. Donc $u_1 \le u_0$, et la suite (u_n) est décroissante. La suite (u_n) étant minorée par 1, elle converge. Si on note ℓ sa limite alors d'une part $f(\ell) = \ell$, donc $\ell \in \{-1,1,2\}$, et d'autre part $\ell \in [1,2[$. Conclusion : (u_n) converge vers $\ell = 1$.

Le graphe de f joue un rôle très important, il faut le tracer même si on ne le demande pas explicitement. Il permet de se faire une idée très précise du comportement de la suite : Est-elle croissante ? Est-elle positive ? Semble-t-elle converger ? Vers quelle limite ? Ces indications sont essentielles pour savoir ce qu'il faut montrer lors de l'étude de la suite.

5.3. Cas d'une fonction décroissante

Proposition 15.

Soit $f:[a,b] \to [a,b]$ une fonction continue et **décroissante**. Soit $u_0 \in [a,b]$ et la suite récurrente (u_n) définie par $u_{n+1} = f(u_n)$. Alors :

- La sous-suite (u_{2n}) converge vers une limite ℓ vérifiant $f \circ f(\ell) = \ell$.
- La sous-suite (u_{2n+1}) converge vers une limite ℓ' vérifiant $f \circ f(\ell') = \ell'$.

Il se peut (ou pas!) que $\ell = \ell'$.

Démonstration. La preuve se déduit du cas croissant. La fonction f étant décroissante, la fonction $f \circ f$ est croissante. Et on applique la proposition 14 à la fonction $f \circ f$ et à la sous-suite (u_{2n}) définie par récurrence $u_2 = f \circ f(u_0)$, $u_4 = f \circ f(u_2),...$

De même en partant de u_1 et $u_3 = f \circ f(u_1),...$

Exemple 18.

$$f(x) = 1 + \frac{1}{x}$$
, $u_0 > 0$, $u_{n+1} = f(u_n) = 1 + \frac{1}{u_n}$

- 1. Étude de f. La fonction $f:]0, +\infty[\to]0, +\infty[$ est une fonction continue et strictement décroissante.
- 2. Graphe de f.

Le principe pour tracer la suite est le même qu'auparavant : on place u_0 , on trace $u_1 = f(u_0)$ sur l'axe des ordonnées et on le reporte par symétrie sur l'axe des abscisses,... On obtient ainsi une sorte d'escargot, et graphiquement on conjecture que la suite converge vers le point fixe de f. En plus on note que la suite des termes de rang pair semble une suite croissante, alors que la suite des termes de rang impair semble décroissante.

3. Points fixes de $f \circ f$.

$$f \circ f(x) = f(f(x)) = f(1 + \frac{1}{x}) = 1 + \frac{1}{1 + \frac{1}{x}} = 1 + \frac{x}{x+1} = \frac{2x+1}{x+1}$$

Donc

$$f \circ f(x) = x \iff \frac{2x+1}{x+1} = x \iff x^2 - x - 1 = 0 \iff x \in \left\{\frac{1-\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}\right\}$$

Comme la limite doit être positive, le seul point fixe à considérer est $\ell = \frac{1+\sqrt{5}}{2}$.

Attention! Il y a un unique point fixe, mais on ne peut pas conclure à ce stade car f est définie sur $]0,+\infty[$ qui n'est pas un intervalle compact.

4. Premier cas $0 < u_0 \le \ell = \frac{1+\sqrt{5}}{2}$.

Alors, $u_1 = f(u_0) \geqslant f(\ell) = \ell$; et par une étude de $f \circ f(x) - x$, on obtient que : $u_2 = f \circ f(u_0) \geqslant u_0$; $u_1 \geqslant f \circ f(u_1) = u_3$.

Comme $u_2 \geqslant u_0$ et $f \circ f$ est croissante, la suite (u_{2n}) est croissante. De même $u_3 \leqslant u_1$, donc la suite (u_{2n+1}) est décroissante. De plus comme $u_0 \leqslant u_1$, en appliquant f un nombre pair de fois, on obtient que $u_{2n} \leqslant u_{2n+1}$. La situation est donc la suivante :

$$u_0 \leqslant u_2 \leqslant \cdots \leqslant u_{2n} \leqslant \cdots \leqslant u_{2n+1} \leqslant \cdots \leqslant u_3 \leqslant u_1$$

La suite (u_{2n}) est croissante et majorée par u_1 , donc elle converge. Sa limite ne peut être que l'unique point fixe de $f \circ f : \ell = \frac{1+\sqrt{5}}{2}$.

La suite (u_{2n+1}) est décroissante et minorée par u_0 , donc elle converge aussi vers $\ell = \frac{1+\sqrt{5}}{2}$.

On en conclut que la suite (u_n) converge vers $\ell = \frac{1+\sqrt{5}}{2}$.

5. Deuxième cas $u_0 \geqslant \ell = \frac{1+\sqrt{5}}{2}$.

On montre de la même façon que (u_{2n}) est décroissante et converge vers $\frac{1+\sqrt{5}}{2}$, et que (u_{2n+1}) est croissante et converge aussi vers $\frac{1+\sqrt{5}}{2}$.

Mini-exercices.

- Soit f(x) = ½x³+1, u₀ = 0 et pour n ≥ 0 : uₙ+1 = f(uₙ). Étudier en détail la suite (uₙ) : (a) montrer que uₙ ≥ 0 ; (b) étudier et tracer le graphe de g; (c) tracer les premiers termes de (uₙ); (d) montrer que (uₙ) est croissante; (e) étudier la fonction g(x) = f(x) x; (f) montrer que f admet deux points fixes sur R₊, 0 < ℓ < ℓ'; (g) montrer que f([0, ℓ]) ⊂ [0, ℓ]; (h) en déduire que (uₙ) converge vers ℓ.
- 2. Soit $f(x) = 1 + \sqrt{x}$, $u_0 = 2$ et pour $n \ge 0$: $u_{n+1} = f(u_n)$. Étudier en détail la suite (u_n) .
- 3. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par : $u_0\in[0,1]$ et $u_{n+1}=u_n-u_n^2$. Étudier en détail la suite (u_n) .
- 4. Étudier la suite définie par $u_0 = 4$ et $u_{n+1} = \frac{4}{u_n+2}$.

Auteurs du chapitre

Auteurs: Arnaud Bodin, Niels Borne, Laura Desideri

Dessins: Benjamin Boutin

Suites

1 Convergence

Exercice 1

Montrer que toute suite convergente est bornée.

Indication ▼ Correction ▼ Vidéo ■

[000506]

Exercice 2

Montrer qu'une suite d'entiers qui converge est constante à partir d'un certain rang.

 Vidéo 📕

[000519]

Exercice 3

Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$u_n = (-1)^n + \frac{1}{n}$$

n'est pas convergente.

Indication ▼

Correction \blacktriangledown

Vidéo

[000507]

Exercice 4

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de \mathbb{R} . Que pensez-vous des propositions suivantes :

- Si $(u_n)_n$ converge vers un réel ℓ alors $(u_{2n})_n$ et $(u_{2n+1})_n$ convergent vers ℓ .
- Si $(u_{2n})_n$ et $(u_{2n+1})_n$ sont convergentes, il en est de même de $(u_n)_n$.
- Si $(u_{2n})_n$ et $(u_{2n+1})_n$ sont convergentes, de même limite ℓ , il en est de même de $(u_n)_n$.

Indication ▼

Correction ▼

Vidéo

[000505]

Exercice 5

Soit q un entier au moins égal à 2. Pour tout $n \in \mathbb{N}$, on pose $u_n = \cos \frac{2n\pi}{q}$.

- 1. Montrer que $u_{n+q} = u_n$ pour tout $n \in \mathbb{N}$.
- 2. Calculer u_{nq} et u_{nq+1} . En déduire que la suite (u_n) n'a pas de limite.

Indication \mathbf{V}

Correction ▼

Vidéo 📕

[000524]

Exercice 6

Soit
$$H_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$$
.

- 1. En utilisant une intégrale, montrer que pour tout n > 0: $\frac{1}{n+1} \le \ln(n+1) \ln(n) \le \frac{1}{n}$.
- 2. En déduire que $ln(n+1) \leq H_n \leq ln(n) + 1$.
- 3. Déterminer la limite de H_n .
- 4. Montrer que $u_n = H_n \ln(n)$ est décroissante et positive.
- 5. Conclusion?

Exercice 7

On considère la fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ définie par

$$f(x) = \frac{x^3}{9} + \frac{2x}{3} + \frac{1}{9}$$

et on définit la suite $(x_n)_{n\geqslant 0}$ en posant $x_0=0$ et $x_{n+1}=f(x_n)$ pour $n\in\mathbb{N}$.

- 1. Montrer que l'équation $x^3 3x + 1 = 0$ possède une solution unique $\alpha \in]0, 1/2[$.
- 2. Montrer que l'équation f(x) = x est équivalente à l'équation $x^3 3x + 1 = 0$ et en déduire que α est l'unique solution de l'équation f(x) = x dans l'intervalle [0, 1/2].
- 3. Montrer que la fonction f est croissante sur \mathbb{R}^+ et que $f(\mathbb{R}^+) \subset \mathbb{R}^+$. En déduire que la suite (x_n) est croissante.
- 4. Montrer que f(1/2) < 1/2 et en déduire que $0 \le x_n < 1/2$ pour tout $n \ge 0$.
- 5. Montrer que la suite $(x_n)_{n\geq 0}$ converge vers α .

Indication ▼

Correction ▼

Vidéo 📕

[000539]

2 Limites

Exercice 8

Posons $u_2 = 1 - \frac{1}{2^2}$ et pour tout entier $n \ge 3$,

$$u_n = \left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \cdots \left(1 - \frac{1}{n^2}\right).$$

Calculer u_n . En déduire que l'on a $\lim u_n = \frac{1}{2}$.

Indication ▼

Correction ▼

Vidéo |

[000563]

Exercice 9

Déterminer les limites lorsque n tend vers l'infini des suites ci-dessous; pour chacune, essayer de préciser en quelques mots la méthode employée.

1. 1;
$$-\frac{1}{2}$$
; $\frac{1}{3}$; ...; $\frac{(-1)^{n-1}}{n}$; ...

2.
$$2/1$$
; $4/3$; $6/5$; ...; $2n/(2n-1)$; ...

4.
$$\frac{1}{n^2} + \frac{2}{n^2} + \dots + \frac{n-1}{n^2}$$

5.
$$\frac{(n+1)(n+2)(n+3)}{n^3}$$

6.
$$\left[\frac{1+3+5+\cdots+(2n-1)}{n+1} - \frac{2n+1}{2} \right]$$

7.
$$\frac{n+(-1)^n}{n-(-1)^n}$$

8.
$$\frac{2^{n+1}+3^{n+1}}{2^n+3^n}$$

9.
$$(1/2+1/4+1/8+\cdots+1/2^n)$$
 puis $\sqrt{2}$; $\sqrt{2\sqrt{2}}$; $\sqrt{2\sqrt{2}}$; ...

10.
$$\left(1 - \frac{1}{3} + \frac{1}{9} - \frac{1}{27} + \dots + \frac{(-1)^n}{3^n}\right)$$

11.
$$(\sqrt{n+1} - \sqrt{n})$$

$$12. \ \frac{n\sin(n!)}{n^2+1}$$

13. Démontrer la formule $1 + 2^2 + 3^2 + \dots + n^2 = \frac{1}{6}n(n+1)(2n+1)$; en déduire $\lim_{n\to\infty} \frac{1+2^2+3^2+\dots+n^2}{n^3}$.

Correction ▼ Vidéo ■ [000568

Exercice 10

On considère les deux suites :

$$u_n = 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} ; n \in \mathbb{N},$$

 $v_n = u_n + \frac{1}{n!} ; n \in \mathbb{N}.$

Montrer que $(u_n)_n$ et $(v_n)_n$ convergent vers une même limite. Et montrer que cette limite est un élément de $\mathbb{R}\setminus\mathbb{Q}$.

Indication ▼ Correction ▼ Vidéo ■ [000570]

Exercice 11

Soit a > 0. On définit la suite $(u_n)_{n \ge 0}$ par u_0 un réel vérifiant $u_0 > 0$ et par la relation

$$u_{n+1} = \frac{1}{2} \left(u_n + \frac{a}{u_n} \right).$$

On se propose de montrer que (u_n) tend vers \sqrt{a} .

1. Montrer que

$$u_{n+1}^2 - a = \frac{(u_n^2 - a)^2}{4u_n^2}.$$

- 2. Montrer que si $n \ge 1$ alors $u_n \ge \sqrt{a}$ puis que la suite $(u_n)_{n \ge 1}$ est décroissante.
- 3. En déduire que la suite (u_n) converge vers \sqrt{a} .
- 4. En utilisant la relation $u_{n+1}^2 a = (u_{n+1} \sqrt{a})(u_{n+1} + \sqrt{a})$ donner une majoration de $u_{n+1} \sqrt{a}$ en fonction de $u_n \sqrt{a}$.
- 5. Si $u_1 \sqrt{a} \le k$ et pour $n \ge 1$ montrer que

$$u_n - \sqrt{a} \leqslant 2\sqrt{a} \left(\frac{k}{2\sqrt{a}}\right)^{2^{n-1}}.$$

6. Application : Calculer $\sqrt{10}$ avec une précision de 8 chiffres après la virgule, en prenant $u_0 = 3$.

Indication ▼ Correction ▼ Vidéo ■ [000569

Exercice 12

Soient a et b deux réels, a < b. On considère la fonction $f : [a,b] \longrightarrow [a,b]$ supposée continue et une suite récurrente $(u_n)_n$ définie par :

$$u_0 \in [a,b]$$
 et pour tout $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$.

- 1. On suppose ici que f est croissante. Montrer que $(u_n)_n$ est monotone et en déduire sa convergence vers une solution de l'équation f(x) = x.
- 2. Application. Calculer la limite de la suite définie par :

$$u_0 = 4$$
 et pour tout $n \in \mathbb{N}$, $u_{n+1} = \frac{4u_n + 5}{u_n + 3}$.

- 3. On suppose maintenant que f est décroissante. Montrer que les suites $(u_{2n})_n$ et $(u_{2n+1})_n$ sont monotones et convergentes.
- 4. Application. Soit

$$u_0 = \frac{1}{2}$$
 et pour tout $n \in \mathbb{N}$, $u_{n+1} = (1 - u_n)^2$.

Calculer les limites des suites $(u_{2n})_n$ et $(u_{2n+1})_n$.

Indication ▼

Correction ▼

Vidéo

[000571]

Exercice 13

- 1. Soient a, b > 0. Montrer que $\sqrt{ab} \leqslant \frac{a+b}{2}$.
- 2. Montrer les inégalités suivantes ($b \ge a > 0$):

$$a \leqslant \frac{a+b}{2} \leqslant b$$
 et $a \leqslant \sqrt{ab} \leqslant b$.

3. Soient u_0 et v_0 des réels strictement positifs avec $u_0 < v_0$. On définit deux suites (u_n) et (v_n) de la façon suivante :

$$u_{n+1} = \sqrt{u_n v_n}$$
 et $v_{n+1} = \frac{u_n + v_n}{2}$.

- (a) Montrer que $u_n \leq v_n$ quel que soit $n \in \mathbb{N}$.
- (b) Montrer que (v_n) est une suite décroissante.
- (c) Montrer que (u_n) est croissante En déduire que les suites (u_n) et (v_n) sont convergentes et quelles ont même limite.

Indication ▼

 $\texttt{Correction} \; \blacktriangledown$

Vidéo

[000572]

Exercice 14

Soit $n \ge 1$.

- 1. Montrer que l'équation $\sum_{k=1}^{n} x^k = 1$ admet une unique solution, notée a_n , dans [0,1].
- 2. Montrer que $(a_n)_{n\in\mathbb{N}}$ est décroissante minorée par $\frac{1}{2}$.
- 3. Montrer que (a_n) converge vers $\frac{1}{2}$.

 ${\tt Indication} \ {\tt V}$

Correction ▼

Vidéo

[000574]

Indication pour l'exercice 1 ▲

Écrire la définition de la convergence d'une suite (u_n) avec les " ε ". Comme on a une proposition qui est vraie pour tout $\varepsilon > 0$, c'est en particulier vrai pour $\varepsilon = 1$. Cela nous donne un "N". Ensuite séparez la suite en deux : regardez les n < N (il n'y a qu'un nombre fini de termes) et les $n \ge N$ (pour lequel on utilise notre $\varepsilon = 1$).

Indication pour l'exercice 2 ▲

Écrire la convergence de la suite et fixer $\varepsilon = \frac{1}{2}$. Une suite est *stationnaire* si, à partir d'un certain rang, elle est constante.

Indication pour l'exercice 3 ▲

On prendra garde à ne pas parler de limite d'une suite sans savoir au préalable qu'elle converge! Vous pouvez utiliser le résultat du cours suivant : Soit (u_n) une suite convergeant vers la limite ℓ alors toute sous-suite (v_n) de (u_n) a pour limite ℓ .

Indication pour l'exercice 4 ▲

Dans l'ordre c'est vrai, faux et vrai. Lorsque c'est faux chercher un contre-exemple, lorsque c'est vrai il faut le prouver.

Indication pour l'exercice 5 ▲

Pour la deuxième question, raisonner par l'absurde et trouver deux sous-suites ayant des limites distinctes.

Indication pour l'exercice 6 ▲

1. En se rappelant que l'intégrale calcule une aire montrer :

$$\frac{1}{n+1} \leqslant \int_{n}^{n+1} \frac{dt}{t} \leqslant \frac{1}{n}.$$

- 2. Pour chacune des majorations, il s'agit de faire la somme de l'inégalité précédente et de s'apercevoir que d'un coté on calcule H_n et de l'autre les termes s'éliminent presque tous deux à deux.
- 3. La limite est $+\infty$.
- 4. Calculer $u_{n+1} u_n$.
- 5. C'est le théorème de Bolzano-Weierstrass.

Indication pour l'exercice 7 ▲

Pour la première question : attention on ne demande pas de calculer α ! L'existence vient du théorème des valeurs intermédiaires. L'unicité vient du fait que la fonction est strictement croissante.

Pour la dernière question : il faut d'une part montrer que (x_n) converge et on note ℓ sa limite et d'autre part il faut montrer que $\ell = \alpha$.

Indication pour l'exercice 8 ▲

Remarquer que $1 - \frac{1}{k^2} = \frac{(k-1)(k+1)}{k \cdot k}$. Puis simplifier l'écriture de u_n .

Indication pour l'exercice 10 ▲

- 1. Montrer que (u_n) est croissante et (v_n) décroissante.
- 2. Montrer que (u_n) est majorée et (v_n) minorée. Montrer que ces suites ont la même limite.
- 3. Raisonner par l'absurde : si la limite $\ell = \frac{p}{q}$ alors multiplier l'inégalité $u_q \leqslant \frac{p}{q} \leqslant v_q$ par q! et raisonner avec des entiers.

5

Indication pour l'exercice 11 ▲

- 1. C'est un calcul de réduction au même dénominateur.
- 2. Pour montrer la décroisance, montrer $\frac{u_{n+1}}{u_n} \le 1$.
- 3. Montrer d'abord que la suite converge, montrer ensuite que la limite est \sqrt{a} .
- 4. Penser à écrire $u_{n+1}^2 a = (u_{n+1} \sqrt{a})(u_{n+1} + \sqrt{a})$.
- 5. Raisonner par récurrence.
- 6. Pour $u_0 = 3$ on a $u_1 = 3,166...$, donc $3 \le \sqrt{10} \le u_1$ et on peut prendre k = 0.17 par exemple et n = 4 suffit pour la précision demandée.

Indication pour l'exercice 12 ▲

Pour la première question et la monotonie il faut raisonner par récurrence. Pour la troisième question, remarquer que si f est décroissante alors $f \circ f$ est croissante et appliquer la première question.

Indication pour l'exercice 13 ▲

- 1. Regarder ce que donne l'inégalité en élevant au carré de chaque coté.
- 2. Petites manipulations des inégalités.
- 3. (a) Utiliser 1.
 - (b) Utiliser 2.
 - (c) Une suite croissante et majorée converge; une suite décroissante et minorée aussi.

Indication pour l'exercice 14 ▲

On notera $f_n: [0,1] \longrightarrow \mathbb{R}$ la fonction définie par $f_n(x) = \sum_{k=1}^n x^k - 1$.

- 1. C'est une étude de la fonction f_n .
- 2. On sait que $f_n(a_n) = 0$. Montrer par un calcul que $f_n(a_{n-1}) > 0$, en déduire la décroissance de (a_n) . En calculant $f_n(\frac{1}{2})$ montrer que la suite (a_n) est minorée par $\frac{1}{2}$.
- 3. Une fois établie la convergence de (a_n) vers une limite ℓ , composer l'inégalité $\frac{1}{2} \leqslant \ell < a_n$ par f_n . Conclure.

Correction de l'exercice 1 A

Soit (u_n) une suite convergeant vers $\ell \in \mathbb{R}$. Par définition

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n \geqslant N \qquad |u_n - \ell| < \varepsilon.$$

Choisissons $\varepsilon = 1$, nous obtenons le N correspondant. Alors pour $n \geqslant N$, nous avons $|u_n - \ell| < 1$; autrement dit $\ell - 1 < u_n < \ell + 1$. Notons $M = \max_{n=0,\dots,N-1} \{u_n\}$ et puis $M' = \max(M,\ell+1)$. Alors pour tout $n \in \mathbb{N}$ $u_n \leqslant M'$. De même en posant $m = \min_{n=0,\dots,N-1} \{u_n\}$ et $m' = \min(m,\ell-1)$ nous obtenons pour tout $n \in \mathbb{N}$, $u_n \geqslant m'$.

Correction de l'exercice 2 A

Soit (u_n) une suite d'entiers qui converge vers $\ell \in \mathbb{R}$. Dans l'intervalle $I =]\ell - \frac{1}{2}, \ell + \frac{1}{2}[$ de longueur 1, il existe au plus un élément de \mathbb{N} . Donc $I \cap \mathbb{N}$ est soit vide soit un singleton $\{a\}$. La convergence de (u_n) s'écrit :

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \text{tel que} \ (n \geqslant N \Rightarrow |u_n - \ell| < \varepsilon).$$

Fixons $\varepsilon = \frac{1}{2}$, nous obtenons un *N* correspondant. Et pour $n \ge N$, $u_n \in I$. Mais de plus u_n est un entier, donc

$$n \geqslant N \Rightarrow u_n \in I \cap \mathbb{N}$$
.

En conséquent, $I \cap \mathbb{N}$ n'est pas vide (par exemple u_N en est un élément) donc $I \cap \mathbb{N} = \{a\}$. L'implication précédente s'écrit maintenant :

$$n \geqslant N \Rightarrow u_n = a$$
.

Donc la suite (u_n) est stationnaire (au moins) à partir de N. En prime, elle est bien évidemment convergente vers $\ell = a \in \mathbb{N}$.

Correction de l'exercice 3 A

Il est facile de se convaincre que (u_n) n'a pas de limite, mais plus délicat d'en donner une démonstration formelle. En effet, dès lors qu'on ne sait pas qu'une suite (u_n) converge, on ne peut pas écrire $\lim u_n$, c'est un nombre qui n'est pas défini. Par exemple l'égalité

$$\lim_{n\to\infty} (-1)^n + 1/n = \lim_{n\to\infty} (-1)^n$$

n'a pas de sens. Par contre voilà ce qu'on peut dire : Comme la suite 1/n tend vers 0 quand $n \to \infty$, la suite u_n est convergente si et seulement si la suite $(-1)^n$ l'est. De plus, dans le cas où elles sont toutes les deux convergentes, elles ont même limite. Cette affirmation provient tout simplement du théorème suivant

Théorème: Soient (u_n) et (v_n) deux suites convergeant vers deux limites ℓ et ℓ' . Alors la suite (w_n) définie par $w_n = u_n + v_n$ est convergente (on peut donc parler de sa limite) et $\lim w_n = \ell + \ell'$.

De plus, il n'est pas vrai que toute suite convergente doit forcément être croissante et majorée ou décroissante et minorée. Par exemple, $(-1)^n/n$ est une suite qui converge vers 0 mais qui n'est ni croissante, ni décroissante.

Voici maintenant un exemple de rédaction de l'exercice. On veut montrer que la suite (u_n) n'est pas convergente. Supposons donc par l'absurde qu'elle soit convergente et notons $\ell = \lim_{n \to \infty} u_n$. (Cette expression a un sens puisqu'on suppose que u_n converge).

Rappel. Une *sous-suite* de (u_n) (on dit aussi *suite extraite* de (u_n)) est une suite (v_n) de la forme $v_n = u_{\phi(n)}$ où ϕ est une application strictement croissante de $\mathbb N$ dans $\mathbb N$. Cette fonction ϕ correspond "au choix des indices qu'on veut garder" dans notre sous-suite. Par exemple, si on ne veut garder dans la suite (u_n) que les termes pour lesquels n est un multiple de trois, on pourra poser $\phi(n) = 3n$, c'est à dire $v_n = u_{3n}$.

Considérons maintenant les sous-suites $v_n = u_{2n}$ et $w_n = u_{2n+1}$ de (u_n) . On a que $v_n = 1 + 1/2n \to 1$ et que $w_n = -1 + 1/(2n+1) \to -1$. Or on a le théorème suivant sur les sous-suites d'une suite convergente :

Théorème: Soit (u_n) une suite convergeant vers la limite ℓ (le théorème est encore vrai si $\ell = +\infty$ ou $\ell = -\infty$). Alors, toute sous-suite (v_n) de (u_n) a pour limite ℓ .

Par conséquent, ici, on a que $\lim v_n = \ell$ et $\lim w_n = \ell$ donc $\ell = 1$ et $\ell = -1$ ce qui est une contradiction. L'hypothèse disant que (u_n) était convergente est donc fausse. Donc (u_n) ne converge pas.

Correction de l'exercice 4

- 1. Vrai. Toute sous-suite d'une suite convergente est convergente et admet la même limite (c'est un résultat du cours).
- 2. Faux. Un contre-exemple est la suite $(u_n)_n$ définie par $u_n = (-1)^n$. Alors $(u_{2n})_n$ est la suite constante (donc convergente) de valeur 1, et $(u_{2n+1})_n$ est constante de valeur -1. Cependant la suite $(u_n)_n$ n'est pas convergente.
- 3. Vrai. La convergence de la suite $(u_n)_n$ vers ℓ , que nous souhaitons démontrer, s'écrit :

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \text{tel que} \ (n \geqslant N \Rightarrow |u_n - \ell| < \varepsilon).$$

Fixons $\varepsilon > 0$. Comme, par hypothèse, la suite $(u_{2p})_p$ converge vers ℓ alors il existe N_1 tel

$$2p \geqslant N_1 \Rightarrow |u_{2p} - \ell| < \varepsilon$$
.

Et de même, pour la suite $(u_{2p+1})_p$ il existe N_2 tel que

$$2p+1 \geqslant N_2 \Rightarrow |u_{2p+1}-\ell| < \varepsilon$$
.

Soit $N = \max(N_1, N_2)$, alors

$$n \geqslant N \Rightarrow |u_n - \ell| < \varepsilon$$
.

Ce qui prouve la convergence de $(u_n)_n$ vers ℓ .

Correction de l'exercice 5

- 1. $u_{n+q} = \cos\left(\frac{2(n+q)\pi}{q}\right) = \cos\left(\frac{2n\pi}{q} + 2\pi\right) = \cos\left(\frac{2n\pi}{q}\right) = u_n$.
- 2. $u_{nq} = \cos\left(\frac{2nq\pi}{q}\right) = \cos\left(2n\pi\right) = 1 = u_0$ et $u_{nq+1} = \cos\left(\frac{2(nq+1)\pi}{q}\right) = \cos\left(\frac{2\pi}{q}\right) = u_1$. Supposons, par l'absurde que (u_n) converge vers ℓ . Alors la sous-suite $(u_{nq})_n$ converge vers ℓ comme $u_{nq} = u_0 = 1$ pour tout n alors $\ell = 1$. D'autre part la sous-suite $(u_{nq+1})_n$ converge aussi vers ℓ , mais $u_{nq+1} = u_1 = \cos\frac{2\pi}{q}$, donc $\ell = \cos\frac{2\pi}{q}$. Nous obtenons une contradiction car pour $q \geqslant 2$, nous avons $\cos\frac{2\pi}{q} \ne 1$. Donc la suite (u_n) ne converge pas.

Correction de l'exercice 6

1. La fonction $t \mapsto \frac{1}{t}$ est décroissante sur [n, n+1] donc

$$\frac{1}{n+1} \leqslant \int_{n}^{n+1} \frac{dt}{t} \leqslant \frac{1}{n}$$

(C'est un encadrement de l'aire de l'ensemble des points (x, y) du plan tels que $x \in [n, n+1]$ et $0 \le y \le 1/x$ par l'aire de deux rectangles.) Par calcul de l'intégrale nous obtenons l'inégalité :

$$\frac{1}{n+1} \leqslant \ln(n+1) - \ln(n) \leqslant \frac{1}{n}.$$

2. $H_n = \frac{1}{n} + \frac{1}{n-1} + \dots + \frac{1}{2} + 1$, nous majorons chaque terme de cette somme en utilisant l'inégalité $\frac{1}{k} \le \ln(k) - \ln(k-1)$ obtenue précédemment : nous obtenons $H_n \le \ln(n) - \ln(n-1) + \ln(n-1) - \ln(n-2) + \dots - \ln(2) + \ln(2) - \ln(1) + 1$. Cette somme est télescopique (la plupart des termes s'éliminent et en plus $\ln(1) = 0$) et donne $H_n \le \ln(n) + 1$.

L'autre inégalité s'obtient de la façon similaire en utilisant l'inégalité $\ln(k+1) - \ln(k) \leqslant \frac{1}{k}$.

3. Comme $H_n \ge \ln(n+1)$ et que $\ln(n+1) \to +\infty$ quand $n \to +\infty$ alors $H_n \to +\infty$ quand $n \to +\infty$.

- 4. $u_{n+1} u_n = H_{n+1} H_n \ln(n+1) + \ln(n) = \frac{1}{n+1} (\ln(n+1) \ln(n)) \le 0$ d'après la première question. Donc $u_{n+1} - u_n \le 0$. Ainsi $u_{n+1} \le u_n$ et la suite (u_n) est décroissante. Enfin comme $H_n \ge \ln(n+1)$ alors $H_n \ge \ln(n)$ et donc $u_n \ge 0$.
- 5. La suite (u_n) est décroissante et minorée (par 0) donc elle converge vers un réel γ . Ce réel γ s'appelle la constante d'Euler (d'après Leonhard Euler, 1707-1783, mathématicien d'origine suisse). Cette constante vaut environ 0.5772156649... mais on ne sait pas si γ est rationnel ou irrationnel.

Correction de l'exercice 7 ▲

- 1. La fonction polynomiale $P(x) := x^3 3x + 1$ est continue et dérivable sur \mathbb{R} et sa dérivée est P'(x) = $3x^2 - 3$, qui est strictement négative sur]-1,+1[. Par conséquent P est strictement décroissante sur]-1,+1[. Comme P(0)=1>0 et P(1/2)=-3/8<0 il en résulte grâce au théorème des valeurs intermédiaires qu'il existe un réel unique $\alpha \in]0, 1/2[$ tel que $P(\alpha) = 0$.
- 2. Comme $f(x) x = (x^3 3x + 1)/9$ il en résulte que α est l'unique solution de l'équation f(x) = x dans]0,1/2[.
- 3. Comme $f'(x) = (x^2 + 2)/3 > 0$ pour tout $x \in \mathbb{R}$, on en déduit que f est strictement croissante sur \mathbb{R} . Comme f(0) = 1/9 et $\lim_{x \to +\infty} f(x) = +\infty$, on en déduit que $f(\mathbb{R}^+) = [1/9, +\infty[$. Comme $x_1 = -\infty[$ $f(x_0) = 1/9 > 0$ alors $x_1 > x_0 = 0$; f étant strictement croissante sur \mathbb{R}^+ , on en déduit par récurrence que $x_{n+1} > x_n$ pour tout $n \in \mathbb{N}$ ce qui prouve que la suite (x_n) est croissante.
- 4. Un calcul simple montre que f(1/2) < 1/2. Comme $0 = x_0 < 1/2$ et que f est croissante on en déduit par récurrence que $x_n < 1/2$ pour tout $n \in \mathbb{N}$ (en effet si $x_n < 1/2$ alors $x_{n+1} = f(x_n) < f(1/2) < 1/2$).
- 5. D'après les questions précédentes, la suite (x_n) est croissante et majorée, elle converge donc vers un nombre réel $\ell \in]0,1/2]$. De plus comme $x_{n+1} = f(x_n)$ pour tout $n \in \mathbb{N}$, on en déduit par continuité de fque $\ell = f(\ell)$. Comme f(1/2) < 1/2, On en déduit que $\ell \in]0,1/2[$ et vérifie l'équation $f(\ell) = \ell$. D'après la question 2, on en déduit que $\ell = \alpha$ et donc (x_n) converge vers α .

Remarquons d'abord que $1 - \frac{1}{k^2} = \frac{1-k^2}{k^2} = \frac{(k-1)(k+1)}{k \cdot k}$. En écrivant les fractions de u_n sous la cette forme, l'écriture va se simplifier radicalement :

$$u_n = \frac{(2-1)(2+1)}{2.2} \frac{(3-1)(3+1)}{3.3} \cdots \frac{(k-1)(k+1)}{k.k} \frac{(k)(k+2)}{(k+1).(k+1)} \cdots \frac{(n-1)(n+1)}{n.n}$$

Tous les termes des numérateurs se retrouvent au dénominateur (et vice-versa), sauf aux extrémités. D'où :

$$u_n = \frac{1}{2} \frac{n+1}{n}.$$

Donc (u_n) tends vers $\frac{1}{2}$ lorsque n tend vers $+\infty$.

Correction de l'exercice 9 ▲

- 1. 0.
- 2. 1.
- 3.7/30.
- 4. 1/2.
- 5. 1.
- 6. -3/2.
- 7. 1.
- 8. 3.

- 9. 1; 2.
- 10. 3/4.
- 11. 0.
- 12. 0.
- 13. 1/3.

Correction de l'exercice 10

1. La suite (u_n) est strictement croissante, en effet $u_{n+1} - u_n = \frac{1}{(n+1)!} > 0$. La suite (v_n) est strictement décroissante :

$$v_{n+1} - v_n = u_{n+1} - u_n + \frac{1}{(n+1)!} - \frac{1}{n!} = \frac{1}{(n+1)!} + \frac{1}{(n+1)!} - \frac{1}{n!} = \frac{1}{n!} (\frac{2}{n} - 1).$$

Donc à partir de $n \ge 2$, la suite (v_n) est strictement décroissante.

- 2. Comme $u_n \le v_n \le v_2$, alors (u_n) est une suite croissante et majorée. Donc elle converge vers $\ell \in \mathbb{R}$. De même $v_n \ge u_n \ge u_0$, donc (v_n) est une suite décroissante et minorée. Donc elle converge vers $\ell' \in \mathbb{R}$. De plus $v_n u_n = \frac{1}{n!}$. Et donc $(v_n u_n)$ tend vers 0 ce qui prouve que $\ell = \ell'$.
- 3. Supposons que $\ell \in \mathbb{Q}$, nous écrivons alors $\ell = \frac{p}{q}$ avec $p, q \in \mathbb{N}$. Nous obtenons pour $n \geqslant 2$:

$$u_n \leqslant \frac{p}{q} \leqslant v_n.$$

Ecrivons cette égalité pour $n=q:u_q\leqslant \frac{p}{q}\leqslant v_q$ et multiplions par $q!:q!u_q\leqslant q!\frac{p}{q}\leqslant q!v_q$. Dans cette double inégalité toutes les termes sont des entiers! De plus $v_q=u_q+\frac{1}{q!}$ donc:

$$q!u_q \leqslant q!\frac{p}{q} \leqslant q!u_q + 1.$$

Donc l'entier $q! \frac{p}{q}$ est égal à l'entier $q!u_q$ ou à $q!u_q+1=q!v_q$. Nous obtenons que $\ell=\frac{p}{q}$ est égal à u_q ou à v_q . Supposons par exemple que $\ell=u_q$, comme la suite (u_n) est strictement croissante alors $u_q < u_{q+1} < \cdots < \ell$, ce qui aboutit à une contradiction. Le même raisonnement s'applique en supposant $\ell=v_q$ car la suite (v_n) est strictement décroissante. Pour conclure nous avons montré que ℓ n'est pas un nombre rationnel.

En fait ℓ est le nombre $e = \exp(1)$.

Correction de l'exercice 11

1.

$$u_{n+1}^{2} - a = \frac{1}{4} \left(\frac{u_{n}^{2} + a}{u_{n}} \right)^{2} - a$$

$$= \frac{1}{4u_{n}^{2}} (u_{n}^{4} - 2au_{n}^{2} + a^{2})$$

$$= \frac{1}{4} \frac{(u_{n}^{2} - a)^{2}}{u_{n}^{2}}$$

2. Il est clair que pour $n \ge 0$ on a $u_n > 0$. D'après l'égalité précédente pour $n \ge 0$, $u_{n+1}^2 - a \ge 0$ et comme u_{n+1} est positif alors $u_{n+1} \ge \sqrt{a}$.

Soit $n \ge 1$. Calculons le quotient de u_{n+1} par u_n : $\frac{u_{n+1}}{u_n} = \frac{1}{2} \left(1 + \frac{a}{u_n^2} \right)$ or $\frac{a}{u_n^2} \le 1$ car $u_n \ge \sqrt{a}$. Donc $\frac{u_{n+1}}{u_n} \le 1$ et donc $u_{n+1} \le u_n$. La suite $(u_n)_{n \ge 1}$ est donc décroissante.

3. La suite $(u_n)_{n\geqslant 1}$ est décroissante et minorée par \sqrt{a} donc elle converge vers une limite $\ell>0$. D'après la relation

$$u_{n+1} = \frac{1}{2} \left(u_n + \frac{a}{u_n} \right)$$

quand $n \to +\infty$ alors $u_n \to \ell$ et $u_{n+1} \to \ell$. À la limite nous obtenons la relation

$$\ell = \frac{1}{2} \left(\ell + \frac{a}{\ell} \right).$$

La seule solution positive est $\ell = \sqrt{a}$. Conclusion (u_n) converge vers \sqrt{a} .

4. La relation

$$u_{n+1}^2 - a = \frac{(u_n^2 - a)^2}{4u_n^2}$$

s'écrit aussi

$$(u_{n+1} - \sqrt{a})(u_{n+1} + \sqrt{a}) = \frac{(u_n - \sqrt{a})^2 (u_n + \sqrt{a})^2}{4u_n^2}.$$

Donc

$$u_{n+1} - \sqrt{a} = (u_n - \sqrt{a})^2 \frac{1}{4(u_{n+1} + \sqrt{a})} \left(\frac{u_n + \sqrt{a}}{u_n}\right)^2$$

$$\leq (u_n - \sqrt{a})^2 \frac{1}{4(2\sqrt{a})} \left(1 + \frac{\sqrt{a}}{u_n}\right)^2$$

$$\leq (u_n - \sqrt{a})^2 \frac{1}{2\sqrt{a}}$$

5. Par récurrence pour n = 1, $u_1 - \sqrt{a} \le k$. Si la proposition est vraie rang n, alors

$$u_{n+1} - \sqrt{a} \leqslant \frac{1}{2\sqrt{a}} (u_n - \sqrt{a})^2$$

$$\leqslant \frac{1}{2\sqrt{a}} (2\sqrt{a})^2 \left(\left(\frac{k}{2\sqrt{a}} \right)^{2^{n-1}} \right)^2$$

$$\leqslant 2\sqrt{a} \left(\frac{k}{2\sqrt{a}} \right)^{2^n}$$

6. Soit $u_0 = 3$, alors $u_1 = \frac{1}{2}(3 + \frac{10}{3}) = 3,166...$ Comme $3 \le \sqrt{10} \le u_1$ donc $u_1 - \sqrt{10} \le 0.166...$ Nous pouvons choisir k = 0,17. Pour que l'erreur $u_n - \sqrt{a}$ soit inférieure à 10^{-8} il suffit de calculer le terme u_4 car alors l'erreur (calculée par la formule de la question précédente) est inférieure à $1,53 \times 10^{-10}$. Nous obtenons $u_4 = 3,16227766...$ Bilan $\sqrt{10} = 3,16227766...$ avec une précision de 8 chiffres après la virgule. Le nombre de chiffres exacts double à chaque itération, avec u_5 nous aurions (au moins) 16 chiffres exacts, et avec u_6 au moins 32...

Correction de l'exercice 12 A

1. Si $u_0 \leqslant u_1$ alors comme f est croissante $f(u_0) \leqslant f(u_1)$ donc $u_1 \leqslant u_2$, ensuite $f(u_1) \leqslant f(u_2)$ soit $u_2 \leqslant u_3$,... Par récurrence on montre que (u_n) est décroissante. Comme elle est minorée par a alors elle converge. Si $u_0 \leqslant u_1$ alors la suite (u_n) est croissante et majorée par b donc converge.

Notons ℓ la limite de $(u_n)_n$. Comme f est continue alors $(f(u_n))$ tend vers $f(\ell)$. De plus la limite de $(u_{n+1})_n$ est aussi ℓ . En passant à la limite dans l'expression $u_{n+1} = f(u_n)$ nous obtenons l'égalité $\ell = f(\ell)$.

- 2. La fonction f définie par $f(x) = \frac{4x+5}{x+3}$ est continue et dérivable sur l'intervalle [0,4] et $f([0,4]) \subset [0,4]$. La fonction f est croissante (calculez sa dérivée). Comme $u_0 = 4$ et $u_1 = 3$ alors (u_n) est décroissante. Calculons la valeur de sa limite ℓ . ℓ est solution de l'équation f(x) = x soit 4x+5 = x(x+3). Comme $u_n \ge 0$ pour tout n alors $\ell \ge 0$. La seule solution positive de l'équation du second degré 4x+5 = x(x+3) est $\ell = \frac{1+\sqrt{21}}{2} = 2,7912\dots$
- 3. Si f est décroissante alors $f \circ f$ est croissante (car $x \le y \Rightarrow f(x) \ge f(y) \Rightarrow f \circ f(x) \le f \circ f(y)$). Nous appliquons la première question avec la fonction $f \circ f$. La suite $(u_0, u_2 = f \circ f(u_0), u_4 = f \circ f(u_2), \ldots)$ est monotone et convergente. De même pour la suite $(u_1, u_3 = f \circ f(u_1), u_5 = f \circ f(u_3), \ldots)$.
- 4. La fonction f définie par $f(x)=(1-x)^2$ est continue et dérivable de [0,1] dans [0,1]. Elle est décroissante sur cet intervalle. Nous avons $u_0=\frac{1}{2},\,u_1=\frac{1}{4},\,u_2=\frac{9}{16},\,u_3=0,19\ldots$ Donc la suite (u_{2n}) est croissante, nous savons qu'elle converge et notons ℓ sa limite. La suite (u_{2n+1}) et décroissante, notons ℓ' sa limite. Les limites ℓ et ℓ' sont des solutions de l'équation $f\circ f(x)=x$. Cette équation s'écrit $(1-f(x))^2=x$, ou encore $(1-(1-x)^2)^2=x$ soit $x^2(2-x)^2=x$. Il y a deux solutions évidentes 0 et 1. Nous factorisons le polynôme $x^2(2-x)^2-x$ en $x(x-1)(x-\lambda)(x-\mu)$ avec λ et μ les solutions de l'équation $x^2-3x+1:\lambda=\frac{3-\sqrt{5}}{2}=0,3819\ldots$ et $\mu=\frac{3+\sqrt{5}}{2}>1$. Les solutions de l'équation $f\circ f(x)=x$ sont donc $\{0,1,\lambda,\mu\}$. Comme (u_{2n}) est croissante et que $u_0=\frac{1}{2}$ alors (u_{2n}) converge vers $\ell=1$ qui est le seul point fixe de [0,1] supérieur à $\frac{1}{2}$. Comme (u_{2n+1}) est décroissante et que $u_1=\frac{1}{4}$ alors (u_{2n+1}) converge vers $\ell'=0$ qui est le seul point fixe de [0,1] inférieur à $\frac{1}{4}$.

Correction de l'exercice 13

1. Soient a,b>0. On veut démontrer que $\sqrt{ab}\leqslant \frac{a+b}{2}$. Comme les deux membres de cette inégalité sont positifs, cette inégalité est équivalente à $ab\leqslant (\frac{a+b}{2})^2$. De plus,

$$ab \leqslant \left(\frac{a+b}{2}\right)^2 \Leftrightarrow 4ab \leqslant a^2 + 2ab + b$$

$$\Leftrightarrow 0 \leqslant a^2 - 2ab + b^2$$

ce qui est toujours vrai car $a^2 - 2ab + b^2 = (a - b)^2$ est un carré parfait. On a donc bien l'inégalité voulue.

2. Quitte à échanger a et b (ce qui ne change pas les moyennes arithmétique et géométrique, et qui préserve le fait d'être compris entre a et b), on peut supposer que $a \le b$. Alors en ajoutant les deux inégalités

$$a/2 \leqslant a/2 \leqslant b/2$$

$$a/2 \leqslant b/2 \leqslant b/2$$
,

on obtient

$$a \leqslant \frac{a+b}{2} \leqslant b.$$

De même, comme tout est positif, en multipliant les deux inégalités

$$\sqrt{a} \leqslant \sqrt{a} \leqslant \sqrt{b}$$

$$\sqrt{a} \leqslant \sqrt{b} \leqslant \sqrt{b}$$

on obtient

$$a \leqslant \sqrt{ab} \leqslant b$$
.

3. Il faut avant tout remarquer que pour tout n, u_n et v_n sont strictement positifs, ce qui permet de dire que les deux suites sont bien définies. On le démontre par récurrence : c'est clair pour u_0 et v_0 , et si u_n et v_n sont strictement positifs alors leurs moyennes géométrique (qui est u_{n+1}) et arithmétique (qui est v_{n+1}) sont strictement positives.

- (a) On veut montrer que pour chaque n, $u_n \le v_n$. L'inégalité est claire pour n = 0 grâce aux hypothèses faites sur u_0 et v_0 . Si maintenant n est plus grand que 1, u_n est la moyenne géométrique de u_{n-1} et v_{n-1} et v_n est la moyenne arithmétique de u_{n-1} et v_{n-1} , donc, par 1., $u_n \le v_n$.
- (b) On sait d'après 2. que $u_n \le u_{n+1} \le v_n$. En particulier, $u_n \le u_{n+1}$ i.e. (u_n) est croissante. De même, d'après 2., $u_n \le v_{n+1} \le v_n$. En particulier, $v_{n+1} \le v_n$ i.e. (v_n) est décroissante.
- (c) Pour tout n, on a $u_0 \le u_n \le v_n \le v_0$. (u_n) est donc croissante et majorée, donc converge vers une limite ℓ . Et (v_n) est décroissante et minorée et donc converge vers une limite ℓ' . Nous savons maintenant que $u_n \to \ell$, donc aussi $u_{n+1} \to \ell$, et $v_n \to \ell'$; la relation $u_{n+1} = \sqrt{u_n v_n}$ s'écrit à la limite :

$$\ell = \sqrt{\ell \ell'}$$
.

De même la relation $v_{n+1} = \frac{u_n + v_n}{2}$ donnerait à la limite :

$$\ell' = \frac{\ell + \ell'}{2}.$$

Un petit calcul avec l'une ou l'autre de ces égalités implique $\ell = \ell'$.

Il y a une autre méthode un peu plus longue mais toute aussi valable.

Définition Deux suites (u_n) et (v_n) sont dites *adjacentes* si

- 1. $u_n \leq v_n$,
- 2. (u_n) est croissante et (v_n) est décroissante,
- 3. $\lim (u_n v_n) = 0$.

Alors, on a le théorème suivant :

Théorème : Si (u_n) et (v_n) sont deux suites adjacentes, elles sont toutes les deux convergentes et ont la même limite.

Pour appliquer ce théorème, vu qu'on sait déjà que (u_n) et (v_n) vérifient les points 1 et 2 de la définition, il suffit de démontrer que $\lim (u_n - v_n) = 0$. On a d'abord que $v_n - u_n \ge 0$. Or, d'après (a)

$$v_{n+1} - u_{n+1} \leqslant v_{n+1} - u_n = \frac{v_n - u_n}{2}.$$

Donc, si on note $w_n = v_n - u_n$, on a que $0 \le w_{n+1} \le w_n/2$. Donc, on peut démontrer (par récurrence) que $0 \le w_n \le \frac{w_0}{2^n}$, ce qui implique que $\lim_{n\to\infty} w_n = 0$. Donc $v_n - u_n$ tend vers 0, et ceci termine de démontrer que les deux suites (u_n) et (v_n) sont convergentes et ont même limite en utilisant le théorème sur les suites adjacentes.

Correction de l'exercice 14 ▲

Notons $f_n: [0,1] \longrightarrow \mathbb{R}$ la fonction définie par :

$$f_n(x) = \sum_{k=1}^n x^k - 1.$$

- 1. La fonction f_n est continue sur [0,1]. De plus $f_n(0) = -1 < 0$ et $f_n(1) = n 1 \ge 0$. D'après le théorème des valeurs intermédiaires, f_n , admet un zéro dans l'intervalle [0,1]. De plus elle strictement croissante (calculez sa dérivée) sur [0,1] donc ce zéro est unique.
- 2. Calculons $f_n(a_{n-1})$.

$$f_n(a_{n-1}) = \sum_{k=1}^n a_{n-1}^k - 1$$

$$= a_{n-1}^n + \sum_{k=1}^{n-1} a_{n-1}^k - 1$$

$$= a_{n-1}^n + f_{n-1}(a_{n-1})$$

$$= a_{n-1}^n \quad (\operatorname{car} f_{n-1}(a_{n-1})) = 0 \text{ par définition de } a_{n-1}).$$

Nous obtenons l'inégalité

$$0 = f_n(a_n) < f_n(a_{n-1}) = a_{n-1}^n.$$

Or f_n est strictement croissante, l'inégalité ci-dessus implique donc $a_n < a_{n-1}$. Nous venons de démontrer que la suite $(a_n)_n$ est décroissante.

Remarquons avant d'aller plus loin que $f_n(x)$ est la somme d'une suite géométrique :

$$f_n(x) = \frac{1 - x^{n+1}}{1 - x} - 2.$$

Évaluons maintenant $f_n(\frac{1}{2})$, à l'aide de l'expression précédente

$$f_n(\frac{1}{2}) = \frac{1 - (\frac{1}{2})^{n+1}}{1 - \frac{1}{2}} - 2 = -\frac{1}{2^n} < 0.$$

Donc $f_n(\frac{1}{2}) < f_n(a_n) = 0$ entraı̂ne $\frac{1}{2} < a_n$.

Pour résumer, nous avons montré que la suite $(a_n)_n$ est strictement décroissante et minorée par $\frac{1}{2}$.

3. Comme $(a_n)_n$ est décroissante et minorée par $\frac{1}{2}$ alors elle converge, nous notons ℓ sa limite :

$$\frac{1}{2} \leqslant \ell < a_n.$$

Appliquons f_n (qui est strictement croissante) à cette inégalité :

$$f_n\left(\frac{1}{2}\right) \leqslant f_n(\ell) < f_n(a_n),$$

qui s'écrit aussi :

$$-\frac{1}{2^n} \leqslant f_n(\ell) < 0,$$

et ceci quelque soit $n \ge 1$. La suite $(f_n(\ell))_n$ converge donc vers 0 (théorème des "gendarmes"). Mais nous savons aussi que

$$f_n(\ell) = \frac{1 - \ell^{n+1}}{1 - \ell} - 2;$$

donc $(f_n(\ell))_n$ converge vers $\frac{1}{1-\ell}-2$ car $(\ell^n)_n$ converge vers 0. Donc

$$\frac{1}{1-\ell} - 2 = 0$$
, d'où $\ell = \frac{1}{2}$.

Limites et fonctions continues

```
Vidéo ■ partie 1. Notions de fonction

Vidéo ■ partie 2. Limites

Vidéo ■ partie 3. Continuité en un point

Vidéo ■ partie 4. Continuité sur un intervalle

Vidéo ■ partie 5. Fonctions monotones et bijections

Fiche d'exercices ♦ Limites de fonctions

Fiche d'exercices ♦ Fonctions continues
```

Motivation

Les équations en une variable x qu'on sait résoudre explicitement, c'est-à-dire en donnant une formule pour la solution, sont très particulières : par exemple les équations du premier degré ax+b=0, celles du second degré $ax^2+bx+c=0$. Mais pour la plupart des équations, il n'est pas possible de donner une formule pour la ou les solutions. En fait il n'est même pas évident de déterminer seulement le nombre de solutions, ni même s'il en existe. Considérons par exemple l'équation extrêmement simple :

$$x + \exp x = 0$$

Il n'y a pas de formule explicite (utilisant des sommes, des produits, des fonctions usuelles) pour trouver la solution x. Dans ce chapitre nous allons voir que grâce à l'étude de la fonction $f(x) = x + \exp x$, il est possible d'obtenir beaucoup d'informations sur l'ensemble des solutions de l'équation $x + \exp x = 0$, et même de l'équation plus générale $x + \exp x = y$ (où $y \in \mathbb{R}$ est fixé).

Nous serons capables de prouver que pour chaque $y \in \mathbb{R}$ l'équation « $x + \exp x = y$ » admet une solution x, que cette solution est unique, et nous saurons dire comment varie x en fonction de y. Le point clé de cette résolution est l'étude de la fonction f et en particulier de sa continuité. Même s'il n'est pas possible de trouver l'expression exacte de la solution f en fonction de f0, nous allons mettre en place les outils théoriques qui permettent d'en trouver une solution approchée.

1. Notions de fonction

1.1. Définitions

Définition 1.

Une fonction d'une variable réelle à valeurs réelles est une application $f: U \to \mathbb{R}$, où U est une partie de \mathbb{R} . En général, U est un intervalle ou une réunion d'intervalles. On appelle U le domaine de définition de la fonction f.

Exemple 1.

La fonction inverse:

$$f:]-\infty, 0[\cup]0, +\infty[\longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{1}{x}.$$

La fonction inverse : $f:]-\infty, 0[\,\cup\,]0, +\infty[\longrightarrow \mathbb{R}$ $x \longmapsto \frac{1}{x}.$ Le *graphe* d'une fonction $f: U \to \mathbb{R}$ est la partie Γ_f de \mathbb{R}^2 définie par $\Gamma_f = \big\{(x, f(x)) \mid x \in U\big\}.$ Le graphe d'une fonction (à gauche), l'exemple du graphe de $x\mapsto \frac{1}{x}$ (à droite).

1.2. Opérations sur les fonctions

Soient $f:U\to\mathbb{R}$ et $g:U\to\mathbb{R}$ deux fonctions définies sur une même partie U de \mathbb{R} . On peut alors définir les fonctions suivantes:

- la *somme* de f et g est la fonction $f + g : U \to \mathbb{R}$ définie par (f + g)(x) = f(x) + g(x) pour tout $x \in U$;
- le *produit* de f et g est la fonction $f \times g : U \to \mathbb{R}$ définie par $(f \times g)(x) = f(x) \times g(x)$ pour tout $x \in U$;
- la multiplication par un scalaire $\lambda \in \mathbb{R}$ de f est la fonction $\lambda \cdot f : U \to \mathbb{R}$ définie par $(\lambda \cdot f)(x) = \lambda \cdot f(x)$ pour tout $x \in U$.

Comment tracer le graphe d'une somme de fonction?

1.3. Fonctions majorées, minorées, bornées

Définition 2.

Soient $f: U \to \mathbb{R}$ et $g: U \to \mathbb{R}$ deux fonctions. Alors :

- $f \geqslant g$ si $\forall x \in U$ $f(x) \geqslant g(x)$;
- $f \geqslant 0$ si $\forall x \in U$ $f(x) \geqslant 0$;
- f > 0 si $\forall x \in U$ f(x) > 0;
- f est dite constante sur U si $\exists a \in \mathbb{R} \ \forall x \in U \ f(x) = a$;
- f est dite *nulle* sur U si $\forall x \in U$ f(x) = 0.

Définition 3.

Soit $f: U \to \mathbb{R}$ une fonction. On dit que :

- f est majorée sur U si $\exists M \in \mathbb{R} \ \forall x \in U \ f(x) \leq M$;
- f est minorée sur U si $\exists m \in \mathbb{R} \ \forall x \in U \ f(x) \geqslant m$;
- f est bornée sur U si f est à la fois majorée et minorée sur U, c'est-à-dire si $\exists M \in \mathbb{R} \ \forall x \in U \ |f(x)| \leq M$.

Voici le graphe d'une fonction bornée (minorée par m et majorée par M).

1.4. Fonctions croissantes, décroissantes

Définition 4.

Soit $f:U\to\mathbb{R}$ une fonction. On dit que :

- f est croissante sur U si $\forall x, y \in U \quad x \leqslant y \implies f(x) \leqslant f(y)$
- f est strictement croissante sur U si $\forall x, y \in U$ $x < y \Longrightarrow f(x) < f(y)$
- f est décroissante sur U si $\forall x, y \in U$ $x \leq y \Longrightarrow f(x) \geqslant f(y)$
- f est strictement décroissante sur U si $\forall x, y \in U$ $x < y \implies f(x) > f(y)$
- *f* est *monotone* (resp. *strictement monotone*) sur *U* si *f* est croissante ou décroissante (resp. strictement croissante ou strictement décroissante) sur *U*.

Un exemple de fonction croissante (et même strictement croissante) :

Exemple 2.

- La fonction racine carrée $\begin{cases} [0, +\infty[\longrightarrow \mathbb{R} \\ x \longmapsto \sqrt{x} \end{cases}$ est strictement croissante.
- Les fonctions exponentielle exp : $\mathbb{R} \to \mathbb{R}$ et logarithme ln : $]0, +\infty[\to \mathbb{R}$ sont strictement croissantes.
- La fonction valeur absolue $\begin{cases} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto |x| \end{cases}$ n'est ni croissante, ni décroissante. Par contre, la fonction $\begin{cases} [0, +\infty[\longrightarrow \mathbb{R} \\ x \longmapsto |x| \end{cases}$ est strictement croissante.

1.5. Parité et périodicité

Définition 5.

Soit I un intervalle de \mathbb{R} symétrique par rapport à 0 (c'est-à-dire de la forme]-a,a[ou [-a,a] ou \mathbb{R}). Soit $f:I\to\mathbb{R}$ une fonction définie sur cet intervalle. On dit que :

- f est paire si $\forall x \in I$ f(-x) = f(x),
- f est impaire si $\forall x \in I$ f(-x) = -f(x).

Interprétation graphique :

- f est paire si et seulement si son graphe est symétrique par rapport à l'axe des ordonnées (figure de gauche).
- f est impaire si et seulement si son graphe est symétrique par rapport à l'origine (figure de droite).

Exemple 3.

- La fonction définie sur \mathbb{R} par $x \mapsto x^{2n}$ $(n \in \mathbb{N})$ est paire.
- La fonction définie sur \mathbb{R} par $x \mapsto x^{2n+1}$ $(n \in \mathbb{N})$ est impaire.
- La fonction $\cos : \mathbb{R} \to \mathbb{R}$ est paire. La fonction $\sin : \mathbb{R} \to \mathbb{R}$ est impaire.

Définition 6.

Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction et T un nombre réel, T > 0. La fonction f est dite *périodique* de période T si $\forall x \in \mathbb{R}$ f(x+T) = f(x).

Interprétation graphique : f est périodique de période T si et seulement si son graphe est invariant par la translation de vecteur $T\vec{i}$, où \vec{i} est le premier vecteur de coordonnées.

Exemple 4.

Les fonctions sinus et cosinus sont 2π -périodiques. La fonction tangente est π -périodique.

Mini-exercices.

- 1. Soit $U =]-\infty, 0[$ et $f: U \to \mathbb{R}$ définie par f(x) = 1/x. f est-elle monotone? Et sur $U =]0, +\infty[$? Et sur $U =]-\infty, 0[\cup]0, +\infty[$?
- 2. Pour deux fonctions paires que peut-on dire sur la parité de la somme ? du produit ? et de la composée ? Et pour deux fonctions impaires ? Et si l'une est paire et l'autre impaire ?
- 3. On note $\{x\} = x E(x)$ la partie fractionnaire de x. Tracer le graphe de la fonction $x \mapsto \{x\}$ et montrer qu'elle est périodique.
- 4. Soit $f : \mathbb{R} \to \mathbb{R}$ la fonction définie par $f(x) = \frac{x}{1+x^2}$. Montrer que |f| est majorée par $\frac{1}{2}$, étudier les variations de f (sans utiliser de dérivée) et tracer son graphe.
- 5. On considère la fonction $g : \mathbb{R} \to \mathbb{R}$, $g(x) = \sin(\pi f(x))$, où f est définie à la question précédente. Déduire de l'étude de f les variations, la parité, la périodicité de g et tracer son graphe.

Limites et fonctions continues 2. Limites 6

2. Limites

2.1. Définitions

Limite en un point

Soit $f:I\to\mathbb{R}$ une fonction définie sur un intervalle I de \mathbb{R} . Soit $x_0\in\mathbb{R}$ un point de I ou une extrémité de I.

Définition 7.

Soit $\ell \in \mathbb{R}$. On dit que f a pour limite ℓ en x_0 si

$$\forall \epsilon > 0 \quad \exists \delta > 0 \quad \forall x \in I \quad |x - x_0| < \delta \implies |f(x) - \ell| < \epsilon$$

On dit aussi que f(x) tend vers ℓ lorsque x tend vers x_0 . On note alors $\lim_{x \to x_0} f(x) = \ell$ ou bien $\lim_{x \to x_0} f = \ell$.

Remarque.

- L'inégalité $|x x_0| < \delta$ équivaut à $x \in]x_0 \delta, x_0 + \delta[$. L'inégalité $|f(x) \ell| < \epsilon$ équivaut à $f(x) \in]\ell \epsilon, \ell + \epsilon[$.
- On peut remplacer certaines inégalités strictes « < » par des inégalités larges « \leqslant » dans la définition : $\forall \epsilon > 0 \quad \exists \delta > 0 \quad \forall x \in I \quad |x x_0| \leqslant \delta \implies |f(x) \ell| \leqslant \epsilon$
- Dans la définition de la limite

$$\forall \epsilon > 0 \quad \exists \delta > 0 \quad \forall x \in I \quad |x - x_0| < \delta \implies |f(x) - \ell| < \epsilon$$

le quantificateur $\forall x \in I$ n'est là que pour être sûr que l'on puisse parler de f(x). Il est souvent omis et l'existence de la limite s'écrit alors juste :

$$\forall \epsilon > 0 \quad \exists \delta > 0 \quad |x - x_0| < \delta \implies |f(x) - \ell| < \epsilon.$$

• N'oubliez pas que l'ordre des quantificateurs est important, on ne peut pas échanger le $\forall \epsilon$ avec le $\exists \delta$: le δ dépend en général du ϵ . Pour marquer cette dépendance on peut écrire : $\forall \epsilon > 0 \quad \exists \delta(\epsilon) > 0 \dots$

Exemple 5.

- $\lim_{x \to x_0} \sqrt{x} = \sqrt{x_0}$ pour tout $x_0 \ge 0$,
- la fonction partie entière E n'a pas de limite aux points $x_0 \in \mathbb{Z}$.

Soit f une fonction définie sur un ensemble de la forme $]a, x_0[\cup]x_0, b[$.

Définition 8.

• On dit que f a pour limite $+\infty$ en x_0 si

$$\forall A > 0 \quad \exists \delta > 0 \quad \forall x \in I \quad |x - x_0| < \delta \implies f(x) > A$$

On note alors $\lim_{x \to x_0} f(x) = +\infty$.

• On dit que f a pour limite $-\infty$ en x_0 si

$$\forall A > 0 \quad \exists \delta > 0 \quad \forall x \in I \quad |x - x_0| < \delta \implies f(x) < -A$$

On note alors $\lim_{x \to x_0} f(x) = -\infty$.

Limite en l'infini

Soit $f: I \to \mathbb{R}$ une fonction définie sur un intervalle de la forme $I =]a, +\infty[$.

Définition 9.

• Soit $\ell \in \mathbb{R}$. On dit que f a pour limite ℓ en $+\infty$ si

$$\forall \epsilon > 0 \quad \exists B > 0 \quad \forall x \in I \quad x > B \Longrightarrow |f(x) - \ell| < \epsilon$$

On note alors $\lim_{x \to +\infty} f(x) = \ell$ ou $\lim_{t \to \infty} f = \ell$.

• On dit que f a pour limite $+\infty$ en $+\infty$ si

$$\forall A > 0 \quad \exists B > 0 \quad \forall x \in I \quad x > B \Longrightarrow f(x) > A$$

On note alors $\lim_{x \to +\infty} f(x) = +\infty$.

On définirait de la même manière la limite en $-\infty$ pour des fonctions définies sur les intervalles du type $]-\infty$, a[.

2. Limites 8 LIMITES ET FONCTIONS CONTINUES

Exemple 6.

On a les limites classiques suivantes pour tout $n \geqslant 1$

•
$$\lim_{x \to +\infty} x^n = +\infty$$
 et $\lim_{x \to -\infty} x^n = \begin{cases} +\infty & \text{si } n \text{ est pair} \\ -\infty & \text{si } n \text{ est impair} \end{cases}$

•
$$\lim_{x \to +\infty} \left(\frac{1}{x^n} \right) = 0$$
 et $\lim_{x \to -\infty} \left(\frac{1}{x^n} \right) = 0$.

Soit $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ avec $a_n > 0$ et $Q(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0$ avec $b_m > 0$.

$$\lim_{x \to +\infty} \frac{P(x)}{Q(x)} = \begin{cases} +\infty & \text{si } n > m \\ \frac{a_n}{b_m} & \text{si } n = m \\ 0 & \text{si } n < m \end{cases}$$

Limite à gauche et à droite

Soit f une fonction définie sur un ensemble de la forme $]a, x_0[\cup]x_0, b[$.

Définition 10.

- On appelle *limite* à *droite* en x₀ de f la limite de la fonction f_{||x₀,b||} en x₀ et on la note lim_{x₀} f.
 On définit de même la *limite* à *gauche* en x₀ de f : la limite de la fonction f_{||a,x₀||} en x₀ et on la note lim_{x₀} f.
- On note aussi $\lim_{\substack{x \to x_0 \\ x > x_0}} f(x)$ pour la limite à droite et $\lim_{\substack{x \to x_0 \\ x < x_0}} f(x)$ pour la limite à gauche.

Dire que $f: I \to \mathbb{R}$ admet une limite $\ell \in \mathbb{R}$ à droite en x_0 signifie donc :

$$\forall \epsilon > 0 \quad \exists \delta > 0 \quad x_0 < x < x_0 + \delta \implies |f(x) - \ell| < \epsilon$$

Si la fonction f a une limite en x_0 , alors ses limites à gauche et à droite en x_0 coïncident et valent $\lim f$.

Réciproquement, si f a une limite à gauche et une limite à droite en x_0 et si ces limites valent $f(x_0)$ (si f est bien définie en x_0) alors f admet une limite en x_0 .

Exemple 8.

Considérons la fonction partie entière au point x = 2:

- comme pour tout $x \in]2,3[$ on a E(x) = 2, on a $\lim_{x \to a} E = 2$,
- comme pour tout $x \in [1, 2[$ on a E(x) = 1, on a $\lim E = 1.$

Ces deux limites étant différentes, on en déduit que \bar{E} n'a pas de limite en 2.

2.2. Propriétés

Proposition 1.

Si une fonction admet une limite, alors cette limite est unique.

On ne donne pas la démonstration de cette proposition, qui est très similaire à celle de l'unicité de la limite pour les suites (un raisonnement par l'absurde).

Soient deux fonctions f et g. On suppose que x_0 est un réel, ou que $x_0 = \pm \infty$.

Proposition 2.

Proposition 2.

Si $\lim_{x_0} f = \ell \in \mathbb{R}$ et $\lim_{x_0} g = \ell' \in \mathbb{R}$, alors:

• $\lim_{x_0} (\lambda \cdot f) = \lambda \cdot \ell$ pour tout $\lambda \in \mathbb{R}$ • $\lim_{x_0} (f + g) = \ell + \ell'$ • $\lim_{x_0} (f \times g) = \ell \times \ell'$ • $\sin \ell \neq 0$, alors $\lim_{x_0} \frac{1}{f} = \frac{1}{\ell}$ De plus, $\sin f = +\infty$ (ou $-\infty$) alors $\lim_{x_0} \frac{1}{f} = 0$.

Cette proposition se montre de manière similaire à la proposition analogue sur les limites de suites. Nous n'allons donc pas donner la démonstration de tous les résultats.

Démonstration. Montrons par exemple que si f tend en x_0 vers une limite ℓ non nulle, alors $\frac{1}{\ell}$ est bien définie dans un voisinage de x_0 et tend vers $\frac{1}{\ell}$.

Supposons $\ell > 0$, le cas $\ell < 0$ se montrerait de la même manière. Montrons tout d'abord que $\frac{1}{\ell}$ est bien définie et est bornée dans un voisinage de x_0 contenu dans l'intervalle I. Par hypothèse

$$\forall \epsilon' > 0 \quad \exists \delta > 0 \quad \forall x \in I \quad x_0 - \delta < x < x_0 + \delta \implies \ell - \epsilon' < f(x) < \ell + \epsilon'.$$

Si on choisit ϵ' tel que $0 < \epsilon' < \ell/2$, alors on voit qu'il existe un intervalle $J = I \cap]x_0 - \delta, x_0 + \delta[$ tel que pour tout xdans J, $f(x) > \ell/2 > 0$, c'est-à-dire, en posant $M = 2/\ell$:

$$\forall x \in J \quad 0 < \frac{1}{f(x)} < M.$$

Fixons à présent $\epsilon > 0$. Pour tout $x \in J$, on a

$$\left|\frac{1}{f(x)} - \frac{1}{\ell}\right| = \frac{|\ell - f(x)|}{f(x)\ell} < \frac{M}{\ell} \left|\ell - f(x)\right|.$$

Donc, si dans la définition précédente de la limite de f en x_0 on choisit $\epsilon' = \frac{\ell \epsilon}{M}$, alors on trouve qu'il existe un $\delta > 0$ tel que

$$\forall x \in J \quad x_0 - \delta < x < x_0 + \delta \implies \left| \frac{1}{f(x)} - \frac{1}{\ell} \right| < \frac{M}{\ell} \left| \ell - f(x) \right| < \frac{M}{\ell} \epsilon' = \epsilon.$$

Proposition 3.

Si
$$\lim_{x_0} f = \ell$$
 et $\lim_{\ell} g = \ell'$, alors $\lim_{x_0} g \circ f = \ell'$.

Ce sont des propriétés que l'on utilise sans s'en apercevoir!

Exemple 9.

Soit $x \mapsto u(x)$ une fonction et $x_0 \in \mathbb{R}$ tel que $u(x) \to 2$ lorsque $x \to x_0$. Posons $f(x) = \sqrt{1 + \frac{1}{u(x)^2} + \ln u(x)}$. Si elle existe, quelle est la limite de f en x_0 ?

- Tout d'abord comme $u(x) \to 2$ alors $u(x)^2 \to 4$ donc $\frac{1}{u(x)^2} \to \frac{1}{4}$ (lorsque $x \to x_0$).
- De même comme $u(x) \to 2$ alors, dans un voisinage de x_0 , u(x) > 0 donc $\ln u(x)$ est bien définie dans ce voisinage et de plus $\ln u(x) \rightarrow \ln 2$ (lorsque $x \rightarrow x_0$).
- Cela entraîne que $1 + \frac{1}{u(x)^2} + \ln u(x) \rightarrow 1 + \frac{1}{4} + \ln 2$ lorsque $x \rightarrow x_0$. En particulier $1 + \frac{1}{u(x)^2} + \ln u(x) \geqslant 0$ dans un voisinage de x_0 , donc f(x) est bien définie dans un voisinage de x_0 .
- Et par composition avec la racine carrée alors f(x) a bien une limite en x_0 et $\lim_{x\to x_0} f(x) = \sqrt{1+\frac{1}{4}+\ln 2}$.

Il y a des situations où l'on ne peut rien dire sur les limites. Par exemple si $\lim_{x_0} f = +\infty$ et $\lim_{x_0} g = -\infty$ alors on ne peut à priori rien dire sur la limite de f+g (cela dépend vraiment de f et de g). On raccourci cela en $+\infty-\infty$ est une forme indéterminée.

Voici une liste de formes indéterminées : $+\infty - \infty$; $0 \times \infty$; $\frac{\infty}{\infty}$; $\frac{0}{0}$; 1^{∞} ; ∞^{0} .

Enfin voici une proposition très importante qui signifie qu'on peut passer à la limite dans une inégalité large.

- Si f ≤ g et si lim_{x0} f = ℓ ∈ ℝ et lim_{x0} g = ℓ' ∈ ℝ, alors ℓ ≤ ℓ'.
 Si f ≤ g et si lim_{x0} f = +∞, alors lim_{x0} g = +∞.
 Théorème des gendarmes

Si
$$f \leqslant g \leqslant h$$
 et si $\lim_{x_0} f = \lim_{x_0} h = \ell \in \mathbb{R}$, alors g a une limite en x_0 et $\lim_{x_0} g = \ell$.

Mini-exercices.

- 1. Déterminer, si elle existe, la limite de $\frac{2x^2-x-2}{3x^2+2x+2}$ en 0. Et en $+\infty$?
- 2. Déterminer, si elle existe, la limite de $\sin\left(\frac{1}{x}\right)$ en $+\infty$. Et pour $\frac{\cos x}{\sqrt{x}}$?
- 3. En utilisant la définition de la limite (avec des ϵ), montrer que $\lim_{x\to 2} (3x+1) = 7$.
- 4. Montrer que si f admet une limite finie en x_0 alors il existe $\delta > 0$ tel que f soit bornée sur $]x_0 \delta, x_0 + \delta[$.
- 5. Déterminer, si elle existe, $\lim_{x\to 0} \frac{\sqrt{1+x}-\sqrt{1+x^2}}{x}$. Et $\lim_{x\to 2} \frac{x^2-4}{x^2-3x+2}$?

3. Continuité en un point

3.1. Définition

Soit *I* un intervalle de \mathbb{R} et $f: I \to \mathbb{R}$ une fonction.

Définition 11.

• On dit que f est continue en un point $x_0 \in I$ si

$$\forall \epsilon > 0 \quad \exists \delta > 0 \quad \forall x \in I \quad |x - x_0| < \delta \implies |f(x) - f(x_0)| < \epsilon$$

c'est-à-dire si f admet une limite en x_0 (cette limite vaut alors nécessairement $f(x_0)$).

On dit que f est continue sur I si f est continue en tout point de I.

Intuitivement, une fonction est continue sur un intervalle, si on peut tracer son graphe « sans lever le crayon », c'est-à-dire si sa courbe représentative n'admet pas de saut.

Voici des fonctions qui ne sont pas continues en x_0 :

Exemple 10.

Les fonctions suivantes sont continues :

- une fonction constante sur un intervalle,
- la fonction racine carrée $x \mapsto \sqrt{x}$ sur $[0, +\infty[$,
- les fonctions sin et cos sur \mathbb{R} ,
- la fonction valeur absolue $x \mapsto |x| \operatorname{sur} \mathbb{R}$,
- la fonction exp sur \mathbb{R} ,
- la fonction ln sur $]0, +\infty[$.

Par contre, la fonction partie entière E n'est pas continue aux points $x_0 \in \mathbb{Z}$, puisqu'elle n'admet pas de limite en ces points. Pour $x_0 \in \mathbb{R} \setminus \mathbb{Z}$, elle est continue en x_0 .

3.2. Propriétés

La continuité assure par exemple que si la fonction n'est pas nulle en un point (qui est une propriété ponctuelle) alors elle n'est pas nulle autour de ce point (propriété locale). Voici l'énoncé :

Soit $f:I\to\mathbb{R}$ une fonction définie sur un intervalle I et x_0 un point de I. Si f est continue en x_0 et si $f(x_0)\neq 0$, alors il existe $\delta > 0$ tel que

$$\forall x \in]x_0 - \delta, x_0 + \delta[f(x) \neq 0$$

Démonstration. Supposons par exemple que $f(x_0) > 0$, le cas $f(x_0) < 0$ se montrerait de la même manière. Écrivons ainsi la définition de la continuité de f en x_0 :

$$\forall \epsilon > 0 \quad \exists \delta > 0 \quad \forall x \in I \quad x \in]x_0 - \delta, x_0 + \delta[\implies f(x_0) - \epsilon < f(x) < f(x_0) + \epsilon.$$

Il suffit donc de choisir ϵ tel que $0 < \epsilon < f(x_0)$. Il existe alors bien un intervalle $J = I \cap]x_0 - \delta, x_0 + \delta[$ tel que pour tout x dans J, on a f(x) > 0.

La continuité se comporte bien avec les opérations élémentaires. Les propositions suivantes sont des conséquences immédiates des propositions analogues sur les limites.

Proposition 5.

Soient $f, g: I \to \mathbb{R}$ deux fonctions continues en un point $x_0 \in I$. Alors

- $\lambda \cdot f$ est continue en x_0 (pour tout $\lambda \in \mathbb{R}$),
- f + g est continue en x_0 ,
- f × g est continue en x₀,
 si f(x₀) ≠ 0, alors ¹/_f est continue en x₀.

Exemple 11.

La proposition précédente permet de vérifier que d'autres fonctions usuelles sont continues :

- les fonctions puissance $x \mapsto x^n$ sur \mathbb{R} (comme produit $x \times x \times \cdots$),
- les polynômes sur \mathbb{R} (somme et produit de fonctions puissance et de fonctions constantes),
- les fractions rationnelles $x \mapsto \frac{P(x)}{Q(x)}$ sur tout intervalle où le polynôme Q(x) ne s'annule pas.

La composition conserve la continuité (mais il faut faire attention en quels points les hypothèses s'appliquent).

Proposition 6.

Soient $f: I \to \mathbb{R}$ et $g: J \to \mathbb{R}$ deux fonctions telles que $f(I) \subset J$. Si f est continue en un point $x_0 \in I$ et si g est continue en $f(x_0)$, alors $g \circ f$ est continue en x_0 .

3.3. Prolongement par continuité

Définition 12.

Soit I un intervalle, x_0 un point de I et $f:I\setminus\{x_0\}\to\mathbb{R}$ une fonction.

- On dit que f est prolongeable par continuité en x_0 si f admet une limite finie en x_0 . Notons alors $\ell = \lim_{x \to \infty} f$.
- On définit alors la fonction $\tilde{f}: I \to \mathbb{R}$ en posant pour tout X

$$\tilde{f}(x) = \begin{cases} f(x) & \text{si } x \neq x_0 \\ \ell & \text{si } x = x_0. \end{cases}$$

Alors \tilde{f} est continue en x_0 et on l'appelle le **prolongement par continuité** de f en x_0 .

Dans la pratique, on continuera souvent à noter f à la place de \tilde{f} .

Exemple 12.

Considérons la fonction f définie sur \mathbb{R}^* par $f(x) = x \sin(\frac{1}{x})$. Voyons si f admet un prolongement par continuité en 0?

Comme pour tout $x \in \mathbb{R}^*$ on a $|f(x)| \leq |x|$, on en déduit que f tend vers 0 en 0. Elle est donc prolongeable par continuité en 0 et son prolongement est la fonction \tilde{f} définie sur \mathbb{R} tout entier par :

$$\tilde{f}(x) = \begin{cases} x \sin\left(\frac{1}{x}\right) & \text{si } x \neq 0\\ 0 & \text{si } x = 0. \end{cases}$$

3.4. Suites et continuité

Proposition 7.

Soit $f: I \to \mathbb{R}$ une fonction et x_0 un point de I. Alors:

$$f$$
 est continue en $x_0 \iff pour$ toute suite (u_n) qui converge vers x_0 la suite $(f(u_n))$ converge vers $f(x_0)$

Démonstration.

 \implies On suppose que f est continue en x_0 et que (u_n) est une suite qui converge vers x_0 et on veut montrer que $(f(u_n))$ converge vers $f(x_0)$.

Soit $\epsilon > 0$. Comme f est continue en x_0 , il existe un $\delta > 0$ tel que

$$\forall x \in I \ |x - x_0| < \delta \implies |f(x) - f(x_0)| < \epsilon.$$

Pour ce δ , comme (u_n) converge vers x_0 , il existe $N \in \mathbb{N}$ tel que

$$\forall n \in \mathbb{N} \quad n \geqslant N \implies |u_n - x_0| < \delta.$$

On en déduit que, pour tout $n \ge N$, comme $|u_n - x_0| < \delta$, on a $|f(u_n) - f(x_0)| < \epsilon$. Comme c'est vrai pour tout $\epsilon > 0$, on peut maintenant conclure que $(f(u_n))$ converge vers $f(x_0)$.

 \Leftarrow On va montrer la contraposée : supposons que f n'est pas continue en x_0 et montrons qu'alors il existe une suite (u_n) qui converge vers x_0 et telle que $(f(u_n))$ ne converge pas vers $f(x_0)$.

Par hypothèse, comme f n'est pas continue en x_0 :

$$\exists \epsilon_0 > 0 \quad \forall \delta > 0 \quad \exists x_\delta \in I \quad \text{tel que} \quad |x_\delta - x_0| < \delta \text{ et } |f(x_\delta) - f(x_0)| > \epsilon_0.$$

On construit la suite (u_n) de la façon suivante : pour tout $n \in \mathbb{N}^*$, on choisit dans l'assertion précédente $\delta = 1/n$ et on obtient qu'il existe u_n (qui est $x_{1/n}$) tel que

$$|u_n - x_0| < \frac{1}{n}$$
 et $|f(u_n) - f(x_0)| > \epsilon_0$.

La suite (u_n) converge vers x_0 alors que la suite $(f(u_n))$ ne peut pas converger vers $f(x_0)$.

Remarque.

On retiendra surtout l'implication : si f est continue sur I et si (u_n) est une suite convergente de limite ℓ , alors $(f(u_n))$ converge vers $f(\ell)$. On l'utilisera intensivement pour l'étude des suites récurrentes $u_{n+1} = f(u_n)$: si f est continue et $u_n \to \ell$, alors $f(\ell) = \ell$.

Mini-exercices.

- 1. Déterminer le domaine de définition et de continuité des fonctions suivantes : $f(x) = 1/\sin x$, $g(x) = 1/\sqrt{x} + \frac{1}{2}$, $h(x) = \ln(x^2 + x - 1).$
- 2. Trouver les couples $(a, b) \in \mathbb{R}^2$ tels que la fonction f définie sur \mathbb{R} par f(x) = ax + b si x < 0 et $f(x) = \exp(x)$ si $x \ge 0$ soit continue sur \mathbb{R} . Et si on avait $f(x) = \frac{a}{x-1} + b$ pour x < 0?
- 3. Soit f une fonction continue telle que $f(x_0) = 1$. Montrer qu'il existe $\delta > 0$ tel que : pour tout $x \in]x_0 \delta, x_0 + \delta, x_0 +$ $\delta[f(x) > \frac{1}{2}]$
- 4. Étudier la continuité de $f: \mathbb{R} \to \mathbb{R}$ définie par : $f(x) = \sin(x)\cos\left(\frac{1}{x}\right)$ si $x \neq 0$ et f(0) = 0. Et pour g(x) = xE(x)?
- 5. La fonction définie par $f(x) = \frac{x^3+8}{|x+2|}$ admet-elle un prolongement par continuité en -2?
- 6. Soit la suite définie par $u_0 > 0$ et $u_{n+1} = \sqrt{u_n}$. Montrer que (u_n) admet une limite $\ell \in \mathbb{R}$ lorsque $n \to +\infty$. À l'aide de la fonction $f(x) = \sqrt{x}$ calculer cette limite.

4. Continuité sur un intervalle

4.1. Le théorème des valeurs intermédiaires

Théorème 1 (Théorème des valeurs intermédiaires). Soit $f:[a,b] \to \mathbb{R}$ une fonction continue sur un segment.

> Pour tout réel y compris entre f(a) et f(b), il existe $c \in [a, b]$ tel que f(c) = y.

Une illustration du théorème des valeurs intermédiaires (figure de gauche), le réel c n'est pas nécessairement unique. De plus si la fonction n'est pas continue, le théorème n'est plus vrai (figure de droite).

Démonstration. Montrons le théorème dans le cas où f(a) < f(b). On considère alors un réel y tel que $f(a) \le y \le f(b)$ et on veut montrer qu'il a un antécédent par f.

1. On introduit l'ensemble suivant

$$A = \left\{ x \in [a, b] \mid f(x) \leqslant y \right\}.$$

Tout d'abord l'ensemble A est non vide (car $a \in A$) et il est majoré (car il est contenu dans [a, b]) : il admet donc une borne supérieure, que l'on note $c = \sup A$. Montrons que f(c) = y.

- 2. Montrons tout d'abord que $f(c) \leq y$. Comme $c = \sup A$, il existe une suite $(u_n)_{n \in \mathbb{N}}$ contenue dans A telle que (u_n) converge vers c. D'une part, pour tout $n \in \mathbb{N}$, comme $u_n \in A$, on a $f(u_n) \leq y$. D'autre part, comme f est continue en c, la suite $(f(u_n))$ converge vers f(c). On en déduit donc, par passage à la limite, que $f(c) \le y$.
- 3. Montrons à présent que $f(c) \ge y$. Remarquons tout d'abord que si c = b, alors on a fini, puisque $f(b) \ge y$. Sinon, pour tout $x \in]c, b]$, comme $x \notin A$, on a f(x) > y. Or, étant donné que f est continue en c, f admet une limite à droite en c, qui vaut f(c) et on obtient $f(c) \ge y$.

4.2. Applications du théorème des valeurs intermédiaires

Voici la version la plus utilisée du théorème des valeurs intermédiaires.

Corollaire 1.

Soit $f : [a, b] \to \mathbb{R}$ une fonction continue sur un segment.

Si
$$f(a) \cdot f(b) < 0$$
, alors il existe $c \in]a, b[$ tel que $f(c) = 0$.

Démonstration. Il s'agit d'une application directe du théorème des valeurs intermédiaires avec y = 0. L'hypothèse $f(a) \cdot f(b) < 0$ signifiant que f(a) et f(b) sont de signes contraires.

Exemple 13.

Tout polynôme de degré impair possède au moins une racine réelle.

En effet, un tel polynôme s'écrit $P(x) = a_n x^n + \cdots + a_1 x + a_0$ avec n un entier impair. On peut supposer que le coefficient a_n est strictement positif. Alors on a $\lim_{n \to \infty} P = -\infty$ et $\lim_{n \to \infty} P = +\infty$. En particulier, il existe deux réels a et btels que f(a) < 0 et f(b) > 0 et on conclut grâce au corollaire précédent.

Voici une formulation théorique du théorème des valeurs intermédiaires.

Corollaire 2.

Soit $f: I \to \mathbb{R}$ une fonction continue sur un intervalle I. Alors f(I) est un intervalle.

Attention! Il serait faux de croire que l'image par une fonction f de l'intervalle [a,b] soit l'intervalle [f(a),f(b)](voir la figure ci-dessous).

Démonstration. Soient $y_1, y_2 \in f(I)$, $y_1 \leq y_2$. Montrons que si $y \in [y_1, y_2]$, alors $y \in f(I)$. Par hypothèse, il existe $x_1, x_2 \in I$ tels que $y_1 = f(x_1), y_2 = f(x_2)$ et donc y est compris entre $f(x_1)$ et $f(x_2)$. D'après le théorème des valeurs intermédiaires, comme f est continue, il existe donc $x \in I$ tel que y = f(x), et ainsi $y \in f(I)$.

4.3. Fonctions continues sur un segment

Théorème 2.

Soit $f:[a,b] \to \mathbb{R}$ une fonction continue sur un segment. Alors il existe deux réels m et M tels que f([a,b]) = [m,M]. Autrement dit, l'image d'un segment par une fonction continue est un segment.

Comme on sait déjà par le théorème des valeurs intermédiaires que f([a,b]) est un intervalle, le théorème précédent signifie exactement que

> Si f est continue sur [a, b]alors f est bornée sur [a, b], et elle atteint ses bornes.

Donc m est le minimum de la fonction sur l'intervalle [a, b] alors que M est le maximum.

Démonstration.

- 1. Montrons d'abord que f est bornée.
 - Pour $r \in \mathbb{R}$, on note $A_r = \{x \in [a, b] \mid f(x) \ge r\}$. Fixons r tel que $A_r \ne \emptyset$, comme $A_r \subset [a, b]$, le nombre $s = \sup A_r$ existe. Soit $x_n \to s$ avec $x_n \in A_r$. Par définition $f(x_n) \ge r$ donc, f étant continue, à la limite $f(s) \ge r$ et ainsi $s \in A_r$.
 - Supposons par l'absurde que f ne soit pas bornée. Alors pour tout $n \ge 0$, A_n est non vide. Notons $s_n = \sup A_n$. Comme $f(x) \ge n+1$ implique $f(x) \ge n$ alors $A_{n+1} \subset A_n$, ce qui entraı̂ne $s_{n+1} \le s_n$. Bilan : (s_n) est une suite décroissante, minorée par a donc converge vers $\ell \in [a, b]$. Encore une fois f est continue donc $s_n \to \ell$, implique $f(s_n) \to f(\ell)$. Mais $f(s_n) \ge n$ donc $\lim f(s_n) = +\infty$. Cela contredit $\lim f(s_n) = f(\ell) < +\infty$. Conclusion: $f(s_n) \to f(\ell)$ est majorée.
 - Un raisonnement tout à fait similaire prouve que f est aussi minorée, donc bornée. Par ailleurs on sait déjà que f(I) est un intervalle (c'est le théorème des valeurs intermédiaires), donc maintenant f(I) est un intervalle borné. Il reste à montrer qu'il du type [m, M] (et pas]m, M[par exemple).
- 2. Montrons maintenant que f(I) est un intervalle fermé. Sachant déjà que f(I) est un intervalle borné, notons met M ses extrémités : $m = \inf f(I)$ et $M = \sup f(I)$. Supposons par l'absurde que $M \notin f(I)$. Alors pour $t \in [a, b]$, M > f(t). La fonction $g: t \mapsto \frac{1}{M-f(t)}$ est donc bien définie. La fonction g est continue sur I donc d'après le premier point de cette preuve (appliqué à g) elle est bornée, disons par un réel K. Mais il existe $y_n \to M$, $y_n \in f(I)$. Donc il existe $x_n \in [a, b]$ tel que $y_n = f(x_n) \to M$ et alors $g(x_n) = \frac{1}{M - f(x_n)} \to +\infty$. Cela contredit que g soit une fonction bornée par K. Bilan : $M \in f(I)$. De même on a $m \in f(I)$. Conclusion finale : f(I) = [m, M].

Mini-exercices.

- 1. Soient $P(x) = x^5 3x 2$ et $f(x) = x2^x 1$ deux fonctions définies sur \mathbb{R} . Montrer que l'équation P(x) = 0 a au moins une racine dans [1,2]; l'équation f(x) = 0 a au moins une racine dans [0,1]; l'équation P(x) = f(x)a au moins une racine dans]0,2[.
- 2. Montrer qu'il existe x > 0 tel que $2^x + 3^x = 7^x$.
- 3. Dessiner le graphe d'une fonction continue $f: \mathbb{R} \to \mathbb{R}$ tel que $f(\mathbb{R}) = [0, 1]$. Puis $f(\mathbb{R}) = [0, 1[$; $f(\mathbb{R}) = [0, 1[$; $f(\mathbb{R}) =]-\infty, 1], f(\mathbb{R}) =]-\infty, 1[.$
- 4. Soient $f, g : [0,1] \to \mathbb{R}$ deux fonctions continues. Quelles sont, parmi les fonctions suivantes, celles dont on peut affirmer qu'elles sont bornées : f + g, $f \times g$, f/g?
- 5. Soient f et g deux fonctions continues sur [0,1] telles que $\forall x \in [0,1]$ f(x) < g(x). Montrer qu'il existe m > 0tel que $\forall x \in [0,1]$ f(x) + m < g(x). Ce résultat est-il vrai si on remplace [0,1] par \mathbb{R} ?

5. Fonctions monotones et bijections

5.1. Rappels: injection, surjection, bijection

Dans cette section nous rappelons le matériel nécessaire concernant les applications bijectives.

Définition 13.

Soit $f: E \to F$ une fonction, où E et F sont des parties de \mathbb{R} .

- f est injective si $\forall x, x' \in E$ $f(x) = f(x') \implies x = x'$;
- f est surjective si $\forall y \in F \ \exists x \in E \ y = f(x)$;
- f est bijective si f est à la fois injective et surjective, c'est-à-dire si $\forall y \in F \ \exists ! x \in E \ y = f(x)$.

Proposition 8.

Si $f: E \to F$ est une fonction bijective alors il existe une unique application $g: F \to E$ telle que $g \circ f = \mathrm{id}_E$ et $f \circ g = \mathrm{id}_F$. La fonction g est la bijection réciproque de f et se note f^{-1} .

Remarque.

- On rappelle que l'*identité*, $id_E : E \to E$ est simplement définie par $x \mapsto x$.
- $g \circ f = \mathrm{id}_E$ se reformule ainsi : $\forall x \in E \ g(f(x)) = x$.
- Alors que $f \circ g = \mathrm{id}_F$ s'écrit : $\forall y \in F$ f(g(y)) = y.
- Dans un repère orthonormé les graphes des fonctions f et f^{-1} sont symétriques par rapport à la première bissectrice.

Voici le graphe d'une fonction injective (à gauche), d'une fonction surjective (à droite) et enfin le graphe d'une fonction bijective ainsi que le graphe de sa bijection réciproque.

5.2. Fonctions monotones et bijections

Voici un théorème très utilisé dans la pratique pour montrer qu'une fonction est bijective.

Théorème 3 (Théorème de la bijection).

Soit $f:I\to\mathbb{R}$ une fonction définie sur un intervalle I de \mathbb{R} . Si f est continue et strictement monotone sur I, alors

- 1. f établit une bijection de l'intervalle I dans l'intervalle image J = f(I),
- 2. la fonction réciproque $f^{-1}: J \to I$ est continue et strictement monotone sur J et elle a le même sens de variation que f.

En pratique, si on veut appliquer ce théorème à une fonction continue $f:I\to\mathbb{R}$, on découpe l'intervalle I en sous-intervalles sur lesquels la fonction f est strictement monotone.

Exemple 14.

Considérons la fonction carrée définie sur \mathbb{R} par $f(x) = x^2$. La fonction f n'est pas strictement monotone sur \mathbb{R} : elle n'est pas même pas injective car un nombre et son opposé ont même carré. Cependant, en restreignant son ensemble de définition à $]-\infty,0]$ d'une part et à $[0,+\infty[$ d'autre part, on définit deux fonctions strictement monotones :

$$f_1: \left\{ \begin{array}{c}]-\infty,0] \longrightarrow [0,+\infty[\\ x \longmapsto x^2 \end{array} \right. \quad \text{et} \quad f_2: \left\{ \begin{array}{c} [0,+\infty[\longrightarrow [0,+\infty[\\ x \longmapsto x^2 \end{array} \right.$$

On remarque que $f(]-\infty,0])=f([0,+\infty[)=[0,+\infty[$. D'après le théorème précédent, les fonctions f_1 et f_2 sont des bijections. Déterminons leurs fonctions réciproques $f_1^{-1}:[0,+\infty[\to]-\infty,0]$ et $f_2^{-1}:[0,+\infty[\to]-\infty[0]+\infty[0]$ Soient deux réels x et y tels que $y \ge 0$. Alors

$$y = f(x) \Leftrightarrow y = x^2$$

 $\Leftrightarrow x = \sqrt{y}$ ou $x = -\sqrt{y}$,

c'est-à-dire y admet (au plus) deux antécédents, l'un dans $[0,+\infty[$ et l'autre dans $]-\infty,0]$. Et donc $f_1^{-1}(y)=-\sqrt{y}$ et $f_2^{-1}(y) = \sqrt{y}$. On vérifie bien que chacune des deux fonctions f_1 et f_2 a le même sens de variation que sa réciproque.

On remarque que la courbe totale en pointillé (à la fois la partie bleue et la verte), qui est l'image du graphe de f par la symétrie par rapport à la première bissectrice, ne peut pas être le graphe d'une fonction : c'est une autre manière de voir que f n'est pas bijective.

Généralisons en partie l'exemple précédent.

Exemple 15.

Soit $n \ge 1$. Soit $f:[0,+\infty[\to[0,+\infty[$ définie par $f(x)=x^n$. Alors f est continue et strictement croissante. Comme $\lim_{+\infty} f = +\infty$ alors f est une bijection. Sa bijection réciproque f^{-1} est notée : $x \mapsto x^{\frac{1}{n}}$ (ou aussi $x \mapsto \sqrt[n]{x}$) : c'est la fonction racine *n*-ième. Elle est continue et strictement croissante.

5.3. Démonstration

On établit d'abord un lemme utile à la démonstration du « théorème de la bijection ».

Soit $f:I\to\mathbb{R}$ une fonction définie sur un intervalle I de \mathbb{R} . Si f est strictement monotone sur I, alors f est injective

Démonstration. Soient $x, x' \in I$ tels que f(x) = f(x'). Montrons que x = x'. Si on avait x < x', alors on aurait nécessairement f(x) < f(x') ou f(x) > f(x'), suivant que f est strictement croissante, ou strictement décroissante. Comme c'est impossible, on en déduit que $x \ge x'$. En échangeant les rôles de x et de x', on montre de même que $x \le x'$. On en conclut que x = x' et donc que f est injective.

Démonstration du théorème.

- 1. D'après le lemme précédent, f est injective sur I. En restreignant son ensemble d'arrivée à son image J = f(I), on obtient que f établit une bijection de I dans J. Comme f est continue, par le théorème des valeurs intermédiaires, l'ensemble J est un intervalle.
- 2. Supposons pour fixer les idées que f est strictement croissante.
 - (a) Montrons que f^{-1} est strictement croissante sur J. Soient $y, y' \in J$ tels que y < y'. Notons $x = f^{-1}(y) \in I$ et $x' = f^{-1}(y') \in I$. Alors y = f(x), y' = f(x') et donc

$$y < y' \implies f(x) < f(x')$$

 $\implies x < x'$ (car f est strictement croissante)
 $\implies f^{-1}(y) < f^{-1}(y'),$

c'est-à-dire f^{-1} est strictement croissante sur J.

(b) Montrons que f^{-1} est continue sur J. On se limite au cas où I est de la forme]a,b[, les autres cas se montrent de la même manière. Soit $y_0 \in J$. On note $x_0 = f^{-1}(y_0) \in I$. Soit $\epsilon > 0$. On peut toujours supposer que $[x_0 - \epsilon, x_0 + \epsilon] \subset I$. On cherche un réel $\delta > 0$ tel que pour tout $y \in J$ on ait

$$y_0 - \delta < y < y_0 + \delta \implies f^{-1}(y_0) - \epsilon < f^{-1}(y) < f^{-1}(y_0) + \epsilon$$

c'est-à-dire tel que pour tout $x \in I$ on ait

$$y_0 - \delta < f(x) < y_0 + \delta \implies f^{-1}(y_0) - \epsilon < x < f^{-1}(y_0) + \epsilon.$$

Or, comme f est strictement croissante, on a pour tout $x \in I$

$$f(x_0 - \epsilon) < f(x) < f(x_0 + \epsilon) \implies x_0 - \epsilon < x < x_0 + \epsilon$$
$$\implies f^{-1}(y_0) - \epsilon < x < f^{-1}(y_0) + \epsilon.$$

Comme $f(x_0 - \epsilon) < y_0 < f(x_0 + \epsilon)$, on peut choisir le réel $\delta > 0$ tel que

$$f(x_0 - \epsilon) < y_0 - \delta$$
 et $f(x_0 + \epsilon) > y_0 + \delta$

et on a bien alors pour tout $x \in I$

$$y_0 - \delta < f(x) < y_0 + \delta \implies f(x_0 - \epsilon) < f(x) < f(x_0 + \epsilon)$$
$$\implies f^{-1}(y_0) - \epsilon < x < f^{-1}(y_0) + \epsilon.$$

La fonction f^{-1} est donc continue sur J.

Mini-exercices.

- 1. Montrer que chacune des hypothèses « continue » et « strictement monotone » est nécessaire dans l'énoncé du théorème de la bijection.
- 2. Soit $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x^3 + x$. Montrer que f est bijective, tracer le graphe de f et de f^{-1} .
- 3. Soit $n \ge 1$. Montrer que $f(x) = 1 + x + x^2 + \dots + x^n$ définit une bijection de l'intervalle [0, 1] vers un intervalle à préciser.
- 4. Existe-t-il une fonction continue : $f:[0,1] \rightarrow [0,1]$ qui soit bijective? $f:[0,1] \rightarrow [0,1]$ qui soit injective? $f:]0,1[\rightarrow [0,1]$ qui soit surjective?
- 5. Pour $y \in \mathbb{R}$ on considère l'équation $x + \exp x = y$. Montrer qu'il existe une unique solution y. Comment varie y

en fonction de x ? Comme varie x en fonction de y ?

Auteurs du chapitre

Auteurs : Arnaud Bodin, Niels Borne, Laura Desideri

Dessins: Benjamin Boutin

Limites de fonctions

Théorie 1

Exercice 1

- 1. Montrer que toute fonction périodique et non constante n'admet pas de limite en $+\infty$.
- 2. Montrer que toute fonction croissante et majorée admet une limite finie en $+\infty$.

Indication ▼ Correction ▼ Vidéo [000612]

Exercice 2

1. Démontrer que $\lim_{x\to 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{x} = 1$.

2. Soient m, n des entiers positifs. Étudier $\lim_{x\to 0} \frac{\sqrt{1+x^m}-\sqrt{1-x^m}}{x^n}$.

3. Démontrer que $\lim_{x\to 0} \frac{1}{x}(\sqrt{1+x+x^2}-1) = \frac{1}{2}$.

Indication ▼ Correction ▼ Vidéo 📕 [000609]

2 **Calculs**

Exercice 3

Calculer lorsqu'elles existent les limites suivantes

a)
$$\lim_{x\to 0} \frac{x^2+2|x|}{x}$$

b)
$$\lim_{x\to-\infty}\frac{x^2+2|x|}{x}$$

a)
$$\lim_{x\to 0} \frac{x^2+2|x|}{x}$$
 b) $\lim_{x\to -\infty} \frac{x^2+2|x|}{x}$ c) $\lim_{x\to 2} \frac{x^2-4}{x^2-3x+2}$

$$d$$
) $\lim_{x\to\pi} \frac{\sin^2 x}{1+\cos x}$

$$e) \lim_{x\to 0} \frac{\sqrt{1+x}-\sqrt{1+x^2}}{x}$$

d)
$$\lim_{x \to \pi} \frac{\sin^2 x}{1 + \cos x}$$
 e) $\lim_{x \to 0} \frac{\sqrt{1 + x} - \sqrt{1 + x^2}}{x}$ f) $\lim_{x \to +\infty} \sqrt{x + 5} - \sqrt{x - 3}$

g)
$$\lim_{x\to 0} \frac{\sqrt[3]{1+x^2}-1}{x^2}$$
 h) $\lim_{x\to 1} \frac{x-1}{x^n-1}$

$$h) \lim_{x\to 1} \frac{x-1}{x^n-1}$$

Correction ▼ Vidéo [000616] Indication ▼

Exercice 4

Calculer, lorsqu'elles existent, les limites suivantes :

$$\lim_{x\to\alpha}\frac{x^{n+1}-\alpha^{n+1}}{x^n-\alpha^n},$$

$$\lim_{x\to 0} \frac{\tan x - \sin x}{\sin x (\cos 2x - \cos x)},$$

$$\lim_{x \to +\infty} \sqrt{x + \sqrt{x + \sqrt{x}}} - \sqrt{x},$$

$$\lim_{x \to \alpha^{+}} \frac{\sqrt{x} - \sqrt{\alpha} - \sqrt{x - \alpha}}{\sqrt{x^{2} - \alpha^{2}}}, \quad (\alpha > 0)$$

$$\lim_{x \to 0} xE\left(\frac{1}{x}\right),$$

$$\lim_{x \to 2} \frac{e^{x} - e^{2}}{x^{2} + x - 6},$$

 $\lim_{x \to +\infty} \frac{x^4}{1 + x^{\alpha} \sin^2 x}, \text{ en fonction de } \alpha \in \mathbb{R}.$

Indication ▼ C

Correction ▼

Vidéo

[000628]

Exercice 5

Calculer:

$$\lim_{x \to 0} \frac{x}{2 + \sin \frac{1}{x}}, \quad \lim_{x \to +\infty} (\ln(1 + e^{-x}))^{\frac{1}{x}}, \quad \lim_{x \to 0^+} x^{\frac{1}{\ln(e^x - 1)}}.$$

Indication ▼

Correction ▼

Vidéo

[000635]

Exercice 6

Trouver pour $(a,b) \in (\mathbb{R}^{+*})^2$:

$$\lim_{x\to 0^+} \left(\frac{a^x+b^x}{2}\right)^{\frac{1}{x}}.$$

Indication ▼

Correction ▼

Vidéo 🔳

[000638]

Exercice 7

Déterminer les limites suivantes, en justifiant vos calculs.

1.
$$\lim_{x \to 0^+} \frac{x+2}{x^2 \ln x}$$

2.
$$\lim_{x \to 0^+} 2x \ln(x + \sqrt{x})$$

3.
$$\lim_{x \to +\infty} \frac{x^3 - 2x^2 + 3}{x \ln x}$$

4.
$$\lim_{x \to +\infty} \frac{e^{\sqrt{x}+1}}{x+2}$$

5.
$$\lim_{x \to 0^+} \frac{\ln(3x+1)}{2x}$$

6.
$$\lim_{x \to 0^+} \frac{x^x - 1}{\ln(x + 1)}$$

7.
$$\lim_{x \to -\infty} \frac{2}{x+1} \ln \left(\frac{x^3+4}{1-x^2} \right)$$

8.
$$\lim_{x \to (-1)^+} (x^2 - 1) \ln(7x^3 + 4x^2 + 3)$$

9.
$$\lim_{x \to 2^+} (x-2)^2 \ln(x^3-8)$$

10.
$$\lim_{x \to 0^+} \frac{x(x^x - 1)}{\ln(x + 1)}$$

11.
$$\lim_{x \to +\infty} (x \ln x - x \ln(x+2))$$

12.
$$\lim_{x \to +\infty} \frac{e^x - e^{x^2}}{x^2 - x}$$

13.
$$\lim_{x\to 0^+} (1+x)^{\ln x}$$

$$14. \lim_{x \to +\infty} \left(\frac{x+1}{x-3}\right)^x$$

15.
$$\lim_{x \to +\infty} \left(\frac{x^3 + 5}{x^2 + 2} \right)^{\frac{x+1}{x^2 + 1}}$$

16.
$$\lim_{x \to +\infty} \left(\frac{e^x + 1}{x + 2} \right)^{\frac{1}{x+1}}$$

17.
$$\lim_{x \to 0^{+}} (\ln(1+x))^{\frac{1}{\ln x}}$$
18.
$$\lim_{x \to +\infty} \frac{x^{(x^{x-1})}}{x^{(x^{x})}}$$

18.
$$\lim_{x \to +\infty} \frac{x^{(x^{x-1})}}{x^{(x^x)}}$$

$$19. \lim_{x \to +\infty} \frac{(x+1)^x}{x^{x+1}}$$

20.
$$\lim_{x \to +\infty} \frac{x\sqrt{\ln(x^2+1)}}{1+e^{x-3}}$$

Correction ▼ [000623]

Indication pour l'exercice 1 ▲

- 1. Raisonner par l'absurde.
- 2. Montrer que la limite est la borne supérieure de l'ensemble des valeurs atteintes $f(\mathbb{R})$.

Indication pour l'exercice 2 A

Utiliser l'expression conjuguée.

Indication pour l'exercice 3 ▲

Réponses :

- 1. La limite à droite vaut +2, la limite à gauche -2 donc il n'y a pas de limite.
- 2. −∞
- 3. 4
- 4. 2
- 5. $\frac{1}{2}$
- 6. 0
- 7. $\frac{1}{3}$ en utilisant par exemple que $a^3 1 = (a-1)(1+a+a^2)$ pour $a = \sqrt[3]{1+x^2}$.
- 8. $\frac{1}{n}$

Indication pour l'exercice 4 A

- 1. Calculer d'abord la limite de $f(x) = \frac{x^k \alpha^k}{x \alpha}$.
- 2. Utiliser $\cos 2x = 2\cos^2 x 1$ et faire un changement de variable $u = \cos x$.
- 3. Utiliser l'expression conjuguée.
- 4. Diviser numérateur et dénominateur par $\sqrt{x-\alpha}$ puis utiliser l'expression conjuguée.
- 5. On a toujours $y 1 \le E(y) \le y$, poser y = 1/x.
- 6. Diviser numérateur et dénominateur par x-2.
- 7. Pour $\alpha \ge 4$ il n'y a pas de limite, pour $\alpha < 4$ la limite est $+\infty$.

Indication pour l'exercice 5 A

Réponses : $0, \frac{1}{e}, e$.

- 1. Borner $\sin \frac{1}{r}$.
- 2. Utiliser que $\ln(1+t) = t \cdot \mu(t)$, pour une certaine fonction μ qui vérifie $\mu(t) \to 1$ lorsque $t \to 0$.
- 3. Utiliser que $e^t 1 = t \cdot \mu(t)$, pour une certaine fonction μ qui vérifie $\mu(t) \to 1$ lorsque $t \to 0$.

Indication pour l'exercice 6 ▲

Réponse : \sqrt{ab} .

1. Soit p > 0 la période : pour tout $x \in \mathbb{R}$, f(x+p) = f(x). Par une récurrence facile on montre :

$$\forall n \in \mathbb{N}$$
 $\forall x \in \mathbb{R}$ $f(x+np) = f(x)$.

Comme f n'est pas constante il existe $a,b \in \mathbb{R}$ tels que $f(a) \neq f(b)$. Notons $x_n = a + np$ et $y_n = b + np$. Supposons, par l'absurde, que f a une limite ℓ en $+\infty$. Comme $x_n \to +\infty$ alors $f(x_n) \to \ell$. Mais $f(x_n) = f(a + np) = f(a)$, donc $\ell = f(a)$. De même avec la suite $(y_n) : y_n \to +\infty$ donc $f(y_n) \to \ell$ et $f(y_n) = f(b + np) = f(b)$, donc $\ell = f(b)$. Comme $f(a) \neq f(b)$ nous obtenons une contradiction.

2. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction croissante et majorée par $M \in \mathbb{R}$. Notons

$$F = f(\mathbb{R}) = \{ f(x) \mid x \in \mathbb{R} \}.$$

F est un ensemble (non vide) de \mathbb{R} , notons $\ell = \sup F$. Comme $M \in \mathbb{R}$ est un majorant de F, alors $\ell < +\infty$. Soit $\varepsilon > 0$, par les propriétés du sup il existe $y_0 \in F$ tel que $\ell - \varepsilon \leqslant y_0 \leqslant \ell$. Comme $y_0 \in F$, il existe $x_0 \in \mathbb{R}$ tel que $f(x_0) = y_0$. Comme f est croissante alors :

$$\forall x \geqslant x_0$$
 $f(x) \geqslant f(x_0) = y_0 \geqslant \ell - \varepsilon$.

De plus par la définition de ℓ :

$$\forall x \in \mathbb{R} \ f(x) \leqslant \ell.$$

Les deux propriétés précédentes s'écrivent :

$$\forall x \geqslant x_0 \qquad \ell - \varepsilon \leqslant f(x) \leqslant \ell.$$

Ce qui exprime bien que la limite de f en $+\infty$ est ℓ .

Correction de l'exercice 2 A

Généralement pour calculer des limites faisant intervenir des sommes de racines carrées, il est utile de faire intervenir "l'expression conjuguée" :

$$\sqrt{a} - \sqrt{b} = \frac{(\sqrt{a} - \sqrt{b})(\sqrt{a} + \sqrt{b})}{\sqrt{a} + \sqrt{b}} = \frac{a - b}{\sqrt{a} + \sqrt{b}}.$$

Les racines au numérateur ont "disparu" en utilisant l'identité $(x-y)(x+y)=x^2-y^2$. Appliquons ceci sur un exemple :

$$\begin{split} f(x) &= \frac{\sqrt{1+x^m} - \sqrt{1-x^m}}{x^n} \\ &= \frac{(\sqrt{1+x^m} - \sqrt{1-x^m})(\sqrt{1+x^m} + \sqrt{1-x^m})}{x^n(\sqrt{1+x^m} + \sqrt{1-x^m})} \\ &= \frac{1+x^m - (1-x^m)}{x^n(\sqrt{1+x^m} + \sqrt{1-x^m})} \\ &= \frac{2x^m}{x^n(\sqrt{1+x^m} + \sqrt{1-x^m})} \\ &= \frac{2x^{m-n}}{\sqrt{1+x^m} + \sqrt{1-x^m}} \end{split}$$

Et nous avons

$$\lim_{x \to 0} \frac{2}{\sqrt{1 + x^m} + \sqrt{1 - x^m}} = 1.$$

Donc l'étude de la limite de f en 0 est la même que celle de la fonction $x \mapsto x^{m-n}$. Distinguons plusieurs cas pour la limite de f en 0.

- Si m > n alors x^{m-n} , et donc f(x), tendent vers 0.
- Si m = n alors x^{m-n} et f(x) tendent vers 1.
- Si m < n alors $x^{m-n} = \frac{1}{x^{n-m}} = \frac{1}{x^k}$ avec k = n m un exposant positif. Si k est pair alors les limites à droite et à gauche de $\frac{1}{x^k}$ sont $+\infty$. Pour k impair la limite à droite vaut $+\infty$ et la limite à gauche vaut $-\infty$. Conclusion pour k = n - m > 0 pair, la limite de f en 0 vaut $+\infty$ et pour k = n - m > 0 impair f n'a pas de limite en 0 car les limites à droite et à gauche ne sont pas égales.

Correction de l'exercice 3

- 1. $\frac{x^2+2|x|}{x}=x+2\frac{|x|}{x}$. Si x>0 cette expression vaut x+2 donc la limite à droite en x=0 est +2. Si x<0 l'expression vaut -2 donc la limite à gauche en x=0 est -2. Les limites à droite et à gauche sont différentes donc il n'y a pas de limite en x = 0.
- 2. $\frac{x^2+2|x|}{x} = x + 2\frac{|x|}{x} = x 2$ pour x < 0. Donc la limite quand $x \to -\infty$ est $-\infty$.
- 3. $\frac{x^2-4}{x^2-3x+2} = \frac{(x-2)(x+2)}{(x-2)(x-1)} = \frac{x+2}{x-1}$, lorsque $x \to 2$ cette expression tend vers 4.
- 4. $\frac{\sin^2 x}{1 + \cos x} = \frac{1 \cos^2 x}{1 + \cos x} = \frac{(1 \cos x)(1 + \cos x)}{1 + \cos x} = 1 \cos x. \text{ Lorsque } x \to \pi \text{ la limite est donc 2.}$ 5. $\frac{\sqrt{1 + x} \sqrt{1 + x^2}}{x} = \frac{\sqrt{1 + x} \sqrt{1 + x^2}}{x} \times \frac{\sqrt{1 + x} + \sqrt{1 + x^2}}{\sqrt{1 + x} + \sqrt{1 + x^2}} = \frac{1 + x (1 + x^2)}{x(\sqrt{1 + x} + \sqrt{1 + x^2})} = \frac{x x^2}{x(\sqrt{1 + x} + \sqrt{1 + x^2})} = \frac{1 x}{\sqrt{1 + x} + \sqrt{1 + x^2}}. \text{ Lorsque } x \to \pi \text{ la limite est donc 2.}$ $x \to 0$ la limite vaut $\frac{1}{2}$.
- 6. $\sqrt{x+5} \sqrt{x-3} = (\sqrt{x+5} \sqrt{x-3}) \times \frac{\sqrt{x+5} + \sqrt{x-3}}{\sqrt{x+5} + \sqrt{x-3}} = \frac{x+5-(x-3)}{\sqrt{x+5} + \sqrt{x-3}} = \frac{8}{\sqrt{x+5} + \sqrt{x-3}}$. Lorsque $x \to +\infty$, la
- 7. Nous avons l'égalité $a^3 1 = (a-1)(1+a+a^2)$. Pour $a = \sqrt[3]{1+x^2}$ cela donne :

$$\frac{a-1}{x^2} = \frac{a^3 - 1}{x^2(1+a+a^2)} = \frac{1+x^2 - 1}{x^2(1+a+a^2)} = \frac{1}{1+a+a^2}.$$

Lors que $x \to 0$, alors $a \to 1$ et la limite cherchée est $\frac{1}{3}$.

Autre méthode : si l'on sait que la limite d'un taux d'accroissement correspond à la dérivée nous avons une méthode moins astucieuse. Rappel (ou anticipation sur un prochain chapitre) : pour une fonction fdérivable en a alors

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a).$$

Pour la fonction $f(x) = \sqrt[3]{1+x} = (1+x)^{\frac{1}{3}}$ ayant $f'(x) = \frac{1}{3}(1+x)^{-\frac{2}{3}}$ cela donne en a = 0:

$$\lim_{x \to 0} \frac{\sqrt[3]{1+x^2} - 1}{x^2} = \lim_{x \to 0} \frac{\sqrt[3]{1+x} - 1}{x} = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = f'(0) = \frac{1}{3}.$$

8. $\frac{x^n-1}{x-1}=1+x+x^2+\cdots+x^n$. Donc si $x\to 1$ la limite de $\frac{x^n-1}{x-1}$ est n. Donc la limite de $\frac{x-1}{x^n-1}$ en 1 est $\frac{1}{n}$. La méthode avec le taux d'accroissement fonctionne aussi très bien ici. Soit $f(x) = x^n$, $f'(x) = nx^{n-1}$ et a = 1. Alors $\frac{x^n - 1}{x - 1} = \frac{f(x) - f(1)}{x - 1}$ tend vers f'(1) = n.

Correction de l'exercice 4

1. Montrons d'abord que la limite de

$$f(x) = \frac{x^k - \alpha^k}{x - \alpha}$$

en α est $k\alpha^{k-1}$, k étant un entier fixé. Un calcul montre que $f(x) = x^{k-1} + \alpha x^{k-2} + \alpha^2 x^{k-3} + \cdots + \alpha^{k-1}$; en effet $(x^{k-1} + \alpha x^{k-2} + \alpha^2 x^{k-3} + \cdots + \alpha^{k-1})(x - \alpha) = x^k - \alpha^k$. Donc la limite en $x = \alpha$ est $k\alpha^{k-1}$. Une autre méthode consiste à dire que f(x) est la taux d'accroissement de la fonction x^k , et donc la limite de f en α est exactement la valeur de la dérivée de x^k en α , soit $k\alpha^{k-1}$. Ayant fait ceci revenons à la limite de l'exercice : comme

$$\frac{x^{n+1} - \alpha^{n+1}}{x^n - \alpha^n} = \frac{x^{n+1} - \alpha^{n+1}}{x - \alpha} \times \frac{x - \alpha}{x^n - \alpha^n}.$$

Le premier terme du produit tend vers $(n+1)\alpha^n$ et le second terme, étant l'inverse d'un taux d'accroissement, tend vers $1/(n\alpha^{n-1})$. Donc la limite cherchée est

$$\frac{(n+1)\alpha^n}{n\alpha^{n-1}} = \frac{n+1}{n}\alpha.$$

2. La fonction $f(x) = \frac{\tan x - \sin x}{\sin x (\cos 2x - \cos x)}$ s'écrit aussi $f(x) = \frac{1 - \cos x}{\cos x (\cos 2x - \cos x)}$. Or $\cos 2x = 2\cos^2 x - 1$. Posons $u = \cos x$, alors

$$f(x) = \frac{1 - u}{u(2u^2 - u - 1)} = \frac{1 - u}{u(1 - u)(-1 - 2u)} = \frac{1}{u(-1 - 2u)}$$

Lorsque x tend vers 0, $u = \cos x$ tend vers 1, et donc f(x) tend vers $-\frac{1}{3}$.

3.

$$\sqrt{x + \sqrt{x + \sqrt{x}}} - \sqrt{x} = \frac{\left(\sqrt{x + \sqrt{x + \sqrt{x}}} - \sqrt{x}\right)\left(\sqrt{x + \sqrt{x + \sqrt{x}}} + \sqrt{x}\right)}{\sqrt{x + \sqrt{x + \sqrt{x}}} + \sqrt{x}}$$

$$= \frac{\sqrt{x + \sqrt{x}}}{\sqrt{x + \sqrt{x + \sqrt{x}}} + \sqrt{x}}$$

$$= \frac{\sqrt{1 + \frac{1}{\sqrt{x}}}}{\sqrt{1 + \frac{\sqrt{x + \sqrt{x}}}{x}} + 1}$$

Quand $x \to +\infty$ alors $\frac{1}{\sqrt{x}} \to 0$ et $\frac{\sqrt{x+\sqrt{x}}}{x} = \sqrt{\frac{1}{x} + \frac{1}{x\sqrt{x}}} \to 0$, donc la limite recherchée est $\frac{1}{2}$.

4. La fonction s'écrit

$$f(x) = \frac{\sqrt{x} - \sqrt{\alpha} - \sqrt{x - \alpha}}{\sqrt{x^2 - \alpha^2}} = \frac{\sqrt{x} - \sqrt{\alpha} - \sqrt{x - \alpha}}{\sqrt{x - \alpha}\sqrt{x + \alpha}} = \frac{\frac{\sqrt{x} - \sqrt{\alpha}}{\sqrt{x - \alpha}} - 1}{\sqrt{x + \alpha}}.$$

Notons $g(x) = \frac{\sqrt{x} - \sqrt{\alpha}}{\sqrt{x - \alpha}}$ alors à l'aide de l'expression conjuguée

$$g(x) = \frac{x - \alpha}{(\sqrt{x - \alpha})(\sqrt{x} + \sqrt{\alpha})} = \frac{\sqrt{x - \alpha}}{\sqrt{x} + \sqrt{\alpha}}.$$

Donc g(x) tend vers 0 quand $x \to \alpha^+$. Et maintenant $f(x) = \frac{g(x)-1}{\sqrt{x+\alpha}}$ tend vers $-\frac{1}{\sqrt{2\alpha}}$.

5. Pour tout réel y nous avons la double inégalité y-1 < E(y) ≤ y. Donc pour y > 0, $\frac{y-1}{y} < \frac{E(y)}{y} ≤ 1$. On en déduit que lorsque y tend vers $+\infty$ alors $\frac{E(y)}{y}$ tend 1. On obtient le même résultat quand y tend vers $-\infty$. En posant y = 1/x, et en faisant tendre x vers 0, alors $xE(\frac{1}{x}) = \frac{E(y)}{y}$ tend vers 1.

6.

$$\frac{e^x - e^2}{x^2 + x - 6} = \frac{e^x - e^2}{x - 2} \times \frac{x - 2}{x^2 + x - 6} = \frac{e^x - e^2}{x - 2} \times \frac{x - 2}{(x - 2)(x + 3)} = \frac{e^x - e^2}{x - 2} \times \frac{1}{x + 3}.$$

La limite de $\frac{e^x - e^2}{x - 2}$ en 2 vaut e^2 ($\frac{e^x - e^2}{x - 2}$ est la taux d'accroissement de la fonction $x \mapsto e^x$ en la valeur x = 2), la limite voulue est $\frac{e^2}{5}$.

7. Soit $f(x) = \frac{x^4}{1+x^\alpha\sin^2x}$. Supposons $\alpha \geqslant 4$, alors on prouve que f n'a pas de limite en $+\infty$. En effet pour pour $u_k = 2k\pi$, $f(2k\pi) = (2k\pi)^4$ tend vers $+\infty$ lorsque k (et donc u_k) tend vers $+\infty$. Cependant pour $v_k = 2k\pi + \frac{\pi}{2}$, $f(v_k) = \frac{v_k^4}{1+v_k^\alpha}$ tend vers 0 (ou vers 1 si $\alpha = 4$) lorsque k (et donc v_k) tend vers $+\infty$. Ceci prouve que f(x) n'a pas de limite lorsque x tend vers $+\infty$.

Reste le cas α < 4. Il existe β tel que α < β < 4.

$$f(x) = \frac{x^4}{1 + x^{\alpha} \sin^2 x} = \frac{x^{4-\beta}}{\frac{1}{x^{\beta}} + \frac{x^{\alpha}}{x^{\beta}} \sin^2 x}.$$

Le numérateur tend $+\infty$ car $4-\beta>0$. $\frac{1}{x^{\beta}}$ tend vers 0 ainsi que $\frac{x^{\alpha}}{x^{\beta}}\sin^2 x$ (car $\beta>\alpha$ et $\sin^2 x$ est bornée par 1). Donc le dénominateur tend vers 0 (par valeurs positives). La limite est donc de type $+\infty/0^+$ (qui n'est pas indéterminée!) et vaut donc $+\infty$.

Correction de l'exercice 5

- 1. Comme $-1 \leqslant \sin \frac{1}{x} \leqslant +1$ alors $1 \leqslant 2 + \sin \frac{1}{x} \leqslant +3$. Donc pour x > 0, nous obtenons $\frac{x}{3} \leqslant \frac{x}{2 + \sin \frac{1}{x}} \leqslant x$. On obtient une inégalité similaire pour x < 0. Cela implique $\lim_{x \to 0} \frac{x}{2 + \sin \frac{1}{x}} = 0$.
- 2. Sachant que $\frac{\ln(1+t)}{t} \to 1$ lorsque $t \to 0$, on peut le reformuler ainsi $\ln(1+t) = t \cdot \mu(t)$, pour une certaine fonction μ qui vérifie $\mu(t) \to 1$ lorsque $t \to 0$. Donc $\ln(1+e^{-x}) = e^{-x}\mu(e^{-x})$. Maintenant

$$(\ln(1+e^{-x}))^{\frac{1}{x}} = \exp\left(\frac{1}{x}\ln\left(\ln(1+e^{-x})\right)\right)$$

$$= \exp\left(\frac{1}{x}\ln\left(e^{-x}\mu(e^{-x})\right)\right)$$

$$= \exp\left(\frac{1}{x}\left(-x+\ln\mu(e^{-x})\right)\right)$$

$$= \exp\left(-1+\frac{\ln\mu(e^{-x})}{x}\right)$$

 $\mu(e^{-x}) \to 1$ donc $\ln \mu(e^{-x}) \to 0$, donc $\frac{\ln \mu(e^{-x})}{x} \to 0$ lorsque $x \to +\infty$. Bilan: la limite est $\exp(-1) = \frac{1}{e}$.

3.

4. Sachant $\frac{e^x - 1}{x} \to 1$ lorsque $x \to 0$, on reformule ceci en $e^x - 1 = x \cdot \mu(x)$, pour une certaine fonction μ qui vérifie $\mu(x) \to 1$ lorsque $x \to 0$. Cela donne $\ln(e^x - 1) = \ln(x \cdot \mu(x)) = \ln x + \ln \mu(x)$.

$$x^{\frac{1}{\ln(e^x - 1)}} = \exp\left(\frac{1}{\ln(e^x - 1)} \ln x\right)$$
$$= \exp\left(\frac{1}{\ln x + \ln \mu(x)} \ln x\right)$$
$$= \exp\left(\frac{1}{1 + \frac{\ln \mu(x)}{\ln x}}\right)$$

Maintenant $\mu(x) \to 1$ donc $\ln \mu(x) \to 0$, et $\ln x \to -\infty$ lorsque $x \to 0$. Donc $\frac{\ln \mu(x)}{\ln x} \to 0$. Cela donne

$$\lim_{x\to 0^+} x^{\frac{1}{\ln(e^x-1)}} = \lim_{x\to 0^+} \exp\left(\frac{1}{1+\frac{\ln\mu(x)}{\ln x}}\right) = \exp\left(1\right) = e.$$

Correction de l'exercice 6 A

Soit

$$f(x) = \left(\frac{a^x + b^x}{2}\right)^{\frac{1}{x}} = \exp\left(\frac{1}{x}\ln\left(\frac{a^x + b^x}{2}\right)\right)$$

 $a^x \to 1$, $b^x \to 1$ donc $\frac{a^x + b^x}{2} \to 1$ lorsque $x \to 0$ et nous sommes face à une forme indéterminée. Nous savons que $\lim_{t \to 0} \frac{\ln(1+t)}{t} = 1$. Autrement dit il existe un fonction μ telle que $\ln(1+t) = t \cdot \mu(t)$ avec $\mu(t) \to 1$ lorsque $t \to 0$.

Appliquons cela à $g(x) = \ln\left(\frac{a^x + b^x}{2}\right)$. Alors

$$g(x) = \ln\left(1 + \left(\frac{a^x + b^x}{2} - 1\right)\right) = \left(\frac{a^x + b^x}{2} - 1\right) \cdot \mu(x)$$

où $\mu(x) \to 1$ lorsque $x \to 0$. (Nous écrivons pour simplifier $\mu(x)$ au lieu de $\mu(\frac{a^x + b^x}{2} - 1)$.)

Nous savons aussi que $\lim_{t\to 0} \frac{e^t-1}{t} = 1$. Autrement dit il existe un fonction v telle que $e^t-1 = t \cdot v(t)$ avec $v(t) \to 1$ lorsque $t \to 0$.

Appliquons ceci:

$$\begin{aligned} \frac{a^{x} + b^{x}}{2} - 1 &= \frac{1}{2} (e^{x \ln a} + e^{x \ln b}) - 1 \\ &= \frac{1}{2} (e^{x \ln a} - 1 + e^{x \ln b} - 1) \\ &= \frac{1}{2} (x \ln a \cdot v(x \ln a) + x \ln b \cdot v(x \ln b)) \\ &= \frac{1}{2} x (\ln a \cdot v(x \ln a) + \ln b \cdot v(x \ln b)) \end{aligned}$$

Reste à rassembler tous les éléments du puzzle :

$$f(x) = \left(\frac{a^x + b^x}{2}\right)^{\frac{1}{x}}$$

$$= \exp\left(\frac{1}{x}\ln\left(\frac{a^x + b^x}{2}\right)\right)$$

$$= \exp\left(\frac{1}{x}g(x)\right)$$

$$= \exp\left(\frac{1}{x}\left(\frac{a^x + b^x}{2} - 1\right) \cdot \mu(x)\right)$$

$$= \exp\left(\frac{1}{x} \cdot \frac{1}{2} \cdot x(\ln a \cdot v(x\ln a) + \ln b \cdot v(x\ln b)) \cdot \mu(x)\right)$$

$$= \exp\left(\frac{1}{2}(\ln a \cdot v(x\ln a) + \ln b \cdot v(x\ln b)) \cdot \mu(x)\right)$$

Or $\mu(x) \to 1$, $\nu(x \ln a) \to 1$, $\nu(x \ln b) \to 1$ lorsque $x \to 0$. Donc

$$\lim_{x \to 0} f(x) = \exp\left(\frac{1}{2}(\ln a + \ln b)\right) = \exp\left(\frac{1}{2}\ln(ab)\right) = \sqrt{ab}.$$

Correction de l'exercice 7

- (a) −∞
- (b) 0
- (c) +∞
- (d) +∞
- (e) $\frac{3}{2}$
- (f) -∞
- (g) 0
- (h) 0
- (i) 0
- (j) 0
- (k) -2
- (l) -∞
- (m) 1
- (n) e⁴
- (o) 1
- (p) *e*
- (q) e
- (r) 0
- (s) 0
- (t) 0

Fonctions continues

1 Pratique

Exercice 1

Soit f la fonction réelle à valeurs réelles définie par

$$f(x) = \begin{cases} x & \text{si } x < 1\\ x^2 & \text{si } 1 \le x \le 4\\ 8\sqrt{x} & \text{si } x > 4 \end{cases}$$

- 1. Tracer le graphe de f.
- 2. *f* est elle continue?
- 3. Donner la formule définissant f^{-1} .

Indication ▼ Correction ▼ Vidéo ■ [000671]

Exercice 2

Soit $f: \mathbb{R} \setminus \{1/3\} \to \mathbb{R}$ telle que $f(x) = \frac{2x+3}{3x-1}$.

Pour tout $\varepsilon > 0$ déterminer δ tel que, $(x \neq 1/3 \text{ et } |x| \leq \delta) \Rightarrow |f(x) + 3| \leq \varepsilon$.

Que peut-on en conclure?

Indication ▼ Correction ▼ Vidéo ■ [000670]

Exercice 3

Les fonctions suivantes sont-elles prolongeables par continuité sur \mathbb{R} ?

a)
$$f(x) = \sin x \cdot \sin \frac{1}{x}$$
; b) $g(x) = \frac{1}{x} \ln \frac{e^x + e^{-x}}{2}$;
c) $h(x) = \frac{1}{1 - x} - \frac{2}{1 - x^2}$.

Indication ▼ Correction ▼ Vidéo ■ [000677]

2 Théorie

Exercice 4

Soit I un intervalle ouvert de \mathbb{R} , f et g deux fonctions définies sur I.

1. Soit $a \in I$. Donner une raison pour laquelle :

$$\left(\lim_{x \to a} f(x) = f(a)\right) \Rightarrow \left(\lim_{x \to a} |f(x)| = |f(a)|\right).$$

2. On suppose que f et g sont continues sur I. En utilisant l'implication démontrée ci-dessus, la relation $\sup(f,g)=\frac{1}{2}(f+g+|f-g|)$, et les propriétés des fonctions continues, montrer que la fonction $\sup(f,g)$ est continue sur I.

Indication ▼ Correction ▼ Vidéo ■ [000639]

Exercice 5

Soient I un intervalle de \mathbb{R} et $f: I \to \mathbb{R}$ continue, telle que pour chaque $x \in I$, $f(x)^2 = 1$. Montrer que f = 1 ou f = -1.

Indication ▼ Correction ▼ Vidéo ■ [000645]

Exercice 6

Soit $f:[a,b] \longrightarrow \mathbb{R}$ une fonction continue telle que f(a)=f(b). Montrer que la fonction $g(t)=f(t+\frac{b-a}{2})-f(t)$ s'annule en au moins un point de $[a,\frac{a+b}{2}]$.

Application: une personne parcourt 4 km en 1 heure. Montrer qu'il existe un intervalle de 30 mn pendant lequel elle parcourt exactement 2 km.

Correction ▼ Vidéo ■ [000642]

Exercice 7

Soit $f: \mathbb{R}^+ \to \mathbb{R}$ continue admettant une limite finie en $+\infty$. Montrer que f est bornée. Atteint-elle ses bornes? Indication \bigvee Correction \bigvee Vidéo \blacksquare [000646]

3 Etude de fonctions

Exercice 8

Déterminer les domaines de définition des fonctions suivantes

$$f(x) = \sqrt{\frac{2+3x}{5-2x}}$$
; $g(x) = \sqrt{x^2-2x-5}$; $h(x) = \ln(4x+3)$.

Correction ▼ Vidéo ■ [000686]

Exercice 9

Soit $f: \mathbb{R} \to \mathbb{R}$ continue en 0 telle que pour chaque $x \in \mathbb{R}$, f(x) = f(2x). Montrer que f est constante.

Indication ▼ Correction ▼ Vidéo ■ [000680]

Exercice 10

Soit $f:[0,1] \to [0,1]$ croissante, montrer qu'elle a un point fixe.

Indication: étudier

$$E = \{ x \in [0,1] \mid \forall t \in [0,x], f(t) > t \}.$$

Indication ▼ Correction ▼ Vidéo ■ [000653]

Exercice 11

Résoudre l'équation $x^y = y^x$ où x et y sont des entiers positifs non nuls.

Indication ▼ Correction ▼ Vidéo ■ [000776]

Indication pour l'exercice 1 ▲

Distinguer trois intervalles pour la formule définissant f^{-1} .

Indication pour l'exercice 2 A

Le " ε " vous est donné, il ne faut pas y toucher. Par contre c'est à vous de trouver le " δ ".

Indication pour l'exercice 3 ▲

Oui pour le deux premières en posant f(0) = 0, g(0) = 0, non pour la troisième.

Indication pour l'exercice 4 A

- 1. On pourra utiliser la variante de l'inégalité triangulaire $|x-y| \ge ||x|-|y||$.
- 2. Utiliser la première question pour montrer que |f-g| est continue.

Indication pour l'exercice 5 ▲

Ce n'est pas très dur mais il y a quand même quelque chose à démontrer : ce n'est pas parce que f(x) vaut +1 ou -1 que la fonction est constante. Raisonner par l'absurde et utiliser le théorème des valeurs intermédiaires.

Indication pour l'exercice 7 ▲

Il faut raisonner en deux temps : d'abord écrire la définition de la limite en $+\infty$, en fixant par exemple $\varepsilon = 1$, cela donne une borne sur $[A, +\infty]$. Puis travailler sur [0,A].

Indication pour l'exercice 9 ▲

Pour *x* fixé, étudier la suite $f(\frac{1}{2^n}x)$.

Indication pour l'exercice 10 ▲

Un *point fixe* est une valeur $c \in [0,1]$ telle que f(c) = c. Montrer que $c = \sup E$ est un point fixe. Pour cela montrer que $f(c) \le c$ puis $f(c) \ge c$.

Indication pour l'exercice 11 ▲

Montrer que l'équation $x^y = y^x$ est équivalente à $\frac{\ln x}{x} = \frac{\ln y}{y}$, puis étudier la fonction $x \mapsto \frac{\ln x}{x}$.

Correction de l'exercice 1 A

- 1. Le graphe est composé d'une portion de droite au dessus des $x \in]-\infty,1[$; d'une portion de parabole pour les $x \in [1,4]$, d'une portion d'une autre parabole pour les $x \in]4,+\infty$. (Cette dernière branche est bien une parabole, mais elle n'est pas dans le sens "habituel", en effet si $y = 8\sqrt{x}$ alors $y^2 = 64x$ et c'est bien l'équation d'une parabole.)
 - On "voit" immédiatemment sur le graphe que la fonction est continue (les portions se recollent!). On "voit" aussi que la fonction est bijective.
- 2. La fonction est continue sur $]-\infty,1[,]1,4[$ et $]4,+\infty[$ car sur chacun des ces intervalles elle y est définie par une fonction continue. Il faut examiner ce qui se passe en x=1 et x=4. Pour x<1, f(x)=x, donc la limite à gauche (c'est-à-dire $x\to 1$ avec x<1) est donc +1. Pour $x\geqslant 1$, $f(x)=x^2$ donc la limite à droite vaut aussi +1. Comme on a f(1)=+1 alors les limites à gauche, à droite et la valeur en 1 coïncident donc f est continue en x=1.

Même travail en x = 4. Pour $x \in [1,4]$, $f(x) = x^2$ donc la limite à gauche en x = 4 est +16. On a aussi f(4) = +16. Enfin pour x > 4, $f(x) = 8\sqrt{x}$, donc la limite à droite en x = 4 est aussi +16. Ainsi f est continue en x = 4.

Conclusion : f est continue en tout point $x \in \mathbb{R}$ donc f est continue sur \mathbb{R} .

3. Le graphe devrait vous aider : tout d'abord il vous aide à se convaincre que f est bien bijective et que la formule pour la bijection réciproque dépend d'intervalles. Petit rappel : le graphe de la bijection réciproque f^{-1} s'obtient comme symétrique du graphe de f par rapport à la bissectrice d'équation (y = x) (dans un repère orthonormal).

Ici on se contente de donner directement la formule de f^{-1} . Pour $x \in]-\infty, 1[$, f(x) = x. Donc la bijection réciproque est définie par $f^{-1}(y) = y$ pour tout $y \in]-\infty, 1[$. Pour $x \in [1,4]$, $f(x) = x^2$. L'image de l'intervalle [1,4] est l'intervalle [1,16]. Donc pour chaque $y \in [1,16]$, la bijection réciproque est définie par $f^{-1}(y) = \sqrt{y}$. Enfin pour $x \in]4, +\infty[$, $f(x) = 8\sqrt{x}$. L'image de l'intervalle $]4, +\infty[$ est donc $]16, +\infty[$ et f^{-1} est définie par $f^{-1}(y) = \frac{1}{64}y^2$ pour chaque $y \in]16, +\infty[$.

Nous avons définie $f^{-1}: \mathbb{R} \to \mathbb{R}$ de telle sorte que f^{-1} soit la bijection réciproque de f.

C'est un bon exercice de montrer que f est bijective sans calculer f^{-1} : vous pouvez par exemple montrer que f est injective et surjective. Un autre argument est d'utiliser un résultat du cours : f est continue, strictement croissante avec une limite $-\infty$ en $-\infty$ et $+\infty$ en $+\infty$ donc elle est bijective de $\mathbb R$ dans $\mathbb R$ (et on sait même que la bijection réciproque est continue).

Correction de l'exercice 2 A

Commençons par la fin, trouver un tel δ montrera que

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad |x - x_0| < \delta \Rightarrow |f(x) - (-3)| < \varepsilon$$

autrement dit la limite de f en $x_0 = 0$ est -3. Comme f(0) = -3 alors cela montre aussi que f est continue en $x_0 = 0$.

On nous donne un $\varepsilon > 0$, à nous de trouver ce fameux δ . Tout d'abord

$$|f(x)+3| = \left|\frac{2x+3}{3x-1}+3\right| = \frac{11|x|}{|3x-1|}.$$

Donc notre condition devient :

$$|f(x)+3| < \varepsilon \quad \Leftrightarrow \quad \frac{11|x|}{|3x-1|} < \varepsilon \quad \Leftrightarrow \quad |x| < \varepsilon \frac{|3x-1|}{11}.$$

Comme nous voulons éviter les problèmes en $x = \frac{1}{3}$ pour lequel la fonction f n'est pas définie, nous allons nous placer "loin" de $\frac{1}{3}$. Considérons seulement les $x \in \mathbb{R}$ tel que $|x| < \frac{1}{6}$. Nous avons :

$$|x| < \frac{1}{6} \Rightarrow -\frac{1}{6} < x < +\frac{1}{6} \quad \Rightarrow \quad -\frac{3}{2} < 3x - 1 < -\frac{1}{2} \quad \Rightarrow \quad \frac{1}{2} < |3x - 1|.$$

Et maintenant explicitons δ : prenons $\delta < \varepsilon \cdot \frac{1}{2} \cdot \frac{1}{11}$. Alors pour $|x| < \delta$ nous avons

$$|x| < \delta = \varepsilon \cdot \frac{1}{2} \cdot \frac{1}{11} < \varepsilon \cdot |3x - 1| \cdot \frac{1}{11}$$

ce qui implique par les équivalences précédentes que $|f(x) + 3| < \varepsilon$.

Il y a juste une petite correction à apporter à notre δ : au cours de nos calculs nous avons supposé que $|x| < \frac{1}{6}$, mais rien ne garantie que $\delta \leqslant \frac{1}{6}$ (car δ dépend de ε qui pourrait bien être très grand, même si habituellement ce sont les ε petits qui nous intéressent). Au final le δ qui convient est donc:

$$\delta = \min(\frac{1}{6}, \frac{\varepsilon}{22}).$$

Remarque finale : bien sûr on savait dès le début que f est continue en $x_0 = 0$. En effet f est le quotient de deux fonctions continues, le dénominateur ne s'annulant pas en x_0 . Donc nous savons dès le départ qu'un tel δ existe, mais ici nous avons fait plus, nous avons trouvé une formule explicite pour ce δ .

Correction de l'exercice 3

1. La fonction est définie sur \mathbb{R}^* t elle est continue sur \mathbb{R}^* . Il faut déterminer un éventuel prolongement par continuité en x = 0, c'est-à-dire savoir si f a une limite en 0.

$$|f(x)| = |\sin x| |\sin 1/x| \leqslant |\sin x|.$$

Donc f a une limite en 0 qui vaut 0. Donc en posant f(0) = 0, nous obtenons une fonction $f : \mathbb{R} \longrightarrow \mathbb{R}$ qui est continue.

2. La fonction g est définie et continue sur \mathbb{R}^* . Etudions la situation en 0. Il faut remarquer que g est la taux d'accroissement en 0 de la fonction $k(x) = \ln \frac{e^x + e^{-x}}{2}$: en effet $g(x) = \frac{k(x) - k(0)}{x - 0}$. Donc si k est dérivable en 0 alors la limite de g en 0 est égale à la valeur de k' en 0.

Or la fonction k est dérivable sur \mathbb{R} et $k'(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ donc k'(0) = 0. Bilan : en posant g(0) = 0 nous obtenons une fonction g définie et continue sur \mathbb{R} .

3. *h* est définie et continue sur $\mathbb{R} \setminus \{-1,1\}$.

$$h(x) = \frac{1}{1-x} - \frac{2}{1-x^2} = \frac{1+x-2}{(1-x)(1+x)} = \frac{-1+x}{(1-x)(1+x)} = \frac{-1}{(1+x)}.$$

Donc h a pour limite $-\frac{1}{2}$ quand x tend vers 1. Et donc en posant $h(1) = -\frac{1}{2}$, nous définissons une fonction continue sur $\mathbb{R} \setminus \{-1\}$. En -1 la fonction h ne peut être prolongée continuement, car en -1, h n'admet de limite finie.

Correction de l'exercice 4 A

- 1. On a pour tout $x, y \in \mathbb{R}$ $|x y| \ge ||x| |y||$ (c'est la deuxième formulation de l'inégalité triangulaire). Donc pour tout $x \in I$: $||f(x)| |f(a)|| \le |f(x) f(a)|$. L'implication annoncée résulte alors immédiatement de la définition de l'assertion $\lim_{x \to a} f(x) = f(a)$.
- 2. Si f,g sont continues alors $\alpha f + \beta g$ est continue sur I, pour tout $\alpha,\beta \in \mathbb{R}$. Donc les fonctions f+g et f-g sont continues sur I. L'implication de 1. prouve alors que |f-g| est continue sur I, et finalement on peut conclure :

La fonction $\sup(f,g) = \frac{1}{2}(f+g+|f-g|)$ est continue sur *I*.

Correction de l'exercice 5

Comme $f(x)^2 = 1$ alors $f(x) = \pm 1$. Attention! Cela ne veut pas dire que la fonction est constante égale à 1 ou -1. Supposons, par exemple, qu'il existe x tel que f(x) = +1. Montrons que f est constante égale à +1. S'il existe $y \neq x$ tel que f(y) = -1 alors f est positive en x, négative en y et continue sur I. Donc, par le théorème des

valeurs intermédiaires, il existe z entre x et y tel que f(z) = 0, ce qui contredit $f(z)^2 = 1$. Donc f est constante égale à +1.

Correction de l'exercice 6

- 1. $g(a) = f(\frac{a+b}{2}) f(a)$ et $g(\frac{a+b}{2}) = f(b) f(\frac{a+b}{2})$. Comme f(a) = f(b) alors nous obtenons que $g(a) = -g(\frac{a+b}{2})$. Donc ou bien $g(a) \le 0$ et $g(\frac{a+b}{2}) \ge 0$ ou bien $g(a) \ge 0$ et $g(\frac{a+b}{2}) \le 0$. D'après le théorème des valeurs intermédiaires, g s'annule en c pour un c entre a et $\frac{a+b}{2}$.
- 2. Notons t le temps (en heure) et d(t) la distance parcourue (en km) entre les instants 0 et t. Nous supposons que la fonction $t\mapsto d(t)$ est continue. Soit f(t)=d(t)-4t. Alors f(0)=0 et par hypothèse f(1)=0. Appliquons la question précédente avec a=0, b=1. Il existe $c\in [0,\frac{1}{2}]$ tel que g(c)=0, c'est-à-dire $f(c+\frac{1}{2})=f(c)$. Donc $d(c+\frac{1}{2})-d(c)=4(c+\frac{1}{2})-4c=2$. Donc entre c et $c+\frac{1}{2}$, (soit 1/2 heure), la personne parcourt exactement 2 km.

Correction de l'exercice 7

Notons ℓ la limite de f en $+\infty$:

$$\forall \varepsilon > 0 \quad \exists A \in \mathbb{R} \quad x > A \Rightarrow \ell - \varepsilon \leqslant f(x) \leqslant \ell + \varepsilon.$$

Fixons $\varepsilon=+1$, nous obtenons un A correspondant tel que pour x>A, $\ell-1\leqslant f(x)\leqslant \ell+1$. Nous venons de montrer que f est bornée "à l'infini". La fonction f est continue sur l'intervalle fermé borné [0,A], donc f est bornée sur cet intervalle : il existe m,M tels que pour tout $x\in[0,A]$, $m\leqslant f(x)\leqslant M$. En prenant $M'=\max(M,\ell+1)$, et $m'=\min(m,\ell-1)$ nous avons que pour tout $x\in\mathbb{R}$, $m'\leqslant f(x)\leqslant M'$. Donc f est bornée sur \mathbb{R}

La fonction n'atteint pas nécessairement ses bornes : regardez $f(x) = \frac{1}{1+x}$.

Correction de l'exercice 8 A

- 1. Il faut que le dénominateur ne s'annule pas donc $x \neq \frac{5}{2}$. En plus il faut que le terme sous la racine soit positif ou nul, c'est-à-dire $(2+3x) \times (5-2x) \geqslant 0$, soit $x \in [-\frac{2}{3}, \frac{5}{2}]$. L'ensemble de définition est donc $[-\frac{2}{3}, \frac{5}{2}]$.
- 2. If faut $x^2 2x 5 \ge 0$, soit $x \in]-\infty, 1-\sqrt{6}] \cup [1+\sqrt{6}, +\infty[$.
- 3. Il faut 4x + 3 > 0 soit $x > -\frac{3}{4}$, l'ensemble de définition étant $] -\frac{3}{4}, +\infty[$.

Correction de l'exercice 9 A

Fixons $x \in \mathbb{R}$ et soit y = x/2, comme f(y) = f(2y) nous obtenons $f(\frac{1}{2}x) = f(x)$. Puis en prenant $y = \frac{1}{4}x$, nous obtenons $f(\frac{1}{4}x) = f(\frac{1}{2}x) = f(x)$. Par une récurrence facile nous avons

$$\forall n \in \mathbb{N} \quad f(\frac{1}{2^n}x) = f(x).$$

Notons (u_n) la suite définie par $u_n = \frac{1}{2^n}x$ alors $u_n \to 0$ quand $n \to +\infty$. Par la continuité de f en 0 nous savons alors que : $f(u_n) \to f(0)$ quand $n \to +\infty$. Mais $f(u_n) = f(\frac{1}{2^n}x) = f(x)$, donc $(f(u_n))_n$ est une suite constante égale à f(x), et donc la limite de cette suite est f(x)! Donc f(x) = f(0). Comme ce raisonnement est valable pour tout $x \in \mathbb{R}$ nous venons de montrer que f est une fonction constante.

Correction de l'exercice 10 ▲

- 1. Si f(0) = 0 et c'est fini, on a trouver le point fixe! Sinon f(0) n'est pas nul. Donc f(0) > 0 et $0 \in E$. Donc E n'est pas vide.
- 2. Maintenant E est un partie de [0,1] non vide donc $\sup E$ existe et est fini. Notons $c=\sup E\in [0,1]$. Nous allons montrer que c est un point fixe.

- 3. Nous approchons ici $c = \sup E$ par des éléments de E: Soit (x_n) une suite de E telle que $x_n \to c$ et $x_n \le c$. Une telle suite existe d'après les propriétés de $c = \sup E$. Comme $x_n \in E$ alors $x_n < f(x_n)$. Et comme f est croissante $f(x_n) \le f(c)$. Donc pour tout $f(x_n) \le f(c)$ comme $f(x_n) \le f(c)$ comme $f(x_n) \le f(c)$ alors à la limite nous avons $f(x_n) \le f(c)$.
- 4. Si c=1 alors f(1)=1 et nous avons notre point fixe. Sinon, nous utilisons maintenant le fait que les élements supérieurs à sup E ne sont pas dans E: Soit (t_n) une suite telle que $t_n \to c$, $t_n \ge c$ et telle que $f(t_n) \le t_n$. Une telle suite existe car sinon c ne serait pas égal à sup E. Nous avons $f(c) \le f(t_n) \le t_n$ et donc à la limite $f(c) \le c$.

Nous concluons donc que $c \le f(c) \le c$, donc f(c) = c et c est un point fixe de f.

Correction de l'exercice 11 A

$$x^{y} = y^{x} \Leftrightarrow e^{y \ln x} = e^{x \ln y} \Leftrightarrow y \ln x = x \ln y \Leftrightarrow \frac{\ln x}{x} = \frac{\ln y}{y}$$

(la fonction exponentielle est bijective). Etudions la fonction $f(x) = \frac{\ln x}{x} \sin [1, +\infty[$.

$$f'(x) = \frac{1 - \ln x}{x^2},$$

donc f est croissante sur [1,e] et décroissante sur $[e,+\infty[$. Donc pour $z\in]0, f(e)[=]0, 1/e[$, l'équation f(x)=z a exactement deux solutions, une dans]1,e[et une dans $]e,+\infty[$.

Revenons à l'équation $x^y = y^x$ équivalente à f(x) = f(y). Prenons y un entier, nous allons distinguer trois cas : y = 1, y = 2 et $y \ge 3$. Si y = 1 alors f(y) = z = 0 on doit donc résoudre f(x) = 0 et alors x = 1. Si y = 2 alors il faut résoudre l'équation $f(x) = \frac{\ln 2}{2} \in]0, 1/e[$. Alors d'après l'étude précédente, il existe deux solutions une sur]0, e[qui est x = 2 (!) et une sur $]e, +\infty[$ qui est 4, en effet $\frac{\ln 4}{4} = \frac{\ln 2}{2}$. Nous avons pour l'instant les solutions correspondant à $2^2 = 2^2$ et $2^4 = 4^2$.

Si $y \ge 3$ alors y > e donc il y a une solution x de l'équation f(x) = f(y) dans e, $+\infty$ qui est e y, et une solution e dans l'intervalle e]1, e[. Mais comme e est un entier alors e 2 (c'est le seul entier appartenant à e]1, e[) c'est un cas que nous avons déjà étudié conduisant à e2 dans l'est un cas que nous avons déjà étudié conduisant à e3.

Conclusion : les couples d'entiers qui vérifient l'équation $x^y = y^x$ sont les couples (x, y = x) et les couples (2, 4) et (4, 2).

Dérivée d'une fonction

```
Vidéo ■ partie 1. Définition
Vidéo ■ partie 2. Calculs
Vidéo ■ partie 3. Extremum local, théorème de Rolle
Vidéo ■ partie 4. Théorème des accroissements finis
Fiche d'exercices ♦ Fonctions dérivables
```

Motivation

Nous souhaitons calculer $\sqrt{1,01}$ ou du moins en trouver une valeur approchée. Comme 1,01 est proche de 1 et que $\sqrt{1} = 1$ on se doute bien que $\sqrt{1,01}$ sera proche de 1. Peut-on être plus précis? Si l'on appelle f la fonction définie par $f(x) = \sqrt{x}$, alors la fonction f est une fonction continue en $x_0 = 1$. La continuité nous affirme que pour xsuffisamment proche de x_0 , f(x) est proche de $f(x_0)$. Cela revient à dire que pour x au voisinage de x_0 on approche f(x) par la constante $f(x_0)$.

Nous pouvons faire mieux qu'approcher notre fonction par une droite horizontale! Essayons avec une droite quelconque. Quelle droite se rapproche le plus du graphe de f autour de x_0 ? Elle doit passer par le point $(x_0, f(x_0))$ et doit « coller » le plus possible au graphe : c'est la tangente au graphe en x_0 . Une équation de la tangente est

$$y = (x - x_0)f'(x_0) + f(x_0)$$

où $f'(x_0)$ désigne le nombre dérivé de f en x_0 . On sait que pour $f(x) = \sqrt{x}$, on a $f'(x) = \frac{1}{2\sqrt{x}}$. Une équation de la tangente en $x_0 = 1$ est donc $y = (x-1)\frac{1}{2} + 1$. Et donc pour x proche de 1 on a $f(x) \approx (x-1)\frac{1}{2} + 1$. Qu'est-ce que cela donne pour notre calcul de $\sqrt{1,01}$? On pose x = 1,01 donc $f(x) \approx 1 + \frac{1}{2}(x-1) = 1 + \frac{0.01}{2} = 1,005$. Et c'est effectivement une très bonne de approximation de $\sqrt{0.01} = 1.00498...$ En posant h = x - 1 on peut reformuler notre approximation en : $\sqrt{1+h} \approx 1 + \frac{1}{2}h$ qui est valable pour h proche de 0.

Dérivée d'une fonction 1. Dérivée 2

Dans ce chapitre nous allons donc définir ce qu'est la dérivée d'une fonction et établir les formules des dérivées des fonctions usuelles. Enfin, pour connaître l'erreur des approximations, il nous faudra travailler beaucoup plus afin d'obtenir le théorème des accroissements finis.

1. Dérivée

1.1. Dérivée en un point

Soit *I* un intervalle ouvert de \mathbb{R} et $f: I \to \mathbb{R}$ une fonction. Soit $x_0 \in I$.

Définition 1

f est dérivable en x_0 si le taux d'accroissement $\frac{f(x)-f(x_0)}{x-x_0}$ a une limite finie lorsque x tend vers x_0 . La limite s'appelle alors le nombre dérivé de f en x_0 et est noté $f'(x_0)$. Ainsi

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Définition 2.

f est dérivable sur I si f est dérivable en tout point $x_0 \in I$. La fonction $x \mapsto f'(x)$ est la fonction dérivée de f, elle se note f' ou $\frac{df}{dx}$.

Exemple 1.

La fonction définie par $f(x) = x^2$ est dérivable en tout point $x_0 \in \mathbb{R}$. En effet :

$$\frac{f(x)-f(x_0)}{x-x_0} = \frac{x^2-x_0^2}{x-x_0} = \frac{(x-x_0)(x+x_0)}{x-x_0} = x+x_0 \xrightarrow[x \to x_0]{} 2x_0.$$

On a même montré que le nombre dérivé de f en x_0 est $2x_0$, autrement dit : f'(x) = 2x.

Exemple 2.

Montrons que la dérivée de $f(x) = \sin x$ est $f'(x) = \cos x$. Nous allons utiliser les deux assertions suivantes :

$$\frac{\sin x}{x} \xrightarrow[x \to 0]{} 1 \qquad \text{et} \qquad \sin p - \sin q = 2\sin\frac{p-q}{2} \cdot \cos\frac{p+q}{2}.$$

Remarquons déjà que la première assertion prouve $\frac{f(x)-f(0)}{x-0}=\frac{\sin x}{x}\to 1$ et donc f est dérivable en $x_0=0$ et f'(0)=1. Pour x_0 quelconque on écrit :

$$\frac{f(x) - f(x_0)}{x - x_0} = \frac{\sin x - \sin x_0}{x - x_0} = \frac{\sin \frac{x - x_0}{2}}{\frac{x - x_0}{2}} \cdot \cos \frac{x + x_0}{2}.$$

Lorsque $x \to x_0$ alors d'une part $\cos \frac{x+x_0}{2} \to \cos x_0$ et d'autre part en posant $u = \frac{x-x_0}{2}$ alors $u \to 0$ et on a $\frac{\sin u}{u} \to 1$. Ainsi $\frac{f(x)-f(x_0)}{x-x_0} \to \cos x_0$ et donc $f'(x) = \cos x$.

1.2. Tangente

La droite qui passe par les points distincts $(x_0, f(x_0))$ et (x, f(x)) a pour coefficient directeur $\frac{f(x) - f(x_0)}{x - x_0}$. À la limite on trouve que le coefficient directeur de la tangente est $f'(x_0)$. Une équation de la *tangente* au point $(x_0, f(x_0))$ est donc :

$$y = (x - x_0)f'(x_0) + f(x_0)$$

1. Dérivée 3 DÉRIVÉE D'UNE FONCTION

1.3. Autres écritures de la dérivée

Voici deux autres formulations de la dérivabilité de f en x_0 .

Proposition 1.

- f est dérivable en x_0 si et seulement si $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}$ existe et est finie. f est dérivable en x_0 si et seulement s'il existe $\ell\in\mathbb{R}$ (qui sera $f'(x_0)$) et une fonction $\epsilon:I\to\mathbb{R}$ telle que

$$f(x) = f(x_0) + (x - x_0)\ell + (x - x_0)\epsilon(x).$$

Démonstration. Il s'agit juste de reformuler la définition de $f'(x_0)$. Par exemple, après division par $x-x_0$, la deuxième écriture devient

$$\frac{f(x) - f(x_0)}{x - x_0} = \ell + \epsilon(x).$$

Proposition 2.

Soit I un intervalle ouvert, $x_0 \in I$ et soit $f: I \to \mathbb{R}$ une fonction.

- Si f est dérivable en x_0 alors f est continue en x_0 .
- Si f est dérivable sur I alors f est continue sur I.

Démonstration. Supposons f dérivable en x_0 et montrons qu'elle est aussi continue en ce point. Voici une démonstration concise : partant de l'écriture alternative donnée dans la proposition 1, nous écrivons

$$f(x) = f(x_0) + \underbrace{(x - x_0)\ell}_{\to 0} + \underbrace{(x - x_0)\epsilon(x)}_{\to 0}.$$

Donc $f(x) \to f(x_0)$ lorsque $x \to x_0$ et ainsi f est continue en x_0 .

On reprend cette démonstration sans utiliser les limites mais uniquement la définition de continuité et dérivabilité : fixons $\epsilon' > 0$ et écrivons $f(x) = f(x_0) + (x - x_0)\ell + (x - x_0)\epsilon(x)$ grâce à la proposition 1, où $\epsilon(x) \xrightarrow[x \to x_0]{} 0$ et $\ell = f'(x_0)$. Choisissons $\delta > 0$ de sorte qu'il vérifie tous les points suivants :

- $\delta \leqslant 1$,
- $\delta |\ell| < \epsilon'$,
- si $|x x_0| < \delta$ alors $|\epsilon(x)| < \epsilon'$ (c'est possible car $\epsilon(x) \to 0$).

DÉRIVÉE D'UNE FONCTION 2. Calcul des dérivées 4

Alors l'égalité ci-dessus devient :

$$\begin{aligned} \left| f(x) - f(x_0) \right| &= \left| (x - x_0)\ell + (x - x_0)\epsilon(x) \right| \\ &\leq \left| x - x_0 \right| \cdot \left| \ell \right| + \left| x - x_0 \right| \cdot \left| \epsilon(x) \right| \\ &\leq \delta \left| \ell \right| + \delta \epsilon' \quad \text{pour } \left| x - x_0 \right| < \delta \\ &\leq \epsilon' + \epsilon' = 2\epsilon' \end{aligned}$$

Nous venons de prouver que si $|x-x_0| < \delta$ alors $|f(x)-f(x_0)| < 2\epsilon'$, ce qui exprime exactement que f est continue en x_0 .

Remarque.

La réciproque est fausse : par exemple, la fonction valeur absolue est continue en 0 mais n'est pas dérivable en 0.

En effet, le taux d'accroissement de f(x) = |x| en $x_0 = 0$ vérifie :

$$\frac{f(x) - f(0)}{x - 0} = \frac{|x|}{x} = \begin{cases} +1 & \text{si } x > 0 \\ -1 & \text{si } x < 0 \end{cases}.$$

Il y a bien une limite à droite (qui vaut +1), une limite à gauche (qui vaut -1) mais elles ne sont pas égales : il n'y a pas de limite en 0. Ainsi f n'est pas dérivable en x = 0.

Cela se lit aussi sur le dessin, il y a une demi-tangente à droite, une demi-tangente à gauche, mais elles ont des directions différentes.

Mini-exercices.

- 1. Montrer que la fonction $f(x) = x^3$ est dérivable en tout point $x_0 \in \mathbb{R}$ et que $f'(x_0) = 3x_0^2$.
- 2. Montrer que la fonction $f(x) = \sqrt{x}$ est dérivable en tout point $x_0 > 0$ et que $f'(x_0) = \frac{1}{2\sqrt{x_0}}$.
- 3. Montrer que la fonction $f(x) = \sqrt{x}$ (qui est continue en $x_0 = 0$) n'est pas dérivable en $x_0 = 0$.
- 4. Calculer l'équation de la tangente (T_0) à la courbe d'équation $y = x^3 x^2 x$ au point d'abscisse $x_0 = 2$. Calculer x_1 afin que la tangente (T_1) au point d'abscisse x_1 soit parallèle à (T_0) .
- 5. Montrer que si une fonction f est paire et dérivable, alors f' est une fonction impaire.

2. Calcul des dérivées

2.1. Somme, produit,...

Proposition 3.

Soient $f, g: I \to \mathbb{R}$ deux fonctions dérivables sur I. Alors pour tout $x \in I$:

- (f+g)'(x) = f'(x) + g'(x)

- $(\lambda f)'(x) = \lambda f'(x)$ où λ est un réel fixé $(f \times g)'(x) = f'(x)g(x) + f(x)g'(x)$ $\left(\frac{1}{f}\right)'(x) = -\frac{f'(x)}{f(x)^2}$ (si $f(x) \neq 0$) $\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) f(x)g'(x)}{g(x)^2}$ (si $g(x) \neq 0$)

Remarque.

Il est plus facile de mémoriser les égalités de fonctions :

$$(f+g)'=f'+g'$$
 $(\lambda f)'=\lambda f'$ $(f\times g)'=f'g+fg'$

$$(f+g)' = f' + g' \qquad (\lambda f)' = \lambda f' \qquad (f \times g)' = f'g + fg'$$

$$\left[\left(\frac{1}{f}\right)' = -\frac{f'}{f^2} \qquad \left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2} \right]$$

Démonstration. Prouvons par exemple $(f \times g)' = f'g + fg'$.

Fixons $x_0 \in I$. Nous allons réécrire le taux d'accroissement de $f(x) \times g(x)$:

$$\frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0} = \frac{f(x) - f(x_0)}{x - x_0}g(x) + \frac{g(x) - g(x_0)}{x - x_0}f(x_0)$$

$$\xrightarrow{x \to x_0} f'(x_0)g(x_0) + g'(x_0)f(x_0).$$

Ceci étant vrai pour tout $x_0 \in I$ la fonction $f \times g$ est dérivable sur I de dérivée f'g + fg'.

2.2. Dérivée de fonctions usuelles

Le tableau de gauche est un résumé des principales formules à connaître, x est une variable. Le tableau de droite est celui des compositions (voir paragraphe suivant), u représente une fonction $x \mapsto u(x)$.

Fonction	Dérivée	
x^n	nx^{n-1}	$(n \in \mathbb{Z})$
$\frac{1}{x}$	$-\frac{1}{x^2}$	
\sqrt{x}	$\frac{1}{2}\frac{1}{\sqrt{x}}$	
x^{α}	$\alpha x^{\alpha-1}$	$(\alpha \in \mathbb{R})$
e^x	e ^x	
$\ln x$	$\frac{1}{x}$	
cos x	— sin <i>x</i>	
sin x	cos x	
tan x	$1 + \tan^2 x = \frac{1}{\cos^2 x}$	

Fonction	Dérivée	
u^n	$nu'u^{n-1} (n \in \mathbb{Z})$	
$\frac{1}{u}$	$-\frac{u'}{u^2}$	
\sqrt{u}	$\frac{1}{2} \frac{u'}{\sqrt{u}}$	
u^{α}	$\alpha u'u^{\alpha-1} (\alpha \in \mathbb{R})$	
e^u	u'e ^u	
ln u	$\frac{u'}{u}$	
cosu	$-u'\sin u$	
sin u	$u'\cos u$	
tan u	$u'(1+\tan^2 u) = \frac{u'}{\cos^2 u}$	

• Notez que les formules pour x^n , $\frac{1}{x}$, \sqrt{x} et x^α sont aussi des conséquences de la dérivée de l'exponentielle. Par exemple $x^{\alpha} = e^{\alpha \ln x}$ et donc

$$\frac{d}{dx}(x^{\alpha}) = \frac{d}{dx}(e^{\alpha \ln x}) = \alpha \frac{1}{x}e^{\alpha \ln x} = \alpha \frac{1}{x}x^{\alpha} = \alpha x^{\alpha - 1}.$$

• Si vous devez dériver une fonction avec un exposant dépendant de x il faut absolument repasser à la forme exponentielle. Par exemple si $f(x) = 2^x$ alors on réécrit d'abord $f(x) = e^{x \ln 2}$ pour pouvoir calculer $f'(x) = e^{x \ln 2}$ $\ln 2 \cdot e^{x \ln 2} = \ln 2 \cdot 2^x.$

2.3. Composition

Proposition 4.

Si f est dérivable en x et g est dérivable en f(x) alors $g \circ f$ est dérivable en x de dérivée :

$$(g \circ f)'(x) = g'(f(x)) \cdot f'(x)$$

Démonstration. Faisons l'hypothèse que $f(x) \neq f(x_0)$ pour x proche de x_0 (avec $x \neq x_0$). La preuve est alors similaire à celle ci-dessus pour le produit en écrivant cette fois :

$$\frac{g \circ f(x) - g \circ f(x_0)}{x - x_0} = \frac{g(f(x)) - g(f(x_0))}{f(x) - f(x_0)} \times \frac{f(x) - f(x_0)}{x - x_0}$$

$$\xrightarrow{x \to x_0} g'(f(x_0)) \times f'(x_0).$$

Exemple 3.

Calculons la dérivée de $\ln(1+x^2)$. Nous avons $g(x) = \ln(x)$ avec $g'(x) = \frac{1}{x}$; et $f(x) = 1 + x^2$ avec f'(x) = 2x. Alors la dérivée de $\ln(1+x^2) = g \circ f(x)$ est

$$(g \circ f)'(x) = g'(f(x)) \cdot f'(x) = g'(1+x^2) \cdot 2x = \frac{2x}{1+x^2}.$$

Corollaire 1.

Soit I un intervalle ouvert. Soit $f: I \to J$ dérivable et bijective dont on note $f^{-1}: J \to I$ la bijection réciproque. Si f' ne s'annule pas sur I alors f^{-1} est dérivable et on a pour tout $x \in J$:

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

Démonstration. Notons $g = f^{-1}$ la bijection réciproque de f. Soit $y_0 \in J$ et $x_0 \in I$ tel que $y_0 = f(x_0)$. Le taux d'accroissement de g en y_0 est :

$$\frac{g(y) - g(y_0)}{y - y_0} = \frac{g(y) - x_0}{f(g(y)) - f(x_0)}$$

Lorsque $y \to y_0$ alors $g(y) \to g(y_0) = x_0$ et donc ce taux d'accroissement tend vers $\frac{1}{f'(x_0)}$. Ainsi $g'(y_0) = \frac{1}{f'(x_0)}$.

Remarque.

Il peut être plus simple de retrouver la formule à chaque fois en dérivant l'égalité

$$f(g(x)) = x$$

où $g = f^{-1}$ est la bijection réciproque de f.

En effet à droite la dérivée de x est 1; à gauche la dérivée de $f(g(x)) = f \circ g(x)$ est $f'(g(x)) \cdot g'(x)$. L'égalité f(g(x)) = x conduit donc à l'égalité des dérivées :

$$f'(g(x)) \cdot g'(x) = 1.$$

Mais $g = f^{-1}$ donc

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}.$$

Exemple 4.

Soit $f : \mathbb{R} \to \mathbb{R}$ la fonction définie par $f(x) = x + \exp(x)$. Étudions f en détail.

Tout d'abord:

- 1. f est dérivable car f est la somme de deux fonctions dérivables. En particulier f est continue.
- 2. *f* est strictement croissante car *f* est la somme de deux fonctions strictement croissante.
- 3. f est une bijection car $\lim_{x\to-\infty} f(x) = -\infty$ et $\lim_{x\to+\infty} f(x) = +\infty$.
- 4. $f'(x) = 1 + \exp(x)$ ne s'annule jamais (pour tout $x \in \mathbb{R}$).

Notons $g = f^{-1}$ la bijection réciproque de f. Même si on ne sait pas a priori exprimer g, on peut malgré tout connaître des informations sur cette fonction : par le corollaire ci-dessus g est dérivable et l'on calcule g' en dérivant l'égalité f(g(x)) = x. Ce qui donne $f'(g(x)) \cdot g'(x) = 1$ et donc ici

$$g'(x) = \frac{1}{f'(g(x))} = \frac{1}{1 + \exp(g(x))}.$$

Pour cette fonction f particulière on peut préciser davantage : comme f(g(x)) = x alors $g(x) + \exp(g(x)) = x$ donc $\exp(g(x)) = x - g(x)$. Cela conduit à :

$$g'(x) = \frac{1}{1 + x - g(x)}.$$

Par exemple f(0)=1 donc g(1)=0 et donc $g'(1)=\frac{1}{2}$. Autrement dit $(f^{-1})'(1)=\frac{1}{2}$. L'équation de la tangente au graphe de f^{-1} au point d'abscisse $x_0=1$ est donc $y=\frac{1}{2}(x-1)$.

2.4. Dérivées successives

Soit $f: I \to \mathbb{R}$ une fonction dérivable et soit f' sa dérivée. Si la fonction $f': I \to \mathbb{R}$ est aussi dérivable on note f'' = (f')' la *dérivée seconde* de f. Plus généralement on note :

$$f^{(0)} = f$$
, $f^{(1)} = f'$, $f^{(2)} = f''$ et $f^{(n+1)} = (f^{(n)})'$

Si la dérivée n-ième $f^{(n)}$ existe on dit que f est n fois dérivable.

Théorème 1 (Formule de Leibniz).

$$(f \cdot g)^{(n)} = f^{(n)} \cdot g + \binom{n}{1} f^{(n-1)} \cdot g^{(1)} + \dots + \binom{n}{k} f^{(n-k)} \cdot g^{(k)} + \dots + f \cdot g^{(n)}$$

Autrement dit:

$$(f \cdot g)^{(n)} = \sum_{k=0}^{n} {n \choose k} f^{(n-k)} \cdot g^{(k)}.$$

La démonstration est similaire à celle de la formule du binôme de Newton et les coefficients que l'on obtient sont les mêmes.

Exemple 5.

- Pour n = 1 on retrouve $(f \cdot g)' = f'g + fg'$.
- Pour n = 2, on a $(f \cdot g)'' = f''g + 2f'g' + fg''$.

Exemple 6.

Calculons les dérivées n-ème de $\exp(x) \cdot (x^2 + 1)$ pour tout $n \ge 0$. Notons $f(x) = \exp(x)$ alors $f'(x) = \exp(x)$, $f''(x) = \exp(x)$. Notons $g(x) = x^2 + 1$ alors g'(x) = 2x, g''(x) = 2 et pour $k \ge 3$, $g^{(k)}(x) = 0$. Appliquons la formule de Leibniz :

$$(f \cdot g)^{(n)}(x) = f^{(n)}(x) \cdot g(x) + \binom{n}{1} f^{(n-1)}(x) \cdot g^{(1)}(x) +$$

$$+ \binom{n}{2} f^{(n-2)}(x) \cdot g^{(2)}(x) + \binom{n}{3} f^{(n-3)}(x) \cdot g^{(3)}(x) + \cdots$$

On remplace $f^{(k)}(x) = \exp(x)$ et on sait que $g^{(3)}(x) = 0$, $g^{(4)}(x) = 0$... Donc cette somme ne contient que les trois premiers termes:

$$\left(f \cdot g\right)^{(n)}(x) = \exp(x) \cdot (x^2 + 1) + \binom{n}{1} \exp(x) \cdot 2x + \binom{n}{2} \exp(x) \cdot 2.$$

Que l'on peut aussi écrire :

$$(f \cdot g)^{(n)}(x) = \exp(x) \cdot (x^2 + 2nx + n(n-1) + 1).$$

Mini-exercices.

- 1. Calculer les dérivées des fonctions suivantes : $f_1(x) = x \ln x$, $f_2(x) = \sin \frac{1}{x}$, $f_3(x) = \sqrt{1 + \sqrt{1 + x^2}}$, $f_4(x) = \sqrt{1 + \sqrt{1 + x^2}}$ $\left(\ln\left(\frac{1+x}{1-x}\right)\right)^{\frac{1}{3}}, f_5(x) = x^x, f_6(x) = \arctan x + \arctan \frac{1}{x}.$
- 2. On note $\Delta(f) = \frac{f'}{f}$. Calculer $\Delta(f \times g)$.
- 3. Soit $f:]1, +\infty[\to]-1, +\infty[$ définie par $f(x) = x \ln(x) x$. Montrer que f est une bijection. Notons $g = f^{-1}$. Calculer g(0) et g'(0).
- 4. Calculer les dérivées successives de $f(x) = \ln(1+x)$.
- 5. Calculer les dérivées successives de $f(x) = \ln(x) \cdot x^3$.

3. Extremum local, théorème de Rolle

3.1. Extremum local

Soit $f: I \to \mathbb{R}$ une fonction définie sur un intervalle I.

Définition 3.

- On dit que x_0 est un *point critique* de f si $f'(x_0) = 0$.
- On dit que f admet un maximum local en x_0 (resp. un minimum local en x_0) s'il existe un intervalle ouvert J contenant x_0 tel que

pour tout
$$x \in I \cap J$$
 $f(x) \leqslant f(x_0)$

(resp. $f(x) \ge f(x_0)$).

On dit que f admet un extremum local en x_0 si f admet un maximum local ou un minimum local en ce point.

Dire que f a un maximum local en x_0 signifie que $f(x_0)$ est la plus grande des valeurs f(x) pour les x proches de x_0 . On dit que $f: I \to \mathbb{R}$ admet un *maximum global* en x_0 si pour toutes les autres valeurs f(x), $x \in I$, on a $f(x) \le f(x_0)$ (on ne regarde donc pas seulement les f(x) pour x proche de x_0). Bien sûr un maximum global est aussi un maximum local, mais la réciproque est fausse.

Théorème 2.

Soit I un intervalle ouvert et $f: I \to \mathbb{R}$ une fonction dérivable. Si f admet un maximum local (ou un minimum local) en x_0 alors $f'(x_0) = 0$.

En d'autres termes, un maximum local (ou un minimum local) x_0 est toujours un point critique. Géométriquement, au point $(x_0, f(x_0))$ la tangente au graphe est horizontale.

Exemple 7.

Étudions les extremums de la fonction f_{λ} définie par $f_{\lambda}(x) = x^3 + \lambda x$ en fonction du paramètre $\lambda \in \mathbb{R}$. La dérivée est $f_{\lambda}'(x) = 3x^2 + \lambda$. Si x_0 est un extremum local alors $f_{\lambda}'(x_0) = 0$.

- Si $\lambda > 0$ alors $f'_{\lambda}(x) > 0$ et ne s'annule jamais il n'y a pas de points critiques donc pas non plus d'extremums. En anticipant sur la suite : f_{λ} est strictement croissante sur \mathbb{R} .
- Si $\lambda = 0$ alors $f'_{\lambda}(x) = 3x^2$. Le seul point critique est $x_0 = 0$. Mais ce n'est ni un maximum local, ni un minimum
- local. En effet si x < 0, $f_0(x) < 0 = f_0(0)$ et si x > 0, $f_0(x) > 0 = f_0(0)$.

 Si $\lambda < 0$ alors $f_{\lambda}'(x) = 3x^2 |\lambda| = 3\left(x + \sqrt{\frac{|\lambda|}{3}}\right)\left(x \sqrt{\frac{|\lambda|}{3}}\right)$. Il y a deux points critiques $x_1 = -\sqrt{\frac{|\lambda|}{3}}$ et $x_2 = +\sqrt{\frac{|\lambda|}{3}}$. En anticipant sur la suite : $f_{\lambda}'(x) > 0$ sur $]-\infty$, $x_1[$ et $]x_2, +\infty[$ et $f_{\lambda}'(x) < 0$ sur $]x_1, x_2[$; maintenant f_{λ} est croissante sur] $-\infty$, x_1 [, puis décroissante sur] x_1 , x_2 [, donc x_1 est un maximum local. D'autre part f_{λ} est décroissante sur $]x_1, x_2[$ puis croissante sur $]x_2, +\infty[$ donc x_2 est un minimum local.

Remarque.

- 1. La réciproque du théorème 2 est fausse. Par exemple la fonction $f: \mathbb{R} \to \mathbb{R}$, définie par $f(x) = x^3$ vérifie f'(0) = 0mais $x_0 = 0$ n'est ni maximum local ni un minimum local.
- 2. L'intervalle du théorème 2 est ouvert. Pour le cas d'un intervalle fermé, il faut faire attention aux extrémités. Par exemple si $f:[a,b]\to\mathbb{R}$ est une fonction dérivable qui admet un extremum en x_0 , alors on est dans l'une des situations suivantes:
 - $x_0 = a$,

- $x_0 = b$,
- $x_0 \in]a, b[$ et dans ce cas on a bien $f'(x_0) = 0$ par le théorème 2.

Aux extrémités on ne peut rien dire pour f'(a) et f'(b), comme le montre les différents maximums sur les dessins suivants.

3. Pour déterminer $\max_{[a,b]} f$ et $\min_{[a,b]} f$ (où $f:[a,b] \to \mathbb{R}$ est une fonction dérivable) il faut comparer les valeurs de f aux différents points critiques et en a et en b.

Preuve du théorème. Supposons que x_0 soit un maximum local de f, soit donc J l'intervalle ouvert de la définition contenant x_0 tel que pour tout $x \in I \cap J$ on a $f(x) \leqslant f(x_0)$.

- Pour $x \in I \cap J$ tel que $x < x_0$ on a $f(x) f(x_0) \le 0$ et $x x_0 < 0$ donc $\frac{f(x) f(x_0)}{x x_0} \ge 0$ et donc à la limite $\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \geqslant 0.$
- Pour $x \in I \cap J$ tel que $x > x_0$ on a $f(x) f(x_0) \le 0$ et $x x_0 > 0$ donc $\frac{f(x) f(x_0)}{x x_0} \le 0$ et donc à la limite $\lim_{x\to x_0^+} \frac{f(x)-f(x_0)}{x-x_0}\leqslant 0.$ Or f est dérivable en x_0 donc

$$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0).$$

La première limite est positive, la seconde est négative, la seule possibilité est que $f'(x_0) = 0$.

3.2. Théorème de Rolle

Théorème 3 (Théorème de Rolle).

Soit $f : [a, b] \rightarrow \mathbb{R}$ *telle que*

- f est continue sur [a, b],
- f est dérivable sur]a, b[,

Alors il existe $c \in]a, b[$ tel que f'(c) = 0.

Interprétation géométrique : il existe au moins un point du graphe de f où la tangente est horizontale.

Démonstration. Tout d'abord, si f est constante sur [a,b] alors n'importe quel $c \in]a,b[$ convient. Sinon il existe $x_0 \in [a, b]$ tel que $f(x_0) \neq f(a)$. Supposons par exemple $f(x_0) > f(a)$. Alors f est continue sur l'intervalle fermé et borné [a, b], donc elle admet un maximum en un point $c \in [a, b]$. Mais $f(c) \ge f(x_0) > f(a)$ donc $c \ne a$. De même comme f(a) = f(b) alors $c \neq b$. Ainsi $c \in]a, b[$. En c, f est donc dérivable et admet un maximum (local) donc f'(c) = 0.

Exemple 8.

Soit $P(X) = (X - \alpha_1)(X - \alpha_2) \cdots (X - \alpha_n)$ un polynôme ayant n racines réelles différentes : $\alpha_1 < \alpha_2 < \cdots < \alpha_n$.

1. Montrons que P' a n-1 racines distinctes.

On considère P comme une fonction polynomiale $x \mapsto P(x)$. P est une fonction continue et dérivable sur \mathbb{R} . Comme $P(\alpha_1) = 0 = P(\alpha_2)$ alors par le théorème de Rolle il existe $c_1 \in]\alpha_1, \alpha_2[$ tel que $P'(c_1) = 0$. Plus généralement, pour $1 \le k \le n-1$, comme $P(\alpha_k) = 0 = P(\alpha_{k+1})$ alors le théorème de Rolle implique l'existence de $c_k \in]\alpha_k, \alpha_{k+1}[$ tel que $P'(c_k) = 0$. Nous avons bien trouvé n-1 racines de $P': c_1 < c_2 < \cdots < c_{n-1}$. Comme P' est un polynôme de degré n-1, toutes ses racines sont réelles et distinctes.

2. Montrons que P + P' a n - 1 racines distinctes.

L'astuce consiste à considérer la fonction auxiliaire $f(x) = P(x) \exp x$. f est une fonction continue et dérivable sur \mathbb{R} . f s'annule comme P en $\alpha_1, \ldots, \alpha_n$. La dérivée de f est $f'(x) = (P(x) + P'(x)) \exp x$. Donc par le théorème de Rolle, pour chaque $1 \le k \le n-1$, comme $f(\alpha_k) = 0 = f(\alpha_{k+1})$ alors il existe $\gamma_k \in]\alpha_k, \alpha_{k+1}[$ tel que $f'(\gamma_k) = 0$. Mais comme la fonction exponentielle ne s'annule jamais alors $(P + P')(\gamma_k) = 0$. Nous avons bien trouvé n-1 racines distinctes de $P + P' : \gamma_1 < \gamma_2 < \cdots < \gamma_{n-1}$.

3. Déduisons-en que P + P' a toutes ses racines réelles.

P+P' est un polynôme à coefficients réels qui admet n-1 racines réelles. Donc $(P+P')(X)=(X-\gamma_1)\cdots(X-\gamma_{n-1})Q(X)$ où $Q(x)=X-\gamma_n$ est un polynôme de degré 1. Comme P+P' est à coefficients réels et que les γ_i sont aussi réels, ainsi $\gamma_n \in \mathbb{R}$. Ainsi on a obtenu une n-ème racine réelle γ_n (pas nécessairement distincte des autres γ_i).

Mini-exercices.

- 1. Dessiner le graphe de fonctions vérifiant : f_1 admet deux minimums locaux et un maximum local ; f_2 admet un minimum local qui n'est pas global et un maximum local qui est global ; f_3 admet une infinité d'extremums locaux ; f_4 n'admet aucun extremum local.
- 2. Calculer en quel point la fonction $f(x) = ax^2 + bx + c$ admet un extremum local.
- 3. Soit $f:[0,2] \to \mathbb{R}$ une fonction deux fois dérivable telle que f(0) = f(1) = f(2) = 0. Montrer qu'il existe c_1, c_2 tels que $f'(c_1) = 0$ et $f'(c_2) = 0$. Montrer qu'il existe c_3 tel que $f''(c_3) = 0$.
- 4. Montrer que chacune des trois hypothèses du théorème de Rolle est nécessaire.

4. Théorème des accroissements finis

4.1. Théorème des accroissements finis

Théorème 4 (Théorème des accroissements finis).

Soit $f:[a,b] \to \mathbb{R}$ une fonction continue sur [a,b] et dérivable sur]a,b[. Il existe $c \in]a,b[$ tel que

$$f(b)-f(a) = f'(c)(b-a)$$

Interprétation géométrique : il existe au moins un point du graphe de f où la tangente est parallèle à la droite (AB) où A = (a, f(a)) et B = (b, f(b)).

Démonstration. Posons $\ell = \frac{f(b)-f(a)}{b-a}$ et $g(x) = f(x) - \ell \cdot (x-a)$. Alors g(a) = f(a), $g(b) = f(b) - \frac{f(b)-f(a)}{b-a} \cdot (b-a) = f(a)$. Par le théorème de Rolle, il existe $c \in]a,b[$ tel que g'(c) = 0. Or $g'(x) = f'(x) - \ell$. Ce qui donne $f'(c) = \frac{f(b)-f(a)}{b-a}$.

4.2. Fonction croissante et dérivée

Corollaire 2.

Soit $f:[a,b] \to \mathbb{R}$ *une fonction continue sur* [a,b] *et dérivable sur* [a,b].

- 1. $\forall x \in]a, b[$ $f'(x) \geqslant 0 \iff f \text{ est croissante};$ 2. $\forall x \in]a, b[$ $f'(x) \leqslant 0 \iff f \text{ est décroissante};$ 3. $\forall x \in]a, b[$ $f'(x) = 0 \iff f \text{ est constante};$ 4. $\forall x \in]a, b[$ $f'(x) > 0 \implies f \text{ est strictement croissante};$
- \implies f est strictement décroissante.

Remarque.

La réciproque au point (4) (et aussi au (5)) est fausse. Par exemple la fonction $x \mapsto x^3$ est strictement croissante et pourtant sa dérivée s'annule en 0.

Démonstration. Prouvons par exemple (1).

Sens \implies . Supposons d'abord la dérivée positive. Soient $x, y \in]a, b[$ avec $x \leq y$. Alors par le théorème des accroissements finis, il existe $c \in]x,y[$ tel que f(x)-f(y)=f'(c)(x-y). Mais $f'(c) \ge 0$ et $x-y \le 0$ donc $f(x) - f(y) \le 0$. Cela implique que $f(x) \le f(y)$. Ceci étant vrai pour tout x, y alors f est croissante.

Sens \Leftarrow . Réciproquement, supposons que f est croissante. Fixons $x \in]a, b[$. Pour tout y > x nous avons y - x > 0et $f(y)-f(x) \ge 0$, ainsi le taux d'accroissement vérifie $\frac{f(y)-f(x)}{y-x} \ge 0$. À la limite, quand $y \to x$, ce taux d'accroissement tend vers la dérivée de f en x et donc $f'(x) \ge 0$.

4.3. Inégalité des accroissements finis

Corollaire 3 (Inégalité des accroissements finis).

Soit $f:I\to\mathbb{R}$ une fonction dérivable sur un intervalle I ouvert. S'il existe une constante M telle que pour tout $x\in I$, $|f'(x)| \leq M$ alors

$$\forall x, y \in I \quad |f(x) - f(y)| \leq M|x - y|$$

Démonstration. Fixons $x, y \in I$, il existe alors $c \in]x, y[$ ou]y, x[tel que f(x) - f(y) = f'(c)(x - y) et comme $|f'(c)| \le M \text{ alors } |f(x) - f(y)| \le M|x - y|.$

Exemple 9.

Soit $f(x) = \sin(x)$. Comme $f'(x) = \cos x$ alors $|f'(x)| \le 1$ pour tout $x \in \mathbb{R}$. L'inégalité des accroissements finis s'écrit alors:

pour tout
$$x, y \in \mathbb{R}$$
 $|\sin x - \sin y| \le |x - y|$.

En particulier si l'on fixe y = 0 alors on obtient

$$|\sin x| \leqslant |x|$$

ce qui est particulièrement intéressant pour x proche de 0.

4.4. Règle de l'Hospital

Corollaire 4 (Règle de l'Hospital).

Soient $f, g: I \to \mathbb{R}$ deux fonctions dérivables et soit $x_0 \in I$. On suppose que

- $f(x_0) = g(x_0) = 0$, $\forall x \in I \setminus \{x_0\}$ $g'(x) \neq 0$.

Si
$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = \ell$$
 $(\in \mathbb{R})$ alors $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \ell$.

Démonstration. Fixons $a \in I \setminus \{x_0\}$ avec par exemple $a < x_0$. Soit $h : I \to \mathbb{R}$ définie par h(x) = g(a)f(x) - f(a)g(x). Alors

- h est continue sur $[a, x_0] \subset I$,
- h est dérivable sur a, x_0 ,
- $h(x_0) = h(a) = 0$.

Donc par le théorème de Rolle il existe $c_a \in]a, x_0[$ tel que $h'(c_a) = 0$. Or h'(x) = g(a)f'(x) - f(a)g'(x) donc $g(a)f'(c_a) - f(a)g'(c_a) = 0$. Comme g' ne s'annule pas sur $I \setminus \{x_0\}$ cela conduit à $\frac{f(a)}{g(a)} = \frac{f'(c_a)}{g'(c_a)}$. Comme $a < c_a < x_0$ lorsque l'on fait tendre a vers x_0 on obtient $c_a \to x_0$. Cela implique

$$\lim_{a \to x_0} \frac{f(a)}{g(a)} = \lim_{a \to x_0} \frac{f'(c_a)}{g'(c_a)} = \lim_{c_a \to x_0} \frac{f'(c_a)}{g'(c_a)} = \ell.$$

Exemple 10.

Calculer la limite en 1 de $\frac{\ln(x^2+x-1)}{\ln(x)}$. On vérifie que : • $f(x) = \ln(x^2+x-1)$, f(1) = 0, $f'(x) = \frac{2x+1}{x^2+x-1}$,

- $g(x) = \ln(x)$, g(1) = 0, $g'(x) = \frac{1}{x}$,
- Prenons I =]0, 1], $x_0 = 1$, alors g' ne s'annule pas sur $I \setminus \{x_0\}$.

$$\frac{f'(x)}{g'(x)} = \frac{2x+1}{x^2+x-1} \times x = \frac{2x^2+x}{x^2+x-1} \xrightarrow[x \to 1]{} 3.$$

Donc

$$\frac{f(x)}{g(x)} \xrightarrow[x \to 1]{} 3.$$

- 1. Soit $f(x) = \frac{x^3}{3} + \frac{x^2}{2} 2x + 2$. Étudier la fonction f. Tracer son graphe. Montrer que f admet un minimum local
- 2. Soit $f(x) = \sqrt{x}$. Appliquer le théorème des accroissements finis sur l'intervalle [100, 101]. En déduire l'encadrement $10 + \frac{1}{22} \leqslant \sqrt{101} \leqslant 10 + \frac{1}{20}$.
- 3. Appliquer le théorème des accroissements finis pour montrer que $\ln(1+x) \ln(x) < \frac{1}{x}$ (pour tout x > 0).

- 4. Soit f(x) = e^x. Que donne l'inégalité des accroissements finis sur [0, x]?
 5. Appliquer la règle de l'Hospital pour calculer les limites suivantes (quand x → 0) : x/((1+x)ⁿ-1); ln(x+1)/√x; 1-cos x/tan x; x-sin x/x³.

Fonctions dérivables

1 Calculs

Exercice 1

Déterminer $a, b \in \mathbb{R}$ de manière à ce que la fonction f définie sur \mathbb{R}_+ par :

$$f(x) = \sqrt{x}$$
 si $0 \le x \le 1$ et $f(x) = ax^2 + bx + 1$ si $x > 1$

soit dérivable sur \mathbb{R}_+^* .

Indication ▼ Correction ▼ Vidéo ■ [000699]

Exercice 2

Soit $f: \mathbb{R}^* \longrightarrow \mathbb{R}$ définie par $f(x) = x^2 \sin \frac{1}{x}$. Montrer que f est prolongeable par continuité en 0; on note encore f la fonction prolongée. Montrer que f est dérivable sur \mathbb{R} mais que f' n'est pas continue en 0.

Indication ▼ Correction ▼ Vidéo ■ [000700]

Exercice 3

Étudier la dérivabilité des fonctions suivantes :

$$f_1(x) = x^2 \cos \frac{1}{x}$$
, si $x \neq 0$; $f_1(0) = 0$;

$$f_2(x) = \sin x \cdot \sin \frac{1}{x}$$
, si $x \neq 0$; $f_2(0) = 0$;

$$f_3(x) = \frac{|x|\sqrt{x^2 - 2x + 1}}{x - 1}$$
, si $x \neq 1$; $f_3(1) = 1$.

Indication ▼ Correction ▼ Vidéo ■ [000698]

Exercice 4

Soit $n \ge 2$ un entier fixé et $f : \mathbb{R}^+ = [0, +\infty[\longrightarrow \mathbb{R}]$ la fonction définie par la formule suivante :

$$f(x) = \frac{1+x^n}{(1+x)^n}, \ x \geqslant 0.$$

- 1. (a) Montrer que f est dérivable sur \mathbb{R}^+ et calculer f'(x) pour $x \ge 0$.
 - (b) En étudiant le signe de f'(x) sur \mathbb{R}^+ , montrer que f atteint un minimum sur \mathbb{R}^+ que l'on déterminera.
- 2. (a) En déduire l'inégalité suivante :

$$(1+x)^n \le 2^{n-1}(1+x^n), \ \forall x \in \mathbb{R}^+.$$

(b) Montrer que si $x \in \mathbb{R}^+$ et $y \in \mathbb{R}^+$ alors on a

$$(x+y)^n \le 2^{n-1}(x^n+y^n).$$

Correction ▼ Vidéo ■ [000739]

2 Théorème de Rolle et accroissements finis

Exercice 5

Montrer que le polynôme $X^n + aX + b$, (a et b réels) admet au plus trois racines réelles.

Indication ▼

Correction ▼

Vidéo

[000717]

Exercice 6

Montrer que le polynôme P_n défini par

$$P_n(t) = \left[\left(1 - t^2 \right)^n \right]^{(n)}$$

est un polynôme de degré n dont les racines sont réelles, simples, et appartiennent à [-1,1].

Indication ▼

Correction ▼

Vidéo

[000715]

Exercice 7

Dans l'application du théorème des accroissements finis à la fonction

$$f(x) = \alpha x^2 + \beta x + \gamma$$

sur l'intervalle [a,b] préciser le nombre "c" de [a,b]. Donner une interprétation géométrique.

Correction ▼

Vidéo 📕

[000721]

Exercice 8

Soient x et y réels avec 0 < x < y.

1. Montrer que

$$x < \frac{y - x}{\ln y - \ln x} < y.$$

2. On considère la fonction f définie sur [0,1] par

$$\alpha \mapsto f(\alpha) = \ln(\alpha x + (1 - \alpha)y) - \alpha \ln x - (1 - \alpha) \ln y.$$

De l'étude de f déduire que pour tout α de]0,1[

$$\alpha \ln x + (1 - \alpha) \ln y < \ln(\alpha x + (1 - \alpha)y).$$

Interprétation géométrique?

Indication ▼

Correction ▼

Vidéo

[000724]

3 Divers

Exercice 9

Déterminer les extremums de $f(x) = x^4 - x^3 + 1$ sur \mathbb{R} .

Correction ▼

Vidéo

[000733]

Exercice 10

Soient $f,g:[a,b] \longrightarrow \mathbb{R}$ deux fonctions continues sur [a,b] (a < b) et dérivables sur]a,b[. On suppose que $g'(x) \neq 0$ pour tout $x \in]a,b[$.

- 1. Montrer que $g(x) \neq g(a)$ pour tout $x \in]a,b[$.
- 2. Posons $p = \frac{f(b) f(a)}{g(b) g(a)}$ et considérons la fonction h(x) = f(x) pg(x) pour $x \in [a,b]$. Montrer que h vérifie les hypothèses du théorème de Rolle et en déduire qu'il existe un nombre réel $c \in]a,b[$ tel que

$$\frac{f(a)-f(b)}{g(a)-g(b)} = \frac{f'(c)}{g'(c)}.$$

3. On suppose que $\lim_{x\to b^-} \frac{f'(x)}{g'(x)} = \ell$, où ℓ est un nombre réel. Montrer que

$$\lim_{x \to b^-} \frac{f(x) - f(b)}{g(x) - g(b)} = \ell.$$

4. Application. Calculer la limite suivante :

$$\lim_{x \to 1^{-}} \frac{\arccos x}{\sqrt{1 - x^2}}.$$

Indication ▼

Correction ▼

Vidéo 📕

[000738]

Exercice 11

On considère la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par

$$f(t) = \begin{cases} e^{1/t} & \text{si } t < 0\\ 0 & \text{si } t \geqslant 0 \end{cases}$$

- 1. Démontrer que f est dérivable sur \mathbb{R} , en particulier en t = 0.
- 2. Etudier l'existence de f''(0).
- 3. On veut montrer que pour t < 0, la dérivée n-ième de f s'écrit

$$f^{(n)}(t) = \frac{P_n(t)}{t^{2n}}e^{1/t}$$

où P_n est un polynôme.

- (a) Trouver P_1 et P_2 .
- (b) Trouver une relation de récurrence entre P_{n+1}, P_n et P'_n pour $n \in \mathbb{N}^*$.
- 4. Montrer que f est de classe C^{∞} .

 $\texttt{Correction} \; \blacktriangledown$

Vidéo 📕

[000740]

Indication pour l'exercice 1 ▲

Vous avez deux conditions : il faut que la fonction soit continue (car on veut qu'elle soit dérivable donc elle doit être continue) et ensuite la condition de dérivabilité proprement dite.

Indication pour l'exercice 2 ▲

f est continue en 0 en la prolongeant par f(0) = 0. f est alors dérivable en 0 et f'(0) = 0.

Indication pour l'exercice 3 ▲

Les problèmes sont seulement en 0 ou 1. f_1 est dérivable en 0 mais pas f_2 . f_3 n'est dérivable ni en 0, ni en 1.

Indication pour l'exercice 5 ▲

On peut appliquer le théorème de Rolle plusieurs fois.

Indication pour l'exercice 6 ▲

Il faut appliquer le théorème de Rolle une fois au polynôme $(1-t^2)^n$, puis deux fois à sa dérivée première, puis trois fois à sa dérivée seconde,...

Indication pour l'exercice 8 ▲

- 1. Utiliser le théorème des accroissements finis avec la fonction $t \mapsto \ln t$
- 2. Montrer d'abord que f'' est négative. Se servir du théorème des valeurs intermédiaires pour f'.

Indication pour l'exercice 10 ▲

- 1. Raisonner par l'absurde et appliquer le théorème de Rolle.
- 2. Calculer h(a) et h(b).
- 3. Appliquer la question 2. sur l'intervalle [x, b].
- 4. Calculer f' et g'.

La fonction f est continue et dérivable sur]0,1[et sur $]1,+\infty[$. Le seul problème est en x=1.

Il faut d'abord que la fonction soit continue en x=1. La limite à gauche est $\lim_{x\to 1^-} \sqrt{x} = +1$ et à droite $\lim_{x\to 1^+} ax^2 + bx + 1 = a + b + 1$. Donc a+b+1=1. Autrement dit b=-a.

Il faut maintenant que les dérivées à droite et à gauche soient égales. Comme la fonction f restreinte à]0,1] est définie par $x\mapsto \sqrt{x}$ alors elle est dérivable à gauche et la dérivée à gauche s'obtient en évaluant la fonction dérivée $x\mapsto \frac{1}{2\sqrt{x}}$ en x=1. Donc $f'_g(1)=\frac{1}{2}$.

Pour la dérivée à droite il s'agit de calculer la limite du taux d'accroissement $\frac{f(x)-f(1)}{x-1}$, lorsque $x \to 1$ avec x > 1. Or

$$\frac{f(x) - f(1)}{x - 1} = \frac{ax^2 + bx + 1 - 1}{x - 1} = \frac{ax^2 - ax}{x - 1} = \frac{ax(x - 1)}{x - 1} = ax.$$

Donc f est dérivable à droite et $f'_d(1) = a$. Afin que f soit dérivable, il faut et il suffit que les dérivées à droite et à gauche existent et soient égales, donc ici la condition est $a = \frac{1}{2}$.

Le seul couple (a,b) que rend f dérivable sur $]0,+\infty[$ est $(a=\frac{1}{2},\stackrel{\frown}{b}=-\frac{1}{2}).$

Correction de l'exercice 2

f est C^{∞} sur \mathbb{R}^* .

- 1. Comme $|\sin(1/x)| \le 1$ alors f tend vers 0 quand $x \to 0$. Donc en prolongeant f par f(0) = 0, la fonction f prolongée est continue sur \mathbb{R} .
- 2. Le taux d'accroissement est

$$\frac{f(x) - f(0)}{x - 0} = x \sin \frac{1}{x}.$$

Comme ci-dessus il y a une limite (qui vaut 0) en x = 0. Donc f est dérivable en 0 et f'(0) = 0.

3. Sur \mathbb{R}^* , $f'(x) = 2x\sin(1/x) - \cos(1/x)$, Donc f'(x) n'a pas de limite quand $x \to 0$. Donc f' n'est pas continue en 0.

Correction de l'exercice 3

1. La fonction f_1 est dérivable en dehors de x = 0. En effet $x \mapsto \frac{1}{x}$ est dérivable sur \mathbb{R}^* et $x \mapsto \cos x$ est dérivable sur \mathbb{R} , donc par composition $x \mapsto \cos \frac{1}{x}$ est dérivable sur \mathbb{R}^* . Puis par multiplication par la fonction dérivable $x \mapsto x^2$, la fonction f_1 est dérivable sur \mathbb{R}^* . Par la suite on omet souvent ce genre de discussion ou on l'abrège sous la forme "f est dérivable sur I comme somme, produit, composition de fonctions dérivables sur I".

Pour savoir si f_1 est dérivable en 0 regardons le taux d'accroissement :

$$\frac{f_1(x) - f_1(0)}{x - 0} = x \cos \frac{1}{x}.$$

Mais $x\cos(1/x)$ tend vers 0 (si $x \to 0$) car $|\cos(1/x)| \le 1$. Donc le taux d'accroissement tend vers 0. Donc f_1 est dérivable en 0 et $f_1'(0) = 0$.

2. Encore une fois f_2 est dérivable en dehors de 0. Le taux d'accroissement en x = 0 est :

$$\frac{f_2(x) - f_2(0)}{x - 0} = \frac{\sin x}{x} \sin \frac{1}{x}$$

Nous savons que $\frac{\sin x}{x} \to 1$ et que $\sin 1/x$ n'a pas de limite quand $x \to 0$. Donc le taux d'accroissement n'a pas de limite, donc f_2 n'est pas dérivable en 0.

3. La fonction f_3 s'écrit :

$$f_3(x) = \frac{|x||x-1|}{x-1}.$$

— Donc pour $x \ge 1$ on a $f_3(x) = x$; pour $0 \le x < 1$ on a $f_3(x) = -x$; pour x < 0 on a $f_3(x) = x$.

5

— La fonction f_3 est définie, continue et dérivable sur $\mathbb{R} \setminus \{0,1\}$. Attention! La fonction $x \mapsto |x|$ n'est pas dérivable en 0.

- La fonction f_3 n'est pas continue en 1, en effet $\lim_{x\to 1+} f_3(x) = +1$ et $\lim_{x\to 1-} f_3(x) = -1$. Donc la fonction n'est pas dérivable en 1.
- La fonction f_3 est continue en 0. Le taux d'accroissement pour x > 0 est

$$\frac{f_3(x) - f_3(0)}{x - 0} = \frac{-x}{x} = -1$$

et pour x < 0,

$$\frac{f_3(x) - f_3(0)}{x - 0} = \frac{x}{x} = +1.$$

Donc le taux d'accroissement n'a pas de limite en 0 et donc f_3 n'est pas dérivable en 0.

Correction de l'exercice 4 A

1. (a) Il est clair que la fonction f est dérivable sur \mathbb{R}^+ puisque c'est une fonction rationnelle sans pôle dans cet intervalle. De plus d'après la formule de la dérivée d'un quotient, on obtient pour $x \ge 0$:

$$f'(x) = \frac{n(x^{n-1} - 1)}{(1+x)^{n+1}}.$$

- (b) Par l'expression précédente f'(x) est du signe de $x^{n-1}-1$ sur \mathbb{R}^+ . Par conséquent on obtient : $f'(x) \le 0$ pour $0 \le x \le 1$ et $f'(x) \ge 0$ pour $x \ge 1$. Il en résulte que f est décroissante sur [0,1] et croissante sur $[1,+\infty[$ et par suite f atteint son minimum sur \mathbb{R}^+ au point 1 et ce minimum vaut $f(1)=2^{1-n}$.
- 2. (a) Il résulte de la question 1.b que $f(x) \ge f(1)$ pour tout $x \in \mathbb{R}^+$ et donc

$$(1+x)^n \le 2^{n-1}(1+x^n).$$

(b) En appliquant l'inégalité précédente avec x = b/a, on en déduit immédiatement l'inégalité requise (le cas du couple (0,0) étant trivial).

Correction de l'exercice 5

- 1. Par l'absurde on suppose qu'il y a (au moins) quatre racines distinctes pour $P_n(X) = X^n + aX + b$. Notons les $x_1 < x_2 < x_3 < x_4$. Par le théorème de Rolle appliqué trois fois (entre x_1 et x_2 , entre x_2 et x_3 ,...) il existe $x_1' < x_2' < x_3'$ des racines de P_n' . On applique deux fois le théorème Rolle entre x_1' et x_2' et entre x_2' et x_3' . On obtient deux racines distinctes pour P_n'' . Or $P_n'' = n(n-1)X^{n-2}$ ne peut avoir que 0 comme racines. Donc nous avons obtenu une contradiction.
- 2. Autre méthode : Le résultat est évident si $n \le 3$. On suppose donc $n \ge 3$. Soit P_n l'application $X \mapsto X^n + aX + b$ de \mathbb{R} dans lui-même. Alors $P_n'(X) = nX^{n-1} + a$ s'annule en au plus deux valeurs. Donc P_n est successivement croissante-décroissante-croissante ou bien décroissante-croissante-décroissante. Et donc P_n s'annule au plus trois fois.

Correction de l'exercice 6 ▲

 $Q_n(t)=(1-t^2)^n$ est un polynôme de degré 2n, on le dérive n fois, on obtient un polynôme de degré n. Les valeurs -1 et +1 sont des racines d'ordre n de Q_n , donc $Q_n(1)=Q_n'(1)=\ldots=Q_n^{(n-1)}(1)=0$. Même chose en -1. Enfin Q(-1)=0=Q(+1) donc d'après le théorème de Rolle il existe $c\in]-1,1[$ telle que $Q_n'(c)=0$. Donc $Q_n'(-1)=0$, $Q_n'(c)=0$, $Q_n'(-1)=0$. En appliquant le théorème de Rolle deux fois (sur [-1,c] et sur [c,+1]), on obtient l'existence de racines d_1,d_2 pour Q_n'' , qui s'ajoutent aux racines -1 et +1. On continue ainsi par récurrence. On obtient pour $Q_n^{(n-1)}$, n+1 racines $:-1,e_1,\ldots,e_{n-1},+1$. Nous appliquons

On continue ainsi par récurrence. On obtient pour $Q_n^{(n-1)}$, n+1 racines : $-1, e_1, \ldots, e_{n-1}, +1$. Nous appliquons le théorème de Rolle n fois. Nous obtenons n racines pour $P_n = Q_n^{(n)}$. Comme un polynôme de degré n a au plus n racines, nous avons obtenu toutes les racines. Par constructions ces racines sont réelles distinctes, donc simples.

La fonction f est continue et dérivable sur \mathbb{R} donc en particulier sur [a,b]. Le théorème des accroissement finis assure l'existence d'un nombre $c \in]a,b[$ tel que f(b)-f(a)=f'(c)(b-a).

Mais pour la fonction particulière de cet exercice nous pouvons expliciter ce c. En effet f(b)-f(a)=f'(c)(b-a) implique $\alpha(b^2-a^2)+\beta(b-a)=(2\alpha c+\beta)(b-a)$. Donc $c=\frac{a+b}{2}$.

Géométriquement, le graphe \mathscr{P} de f est une parabole. Si l'on prend deux points A=(a,f(a)) et B=(b,f(b)) appartenant à cette parabole, alors la droite (AB) est parallèle à la tangente en \mathscr{P} qui passe en $M=(\frac{a+b}{2},f(\frac{a+b}{2}))$. L'abscisse de M étant le milieu des abscisses de A et B.

Correction de l'exercice 8 A

- 1. Soit $g(t) = \ln t$. Appliquons le théorème des accroissements finis sur [x,y]. Il existe $c \in]x,y[,g(y)-g(x)=g'(c)(y-x)$. Soit $\ln y \ln x = \frac{1}{c}(y-x)$. Donc $\frac{\ln y \ln x}{y-x} = \frac{1}{c}$. Or x < c < y donc $\frac{1}{y} < \frac{1}{c} < \frac{1}{x}$. Ce qui donne les inégalités recherchées.
- 2. $f'(\alpha) = \frac{x-y}{\alpha x + (1-\alpha)y} \ln x + \ln y$. Et $f''(\alpha) = -\frac{(x-y)^2}{(\alpha x + (1-\alpha)y)^2}$. Comme f'' est négative alors f' est décroissante sur [0,1]. Or $f'(0) = \frac{x-y-y(\ln x \ln y)}{y} > 0$ d'après la première question et de même f'(1) < 0. Par le théorème des valeurs intermédiaires, il existe $c \in [x,y]$ tel que f'(c) = 0. Maintenant f' est positive sur [0,c] et négative sur [c,1]. Donc f est croissante sur [0,c] et décroissante sur [c,1]. Or f(0) = 0 et f(1) = 0 donc pour tout $x \in [0,1]$, $f(x) \geqslant 0$. Cela prouve l'inégalité demandée.
- 3. Géométriquement nous avons prouvé que la fonction ln est concave, c'est-à-dire que la corde (le segment qui va de (x, f(x)) à (y, f(y)) est sous la courbe d'équation y = f(x).

Correction de l'exercice 9 ▲

 $f'(x) = 4x^3 - 3x^2 = x^2(4x - 3)$ donc les extremums appartiennent à $\{0, \frac{3}{4}\}$. Comme $f''(x) = 12x^2 - 6x = 6x(2x - 1)$. Alors f'' ne s'annule pas en $\frac{3}{4}$, donc $\frac{3}{4}$ donne un extremum local (qui est même un minimum global). Par contre f''(0) = 0 et $f'''(0) \neq 0$ donc 0 est un point d'inflexion qui n'est pas un extremum (même pas local, pensez à un fonction du type $x \mapsto x^3$).

Correction de l'exercice 10 ▲

Le théorème de Rolle dit que si $h:[a,b] \longrightarrow \mathbb{R}$ est une fonction continue sur l'intervalle fermé [a,b] et dérivable sur l'ouvert]a,b[alors il existe $c \in]a,b[$ tel que h'(c)=0.

- 1. Supposons par l'absurde, qu'il existe $x_0 \in]a,b]$ tel que $g(x_0) = g(a)$. Alors en appliquant le théorème de Rolle à la restriction de g à l'intervalle $[a,x_0]$ (les hypothèses étant clairement vérifiées), on en déduit qu'il existe $c \in]a,x_0[$ tel que g'(c) = 0, ce qui contredit les hypothèses faites sur g. Par conséquent on a démontré que $g(x) \neq g(a)$ pour tout $x \in]a,b]$.
- 2. D'après la question précédente, on a en particulier $g(b) \neq g(a)$ et donc p est un nombre réel bien défini et $h = f p \cdot g$ est alors une fonction continue sur [a,b] et dérivable sur]a,b[. Un calcul simple montre que h(a) = h(b). D'après le théorème de Rolle il en résulte qu'il existe $c \in]a,b[$ tel que h'(c) = 0. Ce qui implique la relation requise.
- 3. Pour chaque $x \in]a,b[$, on peut appliquer la question 2. aux restrictions de f et g à l'intervalle [x,b], on en déduit qu'il existe un point $c(x) \in]x,b[$, dépendant de x tel que

(*)
$$\frac{f(x) - f(b)}{g(x) - g(b)} = \frac{f'(c(x))}{g'(c(x))}.$$

Alors, comme $\lim_{x\to b^-} \frac{f'(t)}{g'(t)} = \ell$ et $\lim_{x\to b^-} c(x) = b$, $(\operatorname{car} c(x) \in]x, b[)$ on en déduit en passant à la limite dans (*) que

$$\lim_{x \to b^{-}} \frac{f(x) - f(b)}{g(x) - g(b)} = \ell.$$

Ce résultat est connu sous le nom de "règle de l'Hôpital".

4. Considérons les deux fonctions $f(x) = \arccos x$ et $g(x) = \sqrt{1-x^2}$ pour $x \in [0,1]$. Ces fonctions sont continues sur [0,1] et dérivables sur [0,1[et $f'(x) = -1/\sqrt{1-x^2}$, $g'(x) = -x/\sqrt{1-x^2} \neq 0$ pour tout $x \in [0,1[$. En appliquant les résultats de la question 3., on en déduit que

$$\lim_{x \to 1^{-}} \frac{\arccos x}{\sqrt{1 - x^{2}}} = \lim_{x \to 1^{-}} \frac{\frac{-1}{\sqrt{1 - x^{2}}}}{\frac{-x}{\sqrt{1 - x^{2}}}} = \lim_{x \to 1^{-}} \frac{1}{x} = 1.$$

Correction de l'exercice 11 ▲

1. f est dérivable sur \mathbb{R}_{-}^{*} en tant que composée de fonctions dérivables, et sur \mathbb{R}_{+}^{*} car elle est nulle sur cet intervalle; étudions donc la dérivabilité en 0.

On a

$$\frac{f(t) - f(0)}{t} = \begin{cases} e^{1/t}/t & \text{si } t < 0\\ 0 & \text{si } t > 0 \end{cases}$$

or $e^{1/t}/t$ tend vers 0 quand t tend vers 0 par valeurs négatives. Donc f est dérivable à gauche et à droite en 0 et ces dérivées sont identiques, donc f est dérivable et f'(0) = 0.

2. On a

$$f'(t) = \begin{cases} -e^{1/t}/t^2 & \text{si } t < 0\\ 0 & \text{si } t \geqslant 0 \end{cases}$$

donc le taux d'accroissement de f' au voisinage de 0 est

$$\frac{f'(t) - f'(0)}{t} = \begin{cases} -e^{1/t}/t^3 & \text{si } t < 0\\ 0 & \text{si } t > 0 \end{cases}$$

et il tend vers 0 quand t tend vers 0 par valeurs supérieures comme inférieures. Donc f admet une dérivée seconde en 0, et f''(0) = 0.

- 3. (a) On a déjà trouvé que $f'(t) = -e^{1/t}/t^2$, donc $f'(t) = P_1(t)/t^2e^{1/t}$ si on pose $P_1(t) = -1$. Par ailleurs, $f''(t) = e^{1/t}/t^4 + e^{1/t}(2/t^3) = \frac{1+2t}{t^4}e^{1/t}$ donc la formule est vraie pour n = 2 en posant $P_2(t) = 1 + 2t$.
 - (b) Supposons que la formule est vraie au rang n. Alors $f^{(n)}(t) = \frac{P_n(t)}{t^{2n}} e^{1/t}$ d'où

$$f^{(n+1)}(t) = \frac{P'_n(t)t^{2n} - P_n(t)(2n)t^{2n-1}}{t^{4n}}e^{1/t} + \frac{P_n(t)}{t^{2n}}e^{1/t}(-1/t^2)$$
$$= \frac{P'_n(t)t^2 - (2nt+1)P_n(t)}{t^{2(n+1)}}e^{1/t}$$

donc la formule est vraie au rang n+1 avec

$$P_{n+1}(t) = P'_n(t)t^2 - (2nt+1)P_n(t).$$

4. Sur \mathbb{R}_{+}^{*} et sur \mathbb{R}_{+}^{*} , f est indéfiniment dérivable, donc il suffit d'étudier ce qui se passe en 0. Montrons par récurrence que f est indéfiniment dérivable en 0, et que pour tout $n \in \mathbb{N}$, $f^{(n)}(0) = 0$. On sait que c'est vrai au rang 1. Supposons que f est n-fois dérivable, et que $f^{(n)}(0) = 0$. Alors le taux d'accroissement de $f^{(n)}$ en 0 est :

$$\frac{f^{(n)}(t) - f^{(n)}(0)}{t} = \begin{cases} P_n(t)e^{1/t}/t^{2n+1} & \text{si } t < 0\\ 0 & \text{si } t > 0 \end{cases}$$

et sa limite est 0 quand t tend vers 0 par valeurs supérieures comme inférieures. Donc $f^{(n)}$ est dérivable en 0, et $f^{(n+1)}(0) = 0$. Donc l'hypothèse de récurrence est vérifiée au rang n+1.

Par conséquent, f est de classe C^{∞} .

Fonctions usuelles

```
Vidéo ■ partie 1. Logarithme et exponentielle
Vidéo ■ partie 2. Fonctions circulaires inverses
Vidéo ■ partie 3. Fonctions hyperboliques et hyperboliques inverses
Fiche d'exercices ♦ Fonctions circulaires et hyperboliques inverses
```

Vous connaissez déjà des fonctions classiques : exp, ln, cos, sin, tan. Dans ce chapitre il s'agit d'ajouter à notre catalogue de nouvelles fonctions : ch, sh, th, arccos, arcsin, arctan, Argch, Argsh, Argth.

Ces fonctions apparaissent naturellement dans la résolution de problèmes simples, en particulier issus de la physique. Par exemple lorsqu'un fil est suspendu entre deux poteaux (ou un collier tenu entre deux mains) alors la courbe dessinée est une *chaînette* dont l'équation fait intervenir le cosinus hyperbolique et un paramètre a (qui dépend de la longueur du fil et de l'écartement des poteaux) :

1. Logarithme et exponentielle

1.1. Logarithme

Proposition 1.

Il existe une unique fonction, notée $\ln :]0, +\infty[\to \mathbb{R}$ *telle que :*

$$\ln'(x) = \frac{1}{x}$$
 (pour tout $x > 0$) et $\ln(1) = 0$.

De plus cette fonction vérifie (pour tout a, b > 0):

- 1. $\ln(a \times b) = \ln a + \ln b$,
- 2. $\ln(\frac{1}{a}) = -\ln a$,
- 3. $\ln(a^n) = n \ln a$, (pour tout $n \in \mathbb{N}$)
- 4. In est une fonction continue, strictement croissante et définit une bijection de $]0,+\infty[$ sur $\mathbb{R},$
- 5. $\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$
- 6. la fonction ln est concave et $\ln x \le x 1$ (pour tout x > 0).

Remarque.

 $\ln x$ s'appelle le *logarithme naturel* ou aussi *logarithme néperien*. Il est caractérisé par $\ln(e) = 1$. On définit le *logarithme en base a* par

$$\log_a(x) = \frac{\ln(x)}{\ln(a)}$$

De sorte que $\log_a(a) = 1$.

Pour a=10 on obtient le *logarithme décimal* \log_{10} qui vérifie $\log_{10}(10)=1$ (et donc $\log_{10}(10^n)=n$). Dans la pratique on utilise l'équivalence :

$$x = 10^y \iff y = \log_{10}(x)$$

En informatique intervient aussi le logarithme en base $2 : \log_2(2^n) = n$.

Démonstration. L'existence et l'unicité viennent de la théorie de l'intégrale : $\ln(x) = \int_1^x \frac{1}{t} dt$. Passons aux propriétés.

- 1. Posons $f(x) = \ln(xy) \ln(x)$ où y > 0 est fixé. Alors $f'(x) = y \ln'(xy) \ln'(x) = \frac{y}{xy} \frac{1}{x} = 0$. Donc $x \mapsto f(x)$ a une dérivée nulle, donc est constante et vaut $f(1) = \ln(y) \ln(1) = \ln(y)$. Donc $\ln(xy) \ln(x) = \ln(y)$.
- 2. D'une part $\ln(a \times \frac{1}{a}) = \ln a + \ln \frac{1}{a}$, mais d'autre part $\ln(a \times \frac{1}{a}) = \ln(1) = 0$. Donc $\ln a + \ln \frac{1}{a} = 0$.
- 3. Similaire ou récurrence.
- 4. In est dérivable donc continue, $\ln'(x) = \frac{1}{x} > 0$ donc la fonction est strictement croissante. Comme $\ln(2) > \ln(1) = 0$ alors $\ln(2^n) = n \ln(2) \to +\infty$ (lorsque $n \to +\infty$). Donc $\lim_{x \to +\infty} \ln x = +\infty$. De $\ln x = -\ln \frac{1}{x}$ on déduit $\lim_{x \to 0} \ln x = -\infty$. Par le théorème sur les fonctions continues et strictement croissantes, $\ln :]0, +\infty[\to \mathbb{R}$ est une bijection.
- 5. $\lim_{x\to 0} \frac{\ln(1+x)}{x}$ est la dérivée de ln au point $x_0=1$, donc cette limite existe et vaut $\ln'(1)=1$.
- 6. $\ln'(x) = \frac{1}{x}$ est décroissante, donc la fonction ln est concave. Posons $f(x) = x 1 \ln x$; $f'(x) = 1 \frac{1}{x}$. Par une étude de fonction f atteint son minimum en $x_0 = 1$. Donc $f(x) \ge f(1) = 0$. Donc $\ln x \le x 1$.

1.2. Exponentielle

Définition 1.

La bijection réciproque de $\ln :]0, +\infty[\to \mathbb{R}$ s'appelle la fonction *exponentielle*, notée $\exp : \mathbb{R} \to]0, +\infty[$.

Pour $x \in \mathbb{R}$ on note aussi e^x pour $\exp x$.

Proposition 2.

La fonction exponentielle vérifie les propriétés suivantes :

- $\left[\exp(\ln x) = x \text{ pour tout } x > 0\right] \text{ et } \left[\ln(\exp x) = x \text{ pour tout } x \in \mathbb{R}\right]$
- $\exp(a+b) = \exp(a) \times \exp(b)$
- $\exp(nx) = (\exp x)^n$
- exp : $\mathbb{R} \to]0, +\infty[$ est une fonction continue, strictement croissante vérifiant $\lim_{x\to -\infty} \exp x = 0$ et $\lim_{x\to +\infty} \exp = +\infty.$
- La fonction exponentielle est dérivable et $\exp' x = \exp x$, pour tout $x \in \mathbb{R}$. Elle est convexe et $\exp x \geqslant 1 + x$.

Remarque

La fonction exponentielle est l'unique fonction qui vérifie $\exp'(x) = \exp(x)$ (pour tout $x \in \mathbb{R}$) et $\exp(1) = e$. Où $e \simeq 2,718...$ est le nombre qui vérifie $\ln e = 1$.

Démonstration. Ce sont les propriétés du logarithme retranscrites pour sa bijection réciproque.

Par exemple pour la dérivée : on part de l'égalité $\ln(\exp x) = x$ que l'on dérive. Cela donne $\exp'(x) \times \ln'(\exp x) = 1$ donc $\exp'(x) \times \frac{1}{\exp x} = 1$ et ainsi $\exp'(x) = \exp x$.

1.3. Puissance et comparaison

Par définition, pour a > 0 et $b \in \mathbb{R}$,

$$a^b = \exp(b \ln a)$$

Remarque.

- $\sqrt{a} = a^{\frac{1}{2}} = \exp\left(\frac{1}{2}\ln a\right)$
- $\sqrt[n]{a} = a^{\frac{1}{n}} = \exp\left(\frac{1}{n}\ln a\right)$ (la *racine n-ème* de *a*)
- On note aussi $\exp x$ par e^x ce qui se justifie par le calcul : $e^x = \exp(x \ln e) = \exp(x)$.
- Les fonctions $x \mapsto a^x$ s'appellent aussi des fonctions exponentielles et se ramènent systématiquement à la fonction exponentielle classique par l'égalité $a^x = \exp(x \ln a)$. Il ne faut surtout pas les confondre avec les fonctions puissances $x \mapsto x^a$.

Proposition 3.

Soit x, y > 0 et $a, b \in \mathbb{R}$.

- $\bullet \quad x^{a+b} = x^a x^b$
- $x^{-a} = \frac{1}{x^a}$
- $\bullet \quad \boxed{(xy)^a = x^a y^a}$
- $\bullet \quad (x^a)^b = x^{ab}$

Comparons les fonctions $\ln x$, $\exp x$ avec x:

Proposition 4.

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0 \qquad et \qquad \lim_{x \to +\infty} \frac{\exp x}{x} = +\infty.$$

Démonstration.

1. On a vu $\ln x \leqslant x-1$ (pour tout x>0). Donc $\ln x \leqslant x$ donc $\frac{\ln \sqrt{x}}{\sqrt{x}} \leqslant 1$. Cela donne

$$0 \leqslant \frac{\ln x}{x} = \frac{\ln\left(\sqrt{x}^2\right)}{x} = 2\frac{\ln\sqrt{x}}{x} = 2\frac{\ln\sqrt{x}}{\sqrt{x}} \frac{1}{\sqrt{x}} \leqslant \frac{2}{\sqrt{x}}$$

Cette double inégalité entraı̂ne $\lim_{x\to +\infty} \frac{\ln x}{x} = 0$.

2. On a vu $\exp x \geqslant 1 + x$ (pour tout $x \in \mathbb{R}$). Donc $\exp x \to +\infty$ (lorsque $x \to +\infty$).

$$\frac{x}{\exp x} = \frac{\ln(\exp x)}{\exp x} = \frac{\ln u}{u}$$

Lorsque $x \to +\infty$ alors $u = \exp x \to +\infty$ et donc par le premier point $\frac{\ln u}{u} \to 0$. Donc $\frac{x}{\exp x} \to 0$ et reste positive, ainsi $\lim_{x \to +\infty} \frac{\exp x}{x} = +\infty$.

Mini-exercices.

- 1. Montrer que $\ln(1 + e^x) = x + \ln(1 + e^{-x})$, pour tout $x \in \mathbb{R}$.
- 2. Étudier la fonction $f(x) = \ln(x^2 + 1) \ln(x) 1$. Tracer son graphe. Résoudre l'équation (f(x) = 0). Idem avec $g(x) = \frac{1 + \ln x}{x}$. Idem avec $h(x) = x^x$.
- 3. Expliquer comment \log_{10} permet de calculer le nombre de chiffres d'un entier n.
- 4. Montrer $\ln(1+x)\geqslant x-\frac{x^2}{2}$ pour $x\geqslant 0$ (faire une étude de fonction). Idem avec $e^x\geqslant 1+x+\frac{x^2}{2}$ pour tout $x\geqslant 0$.
- 5. Calculer la limite de la suite définie par $u_n = \left(1 + \frac{1}{n}\right)^n$ lorsque $n \to +\infty$. Idem avec $v_n = \left(\frac{1}{n}\right)^n$ et $w_n = n^{\frac{1}{n}}$.

2. Fonctions circulaires inverses

2.1. Arccosinus

Considérons la fonction cosinus cos : $\mathbb{R} \to [-1,1]$, $x \mapsto \cos x$. Pour obtenir une bijection à partir de cette fonction, il faut considérer la restriction de cosinus à l'intervalle $[0,\pi]$. Sur cet intervalle la fonction cosinus est continue et strictement décroissante, donc la restriction

$$\cos_{|}:[0,\pi]\to[-1,1]$$

est une bijection. Sa bijection réciproque est la fonction arccosinus :

$$\arccos: [-1,1] \rightarrow [0,\pi]$$

On a donc, par définition de la bijection réciproque :

$$\cos(\arccos(x)) = x \quad \forall x \in [-1, 1]$$

 $\arccos(\cos(x)) = x \quad \forall x \in [0, \pi]$

Autrement dit:

Si
$$x \in [0, \pi]$$
 $\cos(x) = y \iff x = \arccos y$

Terminons avec la dérivée de arccos:

$$\arccos'(x) = \frac{-1}{\sqrt{1 - x^2}} \quad \forall x \in]-1, 1[$$

Démonstration. On démarre de l'égalité cos(arccos x) = x que l'on dérive :

$$\cos(\arccos x) = x$$

$$\Rightarrow -\arccos'(x) \times \sin(\arccos x) = 1$$

$$\Rightarrow \arccos'(x) = \frac{-1}{\sin(\arccos x)}$$

$$\Rightarrow \arccos'(x) = \frac{-1}{\sqrt{1 - \cos^2(\arccos x)}} \qquad (*)$$

$$\Rightarrow \arccos'(x) = \frac{-1}{\sqrt{1 - x^2}}$$

Le point crucial (*) se justifie ainsi : on démarre de l'égalité $\cos^2 y + \sin^2 y = 1$, en substituant $y = \arccos x$ on obtient $\cos^2(\arccos x) + \sin^2(\arccos x) = 1$ donc $x^2 + \sin^2(\arccos x) = 1$. On en déduit : $\sin(\arccos x) = +\sqrt{1-x^2}$ (avec le signe + car $\arccos x \in [0, \pi]$, et donc on a $\sin(\arccos x) \ge 0$).

2.2. Arcsinus

La restriction

$$\sin_{|}: [-\frac{\pi}{2}, +\frac{\pi}{2}] \to [-1, 1]$$

est une bijection. Sa bijection réciproque est la fonction arcsinus :

$$\arcsin: [-1,1] \to [-\frac{\pi}{2}, +\frac{\pi}{2}]$$

$$\arcsin'(x) = \frac{1}{\sqrt{1 - x^2}} \qquad \forall x \in]-1, 1[$$

2.3. Arctangente

La restriction

$$\tan_{|}:]-\tfrac{\pi}{2},+\tfrac{\pi}{2}[\to\mathbb{R}$$

est une bijection. Sa bijection réciproque est la fonction arctangente :

$$\arctan: \mathbb{R} \to]-\frac{\pi}{2}, +\frac{\pi}{2}[$$

Mini-exercices.

- 1. Calculer les valeurs de arccos et arcsin en 0, 1, $\frac{1}{2}$, $\frac{\sqrt{2}}{2}$, $\frac{\sqrt{3}}{2}$. Idem pour arctan en 0, 1, $\sqrt{3}$ et $\frac{1}{\sqrt{3}}$.
- 2. Calculer $\arccos(\cos\frac{7\pi}{3})$. Idem avec $\arcsin(\sin\frac{7\pi}{3})$ et $\arctan(\tan\frac{7\pi}{3})$ (attention aux intervalles!)
- 3. Calculer $\cos(\arctan x)$, $\cos(\arcsin x)$, $\tan(\arcsin x)$.
- 4. Calculer la dérivée de $f(x) = \arctan\left(\frac{x}{\sqrt{1-x^2}}\right)$. En déduire que $f(x) = \arcsin x$, pour tout $x \in]-1,1[$.
- 5. Montrer que $\arccos x + \arcsin x = \frac{\pi}{2}$, pour tout $x \in [-1, 1]$.

3. Fonctions hyperboliques et hyperboliques inverses

3.1. Cosinus hyperbolique et son inverse

Pour $x \in \mathbb{R}$, le *cosinus hyperbolique* est :

$$ch x = \frac{e^x + e^{-x}}{2}$$

3.2. Sinus hyperbolique et son inverse

Pour $x \in \mathbb{R}$, le *sinus hyperbolique* est :

$$\operatorname{sh} x = \frac{e^x - e^{-x}}{2}$$

sh : $\mathbb{R} \to \mathbb{R}$ est une fonction continue, dérivable, strictement croissante vérifiant $\lim_{x \to -\infty} \operatorname{sh} x = -\infty$ et $\lim_{x\to+\infty} \operatorname{sh} x = +\infty$, c'est donc une bijection. Sa bijection réciproque est Argsh : $\mathbb{R} \to \mathbb{R}$.

Proposition 5.

- $\operatorname{ch}^2 x \operatorname{sh}^2 x = 1$ $\operatorname{ch}' x = \operatorname{sh} x$, $\operatorname{sh}' x = \operatorname{ch} x$ $\operatorname{Argsh} : \mathbb{R} \to \mathbb{R}$ est strictement croissante et continue. Argsh est dérivable et $\operatorname{Argsh}' x = \frac{1}{\sqrt{x^2+1}}$.
- Argsh $x = \ln\left(x + \sqrt{x^2 + 1}\right)$

Démonstration.

- $\cosh^2 x \sinh^2 x = \frac{1}{4} \left[(e^x + e^{-x})^2 (e^x e^{-x})^2 \right] = \frac{1}{4} \left[(e^{2x} + 2 + e^{-2x}) (e^{2x} 2 + e^{-2x}) \right] = 1.$ $\frac{d}{dx} (\cosh x) = \frac{d}{dx} \frac{e^x + e^{-x}}{2} = \frac{e^x e^{-x}}{2} = \sinh x$. Idem pour la dérivée de sh x.
- Car c'est la réciproque de sh.
- Comme la fonction $x \mapsto \operatorname{sh}' x$ ne s'annule pas sur $\mathbb R$ alors la fonction Argsh est dérivable sur $\mathbb R$. On calcule la dérivée par dérivation de l'égalité sh(Argsh x) = x:

$$\operatorname{Argsh}' x = \frac{1}{\operatorname{ch}(\operatorname{Argsh} x)} = \frac{1}{\sqrt{\operatorname{sh}^2(\operatorname{Argsh} x) + 1}} = \frac{1}{\sqrt{x^2 + 1}}$$

• Notons $f(x) = \ln(x + \sqrt{x^2 + 1})$ alors

$$f'(x) = \frac{1 + \frac{x}{\sqrt{x^2 + 1}}}{x + \sqrt{x^2 + 1}} = \frac{1}{\sqrt{x^2 + 1}} = \operatorname{Argsh}' x$$

Comme de plus $f(0) = \ln(1) = 0$ et Argsh 0 = 0 (car sh 0 = 0), on en déduit que pour tout $x \in \mathbb{R}$, $f(x) = \operatorname{Argsh} x$.

3.3. Tangente hyperbolique et son inverse

Par définition la tangente hyperbolique est :

$$th x = \frac{sh x}{ch x}$$

La fonction th : $\mathbb{R} \to]-1,1[$ est une bijection, on note Argth : $]-1,1[\to \mathbb{R}$ sa bijection réciproque.

3.4. Trigonométrie hyperbolique

$$\operatorname{ch}^2 x - \operatorname{sh}^2 x = 1$$

$$\operatorname{ch}(a+b) = \operatorname{ch} a \cdot \operatorname{ch} b + \operatorname{sh} a \cdot \operatorname{sh} b$$

$$\operatorname{ch}(2a) = \operatorname{ch}^2 a + \operatorname{sh}^2 a = 2 \operatorname{ch}^2 a - 1 = 1 + 2 \operatorname{sh}^2 a$$

$$\operatorname{sh}(a+b) = \operatorname{sh} a \cdot \operatorname{ch} b + \operatorname{sh} b \cdot \operatorname{ch} a$$

$$\operatorname{sh}(2a) = 2 \operatorname{sh} a \cdot \operatorname{ch} a$$

$$\operatorname{th}(a+b) = \frac{\operatorname{th} a + \operatorname{th} b}{1 + \operatorname{th} a \cdot \operatorname{th} b}$$

$$\operatorname{ch}' x = \operatorname{sh} x$$

$$\operatorname{sh}' x = \operatorname{ch} x$$

$$\operatorname{th}' x = 1 - \operatorname{th}^2 x = \frac{1}{\operatorname{ch}^2 x}$$

$$\operatorname{Argch}' x = \frac{1}{\sqrt{x^2 + 1}} \quad (x > 1)$$

$$\operatorname{Argsh}' x = \frac{1}{1 - x^2} \quad (|x| < 1)$$

$$\begin{aligned} &\operatorname{Argch} x = \ln \left(x + \sqrt{x^2 - 1} \right) \quad (x \geqslant 1) \\ &\operatorname{Argsh} x = \ln \left(x + \sqrt{x^2 + 1} \right) \quad (x \in \mathbb{R}) \\ &\operatorname{Argth} x = \frac{1}{2} \ln \left(\frac{1 + x}{1 - x} \right) \quad (-1 < x < 1) \end{aligned}$$

Mini-exercices.

- 1. Dessiner les courbes paramétrées $t \mapsto (\cos t, \sin t)$ et $t \mapsto (\operatorname{ch} t, \operatorname{sh} t)$. Pourquoi cos et sin s'appellent des fonctions trigonométriques circulaires alors que ch et sh sont des fonctions trigonométriques hyperboliques?
- 2. Prouver par le calcul la formule $ch(a+b)=\ldots$ En utilisant que $\cos x=\frac{e^{ix}+e^{-ix}}{2}$ retrouver la formule pour $\cos(a+b)$.
- 3. Résoudre l'équation sh x = 3.
- 4. Montrer que $\frac{\sinh(2x)}{1+\cosh(2x)} = \tanh x$.
- 5. Calculer les dérivées des fonctions définies par : $th(1+x^2)$, ln(ch x), Argch(exp x), Argth(cos x).

Fonctions circulaires et hyperboliques inverses

Corrections de Léa Blanc-Centi.

1 **Fonctions circulaires inverses**

Exercice 1

Vérifier

$$\arcsin x + \arccos x = \frac{\pi}{2}$$
 et $\arctan x + \arctan \frac{1}{x} = \operatorname{sgn}(x) \frac{\pi}{2}$.

Indication ▼

Correction ▼

Vidéo 📕

[000752]

Exercice 2

Une statue de hauteur s est placée sur un piédestal de hauteur p.

- 1. À quelle distance x_0 doit se placer un observateur (dont la taille est supposée négligeable) pour voir la statue sous un angle maximal α_0 ?
- 2. Vérifier que $\alpha_0 = \arctan \frac{s}{2\sqrt{p(p+s)}}$.
- 3. Application à la statue de la liberté : haute de 46 mètres avec un piédestal de 47 mètres.

Indication ▼

Correction ▼

Vidéo

[000745]

Exercice 3

Écrire sous forme d'expression algébrique

- 1. $\sin(\arccos x)$, $\cos(\arcsin x)$, $\cos(2\arcsin x)$.
- 2. $\sin(\arctan x)$, $\cos(\arctan x)$, $\sin(3\arctan x)$.

Indication $lap{\ }$

Correction ▼

Vidéo

[000747]

Exercice 4

Résoudre les équations suivantes :

- 1. $\arccos x = 2\arccos \frac{3}{4}$.
- 2. $\arcsin x = \arcsin \frac{2}{5} + \arcsin \frac{3}{5}$.
- 3. $\arctan 2x + \arctan x = \frac{\pi}{4}$.

Indication ▼

Correction ▼

Vidéo

[000749]

Exercice 5

Montrer que pour tout x > 0, on a

$$\arctan\left(\frac{1}{2x^2}\right) = \arctan\left(\frac{x}{x+1}\right) - \arctan\left(\frac{x-1}{x}\right).$$

En déduire une expression de $S_n = \sum_{k=1}^n \arctan\left(\frac{1}{2k^2}\right)$ et calculer $\lim_{n \to +\infty} S_n$.

Indication ▼

[006973]

Exercice 6

Soit z = x + iy un nombre complexe, où x = Re z et y = Im z. On sait que si z est non nul, on peut l'écrire de façon unique sous la forme $z = x + iy = re^{i\theta}$, où $\theta \in]-\pi,\pi[$ et $r = \sqrt{x^2 + y^2}$.

- 1. Montrer que si x > 0, alors $\theta = \arctan \frac{y}{x}$.
- 2. Montrer que si $\theta \in]-\pi,\pi[$, alors $\theta=2\arctan\left(\frac{\sin\theta}{1+\cos\theta}\right)$.
- 3. En déduire que si z n'est pas réel négatif ou nul, on a l'égalité

$$\theta = 2\arctan\left(\frac{y}{x + \sqrt{x^2 + y^2}}\right).$$

Correction ▼

Vidéo 🔳

[006974]

Fonctions hyperboliques

Exercice 7

Simplifier l'expression $\frac{2 \operatorname{ch}^2(x) - \operatorname{sh}(2x)}{x - \ln(\operatorname{ch} x) - \ln 2}$
Indication \blacktriangledown Correction \blacktriangledown Vidéo et donner ses limites en $-\infty$ et $+\infty$.

[006975]

Exercice 8

Soit $x \in \mathbb{R}$. On pose $t = \arctan(\sinh x)$.

1. Établir les relations

$$\tan t = \sinh x$$
 $\frac{1}{\cos t} = \cosh x$ $\sin t = \sinh x$

2. Montrer que $x = \ln\left(\tan\left(\frac{t}{2} + \frac{\pi}{4}\right)\right)$.

Indication ▼

Correction ▼

Vidéo 📕

[000764]

Exercice 9

Soit x un réel fixé. Pour $n \in \mathbb{N}^*$, on pose

$$C_n = \sum_{k=1}^n \operatorname{ch}(kx)$$
 et $S_n = \sum_{k=1}^n \operatorname{sh}(kx)$.

Calculer C_n et S_n .

Indication ▼

Correction ▼

Vidéo

Vidéo

[006976]

Exercice 10

Soit a et b deux réels positifs tels que $a^2 - b^2 = 1$. Résoudre le système

$$\begin{cases} ch(x) + ch(y) = 2a \\ sh(x) + sh(y) = 2b \end{cases}$$

Indication ▼

Correction ▼

[006977]

3 Fonctions hyperboliques inverses

Exercice 11

Simplifier les expressions suivantes :

- 1. ch(argshx), th(argshx), sh(2argshx).
- 2. sh(argch x), th(argch x), ch(3 argch x).

Correction ▼

Vidéo 📕

[006978]

Exercice 12

Étudier le domaine de définition de la fonction f définie par

$$f(x) = \operatorname{argch}\left[\frac{1}{2}\left(x + \frac{1}{x}\right)\right]$$

et simplifier son expression lorsqu'elle a un sens.

 ${\tt Indication} \ {\tt V}$

Correction \blacktriangledown

Vidéo

[006979]

Exercice 13

Montrer que l'équation $\operatorname{argsh} x + \operatorname{argch} x = 1$ admet une unique solution, puis la déterminer.

Indication ▼

Correction ▼

Vidéo

[006980]

Indication pour l'exercice 1 ▲

Faire une étude de fonction. La fonction sgn(x) est la *fonction signe* : elle vaut +1 si x > 0, -1 si x < 0 (et 0 si x = 0).

Indication pour l'exercice 2 A

Faire un dessin. Calculer l'angle d'observation α en fonction de la distance x et étudier cette fonction. Pour simplifier l'expression de α_0 , calculer $\tan \alpha_0$ à l'aide de la formule donnant $\tan (a-b)$.

Indication pour l'exercice 3 ▲

Il faut utiliser les identités trigonométriques classiques.

Indication pour l'exercice 4 A

On compose les équations par la bonne fonction (sur le bon domaine de définition), par exemple cosinus pour la première. Pour la dernière, commencer par étudier la fonction pour montrer qu'il existe une unique solution.

Indication pour l'exercice 5 ▲

Dériver la différence des deux expressions.

Indication pour l'exercice 7

On trouve $-\frac{1+e^{-2x}}{\ln(1+e^{-2x})}$.

Indication pour l'exercice 8 ▲

Pour la première question calculer $\frac{1}{\cos^2 t}$. Pour la seconde question, vérifier que $y = \ln\left(\tan\left(\frac{t}{2} + \frac{\pi}{4}\right)\right)$ est bien défini et calculer shy.

Indication pour l'exercice 9 A

Commencer par calculer $C_n + S_n$ et $C_n - S_n$ à l'aide des fonctions ch et sh.

Indication pour l'exercice 10 ▲

Poser $X = e^x$ et $Y = e^y$ et se ramener à un système d'équations du type somme-produit.

Indication pour l'exercice 12 ▲

On trouve $f(x) = |\ln x|$ pour tout x > 0.

Indication pour l'exercice 13 ▲

Faire le tableau de variations de $f: x \mapsto \operatorname{argsh} x + \operatorname{argch} x$.

- 1. Soit f la fonction définie sur [-1,1] par $f(x) = \arcsin x + \arccos x$: f est continue sur l'intervalle [-1,1], et dérivable sur]-1,1[. Pour tout $x \in]-1,1[$, $f'(x) = \frac{1}{\sqrt{1-x^2}} + \frac{-1}{\sqrt{1-x^2}} = 0$. Ainsi f est constante sur]-1,1[, donc sur [-1,1] (car continue aux extrémités). Or $f(0) = \arcsin 0 + \arccos 0 = \frac{\pi}{2}$ donc pour tout $x \in [-1,1]$, $f(x) = \frac{\pi}{2}$.
- 2. Soit $g(x) = \arctan x + \arctan \frac{1}{x}$. Cette fonction est définie sur $]-\infty,0[$ et sur $]0,+\infty[$ (mais pas en 0). On a

$$g'(x) = \frac{1}{1+x^2} + \frac{-1}{x^2} \cdot \frac{1}{1+\frac{1}{x^2}} = 0,$$

donc g est constante sur chacun de ses intervalles de définition : $g(x) = c_1$ sur $]-\infty,0[$ et $g(x) = c_2$ sur $]0,+\infty[$. Sachant $]0,+\infty[$. Sachant $]0,+\infty[$. Sachant $]0,+\infty[$.

Correction de l'exercice 2

1. On note x la distance de l'observateur au pied de la statue. On note α l'angle d'observation de la statue seule, et β l'angle d'observation du piédestal seul.

Nous avons les relations trigonométriques dans les triangles rectangles :

$$\tan(\alpha + \beta) = \frac{p+s}{x}$$
 et $\tan \beta = \frac{p}{x}$

On en déduit les deux identités :

$$\alpha + \beta = \arctan\left(\frac{p+s}{x}\right)$$
 et $\beta = \arctan\left(\frac{p}{x}\right)$

à partir desquelles on obtient $\alpha = \alpha(x) = \arctan\left(\frac{p+s}{x}\right) - \arctan\left(\frac{p}{x}\right)$. Étudions cette fonction sur $]0, +\infty[$: elle est dérivable et

$$\alpha'(x) = \frac{-\frac{s+p}{x^2}}{1 + \left(\frac{s+p}{x}\right)^2} - \frac{-\frac{p}{x^2}}{1 + \left(\frac{p}{x}\right)^2} = \frac{s}{(x^2 + p^2)(x^2 + (s+p)^2)} \left(p(p+s) - x^2\right)$$

Ainsi α' ne s'annule sur $]0,+\infty[$ qu'en $x_0=\sqrt{p(p+s)}.$ Par des considérations physiques, à la limite en 0 et en $+\infty$, l'angle α est nul, alors en x_0 nous obtenons un angle α maximum. Donc la distance optimale de vision est $x_0=\sqrt{p(p+s)}.$

5

2. Pour calculer l'angle maximum α_0 correspondant, on pourrait calculer $\alpha_0 = \alpha(x_0)$ à partir de la définition de la fonction $\alpha(x)$. Pour obtenir une formule plus simple nous utilisons la formule trigonométrique suivante : si a, b et a-b sont dans l'intervalle de définition de la fonction tan, alors $\tan(a-b) = \frac{\tan a - \tan b}{1 + \tan a \tan b}$, ce qui donne ici

$$\tan \alpha_0 = \tan \left((\alpha_0 + \beta_0) - \beta_0 \right) = \frac{\frac{p+s}{x_0} - \frac{p}{x_0}}{1 + \frac{p+s}{x_0} \cdot \frac{p}{x_0}} = \frac{s}{2x_0} = \frac{s}{2\sqrt{p(p+s)}}$$

Comme $\alpha_0 \in]-\frac{\pi}{2}, \frac{\pi}{2}[$, on en déduit $\alpha_0 = \arctan \frac{s}{2x_0} = \arctan \frac{s}{2\sqrt{p(p+s)}}.$

3. Pour la statue de la liberté, on a la hauteur de la statue s = 46 mètres et la hauteur du piédestal p = 47 mètres. On trouve donc

$$x_0 = \sqrt{p(p+s)} \simeq 65,40$$
 mètres $lpha_0 = \arctan rac{s}{2\sqrt{p(p+s)}} \simeq 19^\circ.$

Voici les représentations de la statue et de la fonction $\alpha(x)$ pour ces valeurs de s et p.

Correction de l'exercice 3 A

1. $\sin^2 y = 1 - \cos^2 y$, donc $\sin y = \pm \sqrt{1 - \cos^2 y}$. Avec $y = \arccos x$, il vient $\sin(\arccos x) = \pm \sqrt{1 - x^2}$. Or $\arccos x \in [0, \pi]$, donc $\sin(\arccos x)$ est positif et finalement $\sin(\arccos x) = +\sqrt{1 - x^2}$. De la même manière on trouve $\cos(\arcsin x) = \pm \sqrt{1 - x^2}$. Or $\arcsin x \in [-\frac{\pi}{2}, \frac{\pi}{2}]$, donc $\cos(\arcsin x)$ est positif et finalement $\cos(\arcsin x) = +\sqrt{1 - x^2}$.

Ces deux égalités sont à connaître ou à savoir retrouver très rapidement :

$$\sin(\arccos x) = \sqrt{1 - x^2} = \cos(\arcsin x).$$

Enfin, puisque $cos(2y) = cos^2 y - sin^2 y$, on obtient avec y = arcsin x,

$$\cos(2\arcsin x) = (\sqrt{1 - x^2})^2 - x^2 = 1 - 2x^2.$$

2. Commençons par calculer $\sin(\arctan x)$, $\cos(\arctan x)$. On utilise l'identité $1 + \tan^2 y = \frac{1}{\cos^2 y}$ avec $y = \arctan x$, ce qui donne $\cos^2 y = \frac{1}{1+x^2}$ et $\sin^2 y = 1 - \cos^2 y = \frac{x^2}{1+x^2}$. Il reste à déterminer les signes de $\cos(\arctan x) = \pm \frac{1}{\sqrt{1+x^2}}$ et $\sin(\arctan x) = \pm \frac{x}{\sqrt{1+x^2}}$ Or $y = \arctan x$ donc $y \in]-\frac{\pi}{2}, \frac{\pi}{2}[$ et y a le même signe que x: ainsi $\cos y > 0$, et $\sin y$ a le même signe que y et donc que x. Finalement, on a $\cos(\arctan x) = \frac{1}{\sqrt{1+x^2}}$ et $\sin(\arctan x) = \frac{x}{\sqrt{1+x^2}}$.

Il ne reste plus qu'à linéariser sin(3y):

$$\sin(3y) = \sin(2y+y) = \cos(2y)\sin(y) + \cos(y)\sin(2y)$$
$$= (2\cos^2 y - 1)\sin y + 2\sin y\cos^2 y$$
$$= 4\sin y\cos^2 y - \sin y$$

Maintenant

$$\sin(3\arctan x) = \sin(3y) = 4\sin y\cos^2 y - \sin y$$
$$= 4\frac{x}{(1+x^2)^{3/2}} - \frac{x}{\sqrt{1+x^2}} = \frac{x(3-x^2)}{(1+x^2)^{3/2}}$$

Remarque : la méthode générale pour obtenir la formule de linéarisation de sin(3y) est d'utiliser les nombres complexes et la formule de Moivre. On développe

$$\cos(3y) + i\sin(3y) = (\cos y + i\sin y)^3 = \cos^3 y + 3i\cos^2 y\sin y + \cdots$$

puis on identifie les parties imaginaires pour avoir sin(3y), ou les parties réelles pour avoir cos(3y).

Correction de l'exercice 4

1. On vérifie d'abord que $2\arccos\frac{3}{4}\in[0,\pi]$ (sinon, l'équation n'aurait aucune solution). En effet, par définition, la fonction arccos est décroissante sur [-1,1] à valeurs dans $[0,\pi]$, donc puisque $\frac{1}{2}\leqslant\frac{3}{4}\leqslant1$ on a $\frac{\pi}{3}\geqslant\cos\left(\frac{3}{4}\right)\geqslant0$. Puisque par définition $\arccos x\in[0,\pi]$, on obtient en prenant le cosinus :

$$\arccos x = 2\arccos\left(\frac{3}{4}\right) \Longleftrightarrow x = \cos\left(2\arccos\frac{3}{4}\right)$$

En appliquant la formule $\cos 2u = 2\cos^2 u - 1$, on arrive donc à une unique solution $x = 2(\frac{3}{4})^2 - 1 = \frac{1}{8}$.

2. Vérifions d'abord que $-\frac{\pi}{2} \leqslant \arcsin\frac{2}{5} + \arcsin\frac{3}{5} \leqslant \frac{\pi}{2}$. En effet, la fonction arcsin est strictement croissante et $0 < \frac{2}{5} < \frac{1}{2} < \frac{3}{5} < \frac{\sqrt{2}}{2}$, ce qui donne $0 < \arcsin\left(\frac{2}{5}\right) < \frac{\pi}{6} < \arcsin\left(\frac{3}{5}\right) < \frac{\pi}{4}$, d'où l'encadrement $0 + \frac{\pi}{6} < \arcsin\frac{2}{5} + \arcsin\frac{3}{5} \leqslant \frac{\pi}{6} + \frac{\pi}{4}$.

Puisque par définition on aussi $\arcsin x \in [-\frac{\pi}{2}, \frac{\pi}{2}]$, il vient en prenant le sinus :

$$\arcsin x = \arcsin \frac{2}{5} + \arcsin \frac{3}{5}$$

$$\iff x = \sin \left(\arcsin \frac{2}{5} + \arcsin \frac{3}{5}\right)$$

$$\iff x = \frac{3}{5}\cos \left(\arcsin \frac{2}{5}\right) + \frac{2}{5}\cos \left(\arcsin \frac{3}{5}\right)$$

La dernière équivalence vient de la formule de $\sin(a+b) = \cos a \sin b + \cos b \sin a$ et de l'identité $\sin(\arcsin u) = u$.

En utilisant la formule $\cos(\arcsin x) = \sqrt{1-x^2}$, on obtient une unique solution : $x = \frac{3}{5}\sqrt{\frac{21}{25}} + \frac{2}{5}\frac{4}{5} = \frac{3\sqrt{21}+8}{25}$.

3. Supposons d'abord que x est solution. Remarquons d'abord que x est nécessairement positif, puisque $\arctan x$ a le même signe que x. Alors, en prenant la tangente des deux membres, on obtient $\tan \left(\arctan(2x) + \arctan(x)\right) = 1$.

En utilisant la formule donnant la tangente d'une somme : $\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}$, on obtient $\frac{2x + x}{1 - 2x \cdot x} = 1$, et finalement $2x^2 + 3x - 1 = 0$ qui admet une unique solution positive $x_0 = \frac{-3 + \sqrt{17}}{4}$. Ainsi, si l'équation de départ admet une solution, c'est nécessairement x_0 .

Or, en posant $f(x) = \arctan(2x) + \arctan(x)$, la fonction f est continue sur \mathbb{R} . Comme $f(x) \xrightarrow[x \to -\infty]{} - \pi$ et $f(x) \xrightarrow[x \to +\infty]{} + \pi$, on sait d'après le théorème des valeurs intermédiaires que f prend la valeur $\frac{\pi}{4}$ au moins une fois (et en fait une seule fois, puisque f est strictement croissante comme somme de deux fonctions strictement croissantes). Ainsi l'équation de départ admet bien une solution, qui est x_0 .

Posons $f(x) = \arctan\left(\frac{1}{2x^2}\right) - \arctan\left(\frac{x}{x+1}\right) + \arctan\left(\frac{x-1}{x}\right)$ pour tout x > 0. La fonction f est dérivable, et

$$f'(x) = \frac{-\frac{2}{2x^3}}{1 + \left(\frac{1}{2x^2}\right)^2} - \frac{\frac{1}{(1+x)^2}}{1 + \left(\frac{x}{x+1}\right)^2} + \frac{\frac{1}{x^2}}{1 + \left(\frac{x-1}{x}\right)^2}$$

$$= \frac{-4x}{4x^4 + 1} - \frac{1}{(1+x)^2 + x^2} + \frac{1}{x^2 + (x-1)^2}$$

$$= \frac{-4x}{4x^4 + 1} + \frac{-(x^2 + (x-1)^2) + ((1+x)^2 + x^2)}{((1+x)^2 + x^2)(x^2 + (x-1)^2)}$$

$$= 0$$

Ainsi f est une fonction constante. Or $f(x) \xrightarrow[x \to +\infty]{} \arctan 0 - \arctan 1 + \arctan 1 = 0$. Donc la constante vaut 0, d'où l'égalité cherchée.

Alors:

$$S_n = \sum_{k=1}^n \arctan\left(\frac{1}{2k^2}\right)$$

$$= \sum_{k=1}^n \arctan\left(\frac{k}{k+1}\right) - \sum_{k=1}^n \arctan\left(\frac{k-1}{k}\right) \quad \text{(par l'identit\'e prouv\'ee)}$$

$$= \sum_{k=1}^n \arctan\left(\frac{k}{k+1}\right) - \sum_{k'=0}^{n-1} \arctan\left(\frac{k'}{k'+1}\right) \quad \text{(en posant } k' = k-1\text{)}$$

$$= \arctan\left(\frac{n}{n+1}\right) - \arctan\left(\frac{0}{0+1}\right) \quad \text{(les sommes se simplifient)}$$

$$= \arctan\left(1 - \frac{1}{n+1}\right) \quad \left(\arctan\left(\frac{n}{n+1}\right) - \frac{1}{n+1}\right)$$

Ainsi $S_n \xrightarrow[n \to +\infty]{} \arctan 1 = \frac{\pi}{4}$.

Correction de l'exercice 6

- 1. Si x > 0, alors $\frac{y}{x}$ est bien défini et $\arctan \frac{y}{x}$ aussi. Comme $x = r \cos \theta$ et $y = r \sin \theta$, on a bien $\frac{y}{x} = \tan \theta$. Puisque par hypothèse $\theta \in]-\pi,\pi]$ et que l'on a supposé x > 0, alors $\cos \theta > 0$. Cela implique $\theta \in]-\frac{\pi}{2},\frac{\pi}{2}[$. Donc $\theta = \arctan(\tan \theta) = \arctan \frac{y}{x}$. (Attention! Il est important d'avoir $\theta \in]-\frac{\pi}{2},\frac{\pi}{2}[$ pour considérer l'identité $\arctan(\tan \theta) = \theta$.)
- 2. Si $\theta \in]-\pi,\pi[$ alors $\frac{\theta}{2} \in]-\frac{\pi}{2},\frac{\pi}{2}[$, donc $\frac{\theta}{2}=\arctan(\tan\frac{\theta}{2})$. Or

$$\frac{\sin \theta}{1 + \cos \theta} = \frac{2\cos \frac{\theta}{2}\sin \frac{\theta}{2}}{1 + \left(2\cos^2\left(\frac{\theta}{2}\right) - 1\right)} = \frac{\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}} = \tan \frac{\theta}{2}$$

d'où $\frac{\theta}{2} = \arctan\left(\tan\frac{\theta}{2}\right) = \arctan\left(\frac{\sin\theta}{1+\cos\theta}\right)$.

3. Remarquons que z = x + iy, supposé non nul, est un nombre réel négatif si et seulement si $(x = r\cos\theta < 0)$ et $y = r\sin\theta = 0$), c'est-à-dire $\theta = \pi$. Par conséquent, dire que z n'est pas réel négatif ou nul signifie que $\theta \in]-\pi,\pi[$. On a alors $x + \sqrt{x^2 + y^2} \neq 0$ (sinon, on aurait $\sqrt{x^2 + y^2} = -x$ et donc y = 0 et $z \leq 0$)

$$\frac{y}{x + \sqrt{x^2 + y^2}} = \frac{r \sin \theta}{r \cos \theta + r} = \frac{\sin \theta}{1 + \cos \theta}.$$

Par la question précédente :

$$\theta = 2 \arctan\left(\frac{\sin \theta}{1 + \cos \theta}\right) = 2 \arctan\left(\frac{y}{x + \sqrt{x^2 + y^2}}\right).$$

Par définition des fonctions ch et sh, on a

$$2 \operatorname{ch}^{2}(x) - \operatorname{sh}(2x) = 2 \left(\frac{e^{x} + e^{-x}}{2}\right)^{2} - \frac{e^{2x} - e^{-2x}}{2}$$
$$= \frac{e^{2x} + 2 + e^{-2x}}{2} + \frac{e^{-2x} - e^{2x}}{2}$$
$$= 1 + e^{-2x}$$

Et en utilisant les deux relations $\ln(ab) = \ln a + \ln b$ et $\ln(e^x) = x$ on calcule :

$$x - \ln(\operatorname{ch} x) - \ln 2 = x - \ln\left(\frac{e^x + e^{-x}}{2}\right) - \ln 2$$

$$= x - \ln(e^x + e^{-x}) + \ln 2 - \ln 2$$

$$= x - \ln\left(e^x(1 + e^{-2x})\right)$$

$$= x - \ln(e^x) - \ln(1 + e^{-2x})$$

$$= x - x - \ln(1 + e^{-2x})$$

$$= -\ln(1 + e^{-2x})$$

d'où

$$\frac{2 \operatorname{ch}^{2}(x) - \operatorname{sh}(2x)}{x - \ln(\operatorname{ch} x) - \ln 2} = -\frac{1 + e^{-2x}}{\ln(1 + e^{-2x})}$$

- C'est une expression de la forme $-\frac{u}{\ln u}$ avec $u=1+e^{-2x}$:

 $\operatorname{si} x \to +\infty$, alors $u \to 1^+$, $\frac{1}{\ln u} \to +\infty$ donc $-\frac{u}{\ln u} \to -\infty$;

 $\operatorname{si} x \to -\infty$, alors $u \to +\infty$ donc d'après les relations de croissances comparées, $-\frac{u}{\ln u} \to -\infty$.

Correction de l'exercice 8

- 1. (a) Remarquons d'abord que, par construction, $t \in]-\frac{\pi}{2}, \frac{\pi}{2}[$, t est donc dans le domaine de définition de la fonction tan. En prenant la tangente de l'égalité $t = \arctan(\sinh x)$ on obtient directement $\tan t =$ tan(arctan(shx)) = shx.
 - (b) Ensuite, $\frac{1}{\cos^2 t} = 1 + \tan^2 t = 1 + \tan^2 \left(\arctan(\sinh x)\right) = 1 + \sinh^2 x = \cosh^2 x$. Or la fonction ch ne prend que des valeurs positives, et $t \in]-\frac{\pi}{2}, \frac{\pi}{2}[$ donc $\cos t > 0$. Ainsi $\frac{1}{\cos t} = \operatorname{ch} x$.
 - (c) Enfin, $\sin t = \tan t \cdot \cos t = \sinh x \cdot \frac{1}{\cosh x} = \sinh x$.
- 2. Puisque $t \in]-\frac{\pi}{2}, \frac{\pi}{2}[$, on a $0 < \frac{t}{2} + \frac{\pi}{4} < \frac{\pi}{2},$ donc $\tan\left(\frac{t}{2} + \frac{\pi}{4}\right)$ est bien défini et strictement positif. Ainsi $y = \ln\left(\tan\left(\frac{t}{2} + \frac{\pi}{4}\right)\right)$ est bien défini.

Ensuite:

$$shy = \frac{e^{y} - e^{-y}}{2}
= \frac{1}{2} \tan\left(\frac{t}{2} + \frac{\pi}{4}\right) - \frac{1}{2} \frac{1}{\tan\left(\frac{t}{2} + \frac{\pi}{4}\right)}
= \frac{\sin^{2}\left(\frac{t}{2} + \frac{\pi}{4}\right) - \cos^{2}\left(\frac{t}{2} + \frac{\pi}{4}\right)}{2\cos\left(\frac{t}{2} + \frac{\pi}{4}\right)\sin\left(\frac{t}{2} + \frac{\pi}{4}\right)}
= \frac{-\cos\left(t + \frac{\pi}{2}\right)}{\sin\left(t + \frac{\pi}{2}\right)}$$

 $car \sin(2u) = 2\cos u \sin u \text{ et } \cos(2u) = \cos^2 u - \sin^2 u.$

Enfin, puisque $\cos\left(t+\frac{\pi}{2}\right)=-\sin t$ et $\sin\left(t+\frac{\pi}{2}\right)=\cos t$, on a $\mathrm{sh}\,y=\frac{\sin t}{\cos t}=\tan t=\mathrm{sh}\,x$. Puisque la fonction sh est bijective de $\mathbb R$ dans $\mathbb R$, on en déduit y=x. Conclusion : $x=y=\ln\left(\tan\left(\frac{t}{2}+\frac{\pi}{4}\right)\right)$.

Puisque $\operatorname{ch} x + \operatorname{sh} x = e^x$ et $\operatorname{ch} x - \operatorname{sh} x = e^{-x}$, les expressions $C_n + S_n = \sum_{k=1}^n e^{kx}$ et $C_n - S_n = \sum_{k=1}^n e^{-kx}$ sont des sommes de termes de suites géométriques, de raison respectivement e^x et e^{-x} .

Si x = 0, on a directement $C_n = \sum_{k=1}^n 1 = n$ et $S_n = \sum_{k=1}^n 0 = 0$.

Supposons $x \neq 0$, alors $e^x \neq 1$. Donc

$$C_n + S_n = \sum_{k=1}^n e^{kx} = \frac{e^x - e^{(n+1)x}}{1 - e^x}$$

$$= e^x \frac{1 - e^{nx}}{1 - e^x}$$

$$= e^x \frac{e^{\frac{nx}{2}} (e^{-\frac{nx}{2}} - e^{\frac{nx}{2}})}{e^{\frac{x}{2}} (e^{-\frac{x}{2}} - e^{\frac{x}{2}})}$$

$$= e^{\frac{(n+1)x}{2}} \frac{e^{\frac{nx}{2}} - e^{-\frac{nx}{2}}}{e^{\frac{x}{2}} - e^{-\frac{x}{2}}}$$

$$= e^{\frac{(n+1)x}{2}} \frac{\sinh \frac{nx}{2}}{\sinh \frac{x}{2}}$$

De même $C_n - S_n = \sum_{k=1}^n e^{-kx}$; c'est donc la même formule que ci-dessus en remplaçant x par -x. Ainsi :

$$C_n - S_n = e^{-\frac{(n+1)x}{2}} \frac{\operatorname{sh} \frac{nx}{2}}{\operatorname{sh} \frac{x}{2}}$$

En utilisant $C_n = \frac{(C_n + S_n) + (C_n - S_n)}{2}$ et $S_n = \frac{(C_n + S_n) - (C_n - S_n)}{2}$, on récupère donc

$$C_n = \frac{e^{\frac{(n+1)x}{2}} + e^{-\frac{(n+1)x}{2}}}{2} \frac{\sinh \frac{nx}{2}}{\sinh \frac{x}{2}} = \cosh\left(\frac{(n+1)x}{2}\right) \frac{\sinh \frac{nx}{2}}{\sinh \frac{x}{2}}$$

$$S_n = \frac{e^{\frac{(n+1)x}{2}} - e^{-(n+1)\frac{x}{2}}}{2} \frac{\sinh\frac{nx}{2}}{\sinh\frac{x}{2}} = \sinh\left(\frac{(n+1)x}{2}\right) \frac{\sinh\frac{nx}{2}}{\sinh\frac{x}{2}}$$

Correction de l'exercice 10 ▲

$$(S) \begin{cases} \operatorname{ch}(x) + \operatorname{ch}(y) = 2a \\ \operatorname{sh}(x) + \operatorname{sh}(y) = 2b \end{cases} \iff \begin{cases} e^{x} + e^{-x} + e^{y} + e^{-y} = 4a \\ e^{x} - e^{-x} + e^{y} - e^{-y} = 4b \end{cases}$$
$$\iff \begin{cases} e^{x} + e^{y} = 2a + 2b \\ e^{x} - e^{-x} + e^{y} - e^{-y} = 4b \end{cases}$$
$$\iff \begin{cases} e^{x} + e^{y} = 2a + 2b \\ -e^{-x} - e^{-y} = 2b - 2a \end{cases}$$
$$\iff \begin{cases} e^{x} + e^{y} = 2(a + b) \\ \frac{1}{e^{x}} + \frac{1}{e^{y}} = 2(a - b) \end{cases}$$

ce qui donne, en posant $X = e^x$ et $Y = e^y$:

$$(S) \iff \begin{cases} X+Y=2(a+b) \\ \frac{1}{X}+\frac{1}{Y}=2(a-b) \\ \iff \begin{cases} X+Y=2(a+b) \\ \frac{X+Y}{XY}=2(a-b) \\ \Leftrightarrow \begin{cases} X+Y=2(a+b) \\ \frac{2(a+b)}{YY}=2(a-b) \end{cases} \end{cases}$$

Or $a \neq b$ puisque par hypothèse, $a^2 - b^2 = 1$. Ainsi,

$$(S) \iff \begin{cases} X+Y=2(a+b) \\ XY=\frac{a+b}{a-b} \end{cases}$$

$$\iff X \text{ et } Y \text{ sont les solutions de } z^2-2(a+b)z+\frac{a+b}{a-b}=0$$

Remarque : On rappelle que si X,Y vérifient le système $\begin{cases} X+Y=S\\ XY=P \end{cases}$, alors X et Y sont les solutions de l'équation $z^2-Sz+P=0$.

Or le discriminant du trinôme $z^2 - 2(a+b)z + \frac{a+b}{a-b} = 0$ vaut

$$\Delta = 4(a+b)^2 - 4\frac{a+b}{a-b} = 4(a+b)\left(a+b - \frac{1}{a-b}\right) = \frac{4(a+b)(a^2 - b^2 - 1)}{a-b} = 0$$

Il y a donc une racine double qui vaut $\frac{2(a+b)}{2}$, ainsi X=Y=a+b et donc :

$$(S) \Longleftrightarrow e^x = e^y = a + b$$

On vérifie que $a+b \ge 0$ (car $a \ge 0$ et $b \ge 0$) et $a+b \ne 0$ (car $a^2-b^2=1$). Conclusion : le système (S) admet une unique solution, donnée par $(x = \ln(a+b), y = \ln(a+b))$.

Correction de l'exercice 11

- 1. (a) On sait que $\operatorname{ch}^2 u = 1 + \operatorname{sh}^2 u$. Comme de plus la fonction ch est à valeurs positives, $\operatorname{ch} u = \sqrt{1 + \operatorname{sh}^2 u}$ et donc $\operatorname{ch}(\operatorname{argsh} x) = \sqrt{1 + \operatorname{sh}^2(\operatorname{argsh} x)} = \sqrt{1 + x^2}$.
 - (b) Alors

$$th(argshx) = \frac{sh(argshx)}{ch(argshx)} = \frac{x}{\sqrt{1+x^2}}.$$

- (c) Et $sh(2 \operatorname{argsh} x) = 2 \operatorname{ch}(\operatorname{argsh} x) \operatorname{sh}(\operatorname{argsh} x) = 2x\sqrt{1+x^2}$.
- 2. On pourrait, comme pour la question précédente, appliquer les formules trigonométriques hyperboliques. Pour changer, on va plutôt utiliser les expressions explicites des fonctions hyperboliques réciproques. Supposons $x \ge 1$, pour que argch x soit bien défini, alors on a la formule (à connaître) :

$$\operatorname{argch} x = \ln\left(x + \sqrt{x^2 - 1}\right).$$

Ainsi:

Donc th(argch x) =
$$\frac{\sinh(\operatorname{argch} x)}{\cosh(\operatorname{argch} x)} = \frac{\sqrt{x^2 - 1}}{x}$$
.

Enfin, si $u = \operatorname{argch} x : \operatorname{ch}(3u) = \operatorname{ch}(2u + u) = \operatorname{ch}(2u) \operatorname{ch} u + \operatorname{sh}(2u) \operatorname{sh} u$, où

$$\begin{cases} \operatorname{ch}(2u) = \operatorname{ch}^2 u + \operatorname{sh}^2 u = x^2 + (x^2 - 1) = 2x^2 - 1\\ \operatorname{sh}(2u) = 2\operatorname{sh} u \operatorname{ch} u = 2x\sqrt{x^2 - 1} \end{cases}$$

Donc ch(3 argch x) = $(2x^2 - 1)x + 2x\sqrt{x^2 - 1}\sqrt{x^2 - 1} = x(4x^2 - 3)$.

Correction de l'exercice 12 ▲

La fonction argch est définie sur $[1, +\infty)$. Or

$$\frac{1}{2}\left(x+\frac{1}{x}\right) \geqslant 1 \iff \frac{x^2+1}{x} \geqslant 2$$

$$\iff \frac{x^2+1-2x}{x} \geqslant 0$$

$$\iff \frac{(x-1)^2}{x} \geqslant 0$$

$$\iff x > 0$$

donc f est définie sur $]0, +\infty[$.

Soit x > 0, alors $y = \frac{1}{2} \left(x + \frac{1}{x} \right) \ge 1$ et on sait que argch $y = \ln(y + \sqrt{y^2 - 1})$. Ainsi $\sqrt{y^2 - 1} = \sqrt{\frac{1}{4} \left(x + \frac{1}{x} \right)^2 - 1} = \sqrt{\frac{(x^2 + 1)^2}{4x^2} - 1} = \sqrt{\frac{(x^2 - 1)^2}{4x^2}} = \left| \frac{x^2 - 1}{2x} \right|$, on obtient

$$f(x) = \operatorname{argch} y = \ln(y + \sqrt{y^2 - 1}) = \ln\left(\frac{x^2 + 1}{2x} + \left|\frac{x^2 - 1}{2x}\right|\right)$$

On a supposé x > 0, il suffit donc de distinguer les cas $x \ge 1$ et $0 < x \le 1$.

$$-\operatorname{Si} x \geqslant 1, f(x) = \ln\left(\frac{x^2 + 1}{2x} + \frac{x^2 - 1}{2x}\right) = \ln x.$$

$$\operatorname{Si} 0 < x < 1, f(x) = \ln\left(\frac{x^2 + 1}{2x} + \frac{1 - x^2}{2x}\right) = \ln x.$$

- Si $0 < x \le 1$, $f(x) = \ln\left(\frac{x^2 + 1}{2x} + \frac{1 - x^2}{2x}\right) = \ln\frac{1}{x} = -\ln x$.

Puisque $\ln x$ est positif si $x \ge 1$ et négatif si $x \le 1$, on obtient dans les deux cas $f(x) = |\ln x|$.

Correction de l'exercice 13 ▲

Soit $f(x) = \operatorname{argsh} x + \operatorname{argch} x$. La fonction f est bien définie, continue, et strictement croissante, sur $[1, +\infty[$ (comme somme de deux fonctions continues strictement croissantes).

De plus, $f(x) \xrightarrow[x \to +\infty]{} +\infty$, donc f atteint exactement une fois toute valeur de l'intervalle $[f(1), +\infty[$. Comme (par la formule logarithmique) $f(1) = \operatorname{argsh} 1 = \ln(1+\sqrt{2}) < \ln(e) = 1$, on a $1 \in [f(1), +\infty[$. Par le théorème des valeurs intermédiaires l'équation f(x) = 1 admet une unique solution, que l'on notera a.

Déterminons la solution :

$$sh 1 = sh(argsh a + argch a)$$

$$= sh(argsh a) ch(argch a) + sh(argch a) ch(argsh a)$$

$$= a^2 + \sqrt{a^2 - 1} \sqrt{a^2 + 1} = a^2 + \sqrt{a^4 - 1}$$

donc $\sqrt{a^4-1}=\sinh 1-a^2$. En élevant au carré et en simplifiant, on obtient $a^2=\frac{1+\sinh^21}{2\sinh 1}=\frac{\cosh^21}{2\sinh 1}$. Comme on cherche a positif (et que $\cosh 1>0$), on en déduit $a=\frac{\cosh 1}{\sqrt{2\sinh 1}}$. Cette valeur est la seule solution possible de l'équation f(x)=1, il faudrait normalement vérifier qu'elle convient bien, puisqu'on a seulement raisonné par implication (et pas par équivalence). Or on sait déjà que l'équation admet une unique solution : c'est donc nécessairement

$$a = \frac{\operatorname{ch} 1}{\sqrt{2 \operatorname{sh} 1}} = \frac{1}{2} \frac{e + \frac{1}{e}}{\sqrt{e - \frac{1}{e}}} = 1,0065....$$