DRUGS IN HYPERTENSION

Principles of drug therapy Prof Asita de Silva

Stroke, Coronary Heart Disease, and Blood Pressure

MacMahon S. J Hypertens. 1990;8(suppl):239-244.

High systolic BP is associated with similar risk

SBP in acute ischaemic stroke: IST

Hypertension is very common in acute ischaemic stroke affecting ~80% of patients

High blood pressure

- Hypertension one of the most important preventable causes of mortality/morbidity
- Primary / essential hypertension no cure
- ? Secondary especially in your hypertensives
- Sri Lanka 18.8% prevalence
- Generally poorly managed with high CVD morbidity
 - poor compliance
 - monotherapy

Treatment of hypertension

- Non-pharmacological (lifestyle changes)
- Pharmacological

Recent meta analyses have shown ...

- Benefits of BP lowering due to degree of BP control as well as the class of drug used
- Selection of drug tailored to suit each patient
- Long acting CCBs first line therapy
 - Are safe in patients with DM & hypertension
 - Free of metabolic adverse reactions
 - No need for investigations related to drug effects

- In the US, only 30-50% hypertensives have adequate BP control
- Many effective drugs are available
- Knowledge of their MoA & sites of action allows accurate prediction of efficacy & safety
- Rational use of these drugs alone or in combination at the correct doses – lowers BP with minimal risk of serious toxicity

Goals of treatment

- 60 years or older: <150 / 90 mmHg
- 30-59 years: DBP <90 mmHg; ? Systolic goal
- Younger than 30: ? diastolic goal
- For these groups: <140 90 mmHg
- Hypertensives with DM, non-diabetic CKD: same goals and thresholds as above

Regulation of BP

Drug therapy – classes of drugs

- Calcium channel blockers (long-acting)*
- Thiazide diuretics*
- ACE inhibitors*
- AT-II receptor blockers*
- Beta-blockers
- Alpha receptor blockers

* Recommended as first-line by JNC 8; 2014

Ca²⁺ channel blockers - CCB

Ca²⁺ channel blockers

- Mainly affect heart & vascular smooth muscle
- Therefore, in addition to antianginal & antiarrhythmic effects CCBs also reduce peripheral resistance & BP
- Block voltage-depend. L-type Ca²⁺ channels
- Most smooth muscle cells depend on Ca²⁺ influx for resting tone & contractile response – these cells are relaxed by CCBs
- Given orally as well as parenterally
- Three groups Verapamil, Diltiazem, Dihyropyridines
- Selectivity between heart & smooth muscle varies

Dihydropyridines

- Acts mainly on vascular smooth muscle vasodilatation
- Vasodilator effect mainly arterioles, not veins
- Those with longer half-lives (amlopidine, felodipine) or sustained release preparations (long acting nifedipine)
 – first line therapy
- Short acting preparations not recommended
- Reflex tachycardia maintains / increased CO
- Common A/E: flushing, headache, ankle swelling
- Nimodipine particularly selective for cerebral vessels

Ca²⁺ channel blockers

Clinical uses

- Hypertension
- Angina (variant angina)
- Supraventricular tachyarrythmias
- Migraine prophylaxis

Thiazide Diuretics

- Widely used in uncomplicated hypertension
 - HCT, bendrofluazide, (metolazone)
- Mechanism of action unknown
 - Initially diuresis reduced blood volume & CO
 - Reduced vascular resist 2^{ry} to removal of NaCl
 - Opening of K_{ATP} channels resistant arteries
- Usually given once a day (activity for 12-24 h)

Thiazide diuretics

```
Adverse effects - | K / Na, DM, Gout, impotence, | LDL, | HDL, | renin
```

Thiazides - given orally at lowest possible dose (e.g. HCT 12.5 mg o.d. in the morning)

Higher doses don't | BP, but | adverse effects

If a diuretic not chosen as 1st line - usually indicated as add-on therapy

In severe hypertension – thiazides combined with vasodilators to reduce Na retention

Dose of thiazide

Antihypertensive action

____ Kaliuretic action

Angiotensin II Plays a Central Role in Organ Damage

EV = left ventricular; MI = myocardial infarction; GFR = glomerular filtration rate

Adapted from Willenheimer R et al Eur Heart J 1999; 20(14): 997–1008, Dahlöf B J Hum Hypertens 1995; 9(suppl 5): S37–S44, Daugherty A et al J Clin Invest 2000; 105(11): 1605–1612, Fyhrquist F et al J Hum Hypertens 1995; 9(suppl 5): S19–S24, Booz GW, Baker KM Heart Fail Rev 1998; 3: 125–130, Beers MH, Berkow R, eds. The Merck Manual of Diagnosis and Therapy. 17th ed. Whitehouse Station, NJ: Merck Research Laboratories 1999: 1682–1704, Anderson S Exp Nephrol 1996; 4(suppl 1): 34–40, Fogo AB Am J Kidney Dis 2000; 35(2):179–188

Drugs acting on R-A system

Renin

Angiotensinogen

Angiotensin I

ACE inhibitors

Captopril

Enalapril

Lisinopril

Perindopril

Angiotensin RB

Losartan

Valsartan

Candesartan

Telmisartan

ACE inhibitors

- Dilate capacitance & resistance vessels
 - reduce cardiac load & BP
- Clinically used in
 - Hypertension
 - Cardiac failure (AT II causes LVH)
 - MI (especially when HF is present)
 - Diabetic nephropathy (types I & II)

ACE inhibitors & BP

- Small fall in BP of normal people
- Large fall in hypertensives (with increased renin)
- <u>First-line</u> patients aged ≥18 years with CKD
- Act mainly on angiotensin-sensitive vascular beds
 - kidney, heart & brain
- Selectivity useful perfusion to vital organs
- Renal artery stenosis is an exception to this

Adverse effects

- Dry cough (? due to bradykinin)
- Hyperkalaemia, proteinuria investigations done at initiation of drug therpay
- Hypotension especially with first dose

Contraindications

- Renovascular disease (renal artery stenosis)
- Pregnancy
- Hypersensitivity
- Aortic stenosis

Effects of A II at AT₁ and AT₂ Receptors

AT₁

Sensitive to blockade by ARBs

Vasoconstriction
Aldosterone release
Oxidative stress
Vasopressin release
SNS activation
Inhibits renin release
Renal Na* & H₂O reabsorption
Cell growth & proliferation

AT₂

Vasodilation
Antiproliferation
Apoptosis
Antidiuresis/antinatriuresis
Bradykinin production
NO release

Angio II (AT 1) receptor blockers

Losartan / Valsartan / Candesartan

- Theoretically more effective than ACEIs more complete inhibtion of AT II
- Similar efficy to ACE inhibitors in patients with HF and chronic kidney disease
- Less adverse effects useful in those who develop cough with ACEIs
- Usually given orally once daily

Beta-receptor antagonists

- Not widely recommended as first-line treatment
- Reduces BP gradually in hypertensives
- Mechanism of action complex
 - reduction in cardiac output:
 - reduction in renin release
 - reduced central sympathetic activity
 - block pre-synaptic beta receptors reduce release of NA

Beta blockers

Propranolol, atenolol, metoprolol, carvedilol

- More cardio-selective drugs preferred
- Atenolol (b₁ selective) preferred to propranolol
 - less effect on airway beta receptors
 - convenient once daily dosing
- water soluble; less CNS related adverse effects
- Trend to use lower doses less adverse effects
- Recent studies metoprolol more effective in preventing complications of hypertension

Beta-blockers (adverse effects)

- Bronchoconstriction mainly in asthmatics
- Fatigue
- Cardiac failure
- Bradycardia life threatening heart block
- Hypoglycaemia avoid in uncontrolled DM
- Cold extremities (less with beta-1 selective)
- Withdrawal syndrome not discontinued abruptly

Beta-blockers: clinical uses

- Hypertension, Angina
- Following MI / heart failure Carvedilol
- Cardiac arrhythmias
- Thyrotoxicosis (e.g. before surgery)
- Migraine prophylaxis
- Anxiety, Benign essential tremor
- Glaucoma Timolol as eye drops

alpha₁-receptor antagonists (Prazosin)

- Vasodilatation block NA at postsynaptic a₁-receptors
- May be used with other anti-hypertensives
- Potentially useful in hypertensives with CHF & prostate hyperplasia
- LDL, VLDL, total TGs & | HDL beneficial effects in coronary artery disease
- Doxazosin / terazosin require only o.d. dosing
- Main adverse effects postural hypotension, dizziness, fatigue, ejaculation failure, priapism

Other anti-hypertensive drugs

- Methyldopa pregnancy related hypertension
- <u>K channel activators</u> diazoxide, minoxidil, pinacidil, cromakalim
- <u>Nitroprusside</u> for hypertensive emergencies & for controlled hypotension in surgery
 - Very short half life: given as an i.v. infusion
- <u>Hydralazine</u> acts mainly on arteries/arterioles SLElike syndrome limits its use

Hypertensive emergencies

- BP has to be lowered urgently
- Hospitalized if:
 - Hypertensive encephalopathy
 - Acute LVF (due to hypertension)
 - Aortic dissection
 - Pregnancy induced eclampsia
- Nitroprusside, hydralazine (pregnancy), GTN infusion, CCB i.v. (nicardipine, clevidipine)

Guidelines for therapy

- Lifelong therapy
- Quality of life
- Economic considerations
- Frequent assessment for end-organ damage
- Concomitant diseases
- Drug interactions e.g. NSAIDs
- Use recommended / appropriate drugs alone or in combination