Cave Rock Values

Kevin D. Webster and Jay T. Lennon 17 December, 2015

Overview

Code written by Kevin Webster to calcuate copy number abundance (expressed as MOB per gram rock bifoilm) and relative abundance (MOB / 16S rRNA gene)

Set working directory

```
rm(list=ls())
getwd()

## [1] "/Users/lennonj/GitHub/radiolyticCH4/code/caves/qPCR"

setwd("~/GitHub/radiolyticCH4")
```

Read in relevant data

Calculate the average pmoA copy numbers on each rock per gram

```
mob[,5] <- as.numeric(mob[,5]) # change data type of mob column 3
n.mob <- mob[,5] # names the mob copy number vector

#Calculate the arverage copy numbers on each rock

# Minh Chou Cave Bag 1 ROck 1
MC1R1 = mean(mob[1:3,5])

# Minh Chou Cave Bag 1 Rock 2
MC1R2 = mean(mob[7:9,5])

# Minh Chou Cave Bag 1 Rock 3
MC1R3 = mean(mob[19:21,5])</pre>
```

```
# Minh Chou Cave Bag 2 Rock 1
MC2R1 = mean(mob[16:18,5])
# Minh Chou Cave Bag 2 Rock 2
MC2R2 = mean(mob[13:15,5])
# Minh Chou Cave Bag 2 Rock 3
MC2R3 = mean(mob[25:27,5])
# Minh Chou Cave Bag 3 Rock 1
MC3R1 = mean(mob[10:12,5])
# Minh Chou Cave Bag 3 Rock 2
MC3R2 = mean(mob[4:6,5])
# Minh Chou Cave Bag 3 Rock 3
MC3R3 = mean(mob[22:24,5])
# Hoa Cuong Cave Bag 1 Rock 1
HC1R1 = mean(mob[40:42,5])
# Hoa Cuong Cave Bag 1 Rock 2
HC1R2 = mean(mob[49:51,5])
# Hoa Cuong Cave Bag 1 Rock 3
HC1R3 = mean(mob[46:48,5])
# Hoa Cuong Cave Bag 2 Rock 1
HC2R1 = mean(mob[28:30,5])
# Hoa Cuong Cave Bag 2 Rock 2
HC2R2 = mean(mob[43:45,5])
# Hoa Cuong Cave Bag 2 Rock 3
HC2R3 = mean(mob[37:39,5])
# Hoa Cuong Cave Bag 3 Rock 1
HC3R1 = mean(mob[34:36,5])
# Hoa Cuong Cave Bag 3 Rock 2
HC3R2 = mean(0,0,0)
# Hoa Cuong Cave Bag 3 Rock 3
HC3R3 = mean(mob[31:33,5])
```

Calculate average copy number per gram of soil per bag

```
# Minh Chou Cave Bag 1
MC1 <- (MC1R1+MC1R3)/2 # removed MC1R2; no amplification

# Minh Chou Cave Bag 2
MC2 <- (MC2R1+MC2R2+MC2R3)/3</pre>
```

```
# Minh Chou Cave Bag 3
MC3 <- (MC3R1+MC3R2+MC3R3)/3
# Hoa Cuong Cave Bag 1
HC1 <- (HC1R1+HC1R2)/2 # removed HC1R3; no amplification
# Hoa Cuong Cave Bag 2
HC2 \leftarrow (HC2R1+HC2R2+HC2R3)/3
# Hoa Cuong Cave Bag 3
HC3 \leftarrow (HC3R1+HC3R2+HC3R3)/3
sem <- function(x) sqrt(var(x)/length(x))</pre>
meanMC.gram <- mean(c(MC1, MC2, MC3))</pre>
min(c(MC1, MC2, MC3))
## [1] 10314
max(c(MC1, MC2, MC3))
## [1] 26371
semMC.gram <- sem((c(MC1, MC2, MC3)))</pre>
meanHC.gram <- mean(c(HC1, HC2, HC3))</pre>
semHC.gram <- sem(c(HC1, HC2, HC3))</pre>
min(c(HC1, HC2, HC3))
## [1] 34896
\max(c(HC1, HC2, HC3))
## [1] 152673
```

Calculate the average relative abundance

```
mob[,4] <- as.numeric(mob[,4]) # change data type of mob column 3
n.mob <- mob[,4] # names the mob copy number vector

#Calculate the arverage copy numbers on each rock

# Minh Chou Cave Bag 1 ROck 1
relMC1R1 = mean(mob[1:3,4])

# Minh Chou Cave Bag 1 Rock 2
# relMC1R2 = mean(mob[7:9,4]) # no MOB amplification on entire sample

# Minh Chou Cave Bag 1 Rock 3</pre>
```

```
relMC1R3 = mean(mob[19:21,4])
# Minh Chou Cave Bag 2 Rock 1
relMC2R1 = mean(mob[16:17,4]) # no MOB amplification on 269 tech rep 3
# Minh Chou Cave Bag 2 Rock 2
relMC2R2 = mean(mob[13,4]) # no amplification on 268 tech rep 2 and 3
# Minh Chou Cave Bag 2 Rock 3
relMC2R3 = mean(mob[c(25,27),4]) # no amplification on 272 tech rep 2
# Minh Chou Cave Bag 3 Rock 1
\#relMC3R1 = mean(mob[10:12,4]) \# no MOB amplification on entire sample
# Minh Chou Cave Bag 3 Rock 2
relMC3R2 = mean(mob[5:6,4]) # outlier on 265 tech rep 1
# Minh Chou Cave Bag 3 Rock 3
\#relMC3R3 = mean(mob[22:24,4]) \# no MOB amplification on entire sample
# Hoa Cuong Cave Bag 1 Rock 1
relHC1R1 = mean(mob[40:42,4])
# Hoa Cuong Cave Bag 1 Rock 2
relHC1R2 = mean(mob[49:51,4])
# Hoa Cuong Cave Bag 1 Rock 3
relHC1R3 = mean(mob[46:48,4])
# Hoa Cuong Cave Bag 2 Rock 1
relHC2R1 = mean(mob[28:30,4])
# Hoa Cuong Cave Bag 2 Rock 2
relHC2R2 = mean(mob[43:45,4])
# Hoa Cuong Cave Bag 2 Rock 3
#relHC2R3 = mean(mob[37:39,4]) # no MOB amplification on entire sample
# Hoa Cuong Cave Bag 3 Rock 1
relHC3R1 = mean(mob[c(34,36),4]) # no amplification on 272 tech rep 2
# Hoa Cuong Cave Bag 3 Rock 2
relHC3R2 = mean(0,0,0)
# Hoa Cuong Cave Bag 3 Rock 3
relHC3R3 = mean(mob[31:33,4])
```

Calculate average rel abund per bag

```
# Minh Chou Cave Bag 1
relMC1 <- (relMC1R1+relMC1R3)/2 # removed MC1R2; no amplification</pre>
```

```
# Minh Chou Cave Bag 2
relMC2 <- (relMC2R1+relMC2R2+relMC2R3)/3</pre>
# Minh Chou Cave Bag 3
relMC3 <- (relMC3R2)</pre>
# Hoa Cuong Cave Bag 1
relHC1 <- (relHC1R1+relHC1R2+relHC1R3)/3
# Hoa Cuong Cave Bag 2
relHC2 <- (relHC2R1+relHC2R2)/2</pre>
# Hoa Cuong Cave Bag 3
relHC3 <- (relHC3R1+relHC3R3)/2
sem <- function(x) sqrt(var(x)/length(x))</pre>
rel.meanMC.gram <- mean(c(relMC1, relMC2, relMC3))</pre>
min(c(relMC1, relMC2, relMC3))*100
## [1] 0.1078
max(c(relMC1, relMC2, relMC3))*100
## [1] 0.5646
semMC.gram <- sem((c(relMC1, relMC2, relMC3)))</pre>
rel.meanHC.gram <- mean(c(relHC1, relHC2, relHC3))</pre>
rel.semHC.gram <- sem(c(relHC1, relHC2, relHC3))</pre>
min(c(relHC1, relHC2, relHC3))*100
## [1] 0.951
max(c(relHC1, relHC2, relHC3))*100
## [1] 1.477
```