

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME		
CENTRE NUMBER	CANDIDATE NUMBER	

CHEMISTRY 0620/33

Paper 3 (Extended)

October/November 2010

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
Total	

This document consists of 14 printed pages and 2 blank pages.

1 The diagrams below show the electron arrangement in two compounds.

00 +	×× _	××
8 K 8 '	${}^{ imes}_{\circ}Cl_{ imes}^{ imes}$	$H_{\circ}^{\times}O_{\circ}^{\times}H$
	××	××

(a)	In a water molecule, each hydrogen atom is bonded to the oxygen atom by sharing a pair of electrons.
	Why does an oxygen atom share two pairs of electrons rather than just one pair?
	[1]
(b)	Describe how a potassium atom becomes a potassium ion.
	[1]
(c)	Why is there a bond between the ions in potassium chloride?
	[1]
(d)	Solid potassium chloride is a poor conductor of electricity. When dissolved in water it is a good conductor. Explain.
	[2]
	[Total: 5]

- 2 Vanadium is a transition element.
 - (a) An atom of the most common isotope of vanadium can be represented as $^{51}_{23}\mathrm{V}$.

Complete the following table to show the number of protons, electrons and neutrons in each particle.

particle	number of protons	number of electrons	number of neutrons
⁵¹ ₂₃ V			
⁵¹ ₂₃ V ³⁺			
⁵⁰ ₂₃ V			

[3]

			[0]
(b)	The	e major use of vanadium is to make vanadium steel alloys.	
	(i)	Explain the phrase steel alloys.	
			[2]
	(ii)	State the name and use of another steel alloy.	
		name	
		use	[2]
(c)	Twe	o of the oxidation states of vanadium are +3 and +4.	
(0)	1 44 (of the oxidation states of variation are 10 and 14.	
	(i)	Write the formula of vanadium(III) oxide and of vanadium(IV) oxide.	
		vanadium(III) oxide	
		vanadium(IV) oxide	[2]
	(ii)	Vanadium(III) oxide is basic and vandium(IV) oxide is amphoteric. Describe how you would obtain a sample of vanadium(III) oxide from a mixture these two oxides.	e of
			[3]
		[Total:	121

3	The reactions of a metal and the thermal stability of some of its compounds are determined
	by the position of the metal in the reactivity series.

(a) To find the order of reactivity of the metals, cobalt, magnesium, silver and tin, the following experiments were carried out.

experiment	result
tin plus silver(I) nitrate solution	silvery layer on tin
magnesium plus tin(II) nitrate solution	grey deposit on magnesium
tin plus cobalt nitrate solution	no reaction

		tin plus cobalt nitrate solution	no reaction	
	(i)	Give as far as possible the order of reac Write the least reactive first.	tivity of these metals.	
				[2]
	(ii)	What additional experiment needs to be reactivity?	pe done to put all four metal	s in order of
				[1]
	(iii)	Write an ionic equation for the reaction b on the equation the change which is oxid	* *	ions. Indicate
				[3]
(b)		dium is a more reactive metal than magnent magnesium compounds.	esium. Sodium compounds are	e more stable
		n experiment, their hydroxides were heate reaction' otherwise complete the equation		ompose write
	Nac	OH →		
	Mg((OH) ₂ →		[2]

(c) A cell consists of two different metal electrodes in an electrolyte. Three possible cells are shown below.

(i)	Why is the more reactive metal the negative electrode?	
(ii)	How can you deduce that zinc is more reactive than tin?	. [4]
		. [1]
(iii)	How could you change the zinc/copper cell to have a voltage greater than 1.1 V	' ?
		. [1]
(iv)	Complete the labelling of the zinc/tin cell.	[2]
	[Total:	: 14

The electrolysis of concentrated aqueous sodium chloride, between inert electrodes, is used to make four important chemicals.

hydrogen chlorine sodium hydroxide sodium chlorate(I)		
(a)	The	ions present in the electrolyte are Na ⁺ , H ⁺ , C <i>l</i> ⁻ and OH ⁻ .
	(i)	Hydrogen ions are discharged at the negative electrode (cathode). Write an equation for this reaction.
		[2]
((ii)	The hydrogen ions are from the water.
		$H_2O \rightleftharpoons H^+ + OH^-$
		Suggest an explanation why the concentration of hydroxide ions increases.
		[2]
(i	iii)	When a dilute solution of sodium chloride is used, chlorine is not formed at the positive electrode (anode), a different gas is produced. Name this gas.
		[1]
(i	iv)	State an example of an inert electrode.
		[1]
(b)	(i)	State a use of hydrogen.
		[1]
((ii)	Why is chlorine used to treat the water supply?
		[1]

(c) Sodium chlorate(I) is made by the reaction between chlorine and sodium hydroxide. It is used as bleach but over time it decomposes.

$$2NaClO(aq) \rightarrow 2NaCl(aq) + O_2(g)$$

The rate of decomposition can be studied using the apparatus shown below.

(i)	How could you measure the rate of decomposition of sodium chlorate(I)?
	[1]
(ii)	Describe how you could show that the rate of decomposition of sodium chlorate(I) is a photochemical reaction.
	[2]

[Total: 11]

5 Carboxylic acids contain the group

- (a) Ethanoic acid is a typical carboxylic acid. It forms ethanoates.
 - (i) Complete the following equations.

$Mg + \dots + \dots + \dots + \dots$	
	[2]
sodium + ethanoic \rightarrow +hydroxide acid	
	[1]

(ii) Ethanoic acid reacts with ethanol to form an ester. Give the name of the ester and draw its structural formula. Show all of the bonds.

name
structural formula

[2]

- **(b)** Maleic acid is an unsaturated acid. 5.8 g of this acid contained 2.4 g of carbon, 0.2 g of hydrogen and 3.2 g of oxygen.
 - (i) How do you know that the acid contained only carbon, hydrogen and oxygen?
 - (ii) Calculate the empirical formula of maleic acid.

(iii)	The mass of one mole of maleic acid is 116 g. What is its molecular formula?
	[2]
(iv)	Maleic acid is dibasic. One mole of acid produces two moles of H ⁺ . Deduce its structural formula.
	[2]
	[Total: 13]

For Examiner's Use

For
Examiner's
1100

[2]

6 The Kinetic Theory explains the properties of matter in terms of the arrangement and movement of particles.

- (a) Nitrogen is a gas at room temperature. Nitrogen molecules, N₂, which are spread far apart move in a random manner at high speed.
 - (i) Draw a diagram showing the arrangement of the valency electrons in a nitrogen molecule.

Use \times to represent an electron from a nitrogen atom.

(ii)	How does the movement and arrangement of the molecules in a crystal of nitrogen differ from those in gaseous nitrogen?
	[3]
Use	e the ideas of the Kinetic Theory to explain the following.
(i)	A sealed container contains nitrogen gas. The pressure of a gas is due to the molecules of the gas hitting the walls of the container. Explain why the pressure inside the container increases when the temperature is increased.

© UCLES 2010 0620/33/O/N/10

(b)

(ii) The following apparatus can be used to measure the rate of diffusion of a gas.

For Examiner's Use

The following results were obtained.

gas	temperature /°C	rate of diffusion in cm³/min
nitrogen	25	1.00
chlorine	25	0.63
nitrogen	50	1.05

Explain why nitrogen diffuses faster than chlorine.

[2]
Explain why the nitrogen diffuses faster at the higher temperature.

[1]

[Total: 10]

© UCLES 2010 0620/33/O/N/10 **[Turn over**

- 7 Synthetic polymers are widely used in the modern world.
 - (a) Their use has brought considerable advantages to modern life as well as some disadvantages.
 - (i) Suggest **two** advantages of a plastic bucket compared to a steel bucket.

.....[2]

(ii) Name two uses of man-made fibres, such as nylon and Terylene.

.....[2]

(iii) Describe the pollution caused by synthetic polymers.

.....[3]

- **(b)** One type of polymer is formed by addition polymerisation.
 - (i) The structural formula of an addition polymer is given below.

Give the name and structural formula of the monomer.

name of monomer[1]

structural formula of monomer

[1]

(ii) Draw the structural formula of the addition polymer formed by the polymerisation of phenylethene. The structural formula of phenylethene is given below.

For Examiner's

$$C_6H_5$$
 $C=C$

[2]

(c) Nylon is made by condensation polymerisation. It has the structural formula shown below.

(i)	Name th	he linkage	in this	polymer.
-----	---------	------------	---------	----------

۲4	1
 ĮΙ	J

(ii) Name the natural macromolecules which have the same linkage.

- 4 -
 [1]

(iii) Deduce the formulae of the two monomers which reacted to form the nylon and water.

monomer	
HIGHIOHICI	

monomer

[2]

[Total: 15]

BLANK PAGE

BLANK PAGE

DATA SHEET
The Periodic Table of the Elements

	0	4 He lium 2	20 Neon 10 A 40 A Argon	84 Kr Krypton 36	Xeron Xeron 54	Radon 86		Lu Lutetium 71	Lr Lawrendur 103
	II/		19 Fluorine 9 35.5 C 1	80 Br Bromine 35	127 I lodine 53	At Astatine 85		173 Yb Ytterbium 70	Nobelium
	I>		16 Oxygen 8 32 \$ \$	79 Se Selenium 34	128 Te Tellurium	Po Polonium 84		169 Tm Thulium	Md Mendelevium 101
	>		Nitrogen 7 31 9 Phosphorus 15	75 AS Arsenic 33		209 Bi Bismuth 83		167 Er Erbium 68	Fm Fermium
	2		Carbon 6 Carbon 8 Silicon 14	73 Ge Germanium 32	Sn Tin	207 Pb Lead		165 Ho Holmium 67	ES Einsteinium 99
	=		11 B Boron 5 A1 A1 Aluminium 13	70 Ga Gallium 31	115 In Indium	204 T 1 Thallium		162 Dy Dysprosium 66	Cf Californium 98
				65 Zn Zinc 30	112 Cd Cadmium	201 Hg Mercury 80		159 Tb Terbium 65	BK Berkelium
				64 Copper 29	108 Ag Silver 47	197 Au Gold		Gd Gadolinium 64	Cm Curium
Group				S9 Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Americium
G			1	59 Co Cobalt 27	Rhodium 45	192 I r Iridium 77		Samarium 62	Pu Plutonium
		Hydrogen		56 Fe Iron	Ruthenium 44	190 Os Osmium 76		Pm Promethium 61	Neptunium
				Manganese	Tc Technetium	186 Re Rhenium 75		Neodymium 60	238 Uuranium
				Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		Pr Praseodymium 59	Pa Protactinium 91
				51 V Vanadium 23	Niobium 41	181 Ta Tantalum		140 Ce Cerium	232 Th Thorium
				48 Ti Titanium	2 Zrconium	178 Hf Hafnium 72		1	nic mass Ibol nic) number
				45 Scandium 21	89 Yttrium	139 La Lanthanum *	227 Actinium †	d series series	 a = relative atomic mass X = atomic symbol b = proton (atomic) number
	=		Beryllum 4 24 Magnesium 12	40 Ca Calcium	Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series	а х
	_		7 Lithium 3 23 Na Sodium 11	39 K Potassium	Rb Rubidium	133 Csesium 55	Fr Francium 87	*58-71L	Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.