Diszkrét matematika 1.

7. előadás

Fancsali Szabolcs (Ligeti Péter diái alapján)

nudniq@cs.elte.hu www.cs.elte.hu/~nudniq

Séta, vonal, út

Definíció

Legyen $n \in \mathbb{N}^+$ és $G = (V, E, \varphi)$ egy gráf. Ekkor egy $(v_0, e_1, v_1, e_2, v_2, \dots, e_n, v_n)$ sorozat séta v_0 -ból v_n -be, ha

- $v_0, v_i \in V, e_i \in E : i = 1, ..., n$

A séta zárt, ha $v_0 = v_n$.

Definíció

- Ha $i \neq j$ esetén $e_i \neq e_j$, akkor a sétát vonalnak nevezzük.
- Ha $i \neq j$ esetén $v_i \neq v_j$, akkor a sétát útnak nevezzük. Ha egy útban $v_0 = v_n$, akkor körnek nevezzük.

Állítás

Egy G gráfban legyen $u, v \in V$. Ekkor \exists séta u-ból v-be $\Leftrightarrow \exists$ út u-ból v-be.

Fák

Állítás

Legyen V elemein adva a következő reláció: $u\sim v$, pontosan akkor, ha u=v vagy van út u és v között. Ez ekvivalenciareláció.

Definíció

A fenti ekvivalenciareláció által meghatározott osztályok által feszített részgráfok a gráf komponensei. Egy gráf összefüggő, ha egy komponensből áll.

Definíció

Egy G gráf fa, ha összefüggő és körmentes.

Fák

Tétel

Legyen $G = (V, E, \varphi)$ egyszerű gráf. Az alábbiak ekvivalensek:

- \bigcirc G fa
- 2 G minimális összefüggő
- G maximális körmentes.

Lemma

Ha $G=(V,E,\varphi)$ véges körmentes gráf és $E\neq\emptyset$, akkor $\exists u,v\in V:u\neq v\land d(u)=d(v)=1.$

Tétel

Legyen $G=(V,E,\varphi)$ fa, $|V|=n\in\mathbb{N}^+$. Ekkor |E|=n-1.

Feszítőfák

Definíció

A G gráf egy T részgráfját a G feszítőfájának nevezzük, ha csúcshalmaza megegyezik G csúcshalmazával és fa.

Állítás

Minden összefüggő véges gráfnak létezik feszítőfája.

Definíció

Körmentes gráfot erdőnek nevezzük. AG gráf egy F részgráfját aG feszítőerdejének nevezzük, ha csúcshalmaza megegyezik G csúcshalmazával és minden komponensében egy feszítőfát tartalmaz.

Állítás

Véges erdő élszáma a csúcsszáma és a komponeneseinek számának különbsége.

Minimális súlyú feszítőerdő keresése

Definíció

Egy $G = (V, E, \varphi)$ gráf esetén egy $w : E \to \mathbb{R}$ függvényt élsúlyozásnak nevezünk. Egy $e \in E$ él súlya w(e), egy G gráf súlya $\sum_{e \in E} w(e)$.

Probléma

Adott G gráf és w élsúlyozás esetén keressünk G-nek egy minimális súlyú feszítőerdejét.

Mohó algoritmus

- lokális optimumok segítségével keres globális optimumot
- nem univerzális, de sokszor hatásos

Minimális súlyú feszítőerdő keresése

Probléma

Adott G gráf és w élsúlyozás esetén keressünk G-nek egy minimális súlyú feszítőerdejét.

Kruskal algoritmusa

A V csúcsú üres részgráfból kiindulva minden lépésben vegyük a részgráfhoz a minimális súlyú olyan élt, amivel még nem keletkezik kör.

Fordított mohó algoritmus

A G gráfból kiindulva, amíg van kör a gráfban, annak egy köréből töröl egy maximális súlyú élt.

Tétel

Kruskal algoritmusa és a fordított mohó algoritmus is egy minimális súlyú feszítőerdőt ad.