Ιόνιο Πανεπιστήμιο – Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2023-24

Εισαγωγή στους Υπολογιστές

(αρχές λειτουργίας και τεχνολογία)

http://mixstef.github.io/courses/csintro/

Μ.Στεφανιδάκης

Σχετικά με το μάθημα

• Εισαγωγή

- Ενότητες μαθήματος
 - Αρχές λειτουργίας υπολογιστών
 - Υλικό (hardware)
 - Χειρισμός δεδομένων
 - Λογισμικό (software)
 - Αλγόριθμοι (εισαγωγικά)
 - και Δομές Δεδομένων

Σχετικά με το μάθημα

• Εισαγωγή

- Βαθμολόγηση
 - Με γραπτές εξετάσεις

- Βιβλία για το μάθημα
 - Behrouz A. Forouzan, "Εισαγωγή στην Επιστήμη των Υπολογιστών", ΚΛΕΙΔΑΡΙΘΜΟΣ, 2015.
 - Καλαφατούδης, Δροσίτης, Κοίλιας, "Εισαγωγή στις Τεχνολογίες Πληροφορίας και Επικοινωνίας", 1η έκδοση, ΕΚΔΟΣΕΙΣ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ, 2011.

Ο «Υπολογιστής»

• Εισαγωγή

- Ο «Υπολογιστής» μετασχηματίζει δεδομένα εισόδου σε δεδομένα εξόδου, βάσει ενός προγράμματος ελέγχου
 - Τυπικός ορισμός καλύπτει όμως όλες τις περιπτώσεις χρήσης
 - είμαστε στο fb; ασχολούμαστε με το gaming; οδηγούμε; (κ.ο.κ.)

Η «μνήμη»

• Εισαγωγή

Στην πραγματικότητα η «μνήμη» είναι μια ιεραρχία υποσυστημάτων (κρυφές μνήμες, κύρια μνήμη)

- Τα δεδομένα εισόδου και εξόδου αποθηκεύονται στη «μνήμη»
 - Και μπορούν να χρησιμοποιηθούν σε επόμενη φάση επεξεργασίας
 - Το πρόγραμμα ελέγχου πού βρίσκεται αποθηκευμένο;

Το μοντέλο "von Neumann"

Η καινοτομία (στην εποχή των πρώτων υπολογιστών): το πρόγραμμα ελέγχου είναι επίσης δεδομένα

- «Υπολογιστής αποθηκευμένου προγράμματος»
 - Το πρόγραμμα ελέγχου (εντολές) αποθηκεύεται μαζί με τα δεδομένα στη μνήμη

Το πρόγραμμα ελέγχου (εντολές)

- Είναι ένα σύνολο «οδηγιών»
 - Περιγράφει την επεξεργασία που θα γίνει πάνω στα δεδομένα εισόδου
 - Κάθε «οδηγία» ονομάζεται εντολή μηχανής
 - εκτελεί μια μικρή, αυτοτελή λειτουργία
 - το πρόγραμμα (ελέγχου) αποτελείται από πάρα πολλές εντολές μηχανής
 - Η εντολή μηχανής διαφέρει από τις εντολές υψηλού επιπέδου των γλωσσών προγραμματισμού
 - Κάθε εντολή της γλώσσας προγραμματισμού μεταφράζεται
 (μεταγλωττίζεται) σε πολλές εντολές μηχανής

Εντολή Μηχανής (Machine Instruction)

- Μικρή λειτουργία χειρισμού δεδομένων
 - Μεταφορά δεδομένων από/προς μνήμη
 - Αριθμητική πράξη μεταξύ δύο αριθμών
 - Έλεγχος αν ένας αριθμός είναι μηδέν...
 - **■** K.O.K
- Οι εντολές μηχανής εκτελούνται σειριακά
 - Η μια μετά την άλλη από την επόμενη θέση μνήμης
- Εξαίρεση: εντολές διακλάδωσης
 - Εάν μια συνθήκη είναι αληθής, τότε γίνεται μεταφορά της
 εκτέλεσης σε διαφορετικό σημείο του προγράμματος (όχι στην επόμενη θέση μνήμης)
 - εντολές branch (ή jump)
 - Θα μπορούσε να υλοποιηθεί ένα χρήσιμο πρόγραμμα εάν δεν υπήρχαν εντολές διακλάδωσης;

Κεντρική Μονάδα Επεξεργασίας (ΚΜΕ)

Central Processing Unit (CPU)

•

Τι σημαίνει όταν λέμε ότι ένας επεξεργαστής είναι 32-bit ή 64-bit; Πώς σχετίζεται με το διπλανό σχήμα;

- «Μονοπάτι» δεδομένων (datapath)
 - Εκτέλεση πράξεων
- Μονάδα ελέγχου (control unit)
 - Επιλογή πράξης σύμφωνα με κάθε εντολή
- (Συγ)χρονισμός μέσω ενός σήματος ρολογιού (clock)
 - Καθορίζει την έναρξη της επόμενης λειτουργίας

Το μονοπάτι δεδομένων (datapath)

Central Processing Unit (CPU)

- Καταχωρητές (registers)
 - Θέσεις προσωρινής αποθήκευσης μέσα στην ΚΜΕ, γρήγορης
 προσπέλασης αλλά σε περιορισμένο αριθμό
 - Οι καταχωρητές παρέχουν τα δεδομένα εισόδου κατά την εκτέλεση των πράξεων.
 - Στους καταχωρητές αποθηκεύονται επίσης τα αποτελέσματα των πράξεων.

Εκτέλεση εντολών: ο κύκλος μηχανής

Σε ποια μορφή βρίσκονται τα δεδομένα;

- Στη μνήμη και στους καταχωρητές
- Στις μονάδες εκτέλεσης πράξεων
- Απάντηση: σε δυαδική μορφή
 - Ακολουθίες από 0 και 1
 - ή αλλιώς ON/OFF, Αληθές/Ψευδές...
- Ισχύει για κάθε είδους δεδομένα
 - Ακόμα και για μη αριθμητικά δεδομένα: κείμενο, εικόνα, ήχο...
 - Και οι εντολές του υπολογιστή επίσης
- Γιατί σε δυαδική μορφή;

Η τρέχουσα τεχνολογία των υπολογιστών

- Ηλεκτρονική
 - Τα στοιχεία που συγκροτούν τους υπολογιστές λειτουργούν με στάθμες τάσης ή φορά ρεύματος
- Ψηφιακή
 - Οι επιτρεπόμενες τιμές ανήκουν σε διακριτές στάθμες
- Δυαδική
 - Δύο στάθμες, ΟΝ ή ΟFF, '0' ή '1'
 - Τα στοιχεία που συγκροτούν τους υπολογιστές υλοποιούν διακοπτικές λειτουργίες
 - «κλειστός διακόπτης»: περνάει ρεύμα
 - · «ανοικτός διακόπτης»: δεν περνάει ρεύμα

Στάθμες ψηφιακού σήματος

• Δυαδική λογική

- 2 στάθμες
 - V+ και V- («Τροφοδοσία» και «γείωση»)
 - Αναπαριστούν το λογικό 1 και 0 αντίστοιχα
- Κυματομορφές
 - Η στάθμη τάσης σε ένα σημείο του κυκλώματος στην εξέλιξη του χρόνου

i

Στα πρώτα ολοκληρωμένα λογικά κυκλώματα η τάση τροφοδοσίας ήταν >15V ενώ σήμερα βρίσκεται γύρω στο 1V

Το τρανζίστορ MOSFET

- Ο μικροσκοπικός διακόπτης των σύγχρονων κυκλωμάτων κατασκευασμένος από ημιαγωγικά υλικά
 - Η θεωρία λειτουργίας του είναι γνωστή από το 1925
 - ...αλλά τα πρώτα λειτουργικά κυκλώματα κατασκευάστηκαν τη δεκαετία του 60

Ημιαγωγοί

- Ημιαγωγοί
 - Στοιχεία με κρυσταλλική δομή (πυρίτιο, γερμάνιο...)
 - Μεταξύ αγωγών και μονωτών
 - Σε θερμοκρασία δωματίου και καθαρή μορφή: όχι καλοί αγωγοί του ηλεκτρισμού
 - Προσμίξεις με «ακάθαρτα» υλικά (impurities)
 - "Doping"
 - Προσθήκη ελεύθερων ηλεκτρονίων (donors)
 - n-type
 - Προσθήκη «οπών» (acceptors)
 - απουσία ηλεκτρονίων
 - p-type
 - Τα χαρακτηριστικά αγωγιμότητας αλλάζουν

Ημιαγωγοί (2)

- Το ενδιαφέρον σημείο επαφής
 - Όταν ενώνονται ημιαγωγοί n-type και p-type
 - Στο σημείο επαφής: κατάσταση ισορροπίας μετά από την αρχική μετακίνηση ηλεκτρονίων στο p-type, περαιτέρω ηλεκτρόνια απωθούνται
 - Με ορθή πόλωση, και άλλα ηλεκτρόνια μπορούν να υπερπηδήσουν το εμπόδιο και να φτάσουν στο p-type, οπότε παρατηρείται ροή ρεύματος
 - Με ανάστροφη πόλωση, νέα ηλεκτρόνια δεν έχουν την ευκαιρία να φτάσουν στο p-type, οπότε δεν ρέει ρεύμα μέσω της επαφής
 - την ανάστροφη πόλωση εκμεταλλεύονται τα ηλεκτρονικά ψηφιακά κυκλώματα των υπολογιστών

Λειτουργία του τρανζίστορ MOSFET

Η συρρίκνωση του τρανζίστορ

- Ένας σύγχρονος επεξεργαστής μπορεί να περιέχει από 1 έως 30+ δις τρανζίστορ σε μία επιφάνεια 280-400mm² (συχνά σε πολλαπλά επίπεδα)
- Πλεονεκτήματα
 - Ταχύτερη λειτουργία
 - Πιο γρήγοροι χρόνοι ON-OFF
 - Μικρότερη κατανάλωση ενέργειας
 - Για τον ίδιο αριθμό τρανζίστορ
 - Μεγαλύτερη ολοκλήρωση
 - Μείωση κόστους παραγωγής και αύξηση λειτουργικότητας
- Τρέχουσα εμπορική τεχνολογία:
 - Περίπου 100εκ. τρανζίστορ/mm²

Κατασκευή ολοκληρωμένων κυκλωμάτων

• Γραμμές παραγωγής

- Φωτολιθογραφία με μάσκες
 - Επικάλυψη με ειδικό φωτοανθεκτικό υλικό (photoresist)
 - Έκθεση σε υπεριώδες φως (με το ανάλογο μήκος κύματος)
 - Μέσω μιας μάσκας που επιλέγει τις περιοχές επεξεργασίας
 - Απομάκρυνση photresist από επιλεγμένες περιοχές, αφήνοντας εκτεθειμένα τα μέρη προς επεξεργασία
- Διεργασίες στα εκτεθειμένα μέρη
 - Οξείδωση, απόξεση, απόθεση μετάλλου, εμφύτευση ιόντων...
 - Ταυτόχρονα σε εκατομμύρια τρανζίστορ!
- Επανάληψη
 - Από το βήμα της μάσκας

Λόγω της απαιτούμενης ακρίβειας, μια γραμμή παραγωγής κοστίζει δισ. \$

Η αρχική επιφάνεια

Εφαρμογή photoresist και μάσκας

Εφαρμογή υπεριώδους ακτινοβολίας

Στα μέρη που μένουν εκτεθειμένα, μετά την υπεριώδη ακτινοβολία το photoresist γίνεται εύπλαστο. Στη συνέχεια αφαιρείται με χημικό τρόπο, αφήνοντας εκτεθειμένα μέρη για το επόμενο βήμα κατεργασίας.

Μετά την απόξεση

Στα μέρη που μένουν εκτεθειμένα εφαρμόζεται διαδικασία απόξεσης με τη βοήθεια οξέων. Στη συνέχεια η επιφάνεια καθαρίζεται με απιονισμένο νερό και στεγνώνει με άζωτο.

Απόθεση νέων στρωμάτων SiO₂

Πριν το βήμα αυτό (και όλα τα επόμενα) έχει προηγηθεί πάλι η εφαρμογή photoresist και μάσκας.

Doping – Υπόστρωμα τρανζίστορ

Μέσω της εμφύτευσης με τη βοήθεια μιας δέσμης ιόντων, αλλάζει ο τύπος του ημιαγωγού της περιοχής κάτω από το λεπτό στρώμα οξειδίου σχηματίζοντας το υπόστρωμα των τρανζίστορ NMOS (doping)

Doping – Υπόστρωμα τρανζίστορ

Μέσω της εμφύτευσης με τη βοήθεια μιας δέσμης ιόντων, αλλάζει ο τύπος του ημιαγωγού της περιοχής κάτω από το λεπτό στρώμα οξειδίου σχηματίζοντας το υπόστρωμα των τρανζίστορ PMOS (doping)

Εναπόθεση polysilicon

Ένα σχήμα polysilicon εναποτίθεται χημικά με την κυκλοφορία αερίου μίγματος πάνω από την επιφάνεια πυριτίου θερμαινόμενη στους 650°C. Το σχήμα σχηματίζει τις πύλες των τρανζίστορ και τη μεταξύ τους διασύνδεση. Θα ακολουθήσει doping για να αυξηθεί η αγωγιμότητά του.

Doping πηγής και καταβόθρας τρανζίστορ

Στη συνέχεια σχηματίζονται οι πηγές και καταβόθρες των τρανζίστορ ανάλογα με τον τύπο τους (NMOS ή PMOS) με εμφύτευση ιόντων. Δημιουργία των σημείων επαφής για τους αγωγούς διασύνδεσης.

Doping πηγής και καταβόθρας τρανζίστορ

- Εισαγωγή
- Τεχνολογία

Στη συνέχεια σχηματίζονται οι πηγές και καταβόθρες των τρανζίστορ ανάλογα με τον τύπο τους (NMOS ή PMOS) με εμφύτευση ιόντων. Δημιουργία των σημείων επαφής για τους αγωγούς διασύνδεσης.

Πρώτο επίπεδο μεταλλικών συνδέσεων

Τα επίπεδα μετάλλου δημιουργούνται με εξάχνωση του μεταλλικού υλικού σε κενό υπό την επίδραση δέσμης ηλεκτρονίων.

Διαδικασία παραγωγής

- Στην πραγματικότητα
 - Οι δημιουργούμενες επιφάνειες δεν είναι απόλυτα επίπεδες ούτε έχουν κάθετες γωνίες
 - τα χαρακτηριστικά είναι πολύ πιο ακανόνιστα
 - Οι αναλογίες διαστάσεων είναι διαφορετικές
 - ειδικά μελετημένες για την επιθυμητή ροή ηλεκτρονίων
 - Τα επίπεδα μετάλλου είναι πολύ περισσότερα
 - καταλαμβάνουν μεγάλο μέρος του ολοκληρωμένου κυκλώματος
 - Τα βήματα κατασκευής είναι πολύ περισσότερα (40+)
 - 🔹 από την απλουστευμένη εικόνα που είδαμε
 - Οι δομές που κατασκευάζονται είναι πολυπλοκότερες
 - Απαιτούν πολλαπλά στάδια επεξεργασίας