

1. 최근 동향

Transformer

MLP

멸종 위기 CNN (尖)

到对社 是是 加学程生全型级炒人引起 ᄺᆤᆉᆦ CNN

2. Contribution

1. Convolution layer 멈춰!

GAN completely **free** of convolution

2. memory-friendly Transformer

Generator based on Memory friendly Transformer

3. SOTA!

STL-10 FID,IS 1st

3. Charm of Transformer

- 1. It has strong representation capability and is free of humandefined inductive bias.
- 2. the transformer architecture is general, conceptually simple and has the potential to become a powerful "universal" model across tasks and domains

Transformer Encoder
As Basic Block

Memory-Friendly <u>Generator</u>

PixelShuffle method

멈춤 조건
$$W_T = W, H_T = H$$

Result

Dataset = CIFAR-10

GENERATOR	DISCRIMINATOR	IS↑	$FID{\downarrow}$
AUTOGAN	AUTOGAN	$8.55 {\pm}~0.12$	12.42
TRANSFORMER	AutoGAN	$\textbf{8.59} \!\pm \textbf{0.10}$	13.23
AUTOGAN	TRANSFORMER		
TRANSFORMER	TRANSFORMER	6.95 ± 0.13	41.41

Transformer G -> Good Performance

But, Transformer D -> Bad Performance

5. Data Augmentation is Crucial for TransGAN

Few-shot

좋은 생성 모델로 만든 가짜 이미지로 데이터 증강을 하는 방법

METHODS	DA	IS↑	FID↓
WGAN-GP (GULRAJANI ET AL., 2017)	× √	6.49 ± 0.09 6.29 ± 0.10	39.68 37.14
AUTOGAN (GONG ET AL., 2019)	× √	8.55 ± 0.12 8.60 ± 0.10	12.42 12.72
STYLEGAN V2 (ZHAO ET AL., 2020B)	× √	9.18 9.40	11.07 9.89
TRANSGAN	× √	6.95 ± 0.13 8.15 ± 0.14	41.41 19.85

Data Augmentation을 통해 눈에 띄는 성능 향상!

6. Co-Training with Self-Supervised Auxiliary Task

MT-CT

Multi-Task Co-Training

GAN loss + Supper Resolution 보조 task

MODEL	IS↑	FID↓
TRANSGAN + DA (*)	8.15 ± 0.14	19.85
(*) + MT-CT	8.20 ± 0.14	19.12

7. Locality-Aware Initialization for Self-Attention

Local Initialization without Convolution

Regularizer 역할

7. Locality-Aware Initialization for Self-Attention

Result

MODEL	IS↑	FID↓
TRANSGAN + DA(*)	$8.15 {\pm}~0.14$	19.85
(*) + MT-CT	8.20 ± 0.14	19.12
(*) + MT-CT + Local init.	$\textbf{8.22} \!\pm \textbf{0.12}$	18.58

8. Scaling up to Large Model

Model

S:384x384

M: 512 x 512

L:768 x 768

XL:1024x1024

MODEL	Dертн	DIM	IS↑	FID ↓
TRANSGAN-S	{5,2,2}	384	8.22 ± 0.14	18.58
TRANSGAN-M	$\{5,2,2\}$	512	8.36 ± 0.12	16.27
TRANSGAN-L	$\{5,2,2\}$	768	8.50 ± 0.14	14.46
TRANSGAN-XL	{5,4,2}	1024	$\textbf{8.63} \pm \textbf{0.16}$	11.89

Number of Encoder Block

9. Comparison with State-of-the-art GANs

CIFAR-10

FID 2등!

METHODS	IS	FID
WGAN-GP (GULRAJANI ET AL., 2017)	6.49 ± 0.09	39.68
LRGAN (YANG ET AL., 2017)	7.17 ± 0.17	-
DFM (Warde-Farley & Bengio, 2016)	7.72 ± 0.13	-
SPLITTING GAN (GRINBLAT ET AL., 2017)	7.90 ± 0.09	-
IMPROVING MMD-GAN (WANG ET AL., 2018A)	8.29	16.21
MGAN (HOANG ET AL., 2018)	8.33 ± 0.10	26.7
SN-GAN (MIYATO ET AL., 2018)	8.22 ± 0.05	21.7
PROGRESSIVE-GAN (KARRAS ET AL., 2017)	8.80 ± 0.05	15.52
AUTOGAN (GONG ET AL., 2019)	8.55 ± 0.10	12.42
STYLEGAN V2 (ZHAO ET AL., 2020B)	9.18	11.07
TransGAN-XL	8.63 ± 0.16	11.89

STL-10

SOTA!!

IS, FID 1등!

METHODS	IS↑	FID↓
DFM (WARDE-FARLEY & BENGIO, 2016)	8.51 ± 0.13	-
D2GAN (NGUYEN ET AL., 2017)	7.98	-
PROBGAN (HE ET AL., 2019)	8.87 ± 0.09	47.74
DIST-GAN (TRAN ET AL., 2018)	-	36.19
SN-GAN (MIYATO ET AL., 2018)	9.16 ± 0.12	40.1
IMPROVING MMD-GAN (WANG ET AL., 2018A)	9.23 ± 0.08	37.64
AUTOGAN (GONG ET AL., 2019)	9.16 ± 0.12	31.01
ADVERSARIALNAS-GAN (GAO ET AL., 2020)	9.63 ± 0.19	26.98
TRANSGAN-XL	10.10 ± 0.17	25.32

감사합니다