Homework 9 Honors Analysis I

Homework 9

ALECK ZHAO

November 15, 2017

Chapter 9: Category

5. If A is a subset of \mathbb{R} and if x is in the interior of A, show that x is a point of continuity for χ_A (the characteristic function of A). Are there any other points of continuity?

Proof. Since $x \in A^{\circ}$, there exists $\delta > 0$ such that $B_{\delta}(x) \subset A$. Then let $\varepsilon > 0$. Since $x \in A$ as well,

$$\chi_A(B_\delta(x)) = \{1\} \subset B_\varepsilon(\chi_A(x)) = B_\varepsilon(1)$$

so χ_A is continuous at x. Then χ_A is also continuous on A^c by a similar argument.

9. If E is a closed set in \mathbb{R} , show that E = D(f) for some bounded function f. (Hint: A sum of two characteristic functions will do the trick.)

Proof. Let $f = \chi_{\partial E} + \chi_{E^{\circ}}$. Then the points of discontinuity are exactly ∂E and E° , and since E is closed, $E = \overline{E} = \partial E \cup E^{\circ}$.

- 12. More generally, in any metric space, show that every open set is an F_{σ} and that every close set is a G_{δ} .
- 14. Prove that A has an empty interior in M if and only if A^c is dense in M.

Proof. (
$$\Longrightarrow$$
): If $A^{\circ} = \emptyset$, then $(A^{\circ})^{c} = M = \overline{A^{c}}$, so A^{c} is dense in M .
(\Longleftrightarrow): If A^{c} is dense in M , then $\overline{A^{c}} = M = (A^{\circ})^{c}$ so $A^{\circ} = \emptyset$.

28. In a metric space M, show that any subset of a first category set is still first category, and that a countable union of first category sets is again first category.

Proof. Let $A \subset M$ be first category, so $A = \bigcup_{n=1}^{\infty} E_n$ for nowhere dense sets $E_n \subset M$. Then if $B \subset A$,

$$B = A \cap B = \left(\bigcup_{n=1}^{\infty} E_n\right) \cap B = \bigcup_{n=1}^{\infty} (E_n \cap B)$$

Now, since E_n is nowhere dense, we have $(\overline{E_n})^{\circ} = \emptyset$, so

$$(\overline{E_n \cap B})^{\circ} = (\overline{E_n} \cap \overline{B})^{\circ} = (\overline{E_n})^{\circ} \cap \overline{B}^{\circ} = \varnothing$$

so $E_n \cap B$ is also nowhere dense, so B is a countable union of nowhere dense sets, thus first category. If A_1, A_2, \cdots are first category sets, then write $A_i = \bigcup_{n=1}^{\infty} E_{in}$ for all i where E_{in} is nowhere dense. Then we have

$$\bigcup_{m=1}^{\infty} A_m = \bigcup_{m=1}^{\infty} \left(\bigcup_{n=1}^{\infty} E_{nm} \right)$$

is also a countable union of nowhere dense sets, so the union is first category as well.

Homework 9 Honors Analysis I

30. Show that \mathbb{N} is first category in \mathbb{R} but second category in itself.

Proof. For any point $n \in \mathbb{N}$, we have $\left(\overline{\{n\}}\right)^{\circ} = \emptyset$, so each point is a nowhere dense set in \mathbb{R} . Then we have $\mathbb{N} = \bigcup_{n=1}^{\infty} \{n\}$ is a countable union of nowhere dense sets in \mathbb{R} , so \mathbb{N} is first category in \mathbb{R} . Since every subset of \mathbb{N} is open in \mathbb{N} , there are no nowhere dense subsets, since $(\overline{E})^{\circ} = \overline{E} \neq \emptyset$ for any $E \subset \mathbb{N}$. Thus, \mathbb{N} is second category in itself.

32. In \mathbb{R} , show that any open interval (and hence any nonempty, open set) is a second category set.

Proof. Let a < b and suppose (a, b) is first category. Then since \mathbb{R} is complete, $(a, b)^c$ must be dense, but it is clearly not, since it does not intersect (a, b). Thus, (a, b) is second category.

47. Let \mathcal{P} be the vector space of all polynomials supplied with the norm $||p|| = \max_{0 \le i \le n} |a_i|$, where $p(x) = a_0 + a_1 x + \cdots + a_n x^n \in \mathcal{P}$. Show that P is not complete.

Proof. Let $E_n \subset \mathcal{P}$ be the subset of all polynomials of degree at most n. Then E_n is closed since any sequence of polynomials in E has degree at most n, so if it converges in \mathcal{P} , the result must have degree at most n and thus be in E_n .

Now, suppose $E_n^{\circ} \ni p = a_0 + a_1 x + \dots + a_k x^k$. Then that means $B_{\varepsilon}(p) \subset E_n$ for some ε . Let $q := a_0 + a_1 x + \dots + a_k x^k + \frac{\varepsilon}{2} x^{n+k+1}$. Then

$$||p - q|| = \left\| -\frac{\varepsilon}{2} x^{n+k+1} \right\| = \frac{\varepsilon}{2}$$

$$\implies q \in B_{\varepsilon}(p)$$

but $q \notin E_n$ since it has degree n + k + 1 > n. Thus, $B_{\varepsilon}(p) \not\subset E_n$ for any ε , so $E_n^{\circ} = \emptyset$, and thus E_n is nowhere dense in \mathcal{P} .

Now, we have $\mathcal{P} = \bigcup_{n=0}^{\infty} E_n$, which is a countable union of nowhere dense sets, so \mathcal{P} is first category. By the Baire Category theorem, all complete spaces are category two in themselves, so \mathcal{P} is not complete.