

Neural Network

Deep Neural Network

Feature Map

slide credit: S. Lazebnik

Rectified Linear Unit (ReLU)

Feature Maps

Feature Maps After Contrast Normalization

Filters in First Conv Layer

Filters in Different Layers

Filters for Different Categories

GO!

LeNet

LeNet

Fig. 9. Error rate on the test set (%) for various classification methods. [deslant] indicates that the classifier was trained and tested on the deslanted version of the database. [dist] indicates that the training set was augmented with artificially distorted examples. [16x16] indicates that the system used the 16x16 pixel images. The uncertainty in the quoted error rates is about 0.1%.

ImageNet Competition

- Large Scale Visual Recognition Challenge
- Using a subset of the large hand-labeled ImageNet dataset (1.2 million images from 1000 object categories).
- For each image, algorithms will produce a list of at most 5
 object categories in the descending order of confidence.
 The quality of a labeling will be evaluated based on the label that best matches the ground truth label for the image.

GO!

Deep

- Data Augmentation
- Overlapping Pooling
 - Prevent overfitting
- ReLU Nonlinearity
 - Faster Learning

Figure 1: A four-layer convolutional neural network with ReLUs (solid line) reaches a 25% training error rate on CIFAR-10 six times faster than an equivalent netv

(dashed line). The learning rates for each net-

- Local Response Normalization
 - aids generalization

$$b_{x,y}^{i} = a_{x,y}^{i} / \left(k + \alpha \sum_{j=\max(0,i-n/2)}^{\min(N-1,i+n/2)} (a_{x,y}^{j})^{2} \right)^{\beta}$$

$$k = 2$$
, $n = 5$, $\alpha = 10-4$, and $\beta = 0.75$

- Dropout
 - Consists of setting to zero the output of each hidden neuron with probability 0.5.

Dropout: A simple way to prevent neural networks from overfitting [Srivastava JMLR 2014]

Winner of ILSVRC 2010, NEC-UIUC Group

Winner of ILSVRC 2012, Univ. of Toronto

Model	Top-1	Top-5
Sparse coding	47.1%	28.2%
SIFT + FVs	45.7%	25.7%
CNN	37.5%	17.0%

Table 1: Comparison of results on ILSVRC-2010 test set. In *italics* are best results achieved by others.

GO!

Deep

Deeper

- 1) Overfitting
- 2) Hard to optimize
- 3) Huge computing recourse

GoogLeNet

GoogLeNet

GoogLeNet

Team	Year	Place	Error (top-5)	Uses external data
SuperVision	2012	1st	16.4%	no
SuperVision	2012	1st	15.3%	Imagenet 22k
Clarifai	2013	1st	11.7%	no
Clarifai	2013	1st	11.2%	Imagenet 22k
MSRA	2014	3rd	7.35%	no
VGG	2014	2nd	7.32%	no
GoogLeNet	2014	1st	6.67%	no

Winner of ILSVRC 2014, Google

Table 2: Classification performance.

GO!

Deep

Deeper

Deeper

VGG

each conv includes 3 convolutional layers

VGG

Table 7: Comparison with the state of the art in ILSVRC classification. Our method is denoted as "VGG". Only the results obtained without outside training data are reported.

Method	top-1 val. error (%)	top-5 val. error (%)	top-5 test error (%)
VGG (2 nets, multi-crop & dense eval.)	23.7	6.8	6.8
VGG (1 net, multi-crop & dense eval.)	24.4	7.1	7.0
VGG (ILSVRC submission, 7 nets, dense eval.)	24.7	7.5	7.3
GoogLeNet (Szegedy et al., 2014) (1 net)	-	7.	.9
GoogLeNet (Szegedy et al., 2014) (7 nets)	-	6.	.7
MSRA (He et al., 2014) (11 nets)	-	-	8.1
MSRA (He et al., 2014) (1 net)	27.9	9.1	9.1
Clarifai (Russakovsky et al., 2014) (multiple nets)	-	-	11.7
Clarifai (Russakovsky et al., 2014) (1 net)	-	-	12.5
Zeiler & Fergus (Zeiler & Fergus, 2013) (6 nets)	36.0	14.7	14.8
Zeiler & Fergus (Zeiler & Fergus, 2013) (1 net)	37.5	16.0	16.1
OverFeat (Sermanet et al., 2014) (7 nets)	34.0	13.2	13.6
OverFeat (Sermanet et al., 2014) (1 net)	35.7	14.2	-
Krizhevsky et al. (Krizhevsky et al., 2012) (5 nets)	38.1	16.4	16.4
Krizhevsky et al. (Krizhevsky et al., 2012) (1 net)	40.7	18.2	-

GO!

Deep

Deeper

Deeper

Deeper

Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer "plain" networks. The deeper network has higher training error, and thus test error. Similar phenomena on ImageNet is presented in Fig. 4.

Desired underlying mapping:

$$\mathcal{H}(\mathbf{x})$$

Residual function:

$$\mathcal{F}(\mathbf{x}) := \mathcal{H}(\mathbf{x}) - \mathbf{x}.$$

Original function becomes:

$$\mathcal{F}(\mathbf{x}) + \mathbf{x}$$
.

method	top-1 err.	top-5 err.
VGG [41] (ILSVRC'14)	-	8.43 [†]
GoogLeNet [44] (ILSVRC'14)	-	7.89
VGG [41] (v5)	24.4	7.1
PReLU-net [13]	21.59	5.71
BN-inception [16]	21.99	5.81
ResNet-34 B	21.84	5.71
ResNet-34 C	21.53	5.60
ResNet-50	20.74	5.25
ResNet-101	19.87	4.60
ResNet-152	19.38	4.49

Table 4. Error rates (%) of **single-model** results on the ImageNet validation set (except † reported on the test set).

method	top-5 err. (test)
VGG [41] (ILSVRC'14)	7.32
GoogLeNet [44] (ILSVRC'14)	6.66
VGG [41] (v5)	6.8
PReLU-net [13]	4.94
BN-inception [16]	4.82
ResNet (ILSVRC'15)	3.57

Winner of ILSVRC

2015, MSRA

Table 5. Error rates (%) of **ensembles**. The top-5 error is on the test set of ImageNet and reported by the test server.