Algebra 1R

by a moron :3 21.03.2137

1 Teoria grup

1.1 Grupy, pierscienie, ciala

Dzialanie [

□ operation] na zbiorze X:

$$\Phi:\mathsf{X}\times\mathsf{X}\to\mathsf{X},$$

zwykle zapisywane jako xy, $x \cdot y$, x + y.

Przyklady:

 \hookrightarrow na dowolnym z $\mathbb{N},\mathbb{Z},\mathbb{R},\mathbb{C},\mathbb{Q}$ mamy dodawanie (+) i mnozenie (-)

 \hookrightarrow na \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{N} mamy \leq ktory daje dzialania:

$$a \lor b := min a, b$$

$$a \wedge b := max a. b$$

 \hookrightarrow np na $\mathbb R$ mozemy zdefiniowac a \star b := a + b² \hookrightarrow niech X bedzie zbiorem, a X^X bedzie zbiorem wszystkich funkcji X \to X, wtedy skladanie funckji jest dzialaniem okreslonym w X^X:

$$f\circ q\in X^X$$

MOZNA DOJEBAC GRAFIK KOMUTUJACY

 \hookrightarrow X - zbior i niech $\mathscr{P}(X)$ to zbior wszystkich podzbiorow X, wtedy na $\mathscr{P}(X)$ mamy dzialanie sumy [\Longrightarrow union] i przekroju [\Longrightarrow intersection]

 \hookrightarrow niech a, b \in X, wtedy mamy rzuty na osie:

 \hookrightarrow na zbiorze $\mathbb{R}\cup\{\infty\}$ deifniujemy (\forall a $\in \mathbb{R}\cup\{\infty\}$) a + ∞ = ∞ = ∞ + a oraz (\forall a, b $\in \mathbb{R}$) a + b = a + $_{\mathbb{R}}$ b (dodawanie w \mathbb{R})

Prosty opis dzialan - niech \star bedzie dzialaniem okreslonym w A = $\{a_1, ..., a_n\}$, to mozemy dojebac tabelke:

*	a ₁	a ₂	 a _n
a ₁	$a_1 \star a_1$	a ₁ * a ₂	 a ₁ ∗ a _n
a ₂	$a_2 \star a_1$	$a_2 \star a_2$	 a ₂ ∗ a _n
a _n	a _n ∗ a ₁	a _n ∗ a ₂	 a _n ∗ a _n

Element neutralny [\bowtie neutral element] - takie e, ze dla kazdego $x \in X$ ex = xe = x. Dzialanie ma co najwyzej jeden element neutralny.

Element odwrotny [\implies inverse element] do x to takie y, ze xy = yx = e. Jesli dzialanie jest laczne [\implies associative], to ma co najwyzej jeden element odwrotny do danego x.

.....

Homomorfizm algebry $\mathscr{X} = (X, \{\cdot\})$ na algebre $\mathscr{Y} = (Y, \{\circ\})$ nazywamy przeksztalcenie $f: X \to Y$ spelniajace dla kazdego $a, b \in X$

$$f(a \cdot b) = f(a) \circ f(b).$$

• monomorfizm - f jest 1-1

- epimorfizm f jest "na"
- izomorfizm f jest 1-1 i "na"
- endomorfizm kiedy $\mathscr{Y} = \mathscr{X}$
- automorfizm enodmorfizm bedacy izomorfizmem

Polgrupa to niepusty zbior z dzialaniem lacznym.

GRUPA [SEE group] to niepusty zbior z lacznym dzialaniem i elementem neutralnym (zwanym jednoscia grupy) oraz elementami odwrotnymi dla kazdego elementu.

- grupa z dzialaniem przemiennym

Zbior G z dzialaniem · jest grupa, jesli:

1. $(\forall a, b, c \in G)$ (ab)c = a(bc)

2. $(\exists e \in G)(\forall a \in G)$ ea = ae = e

3. $(\forall a \in G)(\exists b \in G)$ ab = ba = e

*4. (\forall a, b \in G) ab = ba w grupie *abelowej*

Grupa przeksztalcen [\bowtie transformation group] - niepusty podzbior $G \subseteq S_X$, ktory jest:

→ jest zamkniety na laczenie funkcji

 \hookrightarrow (\forall f \in G) f⁻¹ \in G

Pojecie to wprowadzil Galois ok 1830, gdzie X byl zbiorem pierwiastkow pewnego wielomianu.

Grupa macierzy [\Join matrix group] [$M_n(\mathbb{R})$] to grupa wszystkich macierzy z mnozeniem :v

Ogolna grupa liniowa [\bowtie general linear group] [$GL_n(\mathbb{R})$] to grupa wszystkich macierzy o niezerowym wyznaczniku ze standardowym mnozeniem.

Grupa ortogonalna [\Join orthogonal group] $[O_n(\mathbb{R})]$ to podzbior grupy $GL_n(\mathbb{R})$ taki, ze $A^{-1} = A^T$.

WYPADALOBY POKAZAC, ZE (S_X , \circ) jest przemienna iff $|X| \leq 2$

Grupy izometrii - dla W $\subseteq \mathbb{R}^2$, grupa izometrii W to macierze ortogonalne zachowujace zbior W.

PIERSCIEN to niepusty zbior X z dwoma dzialaniami (·, +, mnozenie i dodawanie) taki, ze:

- 1. zbior X z + jest grupa abelowa
- 2. · jest laczne
- 3. $(\forall x, y, z \in X) x \cdot (y+z) = x \cdot y + x \cdot z \land (x+y) \cdot z = x \cdot z + y \cdot z$ Kolejne dzikie nazwy \star :
- * pierscien przemienny jesli mnozenia jest przemienne
- * pierscien z jednoscia dla mnozenia istnieje element neutralny

CIALO to pierscien przemienny, ktory dla kazdego elementu $\neq 0$ ma element odwrotny

1.2 Wlasnosci grup

Niech G bedzie grupa, a e jej elementem neutralnym. Wowczas:

$$\hookrightarrow$$
 a, b \in G \implies (ab)⁻¹ = b⁻¹a⁻¹

$$\hookrightarrow$$
 a \in G i n = 1,..., n a⁻ⁿ = (aⁿ)⁻¹ =* (a⁻¹)ⁿ

$$\hookrightarrow dla\ m,n\in \mathbb{Z}\ i\ a\in G\ mamy\ a^{mn}\ =^*\ (a^m)^n$$

$$\hookrightarrow$$
 dla G grupy abelowej i n $\in \mathbb{Z}$ (ab)ⁿ =* aⁿbⁿ

 $H\subseteq G$ jest podgrupa G, jesli jest grupa ze wzgledu na te same dzialania, czyli wystarczy, ze

$$(\forall a, b \in H) ab^{-1} \in H.$$

.....

Jelsi $a \in G$ i istnieja $n \in \mathbb{N}$, $n \ge 1$, takie, ze $a^n = e$, to mowimy ze n jest rzedem elementu a (n = o(a)). Jesli takie n nie istnieja, to a ma rzad nieskonczony (o(a) = ∞).

 \hookrightarrow grupa torsyjna - wszystkie elementy maja rzad skonczony

 \hookrightarrow grupa beztorsyjna - wszystkie elementy maja rzad nieskonczony

Jesli o(a) = n oraz $a^N = e$ to n|N, fajny dowodzik, ale leniem jestem

Grupa cykliczna to grupa zlozona z wszystkich poteg danego elementu a, natomiast a jest nazywane generatorem tej grupy

1.3 Grupy ilorazowe B)

Prawostronna warstwa grupy G wzgledem jej podgrupy H wyznaczona przez $q \in G$ to zbior

$$gH = \{gh : h \in H\},\$$

natomiast lewostronna warstwa to zbior

$$Hg = \{hg : h \in H\}.$$

Dla grup abelowych sa one rowne.

Dwa elementy $g_1,g_2\in G$ wyznaczaja te sama warstwe prawostronna wzgledem H, gdy $g_1^{-1}g_2\in H$, a te sama warstwe lewostronna, gdy $g_1g_2^{-1}\in H$.

Rzad grupy skonczonej G to ilosc jej elementow.

Indeks [G: H] podgrupy H w grupie G to ilosc warstw w grupie G wzgledem H. Dla skonczonych grup mamy:

- \hookrightarrow q \in G o(q)||G|,
- \hookrightarrow rzad i indeks kazdej podgrupy sa dzielnikami rzedu grupy.
- \hookrightarrow jesli rzad jest liczba pierwsza, to grupa jest cykliczna

Twierdzenie Lagrange'a - dla skonczonych G > H:

$$|G| = [G : H] \cdot |H|$$
.

Podgrupa H jest dzielnikiem normalnym grupy G [H \triangleleft G] jesli (\forall g \in G) gH = Hg. Wystarczy, ze (\forall g \in G)(\forall h \in H) ghg⁻¹ \in H.

Niech $f: G_1 \to G_2$ bedzie homomorfizmem, a e_1, e_2 beda elementami neutralnymi grup odpowiednio G_1, G_2 . Wtedy $f(e_1) = e_2$ oraz $f(g)^{-1} = f(g^{-1})$.

Obraz homomorfizmu $f:G_1\to G_2$ jest podgrupa grupy G_2 [Im $f< G_2$], natomiast jadro f jest dzielnikiem normalnym G_1 [Ker $f\lhd G_1$].

.....

Grupa ilorazowa to zbior wszyystkich warstw H/G, gdzie H \triangleleft G, z dzialaniem

$$(g_1H)(g_2H) = (g_1g_2)H.$$

Odwzorowanie

$$\phi:\mathsf{G}\to\mathsf{H}$$

$$\phi(q) = qH$$

jest epimorfizmem (czesto nazywane kanonicznym homeomorfizmem G na H).

[!!!]Zasadnicze twierdzenie o homeomorfizmach dla grup - jesli $f: G \to G_1$ jest epimorfizmem oraz Ker f=H, natomiast $\phi: G \to G/H$ jest dzialaniem jak wyzej, to istnieje tylko jeden izomorfizm $\psi: G/H \to G_1$ taki, ze $f=\psi \circ \phi$

Jezeli $\emptyset \neq A \subseteq G$ oraz G(A) < G to przekroj wszystkich podgrup G zawierajacych A, a $A \subseteq G_1 < G$, to G(A) < G_1 .

Jezeli K \triangleleft G i H \triangleleft G, to najmniejsza podgrupa G zawierajaca H i K pokrywa sie ze zbiorem

$$KH := \{kh : k \in K, h \in H\}$$

Pierwsze twierdzenie o izomorfizmach - jezeli $K \triangleleft G$ i $H \triangleleft G$, to

- \hookrightarrow K < KH = HK < G
- $\hookrightarrow H \cap K \triangleleft H \ i \ K \triangleleft KH$
- $\hookrightarrow \phi$: hK \rightarrow h(K \cap H) indukuje izomorfizm

$$HK/K \sim H/(H \cap K)$$

Drugie twierdzenie o izomorfizmach - jezeli K \triangleleft G i K \triangleleft H \triangleleft G i oznaczymy \overline{H} = H/K oraz \overline{G} = G/K, to wtedy:

- $\hookrightarrow \overline{H} < \overline{G}$
- $\hookrightarrow \overline{H} \triangleleft \overline{G} \iff H \triangleleft G$

Automorfizm wewnetrzny grupy G wyznaczony przez g: $\phi_q(x) = g^{-1}xg$.

Jesli G to grupa abelowa, to dla kazdego g $\phi_g(x) = x$, a wiec ma ona jedynie identycznosc.

^{*} trzeba udowodnic, ale mi sie nie chce

Zbior wszystkich automorfizmow wewnetrznych grupy G oznaczamy I(G) i tworzy on grupe ze skladaniem

Centrum grupy G [Z(G)] to zbior $x \in G$ takich, ze dla dowolnego $y \in G$ xy = yx. Dla kazdego G Z(G) \triangleleft G

Grupa I(G) jest izomorficzna z G/Z(G).

Jesli M to dowolny podzbior grupy G, to dla kazdego g takiego, ze $\phi_{\rm g}\in {\rm I(G)}$ zbiorem sprzezony do M nazywamy zbior

$$\mathsf{M}^\mathsf{g} = \{\phi_\mathsf{q}(\mathsf{x}) \ : \ \mathsf{x} \in \mathsf{M}\}$$

Jesli M = $\{x\}$, to M^g zawiera elementy sprzezone z x. Normalizator zbioru M:

$$N_G(M) = \{g \in G : M^g = M\}$$

Centralizator zbioru M:

$$C_G(M) = \{g \in G \ : \ mg = gm, \ m \in M\}$$

Twierdzonka:

$$\hookrightarrow (\forall \ M \subseteq G) \ C_G(M) < N_G(M) \ (|M| = 1 \implies C_G(M) = N_G(M))$$

$$\hookrightarrow$$
 Z(G) = C_G(G)

$$\hookrightarrow \mathsf{dla}\; \mathsf{M} \subseteq \mathsf{G}\; \mathsf{ilosc}\; \mathsf{zbiorow}\; \mathsf{M}^g \; \mathsf{jest}\; \mathsf{rowna}\; [\mathsf{G}\; :\; \mathsf{N}_\mathsf{G}(\mathsf{M})].$$

Aby klasa elementow sprzezonych z $x \in G$ byla jednoelementowa wystarczy, zeby $x \in Z(G)$

Jesli G jest skonczona, to ilosc elementow sprzezonych z zadanym x jest dzielnikiem |G|.

p-grupa to grupa, w ktorej wszystkie elementy maja rzad p, gdzie p jest liczba pierwsza. Jesli $|G| = p^n$ to G jest p-grupa.

Skonczone p=grupy maja nietrywialne centrum.

Jesli $|G| = p^2$, to G jest grupa abelowa.

1.4 Produkty grup

W zbiorze $A \times B = \{(a,b) : a \in A, b \in B\}$, gdzie A, B sa grupami, okreslmy

$$(a, b) \cdot (c, d) = (ac, bd)$$

Wtedy (A \times B, ·) jest grupa zwana produktem A i B.

Oznaczenia:

$$\hookrightarrow G^2 = G \times G$$

$$\hookrightarrow$$
 Gⁿ = G \times G \times ... \times G

Grupa Kleina: $\mathbb{Z}_2 \times \mathbb{Z}_2$ to najmniejsza niecykliczna grupa. Jest tez \simeq z prostokatem, ktory nie jest kwadratem.

Niech {G}_i : i \in I } bedzie rodzina grup indeksowana elementami ze zbioru I

 $\hookrightarrow \prod_{i \in I} \mathsf{G}_i$ to zbior wszystkich i-ciagow elementow z G z dzialaniem

$$(g_i)_i \cdot (g_i')_i = (g_i g_i')_i$$

$$\hookrightarrow \sum_{i \in I} \mathsf{G}_i \coloneqq$$

$$\{(g_i)_i \in \prod G_i \ : (\exists \ I_0 \underset{<\infty}{\subseteq} I) (\forall \ i \in I \setminus I_0) \ g_i = e_{g_i}\}$$

2 Permutacje :>

n-ta grupa symetryczna $[S_n]$ - grupa wszystkich permutacji zbioru $X_n = \{1, ..., n\}$. $|S_n| = n!$

Jesli $P \in S_n$ i dla i = 1, ..., n P(i) = a_i , to piszemy

$$\begin{pmatrix} 1 & 2 & \dots & n \\ a_1 & a_2 & \dots & a_n \end{pmatrix}$$

Mnozenie permutacji:

$$\begin{pmatrix} a_1 & a_2 & \dots & a_n \\ b_1 & b_2 & \dots & b_n \end{pmatrix} \begin{pmatrix} c_1 & c_2 & \dots & c_n \\ a_1 & a_2 & \dots & a_n \end{pmatrix} =$$

$$= \begin{pmatrix} c_1 & c_2 & \dots & c_n \\ b_1 & b_2 & \dots & b_n \end{pmatrix}$$

Zbior elementow niezmienniczych (fixpunktow) permutacji P to zbior $F(P) = \{k \in X_n : P(k) = k\}$. Jego dopelnienie oznaczamy $M(P) = S_n \setminus F(P)$.

.....

Cykl k-elementowy C to permutacja taka, ze $C(a_1) = a_2$, $C(a_2) = a_3$, ..., $C(a_n) = a_1$. Cykl 2-elementowy to transpozycja. Cykle zapisujemy

$$(a_1, a_2, ..., a_n)$$

Kazda permutacja jest iloczynem transpozycji.

.....

Permutacje parzyste - iloczyn

$$\prod_{i < j} (a_j - a_i)$$

jest dodatni (gorny row to kolejne liczby naturalne, dolny to wyrazy). Pozostale permutacje sa nieparzyste.

Znak permutacji jest +1 gdzy permutacja jest parzysta i -1 wpp. Alternatywnie mozna zapisac (gorny row to b_k , a dolny to c_k)

$$sgn P = \prod_{i < j} \frac{b_j - b_i}{c_j - c_i}$$

Dla dwoch dowolnych permutacji P₁, P₂ mamy

$$sgn P_1P_2 = sgn P_1 \cdot sgn P_2$$

$$sgn P_1^{-1} = sng P_1.$$

n-ta grupa alternujaca $[A_n]$ - podgrupa S_n zlozona ze wszystkich parzystych permutacji.

Permutacja jest parzysta iff σ jest transpozycja parzyscie wielu transpozycji (czyli ma nieparzyscie wiele elementow).

Twierdzenie Arthur Cayley - jeżeli G jest grupą rzędu n, to jest ona izomorficzna z pewną podgrupą S_n.