Kuwait UniversityCollege of Engineering and Petroleum

ME417 CONTROL OF MECHANICAL SYSTEMS

PART II: CONTROLLER DESIGN VIA STATE-SPACE

Lecture 5: State-Space Controller Design Problems

Summer 2020

Ali AlSaibie

Lecture Plan

- Objectives:
 - Introduce the state-space integral controller
 - Work through additional controller design problems in state-space
- Reading:
 - *Vise: 12.8*

State Feedback with Integral Control

- To guarantee the elimination of steady-state error when applying a full state feedback controller, an integral controller can be added.
 - The state feedback controller can regulate the state output to zero (stabilize the system toward the equilibrium), but it cannot guarantee zero steady-state error to a non-zero reference input.
- Given an LTI open-loop system

$$\dot{x} \in \mathcal{R}^n = \mathbf{A}x + \mathbf{B}u, \ u \in \mathcal{R}^1$$
$$y \in \mathcal{R}^1 = \mathbf{C}x$$

• Let us formulate the closed-loop state space form for a full state feedback with an integrator.

State Feedback with Integral Control

• A state feedback controller with an integral can be expressed as

$$u = u_F + u_I = (r - Kx) + K_I e_{int} = (r - Kx) + K_I \int (r - y) dt$$

 Note that the integral term is not represented in the state vector, we can augment the state vector to include it.

$$\tilde{x} \in \mathcal{R}^{n+1} = \begin{bmatrix} \mathbf{x} \\ e_{int} \end{bmatrix}$$

- If we added a derivative controller, would we want to augment the state vector to include \dot{e} ?
 - We can, but it would result in a redundant (non-minimal) state, for instance if:
 - $y = x_1$ and $x_2 = \dot{x}_1$ then $\dot{e} = \dot{r} \dot{x}_1 = \dot{r} x_2$

State Feedback with Integral Control

ullet Substituting u in the state-space equations, yields the closed-loop system:

$$\dot{\widetilde{x}} \in \mathcal{R}^{n+1} = \begin{bmatrix} \dot{x} \\ e \end{bmatrix} = \begin{bmatrix} \mathbf{A}x + \mathbf{B}(r - Kx + K_I e_{int}) \\ r - \mathbf{C}x \end{bmatrix} = \begin{bmatrix} \mathbf{A} - \mathbf{B}K & \mathbf{B}K_I \\ -\mathbf{C} & 0 \end{bmatrix} \widetilde{x} + \begin{bmatrix} \mathbf{B} \\ 1 \end{bmatrix} \mathbf{r}$$

- Note that we increased the number of states by 1, increasing the order of the system.
- This can also be seen in the transfer function form of the PI controller, $G_c = K_P \frac{(s+K_I/K_P)}{s}$, where the integrator increases the order of the closed-loop system.

Find an equivalent state-space form for the closed-loop system shown.

Where
$$G(s) = \frac{16}{s^2}$$

- a. Design the proportional controller gain to achieve a damping ratio of $\zeta = 0.25$.
- b. Compute the steady state error, with your choice of controller for a step input of r(t)=10
- c. Find the range of K_p values for which the system is stable
- d. How different is the proportional controller than a full state feedback controller?

$$\dot{x} = (A - \mathbf{B}K_p\mathbf{C})x + \mathbf{B}K_pr = \begin{bmatrix} 0 & 1 \\ -2K_p & -3 \end{bmatrix}x + \begin{bmatrix} 0 \\ 1 \end{bmatrix}K_pr$$

$$y \in \mathcal{R}^1 = \mathbf{C}x = \begin{bmatrix} 1 & 0 \end{bmatrix}x$$

For the mechanical system shown.

- a) Derive the state space model of the system, assume the position \boldsymbol{x} is the measured output.
- b) Show that the system is controllable.
- c) Design a full state feedback controller to achieve a critically damped response at $T_{\rm s}=0.1{\rm s}$
- d) Add an integral controller to eliminate steady-state error
 - How would you choose the value of K_I ?
- e) Find the closed-loop transfer function of the system.

