${ m B\'{a}o}$ cáo tuần ${ m 2}$ Thực hành kiến trúc máy tính

Họ tên: Phan Minh Anh Tuấn MSSV: 20205227

Mục lục

1	Hon	ne Assi	gnment	1											2
			ý nghĩa c												2
	1.2	Các th	anh ghi đặ dạng của	íc biệt	PC,	HI,	LO								2
	1.3	Khuôn	dạng của	3 loại	lệnh	I, J,	R								
			Lệnh kiểu												3
		1.3.2	Lệnh kiểu	ιΙ.,											3
		1.3.3	Lệnh kiểu	ı J .					•						4
2	Assi	ignmen	t 1: lệnh	gán :	$ m s\acute{o}~10$	6-bit									5
3	Assi	ignmen	t 2: lệnh	gán	$ m s\hat{o}~32$	2-bit									7
4	Assi	ignmen	t 3: lệnh	gán	(giả	lệnh	1)								9
5	Assi	ignmen	t 4: tính	biểu	thứ	c 2 x	+ :	y =	= ?	•					10
6	Assi	ignmen	t 5: phép	nhâ:	n										14
7	Assi	ignmen	t 6: tạo l	oiến v	và tr	uy c	ập	biế	n						15

1 Home Assignment 1

1.1 Tên và ý nghĩa của 32 thanh ghi

Tên thanh ghi	Số hiệu thanh ghi	Công dụng					
\$zero	0	the constant value 0, chứa hằng số = 0					
\$at	1	assembler temporary, giá trị tạm thời cho hợp ngữ					
\$v0-\$v1 2-3		procedure return values, các giá trị trả về của thủ tục					
\$a0-\$a3	4-7	procedure arguments, các tham số vào của thủ tục					
\$t0-\$t7	8-15	temporaries, chứa các giá trị tạm thời					
\$s0-\$s7	16-23	saved variables, lưu các biến					
\$t8-\$t9	24-25	more temporarie, chứa các giá trị tạm thời					
\$k0-\$k1	26-27	OS temporaries, các giá trị tạm thời của OS					
\$gp	28	global pointer, con trỏ toàn cục					
\$sp	29	stack pointer, con trỏ ngăn xếp					
\$fp	30	frame pointer, con trỏ khung					
\$ra	31	procedure return address, địa chỉ trở về của thủ tục					

Hình 1: Tên và ý nghĩa của 32 thanh ghi

1.2 Các thanh ghi đặc biệt PC, HI, LO

- pc : program counter, thanh ghi của CPU giữ địa chỉ của lệnh cần nhận vào để thực hiện
- hi : high-order word of multiply product, or divide reminder, lưu kết quả thao tác nhân của MIPS từ bit 32-63
- \bullet lo : low-order word of multiply product, or divide quotient, lưu kết quả thao tác nhân của MIPS từ bit 0-31

1.3 Khuôn dạng của 3 loại lệnh I, J, R

1.3.1 Lệnh kiểu R

ор		rs	rt	rd	shamt	funct		
	6 bits	5 bits	5 bits	5 bits	5 bits	6 bits		

Các trường của lệnh

- \bullet op (operation code opcode): mã thao tác. (với các lệnh kiểu R, op = 000000)
- $\bullet\,$ rs: số hiệu thanh ghi nguồn thứ nhất
- rt: số hiệu thanh ghi nguồn thứ hai
- rd: số hiệu thanh ghi đích
- shamt (shift amount): số bit được dịch, chỉ dùng cho lệnh dịch bit, với các lênh khác shamt = 00000
- funct (function code): mã hàm à mã hóa cho thao tác cụ thể

1.3.2 Lệnh kiểu I

ор	rs	rt	imm
6 bits	5 bits	5 bits	16 bits

Dùng cho các lệnh số học/logic với toán hạng tức thì và các lệnh load/store (nạp/lưu)

- rs: số hiệu thanh ghi nguồn (addi) hoặc thanh ghi cơ sở (lw, sw)
- rt: số hiệu thanh ghi đích (addi, lw) hoặc thanh ghi nguồn (sw)
- imm (immediate): hằng số nguyên 16-bit

ор	address
6 bits	26 bits

1.3.3 Lệnh kiểu J

Toán hạng 26-bit địa chỉ Được sử dụng cho các lệnh nhảy

- j (jump) \rightarrow op = 000010

2 Assignment 1: lệnh gán số 16-bit

Hình 2: addi \$s0, \$zero, 0x3007

Hình 3: add \$s0, \$zero, \$0

Nhân xét:

Với thanh ghi \$s0

- Ở lần đầu tiên, thanh ghi \$s0 thay đổi từ 0x00000000 thành 0x00003007 do toán tử addi lấy giá trị thanh ghi \$zero cộng với giá trị tức thì 0x3007.
- Ở lần đầu thứ 2, thanh ghi \$s0 thay đổi từ 0x00003007 về 0x000000000 do toán tử add nhận giá trị 2 thanh ghi \$zero và \$0, cộng giá trị số và lưu vào thanh ghi \$s0

Với thanh ghi \$pc: là thanh ghi dùng để giữ địa chỉ của lệnh được nhận vào

- Ở lần đầu tiên, lệnh được nhận vào có địa chỉ 0x00400000 nên địa chỉ thanh ghi \$pc là 0x00400000.
- Ở lần thứ 2, lệnh được nhận vào có địa chỉ 0x00400004 nên địa chỉ thanh ghi \$pc là 0x00400004.
- \bullet Ở lần thứ 3, tiếp tục tăng từ 0x00400004 lên 0x00400008, sau đó dừng lai.

Sửa lại lệnh lui thành: addi \$s0, \$zero 0x2110003dThanh ghi \$s0 thành 0x2110003d do toán tử addi lấy giá trị thanh ghi \$zero cộng với giá trị tức thì 0x2110003d. Do 0x2110003d là immediate 32 bits, nên tách thành toán tử lui, ori, add.

3 Assignment 2: lệnh gán số 32-bit

Hình 4: lui \$s0, 0x2110

Hình 5: ori \$s0, \$s0, 0x003d

Nhân xét:

Với thanh ghi \$s0

- Ở lần đầu tiên, thanh ghi \$s0 thay đổi từ 0x00000000 thành 0x21100000 do toán tử lui nạp bit vào nửa trên.
- Ở lần đầu thứ 2, thanh ghi \$s0 thay đổi từ 0x21100000 về 0x2110003d do toán tử ori cộng giá trị tức thời 0x003d

Với thanh ghi \$pc: là thanh ghi dùng để giữ địa chỉ của lệnh được nhận vào

- Ở lần đầu tiên, lệnh được nhận vào có địa chỉ 0x00400000 nên địa chỉ thanh ghi \$pc là 0x00400000.
- \bullet Ở lần thứ 2, lệnh được nhận vào có địa chỉ 0x00400004 nên địa chỉ thanh ghi \$pc là 0x00400004.
- \bullet Ở lần thứ 3, tiếp tục tăng từ 0x00400004 lên 0x00400008, sau đó dừng lại.

4 Assignment 3: lệnh gán (giả lệnh)

Hình 6: Lệnh gán As
s $3\,$

Điều bất thường: Với số 32 bit như 0x2110003d khi gán vào \$s0 sẽ được tách thành toán tử lui và ori, trong khi với số 4 bit như 0x2 thì sẽ dùng lệnh addiu mà không cần tách ra.

Giải thích: Do cơ chế nạp hằng số vào thanh ghi, với hằng số 32 bit sẽ tách ra lui và ori.

5 Assignment 4: tính biểu thức 2x + y = ?

Hình 7: Câu lệnh gán thanh ghi \$t1 = 5

Hình 8: Câu lệnh gán thanh ghi t2 = 0-1

Hình 9: Câu lệnh gán thanh ghi \$s0 = \$t1 + \$t1

Hình 10: Câu lệnh gán thanh ghi \$s0 = \$s0 + \$t2

Kiểm tra điểm tương đồng với hợp ngữ và mã máy

Hình 11: Câu lệnh addi \$t1, \$zero, 5, với khuôn mẫu kiểu lệnh I

Hình 12: Câu lệnh addi \$t2, \$zero, -1, với khuôn mẫu kiểu lệnh I

Hình 13: Câu lệnh add \$s0, \$t1, \$t1, với khuôn mẫu kiểu lệnh R

Hình 14: Câu lệnh add \$s0, \$s0, \$t2 với khuôn mẫu kiểu lệnh R

6 Assignment 5: phép nhân

Hình 15: Phép nhân

Điều bất thường: Tại bước mul (\$s0, \$s0, 3) không thực hiện phép nhân ngay mà chuyển 3 lên thanh ghi at rồi mới thực hiện nhân

7 Assignment 6: tạo biến và truy cập biến

Hình 16: Tạo biến và truy cập biến

Lệnh la được dịch thành lui và ori

lw: đọc word dữ liệu 32-bit từ bộ nhớ đưa vào thanh ghi (load word) sw: ghi word dữ liệu 32-bit từ thanh ghi đưa ra bộ nhớ (store word)