

<parte 2 – sintaxe e semântica>

LÓGICA PARA COMPUTAÇÃO

PROF. JONATHAN GIL MÜLLER

LÓGICA DE PREDICADOS: introdução

MOTIVAÇÃO: como simbolizar matematicamente o conhecimento abaixo expresso em linguagem natural:

- >> Para qualquer número inteiro x, se x for par, então x é divisível por 2.
- >> Alguém não é aluno de Ciência da Computação.
- >> <u>Todo</u> aluno de Ciência da Computação é inteligente. José é aluno de Ciência da Computação. Logo, José é inteligente.

A dificuldade em representar tais conhecimentos na **lógica proposicional** deve-se às quantificações indicadas pelas palavras **para qualquer**, **alguém** e **todo**.

Assim, é necessária a introdução de **novos símbolos** na linguagem da lógica proposicional, obtendo-se uma linguagem mais rica, a linguagem da **lógica de predicados**.

LÓGICA DE PREDICADOS: introdução

- ✓ a lógica de predicados é uma linguagem mais rica, obtida a partir da introdução de novos símbolos na linguagem da lógica proposicional;
- ✓ a especificação da linguagem da lógica de predicados envolve:
- >> <u>sintaxe</u>: regras para escrever fórmulas bem formadas a partir de símbolos de pontuação, de conectivos e outros símbolos da lógica de predicados.
- >> <u>semântica</u>: regras para determinar o significado das fórmulas.
- ✓ o cálculo de predicados engloba os métodos para determinar a validade das fórmulas.

DEFINIÇÃO nº1 - Alfabeto: o alfabeto da lógica de predicados é constituído pelos seguintes símbolos:

- símbolos de pontuação: ()
- <u>símbolos verdade</u>: *true, false; ou V, F.*
- <u>símbolos para constantes:</u> c, c₁, c₂... para representar **objetos específicos**;
- <u>símbolos para variáveis:</u> x, y, z, x₁, y₁, z₁, x₂, y₂, z₂... para representar **objetos arbitrários**;

- <u>símbolos para funções:</u> fⁿ, f₁ⁿ, f₂ⁿ..., com n > 0 indicando o nº de parâmetros da função. As funções representam **propriedades ou relações** entre os objetos, denotando <u>objetos específicos</u>;
- <u>símbolos para predicados:</u> pⁿ, qⁿ, rⁿ, p₁ⁿ, q₁ⁿ, r₁ⁿ, p₂ⁿ, q₂ⁿ, r₂ⁿ..., com n > 0 indicando o nº de parâmetros do predicado. Os predicados representam **propriedades ou relações** entre os objetos, denotando <u>os valores **V** ou **F**;</u>
- conectivos: \neg (não), \land (e), \lor (ou), \rightarrow (se-então), \leftrightarrow (se-somente-se), \forall (quantificador universal), \exists (quantificador existencial).

DEFINIÇÃO nº2 - Termo: um termo na lógica de predicados representa um objeto específico e é definido por:

- toda constante é um termo;
- toda variável é um termo;
- se t₁, t₂, ... t_n são termos e f_n é uma função, então f_n(t₁, t₂, ... t_n) é um termo.
- Nada mais é um termo.

DEFINIÇÃO nº3 - **Átomo**: um átomo na lógica de predicados representa um valor **V** ou **F** e é definido por:

- todo símbolo verdade (*true* e *false*) é um átomo;
- se t₁, t₂, ... t_n são termos e p_n é um predicado, então p_n(t₁, t₂, ... t_n) é um átomo.

DEFINIÇÃO nº4 - **Fórmula**: uma fórmula é construída a partir dos símbolos do alfabeto, considerando as seguintes regras:

- todo átomo é uma fórmula;
- se α e β são fórmulas, então também são fórmulas:
 - a) $(\neg \alpha)$ negação,
 - b) $(\alpha \wedge \beta)$ conjunção,
 - c) $(\alpha \vee \beta)$ disjunção,
 - d) $(\alpha \rightarrow \beta)$ implicação $(\alpha \text{ \'e} \text{ o antecedente}, \beta \text{ \'e} \text{ o consequente}),$
 - e) $(\alpha \leftrightarrow \beta)$ bi-implicação $(\alpha \notin o \text{ lado esquerdo}, \beta \notin o \text{ lado direito})$.
- se x é uma variável e α é uma fórmula, então também são fórmulas:
 - a) $(\forall x)(\alpha)$,
 - b) $(\exists x)(\alpha)$.

EXEMPLO: Seja a seguinte frase declarativa:

Todo filho de meu pai é meu irmão.

EXEMPLO: Seja a seguinte frase declarativa:

Todo filho de meu pai é meu irmão.

PREDICADOS:

$$P(x,y): x i poi di y$$
 $I(x,y): x i irmóo$
 $formulo punta otemes o pontir di conuctivo o otemes o pontir di conuctivo o otemes o pontir di conuctivo o otempo o$

INTERPRETAÇÃO: Para qualquer x, se x é pai de y e x é pai de z então y é irmão de z.

$$\forall x (F(x, F(c)) \rightarrow I(x,c))$$

INTERPRETAÇÃO: Para qualquer x, se x for filho do pai de c, então x é irmão de c.

DEFINIÇÃO nº 5 - Correspondência entre quantificadores: sejam uma fórmula α e uma variável x. Os quantificadores se relacionam pelas correspondências:

- $(\forall x)(\alpha)$ é equivalente a $\neg((\exists x)(\neg\alpha))$
- $(\exists x)(\alpha)$ é equivalente a $\neg((\forall x)(\neg\alpha))$

Equidante
$$\forall x (T(x)) \equiv \neg (\exists x (\neg T(x)))$$

Voioud $x \text{ term occase}$

Alune FURB On Thomas

Todo aluno da FURB tem acesso ao MS Teams.

= E falso que existe a que não tenha acesso ao MS Teams É falso que existe um aluno da FURB

Coundinaire
$$\exists x (R(x)) \equiv \neg (\forall x (\neg R(x)))$$

Voriant: ob FURB

Funcionaire de FURB

Existe algum funcionário da FURB que é reitor da FURB

$$\neg (\forall x (\neg R(x)))$$

É falso que todos funcionários da FURB não são reitores da FURB

Quantificador Universal ∀x

- Representa afirmações universais: devem ser válidas para todos os elementos de um domínio.
- >> Para todo mundo...
- >> Para qualquer um que...
- >> Todos aqui...

Exemplo:

• p(x) = inteligente(José) José é inteligente. $\forall x(p(x)) = Todos são inteligentes.$

Quantificador Existencial ∃x

 Representa afirmações existenciais: devem ser válidas para pelo menos um dos elementos do domínio.

- >> Existe pelo menos um ...
- >> Para pelo menos um...
- >> Existe alguém ...
- >> Algum ...

Exemplo:

- p(x) = p(x) = inteligente(José) José é inteligente.
- $\exists x(p(x)) = Alguém é inteligente.$

Para determinar a interpretação de uma fórmula da lógica dos predicados é necessário observar:

- a) o universo (domínio) da interpretação;
- b) a interpretação dos símbolos livres da fórmula.

DEFINIÇÃO nº6 - Escopo de um quantificador (abrangência): seja β uma fórmula. Então:

- se $(\forall x)(\alpha)$ é uma subfórmula de β , então o escopo de $(\forall x)$ em β é α ;
- se $(\exists x)(\alpha)$ é uma subfórmula de β , então o escopo de $(\exists x)$ em β é α .

DEFINIÇÃO nº7 - Variável livre e ligada: sejam uma fórmula α e uma variável x. Então:

- a variável x é ligada em α se está no escopo de um quantificador;
- caso contrário, a variável x é livre.

DEFINIÇÃO nº8 - **Símbolos livres**: dada uma fórmula α , seus símbolos livres são as variáveis livres, as funções e os predicados.

EXEMPLO 1:

$$(\forall x (P(x) \land Q(x))) \rightarrow (\neg P(x) \lor Q(y))$$

EXEMPLO 1:

$(\forall x (P(x) \land Q(x))) \rightarrow (\neg P(x) \lor Q(y))$

- 1: Repuitor pumbeles Pentuaçõe
- 2º 7, 4, 3
- 3º V, 1
- 40 ->, 50

Exceps de Jx:
quintificado
Ports de site de
estó ses elites
quintificas
quintificas

$$\forall x ((P(x) \to Q(x)) \land S(x,y))$$

EXEMPLO 2:

$$\forall x (P(x) \to Q(x)) \land S(x,y)$$

Aruse de ondese de estruturo de umo formulo de predicados

SÍMBOR LIVAS:

Producodes.

Vor Pois o V esto quantificande grenas

DEFINIÇÃO nº9 – Interpretação de fórmulas: seja U um conjunto não vazio, denominado <u>universo</u>. Uma interpretação I sobre U é definida da seguinte forma:

- I[true] = **V**, a interpretação de true é **V**;
- I[false] = F, a interpretação de false é F;
- para toda constante c, se I[c] = u, então u ∈ U;
- para toda variável x, se I[x] = u, então u ∈ U;

. . .

- para toda função fⁿ, se I[fⁿ] = u, então u ∈ U e fⁿ é uma função n-ária em U, isto é, fⁿ:
 Uⁿ → U;
- para todo predicado pⁿ, I[pⁿ] ∈ {V, F} e pⁿ é um predicado n-ário em U, isto é, pⁿ: Uⁿ
 → {V, F};
- se α e β são fórmulas, então $\neg(\alpha)$, $(\alpha \land \beta)$, $(\alpha \lor \beta)$, $(\alpha \to \beta)$, $(\alpha \leftrightarrow \beta)$ são fórmulas cuja a interpretação é a mesma dada para fórmulas envolvendo esses conectivos na lógica proposicional;

Р	Ø	¬P	P∧Q	P ∨ Q	$P \rightarrow Q$	$P \leftrightarrow Q$
V	V	F	V	V	V	V
V	F	F	F	V	F	F
F	V	V	F	V	V	F
F	F	V	F	F	V	V

- se x é uma variável e α é uma fórmula, então:
 - a) $I[(\forall x)(\alpha)] = V$, se e somente se $\forall u \in U$, $I[\alpha] = V$, isto é, $I[\alpha] = V$ para todos os valores de u,
 - b) $I[(\forall x)(\alpha)] = F$, se e somente se $\exists u \in U$, $I[\alpha] = F$, isto é, existe pelo menos um valor u tal que $I[\alpha] = F$,
 - c) $I[(\exists x)(\alpha)] = V$, se e somente se $\exists u \in U$, $I[\alpha] = V$, isto é, existe pelo menos um valor u tal que $I[\alpha] = V$,
 - d) $I[(\exists x)(\alpha)] = F$, se e somente se $\forall u \in U$, $I[\alpha] = F$, isto é, $I[\alpha] = F$ para todos os valores de u.

- >> como determinar a interpretação de fórmulas sem quantificadores?
 - 1º: substituir variáveis e constantes, se for o caso
 - 2º: substituir funções e predicados
 - <u>3°:</u> determinar a I[α]
- >> como determinar a interpretação de fórmulas **com quantificadores** com ou sem variáveis livres?
 - 1°: substituir variáveis livres e constantes, se for o caso
 - 2º: traduzir a fórmula para o português
 - <u>3°:</u> determinar a I[α], justificando a resposta da seguinte forma:
- $I[(\forall x)(a)] = V$, apresentar um valor u_g do conjunto universo que se para esse valor I[a] = V, pode-se generalizar que para todos os valores de $u \in U$, I[a] = V,
- $I[(\forall x)(a)] = F$, apresentar um valor u_g do conjunto universo que para esse valor I[a] = F,
- $I[(\exists x)(a)] = V$, apresentar um valor u_g do conjunto universo que para esse valor I[a] = V,
- $I[(\exists x)(a)] = F$, apresentar um valor u_g do conjunto universo que se para esse valor I[a] = F, pode-se generalizar que para todos os valores de $u \in U$, I[a] = F.

LÓGICA DE PREDICADOS: formalização de problemas

O processo de **formalização** converte uma **sentença (ou argumento)** em uma **fórmula da lógica de predicados**, ou seja, uma estrutura composta por termos e átomos.

A formalização de sentenças consiste basicamente em:

1º passo: selecionar um conjunto adequado de símbolos;

2º passo: traduzir as sentenças (trechos do discurso) para uma ou mais fórmulas, respeitando o significado pretendido dos símbolos.

DOCUMENTOS CONSULTADOS/RECOMENDADOS

- 1. ABE, J. M.; SCALZITTI, A.; SILVA FILHO, J. I. Introdução à lógica para a ciência da computação. 2.ed. São Paulo: Arte & Ciência, 2002.
- 2. BISPO, C. A. F.; CASTANHEIRA, L. B.; SOUZA FILHO, O. M. Introdução à lógica matemática. São Paulo: Cengage Learning, 2011.
- 3. GERSTING, J. L. **Fundamentos matemáticos para a ciência da computação**. 4. ed. Rio de Janeiro: LTC, 2001.
- 4. NOLT, J.; ROHATYN, D. Lógica. São Paulo: Makron Books, 1991.
- 5. SOUZA, J. N. **Lógica para ciência da computação**: fundamentos de linguagem, semântica e sistemas de dedução. Rio de Janeiro: Campus, 2002.

EXERCÍCIOS

Bora estudar a lista de exercícios 6!!!

