NPS ARCHIVE 1998.09 POLLARD, S.

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

DEVELOPMENT AND VERIFICATION OF AN AERODYNAMIC MODEL FOR THE NPS FROG UAV USING THE CMARC PANEL CODE SOFTWARE SUITE

by

Stephen J. Pollard

September 1998

Thesis Advisor:

Co-Advisor/Second Reader:

Max F. Platzer

Kevin D. Jones

DUDLEY KNOX LIBRARY

JAVAL POSTGRADUATE SCHOOL

YONTEREY CA CONTOCOM

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0160

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, for Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE September 1998		TYPE AND DATES COVERED 1 Engineer Thesis
4. TITLE AND SUBTITLE DEVELOPMENT AND VERIFICATION OF A FROG UAV USING THE CMARC PANEL CO		FOR THE NPS	5. FUNDING NUMBERS
6. AUTHOR(S) Pollard, Stephen J.			
7. PERFORMING ORGANIZATION NAME(S) AND All Naval Postgraduate School Monterey, CA 93943-5000	DDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)		10. SPONSORING / MONITORING AGENCY REPORT NUMBER
11. SUPPLEMENTARY NOTES			
The views expressed in this thesis are those of th Defense or the U.S. Government.	e author and do not reflect the	official policy or po	sition of the Department of
12a. DISTRIBUTION / AVAILABILITY STATEMENT			12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Approved for public release; distribution is unlimited.

The CMARC panel-code is evaluated for the development of an aerodynamic model of the Naval Postgraduate School FROG Unmanned Air Vehicle (UAV). CMARC is a personal computer hosted panel-code software suite for solving inviscid, incompressible flow over complex three-dimensional bodies. A panel model of the NPS FROG UAV is developed to obtain stability derivative data at the cruise flight condition. Emphasis is placed on comparing the CMARC data to aerodynamic models obtained from classical design techniques and parameter estimation. Linearized longitudinal and lateral-directional state-equation models are used to compare the dynamic response of each data set. In addition, CMARC is used to generate static-source and angle-of-attack sensor position corrections. Position corrections are provided in look-up table and curve-fit formats. The aerodynamic model obtained with CMARC demonstrated higher fidelity dynamic longitudinal response than the classical design model. Dynamic lateral-directional response is similar to that obtained from classical design techniques. Adjustment through comparison with flight-test data is still required to optimize the CMARC model. Future studies should concentrate on improving CMARC modeling of fuselage side force through the addition of wake separation lines. Additionally, the propelled disk should be modeled in an attempt to capture the effects of increased dynamic pressure over the horizontal and vertical tail surfaces.

14. SUBJECT TERMS Unmanned Aerial Vehicles, UAV, CMARC, Panel Method Ames Research Center, PMARC, Panel Code, Stability Derivatives, Boundary Layer Code, Aircraft Dynamic Response			15. NUMBER OF PAGES 195 16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified	20. LIMITATION OF ABSTRACT UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI State

Approved for public release; distribution is unlimited

DEVELOPMENT AND VERIFICATION OF AN AERODYNAMIC MODEL FOR THE NPS FROG UAV USING THE CMARC PANEL CODE SOFTWARE SUITE

Stephen J. Pollard Commander, United States Navy M.S., Naval Postgraduate School, 1997

Submitted in partial fulfillment of the requirements for the degree of

AERONAUTICAL AND ASTRONAUTICAL ENGINEER

from the

NAVAL POSTGRADUATE SCHOOL September 1998

DUDLEY KNOX LIBRARY NAVAL POSTGRADUATE SCHOOL MONTEREY CA 98043-5101

ABSTRACT

The CMARC panel-code is evaluated for the development of an aerodynamic model of the Naval Postgraduate School FROG Unmanned Air Vehicle (UAV). CMARC is a personal computer hosted panel-code software suite for solving inviscid, incompressible flow over complex three-dimensional bodies. A panel model of the NPS FROG UAV is developed to obtain stability derivative data at the cruise flight condition. Emphasis is placed on comparing the CMARC data to aerodynamic models obtained from classical design techniques and parameter estimation. Linearized longitudinal and lateral-directional state-equation models are used to compare the dynamic response of each data set. In addition, CMARC is used to generate static-source and angle-of-attack sensor position corrections. Position corrections are provided in look-up table and curvefit formats. The aerodynamic model obtained with CMARC demonstrated higher fidelity dynamic longitudinal response than the classical design model. Dynamic lateraldirectional response is similar to that obtained from classical design techniques. Adjustment through comparison with flight-test data is still required to optimize the CMARC model. Future studies should concentrate on improving CMARC modeling of fuselage side force through the addition of wake separation lines. Additionally, the propeller disk should be modeled in an attempt to capture the effects of increased dynamic pressure over the horizontal and vertical tail surfaces.

OUDLEY KNOX LIBRARY
NAVAL POSTCRADUATE SCHOOL
MONTRIES CA SEELSTO

vi

TABLE OF CONTENTS

I. INTRO	DDUCTION	1
A.	BACKGROUND	1
B.	REQUIREMENTS	2
C.	STATEMENT OF OBJECTIVES	2
II. OVER	VIEW OF PERSONAL SIMULATION WORKS	5
A.	GENERAL	5
B.	LOFTSMAN	5
	Streamlined Bodies	5
	2. Wings and Control Surfaces.	6
	3. Patches.	6
C.	CMARC	6
D.	POSTMARC	7
III. CMAR	RC PANEL CODE THEORY	9
A.	POTENTIAL FLOW PANEL CODE THEORY (CMARC/PMARC)	9
B.	CMARC BOUNDARY LAYER ANALYSIS THEORY	12
VI. AERO	DYNAMIC MODEL OF THE FROG UAV	. 17
A.	BACKGROUND.	. 17
B.	FROG UAV DESCRIPTION.	17
C.	FROG UAV MODELING.	20
	1. General.	. 20
	2. Modeling Coordinate System.	. 22
	3. LOFTSMAN Patches.	22
	a. Fuselage Model	23
	b. Main Wing Patch	. 23
	c. Horizontal Stabilizer Patch	24
	d. Vertical Stabilizer Patch	. 24
	e. Tail Boom Patch	. 25
	f. Engine Pod Patch	25

g. Engine Pylon Patch.	25
4. Common CMARC Input File Errors.	26
D. STATIC-PRESSURE SOURCE AND YAW VANE CORRECTIONS THROUGH OFF-BODY FLOW ANALYSIS	26
1. Description of the FROG UAV Pitot-Static and AOA Systems	27
2. Modeling Off-Body Streamlines	27
3. Analysis of Static Source Position Errors	27
4. Analysis of Alpha Vane Position Error	30
5. Summary of Off-Body Flow Field Analysis	30
E. DEVELOPMENT OF BASIC STABILITY DERIVATIVES	37
Longitudinal Stability Derivatives.	40
a. Static Longitudinal Stability Derivatives	40
b. Longitudinal Damping Stability Derivatives	46
c. Longitudinal Control-Power Derivatives	49
2. Lateral Directional Stability Derivatives	51
a. Static Lateral-Directional Stability Derivatives	51
b. Lateral-Directional Damping Derivatives	55
c. Lateral-Directional-Control Power Derivatives	57
3. Summary of CMARC Stability Derivative Analysis	60
F COMPARISON OF DYNAMIC AERODYNAMIC MODELS	61
Longitudinal Dynamics	61
a. Longitudinal Dynamic Modes	61
b. Longitudinal Damping Response to Control Input	65
2. Lateral-Directional Dynamics	68
a. Lateral-Directional Dynamic Modes	68
b. Lateral-Directional Dynamic Response to Control Input	71
V. CONCLUSIONS AND RECOMMENDATIONS	77
APPENDIX A. CMARC STABILITY DERIVATIVE USER GUIDE	79
APPENDIX B. LOFTSMAN INPUT FILES FOR FROG UAV MODELING	119
APPENDIX C. FROG UAV CMARC INPUT FILE	129
APPENDIX D. MATLAB SCRIPT FOR DYNAMIC MODE ANALYSIS	173

LIST OF REFERENCES	181
INITIAL DISTRIBUTION LIST	

X

I. INTRODUCTION

A. BACKGROUND

Computational fluid dynamics (CFD) is increasingly used as a design and analysis tool. As the price of computer hardware drops and computational power increases, CFD becomes more attractive to a larger audience. CFD tools range from the high-end three-dimensional (3D) Navier-Stokes solvers for compressible, viscous fluids to potential flow solvers for incompressible, inviscid flows. This paper discusses the development of an aerodynamic model of the Naval Postgraduate School (NPS) Fiber Optic Guided (FROG) Unmanned Air Vehicle (UAV) using a personal computer hosted panel code.

Validation of the Personal Simulation Works panel code software and initial FROG UAV modeling was completed in June 1997. Results are reported in Ref. [1]. This study expands on the modeling effort to include the development of a complete aerodynamic model at the trim flight condition. Stability derivative data are obtained from the panel code and then compared to data from classical design calculations and parameter estimation. A linearized state space simulation is used to extract the air vehicle dynamic modes and to model control response. Results are compared for all three data sets.

The Personal Simulation Works software suite, consisting of LOFTSMAN, CMARC and POSTMARC, is used for all aspects of the study. The software provides for panel model development, input file processing and the visualization of results. Emphasis is placed on verifying both the accuracy and suitability of the CFD programs for aerodynamic modeling.

Until recently, personal computers (PC) did not have the computational power or memory to be practical for panel code CFD programs. Things have changed with the introduction of the Pentium class PC and low cost RAM. AeroLogic capitalized on the power of the Pentium class PC and developed Personal Simulation Works (PSW). PSW is based on the 3D, low order, inviscid potential flow solver named CMARC. CMARC is a re-hosted version of NASA's Panel Method Ames Research Center (PMARC). PMARC was re-written in the C language and compiled for IBM compatible PCs. CMARC runs under the DOS operating system. It will also run in a DOS window under the WINDOWS 3.x, 95 or NT operating systems. Enhanced capabilities include; improved memory management, an expanded set of command line switches and

provisions for expanded boundary layer post-processing capabilities. However, the core processing algorithms remain the same as implemented in PMARC.

LOFTSMAN, the PSW pre-processing program, is used to mesh complex 3D bodies and create input file patches. The program runs under the Windows operating system and allows the user to loft conics based 3D surfaces. The program automatically creates CMARC, PMARC or VSAERO input patches based on desired panel densities and distribution.

POSTMARC is used for flow visualization and integration of resultant forces. It runs under the Windows 3.x, 95 and NT operating systems. POSTMARC reads CMARC or PMARC output files and provides for the visualization of model geometry, wake stepping, on and off-body streamlines and surface phenomena.

B. REQUIREMENTS

The Naval Postgraduate School Aeronautics Department is integrating UAV hardware and software to demonstrate autonomous flight, trajectory tracking and automatic landing. Closed-loop flight control development requires a valid aerodynamic truth model for the UAV airframe. The introduction of each new airframe requires the development of a new aerodynamic truth model. Most recently, Papageorgiou [Ref. 2] developed and tested an aerodynamic model for the NPS FROG UAV based on classical methods. His model produced a close match to flight test results in the longitudinal axis. However, the lateral-directional axis required modifications based on measured flight test data to produce acceptable results. With the availability of low cost panel code CFD capabilities, it is suggested that a panel code model of the FROG UAV will provide more refined stability derivative data for an initial aerodynamic model.

In addition to a valid truth model, accurate pitot-static and angle-of-attack sensors are required for highly augmented flight control systems. CMARC is well suited for solving on-body static pressure distributions and off-body flow velocities over the predominately attached flow fields of a fuselage forebody. This proves particularly useful for generating pitot-static and angle of attack correction curves and look-up tables.

C. STATEMENT OF OBJECTIVES

The Naval Postgraduate School Aeronautics Department has both active CFD research and avionics development programs. The primary purpose of this investigation

is to verify the accuracy and suitability of the PSW software suite for developing an aerodynamic model of the NPS FROG UAV. Specific objectives are as follows:

- Demonstrate panel code modeling, processing and visualization on a Pentium
 PC using the PSW software package.
- Develop and analyze a panel code model for the NPS FROG UAV using PSW to obtain a complete set of stability derivatives at the cruise trim condition.
- Verify the aerodynamic model through comparison to data obtained from classical design calculations and parameter estimation.
- Demonstrate techniques for producing angle-of-attack vane and pitot-static correction curves.
- Develop a user guide that outlines PSW panel code modeling for the extraction of stability derivatives.

II. OVERVIEW OF PERSONAL SIMULATION WORKS

A. GENERAL

Personal Simulation Works is a PC based software suite that provides for the three primary CFD requirements; 3D modeling of an aircraft (LOFTSMAN), panel code flow solver (CMARC), and post-processing of the computed flow field (POSTMARC). The software package contains three applications hosted on the IBM compatible personal computer. Each software program is discussed separately.

B. LOFTSMAN

LOFTSMAN is a Windows hosted 3D modeling tool that generates surface panel distributions for CMARC or PMARC input files. The program is based on conics, which allows rapid lofting of streamlined bodies such as aircraft fuselages and engine nacelles. In addition, wing and control surfaces can be designed with the extensive library of airfoil templates or with user specified coordinates. The software is well documented, including a tutorial, in the Personal Simulation Works User Guide [Ref. 3]. LOFTSMAN is primarily designed for creating new objects, but an existing airframe can be matched quite closely with just a detailed three-view drawing that includes frame cross sections. Appendix A outlines the development of the FROG UAV model.

1. Streamlined Bodies

LOFTSMAN functionality is divided into Body Objects and Wing Objects. In general, they remain separate unless the intersection between a wing and body is required.

Body Objects are created using a family of curves called second-degree conics. Circles, ellipses, parabolas and hyperbolas are among this group. An entire fuselage is described by specifying just four lines. These are the top waterline (TW), bottom waterline (BW), the maximum breadth line (MB) and the waterline of the maximum breadth line (WW). For each line, the beginning, ending and a few points along the line are specified. Control points are also specified with a curvature factor that allows LOFTSMAN to generate a smooth conic between the points. The power of conic lofting will become evident when discussing the modeling of the complex FROG UAV fuselage in Chapter V.

2. Wings and Control Surfaces

Wings and control surfaces are easily specified in LOFTSMAN using a short input file created with any text editor. The file specifies root, intermediate and tip rib section, location, axis, chord and incidence. LOFTSMAN then fairs a smooth surface through the rib sections. Washout is specified by varying the incidence of the root and tip ribs. Sweep-back is controlled by staggering the tip rib location with respect to the root rib. Once the general wing surface is specified, control surfaces such as ailerons, flaps and elevators can be deflected and meshed.

3. Patches

LOFTSMAN automatically meshes 3D surfaces and creates patches for CMARC/PMARC input files. The distinction between a mesh and a patch is important. A mesh is a set of quadrilateral and triangular panels that represent the surface of a wing or body. When the set of panels is organized and formatted to create a sub-component portion of a CMARC or PMARC input file, it is called a patch.

A body or wing surface is first meshed at a density specified by the user. Panel compression options include cosine and half-cosine spacing. After meshing the object, one saves it to a text file as a formatted patch. One then opens the patch file with any text editor and copies/pastes the patch text into the appropriate location in the CMARC input file.

Each control surface deflection requires a separate mesh and formatted patch. For instance, to evaluate roll performance one needs to separately mesh an upward aileron deflection on the right wing and a downward deflection on the left wing. If multiple deflections of a single control surface are required, each deflection must be meshed separately.

C. CMARC

CMARC is the C version of PMARC low-order, 3D panel code. Inviscid, irrotational, incompressible, potential flow is assumed. Low-order means that source and doublet strength distribution is constant across a panel. There is no attempt to match the source or doublet strength of an adjacent panel at a common edge. Advanced features include internal flow modeling and time stepping wake models.

PMARC version 12.19 was released as FORTRAN 77 source code in 1992. CMARC was rewritten in the C language and compiled for hosting on IBM compatible personal computers by AeroLogic, Inc. The program runs under the DOS operating system. It will also run in a DOS window from Windows 3.1, 95 or NT. Enhanced features include command-line options and flexible memory management. Command line options simplify batch processing by adding an extensive set of switches that can be set external to the CMARC input file. Flexible memory management provides for the automatic sizing of arrays without having to recompile the source code.

D. POSTMARC

POSTMARC is a Windows post-processing program for the visualization of CMARC and PMARC output files. Capabilities include body geometry, wake stepping, surface pressure and streamline visualization. POSTMARC also provides the capability to integrate pressure and skin friction forces over the model geometry. This proves particularly useful when one desires to recalculate loads around a different center of gravity.

An interesting feature for design work is the integration of panel surface area to obtain total wetted area. After lofting a new geometry in LOFTSMAN, a quick check of geometry is made by running CMARC with the -g command line toggle. The total wetted area is then checked in POSTMARC. This function is particularly useful when working to reduce skin friction drag.

Versions 1.17.3 and later of POSTMARC include the capability to integrate skin friction drag coefficient over the model geometry. It is important to note that a key piece of the drag equation is missing from a POSTMARC solution. CMARC provides induced drag from the surface pressure distribution and skin friction drag from the 2D boundary layer code. Skin friction is only calculated up to the point of boundary layer separation. Pressure drag due to separation, a major portion of the drag equation, is missing from a CMARC/POSTMARC solution.

In fact, if one isn't careful, POSTMARC drag calculations can be misleading. Take for instance two similar model configurations with only minor geometry differences that do not affect wetted area. It is possible for the model with more flow separation to have less skin friction drag because there is no CMARC output for skin friction coefficient after the boundary layer code predicts separation. During iterative design

work, this could lead to the incorrect conclusion that the design team is reducing overall drag. Perhaps a better function for LOFTSMAN than integrated skin friction drag would be a function that predicts the percentage of attached flow and laminar flow. Iterative design changes could be made that maximize laminar flow and minimize separated flow.

III. CMARC PANEL CODE THEORY

A. POTENTIAL FLOW PANEL CODE THEORY (CMARC/PMARC)

Potential flow theory involves the superposition of sources and doublets to generate the desired flow field around a 3D body. It assumes inviscid, irrotational and incompressible flow. As such, valid solutions are only obtained at low Mach numbers and for flow fields without large areas of separation.

The basic concept of panel methods, as outlined by Bertin and Smith [Ref. 4], requires the modeling of the desired 3D configuration with a large number of quadrilateral and triangular panels representing the surface of the aircraft. A series of sources, doublets and vortices is then distributed on each panel. Superposition allows the simultaneous computation of the singularity strengths required to satisfy flow tangency on the surface. The inviscid, irrotational and incompressible flow field represented by the superposition of sources and doublets satisfies the Laplace equation:

$$\nabla^2 \Phi = 0 \tag{3.1}$$

Using Green's Theorem, the potential at any point P in the flow is represented by:

$$\Phi_{P} = \frac{1}{4\pi} \iint_{S+W} (\Phi - \Phi_{i}) \overline{n} \nabla \left(\frac{1}{r}\right) dS - \frac{1}{4\pi} \iint_{S+W} \left(\frac{1}{r}\right) \overline{n} \cdot (\nabla \Phi - \nabla \Phi_{i}) dS$$
3.2

Where $(\Phi - \Phi_i)$ represents the potential from the doublet distribution and $\overline{n} \cdot (\nabla \Phi - \nabla \Phi_i)$ represents the potential from the source distributions.

CMARC is a low order panel code that assumes constant source and doublet strength distributions across each panel. Figure 3.1 shows a panel layout for a generic 3D wing fuselage configuration. It is important to note that for a 3D solution, there is an equivalence to surface doublet and surface vortex distributions. CMARC implements source and doublet distributions.

Figure 3.1 Typical Wing/Body Panel Code Configuration, from Ref. [5].

As mentioned previously, the general boundary condition imposed is tangential flow at the surface. CMARC, as outlined in Ref. [3], allows the modification of this boundary condition on individual panels or groups of panels. A normal surface velocity distribution may be specified to simulate flow into or out of ducts.

In order to produce lift, a potential flow panel code requires a method to implement the Kutta condition. As noted in Anderson [Ref. 6], the Kutta condition at the trailing edge implies that the circulation, Γ , around an airfoil is such that the flow exits the trailing edge smoothly. In addition, the velocities leaving the top and bottom surfaces are finite and equal in magnitude and direction.

Panel codes impose the Kutta condition by the shedding of wake panels along the trailing edges or separation lines. Wake panels are similar to a surface panel with only a doublet distribution. The doublet strength of the attached wake panel equals the difference in doublet strengths of the two adjacent surface panels.

The CMARC core panel code processing engine is functionally equivalent to the PMARC panel code module. The implemented equations are well documented by Ashby et al. [Ref. 5]. The PMARC documentation includes a wing-body combination, shown in Figure 3.1, evaluated by PMARC with good correlation to experimental data. The results are shown in Figures 3.2 and 3.3. In addition, Lambert [Ref. 7] compared PMARC panel code results to several theoretical and experimental test cases with good correlation at low angle-of-attack. Sensitivity to wake placement is highlighted by his studies.

Wake positioning can have a large influence on potential flow solutions. A wake is obviously attached to the trailing edge of wings and control surfaces with sharp, thin trailing edges to produce the Kutta condition. However, wake positioning on streamlined fuselages, missile airframes and nacelles is more of an art than science. Recently, Tuncer and Platzer [Ref. 8] investigated generalized wake placement techniques for cylindrical bodies of revolution with good correlation to experimental data at up to 20 degrees angle-of-attack. The techniques were used with success by this author in Ref. [1] for the verification of CMARC calculations for flow over an inclined 6:1 prolate spheroid.

Figure 3.2 Comparison of Experimental Data and PMARC Results for Two Spanwise Stations of the Wing/Body ($\alpha = 4^{\circ}$), from Ref. [5].

Figure 3.3 Comparison of Experimental Data and PMARC Along the Fuselage Centerline of the Wing/Body Configuration ($\alpha = 4^{\circ}$), from Ref. [5].

B. CMARC BOUNDARY LAYER ANALYSIS THEORY

CMARC and PMARC use the same two-dimensional integral method to calculate boundary layer characteristics along a surface streamline. A transition model automatically switches from laminar to turbulent calculations. The developers of the PMARC code chose a 2D integral routine over a 3D finite difference grid method due to speed and robustness of the calculations [Ref. 5]. Building a finite difference grid is a difficult and time consuming process requiring the user to develop grids over complex 3D surfaces. In addition, boundary layer calculation times can easily exceed that required for the basic potential flow solution. Reference [9] gives a good outline of three-dimensional finite difference methods.

The CMARC and PMARC User's Guides [Refs. 3 and 5] contain detailed discussions on the development of the CMARC/PMARC boundary layer code starting from the two-dimensional momentum equation:

$$\frac{d\theta}{d\eta} + (2+H)*\frac{\theta}{U}\frac{dU}{d\eta} = \frac{1}{2}C_f$$

3.3

The momentum integral equation is numerically integrated along a surface streamline.

The laminar region of the boundary layer is modeled by numerically integrating the following exact differential equation. The equation is solved iteratively through numerical integration along a streamline starting at a stagnation point [Ref. 5]:

$$\theta(\eta)^{2} = \frac{0.45\nu}{U(\eta)^{6}} \int_{0}^{\eta} (1 + 2.222g(K, \mu))U(\eta)^{5} d\eta + \theta(0)^{2} \left(\frac{U(0)}{U(\mu)}\right)^{6}$$
3.4

where:

U - velocity at outer edge of boundary layer

 θ - momentum thickness

$$K = \frac{\theta^2}{v} \frac{dU}{d\eta}$$

η - generalized coordinate along a streamline

The value g(K,u) is based on exact solutions for a number of pressure distributions. Initial work was conducted by Thwaites with improvements by Curle [Ref. 10]:

$$g(K,\mu) = F_0(K) - \mu G_0(K) - 0.45 + 6K$$
3.5

CMARC uses an empirical transition model based on the average pressure gradient, \overline{K} , for predicting laminar to turbulent transition. The following relations are used to calculate the transition point [Ref. 5]:

$$\overline{K} = \frac{\int_{\eta_{ins}}^{\eta} K d\eta}{\eta - \eta_{ins}}$$
3.6

where η_{ins} is the streamline coordinate at instability. And, K is the local pressure gradient at boundary layer instability [Ref. 5]:

$$K = -0.4709 + 0.11066 * \ln(Re_{\theta}) + 0.0058591 * \ln^{2}(Re_{\theta})$$
 $(0 \le Re_{\theta} \le 650)$

$$K = 0.69412 - 0.23992 * \ln(Re_{\theta}) + 0.0205 * \ln^{2}(Re_{\theta})$$
 $(650 < Re_{\theta} \le 10000)$

The local Reynolds number at transition is correlated to \overline{K} with the following expressions [Ref. 5]:

$$\overline{K} = -0.0925 + 0.00007 * Re_{\theta} \qquad (0 \le Re_{\theta} \le 750)$$

$$\overline{K} = -0.12571 + 0.000114286 * Re_{\theta} \qquad (750 < Re_{\theta} \le 1100) \qquad 3.8$$

$$\overline{K} = 1.59381 - 0.45543 * ln(Re_{\theta}) + 0.032534 * ln^{2}(Re_{\theta}) \qquad (1100 < Re_{\theta} \le 3000)$$

At transition, the initial turbulent shape factor, H, is given by the following empirical formula that is a fit to data developed by Coles [Ref. 10]:

$$H = \frac{1.4754}{\log_{10}(\text{Re}_{\theta})} + 0.9698$$
 3.9

Provisions are made to check for turbulent reattachment if laminar separation is encountered. At laminar separation, a point calculation is made to determine if the boundary layer will reattach. If reattachment is predicted, the boundary layer code immediately switches to turbulent calculations. No attempt is made to model the laminar separation bubble or provide a transition length. After laminar separation is predicted, the following empirical relations are used to determine if reattachment occurs [Ref. 5]:

$$K = 0.0227 - 0.007575 * Re_{\theta} - 0.000001157 * Re_{\theta}^{2} \qquad (Re_{\theta} \ge 125)$$

$$K = -0.09 \qquad (Re_{\theta} < 125)$$

The boundary layer code in CMARC uses a point transition model. No attempt is made to model a more representative transition length. Turbulent calculations begin at transition using the Nash-Hicks model [Ref. 5]. Calculations continue along the streamline until turbulent separation is predicted or the end of the streamline is reached. No boundary layer data is available after separation.

The authors of PMARC caveat that their boundary layer calculations are quite accurate for predominately 2D flow but break down in regions of large cross flow near separation. This premise was tested in Reference [1] by comparing the predominately 2D flow over the inboard region of a high aspect ratio wing to the finite difference calculations performed by the Naval Postgraduate School Unsteady Potential Flow Code (UPOT). In general, CMARC provided correct trends for both the transition and separation points. However, in all cases, CMARC predicted early transition and late flow separation. As expected, the differences were greatest at lower Reynolds numbers where boundary layer thickness is larger.

Reference [1] also modeled flow over an inclined prolate spheroid. The 6:1 prolate spheroid was chosen because extensive experimental data is available. In addition, the three-dimensional flow around a prolate shperoid is similar to a streamlined slender fuselage. With proper wake placement, CMARC was found to produce accurate normal force and pitching moment coefficients. Over the three-dimensional body, CMARC boundary layer calculations also predicted early transition and late flow separation. Despite inaccuracies, CMARC boundary layer calculations remained useful when used as a design tool for visualizing the trend in transition and separation points with configuration changes.

IV. AERODYNAMIC MODEL OF THE FROG UAV

A. BACKGROUND

The Naval Postgraduate School Aeronautics Department is integrating UAV hardware and software to demonstrate autonomous flight, trajectory tracking and automatic landing. A core requirement for flight control law development is a valid aerodynamic truth model for the UAV airframe. A panel code model of the FROG UAV is one method for estimating many of the stability derivatives required for an aerodynamic truth model. This development effort concentrates on finding the static, rate damping and control power derivatives for both the longitudinal and lateral-directional axes.

Panel code modeling usefulness goes beyond the development of aerodynamic coefficients. Flight control systems require accurate pitot-static and angle-of-attack sensor inputs. CMARC accurately solves on-body static pressure distributions and off-body flow velocities over the predominately attached flow fields of fuselage fore bodies. In this study, correction curves are generated for static source and angle-of-attack probe position errors.

B. FROG UAV DESCRIPTION

The FROG UAV is a small single engine flight test vehicle used for autonomous flight research by the Naval Postgraduate School Aeronautics Department. The aircraft was originally designated the FOG-R by the U. S. Army. It was designed as a small lightweight, battlefield observation platform that could be guided by a fiber optic data link. Table 4.1 presents the basic aircraft specifications.

The aircraft is somewhat unconventional in that the engine is mounted in a nacelle tractor style above the fuselage and wing. The aft fuselage consists of a 1.75 inch diameter aluminum tube which connects the tail surfaces to the main fuselage. Figure 4.1 displays a three view drawing of the FROG UAV.

PARAMETER	MEASUREM	ENT/UNITS
Length	8.125 ft	97.5 in
Height	1.75 ft	21 in
Weight	67.7 lbs	
Power Plant	12 Hp /	2 Cycle
Wing Airfoil	NACA:	
Horiz. Stab. Airfoil	NACA 0006	(Approx.)
$S_w(S_{ref})$	17.57 ft ²	2530 in ²
S _t	3.174 ft ²	457.1 in ²
S_{v}	0.9818 ft ²	141.4 in ²
С	1.66 ft	20 in
Ct	0.958 ft	11.5 in
$b_{\rm w}$	10.54 ft	126.5 in
b _t	3.313 ft	39.75 in
b_{v}	1.25 ft	15.0 in
l_{t}	4.44 ft	53.25 in
$l_{\rm v}$	4.44 ft	53.25 in
AR_w	6.32	
AR_t	3.46	
AR_{v}	1.59	
V_{H}	0.49	
V_{v}	0.16	

Table 4.1 FROG UAV Characteristics, after Ref. [2].

Figure 4.1 FROG UAV Three-View Drawing.

The FROG UAV, as operated by NPS, is equipped with airspeed, angle-of-attack, altitude and control surface sensors. In addition, a miniature Inertial Measurement Unit (IMU) captures aircraft attitude, acceleration and body rates. Data is down linked to a mobile SGI workstation through a spread spectrum modem. Onboard GPS provides differential GPS navigation capability with the ground station used as a reference. The aircraft can be flown by conventional radio control or by up-linking flight control commands from the SGI workstation.

Current flight control development requires a linearized aerodynamic model around the cruise trim point of 60 m.p.h. or 88 ft/s. This flight condition is selected for the development of stability derivative data with CMARC. Table 4.2 lists the aircraft parameters for the trim flight condition.

PARAMETER	MEASUREMENT	UNITS
Weight	67.73	lbs
IXX	12.52	slug-ft²
IYY	8.43	slug-ft ²
IZZ	18.55	slug-ft ²
Airspeed	60/88	mph and ft/s
Altitude	800	ft MSL
Air Density	0.002327	slug/ft ₃
Center of Gravity	34.5%	M.A.C
C _{L trim}	0.4295	n/a
α _{trim (est)}	-0.04	degrees
δ _{Etrim}	5.1	degrees

Table 4.2 FROG UAV Trim Flight Condition, after Ref.[2].

C. FROG UAV MODELING

1. General

LOFTSMAN is utilized for the creation of all CMARC input file patches except for wing tips. In some cases, CMARC's more efficient built-in capability to model standard NACA 4-digit wing surfaces could be used. However, with the requirement to mesh deflected control surfaces, all patches are created with LOFTSMAN from the start. The complete FROG UAV model with all patches activated is displayed in Figure 4.2.

Appendix A contains detailed descriptions of obtaining stability derivative data in a less formal user guide format.

Figure 4.2 FROG UAV Panel Code Model with All Patches Activated.

Some assumptions are made to simplify the modeling process. First, the horizontal and vertical stabilizers are modeled with a NACA 0006 section. The actual surfaces are constructed with a flat section, rounded at the nose and tapered starting at the control surface hinge line to a sharp trailing edge. The NACA 0006 provides a close approximation and allows the use of LOFTMAN's built-in wing lofting capability. For a potential flow solution, this simplification is considered minor.

A second simplification is made regarding the vertical stabilizer's tip rib orientation. The actual rib is canted down 5° with respect to the longitudinal waterline. LOFTSMAN will only model a chord line that is parallel to the waterline (constant BL). Thus, for this study, the vertical tail tip rib is modeled with a constant BL, but the span is adjusted to maintain the same overall surface area.

A third assumption is made regarding aileron control surface hinge lines. The actual FROG UAV ailerons are piano hinged along the upper surface. For simplification of the LOFTSMAN model, all surfaces are hinged at the centerline.

Finally, there is no attempt to model the tricycle landing gear struts or wheel assemblies. The landing gear components do not contribute significantly to the aerodynamic stability derivatives. However, they certainly need to be taken into account when measuring moments of inertia for a dynamic model.

2. Modeling Coordinate System

The model is developed using a coordinate system selected to simplify fuselage measurements. The +x-axis starts even with the nose and runs aft along the bottom of the fuselage, parallel with the tail boom. The bottom of the fuselage is used as the waterline with +z-axis in the up direction. This allows for easy vertical measurements when the aircraft is placed flat on a horizontal surface. The +y-axis runs from centerline outboard parallel to the right wing. Figure 4.3, which displays static-pressure source and alpha vane locations, also shows the location and origin of the modeling coordinate system.

3. LOFTSMAN Patches

LOFTSMAN is used to generate all the model patches except for wing tips. CMARC's built-in capability is used to create wing tip patches. Appendix B contains listings of all the LOFTSMAN input files. Once a surface is meshed, the mesh is saved to a file as a CMARC/PMARC patch. The resulting text file is then opened, and the text is copied and pasted with any text editor into the patch definition section of the CMARC input file. LOFTSMAN patch files are not listed because they are redundant with the patches in the final CMARC input file listed in Appendix C. Multiple patches for the same control surface may be stored in the input file. For instance, two horizontal stabilizer patches with different elevator deflection angles may be kept in the CMARC input file. However, only one may reside in the active patch input section. All other patches for the same aircraft component must reside after the patch with the "last patch" toggle set (TNODS=5).

When saving a patch, LOFTSMAN automatically takes care of all CMARC input formatting. A patch, as formatted by LOFTSMAN, assumes additional patches will follow in the CMARC input file. Therefore, the last segment's TNODS variable is set TNODS=3. When the patch is the last patch in the input file, the TNODS variable must be manually set to TNODS=5. If CMARC hangs up while reading in geometry information, most likely TNODS=5 is missing on the last patch.

a. Fuselage Model

The fuselage is lofted as a B-type body. A B-type body is used when major portions of the fuselage have a circular or oval cross section. The input file is listed in Appendix B. Only the right side is meshed, with a symmetric left side created by toggling the IPATSYM variable to IPATSYM=1. LOFTSMAN assumes that B-type bodies converge to a specific point at the fore and aft ends. The flat aft fuselage face does not provide this single point. A slight modification was made to the aft face to allow automatic meshing as a B-type body. The center of the aft face is extended very slightly, approximately 1/8 inch, to provide a convergence point for the final rear triangular panels. This small deviation is assumed not affect the aerodynamic fidelity of the model for a potential flow solution.

The right side was originally meshed separately from the wing as a 20 x 20 panel patch. This created a low order fit when the wing patch was butted to the side of the fuselage, resulting in overlapping panels. A final mesh was created that flowed around the wing root and fuselage intersection for a high order fit. All the fuselage panels at the wing root join with the adjacent wing panels. This mesh requires that the fuselage be broken up into six separate panels per side. They are the nose patch, the forward transition patch, the top and bottom wing root patches, the aft transition patch and finally the rear fuselage patch. Some manual editing is required to straighten out panels on the upper fuselage patch. When the six patches are added together, the final configuration is modeled with a 44x15 panel patch.

b. Main Wing Patch

The NACA 2415 wing is created with four separate patches to allow the addition of a deflected aileron mesh. CMARC comes with a broad selection of "*.SD" airfoil template files that are automatically loaded during installation. The "NACA2415.SD" file is used for this model. The 10x15 inboard wing patch runs from the wing root, past the flaps, to the start of the aileron. The 10x15 mid-wing patch covers the portion of the wing spanned by the aileron. The tapered outboard wing extension is made with a 6x15 patch. Finally, a 4x15 semi-circular wing tip patch is created using CMARC's built-in wing tip functionality. The wing is set to a 4.5° incidence in the LOFTSMAN input file. Alternatively, the patch could be created with no incidence and then the patch coordinate system could be rotated in the CMARC input file. Together, the three wing patches add to make a 30x15 panel wing model.

The ailerons are meshed at zero degree deflection and five degrees of right rolling moment deflection. For the no deflection case, a single right wing patch is meshed with CMARC's symmetric patch toggle (IPATSYM=1) creating the left patch. For deflected ailerons, separate patches are meshed for each wing. The right wing aileron deflection is five degrees trailing edge up (T.E.U.) and the left wing five degrees trailing edge down (T.E.D.).

c. Horizontal Stabilizer Patch

The horizontal stabilizer and elevator patch is created with a single 10x16 mesh using the "NACA0006.SD" airfoil template. As stated earlier, the actual UAV horizontal stabilizer has flat upper and lower surfaces and a rounded leading edge. The NACA 0006 airfoil is substituted because it provides a close approximation to the leading edged radius and thickness ratio. No other special modifications are required. A tip patch is not added because some of the resulting panels would be too small. In particular, the triangular panels closing out the aft end of the tip are too small in proportion to the other panels, creating singularities due to machine resolution. Initially, an attempt was made to model horizontal and vertical stabilizer wing tips, but the model would not converge with them. Leaving off tip patches does not significantly influence results according to the CMARC User's Guide [Ref. 3].

The elevator spans the entire horizontal stabilizer. Two patches are meshed, one with zero deflection and the second with positive five degrees (+5° T.E.D.) of deflection. The deflected patch is used to obtain the elevator control power derivatives ($C_{L\delta e}$, $C_{M\delta e}$ and $C_{D\delta e}$).

d. Vertical Stabilizer Patch

Two different versions of the vertical stabilizer are used for FROG modeling. An extended vertical stabilizer, which includes the "effective" area of the empennage tail boom, is used to measure the static sideslip and yaw rate damping derivatives. It is a 10x14 panel patch. The second patch models the actual area of the vertical stabilizer. It is a 10x12 patch and is meshed with a five-degree rudder deflection for measuring control power derivatives.

The vertical stabilizer and rudder patches are created with a single mesh using the "NACA0006.SD" airfoil template. As with the horizontal tail stabilizer, the NACA 0006 airfoil closely approximates the vertical surface leading edge radius and thickness ratio. The LOFTSMAN input file is different in that a vertical wing surface

requires a modification to the rib axis. The rib axis must be specified with an x-axis rotation of 90°, a y-axis rotation of 0° and an unspecified (999.0) z-axis rotation. No symmetry is selected for the vertical stabilizer because the patch is already symmetric about the y=0 plane. As with the horizontal stabilizer, a tip patch is not added because some of the resulting panels would be too small.

The rudder spans the entire vertical stabilizer. Two patches are meshed, one with zero deflection and the second with positive five degrees (+5° T.E.L.) of deflection. The deflected patch is used to obtain the elevator control power derivatives ($C_{L\delta e}$, $C_{M\delta e}$ and $C_{D\delta e}$).

e. Tail Boom Patch

The tail boom patch is created as a single 12 x 10 mesh using a B-type body. Again, only the right side is meshed due to symmetry. The LOFTSMAN input file requires modifications at both ends in a similar fashion to the aft fuselage. A single point is added to allow convergence of the triangular panels at either end. With this point, the tail boom has the appearance of being tapered at both ends. The point is then manually edited out in the CMARC input file by replacing the "x" coordinate of the beginning and ending section panels with the correct value. In most cases, the tail boom is left out of solution to aid in convergence. This is due to the small overlapping panels at the fuselage tail boom junction. Being a slender, round tube directly in the fuselage slipstream, the tail boom is assumed to have a small influence on the stability derivatives.

f. Engine Pod Patch

The engine pod patch, or nacelle, is created as a single 15 x 10 mesh using a B-type body. Only the right side is meshed due to symmetry. The prop spinner is an integral part of the patch. No attempt is made to model the prop, engine heads or exhaust system. As with the tail boom, in most cases the engine pod is left off the model used to establish stability derivatives.

g. Engine Pylon Patch

The engine pylon patch is modeled with a single 15 x 10 mesh using an A-type body. A-type bodies are used to model surfaces similar to boat hulls with cornered surfaces or sharp chines. In addition, A-type bodies do not require the body to be completely enclosed. As a result, an A-body was selected to model just the sides of the pylon. Only the right side is meshed due to symmetry. A low order fit is achieved with

the adjacent fuselage and engine pod panels. This results in questionable pressure distributions. As a result, the pylon patch was turned off for most configurations. A future attempt could be made to create a high order fit between the other patches or to model the pylon as a flat surface. This will probably require manual editing of the intersecting patches. Even with a high order fit, a wake cannot be added to the trailing edge of the pylon. It would impact the vertical tail surface

4. Common CMARC Input File Errors

The patches created in LOFTSMAN are assembled into a single CMARC input file with any text editor. The default input file, which comes with CMARC, or any old input file may be modified. There are many errors that will cause CMARC to hang up without an error message. The two most common errors are forgetting to designate the last patch and incorrectly numbering the wake patches.

The last patch must be designated by including a TNODS=5 setting in the last section of the last patch. If it is not included, CMARC hangs up when reading in the geometry. In a similar manner, the last wake must be designated with a NODEW=5 setting. If the last wake is not designated, CMARC hangs up while reading in the wake information. Another common error involves incorrect wake to patch number association. Patch numbering changes whenever patches are disabled or reordered. The KWPACH field for each wake definition must be checked to make sure it reflects the current patch numbering.

D. STATIC-PRESSURE SOURCE AND ALPHA VANE CORRECTIONS THROUGH OFF-BODY FLOW ANALYSIS

CMARC is ideally suited for off-body flow analysis. Off-body streamlines may be placed through a point anywhere in the flow field. CMARC will then follow the streamline up and downstream the distance designated in the input file. This is particularly useful for flow visualization. In addition, CMARC calculates pressure coefficient and velocity at each point along the streamline. For this study, two streamlines are placed through the locations of the static-pressure source and alpha probe locations. Pressure coefficient is used to quantify static source position error and velocity is used to calculate alpha probe position error as a function of FROG UAV angle-of-attack. Both static pressure and AOA are digitized for down link to the ground station allowing the values to be easily corrected. Either a look-up table or curve fit correction can be applied subsequent to being passed to the flight control routines. This analysis

was previously published by the author in Ref. [1], but is included here to provide a single source of UAV modeling conducted to date.

1. Description of the FROG UAV Pitot-Static and AOA Systems

The pitot-static system and angle-of-attack probe share a common flight test boom extending from the nose of the UAV. The boom contains both the total and static pressure ports. Figure 4.3 depicts the general dimensions of the flight test boom installation and the modeling coordinate system.

2. Modeling Off-Body Streamlines

Streamlines are placed at the two locations indicated in Figure 4.3, which correspond to the static source and alpha probe locations. Two off body streamlines were activated in CMARC by setting NSTLIN=2 in the &SLIN1 line. Only a short distance of 2 inches is selected up and downstream in the SU and SD fields to reduce the size of the output file. Figure 4.4 is a POSTMARC rendering of the two off-body streamlines used for sensor corrections. With the model at α_t =0°, notice that the streamline is curving up at the angle-of-attack vane location 6.5 inches in front of the aircraft nose.

3. Analysis of Static Source Position Errors

The position error pressure coefficient, $\Delta C_{P~pc}$ or $\Delta P_p/q_c$, is a function of free stream Mach number and angle-of-attack provided that the static source is located outside of a thick boundary layer and sideslip is minimized [Ref. 11]. In the case of the FROG UAV with incompressible flow, $\Delta P_p/q_c$ becomes a function of angle-of-attack only. Therefore, corrections can be simply defined as a function of measured angle-of-attack.

A DOS batch file was executed to step the CMARC model through angles-of-attack ranging from -8° to 20°. The batch file incremented the angle-of-attack using CMARC's command line override feature. In addition, a new output file name was designated for each angle-of-attack. Position error pressure coefficient is then read from the off-body streamline listing of the output file at the location corresponding to the static source. Table 4.3 lists the values of $\Delta P_p/q_c$ calculated from CMARC data. Figure 4.5 displays $\Delta C_{P\ pc}$ as a function of indicated angle-of-attack. The second order influence of angle-of-attack is clear with a second order curve fitting tightly through the data points. Of note, the error is relatively constant for a $\pm 8^\circ$ band around trim angle-of-attack. For incompressible flow, position error pressure coefficient is independent of airspeed and altitude.

Figure 4.3 Diagram of the FROG UAV Pitot-Static and AOA Systems.

Figure 4.4 FROG Off-Body Streamline Visualization with POSTMARC (α =10°).

Position error pressure coefficient can be turned into position corrections for airspeed and altitude. The following relations were developed which assume small errors and incompressible flow:

$$\Delta V_{pc} = \frac{V_i \Delta C_p}{2}$$
 and $\Delta V_{pc} = V_c - V_i$ 4.1

$$\Delta H_{pc} = \frac{\Delta V_{pc} V_i}{\sigma_{ctd} g_o}$$
 and $\Delta H_{pc} = H_c - H_i$ 4.2

Where:

 $\Delta H_{pc}\,$ is the altitude position correction.

 ΔV_{pc} is the velocity position correction.

 $\Delta C_p = \frac{\Delta P_p}{q_c}$ or position error pressure coefficient.

 σ_{std} is standard day density ratio.

 g_o is the gravitational constant.

Table 4.3 displays corrections calculated for both airspeed and altitude at the FROG UAV trim condition of 88 ft/s and 800 ft MSL. The corrections are added to the indicated value to obtain the corrected value. Figures 4.6 and 4.7 display the corrections as a function of indicated angle-of-attack. Again, a second order curve fits nicely through the data points. Equations 4.1 and 4.2 can be used to implement a correction algorithm based on airspeed and altitude.

4. Analysis of Alpha Vane Position Error

Local flow field velocity is extracted from the off-body streamline listing to obtain local angle-of-attack. The alpha vane is assumed to capture the x-z component of the local velocity field and ignore cross flow in the y direction. Flow field velocity is turned into indicated angle-of-attack and angle-of-attack position correction with the following equations:

$$\alpha_i^{\circ} = a \tan\left(\frac{V_z}{V_x}\right) * \frac{180}{\pi}$$
 degrees 4.3

$$\Delta \alpha_{pc}^{\circ} = \alpha_t - \alpha_i$$
 degrees 4.4

A DOS batch file is executed to step the CMARC model, with an off-body streamline located at the vane position, through angles-of-attack ranging from -8° to 20°. Local velocity components are then read from the location corresponding to the alpha vane. Table 4.4 lists the values of $\Delta\alpha_{pc}$ calculated from CMARC data. Figure 4.8 displays $\Delta\alpha_{pc}$ as a function of indicated angle-of-attack. Linear and second order curve fit equations are also indicated on Figure 4.8. Angle-of-attack correction is fairly linear through the FROG operating envelope, with approximately -1.25 degrees of position error at the FROG cruise trim condition. The corrections apply at all incompressible airspeeds and all altitudes.

5. Summary of Off-Body Flow Field Analysis

CMARC proved useful for both static-pressure source and alpha vane position corrections. Measured data may be corrected using look-up tables with the values in Table 4.3 and 4.4 or by using the curve fits in Figures 4.5 through 4.8. Flight testing is recommended for validation of sensor corrections obtained from this CMARC off-body flow field analysis.

UAV AOA	∆Cp _{pc}	V Correction	H Correction
α _T (deg)	$\Delta P/q_c$	$\Delta V_{pc} = V_c - V_i$ (ft/s)	$\Delta H_{pc} = H_c - H_i$ (ft)
-8	0.1092	4.8	13.5
-6	0.1120	4.9	13.8
-3	0.1141	5.0	14.1
-2	0.1140	5.0	14.1
-1	0.1137	5.0	14.1
0	0.1132	5.0	14.0
1	0.1123	5.0	13.9
2	0.1111	4.9	13.7
3	0.1096	4.8	13.5
4	0.1078	4.8	13.3
5	0.1057	4.7	13.1
6	0.1034	4.6	12.8
8	0.0977	4.3	12.1
10	0.0909	4.0	11.2
12	0.0831	3.7	10.3
14	0.0741	3.3	9.2
16	0.0641	2.8	7.9
18	0.0530	2.3	6.6
20	0.0410	1.8	5.1

Table 4.3 Position Error Corrections for the NPS FROG UAV at V=88 ft/s and H=800 ft MSL. Derived from CMARC Panel Code Off-Body Flow Field Analysis.

Trim Condition: V=88 ft/s H=800 ft MSL Flight Test Boom Static Source (8.25" forward of nose) 0.14 NPS FROG UAV a awarc 0.12 __ OrveFit 0.10 0.08 y=0.11388-2.8655e-4x-9.8451e-5x^2 R^2=1.000 0.06 0.04 0.02 0.00 --8 8 12 16 20 28 24 AOA Indicated (deg)

Source: CMARC Panel Code

Figure 4.5 Position Error Pressure Coefficient, $\Delta C_{P pc}$, for the NPS FROG UAV. Derived from CMARC Panel Code Off-Body Flow Field Analysis.

Trim Condition: V=88 ft/s H=800 ft MSL Flight Test Boom Static Source (8.25" forward of nose) 16 NPS FROG UAV 14 0 OWARC 12 **OrveFit** 10 ΔHpc (ft) 8 6 $y = 14.074 - 3.5693e - 2x - 1.2152e - 2x^2$ R^2 = 1.000 4 2 0 + -12 -8 - 4 0 8 12 16 20 24 28 AOA Indicated (deg)

Source: CMARC Panel Code

Figure 4.6 Altitude Position Error, ΔH_{pc} , for the NPS FROG UAV at V=88 ft/s and H=800 ft MSL. Derived from CMARC Panel Code Off-Body Flow Field Analysis.

Figure 4.7 Airspeed Position Error, ΔVpc, for the NPS FROG UAV at V=88 ft/s and H=800 ft MSL. Derived from CMARC Panel Code Off-Body Flow Field Analysis.

UAV AOA	Veloci	ty at Alpha	a Vane	AOA Correction	AOA Indicated
α_T (deg)	V _x (ft/s)	V _y (ft/s)	V _z (ft/s)	$\Delta \alpha = \alpha_T - \alpha_t (\text{deg})$	α_i (deg)
-8	80.92	1.66	-12.23	0.60	-8.60
-6	81.27	1.65	-8.65	0.08	-6.08
-3	81.60	1.64	-3.21	-0.75	-2.25
-2 ·	81.67	1.63	-1.47	-0.97	-1.03
-1	81.71	1.63	0.28	-1.20	0.20
0	81.73	1.62	2.13	-1.49	1.49
1	81.73	1.61	3.93	-1.75	2.75
2	81.70	1.60	5.72	-2.00	4.00
3	81.66	1.59	7.51	-2.25	5.25
4	81.58	1.58	9.30	-2.50	6.50
5	81.48	1.57	11.08	-2.75	7.75
6	81.37	1.56	12.88	-2.99	8.99
8	81.07	1.53	16.43	-3.46	11.46
10	80.67	1.51	19.98	-3.91	13.91
12	80.17	1.48	23.50	-4.34	16.34
14	79.61	1.46	26.99	-4.73	18.73
16	78.93	1.43	30.47	-5.11	21.11
18	78.18	1.39	33.90	-5.44	23.44
20	77.34	1.36	37.31	-5.75	25.75

Table 4.4 Angle-of Attack Vane Position Error Corrections for the NPS FROG UAV. Derived from CMARC Panel Code Off-Body Flow Field Analysis.

Source: CMARC Panel Code Trim Condition: V=88 ft/s H=800 ft MSL Flight Test Boom Alpha Vane (6.5" forward of nose) $y = -1.1960 - 0.18702x R^2 = 0.996$ $y = -1.2104 - 0.20678x + 1.0944e - 3x^2 R^2 = 1.000$ 0 OWARC - Curve Fit

Figure 4.8 Angle-of-Attack Vane Position Error, $\Delta\alpha_{pc}$, for the NPS FROG UAV. Derived from CMARC Panel Code Off-Body Flow Field Analysis.

E. DEVELOPMENT OF STABILITY DERIVATIVES

In this section, CMARC is used to develop the longitudinal and lateral-directional stability derivatives for the FROG UAV. The development effort focuses on finding the static, rate-damping and control-power derivatives. The results obtained from CMARC are compared to data sets obtained from empirical estimation techniques and flight-test parameter estimation. In the next section, the stability derivatives are entered into a dynamic model to find modal frequency, damping and response to control deflections.

The potential flow analysis performed by CMARC does not provide accurate viscous drag values. Therefore, total drag is estimated from the flight-test power-off glide ratio and cruise thrust required. The User Guide developed in Appendix A describes in detail how to gather stability derivative data with CMARC. An abbreviated discussion is presented below.

CMARC contains built-in functionality to integrate forces and moments in all axes over the surface of a body. Force and moment coefficients are automatically nondimensionalized based on the mean aerodynamic chord, reference wing area, semispan and center of gravity location in the CMARC BINP9 input line. Coefficients are presented in both wind and body axes. Of note, CMARC uses the semi-span to nondimensionalize rolling and yawing moment coefficients. Most texts on stability and control, including Roskam [Ref. 12] and Etkin [Ref. 13], nondimensionalize rolling and yawing moments by span. Rolling and yawing moments are nondimensionalized by span in this study. Table 4.5 summarizes the factors for normalizing moments and angular rates. All rolling and yawing moment coefficients presented in this study have been normalized with span by dividing the CMARC output by a factor of two. Table 4.5 also indicates the characteristic time, t*, employed for angle rate data reduction.

In addition to differences in nondimensionalizing moments, CMARC uses the typical CFD axis system shown in Figure 4.9. For this study, all work is performed in the stability axis system. Figure 4.9 also illustrates the standard stability axes implemented in this study. The sign of CMARC roll and yaw moments need to be reversed. The direction for positive control deflections is also shown in Figure 4.9. All control surfaces are patched with positive deflections using the convention in Figure 4.9.

A potential flow solution will not produce satisfactory results for bodies with significant areas of flow separation. Therefore, CMARC models must be analyzed in the linear slope regions for valid results.

MOMENTS	NORMALIZING PARAMETER ¹	RATES	CHARACTERISTIC TIME
$L = C_l \overline{q} S b$	b	$\hat{p} = \frac{pb}{2u_o}$	$t^* = \frac{b}{2u_o}$
$M = C_m \overline{q} S \overline{c}$	\overline{c}	$\hat{r} = \frac{r\overline{c}}{2u_o}$	$t^* = \frac{\overline{c}}{2u_o}$
$N = C_r \overline{q} Sb$	Ь	$\hat{r} = \frac{rb}{2u_o}$	$t^* = \frac{b}{2u_o}$

Note: 1) CMARC nondimensionalizes roll and yaw coefficients with b/2.

Table 4.5 Nondimensionalized Moment and Rate Equations.

For the static stability derivatives, the CMARC model is run at two different angles-of-attack and one sideslip angle with zero control surface deflections. The slopes of the force and moment coefficients are then taken to produce the $C_{L\alpha}$ and $C_{m\alpha}$ longitudinal derivatives and the $C_{Y\beta}$, $C_{I\beta}$ and $C_{n\beta}$ lateral-directional derivatives.

For the control-power derivatives, the model is run at the trim condition with successive control deflections. The difference between the results with and without control surface deflections yield the $C_{L\delta e}$, $C_{M\delta e}$ and $C_{D\delta e}$ longitudinal and the $C_{Y\delta r}$, $C_{l\delta r}$, $C_{n\delta r}$, $C_{l\delta a}$ and $C_{n\delta a}$ lateral-directional control-power derivatives.

Development of the damping derivatives is not as straight forward. The static derivatives are obtained with motion disabled. For the longitudinal damping derivatives, the model is run with oscillating vertical plunging motion to obtain the C_L and C_M α -dot terms. The lift and pitching moment coefficients are broken into real (in phase with AOA) and imaginary (out of phase with AOA) components. The imaginary components are due to α -dot effects. Next, the model is run with oscillating pitch motion to obtain the combined α -dot and pitch rate terms. Subtracting the α -dot influence obtained from the plunging motion isolates the pitch rate-damping term from the pitch motion.

Figure 4.9 CMARC CFD Axis System Compared To Stability Axis System. From References [3] and [14] Respectively.

For the lateral-directional analysis, the β -dot terms are assumed to be small. This allows the model to be run with just oscillating roll and yaw motion. As with the longitudinal test case, the imaginary or out of phase component yields the combined β -dot and rate-damping data. With the β -dot terms assumed to be small, the oscillating motion yields the C_Y , C_I , and C_n roll and yaw rate terms directly.

Throughout this chapter, stability derivatives obtained from CMARC are compared to three other data sets. The first comes from classical analysis through the methods presented by Roskam in References [12] and [15]. The second set comes from a classical aerodynamic model developed by Papageorgio [Ref. 2] and further refined through parameter estimation by Engdahl. The resulting parameter estimation model provides a good match to observed flight characteristics and is currently in use by the NPS Department for Aeronautical Engineering for closed-loop flight control development. The third set of data is for the Cessna 172 at the cruise flight condition. The data is only presented for an order of magnitude comparison.

1. Longitudinal Stability Derivatives

a. Static Longitudinal Stability Derivatives

Three basic longitudinal stability derivatives can be measured with just two runs of the CMARC model. The model is first analyzed at an angle-of-attack corresponding to the estimated trim condition. In this case, α_t =0° is selected for the first run. A second CMARC run is conducted with angle-of-attack incremented by one or two degrees. C_L and C_m are then extracted manually from the data files. The slope of C_L and C_m versus angle-of-attack provide the $C_{L\alpha}$ and $C_{m\alpha}$ longitudinal derivatives. For this study, several angles-of-attack were analyzed to check consistency of the slope. In addition, α_{trim} is calculated from the lift curve slope and trim lift coefficient. For the longitudinal analysis, only half the model is analyzed. The symmetric calculation mode is selected by setting both RSYM=0.0 and IPATSYM=0 in the CMARC input file. Equations 4.5 through 4.7 are used for these calculations:

$$C_{L_{\alpha}} = \frac{\left(C_{L_2} - C_{L_1}\right)}{\left(\alpha_2 - \alpha_1\right)} * \frac{180}{\pi} \text{ per radian}$$
4.5

$$C_{m_{\alpha}} = \frac{\left(C_{m_2} - C_{m_1}\right)}{\left(\alpha_2 - \alpha_1\right)} * \frac{180}{\pi} \text{ per radian}$$

$$4.6$$

$$\alpha^{\circ}_{trim} = \alpha^{\circ}_{1} + \frac{\left(C_{L_{trim}} - C_{L_{1}}\right)}{C_{L_{\alpha}}} * \frac{180}{\pi} \text{ degrees}$$
 4.7

Two FROG UAV model configurations are analyzed in a build-up approach to check results against classical calculations and flight-test data. Figure 4.10 shows the CMARC models. First, just the wing and horizontal tail are considered. The patches for all other surfaces and wakes are turned off and the wing root is extended to centerline. Then, the blended wing/fuselage and horizontal tail are analyzed. Values of $C_{L\alpha}$ and $C_{m\alpha}$ for these two configurations are presented in Table 4.6.

Classical design calculations are also performed to estimate $C_{m\alpha}$ for comparison to CMARC results. Equation 4.8 is used for the calculation of $C_{m\alpha}$:

$$C_{m_{\alpha}} = a_{w} \left[\left(h - h_{ac} \right) - V_{H} \frac{a_{t}}{a_{w}} \left(1 - \frac{d\epsilon}{d\alpha} \right) \right]$$
 4.8

In classical design, the horizontal tail downwash derivative, $d\epsilon/d\alpha$, is generally selected from empirical data. Using a taper ratio of TR=1:1 and an aspect ratio of AR=6, $d\epsilon/d\alpha$ =0.4 is selected from empirical charts in Ref. [16] for the FROG UAV configuration. Also, calculations for $d\epsilon/d\alpha$ =0.25 are included to illustrate pitching moment sensitivity to the downwash derivative. Table 4.6 lists $C_{m\alpha}$ for each configuration.

The final static longitudinal parameter required is total aircraft drag. Drag coefficient plays an important role in long-period aircraft dynamics. Unfortunately, potential flow panel codes such as CMARC do not provide accurate total drag estimates. They can provide good induced drag predictions. And, if equipped with a boundary layer code like that contained in CMARC, they can provide integrated skin friction results. However, a large total drag contribution in the form of pressure drag due to flow separation is not accounted for. Total drag estimates are made below using the two

simple techniques shown in Equations 4.9 to 4.12. The first method is based on flight-test glide ratio. The second is based on cruise power required and estimated prop efficiency. Note that the selected prop efficiency is relatively low due to the small propeller diameter, high RPM and pusher configuration. The two methods provide drag predictions within 10% of each other. The results are averaged to C_D =0.065 and included in Table 4.6.

Method 1: Lift-to-Drag Ratio (L/D=7 from flight-test)

$$L/_D = 7 \implies D = \frac{L}{7} = \frac{W}{7} = \frac{67.7 \ lbs}{7} = 9.67 \ lbs$$
 4.9

$$C_D = \frac{D}{qS} = \frac{9.67 \ lbs}{0.5 * 0.002327 \ lb \cdot s^2 / ft^4 * 88^2 \ ft^2 / s^2 * 17.57 \ ft^2} = 0.0611$$
 4.10

Method 2: Cruise Power Setting (HP=5, η_P =0.35)

$$C_D = \frac{D}{qS} = \frac{T_R}{qS} = \frac{HP_R * 550 \quad ftlbs/s/HP * \eta_P/V}{qS}$$

$$4.11$$

$$C_D = \frac{5 HP * 550 ft \cdot lbs/s/HP * 0.35/88 ft/s}{0.5 * 0.002327 lb \cdot s^2/ft^4 * 88^2 ft^2/s^2 * 17.57 ft^2} = 0.069$$
4.12

Average: $C_{Dave} = (0.0611 + 0.069)/2 = 0.065$

Figure 4.10 CMARC Models of the FROG UAV for the Determination of Static Longitudinal Stability Derivatives.

Flight-test data for the short-period and phugoid modes were used for longitudinal parameter estimation. Values for $C_{L\alpha}$ and $C_{m\alpha}$ based on preliminary parameter estimation work by Engdahl are presented in Table 4.6.

		STATIC	LONGIT	UDINAL	PARAME	TERS
METHOD	CONFIGURATION ¹	Ct _{trim} 2 (deg)	C _{Lα} (per rad)	C _{mα} (per rad)	C _D	$\mathbf{C}_{D\alpha}$ (per rad)
CMARC	Wing/Horiz Tail	-0.87	4.86	-0.835	n/a	n/a
Panel Code	Wing/Fuselage/Horiz Tail	-0.01	4.85	-0.413	n/a	0.266
Classical	Wing/Horiz Tail - δε/δα=0.25	-0.81	4.85	-1.00	n/a	n/a
Design ³	Wing/Horiz Tail - δε/δα=0.40	-0.82	4.82	-0.70	n/a	0.253
Parameter						
Estimation⁴	Flying Aircraft	n/a	4.09	-0.42	0.0655	n/a
	C-172 ⁶	n/a	0.31	-0.89	0.31	0.13

NOTES: 1) CG_x =34.5% M.A.C. / CG_z =8.6" from bottom of fuselage.

- 2) Zero lift wing incidence is +6.5° from the longitudinal reference line.
- 3) Classical design after Ref. [12].
- 4) Parameter estimation from NPS flight test data by Engdahl.
- 5) Average drag obtained from L/D and cruise power analysis from flight test data.
- 6) C-172 data from Ref. [12].

Table 4.6 Comparison of FROG UAV Static Longitudinal Stability Derivatives.

Good correlation of lift curve slope $(C_{L\alpha})$ to classical design is demonstrated by the two CMARC configurations in Table 4.6. Both techniques over estimated $C_{L\alpha}$ compared to flight-test data. Neither the classical design technique nor the CMARC model accounts for control surface leakage or separation effects. Modeling actual flight control gap geometry may provide a closer match to experimental data.

Excellent correlation is achieved for $C_{m\alpha}$ between the blended wing/fuselage CMARC model and flight-test results. The low value of $C_{m\alpha}$ implies that $d\epsilon/d\alpha$ is greater than the 0.4 value selected from empirical charts in Reference [16]. The simplified wing/tail model resulted in a $C_{m\alpha}$ that closely matches classical design predictions with $d\epsilon/d\alpha$ =0.35. Clearly, CMARC modeling provides the value-added capability to capture fuselage influences that are missed with classical design methods.

An investigation was performed to see if improved wake definition could better capture the de/da downwash derivative. Initially a flexible wake was selected. However, at the cruise angle-of-attack, the flexible wake impacted the horizontal tail causing inaccurate results. A further investigation was made into a streamline based wake definition. A study by Walden et al. [Ref. 17] studied wake turbulence by modeling an aircraft flying in trail of a wake-generating wing. A horizontal tail trailing the main wing is a similar configuration. The study found that a streamline-based wake is the best method for modeling downwash effects. In the study, the model was initially run with a rigid-wake. A streamline was also defined downstream of the main wing trailing edge. After analyzing the first results, the wake was then predefined to follow the streamline. The result was a first iteration on modeling a flexible wake with a predefined rigid-wake. This technique was tried during the course of FROG UAV modeling. However, FROG geometry proved unsuited to this technique. The streamline trailing the wing ended up impacting the horizontal tail. This indicated that a predefined wake would also impact the horizontal tail, resulting in inaccurate result. Figure 4.11 shows the streamline impacting the horizontal tail at cruise angle-of-attack with rigid-wakes selected. With the already close correlation of the rigid-wake results to flight-test data, further efforts to investigate $C_{m\alpha}$ were abandoned.

Figure 4.11 Rigid-Wake Streamline for Investigation of Streamline Based Wake Definition.

In summary, for the static longitudinal stability derivatives, CMARC produced accurate values for $C_{m\alpha}$ and a slightly high value of $C_{L\alpha}$. Drag coefficient is obtained by averaging the values from the lift-to-drag ratio and cruise thrust required techniques.

b. Longitudinal Damping Stability Derivatives

The two aircraft motions illustrated in Figure 4.12 are used to develop the longitudinal rate-damping derivatives. A sinusoidal vertical plunging motion isolates the α -dot effects. Oscillatory motion is controlled with the CMARC BINP8A input file line. The oscillating pitch angle captures both the α -dot and pitch rate-damping terms. It is controlled with the CMARC BINP8B input file line. The α -dot influence developed from the plunging motion is subtracted from the pitching motion to isolate the pitch rate effect. All motion is conducted at a frequency of 2π rad/s, which equates to a reduced frequency of k=0.0595 for this configuration and trim airspeed.

Figure 4.12 Aircraft Motion for the Determination of α -dot and Pitch Rate Damping.

The two models shown in Figure 4.13 are used for the rate-damping investigation. The complete wing/fuselage horizontal tail model is used for both the α -dot and pitch rate-damping terms, while the simplified horizontal tail only model is used to obtain a first approximation of pitch rate-damping. The User Guide in Appendix A provides a more detailed description of the techniques used to gather the dynamic longitudinal stability derivatives.

Figure 4.13 CMARC Models of the FROG UAV for the Determination of Longitudinal Rate-Damping.

Traditional design calculations, from Roskam [Ref. 12], are used for comparison to CMARC and flight-test results:

$$C_{L_{\alpha}} = 2 * C_{L\alpha_H} * \eta_H * V_H * \frac{\partial \varepsilon}{\partial \alpha}$$

$$4.13$$

$$C_{M_{\alpha}} = -2 * C_{L\alpha_H} * \eta_H * V_H \frac{l_t}{\overline{c}} * \frac{\partial \varepsilon}{\partial \alpha}$$

$$4.14$$

$$C_{L_a} = 2 * C_{L\alpha_H} * \eta_H * V_H$$
 4.15

$$C_{M_q} = -2 * C_{L\alpha_H} * \eta_H * V_H \frac{l_t}{\bar{c}}$$
4.16

where the dynamic pressure ratio at the tail is taken as η_H =1.0

The dynamic longitudinal stability derivatives are presented in Table 4.7. CMARC-obtained values are compared to classical design values and C-172 stability derivatives. Flight-test data is unavailable for the damping derivatives. The aerodynamic model currently in use by the FROG research team implements longitudinal damping coefficients obtained from classical design techniques. The $C_{L\alpha}$ -dot and C_{mq} obtained from CMARC for the complete model provided a good match to the classical design data. However, both $C_{L\alpha}$ -dot and C_{mq} are over estimated by approximately 50% as compared to classical design values. One possible explanation for the additional damping from CMARC is that the classical approximation only estimates the horizontal tail influence on damping. CMARC also measures wing and fuselage damping influence. The horizontal tail by itself produces values close to the classical calculations. This supports the assertion that CMARC also captures the wing and fuselage influence for the whole model.

		DYNAMIC	LONGITUD	NAL PARAI	METERS
METHOD	THOD CONFIGURATION ¹		C _{Lq} (per rad)	C _{mα-dot} (per rad)	C _{mq} (per rad)
Panel Code	Blended Wing-Fuselage/Horiz Tail	1.42	6.82	-6.24	-11.78
	Horizontal Tail only	n/a	4.37	n/a	-11.94
Classical ²	Wing / Horizontal Tail	1.56	3.89	-4.14	-11.39
Par. Est ³	Flying Aircraft	n/a	n/a	n/a	n/a
	C-172 ⁴	1.7	3.9	-5.2	-12.4

NOTES: 1) CG_x=34.5% M.A.C. / CG_z=8.6" from bottom of fuselage.

- 2) Classical design after Ref. [12].
- 3) Parameter estimation from flight test data by Engdahl.
- 4) C-172 data from Ref. [12].

Table 4.7 Comparison of FROG UAV Dynamic Longitudinal Stability Derivatives.

c. Longitudinal Control-Power Derivatives

The elevator control-power derivatives are obtained by substituting a 0° deflection horizontal-tail patch for one with +5° trailing edge down deflection. Only one run is required. The difference between the trim condition and the deflected value is divided by the elevator deflection as shown below:

$$C_{L_{\delta c}} = \frac{\left(C_{L_{\delta c_2}} - C_{L_{\delta c_1}}\right)}{\delta c_2 - \delta c_1} * 57.3 \quad per \quad rad$$

$$4.17$$

$$C_{D_{\delta e}} = \frac{\left(C_{D_{\delta e_2}} - C_{D_{\delta e_1}}\right)}{\delta e_2 - \delta e_1} * 57.3 \quad per \quad rad$$

$$4.18$$

$$C_{m_{\delta e}} = \frac{\left(C_{m_{\delta e_2}} - C_{m_{\delta e_1}}\right)}{\delta e_2 - \delta e_1} *57.3 \quad per \quad rad$$

$$4.19$$

Elevator control-power derivatives are presented in Table 4.8. A classical design estimate of elevator control-power is also shown for comparison. The following relationships from Roskam [Ref. 15] are used for estimating elevator control-power:

$$C_{L_{\delta\epsilon}} = C_{L_{\delta_F}} * \frac{S_H}{S}$$

$$4.20$$

$$C_{m_{\delta e}} = -C_{L_{\delta e}} * \frac{l_H}{\overline{c}} \quad or \quad C_{m_{\delta e}} = -C_{L_{\delta F}} * V_H$$

$$4.21$$

where $C_{L\delta F}$ is the variation of lift coefficient with elevator deflection found from charts in Roskam [Ref. 15].

In general, the elevator control-power derivatives obtained with CMARC correlate well with classical design techniques. For both $C_{L\delta e}$ and $C_{m\delta e}$, CMARC derived elevator power is approximately 15 percent higher than obtained from classical calculations. However, CMARC significantly under-estimates elevator control-power compared to the parameter estimation model. The most likely explanation for this phenomenon is that the CMARC solution does not model the effects of prop wash. The higher dynamic pressure over the horizontal stabilizer from prop wash increases elevator effectiveness. The parameter estimation model captures this phenomenon. This same trend can be seen in the modeling of rudder control-power. An attempt could be made to model the prop disk effects using CMARC's normal panel velocity definition capability.

		ELEVATOR CONTROL POWER			
METHOD	CONFIGURATION ¹	C _{Lδe} (per rad)	C _{Dδe} (per rad)	C _{mδe} (per rad)	
Panel Code	Blended Wing-Fuselage/Horiz Tail	0.438	0.01	-1.199	
Classical ²	Wing / Horizontal Tail	0.39	n/a	-1.04	
Par. Est ³	Flying Aircraft	1.13	n/a	-1.62	
	C-172⁴	0.43	0.06	-1.28	

NOTES: 1) CG_x=34.5% M.A.C. / CG_z=8.6" from bottom of fuselage.

- 2) Classical design after Ref. [12].
- 3) Parameter estimation from NPS flight test data by Engdahl.
- 4) C-172 data from Ref. [12]..

Table 4.8 Comparison of FROG UAV Elevator Control-Power Derivatives.

2. Lateral Directional Stability Derivatives

a. Static Lateral-Directional Stability Derivatives

Development of the static lateral-directional stability derivatives is not as straightforward. Both sides of the airframe must be modeled by setting both RSYM=1.0 and IPATSYM=1. This creates symmetric patches around the y=0 plane allowing CMARC to perform asymmetric calculations around the entire body and significantly increases processing times.

Initially, a lateral-directional solution was attempted with a complete airframe model. The longitudinal model was modified by adding the vertical stabilizer. This required what was perceived to be a minor wake modification. Figure 4.14 illustrates the configuration. The wing wake was terminated at the wing root to prevent interference with the vertical stabilizer. This left a wake gap for the vertical stabilizer. The engine nacelle and pylon patches were turned off because the wakes would also impact the vertical stabilizer. This configuration met with mixed success. The values of both C_{yb} and C_{nb} were opposite the expected directions. Under closer inspection, it was determined that the false vortex shed from the wing root caused a destabilizing influence on the vertical stabilizer. Figure 4.15 illustrates the vortex using CMARC's built in off-body streamline capability.

In order to obtain satisfactory results, the model is broken up into two separate groups. The aircraft is modeled with the blended wing and fuselage as one group and the horizontal and vertical stabilizers as another group. Separate solutions are obtained for each group and summed through superposition to obtain the whole aircraft solution. The two separate models are shown in Figure 4.16. This method should be used as a last resort. A complete solution should be used if the airframe geometry allows adequate wake separation from the vertical stabilizer. A complete solution would capture fuselage, wing and vertical stabilizer interactions.

Once the model is defined, it is checked for lateral-directional balance at zero sideslip angle (yaw angle=0°). The side force, rolling and yawing coefficients should be zero when a trial run is performed at zero sideslip. If lateral-directional forces or moments are present, the model and wake geometry should be checked for symmetry.

Figure 4.14 Unsuccessful Lateral-Directional Model of the FROG UAV. False Wing Root Vortex Caused Destabilizing Influence on the Vertical Stabilizer.

Figure 4.15 Destabilizing Wing Root Vortex Visualized with Off-body Streamlines.

Figure 4.16 Final Simplified Lateral-Directional Models of the FROG UAV. Separate Solutions are Summed to Obtain Complete Airframe Solution.

Next, a single CMARC run is performed with $\alpha = \alpha_{trim}$ and with two degrees of yaw angle. The results from both models are summed. The lateral-directional derivatives, $C_{Y\beta}$, $C_{l\beta}$ and $C_{n\beta}$, are then obtained directly with equations 4.22 through 4.24:

$$C_{\gamma_{\beta}} = \frac{C_{\gamma}}{\Delta \beta^{\circ}} * \frac{180}{\pi}$$
 per radian 4.22

$$C_{l_{\beta}} = \frac{C_l}{\Delta \beta^{\circ}} * \frac{180}{\pi}$$
 per radian 4.23

$$C_{n_{\beta}} = \frac{C_n}{\Delta \beta^{\circ}} * \frac{180}{\pi}$$
 per radian 4.24

It should be noted that the CMARC wind axis is modeled with x-aft and z-up, vice x-forward and z-down for the flight dynamics stability axis. Care must be taken to reverse the signs of the appropriate coefficients to convert from the CMARC wind axis to the flight dynamics stability axis system.

Static lateral-directional stability derivatives obtained from CMARC are presented in Table 4.9. For comparison three other sets of data are also presented. The first comes from classical analysis using methods from Roskam [Ref. 12]. The second set comes from estimates based on data recorded from flight-test sideslip maneuvers, published by Papageorgio in Ref. [2]. The third set comes from parameter estimation, by Engdahl, based on dynamic flight-test maneuvers.

		STATIC L	AT-DIR PAR	AMETERS
METHOD	CONFIGURATION ¹	C _{Yβ} (per rad)	C _{Iβ} (per rad)	C _{nβ} (per rad)
CMARC Panel Code	Wing/Fuselage + Horz/Vert Stabs	-0.249	-0.063	0.063
Classical Design ²	Wing/Fuselage/Vert Tail	-0.511	-0.055	0.051
Flight Test ³	Flying Aircraft	-0.700	-0.053	0.057
Parameter Estimation ⁴	Flying Aircraft	-0.987	-0.094	0.176
	C-172 ⁵	-0.310	-0.089	0.065

NOTES: 1) $CG_x=34.5\%$ M.A.C. / $CG_z=8.6$ " from bottom of fuselage.

- 2) Classical design calculations by Roskam's methods, after Ref. [12].
- 3) Flight test results from steady heading sideslip, from Ref. [2]
- 4) Parameter estimation from flight test data by Engdahl.
- 5) C-172 data from Ref. [12].

Table 4.9 Comparison of FROG UAV Static Lateral-Directional Stability Derivatives.

CMARC produced weak results for the $C_{Y\beta}$ side force derivative. A large component of $C_{Y\beta}$, approximately 60%, comes from the fuselage. Side forces are not modeled well by the potential flow solution. In addition, the engine pylon and pod are left off the model due to problems with their wakes impacting the vertical tail. They most likely provide a significant contribution to side force.

CMARC results for weathercock stability, $C_{n\beta}$, and dihedral effect, $C_{l\beta}$, show close correlation to the classical calculations. However, dynamic parameter analysis indicates a considerably higher value for both derivatives. The parameter estimation most likely captures the additional dynamic pressure over the vertical stabilizer from prop wash. As with the longitudinal solutions, an attempt should be made to model the propeller disk with a normal velocity distribution.

b. Lateral-Directional Damping Derivatives

As with the static case, the dynamic solutions are run with separate wing/fuselage and vertical/horizontal stabilizer models. The solutions are summed through superposition. Figure 4.17 shows the two angular motions selected to develop the lateral-directional rate-damping derivatives. The β -dot terms are generally considered to be small. As a result, the sideways plunging motion test case is not run. Yaw rate-damping is obtained directly from the oscillating yawing motion without the requirement to subtract β -dot effects. Yawing motion is conducted at a frequency of 2π rad/s, which equates to a reduced frequency of k=0.369 for this configuration and trim airspeed.

Figure 4.17 Aircraft Motion for the Determination of Roll and Yaw damping.

The roll axis is de-coupled from both angle-of-attack and sideslip. Therefore, roll damping can be obtained directly from a constant rolling motion, as illustrated in Figure 4.17. For the FROG study a roll rate of 20°/sec is selected. Initially a lower roll rate of 5°/sec was used. However, the lower rate produced small values of both side force and yawing moment. A higher roll rate prevented machine resolution from becoming a factor in data reduction. The User Guide in Appendix A provides a more detailed description of the techniques used to gather the dynamic lateral-directional derivatives.

The roll damping stability terms are presented in Table 4.10. Traditional design calculations from Roskam [Ref. 12] were completed for comparison to CMARC and flight-test results. In addition, C-172 data is also presented. CMARC roll damping, C_{lp}, is 50% higher than classical results, but right in line with parameter estimation. CMARC adverse yaw due to roll rate, C_{np}, is approximately one fourth that obtained from either classical calculations or parameter estimation. Of note, CMARC does capture side force due to roll rate. This term is difficult to obtain from classical techniques and is usually assumed to be negligible.

		ROLL RATE TERMS			
METHOD	CONFIGURATION ¹	Cy _p	C _{lp} (per rad)	C _{np} (per rad)	
CMARC					
Panel Code	Wing/Fuselage + Horz/Vert Stabs	0.05	-0.452	-0.022	
Classical Design ²	Ming/Fueloge Mert Teil		0.300	0.072	
Design	Wing/Fuselage/Vert Tail	0	-0.300	-0.072	
Parameter Estimation ³	Flying Aircraft	0	-0.448	-0.108	
	C-172⁴	-0.037	-0.47	-0.03	

NOTES: 1) CG_x =34.5% M.A.C. / CG_z =8.6" from bottom of fuselage.

- 2) Classical design calculations by Roskam's methods, after Ref. [12].
- 3) Parameter estimation from flight test data by Engdahl.
- 4) C-172 data from Ref. [12].

Table 4.10 Comparison of FROG UAV Roll Rate Stability Derivatives.

The yaw rate-damping terms are presented in Table 4.11. Traditional design calculations from Roskam [Ref. 12] are presented for comparison to CMARC and flight-test results. C-172 data is also listed. CMARC does an excellent job of predicting yaw damping. Yaw damping, C_{nr} , directly matches the result from parameter estimation. CMARC underestimates roll moment due to yaw rate, C_{lr} , by 25 to 40 percent. And, side force due to yaw rate, C_{Yr} , is overestimated by a factor of three compared to the parameter estimation model. No explanation is readily available to explain these errors.

		YAW RATE TERMS			
METHOD	CONFIGURATION ¹	C _{Yr} (per rad)	C _{Ir} (per rad)	C _{nr} (per rad)	
CMARC Panel Code	Wing/Fuselage + Horz/Vert Stabs	0.337	0.121	-0.121	
Classical Design ²	Wing/Fuselage/Vert Tail	0.140	0.168	-0.076	
Parameter Estimation ³	Flying Aircraft	0.110	0.208	-0.121	
	C-172 ⁴	0.210	0.096	-0.099	

NOTES: 1) CG_x =34.5% M.A.C. / CG_z =8.6" from bottom of fuselage.

- 2) Classical design calculations by Roskam's methods, after Ref. [12].
- 3) Parameter estimation from flight test data by Engdahl.
- 4) C-172 data from Ref [12].

Table 4.11 Comparison of FROG UAV Yaw Rate Stability Derivatives.

c. Lateral-Directional Control-Power Derivatives

Aileron and rudder control-power derivatives are presented in Tables 4.12 and 4.13. Classical design calculations are performed using equations 4.25 through 4.30 from Roskam [Ref. 15]:

$$C_{Y_{\delta_r}} = \frac{C_{L_{\alpha_v}}}{C_{l_{\alpha_v}}} C_{l_{\delta_r}} K_b \frac{S_v}{S}$$

$$4.25$$

$$C_{l_{\delta r}} = C_{\gamma_{\delta_r}} \frac{\left(Z_{\nu} \cos \alpha - l_{\nu} \sin \alpha\right)}{b}$$

$$4.26$$

$$C_{n_{\delta r}} = -C_{\gamma_{\delta_r}} \frac{\left(l_{\nu} \cos \alpha - Z_{\nu} \sin \alpha\right)}{b}$$
 4.27

$$C_{Y_{5a}} \approx small$$
 4.28

$$C_{n_{\delta\alpha}} = K * C_L * C_{l_{\delta\alpha}}$$

$$4.29$$

$$C_{l_{\delta a}} = \left| \alpha_{\delta a} \right| * \frac{C_{l_{\alpha}}}{2\pi} \left(\frac{C'_{l_{\delta a}}}{\kappa} \right)$$

$$4.30$$

where $C_{Y\delta F}$, α_{δ} , κ and $(C'_{1\delta a}/\kappa)$ are empirical values from charts in Roskam [Ref. 15]. Additionally, flight-test parameter analysis and C-172 data are provided for comparison.

		AILERON CONTROL POWER			
METHOD	CONFIGURATION ¹	C _{Yδa} (per rad)	C _{Iδa} (per rad)	C _{nδa} (per rad)	
CMARC Panel Code	Blended Wing-Fuselage/Horz/Vert Tails	-0.021	0.194	-0.0121	
Classical Design ²	Wing/Fuselage/Vert Tail	0	0.213	-0.0236	
Parameter Estimation ³	Flying Aircraft	0	0.239	-0.0261	
	C-172 ⁴	0	0.178	-0.053	

NOTES: 1) CG_x=34.5% M.A.C. / CG₂=8.6" from bottom of fuselage.

- 2) Classical design calculations by Roskam's methods, after Ref. [12].
- 3) Parameter estimation from flight test data by Engdahl.
- 4) C-172 data from Ref. [12].

Table 4.12 Comparison of FROG UAV Aileron Control-Power Derivatives.

In general, CMARC provides aileron control-power estimates in the correct direction and same order of magnitude as both the classical and parameter estimation techniques. Aileron roll control-power shows excellent correlation to both methods. However, CMARC under-estimates adverse yaw due to aileron deflection, $C_{n\delta a}$, by approximately 50%. Yawing moment due to roll rate, C_{np} , is also underestimated by a similar margin. An investigation into the source of CMARC inaccuracies in the modeling of adverse yaw due to aileron deflection and roll rate is warranted.

The rudder control-power derivatives obtained with CMARC show good correlation to classical design techniques. Side force due to rudder deflection, $C_{Y\delta r}$, is 15% greater than classical calculations but closely matches flight-test results. For both $C_{n\delta r}$ and $C_{l\delta r}$, CMARC estimates fall between classical calculations and parameter estimation results. The stronger rudder control-power observed in the parameter estimation model is most likely due to the capturing of prop wash effects.

		RUDDER CONTROL POWER			
METHOD	CONFIGURATION ¹	C _{Yδr} (per rad)	C _{lδr} (per rad)	C _{nδr} (per rad)	
CMARC Panel Code	Blended Wing-Fuselage/Horz/Vert Tails	0.0928	0.0040	-0.0453	
Classical Design ²	Wing/Fuselage/Vert Tail	0.081	0.0056	-0.0341	
Parameter Estimation ³	Flying Aircraft	0.093	0.0004	-0.0785	
	C-172⁴	0.187	0.015	-0.0657	

NOTES: 1) CG_x =34.5% M.A.C. / CG_z =8.6" from bottom of fuselage.

- 2) Classical design calculations by Roskam's methods, after Ref. [12].
- 3) Parameter estimation from flight test data by Engdahl.
- 4) C-172 data from Ref [12].

Table 4.13 Comparison of FROG UAV Rudder Control-Power Derivatives.

3. Summary of CMARC Stability Derivative Analysis

Table 4.14 lists the complete FROG aerodynamic model obtained from CMARC for the trim condition. In summary, CMARC produces reasonably accurate stability derivatives for an initial aerodynamic model. The greatest difficulty is encountered modeling side force due to sideslip and roll rate. The potential flow solution from CMARC fails to adequately capture the side force on the fuselage. Improved fidelity might be obtained by modeling fuselage flow separation with wake separation lines. CMARC also underestimates yawing moment due to roll rate and aileron deflection by large margins.

LONGITUE	DINAL	LATERAL-DIRE	ECTIONAL
Derivative	Value	Derivative	Value
CL	0.4295	C _{Yβ} ¹	-0.2493
C _D	0.065	Сів	-0.0630
C_{Llpha}	4.845	С _{пβ}	0.6300
C_{Dlpha}	0.2664	C _{Yp}	0.0488
C_{Mlpha}	-0.4126	C _{Ip}	-0.4514
$C_L\alpha dot$	1.420	C _{np}	-0.0220
C _{Madot}	-6.264	C _{Yr}	0.3370
C _{Lq}	6.862	C _{Ir}	0.1210
C _{Dq}	0	C _{nr}	-0.1210
C _{Mq}	-11.78	C _{Yδr}	0.0928
$C_{L\deltae}$	0.4378	C _{18r}	0.0040
C _{Dδe}	0.0092	C _{nδr}	-0.0453
C _{Mδe}	-1.199	C _{Yδa}	-0.0206
		C _{Iδa}	0.1943
		C _{nδa}	-0.0121

Table 4.14 Summary of CMARC Stability Derivatives for the NPS FROG UAV.

F. COMPARISON OF DYNAMIC AERODYNAMIC MODELS

This section will discuss the dynamic response of the FROG UAV using the CMARC generated aerodynamic model. Specifically, modal frequency and damping are obtained through eigenvalue analysis. Elevator, aileron and rudder control response is found using a linearized state-equation model. Results are compared to the classical design and parameter estimation models.

Dimensional stability derivatives are placed into linearized 4x4 models as outlined by Schmidt in Ref. [14]. The short-period and long-period modes are obtained using the MATLAB eigenvalue decomposition routine. In a similar manner, the lateral-directional plant matrix yields the roll, spiral and Dutch-roll modes. Dynamic response due to step and doublet control inputs is obtained by assembling the complete linear system. This paper uses control deflection sign convention consistent with Figure 4.9 from Ref. [14]. The MATLAB "Isim" command produces the time based output of the linear system. MATLAB is used to plot the dynamic response.

1. Longitudinal Dynamics

a. Longitudinal Dynamic Modes

The longitudinal response of an aircraft can be reduced to a series of four, first-order differential equations. They are typically written in matrix form based on the state variables u/V, α , q and θ . The linearized state-equations, in matrix form as developed by Schmidt in Ref. [14], are listed in equations 4.31 to 4.37:

$$\{\dot{x}\} = [A]\{x\} + \{B\}\delta_e$$
 4.31

$$\{x\} = \begin{bmatrix} u/V & \alpha & q & \theta \end{bmatrix}^T$$
 4.32

$$[A] = [I_n]^{-1} [A_n] 4.33$$

$$\{B\} = [I_n]^{-1}\{B_n\}$$
 4.34

$$[A_n] = \begin{vmatrix} VX_u & X_{\alpha} & 0 & -g\cos\Theta_0 \\ VZ_u & Z_{\alpha} & (V+Z_q) & -g\sin\Theta_0 \\ VM_u & M_{\alpha} & M_q & 0 \\ 0 & 0 & 1 & 0 \end{vmatrix}$$
4.35

$$\{B_n\} = \begin{bmatrix} X_{\delta e} & Z_{\delta e} & M_{\delta e} & 0 \end{bmatrix}^T$$
 4.36

$$\begin{bmatrix} I_n \end{bmatrix} = \begin{vmatrix} V & 0 & 0 & 0 \\ 0 & (V - Z_{\dot{\alpha}}) & 0 & 0 \\ 0 & -M_{\dot{\alpha}} & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} = Inertial \ matrix$$

$$4.37$$

The non-dimensional stability derivatives generated by CMARC are converted to dimensional derivatives through the transformations listed in Table 4.15. Dimensional derivatives are more convenient because they will lead to time histories being expressed in seconds and frequency in rad/s. The MATLAB script "froguav.m" in Appendix D is used to automate these calculations.

The linearized, longitudinal, state-equation is given by equation 4.31. Note that the plant and control matrices are obtained by pre-multiplying by $[I_n]^{-1}$. The eigenvalues of the plant matrix, [A], yield the longitudinal dynamic modes. The eigenvalues are obtained from the MATLAB script "froguav.m" listed in Appendix D. The results are presented in Table 4.16.

Term	Description	Units
Xu	$-\frac{QS}{mV}(2C_D + M\frac{\partial C_D}{\partial M})$	s ⁻¹
Xα	$\frac{QS}{m}(C_L - \frac{\partial C_D}{\partial \alpha})$	ft-s ⁻²
Χά	$-\frac{QS}{m}\left(\frac{c}{2V}\right)\frac{\partial C_D}{\partial (\dot{\alpha}c/2V)}$	ft-s ⁻¹
Xq	$-\frac{\mathrm{QS}}{\mathrm{m}}\left(\frac{\mathrm{c}}{\mathrm{2V}}\right)\frac{\partial \mathrm{C_D}}{\partial (\mathrm{qc}/\mathrm{2V})}$	ft-s ⁻¹
X_{δ}	$-\frac{QS}{m}\frac{\partial C_D}{\partial \delta}$	ft-s ⁻²
$Z_{\mathtt{u}}$	$-\frac{\mathrm{QS}}{\mathrm{mV}}(2\mathrm{C_L}+\mathrm{M}\frac{\partial\mathrm{C_L}}{\partial\mathrm{M}})$	s ⁻¹
Zα	$-\frac{QS}{m}\left(C_D + \frac{\partial C_L}{\partial \alpha}\right)$	ft-s ⁻²
Zà	$-\frac{\mathrm{QS}}{\mathrm{m}}\left(\frac{\mathrm{c}}{2\mathrm{V}}\right)\frac{\partial\mathrm{C}_{\mathrm{L}}}{\partial(\dot{\alpha}\mathrm{c}/2\mathrm{V})}$	ft-s ⁻¹
Z_{q}	$-\frac{\mathrm{QS}}{\mathrm{m}}\left(\frac{\mathrm{c}}{\mathrm{2V}}\right)\frac{\partial \mathrm{C_L}}{\partial (\mathrm{qc}/\mathrm{2V})}$	ft-s ⁻¹
Z_{δ}	$-\frac{QS}{m}\frac{\partial C_L}{\partial \delta}$	ft-s ⁻²
Mu	$\frac{Q S c}{I_y V} \frac{\partial C_m}{\partial M}$	ft-s ⁻¹
Mα	$\frac{QSc}{I_y} \frac{\partial C_m}{\partial \alpha}$	s ⁻²
Mà	$\frac{Q\dot{S}C}{I_{y}}\left(\frac{c}{2V}\right)\frac{\partial C_{m}}{\partial(\dot{\alpha}c/2V)}$	s ⁻¹
M _q	$\frac{QSC}{I_{y}} \left(\frac{c}{2V} \right) \frac{\partial C_{m}}{\partial (qc/2V)}$	s ⁻¹
M_{δ}	$\frac{Q S c}{I_{\nu}} \frac{\partial C_{m}}{\partial \delta}$	s ⁻²

Table 4.15 Dimensional Longitudinal Stability Derivatives from Ref. [14].

		LONGITUDINAL DYNAMIC MODES					
METHOD	CONFIGURATION ¹	Short-	Period	Phugoid			
		ω _n (rad/s)	ζ	ധn (rad/s)	ζ		
CMARC							
Panel Code	Wing/Fuselage/Horiz Tail	5.15	0.909	0.358	0.136		
Classical Design ²	Wing/Horiz Tail - δε/δα=0.40	5.90	0.734	0.407	0.110		
Parameter Estimation ³	Flying Aircraft	4.67	0.770	0.397	0.101		
	C-172	6.027	0.685	0.181	0.116		

NOTES: 1) CG_x=34.5% M.A.C. / CG_z=8.6" from bottom of fuselage.

- 2) Classical design calculations, after Ref. [12].
- 3) Classical model from Papageorgio [Ref. 2] as modified through parameter estimation from flight test data by Engdahl.
- 4) C-172 data from Ref. [12].

Table 4.16 Comparison of FROG UAV Dynamic Longitudinal Modes.

Table 4.16 summarizes the longitudinal dynamic modes. The CMARC aerodynamic model provides a better estimate of short-period frequency than the classical design technique. The CMARC short-period frequency is 10% faster than that observed from parameter analysis and damping is 21% higher. The high damping in all three models will produce nearly deadbeat results. The CMARC phugoid, or long period, is 10% slower than observed from flight-test with 40% more damping. Although, it must be pointed out that it is difficult to accurately capture the phugoid mode in flight-test. This is due to difficulty the external pilot has in accurately maintaining wings level trim during the extended period required for capturing phugoid data. Overall, the CMARC aerodynamic model produces satisfactory short-period and phugoid modal data for the development of closed-loop flight controls. Of note, CMARC provides a more accurate prediction of the important short-period natural frequency. The larger error in phugoid frequency is less important to the design of a closed loop controller.

b. Longitudinal Dynamic Response to Control Input

Following dynamic mode analysis, the response to an elevator step-input and a doublet-input is modeled using MATLAB. Dynamic response for the CMARC, classical and parameter analysis models are overlaid for comparison. The linear system is set up using the MATLAB script "froguav.m" in Appendix D. The "lsim" command outputs the time-based response from a time-based control input vector. A -2° (TEU) elevator step-input is selected to keep the response in the linear region. A 5° elevator doublet with a 1.2 second period is used to excite the short-period mode. The selected doublet period closely matches the short-period mode. Dynamic response is displayed in Figures 4.18 and 4.19.

The FROG UAV response to a -2° (TEU) step elevator input is displayed in Figure 4.18. All three aerodynamic models are presented for comparison. The model adjusted by parameter analysis shows a much larger response than either the CMARC or classical design models. The CMARC model produces a final pitch angle change after 4 seconds of 35° versus 45° for the flight-tested model. On closer review, it is noted the $C_{m\delta e}$ =-1.199 from CMARC is considerably less than the $C_{m\delta e}$ = -1.621 from flight-test. It should be noted that the parameter estimation model compensates for real world factors including; air load distortions, sensor measurement errors and prop wash. In other words, the CMARC model assumes uniform displacement and perfect sensors while the flight-test model is empirically fit to a measured response.

The response to a 5° elevator doublet is displayed in Figure 4.19. All three models show a similar frequency and a high degree of damping. As expected, the parameter estimation model produces a larger response. The magnitude of the CMARC response is approximately two thirds of that observed from the flight-test model. Again, this is due to the much larger value of $C_{m\delta e}$ obtained from empirically fitting the parameter estimation model to observed aircraft response. Modeling prop wash with CMARC should produce improved results.

In summary, the CMARC aerodynamic model showed satisfactory longitudinal control response in frequency and damping. It is recommended that $C_{m\delta e}$ be adjusted to increase elevator response.

Figure 4.18 FROG UAV Dynamic Response to a -2° (TEU) Elevator Step Input.

Figure 4.19 FROG UAV Dynamic Response to a 5° Elevator Doublet.

2. Lateral-Directional Dynamics

a. Lateral-Directional Dynamic Modes

The lateral-directional response of an aircraft can also be reduced to a series of four first-order differential equations. They are typically written in matrix form based on the state-variables β , p, ϕ , and r. The linearized state-equations in matrix form as developed by Schmidt in Ref. [14] are listed in equations 4.38 to 4.44:

$$\{\dot{x}\}=[A]\{x\}+\{B\}\delta_{a/r}$$
4.38

$$\{x\} = \begin{bmatrix} \beta & p & \phi & r \end{bmatrix}^T$$
 4.39

$$[A] = [I_n]^{-1}[A_n]$$

$$4.40$$

$${B} = [I_n]^{-1} {B_n}$$

$$[A_n] = \begin{vmatrix} Y_{\beta} & Y_{p} & g\cos\Theta_{0} & (Y_{r} + V) \\ L_{\beta} & L_{p} & 0 & L_{r} \\ 0 & 1 & 0 & 0 \\ N_{\beta} & N_{p} & 0 & N_{r} \end{vmatrix}$$

$$4.42$$

$$\left\{B_{n}\right\} = \begin{bmatrix} \frac{Y_{\delta a} & L_{\delta a} & 0 & N_{\delta a}}{Y_{\delta r} & L_{\delta r} & 0 & N_{\delta r}} \end{bmatrix}^{T}$$

$$4.43$$

$$\begin{bmatrix} I_n \end{bmatrix} = \begin{vmatrix} V & 0 & 0 & 0 \\ 0 & (V - Z_{\dot{\alpha}}) & 0 & 0 \\ 0 & -M_{\dot{\alpha}} & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} = Inertial \ matrix$$

$$4.44$$

As with the longitudinal axis, the stability derivatives generated by CMARC are dimensionless. However, it is more convenient to use dimensional derivatives. They will lead to time histories being expressed in seconds and frequency in rad/s. The lateral-directional stability derivatives are turned into dimensional derivatives through the transformations listed in Table 4.17 from Ref. [14]. The MATLAB script "froguav.m" in Appendix D is used to automate these calculations.

Term	Description	Units
Y_{β}	$\frac{QS}{m} \frac{\partial C_y}{\partial \beta}$	ft-s ⁻²
Yp	$\frac{QS}{m} \left(\frac{b}{2V} \right) \frac{\partial C_y}{\partial (p b/2 V)}$	ft-s ⁻¹
Yr	$\frac{QS}{m} \left(\frac{b}{2V} \right) \frac{\partial C_y}{\partial (r b/2 V)}$	ft-s ⁻¹
Y_{δ}	$\frac{QS}{m} \frac{\partial C_y}{\partial \delta}$	$ft-s^{-2}$
L_{eta}	$ \frac{\frac{QS}{m}}{\frac{\partial C_{y}}{\partial \delta}} $ $ \frac{QS}{l_{x}} \frac{\partial C_{\ell}}{\partial \beta} $	s^{-2}
L_p	$ \frac{QSb}{I_x} \left(\frac{b}{2V} \right) \frac{\partial C_{\ell}}{\partial (pb/2V)} $	s ⁻¹
L_r	$ \begin{array}{c c} \frac{QSb}{I_x} & \left(\frac{b}{2V} \right) \frac{\partial C_\ell}{\partial (pb/2V)} \\ \frac{QSb}{I_x} & \left(\frac{b}{2V} \right) \frac{\partial C_\ell}{\partial (rb/2V)} \end{array} $	s ⁻¹
L_{δ}	$\frac{QSb}{I_x} \frac{\partial C_{\ell}}{\partial \delta}$	s ⁻²
N_{β}	$\frac{Q \hat{S} b}{I_z} \frac{\partial C_n}{\partial \beta}$	s ⁻²
Np	$ \frac{QSb}{I_z} \left(\frac{b}{2V} \right) \frac{\partial C_n}{\partial (pb/2V)} $	s ⁻¹
N_r	$ \frac{\text{QSb}}{\text{I}_{\text{z}}} \left(\frac{\text{b}}{2 \text{V}} \right) \frac{\partial C_{\text{n}}}{\partial (\text{r} \text{b}/2 \text{V})} $	s ⁻¹
Nδ	$\frac{QSb}{I_z} \frac{\partial C_n}{\partial \delta}$	s ⁻²

Table 4.17 Dimensional Lateral-Directional Stability Derivatives from Ref . [14]

The linearized, lateral-directional state-equation is given by equation 4.38. Note that the plant and control matrices are obtained by pre-multiplying by $[I_n]^{-1}$. The dimensional derivatives from Table 4.16 populate the linearized 4x4 plant matrix and control matrices. The plant matrix, [A], is used to obtain the lateral-directional dynamic modes. The eigenvalues are obtained from MATLAB using the "froguav.m" script in Appendix D. The results are presented in Table 4.18.

		LATERAL-DIRECTIONAL DYNAMIC MODES					
METHOD	CONFIGURATION ¹	Dutc	h-Roll	Roll	Spiral		
		ω _n (rad/s)	ζ	ω _n (rad/s)	ω _n (rad/s)		
CMARC	Wing/Fuselage Group						
Panel Code	plus Horiz/Vert Stab Group	2.54	0.13	-3.80	0.000		
Classical Design ²	Wing/Fuselage/Horiz Tail	2.48	0.09	-2.83	0.065		
Parameter Estimation ³			0.14	-3.97	0.090		
	C-172 ⁴	3.38	0.20	12.43	0.01		

NOTES: 1) $CG_x=34.5\%$ M.A.C. / $CG_z=8.6$ " from bottom of fuselage.

- 2) Classical design calculations after Ref. [12].
- 3) Classical model from Papageorgio [Ref. 2] as modified through parameter estimation from flight test data by Engdahl.
- 4) C172 data from Ref. [12].

Table 4.18 Comparison of FROG UAV Lateral-Directional Dynamic Modes.

The lateral-directional dynamic modes are summarized in Table 4.18. The CMARC aerodynamic model provides significantly better estimates of frequency and damping than the classical design technique for both the Dutch-roll and roll modes. The CMARC Dutch-roll natural frequency, although better than the classical response, is 40% lower than predicted by parameter estimation. Adjustments should be made to the CMARC aerodynamic model to improve Dutch-roll response.

The primary contributor to the Dutch-roll frequency is weathercock stability, $C_{n\beta}$. A review of Table 4.9 shows that $C_{n\beta}$ obtained from CMARC is considerably less than the value obtained through parameter estimation. One potential source of error is the lack of modeling the increased dynamic pressure due to prop wash. The FROG model should be re-worked to include a prop disk to investigate the ability of CMARC to capture prop wash effects.

The CMARC model predicts a neutral spiral mode. This is most likely due to a combination of equal and opposite C_{lr} and C_{nr} ratios. When the C_{lr}/C_{nr} ratio is changed to -2 (approximately that of the analytical and parameter estimation models), the spiral mode comes out close to the analytical model. The weak roll due to yaw-rate, C_{lr} , in the CMARC solution seems to be the main source of error in the spiral mode. The value will need to be modified to produce an acceptable spiral response.

b. Lateral-Directional Dynamic Response to Control Input

Following dynamic-mode analysis, the response to aileron and rudder inputs is modeled using MATLAB. Dynamic response for the CMARC, classical and parameter-analysis models are overlaid for comparison. The linear system is set up using the MATLAB script "froguav.m" in Appendix D. The "lsim" command outputs the time-based response from a time-based input control vector.

The lateral response to a +2° (right wing down) step aileron deflection is shown in Figure 4.20. CMARC steady-state roll-rate is less than that predicted by the other two models. This is expected considering the CMARC model has the lowest ratio of aileron control-power to roll-damping. In addition, the side-force terms, C_{Yp} and $C_{Y\delta a}$, modeled by CMARC both fight roll-rate. They are not included in the other models. Perhaps they should be assumed small and set to zero. CMARC does a significantly better job of modeling the Dutch-roll response. The roll-rate and sideslip traces from the classical design model clearly show excess excitation of the Dutch-roll mode. The CMARC model shows a better correlation to the parameter estimation model for Dutch-roll amplitude and damping. As predicted by the eigenvalues, Dutch-roll frequency is slower than the parameter estimation model.

The lateral-directional response to a 5° aileron doublet is shown in Figure 4.21. The 1.5 second period clearly excites the Dutch-roll mode in all three models. As with the step-input response, the CMARC model provides a significantly better match to

Dutch-roll excitation than the classical design model. Amplitude and damping show a close correlation to the parameter estimation model. A lower Dutch-roll frequency is evident in the CMARC sideslip trace.

The lateral-directional response to a +2° (nose left) rudder deflection is shown in Figure 4.22. The CMARC model demonstrates a close match to the classical design model for Dutch-roll frequency and damping. CMARC shows higher sideslip excitation than the classical design model. A slower Dutch-roll frequency is evident in both the CMARC and classical design models.

The lateral-directional response to a 5° rudder doublet deflection is shown in Figure 4.23. Again, the 1.5 second doublet excites the Dutch-roll mode in all three models. CMARC provides a similar response to the classical design model. As expected, Dutch-roll natural frequency is about 40% slower than the parameter estimation model with similar damping.

In summary, the CMARC lateral-directional model provides FROG dynamics that are similar to the classical design calculations. However, current CMARC lateral-directional dynamics are not adequate for closed-loop controller or autopilot design. Minor adjustments will be required to better match observed flight characteristics. The lateral-directional model should be modified to include a propeller disk. Higher dynamic pressure over the tail surfaces should provide a stronger $C_{n\beta}$ derivative and result in faster Dutch-roll frequency. In addition, the FROG model should be adjusted to provide a higher aileron control-power to roll-damping ratio. This modification will improve roll-rate response.

Figure 4.20 FROG UAV Dynamic Response to a +2° (RWD) Aileron Step Input.

Figure 4.21 FROG UAV Dynamic Response to a 5° Aileron Doublet.

Figure 4.22 FROG UAV Dynamic Response to a +2° (TEL) Rudder Step Input.

Figure 4.23 FROG UAV Dynamic Response to a 5° Rudder Doublet.

V. CONCLUSIONS AND RECOMMENDATIONS

CMARC is a DOS personal-computer hosted panel-code adopted from the NASA Ames PMARC code. AeroLogic, Inc., created CMARC by converting PMARC FORTRAN 77 source code into the C language. Significant memory management and command-line enhancements were also added. CMARC solves for inviscid, incompressible flow over complex three-dimensional bodies. Emphasis in this study is placed on expanding the use of CMARC to develop a full aerodynamic model of the Naval Postgraduate School FROG UAV. The CMARC stability derivatives are compared to models derived from classical design calculations and parameter estimation. In addition, pitot-static and angle-of-attack sensor position corrections are obtained through CMARC analysis.

The LOFTSMAN and POSTMARC portions of the Personal Simulation Works software suite are used exclusively for the pre-process modeling and post-process visualization of CMARC files. The LOFTSMAN capability to automatically format and generate CMARC input patches is an enhancing characteristic. Functionality should be added to allow the modeling of wing tip ribs that are not parallel to the aircraft centerline.

POSTMARC is an excellent tool for visualizing CMARC output files. The capability to create streamlines and perform boundary-layer calculations external to CMARC is extremely useful. However, much time could be saved if POSTMARC maintained previous settings and selections following translations, rotations and rescaling. Additionally, a capability to overlay multiple data types is desired.

CMARC off-body flow-field analysis is useful for both static source and angle-ofattack sensor position corrections. In-flight measurements may be corrected using lookup tables or through curve-fits of CMARC-derived data. Flight testing is recommended for validation of sensor corrections obtained from the CMARC off-body analysis.

For the static longitudinal analysis, CMARC produces accurate values for α_{trim} and $C_{M\alpha}$ and a slightly high value of $C_{L\alpha}$. Elevator control-power ($C_{M\delta e}$) from CMARC is considerably weaker than the value obtained from parameter estimation. CMARC-derived pitch-damping is stronger than the pitch-damping from both classical design calculations and parameter estimation.

Longitudinal dynamic-mode analysis shows an acceptable match for short-period and long-period frequency and damping. As expected, a lower dynamic response to

elevator control inputs is observed when compared to the parameter estimation model. However, in all cases, the CMARC aerodynamic model demonstrates better dynamic response than the classical design model. A propeller disk should be added to the CMARC model in an attempt to capture prop-wash effects on the horizontal stabilizer and elevator. Increased elevator control-power would provide a better match with observed flight characteristics.

In general, CMARC provides satisfactory lateral-directional derivatives. Roll-damping closely matches the value obtained through parameter estimation. The greatest difficulty encountered is in modeling side-force due to both sideslip and roll-rate. The potential flow solution from CMARC fails to adequately capture the side force on a slender-body fuselage. Additional wakes, placed along separation lines, may improve fuselage side-force prediction.

Dynamic response to rudder control input shows close correlation in amplitude and damping to the parameter estimation model. However, both the CMARC and classical models of the FROG UAV produced a slower Dutch roll frequency. Steady state roll-rate obtained from the CMARC model is somewhat slower than either the classical design or parameter estimation models.

Overall, the CMARC panel code is found to be suitable for aerodynamic modeling of the Naval Postgraduate School FROG UAV. CMARC-derived stability derivatives are sufficiently accurate for incorporation into an initial aerodynamic model. The CMARC aerodynamic model demonstrated better longitudinal dynamic response than the classical design model. Lateral-directional response is similar to that obtained from classical design techniques. Adjustment through comparison with flight-test data is still required to optimize the CMARC model. Future studies should concentrate on improving CMARC modeling of fuselage side force through the addition of separation wake lines. Additionally, the propeller disk should be modeled in an attempt to capture the effects of increased dynamic pressure over the horizontal and vertical tail surfaces.

APPENDIX A

CMARC STABILITY DERIVATIVE USER GUIDE

CMARC USER GUIDE

FOR

OBTAINING STABILITY DERIVATIVE DATA

by

CDR Steve Pollard September 1998

Naval Postgraduate School
Department of Aeronautics and Astronautics

APPENDIX A

TABLE OF CONTENTS

A.	INTR	ODUCTION	83
	1.	CMARC Panel Code and Limitations	83
	2.	Overview of Obtaining Stability Derivatives with CMARC	83
	3.	Coefficient Normalization and Stability Axis System	84
B.	MOD	EL VALIDATION	85
C.	LONG	GITUDINAL STABILITY DERIVATIVES	87
	1.	Static Longitudinal Stability Derivatives	88
	2.	Longitudinal Control Power Stability Derivatives	91
	3.	Longitudinal α-dot Damping Derivatives	92
	4.	Longitudinal Pitch Rate Damping Derivatives	99
D.	LATE	RAL-DIRECTIONAL STABILITY DERIVATIVES	105
	1.	Static Lateral-Directional Stability Derivatives	106
	2.	Static Lateral-Directional Control Power Stability Derivatives	108
	3.	Yaw Rate Damping Derivatives	110
	4.	Roll Rate Damping Derivatives	115

A. INTRODUCTION

1. CMARC Panel Code and Limitations

CMARC is a PC hosted panel code. The code is useful for gathering aircraft stability data subject to the limitation of inviscid, potential flow solutions. Panel codes assume fully attached flow. Therefore, care must be taken to gather stability data in the linear region of the lift curve slope where separation effects are minimized. The results obtained from CMARC should always be spot checked with classical design calculations.

CMARC and PMARC have been shown to produce functionally equivalent results. The guide describes the use of DOS batch files for automating CMARC data runs on a PC. PMARC, hosted on an SGI machine, will require the use of UNIX batch commands.

2. Overview of Obtaining Stability Derivatives with CMARC

An overview of the methods to obtain stability derivatives follows. The detailed description and data reduction methods can be found in the appropriate section of the user guide.

For the static stability derivatives, the CMARC model is run at two different angles-of-attack and one sideslip angle. The static solutions are obtained without control surface deflections. The slopes of the force and moment coefficients are then taken to produce the $C_{L\alpha}$ and $C_{m\alpha}$ longitudinal derivatives and the $C_{Y\beta}$, $C_{l\beta}$ and $C_{n\beta}$ lateral-directional derivatives.

For the control power derivatives, the model is run at the trim condition with successive elevator, aileron and rudder control deflections. The difference between the results with and without control surface deflections yield the $C_{L\delta e}$, $C_{M\delta e}$ and $C_{D\delta e}$ longitudinal and the $C_{Y\delta r}$, $C_{I\delta r}$, $C_{n\delta r}$, $C_{I\delta a}$ and $C_{n\delta a}$ lateral-directional control power derivatives.

Development of the damping derivatives is not as straight forward. For the dynamic derivatives, motion is enabled around the center of gravity. With motion turned on, it is extremely important to ensure that the global origin and C.G. are co-located. If they are not, a rotation around a specific axis will also create a translation at the C.G.

For the longitudinal damping derivatives, the model is run with oscillating vertical plunging motion to obtain the C_L and C_M α -dot terms. The lift and pitching moment coefficients are broken into real (in phase with AOA) and imaginary (out of phase with AOA) components. The imaginary components are due to α -dot effects. Next, the model is run with oscillating pitch motion to obtain the combined α -dot and pitch rate terms. Subtracting the α -dot influence obtained from the plunging motion isolates the pitch rate damping term from the pitch motion.

For the lateral-directional analysis, the β -dot terms are generally negligible. This allows the model to be run with just oscillating roll and yaw motion. As with the longitudinal test case, the imaginary or out of phase component yields the combined β -dot and rate damping data. With the β -dot terms assumed negligible, the oscillating motion yields the C_Y , C_I , and C_n roll and yaw rate terms directly.

3. Coefficient Normalization and Stability Axis System

CMARC contains built-in functionality to integrate forces and moments over the surface of a body. Forces and moments are automatically normalized into non-dimensional coefficients based on the mean aerodynamic chord, reference wing area, semi-span and center of gravity location in the CMARC BINP9 input line. CMARC outputs coefficients in both the wind and body axes. Of note, CMARC uses the semi-span to normalize rolling and yawing moment coefficients. Most texts on stability and control, including Roskam's "Aircraft Flight Dynamics" and Etkin's "Dynamics of Flight," normalize rolling and yawing moments by span. This user guide will normalize roll and yaw moments by span. Table A.1 summarizes the factors for normalizing moments and angular rates. All rolling and yawing moment coefficients presented in this guide have been normalized with span by dividing the CMARC output by a factor of two. Table A.1 also indicates the characteristic time, t*, employed for angle rate data reduction.

In addition to differences in normalizing moments, CMARC uses the typical CFD axes system shown in Figure A.1. This user guide will perform all calculations in the stability axes system as illustrated in Figure A.1. The sign of CMARC roll and yaw moments need to be reversed. The direction for positive control deflections is also shown in Figure A.1. All control surfaces are patched with positive deflections using the convention in Figure A.1.

MOMENTS	NORMALIZING PARAMETER¹	RATES	CHARACTERISTIC TIME
$L = C_l \overline{q} S b$	b	$\hat{p} = \frac{pb}{2u_o}$	$t^* = \frac{b}{2u_o}$
$M = C_m \overline{q} S \overline{c}$	\overline{c}	$\hat{r} = \frac{r\overline{c}}{2u_o}$	$t^* = \frac{\overline{c}}{2u_o}$
$N = C_r \overline{q} Sb$	b	$\hat{r} = \frac{rb}{2u_o}$	$t^* = \frac{b}{2u_o}$

Note: 1) CMARC normalizes roll and yaw coefficients with b/2.

Table A.1 Normalized Moment and Rate Equations.

B. MODEL VALIDATION

1. Initial Solution at the Trim Condition

Once a CMARC model is built up, a reference solution is obtained at the desired trim condition. Initial hand calculations or flight test data can be used to select the estimated cruise angle-of-attack. Use POSTMARC to visualize the reference solution. Check to make sure the pressure distribution is consistent with expected results. Stagnation zones (Cp=1) should be evident on the leading and trailing edges of the flight surfaces and aerodynamic bodies. Lower pressure should be observed on the top of lifting surfaces and tip loss should be observed near the wing tips. Wakes should trail from the expected surfaces.

If abnormal pressure distribution is observed, check for inverted panel orientation. This is accomplished by changing the color for positive and negative panel orientations using the "View >> Color" pull-down menu. The default color is white for both orientations. Change the inside to a contrasting color such as red. All panels should face in the positive out direction. If a patch has panels oriented inward, change the orientation of the patch with the "IREV" term in the initial patch definition.

Check that the model is symmetric around the lateral and directional axes with sideslip set to zero. Residual rolling or yawing moment without a control deflection is an indication of an asymmetric model.

Figure A.1 CMARC CFD Axis System Compared To Stability Axis System. From References [3] and [14] Respectively.

Pitching moment should be checked for a reasonable value. Don't forget to verify that the origin of the global coordinate system is set to the center-of-gravity (C.G.). It is important to remember that the damping derivatives will be obtained by inducing motion around the center-of-gravity. If the C.G. and origin are not collocated, angular motion will generate undesired translation at the C.G.

Next, the lift coefficient from the initial solution is checked to make sure it is in the "ballpark." If a major discrepancy is noted, the input file will have to be checked closely for error. Be sure to check the normalizing factors such as wing area, reference chord and semi-span. If every thing looks good, try increasing or decreasing the angle-of-attack to see if a slight adjustment will bring the lift coefficient in line with the hand calculation. Once the model exhibits symmetry with a reasonable lift distribution, you're ready to start gathering data.

C. LONGITUDINAL STABILITY DERIVATIVES

This section will describe CMARC methods for the development of longitudinal stability derivatives to include the static, rate damping and control power derivatives. As stated earlier, the results obtained from CMARC should be checked against classical design calculations. The potential flow analysis performed by CMARC does not provide accurate viscous drag values. Total drag can be estimated from the flight test power-off glide ratio or cruise thrust required. If this data is unavailable, then empirical data from publications such as Hoerner's "Fluid Dynamic Drag" can be used to estimate total drag.

For the longitudinal analysis, only half the model is analyzed. This cuts the model size in half, resulting in much quicker solutions. The symmetric calculation mode is selected by setting both RSYM=0.0 and IPATSYM=0 in the CMARC input file. Remove the vertical tail patch if it interferes with wing or fuselage wakes. Figure A.2 shows the FROG model configuration used to find the longitudinal derivatives. A rigid wake is selected that is continuous from wingtip to wingtip. As will be seen in a later section, the vertical tail is added for the lateral-directional solutions. This requires the use of a modified wing wake to avoid the vertical tail.

Figure A.2 FROG UAV Model for Obtaining Longitudinal Stability Derivatives.

1. Static Longitudinal Stability Derivatives

a. Static Longitudinal Stability Equations

Three basic longitudinal stability derivatives can be measured with just two runs of the CMARC model. The model is first analyzed at an angle-of-attack corresponding to the estimated trim condition. For the FROG case, α_t =0° is selected for the first run based on hand calculations. A second CMARC run is conducted with angle-of-attack incremented by one or two degrees. C_L , C_D and C_m are then extracted manually from the data files. The slope of C_L , C_D and C_m versus angle-of-attack provides the $C_{L\alpha}$, $C_{D\alpha}$ and $C_{m\alpha}$ longitudinal derivatives. Additional solutions should be obtained to check for lift slope linearity. In addition, α_{trim} is calculated from the lift curve slope and trim lift coefficient. Equations A.1 through A.4 are used for these calculations.

$$C_{L_{\alpha}} = \frac{\left(C_{L_2} - C_{L_1}\right)}{\left(\alpha_2 - \alpha_1\right)} * \frac{180}{\pi} \text{ per radian}$$
 A.1

$$C_{D_{\alpha}} = \frac{\left(C_{D_2} - C_{D_1}\right)}{\left(\alpha_2 - \alpha_1\right)} * \frac{180}{\pi} \text{ per radian}$$
 A.2

$$C_{m_{\alpha}} = \frac{\left(C_{m_2} - C_{m_1}\right)}{\left(\alpha_2 - \alpha_1\right)} * \frac{180}{\pi} \text{ per radian}$$
 A.3

$$\alpha^{\circ}_{trim} = \alpha^{\circ}_{1} + \frac{\left(C_{L_{trim}} - C_{L_{1}}\right)}{C_{L_{\alpha}}} * \frac{180}{\pi}$$
 degrees A.4

b. Sample Static Longitudinal Stability Data Reduction

Table A.2 presents CMARC solutions for the FROG UAV at two anglesof-attack. Sample calculations for obtaining the static derivatives are demonstrated below. The calculations are easily implemented in a spreadsheet or with a MATLAB script.

RUN#	AOA	CL	CD	CY	C_m	C_n	C_1
1	0°	0.4300	0.0277	0.0000	0.0444	0.0000	0.0000
2	2°	0.5991	0.0370	0.0000	0.0300	0.0000	0.0000

Table A.2 FROG UAV Static Longitudinal Stability Data.

Sample Calculations:

$$C_{L_{\alpha}} = \frac{(0.5991 - 0.4300)}{(2 - 0)} * \frac{180}{\pi} = 4.8444 \text{ per radian}$$
 A.5

$$C_{D_{\alpha}} = \frac{(0.0370 - 0.0277)}{(2 - 0)} * \frac{180}{\pi} = 0.2664 \text{ per radian}$$
 A.6

$$C_{m_{\alpha}} = \frac{(0.0300 - 0.0444)}{(2 - 0)} * \frac{180}{\pi} = -0.4125 \text{ per radian}$$
 A.7

$$\alpha^{\circ}_{trim} = 0^{\circ} + \frac{(0.4295 - 0.4300)}{4.8444} * \frac{180}{\pi} = -0.0059^{\circ} \approx 0^{\circ}$$
 A.8

c. Sample Total Drag Coefficient Calculation

The final static longitudinal parameter required is total aircraft drag. C_D plays an important role in long period aircraft dynamics. Unfortunately, potential flow panel codes such as CMARC do not provide accurate total drag estimates. They can provide good induced drag predictions. In addition, if equipped with a boundary layer code like that contained in CMARC, they can provide integrated skin friction results. However, a large total drag contribution in the form of separation drag is not accounted for. Total drag estimates are made below using the two simple techniques shown in Equations A.9 to A.12. The first method is based on the flight-tested glide ratio. The second is based on cruise power required and estimated prop efficiency. Note that the selected prop efficiency is relatively low due to the FROG UAV small propeller diameter,

high RPM and pusher configuration. The two methods provide drag predictions within 10% of each other. The results are averaged to $C_D=0.065$.

Method 1: Lift-to-Drag Ratio (L/D=7 from flight test)

$$L/D = 7 \implies D = \frac{L}{7} = \frac{W}{7} = \frac{67.7 \ lbs}{7} = 9.67 \ lbs$$
 A.9

$$C_D = \frac{D}{qS} = \frac{9.67 \ lbs}{0.5 * 0.002327 \ lb \cdot s^2 / ft^4 * 88^2 \ ft^2 / s^2 * 17.57 \ ft^2} = 0.0611$$
 A.10

Method 2: Cruise Power Setting (HP=5, η_P =0.35)

$$C_D = \frac{D}{qS} = \frac{T_R}{qS} = \frac{HP_R * 550 \quad ftlbs/s/HP * \eta_P/V}{qS}$$
 A.11

$$C_D = \frac{5 HP * 550 ft \cdot lbs/s / HP * 0.35/88 ft/s}{0.5 * 0.002327 lb \cdot s^2 / ft^4 * 88^2 ft^2 / s^2 * 17.57 ft^2} = 0.069$$
 A.12

2. Longitudinal Control Power Stability Derivatives

a. Longitudinal Control Power Equations

The elevator control power derivatives are obtained by substituting a 0° deflection horizontal tail patch for one with positive elevator deflection. Only one run is required. For the FROG UAV study, $+5^{\circ}$ (TED) deflection is used. The difference between the trim condition and the deflected value is divided by the elevator deflection as shown below. Note that $C_{D\delta e}$ from CMARC only includes induced drag due to elevator deflection:

$$C_{L_{\delta e}} = \frac{\left(C_{L_{\delta e_2}} - C_{L_{\delta e_1}}\right)}{\delta e_2 - \delta e_1} * \frac{180}{\pi} \quad per \quad rad$$
A.13

$$C_{D_{\delta e}} = \frac{\left(C_{D_{\delta e_2}} - C_{D_{\delta e_1}}\right)}{\delta e_2 - \delta e_1} * \frac{180}{\pi} \quad per \quad rad$$
A.14

$$C_{m_{\delta e}} = \frac{\left(C_{m_{\delta e_2}} - C_{m_{\delta e_1}}\right)}{\delta e_2 - \delta e_1} * \frac{180}{\pi} \quad per \quad rad$$
A.15

$$\delta e^{\circ}_{trim} = \frac{\left(C_{m_{\textcircled{@}}trim}(\delta e=0)\right)}{C_{m_{\overleftarrow{\delta}e}}} * \frac{180}{\pi} \operatorname{deg}$$
A.16

b. Sample Longitudinal Control Power Data Reduction

Table A.3 presents CMARC solutions for two elevator deflections. Sample calculations for obtaining elevator control power are demonstrated below. The calculations are easily implemented in a spreadsheet or with a MATLAB script.

$$C_{L_{\delta e}} = \frac{(0.4641 - 0.4259)}{(5 - 0)} * \frac{180}{\pi} = 0.4378 \text{ per radian}$$
 A.17

$$C_{D_{\delta e}} = \frac{(0.0178 - 0.0170)}{(5 - 0)} * \frac{180}{\pi} = 0.0092 \text{ per radian}$$
 A.18

$$C_{m_{\delta e}} = \frac{(-0.0942 - 0.0104)}{(5-0)} * \frac{180}{\pi} = -1.199 \text{ per radian}$$
 A.19

$$\delta e^{\circ}_{trim} = \frac{(0.0104)}{-1.199} * \frac{180}{\pi} = -0.50^{\circ}$$
 A.20

RUN#	$\delta_{\rm e}$	CL	CD	CY	C_m	C_n	C_1
1	0°	0.4259	0.0170	0.0000	0.0104	0.0000	0.0001
2	5°	0.4641	0.0178	0.0000	-0.0942	0.0000	0.0001

Table A.3 FROG UAV Elevator Control Power Data.

3. Longitudinal α -dot Damping Derivatives

a. Longitudinal α -dot Derivative Methods and Equations

Two motions selected are to develop the longitudinal rate damping derivatives. A sinusoidal plunging motion in the z-axis is used to extract the α -dot terms. Then an oscillatory pitching motion is used to obtain the combined α -dot and pitch rate terms. The α -dot are then subtracted to yield the pitch rate damping. All motion for FROG data gathering is conducted at a frequency of 2π rad/s, which equates to a reduced frequency of k=0.0595 for this configuration and trim airspeed.

The sinusoidal plunging motion illustrated in Figure A.3 is used to isolate the α -dot derivatives. Z-axis plunging motion is controlled with the CMARC BINP8B input file line. A frequency of 2π rad/s and an amplitude of C/2=10 inches are selected for the FROG study. Greater amplitude was initially selected, but the induced angle of attack caused the rigid wake to impact the horizontal tail. An example BINP8B input line is shown below:

&BINP8B	DXMAX=0.0,	DYMAX=0.0,	DZMAX=10.0	
	WTX=0.0,	WTY=0.0,	WTZ=6.283,	&END

The number of time steps and time step interval is chosen to create a nice sinusoidal output through at least two cycles of motion. In the FROG study, a plunging motion frequency of $\omega=2\pi$ rad/s or one cycle/sec is utilized. Fifty time steps are chosen with an interval of 0.05 seconds, which creates 2.5 cycles of plunging motion. After the solution is obtained, the "total coefficient" data is extracted for plotting. The data can be picked out manually, or a data retrieval program can be created for the task. For the FROG study, the data is extracted manually and pasted into an "Excel" spreadsheet for plotting. In addition to the CMARC output, plunging motion phase angle and induced angle-of-attack are calculated using Equations A.21 and A.22. Induced angle-of-attack is used to find the phase angle of the response with respect to angle-of-attack. Table A.4 shows representative FROG data for 20 time steps.

$$\phi_{plunge} = \#_{timestep} * dt * \varpi_{plunge} * \frac{180}{\pi}$$
 degrees A.21

$$\alpha_{induced} = \cos(\phi_{plunge}) \frac{A_{plunge}}{U_o} * \varpi_{plunge} * \frac{180}{\pi} \text{ degrees}$$
 A.22

Where: ϕ_{plunge} - plunging motion phase angle

 $\alpha_{\text{induced}}\,$ - induced angle-of-attack from the plunging motion

 $\#_{timestep}$ - time step

dt - time step interval

 ω_{plunge} - plunging frequency

A_{plunge} - plunging amplitude

U_o - reference free stream velocity

Step	φ (deg)	$\alpha_{induced}$	CL	CD	CY	C_m	C_n	C_I
0	0	-3.41	0.0001	0.0327	0.0000	0.0173	0.0000	0.0000
1	18	-3.24	0.1318	0.0300	0.0000	0.0744	0.0000	0.0000
2	36	-2.76	0.1928	0.0299	0.0000	0.0485	0.0000	0.0000
3	54	-2.00	0.2631	0.0316	0.0000	0.0294	0.0000	0.0000
4	72:	-1.05	0.3451	0.0318	0.0000	0.0218	0.0000	0.0000
5	90	0.00	0.4336	0.0297	0.0000	0.0169	0.0000	0.0000
6	108	1.05	0.5216	0.0252	0.0000	0.0126	0.0000	0.0000
7	126	2.00	0.6009	0.0189	0.0000	0.0087	0.0000	0.0000
8	144	2.76	0.6636	0.0123	0.0000	0.0067	0.0000	0.0000
9	162	3.24	0.7029	0.0069	0.0000	0.0089	0.0000	0.0000
10	180	3.41	0.7160	0.0042	0.0000	0.0139	0.0000	0.0000
11	198	3.24	0.7009	0.0048	0.0000	0.0232	0.0000	0.0000
12	216	2.76	0.6594	0.0085	0.0000	0.0344	0.0000	0.0000
13	234	2.00	0.5952	0.0142	0.0000	0.0474	0.0000	0.0000
14	252	1.05	0.5141	0.0204	0.0000	0.0596	0.0000	0.0000
15	270	0.00	0.4254	0.0255	0.0000	0.0704	0.0000	0.0000
16	288	-1.05	0.3370	0.0286	0.0000	0.0762	0.0000	0.0000
17	306	-2.00	0.2582	0.0297	0.0000	0.0776	0.0000	0.0000
18	324	-2.76	0.1964	0.0292	0.0000	0.0734	0.0000	0.0000
19	342	-3.24	0.1561	0.0283	0.0000	0.0713	0.0000	0.0000
20	360	-3.41	0.1398	0.0277	0.0000	0.0727	0.0000	0.0000

Table A.4 Sample Plunging Motion Data for 20 Time Steps

Figure A.3 Vertical Plunging Motion for Obtaining the α -dot Derivatives.

The α -dot stability derivatives are extracted using the methods outlined in Etkin [Ref. 13]. First, the C_L and C_m responses are plotted as a function of plunging phase angle. Induced angle-of-attack is also plotted on the right hand vertical axis. Figure A.4 is a representative plot of CMARC data for the FROG UAV study. The response to plunging motion can be broken up into real and imaginary components. Figure A.5 is a graphical representation of the real and imaginary components. The out-of-phase (imaginary) portion of C_L or C_m is the α -dot contribution. It is normalized by dividing by the amplitude of $\alpha_{induced}$ and the reduced frequency. The phase angle is measured between the lift or pitching moment response and the induced angle-of-attack. Equations A.23 through A.27 are used to solve for $C_{L\alpha dot}$ and $C_{m\alpha dot}$.

Figure A.4 Representative Vertical Plunging Motion Data for the FROG UAV.

Figure A.5 Complex Response to Vertical Plunging Motion.

The phase angle between the C_L (or C_m) response and the induced angle-of-attack is measured graphically or through numerical curve fit techniques. If the graphical method is used, the graph scales may be narrowed around the area of interest to facilitate the phase angle measurement. For instance, Figure A.4 shows that lift coefficient and angle-of attack are nearly in-phase. When the x-axis scale is zoomed into the peak of the curves, one can see that lift coefficient leads angle-of-attack by one degree. Alternatively, the phase angle may be measured from where the parameter crosses the trim value.

$$C_{L_{\dot{\alpha}}} = \frac{I[C_{L_o}]}{\alpha_o k}$$
 A.23

$$C_{m_{\dot{\alpha}}} = \frac{I[C_{m_o}]}{\alpha_o k}$$
 A.24

$$\alpha_o = \frac{A}{U_o} \omega_{plunge}$$
 A.25

$$I[C_{L_o}] = C_{L_o} \sin(\phi)$$
 and $I[C_{m_o}] = C_{m_o} \sin(\phi)$ A.26

$$k = \frac{\overline{c}/2}{U_0} \varpi_{plunge}$$
 A.27

Where:

 ϕ - Phase angle between C_L (or C_m) response and $\alpha_{induced}$

 $\alpha_{\text{induced}}\,$ - Induced angle-of-attack from the plunging motion

C_{Lo} - Amplitude of lift coefficient response

C_{mo} - Amplitude of pitching moment coefficient response

 α_o - Amplitude of the induced angle-of-attack

k - Reduced frequency

U_o - Reference free stream velocity

b. Sample Longitudinal α-dot Data Reduction

Sample data reduction is presented below in Equations A.28 through A.32. The phase angle between the response and the induced angle-of-attack was measured graphically by zooming the graph axes to expand the area of interest.

$$k = \frac{\overline{c}/2}{U_o} \varpi_{plunge} = \frac{20 \text{ in}/2}{1056 \text{ in/s}} * 2\pi rad/s = 0.0595$$
 A.28

$$I[C_{L_o}] = C_{L_o} \sin(\phi) = \frac{(0.7160 - 0.1398)}{2} * \sin(1^\circ) = 0.005028$$

A.29

$$I[C_{m_O}] = C_{m_O} \sin(\phi) = (0.0776 - 0.0087) * \sin(-140^\circ) = -0.0222$$

$$\alpha_o = \frac{A}{U_o} \omega_{plunge} = \frac{20 in/2}{1056 in/s} * 2\pi = 0.0595 \quad rad * \frac{180}{\pi} = 3.41^{\circ}$$
 A.30

$$C_{L_{\dot{\alpha}}} = \frac{I[C_{L_o}]}{\alpha_o k} = \frac{0.005028}{0.0595 * 0.0595} = 1.420$$
 A.31

$$C_{m_{\dot{\alpha}}} = \frac{I[C_{m_o}]}{\alpha_o k} = \frac{-0.0222}{0.0595 * 00595} = -6.264$$
 A.32

4. Longitudinal Pitch Rate Damping Derivatives

a. Longitudinal Pitch Rate Damping Methods and Equations

A sinusoidal plunging motion in the z-axis was used to extract the α -dot terms. Now, an oscillatory pitching motion is used to obtain the combined α -dot and pitch rate terms. The α -dot influence is then subtracted to yield pitch rate damping. All motion for FROG data gathering is conducted at a frequency of 2π rad/s, which equates to a reduced frequency of k=0.0595 for this configuration and trim airspeed.

The sinusoidal pitch rate motion illustrated in Figure A.6 is used to isolate the combined α -dot and pitch rate influence. Oscillating pitch motion is controlled with the CMARC BINP8A input file line. A frequency of 2π rad/s and an amplitude of $\pm 1.5^{\circ}$ are selected for the FROG study. Any larger pitch amplitude would cause the wake to impact the horizontal tail. An example BINP8A input line is shown below. Note that pitch amplitude is in degrees and frequency is in rad/sec:

Figure A.6 Pitching Motion for Obtaining the Pitch Rate Damping Derivatives.

The number of time steps and time step interval is chosen to create a nice sinusoidal output through at least two cycles of motion. In the FROG study, a pitching

motion frequency of $\omega=2\pi$ rad/s or one cycle/sec is utilized. Fifty time steps are chosen with an interval of 0.05 seconds. This combination yields 2.5 cycles of pitching motion. After the solution is obtained, the "total coefficient" data is extracted for plotting. The data can be picked out manually, or a data retrieval program can be created for the task. For the FROG study, the data is extracted manually and pasted into an "Excel" spreadsheet for plotting. In addition to the CMARC output, pitch motion phase angle and angle-of-attack are calculated using Equations A.33 and A.34. Lift and pitching moment phase angle is obtained with respect to angle-of-attack. Usually, the second motion cycle is used to ensure that all start up transients have subsided. Table A.5 shows representative FROG data for 20 time steps.

$$\phi_{pitch} = \#_{timestep} * dt * \varpi_{pitch} * \frac{180}{\pi}$$
 degrees A.33

$$\alpha = \theta = \sin(\phi_{pitch}) A_{pitch}$$
 degrees A.34

Where: ϕ_{pitch} - pitching motion phase angle

- Angle-of-attack from the pitching motion

 $\#_{timestep}$ - time step

dt - time step interval

 $\omega_{pitch}\,\,$ - pitching frequency

A_{pitch} - pitch amplitude

Step	φ (deg)	α	CL	CD	CY	C_m	C_n	C_1
0	0	0.00	0.0540	0.0273	0.0000	0.0828	0.0000	0.0000
1	18	0.46	0.4545	0.0364	0.0000	-0.0462	0.0000	0.0000
2	36	0.88	0.4961	0.0344	0.0000	0.0303	0.0000	0.0000
3	54	1.21	0.5312	0.0347	0.0000	0.0226	0.0000	0.0000
4	72	1.43	0.5491	0.0351	0.0000	0.0270	0.0000	0.0000
5	90	1.50	0.5541	0.0348	0.0000	0.0310	0.0000	0.0000
6	108	1.43	0.5435	0.0338	0.0000	0.0447	0.0000	0.0000
7	126	1.21	0.5227	0.0321	0.0000	0.0535	0.0000	0.0000
8	144	0.88	0.4925	0.0302	0.0000	0.0618	0.0000	0.0000
9	162	0.46	0.4557	0.0281	0.0000	0.0692	0.0000	0.0000
10	180	0.00	0.4167	0.0262	0.0000	0.0727	0.0000	0.0000
11	198	-0.46	0.3787	0.0247	0.0000	0.0741	0.0000	0.0000
12	216	-0.88	0.3457	0.0236	0.0000	0.0720	0.0000	0.0000
13	234	-1.21	0.3218	0.0230	0.0000	0.0648	0.0000	0.0000
14	252	-1.43	0.3075	0.0227	0.0000	0.0585	0.0000	0.0000
15	270	-1.50	0.3055	0.0228	0.0000	0.0499	0.0000	0.0000
16	288	-1.43	0.3158	0.0233	0.0000	0.0402	0.0000	0.0000
17	306	-1.21	0.3369	0.0241	0.0000	0.0323	0.0000	0.0000
18	324	-0.88	0.3674	0.0254	0.0000	0.0246	0.0000	0.0000
19	342	-0.46	0.4039	0.0271	0.0000	0.0191	0.0000	0.0000
20	360	0.00	0.4429	0.0290	0.0000	0.0153	0.0000	0.0000

Table A.5 Sample Pitch Motion Data for 20 Time Steps

The C_L and C_m responses are plotted as a function of pitch motion phase angle. Angle-of-attack is also plotted on the right hand vertical axis. Figure A.7 is a representative plot of CMARC data for the FROG UAV study. The out-of-phase (imaginary) portion of C_L or C_m is the combined α -dot and pitch damping contribution. As seen in Equations A.35 and A.36, the α -dot contribution is subtracted from the total to yield the pitch damping influence. The pitch rate contribution is normalized by pitch rate and t^* . The phase angle is measured between the lift or pitching moment response and angle-of-attack. Equations A.35 through A.44 are used to solve for C_{Lq} and C_{mq} . Equations A.35 and A.36 assume that the α -dot and pitch rate contributions are in phase with each other. The α -dot contribution is small, so there isn't harm done if the two contributions are somewhat out-of-phase. Consequently, the α -dot contribution is calculated based on the maximum α -dot rate observed.

$$I\left[C_{L_{\dot{\alpha}}+q}\right] = I\left[C_{L_{\dot{\alpha}}}\right] + I\left[C_{L_{q}}\right]$$
 A.35

$$I\left[C_{m_{\dot{\alpha}}+q}\right] = I\left[C_{m_{\dot{\alpha}}}\right] + I\left[C_{m_{q}}\right]$$
A.36

$$I\left[C_{L_{\dot{\alpha}+q}}\right] = \sin(\phi)\left[C_{L_{\dot{\alpha}+q}}\right]$$
 A.37

$$I\left[C_{L_{\dot{\alpha}+q}}\right] = \sin(\phi)\left[C_{L_{\dot{\alpha}+q}}\right]$$
 A.38

$$I\left[C_{L_{\dot{\alpha}}}\right] = C_{L_{\dot{\alpha}}} * \dot{\alpha}_{\text{max}} * t^*$$
A.39

$$I\left[C_{m_{\dot{\alpha}}}\right] = C_{m_{\dot{\alpha}}} * \dot{\alpha}_{\max} * t^*$$
A.40

$$I\left[C_{L_q}\right] = C_{L_q} * q_{\max} * t^*$$
A.41

$$I[C_{m_q}] = C_{m_q} * q_{\max} * t^*$$
 A.42

$$q_{\text{max}} = \dot{\alpha}_{\text{max}} = \frac{A_{\theta_{\text{deg}}}}{57.3 \frac{\text{deg}}{rad}} * \omega_{pitch}$$
 rad/s A.43

$$t^* = \frac{\overline{c}}{2}U_0$$
 A.44

Where:

 $[C_{L \alpha - dot+q}]$ - Amplitude of C_L response from pitching motion

 $[C_{m \alpha-dot+\alpha}]$ - Amplitude of C_m response from pitching motion

 $I[C_{L \alpha-dot+q}]$ - Out-of-phase C_L due to α -dot and pitch rate damping

 $I[C_{m \alpha-dot+q}]$ - Out-of-phase C_m due to α -dot and pitch rate damping

 $I[C_{L,q}]$ - C_L coefficient contribution from pitch rate damping

 $I[C_{mq}]$ - C_m coefficient contribution from pitch rate damping

- C_m coefficient contribution from pitch rate damping

 $I[C_{L\;\alpha\text{-dot}}] \qquad \text{-} \; C_L \; coefficient \; contribution \; from \; \alpha\text{-dot} \; damping}$

 $I[C_{m \alpha - dot}]$ - C_m coefficient contribution from α -dot damping

* - Characteristic time

Figure A.7 Representative Pitch Motion Data for the FROG UAV.

b. Sample Pitch Rate Damping Data Reduction

Sample pitch rate damping data reduction is presented below in Equations A.45 through A.54. The phase angle between angle-of-attack and the C_L or C_m response was measured graphically by zooming the graph axes to expand the area of interest.

$$t^* = \frac{\overline{c}/2}{U_0} = \frac{20in}{2} / 1056 \frac{in}{\text{sec}} = 0.009470 \,\text{sec}$$
 A.45

$$q_{\text{max}} = \dot{\alpha}_{\text{max}} = \frac{A_{\theta_{\text{deg}}}}{57.3 \frac{\text{deg}}{rad}} * \omega_{pitch} = \frac{1.5^{\circ}}{57.3 \frac{\circ}{rad}} * 2\pi \quad rad / s = 0.1645 \text{ rad/s}$$
 A.46

$$I[C_{L_{\dot{\alpha}}}] = C_{L_{\dot{\alpha}}} * \dot{\alpha}_{\text{max}} * t^* = 1.420 * 0.1645 * 0.009470 = 0.002212$$
 A.47

$$I[C_{m_{\dot{\alpha}}}] = C_{m_{\dot{\alpha}}} * \dot{\alpha}_{\text{max}} * t^* = -6.264 * 0.1645 * 0.009470 = -0.009758$$
 A.48

$$I[C_{L_{\dot{\alpha}+q}}] = \sin(\phi)[C_{L_{\dot{\alpha}+q}}] = \sin(6^\circ) * [0.1234] = 0.0129$$
 A.49

$$I[C_{m_{\dot{\alpha}+q}}] = \sin(\phi)[C_{m_{\dot{\alpha}+q}}] = \sin(-100^\circ) * [0.02853] = -0.02810$$
 A.50

$$I[C_{L_q}] = I[C_{L_{\dot{\alpha}}+q}] - I[C_{L_{\dot{\alpha}}}] = 0.0129 - 0.002212 = 0.01069$$
 A.51

$$I[C_{m_q}] = I[C_{m_{\dot{\alpha}+q}}] - I[C_{m_{\dot{\alpha}}}] = -0.02810 - (-0.009758) = -0.01834$$
 A.52

$$C_{L_q} = \frac{I[C_{L_q}]}{q_{\text{max}} *_t^*} = \frac{0.01069}{0.1645 * 0.009470} = 6.862$$
 A.53

$$C_{m_q} = \frac{I[C_{m_q}]}{q_{\text{max}} *_t^*} = \frac{-0.01834}{0.1645 *_{0.009470}} = -11.78$$
 A.54

C. LATERAL-DIRECTIONAL STABILITY DERIVATIVES

This section will describe CMARC methods for the development of lateral-directional stability derivatives to include the static, rate damping and control power derivatives. The results obtained from CMARC should be spot checked against classical design calculations.

Of note, CMARC uses the semi-span to normalize rolling and yawing moment coefficients. Most texts on stability and control, including Roskam [Ref. 12] and Etkin [Ref. 13], normalize rolling and yawing moments by span. This study will normalize roll and yaw moments by span. Table A.1 summarizes the factors for normalizing moments and angular rates. All rolling and yawing moment coefficients presented in this study have been normalized with span by dividing the CMARC output by a factor of two. Table A.1 also indicates the characteristic time, t*, employed for angle rate data reduction.

For the lateral-directional analysis, both sides of the body must be modeled. The easiest way to do this is to activate the symmetric patch toggle for each patch (IPATSYM=1). Then, turn off symmetric calculations (RSYM=1.0). This creates symmetric patches around the y=0 plane, allowing CMARC to perform asymmetric calculations around the entire body. Processing times are significantly increased compared to the symmetric case. Wakes must be defined for each side of the model based on the new patch numbers. In addition, don't forget to update the adjacent patch numbers of the wingtips.

The vertical tail is activated for the lateral-directional study. This requires that the wing and fuselage group be run separately from the horizontal and vertical stabilizer group. This de-coupling is required to keep the wing wake from hitting the vertical stabilizer. The two sets of results are summed to get the total response. Typically, the sidewash derivative, $d\epsilon/d\beta$ is small, making separate solutions feasible. The main draw back is that separate solutions will not capture the finer interactions that a complete model would capture. However, many aircraft configurations will not require the decoupling of the empennage surfaces. If the configuration permits, run the lateral-directional test cases as a complete airframe model. Figure A.8 shows the FROG model configurations used to find the lateral-directional derivatives.

It should be noted that the CMARC wind axes are modeled with X-aft/Z-up, vice X-forward/Z-down for the typical stability axes system. Positive yaw angle in CMARC creates positive sideslip in the stability axes system. Care must be taken to reverse the signs of the appropriate coefficients to convert from the CMARC wind axes to the stability axis system shown in Figure A.1.

Figure A.7 FROG UAV Lateral-Directional Models.

1. Static Lateral Directional Stability Derivatives

a. Static Lateral-Directional Stability Equations

Three lateral-directional stability derivatives are measured with the first two runs of the CMARC model. The model is first analyzed at the estimated trim condition with zero sideslip. The baseline solution should be compared to the longitudinal baseline. If the lift coefficient differs significantly, the wake modification assumptions may need to be revisited. The model is then checked for lateral-directional

balance at zero sideslip angle (yaw angle =0). The side force, rolling and yawing coefficients should be zero when a trial run is performed at zero sideslip. If lateral-directional forces or moments are present, the model and wake geometry should be checked for symmetry. Visualization with LOFTSMAN will assist in spotting the problem.

For the FROG case, $\alpha_{trim}=0^{\circ}$ and $\beta=0^{\circ}$ is selected for the baseline. A second CMARC run is then conducted with yaw angle incremented by one or two degrees. C_Y , C_I and C_n are then extracted manually from the data files. The slope of C_Y , C_I and C_n versus sideslip provides the $C_{Y\beta}$, $C_{I\beta}$ and $C_{n\beta}$ longitudinal derivatives. Additional solutions can be obtained to check for slope linearity. Equations A.55 through A.57 are used for these calculations:

$$C_{Y\beta} = \frac{C_Y}{\Delta \beta^{\circ}} * \frac{180}{\pi}$$
 per radian A.55

$$C_{l_{\beta}} = \frac{C_l}{\Delta \beta^{\circ}} * \frac{180}{\pi}$$
 per radian A.56

$$C_{n\beta} = \frac{C_n}{\Delta \beta^{\circ}} * \frac{180}{\pi}$$
 per radian A.57

b. Sample Static Lateral-Directional Data Reduction

Table A.6 presents CMARC solutions for the FROG UAV at two angles-of-attack. Data is for the summed contribution of the wing/fuselage and tail group models. Roll and yaw moments are already divided by a factor of two. This normalizes by span to compensate for the CMARC output, which is normalized by semi-span. Sample calculations for obtaining the static derivatives are demonstrated below. The calculations are easily implemented in a spreadsheet or with a MATLAB script.

RUN#	β	CL	CD	CY	C_m	C_n	C_1
1	0°	0.4432	0.0145	0.0000	0.0048	0.0000	0.0000
2	2°	0.4452	0.0148	-0.0087	0.0038	0.0022	-0.0022

Table A.6 FROG UAV Static Lateral-Directional Stability Data at $\alpha_{trim}=0^{\circ}$.

Sample Calculations:

$$C_{Y\beta} = \frac{C_Y}{\Delta\beta^{\circ}} * \frac{180}{\pi} = \frac{-0.0087}{2^{\circ}} * \frac{180}{\pi} \frac{\text{deg}}{rad} = -0.2493 \text{ per radian}$$
 A.55

$$C_{l\beta} = \frac{C_l}{\Delta \beta^{\circ}} * \frac{180}{\pi} = \frac{-0.0022}{2^{\circ}} * \frac{180}{\pi} \frac{\text{deg}}{\text{rad}} = 0.0630 \text{ per radian}$$

A.56

$$C_{n\beta} = \frac{C_n}{\Delta\beta^{\circ}} * \frac{180}{\pi} = \frac{0.0022}{2^{\circ}} * \frac{180}{\pi} \frac{\text{deg}}{rad} = 0.0630 \text{ per radian}$$
 A.57

3. Lateral-Directional Control Power Stability Derivatives

a. Lateral-Directional Control Power Equations

The rudder control power derivatives are obtained by substituting a 0° deflection vertical stabilizer patch for one with positive rudder deflection. Only one run is required. For the FROG UAV study, +5° (TEL) deflection is used. The difference between the trim condition and the deflected value is divided by the rudder deflection as shown below:

$$C_{Y_{\delta a}} = \frac{\left(C_{Y_{\delta a_2}} - C_{Y_{\delta a_1}}\right)_{*} \frac{180}{\pi} \quad per \quad rad$$
A.58

$$C_{l_{\delta a}} = \frac{\left(C_{l_{\delta a_2}} - C_{l_{\delta a_1}}\right)}{\delta a_2 - \delta a_1} * \frac{180}{\pi} \quad per \quad rad$$
A.59

$$C_{n_{\delta a}} = \frac{\left(C_{n_{\delta a_2}} - C_{n_{\delta a_1}}\right)}{\delta a_2 - \delta a_1} * \frac{180}{\pi} \quad per \quad rad$$
 A.60

$$C_{Y_{\delta r}} = \frac{\left(C_{Y_{\delta r_2}} - C_{Y_{\delta r_1}}\right)}{\delta r_2 - \delta r_1} * \frac{180}{\pi} \quad per \quad rad$$
A.61

$$C_{l_{\delta r}} = \frac{\left(C_{l_{\delta r_2}} - C_{l_{\delta r_1}}\right)}{\delta r_2 - \delta r_1} * \frac{180}{\pi} \quad per \quad rad$$
 A.62

$$C_{n_{\delta r}} = \frac{\left(C_{n_{\delta r_2}} - C_{n_{\delta r_1}}\right)}{\delta r_2 - \delta r_1} * \frac{180}{\pi} \quad per \quad rad$$
 A.63

b. Sample Lateral-Directional Control Power Data Reduction

Tables A.7 and A.8 present CMARC solutions for aileron and rudder deflections. Sample calculations for obtaining aileron and rudder control power are demonstrated below. The calculations are easily implemented in a spreadsheet or with a MATLAB script.

$$C_{Y_{\delta a}} = \frac{\left(C_{Y_{\delta a_2}} - C_{Y_{\delta a_1}}\right)}{\delta a_2 - \delta a_1} * \frac{180}{\pi} = \frac{\left(-0.0018 - 0\right)}{\left(5 - 0\right)} * \frac{180}{\pi} = -0.0103$$
 A.64

$$C_{l_{\delta a}} = \frac{\left(C_{l_{\delta a_2}} - C_{l_{\delta a_1}}\right)}{\delta a_2 - \delta a_1} * \frac{180}{\pi} = \frac{\left(0.01695 - 0\right)}{\left(5 - 0\right)} * \frac{180}{\pi} = 0.1943$$
 A.65

$$C_{n\delta a} = \frac{\left(C_{n\delta a_2} - C_{n\delta a_1}\right)}{\delta a_2 - \delta a_1} * \frac{180}{\pi} = \frac{\left(-0.00105 - 0\right)}{\left(5 - 0\right)} * \frac{180}{\pi} = -0.0120$$
 A.66

$$C_{Y_{\delta r}} = \frac{\left(C_{Y_{\delta r_2}} - C_{Y_{\delta r_1}}\right)}{\delta r_2 - \delta r_1} * \frac{180}{\pi} = \frac{\left(0.0081 - 0\right)}{\left(5 - 0\right)} * \frac{180}{\pi} = 0.0928$$
 A.67

$$C_{l_{\delta r}} = \frac{\left(C_{l_{\delta r_2}} - C_{l_{\delta r_1}}\right)}{\delta r_2 - \delta r_1} * \frac{180}{\pi} = \frac{\left(0.00035 - 0\right)}{\left(5 - 0\right)} * \frac{180}{\pi} = 0.0040$$
 A.68

$$C_{n_{\delta r}} = \frac{\left(C_{n_{\delta r_2}} - C_{n_{\delta r_1}}\right)}{\delta r_2 - \delta r_1} * \frac{180}{\pi} = \frac{\left(-0.00395 - 0\right)}{\left(5 - 0\right)} * \frac{180}{\pi} = -0.0453$$
 A.69

RUN#	δα	CL	CD	CY	C_m	C_n	C_1
1	0°	0.4259	0.0170	0.0000	0.0104	0.0000	0.0000
2	5°	0.4005	0.0173	-0.0018	0.0199	-0.00105	0.01695

Table A.7 FROG UAV Aileron Control Power Data at $\alpha_{trim}=0^{\circ}$.

RUN#	δr	CL	CD	CY	C_m	C_n	C_1
1	0°	0.4259	0.0170	0.0000	0.0104	0.0000	0.0000
2	5°	0.4258	0.0170	0.0081	0.0107	-0.00395	0.00035

Table A.8 FROG UAV Rudder Control Power Data at $\alpha_{trim}=0^{\circ}$.

3. Yaw Rate Damping Derivatives

a. Yaw Rate Derivative Methods and Equations

Only one motion is required for the yaw rate terms. The β -dot terms are generally considered negligible. Therefore, a sideways plunging motion is not required. The yaw rate terms are yielded directly from an oscillating yawing motion as depicted in Figure A.8. Yawing motion data for the FROG is gathered at a frequency of 2π rad/s, which equates to a reduced frequency of k=0.369 for this configuration and trim airspeed. Oscillating yaw motion is controlled with the CMARC BINP8A input file line. An amplitude of $\pm 2^{\circ}$ is selected for the FROG study. An example BINP8A input line is shown below. Note that yaw amplitude is in degrees and frequency is in rad/sec:

&BINP8A	PHIMAX=0.0,	THEMAX=1.5,	PSIMAX=0.0	
	WTX=0.0,	WTY=6.283,	WTZ=0.0,	&END

Figure A.8 Yawing Motion for Obtaining the Yaw Rate Derivatives.

The number of time steps and time step interval is chosen to create a nice sinusoidal output through at least two cycles of motion. In the FROG study, a yawing motion frequency of $\omega=2\pi$ rad/s or one cycle/sec is utilized. Fifty time steps are chosen with an interval of 0.05 seconds, which creates 2.5 cycles of yawing motion. After the solution is obtained, the "total coefficient" data is extracted for plotting. The data can be picked out manually, or a data retrieval program can be created for the task. For the FROG study, the data is extracted manually and pasted into an "Excel" spreadsheet for plotting. As discussed earlier, the FROG model was split into wing/fuselage and tail groups for the lateral-directional study. Both sets of data are pasted into the Excel spreadsheet and summed. The total value is then plotted. In addition, yawing motion phase and sideslip angles are also calculated using Equations A.70 and A.71. Yawing motion phase angle is plotted on the x-axis and sideslip is plotted on the right hand axis. Table A.9 shows representative FROG yaw rate data for 20 time steps.

$$\phi_{yaw} = \#_{timestep} * dt * \varpi_{yaw} * \frac{180}{\pi}$$
 degrees A.70

Where: ϕ_{vaw} - yawing motion phase angle

#_{timestep} - time step

dt - time step interval

ω_{vaw} - Yawing frequency

A_{vaw} - Yaw angle amplitude

Step	φ (deg)	β	CL	CD	CY	C_m	C_n	C_1
0	0	0.00	0.0534	0.0111	-0.0005	0.085	0.0003	-0.0002
1	18	0.62	0.4004	0.0195	-0.007	-0.0107	0.0023	-0.0023
2	36	1.18	0.4329	0.0161	-0.0087	-0.0009	0.0026	-0.0026
3	54	1.62	0.4388	0.0152	-0.0098	0.0019	0.0027	-0.0027
4	72	1.90	0.4416	0.0149	-0.0098	0.0027	0.0026	-0.0026
5	90	2.00	0.4428	0.0149	-0.0089	0.0033	0.0022	-0.0022
6	108	1.90	0.4435	0.0147	-0.0071	0.0039	0.0016	-0.0016
7	126	1.62	0.444	0.0146	-0.0046	0.0044	0.0008	-0.0008
8	144	1.18	0.4444	0.0146	-0.0017	0.0049	0.0000	0.0000
9	162	0.62	0.4447	0.0144	0.0014	0.0051	-0.0009	0.0009
10	180	0.00	0.445	0.0144	0.0043	0.0048	-0.0016	0.0016
11	198	-0.62	0.4452	0.0145	0.0069	0.0044	-0.0022	0.0022
12	216	-1.18	0.4453	0.0146	0.0087	0.004	-0.0026	0.0026
13	234	-1.62	0.4452	0.0147	0.0098	0.0035	-0.0027	0.0027
14	252	-1.90	0.4451	0.0147	0.0098	0.0034	-0.0026	0.0025
15	270	-2.00	0.4449	0.0148	0.0089	0.0036	-0.0022	0.0021
16	288	-1.90	0.4448	0.0146	0.0071	0.0041	-0.0016	0.0015
17	306	-1.62	0.4449	0.0146	0.0046	0.0045	-0.0008	0.0008
18	324	-1.17	0.445	0.0145	0.0017	0.005	0.0000	-0.0001
19	342	-0.62	0.4452	0.0144	-0.0014	0.0051	0.0009	-0.0009
20	360	0.00	0.4454	0.0144	-0.0044	0.0049	0.0016	-0.0016

Table A.9 Sample FROG UAV Yawing Motion Data for 20 Time Steps

The C_Y , C_1 and C_m responses are plotted as a function of yawing phase angle. Sideslip is also plotted on the right hand vertical axis. Figure A.9 is a representative plot of CMARC data for the FROG UAV study. The out-of-phase (imaginary) portion of C_Y , C_1 or C_m is due to the yaw rate damping contribution. The β -dot contribution is considered small and is ignored. The phase angle is measured between the coefficient response and sideslip angle. In this case, the zero crossing

method of measuring phase angle proves to the easiest and most accurate. The phase angle is simply measured from the parameter to sideslip angle where they cross the x-axis in the same direction. The yaw rate damping contribution is normalized by maximum yaw rate and t^* . Equations A.72 through A.76 are used to solve for C_{Yr} , C_{Ir} and C_{nr} .

$$C_{Y_r} = \frac{I[C_Y]}{r_{\text{max}} *_t^*}, \quad \text{where} \quad I[C_Y] = \sin(\phi_{yaw})[C_Y]$$
 A.72

$$C_{l_r} = \frac{I[C_l]}{r_{\text{max}} *_t^*}, \quad \text{where} \quad I[C_l] = \sin(\phi_{yaw})[C_l]$$
 A.73

$$C_{n_r} = \frac{I[C_n]}{r_{\text{max}} * t^*}, \quad \text{where} \quad I[C_n] = \sin(\phi_{yaw})[C_n]$$
 A.74

$$r_{\text{max}} = \frac{A_{\phi \text{deg}}}{57.3 \frac{\text{deg}}{rad}} * \omega_{yaw} \text{ rad/s}$$
 A.75

$$t^* = \frac{b/2}{U_0} \sec$$
 A.76

Where:

[C_Y] - Amplitude of C_Y response from yawing motion

[C₁] - Amplitude of C₁ response from yawing motion

[C_n] - Amplitude of C_n response from yawing motion

I[C_Y] - C_Y coefficient contribution from yaw rate damping

I[C₁] - C₁ coefficient contribution from yaw rate damping

I[C_n] - C_n coefficient contribution from yaw rate damping

t - Characteristic time

Figure A.9 Representative Yawing Motion Plot for the FROG UAV.

b. Sample Yaw Rate Damping Data Reduction

Sample data reduction is presented below in Equations A.28 through A.32. The phase angle between the response and the sideslip angle is measured graphically by zooming in on the x-axis zero crossing.

$$t^* = \frac{b/2}{U_0} = \frac{124in/2}{1056in/s} = 0.0587 \text{ sec}$$
 A.77

$$r_{\text{max}} = \frac{A_{\varphi \text{deg}}}{57.3 / r_{ad}} * \omega_{yaw} = \frac{2^{\circ}}{57.3 / r_{ad}} * 2\pi r_{ad} / \text{sec} = 0.2193 \text{ rad/s}$$
 A.78

$$C_{Y_r} = \frac{I[C_Y]}{r_{max} *_t^*} = \frac{\sin(\phi_{yaw})[C_Y]}{r_{max} *_t^*} = \frac{\sin(154^\circ)[0.0099]}{0.2193 *_{0.0587}} = 0.3371$$
 A.79

$$C_{l_r} = \frac{I[C_l]}{r_{\text{max}} *_t^*} = \frac{\sin(\phi_{yaw})[C_l]}{r_{\text{max}} *_t^*} = \frac{\sin(144^\circ)[0.00265]}{0.2193 *_{0.0587}} = 0.1210$$
 A.80

$$C_{n_r} = \frac{I[C_n]}{r_{\text{max}} * t^*} = \frac{\sin(\phi_{yaw})[C_n]}{r_{\text{max}} * t^*} = \frac{\sin(-36^\circ)[0.00265]}{0.2193 * 0.0587} = -0.1210$$
 A.81

4. Roll Rate Damping Derivatives

a. Roll Rate Derivative Methods and Equations

Gathering roll damping data is straightforward. Unlike the pitch or yaw rate terms, there is no change in angle-of-attack or sideslip with the rolling motion. Therefore, roll damping effects can be measured with pure rolling motion around the x-axis. As with the yaw damping case, the wing/fuselage and tail models are run separately. The results are then summed. A rigid wake seems to work well, which provides a solution after just a few time steps.

Roll damping data for the FROG is gathered at a 20 deg/sec roll rate. Initially, a 5 deg/sec roll rate was selected, but the yawing moment coefficient was low enough that numerical resolution would effect the results. The higher rate provided a sufficiently large response for all terms. Pure rolling motion is controlled by the PHIDOT term in the CMARC BINP8 input file line. An example BINP8 input line is shown below. Note that roll rate is in deg/sec:

&BINP8 ALDEG=0.0, YAWDEG=0.0, PHIDOT=20.0 THEDOT=0.0, PSIDOT=0.0, &END

The roll rate damping terms are obtained by normalizing the CMARC output by roll rate, p, and characteristic time, t*. Equations A.82 through A.85 are used for these calculations.

$$C_{Y_p} = \frac{C_Y}{p^* t^*}$$
 A.82

$$C_{l_p} = \frac{C_l}{p * t^*}$$
 A.83

$$C_{n_p} = \frac{C_n}{p^* t^*}$$
 A.84

$$t^* = \frac{b/2}{U_0} \sec$$
 A.85

Where:

 $[C_Y]$ - Amplitude of C_Y response from roll rate

[C₁] - Amplitude of C₁ response from roll rate

 $[C_n]$ - Amplitude of C_n response from roll rate

p - Roll rate

t* - Characteristic time

d. Sample Roll Rate Damping Data Reduction

Tables A.10 presents the CMARC roll damping solution for the FROG UAV. The data is the summed contributions from the wing/fuselage and tail surface models. Sample roll damping calculations presented below in Equations A.86 through A.89. The calculations are easily implemented in a spreadsheet or with a MATLAB script.

$$t^* = \frac{b/2}{U_0} = \frac{62in}{1056in/s} = 0.0587 \text{ sec}$$
 A.86

$$C_{Y_p} = \frac{C_Y}{p * t} = \frac{0.0010}{20 \frac{\deg}{\sec} * \frac{\pi}{180} \frac{\deg}{rad} * 0.0587 \sec} = 0.0488$$
 A.87

$$C_{l_p} = \frac{C_l}{p *_t} = \frac{-0.00925}{20 \frac{\deg}{\sec} *_{180} \frac{\pi}{rad} *_{0.0587} \sec} = 0.4514$$
 A.88

$$C_{n_p} = \frac{C_n}{p * t} = \frac{-0.00045}{20 \frac{\deg}{\sec} * \frac{\pi}{180} \frac{\deg}{rad} * 0.0587 \sec} = -0.0220$$
 A.89

RUN#	р	CL	CD	CY	C_m	C_n	C_1
1	0 deg/s	0.4432	0.0145	0.0000	0.0048	0.0000	0.0000
2	20 deg/s	0.4435	0.0143	0.0010	0.0047	-0.00045	-0.00925

Table A.10 FROG UAV Roll Damping Data at $\alpha_{trim}=0^{\circ}$ and $\beta=0^{\circ}$.

APPENDIX B LOFTSMAN INPUT FILES FOR FROG UAV MODELING

FROG UAV Fuselage Moldlines	BOTTOM K FACTOR	JR			
File name: fogfusa	Segments: 3				
	Fore end Aft end	0,0.93	43.6.0.98	53.5.0.95	
BOTTOM WATERLINE	Corner	S	S	S	
Segments: 3	TOP K FACTOR	1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	8 4 1 1 1 1 1 1 1
	Segments: 4				
er ature	Fore end Aft end	0,0.90	24,1.0	44.65,1.0	53.5,0.95
WAIST WATERLINE	Corner Curvature	S	w	S	S
Segments: 1	BUTTLINE AT PLANE OF	ANE OF SYMMETRY	Χ.		1 1 1 1 1 1 1
Fore end 0,6.5 Aft end 53.5,6.5 Corner S Curvature	Segments: 0				
TOP WATERLINE					
Segments: 7					
Fore end 0,6.5 Aft end 8,9.3 15.2,9.3 21.6,13.0 29.0,14.6 44.6,11.6 53.0,11.5 53.5,6.5 Corner 0,9.3 S S 24.3,14.6 35.4,14.6 S 53.5,11.5 Curvature 0.7 0.71 0.81					
MAXIMUM BUTTLINE DISTANCE FROM PLANE OF SYMMETRY					
Segments: 6					
Fore end 0,0 Aft end 1,3 1,3 22,4.5 43.6,4.5 53.1,1.3 53.5,0					
Corner 0,2.9 S S S S 553.5,1.3 Curvature .9 0.8 0.95					

NPS FROG UAV Right Wing - Loftsman Input File	Panel rib angles: 0,999.0000,0.0000
Date: 3/30/98	Break 5
Breaks: 5 Break 1	Axis: 24.65,61.0,13.1 Axis/chord: 0 Chord: 18.5
Axis: 24.65,0,13.1 Axis/chord: 0 Chord: 20.0	file:
Incidence: 4.5 Cant: 0 Section file: N2415 T/C ratio: 0.1500 Spars: 0 Panel rib angles: 0,999.0000,0.0000	Spars: 0
Break 2	
Axis: 24.65,6,13.1 Axis/chord: 0 Chord: 20.0 Incidence: 4.5 Cant: 0 Section file: N2415 T/C ratio: 0.1500 Spars: 0 Panel rib angles: 0,999.0000,0.0000	
Break 3	
Axis: 24.65,31.5,13.1 Axis/chord: 0 Chord: 20.0 Incidence: 4.5 Cant: 0 Section file: N2415 T/C ratio: 0.1500 Spars: 0 Panel rib angles: 0,999.0000,0.0000	
Break 4	
Axis: 24.65,53.0,13.1 Axis/chord: 0 Chord: 20.0 Incidence: 4.5 Cant: 0 Section file: N2415 T/C ratio: 0.1500 Spars: 0	

NPS FROG UAV Left Wing - Loftsman Input File	Panel rib angles: 0,999.0000,0.0000
Date: 3/30/98	Break 5
Breaks: 5	Axis: 24.65,-61.0,13.1 Axis/chord: 0 Chord: 18.5
DICAN I	Incidence: 4.5
Axis: 24.65,0,13.1 Axis/chord: 0 Chord: 20.0 Incidence: 4.5	Cant: 0 Section file: N2415 T/C ratio: 0.1500 Spars: 0
Cant: 0 Section file: N2415 T/C ratio: 0.1500 Spars: 0 Panel rib angles: 0,999.0000,0.0000	
Break 2	
Axis: 24.65,-6,13.1 Axis/chord: 0 Chord: 20.0 Incidence: 4.5 Cant: 0 Section file: N2415 T/C ratio: 0.1500 Spars: 0 Panel rib angles: 0,999.0000,0.0000	
Break 3	
Axis: 24.65,-31.5,13.1 Axis/chord: 0 Chord: 20.0 Incidence: 4.5 Cant: 0 Section file: N2415 T/C ratio: 0.1500 Spars: 0 Panel rib angles: 0,999.0000,0.0000	
Break 4	
Axis: 24.65,-53.0,13.1 Axis/chord: 0 Chord: 20.0 Incidence: 4.5 Cant: 0 Section file: N2415 T/C ratio: 0.1500 Spars: 0	

FROG Horizontal Tail	FROG UAV Vertical Tail - LOFTSMAN input file
Date: 4/14/97	Date: 4/14/97
Breaks: 2	Breaks: 2
Break 1	Break 1
Axis: 82.5,0,8.09 Axis/chord: 0 Chord: 13.5 Incidence: 0 Cant: 0 Section file: N0006 T/C ratio: 0.06 Spars: 0 Panel rib angles: 0,999.0000,0.000 Break 2 Axis: 86.5,19.875,8.09 Axis/chord: 0 Cant: 0 Cant: 0 Cant: 0 Section file: N0006 T/C ratio: 0.06	Axis: 77.5,0,10.4 Axis/chord: 0 Chord: 20 Incidence: 0 Cant: 90 Section file: N0006 T/C ratio: 0.06 Spars: 0 Panel rib angles: 90,0,999 Break 2 Axis: 92.35,0,25.15 Axis/chord: 0 Cont: 90 Cant: 90 Section file: N0006 T/C ratio: 0.06
Spars: 0 Panel rib angles: 0,999.0000,0.0000	Spars: 0 Panel rib angles: 90,0,999

FROG UAV Vertical Tail . LOFTSMAN input file	Date: 4/14/97 Mod; 8/5/98 to include projected area of vstab through tail boom. Breaks: 2	666'0'06	6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	
G UAV Vertical Tail . L	Date: 4/14/97 Mod; 8/5/98 through tail boom. Breaks: 2	Axis: 75.6,0,8.5 Axis/chord: 0 Chord: 20 Incidence: 0 Cant: 90 Section file: N0006 T/C ratio: 0.06 Spars: 0 Panel rib angles: 90,0,999	Axis: 92.35,0,25.15 Axis/chord: 0 Chord: 10 Incidence: 0 Cant: 90 Section file: N0006 T/C ratio: 0.06 Spars: 0 Panel rib angles: 90,0,999	

FROG UAV Tail Boom	1 Boom	COLORD A MORPOR	Q.C.
File name: f	name: frogboom	DOLLOG N FOO	KO1.
Last revision:	on: 4/28/97	Segments: 1	
	added rounded start and finish to close ends	Fore end	53.5,0.707
BOTTOM WATERLINE	4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Corner	88.5, 0.70
Segments: 3		כמו אשרמו ב	
Fore end	53.5,9.375 54,8.5 88,8.5	TOP K FACTOR Segments: 1	
Corner 88.5,8.5 Curvature 0.707	53.5,8.5 0.707	Fore end Aft end Corner Curvature	53.5,0.707 88.5, 0.707 S
WAIST WATERLINE	INE	BUTTLINE AT Segments: 0	PLANE OF SYMMETRY
Fore end Aft end Corner Curvature	53.5,9.375 88.5, 9.375 S		
TOP WATERLINE		1 1	
Segments: 3			
Fore end Aft end 88.5,9.375 Corner 88.5,10.25	53.5,9.375 54.0,10.25 88,10.25 53.5,10.25 S		
0.707	1 1 1	1	
MAXIMUM BUTT	LINE DISTANCE FROM PLANE		
	53.5,0 54,0.875 88,0.875		
88.5,0 Corner 88.5,0.875 Curvature 0.707	53.5,0.875		

FROG UAV ENGINE NACELLE	VE NACELLE				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
					TOP K FACTOR				
					Segments: 4				
BOTTOM WATERLINE	INE				Fore end	16.5,0.707	0 0	0000	
Segments: 4					43.0,0.75	· · · · · · · · · · · · · · · · · · ·	66.0,6.42	26.0,0.25	
Fore end	16.5,20.4	8 21 0 16	31 0 15 75	9 9 7 0 8 9	Curvature	w	20.3,0.93	ω	S
Corner	16.6,19.6	19.15,17.35		35.6,15.65 0.73	BUTTLINE AT F Segments: 0	SYMM	X		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
WAIST WATERLINE	NE	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
Segments: 1									
Fore end Aft end Corner Curvature	16.5,20.4 43.0,16.8 S								
TOP WATERLINE		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
Segments: 4									
Fore end Aft end	16.3,20.4 18.45,22.1	27.0,21.75	35.0,19.8	43.0,16.8					
er ature	16.75	1.4,22.5	30.	38.3,18.75					
MAXIMUM BUTTL	INE DISTANCE FRO	M PLANE OF	SYMMETRY	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
Segments: 4									
Fore end Aft end	16.5,0 18.2,1.6	23.0,2.3	40.8,2.3	43.0,0					
re	16.5,0.70 0.72	20.1,2.25	co.	43.0,2.3					
BOTTOM K FACTOR	OR	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1						
Segments: 4									
Fore end Aft end Corner Curvature	16.5,0.707 18.2,0.707 S	24.0,0.93 20,0.93 0.9	42.0,0.93	43.0,0.75					

FOG UAV ENGINE PYLON (Lofted as A-Body Type)	Segments: S
File name: FOGPYLON Last revision: 4/13/97	C2W
	Segments: S
SUTIDS: 3	K2
М1В	Segments: S
Segments: 1	МЗВ
Fore end 25.8,0	Segments: =M2B
Corner S K factor S	M3W
	Segments: 1
Segments: 1	Fore end 25.8,16.1 Aft end 37.7,16.1
Fore end 25.8,14.15	
Alc end 37.7,13.03 Corner 29.4,15.45 K factor 0 72	C3B
	Segments: S
Segments: S	C3W
	Segments: S
	К3
Segments: S	Segments: S
K1	M4B
Segments: S	Segments: =M1B
M2B	
Segments: 1 Fore end 25.8,0 Aft end 37.7,0 Corner 25.8,3.8 K factor 0.71	Segments: =M3W
Segments: =M1W	
C2B	

APPENDIX C FROG UAV CMARC INPUT FILE

							#END), SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,), GEND	CORE-1:0, ALT-0:0,														CEND CEND), SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,														
4.8828	5.3171	5.7981	6.5846	7.2119 7.3254 7.342		7.4244	0, TINTC=	0, ST2=0.(3.2261	3.2304	3.2527	3.3105	3.7159	4.2715	5.2972	6.5092	7 8070	A 0540	8 1796	8.2410	8.2673	8.2731	O, TINTC=(S=0, 6END	1.8058	1.8110	1.8401	2.1152	2.5617	3.4985	6.2532	7.5020	8.2308	8.6115	8.7934	8.8805	8 9243	TINTC=(0. STZ=0.0,	S=0, &END	0.7304	0.7343	0.7608	1 0887			4.5188	6.0017	7.4676		8.9147		9.2266
2.4101 2.6949 2.8308		2.9200	2.9252	2.8237 2.6669 2.8672	1.8372	0.9694	E=3, TNPC=	TNDC.0 TINTC.0 CEND	0.0000	1.2120	2.1514	2.6464	2.9946	3.0431	3.0617	3.0650	3.048I 2 9862	2 8504	2.5827	2.0806	1.1960	0.000.0	E=3, TNPC=	TNPS=0, TINTS=0, CEND	0.000.0	1.3792	2.3922	3.0873	3.1756	3.2104	3.2230	3.2129	3.1635	3.0419	1261.2	2.2900	0.0000	Es TNPC=	.0, STY=0.0,		0.000.0	1.4829	2 1470	3.3299	3.3948	3.4159	3.4209	3.4221	3.4168	3.3779		3.0302	2.5077
0.4894	0.4894	0.4894	0.4894	0.4894	0.4894	0.4894	&BPNODE TNODE=3, TNPC=0, TINTC=0,	LESECTI STX=0		1.9098	1.9098	1.9098	1.9098	1.9098	1.9098	1.9098	1.9098	1 9098	1.9098	1.9098	1.9098	1.9098	&BPNODE TNODE=3, TNPC=0, TINTC=0	TNODS=0, TN		4.1221	4.1221	4.1221	4.1221	4.1221	4.1221	4.1221	4.1221	4.1221	4.1221	4.1221	4.1221	&BPNODE TNODE=3 TNPC=0	&SECT1 STX=0.0,	TNODS=0, TN		8606.9	6 9098	8606.9	6.9098	8606.9	8606.9	8606.9	8606.9	8606.9	8606.9	8606.9	8606.9
ysis			ort. Currently set-up	lateral-directional s and patches		LPLTYP=1, &END	QN3.9	CEND 6 END	, RCOREW=0.0080,		U, PSIDOI=U.U, &END	6 END		GEND	CINED		GEND		QUEND	GEND.	GEND & END		.0	GEND.		WE'ND			GEND	00, 6. END		=1, IPATCOP=0, 6.END	A SUCCESSION OF A STATE OF THE	, tagoni, 'o.o.a.																	IA: U.U. INMODE=4,		
anal	20000		Modified to be final baseline for report	with full span wing/fuselage wake for lateral-directio analysis of wing/fuselage group. Wakes and patches can be activated to produce the desired configurations		LSTFRQ=0, LENRUN=0,	TWAK=0,		RFF=5.0, RCORES=0.0080		PHIDOTEG. 0, IMEDOTEG. 0	WR2=6.283.	DZMAX=0.0,	WTZ=0.0,	53FAM 62,	NC2ONE=0	VREF=0.0,	NORL=0,	VNORM=0.0,	NEWNAB=0, NEWSID=0,			00, ASEM2=.8.5700		AF	o, A16.6=0.00,		S	0.0, NODEC= 5,	,		&PATCH1 IREV=0, IDPAT=2, MAKE=0, KCOMP=1, KASS=1, IPATSYM=1, IPATCOP=0,	ant o orale of all	MADECII SIAROLO, SII-OLO, SIESOLO, SCALBELLO, ABR-OLO, INBIA-OLO, INMODE-4 TAODS-6 TADS-6 TINTS-0 KEND																•	SCALE I O, ALF O O, THE		
Off body streamlines for pitot static	Tagour Tagour	ollard 4/2/98	dodified to be fa	with full span wandlysis of wing,	333333333333333333333333333333333333333	LSTOUT=0, LS	LSTNAB=0, L.	DTSTEP=0.05,	RGPR=0.0.	~	ALDEG 0.00, YAWDEG=0.0, PF	WRY=0.0,		WTY=0.0,	PMDY=0	NACHGE=0	0.0		, 0				5, ASEMY=0.00,		AF	, AIIII=1.00		00, COMPY= 0.0000,	, o o	o,		T=2, MAKE=0, KCO	23 0 0-643 0 6	VTS=0. 6END	6.5000	6.5000	6.5000	0.005.9	6.5000	6.5000	6.5000	6.5000	6.5000	6.5000	6.5000	0.005.9	6.5000	0.5000	6.5000	TINTC: 0.	S12:0.0,	4.8456	4.8472
PS FROG UAV CMARC/PMA	משא הנישאר/ בני	Created by: Steve Pollard	Revised: 9/6/98 - M) ته در	,	LSTINP=2,	LSTGEO=0,	NTSTPS= 50,	RSYM=1.0,	VINF=1056.00,	ALDEG= 0.00,	WRX=0.0,		ò	DMDX=0 00	NORSET=0	NC2PCH=0,	NORPCH=0,	NOCF=0,	KPAN=0,	NBLIT=0,		ASEMX=-31.55	ASCAL«1.00,	APXX=0.00,	AHAA=U.UU,		COMPX= 0.0000,	CSCAL= 1.0	CHXX= 0.0000		IREV=0, IDPA:	JE NOSE	TRODS TAPE TAPES TINTS TO TEND	0.0000 0.0000					0.0000									0.0000		ESECTI STX=0.0, SIY=0.0,	0.4894 0.0000	0.4894 0.9694
-																				6BINP12												- :	ď i	00	0	0.000.0	0.000.0	0	0.0000	0.000.0	0.000.0	00000	0.0000	0.000	0.0000	0.000.0	0.000.0	0.000.0	0 0 0 0 0		200	0	10

SCALE-1.0, ALF-0.0, THETA-0.0, INMODE-4,	Del.O, ALFEO.O, THETA=0.O, INMODE=4, Del.O, ALFEO.O, THETA=0.O, INMODE=4, Del.O, ALFEO.O, THETA=0.O, INMODE=4, Del.O, ALFEO.O, THETA=0.O, INMODE=4,		SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4.	&END SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,		PROTT TRANSITION FORE STARBOARD ROOT TRANSITION FORE STARBOARD CASECT1 STY=0.0, STY=0.0, STZ=0.0, STZ=0.0, THETA=0.0, INMODE=4, TANDS=0, TNPS=0, END CASECT1 STY=0.0, STZ=0.0, STZ=0	6END ALFEG.0 THETA=0 INMODE=4
SCALE-1.0, ALF-0.0, THETA-0.0, INMODE-4,	SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,	4 9 8015 7 10.6520 0 10.8950 8 10.9567 4 10.954 0 10.9709 NPC=0, TINTC=0, &EM	Y=0.0, STZ=0.0, SCA TINTS=0.6 END 0.0000 0.0007 8 0.0081 8 0.0661 3 0.0661 4 1.723 4 3.4275			FORE STARBOARD Y=0.0, STA=0.0, STA=0.0, STA=0.0, STA=0.0, STA=0.0, STA=0.0001 INTS=0.00001 0.00001 0.00011 0.0	2 12.0742 0 12.0750 NPC=0, TINTC=0, &EN
LEND SCALE=1.0, ALF=0.0, SCALE=1.0, ALF=0.0, SCALE=1.0, ALF=0.0, SCALE=1.0, ALF=0.0,	#END SCALE=1.0, ALF=0.0, SCALE=1.0, ALF=0.0, SCALE=1.0, ALF=0.0, SCALE=1.0, ALF=0.0,	18.0902 4.209 18.0902 4.156 18.0902 3.949 18.0902 3.231 18.0902 1.650 18.0902 0.000 6BPNODE TNODE=3, Ti	ESECTI STX=0.0, ST TNODS=0, TNPS=0.19.5106 0.0001 19.5106 1.704 19.5106 1.704 19.5106 4.155 19.5106 4.318 19.5106 4.318	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20.0000 4.357 20.0000 4.355 20.0000 4.353 20.0000 4.323 20.0000 4.327 20.0000 1.727 20.0000 1.720 20.0000 1.720 20.0000 1.720 20.0000 1.720 20.0000 1.720	## ROOT TRANSITION ## ROOT T	20.0000 1.720; 20.0000 0.000 &BPNODE TNODE=3, TR
	Name						

SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,	ASPATCH1 IREV=0, IDPAT=2, MAKE=0, KCOMP=1, KASS=1, IPATSYM=1, IPATCOP=0, EEND ROOT LOWER STARBOARD (SECT1 STX=0.0, STY=0.0, STY=0.0, STZ=0.0, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4, TRODS=0, TRPS=0, TINYS=0, EEND 0.00000 0.00000 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0	SCALE=I.0, ALF=0.0, THETA=0.0, INMODE=4.
9775 9775 71KTC=0, &END 71KTC=0, &END 0000 0000 00094 0029 5384 7966 7966 7966 7966 7966 7966 7966 796	KE=0, KCOMP=1, KASS= 2=0.0, SCALE=1.0, AL SEND SEND SEND SEND SEND SEND SEND SEND	0 0
1141 113 1100 11	ROATCHI IREV-0, IDPAT=2, MAKE=0, ROATCHI LOMER STARBOARD GSECTI STX=0.0, STY=0.0, STZ=0.0, TNODS=0, TINTS=0, END 24.6500 1.8258 0.0008 24.6500 3.6231 0.00094 24.6500 4.4804 0.5324 24.6500 4.4804 0.5344 24.6500 4.4809 3.9708 24.6500 4.4809 3.9708 24.6500 4.5000 7.6225 24.6500 4.5000 7.6225 24.6500 4.5000 13.1000 8.8000 ENDODE TWODE=3, TINTC=0, END 24.6500 A.5000 13.1000 24.6500 A.5000 D.5000 24.6500 A.5000 D.5000 24.6500 A.5000 D.5000 A.5000 D.5000 A.5000 A.5000 D.5000 A.5000 A.50000 A.50000 A.50000 A.5000 A.5000 A.500	112 0.6666 1.1994 3.3994 3.31994 3.31999 3.51999 3.51999 3.3199 3.31999 3.3199
24.2060 1.4 6ABPNODE THODE 3.6 6ABPNODE 3.7 1NODS 3.7 1N	### ##################################	24.8679 4.34 24.8679 4.47 24.8679 4.49 24.8679 4.49 24.8679 4.50 24.8679 4.50 24.8679 4.50 24.8679 4.50 24.8679 4.50 25.5119 1.75 25.5119 4.49 25.5119 4.49 25.5119 4.49 25.5119 4.49 25.5119 4.49 25.5119 4.49
A=0.0, INMODE=4,	THETA=0.0, INMODE=4,	THETA=0.0, INMODE=4,
ALF=0.0, THETA=0.0	ALF=0.0, THETA=0.0	ALF=0.0, THETA=0.0
GEND SCALE=1.0,	END SCALE=1.0,	6END SCALE=I.0,
7171 0.0007 4241 0.0007 2151 0.0644 31616 0.3949 3186 1.7224 3188 5.1566 3188 6.8736 3186 10.3078 3186 11.8182 31707 11.8182 31707 11.8182 31707 12.3310 31707 12.3310 31707 12.3317 31707 12.3310 31707 13.3310 31707	1. 7396 1. 3.4788 1. 5.2180 2. 6.9572 7. 8.6964 7. 12.1724 7. 12.035 7. 12.1724 7. 12.035 7. 10.035 7. 10.035	7.2664 999 10.8290 993 12.6104 647 13.6074 428 13.6372 214 13.6342 214 13.6342 214 13.6342 214 13.6342 215 13.6343 210 0.0000 210 0.0000 2
NOOK X = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 4 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
20.4440 20.4440 20.4440	21.6065 21.606	23.0435 23.04435 23.04435 23.04435 23.04435 23.04435 23.04435 23.04435 24.2060

1, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18	IA=0.0, INMODE=4,	TA=0.0, INMODE=4.	IA=0.0, INMODE=4,	TA≡0.0, INMODE=4,	rA=0.0, INMODE=4,
STR_0.0, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4, 00000 00000 00000 00000 00000 000000 0000	D LE=1.0, ALF=0.0, THE	D LE=1.0, ALF=0.0, THE	D LE=1.0, ALF=0.0, THE	D LE=1.0, ALF=0.0, THE	D LE:1.0, ALF=0.0, THE?
STR_0.0, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4, 00000 00000 00000 00000 00000 000000 0000	4 5000 6 3855 4 5000 9 0.557 4 5000 11.3931 4 5000 11.3931 5. Three, triveo, tendo 5. STZ=0.0, STZ=0.0 6.0000 0.0000 1.6694 0.0006 4 2687 0.0466 4 2687 0.0466		4.2692 0.0487 4.4611 0.2926 4.4988 3.0365 4.4998 4.7066 4.5000 6.3767 4.5000 8.0468 4.5000 1.3871 5. TYRPC=0, STZ=0.0, SCZ 5. TYRPC=0, STZ=0.0, SCZ 5. TYRPC=0, STZ=0.0, SCZ 6. STY=0.0, STZ=0.0, SCZ 6. STY=0.0, STZ=0.0, SCZ 7. TYRPC=0, STZ=0.0, SCZ 7. TYRPC=0, STZ=0.0, SCZ 7. TYRPC=0, STZ=0.0, SCZ 7. TYRPC=0, SCZ		4 7 7 3 2 4 7 7 3 2 4 7 7 3 2 5 0 0 6 4 7 0 2 2 5 0 0 6 4 7 0 2 2 5 0 0 6 7 5 0 0 6 7 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9172=0.0, SCALE=1.0, ALF=0.0, 6END 00070 00070 00070 00070 00070 00070 00070 00070 0006	33.5777 33.5777 33.5777 48PRODE TRODE 6SECT1 STX-0. TNODS=0, TNP 35.6619 35.6619	15. 6619 15. 6619 15. 6619 15. 6619 15. 6619 15. 6619 15. 6619 15. 6619 15. 6619 15. 6619 15. 6619 17. 0006 17. 7006 17. 7006	37.7006 37.7006	39.6047 39.6047 39.6047 39.6047 39.6047 39.6047 41.2909 41.2909 41.2909 41.2909 41.2909 41.2909 41.2909	41.2909 41.2909 41.2909 41.2909 6.BPNOE TNODE 6.SECT1 STX=0. 6.NODS=0, TNP
9172=0.0, SCALE=1.0, ALF=0.0, 6END 00070 00070 00070 00070 00070 00070 00070 00070 0006		ę.	10DE=4,	ODE=4,	10DE=4,
9572=0.0, SCALE=1.0, ALF=0 00000 00000 00000 00000 00000 00000 0000	40DE=4	40DE		57	
STZ=0.0, 6END 00000 00000 00000 00000 00000 00000 0000	THETA=0.0, INMODE=4	THETA=0.0, INMODE	THETA=0.0, IN	THETA=0.0, INM	THETA=0.0, INP
	E=1.0, ALF=0.0, THETA=0.0,	S=1.0, ALF=0.0,	S=1.0, ALF=0.0,	S=1.0, ALF=0.0,	E=1.0, ALF=0.0, THET

INMODE=4.	I NMODE=4.	INMODE=4.	INMODE=4,	INMODE=4,	INMODE=4,
THETA=0.0, INMODE=4,	THETA=0.0,	THETA=0.0,	THETA=0.0, INMODE=4 THETA=0.0, INMODE=4	THETA=0.0,	THETA=0.0.
SCALE=1.0, ALF=0.0, LEND SCALE=1.0, ALF=0.0,	GEND SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4	&END SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4	SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4, END SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,	&END SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,	0807 .0807 TINTC=0, GEND STZ=0.0, SCALE=1.0, ALF=0.0, THETA=0.0. INMODE=4), GEND 4473 6423 6423 6423 6423 7INTC=0, GEND TINTC=0, GEND
24.8679 2.8142 14.1314 24.8679 1.4071 14.1334 24.8679 0.0000 14.1334 24.8679 0.0000 14.1334 28.8679 0.0000 14.1334 28.8679 0.0000 14.1334 28.8679 0.0000 17.1334 28.8679 0.0000 13.948 28.5119 4.5010 13.948 28.5119 4.201 14.262 28.5119 1.4071 14.262 28.5119 0.0000 14.262 28.5119 0.0000 14.262 28.5119 0.0000 14.262 28.5119 1.4071 14.262 28.5119 1.4071 14.262 28.5119 1.4071 14.262 28.5119 1.4071 14.262 28.5119 1.4071 14.262 28.5119 1.4071 14.262 28.5119 1.4071 14.262 28.5119 1.4071 14.262 28.5119 1.4071 14.262 28.5119 1.4071 14.262 28.5119 1.4071 14.262 28.5119 1.4071 14.262 28.5119 1.4071 14.262 28.5119 1.4071 14.262	4.2213 14.4272 2.8142 14.4272 0.0000 14.4272 NODE=3, TNPC=0, TINTC=0, X.O.O, STY=0.0, STZ=0.0, TNPS=0, TNTS=0, GEND 4.5000 14.4706 4.2213 14.5653 2.8142 14.5653 1.4071 14.5653		TMPS=0, STY=0.0, STZ=0.0, TMPS=0, GEND 4.4449 4.5213 14.5447 2.8142 14.5447 1.4071 14.5447 1.4071 14.5447 1.4071 14.5447 1.4071 14.5447 1.4071 14.5447 1.4071 14.5447 1.4071 14.5447 1.4071 14.5447 1.4071 14.5447 1.4071 14.5447 1.4071 14.5447 1.4071 14.547 1.4071 14.547	4.2213 14.3864 2.8142 14.3864 0.0000 14.3864 0.0000 14.3864 NODE-J, THPC-0, TINTC-0, X-0.0, STY=0.0, STZ=0.0, TUPS-0, TINTC=0, END 4.5000 13.8627 4.2213 14.0807	35.6619 2.8142 14.0807 35.6619 0.0000 14.0807 35.6619 0.0000 14.0807 6.BPNODE TNODE=3, TNFC=0, TNTC=0, END 6.SECTI STX*0.0, STX*0
0498 3970 1973 771 1036 1036 1036 11 TINTC-0, GEND 1040 1050 1070 1070 1070 1070 1070 1070 107	.0530 -13099 -0940 -7706		1631 9282 4932 TINTC=0, END 5772=0.0, INMODE=4, , END 0000 0010 0111 0752		RECTI IREV-0, IDPAT=2, MAKE=0, KCOMP=1, KASS=1, IPATSYM=1, IPATCOP=0, & END ROOT UPPER STARBOARD 4. SECTI STY=0.0, STY=0.0, STZ=0.0, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4, THODS=0, THDS=0, THITS=0, & END 24. 6500 4.5010 13.1000 24. 6500 4.2213 14.0848 24. 6500 2.8142 14.0848 24. 6500 14.071 14.0848 24. 6500 14.071 14.0848 24. 6500 14.071 14.0848 25. 6500 14.071 14.0848 25. 6500 14.071 14.0848 26. 6500 14.071 14.0848 27. 6500 14.071 14.0848 27. 6500 14.071 14.0848 28. 6500 14.071 14.0848 29. 6500 14.071 14.0848 29. 6500 14.071 14.0848 29. 6500 14.071 14.0848 29. 6500 14.071 14.0848 29. 6500 14.071 14.0848 29. 6500 14.071 14.0848

								6.END	SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,																4.END	SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4.															6.END	SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,											
00 0.0000 27 0.0012 92 0.0128 50 0.0819	0.4023	3.2220	6.5274	9.8327	11.5962	11.5962	11.5962	TINTC=0,	o,	TNPS=0, TINTS=0, CEND	0.0000	0.0178	0.1009	0.4387	1.5799	3.1948	4.8097	6.4245	8.0394	9.6545	11.5767	11.5857	11.5860	5861	TINTC=0,	STZ=0.0,	TNPS=0, TINTS=0, CEND	0.0025	0.0253	0.1249	0.4866	1.5991	4.7266	6,2903	7.8541	9.4178	10.9772	11.5231	11.5/00	11.5735	TINTC=0,	Ċ.	INPOSED, IINISSED, REND	0.0036	0.0323	0.1456	0.5253	1.6204	3.1427	4.6650	6.1873	7.7096	9.2319
0.0000 1.6527 3.2292 3.8750	4.0206	4.0553	4.0566	4.0566		2.8142	0.0000	E=3, TNPC	0.0, STY=0.0,	APS=0, TIN	0.0000	3.0609	3.6006	3.7321	3.7625	3.7679	3.7692	3.7695	3.7695	3.7674	3.5600	2.8142	1.4071	00000.0	DE=3, TNPC	0.0, STY=0	IPS=0, TIN	1.5638	2.8199	3.2590		3.4068			3.4146	3.4142	3.4111	3.3229	7 4071	0.0000	DE=3, TNPC).0, STY=0.0,	0 0000	1.5223	2.6098	2.9827	3.0895	3.1192	3.1255	3.1271	3.1275	3.1275	3.1269
44 9164 44.9164 44.9164 44.9164	44.9164	44.9164	44.9164	44.9164	44.9164	44.9164	44.9164	BPNODE TNO			45.7687	45.7687	45.7687	45.7687	45.7687	45.7687	45.7687	45.7687	45.7687	45.7687	45.7687	45.7687	45.7687	45.7687	¢BPNODE TNODE=3, TNPC=0,	&SECT1 STX=0.0,		46.8222	46.8222	46.8222	46.8222	46.8222	46.8222	46.8222	46.8222	46.8222	46.8222	46.8222	46.8222	46.8222	EBPNODE TNOE	ж	1NODS=0, 1N	47.6745	47.6745	47.6745	47.6745	47.6745	47.6745	47.6745	47.6745	47.6745	47.6745
								45	48			_											_		9	-3				_			_	_	_						_	_				_	_				_		_
	\$ END	&SECTI STX=0.0, STY=0.0, ST2=0.0, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4, TNODS=0. TNPS=0, TINTS=0, &END				&BPNODE TNODE=3, TNPC=0, TINTC=0, &END	SCALE=1.0, ALT=0.0, IRE	5	35			CNES	SEECT STYREO. 0. STYRE							SBPNOUS INOUES, INPETS, INPETS, INFO SPENOUS CREEKU							&BPRODE 13, TRPC=0, TINTC=0, EEND	CALETIO, ALTTO, INELATO, INMODEST,					TINTC=0, GEND		&PATCH1 IREV=0, IDPAT=2, MAKE=0, KCOMP=1, KASS=1, IPATSYM=1, IPATCOP=0, &END		&SECT1 STX=0.0, STY=0.0, STZ=0.0, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,																TINTC=0, &END

\$\$\text{SND}\$\$\tex										SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,														&END SCALE: 0 ALP=0.0 THETA=0.0 INMODE=4	1													6END SCALE-1 0 ALE-0 0 THETA-0 0 1NMODE-4	. F-200001											
.0, ALF=0.0, THETA=0.0, INMODE=4, .0, ALF=0.0, THETA=0.0, INMODE=4, .0, ALF=0.0, THETA=0.0, INMODE=4, .0, ALF=0.0, THETA=0.0, INMODE=4,	0.0.40	n er	0, 00	• 6	80 1	0 (~ 0		C=0.		END.	s s	4	s 0	9 00	9	4.0	. 0	80	7	2 .	4	3	TC=0, &EN =0.0 SCA	END CO	0	6 6	4		. 6	9 2	0		-	v 10	1 47	80	TC=0. 6EN		0	v ~			3	æ ~		. 49	6.	. 2	9
.0, ALF=0.0, THETA=0.0, INMODE=4, .0, ALF=0.0, THETA=0.0, INMODE=4, .0, ALF=0.0, THETA=0.0, INMODE=4, .0, ALF=0.0, THETA=0.0, INMODE=4,	0.1829	4.7134	6.195	9.1609	10.6408	11.3810	11.525	11.549	C=0. TIN	0.0. STZ	10=0' &!	0.008	0.056	0.218	1.881	3.335	4.789	7.697	9.150	11.328	11.501	11.535	11.539	=0, TIN	TTS=0, &	0.000	0.011	0.262	0.800	3.444	4.8618	7.695(9.1129	10.518	11.470	11.519	11.526	C=0, TIN		0.000	0.015	0.3144	0.9210	2.184.	3.5578	6.3049	7.6784	9.051	11.1932	11.4376
.0, ALF=0.0, THETA=0.0, INMODE=4, .0, ALF=0.0, THETA=0.0, INMODE=4, .0, ALF=0.0, THETA=0.0, INMODE=4, .0, ALF=0.0, THETA=0.0, INMODE=4,	2.6221 2.7120 2.7385 2.7445	2.7462	2.7466	2.7456	2.7404	2.7016	2.4736	0.000.0	S=3, TNP(.0, STY=(0000	1.3923	2.0943	2.3385	2.4387	2.4441	2.4457	2.4459	2.4448	2.3990	2.2089	1.4448	0.0000	0 STY=(S=0, TIP	0.000.0	1.2503	2.0016	2.0654	2.0898	2.0912	2.0914	2.0900	2.0826	1.8881	1.3215	0.000.0	0 STV=(S=0, TI	0.0000	1.0710	1.6649	1.7158	1.7316	1.7355	1.7371	1.7369	1.7353	1.6936	1.5648
.0, ALF=0.0, THETA=0.0, INMODE=4, .0, ALF=0.0, THETA=0.0, INMODE=4, .0, ALF=0.0, THETA=0.0, INMODE=4, .0, ALF=0.0, THETA=0.0, INMODE=4,								ı ın	TNODE	STX=0												9269	976	DON.I.	O, TNE	000	500								7500	7500	7500	E TNODE	=0, TNE		024	3024	8024	8024	8024	8024	.8024	8024	8024	024
2.7717 11.5525 1.4071 11.5525 0.0000 11.5634 0.0000 11.5634 1.5058 0.0000 11.5636 1.5058 0.0001 1.5058 0.0001 1.5058 0.0001 1.5058 0.0001 1.5058 0.0001 1.5058 0.0001 1.5058 0.0001 1.5058 0.01533 1.0175 4.6450 1.5058 0.0001 1.5074 0.0001 1.5071 0.0001		2 4	48.8	8.84	48.80	48.80	48.805	48.805	3GONGB 9	ESECT1	ECONI	49.64	49.6	49.6	49.6	49.6	49.6	49.	49.	2 4	49.	49.6	49.6	KSECT1	TNODS=	50.75	20.05	50.	200	20	200	, K	200	20	000	. 05	.03	CESEVIO	TNODS	51.8	51.8	51.6	51.	51.		51.	51	51.	51.	51.8

						&END SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,														SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,		
	O, & END					· ·						O, GEND							O, &END			
11.3790 11.3991 11.4614 11.5647	11 9690 12.2862 12.6691 13.1000 =0, TINTC=0	13.5517 13.9485 14.2646 14.4706	14.5367 14.4449 14.2088 13.8627	13.4473	12.1606 11.8400 11.6336 11.5627	TNPC=0, TINTC=0, STY=0.0, STZ=0.0, TINTS=0, &END	11.5308 11.4914 11.4763	11.4289	11.3790	11.4614 11.5647 11.7283	11.9690 12.2862 12.6691		13.5517 13.9485	14.4706	14.4449	13.8627	12.9980	11.8407	11.5308 0, TINTC=	.0, STZ=0.0, FS=0, &END	11.5308	11.4763
4 . 5000 4 . 5000 4 . 5000 4 . 5000		4.5000 4.5000 4.5000 4.5000	4.5000 4.5000 4.5000				5.1607 5.1607 5.1607	5.1607 5.1607 5.1607	5.1607	5.1607 5.1607 5.1607	5.1607 5.1607 5.1607	5.1607)E=1, TNPC=0	5.1607	5.1607	5.1607	5.1607	5.1607	5.1607	5.1607 11.	. " ~	7.0783	7.0783
35.6619 33.5777 31.5390 29.6349 27.9487	26.5541 4 25.5119 4 24.8679 4 24.6500 4 £BPNODE TNODE=1	24.8679 25.5119 26.5541 27.9487		37.7006	42.6855 43.7277 44.3717 44.5909			42.6855 41.2909 39.6047	35.6619	31.5390 29.6349 27.9487	26.5541 25.5119 24.8679	24.6500 5.1607 &BPNODE TNODE=1, TNI	24.8679 25.5119 26.5541	27.9487	33.5777	35.6619	39.6047 41.2909 42.6855	43.7277	44.5896 5.16 &BPNODE TNODE=3,	&SECT1 STX=0.0, TNODS=0, TNPS=0	44.5896	43.7277
END CALE-I.O, ALF-0.O, THETA-0.O, INMODE-4,				END CALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,						END CALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,								END	OMP=1, KASS=1, IPATSYM=I, IPATCOP=0, &END	CALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,		
, &END , SCALE=I.0, ALF=0.0, THET	0.1053 0.3607 0.318 2.3039 3.6427	4.9756 6.3084 7.6413 8.9741	10.3058 11.1267 11.4083	036 INTC=0, &END TZ=0.0, SCALE=1.0, ALF=0.0, THETA=0.0,	S=0, &END 0.0142 0.0350 0.1303	0.4106 0.4108 2.4133	3.7174 5.0216 6.3259	7,6301 8,9343 10,2385	11.1812 11.3809 11.4693	1.4876 , TINTC=0, &END , STZ=0.0, SCALE=1.0, ALF=0.0, THET	0 0 0	5.7578 5.7852	5,8447 5,9043 c. c.r.o.	5.003.4 6.0830	6.1426 6.2021	6.2617 6.3213	6.3809 6.4404 6.4404		, KCOMP=1, KASS=1, IPATSYM=	0, SCALE=1.0, ALF=0.0, THET	11.5627 11.4932	11.4770 11.4565
C=0, &END 0.0, SCALE=I.0, ALF=0.0, THET ND		1,4363 4,9756 1,4366 6,1084 1,4363 7,6413 1,4348 8.9741		036 INTC=0, &END TZ=0.0, SCALE=1.0, ALF=0.0, THETA=0.0,	O.0 0.0 0.0		1.2463 3.7174 1.2472 5.0216 1.2475 6.3259			1.4876 , TINTC=0, &END , STZ=0.0, SCALE=1.0, ALF=0.0, THET	TNPS=0, TINTS=0, &END 0.0000 5.7500 0.0000 5.753		0.0000 5.8447 0.0000 5.9043	9 0000	9 9	991	0.0000 6.3809 0.0000 6.4404 0.0000 6.5000	PC=0, TINTC=0,		, STY=0.0, STZ=0.0, SCALE=1.0, ALF=0.0, THET =0, TINTS=0, &END	4.1662	43.7277 4.4570 11.4770 42.6855 4.5000 11.4565

					& END														6 END	SCALE=1.0, ALP=0.0, THETA=0.0, INMODE=4,															& END													6 END	SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,						
3790 3991 4614	5647	9696	.2862	13.1000	TINTC=0,	5517	9485	14.2040	4.5367	14.4449	14.2088	13.8627	13.44/3	12.5573	12.1607	11.8407	11.6352	11.5308	TINTC=0,	STZ=0.0,	, GEND	11.5308	11.4763	11.4563	11.4289	11.4032	11.3871	11.3790	11.3991	5647	11.7283	11.9690	12.2862	13.1000	TINTC=0,	13.5517	13.9485	14.4706	5367	14.4449	14.2088	1473	9980	5573	8407	6352	5308	TINTC=0,	STZ=0.0.	7 4 CM 5 6 CM 5 CM 5 CM 5 CM 5 CM 5 CM 5 CM	1914	11.4763	1563	4289	4033
	1 7 7	=======================================		13.1	PC±0,	13.	13	14.6	14.5										PC=0,	STY=0.0, S															C=0,	13.5			14.				12.	12.	11	1			- 0	1N15=U, &E				11	
13.8283 13.8283 13.8283	13.8283	13.8283	13.8283	13.8283	&BPNODE TNODE≈1, TN	13.8283	13.8283	13.0203	13.8283	13.8283	13.8283	13.8283	13.8283	13.8283	13.8283	13.8283	13.8283	13.8283		, w	TNPS=0, T	0000.81	18.0000	18.0000	18.0000	18.0000	18.0000	18.0000	18.0000	18.0000	18.0000	18.0000	18.0000	18.0000	E=1, TN	18.0000	18 0000	18.0000	18.0000	18.0000	18.0000	18.0000	18.0000	0000 81	18.0000	18.0000	18.0000	&BPNODE TNODE=3, TNPC=0,	ANDREO TABLE OF STYRE OF TABLE	22.1717 11.5308	22.1717	22.1717	22.1717	22.1717	
					E TNODE	679												968	&BPNODE TNODE=3,	×	Z														NOE												896	E TNODE	STX=0						
35.6619 33.5777 31.5390	29.6349	26.5541	25.5119	24.6500	PNOD	24.8	25.5119	27.9487	29.6349	31.5390	33.5777	35.6619	39 6047	41.2909	42.6	43.7277	44.3717	44.5896	& BPNOD	6.SECT1	TNODS=0,	44.5896	43.7	42.6	41.2	39.6	37.7	35.6619	33.5777	29.6349	27.9487	26.5541	25.5119	24.6500	GBPNOD	24.8679	26.5541	27.9487	29.6349	31.5390	35.6619	37.7006	39.6047	41.2909	43.7277	44.3717	44.5896	GBPNOD	LSECT1 ST	44.5896	44.3717	43.7277	42.6855	41.2909	
			-		39	-						_					_		•													_				-				_															_
					¢END ¢END														& END	SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,															& END													GEND CO. C.	SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,						
11.3790 11.3991 12.464	11.5647	11.9690	12.2862	13.1000	0, TINTC=0, &END	.5517	13.9485	14:2040	14.5367	14.4449	14.2088	13.8627	12.444/3	12.5573	12.1607	11.8407	11.6352	308	, TINTC=0, &END	, STZ=0.0, SCALE=1.0, ALF=0.0, THET	3. 5.308	11.5308	11.4763	11.4563	11.4289	11.4032	11.3871	11.3790	11.3991	11.5647	11.7283	11.9690	12.2862	13 . 1000	, TINTC=0,	13.5517	13.2463	14.4706	14.5367	14.4449	13.8627	13.4473	12.9980	12.55/3	11.8407	11.6352	1.5308	, TINTC=0, GEND	0, SCALE=1.0, ALF=0.0, THETA=0.0,	3=0, cEND 11.5308	11.4914	11.4763	11.4563	11.4289	
7,0783 11.3790 7,0783 11.3991 7,0783 11.4614	111		12	7.0783 13.1000	C=0, TINTC=0, &END	13.5517	13.	7.0763 14.4706		.0783	.0783		0783	7.0783 12.5573		7,0783 11.8407		11.5308	, TNPC=0, TINTC=0, &END	, STZ=0.0, SCALE=1.0, ALF=0.0, THET	TAPESO, TINISSO, REND			10.0649 11.4563			10.0649 11.3871		10.0649 11.3991	11	11.	11.	10.0649 12.2862		PC=0, TINTC=0,	13.	10.0649 13.9463			14.	10.0649 13.8627			10.0649 12.5573			11.5308	TNPC=0, TINTC=0, &END	0, SCALE=1.0, ALF=0.0, THETA=0.0,	13.8283 11.5308	13.8283 11.4914				

060	14	47	83	06	62	.91	000	TINTC=0, &END		100	146	901	167	49	188	7.27	73	080	173	201	107	15.2	ONG 5 OF SEATO	OBENIOUS INCOSES, INFOSES, INFOSES, MENU ESECTI STX-0 0 STV-0 0 STX-0 0 SCALESI 0 ALE-0 0 THETA-0 0 INMODE-4	-	90	114	63	70.7	3.2	71	060	931	47	883	06	62	000	TINTC=0, GEND	17	85	46	90.	49	88	27	080	73	.007	5.2	80	&BPNODE TNODE=3, TNPC=0, TINTC=0, &END	ST2=0.0, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4.	6.END	0.08		9	600	
11.3790	11.4614	11.5647	11.7283	11.9690	12.2862	12.6691	13.1000		, m		14.2646	14.4706	14.5367	14.4449	14.2088	13.8627	13.4473	12.9980	12.5573	12.1607	11.8407	11.6352	11.5308 TMT 0-0	10 CT	TS=0,	11.5308	11.4914	11.4763	11.4565	11.4032	11.3871	11.3790	11.3991	11.4614	11.7283	11.9690	12.2862	13.1000			13.9485	14.2646	14.4/06	14.4449	14.2088	13.8627	12.9980	12.5573	12.1607	11.8407	11.5308]=0, TI	0.0'	JTS=0,	11.5308	11 4763	11.4563	11.4289	
28.9217	28.9217	28.9217	28.9217	28.9217	28.9217	28.9217	28.9217	S=1, TNPC	24.8679 28.9217 1	28.9217	28.9217	28.9217	28.9217	28.9217	28.9217	28.9217	28.9217	28.9217	28.9217	28.9217	28.9217	28.9217	28.921/ 5-3 TMD	O STY-0 0	PS=0, TIN	30.8393 11.5308	30.8393	30.8393	50.01.05	30.8393	30.8393	30.8393	30.8393	10.8393	30.8393	30.8393	30.8393	30.8393	&BPNODE TNODE=1, TNPC=0,	30.8393	30.8393	30.8393	נפנם סנ	30.8393	30.8393	30.8393	30.8393	30.8393	30.8393	10.8393	30.8393	E=3, TNPC	.0, STY=0.0,	TNPS=0, TINTS=0, &END	31.5000	31.5000	31.5000	31.5000	
								E TNODE	679	119													896 F mions	ESECTI STX:0 0	=0, TNI														E TNODE	619												E TNODE	&SECT1 STX = 0.0,						
35.6619	31.5390	29.6349	27.9487	26.5541	25.5119	24.8679	24.6500	BPNOD	24.8	25.5119	26.5	27.9487	29.6349	31.5390	33.5777	35.6619	37.7006	39.6047	41.2909	42.6855	43.7277	44.3717	44.5896 T 300004	SECTI	TNODS=0,	44.5896	44.3717	43.7277	42.0000	39.6047	37.7006	35.6619	33.5	24.5	27.9487	26.5	25.5119	24.6500	RBPNOD	24.8679	25.5	26.5541	70 6349	31.5390	33.5777	35.6619	39.6047	41.2909	42.6855	43.7277	44.5896	SBPNOD	SECT	TNODS=3,	44.5896	43.7277	42.6855	41.2909	
								_													_											-					-					-			-														
								GEND CEND															CNA	SCALE 1 D ALF 0 D THETA 0 D INMODE 4															CN3 9													& END							
11.3790	1971 463			0696	.2862	.6691	1000	C=0.			.2646	.4706	.5367	.4449	.2088	.8627	.4473	0866	.5573	.1607	.8407	.6352	١	SCALE 1 0 ALF 0 0 THE TA		.5308	4914	.4763	0000	4032	.3871	.3790	.3991	3614	.7283	0696	.2862	1000	TINTC=0, GEND		.9485	.2646	.4/06	0010.	2088	.8627	0866	.5573	.1607	6353	5308	TINTC=0, &END	ST2=0.0, SCALE=1.0, ALF=0.0,	O, EEND	.5308	1762	4563	200	0021.
	1 =	11	11	11	12.	12	13	O. TINTC=0.	13.5517	13.000.00						17 13.8627			12				11.5308	SCALE 1 0 ALF 0 0 THE TA		11.5308	51 11.4914	51 11.4763	11.4303	11.4032	11.3871	51 11.3790	51 11.3991	31 11.4614	11.7283	51 11.9690	12		C=0, TINTC=0	13.5517			51 14.4706			51 13.8627				51 11.840/		TINTC=0, &END	ST2=0.0, SCALE=1.0, ALF=0.0,	TINTS:0, EEND	17 11.5308			: =	4
1717 11	1 =		11	11	12	12	13	C=0. TINTC=0.	13.5517	13.000.00					22.1717 14.2088			2.1717	12	.1717 12			١	INFC=U, IINIC=U, GEND) TINTS=0, &END	25.9351 11.5308	25,9351 11,4914	25.9351 11.4763	20.451 11.4563	25,9351 11,4032	25,9351 11.3871	25.9351 11.3790	25,9351 11.3991	25.9351 11.4614 35.0351 11.5647	7 25.9351 11.7283	25.9351 11.9690	25.9351 12.2862	13	=1, TNPC=0, TINTC=0	13.5517		5.9351					25.9351 12.9980				25.9351 11.5308	TINTC=0, &END	0, SCALE=1.0, ALF=0.0,	INTS=0		20.721/ 11.4254	7	: =	4

																													THETA=0.0, INMODE=4.																																				.0, INMODE=4.				
																													THETA=0																																				THETA=0.				
																													SCALE=1.0, ALF=0.0,																			Q																D	SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4				
									UNE S OF																			=U, &END	.0, SCA	Q																		TINTC=0, & END																=0, &EN	ď				
11.4266	11.3873	11.3790	11.4606	11.5637	11.7270	12.2851	12.6685	ייייי בי	TNDC-0 TINTC-0	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	13.354	13.9496	14.2658	14.4714	14.5366	14.4431	14.2049	13.8565	13.4385	2000 61	12.3001	12.5435	12.1443	11.8217	1120.11	11.0143	11.5308	=0, IINIC	0=2.1.5 '0'	TTS=0, GEN	11.5308	11 4948	6067 11	11 4575	2264 11	11.4266	11.4037	11.3873	11.3790	11.3986	11.4606	11.5637	11.7270	11.9677	12.2851	12.6685	13.1000			13.9496	14.2658	14.4714	14.5366	14.4431	14.2049	13.8363	13.4363	12.7007	12.5435	12.1443	11.821/	11.6143	11.5308		.0, STZ=0.0,	TS=0. 6EN	11.5308	11.4948	
32.0261	32.0261	32.0261	32.0261	32.0261	32.0261	32.0261	32.0261	12 0261			1020.26	1970.75	1970.75	32.0261	32.0261	32.0261	32.0261	32.0261	32.0261	1020.20	1020.26	1970.75	32.0261	32.0261	1020.00	1070.75	32.0261	DE=3, INPO	0.0, STY=(NPS=0, TIN	33.5531	13 5531	2000000	11 5511	1000.00	1555.55	33.5531	33.5531	33.5531	33.5531	33.5531	33.5531	33.5531	33.5531	33.5531	33.5531	33.5531	DE=1, TNPC=0,		33.5531	33.5531	33.5531	33.5531	33.5531	33 5531	11 5511	11 5511	12 5531	33.5531	33.5531	13.5531	33.5531	33.5531	DE=3, TNPC	0.0, STY=0	NPS=0, TIN	35.9313	35.9313	
19.6500	37.7402	33.6047	31.5598	29.6500	75 5500	25.5145	24.8685	24 6500	CREWONE THOUSE	24 000	0000.17	25.5145	26.5598	7.858.7	29.6500	31.5598	33.6047	35.6953	37.7402	2011.00	0000.60	41.3413	42.7402	43.7855	0000	0101010	44.58%	BENODE INC	SECTI SIX=	TNODS=0, T	44.5896	44.4115 33 5531 11 4948	77 7000	42 7402	7067.74	41.1500	39.6500	37.7402	35.6953	33.6047	31.5598	29.6500	27.9587	26.5598	25.5145	24.8685	24.6500	&BPNODE TNODE=1,	24.8685	25.5145	26.5598	27.9587	29.6500	31.5598	15 6047	17 7402	39.7402	41 3413	41.3413	42.7402	43.7855	44.4315	44.5896	&BPNODE TNODE=3,	&SECT1 STX=0.0, STY=0.0,	TNODS=0, TNPS=0, TINTS=0, &END	44.5896	44.4315	
				· ·	_																									_																			-																				
						6END																		6 END			, IPAISIM=U, IPAICOP=U, &END		THETA=0.0, INMODE=4,																			& END																	SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,				
11.3790	11.4614	11.5547	11.9690	12,2862	12.0001	C=0, TINTC=0, 6END	3.5517	11 94 85	12 255	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000	14.036	14.444V	14.2088	13.862/	4	12.9980	12.5573	12.1607		۰ د	۰	1.5308	C=0, TINTC=0, &END			MARKEL, RUCHELL, MASSEL, IMMISIMEN, IMMICOREN, REND	UOVIS)	SIZ=0.0, SCALE=1.0, ALF=0.0, THEIA=0.0, INMODE=4,	, EEND	5308	1932	2000 11	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	77.71	11. 45.4C	11.4032	11.3871	11.3790	11.3991	11.4614	11.5647	11.7283	11.9690	12.2862	12.6691	13.1000	C=0, TINTC=0, &END	13.5517	13.9485	14.2646	14.4706	14.5367	14.4449	11 8627	13.002/	12.0080	12.5300	12.55/3	12.1606	11.8400	11.6336	.5308	TINTC=0, & END), SCALE=1.0, ALF=0.0,	NTS=0, &END	11.5308	11.4948	4 4 1
31.5000 11.3790	5000	31.5000 11.564/	2000	2000		TNPC=0, TINTC=0,	5000 13.5517	2000	2000		0000	5000 14	5000 14	5000 14	2000	5000 13.4	5000 12.9	12.5	2.1	0000	0000	9.11	00 11.5308				MARKEL, RUCHELL, MASSEL, IMMISIMEN, IMMICOREN, REND	UOVIS)	SIZ=0.0, SCALE=1.0, ALF=0.0, THEIA=0.0, INMODE=4,	TAMPS=0, TINTS=0, &END	5308	1932	21 5000 11 4220	2000	0000	31.5000	2000	2000	2000	2000	2000	2000	2000			31.5000 12.6691	000 13.	&BPNODE TWODE=1, TNPC=0, TINTC=0, &END	000	2000	2000	2000	2000	2000	0000	31 COOM 13 6473	0000	0000	2000				11.5308	, TNPC=0. TINTC=0, &END	STY=0.0, STZ=0.0, SCALE=1.0, ALF=0.0,	TNPS=0, TINTS=0, &END	32.0261 11.5308	32.0261 11.4948	

### 111500 42. ### 111500 42.														, GEND																			CERT	a END	, SCALE=1.0, ALF=0.0, THETA=0.0, 1NMODE=4,																		CXG																	GEND .	SCALE=1.0 ALF=0.0 THETA=0.0 INMODE=4				
41.1500 42.27 42.27, 40.0 42.27 42.27, 40.0 42.27 42.27, 40.0 42.27 42.27, 40.0 42.27 42.28, 40.0 42.27 43.28, 40.0 42.27 44.38, 40.0 42.27 45.38, 40.0 42.27 45.38, 40.0 42.27 45.38, 40.0 42.27 45.38, 40.0 42.27 46.38, 40.0 42.27 47.38, 40.0 42.27 47.38, 40.0 42.27 47.38, 40.0 42.27 47.38, 40.0 42.27 47.38, 40.0 42.27 47.38, 40.0 42.27 47.38, 40.0 42.27 47.38, 40.0 42.27	11 4266	11.4037	11.3873	11.3790	3986	11 4606	11 5637	11 7270	11 9677	12 2851	1000	12.6685	m		13.5524	13.9496	14.2658	7 4734	7767 76	14.5355	14.4431	14.2049	13.8565	4485	13.4300	12.986/	12.5435	12.1443	710011	11.821/	11.6143	11.5308	O TINTCEO	o, ilmiceo	0, STZ=0.0	S=0, &END	11.5308	11.4948	11.4783	11.4575	11.4266	11.4037	11.3873	11.3790	11.3986	11.4606	11.5637	11.7270	11.9677	12.2851	12.6685	13.1000	,	٠,٠	13 9496	14.2658	14.4714	14.5366	14.4431	14.2049	13.8565	13.4385	12.9867	12.5435	12.1443	11 9217	11.8217	11.6143	11.5308	O. TINTC=0	O. STZ=0.0	S=0. GEND	11 5308	11 4948	11.4948
4END SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4, 4END SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4, 5CALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,	. ~	.2500	.2500	2500	42.2500	2 2500	2.2500						42.2500	E=1, TNPC=				0000															E-3 TNPC-	EES, INFC	.0, STY=0.	PS=0, TINI	45.5719								.5719	5719	.5719						Eal TNPC=	45.5719										5.5719	5.5719	5 5710	5.5/19		45.5719	E=3. TNPC=	0. STY=0.	٠.	48.5687		
, EEND , SCALE=1.0, ALF=0.0, THETP , SCALE=1.0, ALF=0.0, THETP													24.6500	CBPNODE TNOD																			CRPNODE THOU	ABENOUE INCL	&SECTI STX=0	TNODS=0, TN	44.5896																CRPNODE THOD	24.8685		26.5598	27.9587	29.6500	31.5598	33.6047						43 7055			44.5896	&BPNODE TNOD	ASECT1 STX=0	TNODS=0. TN			
	11.4266	11.4037	11 1923	11 37 90	7.00		11 5637	11 2220	2,270	12.2863		12.6685	3.1000	, TINTC=0	13.5524	13.9496	14.2658) re	* 1	14.5366	14.4431	14.2049	13.8565	10000	13.4363	12.9801	12.5435	12.1443	71:00	11.8211	11.6143	111.5308	TINTC=0	, IIMICEO, REND	, STZ=0.0, SCALE=1.0, ALF=0.0, THETA	TS=0, &END	11.5308	11.4948	11.4783	11.4575	11.4266	11,4037	11.3873	11.3790	11.3986	11 . 4606	11.5637	11.7270	11.9677	12.2851	12.6685	13 1000	TINTC=0	3 5524	13.040.TT	14.2658	14.4714	14.5366	14.4431	14.2049	13.8565	13.4385	12.9867	12.5435	. –		11.8217		1.5308	TINTC=0.	STZ=0.0 SCALE=1.0 ALF=0.0 THETA	STEED SEND	11 5108	11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	11.4948
41 1500 35 9313 11 4266 31 7.4037 31													9313 13.1000	, TNPC=0, TINTC=0	13	13											5.9313 12	12	::				TINTC=0	, IIMICEO, REND	, STZ=0.0, SCALE=1.0, ALF=0.0, THETA	NPS=0, TINE=0, GEND	38.9281 11.5308																TINTC=0	3 5524								13.	12.	12.	12.1	•			1.5308	TINTC=0.	STZ=0.0 SCALE=1.0 ALF=0.0 THETA	STEED SEND	42 2500 11 5308		

0. EBID 0. CEND 0.	1.4266 1.1987) 1.1987) 1.1986 1.1986 1.2637 1.2668 1.1068	C=0, &END C=0, &END ND SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4, ND C=0, &END C=0, &END C=0, &END C=0, &END ND N											& E.N.D															CENT)																	6 END														6 END	KCOMP=1, KASS=1, IPATSYM=0, IPATCOP=0, &END		SCALE=1 0, Al.F=0.0, THETA=0.0, INMODE=4	
0. & END 0. \$ CALE=1.0, ALP=0.0, THETA=0.0, IMPODE=4, 0. \$ CEND 0.	1.4266 1.1987) 1.1987) 1.1986 1.1986 1.2637 1.2668 1.1068	11.4266 11.4366 11.4366 11.4366 11.5377 11.7366 11.6577 11.9677 11.9677 11.9678 11.9678 11.9686 11.968	4266	3873	3790	986	1606	7270	1196	2851	5685	0001	FINEC=0,	5524	3476	2658	9778	9960	1431	2049	1000	1385	7867	644	1217	5143	5308	FINTC=0	STZ=0.0.	6END	5308	1932	1770	1565	0671	1032	3790	1991	1614	5647	587	2862	1691	0001	FINTC=0,	5517	9485	206	367	1449	8088	1627	1473	573	909	1400	336	308	INTC=0,	MAKE=0.	0X15	T2 = 0.0,	K FND
0. & END 0. \$ CALE=1.0, ALP=0.0, THETA=0.0, IMPODE=4, 0. \$ CEND 0.	1.4266 1.1987) 1.1987) 1.1986 1.1986 1.2637 1.2668 1.1068	11.4266 11.4366 11.4366 11.4366 11.5377 11.7366 11.6577 11.9677 11.9677 11.9678 11.9678 11.9686 11.968		Ξ:	11.			11.	11	12.				13.	57								12.	12				PC. 0 T	, ±0.0°	INTS=0.	11.5									11.	1 [13.	C=0,	13.	13.	14	14	14	14.									PAT=1,	CTION 1		
0, & END 0, & END 0, & END 0, & CEND	1.4266 1.19873 1.19873 1.1986 1.1986 1.1986 1.19873 1.1986 1.19873 1.19872 1.19872 1.19872 1.19872 1.19883 1.19884 1.19884 1.19885 1.19886 1.19886 1.19886 1.19886 1.19886 1.19886 1.19886 1.19886 1.19886 1.19886 1.19886 1.19886 1.19886 1.19886 1.19886 1.198888 1.198888 1.198888 1.198888888888	11.4266 11.4266 11.4266 11.4266 11.4266 11.4266 11.627 11.22665 11.6265 11.6266	52.4739	52.4739	52.4739	52.4739	52.473	52.4739	52.473	52.4739	52.473	52.4/3:	DE=1, T	52.473	52.4/3	52.4/3	62 473	22.4.20	52.4/3	52.473	000000000000000000000000000000000000000	52.4739	52 473	52 4730	52.473	52.4739	52.473	DE# 3 TP	0.0.ST)	NPS=0, 7	53.000(53.0000	53.000	53.000(53.0000	53.000	53.000	53.0000	53.0000	53.0000	53.000	53.000	53.0000	53.0000	DE=1, Th	53.0000	53.0000	53.000	53.0000		53.0000	53.0000	53.0000	53.0000	53.0000	53.0000	53.0000	53.0000	JE=3, Th	/=·1, II	40 DEFLE).0, STY	0 001
0, &END 0, &END 0, &END 0, &END 0, &END 0, SCALE=1.0, ALF=0.0, THET 0, SEND 0, SEND 0, SEND 0, SEND	1,4266 1,4266 1,3970 1,3970 1,3970 1,3986 1,4606 1,5637 1,1000 1,5637 1,1000 1,5108 1,4431 1,5108 1,4431 1,5108 1,4431 1,5108 1,4431 1,5108 1,4431 1,5108 1,4006 1,4017 1,1000 1,	11.4266 11.4017 11.3973 11.3966 11.4606 11.4606 11.9677 11.2201 11.9677 11.9677 11.9677 11.9678 11.4366 11.4366 11.4366 11.4316 11.4366 11.4366 11.4366 11.4366 11.4366 11.4366 11.4366 11.4316 11.436	41.1500	37.7402	35.6953	33.6047	31.5598	27.9587	26.5598	25.5145	24.8685	24 6500	BPNODE INC	24.8685	25.5145	26.5598	1866.12	0000.67	31.5598	13.6047	20,000	37.7402	41.4413	42.7402	43.7855	44.4315	44.5896	GRENODE THO	ESECTI STX=	TNODS=3, T	44.5896	44.3717	43.7277	42.6855	41.2909	37.7006	35.6619	33.5777	31.5390	29.6349	26.5541	25.5119	24.8679	24.6500	&BPNODE TNO	24.8679	25.5119	26.5541	29.6349	31.5390	33.5777	35.6619	37.7006	41.2909	42.6855	43.7277	44.3717	44.5896	CBPNODE TNO	&PATCH1 IRE	LEFT AIL	SECT1 STX-	0000000
						_					_	_	_		_			_										_		_		_																							_			_				_	

										Q												0	SCALE 1.0, ALF 0.0, THETA 0.0, INMODE 4,											r												
.33.5531 11	42.7402 .33.5531 11.4575 40.9000 .33.5531 11.4223	-33.5531 11	37.7402 ·33.5531 11.3873	.33.5531 11	.5531	27.9587 .33.5531 11.7270	-33.5531	.33.5531	24.8685 .33.5531 12.6685	NODE=1, TNPC=	-33.5531	25.5145 -33.5531 13.9496	-33.5531	-33.5531		35.6953 .33.5531 13.8565	-33.5531	-33,5531	42,7402 -33.5531 12.1443	-33.5531	44.4315 -33.5531 11.6143	TNPC=0, TINTC=0,	TY=0.0, ST2=0.0,	44.5896 -35.9313 11.5308	44.4315 -35.9313 11.4948	-35.9313	40.9000 -35.9313 11.4223 39.6500 -35.9313 11.4037	37.7402 -35.9313 11.3873	-35.9313	.35.9313	587 .35.9313 11	26.5598 -35.9313 11.9677	685 .35.9313	24.6500 -35.9313 13.1000 END END THORE -1 THE C-0 TIME-0 FEND	113 13.5524	15.9313 13	27.9587 .35.9313 14.2658	.35.9313	.35.9313	33.6047 -35.9313 14.2049	. 35,9313	.35.9313	41.3413 -35.9313 12.5435	-35.9313	.35.9313	44.5896 .35.9313 II.5308 6BPNODE TNODE3 TNPC=0 TINTC=0 &END
										, ¢END												, &END	SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,											Civil												N S S S S S S S S S S S S S S S S S S S
11.4932	11.4565	11.4032	11.3871	31.5000 11.3991		.31.5000 11.5647			-31.5000 12.6691	PC=0, TINTC=0	13.5517	-31.5000 13.9485			14	-31.5000 14.2088 -31.5000 13.8627			-31.5000 12.1606		-31.5000 11.6336	&BPNODE TNODE=3, TNPC=0, TINTC=0,	Y=0.0, ST2=0.0,	-32.0261 11.5308	-32.0261 11.4948		-32.0261 11.4223 -32.0261 11.4037		-32.0261 11.3986		-32.0261 11.7270			3.1000	24.8685 -32.0261 13.5524		-32.0261 14.2658 -32.0261 14.4714		14	-32.0261 14.2049		12	12	-32.0261 11.8217		-32.0261 11.5308 DE-3 TNDC=0 TINTC=0

EEND					Ω,									Ω	SCALE:1.0, ALF=0.0, THETA=0.0, INMODE=4.										Q									Q
6END SCALE=1.0. ALF=0.0, THETA=0.0, INMODE=4, 6END 6END 6END 6END 6END 6END 6END 6END					C=0, GEND									C=0. GEN	0.0. SCA										C=0,									
6END SCALE=1.0. ALF=0.0, THETA=0.0, INMODE=4, 6END 6END 6END 6END 6END 6END 6END 6END	11.4948 11.4783 11.4575 11.4523 11.4223	11.3873	11.4606	12.2851	13.100¢	13.5524	14.2658	14.5360	14.2045	13.4385	12.9867	12.1443	11.6143	11.530£ 2=0, TINT	0.0, STZ= FTS=0, &E	11.5306	11.4783	11.4223	11.3873	11.3986	11.5637	11.7270	12.2851	a w	~ M	13.9496	14.4714	14.4431	13.8565	13.4385	12.5435	12.1443	11.8217	11.5308 %0. TINT
6END SCALE=1.0. ALF=0.0, THETA=0.0, INMODE=4, 6END 6END 6END 6END 6END 6END 6END 6END	45.5719 45.5719 45.5719 45.5719	45.5719 45.5719 45.5719 15.5719	45.5719	45.5719 45.5719 45.5719	45.5719 E=1, TNPC	45.5719	45.5719	45.5719	45.5719	45.5719	45.5719	45.5719	45.5719	45.5719 E=3, TNPC	.0, STY=(PS=0, TIN	48.5687	48.5687	48.5687	48.5687	48.5687	48.5687	48.5687	48.5687			48.5687	48.5687	48.5687	18.5687	48.5687	48.5687	48.5687	48.5687	48.5687 E=3, TNPC
&END GEND SCALE=1.0, ALF=0.0, GEND GEND SCALE=1.0, ALF=0.0,					.6500 . ODE TNOD									4.5896 - NODE TNOD	CT1 STX=0 ODS=0, TN	4.5896 -	3.7855							4.6500	NODE TNOD	145	587							44.5896 SPNODE TNOD
				255	24 6BPN	24	27	31	33		E 4	4.4	. 4	4 6BP	TN	4 4								4 (4	26.03 10.03									39
			11.4606 11.5637 11.7270	1.96// 12.281 12.668	13.1000 PC=0, TINTC=0, &END	13.5524	14.2658	14.3566	14.2049	13.4385	12.9867 12.5435	12.1443	11.6143	6 END	SCAL,E=1.0. ALF=0.0, THETA=0.0, INMODE=4,		11.4783	11.4223	11.3873	11.3986	11.4606	11.7270	12.2851	13.1000	PC=0, TINTC=0, &END 13.5524	13.9496	14.4714	14.4431	14.2049	13.4385	12.9867 12.5435		00 11.8217 00 11.6143	1.5308 . TINTC=0, &EMD
44.4115 - 38 9281 11 42.7405 - 38 9281 11 42.7405 - 38 9281 11 12 6000 -	-38.9281 11 -38.9281 11 -38.9281 11 -38.9281 11 -38.9281 11		-38.9281 11.4606 -38.9281 11.5637 -38.9281 11.7270	. 28. 928.1 12. 285.1 - 38. 928.1 12. 285.1 - 38. 928.1 12. 6685	9281 13.1000 , TNPC=0, TINTC=0, GEND	-38.9281 13.5524 -38.9281 13.9496	-38.9281 14.2658 -38.9281 14.4714	-36.9281 14.5366 -36.9281 14.4431	-38.9281 14.2049 -38.9281 13.8565	-38.9281 13.4385	-38.9281 12.9867 -38.9281 12.5435	-38.9281 12.1443	-38.9281 11.6143	81 11.5308 TNPC=0, TINTC=0, 6END	TY=0.0, STZ=0.0. SCALE=1.0. ALF=0.0, THETA=0.0, INMODE=4, TINTS=0, &END	-42.2500 11.5308 -42.2500 11.4948	-42.2500 11.4783 -42.2500 11.4578	-42.2500 11.4223	-42.2500 11.3873 -42.2500 11.3730	-42.2500 11.3986	-42.2500 11.4606 -42.2500 11.5637	-42.2500 11.7270 -42.2500 11.9677	-42.2500 12.2851	13.1000	TNFC=0, TINTC=0, &EMD	-42.2500 13.9496 -42.2500 14.2658	-42.2500 14.4714	42.2500 14.4431	-42.2500 14.2049 -42.2500 13.8565	42.2500 13.4385	-42.2500 12.9867 -42.2500 12.5435	-42.2500	-42.2500	-42.2500 11.5308 NODE=3, TNPC=0. TINTC=0. & END

	GEND CCOMP=1, KASS=1, IPATSYM=1, IPATCOP=0, GEND SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,	
	TINTC=0, MAKE=0, FXX15 XX15 XX15 XX15 XX16 XX16 XX16 XX17 XX17 XX17 XX17 XX17	TNPC=
25.5119 55.0000 12. 24.6500 55.0000 12. 24.6500 55.0000 13. 24.6500 55.0000 13. 25.519 55.0000 13. 25.519 55.0000 14. 25.519 55.0000 14. 27.487 55.0000 14. 27.647 55.0000 14. 27.648 55.0000 14. 27.649 55.0000 14. 27.649 55.0000 14. 27.649 55.0000 13. 27.759 55.0000 13. 27.7006 55.0000 13. 27.7006 55.0000 13. 27.7006 55.0000 13. 27.7006 55.0000 13. 27.7006 55.0000 13. 27.7006 55.0000 13. 27.7006 55.0000 12. 27.7007 55.0000 12. 27.7007 55.0000 12. 27.7007 55.0000 12. 27.7007 55.0000 12. 27.7007 55.0000 12.	& BPNODE TI & PATCH1 II WING OUT & SECT O.T. TNODS-0. TATTT O.T. 41.5896 41.5896 41.5896 41.7277 43.7277 33.7206 33.6719 33.5770 33.5770 33.5770 33.5770 33.5770 33.5770 33.5770	26.5541 53 25.5119 53 24.6500 53 4.0000E TNODE:: 24.0679 53 25.5119 53 25.5119 53 25.5119 53 25.5119 53 35.6541 53 35.6541 53 35.6541 53 35.6541 53 35.6541 53 35.6541 53 41.5309 53 31.5777 53 35.6641 53 41.2006 53 41.2006 53 44.3777 53
Q	TINTC=0, &END 1, &END 5108 4948 44783 44783 44783 44783 44783 5879 5877 5885	ND ND ALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,
25.5145 .50.9469 12.2851 24.8650 .50.9469 12.2851 24.6500 .50.9469 12.06685 24.6500 .50.9469 13.1000 25.5145 .50.9469 13.524 25.5185 .50.9469 13.9456 26.5598 .50.9469 14.2568 27.9587 .50.9469 14.2658 31.5598 .50.9469 14.4714 29.6500 .50.9469 14.4431 31.6047 .50.9469 14.4431 31.6047 .50.9469 12.9867 41.3413 .50.9469 12.1443 43.7402 .50.9469 12.1443 44.4155 .50.9469 11.6143 44.565 .50.9469 11.6143	PC=0, INTS=C INTS=C III III III III III III	

C-O, &END C-O, &END	ž	12 0114 12.3168 12.6863 13.1000 13.1000 13.9167 14.4826 14.4826 14.4826 14.342 13.934 14.1673 13.9342 13.9342 13.9359	57.0000 11.5907 57.0000 11.5907 57.0000 11.5907 57.0000 11.5907 57.0000 11.5907 57.0000 11.5119 59.0000 11.5119 59.0000 11.5229 59.0000 11.5229 59.0000 11.4948 59.0000 11.4948 59.0000 11.4948 59.0000 11.5316 59.0000 11.5316 59.0000 11.5316 59.0000 11.5316 59.0000 11.5316 59.0000 11.5316 59.0000 11.5316 59.0000 11.5316 59.0000 11.5536 59.0000 11.5536 59.0000 11.5536 59.0000 11.5536 59.0000 12.5326	= ₀
=0, &END =0, &END =0, &END =0, &END =0, &END	(NODS=0, TNPS=0, T1 43.8419 57.0000 43.6322 57.0000 43.0123 57.0000	26.4827 57.0000 24.8597 57.0000 24.6500 57.0000 25.4796 57.0000 25.4796 57.0000 25.4796 57.0000 25.4796 57.0000 25.4796 57.0000 25.4796 57.0000 25.4796 57.0000 25.4796 57.0000 25.4780 57.0000 25.4780 57.0000 25.4780 57.0000 25.4780 57.0000 25.4780 57.0000 25.4780 57.0000 25.4780 57.0000 25.4780 57.0000 25.4780 57.0000 26.4820 57.0000 26.4830 57.0000 27.0000 57.0000 27.0000 57.0000	43.632 57.000 11. 43.8419 57.0000 11. 58ECT1 STX=0.0, STY=0.0, INDS=0. TNPS=0.0, STY=0.0, INDS=0.0, IN	24.6500 59.0000 24.6550 59.0000 25.4635 59.0000 26.4470 59.0000 27.7632 59.0000 31.1515 59.0000 31.1515 59.0000 31.1515 59.0000 31.1515 59.0000 31.1515 59.0000 31.1515 59.0000 31.1515 59.0000 31.1515 59.0000 31.1515 59.0000 31.1515 59.0000 31.1515 59.0000 31.1515 59.0000 31.1515 59.0000 31.1515 59.0000 31.1515 59.0000
1.59.9 6.6 1.59.8 1.59.9 6.6 1.59.8			, ALF=0.0, THET	

MAKE 17 KCOMD 1 KASS	IDFALE I, MARKE 17, RCOMPS I, RASSE 1,	**HING TIP HAJI KOUND &PATCH2 ITYP= 2, TNODS= 5, TNPS= 4, TINTS= 3, &END			. &PATCH1 IREV=0. IDPAT=1. MAKE=0. KCOMPel. KASS=1. IPATSVM=1 IPATCOP=0. AEND	HORIZ STAB 0 deg 10x16	&SECTI STY=0.0, STY=0.0, STZ=0.0, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4.	TRUDESU, INTSUU, EEND 96.0000 0.0000 8.090	95.8703 0.0000 8.0726	0.0000	0.000.0	0.0000	93.0001 0.0000 7.8855 c) 1857 0.0000 7.8370	0000.0	0000.0	0.0000	0.000	0.000.0	0.000.0	0.0000	83.0138 0.0000 7.8771	0.0000	ODE=1, TNPC=0	0.0000	83.0138 0.0000 8.3029 83.6376 0.0000 8.3867	0.000	0.000.0	86.6669 0.0000 8.4950	0.0000	0.0000		93.0001 0.0000 8.2835	0.0000	0.0000	000000	ASSOCIATION OF THE CONTROL OF THE CO	STY=0.0, STZ=0.0,		96.0012 0.4864 8.090	0.4864	0.4864	0.4864	93.2391 0.4864 7.9097 93.2391 0.4864 7.9097	0.4864	0.4864	0.4864	86./349 U-4864 / 1-68/9	0.4864	0.4864	83.1080 0.4864 7.8787 82.7267 0.4864 7.9783	0.4864	NODE-1 TNPC-0
OODE=3, TNPC=0, TNTC=0, &ENU ==0.0, STY=0.0, STZ=0 0, SCALE=1 0, ALF=0.0, THETA=0.0, INMODE=4, TNPS=0, TINTS=0, &END		11.5899 11.5714	11.5459	11.5069	11.4995	11.5761	11.6721	11.8243	12.3432			₽C≖	13.5201					14.1313	13.8093	13.4230	13.0051	12.5953	11.9288		41	STZ=0.0	D, &END	11.6485	11.5981		11.		11.5081			11.6/99				13.1000 PC=0, TINTC=0, &END	13.5178	7	14.1773			14.	13.8055	13.	12.	12.2311	11	
ODE=3, (=0.0, S TNPS=0,		42.3927 60.4641 41.4235 60.4641		36.7874 60.4641	34.8914 60.4641			27.7179 60.4641		24.8526 60.4641		10D	24.8526 60.4641	25.4516 60.4641 26.4208 60.4641	27 7179 60 4641	9	09	60.4				40.1264 60.4641	42.3927 60.4641		43.1943 60.4641	&SECT1 STX=0.0, STY=0.0,	TNODS = 3, TNPS = 0, TIN		42.2968 61.0000			831 61	34.8360 61.0000	61		29.2610 61.0000	61	61		24 6500 61.0000 I GBPNODE TNODE=1. TNPC=0	24.8515 61.0000			27.7013 61.0000		61.	.8360	38.4831 61.0000	.0428 61.	41.3329 61.0000	2.2968 61. 7.8926 61.	7.0720

																THETA=0.0, INMODE=4,																												A - adomy - A - Among	ALF=0.0, IREIA=0.0, INHOUSE=4,									
	-	11NIC=0, &END 1957	. 0	6	œ (مه د	9	00.00	7	9	9	T (0 4		TINTC = 0, & END	=0.0, SCALE=1.0, ALF=0.0,	END		ກິ່	1 0	. 0	80	9 (n œ) ए	0	1 8		7		TINTC=0, &END		2 6	. 8	0.5		2	1	. 0	0	3h C	-		CCALE-1 O	J, SCALE=1.0,				0.		n c			
7.9843	8 6	۲۲. 8.	8.290	8.368		8.4706								8.090	PC=0, TIN	=0.0, STZ	INTS=0, 6	8.090									7.7678			7.9889 8.0900									8.2639				8.090	PC=0, TIN	TINTS=0, 61	8.090	8.075			7.9741				
4.0964	4.0964	83.4463 4.0964	4.0964	4.0964	4.0964	4.0964	4.0964	4.0964	4.0964	4.0964	4.0964	4.0964	4.0964	4.0964	&BPNODE TNODE=3, TNPC=0,	&SECT1 STX=0.0, STY=0.0, STZ=0.0,	TNPS=0, TINTS=0, CEND	6.8666	9.8866	6.8666	6.8666	6.8666	6.8666	6.8666	6.8666	9998.9	6.8666	6.8666	9998.9	6.8666	&BPNODE TNODE=1, TNPC=0.	6.8666	6.8666	9998.9	6.8666	6.8666	6.8666	6.8666	6.8666	6.8666	6.8666	6.8666	6.8666	. 0	TNPS=0, T	9.9375 8.090	9.9375	9.9375	9.9375	9.9375	9,9175	9.9375	9.9375	
83.4463	83.3244 DNODE TN	83.4463	83.8073	84.3934	85.1822	87.2400	88.4299	89.6674	90.9048	93.2001	94.1525	94.9413	95.8884	96.0103	PNODE TN	ECT1 STX		96.0173	95.5007	94.9947	94.2401	93.1853	92.2716	89.9496	88.7659	87.6276	85.5786	84.9046	84.3438	83.8820	PNODE TN	83.9986	84.9046	85.6591	86.5786	88.7659	89.9496	91.1334	93.3206	94.2401	94.9947	95.9007		GEORGE TN	TNODS=0, TNPS=		95.9143	95.5864	95.0538	194.3372	92 4677	91.3867	90.2625	
		a														9						-		-							_					-						•		-										_
		a										END	10.01			39												CND													END CALE=1.0. ALF=0.0. THETA=0.0. INMODE=4.			99										
	3,3846	9650	.4921		8.4448 0.3033	341	7	7.	8.1738	8.1073	060	. GEND CCAFE-1 O AFR-O O TURTA-O O					8.0080	7.9580	7.2021	7,7892		7.7098	7.6963	7.7416	7 . 8015	7.8831	7.9806		8.1994	8.2969	.4384	8.4738	8.4702	8.4374	8.3908	8.2709	8.2220	8.1720 8.1724	8.1069	060	, TINTC=0, &END ST2=0.0 SCALE=1.0 ALF=0.0 THETA=0.0.					7.9624	7.9086	7.8523	۲. ۱	7.7542	577.7	7.7190	7.7532	1
80	0.3846	-3864 8.4836 4864 8.4820	8.4921	.4864 8.	4864 8.	8.341	4864 8.2	00 0	4864 8.1	.4864 8	64 8.090	. GEND CCAFE-1 O AFR-O O TURTA-O O	=0, TINTS=0, &END			8.0476			. 6768.	.8979 7.	. 7 979	979 7.	٦.	, ,	7	7.	1.8979 7.9806	C=0, TINTC=0	8979 8.1994	20 00	8979 8.4384	8979 8	0 00	80	1.8979 8	1.8979 8	1.8979 8	1.8979 8	95.3033 1.0979 0.1324 95.8787 1.8979 8.1069	979 8.090	&END SCALE=1.0. ALF=0.0. THETA=0.0.	a, TINTS=0, GEND		8.0736				.0964 7.8	.0964 7.7	4.0964 7.7542	0964	. 0964 7	. 0964	

											٠															al.0, ALF=0.0, THETA=0.0, INMODE=4,																													=1.0, ALF=0.0, THETA=0.0. INMODE=4.	
THETA=0.0, INMODE=4,										C=0. &END															C=0. &END	J.O, SCALE	40																											CHO, GEND	J.O, SCALE	10
THETA=0.0, INMODE=4,					7.7869	7.8148	7 9266	8.0036	8.0900	=0. TINTC	8.1764	8.2534	8.3178	8.3652	8.3931	8.4009	8.3903	8.3643	8.3276	8.2652	8.1942	8.1548	8.1235	8.1034	=0, TINTC	.0, STZ=C	TS=0, &Eh	8.090	8.0579	8.0279	7.9902	7.9175	7.8625	7.8024	7.7922	7.7997	7.8718	7.9335	8.0073			8.2465	8.3082	8.3803	8.3878	8.3776	8.3528	8.2625	8.2323	8.1898	7.	8.1028	8.090	=0. TINTC	.0, STZ=0	10 cV, atri
THETA=0.0, INMODE=4,	15.7786	15.7786	15.7786	15.7786	15.7786	15.7786	15.7786	15.7786	15.7786	E=1, TNPC	15.7786	15.7786	15.7786	15.7786	15.7786	15.7786	15.7786	15.7786	15.7786	15.7786	15.7786	15.7786	15.7786	15.7786	E=3, TNPC	.0, STY=0	PS=0, TIN	17.971	17.971	17.971	17.971	17.9771	17.9771	17.971	17.9771	17.9.71	17.9771	17.9771	17.971			17.971	17.9771	17.97.1	17.9771	17.971	17.971	17.9771	17.971	17.9771	17.971	17.9.71	17.9.71	E=3, TNPC	0, STY=0	13=0, A 814
THETA=0.0, INMODE=4,	.2260]	8686	8576	8745						VODE TNODE	5.7751	5.0700		_	-	3.8745									NODE TNODE	TI STX=0	JDS=0, TNF	0452												NODE TNOD	5.2134			3.3240						914			. 0452	TODE THODE	TI STX=0.	JUSEV, ANT
																						THETA																													4	, ALFEU.U, IMETAE				
										_	ac	6	51	542	0901	2552	2059	.1620	.1272	. 1049	TINTC	STZ=0	=0, &EN	8.090	8.0547	8.0218	7.9802	7.9121	7.8398	7.8011	7.7738	7.7708	7.8002	7.9179		7.9990		. 60	8.2621	8 . 3 2 9 9 8 . 3 7 9 8	8 . 4092	8.4174				8.2464	8.1998	8.1253	8.1041			. STZ=0 =0. &EN	060.8	9970.8	8.0565	8.0222
7.7530 7.7830 7.8367 8.0903 8.0903 8.1361 8.1360 8.	7.7530	7.7840	7.8367	7 9939	8.0900		8.1861	8 3431	8.396	8.427(8.435	8.423	8.39	8.3	80	80	80	80	80	ao a	0	0	TS														- 41														0 =	o L		_		
C = 0 C = 0	.9375	.9375	.9375	27.66	. @			9175	9375 8	9375 8	9375 8	9375 8	9375 8	9375 8	.9375 8	9375	. 9375	.9375	.9375	.9375	F=3 TNPC=0	. 01	PS=0, TINTS		13.0084	13.0084	13.0084	13.0084	13.0084	13.0084	13.0084	13.0084	13.0084	13.0084		13.0084	L3.0064 E=1, TNPC:	13.0084	13.0084	13.0084	13.0084	13.0084	13.0084	13.0084	13.0084	13.0084	13.0084	13.0084	13.0084	13.0084	DE=3, TNPC=0,	PS=0.0	15.7786			13.1786

=0, &END =0, &END =0, &END D SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,	14X10_VERT_STAB_PROJECTED_Area_CSECTI_STX=0.0, TWODS=0. TYPS=0.1, STY=0.0, STY=0.0, TWODS=0. TYPS=0.7 TINTS=0.6 END 95.5000 0.0000 8.5000 91.0851 0.1764 8.5000 91.0861 0.1764 8.5000 85.1094 0.2799 8.5000 85.1094 0.2881 8.5000 84.1946 0.5891 8.5000 84.1946 0.5891 8.5000 84.1946 0.5891 8.5000 85.1040 0.5891 8.5000 85.1049 0.5891 8.5000 85.1049 0.5891 8.5000 85.1049 0.5891 8.5000 85.1049 0.5891 8.5000 85.1049 0.5891 8.5000 85.1049 0.5891 8.5000 85.1040 0.5891 8.5000 85.1040 0.5891 8.5000 85.1040 0.5891 8.5000 85.1040 0.5891 8.5000 85.1040 0.5891 8.5000 85.1040 0.5891 8.5000 85.1040 0.5891 8.5000 85.1040 0.5891 8.5000 85.1040 0.5891 8.5000 85.1040 0.5891 8.5000 85.1040 0.5891 8.5000 85.1040 0.5891 8.5000 85.1040 0.5891 8.5000 85.1040 0.5891 8.5000 85.1040 0.5891 8.5000 85.1040 0.5891 8.5000 85.1040 0.5891 8.5000 85.1040 0.0000 8.5000 85.1040 0.0000 8.5000 85.1040 0.0000 8.5000 85.1040 0.0000 8.5000 85.1040 0.0000 8.5000 85.1040 0.0000 8.5000 85.1040 0.0000 8.5000 85.1040 0.0000 8.5000 85.1040 0.0000 8.5000 85.1040 0.0000 8.5000 85.1040 0.0000 8.5000 85.1040 0.0000 8.5000 85.1040 0.0000 8.5000 85.1040 0.0000 8.5000 85.1040 0.0000 8.5000	THYSO & END TIMTS=0 & END 00 & 8.5000 8.5000 99 & 8.5000 81 & 8.5000 99 & 8.5000 99 & 8.5000 131 & 8.5000 131 & 8.5000 132 & 8.5000 133 & 8.5000 134 & 8.5000 135 & 8.5000 136 & 8.5000 137 & 8.5000 138 & 8.5000 139 & 8.5000 131 & 8.5000 131 & 8.5000 131 & 8.5000 131 & 8.5000 132 & 8.5000 133 & 8.5000 134 & 8.5000 135 & 8.5000 137 & 8.5000 138 & 8.5000 139 & 8.5000 131 & 8.5000 131 & 8.5000 132 & 8.5000 133 & 8.5000 134 & 8.5000 135 & 8.5000 137 & 8.5000 138 & 8.5000 139 & 8.5000 131 & 8.5000 131 & 8.5000 132 & 8.5000 133 & 8.5000 134 & 8.5000 135 & 8.5000 137 & 8.5000 138 & 8.5000 139 & 8.5000 130 & 8.5000 130 & 8.5000 131 & 8.5000 132 & 8.5000 133 & 8.5000 134 & 8.5000 135 & 8.5000 137 & 8.5000 138 & 8.5000 139 & 8.5000 130 & 8.5000 130 & 8.5000 131 & 8.5000 131 & 8.5000 132 & 8.5000 133 & 8.5000 134 & 8.5000 135 & 8.5000 137 & 8.5000 138 & 8.5000 139 & 8.5000 130 & 8.5000 130 & 8.5000 131 & 8.5000 131 & 8.5000 132 & 8.5000 133 & 8.5000 134 & 8.5000 135 & 8.5000 137 & 8.5000 138 & 8.5000 139 & 8.5000 130 & 8.5000 130 & 8.5000 131 & 8.5000 131 & 8.5000 132 & 8.5000 133 & 8.5000 134 & 8.5000 135 & 8.5000 137 & 8.5000 137 & 8.5000 138 & 8.5000 139 & 8.5000 130 & 8.5000	14X10_VERT_STAB_PROJECTED_Area_of_Tailboom 628CT1 STX=0.0, STX=0.0, STZ=0.0, SCALE=1.0, ALR=0.0, THETA=0.0. INMODE=4, THODS=0, TMYS=0.0, STZ=0.0, SCALE=1.0, ALR=0.0, THETA=0.0. INMODE=4, SCALE=1.0, ALR=0.0, THETA=0.0, INMODE=4, SCALE=1.0, ALR=0.0, THETA=0.0, INMODE=4, SCALE=1.0, ALR=0.0, THETA=0.0, INMODE=4, THODS=0, THYS=0, SCALE=1.0, ALR=0.0, THYS=0, SCALE=1.0, ALR=0.0, THYS=0, SCALE=1.0, ALR=0.0, THYS=0, SCALE=1.0, ALR=0.0, THYS=0, SCALE=1.0, SCALE=1.0, ALR=0.0, INMODE=4, THYS=0, SCALE=1.0, SCALE=1.0, ALR=0.0, INMODE=4, SCALE=1.0, SCALE=1.0, SCALE=1.0, SCALE=1.0, INMODE=6, SCALE=1.0, SCALE=1.0, SCALE=1.0, SCALE=1.0, INMODE=6, SCALE=1.0,
6END 6END SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,	The property of the property o	S = 0, 6END S = 0, 6END S = 0.000	GEND SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,
4END SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
4END SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,	6 0 0.0898 10 0.2799 10 0.3881 14 0.5613 10 0.599 14 0.3761 14 0.3761 16 0.0000 16 0.0000 17 0.0000 17 0.0000 17 0.0000 17 0.0000 17 0.0000 17 0.0000 17 17856 18 0.0000 18 0.0000 1		
4END SCALE=1.0, ALF=0.0, THETA=0.0, INHODE=4,	4 0.2799 4 0.5633 0 0.3881 0 0.5633 0 0.5930 0 0.5920 0 0.3052 0 0.3056 0 0.3056 0 0.306 0 0.306 0 0.306 0 0.306 0 0.306 0 0.308 0 0.308 0 0.308 0 0.308 0 0.308 0 0.308 0 0.308 0 0.308		
6END SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,	4 0.4811 4 0.5633 6 0.5633 6 0.5633 6 0.5052 6 0.2025 6 0.2025 6 0.2025 6 0.2025 6 0.2025 6 0.2025 6 0.2026 6 0.2026 6 0.2026 6 0.2026 6 0.2026 6 0.2026 6 0.2026 7 0.2026 6 0.2026 6 0.2026 7 0.2026 7 0.2026 8 0.2026 8 0.2026 9 0.2026 1 0.20		
6END SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,	4 0.4877 6 0.5633 6 0.5633 6 0.5653 6 0.5055 6 0.2025 6 0.2025 6 0.2025 6 0.2025 6 0.2025 6 0.2025 6 0.2025 6 0.2025 6 0.2026 6 0.2026 6 0.2026 6 0.2026 6 0.2026 7 0.0000 1 TNODE-3, TNPC-1 7 TNPC-3, TNPC-1 7 TNPC-1		
6END SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,	0.5990 0.5920 0.5920 0.5055 0.2025 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		
4END SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,	9 0.5055 9 0.5065 10 0.2025 10 0.0000 10 0.0025 10 0.0025 11 0.0025 12 0.0025 13 0.0025 14 0.0025 16 0.0025 17 0.0025 17 0.0025 17 17 17 17 17 17 17 17 17 17 17 17 17 1		
&END SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,	4 0.3761 6 0.3761 6 0.000 6 0.0005 6 0.2025 4 0.3761 9 0.5631 10 0.5631 11 0.1764 11 0.1764 12 0.0000 13 0.0001 14 0.0000 15 0.0000 16 0.0000 17 0.0000 17 0.0000 17 0.0000 18 0.000		
GEND SCALE=1.0, ALF=0.0, THETA=0.0, INHODE=4,	44 0.3761 66 0.2025 66 0.2025 14 0.3761 14 0.5821 16 0.565 14 0.5831 16 0.5930 17 0.0299 16 0.0898 17 0.0000 17 0.0000 17 0.0000 17 0.0000 17 17 17 17 17 17 17 17 17 17 17 17 17 1		
GEND SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,	66 0.2025 14 -0.3020 15 -0.2025 16 -0.581 10 -0.581 10 -0.581 10 -0.581 10 -0.581 10 -0.581 10 -0.1881 11 -0.0306 11 -0.0306 12 -0.0000 13 -0.0000 14 -0.0000 15 -0.0000 17 -0.0000 17 -0.0000 18 -0.0000 19 -0.0000 10 -0.0000 1		
GEND SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,	0.0000 0.0005 14 -0.5821 14 -0.5821 14 -0.5831 14 -0.4877 16 -0.2799 17 -0.0309 18 -0.0309 19 -0.0309 10 -0.0309 10 -0.0309 11 -0.0309 10 -0.0309 11 -0.0309 11 -0.0309 11 -0.0309 12 -0.0309 13 -0.0309 14 -0.0309 15 -0.0309 16 -0.0309 17 -0.0309 17 -0.0309 18		
=0, &END .0, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4, ID	66 - 0.2025 14 - 0.3761 14 - 0.565 14 - 0.5821 0 - 0.599 0 - 0.599 14 - 0.3881 16 - 0.299 17 - 0.000 18 -		
=0, &END 0.0, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4, ID	(4 - 0.3761 (9 - 0.582) (0 - 0.581) (6 - 0.583) (6 - 0.487) (10 - 0.1881) (10 - 0.1784) (10 - 0.000) (10 -		
=0, &END .0, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4, ID	14 - 0.5821 6 - 0.5821 6 - 0.5633 14 - 0.4877 10 - 0.2799 11 - 0.1764 11 - 0.106 11 - 0.000 11 - 0.000 11 - 0.000 11 - 0.000 11 - 0.000 12 - 0.000 13 - 0.000 14 - 0.000 15 - 0.000 16 - 0.000 17 - 0.000 18 - 0.000 19 - 0.000 10 - 0.000 11 - 0.000 10 - 0.000 11		
=0, &END .0, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4, ID	4 - 0.5821 0 - 0.5920 - 0.5930 - 0.4877 0 - 0.3881 1 - 0.1764 6 - 0.099 6 - 0.099 1 - 0.1764 0 - 0.000 TNODE-3, TMPC- TNODE-3, TMPC- 1, TMPC-0, TIMPC- 1, TMPC-0, TMPC- 1, TMPC-0, TMPC-0, TMPC- 1, TMPC-0, TM		
=0, &END .0, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,	14 - 0.581 14 - 0.5631 14 - 0.4877 16 - 0.279 17 - 0.1064 17 - 0.000 17 - 0.000 18 - 0.000 19 - 0.000 10 - 0.000 10 - 0.000 10 - 0.000 11 - 0.000 11 - 0.000 11 - 0.000 11 - 0.000 11 - 0.000 11 - 0.000 12 - 0.000 13 - 0.000 14 - 0.000 15 - 0.000 16 - 0.000 17 - 0.000 17 - 0.000 18 - 0.000 19 - 0.000 10		
=0, &END 0, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4, ID	0 0.5990 14 0.05930 16 0.0533 17 0.0381 18 0.0000 18 0.0000 18 0.0000 18 0.0000 18 0.0000 19 0.0000 10 0.0000 10 0.0000 11 0.0000		
=0, &END 0.0, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,	6 . 0.5633 . 0.0381 . 0.2799 . 1. 0.1764 . 0.0306 . 0.0306 . 0.000 . TNPC-3, TN		
=0, &END .0, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4, ID	4 - 0.4877 6 - 0.2799 11 - 0.1764 6 - 0.0308 11 - 0.0000 11 - 0.0000 11 - 0.0000 11 - 0.0000 12 - 0.0000 13 - 0.0000 14 - 0.0000 15 - 0.0000 16 - 0.0000 17 - 0.0000 18 - 0.0000 19 - 0.0000 10 - 0.0000 11 - 0.0000 10 - 0.0000 11 - 0.0		
=0, KEND .0, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4, ID	.0 -0.3881 6 -0.2799 6 -0.0898 10 0.0000 TNODE=3, TNPC- TNTS-0.0, STY=0.0, TNY=0.0, TNY=0.0, TNY=0.0, TNY=0.0, TNY=0.0, TNY=0.0, TNY=0.0000		
=0, GEND .0, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4, ID	10.1764 10.1764 14.0.0306 1700E.3, TNPC- 17x.0.0, STY=0. 17x.0.0, STY=0. 17x.0.0, 0000 17x.0.0, 0000 17x.0.0, 0000 17x.0.0, 0000 17x.0.0, 0000 17x.0.0, 0000 17x.0.0, 0000 17x.0.0000 17x.0000 17x.0000 17x.0000 17x.0000 17x.0000 17x.0000 17x.0000 17x.0000 17x.0000 17x.0000		
=0, &END 0, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4, ID	10.1764 6 -0.0898 6 -0.0898 10.0306 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000		
=0, &END 0.0, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4, 0	1. 0.00899 1. 0.0306 0.0000 1. 0.000 1. TAPE-0, TYPE-0, 1. TAPE-0, TINT 0.000 1. 0.0087 1. 0.1742		
=0, &END 0.0, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4, 1D	- 0.0898 - 0.0000 TNODE=3, TNFC= TXE 0.0, STY=0. TNES=0.711NT 2 0.0000 0.0000 1 0.01742		
=0, &END .0, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4, ID	4 - 0.0306 0 0.0000 1 TNDDE=3, TNPC=1TX=0.0, TNPS=0, TINT 2 0.0000 2 0.0303 1 0.1742		
=0, &END 0, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4, ID	0.0000 TNODE=3, TNPC= TX=0.0, STY=0.7 , TNPS=0, TINT 2 0.0000 2 0.0000 1 0.1742		
0, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4, ID	TNODE=3, TNPC= TTX=0.0, STY=0. 1, TNPS=0, TINT 2 0.0000 0.0033 8 0.0887 1 0.1742		
	TTX=0.0, STY=0. , TMPS=0, TINT 2 0.0000 2 0.0303 8 0.0887 1 0.1742		
	, TNPS=0, TINT 2 0.0000 2 0.0303 8 0.0887 1 0.1742		
95.7652 94.6478 94.6478 93.2811 91.4987 87.0782 87.0782	2 0.0000 2 0.0303 8 0.0887 1 0.1742	8.9075 8.9075 8.9075	
95.4782 94.6338 93.2811 91.4987 89.3902 84.0782 84.0782		8.9075	
		8.9075	
		8.9075	
		8 9075	
		0000	
		0.00.0	
		8.9075	
		8.9075	
		8.9075	
		8.9075	
		8 9075	
		0.707.0	
		8.9075	
		8.9075	
.0104	9 -0.2001	8.9075	
	,	8 9075	
CNA 9 O-		2000	
		0.00.0	
		0.707.0	
		8.9075	
84.6969		8.9075	
87.0782	2 -0.4817	8.9075	
		8.9075	
91 4982		0 907E	
	.0.2763	0.707.0	
		8.9075	
94.6338	8 .0.0887	8.9075	
		8.9075	
_		8 9075	
	0.0000	6.907.8	
	TNODE=3, TNPC=	0, TINTCa0,	6.END
	ESECT1 STX=0.0 STY=0.0 STZ=0.0	0. STZ=0.0	SCALE=1.0 ALF=0 0 THETA=0 0 INMODE=4
	TMDC-0 TIME	C.O. CEMB	
27772	interest of the state of	Carlos acido	
203	6 0.0000 IO.0899	10.0899	
95.9675	9 0.0292	10.0899	
95.1538	8 0.0855	10.0899	

												U. IMEIA=U.U. INMODEs4.																											ALP=0.0 THETA=0.0 INMODE=4																					
14.2524 14.2524 14.2524	14.2524	14.2524	14.2524	14.2524	14.2524	14.2324	25.24	\$2C2	14.2524	P2C2	CND	SIGRUIU, SCALEELIU, ALFEU U.		8250	8250	8250	8250	8250	16.8250	16.8250	16.8250	16.8250	16.8250	16.8250	16.8250	8250	16.8250	16.8230	16.8250	16.8250	8250	16.8250	8250	8250	16.8250	16.8250	16.8250	# STATES	SCALE: 1.0.		3976	3976	3976	19.3976	13.3976	19.55.51	19.3976	19.3976	19.3976	19.3976	19.3976	3976	3976		3976	3976	19.3976	19.3976	19.3976	19.3976
-0.1676 14.			0.4660			-0.2316 14.			0.0000 14	. P. I . U.O.O.O. I.4.	O=DANI.	*0.0, 311=0.0,	INFO=0, IINIO=0	0.0000 16.	0.020.0	9 U.U6/4 16.825U	0 2099 16											-0.2821 16.									0.0230 16.	. 0.0000 LO.	&SECTI STX=0.0 STY=0.0 STZ=0.0	, TNPS=0, TINTS=0, &END	0.0000 19.	0.0206 19.	0.0604 19.		0.1663 19.					.3408	.2530	0.1363 19.3	1363		408				. 3281	01 1196 0
81.6274	84.9602	86.7260	88.6624	90.6567	025.35	04.3009 04.8516	20100.00	040.000	97.691/	1259.19 T 340MQ42	EBPNODE I	THOSE A THOSE A	, o so so	100/6:86	4171.00	98.1159	94 7355	94.1345	92.3790	90.5710	88.8155	87.2145	85.8612	84.8341	84.1929	83.9750	84.1929	11.00.10	87.2145	88.8155	90.5710	92.3790	94.1345	95.7355	97.0888	98.1159	98.7571	T RONGE T	KSECT1 ST	TNODS=0,	100.0179	99.8224	99.2473	98.3260	1211.16	44 1014	92.4796	90.9049	89.4688	88.2549	87.3336	86.7585	86.7585	87.3336	88.2549	89.4688	90.9049	92.4796	94 . 1014	196 96 6761
																					INMODE=4,																											INMODE=4,												
																					ALF=0.0, THETA=0.0, INMODE=4,																											ALF=0.0, THETA=0.0, INMODE=4												
																				, GEND	, SCALE=1.0,																										, 6END	, SCALE=1.0,												
10.0899	. 0	0	0	0 0		10.0099	10.0000	10.0899	10.0899	10.0899	10.0899	10.0899	10.0839	10.0899	10.0899	10.0899	10.0899	10.0899	10.0899	C=0, TINTC=0	0.0, STZ=0.0,	VTS=0, GEND	11.9317	11.9317	11.9317	11.9317	11.9317	711.6	11.9317			11.9317	11.9317		11.9317		11.931/	11 0317	11.9317	11.9317	11.9317	11.9317	11.9317	11.9317	11.931/	11.9317			VTS=0, & END	14.2524	14.2524	14.2524	14.2524	14.2524	14.2524	14.2524	14.2524	. 5	7. (14 3534
0.2665	0.5364	0.5704	0.5543	0.4824	0.3581	0.1929	0.0000	6761.0-	-0.3581	-0.4824	-0.5543	-0.5704	-0.5364	-0.4644	0.3030	-0.2665	-0.16/2	-0.0292	0.0000	GBPNODE TNODE=3, TNPC=0,	STX=0.0, STY=0.0,	TNPS=0, TINTS=0, &END							0.5052	0.5373	0.5221	0.4543	0.3373	0.1817	0.0000	-0.1817	0.3373	10,43	-0.5373	.0.5052	-0.4374	-0.3481	-0.2511	-0.1582	0.0000	0.000	&BPNODE TWODE=3, TNPC=0.	&SECT1 STX=0.0, STY=0.0,	TNPS=0, TINTS=0, &END	0.000.0	0	0.0743		. 0	0		0.4956	0.4815	0.4190	0 0000
92.1314	87.8698	83.3453	81.3126		78.2902	79/6//	0661.11	70.4762	78.2902	79.5943	81.3126	83.3453	29/5.58	87.8698	90.0988	92.1314	95.04.00	95.96.99	96.2446	PNODE TN	&SECT1 STX:	TNODS=0,	96.9912	96.7306	95.9638	94.7355	93.1170	91.2024	86.9406	84.8411	82.9265	81.3080	80.0797	79.3129	79.0523	79.3129	7670.08	0005.10	84.8411	86.9406	6	91.2024	93.1170	94.7355	30.50	96.7306	BPNODE TW	SECT1 STX		97.9321	97.6917	96.9845	94. 1589	92.5930	90.6567	88.6624	86.7260	ς.	3.467	2755 60

SCALE-1.0, AIF-D.0, THETA-D.0, INNODE-4, 99.9723 0.1444 24.7425 SCALE-1.0, AIF-D.0, THETA-D.0, INNODE-4, 99.9723 0.1444 24.7425 SCALE-1.0, AIF-D.0, THETA-D.0, INNODE-4, 99.2724 0.1286 24.7425 24.742					&END SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,				KCOMP=1, KASS=1, IPAISYM=1, IPAICOP=0, &END), SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,
SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,	25 25 25 25	25 25 25 25 25	25 25 25 25 25	25 125 125 125 125					, ,
SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,	24.74 24.74 24.74	24.74 24.74 24.74 24.74 24.74	24.74 24.74 24.74 24.74		24.74 24.74 24.74 24.74 C=0, TJ	25.15 25.15 25.15 25.15 25.15 25.15 25.15		25.15 25.15 25.15 25.15 25.15 25.15 25.15 25.15	10.00 ST NTS=0. NTS=0. 14.31 14.32 14.72 14.72 15.09 15.27 15.27 15.45
SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,	0.1434 0.1988 0.2498 0.2885	0.3069 0.2982 0.2595 0.1926 0.1038	0.0000 -0.1038 -0.1926 -0.2595	-0.3069 -0.2885 -0.2498 -0.1988	-0.0903 -0.0460 -0.0157 0.0000 E=3, TNE	0.0000 0.0153 0.0449 0.0882 0.1400 0.1400 0.2438	0.2995 0.2995 0.2913 0.1880 0.1013 0.0000 0.0000 0.0013 0.0000000000	-0.2816 -0.2438 -0.1941 -0.1400 -0.0882 -0.0882 0.0000	0. 10FAB 1.0, STY= 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4, AEND SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4, **CALE=1.0, ALF=0.0, THETA=0.0, INMODE=4, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,	99.9723 98.8789 97.6799 96.4450	95.2460 94.1526 93.2283 92.5268	91.9401 92.0889 92.5268 93.2283 94.1526		100,8966 101.5981 102.0360 102.1848 &BPNODE TNOI &SECT1 STX=	102.250 102.250 102.2047 101,7773 101.0926 100.1903 97.9527 96.7473		96 7473 97 9527 99 1230 100.1903 101.0926 101.7773 102.2047 102.3500 &BPNODE TNODE	FOG PYLON 4 SECT1 STX=0 FOG PYLON 5 SECT2 STX=0 25 8000 25 8000 25 8000 25 8000 25 8000 25 8000 25 8000 25 8000
		IETA=0.0, INMODE=4,							
	9.3976 9.3976 9.3976 , TINTC=0, &END	. STZ=0.0, SCALE=1.0, ALF=0.0, 00, GEND 1.7183 1.7183 1.7183	21,7183 21,7183 21,7183 21,7183 21,7183	21.7183 21.7183 21.7183 21.7183 21.7183				23.5601 23.5601 23.5601 23.5601 23.5601 23.5601 23.5601 23.5601 23.5601	GEND SCALE=1.0,
99.2474 - 0.0004 1 100.0179	9.3976 9.3976 9.3976 , TINTC=0, &END	. STZ=0.0, SCALE=1.0, ALF=0.0, 00, GEND 1.7183 1.7183 1.7183		5 5 5 5 5 5	122212		7. INC. 20. 1101-20. 1. STY-6.0. STZ-6.0. 10. TINTS=0. 6END 10.000 23.5601 10.492 23.5601 15.33 23.5601 15.32 23.5601 26.71 23.5601 26.71 23.5601 26.71 23.5601 27.3082 23.5601	23. 23. 23. 23. 23. 23. 23. 23.	23.5601 23.5601 23.5601 23.5601 23.5601 23.5601 23.5601 23.5601 23.5601 24.7425 24.7425 24.7425

THETA=0.0, INMODE=4.	THETA=0.0, INMODE=4,	THETA=0.0, 1NMODE=4.	.0.0, INMODE=4,	0.0, 1MMODE=4,
	-0.0, THETA	•0.0, THETA.	0.0, THETA	.O.O, THETA
SCALE=1.0, ALF=0.0,	SCALE=1.0, ALF=0.0.	SCALE=1.0, ALF=0.0,	SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4	SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4.
28,7750 1.566 15.8710 65EPUODE TNODE=3, TNFC=0, TINTC=0, GEND 65ECT1 STX=0.0, STY=0.0, STX=0.0, SCAL TNODS=0, TNSS=0, TINTS=0, EEND 29.9113 1.5803 14.6732 29.9113 1.5803 14.7940 29.9113 1.5803 14.7940 29.9113 1.5803 15.0580 29.9113 1.5803 15.0580 29.9113 1.5803 15.0580 29.9113 1.5803 15.0580 29.9113 1.5803 15.050	29.9113 1.58043 15.4450 29.9113 1.58043 15.54560 29.9113 1.58043 15.5180 6.BPHODE TANDE-3, TAPC-0, TAP	5.5177 5.7063 5.8406 6.6END 6.6END 6.6END 6.7623 6.9633	32.3719 1.3110 15.5585 32.3719 1.3110 15.7012 32.3719 1.3110 15.8439 GEDNODE TNODE=3, TNFC=0, TINTC=0, GEND GESCT1 STX=0, STY=0, STZ=0.0, SCAL/ 31.5886 1.0866 14.4337 31.5886 1.0866 14.437 31.5886 1.0866 14.7614 31.5886 1.0866 14.7614 31.5886 1.0866 15.7324 31.5886 1.0866 15.7324 31.5886 1.0866 15.7324 31.5886 1.0866 15.7324 31.5886 1.0866 15.7324	33.586 1.0866 15.7034 33.586 1.0866 15.8604 6EBNODE THODE=3, THNC=0, TINTC=0, EEND THODS=0, TNPS=0, STY=0.0, STZ=0.0, SCALI 34.7250 0.8337 14.2747 34.7250 0.8337 14.689 34.7250 0.8337 14.689 34.7250 0.8337 14.689 34.7250 0.8337 14.689
1.5866 7Mc0.0=3, TNP(0.0=3), T	1.5803 1.5803 1.5803 1.5803 TNDE=3, TNP TNPS=0, TTP= 1.4826 1.4826 1.4826 1.4826 1.4826 1.4826 1.4826 1.4826 1.4826 1.4826	1,4826 1 1,4826 1 1,4826 1 1000E3, TRPC=0 TAPS=0, TINTS 1,3110 1 1,3110 1	12.3719 1.3110 11. 12.3719 1.3110 11. 12.3719 1.3110 11. LEBRODE THODE=3, THPC=0, STV=0.0 THODS=0, TWPS=0, THPT=0.13.5866 1.0866 1.0866 1.31.586 1.31.586 1.31.586 1.32.586	1.0866 1.0866 1.0866 1.0866 1.0866 TWES=0. STY== 0.8337 0.8337 0.8337 0.8337
28.7750 &BPNODE TW &SECTI STY TWODS=0, 29.9113 29.9113 29.9113 29.9113 29.9113 29.9113	29.9113 29.9113 29.9113 29.9113 29.9113 28.8CCT1 STT TNODS-0, 31.1281 31.1281 31.1281 31.1281 31.1281 31.1281 31.1281 31.1281 31.1281	11.1281 1.48 11.1281 1.48 11.1281 1.48 11.1281 1.48 11.1281 1.48 12.85ECT1 STX=0.0, STANOS 1.48 12.3719 1.31 12.3719 1.31 12.3719 1.31 12.3719 1.31 12.3719 1.31 12.3719 1.31 12.3719 1.31 12.3719 1.31 12.3719 1.31 12.3719 1.31 12.3719 1.31	32.3719 32.3719 32.3719 32.3719 32.65ECTI STY TNODS=0 33.5886 33.5886 33.5886 33.5886 33.5886 33.5886 33.5886 33.5886 33.5886	13.5886 &BPNOBS 0. TNOBS 0. 14.7250 14.7250 14.7250 14.7250 14.7250 14.7250
= 0, &EMD .0, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4, D	=0. &END .0. SCALE=1.0. ALF=0.0, THETA=0.0, INMODE=4, D	=0, &END .0, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4, D	=0, 4END .0, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4, D	=0, 6END .0, SCALE=1.0, ALF=0.0, THETA⇒0.0, INMODE≍4,
16 0100 PC=0, TINTC=0, &END =0 0. STZ=0.0, SCALE=1.0, ALF=0.0, THET 14.3377 14.3538 14.5588 14.1862 13.9167 15.0971 15.2976	C=0. 6END 0.0. SCALE=1.0. ALF=0.0, ND	15.6313 15.6313 15.6313 15.9017 19.702 -0.0, STZ=0.0, GEND -0.0, STZ=0.0, SCALE=1.0, ALF=0.0, 14.5052 14.5052 14.6773 14.6773 14.9922 15.1496 15.1496 15.4444	15.6219 15.7793 15.9167 PC=0. TINTC=0, GEND 14.5940 14.6034 14.6034 14.8859 15.0309 15.1759 15.320 15.320 15.32660 15.4660	15.7561 15.9011 PC=0, TINTC=0, GEND 10.5249 14.6549 14.658 14.7837 15.055 15.055 15.1914 15.1914

37.7000 0.0000 16.1000 6BPNODE TNODE=3, TNPC=0, TINTC=0, &END	LPATCH1 IREV=0, IDPAT=2, MAKE=0, KCOMP=1. KASS=1, IPATSYM=1, IPATCOP=0, gEND FOG PRIGINE POD	&SECT1 STX=0.0, STY=0.0, STZ=0.0, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,	INUDS=0, TNPS=0, TINTS=0, €END 16.5000 0.0000 20.4000	16.5000 0.0000 20.4000	16.5000 0.0000 20.4000	0.0000	16.5000 0.0000 20.4000	00000.0	16.5000 0.0000 20.4000	00000.0	TINTC=0, GEND	ADADGE OF TIMESON STREEO, STARESTON ALFEOLO, THETASON, INMODES 4, TWANDS OF TIMESON FINES	16.7895 0.0000 19.7036	16.7895 0.1802 19.7381	16.7895 0.3338 19.8311	16.7855 0.4550 1V.4550	16.7895 0.5342 20.1491 16.7895 0.6642 20.1491	16.7895 0.5363 20.5590	16.7895 0.4556 20.7374	16,7895 0.3349 20.8747	16 7895 0 1000 20 7961		«SECT1 STX=0.0, STY=0.0, STZ=0.0, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,	TNOUS=0, TNVS=0, GENU 17.6455 0.0000 18.9621	17.6455 0.4134 19.0316		17.6455 1.2183 19.8707	1.2728	1.1966	1.0093	17.6455 0.7418 21.4169 17.6455 0.3972 21.6150	17.6455 0.0000 21.6870	&BPNODE TNODE=3, TNPC=0, TINTC=0, &END	"GSECTI STX=0.0, STY=0.0, STZ=0.0, SCALE=1.0, ALF=0.0, THETA=0.0, IRMODE=4, THODE-A THETA=0.0, IRMODE=4,		0.7979	1.3113			1.7865		19.0305 0.7367 22.0950	000 22.1718	TNPC=0, TINTC=0,	&SECT1 STX=0.0, STY=0.0, STZ=0.0, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,	100.00 (100.00) 111.00 (100.00) 20.00 (100.00) 111.00 (100.00) 111.00 (100.00) 111.00 (100.00) 111.00 (100.00)		1.8746	20.8840 2.0812 17.2524
34.7250 0.8337 15.8895 BENODE TNODE=3, TNPC=0, TINTC=0, & END SECT1 STX=0.0, STX=0.0, STX=0.0, STX=0.0, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,	1NODS=0, INFS=0, INFS=0, &EMD 35.7313 0.5784 14.0992 35.7313 0.5784 14.373	0.5784		0.5784		0.5784	35.7313 0.5784 15.7323	NODE=3, TNPC=0, TINTC=0, &END		1805370, 1853-0, 1883-0, 8285 36.5637 0.3462 13.9276		.5637 0.3462 14.2255 6637 0.3462 14.4438	0.3462	0.3462	0.3462	36-5637 U-3462 IS-32U3	0.3462	62	E TNODE=3, TNPC=0, TINTC=0, &END	«SECT1 STX=0.0, STY=0.0, STZ=0.0, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,	1NODS=U, INTS=U, 11N1S=U, &END 22 1856 0 1609 13 2822	0.1609	0.1609	0.1609		0.1609	37.1856 0.1609 15.3134 37.1856 0.1609 15.5526	0.1609	00 16.0310	, TNPC=0, TINTC=0, GEND	&SECT1 STX=0.0, STY=0.0, STZ=0.0, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4, TMODS=0. TNPS=0. TINTS=0. &END		0.0413	37.5700 0.0413 14.0488	5700 0.0413	5700 0.0413 14 8	5700 0.0413	37.5700 0.0413 15.3173	0.0413	413 16.0784	TNPC=0, TINTC=0, &END	RABECTI SIANOTO, SITEMOTO, SIZENOTO, SCREETITO, ARTICOTO, INCIDENT, TROUBS-3, INCIDENT,		0 0 0 0 0	37.7000 0.0000 14.0256		0.0000	.7000 0.0000 15	37,7000 0.0000 15.3221

ALF-0.0, THETA-0.0, INMODE-4, ENGINEER 2.2166 19.0085 13.4445 2.2166 20.085 13.4445 2.2166 20.085 13.4445 2.2166 20.085 13.4445 2.2166 20.085 13.4445 2.2166 20.085 13.4445 2.2166 20.085 13.4445 2.2166 20.085 13.4445 2.2166 20.085 13.4445 2.2166 20.085 13.4445 2.2166 20.085 13.4445 2.2166 20.085 14.750 0.0000 C. ENDO 16.770 0.0000 C. ENDO 18.616 0.0000	THETA.O. O. INMODE4. EACH OF THE STATE OF	ALF=0.0, THETA=0.0, INMODE=4.	IETA=0.0, INMODE=4,	ALF=0.0, THETA=0.0, INMODE=4,	IETA=0.0, INMODE=4,	ALF.0.0, THETA.0.0, IRMODE.4.
ALF=0.0, THETA=0.0, INMODE=4. ALF=0.0, THETA=0.0, INMODE=4. ALF=0.0, THETA=0.0, INMODE=4, ALF=0.0, THETA=0.0, INMODE=4,	00557 18717760, &END 171877760, &END 17187760, &END 171918 171918 171919	6END SCALE:1.0,		&END SCALE=1.0,	, 6END , SCALE=1.0, ALF=0.0, TH , %',	&END SCALEE1.0,
ALF=0.0, THETA=0.0, INMODE=4. ALF=0.0, THETA=0.0, INMODE=4. ALF=0.0, THETA=0.0, INMODE=4, ALF=0.0, THETA=0.0, INMODE=4,	0.0557 10.0557 11.07760, &EMD 11.0715 10.0519 10.051	5 2.2868 19.3038 5 2.2166 19.8875 5 1.9942 20.0445 7 1.0612 20.1457 5 0.0000 20.1575 TNODE-3, TNPC-0, TINTC-0, TINTC-0, TINTC-0, TYP=0.0, STP=0.0, CRD 0 0.0000 15.9992 0 1.3053 15.9975 0 1.9691 16.0428 0 2.2080 16.1993	2.3000 17.6647 2.2844 18.7297 2.2067 19.1542 0.12912 19.13443 TNODE 3, TRNC-6, TINTC-6, TRNPC-0, STY=0.0, STY=0.0, TRNPC-0, STY=0.0, S	1 1929 18:5088 0 1.2029 18:5135 0 0.000 18:5135 0 0.000 18:5136 0 0.000 18:5176 0 0.000 16:4186 5 1.050 16:4186 5 1.1814 16:5048 5 2.2000 17:216 5 2.2000 17:216 5 2.2796 17:6011	5 1.8677 7.7020 5 1.0610 17.8229 5 0.0000 17.8229 5 0.0000 17.8229 TX=0.0, STY=0.0, STZ=0.0 TNPS=0, TINTS=0, &END 5 0.0000 16.6286 5 1.7102 16.6321 5 1.7102 16.6321 5 2.1282 16.6220 5 2.2259 17.1850	5 1.125 17.2659 5 0.876 17.2659 5 0.876 17.2659 TMODE-3, TMPC-6, TINTC-6 TX-0.0, STY-0.0, STZ-0.0 TX-0.0, STX-0.0, STX-0.0 TX-0.0, STX-0.0 TX-
ALF=0.0. ALF=0.0.	9957 98715 1653 22869 22869 22869 3511 3708 44691 7715 5999 22776 9844 1945 TINTC=0, GEND 9844 4703 1068 4703 1068 4703 1068 4703 1068 4703 1068 4703 1068 4703 1068 4703 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1069 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1069 106	13.8 13.8 13.8 13.8 13.8 5.8ECTO TNODS 16.3 16.3 16.3	186.1 186.1 186.1 186.1 186.1 186.1 186.1 186.1 186.1 186.1 186.1 186.1 186.1 186.1 186.1 186.1 186.1 186.1 186.1 186.1	3.86. 3.86. 3.86. 3.86. 3.86. 4.00. 4.	6 BRNOD 6 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8	41.8 41.8 41.8 41.8 6.8ECT1 7NODS 742.7 42.7
	8715 8715 1265 2265 2265 2265 2276 4691 3708 4691 3708 4701 4701	. Α		E-4.	E=4,	E 4 ,

THETA.O.O. INMODE.4, 6500 22 0261 11.3720 26 5598 22 0261 11.3720 26 5598 22 0261 11.3720 26 5598 22 0261 11.3720 26 5598 22 0261 11.3720 26 5598 22 0261 11.3720 27 24.866 22 0261 11.3720 27 24.866 22 0261 11.3720 27 25 5145 22 0261 11.3720 27 27 27 27 27 27 27 27 27 27 27 27 27			ND									0 0 0	orest of Arrest of Intervent of Indopers										ND										& END	ALE=1.0, ALF=0 0, THETA=0.0, INMODE=4.					
THETA.O.O. INMODE4.	11.3986 11.4606 11.5637 11.7270		C=0,	0 80 4	99	31	65	67	89	29	0.7	NTC=0, &E		35	90	99	37	000	90	70	77	92	C=0,		8 2	14	31	55	35	39	31	52	TC=0, &E	Ċ.	END	35	3.9	99	37
THETA=0.0, INMODE=4, THETA=0.0, INMODE=1,	11.396			14.26	14.536	14.443	13.856	12.986	12.558	12.052	11.904	C=0, T1h	NTS=0, 6	11.83	11.710		11.40		11.460	11.563	11.967	12.668			14.265	14.471	14.443	14.204	13.438	12.558	12.283	11.902	C=0, TIN		TS=0, 6	11.783	11.710	11.426	11.403
THETA=0.0, INMODE=4, 24, 6500 THETA=0.0, INMODE=4, 24, 6500 TYPETA=0.0, INMODE=4, 24, 6500 THETA=0.0, INMODE=4, 24, 6500 THETA=0.0, INMODE=4, 24, 6500 THETA=0.0, INMODE=4, 25, 65145 THETA=0.0, INMODE=4, 25, 65165 THETA=0.0, INMODE=4, 25, 65165 THETA=0.0, INMODE=4, 25, 65165 THETA=0.0, INMODE=4, 25, 65165 THETA=1112 THETA=	12.0261 12.0261 12.0261 12.0261			12.0261	12.0261	12.0261	32.0261	12.0261	12.0261	12.0261	12.0261	S=3, TNP	S=0, TI	13.5531	13.5531	13.5531 13.5531	13.5531	33.5531	13.5531	13.5531	13.5531	13.5531	ഹ	13.5531	13.5531	3.5531	13.5531	13.5531	3.5531	3.5531	3.5531	3.5531		0, STY=	S=0, TII	5.9313	5.9313	5.9313	5.9313
THETA=0.0, INMODE=4, THETA=0.0, IPATCOP=0, &END THETA=0.0, INMODE=4.		145 3 685 3 500 3	E TNODE 685 3								35 3	E TNODE	=0, TNP										500 3 E TNODE										E TNODE	STX=0.	-				
T3HT T7HT T7HT T7HT T7HT T7HT T7HT T7HT	33.6	25.2	3PNOI 24.8	26.5	29.6	31.8 33.6	35.6	39.6	41.	43.6	44	BPNOI	TNODS	44.6	43.8	42.	39.6	35.6	31.6	27.5	26.9	24.8	24.	24.8	26.5	27.9	31.5	35.6	37.7	41.3	43.8	4.4	BPNO	SECT1	44.6	44.4	43.6	41.1	39.6
			3											,																									
	16.8035 16.9014 16.9187 16.9187	TINTC=0, &END , STZ=0.0, SCALE=1.0, ALP=0.0, THETA=0.0, INMODE=4,				16.8000 16.8000	16.8000 16.8000	8000	TINTC=0,		KASS=1, IPATSYM=0, IPATCOP=0, &END	THETA-0 0 INMODE-4		11.5308	11.4770	11.4565 11.4290	11.4032	11.3790	4614	11.7283	11.9690	12.6691	3.1000 , TINTC=0, &END	13.5517	14.2646	14.4706 14.5367	14 4449		13 4473 12.9980	12.5573	12.1606 11.8400	11.6336	TINTC=0, &END	T2=0.0, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,	\S=0, &END 11.83	11.7835	11.7108	11.4266	11.4037
42.7105 2.0340 42.7105 1.0574 42.7105 0.6710 42.7105 0.6710 42.7105 0.6710 42.7105 0.0000 42.7105 0.0000 43.0000 0.0000 44.500 0.0000 52.5119 0.0000 52.541 0.000000 52.541 0.00000 52.541 0.00000 52.541 0.00000 52.541 0.00000 52.541 0.00000 52.541 0.00000000000000000000000000000000000		TNPC=0, TINTC=0, &END STY=0.0, STZ=0.0, SCALE=1.0, ALP=0.0, THETA=0.0, INMODE=4, TINTS=0, &END	16.8000 16.8000 16.8000	16.9000	16.8000			8000			1, MAKE=0, KCOMP=1, KASS=1, IPATSYM=0, IPATCOP=0, &END	A O O INMODERA				2000	5000 11	5000 11.	5000 11.5571	.5000 11.	.5000 11.	12	5000 I3.1000 , TNPC=0, TINTC=0, &END	13.				13	13		5000	5000 11.	TNPC=0. TINTC=0, &END	STY=0.0, STZ=0.0, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,	INTS=0, 11.8				

99133 99133	42.2500	27.9587 42.2500 11.7270	42.2500	42.2500	24.6500 42.2500 13.1000	6BPNODE TNODE=1, TNPC=0, TINTC=0, 6END	42.2500	42.2500	29.6500 42.2500 14.5366	42.2500	42.2500	37.7402 42.2500 13.4385	42.2500 12	41.3112 42.2500 12.5589	42.2500	44.4706 42.2500 11.9025	n a -	&SECT1 STX=0.0, STY=0.0, STZ=0.0, SCALE=1.0, ALF*0.0, THETA=0.0. INMODE=4, TNODE-0 TANGE-0 TANGE-0 TANGE-0 TEND	45.5719	45.5719	45.5719	45.5719	37.7402 45.5719 11.3873	45.5719	45.5719		45.5719	ODE=1, TNPC=	24.8685 45.5719 13.5524	45.5719		45.5719	39.6500 45.5719 12.9867 41.112 45.5719 12.5889	45.5719	45.5719	44.4706 45.5719 11.3025	, GEND		TNODS=0, TNPS=0, TINTS=0, &END	44.645 48.5687 11.7835	43.8389 48.5687 11.7108	48.5687	41.1500 48.5687 11.4266	48.5687
35.9113 11.3986 35.9113 11.3986 35.9113 11.3986 35.9113 11.5637 35.9113 11.5637 35.9113 11.5637 35.9113 11.5628 35.9113 12.2851 35.9113 12.2851 35.9113 12.2856 35.9113 12.2866 35.9113 13.1606 35.9113 13.1606 35.9113 13.1606 35.9113 13.1606 35.9113 13.1606 35.9113 13.1636 35.9113 11.813 36.9113 11.813 36.9113 11.813 36.9113 11.813 36.9113 11.813 36.9113 11.813 36.9113 11.813 36.9281 11.307 38.9281 11.307 38.9281 11.307 38.9281 11.307 38.9281 11.307 38.9281 11.307 38.9281 11.307 38.9281 11.307 38.9281 11.307 38.9281 11.307 38.9281 11.307 38.9281 11.307 38.9281 11.306 38.9281 11.306 38.9281 11.306 38.9281 11.306 38.9281 11.306 38.9281 11.306 38.9281 11.306 38.9281 11.306 38.9281 11.306 38.9281 11.306 38.9281 11.306 38.9281 11.306 38.9281 11.306 38.9281 11.306 38.9281 11.306 38.9281 11.306 38.9281 11.306 38.9281 11.306 38.9281 11.306 38.9281 12.6589 38.9281 12.6589 38.9281 13.936																																												
15.931 15.931 15.931 15.931 15.931 15.931 15.931 15.931 15.931 15.931 15.931 16.928 18.928						¢END											6 END	SCALE=1.0, ALF=0.0, THETA=0.0,										& END									6.END	SCALE=1.0, ALF=0.0, THETA						
				12	13	TINTC=0,	13							-			11.83 C=0, TINTC=0, &END	0, SCALE=1.0, ALF=0.0, THETA=0.0,	11.8013								٦,	TINTC=0,	.5524			111	12	12			6.END	SCALE=1.0, ALF=0.0, THETA	TINTS=0, &END					.2500 11.4037

	GND		ASSECTIONE TRODE=3, TAPC=0, TINTC=0, GEND 44.5896 44.7177 53.0000 11.5306 44.3717 53.0000 11.4932 44.3717 53.0000 11.4932 44.3717 53.0000 11.4932 44.3717 53.0000 11.4932 44.3717 53.0000 11.4932 44.3717 53.0000 11.4932 44.3717 53.0000 11.3991 13.577 53.0000 11.3991 13.577 53.0000 11.3991 13.577 53.0000 11.3991 13.577 53.0000 11.4614 53.0000 11.4614 53.0000 11.5647 52.5119 53.0000 11.5647 52.5119 53.0000 13.6691 52.5119 53.0000 13.6692 52.5119 53.0000 13.6692 52.5119 53.0000 13.6692 53.0000 13.6664 53.0000 13.6664 53.0000 14.2866 53.0000	<pre>LEFT_AIL - 5 DEG DOWN LEFT_AIL - 5 DEG DOWN LEFT_AIL - 5 DEG DOWN LSET_AIL - 5 DEG DOWN LSET_AIL - 6 DEG DOWN LSET_AIL - 6 DEG DOWN LSET_AIL - 6 DEG DOWN LSET_AIL - 7 DEG</pre>
	J.	52.4739 14.2658 52.4739 14.4714 52.4739 14.4714 52.4739 14.42049 52.4739 13.8565 52.4739 13.8565 52.4739 12.5887 52.4739 12.5689 52.4739 12.0627 52.4739 11.9025	ACCTL STATE O., STATE O., SCALL THORSES, THORSES	& PATCH1 IREV=-1, IDPAT=1, MAKE=0, K LEFT_AIL - 5 DEG DOWN & SECTI STX+0.0. STV=0.0, STR-0.0, S TNODS-0, TNYS=0, TNYS=0, & END 44.5896 - 31.500 11.5308 44.7777 31.5000 11.4332
33.6047 31.5598 29.6500 27.9587	25.5145 24.8685 24.6500 68PNODE TNG 24.8685	2.6.5948 2.6.500 31.6.598 31.6.47 35.6951 37.7402 41.3112 42.7396 44.4706 44.635	44.5896 44.5896 44.5896 44.7277 43.7727 43.7727 43.7277 43.7277 43.6047 33.6777 33.5777 33.5777 33.5777 33.5777 33.5777 33.5777 34.606 6.8PNODE TWO 24.8679 25.5119 26.541 27.9487 26.541 27.9487 27.9487 26.541 27.9487 27.9487 28.619 31.577 41.299 41.299 44.6858	&PATCH1 IRE LEFT_AIL &SECT1 STX TNODS=0, T 44.5896 44.3117 43.7277
	, 6 END		EEND , SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4, , &END , SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,	
5687 11.3986 5687 11.4606 5687 11.5270 5687 11.977	851 685 000 INTC=0, 524	14 - 4.14 14 - 4.14 14 - 4.41 14 - 4.41 14 - 4.41 13 - 4.65 13 - 4.85 13 - 4.85 12 - 5.68 12 - 5.68 12 - 5.68 12 - 5.68 11 - 5	0, &END 0, &END 0, &END 0, &SCALE=1.0, ALF=0.0, 0, &END 0, SCALE=1.0, ALF=0.0,	TNBS-0, TINTS-0, &END 52-4739 11.83 52-4739 11.708 52-4739 11.5889 52-4739 11.4266 52-4739 11.4037

													GEND CASE																					6 END	SCALE=1.0 ALF=0.0 THETA=0.0 INMODE=4																				CEND.																	6 END	SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,			
.4266	.4037	.3873	3790	0000	0000	.4606	.5637	.7270	. 9677	.2851	5685		TINTC= 0.		# 7 C C	94 96	2658	23.5		14.5366	1431	14.2049	8565	0000	.4385	9867	2256	0070	0059	. 5935	1105	000	232	LINTC=0.	STX=0.0. STZ=0.0.		200	252	2115	.2514	3217	.4266	4037	6206.11	0000	06/5.11	9000	11.4606	1637	0/2/	11.96/1	1582	5685	0001	TINTC=0, &END	5524	9496	8597	14.4714	14.5366	1431	14.2049	13.8565	.4385	. 9867	.5256	6500	5000	727	305	232	LINTC. 0.	STZ=0.0,	6 END	332	2115
11.4	11.4	11.3				11.4	11.5	11.7	11.9	12.2	12.6685					13.9496	14.2658	10 071		14.3	14.4431	14.2		2.5	13.4	12.9867	12 5256	9 1	12.0059	11.5	11 3305	1	11.232	C=0, T	0.0.	NTC=0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7 - 11	11.2115	11.2	11.3217	11.4				11	7000		11.5637			12.2851	12.6685			13.5524	13.9496	14.2658	14.4	14.5	14.4431	14.2	13.8	13.4	12.9	12.5	12.0	7.7.	32.5935	11.3305	11.232	C=0. T	0.0, 8	NTS=0,	11.232	11.2115
-33.5531	.33.5531	-33.5531	-33 5533	1000000	1000.00	1856.88-	-33.5531	-33.5531	-33.5531	-33.5531	-33,5531	1866.88-	&BPNODE TNODE=1, TNPC=0.	33 6633	1000.00-	-33.5531	-33.5531	23 6623	1000.00	1866.88.	-33.5531	-33.5531	-11.5511	1000.00	-33.5531	-33.5531	11 5511	1000.00	-33.5531	-33.5531	111 5511	4000.00	-33.5531	«BPNODE TNODE=3, TNPC=0, TINTC=0, «END	0.0. STY=		ייים יייים יייים איני	- 35.9313	-35.9313	-35.9313	-35.9313	-35.9313	.15 9313	36 0313			36 033	-35.9313	-35.9313		-35.9313	-35.9313	-35.9313	-35.9313	&BPNODE TNODE=1, TNPC=0,	-35.9313	-35.9313	-35.9313	-35.9313	-35.9313	-35.9313	-35.9313	-35.9313	-35.9313	-35.9313	-35.9313	.15 9313	10.000	51.93.33	-35.9313	-35.9313	DE=3, TNP	&SECT1 STX=0.0, STY=0.0, STZ=0.0,	TNODS=0, TNPS=0, TINTS=0, &END	-38.9281	-38.9281
41.1500						8699	29.6500	9587	5598	5145		74.6500	DE TNO	34 96 96	0000	25.5145	26.5598	23 0503		0059.67	31.5598	33.6047	15.6953	0000	37.7402	6500	41 1699	0000	42.7287	43.7419	44.1674	7 0	44.518	DE TNO	6SECT1 STX=0.0.	T O S T T T T T T T T T T T T T T T T T	, 010		44.3570	43.7120	42.6688	41,1500	19 6500	2000	2017.10		11.00.00	0000	0000.62	0000	2000	25.5145	24.8685	24.6500	DE TNO	24.8685	25.5145	.5598	27.9587	29.6500	31.5598	33.6047	35.6953	37.7402	39.6500	41.3699	42 7287	0 5 7 7	43.7419	44.3674	44.518	DE TNO	T STX=	S=0, T	44.518	0
					_												_)E=4.)E=4,			
													9																					Q	LE=1.0, ALF=0.0, THETA=0.0, INMODE=4.																				ΩI																	Q	LE=1.0, ALF=0.0, THETA=0.0, INMODE=4,			
													=0, &END																					"O, &END	E=1.0. ALF=0.0. THETA																				=0. &END																	=0, GEND	E=1.0, ALF=0.0, THETA			
11.4290	11.4032	11.3871	11 2200	7 (((1))	1666.11	11.4614	11.5647	11.7283	11.9690	12.2862	12.6691	1000	TINTC=0.		7700.01	13.9485	14.2646		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	14.5367	14.4449	14.2088	13.8627	7700.51	13.4473	12.9980	12 5573	7 ~ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12.1606	11.8400	11.6316	> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11.5308	Cao, TINTCao, & END	E=1.0. ALF=0.0. THETA			11.53.6	11.2115	11.2514	11.3217	11.4266	11 4037			11.000	70,74	11.1000	11.363/	0.77.11	11.307/	12.2851	12.6685	13.1000	o=0, TINTC=0, &END	13.5524	13.9496	14.2658	14.4714	14.5366	14.4431	14.2049	13.8565	13.4385	12.9867	12.5256	1111111	11.0001	11.59435	11.3305	11.232	C=0, TINTC=0, GEND	, STZ=0.0, SCALE=1.0, ALF=0.0, THETA	=0, 4END	11.232	11.2115
2000	31.5000 11.4032	.31.5000 11.3871	0000						31.5000 11.9690	31.5000 12.2862		1000				.31.5000 13.9485	.31.5000 14.2646				.31.5000 14.4449					-31.5000 12.9980							31.5000 11.5308	DE=3, TNPC=0, TINTC=0, &END	ALF=0.0, THETA					-32.0261 11.2514						22.0201 11.25/20								-32.0261 13.1000	<u>ٿ</u>																	PC=0	, STZ=0.0, SCALE=1.0, ALF=0.0, THETA	=0, 4END	33.5531 11.232	

														INMODE=4,																					INMODE×4,		
														=0.0, THEIA=0.0																					0.0, THETA=0.0,		
				, GEND									44.518 -45.512 11.332 6ABNODE THODE=3, THPC=0, THNTC=0, 6END	SCALE=1.0, ALF										6.END										6 END	SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,		
11.4266 11.4037 11.3873 11.3790		11.7270		PC=0, TINTC=0		14.2658							11.232 PC=0, TINTC=0,	TNODS=0, TNPS=0, TINTS=0, &END	11.232						11.7270		13.1000	PC=0, TINTC=0, &END 13.5524		14.2658	14.5366		13.8565		12.5256			44.518 48.568/ II.2332 &BPNODE TNODE=3, TNPC=0, TINTC=0, &END	SECTI STX=0.0, STY=0.0, STZ=0.0 TNODS=0 TNPS=0 TINTS=0 KEND	11.232	11.2115
-45.5719 -45.5719 -45.5719 -45.5719		-45.5719	-45.5719	JODE=1, TN	-45.5719		-45.5719					-45.5719	45.5/19 40DE=3, TN	TNPS=0, T	-48.5687	-48.5687	-48.5687				-48.5687		-48.5687	&BPNODE TNODE=1, TNPC=0, 24.8685 -48.5687 13			-48.5687		-48.5687	-48.5687	-48.5687	-48.5687	48.5687	48.568/ IODE=3, TN	&SECT1 STX=0.0, STY=0.0, TNODS=0	.50.9469	-50.9469
41.1500 39.6500 37.7402 35.6953	31.5598	27.9587 26.5598	24.8685	PNODE TA	24.8685	26.5598 27.9587	9.6500	33.6047	37.7402	39.6500	2.7287	44.3674	PNODE TR	ODS=0,	44.518	43.7120	41.1500	37.7402	33.6047	29.6500	27.9587	25.5145	24.6500	PNODE TA	25.5145	26.5598	29.6500	33.6047	35.6953	39.6500	41.3699	42.7419	44.3674	44.518 PNODE TA	ECT1 STX	44.518	44.3570
				183		2 2 2	255			M 4	. 4.	4 4	483											8.9	-									8.9	S	-	
					5 2 2	5. 7.	25	333	56	ñ o	. 4. 4	•		ALFRU.U, IMEIA=U.U, INMODE=4,																					E=1.0, ALF=0.0. THETA=0.0, INMODE=4,		
		11,7270 11,9677		TINCEO, &END				14.2049			6900	0.10	1.434 TINTC=0, &END	0, SCALE=1.0, ALF*0.0, IMEIA=0.0, INMODE=4,							11.7270		.1000	TINTC=0, &END 5524		14.2658	14,5366	14,1493.1	13.8565	12.9867				GEND	SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,		
	2.81 11.4606 9281 11.5637		12.6685	PC=0, TINTC=0, &EMD	13.5524	14.2658 14.4714		14.2049	13.4385		12.0059	11.5935	7481 11,234 , THPCaO, THINCAO, GEND	10.00 10.00	11.232	11.2514	11.4266	11,3873	11.3986	11.5637	11.7270	12.2851	.1000	C=0, &END	13.9496	14.2658	-42.2500 14,5366				12.5256	12.0059	11.3305	GEND	TY=0.0, STZ=0.0, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4, TIMTS=0.0, FFND		

	-53.0000 -53.0000 -53.0000 -53.0000 -53.0000 -53.0000 -53.0000 -53.0000 -53.0000 -53.0000 -53.0000 -53.0000	6.PATCHI INTORES, TRPC=0, TINTC=0, EEND ELEVATORE **S DEG (TED) 10X16 ELEVATORE **S DEG (TED) 10X16 SELEVATORE **S DEG (TED
00 00 00 00 00 00 00 00 00 00 00 00 00	. 50 . 2469 . 50 . 2469	### CERT STATE OF A TYPE OF A THE TREE OF

SCAMELLO, AIF-0 0, THETA-0 0, INNODE-44, 95,500 1.18979 7,3912 SERVINDE THOROUGH TO THIRD TO THE THOROUGH TO	6END SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,												6 END													SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,													CNA						
SCALE-1.0, ALF-0.0, THETA-0.0, INMODE-4, 95,5001 1.85 1.85 1700E-1.7 1.87 17		24 24	92	36	23	12	24	400	3.2	11	00	00	3=0,	57	00	000	01	36 76	8 6	38 77	14	11	30	0 5			an	8 2 2		90	9 2 9	61	38	69	51	33	3.7	68	_	ò	13	57	22		. 9
SCALE-1.0, ALF-0.0, THETA-0.0, INMODE-4, 95.5001 1.85 EBPHODE TYPODE-1.7 TOTAL TYPODE-0.7 SCALE-1.0, ALF-0.0, THETA-0.0, INMODE-4, 95.2097 SCALE-1.0, ALF-0.0, THETA-0.0, INMODE-4, 95.2097 TOTAL TYPODE-1.7 SCALE-1.0, ALF-0.0, THETA-0.0, INMODE-4, 95.2097 TOTAL TYPODE-1.7 TOT	7.933 7.847 7.847 7.0, TIN	7.845	7.846	7.87	7.852	7.754	7.723	7.719	7.75	7.811	7.987	8.090		8.19	8.290	8.426	8.46	8 47	8.429	8.380	8.271	8.134	7.928	7.84	Sao, TIP	1.0, S12 1TS=0, 6	7.84	7.837	7.856	7.876	7.862	7.811	7.768	7.72	7.73	7.82	7.898	7.988	8	. 60	8.281	8.356	8 412	8 444 8 454	
SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4, EEND	1.8979 1.8979 1.8979 E=3, TNP(4.0964 4.0964 4.0964	4.0964	4.0964	4.0964	4.0964	4.0964	4.0964	4.0964	4.0964	4.0964	4.0964		4.0964	4.0964	4.0964	4.0964	4.0964	4.0964	4.0964	4.0964	4.0964	4.0964	4.0964	E=3, TNP	.0, STY=0 PS=0, TIN	6.8667	6.8667	6.8667	6.8667	6.8666	9998.9		9998.9	6.8666	6.8666	9998.9	6.8666	6.8666 E=1 TND	6.8666	6.8666	6.8666	6.8666	6.8666	6.8666
SCALE=1.0, ALF=0.0, SCALE=1.0, ALF=0.0,	95.5003 95.8701 95.9941 &BPNODE TNOD &SECT1 STX=0	95.9996 95.8768	95.5150	93.2001	92.0947	89.6674	88.4299	86.1434	85.1822	84.3934	83.4463	83.3244	&BPNODE TNOD	83.4463	83.8073	85.1822	86.1434	87.2400	89.6674	90.9048	93.2001	94.1600	95.5222	95.8796	GBPNODE TNOD	TNODS=0, TN	96.004	95.8870	94.9792	94.2234	92.2716	91.1334	89.9496	87.6276	86.5786	84.9046	84.3438	83.9986	83.8820 KRPNODE TWOD	83.9986	84.3438	84.9046	85.6591	87.6276	88.7659
	·				_																_																	_							_
), SCALE=1.0, ALF=0.0,		83188	7.7017	7.6879	7.7342	7,7954	7.9783	0060.8	, TINTC=0	8.3013	8.3846	8.4458	8.4820	8.4921 8.4783	8.4448	8.3972	8.3412	8.1546	8.0312 7.9369	7.8777	WSI TINTC=0,	0, SCALE=1.0, ALF=0.0, THETA=0.0,	5=0, &END 7.847	7.8415	7.8621	7.8834	7.9091 7.8441	7.7892	7.7426	7.6963	7.7062	7.7416	7.8831	7.9806	TINTC=0,	8.1994	8,2969	8.3785	8.4738	8.4837	8.4702	8.4374	80.95.6	
SEECT1 STX=0.0, STY=0.0, STZ=CTNODS=0.7 TNDS=0.1 EPP 17005=0.1 EPP 17005=0.1 EPP 17005=0.2 EPP 17005	STY+0.0, STZ=0.0, SCALE=1.0, ALP=0.0,), TINTS=0., &RDD 1864 7.831 1864 7.8506 1864 7.8506	7.8861 7.9097	7.838		4864 7	4864 7	,		64 8.0900	TNPC=0, TINTC=0	0 00	.4864 8	.4864 8	.4864 8	4864 8	.4864	.4864	4864	.4864	.4864 8	.4864 7	364 7.851 TNPC=0, TINTC=0,	STY=0.0, STZ=0.0, SCALE=1.0, ALF=0.0, THETA=0.0,	INIS		8979	8979 7	979 7 979 7	7 616	7 676	7 6768	7 6268	7 676	7	979 7	, TNPC=0, TINTC=0,	8979 8.1994	8979 8	8979 8	8979 8	9 6 6 6	8 626	979 8	979 8 8	0.00

				.0. IAMODE=4.																					THETA-0 0 INMODE:4												
				.O, THETA=O																					O THETA-O												
			2	SCALE=1.0, ALF=0.0, THETA=0.0. INMODE=4											Q										D ATR-0	TWOSEO, TIPESO, TINTSEO, & END											
			0, GER	0, SCP											0, &END										O, SEN	,											
8 4174 8 4062 8 3789 8 3402 8 2945	8.2103 8.0917 7.9912	7.9144	96.0208 13.0084 7.843 &BPNODE TNODE=3, TNPC=0, TINTC=0, &END	TNPS=0, TINTS=0, &END	7.844	7.8458		7.9148	7.8524	7.7897	7.7791	7.8148	7.8622	8.0036	C=0, TINTC=0	8.2534	8 3652	8.3931	8.3903	8.3276	8.1935	7.9854	7.9125	7.844	C=0, TINTC=	NTS=0, GEND	7.8425	7.8480	7.8742	7.8975	7.8625	7.8272	7.7922	7.7997	7.8264	7.9335	8.0073
13.0084 13.0084 13.0084 13.0084	13.0083	13.0084	13.0084 ODE=3, TNP	=0.0, STY= TNPS=0, TI	15.7786	15.7786	15.7786	15.7786	15.7786	15.7786	15.7786	15.7786	15.7786	15.7786	GBPNODE TNODE=1, TNPC=0,	15.7786	15.7786	15.7786	15.7786	15.7786	15.7786	15.7786	15.7786	15.7786	ODE=3, TNP	TNPS=0, TI	17.9.71	17.9771	17.9771	17.971	17.97.1	17.9771	17.97.1	17.9771	17.9771	17.9771	17.971
88.4869 89.5107 90.5754 91.6401 92.6638	93.6182	95.6100	96.0208 PNODE TN	SECTI STX TNODS=0,	96.029	95.6331	94.5079	93.7217	91.8686	89.8467	88.8745	87.1934	86.5489	85.7751	KBPNODE TN	86.0700	87.1934	88.8745	89.8467	91.8686	93.7476	95.1646	95.6389	96.029	KBPNODE TN	TNODS=0,	95.9385	95.6554	94.5776	93.8246	92.0500	91.0816	89.1821	88.3240	87.5718	86.4959	86.2134
			6.B							-					_																						
	КВИ	0, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,	899	79									=0, &END									, END	.0, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,												UN3.7 V-		
8 3174 8 2516 8 1197 8 00860	.3228 .8630 .843 .843 .843	0, GEND	.843 .8373	.8436 .8553	7.8741	7.8740 2.8758	7.7849	7.7561	7.7530	7.7840	7.9083	0060.8	:0, TINTC=0, 8.1861	8.2717 8.1433				8.3542 8.3060	8.2302 8.1050	7.9989		7.843 , TINTC=0, &END), SCALE=1.0, ALF=0.0, THETA=0.0,	N15=U, @ENU 7.843	7.8382	7.8553	7.9121	7,8855	7.8011	7.7738	7.7708	7,8002	7.8501	7.9990	8.0900	8.1810	8.2621
6.8666 8.1374 6.8666 8.2516 6.8666 8.1197 6.8666 8.1197 6.8667 7.926	.8667 7.8690 .8667 7.8690 .867 7.843	=0.0, STY=0.0, STZ=0.0, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4, TNPS=0, TINTS=0, GEND	.9375 7.843 .9375 7.8373	9.9375 7.8436 9.9375 7.8553	9.9375 7	9.9375	9.9375	9.9375 7	7 5256	9375 7	9.9375 7.9083	9375 8.0900	ODE=1, TNPC=0, TINTC=0, 9.9375 8.1861	9.9375 8	9.9375 8	9375 8	9.9375 8	.9375 8	.9375 8.2	7 3759	9375 7.8	9375 7.843 , TNPC=0, TINTC=0, GEND	SCALE=1.0, ALF=0.0, THETA=0.0,	1875=0, 11812=0, aEND 13.0084 7.843				13.0084	13.0084 7	89,5107 13,0084 7.7738	13.0084 7	.0084 7		7	.0084 8.0900	, intered, indeed, 0084 8.1810	8.2

```
&PATCH1 IREV=0, IDPAT=1, MAKE=0, KCOMP=1, KASS=1, IPATSYM=0, IPATCOP=0, &END
                                                                                                                                                                                                               &SECTI STX=0.0, STY=0.0, STZ=0.0, SCALE=1.0, ALP=0.0, THETA=0.0, INMODE=4, TMODS=0, TINTS=0, EEND 97.4877 -0.413 10.4049 97.1510 -0.22008 10.4008 96.1610 -0.22008 10.4006 94.5854 0.0287 10.3958
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        STZ=0.0, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,
                                                                                                                                                                                                                                                                                                                                                 6 END
                                                                                                                                                                                                                                                                                                                                                                                                                                                               &BPNODE TWODE=3, TNPC=0, TINTC=0, &END &SECT1 STX=0.0, STY=0.0, ST2=0.0, SCAL
                                                                                                                                                                              £BPNODE TNODE=3, TNPC=0, TINTC=0, &END
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           TINTC=0, &END
                            6END
                            TINTC=0,
                                                                                                                                                                                                                                                                                                                                                 TNPC=0, TINTC=0,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 TNPS=0, TINTS=0, &END -0.4180 10.7661
                                                                                                                                                                                                                                                                            10.4000
10.4000
10.4000
10.4000
                                                                                                                                                                                                                                                                                                                                                                                                            10.4000
10.4070
10.4067
                                                                     8.3693
8.3765
8.3667
                                                                                                                                                                                                                                                                                                                                                                                   10.4000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            10.7610
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     10.7610
10.7610
          8.0104
                   8.0900
                                                                                                8.3428
                                                                                                                                   8.0670
                                                                                                                                                                                                                                                                    10.4000
                                                                                                                                                                                                                                                                                                              10.4000
                                                                                                                                                                                                                                                                                                                        10.4000
                                                                                                                                                                                                                                                                                                                                10.4000
                                                                                                                                                                                                                                                                                                                                         10.4000
                                                                                                                                                                                                                                                                                                                                                          10.4000
                                                                                                                                                                                                                                                                                                                                                                          10.4000
                                                                                                                                                                                                                                                                                                                                                                                                    10.4000
                                                                                                                                                                                                                                                                                                                                                                                                                                      10.4062
                                                                                                                                                                                                                                                                                                                                                                                                                                                10.4058
                                                                                                                                                                                                                                                                                                                                                                                                                                                         10.4056
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  10.7650
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           10.7618
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    10.7570
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              10.7610
                                                                                                                                                                                                        RUDDER +5 DEG (TEL) 10X12
                                                                                                                                                                      7.849
                                                                                                                                                                                                                                                                                                                                                                  0
                            KBPNODE TNODE=1, TNPC=0,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           &BPNODE TNODE=1, TNPC=0,
                                           19.8750
19.8750
19.8750
19.8750
19.8750
19.8750
19.8750
                                                                                                                         19.8750
19.8750
19.8750
19.8750
                                                                                                                                                                                                                                                                            0.4315
0.5294
0.5900
19.8750
19.8750
                                                                                                                                                                                                                                                                                                      5942
                                                                                                                                                                                                                                                                                                               5310
                                                                                                                                                                                                                                                                                                                                         0000
                                                                                                                                                                                                                                                                                                                                                                   4015
                                                                                                                                                                                                                                                                                                                                                                           5310
                                                                                                                                                                                                                                                                                                                                                                                   5942
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            0.3185
                  19.8750
                                     19.8750
                                                                                                                19.8750
                                                                                                                                                                     19.8750
                                                                                                                                                                                                                                                                    0.3161
                                                                                                                                                                                                                                                                                                                        0.4015
                                                                                                                                                                                                                                                                                                                                                &BPNODE TNODE=1, TNE
77.8407 -0.2183
                                                                                                                                                                                                                                                                                                                                                                                             0.5900
                                                                                                                                                                                                                                                                                                                                                                                                             -0.4315
                                                                                                                                                                                                                                                                                                                                                                                                                                                0.4218
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   0.3558
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           0.2083
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0.0183
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              0.5229
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      0.5828
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  0.000.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   0.2157
                                                                                                                                                                                                                                                                                                                                 0.2183
                                                                                                                                                                                                                                                                                                                                                                                                     -0.5294
                                                                                                                                                                                                                                                                                                                                                                                                                                      0.4057
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                0.5869
                                                                                                                                                                                                                                                                                                                                                                                                                      -0.3151
                                                                                                                                                                                                                                                                                                                                                                                                                               0.3721
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0.5245
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0.2157
                                                                                                                                                                                                                                                                                                                                                                                                                                                         -0.413
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         &SECT1 STX=0.0,
TNODS=0, TNPS=
         86.5918
                                    86.5918
                                                    87.3047
                                                                    88.6222
89.4477
90.3434
91.2750
92.2066
                                                                                                                         93.9374
94.6546
95.2430
95.6801
95.9492
96.0395
                                                                                                                                                                                                                                                                            90.0882
                                                                                                                                                                                                                                                                                            84.9118
82.5000
80.4289
                                                                                                                                                                                                                                                                                                                     78.8397
                                                                                                                                                                                                                                                                                                                                                                                   82.5000
                                                                                                                                                                                                                                                                                                                                                                                                            90.0882
92.4786
94.5521
96.1439
97.1451
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          96.2954
94.7391
92.5590
90.2976
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               82.8022
80.7565
                                                                                                                93.2900
                                                                                                                                                                                                                                                                    92.5000
                                                                                                                                                                                                                                                                                                                                        77.5000
                                                                                                                                                                                                                                                                                                                                                                 78.8397
                                                                                                                                                                                                                                                                                                                                                                          80.4289
                                                                                                                                                                                                                                                                                                                                                                                                    87.5000
                                                                                                                                                                                                                                                                                                                                                                                                                                                        97.4877
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         97.6057
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  97.2733
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             87.7410
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      85.1845
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               79.1868
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         78.2000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 77.8634
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   78.2000
                                                                                                                                                    SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 THETA=0.0, INMODE=4,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ALF=0.0,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  SCALE=1.0.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        TINTC=0, &END
STZ=0.0, SCALE:
0, &END
                                                                                                                                          TINTC=0, &END
STZ=0.0, SCALE
                                                                                                                                                                                                                                                                                                                        TINTC=0, &END
                                                                                                                                                            & END
                                                                     .3175
                                                                                                                                                                                                       .8753
                                                                                                                                                                                                                       .9195
                                                                                                                                                                                                                                          8347
                                                                                                                                                                                                                                                                                                                                                                                   3695
         8.2465
                                                    3776
                                                                                                                 9119
                                                                                                                                                                                                                                                                    8079
                                                                                                                                                                                                                                                                             8339
                                                                                                                                                                                                                                                                                             9379
                                                                                                                                                                                                                                                                                                       9600
                                                                                                                                                                                                                                                                                                                                                                                                            2605
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            .8452
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                .8711
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        .8372
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               8133
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  8107
                                            3878
                                                                                               0731
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              7.8980
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         8035
                                    .3803
                                                                                                        9817
                                                                                                                           .8681
                                                                                                                                                                                                                                                                                                                                        2421
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    7.8504
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             .8601
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      7.9202
                                                                                                                                   7.847
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          TINTS=0.
                                                                                                                                                           TNPS=0, TINTS=0,
                                                                                                                                          &BPNODE TNODE=3, TNPC=0, &SECT1 STX=0.0, TNPS=0, TNPS=0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         &BPNODE TNODE=3, TNPC=0, 
&SECT1 STX=0.0, STY=0.0,
                                                                                                                                                                                                                                                                                                                       &BPNODE TNODE=1, TNPC=0,
                                                                                                                                                                                                                                                                                                                                                                                                            19.3886
19.3886
19.3886
19.3886
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  19.8750
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     19.8750
19.8750
19.8750
19.8750
                                                                                                                                                                                                                19.3887
19.3886
19.3886
                                                                                                                                                                                                                                                                                                                                                19.3886
19.3886
19.3886
                                                                                                                                                                                                                                                                                                                                                                                  19.3886
19.3886
19.3886
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    19.8750
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          19.8750
                                                                                                                                                                                                                                                   19.3886
19.3886
                                                                                                                                                                                                                                                                                     19.3886
19.3886
                                                                                                                                                                                                                                                                                                                                                                                                                                                         19.3886
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    19.8750
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             19.8750
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  19.8750
                                                    17.971
                                                                                                                                                                                       19.3887
                                                                                                                                                                                               19.3887
                                                                                                                                                                                                       19.3887
                                                                                                                                                                                                                                                                                                     19.3886
                                                                                                                                                                                                                                                                                                                                19.3886
                                                                                                                                                                                                                                                                                                                                                                                                                                                19.3886
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 19.3886
                                                                     17.971
                                                                             17.971
                                                                                      17.971
                                                                                                17.9771
                                                                                                        17.971
                                                                                                                17.971
                                                                                                                          17.971
                                                                                                                                   17.971
                                                                                                                                                                     19.3886
                                                                                                                                                                              19.3886
                                                                                                                                                                                                                                           19.3886
                                                                                                                                                                                                                                                                    19.3886
                                                                                                                                                                                                                                                                             19.3886
                                                                                                                                                                                                                                                                                                               19.3886
                                                                                                                                                                                                                                                                                                                                         19.3886
                                                                                                                                                                                                                                                                                                                                                                          19.3886
                                   17.9771
                                            17.9771
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           TNPS=0,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 &SECT1 STX=0.0,
TNODS=3, TNPS=
                                                                                                                                                                             95.9448
95.6698
95.2232
94.6224
93.8907
92.1664
91.2254
90.2845
89.3796
                                                                                                                                                                                                                                                                                                                                                87.2150
87.8148
89.3456
90.2845
91.2254
92.1664
93.9146
94.6394
95.2337
95.2337
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  96.0395
95.9470
95.6747
95.2326
94.6379
86 6 2134
86 4959
86 4959
87 5 546
87 5 518
89 1324
91 0816
92 0500
93 2568
94 5950
95 2067
95 2067
96 0347
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               92.2066
91.2750
90.3434
89.4477
88.6222
                                                                                                                                                                                                                                                                            87.8148
87.2150
86.7693
                                                                                                                                                                                                                                                                                                                                 86.4948
                                                                                                                                                                     96.0382
                                                                                                                                                                                                                                                                                                      86.4948
                                                                                                                                                                                                                                                                                                                                        86.7693
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      93,2900
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           87.8986
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   87.3047
                                                                                                                                                                                                                                                                                                               86.4021
```

		THETA=0.0, INMODE=4,	. INMODE=4,
			0, THETA=0.0
		SCALE=1.0, ALF=0.0,	6END SCALE=1.0, ALF=0.0, THETA=0.0. INMODE=4,
	, send		, GEND
THRTS=0, 6END 15.5033 15.5034 12.15.4998 14.15.4968 15.4960 10.15.4960 11.15.4960 11.15.4960	15.4960 15.4960 15.4960 15.4960 15.4960 15.4960 15.4960 15.4960 15.4960 15.4960 15.4960 15.4960 15.5044	ODE_3, TNPC_6, TINTC=0,	85.1806 0.1637 17.7750 8B.1806 0.0000 17.7750 8S.1806 0.01537 17.7750 8S.1806 0.01537 17.7750 8S.1807 0.01537 17.7750 8S.1807 0.01537 17.7750 8S.1807 0.01391 17.7750 92.4839 0.04456 17.7750 94.1420 0.0391 17.7750 94.1420 0.0391 17.7750 94.1420 0.0391 17.7750 94.1420 0.0391 17.7750 94.1420 0.0391 17.7750 95.1519 0.0391 17.7821 95.500 0.0443 17.7821 99.6517 0.0435 17.7821 99.6517 0.0435 17.7821 99.6517 0.0415 17.7821 99.6517 0.0455 17.7821 99.6517 0.0415 17.7821 99.6517 0.0415 17.7821 99.7518 0.0455 17.7821 99.7518 0.0455 17.7821 99.7518 0.0455 17.7821 99.7518 0.0455 17.7821 99.7518 0.0451 20.0601 100.4305 0.0461 20.0601 97.324 0.0133 20.0507 95.306 0.0144 20.0507
TNPS=0, TINT 0.460 0.2842 0.0944 0.1422 0.3318 0.4881 0.4916	0.4193 0.1302 0.0000 0.0000 0.0000 0.332 0.4318 0.4318 0.2788 0.2788 0.2788 0.2788 0.2788 0.2788 0.2788	00E=3, TNP 00.0, STY=1 0.0, 6465 0.4178 0.3058 0.3865 0.3971 0.4425 0.4425 0.4425 0.4425 0.4425	0.1637 0.0000 0.0000 0.01637 0.15982 0.4456 0.4456 0.3912 0.4456 0.4456 0.4456 0.4456 0.4456 0.4456 0.4456 0.4456 0.4456 0.4456 0.4456 0.465
TNODS=0, TNPS=0, 99.155 -0.460 98.8781 -0.284 96.0591 -0.284 95.0561 0.142 95.0561 0.1428 95.0561 0.1428 95.7620 0.488 96.7668 0.491	85.0535 0.4393 119 82.9124 0.1825 119 82.9124 0.1806 11 82.9124 0.0000 11 82.9124 0.0000 11 82.9124 0.3100 11 82.9124 0.4391 11 85.0535 0.4439 11 86.7668 0.4438 11 90.9031 0.4318 11 95.0128 0.3318 11 95.0128 0.3318 11 96.7281 0.4559 11 98.0450 0.4588 11 98.0450 0.4588 11	2 ×	85.1806 0.1637 17.7750 84.9250 0.0000 17.7750 85.1806 0.1637 17.7750 85.1806 0.1637 17.7750 85.1806 0.1637 17.7750 86.5228 0.03411 17.7750 86.5250 0.3462 17.7750 92.4320 0.04426 17.7750 94.3420 0.04426 17.7750 94.3420 0.04426 17.7750 94.3420 0.04391 17.7750 96.1519 0.04391 17.7752 96.1519 0.0431 17.7752 96.1519 0.0436 17.7821 99.6517 0.0436 17.7821 99.6517 17.7821 99.6517 17.7821 99.6517 17.7821 99.6517 17.7821 99.6517 17.7821 99.6517 0.0436 17.7821 99.6517 0.0436 17.7821 99.6517 0.0436 17.7821 99.6517 0.0436 17.7821 99.6517 0.0438 17.7821 99.966 0.0459 17.7821 99.7645 0.0679 97.324 0.0597 97.324 0.0597 97.324 0.0597
	. SCALE=1.0, ALF=0.0, THETA=0.0. INMODE=4,		
	(40.0) STY=0.0, STY=0.0 (40.0) STY=0.0, STY=0.0 TNPS=0, TNNTS=0, 6END -0.432 11.8141 -0.3710 11.8131 -0.228 11.8100 -0.0103 11.8085 0.3243 11.8085 0.5041 11.8085 0.5041 11.8085 0.5648 11.8085 0.5658 11.8085 0.5658 11.8085 0.5658 11.8085 0.5658 11.8085 0.5658 11.8085 0.5658 11.8085 0.5658 11.8085 0.5050 11.8085 0.5050 11.8085	(0.79) 11, 8085 (0.56) 11, 8085 (6.58) 11, 8085 (6.18) 11, 8085 (6.18) 11, 8085 (1.09) 11, 8085 (1.09) 11, 8085 (1.09) 11, 8161 (1.09) 11, 8161 (1.09) 11, 8164 (1.09) 11, 8149 (1.09) 11, 814	TNPS=0, TINTS=0, 6END -0.448
0.5245 0.5869 0.5828 0.4262 0.3212 0.3775 0.4180	E=3, TWPP 0, STY==0 0, 432 0, 432 0, 213 0, 213 0, 3243 0, 3243 0, 3243 0, 5041 0, 5041 0, 5056 0, 5056 0, 3823 0, 3823 0, 3823 0, 2079 0, 2079	.0.2079 .0.3823 .0.5658 .0.5658 .0.5618 .0.54109 .0.4109 .0.4109 .0.4240 .0.4240 .0.4240 .0.4240	IPS-0, TII

### 1100 1.0 20 20 20 20 20 20 20	(60 23,7489 2 23,7489 2 23,7488	IODE=3, TNPC=	.0.419 24.79; .0.3861 24.79;	-0.3096	99.6750 -0.0456 24.7881 98.4487 0.1156 24.7848	0.2692	0.3044 24.	0.2057 24	92.1611 0.1118 24.7890 91.9866 0.0000 24.7890	NODE=1, TNPC=	-0.2057	-0.2720	-0.3022	-0.2692	98.4121 - 0.3248 24.7968 99.6481 - 0.3681 24.7969	.0.3973	101,5257 -0.4146 24.7965	.7961	&BPNODE TWODE=3, TNPC=0, TINTC=0, &END	, GEND	102.3341 · 0.413 25.1563 102.1658 · 0.3820 25.1557	-0.3073	100.8830 -0.1926 -25.151/ 99.8558 -0.0496 25.1487	0.1077		0.2971		0.1092	92.3500 0.0000 25.1500	092 25.1500	93.0199 .0.2007 25.1500				.0.3645	100.8663 .0.4098 25.1572 101.6623 .0.4098 25.1569	-0.4178 25.1	102.3341 .0.413 25.1566	ADENOUS INCUESTS, INTERTO, RENU	ABATCH IPPU-0 IDDAT-1 MAKE-A KOMD-1 KACE 1 IBATCWA. 1 IBATCWA.	FOG_UAV_BOOM (10x12) CLOSED ENDS	6SECTI STX=0.0, STY=0.0, STY=0.0, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4.	1 NOUS - 0, 1 NO 1 NO 1 S - 0, & END 53 - 5, 6, 600 6 1000
0.1469 20.0540 0.1469 20.0540 0.0000 20.0540 0.01469 20.0540 0.02701 20.0540 0.0372 20.0540 0.03572 20.0540 0.03562 20.0540 0.03562 20.0540 0.03562 20.0540 0.03562 20.0540 0.03562 20.0540 0.03562 20.0540 0.03562 20.0540 0.03563 20.0540 0.0425 20.0540 0.03563 20.0540 0.0425 20.0540 0.0425 20.0540 0.0425 20.0540 0.0356 20.0540 0.0358 20.0540 0.0358 20.1099 0.0359 20.1096 0.0359 20.1096 0.0300 20.0000 0.0319 20.0000 0.0319 20.0000 0.0319 20.0000 0.0319 20.0000 0.0319 20.0000 0.0319 20.0000 0.0319 20.0000 0.0319 20.0000 0.0319 20.0000 0.0319 20.0000 0.0319 20.0000 0.0319 20.0000 0.0319 20.0000 0.0319 20.0000 0.00000 0.00000 20.0000 0.00000 20.00000 0.00000 20.00000 0.00000 20.00000 0.00000 20.00000 0.00000 20.00000 0.00000 20.00000 0.00000 20.00000 0.00000 20.00000 0.000000 20.00000 0.0000000000	END						VIIG.	E=1.0, ALF=0.0,										END								Cid	S=1.0, ALF=0.0,											END					
	C=0,		0540	.0540	0620	.0617	0613	Z=0.0,	2.1171	2.1164	2.1116	2.1080	2.1099	2.1099	2.1099	22.1099	22.1099	, TINTC=0,	22.1099	22.1099	22.1099 22.1099	22.1099	22.1184	22.1182	22.1176	1175	, STZ=0,	8 6	23.7478	23.7461	23.7434	23.7366	23.7415	23.7415	23.7415	23.7415	23.7415	0, TINTC=0,	23,7415	23.7415	23 7415	23.7415	23.7495

6END SCALE=1.0, ALF=0.0, THETA=0.0, IAMODE=4	SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,	SCALE=1.0. ALP=0.0, THETA=0.0, INMODE=4,	SCALE=1.0, ALF=0.0, THETA=0.0, 1NM:ODE=4,
	6.SECT1 STX=0.0, STY=0.0, STZ=0.0, SCALE=1.0 TNODS=0, TNPS=0, TNTPS=0, ERND 78.1073 0.2085 8.5000 78.1073 0.2785 8.6711 78.1073 0.5195 8.6711 78.1073 0.8296 9.0971 78.1073 0.8296 9.0971 78.1073 0.8290 9.6548 78.1073 0.8290 9.6548 78.1073 0.5175 10.0804 78.1073 0.5175 10.0804 78.1073 0.5175 10.2051 78.1073 0.2060 10.2501	STY=0.0, STZ=0.0, 00. TINTS=0, &RND 0000 8.5000 0000 8.5000 0000 8.5000 0000 8.5000 0000 9.0000 0000 9.0000 0000 9.0000 0000 9.0000 0000 9.0000 0000 9.0000 0000 9.0000 0000 9.0000 0000 9.00000 0000 9.0000 00000 9.0000 00000 9.00000 0000 9.0000 0000 9.0000 0000 9.0000 0000 9.0000 0000 9.0000 00	TTMTS-0, STZ=0.0, TTMTS-0, 6END 885 8.5455 995 8.6711 446 8.8564 99771 999 9.6548 999 9.6548 99771 900 9.6548 900 9.6
	٠٠٠ ٠٠٠ ٠٠٠ ٠٠٠ ٠٠٠ ٠٠٠ ٠٠٠ ٠٠٠ ٠٠٠ ٠٠	8 B	
6END SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,	 \$\text{SECTI STX=0.0, STY=0.0, ST2=0.0, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4, TMODE=0, TMTS=0, & END \$\text{SEND}\$ \$5.1002 0.0000 8.5000 \$5.1002 0.2195 8.6711 \$5.1002 0.2195 8.6711 \$5.1002 0.8296 9.0771 \$5.1002 0.8296 9.0773 \$5.1002 0.8750 9.0773 \$5.1002 0.7011 9.8956 \$5.1002 0.7011 9.8956 \$5.1002 0.7011 9.8956 \$5.1002 0.7017 10.8804 \$5.1002 0.7017 10.2051 \$5.1002 0.7017 10.8804 \$5.1002 0.7017 10.8804 \$5.1002 0.7018 0.7051 \$5.1002 0.7018 0.7051 \$5.1002 0.7018 0.7051 \$5.1002 0.706 10.2051	E=1.0, ALF=0.0, THETA=0.0, INMODE=4,	S=1.0, ALF=0.0, THETA=0.0, INMODE=4,

EEND SCALE-1.0. ALF-0.0. THETA-0.0, IMMODE-4, SCALE-1.0. ALF-0.0. THET	EED SCALE-1.0. ALF-0.0. THETA-0.0, IMMODE-4, SCALE-1.0. ALF-0.0. THETA	THORSO THIS THORSO THI	&ENU SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,			GEND SCALE=1.0, ALP=0.0, THETA=0.0, INMODE=4,		&END SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4.	
SCALE=1.0. ALF*0.0, THETA=0.0, INMODE=4, SCALE=1.0, ALF*0.0, THETA=0.0, INMODE*4, COMP=1, KASS=1, IPATSYH=0, IPATCOP=0, &END (10X12) SCALE=1.0, ALF*0.0, THETA=0.0, INMODE*4,	SCALE-1.0, ALF-0.0, THETA-0.0, INMODE-4, SCALE-1.0, ALF-0.0, THETA-0.0, INMODE-4, GEND (COMP-1, KASS-1, IPATSYH-0, IPATCOP-0, & END (10X12) SCALE-1.0, ALF-0.0, THETA-0.0, INMODE-4,	SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE>4, GOMP=1, KASS=1, IPATSYH=0, IPATCOP=0, & END (10X12) SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4, END			CEO, GEND	C=0, &END 0.0, SCAL ND	0 ≥	=0, &END 0.0, SCAL	
SCALE=1.0. ALF*0.0, THETA=0.0, INMODE=4, SCALE=1.0, ALF*0.0, THETA=0.0, INMODE*4, COMP=1, KASS=1, IPATSYH=0, IPATCOP=0, &END (10X12) SCALE=1.0, ALF*0.0, THETA=0.0, INMODE*4,	SCALE-1.0, ALF-0.0, THETA-0.0, INMODE-4, SCALE-1.0, ALF-0.0, THETA-0.0, INMODE-4, GEND (COMP-1, KASS-1, IPATSYH-0, IPATCOP-0, & END (10X12) SCALE-1.0, ALF-0.0, THETA-0.0, INMODE-4,	SCALE-1.0, ALF-0.0, THETA-0.0, INMODE-4, SCALE-1.0, ALF-0.0, THETA-0.0, INMODE-4, GEND (COMP-1, KASS-1, IPATSYH-0, IPATCOP-0, & END (10X12) SCALE-1.0, ALF-0.0, THETA-0.0, INMODE-4,	TS=0, &EI 10.7610 10.7610 10.7610	10.7610 10.7610 10.7610 10.7610 10.7610 10.7610 10.7610 10.7610		10.7610 10.7610 10.7610 10.7610 10.7610 10.7610 11.8085 11.8085 11.8085 11.8085 11.8085		11.8085 11.8085 11.8085 11.8085 11.8085 11.8085 11.8085 11.8085 11.8085 11.8085 11.8085 11.8085	13.4401 13.4401 13.4401 13.4401 13.4401 13.4401
SCALE=1.0. ALF*0.0, THETA=0.0, INMODE=4, SCALE=1.0, ALF*0.0, THETA=0.0, INMODE*4, COMP-1, KASS=1, IPATSYH=0, IPATCOP=0, & END (10X12) SCALE=1.0, ALF*0.0, THETA=0.0, INMODE*4,	SCALE=1.0. ALF*0.0, THETA=0.0, INMODE=4, SCALE=1.0, ALF*0.0, THETA=0.0, INMODE*4, COMP-1, KASS=1, IPATSYH=0, IPATCOP=0, & END (10X12) SCALE=1.0, ALF*0.0, THETA=0.0, INMODE*4,	SCALE=1.0. ALF*0.0, THETA=0.0, INMODE=4, SCALE=1.0, ALF*0.0, THETA=0.0, INMODE*4, COMP-1, KASS=1, IPATSYH=0, IPATCOP=0, & END (10X12) SCALE=1.0, ALF*0.0, THETA=0.0, INMODE*4,	0.000 0.000 0.0356 0.1016	0.1987 0.3185 0.5229 0.5828 0.5845 0.5245 0.3966	DEal, TNP(0.2157 0.3966 0.5245 0.5869 0.5828 0.5829 0.04262	-0.1987 -0.1016 -0.0356 -0.0356 -0.0, STY=C PS=0, TINP 0.09 0.0343 0.0980	0.4109 0.5041 0.5618 0.5658 0.3823 0.2079 0.0000 E=1, TNPC 0.2079 0.3823 0.2079	-0.5041 -0.4109 -0.3010 -0.0980 -0.0343 -0.0 E=3, TNPC -0. STY=0	0.0323 0.0923 0.1804 0.3301 0.3871
SCALE=1.0. ALF=0.0, THETA=0.0, INMODE=4, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE>4, COMP-1, KASS=1, IPATSYM=0, IPATCOP=0, &END (10X12) SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,	SCALE=1.0. ALF=0.0, THETA=0.0, INMODE=4, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE>4, COMP-1, KASS=1, IPATSYM=0, IPATCOP=0, &END (10X12) SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,	SCALE=1.0. ALF=0.0, THETA=0.0, INMODE=4, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE>4, COMP-1, KASS=1, IPATSYM=0, IPATCOP=0, &END (10X12) SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,	SECTI STX=0 TNODS=0, TN 97.6187 97.2821 96.2953	94.7256 92.5590 90.5590 87.7410 85.1845 82.8022 80.7565 79.1868	.BPNODE TNOD 78.2000 79.1868 80.7565 82.8022 85.1845 87.7410 90.2976	94.7256 96.2953 97.2821 97.6187 97.6187 SECTI STX=0 17.9631 97.6387 96.6874 96.6874	90.9052 85.9760 81.6793 81.7071 80.1338 79.2425 79.2425 79.2425 79.2425 80.1338 81.7071 81.6793	88.4406 90.9052 93.2019 95.1740 97.6387 97.6387 97.9631 THODS-0, TH	98.1940 98.1940 95.8725 93.0906 91.8516
	8.8554 9.0971 9.1791 9.1791 9.1791 9.1856 10.0854 10.0854 10.0854 10.0854 10.0854 10.0858 10.1882 10.1882 10.1882 10.1882 10.1882 10.0858 9.1750 9.	0.7046 8.8554 0.8296 9.0971 0.8296 9.0971 0.8296 9.0971 0.8210 9.6548 0.276 10.2051 0.276 10.2051 0.276 10.2051 0.277 10.2064 0.273 8.5625 0.5034 8.6857 0.6900 8.8655 0.6900 8.8655 0.6900 8.8655 0.6900 9.3750 0.0000 0.0000 0.0000 0.0000 0.00000		.E = 4 ,	10DE*4,		4 . END		

0.2371 17.756 0.0270 17.756 0.0272 17.7756 0.0272 17.7756 0.0272 17.7756 0.0272 17.7756 0.0272 17.7756 0.0242 20.0540 0.0242 20.0540 0.0352 20.0540 0.1353 20.0540 0.1353 20.0540 0.1353 20.0540 0.1352 20.0540 0.1352 20.0540 0.1369 20.0540 0.0242 20.0540 0.0352 20.0540 0.0360 20.0540 0.0360 20.0540 0.0360 20.0540 0.0360 20.0540 0.0360 20.0540 0.0360 20.0540 0.0360 20.0540 0.0372 20.0540 0.0386 20.0540 0.0397 20.0540 0.0398 20.0540 0.0317 20.099 0.0317 20.099 0.0317 20.099 0.0317 20.099 0.0317 20.099 0.0217 20.099 0.0218 20.0		THETA=0.0, INMODE=4.		THETA=0.0, INMODE=4,		THETA=0.0, INMODE=4.
13.4401 13.4400 13.4400 15.440	C X G	SCALE=1.0,	, 6 END			GEND SCALE=1.0, ALF=0.0,
13.4401 13.4400 15.440	1509 17.7750 1509 17.7750 0772 17.7750 0270 17.7750 00 17.7750 TNPC=0, TINFC=0	STY=0.0, STY=0.0, STY=0.0, END.0, TINTS=0, END.000 20.0540 20.0540 20.0540 20.0540 2126 20.0540	20. 20. 20. 20. 20. 20.	9969 20.0540 3562 20.0540 20	2581 22.1099 2583 22.1099 262 22.1099 270 22.1099 270 22.1099 270 22.1099 270 22.1099 270 22.1099 270 22.1099 270 22.1099 270 22.1099 270 22.1099 270 22.1099 270 22.1099 270 22.1099 270 22.1099	0.1213 22.1099 0.062 22.1099 0.017 22.1099 0.00 22.1099 =3. TMPC=0, TINTC=0, 0. STY=0.0, STZ=0.0, 0.00 23.7415 0.017 23.7415
13.4401 13.4400 15.4960 17.7750	96.1750 0 97.7283 .0 98.9202 .0 99.6694 .0 99.9250 0	6SECTI STRE 0.0. TNODS=0, TNPS=100.6744 100.4451 99.77311 99.77310 99.73106	95.1090 0.91.9469 0.91.9469 0.90.5812 0.90.5912 0.90.5812 0.90.5812 0.90.5812 0.90.5812 0.90.5812 0.90.581	92.2057 -0.99.2057 -0.99.9469 -0.99.7039 -0.99.7731 -0.100.4451 -0.100.4451 -0.100.4451 -0.100.544 -0.101.3504 -0.	95.9413 92.3046 92.3046 90.0556 00.072 89.4948 89.2893 6BPNODE TNODE=1 89.4948 00.0972 91.0556 92.3046 93.7590 93.7590 94.33 96.8807	99.5841 - 0
0.4763 13.4401 0.15601 13.4401 0.19501 13.4401 0.10501 13.4401 0.10501 13.4401 0.10501 13.4401 0.5292 13.4401 0.5292 13.4401 0.5292 13.4401 0.5292 13.4401 0.0293 13.4401 0.0293 13.4401 0.0293 13.4401 0.0298 13.460 0.0298 15.456 0.0298 15.456 0.0298 15.456 0.0298 15.456 0.0298 15.456 0.0298 15.456 0.0298 15.456 0.0298 15.456 0.0298 15.456 0.0298 15.456 0.02000 15.496 0.0298 15.496 0.0318 15.496 0.0321 15.496 0.0321 15.496 0.0321 15.496 0.0321 17.775 0.0321 17.775 0.0321 17.775 0.0321 17.775 0.0321 17.775 0.0321 17.775 0.0321 17.775 0.0321 17.775 0.0321 17.775 0.0425 17.775 0.0425 17.775 0.0425 17.775 0.0425 17.775 0.0425 17.775 0.0445 17.775 0.0445 17.775 0.0445 17.775 0.0451 17.775 0.0451 17.775 0.0461 17.775 0.			THETA=0.0, INMODE=4,		HETA=0.0, INMODE=4,	
			SCALE=1.0. ALF=0.0,		E=1.0, ALF=0.0,	

	& END	& END	QEND		<u> </u>	8 8 8	6 END	C END	6 END	6 END	& END	% END	© END	& END	GEND	%END	QN33		& END	& END	4 END	¢ END	CKEAD	6END		6 END	6 END	
	INTRW≈ 0,	KWPAN1=0,	KWPAN1=0,	KWPAN1=0,	KWPAN1=1,	KWPAN1≃1,	KWPAN1=1,	KWPAN1=13,	KWPAN1=1,	KWPAN1=2,	KWPAN1=1.	KWPAN1=4	KWPAN1=0,	KWPAN1=0,	O- LNAGWY	VNE WINT = 0'	INTRW= 0,	KWPAN1=0,		INTRM= 0,	KWPAN1=0,	INTRW= 0.	KWPAN1=0.	INTRW= 1.	O - LIMAGELY	KWPANI = 0,		
	ITRFTZ= 1,	KWLINE=0, INITIAL=0,	KWLINE=0, INITIAL=0.	KWLINE=0,	KWLINE=15,	KWLINE=3,	INITIAL=0, KWLINE=3,	INITIAL=0, KWLINE=7,	INITIAL=0, KWLINE=7,	INITIAL=0, KWLINE=13,	INITIAL=0, KWLINE=13.	INITIAL=0, KWLINE=15.	INITIAL=0, KWLINE=0,	INITIAL=0, KWLINE=0,	INITIAL=0,	INITIAL=0,	ITRFTZ= 1,	KWLINE=0,	INITIAL=0,	ITRFTZ= 1,	KWLINE=1, INITIAL=0,	ITRFTZ= 1,	KWLINE=1, INITIAL=0	ITRFTZ= 1,	real target	NITIAL=0,		
25.1500 25.1500 25.1500 25.1500 25.1500 25.1500 25.1500 25.1500 25.1500 25.1500 25.1500	IFLXW=1,	KWSIDE=4, NODEW=0,	KWSIDE=4, NODEW=0,	KWSIDE=4,	KWSIDE=3,	KWSIDE=2,	NODEW=0, KWSIDE=2,	NODEW=0, KWSIDE=3,	NODEW=0, KWSIDE=3,	NODEW=0, KWSIDE=4,	NODEW=0, KWSIDE=4,	NODEW=0, KWSIDE=3,	NODEW=0, KWSIDE=2,	NODEW=0, KWSIDE=2,	NODEW=0,	NODEW=5,	IFLXW=1,	KWSIDE=3,	NODEW= 3,	IPLXW=1,	KWSIDE=4, NODEW=3,	IFLXW=1,	KWSIDE=4,	IFLXW=1,	7 30137	NODEW=5,	SL = 1.	
.0.2655 .0.2971 .0.2950 .0.2647 .0.2158 .0.2158 .0.0106 .0.0180 .0.0180	IDWAK≥1, KE rio to rio	&WAKE2 KWPACH=18, KWPAN2=0,	KWPACH=16, KWPAN2=0,	KWPACH=14,	KWPACH=8, KWPAN2-1	KWPACH=10,	KWPAN2=5, KWPACH=12,	KWPAN2=7, KWPACH=12,	KWPAN2=15, KWPACH=11,	KWPAN2=3, KWPACH=11,	KWPAN2=8, KWPACH=9,	KWPAN2=5, KWPACH=7,	KWPAN2=4, KWPACH=13,	KWPAN2=0, KWPACH=15,	KWPAN2=0,	KWPAN2=0,	IDWAK=1,	ENGINE_PYLON WAKE &WAKE2 KWPACH=22,	KWPAN2=0,	IDWAK=1, HORIZ TAII, WAKE	WAKEZ KWPACH=21, KWPAN2=0,	GWAKE1 IDWAK=1,	KWPACH=22, KWPAN2=0	I DWAK=1,	VERT_TAIL_WAKE	KWPACH=23, KWPAN2=0,	CONSTRM NONSL = 0, KPSL	
000 000 000 000 000 000 000 000 000 00	~ 3	2	2	2	2	22	22	22	E2	E2	E2	(E2	KE2	KE2	CHANG	1	KE1	SINE (E2		EJ	E2	E3	E2	E	TT	2	TRM	
93.8145 94.850 96.0559 97.3500 98.6441 98.8500 100.8855 101.6801 102.3500 68PNODE T	&WAKE1	&WAKE	6 WAKE2	6WAKE2	6WAKE2	6 WAKE 2	6WAKE2	&WAKE2	6 WAKE2	6WAKE2	6WAKE2	6WAKE2	6WAKE2	6WAKE2	433	8	6WAKE1	ENGIN 6WAKE2		&WAKE1	6WAKE2	6WAK.	6 WAK	6WAKE1	VER	SWARK	SNO3	
	6 WAKE	6 HAKE	6 HAKE	SHAKE	6 WAKE		, ALF=0.0, THETA=0.0, INMODE=4,	6 WAKI	K K K K K K K K K K K K K K K K K K K	виде	XWA9	AHS	W 8			CCC	6 HAI	EN		9	5=1.0, ALF=0.0, THETA=0.0. INMODE=4,	A FWA COLOR	TACT	NAWA SHAN	VER	8 MARK	SNO9	
7415 7415 7415 7415 7415 7415 7415 7415	415 415 315	3.7415	23.7415 6HAKE			TINTCeO, GEND	0, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4,							4.7890 , TINTC=0, &END	4.7890				24,7890 24,7890 24,7890	1.7020 THATC=0 KEND	STZ=0.0, SCALE=1.0, ALF=0.0, THETA=0.0. INMODE=4, 6.0, 6END							, TIMTC=0, &EMD
C=0, &END	0.2199 23.7415 -0.2908 23.7415 -0.1255 23.7415	222 23.7415 815 23.7415	-0.2364 23.7415 -0.1731 23.7415	23.7415	-0.0197 23.7415 0.00 7 23.7415	TAPC=0, TINTC=0, &END	=0.0, STY=0.0, STZ=0.0, SCALE=1.0, ALF=0.0, THETA=0.0, INMODE=4, TNPS=0, TINTS=0, &END	0.00 24.7890 0.0184 24.7890		0.1619 24.7890 0.2210 24.7890	0.2692 24.7890 0.3022 24.7890	0.3044 24.7890 0.3720 24.7890	24.7890 24.7890	0.0000 24.7890 10DE=1, TWPC=0, TINTC=0, &EMD	4.7890	24.7890	24.7890 24.7890	-0.2210 24.7890 -0.619 24.7890	-0.1030 24,7890 -0.0527 24,7890 -0.0527 24,7890	24.7020 24.7030 24.7030 6 ThMTC= 0 FRID	STZ=0.0, SCALE=1.0, ALF=0.0, THETA=0.0. INMODE=4, 6.0, 6END	0.00 25.1500 0.0180 25.1500	25.1200 25.1500 25.1500	0.2158 25.1500	0.2950 25.1500	.2971 25.1500 .2652 25.1500	0.1092 25.1500 0.0000 25.1500	NODE=1, TNPC=0, TINTC=0, & END

2000	0.000	0 0 0	0
6 END 6 END 6 END 6 END 6 END	GEND GEND GEND GEND	6 END	& END
			7,
5R= 1, 0, 20,	INTVSC= 1,	11 II	000, 0.500, INTSL= 1, 5000.
INTVSR NPT1= NPT2= NPT3=	INTV	INTSI	11 ,00
0.1000, INTVSR* 1 0.1000, NPT1= 0, 0.1000, NPT2= 20, 0.1000, NPT3= 25,	0.0000, INTVSC= 1 0.0000, 1.0000, PHI2=360.	7.5000, 0.100, INTSL= 1, 7.5000, 0.100, INTSL= 1,	7.5000, 0.500
0000	0 ~	2	2 " 2
20: 21: 22: 23:	2.0000, ZR0= 2.0000, ZR1= 2.0000, ZR2= 1.0000, PH11= 2.	2.50000, SZ0= 2.0000, DS= 0.00000, SZ0= 2.0000, DS=	2.50000, SZ0= 100.0000, DS=
1.5000, 1.5000, 1.5000,	2.0000, ZR0= 2.0000, ZR1= 2.0000, ZR 1.0000, PH11	.50000, S20= 2.0000, DS= 0.00000, SZ(50000,
	2.2.	2 0 2	2
NVOLC= 0, Y0= 1 Y1= 1 Y2= 1	0000, YR0= 0000, YR1= 2.0000, YR2= 1000, R2= NPHI=	SYO= SYO= SYO= SYO=	5000, SY0; 15.0000, SD;
0, .0.1000, .0.1000, .0.1000, 1.1000,	2.0000, YR0= 4.0000, YR1= 2.0000, YR 0.1000, R2= 5, NPHI	4, .6.5000, SY0= 2.0000, SD= -8.25000, SY0= 2.0000, SD=	.6.5000, SYO= 15.0000, SD= 8.25000 SYO=
0000	2.	. 10	9 0
MVOL.R = 0, X 0 = .0 X 1 = .0 X 2 = .0 X 3 = .1	XR0 = XR1 = XR2 = R1 = NRAD=	NSTLIN=4. SX0= · 6 SU= · 6 SX0= · 6	SX0= SU= SV=
6VS1 6VS2 6VS3 6VS3 6VS3	6.V.S.9 6.V.S.9 6.V.S.9 6.V.S.9	6SLIN1 6SLIN2 6SLIN2	6.SL1N2

APPENDIX D

MATLAB SCRIPT FOR DYNAMIC MODE ANALYSIS

```
% froguav.m: This MATLAB script calculates FROG UAV dynamics. Eigenvalue modal analysis
           and response to control input is obtained for three aerodynamic models.
%
clear
% Calculate trim lift and drag coefficients
% FROG Trim condition
      W = 67.73;
                                   % lbs
      m = W/32.2;
                                   % slugs
       S = 2530/144;
                                   % ft^2, 2530 in^2
                                   % ft/s = 1056 in/s
       V = 88;
                                   % trim mach number
      M = V/1118;
                                  % ft = 20 in
      cbar = 20/12;
                                  % ft = 124 in
      b = 126.5/12;
      rho = 0.002327;
                                  % slugs/ft^3 800 ft MSL std day
      cruise_HP = 5;
      etaP = 0.35;
       L D=7;
      CL0 = 0.4295;
      Ixx = 12.52; Iyy = 8.43; Izz = 18.55; Ixz=0; %slugs-ft^2
       q = 0.5*rho*(V)^2;
       CL = W/(q*S);
% Input the non-dimensional stab derivatives:
for i = 1:3
if i==1
  source='CMARC'
    Longitudinal Stability Derivatives
  D_LD=W/L_D;CD_LD = D_L_D/(q*S);
                                                % Drag from Lift to Drag Ratio
  Tr=cruise_HP*etaP*550/V; CD_Tr=Tr/(q*S);
                                                % Drag from thrust required calculation
  CD=(CD L D + CD Tr)/2;
                                                 % CD averaged from both methods
  CLalpha = 4.845; CDalpha = 0.2664; CMalpha = -0.4126;
  CLalphadot = 1.420; CMalphadot = -6.264; CDalphadot = 0;
                                                              % Assumed to be small
  alphatrim = 0;
                                  % radians
  theta0 = alphatrim;
  CLmach = 0; CDmach = 0; CMmach = 0;
                                                               % Assumed to be small
  CLq = 6.82; CMq = -11.78; CDq = 0;
  CLde = 0.4378; CMde = -1.199; CDde = 0.0092;
                                                               % Induced drag contribution only
      Lateral - Directional Stability Derivatives
  CYbeta = -0.2493; Clbeta = -0.0630; Cnbeta = 0.0630;
  Clp = -0.4514; Cnp = -0.0220; CYp = 0.0488;
  Clr = 0.1210; Cnr = -0.1210; CYr = 0.3370;
  Cldr = 0.0040; Cndr = -0.0453; CYdr = 0.0928;
  Clda = 0.1943; Cnda = -0.0121; CYda = -0.0206;
 elseif i==2
  source='Classical Analysis'
     Longitudinal Stability Derivatives
  D L D=W/L D;CD L D = D L D/(q*S);
                                                % Drag from Lift to Drag Ratio
  Tr=cruise_HP*etaP*550/V; CD_Tr=Tr/(q*S);
                                                 % Drag from thrust required calculation
                                                 % CD averaged from both methods
  CD=(CD_L_D + CD_Tr)/2;
  CLalpha = 4.82; CDalpha = 0.253; CMalpha = -0.70 % d_epsilon/d_alpha = 0.40
  CLalphadot = 1.56; CMalphadot = -4.14; CDalphadot = 0;
                                                               % Assumed to be small
  alphatrim = 0;
                                                                % radians
  theta0 = alphatrim;
  CLmach = 0; CDmach = 0; CMmach = 0;
  CLq = 3.89; CMq = -11.39; CDq = 0;
                                                               % Assumed to be small
  CLde = 0.39; CMde = -1.04; CDde = 0.00;
```

```
Lateral - Directional Stability Derivatives
 CYbeta = -0.511; Clbeta = -0.055; Cnbeta = 0.051;
 Clp = -0.300; Cnp = -0.072; CYp = 0;
                                                                           % Assumed to be small
 Clr = 0.168; Cnr = -0.0762; CYr = 0.140;
 Cldr = 0.0056; Cndr = -0.0341; CYdr = 0.081;
 Clda = 0.213; Cnda = -0.0236; CYda = -0.00;
else
    source='Parameter_Analysis'
    Longitudinal Stability Derivatives
 CL = 0.4295; CD = 0.0614;
 CLalpha = 4.0907; CDalpha = 0.23; CMalpha = -0.4174;
 CLalphadot = 1.3877; CMalphadot = -3.7115; CDalphadot = 0;
                                                                         % Assumed to be small
 alphatrim = 0;
                                    % radians
 theta0 = alphatrim;
 CLmach = 0; CDmach = 0; CMmach = 0;
 CLq = 3.35; CMq = -8.8818; CDq = 0;
                                                                          % Assumed to be small
 CLde = 1.1249; CMde = -1.6208; CDde = 0.0676;
   Lateral - Directional Stability Derivatives
 CYbeta = -0.9867; Clbeta = -0.0942; Cnbeta = 0.1755;
 Clp = -0.4483; Cnp = -0.1077; CYp = 0;
                                                                          % Assumed to be small
 Clr = 0.2078; Cnr = -0.1212; CYr = 0.1096;
 Cldr = 0.0004; Cndr = -0.0785; CYdr = 0.0926;
 Clda = 0.2387; Cnda = -0.0261; CYda = 0;
end
 % Calculate the Dimensional Stability Derivatives
Xu = -q*S/(m*V)*(2*CD+M*CDmach);
                                           % Xu - 1/sec , assumes dCD/dM=0 (ie no Mach effect)
                                           % Xalpha - ft/sec^2
 Xalpha = q*S/m*(CL-CDalpha);
 Xalphadot = -q*S/m*cbar/(2*V)*CDalphadot; % Xalphadot - ft/sec
 Xq = -q*S/m*cbar/(2*V)*CDq;
                                            % Xq - ft/sec
 Xde = -q*S/m*CDde;
                                            % Xde - ft/sec^2
                                            % Zu - 1/sec , assumes dCL/dM=0 (ie no Mach effect)
 Zu = -q*S/(m*V)*(2*CL+M*CLmach);
                                        % Zalpha - ft/sec^2
     Zalpha = -q*S/m*(CD+CLalpha);
     Zalphadot = -q*S/m*cbar/(2*V)*CLalphadot; % Zalphadot - ft/sec
                                                   % Zq - ft/sec
% Zde - ft/sec^2
 Zq = -q*S/m*cbar/(2*V)*CLq;
 Zde = -q*S/m*CLde;
 Mu = q*S*cbar/(Iyy*V)*CMmach;
                                                    % Mu - ft/sec
 Malpha = q*S*cbar/Iyy*CMalpha;
                                                    % Malpha - 1/sec^2
 Malphadot = q*S*cbar/Iyy*cbar/(2*V)*CMalphadot;
                                                  % Malphadot - 1/sec
                                                   % Mq - 1/sec
% Mde - 1/sec^2
 Mq = q*S*cbar/Iyy*cbar/(2*V)*CMq;
 Mde = q*S*cbar/Iyy*CMde;
 % Linearized Longitudinal 4x4 Plant Matrix
 % Form the An Bn and In plant matrices
 \label{eq:analytical_angle} \text{An} = [\text{V*Xu Xalpha 0 -32.17*cos(theta0); V*Zu Zalpha (V+Zq) -32.17*sin(theta0);}
 V*Mu Malpha Mq 0; 0 0 1 0];
 Bn = [Xde Zde Mde 0]';
 In = [V 0 0 0; 0 (V-Zalphadot) 0 0; 0 -Malphadot 1 0; 0 0 0 1];
 A = inv(In)*An;
 B = inv(In)*Bn;
 % Find Short and Long Period Natural Frequency and damping
 out=source
 out='Longitudinal mode E-values'
 P = poly(A);
```

```
R = roots(P)
   out='Short Period'
   phi = angle(R);
   Z1(i) = (1/(1+tan(phi(1))^2))^.5
   Wn1(i) = real(R(1))/(-Z1(i))
   Wd1(i) = (1-Z1(i)^2)^.5*Wn1(i);
   Tdl(i) = 2*pi/Wdl(i);
 out='Long Period'
   Z3(i) = (1/(1+tan(phi(3))^2))^.5
   Wn3(i) = real(R(3))/(-Z3(i))

Wd3(i) = (1-Z3(i)^2)^5.5*Wn3(i);
   Td3(i) = 2*pi/Wd3(i);
 out='Step response'
   C1=[1 0 0 0;0 1 0 0;0 0 1 0; 0 0 0 1]; D1=0;
   U=zeros(1001,1);
   U(101:1001) = -2/57.3;
   t = (0:.01:10);
   SYS=ss(A, B, C1, D1);
   [Y,T] = lsim(SYS,U,t);
   tl=t:
   de s=U*57.3;
   alpha s(:,i)=Y(:,2)*57.3;
   pr_s(:,i)=Y(:,3)*57.3;
   theta_s(:,i)=Y(:,4)*57.3;
  C1=[1 0 0 0;0 1 0 0;0 0 1 0; 0 0 0 1]; D1=0;
   U=zeros(1001,1);
   U(101:160) = -5/57.3;
   U(161:220)=5/57.3;
   t=(0:.01:10);
  SYS=ss(A,B,C1,D1);
   [Y,T] = lsim(SYS,U,t);
   tl=t;
  de d=U*57.3;
   alpha_d(:,i) = Y(:,2) * 57.3;
   pr_d(:,i)=Y(:,3)*57.3;
   theta d(:,i)=Y(:,4)*57.3;
% Lateral-Directional 4x4 Plant Matrix
 % Calculate the Dimensional Stability Derivatives
  Ybeta = q*S/m*(CYbeta);
                                                        % Ybeta - ft/sec^2
                                                        % Yp - ft/sec
  Yp = q*S/m*b/(2*V)*CYp;
  Yr = q*S/m*b/(2*V)*CYr;
                                                        % Yr - ft/sec
                                                        % Yda - ft/sec^2
  Yda = q*S/m*CYda;
                                                        % Ydr - ft/sec^2
  Ydr = q*S/m*CYdr;
  Lbeta = q*S*b/Ixx*(Clbeta);
                                                        % Lbeta - 1/sec^2
  Lp = q*S*b/Ixx*b/(2*V)*Clp;
                                                        % Lp - 1/sec
  Lr = q*S*b/Ixx*b/(2*V)*Clr;
                                                        % Lr - 1/sec
  Lda = q*S*b/Ixx*Clda;
                                                        % Lda - 1/sec^2
                                                        % Ldr - 1/sec^2
  Ldr = q*S*b/Ixx*Cldr;
  Nbeta = q*S*b/Izz*(Cnbeta);
                                                        % Nbeta - 1/sec^2
                                                        % Np - 1/sec
  Np = q*S*b/Izz*b/(2*V)*Cnp;
  Nr = q*S*b/Izz*b/(2*V)*Cnr;
                                                        % Nr - 1/sec
                                                        % Nda - 1/sec^2
% Ndr - 1/sec^2
  Nda = q*S*b/Izz*Cnda;
  Ndr = q*S*b/Izz*Cndr;
   % Linearized Longitudinal 4x4 Plant Matrix
   source
```

```
longmodes='Lateral Directional 4x4 Plant Matrix'
   % Form the An Bn and In plant matrices
  Cn = [Ybeta Yp 32.17*cos(theta0) (Yr-V); Lbeta Lp 0 Lr; 0 1 0 0; Nbeta Np 0 Nr];
  Dn = [Yda Lda 0 Nda; Ydr Ldr 0 Ndr]';
  IIn = [V 0 0 0; 0 1 0 -Ixz/Ixx; 0 0 1 0; 0 -Ixz/Izz 0 1];
  C = inv(IIn)*Cn;
  D = inv(IIn)*Dn;
  % Find Dutch roll, roll and spiral Natural Frequency and damping
  out='Lateral Directional mode E-values'
  P1 = poly(C);
  R1 = roots(P1)
if i==1
  out='Dutch Roll Mode'
  phi = angle(R1);
  Z_2(i) = (1/(1+tan(phi(2))^2))^.5
  Wn2(i) = real(R1(2))/(-Z2(i))
  Wd2(i) = (1-Z2(i)^2)^5.5*Wn2(i);
  Td2(i) = 2*pi/Wd2(i);
 out='Roll Mode'
 roll(i) = (R1(1))
 out='Spiral Mode'
 Spiral(i) = (R1(4));
elseif i==2
  out='Dutch Roll Mode'
  phi = angle(R1);
  Z_2(i) = (1/(1+tan(phi(1))^2))^.5
  Wn2(i) = real(R1(1))/(-Z2(i))
  Wd2(i) = (1-Z2(i)^2)^.5*Wn2(i);
  Td2(i) = 2*pi/Wd2(i);
  out='Roll Mode'
  roll(i) = (R1(3))
  out='Spiral Mode'
  Spiral(i) = (R1(4));
else
  out='Dutch Roll Mode'
  phi = angle(R1);
  Z2(i) = (1/(1+tan(phi(1))^2))^.5
  Wn2(i) = real(R1(1))/(-Z2(i))
  Wd2(i) = (1-Z2(i)^2)^.5*Wn2(i);
  Td2(i) = 2*pi/Wd2(i);
  out='Roll Mode'
  roll(i) = (R1(3))
  out='Spiral Mode'
  Spiral(i) = (R1(4))
end
% Aileron step
  C1=[1 0 0 0;0 1 0 0;0 0 1 0; 0 0 0 1]; D1=0;
  U=zeros(1001,2);
  U(101:1001,1)=2/57.3;
   t = (0:.01:10);
   SYS=ss(C,D,C1,D1);
   [Y,T] = lsim(SYS,U,t);
```

```
tld=t:
   da sa=U*57.3;
   rr_sa(:,i)=Y(:,2)*57.3;
   phi_sa(:,i)=Y(:,3)*57.3;
   beta sa(:,i)=Y(:,1)*57.3;
   % Aileron doublet
   C1=[1 0 0 0;0 1 0 0;0 0 1 0; 0 0 0 1]; D1=0;
   U=zeros(1001,2);
   U(101:175,1) = -5/57.3;
  U(176:250,1)=5/57.3;
   t = (0:.01:10):
   SYS=ss(C,D,C1,D1);
   [Y,T]=lsim(SYS,U,t);
  tld=t;
  da_da=U*57.3;
  rr_da(:,i)=Y(:,2)*57.3;
   phi_da(:,i)=Y(:,3)*57.3;
  beta_da(:,i)=Y(:,1)*57.3;
% Rudder step
  C1=[1 0 0 0;0 1 0 0;0 0 1 0; 0 0 0 1]; D1=0;
  U=zeros(101,2);
  U(101:1001,2)=2/57.3;
  t=(0:.01:10);
  SYS=ss(C,D,C1,D1);
   [Y,T] = lsim(SYS,U,t);
  tld=t:
  dr sr=U*57.3;
  beta_sr(:,i)=Y(:,1)*57.3;
  lr_sr(:,i)=Y(:,2)*57.3;
  rr_sr(:,i)=Y(:,4)*57.3;
  % Rudder doublet
  C1=[1 0 0 0;0 1 0 0;0 0 1 0; 0 0 0 1]; D1=0;
  U=zeros(1001,2);
  U(101:175,2) = -5/57.3;
  U(176:250,2)=5/57.3;
  t = (0:.01:10);
  SYS=ss(C,D,C1,D1);
   [Y,T] = lsim(SYS,U,t);
  tld=t:
  dr dr=U*57.3;
  beta_dr(:,i) =Y(:,1)*57.3;
  lr_dr(:,i) = Y(:,2) *57.3;
  rr_dr(:,i)=Y(:,4)*57.3;
end
% Plot Responses
% Plot Elevator Step Response
subplot(4,1,1), plot(tl,de s),title('LONGITUDINAL RESPONSE TO A 2 DEGREE ELEVATOR STEP
INPUT'),ylabel('Elevator (deg)'),axis([0 5 -4 4]),grid
subplot(4,1,2), plot(tl,alpha_s(:,1),'-.',tl,alpha_s(:,2),'--',tl,alpha_s(:,3),'-'),ylabel('A.O.A
(deg)'),axis([0 5 -5 10]),grid
subplot(4,1,3)\,,\,\,plot(tl,pr\_s(:,1)\,,'--',tl,pr\_s(:,2)\,,'--',tl,pr\_s(:,3)\,,'-')\,,ylabel('q-1)
(deg/s)'),axis([0 5 -20 20]),grid
subplot(4,1,4), plot(tl,theta_s(:,1),'--',tl,theta_s(:,2),'--',tl,theta_s(:,3),'--'), ylabel('Theta_s(:,2),'--',tl,theta_s(:,3),'--')
(deg)'),grid
xlabel('Time (sec)') ,axis([0 5 -10 50]), pause,
legend('CMARC','Classical','Parameter Est
% Plot Elevator Doublet Response
figure
```

```
subplot(4,1,1), plot(tl,de_d),title('LONGITUDINAL RESPONSE TO A 5 DEGREE ELEVATOR
DOUBLET'), ylabel('Elevator (deg)'), axis([0 5 -10 10]), grid
subplot(4,1,2), plot(tl,alpha_d(:,1),'-.',tl,alpha_d(:,2),'--',tl,alpha_d(:,3),'-'),ylabel('A.O.A
(deg)'),axis([0 5 -12 12]),grid
 subplot(4,1,3), plot(tl,pr_d(:,1),'-.',tl,pr_d(:,2),'--',tl,pr_d(:,3),'-'),ylabel('q
(deg/s)'),axis([0 5 -60 50]),grid
(deg)'),grid
xlabel('Time (sec)'),,axis([0 5 -10 30]),pause
legend('CMARC','Classical','Parameter Est
% Plot Aileron Step Response
figure
subplot(4,1,1), plot(tld,da_sa(:,1)),title('LATERAL-DIRECTIONAL RESPONSE TO A 2 DEGREE AILERON
STEP INPUT'), ylabel('Aileron (deg)'), axis([0 5 -4 4]), grid
subplot(4,1,2), plot(tld,rr_sa(:,1),'-.',tld,rr_sa(:,2),'--',tld,rr sa(:,3),'-'),ylabel('p
(deg/s)'),axis([0 5 -10 25]),grid
subplot(4,1,3), plot(tld,phi_sa(:,1),'-.',tld,phi_sa(:,2),'--',tld,phi_sa(:,3),'-'),ylabel('Bank
Angle (deg)'),axis([0 5 -10 70]),grid
subplot(4,1,4), plot(tld,beta_sa(:,1),'-.',tld,beta_sa(:,2),'--',tld,beta_sa(:,3),'-
'), ylabel('Beta (deg)'), grid
xlabel('Time (sec)') ,axis([0 5 -5 10]), pause,
legend('CMARC','Classical','Parameter Est
% Plot Aileron Doublet Response
figure
subplot(4,1,1), plot(tld,da da(:,1)),title('LATERAL-DIRECTIONAL RESPONSE TO A 5 DEGREE AILERON
DOUBLET'), ylabel('Aileron (deg)'), axis([0 8 -10 10]), grid
subplot(4,1,2), plot(tld,rr_da(:,1),'-.',tld,rr_da(:,2),'--',tld,rr_da(:,3),'-'),ylabel('p
(deg/s)'),axis([0 8 -50 60]),grid
subplot(4,1,3), plot(tld,phi_da(:,1),'-.',tld,phi_da(:,2),'--',tld,phi_da(:,3),'-'),ylabel('Bank
Angle (deg)'),axis([0 8 -30 10]),grid
subplot(4,1,4), plot(tld,beta_da(:,1),'-.',tld,beta_da(:,2),'--',tld,beta_da(:,3),'-
'),ylabel('Beta (deg)'),grid
xlabel('Time (sec)'),axis([0 8 -10 15]), pause,
legend('CMARC','Classical','Parameter Est
 % Plot Rudder Step Response
figure
subplot(4,1,1), plot(tld,dr_sr(:,2)),title('LATERAL-DIRECTIONAL RESPONSE TO A 2 DEGREE RUDDER STEP
INPUT'),ylabel('Rudder (deg)'),axis([0 8 -4 4]),grid
subplot(4,1,2), plot(tld,beta_sr(:,1),'-.',tld,beta_sr(:,2),'--',tld,beta_sr(:,3),'-
'),ylabel('Beta (deg)'),axis([0 8 -1 3]),grid
subplot(4,1,3), plot(tld,rr_sr(:,1),'-.',tld,rr_sr(:,2),'--',tld,rr_sr(:,3),'-'),ylabel('r
(deg/s)'),axis([0 8 -10 5]),grid
subplot(4,1,4), plot(tld,lr_sr(:,1),'--',tld,lr_sr(:,2),'--',tld,lr_sr(:,3),'-'), ylabel('plane)
(deg/s)'),grid
xlabel('Time (sec)'), axis([0 8 -5 10]), pause,
legend('CMARC','Classical','Parameter Est
% Plot Rudder Doublet Response
subplot(4,1,1), plot(tld,dr_dr(:,2)),title('LATERAL-DIRECTIONAL RESPONSE TO A 5 DEGREE RUDDER
DOUBLET'), ylabel('Rudder (deg)'), axis([0 8 -10 10]), grid
subplot(4,1,2), plot(tld,beta dr(:,1),'--',tld,beta dr(:,2),'--',tld,beta dr(:,3),'-
'),ylabel('Beta (deg)'),axis([0 8 -10 10]),grid
subplot(4,1,3), plot(tld,rr_dr(:,1),'--',tld,rr_dr(:,2),'--',tld,rr_dr(:,3),'-'), ylabel('r,1)
(deg/s)'),axis([0 8 -30 30]),grid
subplot(4,1,4), plot(tld,lr_dr(:,1),'-.',tld,lr_dr(:,2),'--',tld,lr_dr(:,3),'-'), ylabel('plane)
(deg)'),grid
xlabel('Time (sec)'), ,axis([0 8 -20 20]),pause,
legend('CMARC','Classical','Parameter Est
```

LIST OF REFERENCES

- 1. Pollard, S., "Evaluation of the CMARC Panel Code Software Suite for the Development of a UAV Aerodynamic Model," Master's Thesis, Naval Postgraduate School, Monterey, CA, June 1997.
- 2. Papageorgiou, E., "Development of a Dynamic Model for a UAV," Master's Thesis, Naval Postgraduate School, Monterey, CA, March 1997.
- 3. Garrison, P., and Pinella, D., *CMARC User's Guide*, AeroLogic, Inc, http://www.iac.net/~aerol, 1996.
- 4. Bertin, J. J., and Smith, M. L., Aerodynamics for Engineers, Prentice Hall, 1989.
- 5. Ashby, D. L., Dudley, M. R., Iguchi, S. K., Browne, L., and Katz, J., *Potential Flow Theory and Operation Guide for the Panel Code PMARC_12*, NASA TM-102851, Ames Research Center, Moffet Field, CA., December 1992.
- 6. Anderson, J. D., Fundamentals of Aerodynamics, McGraw-Hill, Inc., 1991.
- 7. Lambert, M. A., Evaluation of the NASA-AMES Panel Method (PMARC) for Aerodynamic Missile Design, Master's Thesis, Naval Postgraduate School, CA, September, 1995.
- 8. Tuncer, I. H., and Platzer, M. F., *PMARC Potential Flow Solutions with Wakes Over an Ogive Cylinder at High Incidence*, AIAA Paper No. 97-1968, American Institute of Aeronautics and Astronautics, June 1997.
- 9. Cebeci, T., "Computation of Three-Dimensional Boundary Layers Including Separation," VKI Lecture Series, Douglas Aircraft Company, April 1986.
- 10. Young, A. D., Boundary Layers, American Institute of Aeronautics, 1989.
- 11. Performance Phase Textbook-Volume I, USAF Test Pilot School, Edwards AFB, CA., June 1988.
- 12. Roskam, J., *Airplane Flight Dynamics and Automatic Flight Controls*, Roskam Aviation and Engineering Corporation, 1979.
- 13. Etkin, B., *Dynamics of Flight Stability and Control*, John Wiley & Sons, Inc., 1959.

- 14. Schmidt, L, V., *Introduction to Aircraft Flight Dynamics*, American Institute of Aeronautics and Astronautics, 1998.
- 15. Roskam, J., Methods for Estimating Stability and Control Derivatives of Conventional Subsonic Airplanes, Roskam Aviation and Engineering Corporation, 1971.
- 16. Nicolai, L. M., Fundamentals of AIRCRAFT DESIGN, METs, Inc., 1984.
- 17. Walden, A. B., van Dam, C. P., and Brandon, J. M., Modeling of the Interaction Between a Lifting Wing and a Following Aircraft and Comparison with Experimental Results, AIAA 96-0771, 34th Aerospace Sciences Meeting and Exhibit, Reno, NV, January 1996.

INITIAL DISTRIBUTION LIST

1.	Defense Technical Information Center. 2 8725 John J. Kingman Road, Ste 0944 Ft. Belvoir, VA 22060-6218
2.	Dudley Knox Library
3.	Chairman
4.	Dr. Max F. Platzer
5.	Dr. Louis. V. Schmidt
6.	Dr. Isaac I. Kaminer
7.	Dr. Kevin Jones

8.	CDR Stephen J. Pollard. 2
	Department of Aviation Safety
	Naval Postgraduate School
	1588 Cunningham Road, Room E-303
	Monterey, CA 93943-5202
9.	Peter Garrison
	AeroLogic, Inc.
	1613 Altivo Way
	Los Angeles, CA 90026

