МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМ. М.В. ЛОМОНОСОВА

Механико-математический факультет

Курсовая работа

Студент 3 курса: Нагорных Я.В. Научный руководитель: Богачев К.Ю.

Содержание

Bı	ведение								
1	Проблемы и способы их решения								
2	Описание алгоритма								
	2.1 Используемые структуры и классы								
	2.2 Распределение задач								
	2.3 Преобразование чисел в строковый тип								
	2.3.1 Grisu								
	2.3.2 Grisu2								
	2.3.3 Еще что-то								
3	Результаты работы и ускорение								
4	Заключение								

Введение

Печать большив массивов чисел всегда занимает много времени. Кроме того, у печати данных мало ресурсов для ускорения.

Печать чисел с плавающей запятой также является проблемой, так как само значение числа и его экспоненту нельзя обрабатывать независимо.

Стандартный подход недостаточно точен и в некоторых случаях дает неверные результаты. Кроме того использование функций стандартных библиотек (printf, sprintf) достаточно затратно по времени.

Цели работы:

- 1. Ускорить печать больших массивов;
- 2. Использовать быстрые алгоритмы печати целых чисел и чисел с плавающей точкой.

1 Проблемы и способы их решения

Как уже было сказано, у печати массивов мало ресурсов для ускорения. Также проблемой является и то, что печать данных файл должна быть строго последовательной, поэтому нельзя "простым" образом использовать распараллеливание.

Однако, известно что большую часть времени занимает преобразование типа **int** или **double** в буффер типа **const char** * непосредственно для печати. Именно это можно и распараллелить, используя многопоточное программирование. Непосредственно печать в сам файл упирается в возможности диска. Ее ускорить нельзя.

Кроме того, можно заменить стандартный алгоритм преобразования числа в строку, на более быстрые. Мы будем использовать алгоритм Grisu2 для печати вещественных чисел и SSE2 для печати целых чисел, о которых будет рассказано позже.

2 Описание алгоритма

2.1 Используемые структуры и классы

Структура writer_chunk. В ней находится элемент класса writer_file, строковый буффер (готовый для печати) и его порядковый номер (chunk_id). Кроме того, хранится флаг, является ли этот writer_chunk последним.

Kласс writer_file. Он организовывает правильную и последовательную печать готовых буферов в файл.

Структура printer_chunk. Этот тип состоит из лямбда-функии, которая должна обработать определенный фрагмент массива чисел, и элемента типа writer_chunk, возвращаемый функцией.

Класс mutex_wait_queue. Это реализация блокирующей очереди, или мьютексной очереди. Под ней понимается очередь со следующим свойством: когда поток пытается прочитать что-то из пустой очереди, то он блокируется, до тех пор, пока какой-нибудь другой поток не положит в нее элемент. У этой очереди есть следующие методы:

- dequeue достает верхний элемент из очереди, если очередь непустая. Иначе, поток, вызвавший этот метод блокируется. Также можно передать время блокировки, по истечении которого, поток разблокируется и вернется ни с чем;
- dequeue_all аналогично dequeue, но достает все элементы, находящиеся в очереди, и складывает в указатель вектор из них;
- enqueue складывает элемент в конец очереди.

Knacc parallel_writer. Он хранит в себе поток m_writer и вектор потоков m_printer. Поток m_writer будет заниматься печатью в файл. Потоки m_printers занимаются тем, что конвертируют элементы типа printer_chunk (числа) в элементы типа writer_chunk (строки). Помимо потоков и их количества этот класс хранит две блокирующие очереди m_print_queue и m_write_queue, состоящие из printer_chunk и writer_chunk соответственно. Зачем нужны такие очереди будет сказано позже.

2.2 Распределение задач

Управляющий (главный) поток будет складывать элементы типа printer_chunk в очередь m_print_queue. Потоки m_printers будут доставать из этой очереди printer_chunk-и на обработку. Они должны конвертировать числа в буфферы, готовые для печати. Эти готовые буфферы writer_chunk они складывают в другую очередь m_write_queue. Поток m_writer должен забирать готовые буфферы из этой очереди и печатать их в правильном порядке в файл.

Схематично работа потоков показана на Рисунке 1.

2.3 Преобразование чисел в строковый тип

В статье [1] описан алгоритм **Grisu** и его улучшения, также доказана их точность. Опишем кратко эти алгоритмы.

2.3.1 Grisu

Используемые обозначения. Как известно, числа с 5 на конце, могут округляться по-разному. Используем следующие обозначения:

- $[x] \uparrow$ округление вверх
- $[x]^{\square}$ округление до ближайшего четного (то есть число 0, 5 округляется до 0, а число 1, 5 до 2)

Рисунок 1: Работа потоков.

- $[x]^*$ когда неважно, как именно округлять.
- $\tilde{x} = [x]_p^s$ округленное число до p знаков после запятой, а s один из выше-изложенных способов округления.

Ошибка: $x = f \times b^e$ должно быть округлено до ближайшего $|\tilde{x} - x| \leq 0, 5 \times b^e$, другими словами, до половины ulp (unit in the last place).

 $v = f_v \times b^{e_v}$ – положительное число. v^- – предыдущее число для v, хранящееся в памяти. Аналогично v^+ – следующее число за v. Если v наименьшее, то $v^- = 0$. Если v наибольшее, то $v^+ = v + (v - v^-)$.

Определим diy_fp для x как беззнаковое целое число f_x , состоящее из q битов, и знакового целого числа e_x неограниченного диапазона. Значение x можно вычислить как $x = f_x \times 2^{e_x}$. Очевидно произведение двух таких типов отличатся от обычного. Вычислять и обозначать его будем следующим образом:

$$x \otimes y := \left[\frac{f_x \times f_y}{2^q}\right]^{\uparrow} \times 2^{e_x + e_y + q}$$

Идея алгоритма. Предполагается, не умаляя общности, что у числа с плавающей точкой v отрицательный показатель. Тогда это число можно выразить как $v=\frac{f_v}{2^{-e_v}}$, где f_v — мантисса, а e_v — экспонента. Десятичные цифры v могут быть вычислены путем нахождения десятичного показателя t, для которого $1\leqslant \frac{f_v\times 10^t}{2^{-e_v}}<10$.

Первая цифра является целой частью этой дроби. Последующие цифры вычисляются путем повторного использования оставшейся дроби: нужно умножить числитель на 10 и взять целую часть от вновь полученной дроби.

Идея Grisu состоит в том, чтобы кешировать приблизительные значения $\frac{10^{\circ}}{2^{e_t}}$. Дорогих операций с большими числами не будет: они заменяются операциями с целыми числами фиксированного размера.

Кэш для всевозможных значений t и e_t может быть дорогостоящим. Из-за этого требования к кеш-памяти в Grisu упрощены. Кэш хранит только нормированные приближения с плавающей точкой всех соответствующих степеней десяти: $\tilde{c}_k := \begin{bmatrix} 10^k \end{bmatrix}_q^*$, где q – точность кэшированных чисел. Кэшированные числа сокращают большую часть экспоненты v, так что остается только небольшой показатель.

Процесс генерации цифр использует степени десяти с экспонентой $e_{\tilde{c}_t}$, близкой к e_v . Разница между двумя показателями будет небольшой.

Фактически, Grisu выбирает степени десяти так, что разница лежит в определенном диапазоне.

Реализация. Алгоритм Grisu:

- Bxod: положительное число с плавающей точкой v точности p.
- Условие: точность diy_fp удовлетворяет $q \geqslant p+2$, а кеш степеней десяти состоит из предварительно вычисленных нормированных округленных diy_fp значений $\tilde{c_k} := \left\lceil 10^k \right\rceil_q^*$
- *Вывод:* строковое представление в основании 10 для V такое, что $[V]_p^{\square} = v$. То есть V должен быть округлен до v при чтении вновь.

Шаги алгоритма:

- 1. Преобразование: определим нормированный $diy_f p w$ такой, что w = v.
- 2. Кэширование степеней: находим с заданной точностью $\tilde{c}_{-k} = f_c \times 2^{e_c}$ такое, что $\alpha \leqslant e_c + e_w + q \leqslant \gamma$.
- 3. Произведение: пусть $\tilde{D} = f_D \times 2^{e_D} := w \otimes \tilde{c}_{-k}$.
- 4. Bыход: определим искомое $V := \tilde{D} \times 10^k$. Вычислим десятичное представление \tilde{D} , за которым следует строка е и десятичное представление k.

Поскольку значение diy_fp больше, чем значение входного числа, преобразование шага 1 дает точный результат. По определению diy_fp-ы имеют бесконечный диапазон экспоненциальности и показатель степени w, следовательно, достаточно велик для нормирования. Заметим, что показатель e_w удовлетворяет $e_w \leqslant e_v - (q - p)$.

Легко показать, что $\forall i, 0 < \tilde{e}_{c_i} - \tilde{e}_{c_{i-1}} \leqslant 4$, и поскольку кеш неограничен, требуемый \tilde{c}_{-k} должен находиться в кеше. Это является причиной первоначального требования $\gamma \geqslant \alpha + 3$.

Разумеется, бесконечный кеш не нужен. k зависит только от типа номера с плавающей точкой ввода (его диапазон экспоненты), точности diy_fp и пары α и γ .

Результатом Grisu является строка, содержащая десятичное представление \tilde{D} , за которым следуют символ е и k знаков. Таким образом, он представляет собой число $V:=\tilde{D}\times 10^k$. Утверждается, что V дает v при округлении до числа с плавающей точкой с точностью p.

2.3.2 Grisu2

Но у Grisu есть недостаток: так число 1 будет напечатано в виде 10000000000000000000=19. Поэтому будем использовать Grisu2. Этот алгоритм является усовершенствованием предыдущего и не записывает лишние нули в конец числа. Так если целочисленный тип diy_fp содержит более двух дополнительных битов, то эти биты могут использоваться для сокращения выходной строки. В отличие от Grisu, Grisu2 не генерирует полное десятичное представление, а просто вовзвращает цифры (123) и соответствующий показатель (-2). Затем процедура форматирования объединяет эти данные для получения представления в требуемом формате.

Идея алгоритма. Как описано выше, **Grisu2** использует дополнительные биты для создания более короткой выходной строчки. Также **Grisu2** не будет работать с точными числами, а вместо этого будет вычислять аппроксимации m^- и m^+ . Чтобы избежать ошибочных результатов, которые не удовлетворяют требованиям, добавляется "безопасное пространство" (safety margin) вокруг приблизительных границ. Как следствие, **Grisu2** иногда может вернуть не самое оптимальное представление, которое может лежать вне нужных изначально границ. Также это safety-margin требует от нас изменить предварительное условие. Действительно, используя только 2 дополнительных бита, вычисление настолько неточно, что **Grisu2** может закончиться ничем. Чтобы таких проблем избежать добавляется третий дополнительный бит: $q \geqslant p+3$.

Реализация. Алгоритм Grisu2:

- Bxod: положительное число с плавающей точкой v точности p.
- Условие: точность diy_fp удовлетворяет $q\geqslant p+3$, а кеш степеней десяти состоит из предварительно вычисленных нормированных округленных diy_fp значений $\tilde{c_k}:=\left[10^k\right]_q^*$
- *Вывод:* десятичные знаки d_i , где $0 \le i \le n$ и целочисленное K, такое что $V := d_0 \dots d_n \times 10^K$ удовлетворяет $[V]_p^\square = v$.

Шаги алгоритма:

- 1. Границы: вычисляем границы для $v: m^-$ и m^+ .
- 2. Преобразование: определим diy_fp w^+ так ,что $w^+ = m^+$. Определим также diy_fp w^- так, что $w^- = m^-$ и $e_w^- = e_w^+$.

- 3. *Кэширование степеней:* находим с заданной точностью $\tilde{c}_{-k} = f_c \times 2^{e_c}$ такое, что $\alpha \leqslant e_c + e_w + q \leqslant \gamma$.
- 4. Произведение: вычисляем $\tilde{M}^- := w^- \otimes \tilde{c}_{-k}, \ \tilde{M}^+ := w^+ \otimes \tilde{c}_{-k}, \ и$ пусть $M_{\uparrow}^- := \tilde{M}^- + 1$ ulp, $M_{\downarrow}^+ := \tilde{M}^+ 1$ ulp, $\delta := M_{\downarrow}^+ M_{\uparrow}^-.$
- 5. Количество разрядов: находим наибольшее κ такое, что $M_{\downarrow}^+ \mod 10^{\kappa} \leqslant \delta$ и определим $P:=\left\lfloor \frac{M_{\downarrow}^+}{10^{\kappa}} \right\rfloor$.
- 6. Bыход: определим $V:=P\times 10^{k+\kappa}$. Десятичные знаки d_i и n получены путем вычисления десятичного представления P. Положим $K:=k+\kappa$ и возвращаем его с n знаками d_i .

Grisu2 не дает никаких гарантий относительно краткости результата. Его результатом является кратчайшее возможное число в интервале от $M_{\uparrow}^- \times 10^k$ до $M_{\downarrow}^+ \times 10^k$ включительно, где $M_{\uparrow}^- \times 10^k$ и $M_{\downarrow}^+ \times 10^k$ зависят от точности q для diy_fp. Чем больше q, тем ближе $M_{\uparrow}^- \times 10^k$ и $M_{\downarrow}^+ \times 10^k$ к фактическим границам m^- и m^+ .

2.3.3 Еще что-то

Будем использовать следующее улучшение. Если в массиве есть n подряд идущих одинаковых чисел x, то будем записывать их как n*x. Таким образом, если в нашем массиве много повторяющихся чисел, то выходная строчка будет гораздо короче, а значит, можно сэкономить память и время работы программы.

Для преобразования целых чисел используется алгоритм SSE2, о котором подробнее написано в статье [2]. Суть алгоритма заключается в быстром логарифмировании числа по основанию 10.

3 Результаты работы и ускорение

Время работы в секундах для массива с разными случайными числами представлено в следующей таблице:

Размер		Число	Стандартная		
массива	16	12	4	1	печать
	0.609	0.550	0.880	3.196	4.256
10000000	0.567	0.500	0.841	3.239	4.176
	0.506	0.473	0.802	3.052	4.188
	2.420	2.528	4.044	15.377	22.476
50000000	2.522	2.446	4.273	16.309	21.116
	2.587	2.339	4.179	15.327	20.893
100000000	5.025	4.665	8.276	32.461	41.712
	4.787	4.630	7.970	30.571	41.785
	4.844	4.544	8.078	30.757	41.961

Время работы на массиве с множеством повторяющихся чисел:

Размер		Число п	Стандартная		
массива	16	12	4	1	печать
	0.318	0.249	0.188	0.652	3.645
10000000	0.334	0.256	0.190	0.629	3.622
	0.307	0.251	0.192	0.661	3.620
	1.657	1.274	0.884	3.183	18.412
50000000	1.505	1.247	0.891	3.167	18.306
	1.522	1.262	0.894	3.175	18.261
100000000	3.105	2.441	1.726	6.306	36.194
	2.983	2.453	1.820	6.329	36.388
	3.246	2.505	1.759	6.339	36.419
	16.194	12.575	8.681	31.505	181.221
500000000	16.414	12.564	8.787	31.291	181.406
	15.815	12.555	8.764	31.690	182.524

4 Заключение

Список литературы

- [1] FLORIAN LOITSCH. Printing Floating-Point Numbers Quickly and Accurately with Integers, 2004.
- [2] WOJCIECH MULA. SSE: conversion integers to decimal representation, 2011