Numerische Lösung von Differentialgleichungen

(s. auch Applet auf www.mathematik.ch)

Voraussetzungen und Zielsetzung

Wir kennen bereits von früher her die Differentialgleichung (DGL) y' = g(y) = ky mit ihrer exakten Lösungsgesamtheit $y = f(x) = Ce^{kx}$ ($C \in \mathbb{R}$)

Wir werden uns später mit weiteren Differentialgleichungen befassen und ihre exakten Lösungen suchen. Hier geht es um die numerische Lösung.

Voraussetzung: Gegeben sei eine DGL der Form y' = g(x,y) mit der Anfangsbedingung $y_0 = f(x_0)$. (Startpunkt (x_0 / y_0))

Gesucht: Funktionswert $y_1 = f(x_1)$ an der Stelle $x_1 = x_0 + h$

1. Methode von Euler (Linearisierung)

 $y_0' = g(x_0, y_0)$ gibt die Steigung der Tangente an den (gesuchten) Graphen G_f im Punkt (x_0 / y_0) an.

Daher gilt:
$$\frac{y_1 * - y_0}{x_1 - x_0} = g(x_0, y_0)$$

Mit $h = x_1 - x_0$ folgt:

$$y_1 \approx y_1^* = y_0 + h g(x_0, y_0) := y_0 + h g_0$$

Berechnet man auf diese Weise y_2 für $x_2 = x_1+h$, dann y_3 usw., so wird der Fehler i.a. viel zu gross, d.h. das Euler-Verfahren ist in der Praxis unbrauchbar.

2. Methode von Heun

Man integriert die Differentialgleichung $y' = \frac{dy}{dx} = g(x,y)$ auf beiden Seiten über das Intervall $[x_0, x_1]$ nach x:

1

$$\int\limits_{x_0}^{x_1} \frac{dy}{dx} \, dx = \int\limits_{x_0}^{x_1} g(x,y) \, dx$$

$$f(x_1) - f(x_0) = y_1 - y_0 = \int_{x_0}^{x_1} g(x, y) dx$$
, also $y_1 = y_0 + \int_{x_0}^{x_1} g(x, y) dx$

Das bestimmte Integral $\int_{x_0}^{x_1} g(x,y) dx$ wird nun mit Hilfe der Trapezregel für n = 1

(s. Numerische Integration T(1)) berechnet:

$$y_1 = y_0 + \frac{h}{2} (g(x_0, y_0) + g(x_1, y_1))$$

Dabei ist zu beachten, dass der (unbekannte!) Wert y_1 benützt werden muss. Dieser Wert wird mit Hilfe der Euler-Methode durch y_1^* approximiert: $y_1^* = y_0 + h g(x_0, y_0) := y_0 + h g_0$

Definiert man $g_1^* := g(x_1, y_1^*)$, so gilt in der Kurzform:

Methode von Heun:
$$y_1 = y_0 + \frac{h}{2} (g_0 + g_1^*)$$
 mit $y_1^* = y_0 + h g_0$

Damit kann nun analog y_2 für $x_2 = x_1+h$, dann y_3 usw. berechnet werden. Eventuell muss die Schrittweite h bei den weiteren Schritten angepasst werden!

Beispiel

Gegeben: DGL y' =
$$g(x,y) = -xy$$
, $x_0 = 0$, $y_0 = 1$, $h = 0.1$, also $x_1 = 0.1$

Gesucht:
$$y_1 = f(0.1) = ?$$

Lösung:

$$g_0 = g(x_0, y_0) = g(0,1) = -0 \cdot 1 = 0 \; , \qquad y_1{}^* = 1 + 0.1 \cdot 0 = 1 \; \text{(L\"osung nach Euler!)}$$

$$g_1{}^* = g(x_1, y_1{}^*) = g(0.1,1) = -0.1$$

$$y_1 \approx y_0 + \frac{h}{2} (g_0 + g_1^*) = 1 + 0.05 \cdot (0 - 0.1) = \underline{0.995}$$

{Nebenbei: Die exakte Lösung der DGL mit der genannten Anfangsbedingung ist $y = f(x) = e^{\frac{-x^2}{2}}$, der 'exakte' Wert für y_1 also $y_1 = 0.9950124792...$ }

Aufgabe:

Man gehe vom obenstehendem Beispiel und vom Wert $y_1 = 0.995$ für $x_1 = 0.1$ aus und berechne mit der Methode von Heun den Wert $y_2 = f(0.2)$.

3. Methode von Runge-Kutta

Wie bei der Methode von Heun integriert man die Differentialgleichung y' = g(x,y). Das bestimmte Integral wird nun aber nicht mit der Trapez- sondern mit der Simpsonregel (s. Numerische Integration S(2)) berechnet. Dies bedingt aber, dass man über das Doppelintervall $[x_0, x_2]$ mit $x_2 = x_0 + 2h$ integrieren muss. Folglich muss zusätzlich der Wert $y_1 = f(x_1) = f(x_0 + h)$ bekannt sein. Dieser Wert y_1 wird mit dem Verfahren von Heun berechnet. Es gilt dann:

$$y_2 = y_0 + \int_{x_0}^{x_2} g(x, y) dx = y_0 + \frac{h}{3} (g(x_0, y_0) + 4g(x_1, y_1) + g(x_2, y_2^*))$$

mit y₂* als Näherungswert für das gesuchte y₂.

Abgekürzt: $y_2 := y_0 + \frac{h}{3} (g_0 + 4g_1 + g_2^*)$

Zur Berechnung von y2*:

Da man $A(x_0, y_0)$, wegen der Methode von Heun $B(x_1, y_1)$ und die Werte der Ableitungen $f'(x_0) = g(x_0, y_0) = g_0$ und $f'(x_1) = g(x_1, y_1) = g_1$ kennt, so kann man den Graphen G_f durch eine Polynomfunktion k dritten Grades annähern:

k:
$$P(x) = ax^3 + bx^2 + cx + d$$

 $P'(x) = 3ax^2 + 2bx + c$

Man erhält die folgenden vier Gleichungen für die vier Unbekannten a, b, c und d:

$$y_0 = ax_0^3 + bx_0^2 + cx_0 + d$$

 $y_1 = ax_1^3 + bx_1^2 + cx_1 + d$ mit $x_1 = x_0 + h$
 $g_0 = 3ax_0^2 + 2bx_0 + c$
 $g_1 = 3ax_1^2 + 2bx_1 + c$ mit $x_1 = x_0 + h$

Als Resultat für y₂* folgt:

$$y_2^* = P(x_2) = P(x_0 + 2h) = 5y_0 - 4y_1 + 2h g_0 + 4h g_1$$
 (Beweis als Aufgabe!)

Es gilt also für y₂:

$$y_2 = y_0 + \frac{h}{3}(g_0 + 4g_1 + g_2^*)$$
 mit $y_2^* = 5y_0 - 4y_1 + 2h g_0 + 4h g_1$

Setzt man den gemäss Methode von Heun berechneten Wert für y_1 $y_1 = y_0 + \frac{h}{2}(g_0 + g_1^*)$ mit $y_1^* = y_0 + h g_0$ bei y_2^* ein, so gilt:

$$y_2^* = 5y_0 - 4(y_0 + \frac{h}{2}(g_0 + g_1^*)) + 2h g_0 + 4h g_1 =$$

$$= 5y_0 - 4y_0 - 2h g_0 - 2h g_1^* + 2h g_0 + 4h g_1,$$
also $y_2^* = y_0 - 2h g_1^* + 4h g_1$ mit $y_1^* = y_0 + h g_0$

Nun fasst man die zwei Integrationsschritte zu einem einzigen zusammen, d.h. 2h wird durch h, g_1 durch $g_{1/2}$, y_1 durch $y_{1/2}$, g_2 durch g_1 und g_2 durch g_1 ersetzt:

$$y_{1/2}^* = y_0 + \frac{h}{2} g_0$$
, $y_{1/2} = y_0 + \frac{h}{4} (g_0 + g_{1/2}^*)$, $y_1^* = y_0 - h g_{1/2}^* + 2h g_{1/2}$
 $y_1 = y_0 + \frac{h}{6} (g_0 + 4g_{1/2} + g_1^*)$)

Mit den folgenden Definitionen für k_1 bis k_4 erhält man so die Formeln für die Methode 'Runge-Kutta 1. Art':

$$\begin{aligned} k_1 &:= h \ g_0 = h \ g(x_0, y_0) \quad , \quad k_2 := h \ g(x_0 + \frac{h}{2} \, , \, y_0 + \frac{k_1}{2} \,) \ , \\ k_3 &:= h \ g(x_0 + \frac{h}{2} \, , \, y_0 + \frac{k_1}{4} + \frac{k_2}{4} \,) \ , \quad k_4 := h \ g(x_0 + h, \, y_0 - k_2 + 2k_3) \\ y_1 &= y_0 + \frac{1}{6} \left(\ k_1 + 4k_3 + k_4 \right) \end{aligned}$$

In der DMK-Formelsammlung stehen die (praxisnäheren) Formeln für die Methode 'Runge-Kutta 2. Art':

Beachten Sie eine eventuelle Steuerung der Schrittweite!

Beispiel (nach Runge-Kutta 2. Art)

Gegeben: DGL y' =
$$g(x,y) = -xy$$
, $x_0 = 0$, $y_0 = 1$, $h = 0.1$, also $x_1 = 0.1$

Gesucht:
$$y_1 = f(0.1) = ?$$

Lösung:

$$\begin{aligned} k_1 &= h \ g(x_0, \, y_0) = -0.1 \cdot 0 \cdot 1 = 0 \ , \qquad k_2 = h \ g(x_0 + \frac{h}{2} \, , \, y_0 + \frac{k_1}{2} \,) = -0.1 \cdot 0.05 = -0.005 \\ k_3 &= h \ g(x_0 + \frac{h}{2} \, , \, y_0 + \frac{k_2}{2} \,) = -0.1 \cdot 0.05 \cdot 0.9975 = -0.0049875 \\ k_4 &= h \ g(x_0 + h, \, y_0 + k_3) = -0.1 \cdot 0.1 \cdot 0.9950125 = -0.009950125 \\ y_1 &\approx y_0 + \frac{1}{6} \left(\ k_1 + 2k_2 + 2k_3 + k_4 \right) = 1 + \frac{1}{6} \left(-0.029925125 \right) \approx \underline{0.99501247917} \end{aligned}$$