# 抽象代数笔记

#### 詹奇

Last updated: September 22, 2024

## **Contents**

| 1. | 域与线性空间                 | . 1 |
|----|------------------------|-----|
|    | 1.1. 定义与例子             | 1   |
|    | 1.2. 域的同态              |     |
|    | 1.3. <mark>域的特征</mark> | 3   |
|    | 1.4. 域的扩张              | ٠.  |
|    | 1.5. 代数闭包              |     |
|    | 1.6. Galois 群初探        |     |
| 2  | 环与模                    |     |
| 2. | ポー侯<br>群与群作用           | . / |
| J. | 群与群1F用                 | . / |
| 4. | Galois 理化              | . 7 |

本文是刘思齐老师的抽象代数课程笔记。

# 1. 域与线性空间

# 1.1. 定义与例子

定义 1.1.1 (域). 一个域系指以下资料:

- 1. 集合 F, 有  $1_F$ ,  $0_F \in F$  满足  $1_F \neq 0_F$ , 有时简写为 1, 0.
- 2. F 上的加法记为 +, 满足加法结合律, 加法交换律, 有加法单位元 0 与加法逆元 -a. (这保障了加法逆元 是唯一的).
- 3. F 上的乘法记为 \*, 满足乘法结合律, 乘法交换律, 有乘法单位元 1, 对于非零元 a, 有乘法逆元  $a^{-1}$ . (这保障了乘法逆元是唯一的).
- 4. 乘法对加法的分配律成立.

注记. 我们记 F\* 为 F 中所有非零元素的集合.

为了说明为什么我们要求  $0_F \neq 1_F$ , 有以下引理:

引理 1.1.1.

- 1.  $0_F \cdot 0_F = 0_F$ .
- 2.  $\forall x \in F, x \cdot 0_F = 0_F$

证明.

- 1.  $0_F = 0_F + 0_F = 0_F \cdot 0_F + 0_F \cdot 0_F$ , 两边减去  $0_F \cdot 0_F$  即得.
- 2.  $x \cdot 0_F = x \cdot (0_F + 0_F) = x \cdot 0_F + x \cdot 0_F$ , 两边减去  $x \cdot 0_F$  即得.

由此可见, 若  $0_F=1_F$ , 那么 F 中所有元素满足  $x=x\cdot 1_F=x\cdot 0_F=0_f$ , 这显然不是我们所期望的. 同理, 若对于域 F 上的  $0_F$  有逆元, 那么我们有  $0_F=a\cdot 0_F=1_F$ , 又推出了域中所有元素都是  $0_F$ .

例子 1.1.1 (域).

- 1. 有理数域 ℚ, 实数域 ℝ, 复数域 ℂ, 对于我们熟知的加法和乘法运算构成域.
- 2.  $F = \mathbb{Q}(\sqrt{2}) = \{x + \sqrt{2}y \mid x, y \in \mathbb{Q}\}.$
- 3.  $F = \mathbb{Q}(\sqrt[3]{2}) = \left\{ x + \sqrt[3]{2}y \mid x, y \in \mathbb{Q} \right\}$
- 4.  $F = \mathbb{Q}(\sqrt{2}, \sqrt{3}) = \{x_1 + x_2\sqrt{2} + x_3\sqrt{3} + x_4\sqrt{4} \mid x_i \in \mathbb{Q}\}.$
- 5. 任取素数  $p, F = \mathbb{Z}_p = \{0, 1, 2, ..., p-1\}$ , 其中加法和乘法都是模 p 的. 其中乘法逆的存在是不显然的. 对于 F 中任意一个非零元 k, 有, 我们考虑映射  $T: F_P^* \to F_P^*: y \mapsto ky$ , 易证 T 是双射, 从而存在逆元 m 使得 km = 1.
- 6. 设 F 是一个域,则  $F(x) = \left\{\frac{P(x)}{Q(x)} \mid P(x), Q(x) \in F[x], Q(x) \neq 0\right\}$  同样构成域.
- 7.  $k = \mathbb{C}(x, \sqrt{x^3 + 2})$ , 可以视作  $\mathbb{C}(x)(y)$  其中  $y^2 = x^3 + 2$ , 则  $k = \{R_1(x) + R_{x(y)} \mid R_1, R_2 \in \mathbb{C}(x)\}$ .

- 1. 对于任意  $u, v, w \in V$ , 有 u + (v + w) = (u + v) + w.
- 2. 对于任意  $v \in V$ , 有 v + 0 = v.
- 3. 对于任意  $v \in V$ , 存在  $w \in V$ , 使得 v + w = 0.
- 4. 对于任意  $v \in V$ , 有 1v = v.
- 5. 对于任意  $a, b \in F, v \in V$ , 有 a(bv) = (ab)v.
- 6. 对于任意  $a \in F, u, v \in V$ , 有 a(u+v) = au + av.
- 7. 对于任意  $a, b \in F, v \in V$ , 有 (a + b)v = av + bv.

线性空间的观点对于研究域的结构有很大的帮助,例如我们可以将  $\mathbb{Q}(\sqrt{2})$  视作  $\mathbb{Q}$  上的二维线性空间.  $\mathbb{R}$  可以视作  $\mathbb{Q}$  上的无穷维线性空间.

例子 1.1.2.  $\mathbb{F}_4 = \mathbb{F}_2(\alpha) = \{x + \alpha y \mid x, y \in \mathbb{F}_2\}$ . 其中的问题是我们该取什么样的  $\alpha$ . 考虑  $\mathbb{F}_2[x]$  上的所有二次多项式  $f(x) = x^2 + px + q$ , 及  $x^2, x^2 + x, x^2 + 1, x^2 + x + 1$ . 其中前三个都是可约的, 所以我们取  $\alpha$  满足  $\alpha^2 + \alpha + 1 = 0$ .

# 1.2. 域的同态

我们先从线性空间上的同态(线性映射)开始.

定义 1.2.1 (线性映射). 设  $V_1, V_2$  是域 F 的线性空间, 若映射  $f: V_1 \to V_2$  满足:

- 1. 对于任意  $u, v \in V_1$ , 有 f(u+v) = f(u) + f(v).
- 2. 对于任意  $a \in F, v \in V_1$ , 有 f(av) = af(v).

那么我们称 f 是一个线性空间的同态, 即线性映射.

类似地,我们可以定义域的同态.

定义 1.2.2 (域的同态). 设  $F_1, F_2$  是域, 若映射  $f: F_1 \to F_2$  满足:

- 1.  $f(0_{F_1}) = 0_{F_2}, f(1_{F_1}) = 1_{F_2}$
- 2. 对于任意  $a, b \in F_1$ , 有 f(a + b) = f(a) + f(b).
- 3. 对于任意  $a, b \in F_1$ , 有 f(ab) = f(a)f(b).

那么我们称 f 是域的同态.

不同于群和环的同态,事实上域的同态是一个"没什么用"的概念,有下面的定理:

定理 1.2.1. 设  $F_1, F_2$  是域,  $f: F_1 \to F_2$  是域的同态, 则 f 是单射.

证明. 设  $a,b \in F_1$  满足 f(a) = f(b). 设 x = b - a. 若  $x \neq 0$ , 那么存在  $y \in F_1$ , 使得 xy = 1. 那么有  $0 \cdot f(y) = (f(b) - f(a)) \cdot f(y) = f(1) = 1$ , 矛盾. 所以 x = 0, 即 a = b.

这也就说明若存在一个  $\varphi: F_1 \to F_2$ , 那么我们视  $F_1$  为  $F_2$  的子域, 所以在研究域的时候, 我们不关心域的 同态, 而更关心子域和域扩张的概念.

定义 1.2.3 (子域与扩域). 设 F 是域, 若 E 是 F 的子集, 且 E 也构成域, 那么我们称 E 是 F 的子域, 同时称 F 是 E 的扩域, 记为 F/E.

定义 1.2.4 (域的同构). 设  $F_1$ ,  $F_2$  是域, 若存在双射  $\varphi: F_1 \to F_2$ , 且满足域的同态, 那么我们称  $F_1$  与  $F_2$  是同构的. 若  $F_1 = F_2$ , 我们称  $\varphi$  是域  $F_1$  的自同构. 我们称在自同构下不变的元素为域  $F_1$  的不动域.

#### 例子 1.2.1.

- 1.  $\mathbb{R}/\mathbb{Q}$ ,  $\mathbb{C}/\mathbb{R}$ ,  $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$ ,  $\mathbb{F}_4/\mathbb{F}_2$ .
- 2.  $f: \mathbb{C} \to \mathbb{C}, x+iy \mapsto x-iy$  是域  $\mathbb{C}$  的自同构, 其中不动域是实数域  $\mathbb{R}$ .
- 3.  $\mathbb{Q}(\sqrt{2})$  与  $\mathbb{Q}(\sqrt{3})$  不存在同态.

事实上,  $\mathbb{Q}$ ,  $\mathbb{F}_n$  是某种程度上的"最小"域, 我们有以下定理:

定理 1.2.2.  $\mathbb{Q}$ ,  $\mathbb{F}_p$  没有真子域.

定理 1.2.3. 若 F 是 E 的扩域, 则 F 是 E 上的线性空间, 我们记  $[F:E]=\dim_E F$ , 称为 F/E 的次数. 若  $[F:E]<\infty$ , 则称 F/E 为有限扩张.

# 1.3. 域的特征

定义 1.3.1 (域的特征). 设 F 是域, 若存在最小的正整数 n, 使得  $n1_F=0_F$ , 那么我们称 n 为域 F 的特征, 记为 char(F)=n. 若不存在这样的 n, 我们称 F 的特征为 0.

容易看出如果域的特征是正的,那么它一定是素数. 若  $\mathrm{char}(F)=0$ ,那么  $\mathbb Q$  是 F 的子域; 若  $\mathrm{char}(F)=p$ ,那么  $\mathbb F_p$  是 F 的子域. (注意这里的子域可以看作是存在一个域同态而不是严格的包含). 这就是说明了每个域都是  $\mathbb Q$  或  $\mathbb F_p$  的扩域.

在正特征的域上有一个有趣的运算. 若 char F=p>0, 我们考虑  $(x+y)^p$ , 由二项式定理, 我们有:  $(x+y)^p=x^p+y^p+C_p^1x^{p-1}y+...+C_p^{p-1}xy^{p-1}+y^p=x^p+y^p$ . 我们记 $\sigma:F\to F$  满足 $x\mapsto x^p$ , 由上面的性质容易发现 $\sigma$ 是一个域同构, 我们称 $\sigma$ 为域F的 Frobenius 自同构.

## 1.4. 域的扩张

定义 1.4.1. 设 E/F 是一个域扩张, 对于 E 中的子集 S, 有 F(S) 为 E 中包含  $F \cup S$  的最小子域, 称为 F 在 S 上生成的域. 若 S 是有限的且 F(S) = E, 我们称 E 是由 F 上的有限生成扩张. 若对 E 的任意有限子集,  $F(S) \neq E$ , 则称 E 为无限生成的.

#### 例子 1.4.1.

- 1.  $\mathbb{Q}(\sqrt{2})$  是  $\mathbb{Q}$  上的有限生成扩张, 也是有限扩张.
- 2.  $\mathbb{R}(x)$  有理函数域是  $\mathbb{R}$  上的有限生成扩张, 但不是有限扩张.
- 3.  $F = \mathbb{Q}, E = \mathbb{Q}\left(2^{\frac{1}{2^k}}\right), k = 1, 2, \dots$  我们考虑逐步添加元素.  $E_1 = \mathbb{Q}\left(2^{\frac{1}{2}}\right), E_2 = E_1\left(2^{\frac{1}{2^2}}\right) = \mathbb{Q}\left(2^{\frac{1}{2^k}}\right)$ , 容易得到  $E_k = \mathbb{Q}\left(2^{\frac{1}{2^k}}\right)$ .  $F = E_0 \subseteq E_1 \subseteq \dots, E = \bigcup_{k=1}^{\infty} E_k$ .

我们研究的域扩张要解决的问题:一个尽可能简单的域扩张是什么样的?

定理 1.4.1. 有限扩张一定是有限生成扩张, 反之不然.

证明. 若 [E:F]=n,可推得  $E=\operatorname{Span}_{F(e_1,...,e_n)}$ , $E=F(e_1,...,e_n)$ .

定义 1.4.2 (代数扩张与超越扩张). 设扩域 E/F, 若  $u \in E$  存在 f(u) = 0,  $f \neq 0$ ,  $f \in F[x]$ , 则称 u 为 F 上的代数元. 若  $\frac{E}{F}$  中的每个元素都是代数元, 则称 E/F 为代数扩张. 若存在  $u \in E$  使得 u 不是任何  $f \in F[x]$  的根, 则称 u 为超越元, E/F 为超越扩张.

#### 例子 1.4.2.

- 1.  $\mathbb{Q}(\sqrt{2})$  为代数扩张.
- 2.  $\mathbb{Q}(x)$ ,  $\mathbb{Q}(\pi)$  为超越扩张.

现在我们有了三个"不太大"的扩张,有限扩张,有限生成扩张和代数扩张,我们的目标是理解这三个概念之间的关系,从而理解域上较小的扩张是什么样的.

我们先证明一些有关代数数的性质.

引理 1.4.1. 设 E/F,  $\alpha$ ,  $\beta$  是 F 上的代数元, 则  $\alpha + \beta$  和  $\alpha\beta$  也是代数元.

这一引理有不同的证法. 一种证法基于对称多项式的理论直接构造出对应的多项式, 我们这里给出另一种证法.

证明. 设  $f(\alpha)=0, f\in F[x], g(\beta)=0, g\in F[x], \deg f=n, \deg g=m$ . 定义  $h(y)=R_x(f(x),g(y-x))\in F[y]$ . 其中  $R_{x(A[x],B[x])}$  为多项式 A,B 关于变量 x 的结式. 我们断言  $h(\alpha+\beta)=0$ , 这是因为 f(x) 与  $g(\alpha+\beta-x)$  有公共根  $x=\alpha$ . 对于  $\alpha\beta$  同理.

现在我们来看具体的关系.

定理 1.4.2. 有限扩张一定是代数扩张, 反之不然.

证明. 设 [E/F]=n 是有限扩张, 对于任意  $u\in E$ , 我们要找  $f\in F[x]$  使得 f(u)=0. 考虑  $1,u,u^2,...\in E$ . 由  $\dim_F(E)=n$ , 所以  $1,u,u^2,...,u^n$  F —线性相关, 所以存在  $b_0,...,b_n\in F$  不全为 0, 使得  $b_0+b_1u+...+b_nu^n=0$ , 故 u 是代数元.

反例:  $F=\mathbb{Q}$ ,  $E=\mathbb{Q}\left(2^{\frac{1}{2^{k}}}\right)$ , k=1,2,... 是代数扩张, 但不是有限生成扩张, 更不是有限扩张.

由上文的例子我们知道代数扩张不能推出有限生成扩张,有限生成扩张也不能推出代数扩张.看起来代数扩张和有限生成扩张都是不太好的扩张,但下面的定理告诉我们,有限生成扩张和代数扩张的交集是一个很好的扩张.

定理 1.4.3. 有限生成的代数扩张是有限扩张. 具体来说, 对于域扩张 E/F, 以下两个事实等价:

- 1. E/F 是有限扩张.
- 2.  $E = F(u_1, ..., u_n)$ , 其中  $u_1, ..., u_n$  是 F 上的代数元. 此时 E/F 是代数扩张.
- 1. (1) => (2). 设  $[E:F]=n,u_1,...u_n$  是 E/F 的基,则  $E=F(u_1,...,u_n)$ . 因为 E/F 是代数扩张,所以  $u_1,...,u_n$  是代数元.
- 2. (2) => (1). 为了证明这一点, 我们需要一些定义和引理.

定义 1.4.3 (中间域). 设 E/F, 则域 K 是 E 和 F 的中间域, 若  $F \subseteq K \subseteq E$ .

例子 1.4.3. 下图即为中间域的一个例子.



引理 1.4.2 (维数公式). 设 E/F 是有限扩张, K 是一个中间域, 则 [E:F]=[E:K][K:F].

证明.有限维线性空间的线性子空间自然也是有限的.设  $u_1,...,u_n$  是 K/F 的基, $v_1,...,v_m$  是 E/K 的基,下面构造 E/F 的基.对于  $\beta \in E$ ,存在  $\alpha_1,...,\alpha_m \in K$  使得  $\beta = \alpha_1 v_1 + ... + \alpha_m v_m$ ,对于每个  $\alpha_i$  存在  $a_{i1},...,a_{in} \in F$ ,使得  $\alpha_1 = a_{ii}u_1 + ... + a_{in}u_n$ ,整理可得  $\beta = \sum_{i=1}^m \sum_{j=1}^n a_{ij}u_jv_i$ .所以  $\dim_F E \leq n \cdot m$ .下证  $u_jv_i$  线性无关.设  $\sum_{i,j}c_{ij}u_jv_i = 0$ ,推得  $\sum_i \left(\sum_j c_{ij}u_j\right)v_i = 0$ .由  $v_1,...,v_m$  线性无关,所以  $\sum_i c_{ij}u_j = 0$ ,由  $u_1,...,u_n$  线性无关,得  $c_{ij} = 0$ .

引理 1.4.3. 单代数扩张是有限扩张.

证明. 设 E = F(u),  $u \in F$  上的代数元, 我们要证明  $[E:F] < \infty$ . 设  $f \in F(x)$ ,  $f \neq 0$  使得 f(u) = 0, 并且 f 是满足该条件的次数最小的首一多项式. 设  $\deg f = n$ , 则  $E = f(u) = \operatorname{Span}_F(1, u, ..., u^{n-1})$ , 由此  $\dim_F E = n$ , 是有限的.

回到我们想要证明的结论, 我们同样可以逐个添加元素.  $F\subseteq F(u_1)\subseteq F(u_1,u_2)\subseteq\ldots\subseteq F(u_1,\ldots,u_n)$ . 每次的扩张都是单代数扩张, 也就是有限扩张, 维数就是有限的. 而由维数公式我们知道最终的维数也就是  $[F(u_1,u_2):F(u_1)]\cdot [F(u_1):F]\cdot\ldots$ 

至此,我们证明了有限生成的代数扩张一定是有限扩张.□

定理 1.4.4. 若  $F \subseteq K \subseteq E$ , 其中 K/F 代数, E/K 代数, 那么 E/K 代数.

证明. 设  $\alpha \in E$ , 存在  $f \in K[x]$ ,  $f \neq 0$ ,  $f(\alpha) = 0$ . 设  $f(x) = x^n + a_1 x^{n-1} + ... + a^n$ ,  $a_i \in K$ . 设  $K' = F(a_1, ..., a^n)$ , 注意到  $a_1, ..., a_n$  在 F 上代数,则 K'/F 是有限扩张. 再注意到  $K'(\alpha)/K'$  是一个单扩张,所以  $K'(\alpha)/K'$  是有限扩张, 可得  $[K'(\alpha):F] = [K'(\alpha)][K':F] = \infty$ , 也是有限扩张. 因为  $F \subseteq K'$ ,所以  $F(\alpha) \subseteq K'(\alpha)$  也是有限扩张. 所以  $F(\alpha)$  是代数扩张,  $\alpha$  是代数元.

# 1.5. 代数闭包

上一节我们考虑的是小的扩张长什么样,这一节我们讨论大的扩张,尤其是大的代数扩张.

定义 1.5.1 (代数闭包). 设 F 是域, 若 E/F 是代数扩张,  $K = \{\alpha \in E \mid \alpha$ 在E 代数 $\}$ , 显然 K 是中间域, 我们称 K 是 F 在 E 中的代数闭包.

若 K 没有真代数扩张, 我们称 K 是代数闭域.

若 K/F 是代数扩张且 K 是代数闭域, 我们称 K 是 F 的一个(绝对)代数闭包.

例如 ℂ 就是代数闭的.

定理 1.5.1. ℚ 在 ℂ 中的相对代数闭包就是 ℚ 的一个绝对代数闭包.

证明. 我们证明一个更一般的版本: E 是代数闭的, F 是 E 的子域, K 是 F 在 E 中的代数闭包, 则 K 是 F 的绝对代数闭包.

只需证明 K 是代数闭的. 假设 K' 是 K 的一个代数扩张,  $\alpha \in K'$ , 则由  $\alpha$  的极小多项式  $f(x) \in K[x]$ , 因为  $K \subseteq E$ , 所以  $f(x) \in E[x]$ , 所以  $f(x) = (x - \alpha_1)...(x - \alpha_n) \in K[x]$ ,  $a_i \in E$ . 另一方面  $\alpha_i$  是 K 上的代数元, 因为 K 是相对代数闭包, 所以  $a_i \in K$ , 所以  $f(x) = x - \alpha$ . 最终我们得到 K' = K.

### 1.6. Galois 群初探

一个自然的问题是我们还没有定义抽象的群,那么该如何讨论 Galois 群.事实上在 Galois 研究时他并没有采用抽象的群概念,而是考虑一种特殊的群,即置换群.

定义 1.6.1 (对称群). 设集合 X,  $S(X) = \{\sigma: X \to X \mid \sigma$  是双射 $\}$ , 我们可以定义映射的复合和逆运算, 也有单位映射 e. 事实上它满足如下性质:

- 1.  $(\sigma \tau)\mu = \sigma(\tau \mu)$ .
- 2.  $\sigma e = e\sigma = \sigma$ .
- 3.  $\sigma \sigma^{-1} = \sigma^{-1} \sigma = e$ .

我们称 (S,e) 是 X 上的对称群.

注记. 事实上上述的性质其实就是抽象群的定义.

我们一般不需要研究整个置换, 而是研究一部分的封闭子集, 也就引出了置换群的概念.

定义 1.6.2 (置换群). 若  $G \subseteq S$  满足于任意  $\sigma, \tau \in G$ , 有  $\sigma \tau \in G$ ,  $\sigma^{-1} \in G$ , 则称  $G \neq X$  上的置换群.

更进一步的, 我们可以定义域 E 上的自同构群, 记为  $\operatorname{Aut}(E) = \{ \sigma \in S(E) \mid \sigma(0) = 0, \sigma(1) = 1, \sigma(\alpha + \beta) = \sigma(\alpha) + \sigma(\beta), \sigma(\alpha\beta) = \sigma(\alpha)\sigma(\beta), \ldots \}.$ 

定义 1.6.3 (Galois 群). 设 E/F 是域扩张, 我们定义  $\mathrm{Gal}(E/F) = \{\sigma \in \mathrm{Aut}(E) \mid \sigma|_F = \mathrm{id}_F\}$ , 称为 E/F 的 Galois 群.

定理 1.6.1. 若 E/F 是有限扩张,则 Gal(E/F) 是有限群.

证明. 设  $E = \operatorname{Span}_{F(u_1, \dots, u_n)}$ , 其中  $u_n$  在 F 上代数. 对于  $u_1$ , 有极小多项式  $f_1 \in F[x]$ , 满足  $f_1(u_1) = \mu_1^n + a_1 u_1^{n-1} + \dots + a_n = 0, a_i \in F$ .

设  $\sigma \in \operatorname{Aut}(E), \sigma|_F = \operatorname{id}_F,$  考虑  $\sigma$  作用  $f_1 \cdot \sigma(f_1(u_1)) = \sigma(0) = 0 = \sigma(u_1^n + \ldots + a_n) = f_1(\sigma(\mu_1)).$ 

这就说明了对于  $X_1 = \{ \sigma \in E \mid f_1(\alpha) = 0 \}$ ,  $\sigma \mid x_1 \not\in X_1$  的一个置换. 同样的对于任意  $u_1$  取  $f_i$ , 定义  $X = \bigcup_{i=1}^n X_i$ ,  $\sigma \not\in X$  上的一个置换. 由于 X 是有限集, 所以  $\sigma$  是有限的.

定义 1.6.4 (不动域). 设 E 是一个域, 且  $G \le \operatorname{Aut}(E)$ , 定义  $\operatorname{Inv}(G) = \{\alpha \in E \mid \sigma(\alpha) = \alpha, \sigma \in G\}$ , 称为 G 的不动域.

定理 1.6.2 (Artin 引理). 设 E 是域,  $G \le \mathrm{Aut}(E)$ , 则  $\mathrm{Inv}(G)$  是 E 的子域, 且  $[E:F] \le |G|$ , 于是 E/F 是有限扩张.

证明. 设  $G=\{\eta_1=e,...,\eta_n\}, |G|=n$ . 下证对于 m>n, E 中的任意  $u_1,...,u_m$  是线性相关的. 考虑  $\eta_j\big(x_1\mu_1+...+x_{\mu_m}\big)=x_1\eta_{j(\mu_1)}+...+x_m\eta_{j(\mu_m)}=0$ , 一定有非零解, 所以存在  $(x_1,...,x_m)\in E^m$ . 下证  $x_j\in F$ .

我们从这些解挑一个含 0 元素最多的解,记为 **小** =  $x_1,...,x_m$ ,不妨假设  $x_1 \neq 0, x_1 = 1$ ,下证  $x_2,...,x_m \in F$ . 假设  $x_2 \notin F$ , 则存在  $\eta \in G$  使得  $\eta(x_2) \neq x_2$ ,考虑  $\eta(x) = (1,\eta(x_2),...,\eta(x_m))$ ,显然  $\eta(x)$  仍是方程的解,且  $\eta(x)$  0 的个数和 x 中个数一样多.

考虑  $\eta(x)-x$  仍然是方程组的解, 但包含更多的 0, 另一方面  $\eta(x_2)-x_2\neq 0$ , 矛盾!

注记. 事实上我们可以证明 [E:F] = |G|, 但这需要一些额外的知识.

有了这两个方向的引理,我们可以考虑它们的复合,就有了下面两个问题:

Q1. E/F 是有限扩张,  $G = \operatorname{Gal}(E/F)$  是有限群, 我们可以定义  $F' = \operatorname{Inv}(G)$  由定义可知  $F \subseteq F'$ . 问题是  $F' = \operatorname{Inv}(G)$  与 F 能否相等? Q2. 有 E 域,  $G \le \operatorname{Aut}(E)$ , 我们有  $F = \operatorname{Inv}(G)$ , 其中 E/F 是有限扩张, 于是  $G' = \operatorname{Gal}(E/F)$  是有限群, 由定义可知  $G \subseteq G'$ . 问题是 G = G' 能否相等?

对于 Q2, 我们的结论是肯定的, 这也被称为 Artin 定理.

而对于 Q1,则不能保证, Galois 理论研究的就是在什么样的有限扩张 E/F 可以使得 Inv(Gal(E/F)) = F.

- 2. 环与模
- 3. 群与群作用
- 4. Galois 理论