

Data Analysis Report

for Brazilian E-Commerce **Public Dataset by Olist**

Data Analysis Report for Brazilian E-Commerce Public Dataset by Olist

This report provides a comprehensive summary of the data analysis process conducted on the Brazilian E-Commerce Public Dataset by Olist. The analysis was designed to extract valuable insights into customer behavior, e-commerce performance, and financial reconciliation, utilizing multiple datasets such as orders, order items, products, payments, and reviews. The process involved several critical steps: data preparation, reconciliation criteria calculations, monthly aggregation for a financial dashboard, data export for visualization, and documentation with initial insights. Below, each step is explained in detail to outline the methodology and outcomes of the analysis.

Step 1: Data Preparation

Objective

The goal of this step was to load, verify, and clean the dataset to ensure it was ready for analysis, creating a unified dataset with all necessary columns for subsequent calculations and insights.

Process

1. Loading the Dataset

• The cleaned and merged dataset, named merged_olist_dataset.csv, was imported into Python using the Pandas library.

2. Column Verification

- We confirmed the presence of essential columns, including:
 - order purchase timestamp
 - payment value
 - payment type
 - order status
 - price
 - freight value
 - order approved at
 - order_delivered_customer_date
 - order_estimated_delivery_date
 - order id
- Missing columns were flagged to ensure compliance with analysis requirements.

3. Data Type Handling

- Date columns (e.g., order_purchase_timestamp, order_delivered_customer_date) were converted to datetime format for time-based analysis.
- Numerical columns like price, freight_value, and payment_value were verified as float types to support accurate computations.

4. Final Cleaning

- Rows with missing values in critical columns (e.g., order_id, order_status, price, freight_value) were removed to maintain data integrity.
- A new column, total_order_value, was computed as the sum of price and freight_value for each order item, providing a key metric for revenue analysis.

Outcome

- A finalized dataset was prepared with all required columns correctly formatted and present.
- The addition of total order value enabled revenue-based calculations in later steps.

Step 2: Reconciliation Criteria Calculations

Objective

This step focused on calculating key sales performance metrics, including total revenue, expected revenue, canceled orders, and late deliveries, to assess e-commerce efficiency and financial performance.

Process

1. Total Revenue Calculation

O Total revenue was computed as the sum of total_order_value for orders with an order_status of "delivered," reflecting actual revenue from completed transactions.

2. Expected Revenue Calculation

o Expected revenue was calculated as the sum of total_order_value for orders where order_approved_at was not null, representing anticipated revenue from approved orders, regardless of delivery status.

3. Canceled Orders Count

 The number of canceled orders was determined by counting entries with an order_status of "canceled," highlighting potential revenue losses.

4. Late Deliveries Count

 Late deliveries were identified by comparing order_delivered_customer_date to order_estimated_delivery_date. Orders delivered after the estimated date were marked with a new column, is late, and the total count was calculated.

Outcome

- Total Revenue: Sum of total order value for delivered orders.
- Expected Revenue: Sum of total order value for approved orders.
- Canceled Orders: Total count of orders with "canceled" status.
- Late Deliveries: Total count of orders delivered late.

 These metrics offer a clear picture of sales performance and delivery efficiency, critical for operational insights.

Step 3: Monthly Aggregation for Financial Dashboard

Objective

The aim was to aggregate data by month to prepare it for a financial dashboard, providing insights into financial performance, order breakdowns, and delivery metrics over time.

Process

1. Extracting the Order Month

o A new column, order_month, was derived from order_purchase_timestamp to enable monthly grouping.

2. Defining Pending Orders

Orders neither delivered nor canceled (e.g., "shipped," "processing") were classified as pending using a new column, is pending.

3. Monthly Aggregations

o Data was grouped by order month, and the following metrics were calculated:

• Financial Overview:

- total revenue: Sum of total order value for delivered orders.
- total payments received: Sum of payment value for delivered orders.
- expected revenue: Sum of total order value for approved orders.

• Order Breakdown:

- ◆ total_orders: Total unique orders per month.
- canceled orders: Count of canceled orders.
- pending_orders: Count of pending orders.
- delivered orders: Count of delivered orders.

• Delivery Insights:

- ♦ late deliveries: Count of late deliveries.
- avg delay days: Average delay in days for late deliveries.

4. Percentage Calculations

- o Percentages of canceled, pending, and delivered orders were computed relative to total orders per month.
- %_revenue_reconciliation was calculated as the ratio of total_revenue to expected_revenue, indicating revenue realization efficiency.

5. Average Order Value

o The average total order value for delivered orders was calculated per month.

6. Handling Missing Values

o NaN values (e.g., from months with no late deliveries) were replaced with 0 for completeness.

Outcome

- A monthly aggregated dataset was produced, containing:
 - o Financial metrics (revenue, payments, expected revenue).
 - o Order statistics (total, canceled, pending, delivered).
 - o Delivery performance (late deliveries, average delay).
 - Percentage metrics and reconciliation ratios.
 This dataset forms the foundation for the financial dashboard.

Objective

To export the processed data in formats suitable for creating an interactive Power BI dashboard.

Process

1. Exporting Monthly Data

o The monthly aggregated data was saved as monthly olist data.csv for high-level dashboard views.

2. Exporting Detailed Data

The detailed dataset with order-level information was saved as detailed_olist_data.csv for drill-down capabilities in Power BI.

Outcome

- Two files were generated:
 - o monthly olist data.csv: For monthly trends and key metrics.
 - detailed_olist_data.csv: For detailed order exploration.
 These files are ready for Power BI import and visualization.

Step 5: Documentation and Initial Insights

Objective

To document the analysis process and provide preliminary insights based on the calculated metrics.

Process

1. Documenting the Code

The Python script was annotated with detailed comments for each step, ensuring transparency and reproducibility.

2. Initial Insights

Early observations included:

- Trends in revenue and expected revenue over time.
- The effect of canceled orders on revenue reconciliation.
- Patterns in late deliveries potentially impacting customer satisfaction.

Outcome

- A fully documented script detailing the analysis process.
- Initial insights to be expanded upon in the Power BI dashboard.

Conclusion

The data analysis process for the Brazilian E-Commerce Public Dataset by Olist was executed with precision, covering data preparation, reconciliation calculations, monthly aggregation, data export, and documentation. The resulting datasets—monthly_olist_data.csv and detailed_olist_data.csv—are primed for visualization in Power BI, enabling a comprehensive financial dashboard. This analysis provides a robust foundation for understanding e-commerce performance, with opportunities for further exploration in profitability and forecasting in subsequent phases. The process ensures actionable insights for optimizing business operations and enhancing customer experience.