MITSCHRIEB

Analysis II

Sommersemester 2025

Emma Bach

Vorlesung gehalten von Prof. Dr. Michael Růžička

Inhalt

1		· Euklidische Raum	2
	1.1	Abbildungen und Koordinatenfunktionen auf \mathbb{R}^n	4
		Mehrdimensionale Ableitungen	
	1.3	Differenzierbarkeit	7
2	Gewöhnliche Differentialgleichungen		22
	2.1	Existenztheorie	22
	2.2	Lineare Gleichungen	26
3	Systeme Linearer Differentalgleichungen		28
	3.1	Systeme mit konstanten A	31

Chapter 1

Der Euklidische Raum

Lemma 1.1. Sei $(V, \langle _, _ \rangle)$ ein euklidischer Vektorraum. Dann wird durch

$$||u|| = \sqrt{\langle u, u \rangle}$$

auf V eine Norm erklärt. Diese bezeichnet man als die durch das Skalarprodukt induzierte Norm.

Definition 1.2. Seu $(V, \langle _, _ \rangle)$ ein euklidischer Vektorraum, Die Vektoren $u, v \in V$ heißen **orthogonal**, wenn

$$\langle u, v \rangle = 0$$

ist. Für $u, v \in V \setminus \{0\}$ Wird die reelle Zahl

$$\phi = \arccos \frac{\langle u, v \rangle}{\|u\| \; \|v\|}$$

als der Winkel zwischen u und v bezeichnet.

Anmerkung 1.3. Es gilt

$$\frac{|\langle u, v \rangle|}{\|u\| \ \|v\|} \le 1$$

Lemma 1.4. Für $X = (x_1, \ldots, x_n) \in \mathbb{R}^n$ sei

$$||X||_{\max} := \max\{|x_1|, \dots, |x_n|\}$$

Dann ist $|| \cdot ||_{\max}$ eine Norm auf \mathbb{R}^n und es gilt

$$||X||_{\max} \le ||X|| \le \sqrt{n} ||X||_{\max}$$

Satz 1.5. Die Menge \mathbb{Q}^n der Punkte mit rational Koordinaten ist dicht in \mathbb{R}^n .

Beweis. Sei $X \in \mathbb{R}^n$ und $\varepsilon \in \mathbb{R}^+$. Da \mathbb{Q} dicht in \mathbb{R} ist gilt

$$\forall i \in \{1, \dots, n\} : \exists y_i \in \mathbb{Q} : |x_i - y_i| \le \frac{\varepsilon}{\sqrt{n}}$$

Durch Lemma 1.4 folgt:

$$||x - y|| \le \sqrt{n}||X - Y|| < \varepsilon$$

Satz 1.6. Sei $(X_k)_{k\in\mathbb{N}}$ eine Folge aus \mathbb{R}^n . Sei $X_k=(x_1^{(k)},\ldots,x_n^{(k)})$. Dann gilt:

$$\lim_{k \to \infty} X_k = X \Leftrightarrow \forall i : \lim_{k \to \infty} x_i^{(k)} = x_i$$

Insbesondere ist X_k eine Cauchyfolge, wenn die Komponenten Cauchyfolgen sind.

Beweis. $X_k \to X$, $i \in \{1, ..., n\}$, $\varepsilon \in \mathbb{R}^+$. Dann gilt

$$\exists k_o \in \mathbb{N} : \forall k \ge k_0 : ||X_k - X|| \le \varepsilon \implies \forall i : \left| x_i^{(k)} - x_i \right| < \varepsilon \implies \lim_{k \to \infty} x_i^{(k)} = x_i$$

Und umgekehrt:

$$\forall i: x_i^{(k)} \to x_i, \varepsilon \in \mathbb{R}^+ \implies \exists k_0^i \in \mathbb{N}: \forall k \ge k_0^i \left| x_i^{(k)} - x_i \right| \le \frac{\varepsilon}{\sqrt{n}}$$
$$k_0 := \max\{k_0^n, \dots, k_0^n\} \implies \forall k \ge k_0: \left| x_i^{(k)} - x_i \right| < \frac{\varepsilon}{\sqrt{n}} \implies \|X_k - X\| \le \sqrt{n} \|X_k - X\| < \varepsilon$$

Satz 1.7. Für konvergente Folgen $(X_k), (Y_k) \in \mathbb{R}^n, (\lambda_k) \in \mathbb{R}$ gilt:

$$\lim_{k \to \infty} (X_k + Y_k) = \lim_{k \to \infty} X_k + \lim_{k \to \infty} Y_k \tag{1.1}$$

$$\lim_{k \to \infty} \lambda_k X_k = \left(\lim_{k \to \infty} \lambda_k\right) \left(\lim_{k \to \infty} X_k\right) \tag{1.2}$$

$$\lim_{k \to \infty} \langle X_k, Y_k \rangle = \left\langle \lim_{k \to \infty} X_k, \lim_{k \to \infty} Y_k \right\rangle \tag{1.3}$$

Satz 1.8. \mathbb{R}^n ist vollständig.

Beweis. Ist X_k eine Cauchyfolge in \mathbb{R}^n , so sind nach Satz 1.6 alle Teilfolgen Cauchy in \mathbb{R} . Also:

$$\exists x_i \in \mathbb{R} : x_i^{(k)} \to x_i \implies \exists X \in \mathbb{R}^n : X_k \to X$$

Satz 1.9. (Bolzano-Weierstrass:) Jede beschränkte Folge in \mathbb{R}^n besitzt eine konvergente Teilfolge.

Beweis. Sei (X_k) eine beschränkte Folge in \mathbb{R}^n . Nach 1.4 müssen die Komponentenfolgen ebenfalls beschränkt sein. Nach dem eindimensionalen Fall des Satzes von Bolzano-Weierstrass existieren also konvergente Teilfolgen der Koordinatenfolgen. Angenommen, die konvergente Teilfolge der ersten Komponente ist gegeben durch $x_1^{(k_n)} \to x_1$. So ist $x_2^{(k_n)}$ ebenfalls eine beschränkte Teilfolge, also existiert eine Teilfolge $x_2^{(k_n)_m}$ welche in den ersten beiden Komponenten konvergiert. Führt man dieses Verfahren induktiv fort, erhält man eine konvergente Teilfolge von (X_k) .

Satz 1.10. Sei $(A_i)_{i\in\mathbb{N}}$ eine Folge abgeschlossener beschränkter nichtleerer Teilmengen des \mathbb{R}^n , sodass $A_1 \supseteq A_2 \supseteq \ldots$ Dann ist $\bigcap_{i\in\mathbb{N}} \neq \emptyset$

Beweis. $A_i \neq \emptyset \implies \exists X_i \in A$ sd. $(X_i)_{i \in \mathbb{N}}$ eine Folge ist. Da A_i beschränkt ist ist $(X_i)_{i \in \mathbb{N}}$ beschränkt, also hat X_i eine konvergente Teilfolge X_{i_k} mit Limes X. Es gilt $X_{i_k} \in A_{i_k} \subseteq A_i$, also ist X ein Berührpunkt von A_i , also $X \in A_i$.

Satz 1.11. Jede abgeschlossene beschränkte Teilmenge des \mathbb{R}^n ist kompakt.

Beweis. Analog zur eindimensionalen Version, wobei statt Intervallen $[a_i, b_i]$ Hyperwürfel $[a_i^{(1)}, b_i^{(1)}] \times \ldots \times [a_i^{(n)}, b_i^{(n)}]$ genutzt werden müssen.

Satz 1.12. Seien $\|.\|_1$ und $\|.\|_2$ Normen auf \mathbb{R}^n . So existieren $k, K \in \mathbb{R}^+$ mit

$$\forall X \in \mathbb{R}^n : k \|X\|_1 \le \|X\|_2 \le K \|X\|_1$$

Beweis. Diese Normenäquivalenz bildet eine Äquivalenzrelation. Es reicht also, zu zeigen, dass jede Norm $\|\cdot\|_2$ äquivalent zu einer spezifischen Norm $\|\cdot\|_1$ ist. Wir wählen $\|\cdot\|_{\max}$. Sei (E_i) die Standardbasis des \mathbb{R}^n . Wir definieren:

$$K := ||E_1||_2 + \ldots + ||E_n||_2$$

Dann gilt:

$$||X||_{2} = ||x_{1}E_{1} + \ldots + x_{n}E_{n}||$$

$$\leq |x_{1}||E_{1}||_{2} + \ldots + |x_{n}||E_{n}||_{2}$$

$$\leq ||X||_{\max}K \quad \text{[citation needed]}$$

Es bleibt die Rückrichtung zu zeigen.

Lemma 1.13. $f(X) := ||X||_2$ ist stetig.

Beweis.

$$|||X||_2 - ||Y||_2| \le ||X - Y||_2 \le K||X - Y||_{\max} \le K||X - Y||$$

Also ist $\| \cdot \|_2$ stetig bezüglich der euklidischen Norm $\| \cdot \|_2$.

Wir definieren nun:

$$A := \{ X \in \mathbb{R}^n \mid ||X||_{\max} = 1 \}$$

Diese Menge ist beschränkt. Wir wollen Zeigen, dass sie außerdem abgeschlossen ist. Sei $X_i \to X$, $X_i \in A$. Es gilt:

$$|||X_i||_{\max} - ||X||_{\max}| \le ||X_i - X||_{\max} \le ||X_i - X||$$

Also konvergiert jede Menge, also ist A kompakt, also auch abgeschlossen. Dementsprechend muss f auf A ein Minimum k annehmen. Wir wissen $f \geq 0$, also ist $k \geq 0$. Es gilt sogar k > 0, da keiner der Vektoren in A der Nullvektor ist. Nun gilt also $\forall X \in A : ||X||_2 \geq k$. Wir definieren:

$$\lambda := \frac{1}{\|X\|_{\max}}$$

$$\|\lambda X\|_{\max} = |\lambda| \|X\|_{\max} = 1$$

$$\left|\lambda\right|\left\|X\right\|_{2}=\left\|\lambda X\right\|_{2}\geq k\implies \left\|X_{2}\right\|\geq k\|X\|_{\max}$$

Anmerkung 1.14. Im unendlichdimensionalen Fall gilt Satz 1.12 nicht.

1.1 Abbildungen und Koordinatenfunktionen auf \mathbb{R}^n

In diesem Abschnitt betrachten wir Funktionen $F: \mathbb{R}^n \to \mathbb{R}^k$. Betrachten wir zuerst den Spezialfall Linearer Funktionen, also $\forall X, Y \in \mathbb{R}^n : \forall \lambda, \mu \in \mathbb{R} : F(\lambda X + \mu Y) = \lambda F(X) + \mu F(Y)$.

Sei (E_i) die Standardbasis des \mathbb{R}^n und sei (E_i) die Standardbasis des \mathbb{R}^k . Nun gilt:

$$F(E_j) = \sum_{i=1}^k a_{ij} E_i'$$

Daraus erhalten wir Koeffizienten a_{ij} , welche eine Matrix bilden. Umgekehrt können wir aus den Koeffizienten die Abbildung F rekonstruieren, indem wir definieren:

$$F(X) = F\left(\sum_{j=1}^{n} x_j E_j\right)$$

$$= \sum_{j=1}^{n} x_j F(E_j)$$

$$= \sum_{j=1}^{n} x_j \sum_{i=1}^{k} a_{ij} E'_i$$

$$= \sum_{i=1}^{k} \left(\sum_{j=1}^{n} a_{ij} x_j\right) E'_i$$

[missing stuff here]

Definition 1.15. Wir bezeichnen als $p_i: M \to k$ die Projektion eines Vektors auf die *i*-te Komponente.

Satz 1.16. Sei M ein metrischer Raum, $F: M \to \mathbb{R}^n$ eine Abbildung und $x \in M$. Dann ist F stetig in x genau dann, wenn $p_i \circ F$ stetig für alle i ist.

Beweis. 1. p_i ist stetig. Ist also F stetig folgt direkt, dass auch $p_i \circ F$ stetig ist.

2. Angenommen, $p_i \circ F$ ist stetig $\forall i, \varepsilon \in \mathbb{R}^+$. Da $p_i \circ F$ stetig ist existiert eine Umgebung U_i von x, sodass $|f_i(x) - f_i(y)| < \frac{\varepsilon}{\sqrt{n}} \forall y \in U_i$. Ebenso für die anderen Komponenten. Nun gilt:

$$||F(y) - F(x)|| \le \sqrt{n} ||F(x) - F(y)||_{\max} \le \varepsilon$$

Analog gilt das Selbe für Stetigkeit auf M, gleichmäßige Stetigkeit, etc.

Definition 1.17. Sei $M \subseteq \mathbb{R}^n$, $F: M \to \mathbb{R}^k$ eine Abbildung, x_0 ein Häufungspunkt, $y \in \mathbb{R}^k$. Dann definieren wir:

$$\lim_{x \to x_0} F(x) = y \Leftrightarrow \forall \varepsilon \in \mathbb{R}^+ : \exists \delta \in \mathbb{R}^+ : \forall x \in M \setminus \{x_0\} : ||x - x_0|| \le \delta \implies ||F(x) - y|| < \varepsilon$$

F ist stetig in x_0 genau dann, wenn $\lim_{x\to x_0} F(x) = F(x_0)$.

Satz 1.18. Sei $M \subseteq \mathbb{R}^n$, $F: M \to \mathbb{R}^k$ eine Abbildung, $X_0 \in M$ ein Häufungspunkt, $Y \in \mathbb{R}^k$ und $f_i = p_i \circ F$. Dann gilt:

$$\lim_{X \to X_0} F(X) = Y \Leftrightarrow \forall i : \lim_{X \to X_0} f_i(X) = y_i$$

Beweis. Analog zu Beweis 1.16.

Korollar 1.19.

$$F(X) \to Y, G(X) \to Z \implies F(X) + G(X) \to Y + Z$$

1.2 Mehrdimensionale Ableitungen

Beispiel 1.20. Sei $f: M \to \mathbb{R}$ definiert auf einer offenen Menge $M \subseteq \mathbb{R}^n$.

$$f(X) = f(x_1, \dots, x_n)$$
 bzgl. der Standardbasis

Wir können aber auch $X = \sum x_i' E_i'$ bezüglich einer beliebigen anderen Basis darstellen. Also:

$$f(X) = f(x_1, \dots, x_n) = g(x'_1, \dots, x'_n)$$

Da f in der Regel nicht linear ist, ist ein solcher Basiswechsel sehr viel komplizierter als in der Linearen Algebra! Wo möglich ist es also besser, über f(X) zu reden.

Definition 1.21. Sei $f: \mathbb{R}^n \to \mathbb{R}, \overline{X} \in M$. Betrachte die Abbildung

$$t \to f(\overline{x}_1, \dots \overline{x}_{i-1}, t, \overline{x}_{i+1}, \dots, \overline{x}_n),$$

welche eine Mehrdimensionale Funktion $f(x_1, \dots x_n)$ auf eine eindimensionale Funktion f(t) abbildet. Achtung: Wir nehmen hier implizit eine Darstellung bezüglich der Standardbasis an!

Beispiel 1.22. Betrachte folgende Funktion:

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

f ist an (0,0) partiellen differenzierbar, die Partiellen Ableitungen sind 0. Allerdings gilt

$$\forall x : f(x, x) = \frac{1}{2}$$

Also ist f an 0 nicht stetig! Es existieren also Funktionen, die an einem Punkt partiell Differenzierbar sind, an dem sie nicht stetig sind.

<u>Idee</u>: Fordere partielle Differenzierbarkeit bezüglich jeder möglichen Basis, also partielle Differenzierbarkeit in jedem Vektor.

Beispiel 1.23.

$$f(x,y) = \begin{cases} \frac{x^2y}{x^4 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Wir betrachten die "Linearisierung" $t \to f(t, \alpha t)$. Einsetzen liefert:

$$f(t,\alpha t) = \frac{\alpha t}{t^2 + a^2}$$

Diese Funktion ist differenzierbar, also ist f differenzierbar bezüglich beliebiger Basen. Das reicht jedoch immer noch nicht:

$$f(a, a^2) = \frac{a^2 a^2}{a^4 + a^4} = \frac{1}{2}$$

Also ist f immer noch nicht stetig - es ist stetig für Folgen, welche den Nullpunkt durch Geraden erreichen, aber nicht, wenn wir durch kompliziertere Pfade gegen den Nullpunkt gehen.

Wir wollen die Begriffe aus der Analysis I über Stetigkeit und Ableitbarkeit retten, also brauchen wir einen komplizierteren Ableitungsbegriff.

1.3 Differenzierbarkeit

Sei f eine beliebige Funktion $\mathbb{R} \to \mathbb{R}$. Die Ableitung gibt uns die Tangente der Funktion an einem beliebigen Punkt, also die beste affine Approximation der Funktion an diesem Punkt.

Definition 1.24. Eine Funktion $F: \mathbb{R}^n \to \mathbb{R}^k$ heißt **affin**, wenn es eine Lineare Funktion $L: \mathbb{R}^n \to \mathbb{R}^k$ und eine Konstante $Z \in \mathbb{R}^k$ gibt, sodass:

$$F(X) = L(X) + Z$$

Sei $g: \mathbb{R} \to \mathbb{R}$ affin, also g(x) = cx + t für $c, t \in \mathbb{R}$. Sei $f: \mathbb{R} \to \mathbb{R}$. Wir wollen eine beliebige Funktion f an der Stelle x_0 approximieren. Für eine gute Approximation wollen wir $f(x_0) = g(x_0)$, also erhalten wir:

$$q(x) = c(x - x_0) + f(x_0).$$

Schreibe $x = x_0 + h$ und lasse h gegen 0 gehen.

$$h \to f(x_0 + h) - g(x_0 + h) = f(x_0 + h) - f(x_0) - ch$$

Wir sagen, die Approximation ist gut, wenn $f(x_0 + h) - f(x_0) - ch$ schneller gegen 0 geht als h selbst, also:

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - ch}{h} = 0 \tag{1.4}$$

Was äquivalent ist zu:

$$c = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Wir sagen also, f ist in x_0 differenzierbar, genau dann, wenn eine lineare Abbildung L existiert, sodass:

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - L(h)}{h} = 0$$

Diese geometrische Intuition, nach der die Ableitung die beste affine Approximation der Funktion an einem gegebenen Punkt ist, können wir auf den \mathbb{R}^n übertragen. Analog zu der Interpretation affiner Funktionen als Geraden in \mathbb{R} , also der Ableitung als das Finden einer Tangentengeraden auf dem Funktionengraph, sucht man beim Ableiten einer Mehrdimensionalen Funktion eine Tangenten(hyper-)ebene auf dem Funktionengraph.

Definition 1.25. Sei $M \subset \mathbb{R}^n$ offen, $F: M \to \mathbb{R}^k$ eine Abbildung, sei $X_0 \in M$. Die Abbildung F heißt **differenzierbar** am Punkt X_0 , wenn es eine Lineare Abbildung $L: \mathbb{R}^n \to \mathbb{R}^k$ gibt, sodass:

$$\lim_{H \to 0} \frac{F(X_0 + H) - F(X_0) - L(H)}{\|H\|} = 0.$$

Wir nennen sie das **Differenzial von** F **im Punkt** X_0 und notieren sie als DF_{X_0} . F heißt differenzierbar, wenn sie differenzierbar an jedem Punkt $X \in M$ ist.

Anmerkung 1.26. Differenzierbarkeit kann analog über die Eigenschaften des Restglieds $R(X, X_0)$ definiert werden: Sei

$$f(X) = f(X_0) + Df_{X_0}(X - X_0) + R(X, X_0).$$

Dann ist f genau dann differenzierbar, wenn:

$$\lim_{X \to X_0} \frac{R(X, X_0)}{\|X - X_0\|} = 0$$

Satz 1.27. Gibt es ein Differential, ist es eindeutig bestimmt.

Beweis. Seien L_1, L_2 Differentiale. Es folgt:

$$\lim_{H \to 0} \frac{L_1(H) - L_2(H)}{\|H\|} = 0$$

Sei $X \in \mathbb{R}^n \setminus \{0\}$. Dann gilt:

$$\lim_{t \to 0} \frac{L_1(tX) - L_2(tX)}{\|tX\|} = 0$$

$$\implies \frac{L_1(X) - L_2(X)}{\|X\|} = 0$$

$$\implies L_1(X) - L_2(X) = 0$$

also sind die beiden Differentiale identisch.

Anmerkung 1.28. Unserer Differenzierbarkeitsbegriff wird insbesonders in der älteren Literatur oft als totale Differenzierbarkeit bezeichnet.

Satz 1.29. Ist $F: M \to \mathbb{R}^k$ an einem Punkt X_0 differenzierbar, so ist F an diesem Punkt stetiq.

Beweis. Sei F differenzierbar. Da die Differenzierbarkeit über den Limes des Differentialquotienten definiert ist folgt direkt:

$$\forall \varepsilon \in \mathbb{R}^+ : \exists \delta_1 \in \mathbb{R}^+ : \forall H \in M : (X_0 + H \in M) \land (0 \le ||H|| \le \delta_1)$$

$$\implies \frac{||F(X_0 + M) - F(X_0) - DF_{X_0}(H)||}{||H||} \le \frac{\varepsilon}{2}$$

$$\implies ||F(X_0 + M) - F(X_0) - DF_{X_0}(H)|| \le \frac{\varepsilon}{2} ||H||$$

Da DF_{X_0} eine lineare Abbildung ist ist DF_{X_0} gleichmäßig stetig, also gilt:

$$\exists \delta_2 \in \mathbb{R}^+ : ||H|| < \delta_2 \implies ||DF_{X_0}(H)|| \le \frac{\varepsilon}{2}$$

Also gilt für $||H|| \le \delta := \min\{\delta_1, \delta_2, 1\}$

$$||F(X_0 + H) - F(X_0)||$$

$$= ||F(X_0 + H) - F(X_0) - DF_{X_0}(H) + DF_{X_0}(H)||$$

$$\leq ||F(X_0 + H) - F(X_0) - DF_{X_0}(H)|| + ||DF_{X_0}(H)||$$

$$\leq \frac{\varepsilon}{2} ||H|| + \frac{\varepsilon}{2}$$

$$\leq \varepsilon$$

Satz 1.30. Sind F und G differenzierbar, so auch F + G, und es gilt

$$D(F+G)_{X_0} = DF_{X_0} + DG_{X_0}$$

Beweis.

$$\lim_{H \to 0} \frac{(F+G)(X_0+H) - (F+G)(X_0) - (DF_{X_0} + DG_{X_0})}{\|H\|}$$

$$= \lim_{H \to 0} \frac{F(X_0+H) - F(X_0) - DF_{X_0}}{\|H\|} + \lim_{H \to 0} \frac{G(X_0+H) - G(X_0) - DG_{X_0}}{\|H\|}$$

$$= 0$$

Satz 1.31. <u>Kettenregel:</u> Seien $M \subseteq \mathbb{R}^n$, $N \subseteq \mathbb{R}^n$ offen, seien $F: M \to N$, $G: N \to \mathbb{R}^m$ Abbildungen, sei X_0

Beweis. Sei $F(X_0) = Y_0, F(X_0 + H) - F(X_0) = Z, H \in \mathbb{R}^n \setminus \{0\}, X_0 + H \in M.$ $\frac{1}{\|H\|} ((G \circ F)(X_0 + H) - (G \circ F)(X_0) - DG_{F(X_0)} \circ DF_{X_0}(H))$ $= \frac{1}{\|H\|} (G(Y_0 + Z_H) - G(Y_0) - DG_{Y_0}(Z_H))$ $= \frac{1}{\|H\|} (DG_{Y_0}(F(X_0 + H) - F(X_0)) - DG_{Y_0}(DF_{X_0}(H)))$ $= \frac{1}{\|H\|} DG_{Y_0}((F(X_0 + H) - F(X_0)) - DF_{X_0}(H))$

$$\lim_{H \to 0} \frac{1}{\|H\|} DG_{Y_0}((F(X_0 + H) - F(X_0)) - DF_{X_0}(H)) = DG_{Y_0}(0) = 0$$

$$\frac{1}{\|H\|}(G(Y_0 + Z_H) - G(Y_0) - DG_{Y_0}(Z_H)) = \begin{cases} 0 & Z_H = 0\\ \frac{1}{\|H\|}(G(Y_0 + Z_H) - G(Y_0) - DG_{Y_0}(Z_H)) & Z_H \neq 0 \end{cases}$$

Der Term zweite Term in $Z_H \neq 0$ geht gegen 0 für $H \rightarrow 0 \implies Z_H = F(X_0 + H) - F(X_0) \rightarrow 0$

$$\frac{\|Z_H\|}{\|H\|} = \frac{\|F(X_0 + H) - F(X_0)\|}{\|H\|}$$

$$= \frac{\|DF_{X_0}(H) - R(X_0, H)\|}{\|H\|}$$

$$\leq \frac{\|DF_{X_0}(H)\|}{\|H\|} + \frac{\|R(X_0, H)\|}{\|H\|}$$

$$\leq \frac{\|DF_{X_0}(H)\|}{\|H\|} + \frac{\|R(X_0, H)\|}{\|H\|}$$

$$\stackrel{???}{\leq} \frac{\|DF_{X_0}\|\|H\|}{\|H\|} + \frac{\|R(X_0, H)\|}{\|H\|}$$

$$= \|DF_{X_0}\| + \frac{\|R(X_0, H)\|}{\|H\|}$$

$$\leq c$$

Satz 1.32. Seien $I \subseteq \mathbb{R}$, $N \subseteq \mathbb{R}^k$ offen, seien $F: I \to N$, $G: N \to \mathbb{R}^n$ Abbildungen.

Ist F differenzierbar in $t_0 \in I$ und G differenzierbar in $F(t_0)$, so gilt:

$$(G \circ F)'(t_0) = DG_{F(t_0)}(F'(t_0))$$

Beweis. Gemät Kettenregel gilt $D(G \circ F) = DG_{F(t_0)} \circ DF_{t_0}$. Nun gilt:

$$h(G \circ F)'(t_0) = hD(G \circ F)_{t_0}(1)$$

$$= D(G \circ F)_{t_0}(h)$$

$$= DG_{F(t_0)}(DF_{t_0}(h))$$

$$= hDG_{F(t_0)}(F'(t_0))$$

Mittelwertsatz: $f:[x,y]\to\mathbb{R}$, dann $\exists y:f(y)-f(x)=f'(z)(y-x)$. Im Allgemeinen ist dieser im Mehrdimensionalen Fall leider falsch.

Betrachte allerdings die folgende Ungleichung, welche die Wichtigste Konsequenz des Mittelwertsatzes ist: $|f(y) - f(x)| \le |f'(z)||y - x| \le c|y - x|$. Diese kann im Allgemeinen erhalten werden.

 $F: M \subset \mathbb{R}^n \to \mathbb{R}^k \ X, Y \in M$. Sei $[X,Y] = \{(1-\lambda)X + \lambda Y\}$ die Verbindungslinie zwischen den beiden Vektoren.

Satz 1.33. Sei $M \subseteq \mathbb{R}^n$ offen, $X, Y \in M$ mit $[X, Y] \subseteq M$. Die Abbildung $F : M \to \mathbb{R}^k$ sei stetig in M und differenzierbar in den Punkten $(1 - \lambda)X + \lambda Y$ mit $\lambda \in (0, 1)$. Gilt

$$\forall \lambda \in (0,1) : \forall (1-\lambda)X + \lambda Y : ||DF_Z|| \le c$$

so gilt auch

$$||F(Y) - F(X)|| \le c||Y - X||$$

Beweis. Angenommen $G:[0,1]\to\mathbb{R}^k$ ist stetig auf [0,1] und differenzierbar auf (0,1). So gilt

$$\forall t \in (0,1) : ||G'(t)|| \le c$$

Sei $\varepsilon \in \mathbb{R}^+$ und

$$A := \{ t \in [0,1] \mid ||G(t) - G(0)|| \le (c + \varepsilon)t + \varepsilon \}$$

Da G stetig in 0 ist gilt $[0, \tau] \subseteq A$.

Sei $s = \sup A$. Es gilt $0 < s \le 1$, also ist G stetig in s.

Da $t \in A \implies t \leq s$

$$||G(t) - G(0)|| \le (c + \varepsilon)t + \varepsilon \to s \implies ||G(s) - G(0)|| \le (c + \varepsilon)s + \varepsilon$$

also $s \in A$. Angenommen, s < 1. Dann gilt $\exists h > 0 : s + h < 1$.

$$\left\| \frac{G(s+h) - G(s)}{h} - G'(s) \right\| \le \varepsilon$$

$$\implies \left\| \frac{G(s+h) - G(s)}{h} \right\| \le \varepsilon + G'(s) \le c + \varepsilon$$

$$||G(s+h) - G(0)|| \le ||G(s+h) - G(s)|| + ||G(s) - G(0)||$$

$$\le (c+\varepsilon)h + (c+\varepsilon)s + \varepsilon$$

$$\le (c+\varepsilon)(s+h) + \varepsilon$$

Daraus folgt $s + h \in A$. Da s das Supremum ist ist dies ein Widerspruch. Also gilt h = 1.

$$\forall \varepsilon \in \mathbb{R}^+ : ||G(1) - G(0)|| \le c + \varepsilon + \varepsilon = c + 2\varepsilon$$
$$\implies ||G(1) - G(0)|| \le c$$

Sei F wie im Satz. Sei $K:[0,1] \to \mathbb{R}^n: t \to (1-t)X+tY$. Diese Abbildung ist affin, also differenzierbar. Es gilt K'(t) = Y - X. $F \circ K$ ist diffbar in (0,1)

$$D(F \circ K)_t = DF_{K(t)} \circ DK_t$$

$$(F \circ K)'(t) = DF_{K(t)}(K'(t)) = DF_{K(t)}(Y - X)$$

$$||(F \circ K)'(t)|| = ||DF_{K(t)}(Y - X)|| \le ||DF_{K(t)}|| ||Y - X|| \le c||Y - X||$$

 $Mit G := F \circ K \text{ und } c := c ||Y - X||$

$$||F(Y) - F(X)|| \le c||Y - X||$$

[missing stuff - gradients]

Definition 1.34. Eine Funktion f heißt **partiell differenzierbar**, wenn für jede Koordinatenachse i die Partielle Ableitung $\forall i \in \{0, \dots, n\} : \partial_i f : M \subseteq \mathbb{R} \to \mathbb{R} : X \to \delta_i f(X)$ existiert.

Satz 1.35. Ist $f: M \to \mathbb{R}$ in einer Umgebung von X_0 partiell differenzierbar und sind die partiellen Ableitungen in X_0 stetig, so ist f in X_0 differenzierbar.

Beweis. Sei U ein offener Ball um X_0 , welcher vollständig in M enthalten ist. Sei $H \in \mathbb{R}^n$, sodass $X_0 + H \in U$. Nun gilt:

$$f(X_0 + H) - f(X_0) = \sum_{i=1}^{n} (f(x_1, \dots, x_{i-1}, \dots, x_i + h_i, x_{i+1} + h_{i+1}, \dots, x_n + h_n))$$
$$- \sum_{i=1}^{n} (f(x_1, \dots, x_{i-1}, \dots, x_i, x_{i+1} + h_{i+1}, \dots, x_n + h_n))$$

Die Summenglieder sind partielle Ableitung. Nach Mittelwertsatz erhalten wir:

$$\sum_{i=1}^{n} h_1 \partial_i f(x_1, \dots, x_{i-1}, x_i + c_i h_i, x_{i+1}, \dots, x_n) \ c_i \in (0, 1)$$

Nun gilt:

$$\frac{1}{\|H\|} |f(X_0 + H) - f(X_0) - \langle \nabla f(X_0), H \rangle|
= \frac{1}{\|H\|} \left| \sum_{i=1}^n h_1 \partial_i f(x_1, \dots, x_{i-1}, x_i + c_i h_i, x_{i+1} + h_{i+1}, \dots, x_n + h_n) - \partial_i (f(x_0, \dots, x_n)) \right|
\leq \left| \sum_{i=1}^n \partial_i f(x_1, \dots, x_{i-1}, x_i + c_i h_i, x_{i+1} + h_{i+1}, \dots, x_n + h_n) - \partial_i (f(x_0, \dots, x_n)) \right| \to 0$$

Sei $M \subseteq \mathbb{R}^n$ offen, $X_0 \in M$, $F: M \to \mathbb{R}^k$. Seien $\forall i \in \{1, \dots, n\} f: M \to \mathbb{R}^n \to \mathbb{R}$ Koordinatenfunktionen.

$$F(X) = (f_1(X), \dots, f_k(X)) = \sum_{i=1}^k f_i(X) E_i'$$

$$Y = F(X) \Leftrightarrow \forall i : y_i = f_i(x_1, \dots, x_n)$$

$$(1.5)$$

Satz 1.36. Die Abbildung F ist genau dann differenzierbar in X_0 , wenn alle Koordinatenfunktionen f_i in X_0 differenzierbar sind. Ist das der Fall, gilt:

$$DF_{X_0}(H) = \sum_{i=1}^k (Df_i)_{X_0}(H)E_i' \forall H \in \mathbb{R}^n$$

Beweis. $L: \mathbb{R}^n \to \mathbb{R}^n$ linear. Dann

$$\lim_{H \to 0} \frac{F(X_0 + H) - F(X_0) - L(H)}{\|H\|} = 0 \Leftrightarrow \lim_{H \to 0} \frac{f_i(X_0 + H) - f_i(X_0) - (D_i \circ L)(H)}{\|H\|} = 0$$

Wir wollen nun das Differential bezüglich der Standardbasis übersichtlich darstellen. Es gilt:

$$L(E_j) = \sum_{i=1}^k a_{ij} E_i'$$

$$DF_{X_0} = \sum_{i=1}^{k} \partial_j f_i(X_0) E_j'$$

Die Koeffizienten der Darstellenden Matrix sind also identisch mit den Partiellen Ableitungen.

Satz 1.37. Sei $F: M \to \mathbb{R}^k$ differenzierbar in $X_0 \in M$. Dann wir das Differential DF_{X_0} bezüglich der Standardbasis in \mathbb{R}^n und \mathbb{R}^k beschrieben als die $k \times n$ -Matrix

$$JF(X_0) = (\delta_i f_i(X_0))_{1 \le i \le n, 1 \le j \le k}$$

Sie heißt die Funktionalmatrix oder Jacobimatrix von F in X_0 . Falls k = n wird die Determinante dieser Matrix als Funktionaldeterminante oder Jacobideterminante von F in X_0 bezeichnet.

[missing stuff]

Satz 1.38. Ist $r \geq 2$ und $f \in C^r(M)$, so sind die partiellen Ableitungen von f bis zur Ordnung r unabhängig von der Reihenfolgen es gilt also:

$$\partial_1 \dots \partial_r f = \partial_{\sigma(1)} \dots \delta_{\sigma}(r) f$$

Satz 1.39. Taylor-Formel: Sei $g: [-\varepsilon, h] \to \mathbb{R}$ $\varepsilon, h > 0$. Sei g: (k+1)- mal differenzierbar. Dann gilt:

$$\exists c \in (0,h) : g(h) = \sum_{j=0}^{k} \frac{1}{j!} g^{(j)}(0) h^j + \frac{1}{(k+1)!} g^{(k+1)}(c) h^{k+1}$$

Sei $f: M \to \mathbb{R}$ $M \subseteq \mathbb{R}^n$ offen, $x_0 \in M$. Sei $k \in \mathbb{N}$, $f \in C^k(M)$ mit partielle differenzierbaren partiellen Ableitungen k-ter Ordnung, $H \in \mathbb{R}^n : [x_0, x_0 + H] \subseteq M$. Sei $g(t) := f(x_0 + tH)$. Dann gilt für $r \in \{1, \ldots, k+1\}$:

$$g^{(r)}(t) = \sum_{i_1,\dots,i_r}^{n} \delta i_1 \dots \delta i_r f(X_0 + tH) h_{i_1} \dots h_{i_r}$$

$$g(1) = \sum_{r=0}^{k} \frac{1}{r!} g^{(r)}(0) + \frac{1}{(k+1)!} g^{(k+1)}(c)$$

Satz 1.40. Mehrdimensionale Taylorformel: Sei $M \subseteq \mathbb{R}^n$ offen, $X_0 \in M$, $H \in \mathbb{R}^n$ mit $[X_0, X_0 + h] \subseteq M$, $k \in \mathbb{N}$, $f \in C^k(M)$, sodass die partiellen Ableitungen der Ordnung k in M differenzierbar sind. Dann $\exists c \in (0,1)$, sodass:

$$f(X_0 + h) = f(X_0) + \sum_{r=1}^k \frac{1}{r!} \sum_{i_1, \dots i_r = 1}^n \delta i_1 \dots \delta i_r f(X_0 + tH) h_{i_1} \dots h_{i_r} + \frac{1}{(k+1)!} \sum_{i_1, \dots i_r = 1}^n \delta i_1 \dots \delta i_r f(X_0 + cH) h_{i_1} \dots h_{i_r}$$

Kompakter für k = 2:

$$f(X_0 + H) = f(X_0) + \langle \nabla f(X_0), H \rangle + \frac{1}{2} \sum_{i,j=1}^{n} \partial_i \partial_j f(X_0) h_i h_h + R(X_0, h)$$

$$R(X_0, H) = \frac{1}{6} \sum_{i,j,k=1}^{n} \delta_i \delta_j \delta_k f(Y) h_i h_j h_k \quad Y \in [X_0, X_0 + H]$$

Falls die dritten Ableitungen auf der Verbindungslinie beschränkt sind gilt:

$$\lim_{H \to 0} \frac{R(X_0; H)}{\|H\|^2} = 0$$

Satz 1.41. Sei $f: M \to \mathbb{R}$ zweimal partiell differenzierbar in X_0 . Dann heißt die durch

$$Q(f, X_0; H) := \sum_{i,j=1}^{n} \delta_i \delta_j f(X_0) h_i h_j$$

definierte Funktion $Q(f, X_0; H \text{ die } \textbf{Hesse-Form} \text{ von } f \text{ im } Punkt X_0 \text{ und die dadurch definierte } Matrix$

$$Hess(f, X_0)_{ij} = (\partial_i \partial_j f(X_0))$$

heißt die **Hesse-Matrix** von f in X_0 .

[...]

Lemma 1.42. Sei $M \subseteq \mathbb{R}^n$ offen, $F: M \to \mathbb{R}^n$ eine C^1 -Abbildung, sei $L: \mathbb{R}^n \to \mathbb{R}^n$ eine lineare Abbildung, sei $X, Y \in M$ mit $[X, Y] \subseteq M$. Dann gilt:

$$||F(X) - F(Y) - L(X - Y)|| \le ||X - Y|| \cdot \max_{Z \in [X,Y]} ||DF_Z - L||$$

Beweis.

$$G(X) := F(X) - L(X) \quad X \in M$$

$$DG_Z = DF_Z - L$$

Dann muss für $F \in C^1$ folgende Funktion stetig sein:

$$Z \to ||DF_Z - L||$$

Zusätzlich ist [X,Y] kompakt, also existiert das Maximum

$$\max_{Z \in [X,Y]} \|DF_Z - L\| := c$$

Gemäß Mittelwertsatz ist nun

$$||F(X) - F(Y) - L(X - Y)|| \le c||X - Y||$$

Satz 1.43. Sei $M \subseteq R^n$ offen. Sei $\vec{x}_0 \in M$. Sei $F : M \to \mathbb{R}^n$ eine C^r -Abbildung $(r \in \mathbb{N}_1)$. Sei das Differential $DF_{\vec{x}_0}$ regulär, also det $JF(\vec{x}_0) \neq 0$. Dann existiert eine offene Umgebung $U \subseteq M$ von \vec{x}_0 , sodass folgendes gilt:

- 1. die Einschränkung $F|_U$ ist injektiv
- 2. die Bildmenge F(U) := V ist offen
- 3. die Umkehrabbildung $(F|_U)^{-1}: V \to U$ ist C^r .

Beweis. Sei I die Identitätsabbildung des \mathbb{R}^n . Sei $U(0,\alpha) := \{\vec{x} \in \mathbb{R}^n \mid \vec{x} < \alpha\}$.

Annahmen: $\vec{x}_0 = 0$, F(0) = 0 (Erfüllbar durch Verschieben), $DF_0 = I$ (Erfüllbar durch invertierbare Lineare Abbildung der Funktion?)

 $\vec{x} \to ||DF_{\vec{x}} - I||$ ist stetig mit $||DF_0 - I|| = 0$. Also gilt

$$\forall \varepsilon > 0 : \exists \alpha > 0 : \forall \vec{x} \in U_{\alpha} : ||DF_{\vec{x}} - I|| \le \varepsilon$$

Nach 4.3 folgt:

$$\forall \vec{x}, \vec{y} \in U_{\alpha} : ||F(\vec{x}) - F(\vec{y}) - (\vec{x} - \vec{y})|| \le \varepsilon ||\vec{x} - \vec{y}||$$

$$\begin{aligned} \|\vec{x} - \vec{y}\| &\leq \|\vec{x} - \vec{y} - (F(\vec{x}) - F(\vec{y}))\| + \|F(\vec{x}) - F(\vec{y})\| \\ &\leq \varepsilon \|\vec{x} - \vec{y}\| + \|F(\vec{x}) - F(\vec{y})\| \end{aligned}$$

also:

$$(1 - \varepsilon) \|\vec{x} - \vec{y}\| < \|F(\vec{x}) - F(\vec{y})\|$$

Also ist $||F(\vec{x}) - F(\vec{y})|| = 0$ gdw. $\vec{x} = \vec{y}$, also folgt Injektivität.

Lemma 1.44. $U_{(1-\varepsilon)\alpha} \subseteq F(U_{\alpha})$

Beweis. Sei $\vec{y} \in U_{(1-\varepsilon)\alpha}$. Wir suchen $\vec{x} \in U_{\alpha} : \vec{y} = F(\vec{x})$. Wir wollen den Banchschen Fixpunktsatz anwenden. Dafür definieren wir $\phi : \overline{U_{\alpha}} \to \mathbb{R}^n$ als:

$$\phi(\vec{x}) := \vec{y} - F(\vec{x}) + \vec{x}$$

Sei nun $X \in \overline{U_{\alpha}}$. Dann gilt:

$$\begin{aligned} \|\phi(\vec{x})\| &\leq \|\vec{y}\| + \|F(\vec{x}) - \vec{x}\| \\ &\leq \|\vec{y}\| + \varepsilon \|\vec{x}\| \\ &< (1 - \varepsilon)\alpha + \varepsilon\alpha \\ &= \alpha \end{aligned}$$

Sei $X, Z \in \overline{U_{\alpha}}$. Nun gilt:

$$\|\phi(\vec{x}) - \phi(\vec{z})\| = \|F(\vec{x}) - \vec{x} - (F(\vec{z}) - \vec{z})\|$$

 $\leq \varepsilon \|\vec{x} - \vec{z}\|$

Gemäß Banachschem Fixpunktsatz existert also genau ein $X \in \overline{U_{\alpha}}$, sodass $\phi(\vec{x}) = \vec{x}$, also $F(\vec{x}) = \vec{y}$. Da $\phi(\vec{x}) < \alpha$ gilt auch $\vec{x} \in U_{\alpha}$.

Sei nun $V:U_{(1-\varepsilon)\alpha}$ und $U:=F^{-1}(V)$. Gemäß Lemma ist U eine Obermenge von V, also ist U eine offene Umgebung von 0. Wir wissen bereits, dass $F|_U$ injektiv ist. Sei also nun $G:V\to U$ die Umkehrabbildung von $F|_U$.

Lemma 1.45. G ist in 0 differenzierbar.

Beweis. Sei $\varepsilon' \in \mathbb{R}^+$. So existiert ein $\alpha' \in \mathbb{R}^+$, sodass $U_{\alpha'} \in M$ und

$$||F(\vec{x}) - \vec{x}|| \le \frac{\varepsilon'}{1 + \varepsilon'} ||\vec{x}|| \quad \forall \vec{x} \in U_{\alpha'}$$
$$||\vec{x}|| \le ||\vec{x} - F(\vec{x})|| + ||F(\vec{x})||$$
$$\le \frac{\varepsilon'}{1 + \varepsilon'} ||\vec{x}|| + ||F(\vec{x})||$$

also:

$$\|\vec{x}\| \le (1 + \varepsilon') \|F(\vec{x})\| \quad \forall \vec{x} \in U_{\alpha'}$$

Sei nun $\vec{h} \in V$ mit $\|\vec{h}\| < \alpha'(1 - \varepsilon)$. Sei $\vec{x} := G(\vec{h})$. Gemäß Lemma ist $V \subseteq F(U_{\alpha})$, also $G(V) \subseteq G(F(U_{\alpha}))$, also $U \subseteq U_{\alpha}$, also $\vec{x} \in U$ (?)

Gemäß vorheriger Überlegungen haben wir

$$\|X\| \leq \frac{1}{1-\varepsilon} \|F(\vec{x})\| = \frac{1}{1-\varepsilon} \left\| \vec{h} \right\| < \alpha'$$

Wir betrachten nun endlich den Differentialquotienten:

$$\begin{split} \left\| G(\vec{h}) - \vec{h} \right\| &= \| \vec{x} - F(\vec{x}) \| \\ &\stackrel{(*)}{\leq} \frac{\varepsilon *}{1 + \varepsilon'} \| \vec{x} \| \\ &\leq \varepsilon' \| F(\vec{x}) \| \\ &\leq \varepsilon' \left\| \vec{h} \right\| \end{split}$$

also:

$$\frac{\left\|G(\vec{h}) - \vec{h}\right\|}{\left\|\vec{h}\right\|} \leq \varepsilon'$$

für alle $0 < \|\vec{h}\| < \min\{\alpha(1-\varepsilon), \alpha'(1-\varepsilon)\}$, also ist G in 0 differenzierbar mit $DG_0 = I$.

Was ist nun, wenn die Vorraussetzungen $\vec{x} = 0$, F(0) = 0, $DF_0 = I$ nicht gelten?

Wir definieren lineare Translationsabbildungen $T_{\vec{z}}:\mathbb{R}^n\to\mathbb{R}^n$ $\vec{x}\to\vec{x}+\vec{z}.$ Sei nun:

- $L: DF_{\vec{x}_0}$,
- $M' := (L \circ T_{-\vec{x}_0})(M),$
- $\bullet \ F'(\vec{x}) := T_{-F(\vec{x}_0} \circ F \circ T_{\vec{x}_0} \circ L^{-1}(\vec{x})$

Die Differentiale sind DL = L und $DT_Z = I$. Nun gilt:

$$DF_0' = I \circ DF_{\vec{x}_0} \circ I \circ (DF_{\vec{x}_0})^{-1} = I$$

Also $F'(0)=0,\ 0\in M'.\ F'$ ist also umkehrbar und die Umkehrabbildung ist differenzierbar in 0. Für die Ursprüungliche Abbildung gilt $F=T_{T_{\vec{x}_0}}\circ F'\circ L\circ T_{-\vec{x}_0}.$

Definition 1.46. Sei $F:M\subseteq\mathbb{R}^n\to\mathbb{R}^n$ eine C^r -Funktion mit regulären Differentialen. Eine solche Abbildung nennt man einen C^r -Diffeomorphismus.

[...]

Satz 1.47. (Implizite Funktion): Sei k < n, $M \subseteq \mathbb{R}^n$ offen, $F \in C^r : M \to \mathbb{R}^k$, sei $N = \{\vec{x} \in M \mid F(\vec{x}) = 0\}$. Sei $\vec{x}_0 \in N$ und $DF_{\vec{x}_0}$ vom Rang k.

Dann gibt es nach passender Identifizierung von \mathbb{R}^n mit $\mathbb{R}^{n-k} \times \mathbb{R}^k$ eine offene Umgebung $U \subseteq M$ von \vec{x}_0 , eine offene Menge $V \subseteq \mathbb{R}^{n-k}$ und eine Abbildung $G \in C^r : V \to \mathbb{R}^k$, sodass $N \cap U$ der Graph von G ist.

Beweis. $DF_{\vec{x}_0}$ hat Rang k. Es gilt also k linear unabhängige Spalten. OBDA seien dies die letzten k Spalten. Die ersten (n-k) Basisvektoren bilden eine Basis des \mathbb{R}^{n-k} , ebenso bilden die letzten k Vektoren eine Basis des \mathbb{R}^k . Wir haben somit eine Identifikation $\mathbb{R}^n \simeq \mathbb{R}^{n-k} \times \mathbb{R}^k$ erhalten, sodass wir $\vec{x} \in \mathbb{R}^n$ abbilden auf $\vec{x} = (\vec{x}', \vec{x}'')$. Wir definieren folgende Funktion:

$$\phi: M \times \mathbb{R}^k \to \mathbb{R}^{n-k} \times \mathbb{R}^k$$
$$(\vec{x}', \vec{x}'') \to (\vec{x}', F(\vec{x}', \vec{x}''))$$

Da $F, \times \in \mathbb{C}^r$ ist ϕ ebenfalls in \mathbb{C}^r . Für die Jakobimatrix gilt:

$$J\phi = \begin{pmatrix} 1 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & & & \end{pmatrix}$$

[WIP]

Nach dem Satz der Inversen Funktion existiert eine Umgebung U_0 von \vec{x}_0 , sodass auf dieser Umgebung eine Umkehrabbildung ψ existiert. Und so weiter :)

Anmerkung 1.48. Seien A, B Mengen. Es existieren folgende Funktionen:

- \bullet Das Produkt $A\times B$
- Die Projektion $\pi_1: A \times B \to A$ auf die erste Komponente
- Die Projektion $\pi_2: A \times B \to B$ auf die zweite Komponente
- Die kanonische Injektion $i: A \to A \times B: a \to (a,0)$

Satz 1.49. Über lokal surjektive Abbildungen: Sei k < n. Sei $M \subseteq \mathbb{R}^n$ offen, $F: M \to \mathbb{R}^k$ eine Abbildung der Klasse C^r , $r \in \mathbb{N}_1$. Sei $X_0 \in M$ und F in X_0 vom Rang k, also DF_{X_0} surjektiv. Dann gibt es eine offene Umgebung U von X_0 in M, eine offene Menge V in \mathbb{R}^{n-k} , und einen C^r -Diffeomorphismus $h: U \to V \times F(u)$, sodass das folgende Diagramm kommutiert:

Beweis. Nach Vorraussetzung hat $JF(X_0)$ k unabhängige Spalten. Seien dies OBdA die letzten Spalten. Wir interpretieren $\mathbb{R}^n = \mathbb{R}^k \times \mathbb{R}^{n-k}$ und definieren $\pi_1 : \mathbb{R}^n \to \mathbb{R}^{n-k}$ und $\pi_2 : \mathbb{R}^n \to \mathbb{R}^k$ als die dazugehörigen kanonischen Projektionen. Sei φ folgende Funktion:

$$\varphi: M \to \mathbb{R}^{n-k} \times \mathbb{R}^k$$
$$X \to (\pi_1(X), F(X))$$

Es gilt $F \in C^r$ und $\pi_1 \in C^r$, also auch $\varphi \in C^r$. Gemäß des Satzes der inversen Funktion existiert also eine Umgebung $\varphi \in C^r$, auf der φ ein C^r Diffeomorphismus (also C^r und invertierbar).

Da φ^{-1} stetig ist, ist das Urbild $(\varphi^{-1})^{-1}(U') = \varphi(U')$ offen. Es enthält also eine offene Umgebung von $\varphi(X_0) = (\pi_1(X_0), F(X_0))$ der Form $V \times X$, also ist V offen in \mathbb{R}^{n-k} . Wir setzen $U := \varphi^{-1}(V \times W)$ und $h = \varphi|_U$. Dann ist F(U) = W, und für $X \in U$ gilt $h(X) = (\pi_1(X), F(X))$, also $\pi_2 \circ h = F$.

Im Fall k > n erhalten wir lokale Injektivität statt lokaler Surjektivität:

Satz 1.50. Über lokal injektive Abbildungen: Sei k > n. Sei $M \subseteq \mathbb{R}^n$ offen, sei $F : M \to \mathbb{R}^k$ eine C^r -Abbildung. Sei $X_0 \in M$ und F in X_0 vom Rang n (und damit das Differential DF_{X_0} injektiv). Sei i die kanonische Injektion.

Dann gibt es eine offene Umgebung U von X_0 in M, eine offene Umgebung V von 0 in \mathbb{R}^{k-n} , eine offene Umgebung W von $F(X_0)$ in \mathbb{R}^k , und einen \mathbb{C}^r -Diffeomorphismus $h: U \times V \to W$, sodass das folgende Diagramm kommutiert:

Beweis. hi :D

[...]

Chapter 2

Gewöhnliche Differentialgleichungen

Gewöhnliche Differentialgleichungen, auf englisch ordinary differential equations (ODEs) beschreiben zeitabhngige Prozesse. Sie sind nützlich für die modellierung zahlreicher Prozesse in verschiedenen Gebieten der Wissenschaft.

2.1 Existenztheorie

Definition 2.1. Für $f: \mathbb{R}^{n+1} \to \mathbb{R}$ nennen wir eine Gleichung der Form

$$y^{(n)}(t) = f(t, y(t), y'(t), \dots, y^{(n-1)}(t))$$

eine explizite Differntialgleichung n-ter Ordnung. Ist zusätzlich

$$y^{(i)}(t_0) = y_{i-1}$$

für $(t_0, y_0, y_1, \dots y_{n-1}) \in \mathbb{R}^{n+1}$ gegeben, spricht man von einem Anfangswertproblem.

Definition 2.2. Sei I ein Intervall. Eine Funktion $y: I \to \mathbb{R}$ heißt $L\ddot{o}sung$ von (2.1) im Intervall I, falls y in I n-mal differenzierbar ist und

$$y^{(n)}(t) = f(t, y(t), y'(t), \dots, y^{(n-1)}(t))$$

für alle $t \in I$ erfüllt ist.

Wir erlauben hier jede Art von Intervall, egal ob offen, halboffen, oder geschlossen.

Definition 2.3. Sei $F: \omega \subseteq \mathbb{R}^{n+1} \to \mathbb{R}^n$. Wir nennen das Gleichungssystem

$$Y'(t) = F(t, Y(t))$$

ein System von Differentialgleichungen 1. Ordnung. Für $F = (f_1, \ldots, f_n)$ und $Y = (y_1, \ldots, y_n)$ lässt sich das System komponentenweise schreiben als:

$$y'_1(t) = f_1(t, y_1(t), \dots, y_n(t))$$

 \vdots
 $y'_n(t) = f_n(t, y_1(t), \dots, y_n(t))$

Ergänzt man das System durch die Bedingung $Y(t_0) = Y_0$ erhalten wir komponentenweise:

$$y_1(t_0) = y_1^0$$

$$\vdots$$

$$y_n(t_0) = y_n^0$$

Für ein $(t_0, y_1^0, \dots, y_n^0) \in \Omega$ und sprechen wieder von einem Anfangswertproblem.

Lemma 2.4. Erfülle F die Vorraussetzung (S), sei außerdem $y_i(a,b) \to \mathbb{R}^n$ eine Lösung des Gleichungssystems Y'(t) = F(t,Y(t)). Weiter existiere der Grenzwert $\lim_{t\to +b} Y(t) := y_1$ und es gelte $(b,y_1)\in\Omega$. Dann existiert $\delta>0$, sodass man die Lösung y zu einer Lösung auf dem Intervall $(a,b+\delta]$ fortsetzen kann.

Definition 2.5. Seien $A, B \in \mathbb{R}^{n+1}$. Wir definieren zwischen den beiden Mengen folgendermaßen eine Abstandsfunktion:

$$\operatorname{dist}(A,B) := \inf_{x \in A, y \in B} \|X - Y\|$$

[big gap here oops]

Lemma 2.6. Seien I, J offene Intervalle, sei $f: J \times I \to \mathbb{R}$ durch f(t, y) = h(t)g(y) gegeben, wobei $g: I \to \mathbb{R}, g \neq 0, h: J \to \mathbb{R}$ stetig sind. Falls $\varphi: (\alpha, \beta) \subseteq J \to I$ eine Lösung von (3.1) ist, existiert $c \in \mathbb{R}: \forall t \in (\alpha, \beta)$

$$\varphi(t) = G^{-1}(H(t) + c)$$

Satz 2.7. Erfülle f die Vorraussetzung des letzten Lemmas. Dann existiert $\forall (t_0, y_0) \in J \times I$ eine eindeutige maximale Lösung $y: J_0 \to I$ von (3.1) mit $y(t_0) = y_0$. Diese Lösung ist von der Form

$$y(t) = G^{-1}(H(t)),$$

wobei

$$G(y) = \int_{y_0}^y \frac{1}{g(x)} dx, y \in I,$$

$$H(t) = \int_{t_0}^{t} h(s)ds, t \in J$$

ist.

Beispiel 2.8. Sei $y'(t) = 2t(1+y^2)$ mit Anfangsbedingung $y(t_0) = y_0$, wobei $(t_0, y_0 \in \mathbb{R}^2)$. Dann gilt:

$$g(y) = 1 + y^2$$
, $h(t) = 2t$

$$G(y) = \int_{y_0}^{y} \frac{1}{1+x^2} dx$$

$$= \arctan y - \arctan y_0$$

$$:= \arctan y - c_0$$

$$H(t) = \int_{t_0}^t 2s \ ds$$
$$= t^2 - t_0^2$$

Bild(G) =
$$\left(-\frac{\pi}{2} - c_0, \frac{\pi}{2} - c_0\right), \quad c_0 \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

1.
$$-t_0^2 > -\frac{\pi}{2} - c_0$$

$$\alpha := \sqrt{\frac{\pi}{2} - c_0 + t_0^2}$$

$$H^{-1}(Bild(G)) = (-\alpha, \alpha)$$

$$y(t) = \tan(t^2 - t_0^2 + \arctan(y_0))$$

$$2. -t_0^2 \le -\frac{\pi}{2} - c_0$$

$$\alpha = \sqrt{-\frac{\pi}{2} - c_0 + t_0^2}$$

$$\beta := \sqrt{\frac{\pi}{2} - c_0 + t_0^2}$$

$$H^{-1}(\operatorname{Bild}(G)) = (-\beta, -\alpha) \cup (\alpha, \beta)$$

OBdA $t_0 \in (\alpha, \beta)$, dann

$$y(t) = \tan(t^2 - t_0^2 - \arctan(y_0))$$

2.2 Lineare Gleichungen

Angenommen, wir haben eine Funktion f(t, y) der Form

$$f(t,y) = h(t)y + p(t)$$

Es gilt:

$$h, p: I = (a, b) \to \mathbb{R}$$

Wobei nach Annahme h, p stetig sind und $f: I \times \mathbb{R} \to \mathbb{R}$ die Vorraussetzung (S) erfüllt.

Wenn p(t) = 0 nennen wir die Differentialgleichung y' = f(t, y) homogen, ansonsten nennen wir sie inhomogen.

$$y' = h(t)y + p(t) \Leftrightarrow y'(t) - h(t)y(t) = p(t)$$

Wir suchen nun das Urbild von $p \in C^0(I)$ bezüglich

$$L: C^1(I) \to C^0(U): y \mapsto y' - hy$$

$$(L(y))(t) := y'(t) - h(t)y(t)$$

Es gilt:

$$L(\alpha y + \beta z) = \alpha L(y) + \beta (L(z))$$

Also ist L ein linearer Operator!

[...]

Lemma 2.9. Sei I = (a, b) und für $f : I \times \mathbb{R} \to \mathbb{R}$ gelte

$$f(t,y) = h(t)y + p(t)$$

Wobei p, h auf I stetig sind. Seien Lösungen y_1, y_2 der inhomogenen Gleichung und y_0 Lösung der homogenen Gleichung. Dann gilt:

- (i) $y_1 y_2$ ist Lösung der homogenen Gleichung
- (ii) $y_1 + y_0$ ist Lösung der inhomogenen Gleichung

Lemma 2.10. Sei y_2 eine Lösung der inhomogenen Gleichung und y_0 eine Lösung der homogenen Gleichung. So existiert eine Lösung y_1 der inhomogenen Gleichung, sodass

$$y_2 = y_0 + y_1$$

Variation der Konstanten:

$$y(t) = c(t)e^{H(t)}$$

 $y'(t) = c'(t)e^{H(t)} + c(t)e^{H(t)}h(t)$

Damit y eine Lösung von (3.1) ist muss gelten:

$$y'(t) = p(t) + h(t)y(t)$$

Also:

$$c'(t) = p(t)e^{-H(t)}$$

Also ist c eine Stammfunktion von pe^{-H} .

Satz 2.11. Sei I = (a, b), für $f : I \times \mathbb{R} \to \mathbb{R}$ gelte

$$f(t,y) = h(t)y + p(t)$$

p,h stetig. Dann existert für alle $(t_0,y_0)\in I\times\mathbb{R}$ eine eindeutige, maximale Lösung

$$y:I\to\mathbb{R}$$

von (3.1) mit $y(t_0) = y_0$. Diese Lösung hat folgende Form:

$$y(t) = e^{[H(t)]} \left(y_0 + \int_{t_0}^t p(s)e^{-H(s)} ds \right)$$

Wobei

$$H(t) = \int_{t_0}^t h(s)ds$$

Beweis.

$$y(t_0) = e^{H(t_0)}(y_0 + 0) = y_0$$

Rechnungen liefern, dass $y: I \to \mathbb{R}$ maximal ist. Seien y_1, y_2 eine maximale Lösung mit $y_i(t_0) = y_0$. $\overline{y} := y_1 - y_2$ ist eine Lösung der homogenen Gleichung mit $y(t_0) = 0$, also $\overline{y}(t) = 0$, also $y_1 = y_2$.

Chapter 3

Systeme Linearer Differentalgleichungen

Wir suchen nach Lösungen von Gleichungssystemen der Form:

$$Y'(t) = \mathbf{A}(t)Y(t) + \mathbf{B}(t)$$

Wobei \mathbf{A}, \mathbf{B} Matrizen sind.

Sei I = (a, b) und sei $F(t, Y) := \mathbf{A}(t)Y + \mathbf{B}(t)$. F ist bezüglich Y lokal Lipschitzstetig, also existiert eine eindeutige maximale Lösung mit $Y(t_0) = Y_0$.

Lemma 3.1. Lemma von Gronwall:

Sei J ein Intervall, $t_0 \in J$, $\alpha, \beta \in [0, \infty)$. Ferner sei $x: J \to [0, \infty)$ stetig und erfülle

$$x(t) \le \alpha + \beta \left| \int_{t_0}^t x(s) ds \right|$$

Für $t \in J$. Dann gilt

$$x(t) \le \alpha e^{\beta|t-t_0|}$$

Beweis. Sei $t \geq t_0, t \in J$. Sei

$$h(s) := \beta e^{\beta(t_0 - s)} \int_{t_0}^{s} x(\tau) d\tau$$

mit $s \in [t_0, t]$. Sei

$$h'(s) = \beta e^{\beta(t_0 - s)} (-1)\beta \int_{t_0}^s x(\tau)d\tau + \beta e^{\beta(t_0 - s)} x(s)$$

$$= -\beta h(s) + \beta e^{\beta(t_0 - s)} x(s)$$

$$\leq -\beta h(s) + \beta e^{\beta(t_0 - s)} \left(\alpha + \beta \left| \int_{t_0}^s x(\tau)d\tau \right| \right)$$

$$= -\beta h(s) + \alpha \beta e^{\beta(t_0 - s)} + \beta h(s)$$

$$= \alpha \beta e^{\beta(t_0 - s)}$$

$$\int_{t_0}^t h'(s)ds = h(t) - h(t_0) = h(t) = \beta e^{\beta(t_0 - s)} \int_{t_0}^s x(\tau)d\tau$$

$$\int_{t_0}^{t} \frac{d}{ds} (-\alpha e^{B(t_0 - s)}) ds = -\alpha e^{\beta(t_0 - t)} + \alpha$$

$$\implies \beta e^{\beta(t_0 - s)} \int_{t_0}^{t} x(\tau) \le \alpha - \alpha e^{\beta(t_0 - t)}$$

$$\beta \int_{t_0}^t x(s)ds \le \alpha e^{\beta(t-t_0)} - \alpha$$

$$\implies \alpha + \beta \int_{t_0}^t x(s)ds \le \alpha e^{\beta(t-t_0)}$$

$$\implies x(t) \le \alpha e^{\beta(t-t_0)}$$

Satz 3.2. Seien A, B stetig Funktionen auf I = (a, b). Dann ist jede maximale Lösung des dazugehörigen Differentialsystems auf ganz (a, b) definiert.

Beweis. Sei eine maximale Lösung gegeben durch:

$$Y:(\alpha,\beta)\to\mathbb{R}^n$$

Wobei $Y(t_0) = Y_0, t_0 \in (\alpha, \beta)$. Da Y eine maximale Lösung ist existiert der Limes

$$\lim_{t \to +\beta} Y(t)$$

nicht. Sei $(\alpha, \beta) \subsetneq (a, b)$, OBdA $\beta < b$. Sei für $n \in \mathbb{N}$:

$$K_n := \{(t, Y) \in \mathbb{R}^{n+1} \mid t \in [t_0, \beta], ||Y|| \le n\}$$

Da diese Menge kompakt ist und Y eine maximale Lösung ist, ist

$$G^+ = \{(t, z) \in \overline{\operatorname{graph}(Y)} \mid t \ge t_0\}$$

keine kompakte Teilmenge.

$$\exists \tau_n \in [t_0, \beta) : ||Y(\tau_n)|| = n$$
$$\implies \lim_{n \to \infty} ||Y(\tau_n)|| = \infty$$

$$n(T) := \|Y(t)\|t \in (\alpha, \beta)$$
$$\delta := \max_{t \in [t_0, \beta]} \|\mathbf{A}(t)\|_{\mathbb{R}^{n \times m}} < \infty$$
$$\gamma := \max_{t \in [t_0, \beta]} \|\mathbf{B}(t)\|_{\mathbb{R}^n} < \infty$$

Da Y eine Lösung ist, ist:

$$Y(t) = Y(t_0) + \int_{t_0}^t \mathbf{A}(s)Y(s) + \mathbf{B}(s)dst \in [t_0, \beta)$$

[...]

Definition 3.3. Wir nennen die Matrix \mathbf{Y} , welche das System linearer Differentialgleichungen beschreibt, die **Fundamentalmatrix** des Systems.

Lemma 3.4. Es gilt $\mathbf{Y}' = \mathbf{AY}$.

Definition 3.5. Wir definieren $\mathbf{Z}(t) = \mathbf{Y}(t)\mathbf{Y}^{-1}(t_0)$.

Definition 3.6. Sei $I = (a, b), A : I \to \mathbb{R}^{n \times n}$ stetig. Sei **Y** eine Fundamentalmatrix eines homogenen Systems linearer Differentialgleichungen. Wir nennen

$$W(t) := \det\{\mathbf{Y}(t)\}\$$

die Wronski-Determinante.

Satz 3.7. Sei $I = (a, b), \mathbf{A} : I \to \mathbb{R}^{n \times n}$ stetig. Sei \mathbf{Y} eine Fundamentalmatrix eines homogenen Systems linearer Differentialgleichungen. Dann gilt

$$W(t) = W(t_0)e^{\int_{t_0}^t tr(\mathbf{A}(s))ds}$$

 $f\ddot{u}r\ t\in I$, wobei die $Spur\ tr(\mathbf{A})$ einer quadratischen Matrix als die $Summe\ der\ Diagonaleinträge\ definiert$ ist.

Beweis. Es gilt $tr(A) \in \mathbb{R}$, $W(t) \in \mathbb{R}$. Wir betrachten also eine skalare Gleichung. Gemäß Satz (3.8?) aus Kapitel 12 gilt diese Formel genau dann, wenn

$$W'(t) = \operatorname{tr}(\mathbf{A}(t))$$

Wir benötigen also eine Formel für die Ableitung der Determinante. Für $\mathbf{B} = (b_{ij})$ gilt

$$\det \mathbf{B} = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) b_{1\sigma(1)} \cdot \ldots \cdot b_{n\sigma(n)}$$

Somit gilt:

$$(\det \mathbf{B})' = \sum_{i=1}^{n} \sum_{\sigma \in S_{-}} \operatorname{sgn}(\sigma) b_{1\sigma(1)} \cdot \ldots \cdot b'_{i\sigma(i)} \cdot \ldots \cdot b_{n\sigma(n)}$$

(insert black magic here)

Es folgt:

$$W(t) = \det \mathbf{Y}(t) = \det \mathbf{Z}(t) \det \mathbf{Y}(t_1) = \det \mathbf{Z}(t)W(t_1)$$

und somit:

$$W'(t) = (\det \mathbf{Z}(t))'W(t_1)$$

Mit der Formel der Ableitung der Determinante gilt:

$$(\det \mathbf{Z}(t_1))' = \sum_{i=1}^n \det(Z_1(t_1), \dots, Z_i'(t_1), \dots, Z_n(t_1))$$

$$= \sum_{i=1}^n \det(E_1(t_1), \dots, \mathbf{A}(t_1)E_i, \dots, E_n(t_1))$$

$$= \sum_{i=1}^n a_{ii}(t_1)$$

$$= \operatorname{tr} \mathbf{A}(t_1)$$

Es gilt folglich:

$$W'(t) = \operatorname{tr} \mathbf{A}(t_1) W(t_1)$$

Korollar 3.8. Die Wronski-Determinante einer Fundamentalmatrix ist überall ungleich Null.

3.1 Systeme mit konstanten A

Wir betrachten Systeme der Form:

$$Y'(t) = \mathbf{A}Y(t)$$

Wir betrachten dabei die lineare Abbildung:

$$A: \mathbb{R}^n \to \mathbb{R}^n: Y \mapsto \mathbf{A}Y$$

Also $\mathbf{A}=M_E^E(A).$ Aus der Linearen Algebra ist bekannt, dass:

$$M_B^B(A) = M_B^E(id)M_E^E(A)M_E^B(id)$$

Wobei $M_E^B(id) := \mathbf{B}$ und $M_B^E := \mathbf{B}^{-1}$. Also:

$$M_B^B(A) = \mathbf{B}^{-1}\mathbf{A}\mathbf{B} := \mathbf{D}$$

$$Z(t) := \mathbf{B}^{-1}Y(T) \Leftrightarrow \mathbf{B}Z(t) = Y(t)$$

Falls Y eine Lösung des Systems mit Konstante ist, gilt:

$$Z'(t) = \mathbf{B}^{-1}Y'(t) = \mathbf{B}^{-1}\mathbf{A}Y(t) = \mathbf{B}^{-1}\mathbf{A}\mathbf{B}Z(t) = \mathbf{D}Z(t)$$

Satz 3.9. Wenn A symmetrisch ist, können wir die Matrix diagonalisieren und erhalten eine besonders simple Lösung der Form:

$$\mathbf{Y} = \mathbf{BZ} = (B_1 e^{\lambda_1 t}, \dots, B_n e^{\lambda_n t})$$