微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 ---- 专业微波工程师社区: http://bbs.rfeda.cn

HFSS FULL BOOK v10 中文翻译版 568 页(原 801 页)

(分节 水印 免费 发布版)

微波仿真论坛 --组织翻译 有史以来最全最强的 2955 中文教程

感谢所有参与翻译,投对,整理的会员

版权申明: 此翻译稿版权为微波仿真论坛(bbs.rfeda.cn)所有. 分节版可以转载. 严禁转载 568 页完整版.

推荐: EDA问题集合(收藏版) 之HFSS问题收藏集合 → http://bbs.rfeda.cn/hfss.html

- Q: 分节版内容有删减吗? A: 没有, 只是把完整版分开按章节发布, 免费下载. 带水印但不影响基本阅读.
- Q: 完整版有什么优势? A:完整版会不断更新,修正,并加上心得注解.无水印.阅读更方便.
- Q: 本书结构? A: 前 200 页为使用介绍.接下来为实例(天线,器件, BMC, SI 等).最后 100 页为基础综述
- 0: 完整版在哪里下载? A: 微波仿真论坛(http://bbs.rfeda.cn/read.php?tid=5454)
- Q: 有纸质版吗? A:有.与完整版一样,喜欢纸质版的请联系站长邮寄rfeda@126.com 无特别需求请用电子版
- Q: 还有其它翻译吗? A: 有专门协助团队之翻译小组. 除 HFSS 外, 还组织了 ADS, FEKO 的翻译. 还有正在筹划中的任务!
- 0: 翻译工程量有多大? A: 论坛 40 位热心会员, 120 天初译, 60 天校对. 30 天整理成稿. 感谢他们的付出!
- Q: rfeda. cn 只讨论仿真吗?
- **A: 以仿真为主. 微波综合社区. 论坛正在高速发展. 涉及面会越来越广! 现涉及** 微波|射频|仿真|通信|电子|EMC| 天线|雷达|数值|高校|求职|招聘
- Q: rfeda. cn 特色?
- A: 以技术交流为主,注重贴子质量,严禁灌水;资料注重原创;各个版块有专门协助团队快速解决会员问题;

http://bbs.rfeda.cn --- 等待你的加入

RFEDA. cn

rf---射频(Radio Frequency)
eda---电子设计自动化(Electronic Design Automation)

微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 ---- 专业微波工程师社区: http://bbs.rfeda.cn

致谢名单 及 详细说明

http://bbs.rfeda.cn/read.php?tid=5454

一个论坛繁荣离不开每一位会员的奉献 多交流,力所能及帮助他人,少灌水,其实一点也不难

打造国内最优秀的微波综合社区

还等什么?加入 RFEDA. CN 微波社区

我们一直在努力

微波仿真论坛

bbs.rfeda.cn

RFEDA. cn

rf---射频(Radio Frequency)
eda---电子设计自动化(Electronic Design Automation)

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第八章 信号完整性分析实例

第三节 非理想接地面

这个例子教你如何在 HFSS 设计环境下创建、仿真、分析非理想接地面。

微波仿真论坛 组织翻译

第 406 页

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第八章 信号完整性分析实例

Ansoft HFSS 设计环境

Ansoft HFSS 设计环境中的如下特征在创建无源器件模型时经常被使用。

- 一) 三维实体模型(3D Solid Modeling)
- 二) 边界(Boundary)
- 三) 激励(Excitations)
- 四) 求解(Analysis)
- 五) 结果(Results)
- 六) 场(Fields)

二. 设计回顾

- 一) 在进入这个器件设计之前,让我们先回顾一下整个设计。
 - 1. 端口尺寸/类型 = ???
 - 2. 自由空间 = ???
- 二) 端口尺寸/类型

由于带线位于模型内部,所以我们选用集总端口类型。

三) 带线厚度/材料特性

工程上可以假设带线的传导率不影响整个器件的性能,因此可以把带线的材料设置为良导体, 这样可以加快仿真的速度。

四人自由空间

自于我们仅仅关心接地面之间的产生模式,我们可以使用理想磁壁或者开放边界条件。我们认 ↑ 为开放(理想磁壁)和匹配(辐射)边界条件能获得同样的计算结果。辐射边界条件由于需要更为复杂的 计算, 所以花费的计算时间相对较长。

在使用理想磁壁代替辐射边界条件的时候,我们应该注意理想磁壁和对称理想磁壁在数学上是 等效的,因此如果你正在仿真一个较大模型的一个子部分的话,你有可能已经建立了一种由边界条 件或者说是非物理模型产生的模式。在我们的例子里,理想磁壁被应用于模型的外部,并且没有沿 着任何的对称平面。

另外,理想磁壁边界条件可以适用于驱动模式(Driven)和本征模式(Eigenmode)两种求解方式,

微波仿真论坛 组织翻译

第 407 页

原创: 微波仿真论坛(http://bbs.rfeda.cn) 协助团队 HFSS 小组 --- RFEDA.cn 拥有版权

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第八章 信号完整性分析实例

而辐射边界条件仅适用于驱动模式求解。

三. 开始

一) 打开 Ansoft HFSS 软件

点击 *开始* 菜单,选择 *程序 > Ansoft HFSS 10 > HFSS 10* ,打开 Ansoft HFSS 软件 **设置工具选项(Tool Options**)

二) 设置工具选项(Tool Options)

注释:为了确保例子程序每一步的正确性,应先检查工具选项中的如下设置。

- 1. 选择菜单项: Tools > Options > HFSS Options
- 2. HFSS Options 窗口设置如下:
 - 1) 点击 General 标签

 - b. Duplicate boundaries with geometry: ☑ Checked
 - 2) 点击 OK 按钮
- 3. 选择菜单项: Tools > Options > 3D Modeler Options
- 4. 3D Modeler Options 窗口设置如下:
 - 1) 点击 Operation 标签

Automatically cover closed polylines: Checked

2) 点击 Operation 标签

Edit property of new primitives Checked

3) 点击 OK 按钮

三) 打开一个新的工程

- 1. 选择菜单项: File **XNe**
- 2. 选择菜单项: Project > Insert HFSS Design

F.8.3.2

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第八章 信号完整性分析实例

四) 设置求解类型

- 1. 选择菜单项: *HFSS* > Solution Type
- 2. Solution Type 窗口设置如下:
 - a. 选择 Driven Terminal
 - b. 点击 OK 按钮

F.8.3.3

四. 创建三维模型

一) 设置模型单位

- 1. 选择菜单项: 3D Modeler > Units
- 2. Set Model Units 窗口设置如下:
 - a. Select Units: mm
 - b. 点击 OK 按钮

设置缺省材料

1. 使用三维模型材料工具条,选择 Select 打开材料定义窗口。

F.8.3.5

- 2. Select Definition 窗口设置如下:
 - 1) 在 Search by Name 域中键入 pec
 - 2) 点击 OK 按钮

微波仿真论坛 组织翻译

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第八章 信号完整性分析实例

三) 创建 Trace

- 1. 创建 Trace
 - 1) 选择菜单项 *Draw > Box*
 - 2) 使用坐标输入域输入六面体的位置坐标 输入 X: -0.5, Y: 0.0, Z: 0.0 后按回车键
 - 3)使用坐标输入域输入六面体的尺寸大小 输入 dX: 1.0 dY: -10.0, dZ: 0.1 后按回车键
- 2. 设置名称
 - 1) 从 Properties 窗口中选择 Attribute 标签
 - 2) 在 Name 属性的 Value 域中键入: Trace
 - 3) 点击 **OK** 按钮
- 3. 适合窗口

选择菜单项 View > Fit All > Active View 或按 CTRL+D 键。

F.8.3.7

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第八章 信号完整性分析实例

四) 创建 Via Pad

- 1. 创建 Via Pad
 - 1) 选择菜单项 Draw > Cylinder
 - 2) 使用坐标输入域输入圆柱体的位置坐标 输入 X: 0.0, Y: 0.0, Z: 0.0 后按回车键
 - 3) 使用坐标输入域输入圆柱体的半径尺寸 输入 dX: 0.75, dY: 0.0, dZ: 0.0 后按回车键
 - 4) 使用坐标输入域输入圆柱体的高度尺寸 输入 dX: 0.0, dY: 0.0, dZ: 0.1 后按回车键
- 2. 设置名称
 - 1) 从 Properties 窗口中选择 Attribute 标签
 - 2) 在 Name 属性的 Value 域中键入: Via_pad
 - 3) 点击 OK 按钮
- 3. 适合窗口

选择菜单项 View > Fit All > Active View。

F.8.3.8

五) 组合 Trace 和 Via Pad

- 1. 选择菜单项 Edit Select All Visible 或按 CTRL+A 键
- 2. 选择菜单项 3D Modeler > Boolean > Unite。

六) 创建偏移相对坐标系

- 1. 选择菜单项 3D Modeler > Coordinate System > Create > Relatives CS > Offset 2.《使用坐标输入域输入坐标原点
 - 输入 X: 0.0, Y: 0.0, Z: -0.2 后按回车键。

创建 Ground 1

- 1. 创建 Ground
 - 1) 选择菜单项 *Draw > Box*
 - 2) 使用坐标输入域输入六面体的位置坐标 输入 X: -10.0, Y: -20.0, Z: 0.0 后按回车键
 - 3) 使用坐标输入域输入六面体的尺寸大小 输入 dX: 20.0, dY: 40.0, dZ: 0.1 后按回车键

微波仿真论坛 组织翻译

第 411 页

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第八章 信号完整性分析实例

- 2. 设置名称
 - 1) 从 Properties 窗口中选择属性 Attribute 标签
 - 2) 在 Name 属性的 Value 域中键入: Ground
 - 3) 点击 OK 按钮
- 3. 适合窗口

选择菜单项 View > Fit All > Active View

八) 创建 Anti-Pad

- 1. 创建 Anti-Pad
 - 1) 选择菜单项 Draw > Cylinder
 - 2) 使用坐标输入域输入圆柱体的位置坐标 输入 X: 0.0, Y: 0.0, Z: 0.0 后按回东键
 - 3) 使用坐标输入域输入圆柱体的半径尺寸 输入 dX: 1.0, dY: 0.0, dZ: 0.0 后按回车键
 - 4) 使用坐标输入域输入圆柱体的高度尺寸 输入 dX: 0.0, dY: 0.0, 2.0.1 后按回车键

F.8.3.10

- 1) 从 Properties 窗口中选择 Attribute 标签
- 2) 在 Name 属性的 Value 域中键入: Antipad
- 3) 点击 OK 按钮
- 3. 选择 Ground 和 Antipad
 - 1) 选择菜单项 Edit > Select > By Name
 - 2) Select Object 对话框设置如下
 - a. Select the objects named: Antipad, Ground

微波仿真论坛 组织翻译

第 412 页

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第八章 信号完整性分析实例

- b. 点击 **OK** 按钮
- 4. 完成 Ground 的创建
 - 1) 选择菜单项 3D Modeler > Boolean > Subtract
 - 2) subtract 窗口设置如下
 - a. Blank Parts: Ground
 - b. Tool Parts: Antipad
 - c. Clone tool objects before subtract:

 Unchecked

九) 设置工作坐标系

十) 创建偏移相对坐标系

F.8.3.11

选择菜单项 3D Modeler > Grid Plane > XZ。

十二) 创建 Source

- 1. 创建 Source
 - 1) 选择菜单项 Draw > Rectangle
 - 2) 使用坐标输入域输入矩形的位置坐标 输入 X: -0.0, Y: 0.0, Z: 0.0 后按回车键

微波仿真论坛 组织翻译

第 413 页

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第八章 信号完整性分析实例

- 3) 使用坐标输入域输入矩形的尺寸大小
 - 输入 dX: 1.0, dY: 0.0, dZ: -0.1 后按回车键
- 2. 设置名称
 - 1) 从 Properties 窗口中选择 Attribute 标签
 - 2) 在 Name 属性的 Value 域中键入: Source
 - 3) 点击 OK 按钮
- 3. 适合窗口

选择菜单项 View > Fit All > Active View

F.8.3.12

十三) 分配激励

- 1. 选择物体 Source
 - 1) 选择菜单项 **Extr** > Select > By Name
 - 2) Select Object 对话框设置如下
 - a. Select the objects named: Source
 - b. **OK** 按钮

注释: 也可以通过模型树来选择物体

F.8.3.13

微波仿真论坛 组织翻译

第 414 页

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第八章 信号完整性分析实例

2. 分配集总端口激励

- 1) 选择菜单项 HFSS > Excitations > Assign > Lumped Port
- 2) Lumped Port: General 窗口设置如下
 - a. Name: p1
 - b. Resistance: 50
 - c. Reactance: 0
 - d. 点击 Next 按钮
- 3) Lumped Port: Terminals 窗口设置如下
 - a. Number of Terminals: 1
 - b. 点击 Undefined 栏并选择 New Line
 - c. 使用坐标输入域输入矢量位置坐标 输入 X: 0.5, Y: 0.0, Z: -0.1 后按回车键
 - d. 使用坐标输入域输入矢量方向 输入 dX: 0.0, dY: 0.0, dZ: 0.1 后按回车键
 - e. 点击 Finish 按钮

十四) 设置工作坐标系

- 1. 选择菜单项 3D Modeler > Coordinate System > Set Working CS
- 2. Select Coordinate System 窗口设置如下
 - 1) 从列表中选择坐标系: Global
 - 2) 点击 Select 按钮

十五) 创建偏移相对坐标系

- 1. 选择菜单项 3D Modeler > Coordinate System > Create > Relatives CS > Offset
- 2. 使用坐标输入域输入坐标原点 输入 X: 0.0, Y: 0.0, Z: -0.45 后按回车键

十六) 复制物体

微波仿真论坛 组织翻译

第 415 页

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第八章 信号完整性分析实例

- 1. 复制存在的物体
 - 1) 选择菜单项 Edit > Select All Visible 或按 CTRL+A 键
 - 2) 选择菜单项 Edit > Duplicate > Around Axis, 设置如下
 - a. Axis: X
 - b. Angle: 180
 - c. Total Number: 2
 - d. 点击 **OK** 按钮
- 2. 适合窗口

选择菜单项 View > Fit All > Active View

十七) 设置栅格面

选择菜单项 3D Modeler > Grid Plane > XX

十八) 设置工作坐标系

- 1. 选择菜单项 3D Modeler **Coordinate System > Set Working CS
- 2. Select Coordinate System 窗口设置如下
 - 1) 从列表中选择坐标系: Global
 - 2) 点击 Select 接触

十九) 创建 Via

- 1. 创建 **Wia**
 - 1)、选择菜单项 Draw > Cylinder

2)使用坐标输入域输入圆柱体的位置坐标

输入 X: 0.0, Y: 0.0, Z: 0.0 后按回车键

3) 使用坐标输入域输入圆柱体的半径尺寸

输入 dX: 0.5, dY: 0.0, dZ: 0.0 后按回车键

- 4) 使用坐标输入域输入圆柱体的高度尺寸 输入 dX: 0.0, dY: 0.0, dZ: -0.9 后按回车键
- 2. 设置名称
 - 1) 从 Properties 窗口中选择 Attribute 标签
 - 2) 在 Name 属性的 Value 域中键入: Via
 - 3) 点击 OK 按钮

微波仿真论坛 组织翻译

第 416 页

原创: 微波仿真论坛(http://bbs.rfeda.cn) 协助团队 HFSS 小组 --- RFEDA.cn 拥有版权

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第八章 信号完整性分析实例

3. 适合窗口

选择菜单项 View > Fit All > Active View

二十) 创建偏移相对坐标系

二十一) 创建 Ground Via

- - 输入 X: 0.0, Y: 0.0, 2000 后按回车键
 - 3)使用坐标输入域输入风柱体的半径尺寸 输入 dX: 0.5, xxx 0.0, dZ: 0.0 后按回车键
 - 4)使用坐标输入减输入圆柱体的高度尺寸 输入 dX: ,0.0, dY: 0.0, dZ: -0.5 后按回车键
- 2. 设置名称
 - 1) 从,Properties 窗口中选择 Attribute 标签
 - 2) 产Name 属性的 Value 域中键入: Via_GND
 - 3) 点击 OK 按钮

选择菜单项 View > Fit All > Active View

微波仿真论坛 组织翻译 第 417 页

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第八章 信号完整性分析实例

二十二) 设置工作坐标系

二十三) 设置缺省材料

二十四) 创建 Board

- 1. 创建 Board
 - 1) 选择菜单项 Draw > Box
 - 2) 使用坐标输入域输入六面体的位置坐标 输风: -10.0, Y: -20.0, Z: 0.0 后按回车键
 - 3)、使用坐标输入域输入六面体的尺寸大小

输入 dX: **20.0**,dY: **40.0**,dZ: -**0.9** 后接回车键

设置名称

- 1) 从 Properties 窗口中选择 Attribute 标签
- 2) 在 Name 属性的 Value 域中键入: Board
- 3) 点击 OK 按钮
- 3. 适合窗口

选择菜单项 View > Fit All > Active View

微波仿真论坛 组织翻译 第 418 页 原创: 微波仿真论坛(http://bbs.rfeda.cn) 协助团队 HFSS 小组 --- RFEDA.cn 拥有版权

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第八章 信号完整性分析实例

二十五) 创建 Air

- 1. 创建 Air
 - 1) 选择菜单项 *Draw > Box*
 - 2) 使用坐标输入域输入六面体的位置坐标
 - 3) 使用坐标输入域输入六面体的尺寸大小
- 2. 设置名称
 - 1) 从 Properties 窗口中选择 Attribute 标签
 - 2) 在 Name 属性的 Value 域中键入: Air
 - 3) 点击 OK 按钮
- 3. 适合窗口

选择菜单项 View > Fit All > Active View

十六) 分配理想磁壁/自然边界

- 1. 选择物体 Air
 - 1) 选择菜单项 Edit > Select > By Name
 - 2) Select Object 对话框设置如下
 - a. Select the objects named: Air
 - b. 点击 OK 按钮
- 2. 分配理想磁壁边界条件(Perfect H Boundary)

微波仿真论坛 组织翻译

第 419 页

原创: 微波仿真论坛(http://bbs.rfeda.cn) 协助团队 HFSS 小组 --- RFEDA.cn 拥有版权 http://www.rfeda.cn http://bbs.rfeda.cn http://blog.rfeda.cn

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第八章 信号完整性分析实例

- 1) 选择菜单项 HFSS >Boundaries > Assign > Perfect H
- 2) 点击 OK 按钮

F.8.3.21

二十七) 边界显示

- 1. 检查边界设置
 - 1) 选择菜单项 HFSS > Boundary > Display (Solver View)
 - 2) 在边界显示设置的窗口中,Visibility 检查框可以帮你选择打开所要查看的边界。
 - a. 注释: 良导体被显示为金属边界
 - b. 注释: 选择菜单项 View > Visibility 可以隐藏其他的几何物体,使边界查看更容易。
 - 3) 完成后点击 Close 按钮

Name	Туре	Solver Visibility	Visibility	Color
PerfH1	User Defined	Visible to solver.		
p1	User Defined	Visible to solver.		
p2	User Defined	Visible to solver.		
outer	Default	Overridden by other boundaries. Invi		
smetal	Default	Visible to solver.		

F.8.3.22

五. 分析设置

刘建一个分析设置

- 创建一个分析设置
- 1) 选择菜单项 HFSS > Analysis Setup > Add Solution Setup
- 2) Solution Setup 窗口设置如下
 - a. 点击 General 标签,设置如下

Solution Frequency: 10.0GHz

Maximum Number of Passes: 20

Maximum Delta S: 0.02

b. 点击 Options 标签,设置如下

微波仿真论坛 组织翻译

第 420 页

原创: 微波仿真论坛(http://bbs.rfeda.cn) 协助团队 HFSS 小组 --- RFEDA.cn 拥有版权

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第八章 信号完整性分析实例

Target: **0.05**

Use Low-Order Solution Basis:

☐ Checked

c. 点击 OK 按钮

二) 增加一个扫频设置

- 1. 增加一个扫频设置
- William William William Com 1) 选择菜单项 HFSS > Analysis Setup > Add Sweep
 - a. 选择一个分析设置: Setup1
 - b. 点击 OK 按钮
 - 2) Edit Sweep 窗口设置如下
 - a. Sweeip Type: Fast
 - b. Frequency Setup Type: Linear Count

Start: 0.1GHz Stop: 10.0GHz Count: 991

Save Fields: ☑ Checked

c. 点击 OK 按钮

六. 保存工程文件

1. 选择菜单项 File > Save As

1. 些非来中央 *rue* > *Save As*2. 在另存为(Save As)窗口中键入文件名: hfss_nonidealgnd

3. 点击 Save 按钮。

七. 分析

- 一) 模型检查
 - 1. 选择菜单项 HFSS > Validation Check
 - 2. 点击 Close 按钮

文使用信息管理窗口(Message Manager)显示所有的错误和警告信息

开始求解过程

选择菜单项 HFSS > Analyze

F.8.3.23

微波仿真论坛 组织翻译

第 421 页

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第八章 信号完整性分析实例

2. 求解结果

- 1)显示求解结果
 - a. 选择菜单项 HFSS > Results > Solution Data

点击 Profile 标签可以显示计算的概况:

点击 Convergence 标签可以显示计算的收敛情况,缺省以表格的形式显示,选择 Plot 按钮可以切换为图形显示;

点击 Matrix Data 标签可以显示计算的结果,为了实时显示计算的结果,设置 Simulation 为 Setup1 Last Adaptive。

2) 点击 Close 按钮

F.8.3.24

八. 创建报告

一) 创建端点 参数曲线,相对迭代次数

注释。如果报告在求解之前或求解过程中建立,计算的结果可以实时更新。

1/:、选择菜单项 HFSS > Results > Create Report

Create Report 窗口设置如下

- 1) Report Type: **Terminal S Parameters**
- 2) Display Type: Rectangular
- 3) 点击 OK 按钮
- 3. Traces 窗口设置如下
 - 1) Solution: Setup1: Adaptive1
 - 2) 点击 X 标签
 - a. Use Primary Sweep: \(\square\) UnChecked
 - b. Category: Variables

微波仿真论坛 组织翻译

第 422 页

原创: 微波仿真论坛(http://bbs.rfeda.cn) 协助团队 HFSS 小组 --- RFEDA.cn 拥有版权

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第八章 信号完整性分析实例

c. Quantity: Pass

3) 点击 Y 标签

a. Category: Terminal S Parameter b. Quantity: St(p1,p1) and St(p1,p2)

c. Function: dB

d. 点击 Add Trace 按钮

4) 点击 **Down** 按钮

F.8.3.25

二) 创建端口 S21 曲线,相对频率

1. 创建报告

1) 选择菜单项 HFSS Results > Create Report

2) Create Report 窗口设置如下

a) Report Type: Terminal S Parameters

b) Display Type: Rectangular

c) **OK** 按钮

3)、Traces 窗口设置如下

a) Solution: Setup1: Sweep1

b) Domain: Sweep

c) 点击 Y 标签

Category: Terminal S Parameter

Quantity: St(p1,p2)

Function: dB

点击 Add Trace 按钮

- 4) 点击 **Down** 按钮
- 2. 在曲线上添加标记
 - 1) 选择菜单项 Report2D > Data Marker

微波仿真论坛 组织翻译

第 423 页

原创: 微波仿真论坛(http://bbs.rfeda.cn) 协助团队 HFSS 小组 --- RFEDA.cn 拥有版权 http://www.rfeda.cn http://bbs.rfeda.cn http://blog.rfeda.cn

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第八章 信号完整性分析实例

- 2) 移动光标到曲线的谐振点处按鼠标左键
- 3) 完成在曲线谐振点处放置标记后,点击鼠标右键选择 Exit Marker Mode

White the state of the state of

微波仿真论坛 组织翻译

第 424 页

原创:微波仿真论坛(http://bbs.rfeda.cn)—专业微波工程师社区 RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波射频/仿真通信|电子|EMC|天线|雷达|数值 欢迎您 第八章 信号完整性分析实例

原创: 微波仿真论坛(http://bbs.rfeda.cn) 协助团队 HFSS 小组 --- RFEDA.cn 拥有版权 http://www.rfeda.cn http://bbs.rfeda.cn http://blog.rfeda.cn

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第八章 信号完整性分析实例

F.8.3.26

九. 场图

一) 创建场图

- 1. 选择相对坐标系的 XY 平面
- # 1.9GHz; Phase: 0deg

 ***Jeddy.*

 **Jeddy.*

 **Jeddy.
- 2. 修改场图的输出属性

c. 点击 Close 按钮

微波仿真论坛 组织翻译

第 426 页

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第八章 信号完整性分析实例

F.8.3.27

二) 创建场图 — 增加频率点

- 1. 修改输出场图的频率
 - 1) 选择菜单项 HFSS > Fields > Modify Plot
 - 2) Select Plot Folder 窗口设置如下
 - a. Select: E Field
 - b. 点击 **OK** 按钮
 - 3) Create Field Plot 窗口设置如下
 - a. Soluton: Setup1: Sweep1
 - b. Freq: 6.84GHz

微波仿真论坛 组织翻译

第 427 页

完整版 目录

版权申明: 此翻译稿版权为微波仿真论坛(<u>bbs.rfeda.cn</u>)所有. 分节版可以转载. <u>严禁转载 568 页完整版</u> 如需<mark>纸质</mark>完整版(586 页),请联系 <u>rfeda@126.com</u> 邮购

由 ● hfss_full_book中文版.pdf **自 002-009 内容简介** 3 绪论 № 022-051 创建参数模型 📔 第一章 Ansoft HFSS参数化建模 - 1 052-061 边界条件 □ 062-077 激励 - 第二章 Ansoft HFSS求解设置 - 1 078-099 求解设置 - 第三章 Ansoft HFSS数据处理 **100-125 数据处理** 📄 第四章 Ansoft HFSS求解及网格设定 **126-137 求解循环** - 137-155 网格 第五章 天线实例 - 160-181 超高频探针天线 · 182-199 圆波导管喇叭天线 200-219 同轴探针微带贴片天线 220-237 缝隙耦合贴片天线 **238-259 吸收率** - 🕒 260-281 共面波导(CPW)馈电蝶形天线 - 1 282-303 端射波导天线阵 ■ 第六章 微波实例 · 🕒 306-319 魔T 320-347 同轴连接器 📭 348-365 环形电桥 📑 366-389 同轴短线谐振器 - 390-413 微波端口 - 14-435 介质谐振器 ■ 第七章 滤波器实例 - [3 438-457 帯通滤波器 - 1 458-483 微带带阻滤波器 🕒 第八章 信号完整性分析实例 - 🕒 526-567 分段回路 - 🕒 568-593 非理想接地面 **1** 594-623 回路 📄 第九章 电磁兼容/电磁干扰实例 - 624-643 散热片 - 644-665 屏蔽体 ■ 第十章 On-chip无源实例

B 致 谢.pdf