Contents

T	Notation		1	
	1.0.1	Note on the coordination number	1	
2	Imposing	the causality condition on general RBMs	1	
	2.0.1	Preliminary steps	3	
	2.0.2	Defining the coupling matrices	3	
	2.0.3	Solving for elements of the contracted tensor	3	
3	Imposing	the causality condition on minimally-connected RBM	Ís	4

1 Notation

Firstly, define N_H and N_V to be the number of hidden and visible units respectively. H_h is a vector of weights for the hidden units, where $h = 1, 2, \ldots, N_H$. Similarly, V_v is a vector of weights for the visible units, where $v = 1, 2, \ldots, N_V$. W_{hv} is a matrix of weights. $C_{kl}^{(hv)}$ is the coupling matrix between the h^{th} hidden unit and the v^{th} visible unit. For simplicity, we will assume that C is a $d \times d$ matrix.

1.0.1 Note on the coordination number

 $n_V^{(h)}$ is the coordination number for visible units of the $h^{\rm th}$ hidden unit. This is the number of connected visible units. Similarly, $n_H^{(v)}$ is the coordination number for hidden units of the $v^{\rm th}$ visible unit.

Throughout this section, we are operating on the last visible unit (the N_V^{th} unit), which is connected to $n_H^{(N_V)}$ hidden units. Since it is clear which visible unit we are referring to, the superscript will be omitted.

In the general case, $n_H = N_H$ as the hidden and visible units form a complete bipartite graph. In the Snake RBM case, each visible unit is connected to exactly one hidden unit so $n_H = 1$.

2 Imposing the causality condition on general RBMs

Let $D_{k_1k_2...k_{n_H}}$ be the contraction of the red network, and $|+\rangle$ to be a vector of 1s

If the causality condition were to hold, then,

$$D = \bigotimes |+\rangle. \tag{1}$$

Figure 1: update this!

Figure 2: update this!

This is represented visually as

The RHS is then a tensor of 1s. This amounts to an a set of equations where each element of D must equal 1.

2.0.1 Preliminary steps

Let P be the contraction of the vectorised identity with the copy tensor, and let $k = \sqrt{d}$. The index at which a one appears in the vectorised identity is given by a sequence $S = (s_1, s_2, \ldots, s_k)$ where $s_i = k(i-1) + i$ for $1 \le i \le k$.

$$P_{l_1 l_2 \dots l_{n_H}} = \begin{cases} 1 & l_1 = l_2 = \dots = l_{n_H} \text{ and } l_1 \in S \\ 0 & \text{otherwise} \end{cases}$$

2.0.2 Defining the coupling matrices

 $C_{kl}^{(hv)}$ is a $d \times d$ coupling matrix between the h^th hidden and vth visible unit. In our notation, we extend k and l to range over [1,d], so a more useful definition could be as follows.

$$C_{kl}^{(hv)} = e^{W_{h,v}(k-1)(l-1) + \frac{H_h(k-1)}{N_H} + \frac{V_v(l-1)}{N_V}}$$
(2)

2.0.3 Solving for elements of the contracted tensor

In fact, we can solve for specific elements of the D tensor.

$$D_{k_1 k_2 \dots k_{n_H}} = \sum_{l_1 l_2 \dots l_{n_H}} P_{l_1 l_2 \dots l_{n_H}} C_{k_1 l_1}^{(1, N_V)} C_{k_2 l_2}^{(2, N_V)} \cdots C_{k_{n_H} l_{n_H}}^{(n_H, N_V)}$$
(3)

$$= \sum_{s \in S} P_{ss...s} C_{k_1 s}^{(1,N_V)} C_{k_2 s}^{(2,N_V)} \cdots C_{k_{n_H} s}^{(n_H,N_V)}$$

$$\tag{4}$$

$$= \sum_{s \in S} C_{k_1 s}^{(1, N_V)} C_{k_2 s}^{(2, N_V)} \cdots C_{k_{n_H} s}^{(n_H, N_V)}$$
(5)

$$= \sum_{s \in S} \prod_{h=1}^{n_H} C_{k_h,s}^{(h,N_V)} \tag{6}$$

$$= \sum_{s \in S} \prod_{h=1}^{n_H} e^{W_{h,N_V}(k_h-1)(s-1) + \frac{V_{N_V}(s-1)}{N_V} + \frac{H_h(k_h-1)}{N_H}}$$
(7)

3 Imposing the causality condition on minimallyconnected RBMs

Consider a subset of RBMs that are connected in a minimal way: the We will call this the *Snake RBM*.

"Snake RBM" has this form.

Solving the Snake RBM amounts to solving the following simplified equation.

So we continue from Eq. (??), where = 1.

$$D_{1,1,\dots,1} = \sum_{s \in S} \prod_{h=1} C_{1,s}^{h},$$

$$= \sum_{s \in S} e^{(s-1)\frac{V}{}}$$
(8)

$$=\sum_{s\in S}e^{(s-1)^{\underline{V}}}\tag{8}$$

According to my code, it seems like in general there are solutions (for $d \neq 4$).