1

6

9

12

15

18 19

20

21 22

26

30

WHAT IS CLAIMED IS:

- 2 1 A method of making an optical regent format with a capillary gap, comprising:
- providing a carrier with an insert, said carrier and insert being of a 3 predetermined thickness;
- placing said carrier in a mold: 5
 - molding a format onto said carrier and insert:
- 7 separating said insert from said carrier; and
- 8 removing said insert from said format leaving a capillary gap in said format.

10 2. The method of making an optical reagent format claimed in claim 1 further 11

- comprising applying reagent in said capillary gap.
- 13 The method of making an optical reagent format claimed in claim 1 said 3 14 capillary gap having open sides, and sealing said open sides of said capillary gap.
- The method of making an optical reagent format claimed in claim 1 further 16 4. 17 comprising removing said format from said carrier.
 - 5 The method of making an optical reagent format claimed in claim 1 providing a plurality of carriers joined together and each including an insert, and molding a format onto each of said plurality of carriers and inserts.
- 23 6 The method of making an optical reagent format claimed in claim 1 said format including a pair of legs, further comprising forming said capillary gap between a pair of 24 25 legs of said format.
- The method of making an optical reagent format claimed in claim 1 wherein 27 7. molding said format comprises molding a first format on an upper surface of said 28 carrier and molding a second format on a lower surface of said carrier. 29
- 31 8. The method of making an optical reagent format claimed in claim 7 wherein said first and second formats are of a conical configuration. 32

A method of making an optical reagent format with a capillary gap, comprising: 1 9 providing a carrier of a predetermined thickness; 2 providing an insert on said carrier; 3 molding a format onto said carrier and said insert with a portion of said insert 4 extending out of said format; and 5 removing said insert from said format to provide a capillary channel with an 6 inlet and a vent in said format formed by said insert. 7 8 The method of making an optical reagent format claimed in claim 9 comprising 9 10 removing said carrier from said format. 10 11 The method of making an optical reagent format claimed in claim 9 said insert 11. comprising a material of a melt temperature higher than the melt temperature of the 13 material of said format. 15 The method of making an optical reagent format claimed in claim 9 comprising 16 12. molding said format with a first leg for the application of a light source and a second 17 leg for the application of a light detector, said capillary channel being between said first 18 19 and second legs. 20 The method of making an optical reagent format claimed in claim 9 comprising 21 13. molding said format with a first conical member on a first side of said format and a 22 second conical member on a second side of said format with said capillary channel 23 between said first conical member and said second conical member. 24 A method of molding an electrochemical sensor using a sacrificial insert, 25 14. 26 comprising: 27 providing a first mold; inserting a first electrical contact in said first mold; 28 inserting a second electrical contact in said first mold; 29 closing said first mold with a second mold;

injecting material for forming a sensor into said closed first and second molds,

MSE #2616

curing said material; and

extracting said sacrificial insert from said sensor.

30

31

32.

33

	1	15.	The method of molding an electrochemical sensor claimed in claim 14 wherein
	2		
	3	relative to said insert.	
	4	16.	An electrochemical sensor, comprising:
	5		a sensor base;
	6		a sacrificial insert on said sensor base;
	7		a first electrical contact and a second electrical contact in said sensor, said
	8	sacrificial insert positioned between said first electrical contact and said second	
	9	electrical contact; and	
	10		plastic material on said sensor base and over said sacrificial insert, said plastic
	juk 11	material of a formulation which allows removal of said sacrificial insert from said	
	12	plastic material and said sensor base leaving a capillary channel in said casting material.	
	<u>⊫</u> 413	17.	A tool for extracting a sacrificial insert from an electrochemical sensor,
	114	comprising:	
	15		a clamp for clamping a sacrificial insert in a stationary position,
	≅ 16		a first block moveable relative to said clamp;
	1117		a drive member for moving said block relative to said clamp; and
	18		an attachment member on said block to attach a sensor with a sacrificial insert
	19	onto said block.	
	20	18.	The tool claimed in claim 17 further comprising a base, said clamp including a
,	21	secon	d block secured to said base.
	22	19.	A sensor, comprising:
	23		a sensor body;
	24		a first access window in said sensor body;
	25		a second access window in said sensor body; and
	26		an insert in said sensor body between said first access window and said second
	27	acces	s window.