State-of-the-Art Review on Video-to-Text Summarization Techniques

TIR IAFA IMA

Alejandro Argüelles Trujillo, Yanis Zerkani, Mira Boudiaf

Multimodality

Combining multiple data streams—visual, auditory, and textual—to enrich the semantic understanding of videos.

Fig. 1. The Process for Converting Video Content into a summary using tokens (Bhat-tacharyya et al., 2023)[1]

Modular Architectures

Modular pipelines break down video summarization into interpretable stages — scene detection, scene reordering, visual captioning, dialogue summarization... and final summary fusion — enabling flexible upgrades and precise fact-based evaluation.

Fig. 2. Multimodal Augmentation of BART via Hierarchical3D Adapters (Papalampidie& Lapata, 2023) [2]

Self-supervision

Train powerful summarizers without human annotations by aligning audio, visual, and text signals through self-supervised learning.

Fig. 3: The proposed multimodal self-supervised framework for video summarization[3]

Specialized Experts

Challenges

- Content Selection & Coherence
- Domain Adaptability
- Real-Time Processing
- Multimodal Alignment
- Dataset Coverage and Diversity

Future Directions

- Multimodal Fusion
- Long-Form Video Models
- Cross-Domain Adaptation
- Real-Time Efficiency
- Evaluation Metrics
- Annotated Dataset Scarcity

Benchmarks & User Studies

- Query-Based and User-Centric Evaluation Protocols (F1 Score based) [7]
- PRISMA: Harmonic mean of fact-precision FP and fact-recall FR [4]
- ROUGE: A set of metrics that evaluates summary quality based on lexical overlap with human references. [6][4]
- LfVS-T [5]
- A user Study with Blind Participants: MM-VID [8]

$$PRISMA = \frac{2}{\frac{1}{FP} + \frac{1}{FR}} = \frac{2}{\frac{1}{FP} + \frac{1$$

Datasets

Dataset	# of Videos	# of Tasks	Avg. Dur. (min)	Annotation
TVSum [36]	50	10	4.2	Manual
SumMe [7]	25	25	2.4	Manual
TL:DW? [26]	12.1K	185	3.1	Automatic
LfVS-P (Ours)	250K	6.7K	13.3	Automatic
LfVS-T (Ours)	1.2K	392	12.2	Manual

Fig. 4: Comparison of different video summarization datasets.[5]

Bibliography

- [1] Bhattacharyya, A., Ju, D., Hariharan, B., Parikh, D., Schwing, A.: A video is worth 4096 tokens (2023)
- [2] Papalampidi, P., Lapata, M.: Hierarchical3D adapters for long video-to-text summarization (2023)
- [3] Haopeng, L., Qiuhong, K., Mingming, G., Drummond, T.: Progressive video summarization via multimodal self-supervised learning (2022)
- [4] Mahon, L., Lapata, M.: A modular approach for multimodal summarization of TV shows (2024)
- [5] Argaw, D.M., Yoon, S., Heilbron, F.C., Deilamsalehy, H., Bui, T., Wang, Z., Dernoncourt, F., Chung, J.S.: Scaling up video summarization pretraining with large language models.(2024)
- [6] Lin, C.-Y. (2004). ROUGE: A Package for Automatic Evaluation of Summaries. En Text Summarization Branches Out (pp. 74–81).
- [7] Zhang, Y., Kampffmeyer, M., Liang, X., Tan, M., Xing, E.P.: Query-conditioned three-player adversarial network for video summarization.
- [8]Lin, K., Ahmed, F., Li, L., Lin, C.C., Azarnasab, E., Yang, Z., Wang, J., Liang, L., Liu, Z., Lu, Y., Liu, C., Wang, L.:
- Mm-vid: Advancing video understanding with gpt-4v(ision) (2023)