

# Doing more with TensorFlow Lite

Train, optimize, deploy, and repeat!



Sayak Paul
PylmageSearch

<a href="mailto:oRisingSayak">oRisingSayak</a>



# Acknowledgement

- The entire PylmageSearch team
- Arun Venkatesan (Google)
- Khanh LeViet (Google)





#### Ideal audience

- ML Developers having worked on image models (in Keras)
- Mobile Developers looking for ways to plug ML in their applications





# Agenda

- Motivation behind on-device ML
- What is TensorFlow Lite (TF Lite)?
- What can it do?
- Different TF Lite usage scenarios
  - O Model optimization
  - O Model maker
  - O For mobile, embedded, and microcontroller devices
- Some best practices
- QnA





# Motivation behind on-device ML







- Lower latency & close knit interactions
- Network connectivity
- Privacy preserving

# What is TensorFlow Lite?







TensorFlow Lite is a production ready, cross-platform framework for deploying ML on mobile devices and embedded systems









Optimize your models.





- Optimize your models.
- Take advantage of special hardware accelerators like *Edge TPU* with the use of *delegation*.





- Optimize your models.
- Take advantage of special hardware accelerators like *Edge TPU* with the use of *delegation*.
- Different tools for easy integration of ML in mobile, embedded, and microcontroller-based applications.





- Optimize your models.
- Take advantage of special hardware accelerators like *Edge TPU* with the use of *delegation*.
- Different tools for easy integration of ML in mobile, embedded, and microcontroller-based applications.
- And more: <a href="https://www.tensorflow.org/lite">https://www.tensorflow.org/lite</a>



# Different TF Lite usage scenarios

- Model optimization
- Model maker
- For mobile, embedded, and microcontroller devices

Why is it required?





- Why is it required?
  - Size reduction





- Why is it required?
  - Size reduction
  - Latency reduction





- Why is it required?
  - Size reduction
  - Latency reduction
  - Accelerator compatibility



- Why is it required?
- Different optimization options in TensorFlow





- Why is it required?
- Different optimization options in TensorFlow
  - Quantization
  - Pruning





What is quantization?

- Works by *reducing the precision* of the numbers used to represent a model's parameters (float-32 mostly).
- This results in a smaller model size and faster computation.





Types of quantization supported by TF Lite

- Post-training quantization
- Quantization-aware training





Post-training quantization in TF Lite

• Happens *after* a model is trained.





```
# Data

x = [-1, 0, 1, 2, 3, 4]

y = [-3, -1, 1, 3, 5, 7]
```

```
# Data
x = [-1, 0, 1, 2, 3, 4]
y = [-3, -1, 1, 3, 5, 7]

# Define and compile your model
model = Sequential([Dense(units=1, input_shape=[1])])
model.compile(optimizer='sgd', loss='mean_squared_error')
```

```
# Data
x = [-1, 0, 1, 2, 3, 4]
y = [-3, -1, 1, 3, 5, 7]

# Define and compile your model
model = Sequential([Dense(units=1, input_shape=[1])])
model.compile(optimizer='sgd', loss='mean_squared_error')

# Train your model
```

model.fit(x, y, epochs=50)

```
# Data
x = [-1, 0, 1, 2, 3, 4]
y = [-3, -1, 1, 3, 5, 7]
# Define and compile your model
model = Sequential([Dense(units=1, input_shape=[1])])
model.compile(optimizer='sgd', loss='mean_squared_error')
# Train your model
model.fit(x, y, epochs=50)
# Optimize your model
converter = tf.lite.TFLiteConverter.from_keras_model(model)
converter.optimizations = [tf.lite.Optimize.OPTIMIZE_FOR_SIZE]
tflite_model = converter.convert()
```

# # Optimize your model converter = tf.lite.TFLiteConverter.from\_keras\_model(model) converter.optimizations = [tf.lite.Optimize.OPTIMIZE\_FOR\_SIZE] tflite\_model = converter.convert()

- tf.lite.Optimize.Default
- tf.lite.Optimize.OPTIMIZE\_FOR\_SIZE
- tf.lite.Optimize.OPTIMIZE\_FOR\_LATENCY

```
# Serialize the TF Lite model
f = open("model.tflite", "wb")
f.write(tflite_model)
f.close
```

## Post-training quantization in TF Lite

Different forms of post-training quantization available:

| Technique                                                  | Benefits                           | Hardware            |  |
|------------------------------------------------------------|------------------------------------|---------------------|--|
| Dynamic range quantization                                 | 4x smaller, 2-3x speedup, accuracy | CPU                 |  |
| Full integer quantization                                  | 4x smaller, 3x+ speedup            | CPU, Edge TPU, etc. |  |
| loat16 quantization 2x smaller, potential GPU acceleration |                                    | CPU/GPU             |  |

Check out here: Post-training quantization





• Quantization-aware training compensates for the information loss introduced by quantization.



- Quantization-aware training compensates for the information loss introduced for quantization.
- Quantization-aware training is possible with the Model
   Optimization Toolkit. Check out: Quantization Aware Training
   with TensorFlow Model Optimization Toolkit Performance
   with Accuracy.





# Trade-offs: Speed vs. Accuracy

| Technique                                | Data requirements                | Size<br>reduction | Accuracy                    | Supported hardware           |
|------------------------------------------|----------------------------------|-------------------|-----------------------------|------------------------------|
| Post-training float16 quantization       | No data                          | Up to 50%         | Insignificant accuracy loss | CPU, GPU                     |
| Post-training dynamic range quantization | No data                          | Up to 75%         | Accuracy loss               | CPU                          |
| Post-training integer quantization       | Unlabelled representative sample | Up to 75%         | Smaller accuracy<br>loss    | CPU, EdgeTPU,<br>Hexagon DSP |
| Quantization-aware training              | Labelled training data           | Up to 75%         | Smallest accuracy<br>loss   | CPU, EdgeTPU,<br>Hexagon DSP |

Check out here: Model optimization



Google Developers

# A closer look at latency







CPU 37 ms

Floating point



CPU 37 ms CPU 2.8x 13 ms

Floating point

Quantized Fixed-point



CPU 37 ms CPU 2.8x 13 ms GPU 6.2x 5 ms

Floating point

Quantized Fixed-point OpenCL Float16



CPU 37 ms CPU 2.8x 13 ms GPU 6.2x 5 ms

EdgeTPU 18.5x 2 ms

Floating point

Quantized Fixed-point OpenCL Float16

Quantized Fixed-point

## Different TF Lite usage scenarios

- Model optimization
- Model maker
- For mobile, embedded, and microcontroller devices

```
1. Load data.
IMAGE_SIZE = 224
BATCH_SIZE = 64
datagen = tf.keras.preprocessing.image.ImageDataGenerator(
   rescale=1./255,
   validation_split=0.2)
train_data = datagen.flow_from_directory(
   'flower_photos/',
   target_size=(IMAGE_SIZE, IMAGE_SIZE),
   batch_size=BATCH_SIZE,
   subset='training')
test_data = datagen.flow_from_directory(
   base_dir,
   target_size=(IMAGE_SIZE, IMAGE_SIZE),
   batch_size=BATCH_SIZE,
   subset='testing')
```

```
1. Load data.
IMAGE_SIZE = 224
BATCH_SIZE = 64
datagen = tf.keras.preprocessing.image.ImageDataGenerator(
   rescale=1./255,
   validation_split=0.2)
train_data = datagen.flow_from_directory(
   'flower_photos/',
   target_size=(IMAGE_SIZE, IMAGE_SIZE),
   batch_size=BATCH_SIZE,
   subset='training')
test_data = datagen.flow_from_directory(
   base_dir,
   target_size=(IMAGE_SIZE, IMAGE_SIZE),
   batch_size=BATCH_SIZE,
   subset='testing')
```

```
1. Load data.
IMAGE_SIZE = 224
BATCH_SIZE = 64
datagen = tf.keras.preprocessing.image.ImageDataGenerator(
   rescale=1./255,
   validation_split=0.2)
train_data = datagen.flow_from_directory(
   'flower_photos/',
   target_size=(IMAGE_SIZE, IMAGE_SIZE),
   batch_size=BATCH_SIZE,
   subset='training')
test_data = datagen.flow_from_directory(
   base_dir,
   target_size=(IMAGE_SIZE, IMAGE_SIZE),
   batch_size=BATCH_SIZE,
   subset='testing')
```

```
1. Load data.
IMAGE_SIZE = 224
BATCH_SIZE = 64
datagen = tf.keras.preprocessing.image.ImageDataGenerator(
   rescale=1./255,
   validation_split=0.2)
train_data = datagen.flow_from_directory(
   'flower_photos/',
   target_size=(IMAGE_SIZE, IMAGE_SIZE),
   batch_size=BATCH_SIZE,
   subset='training')
test_data = datagen.flow_from_directory(
   base_dir,
   target_size=(IMAGE_SIZE, IMAGE_SIZE),
   batch_size=BATCH_SIZE,
   subset='testing')
```

```
4. Export to TF Lite
converter = tf.lite.TF LiteConverter.from_keras_model(model)
TF Lite_model = converter.convert()
with open('flower.TF Lite', 'w') as f:
    f.write(TF Lite_model)
```

## TF Lite Model Maker

- A transfer learning library for TF Lite.
- A new Python library lets you customize models for your dataset, without requiring ML expertise.





## TF Lite Model Maker

```
# 1. Load data.
data = ImageClassifierDataLoader.from_folder('flower_photos/')
# 2. Customize the model.
model = image_classifier.create(data) # Default model is EfficientNet-Lite0
# 3. Evaluate the model.
loss, accuracy = model.evaluate()
# 4. Export to TF Lite.
model.export('flower_classifier.TF Lite')
```

Check out here: <u>examples/image\_classification.ipynb</u>



## Model Maker works with



Aa

Image

Classification

(MobileNet, EfficientNet-Lite, ResNet...)

Object detection\*

Text

Classification

(BERT
ALBERT-Lite\*
MobileBERT\*)

QA\*

coming soon\*

Source: Easy on-device ML from prototype to product



Google Developers

## Where to find pre-trained TF Lite models?

- TensorFlow Hub (TFHub):
  - https://tfhub.dev/s?deployment-format=lite&publisher=tens orflow&q=lite
- Official TF Lite models: <u>Hosted models</u>





## Different TF Lite usage scenarios

- Model optimization
- Model maker
- For mobile, embedded, and microcontroller devices





## TF Lite Codegen

Codegen tool *generates* an Android wrapper around a TF Lite model and makes it easy to consume!

Google Developers



## A command line codegen tool for Android

```
tflite_codegen \
    --model=mobilenet_v1_1.0_224_quant.tflite \
    --package_name="org.tensorflow.lite.myimageclassifier" \
    --model_class_name=MyImageClassifier \
    --destination=./MyImageClassifier
```

Check out: Generate code from TensorFlow Lite metadata





## Using it in Android code





```
// 1. Load your model.
MyImageClassifier classifier = new MyImageClassifier(activity);
MyImageClassifier.Inputs inputs = classifier.createInputs();
// 2. Transform your data.
inputs.loadImage(rgbFrameBitmap);
// 3. Run inference.
MyImageClassifier.Outputs outputs = classifier.run(inputs);
// 4. Use the resulting output.
Map<String, float> labeledProbabilities = outputs.getOutput():
                              5 lines!!
```

/\*\* With TensorFlow Lite codegen \*/



## Jump start with example apps





Text

Audio





Image

Content

tensorflow.org/lite/examples



Question & Answering
Text



Style Transfer
Content

- Same tooling and framework as TF Lite.
- Developers no longer have to manually build models.
- Hardware level optimizations done for you.





- Build TensorFlow Lite for ARM64 boards
- Build TensorFlow Lite for Raspberry Pi





Google Developers

 Tremendous speed up with Edge TPU compatible TF Lite models



Check out here: <u>Edge TPU performance</u> benchmarks | Coral



- Launch of official Arduino
   library run example code
   directly from desktop and web
   IDEs onto Arduino hardware
- Speech detection in 5
  minutes open source
  models available to get started
  quickly on Arduino







https://www.tensorflow.org/lite/microcontrollers



# Some TF Lite best practices





### Consider hosted models first

• See if a pre-trained TF Lite model can do the job.





### Consider hosted models first

- See if a pre-trained TF Lite models can do the job.
- Different SoTA models available for different domains and tasks.







#### Pre-trained models for all domains



#### Text

BERT
ALBERT
MobileBERT
DistilBERT\*
SmartReply



#### Image

EfficientNet-Lite
PoseNet v2
Magenta
DeepLab V3
SSD-MobileNet
MNasNet
MobileNet



#### Audio

Speech Commands
DeepSpeech\*



#### Content

Style Transfer

Available now on TensorFlow Hub and GitHub\* (thub.dev, tensorflow.org/lite/models, github.com/margaretmz/awesome-tflite)



### State of the Art NLP for Mobile

#### **MobileBERT and ALBERT**

- Faster and smaller than BERT
- Even works for low-tier CPU
- 4.4x speedup (74 ms)
- 4x size reduction (< 100 MB)</li>
- Same accuracy



**Pixel 4** - CPU, 4 Threads, Sequence length 128, Vocab size 30K, October 2019

<sup>\*</sup> ALBERT-Lite available in TFHub

<sup>\*</sup> Quantized MobileBERT coming soon



### State of the Art Vision for Mobile

#### **EfficientNet-Lite**

- SOTA Vision model for image classification
  - Higher accuracy with similar model size and latency
  - E.g. lite4 with 80.4%
     top-1 accuracy and 30ms
     on CPU
- Multiple variants for your need, from low latency and model size to high accuracy model





Pixel 4 - CPU, 4 Threads, March 2020

Is accuracy super important for your application?





- Is accuracy super important for your application?
- Or can it be compensated with speed?





- Is accuracy super important for your application?
- Or can it be compensated with speed?
- Or would you want to have a balance between the two?





Refer this chart and figure out what works best for you -

| Technique                                | Data requirements                | Size<br>reduction | Accuracy                    | Supported hardware           |
|------------------------------------------|----------------------------------|-------------------|-----------------------------|------------------------------|
| Post-training float16 quantization       | No data                          | Up to 50%         | Insignificant accuracy loss | CPU, GPU                     |
| Post-training dynamic range quantization | No data                          | Up to 75%         | Accuracy loss               | CPU                          |
| Post-training integer quantization       | Unlabelled representative sample | Up to 75%         | Smaller accuracy<br>loss    | CPU, EdgeTPU,<br>Hexagon DSP |
| Quantization-aware training              | Labelled training data           | Up to 75%         | Smallest accuracy<br>loss   | CPU, EdgeTPU,<br>Hexagon DSP |

Source: Model optimization



Google Developers

## Use delegates whenever possible

"A TensorFlow Lite delegate is a way to delegate part or all of graph execution to another executor."

- TensorFlow Lite delegates





## Use delegates whenever possible

Different delegates available in TF Lite:

- GPU (Cross-platform, Float32 & Float16)
- TPU (Edge TPU, Int8)
- NNAPI for newer Android devices
- Hexagon for older Android devices
- Core ML for newer iPhones and iPads





## Use delegates whenever possible

Different delegates available in TF Lite:

- GPU (Cross-platform, Float32 & Float16)
- TPU (Edge TPU, Int8)
- NNAPI for newer Android devices
- Hexagon for older Android devices
- Core ML for newer iPhones and iPads

Check out the guide on delegates:

TensorFlow Lite delegates



Google Developers

## Know about the support for target device

 In case of optimizing custom models, know which layers are supported.





## Know about the support for target device

- In case of optimizing custom models, know which layers are supported.
- In which precision are they supported?
  - Float-16
  - o Int8
  - Hybrid





## Know about the support for target device

- In case of optimizing custom models, know which layers are supported.
- In which precision are they supported?
- Your target device might not support Float16 (Edge TPU).





### Know more here -

## Performance best practices





### Find out more

- TensorFlow Lite guide
- TensorFlow Lite: ML for mobile and loT devices (TF Dev Summit '20)
- Easy on-device ML from prototype to product
- How TensorFlow Lite helps you from prototype to product
- Introduction to TensorFlow Lite
- Device-based Models with TensorFlow Lite





## TF Lite team needs your help

- Contribute to the ongoing list of examples
- Provide with feedback to the team
- Come up with your own ideas

Fill out the developer survey here: bit.ly/tfl-survey Questions? tflite@tensorflow.org





## Slides available here -

https://bit.ly/tfl-pune





