Fast Fourier transform (FFT)

And examples of how to compute things quickly

Herman Kamper

Fast Fourier transform (FFT)

$$N-\text{point DFT:} \qquad \qquad X[k] = \sum_{n=0}^{N-1} x[n] e^{-j2\pi kn/N} \qquad \begin{array}{l} \times \text{CoJ} = \dots \\ \times \text{CiJ} = \dots$$

radix-2 FFT: Require N to be power of 2

The FFT and DFT lead to precisely the same result. They differ only in the way that they are calculated.

Decimation in time *[~]

$$X[k] = \sum_{\substack{n=0 \\ N/2-1}}^{N-1} x[n]e^{-j2\pi kn/N}$$

$$= \sum_{\substack{n=0 \\ N/2-1}}^{N-2} sc[2n] \cdot e^{-j\frac{2\pi k}{N}} + \sum_{\substack{n=0 \\ N/2-1}}^{N-2} x[2n+i] \cdot e^{-j\frac{2\pi k}{N}} + \sum_{\substack{n=0 \\ N/2-1}}^{N/2-1} x[2n+i]$$

$$X_{1}[k]$$

$$X_{2}[k]$$

$$X_{2}[k]$$

$$X_{2}[k]$$

$$X_{3}$$

$$X_{2}[k]$$

$$X_{3}$$

$$X_{2}[k]$$

$$X_{3}$$

$$X_{3}$$

$$X_{4}$$

$$X_{5}$$

$$X_{5}$$

$$X_{1}[k]$$

$$X_{1}[k]$$

$$X_{2}[k]$$

$$X_{3}$$

$$X_{1}[k]$$

$$X_{2}[k]$$

$$X_{3}$$

$$X_{4}$$

$$X_{5}$$

$$X_{5}$$

$$X_{1}[k]$$

$$X_{1}[k]$$

$$X_{2}[k]$$

$$X_{3}$$

$$X_{4}$$

$$X_{5}$$

$$X_{5}$$

$$X_{5}$$

$$X_{5}$$

$$X_{7}$$

$$X_{1}$$

$$X_{1}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$X_{5}$$

$$X_{5}$$

$$X_{7}$$

$$X_$$

Split
$$X[k]$$
 calculation in two:

 $X(k)$ reuse calculations

 $X(k)$ for $k=0,1,...,\frac{N}{2}-1$
 $X[k] = X_1[k] + W_N X_2[k]$ for $k=0,1,...,\frac{N}{2}-1$
 $X[k+\frac{N}{2}] = X_1[k+\frac{N}{2}] + W_N X_2[k+\frac{N}{2}]$ for $k=0,1,...,\frac{N}{2}-1$
 $= X_1[k] + W_N X_2[k]$
 $= X_1[k] + W_N X_2[k]$
 $= X_1[k] + W_N X_2[k]$
 $= X_1[k] - W_N X_2[k]$
 $= X_1[k] - W_N X_2[k]$
 $= X_1[k]$
 $= X_1[k] - W_N X_2[k]$

Eight-point DFT

Four-point DFT

Two-point DFT

$$x[0] \xrightarrow{\qquad \qquad } X[0]$$

$$x[1] \xrightarrow{\qquad \qquad } X[1]$$

$$X[k] = \sum_{n=0}^{1} x[n] \cdot e^{-ijx^{n}k^{n}/2}$$

$$= x[0] \cdot e^{0} + x[i] \cdot e^{-ij^{n}k}$$

$$X[e] = x[0] + x[i]$$

$$X[i] = x[0] - x[i]$$

$$x (0)$$

$$x (1)$$

$$x (2)$$

$$x (2)$$

$$x (3)$$

$$x (4)$$

$$x (5)$$

$$x (5)$$

$$x (5)$$

$$x (7)$$

$$x (7)$$

$$x (7)$$

عد [۱۲]

Computational complexity

N- point DFT: · logzN layers o N complex mult per layer : $\frac{N}{2}$ log₂N complex mults N2 for direct DFT

1024-point DFT: 1 QUB 576 complex mults us. 5120 for FFT

In-place computation of the FFT

Decimal index		Binary index	Bit-reversed index
o :	x[0]	x[000]	000
	x[4]	x[100]	9 01
	x[2]	x[010]	0 (0
	x[6]	x[110]	011
	x[1]	x[001]	100
	x[5]	x[101]	101
	x[3]	x[011]	110
•	x[7]	x[111]	111

Decimation in frequency

Split
$$X[k]$$
 into even and odd sequences:
 $X[2k]$ for $k=0,1,...,\frac{N}{2}-1$
 $X[2k+1]$ for $k=0,1,...,\frac{N}{2}-1$

DECIMATION-IN-FREQUENCY BUTTERFLY COMPUTATION

Summary

Decimation in time:

- Split x[n] into even and odd parts
- Helpers: $X_1[k]$ and $X_2[k]$
- Input: Bit-reversed; Output: Nice

Decimation in frequency:

- Split X[k] into even and odd parts
- Helpers: $x_1[n]$ and $x_2[n]$
- Input: Nice; Output: Bit-reversed

DFT of two real sequences

$$x_{1}[N]$$
 and $x_{2}[N]$ are real

 $x[N] = x_{1}[N] + j e_{2}[N]$
 $x[k] = x_{1}[k] + j x_{2}[k]$
 $x_{1}[N] = \frac{x[N] + x^{k}[N]}{2}$
 $x_{2}[N] = \frac{x[N] + x^{k}[N]}{2}$
 $x_{2}[N] = \frac{x[N] - j x^{k}[N]}{2j}$
 $x_{3}[k] = \frac{1}{2} \times [k] + \frac{1}{2} \times [N-k]$
 $x_{4}[N-k]$
 $x_{5}[k] = \frac{1}{2} \times [k] - \frac{1}{2} \times [N-k]$

X. [k] = = = X[k] + = X*[N-k]

$$\frac{2c(3)}{2i}$$

DFT of one real sequence

Real sequence
$$g^{(n)}$$
 has $2N$ points

Let $x, [n] = g[2n]$ and $8z_2[n] = g[2n+1]$ for $n = 0, 1, ..., N-1$
 $x [n] = x, [n] + j x_2[n]$
 $x [k] = \sum_{n=0}^{2N-1} g^{(n)} \cdot e^{-j2\pi k/2} N$
 $= \sum_{n=0}^{N-1} g^{(n)} \cdot e^{-j2\pi nk/N} + e^{-j\pi k/N} \sum_{n=0}^{N-1} g^{(2n+1)} \cdot e^{-j2\pi nk/N}$
 $= x, [k] + e^{-j\pi k/N} \cdot x_2[k]$

Calculating IFFTs using FFTs

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j2\pi kn/N}$$

. FFT {X[n] } = N. ∞ [N-k]

Swap the indices: what happens at N-k now happens at k

- · k becomes n
- . Divide by N

Another summary

Can now quickly (fast) do:

- 1) DFT using FFT
- 2) DFT of real sequence using FFT
- 3 IDFT using FFT

What to take away

- Some technical tricks
- Divide and conquer: Store intermediate results and use them later
- You need to understand implications of the tricks:
 - When can you (not) use in-place computations?
 - Why radix-2?
 - Why are things slower with np.fft.fft when the input is not radix-2?