Examenul de bacalaureat national 2018 Proba E. d)

Fizică

- Filiera tehnologică profilul tehnic și profilul resurse naturale și protecția mediului

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,

 B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu. Timpul de lucru efectiv este de 3 ore.

A. MECANICA

Model

Se consideră accelerația gravitațională $g = 10 \,\text{m/s}^2$.

- I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)
- 1. Notațiile fiind cele folosite în manualele de fizică, expresia teoremei variației energiei cinetice este:

$$\mathbf{a.} \ E_{c_i} - E_{c_f} = L_{total}$$

b.
$$E_{p_i} - E_{p_f} = L_{total}$$

c.
$$E_{c_f} - E_{c_i} = L_{total}$$

d.
$$E_{p_f} - E_{p_i} = L_{total}$$

2. Notațiile fiind cele utilizate în manualele de fizică, unitatea de măsură în S.I pentru efortul unitar σ este:

a. N/m

(3p)

3. În graficul din figura alăturată este reprezentată dependența de timp a vitezei unui corp lansat vertical în sus, de la suprafața pământului. Înălțimea maximă atinsă de corp este:

0

a. 90 m

b. 45 m

c. 30 m

(3p)

 $\overrightarrow{t}(s)$

4. Un corp cu masa $m = 100 \,\mathrm{kg}$ este ridicat uniform, de pe sol până la înăltimea $h = 30 \,\mathrm{m}$, într-un interval de timp $\Delta t = 2$ min. Puterea dezvoltată pentru ridicarea corpului este egală cu:

a. 250 W

(3p)

5. Asupra unui punct material de masă $m = 100\,\mathrm{g}$ acționează timp de 4s o forță rezultantă \vec{F} , care mărește viteza acestuia de la $v_0 = 1$ m/s la v = 9m/s. Valoarea forței rezultante aplicate punctului material este:

a. 200N

II. Rezolvaţi următoarea problemă:

Un muncitor împinge un corp cu masa $M = 85 \,\mathrm{kg}$ cu o fortă constantă, a cărei direcție formează unghiul α (sin α = 0,6;cos α = 0,8) cu orizontala, ca în figura alăturată. Corpul se deplasează cu viteza constantă $v = 0.5 \,\mathrm{m/s}$. Valoarea fortei de frecare la alunecare dintre corp si suprafata orizontală este $F_f = 200 \, \text{N}$.

- a. Reprezentați forțele care acționează asupra corpului.
- **b.** Calculați distanța parcursă de corp în $\Delta t = 20$ s.
- c. Calculați valoarea forței F exercitate de muncitor, pentru deplasarea uniformă a corpului.
- d. Determinați valoarea coeficientului de frecare la alunecare dintre corp și suprafață.

III. Rezolvaţi următoarea problemă:

(15 puncte)

Din vârful unui plan înclinat, ce formează unghiul $\alpha = 45^{\circ}$ cu orizontala, este lăsat să alunece liber un corp cu masa m = 2 kg, de la înăltimea h = 4 m. Miscarea corpului pe plan se face cu frecare, coeficientul de frecare la alunecare fiind μ . Viteza corpului la baza planului înclinat are valoarea $\nu=8\,\mathrm{m/s}$. Considerând energia potențială nulă la baza planului înclinat, determinați:

- **a.** energia potentială gravitatională la înăltimea $h = 4 \,\mathrm{m}$;
- b. lucrul mecanic efectuat de greutatea corpului în timpul miscării sale până la baza planului înclinat;
- c. valoarea energiei mecanice a corpului la baza planului înclinat;
- **d.** valoarea coeficientului de frecare la alunecare μ dintre corp si suprafața planului.

Examenul de bacalaureat naţional 2018 Proba E. d) Fizică

- Filiera tehnologică profilul tehnic și profilul resurse naturale și protecția mediului

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,

 B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu. Timpul de lucru efectiv este de 3 ore.

B. ELEMENTE DE TERMODINAMICĂ

Model

Se consideră: numărul lui Avogadro $N_A = 6.02 \cdot 10^{23} \, \text{mol}^{-1}$, constanta gazelor ideale $R = 8.31 \frac{\text{J}}{\text{mol}}$ parametrii de stare ai gazului ideal într-o stare dată există relația: $p \cdot V = vRT$.

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

- 1. Simbolurile mărimilor fizice sunt cele utilizate în manualele de fizică. Pentru o masă de gaz ideal, raportul dintre presiunea și densitatea gazului este constant într-o transformare pe parcursul căreia nu se modifică:
- a. p şi V
- **b.** p şi T

- (3p)
- 2. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, variația energiei interne a unei cantități date de gaz ideal care suferă o transformare în cursul căreia temperatura se modifică, este:
- **a.** $\Delta U = \mu C_V \Delta T$
- **b.** $\Delta U = \nu C_P \Delta T$
- **c.** $\Delta U = \nu R \Delta T$
- **d.** $\Delta U = \nu C_V \Delta T$
- (3p)
- 3. Simbolurile mărimilor fizice și ale unităților de măsură fiind cele utilizate în manualele de fizică, unitatea de măsură în S.I. a mărimii fizice exprimate prin relatia $\frac{mRT}{}$ este:
- a. mol

- (3p)
- **4.** O cantitate v = 1mol de gaz ideal a cărui căldură molară la volum constant este $C_V = 3R$, participă la un proces izobar în cursul căruia temperatura gazului se modifică de la $T_1 = 400\,\mathrm{K}$ la $T_2 = 300\,\mathrm{K}$. Căldura schimbată de gaz cu exteriorul de-a lungul procesului este:
- **a.** -3324 J
- **b.** -2493 J
- **c.** 2493 J
- **d.** 3324 J
- (3p)
- 5. O cantitate dată de gaz ideal este supusă procesului termodinamic 1-2 în care densitatea ρ variază în funcție de presiunea p conform graficului reprezentat în figura alăturată. În cursul acestei transformări:
- a. volumul gazului crește
- b. volumul gazului scade
- c. presiunea gazului scade
- d. densitatea gazului este constantă

II. Rezolvaţi următoarea problemă:

(15 puncte)

Un cilindru orizontal de lungime L = 1m este împărțit în două compartimente de volume egale cu ajutorul unui piston de secțiune $S = 166,2 \, \text{cm}^2$ și grosime neglijabilă, care se poate deplasa fără frecări. Inițial, pistonul este în echilibru. În fiecare compartiment se află o cantitate $v = 0.4 \, \text{mol}$ de hidrogen $(\mu_{H_0} = 2 \, \text{g/mol})$,

la presiunea $p = 10^5$ Pa . Temperatura întregului sistem este menținută tot timpul constantă.

- a. Determinati numărul moleculelor de hidrogen din cilindru.
- b. Calculati temperatura la care se află hidrogenul.
- c. Determinați densitatea hidrogenului.
- **d.** Se deplasează pistonul pe distanta $x = 30 \,\mathrm{cm}$, iar apoi pistonul este blocat. Determinati raportul dintre presiunea hidrogenului din compartimentul mai mic și presiunea hidrogenului din compartimentul mai mare.

III. Rezolvaţi următoarea problemă:

(15 puncte)

O cantitate de gaz considerat ideal, a cărui căldură molară izocoră este $C_V = 2.5R$, se află inițial în starea 1

în care presiunea este $p_1 = 10^5 \, \mathrm{Pa}$, iar volumul $V_1 = 2 \, \mathrm{L}$. Gazul parcurge procesul termodinamic 1-2-3, reprezentat în coordonate p-V în figura alăturată. Transformarea 2-3 are loc la temperatură constantă. Se cunosc: $V_2 = 1,5 V_1$, $V_3 = 0,5 V_1$ și $\ln 3 \cong 1,1$.

- a. Determinați lucrul mecanic schimbat de gaz cu exteriorul în cursul transformării 1-2.
- **b.** Calculați valoarea energiei interne a gazului în starea 3.
- **c.** Reprezentați procesul 1-2-3 în coordonate V-T.
- d. Determinați căldura schimbată de gaz cu exteriorul în cursul transformării 2-3.

Examenul de bacalaureat naţional 2018 Proba E. d)

Fizică

- Filiera tehnologică profilul tehnic și profilul resurse naturale și protecția mediului

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,

 B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu. Timpul de lucru efectiv este de 3 ore.

C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU

Model

- I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)
- 1. Dacă la bornele unui generator electric este conectat un voltmetru ideal (cu rezistență internă infinită),
- a. tensiunea la bornele generatorului este nulă
- b. tensiunea indicată de voltmetru este egală cu tensiunea electromotoare a generatorului
- c. intensitatea curentului electric care străbate generatorul este maximă
- d. puterea electrică transferată de generator voltmetrului este maximă.

(3p)

- 2. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, expresia rezistenței electrice a unui conductor liniar este:
- **a.** $R = \frac{\rho \cdot S}{\ell}$

- a. $R = \frac{\rho \cdot S}{\ell}$ b. $R = \frac{S \cdot \ell}{\rho}$ c. $R = \frac{\rho}{\ell \cdot S}$ d. $R = \frac{\rho \cdot \ell}{S}$ (3p)

 3. Simbolurile mărimilor fizice și ale unităților de măsură fiind cele utilizate în manualele de fizică, unitatea de măsură în S.I. a mărimii fizice exprimate prin $\frac{U^2}{R} \cdot \Delta t$ este:

- (3p)
- 4. În graficul din figura alăturată este reprezentată dependența rezistenței electrice a unui fir conductor de temperatura acestuia. Dacă temperatura conductorului crește de la 400°C la 600°C, rezistența electrică a conductorului creste cu:

- **b.** 28.8Ω
- c. $43,2\Omega$
- d. 57.6Ω

- (3p)
- **5.** Două generatoare identice, având tensiunea electromotoare $E = 4.5 \,\mathrm{V}$ și rezistența interioară $r = 4 \,\Omega$ fiecare, sunt grupate în paralel. La bornele grupării se conectează un consumator de rezistentă electrică $R = 16 \Omega$. Intensitatea curentului electric care străbate rezistorul are valoarea:
- **a.** 1.12 A
- **b.** 0.28 A
- **c.** 0.25 A
- (3p)

II. Rezolvați următoarea problemă:

(15 puncte)

În figura alăturată este reprezentată schema unui circuit electric. Rezistențele electrice ale celor trei rezistoare sunt $R_1 = 5\Omega$, $R_2 = 8\Omega$, $R_3 = 24\Omega$. Tensiunea electromotoare a bateriei este E = 12V, iar rezistența interioară r necunoscută. Intensitatea curentului electric indicată de ampermetrul ideal $(R_A \cong 0 \Omega)$ are valoarea $I_A = 1 A$. Rezistența electrică a conductoarelor de legătură se neglijează. Determinați:

- a. rezistența electrică echivalentă a circuitului exterior;
- **b.** tensiunea electrică la bornele bateriei;
- c. intensitatea curentului electric care trece prin rezistorul de rezistentă R₂;
- **d.** valoarea rezistentei interioare *r* a bateriei.

III. Rezolvaţi următoarea problemă:

(15 puncte)

La bornele unui generator având rezistența interioară $r = 5\Omega$ se conectează o grupare serie formată din două becuri, B_1 și B_2 . Puterea electrică nominală a becului B_1 este $P_1 = 1,2 \,\mathrm{W}$, iar tensiunea nominală a acestuia este $U_1 = 6\,\mathrm{V}$. Puterea electrică nominală a becului B_2 este $P_2 = 1,8\,\mathrm{W}$. Becurile funcționează la parametrii nominali.

- a. Desenati schema electrică a circuitului.
- **b.** Determinați energia electrică consumată de becul B_1 în $\Delta t = 10$ minute de funcționare.
- **c.** Calculați valoarea tensiunii electrice la bornele becului *B*₂.
- d. Determinați tensiunea electromotoare a generatorului.

Examenul de bacalaureat national 2018 Proba E. d)

Fizică

Filiera tehnologică – profilul tehnic și profilul resurse naturale și protecția mediului

• Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,

B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ

Se acordă 10 puncte din oficiu. Timpul de lucru efectiv este de 3 ore.

D. OPTICA Model

Se consideră: viteza luminii în vid $c = 3.10^8 \, \text{m/s}$, constanta Planck $h = 6.6.10^{-34} \, \text{J} \cdot \text{s}$.

- I. Pentru itemii 1-5 scrieti pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)
- 1. O radiatie luminoasă monocromatică produce efect fotoelectric pe catodul unei fotocelule. Dacă numărul fotonilor incidenti pe catod în unitatea de timp scade, atunci:
- a. creste numărul fotoelectronilor emisi în unitatea de timp
- b. scade valoarea energiei cinetice maxime a fotoelectronilor emisi
- c. crește valoarea energiei cinetice maxime a fotoelectronilor emiși
- d. scade numărul fotoelectronilor emiși în unitatea de timp

(3p)

(3p)

- 2. Un sistem optic este alcătuit din două lentile convergente cu distanțele focale f_1 și respectiv f_2 situate pe aceeași axă optică principală la distanța D una de cealaltă. Un fascicul paralel de lumină care intră în sistemul de lentile rămâne tot paralel la ieșirea din sistem dacă:
- **a.** $D = \sqrt{f_1 \cdot f_2}$

a. W

- **b.** $D = f_1 + f_2$
- **c.** $\frac{1}{D} = \frac{1}{f_1} + \frac{1}{f_2}$ **d.** $\frac{1}{D} = \frac{1}{f_2} \frac{1}{f_1}$
 - (3p)
- 3. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, unitatea de măsură a lucrului mecanic de extracție a electronilor prin efect fotoelectric extern este:
- **4.** Pe catodul unei fotocelule cade un flux de fotoni cu frecvența $v = 5 \cdot 10^{14} \, \text{Hz}$. Energia unui foton din această radiatie este:
- **a.** $6.6 \cdot 10^{-19}$ J
- **b.** $5.5 \cdot 10^{-19}$ J
- **c.** $3.3 \cdot 10^{-19}$ J
- **d.** 10^{-19} J (3p)
- 5. În graficul din figura alăturată sunt prezentate dependentele energiei cinetice maxime a fotoelectronilor emisi de frecventa radiatiei incidente pe doi fotocatozi, realizati din diferite materiale. notati A si, respectiv, B. Dacă radiatia electromagnetică incidentă pe cei doi fotocatozi are frecvența $v = 8 \cdot 10^{14} \, \text{Hz}$, atunci vor emite fotoelectroni:

- a. numai fotocatodul A
- b. numai fotocatodul B
- c. nici un fotocatod
- d. fotocatozii A si B

II. Rezolvați următoarea problemă:

(15 puncte)

O lentilă subțire are convergența $C = 5 \,\mathrm{m}^{-1}$. La distanța de 30 cm în fața lentilei este așezat, perpendicular pe axa optică principală, un obiect luminos liniar cu înălțimea de 2 cm.

- a. Realizați un desen în care să evidențiați construcția grafică a imaginii prin lentilă.
- b. Calculați distanța la care se formează imaginea față de lentilă.
- c. Calculați înălțimea imaginii obiectului.
- d. Se aduce în contact cu prima lentilă o altă lentilă, a cărei convergență este $C' = -3 \,\mathrm{m}^{-1}$, iar obiectul se așază la distanța de 60 cm în fața sistemului de lentile. Calculați mărirea liniară transversală dată de sistemul de lentile.

III. Rezolvaţi următoarea problemă:

(15 puncte)

Un vas cilindric, suficient de larg, conține un lichid transparent cu indicele de refracție absolut $n=1,73 \cong \sqrt{3}$. Adâncimea lichidului din vas este $h=9\,\mathrm{cm}$. O sursă LASER (S) este orientată astfel încât raza de lumină emisă să ajungă la suprafața lichidului sub unghiul $i = 60^{\circ}$ față de verticală, ca în figura alăturată. Indicele de refracție al aerului este $n_{aer} \cong 1$.

- a. Calculati viteza de propagare a luminii în lichidul din vas.
- b. Calculați unghiul dintre raza reflectată și raza refractată.
- c. Calculați distanța pe care se propagă raza refractată până în punctul de incidență pe baza vasului.
- d. Sursa LASER se introduce în lichid, se orientează spre suprafata liberă a lichidului astfel încât, după refracție, raza de lumină să se propage de-a lungul suprafeței libere a lichidului. Calculați sinusul unghiului dintre raza incidentă și normala la suprafața lichidului în acest caz.