IMPLEMENTACJA PLANERA ---założenia przedstawione i wyjaśnione na zajęciach wprowadzających

STRUKTURY DANYCH

Reprezentacja składników stanu--na przykładach

zależność przestrzenna klocek b5 leży na klocku b2

jest reprezentowana w postaci struktury on(b5, b2)

składnik stanu klocek b7 jest wolny

jest reprezentowana w postaci struktury **clear(b7)**

Reprezentacja stanu

--lista struktur reprezentujących składniki stanu

Przykładowy stan:

[on (b4, p1), on (b1, b4), on (b3, b1), on (b2, p3), clear (b3), clear (b2), clear (p2), clear (p4)]

Reprezentacja celów
Cele mają postać składników stanu, np.
on(b1, b3)
Reprezentacja celu nie w pełni ukonkretnionego z nałożonymi więzamiprzykład
Reprezentacja celu wolne/swobodne X z nałożonym warunkiem X leży na obiekcie b4 :
clear(X/ on(X, b4))
Reprezentacja akcjiprzykład
Akcja przenieś b1 z b4 na b3
jest reprezentowana w postaci struktury
move(b1, b4, b3)
Reprezentacja akcji nie w pełni ukonkretnionej z nałożonymi więzami przykłady
Reprezentacja akcji przenieś b4 z obiektu Y na b2 z nałożonym warunkiem b4 leży na obiekcie Y :
move(b4, Y/ on(b4, Y), b2))
Reprezentacja akcji przenieś b1 z b4 na Z z nałożonymi warunkami obiekt Z jest wolny oraz obiekt Z jest różny od b1 :
move(b1, b4, Z)
wyjaśnienie: zawsze zakładamy taki warunek, gdy trzeci argument move jest nieukonkretniony
Reprezentacja akcji <i>przenieś obiekt X z b4 na b2</i> z nałożonym warunkiem <i>obiekt X leży na b4</i> :
move(X/ on(X,b4), b4, b2))

CIĄG DALSZY NA NASTĘPNEJ STRONIE

WSTEPNA WERSJA KODU PROCEDURY GŁÓWNEJ

JEST TO PODPOWIEDŹ WSTĘPNA: DO SKORYGOWANIA I UZUPEŁNIENIA W TRAKCIE OPRACOWANIA ZADANIA

plan (State, Goals, [], State) : goals_achieved (Goals, State) . plan (InitState, Goals, Plan, FinalState) : choose goal (Goal, Goals, RestGoals, InitState), achieves (Goal, Action), requires (Action, CondGoals, Conditions), plan (InitState, CondGoals, PrePlan, State1), inst action(Action, Conditions, State1, InstAction). perform_action (State1, InstAction, State2), plan (State2, RestGoals, PostPlan, FinalState), conc (PrePlan, [Action | PostPlan], Plan) .

ARGUMENTY W WYRAŻENIACH PREDYKATOWYCH ---ZAMIERZONE ZNACZENIE ODNIESIONE DO DZIEDZINY PROBLEMU

InitState stan początkowy

Goals lista celów

Plan skonstruowany plan

skonstruowan stan końcowy **FinalState**

cel wybrany z listy celów Goal

RestGoals pozostałe cele

akcja osiągająca zadany cel Action

CondGoals Conditions warunki dla akcji, które stają się nowymi celami warunki dla akcji do sprawdzenia w stanie,

w którym akcja bedzie wykonywana

PrePlan skonstruowany preplan

State1 stan pośredni 1, osiągany po wykonaniu preplanu

akcja ukonkretniona przed wykonaniem InstAction

State2 stan pośredni 2, osiągany po wykonaniu akcji

w stanie pośrednim 1

PostPlan skonstruowany postplan

CIAG DALSZY NA NASTĘPNEJ STRONIE

ZALECANA KOLEJNOŚĆ PRACY NAD PROCEDURAMI:
goals_achieved
choose_goal
achieves
requires
inst_action
perform_action

UZUPEŁNIENIA W PROCEDURZE GŁÓWNEJ:
zaimplementowanie ograniczenia długości planu ze zwiększaniem limitu w razie potrzeby
zabezpieczenie przed niszczeniem celów już osiągniętych w trakcie planowania

CIĄG DALSZY NA NASTĘPNEJ STRONIE

PRZYDATNE PROCEDURY WBUDOWANE (PREDYKATY SYSTEMOWE)

not LUB \+ - negacja

Przykład użycia:

not(member(X, Lista)) LUB (preferowane) \+ member(X, Lista)

var i nonvar - sprawdzenie, czy zmienna jest ukonkretniona

var(X) - przetworzenie wywołania kończy się powodzeniem wtedy i tylko wtedy, gdy w chwili wywołania X jest zmienną nie ukonkretnioną.

nonvar(X) - przetworzenie wywołania kończy się powodzeniem wtedy i tylko wtedy, gdy w chwili wywołania zmienna X jest ukonkretniona.

=.. - wyodrębnienie ze struktury funktora I listy argumentów lub zbudowanie struktury dla zadanego funktora I listy argumentów

Przykłady użycia:

arc(a, b) = ... L

po przetworzeniu wywołania zmienna L będzie związana z listą [arc, a, b]

X = ... [arc, a, b]

po przetworzeniu wywołania zmienna X będzie związana ze strukturą arc(a, b)