Unity

Definition

To say that R is a ring with unity means:

- 1). R is a ring
- 2). R has a multiplicative identity element, called *unity*, and denoted by 1.

Note that since $\langle R, \cdot \rangle$ is a binary algebraic structure, $1 \in R$ is unique.

Theorem

Let R be a ring with unity. 0 = 1 iff R is the trivial ring.

Proof

$$\implies \text{Assume } 0 = 1$$

$$\text{Assume } a \in R$$

$$a0 = 0$$

$$a1 = a0 = a$$

$$\therefore a = 0$$

 \longleftarrow Assume R is the trivial ring

$$00 = 0$$

So, 0 is unity for R
 R is a ring with unity,
But $|R| = 1$
 $\therefore 0 = 1$

Theorem

Let $r,s\in\mathbb{N}$ such that (r,s)=1:

$$Z_{rs} \simeq \mathbb{Z}_r \times \mathbb{Z}_s$$

Proof

 \mathbb{Z}_r and \mathbb{Z}_s are cyclic with generator 1 \mathbb{Z}_{rs} is cyclic with generator (1,1) Let $\phi: \mathbb{Z}_{rs} \to \mathbb{Z}_r \times \mathbb{Z}_s$ be defined by $\phi(n) = n \cdot (1,1)$ Assume $\phi(n) = \phi(m)$ $n \cdot (1,1) = m \cdot (1,1)$ But addition in Z_{rs} is well-defined n=m $\therefore \phi$ is one-to-one.

Assume
$$x \in \mathbb{Z}_{rs}$$

 $\exists n \in \mathbb{N}, n \cdot (1,1) = x$
 $\phi(n) = n \cdot (1,1) = x$

 $\therefore \phi$ is onto, and thus a bijection.

$$\phi(n+m) = (n+m) \cdot (1,1) = n \cdot (1,1) + m \cdot (1,1) = \phi(n) + \phi(m)$$

$$\phi(nm) = (nm) \cdot (1,1) = [n \cdot (1,1)][m \cdot (1,1)] = \phi(n)\phi(m)$$

 $\therefore \phi$ is a ring homomorphism, and thus a ring isomorphism.