Ausgewählte Kapitel der Logik

Denis Erfurt

30. April 2016

Aufgabe 1

1 $\Gamma, \phi, \psi \vdash \chi$	A
------------------------------------	---

$$2 \qquad \Gamma, \phi \wedge \psi, \psi \vdash \chi \qquad \qquad \wedge A_1(1)$$

$$3 \qquad \Gamma, \phi \wedge \psi, \phi \wedge \psi \vdash \chi \qquad \qquad \wedge A_2(2)$$

$$4 \qquad \Gamma, \phi \wedge \psi \vdash \chi \tag{3}$$

$$5 \qquad \Gamma, \phi \wedge \psi \vdash \neg(\phi \wedge \psi) \vee \chi \qquad \qquad \vee S_2(4)$$

$$6 \qquad \Gamma, \neg(\phi \wedge \psi) \vdash \neg(\phi \wedge \psi) \qquad \qquad V$$

7
$$\Gamma, \neg(\phi \land \psi) \vdash \neg(\phi \land \psi) \lor \chi \lor S_1(6)$$

8
$$\Gamma \vdash \neg(\phi \land \psi) \lor \chi$$
 $FU(5,7)$

Aufgabe 2

a)

Zeige $_{\Gamma,\exists x\phi \vdash \forall x\phi}$ ist korrekt. Sei I eine σ -Interpretation so dass $I \models \exists x\phi$ gilt. Zu Zeigen: $I \models \forall x\phi$

$$I \models \exists x \phi \Leftrightarrow \text{ es exestiert ein } a \in A, \text{ so dass } \llbracket \psi \rrbracket^{I\frac{a}{x}} = 1$$
 (1)

Sei o.B.d.A. |A|>1 sowie $a'\in A$ mit $a\neq a', [\![\psi]\!]^{I\frac{a'}{x}}=0$

$$\Rightarrow$$
 nicht für alle $a \in A$ gilt $\llbracket \psi \rrbracket^{I\frac{a}{x}} = 1$ (2)

$$\Leftrightarrow \llbracket \forall x \psi \rrbracket^I = 0 \Leftrightarrow I \nvDash \forall x \psi \tag{3}$$

$$\Rightarrow \forall \exists \text{ ist nicht korrekt}$$
 (4)

Aufgabe 3

a)

Für die Formel $\phi := \exists xx = x$ ist $\phi \frac{x}{x} = \exists v_0(v_0 = v_0)$, da $x \in var(\frac{x}{x})$ wird nach der Definition der Substitution für Quantoren, die variable ausgetauscht. Somit ist $\phi \neq \phi \frac{x}{x}$. Im angegebenen Beispiel könnte es zum Problem für die Formel $\phi := \exists z \exists vv = z$, da nach der herleitung das ϕ im Sukzedenz ein anderes ist, as das im Antezedenz.

b)

Die Anwending einer σ -Subsitution für Quantoren-Formeln könnte folgendermaßen erweitert werden:

- Falls $x \neq var(S)$ oder S(x) = x, so y := x und $S' := S_{|Def(S) \setminus \{x\}|}$

- ...