In all exercises, you may assume R is a commutative ring with identity where $1 \neq 0$. For some of the questions, you may find Theorem 17 and its corollaries (pp. 373-374) helpful; we have not covered these yet in class but will next week.

1. (Exercise 2 in DF §10.4.) Show that the element $2 \otimes \overline{1}$ is zero in the **Z**-module $\mathbf{Z} \otimes_{\mathbf{Z}} (\mathbf{Z}/2\mathbf{Z})$, but is nonzero in $(2\mathbf{Z}) \otimes_{\mathbf{Z}} (\mathbf{Z}/2\mathbf{Z})$.

Proof. By the relations given at the beginning of section 10.4, in $\mathbb{Z} \otimes_{\mathbb{Z}} (\mathbb{Z}/2\mathbb{Z})$ we have

$$2 \otimes \overline{1} = (1+1) \otimes \overline{1} = 1 \otimes \overline{1} + 1 \otimes \overline{1} = 1 \otimes (\overline{1} + \overline{1}) = 1 \otimes 0 = 0$$

because $1 \otimes 0 = 1 \otimes (0+0) = 1 \otimes 0 + 1 \otimes 0$.

Now, assume that $2 \otimes \overline{1} = 0$ in $(2\mathbf{Z}) \otimes_{\mathbf{Z}} (\mathbf{Z}/2\mathbf{Z})$. We will show that this impies that $(2\mathbf{Z}) \otimes_{\mathbf{Z}} (\mathbf{Z}/2\mathbf{Z}) = \{0\}$. Any element of $(2\mathbf{Z}) \times (\mathbf{Z}/2\mathbf{Z})$ is of the form $(2x, \overline{y})$ where $x, y \in \mathbf{Z}$. By example 1 on pg. 368, $m \otimes \overline{0} = 0$ for all m. So we may assume that $\overline{y} = 1$. This gives

$$(2x) \otimes \overline{1} = (x2) \otimes \overline{1} = x(2 \otimes \overline{1}) = 0$$

therefore $(2\mathbf{Z}) \otimes_{\mathbf{Z}} (\mathbf{Z}/2\mathbf{Z}) = \{0\}$. By the universal property of the tensor product, there are no nonzero **Z**-bilinear maps from $(2\mathbf{Z}) \times (\mathbf{Z}/2\mathbf{Z})$ to any abelian group. However, the map $\varphi : (2\mathbf{Z}) \times (\mathbf{Z}/2\mathbf{Z}) \to \mathbf{Z}$ defined by $\varphi(x,y) = xy$ is a nonzero **Z**-bilinear to an abelian group:

$$\varphi(r_1a + r_2b, x) = (r_1a + r_2b)x = r_1ax + r_2bx = r_1\varphi(a, x) + r_2\varphi(b, x)$$

$$\varphi(x, r_1a + r_2b) = x(r_1a + r_2b) = r_1ax + r_2bx = r_1\varphi(x, a) + r_2\varphi(x, b).$$

This is a contradiction, thus $2 \otimes \overline{1} \neq 0$.

- 2. (Exercise 8 in DF §10.4.) Let R be an integral domain with quotient field (a.k.a. field of fractions; to review this, see §7.5) Q, and let N be any R-module. Let $U = R \setminus \{0\}$ denote the set of nonzero elements in R, and define $U^{-1}N$ to be the set of equivalence classes of ordered pairs (u, n) with $u \in U$ and $n \in N$, under the equivalence relation $(u, n) \sim (u', n')$ if and only if there exists $v \in U$ such that v(u'n un') = 0. (That is, $U^{-1}N$ is the quotient of the set $U \times N$ by the given equivalence relation.) Given an ordered pair $(u, n) \in U \times N$, let $\overline{(u, n)} \in U^{-1}N$ denote the equivalence class of (u, n).
 - (a) Prove that $U^{-1}N$ is an abelian group under the addition defined by

$$\overline{(u_1, n_1)} + \overline{(u_2, n_2)} = \overline{(u_1 u_2, u_2 n_1 + u_1 n_2)}.$$

Prove that the operation $r \cdot \overline{(u,n)} = \overline{(u,rn)}$ defines an action of R on $U^{-1}N$ making it into an R-module. [This is an example of *localization*, considered in general in §15.4.]

Proof. Note: R is an integral domain, so we will commute under multiplaction as necessary.

First, suppose that $(a,x) \sim (c,z)$ and $(b,y) \sim (d,w)$ for some $a,b,c,d \in U, x,y,z,w \in N$. Then u(az-cx)=0 and v(bw-dy)=0 in N for some $u,v \in U$. We have

$$\overline{(a,x)} + \overline{(b,y)} = \overline{(ab,bx+ay)}$$
$$\overline{(c,z)} + \overline{(d,w)} = \overline{(cd,dz+cw)}.$$

But also

$$\begin{split} uv(ab(dz+cw)-cd(bx+ay)) &= uvabdz + uvabcw - uvbcdx - uvacdy \\ &= vbd(uaz) + uac(vbw) - vbd(ucx) - uac(vdy) \\ &= vbd(u(az-cx)) + uac(v(bw-dy)) \\ &= vbd(0) + uac(0) \\ &= 0 \end{split}$$

thus the righthand sides are equivalent under \sim . So the operation is well-defined.

It is clear from the definition of + that the righthand side is of the form $\overline{(u,n)}$ for $u \in U$ and $n \in N$: $u_1u_2 \in U$ because R is an integral domain (so $u_1u_2 \neq 0$) and $u_2n_1 + u_1n_2 \in N$ because N is a R-module. Therefore the set is closed under this operation.

We will check associativity. Let $a, b, c \in U$ and $x, y, z \in N$.

$$(\overline{(a,x)} + \overline{(b,y)}) + \overline{(c,z)} = \overline{(ab,bx+ay)} + \overline{(c,z)}$$
$$= \overline{(abc,c(bx+ay)+abz)}$$
$$= \overline{(abc,bcx+acy+abz)}$$

where in the last step we have taken advantage of the commutativity of multiplication in R, since it is an integral domain. Also,

$$\overline{(a,x)} + (\overline{(b,y)} + \overline{(c,z)}) = \overline{(a,x)} + \overline{(bc,cy+bz)}$$

$$= \overline{(abc, a(cy+bz) + bcx)}$$

$$= \overline{(abc, acy + abz + bcx)}$$

$$= \overline{(abc, bcx + acy + abz)}$$

where in the last step we have taken advantage of the commutativity of addition in R, simply because it is a ring. So the operation + is associative.

Denote the identity element of N by 0_N . The element $(1_R, 0_N)$ serves as an additive identity in $U^{-1}N$ since, for any $a \in U, x \in N$, we have

$$\overline{(a,x)} + \overline{(1_R,0_N)} = \overline{(a(1_R),1_Rx + a(0_N))} = \overline{(a,x)} = \overline{(1_R,0_N)} + \overline{(a,x)}.$$

We will use the following fact several times, so I will state it here:

for any
$$u, v \in U, n \in N$$
 we have $(u, n) \sim (uv, vn)$ (1)

This is clear because $1_R(u(vn) - (uv)n) = 0$.

For any $a \in U, x \in N$, the element (a - x) is an additive inverse (where -x is the inverse of x in N):

$$\overline{(a,x)}+\overline{(a,-x)}=\overline{(a^2,ax-ax)}=\overline{(a^2,0_N)}=\overline{(a^2(1_R),a^2(0_N))}=\overline{(1_R,0_N)}$$

where the last equality is given by (1). It is clear that the operation is commutative, since it is symmetric in u_1, u_2 and in n_1, n_2 . Thus, $U^{-1}N$ is an abelian group.

We will now check that the operation $r \cdot \overline{(u,n)} = \overline{(u,rn)}$ defines an action of R onto $U^{-1}N$, making

it into an R-module. Let $r, s \in R$, $a, b \in U$, and $x, y \in N$.

$$\begin{split} r\cdot (\overline{(a,x)}+\overline{(b,y)}) &= r\cdot (\overline{(ab,bx+ay)}) \\ &= \overline{(ab,r(bx+ay))} \\ &= \overline{(ab,b(rx)+a(ry))}) \\ &= \overline{(ab,b(rx)+a(ry))}) \\ &= \overline{(a,rx)}+\overline{(b,ry)} \\ &= r\cdot \overline{(a,x)}+r\cdot \overline{(b,y)} \\ (r+s)\cdot \overline{(a,x)} &= \overline{(a,(r+s)x)} \qquad \text{(by (1))} \\ &= \overline{(a^2,a(r+s)x)} \qquad \text{(by (1))} \\ &= \overline{(a^2,arx+asx)} \\ &= \overline{(a,rx)}+\overline{(a,sx)} \\ &= r\cdot \overline{(a,x)}+s\cdot \overline{(a,x)} \\ (rs)\overline{(a,x)} &= \overline{(a,rsx)} \\ &= r\cdot \overline{(a,sx)} \\ &= r\cdot \overline{(a,x)} \\ 1_R\cdot \overline{(a,x)} &= \overline{(a,1_Rx)} \\ &= \overline{(a,x)} \end{split}$$

So this operation makes $U^{-1}N$ into an R-module.

(b) Show that the map from $Q \times N$ to $U^{-1}N$ defined by sending (a/b, n) to $\overline{(b, an)}$ for $a \in R$, $b \in U$, $n \in N$, is an R-bilinear map, so induces a homomorphism f from $Q \otimes_R N$ to $U^{-1}N$. Show that the map $g: U^{-1}N \to Q \otimes_R N$ defined by

$$g(\overline{(u,n)}) = (1/u) \otimes n$$

is well defined and is an inverse homomorphism to f. Conclude that $Q \otimes_R N \cong U^{-1}N$ as R-modules.

Proof. Let $\varphi: Q \times N \to U^{-1}N$ be defined by $(a/b, n) \mapsto \overline{(b, an)}$. Let $a, b, c, d \in U, r, s \in A$ and $a, n \in N$.

$$\begin{split} \varphi\left(\left(r\frac{a}{b}+s\frac{c}{d},n\right)\right) &= \varphi\left(\left(\frac{rad+scb}{bd},n\right)\right) \\ &= \overline{(bd,(rad+scb)\,n)} \\ &= \overline{(bd,(rad)\,n+(scb)\,n)} \\ &= \overline{(b,ran)}+\overline{(d,scn)} \\ &= r\cdot\overline{(b,an)}+s\cdot\overline{(d,cn)} \\ &= r\varphi\left(\frac{a}{b},n\right)+s\varphi\left(\frac{c}{d},n\right) \\ \varphi\left(\left(\frac{a}{b},r\cdot m+s\cdot n\right)\right) &= \overline{(b,a(rm+sn))} \\ &= \overline{(b^2,ab\,(rm+sn))} \\ &= \overline{(b,arm)}+\overline{(b,asn)} \\ &= r\cdot\overline{(b,am)}+s\cdot\overline{(b,an)} \\ &= r\varphi\left(\frac{a}{b},m\right)+s\varphi\left(\frac{a}{b},n\right) \end{split}$$

Therefore, φ is an R-bilinear map. By the universal property of the tensor product, φ induces a homomorphism $f:Q\otimes_R N\to U^{-1}N$ such that $\varphi=f\circ\iota$, where $\iota:Q\times N\to Q\otimes_R N$ is given by $\iota(\frac{a}{b},n)=\frac{a}{b}\otimes n$. This means that f must be defined by $f(\frac{a}{b}\otimes n)=\varphi(\frac{a}{b},n)=\overline{(b,an)}$.

Let $g: U^{-1}N \to Q \otimes_R N$ be defined by

$$g(\overline{(u,n)}) = \frac{1}{u} \otimes n.$$

First, we will show that g is well-defined. Suppose $\overline{(a,x)} \sim \overline{(b,y)}$ for some $a,b \in U, x,y \in N$. Then u(ay-bx) for some $u \in U$. We have

$$g(\overline{(a,x)}) = \frac{1}{a} \otimes x = \frac{1}{uab}(ub) \otimes x = \frac{1}{uab} \otimes ubx = \frac{1}{uab} \otimes uay = \frac{1}{uab}ua \otimes y = \frac{1}{b} \otimes y = g(\overline{(b,y)}).$$

Next, we will show that g is an R-module homomorphism. Let $r, a, b \in R$ and $x, y \in N$. We have

$$\begin{split} g(\overline{(a,x)}+r\overline{(b,y)}) &= g(\overline{(ab,bx+ary)} \\ &= \frac{1}{ab} \otimes (bx+ary) \\ &= \frac{1}{ab} \otimes bx + \frac{1}{ab} \otimes ray \\ &= \frac{1}{a} \otimes x + r(\frac{1}{b} \otimes y) \\ &= g(\overline{(a,x)}) + rg(\overline{(b,y)}). \end{split}$$

Finally, we will show that g is an inverse of f:

$$g \circ f\left(\frac{a}{b} \otimes n\right) = g(\overline{(b, an)}) = \frac{1}{b} \otimes an = \frac{1}{b}(a) \otimes n = \frac{a}{b} \otimes n$$
$$f \circ g(\overline{(u, n)}) = f\left(\frac{1}{u} \otimes n\right) = \overline{(u, 1(n))} = \overline{(u, n)}$$

thus g is an inverse of f. So f is an isomorphism, therefore $Q \otimes_R N \cong U^{-1}N$ as R-modules.

(c) Conclude from (b) that $(1/d) \otimes n$ is 0 in $Q \otimes_R N$ if and only if rn = 0 for some nonzero $r \in R$.

Proof. Since g is an isomorphism, $(\frac{1}{d}) \otimes n$ is 0 in $Q \otimes_R N$ if and only if $g(\frac{1}{d} \otimes n) = \overline{(d,n)} = 0_{U^{-1}N} = \overline{(1,0)}$. This means that $\overline{(d,n)} = \overline{(1,0)}$ and thus u(1(n)-d(0)) = un = 0 for some $u \in U$. Since U is the nonzero elements of R, the result follows.

(d) If A is an abelian group, show that $\mathbf{Q} \otimes_{\mathbf{Z}} A = 0$ (where 0 denotes the zero module $\{0\}$) if and only if A is a torsion abelian group (i.e., every element of A has finite order). (Caution: this does not mean A itself has finite order!)

Proof. **Q** is the field of fractions of **Z**, and A is naturally a **Z** module under the action $n \cdot a = a + \cdots + a$ (n times). Therefore, the above result applies to $\mathbf{Q} \otimes_{\mathbf{Z}} A$; so, for any $a \in A$, $\frac{1}{d} \otimes a$ is 0 in $\mathbf{Q} \otimes_{\mathbf{Z}} A$ if and only if ra = 0 for some nonzero $r \in \mathbf{Z}$.

First, suppose that A is a torsion abelian group, and let $a \in A$. a has some finite order n in A, therefore $na = a + \cdots + a = 0$. Since a was arbitrary, $\mathbf{Q} \otimes_{\mathbf{Z}} A = 0$.

Next, assume $\mathbf{Q} \otimes_{\mathbf{Z}} A = 0$, and let $a \in A$. There is some $n \in \mathbf{Z}$ such that $na = a + \cdots + a = 0$, thus a has finite order and divides n. So every element of A has finite order, therefore A is a torsion abelian group.

- 3. (Exercise 10 in DF §10.4.) Suppose $N \cong \mathbb{R}^n$ is a free \mathbb{R} -module of rank n with \mathbb{R} -module basis $\{e_1, \ldots, e_n\}$.
 - (a) Let M be a nonzero R-module. Show that for each element $\alpha \in M \otimes_R N$ there is a unique sequence of elements $m_1, \ldots, m_n \in M$ such that $\alpha = \sum_{i=1}^n m_i \otimes e_i$. Deduce that if $\sum_{i=1}^n m_i \otimes e_i = 0$ in $M \otimes_R N$, then $m_1 = \ldots = m_n = 0$.

Proof. We aim to show that the map $f: M^n \to M \otimes_R N$ defined by $f(m_1, \ldots, m_n) = \sum_{i=1}^n m_i \otimes e_i$ is a bijection. Define a map $\varphi: M \times N \to M^n$ by $(m, \sum_{i=1}^n r_i e_i) \mapsto (r_1 m, \ldots, r_n m)$ (since every element of $M \otimes_R N$ takes this form in a unique way). Observe that φ is R-balanced:

$$\varphi(x+y, \sum_{i=1}^{n} r_{i}e_{i}) = (r_{1}(x+y), \dots, r_{n}(x+y))
= (r_{1}x + r_{1}y, \dots, r_{n}x + r_{n}y)
= (r_{1}x, \dots, r_{n}x) + (r_{1}y, \dots, r_{n}y)
= \varphi(x, \sum_{i=1}^{n} r_{i}e_{i}) + \varphi(y, \sum_{i=1}^{n} r_{i}e_{i})
\varphi(x, \sum_{i=1}^{n} r_{i}e_{i} + \sum_{i=1}^{n} s_{i}e_{i}) = \varphi(x, \sum_{i=1}^{n} (r_{i} + s_{i})e_{i})
= ((r_{1} + s_{1})x, \dots, (r_{n} + s_{n})x)
= (r_{1}x, \dots, r_{n}x) + (s_{1}x, \dots, s_{n}x)
= \varphi(x, \sum_{i=1}^{n} r_{i}e_{i}) + \varphi(x, \sum_{i=1}^{n} s_{i}e_{i}).$$

By the universal property of tensor product, φ induces a unique group homomorphism $\Phi: M \otimes_R N \to M^n$ such that $\Phi(m \otimes \sum_{i=1}^n r_i e_i) = (r_1 m, \dots, r_n m)$.

To see that f is a bijection, we may simply show that it is the inverse of Φ :

$$f \circ \Phi(m \otimes \sum_{i=1}^{n} r_{i}e_{i}) = f(r_{1}m, \dots, r_{n}m) = \sum_{i=1}^{n} r_{i}m \otimes e_{i} = m \otimes \sum_{i=1}^{n} r_{i}e_{i}$$

$$\Phi \circ f(m_{1}, \dots, m_{n}) = \Phi(\sum_{i=1}^{n} m_{i} \otimes e_{i}) = \sum_{i=1}^{n} \Phi(m_{i} \otimes e_{i}) = \sum_{i=1}^{n} (0, \dots, m_{i}, \dots, 0) = (m_{1}, \dots, m_{n})$$

where we have distributed Φ through the summation because it is a group homomorphism with respect to addition in $M \otimes_R N$. So f is invertible and, thus, a bijection.

Since the representation of 0 as $\sum_{i=1}^{n} m_i \otimes e_i$ is unique with respect to the sequence m_1, \ldots, m_n , and we know that $\sum_{i=1}^{n} 0 \otimes e_i = 0$, we must have $m_1 = \cdots = m_n = 0$ if $\sum_{i=1}^{n} m_i \otimes e_i = 0$.

(b) Show that if $f_1, \ldots, f_n \in N$ are merely R-linearly independent elements (but do not form a basis for N over R), then it is not necessarily true that $\sum_{i=1}^n m_i \otimes f_i = 0$ implies $m_1 = \ldots = m_n = 0$. (Hint: Consider $R = \mathbf{Z}$, n = 1, $M = \mathbf{Z}/2\mathbf{Z}$, and the element $1 \otimes 2$.)

Proof. Let $R = \mathbf{Z}$, n = 1, and $M = \mathbf{Z}/2\mathbf{Z}$. We have

$$\overline{1} \otimes 2 = \overline{1}(2) \otimes 1 = \overline{2} \otimes 1 = 0 \otimes 1 = 0$$

However, $\bar{1}$ is nonzero in $(\mathbf{Z}/2\mathbf{Z}) \otimes_{\mathbf{Z}} \mathbf{Z}$. Clearly, 2 is linearly independent in \mathbf{Z} because $z \cdot 2 = 0$ implies z = 0.

4. (Exercise 11 in DF §10.4.) Let $\{e_1, e_2\}$ be a basis of the **R**-module $V = \mathbf{R}^2$. Show that the element $e_1 \otimes e_2 + e_2 \otimes e_1$ in $V \otimes_{\mathbf{R}} V$ cannot be written as a simple tensor $v \otimes w$ for any $v, w \in V$.

Proof. Suppose, for a contradiction, that there do exist $v, w \in \mathbf{R}^2$ such that $v \otimes w = e_1 \otimes e_2 + e_2 \otimes e_1$. Since $\{e_1, e_2\}$ forms a basis for \mathbf{R}^2 over \mathbf{R} , there exist unique $a, b, c, d \in \mathbf{R}$ such that $v = ae_1 + be_2$ and $w = ce_1 + de_2$. So

$$v \otimes w = ac(e_1 \otimes e_1) + ad(e_1 \otimes e_2) + bc(e_2 \otimes e_1) + bd(e_2 \otimes e_2) = e_1 \otimes e_2 + e_2 \otimes e_2.$$

By the result of part (a) in the previous exercise, we must have ac = bd = 0 and ad = bc = 1. So either a = 0 or c = 0. However, if a = 0 then $ad \neq 0$ and if c = 0 then $bc \neq 0$, a contradiction. So the result follows.

5. (Exercise 15 in DF §10.4.) Show that tensor products do not in general commute with direct products; that is, there exist R, M, N_i such that $M \otimes_R (\prod N_i) \ncong \prod (M \otimes_R N_i)$. (Hint: consider the direct product of the **Z**-modules $\mathbb{Z}/2^i\mathbb{Z}$ where $i = 1, 2, \ldots$; tensor this with \mathbb{Q} over \mathbb{Z} .)

Proof. We want to show that $\prod (\mathbf{Z}/2^i\mathbf{Z}) \otimes_{/Z} \mathbf{Q} \ncong \prod (\mathbf{Q} \otimes_{\mathbf{Z}} \mathbf{Z}/2^i\mathbf{Z})$. We have shown in exercise 2 that, if A is an abelian group, then $\mathbf{Q} \otimes_{\mathbf{Z}} A = 0$ if and only if A is a torsion abelian group. Note that $\prod (\mathbf{Z}/2^i\mathbf{Z})$ is an abelian group, and also that $\mathbf{Z}/2^i\mathbf{Z}$ is an abelian group for every i.

For every i, $\mathbf{Z}/2^i\mathbf{Z}$ is torsion because every element has order at most 2^i . Therefore, $\prod(\mathbf{Q}\otimes_{\mathbf{Z}}\mathbf{Z}/2^i\mathbf{Z}) = \prod 0 = 0$. However, $\prod(\mathbf{Z}/2^i\mathbf{Z})$ is not torsion because the element $\prod 1_{\mathbf{Z}/2^i\mathbf{Z}}$ has infinite order. Thus, $\prod(\mathbf{Z}/2^i\mathbf{Z})\otimes_{/Z}\mathbf{Q}\neq 0$. So clearly these tensor products cannot be isomorphic.

- 6. (Exercise 17 in DF §10.4.) Let I = (2, X) be the ideal generated by 2 and X in the ring $R = \mathbf{Z}[X]$. The ring $\mathbf{Z}/2\mathbf{Z} = R/I$ is naturally an R-module (the R-action being given by multiplication in R followed by reduction mod I) that is annihilated by both 2 and X.
 - (a) Show that the map $\phi: I \times I \to \mathbb{Z}/2\mathbb{Z}$ defined by

$$\phi(a_0 + a_1 X + \dots + a_n X^n, b_0 + b_1 X + \dots + b_m X^m) = \frac{\overline{a_0}}{2} b_1$$

(where the bar over the integer denotes its equivalence class in $\mathbb{Z}/2\mathbb{Z}$) is R-bilinear.

Proof. Note that I is the set of all polynomials in $\mathbf{Z}[x]$ with even constant term. This is stated in example 3 on pg. 252, although it should be clear. Therefore, the action of $\mathbf{Z}[x]$ on $\mathbf{Z}/2\mathbf{Z}$ is simply $p(x) \cdot a = (p(x))(a) + I = \overline{a(p(0))}$, i.e. it is the constant term of p(x), times a, taken modulo 2. Further, this map can be written as $\phi(p(x), q(x)) = \frac{\overline{p(0)}}{2}r'(0)$, where r'(0) is the derivative of r(x) evaluated at 0.

Let $a(x), b(x) \in \mathbf{Z}[x]$ and $p(x), q(x), r(x) \in I$. Since multiplication in $\mathbf{Z}[x]$ is equivalent to pointwise of polynomials as functions, we have

$$\begin{split} \phi(a(x)p(x) + b(x)q(x), r(x)) &= \phi((a \cdot p + b \cdot q)(x), r(x)) \\ &= \frac{\overline{(a \cdot p + b \cdot q)(0)}}{2} r'(0) \\ &= \frac{\overline{a(0)p(0) + b(0)q(0)}}{2} r'(0) \\ &= a(x) \cdot \frac{\overline{p(0)}}{2} r'(0) + b(x) \cdot \overline{\frac{q(0)}{2}} r'(0) \\ &= a(x) \cdot \phi(p(x), r(x)) + b(x) \cdot \phi(q(x), r(x)) \end{split}$$

Note now that, for any $s(x) \in I$, $s(0) = s(x) + I = \overline{0}$. So we have

$$\begin{split} \phi(r(x),a(x)p(x)+b(x)q(x)) &= \phi(r(x),(a\cdot p+b\cdot q)(x)) \\ &= \frac{\overline{r(0)}}{2}(a\cdot p+b\cdot q)'(0) \\ &= \frac{\overline{r(0)}}{2}(a'p+ap'+b'q+bq')(0) \\ &= \frac{\overline{r(0)}}{2}(\overline{a'(0)}\cdot\overline{p(0)}+\overline{a(0)}\cdot\overline{p'(0)}+\overline{b'(0)}\cdot\overline{q(0)}+\overline{b(0)}\cdot\overline{q'(0)}) \\ &= \frac{\overline{r(0)}}{2}(\overline{a'(0)}\cdot\overline{0}+\overline{a(0)}\cdot\overline{p'(0)}+\overline{b'(0)}\cdot\overline{0}+\overline{b(0)}\cdot\overline{q'(0)}) \\ &= \frac{\overline{r(0)}}{2}a(0)p'(0)+\frac{\overline{r(0)}}{2}b(0)q'(0) \\ &= a(x)\cdot\overline{\frac{r(0)}{2}p'(0)}+b(x)\cdot\overline{\frac{r(0)}{2}q'(0)} \\ &= a(x)\cdot\phi(r(x),p(x))+b(x)\cdot\phi(r(x),q(x)) \end{split}$$

thus ϕ is Z[x]-bilinear.

(b) Show that there is an R-module homomorphism from $I \otimes_R I \to \mathbf{Z}/2\mathbf{Z}$ mappyng $p(X) \otimes q(X)$ to $\frac{p(0)}{2}q'(0)$, where q' denotes the usual polynomial derivative of q.

Proof. This follows immediately from Corrolary 12, which says that there is an R-module homomorphism $\Phi: I \otimes_R I \to \mathbf{Z}/2\mathbf{Z}$ such that $\phi = \Phi \circ \iota$. Thus, $\Phi(p(x) \otimes q(x)) = \phi((p(x), q(x))) = \phi(p(x), q(x)) = \frac{p(0)}{2}q'(0)$.

(c) Show that $2 \otimes X \neq X \otimes 2$ in $I \otimes_R I$.

Proof. Suppose that $2 \otimes x = x \otimes 2$ in $I \otimes_R I$. Then we must have $\Phi(2 \otimes x) = \underline{\Phi}(x \otimes 2)$, simply because Φ is a well-defined function. However, $\Phi(x \otimes 2) = \overline{\frac{0}{2}0} = \overline{0}$ but $\Phi(2 \otimes x) = \overline{\frac{2}{2}1} = \overline{1}$, a contradiction because $\overline{0} \neq \overline{1}$ in $\mathbb{Z}/2\mathbb{Z}$. So $2 \otimes x \neq x \otimes 2$.