

# Lecture 16b | Normal Line Equation

- Time Based Collision
  - 1.1. Point-Line
  - 1.2. Intersection of a ray with a line segment

- CS230 2
- Game 2
- Implementation Techniques

### **Copyright Notice**

Copyright © 2010 DigiPen (USA) Corp. and its owners. All rights reserved.

No parts of this publication may be copied or distributed, transmitted, transcribed, stored in a retrieval system, or translated into any human or computer language without the express written permission of DigiPen (USA) Corp., 9931 Willows Road NE, Redmond, WA 98052

### **Trademarks**

DigiPen® is a registered trademark of DigiPen (USA) Corp.

All other product names mentioned in this booklet are trademarks or registered trademarks of their respective companies and are hereby acknowledged.

### 1. Time Based Collision

### 1.1. Point-Line

- The circle or point is moving and the line segment is static.
- Checking for collision at the previous and current positions is not enough.
- The circle (or the point) and the line can be not colliding with the line at frame n and frame n+1, but in reality they might have collided.



- As you can see in the figure above, the circle and the point aren't colliding with the line at frame n, and aren't colliding with it at frame n+1, but obviously, they are colliding with it sometime along the path.
- We need to interpolate along the path in order to find the exact time where the collision occurred.



## 1.2. Intersection of a ray with a line segment



| Edge | Vector                                | Outward Normal                       |
|------|---------------------------------------|--------------------------------------|
| 0    | $\overrightarrow{E_0}$ = (100; 0)     | $\overrightarrow{N_0}$ = (0; -100)   |
| 1    | $\overrightarrow{E_1}$ = (200; 200)   | $\overrightarrow{N_1}$ = (200; -200) |
| 2    | $\overrightarrow{E_2}$ = (-250; 200)  | $\overrightarrow{N_2}$ = (200; 250)  |
| 3    | $\overrightarrow{E_3}$ = (50; -300)   | $\overrightarrow{N_3}$ = (-300; -50) |
| 4    | $\overrightarrow{E_4} = (-100; -100)$ | $\overrightarrow{N_0}$ = (-100; 100) |

| Infinite Line | Equation                       |
|---------------|--------------------------------|
| 0             | (0; -100).(x; y) = 0           |
| 1             | (200 ; -200).(x ; y) = 20000   |
| 2             | (200; 250).(x; y) = 110000     |
| 3             | (-300 ; -50).(x ; y) = -350000 |
| 4             | (-100 ; 100).(x ; y) = 0       |



- Consider a point to be located at  $P_i$  inside the chamber and moving with towards  $P_f$
- This means that its velocity is  $\overrightarrow{P_lP_f} = \overrightarrow{V}$
- Let  $\vec{P}$  be the position vector of point P (The moving point). Then the equation of the ray is:  $\vec{P} = \overrightarrow{P_l P_f} *t + P_i = \vec{V} *t + P_i$
- At which time  $t_n$ , does the ray hit the line L given by:  $\vec{N}$ .P = D?
- Assume P<sub>n</sub> is the spot where the ray intersects the line L
- This means that the ray intersects with the line at point P<sub>n</sub> at time t<sub>n</sub>
- This means that the point P<sub>n</sub> belongs to both the ray and the line
- Thus,  $P_n$  in  $\vec{N}$ .  $P_n = D$  is the same as  $\vec{P}_n = \vec{V} * t_n + P_i$  (It's the same point, the point of intersection)
- By replacing the 2<sup>nd</sup> equation in the first one we get:

$$\vec{N}.(\vec{V}*t_n + P_i) = D$$

$$\vec{N}.\vec{V}*t_n + \vec{N}.P_i = D$$

$$\vec{N}.\vec{V}*t_n = D - \vec{N}.P_i$$

$$t_{n} = \frac{D - \vec{N}.P_{i}}{\vec{N}.\vec{V}}$$

- This means that  $\vec{N}$  .  $\vec{V} \neq 0$  If  $\vec{N}$  .  $\vec{V}=0$  the ray is parallel to the line and will never hit it.
- When there is a hit, we find the coordinates of  $\vec{P}_n = \vec{V} * t_n + P_i$
- If t<sub>n</sub> is less than 0 or greater than 1, than there is no collision.



### **Collision Exercise:**

Given the following line segment L[P0(6; 0), P1(10; 7)], representing a wall in your game, we need to check if the following moving point objects cases may collide with L in the current frame? Each point object is moving from  $B_s$  to  $B_e$ .

To answer these questions, you need to apply the equations found in the "Lecture 16 - Normal Line Equation - Animated Point To Line.pdf" file, between slides 18 and 27.

Please follow these steps:

- We'll skip the first 3 non-collision tests: (1/5), (2/5) and (3/5)
- Compute ti
- If (0 <= ti <= 1), compute Bi
- Test for non-collision (4/5) and (5/5). Or you can combine both test into one.

### Case 1:

$$B_s = (5; 2)$$
 ,  $B_e = (7; 3)$ 

### Case 2:

$$B_s = (6; 4)$$
 ,  $B_e = (9; 5)$ 

### Case 3:

$$B_s = (11; 1)$$
 ,  $B_e = (9; 4)$ 



• Examples: Checking for collision with line POP1



• We need to find normal line equation of POP1

$$\circ$$
  $\overrightarrow{P_0P_1} = P_1 - P_0 = (10 - 6; 7 - 0) = (4; 7)$ 

$$\bigcirc \overrightarrow{N} = (\overrightarrow{P_0 P_1}.y; -\overrightarrow{P_0 P_1}.x) = (7; -4)$$

o Finding the constant D of the equation:

$$\vec{N}$$
.P<sub>1</sub> = (7; -4).(10; 7) = 70 - 28 = 42 = D

(Any point of the line works. We could have used  $P_0$ ):

$$\vec{N}$$
.P<sub>0</sub> = (7; -4).(6; 0) = 42 - 0 = 42 = D

- Normal line equation:
  - P(x;y) is any point on POP1
  - $\vec{N}.P = D$
  - (7; -4).(x; y) = 42



• Case (1):

$$OB_{s} = (5; 2)$$

o 
$$B_e = (7;3)$$

$$\vec{V} = B_e - B_s = (7; 3) - (5; 2) = (2; 1)$$

• We should find the collision time  $t_i$  using the equation  $t_i = \frac{D - \vec{N}.B_S}{\vec{N}.\vec{V}}$ 

$$\circ \quad t_i = \frac{42 - (7 \ ; -4).(5 \ ; 2)}{(7 \ ; -4).(2 \ ; 1)} = \frac{42 - 35 + 8}{14 - 4} = \frac{15}{10} = 1.5$$

- o  $t_i$  is greater than  $1 \rightarrow No$  collision
- Case (2):

o 
$$B_s = (6; 4)$$

o 
$$B_e = (9; 5)$$

$$\vec{V} = B_e - B_s = (9; 5) - (6; 4) = (3; 1)$$

• We should find the collision time  $t_i$  using the equation  $t_i = \frac{D - \vec{N}.B_S}{\vec{N}.\vec{V}}$ 

$$\circ \quad t_i = \frac{42 - (7; -4).(6; 4)}{(7; -4).(3; 1)} = \frac{42 - 42 + 16}{21 - 4} = \frac{16}{17} = 0.94$$

- $0 \le t_i \le 1 \rightarrow$  then the ray collides with the line L at time  $t_i = 0.94$
- $\circ$  To get the exact point of intersection, we should replace  $t_i$  in the ray equation.

$$\vec{B}_i = \vec{V} * t_i + B_S = (3; 1)*0.94 + (6; 4) = (2.82; 0.94) + (6; 4) = (8.82; 4.94)$$

To verify that this point belongs to the line L, its coordinates should satisfy the normal line equation of L:

$$\vec{N}$$
.P = D

$$(7; -4).(8.82; 4.94) = 42$$

 $61.74 - 19.76 \cong 42$  (The lost precision is due to the fact that we're using 2 decimal digits)

Check if outside boundaries (Non-Collision tests 4 and 5 combined):

$$(B_i - P_0) \cdot (B_i - P_1) =$$

$$[(8.82; 4.94) - (6; 4)] \cdot [(8.82; 4.94) - (9; 5)] = [2.82; 0.94] \cdot [-0.18; -0.06] < 0$$

 $\Rightarrow$  B<sub>i</sub> is inside

Case (3)

$$\circ$$
  $B_{S} = (11; 1)$ 

o 
$$B_e = (9; 4)$$

$$\circ \quad \vec{V} = B_e - B_s = (9; 4) - (11; 1) = (-2; 3)$$

• We should find the collision time  $t_i$  using the equation  $t_i = \frac{D - \vec{N}.B_S}{\vec{N}.\vec{V}}$ 

$$\circ \quad t_i = \frac{42 - (7\;;-4).(11\;;1)}{(7\;;-4).(-2\;;3)} = \frac{42 - 77 + 4}{-14 - 12} = \frac{-31}{-26} = 1.19$$

o  $t_i$  is greater than  $1 \rightarrow No$  collision

