```
import seaborn as sns
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
mydata={"Name":["Ram","Sam","Joe","Asha"],
         "Age": [22,23,47,26],
         "Salary": [20000,45000,65000,38000],
         "Exp": [2,4,2,1]}
df=pd.DataFrame(mydata)
df
   Name Age Salary Exp
0
        22
              20000
    Ram
        23
                        4
1
    Sam
              45000
    Joe 47
              65000
                        2
3 Asha 26 38000
                       1
```

Histogram

```
plt.figure(figsize=(4,5))
sns.histplot(df["Salary"],kde=True,bins=3)
plt.title("Distribution of Salary")
plt.show()
```


1. The salary values are evenly distributed 2. No outerlier detected 3. Majority of the salary values are between 40000 and 50000 4. The average of the salary is around 40000

Correlation Matrix

```
ndf=df.select_dtypes(include=["number"])
ndf.head()
                Exp
        Salary
   Age
0
    22
         20000
         45000
                   4
1
    23
         65000
                   2
    47
    26
         38000
plt.figure(figsize=(6,5))
sns.heatmap(ndf.corr(),cmap="viridis",annot=True)
plt.title("Correletion Matrix of Age, Salary and Experiance")
plt.show()
```


1.We can say that Age, Salary and Experience 2.Age affects the experience and Experinece affects the Salary

```
plt.figure(figsize=(6,5))
sns.boxplot(x=df["Age"])
plt.title("Age Distribution")
plt.show()
```

Age Distribution


```
1.Abnormal outlier is around 45
2.The average age is around 25
temp = [21,47,39,22,31,33,29,26,27,25,49,46]
ad=pd.DataFrame(temp)
ad
    0
    21
0
1
2
3
4
    47
    39
    22
    31
5
    33
6
    29
    26
7
8
    27
9
    25
10 49
11 46
```

```
plt.figure(figsize=(4,5))
sns.histplot(ad[0],kde=True,bins=3)
plt.title("Distribution of Temperature")
plt.show()
```

Distribution of Temperature

1.positive skew 2.No outerlier detected

```
plt.figure(figsize=(6,5))
sns.heatmap(ad.corr(),cmap="viridis",annot=True)
plt.title("Temp")
plt.show()
```



```
plt.figure(figsize=(6,5))
sns.boxplot(x=ad[0])
plt.title("Temperature Distribution")
plt.show()
```

Temperature Distribution

1. Abnormal outlier is not detected 2. The average Temperatuire is 30

```
mydata1={"Name":["Ram", "Sam", "Joe", "Asha"],
         "Age": [22,23,47,26],
         "Salary": [20000,45000,65000,38000],
         "Exp": [2,4,2,1],
          "G":["Male", "Male", "Female", "Male"]}
df1=pd.DataFrame(mydata1)
df1
         Age Salary Exp
   Name
0
    Ram
          22
               20000
                              Male
                       2
1
    Sam
          23
               45000
                        4
                              Male
2
    Joe
          47
               65000
                         2 Female
  Asha
          26
               38000
                         1
                              Male
```

Count plot

```
plt.figure(figsize=(6,5))
sns.countplot(x=df1["Exp"],palette="pastel",hue=df1["G"])
```

plt.title("Count of Experiences")
plt.show()

Pair plot

sns.pairplot(df1)

<seaborn.axisgrid.PairGrid at 0x26105c68d40>

sns.pairplot(df1,hue="G")
<seaborn.axisgrid.PairGrid at 0x26105d95160>

 $\ensuremath{\textbf{1}}.$ It shows the scatter plot matrix visualizing the relationship between Age,Experince and Salary