Fall 2016 CIS 515

Fundamentals of Linear Algebra and Optimization Jean Gallier

Homework 2

September, 20 2016; Due October 11, 2016 Francine Leech, Chen Xiang, Reffat Manzur

Problem B1 (10 pts).

Suppose $A = (a_{i,j})_{m \times n}$, $B = (b_{i,j})_{n \times p}$, $C = AB = (c_{i,j})_{m \times p}$. It is easy to write $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$, $\forall i = 1, 2, \dots, m$. $j = 1, 2, \dots, p$ and then consider $(A^{1}B_{1} + \dots + A^{n}B_{n})_{ij}$, we have $(A^{1}B_{1} + \dots + A^{n}B_{n})_{ij} = (a_{i1}b_{1j} + a_{i2}b_{2j} \dots a_{in}b_{nj}) = \sum_{k=1}^{n} a_{ik}b_{kj}$. So $AB = A^{1}B_{1} + \dots + A^{n}B_{n}$.

Problem B2 (10 pts).

Because f is a linear map, thus we have

$$f(x+y) = f(x) + f(y)$$
$$f(\lambda x) = \lambda f(x)$$

So write the inverse function $g = f^{-1}$ and $x_1, x_2 \in E$, we have

$$\exists x \in E, \ x = g(f(x_1) + f(x_2)) \Rightarrow f(x) = f(x_1) + f(x_2) = f(x_1 + x_2)$$

$$\Rightarrow x = x_1 + x_2$$

$$\Rightarrow g(f(x)) = g(f(x_1 + x_2)) = g(f(x_1)) + g(f(x_2))$$

$$\exists x^* \in E, \ x^* = g(f(\lambda x)) \Rightarrow f(x^*) = f(\lambda x)$$

$$\Rightarrow x^* = \lambda x$$

$$\Rightarrow g(\lambda f(x)) = g(f(\lambda x)) = \lambda g(f(x))$$

Problem B3 (10 pts).

For $x \in E$, it can be written as $x_1 u_1 + x_2 u_2 + \cdots + x_n u_n$ as $(u_i)_{i \in I}$ is a basis of E and $(u_i)_{i \in I}$ spans E. Then, $f(x) = x_1 f(u_1) + x_2 f(u_2) + \cdots + x_n f(u_n)$. Since $f(u_i) = v_i$, this can be rewritten as: $f(x) = x_1 v_1 + x_2 v_2 + \cdots + x_n v_n$. If the linear map f is surjective, then every element in F has a corresponding element in E and $f(x) = x_1 v_1 + x_2 v_2 + \cdots + x_n v_n$ indicates that $(v_i)_{i \in I}$ must span F.

Problem B4 (10 pts).

dim(E) = n indicates that the basis of E consists of n vectors and dim(F) = m in-

dicates the basis of F consists of m vectors. From class notes, we know that M(f) =

$$\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} = A, \text{ an } mxn \text{ matrix.}$$

dicates the basis of
$$F$$
 consists of m vectors. From class notes, we know that $M(f) = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} = A$, an mxn matrix.
$$u = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ \vdots \\ u_m \end{pmatrix} \text{ and } v^T = \begin{pmatrix} v_1 & v_2 & v_3 & \cdots & v_n \end{pmatrix} \text{ so } uv^T \text{ is an } mxn \text{ matrix of the form:}$$

$$\begin{pmatrix} u_1v_1 & u_1v_2 & u_1v_3 & \cdots & u_1v_n \\ u_2v_1 & u_2v_2 & u_2v_3 & \cdots & u_2v_n \\ u_3v_1 & u_3v_2 & u_3v_3 & \cdots & u_3v_n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ u_mv_1 & u_mv_2 & u_mv_3 & \cdots & u_mv_n \end{pmatrix} = v_1 \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ \vdots \\ u_m \end{pmatrix} + v_2 \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ \vdots \\ u_m \end{pmatrix} + \cdots v_n \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ \vdots \\ u_m \end{pmatrix}. \text{ Since every }$$

column in the matrix of f is a multiple of one column, the rank is 1 for f and the matrix is always of this form by definition for an mxn matrix.

Problem B5 (120 pts).

(1)

$$W_{3,3}c = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \\ c_5 \\ c_6 \\ c_7 \\ c_8 \end{pmatrix}$$

$$= \begin{pmatrix} 1 \cdot c_1 + 1 \cdot c_5 \\ 1 \cdot c_1 + -1 \cdot c_5 \\ 1 \cdot c_2 + 1 \cdot c_6 \\ 1 \cdot c_2 + -1 \cdot c_6 \\ 1 \cdot c_3 + 1 \cdot c_7 \\ 1 \cdot c_3 + -1 \cdot c_7 \\ 1 \cdot c_4 + 1 \cdot c_8 \\ 1 \cdot c_4 + -1 \cdot c_8 \end{pmatrix} = \begin{pmatrix} c_1 + c_5 \\ c_1 - c_5 \\ c_2 + c_6 \\ c_2 - c_6 \\ c_3 + c_7 \\ c_3 - c_7 \\ c_4 + c_8 \\ c_4 - c_8 \end{pmatrix}$$

(2)

If the inverse of $W_{3,3}$ is $(1/2)W_{3,3}^{\top}$, then the product of the two matrices is the identity matrix.

$$= \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

(3) First: $W_{3,2}c = (c_1 + c_3, c_1 - c_3, c_2 + c_4, c_2 - c_4, c_5, c_6, c_7, c_8)$

Second: $W_{3,1}c = (c_1 + c_2, c_1 - c_2, c_3, c_4, c_5, c_6, c_7, c_8)$

Now check $W_{3,2} * W_{3,1}$

$$W_{3,2} * W_{3,1} = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & -1 & 0 & 0 & 0 & 0 & 0 \\ 1 & -1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} W_2 & 0_{4,4} \\ 0_{4,4} & I_4 \end{pmatrix},$$

Conclude $W_{3,3} * W_{3,2} * W_{3,1} = W_3$

$$W_{3,3}*W_{3,2}*W_{3,1} = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & -1 & 0 & 0 & 0 & 0 & 0 \\ 1 & -1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & -1 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & -1 & 0 & 0 & 0 \\ 1 & 1 & -1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & -1 & 0 & 0 & -1 & 0 & 0 \\ 1 & -1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & -1 & 0 & 1 & 0 & 0 & -1 & 0 \\ 1 & -1 & 0 & -1 & 0 & 0 & 0 & 1 \\ 1 & -1 & 0 & -1 & 0 & 0 & 0 & -1 \end{pmatrix}$$

We see that in the first row of the $W_{3,3}$ matrix, there is at least 1 1 in the columns 1 through 4 in each of the 8 rows. We are guaranteed that the first column in the W_3 matrix is all 1's because, every 1 in $W_{3,3}$ will be multiplied by at least 1's located in the first 4 rows in the first column of $W_{3,2} * W_{3,1}$. We can apply the same theory to get the second column of W_3 . The change here is that there are 2 -1's located in the 3rd and 4th row in the second column of $W_{3,2} * W_{3,1}$. Now, the last 4 rows in the second column of W_3 will be -1. Column 3 in W_3 will have a 1 in the first 2 rows and a -1 in the next two rows because only the first 4 rows in $W_{3,3}$ have 1's in the first two columns. Using the same idea, rows 5 and 6 will have 1 and the last two rows will have -1 in W_3 . Finally, the last 4 columns in W_3 will have a 1 and -1. The 1 and -1 in $W_{3,3}$ is in the 5th, 6th, 7th, and 8th columns, and the last 4 columns in $W_{3,2} * W_{3,1}$ are 0s in the first 4 rows and an 4x4 identity matrix in the last 4 rows. With the row and column multiplication, we are guaranteed the shifting 1 and -1 in the last 4 columns of W_3 .

(4)

We have $W_{3,3}=(\alpha_1,\alpha_2,\cdots,\alpha_8)$, then write $\alpha_i^T\alpha_j, \forall i,j=1,2,\cdots 8 \ i\neq j$ there are two conditions:

- 1. α_i and α_j have elements on the same positions.
- 2. α_i and α_j have elements on different postions.

For the first condition, we have $\alpha_i^T \alpha_j = 1 - 1 = 0$ and for the second condition, we have $\alpha_i^T \alpha_j = 0$. Also, $\alpha_i^T \alpha_i = 1 + 1 = 2$, so we can prove that the columns are orthogonal. It is the same to prove the rows are orthogonal.

Inverse of $W_{3,2}$

We see that in $W_{3,2}$, the last 4 rows already have a diagonal with all 1's. The only thing left is to manipulate the first 4 rows. Similar to $W_{3,3}$, the transpose of $W_{3,2}$ is $(1/2)W_{3,2}^{\top}$ of the first 4 rows and 4 columns.

$$inv(W_{3,2}) = \begin{pmatrix} 0.5 & 0.5 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0.5 & 0.5 & 0 & 0 & 0 & 0 \\ 0.5 & -0.5 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0.5 & -0.5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Inverse of $W_{3,1}$

6 rows of $W_{3,1}$ is already the identity matrix. Thus only the first 2x2 submatrix in $W_{3,1}$ has to be manipulated to find it's inverse. We can use a similar method as above, to find that we only work that has to be done is taking the $\frac{1}{2}W_{3,1}^{\top}$ of the 2x2 submatrix.

$$inv(W_{3,1}) = egin{pmatrix} 0.5 & 0.5 & 0 & 0 & 0 & 0 & 0 & 0 \ 0.5 & -0.5 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

(5) We can find that

$$W_{n,n} = \begin{pmatrix} 2^{n-1}-1 & 2^{n-1}-1 \\ 1 & 0 \cdots 0 & 1 & 0 \cdots 0 \\ 2^{n-1}-1 & 2^{n-1}-1 \\ 1 & 0 \cdots 0 & -1 & 0 \cdots 0 \end{pmatrix}$$

$$0 & 1 & 0 \cdots 0 & 1 & 0 \cdots 0 \\ 2^{n-1}-1 & 2^{n-1}-1 \\ 0 & 1 & 0 \cdots 0 & -1 & 0 \cdots 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 2^{n-1}-1 & 2^{n-1}-1 \\ \vdots & \vdots & \vdots & \vdots \\ 2^{n-1}-1 & 2^{n-1}-1 \\ \vdots & \vdots & \vdots & \vdots \\ 2^{n-1}-1 & 2^{n-1}-1 \\ \vdots & \vdots & \vdots & \vdots \\ 2^{n-1}-1 & 2^{n-1}-1 \\ \vdots & \vdots & \vdots & \vdots \\ 2^{n-1}-1 & 2^{n-1}-1 \\ \vdots & \vdots & \vdots & \vdots \\ 2^{n-1}-1 & 2^{n-1}-1 \\ \vdots & \vdots & \vdots & \vdots \\ 2^{n-1}-1 & 2^{n-1}-1 \\ \vdots & \vdots & \vdots & \vdots \\ 2^{n-1}-1 & 2^{n-1}-1 \\ \vdots & \vdots & \vdots & \vdots \\ 2^{n-1}-1 & 2^{n-1}-1 \\ \vdots & \vdots & \vdots & \vdots \\ 2^{n-1}-1 & 2^{n-1}-1 \\ \vdots & \vdots & \vdots & \vdots \\ 2^{n-1}-1 & 2^{n-1}-1 \\ \vdots & \vdots & \vdots & \vdots \\ 2^{n-1}-1 & 2^{n-1}-1 \\ \vdots & \vdots & \vdots & \vdots \\ 2^{n-1}-1 & 2^{n-1}-1 \\ \vdots & \vdots & \vdots \\ 2^{n-1}-1 & 2^{n-1}-$$

So

$$W_{n,n}c = \begin{pmatrix} c_1 + c_{2^{n-1}+1} \\ c_1 - c_{2^{n-1}+1} \\ c_2 + c_{2^{n-1}+2} \\ c_2 - c_{2^{n-1}+2} \\ c_3 + c_{2^{n-1}+3} \\ c_3 - c_{2^{n-1}+3} \\ \vdots \\ c_{2^{n-1}} + c_{2^n} \\ c_{2^{n-1}} - c_{2^n} \end{pmatrix}$$

It is the last step in process of reconstructing a vector from its Haar coefficients c.

Write
$$W_{n,n} = \begin{pmatrix} v_1^T \\ v_2^T \\ \vdots \\ v_{2^n}^T \end{pmatrix}$$
, So $W_{n,n}^T W_{n,n} = \begin{pmatrix} v_1 & v_2 & v_3 \cdots & v_{2^n} \end{pmatrix} \begin{pmatrix} v_1^T \\ v_2^T \\ \vdots \\ v_{2^n}^T \end{pmatrix} = \sum_{i=1}^{2^n} v_i v_i^T$. Be-

cause we can calculate that $v_i v_i^T = \begin{pmatrix} \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}$ there are two 1 in the diagonal. Because we have pairs $u_i = \underbrace{\begin{pmatrix} 0 & 0 & \cdots & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & \cdots & 0 \end{pmatrix}}_{2^{n-1}}$ and $v_i = \underbrace{\begin{pmatrix} 0 & 0 & \cdots & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 & \cdots & 0 \end{pmatrix}}_{2^{n-1}}$

$$\underbrace{(0,0,\cdots,1,\cdots,0,0,\underbrace{0,0,\cdots,-1,\cdots,0,0}_{2^{n-1}}), \text{ also there is } uu^T+vv^T=\begin{pmatrix} 0 & 0 & 0 & \cdots & 0\\ \vdots & \vdots & \vdots & \vdots & \vdots\\ 0 & \cdots & 2 & \cdots & 0\\ \vdots & \vdots & \vdots & \vdots & \vdots\\ 0 & \cdots & 0 & 2 & \cdots\\ \vdots & \vdots & \vdots & \vdots\\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}}_{2^{n-1}}.$$

When $i \neq j$, $(u_i u_i^T) \cdot (u_j u_j^T) = \mathbf{0}$, $(v_i v_i^T) \cdot (v_j v_j^T) = \mathbf{0}$, thus $W_{n,n}^T W_{n,n} = 2I \Rightarrow W_{n,n}^{-1}$

When
$$W_{n,n} = \begin{pmatrix} v_1^T \\ v_2^T \\ \vdots \\ v_{2^n}^T \end{pmatrix}$$
, it is easy to calculate $v_i^T \cdot v_i = 2$, $v_i^T \cdot v_j = 0$ or $v_i^T \cdot v_j = 1 - 1 = 0$, $i \neq j$.

So rows are orthogonal, it is the same to prove columns are orthogonal.

Extra credit (30 pts.)

We can find

$$\left(I_{2^{n-1}} \otimes \begin{pmatrix} 1\\1 \end{pmatrix} \quad I_{2^{n-1}} \otimes \begin{pmatrix} 1\\-1 \end{pmatrix}\right) \in M_{2^n,2^n}$$

and it is easy to get

$$I_{2^{n-1}} \otimes \begin{pmatrix} 1\\1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & 0\\1 & 0 & \cdots & 0\\0 & 1 & \cdots & \vdots\\0 & 1 & \cdots & \vdots\\\vdots & \vdots & \ddots & \vdots\\0 & 0 & \cdots & 1\\0 & 0 & \cdots & 1 \end{pmatrix} \in M_{2^{n}, 2^{n-1}},$$

$$I_{2^{n-1}} \otimes \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ -1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & \vdots \\ 0 & -1 & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \\ 0 & 0 & \cdots & -1 \end{pmatrix} \in M_{2^n, 2^{n-1}},$$

SO

$$\begin{pmatrix} I_{2^{n-1}} \otimes \begin{pmatrix} 1 \\ 1 \end{pmatrix} & I_{2^{n-1}} \otimes \begin{pmatrix} 1 \\ -1 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & \cdots & 1 & 0 & 0 \\ 1 & 0 & \cdots & \cdots & -1 & 0 & 0 \\ 0 & 1 & \cdots & \cdots & 0 & 1 & \vdots \\ 0 & 1 & \cdots & \cdots & 0 & -1 & \vdots \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 & \cdots & 1 \\ 0 & 0 & \cdots & 1 & 0 & \cdots & -1 \end{pmatrix} = W_{n,n}.$$

$$W_{n,n}W_{n,n}^{\top} = \left(I_{2^{n-1}} \otimes \begin{pmatrix} 1\\1 \end{pmatrix} I_{2^{n-1}} \otimes \begin{pmatrix} 1\\-1 \end{pmatrix}\right) \left(I_{2^{n-1}} \otimes \begin{pmatrix} 1\\1 \end{pmatrix} I_{2^{n-1}} \otimes \begin{pmatrix} 1\\-1 \end{pmatrix}\right)^{\top}$$
$$= I_{2^{n-1}} \otimes \begin{pmatrix} 1\\1 \end{pmatrix} \left[I_{2^{n-1}} \otimes \begin{pmatrix} 1\\1 \end{pmatrix}\right]^{\top} + I_{2^{n-1}} \otimes \begin{pmatrix} 1\\-1 \end{pmatrix} \left[I_{2^{n-1}} \otimes \begin{pmatrix} 1\\-1 \end{pmatrix}\right]^{\top}$$

according to the facts above, we have

$$W_{n,n}W_{n,n}^{\top} = [I_{2^{n-1}} \otimes \begin{pmatrix} 1 \\ 1 \end{pmatrix}][I_{2^{n-1}} \otimes \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{\top}] + [I_{2^{n-1}} \otimes \begin{pmatrix} 1 \\ -1 \end{pmatrix}][I_{2^{n-1}} \otimes \begin{pmatrix} 1 \\ -1 \end{pmatrix}^{\top}]$$

$$= I_{2^{n-1}} \otimes \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} + I_{2^{n-1}} \otimes \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$

$$= I_{2^{n-1}} \otimes \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = 2I_{2^{n}}$$

Use Induction:

When n = 1 we have $W_1 = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$, So $W_1^T \cdot W_1 = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = B_1$. Suppose it is true when n = k, we have $W_k^T W_k = B_k$, then when n = k + 1

$$W_{k+1}^T W_{k+1} = \begin{pmatrix} [W_k \otimes \begin{pmatrix} 1 \\ 1 \end{pmatrix}]^T \\ [I_{2^k} \otimes \begin{pmatrix} 1 \\ -1 \end{pmatrix}]^T \end{pmatrix} \cdot \begin{pmatrix} [W_k \otimes \begin{pmatrix} 1 \\ 1 \end{pmatrix}] [I_{2^k} \otimes \begin{pmatrix} 1 \\ -1 \end{pmatrix}] \end{pmatrix}$$

$$= \begin{pmatrix} [W_k^T \otimes \begin{pmatrix} 1 \\ 1 \end{pmatrix}] [W_k \otimes \begin{pmatrix} 1 \\ 1 \end{pmatrix}] [W_k^T \otimes \begin{pmatrix} 1 \\ 1 \end{pmatrix}] [I_{2^k} \otimes \begin{pmatrix} 1 \\ -1 \end{pmatrix}] \\ [I_{2^k} \otimes \begin{pmatrix} 1 \\ -1 \end{pmatrix}] [W_k \otimes \begin{pmatrix} 1 \\ 1 \end{pmatrix}] [I_{2^k} \otimes \begin{pmatrix} 1 \\ -1 \end{pmatrix}] \end{pmatrix}$$

$$= \begin{pmatrix} W_k^T W_k \otimes I & \mathbf{0} \\ \mathbf{0} & I_{2^k} \otimes 2 \end{pmatrix}$$

$$= \begin{pmatrix} 2B_k \otimes I & \mathbf{0} \\ \mathbf{0} & 2I_{2^k} \end{pmatrix} = 2 \begin{pmatrix} B_k & \mathbf{0} \\ \mathbf{0} & I_{2^k} \end{pmatrix}$$

$$= B_{k+1}$$

So $W_n^T W_n = B_n$.

(6)

Suppose it is true when n=k, To understand what $W_{n.i}$ does to a vector $c=(c_1,c_2,\cdots c_{2^n})$, let's define $(c_A+c_B), (c_A-c_B)$ to be a pair. When $W_{n.i}$ acts on c, it reconstructs c so that it still contains 2^n elements but among the elements, there are 2^{i-1} pairs going from left to right. For example, $W_{3,2}c=(c_1+c_3,c_1-c_3,c_2+c_4,c_2-c_4,c_5,c_6,c_7,c_8)$ shows $2^{2-1}=2$ pairs consisting of c_1,c_3 and c_2,c_4 . Furthermore, for every pair consisting of $c_A,c_B,B=A+2^{i-1}$. It appears that as the difference between n and i get smaller, more of the elements from the original vector c get reconstructed as a sum and difference with another element from c. We can prove that $W_{n,n}W_{n,n-1}\cdots W_{n,1}=W_n$

We are given that $W_{n,k} = \begin{pmatrix} W_{k,k} & 0_{2^k,2^{n-2^k}} \\ 0_{2^{n-2^k},2^k} & I_{2^{n-2^k}} \end{pmatrix};$

When k=1, it is easy to prove. When k=1, $W_{n,1}=\begin{pmatrix} W_{1,1} & 0_{2^k,2^n-2} \\ 0_{2^n-2,2} & I_{2^n-2}(6) \end{pmatrix}$ The matrix $W_{n,i}$ is obtained from the matrix $W_{i,i}$ $(1 \le i \le n-1)$ as follows:

$$W_{n,k}W_{n,k-1}\cdots W_{n,1} = \begin{pmatrix} W_k & 0_{2^k,2^n-2^k} \\ 0_{2^n-2^k,2^k} & 2^n-2^k \end{pmatrix}.$$

Then when n = k + 1,

$$W_{n,k+1} \cdot W_{n,k} W_{n,k-1} \cdots W_{n,1} = \begin{pmatrix} W_{k+1,k+1} & 0_{2^{k+1},2^n-2^{k+1}} \\ 0_{2^n-2^{k+1},2^i} & I_{2^n-2^{k+1}} \end{pmatrix} \begin{pmatrix} W_k & 0_{2^k,2^n-2^k} \\ 0_{2^n-2^k,2^k} & 2^n-2^k \end{pmatrix}.$$

From (5) we can easily find that

$$W_{k+1,k+1}c = \begin{pmatrix} c_1 + c_{2^k+1} \\ c_1 - c_{2^k+1} \\ c_2 + c_{2^k+2} \\ c_2 - c_{2^k+2} \\ c_3 + c_{2^k+3} \\ c_3 - c_{2^k+3} \\ \vdots \\ c_{2^k} + c_{2^{k+1}} \\ c_{2^k} - c_{2^{k+1}} \end{pmatrix}$$

So

$$\begin{pmatrix} W_{k+1,k+1} & 0_{2^{k+1},2^n-2^{k+1}} \\ 0_{2^n-2^{k+1},2^i} & I_{2^n-2^{k+1}} \end{pmatrix} \begin{pmatrix} W_k & 0_{2^k,2^n-2^k} \\ 0_{2^n-2^k,2^k} & 2^n-2^k \end{pmatrix}$$

$$= \begin{pmatrix} W_{k+1,k+1} & 0_{2^{k+1},2^n-2^{k+1}} \\ 0_{2^n-2^{k+1},2^i} & I_{2^n-2^{k+1}} \end{pmatrix} \begin{pmatrix} W_k^* & 0_{2^{k+1},2^n-2^{k+1}} \\ 0_{2^n-2^{k+1},2^{k+1}} & I_{2^n-2^{k+1}} \end{pmatrix}$$

$$= \begin{pmatrix} W_{k+1,k+1} \cdot W_k^* & 0_{2^{k+1},2^n-2^{k+1}} \\ 0_{2^n-2^{k+1},2^{k+1}} & I_{2^n-2^{k+1}} \end{pmatrix}$$

Because

$$W_{k+1,k+1} \cdot W_k^* = \begin{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \cdots & a_{1n} \\ a_{11} & a_{12} & a_{13} \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} \cdots & a_{2n} \\ a_{21} & a_{22} & a_{23} \cdots & a_{2n} \\ \vdots & \vdots & \vdots \cdots & \vdots \\ a_{2^{k+1}1} & a_{2^{k+1}2} & a_{2^{k+1}3} \cdots & a_{2^{k+1}2^{k+1}} \\ a_{2^{k+1}1} & a_{2^{k+1}2} & a_{2^{k+1}3} \cdots & a_{2^{k+1}2^{k+1}} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \cdots & 0 \\ -1 & 0 & 0 \cdots & 0 \\ 0 & 1 & 0 \cdots & 0 \\ 0 & -1 & 0 \cdots & 0 \\ \vdots & \vdots & \vdots \cdots & \vdots \\ 0 & 0 & 0 \cdots & 1 \\ 0 & 0 & 0 \cdots & -1 \end{pmatrix} \end{pmatrix}$$
$$= \begin{pmatrix} W_k \otimes \begin{pmatrix} 1 \\ 1 \end{pmatrix} & I_{2^k} \otimes \begin{pmatrix} 1 \\ -1 \end{pmatrix} \end{pmatrix}$$
$$= W_{k+1}$$

So it is true when n = k + 1, thus

$$W_{n,k}W_{n,k-1}\cdots W_{n,1} = \begin{pmatrix} W_k & 0_{2^k,2^n-2^k} \\ 0_{2^n-2^k,2^k} & 2^n-2^k \end{pmatrix}.$$

From above, Because $W_{n,k}^T \cdot W_{n,k} = \begin{pmatrix} W_{k,k}^T \cdot W_{k,k} & \mathbf{0} \\ \mathbf{0} & I \end{pmatrix} = \begin{pmatrix} 2I & \mathbf{0} \\ \mathbf{0} & I \end{pmatrix}$ and

 $W_{n,k} \cdot W_{n,k}^T = \begin{pmatrix} W_{k,k} \cdot W_{k,k}^T & \mathbf{0} \\ \mathbf{0} & I \end{pmatrix} = \begin{pmatrix} 2I & \mathbf{0} \\ \mathbf{0} & I \end{pmatrix}$ thus rows and columns of $W_{n,k}$ are orthogonal.

And
$$W_{n,k} \cdot \begin{pmatrix} \frac{1}{2} W_{k,k}^{\top} & 0_{2^k,2^n-2^k} \\ 0_{2^n-2^k,2^k} & I_{2^n-2^k} \end{pmatrix} = \begin{pmatrix} W_{k,k} \cdot \frac{1}{2} W_{k,k}^T & \mathbf{0} \\ \mathbf{0} & I \end{pmatrix} = I$$
, so

$$W_{n,k}^{-1} = \begin{pmatrix} \frac{1}{2} W_{k,k}^{\top} & 0_{2^k,2^n-2^k} \\ 0_{2^n-2^k,2^k} & I_{2^n-2^k} \end{pmatrix}.$$

From above we know that $W_n^T W_n = B_n$, so columns are orthogonal, it is the same with rows of W_n^T . And it is easy from W_3 we know rows are not orthogonal, so the rows of W_n are not orthogonal, it is the same with columns of W_n^T .

The rows of W_n are not orthogonal, so the columns of W_n^{-1} are also not orthogonal.

Problem B6 (20 pts). We can use Proposition 3.1 to prove that $E = Ker(f) \oplus Im(f)$. According to the proposition, given vector space E, Ker(f) + Im(f) is a direct sum iff $Ker(f) \cap Im(f) = (0)$.

Let $u \in E$ then calculate v = u - f(u), because f is an idempotent linear map $f \circ f = f$ which means $f(v) = f(u - f(u)) = f(u) - f^2(u) = 0$. Thus $v \in ker(f)$, So E = Ker(f) + Im(f). Let $u^* \in Ker(f) \cap Im(f)$, then $u^* = f(s)$, $\exists s \in E$.Because $s = f(u^*) = f \circ f(u^*) = 0$ and f is a linear map, $u^* = f(s) = 0$, which means $Ker(f) \cap Im(f) = (0)$, then $E = Ker(f) \oplus Im(f)$

Problem B7 (20 pts). Let U_1, \ldots, U_p be any $p \geq 2$ subspaces of some vector space E and recall that the linear map

$$a: U_1 \times \cdots \times U_p \to E$$

is given by

$$a(u_1, \dots, u_p) = u_1 + \dots + u_p,$$

with $u_i \in U_i$ for $i = 1, \ldots, p$.

(1) If we let $Z_i \subseteq U_1 \times \cdots \times U_p$ be given by

$$Z_{i} = \left\{ \left(u_{1}, \dots, u_{i-1}, -\sum_{j=1, j \neq i}^{p} u_{j}, u_{i+1}, \dots, u_{p} \right) \middle| \sum_{j=1, j \neq i}^{p} u_{j} \in U_{i} \cap \left(\sum_{j=1, j \neq i}^{p} U_{j} \right) \right\},$$

for i = 1, ..., p, then prove that

$$\operatorname{Ker} a = Z_1 = \dots = Z_p.$$

In general, for any given i, the condition $U_i \cap \left(\sum_{j=1, j\neq i}^p U_j\right) = (0)$ does not necessarily imply that $Z_i = (0)$. Thus, let

$$Z = \left\{ \left(u_1, \dots, u_{i-1}, u_i, u_{i+1}, \dots, u_p \right) \middle| u_i = -\sum_{j=1, j \neq i}^p u_j, u_i \in U_i \cap \left(\sum_{j=1, j \neq i}^p U_j \right), 1 \le i \le p \right\}.$$

Since $\operatorname{Ker} a = Z_1 = \cdots = Z_p$, we have $Z = \operatorname{Ker} a$. Prove that if

$$U_i \cap \left(\sum_{j=1, j \neq i}^p U_j\right) = (0) \quad 1 \le i \le p,$$

then $Z = \operatorname{Ker} a = (0)$.

(2) Prove that $U_1 + \cdots + U_p$ is a direct sum iff

$$U_i \cap \left(\sum_{j=1, j \neq i}^p U_j\right) = (0) \quad 1 \le i \le p.$$

We can use the definition of a vector space to prove this. The vector space E is the direct sum of 2 more subspaces, $U_1 + \cdots + U_p$. The subspaces span the whole space E and have the 0 intersection.

(3) Extra credit (40 pts). Assume that E is finite-dimensional, and let $f_i : E \to E$ be any $p \ge 2$ linear maps such that

$$f_1 + \cdots + f_p = \mathrm{id}_E$$
.

Prove that the following properties are equivalent:

- (1) $f_i^2 = f_i, 1 \le i \le p$.
- (2) $f_j \circ f_i = 0$, for all $i \neq j$, $1 \leq i, j \leq p$.
 - $(1) \Rightarrow (2)$

We multiply f_i on each side of the equation, then get

$$f_i^2 + \sum_{j \neq i} f_j \circ f_i = f_i$$

$$\sum_{j \neq i} f_j \circ f_i = 0$$

Because E is finite-dimensional, then for all $y \in E$ we can write $y = \sum \lambda_i x_i$, where (x_i) is the base. Then for all $y \in E$, we have $\sum_{j \neq i} f_j \circ f_i(y) = 0$, suppose there is a k which

makes $f_k \circ f_i \neq 0$ then $ker(f_k \circ f_i) = E$, thus $f_k \circ f_i = 0$, which is a contradiction.

$$(2) \Rightarrow (1)$$

(2) \Rightarrow (1) We multiply f_i , $\forall i=1,2,\cdots,p$ on each side of the equation, then get

$$f_i^2 + \sum_{j \neq i} f_j \circ f_i = f_i$$

$$f_i^2 = f_i$$

TOTAL: 200 + 70 points.