Proofs exercises

Exercise 4.1

Given p and q and $p \wedge q \Rightarrow r$, use the Fitch system to prove r.

Exercise 4.2

Given $p \wedge q$, use the Fitch system to prove $q \vee r$

1
$$p \land q$$
 Premise
2 q And Elimination (1)
3 $q \lor r$ Or Introduction (2)

Exercise 4.3

Given $p \Rightarrow q$ and $q \Leftrightarrow r$, use the Fitch system to prove $p \Rightarrow r$.

$$\begin{array}{c|cccc} 1 & p \Rightarrow q & \text{Premise} \\ 2 & q \Leftrightarrow r & \text{Premise} \\ 3 & p & \text{Assumption} \\ 4 & q & \text{Implication Elimination (1,3)} \\ 5 & r & \text{Implication Elimination (5,4)} \\ 6 & p \Rightarrow r & \text{Implication Introduction (3,6)} \\ \end{array}$$

Exercise 4.4

Given $p \Rightarrow q$ and $m \Rightarrow p \land q$, use the Fitch System to prove $m \Rightarrow q$.

$$\begin{array}{c|cccc} 1 & p \Rightarrow q & \text{Premise} \\ 2 & m \Rightarrow p \lor q & \text{Premise} \\ 3 & q & \text{Assumption} \\ 4 & q \Rightarrow q & \text{Implication Introduction (3,3)} \\ 5 & m & \text{Assumption} \\ 6 & p \lor q & \text{Implication Elimination (2,5)} \\ 7 & q & \text{Or Elimination (6,1,4)} \\ 8 & m \Rightarrow q & \text{Implication Introduction (5,7)} \end{array}$$

Given $p \Rightarrow (q \Rightarrow r)$, use the Fitch System to prove $(p \Rightarrow q) \Rightarrow (p \Rightarrow r)$

1	$p \Rightarrow (q \Rightarrow r)$	Premise
2	$p \Rightarrow q$	Assumption
3	$ \ \ \ p$	Assumption
4	$ q \Rightarrow r$	Implication Elimination (1,3)
5	$ \ \ \ \ \ \ \ \ \ \$	Implication Elimination (2,3)
6	$ \ \ \ \ \ \ \ \ \ \$	Implication Elimination (4,5)
7	$p \Rightarrow r$	Implication Introduction (3,6)
8	$p \Rightarrow (q \Rightarrow r)$ $p \Rightarrow q$ $p \Rightarrow q$ $q \Rightarrow r$ q r $p \Rightarrow r$ $(p \Rightarrow q) \Rightarrow (p \Rightarrow r)$	Implication Introduction (2,7)

Exercise 4.6

Use the fitch System to prove $p \Rightarrow (q \Rightarrow p)$

$$\begin{vmatrix} p & Assumption \\ q & Assumption \\ 3 & p & Reiteration (1) \\ 4 & q \Rightarrow p & Implication Introduction (2,3) \\ 5 & p \Rightarrow (q \Rightarrow p) & Implication Introduction (1,4) \\ \end{vmatrix}$$

Exercise 4.7

Use the Fitch System to prove $(p\Rightarrow (q\Rightarrow r))\Rightarrow ((p\Rightarrow q)\Rightarrow (p\Rightarrow r))$

Use the Fitch System to prove $(\neg p \Rightarrow q) \Rightarrow ((\neg p \Rightarrow \neg q) \Rightarrow p)$

Exercise 4.9

Given p, use the Fitch System to prove $\neg \neg p$

Premise

Premise

Assumption

Reiteration (1)

$$p$$
 Reiteration Introduction (2,3)

 p Assumption

 p Assumption

Implication Introduction (5,5)

Negation Introduction (4,6)

Exercise 4.10

Given $p \Rightarrow q$, use the Fitch System to prove $\neg q \Rightarrow \neg p$.

1	$p \Rightarrow q$	Premise
2	$\neg q$	Assumption
3	$ \ \ \ p$	Assumption
4	$ \ \ \ q$	Implication Elimination (1,3)
5	$p \Rightarrow q$	Implication Introduction (3,4)
6	$ \ \ \ p$	Assumption
7	$ \ \ \ \neg q$	Reiteration (2)
8	$p \Rightarrow \neg q$	Implication Introduction (6,7)
9	$ \ \ \neg p$	Negation Introduction (5,8)
10	$\neg q \Rightarrow \neg p$	Implication Introduction (2,9)

Given $p \Rightarrow q,$ use the Fitch System to prove $\neg p \vee q$

1	$p \Rightarrow q$	Premise
2	$\neg (\neg p \lor q)$	Assumption
3	$ \ \ \ \neg p$	Assumption
4	$ \ \ \neg p \lor q$	Or Introduction (3)
5		Implication Introduction $(3,4)$
6	$ \ \ \ \neg p$	Assumption
7		Reiteration (2)
8		Implication Introduction $(6,7)$
9		Negation Introduction $(5,8)$
10	$ \hspace{.1cm} \hspace{.1cm} p$	Negation Elimination (9)
11	$\neg(\neg p \lor q) \Rightarrow p$	Implication Introduction $(2,10)$
12	$ \mid \ \mid $	Assumption
13	$\neg(\neg p \lor q) \Rightarrow \neg(\neg p \lor q)$	Implication Introduction (12,12)
14	$ \mid \ \mid $	Assumption
15		Implication Elimination (11,14)
16	$ \hspace{.1cm} \hspace{.1cm} q$	Implication Elimination $(1,15)$
17	$ \neg p \lor q$	Or Introduction (16)
18	$\neg(\neg p \lor q) \Rightarrow \neg p \lor q$	Implication Introduction (14,17)
19	$\neg \neg (\neg p \lor q)$	Negation Introduction (18,13)
20	$\neg p \lor q$	Negation Elimination (19)

Use the Fitch System to prove $((p \Rightarrow q) \Rightarrow p) \Rightarrow p$.

1	$(p \Rightarrow q) \Rightarrow p$	Assumption
2	$ \ \ \ \neg p$	Assumption
3		Assumption
4	$ \ \ \ \ \neg q$	Assumption
5	$ \ \ \ \ \ p$	Reiteration (3)
6	$ \ \ \neg q \Rightarrow p$	Implication Introduction (4,5)
7	$ \ \ \ \ \ \neg q$	Assumption
8	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Reiteration (2)
9	$ \ \ \neg q \Rightarrow \neg p$	Implication Introduction (7,8)
10	$ \mid \cdot \mid \cdot \mid \neg \neg q $	Negation Introduction (6,9)
11	$\left \; \right \; \left \; \; q \; \right $	Negation Elimination (10)
12	$p \Rightarrow q$	Implication Introduction (3,11)
13		Implication Elimination (1,12)
14	$ \neg p \Rightarrow p$	Implication Introduction (2,13)
15	$ \ \ \ \neg p$	Assumption
16	$ \neg p \Rightarrow \neg p$	Implication Introduction (15,15)
17	$ \mid \mid \neg \neg p $	Negation Introduction (14,16)
18		Negation Elimination (17)
19	$((p \Rightarrow q) \Rightarrow p) \Rightarrow p$	Implication Introduction (1,18)

Exercise 4.13

Given $\neg (p \lor q)$, use the Fitch system to prove $(\neg p \land \neg q)$.

Use the Fitch system to prove the tautology $(p \vee \neg p)$