Mat-Math 101 Review for Final

1. (Integration)

a)

$$\int_{0}^{\pi/2} \sin(2x) \sqrt{\sin^2 x + 1} \, dx$$

b)

$$\int_{1}^{e} \sqrt{x} \ln x \, dx$$

c)

$$\int \frac{x}{x^2 + 3x + 2} \, dx$$

d)

$$\int_{1}^{e} \frac{1}{x\sqrt{\ln x}} \, dx$$

 $\mathbf{e})$

$$\int_{0}^{\infty} xe^{-x} dx$$

2. (Comparison) Determine if the following integral is convergent or not.

$$\int_{1}^{\infty} \frac{x-1}{\sqrt{x^5+2}} \, dx$$

3. (Definition of integral) Evaluate the limit $\lim_{n\to\infty} \frac{2}{n} \sum_{k=1}^{n} \frac{1}{1+(2k/n)^2}$ by expressing it as a suitable definite integral.

4 (Fund. Thm. of Calculus) Find F'(x) if $F(x) = \int_{x}^{e^{x}+1} (\ln(t-1))^{2018} dt$

5 (Area - Volume) Let R be the region bounded $y = \sqrt{1 - x^2}$, the line x + y = 1 in the first quadrant.

a) Find the are of R (Hint: Use an inverse trigonometric substitution).

- **b)** Find the volume of the solid obtained by rotating R about the x-axis.
- c) Find the volume of the solid obtained by rotating R about the y-axis.
- **6 (Min. Max. Problem)** Find all points (x, y) satisfying $y^2 x^2 = 1$ and $0 \le x \le 3$ that are farthest away from the point (2, 0).