

팀번호	23

2024-1학기 창의학기제 주간학습보고서 (1주차)

창의과제	세종대학교 집현캠퍼스를 개선시킨 웹서비스 개발					
이름	이지민	학습기간	3월4일 ~	3월 15일		
학번	23012127	학습주차	1	학습시간	3	
학과(전공)	인공지능	과목명	자기주도 창의전공1	수강학점	3	
* 수강학점에 따른 회차별 학습시간 및 10주차 이상 학습 준수						
금주 학 습목 표	얼굴 분류 모델을 찾고 그 모델을 파이토치로 구현하기					
학습내용		ork의 원리를 ork 줄여서 의 픽셀과 어 해 만들어졌다 pooling layor or 말했던 이 volution 시: 다. 학습 속도를 map을 Full	을 알아보았다. CNN은 이미지의 한 픽셀을 떤 관계를 가지고 있다는 다. er로 이루어져 있다. 미지의 특징을 NN에 적용하 킨다. 그러면 해당 이미지	을 기준으로 . 이미지의 특 하기 위해 re 데이터의 lemention을	그 픽셀이 주 징을 Neural ceptive field 특징을 지닌 줄인다.	

```
공부한 CNN의 원리를 가지고 얼굴인식 모델을 만들기 전에 CNN에 대한 이해도를 높이고
          pre-train 된 모델의 특징을 알아보기 위해 pytorch에서 제공하는 MovileNetV3를 불러와 조
          원들의 얼굴 사진을 input data로 만들어 모델에 넣어 분류를 시도해 보았다.
          <ImageTransform class code>
          class ImageTransform():
             def __init__(self, resize, mean, std):
                 self.data transform = {
                    'train': transforms.Compose([
                        transforms.Resize((224,224)), # 이미지를 224*224 크기로 resize
                        transforms.ToTensor()
                    'val': transforms.Compose([
                        transforms.Resize((224,224)), # 이미지를 224*224 크기로 resize
                        transforms.ToTensor()
                    1)
                 }
             def __call__(self, img, phase):
                 return self.data transform[phase](img)
          전처리를 마친 이미지 데이터를는 pytorch에서 사용할 수 있도록 pytorch의 dataloader로
          만든다.
          pre-train된 MovilNetV3를 사용하는 모델 클래스를 작성하고 train함수를 작성하여 이전에
          만든 dataloader를 모델에 넣어 학습시켜 본다.
          <modle class code>
          from torchvision.models import mobilenet_v3_large
          class SiameseNetwork(nn.Module):
             def init (self):
                 super(SiameseNetwork, self).__init__()
                 self.model=mobilenet_v3_large(pretrained=True) #pretrain된 모델을 불러옴
                 self.fc = nn.Sequential(
                    nn.Linear(960, 512),
                    nn.ReLU(inplace=True),
                    nn.Linear(512, 512),
                    nn.ReLU(inplace=True),
                    nn.Linear(512, 2))
                 self.model.classifier=self.fc
             def forward(self, input1, input2):
                 output1 = self.model(input1)
                 output2 = self.model(input2)
                 return output1, output2
          CNN과 관련된 여러 동영상을 찾아보았다.
학습방법
          CNN과 관련된 서적을 찾아보았다.
          혼자 공부하는 머신러닝&딥러닝 책에서 학습한 내용을 바탕으로 딥러닝 모델을 구현했다.
```


학습성과 및 목표달성도	시행 결과 어느 정도의 분류를 해내는 것을 볼 수 있었지만, 만족스러운 결과는 나오지 않았다. 또한 label에 존재하지 않는 data를 넣었을 때 여러 label에 대한 softmax probabilites가 80% 이상 나오는 등 얼굴을 인식한다고는 볼 수 없다고 보았다.
참고자료 및 문헌	convolution에 관한 영상: https://www.youtube.com/watch?v=KuXjwB4LzSA 인공 신경망에 관한 영상: https://www.youtube.com/watch?v=aircAruvnKk CNN 원리 참고 : 파이썬 딥러닝 파이토치/정보문화사/이경택, 방성수, 안성준 저 핸즈온 머신러닝/한빛미디어/오렐리앙 제롱 저
내주 계획	보안을 위한 얼굴인식을 수행하기 위한 신경망을 만들기 위해선 어떤 방법이 있는지 확인해 보고 적용해본다. 정확도를 높이기 위해 얼굴의 특징만을 더 자세하게 따서 학습시키는 방법을 강구한다.

년 월 일

지도교수 (인)