

Open-Source Scripting Day 1

September 20, 2021

Tetra Tech Team

Brian Pickard, PhD

Landscape Ecology, Geospatial Science brian.pickard@tetratech.com

Kateri Salk, PhD

Aquatic Ecology, Data Science kateri.salkgundersen@tetratech.com

Kellie Dubay

Environmental Science, Public Outreach

Workshop Goals

- 1. Review the current landscape of data tools & resources for water professionals
- 2. Increase familiarity with using R and Python across the data pipeline
- 3. Create and modify code for future use

Workshop Outline

- 1. Climate Data
- 2. Land Use/Land Cover Data
- 3. Hydrologic and Water Quality Data

Each Day:

- Intro presentation and discussion
- Hands-on demonstration
- Example presentations of state applications
- Hands-on demonstration

Ground Rules

- Mute your mic unless asked to speak
- Questions during sessions
 - During session: add your question/comment to the chat
 - After session: may solicit people to raise hand and turn on mic

• Tech issues?

- Add your issue to the chat, but may not have time to troubleshoot on the fly
- Follow along on the screen, code is available for use later
- Can attempt to fix issues following session or after hours

Day 1 Agenda

- Intro: workshop goals, outline, introduce people, logistics (30 min)
 - Suitability of R vs. Python for various data tasks Kateri Salk and Brian Pickard, Tetra Tech
 - Benefits of reproducible analysis & best practices Kateri Salk and Brian Pickard, Tetra Tech
 - State perspectives Nicholas von Stackelberg, Utah
- Climate data acquisition and harmonization (90 min)
- Break (10 min)
- Examples of using climate data in modeling (45 min)
 - General Web Scraping Eric Hettler, Wisconsin
 - Scraping Climate Data from DAYMET Eric Hettler, Wisconsin
 - Developing R packages to automate data analysis Ansel Bubel, Florida
- Break (5 min)
- Data management, documentation, and export (45 min)
- Wrap-up and next day preview (15 min)

R vs. Python

Benefits of Reproducible Analysis

R vs. Python

- R is mainly used for statistical analysis while Python provides a more generalized approach to data science
 - R: data analysis and stats
 - Python: deployment and production
- R provides flexibility through available packages, Python enables construction of new models from scratch

 Both can handle big data, machine learning and make replicability and accessibility easier

R vs. Python

Parameter	R	Python			
Objective	Data analysis and statistics	Deployment and production			
Primary Users	Scholar and R&D	Programmers and developers			
Flexibility	Easy to use available library	Easy to construct new models from scratch. I.e., matrix computation and optimization			
Learning curve	Difficult at the beginning	Linear and smooth			
Popularity of Programming Language. Percentage change	4.23% in 2018	21.69% in 2018			
Integration	Run locally	Well-integrated with app			
Task	Easy to get primary results	Good to deploy algorithm			
Database size	Handle huge size	Handle huge size			
IDE	Rstudio	Spyder, Ipython Notebook			
Important Packages and library	tidyverse, ggplot2, caret, zoo	pandas, scipy, scikit-learn, TensorFlow, caret			
Disadvantages	Slow High Learning curve Dependencies between packages	Not as many packages as R			
Advantages	•Graphs are made to talk. R makes it beautiful •Large catalog for data analysis •GitHub interface •RMarkdown •Shiny	 Jupyter notebook: Notebooks help to share data with colleagues Mathematical computation Deployment Code Readability Speed Function in Python 			

R vs Python

 Python is the programming language used by all ESRI products (e.g. ArcGIS, ArcPro)

 Therefore, Python is far superior for handling spatially explicit data and all related tasks.

R vs Python

- R has user-driven package development and online community
- Integration with interactive web apps through R Shiny

Benefits of Reproducible Analysis

Spreadsheet-based workflow

to

Scripting-based workflow

1	А	В	С	D	Е	F	G	Н	- 1	J	K	ī
1	lakeid	lakename	year4	daynum	sampledate	depth	temperat	dissolved	irradiance	irradiance	comments	П
2	L	Paul Lake	1984	148	5/27/1984	0	14.5	9.5	1750	1620	NA	
3	L	Paul Lake	1984	148	5/27/1984	0.25	NA	NA	1550	1620	NA	
4	L	Paul Lake	1984	148	5/27/1984	0.5	NA	NA	1150	1620	NA	
5	L	Paul Lake	1984	148	5/27/1984	0.75	NA	NA	975	1620	NA	
6	L	Paul Lake	1984	148	5/27/1984	1	14.5	8.8	870	1620	NA	
7	L	Paul Lake	1984	148	5/27/1984	1.5	NA	NA	610	1620	NA	
8	L	Paul Lake	1984	148	5/27/1984	2	14.2	8.6	420	1620	NA	
9	L	Paul Lake	1984	148	5/27/1984	3	11	11.5	220	1620	NA	
10	L	Paul Lake	1984	148	5/27/1984	4	7	11.9	100	1620	NA	
11	L	Paul Lake	1984	148	5/27/1984	5	6.1	2.5	34	1620	NA	
12	L	Paul Lake	1984	148	5/27/1984	6	5.5	1.6	7.6	1620	NA	
13	L	Paul Lake	1984	148	5/27/1984	7	5	0.4	1.3	1610	NA	
14	L	Paul Lake	1984	148	5/27/1984	8	4.5	0.3	NA	NA	NA	
15	L	Paul Lake	1984	148	5/27/1984	9	4.5	0.3	NA	NA	NA	
16	L	Paul Lake	1984	148	5/27/1984	10	4.5	0.3	NA	NA	NA	
17	L	Paul Lake	1984	148	5/27/1984	11	4.5	0.3	NA	NA	NA	
18	L	Paul Lake	1984	148	5/27/1984	12	4.5	0.3	NA	NA	NA	
19	R	Peter Lake	1984	149	5/28/1984	0	14.8	9.2	1630	1540	NA	П

```
1. Describe the usefulness of data wrangling and its place
                                                                      data pipeline
   2. Wrangle datasets with dplyr functions
14 3. Apply data wrangling skills to a real-world example datase
16 - ## Set up your session
18 -
      `{r, message = FALSE}
19 getwd()
    library(plyr)
    library(tidyverse)
    library(lubridate)
   NTL.phys.data.PeterPaul <- read.csv("./Data/Processed/NTL-LTER_Lake_ChemistryPhysics_PeterPaul_Processed.csv")
   NTL.nutrient.data <- read.csv("./Data/Raw/NTL-LTER_Lake_Nutrients_Raw.csv")
27 - ## Review of basic exploration and wrangling
30 colnames (NTL.phys.data.PeterPaul)
   dim(NTL.phys.data.PeterPaul)
   str(NTL.phys.data.PeterPaul)
33 summary(NTL.phys.data.PeterPaul$comments)
   class(NTL.phys.data.PeterPaul$sampledate)
    # Format sampledate as date
   NTL.phys.data.PeterPaul$sampledate <- as.Date(NTL.phys.data.PeterPaul$sampledate, format = "%Y-%m-%d")
   # Select Peter and Paul Lakes from the nutrient dataset
    NTL.nutrient.data.PeterPaul <- filter(NTL.nutrient.data, lakename == "Paul Lake" | lakename
```


Benefits of Reproducible Analysis

- Automating manual tasks -> faster, more efficient, more consistent
- Code can be reused → apply to future projects, share with others
- Steps are well-documented and transparent → increased capacity for QA/QC and project hand-offs
- Ability to fix errors and re-flow into analysis

Best Practices for Reproducible Analysis

- Separate raw from processed data, link w/code
 - Never edit raw data
 - Plan to spend ~75% of time cleaning data
- Data tables
 - Header: row 1 (and ONLY row 1)
 - Columns: Variables/attributes
 - Rows: Measurements
 - Cells: Observations
- Star schema

From: https://dynamicecology.wordpress.com/2016/08/22/ten-commandments-for-good-data-management/

Where do I start?

- Learning curve from spreadsheet to coding can be steep!
- Progress can/should be made incrementally
- Tools should scale with:
 - Data complexity
 - Analytical complexity
 - Capacity to re-use in future applications

Prep for data session: download materials now! github.com/KateriSalk/ACWA_OpenSourceWorkshop_2021