In [31]: import seaborn as sns

df = sns.load_dataset('mpg')
 df

Out[31]:		mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin
	0	18.0	8	307.0	130.0	3504	12.0	70	usa
	1	15.0	8	350.0	165.0	3693	11.5	70	usa
	2	18.0	8	318.0	150.0	3436	11.0	70	usa
	3	16.0	8	304.0	150.0	3433	12.0	70	usa
	4	17.0	8	302.0	140.0	3449	10.5	70	usa
	•••								
	393	27.0	4	140.0	86.0	2790	15.6	82	usa
	394	44.0	4	97.0	52.0	2130	24.6	82	europe
	395	32.0	4	135.0	84.0	2295	11.6	82	usa
	396	28.0	4	120.0	79.0	2625	18.6	82	usa
	397	31.0	4	119.0	82.0	2720	19.4	82	usa

398 rows × 9 columns

In [32]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
       RangeIndex: 398 entries, 0 to 397
       Data columns (total 9 columns):
        # Column Non-Null Count Dtype
       --- -----
        0 mpg
                       398 non-null float64
        1 cylinders 398 non-null int64
        2 displacement 398 non-null float64
        3 horsepower 392 non-null float64
        4 weight 398 non-null int64
        5 acceleration 398 non-null float64
        6 model_year 398 non-null int64
        7 origin 398 non-null object
8 name 398 non-null object
       dtypes: float64(4), int64(3), object(2)
       memory usage: 28.1+ KB
In [33]: from scipy.stats import skew, kurtosis
        skewness = df[['mpg', 'cylinders', 'displacement', 'horsepower', 'weight', 'acceler
        skewness
Out[33]: mpg
                      0.455342
        cylinders 0.524934
        displacement 0.716930
        horsepower Naw
Weight 0.529059
         acceleration 0.277725
        model_year
                     0.011491
        dtype: float64
In [34]: kurt = df[['mpg', 'cylinders', 'displacement', 'horsepower', 'weight', 'acceleration
        kurt
Out[34]: mpg
                      -0.519425
         cylinders -1.374466
         displacement -0.752288
        horsepower
                            NaN
        weight
                     -0.790733
         acceleration 0.399208
        model year -1.181482
         dtype: float64
In [35]: import pandas as pd
        df['origin'] = df['origin'].astype('category').cat.codes
        df['name'] = df['name'].astype('category').cat.codes
        df
```

Out[35]:		mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin
	0	18.0	8	307.0	130.0	3504	12.0	70	2
	1	15.0	8	350.0	165.0	3693	11.5	70	2
	2	18.0	8	318.0	150.0	3436	11.0	70	2
	3	16.0	8	304.0	150.0	3433	12.0	70	2
	4	17.0	8	302.0	140.0	3449	10.5	70	2
	•••								•••
	393	27.0	4	140.0	86.0	2790	15.6	82	2
	394	44.0	4	97.0	52.0	2130	24.6	82	0
	395	32.0	4	135.0	84.0	2295	11.6	82	2
	396	28.0	4	120.0	79.0	2625	18.6	82	2
	397	31.0	4	119.0	82.0	2720	19.4	82	2

398 rows × 9 columns

In [37]: correlation_matrix = df.corr()
 correlation_matrix

Dut[37]:		mpg	cylinders	displacement	horsepower	weight	acceleration	mo
	mpg	1.000000	-0.775396	-0.804203	-0.778427	-0.831741	0.420289	(
	cylinders	-0.775396	1.000000	0.950721	0.842983	0.896017	-0.505419	-(
	displacement	-0.804203	0.950721	1.000000	0.897257	0.932824	-0.543684	-(
	horsepower	-0.778427	0.842983	0.897257	1.000000	0.864538	-0.689196	-(
	weight	-0.831741	0.896017	0.932824	0.864538	1.000000	-0.417457	-(
	acceleration	0.420289	-0.505419	-0.543684	-0.689196	-0.417457	1.000000	(
	model_year	0.579267	-0.348746	-0.370164	-0.416361	-0.306564	0.288137	
	origin	-0.482619	0.551378	0.591137	0.447330	0.521088	-0.257365	-(
	name	0.273936	-0.275754	-0.292064	-0.234663	-0.255247	0.128285	(

```
In [38]: plt.figure(figsize=(10, 8))
    sns.heatmap(correlation_matrix, annot=True, fmt=".2f", cmap='coolwarm', square=True
    plt.title('Correlation Heatmap')
    plt.show()
```



```
import matplotlib.pyplot as plt

#Scatterplot: Horsepower vs Weight
plt.figure(figsize=(10, 5))
plt.scatter(df['horsepower'], df['weight'], color='blue', alpha=0.6)
plt.title('Horsepower vs Weight')
plt.xlabel('Horsepower')
plt.ylabel('Weight')
plt.grid(True)
plt.show()
```



```
In [41]: #Scatterplot: MPG vs Acceleration
  plt.figure(figsize=(10, 5))
  plt.scatter(df['mpg'], df['acceleration'], color='green', alpha=0.6)
  plt.title('MPG vs Acceleration')
  plt.xlabel('Miles per Gallon (MPG)')
  plt.ylabel('Acceleration')
  plt.grid(True)
  plt.show()
```



```
In [43]: #Scatterplot: Horsepower vs Weight colored by number of cylinders
plt.figure(figsize=(10, 5))
scatter = plt.scatter(df['horsepower'], df['weight'], c=df['cylinders'], cmap='viri
plt.title('Horsepower vs Weight (Colored by Cylinders)')
plt.xlabel('Horsepower')
plt.ylabel('Weight')
```

```
plt.colorbar(scatter, label='Number of Cylinders')
plt.grid(True)
plt.show()
```


In []: