Project 1 FYS3150

Anders P. Åsbø, Eivind Støland

CONTENTS V. CONCLUSION I. Introduction 1 II. Formalism 1 III. Implementation 1 IV. Analysis 1 A. Relative error for Thomas' algorithms 1 V. Conclusion 1 A. Source code 1

I. INTRODUCTION

One of the most versitile tools in modern science is numerical integration, thus it it simportant to understand its limits. In this paper we have performed numerial integration of a second order differential equation. This was done by discretizing the differential equation, and formulating it as a matrix-vector equation. The matrix-vector equation was then solved using both a general, and specialzed Thomas algorithm, as well as LU-decomposition. T

II. FORMALISM

III. IMPLEMENTATION

IV. ANALYSIS

A. Relative error for Thomas' algorithms

$\log_{10}(h)$:	ϵ general algorithm	ϵ special algorithm	N
-1.041393	3.026200×10^{-1}	3.601314×10^{-1}	10^{1}
-2.004321	3.426303×10^{-2}	4.249885×10^{-2}	10^{2}
-3.000434	3.474750×10^{-3}	4.338587×10^{-3}	10^{3}
-4.000043	3.479720×10^{-4}	4.347831×10^{-4}	10^{4}
-5.000004	3.480179×10^{-5}	4.348760×10^{-5}	10^{5}
-6.000000	4.210129×10^{-6}	4.348746×10^{-6}	10^{6}
-7.000000	1.005169×10^{-6}	4.343971×10^{-7}	10^{7}
-8.000000	-1.140500×10^{-3}	3.765295×10^{-8}	10^{8}

Table I. Table with \log_{10} of relative error for general and special Thomas' algorithms, and \log_{10} of step size h

Appendix A: Source code

All code for this report was written in C++ and Python 3.8, and the complete set of files can be found at https://github.com/FunkMarvel/FYS3150_Project_1.git