Φροντιστήριο 11 ΦΥΣ112

27/11/2024

31.34) Μια γεννήτρια εναλλασσόμενου ρεύματος με $\text{HE}\Delta~\mathcal{E}=\mathcal{E}_m~\sin\omega_d t$, όπου $\mathcal{E}_m=25.0~V$ και $\omega_d=377~\text{rad}/s$ είναι συνδεδεμένη σε πυκνωτή χωρητικότητας $4.15~\mu F$. (a) Πόση είναι η μέγιστη τιμή του ρεύματος; (b) Όταν το ρεύμα είναι στην μέγιστη τιμή, πόση είναι η $\text{HE}\Delta$ στην γεννήτρια; (c) Όταν η $\text{HE}\Delta$ της γεννήτριας είναι -12.5~V και αυξανόμενη σε μέτρο, πόσο είναι το ρεύμα;

31.48) Το χάτωθι σχήμα δείχνει ένα χύχλωμα RLC εναλασσόμενου ρεύματος με δύο πανομοιότυπους πυχνωτές και δύο διαχόπτες. Το πλάτος της $HE\Delta$ τίθεται στα $12.0\,V$ και η συχνότητα ταλάντωσης του ρεύματος είναι $60.0\,Hz$. Με τους δύο διαχόπτες ανοιχτούς, το ρεύμα προηγείται της $HE\Delta$ κατά φάση 30.9 μοιρών. Με τον διαχόπτη S_1 χλειστό και τον S_2 αχόμα ανοιχτό, η $HE\Delta$ προηγείται του ρεύματος κατά 15.0 μοίρες. Και με τους δύο διαχόπτες χλειστούς, το πλάτος του ρεύματος είναι $447\,mA$. Πόση είναι (a) η αντίσταση R, (b) η χωρητιχότητα C και (c) η επαγωγή L;

31.49) Στο σχήμα που αχολουθεί, η γεννήτρια έχει μεταβλητή συχνότητα ταλάντωσης και συνδέεται με αντιστάτη $R=100\,\Omega$, επαγωγές $L_1=1.70\,mH$ και $L_2=2.30\,mH$, και πυχνωτές $C_1=4.00\,\mu F$, $C_2=2.50\,\mu F$ και $C_3=3.50\,\mu F$. (a) Ποια είναι η συχνότητα συντονισμού του χυχλώματος; Τι συμβαίνει στην συχνότητα συντονισμού αν (b) αυξηθεί το R, (c) αυξηθεί το L_1 και (d) αν αφαιρεθεί ο C_3 από το χύχλωμα;

31.58) Για το πιο κάτω σχήμα, δείξτε ότι ο μέσος όρος ρυθμού απώλειας ενέργειας στον αντιστάτη R είναι μέγιστος όταν το R είναι ίσο με την εσωτερική αντίσταση r της γεννήτριας εναλλασσόμενου ρεύματος (χωρίς να υποθέσετε ότι r=0).

31.59) Για το αχόλουθο σχήμα έχουμε $R=15.0\,\Omega,\,C=4.70\,\mu F$ και $L=25.0\,m H.$ Η γεννήτρια παρέχει HEΔ με τάση rms (root mean square) $75.0\,V$ και συχνότητα $550\,Hz.$ (a) Πόσο είναι το ρεύμα rms; Πόση είναι η τάση rms (b) στον αντιστάτη R, (c) στον πυχνωτή C, (d) στην επαγωγή L, (e) στα C και L μαζί, και (f) στα R, L και C μαζί; Κατά μέσο όρο, ποιος είναι ο ρυθμός απώλειας ενέργειας (g) στον R, (h) στον C και (i) στην L;

31.65) Μια γεννήτρια εναλλασσόμενου ρεύματος παρέχει $\text{HE}\Delta$ σε φορτίο αντίστασης σε ένα απομαχρυσμένο εργοστάσιο μέσω μιας γραμμής μετάδοσης αποτελούμενη από δύο καλώδια. Στο εργοστάσιο ένας μετασχηματιστής κατάβασης μειώνει την τάση από την (rms) τιμή μετάδοσης V_t σε μια πολύ χαμηλότερη τιμή που είναι ασφαλής και εύχρηστη για το εργοστάσιο. Η αντίσταση της γραμμής μετάδοσης είναι $0.30\,\Omega/$ καλώδιο και η ισχύς της γεννήτριας είναι $250\,kW$. Αν $V_t=80\,kV$, πόση είναι (a) η μείωση τάσης ΔV κατά μήκος της γραμμής μετάδοσης και (b) ο ρυθμός P_d που η γραμμή χάνει ενέργεια σαν θερμότητα; Αν $V_t=8.0\,kV$, πόση είναι (c) η ΔV και (d) η P_d ; Αν $V_t=0.8\,kV$, πόση είναι (e) η ΔV και (f) η P_d ;