Linear Regression with Multiple Variables

TOTAL POINTS 5

1. Suppose m=4 students have taken some class, and the class had a midterm exam and a final exam. You have collected a dataset of their scores on the two exams, which is as follows:

1 point

midterm exam	(midterm exam) ²	final exam
89	7921	96
72	5184	74
94	8836	87
69	4761	78

You'd like to use polynomial regression to predict a student's final exam score from their midterm exam score. Concretely, suppose you want to fit a model of the form $h_{\theta}(x)=\theta_0+\theta_1x_1+\theta_2x_2$, where x_1 is the midterm score and x_2 is (midterm score) 2 . Further, you plan to use both feature scaling (dividing by the "max-min", or range, of a feature) and mean normalization.

What is the normalized feature $x_2^{(2)}$? (Hint: midterm = 72, final = 74 is training example 2.) Please round off your answer to two decimal places and enter in the text box below.

-0.37

$$mid = \frac{79 - 1 + 5184 + 8836 + 4761}{4} = 6675.5$$

range =
$$8836 - 4761 = 4075$$

range =
$$8836-4761 = 4075$$

hormalized = $\frac{5184-6675.5}{4075} \approx -0.37$

		with $lpha=0.3$ and compute $J(heta)$ after each	
		iteration. You find that the value of $J(heta)$ increases over	
		time. Based on this, which of the following conclusions seems	
		most plausible?	
	0	lpha=0.3 is an effective choice of learning rate.	
	0	Rather than use the current value of $lpha$, it'd be more promising to try a smaller value of $lpha$ (say $lpha=0.1$).	
	\circ	Rather than use the current value of $lpha$, it'd be more promising to try a larger value of $lpha$ (say $lpha=1.0$).	
3	inte	Suppose you have $m=14$ training examples with $n=3$ features (excluding the additional all-ones feature for the ercept term, which you should add). The normal equation is $\theta=(X^TX)^{-1}X^Ty$. For the given values of m and n , hat are the dimensions of θ , X , and y in this equation?	
	0	X is $14 imes 4$, y is $14 imes 1$, $ heta$ is $4 imes 1$	
	\circ	X is $14 imes3$, y is $14 imes1$, $ heta$ is $3 imes3$	
	\circ	X is $14 imes 4$, y is $14 imes 4$, $ heta$ is $4 imes 4$	
	\circ	X is $14 imes 3$, y is $14 imes 1$, $ heta$ is $3 imes 1$	
ļ.			
	mult	Suppose you have a dataset with $m=50$ examples and $n=200000$ features for each example. You want to use tivariate linear regression to fit the parameters θ to our data. Should you prefer gradient descent or the normal action?	ooint
	mult	tivariate linear regression to fit the parameters $ heta$ to our data. Should you prefer gradient descent or the normal	point
	mult	itivariate linear regression to fit the parameters $ heta$ to our data. Should you prefer gradient descent or the normal ation?	point
	mult	Itivariate linear regression to fit the parameters $ heta$ to our data. Should you prefer gradient descent or the normal ation? The normal equation, since gradient descent might be unable to find the optimal $ heta$.	point
	mult	Itivariate linear regression to fit the parameters $ heta$ to our data. Should you prefer gradient descent or the normal ation? The normal equation, since gradient descent might be unable to find the optimal $ heta$. Gradient descent, since it will always converge to the optimal $ heta$.	point
	mult	Itivariate linear regression to fit the parameters θ to our data. Should you prefer gradient descent or the normal ation? The normal equation, since gradient descent might be unable to find the optimal θ . Gradient descent, since it will always converge to the optimal θ . Gradient descent, since $(X^TX)^{-1}$ will be very slow to compute in the normal equation.	point
	multi equa	Itivariate linear regression to fit the parameters θ to our data. Should you prefer gradient descent or the normal ation? The normal equation, since gradient descent might be unable to find the optimal θ . Gradient descent, since it will always converge to the optimal θ . Gradient descent, since $(X^TX)^{-1}$ will be very slow to compute in the normal equation. The normal equation, since it provides an efficient way to directly find the solution.	point
5.	multi equa	Itivariate linear regression to fit the parameters θ to our data. Should you prefer gradient descent or the normal action? The normal equation, since gradient descent might be unable to find the optimal θ . Gradient descent, since it will always converge to the optimal θ . Gradient descent, since $(X^TX)^{-1}$ will be very slow to compute in the normal equation. The normal equation, since it provides an efficient way to directly find the solution.	point
5.	multi equa	Itivariate linear regression to fit the parameters θ to our data. Should you prefer gradient descent or the normal ation? The normal equation, since gradient descent might be unable to find the optimal θ . Gradient descent, since it will always converge to the optimal θ . Gradient descent, since $(X^TX)^{-1}$ will be very slow to compute in the normal equation. The normal equation, since it provides an efficient way to directly find the solution.	
5.	multi equa	Itivariate linear regression to fit the parameters θ to our data. Should you prefer gradient descent or the normal action? The normal equation, since gradient descent might be unable to find the optimal θ . Gradient descent, since it will always converge to the optimal θ . Gradient descent, since $(X^TX)^{-1}$ will be very slow to compute in the normal equation. The normal equation, since it provides an efficient way to directly find the solution. Which of the following are reasons for using feature scaling?	
ō.	multi equa	It variate linear regression to fit the parameters θ to our data. Should you prefer gradient descent or the normal action? The normal equation, since gradient descent might be unable to find the optimal θ . Gradient descent, since it will always converge to the optimal θ . Gradient descent, since $(X^TX)^{-1}$ will be very slow to compute in the normal equation. The normal equation, since it provides an efficient way to directly find the solution. Which of the following are reasons for using feature scaling?	

1 point

2. You run gradient descent for 15 iterations