ClimAlytics AT

David Kalteis, Dominik Forsthuber, Michael Kerscher BIG Data - Project

Dataset

- Provider: GeoSphere Austria
- Agency: Bundesanstalt für Geologie, Geophysik, Klimatologie und Meteorologie

Technology Stack

Research Questions

- How does the long-term trend in mean monthly temperature vary with elevation?
- Which geographic zones (valleys, plateaus, alpine corridors) show the largest shifts in "hot days" (≥ 30 °C) and "frost days" (≤ 0 °C) since 1970?
- How do station installation dates and validity periods create spatio-temporal gaps, and where are the largest "data deserts"?
- Which seasonal windows and locations optimize safety—combining sunshine hours, wind-gust flags, and frost/heat indicators?

Objective:

Long-term temperature trends differ by elevation

Methodolgy:

- Dataset of measurements with relevant columns: stations_id, date, tl_mittel
- Join stations metadata to classify into one of five elevation bands:
 - 0 499 m -> Lowland
 - 500 999 m -> Upland
 - 1000 1499 m -> Lower Alps
 - 1500 1999 m -> Alpine
 - 2000+ m -> High Alpine
- Aggregate by year, elevation zone and region

- Average temperature from 1970 2025
 - All regions with High Alpine zone
 - General increase
 - Changes and missing values are visible
 - Sensor malfunctions
 - Missing or incomplete historical data
 - Gaps due to station shutdowns

- Distribution of weather stations per elevation zone
 - To validate
 - > the results of temperature trends
 - Stations in High Alpine are located well above 2000+
- Regional diversity is given

RQ2: Spatial Patterns of Extremes

- Trends in "hot days" (≥ 30 °C) and "frost days" (≤ 0 °C) since 1970
 - > tage_tropen, Tropentage, "Zahl der Tropentage, Tagesmaximum der Lufttemperatur in 2 m Höhe >=30.0°C",d

> tage_frost,Frosttage,"Zahl der Frosttage, 24-Stunden-Minimalwert der Lufttemperatur in

2m Höhe < 0.0 °C",d

- Zones defined by elevation:
 - > **Valley**: ≤ 700 m
 - > Plateau: 701–1500 m
 - > **Alpine**: > 1500 m

RQ2: Full Time Series Analysis

Data Processing

- Ingest raw CSV into Spark;
 parse date & extract year
- Join station metadata; attach elevation → assign zone
- Repartition by year & zone,
 write to Parquet for fast queries

Visualization

- Compute annual, per-station averages of hot & frost days
- Plot time series (1970–2023)
 for each zone

RQ2: Full Time Series Analysis

RQ2: End-Minus-Start Difference

- Calculate mean(2014–23) mean(1970–79) by zone
- Highlights net shifts over 50 years
- Valleys: largest ↑ hot days & ↓ frost days; plateaus moderate; alpine minimal

RQ2: Linear Regression Trends

- Fit a straight trend line to each zone's annual hot-day and frost-day averages
- Slope = average change in days per year (↑ or ↓)
- Incorporates every year's data, making the trend resistant to outlier years

RQ3: Spatio-Temporal Data Coverage Pro.

Objective:

Identify spatial and temporal coverage gaps

Methodolgy:

- Two main steps:
 - Metadata-Based Coverage
 - 2. Real Measurement-Based Coverage
 - To verify acutal data presence

RQ3: Spatio-Temporal Data Coverage Pro.

Metadata-Based Coverage

- Using station metadata
- Filter by operational dates -> start / end
- Classify into elevation zones by altitude
- Count active stations per year x elevation zone x Bundesland

RQ3: Spatio-Temporal Data Coverage Pro.

Real Measurement-Based Coverage

- Filter climate dataset for rows with non-null measurements
- Join with metadata and classify by elevation zone and Bundesland
- Count distinct active stations per year x zone x Bundesland

RQ4: Operational Window Optimization.

RQ4: Operational Window Optimization.

Score = Sunshine - Wind Gust Freq - Frost Freq - Heat Freq

RQ4: Operational Window Optimization.

ClimAlytics AT

David Kalteis, Dominik Forsthuber, Michael Kerscher BIG Data - Project

