ooo Exercice 189.

Les nombres suivants sont-ils premiers?

a. 117

b. 143

$\bullet \infty$ Exercice 190.

- 1. Démontrer que tout nombre premier supérieur ou égal à 5 est de la forme 6k+1 ou 6k-1 avec $k \in \mathbb{N}^*$.
- 2. La réciproque est-elle vraie?

●∞ Exercice 191.

Soit a un entier naturel.

- 1. Développer $(a^2 a + 1)(a^2 + a + 1)$.
- 2. Le nombre $a^4 + a^2 + 1$ peut-il être premier?
- 3. Trouver une factorisation de 10101.

••o Exercice 192.

p est un nombre premier au moins égal à 5.

- 1. Quels sont les restes possibles dans la division de p par 12?
- 2. Montrer que $p^2 + 11$ est divisible par 12.

• co Exercice 193.

- 1. Vérifier que 149 est un nombre premier.
- 2. Déterminer tous les couples (x; y) d'entiers qui vérifient l'équation $x^2 y^2 = 149$.
- 3. Reprendre la question précédente avec l'équation $x^2 y^2 = p$ où p est un nombre premier quelconque.

●○○ Exercice 194.

- 1. Démontrer « l'égalité de Sophie Germain » : $n^4 + 4m^4 = (n^2 + 2m^2 + 2mn)(n^2 + 2m^2 2mn)$
- 2. Pour quelles valeurs de l'entier naturel $n, n^4 + 4$ est-il premier?
- 3. Démontrer que $4^{545} + 545^4$ n'est pas un nombre premier.

On pourra écrire $4^{545} = 4 \times (4^{136})^4$.

∞ Exercice 195.

Décomposer en produit de facteurs premiers :

- 1. 125
- 2. 1080
- 3. 64×81
- 4. $12^5 \times 14^3$

•∞ Exercice 196.

- 1. Écrire le nombre 8775 en produit de facteurs premiers.
- 2. Déterminer le plus petit nombre entier naturel k non nul tel que $8\,775k$ soit un carré parfait.
- 3. Même question avec un cube parfait.

•• Exercice 197.

Un entier n s'écrit $2^{\alpha}3^{\beta}$.

Le nombre de diviseurs de 12n est le double du nombre de diviseurs de n.

- 1. Montrer que l'on a $\beta(\alpha 1) = 4$.
- 2. En déduire les trois valeurs possibles pour n.

●○○ Exercice 198.

Montrer que pour tout entier naturel n le nombre $n^{11} - n$ est divisible par 33.

• co Exercice 199.

Soit p un nombre premier différent de 3. Démontrer que pour tout entier naturel n, $3^{n+p} - 3^{n+1}$ est divisible par p.

•• Exercice 200.

Soit n un entier naturel non nul.

- 1. Montrer que $n^{13} n$ est pair.
- 2. Montrer que 13 et 7 divisent $n^{13} n$.
- 3. En déduire que $n^{13}-n$ est divisible par 182.

••o Exercice 201.

- 1. Montrer que $\forall a \in \mathbb{Z}, \ a^{31} a$ est divisible par 62.
- 2. Montrer que $\forall a \in \mathbb{Z}, \ \forall n \in \mathbb{N}, \ a^{30+n} a^n$ est divisible par 62.

•• Exercice 202.

On considère la suite (u_n) d'entiers naturels définie par :

 $u_0 = 1$ et, pour tout entier naturel $n, u_{n+1} = 10u_n + 21$.

- 1. Calculer u_1 , u_2 et u_3 .
- 2. (a) Démontrer par récurrence que, pour tout entier naturel n, $3u_n = 10^{n+1} 7$.
 - (b) En déduire, pour tout entier naturel n, l'écriture décimale de u_n ·
- 3. Montrer que u_2 est un nombre premier.

On se propose maintenant d'étudier la divisibilité des termes de la suite (u_n) par certains nombres premiers.

- 4. Démontrer que, pour tout entier naturel n, u_n n'est divisible ni par 2, ni par 3, ni par 5.
- 5. (a) Démontrer que, pour tout entier naturel $n, \\ 3u_n \equiv 4 (-1)^n \quad [11].$
 - (b) En déduire que, pour tout entier naturel $n,\,u_n$ n'est pas divisible par 11.
- 6. (a) Démontrer l'égalité : $10^{16} \equiv 1$ [17].
 - (b) En déduire que, pour tout entier naturel k, u_{16k+8} est divisible par 17.

••• Exercice 203.

Partie A

On considère l'équation (E) : 25x - 108y = 1 où x et y sont des entiers relatifs.

- 1. Vérifier que le couple (13 ; 3) est solution de cette équation.
- 2. Déterminer l'ensemble des couples d'entiers relatifs solutions de l'équation (E).

Partie B

Dans cette partie, a désigne un entier naturel et les nombres c et g sont des entiers naturels vérifiant la relation 25g - 108c = 1.

On rappelle le petit théorème de Fermat :

Si p est un nombre premier et a un entier non divisible par p, alors a^{p-1} est congru à 1 modulo p que l'on note $a^{p-1} \equiv 1$ [p].

1. Soit x un entier naturel.

Démontrer que si $x \equiv a$ [7] et $x \equiv a$ [19], alors $x \equiv a$ [133].

2. (a) On suppose que a n'est pas un multiple de 7.

Démontrer que $a^6 \equiv 1$ [7] puis que $a^{108} \equiv 1$ [7].

En déduire que $(a^{25})^g \equiv a$ [7].

- (b) On suppose que a est un multiple de 7. Démontrer que $(a^{25})^g \equiv a$ [7].
- (c) On admet que pour tout entier naturel

 $\overset{a,}{\left(a^{25}\right)^g} \equiv a \ [19].$

Démontrer que $(a^{25})^g \equiv a$ [133].

Partie C

On note A l'ensemble des entiers naturels a tels que : $1 \le a \le 26$.

Un message, constitué d'entiers appartenant à A, est codé puis décodé.

La phase de codage consiste à associer, à chaque entier a de A, l'entier r tel que $a^{25} \equiv r$ [133] avec $0 \leqslant r < 133$.

La phase de décodage consiste à associer à r, l'entier r_1 tel que $r^{13} \equiv r_1$ [133] avec $0 \leqslant r_1 < 133$.

- 1. Justifier que $r_1 \equiv a$ [133].
- 2. Un message codé conduit à la suite des deux entiers suivants : 128 59.

Décoder ce message.

••• Exercice 204.

Partie A

On considère l'équation suivante dont les inconnues x et y sont des entiers naturels :

$$x^2 - 8y^2 = 1$$
. (E)

- 1. Déterminer un couple solution (x ; y) où x et y sont deux entiers naturels.
- 2. On considère la matrice $A = \begin{pmatrix} 3 & 8 \\ 1 & 3 \end{pmatrix}$.

 On définit les suites d'entiers naturels (x_n) et (y_n) par $x_0 = 1$, $y_0 = 0$ et pour tout entier naturel $n : \begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = A \begin{pmatrix} x_n \\ y_n \end{pmatrix}$.
 - (a) Démontrer par récurrence que pour tout entier naturel n, le couple $(x_n ; y_n)$ est solution de l'équation (E).
 - (b) En admettant que la suite (x_n) est à valeurs strictement positives, démontrer que pour tout entier naturel n, on a : $x_{n+1} > x_n$.
- 3. En déduire que l'équation (E) admet une infinité de couples solutions.

Partie B

Un entier naturel n est appelé un nombre puissant lorsque, pour tout diviseur premier p de n, p^2 divise n.

1. Vérifier qu'il existe deux nombres entiers consécutifs inférieurs à 10 qui sont puissants.

L'objectif de cette partie est de démontrer, à l'aide des résultats de la partie A, qu'il existe une infinité de couples de nombres entiers naturels consécutifs puissants et d'en trouver quelques exemples.

- 1. Soient a et b deux entiers naturels. Montrer que l'entier naturel $n=a^2b^3$ est un nombre puissant.
- 2. Montrer que si (x; y) est un couple solution de l'équation (E) définie dans la partie A, alors x^2-1 et x^2 sont des entiers consécutifs puissants.
- Conclure quant à l'objectif fixé pour cette partie, en démontrant qu'il existe une infinité de couples de nombres entiers consécutifs puissants.

Déterminer deux nombres entiers consécutifs puissants supérieurs à 2018.