

Carátula para entrega de prácticas

Facultad de Ingeniería

Laboratorio de docencia

Laboratorios de computación salas A y B

Profesor:	M.I. MARCO ANTONIO MARTINEZ QUINTANA
Asignatura:	FUNDAMENTOS DE PROGRAMACIÓN
Grupo:	3
No de Práctica(s):	13
Integrante(s):	CARRILLO CERVANTES IVETTE ALEJANDRA
No. de Equipo de cómputo empleado:	NO APLICA
No. de Lista o Brigada:	7
Semestre:	PRIMER SEMESTRE
Fecha de entrega:	20 ENERO 2021
Observaciones:	
CA	ALIFICACIÓN:

Lectura y escrítura de datos

Objetívo.

Elaborar programas en lenguaje C que requieran el uso de archivos de texto plano en la resolución de problemas, entendiendo a los archivos como un elemento de almacenamiento secundario.

Actividades:

- A través de programas en C, emplear las funciones para crear, leer, escribir y sobrescribir archivos de texto plano.
- Manipular archivos empleando los diferentes tipos de acceso a ellos.

Introducción

Apuntador a archivo Un apuntador a un archivo es un hilo común que unifica el sistema de Entrada/Salida (E/S) con un buffer donde se transportan los datos.

Un apuntador a archivo señala a la información que contiene y define ciertas características sobre él, incluyendo el nombre, el estado y la posición actual del archivo.

Los apuntadores a un archivo se manejan en lenguaje C como variables apuntador de tipo FILE que se define en la cabecera stdio.h. La sintaxis para obtener una variable apuntador de archivo es la siguiente:

FILE *F;

Abrir archivo

La función fopen() abre una secuencia para que pueda ser utilizada y la asocia a un archivo. Su estructura es la siguiente:

*FILE fopen(char *nombre archivo, char *modo);

Donde nombre_archivo es un puntero a una cadena de caracteres que representan un nombre válido del archivo y puede incluir una especificación del directorio. La cadena a la que apunta modo determina cómo se abre el archivo.

Existen diferentes modos de apertura de archivos, los cuales se mencionan a continuación, además de que se pueden utilizar más de uno solo:

- r: Abre un archivo de texto para lectura.
- w: Crea un archivo de texto para escritura.
- a: Abre un archivo de texto para añadir.
- r+: Abre un archivo de texto para lectura / escritura.
- w+: Crea un archivo de texto para lectura / escritura.
- a+: Añade o crea un archivo de texto para lectura / escritura.
- rb: Abre un archivo en modo lectura y binario.
- wb: Crea un archivo en modo escritura y binario.

Cerrar archivo

La función fclose() cierra una secuencia que fue abierta mediante una llamada a fopen(). Escribe la información que se encuentre en el buffer al disco y realiza un cierre formal del archivo a nivel del sistema operativo.

Un error en el cierre de una secuencia puede generar todo tipo de problemas, incluyendo la pérdida de datos, destrucción de archivos y posibles errores intermitentes en el programa. La firma de esta función es:

int fclose(FILE *apArch);

Donde apArch es el apuntador al archivo devuelto por la llamada a fopen(). Si se devuelve un valor cero significa que la operación de cierre ha tenido éxito. Generalmente, esta función solo falla cuando un disco se ha retirado antes de tiempo o cuando no queda espacio libre en el mismo.

Código (abrir cerrar archivo)

```
chivos.c -o AbrirCerrarArchivos.exe

C:\Users\aleja\OneDrive\Escritorio\FACULTAD\Programación\Ejemplos>AbrirCerrarArchivosc x
os.exe
El archivo se abrió correctamente.
fclose = 0

C:\Users\aleja\OneDrive\Escritorio\FACULTAD\Programación\Ejemplos>

C:\Users\aleja\OneDrive\Escritorio\FACULTAD\Programación\Ejemplos>

6

file Edit Selection Find View Goto Tools Project Preferences Help

AbrirCerrarArchivosc x

sinclude<stdio.h>

Este programa permite abrir un archivo en modo de lectura, de ser posible.

fint main() {

file Edit Selection Find View Goto Tools Project Preferences Help

AbrirCerrarArchivosc x

sinclude<stdio.h>

file Edit Selection Find View Goto Tools Project Preferences Help

AbrirCerrarArchivosc x

sinclude<stdio.h>

file Edit Selection Find View Goto Tools Project Preferences Help

AbrirCerrarArchivosc x

sinclude<stdio.h>

file Edit Selection Find View Goto Tools Project Preferences Help

AbrirCerrarArchivosc x

sinclude<stdio.h>

file Edit Selection Find View Goto Tools Project Preferences Help

AbrirCerrarArchivosc x

sinclude<stdio.h>

file Edit Selection Find View Goto Tools Project Preferences Help

AbrirCerrarArchivosc x

sinclude<std>
int main() {

file Edit Selection Find View Goto Tools Project Preferences Help

AbrirCerrarArchivosc x

sinclude<stdio.h>

file Edit Selection Find View Goto Tools Project Preferences Help

AbrirCerrarArchivosc x

sinclude<stdio.h>

file Edit Selection Find View Goto Tools Project Preferences Help

AbrirCerrarArchivosc x

sinclude<stdio.h>

file Edit Selection Find View Goto Tools Project Preferences Help

AbrirCerrarArchivosc x

sinclude<std>
int main() {

file Edit Selection Find View Goto Tools Project Preferences Help

AbrirCerrarArchivosc x

sinclude<stdio.h>

for a rehability in main() {

file Edit Selection Find View Goto Tools Project Preferences Help

AbrirCerrarArchivosc x

sinclude<stdio.h>

file Edit Selection Find View Goto Tools Project Preferences Help

AbrirCerrarArchivosc x

sinclude(stdio.h)

for a rehability in main() {

file Edit Selectio
```

Funciones fgets y fputs

Las funciones fgets() y fputs() pueden leer y escribir, respectivamente, cadenas sobre los archivos. Las firmas de estas funciones son, respectivamente:

char *fgets(char *buffer, int tamaño, FILE *apArch);

char *fputs(char *buffer, FILE *apArch);

La función fputs() permite escribir una cadena en un archivo especifico. La función fgets() permite leer una cadena desde el archivo especificado. Esta función lee un renglón a la vez.

Funciones fscanf y fprintf

Las funciones fprintf() y fscanf() se comportan exactamente como printf() (imprimir) y scanf() (leer), excepto que operan sobre archivo. Sus estructuras son:

int fprintf(FILE *apArch, char *formato, ...);

int fscanf(FILE *apArch, char *formato, ...);

Donde apArch es un apuntador al archivo devuelto por una llamada a la función fopen(), es decir, fprintf() y fscanf() dirigen sus operaciones de E/S al archivo al que apunta apArch. formato es una cadena que puede incluir texto o especificadores de impresión de variables. En los puntos suspensivos se agregan las variables (si es que existen) cuyos valores se quieren escribir en el archivo.

Funciones fread y fwrite

fread y fwrite son funciones que permiten trabajar con elementos de longitud conocida. fread permite leer uno o varios elementos de la misma longitud a partir de una dirección de memoria determinada (apuntador).

El valor de retorno es el número de elementos (bytes) leídos. Su sintaxis es la siguiente: int fread(void *ap, size_t tam, size_t nelem, FILE *archivo)

fwrite permite escribir hacia un archivo uno o varios elementos de la misma longitud almacenados a partir de una dirección de memoria determinada.

El valor de retorno es el número de elementos escritos. Su sintaxis es la siguiente: int fwrite(void *ap, size t tam, size t nelem, FILE *archivo)

Actividades

```
gaussArchivos.c
                                                                                                                                         fscanf.c x fprintf.c x fread.c x fwrite.c x gaussArchivos.c x
                     Suma de los primeros n números
 Cuántos números deseas sumar? 100
a suma de los primeros 100 números es: 5050
                                                                                                                                       //Declarar variables
char au=163, sp=168, aa=160;
int n, res;
//Apuntador a archivo
 :\Users\aleja\OneDrive\Escritorio\FACULTAD\Programación\Ejemplos>gaussArchivos.exe
                                                                                                                                       FILE *a;
a=fopen("resultadosGauss.txt", "a");
                      Suma de los primeros n números
                                                                                                                                       printf("\n\n\t\tSuma de los primeros n n%cmeros\n\n",au);
¿Cuántos números deseas sumar? 10
La suma de los primeros 10 números es: 55
                                                                                                                                       //Solicitar el número de elementos a sumar
printf("%cCu%cntos n%cmeros deseas sumar? ",sp,aa,au);
scanf("%d",&n);
 :\Users\aleja\OneDrive\Escritorio\FACULTAD\Programación\Ejemplos>gcc gaussArchivos
c -o gaussArchivos.exe
                                                                                                                                       res=0;
for(int i=1; i<=n; i++)
 :\Users\aleja\OneDrive\Escritorio\FACULTAD\Programación\Ejemplos>gaussArchivos.exe
                                                                                                                                           fprintf(a,"%d+%d=",res,i);
res=res+i;
fprintf(a, "%d\n",res);
                     Suma de los primeros n números
¿Cuántos números deseas sumar? 15
La suma de los primeros 15 números es: 120
 :\Users\aleja\OneDrive\Escritorio\FACULTAD\Programación\Ejemplos>
                                                                                                                                       //Mostrar el resultado
printf("La suma de los primeros %d n%cmeros es: %d\n",n,au,res);
fclose(a);
```

```
resultadosGauss: Bloc de notas
Archivo Edición Formato Ver Ayuda
0+1=1
1+2=3
3+3=6
6+4=10
10+5=15
15+6=21
21+7=28
28+8=36
36+9=45
45+10=55
0+1=1
1+2=3
3+3=6
6+4=10
10+5=15
15+6=21
21+7=28
28+8=36
36+9-45
45+10=55
55+11=66
66+12=78
78+13=91
91+14=105
105+15=120
```

EJERCICIO 7

 Crear un programa que escriba los pasos del cálculo de la factorial de un número en un archivo llamado factorial.txt

Conclusiones

Este tema no lo había visto anteriormente, me costo trabajo a un principio entenderlo porque no sabía bien su funcionamiento; sin embargo, al ver el video de Archivos y realizar los ejercicios lo entendí mejor, considero que este tema aun que fue algo corto, es de gran importancia saber cómo leer, crear, escribir y sobrescribir archivos de texto. Me gustó mucho este tema (:

Referencias

• Manual de prácticas del Laboratorio de Fundamentos de programación. 22 Enero 2021, de Facultad de Ingeniería Sitio web: http://lcp02.fi-b.unam.mx/