

AONS66520

150V N-Channel AlphaSGT™

General Description

- Trench Power MOSFET AlphaSGT[™] technology
- Low R_{DS(ON)}
- Low Gate Charge
- RoHS and Halogen-Free Compliant

Product Summary

 $\begin{array}{lll} V_{DS} & 150V \\ I_{D} \; (at \; V_{GS} \! = \! 10V) & 100A \\ R_{DS(ON)} \; (at \; V_{GS} \! = \! 10V) & < 9.5 m\Omega \\ R_{DS(ON)} \; (at \; V_{GS} \! = \! 4.5V) & < 12 m\Omega \end{array}$

Applications

Adaptors SR MOSFET

Orderable Part Number

Maximum Junction-to-Ambient

Maximum Junction-to-Case

Maximum Junction-to-Ambient AD

t ≤ 10s

Steady-State

Steady-State

 $R_{\theta JA}$

100% UIS Tested 100% Rg Tested

Form

Minimum Order Quantity

°C/W

°C/W

°C/W

20

50

0.58

Package Type

AONS66520	AONS66520		DFN 5X6 Tape & Reel		3000		
Absolute Maximum Ra	tings T₄=25°C unle	ess otherwise no	ted				
Parameter		Symbol			Units		
Drain-Source Voltage		V _{DS}	1:	50	V		
Gate-Source Voltage		V_{GS}	±	20	V		
Continuous Drain T _C =25°C			1	00			
Current T	_C =100°C	ID	64		А		
Pulsed Drain Current ^C		I _{DM}	40	00			
Continuous Drain T _A =25°C			1	7	А		
Current	_A =70°C	IDSM	1				
Avalanche Current ^C		I _{AS}	50		А		
Avalanche energy L=0.1mH ^C		E _{AS}	125		mJ		
Diode reverse recovery		dv/dt	3	0	V/ns		
$V_{DS}=0$ to 75V, $I_{F}<=10A,T$	j=25°C	di/dt	50	500			
Т	_C =25°C	Б	215		14/		
Power Dissipation B T	_C =100°C	P _D	8	– w			
Т	_A =25°C	В	6	.2	W		
Power Dissipation A T	_A =70°C	P _{DSM}	4				
Junction and Storage Temperature Range		T_J, T_{STG}	-55 t	°C			
Thermal Characteristic	ne e	•			•		
Parameter	,3	Symbol	Тур	Max	Units		

15

40

0.43

Electrical Characteristics (T₁=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
STATIC F	PARAMETERS						
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$		150			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =150V, V _{GS} =0V				1	μA
DSS	Zero Gate Voltage Drain Gurrent		T _J =55°C			5	μΛ
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±20V				±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$		1.6	2.1	2.6	V
		V_{GS} =10V, I_{D} =20A			7.9	9.5	mΩ
$R_{DS(ON)}$	Static Drain-Source On-Resistance		T _J =125°C		14	17	11152
		V_{GS} =4.5V, I_D =20A			9.5	12	mΩ
g _{FS}	Forward Transconductance	V_{DS} =5V, I_{D} =20A			100		S
V_{SD}	Diode Forward Voltage	I _S =1A, V _{GS} =0V			0.7	1	V
Is	Maximum Body-Diode Continuous Current					100	Α
DYNAMIC	CPARAMETERS						
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =75V, f=1MHz			3200		pF
Coss	Output Capacitance				380		pF
C _{rss}	Reverse Transfer Capacitance				4.5		pF
R_g	Gate resistance	f=1MHz		0.6	1.3	2	Ω
SWITCHI	NG PARAMETERS						
Q _g (10V)	Total Gate Charge				44	65	nC
Q_{gs}	Gate Source Charge	V _{GS} =10V, V _{DS} =75V, I	_D =20A		10		nC
Q_{gd}	Gate Drain Charge				7		nC
Q _{oss}	Output Charge	V_{GS} =0V, V_{DS} =75V			130		nC
t _{D(on)}	Turn-On DelayTime				13		ns
t _r	Turn-On Rise Time	V _{GS} =10V, V _{DS} =75V, I	$R_L=3.75\Omega$,		4.5		ns
$t_{D(off)}$	Turn-Off DelayTime	$R_{GEN}=3\Omega$			40		ns
t _f	Turn-Off Fall Time				13		ns
t _{rr}	Body Diode Reverse Recovery Time	I_F =20A, di/dt=500A/ μ	S		66		ns
Q_{rr}	Body Diode Reverse Recovery Charge	I_F =20A, di/dt=500A/ μ	S		570		nC

A. The value of R_{aJA} is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The Power dissipation P_{DSM} is based on R_{aJA} t≤ 10s and the maximum allowed junction temperature of 150° C. The value in any given application depends on the user's specific board design.

APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO MAKE CHANGES TO PRODUCT SPECIFICATIONS WITHOUT NOTICE. IT IS THE RESPONSIBILITY OF THE CUSTOMER TO EVALUATE SUITABILITY OF THE PRODUCT FOR THEIR INTENDED APPLICATION. CUSTOMER SHALL COMPLY WITH APPLICABLE LEGAL REQUIREMENTS, INCLUDING ALL APPLICABLE EXPORT CONTROL RULES, REGULATIONS AND LIMITATIONS.

AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms_and_conditions_of_sale

Rev.1.3: November 2023 **www.aosmd.com** Page 2 of 6

B. The power dissipation P_D is based on $T_{J(MAX)}$ =150° C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C. Single pulse width limited by junction temperature $T_{J(MAX)}$ =150° C.

D. The $R_{\theta,JA}$ is the sum of the thermal impedance from junction to case $R_{\theta,JC}$ and case to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300μs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of $T_{J(MAX)}$ =150° C. The SOA curve provides a single pulse rating.

G. The maximum current rating is package limited.

H. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with T_A=25° C.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

 $V_{\rm DS}$ (Volts) Figure 1: On-Region Characteristics (Note E)

V_{GS} (Volts) Figure 2: Transfer Characteristics (Note E)

 ${\rm I_D}$ (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

Figure 4: On-Resistance vs. Junction Temperature (Note E)

Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

V_{SD} (Volts) Figure 6: Body-Diode Characteristics (Note E)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

 ${\bf Q_g}$ (nC) Figure 7: Gate-Charge Characteristics

V_{DS} (Volts)
Figure 8: Capacitance Characteristics

V_{GS}> or equal to 4.5V Figure 9: Maximum Forward Biased Safe Operating Area (Note F)

Pulse Width (s)
Figure 10: Single Pulse Power Rating Junction-toCase (Note F)

Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

T_{CASE} (° C)
Figure 12: Power De-rating (Note F)

T_{CASE} (° C)
Figure 13: Current De-rating (Note F)

V_{DS} (Volts) Figure 14: Coss stored Energy

Pulse Width (s)
Figure 15: Single Pulse Power Rating Junctionto-Ambient (Note H)

Pulse Width (s)
Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)

Figure A: Gate Charge Test Circuit & Waveforms

Figure B: Resistive Switching Test Circuit & Waveforms

Figure C: Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Figure D: Diode Recovery Test Circuit & Waveforms

Document No.	PD-03362
Version	A
Title	AONS66520 Marking Description

DFN5x6 PACKAGE MARKING DESCRIPTION

Green product

NOTE:

LOGO

- AOS Logo

66520 F - Part number code

- Fab code

- Assembly location code

Y - Year code W - Week code

L&T - Assembly lot code

PART NO.	DESCRIPTION	CODE
AONS66520	Green product	66520

Document No. PO-00044

Version I

DFN5x6_8L_EP1_P PACKAGE OUTLINE

(SCALE 5:1)

RECOMMENDED LAND PATTERN

SYMBOLS	DIM	IENSION IN I	MM	DIME	NSION IN IN	CHES	
STIVIBULS	MIN	NOM	MAX	MIN	NOM	MAX	
А	0.85	0.95	1.00	0.033	0.037	0.039	
A1	0.00	-	0.05	0.000	-	0.002	
b	0.30	0.40	0.50	0.012	0.016	0.020	
С	0.15	0.20	0.25	0.006	0.008	0.010	
D	5.10	5.20	5.30	0.201	0.205	0.209	
D1	4.25	4.35	4.45	0.167	0.171	0.175	
Е	5.45	5.55	5.65	0.215	0.219	0.222	
E1	5.95	6.05	6.15	0.234	0.238	0.242	
E2	3.525	3.625	3.725	0.139	0.143	0.147	
E3	1.175	1.275	1.375	0.046	0.050	0.054	
е		1.27 BSC			0.050 BSC		
L	0.45	0.55	0.65	0.018	0.022	0.026	
L1	0.00	-	0.15	0.000	-	0.006	
L2		0.68 REF		0.027 REF			
θ	0°	-	10°	0°	-	10°	

NOTE:

- PACKAGE BODY SIZES EXCLUDE MOLD FLASH AND GATE BURRS.
 MOLD FLASH AT THE NON-LEAD SIDES SHOULD BE LESS THAN 6 MILS EACH.
- 2. CONTROLLING DIMENSION IS MILLIMETER. CONVERTED INCH DIMENSIONS ARE NOT NECESSARILY EXACT.
- 3. THIS PACKAGE WAS QUALIFIED USING IR REFLOW PROCESS (JEDEC STANDARD). FOR USAGE IN OTHER SOLDERING PROCESSES, PLEASE CONTACT LOCAL AOS REPRESENTATIVES.

Alpha & Omega Semiconductor Product Reliability Report

AONS66520, rev A

Plastic Encapsulated Device

ALPHA & OMEGA Semiconductor, Inc www.aosmd.com

This AOS product reliability report summarizes the qualification result for AONS66520. Accelerated environmental tests are performed on a specific sample size, and then followed by electrical test at end point. Review of final electrical test result confirms that AONS66520 passes AOS quality and reliability requirements. The released product will be categorized by the process family and be routine monitored for continuously improving the product quality.

I. Reliability Stress Test Summary and Results

Test Item	Test Condition	Time Point	Total Sample Size	Number of Failures	Reference Standard
HTGB	Temp = 150°C , Vgs=100% of Vgsmax	168 / 500 / 1000 hours	462 pcs	0	JESD22-A108
HTRB	Temp = 150°C , Vds=100% of Vdsmax	168 / 500 / 1000 hours	462 pcs	0	JESD22-A108
Precondition (Note A)	168hr 85°C / 85%RH + 3 cycle reflow@260°C (MSL 1)	-	3927 pcs	0	JESD22-A113
HAST	130°C , 85%RH, 33.3 psia, Vds = 80% of Vdsmax up to 42V	96 hours	693 pcs	0	JESD22-A110
Autoclave	121°C , 29.7psia, RH=100%	96 hours	924 pcs	0	JESD22-A102
Temperature Cycle	-65°C to 150°C , air to air,	1000 cycles	924 pcs	0	JESD22-A104
HTSL	Temp = 150°C	1000 hours	693 pcs	0	JESD22-A103
IOL	Δ Tj = 100°C	15000 cycles	693 pcs	0	MIL-STD-750 Method 1037

Note: The reliability data presents total of available generic data up to the published date. Note A: MSL (Moisture Sensitivity Level) 1 based on J-STD-020

II. Reliability Evaluation

FIT rate (per billion): 3.82 MTTF = 29919 years

The presentation of FIT rate for the individual product reliability is restricted by the actual burn-in sample size. Failure Rate Determination is based on JEDEC Standard JESD 85. FIT means one failure per billion hours.

Failure Rate = $\text{Chi}^2 \times 10^9 / [2 \text{ (N) (H) (Af)}] = 3.82$

MTTF = 10^9 / FIT = 29919 years

Chi² = Chi Squared Distribution, determined by the number of failures and confidence interval

N = Total Number of units from burn-in tests

H = Duration of burn-in testing

Af = Acceleration Factor from Test to Use Conditions (Ea = 0.7eV and Tuse = 55°C)

Acceleration Factor [Af] = Exp [Ea / k (1/Tj u - 1/Tj s)]

Acceleration Factor ratio list:

	55 deg C	70 deg C	85 deg C	100 deg C	115 deg C	130 deg C	150 deg C
Af	259	87	32	13	5.64	2.59	1

Tis = Stressed junction temperature in degree (Kelvin), K = C+273.16

Tj u =The use junction temperature in degree (Kelvin), K = C+273.16

 \mathbf{k} = Boltzmann's constant, 8.617164 X 10^{-5} eV / K

DFN5x6 Tape and Reel Data

DFN5x6 Carrier Tape

UNIT: MM

PACKAGE Α0 В0 K0 D0 D1 DFN5x6 6.30 5.45 1.30 1.50 1.55 12.00 1.75 5.50 8.00 4.00 2.00 0.30 (12 mm) ±0.10 ±0.10 ±0.10 MIN. ±0.05 ±0.30 ±0.10 ±0.10 ±0.10 ±0.10 ±0.10 ±0.05

DFN5x6 Reel

UNIT: MM

TAPE SIZE	REEL SIZE	М	N	W	W1	Н	K	S	G	R	V
12 mm	Ø330	Ø330.00 ±0.50	Ø97.00 ±0.10	13.00 ±0.30	17.40 ±1.00	Ø13.00 +0.50 -0.20	10.60	2.00 ±0.50	-		

DFN5x6 Punch Package Tape

DFN5x6 Sawing Package (Except DFN5x6 7L EP1 TEP1 S/DFN5x6 2L EP3 TEP1 S/DFN5x6 8L EP1 TEP1 S/DFN5x6 8L EP1 TEP1 S/DFN5x6 8L EP2 TEP1 S/DFN5x6A 8L EP2 TEP1 S)Tape

