

ENGINEERING MATHEMATICS

ALL BRANCHES

Vector Calculus
Line, surface & Volume
Integral, Stokes, Green & Gauss
Divergence Theorem
DPP-04 Solution

from the origin of the point (1, 1, 1)is 1 $\int \vec{V} \cdot d\vec{r} = \int (1, 1, 1) d\vec{r} =$ The line integral $[\overline{V} \cdot d\overline{r}]$ of the vector $\overline{V} = 2xyz\hat{i} + x^2z\hat{j} + x^2y\hat{k}$

- is zero

$$\int \vec{\nabla} \cdot d\vec{r} = \int 2xyzdx + x^2zdy + x^2ydz$$

$$(0,0,0)$$

$$\int d(x^2yz) = [x^2yz]^{(1,1,1)}_{(0,0,0)}$$
$$= [1.1.1 - 0.0.0]$$

cannot be determined without specifying the path

Value of the integral $\oint_c (xy \, dy - y^2 dx)$, where C is the square cut from the first quadrant by the lines x = 1 and y = 1 will be (use Green's theorem to change the line integral into double integral)

$$\oint Mdx + Ndy = \iint \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} dxdy$$

$$\oint -y^2 dx + xy dy = \iiint y - (-Zy) dxdy$$

$$\int_0^1 3 \left[\frac{y^2}{2} \right]_0^1 dx = \frac{3}{2} [x]_0^1 = \frac{3}{2}$$

is 1

Consider points P and Q in the x-y plane, with P = (1, 0) and Q = (0, 1). The line integral $2\int_{0}^{Q} (xdx + ydy)$ along the semicircle with the line segment PQ as its diameter

A is -1
$$I = 2 \int x dx + y dy$$

$$= 2 \left[\int_{1}^{\infty} x dx + \int_{1}^{\infty} y dy \right]$$

$$= 2 \left[\left[\frac{x^{2}}{2} \right]_{1}^{\infty} + \left[\frac{y^{2}}{2} \right]_{0}^{\infty} \right] = 0$$

depends on the direction (clockwise or anti-clockwise of the semicircle)

If \overline{r} is the position vector of any point on a closed surface S that encloses the volume V then $\iint (\overline{r} \cdot d\overline{s})$ is equal to

$$A \frac{1}{2}V$$

 $F(x,y) = (x^2 + xy)\hat{a}_x + (y^2 + xy)\hat{a}_y$. It's line integral over the straight line from (x, y) = (0,2) to (2,0) evaluate to

$$I = \int (x^{2}+xy) dx + (y^{2}+xy) dy$$

$$= \int (0,2)$$

$$= \int (x^{2}+x) (2-x) dx + \int (0,2) (2,2)$$

$$= \int (x^{2}-x) dx + \int (0,2) dy$$

$$= (x^{2}-x) dx + (y^{2}-x) dx$$

$$= (x^{2}-x) dx$$

$$= (x^$$

$$\frac{x}{x} = \frac{1}{x}$$

A path AB in the form of one quarter of a circle of unit radius is shown in the figure. Integration of $(x + y)^2$ on path AB traversed in counter-clockwise sense is

$$\frac{B}{2} + 1$$

$$\int_{C}^{(x+y)^{2}} dr = \int_{C}^{(cos\theta + sin\theta)^{2}} \pi d\theta$$

$$= \int_{C}^{(x+y)^{2}} + sin^{2}\theta d\theta$$

let
$$X = r \cos \theta$$

 $y = r \sin \theta$

$$\begin{bmatrix} \theta - \frac{\cos 2\theta}{2} \end{bmatrix}_{0}^{\sqrt{2}} = \left(\frac{\pi}{2} + \frac{1}{2} \right) - \left(0 - \frac{1}{2} \right)$$

$$= \frac{\pi}{2} + 1$$

If $\vec{A} = xy\hat{a}_x + x^2\hat{a}_y$, $\oint_C \vec{A} \cdot \vec{dl}$ over the path shown in the figure is

$$\lfloor B \rfloor \frac{2}{\sqrt{3}}$$

D
$$2\sqrt{3}$$

$$\oint Mdx + Ndy = \iint_{\partial x} \frac{\partial N}{\partial x} dx dy$$

$$\oint \underbrace{xy} dx + \underbrace{x^2} dy = \iint_{1}^{3} \int_{\sqrt{3}}^{2\sqrt{3}} (2x - x) dx dy$$

$$\iint_{1}^{3} \underbrace{\left[\frac{x^2}{2}\right]_{\sqrt{3}}^{2\sqrt{3}}} dy$$

$$\iint_{1}^{3} \underbrace{\left[\frac{x^2}{2}\right]_{\sqrt{3}}^{2\sqrt{3}}} dy$$

$$\underbrace{\frac{1}{2}[y]_{1}^{3} = \frac{2}{2} = 1$$

The line integral of the vector function $\overline{F} = 2x\hat{i} + x^2\hat{j}$ along the

$$x$$
-axis from $x = 1$ to $x = 2$ is

$$\int_{X=1}^{X=2} 2x dx + x^2 dy$$

$$\left[x^2\right]_1^2 = 3$$

$$y = 0$$
 $dy = 0$

The line integral $\int_{P_1}^{P_2} (y dx + x dy)$ from $P_1(x_1, y_1)$ to $P_2(x_2, y_2)$ along

the semi-circle P_1P_2 shown in the figure is

B
$$(y_2^2 - y_1^2) + (x_2^2 - x_1^2)$$

c
$$(x_2-x_1)(y_2-y_1)$$

D
$$(y_2 - y_1)^2 + (x_2 - x_1)^2$$

The area of the triangle formed by the tips of vectors \overline{a} , \overline{b} and \overline{c}

is

$$\frac{1}{2}(a-b)x(a-c)$$

$$\frac{1}{2}|(a-b)\times(a-c)|$$

$$\frac{1}{2}|a\times b\times c|$$

Consider a close surface S surrounding volume V. If \vec{r} is the position vector of a point inside S, with the unit normal on S the value of the integral $\iint_S 5\vec{r} \cdot \hat{n} dS$ is

A 3 V

B 5 V

C 10 V

25 V

The line integral of function $F = yz\hat{\imath}$, in the counter clockwise direction, along the circle $x^2 + y^2 = 1$ at z = 1

Thank you

Seldiers!

