### The Blue Sky Challenge



### Content

- Theme & Objective.
- Literature review.
- Proposed Methodology.
- Results and discussions.
- References.

### Theme & Objective

Sub-Theme: 2

Forecasting Sensor Measurements in Smart Air Quality Monitoring System.

#### Objective:

To discover new innovative solutions for developing smart air quality monitoring systems by integrating sensor technology with machine learning algorithms.

### Literature Review

| Sr. No. | Author                                                                                                                                                                                                                            | Title                                                                                                      | Publisher                                                            |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 1.      | Chew Cheik Goh, Latifah Munirah Kamarudin,<br>Ammar Zakaria, Hiromitsu Nishizaki,<br>Nuraminah Ramli, Xiaoyang Mao, Syed<br>Muhammad Mamduh Syed Zakaria, Ericson<br>Kanagaraj, Abdul Syafiq Abdull Sukor and Md.<br>Fauzan Elham | Real-Time In-Vehicle Air<br>Quality Monitoring<br>System Using<br>Machine Learning<br>Prediction Algorithm | MDPI                                                                 |
| 2.      | Salman Ahmad Siddiqui, Neda Fatima, Anwar<br>Ahmad                                                                                                                                                                                | Smart Air Pollution<br>Monitoring System with<br>Smog Prediction Model<br>using Machine Learning           | International Journal of Advanced Computer Science and Applications. |

#### Literature Review

| Sr. No. | Author                                                                              | Title                                                                                                                                     | Publisher                                                      |
|---------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| 3.      | D.Saravanana, K.P.Hemalathab, B. Jinithac, Dr. K. Santhosh Kumard, and P.Hemalathae | Predict and Measure Air<br>Quality Monitoring<br>System Using Machine<br>Learning                                                         | Turkish Journal of<br>Computer and<br>Mathematics<br>Education |
| 4.      | Marzena Banach, Rafał Długosz, Tomasz<br>Tala'ska and Witold Pedrycz 3              | Air Pollution Monitoring System with Prediction Abilities Based on Smart Autonomous Sensors Equipped with ANNs with Novel Training Scheme | MDPI                                                           |

### Implemented Models

- LSTM with GRU layer.
- LSTM with Dense layer
- ► LSTM with Conv1D layer.



### Model 1: LSTM with GRU layer

- Layers Used: This models consists of one GRU layer with a kernel initializer of "he\_normal", dropout layer and two LSTM layers with one Dense layer as an output layer.
- Optimizer used: Adam.
- Results:
  - Mean absolute percentage error:
  - 1. CO(GT): 0.35
  - **2**. T: 0.16

### Model 2: LSTM with Dense layer

- Layers Used: This models consists of one dropout layer and a Dense layer as an output layer.
- Optimizer used: Adam.
- Results:
  - Mean absolute percentage error:
  - 1. CO(GT): 0.35
  - **2**. T: 0.15

# Model 3: LSTM with Conv1D layer

- Layers Used: This models consists of two LSTM layers dropout layer, Conv1D layer and a Dense layer as an output layer.
- Optimizer used: Adam.
- Results:
  - Mean absolute percentage error:
  - 1. CO(GT): 0.35
  - **2**. T: 0.15

# Proposed Methodology



### Data Preprocessing

- The CO(GT) and T columns from the given dataset were chosen for the preprocessing.
- Total number of anomaly values to be replaced by null values: -200.
- Method used to fill the Null values: Linear Interpolation
- Then we took the data for first 7 days and then proceeded for training.

### Final Model: LSTM with GRU layer

- We finalized LSTM model with GRU in which we have used:
- Layers used-
  - 1. 2 LSTM layers,
  - 1 Dropout layer
  - 3. 1 Dense layer
- Activation function- relu
- Optimizer- adam.

| Attributes  | MAPE |
|-------------|------|
| CO(GT)      | 0.34 |
| Temperature | 0.16 |

## Results & Discussions

| Model           | CO(GT) AVG MAPE | Temperature AVG<br>MAPE |
|-----------------|-----------------|-------------------------|
| LSTM with GRU   | 0.35            | 0.20                    |
| LSTM With Dense | 0.35            | 0.15                    |
| LSTM Wih Conv1D | 0.35            | 0.24                    |



### Results & Discussions

| Day     | CO(GT) MAPE | T MAPE  |
|---------|-------------|---------|
| Day 8   | 0.18583     | 0.07434 |
| Day 9   | 0.16049     | 0.27813 |
| Day 10  | 0.47705     | 0.12950 |
| Day 11  | 0.30354     | 0.06220 |
| Day 12  | 0.63927     | 0.09712 |
| Day 13  | 0.36005     | 0.39956 |
| Day 14  | 0.29879     | 0.13799 |
| Average | 0.34643     | 0.16841 |

#### References

- 1. "MDPI-The publisher of open access journals" Accessed on: 29th December 2021, Available [Online] At: <a href="https://www.mdpi.com">https://www.mdpi.com</a>
- 2. "Smart Air Pollution Monitoring System with Smog Prediction Model using Machine Learning" by Salman Ahmad Siddiqui, Neda Fatima, Anwar Ahmad. Accessed on: 29th December 2021, Available [Online]

https://thesai.org/Downloads/Volume12No8/Paper\_46Smart\_Air\_Pollution\_Monitoring\_System.pdf

3. "An IoT enabled system for enhanced air quality monitoring and prediction on the edge" by Ahmed Samy Moursi, Nawal El-Fishawy, Soufiene Djahel & Marwa Ahmed Shouman. Accessed on: 30th December 2021, Available [Online] At: <a href="https://link.springer.com/article/10.1007/s40747-021-00476-w">https://link.springer.com/article/10.1007/s40747-021-00476-w</a>

### THANKS!

Team - RoboSoft



