Complexidade Assintótica ACH2002 - Introdução à Ciência da Computação II

Delano M. Beder

Escola de Artes, Ciências e Humanidades (EACH)
Universidade de São Paulo
dbeder@usp.br

08/2008

Material baseado em slides dos professores Marcos Chaim, Cid de Souza e Cândida da Silva

Crescimento Assintótico de Funções

- Custo da solução aumenta com o tamanho n do problema
 - O tamanho n fornece uma medida da dificuldade para resolver o problema
 - Tempo necessário para resolver o problema aumenta quando n cresce
 - Exemplo: número de comparações para achar o maior elemento de um vetor(array) ou para ordená-lo aumenta com o tamanho da entrada n.
- Escolha do algoritmo n\u00e3o \u00e9 um problema cr\u00edtico quando n \u00e9
 pequeno.
 - O problema é quando n cresce.
- Por isso, é usual analisar o comportamento das funções de custo quando n é bastante grande.

Comportamento Assintótico

 Vamos comparar funções assintoticamente, ou seja, para valores grandes, desprezando constantes multiplicativas e termos de menor ordem.

	n = 100	n = 1000	$n = 10^4$	$n = 10^6$	$n = 10^9$
log n	2	3	4	6	9
n	100	1000	10^{4}	10^{6}	10 ⁹
$n \log n$	200	3000	$4 \cdot 10^4$	$6 \cdot 10^{6}$	$9 \cdot 10^{9}$
n^2	10 ⁴	10 ⁶	10 ⁸	10 ¹²	10^{18}
$100n^2 + 15n$	$1,0015 \cdot 10^6$	$1,00015 \cdot 10^8$	$pprox 10^{10}$	$pprox 10^{14}$	$pprox 10^{20}$
2 ⁿ	$\approx 1,26 \cdot 10^{30}$	$\approx 1,07\cdot 10^{301}$?	?	?

Comportamente Assintótico

1 milhão (10⁶) de operações por segundo

Função de custo	10	20	30	40 50		60
n	0,00001s	0,00002s	0,00003s	0,00004s	0,00005s	0,00006s
n ²	0,0001s	0,0004s	0,0009s	0,0016s	0,0025s	0,0036s
n ³	0,001s	0,008s	0,027s	0,064s	0,125s	0,216s
n ⁵	0,1s	3,2s	24,3s	1,7min	5,2min	12,96min
2 ⁿ	0,001s	1,04s	17,9min	12,7dias	35,7 anos	366 séc.
3 ⁿ	0,059s	58min	6,5anos	3855séc.	10 ⁸ séc.	10 ¹³ séc.

Comportamente Assintótico

Influência do aumento de velocidade dos computadores no tamanho \boldsymbol{x} do problema

Função de custo	Computador Atual (C)	Computador 100C	Computador 1000C	
n	x	100 <i>x</i>	1000 <i>x</i>	
n ²	X	10 <i>x</i>	31.6 <i>x</i>	
n ³	X	4,6x	10 <i>x</i>	
2 ⁿ	х	x + 6, 6	x + 10	

(Tabela 1.4 Página 18) Nívio Ziviani. *Projeto de Algoritmos com implementações em C e Pascal.* Editora Thomson, 2a. Edicão, 2004.

Comportamento Assintótico

- Se f(n) é a função de complexidade de um algoritmo A
 - O comportamento assintótico de f(n) representa o limite do comportamento do custo (complexidade) de A quando n cresce.
- A análise de um algoritmo (função de complexidade)
 - Geralmente considera apenas algumas operações elementares ou mesmo uma operação elementar (e.g., o número de comparações).
- A complexidade assintótica relata crescimento assintótico das operações elementares.

Relacionamento assintótico

Definição

Uma função g(n) domina assintoticamente outra função f(n) se existem duas constantes positivas c e m tais que, para $n \ge m$, tem-se $|f(n)| \le c|g(n)|$.

Relacionamento assintótico

Exemplo:

```
g(n) = n e f(n) = n^2

|n| \le |n^2| para todo n \in N.

Para c = 1 e m = 0 \Rightarrow |g(n)| \le |f(n)|.

Portanto, f(n) domina assintoticamente g(n).
```

Notação O

- Knuth criou a notação O (O grande) para expressar que g(n) domina assintoticamente f(n), escreve-se f(n) = O(g(n)) e lê-se: "f(n) é da ordem no máximo g(n)".
- Para que serve isto para o bacharel em Sistemas de Informação?
 - Muitas vezes calcular a função de complexidade g(n) de um algoritmo A é complicado.
 - É mais fácil determinar que f(n) é O(g(n)), isto é, que assintoticamente f(n) cresce no máximo como g(n).

Notação O

Definição

$$O(g(n)) = \{ f(n): existem constantes positivas c e n_0 tais que 0 \le f(n) \le cg(n), para todo n \ge n_0 \}.$$

Informalmente, dizemos que, se $f(n) \in O(g(n))$, então f(n) cresce no máximo tão rapidamente quanto g(n).

Notação O

Definição

$$O(g(n)) = \{ f(n): existem constantes positivas c e n_0 tais que 0 \le f(n) \le cg(n), para todo n \ge n_0 \}.$$

Informalmente, dizemos que, se $f(n) \in O(g(n))$, então f(n) cresce no máximo tão rapidamente quanto g(n).

Exemplo:

$$\frac{3}{2}n^2 - 2n \in O(n^2)$$

Valores de c e n₀ que satisfazem a definição são

$$c = \frac{3}{2} e n_0 = 2$$

Notação Ω

Definição

 $\Omega(g(n)) = \{ f(n): \text{ existem constantes positivas } c \text{ e } n_0 \text{ tais que } 0 \leq cg(n) \leq f(n), \text{ para todo } n \geq n_0 \}.$

Informalmente, dizemos que, se $f(n) \in \Omega(g(n))$, então f(n) cresce no mínimo tão lentamente quanto g(n).

Notação Ω

Definição

 $\Omega(g(n)) = \{ f(n): \text{ existem constantes positivas } c \text{ e } n_0 \text{ tais que } 0 \leq cg(n) \leq f(n), \text{ para todo } n \geq n_0 \}.$

Informalmente, dizemos que, se $f(n) \in \Omega(g(n))$, então f(n) cresce no mínimo tão lentamente quanto g(n).

Exemplo:

$$\tfrac{3}{2}n^2 - 2n \in \Omega(n^2)$$

Valores de c e n₀ que satisfazem a definição são

$$c = \frac{1}{2} e n_0 = 2$$

Notação ⊝

Definição

 $\Theta(g(n)) = \{ f(n): \text{ existem constantes positivas } c_1, c_2 \text{ e } n_0 \text{ tais que } 0 \le c_1 g(n) \le f(n) \le c_2 g(n), \text{ para todo } n \ge n_0 \}.$

Informalmente, dizemos que, se $f(n) \in \Theta(g(n))$, então f(n) cresce tão rapidamente quanto g(n).

Notação ⊝

Definição

$$\Theta(g(n)) = \{ f(n): \text{ existem constantes positivas } c_1, c_2 \text{ e } n_0 \text{ tais que } 0 \le c_1 g(n) \le f(n) \le c_2 g(n), \text{ para todo } n \ge n_0 \}.$$

Informalmente, dizemos que, se $f(n) \in \Theta(g(n))$, então f(n) cresce tão rapidamente quanto g(n).

Exemplo:

$$\tfrac{3}{2}n^2 - 2n \in \Theta(n^2)$$

Valores de c₁, c₂ e n₀ que satisfazem a definição são

$$c_1 = \frac{1}{2}$$
, $c_2 = \frac{3}{2}$ e $n_0 = 2$

Notação o

Definição

 $o(g(n)) = \{ f(n): para toda constante positiva c, existe uma constante n_0 > 0 tal que 0 \le f(n) < cg(n), para todo n \ge n_0 \}.$

Informalmente, dizemos que, se $f(n) \in o(g(n))$, então f(n) cresce mais lentamente que g(n).

Exemplo:

$$1000n^2 \in o(n^3)$$

Para todo valor de c, um n₀ que satisfaz a definição é:

$$n_0 = \lceil \frac{1000}{c} \rceil + 1$$

Notação ω

Definição

 $\omega(g(n)) = \{ f(n): \text{ para toda constante positiva } c, \text{ existe uma constante } n_0 > 0 \text{ tal que } 0 \le cg(n) < f(n), \text{ para todo } n \ge n_0 \}.$

Informalmente, dizemos que, se $f(n) \in \omega(g(n))$, então f(n) cresce mais rapidamente que g(n).

Exemplo:

$$\frac{1}{1000}n^2 \in \omega(n)$$

Para todo valor de c, um n₀ que satisfaz a definição é:

$$n_o = \lceil 1000c \rceil + 1$$

Definições equivalentes

$$\begin{split} &f(n)\in o(g(n)) \quad \text{se} \lim_{n\to\infty} \frac{f(n)}{g(n)} = 0 \\ &f(n)\in O(g(n)) \quad \text{se} \lim_{n\to\infty} \frac{f(n)}{g(n)} < \infty \\ &f(n)\in \Theta(g(n)) \quad \text{se} \quad \lim_{n\to\infty} \frac{f(n)}{g(n)} < \infty \\ &f(n)\in \Omega(g(n)) \quad \text{se} \lim_{n\to\infty} \frac{f(n)}{g(n)} > 0 \\ &f(n)\in \omega(g(n)) \quad \text{se} \lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty \end{split}$$

Propriedades das Classes

Reflexividade:

```
f(n) \in O(f(n)).

f(n) \in \Omega(f(n)).

f(n) \in \Theta(f(n)).
```

Simetria:

$$f(n) \in \Theta(g(n))$$
 se, e somente se, $g(n) \in \Theta(f(n))$.

Simetria Transposta:

$$f(n) \in O(g(n))$$
 se, e somente se, $g(n) \in \Omega(f(n))$. $f(n) \in o(g(n))$ se, e somente se, $g(n) \in \omega(f(n))$.

Propriedades das Classes

Transitividade:

```
Se f(n) \in O(g(n)) e g(n) \in O(h(n)), então f(n) \in O(h(n)).
Se f(n) \in \Omega(g(n)) e g(n) \in \Omega(h(n)), então f(n) \in \Omega(h(n)).
Se f(n) \in \Theta(g(n)) e g(n) \in \Theta(h(n)), então f(n) \in \Theta(h(n)).
Se f(n) \in o(g(n)) e g(n) \in o(h(n)), então f(n) \in o(h(n)).
Se f(n) \in \omega(g(n)) e g(n) \in \omega(h(n)), então f(n) \in \omega(h(n)).
```

Operações com a notação O

```
f(n) = O(f(n))
c \times f(n) = O(f(n)), c \text{ \'e uma constante}
O(f(n)) + O(f(n)) = O(f(n))
O(O(f(n))) = O(f(n))
O(f(n)) + O(g(n)) = O(max(f(n), g(n)))
O(f(n))O(g(n)) = O(f(n)g(n))
f(n)O(g(n)) = O(f(n)g(n))
```

Exercícios

Quais as relações de comparação assintótica (O, Ω, Θ) das funções:

$$f_1(n) = 2^{\pi}$$

 $f_2(n) = 2^n$
 $f_3(n) = n \log n$
 $f_4(n) = \log n$
 $f_5(n) = 100n^2 + 150000n$
 $f_6(n) = n + \log n$
 $f_7(n) = n^2$
 $f_8(n) = n$

	f_1	f ₂	f ₃	f ₄	f_5	f ₆	f ₇	f ₈
f_1	Θ							
f_2		Θ						
f_3			Θ					
f_4				Θ				
f_5					Θ			
f_6						Θ		
<i>f</i> ₇							Θ	
f ₈								Θ

Referências

- [1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest & Clifford Stein. *Algoritmos Tradução da 2a. Edição Americana*. Editora Campus, 2002 (Capítulo 3).
- [2] Michael T. Goodrich & Roberto Tamassia. *Estruturas de Dados e Algoritmos em Java*. Editora Bookman, 4a. Ed. 2007 (Capítulo 4).
- [3] Nívio Ziviani. *Projeto de Algoritmos com implementações em C e Pascal*. Editora Thomson, 2a. Edição, 2004 (Seção 1.3).