

UNIVERSIDADE FEDERAL DO MARANHÃO DEPARTAMENTO DE INFORMÁTICA CURSO DE CIÊNCIA DA COMPUTAÇÃO ESTRUTURA DE DADOS II (DEINO083) 2020.1

Professor(a): João Dallyson Sousa de Almeida

Data: 14/12/2020

Matrícula: Aluno: _____

3ª Avaliação

1) (2pt) Protocolos de roteamento de estado de enlace utilizam difusão para propagar informações de estado de enlace que são usadas para calcular rotas individuais. Entretanto, algumas técnicas provocam a transmissão de pacotes redundantes na rede. Idealmente, cada nó deveria receber apenas uma cópia do pacote de difusão. Uma técnica utilizada para resolver o problema da redundância de pacotes, é a por spanning tree (árvore geradora). Se cada enlace tiver um custo associado e o custo de uma árvore for a soma dos custos dos enlaces, então uma árvore cujo custo seja o mínimo entre todas as árvores geradoras do grafo é denominada uma árvore geradora mínima.

Considere uma rede composta por 6 roteadores, designados pelas letras A, B, C, D, E e F, conectados conforme a seguinte tabela de custos de seus enlaces:

Conexão	Enlace
A-B	3
A-C	4
A-D	5
A-F	2
B-C	3
B-D	3
C-D	4
C-E	1
C-F	5
D-F	2
E-F	2

Neste cenário, apresente o custo e a árvore geradora mínima correspondente. Descreva a sua solução apresentando a sequência das arestas adicionadas na árvore em cada iteração.

- 2) (2pt) Qual algoritmo deve ser utilizado na rede da Questão 1, para encontrar o caminho mais curto entre um roteador de origem para um outro roteador de destino? Prove sua resposta demonstrando a execução no grafo que representa a rede da Tabela da Questão 1.
- (2pt) Apresente a árvore de busca em largura no grafo abaixo, partindo do vértice de menor grau. Descreva a solução apresentando a distância de cada vértice e o status da fila após cada iteração.

 (2pt) Apresente o fluxo máximo no grafo abaixo. Descreva sua solução demonstrando a execução passo a passo, apresentando o grafo residual após cada iteração.

UNIVERSIDADE FEDERAL DO MARANHÃO DEPARTAMENTO DE INFORMÁTICA CURSO DE CIÊNCIA DA COMPUTAÇÃO ESTRUTURA DE DADOS II (DEIN0083) 2020.1

5) (2pt) Explique e demonstre, no grafo abaixo, o resultado da execução do algoritmo de componentes fortemente conectados.

