LA FONCTION INVERSE E03

EXERCICE N°1

Soit f la fonction définie sur \mathbb{R}^* par : $f(x) = -10x + 62 - \frac{3240}{x}$.

- 1) Montrer que pour tout réel non nul, $f'(x) = \frac{-10(x-18)(x+18)}{x^2}$
- 2) Dresser le tableau de variation de la fonction f sur \mathbb{R}^* .

EXERCICE N°2 Attention à l'ensemble de définition

Soit f la fonction définie sur l'intervalle [0,1;1] par : $f(x) = 2 - 0.1x - \frac{0.025}{x}$

- 1) Montrer que pour tout réel x appartenant à l'intervalle [0,1;1]: $f'(x) = \frac{-0.1(x-0.5)(x+0.5)}{x^2}$.
- 2) Dresser le tableau de variation de la fonction f sur l'intervalle [0,1;1].

EXERCICE N°3

Soit f la fonction définie sur l'intervalle \mathbb{R}^* par : $f(x) = 0.5x + 2 + \frac{8}{x}$ Justifier toutes les informations données par le tableau de variation de f ci-dessous.

x	$-\infty$	-4	0	4	+∞
f'(x)	+	0 -	_	0 +	
f(x)	-∞	-2	→ ∞	4	+∞

EXERCICE Nº4

Lorsqu'un véhicule roule entre 10 km.h^{-1} et 130 km.h^{-1} , sa consommation d'essence c (en litres) s'exprime en fonction de sa vitesse v (en km.h^{-1}) par l'expression :

$$c(v) = 0.06 v + \frac{150}{v}$$

- 1) Vérifier que pour tout v appartenant à l'intervalle $\begin{bmatrix} 10 \ ; \ 130 \end{bmatrix}$, $c'(v) = \frac{0.06(v-50)(v+50)}{v^2}$
- 2) Étudier le signe de c'(v) sur l'intervalle [10; 130] puis dresser le tableau de variation de la fonction c.
- 3) En déduire la vitesse à laquelle doit rouler ce véhicule pour que sa consommation d'essence soit minimale. Déterminer la consommation minimale en litres.

LA FONCTION INVERSE E03

EXERCICE N°1

Soit f la fonction définie sur \mathbb{R}^* par : $f(x) = -10x + 62 - \frac{3240}{x}$.

- 1) Montrer que pour tout réel non nul, $f'(x) = \frac{-10(x-18)(x+18)}{x^2}$
- 2) Dresser le tableau de variation de la fonction f sur \mathbb{R}^* .

EXERCICE N°2 Attention à l'ensemble de définition

Soit f la fonction définie sur l'intervalle [0,1;1] par : $f(x) = 2 - 0.1x - \frac{0.025}{x}$

- 1) Montrer que pour tout réel x appartenant à l'intervalle [0,1;1]: $f'(x) = \frac{-0.1(x-0.5)(x+0.5)}{x^2}$.
- 2) Dresser le tableau de variation de la fonction f sur l'intervalle [0,1;1].

EXERCICE N°3

Soit f la fonction définie sur l'intervalle \mathbb{R}^* par : $f(x) = 0.5x + 2 + \frac{8}{x}$ Justifier toutes les informations données par le tableau de variation de f ci-dessous.

x	$-\infty$	-4	0	4	+∞
f'(x)	+	0 -	_	0 +	
f(x)	-∞	-2	→ ∞	4	+∞

EXERCICE Nº4

Lorsqu'un véhicule roule entre 10 km.h^{-1} et 130 km.h^{-1} , sa consommation d'essence c (en litres) s'exprime en fonction de sa vitesse v (en km.h^{-1}) par l'expression :

$$c(v) = 0.06 v + \frac{150}{v}$$

- 1) Vérifier que pour tout v appartenant à l'intervalle $\begin{bmatrix} 10 \ ; \ 130 \end{bmatrix}$, $c'(v) = \frac{0.06(v-50)(v+50)}{v^2}$
- 2) Étudier le signe de c'(v) sur l'intervalle [10; 130] puis dresser le tableau de variation de la fonction c.
- 3) En déduire la vitesse à laquelle doit rouler ce véhicule pour que sa consommation d'essence soit minimale. Déterminer la consommation minimale en litres.