MOLECULAR DYNAMICS

202303012308

1. MOLECULAR DYNAMICS (MD)

is where you model the trajectory of each particle in a many-particle system.

you model the particles' interaction with distance-dependent interatomic potentials. then numerically solve newton's equations of motion for the system of particles.

is useful for modelling dense gases, liquids, solids.

\P assumptions (about the particles)

- ▶ classical
- ▶ spherical
- ▶ chemically inert
- ▶ interactions between them depend only on distance.

2. THE INTERMOLECULAR POTENTIAL

 \P general form of U: should be a sum of two-particle interaction potentials between all the particles.

$$U_{total} = \sum_{i} \sum_{j} U\left(r_{ij}\right) \qquad \text{for } i = 1: (N-1)\,,\; j = (i+1): N \tag{1}$$

\P two properties that $extsf{U}(extsf{r})$ must satisfy

- 1. strong repulsion for small r.
- ▶ [because the pauli exclusion principle… there's a core repulsion as the wave functions of the two particles distort to avoid overlapping. causes some of the electrons to "be" in different quantum states. ∴ an effective repulsion].
- 2. weak attraction for big r.

▶ [pq the vdw potential. mutual polarisation of each molecule].

3. LENNARD JONES POTENTIAL

is

$$U(r) = 4\varepsilon \left(\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right) \tag{2}$$

two parameters: ϵ and σ .

- ▶ σ = "length". this is the point where U(r) = 0 (at r = σ). U(r) is close to zero for r > 2.5 σ .
- ▶ ε = the depth of the potential at the minimum of U(r). the minimum occurs at separation $2^{(1/6)}\sigma$.

note if you look at a plot of the lennard jones potential U(r) it's easy to see why σ is a length and ϵ is an energy.

4. REDUCED UNITS

 \P you can express all units in terms of σ, ϵ, m .

- \blacktriangleright since σ is a distance, define it to be the distance unit for the problem.
- \blacktriangleright and since ϵ is an energy, define it to be the energy unit.
- ▶ also define the mass of one atom/molecule/particle/whatever to be the mass unit.

in terms of these base units:

¶ velocity: $(\varepsilon/m)^{1/2}$

▶ where the fuck did this come from? «

¶ time: $\sigma(\varepsilon/m)^{-1/2} = \sigma(m/\varepsilon)^{1/2}$

• ok I get this one, $d = vt : t = d/v \ll$

¶ force: ε/σ

 \blacktriangleright f units are m·v/t = $(\epsilon/m)^{1/2} m \frac{1}{\sigma} (\epsilon/m)^{1/2} = \epsilon/\sigma$

¶ pressure: ϵ/σ^2

¶ temperature: ε/k_B

5. INTEGRATOR

need a symplectic integrator because:

- ▶ preserves phase space volume
- ▶ preserves conservation laws
- ▶ time reversible
- ▶ accurate for large time steps, to reduce cpu time needed for the total time of the simulation.

¶ velocity verlet

$$x_{n+1} = x_n + v_n \Delta t + \frac{1}{2} a_n (\Delta t)^2$$

$$v_{n+1} = v_n + \frac{1}{2}(a_{n+1} + a_n) \Delta t$$

- ▶ this is only for one component of a particle's motion.
- ▶ you use the new position, $x_{(n+1)}$, to find the new acceleration, $a_{(n+1)}$.
- ▶ then you use both the new acceleration $a_i(n+1)$ and the current acceleration $a_i(n)$ to find the new velocity $v_i(n+1)$.

6. PERIODIC BOUNDARY CONDITIONS

if a particle leaves the box it should "reenter" from the opposite edge/wall.

note, irl, the effects of collisions with walls is negligible. the fraction of particles interacting with walls is small compared to the total number of particles. in the simulation, we have a finite size problem.

\P minimum image approximation

use one "class" to represent all N particles.

store the x,y comps of pos and vel in the state array. store accelerations of pcls in separate array.

you need to figure out a scheme for initialising the positions and velocities.

- ▶ for velocities, use the equipartition theorem
- ▶ for positions, there are a few ways. the easiest way to get a config with a desired density is to place them on a regular lattice.

the most time consuming part of the program is computing the accelerations of the particles.

8. INITIAL VELOCITIES

equipartition theorem: the average KE of a particle per degree of freedom, $K_{\mathrm{pp},\mathrm{pdof}}$ is:

$$K_{pp,pdof} = \frac{1}{2} k_B T \tag{3}$$

also, mind that:

$$K_{pp,pdof} = K_{total} / numDoFs$$

$$= K_{pp} / d$$

$$= K_{total} / Nd$$
(4)

- ▶ N is the number of particles, d is number of spatial dimensions.
- ▶ and K_{total} is the average total KE of the system, i.e. $\sum_i \frac{1}{2} m_{[i]} {\nu_{[i]}}^2$ for all the particles in the system

∴ define temperature at time t:

$$k_{B}T(t) = \frac{2K_{total}(t)}{Nd} = \frac{1}{Nd} \sum_{i=1:N} m_{[i]} \left(\vec{v}_{[i]}(t) \bullet \vec{v}_{[i]}(t) \right)$$
 (5)