Deep Learning - Lab 7 Exercise

Han Zhang

hz5g21@soton.ac.uk

Exercise 1

Exercise 1.1:Complete and train a sequence-to-sequence model.

The small snippet of code is listed as follows.

```
def forward(self, src):
# TODO
embedded = self.embedding(src)
output,(hidden, cell) =
    self.rnn(embedded)
return hidden, cell
```

The loss curves of training and validation are shown in Figures 1 and 2.

Figure 1: Loss function of training

Figure 2: Loss function of validation

Exercise 1.2:now use it!

1. why is the order of the output reversed?

Reversing the order of words in all source sentences will improve the LSTM's performance markedly since it introduced many short-term dependencies between the source and the target sentence which made the optimization problem easier. This causes the output reversed.

2. what is the point of teacher forcing?

Teacher forcing is a strategy for training recurrent neural networks that use ground truth as input for t+1, instead of model output from a prior time step t as an input. This is done to speed up convergence and improve model skills.

Exercise 1.3: Sequence Lengths.

Predicting a longer chunk is problematic in this model. Modify the function to work with 2 sets in one chunk. The results demonstrate that sentences have missing letters at the beginning and end. This indicates that a longer chunk has some problems to work with at the beginning and end. It is because of the maximum sequence length of only 6. A model with a shorter training sequence performs poorly on longer chunks.

```
.--. ... / ... / ... / ... original = answer the following longer chunk = nswer the followin
```

This phenomenon may result from the mechanism in LSTM. Based on the training set, an LSTM model is trained to have a fixed term of memory. If it is subsequently given a piece of code that is far longer than the sequence in the training dataset, it will invariably fail to preserve that lengthy memory.