Grandezas físicas e suas derivações INF2604 – Fundamentos de Computação Gráfica

Waldemar Celes

Departamento de Informática, PUC-Rio

Luz

Luz visível: comprimento de onda λ de 380 nm a 780 nm

ightharpoonup Azul: $\lambda \approx 400nm$

▶ Verde: $\lambda \approx 550nm$

▶ Vermelho: $\lambda \approx 650nm$

Grandezas

► Fluxo

► Intensidade

► Irradiância

Radiância

Distribuição espectral

Grandezas variam conforme comprimento de onda: espectro

- ► Exemplo: refletância de uma casca de limão
 - ► Relação entre luminosidade refletica da superfície e o fluxo luminoso incidente

Representação do espectro

Funções bases

- ► Modelo de cor XYZ
 - Cobre o espectro visível pelo ser humano
 - ► Correspondem à resposta dos três cones do ser humano sensível a cores

Representação do espectro

- ► Modelo de cor RGB
 - ► Diferença entre displays LCD e LED
 - \blacktriangleright Diferença de resposta para o valor (r,g,b)=(0.6,0.3,0.2)
- ► Curvas de emissão RGB: LCD e LED

Representação do espectro

- ► Modelo de cor RGB
 - ► Diferença entre displays LCD e LED
 - ▶ Diferença de resposta para o valor (r, g, b) = (0.6, 0.3, 0.2)
- ► Curvas de emissão RGB: LCD e LED

► Distribuição espectral: LCD e LED

Modelos de cores

Conversão entre modelos: XYZ e sRBG

```
inline void XYZToRGB(const float xyz[3], float rgb[3]) {
    rgb[0] = 3.240479f*xyz[0] - 1.537150f*xyz[1] - 0.498535f*xyz[2];
    rgb[1] = -0.969256f*xyz[0] + 1.875991f*xyz[1] + 0.041556f*xyz[2];
    rgb[2] = 0.055648f*xyz[0] - 0.204043f*xyz[1] + 1.057311f*xyz[2];
}
inline void RGBToXYZ(const float rgb[3], float xyz[3]) {
    xyz[0] = 0.412453f*rgb[0] + 0.357580f*rgb[1] + 0.180423f*rgb[2];
    xyz[1] = 0.212671f*rgb[0] + 0.715160f*rgb[1] + 0.072169f*rgb[2];
    xyz[2] = 0.019334f*rgb[0] + 0.119193f*rgb[1] + 0.950227f*rgb[2];
}
```


Radiometria

Descreve propagação e reflexão da luz

► Baseado em um modelo de partículas (não trata polarização)

Propriedades da luz

- Linearidade: a combinação de efeitos é igual a soma dos efeitos
- Conservação de energia: a dispersão da luz não pode ser maior que a incidência
- ▶ Sem fluorescência: cada comprimeto de onda do espectro é independente
- Estado de equilíbrio: a luz no ambiente em equilíbrio, não se altera com o tempo

Energia Q (joules, J)

Fótons emitidos por uma fonte de luz carregam energia

Fluxo radiante ou Potência (watts, W=J/s)

Quantidade de energia emitida por unidade de tempo

$$\Phi = \frac{dQ}{dt}$$

Irradiância $E(W/m^2)$

► Quantidade de fluxo por unidade de área

Irradiância E (W/m^2)

- ► Quantidade de fluxo por unidade de área
 - ► De uma fonte de luz pontual

$$E = \frac{\Phi}{4\pi r^2}$$

Irradiância $E(W/m^2)$

- Quantidade de fluxo por unidade de área
 - ► De uma fonte de luz pontual

$$E = \frac{\Phi}{4\pi r^2}$$

- ► Atenuação com o ângulo de incidência
 - ► Lei de Lambert

$$E = \frac{\Phi \, \cos \theta}{4\pi r^2}$$

Ângulo sólido

Ângulo planar

ightharpoonup Comprimento de arco projetado em um círculo unitário (em radianos r)

Ângulo sólido

Ângulo planar

ightharpoonup Comprimento de arco projetado em um círculo unitário (em radianos r)

Ângulo sólido

- lacktriangle Área projetada em um hemisfério unitário (em esferorradiano (steradian) sr)
 - lacktriangle Ângulo sólido de um hemisfério: $2\pi \ sr$

Intensidade

Mede a distribuição direcional da luz

- lacktriangle Densidade de energia por unidade de ângulo sólido (W/sr)
 - ► Em todas as direções de um esfera:

$$I = \frac{\Phi}{4\pi}$$

► Na direção de um cone diferencial

$$I = \frac{d\Phi}{d\omega}$$

Radiância

Mede irradiância em relação a um ângulo sólido $(W/(m^2sr))$

$$L(\mathbf{p},\omega) = \frac{dE_{\omega}}{d\omega}$$

lacktriangle onde E_ω representa a irradiância na superfície perpendicular a ω

Radiância é a densidade de fluxo por unidade de área e unidade de ângulo sólido

$$L = \frac{d\Phi}{d\omega \, dA^{\perp}}$$

Radiância

Radiância incidente (de entrada): $L_i(\mathbf{p}, \omega)$

► Radiância que chega em um ponto na superfície

Radiância de saída: $L_o(\mathbf{p},\omega)$

► Radiância que sai de um ponto na superfície

Integrando grandezas radiométricas

Irradiância em torno de um ponto ${f p}$ com normal \hat{n}

► Como:

$$L(\mathbf{p},\omega) = \frac{dE_{\omega}}{d\omega}$$

► Temos:

$$E(\mathbf{p}, \hat{n}) = \int_{\Omega} L_i(\mathbf{p}, \omega) \cos \theta \, dw$$

Imagens extraídas de Physically Based Rendering, Pharr et al. (www.pbr-book.org)

Integrando grandezas radiométricas

Irradiância em torno de um ponto ${f p}$ com normal \hat{n}

► Como:

$$L(\mathbf{p},\omega) = \frac{dE_{\omega}}{d\omega}$$

► Temos:

$$E(\mathbf{p}, \hat{n}) = \int_{\Omega} L_i(\mathbf{p}, \omega) \cos \theta \, dw$$

Integral no hemisfério

▶ Por que integral em relação ao ângulo sólido? Temos outras alternativas?

Integrando sobre área

Muitas vezes é mais adequado integrar sobre a área (antes da projeção para ângulo sólido)

► Relação entre ângulo sólido diferencial e área diferencial

$$d\omega = \frac{dA \cos \theta}{r^2}$$

lacktriangle onde heta é o ângulo entre a normal de dA e o vetor em direção à ${f p}$

Integrando sobre área

Integral da irradiância:

$$E(\mathbf{p}, \hat{n}) = \int_{A} L \cos \theta_{i} \frac{\cos \theta_{o}}{r^{2}} dA$$

Integrando sobre coordenadas esféricas

Muitas vezes é mais adequado integrar usando coordenadas esféricas (em especial, quando se deseja avaliar a integral analiticamente)

$$x = \sin \theta \cos \phi$$
$$y = \sin \theta \sin \phi$$
$$z = \cos \theta$$

$$d\omega = \sin\theta \, d\theta \, d\phi$$

Vamos trabalhar trocando x com y, invertendo ϕ

Logo:

$$E(\mathbf{p}, \hat{n}) = \int_0^{2\pi} \int_0^{\pi/2} L_i(\mathbf{p}, \theta, \phi) \cos \theta \sin \theta \, d\theta \, d\phi$$

Integrando sobre coordenadas esféricas

Exemplo:

- ▶ Distribuição constante em todo o hemisfério: $L_i(\mathbf{p}, \theta, \phi) = k$
 - ► Tem-se:

$$E(\mathbf{p}, \hat{n}) = \int_0^{2\pi} \int_0^{\pi/2} k \cos \theta \sin \theta \, d\theta \, d\phi$$

$$E(\mathbf{p}, \hat{n}) = k \int_0^{2\pi} \int_0^{\pi/2} \cos \theta \sin \theta \, d\theta \, d\phi$$

$$E(\mathbf{p}, \hat{n}) = k 2\pi \int_0^{\pi/2} \cos \theta \sin \theta \, d\theta$$

$$E(\mathbf{p}, \hat{n}) = k 2\pi \int_0^{\pi/2} \cos \theta \sin \theta \, d\theta$$

$$E(\mathbf{p}, \hat{n}) = k 2\pi \int_0^{\pi/2} \cos \theta \sin \theta \, d\theta$$

$$E(\mathbf{p}, \hat{n}) = k 2\pi \frac{1}{2} = k \pi$$

Reflexão da superfície

Interação luz-matéria

► Reflexão de parte da luz de volta para o ambiente

Modelagem da reflexão

- ► Distribuição espectral da luz refletida
- Distribuição direcional

Bidirectional reflectance distribuition function (BRDF)

lacktriangle Mede a radiância refletida na direção ω_o devido a luz incidente na direção ω_i

Considerando uma direção diferencial $d\omega_i$, a irradiância diferencial $dE(\mathbf{p},\omega_i)$ é:

$$dE(\mathbf{p},\omega_i) = L_i(\mathbf{p},\omega_i) \cos \theta_i d\omega_i$$

Propriedade de linearidade

A radiância diferencial refletida é proporcional à irradiância diferencial

$$dL_o(\mathbf{p}, \omega_o) \propto dE(\mathbf{p}, \omega_i)$$

A constante de proporcionalidade define o BRDF:

$$f_r(\mathbf{p}, \omega_o, \omega_i) = \frac{dL_o(\mathbf{p}, \omega_o)}{dE(\mathbf{p}, \omega_i)} = \frac{dL_o(\mathbf{p}, \omega_o)}{L_i(\mathbf{p}, \omega_i)\cos\theta_i d\omega_i}$$

BRDF tem duas propriedades físicas importantes:

lacktriangle Reciprocidade: para qualquer par de direção ω_i e ω_o

$$f_r(\mathbf{p}, \omega_o, \omega_i) = f_r(\mathbf{p}, \omega_i, \omega_o)$$

- Conservação de energia
 - A energia de toda a luz refletida é menor ou igual à energia da luz incidente

$$\int_{\Omega} f_r(\mathbf{p}, \omega_o, \omega') \cos \theta' d\omega' \le 1$$

Categorias

▶ Diffuse, Glossy specular, Perfect specular e Retro-reflexive

Função básica: retorna o valor da função de distribuição

► Em geral, independente da posição

$$[r, g, b] = f_r(\omega_o, \omega_i)$$

Materiais translúcidos

Bidirectional Transmittance distribuition function (BTDF)

► A propriedade de reciprocidade não é observada

$$f_t(\mathbf{p},\omega_o,\omega_i)$$

Unindo reflexão e refração

- ▶ BSTF: bidirectional scattering distribuition function
 - ► Integrando sobre toda a esfera ao redor do ponto

$$L_o(\mathbf{p}\omega_o) = \int_{S^2} f(\mathbf{p}, \omega_o, \omega_i) L_i(\mathbf{p}, \omega_i) |\cos \theta_i| d\omega_i$$

BSSRDF

Bidirectional scattering surface reflectance distribution function

 Descreve dispersão em materiais que apresentam quantidade significativa de transporte de luz na subsuperfície

$$S(\mathbf{p}_o, \omega_o, \mathbf{p}_i, \omega_i) = \frac{dL_o(\mathbf{p}_o, \omega_o)}{d\Omega(\mathbf{p}_i, \omega_i)}$$

Generalização envolve também integrar sobre a área

$$L_o(\mathbf{p}_o, \omega_o) = \int_A \int_{\Omega} S(\mathbf{p}_0, \omega_o, \mathbf{p}_i, \omega_i) L_i(\mathbf{p}_i, \omega_i) |\cos \theta_i d\omega_i dA$$

Transporte de luz

Luz total recebida em um ponto x

▶ Integral de luz recebida de todo o hemisfério normal à superfície em x

$$L_i(\mathbf{x}) = \int_{\Omega} L_i(\mathbf{x}, w) \cos \theta_x \ dw$$

- Onde:
 - $ightharpoonup L_i(\mathbf{x})$: luz no ponto \mathbf{x}
 - $ightharpoonup L_i(\mathbf{x},w)$: luz no ponto \mathbf{x} proveniente de w
 - ▶ w: ângulo sólido
- Regra do cosseno:

W. Celes

Equação de renderização

$$L_o(\mathbf{p}, \hat{w}_o) = L_e(\mathbf{p}, \hat{w}_o) + \int_{\Omega} f_r(\mathbf{p}, \hat{w}_o, \hat{w}_i) L_i(\mathbf{p}, \hat{w}_i) \cos \theta \ dw_i$$

Modelos de iluminação

Modelos de iluminação

Modelo local: Traçado de Raios

Modelo global: Traçado de Caminhos

