Psychological Statistics

Week 04: Comparing means of 2 groups (Parametric)

- Edited by Prof. Changwei Wu
- Graduate Institute of Mind, Brain and Consciousness (GIMBC), Taipei Medical University

```
In []:
### [ Setup the working directory ]
setwd("/Users/wesley/[Course]/Python/R_Script")
getwd()

In [18]:

### [ Loading the required libraries ]
library("tidyverse")
library("rstatix")
library("effsize")
library("ggplot2")
library("ggpubr")
```

(1) Pipe functions {dplyr}

```
In [65]:

### 1-1.[ Use %>% for transfer output to the next level ]

# - Loading the dataset
  data(diamonds)

# - using pipeline
  dim(head(diamonds,4))

diamonds %>% head(4) %>% dim
```

- 4 · 10
- 4 · 10

In [63]:

```
### 1-2.[ To select specific column (vector) from a 2-D data frame by "select"]
# head(diamonds,5)

# → Only select 2 columns: Carat & Price
diamonds %>% select(carat, price) %>% head(3)
# diamonds[, c('carat','price')] # → Traditional way

# → NOT to select 2 columns: Carat & Price
diamonds %>% select(-carat, -price) %>% head(3)
```

A tibble: 3 × 2

carat	price		
<dbl></dbl>	<int></int>		
0.23	326		
0.21	326		
0.23	327		

A tibble: 3 × 8

cut	color	clarity	depth	table	x	У	z
<ord></ord>	<ord></ord>	<ord></ord>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
Ideal	Е	SI2	61.5	55	3.95	3.98	2.43
Premium	Е	SI1	59.8	61	3.89	3.84	2.31
Good	Ε	VS1	56.9	65	4.05	4.07	2.31

In [62]:

```
### 1-3.[ To select the row values in a certain column (vector) by "filter" ]
#--- Traditional way to choose ideal cut ---#
#diamonds[diamonds$cut == 'Ideal', ]

# → pipe function
diamonds %>% filter(cut == 'Ideal') %>% head(3)

diamonds %>% filter(cut %in% c('Ideal', 'Good')) %>% head(3)

diamonds %>% filter(carat > 2 & price < 6000)

# diamonds$carat <- ifelse(diamonds$carat > 1, 1, diamonds$carat)
```

A tibble: 3 × 10

carat	cut	color	clarity	depth	table	price	X	у	z
<dbl></dbl>	<ord></ord>	<ord></ord>	<ord></ord>	<dbl></dbl>	<dbl></dbl>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
0.23	Ideal	Е	SI2	61.5	55	326	3.95	3.98	2.43
0.23	Ideal	J	VS1	62.8	56	340	3.93	3.90	2.46
0.31	Ideal	J	SI2	62.2	54	344	4.35	4.37	2.71

A tibble: 3 × 10

carat	cut	color	clarity	depth	table	price	X	У	Z	
<dbl></dbl>	<ord></ord>	<ord></ord>	<ord></ord>	<dbl></dbl>	<dbl></dbl>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	
0.23	Ideal	Е	SI2	61.5	55	326	3.95	3.98	2.43	
0.23	Good	Е	VS1	56.9	65	327	4.05	4.07	2.31	
0.31	Good	J	SI2	63.3	58	335	4.34	4.35	2.75	

A tibble: 7 × 10

carat	cut	color	clarity	depth	table	price	X	У	z
<dbl></dbl>	<ord></ord>	<ord></ord>	<ord></ord>	<dbl></dbl>	<dbl></dbl>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
2.06	Premium	J	I1	61.2	58	5203	8.10	8.07	4.95
2.14	Fair	J	I1	69.4	57	5405	7.74	7.70	5.36
2.15	Fair	J	I1	65.5	57	5430	8.01	7.95	5.23
2.22	Fair	J	I1	66.7	56	5607	8.04	8.02	5.36
2.01	Fair	1	I1	67.4	58	5696	7.71	7.64	5.17
2.01	Fair	1	I1	55.9	64	5696	8.48	8.39	4.71
2.27	Fair	J	I1	67.6	55	5733	8.05	8.00	5.43

In [6]:

A tibble: 3 × 3

carat	price	price/carat
<dbl></dbl>	<int></int>	<dbl></dbl>
0.23	326	1417.391
0.21	326	1552.381
0.23	327	1421.739

A tibble: 3 × 4

carat	price	Ratio	Double
<dbl></dbl>	<int></int>	<dbl></dbl>	<dbl></dbl>
0.43	452	1051.163	2102.326
0.32	345	1078.125	2156.250
0.31	335	1080.645	2161.290

In [17]:

```
### 1-5.[ To conduct analysis by categorical levels in a vector by "group_by"]
# → Additional function: summarize [to calculate the descriptive stat. by function r
diamonds %>% summarize(mean(price))

diamonds %>% group_by(cut) %>%
    summarize(AvgPrice=mean(price), SumCarat=sum(carat))

# aggregate(price~cut, diamonds, mean) # Traditional way
```

A tibble: 1×1

mean(price)

<dbl>

3932.8

A tibble: 5×3

	cut	AvgPrice	SumCarat
	<ord></ord>	<dbl></dbl>	<dbl></dbl>
	Fair	4358.758	1684.28
	Good	3928.864	4166.10
Ve	ry Good	3981.760	9742.70
F	Premium	4584.258	12300.95
	Ideal	3457.542	15146.84

In [61]:

```
### 1-6.[ To change the wide form to long form through pipe function]
# → Function: gather {tidyr}

data("mice2", package = "datarium")
head(mice2, 3)

#---- Data restructure (Wide → Long) ----#
mice2.long <- mice2 %>%
    gather(key = "group", value = "weight", before, after)
head(mice2.long, 3)
```

A data.frame: 3 × 3

	id	before	after	
	<int></int>	<dbl></dbl>	<dbl></dbl>	
1	1	187.2	429.5	
2	2	194.2	404.4	
3	3	231.7	405.6	

A data.frame: 3 × 3

	id	group	weight
	<int></int>	<chr></chr>	<dbl></dbl>
1	1	before	187.2
2	2	before	194.2
3	3	before	231.7

(2) Student's t Test

Example A: Spider Anxiety (as of one single group)

[Hypothesis] The anxiety level is different from 0. (2-tailed)

```
• Null hypothesis H_0: Anxiety(spider) = 0
```

• Alternative hyp. **H₁:** Anxiety(spider) ≠ 0

In [149]:

```
### [ Step.1 ] Data loading and Descriptive stat.
#---- Data preparation ----#
Spider <- read.delim("SpiderLong.dat")
#---- Descriptive stat. ----#
#Spider %>% get_summary_stats(Anxiety)
Spider %>% get_summary_stats(Anxiety, type = "mean_sd")
```

A tibble: 1 × 4

variable	n	mean	sd
<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
Anxiety	24	43.5	10.595

In [150]:

```
### [ Step.2 ] Assumption check

#---- (a) Outliers ----#
Spider %>% identify_outliers(Anxiety)

#---- (b) Normality ----#
Spider %>% shapiro_test(Anxiety)

ggqqplot(Spider, x = "Anxiety")
```

A data.frame: 0 × 4

Group Anxiety is.outlier is.extreme <fct> <int> <lgl> <lgl> <lgl>

A tibble: 1 × 3

variable	statistic	р
<chr></chr>	<dbl></dbl>	<dbl></dbl>
Anxiety	0.9628216	0.4976814


```
In [7]:
```

```
### [ Step.3 ] one-sample t-test

(OneSamp.test <- Spider %>% t_test(Anxiety ~ 1, mu = 0))
```

A rstatix_test: 1 × 7

```
        .y.
        group1
        group2
        n
        statistic
        df
        p

        <chr>
        <chr>
        <chr>
        1
        Anxiety
        1
        null model
        24
        20.11318
        23
        4.28e-16
```

In [132]:

```
### [ Step.4 ] Effect size
Spider %>% cohens_d(Anxiety ~ 1, mu = 0)
```

A rstatix_test: 1 × 6

magnitude	n	effsize	group2	group1	.у.	
<ord></ord>	<int></int>	<dbl></dbl>	<chr></chr>	<chr></chr>	<chr></chr>	
large	24	4.105585	null model	1	Anxiety	1

In [135]:

```
Warning message:
"`fun.y` is deprecated. Use `fun` instead."
Warning message:
"`fun.ymin` is deprecated. Use `fun.min` instead."
Warning message:
```


~ Report ~

- A one-sample t-test exhibited that the measured anxiety level (43.5 \pm 10.6) was statistically significantly higher than 0 ($t_{23} = 20.1$, p < .001, d = 4.1).
- [Optional]: The anxiety level was normally distributed, as assessed by Shapiro-Wilk's test (p > 0.05) and there were no extreme outliers in the data.

Example B: Spider Anxiety (as of 2 independent groups)

[Hypothesis] Anxiety of viewing real spider is different from anxiety of viewing spider picture. (2-tailed)

- Null hypothesis **H**₀: Anxiety(real spider) = Anxiety(spider picture)
- Alternative hyp. H₁: Anxiety(real spider) ≠ Anxiety(spider picture)

In [9]:

'Picture' · 'Real Spider'

'Real Spider' · 'Picture'

'Real' · 'Picture'

A tibble: 2 × 5

G	roup	variable	n	mean	sd
•	<fct></fct>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
	Real	Anxiety	12	47	11.029
Pi	cture	Anxiety	12	40	9.293

```
In [10]:
```

```
### [ Step.2 ] Assumption check

#---- (a) Outliers ----#
Spider %>% group_by(Group) %>%
    identify_outliers(Anxiety)

#---- (b) Normality ----#
Spider %>% group_by(Group) %>%
    shapiro_test(Anxiety)

#ggqqplot(Spider, x = "Anxiety", facet.by = "Group")

#---- (c) Homogeneity ----#
Spider %>% levene_test(Anxiety ~ Group)
```

A data.frame: 0 × 4

Group Anxiety is.outlier is.extreme

<fct> <int> <int> <lgl> <lgl> <lgl>

A tibble: 2 × 4

 Group
 variable
 statistic
 p

 <fct>
 <chr>
 <dbl>
 <dbl>

 Real
 Anxiety
 0.9488729
 0.6205694

 Picture
 Anxiety
 0.9650165
 0.8522870

A tibble: 1 × 4

 df1
 df2
 statistic
 p

 <int>< <int>< <dbl>< <dbl>< <dbl>
 <dbl>

 1
 22
 0.2990654
 0.5899734

In [11]:

A rstatix_test: 1 × 9

```
.y. group1 group2
                           n1
                                  n2
                                       statistic
                                                       df
                                                               p p.signif
 <chr>
         <chr>
                  <chr>
                         <int> <int>
                                          <dbl>
                                                    <dbl> <dbl>
                                                                    <chr>
Anxiety
           Real
                 Picture
                            12
                                  12 1.681346 21.38502 0.107
                                                                       ns
```

In [12]:

```
### [ Step.4 ] Effect size
Spider %>% cohens_d(Anxiety ~ Group)
```

A rstatix_test: 1 × 7

	.у.	group1	group2	effsize	n1	n2	magnitude
	<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>	<int></int>	<int></int>	<ord></ord>
1	Anxiety	Real	Picture	0.6864065	12	12	moderate

In [13]:

~ Report ~

• A two-sample t-test exhibited that the anxiety level of the real-spider group (47.0 \pm 11.0) was NOT significantly higher than the anxiety level of the spider-picture group (40.0 \pm 9.3) ($t_{21.4}$ = 1.68, p = .11, d = 4.1).

• [Optional]: The anxiety levels of both groups were normally distributed (Shapiro-Wilk's test, p > .05) and fulfill the assumption of variance homogeneity (Levene's test, p > .05).

Example C: Spider Anxiety (as of 2 repeated measures)

[Hypothesis] Anxiety of viewing real spider is higher than anxiety of viewing spider picture. (1-tailed)

- Null hypothesis **H**₀: Anxiety(real spider) ≤ Anxiety(spider picture)
- Alternative hyp. H₁: Anxiety(real spider) > Anxiety(spider picture)

In [14]:

```
### [ Step.1 ] Data restructure (Long → Wide)

#---- Set up subject number ----#
Spider$Subj <- seq(1,12) %>% rep(2)

#---- Data restructure (Wide → Long) ----#
SpiderW <- Spider %>% spread(Group, Anxiety)
(SpiderW <- SpiderW %>% mutate(diff=Real-Picture))
```

A data.frame: 12 × 4

Subj	Real	Picture	diff
<int></int>	<int></int>	<int></int>	<int></int>
1	40	30	10
2	35	35	0
3	50	45	5
4	55	40	15
5	65	50	15
6	55	35	20
7	50	55	-5
8	35	25	10
9	30	30	0
10	50	45	5
11	60	40	20
12	39	50	-11

```
In [155]:
```

```
### [ Step.2- Step.4 ] Traditional Usage of t-test
# → not using {rstatix} package

pastecs::stat.desc(SpiderW$diff, basic = FALSE, desc = FALSE, norm = TRUE)

(Paired.test <- t.test(SpiderW$Real, SpiderW$Picture, paired = TRUE))

effsize::cohen.d(SpiderW$Real, SpiderW$Picture, paired=TRUE)</pre>
```

skewness: -0.246481020501118 skew.2SE: -0.193378506887084 kurtosis:

-1.23421588806977 kurt.2SE: -0.500799115342087 normtest.W: 0.955790347989211

normtest.p: 0.72248006204431

Paired t-test

```
data: SpiderW$Real and SpiderW$Picture
t = 2.4725, df = 11, p-value = 0.03098
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    0.7687815 13.2312185
sample estimates:
mean of the differences
```

Cohen's d

In [16]:

```
### [ Step.2- Step.4 ] Traditional Usage of t-test
# → using {rstatix} package

SpiderW %>% t_test(diff ~ 1, mu = 0)

SpiderW %>% cohens_d(diff ~ 1, mu = 0)
```

A rstatix_test: 1 × 7

	.у.	group1	group2	n	statistic	df	р
	<chr></chr>	<chr></chr>	<chr></chr>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	diff	1	null model	12	2.472533	11	0.031

A rstatix_test: 1 × 6

magnitude	n	effsize	group2	group1	.у.	
<ord></ord>	<int></int>	<dbl></dbl>	<chr></chr>	<chr></chr>	<chr></chr>	
moderate	12	n 7137580	null model	1	diff	4

In [166]:

~ Report ~

- A paired t-test exhibited that the anxiety level of watching real spider (47.0 \pm 11.0) was higher than the anxiety level of watching spider picture (40.0 \pm 9.3) of the same subjects (t_{11} = 2.47, p = .031, d = 0.68).
- [Optional]: The difference of anxiety level was normally distributed (Shapiro-Wilk's test, p > .05).