Generate Collection

L16: Entry 11 of 29

File: USPT

Apr 21, 1998

DOCUMENT-IDENTIFIER: US 5741519 A

TITLE: The production of active substance compositions in the form of a solid solution of the active substance in a polymer matrix, and active substance compositions produced by this process

BSPR:

Melt extrusion processes for producing drug forms (tablets, pellets, granules) are described in the literature. The combination of an extrusion step with a subsequent shaping step, in particular, makes this process a very straightforward, because single-stage (and thus cost-saving), method for producing drug forms such as tablets (DE-A-1 766 546 and U.S. Pat. No. 4,880,585). These and other references (EP-A-580 860) mention that the thermal processing during the extrusion cause the active substance, owing to the melting, to be incorporated in the form of a molecular dispersion into the likewise molten polymer melt. This is manifested by the fact that clear transparent melts containing active substances are formed, and these usually do not recrystallize after these compositions have been cooled to room temperature, but on the contrary maintain their molecular dispersion.

Formulations which contain the active substance in nonionic form are, however, disadvantageous in many cases, because it is often only the corresponding salts of the active substance which have sufficient solubility in the aqueous medium. This means that although there is rapid release of the (molecular) active substance from the solid solutions in the drug form (eg. tablets), there is in this case no release of a salt which is readily soluble in water, so that recrystallization may rapidly occur. However, sufficient solubility in water is indispensable inter alia to make satisfactory absorption possible.

In a few cases it is also possible for the novel process to be used to make active substances which have hitherto been administered predominantly in their nonionic form more bioavailable by specific salt formation. One example of this is the active substance ibuprofen, which carries a (protonated) carboxyl group. Ibruprofen is employed for the therapy of pain, which generally requires a rapid onset of action (eg. headache tablet). However, the precondition for rapid display of the action is that the active substance rapidly dissolves after oral administration (eg. after taking a tablet) so that the following absorption can take place rapidly. Thus, preparations with a high rate of dissolution of the active substance are advantageous in this case. Solid solutions based on the nonionic active substance, which even on their own contribute to rapid solubilization, are described in the literature (EP-A-580 860). However, these preparations have disadvantages because the active substance is present in the nonionic form which has low solubility in water, which in fact makes it possible to prepare the solid solutions. On the other hand, the salts with better solubility in water are required for rapid therapy.

BSPR:

These previously disclosed formulations based on solid solutions can be improved by using the process according to the invention via specific salt formation because ibuprofen salts have better solubility in water than the nonionic active substance. This increases the rate of release of active substance from the drug form (eg. <u>tablet</u>), as can easily be shown by the in vitro release method conventional for this purpose.

BSPR:

The preparations according to the invention are produced in conventional processes, preferably in single or twin screw extruders, with particular preference for corotating twin screw extruders because their mixing action is more intensive. Shaping of the melts containing active substance can take place in a variety of ways. Direct melt calendering, for example to tablets, is possible as described in EP-A 240 906. It is likewise possible to produce pellets by cutting thin extrudates with rotating knives as described in DE-A 38 30 355. Both processes have the advantage that they can be carried out continuously and directly after the extrusion step (quasi on-line). However, it is also possible to allow the extruded melts to cool and only then to carry out further steps for shaping, eg. milling to granules which can be used for instant drinks or which can be packed in hard gelatin capsules or compressed to tablets. The compositions according to the invention are generally employed as drugs. However, it is also possible to process active substances which are known, for example, for the treatment of plant diseases and for eradicating insects by the process according to the invention. Active substances for the purpose of the process according to the invention also include vitamins and minerals (eg. trace elements).

DEPR:

A powder mixture consisting of 20.0% by weight of ibuprofen (nonionic) and 80% by weight of vinylpyrrolidone/vinyl acetate copolymer (Kollidon VA-64 (BASF)) was extruded in a twin screw extruder (ZSK-30, Werner and Pfleiderer) to give a clear transparent melt. The melt was compressed immediately after leaving the extruder to oblong tablets weighing about 1000 mg with the aid of a molding calender by the process disclosed in U.S. Pat. No. 4,880,585. The extrusion conditions were set as follows:

DEDE

Release of active substance from these <u>tablets</u> was determined by the USP paddle method

DEPR

The release of active substance from the oblong <u>tablets</u> weighing about 1000 mg obtained as in Example 1 was determined by the same method:

DB Name	Query	<u>Hit</u> Count	<u>Set</u> <u>Name</u>
USPT,PGPB,JPAB,EPAB,DWPI	5290569.pn. and cyclodextrin	2	<u>L30</u>
USPT,PGPB,JPAB,EPAB,DWPI	4880585.pn.	3	<u>L29</u>
USPT.PGPB.JPAB,EPAB,DWPI	127 and (lactose or mannitol or sugar or sucrose)	255	<u>L28</u>
USPT,PGPB,JPAB,EPAB,DWPI	125 and (tablet or pills)	309	<u>L27</u>
USPT,PGPB,JPAB,EPAB,DWPI	125 and 18	23	<u>L26</u>
USPT,PGPB,JPAB,EPAB,DWPI	12 not carboxylic	705	<u>L25</u>
USPT,PGPB,JPAB,EPAB,DWPI	14 and 18	20	<u>L24</u>
USPT,PGPB,JPAB,EPAB,DWPI	119 and 18	30	<u>L23</u>
USPT,PGPB,JPAB,EPAB,DWPI	121 and tablet\$	271	<u>L22</u>
USPT,PGPB,JPAB,EPAB,DWPI	119 not 220	379	<u>L21</u>
USPT.PGPB,JPAB,EPAB,DWPI	14 and calender\$	6	<u>L20</u>
USPT,PGPB,JPAB,EPAB,DWPI	12 same (mannitol or sucrose or xylitol or sugar or lactose)	453	<u>L19</u>
USPT,PGPB,JPAB,EPAB,DWPI	12 and (mannitol or sucrose or xylitol or sugar or lactose)	739	<u>L18</u>
USPT,PGPB,JPAB,EPAB,DWPI	4880585.pn.	3	<u>L17</u>
USPT,PGPB,JPAB,EPAB,DWPI	112 and (tablets or pills)	29	<u>L16</u>
USPT,PGPB,JPAB,EPAB,DWPI	112 and (solid)	527	<u>L15</u>
USPT,PGPB,JPAB,EPAB,DWPI	112 and ROSENBERG	14	<u>L14</u>
USPT,PGPB,JPAB,EPAB,DWPI	112 and 18	2	<u>L13</u>
USPT,PGPB,JPAB,EPAB,DWPI	(melt or mold\$ or mould\$) adj1 calender\$	1231	<u>L12</u>
USPT,PGPB,JPAB,EPAB,DWPI	110 and (\$cyclodextrin or cyclodextrin)	74	<u>L11</u>
USPT,PGPB,JPAB,EPAB,DWPI	18 and ((process or method) adj2 (making or producing))	1169	<u>L10</u>
USPT,PGPB,JPAB,EPAB,DWPI	18 and 12	40	<u>L9</u>
USPT,PGPB,JPAB,EPAB,DWPI	solid adjl dosage adjl form	5008	<u>L8</u>
USPT,PGPB,JPAB,EPAB,DWPI	14 and (process adj2 making)	5	<u>L7</u>
USPT,PGPB,JPAB,EPAB,DWPI	l4 and (molding)	11	<u>L6</u>
USPT,PGPB,JPAB,EPAB,DWPI	14 and (molding adj1 calendar)	0	<u>L5</u>
USPT,PGPB,JPAB,EPAB,DWPI	13 not carboxylic	251	<u>L4</u>
USPT,PGPB,JPAB,EPAB,DWPI	12 same (mannitol or sugar or sucrose or lactose)	453	<u>L3</u>
USPT,PGPB,JPAB,EPAB,DWPI	cyclodextrin same ((polyethylene adj1 glycol) or	1088	<u>L2</u>
USPT,PGPB,JPAB,EPAB,DWPI	cyclodextrin	12813	<u>L1</u>

Set Name Query			Hit Count Set Name	
side by side		r	esult set	
DB=U	SPT,PGPB,JPAB,EPAB,DWPI; PLUR=YES; OP=OR	2.4	1.07	
<u>L27</u>	L26 and (extrusion or extrudable)	34	<u>L27</u>	
L26	L25 and tablet	486	<u>L26</u>	
L25	L24 and (drug or active)	644	<u>L25</u>	
L24	((polyvinylpyrrolidone or PVP) same cyclodextrin)	714	<u>L24</u>	
<u>L23</u>	L22 and cyclodextrin	43	<u>L23</u>	
L22	L21 and PVP	343	<u>L22</u>	
<u>L21</u>	binder and (solid near dosage near form)	3681	<u>L21</u>	
<u>L20</u>	6365188.pn. and (complex or umcomplex\$)	1	<u>L20</u>	
<u></u> L19	4834985.pn. and extru\$	0	<u>L19</u>	
<u></u> <u>L18</u>	4834985.pn. and extrusion	0	<u>L18</u>	
<u>L17</u>	115 and binders	40	<u>L17</u>	
<u></u> L16	L15 and (pvp or polyvinylpyrrolidone)	45	<u>L16</u>	
L15	113 and (extrusion or extrudable)	70	<u>L15</u>	
<u> </u>	113 and polyvinylpyrollidone	7	<u>L14</u>	
<u></u> <u>L13</u>	L12 and tablet	1627	<u>L13</u>	
<u></u> L12	13 and pharmaceuticals	2966	<u>L12</u>	
<u>L11</u>	16 and (process near making)	95	<u>L11</u>	
<u>L10</u>	l6 and (process of making)	929	<u>L10</u>	
<u>L9</u>	l6 and (extrusion or extrudable or process)	885	<u>L9</u>	
<u>L8</u>	l6 and (extrusion or extrudable)	85	<u>L8</u>	
<u>L7</u>	l6 and (extrusionor extrudable)	1	<u>L7</u>	
	L4 and (PVP or PEG or (polyethylene near glycol) or	1031	<u>L6</u>	
<u>L6</u>	polyvinylpyrollidone)	7	т 5	
<u>L5</u>	L4 and polyvinylpyrollidone	7	<u>L5</u>	
<u>L4</u>	L3 and tablets	1853	<u>L4</u>	
<u>L3</u>	cyclodextrin near (beta or alpha or gamma)	5927	<u>L3</u>	
<u>L2</u>	L1 and tablets	33	<u>L2</u>	
<u>L1</u>	cyclodextrin near esters	154	<u>L1</u>	

END OF SEARCH HISTORY