

Associated functions commonly used

Function/Method Name	Brief Description	Code Syntax	
train_test_split	Splits the dataset into training and testing subsets to evaluate the model's performance.	from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=4)	= :42)
StandardScaler	Standardizes features by removing the mean and scaling to unit variance.	<pre>1 from sklearn.preprocessing import StandardScaler 2 scaler = StandardScaler() 3 X_scaled = scaler.fit_transform(X)</pre>	
log_loss	Calculates the logarithmic loss, a performance metric for classification models.	1 from sklearn.metrics import log_loss 2 loss = log_loss(y_true, y_pred_proba)	
mean_absolute_error	Calculates the mean absolute error between actual and predicted values.	1 from sklearn.metrics import mean_absolute_error 2 mae = mean_absolute_error(y_true, y_pred)	
mean_squared_error	Computes the mean squared error between actual and predicted values.	1 from sklearn.metrics import mean_squared_error 2 mse = mean_squared_error(y_true, y_pred)	
root_mean_squared_error	Calculates the root mean squared error (RMSE), a commonly used metric for regression tasks.	<pre>1 from sklearn.metrics import mean_squared_error 2 import numpy as np 3 rmse = np.sqrt(mean_squared_error(y_true, y_pred))</pre>	
r2_score	Computes the R-squared value, indicating how well the model explains the variability of the target variable.	1 from sklearn.metrics import r2_score 2 r2 = r2_score(y_true, y_pred)	

Author(s)

Jeff Grossman Abhishek Gagneja

