Lifecycle and Requirements-I

Manas Jyoti Das, PhD Computer Science

Calculate the completion time

Setting posts [3 time units]

Shaping wood [2 time units]

Nailing
[2 time units for unpainted;
 3 time units <u>otherwise</u>]

Painting
[5 time units for unshaped wood;
4 time units otherwise]

...shortest possible completion time = ? Trade off

Software is complex

Complex ≠ complicated

Complex = composed of many simple parts
 related to one another

Complicated = not well understood, or explained.

Engineering process

- Understanding the process is very important
- Building a bridge (road, car, airplane, ...) requires
 - Resources (land, mud, wood, brick, steel, ...)
 - Labor
 - Skills
- Engineering makes planning possible
 - Can predict needed resources and costs
 - Can predict completion schedule
- Think back to previous projects
- Software engineering is about understanding the process of developing a software

Elements of Reusable Object-Oriented Software

Erich Gamma Richard Helm Ralph Johnson John Vlissides

Foreword by Grady Booch

The Role of Software Engineer

A bridge from customer needs to programming implementation Software engineer should be willing to learn the problem domain (problem cannot be solved without understanding it first) Programmer Customer Software Engineer

How ATM machine works

Software engineering blueprint

- Specifying software problems and solutions in cartoon strip is not the solution.
- Unfortunately, most of us are not artists, so we will use something less exciting: UML symbols and others

Architect design

Engineer design

Craftsman build

Code Quality: What the hell!!

• Which door represent your code

Software Development Methods

- Waterfall
 - Unidirectional, finish this step before moving to the next
- Iterative + Incremental
 - Develop increment of functionality, repeat in a feedback loop
- Agile
 - Continuous user feedback essential; feedback loops on several levels of granularity

Life cycle model

- Also known as SDLC (Software Development Life Cycle)
- It is a diagrammatic model of software life cycle
- Establishes a precedence ordering among different activities
- Divide life cycle into phases

Software lifecycle (general outlook)

Waterfall model

Feasibility study

- Technical feasibility (some technology required by the project not known by the organization)
- Economic feasibility (cost/benefit)
- Operational feasibility (who will input the data? Is the infracture there, who will maintain it?)
- Scheduling feasibility (are the customer's requests feasible?)
- Legal feasibility
- Market survey
- Formulate different solution strategies
- Evaluate alternative strategies in terms of:
 - Resource required
 - Cost of development
 - Development time

Requirement analysis and specification

- Understand the exact requirements of the customer
- Document the requirement properly
- This phase is a important phase, the success and failure of a project depends on the understanding of this phase
- In requirement analysis:
 - Gather the data of what customer wants (interviews and/or discussions)
 - Remove inconsistencies (one part of the requirement contradict with another part of the req.)
 - Remove incompleteness (some features are missed)
 - Remove ambiguity (should have a clear understanding, not vague)
- Create a SRS (Software Requirement Specification) document

Design phase

- Requirement specifications are transformed into a suitable form that can be implemented using a programming language, two approaches:
 - Traditional approach
 - Object oriented approach
- Traditional approach
 - Structured analysis (using DFD, Data Flow Diagram)
 - Structure design (decompose the system into modules and draw the relationship between modules)
- Object oriented approach
 - Identify the objects
 - Identify the relation between objects
 - Advantages:
 - Lower developmental effort
 - Lower developmental time
 - Better maintainability

Coding and testing

- Each module identified by the design phase is coded
- Each module is unit tested
 - Test independently as a stand alone unit
- Each module is documented, documentation is important
- Modules are tested on its own, without integrating with other modules of the software

Testing

- In testing different modules are integrated
- The way to integrate the modules is one by one in a planned manner
- Modules are integrated logically, depending on the design document
- During each integration step, testing is done for the partially integrate system
- All modules will be integrated and a system testing will carried out
- It should not be one big bang at the end any error in one module may stall the whole process
- Fully integrated system will be tested and will ensure that the developed system follow all the requirements specified by a SRS document
- Software will be delivered to the customer

Maintenance

- Bug report and fixes
- Adding new feature
- Enhance the software (speedup etc.)
- The efforts in maintenance phase is longer than the developmental phase
- Corrective maintenance:
 - Bug correction
- Perfective maintenance:
 - Enhance functionality (speedup)
- Adaptive maintenance:
 - Posting the software to a new environment (e.g. new Operating system, etc.)

Drawbacks of waterfall model

- Very idealistic, assumes all the previous phases has no defects in it
- It is not true in practice
- Defects are usually detected later in the life cycle
- The later the phase in which the defect gets detected, the more expensive is its removal
- We need feedback to previous stages (V model, spiral model)
- Advantages:
 - Easy to understand
 - Different phases are well understood
 - o Requirements are known and stable
 - Technology is understood
 - Experienced development team

V model

Spiral Model

Spiral model

Iterative and incremental

Agile

https://www.javatpoint.com/software-engineering-agile-model

Thank you

See you all in the next class