Solve in either order:

- (a). Construct, with justification, a subset A of \mathbb{R} such that every point of A is isolated and $A' \neq \emptyset$.
- (b). Rudin Chapter 2, problem 5, page 43: Construct a bounded set of real numbers with exactly three limit points.
- (a). Solution. We provide the subset $A = \{\frac{1}{n} : n \in \mathbb{N}\}$. First, if $a \in A$, denote this as $a = \frac{1}{n'}$. We show a is an isolated point: let $m = \min \left\{ \left| \frac{1}{n'} \frac{1}{n'+1} \right|, \left| \frac{1}{n'} \frac{1}{n'-1} \right| \right\}$. Note that since for any $\overline{n} \geq n'$, we have that $\left| \frac{1}{n'+1} \frac{1}{n'} \right| \leq \left| \frac{1}{\overline{n}} \frac{1}{n'} \right|$, thus any ball around $\frac{1}{n'}$ that contains $\frac{1}{\overline{n}}$ must also contain $\frac{1}{n'+1}$. Now for any $\underline{n} \leq n'$, we have that $\left| \frac{1}{n'-1} \frac{1}{n'} \right| \leq \left| \frac{1}{\underline{n}} \frac{1}{n'} \right|$, thus any ball around $\frac{1}{n'}$ that contains $\frac{1}{\underline{n}}$ must also contain $\frac{1}{n'-1}$.

Consider the open set of R $U = \mathbb{B}[\frac{1}{n'}; \frac{1}{2}m)$. Note that $\frac{1}{n'-1} \not\in U$ and $\frac{1}{n'+1} \not\in U$. Thus by the contrapositive of the claims we just said, for any $n \in \mathbb{N}$ where $n \neq n'$, we have that $\frac{1}{n} \not\in U$. Thus, $\frac{1}{n'}$ is isolated. Since this is true for arbitrary $n' \in \mathbb{N}$, every point in A is isolated.

Now, note that $0 \in A'$ so $A' \neq \emptyset$. If U is be an arbitrary open set in the neighbourhood of 0. Note that we will always have an element of A in U. Assume otherwise, that there exists an open set U such that $U \cap A = \emptyset$. Conside a ball in U, specifically $\mathbb{B}[0,r) \subseteq U$. Note by the Archimedean property of the reals, there exists $n \in \mathbb{N}$ such that $n \cdot 1 > r^{-1} > 0$, thus $0 < \frac{1}{n} < r$. But then $\frac{1}{n} \in \mathbb{B}[0,r)$, thus a contradiction. Thus, since $U \in \mathcal{N}(0)$ was arbitrary, we have that every open set in the neighbourhood of 0 has a non empty intersection with A, thus 0 is a limit piont of A. Thus, $A' \neq \emptyset$.

(b). Solution. We give the set $A = \{\frac{1}{n} : n \in \mathbb{N}\} \cup \{\frac{1}{n} + 10 : n \in \mathbb{N}\} \cup \{\frac{1}{n} + 20 : n \in \mathbb{N}\}$. From part (a) of this problem, we note that no element in A is a limit point of A, since they are all isolated (and thus cannot be limit points); the argument is the same, since the additional term just makes it so that we have three subsets of A that do not intersect. Furthermore, we can make identical arguments as from part (a) to show that 10 and 20 are in A', as well as 0. Thus, A has exactly three limit points.

(a). Give an example of two sets A and B in some HTS satisfying

$$int(A \cup B) \neq int(A) \cup int(B)$$

(b). Give an example of two sets A and B in some HTS satisfying

$$\overline{A\cap B}\neq \overline{A}\cap \overline{B}$$

- (c). Working \mathbb{R}^k with the usual topology, express the open ball $\mathbb{B}[0;1)$ as a union of closed sets. Can $\mathbb{B}[0;1)$ be expressed as an intersection of closed sets?
- (a). Solution. Let our HTS be \mathbb{R} , and let A = [0,1] and B = [1,2]. We have $\operatorname{int}(A \cup B) = \operatorname{int}([0,2]) = (0,2)$ and $\operatorname{int}(A) \cup \operatorname{int}(B) = (0,1) \cup (1,2) = (0,2) \setminus \{1\}$. Hence we have shown $\operatorname{int}(A) \cup \operatorname{int}(B) = (0,2) \setminus \{1\} \neq (0,2) = \operatorname{int}(A \cup B)$, so we are done.
- (b). Solution. Let our HTS be \mathbb{R} , and let A = (0,1) and B = (1,2). We have $\overline{A \cap B} = \overline{\emptyset} = (\mathbb{R}^o)^c$, but since A is open if and only if A^0 is open (from notes) and \mathbb{R} must be open, we have $\overline{A \cap B} = \mathbb{R}^c = \emptyset$. Now, see that $\overline{A} \cap \overline{B} = [0,1] \cap [1,2] = \{1\}$, where we have used the fact that in \mathbb{R} , $\overline{(a,b)} = (((a,b)^c)^o)^c = (((-\infty,a) \cup [b,\infty))^o)^c$ but taking the largest open subset we get $((-\infty,a) \cup (b,\infty))^c = [a,b]$. Hence, $\overline{A \cap B} = \emptyset \neq \{1\} = \overline{A} \cap \overline{B}$.
- (c). Solution. ff

Define a family \mathcal{T} of subsets of \mathbb{R} as follows:

A set $G \subseteq \mathbb{R}$ belongs to \mathcal{T} if and only if for every x in G, there exists r > 0 such that $[x, x + r) \subseteq G$.

(a). Prove that $(\mathbb{R}, \mathcal{T})$ is a HTS. (It is called the Sorgenfrey line.)

All our terminology – open set, closed set, boundary point, limit point, convergence – depends on what topology we use. Use the Sorgenfrey topology in parts (b)-(d):

- (b) Show that the interval [0,1) is open.
- (c) Find all boundary points of the interval (0,1).
- (d) Let $s_n = -1/n$ and $t_n = 1/n$. Prove that one of these sequences converges to 0, and the other does not. Use the definition given in class, i.e. $x_n \to \hat{x}$ means that for every open set U containing \hat{x} , there exists $N \in \mathbb{N}$ such that for all n > N, $x_n \in U$.
- (a). Solution. Hmm... basically the open sets are just those are open on one end.
- (b). Solution. Let $x \in [0,1)$. Then let $1-x=\delta > 0$. We have that $[x,x+\delta) = [x,1) \in [0,1)$. Thus, $[0,1) \in \mathcal{T}$ and so is an open set.
- (c). Solution. ff
- (d). Solution. ff

Let A be a subset of a HTS (X, \mathcal{T}) . The **boundary of** A is a set denoted ∂A : we say $z \in \partial A$ if and only if every open U containing z satisfies both $U \cap A \neq \emptyset$ and $U \cap A^c \neq \emptyset$. Prove:

- (a). $\partial A = \overline{A} \cap \overline{A^c}$.
- (b). A is closed if and only if $\partial A \subseteq A$.
- (c). A is open if and only if $A \cap \partial A = \emptyset$.
- (a). Solution. ff
- (b). Solution. ff
- (c). Solution. ff

Prove: For every set A in a HTS (X, \mathcal{T}) , A' is closed.

Solution. ff

Recall the sequence space ℓ^2 from HW07 Q3. Given a specific $M = (M_1, M_2, ...)$ in ℓ^2 , let

$$S = \{ x \in \ell^2 \colon \forall n \in \mathbb{N}, |x_n| \le M_n \}.$$

Prove: every sequence $(x^{(n)})$ in S has a convergent subsequence, whose limit lies in S.

Solution. Write out the sequence of the first components of our sequence, namely

$$(x_1)^{(n)} = x_1^{(1)}, x_1^{(2)}, x_1^{(3)}, \dots$$

Each term of $(x_1)^{(n)}$ is bounded by M_1 , thus, by Bolzano-Weierstrass (which we can use since this is just a real-valued sequence), there exists a subsequence (n_{k_1}) such that $(x_1)^{(n_{k_1})}$ converges. Denote this value that it converges to as s_1 .

Now consider the second components of our subsequence (n_{k_1}) , namely

$$(x_2)^{(n_{k_1})} = x_2^{(n_1)}, x_2^{(n_2)}, x_2^{(n_3)}, \dots$$

Again, by Bolzano Weierstrass from boundedness by M_2 , there exists a subsequence of n_{k_1} , call it n_{k_2} such that $(x_2)^{(n_{k_2})}$ converges. Denote this value that it converges to as s_2 . Note that since subsequences of convergent sequences converge to the same value, we still have that $(x_1)^{(n_{k_2})} = s_1$.

Now, for any j, we can iteratively acquire a subsequence n_{k_j} such that $(x_j)^{(n_{k_j})}$ converges, call that value s_j , and for all i < j, we have $(x_i)^{(n_{k_j})} = s_i$.

Thus, we have that $\lim_{j\to\infty} \left(x^{(n_{k_j})}\right) = s_1, s_2, s_3, \dots = \hat{s}$, and one can confirm that $\hat{s} \in S$.