OES	AOC
Guias de Ondos Metalicos (Parte- PA) PR	OVA 2
Guias de Ondos Metalicos (Parte-la) PR	**
	USPA
quia genérico	
2	
Suporta ondas com polarização TE e TM.	
polariz. TE =D Ez=0	
" TM -0 H2=0	
Portanto, as componentes de compo para mod	
Exe, Ey, Hxc, Hy, Hz	
e pero modos TM:	
Hx, Hy, Ex, Ey, Ez	
Logo, assim como fizemos para as fibras optims	
usaremos a componente z do campo H pl resolve	C 05
modos TE e a componente z do compo E gl	resolver
os modos TM.	F2
Ji que as soluções serão dadas em fermos de ou Hz (depende da polarização), então torna-se	conve-
riente encontrar as relações das componentes tre	nsver-
sais com as longitudinais. Assim, tomemos as	
equações de Maxwell:	
$\nabla \times \bar{E} = -i\omega \mu H$	
VxH= jweE)
Q	

Como $\nabla^2 = S^2 + J^2 + J^2$ $\delta x^2 + J^2 + J^2$	
fazendo por partes:	
$\frac{J^{2}}{\delta y^{2}} \left(\cos \left(\beta_{x} \mathcal{X} \right) \right) = -\beta_{y}^{2} \left\{ \sin \left(\beta_{y} \mathcal{X} \right) \right\}$ $\frac{J^{2}}{\delta y^{2}} \left(\cos \left(\beta_{y} \mathcal{Y} \right) \right) = -\beta_{y}^{2} \left\{ \sin \left(\beta_{y} \mathcal{X} \right) \right\}$	
$\frac{\int^{2} e^{-i\beta z^{2}}}{dz^{2}} = -\beta z^{2} e^{-i\beta z^{2}}$	
$\nabla^2 E_z + \omega^2 U \in E_z = \left(-\beta_x^2 - \beta_y^2 - \beta_z^2 + \omega^2 U \in \right) E_z = 0$	(6)
$\int_{x}^{z} + \beta_{y}^{z} + \beta_{z}^{z} = \omega^{z} \mathcal{U} \in$	Ŧ
As condições de contorno requerem que: $E_z(x=0)=0$ $E_z(y=0)=0$	
A unica solução possível e: Ez = Eo sin (Bxx) sin (Byy) e Bz E	(18)
Da mes ma forma: $E_{2}(x=a)=0 \qquad E_{2}(y=b)=0$	
	$\frac{J^{2}}{\delta n^{2}} \left\{ \begin{array}{c} \sin(\beta_{x}x) \\ \cos(\beta_{x}x) \end{array} \right\} = -\beta_{x}^{2} \left\{ \begin{array}{c} \sin(\beta_{x}x) \\ \cos(\beta_{x}x) \end{array} \right\}$ $\frac{J^{2}}{\delta y^{2}} \left\{ \begin{array}{c} \sin(\beta_{y}y) \\ \cos(\beta_{y}y) \end{array} \right\} = -\beta_{y}^{2} \left\{ \begin{array}{c} \sin(\beta_{y}x) \\ \cos(\beta_{y}y) \end{array} \right\}$ $\frac{J^{2}}{\delta y^{2}} \left\{ \begin{array}{c} \sin(\beta_{y}y) \\ \cos(\beta_{y}y) \end{array} \right\} = -\beta_{y}^{2} \left\{ \begin{array}{c} \sin(\beta_{y}x) \\ \cos(\beta_{y}y) \end{array} \right\}$ $\frac{J^{2}}{\delta y^{2}} \left\{ \begin{array}{c} \sin(\beta_{y}y) \\ \cos(\beta_{y}y) \end{array} \right\} = -\beta_{y}^{2} \left\{ \begin{array}{c} \sin(\beta_{y}x) \\ \cos(\beta_{y}y) \end{array} \right\}$ $\frac{J^{2}}{\delta y^{2}} \left\{ \begin{array}{c} \sin(\beta_{y}x) \\ \cos(\beta_{y}y) \end{array} \right\} = -\beta_{y}^{2} \left\{ \begin{array}{c} \sin(\beta_{y}x) \\ \cos(\beta_{y}y) \end{array} \right\}$ $\frac{J^{2}}{\delta y^{2}} \left\{ \begin{array}{c} \sin(\beta_{x}x) \\ \cos(\beta_{y}y) \end{array} \right\} = -\beta_{y}^{2} \left\{ \begin{array}{c} \sin(\beta_{x}x) \\ \cos(\beta_{y}y) \end{array} \right\}$ $\frac{J^{2}}{\delta y^{2}} \left\{ \begin{array}{c} \sin(\beta_{x}x) \\ \cos(\beta_{y}y) \end{array} \right\} = -\beta_{y}^{2} \left\{ \begin{array}{c} \sin(\beta_{x}x) \\ \sin(\beta_{y}y) \end{array} \right\}$ $\frac{J^{2}}{\delta y^{2}} \left\{ \begin{array}{c} \sin(\beta_{x}x) \\ \cos(\beta_{y}y) \end{array} \right\} = -\beta_{y}^{2} \left\{ \begin{array}{c} \sin(\beta_{x}x) \\ \sin(\beta_{y}y) \end{array} \right\}$ $\frac{J^{2}}{\delta y^{2}} \left\{ \begin{array}{c} \sin(\beta_{x}x) \\ \sin(\beta_{y}y) \end{array} \right\} = -\beta_{y}^{2} \left\{ \begin{array}{c} \sin(\beta_{x}x) \\ \sin(\beta_{y}y) \end{array} \right\}$ $\frac{J^{2}}{\delta y^{2}} \left\{ \begin{array}{c} \sin(\beta_{x}x) \\ \sin(\beta_{y}y) \end{array} \right\} = -\beta_{y}^{2} \left\{ \begin{array}{c} \sin(\beta_{x}x) \\ \sin(\beta_{x}x) \end{array} \right\}$ $\frac{J^{2}}{\delta y^{2}} \left\{ \begin{array}{c} \sin(\beta_{x}x) \\ \sin(\beta_{x}x) \end{array} \right\} = -\beta_{y}^{2} \left\{ \begin{array}{c} \sin(\beta_{x}x) \\ \sin(\beta_{x}x) \end{array} \right\}$ $\frac{J^{2}}{\delta y^{2}} \left\{ \begin{array}{c} \sin(\beta_{x}x) \\ \sin(\beta_{x}x) \end{array} \right\} = -\beta_{y}^{2} \left\{ \begin{array}{c} \sin(\beta_{x}x) \\ \cos(\beta_{x}x) \end{array} \right\}$ $\frac{J^{2}}{\delta y^{2}} \left\{ \begin{array}{c} \sin(\beta_{x}x) \\ \sin(\beta_{x}x) \end{array} \right\} = -\beta_{y}^{2} \left\{ \begin{array}{c} \sin(\beta_{x}x) \\ \sin(\beta_{x}x) \end{array} \right\}$ $\frac{J^{2}}{\delta y^{2}} \left\{ \begin{array}{c} \sin(\beta_{x}x) \\ \sin(\beta_{x}x) \end{array} \right\} = -\beta_{y}^{2} \left\{ \begin{array}{c} \sin(\beta_{x}x) \\ \sin(\beta_{x}x) \end{array} \right\}$ $\frac{J^{2}}{\delta y^{2}} \left\{ \begin{array}{c} \sin(\beta_{x}x) \\ \sin(\beta_{x}x) \end{array} \right\} = -\beta_{y}^{2} \left\{ \begin{array}{c} \sin(\beta_{x}x) \\ \sin(\beta_{x}x) \end{array} \right\}$ $\frac{J^{2}}{\delta y^{2}} \left\{ \begin{array}{c} \sin(\beta_{x}x) \\ \sin(\beta_{x}x) \end{array} \right\} = -\beta_{y}^{2} \left\{ \begin{array}{c} \sin(\beta_{x}x) \\ \sin(\beta_{x}x) \end{array} \right\}$ $\frac{J^{2}}{\delta y^{2}} \left\{ \begin{array}{c} \sin(\beta_{x}x) \\ \sin(\beta_{x}x) \end{array} \right\} = -\beta_{y}^{2} \left\{ \begin{array}{c} \sin(\beta_{x}x) \\ \sin(\beta_{x}x) \end{array} \right\}$ $\frac{J^{2}}{\delta y^{2}} \left\{ \begin{array}{c} \sin(\beta_{x}x) \\ \sin(\beta_{x}x) \end{array} \right\} = -\beta_{y}^{2} \left\{ \begin{array}{c} \sin(\beta_{x}x) \\ \sin(\beta_{x}x) \end{array} \right\}$ $\frac{J^{2}}{\delta y^{2}} \left\{ \begin{array}{c} \sin(\beta_{x}x) \\ \sin(\beta_{x}x) \end{array} \right\} = -\beta_{y}^{2} \left\{ \begin{array}{c} \sin(\beta_{x}x) \\ \sin(\beta_{x}x) \end{array} \right\}$ $\frac{J^{2}}{\delta y^{2}} \left\{ \begin{array}{c} \sin(\beta_{x}x) \\ \sin(\beta_{x}x) \end{array} \right\} = -\beta_{y}^{2} \left\{ \begin{array}{c} \sin(\beta_{x}x) \\ \sin$

Isso requer of: $sin(\beta_2 a) = 0$ e $sin(\beta_3 b) = 0$, ou Bacd = mT, m = 0, 1, 2, ... By b = nn, n = 0,12,... No entonto, quando m ou n=0, Ez=0. Boc = MT m> 1 $\beta_y = \underline{n} \qquad n > 1$ De (7), temos q: Bz = VWZNE - (mx) = - (nx) Agora podemos obter as componentes transversois Ex, Ex, Hx e Hy; basta aplicar (B) em (12) e (13): Como Hz = O (polariz. TM): $\tilde{E}_{3} = \frac{1}{\omega^{3}U \in -\beta^{\frac{2}{5}}} \left[\frac{1}{3} \left(\frac{\hat{x}}{\omega} \right) \tilde{E}_{z} + \frac{\hat{y}}{y} \right] \tilde{E}_{z} \right]$ $\hat{H}_{3} = \frac{1}{\omega \varepsilon} \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^$

