ТИПОВОЙ РАСЧЕТ ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ Указания

- 1. Все студенты должны выполнять задания только своих вариантов, решение заданий из других вариантов учитываться не будут.
- 2. В образец титульного листа нужно вставить ФИО, группу, номер варианта и распечатать на одной стороне листа формата А4. На обороте титульного листа решения не записывать!
- 3. Задачи типового расчета должны сначала выполняться в рабочих тетрадях, а потом аккуратно переписываться на листы формата А4 с ДВУХ сторон, и в таком виде предоставляться на проверку.

Все страницы типового расчета нумеруются, номер ставится в правом нижнем углу страницы. Первой страницей считается титульный лист. На титульном листе номер не ставится, следующая страница с решениями имеет номер 2, на обороте листа - стр. 3 и т.д.

В правом верхнем углу КАЖДОГО листа с решениями вписываются ФИО, группа и номер варианта.

4. Все результаты вычислений нужно приводить с точностью не менее 5 знаков после запятой.

5. Замечания к задачам:

Задача 1. Вероятности ряда распределения нужно выписать в десятичном виде с точностью не менее 5 знаков после запятой, чтобы в ряде распределения не было вероятностей равных 0.

Следует привести определение функции распределения $F_{\xi}(x) = P(\xi \le x)$, её график должен быть правильным и чётким.

Задача 2. В каждом варианте следует определить вид распределения случайной величины, привести формулы для вероятностей ряда распределения и формулы для приближений (если они используются).

Задачи 3 и 7. Следует привести следующую формулу для функции

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$
, нужно использовать именно такую функцию $\Phi(x)$, и

находить ее значения с помощью соответствующей функции Excel.

Задача 4. Следует проводить вычислений сначала в простых дробях; математическое ожидание, дисперсию, ковариацию нужно перевести в десятичный вид с округлением до 0,00001.

Задача 6. Все вычисления интегралов должны быть подробными.

Задача 8. Следует привести общую формулу для плотности распределения функции непрерывной случайной величины и найти значения плотности распределения во всех точках $x \in (-\infty, +\infty)$.

Задача 9. Следует найти значения плотностей и функций распределения во всех точках $x \in (-\infty, +\infty)$.

Задача 5. Решение нужно представить в виде таблиц:

Таблица 1. Распределение вектора (X_1, X_2, X_3) и значения Y_1, Y_2, Y_3

X_1	X_2	X_3	$P(X_1, X_2, X_3)$	Y_1	Y_2	Y_3
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

Таблица 2. Распределение вектора (Y_1, Y_2, Y_3) и условные вероятности Y_3 при известных Y_1, Y_2

Y_1	Y_2	Y_3	$P(Y_1, Y_2, Y_3)$	$P(Y_3 Y_1, Y_2)$
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Таблица 2. Двумерные распределения вектора (Y_1, Y_2, Y_3) и условные вероятности Y_3 при известном Y_2

Y_1	Y_2	$P(Y_1, Y_2)$	Y_1	Y_3	$P(Y_1, Y_3)$	Y_2	Y_3	$P(Y_2, Y_3)$	$P(Y_3 Y_2)$
0	0		0	0		0	0		
0	1		0	1		0	1		
1	0		1	0		1	0		
1	1		1	1		1	1		

Таблица 3. Одномерные распределения

Y_1	P (<i>Y</i> ₁)	Y_2	$\mathbf{P}(Y_2)$	Y_3	$\mathbf{P}(Y_3)$
0		0		0	
1		1		1	

Таблица 4. Математические ожидания и дисперсии

	-					
$\mathbf{M} Y_1$	$\mathbf{M}Y_1$ $\mathbf{D}Y_1$		$\mathbf{M}Y_2$	$\mathbf{M}Y_3$	$\mathbf{D}Y_3$	