(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2000-278735 (P2000-278735A)

(43)公開日 平成12年10月6日(2000.10.6)

7/22	識別記号	ΓI			= mm 1*(d>dr)
7/22		ΡΙ		テーマコード(参考)	
		H04Q	7/04	J	5 K O 2 5
7/28		H04M 1	5/00	G 5K067	
7/38		H04B	7/26	107	
15/00			1 0 9 A		
		審査請求	未聞求	請求項の数5	OL (全 12 頁)
	特願平11-79271	(71)出願人	(71) 出願人 000005108		
			株式会社	土日立製作所	
	平成11年3月24日(1999.3.24)	東京都千代田区神田駿河台四丁目 6番			台四丁目6番地
		(72)発明者	石田 和	和人	`
			神奈川リ	具横浜市戸塚区戸	塚町216番地 株
			式会社	日立製作所情報通	信事業部内
		(72)発明者	畔高 包	发 洋	
					工場内
		(74)代理人			
			并理士	田中清	
					最終質に続く
1	•	15/00 特願平11-79271	等查請求 特願平11-79271 (71)出願人 平成11年3月24日(1999.3.24) (72)発明者	特願平11-79271	109A 審査開求 未開求 開求項の数5 特願平11-79271 (71)出願人 000005108 株式会社日立製作所 東京都千代田区神田駿河 (72)発明者 石田 和人 神奈川県横浜市戸塚区戸 式会社日立製作所情報通 (72)発明者 畔高 俊洋 茨城県日立市大みか町五 式会社日立製作所大みか町五 式会社日立製作所大みか

(54) 【発明の名称】 移動無線装置

(57)【要約】

【課題】 所望の通信サービスの選択を可能とする移動 無線装置を提供する。

【解決手段】 移動無線装置1は、複数の基地局に対応 して設けられた複数のインタフェース回路11-1~1 1-nを備える。制御回路16は、GPS回路151、 加速度測定回路152、あるいは外部 I / F 回路153 からの外部情報と、内部に格納された基地局に関する情 報に基づいて、交信可能な複数の基地局の中から最適な 基地局を選択し、その選択した基地局に対応するインタ フェース回路を用いて通信を行うように制御する。

1

【特許請求の範囲】

【請求項1】 複数の基地局に対応して設けられた複数のインタフェース回路と、外部情報及び内部情報に基づいて前記複数の基地局の中から一つを選択し、前記選択した基地局に対応する前記インタフェース回路を用いて通信を行うよう制御する制御回路とを備えたことを特徴とする移動無線装置。

【請求項2】 前記外部情報が、自己の位置情報、前記基地局のパイロット信号の電力強度情報、及び自己の移動速度情報のうちの少なくとも一つであることを特徴とする請求項1記載の移動無線装置。

【請求項3】 前記インタフェース回路が、本体に着脱可能なモジュール中に配置されることを特徴とする請求項1又は2記載の移動無線装置。

【請求項4】 前記インタフェース回路が、本体に固定して配置されることを特徴とする請求項1又は2記載の移動無線装置。

【請求項5】 複数の基地局と、前記各基地局と交信可能に構成された移動無線装置とを備えた移動無線システムであって、前記移動無線装置は、基地局選択用のデータを取得するためのレポート要求信号を前記各基地局に送信し、前記各基地局より受信したレポート提出信号に基づいて、前記複数の基地局の中から通信を確立すべき基地局を選択し通信を行うことを特徴とする移動無線システム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は移動無線装置に係り、特にサービス選択機能を備えた移動無線装置に関する。

[0002]

【従来の技術】従来から、有線電話の分野においては、 選択した電話番号により通信相手の位置を特定し、各電 話会社の料金体系から最も料金の安い電話会社及び通信 経路を自動選択して通信を実行する機能(以後LCR機 能とする)が知られている。これに関連する技術とし て、例えば特開平6-205118号公報には、LCR データ装置が開示されている。この装置は、電話料金管 理装置などの外部機器に蓄積したLCRデータ生成用統 計情報などにより生成される最小コスト回線経路選択情 報を定期的に自動更新することにより、実際の電話機の 使用状況を統計情報として把握し、実際の電話機の使用 状況に応じたLCR処理を行い最小コスト回線を選択し ようとするものである。また、特開平7-15551号 公報には、自動回線選択装置が開示されている。この装 置は、ISDN網に適合して複数の端末に対して1台で 対応し、呼ごとにその呼の通信時間を予め算出し、算出 した通信時間に基づいて網の選択を行おうとするもので ある。

【0003】また、移動無線装置に最適な環境を創る為

2

の技術として、例えば特開平10-23500号公報には、グローバルポジショニングシステム(GPS)による位置情報を用いた基地局選択方式が開示されている。この方式は、移動無線装置からの通話開始の為の接続情報の中に、移動無線装置側に付加したGPS部よりの位置情報を含めて伝送し、この情報と予め親局装置側に記憶してある各基地局毎の通信許容範囲情報とを比較することによって、移動無線装置との通信に最適な基地局を選択しようとするものである。

[0004]

【発明が解決しようとする課題】上述したLCR機能は有線電話に使用されるもので、移動無線装置のように接続回線が変化するような装置には使用できない。また、移動無線装置は、装置一台につき一通信業者が対応しており、例えば装置がA社の通信エリア内にあるのに、契約したのがB社でその通信エリア外である場合には通信を行うことができない。このため従来、ユーザはA社とB社の移動無線装置の両方を携帯し、A社の装置で繋がらなくなったときはB社の装置で掛け直し、また移動中にB社の装置が繋がらなくなったときはA社の装置を用いて掛け直すという動作をしなければならなかった。

【0005】また、モバイル端末を用いてデータ通信を行う場合、PHS (Personal Handy-phone System)を使用すれば通信速度が速く有用であるが、PHSは通常、携帯電話 (PDC:Personal Degital Cellular)に比べ通話エリアが狭く、移動速度も歩行速度以上の車などで使用しようとすると、すぐに接続が切れてしまう。一方、PDCでは、通常の電話のように音声にて通信する場合は、通話エリアが広く車中で使用しても切れにくく有用であるが、モバイル端末を用いてインターネットなどでデータ通信しようとすると通信速度が遅く、データの送受信だけで何分も待たされ、途中でタイムアウトとなって通信不能となる場合がある。

【0006】また、移動無線装置の通話料は各社で格差があるため、各社に繋がる場合は安い方で掛け、移動により接続が切れそうになったら他社に接続するようにして、できるだけ安く通話したいという要求がある。前述した特開平10-23500号公報に開示された方式では、基地局の切替えは基地局を制御する親局で行われるため、ユーザは、特定の一社のサービスしか使用できず、ユーザの要望事項に応じて最適な経路及びサービスを選択することができない。また、この種の移動無線装置は、通話やデータ通信などの使用用途に応じて最適な基地局及びアクセス方式を選ぶとことができないという問題がある。

【0007】従って本発明の目的は、上述のような問題点を解決し、所望の通信サービスの選択を可能とする移動無線装置を提供することにある。

[0008]

【課題を解決するための手段】上記目的は、複数の基地 局に対応して設けられた複数のインタフェース回路と、 外部情報及び内部情報に基づいて前記複数の基地局の中 から一つを選択し、前記選択した基地局に対応する前記 インタフェース回路を用いて通信を行うよう制御する制 御回路とを備えた移動無線装置により、達成される。こ こで、外部情報とは、例えば、グローバルポジショニン グシステム (GPS) を用いて検出される自己の位置情 報、あるいは各基地局から発信されるパイロット信号の 電力強度情報、あるいは自己の移動速度情報などであ る。これらは個別に、又は組み合せて外部情報として用 いることができる。

【0009】また、インタフェース回路は、移動無線装 置本体のスロットに着脱可能に形成されたモジュール中 に配置することができる。このモジュールは、個々の基 地局に対応するようにインタフェース回路を個別に組み 込んでもよいし、複数の基地局に対応するように複数の インタフェース回路をまとめて組み込んでもよい。別の 方法として、これらのインタフェース回路を移動無線装 置本体中に固定して配置することもできる。

【0010】本発明に係る移動無線システムは、複数の 基地局と、各基地局と交信可能に構成された移動無線装 置とを備えたものであって、この移動無線装置は、基地 局選択用のデータを取得するためのレポート要求信号を 各基地局に送信し、各基地局より受信したレポート提出 信号に基づいて、複数の基地局の中から通信を確立すべ き基地局を選択し通信するように構成される。このよう に構成することにより、所望の通信サービスの選択を可 能とする移動無線装置を得ることができる。

[0011]

【発明の実施の形態】本発明の一実施例を以下図面を参 照しながら説明する。図1は、本発明に係る移動無線装 置の用いられる移動無線システムの一例を示す全体構成 図である。図において、1は本発明に係る移動無線装置 であり、201はA社PDC-BS、204はB社PD C-BS、202はC社PHS-BS1、203はC社 PHS-BS2とする。ここで、PDC-BSとは、P DC (Personal Degital Cellu lar)方式を用いた基地局(BS)であり、PHS-BSとは、PHS (Personal Handy-p hone System) 方式を用いた基地局 (BS)

【0012】A社PDC-BS201は、制御装置MS C(以後、MSCという)205を介して公衆回線20 8に接続され、B社PDC-BS204はMSC207 を介して公衆回線208に接続される。PHS-BS2 03、204はそれぞれPHS接続装置206を介して ISDNネットワークにて公衆回線208に接続され る。210は通話相手先端末であり、MSC209を介 して公衆回線208に接続される。21]はA社PDC 50 ばTDMA (Time Division Multi

- B S 2 0 1 に移動無線装置 1 が接続可能な範囲(以 後、サービスエリアという)であり、同様に212はP HS-BS202のサービスエリア、213はPHS-BS203のサービスエリア、214はB社PDC-B S204のサービスエリアである。移動無線端末1は、 これらのサービスエリア211~214が重複した範囲 内に位置しており、どの基地局とも接続可能な状態にあ ると仮定する。

【0013】図2は、本発明に係る移動無線装置1が通 話相手先端末210と通話する場合の通信経路を示す。 移動無線装置1は、各基地局201~204の全てに接 続することが可能であり、経路301~304のいずれ の経路もとることができる。本発明に係る移動無線装置 1を使用するユーザは、例えば「料金が最も安い」、あ るいは「データ速度が最も早い」といった自分の希望す るサービスを提供する経路を選択し、その基地局に接続 し通話することができる。ここで経路とは、本図の経路 301~304のように、接続する基地局を変更する事 により得られる経路のことをいい、基地局以降のMSC から公衆回線208、MSC209、通話相手先端末2 10に至る経路は各基地局の通信業者による。

【0014】図3は、本発明に係る移動無線装置の一実 施例を示す図である。以下本図の構成について説明す る。図において、制御回路16は移動無線装置1の全体 の制御を行うもので、MPU161、DRAM162、 ROM163、及びSRAM164を有しており、それ らはバス14にそれぞれ接続される。ここで、ROM1 63は初期設定格納用の読取専用メモリで電源立ち上げ 時しか使用されない。またバス14は、制御回路16と 各回路を接続するものである。

【0015】本装置には、リモートインタフェース回路 11-1~11-nが設けられる。各基地局との通信 は、PHS、PDCといった通信方式の違い、800M Hzと1500MHzといった使用電波周波数の帯域の 違い、各通信事業者による復/変調方式、多重方式の違 い等により、異なったものとなる。このリモートインタ フェース回路11-1~11-nは、それぞれ方式の異 なる各基地局と対応するように構成されており、各基地 局と無線にて通信を可能とする。本例では、各リモート インタフェース回路11-1~11-nは、受信者ごと にそれぞれ独立したモジュールとしてスロットにて実装 されるが、別の方法として、予め回路を本体に組み込ん でおくこともできる。

【0016】本図では、一例としてリモートインタフェ ース回路11-1のブロック構成を示している。RF回 路114は基地局から送られてきた搬送電波をアンテナ 115を介して受信する。復調回路113はその信号を 復調する。復調された信号は、アクセス方式処理回路1 12に送られる。アクセス方式処理回路112は、例え 5

ple Access)、FDMA (Frequency Division Multiple Access)、CDMA (Code Division Multiple Access)、CDMA (Code Division Multiple Access)といった多重アクセス方式を処理する回路である。この回路により処理された信号は、音声処理回路111にて音声コーディックを受け、再び音声データとして出力される。

【0017】切替回路12は、複数のリモートインタフェース回路11-1~11-nからの信号を切り替える回路であり、マルチプレクサ121、122を有する。マルチプレクサ121は、切替制御回路123により制御され、リモートインタフェース回路11-1~11-nから出力される信号を入力し、MPU161からの指示により、ユーザインタフェース回路13中のスピーカ131への出力を切り替える。これにより選択された一つの音声信号がスピーカ131に入力され、音声としてユーザに出力される。

【0018】ユーザからの音声を基地局に送信する場合は前述の場合と逆の手順で行われる。マイク132から入力された音声は、音声データに変換され、マルチプレクサ122に入力される。音声データはMPU161にて選択されたリモートインタフェース回路に対して出力される。リモートインタフェース回路11-1では音声処理回路111、アクセス方式処理回路112を経て、変調回路116により変調され、RF回路114から出力される。

【0019】ユーザインタフェース回路13は、前述のスピーカ131とマイク132の他に、ディスプレイ回路133とテンキー回路134を実装する。テンキー回路134はユーザ入力用の回路であり、ユーザはこの回路から、通話先ダイアル番号の入力、ダイヤル番号の記憶、端末設定入力等の通常の無線電話器が持つ入力機能を実行することができる。また、ディスプレイ133はユーザに対するMPU161の出力部に相当する。これらはMPUI/F制御回路135を介してバス14に接続される。またMPUI/F制御回路135はスピーカ131にも接続され、これによりユーザに対して音声出力がなされる。

【0020】外部I/O回路15は、ユーザインタフェース以外の外部入力回路であり、GPS回路151、加 40速度測定回路152、外部I/F回路153からなる。各回路はI/O制御回路154により制御され、バス14に接続される。GPS回路151はGPSシステムにより位置情報を取得する回路である。加速度測定回路152は移動無線装置の加速度を測定するセンサーである。外部I/F回路153は、外部回路の接続を可能とする回路で、他のコンピュータ端末と接続され、あるいは、外部ハードディスク、FDドライブ装置等の外部記憶装置と接続される。品質監視回路19は、複数のリモートインタフェース回路11-1~11-nのRF回路 50

6

114に接続され、受信電波の品質を監視する。電源制 御回路17は、電源分配回路18を制御する回路であ る。

【0021】図4は、これらの回路動作を説明するための処理フローを示す図である。本実施例では、図のように、初期設定を行うユーザ側の処理フロー41、初期電源投入時またはユーザが通話相手先端末に対して通話していない待ち受け時の移動無線装置側の処理フロー42、相手と通話する時のユーザ側の処理フロー43、及び相手と通話する時の移動無線装置側の処理フロー44にしたがって処理が行われる。本図は、本発明に関連する処理フローを示すものであり、通常ユーザが行う設定や移動無線装置が行う処理フローなどは省略されている。

【0022】まずユーザは、自己の使用するリモートインタフェース回路モジュール11-1~11-nを、図示しない装置本体のスロットに装着する(ステップ411)。電源が投入されると、MPU161が各リモートインタフェース回路モジュール11-1~11-nのレジスタにアクセスし、そのアクセス方式、実装スロット(電源立ち上げ時に、リモートインタフェース回路モジュール11-1~11-nがスロット番号をリードし、自身のレジスタにストアしたもの)といったID情報をリードし、どのようなリモートインタフェース回路モジュール11-1~11-nが実装されているかを認識する(ステップ421)。

【0023】次に、データテーブル5を作成する(ステップ422)。ここでデータテーブルとは、各基地局比較のために項目ごとに整理される情報の一覧表であり、MPU161により作成され、DRAM162内に格納される。これらの情報は、基地局に対してインタフェースをとることにより(ステップ423)、あるいは外部データを入力することにより得られる(ステップ424)。

【0024】図5は、データテーブルの一例を示す図である。図示のように、データテーブル5は、基地局に対して整理されるBSレポートテーブル51と、移動無線装置自身に対して整理されるMSレポートテーブル52とを備える。BSレポートテーブル51の項目は、10分~1時間ごとの比較的長い間隔で定期的に更新される「基地局仕様」と、10ns~1ms程度で随時ポーリングされる「随時ポーリング情報」とに分類される。MSレポートテーブルの項目は、同様に、10分~1時間ごとの比較的長い間隔で定期的に更新される「移動無線装置仕様」と、1ms~1sec程度で随時ポーリング される「随時ポーリング情報」とに分類される。

【0025】項目「通話料金」は通信業者毎、通話時刻毎に異なる。通話料金は、通信業者が設定する基本料、使用時間や曜日に応じ設定される単位時間毎の料金、予め通話時間を含んだ形で基本料金を支払う通話料込基本

7

料などがあり、各通信業者、支払プランごとに様々に決められている。ユーザは、各業者毎に契約した料金支払プランを設定し、それをユーザインタフェース回路13を介してDRAM162内に格納する。この料金体系は各業者の改正により変更されるため更新の必要がある。移動無線装置1の電源ON時、または10分~1時間の比較的長い期間で定期的にMPU161より切替制御回路に対し割り込みが入り、各通信業者の基地局に対し「通話料金」の要求信号を送信する。ただし実際は幾つ

「通話料金」の要求信号を送信する。ただし実際は幾つかの更新を必要とする信号と一緒になりレポート要求信 10号として発信する。

【0026】移動無線装置は、各通信業者毎に契約した ときの個別認識コードつまり電話番号にて接続後、要求 信号をリモートインタフェース回路経由で基地局に送信 する。基地局では、この要求信号を受信後、その通信業 者が契約した契約形態によって最新の料金体系における 通話料をデータとして送信する。これも他の幾つかの信 号と合成されてレポート提出信号となる。この料金体系 データは、リモートインタフェース回路11-1~11 - nからバス14を経由してDRAM162に格納され る。このDRAM162内のデータはMPU161にリ ードされ、適切なデータフォームに変換されDRAM1 62内の料金体系を更新する。データテーブル5の作成 時には、MPU161が、ユーザが設定したDRAM1 62内の料金プラン、各業者毎の料金体系、内蔵時計か らの時刻等をリードし、平均通話時間から現在の時刻で の通話料金を計算し、データテーブル5にライトする。 各業者の料金体系、ユーザ設定の料金プランは、電源〇 FF時には、DRAM162からSRAM164内に転 写されて各設定データは保存され、電源ON時にはDR AM162によりリードされる。

【0027】前述の各通信事業者の料金体系を更新する方法として、基地局から特定のチャネルをもってブロードキャストにて配信する方法もある。この場合、同様の基地局仕様について配信するデータ項目を予め取り決め、それを基地局は項目の認識データとともに専用チャネルにより順次ブロード配信する。移動無線装置はこれを受信し順次DRAM162内のデータを更新する。

【0028】また、前述のユーザの料金プラン設定方法については、ユーザが直接設定する方法の他に、各基地局に送信した個別認識コードつまり電話番号を元に、基地局側でそのユーザの契約内容を検索し、一定周期内の電話料金を計算し、その値を移動無線装置1に返信する方法がある。この方法は、各業者毎の料金プランをDRAM162内に保存したり、更新したりする事をしなくてよいという利点があるが、各業者で設備や仕様を統一する必要がある。

【0029】「通信速度」「MS移動速度限界」「トラフィック限界」については、「単位通話料金」とは異なり、機器毎に決まるもので更新されないデータである。

8

したがってSRAM164内に初期値設定し、電源ON時にDRAM162に費き込まれる。データテーブル5の作成時、MPU161はDRAM162からリードし、データテーブル5にライトする。

【0030】次に、「サポートエリア」「BS設備位 置しについて説明する。「サポートエリア」は一つの基 地局でサポートできる範囲であり、各基地局の通信方式 と地域特性(比較的ビルなどの背の高い建物が密集する 都心部ではサポート範囲が狭くなり、逆に郊外ではサポ ート範囲は広くなる)により決まる。「BS設備位置」 とは、移動無線装置1の周辺にある基地局の位置であ る。この情報はSRAM164に内蔵する。このデータ は、カーナビゲーションシステム等に使われる地図デー タのように様々な情報を含むものではなく、基地局の位 置とその基地局のサポート範囲のみを記憶したものであ り、情報量はコンパクトでSRAM164に収納可能な 容量である。このデータを地図データとする。この地図 データは、リモートインタフェース回路モジュールを購 入の際、又は各通信業者との契約の際に、外部I/F回 路153から移動無線装置1内のSRAM164内部に ライトされる。

【0031】立ち上げ時、MPU161は、実装されているリモートインタフェース回路11-1~11-nを認識後、該当するデータをSRAM164からDRAM162に転写する。移動無線装置1は後述するGPS回路151、またはリモートインタフェース回路11-1~11-nの中の一つとして実装されるPHS受信回路の位置登録手順から自己の位置を数メートルの誤差で確定する。この位置データは、後述のMSレポートテーブルの現在位置、移動速度の項で詳細に記述するが、同様にDRAM162に格納される。MPU161は定期的にこの現在位置のデータをリードし、各通信業者毎に現在位置周辺の基地局のデータをDRAM162内の地図データよりリードし、データテーブル5にライトする。MPU161は定期的に現在位置をリードし、そのたびにこの「サポートエリア」「BS設備位置」を更新する

【0032】「電力強度」は通信電波の強度を測定するものである。図3に示す品質監視回路19は、RF回路114に直結しており、それぞれの電波の電力強度を定期的に測定し、その測定結果にRF回路114のIDを付与して品質監視回路16内のレジスタに格納する。各通信業者により電力強度の閾値が異なるため、MPU161は品質監視回路16内のレジスタの値を定期的にリードした後、この閾値と比較し電波状態を推定し、データテーブル5に格納する。

【0033】「劣化レベル」は前述の品質監視回路19で測定された値をある時間ごとにプロットすることにより求められるものである。送信データのパリティ、CR C等の品質管理ビットは品質監視回路19により監視さ

れ、データ欠損が発生した場合は品質監視回路19内のレジスタに発生毎にビットを立てる。このレジスタはMPU161によりリードされ、DRAM162内にライトされる。MPU161は発生回数をDRAM162内でカウントし、前述と同様に各通信業者ごとの発生率の閾値と比較し、相対的評価値をデータテーブル5にライトする。

【0034】次に、「トラフィック相対値」について説 明する。ある基地局において扱われる回線の数はその通 信業者により決っており、現在使用している回線数が制 限値をオーバーすると、その基地局では新たな接続は拒 否される。したがって発信時、ハンドオフ時に接続する ときに、限界回線数から現在使用している回線数がオー バーするかそれに近い場合は接続拒否される。このよう な場合、トラフイックが少なくて接続可能な基地局があ る場合、そちらにハンドオフした方が通信品質が高くな り、通話途中で接続不可となる可能性が低くなる。「ト ラフィック相対値」は、各基地局ごとの限界トラフィッ ク量に対する値を示すものである。この値は、基地局に 現状の通信トラフィック量を要求することにより得られ る。MPU161から一定時間毎にレポート要求を各基 地局に対して行う。これは「通話料金」の更新時に料金 体系の要求を行ったのと同様で、要求結果についてはD RAM162に格納する。これは「トラフィック限界 量」と比較され、「トラフィック相対値」としてデータ テーブル5にライトされる。

【0035】次に、MSレポートテーブル52の各項目について説明する。移動無線装置は、通話とデータ通信等、その「使用目的」毎に最適な基地局が異なる場合がある。リモートインタフェース切替方法としては、手動で入力する方法と機械的に判定する方法がある。手動で入力する場合は、ユーザインタフェース回路13内のような場合は、ユーザインタフェース回路13内のよこでは、デフォルトで通話になっており、データ通信時、外部I/O回路15内の外部I/F回路153に外部端末を接続した際に、割込信号がMPU161に出のされる様に回路が設定されており、MPU161はこの割込信号が入力されるとデータ通信としてデータテーブル5にライトするようにプログラムされる。

【0036】移動無線装置の「現在位置」は、GPSを 40 利用する方法とPHSから位置を導きだす方法がある。まずGPSを使用する方法を示す。GPSシステムは宇宙に配されたGPS衛星群、それを管制制御する地上基地局、及び移動無線装置に内蔵されるGPS受信機からなる。GPS衛星群は常時地上に向けて信号を送信しており、原子時計を搭載している。衛星からGPS受信機への送信信号は、1.5GHz帯周波数拡散方式が用いられる。各衛星は衛星ごとに異なる疑似雑音(PNコード特に民間用のPNコードをC/Aコードとする)が割り当てられる。このC/Aコードと航法メッセージデー 50

10

タにより、1.5GH2帯搬送波が変調され送信され る。外部インタフェース回路内のGPS回路はGPS受 信機であり、GPS衛星からの信号を捕捉する。GPS 回路は、位置(緯度、経度、高さ)および時刻の測定の ために、最低4個の衛星を選択する必要がある。GPS 回路は、受信する衛星ごとに割り当てられたC/Aコー ドを次々に発生しながら、それぞれの衛星からの受信信 号の相関をとり、必要な情報を取得する。次に信号捕捉 後、搬送波位相、コード位相の追尾を行い、受信機標準 時刻(受信時刻)からの時間を測定する。この時間に電 波伝送速度(光速)を乗じたものが疑似距離となり、こ れを3次元測位に必要な4個の衛星信号について行う。 衛星の航法メッセージから衛星位置、衛星時間誤差、電 離層伝播補正値を得ると同時に衛星からの疑似距離を計 算し、測位方程式を解いて受信回路位置を算出する。こ のGPS回路151の基本的ブロック構成例を図7に示 す。GPS回路は、図のように、アンテナ71、アナロ グの受信周波数変換回路72、シンセサイザー回路7 3、基準発信回路74、デジタル信号処理回路75、制 御入出力回路76、及び測位演算制御回路77を備えて 構成される。GPS回路を用いて計測された位置情報 (緯度、経度、高さ)、速度、時刻は、I/O制御回路 154を経由してデータテーブル5に格納される。

【0037】次にPHSから位置を算出する方法を示す。PHSでは、一基地局あたりの通話可能エリアが100~300mと狭いため、移動無線端末が位置登録する最も近いPHS基地局の位置情報を得る事により、自己の居る地域を確定する事ができる。具体的には、前述の地図データから、移動無線端末が、ある基地局のサポート範囲内にあることを割り出し、さらに複数の基地局との相対値を求める事により、現在位置を求める。

【0038】「移動速度」を得る方法としては、一つは前述の位置情報を元にして一定周期で現在位置をプロットする事により得る方法、もう一つは図3における外部 I/O回路15の加速度センサ152により得る方法がある。前者の方法では、GPS回路151またはPHSによって得られる位置情報を周期的に測定し、その結果をDRAM162に格納する。ある時間t1で測定された位置をX1、また別の時間t2で測定された位置をX2とすると、t1~t2間での速度は(X2-X1)/(t2-t1)で表される。MPU161は、この計算を行なった後、その結果をDRAM162内のデータテーブル5にライトする。

【0039】後者の方法では、加速度測定回路152により常に加速度を測定し、その結果を自己のレジスタ内に書き込む。MPU161は、I/O制御回路154経由でこのレジスタに一定周期でアクセスし、値をDRAM162内にライトする。MPU161はこの値と初期値又は既に測定された値と比較し現在の速度を算定し、その結果をデータテーブル5にライトする。

【0040】以上の手順によりデータテーブル5を作成した後(ステップ422)、最適な基地局の選定を行う(ステップ425)。またユーザが、ユーザインタフェース回路13にて自己の要求項目を入力すると、MPU161は、そのデータを有線項目としてDRAM162内のユーザ設定に格納する(ステップ412)。

【0041】図6は、ユーザ設定画面61の一例を示す 図である。図において、項目「通信業者別」は接続可能 な通信業者を示し、MPU161が、実装されたリモー トインタフェース回路モジュール11-1~11-nと その実装スロットを認識した時点で作成される。「接続 ON/OFF」はその通信業者に接続するかの選択で、 ユーザが入力する (ステップ421)。図6では、「P DC(A社)」及び「PHS(C社)」をONとしてあ り、「PDC(B社)」をOFFとしてある。これは、 それぞれの通信エリア内で「PDC(A社)」及び「P HS(C社)」が通信可能であれば接続されるが、「P DC(B社)」についてはたとえエリア内でも接続されて ないように設定する項目である。本例のように「OF F」が設定されると、これがDRAM162内のユーザ 設定にライトされる。MPU161は一定周期でこの項 目をリードし、「OFF」となっている場合、「OF F」とされたリモートインタフェース回路が実装されて いるスロットについて、電源制御回路17内のレジスタ 値のビットを立てる。本ビットが立てられると、電源制 御回路17は電源分配回路18に信号を出力し、電源分 配回路は該当するリモートインタフェース回路11の電 源をOFFにする。本例では、「PDC(B社)」接続 用リモートインタフェース回路の電源がOFFとされ る。

【0042】「優先接続」は、ユーザが接続順位を設定するものである。後述する使用目的別優先順位の設定が同等である場合には、優先順位に従い接続する。本例の設定では「PHS(C社)」が接続「ON」とされているため、「使用目的別」の優先順位が同位であるか、又は設定されていないときは、「PHS(C社)」が接続される。そして、「PHS(C社)」が通信接続不可な場合に、「PDC(A社)」が接続される。

【0043】「使用目的別」は、ユーザが使用目的別に 優先する項目を設定する項目である。図6の例では、使 用目的は「通話」「データ通信」があり、それぞれにて 優先する項目として「通話料金」「データ通信速度」

「通話品質」の3つがある。通話の際は「通話料金」を、データ通信の際は「データ通信速度」を優先するよう設定されている。本設定は、前述の「通信業者別」と同様に、ユーザがユーザインタフェース回路13から入力し、入力した設定値はDRAM162内のユーザ設定にライトされる。

【0044】次に、ステップ425の最適基地局選択に の手順を示している。また処理フロー44は、ユーザがついて説明する。ステップ424にて作成したデータテ 50 処理フロー43を行う時の移動無線装置1の動作を示す

12

ーブル5とステップ412にてユーザが入力したユーザ設定から、接続基地局を選択する。図8に、最適基地局を選ぶ時の概念であるユーザ選択要因相関図を示す。この図で、MS位置811,電力強度812,移動速度813,レベル劣化814,トラフィック増大815、13,レベル劣化814,トラフィック増大815、信速度821,通話料金822,通信品質823は、ずれも前述のデータテーブル5の項目として与えられる。またユーザ優先度831は、ユーザ設定61の「通信業者別」「優先接続」の項目で与えられる優先順位である。これらの項目は接続要因81、サービス要因82→接続要因81→サービス要因82→接続要因83の順管の変化に関わらず直ちにハンドオフする。

【0045】接続要因81は、ユーザ設定画面にて「接 続ON/OFF」をONにした通信業者について接続す るための要因で、その中の一つの要因でも「不可」にな った場合には接続維持の為、他の基地局にハンドオフす る必要がある。ここでハンドオフとは、通信状態を維持 しながら基地局を他の基地局に接続し直すことである。 サービス要因82は、接続要因82にて選択した接続可 能な基地局のなかで、ユーザがユーザ設定画面 6 1 「使 用目的別」にて設定したサービス要因の中で最もユーザ の要求を満たす基地局を選択する。ここでは使用目的別 に順位付けがなされ、ユーザ設定画面61を例にとる と、「通話」目的で使用する場合には通話料金822が 最も安い基地局を選び、「データ通信」の目的で使用す る場合には通信速度821が最も速い基地局を選ぶ。ユ ーザ優先要因83は、サービス要因82の項目で同一、 または設定していない場合はユーザがユーザ設定画面6 1で設定した順位に従い基地局を選別する。このような 概念で、MPU161は常にDRAM162内データテ ーブル5とユーザ設定をリードしながら監視し、最適の 基地局を算出し、DRAM162内にライトする。

【0046】図9は、前述の最適基地局選出の一例を示すフローチャートである。ステップ91は接続要因の判断を行い、内部の項目の一つでも変更があった場合には、基地局の変更を行う。変更がなかった場合はステップ92はサービス要因による判断を行い、使用目的別で優先順位に変更があった場合には、基地局の変更を行う。優先順位が同等であった場合には、ステップ93においてユーザが設定したユーザ優先要因にて基地局を選択し、基地局を変更する。優先順位に変更がない場合には、基地局を変更する。優先順位に変更がない場合には、基地局を変更する。優先順位に変更がない場合には、基地局を変更せずステップ91に戻る。またステップ91に戻る。

【0047】ここで図4に戻って説明を続ける。同図の処理フロー43は、ユーザが通話相手先に電話をする時の手順を示している。また処理フロー44は、ユーザが処理フロー43を行う時の移動無線装置1の動作を示す

ものである。以下、通話する場合の手順について説明す る。まず、ステップ431において、ユーザは通話相手 先の電話番号をユーザインタフェース回路13のテンキ -134から入力する。移動無線装置1のMPU161 は、ステップ441において、前述した様にユーザの手 動操作、または機械的なコネクタ接続による割込みによ りユーザの使用目的を認識し、その目的の場合の最適な 基地局をDRAM162からリードする。この最適な基 地局は前述の処理フロー42で求めた基地局である。M PU161は、ステップ442において、最適な基地局 をイネーブルとするため、切替制御回路123のレジス タにライトする。切替制御回路123は、選ばれた基地 局のリモートインタフェース回路11-nのみが繋がる ようにマルチプレクサ121、122を切り替える。こ こでマルチプレクサ122は、この方法で切り替えるほ かに手動でも切り替える手段を持つ。手動で切り替えた 場合、その通信業者以外の通信は全て無効となる。ここ でMPU161は、基地局と接続する為の処理を開始す

【0048】発信シーケンスの一例を図10に示す。移動無線装置(MS)1は、接続可能な基地局1000からのパイロット信号1001を受信する。移動無線装置は、通信業者ユーザ選択1002を行い、前記の手順にしたがってデータテーブルを作成するためレポート要求信号1003を各基地局に提出する。レポート要求信号1003を各基地局に提出する。レポート要求信号1004を受け、その中から基地局とレポートといるからである。移動無線装置は、各基地局からレポート提出1004を受け、その中から基地局選択1005を行う。そして、選択した基地局との間で、図のように順次、リンクチャネル確立要求、即に応答、呼出に、適信100次。呼段定受付、認証要求、認証応答、呼出同途等の各基地局通信手順1006を実行して、通信1007を確立する。

【0049】図11は、基地局の構成例を示す図であ る。各基地局は通信方式が違うのでそれぞれ構成が異な る。本図に示す基地局101の構成はその一例であり、 RF回路1011にて信号を受信し、復調回路1012 を経由して、アクセス方式処理回路1014にてアクセ ス方式により多重化された信号を処理する。そして、ト ランスコーディック1015により信号をデジタル化 し、デジタル網インタフェース回路1016に送信し、 デジタル網インタフェース回路1016から公衆回路に 送信する。この時、品質監視部1019は、移動無線装 置と同様に信号の品質を監視する。制御部1018は、 MPU10181とRAM10182、及びROM10 183から構成され、回路全体の制御を行う。メモリ1 017は、基地局のデータを格納する大規模データベー スである。移動無線装置からレポート要求信号を受けた 基地局101は、メモリ1017からデータをロード

14

し、要求されたデータを算出し、それを変調回路101 3、アクセス処理回路1014を経由して、移動無線装置1にレポート提出信号として送信する。移動無線装置1は、このレポート提出信号を受信し、そのデータによりデータテーブル5を作成して、前述の手順により最適の基地局を選択する。選択後は、基地局のリモートインタフェース回路により、その基地局の通信手順にしたがって通信を行う。

【0050】図4の処理フローに戻る。同図のステップ 4 4 3 においては、通話中に最適な基地局が変更無いか どうかを監視する。この手順は図9の処理フローと同様 で、そのステップ94にて基地局を変更する。そして、 ステップ444にて切換判断が行われた場合、ステップ 445にて切換処理を行う。その処理の一例を図12に 示す。本図は、選択した基地局とのハンドオフシーケン スを示した図である。いま通信1220を行っている時 に、「接続要因」に関わる要因に変化があり、それぞれ の値が設定した閾値を超え、これ以上接続を保てなくな ったとき、「接続要因」閾値OVER1221となり、 移動無線装置1がハンドオフをする。この場合、図12 に示すように、まず最初に、各基地局1200からパイ ロット信号1201を受信する。ここで通信業者ユーザ 選択1202を行い、ユーザの設定した基地局に対しレ ポート要求1203を発信する。前記の発信シーケンス と同様に各基地局からレポート提出信号1204が発信 され、それを元に基地局選択1205が行われる。

【0051】ここで基地局が選択されると、通信中の基地局の対して切替要求信号が発信され、通信中の基地局からは切替指示信号が出される。そして、ハンドオフ先基地局に対して各基地局通信手順1206を実行し、通信1207を切り替える。このようにして、ユーザは常に最適の基地局を介して通話を行い(ステップ432)、その後、通話を終了する(ステップ433)。このように、本発明では、ユーザの要求事項、使用目的毎に最適なサービスを選択できる。又、通話エリアの拡大(複数社の基地局利用)、PHSの利用(PHSが繋がる場所では使用料金、データ通信速度の点から使用率増加)も見込まれる。

[0052]

【発明の効果】本発明によれば、所望の通信サービスの 選択を可能とする移動無線装置を得ることができる。

【図面の簡単な説明】

【図1】本発明に係る移動無線装置の用いられる移動無線システムの一例を示す全体構成図である。

【図2】本発明の移動無線装置が通話相手先端末と通話 する場合の通信経路を示す図である。

【図3】本発明に係る移動無線装置の一実施例を示す図である。

【図4】本発明に係る移動無線装置の動作を説明するための処理フロー図である。

15

- 【図5】データテーブルの一例を示す図である。
- 【図6】ユーザ設定画面の一例を示す図である。
- 【図7】GPS受信回路のブロック構成例を示す図である。
- 【図8】最適基地局を選ぶときのユーザ選択要因相関図 を示す図である。
- 【図9】最適基地局選出の一例を示すフローチャートである。
- 【図10】発信シーケンスの一例を示す図である。
- 【図11】基地局のブロック構成例を示す図である。
- 【図12】ハンドオフシーケンスの一例を示す図である。

*【符号の説明】

- 1 移動無線装置
- 11-1~11-n リモートインタフェース回路

16

- 12 切替回路
- 13 ユーザインタフェース回路
- 14 バス
- 15 外部 I / O 回路
- 16 制御回路
- 17 電源制御回路
- 10 18 電源分配回路
 - 19 品質監視回路

【図1】

【図2】

【図6】

【図4】

【図3】

【図8】

【図7】

【図9】 【図10】

【図11】

【図12】

フロントページの続き

(72) 発明者 丹治 雅行

茨城県日立市大みか町五丁目2番1号 株 式会社日立製作所大みか工場内

(72) 発明者 中澤 秀夫

神奈川県横浜市戸塚区戸塚町216番地 株式会社日立製作所情報通信事業部内

(72) 発明者 益子 英昭

茨城県日立市大みか町五丁目2番1号 株 式会社日立製作所大みか工場内

(72)発明者 上田 晋一

茨城県日立市大みか町五丁目2番1号 株 式会社日立製作所大みか工場内 (72)発明者 小野 知章

神奈川県横浜市戸塚区戸塚町216番地 株式会社日立製作所情報通信事業部内

Fターム(参考) 5K025 AA08 BB06 CC01 DD06 EE04

EE05

5K067 AA21 AA29 BB02 EE02 EE04

EE10 EE23 GG01 HH11 JJ52

JJ54 JJ56 JJ69 JJ72 JJ73

JJ78

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-278735

(43) Date of publication of application: 06.10.2000

(51)Int.CI.

H04Q 7/22

H04Q 7/28

H04Q 7/38

H04M 15/00

(21)Application number: 11-079271

(71)Applicant : HITACHI LTD

(22) Date of filing:

24.03.1999

(72)Inventor: ISHIDA KAZUTO

AZEDAKA TOSHIHIRO

TANJI MASAYUKI

NAKAZAWA HIDEO

MASUKO HIDEAKI

UEDA SHINICHI

ONO TOMOAKI

(54) MOBILE RADIO UNIT

(57) Abstract:

PROBLEM TO BE SOLVED: To obtain a mobile radio unit that can select a desired communication service. SOLUTION: The mobile radio unit 1 is provided with a plurality of interface circuits 11-1 to 11-n provided corresponding to a plurality of base stations. A control circuit 16 selects an optimum base station among a plurality of communication available base stations on the basis of external information from a GPS circuit 151, an acceleration measurement circuit 152 or an external I/F circuit 153 and information stored internally and relating to the base stations and conducts communication by using any of the interface circuits 11-1 to 11-n corresponding to the selected base station.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] Mobile radio equipment characterized by having two or more interface circuitries prepared corresponding to two or more base stations, and the control circuit controlled to choose one from said two or more base stations based on external information and internal information, and to communicate using said interface circuitry corresponding to said selected base station.

[Claim 2] Mobile radio equipment according to claim 1 with which said external information is characterized by being at least one of self positional information, the power information on the strength on the pilot signal of said base station, and the passing speed information of self.

[Claim 3] Mobile radio equipment according to claim 1 or 2 characterized by arranging said interface circuitry in a module removable on a body.

[Claim 4] Mobile radio equipment according to claim 1 or 2 characterized by for said interface circuitry fixing to a body and arranging it.

[Claim 5] It is the mobile radio system which is the mobile radio system equipped with two or more base stations and the mobile radio equipment constituted possible [said each base station and communication], and is characterized by for said mobile radio equipment to transmit the request report signal for acquiring the data for base station selection to each of said base station, and to communicate by choosing the base station which should establish a communication link from two or more of said base stations based on the report presentation signal received from each of said base station.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention] [0001]

[Field of the Invention] This invention relates to the mobile radio equipment which was applied to mobile radio equipment, especially was equipped with the service optional feature.

[0002]

[Description of the Prior Art] The function (it considers as an LCR function henceforth) to pinpoint the location of a communications partner with the selected telephone number in the field of a wire telephone, to make automatic selection of the telephone company and a communication path with the cheapest tariff from the tariff structure of each telephone company, and to perform a communication link from the former is known. The LCR data station is indicated by JP,6-205118,A as a technique relevant to this. By carrying out renewal of automatic of the minimum cost circuit routing information generated by the statistical information for LCR data generation accumulated in external instruments, such as telephone rate management equipment, periodically, this equipment tends to grasp the operating condition of actual telephone as statistical information, tends to perform LCR processing according to the operating condition of actual telephone, and tends to choose the minimum cost circuit. Moreover, the automatic line selecting arrangement is indicated by JP,7-15551,A. This equipment tends to suit an ISDN network, tends to correspond by one set to two or more terminals, and tends to choose a network based on the communication link time amount which computed the communication link time amount of that call beforehand, and computed it for every call.

[0003] Moreover, the base station selection method using the positional information by the global positioning system (GPS) is indicated by JP,10-23500,A considering the optimal environment for mobile radio equipment as a technique of a **** sake. This method tends to choose the optimal base station for the communication link with mobile radio equipment by transmitting into the initial entry for the message initiation from mobile radio equipment including the positional information from the GPS section added to the mobile radio equipment side, and comparing the communication link tolerance information for every base station beforehand remembered to be this information to the key station equipment side.

[0004]

[Problem(s) to be Solved by the Invention] The LCR function mentioned above is used for a wire telephone, and cannot be used for equipment from which a connection circuit changes like mobile radio equipment. Moreover, mobile radio equipment cannot communicate, when contracting the communications area outside at B company, although one carrier corresponds per equipment, for example, equipment is in the communications area of A company. For this reason, conventionally, the user had to do actuation of hanging again using the equipment of A company, when both mobile radio equipments of A company and B company were carried, it hung again with the equipment of B company when it stops having connected with the equipment of A company, and the equipment of B company stopped having connected during migration.

[0005] Moreover, when performing data communication using a mobile terminal, if PHS (Personal Handy-phone System) is used, transmission speed is quickly useful, but shortly after message area of PHS is narrow and passing speed also tends to use it by the vehicle more than walking speed etc. [usually / a cellular phone (PDC:Personal Degital Cellular)], connection will go out. In PDC, when communicating with voice like the usual telephone, even if message area uses it in the train widely, it is hard to go out and is useful, but on the other hand, if it is going to carry out data communication by the Internet etc. using a mobile terminal, transmission speed is slow, and it may be kept waiting only by transmission and reception of data for many minutes, and may become a time-out on the way, and communicating may become impossible.

[0006] Moreover, since the phonecall charges of mobile radio equipment have a gap in each company, if connection becomes going out by migration, as it hangs in the cheaper one when connected with each company, and it will connect with the other company, they have a demand of wanting to talk over the telephone as at a low price as possible. By the method indicated by JP,10-23500,A mentioned above, since the change of a base station is performed in the key station which controls a base station, a user can use only specific service of one company and cannot choose the optimal path and service according to a user's request matter. Moreover, this kind of mobile radio equipment has the problem that things are not made, when the optimal base station and the optimal access method are chosen according to use applications, such as a message and data communication. [0007] Therefore, the purpose of this invention solves the above troubles and is to offer the mobile radio equipment which enables selection of desired communication service.

[8000]

[Means for Solving the Problem] The above-mentioned purpose is attained by mobile radio equipment equipped with two or more interface circuitries prepared corresponding to two or more base stations, and the control circuit controlled to choose one from said two or more base stations based on external information and internal information, and to communicate using said interface circuitry corresponding to said selected base station. Here, external information is the self positional information detected using a global positioning system (GPS), the power information on the strength on the pilot signal sent from each base station, or the

PAGE BLANK (USPTO)

passing speed information of self. Individually, these can be combined and can be used as external information.

[0009] Moreover, an interface circuitry can be arranged in the module formed in the slot of the body of mobile radio equipment removable. This module may also incorporate an interface circuitry according to an individual so that it may correspond to each base station, and it may also incorporate two or more interface circuitries collectively so that it may correspond to two or more base stations. As an option, it can fix in the body of mobile radio equipment, and these interface circuitries can also be arranged.

[0010] The mobile radio system concerning this invention is equipped with two or more base stations, each base station, and the mobile radio equipment constituted possible [communication], and this mobile radio equipment transmits the request report signal for acquiring the data for base station selection to each base station, and it is constituted so that the base station which should establish a communication link may be chosen from two or more base stations and it may communicate based on the report presentation signal received from each base station. Thus, by constituting, the mobile radio equipment which enables selection of desired communication service can be obtained.

[0011]

[Embodiment of the Invention] One example of this invention is explained referring to a drawing below. <u>Drawing 1</u> is the whole block diagram showing an example of the mobile radio system by which the mobile radio equipment concerning this invention is used. In drawing, 1 is mobile radio equipment concerning this invention, A company PDC-BS and 204 make C company PHS-BS1,203 as B company PDC-BS, and 202 makes 201 C company PHS-BS2. Here, PDC-BS is a base station (BS) using a PDC (Personal Degital Cellular) method, and PHS-BS is a base station (BS) using a PHS (Personal Handy-phone System) method.

[0012] A company PDC-BS201 is connected to a public line 208 through a control unit (it is henceforth called MSC) MSC 205, and B company PDC-BS204 is connected to a public line 208 through MSC207. PHS-BS 203 and 204 is connected to a public line 208 through the PHS contact 206 in an ISDN network, respectively. 210 is a message phase hand terminal and is connected to a public line 208 through MSC209. 211 is the range (it is henceforth called a service area) which can connect mobile radio equipment 1 to A company PDC-BS201, and, as for the service area of PHS-BS202, and 213, 212 is [the service area of PHS-BS203 and 214] the service areas of B company PDC-BS204 similarly. It is assumed that the mobile radio terminal 1 is located within limits which these service areas 211-214 overlapped, and is in a condition connectable with every base station. [0013] Drawing 2 shows a communication path in case the mobile radio equipment 1 concerning this invention telephones to the message phase hand terminal 210. Mobile radio equipment 1 can be connected with each base stations 201-204 of all, and can take any path of paths 301-304. The user who uses the mobile radio equipment 1 concerning this invention can choose the path which offers giving [which "a tariff being cheapest" or the one "a data rate is the earliest" wishes], and can connect and talk over the telephone to the base

station.

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

TECHNICAL FIELD

[Field of the Invention] This invention relates to the mobile radio equipment which was applied to mobile radio equipment, especially was equipped with the service optional feature.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

PRIOR ART

[Description of the Prior Art] The function (it considers as an LCR function henceforth) to pinpoint the location of a communications partner with the selected telephone number in the field of a wire telephone, to make automatic selection of the telephone company and a communication path with the cheapest tariff from the tariff structure of each telephone company, and to perform a communication link from the former is known. The LCR data station is indicated by JP,6-205118,A as a technique relevant to this. By carrying out renewal of automatic of the minimum cost circuit routing information generated by the statistical information for LCR data generation accumulated in external instruments, such as telephone rate management equipment, periodically, this equipment tends to grasp the operating condition of actual telephone as statistical information, tends to perform LCR processing according to the operating condition of actual telephone, and tends to choose the minimum cost circuit. Moreover, the automatic line selecting arrangement is indicated by JP,7-15551,A. This equipment tends to suit an ISDN network, tends to correspond by one set to two or more terminals, and tends to choose a network based on the communication link time amount which computed the communication link time amount of that call beforehand, and computed it for every call.

[0003] Moreover, the base station selection method using the positional information by the global positioning system (GPS) is indicated by JP,10-23500,A considering the optimal environment for mobile radio equipment as a technique of a **** sake. This method tends to choose the optimal base station for the communication link with mobile radio equipment by transmitting into the initial entry for the message initiation from mobile radio equipment including the positional information from the GPS section added to the mobile radio equipment side, and comparing the communication link tolerance information for every base station beforehand remembered to be this information to the key station equipment side.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

EFFECT OF THE INVENTION

[Effect of the Invention] According to this invention, the mobile radio equipment which enables selection of desired communication service can be obtained.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

TECHNICAL PROBLEM

[Problem(s) to be Solved by the Invention] The LCR function mentioned above is used for a wire telephone, and cannot be used for equipment from which a connection circuit changes like mobile radio equipment. Moreover, mobile radio equipment cannot communicate, when contracting the communications area outside at B company, although one carrier corresponds per equipment, for example, equipment is in the communications area of A company. For this reason, conventionally, the user had to do actuation of hanging again using the equipment of A company, when both mobile radio equipments of A company and B company were carried, it hung again with the equipment of B company when it stops having connected with the equipment of A company, and the equipment of B company stopped having connected during migration.

[0005] Moreover, when performing data communication using a mobile terminal, if PHS (Personal Handy-phone System) is used, transmission speed is quickly useful, but shortly after message area of PHS is narrow and passing speed also tends to use it by the vehicle more than walking speed etc. [usually / a cellular phone (PDC:Personal Degital Cellular)], connection will go out. In PDC, when communicating with voice like the usual telephone, even if message area uses it in the train widely, it is hard to go out and is useful, but on the other hand, if it is going to carry out data communication by the Internet etc. using a mobile terminal, transmission speed is slow, and it may be kept waiting only by transmission and reception of data for many minutes, and may become a time-out on the way, and communicating may become impossible.

[0006] Moreover, since the phonecall charges of mobile radio equipment have a gap in each company, if connection becomes going out by migration, as it hangs in the cheaper one when connected with each company, and it will connect with the other company, they have a demand of wanting to talk over the telephone as at a low price as possible. By the method indicated by JP,10-23500,A mentioned above, since the change of a base station is performed in the key station which controls a base station, a user can use only specific service of one company and cannot choose the optimal path and service according to a user's request matter. Moreover, this kind of mobile radio equipment has the problem that things are not made, when the optimal base station and the optimal access method are chosen according to use applications, such as a message and data communication. [0007] Therefore, the purpose of this invention solves the above troubles and is to

offer the mobile radio equipment which enables selection of desired communication service. $[0008] \label{eq:communication}$

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

MEANS

[Means for Solving the Problem] The above-mentioned purpose is attained by mobile radio equipment equipped with two or more interface circuitries prepared corresponding to two or more base stations, and the control circuit controlled to choose one from said two or more base stations based on external information and internal information, and to communicate using said interface circuitry corresponding to said selected base station. Here, external information is the self positional information detected using a global positioning system (GPS), the power information on the strength on the pilot signal sent from each base station, or the passing speed information of self. Individually, these can be combined and can be used as external information.

[0009] Moreover, an interface circuitry can be arranged in the module formed in the slot of the body of mobile radio equipment removable. This module may also incorporate an interface circuitry according to an individual so that it may correspond to each base station, and it may also incorporate two or more interface circuitries collectively so that it may correspond to two or more base stations. As an option, it can fix in the body of mobile radio equipment, and these interface circuitries can also be arranged.

[0010] The mobile radio system concerning this invention is equipped with two or more base stations, each base station, and the mobile radio equipment constituted possible [communication], and this mobile radio equipment transmits the request report signal for acquiring the data for base station selection to each base station, and it is constituted so that the base station which should establish a communication link may be chosen from two or more base stations and it may communicate based on the report presentation signal received from each base station. Thus, by constituting, the mobile radio equipment which enables selection of desired communication service can be obtained.

[0011]

[Embodiment of the Invention] One example of this invention is explained referring to a drawing below. <u>Drawing 1</u> is the whole block diagram showing an example of the mobile radio system by which the mobile radio equipment concerning this invention is used. In drawing, 1 is mobile radio equipment concerning this invention, A company PDC-BS and 204 make C company PHS-BS1,203 as B company PDC-BS, and 202 makes 201 C company PHS-BS2. Here, PDC-BS is a base station (BS) using a PDC (Personal Degital Cellular) method, and

PHS-BS is a base station (BS) using a PHS (Personal Handy-phone System) method.

[0012] A company PDC-BS201 is connected to a public line 208 through a control unit (it is henceforth called MSC) MSC 205, and B company PDC-BS204 is connected to a public line 208 through MSC207. PHS-BS 203 and 204 is connected to a public line 208 through the PHS contact 206 in an ISDN network, respectively. 210 is a message phase hand terminal and is connected to a public line 208 through MSC209. 211 is the range (it is henceforth called a service area) which can connect mobile radio equipment 1 to A company PDC-BS201, and, as for the service area of PHS-BS202, and 213, 212 is [the service area of PHS-BS203 and 214] the service areas of B company PDC-BS204 similarly. It is assumed that the mobile radio terminal 1 is located within limits which these service areas 211-214 overlapped, and is in a condition connectable with every base station. [0013] Drawing 2 shows a communication path in case the mobile radio equipment 1 concerning this invention telephones to the message phase hand terminal 210. Mobile radio equipment 1 can be connected with each base stations 201-204 of all, and can take any path of paths 301-304. The user who uses the mobile radio equipment 1 concerning this invention can choose the path which offers giving [which "a tariff being cheapest" or the one "a data rate is the earliest" wishes], and can connect and talk over the telephone to the base station. A path means the path acquired by changing the base station to connect like the paths 301-304 of this Fig. here, and the path from MSC after a base station to a public line 208, MSC209, and the message phase hand terminal 210 is based on the carrier of each base station.

[0014] <u>Drawing 3</u> is drawing showing one example of the mobile radio equipment concerning this invention. The configuration of this Fig. is explained below. In drawing, a control circuit 16 controls the whole mobile radio equipment 1, it has MPU161, DRAM162, ROM163, and SRAM164, and they are connected to a bus 14, respectively. Here, only the time of power-source starting is used by the programmable read only memory for initialization storing in ROM163. Moreover, a bus 14 connects a control circuit 16 and each circuit.

[0015] The remote interface circuitry 11-1 - 11-n are prepared in this equipment. The communication link with each base station becomes a different thing by the difference between the difference among communication modes, such as PHS and PDC, the difference in the band of use electric-wave frequencies, such as 800MHz and 1500MHz, **/modulation technique by each communication link entrepreneur, and multiplex system etc. This remote interface circuitry 11-1 - 11-n are constituted so that it may correspond with each base station where methods differ, respectively, and they make a communication link possible by each base station and wireless. In this example, although each remote interface circuitry 11-1-11-n are mounted by the slot as a module which became independent for every addressee, respectively, they can also include a circuit in a body beforehand as an option.

[0016] This Fig. shows the block configuration of the remote interface circuitry 11-1 as an example. The RF circuit 114 receives the conveyance electric wave sent from a base station through an antenna 115. A demodulator circuit 113 restores to

the signal. The signal to which it restored is sent to the access method processing circuit 112. The access method processing circuit 112 is a circuit which processes multi-access methods, such as TDMA (Time Division Multiple Access), FDMA (Frequency Division Multiple Access), and CDMA (Code Division Multiple Access). The signal processed by this circuit receives a voice codec in the speech processing circuit 111, and is again outputted as voice data.

[0017] An electronic switch 12 is a circuit which changes the signal from two or more remote interface circuitries 11-1 - 11-n, and has multiplexers 121 and 122. A multiplexer 121 is controlled by the change control circuit 123, inputs the signal outputted from the remote interface circuitry 11-1 - 11-n, and changes the output to the loudspeaker 131 in the user interface circuit 13 with the directions from MPU161. One sound signal chosen by this is inputted into a loudspeaker 131, and is outputted to a user as voice.

[0018] It is performed by the procedure contrary to the above-mentioned case when transmitting the voice from a user to a base station. The voice inputted from the microphone 132 is changed into voice data, and is inputted into a multiplexer 122. Voice data is outputted to the remote interface circuitry chosen by MPU161. In the remote interface circuitry 11-1, through the speech processing circuit 111 and the access method processing circuit 112, a modulation circuit 116 becomes irregular and it is outputted from the RF circuit 114.

[0019] The user interface circuit 13 mounts the display circuit 133 and the ten key circuit 134 other than the above-mentioned loudspeaker 131 and a microphone 132. The ten key circuit 134 is a circuit for user inputs, and a user can perform the input function which the usual radiotelephony machines, such as an input of a message place dial number, storage of a number to be dialed, and a terminal setup input, have from this circuit. Moreover, a display 133 is equivalent to the output section of MPU161 to a user. These are connected to a bus 14 through the MPUI/F control circuit 135. Moreover, the MPUI/F control circuit 135 is connected also to a loudspeaker 131, and, thereby, a voice output is made to a user. [0020] The external I/O circuits 15 are external input circuits other than a user interface, and consist of the GPS circuit 151, an acceleration measuring circuit 152, and an external I/F circuit 153. Each circuit is controlled by the I/Ohardware-control circuit 154, and is connected to a bus 14. The GPS circuit 151 is a circuit which acquires positional information by the GPS system. The acceleration measuring circuit 152 is a sensor which measures the acceleration of mobile radio equipment. The external I/F circuit 153 is a circuit which enables connection of an external circuit, and it connects with other computer terminals, or it is connected with external storage, such as an external hard disk and FD drive equipment. It connects with the RF circuit 114 of two or more remote interface circuitries 11-1 -11-n, and the performance-monitoring circuit 19 supervises the quality of a received electric wave. The power control circuit 17 is a circuit which controls the power distribution circuit 18.

[0021] <u>Drawing 4</u> is drawing showing the processing flow for explaining these circuit actuation. In this example, processing is performed according to the processing flow 44 by the side of the mobile radio equipment when telephoning to the processing flow 43 by the side of a user as shown in drawing, when [which it

awaits and telephones to the processing flow 42 by the side of the mobile radio equipment at the time, and a partner] the processing flow 41, initial power up, or user by the side of the user who performs initial setting is not talking over the telephone to a message phase hand terminal, and a partner. This Fig. shows the processing flow relevant to this invention, and the processing flow which a setup which a user usually performs, and mobile radio equipment perform is omitted. [0022] A user equips first the slot of the body of equipment which is not illustrated with the remote interface-circuitry module 11-1 which self uses - 11-n (step 411). If a power source is switched on, MPU161 will access the register of each remote interface-circuitry module 11-1 - 11-n.

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[Drawing 1] It is the whole block diagram showing an example of the mobile radio system by which the mobile radio equipment concerning this invention is used.

[Drawing 2] It is drawing showing a communication path in case the mobile radio equipment of this invention telephones to a message phase hand terminal.

[Drawing 3] It is drawing showing one example of the mobile radio equipment concerning this invention.

[Drawing 4] It is a processing flow Fig. for explaining actuation of the mobile radio equipment concerning this invention.

[Drawing 5] It is drawing showing an example of a data table.

[Drawing 6] It is drawing showing an example of a user setting screen.

[Drawing 7] It is drawing showing the example of a block configuration of a GPS receiving circuit.

[Drawing 8] It is drawing showing the own alternative factor correlation diagram when choosing the optimal base station.

[Drawing 9] It is the flow chart which shows an example of the optimal base station election.

[Drawing 10] It is drawing showing an example of a dispatch sequence.

[Drawing 11] It is drawing showing the example of a block configuration of a base station.

[Drawing 12] It is drawing showing an example of a hand off sequence.

[Description of Notations]

- 1 Mobile Radio Equipment
- 11-1 11-n Remote interface circuitry
- 12 Electronic Switch
- 13 User Interface Circuit
- 14 Bus
- 15 External I/O Circuit
- 16 Control Circuit
- 17 Power Control Circuit
- 18 Power Distribution Circuit
- 19 Performance-Monitoring Circuit

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DRAWINGS

[Drawing 4]

[Drawing 6] <=-呼吸定图面>				6 1
通信業者別		PDC(A社)	PDC(B社)	PHS(C社)
	接続ON/OPP	ON	OPP	ON
	優先接続			0
使用目的別		通話	データ通信	
	承話料金	0		
	データ通信速度		0	
	通話品質			

[Drawing 3]

[Drawing 8]

IIIIO PAGE BLANK (USPTO)

[Translation done.]