Complex Analysis: Homework 9

Peter Kagey

March 28, 2018

Problem 1. (page 174)

Suppose f is analytic in the whole plane, real on the real axis, and purely imaginary on the imaginary axis. Show that f is odd.

Proof.

By Theorem 24, because the imaginary part of f vanishes on the real axis, $f(z) = \overline{f(\bar{z})}$, thus in the Taylor series

$$\sum_{n=0}^{\infty} a_n z^n = \sum_{n=0}^{\infty} \overline{a_n \overline{z}^n} = \sum_{n=0}^{\infty} \overline{a_n} z^n,$$

so each coefficient is real because $a_n = \bar{a}_n$. Now let y be real so that yi is purely imaginary. Then the Taylor series for f(iy) can be split into its even and odd terms:

$$f(iy) = \sum_{n=0}^{\infty} a_n i^n y^n$$

=
$$\sum_{n=0}^{\infty} a_{2n} i^{2n} y^{2n} + \sum_{n=0}^{\infty} a_{2n+1} i^{2n+1} y^{2n+1}$$

This even/odd split also splits the sums into real and imaginary parts

$$f(iy) = \sum_{n=0}^{\infty} \underbrace{a_{2n}(-1)^n y^{2n}}_{\in \mathbb{R}} + i \sum_{n=0}^{\infty} \underbrace{a_{2n+1}(-1)^n y^{2n+1}}_{\in \mathbb{R}},$$

and by hypothesis, the image of f(iy) is purely imaginary, so

$$\sum_{n=0}^{\infty} \underbrace{a_{2n}(-1)^n y^{2n}}_{\in \mathbb{R}} = 0$$

and thus f can be rewritten as

$$f(z) = \sum_{n=0}^{\infty} a_{2n+1} z^{2n+1},$$

and so f is odd by inspection.

Problem 4. (page 174)

Use (66) to derive a formula for f'(z) in terms of u(z).

Proof.

(66) gives that

$$f(z) = \frac{1}{2\pi i} \int_{|\zeta| = R} \frac{\zeta + z}{\zeta - z} u(\zeta) \frac{d\zeta}{\zeta} + iC$$

By differentiating under the integral

$$f'(z) = \frac{d}{dz} \left[\frac{1}{2\pi i} \int_{|\zeta|=R} \frac{\zeta + z}{\zeta - z} u(\zeta) \frac{d\zeta}{\zeta} + iC \right]$$

$$= \frac{1}{2\pi i} \int_{|\zeta|=R} \frac{u(\zeta)}{\zeta} \cdot \frac{\partial}{\partial z} \left[\frac{\zeta + z}{\zeta - z} \right] d\zeta + \frac{d}{dz} [iC]$$

$$= \frac{1}{2\pi i} \int_{|\zeta|=R} \frac{u(\zeta)}{\zeta} \cdot \frac{2\zeta}{(\zeta - z)^2} d\zeta$$

$$= \frac{1}{\pi i} \int_{|\zeta|=R} \frac{u(\zeta)}{(\zeta - z)^2} d\zeta.$$

$$= 2u'(z)$$

2

Problem 5. (page 174)

Suppose u(z) is harmonic and $0 \le u(z) \le Ky$ for y > 0. Prove that u = ky with $0 \le k \le K$.

Proof.

By the previous problem, u'(z) reduces to a constant by Liouville's theorem, because it is bounded and analytic on \mathbb{C} .

Thus f'(z) = 2u'(z) = k is also a constant, so f(z) = kz, and the real part is u(z) = ky. Since $0 \le u(z) = ky \le Ky$, this implies that $0 \le k \le K$.

Problem 1. (page 244)

If E is a compact set in a region Ω , prove that there exists a constant M, depending only on E and Ω , such that every positive harmonic function u(z) in Ω satisfies $u(z_2) \leq Mu(z_1)$ for any two points $z_1, z_2 \in E$.

Proof.

Harnack's inequality gives that

$$\frac{\rho - r}{\rho + r}u(z_1) \le u(z_2) \le \frac{\rho + r}{\rho - r}u(z_1).$$

where $|z_2 - z_1| = r < \rho$, and u(z) is harmonic for $|z - z_1| < \rho$.

Because $E \subset \Omega$ is compact, it admits a finite subcover of balls of radius s_p , $B_{s_p}(p) \subset \Omega$. (Say that there are N such balls.) Then by "linking up" the balls, for any two points, we can find a polygonal chain through at most N balls composed of line segments between z_2 and p_1 , p_1 and p_2 , and so on (where p_k is a point at the "center" of the overlap of the balls)

$$z_2 \to p_1 \to p_2 \to \ldots \to p_{n-1} \to z_1$$

Then by the positivity of u,

$$\frac{u(z_2)}{u(p_1)} \cdot \frac{u(p_1)}{u(p_2)} \cdots \frac{u(p_{n-1})}{u(z_1)} = \frac{u(z_2)}{u(z_1)} \le \left(\frac{\rho_1 + r_1}{\rho_1 - r_1}\right) \cdots \left(\frac{\rho_n + r_n}{\rho_n - r_n}\right).$$

Then just set M to be the sup of all such products, which is finite because there are a finite number of balls.

Problem 3. (page 248)

If v is continuous together with its partial derivatives up to the second order, prove that v is subharmonic if and only if $\Delta v \geq 0$.

Proof.

 (\Longrightarrow) Assume that v is subharmonic. Now if v is harmonic, then we're done, so assume that $\Delta v < 0$, which means that $\Delta(v + \varepsilon x^2) = \Delta v + 2\varepsilon$ and so $v + \varepsilon x^2$ is subharmonic for $\varepsilon \le -\Delta v/2$

(⇐=)

By contrapositive, assume that v is not subharmonic. That is, given some circle $\Omega' \subset \Omega$, on which u and v (with u harmonic), u-v does not satisfy the maximum principle—that is, |u-v| has a maximum in Ω . However, in order to have a maximum, $\partial^2/\partial x^2(v-u) \leq 0$ and $\partial^2/\partial y^2(v-u) \leq 0$, so $\Delta v = \Delta(v-u) \leq 0$. \square

Problem 4. (page 248)

Prove that a subharmonic function remains subharmonic if the independent variable is subjected to a conformal mapping.

Proof.

Let u be a subharmonic function and f a conformal mapping. Assume for the sake of contradiction that $u \circ f$ is not subharmonic—that is, there exists some z_0 and some corresponding harmonic function v such that $g = u \circ f - v$ takes a maximum at z_0 . On same small disk centered at z_0 , we can write

$$g(z) = u \circ f(z) - v \circ f^{-1} \circ f(z)$$

because v is harmonic and f and f^{-1} are conformal, $\hat{v} = v \circ f^{-1}$ is also harmonic. So choosing some $w_0 \in f^{-1}(z_0)$, we can write

$$g(w_0) = u(z_0) - \hat{v}(z_0)$$

is a maximal value of g. But this is a contradiction because both u and \hat{v} are harmonic.

Problem 5. (page 248)

Formulate and prove a theorem to the effect that a uniform limit of subharmonic functions is subharmonic.

Proof.

Suppose that $u_1, u_2, ...$ is a sequence of functions that are subharmonic in Ω and converge uniformly to u in the sense that for any choice of $\varepsilon > 0$, there exists some $N \in \mathbb{N}$ such that

$$|u_N(z) - u(z)| < \varepsilon$$
 for all $z \in \Omega$.

Theorem 8 gives that a function f is subharmonic if and only if

$$f(z_0) \le \frac{1}{2\pi} \int_0^{2\pi} f\left(z_0 + re^{i\theta}\right) d\theta$$

for every disk $|z-z_0| \leq r$ in Ω . Thus

$$u(z_0) < \varepsilon + u_N(z_0)$$

$$< \varepsilon + \frac{1}{2\pi} \int_0^{2\pi} u_N \left(z_0 + re^{i\theta} \right) d\theta$$

$$< \varepsilon + \frac{1}{2\pi} \int_0^{2\pi} u \left(z_0 + re^{i\theta} \right) + \varepsilon d\theta$$

$$< 2\varepsilon + \frac{1}{2\pi} \int_0^{2\pi} u \left(z_0 + re^{i\theta} \right) d\theta$$

This holds for arbitrarily small ε , so u is subharmonic by Theorem 8.