

CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A

EZ-USB FX2LP (TM) USB 微控制器 高速 USB 外设控制器

1. 特色 (CY7C68013A/14A/15A/16A)

- USB 2.0 USB IF 高速性能且经过认证 (TID # 40460272)
- 单芯片集成 USB 2.0 收发器、智能串行接口引擎 (SIE) 和增强型 8051 微处理器
- 适用性、外观和功能均与 FX2 兼容
 - □引脚兼容
 - □目标代码兼容
 - □功能兼容 (FX2LP 是超集)
- 超低功耗: I_{CC} 在任何模式下都不超过 85 mA □ 适合总线和电池供电的应用
- 软件: 8051 代码运行介质:
 - □内部 RAM,通过 USB 下载
 - □内部 RAM,从 EEPROM 加载
 - □外部存储设备 (128 引脚封装)
- 16 K 字节片上代码/数据 RAM
- 四个可编程的 BULK/INTERRUPT/ISOCHRONOUS 端点 □ 缓冲区大小选项:两倍,三倍,四倍
- 附加的可编程 (BULK/INTERRUPT) 64 位端点
- 8 位或 16 位外部数据接口
- 可生成智能介质标准错误校正码 ECC

- 通用可编程接口 (General Programmable Interface, GPIF)
 - □可与大多数并行接口直接连接
- □由可编程波形描述符和配置寄存器定义波形
- □ 支持多个 Ready (RDY) 输入和 Control (CTL) 输出
- 符合行业标准的集成增强型 8051
 - □ 48 MHz、 24 MHz 或 12 MHz CPU 操作
 - □每个指令周期四个时钟
 - □ 两个 USART
 - □三个计数器/定时器
 - □扩展的中断系统
 - □两个数据指针
- 3.3V 工作电压,容限输入为 5V
- 向量化 USB 中断和 GPIF/FIFO 中断
- 分离的 CONTROL 传输设置部分和数据部分数据缓冲
- 集成 I²C 控制器, 在 100 或 400 kHz 下运行
- 集成的四个先进先出 (FIFO) 缓冲
 - □ 集成胶合逻辑和 FIFO 有助于降低系统成本
 - □ 与 16 位总线之间的自动转换
 - □可主 从操作
 - □使用外部时钟或异步选通脉冲
 - □ 易于与 ASIC 和 DSP IC 相连的接口
- 有商业和工业温度等级供选择 (除 VFBGA 外的所有封装)

逻辑方框图

1.1 特色 (仅限 CY7C68013A/14A)

- CY7C68014A: 适合电池供电应用
 - □ 挂起电流: 100 μA (typ)
- CY7C68013A: 适合非电池供电应用
 - □ 挂起电流: 300 μA (typ)
- 有五种无铅封装供选择,可包含多达 40 个 GPIO
 - □ 128 引脚 TQFP(40 个 GPIO)、100 引脚 TQFP(40 个 GPIO)、56 引脚 QFN(24 个 GPIO)、56 引脚 SSOP(24 个 GPIO)和56 引脚 VFBGA(24 个 GPIO)

1.2 特色 (仅限 CY7C68015A/16A)

- CY7C68016A: 适合电池供电应用
 - □ 挂起电流:100 μA (typ)
- CY7C68015A: 适合非电池供电应用
 - □挂起电流: 300 µA (typ)
- 采用无铅 56 引脚 QFN 封装 (26 个 GPIO)
 - □ 比 CY7C68013A/14A 多 2 个 GPIO, 可在同样的空间内实现 额外的功能

赛普拉斯半导体公司 (赛普拉斯)的 EZ-USB FX2LP™ (CY7C68013A/14A) 是高集成、低功耗 USB 2.0 微控制器 EZ-USB FX2™ (CY7C68013)的一个低功耗版本。通过将 USB 2.0 收发器、串行接口引擎 (SIE)、增强型 8051 微控制器,以及可编程外设接口集成到一个芯片中,赛普拉斯研发出一个极具成本优势的解决方案,不仅能在极短时间内完成从立项到投放市场的过程,而且其低功耗特点使得总线供电应用成为可能。

FX2LP 的创新型体系架构让数据传输速率达到每秒 53 MB 以上,即可允许的最大 USB 2.0 带宽,而为此所使用的仍然是放在如 56 VFBGA (5mm x 5mm) 一样小的封装中的低成本 8051 微控制器。由于集成了 USB 2.0 收发器, FX2LP 更为经济,与使用 USB 2.0 SIE 或外部收发器的情况相比,可提供占据空间更少的解决方案。借助 EZ-USB FX2LP,赛普拉斯的智能 SIE 可处理硬件方面的大多数 USB 1.1 和 2.0 协议,从而减轻了嵌入式微控制器的负担,使其得以处理应用程序特定的功能,并缩短开发时间以确保 USB 兼容性。

通用可编程接口 (GPIF) 和主/从端点 FIFO(8 位或 16 位数据总线)为 ATA、UTOPIA、EPP、PCMCIA 等主流接口和大多数DSP/处理器提供了简易的无胶合接口。

FX2LP 的耗电量小于 FX2 (CY7C68013), 而片上代码/数据 RAM 是后者的两倍, 并且其适用性、外观和功能均与 56、 100 和 128 引脚 FX2 兼容。

此系列包含五种封装: 56VFBGA、56 SSOP、56 QFN、100 TQFP 和 128 TQFP。

2. 应用

- 便携式录像机
- MPEG/TV 转换
- DSL 调制解调器
- ATA 接口
- 存储器卡读取器
- 旧式转换设备
- 照相机
- 扫描仪
- 家用 PNA
- 无线 LAN
- MP3 播放器
- 网络设备

赛普拉斯网站的"Reference Designs"(参考设计)部分为 USB2.0 的典型应用提供了附加工具。每个参考设计都包含固件的源代码和目标代码、原理图以及文档。有关详细信息,请访问赛普拉斯网站。

3. 功能概述

3.1 USB 信号传输速度

FX2LP 按照 2000 年 4 月 27 日发布的 《USB 规范修订版 2.0》中定义的三种速率中的两种运行:

- 全速,信号传输比特率为 12 Mbps
- 高速,信号传输比特率为 480 Mbps

FX2LP 不支持 1.5 Mbps 的低速信号发射模式。

3.2 8051 微处理器

FX2LP 系列中内嵌的 8051 微处理器具有 256 字节的寄存器 RAM、扩展的中断系统、三个定时器/计数器和两个 USART。

3.2.1 8051 时钟频率

FX2LP 有一个片上振荡器电路,它使用具有以下特性的外部 24 MHz (±100 ppm) 晶体:

- ■并联谐振
- ■基础模式
- 500 µW 驱动级别
- 12-pF (5% 的允许偏差) 负载电容

片上 PLL 可根据收发器/PHY 的需要将 24 MHz 振荡器倍频到 480 MHz,而内部计数器可将其分频以用作 8051 时钟。默认的 8051 时钟频率是 12 MHz。 8051 的时钟频率可以由 8051 通过 CPUCS 寄存器动态更改。

图 1. 晶体配置

12-pF 电容值采用跟踪电容为: 四层 FR4 PCA 上每侧 3 pF

可以使用内部控制位实现三态和反相的 CLKOUT 引脚会按照以下选定的 8051 时钟频率输出占空比为 50% 的 8051 时钟: 48 MHz、24 MHz 或 12 MHz。

3.2.2 USART

FX2LP 含有两个标准 8051 USART,它们通过特殊功能寄存器 (SFR) 位来进行寻址。USART 接口引脚可以使用单独 I/O,不与端口引脚进行多路复用。

UART0 和 UART1 可以使用内部时钟以 230 KBaud (误差不超过 1%)的速率运行。以 230 KBaud 的速率运行是通过可在适当时间生成溢出脉冲的内部派生时钟源实现的。内部时钟会根据 8051 时钟速率 (48 MHz、 24 MHz 和 12 MHz)进行调整,从而使它始终为以 230 KBaud 的速率运行提供正确的频率。^[1]

3.2.3 特殊功能寄存器

在某些 8051 SFR 地址添加了 SFR 以便能快速访问关键的 FX2LP 功能。这些添加的 SFR 如第 4 页的表 1 所示。粗体部分表示非标准的增强型 8051 寄存器。以 "0" 和 "8" 结尾的两个 SFR 行中包含可以位寻址的寄存器。A 到 D 四个 IO 端口使用在标准 8051 中用于端口 0 到 3 的 SFR 地址,这些地址在 FX2LP 中未实现。由于 SFR 寻址更快、更有效,因此 FX2LP IO 端口在外部 RAM 空间中不可寻址(使用 MOVX 指令)。

3.3 I²C 总线

FX2LP 仅支持在 100/400 KHz 下将 I^2 C 总线用作主控端。 SCL 和 SDA 引脚具有开漏输出和滞后输入。即使未连接 I^2 C 设备,这些信号也必须上拉至 3.3V。

3.4 总线

所有封装 (8 位或 16 位 "FIFO" 双向数据总线) 均在 IO 端口 B和 D上多路复用。 128 引脚封装:添加仅 16 位输出 8051 地址总线和 8 位双向数据总线。

注

1. 以 115 KBaud 的速率运行也是可能的,只要分别针对 UART0、 UART1 或针对二者将 8051 SMOD0 或 SMOD1 位编程为 "1" 即可。

表 1. 特殊功能寄存器

X	8x	9x	Ax	Вх	Сх	Dx	Ex	Fx
0	IOA	IOB	IOC	IOD	SCON1	PSW	ACC	В
1	SP	EXIF	INT2CLR	IOE	SBUF1			
2	DPL0	MPAGE	INT4CLR	OEA				
3	DPH0			OEB				
4	DPL1			OEC				
5	DPH1			OED				
6	DPS			OEE				
7	PCON							
8	TCON	SCON0	IE	IP	T2CON	EICON	EIE	EIP
9	TMOD	SBUF0						
Α	TL0	AUTOPTRH1	EP2468STAT	EP01STAT	RCAP2L			
В	TL1	AUTOPTRL1	EP24FIFOFLGS	GPIFTRIG	RCAP2H			
С	TH0	保留	EP68FIFOFLGS		TL2			
D	TH1	AUTOPTRH2		GPIFSGLDATH	TH2			
Е	CKCON	AUTOPTRL2		GPIFSGLDATLX				
F		保留	AUTOPTRSET-UP	GPIFSGLDATLNOX				

3.5 USB 引导方法

在加电序列中,内部逻辑会检查 I^2C 端口是否连接了第一个字节为 0xC0 或 0xC2 的 EEPROM。如果找到,则会使用 EEPROM中的 VID/PID/DID 值来代替内部存储的值 (0xC0),或者在引导时将 EEPROM内容加载到内部 RAM (0xC2) 中。如果未检测到 EEPROM,FX2LP会使用内部存储的描述符进行枚举。FX2LP的默认 ID 值为 VID/PID/DID (0x04B4、0x8613、0xAxxx,其中xxx=芯片修订版本)。 <math>[2]

表 2. FX2LP 的默认 ID 值

默认 VID/PID/DID												
厂商 ID	0x04B4	赛普拉斯半导体公司										
产品 ID	0x8613	EZ-USB FX2LP										
设备发行	0xAnnn	取决于芯片修订版本 (nnn = 芯片修订版本, 其中第一 个硅片 = 001)										

3.6 ReNumeration™

由于 FX2LP 的配置为软配置,因此一个芯片可以被识别成多个不同 USB 设备。

当首次插入 USB 时,FX2LP 会自动进行枚举,并通过 USB 电缆下载固件和 USB 描述符表。接着,FX2LP 会再次进行枚举,但这次的 USB 设备由下载的信息所定义。这种名为 ReNumeration™的专利性两步式过程会在插入设备后立即发生,而不提示初始下载步骤已经发生。

USBCS (USB Control 和 Status) 寄存器中有两个控制位对 ReNumeration 过程进行控制,它们是: DISCON 和 RENUM。为了模拟 USB 断开连接,固件会将 DISCON 设为 1。为了重新连接,固件会将 DISCON 清除为 0。

在重新连接前,固件会设置或清除 RENUM 位,以指明是由固件还是由默认的 USB 设备处理通过端点零传输的设备请求:如果RENUM = 0,则由默认的 USB 设备处理设备请求,如果 RENUM = 1,则由固件处理请求。

3.7 总线供电应用

通过按照 USB 2.0 规范要求的小于 100 mA 进行枚举, FX2LP 完全支持总线供电设计。

3.8 中断系统

3.8.1 INT2 中断请求和使能寄存器

FX2LP 针对 INT2 和 INT4 实现自动向量化功能。有 27 个 INT2 (USB) 向量和 14 个 INT4 (FIFO/GPIF) 向量。有关详细信息,请参见 《EZ-USB 技术参考手册》 (TRM)。

3.8.2 USB 中断自动向量化

主 USB 中断由 27 个中断源共享。为节省确定独立 USB 中断源所需的编码和处理时间,FX2LP 提供一个辅助级别的中断向量化功能,叫做自动向量化。当触发 USB 中断时,FX2LP 会将程序计数器推到其堆栈中,然后跳转到地址 0x0043,在那里它应该会找到用于跳转到 USB 中断服务子程序的 "Jump" 指令。

注

FX2LP jump 指令的编码如下所示:

表 3. INT2 USB 中断

			INT2 USB 中断表
优先级	INT2VEC 值	源	注
1	00	SUDAV	Setup 数据可用
2	04	SOF	帧 (或微型帧)起始
3	08	SUTOK	设置权标已收到
4	0C	SUSPEND	USB 挂起请求
5	10	USB RESET	总线复位
6	14	HISPEED	已进入高速运行
7	18	EP0ACK	FX2LP 确认了 CONTROL 握手
8	1C		保留
9	20	EP0-IN	EP0-IN 已做好加载数据的准备
10	24	EP0-OUT	EP0-OUT 有 USB 数据
11	28	EP1-IN	EP1-IN 已做好加载数据的准备
12	2C	EP1-OUT	EP1-OUT 有 USB 数据
13	30	EP2	IN:缓冲区可用。 OUT:缓冲区有数据
14	34	EP4	IN:缓冲区可用。 OUT:缓冲区有数据
15	38	EP6	IN:缓冲区可用。 OUT:缓冲区有数据
16	3C	EP8	IN:缓冲区可用。 OUT:缓冲区有数据
17	40	IBN	IN-Bulk-NAK (任意 IN 端点)
18	44		保留
19	48	EP0PING	EP0 OUT 已被 Ping 过而且被否认
20	4C	EP1PING	EP1 OUT 已被 Ping 过而且被否认
21	50	EP2PING	EP2 OUT 已被 Ping 过而且被否认
22	54	EP4PING	EP4 OUT 已被 Ping 过而且被否认
23	58	EP6PING	EP6 OUT 已被 Ping 过而且被否认
24	5C	EP8PING	EP8 OUT 已被 Ping 过而且被否认
25	60	ERRLIMIT	总线错误超过了程序设定的限制值
26	64		
27	68		保留
28	6C		保留
29	70	EP2ISOERR	ISO EP2 OUT PID 序列错误
30	74	EP4ISOERR	ISO EP4 OUT PID 序列错误
31	78	EP6ISOERR	ISO EP6 OUT PID 序列错误
32	7C	EP8ISOERR	ISO EP8 OUT PID 序列错误

如果使能了自动向量化 (在 INTSET-UP 寄存器中 AV2EN = 1),则 FX2LP 会替换其 INT2VEC 字节。因此,如果在位置 0x0044 预加载了跳转表地址的高字节 ("page"),则在 0x0045 自动插入的 INT2VEC 字节将跳转至该页面内 27 个地址以外的正确地址。

3.8.3 FIFO/GPIF 中断 (INT4)

正如 USB 中断由 27 个独立的 USB 中断源共享一样,FIFO/GPIF中断由 14 个独立的 FIFO/GPIF 源共享。FIFO/GPIF中断和 USB中断一样,可以利用自动向量化。表 4显示了 14 个 FIFO/GPIF中断源的优先级和 INT4VEC 值。

表 4. 独立 FIFO/GPIF 中断源

优先级	INT4VEC 值	源	注
1	80	EP2PF	端点 2 可编程标志
2	84	EP4PF	端点 4 可编程标志
3	88	EP6PF	端点 6 可编程标志
4	8C	EP8PF	端点 8 可编程标志
5	90	EP2EF	端点 2 空标志
6	94	EP4EF	端点 4 空标志
7	98	EP6EF	端点 6 空标志
8	9C	EP8EF	端点 8 空标志
9	A0	EP2FF	端点 2 满标志
10	A4	EP4FF	端点 4 满标志
11	A8	EP6FF	端点 6 满标志
12	AC	EP8FF	端点 8 满标志
13	В0	GPIFDONE	GPIF 运行完成
14	B4	GPIFWF	GPIF 波形

如果使能了自动向量化(在 INTSET-UP 寄存器中设置 AV4EN = 1),则 FX 2LP 会替换其 INT4VEC 字节。因此,如果在位置 0x0054 预加载了跳转表地址的高字节 ("page"),则在 0x0055 自 动插入的 INT4VEC 字节将跳转至该页面内 14 个地址以外的正确地址。当发生 ISR 时,FX2LP 会将程序计数器推到其堆栈中,然后跳转到地址 0x0053,在那里它应该会找到用于跳转到 ISR 中断服务子程序的 "Jump" 指令。

3.9 复位和唤醒

3.9.1 复位引脚

输入引脚 RESET# 会在触发时复位 FX2LP。该引脚有滞后,而且为低电平有效。当对 CY7C680xxA 使用晶体时,复位的时间

必须足以让晶体和 PLL 达到稳定状态。该复位时间必须是在 VCC 达到 3.0V 后大约 5 ms。如果晶体输入引脚由时钟信号驱 动,则内部 PLL 会在 VCC 达到 3.0V 后的 200 μs 内稳定。^[3]

第 7 页的图 2 显示了加电时复位条件以及运行期间应用的复位。 加电时复位是指在对电路加电时触发的时间复位。加电后复位表 示在 FX2LP 已加电运行并且 RESET# 引脚被触发。

赛普拉斯将提供有关加电时复位实现介绍和建议的应用手册。 有关 FX2 系列产品的复位实现的详细信息,请访问 http://www.cypress.com。

^{3.} 如果外部时钟和 CY7C680xxA 同时加电,而且需要等待一段时间才能稳定,则它必须增加到 200 μs。

图 2. 复位时序图

表 5. 复位时序值

条件	T _{RESET}
使用晶体的加电时复位	5 ms
使用外部时钟的加电时复位	200 μs + 时钟稳定时间
加电后复位	200 μs

3.9.2 唤醒引脚

通过设置 PCON.0 = 1,8051 将自身和芯片的其余部分置入断电 模式。这会停止振荡器和 PLL。当外部逻辑触发 WAKEUP 时, 振荡器会在 PLL 稳定后重新启动,并且 8051 会收到唤醒中断。 无论 FX2LP 是否与 USB 连接,都会发生这种情况。

FX2LP 使用下列方法之一退出断电 (USB 挂起)状态:

- USB 总线活动 (如果 D+/D- 线保持浮空,则这些线上的杂讯 可能向 FX2LP 表明活动并启动唤醒)
- 外部逻辑触发 WAKEUP 引脚
- 外部逻辑触发 PA3/WU2 引脚

第二个唤醒引脚 WU2 也可以配置为通用 IO 引脚。这可以将一个 简单的外部 R-C 网络用作定时唤醒源。在默认情况下,WAKEUP 为低电平有效。

加电后复位

3.10 程序/数据 RAM

3.10.1 大小

FX2LP 具有 16 KB 的内部程序/数据 RAM, 其中 PSEN#/RD# 信 号被内部 OR 操作, 从而使 8051 能够将其兼用作程序存储器和 数据存储器进行访问。在此空间中没有任何 USB 控制寄存器。

以下图表为两种存储器分配图:

第8页的图3显示内部程序存储器, EA = 0。

第 9 页的图 4 显示外部程序存储器, EA = 1。

3.10.2 内部程序存储器,EA = 0

该模式将内部 16 KB RAM 存储块 (从 0 开始) 用作组合的程序 和数据存储器。当添加外部 RAM 或 ROM 时,会抑制外部读写 选通脉冲,以获得芯片内的存储器空间。这可让用户连接 64 KB 的存储器,而无需执行地址解码来保持内部存储器空间可用。

只有内部 16 KB 和便笺式 0.5 KB RAM 空间具有以下访问权限:

- USB 下载
- USB 上载
- Setup 数据指针
- I²C 接口引导下载。

3.10.3 外部程序存储器, EA = 1

程序存储器末端的 16 KB 是外部的, 因此内部 RAM 末端的 16 KB 只能用作数据存储器。

图 3. 内部程序存储器, EA = 0

*SUDPTR、USB 上载 / 下载、I²C 接口引导访问

FX2LP 内部 FX2LP 外部 FFFF 7.5 KB USB (OK 以将数据 寄存器和 4K 存储器填充在此 | FIFO 缓冲区 处— RD#/WR# (RD#,WR#) 选通脉冲未处于 E200 E1FF 活动状态) 0.5 KB RAM E000 数据 (RD#,WR#)* 40 KB 外部 数据 64 KB 外部 程序 存储器 (RD#,WR#) 存储器 (PSEN#) 3FFF □ (Ok 以将数据 存储器填充在此 处 — RD#/WR#

16 KB RAM 数据

0000 ∟

(RD#,WR#)*

图 4. 外部程序存储器、EA = 1

*SUDPTR、USB 上载 / 下载、I²C 接口引导访问

数据

程序

选通脉冲未处于

活动状态)

3.11 寄存器地址

FFFF	4 KB EP2-EP8 缓冲区 (8 x 512)
F000	
EFFF E800	2 KB 保留
E7FF E7C0	64 字节 EP1IN
E7BF E780	64 字节 EP1OUT
E77F E740	64 字节 EP0 IN/OUT
E73F E700	64 字节保留
E6FF E500	8051 可寻址寄存器 (512)
E4FF E480	保留 (128)
E480 E47F E400	128 字节 GPIF 波形
E3FF E200	保留 (512)
E1FF	512 字节 8051 xdata RAM
E000	OOOT Addite IVAIVI

3.12 端点 RAM

3.12.1 大小

■ 3 Þ 64 字节 (端点 0 和 1)

■8 Þ 512 字节 (端点 2、4、6 和 8)

3.12.2 组织

■ EP0

■ 双向端点 0, 64 字节缓冲区

■ EP1IN, EP1OUT

■ 64 字节缓冲区, 批量或中断

■ EP2、4、6、8

■8 个 512 字节缓冲区,批量、中断或同步。EP4 和 EP8 可以是双缓冲; EP2 和 EP6 可以是双缓冲、三缓冲或四缓冲。有关高速端点配置选项,请参见图 5。

3.12.3 Setup 数据缓冲区

位于 0xE6B8-0xE6BF 的独立的 8 字节缓冲区保存来自 CONTROL 传输的 setup 数据。

3.12.4 端点配置 (高速模式)

端点 0 和 1 对于每个配置都是相同的。端点 0 是唯一的 CONTROL端点,端点 1 可以是 BULK 或 INTERRUPT。

端点缓冲区可以按以下垂直列中显示的 12 种配置中的任何一种进行配置。在全速 BULK 模式下运行时,仅会使用每个缓冲区的前 64 个字节。例如,在高速模式下,最大数据包大小为 512 字节,而在全速模式下,该大小为 64 字节。即使缓冲区配置为 512 字节,在全速模式下,仍然仅会使用前 64 个字节。未使用的端点缓冲区空间不可用于其他操作。端点配置示例包括 EP2-1024 双缓冲; EP6-512 四缓冲(第 8 列)。

图 5. 端点配置

3.12.5 默认的全速备选设置

表 6. 默认的全速备选设置^[4, 5]

备选设置	0	1	2	3
ep0	64	64	64	64
ep1out	0	64 bulk	64 int	64 int
ep1in	0	64 bulk	64 int	64 int
ep2	0	64 bulk out (2×)	64 int out (2×)	64 iso out (2×)
ep4	0	64 bulk out (2×)	64 bulk out (2×)	64 bulk out (2×)
ер6	0	64 bulk in (2×)	64 int in (2×)	64 iso in (2×)
ep8	0	64 bulk in (2×)	64 bulk in (2×)	64 bulk in (2×)

3.12.6 默认的高速备选设置

表 7. 默认的高速备选设置 [4, 5]

备选设置	0	1	2	3					
ер0	64	64	64	64					
ep1out	0	512 bulk ^[6]	64 int	64 int					
ep1in	0	512 bulk ^[6]	64 int	64 int					
ep2	0	512 bulk out (2×)	512 int out (2×)	512 iso out (2×)					
ep4	0	512 bulk out (2×)	512 bulk out (2×)	512 bulk out (2×)					
ер6	0	512 bulk in (2×)	512 int in (2×)	512 iso in (2×)					
ер8	0	512 bulk in (2×)	512 bulk in (2×)	512 bulk in (2×)					

3.13 外部 FIFO 接口

3.13.1 体系架构

FX2LP Slave FIFO 体系架构中,在端点 RAM 中有 8 个 512 字节存储块,它们直接充当 FIFO 存储器,并由 FIFO 控制信号(如IFCLK、SLCS#、SLRD、SLWR、SLOE、PKTEND 和标志)所控制。

在运行中, SIE 会填充或清空这 8 个 RAM 存储块中一部分, 其余部分则与 IO 传输逻辑连接。传输逻辑采取了两种形式, GPIF 用于内部生成的控制信号, Slave FIFO 接口用于外部控制的传输。

3.13.2 主/从控制信号

FX2LP 端点 FIFOS 是作为 8 个物理上完全不同的 256x16 RAM 存储块而实现的。 8051/SIE 可以在两个域(USB (SIE) 域和 8051-IO Unit 域)之间对这些 RAM 存储块进行任意切换。这种 切换实际上是瞬时完成的,"USB FIFOS" 和 "Slave FIFOS" 之间 的传输时间基本上等于零。由于它们在物理上是同一个存储器,所以实际上没有字节在缓冲区之间传输。

在任意给定时刻,某些 RAM 存储块会在 SIE 控制下填充/清空 USB 数据,而其他 RAM 存储块可用于 8051、IO 控制单元或二 者。RAM 存储块在 USB 域中作为单端口运行,而在 8051-IO 域 中则作为双端口运行。这些存储块可以像前面所说的那样,配置 为单、双、三或四缓冲。

IO 控制单元实现内部主控端 (M 表示主控端)或外部主控端 (S 表示从属端)接口。

在主控 (M) 模式下, GPIF 在内部控制 FIFOADR[1..0] 以选择 FIFO。RDY 引脚(56 引脚封装中有两个,100 引脚和 128 引脚 封装中有六个)可以根据需要用作外部 FIFO 或其他逻辑的标志输入端。 GPIF 可以根据内部派生的时钟或外部提供的时钟 (IFCLK) 运行,传输速率可达 96 MB/s(48-MHz IFCLK,16 位接口)。

在从属 (S) 模式下,FX2LP 接受内部派生的时钟或外部提供的时钟(IFCLK,最大频率 48 MHz),以及外部逻辑发来的 SLCS#、SLRD、SLWR、SLOE、PKTEND 信号。当使用外部 IFCLK 时,外部时钟必须在通过 IFCLKSRC 位切换到外部时钟前已产生。每个端点都可以单独被内部配置位选择用于字节或字运行,Slave FIFO 输出使能信号 SLOE 会使能选定宽度的数据。外部逻辑必须确保在向 Slave FIFO 写入数据时输出使能信号处于非活动状态。从属接口还可以以异步方式运行,这时 SLRD 和SLWR 信号直接充当选通脉冲,而不是像同步模式下那样作为时钟限定符。信号 SLRD、SLWR、SLOE 和 PKTEND 由信号SLCS# 选择传送。

Ä

- _ 4. "0"表示"未实施"。
- 5. "2×"表示"双缓冲"
- 6. 即使这些缓冲区是 64 字节,它们也会被报告为 512,以便与 USB 2.0 兼容。用户永远不得向 EP1 传输大于 64 字节的数据包。

3.13.3 GPIF 和 FIFO 时钟速率

8051 寄存器位选择内部提供的接口时钟的两个频率中的一个: 30 MHz 和 48 MHz。或者,为 IFCLK 引脚提供输入的 5 MHz-48 MHz 外部提供时钟也可以用作接口时钟。在 GPIF 和 FIFO 由内部提供时钟时, IFCLK 可配置为输出时钟。 IFCONFIG 寄存器中的输出使能位会在需要时关闭该时钟输出。 无论 IFCLK 信号是来源于内部还是外部,IFCONFIG 寄存器中的另一个位都会将其反相。

3.14 **GPIF**

GPIF 是一个灵活的 8 位或 16 位并行接口,由用户可编程的有限状态机驱动。它能让 CY7C68013A/15A 执行本地总线主控,而且可以实现众多协议,如 ATA 接口、打印机并行端口和 Utopia。

GPIF 有六个可编程 Control 输出 (CTL)、九个 Address 输出 (GPIFADRx) 和六个通用 Ready 输入 (RDY)。数据总线宽度可以 是 8 或 16 位。每个 GPIF 向量均定义 Control 输出的状态,并确定 Ready 输入 (或多个输入)必须处于什么状态才能继续。可以对 GPIF 向量进行编程,从而将 FIFO 前移至下一个数据值、前移一个地址,等等。一系列 GPIF 向量组成一个波形,执行这个波形便可以在 FX2LP 与外部设备之间进行所需的数据移动。

3.14.1 六个 Control 输出信号

100 引脚和 128 引脚封装带有全部六个 Control 输出引脚 (CTL0-CTL5)。8051 可对 GPIF 单元进行编程,以定义 CTL 波形。56 引脚封装只包含 CTL0-CTL2。可以对 CTLx 波形边缘进行编程,使起变换速度达到每时钟周期一次(使用 48-MHz 时钟时为 20.8 ns)。

3.14.2 六个 Ready 输入信号

100 引脚和 128 引脚封装可产生全部六个 Ready 输入 (RDY0-RDY5)。8051 可对 GPIF 单元进行编程,以测试 RDY 引脚的 GPIF 分支。56 引脚封装可产生这些信号中的两个,即 RDY0-RDY1。

3.14.3 九个 GPIF Address 输出信号

在 100 引脚和 128 引脚封装中有九个 GPIF 地址线可供使用,即 GPIFADR[8..0]。GPIF 地址线支持最大访问 512 字节的 RAM 存储块。如果需要更多地址线,则可使用 IO 端口引脚。

3.14.4 长传输模式

在主控模式下,8051 相应地设置 GPIF 事务处理计数寄存器 (GPIFTCB3、GPIFTCB2、GPIFTCB1 或 GPIFTCB0),以便自动传输多达 2³² 个事务处理。GPIF 会自动对数据流进行节流,以防止不足或溢出,直到所有被请求事务处理完成为止。 GPIF 通过递减这些寄存器中的值,以显示事务处理的当前状态。

3.15 ECC 生成^[7]

EZ-USB 可对经过其 GPIF 或 Slave FIFO 接口的数据计算 ECC (Error Correcting Code, 错误纠正代码)。 FX2LP 有两种 ECC 配置: 两个 ECC, 每个都计算 256 以上的字节 (SmartMedia 标准): 一个 ECC, 计算 512 以上的字节。

ECC 可以纠正任何一位错误或检测任何两位错误。

3.15.1 ECC 实现

这两种 ECC 配置由 ECCM 位选择:

ECCM = 0

两个 3 字节 ECC,每个计算 256 字节以上的数据块。该配置符合 SmartMedia 标准。

向 ECCRESET 写入任意值,然后经 GPIF 或 Slave FIFO 接口传输数据。第一个 256 字节数据的 ECC 经过计算后存储在 ECC1中。下一个 256 字节的 ECC 存储在 ECC2中。在计算第二个 ECC 后, ECCx 寄存器中的值只有在重新写入 ECCRESET 后才会更新,即使还有后续数据传过该接口也是如此。

ECCM = 1

一个 3 字节 ECC, 计算 512 字节以上的数据块。

向 ECCRESET 写入任意值,然后经 GPIF 或 Slave FIFO 接口传输数据。前 512 字节的数据的 ECC 经过计算后存储在 ECC1 中; ECC2 未使用。在计算 ECC 后, ECC1 中的值只有在重新写入 ECCRESET 后才会更新,即使后面还有数据传过该接口也是如此。

3.16 USB 上载和下载

通过厂商特定的指令,内核能够直接编辑内部 16 KB RAM 和内部 512 字节便笺式 RAM 的数据内容。这种功能通常在软件下载用户代码时使用,并且只能是上载或下载到内部 RAM 并且让8051 处于复位状态下时才可用。可用的 RAM 空间为 16 KB (0x0000-0x3FFF,程序/数据)和512字节(0xE000-0xE1FF,便笺式数据 RAM)。[8]

3.17 自动指针访问

FX2LP 提供两个完全相同的自动指针。它们与内部 8051 数据指针类似,但具有更多功能:它们可以在每次存储器访问后选择性的递增。这种功能可用于进出内部和外部 RAM。自动指针可以在模式位 (AUTOPTRSET-UP.0) 控制下的外部 FX2LP 寄存器中找到。通过使用外部 FX2LP 自动指针进行访问(0xE67B-0xE67C),可以让自动指针访问所有内部和外部 RAM。

此外,自动指针还可以指向任何 FX2LP 寄存器或端点缓冲区空间。当使能自动指针对外部存储器的访问权限时,XDATA 和代码空间中的位置 0xE67B 与 0xE67C 是无法使用的。

- 7. 为使用 ECC 逻辑, GPIF 或 Slave FIFO 接口必须配置为适合于字节范围内的操作。
- 8. 从主机下载数据后,"加载器"可以从内部 RAM 执行,以便将下载的数据传输到外部存储器中。

3.18 I²C 控制器

FX2LP 有一个 I^2C 端口,该端口由两个内部控制器驱动,其中一个在引导时自动运行,以加载 VID/PID/DID 和配置信息,另一个由 8051 在运行时用于控制外部 I^2C 设备。 I^2C 端口仅在主控模式下运行。

3.18.1 PC 端口引脚

 I^2C 引脚 SCL 和 SDA 必须有 2.2 $k\Omega$ 外部上拉电阻,即使没有 EEPROM 连接到 FX2LP 也要如此。外部 EEPROM 设备地址引 脚必须正确配置。请参见表 8,以了解如何配置设备地址引脚。

表 8. 将 EEPROM 地址线引导到这些值

字节	示例 EEPROM	A2	A1	A0
16	24LC00 ^[9]	N/A	N/A	N/A
128	24LC01	0	0	0
256	24LC02	0	0	0
4K	24LC32	0	0	1
8K	24LC64	0	0	1
16K	24LC128	0	0	1

3.18.2 PC 接口引导加载访问

在执行加电时复位时, I^2 C 接口引导加载器会加载 VID/PID/DID 配置字节和多达 16 KB 的程序 / 数据。可用 RAM 空间为 16 KB (0x0000-0x3FFF) 和 512 字节(0xE000-0xE1FF)。 8051 处于复位状态。 I^2 C 接口引导加载只有在执行加电时复位之后才会发生。

3.18.3 PC 接口的通用访问

8051 可以使用 I^2 CTL 和 I2DAT 寄存器来控制与 I^2 C 总线连接的外设。 FX2LP 仅提供 I^2 C 主控制,永远不提供 I^2 C 从属控制。

3.19 与上一代 EZ-USB FX2 兼容

EZ-USB FX2LP 与其前身 EZ-USB FX2 在适用性、外观上兼容,仅在功能上略有不同。这便于设计人员将系统从 FX2 升级到 FX2LP 的转换。引脚和封装选择是一致的,而且 FX2LP 中的大多数固件是以前为 FX2 功能开发的。

对于从 FX2 移植到 FX2LP 的设计人员来说,必须更改材料清单并复查存储器分配(因为增大了内部存储器)。有关从 EZ-USB FX2 移植到 EZ-USB FX2LP 的详细信息,请参见位于赛普拉斯网站上题为 《Migrating from EZ-USB FX2 to EZ-USB FX2LP》(从 EZ-USB FX2 移植到 EZ-USB FX2LP)的应用手册。

表 9. 部件编号转换表

EZ-USB FX2 部件编号	EZ-USB FX2LP 部件编号	封装说明
CY7C68013-56PVC	CY7C68013A-56PVXC 或 CY7C68014A-56PVXC	56 引脚 SSOP
CY7C68013-56PVCT	CY7C68013A-56PVXCT 或 CY7C68014A-56PVXCT	56 引脚 SSOP — 带式和卷轴式
CY7C68013-56LFC	CY7C68013A-56LFXC 或 CY7C68014A-56LFXC	56 引脚 QFN
CY7C68013-100AC	CY7C68013A-100AXC 或 CY7C68014A-100AXC	100 引脚 TQFP
CY7C68013-128AC	CY7C68013A-128AXC 或 CY7C68014A-128AXC	128 引脚 TQFP

3.20 CY7C68013A/14A 和 CY7C68015A/16A 的差异

CY7C68013A 和 CY7C68014A 在外形、适用性和功能上一致。CY7C68015A 和 CY7C68016A 在外形、适用性和功能上一致。CY7C68014A 和 CY7C68016A 的挂起电流分别低于 CY7C68013A 和 CY7C68015A,因此适用于对功耗较敏感的电池应用。

CY7C68015A 和 CY7C68016A 仅有 56 引脚 QFN 封装供选择。在 CY7C68015A 和 CY7C68016A 上还有两个额外的 GPIO 信号,可在 56 引脚封装中既不需要 IFCLK,也不需要 CLKOUT 时提供更多灵活性。

如果 USB 开发人员希望将 FX2 56 引脚应用直接转换为总线供电的系统,就会发现这些额外信号很有用。这两个 GPIO 为开发人员提供了总线供电应用的电源控制电路所需的信号,让他们不必寻求 FX2LP 的高引脚数量版本。

CY7C68015A 仅有 56 引脚 QFN 封装供选择

表 10. CY7C68013A/14A 和 CY7C68015A/16A 引脚的差异

CY7C68013A/CY7C68014A	CY7C68015A/CY7C68016A
IFCLK	PE0
CLKOUT	PE1

4. 引脚分配

第 15 页的图 6 标出了五种封装类型的所有信号。下列各页提供了各个引脚的图解,另外还有一个组合图显示了在 128 引脚、100 引脚和 56 引脚封装中有哪些完整的信号集可用。

56 引脚封装左边缘上的信号 (见第 15 页的图 6)在 FX2LP 系列的所有版本中都是相同的,但 CY7C68013A/14A和 CY7C68015A/16A之间有明显差异。

以下三种模式在所有封装版本中可使用: P 口、 GPIF 主控和 Slave FIFO。这些模式定义图形右边缘上的信号。 8051 通过 IFCONFIG[1:0] 寄存器位来选择接口模式。端口模式是加电时的 默认配置。

100 引脚封装通过在 56 引脚封装的基础上增加了下列引脚,从 而增加了功能:

- PORTC 或备选 GPIFADR[7:0] 地址信号
- PORTE 或备选 GPIFADR[8] 地址信号以及七个额外的 8051 信号
- 三个 GPIF Control 信号
- 四个 GPIF Ready 信号
- 九个 8051 信号 (两个 USART、三个定时器输入、 INT4 和 INT5#)
- BKPT、 RD#、 WR#

128 引脚封装增加了 8051 地址和数据总线以及控制信号。请注意,在所需信号中,有两个信号(RD# 和 WR#)在 100 引脚版本中已包含。

在 100 引脚和 128 引脚的版本中,可将一个 8051 控制位设为在 8051 对 PORTC 进行读/写操作时触发 RD# 和 WR# 引脚的脉冲。通过在 CPUCS 寄存器中设置 PORTCSTB 位,可使能此功能。

第 10.5 节中提供了访问 PORTC 时的读写选通功能的时序图。

图 6. 信号 端口 GPIF 主控端 Slave FIFO ⇔ FD[15]
 ⇔ FD[14]
 ⇔ FD[13]
 ⇔ FD[12] PD7 PD6 PD5 PD4 ← FD[12]
 ← FD[11]
 ← FD[10]
 ← FD[9]
 ← FD[8]
 ← FD[7] PD3 PD2 PD1 PD0 PB7 ↔ FD[7 PB6 PB5 ⇔ FD[5] ← FD[5] **XTALIN** ↔ FD[3]
 ↔ FD[3]
 ↔ FD[2]
 ↔ FD[1] PB4 XTALOUT RESET# PB3 PB2 WAKEUP# PB1 56 SCI SDA $\mathsf{RDY0} \longleftarrow$ \leftarrow SLRD RDY1← ← SLWR **PE0 替代 IFCLK, 而 PE1 → FLAGA → FLAGB 替代 CY7C68015A/16A $\begin{array}{c} \text{CTL0} \rightarrow \\ \text{CTL1} \rightarrow \end{array}$ 上的 CLKOUT。 CTL2 → → FLAGC **PF0 **PE1 INT0#/ PA0 INT0#/ PA0 INT0#/ PA0 INT1#/ PA1 INT1#/ PA1 **IFCLK** INT1#/ PA1 ← SLOE PA2 PA2 CLKOUT WU2/PA3 WU2/PA3 WU2/PA3 **DPLUS** PA4 ← FIFOADR0 **DMINUS** PA5 PA5 ← FIFOADR1 PA6 PA6 ← PKTEND PA7/FLAGD/SLCS# PA7 PA7 → CTL3 → CTL4 ÷ CTL5 ← RDY2 ← RDY3 ← RDY4 100 츥 RDY5 **BKPT** PORTC7/GPIFADR7 PORTC6/GPIFADR6 PORTC5/GPIFADR6 PORTC5/GPIFADR5 PORTC4/GPIFADR4 PORTC3/GPIFADR3 PORTC2/GPIFADR2 PORTC1/GPIFADR1 RxD0 TxD0 RxD1 TxD1 PORTCO/GPIFADRO INT4 INT5# PE7/GPIFADR8 PE6/T2EX PE5/INT6 T1 PE4/RxD1OUT T0 PE3/RxD0OUT PE2/T2OUT RD# PE1/T1OUT PE0/T0OUT WR# D7 CS# D6 D5 D4 D3 D2 D1 D0 OE# PSEN# A15 A14 A13 A12 A11 A10 128 Α9 Α8 Α7 A5 A4 EΑ **A3** A2 Α1 A0

图 7. CY7C68013A/CY7C68014A 128 引脚 TQFP 的引脚分配

		128	127	126	125	124	123	122	121	120	119	118	117	116	114	113	112	111	110	109	108	107	105	104	103]			
	\bigcirc	A10	A9	A8	GND	PD7/FD15	PD6/FD14	PD5/FD13	PD4/FD12	A7	A6	A5	4	GND	PE6/T2EX	PE5/INT6	PE4/F	PE3/F	PE2/1	PE1/1	PE0/1	VCC	INITA#	DD3/ED11	PD1/FD9				
1 2	CLKOUT VCC					:D15	:D14	-D13	-D12					GND	72EX	NT6	PE4/RXD1OUT	PE3/RXD0OUT	PE2/T2OUT	PE1/T1OUT	PE0/T0OUT	7	֓֞֞֞֓֓֓֓֟֝֟֓֓֓֓֓֓֓֓֓֓֟֝֟ ֓	<u> </u>		H		FD8 EUP	102
3 4 5	GND RDY0/*SLI RDY1/*SL\													à)		٦	I								ı	RES	/CC ET#	99
6	RDY2 RDY3	M																									C	TL5 A3 A2	98 97 96
9	RDY4 RDY5																											A1 A0	95 94
10 11 12	AVCC XTALOUT XTALIN																						РΑ)/SL	GND CS# END	93 92 91
13	AGND NC																							F	PA5	/FIF	OA	DR1 DR0	90
15	NC NC																											D7 D6	88 87
17 18 19	AVCC DPLUS DMINUS								C	Y 7				3A/ 脚					4A	١							-	D5 VU2 LOE	86 85 84
20	AGND A11											124	י ק) 1) 4 1	נים	1 64										PΑ	\1/IN	IT1# IT0#	83
22 23 24	A12 A13																										(VCC SND	80
25 26	A14 A15 VCC																							F	PC6	/GP	PIFA	DR7 DR6 DR5	79 78 77
27 28	GND INT4																							F	C4	/GP	PIFA	DR4 DR3	76 75
30 31	T0 T1 T2																							F	PC1.	/GP	PIFA	DR2 DR1	74 73 72
32	*IFCLK RESERVE	D																						۲	СТ	L2/	*FL/	DR0 AGC AGB	71
34 35 36	BKPT EA																										*FL/	AGA VCC	69 68
37	SCL SDA OE#																										C	TL4 TL3 SND	67 66 65
		PSEN#	_Z D	≶ (C	<	PB0/FD0	PB1/FD1	PB2/F	PB3/F	<	ଦ୍ର	₹	RXD0	₹ 2	PB4/F	PB5/F	PB6/F	PB7/F	<u>G</u>					<u><</u>	<u> </u>	`		
		П	RD# 40	11							VCC 48	11		DO 51		П					-	\neg			64	1]
		Ш		LJ L	L			ш L *	L	 	L	[L		ıШ	ш	Ш	ш I		ш				╛┖		j			

	0	图 100 CLKOUT	Ш	97		95	A/CY SS FE/GRITAURO	92	91	90	89	88	脚 87 PE1/T10UT	85	84	83	吩 82 PD2/FD10	81 PD1/FD9				
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	VCC GND RDY0/*SI RDY1/*SI RDY2 RDY3 RDY4 RDY5 AVCC XTALOU XTALIN AGND NC NC AVCC DPLUS DMINUS AGND VCC GND INT4 T0 T1 T2 *IFCLK RESERV BKPT SCL SDA	LWR			CY				3.4/()				014		PA	P(P) P(P) P(P) P(P) P(P) P(P) P(P) P(P)	C7/C66/C5/CC1/CC1/CCT	*V GE GF GF GF GF GF GF GF GF GF	VA RE 0/SKOOA3/2/1/A0/ PIFIFIFIFIFIFIFIFIFIFIFIFIFIFIFIFIFIFIF	SE CT GI	UP CC# L5 ND R1 R0 2 OE 1 # CC ND R R5 R R R R R R R R R R R R R R R R R	77
		RD# 31	ПП	PB0/FD0 34	35	П	37	39	40	RXD0 41	П	-11	PB4/FD4 44	ПП			П	GND 50				

图 9. CY7C68013A/CY7C68014A 56 引脚 SSOP 的引脚分配

CY7C68013A/CY7C68014A 56 引脚 SSOP

	\bigcirc		
1	PD5/FD13	PD4/FD12	56
2	PD6/FD14	PD3/FD11	55
3	PD7/FD15	PD2/FD10	54
4	GND	PD1/FD9	53
5	CLKOUT	PD0/FD8	52
6	VCC	*WAKEUP	51
7	GND	VCC	50
8	RDY0/*SLRD	RESET#	49
9	RDY1/*SLWR	GND	48
10	AVCC	PA7/*FLAGD/SLCS#	47
11	XTALOUT	PA6/PKTEND	46
12	XTALIN	PA5/FIFOADR1	45
13	AGND	PA4/FIFOADR0	44
14	AVCC	PA3/*WU2	43
15	DPLUS	PA2/*SLOE	42
16	DMINUS	PA1/INT1#	41
17	AGND	PA0/INT0#	40
18	VCC	VCC	39
19	GND	CTL2/*FLAGC	38
20	*IFCLK	CTL1/*FLAGB	37
21	RESERVED	CTL0/*FLAGA	36
22	SCL	GND	35
23	SDA	VCC	34
24	VCC	GND	33
25	PB0/FD0	PB7/FD7	32
26	PB1/FD1	PB6/FD6	31
27	PB2/FD2	PB5/FD5	30
28	PB3/FD3	PB4/FD4	29

^{*} 表示可编程极性

图 10. CY7C68013A/14A/15A/16A 56 引脚 QFN 的引脚分配

* 表示可编程极性 ** 表示 CY7C68015A/CY7C68016A 引脚

7A 8A Α --1A 2A ЗА 4A 5A 6A 2B 3В 4B 5B 6B 7B 8B В --1B 1C 2C 3C 4C 5C 6C 7C 8C C --2D 1D D ---7D 8D Е--1E 2E 7E 8E 7F F ---1F 2F 3F 4F 5F 6F 8F 1G 6G 2G 3G 4G 5G 7G 8G G-1H 2H 3H 4H 5H 6H 7H 8H Н-

图 11. CY7C68013A 56 引脚 VFBGA 的引脚分配 — 顶部视图

4.1 CY7C68013A/15A 引脚说明

FX2LP 引脚说明如下所示。^[10]

表 11. FX2LP 引脚说明

		うが呼ば		50				
128 TQFP	100 TQFP	56 SSOP	56 QFN	56 VFBGA	名称	类型	默认值	说明
10	9	10	3	2D	AVCC	电源	N/A	模拟 VCC。将此引脚与 3.3V 电源连接。该信号为芯片的模拟部分供电。
17	16	14	7	1D	AVCC	电源	N/A	模拟 VCC。将此引脚与 3.3V 电源连接。该信号为芯片的模拟部分供电。
13	12	13	6	2F	AGND	地线	N/A	模拟接地 。用尽可能短的路径与地线连接。
20	19	17	10	1F	AGND	地线	N/A	模拟接地 。用尽可能短的路径与地线连接。
19	18	16	9	1E	DMINUS	IO/Z	Z	USB D- 信号 。与 USB D- 信号连接。
18	17	15	8	2E	DPLUS	IO/Z	Z	USB D+ 信号。与 USB D+ 信号连接。
94					A0	输出	L	8051 地址总线。 该总线始终处于驱动状态。当 8051
95					A1	输出	L	处理内部 RAM 时,它会反映内部地址。
96					A2	输出	L	
97					A3	输出	L	
117					A4	输出	L	
118					A5	输出	L	
119					A6	输出	L	
120					A7	输出	L	
126					A8	输出	L	
127					A9	输出	L	
128					A10	输出	L	
21					A11	输出	L	
22					A12	输出	L	
23					A13	输出	L	
24					A14	输出	L	
25					A15	输出	L	
59					D0	IO/Z	Z	8051 数据总线 。该双向总线在处于非活动状态、读总
60					D1	IO/Z	Z	线输入和写总线输出时具有高阻抗。数据总线用于外部
61					D2	IO/Z	Z	8051 程序和数据存储器。数据总线仅在访问外部总线
62					D3	IO/Z	Z	
63					D4	IO/Z	Z	
86					D5	IO/Z	Z	
87					D6	IO/Z	Z	
88					D7	IO/Z	Z	
39					PSEN#	输出	Н	程序存储使能。该低电平有效信号表示从外部存储器中获取 8051 代码。它在 EA 引脚为低电平时有效,即从0x4000-0xFFFF 中获取程序,或者在 EA 引脚为高电平时时有效,即从 0x0000-0xFFFF 中获取程序。

注

^{7.} 10.未使用的输入端不得处于浮动状态。根据情况连接高电平或低电平。输出端只应上拉或下拉,以确保信号加电并处于待机模式。另外还请注意,在设备断电时 任何引脚都不应该处于驱动状态。

		5 脚况						
128 TQFP	100 TQFP	56 SSOP	56 QFN	56 VFBGA	名称	类型	默认值	说明
34	28				ВКРТ	输出	L	断点。在 8051 地址总线与 BPADDRH/L 寄存器匹配并且 BREAKPT 寄存器中使能断点 (BPEN = 1) 时,该引脚有效(高电平)。如果 BREAKPT 寄存器中的 BPPULSE 位为高电平,该信号就会触发 8 个 12-/24-/48-MHz 高电平脉冲。如果 BPPULSE 位为低电平,该信号仍会保持高电平,直到 8051 清除 BREAKPT 寄存器中的 BREAK 位(通过为其写入 1)为止。
99	77	49	42	8B	RESET#	输入	N/A	低电平有效复位。复位整个芯片。有关详细信息,请参见第 3.9 节第 6 页的 "复位和唤醒"的第一页。
35					EA	输入	N/A	外部访问 。该引脚确定 8051 在地址 0x0000 和 0x3FFF 之间的何处获取代码。如果 EA = 0, 8051 就会从其内部 RAM 中获取该代码。如果 EA = 1, 8051 就会从其外部存储器中获取该代码。
12	11	12	5	1C	XTALIN	输入	N/A	晶体输入 。将该信号与 24-MHz 并行谐振的基础模式晶体连接,并且将加载电容接 GND。另外,也可以从其它时钟源派生的外部 24-MHz 方波来驱动 XTALIN。当从外部源中驱动时,驱动信号应为3.3V 方波。
11	10	11	4	2C	XTALOUT	输出	N/A	晶体输出。将该信号与 24-MHz 并行谐振的基础模式晶体连接,并且将加载电容接 GND。如果用外部时钟来驱动 XTALIN,请将此引脚保留为开放状态。
1	100	5	54	2B	CY7C68013A 和 CY7C68014A 上的 CLKOUT	O/Z	12 MHz	CLKOUT: 12、24 或 48 MHz 时钟,相位锁定到24-MHz 输入时钟。8051 默认为 12-MHz 运行。通过设置 CPUCS.1 = 1,8051 可以为此输出实现三态。
					CY7C68015A 和 CY7C68016A 上的 PE1	IO/Z	I	PE1 是双向 IO 端口引脚。
端口	A							
82	67	40	33	8G	PA0 或 INT0#	IO/Z	(PA0)	多路复用引脚,其功能通过 PORTACFG.0 来选择 PAO 是双向 IO 端口引脚。 INTO# 是低电平有效 8051 INTO 中断输入信号,可边沿 触发 (ITO = 1) 或电平触发 (ITO = 0)。
83	68	41	34	6G	PA1 或 INT1#	IO/Z	I (PA1)	多路复用引脚,其功能通过 PORTACFG.1 来选择 PA1 是双向 IO 端口引脚。 INT1# 是低电平有效 8051 INT1 中断输入信号,可边沿触发 (IT1 = 1) 或电平触发 (IT1 = 0)。
84	69	42	35	8F	PA2 或 SLOE	IO/Z	I (PA2)	多路复用引脚,其功能通过以下两个位来选择: IFCONFIG[1:0]。 PA2 是双向 IO 端口引脚。 SLOE 是具有可编程极性 (FIFOPINPOLAR.4) 的仅输入输出使能,适用于与 FD[70] 或 FD[150] 连接的Slave FIFO。

4	466							
		56 SSOP	56 QFN	56 VFBGA	名称	类型	默认值	说明
85	70	43	36	7F	PA3 或 WU2	IO/Z	I (PA3)	多路复用引脚,其功能通过 WAKEUP.7 和 OEA.3 来选择。 PA3 是双向 IO 端口引脚。 WU2 是 USB 唤醒的备选源,由 WU2EN 位 (WAKEUP.1) 使能,极性由 WU2POL (WAKEUP.4) 设置。如果 8051 处于挂起状态且 WU2EN = 1,则该引脚上的跳变就会启动振荡器并中断 8051,以使其退出挂起模式。如果 WU2EN = 1,则触发该引脚会阻止芯片挂起。
89	71	44	37	6F	PA4 或 FIFOADR0	IO/Z	(PA4)	多路复用引脚,其功能通过 IFCONFIG[10] 来选择。 PA4 是双向 IO 端口引脚。 FIFOADR0 是仅输入地址选择,适用于与 FD[70] 或 FD[150] 连接的 Slave FIFO。
90	72	45	38	8C	PA5 或 FIFOADR1	IO/Z	(PA5)	多路复用引脚,其功能通过 IFCONFIG[10] 来选择。 PA5 是双向 IO 端口引脚。 FIFOADR1 是仅输入地址选择,适用于与 FD[70] 或 FD[150] 连接的 Slave FIFO。
91	73	46	39	7C	PA6 或 PKTEND	IO/Z	(PA6)	多路复用引脚,其功能通过 IFCONFIG[1:0] 位来选择。 PA6 是双向 IO 端口引脚。 PKTEND 是用于将 FIFO 数据包提交到端点的输入端, 其极性可通过 FIFOPINPOLAR.5 进行编程。
92	74	47	40	6C	PA7 或 FLAGD 或 SLCS#	IO/Z	I (PA7)	多路复用引脚,其功能通过 IFCONFIG[1:0] 和 PORTACFG.7 位来选择。 PA7 是双向 IO 端口引脚。 FLAGD 是可编程的 Slave FIFO 输出状态标志信号。 SLCS# 选择传送所有其他 Slave FIFO 使能 / 选通脉冲
端口口	В							
44	34	25	18	3H	PB0 或 FD[0]	IO/Z	(PB0)	多路复用引脚,其功能通过以下位来选择: IFCONFIG[10]。 PB0 是双向 IO 端口引脚。 FD[0] 是双向 FIFO/GPIF 数据总线。
45	35	26	19	4F	PB1 或 FD[1]	IO/Z	I (PB1)	多路复用引脚,其功能通过以下位来选择: IFCONFIG[10]。 PB1 是双向 IO 端口引脚。 FD[1] 是双向 FIFO/GPIF 数据总线。
46	36	27	20	4H	PB2 或 FD[2]	IO/Z	(PB2)	多路复用引脚,其功能通过以下位来选择: IFCONFIG[10]。 PB2 是双向 IO 端口引脚。 FD[2] 是双向 FIFO/GPIF 数据总线。
47	37	28	21	4G	PB3 或 FD[3]	IO/Z	(PB3)	多路复用引脚,其功能通过以下位来选择: IFCONFIG[10]。 PB3 是双向 IO 端口引脚。 FD[3] 是双向 FIFO/GPIF 数据总线。
54	44	29	22	5H	PB4 或 FD[4]	IO/Z	(PB4)	多路复用引脚,其功能通过以下位来选择: IFCONFIG[10]。 PB4 是双向 IO 端口引脚。 FD[4] 是双向 FIFO/GPIF 数据总线。

			31 (->					
128 TQFP	100 TQFP	56 SSOP	56 QFN	56 VFBGA	名称	类型	默认值	说明
55	45	30	23	5G	PB5 或 FD[5]	IO/Z	(PB5)	多路复用引脚,其功能通过以下位来选择: IFCONFIG[10]。 PB5 是双向 IO 端口引脚。 FD[5] 是双向 FIFO/GPIF 数据总线。
56	46	31	24	5F	PB6 或 FD[6]	IO/Z	(PB6)	多路复用引脚,其功能通过以下位来选择: IFCONFIG[10]。 PB6 是双向 IO 端口引脚。 FD[6] 是双向 FIFO/GPIF 数据总线。
57	47	32	25	6H	PB7 或 FD[7]	IO/Z	(PB7)	多路复用引脚,其功能通过以下位来选择: IFCONFIG[10]。 PB7 是双向 IO 端口引脚。 FD[7] 是双向 FIFO/GPIF 数据总线。
端口(С							
72	57				PC0 或 GPIFADR0	IO/Z	(PC0)	多路复用引脚,其功能通过 PORTCCFG.0 来选择。 PC0 是双向 IO 端口引脚。 GPIFADR0 是 GPIF 地址输出引脚。
73	58				PC1 或 GPIFADR1	IO/Z	I (PC1)	多路复用引脚,其功能通过 PORTCCFG.1 来选择。 PC1 是双向 IO 端口引脚。 GPIFADR1 是 GPIF 地址输出引脚。
74	59				PC2 或 GPIFADR2	IO/Z	I (PC2)	多路复用引脚,其功能通过 PORTCCFG.2 来选择。 PC2 是双向 IO 端口引脚。 GPIFADR2 是 GPIF 地址输出引脚。
75	60				PC3 或 GPIFADR3	IO/Z	(PC3)	多路复用引脚,其功能通过 PORTCCFG.3 来选择。 PC3 是双向 IO 端口引脚。 GPIFADR3 是 GPIF 地址输出引脚。
76	61				PC4 或 GPIFADR4	IO/Z	(PC4)	多路复用引脚,其功能通过 PORTCCFG.4 来选择。 PC4 是双向 IO 端口引脚。 GPIFADR4 是 GPIF 地址输出引脚。
77	62				PC5 或 GPIFADR5	IO/Z	(PC5)	多路复用引脚,其功能通过 PORTCCFG.5 来选择。 PC5 是双向 IO 端口引脚。 GPIFADR5 是 GPIF 地址输出引脚。
78	63				PC6 或 GPIFADR6	IO/Z	(PC6)	多路复用引脚,其功能通过 PORTCCFG.6 来选择。 PC6 是双向 IO 端口引脚。 GPIFADR6 是 GPIF 地址输出引脚。
79	64				PC7 或 GPIFADR7	IO/Z	I (PC7)	多路复用引脚,其功能通过 PORTCCFG.7 来选择。 PC7 是双向 IO 端口引脚。 GPIFADR7 是 GPIF 地址输出引脚。
端口目	D							
102	80	52	45	8A	PD0 或 FD[8]	IO/Z	(PD0)	多路复用引脚,其功能通过 IFCONFIG[10] 和 EPxFIFOCFG.0 (字宽)位来选择。 FD[8] 是双向 FIFO/GPIF 数据总线。
103	81	53	46	7A	PD1 或 FD[9]	IO/Z	I (PD1)	多路复用引脚,其功能通过 IFCONFIG[10] 和 EPxFIFOCFG.0 (字宽)位来选择。 FD[9] 是双向 FIFO/GPIF 数据总线。

128 TQFP	100 TQFP	56 SSOP	56 QFN	56 VFBGA	名称	类型	默认值	说明
104	82	54	47	6B	PD2 或 FD[10]	IO/Z	I (PD2)	多路复用引脚,其功能通过 IFCONFIG[10] 和 EPxFIFOCFG.0 (字宽)位来选择。 FD[10] 是双向 FIFO/GPIF 数据总线。
105	83	55	48	6A	PD3 或 FD[11]	IO/Z	(PD3)	多路复用引脚,其功能通过 IFCONFIG[10] 和 EPxFIFOCFG.0 (字宽)位来选择。 FD[11] 是双向 FIFO/GPIF 数据总线。
121	95	56	49	3B	PD4 或 FD[12]	IO/Z	I (PD4)	多路复用引脚,其功能通过 IFCONFIG[10] 和 EPxFIFOCFG.0 (字宽)位来选择。 FD[12] 是双向 FIFO/GPIF 数据总线。
122	96	1	50	3A	PD5 或 FD[13]	IO/Z	I (PD5)	多路复用引脚,其功能通过 IFCONFIG[10] 和 EPxFIFOCFG.0 (字宽)位来选择。 FD[13] 是双向 FIFO/GPIF 数据总线。
123	97	2	51	3C	PD6 或 FD[14]	IO/Z	I (PD6)	多路复用引脚,其功能通过 IFCONFIG[10] 和 EPxFIFOCFG.0 (字宽)位来选择。 FD[14] 是双向 FIFO/GPIF 数据总线。
124	98	3	52	2A	PD7 或 FD[15]	IO/Z	I (PD7)	多路复用引脚,其功能通过 IFCONFIG[10] 和 EPxFIFOCFG.0 (字宽)位来选择。 FD[15] 是双向 FIFO/GPIF 数据总线。
端口	E							
108	86				PE0 或 TOOUT	IO/Z	I (PE0)	多路复用引脚,其功能通过 PORTECFG.0 位来选择。 PEO 是双向 IO 端口引脚。 TOOUT 是来自 8051 Timer/CounterO 的高电平有效信号。 TOOUT 在 TimerO 溢出时输出一个 CLKOUT 时钟周期的高电平。如果 TimerO 在模式 3(两个独立的定时器/计数器)下运行, TOOUT 就会在低字节定时器/计数器溢出时有效。
109	87				PE1 或 T1OUT	IO/Z	I (PE1)	多路复用引脚,其功能通过 PORTECFG.1 位来选择。 PE1 是双向 IO 端口引脚。 T1OUT 是来自 8051 Timer/Counter1 的高电平有效信号。T1OUT 在 Timer1 溢出时输出一个 CLKOUT 时钟周期的高电平。如果 Timer1 在模式 3(两个独立的定时器/计数器)下运行,T1OUT 就会在低字节定时器/计数器溢出时有效。
110	88				PE2 或 T2OUT	IO/Z	l (PE2)	多路复用引脚,其功能通过 PORTECFG.2 位来选择。 PE2 是双向 IO 端口引脚。 T2OUT 是来自 8051 Timer2 的高电平有效输出信号。 T2OUT 在 Timer/Counter 2 溢出时输出一个时钟周期的 高电平有效状态。
111	89				PE3 或 RXD0OUT	IO/Z	I (PE3)	多路复用引脚,其功能通过 PORTECFG.3 位来选择。 PE3 是双向 IO 端口引脚。 RXDOOUT 是来自 8051 UARTO 的高电平有效信号。如 果选择了 RXDOOUT,而且 UARTO 处于模式 0,则该 引脚仅会在 UARTO 处于同步模式时为其提供输出数 据。否则,它为 1。

128 TQFP	100 TQFP	56 SSOP	56 QFN	56 VFBGA	名称	类型	默认值	说明
112	90				PE4 或 RXD1OUT	IO/Z	I (PE4)	多路复用引脚,其功能通过 PORTECFG.4 位来选择。 PE4 是双向 IO 端口引脚。 RXD1OUT 是来自 8051 UART1 的高电平有效输出。如果选择了 RXD1OUT,而且 UART1 处于模式 0,则该引脚仅会在 UART1 处于同步模式时为其提供输出数据。在模式 1、2和3中,该引脚为高电平。
113	91				PE5 或 INT6	IO/Z	I (PE5)	多路复用引脚,其功能通过 PORTECFG.5 位来选择。 PE5 是双向 IO 端口引脚。 INT6 是 8051 INT6 中断请求输入信号。INT6 引脚为边沿触发,且为高电平有效。
114	92				PE6 或 T2EX	IO/Z	I (PE6)	多路复用引脚,其功能通过 PORTECFG.6 位来选择。 PE6 是双向 IO 端口引脚。 T2EX 是针对 8051 Timer2 的高电平有效输入信号。 T2EX 在其下降沿重新加载 Timer2。 T2EX 仅在 T2CON 寄存器的 EXEN2 位设为 1 时才有效。
115	93				PE7 或 GPIFADR8	IO/Z	(PE7)	多路复用引脚,其功能通过 PORTECFG.7 位来选择。 PE7 是双向 IO 端口引脚。 GPIFADR8 是 GPIF 地址输出引脚。
4	3	8	1	1A	RDY0 或 SLRD	输入	N/A	多路复用引脚,其功能通过以下位来选择: IFCONFIG[10]。 RDY0 是 GPIF 输入信号。 SLRD 是具有可编程极性 (FIFOPINPOLAR.3) 的仅输 入读取选通脉冲,适用于与 FD[70] 或 FD[150] 连接 的 Slave FIFO。
5	4	9	2	1B	RDY1 或 SLWR	输入	N/A	多路复用引脚,其功能通过以下位来选择: IFCONFIG[10]。 RDY1 是 GPIF 输入信号。 SLWR 是具有可编程极性 (FIFOPINPOLAR.2) 的仅输 入写入选通脉冲,适用于与 FD[70] 或 FD[150] 连接 的 Slave FIFO。
6	5				RDY2	输入	N/A	RDY2 是 GPIF 输入信号。
7	6				RDY3	输入	N/A	RDY3 是 GPIF 输入信号。
8	7				RDY4	输入	N/A	RDY4 是 GPIF 输入信号。
9	8				RDY5	输入	N/A	RDY5 是 GPIF 输入信号。
69	54	36	29	7H	CTL0 或 FLAGA	O/Z	Н	多路复用引脚,其功能通过以下位来选择: IFCONFIG[10]。 CTL0 是 GPIF 控制输出。 FLAGA 是可编程的 Slave FIFO 输出状态标志信号。 对于通过 FIFOADR[1:0] 引脚选择的 FIFO,默认设置 为可编程。

		ᄀᆘᄥᄧ						
128 TQFP	100 TQFP	56 SSOP	56 QFN	56 VFBGA	名称	类型	默认值	说明
70	55	37	30	7G	CTL1 或 FLAGB	O/Z	Н	多路复用引脚,其功能通过以下位来选择: IFCONFIG[10]。 CTL1 是 GPIF 控制输出。 FLAGB 是可编程的 Slave FIFO 输出状态标志信号。 对于通过 FIFOADR[1:0] 引脚选择的 FIFO,默认设置 为 FULL。
71	56	38	31	8H	CTL2 或 FLAGC	O/Z	Н	多路复用引脚,其功能通过以下位来选择: IFCONFIG[10]。 CTL2 是 GPIF 控制输出。 FLAGC 是可编程的 Slave FIFO 输出状态标志信号。 对于通过 FIFOADR[1:0] 引脚选择的 FIFO,默认设置 为 EMPTY。
66	51				CTL3	O/Z	Н	CTL3 是 GPIF 控制输出。
67	52				CTL4	输出	Н	CTL4 是 GPIF 控制输出。
98	76				CTL5	输出	Н	CTL5 是 GPIF 控制输出。
32	26	20	13	2G	CY7C68013A 和 CY7C68014A 上的 IFCLK	IO/Z	Z	接口时钟,用于对进出 Slave FIFO 的数据进行同步计时。IFCLK 还充当所有 Slave FIFO 控制信号和 GPIF 的定时参考。当使用内部时钟计时 (IFCONFIG.7 = 1) 时,可通过位 IFCONFIG.5 和 IFCONFIG.6 将 IFCLK 引脚配置为输出 30/48 MHz。无论来源是内部还是外部,都可以通过设置位 IFCONFIG.4 = 1 将 IFCLK 反相。
					CY7C68015A 和 CY7C68016A 上的 PE0	IO/Z	I	PE0 是双向 IO 端口引脚。
28	22				INT4	输入	N/A	INT4 是 8051 INT4 中断请求输入信号。INT4 引脚为边沿触发,且为高电平有效。
106	84				INT5#	输入	N/A	INT5# 是 8051 INT5 中断请求输入信号。 INT5 引脚为 边沿触发,且为低电平有效。
31	25				T2	输入	N/A	T2 是提供给 8051 Timer2 的高电平有效 T2 输入信号, 它在 C/T2 = 1 时为 Timer2 提供输入。当 C/T2 = 0 时, Timer2 不使用该引脚。
30	24				T1	输入	N/A	T1 是 8051 Timer1 的高电平有效 T1 信号,它在 C/T1 为 1 时为 Timer1 提供输入。当 C/T1 为 0 时, Timer1 不使用该位。
29	23				ТО	输入	N/A	T0 是 8051 Timer0 的高电平有效 T0 信号,它在 C/T0 为 1 时为 Timer0 提供输入。当 C/T0 为 0 时, Timer0 不使用该位。
53	43				RXD1	输入	N/A	RXD1 是提供给 8051 UART1 的高电平有效输入信号,它在所有模式下为 UART 提供数据。
52	42				TXD1	输出	Н	TXD1 是来自 8051 UART1 的高电平有效输出引脚, 它在同步模式下提供输出时钟, 并在异步模式下输出数据。
51	41				RXD0	输入	N/A	RXD0 是提供给 8051 UART0 的高电平有效 RXD0 输入,它在所有模式下为 UART 提供数据。

128 TQFP	100 TQFP	56 SSOP	56 QFN	56 VFBGA	名称	类型	默认值	说明
50	40		4		TXD0	输出	Н	TXD0 是来自 8051 UART0 的高电平有效 TXD0 输出,它 在同步模式下提供输出时钟,并在异步模式下输出数据。
42					CS#	输出	Н	CS# 低电平有效,外部存储器芯片选择。
41	32				WR#	输出	Н	WR# 低电平有效,外部存储器写入选通脉冲输出。
40	31				RD#	输出	Н	RD# 低电平有效,外部存储器读取选通脉冲输出。
38					OE#	输出	Н	OE# 低电平有效,外部存储器输出使能。
22	0.7	04	4.4	011	/D = 7	14.	N1/A	IT the label
33	27	21	14	2H	保留	输入	N/A	保留 。接地。
101	79	51	44	7B	WAKEUP	输入	N/A	USB 唤醒。如果 8051 处于挂起状态,则触发该引脚会启动振荡器并中断 8051 以使其退出挂起模式。将WAKEUP 保持为触发状态会阻止 EZ-USB® 芯片挂起。该引脚可编程极性 (WAKEUP.4)。
36	29	22	15	3F	SCL	OD	Z	用于 I ² C 接口的时钟。串联 2.2K 电阻与 VCC 连接,即使没有连接 I ² C 外设也是如此。
37	30	23	16	3G	SDA	OD	Z	I ² C 兼容接口的数据。串联 2.2K 电阻与 VCC 连接,即使没有连接与 I ² C 兼容的外设也是如此。
2	1	6	55	5A	VCC	电源	N/A	VCC 。连接至 3.3V 电源。
26	20	18	11	1G	VCC	电源	N/A	VCC。连接至 3.3V 电源。
43	33	24	17	7E	VCC	电源	N/A	VCC 。连接至 3.3V 电源。
48	38				VCC	电源	N/A	VCC 。连接至 3.3V 电源。
64	49	34	27	8E	VCC	电源	N/A	VCC 。连接至 3.3V 电源。
68	53				VCC	电源	N/A	VCC 。连接至 3.3V 电源。
81	66	39	32	5C	VCC	电源	N/A	VCC 。连接至 3.3V 电源。
100	78	50	43	5B	VCC	电源	N/A	VCC 。连接至 3.3V 电源。
107	85				VCC	电源	N/A	VCC。连接至 3.3V 电源。
3	2	7	56	4B	GND	地线	N/A	地线。
27	21	19	12	1H	GND	地线	N/A	地线。
49	39	10			GND	地线	N/A	地线。
58	48	33	26	7D	GND	地线	N/A	地线。
65	50	35	28	8D	GND	地线	N/A	地线。
80	65	-			GND	地线	N/A	地线。
93	75	48	41	4C	GND	地线	N/A	地线。
116	94				GND	地线	N/A	地线。
125	99	4	53	4A	GND	地线	N/A	地线。
14	13				NC	N/A	N/A	无连接 。该引脚必须保留为开放状态。
15	14				NC	N/A	N/A	无连接 。该引脚必须保留为开放状态。
16	15				NC	N/A	N/A	无连接 。该引脚必须保留为开放状态。

5. 寄存器摘要

FX2LP TRM 中更为详细地说明了 FX2LP 寄存器位定义。

表 12. FX2LP 寄存器摘要

十六进制	大小	名称	说明	b7	b6	b5	b4	b3	b2	b1	b0	默认值	访问
		GPIF 波形存储器											
E400	128	WAVEDATA	GPIF 波形描述符 0、1、2、3 数据	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXX	RW
E480	128	保留											
		常规配置											
E50D		GPCR2	通用配置寄存器 2	保留	保留	保留	FULL_ SPEED_ ONLY	保留	保留	保留	保留	00000000	R
E600	1	CPUCS	CPU 控制和状态	0	0	PORTCSTB	CLKSPD1	CLKSPD0	CLKINV	CLKOE	8051RES	00000010	rrbbbbbr
E601	1	IFCONFIG	接口配置 (端口、GPIF、Slave FIFO)	IFCLKSRC	3048MHZ	IFCLKOE	IFCLKPOL	ASYNC	GSTATE	IFCFG1	IFCFG0	10000000	RW
E602	1	PINFLAGSAB ^[11]	Slave FIFO FLAGA 和 FLAGB 引脚配置	FLAGB3	FLAGB2	FLAGB1	FLAGB0	FLAGA3	FLAGA2	FLAGA1	FLAGA0	00000000	RW
E603	1	PINFLAGSCD ^[11]	Slave FIFO FLAGC 和 FLAGD 引脚配置	FLAGD3	FLAGD2	FLAGD1	FLAGD0	FLAGC3	FLAGC2	FLAGC1	FLAGC0	00000000	RW
E604	1	FIFORESET ^[11]	将 FIFOS 恢复到 默认状态	NAKALL	0	0	0	EP3	EP2	EP1	EP0	xxxxxxx	W
E605	1	BREAKPT	断点控制	0	0	0	0	BREAK	BPPULSE	BPEN	0	00000000	rrrrbbbr
E606	1	BPADDRH	断点高地址	A15	A14	A13	A12	A11	A10	A9	A8	xxxxxxx	RW
E607	1	BPADDRL	断点低地址	A7	A6	A5	A4	A3	A2	A1	A0	xxxxxxx	RW
E608	1	UART230	230 K 波特率的内部 生成参考时钟	0	0	0	0	0	0	230UART1	230UART0	00000000	
E609	1	FIFOPINPOLAR ^[11]	Slave FIFO 接口引脚 极性	0	0	PKTEND	SLOE	SLRD	SLWR	EF	FF	00000000	rrbbbbbb
E60A	1	REVID	芯片修订版本	rv7	rv6	rv5	rv4	rv3	rv2	rv1	rv0	RevA 00000001	R
E60B	1	REVCTL ^[11]	芯片修订版本控制	0	0	0	0	0	0	dyn_out	enh_pkt	00000000	rrrrrbb
		UDMA								-			
E60C	1	GPIFHOLDAMOUNT	MSTB 保留时间 (UDMA)	0	0	0	0	0	0	HOLDTIME1	HOLDTIME0	00000000	rrrrrbb
	3	保留											
		端点配置	1										
E610	1	EP10UTCFG	端点 1-OUT 配置	VALID	0	TYPE1	TYPE0	0	0	0	0	10100000	brbbrrrr
E611	1	EP1INCFG	端点 1-IN 配置	VALID	0	TYPE1	TYPE0	0	0	0	0	10100000	
E612	1	EP2CFG	端点 2 配置	VALID	DIR	TYPE1	TYPE0	SIZE	0	BUF1	BUF0	10100010	bbbbbrbb
E613	1	EP4CFG	端点4配置	VALID	DIR	TYPE1	TYPE0	0	0	0	0	10100000	
E614	1	EP6CFG	端点6配置	VALID	DIR	TYPE1	TYPE0	SIZE	0	BUF1	BUF0		bbbbbrbb
E615	1	EP8CFG	端点8配置	VALID	DIR	TYPE1	TYPE0	0	0	0	0	11100000	
20.0	2	保留	利点の配直	***************************************		= .	20		+	-			
E618	1	EP2FIFOCFG ^[11]	端点 2/Slave FIFO 配置	0	INFM1	OEP1	AUTOOUT	AUTOIN	ZEROLENIN	0	WORDWIDE	00000101	rbbbbbrb
E619	1	EP4FIFOCFG ^[11]	端点 4/Slave FIFO 配置	0	INFM1	OEP1	AUTOOUT	AUTOIN	ZEROLENIN	0	WORDWIDE	00000101	rbbbbbrb
E61A	1	EP6FIFOCFG ^[11]	端点 6/Slave FIFO 配置	0	INFM1	OEP1	AUTOOUT	AUTOIN	ZEROLENIN	0	WORDWIDE	00000101	rbbbbbrb
E61B	1	EP8FIFOCFG ^[11]	端点 8/Slave FIFO 配置	0	INFM1	OEP1	AUTOOUT	AUTOIN	ZEROLENIN	0	WORDWIDE	00000101	rbbbbbrb
E61C	4	保留											
E620	1	EP2AUTOINLENH ^[11]	端点 2 AUTOIN 数据包长度 H	0	0	0	0	0	PL10	PL9	PL8	00000010	rrrrrbbb
E621	1	EP2AUTOINLENL ^[11]	端点 2 AUTOIN 数据包长度 L	PL7	PL6	PL5	PL4	PL3	PL2	PL1	PL0	00000000	RW
E622	1	EP4AUTOINLENH ^[11]	端点 4 AUTOIN 数据包长度 H	0	0	0	0	0	0	PL9	PL8	00000010	rrrrrbb
E623	1	EP4AUTOINLENL ^[11]	端点 4 AUTOIN 数据包长度 L	PL7	PL6	PL5	PL4	PL3	PL2	PL1	PL0	00000000	RW
E624	1	EP6AUTOINLENH ^[11]	端点 6 AUTOIN 数据包长度 H	0	0	0	0	0	PL10	PL9	PL8	00000010	rrrrrbbb
E625	1	EP6AUTOINLENL ^[11]	端点 6 AUTOIN 数据包长度 L	PL7	PL6	PL5	PL4	PL3	PL2	PL1	PL0	00000000	
E626	1	EP8AUTOINLENH ^[11]	端点 8 AUTOIN 数据包长度 H	0	0	0	0	0	0	PL9	PL8	00000010	
E627	1	EP8AUTOINLENL ^[11]	端点 8 AUTOIN 数据包长度 L	PL7	PL6	PL5	PL4	PL3	PL2	PL1	PL0	00000000	
E628	1	ECCCFG	ECC 配置	0	0	0	0	0	0	0	ECCM	00000000	
E629	1	ECCRESET	ECC 复位	x	х	x	х	х	x	х	x	00000000	W
E62A	1	ECC1B0	ECC1 字节 0 地址	LINE15	LINE14	LINE13	LINE12	LINE11	LINE10	LINE9	LINE8	00000000	R

注 11. 对这些寄存器的读取和写入可能需要同步延迟,请参见 《技术参考手册》中的 "同步延迟"。

15. 日本語画語 日本語画語 日本語画語 日本語画語 日本語画語 日本語画語 日本語画 日本語画語 日本語	十六进制	大小	名称	说明	b7	b6	b5	b4	b3	b2	b1	b0	默认值	访问
	E62B	1	ECC1B1	ECC1 字节 1 地址	LINE7	LINE6	LINE5	LINE4	LINE3	LINE2	LINE1	LINE0	00000000	R
ESSET SCC031	E62C	1	ECC1B2	ECC1 字节 2 地址	COL5	COL4	COL3	COL2	COL1	COL0	LINE17	LINE16	00000000	R
Coccase	E62D	1	ECC2B0	ECC1 字节 0 地址	LINE15	LINE14	LINE13	LINE12	LINE11	LINE10	LINE9	LINE8	00000000	R
### 25900 FTD	E62E	1	ECC2B1	ECC1 字节 1 地址	LINE7	LINE6	LINE5	LINE4	LINE3	LINE2	LINE1	LINE0	00000000	R
### SPERFORPH****	E62F	1	ECC2B2	ECC1 字节 2 地址	COL5	COL4	COL3	COL2	COL1	COL0	0	0	00000000	R
### PEC		1	EP2FIFOPFH ^[11]		DECIS	PKTSTAT	IN:PKTS[2] OUT:PFC12	IN:PKTS[1] OUT:PFC11	IN:PKTS[0] OUT:PFC10	0	PFC9	PFC8	10001000	bbbbbrbb
### ### ### ### ### ### ### ### ### ##		1	EP2FIFOPFH ^[11]		DECIS	PKTSTAT	OUT:PFC12	OUT:PFC11	OUT:PFC10	0	PFC9	IN:PKTS[2] OUT:PFC8	10001000	bbbbbrbb
# S		1	EP2FIFOPFL ^[11]		PFC7	PFC6	PFC5	PFC4	PFC3	PFC2	PFC1	PFC0	00000000	RW
# 15.		1	EP2FIFOPFL ^[11]		IN:PKTS[1] OUT:PFC7	IN:PKTS[0] OUT:PFC6	PFC5	PFC4	PFC3	PFC2	PFC1	PFC0	00000000	RW
# ### ### ### ### ### ### ### ### ###		1	EP4FIFOPFH ^[11]		DECIS	PKTSTAT	0	IN:PKTS[1] OUT:PFC10		0	0	PFC8	10001000	bbrbbrrb
### ### ### ### ### ### ### ### ### ##		1	EP4FIFOPFH ^[11]		DECIS	PKTSTAT	0	OUT:PFC10	OUT:PFC9	0	0	PFC8	10001000	bbrbbrrb
### ## ## ## ## ## ## ## ## ## ## ## ##		1	EP4FIFOPFL ^[11]		PFC7	PFC6	PFC5	PFC4	PFC3	PFC2	PFC1	PFC0	00000000	RW
1.5.		1	EP4FIFOPFL ^[11]		IN: PKTS[1] OUT:PFC7	IN: PKTS[0] OUT:PFC6	PFC5	PFC4	PFC3	PFC2	PFC1	PFC0	00000000	RW
	E634 H.S.	1	EP6FIFOPFH ^[11]		DECIS	PKTSTAT	IN:PKTS[2] OUT:PFC12	IN:PKTS[1] OUT:PFC11	IN:PKTS[0] OUT:PFC10	0	PFC9	PFC8	00001000	bbbbbrbb
H.S. 野解性等之 PFC3 PFC4 PFC3 PFC1 PFC0 00000000 RW PFC5 PFC4 PFC3 PFC4 PFC3 PFC5 PFC4 PFC5 00000000 RW PFC5 PFC5 PFC4 PFC5 PF	E634 F.S	1	EP6FIFOPFH ^[11]		DECIS	PKTSTAT	OUT:PFC12	OUT:PFC11	OUT:PFC10	0	PFC9	IN:PKTS[2] OUT:PFC8	00001000	bbbbbrbb
FS 日本語画の	E635 H.S.	1	EP6FIFOPFL ^[11]		PFC7	PFC6	PFC5	PFC4	PFC3	PFC2	PFC1	PFC0	00000000	RW
H.S. B PRIFICPPH(***) FS 1 EP8FIFOPFH(***) FS 2 EP8FIFOPFH(***) FS 3 EP8FIFORD(***) FS 4 EP8FIFOPFH(***) FS 4 EP8FIFORD(***) FS 4 EP8FIFORD(***) FS 5 EP8FIFORD(***) FS 5 EP8FIFORD(***) FS 5 EP8FIFORD(***) FS 5 EP8 FF 0 00000000 RW FW 5 EP8	E635 F.S	1	EP6FIFOPFL ^[11]		IN:PKTS[1] OUT:PFC7	IN:PKTS[0] OUT:PFC6	PFC5	PFC4	PFC3	PFC2	PFC1	PFC0	00000000	RW
F.S.	E636 H.S.	1	EP8FIFOPFH ^[11]		DECIS	PKTSTAT	0	IN:PKTS[1] OUT:PFC10		0	0	PFC8	00001000	bbrbbrrb
H.S. 日本語子の子に「「	E636 F.S	1	EP8FIFOPFH ^[11]		DECIS	PKTSTAT	0	OUT:PFC10	OUT:PFC9	0	0	PFC8	00001000	bbrbbrrb
F.S.	E637 H.S.	1	EP8FIFOPFL ^[11]		PFC7	PFC6	PFC5	PFC4	PFC3	PFC2	PFC1	PFC0	00000000	RW
6 保留	E637 F.S	1	EP8FIFOPFL ^[11]		IN:PKTS[1] OUT:PFC7	IN:PKTS[0] OUT:PFC6	PFC5	PFC4	PFC3	PFC2	PFC1	PFC0	00000000	RW
E641		8	保留											
(如果是 ISO) 输入 数据包数	E640	1	EP2ISOINPKTS	(如果是ISO) 输入	AADJ	0	0	0	0	0	INPPF1	INPPF0	00000001	brrrrrbb
E643	E641	1	EP4ISOINPKTS	(如果是 ISO) 输入	AADJ	0	0	0	0	0	INPPF1	INPPF0	00000001	brrrrrr
E643 1 EP8ISOINPKTS	E642	1	EP6ISOINPKTS	(如果是 ISO) 输入	AADJ	0	0	0	0	0	INPPF1	INPPF0	00000001	brrrrrbb
E644 4 保留	E643	1	EP8ISOINPKTS	(如果是 ISO) 输入	AADJ	0	0	0	0	0	INPPF1	INPPF0	00000001	brrrrrr
E649 7 OUTPKTEND[11] 強制输出数据包结束	E644	4	保留											
中断	E648	1	INPKTEND ^[11]	强制输入数据包结束	跳过	0	0	0	EP3	EP2	EP1	EP0	xxxxxxx	W
EP2FIFOIE[11]	E649	7	OUTPKTEND ^[11]	强制输出数据包结束	跳过	0	0	0	EP3	EP2	EP1	EP0	XXXXXXX	W
First Fir			中断											
E652 1 EP4FIFOIE[11]	E650	1	EP2FIFOIE ^[11]		0	0	0	0	EDGEPF	PF	EF	FF	00000000	RW
First Fir	E651	1		端点 2 Slave FIFO 标志 中断请求	0	0	0	0	0	PF	EF	FF	00000000	rrrrrbbb
P断请求	E652	1	EP4FIFOIE ^[11]	端点 4 Slave FIFO 标志 中断使能	0	0	0	0	EDGEPF	PF	EF	FF	00000000	RW
中断使能	E653	1	EP4FIFOIRQ ^[11,12]		0	0	0	0	0	PF	EF	FF	00000000	rrrrrbbb
中断请求	E654	1	EP6FIFOIE ^[11]		0	0	0	0	EDGEPF	PF	EF	FF	00000000	RW
E656 1 EP8FIFOIE ^[11] 端点 8 Slave FIFO 标志 0 中断使能 0 0 0 EDGEPF PF EF FF 00000000 RW E657 1 EP8FIFOIRQ ^[11,12] 端点 8 Slave FIFO 标志 0 中断请求 0 0 0 PF EF FF 00000000 rmmbbb nmbbb nmbbb nmbbb nmbbbb nmbbbb nmbbbb nmbbbb nmbbbb nmbbbb nmbbbb nmbbbb nmbbbb nmbbbbbb nmbbbb nmbbbb nmbbbb nmbbbb nmbbbb nmbbbb nmbbb nmbbbb nmbbbb nmbbbb nmbbb nmbbb nmbbb nmbbb nmbbb nmbbbb nmbbbbbb nmbbbb nmbbbb nmbbbb nmbbbb nmbbbb nmbbbb nmbbbb nmbbbb nmbbbbbb nmbbbb nmbbbb nmbbbb nmbbbb nmbbbb nmbbbb nmbbbb nmbbbb nmbbbbb nmbbbb nmbbbbbb nmbbbb nmbbbbb nmbbbb nmbbbb nmbbbb nmbbbb nmbbbb nmbbbb nmbbbb nmbbbb nmbbbbb nmbbbb nmbbbb nmbbbb nmbbbb nmbbbb nmbbb nmbbb nmbbbb nmbbb	E655	1			0	0	0	0	0	PF	EF	FF	00000000	rrrrrbbb
中断请求	E656	1		端点 8 Slave FIFO 标志	0	0	0	0	EDGEPF	PF	EF	FF	00000000	RW
E658	E657	1	EP8FIFOIRQ ^[11,12]		0	0	0	0	0	PF	EF	FF	00000000	rrrrrbbb
请求	E658	1		IN-BULK-NAK 中断	0	0	EP8	EP6	EP4	EP2	EP1	EP0	00000000	RW
	E659	1	IBNIRQ ^[12]	IN-BULK-NAK 中断	0	0	EP8	EP6	EP4	EP2	EP1	EP0	00xxxxxx	rrbbbbbb
	E65A	1	NAKIE	端点 Ping-NAK/IBN 中断使能	EP8	EP6	EP4	EP2	EP1	EP0	0	IBN	00000000	RW

注

12. 该寄存器只能复位,而不能设置。

十六进制	大小	名称	说明	b7	b6	b5	b4	b3	b2	b1	b0	默认值	访问
E65B	1	NAKIRQ ^[12]	端点 Ping-NAK/IBN	EP8	EP6	EP4	EP2	EP1	EP0	0	IBN	xxxxxxxx	bbbbbbrl
-050	4	HODIE	中断请求	0	ED0 A OI/	LICODANIT	LIDEO	OLIOD	OUTOK	005	OLID AV	00000000	DW
E65C E65D	1	USBIE USBIRQ ^[12]	USB 中断使能	0	EP0ACK EP0ACK	HSGRANT HSGRANT	URES	SUSP	SUTOK SUTOK	SOF	SUDAV	00000000 0xxxxxxx	rbbbbbb
65E	1	EPIE	USB 中断请求	EP8	EP0ACK EP6	EP4	EP2	EP10UT	EP1IN	EP0OUT	EP0IN	00000000	
E65F	1	EPIRQ ^[12]	端点中断使能端点中断请求	EP8	EP6	EP4	EP2	EP10UT	EP1IN	EP00UT	EP0IN	00000000	RW
E660	1	GPIFIE ^[11]	GPIF 中断使能	0	0	0	0	0	0	GPIFWF	GPIFDONE	00000000	
E661	1	GPIFIRQ ^[11]	GPIF 中断读能	0	0	0	0	0	0	GPIFWF	GPIFDONE	0000000x	
E662	1	USBERRIE	USB 错误中断使能	ISOEP8	ISOEP6	ISOEP4	ISOEP2	0	0	01111111	ERRLIMIT	00000000	
E663	1	USBERRIRQ ^[12]	USB 错误中断请求	ISOEP8	ISOEP6	ISOEP4	ISOEP2	0	0	0	ERRLIMIT	0000000x	
E664	1	ERRCNTLIM	USB 错误计数器和	EC3	EC2	EC1	EC0	LIMIT3	LIMIT2	LIMIT1	LIMIT0	xxxx0100	
	·	2.4.40.4.12	限制	200								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
E665	1	CLRERRCNT	清除错误计数器 EC3:0	х	х	x	Х	Х	х	х	х	XXXXXXX	W
≘666	1	INT2IVEC	中断 2 (USB) 自动	0	I2V4	I2V3	I2V2	I2V1	I2V0	0	0	00000000	R
E007	4	INITAD/FO	向量化	4	0	14) (0	14) (0	14) /4	14) (0	0	0	40000000	
E667	1	INT4IVEC	中断 4 (Slave FIFO 和 GPIF) 自动向量化	1	U	I4V3	14V2	I4V1	I4V0	0	0	10000000	K
E668	1	INTSET-UP	中断2和4设置	0	0	0	0	AV2EN	0	INT4SRC	AV4EN	00000000	RW
= 669	7	保留											1
		输入/输出											
E670	1	PORTACFG	IO PORTA 备选配置	FLAGD	SLCS	0	0	0	0	INT1	INT0	00000000	RW
E671	1	PORTCCFG	IO PORTC 备选配置	GPIFA7	GPIFA6	GPIFA5	GPIFA4	GPIFA3	GPIFA2	GPIFA1	GPIFA0	00000000	RW
E672	1	PORTECFG	IO PORTE 备选配置	GPIFA8	T2EX	INT6	RXD10UT	RXD00UT	T2OUT	T10UT	T0OUT	00000000	RW
E673	4	保留											
E677	1	保留											
E678	1	I ² CS	I ² C 总线	START	STOP	LASTRD	ID1	ID0	BERR	ACK	DONE	000xx000	bbbrrrrr
			控制和状态										
E679	1	I2DAT	I ² C 总线 数据	d7	d6	d5	d4	d3	d2	d1	d0	XXXXXXX	RW
E67A	1	I ² CTL	I ² C 总线	0	0	0	0	0	0	STOPIE	400KHZ	00000000	RW
E67B	1	XAUTODAT1	控制 Autoptr1 MOVX 访问	D7	D6	D5	D4	D3	D2	D1	D0	xxxxxxx	RW
E67C	1	XAUTODAT2	(当 APTREN=1 时) Autoptr2 MOVX 访问	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXXX	RW
			(当 APTREN=1 时)										
		UDMA CRC											
E67D	1	UDMACRCH ^[11]	UDMA CRC MSB	CRC15	CRC14	CRC13	CRC12	CRC11	CRC10	CRC9	CRC8	01001010	
E67E	1	UDMACRCL ^[11]	UDMA CRC LSB	CRC7	CRC6	CRC5	CRC4	CRC3	CRC2	CRC1	CRC0	10111010	
E67F	1	UDMACRC- QUALIFIER	UDMA CRC 限定符	QENABLE	0	0	0	QSTATE	QSIGNAL2	QSIGNAL1	QSIGNAL0	00000000	brrrbbbb
		USB 控制											
E680	1	USBCS	USB 控制和状态	HSM	0	0	0	DISCON	NOSYNSOF	RENUM	SIGRSUME	x0000000	
E681	1	SUSPEND	将芯片置于挂起状态	X	X	X	X	Х	X	X	x	XXXXXXX	W
E682	1	WAKEUPCS	唤醒控制和状态	WU2	WU	WU2POL	WUPOL	0	DPEN	WU2EN	WUEN	xx000101	
E683	1	TOGCTL	切换控制	Q	S	R	10	EP3	EP2	EP1	EP0	x0000000	
E684	1	USBFRAMEH	USB 帧计数 H	0	0	0	0	0	FC10	FC9	FC8	00000xxx	
E685	1	USBFRAMEL	USB 帧计数 L	FC7	FC6	FC5	FC4	FC3	FC2	FC1	FC0	XXXXXXX	R
E686	1	MICROFRAME	微型帧计数, 0-7	0	0	0	0	0	MF2	MF1	MF0	00000xxx	
E687	7	FNADDR	USB 功能地址	0	FA6	FA5	FA4	FA3	FA2	FA1	FA0	0xxxxxxx	R
E688	2	保留											
		端点											
E68A	1	EP0BCH ^[11]	端点 0 字节计数 H	(BC15)	(BC14)	(BC13)	(BC12)	(BC11)	(BC10)	(BC9)	(BC8)	xxxxxxx	RW
E68B	1	EP0BCL ^[11]	端点 0 字节计数 L	(BC7)	BC6	BC5	BC4	BC3	BC2	BC1	BC0	xxxxxxx	RW
E68C	1	保留											
E68D	1	EP10UTBC	端点 1 OUT 字节计数	0	BC6	BC5	BC4	BC3	BC2	BC1	BC0	0xxxxxxx	RW
E68E	1	保留											
E68F	1	EP1INBC	端点 1 IN 字节计数	0	BC6	BC5	BC4	BC3	BC2	BC1	BC0	0xxxxxxx	RW
E690	1	EP2BCH ^[11]	端点 2 字节计数 H	0	0	0	0	0	BC10	BC9	BC8	00000xxx	RW
	1	EP2BCL ^[11]	端点 2 字节计数 L	BC7/SKIP	BC6	BC5	BC4	BC3	BC2	BC1	BC0	XXXXXXX	RW
	2	保留											
	1	EP4BCH ^[11]	端点 4 字节计数 H	0	0	0	0	0	0	BC9	BC8	000000xx	
	1	EP4BCL ^[11]	端点 4 字节计数 L	BC7/SKIP	BC6	BC5	BC4	BC3	BC2	BC1	BC0	XXXXXXX	RW
E696	2	保留											
E698	1	EP6BCH ^[11]	端点 6 字节计数 H	0	0	0	0	0	BC10	BC9	BC8	00000xxx	RW
-000	1	EP6BCL ^[11]	端点 6 字节计数 L	BC7/SKIP	BC6	BC5	BC4	BC3	BC2	BC1	BC0	XXXXXXX	RW
E699									_				T
E69A	2	保留			<u> </u>			<u> </u>					<u> </u>
E69A	2	保留 EP8BCH ^[11] EP8BCL ^[11]	端点 8 字节计数 H	0	0	0 BC5	0	0	0	BC9	BC8	000000xx	RW

					lı o	lı e	lı 4		1.0	lı 4	1.0	I	1
十六进制 E69E	大小 2		说明	b7	b6	b5	b4	b3	b2	b1	b0	默认值	访问
=69E =6A0	1	保留 EP0CS	端点 0 控制和状态	HSNAK	0	0	0	0	0	BUSY	STALL	10000000	bbbbbbrb
E6A1	1	EP10UTCS	端点 1 OUT 控制和	0	0	0	0	0	0	BUSY	STALL	00000000	
E6A2	1	EP1INCS	状态 端点 1 IN 控制和状态	0	n	0	0	0	0	BUSY	STALL	00000000	hhhhhhhrh
E6A3	1	EP2CS	端点 2 控制和状态	0	NPAK2	NPAK1	NPAK0	FULL	EMPTY	0	STALL	00101000	
E6A4	1	EP4CS	端点 4 控制和状态	0	0	NPAK1	NPAK0	FULL	EMPTY	0	STALL	00101000	
E6A5	1	EP6CS	端点 6 控制和状态	0	NPAK2	NPAK1	NPAK0	FULL	EMPTY	0	STALL	00000100	
E6A6	1	EP8CS	端点 8 控制和状态	0	0	NPAK1	NPAK0	FULL	EMPTY	0	STALL	00000100	
E6A7	1	EP2FIFOFLGS	端点 2 Slave FIFO 标志		0	0	0	0	PF	EF	FF	00000100	
E6A8	1	EP4FIFOFLGS	端点 4 Slave FIFO 标志		0	0	0	0	PF	EF .	FF	00000010	
E6A9	1	EP6FIFOFLGS	端点 6 Slave FIFO 标志		0	0	0	0	PF	EF	FF	00000110	
E6AA	1	EP8FIFOFLGS	端点 8 Slave FIFO 标志		0	0	0	0	PF	EF .	FF	00000110	
E6AB	1	EP2FIFOBCH	端点 2 Slave FIFO 字节总计 H	0	0	0	BC12	BC11	BC10	BC9	BC8	00000000	
E6AC	1	EP2FIFOBCL	端点 2 Slave FIFO 字节总计 L	BC7	BC6	BC5	BC4	BC3	BC2	BC1	BC0	00000000	R
E6AD	1	EP4FIFOBCH	端点 4 Slave FIFO 字节总计 H	0	0	0	0	0	BC10	BC9	BC8	00000000	R
E6AE	1	EP4FIFOBCL	端点 4 Slave FIFO 字节总计 L	BC7	BC6	BC5	BC4	BC3	BC2	BC1	BC0	00000000	R
E6AF	1	EP6FIFOBCH	端点 6 Slave FIFO 字节总计 H	0	0	0	0	BC11	BC10	BC9	BC8	00000000	R
E6B0	1	EP6FIFOBCL	端点 6 Slave FIFO 字节总计 L	BC7	BC6	BC5	BC4	BC3	BC2	BC1	BC0	00000000	R
E6B1	1	EP8FIFOBCH	端点 8 Slave FIFO 字节总计 H	0	0	0	0	0	BC10	BC9	BC8	00000000	R
E6B2	1	EP8FIFOBCL	端点 8 Slave FIFO 字节总计 L	BC7	BC6	BC5	BC4	BC3	BC2	BC1	BC0	00000000	R
E6B3	1	SUDPTRH	Setup 数据指针高地址 字节	A15	A14	A13	A12	A11	A10	A9	A8	XXXXXXXX	RW
E6B4	1	SUDPTRL	Setup 数据指针低地址 字节	A7	A6	A5	A4	A3	A2	A1	0	xxxxxxx0	bbbbbbbb
E6B5	1	SUDPTRCTL	Setup 数据指针自动 模式	0	0	0	0	0	0	0	SDPAUTO	00000001	RW
	2	保留											
E6B8	8	SET-UPDAT	8 字节的 Setup 数据	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXX	R
			SET-UPDAT[0] = bmRequestType										
			SET-UPDAT[1] = bmRequest										
			SET-UPDAT[2:3] = wValue										
			SET-UPDAT[4:5] = wlndex										
			SET-UPDAT[6:7] = wLength										
		GPIF											
E6C0	1	GPIFWFSELECT	波形选择器		SINGLEWRO	SINGLERD1	SINGLERD0	FIFOWR1	FIFOWR0	FIFORD1	FIFORD0	11100100	
E6C1	1	GPIFIDLECS	GPIF 已完成, GPIF IDLE 驱动模式	DONE	0	0	0	0	0	0	IDLEDRV	10000000	
E6C2	1	GPIFIDLECTL	不活动总线, CTL 状态	0	0	CTL5	CTL4	CTL3	CTL2	CTL1	CTL0		RW
E6C3	1	GPIFCTLCFG	CTL 驱动类型	TRICTL	0	CTL5	CTL4	CTL3	CTL2	CTL1	CTL0	00000000	
E6C4	1	GPIFADRH ^[11]	GPIF 地址 H	0	0	0	0	0	0	0	GPIFA8	00000000	
E6C5	1	GPIFADRL ^[11] FLOWSTATE	GPIF 地址 L	GPIFA7	GPIFA6	GPIFA5	GPIFA4	GPIFA3	GPIFA2	GPIFA1	GPIFA0	00000000	RW
E6C6	1	FLOWSTATE	流状态使能和 选择器	FSE	0	0	0	0	FS2	FS1	FS0	00000000	brrrrbbb
E6C7	1	FLOWLOGIC	流状态逻辑	LFUNC1	LFUNC0	TERMA2	TERMA1	TERMA0	TERMB2	TERMB1	TERMB0	00000000	RW
E6C8	1	FLOWEQ0CTL	流状态中的 CTL 引脚 状态	CTL0E3	CTL0E2	CTL0E1/ CTL5	CTL0E0/ CTL4	CTL3	CTL2	CTL1	CTL0	00000000	RW
E6C9	1	FLOWEQ1CTL	(当 Logic = 0 时) 流状态中的 CTL 引脚 状态	CTL0E3	CTL0E2	CTL0E1/ CTL5	CTL0E0/ CTL4	CTL3	CTL2	CTL1	CTL0	00000000	RW
E6CA	1	FLOWHOLDOFF	(当 Logic = 1 时) 延迟配置	HOPERIOD3	HOPERIOD2			HOSTATE	HOCTL2	HOCTL1	HOCTL0	00010010	RW
E6CB	1	FLOWSTB	流状态选通脉冲	SLAVE	RDYASYNC		0 SUSTAIN	0	MSTB2	MSTB1	MSTB0	00100000	
E6CC	1	FLOWSTBEDGE	配置 流状态上升/下降沿	0	0	0	0	0	0	FALLING	RISING	00000001	
E6CD	1	FLOWSTBPERIOD	主选通脉冲半周期	D7	D6	D5	D4	D3	D2	D1	D0	00000010	
	ı		工心应亦作十四州	- ·	<u></u>	_ <u> </u>	<u> </u>	<u> </u>		<u>. </u>	1	3000010	L

十六进制	大小	名称	说明	b7	b6	b5	b4	b3	b2	b1	b0	默认值	访问
6CE	1	GPIFTCB3 ^[11]	GPIF 事务处理计数	TC31	TC30	TC29	TC28	TC27	TC26	TC25	TC24	00000000	
6CF	1	GPIFTCB2 ^[11]	字节 3 GPIF 事务处理计数	TC23	TC22	TC21	TC20	TC19	TC18	TC17	TC16	00000000	RW
6D0	1	GPIFTCB1 ^[11]	字节 2 GPIF 事务处理计数	TC15	TC14	TC13	TC12	TC11	TC10	TC9	TC8	00000000	
	·		字节 1										
6D1	1	GPIFTCB0 ^[11]	GPIF 事务处理计数 字节 0	TC7	TC6	TC5	TC4	TC3	TC2	TC1	TC0	00000001	RW
	2	保留										00000000	RW
		保留											
		保留											
3D2	1	EP2GPIFFLGSEL ^[11]	端点 2 GPIF 标志选择	n	0	0	0	0	0	FS1	FS0	00000000	RW
5D3	1	EP2GPIFPFSTOP	进度标志上的端点 2	0	0	0	0	0	0	0	FIFO2FLAG	00000000	
3D4	1	EP2GPIFTRIG ^[11]	GPIF 停止事务处理 端点 2 GPIF 触发器	х	x	x	x	x	x	x	x	xxxxxxx	W
	3	保留											
		保留											
					-			_	-		_	-	<u> </u>
		保留											
3DA	1	EP4GPIFFLGSEL ^[11]	端点 4 GPIF 标志选择		0	0	0	0	0	FS1	FS0	00000000	
6DB	1	EP4GPIFPFSTOP	进度标志上的端点 4 GPIF 停止事务处理	0	0	0	0	0	0	0	FIFO4FLAG	00000000	RW
SDC		EP4GPIFTRIG ^[11]	端点 4 GPIF 触发器	х	х	х	х	х	х	х	Х	XXXXXXX	W
	3	保留											
		保留											
		保留											
3E2	1	EP6GPIFFLGSEL[11]	端点 6 GPIF 标志选择	0	0	0	0	0	0	FS1	FS0	00000000	RW
6E3	1	EP6GPIFPFSTOP	进度标志上的端点 6 GPIF 停止事务处理	0	0	0	0	0	0	0	FIFO6FLAG	00000000	RW
6E4	1	EP6GPIFTRIG ^[11]	端点 6 GPIF 触发器	х	х	х	х	х	х	х	x	xxxxxxx	W
	3	保留											
		保留											
		保留							-				
2 - 4	4	床面 EP8GPIFFLGSEL ^[11]	W F 0 ODIE 1-1-14-17	0	0	0	0	0	0	EC4	FCO	00000000	D\A/
SEA SEB	1	EP8GPIFFLGSEL***	端点 8 GPIF 标志选择 进度标志上的端点 8	0	0	0	0	0	0	FS1 0	FS0 FIFO8FLAG	00000000	
6EC	1	EP8GPIFTRIG ^[11]	GPIF 停止事务处理 端点 8 GPIF 触发器	x	×	x	x	x	x	x	x	xxxxxxxx	W
OLO	3	保留	[≒]	^	^	^	^	^	^	^	^	******	**
050				D45	D44	D40	D40	D44	D40	DO	D0		D) A/
6F0	'	XGPIFSGLDATH	GPIF 数据 H (仅 16 位模式)	D15	D14	D13	D12	D11	D10	D9	D8	XXXXXXX	KVV
6F1	1	XGPIFSGLDATLX	读取/写入 GPIF 数据	D7	D6	D5	D4	D3	D2	D1	D0	xxxxxxxx	RW
6F2	1	XGPIFSGLDATLNOX	L 并触发事务处理 读取 GPIF 数据 L,	D7	D6	D5	D4	D3	D2	D1	D0	xxxxxxx	R
6F3	1	GPIFREADYCFG	无事务处理触发器 内部 RDY、同步 / 异	INTRDY	SAS	TCXRDY5	0	0	0	0	0	00000000	bbbrrr
		0	步、RDY 引脚状态		0,10	107111210	ľ					0000000	
6F4	1	GPIFREADYSTAT	GPIF 就绪状态	0	Ю	RDY5	RDY4	RDY3	RDY2	RDY1	RDY0	00xxxxxx	R
3F5	1	GPIFABORT	中止 GPIF 波形	x	x	x	x	x	x	x	x	XXXXXXXX	
			〒単 UFIF 液形	^	^		^	^			<u> </u>	^^^^	1 **
6F6	2	保留	1			_	1						
		端点缓冲区	,										
740		EP0BUF	EP0-IN/-OUT 缓冲区	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXX	RW
780	64	EP10UTBUF	EP1-OUT 缓冲区	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXX	RW
7C0	64	EP1INBUF	EP1-IN 缓冲区	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXX	RW
300	2048	保留											RW
000		EP2FIFOBUF	512/1024 字节 EP	D7	D6	D5	D4	D3	D2	D1	D0	xxxxxxxx	RW
,,,,	.02.	2. 2 000.	2/Slave FIFO 缓冲区 (输入或输出)									7000000	
100	512	EP4FIFOBUF	512 字节 EP 4/Slave FIFO 缓冲区	D7	D6	D5	D4	D3	D2	D1	D0	xxxxxxx	RW
200	E10	/D 67	(输入或输出)						1				1
300	512			D-	50	D.	D.4	D0				1	D
300	1024	EP6FIFOBUF	512/1024 字节 EP 6/Slave FIFO 缓冲区	D7	D6	D5	D4	D3	D2	D1	D0	xxxxxxxx	RW
C00	512	EP8FIFOBUF	(输入或输出) 512 字节 EP 8/Slave	D7	D6	D5	D4	D3	D2	D1	D0	xxxxxxx	D/v/
500	312	LI OI II OBUF	FIFO 缓冲区 (输入或输出)	וטו	100	D3	J-4	D3	D2	יט	D0	^^^	INV
00	512	保留			1					_	1		1

十六进制	大小	名称	说明	b7	b6	b5	b4	b3	b2	b1	b0	默认值	访问
XXXX	, , ,	I ² C 配置字节	70-77	0	DISCON	0	0	0	0	0	400KHZ	XXXXXXXX [14]	n/a
		7 7										[14]	
		特殊功能寄存器 (SFR)											
30	1	IOA ^[13]	-14 m - 1 - 1 - 1 - 1 - 1 - 1 - 1	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXX	RW
31	1	SP	堆栈指针	D7	D6	D5	D4	D3	D2	D1	D0	00000111	RW
32	1	DPL0	数据指针 0 L	A7	A6	A5	A4	A3	A2	A1	A0	00000000	RW
33	1	DPH0	数据指针 0 H	A15	A14	A13	A12	A11	A10	A9	A8	00000000	RW
84	1	DPL1 ^[13]	数据指针 1 L	A7	A6	A5	A4	A3	A2	A1	A0	00000000	RW
85	1	DPH1 ^[13]	数据指针 1 H	A15	A14	A13	A12	A11	A10	A9	A8	00000000	RW
86	1	DPS ^[13]	数据指针 0/1 选择	0	0	0	0	0	0	0	SEL	00000000	RW
87	1	PCON	电源控制	SMOD0	х	1	1	х	х	х	IDLE	00110000	RW
88	1	TCON	定时器 / 计数器控制 (可位寻址)	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	00000000	RW
89	1	TMOD	定时器 / 计数器模式 控制	GATE	СТ	M1	МО	GATE	СТ	M1	M0	00000000	RW
8A	1	TL0	Timer 0 重新加载 L	D7	D6	D5	D4	D3	D2	D1	D0	00000000	RW
8B	1	TL1	Timer 1 重新加载 L	D7	D6	D5	D4	D3	D2	D1	D0	00000000	RW
8C	1	TH0		D15	D14	D13	D12	D11	D10	D9	D8	00000000	RW
8D	1	TH1		D15	D14	D13	D12	D11	D10	D9	D8	00000000	RW
8E	1	CKCON ^[13]	时钟控制	x	х	T2M	T1M	TOM	MD2	MD1	MD0	00000001	RW
8F	1	保留			1	1				†		1	1
90	1	IOB ^[13]	端口B(可位寻址)	D7	D6	D5	D4	D3	D2	D1	D0	xxxxxxx	RW
91	1	EXIF ^[13]	外部中断标志	IE5	IE4	I ² CINT	USBNT	1	0	0	0	00001000	
92	1	MPAGE ^[13]	MOVX 的高位地址字节		A14	A13	A12	A11	A10	A9	A8	00000000	
93	5		(使用 @R0 / @R1)		, , , ,	1	1,112	/***					
98	1	保留 SCON0	D 47-44 D 0 40-44	SM0 0	SM1 0	SM2 0	REN 0	TB8 0	RB8 0	TI O	RI 0	00000000	DW
	1		串行端口 0 控制 (可位寻址)							TI_0			
99	1	SBUF0	串行端口 0 数据缓冲区		D6	D5	D4	D3	D2	D1	D0	00000000	
9A	1	AUTOPTRH1 ^[13]	自动指针 1 地址 H	A15	A14	A13	A12	A11	A10	A9	A8	00000000	
9B	1	AUTOPTRL1 ^[13]	自动指针 1 地址 L	A7	A6	A5	A4	A3	A2	A1	A0	00000000	RW
9C	1	保留											
9D	1	AUTOPTRH2 ^[13]	自动指针 2 地址 H	A15	A14	A13	A12	A11	A10	A9	A8	00000000	RW
9E	1	AUTOPTRL2 ^[13]	自动指针 2 地址 L	A7	A6	A5	A4	A3	A2	A1	A0	00000000	RW
9F	1	保留											
A0	1	IOC ^[13]	端口 C (可位寻址)	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXX	RW
A1	1	INT2CLR ^[13]	中断 2 清除	х	х	х	х	Х	х	х	х	XXXXXXX	W
A2	1	INT4CLR ^[13]	中断 4 清除	х	х	х	х	Х	х	х	х	XXXXXXX	W
A3	5	保留											
A8	1	IE	中断使能 (可位寻址)	EA	ES1	ET2	ES0	ET1	EX1	ET0	EX0	00000000	RW
A9	1	保留											
AA	1	EP2468STAT ^[13]	端点 2、 4、 6、 8 状态标志	EP8F	EP8E	EP6F	EP6E	EP4F	EP4E	EP2F	EP2E	01011010	R
AB	1	EP24FIFOFLGS ^[13]	端点 2、 4 Slave FIFO 状态标志	0	EP4PF	EP4EF	EP4FF	0	EP2PF	EP2EF	EP2FF	00100010	R
AC	1	EP68FIFOFLGS ^[13]	端点 6、8 Slave FIFO 状态标志	0	EP8PF	EP8EF	EP8FF	0	EP6PF	EP6EF	EP6FF	01100110	R
AD	2	保留 48				1							
AF	1	AUTOPTRSETUP ^[13]	自动指针1和2设置	0	0	0	0	0	APTR2INC	APTR1INC	APTREN	00000110	RW
B0	1	IOD ^[13]		D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXX	RW
B1	1	IOE ^[13]	端口 E (不可位寻址)	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXX	RW
B2	1	OEA ^[13]		D7	D6	D5	D4	D3	D2	D1	D0	00000000	
B3	1	OEB ^[13]		D7	D6	D5	D4	D3	D2	D1	D0	00000000	RW
B4	1	OEC ^[13]		D7	D6	D5	D4	D3	D2	D1	D0	00000000	RW
B5	1	OED ^[13]		D7	D6	D5	D4	D3	D2	D1	D0	00000000	RW
В6	1	OEE ^[13]		D7	D6	D5	D4	D3	D2	D1	D0	00000000	
B7	1	保留				+			1				
B8	1	IP .	中断优先级 (可位寻址)	1	PS1	PT2	PS0	PT1	PX1	PT0	PX0	10000000	RW
B9	1	保留			1	1				†			1
BA	1	EP01STAT ^[13]	端点 0 和 1 状态	0	0	0	0	0	EP1INBSY	EP1OUTBS Y	EP0BSY	00000000	R
BB	1	GPIFTRIG ^[13, 11]	端点 2、4、6、8 GPIF Slave FIFO 触发器	DONE	0	0	0	0	RW	EP1	EP0	10000xxx	brrrrbbb
	1	保留				+			1				
BC					1	1	1	1	1			1	RW

注 13. SFR 不属于标准的 8051 体系架构。 14. 如果 SIE 检测不到 EEPROM,则默认值为 00000000。

十六进制	大小		说明	b7	b6	b5	b4	b3	b2	b1	b0	默认值	访问
BE	1	GPIFSGLDATLX ^[13]	GPIF 数据 L, 带触发器	D7	D6	D5	D4	D3	D2	D1	D0	xxxxxxx	RW
BF	1	GPIFSGLDATLNOX ^[13]	GPIF 数据 L, 无触发器	D7	D6	D5	D4	D3	D2	D1	D0	xxxxxxx	R
C0	1	SCON1 ^[13]	串行端口 1 控制 (可位寻址)	SM0_1	SM1_1	SM2_1	REN_1	TB8_1	RB8_1	TI_1	RI_1	00000000	RW
C1	1	SBUF1 ^[13]	串行端口 1 数据缓冲区	D7	D6	D5	D4	D3	D2	D1	D0	00000000	RW
C2	6	保留											
C8	1	T2CON	Timer/Counter 2 控制 (可位寻址)	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	CT2	CPRL2	00000000	RW
C9	1	保留											
CA	1	RCAP2L	Timer 2 的捕获, 自动重新加载, 向上计数器 L	D7	D6	D5	D4	D3	D2	D1	D0	00000000	RW
СВ	1	RCAP2H	Timer 2 的捕获, 自动重新加载, 向上计数器 H	D7	D6	D5	D4	D3	D2	D1	D0	00000000	RW
CC	1	TL2	Timer 2 重新加载 L	D7	D6	D5	D4	D3	D2	D1	D0	00000000	RW
CD	1	TH2	Timer 2 重新加载 H	D15	D14	D13	D12	D11	D10	D9	D8	00000000	RW
CE	2	保留											
D0	1	PSW	程序状态字 (可位寻址)	CY	AC	F0	RS1	RS0	OV	F1	Р	00000000	RW
D1	7	保留											
D8	1	EICON ^[13]	外部中断控制	SMOD1	1	ERESI	RESI	INT6	0	0	0	01000000	RW
D9	7	保留											
E0	1	ACC	累加器 (可位寻址)	D7	D6	D5	D4	D3	D2	D1	D0	00000000	RW
E1	7	保留											
E8	1	EIE ^[13]	外部中断使能	1	1	1	EX6	EX5	EX4	EI ² C	EUSB	11100000	RW
	7	保留											
F0		В	B (可位寻址)	D7	D6	D5	D4	D3	D2	D1	D0	00000000	RW
	7	保留											
F8	1	EIP ^[13]	外部中断优先级控制	1	1	1	PX6	PX5	PX4	PI ² C	PUSB	11100000	RW
F9	7	保留											

R = 所有位只读

W = 所有位只写 <

r = 只读位

w = 只写位

b = 可读 / 写位

6. 绝对最大等级

存储温度	65°C 到 +150°C
供电状态下的环境温度 (商用)	0°C 到 +70°C
供电状态下的环境温度 (工业用)供电电压对地电位	40°C 到 +105°C
供电电压对地电位	0.5V 到 +4.0V
对任何输入引脚的直流输入电压 ^[15]	5.25V
在高 Z 状态下应用于输出端的直流电压	0.5V 到 VCC + 0.5V
功耗	300 mW
静态放电电压	>2000V
每个 IO 端口的最大输出电流	10 mA
全部五个 IO 端口的最大输出电流 (128 和 100 引脚封装)	50 mA
7. 运行条件	
T _A (偏差条件下的环境温度)商用	
T _A (偏差条件下的环境温度)工业用 供电电压	40°C 到 +105°C
供电电压	+3.00V 到 +3.60V
接地电压	
F _{OSC} (振荡器或晶体频率)	24 MHz ± 100 ppm,并行谐振

8. 热特性

下表列出了各种封装的热特性:

表 13. 热特性

封装	θa 环境温度	θJc 结到管壳温度	θCa 管壳到环境温度	θJa 结到环境温度 θJc + θCa
	(°C)	(°C/W)	(°C/W)	(°C/W)
56 SSOP	70	24.4	23.3	47.7
100 TQFP	70	11.9	34.0	45.9
128 TQFP	70	15.5	27.7	43.2
56 QFN	70	10.6	14.6	25.2
56 VFBGA	70	30.9	27.7	58.6

结温度 θ **j** 可以使用以下方程式计算: θ **j** = P* θ Ja + θ a

其中,

P = 功率

 θ Ja = 结到环境温度 (θ Jc + θ Ca)

θa = 环境温度 (70 C)

管壳温度 θ c 可以使用以下方程式计算: θ c = P* θ Ca + θ a

其中,

P = 功率

hetaCa = 管壳到环境温度

θa = 环境温度 (70 C)

注

___ 15. 请勿在芯片断电的情况下为 IO 加电。

文件编号: 001-50431 修订版 **

9. 直流特性

表 14. 直流特性

参数	说明	条件	最小值	Тур	最大值	单位
VCC	供电电压		3.00	3.3	3.60	V
VCC Ramp Up	0 到 3.3V		200			μS
V _{IH}	输入高电平电压		2		5.25	V
V _{IL}	输入低电平电压		-0.5		8.0	V
V_{IH_X}	晶体输入高电平电压		2		5.25	V
V _{IL_X}	晶体输入低电平电压		-0.5		8.0	V
I _I	输入泄漏电流	0< V _{IN} < VCC			±10	μА
V _{OH}	输出高电平电压	I _{OUT} = 4 mA	2.4			V
V _{OL}	输出低电平电压	I _{OUT} = –4 mA			0.4	V
I _{OH}	输出电流高电平				4	mA
I _{OL}	输出电流低电平				4	mA
C _{IN}	输入引脚电容	D+/D- 除外			10	pF
		D+/D-			15	pF
I _{SUSP}	挂起电流	连接		300	380 ^[16]	μΑ
	CY7C68014/CY7C68016	断开连接		100	150 ^[16]	μΑ
	挂起电流	连接		0.5	1.2 ^[16]	mA
	CY7C68013/CY7C68015	断开连接		0.3	1.0 ^[16]	mA
I _{CC}	供电电流	8051 正在运行,已连接到 USB HS		50	85	mA
		8051 正在运行,已连接到 USB FS		35	65	mA
T _{RESET}	有效供电后的复位时间	VCC 最小值 = 3.0V	5.0			mS
	加电后引脚复位		200			μS

9.1 USB 收发器

在全速和高速模式下与 USB 2.0 兼容。

10. 交流电特性

10.1 USB 收发器

在全速和高速模式下与 USB 2.0 兼容。

72 16. 测量条件为最大 VCC, 25°C。

10.2 程序存储器读取

图 12. 程序存储器读取时序图

表 15. 程序存储器读取参数

参数	说明	最小值	Тур	最大值	单位	注
t _{CL}	1/CLKOUT 频率		20.83		ns	48 MHz
			41.66		ns	24 MHz
			83.2		ns	12 MHz
t _{AV}	从时钟到有效地址的延迟	0		10.7	ns	
t _{STBL}	时钟到 PSEN 低电平	0		8	ns	
t _{STBH}	时钟到 PSEN 高电平	0		8	ns	
t _{SOEL}	时钟到 OE 低电平			11.1	ns	
t _{SCSL}	时钟到 CS 低电平			13	ns	
t _{DSU}	数据设置到时钟	9.6			ns	
t _{DH}	数据保留时间	0			ns	

17. CLKOUT 显示正极性。

18. t_{ACC1} 是根据上述参数按照以下方程式计算得出的: t_{ACC1} (24 MHz) = 3*t_{CL} - t_{AV} - t_{DSU} = 106 ns t_{ACC1} (48 MHz) = 3*t_{CL} - t_{AV} - t_{DSU} = 43 ns

10.3 数据存储器读取

表 16. 数据存储器读取参数

参数	说明	最小值	Тур	最大值	单位	注
t _{CL}	1/CLKOUT 频率		20.83		ns	48 MHz
			41.66		ns	24 MHz
			83.2		ns	12 MHz
t _{AV}	从时钟到有效地址的延迟			10.7	ns	
t _{STBL}	时钟到 RD 低电平			11	ns	
t _{STBH}	时钟到 RD 高电平			11	ns	
t _{SCSL}	时钟到 CS 低电平			13	ns	
t _{SOEL}	时钟到 OE 低电平			11.1	ns	
t _{DSU}	数据设置到时钟	9.6			ns	
t _{DH}	数据保留时间	0			ns	

当使用 AUTPOPTR1 到 AUTOPTR2 来寻址外部存储器时, AUTOPTR1 的地址只有在 RD# 或 WR# 为有效时才有效。 AUTOPTR2 的地址在整个周期内都有效,而且满足上述基于展宽值的地址有效时间。

注
19. t_{ACC2} 和 t_{ACC3} 是根据上述参数按照以下方程式计算得出的: t_{ACC2} (24 MHz) = 3*t_{CL} - t_{AV} - t_{DSU} = 106 ns t_{ACC2} (48 MHz) = 3*t_{CL} - t_{AV} - t_{DSU} = 43 ns t_{ACC3} (24 MHz) = 5*t_{CL} - t_{AV} - t_{DSU} = 190 ns t_{ACC3} (48 MHz) = 5*t_{CL} - t_{AV} - t_{DSU} = 86 ns

10.4 数据存储器写入

图 14. 数据存储器写入时序图

表 17. 数据存储器写入参数

参数	说明	最小值	最大值	单位	注
t _{AV}	从时钟到有效地址的延迟	0	10.7	ns	
t _{STBL}	时钟到 WR 脉冲低电平	0	11.2	ns	
t _{STBH}	时钟到 WR 脉冲高电平	0	11.2	ns	
t _{SCSL}	时钟到 CS 脉冲低电平		13.0	ns	
t _{ON1}	时钟到数据开启	0	13.1	ns	
t _{OFF1}	时钟到数据保留时间	0	13.1	ns	

当使用 AUTPOPTR1 到 AUTOPTR2 来寻址外部存储器时, AUTOPTR1 的地址只有在 RD# 或 WR# 为有效时才有效。 AUTOPTR2 的地址在整个周期内都有效,而且满足上述基于展宽值的地址有效时间。

10.5 PORTC 选通脉冲功能时序

RD# 和 WR# 在 100 引脚版本和 128 引脚封装中提供。在这些 100 引脚和 128 引脚的版本中,可以通过 8051 控制位设置在 8051 对 PORTC 进行读 / 写操作时触发 RD# 和 WR# 引脚。通过在 CPUCS 寄存器中设置 PORTCSTB 位,可使能此功能。

当访问 PORTC 时,会将 RD# 和 WR# 选通脉冲触发两个 CLKOUT 周期。

在更新 PORTC 后,会将 WR# 选通脉冲触发两个时钟周期,并且在此后的两个时钟周期内有效,如图 15 所示。

至于读取操作,PORTC 在对 RD# 进行触发的三个时钟周期以前的值是 8051 读入的值。在 8051 对 PORTC 执行读取功能后的 3 个时钟周期之后,将触发 RD# 的脉冲并持续 2 个时钟周期。

RD# 信号会提示外部逻辑准备下一个数据字节。在触发 RD# 信号本身时,并不会进行任何内部取样操作,它仅仅是用于准备下一个数据字节的预获取类型信号。因此,在使用该信号时记住这一点可让您轻松符合下一次读取操作的设置时间。

RD# 脉冲的目的是让外设知道: 8051 已完成对 PORTC 的读取操作,而且数据已经在触发 RD# 信号前的三个 CLKOUT 周期前就已锁存到 PORTC 中。在触发 RD# 的脉冲后,外部逻辑即可更新 PORTC 上的数据。

以下是访问 PORTC 时的读写选通功能的时序图。有关 RD# 和 WR# 信号传输延迟的详细信息,请参考第 10.3 节和第 10.4 节。

图 15. 8051 访问 PORTC 时的 WR# 选通脉冲功能

10.6 GPIF 同步信号

表 18. IFCLK 来源于内部时的 GPIF 同步信号参数 [20, 21]

参数	说明	最小值	最大值	单位
t _{IFCLK}	IFCLK 周期	20.83		ns
t _{SRY}	RDY _X 到时钟设置时间	8.9		ns
t _{RYH}	时钟到 RDY _X	0		ns
t _{SGD}	GPIF 数据到时钟设置时间	9.2		ns
t _{DAH}	GPIF 数据保留时间	0		ns
t _{SGA}	时钟到 GPIF 地址传输延迟		7.5	ns
t _{XGD}	时钟到 GPIF 数据输出传输延迟		11	ns
t _{XCTL}	时钟到 CTL _X 输出传输延迟		6.7	ns

表 19. IFCLK 来源于外部时的 GPIF 同步信号参数 [21]

参数	说明	最小值	最大值	单位
t _{IFCLK}	IFCLK 周期 ^[22]	20.83	200	ns
t _{SRY}	RDY _X 到时钟设置时间	2.9		ns
t _{RYH}	时钟到 RDY _X	3.7		ns
t _{SGD}	GPIF 数据到时钟设置时间	3.2		ns
t _{DAH}	GPIF 数据保留时间	4.5		ns
t _{SGA}	时钟到 GPIF 地址传输延迟		11.5	ns
t _{XGD}	时钟到 GPIF 数据输出传输延迟		15	ns
t _{XCTL}	时钟到 CTL _X 输出传输延迟		10.7	ns

- ---20. 虚线表示具有可编程极性的信号。 21. 当使用内部 48-MHz IFCLK 时, GPIF 异步 RDY_x 信号的最小设置时间为 50 ns。
- 22. IFCLK 不得超过 48 MHz。

10.7 Slave FIFO 同步读取

表 20. IFCLK 来源于内部时的 Slave FIFO 同步读取参数 [21]

参数	说明	最小值	最大值	单位
t _{IFCLK}	IFCLK 周期	20.83		ns
t _{SRD}	SLRD 到时钟设置时间	18.7		ns
t _{RDH}	时钟到 SLRD 保留时间	0		ns
t _{OEon}	SLOE 开启到 FIFO 数据有效		10.5	ns
t _{OEoff}	SLOE 关闭到 FIFO 数据保留		10.5	ns
t _{XFLG}	时钟到 FLAGS 输出传输延迟		9.5	ns
t _{XFD}	时钟到 FIFO 数据输出传输延迟		11	ns

表 21. IFCLK 来源于外部时的 Slave FIFO 同步读取参数 [21]

	<u> </u>			
参数	说明	最小值	最大值	单位
t _{IFCLK}	IFCLK 周期	20.83	200	ns
t _{SRD}	SLRD 到时钟设置时间	12.7		ns
t _{RDH}	时钟到 SLRD 保留时间	3.7		ns
t _{OEon}	SLOE 开启到 FIFO 数据有效		10.5	ns
t _{OEoff}	SLOE 关闭到 FIFO 数据保留		10.5	ns
t _{XFLG}	时钟到 FLAGS 输出传输延迟		13.5	ns
t _{XFD}	时钟到 FIFO 数据输出传输延迟		15	ns

10.8 Slave FIFO 异步读取

表 22. Slave FIFO 异步读取参数 ^[23]

参数	说明	最小值	最大值	单位
t _{RDpwl}	SLRD 脉冲宽度低电平	50		ns
t _{RDpwh}	SLRD 脉冲宽度高电平	50		ns
t _{XFLG}	SLRD 到 FLAGS 输出传输延迟		70	ns
t _{XFD}	SLRD 到 FIFO 数据输出传输延迟		15	ns
t _{OEon}	SLOE 开启到 FIFO 数据有效		10.5	ns
t _{OEoff}	SLOE 关闭到 FIFO 数据保留		10.5	ns

注 23. Slave FIFO 异步参数值使用频率为 48 MHz 时的内部 IFCLK 设置。

10.9 Slave FIFO 同步写入

表 23. IFCLK 来源于内部时的 Slave FIFO 同步写入参数 [21]

参数	说明	最小值	最大值	单位
t _{IFCLK}	IFCLK 周期	20.83		ns
t _{SWR}	SLWR 到时钟设置时间	10.4		ns
t _{WRH}	时钟到 SLWR 保留时间	0		ns
t _{SFD}	FIFO 数据到时钟设置时间	9.2		ns
t _{FDH}	时钟到 FIFO 数据保留时间	0		ns
t _{XFLG}	时钟到 FLAGS 输出传输时间		9.5	ns

表 24. IFCLK 来源于外部时的 Slave FIFO 同步写入参数 [21]

参数	说明	最小值	最大值	单位
t _{IFCLK}	IFCLK 周期	20.83	200	ns
t _{SWR}	SLWR 到时钟设置时间	12.1		ns
t _{WRH}	时钟到 SLWR 保留时间	3.6		ns
t _{SFD}	FIFO 数据到时钟设置时间	3.2		ns
t _{FDH}	时钟到 FIFO 数据保留时间	4.5		ns
t _{XFLG}	时钟到 FLAGS 输出传输时间		13.5	ns

10.10 Slave FIFO 异步写入

表 25. IFCLK 来源于内部时的 Slave FIFO 异步写入参数 [23]

参数	说明	最小值	最大值	单位
t _{WRpwl}	SLWR 脉冲低电平	50		ns
t _{WRpwh}	SLWR 脉冲高电平	70		ns
t _{SFD}	SLWR 到 FIFO DATA 设置时间	10		ns
t _{FDH}	FIFO DATA 到 SLWR 保留时间	10		ns
t _{XFD}	SLWR 到 FLAGS 输出传输延迟		70	ns

10.11 Slave FIFO 同步数据包结束选通脉冲

表 26. IFCLK 来源于内部时的 Slave FIFO 同步数据包结束选通脉冲参数 $^{[21]}$

参数	说明	最小值	最大值	单位
t _{IFCLK}	IFCLK 周期	20.83		ns
t _{SPE}	PKTEND 到时钟设置时间	14.6		ns
t _{PEH}	时钟到 PKTEND 保留时间	0		ns
t _{XFLG}	时钟到 FLAGS 输出传输延迟		9.5	ns

表 27. IFCLK 来源于外部时的 Slave FIFO 同步数据包结束选通脉冲参数 [21]

参数	说明	最小值	最大值	单位
t _{IFCLK}	IFCLK 周期	20.83	200	ns
t _{SPE}	PKTEND 到时钟设置时间	8.6		ns
t _{PEH}	时钟到 PKTEND 保留时间	2.5		ns
t _{XFLG}	时钟到 FLAGS 输出传输延迟		13.5	ns

文件编号: 001-50431 修订版 **

触发 SLWR 时,对触发 PKTEND 引脚并没有特定的时序要求。可以使用通过时钟脉冲输入到 FIFO 中的最后一个数据值(或其后输入的值)来触发 PKTEND。设置时间 t_{SPE} 和保留时间 t_{PEH}是必须满足的。

虽然对 PKTEND 触发没有特定的时序要求,但在使用 PKTEND 提交一个单字节或单字数据包时,有一个特定的极端状况条件需要注意。将 FIFO 配置为在自动模式下运行,且需要接连发送两个数据包时,有一个附加的时序要求需要满足:自动提交一个完整的数据包(完全限定为 FIFO 中的字节数,符合在 AUTOINLEN 寄存器中设置的级别),然后使用 PKTEND 引脚手动提交一个单字节或单字短数据包。在这种情况下,用户必须确保在导致最后一个字节或字通过时钟脉冲输入到前一个自动提交数据包中的上

升沿之后,触发 PKTEND 至少一个时钟周期。图 23 显示了这种情况。X 是将输入端点配置为自动模式时设置的 AUTOINLEN 寄存器值。

图 23 显示了提交两个数据包的情况。第一个数据包在 FIFO 中的字节数达到 X (在 AUTOINLEN 寄存器中设置的值)时自动提交,而第二个单字节/单字短数据包则使用 PKTEND 手动提交。

请注意,在 PKTEND 触发和通过时钟脉冲传输前一个数据包的 最后一个字节(导致该数据包自动提交)之间,至少有一个 IFCLK 周期时序。如果不遵循这种时序,则会导致 FX2 无法发送单字节或单字短数据包。

图 23. Slave FIFO 同步写入序列和时序图 [20]

10.12 Slave FIFO 异步数据包结束选通脉冲

图 24. Slave FIFO 异步数据包结束选通脉冲时序图 [20]

表 28. Slave FIFO 异步数据包结束选通脉冲参数 [23]

参数	说明	最小值	最大值	单位
t _{PEpwl}	PKTEND 脉冲宽度低电平	50		ns
t _{PWpwh}	PKTEND 脉冲宽度高电平	50		ns
t _{XFLG}	PKTEND 到 FLAGS 输出传输延迟		115	ns

10.13 Slave FIFO 输出使能

图 25. Slave FIFO 输出使能时序图 [20]

表 29. Slave FIFO 输出使能参数

参数	说明	最小值	最大值	单位
t _{OEon}	SLOE 触发到 FIFO DATA 输出		10.5	ns
t _{OEoff}	SLOE 解除到 FIFO DATA 保留		10.5	ns

10.14 Slave FIFO 地址到标记 / 数据

图 26. Slave FIFO 地址到标记 / 数据时序图 [20]

表 30. Slave FIFO 地址到标记 / 数据参数

参数	说明		最大值	单位
t _{XFLG}	FIFOADR[1:0] 到 FLAGS 输出传输延迟		10.7	ns
t _{XFD}	FIFOADR[1:0] 到 FIFODATA 输出传输延迟		14.3	ns

10.15 Slave FIFO 同步地址

表 31. Slave FIFO 同步地址参数 [21]

参数	说明	最小值	最大值	单位
t _{IFCLK}	接口时钟周期	20.83	200	ns
t _{SFA}	FIFOADR[1:0] 到时钟设置时间	25		ns
t _{FAH}	时钟到 FIFOADR[1:0] 保留时间	10		ns

10.16 Slave FIFO 异步地址

图 28. Slave FIFO 异步地址时序图 [20]

表 32. Slave FIFO 异步地址参数 ^[23]

参数	说明	最小值	最大值	单位
t _{SFA}	FIFOADR[1:0] 到 SLRD/SLWR/PKTEND 设置时间	10		ns
t _{FAH}	RD/WR/PKTEND 到 FIFOADR[1:0] 保留时间	10		ns

10.17 序列图

10.17.1 单个和突发同步读取示例

图 30. Slave FIFO 同步事件序列图

图 29 显示了将 IFCLK 用作同步时钟,在同步 FIFO 读取期间 Slave FIFO 信号的时序关系。该图说明了带有后续突发读取的单个读取。

- 在 t = 0 时, FIFO 地址处于稳定状态,并且触发信号 SLCS (在某些应用中,可以将 SLCS 绑定到低电平)。请注意, t_{SFA} 的最小值为 25 ns。这意味着,当 IFCLK 以 48 MHz 的 频率运行时, FIFO 地址设置时间超过一个 IFCLK 周期。
- 在 t = 1 时,触发 SLOE。SLOE 为仅输出使能信号,其唯一功能是驱动数据总线。在总线上驱动的数据是内部 FIFO 指针当前所指向的数据。在此示例中,它是 FIFO 中的第一个数据值。注意:该数据是预先获取的,并会在触发 SLOE 时于总线上将其驱动。
- 在 t = 2 时,触发 SLRD。 SLRD 必须满足设置时间 t_{SRD} (从触发 SLRD 信号到 IFCLK 的上升沿的时间),并且维持最 低保留时间 t_{RDH} (从 IFCLK 沿到解除 SLRD 信号的时间)。

如果使用 SLCS 信号,则必须在触发 SLRD 之前触发该信号 (SLCS 和 SLRD 信号都必须触发,才能启动有效读取条件)。

■ FIFO 指针在 IFCLK 的上升沿进行更新,同时会触发 SLRD。 这会使数据开始从新寻址的位置向数据总线传输。在 t_{XFD} (从 IFCLK 的上升沿测量)传输延迟之后,会出现新的数据 值。 N 是从 FIFO 读取的第一个数据值。要获取 FIFO 数据总 线上的数据,还必须触发 SLOE。

突发读取具有同样的事件序列,并且这些序列标有时间指示符 T = 0 到 5。

注 对于突发模式,SLRD 和 SLOE 在整个读取时期内都保持触发状态。在突发读取模式下,当触发 SLOE 时,由 FIFO 指针编制索引的数据位于数据总线上。在第一个读取周期内, FIFO 指针在时钟的上升沿更新,递增后指向地址 N+1。对于 IFCLK 的每个后续上升沿,当触发 SLRD 时, FIFO 指针会递增,下一个数据值将置于数据总线上。

10.17.2 单个和突发同步写入

图 31. Slave FIFO 同步写入序列和时序图 [20]

图 31 显示了将 IFCLK 用作同步时钟,在同步写入期间 Slave FIFO 信号的时序关系。该图说明了带有后续 3 个字节突发写入的单个写入,全部 4 个字节均作为短数据包使用 PKTEND 引脚进行提交。

- 当 t = 0 时,FIFO 地址处于稳定状态,并触发信号 SLCS。 (在某些应用中,SLCS 可以绑定到低电平)请注意, t_{SFA} 的 最小值为 25 ns。这意味着,当 IFCLK 以 48 MHz 的频率运行 时,FIFO 地址设置时间超过一个 IFCLK 周期。
- 当 t = 1 时,外部主设备 / 外设必须在 IFCLK 的上升沿之前,于最小设置时间 tspn 内将数据值输出到数据总线。
- 在 t = 2 时,触发 SLWR。 SLWR 必须满足设置时间 t_{SWR} (从触发 SLWR 信号到 IFCLK 的上升沿的时间),并且维持最低保留时间 t_{WRH} (从 IFCLK 沿到解除 SLWR 信号的时间)。 如果使用 SLCS 信号,则必须在触发 SLWR 之前或同时触发该信号 (SLCS 和 SLWR 信号都必须触发,才能启动有效的写入条件)。
- 当触发 SLWR 时,会将数据写入 FIFO 以及 IFCLK 上升沿, FIFO 指针会递增。FIFO 标志也会在 t_{XFLG} 延迟后从时钟的上 升沿更新。

突发写入也具有同样的事件序列,并且这些序列标有时间指示符 T = 0 到 5。 注 对于突发模式, SLWR 和 SLCS 在写入所有必需数据值的整个期间内都保持触发状态。在此突发写入模式下,触发 SLWR 后,FIFO 数据总线上的数据会在 IFCLK 的每个上升沿上写入到 FIFO 中。FIFO 指针在 IFCLK 的每个上升沿上更新。在图 31 中,在将四个字节写入 FIFO 后,会解除 SLWR。可以通过触发 PKTEND 信号将 4 字节短数据包提交到主机。

对于与触发 SLWR 信号相关的触发 PKTEND 信号,并没有特定的时序要求。可以使用最后一个数据值(或其后输入的值)来触发 PKTEND。唯一的要求是,设置时间 t_{SPE} 和保留时间 t_{PEH} 必须满足。在图 31 的情况中,提交的数据值的数量包括写入 FIFO的最后一个值。在此示例中,该数据值和 PKTEND 信号都在IFCLK 的同一上升沿上计时。 PKTEND 也可以在后续时钟周期中触发。 FIFOADDR 行在 PKTEND 触发期间应保持恒定。

虽然对 PKTEND 触发没有特定的时序要求,但在使用 PKTEND 提交一个单字节 / 单字数据包时,有一个特定的极端状况条件需要注意。将 FIFO 配置为在自动模式下运行并且需要发送两个数据包时,有一个附加的时序要求: 自动提交一个完整的数据包(完全限定为 FIFO 中的字节数,符合在 AUTOINLEN 寄存器中设置的级别),然后使用 PKTEND 引脚手动提交一个单字节或单字短数据包。

在此情况下,外部主设备必须确保在导致最后一个字节或字通过时钟脉冲输入到前一个自动提交数据包(该数据包中的字节数等于在 AUTOINLEN 寄存器中设置的数量)中的上升沿之后,触发PKTEND 引脚至少一个时钟周期。有关此时序的详细信息,请参考图 23。

10.17.3 单个和突发异步读取的序列图

图 32. Slave FIFO 异步读取序列和时序图 [20]

图 33. Slave FIFO 异步读取事件序列图

图 32 显示了在异步 FIFO 读取期间的 Slave FIFO 信号时序关系。它显示了带有后续突发读取的单个读取。

- 当 t = 0 时, FIFO 地址处于稳定状态,并触发信号 SLCS。
- 在 t = 1 时,触发 SLOE。这会导致数据总线被驱动。驱动到数据总线上的数据是以前的数据,是 FIFO 中来自前一个读取周期的数据。
- 在 t = 2 时,触发 SLRD。 SLRD 必须满足最小活动脉冲宽度 t_{RDpwl} 和最小非活动脉冲宽度 t_{RDpwh}。如果使用 SLCS,则必 须在触发 SLRD 之前触发该信号 (SLCS 和 SLRD 信号都必须 触发,才能启动有效读取条件)。
- 在触发 SLRD 后驱动的数据是来自 FIFO 的更新数据。该数据在从 SLRD 的激活沿开始的 t_{XFD} 传输延迟后有效。在图 32中,数据 N 是从 FIFO 读取的第一个有效数据。要想使数据在读取周期(触发 SLRD)中出现在数据总线上, SLOE 必须处于已触发状态。 SLRD 和 SLOE 也可以绑定到一起。

突发读取也具有同样的事件序列,并且标有 T = 0 到 5。

注 在突发读取模式下,数据总线在 SLOE 触发期间处于驱动状态,并输出以前的数据。触发 SLRD 后,会在数据总线上驱动来自 FIFO 的数据(还必须触发 SLOE),然后 FIFO 指针会递增。

10.17.4 单个和突发异步写入的序列图

图 34. Slave FIFO 异步写入序列和时序图 [20]

图 34 显示了异步模式下 Slave FIFO 写入的时序关系。该图显示了带有后续 3 个字节突发写入的单个写入,并使用 PKTEND 提交这个 4 字节短数据包。

- 在 t = 0 时, FIFO 地址有效,并确保它满足设置时间 t_{SFA。} 如果使用 SLCS,则必须也对其进行触发 (在某些应用中可以 将 SLCS 绑定到低电平)。
- 在 t = 1 时,触发 SLWR。 SLWR 必须满足最小活动脉冲宽度 t_{WRDwl} 和最小非活动脉冲宽度 t_{WRDwh}。如果使用 SLCS,则必须将其与 SLWR 一起触发,或在触发 SLWR 之前先对其进行触发。
- 在 t = 2 时,数据必须在 SLWR 的解除沿之前出现在总线 t_{SED} 上。

■ 在 t = 3 时,解除 SLWR 会导致数据从数据总线写入 FIFO,并 且随后会递增 FIFO 指针。FIFO 标志也会在 t_{XFLG} 后从 SLWR 的解除沿更新。

突发写入具有同样的事件序列,并且由时序标记T=0到5指明。 注在突发写入模式下,解除SLWR后,数据会写入到FIFO中, 然后FIFO指针会递增以指向FIFO中的下一个字节。FIFO指针 是后递增的。

在图 34 中,当四个字节写入 FIFO 并解除 SLWR 后,可以使用 PKTEND 将 4 字节短数据包提交到主机。外部设备应设计为不同时 触发 SLWR 和 PKTEND 信号。而是应该将其设计为在解除 SLWR 而且满足最小解除脉冲宽度后才触发 PKTEND。 FIFOADDR 行在 PKTEND 触发期间必须保持恒定。

11. 订购信息

表 33. 订购信息

订购代码	封装类型	RAM 大小	可编程 IO 数量	8051 地址 / 数据总线
适合电池供电应用				
CY7C68014A-128AXC	128 TQFP – 无铅	16K	40	16/8 位
CY7C68014A-100AXC	16K	40	-	
CY7C68014A-56PVXC	56 SSOP – 无铅	16K	24	-
CY7C68014A-56LFXC	56 QFN – 无铅	16K	24	-
CY7C68014A-56BAXC	56 VFBGA – 无铅	16K	24	-
CY7C68016A-56LFXC	56 QFN – 无铅	16K	26	_
适合非电池供电应用				
CY7C68013A-128AXC	128 TQFP – 无铅	16K	40	16/8 位
CY7C68013A-128AXI	16K	40	16/8 位	
CY7C68013A-100AXC	100 TQFP – 无铅	16K	40	Г
CY7C68013A-100AXI	100 TQFP – 无铅 (工业用)	16K	40	Г
CY7C68013A-56PVXC	56 SSOP – 无铅	16K	24	-
CY7C68013A-56PVXI	56 SSOP – 无铅 (工业用)	16K	24	-
CY7C68013A-56LFXC	56 QFN – 无铅	16K	24	-
CY7C68013A-56LFXI	56 QFN – 无铅 (工业用)	16K	24	-
CY7C68015A-56LFXC	56 QFN – 无铅	16K	26	-
CY7C68013A-56BAXC	56 VFBGA – 无铅	16K	24	_
开发工具包				
CY3684	EZ-USB FX2LP 开发工具包			
参考设计包				
CY4611B	使用 EZ-USB FX2LP 的 USB 2.	0 到 ATA/ATAPI	参考设计	

12. 封装图

FX2LP 有五种封装供选择:

- 56 引脚 SSOP
- 56 引脚 QFN
- 100 引脚 TQFP
- 128 引脚 TQFP
- 56 球形引脚 VFBGA

封装图

图 35. 56 引线紧致型封装 O56 (51-85062)

图 36. 56 引线 QFN 8 x 8 mm LF56A (51-85144)

NOTES:

- 2. REFERENCE JEDEC#: MO-220
- 3. PACKAGE WEIGHT: 0.162g
- 4. ALL DIMENSIONS ARE IN MM [MIN/MAX]
- 5. PACKAGE CODE

PART#	DESCRIPTION
LF56	STANDARD
LY56	PB-FREE

(SUBCON PUNCH TYPE PKG with 6.1 x 6.1 EPAD)

51-85144-*G

图 37. 100 引脚薄塑料方形扁平封装 (14 x 20 x 1.4 mm) A100RA (51-85050)

NOTE:

- 1. JEDEC STD REF MS-026
- BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH
 MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE
 BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH
- 3. DIMENSIONS IN MILLIMETERS

51-85050-*B

图 38. 128 引线薄塑料方形扁平封装 (14 x 20 x 1.4 mm) A128 (51-85101)

图 39. 56 VFBGA (5 x 5 x 1.0 mm) 0.50 孔距, 0.30 球形引脚 BZ56 (001-03901)

REFERENCE JEDEC: MO-195C PACKAGE WEIGHT: 0.02 grams

001-03901-*B

13. PCB 布局建议

按照这些建议执行操作可以确保可靠的高性能运行: [24]

- 需要四层阻抗控制板来维护信号质量。
- 指定阻抗目标 (询问您的电路板厂商他们能够实现什么样的目标)。
- 为控制阻抗,维护跟踪宽度和跟踪间隔。
- 通过将占位程序最小化, 使反射信号最小化。
- USB 连接器外壳和信号接地端之间的连接必须靠近 USB 连接器。

- 建议绕开 VBus 上的盖子 (靠近连接器),并采用逆向连接。
- DPLUS 和 DMINUS 轨迹长度应保持彼此间隔 2 mm, 最佳长度为 20 至 30 mm。
- 在 DPLUS 和 DMINUS 轨迹下保持完整的铺地层。请勿让这些轨迹分割铺地层。
- 请勿在 DPLUS 或 DMINUS 轨迹路径上放置通孔。
- 将 DPLUS 和 DMINUS 轨迹与所有其他信号轨迹分开,间隔不低于 10 mm。

沣

14. 方形扁平封装无铅 (QFN) 封装设计说明

部件与印刷电路板 (PCB) 的电接触是通过将封装底表面上的铅焊接到 PCB 而制成的。因此,需要对封装下面的热传递区域特别留意,以便为电路板提供良好的热结合层。设计时要在 PCB 中加一层铜 (Cu) 质填充物,作为封装下面的热垫片。热量通过设备封装底侧的金属片从 FX2LP 向外传递。从这里发出的热量将传导到 PCB 上的热垫片。然后又从热垫片传导到 PCB 内部的铺地层(5 x 5 阵列的通孔)。通孔是 PCB 中的一个板穿孔,其修整直径为 13 mil。 QFN 的金属芯片必须焊接到 PCB 的热垫片上。阻焊层置于电路板顶侧并盖住每个通孔,以防止焊料流入通孔。顶侧的阻焊层还可以最大限度地降低焊接回流过程中凝结现象。

有关该封装设计的详细信息,请参考 Amkor MicroLeadFrame (MLF) 封装的表面安装装配应用手册。您可以在 Amkor 网站http://www.amkor.com 上找到该手册。

该应用手册提供了有关电路板安装指导原则、焊接流程、重做过 程的详细信息。

图 40 显示了封装下面的横截面区域。该横截面仅包含一个通孔。 焊膏模板应设计为至少允许 50% 的焊料覆盖面积。焊膏模板的 厚度应为 5 mil。请使用免清洗 3 型焊膏来安装部件。建议在回流 期间使用氦净化。

图 41 是阻焊层样式图,图 42 显示了装配的 X 射线图像 (较暗区域表示焊料)。

图 41. 阻焊层图 (白色区域)

图 42. 装配的 X 射线图像

文件历史记录页面

文件标题:EZ-USB FX2LP (TM) USB 微控制器高速 USB 外设控制器 文件编号:001-50431					
修订版本	ECN 编号	发布日期	变更来源	变更说明	
**	2616558	2008年12月11日	HJIA	Spec 38-08032 的译文	

© 賽普拉斯半导体公司,2003-2008。此处所包含的信息可能会随时更改,恕不另行通知。除赛普拉斯产品内嵌电路之外,赛普拉斯半导体公司不对其它任何电路的使用承担任何责任,也不根据专利或其他权利以明示或暗示的方式授予任何许可。除非与赛普拉斯签订明确的书面协议,否则赛普拉斯产品不保证,也不适用于医疗、生命支持、救生、关键控制或安全应用等用途。此外,对于可能发生运转异常和故障并对用户造成严重伤害的生命支持系统,赛普拉斯不授权将其产品用作此类系统的关键组件。若将赛普拉斯产品用于生命支持系统中,则表示制造商将承担因此类使用而招致的所有风险,并确保赛普拉斯免于因此而受到任何指控。

所有源代码(软件和 / 或固件)均归赛普拉斯半导体公司所有,并受到全球专利法规(美国和美国以外的专利法规)、美国版权法以及国际条约规定的保护和约束。赛普拉斯据此向获许可者授予适用 于个人的、非独占性、不可转让的许可,用以复制、使用、修改、创建赛普拉斯源代码的派生作品、编译赛普拉斯源代码和派生作品,并且其目的只能是创建自定义软件和 / 或固件,以支持获许可者 仅将其获得的产品依照适用协议规定的方式与赛普拉斯集成电路配合使用。除上述指定的用途之外,未经赛普拉斯的明确书面许可,不得对此源代码进行任何复制、修改、转换或演示。

免责声明:**赛普拉斯不针对此材料提供任何类型的明示或暗示保证,包括(但不仅限于)针对特定用途的适销性和适用性的暗示保证。**赛普拉斯保留在不做出通知的情况下对此处所述材料进行更改的权利。赛普拉斯不对此处所述之任何产品或电路的应用或使用承担任何责任。对于可能发生运转异常和故障并对用户造成严重伤害的生命支持系统,赛普拉斯不授权将其产品用作此类系统的关键组件。若将赛普拉斯产品用于生命支持系统中,则表示制造商将承担因此类使用而招致的所有风险,并确保赛普拉斯免于因此而受到任何指控。

产品使用可能受到适用的赛普拉斯软件许可协议限制。

文件编号: 001-50431 修订版 **

修订时间 2008 年 12 月 11 日

第61页,共61页

从赛普拉斯或其获分许可的联营公司之一购买 I²C 组件,即可在 Philips I²C 专利权下获得一份许可,以便在 I²C 系统中使用这些组件,但前提是该系统符合 Philips 定义的 I²C 标准规范。 EZ-USB FX2LP、 EZ-USB FX2 和 ReNumeration 是赛普拉斯半导体公司的商标, EZ-USB 是赛普拉斯半导体公司的注册商标。本文件中提及的所有产品和公司名称均为其各自所有者的商标。

[&]quot;本应用手册为英文版本的译本,而非原始材料。应用手册编号由英文版本编号加语言代码组成, ZH 代表中文, JA 代表日文。例如, ANxxxxx (ZH) 或 ANxxxxx (JA)。赛普拉斯文件编号和修订代码(001-xxxxx 修订版 **)位于本文件的页脚。每份文件的文件编号和修订代码均是唯一的。"