Today in Cryptography (5830)

Hybrid encryption recap OpenPGP standard TextSecure

Katz-Lindell Chapter 10.3 (Hybrid Encryption) RFC 4880 (OpenPGP standard)

Application-layer crypto

- So far focused on TLS as running example
 - Transport Layer Security
 - Provides network socket style stream interface
- What about if an application wants to encrypt discrete messages (as opposed to stream)?
 - Email
 - Text messages
 - Etc.

Email encryption

Sender pk_A, sk_A

Receiver pk_B, sk_B

- Message may be large (body of email, PDF of attachments)
- Desire authenticity and confidentiality
- Public-keys delivered out-of-band
 - Websites, key parties, key directory servers

Example hybrid encryption

Enc(X,M):

$$K1 \mid \mid K2 = SHA256(g^{xr})$$

Email encryption

- To digitally sign, let M = Msg | | Sign(sk_A, Msg)
- Ctxt = Encrypt(pk_B, M)

PGP history

 Phil Zimmerman released "Pretty Good Privacy" in 1991 on a USENET post marked as "US only"

- 1993: Criminal investigation by US government for munitions export without a license.
 - Printed PGP source code into a book. First amendment gambit

OpenPGP overview

- Standard for PGP is RFC 4880
- Key encapsulation mechanism:
 - RSA PKCS#1 v1.5 encryption
 - ElGamal over finite field or elliptic curve
- Digital signatures:
 - RSA PKCS#1 v1.5 signatures
 - DSA
- Symmetric encryption:
 - Password-based key derivations using iterated hashing
 - CFB mode using block cipher

OpenPGP overview

- Security problems:
 - Padding oracle attacks against CFB & PKCS#1 v1.5
 - http://www.ssi.gouv.fr/uploads/2015/05/format-Oracles-on-OpenPGP.pdf
 - Attacks against home-brewed integrity checks (modification detection check, MDC)
 - Subject lines always in the clear
- Usability problems:
 - Users must manage their own keys
 - Copying private keys to each device
 - "Why Johnny Can't Encrypt" http://www.gaudior.net/alma/johnny.pdf
 - 90 minutes to send encrypted email, 66% failure rate

How Glenn Greenwald Began Communicating With NSA Whistleblower Edward Snowden

① 06/10/2013 04:23 pm ET | Updated Jun 11, 2013

The Switch

Yahoo's plan to get Mail users to encrypt their e-mail: Make it simple

Messaging encryption

Sender pk_A, sk_A

Receiver pk_B, sk_B

- End-to-end encrypted messaging is a big topic
- TextSecure is protocol adopted by WhatsApp (~1 billion users)

TextSecure

Encrypted/Signed SMS or IM

https://eprint.iacr.org/2014/904.pdf

TextSecure

Encrypted/Signed SMS or IM

https://eprint.iacr.org/2014/904.pdf

Summary

- Hybrid encryption uses combination of asymmetric and symmetric cryptography
 - Key encapsulation mechanisms (KEM) based on secure PKE, (elliptic curve) Diffie-Hellman
 - Use an authenticated encryption scheme for data encapsulation mechanism (DEM)
- PGP is historical example (and still somewhat widely used)
- End-to-end messaging for IM/chat hotter topic, now widely deployed

Hybrid encryption (KEM/DEM)

KEM = key encapsulation mechanism Public-key primitive

DEM = data encapsulation mechanism
One-time secure authenticated encryption

HybEnc(pk, M)
Choose randomness R
K, C_{kem} <- KEM(pk,R)
C_{dem} <- Enc(K,M)
Return C_{kem}, C_{dem}

HybDec(sk, C_{kem}, C_{dem_})
K <- KEM⁻¹(sk, C_{kem})
M <- Dec(K, C_{dem})
Return M

KEM from PKE

KEM = key encapsulation mechanism Public-key primitive KEM(pk, R)
C_{kem} <- PKE-Enc(pk,R)
Return H(R), C_{kem}

ElGamal encryption

Kg outputs $pk = (g,X = g^x)$ and sk = (g,x)g is generator for group of order prime p

> Enc((g,X), M, R) r = R mod p C1 = g^r C2 = X^r * M Return C1, C2

<u>Dec((g,x), C1, C2):</u> Return C2 * C1^{-x}

This is only at most chosen-plaintext attack secure. CCA attacks?

ElGamal KEM

Kg outputs $pk = (g,X = g^x)$ and sk = (g,x)g is generator for group of order prime p

EG-KEM((g,X), R)

 $r = R \mod p$

 $C_{kem} = g^r$

 $K = X^r$

Return H(K), C_{kem}

 $Dec((g,x), C_{kem})$:

Return H(C_{kem})

Secure if computational Diffie-Hellman assumption holds in group