Elliptic curves with complex multiplication and abelian division fields

Asimina S. Hamakiotes

University of Connecticut

January 17, 2024

Let F be a number field and let E/F be an elliptic curve. Let $N \ge 2$.

Let F be a number field and let E/F be an elliptic curve. Let $N \ge 2$.

• When is the division field F(E[N]) abelian over F?

Let F be a number field and let E/F be an elliptic curve. Let $N \ge 2$.

- When is the division field F(E[N]) abelian over F?
- If F(E[N])/F is not abelian, then what is the maximal abelian extension contained in F(E[N])/F?

Let F be a number field and let E/F be an elliptic curve. Let $N \ge 2$.

- When is the division field F(E[N]) abelian over F?
- If F(E[N])/F is not abelian, then what is the maximal abelian extension contained in F(E[N])/F?

For this talk, we will focus on elliptic curves E with complex multiplication and fix F to be the minimal field of definition, i.e. $F = \mathbb{Q}(j(E))$.

Why do we care?

The classification of abelian division fields of elliptic curves over $\mathbb Q$ has numerous applications, for example in:

- the classification of torsion subgroups of elliptic curves (Chou, Lozano-Robledo, González-Jiménez),
- classifying isogeny-torsion graphs (Chiloyan, Lozano-Robledo)
- Brauer groups (Várilly-Alvarado, Viray),
- non-monogenic number fields (Smith),
- congruences between elliptic curves (Cremona, Freitas),
- classification of Galois representations (Lozano-Robledo, Rouse, Sutherland, Zureick-Brown).

What is an elliptic curve?

Definition

An *elliptic curve E* defined over a field K (char. $\neq 2,3$) is an equation of the form

$$y^2 = x^3 + Ax + B, \quad A, B \in K,$$

where $4A^3 + 27B^2 \neq 0$ (for smoothness). More precisely, an elliptic curve defined over a field K is a smooth projective curve of genus 1, with at least one K-rational point.

What is an elliptic curve?

Definition

An *elliptic curve E* defined over a field K (char. $\neq 2,3$) is an equation of the form

$$y^2 = x^3 + Ax + B, \quad A, B \in K,$$

where $4A^3 + 27B^2 \neq 0$ (for smoothness). More precisely, an elliptic curve defined over a field K is a smooth projective curve of genus 1, with at least one K-rational point.

There is a group law (abelian) on the L-rational points of E

$$E(L) = \{(x,y) \in E : x,y \in L\} \cup \mathcal{O},$$

with coordinates in any field $L \supset K$. We call E(L) the Mordell-Weil group of E/L.

Mordell-Weil Theorem

Example

Let $E/\mathbb{Q}: y^2 = x^3 + 13x - 34$ (40.a4) be an elliptic curve. Then

$$E(\mathbb{Q}) = \{\mathcal{O}, (7, -20), (2, 0), (7, 20)\} = \langle (7, 20) \rangle \cong \mathbb{Z}/4\mathbb{Z}.$$

Mordell-Weil Theorem

Example

Let E/\mathbb{Q} : $y^2 = x^3 + 13x - 34$ (40.a4) be an elliptic curve. Then

$$E(\mathbb{Q}) = \{\mathcal{O}, (7, -20), (2, 0), (7, 20)\} = \langle (7, 20) \rangle \cong \mathbb{Z}/4\mathbb{Z}.$$

Now consider the same curve E defined over $\mathbb{Q}(i)$. Then

$$E(\mathbb{Q}(i)) = \langle (1+2i, -2-6i), (-3, -10i) \rangle \cong \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}.$$

Mordell-Weil Theorem

Example

Let E/\mathbb{Q} : $y^2 = x^3 + 13x - 34$ (40.a4) be an elliptic curve. Then

$$E(\mathbb{Q}) = \{\mathcal{O}, (7, -20), (2, 0), (7, 20)\} = \langle (7, 20) \rangle \cong \mathbb{Z}/4\mathbb{Z}.$$

Now consider the same curve E defined over $\mathbb{Q}(i)$. Then

$$E(\mathbb{Q}(i)) = \langle (1+2i, -2-6i), (-3, -10i) \rangle \cong \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}.$$

Theorem (Mordell-Weil, 1928)

Let F be a number field and let E/F be an elliptic curve. Then E(F) is a finitely generated abelian group. In particular,

$$E(F) \cong E(F)_{tors} \oplus \mathbb{Z}^{R_{E/F}},$$

where $E(F)_{tors}$ is a finite subgroup and $R_{E/F} \ge 0$.

Mordell-Weil groups

Example

(1) E_1/\mathbb{Q} : $y^2=x^3+1$ (36.a4) only has six rational torsion points,

$$E_1(\mathbb{Q}) = \{\mathcal{O}, (2, \pm 3), (0, \pm 1), (-1, 0)\} \cong \mathbb{Z}/6\mathbb{Z}.$$

Mordell-Weil groups

Example

(1) E_1/\mathbb{Q} : $y^2=x^3+1$ (36.a4) only has six rational torsion points,

$$E_1(\mathbb{Q}) = \{\mathcal{O}, (2, \pm 3), (0, \pm 1), (-1, 0)\} \cong \mathbb{Z}/6\mathbb{Z}.$$

(2) E_2/\mathbb{Q} : $y^2=x^3-2$ (1728.03) does not have any rational torsion points (other than \mathcal{O}). However, there is a point of infinite order,

$$E_2(\mathbb{Q}) = \langle (3,5) \rangle \cong \mathbb{Z}.$$

Mordell-Weil groups

Example

(1) E_1/\mathbb{Q} : $y^2=x^3+1$ (36.a4) only has six rational torsion points,

$$E_1(\mathbb{Q}) = \{\mathcal{O}, (2, \pm 3), (0, \pm 1), (-1, 0)\} \cong \mathbb{Z}/6\mathbb{Z}.$$

(2) E_2/\mathbb{Q} : $y^2=x^3-2$ (1728.03) does not have any rational torsion points (other than \mathcal{O}). However, there is a point of infinite order,

$$E_2(\mathbb{Q}) = \langle (3,5) \rangle \cong \mathbb{Z}.$$

(3) E_3/\mathbb{Q} : $y^2=x^3-1156x$ (18496.j3) has both torsion and infinite order points,

$$E_3(\mathbb{Q})\cong \mathbb{Z}/2\mathbb{Z}\oplus \mathbb{Z}/2\mathbb{Z}\oplus \mathbb{Z}^2,$$

where the torsion subgroup is generated by $\langle (0,0), (34,0) \rangle$, and the free part is generated by $\langle (-2,48), (-16,120) \rangle$.

Definition

Let F be a number field and let E/F be an elliptic curve. Let $N \in \mathbb{Z}^+$ and

$$E[N] = \{ P \in E(\overline{F}) : [N]P = \mathcal{O} \},$$

be the *N*-torsion subgroup of $E(\overline{F})$.

Definition

Let F be a number field and let E/F be an elliptic curve. Let $N \in \mathbb{Z}^+$ and

$$E[N] = \{ P \in E(\overline{F}) : [N]P = \mathcal{O} \},$$

be the *N*-torsion subgroup of $E(\overline{F})$.

It is easy to show that over \overline{F} ,

$$E[N] \cong \mathbb{Z}/N\mathbb{Z} \oplus \mathbb{Z}/N\mathbb{Z}.$$

Definition

Let F be a number field and let E/F be an elliptic curve. Let $N \in \mathbb{Z}^+$ and

$$E[N] = \{ P \in E(\overline{F}) : [N]P = \mathcal{O} \},$$

be the *N*-torsion subgroup of $E(\overline{F})$.

It is easy to show that over \overline{F} ,

$$E[N] \cong \mathbb{Z}/N\mathbb{Z} \oplus \mathbb{Z}/N\mathbb{Z}$$
.

In particular, there are some integers $a, b \ge 1$ such that

$$E(F)_{\mathsf{tors}} \cong \mathbb{Z}/a\mathbb{Z} \oplus \mathbb{Z}/ab\mathbb{Z}.$$

Definition

Let F be a number field and let E/F be an elliptic curve. Let $N \in \mathbb{Z}^+$ and

$$E[N] = \{ P \in E(\overline{F}) : [N]P = \mathcal{O} \},$$

be the *N*-torsion subgroup of $E(\overline{F})$.

It is easy to show that over \overline{F} ,

$$E[N] \cong \mathbb{Z}/N\mathbb{Z} \oplus \mathbb{Z}/N\mathbb{Z}.$$

In particular, there are some integers $a, b \ge 1$ such that

$$E(F)_{\mathsf{tors}} \cong \mathbb{Z}/a\mathbb{Z} \oplus \mathbb{Z}/ab\mathbb{Z}.$$

We will be interested in the N^{th} -division field of E over F,

$$F(E[N]) = F(\{x(P), y(P) : P \in E[N]\}).$$

Let $N \geq 2$ be an integer and let ζ_N be a primitive N^{th} root of unity.

Consider the extension $\mathbb{Q}(\zeta_N)/\mathbb{Q}$.

Let $N \geq 2$ be an integer and let ζ_N be a primitive N^{th} root of unity.

Consider the extension $\mathbb{Q}(\zeta_N)/\mathbb{Q}$.

We obtain $\mathbb{Q}(\zeta_N)$ when we adjoin the *N*-torsion points of $\overline{\mathbb{Q}}^{\times}$ to \mathbb{Q} ,

$$\mathbb{Q}(\zeta_N) = \mathbb{Q}(\overline{\mathbb{Q}}^{\times}[N]).$$

Let $N \ge 2$ be an integer and let ζ_N be a primitive N^{th} root of unity. Consider the extension $\mathbb{Q}(\zeta_N)/\mathbb{Q}$.

We obtain $\mathbb{Q}(\zeta_N)$ when we adjoin the *N*-torsion points of $\overline{\mathbb{Q}}^{\times}$ to \mathbb{Q} ,

$$\mathbb{Q}(\zeta_{N})=\mathbb{Q}(\overline{\mathbb{Q}}^{\times}[N]).$$

We know that $Gal(\mathbb{Q}(\zeta_N)/\mathbb{Q})$ is abelian. In fact,

$$\operatorname{\mathsf{Gal}}(\mathbb{Q}(\zeta_{\mathsf{N}})/\mathbb{Q})\cong (\mathbb{Z}/\mathsf{N}\mathbb{Z})^{\times}.$$

Let $N \ge 2$ be an integer and let ζ_N be a primitive N^{th} root of unity.

Consider the extension $\mathbb{Q}(\zeta_N)/\mathbb{Q}$.

We obtain $\mathbb{Q}(\zeta_N)$ when we adjoin the *N*-torsion points of $\overline{\mathbb{Q}}^{\times}$ to \mathbb{Q} ,

$$\mathbb{Q}(\zeta_N) = \mathbb{Q}(\overline{\mathbb{Q}}^{\times}[N]).$$

We know that $Gal(\mathbb{Q}(\zeta_N)/\mathbb{Q})$ is abelian. In fact,

$$\operatorname{\mathsf{Gal}}(\mathbb{Q}(\zeta_{\mathsf{N}})/\mathbb{Q})\cong (\mathbb{Z}/\mathsf{N}\mathbb{Z})^{\times}.$$

Let *E* be an elliptic curve defined over \mathbb{Q} . Consider $\mathbb{Q}(E[N])/\mathbb{Q}$, where

$$\mathbb{Q}(E[N]) = \mathbb{Q}(\{x(P), y(P) : P \in E[N]\}).$$

Let $N \ge 2$ be an integer and let ζ_N be a primitive N^{th} root of unity.

Consider the extension $\mathbb{Q}(\zeta_N)/\mathbb{Q}$.

We obtain $\mathbb{Q}(\zeta_N)$ when we adjoin the *N*-torsion points of $\overline{\mathbb{Q}}^{\times}$ to \mathbb{Q} ,

$$\mathbb{Q}(\zeta_N) = \mathbb{Q}(\overline{\mathbb{Q}}^{\times}[N]).$$

We know that $Gal(\mathbb{Q}(\zeta_N)/\mathbb{Q})$ is abelian. In fact,

$$\operatorname{\mathsf{Gal}}(\mathbb{Q}(\zeta_{\mathsf{N}})/\mathbb{Q})\cong (\mathbb{Z}/\mathsf{N}\mathbb{Z})^{\times}.$$

Let E be an elliptic curve defined over \mathbb{Q} . Consider $\mathbb{Q}(E[N])/\mathbb{Q}$, where

$$\mathbb{Q}(E[N]) = \mathbb{Q}(\{x(P), y(P) : P \in E[N]\}).$$

Question

What is $Gal(\mathbb{Q}(E[N])/\mathbb{Q})$?

Let E/\mathbb{Q} be an elliptic curve and $N \geq 2$.

Question

What is $Gal(\mathbb{Q}(E[N])/\mathbb{Q})$?

Let E/\mathbb{Q} be an elliptic curve and $N \geq 2$.

Question

What is $Gal(\mathbb{Q}(E[N])/\mathbb{Q})$?

In general,

 $\mathsf{Gal}(\mathbb{Q}(E[N])/\mathbb{Q}) \subseteq \mathsf{Aut}(E[N]) \cong \mathsf{GL}(2,\mathbb{Z}/N\mathbb{Z})$

Let E/\mathbb{Q} be an elliptic curve and $N \geq 2$.

Question

What is $Gal(\mathbb{Q}(E[N])/\mathbb{Q})$?

In general,

$$\mathsf{Gal}(\mathbb{Q}(E[N])/\mathbb{Q}) \subseteq \mathsf{Aut}(E[N]) \cong \mathsf{GL}(2,\mathbb{Z}/N\mathbb{Z})$$

In many cases,

$$\mathsf{Gal}(\mathbb{Q}(E[N])/\mathbb{Q}) \cong \mathsf{GL}(2,\mathbb{Z}/N\mathbb{Z}).$$

Let E/\mathbb{Q} be an elliptic curve and $N \geq 2$.

Question

What is $Gal(\mathbb{Q}(E[N])/\mathbb{Q})$?

In general,

$$\mathsf{Gal}(\mathbb{Q}(E[N])/\mathbb{Q})\subseteq \mathsf{Aut}(E[N])\cong \mathsf{GL}(2,\mathbb{Z}/N\mathbb{Z})$$

In many cases,

$$\operatorname{\mathsf{Gal}}(\mathbb{Q}(E[N])/\mathbb{Q}) \cong \operatorname{\mathsf{GL}}(2,\mathbb{Z}/N\mathbb{Z}).$$

Question

Can $Gal(\mathbb{Q}(E[N])/\mathbb{Q})$ be abelian?

Let E be an elliptic curve defined over a number field F. Previously,

Let E be an elliptic curve defined over a number field F. Previously,

• Halberstadt, Merel (2001), Merel and Stein (2001), and Rebolledo (2003), show that if p is prime, and $F(E[p]) = \mathbb{Q}(\zeta_p)$, then p = 2, 3, 5 or p > 1000.

Let E be an elliptic curve defined over a number field F. Previously,

- Halberstadt, Merel (2001), Merel and Stein (2001), and Rebolledo (2003), show that if p is prime, and $F(E[p]) = \mathbb{Q}(\zeta_p)$, then p = 2, 3, 5 or p > 1000.
- When $F = \mathbb{Q}$, Paladino (2010) gives a classification as a two parameter family of all elliptic curves E/\mathbb{Q} with $\mathbb{Q}(E[3]) = \mathbb{Q}(\zeta_3)$.

Theorem (Lozano-Robledo, González-Jiménez, 2015)

Let E/\mathbb{Q} be an elliptic curve. Let $N \geq 2$.

- $\mathbb{Q}(E[N]) = \mathbb{Q}(\zeta_N)$ only for N = 2, 3, 4, or 5.
- More generally, if $\mathbb{Q}(E[N])/\mathbb{Q}$ is abelian, then N=2,3,4,5,6, or 8.

Theorem (Lozano-Robledo, González-Jiménez, 2015)

Let E/\mathbb{Q} be an elliptic curve. Let $N \geq 2$.

- $\mathbb{Q}(E[N]) = \mathbb{Q}(\zeta_N)$ only for N = 2, 3, 4, or 5.
- More generally, if $\mathbb{Q}(E[N])/\mathbb{Q}$ is abelian, then N=2,3,4,5,6, or 8.

Theorem (Lozano-Robledo, González-Jiménez, 2015)

Let E/\mathbb{Q} be an elliptic curve with complex multiplication. Let $N \geq 2$.

- $\mathbb{Q}(E[N]) = \mathbb{Q}(\zeta_N)$ only for N = 2 or 3.
- More generally, if $\mathbb{Q}(E[N])/\mathbb{Q}$ is abelian, then N=2,3, or 4.

Theorem (Lozano-Robledo, González-Jiménez, 2015)

Let E/\mathbb{Q} be an elliptic curve. Let $N \geq 2$.

- $\mathbb{Q}(E[N]) = \mathbb{Q}(\zeta_N)$ only for N = 2, 3, 4, or 5.
- More generally, if $\mathbb{Q}(E[N])/\mathbb{Q}$ is abelian, then N=2,3,4,5,6, or 8.

Theorem (Lozano-Robledo, González-Jiménez, 2015)

Let E/\mathbb{Q} be an elliptic curve with complex multiplication. Let $N \geq 2$.

- $\mathbb{Q}(E[N]) = \mathbb{Q}(\zeta_N)$ only for N = 2 or 3.
- More generally, if $\mathbb{Q}(E[N])/\mathbb{Q}$ is abelian, then N=2,3, or 4.

Let E be an elliptic curve defined over a number field F and let $N \ge 2$. Can F(E[N])/F be abelian?

Complex multiplication (CM)

Definition

Let E be an elliptic curve defined over a field F. We say that E has complex multiplication (CM) if $\operatorname{End}(E) \supsetneq \mathbb{Z}$.

If E/F has CM, then $\operatorname{End}(E) \cong \mathcal{O}_{K,f}$, where $\mathcal{O}_{K,f}$ is the order in an imaginary quadratic field K with index $f \geq 1$ in \mathcal{O}_K , also called the conductor.

Complex multiplication (CM)

Definition

Let E be an elliptic curve defined over a field F. We say that E has complex multiplication (CM) if $\operatorname{End}(E) \supseteq \mathbb{Z}$.

If E/F has CM, then $\operatorname{End}(E)\cong \mathcal{O}_{K,f}$, where $\mathcal{O}_{K,f}$ is the order in an imaginary quadratic field K with index $f\geq 1$ in \mathcal{O}_K , also called the conductor.

Example

The elliptic curve E/\mathbb{Q} : $y^2 = x^3 + x$ (64.a1) has the endomorphism

$$\phi(x,y)=(-x,iy),$$

where for $(x, y) \in E$, we have $(iy)^2 = (-x)^3 + (-x)$, so $(-x, iy) \in E$.

In this case, $\operatorname{End}(E)\cong \mathbb{Z}[i]=\mathcal{O}_{K,1}$, the maximal order of $K=\mathbb{Q}(i)$.

Notation

- K be an imaginary quadratic field,
- Δ_K is the discriminant of the ring of integers \mathcal{O}_K ,
- $\mathcal{O}_{K,f}$ be the order of conductor $f \geq 1$ in K, with discriminant $\Delta_K f^2$,
- $j_{K,f}$ is a j-invariant associated to the order $\mathcal{O}_{K,f}$, i.e., $j(\mathbb{C}/\mathcal{O}_{K,f})$.

Notation

- K be an imaginary quadratic field,
- Δ_K is the discriminant of the ring of integers \mathcal{O}_K ,
- $\mathcal{O}_{K,f}$ be the order of conductor $f \geq 1$ in K, with discriminant $\Delta_K f^2$,
- $j_{K,f}$ is a j-invariant associated to the order $\mathcal{O}_{K,f}$, i.e., $j(\mathbb{C}/\mathcal{O}_{K,f})$.

 $E/\mathbb{Q}(j_{K,f})$ is an elliptic curve with CM by $\mathcal{O}_{K,f}$, and a minimal field of definition for E is $\mathbb{Q}(j_{K,f})$.

Notation

- K be an imaginary quadratic field,
- Δ_K is the discriminant of the ring of integers \mathcal{O}_K ,
- ullet $\mathcal{O}_{K,f}$ be the order of conductor $f\geq 1$ in K, with discriminant $\Delta_K f^2$,
- $j_{K,f}$ is a j-invariant associated to the order $\mathcal{O}_{K,f}$, i.e., $j(\mathbb{C}/\mathcal{O}_{K,f})$.

 $E/\mathbb{Q}(j_{K,f})$ is an elliptic curve with CM by $\mathcal{O}_{K,f}$, and a minimal field of definition for E is $\mathbb{Q}(j_{K,f})$.

Example

Let $E/\mathbb{Q}(\sqrt{2})$ be the elliptic curve given by (32.1-a1),

$$y^2 + \sqrt{2}xy = x^3 + x^2 + (15\sqrt{2} - 22)x + 46\sqrt{2} - 69,$$

with CM by $\mathcal{O}_{K,4}=\mathbb{Z}[4i]$, where $K=\mathbb{Q}(i)$.

Here, $j_{K,4} = -29071392966\sqrt{2} + 41113158120$, so $\mathbb{Q}(j_{K,4}) = \mathbb{Q}(\sqrt{2})$.

When is $\mathbb{Q}(j_{K,f}, E[N])/\mathbb{Q}(j_{K,f})$ abelian?

Theorem 1 (H. and Lozano-Robledo, 2023)

Let $E/\mathbb{Q}(j_{K,f})$ be an elliptic curve with CM by $\mathcal{O}_{K,f}$. Let $N\geq 2$ and let

$$G_{E,N} = \mathsf{Gal}(\mathbb{Q}(j_{K,f}, E[N])/\mathbb{Q}(j_{K,f}))$$

be the Galois group of the N-division field of E.

If $G_{E,N}$ is abelian, then N must equal 2,3, or 4. Furthermore, if $G_{E,N}$ is abelian, then it is isomorphic to $(\mathbb{Z}/2\mathbb{Z})^k$ for some $0 \le k \le 3$.

Theorem 1 (H. and Lozano-Robledo, 2023)

If N = 2, then $G_{E,2}$ is abelian if and only if one of the following holds:

- (a) $j_{K,f} \neq 0,1728$ and either
 - $\Delta_K f^2 \equiv 0 \mod 4$, or
 - $\Delta_K \equiv 1 \mod 8$ and f is odd.

In this case $G_{E,2} \cong \mathbb{Z}/2\mathbb{Z}$.

Theorem 1 (H. and Lozano-Robledo, 2023)

If N = 2, then $G_{E,2}$ is abelian if and only if one of the following holds:

- (a) $j_{K,f} \neq 0,1728$ and either
 - $\Delta_K f^2 \equiv 0 \mod 4$, or
 - $\Delta_K \equiv 1 \mod 8$ and f is odd.

In this case $G_{E,2} \cong \mathbb{Z}/2\mathbb{Z}$.

Example $(j_{K,f} \neq 0, 1728)$

• E_1/\mathbb{Q} : $y^2 = x^3 + x^2 - 13x - 21$ (256.a1) has $j_{K,1} = 8000$,

Theorem 1 (H. and Lozano-Robledo, 2023)

If N = 2, then $G_{E,2}$ is abelian if and only if one of the following holds:

- (a) $j_{K,f} \neq 0,1728$ and either
 - $\Delta_K f^2 \equiv 0 \mod 4$, or
 - $\Delta_K \equiv 1 \mod 8$ and f is odd.

In this case $G_{E,2} \cong \mathbb{Z}/2\mathbb{Z}$.

Example $(j_{K,f} \neq 0, 1728)$

• E_1/\mathbb{Q} : $y^2 = x^3 + x^2 - 13x - 21$ (256.a1) has $j_{K,1} = 8000$, where $K = \mathbb{Q}(\sqrt{-2})$, $\Delta_K = -8$, and f = 1, so $\Delta_K f^2 \equiv 0 \mod 4$.

Theorem 1 (H. and Lozano-Robledo, 2023)

If N = 2, then $G_{E,2}$ is abelian if and only if one of the following holds:

- (a) $j_{K,f} \neq 0,1728$ and either
 - $\Delta_K f^2 \equiv 0 \mod 4$, or
 - $\Delta_K \equiv 1 \mod 8$ and f is odd.

In this case $G_{E,2} \cong \mathbb{Z}/2\mathbb{Z}$.

Example $(j_{K,f} \neq 0, 1728)$

• $E_1/\mathbb{Q}: y^2 = x^3 + x^2 - 13x - 21$ (256.a1) has $j_{K,1} = 8000$, where $K = \mathbb{Q}(\sqrt{-2})$, $\Delta_K = -8$, and f = 1, so $\Delta_K f^2 \equiv 0 \mod 4$. Therefore, $G_{E_1,2} \cong \mathbb{Z}/2\mathbb{Z}$.

Theorem 1 (H. and Lozano-Robledo, 2023)

If N = 2, then $G_{E,2}$ is abelian if and only if one of the following holds:

- (a) $j_{K,f} \neq 0,1728$ and either
 - $\Delta_K f^2 \equiv 0 \mod 4$, or
 - $\Delta_K \equiv 1 \mod 8$ and f is odd.

In this case $G_{E,2} \cong \mathbb{Z}/2\mathbb{Z}$.

Example $(j_{K,f} \neq 0, 1728)$

- $E_1/\mathbb{Q}: y^2 = x^3 + x^2 13x 21$ (256.a1) has $j_{K,1} = 8000$, where $K = \mathbb{Q}(\sqrt{-2})$, $\Delta_K = -8$, and f = 1, so $\Delta_K f^2 \equiv 0 \mod 4$. Therefore, $G_{E_1,2} \cong \mathbb{Z}/2\mathbb{Z}$.
- E_2/\mathbb{Q} : $y^2 + xy = x^3 x^2 107x + 552$ (49.a2) has $j_{K,1} = -3375$,

Theorem 1 (H. and Lozano-Robledo, 2023)

If N = 2, then $G_{E,2}$ is abelian if and only if one of the following holds:

- (a) $j_{K,f} \neq 0,1728$ and either
 - $\Delta_K f^2 \equiv 0 \mod 4$, or
 - $\Delta_K \equiv 1 \mod 8$ and f is odd.

In this case $G_{E,2} \cong \mathbb{Z}/2\mathbb{Z}$.

Example $(j_{K,f} \neq 0, 1728)$

- E_1/\mathbb{Q} : $y^2 = x^3 + x^2 13x 21$ (256.a1) has $j_{K,1} = 8000$, where $K = \mathbb{Q}(\sqrt{-2})$, $\Delta_K = -8$, and f = 1, so $\Delta_K f^2 \equiv 0 \mod 4$. Therefore, $G_{E_1,2} \cong \mathbb{Z}/2\mathbb{Z}$.
- E_2/\mathbb{Q} : $y^2 + xy = x^3 x^2 107x + 552$ (49.a2) has $j_{K,1} = -3375$, where $K = \mathbb{Q}(\sqrt{-7})$, $\Delta_K = -7 \equiv 1 \mod 8$, and f = 1.

Theorem 1 (H. and Lozano-Robledo, 2023)

If N = 2, then $G_{E,2}$ is abelian if and only if one of the following holds:

- (a) $j_{K,f} \neq 0,1728$ and either
 - $\Delta_K f^2 \equiv 0 \mod 4$, or
 - $\Delta_K \equiv 1 \mod 8$ and f is odd.

In this case $G_{E,2} \cong \mathbb{Z}/2\mathbb{Z}$.

Example $(j_{K,f} \neq 0, 1728)$

- $E_1/\mathbb{Q}: y^2 = x^3 + x^2 13x 21$ (256.a1) has $j_{K,1} = 8000$, where $K = \mathbb{Q}(\sqrt{-2})$, $\Delta_K = -8$, and f = 1, so $\Delta_K f^2 \equiv 0 \mod 4$. Therefore, $G_{F_1,2} \cong \mathbb{Z}/2\mathbb{Z}$.
- E_2/\mathbb{Q} : $y^2 + xy = x^3 x^2 107x + 552$ (49.a2) has $j_{K,1} = -3375$, where $K = \mathbb{Q}(\sqrt{-7})$, $\Delta_K = -7 \equiv 1 \mod 8$, and f = 1. Therefore, $G_{E_2,2} \cong \mathbb{Z}/2\mathbb{Z}$.

Example $(j_{K,f} \neq 0, 1728)$

• Let $E_3/\mathbb{Q}(\sqrt{2})$ be given by (32.1-a1)

$$y^2 + \sqrt{2}xy = x^3 + x^2 + (15\sqrt{2} - 22)x + 46\sqrt{2} - 69.$$

Recall that E_3 has CM by $\mathcal{O}_{K,4}=\mathbb{Z}[4i]$ where $K=\mathbb{Q}(i)$ and

$$j_{K,4} = -29071392966\sqrt{2} + 41113158120.$$

We have $\Delta_K f^2 = -4 \cdot 16 = -64 \equiv 0 \mod 4$, so $G_{E_3,2} \cong \mathbb{Z}/2\mathbb{Z}$.

Example $(j_{K,f} \neq 0, 1728)$

• Let $E_3/\mathbb{Q}(\sqrt{2})$ be given by (32.1-a1)

$$y^2 + \sqrt{2}xy = x^3 + x^2 + (15\sqrt{2} - 22)x + 46\sqrt{2} - 69.$$

Recall that E_3 has CM by $\mathcal{O}_{K,4}=\mathbb{Z}[4i]$ where $K=\mathbb{Q}(i)$ and

$$j_{K,4} = -29071392966\sqrt{2} + 41113158120.$$

We have $\Delta_K f^2 = -4 \cdot 16 = -64 \equiv 0 \mod 4$, so $G_{E_3,2} \cong \mathbb{Z}/2\mathbb{Z}$.

One can check that $E_3(\mathbb{Q}(\sqrt{2}))[2] \cong \mathbb{Z}/2\mathbb{Z}$ is generated by a point of order 2 defined over $\mathbb{Q}(\sqrt{2})$, namely

$$P = \left(2\sqrt{2} - \frac{3}{2}, \ \frac{3}{4}\sqrt{2} - 2\right).$$

$G_{E,2} = \mathsf{Gal}(\mathbb{Q}(j_{\mathcal{K},f},E[2])/\mathbb{Q}(j_{\mathcal{K},f}))$

Theorem 1 (H. and Lozano-Robledo, 2023)

- (b) $j_{K,f} = 1728$, so E/\mathbb{Q} is given by $y^2 = x^3 dx$ with d in \mathbb{Z} . Then
 - If d is a square, then $G_{E,2}$ is trivial.
 - If d is not a square, then $G_{E,2}\cong \mathbb{Z}/2\mathbb{Z}$.

Theorem 1 (H. and Lozano-Robledo, 2023)

- (b) $j_{K,f} = 1728$, so E/\mathbb{Q} is given by $y^2 = x^3 dx$ with d in \mathbb{Z} . Then
 - If d is a square, then $G_{E,2}$ is trivial.
 - If d is not a square, then $G_{E,2} \cong \mathbb{Z}/2\mathbb{Z}$.
- (c) $j_{K,f} = 0$ and E/\mathbb{Q} is given by $y^2 = x^3 + d$ with d a cube in \mathbb{Z} . In this case $G_{E,2} \cong \mathbb{Z}/2\mathbb{Z}$.

Theorem 1 (H. and Lozano-Robledo, 2023)

- (b) $j_{K,f} = 1728$, so E/\mathbb{Q} is given by $y^2 = x^3 dx$ with d in \mathbb{Z} . Then
 - If d is a square, then $G_{E,2}$ is trivial.
 - If d is not a square, then $G_{E,2} \cong \mathbb{Z}/2\mathbb{Z}$.
- (c) $j_{K,f}=0$ and E/\mathbb{Q} is given by $y^2=x^3+d$ with d a cube in \mathbb{Z} . In this case $G_{E,2}\cong \mathbb{Z}/2\mathbb{Z}$.

Example $(j_{K,f} = 1728 \text{ and } j_{K,f} = 0)$

• E_4/\mathbb{Q} : $y^2 = x^3 - x$ (32.a3) has $j_{K,1} = 1728$ and d = 1.

Theorem 1 (H. and Lozano-Robledo, 2023)

- (b) $j_{K,f} = 1728$, so E/\mathbb{Q} is given by $y^2 = x^3 dx$ with d in \mathbb{Z} . Then
 - If d is a square, then $G_{E,2}$ is trivial.
 - If d is not a square, then $G_{E,2} \cong \mathbb{Z}/2\mathbb{Z}$.
- (c) $j_{K,f}=0$ and E/\mathbb{Q} is given by $y^2=x^3+d$ with d a cube in \mathbb{Z} . In this case $G_{E,2}\cong \mathbb{Z}/2\mathbb{Z}$.

Example $(j_{K,f} = 1728 \text{ and } j_{K,f} = 0)$

• E_4/\mathbb{Q} : $y^2 = x^3 - x$ (32.a3) has $j_{K,1} = 1728$ and d = 1. Therefore, $G_{E_k,2}$ is trivial.

Theorem 1 (H. and Lozano-Robledo, 2023)

- (b) $j_{K,f} = 1728$, so E/\mathbb{Q} is given by $y^2 = x^3 dx$ with d in \mathbb{Z} . Then
 - If d is a square, then $G_{E,2}$ is trivial.
 - If d is not a square, then $G_{E,2} \cong \mathbb{Z}/2\mathbb{Z}$.
- (c) $j_{K,f}=0$ and E/\mathbb{Q} is given by $y^2=x^3+d$ with d a cube in \mathbb{Z} . In this case $G_{E,2}\cong \mathbb{Z}/2\mathbb{Z}$.

- E_4/\mathbb{Q} : $y^2 = x^3 x$ (32.a3) has $j_{K,1} = 1728$ and d = 1. Therefore, $G_{E_4,2}$ is trivial.
- E_5/\mathbb{Q} : $y^2 = x^3 2x$ (256.b1) has $j_{K,1} = 1728$ and d = 2.

Theorem 1 (H. and Lozano-Robledo, 2023)

- (b) $j_{K,f} = 1728$, so E/\mathbb{Q} is given by $y^2 = x^3 dx$ with d in \mathbb{Z} . Then
 - If d is a square, then $G_{E,2}$ is trivial.
 - If d is not a square, then $G_{E,2} \cong \mathbb{Z}/2\mathbb{Z}$.
- (c) $j_{K,f}=0$ and E/\mathbb{Q} is given by $y^2=x^3+d$ with d a cube in \mathbb{Z} . In this case $G_{E,2}\cong \mathbb{Z}/2\mathbb{Z}$.

- E_4/\mathbb{Q} : $y^2 = x^3 x$ (32.a3) has $j_{K,1} = 1728$ and d = 1. Therefore, $G_{E_{K,2}}$ is trivial.
- E_5/\mathbb{Q} : $y^2 = x^3 2x$ (256.b1) has $j_{K,1} = 1728$ and d = 2. Therefore, $G_{E_5,2} \cong \mathbb{Z}/2\mathbb{Z}$.

Theorem 1 (H. and Lozano-Robledo, 2023)

- (b) $j_{K,f} = 1728$, so E/\mathbb{Q} is given by $y^2 = x^3 dx$ with d in \mathbb{Z} . Then
 - If d is a square, then $G_{E,2}$ is trivial.
 - If d is not a square, then $G_{E,2}\cong \mathbb{Z}/2\mathbb{Z}$.
- (c) $j_{K,f}=0$ and E/\mathbb{Q} is given by $y^2=x^3+d$ with d a cube in \mathbb{Z} . In this case $G_{E,2}\cong \mathbb{Z}/2\mathbb{Z}$.

- E_4/\mathbb{Q} : $y^2 = x^3 x$ (32.a3) has $j_{K,1} = 1728$ and d = 1. Therefore, $G_{E_4,2}$ is trivial.
- E_5/\mathbb{Q} : $y^2 = x^3 2x$ (256.b1) has $j_{K,1} = 1728$ and d = 2. Therefore, $G_{E_5,2} \cong \mathbb{Z}/2\mathbb{Z}$.
- E_6/\mathbb{Q} : $y^2 = x^3 + 1$ (36.a4) has $j_{K,1} = 0$ and d = 1.

Theorem 1 (H. and Lozano-Robledo, 2023)

- (b) $j_{K,f} = 1728$, so E/\mathbb{Q} is given by $y^2 = x^3 dx$ with d in \mathbb{Z} . Then
 - If d is a square, then $G_{E,2}$ is trivial.
 - If d is not a square, then $G_{E,2}\cong \mathbb{Z}/2\mathbb{Z}$.
- (c) $j_{K,f}=0$ and E/\mathbb{Q} is given by $y^2=x^3+d$ with d a cube in \mathbb{Z} . In this case $G_{E,2}\cong \mathbb{Z}/2\mathbb{Z}$.

- E_4/\mathbb{Q} : $y^2 = x^3 x$ (32.a3) has $j_{K,1} = 1728$ and d = 1. Therefore, $G_{E_4,2}$ is trivial.
- E_5/\mathbb{Q} : $y^2 = x^3 2x$ (256.b1) has $j_{K,1} = 1728$ and d = 2. Therefore, $G_{E_5,2} \cong \mathbb{Z}/2\mathbb{Z}$.
- E_6/\mathbb{Q} : $y^2 = x^3 + 1$ (36.a4) has $j_{K,1} = 0$ and d = 1. Therefore, $G_{E_5,2} \cong \mathbb{Z}/2\mathbb{Z}$.

Theorem 1 (H. and Lozano-Robledo, 2023)

If N=3, then $G_{E,3}$ is abelian if and only if j(E)=0 and E/\mathbb{Q} is given by $y^2=x^3+d$ such that 4d is a cube in \mathbb{Z} .

- If d and -3d are not squares, then $G_{E,3} \cong (\mathbb{Z}/2\mathbb{Z})^2$.
- If d or -3d is a square, then $G_{E,3} \cong \mathbb{Z}/2\mathbb{Z}$.

Theorem 1 (H. and Lozano-Robledo, 2023)

If N=3, then $G_{E,3}$ is abelian if and only if j(E)=0 and E/\mathbb{Q} is given by $y^2=x^3+d$ such that 4d is a cube in \mathbb{Z} .

- If d and -3d are not squares, then $G_{E,3} \cong (\mathbb{Z}/2\mathbb{Z})^2$.
- If d or -3d is a square, then $G_{E,3} \cong \mathbb{Z}/2\mathbb{Z}$.

Example

• E_1/\mathbb{Q} : $y^2 = x^3 + 2$ (1728.n4) has $j_{K,1} = 0$ and d = 2.

Theorem 1 (H. and Lozano-Robledo, 2023)

If N=3, then $G_{E,3}$ is abelian if and only if j(E)=0 and E/\mathbb{Q} is given by $y^2=x^3+d$ such that 4d is a cube in \mathbb{Z} .

- If d and -3d are not squares, then $G_{E,3} \cong (\mathbb{Z}/2\mathbb{Z})^2$.
- If d or -3d is a square, then $G_{E,3} \cong \mathbb{Z}/2\mathbb{Z}$.

Example

• E_1/\mathbb{Q} : $y^2=x^3+2$ (1728.n4) has $j_{K,1}=0$ and d=2. Here 4d=8 is a cube in \mathbb{Z} , but d and -3d are not squares in \mathbb{Z} .

Theorem 1 (H. and Lozano-Robledo, 2023)

If N=3, then $G_{E,3}$ is abelian if and only if j(E)=0 and E/\mathbb{Q} is given by $y^2=x^3+d$ such that 4d is a cube in \mathbb{Z} .

- If d and -3d are not squares, then $G_{E,3} \cong (\mathbb{Z}/2\mathbb{Z})^2$.
- If d or -3d is a square, then $G_{E,3} \cong \mathbb{Z}/2\mathbb{Z}$.

Example

• $E_1/\mathbb{Q}: y^2=x^3+2$ (1728.n4) has $j_{K,1}=0$ and d=2. Here 4d=8 is a cube in \mathbb{Z} , but d and -3d are not squares in \mathbb{Z} . Therefore, $G_{E_1,3}\cong (\mathbb{Z}/2\mathbb{Z})^2$.

Theorem 1 (H. and Lozano-Robledo, 2023)

If N=3, then $G_{E,3}$ is abelian if and only if j(E)=0 and E/\mathbb{Q} is given by $y^2=x^3+d$ such that 4d is a cube in \mathbb{Z} .

- If d and -3d are not squares, then $G_{E,3} \cong (\mathbb{Z}/2\mathbb{Z})^2$.
- If d or -3d is a square, then $G_{E,3} \cong \mathbb{Z}/2\mathbb{Z}$.

- $E_1/\mathbb{Q}: y^2=x^3+2$ (1728.n4) has $j_{K,1}=0$ and d=2. Here 4d=8 is a cube in \mathbb{Z} , but d and -3d are not squares in \mathbb{Z} . Therefore, $G_{E_1,3}\cong (\mathbb{Z}/2\mathbb{Z})^2$.
- E_2/\mathbb{Q} : $y^2 = x^3 + 16$ (27.a4) has $j_{K,1} = 0$ and d = 16.

Theorem 1 (H. and Lozano-Robledo, 2023)

If N=3, then $G_{E,3}$ is abelian if and only if j(E)=0 and E/\mathbb{Q} is given by $y^2=x^3+d$ such that 4d is a cube in \mathbb{Z} .

- If d and -3d are not squares, then $G_{E,3} \cong (\mathbb{Z}/2\mathbb{Z})^2$.
- If d or -3d is a square, then $G_{E,3} \cong \mathbb{Z}/2\mathbb{Z}$.

- $E_1/\mathbb{Q}: y^2=x^3+2$ (1728.n4) has $j_{K,1}=0$ and d=2. Here 4d=8 is a cube in \mathbb{Z} , but d and -3d are not squares in \mathbb{Z} . Therefore, $G_{E_1,3}\cong (\mathbb{Z}/2\mathbb{Z})^2$.
- $E_2/\mathbb{Q}: y^2 = x^3 + 16$ (27.a4) has $j_{K,1} = 0$ and d = 16. Here $4d = 4^3$ is a cube in \mathbb{Z} , and d is a square in \mathbb{Z} .

Theorem 1 (H. and Lozano-Robledo, 2023)

If N=3, then $G_{E,3}$ is abelian if and only if j(E)=0 and E/\mathbb{Q} is given by $y^2=x^3+d$ such that 4d is a cube in \mathbb{Z} .

- If d and -3d are not squares, then $G_{E,3} \cong (\mathbb{Z}/2\mathbb{Z})^2$.
- If d or -3d is a square, then $G_{E,3} \cong \mathbb{Z}/2\mathbb{Z}$.

- $E_1/\mathbb{Q}: y^2=x^3+2$ (1728.n4) has $j_{K,1}=0$ and d=2. Here 4d=8 is a cube in \mathbb{Z} , but d and -3d are not squares in \mathbb{Z} . Therefore, $G_{E_1,3}\cong (\mathbb{Z}/2\mathbb{Z})^2$.
- $E_2/\mathbb{Q}: y^2=x^3+16$ (27.a4) has $j_{K,1}=0$ and d=16. Here $4d=4^3$ is a cube in \mathbb{Z} , and d is a square in \mathbb{Z} . Therefore, $G_{E_2,3}\cong \mathbb{Z}/2\mathbb{Z}$.

Theorem 1 (H. and Lozano-Robledo, 2023)

If N = 4, then $G_{E,4}$ is abelian if and only if j(E)=1728 and E/\mathbb{Q} is given by $y^2=x^3+dx$ with

- $d \in \{\pm 1, \pm 4\}$, in which case $G_{E,4} \cong (\mathbb{Z}/2\mathbb{Z})^2$, or
- $d = \pm t^2$ for some square-free integer $t \notin \{\pm 1, \pm 2\}$, in which case $G_{E,4} \cong (\mathbb{Z}/2\mathbb{Z})^3$.

Theorem 1 (H. and Lozano-Robledo, 2023)

If N = 4, then $G_{E,4}$ is abelian if and only if j(E)=1728 and E/\mathbb{Q} is given by $y^2=x^3+dx$ with

- $d \in \{\pm 1, \pm 4\}$, in which case $G_{E,4} \cong (\mathbb{Z}/2\mathbb{Z})^2$, or
- $d = \pm t^2$ for some square-free integer $t \notin \{\pm 1, \pm 2\}$, in which case $G_{E,4} \cong (\mathbb{Z}/2\mathbb{Z})^3$.

Example

• E_1/\mathbb{Q} : $y^2 = x^3 - 4x$ (64.a3) has $j(E_1) = 1728$ and d = -4.

Theorem 1 (H. and Lozano-Robledo, 2023)

If N = 4, then $G_{E,4}$ is abelian if and only if j(E)=1728 and E/\mathbb{Q} is given by $y^2=x^3+dx$ with

- $d \in \{\pm 1, \pm 4\}$, in which case $G_{E,4} \cong (\mathbb{Z}/2\mathbb{Z})^2$, or
- $d = \pm t^2$ for some square-free integer $t \notin \{\pm 1, \pm 2\}$, in which case $G_{E,4} \cong (\mathbb{Z}/2\mathbb{Z})^3$.

Example

• E_1/\mathbb{Q} : $y^2 = x^3 - 4x$ (64.a3) has $j(E_1) = 1728$ and d = -4. Therefore, $G_{E_1,4} \cong (\mathbb{Z}/2\mathbb{Z})^2$.

Theorem 1 (H. and Lozano-Robledo, 2023)

If N = 4, then $G_{E,4}$ is abelian if and only if j(E)=1728 and E/\mathbb{Q} is given by $y^2=x^3+dx$ with

- $d \in \{\pm 1, \pm 4\}$, in which case $G_{E,4} \cong (\mathbb{Z}/2\mathbb{Z})^2$, or
- $d = \pm t^2$ for some square-free integer $t \notin \{\pm 1, \pm 2\}$, in which case $G_{E,4} \cong (\mathbb{Z}/2\mathbb{Z})^3$.

- E_1/\mathbb{Q} : $y^2 = x^3 4x$ (64.a3) has $j(E_1) = 1728$ and d = -4. Therefore, $G_{E_1,4} \cong (\mathbb{Z}/2\mathbb{Z})^2$.
- E_2/\mathbb{Q} : $y^2 = x^3 + 9x$ (576.c4) has $j(E_2) = 1728$ and $d = 3^2$.

Theorem 1 (H. and Lozano-Robledo, 2023)

If N = 4, then $G_{E,4}$ is abelian if and only if j(E)=1728 and E/\mathbb{Q} is given by $y^2=x^3+dx$ with

- $d \in \{\pm 1, \pm 4\}$, in which case $G_{E,4} \cong (\mathbb{Z}/2\mathbb{Z})^2$, or
- $d = \pm t^2$ for some square-free integer $t \notin \{\pm 1, \pm 2\}$, in which case $G_{E,4} \cong (\mathbb{Z}/2\mathbb{Z})^3$.

- E_1/\mathbb{Q} : $y^2 = x^3 4x$ (64.a3) has $j(E_1) = 1728$ and d = -4. Therefore, $G_{E_1,4} \cong (\mathbb{Z}/2\mathbb{Z})^2$.
- E_2/\mathbb{Q} : $y^2 = x^3 + 9x$ (576.c4) has $j(E_2) = 1728$ and $d = 3^2$. 3 is a square-free integer that is not in $\{\pm 1, \pm 2\}$.

Theorem 1 (H. and Lozano-Robledo, 2023)

If N = 4, then $G_{E,4}$ is abelian if and only if j(E)=1728 and E/\mathbb{Q} is given by $y^2=x^3+dx$ with

- $d \in \{\pm 1, \pm 4\}$, in which case $G_{E,4} \cong (\mathbb{Z}/2\mathbb{Z})^2$, or
- $d = \pm t^2$ for some square-free integer $t \notin \{\pm 1, \pm 2\}$, in which case $G_{E,4} \cong (\mathbb{Z}/2\mathbb{Z})^3$.

- E_1/\mathbb{Q} : $y^2 = x^3 4x$ (64.a3) has $j(E_1) = 1728$ and d = -4. Therefore, $G_{E_1,4} \cong (\mathbb{Z}/2\mathbb{Z})^2$.
- $E_2/\mathbb{Q}: y^2 = x^3 + 9x$ (576.c4) has $j(E_2) = 1728$ and $d = 3^2$. 3 is a square-free integer that is not in $\{\pm 1, \pm 2\}$. Therefore, $G_{E_2,4} \cong (\mathbb{Z}/2\mathbb{Z})^3$.

How do we study this?

Let E be an elliptic curve defined over a number field F and let $N \ge 2$.

How do we study this?

Let E be an elliptic curve defined over a number field F and let $N \ge 2$.

Definition

Let $\rho_{E,N}$ be the mod N Galois representation attached to E:

$$\rho_{E,N} \colon \operatorname{\mathsf{Gal}}(F(E[N])/F) \to \operatorname{\mathsf{Aut}}(E[N]) \cong \operatorname{\mathsf{GL}}(2,\mathbb{Z}/N\mathbb{Z}).$$

So we have $G_{E,N} = \operatorname{Gal}(F(E[N])/F) = \operatorname{im}(\rho_{E,N}) \subseteq \operatorname{GL}(2,\mathbb{Z}/N\mathbb{Z}).$

How do we study this?

Let E be an elliptic curve defined over a number field F and let $N \ge 2$.

Definition

Let $\rho_{E,N}$ be the mod N Galois representation attached to E:

$$\rho_{E,N} \colon \operatorname{\mathsf{Gal}}(F(E[N])/F) \to \operatorname{\mathsf{Aut}}(E[N]) \cong \operatorname{\mathsf{GL}}(2,\mathbb{Z}/N\mathbb{Z}).$$

So we have $G_{E,N} = \operatorname{Gal}(F(E[N])/F) = \operatorname{im}(\rho_{E,N}) \subseteq \operatorname{GL}(2,\mathbb{Z}/N\mathbb{Z}).$

For an elliptic curve with CM, we know that $G_{E,N} \subseteq GL(2,\mathbb{Z}/N\mathbb{Z})$ is actually contained in something smaller, which is almost abelian.

Let E be an elliptic curve defined over a number field F and let $N \ge 2$.

Definition

Let $\rho_{E,N}$ be the mod N Galois representation attached to E:

$$\rho_{E,N} \colon \operatorname{\mathsf{Gal}}(F(E[N])/F) \to \operatorname{\mathsf{Aut}}(E[N]) \cong \operatorname{\mathsf{GL}}(2,\mathbb{Z}/N\mathbb{Z}).$$

So we have $G_{E,N} = \text{Gal}(F(E[N])/F) = \text{im}(\rho_{E,N}) \subseteq \text{GL}(2,\mathbb{Z}/N\mathbb{Z}).$

For an elliptic curve with CM, we know that $G_{E,N} \subseteq GL(2,\mathbb{Z}/N\mathbb{Z})$ is actually contained in something smaller, which is almost abelian.

 $G_{E,N}$ is contained in the normalizer of Cartan subgroup of $GL(2,\mathbb{Z}/N\mathbb{Z})$.

Definition

Let $E/\mathbb{Q}(j_{K,f})$ be an elliptic curve with CM by $\mathcal{O}_{K,f}$ and let $N \geq 3$.

Definition

Let $E/\mathbb{Q}(j_{K,f})$ be an elliptic curve with CM by $\mathcal{O}_{K,f}$ and let $N \geq 3$.

• If $\Delta_K f^2 \equiv 0 \mod 4$, or N is odd, let $\delta = \Delta_K f^2/4$, and $\phi = 0$.

Definition

Let $E/\mathbb{Q}(j_{K,f})$ be an elliptic curve with CM by $\mathcal{O}_{K,f}$ and let $N \geq 3$.

- If $\Delta_K f^2 \equiv 0 \mod 4$, or N is odd, let $\delta = \Delta_K f^2/4$, and $\phi = 0$.
- If $\Delta_K f^2 \equiv 1 \mod 4$, and N is even, let $\delta = \frac{(\Delta_K 1)}{4} f^2$, let $\phi = f$.

Definition

Let $E/\mathbb{Q}(j_{K,f})$ be an elliptic curve with CM by $\mathcal{O}_{K,f}$ and let $N \geq 3$.

- If $\Delta_K f^2 \equiv 0 \mod 4$, or N is odd, let $\delta = \Delta_K f^2/4$, and $\phi = 0$.
- If $\Delta_K f^2 \equiv 1 \mod 4$, and N is even, let $\delta = \frac{(\Delta_K 1)}{4} f^2$, let $\phi = f$.

We define the *Cartan subgroup* $C_{\delta,\phi}(N)$ of $GL(2,\mathbb{Z}/N\mathbb{Z})$ by

$$\mathcal{C}_{\delta,\phi}(N) = \left\{ \begin{pmatrix} a + b\phi & b \\ \delta b & a \end{pmatrix} : a,b \in \mathbb{Z}/N\mathbb{Z}, \ \det \in (\mathbb{Z}/N\mathbb{Z})^{\times} \right\}.$$

Definition

Let $E/\mathbb{Q}(j_{K,f})$ be an elliptic curve with CM by $\mathcal{O}_{K,f}$ and let $N \geq 3$.

- If $\Delta_K f^2 \equiv 0 \mod 4$, or N is odd, let $\delta = \Delta_K f^2/4$, and $\phi = 0$.
- If $\Delta_K f^2 \equiv 1 \mod 4$, and N is even, let $\delta = \frac{(\Delta_K 1)}{4} f^2$, let $\phi = f$.

We define the Cartan subgroup $\mathcal{C}_{\delta,\phi}(N)$ of $\mathsf{GL}(2,\mathbb{Z}/N\mathbb{Z})$ by

$$\mathcal{C}_{\delta,\phi}(N) = \left\{ \begin{pmatrix} a+b\phi & b \\ \delta b & a \end{pmatrix} : a,b \in \mathbb{Z}/N\mathbb{Z}, \ \det \in (\mathbb{Z}/N\mathbb{Z})^{\times} \right\}.$$

The normalizer of Cartan subroup $\mathcal{N}_{\delta,\phi}(N)$ of $\mathsf{GL}(2,\mathbb{Z}/N\mathbb{Z})$ is

$$\mathcal{N}_{\delta,\phi}(extsf{N}) = \left\langle \mathcal{C}_{\delta,\phi}(extsf{N}), egin{pmatrix} -1 & 0 \ \phi & 1 \end{pmatrix}
ight
angle.$$

Theorem (Lozano-Robledo, 2021)

Let $E/\mathbb{Q}(j_{K,f})$ be an elliptic curve with CM by $\mathcal{O}_{K,f}$, let $N \geq 3$, and let $\rho_{E,N}$ be the Galois representation

$$ho_{E,N} \colon \operatorname{\mathsf{Gal}}(\overline{\mathbb{Q}(j_{K,f})}/\mathbb{Q}(j_{K,f})) o \operatorname{\mathsf{Aut}}(E[N]) \cong \operatorname{\mathsf{GL}}(2,\mathbb{Z}/N\mathbb{Z}).$$

Then

Theorem (Lozano-Robledo, 2021)

Let $E/\mathbb{Q}(j_{K,f})$ be an elliptic curve with CM by $\mathcal{O}_{K,f}$, let $N \geq 3$, and let $\rho_{E,N}$ be the Galois representation

$$\rho_{E,N} \colon \operatorname{\mathsf{Gal}}(\overline{\mathbb{Q}(j_{K,f})}/\mathbb{Q}(j_{K,f})) \to \operatorname{\mathsf{Aut}}(E[N]) \cong \operatorname{\mathsf{GL}}(2,\mathbb{Z}/N\mathbb{Z}).$$

Then

• There is a $\mathbb{Z}/N\mathbb{Z}$ -basis of E[N] such that $\operatorname{im}(\rho_{E,N}) \subseteq \mathcal{N}_{\delta,\phi}(N)$, and

Theorem (Lozano-Robledo, 2021)

Let $E/\mathbb{Q}(j_{K,f})$ be an elliptic curve with CM by $\mathcal{O}_{K,f}$, let $N \geq 3$, and let $\rho_{E,N}$ be the Galois representation

$$\rho_{E,N} \colon \operatorname{\mathsf{Gal}}(\overline{\mathbb{Q}(j_{K,f})}/\mathbb{Q}(j_{K,f})) \to \operatorname{\mathsf{Aut}}(E[N]) \cong \operatorname{\mathsf{GL}}(2,\mathbb{Z}/N\mathbb{Z}).$$

Then

- There is a $\mathbb{Z}/N\mathbb{Z}$ -basis of E[N] such that $\operatorname{im}(\rho_{E,N}) \subseteq \mathcal{N}_{\delta,\phi}(N)$, and
- ② $C_{\delta,\phi}(N) \cong (\mathcal{O}_{K,f}/N\mathcal{O}_{K,f})^{\times}$ is a subgroup of index 2 in $\mathcal{N}_{\delta,\phi}(N)$, and

Theorem (Lozano-Robledo, 2021)

Let $E/\mathbb{Q}(j_{K,f})$ be an elliptic curve with CM by $\mathcal{O}_{K,f}$, let $N \geq 3$, and let $\rho_{E,N}$ be the Galois representation

$$\rho_{E,N} \colon \operatorname{\mathsf{Gal}}(\overline{\mathbb{Q}(j_{K,f})}/\mathbb{Q}(j_{K,f})) \to \operatorname{\mathsf{Aut}}(E[N]) \cong \operatorname{\mathsf{GL}}(2,\mathbb{Z}/N\mathbb{Z}).$$

Then

- There is a $\mathbb{Z}/N\mathbb{Z}$ -basis of E[N] such that $\operatorname{im}(\rho_{E,N}) \subseteq \mathcal{N}_{\delta,\phi}(N)$, and
- $\mathcal{C}_{\delta,\phi}(N)\cong (\mathcal{O}_{K,f}/N\mathcal{O}_{K,f})^{\times}$ is a subgroup of index 2 in $\mathcal{N}_{\delta,\phi}(N)$, and
- **1** The index of $\operatorname{im}(\rho_{E,N}) \subseteq \mathcal{N}_{\delta,\phi}(N)$ coincides with the order of

$$Gal(K(j_{K,f}, E[N])/K(j_{K,f}, h(E[N])),$$

for a Weber function h, and it is a divisor of the order of $\mathcal{O}_{K,f}^{\times}/\mathcal{O}_{K,f,N}^{\times}$, where $\mathcal{O}_{K,f,N}^{\times}=\{u\in\mathcal{O}_{K,f}^{\times}:u\equiv 1 \text{ mod } N\mathcal{O}_{K,f}\}.$

Theorem 1 (H. and Lozano-Robledo, 2023)

Let E/F be an elliptic curve with CM and $F = \mathbb{Q}(j(E))$. Then F(E[N])/F is abelian only for N = 2, 3, or 4.

Theorem 1 (H. and Lozano-Robledo, 2023)

Let E/F be an elliptic curve with CM and $F = \mathbb{Q}(j(E))$. Then F(E[N])/F is abelian only for N = 2, 3, or 4.

Sketch of proof:

(1) For an elliptic curve $E/\mathbb{Q}(j_{K,f})$ with CM by an arbitrary order $\mathcal{O}_{K,f}$, Lozano-Robledo explicitly describes the subgroups of $GL(2,\mathbb{Z}_p)$ that can occur as images of $\rho_{E,p^{\infty}}$, up to conjugation.

Theorem 1 (H. and Lozano-Robledo, 2023)

Let E/F be an elliptic curve with CM and $F = \mathbb{Q}(j(E))$. Then F(E[N])/F is abelian only for N = 2, 3, or 4.

- (1) For an elliptic curve $E/\mathbb{Q}(j_{K,f})$ with CM by an arbitrary order $\mathcal{O}_{K,f}$, Lozano-Robledo explicitly describes the subgroups of $GL(2,\mathbb{Z}_p)$ that can occur as images of $\rho_{E,p^{\infty}}$, up to conjugation.
- (2) We know what subgroups of $\mathcal{N}_{\delta,\phi}(N)$ are images of $\rho_{E,N}$ and we give conditions that will help characterize when a subgroup of $\mathcal{N}_{\delta,\phi}(N)$ is abelian (e.g. the Cartan subgroup is abelian).

Theorem 1 (H. and Lozano-Robledo, 2023)

Let E/F be an elliptic curve with CM and $F = \mathbb{Q}(j(E))$. Then F(E[N])/F is abelian only for N = 2, 3, or 4.

- (1) For an elliptic curve $E/\mathbb{Q}(j_{K,f})$ with CM by an arbitrary order $\mathcal{O}_{K,f}$, Lozano-Robledo explicitly describes the subgroups of $GL(2,\mathbb{Z}_p)$ that can occur as images of $\rho_{E,p^{\infty}}$, up to conjugation.
- (2) We know what subgroups of $\mathcal{N}_{\delta,\phi}(N)$ are images of $\rho_{E,N}$ and we give conditions that will help characterize when a subgroup of $\mathcal{N}_{\delta,\phi}(N)$ is abelian (e.g. the Cartan subgroup is abelian).
- (3) We apply the results from (2) to all possible $G_{E,p} = \operatorname{im} \rho_{E,p}$ from (1) where $p \mid N$ and analyze under what circumstances $G_{E,N}$ is abelian.

Let $E/\mathbb{Q}(j_{K,f})$ be an elliptic curve with CM by $\mathcal{O}_{K,f}$, $f \geq 1$.

Let $E/\mathbb{Q}(j_{K,f})$ be an elliptic curve with CM by $\mathcal{O}_{K,f}$, $f \geq 1$.

p does not divide the discriminant of $\mathcal{O}_{K,f}$:

- $p \nmid 2\Delta_K f$ and $j_{K,f} \neq 0$, or p > 3 and $j_{K,1} = 0$
 - $G_{E,p^n}\cong \mathcal{N}_{\delta,\phi}(p^n)$ or something else that is also not abelian.

Let $E/\mathbb{Q}(j_{K,f})$ be an elliptic curve with CM by $\mathcal{O}_{K,f}$, $f \geq 1$.

p does not divide the discriminant of $\mathcal{O}_{K,f}$:

- $p \nmid 2\Delta_K f$ and $j_{K,f} \neq 0$, or p > 3 and $j_{K,1} = 0$
 - ullet $G_{E,p^n}\cong \mathcal{N}_{\delta,\phi}(p^n)$ or something else that is also not abelian.

p divides the discriminant of $\mathcal{O}_{K,f}$:

- p > 2 and $p \mid \Delta_K f$
 - $G_{E,p^n}\cong \mathcal{N}_{\delta,\phi}(p^n)$ or something else that is also not abelian.

Let $E/\mathbb{Q}(j_{K,f})$ be an elliptic curve with CM by $\mathcal{O}_{K,f}$, $f \geq 1$.

p does not divide the discriminant of $\mathcal{O}_{K,f}$:

- $p \nmid 2\Delta_K f$ and $j_{K,f} \neq 0$, or p > 3 and $j_{K,1} = 0$
- ullet $G_{E,p^n}\cong \mathcal{N}_{\delta,\phi}(p^n)$ or something else that is also not abelian.

p divides the discriminant of $\mathcal{O}_{K,f}$:

- p > 2 and $p \mid \Delta_K f$
 - ullet $G_{E,p^n}\cong \mathcal{N}_{\delta,\phi}(p^n)$ or something else that is also not abelian.
- p = 3 and $j_{K,f} = 0$
 - $[\mathcal{N}_{\delta',0}(3^n):G_{E,3^n}]=1,2,3,$ or 6. $G_{E,3}$ may be abelian.

Let $E/\mathbb{Q}(j_{K,f})$ be an elliptic curve with CM by $\mathcal{O}_{K,f}$, $f \geq 1$.

p does not divide the discriminant of $\mathcal{O}_{K,f}$:

- $p \nmid 2\Delta_K f$ and $j_{K,f} \neq 0$, or p > 3 and $j_{K,1} = 0$
 - $G_{E,p^n}\cong \mathcal{N}_{\delta,\phi}(p^n)$ or something else that is also not abelian.

p divides the discriminant of $\mathcal{O}_{K,f}$:

- p > 2 and $p \mid \Delta_K f$
 - $G_{E,p^n}\cong \mathcal{N}_{\delta,\phi}(p^n)$ or something else that is also not abelian.
- p = 3 and $j_{K,f} = 0$
 - $[\mathcal{N}_{\delta',0}(3^n):G_{E,3^n}]=1,2,3,$ or 6. $G_{E,3}$ may be abelian.
- p=2 and $j_{K,f} \neq 0,1728$, or $j_{K,f}=1728$, or $j_{K,f}=0$, respectively
 - $G_{E,2^n}\cong \mathcal{N}_{\delta,\phi}(2^n)$ or something smaller. $G_{E,2}$ may be abelian.
 - $[\mathcal{N}_{-1,0}(2^n): G_{E,2^n}] = 1, 2$, or 4. $G_{E,2}$ and $G_{E,4}$ may be abelian.
 - $[\mathcal{N}_{-1,1}(2^n): G_{E,2^n}] = 1$ or 3. $G_{E,2}$ may be abelian.

Let E/F be an elliptic curve with CM by $\mathcal{O}_{K,f}$ and $F = \mathbb{Q}(j_{K,f})$. We have seen that F(E[N])/F is mostly not abelian.

Let E/F be an elliptic curve with CM by $\mathcal{O}_{K,f}$ and $F = \mathbb{Q}(j_{K,f})$. We have seen that F(E[N])/F is mostly not abelian.

Example

$$E/\mathbb{Q}: y^2 = x^3 - 2x$$
 (256.b1) has $j(E) = 1728$. Observe that

Let E/F be an elliptic curve with CM by $\mathcal{O}_{K,f}$ and $F = \mathbb{Q}(j_{K,f})$. We have seen that F(E[N])/F is mostly not abelian.

Example

$$E/\mathbb{Q}: y^2 = x^3 - 2x$$
 (256.b1) has $j(E) = 1728$. Observe that

• $\mathbb{Q}(E[5])/\mathbb{Q}$ is not abelian, $G_{E,5} \cong \mathbb{Z}/4\mathbb{Z}^2 \rtimes \mathbb{Z}/2\mathbb{Z}$:

$$G_{E,5} = \left\langle \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}, \begin{pmatrix} 2 & 3 \\ 2 & 2 \end{pmatrix}, \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix} \right\rangle \subseteq \mathsf{GL}(2, \mathbb{Z}/5\mathbb{Z}).$$

Let E/F be an elliptic curve with CM by $\mathcal{O}_{K,f}$ and $F = \mathbb{Q}(j_{K,f})$. We have seen that F(E[N])/F is mostly not abelian.

Example

$$E/\mathbb{Q}: y^2 = x^3 - 2x \ (256.b1)$$
 has $j(E) = 1728$. Observe that

• $\mathbb{Q}(E[5])/\mathbb{Q}$ is not abelian, $G_{E,5} \cong \mathbb{Z}/4\mathbb{Z}^2 \rtimes \mathbb{Z}/2\mathbb{Z}$:

$$G_{E,5} = \left\langle \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}, \begin{pmatrix} 2 & 3 \\ 2 & 2 \end{pmatrix}, \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix} \right\rangle \subseteq \mathsf{GL}(2, \mathbb{Z}/5\mathbb{Z}).$$

• $\mathbb{Q}(E[4])/\mathbb{Q}$ is not abelian, $G_{E,4} \cong D_4$:

$$G_{E,4} = \left\langle \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} \right\rangle \subseteq \mathsf{GL}(2, \mathbb{Z}/4\mathbb{Z}).$$

Let E/F be an elliptic curve with CM by $\mathcal{O}_{K,f}$ and $F = \mathbb{Q}(j_{K,f})$. We have seen that F(E[N])/F is mostly not abelian.

Example

$$E/\mathbb{Q}: y^2 = x^3 - 2x$$
 (256.b1) has $j(E) = 1728$. Observe that

• $\mathbb{Q}(E[5])/\mathbb{Q}$ is not abelian, $G_{E,5} \cong \mathbb{Z}/4\mathbb{Z}^2 \rtimes \mathbb{Z}/2\mathbb{Z}$:

$$G_{E,5} = \left\langle \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}, \begin{pmatrix} 2 & 3 \\ 2 & 2 \end{pmatrix}, \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix} \right\rangle \subseteq \mathsf{GL}(2, \mathbb{Z}/5\mathbb{Z}).$$

• $\mathbb{Q}(E[4])/\mathbb{Q}$ is not abelian, $G_{E,4} \cong D_4$:

$$G_{E,4} = \left\langle \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} \right\rangle \subseteq \mathsf{GL}(2, \mathbb{Z}/4\mathbb{Z}).$$

Question

What is the maximal abelian extension contained in F(E[N])/F?

Field diagram

Let $N \geq 3$. Let $G_{E,N} = \text{Gal}(\mathbb{Q}(j_{K,f}, E[N])/\mathbb{Q}(j_{K,f}))$. Let $\mathcal{CC}_{E,N}$ denote the commutator subgroup of $G_{E,N}$.

Field diagram

Let $N \geq 3$. Let $G_{E,N} = \text{Gal}(\mathbb{Q}(j_{K,f}, E[N])/\mathbb{Q}(j_{K,f}))$. Let $\mathcal{CC}_{E,N}$ denote the commutator subgroup of $G_{E,N}$.

Theorem 2 (H., 2023)

Let E/\mathbb{Q} be an elliptic curve with j(E)=0. Then for $n \geq 2$,

$\left[\mathcal{N}_{\delta,0}(3^n):G_{E,3^n}\right]$	$\mathbb{Q}(E[3^n]) \cap \mathbb{Q}^{ab}$	$\mathcal{CC}_{E,3^n}$
1	$\mathbb{Q}(\zeta_{3^n},\sqrt{lpha})$	$\mathbb{Z}/3^n\mathbb{Z}$
		$\left \ \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3^{n-1}\mathbb{Z} \ \right $
2	$\mathbb{Q}(\zeta_{3^n})$	$\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3^{n-1}\mathbb{Z}$
3	$\mathbb{Q}(\zeta_{3^n},\sqrt{lpha})$	$\mathbb{Z}/3^{n-1}\mathbb{Z}$
6	$\mathbb{Q}(\zeta_{3^n})$	$\mathbb{Z}/3^{n-1}\mathbb{Z}$

where α is a square-free integer, $\alpha \neq -3$. Note, $K = \mathbb{Q}(\sqrt{-3}) \subseteq \mathbb{Q}(\zeta_{3^n})$.

Theorem 2 (H., 2023)

Let E/\mathbb{Q} be an elliptic curve with j(E)=0. Then for $n \geq 2$,

$\left[\mathcal{N}_{\delta,0}(3^n):G_{E,3^n}\right]$	$\mathbb{Q}(E[3^n]) \cap \mathbb{Q}^{ab}$	$\mathcal{CC}_{E,3^n}$
1	$\mathbb{Q}(\zeta_{3^n},\sqrt{lpha})$	$\mathbb{Z}/3^n\mathbb{Z}$
		$\left \ \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3^{n-1}\mathbb{Z} \ \right $
2	$\mathbb{Q}(\zeta_{3^n})$	$\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3^{n-1}\mathbb{Z}$
3	$\mathbb{Q}(\zeta_{3^n},\sqrt{lpha})$	$\mathbb{Z}/3^{n-1}\mathbb{Z}$
6	$\mathbb{Q}(\zeta_{3^n})$	$\mathbb{Z}/3^{n-1}\mathbb{Z}$

where α is a square-free integer, $\alpha \neq -3$. Note, $K = \mathbb{Q}(\sqrt{-3}) \subseteq \mathbb{Q}(\zeta_{3^n})$.

The Galois groups of the maximal abelian extensions are,

$$\mathsf{Gal}(\mathbb{Q}(\zeta_{3^n})/\mathbb{Q}) \cong (\mathbb{Z}/3^n\mathbb{Z})^{\times},$$
 $\mathsf{Gal}(\mathbb{Q}(\zeta_{3^n}, \sqrt{\alpha})/\mathbb{Q}) \cong (\mathbb{Z}/3^n\mathbb{Z})^{\times} \times \mathbb{Z}/2\mathbb{Z}.$

Theorem 2 (H., 2023)

Let E/\mathbb{Q} be an elliptic curve with j(E)=1728. Then for $n\geq 3$,

$[\mathcal{N}_{-1,0}(2^n):G_{E,2^n}]$	$\mathbb{Q}(E[2^n]) \cap \mathbb{Q}^{ab}$	$\mathcal{CC}_{E,2^n}$
1	$\mathbb{Q}(\zeta_{2^{n+1}},\sqrt{lpha})$	$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2^{n-2}\mathbb{Z}$
2	$\mathbb{Q}(\zeta_{2^{n+1}},\sqrt{lpha})$	$\mathbb{Z}/2^{n-2}\mathbb{Z}$
4	$\mathbb{Q}(\zeta_{2^{n+1}})$	$\mathbb{Z}/2^{n-2}\mathbb{Z}$

where α is a square-free integer, $\alpha \neq -1$. Note, $K = \mathbb{Q}(i) \subseteq \mathbb{Q}(\zeta_{2^{n+1}})$.

Theorem 2 (H., 2023)

Let E/\mathbb{Q} be an elliptic curve with j(E)=1728. Then for $n\geq 3$,

$[\mathcal{N}_{-1,0}(2^n):G_{E,2^n}]$	$\mathbb{Q}(E[2^n]) \cap \mathbb{Q}^{ab}$	$\mathcal{CC}_{E,2^n}$
1	$\mathbb{Q}(\zeta_{2^{n+1}},\sqrt{lpha})$	$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2^{n-2}\mathbb{Z}$
2	$\mathbb{Q}(\zeta_{2^{n+1}},\sqrt{lpha})$	$\mathbb{Z}/2^{n-2}\mathbb{Z}$
4	$\mathbb{Q}(\zeta_{2^{n+1}})$	$\mathbb{Z}/2^{n-2}\mathbb{Z}$

where α is a square-free integer, $\alpha \neq -1$. Note, $K = \mathbb{Q}(i) \subseteq \mathbb{Q}(\zeta_{2^{n+1}})$.

The Galois groups of the maximal abelian extensions are,

$$\mathsf{Gal}(\mathbb{Q}(\zeta_{2^{n+1}})/\mathbb{Q}) \cong (\mathbb{Z}/2^{n+1}\mathbb{Z})^{\times},$$
 $\mathsf{Gal}(\mathbb{Q}(\zeta_{2^{n+1}},\sqrt{\alpha})/\mathbb{Q}) \cong (\mathbb{Z}/2^{n+1}\mathbb{Z})^{\times} \times \mathbb{Z}/2\mathbb{Z}.$

Theorem 2 (H., 2023)

Let E/\mathbb{Q} be an elliptic curve with j(E)=0. Then for $n\geq 3$,

$[\mathcal{N}_{-1,1}(2^n):G_{E,2^n}]$	$\mathbb{Q}(E[2^n]) \cap \mathbb{Q}^{ab}$	$\mathcal{CC}_{E,2^n}$
1	$K(\zeta_{2^n})$	$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/(3\cdot 2^{n-2})\mathbb{Z}$
3	$K(\zeta_{2^n})$	$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2^{n-2}\mathbb{Z}$

where $K = \mathbb{Q}(\sqrt{-3})$.

Theorem 2 (H., 2023)

Let E/\mathbb{Q} be an elliptic curve with j(E)=0. Then for $n\geq 3$,

$[\mathcal{N}_{-1,1}(2^n):G_{E,2^n}]$	$\mathbb{Q}(E[2^n]) \cap \mathbb{Q}^{ab}$	$\mathcal{CC}_{E,2^n}$
1	$K(\zeta_{2^n})$	$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/(3\cdot 2^{n-2})\mathbb{Z}$
3	$K(\zeta_{2^n})$	$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2^{n-2}\mathbb{Z}$

where
$$K = \mathbb{Q}(\sqrt{-3})$$
.

The Galois group of the maximal abelian extension is,

$$\mathsf{Gal}(\mathbb{Q}(\zeta_{2^n},\sqrt{-3})/\mathbb{Q})\cong (\mathbb{Z}/2^n\mathbb{Z})^{\times}\times \mathbb{Z}/2\mathbb{Z}.$$

Results for p > 3 prime

Theorem (Daniels, Lozano-Robledo, 2021)

Let E/\mathbb{Q} be an elliptic curve and p>2 a prime. If $\rho_{E,p}\subseteq\mathcal{N}_{\delta,\phi}(p)$, then

$$K_E(p) = \mathbb{Q}(E[p]) \cap \mathbb{Q}^{ab} \subseteq \mathbb{Q}(\zeta_p, \sqrt{d}),$$

for some $d \in \mathbb{Z}$. Thus, $Gal(K_E(p)/\mathbb{Q})$ is isomorphic to $(\mathbb{Z}/p\mathbb{Z})^{\times}$ or $\mathbb{Z}/2\mathbb{Z} \times (\mathbb{Z}/p\mathbb{Z})^{\times}$.

Results for p > 3 prime

Theorem (Daniels, Lozano-Robledo, 2021)

Let E/\mathbb{Q} be an elliptic curve and p>2 a prime. If $\rho_{E,p}\subseteq\mathcal{N}_{\delta,\phi}(p)$, then

$$K_E(p) = \mathbb{Q}(E[p]) \cap \mathbb{Q}^{ab} \subseteq \mathbb{Q}(\zeta_p, \sqrt{d}),$$

for some $d \in \mathbb{Z}$. Thus, $Gal(K_E(p)/\mathbb{Q})$ is isomorphic to $(\mathbb{Z}/p\mathbb{Z})^{\times}$ or $\mathbb{Z}/2\mathbb{Z} \times (\mathbb{Z}/p\mathbb{Z})^{\times}$.

Conjecture (H., 2023)

Let $E/\mathbb{Q}(j_{K,f})$ be an elliptic curve with CM by $\mathcal{O}_{K,f}$ for $f \geq 1$. Let p > 3 be a prime and let $n \in \mathbb{Z}^+$. Then

$$\mathbb{Q}(j_{K,f}, E[p^n]) \cap \mathbb{Q}(j_{K,f})^{ab} = \begin{cases} K(\zeta_{p^n}), \\ K(\zeta_{p^n}, \sqrt{\alpha}), \end{cases}$$

where $\alpha \in \mathbb{Q}(j_{K,f})$ is square-free such that $\alpha \neq 0,1$ and $\sqrt{\alpha} \notin K$.

Sketch of proof:

(1) We have explicit matrix groups for G_{E,p^n} , so we can compute explicit commutator subgroups \mathcal{CC}_{E,p^n} .

- (1) We have explicit matrix groups for G_{E,p^n} , so we can compute explicit commutator subgroups \mathcal{CC}_{E,p^n} .
- (2) We know $K(\zeta_{p^n})$ or $K(\zeta_{p^n}, \sqrt{\alpha})$ is an abelian extension and we can use that to find an upper bound, U, for the size of \mathcal{CC}_{E,p^n} .

- (1) We have explicit matrix groups for G_{E,p^n} , so we can compute explicit commutator subgroups \mathcal{CC}_{E,p^n} .
- (2) We know $K(\zeta_{p^n})$ or $K(\zeta_{p^n}, \sqrt{\alpha})$ is an abelian extension and we can use that to find an upper bound, U, for the size of \mathcal{CC}_{E,p^n} .
 - If E has CM by an order in K, then $K \subseteq \mathbb{Q}(E[p^n])$.

- (1) We have explicit matrix groups for G_{E,p^n} , so we can compute explicit commutator subgroups \mathcal{CC}_{E,p^n} .
- (2) We know $K(\zeta_{p^n})$ or $K(\zeta_{p^n}, \sqrt{\alpha})$ is an abelian extension and we can use that to find an upper bound, U, for the size of \mathcal{CC}_{E,p^n} .
 - If E has CM by an order in K, then $K \subseteq \mathbb{Q}(E[p^n])$.
 - By the existence of the Weil-pairing, $\mathbb{Q}(\zeta_{p^n}) \subseteq \mathbb{Q}(E[p^n])$.

- (1) We have explicit matrix groups for G_{E,p^n} , so we can compute explicit commutator subgroups \mathcal{CC}_{E,p^n} .
- (2) We know $K(\zeta_{p^n})$ or $K(\zeta_{p^n}, \sqrt{\alpha})$ is an abelian extension and we can use that to find an upper bound, U, for the size of \mathcal{CC}_{E,p^n} .
 - If E has CM by an order in K, then $K \subseteq \mathbb{Q}(E[p^n])$.
 - By the existence of the Weil-pairing, $\mathbb{Q}(\zeta_{p^n}) \subseteq \mathbb{Q}(E[p^n])$.
 - If E is a quadratic twist by α , then $\mathbb{Q}(\sqrt{\alpha}) \subseteq \mathbb{Q}(E[p^n])$.

- (1) We have explicit matrix groups for G_{E,p^n} , so we can compute explicit commutator subgroups \mathcal{CC}_{E,p^n} .
- (2) We know $K(\zeta_{p^n})$ or $K(\zeta_{p^n}, \sqrt{\alpha})$ is an abelian extension and we can use that to find an upper bound, U, for the size of \mathcal{CC}_{E,p^n} .
 - If E has CM by an order in K, then $K \subseteq \mathbb{Q}(E[p^n])$.
 - By the existence of the Weil-pairing, $\mathbb{Q}(\zeta_{\underline{p}^n}) \subseteq \mathbb{Q}(E[p^n])$.
 - If E is a quadratic twist by α , then $\mathbb{Q}(\sqrt{\alpha}) \subseteq \mathbb{Q}(E[p^n])$.
- (3) We can use the surjective reduction map $\pi: \mathcal{CC}_{E,p^{n+1}} \to \mathcal{CC}_{E,p^n}$ to get a lower bound, L, for the size of \mathcal{CC}_{E,p^n} .

- (1) We have explicit matrix groups for G_{E,p^n} , so we can compute explicit commutator subgroups \mathcal{CC}_{E,p^n} .
- (2) We know $K(\zeta_{p^n})$ or $K(\zeta_{p^n}, \sqrt{\alpha})$ is an abelian extension and we can use that to find an upper bound, U, for the size of \mathcal{CC}_{E,p^n} .
 - If E has CM by an order in K, then $K \subseteq \mathbb{Q}(E[p^n])$.
 - By the existence of the Weil-pairing, $\mathbb{Q}(\zeta_{p^n}) \subseteq \mathbb{Q}(E[p^n])$.
 - If E is a quadratic twist by α , then $\mathbb{Q}(\sqrt{\alpha}) \subseteq \mathbb{Q}(E[p^n])$.
- (3) We can use the surjective reduction map $\pi: \mathcal{CC}_{E,p^{n+1}} \to \mathcal{CC}_{E,p^n}$ to get a lower bound, L, for the size of \mathcal{CC}_{E,p^n} .
- (4) It turns out that U=L, so it must be that $K(\zeta_{p^n})$ or $K(\zeta_{p^n}, \sqrt{\alpha})$ is the maximal abelian subextension of $\mathbb{Q}(j_{K,f}, E[p^n])/\mathbb{Q}(j_{K,f})$.

Questions?