# 関数空間の定理

みつば (@mittlear1)

2020年10月1日

#### 概要

関数空間についての重要な定理2つの証明を記した.

## 1 Ascoli-Arzelà の定理

本節では K を空でない位相空間,(X,d) を空でない距離空間とする.C(K,X) を K から X への連続写像全体の集合とする.

### 1.1 Ascoli-Arzelà その 1

定義 1.1  $\mathscr{A} \subset C(K,X)$  が同程度連続であるとは、すべての  $y \in K$  と  $\varepsilon > 0$  に対して y の開近傍 U が存在し、

$$\sup_{(f,y')\in\mathscr{A}\times U}d(f(y),f(y'))<\varepsilon$$

が成立することをいう.

定義 1.2  $\mathscr{A} \subset C(K,X)$  が各点相対コンパクトであるとは、すべての  $y \in K$  で

$$\mathscr{A}_y = \{ f(y) \mid f \in \mathscr{A} \}$$

が X の相対コンパクト集合であることをいう.

定理 1.3(Ascoli-Arzelà の定理) K がコンパクト空間であるとする. このとき C(K,X) に距離  $\rho$  を

$$\rho(f,g) = \max_{y \in K} d(f(y), g(y))$$

で定めることができる.これによって C(K,X) を距離空間と考えたとき, $\mathscr{A} \subset C(K,X)$  について以下は同値である.

- (1) 🖋 は相対コンパクトである.
- (2) 🛭 は同程度連続かつ各点相対コンパクトである.

証明  $(1)\Longrightarrow (2)$  Ø が相対コンパクトであるとする. まず Ø が同程度連続であることを示す.  $\varepsilon>0$  を任意にとる. Ø の全有界性より  $f_1,\ldots,f_k\in Ø$  をうまくとって

$$\mathscr{A} \subset \bigcup_{i=1}^k B_{\varepsilon/4}(f_i)$$

をみたすようにできる.  $y \in K$  を任意にとる.  $f_i$  たちの連続性から、y の開近傍 U を、 $y' \in U$  ならすべての  $1 \le i \le k$  で  $d(f_i(y), f_i(y')) < \varepsilon/4$  となるようにとることができる. このとき任意に  $f \in \mathcal{A}$  をとると  $f \in B_{\varepsilon/4}(f_i)$  となる i が存在するので、任意の  $y' \in U$  に対して

$$d(f(y), f(y')) \le d(f(y), f_i(y)) + d(f_i(y), f_i(y')) + d(f_i(y'), f(y))$$
  
$$\le \frac{\varepsilon}{4} + \frac{\varepsilon}{4} + \frac{\varepsilon}{4} = \frac{3\varepsilon}{4}$$

である. したがって,

$$\sup_{(f,y')\in\mathscr{A}\times U}d(f(y),f(y'))\leq\frac{3\varepsilon}{4}<\varepsilon$$

が成立し、これは Ø が同程度連続であることを示している.

次に  $\mathscr{A}$  が各点相対コンパクトであることを示す。  $y\in K$  を任意にとる。  $\mathscr{A}_y$  内の任意の点列  $\{x_n\}_n$  が収束部分列を持つことを示せばよい。  $\mathscr{A}$  の定義から,各  $x_n$  について  $f_n\in\mathscr{A}$  を  $f_n(y)=x_n$  となるようにとれる。 こうしてできる  $\mathscr{A}$  内の点列  $\{f_n\}_n$  は収束部分列  $\{f_{n_k}\}_k$  を持つ。 この収束先を  $f\in C(K,X)$  と書くと, $\{x_n\}_n$  の部分列  $\{x_{n_k}\}_k$  は f(y) に収束する。

 $(2)\Longrightarrow (1)$  Ø が同程度連続かつ各点相対コンパクトであるとする。Ø 内の任意の点列  $\{f_n\}_n$  について収束部分列が存在することを示せばよい。Ø の同程度連続性から,任意の  $y\in K$  についてその近傍  $U_y$  を, $y'\in U_y$  ならすべての  $g\in \mathscr{A}$  で

$$d(g(y), g(y')) < \frac{1}{6}$$

になるようにとれる. K はコンパクトだから開被覆  $\{U_y\}_{y\in K}$  の有限部分被覆  $\{U_{y_i}\}_{1\leq i\leq l}$  がとれる. 各  $\mathscr{A}_{y_i}$  は相対コンパクトだから, $\{f_n\}_n$  の部分列  $\{f_{n_k}\}_k$  をすべての  $1\leq i\leq l$  で  $\{f_{n_k}(y_i)\}_k$  が収束するようにとれる. さらにその部分列  $\{f_{1,n}\}_n$  をとることによって, $m,n\in\mathbb{Z}_{>0}$  ならすべての  $1\leq i\leq l$  で

$$d(f_{1,m}(y_i), f_{1,n}(y_i)) < \frac{1}{6}$$

となるようにできる.このとき任意の  $y \in K$  について  $y \in U_{y_i}$  となる i をとることによって

$$d(f_{1,m}(y), f_{1,n}(y)) \le d(f_{1,m}(y), f_{1,m}(y_i)) + d(f_{1,m}(y_i), f_{1,n}(y_i)) + d(f_{1,n}(y_i), f(y)) < \frac{1}{2}$$

すなわち

$$\rho(f_{1,m}, f_{1,n}) \le \frac{1}{2}$$

が分かる.この操作を続けることによって, $k \in \mathbb{Z}_{>0}$  に対して  $\{f_{k-1,n}\}_n$  の部分列  $\{f_{k,n}\}_n$  を

$$\rho(f_{k,m}, f_{k,n}) \leq 2^{-k}$$

となるようにとれる.  $g_n=f_{n,n}$  とおくとこれは C(K,X) の Cauchy 列で, 🗷 の各点相対コンパクト性から 各点収束極限  $g\colon K\to X$  が存在する.  $\{g_n\}_n$  が Cauchy 列であったことから,g は  $\{g_n\}_n$  の一様収束極限で あることが分かる. したがって  $g\in C(K,X)$  であり, $\{g_n\}_n$  は C(K,X) の中で g に収束することが分かる.

 $(*> \triangle <)$ 

#### 1.2 Ascoli-Arzerà その 2

定理 1.4(Ascoli-Arzelà の定理) S を K の可算稠密部分集合,X を完備距離空間とする.同程度連続な C(K,X) の部分集合  $\mathscr A$  について,任意の  $y\in S$  で  $\mathscr A_y$  が相対コンパクトであると仮定する.このとき,任意 の  $\mathscr A$  内の点列  $\{f_n\}_n$  は K 上広義一様収束する部分列を持つ.

証明 S の元を  $y_1, y_2, \ldots$  と番号づけしておく、 $\{f_n(y_1)\}_n$  が相対コンパクトであることから, $\{f_n\}_n$  の部分列  $\{f_{1,n}\}_n$  を  $\{f_{1,n}(y_1)\}_n$  が収束するようにとれる.この操作を続けることで,任意の正整数 k について  $\{f_{k,n}\}_n$  の部分列  $\{f_{k+1,n}\}_n$  を  $\{f_{k+1,n}(y_{k+1})\}_n$  が収束するようにとれる.そこで  $g_n = f_{n,n}$  とおくと  $\{g_n\}_n$  は  $\{f_n\}_n$  の部分列であり,任意の  $y \in S$  で  $\{g_n(z)\}_n$  は収束する.

この  $\{g_n\}_n$  が K 上広義一様収束することを示す. L を任意の K のコンパクト集合とする. 任意に  $\varepsilon>0$  をとる.  $\mathscr A$  の同程度連続性より,各  $x\in L$  の開近傍  $U_x$  を

$$\sup_{(f,x')\in\mathscr{A}\times U_x} d(f(x),f(x')) < \frac{\varepsilon}{6}$$

が成立するようにとれる. L はコンパクトだから,有限個の点  $x_1,x_2\dots,x_N$  をうまく選んで, $\{U_{x_i}\}_{1\leq i\leq N}$  が L を被覆するようにできる.  $S\cap U_{x_i}$  は空でないから,この中から一つ元を選んで  $z_i$  と名づける.

このとき  $N' \in \mathbb{Z}_{>0}$  を十分大きくとると、任意の m, n > N' と  $1 \le i \le N$  に対して

$$d(g_m(z_i), g_n(z_i)) < \frac{\varepsilon}{3}$$

となる. したがって m,n>N' のとき, $y\in L$  ならば  $y\in U_{x_i}$  となる  $1\leq i\leq N$  を選ぶことができて

$$d(g_m(y), g_n(y)) \le d(g_m(y), g_m(x_i)) + d(g_m(x_i), g_m(z_i)) + d(g_m(z_i), g_n(z_i)) + d(g_n(z_i), g_n(x_i)) + d(g_n(x_i), g_n(x_i), g_n(x_i), g_n(x_i), g_n(x_i)) + d(g_n(x_i), g_n(x_i), g_n(x_i), g_n(x_i), g_n(x_i)) + d(g_n(x_i), g_n(x_i), g_n(x_i)$$

が成立する. よって  $\{g_n\}_n$  は L 上の一様 Cauchy 列であり,X は完備だったからある関数に一様収束する.  $(*> \triangle <)$ 

### 2 Stone-Weierstrass の定理

 $\mathbb{K}$  で  $\mathbb{R}$  または  $\mathbb{C}$  を表すことにする. X をコンパクト空間とし, $C(X,\mathbb{K})$  は sup ノルム  $\|\dot{\mathbb{K}}\|$  で Banach 空間 になっていると考える.

定義 2.1  $\mathscr{A} \subset C(X, \mathbb{K})$  が  $C(X, \mathbb{K})$  の非単位的部分代数であるとは、次の条件が成り立つことをいう.

- (1)  $f, g \in \mathcal{A}$  ならば  $f + g \in \mathcal{A}$ .
- (2)  $f \in \mathcal{A}, \alpha \in \mathbb{K}$  ならば  $\alpha f \in \mathcal{A}$ .

さらに $1 \in \mathscr{A}$  ならば  $\mathscr{A}$  は  $C(X, \mathbb{K})$  の部分代数であるという.

定理 2.2(Stone-Weierstrass の定理)  $C(X,\mathbb{R})$  の非単位的部分代数  $\mathscr{A}$  が  $C(X,\mathbb{R})$  の中で稠密であるため の必要十分条件は次が成立することである.

(1) 任意の  $x, y \in X$  に対して、ある  $f \in \mathcal{A}$  で  $f(x) \neq f(y)$  となるものが存在する.

(2) 任意の  $x \in X$  に対して,  $g(x) \neq 0$  となる  $g \in \mathscr{A}$  が存在する.

特に部分代数  $\mathscr{A}$  が (1) をみたせば、  $\mathscr{A}$  は  $C(X,\mathbb{R})$  の中で稠密である.

定理 2.3(Stone-Weierstrass の定理)  $C(X,\mathbb{C})$  の非単位的部分代数  $\mathscr{A}$  が  $C(X,\mathbb{C})$  の中で稠密であるため の必要十分条件は次が成立することである.

- (1) 任意の  $x, y \in X$  に対して、ある  $f \in \mathcal{A}$  で  $f(x) \neq f(y)$  となるものが存在する.
- (2) 任意の  $x \in X$  に対して,  $g(x) \neq 0$  となる  $g \in \mathcal{A}$  が存在する.
- $(3) \ f \in \mathscr{A} \ \mathtt{xbit} \ \bar{f} \in \mathscr{A} \ \mathtt{rba} \mathtt{3}.$

ここで,  $f \in C(X,\mathbb{C})$  について,  $\bar{f}$  は

$$\bar{f}(x) = \overline{f(x)}$$

で定まる  $C(X,\mathbb{C})$  の元である.

特に部分代数  $\mathscr{A}$  が (1) と (3) をみたせば、 $\mathscr{A}$  は  $C(X,\mathbb{C})$  の中で稠密である.

注 2.4 文献によっては上の定理で X が Hausdorff 空間であることを仮定している場合があるが,実は Hausdorff 性の仮定は  $\mathscr A$  の条件に内包されている.実際,上の定理の仮定 (1) をみたす  $\mathscr A$  がとれるためには X は Hausdorff 空間でなければならないことが分かる.

補題 2.5  $\mathscr{A} \subset C(X,\mathbb{K})$  が非単位的部分代数であるとき,その閉包  $\overline{\mathscr{A}}$  は非単位的部分代数である.

証明 明らかである. 
$$(*> \triangle <)$$

命題 2.6(Dini の定理) Y をコンパクト空間とする.  $C(Y,\mathbb{R})$  の点列  $\{f_n\}_n$  について,任意の  $y\in Y$  で  $\{f_n(y)\}_n$  は広義単調増加で上に有界であるとする.このとき, $\{f_n\}_n$  はある関数 f に一様収束する.

証明  $\{f_n\}_n$  が各点で広義単調増加かつ上に有界であることから、この関数列には各点収束する.その収束先を f とおく. $\{f_n\}_n$  が f に一様収束することを示す. $\varepsilon>0$  を任意にとる.この  $\varepsilon$  に対して

$$A_n = \{ y \in Y \mid |f_n(y) - f(y)| < \varepsilon \}$$

と定めると、f は  $\{f_n\}_n$  の各点収束先だから  $\{A_n\}_n$  は Y の開被覆となる.よって Y のコンパクト性から Y は有限個の  $A_n$  たちで覆える. $\{f_n\}_n$  が各点で広義単調増加であることから任意の  $n\in\mathbb{N}$  で  $A_n\subset A_{n+1}$  が成立することと合わせると、ある  $N\in\mathbb{N}$  が存在して  $A_N=Y$  となる. $\{f_n\}_n$  が各点で広義単調増加であることから、これは

$$\forall n \geq N \ \forall y \in Y \quad |f_n(y) - f(y)| < \varepsilon$$

を意味している. 
$$(*>_{\triangle}<)$$

補題 2.7  $\sqrt{t} \in C([0,1],\mathbb{R})$  に収束する t の多項式の列  $\{h_n\}_n$  が存在する.

証明  $\{h_n\}_n$  を次の漸化式で定める.

$$h_{n+1}(t) = h_n(t) + \frac{t - h_n(t)^2}{2}, \ h_0 = 0.$$

この関数列について

$$h_n(t) \leq \sqrt{t}, \ h_n(t) \leq h_{n+1}(t)$$

補題 2.8  $\mathscr A$  が  $C(X,\mathbb R)$  の非単位的部分代数であるとき、 $f\in\mathscr A$  に対して

$$|f|(x) = |f(x)|$$

で定まる関数  $|f|: X \to \mathbb{R}$  は  $\overline{\mathscr{A}}$  の元である。また, $f_1, f_2, \ldots, f_n \in \mathscr{A}$  ならば  $\max\{f_1, f_2, \ldots, f_n\}$  および  $\min\{f_1, f_2, \ldots f_n\}$  は  $\overline{\mathscr{A}}$  の元である.

証明 補題 2.7 の条件をみたす  $\{h_n\}_n$  をとる.  $f \in \mathscr{A}$  について  $|f| \in \overline{\mathscr{A}}$  を示す. f = 0 なら  $|f| = 0 \in \mathscr{A}$  だから,  $f \neq 0$  の場合を考えればよい. このとき  $||f|| \neq 0$  だから

$$f_n(x) = h_n(||f||^{-2}f(x)^2)$$

は well-defined な連続関数で, $\mathscr A$  が非単位的部分代数であることからすべての  $n\in\mathbb Z_{>0}$  で  $f_n\in\mathscr A$  である. さらに  $\{h_n\}_n$  が  $\sqrt{t}$  に一様収束することから  $\{f_n\}_n$  は  $|f|/\|f\|$  に一様収束する.このことと  $\overline{\mathscr A}$  が非単位的部分代数であることから

$$f = \|f\| \cdot f / \|f\| \in \overline{\mathscr{A}}$$

であることが分かる.

後半を示す. $f_1,f_2\in\mathscr{A}$  について  $\max\{f_1,f_2\},\min\{f_1,f_2\}\in\overline{\mathscr{A}}$  であることを示せば十分である.これは

$$\max\{f_1, f_2\} = \frac{(f_1, f_2) + |f_1 - f_2|}{2}, \ \min\{f_1, f_2\} = \frac{(f_1 + f_2) - |f_1 - f_2|}{2}$$

であることと前半の結果から分かる.

 $(*> \triangle <)$ 

定理 2.2 の証明 まず、任意の異なる 2 点  $x,y \in X$  と任意の  $a,b \in \mathbb{R}$  について f(x) = a,f(y) = b となる  $f \in \overline{\mathscr{A}}$  が存在することを示す。(1)、(2) より  $u,v \in \mathscr{A}$  を

$$u(x) \neq u(y), \ v(x) \neq 0$$

をみたすようにとれる.  $\lambda \in \mathbb{R}$  をうまくとると,  $h_1 = u + \lambda v$  について

$$h_1(x) \neq h_1(y), h_1(x) \neq 0$$

をみたすようにできる.このとき  $\alpha=h_1(x)^2-h_1(x)h_1(y)\neq 0$  であり, $f_1\in\mathscr{A}$  を  $f_1=\alpha^{-1}(h_1^2-h_1(y)h_1)$  で定義すると  $f_1(x)=1, f_1(y)=0$  をみたす.同様に  $f_2\in\mathscr{A}$  を  $f_2(x)=0, f_2(y)=1$  となるようにとれるから, $f=af_1+bf_2$  と定めればこれが求める関数である.

 $f \in C(X,\mathbb{R})$  を任意にとる。任意の  $\varepsilon > 0$ ,  $x_0 \in X$  に対して, $h \in \mathbb{Z}$  を  $h(x_0) = f(x_0)$  かつすべての  $x \in X$  で  $h(x) > f(x) - \varepsilon$  となるようにとれることを示す。  $\mathscr{A}(x_0)$  を, $g(x_0) = f(x_0)$  をみたす  $g \in \mathscr{A}$  全体 の集合とする。各  $g \in \mathscr{A}(x_0)$  について

$$M_{\varepsilon}(g) = \{ x \in X \mid g(x) > f(x) - \varepsilon \}$$

とおく.初めに示したことから任意の  $x \in X$  について g(x) = f(x) をみたす  $g \in \mathcal{A}(x_0)$  が存在し,このとき  $x \in M_{\varepsilon}(g)$  であるから, $\{M_{\varepsilon}(g)\}_{g \in \mathcal{A}(x_0)}$  は X の開被覆である.X のコンパクト性から  $g_1, g_2, \ldots, g_k$  をうま

く選んで  $X=\cup_{i=1}^k M_\varepsilon(g_i)$  となるようにできる.  $h=\max\{g_1,g_2\dots,g_k\}\in\mathscr{A}$  とおけばこれが求めるものである.

 $\overline{\mathscr{A}}$  の元 h で、すべての  $x\in X$  に対して  $h(x)>f(x)-\varepsilon$  をみたすもの全体を  $\overline{\mathscr{A}}(\varepsilon)$  と書く. $h\in \overline{\mathscr{A}}(\varepsilon)$  に対して

$$N_{\varepsilon}(h) = \{ x \in X \mid h(x) < f(x) + \varepsilon \}$$

とおく.前段落で示したことから,任意に与えられた  $x\in X$  に対して  $\overline{\mathscr{A}}(\varepsilon)$  の元 h を h(x)=f(x) が成り立つようにとれる.このことは  $\{N_\varepsilon(h)\}_{h\in\overline{\mathscr{A}}(\varepsilon)}$  が X の開被覆であることを示しており,再び X のコンパクト性から  $h_1,h_2,\ldots,h_l\in\overline{\mathscr{A}}(\varepsilon)$  を  $X=\cup_{i=1}^l N_\varepsilon(h_i)$  が成り立つようにとれる.そこで  $f_0=\min\{h_1,h_2,\ldots,h_l\}\in\overline{\mathscr{A}}(\varepsilon)$  とおくと,とり方から  $\|f-f_0\|\leq \varepsilon$  であることが分かる.したがって f は  $\overline{\mathscr{A}}$  の元の一様収束極限として書けるが, $\overline{\mathscr{A}}$  は  $C(X,\mathbb{R})$  の閉集合であるから  $f\in\overline{\mathscr{A}}$  であることが分かる.

定理 2.3 の証明 🖋 が定理の仮定をみたすとき,

$$\operatorname{Re} \mathscr{A} = \{ \operatorname{Re} f \mid f \in \mathscr{A} \}, \operatorname{Im} \mathscr{A} = \{ \operatorname{Im} f \mid f \in \mathscr{A} \}$$

について  $\operatorname{Re} \mathscr{A} = \operatorname{Im} \mathscr{A} \subset \mathscr{A}$  が成立し、しかも  $\operatorname{Re} f \subset C(X,\mathbb{R})$  は定理 2.2 の仮定をみたす.したがって、任意の  $f \in C(X,\mathbb{C})$  と  $\varepsilon > 0$  について  $\operatorname{Re} \mathscr{A} = \operatorname{Im} \mathscr{A}$  の元 u,v をうまくとって

$$\|\operatorname{Re} f - u\| < \varepsilon/2, \|\operatorname{Im} f - v\| < \varepsilon/2$$

が成り立つようにできる. このとき

$$||(f - (u + iv))|| < \varepsilon$$

かつ  $u+iv\in\mathscr{A}$  である.したがって  $\mathscr{A}$  は  $C(X,\mathbb{C})$  の中で稠密である.

(\*>△<)

## 参考文献

- [1] 内田伏一,『集合と位相』, 裳華房, 1986.
- [2] Rudin, W., Real and Complex Analysis, McGraw-Hill Co., New York, 1973.