Section 6, p66 #1-4,45,46

In Exercises 1 through 4, find the quotient and remainder, according to the division algorithm, where n is divided by n.

1. n = 42, m = 9

42 = 4(9) + 6

2. n = -42, m = 9

-42 = -5(9) + 3

3. n = -50, m = 8

-50 = -7(8) + 6

4. n = 50, m = 8

50 = 6(8) + 2

Theory

45. Let r and s be positive integers. Show that $X = \{nr + ms : n, m \in \mathbb{Z}\}$ is a subgroup of \mathbb{Z}

A subgroup is closed under the operation of the group and closed under inverses.

Proof. Consider a, and $b \in X$, where $a = n_1 r + m_1 s$ and $b = n_2 r + m_2 s$.

$$a + b = (n_1r + m_1s) + (n_2r + m_2s)$$

= $(n_1r + n_2r) + (m_1s + m_2s)$
= $(n_1 + n_2)r + (m_1 + m_2)s$

Since $n_1 + n_2 \in \mathbb{Z}$ and $m_1 + m_2 \in \mathbb{Z}$, a + b takes the form of elements in X. Now consider $a = nr + ms \in X$. We know a^{-1} exists since a is also in \mathbb{Z} .

$$a^{-1}=(nr+ms)^{-1}$$

$$=-(nr+ms) \qquad \text{since we are using \mathbb{Z} with addition}$$

$$=(-n)r+(-m)s$$

We know -n and $-m \in \mathbb{Z}$, thus $a^{-1} \in X$. Thus X is a subgroup of \mathbb{Z} , $X < \mathbb{Z}$

46. Let a and b be elements of a group G. Show that if ab has finite order n, then ba also has order n

When we say a has order n, it means that in the cyclic group that $a^n = e$.

Proof. Assume $\langle ab \rangle$ has order n. This means that

$$(ab)^n = e$$

$$a^n b^n = e$$

If we assume that $a^n=c$, for some $c\in G$, then it must follow that $b^n=c^{-1}$, since $a^nb^n=cc^{-1}=e$. Now let us consider the order of $\langle ba\rangle$.

$$(ba)^n = b^n a^n$$

$$= c^{-1}c$$

$$= e$$
since $a^n = c$, $b^n = c^{-1}$

Since $(ba)^n = e$, we can say that ba has order n.