Übung "Grundbegriffe der Informatik"

Karlsruher Institut für Technologie

Matthias Schulz, Gebäude 50.34, Raum 034

email: schulz@ira.uka.de

 z_0 a b a

$$z_1 = f(z_0, a)$$
 a b a

$$z_2 = f(z_1,a)$$
 a a b a

$$z_3 = f(z_2, b)$$
 a a b a

5

$$z_{4}=f(z_{3},a)$$
 a a b a

 z_0 \Box a a b a \Box

$$z_1 = f(z_0,a)$$
 \Box a b a \Box

$$z_2 = f(z_1,a)$$
 \Box a a b a \Box

$$z_3 = f(z_2, b)$$
 \square a a b \square

$$z_4 = f(z_3, a)$$
 \square

$$A = (Z, z_0, X, f'F)$$

$$T = (Z \cup \{e_+, e_-\}, z_0, X \cup \{\Box\}, f, g, m)$$

$$A = (Z, z_0, X, f'F)$$

$$T = (Z \cup \{e_+, e_-\}, z_0, X \cup \{\Box\}, f, g, m)$$

$$f(z,x) = f'(z,x)$$

13

$$e_{+/-} = f(z_4, \square)$$
 \(\sigma \text{ a a b a } \sigma \sigma\)
$$A = (Z, z_0, X, f'F)$$

$$T = (Z \cup \{e_+, e_-\}, z_0, X \cup \{\square\}, f, g, m)$$

$$f(z, x) = f'(z, x)$$

$$g(z, x) = \text{egal}$$

$$e_{+/-}=f(z_4,\square)$$

$$\square$$
 a a b a
$$\square$$

$$A=(Z,z_0,X,f'F)$$

$$T=(Z\cup\{e_+,e_-\},z_0,X\cup\{\square\},f,g,m)$$

$$f(z,x)=f'(z,x)$$

$$g(z,x)=\operatorname{egal}$$

$$m(z,x)=1$$

$$A = (Z, z_0, X, f'F)$$

$$T = (Z \cup \{e_+, e_-\}, z_0, X \cup \{\Box\}, f, g, m)$$

$$g(z,\Box) = \Box, m(z,\Box) = 0, f(z,\Box) = \begin{cases} e_{+} & \text{falls } z \in F \\ e_{-} & \text{falls } z \notin F \end{cases}$$

Berechnung: Zustand über Zeichen:

z_0				
а	а	b	а	
	z_1 a	b	а	
	а	z_2	а	
		b b	а	
			z_3	
			a	
				z_4
				e_{+}

oder Zustand vor Zeichen:

- $\Box z_0$ aaba \Box
- $\square\square z_1$ aba \square
- $\square\square\square z_2$ ba \square
- $\Box\Box\Box\Box z_3a\Box$
- $\Box\Box\Box\Box\Box z_{4}\Box$
- $\Box\Box\Box\Box\Box e_{+}\Box$

$$A = (Z, z_0, X, f', Y, g')$$

1. Fall: |g'(z,x)| immer 1.

$$A = (Z, z_0, X, f', Y, g')$$

1. Fall: |g'(z,x)| immer 1.

$$T = (Z, z_0, X \cup Y \cup \{\square\}, f, g, m)$$

$$A = (Z, z_0, X, f', Y, g')$$

1. Fall: |g'(z,x)| immer 1.

$$T = (Z, z_0, X \cup Y \cup \{\Box\}, f, g, m)$$

$$f(z,x) = f'(z,x), g(z,x) = g'(z,x), m(z,x) = 1.$$

$$A = (Z, z_0, X, f', Y, g')$$

2. Fall: |g'(z,x)| nicht immer 1.

$$A = (Z, z_0, X, f', Y, g')$$

2. Fall: |g'(z,x)| nicht immer 1.

Problem A: Zeichenketten länger als 1 einfügen

$$A = (Z, z_0, X, f', Y, g')$$

2. Fall: |g'(z,x)| nicht immer 1.

Problem A: Zeichenketten länger als 1 einfügen

Problem B: Zeichen löschen

$$A = (Z, z_0, X, f', Y, g')$$

2. Fall: |g'(z,x)| nicht immer 1.

Problem A: Zeichenketten länger als 1 einfügen

Idee: Alle Zeichen genug Felder nach rechts verschieben.

Problem B: Zeichen löschen

Idee: Alle Zeichen eins nach links verschieben.

Nach rechts verschieben: — reserviert Platz

Starte mit w = -k

$$f(i_{xw}, y) = i_{wy}$$

Nach rechts verschieben: — reserviert Platz

Starte mit
$$w = -k$$

$$f(i_{xw}, y) = i_{wy}$$

Idee: w_1 Wort vor Kopf , w_2 Wort in Index, w_3 Wort nach Kopf

 $\rightarrow w_1w_2w_3$ bleibt gleich und ist gewünschtes Ergebnis.

Nach rechts verschieben: — reserviert Platz

Starte mit w = -k

$$f(i_{xw}, y) = i_{wy}$$
$$g(i_{xw}, y) = x$$
$$m(i_{xw}, y) = 1$$

Nach rechts verschieben: — reserviert Platz

Starte mit w = -k

$$f(i_{xw}, y) = i_{wy}$$
$$g(i_{xw}, y) = x$$
$$m(i_{xw}, y) = 1$$

$$f(i_{\sqcap^k}, \sqcap) = return$$

Für Simulation des Mealy-Automaten:

Alternative A: Auf erstem reservierten Feld Zustand und einzufügendes Wort speichern.

Für Simulation des Mealy-Automaten:

Alternative A: Auf erstem reservierten Feld Zustand und einzufügendes Wort speichern.

Alternative B: Zustand und einzufügendes Wort im Zustand speichern.

Für Simulation des Mealy-Automaten:

Alternative A: Auf erstem reservierten Feld Zustand und einzufügendes Wort speichern.

Alternative B: Zustand und einzufügendes Wort im Zustand speichern.

→ Deutlich mehr Zustände!

Eins nach links verschieben: – bei gelöschtem Zeichen.

Eins nach links verschieben: – bei gelöschtem Zeichen.

$$f(l_g, x) = l_x$$
$$g(l_g, x) = -$$
$$m(l_g, x) = -1$$

Eins nach links verschieben: – bei gelöschtem Zeichen.

$$f(l_g, x) = l_x$$

$$g(l_g, x) = -$$

$$m(l_g, x) = -1$$

$$f(l_x, -) = l_g$$
$$g(l_x, -) = x$$
$$m(l_x, -) = 1$$

$$f(l_g, x) = l_x$$

$$g(l_g, x) = -$$

$$m(l_g, x) = -1$$

$$f(l_x, -) = l_g$$
$$g(l_x, -) = x$$
$$m(l_x, -) = 1$$

$$f(l_g, -) = l_g$$
$$g(l_g, -) = -$$
$$m(l_g, -) = 1$$

Eins nach links verschieben: — bei gelöschtem Zeichen.

$$-l_g x y z$$

$$l_x - -y z$$

$$x l_g - y z$$

$$x - l_g y z$$

$$x l_y - -z$$

$$x y l_g - z$$

$$x y - l_g z$$

$$x y l_z - -$$

$$x y z l_g -$$

$$f(l_g, x) = l_x$$

$$g(l_g, x) = -$$

$$m(l_g, x) = -1$$

$$f(l_x, -) = l_g$$
$$g(l_x, -) = x$$
$$m(l_x, -) = 1$$

$$f(l_g, -) = l_g$$
$$g(l_g, -) = -$$
$$m(l_g, -) = 1$$

$$f(l_g, \square) = d$$
$$g(l_g, \square) = \square$$
$$m(l_g, \square) = -1$$

$$f(d, -) = z$$
$$g(d, -) = \square$$
$$m(d, -) = -1$$

$$A = (Z, z_0, X, f', Y, g')$$

2. Fall: |g'(z,x)| nicht immer 1.

Bessere Idee: Schreibe Ausgabe hinter Eingabewort, das schrittweise gelöscht wird.

$$A = (Z, z_0, X, f', Y, g')$$

2. Fall: |g'(z,x)| nicht immer 1.

Anfangszustand z^0 nach rechts durchgehen, Trennsymbol : hinter Wort schreiben, zurückfahren.

$$A = (Z, z_0, X, f', Y, g')$$

2. Fall: |g'(z,x)| nicht immer 1.

Anfangszustand z^0 nach rechts durchgehen, Trennsymbol : hinter Wort schreiben, zurückfahren.

$$\begin{array}{c|cccc}
 & z^{0} & z^{1} \\
 & z^{$$

$$A = (Z, z_0, X, f', Y, g')$$

2. Fall: |g'(z,x)| nicht immer 1.

Zeichen einlesen, nächsten Zustand merken, zu schreibendes Wort merken, Zeichen löschen, nach rechts fahren, Wort schreiben, nach links fahren.

$$A = (Z, z_0, X, f', Y, g')$$

2. Fall: |g'(z,x)| nicht immer 1.

Zeichen einlesen, nächsten Zustand merken, zu schreibendes Wort merken, Zeichen löschen, nach rechts fahren, Wort schreiben, nach links fahren.

$$A = (Z, z_0, X, f', Y, g')$$

2. Fall: |g'(z,x)| nicht immer 1.

Wenn erstes Zeichen:, löschen.

$$\forall z \in Z : f(z,:) = e, g(z,:) = \square, m(z,:) = 1.$$

$$f(0,a) = 0, f(0,b) = 1, f(1,a) = 1, f(1,b) = 0$$

 $g(0,a) = ab, g(0,b) = bb, g(1,a) = bb, g(1,b) = ba$

$$z^0$$

$$f(0,a) = 0, f(0,b) = 1, f(1,a) = 1, f(1,b) = 0$$

 $g(0,a) = ab, g(0,b) = bb, g(1,a) = bb, g(1,b) = ba$

$$z^0$$
 \Box a b b a \Box \Box \Box \Box \Box

$$f(0,a) = 0, f(0,b) = 1, f(1,a) = 1, f(1,b) = 0$$

 $g(0,a) = ab, g(0,b) = bb, g(1,a) = bb, g(1,b) = ba$

$$z^{\circ}$$

$$f(0,a) = 0, f(0,b) = 1, f(1,a) = 1, f(1,b) = 0$$

 $g(0,a) = ab, g(0,b) = bb, g(1,a) = bb, g(1,b) = ba$

$$z^{\scriptscriptstyle 1}$$

$$f(0,a) = 0, f(0,b) = 1, f(1,a) = 1, f(1,b) = 0$$

 $g(0,a) = ab, g(0,b) = bb, g(1,a) = bb, g(1,b) = ba$

$$z^{\scriptscriptstyle 1}$$

$$f(0,a) = 0, f(0,b) = 1, f(1,a) = 1, f(1,b) = 0$$

 $g(0,a) = ab, g(0,b) = bb, g(1,a) = bb, g(1,b) = ba$

 $z^{ au}$ \square a b b a : \square \square \square \square \square

$$f(0,a) = 0, f(0,b) = 1, f(1,a) = 1, f(1,b) = 0$$

 $g(0,a) = ab, g(0,b) = bb, g(1,a) = bb, g(1,b) = ba$

$$f(0,a) = 0, f(0,b) = 1, f(1,a) = 1, f(1,b) = 0$$

 $g(0,a) = ab, g(0,b) = bb, g(1,a) = bb, g(1,b) = ba$

$$f(0,a) = 0, f(0,b) = 1, f(1,a) = 1, f(1,b) = 0$$

 $g(0,a) = ab, g(0,b) = bb, g(1,a) = bb, g(1,b) = ba$

$$0_{ab}$$
 \square \square b b a \vdots \square \square \square \square \square

$$f(0,a) = 0, f(0,b) = 1, f(1,a) = 1, f(1,b) = 0$$

 $g(0,a) = ab, g(0,b) = bb, g(1,a) = bb, g(1,b) = ba$

$$\mathsf{O}_{ab}$$
 \square \square b b a $:$ \square \square \square \square \square

$$f(0,a) = 0, f(0,b) = 1, f(1,a) = 1, f(1,b) = 0$$

 $g(0,a) = ab, g(0,b) = bb, g(1,a) = bb, g(1,b) = ba$

$$f(0,a) = 0, f(0,b) = 1, f(1,a) = 1, f(1,b) = 0$$

 $g(0,a) = ab, g(0,b) = bb, g(1,a) = bb, g(1,b) = ba$

$$0_{\epsilon}$$
 \Box b b a : a b \Box \Box \Box

$$f(0,a) = 0, f(0,b) = 1, f(1,a) = 1, f(1,b) = 0$$

 $g(0,a) = ab, g(0,b) = bb, g(1,a) = bb, g(1,b) = ba$

$$f(0,a) = 0, f(0,b) = 1, f(1,a) = 1, f(1,b) = 0$$

 $g(0,a) = ab, g(0,b) = bb, g(1,a) = bb, g(1,b) = ba$

$$f(0,a) = 0, f(0,b) = 1, f(1,a) = 1, f(1,b) = 0$$

 $g(0,a) = ab, g(0,b) = bb, g(1,a) = bb, g(1,b) = ba$

$$f(0,a) = 0, f(0,b) = 1, f(1,a) = 1, f(1,b) = 0$$

 $g(0,a) = ab, g(0,b) = bb, g(1,a) = bb, g(1,b) = ba$

$$f(0,a) = 0, f(0,b) = 1, f(1,a) = 1, f(1,b) = 0$$

 $g(0,a) = ab, g(0,b) = bb, g(1,a) = bb, g(1,b) = ba$

$$f(0,a) = 0, f(0,b) = 1, f(1,a) = 1, f(1,b) = 0$$

 $g(0,a) = ab, g(0,b) = bb, g(1,a) = bb, g(1,b) = ba$

$$f(0,a) = 0, f(0,b) = 1, f(1,a) = 1, f(1,b) = 0$$

 $g(0,a) = ab, g(0,b) = bb, g(1,a) = bb, g(1,b) = ba$

$$f(0,a) = 0, f(0,b) = 1, f(1,a) = 1, f(1,b) = 0$$

 $g(0,a) = ab, g(0,b) = bb, g(1,a) = bb, g(1,b) = ba$

$$f(0,a) = 0, f(0,b) = 1, f(1,a) = 1, f(1,b) = 0$$

 $g(0,a) = ab, g(0,b) = bb, g(1,a) = bb, g(1,b) = ba$

$$f(0,a) = 0, f(0,b) = 1, f(1,a) = 1, f(1,b) = 0$$

 $g(0,a) = ab, g(0,b) = bb, g(1,a) = bb, g(1,b) = ba$

$$f(0,a) = 0, f(0,b) = 1, f(1,a) = 1, f(1,b) = 0$$

 $g(0,a) = ab, g(0,b) = bb, g(1,a) = bb, g(1,b) = ba$

Persönliche Meinung: Aus Tabelle Automatengraphen basteln - selten hilfreich!

(Nur dann übersichtlicher, wenn f(z,x) sehr häufig nicht definiert ist.)

- 1. Finde Zustände, bei denen Turingmaschine einfach zum rechten/linken Ende des Wortes fährt.
- 2. Überprüfe Zustandsnamen auf Hinweise, was gespeichert wird.
- 3. Führe Berechnung an Beispiel durch. (Hinweis: sofern nicht alle Zwischenschritte gefordert sind, kann man mit 1. abkürzen.)
- 4. Formuliere These, was Turingmaschine in einzelnen Zuständen macht.
- 5. Herausfinden, was die Turingmaschine an sich macht.

Eingabealphabet $\{a\}$, Bandalphabet $\{a,b,0,1\square\}$, Anfangszustand z_0

	z_0	z_1	r	w
\overline{a}	$(z_1, b, 1)$	$(z_0, a, 1)$	(w, a, -1)	(w, a, -1)
b	$(z_0, b, 1)$	$(z_1,b,1)$	(r,b,-1)	(w,b,-1)
0	$(z_0, 0, 1)$	$(z_1, 0, 1)$	(r,0,-1)	(w, 0, -1)
1	$(z_0, 1, 1)$	$(z_1, 1, 1)$	(r, 1, -1)	(w, 1, -1)
	(r, 0, -1)	(r, 1, -1)	-	$(z_0, \square, 1)$

Feststellungen:

1. w läuft nach links durch.

Feststellungen:

- 1. w läuft nach links durch.
- 2. r läuft nach links durch, bis es auf a trifft; wird dann zu w

Feststellungen:

- 1. w läuft nach links durch.
- 2. $\it r$ läuft nach links durch, bis es auf $\it a$ trifft; wird dann zu $\it w$
- 3. r überprüft, ob noch a in Wort vorhanden; falls nicht, Ende.

z_0 und z_1 :

Feststellungen:

1. Das i bei z_i ist die Anzahl der gelesenen $a \mod 2$.

Feststellungen:

- 1. Das i bei z_i ist die Anzahl der gelesenen $a \mod 2$.
- 2. Wenn keine a mehr kommen, läuft z_i nach rechts.

Feststellungen:

- 1. Das i bei z_i ist die Anzahl der gelesenen $a \mod 2$.
- 2. Wenn keine a mehr kommen, läuft z_i nach rechts.
- 3. z_i schreibt i an Ende des Wortes.

Feststellungen:

Anfang a^n auf Band.

1. Anzahl der a nach Rückkehr des Kopfes $\lfloor \frac{n}{2} \rfloor$.

Feststellungen:

Anfang a^n auf Band.

- 1. Anzahl der a nach Rückkehr des Kopfes $\lfloor \frac{n}{2} \rfloor$.
- 2. Ans Ende wird geschrieben $n \mod 2, \lfloor \frac{n}{2} \rfloor \mod 2, \lfloor \frac{n}{4} \rfloor \mod 2 \dots$

Feststellungen:

Anfang a^n auf Band.

- 1. Anzahl der a nach Rückkehr des Kopfes $\lfloor \frac{n}{2} \rfloor$.
- 2. Ans Ende wird geschrieben $n \mod 2, \lfloor \frac{n}{2} \rfloor \mod 2, \lfloor \frac{n}{4} \rfloor \mod 2 \dots$
- 3. Vorstellung von n als Binärzahl: n wird binär rückwärts ans Ende geschrieben.

Feststellungen:

Anfang a^n auf Band.

- 1. Anzahl der a nach Rückkehr des Kopfes $\lfloor \frac{n}{2} \rfloor$.
- 2. Ans Ende wird geschrieben $n \mod 2, \lfloor \frac{n}{2} \rfloor \mod 2, \lfloor \frac{n}{4} \rfloor \mod 2 \dots$
- 3. Vorstellung von n als Binärzahl: n wird binär rückwärts ans Ende geschrieben.
- 4. Am Ende auf Band: $b^n R(Repr_2(n))$.