Санкт-Петербургский политехнический университет Петра Великого Физико-механический институт

Высшая школа теоретической механики и математической физики

Лабораторная работа №3

Решение стационарного уравнения теплопроводности методом МКЭ

по дисциплине «Вычислительная механика»

Выполнил Студент гр. 5030103/10301

А.Г. Фёдоров

Преподаватель

Е.Ю. Витохин

Содержание

Постановка задачи	. 3
Выполнение задания	. 4
1. Метод решения	. 4
2. Результаты	. 8

Постановка задачи

Требуется найти распределение температуры внутри плотины с использованием МКЭ.

Рис.1 Схема плотины

Температура воды - $25 C^o$, окружающей среды - $5 C^o$.

Материал – бетон двух типов.

B20:
$$E = 2.75 \cdot 10^{10}$$
 Πa, $v = 0.14$, $\rho = 2500 \frac{\text{K}\Gamma}{\text{M}^3}$
B30: $E = 3.25 \cdot 10^{10}$ Πa, $v = 0.14$, , $\rho = 2500 \frac{\text{K}\Gamma}{\text{M}^3}$

Скальное основание:
$$E=2.3\cdot 10^{10}~\Pi$$
а, $\nu=0.25$, , $\rho=2950~\frac{\kappa\Gamma}{M^3}$

Выполнение задания

1. Метод решения

Рассмотрим задачу о нестационарном распределении тепла в двумерном случае. Расчетную область разделим на треугольные элементы первого порядка (рис.1). Температура внутри такого конечного элемента аппроксимируется полиномом первого порядка:

$$T = A + Bx + Cy. (1)$$

Непрерывная температура с узловыми значениями связана с помощью функций форм:

$$T = T_i N_i + T_j N_j + T_k N_k = [N] \cdot \{T\}.$$
 (2)

Классический закон Фурье имеет вид

$$\underline{h} = -\lambda \nabla T,\tag{3}$$

где \underline{h} - тепловой поток, λ - коэффициент теплопроводности.

Вектор теплового потока в двумерном случае состоит из двух компонент:

$$\{h\}^T = \{h_x \ h_y\}. \tag{4}$$

На основе закона Фурье (3) проекции вектора теплового потока на оси глобальной системы координат вычисляются с помощью частных производных от температуры:

$$h_x = -\lambda \frac{\partial T}{\partial x}, \qquad h_y = -\lambda \frac{\partial T}{\partial y}.$$
 (5)

Подставим выражение, показывающее связь между непрерывными и узловыми перемещениями (2) в проекции вектора теплового потока (5), а результат подставим в вектор-столбец теплового потока (3):

$$\{h\} = -\lambda \left\{ T_i \frac{\partial N_i}{\partial x} + T_j \frac{\partial N_j}{\partial x} + T_k \frac{\partial N_k}{\partial x} \right\} T_i \frac{\partial N_i}{\partial y} + T_j \frac{\partial N_j}{\partial y} + T_k \frac{\partial N_k}{\partial y} \right\}.$$
 (6)

После вынесения узловым температур выражение (6) можно записать в компактной форме:

$$\{h\} = -\lambda [B]\{T^e\},\tag{7}$$

где [B] – матрица температурных градиентов, которая имеет вид

$$[B] = \begin{bmatrix} \frac{\partial N_i}{\partial x} & \frac{\partial N_j}{\partial x} & \frac{\partial N_k}{\partial x} \\ \frac{\partial N_i}{\partial y} & \frac{\partial N_j}{\partial y} & \frac{\partial N_k}{\partial y} \end{bmatrix}.$$
 (8)

Запишем уравнение баланса внутренней энергии:

$$\rho \dot{u} = -\nabla \cdot h. \tag{9}$$

Выражение для внутренней энергии:

$$u = c_v T, (10)$$

где c_v – удельная теплоемкость при постоянном объеме.

После подстановки (10) в (9) получим:

$$\rho c_V \dot{T} = -\nabla \cdot \underline{h}. \tag{11}$$

Осуществим переход от непрерывных к узловым температурам. Для этого подставим связь непрерывных и узловых значений температур (2), а также закон Фурье в матричной форме (7) в уравнение теплопроводности (11):

$$\rho c_V[N] \cdot \{\dot{T}^e\} - \lambda \nabla \cdot ([B]\{T^e\}) = 0. \tag{12}$$

В задаче теплопроводности используются три основных вида граничных условий:

- 1. Условие Дирихле: $T_s = T_1(x, y, t)$
- 2. Условия Неймана: $h_{x}n_{x}+h_{y}n_{y}=-\underline{h_{s}}$
- 3. Смешанные: $h_{\chi}n_{\chi} + h_{\gamma}n_{\gamma} = \chi(T_{s} T_{f})$

Для решения уравнения теплопроводности (12) используем метод Галеркина:

$$\int_{V} \left(\rho c_{V}[N] \cdot \left\{ \vec{T}^{e} \right\} - \lambda \nabla \cdot ([B] \{ T^{e} \}) \right) \cdot [N]^{T} dV = 0. \tag{13}$$

После вычисления интеграла от второго слагаемого по частям уравнение (13) примет вид

$$\rho c_V \int_V [N]^T [N] \, dV \{ \dot{T}^e \} + \lambda \int_V [B]^T [B] \, dV \{ T^e \} =$$

$$= -\int_{S_1} \{ h^b \}^T \{ n \} [N]^T dS - \int_{S_2} h_s [N]^T dS - \chi \int_{S_3} (T_s - T_f) [N]^T dS \,. \tag{14}$$

В матричной форме уравнение (14) можно записать так:

$$[C]\{\dot{T}^e\} + ([K_c] + [K_\chi])\{T^e\} = \{R_T\} + \{R_h\} + \{R_\chi\}. \tag{15}$$

Здесь введены следующие обозначения:

- -Матрица теплоемкости $[C] =
 ho c_V \int_V [N]^T [N] dV$
- -Матрица теплопроводности $[K_c] = \lambda \int_V [B]^T [B] dV$
- -Матрица конвективности $\left[K_\chi
 ight]=\chi\int_{S_3}[N]^T[N]dS$

Векторы-столбцы внешних нагрузок обозначены так:

-Тепловой поток через границу S_1 , на который заданы условия Дирихле:

$${R_T} = -\int_{S_1} {\{h^b\}^T \{n\}[N]^T dS}$$

-Тепловой поток через границу S_2 , на которой заданы условия Неймана:

$$\{R_h\} = \int_{S_2} h_S[N]^T dS$$

-Конвективный тепловой поток через границу S_3 : $\{R_{\varkappa}\} = \chi \int_{S_2} T_f[N]^T dS$.

В стационарном случае без конвективного теплообмена уравнение теплопроводности имеет вид

$$[K_c]\{T^e\} = \{R_T\} + \{R_h\} \tag{16}$$

Чтобы решить уравнение (16) для системы конечных элементов, необходимо построить глобальную матрицу жесткости, а также задать граничные условия.

Все матрицы, входящие в (15), содержат функции формы либо производные от функций формы, которые зависят от координат узлов элемента. Чтобы не вычислять функции формы для каждого отдельного элемента, можно определить их один раз для изопараметрического элемента. Функции формы и их производные для каждого конкретного элемента можно найти, осуществив переход от изопараметрической системы координат к глобальной с помощью якобиана преобразования системы координат.

$$N_i = 1 - \eta - \xi; N_i = \eta; N_k = \xi. \tag{17}$$

Рассмотрим, как находится матрица теплопроводности с помощью функций форм (17). Так как мы имеем дело с линейным треугольным элементом, то произведение матриц температурных градиентов можно вынести из-под знака интегрирования:

$$[K_c] = \lambda \int_V [B]^T [B] dV = \lambda [B]^T [B] \int_V dV = \lambda [B]^T [B] t \int_S |J| d\xi d\eta =$$

$$= \frac{\lambda [B]^T [B] t |J|}{2}, \tag{18}$$

где t — условная толщина элемента, |J|- якобиан преобразования системы координат. В случае с квадратичным треугольником, либо четырехугольным элементов или элементами более высокого порядка, произведение матриц температурных элементов выносить из-под знака нельзя.

Матрица Якоби имеет вид

$$[J] = \begin{bmatrix} \frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\ \frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta} \end{bmatrix} = \begin{bmatrix} \frac{\partial N_i}{\partial \xi} & \frac{\partial N_j}{\partial \xi} & \frac{\partial N_k}{\partial \xi} \\ \frac{\partial N_i}{\partial \eta} & \frac{\partial N_j}{\partial \eta} & \frac{\partial N_k}{\partial \eta} \end{bmatrix} \begin{bmatrix} x_i & y_i \\ x_j & y_j \\ x_k & y_k \end{bmatrix}$$
$$\left\{ \frac{\partial N_m}{\partial x} \\ \frac{\partial N_m}{\partial x} \\ \frac{\partial N_m}{\partial x} \\ \end{pmatrix} = [J]^{-1} \begin{Bmatrix} \frac{\partial N_m}{\partial \xi} \\ \frac{\partial N_m}{\partial \eta} \\ \end{Bmatrix}, \qquad m = i, j, k$$

2. Результаты

Рис.2 Поле температур Abaqus

Рис.3 Поле температур Python

Табл.1 Значения поля температур

Температуры в градусах									
Nº	Python	Abaqus	Разница	Nº	Python	Abaqus	Разница		
1	5,000000	5,000000	0,000000	51	22,688117	22,968800	0,280683		
2	5,000000	5,000000	0,000000	52	21,501385	21,763200	0,261815		
3	25,000000	25,000000	0,000000	53	20,118256	20,277800	0,159544		
4	25,000000	25,000000	0,000000	54	18,469327	18,496400	0,027073		
5	25,000000	25,000000	0,000000	55	16,554949	16,441600	0,113349		
6	25,000000	25,000000	0,000000	56	14,409959	14,155400	0,254559		
7	25,000000	25,000000	0,000000	57	12,060630	11,668000	0,392630		
8	25,000000	5,000000	20,000000	58	9,794692	9,098630	0,696062		
9	14,641157	12,082100	2,559057	59	10,082536	9,314920	0,767616		
10	23,663282	23,885800	0,222518	60	10,513076	9,674490	0,838586		
11	9,553444	9,036810	0,516634	61	11,135086	10,179000	0,956086		
12	5,000000	5,000000	0,000000	62	11,999927	10,862600	1,137327		
13	5,000000	5,000000	0,000000	63	13,096759	11,566800	1,529959		
14	5,000000	5,000000	0,000000	64	8,906112	8,132400	0,773712		
15	5,000000	5,000000	0,000000	65	7,666693	7,262280	0,404413		
16	5,000000	5,000000	0,000000	66	7,501345	7,135250	0,366095		
17	5,000000	5,000000	0,000000	67	7,962300	7,500420	0,461880		
18	5,000000	5,000000	0,000000	68	8,372065	7,812340	0,559725		
19	7,962031	7,680350	0,281681	69	7,460884	7,150470	0,310414		
20	10,760664	10,379300	0,381364	70	9,837617	8,448060	1,389557		
21	13,327107	13,032000	0,295107	71	24,514064	24,591600	0,077536		
22	15,672323	15,510500	0,161823	72	22,863039	23,076300	0,213261		
23	17,769487	17,749600	0,019887	73	21,949294	22,037500	0,088206		
24	19,590791	19,703600	0,112809	74	22,447900	22,643100	0,195200		
25	21,130598	21,343300	0,212702	75	21,283304	20,979600	0,303704		
26	22,420950	22,665800	0,244850	76	23,171794	23,408000	0,236206		
27	23,466575	23,669400	0,202825	77	20,389454	18,743600	1,645854		
28	24,249117	24,358500	0,109383	78	11,880900	8,639890	3,241010		
29	24,727484	24,768300	0,040816	79	23,420124	23,687700	0,267576		
30	24,938342	24,947600	0,009258	80	24,415351	24,518000	0,102649		
31	25,000000	25,000000	0,000000	81	19,362884	13,902900	5,459984		
32	25,000000	25,000000	0,000000	82	23,586745	23,893800	0,307055		
33	25,000000	25,000000	0,000000	83	23,950810	24,154500	0,203690		
34	25,000000	25,000000	0,000000	84	20,972376	21,332900	0,360524		
35	25,000000	25,000000	0,000000	85	20,308916	20,608600	0,299684		
36	25,000000	25,000000	0,000000	86	19,456030	19,624800	0,168770		
37	25,000000	25,000000	0,000000	87	18,809376	18,574700	0,234676		
38	25,000000	25,000000	0,000000	88	17,188710	17,227300	0,038590		
39	25,000000	25,000000	0,000000	89	15,682506	15,407200	0,275306		
40	25,000000	25,000000	0,000000	90	14,419106	13,659400	0,759706		
41	5,000000	5,000000	0,000000	91	12,106636	11,661500	0,445136		
42	16,854886	16,129700	0,725186	92	12,678665	12,304800	0,373865		
43	18,293558	18,395400	0,101842	93	13,749352	13,398800	0,350552		
44	19,388095	19,793700	0,405605	94	19,601242	19,783400	0,182158		

45	20,326917	20,754100	0,427183	95	18,123320	18,184900	0,061580
46	21,058228	21,483700	0,425472	96	15,687440	15,561100	0,126340
47	21,589181	22,086800	0,497619	97	14,387545	14,233700	0,153845
48	22,059308	22,606600	0,547292	98	15,164590	15,453100	0,288510
49	22,379834	23,072200	0,692366	99	13,726932	13,448600	0,278332
50	23,095914	23,503300	0,407386	100	16,945303	16,935400	0,009903