Notes

November 24, 2014

5.1#7

 $1 = (1-a)^n = (1-a)(1+a+a^2+\cdots+a^(n-1))$ $u-a = a(1-u^{-1}a)$ and note that $u^{-1}a = b$ is nilpotent and so (1-b) is invertible and then u-a is invertible

5.1#8

$$a + a = (a + a)^2 = a^2 + a^2 + a^2 + a^2 = a + a + a + a \to 0 = a + a$$

ring homomorphisms

for R,S commutative rings, $\varphi:R\to S$ is a ring homomorphism if

- 1. $\varphi(a+b) = \varphi(a) + \varphi(b)$
- 2. $\varphi(ab) = \varphi(a)\varphi(b)$
- 3. $\varphi(1_R) = 1_S$ (not always defined with this property, but are in this class)

prop

given that $\varphi: R \to S$ is a ring homomorphism then

- 1. $\varphi(0_R) = 0_S$
- 2. $\varphi(-a) = -\varphi(a)$ because $\varphi(0 + (-1)a) = \varphi(0) + \varphi(-1)\varphi(a)$?

def

we say the φ is a isomorphism if it is bijective

exercises

if φ is an isomorphism then φ^{-1} is also an isomorphism also composition of isomorphisms are isomorphisms (transitivity)

examples

```
i: \mathbb{C} \to \mathbb{C}[x] where i(a) = a is a ring homomorphism \mathbb{Z} \to \mathbb{Z}_n is not injective because it is an infinite set onto a finite set (pigeonhole principle) K \to K[x]/\langle f(x) \rangle where \varphi(a) = [a] K[x] \to K. Fix \alpha \in K and for each \alpha we define \varphi_{\alpha} : K[x] \to K and so \varphi_{\alpha}(f(x)) = f(\alpha) is called evaluation function.
```

def

given a ring homomorphism where $\varphi: R \to S$ then $\ker \varphi = \{x \in R : \varphi(x) = 0\}$

proposition

if R and S are commutative rings and we have φ a ring homomorphism, then

- 1. for every $a, b \in \ker \varphi$ we have that a b and a + b are also elements in $\ker \varphi$.
- 2. for every $r \in R$ and every $a \in \ker \varphi$ we have $ra \in \ker \varphi$

proof

```
1 follows because \ker \varphi is an additive subgroup of the abelian group (R,+).
2 follows because \varphi(ra) = \varphi(r)\varphi(a) = \varphi(r)\cdot 0 = 0
```

construction

two rings and a ring homomorphism $\varphi: R \to S$ and on R we define an equivalence relation $x \sim_{\varphi} y \Leftrightarrow \varphi(x) = \varphi(y)$ where [x] is the equivalence class of x where $R/\ker \varphi = \{[x]: x \in R\}$. On $R/\ker \varphi$ we have the well defined operation [x] + [y] = [x + y]

```
now we define a new operation on the set [x][y] = [xy] is this well defined?
```

```
[x] = [x'] \rightarrow \varphi(x) = \varphi(x') and similarly with y and so [x'][y'] = \varphi(x')\varphi(y') = \varphi(x)\varphi(y) = \varphi(xy) = [xy] = [x'y']
```