République blamique de Mauritanie Ministère de l'Education Nationale et de la Réforme du Système Educatif Direction des Examens et des Concours

BACCALAUREAT 2024 Session Complémentaire Epreuve: MATHEMATIQUES

Séries :Sciences Naturelles & TSGE Coefficient : 6& 4 Durée : 4h

Exercice 1 (3 points)

On considère les suites numériques (u,), (v,) et (w,) définies pour tout n e N , par :

$$u_{*} = \left(\frac{2}{3}\right)^{*}, v_{*} = \ln[(u_{*})] \text{ et } w_{*} = u_{*,1} - u_{*}.$$

Pour chacune des questions suivantes, une et une seule des réponses proposées est correcte.

No	Question	Réponse A	Réponse B	Réponse C	
1	La suite (u,) est	positive .	croissante	divergente	0,5pt 0,5pt 0,5pt 0,5pt 0,5pt
2	La valeur de v, est égale à	$\ln\left(\frac{2}{3}\right)$	2(ln2-ln3)	$\frac{2}{3}$ ln(2)	
3	La valeur de w, est égale à	4 -2/9	$\frac{2}{3}$	$\frac{2}{6}$	
4	La suite (v,) est	géométrique	urithmétique	constante	
5	Pour tout n∈N, w, = ···	$\frac{2}{3}u_{a}$	$\frac{1}{3}u_{\bullet}$	$6 -\frac{1}{3}u_{\bullet}$	
6	La somme $v_0 + v_1 + v_2 + \cdots + v_n$ en fonction de n est	$ \ln \frac{2}{3} \times \frac{n(n+1)}{2} $	$-\frac{1}{3} \times \left(\left(\frac{2}{3} \right)^{n+1} - 1 \right)$	$\frac{2}{3} \times \frac{n(n+1)}{2}$	0,5pt

Recopier sur la feuille de réponse et compléter le tableau ci-contre en choisissant la bonne réponse. Aucune justification n'est demandée.

Question no	1	2	3	4	5	6
Réponse					11	

Exercice 2 (5 points)

On considère le polynôme P défini pour tout nombre complexe z par :

$$P(z) = z^3 - (8+i)z^2 + 21z - 8 + 19i$$
.

1° a) Montrer que le nombre complexe $z_0 = -i$ est une solution de l'équation P(z) = 0

b) Déterminer les nombres complexes a et b tels que $\forall z \in \mathbb{C}$, $P(z) = (z+i)(z^2+az+b)$.

c) Résoudre, dans C, l'équation P(z) = 0.

2° Le plan complexe est rapporté à un repère orthonormé $(O; \vec{u}, \vec{v})$.

a) Placer les points A, B, C et D d'affixes respectives : $z_A = -i$, $z_B = 4 - i$, $z_C = 4 + 3i$ et $z_D = 3i$.

b) Déterminer l'affixe de chacun des milieux des segments [AC] et [BD].

c) Ecrire sous forme trigonométrique le nombre $\frac{z_c - 4 + i}{z_A - 4 + i}$ et en déduire la nature du

quadrilatère ABCD.

Baccalauréat 2024

3° a) Déterminer et construire l'ensemble Γ_i des points M, d'affixe z, tel que |z-4-3i|=|z+i|.

b) Déterminer et construire l'ensemble Γ_2 des points M, d'affixe z, tel que

$$\arg(z-4-3i)-\arg(z+i)=\frac{\pi}{2}[\pi]$$

c) Déterminer l'intersection des ensembles Γ_1 et Γ_2 .

2 (- 4+i

TA - 4+i

on Complémentaire Epreuve de Mathématiques

Séries : SN & TSGE

1 pt

0,5pt

0,5pt

0,75pt

0,5pt

0,5pt

0,5pt

0,5pt

0,25pt

Exercice 3 (6 points) 20-1+4+1+e-2	j.				
591	5)				
Soit f la fonction définie sur R par $f(x) = (x+1)(1+e^{-t})$. On note Γ sa courbe	,				
représentative dans un repère orthonormé (O; Î, Ĵ).					
1° a) Calculer $\lim_{x \to \infty} f(x)$ et $\lim_{x \to \infty} f(x)$ puis vérifier et interpréter $\lim_{x \to \infty} \frac{f(x)}{x} = +\infty$					
b) Montrer que la droite (Δ) d'équation $y = x + 1$ est une asymptote oblique à la courbe	Int				
Γ en +∞. Etudier leur position relative	1pt				
2° a) Montrer que $\forall x \in \mathbb{R}$, $f'(x) = 1 - xe^{-x}$	0,5pt				
Sachant que $\forall x \in \mathbb{R}, e' > x$, montrer que $\forall x \in \mathbb{R}, f'(x) > 0$.	0,5pt				
c) Dresser le tableau de variation de f.					
3° a) Montrer que la courbe l'admet un point d'inflexion A et préciser ses coordonnées.					
b) Montrer que Γ admet une tangente T parallèle à la droite (Δ) .					
c) Construire (Δ), T et Γ dans le repère précédent.	0,75pt				
d) Discuter graphiquement, suivant les valeurs du paramètre réel m, le nombre de	0,25pt				
Solutions de l'équation $(m-1)e^x = x+1$. $2 + 2 + 1 + 2 + 2 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3$	- 0				
Exercice 4: (6 points)					
그는 그들은 어린 이 경우에 가면서 그 사람들이 되었다.	101				
Soit (C) la courbe représentative de g dans un repère orthonormé (O;i,j).	12 km2 -2				
1°a) Etudier la continuité de g à droite de 0.	0,5pt				
b) Montrer que $\lim_{x\to 0} \frac{g(x) - g(0)}{x - 0} = 0$. Interpréter graphiquement cette limite.	0,75pt				
c) Calculer $\lim_{x\to\infty} g(x)$ et vérifier que $\lim_{x\to\infty} \frac{g(x)}{x} = +\infty$. Interpréter graphiquement.	0,75pt				
2° a) Montrer que $g'(x) = 4x \ln x$	0,5pt				
b) Dresser le tableau de variations de g.	0,5pt				
3°) Soit h la restriction de g sur l'intervalle $I = [1; +\infty[$					
a) Montrer que h est une bijection de I sur un intervalle J que l'on déterminera.	0,5pt				
b) Dresser le tableau de variation de h-1.	0,5pt				
4°a) Montrer que l'équation $g(x)=0$ admet, dans I, une unique solution α et que 1,6< α <1,7.	0,5pt				
b) Construire (C) et (C') dans le repère (O; i, j), ((C') étant la courbe de h-1).	0,5pt				
5° a) Utiliser une intégration par parties pour calculer \int_1^2 2x2 \ln xdx.	0,5pt				
b) En déduire l'aire A du domaine plan délimité par la courbe (C), la droite d'équation	, o, o pr				
y = x et les droites d'équations respectives $x = 1$ et $x = 2$.	0,5pt				
701) Fin. 54 29	Ĺ				