Complete Machine Learning Cheatsheet

Table of Contents

- 1. Types of Machine Learning Problems
- 2. <u>Supervised Learning Algorithms</u>
- 3. <u>Unsupervised Learning Algorithms</u>
- 4. Reinforcement Learning
- 5. <u>Data Preprocessing Techniques</u>
- 6. Feature Engineering
- 7. Model Evaluation Metrics
- 8. Model Selection & Validation
- 9. Common Challenges & Solutions
- 10. Deep Learning Overview

Types of Machine Learning Problems

1. Supervised Learning

Definition: Learning from labeled data to predict outcomes for new data.

Classification

- Binary Classification: Two classes (e.g., spam/not spam)
- Multi-class Classification: Multiple classes (e.g., digit recognition 0-9)
- Multi-label Classification: Multiple labels per instance

Regression

- Linear Regression: Predicting continuous values
- Non-linear Regression: Complex relationships between variables

2. Unsupervised Learning

Definition: Finding patterns in unlabeled data.

- Clustering: Grouping similar data points
- Dimensionality Reduction: Reducing feature space
- Anomaly Detection: Identifying outliers
- Association Rules: Finding relationships between variables

3. Semi-Supervised Learning

Definition: Combination of labeled and unlabeled data.

4. Reinforcement Learning

Definition: Learning through interaction with environment to maximize reward.

Supervised Learning Algorithms

Classification Algorithms

1. Logistic Regression

• **Use Case**: Binary/multi-class classification

• Pros: Simple, interpretable, probabilistic output

• Cons: Assumes linear relationship

• Key Parameters: C (regularization), solver, penalty

2. Decision Trees

• Use Case: Both classification and regression

Pros: Interpretable, handles non-linear relationships

• **Cons**: Prone to overfitting

• **Key Parameters**: max_depth, min_samples_split, criterion

3. Random Forest

Use Case: Complex classification/regression problems

Pros: Reduces overfitting, handles missing values

Cons: Less interpretable, computationally expensive

• **Key Parameters**: n_estimators, max_depth, min_samples_split

4. Support Vector Machines (SVM)

• Use Case: High-dimensional data, non-linear problems

Pros: Effective in high dimensions, memory efficient

Cons: Slow on large datasets, requires feature scaling

Key Parameters: C, kernel, gamma

5. k-Nearest Neighbors (k-NN)

• **Use Case**: Simple classification/regression

- Pros: Simple, no training phase
- Cons: Slow prediction, sensitive to feature scale
- Key Parameters: n_neighbors, weights, metric

6. Naive Bayes

- Use Case: Text classification, spam filtering
- Pros: Fast, works well with high dimensions
- Cons: Assumes feature independence
- Types: Gaussian, Multinomial, Bernoulli

7. Gradient Boosting (XGBoost, LightGBM, CatBoost)

- Use Case: Competitions, high-performance needs
- Pros: High accuracy, handles various data types
- **Cons**: Prone to overfitting, many hyperparameters
- **Key Parameters**: learning_rate, n_estimators, max_depth

Regression Algorithms

1. Linear Regression

- Use Case: Linear relationships
- Pros: Simple, interpretable
- Cons: Assumes linearity
- Variants: Ridge, Lasso, Elastic Net

2. Polynomial Regression

- **Use Case**: Non-linear relationships
- Pros: Flexible
- Cons: Prone to overfitting

3. Support Vector Regression (SVR)

- **Use Case**: Non-linear regression
- Pros: Robust to outliers
- Cons: Computationally expensive

Unsupervised Learning Algorithms

Clustering Algorithms

1. K-Means

Use Case: Well-separated spherical clusters

Pros: Fast, scalable

• **Cons**: Requires k specification, sensitive to initialization

• Key Parameters: n_clusters, init, max_iter

2. Hierarchical Clustering

• Use Case: Hierarchical data structure

Pros: No need to specify k, dendrogram visualization

Cons: Computationally expensive

• Types: Agglomerative, Divisive

3. DBSCAN

Use Case: Arbitrary shaped clusters, noise handling

• **Pros**: No need to specify k, finds outliers

Cons: Sensitive to parameters

• **Key Parameters**: eps, min_samples

4. Gaussian Mixture Models (GMM)

• **Use Case**: Soft clustering, overlapping clusters

• **Pros**: Probabilistic approach

Cons: Assumes Gaussian distribution

Dimensionality Reduction

1. Principal Component Analysis (PCA)

• Use Case: Linear dimensionality reduction

Pros: Fast, well-understood

• Cons: Linear only, loses interpretability

2. t-SNE

• **Use Case**: Visualization of high-dimensional data

Pros: Excellent for visualization

• Cons: Computationally expensive, not for new data

3. UMAP

- Use Case: General dimensionality reduction
- **Pros**: Faster than t-SNE, preserves global structure
- Cons: Many hyperparameters

4. Autoencoders

• Use Case: Non-linear dimensionality reduction

• **Pros**: Very flexible

Cons: Requires neural network training

Reinforcement Learning

Key Concepts

• Agent: The learner/decision maker

Environment: What the agent interacts with

State: Current situation

• Action: What the agent can do

Reward: Feedback from environment

Policy: Strategy for choosing actions

Common Algorithms

1. **Q-Learning**: Value-based method

2. Deep Q-Network (DQN): Q-learning with neural networks

3. **Policy Gradient**: Direct policy optimization

4. Actor-Critic: Combines value and policy methods

5. **PPO (Proximal Policy Optimization)**: Stable policy gradient

Data Preprocessing Techniques

1. Handling Missing Data

Deletion: Remove rows/columns with missing values

Imputation:

- Mean/Median/Mode imputation
- Forward/Backward fill
- KNN imputation
- MICE (Multiple Imputation)

2. Feature Scaling

• Standardization (Z-score): Mean=0, SD=1

$$z = (x - \mu) / \sigma$$

Min-Max Normalization: Scale to [0,1]

$$x_scaled = (x - min) / (max - min)$$

Robust Scaling: Using median and IQR

3. Encoding Categorical Variables

- Label Encoding: Ordinal categories
- One-Hot Encoding: Nominal categories
- Target Encoding: Based on target variable
- Binary Encoding: For high cardinality

4. Handling Imbalanced Data

- Oversampling: SMOTE, ADASYN
- **Undersampling**: Random, Tomek Links
- Class Weights: Adjust algorithm weights
- Ensemble Methods: BalancedRandomForest

5. Outlier Detection & Treatment

- Statistical Methods: Z-score, IQR
- Isolation Forest
- Local Outlier Factor (LOF)
- **Treatment**: Cap, transform, or remove

Feature Engineering

1. Feature Creation

- Polynomial Features: x², x³, x₁×x₂
- Interaction Features: Combining features
- **Domain-Specific Features**: Based on expertise

2. Feature Transformation

• Log Transformation: For skewed data

- Box-Cox Transformation: Normalize distributions
- **Binning**: Continuous to categorical

3. Feature Selection

- Filter Methods:
 - Correlation analysis
 - Chi-square test
 - Mutual information

• Wrapper Methods:

- Forward selection
- Backward elimination
- Recursive Feature Elimination (RFE)

• Embedded Methods:

- Lasso (L1) regularization
- Tree-based importance

4. Feature Extraction

- PCA: Linear combinations
- LDA: Maximizes class separation
- Autoencoders: Non-linear extraction

Model Evaluation Metrics

Classification Metrics

1. Accuracy

Accuracy =
$$(TP + TN) / (TP + TN + FP + FN)$$

2. Precision

$$Precision = TP / (TP + FP)$$

3. Recall (Sensitivity)

Recall =
$$TP / (TP + FN)$$

4. F1-Score

```
F1 = 2 × (Precision × Recall) / (Precision + Recall)
```

5. ROC-AUC

- Area Under ROC Curve
- Trade-off between TPR and FPR

6. Confusion Matrix

Visualizes TP, TN, FP, FN

Regression Metrics

1. Mean Absolute Error (MAE)

MAE =
$$(1/n) \times \Sigma |y_{true} - y_{pred}|$$

2. Mean Squared Error (MSE)

MSE =
$$(1/n) \times \Sigma(y_{true} - y_{pred})^2$$

3. Root Mean Squared Error (RMSE)

4. R² Score

$$R^2 = 1 - (SS_{res} / SS_{tot})$$

Clustering Metrics

- **Silhouette Score**: Cohesion vs separation
- Davies-Bouldin Index: Cluster similarity
- Calinski-Harabasz Index: Ratio of dispersions

Model Selection & Validation

1. Train-Test Split

- Typical split: 70-30 or 80-20
- Stratified split for imbalanced data

2. Cross-Validation

k-Fold: Data split into k folds

• Stratified k-Fold: Maintains class distribution

Leave-One-Out (LOO): k = n

• Time Series Split: For temporal data

3. Hyperparameter Tuning

• **Grid Search**: Exhaustive search

Random Search: Random combinations

Bayesian Optimization: Probabilistic model

• Genetic Algorithms: Evolutionary approach

4. Model Selection Criteria

Bias-Variance Trade-off

• Occam's Razor: Simpler is better

Cross-validation scores

• Business requirements

Common Challenges & Solutions

1. Overfitting

Symptoms: High training accuracy, low test accuracy Solutions:

- Regularization (L1, L2)
- Dropout (neural networks)
- Early stopping
- More training data
- Simpler models
- Cross-validation

2. Underfitting

Symptoms: Low training and test accuracy **Solutions**:

- More complex models
- Feature engineering
- Reduce regularization

Increase training time

3. Data Leakage

Prevention:

- Proper train-test split
- Avoid using future information
- Careful feature engineering

4. Curse of Dimensionality

Solutions:

- Feature selection
- Dimensionality reduction
- Regularization

5. Computational Constraints

Solutions:

- Feature selection
- Model simplification
- Distributed computing
- Incremental learning

Deep Learning Overview

Neural Network Basics

• **Perceptron**: Single neuron

• Multi-Layer Perceptron (MLP): Feedforward network

• Activation Functions: ReLU, Sigmoid, Tanh

Common Architectures

1. Convolutional Neural Networks (CNN)

• Use Case: Image processing

• **Key Components**: Conv layers, pooling, filters

2. Recurrent Neural Networks (RNN)

Use Case: Sequential data

Variants: LSTM, GRU

3. Transformers

Use Case: NLP, sequential data

Key Innovation: Self-attention mechanism

4. Autoencoders

Use Case: Dimensionality reduction, denoising

• **Types**: Vanilla, Variational (VAE)

5. Generative Adversarial Networks (GAN)

Use Case: Data generation

Components: Generator, Discriminator

Deep Learning Best Practices

• Batch Normalization: Stabilize training

Dropout: Prevent overfitting

Learning Rate Scheduling: Adaptive learning

Transfer Learning: Use pre-trained models

• Data Augmentation: Increase dataset size

Quick Decision Guide

Choosing an Algorithm

For Classification:

- Small dataset → Naive Bayes, SVM
- Interpretability needed → Decision Tree, Logistic Regression
- High accuracy → Ensemble methods (Random Forest, XGBoost)
- Text data → Naive Bayes, SVM, Deep Learning

For Regression:

- Linear relationship → Linear Regression
- Non-linear → Random Forest, SVR, Neural Networks
- Interpretability → Linear Regression, Decision Trees

For Clustering:

- Known k → K-Means
- Unknown k → DBSCAN, Hierarchical
- Large dataset → Mini-batch K-Means

For Dimensionality Reduction:

- Linear → PCA
- Visualization → t-SNE, UMAP
- Feature selection → Lasso, Tree importance

Performance Optimization Checklist

- 1. ✓ Data quality check
- 2. ✓ Appropriate preprocessing
- 3. ✓ Feature engineering
- 4. ✓ Algorithm selection
- 5. ✓ Hyperparameter tuning
- 6. ✓ Cross-validation
- 7. ✓ Ensemble methods
- 8. ✓ Error analysis
- 9. ✓ Business metric alignment
- 10. ✓ Model monitoring

Resources for Implementation

Python Libraries

- **General ML**: scikit-learn, XGBoost, LightGBM
- **Deep Learning**: TensorFlow, PyTorch, Keras
- Data Processing: pandas, NumPy
- Visualization: matplotlib, seaborn, plotly
- AutoML: auto-sklearn, H2O, TPOT

Key Formulas Reference

- **Bias**: E[f(x)] f(x)
- Variance: $E[(\hat{f}(x) E[\hat{f}(x)])^2]$
- Information Gain: H(parent) Σ(weighted H(children))
- **Gini Index**: 1 Σ(p_i)²

• **Entropy**: $-\Sigma(p_i \times log_2(p_i))$