Notes of DP - Bayesian Inference

1 Bayesian Inference Based on Beta-Bernoulli Distribution

2 Algorithm Setting up

The Bayesian inference process is denoted as $\mathsf{BI}(x,prior)$ taking an observed data set $x \in \mathcal{X}^n$ and a prior distribution as input, outputting a posterior distribution posterior. For conciseness, when prior is given, we use $\mathsf{BI}(x)$.

For now, we already have a prior distribution prior, an observed data set x.

2.1 Exponential Mechanism with Global Sensitivity

In exponential mechanism, candidate set R can be obtained by enumerating $y \in \mathcal{X}^n$, i.e.

$$R = \{ \mathsf{BI}(y) \mid y \in \mathcal{X}^n \}.$$

Hellinger distance H is used here to score these candidates. The utility function:

$$u(x,r) = -\mathsf{H}(\mathsf{BI}(x),r); r \in R. \tag{1}$$

Exponential mechanism with global sensitivity selects and outputs a candidate $r \in R$ with probability proportional to $exp(\frac{\epsilon u(x,r)}{2\Delta_{r}u})$:

$$P[r] = \frac{exp(\frac{\epsilon u(x,r)}{2\Delta_g u})}{\sum_{r' \in R} exp(\frac{\epsilon u(x,r')}{2\Delta_g u})},$$

where global sensitivity is calculated by:

$$\Delta_g u = \max_{\{|x',y'|\leqslant 1; x',y'\in\mathcal{X}^n\}} \max_{\{r\in R\}} |\mathsf{H}(\mathsf{BI}(x'),r) - \mathsf{H}(\mathsf{BI}(y'),r)|$$

The basic exponential mechanism is ϵ -differential privacy[1].

2.2 Exponential Mechanism with Local Sensitivity

Exponential mechanism with local sensitivity share the same candidate set and utility function as it with global sensitivity. This outputs a candidate $r \in R$ with probability proportional to $exp(\frac{\epsilon u(x,r)}{2\Delta_I u})$:

$$P[r] = \frac{exp(\frac{\epsilon u(x,r)}{2\Delta_1 u})}{\sum_{r' \in R} exp(\frac{\epsilon u(x,r')}{2\Delta_1 u})},$$

where local sensitivity is calculated by:

$$\Delta_l u(x) = \max_{\{|x,y'| \leqslant 1; y' \in \mathcal{X}^n\}} \max_{\{r \in R\}} .\mathsf{H}(\mathsf{BI}(x),r) - \mathsf{H}(\mathsf{BI}(y'),r)|$$

The exponential mechanism with local sensitivity is non differential privacy[1].

2.3 Exponential Mechanism with Smooth Sensitivity

2.3.1 Algorithm Setting Up

The candidate set and utility function are still the same as before, differ only in the sensitivity. It will output a candidate $r \in R$ with probability proportional to $\exp(\frac{\epsilon u(x,r)}{2S(x)})$:

$$P[r] = \frac{exp(\frac{\epsilon u(x,r)}{2S(x)})}{\sum_{r' \in R} exp(\frac{\epsilon u(x,r')}{2S(x)})},$$

where the sensitivity in mechanism is smooth sensitivity S(x), calculated by:

$$S_{\beta}(x) = \max(\Delta_l u(x), \max_{y \neq x; y \in D^n} (\Delta_l u(y) \cdot e^{-\beta d(x,y)})),$$

where $\beta = \beta(\epsilon, \delta)$. In our private Bayesian inference mechanism, we set the β as $\ln(1 - \frac{\epsilon}{2\ln(\frac{\delta}{2(n+1)})})$.

2.3.2 Sliding Property of Exponential Mechanism

Lemma 2.1. for any exponential mechanism $\mathcal{M}_E(x, u, \mathcal{R})$, $\lambda = f(\epsilon, \delta)$, ϵ and $|\delta| < 1$, the sliding property holds:

$$\Pr_{z \sim \mathcal{M}_E(x, u, \mathcal{R})} [u(r, x) = \hat{s}] \leqslant e^{\frac{\epsilon}{2}} \Pr_{z \sim \mathcal{M}_E(x, u, \mathcal{R})} [u(r, x) = (\Delta + \hat{s})] + \frac{\delta}{2},$$

Proof. We denote the normalizer of the probability mass in $\mathcal{M}_E(x, u, \mathcal{R})$: $\sum_{r' \in \mathcal{R}} exp(\frac{\epsilon u(r', x)}{2S(x)})$ as NL_x :

$$LHS = \Pr_{z \sim \mathcal{M}_{E}(x, u, \mathcal{R})} [u(r, x) = \hat{s}] = \frac{exp(\frac{\epsilon \hat{s}}{2S(x)})}{NL_{x}}$$

$$= \frac{exp(\frac{\epsilon(\hat{s} + \Delta - \Delta)}{2S(x)})}{NL_{x}}$$

$$= \frac{exp(\frac{\epsilon(\hat{s} + \Delta)}{2S(x)} + \frac{-\epsilon \Delta}{2S(x)})}{NL_{x}}$$

$$= \frac{exp(\frac{\epsilon(\hat{s} + \Delta)}{2S(x)})}{NL_{x}} \cdot e^{\frac{-\epsilon \Delta}{2S(x)}}.$$

By bounding the $\Delta \geqslant -S(x)$, we can get:

$$\begin{split} \frac{exp(\frac{\epsilon(\hat{s}+\Delta)}{2S(x)})}{NL_x} \cdot e^{\frac{-\epsilon\Delta}{2S(x)}} &\leqslant \frac{exp(\frac{\epsilon(\hat{s}+\Delta)}{2S(x)})}{NL_x} \cdot e^{\frac{\epsilon}{2}} \\ &= e^{\frac{\epsilon}{2}} \Pr_{z \sim \mathcal{M}_E(x,u,\mathcal{R})} [u(r,x) = (\Delta + \hat{s})] \leqslant RHS \end{split}$$

2.3.3 Dilation Property of Exponential Mechanism

Lemma 2.2. for any exponential mechanism $\mathcal{M}_E(x, u, \mathcal{R})$, $\lambda < |\beta|$, ϵ , $|\delta| < 1$ and $\beta \leq \ln(1 - \frac{\epsilon}{2\ln(\frac{\delta}{2(n+1)})})$, the dilation property holds:

$$\Pr_{r \sim \mathcal{M}_E(x, u, \mathcal{R})} [u(r) = z] \leqslant e^{\frac{\epsilon}{2}} \Pr_{r \sim \mathcal{M}_E(x, u, \mathcal{R})} [u(r) = e^{\lambda} z] + \frac{\delta}{2},$$

where the sensitivity in mechanism is still smooth sensitivity as above.

Proof. The sensitivity is always greater than 0, and we are using -H(BI(x), r) for utility function, i.e., $u(r) \leq 0$, we need to consider two cases that $\lambda < 0$, and $\lambda > 0$:

We set the
$$h(z) = Pr[u(\mathcal{M}_E(x, u, \mathcal{R})) = z] = \frac{exp(\frac{\epsilon z}{2S(x)})}{NL_x}$$

We set the
$$h(z) = Pr[u(\mathcal{M}_E(x, u, \mathcal{R})) = z] = \frac{exp(\frac{\epsilon z}{2S(x)})}{NL_x}$$
.
We first consider $\lambda < 0$. In this case, $1 < e^{\lambda}$, so the ratio $\frac{h(z)}{h(e^{\lambda}z)} = \frac{exp(\frac{\epsilon z}{2S(x)})}{exp(\frac{\epsilon(z-\epsilon^{\lambda})}{2S(x)})}$ is at most $\frac{\epsilon}{2}$.

Next, we proof the dilation property for $\lambda > 0$, The ratio of $\frac{h(z)}{h(e^{\lambda}z)}$ is $\exp(\frac{\epsilon}{2} \cdot \frac{u(\mathcal{M}_E(x,u,\mathcal{R}))(1-e^{\lambda})}{S(x)})$. Consider the event $G = \{ \mathcal{M}_E(x, u, \mathcal{R}) : u(\mathcal{M}_E(x, u, \mathcal{R})) \leq \frac{S(x)}{(1 - e^{\lambda})} \}$. Under this event, the log-ratio above is at most $\frac{\epsilon}{2}$. The probability of G under density h(z) is $1-\frac{\delta}{2}$. Thus, the probability of a given event z is at most $Pr[z \cap G] + Pr[\overline{G}] \leqslant e^{\frac{\epsilon}{2}} Pr[e^{\lambda}z \cap G] + \frac{\delta}{2} \leqslant e^{\frac{\epsilon}{2}} Pr[e^{\lambda}z] + \frac{\delta}{2}.$

Detail proof:

• $\lambda < 0$

The left hand side will always be smaller than 0 and the right hand side greater than 0. This will always holds, i.e.

• $\lambda > 0$

Because $\hat{s} = u(r)$ where $r \sim \mathcal{M}_E(x, u, \mathcal{R})$, we can substitute \hat{s} with $u(\mathcal{M}_E(x, u, \mathcal{R}))$. Then, what we need to proof under the case $\lambda > 0$ is:

$$u(\mathcal{M}_E(x, u, \mathcal{R})) \leqslant \frac{S(x)}{(1 - e^{\lambda})}$$

By applying the accuracy property of exponential mechanism, we bound the probability that the equation holds with probability:

$$Pr[u(\mathcal{M}_E(x, u, \mathcal{R})) \leq \frac{S(x)}{(1 - e^{\lambda})}] \leq \frac{|\mathcal{R}|exp(\frac{\epsilon S(x)}{(1 - e^{\lambda})}/2S(x))}{|\mathcal{R}_{OPT}|exp(\epsilon OPT_{u(x)}/2S(x))}$$

In our Bayesian Inference mechanism, the size of the candidate set \mathcal{R} is equal to the size of observed data set plus 1, i.e., n + 1, and $OPT_{u(x)} = 0$, then we have:

$$Pr[u(\mathcal{M}_E(x, u, \mathcal{R})) \leq \frac{S(x)}{(1 - e^{\lambda})}] = (n + 1)exp(\frac{\epsilon S(x)}{(1 - e^{\lambda})}/2S(x))$$
$$= (n + 1)exp(\frac{\epsilon}{2(1 - e^{\lambda})})$$

When we set $\lambda \leqslant \ln(1 - \frac{\epsilon}{2\ln(\frac{\delta}{2(n+1)})})$, it is easily to derive that $Pr[u(\mathcal{M}_E(x, u, \mathcal{R})) \leqslant \frac{S(x)}{(1-e^{\lambda})}] \leqslant \frac{\delta}{2}$.

Experimental Evaluations 3

3.1Computation Efficiency

The formula to compute the local sensitivity is presented in Sec. 2.2

References

Cynthia Dwork, Aaron Roth, et al. "The algorithmic foundations of differential privacy". In: Foundations and Trends® in Theoretical Computer Science 9.3-4 (2014), pp. 211-407.