Maturita Formalita

aneb Jak zvládnout matematiku na jedničku?

2. června 2024

Stížnosti a návrhy na vylepšení můžete zasílat na můj email:

Obsah

Úvod							
1	Mat	tematické věty a jejich důkazy	4				
	1.1	Výroková logika	4				
	1.2	Odbočka — Predikátová logika	6				
	1.3	Odbočka — Přirozená dedukce	6				

$\mathbf{\acute{U}vod}$

Sine mathematica vita nulla est (Bez matematiky život nestojí za nic).

autor neznámý

Tento text má být snaha o trochu pokročilejší nahled na elementární matematiku potřebnou k maturitě. Měl by být vhodný jak pro studenty, kteří se chtějí připravit na maturitu, tak pro ty, kteří chtějí získat hlubší porozumění matematice. Než se pustíme do vysvětlení jak tato kniha funguje, chci Vás odkázat opět na můj email, kam můžete zasílat veškeré dotazy, nejasnosti a připomínky:

jonas.vybiral.jv@gmail.com.

Bežné matematické knihy jsou psané ve formátu definice-věta-důkaz (co tyto věci znamenají se dozvíte brzy). Toto však v tomto textu naleznete pouze v omezené míře. Místo toho se budeme snažit vysvětlit matematické pojmy a věty tak, aby byly srozumitelné pro každého. Pokusím se avšak přidat nějaký nahled na to, jak by to mohlo vypadat, kdybychom se snažili být formální.

Formát knihy bude většinou následující: nejdříve se seznámíme s nějakým pojmem což bude většinou vyznačeno následujícím rámečkem:

Důležitý pojem nebo pravidlo. Rámečkům věnujte extra pozornost.

Poté čtenáři představíme nějaký příklad, který by měl ilustrovat, jak daný pojem funguje. Příklady budou vyznačeny následovně:

Příklad 0.0.1 Příklad na procvičení daného pojmu. Tento příklad bude i řešený.

Cvičení 0.0.2 Cvičení na procvičení daného pojmu.

Nápověda 0.0.2 Pokud bude cvičení náročnější budeme se snažit vždy poskytnout nápovědu aby čtenáři mohla být cesta k řešení usnadněna.

Řešení 0.0.2 Řešení cvičení. Občas bude vynecháno, aby si čtenář mohl cvičení zkusit sám. Vynechávat řešení budeme většinou jen u problémů, které už byly dostatečně procvičeny.

Kapitola 1

Matematické věty a jejich důkazy

Only prove something that already seems to be obvious.

Grant Sanderson

V této kapitole se seznámíme s některými základními pojmy a pravidly, které nám pomohou v matematickém uvažování. Základními bloky jsou pojem výrok a práce s nimi. Po zavedení těchto pojmů se seznámíme s důkazy, díky kterým můžeme ověřit správnost tvrzení.

1.1 Výroková logika

Zde se budeme pouze věnovat základní výrokové logice a na konci si lehce zmíníme něco o predikátové logice. Výroková logika je základním nástrojem matematiky, který nám umožňuje formulovat veškeré matematické tvrzení.

Výrok je tvrzení u kterého lze rozhodnout, zda je pravdivé nebo nepravdivé. Výroky budeme značit písmeny p,q,r,\ldots Pravdivost výroku budeme značit 1 a nepravdivost 0. Těmto číslům se říká pravdivostní hodnoty.

Příklad 1.1.1 Uvedeme si zde několik příkladů výroků:

- p: Venku prší.
- q: 2+2=69.
- r: Praha je hlavní město České republiky.
- s: 4 je prvočíslo.
- $t: x^2 + 1 = 0$ má reálná řešení.

Cvičení 1.1.2 Koukněte se na příklad 1.1.1 a rozhodněte, zda jsou jednotlivé výroky pravdivé nebo nepravdivé.

Řešení 1.1.2

- p: Venku prší. Špatně zapsaný výrok. Není určeno, kde se nacházíme.
- q: 2 + 2 = 69. Nepravda. 0.
- r: Praha je hlavní měs to České republiky. Pravda. 1.
- s: 4 je prvočíslo. Pravda. 1.
- $t: x^2 + 1 = 0$ má reálná řešení. Nepravda. 0.

Příklad 1.1.3 Důležité je také uvést si, co výrok není.

- Jak se máš?
- Bum!
- Pozor na psa!
- Černá je nejlepší barva. (Toto je názor, nikoliv výrok. Redakce si avšak myslí, že je to pravda.)

Ještě než se vrhneme na logické spojky, představíme si co to znamená negace výroku.

Negace nebo-li NOT výroku p je výrok, který tvrdí opak výroku p. Negaci výroku p budeme značit $\neg p$.

Příklad 1.1.4 Vezměme si výrok p: Voda v moři je slaná. Negací tohoto výroku je výrok $\neg p$: Voda v moři není slaná. Upozorňujeme, že opravdu měníme jen slovo 'je' na 'není'. Nepožíváme například 'Voda v moři je sladká'.

Cvičení 1.1.5 Opět se vraťte k příkladu 1.1.1 a určete negace jednotlivých výroků.

Řešení 1.1.5

- $\neg p$: Venku neprší.
- $\neg q: 2+2 \neq 69.$
- $\neg r$: Praha není hlavní město České republiky.
- $\neg s$: 4 není prvočíslo.
- $\neg t$: $x^2 + 1 = 0$ nemá reálná řešení.

Výroky samotné jsou sice fajn ale co s nimi dělat? K tomu nám poslouží logické spojky. Je to způsob jakým můžeme spojovat výroky do složitějších celků. Proč? Dozvíte se za chvíli.

Rozlišujeme 4 základní logické spojky:

Konjukce (\land): Konjukce nebo-li AND výroků p a q je výrok, který je pravdivý právě tehdy, když jsou pravdivé oba výroky p a q.

Disjunkce (\vee): Disjunkce nebo-li OR výroků p a q je výrok, který je pravdivý právě tehdy, když je pravdivý alespoň jeden z výroků p a q.

Implikace (\Rightarrow): Implikace nebo-li IF-THEN výroků p a q je výrok, který je nepravdivý právě tehdy, když je pravdivý výrok p a nepravdivý výrok q. V tomto případě lze nad tím přemýšlet jako nad slibem. Když mi někdo něco slíbí, tak to musí splnit, ale pokud to neslíbí, tak je jedno co udělá.

Ekvivalence (\Leftrightarrow): Ekvivalence nebo-li IF-AND-ONLY-IF výroků p a q je výrok, který je pravdivý právě tehdy, když jsou oba výroky p a q pravdivé nebo oba nepravdivé.

Pro větší přehlednost si můžete vytvořit tabulku pravdivostních hodnot pro jednotlivé logické spojky.

p	q	$p \wedge q$	$p \lor q$	$p \Rightarrow q$	$p \Leftrightarrow q$
0	0	0	0	1	1
0	1	0	1	1	0
1	0	0	1	0	0
1	1	1	1	1	1

Příklad 1.1.6 Uveď me si několik příkladů na logické spojky:

- Konjukce: $p \wedge q$: Venku prší a je teplo.
- $\bullet\,$ Disjunkce: $p\vee q$: Venku prší nebo je teplo.
- Implikace: $p \Rightarrow q$: Když prší, tak je mokro.
- \bullet Ekvivalence: $p \Leftrightarrow q$: Venku prší právě tehdy, když je mokro.

Cvičení 1.1.7 Vraťte se k příkladu 1.1.1 a zkuste si spojit výroky pomocí logických spojek.

1.2 Odbočka — Predikátová logika

Predikátová logika staví na výrokové logice a rozšiřuje ji o kvantifikátory. Ty nám umožňují mluvit o všech prvcích nějaké množiny. Základními kvantifikátory jsou:

- Univerzální kvantifikátor \forall : Výrok $\forall x \in M : P(x)$ znamená, že výrok P(x) platí pro všechny prvky množiny M.
- Existenciální kvantifikátor \exists : Výrok $\exists x \in M : P(x)$ znamená, že existuje prvek množiny M, pro který platí výrok P(x).

Toto se nám bude hodit při důkazech, kde budeme chtít mluvit o všech prvcích nějaké množiny (co je množina se také dozvíte). Negace a spojování kvantifikátorů také funguje, ale je to lehce složitější.

1.3 Odbočka — Přirozená dedukce

Jeden z formálních dokazovacích systémů je přirozená dedukce. Tento systém je založen na pravidlech, které nám umožňují odvodit nové výroky z již známých. Většina pravidel je intuitivních a vychází z toho, jak my lidé přirozeně uvažujeme.