					3)		_
$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	21 kr5+2k³r5	$\frac{i\sqrt{2}(3k^2r_5+2t_3)}{k(1+2k^2)^2r_5t_3}$	0	$\frac{6k^2r_5+4t_3}{(1+2k^2)^2r_5t_3}$
$\tau_{1^{-}\alpha}^{\#1}$	0	0	0	0	0	0	0
$\sigma_{1^-\alpha}^{\#2}$	0	0	0	0 $\frac{\sqrt{2}}{k^2 r_5 + 2k^4 r_5}$		0	$-\frac{i\sqrt{2}(3k^2r_5+2t_3)}{k(1+2k^2)^2r_5t_3}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{1}{k^2 r_5}$	$\frac{\sqrt{2}}{k^2 r_5 + 2k^4 r_5}$	0	$-\frac{2i}{kr_5+2k^3r_5}$
$\tau_{1}^{\#1}{}_{\!$	$-\frac{i\sqrt{2}}{kr_5+k^3r_5}$	$\frac{i(3k^2r_5+2t_2)}{k(1+k^2)^2r_5t_2}$	$\frac{3k^2r_5+2t_2}{(1+k^2)^2r_5t_2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{+}\alpha\beta$	$-\frac{\sqrt{2}}{k^2 r_5 + k^4 r_5}$	$\frac{3k^2r_5+2t_2}{(k+k^3)^2r_5t_2}$	$-\frac{i(3k^2r_5+2t_2)}{k(1+k^2)^2r_5t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$		$-\frac{\sqrt{2}}{k^2 r_5 + k^4 r_5}$	i √2 kr5+k³r5	0	0	0	0
	$\sigma_1^{\#1} + \alpha^{\beta}$	$\sigma_{1+}^{#2} +^{\alpha\beta}$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#_1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#_{1}} +^{\alpha}$	$\tau_1^{\#2} +^{\alpha}$

Lagrangian density $\frac{2}{3}t_3 \; \omega_{,\alpha}^{\alpha\prime} \; \omega_{\kappa\alpha}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $

$f_{1^-}^{\#2}$	0	0	0	$-\frac{2}{3}$ i k t_3	$\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$
$f_{1^{ ext{-}}\alpha}^{\#1}$	0	0	0	0	0	0	0
$\omega_{1^{-}}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	<u>t3</u> 3	0	$-\frac{1}{3}$ \bar{l} $\sqrt{2}$ kt_3
$\omega_{1}^{\#1}{}_{\alpha}$	0	0	0	$k^2 r_5 + \frac{2t_3}{3}$	$-\frac{\sqrt{2}t_3}{3}$	0	2 i k t 3 3
$f_1^{\#1} \alpha eta$	$\frac{1}{3}\vec{l}\sqrt{2}kt_2$	<u>ikt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_{1}^{\#2}{}_{+}$ $\alpha \beta$	$\frac{\sqrt{2} t_2}{3}$	[2]	$2 \left -\frac{1}{3} \overline{i} k t_2 \right $	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$k^2 r_5 + \frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_2$	0	0	0	0
	$\omega_1^{\#1} + \alpha^{eta}$	$\omega_1^{\#2} + \alpha^{\beta}$	$f_{1}^{\#1} + \alpha \beta$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1}^{\#1} \dagger^{lpha}$	$f_1^{\#2} + \alpha$

	$\omega_{0}^{\#1}$
$\omega_{0+}^{\#1} \dagger t_3 -i \sqrt{2} k t_3 = 0$	0
$f_{0+}^{\#1} \dagger i \sqrt{2} kt_3 2k^2t_3 0$	0
$f_{0+}^{#2} \dagger 0 0 0$	0
$\omega_0^{\#1} \dagger 0 0 0 k^2$	$r_2 + t_2$

	$\sigma_{0^{\text{-}}}^{\#1}$	0	0	0	$\frac{1}{k^2 r_2 + t_2}$
	$\tau_0^{\#2}$	0	0	0	0
26	$\tau_0^{\#1}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
: #	$\sigma_{0}^{\#1}$	$\frac{1}{(1+2k^2)^2t_3}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	0	0
Total #:		$\sigma_{0}^{\#1}$ †	$\tau_{0}^{\#1}$ †	$\tau_{0}^{\#2}$ †	$\sigma_{0}^{\#1}\dagger$

 $\omega_{2^{+}\alpha\beta}^{\#1} f_{2^{+}\alpha\beta}^{\#1} \omega_{2^{-}\alpha\beta\chi}^{\#1}$

0

 $f_{2}^{#1} \dagger^{\alpha\beta}$

 $\omega_2^{#1}$ † $^{\alpha\beta\chi}$

	#			С	м	М	2	2	2	26	$\tau_0^{\#1}$	$i\sqrt{2} k$ $+2k^2)^2 t$	$\frac{2k^2}{2k^2)^2t}$	0
SILS				0 ==		0 == 8					τ	- <u>i</u> -	$\frac{2k^2}{(1+2k^2)^2}$	
e constraints	SO(3) irreps	0	$i k \sigma_{0+}^{\#1} == 0$	$+2ik\sigma_{1}^{\#2}\alpha$	0 =:	$+ik \sigma_{1}^{\#2}\alpha\beta$		0 ==	0 ==	:#	$\sigma_{0}^{\#1}$	$\frac{1}{(1+2k^2)^2t_3}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	0
Source	50(3)	H	- 2	α	$t_1^{\#1\alpha} =$	$\tau_1^{\#1} \alpha \beta$	$\sigma_{2}^{\#1}\alpha\beta\chi$	$t_2^{\#1}\alpha\beta$	$\sigma_2^{\#1}{}^{\alpha\beta}$	Total		$\sigma_{0}^{\#1}$ †	$\tau_{0}^{\#1}$ †	$\tau_{0}^{\#2} +$

?	$J^P = 0^-$?
	$\bigcap_{\overline{k^{\mu}}}$?
?	,,	?

	Massive particl	le
?	Pole residue:	$-\frac{1}{r_2}$ >
$J^P = 0^-$	Polarisations:	1
k^{μ}	Square mass:	$-\frac{t_2}{r_2}$ >
?	Spin:	0
	Parity:	Odd

(No massless particles)