J	C	85	U.	S.	NTO	

	REQUEST FOR FILING	PATENT AND TRADEMARK OF APPLICATION UNDER RULE 1.5	<u>FICE</u> 53(b)	il Pro
Pursuent of CFR 1.53(b), of the pending prior PATENT Inventor: HERMON-TAYLOI Serial No. 09/091,538 Filed: September 16, 1998 For: NOVEL POLYNUCLEOTH AND THEIR USE AS DIAC Assistant Commissioner for Washington, DC 20231 Sir:	APPLICATION of: R et al. DES AND POLYPEPTIDES I BNOSTICS, VACCINES AND	ion/⊠ d∵ sional N PATHOGENIC MYCOBACTERIA O TARGETS FOR CHEMOTHERAPY	Atty Dkt.: 117-323 C# M# Date: November 6, 2000 Group: 1645 Examiner: R. Baskar	Jee13 U.S.
Inventor(s): HERMON-TAYL	OR et al.	following named inventor(s) (using	ŕ	
and drawings (if any) and complete the prior applic Priority is hereby claimed	l abstract (if any). No amo ation introduced new matt	d on the following foreign applicati n:	e Oath or Declaration filed to ons, the entire content of w	to hich is
9526178.0 PCT/GB96/03221 ⊠ certified copy(ies) of f □ already filed on	oreign application(s) attac	Country Great Britain PCT hed or n prior appln. no.	Day/Month/Year/Filed 21 December 1995 23 December 1996 filed	<u>[</u>
already filed in 09/09	91,538	filed	Septemer 16, 1998	
Please amend the specific Provisional Application Napplication.— The prior application is as Power of Attorney has be Rd., 8 th Floor, Arlington, Naddress all future common Please amend the specific 09/091,538, filed Septem 23, 1996 the entire contermon "Small entity" statement of Petition filed in prior application filed in prior application. Please enter the attached	cation by inserting before o. , filed , the ssigned to St. George's Hoten granted to B.J. Sadoff of A 22201. Inications to: Nixon & Varication by inserting before ber 16, 1998, now pending nt of which is hereby incomore frecord. "Small encation to extend its life to is directed to the prior art	the first line: This application of entire content of which is hereby in paper and the content of which is hereby in paper and the first line This is a divisional of g, which is a 371 application of PC apporated by reference in this application, statement attached.	laims the benefit of U.S. incorporated by reference in vanderhye P.C., 1100 N. G. 8 th Floor, Arlington, VA 22. of application Serial No. CT/GB96/03221, filed December 10. cation	ilebe 201. The interpretation of the interpr
new application and is he	reby incorporated by refe	rence therein. AS FILED LESS ANY HEREWIT		IIS
Basic Filing Fee Total effective claims 23 Independent claims 4 If any proper multiple dependent	- 20 (at least 20) = - 3 (at least 3) = nt claims now added for firs	3 x \$ 18.00 1 x \$ 80.00 ttime, add \$270.00 (ignore imprope	\$ \$ er) \$ 2	710.00 54.00 80.00 270.00 114.00

Basic Filing Fee		\$	710.00
Total effective claims	23 - 20 (at least 20) = 3 x \$ 18.00	\$	54.00
Independent claims	$4 - 3 \text{ (at least 3)} = 1 \times \80.00	\$	80.00
If any proper multiple de	pendent claims now added for first time, add \$270.00 (ignore improper)	\$	270.00
If the second section is	1.15/4/0\ 6 14 4 1	SUBTOTAL \$	1,114.00
If "small entity," then ent	-\$(0.00)	
Assissant Deserving - F	SECON	ID SUBTOTAL \$	1,114.00
Assignment Recording F	ee (\$40.00)	\$	0.00
	TOTAL FE	E ENCLOSED \$	1,114.00

Any future submission requiring an extension of time is hereby stated to include a petition for such time extension. The Commissioner is hereby authorized to charge any <u>deficiency</u> in the fee(s) filed, or asserted to be filed, or which should have been filed herewith (or with any paper hereafter filed in this application by this firm) to our **Account No. 14-**1140. A duplicate copy of this sheet is attached.

1100 North Glebe Road, 8th Floor Arlington, Virginia 22201-4714 Telephone: (703) 816-4000 Facsimile: (703) 816-4100

BJS:jls

NIXON & VANDERHYE P.C.

By Atty: B.J. Sadoff, Reg. No. 36,663

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of

HERMON-TAYLOR et al. Atty. Ref.: 117-323

Divisional of Serial No. 09/091,538 Group: Unassigned

Filed: Herewith Examiner: Unassigned

For: NOVEL POLYNUCLEOTIDES AND POLYPEPTIDES IN PATHOGENIC MYCOBACTERIA AND THEIR USE AS DIAGNOSTICS, VACCINES AND TARGETS

FOR CHEMOTHERAPY

* * * * * * * * * *

November 6, 2000

Assistant Commissioner for Patents Washington, DC 20231

PRELIMINARY AMENDMENT

Sir:

Entry and consideration of the following amendments and remarks are requested.

IN THE SPECIFICATION:

Amend the specification as follows.

Insert the attached Sequence Listing after the claims pages.

IN THE CLAIMS:

Amend the claims as follows.

Cancel claims 2, 3, 16 and 17, without prejudice.

4. (Amended) A polynucleotide in substantially isolated form which encodes a polypeptide according to <u>claim 1</u> [any one of claims 1 to 3].

- 8. (Amended) A polynucleotide probe which comprises a fragment of at least 15 nucleotides of a polynucleotide as defined in <u>claim 5</u> [any one of claims 4 to 7], optionally carrying a revealing label.
- 9. (Amended) A recombinant vector carrying a polynucleotide as defined in <u>claim 5</u> [any one of claims 4 to 7].
- 10. (Amended) An antibody capable of binding a polypeptide or fragment thereof as defined in <u>claim 1</u> [any one of claims 1 to 3].
- 12. (Amended) A test kit for detecting the presence or absence of a pathogenic mycobacterium in a sample which comprises a polynucleotide according to claim 4 [any one of claims 4 to 8], a polypeptide according to claim 1 [any one of claims 1 to 3], a polypeptide which comprises a sequence selected from the sequences of Seq.ID.No: 31, 33, 35, 37 and 39 or a polypeptide substantially homogolous thereto, or an antibody according to claim 10 [, any one of claims 10 or 11].
- 13. (Amended) A method of detecting the presence or absence of antibodies in an animal or human, against a pathogenic mycobacteria in a sample which comprises:
- (a) providing a polypeptide according to [any one of claims 1 to 3] <u>claim 1</u> or a polypeptide which comprises a sequence selected from the sequences of Seq.ID.No: 31, 33, 35, 37 and 39 or a polypeptide substantially homogolous thereto, which comprises an epitope;
- (b) incubating a biological sample with said polypeptide under conditions which allow for the formation of an antibody—antigen complex; and
- (c) determining whether antibody-antigen complex comprising said polypeptide is formed.
- 14. (Amended) A method of detecting the presence or absence of a polypeptide according to [any one of claims 1 to 3] <u>claim 1</u> or a polypeptide which comprises a sequence

selected from the sequences of Seq.ID.No: 31, 33, 35, 37 and 39 or a polypeptide substantially homogolous thereto in a biological sample which method which comprises:

- (a) providing an antibody according to claim 10 [any one of claims 10 and 11];
- (b) incubating a biological sample with said antibody under conditions which allow for the formation of an antibody-antigen complex; and
 - (c) determining whether antibody-antigen complex comprising said antibody is formed.
- 15. (Amended) A method of detecting the presence or absence of cell mediated immune reactivity in an animal or human, to a polypeptide according to <u>claim 1</u> [claims 1 to 3] or a polypeptide which comprises a sequence selected from the sequences of Seq.ID.No: 31, 33, 35, 37 and 39 or a polypeptide substantially homogolous thereto, which method comprises
- (a) providing a polypeptide according to <u>claim 1</u> [any one of claims 1 to 3] or a polypeptide which comprises a sequence selected from the sequences of Seq.ID.No: 31, 33, 35, 37 and 39 or a polypeptide substantially homogolous thereto, which comprises an epitope;
- (b) incubating a cell sample with said polypeptide under conditions which allow for a cellular immune response such as release of cytokines or other mediator or reaction to occur; and
- (c) detecting the presence of said cytokine or mediator or cellular response in the incubate.
- 18. (Amended) A method of treating or preventing mycobacterial disease in an animal or human caused by mycobacteria which express a polypeptide according to [claims 1 to 3] claim 1 or a polypeptide which comprises a sequence selected from the sequences of Seq.ID.No: 31, 33, 35, 37 and 39 or a polypeptide substantially homogolous thereto, which method comprises vaccinating or treating an animal or human with an effective amount of said polypeptide.

- 19. (Amended) A method of treating or preventing mycobacterial diseases in animals or humans caused by mycobacteria containing the polynucleotide of Seq.ID.No: 3 or 4, which method comprises vaccinating or treating an animal or human with an effective amount of a polynucleotide according to claim 4 [claims 4 to 7], a vector according to claim 9 or a polynucleotide which encodes a polypeptide which comprises a sequence selected from the sequences of Seq.ID.No: 31, 33, 35, 37 and 39 or a polypeptide substantially homogolous thereto.
- 20. (Amended) A method according to <u>claim 18</u> [claims 18 or 19] for increasing the in vivo susceptibility of mycobacteria to antimicrobial drugs.
- 21. (Amended) A normally pathogenic mycobacterium, whose pathogenicity is mediated in all or in part by the presence or the expression of a polypeptide as defined in [any one of claims 1 to 3] claim 1 or a polypeptide which comprises a sequence selected from the sequences of Seq.ID.No: 31, 33, 35, 37 and 39 or a polypeptide substantially homogolous thereto, which mycobacterium harbours an attenuating mutation in a gene encoding one of the said polypeptides.

REMARKS

The claims have been amended to reduce the filing fees and delete improper multiple dependencies.

The specification has been amended to include a Sequence Listing, a copy of which was filed in the parent Application No.09/091,538. The attached paper copy of the Sequence Listing is the same as the paper and computer readable copies of the Sequence Listing submitted in Application No. 09/091,538. The Office is requested to use the computer readable form of the Sequence Listing in the parent Application No. 09/091,538, in the present application. A separate Request to this effect is attached. No new matter has been added.

Last the west such as the such

An early and favorable Action on the merits is requested.

Respectfully submitted,

NIXON & VANDERHYE P.C.

By:

B.J. Sadoff Reg. No. 36,663

BJS:rdw 1100 North Glebe Road, 8th Floor Arlington, VA 22201-4714

Telephone: (703) 816-4091 Facsimile: (703) 816-4100

Novel polynucleotides and polypeptides in pathogenic mycobacteria and their use as diagnostics, vaccines and targets for chemotherapy.

This invention relates to the novel polynucleotide sequence we 5 have designated "GS" which we have identified in pathogenic mycobacteria. GS is a pathogenicity island within 8kb of DNA comprising a core region of 5.75kb and an adjacent transmissable element within 2.25kb. GS is contained within Mycobacterium paratuberculosis, Mycobacterium avium subsp. silvaticum and some pathogenic isolates of M.avium. Functional portions of the core region of GS are also represented by regions with a high degree of homology that we have identified in cosmids containing genomic DNA from Mycobacterium tuberculosis.

Background to the invention 15

Mycobacterium tuberculosis (Mtb) is a major cause of global diseases of humans as well as animals. Although conventional methods of diagnosis including microscopy, culture and skin testing exist for the recognition of these diseases, improved 20 methods particularly new immunodiagnostics and DNA-based detection systems are needed. Drugs used to treat tuberculosis are increasingly encountering the problem of resistant organisms. New drugs targeted at specific pathogenicity determinants as well as new vaccines for the prevention and treatment of tuberculosis are required. The importance of Mtb as a global pathogen is reflected in the commitment being made to sequencing the entire genome of this organism. This has generated a large amount of DNA sequence data of genomic DNA within cosmid and other libraries. Although the DNA sequence is known in the art, the 30 functions of the vast majority of these sequences, the proteins they encode, the biological significance of these proteins, and the overall relevance and use of these genes and their products as diagnostics, vaccines and targets for chemotherapy for tuberculous disease, remains entirely unknown.

35 Mycobacterium avium subsp.silvaticum (Mavs) is a pathogenic mycobacterium causing diseases of animals and birds, but it can

also affect humans. Mycobacterium paratuberculosis (Mptb) causes chronic inflammation of the intestine in many species of animals including primates and can also cause Crohn's disease in humans. Mptb is associated with other chronic inflammatory diseases of humans such as sarcoidosis. Subclinical Mptb infection is widespread in domestic livestock and is present in milk from The organism is more resistant to infected animals. pasteurisation than Mtb and can be conveyed to humans in retail Mptb is also present in water supplies, milk supplies. particularly those contaminated with run-off from heavily grazed pastures. Mptb and Mavs contain the insertion elements IS900 and IS902 respectively, and these are linked to pathogenicity in IS900 and IS902 provide convenient highly these organisms. specific multi-copy DNA targets for the sensitive detection of 15 these organisms using DNA-based methods and for the diagnosis of infections in animals and humans. Much improvement is however required in the immunodiagnosis of Mptb and Mavs infections in animals and humans. Mptb and Mavs are in general, resistant in vivo to standard anti-tuberculous drugs. Although substantial 20 clinical improvements in infections caused by Mptb, such as Crohn's disease, may result from treatment of patients with combinations of existing drugs such as Rifabutin, Clarithromycin additional effective drug treatments are or Azithromycin, Furthermore, there is an urgent need for effective required. vaccines for the prevention and treatment of Mptb and Mavs infections in animals and humans based upon the recognition of specific pathogenicity determinants.

Pathogenicity islands are, in general, 7-9kb regions of DNA comprising a core domain with multiple ORFs and an adjacent 30 transmissable element. The transmissable element also encodes proteins which may be linked to pathogenicity, such as by providing receptors for cellular recognition. Pathogenicity islands are envisaged as mobile packages of DNA which, when they enter an organism, assist in bringing about its convertion faca a non-disease-causing to a disease-causing strain.

Description of the Drawings

20

25

30

Figure 1(a) and (b) shows a linear map of the pathogenicity island GS in Mavs (Fig la) and in Mptb (Fig lb). The main open reading frames are illustrated as ORFs A to H. ORFs A to F are found within the core region of GS. ORFs G and H are encoded by the adjacent transmissable element portion of GS.

Disclosure of the invention

Using a DNA-based differential analysis technology we have discovered and characterised a novel polynucleotide in Mptb (isolates 0022 from a Guernsey cow and 0021 from a red deer). This polynucleotide comprises the gene region we have designated GS is found in Mptb using the identifier DNA sequences Seq.ID.No 1 and 2 where the Seq.ID No2 is the complementary sequence of Seq.ID No 1. GS is also identified in Mavs. complete DNA sequence incorporating the positive strand of GS 15 from an isolate of Mavs comprising 7995 nucleotides, including the core region of GS and adjacent transsmissable element, is qiven in Seq.ID No.3. DNA sequence comprising 4435 bp of the positive strand of GS obtained from an isolate of Mptb including the core region of GS (nucleotides 1614 to 6047 of GS in Mavs) is given in Seq.ID No 4. The DNA sequence of GS from Mptb is highly (99.4%) homologous to GS in Mavs. The remaining portion of the DNA sequence of GS in Mptb, is readily obtainable by a person skilled in the art using standard laboratory procedures. The entire functional DNA sequence including core region and transmisable element of GS in Mptb and Mavs as described above, comprise the polynucleotide sequences of the invention.

There are 8 open reading frames (ORFs) in GS. Six of these designated GSA, GSB, GSC, GSD, GSE and GSF are encoded by the core DNA region of GS which, characteristically for a pathogenicity island, has a different GC content than the rest of the microbial genome. Two ORFs designated GSG and GSH are encoded by the transmissable element of GS whose GC content resembles that of the rest of the mycobacterial genome. The ORF GSH comprises two sub-ORFs H₁ H₂ on the complementary DNA strand linked by a programmed frameshifting site so that a single polypeptide is translated from the ORF GSH. The nucleotide

20

25

30

23.

sequences of the 8 ORFs in GS and their translations are shown in Seq. ID No 5 to Seq. ID No 29 as follows:

- Seq. ID No 5 Nucleotides 50 to 427 of GS from Mavs ORF A: Seq. ID No 6 Amino acid sequence encoded by Seq. ID No 5.
 - Seq. ID No 7 Nucleotides 772 to 1605 of GS from Mavs ORF B: Seq. ID No 8 Amino acid sequence encoded by Seq. ID No 7.
- Seq. ID No 9 Nucleotides 1814 to 2845 of GS from Mavs ORF C: Seq. ID No 10 Amino acid sequence encoded by Seq. ID No 10 9. Seq. ID No 11 Nucleotides 201 to 1232 of GS from Mptb Seq. ID No 12 Amino acid sequence encoded by Seq. ID No 11
- Seq. ID No 13 Nucleotides 2785 to 3804 of GS from Mavs 15 ORF D: Seq. ID No 14 Amino acid sequence encoded by Seq. ID No 13. Seq. ID No 15 Nucleotides 1172 to 2191 of GS from Mptb Seq. ID No 16 Amino acid sequence encoded by Seq.ID No 15.
 - Seq. ID No 17 Nucleotides 4080 to 4802 of GS from Mavs ORF E: Seq. ID No 18 Amino acid sequence encoded by Seq. ID No 17. Seq. ID No 19 Nucleotides 2467 to 3189 of GS from Mptb Seq. ID No 20 Amino acid sequence encoded by Seq.ID No 19.
 - Seq. ID No 21 Nucleotides 4947 to 5747 of GS from Mavs ORF F: Seq. ID No 22 Amino acid sequence encoded by Seq. To No 21. Seq. ID No 23 Nucleotides 3335 to 4135 of GS from Mptb Seq. ID No 24 Amino acid sequence encoded by Seq.ID Mo

- 5 -

ORF G: Seq. ID No 25 Nucleotides 6176 to 7042 of GS from Mavs Seq. ID No 26 Amino acid sequence encoded by Seq.ID No 25.

ORF H: Seq.ID No 27 Nucleotides 7953 to 6215 from Mavs.

5 ORF H_1 : Seq.ID No 28 Amino acid sequence encoded by nucleotides 7953 to 7006 of Seq.ID No 27

ORF $\rm H_2$: Seq.ID No 29 Amino acid sequence encoded by nucleotides 7009 to 6215 of Seq.ID No 27

The polynucleotides in Mtb with homology to the ORFs B, C, E and 10 F of GS in Mptb and Mavs, and the polypeptides they are now known to encode as a result of our invention, are as follows:

ORF B: Seq.ID No 30 Cosmid MTCY277 nucleotides 35493 to 34705

Seq.ID No 31 Amino acid sequence encoded by Seq.ID No30.

ORF C: Seq.ID No 32 Cosmid MTCY277 nucleotides 31972 to 32994 Seq.ID No 33 Amino acid sequence encoded by Seq.ID No32.

ORF E: Seq.ID No 34 Cosmid MTCY277 nucleotides 34687 to 33956

Seq.ID No 35 Amino acid sequence encoded by Seq.ID

No34.

ORF E: Seq.ID No 36 Cosmid MTO24 nucleotides 15934 to 15203 Seq.ID No 37 Amino acid sequence encoded by Seq.ID No36.

25 ORF F: Seq.ID No38 Cosmid MTO24 nucleotides 15133 to 14306 Seq.ID No 39 Amino acid sequence encoded by Seq.ID No38.

The proteins and peptides encoded by the ORFs A to H in Mptb and Mavs and the amino acid sequences from homologous genes we have

20

discovered in Mtb given in Seq.ID Nos 31, 33, 35, 37 and 39, as described above and fragments thereof, comprise the polypeptides of the invention. The polypeptides of the invention are believed to be associated with specific immunoreactivity and with the pathogenicity of the host micro-organisms from which they were obtained.

The present invention thus provides a polynucleotide in substantially isolated form which is capable of selectively hybridising to sequence ID Nos 3 or 4 or a fragment thereof. The polynucleotide fragment may alternatively comprise a sequence selected from the group of Seq.ID.No: 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25 and 27. The invention further provides a polynucleotide in substantially isolated form whose sequence consists essentially of a sequence selected from the group Seq ID Nos. 30, 32, 34, 36 and 38, or a corresponding sequence selectively hybridizable thereto, or a fragment of said sequence or corresponding sequence.

The invention further provides diagnostic probes such as a probe which comprises a fragment of at least 15 nucleotides of a polynucleotide of the invention, or a peptide nucleic acid or similar synthetic sequence specific ligand, optionally carrying a revealing label. The invention also provides a vector carrying a polynucleotide as defined above, particularly an expression vector.

The invention further provides a polypeptide in substantially isolated form which comprises any one of the sequences selected from the group consisting Seq.ID.No: 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 29, 31, 33, 35, 37 and 39, or a polypeptide substantially homologous thereto. The invention additionally provides a polypeptide fragment which comprises a fragment of a polypeptide defined above, said fragment comprising at least 10 amino acids and an epitope. The invention also provides polynucleotides in substantially isolated form which encode polypeptides of the invention, and vectors which comprise such polynucleotides, as well as antibodies capable of binding such polypeptides. In an additional aspect, the invention provides

25

30

kits comprising polynucleotides, polypeptides, antibodies or synthetic ligands of the invention and methods of using such kits in diagnosing the presence or absence of mycobacteria in a The invention also provides pharmaceutical compositions comprising polynucleotides of the invention, polypeptides of the invention or antisense probes and the use of such compositions treatment or prevention of diseases caused by The invention also provides polynucleotihe mycobacteria. prevention and treatment of infections due to GS-containing pathogenic mycobacteria in animals and humans and as a means of enhacing in vivo susceptibility of said mycobacteria to antimicrobial drugs. The invention also provides bacteria or viruses transformed with polynucleotides of the invention for use as vaccines. The invention further provides Mptb or Mavs which all or part or the polynucleotides of the invention have been deleted or disabled to provide mutated organisms of lower pathogenicity for use as vaccines in animals and humans. invention further provides Mtb in which all or part of the polynucleotides encoding polypeptides of the invention have been deleted or disabled to provided mutated organisms or lower pathogenicity for use as vaccines in animals and humans.

A further aspect of the invention is our discovery of homologies between the ORFs B, C and E in GS on the one hand, and Mtb cosmid MTCY277 on the other (data from Genbank database using the tomputer programmes BLAST and BLIXEM). The homologous ORFs in MTCY277 are adjacent to one another consistent with the form of another pathogenicity island in Mtb. A further aspect of the invention is our discovery of homologies between ORFs E and F in GS, and Mtb cosmid MTO24 (also Genbank, as above) with the homologous ORFs close to one another. The use of polynucleotides and polypeptides from Mtb (Seq. ID Nos 30,31, 32, 33, 34, 35, 36, 37, 38 and 39) in substantially isolated form as diagnostics, vaccines and targets for chemotherapy, for the management and prevention of Mtb infections in humans and animals, and the processes involved in the preparation and use of these diagnostics, vaccines and new chemotherapeutic agents, comprise further aspects of the invention.

Detailed description of the invention.

A. Polynucleotides

Polynucleotides of the invention as defined herein may comprise DNA or RNA. They may also be polynucleotides which include within them synthetic or modified nucleotides or peptide nucleic acids. A number of different types of modification to oligonucleotides are known in the art. These include methylphosphonate and phosphorothicate backbones, addition of acridine or polylysine chains at the 3' and/or 5' ends of the molecule. For the purposes of the present invention, it is to be understood that the polynucleotides described herein may be modified by any method available in the art. Such modifications may be carried out in order to couple the said polynucleotide to a solid phase or to enhance the recognition, the in vivo activity, or the lifespan of polynucleotides of the invention.

A number of different types of polynucleotides of the invention are envisaged. In the broadest aspect, polynucleotides and fragments thereof capable of hybridizing to SEQ ID NO:3 or 4 form a first aspect of the invention. This includes the polynucleotide of SEQ ID NO: 3 or 4. Within this class of polynucleotides various sub-classes of polynucleotides are of particular interest.

One sub-class of polynucleotides which is of interest is the class of polynucleotides encoding the open reading frames A, B, C, D, E, F, G and H, including SEQ ID NOs:5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25 and 27. As discussed below, polynucleotides encoding ORF H include the polynucleotide sequences 7953 to 7006 and 7009 to 6215 within SEQ ID NO: 27, as well as modified sequences in which the frame-shift has been modified so that the two sub-reading frames are placed in a single reading frame. This may be desirable where the polypeptide is to be produced in recombinant expression systems.

The invention thus provides a polynucleotide in substantially isolated form which encodes any one of these ORFs or combinations

25

30

thereof. Combinations thereof includes combinations of 2, 3, 4, Polynucleotides may be provided which 5 or all of the ORFs. comprise an individual ORF carried in a recombinant vector including the vectors described herein. Thus in one preferred 5 aspect the invention provides a polynucleotide in substantially isolated form capable of selectively hybridizing to the nucleic acid comprising ORFs A to F of the core region of the Mptb and Mavs pathogenicity islands of the invention. Fragments thereof corresponding to ORFs A to E, B to F, A to D, B to E, A to C, B to D or any two adjacent ORFs are also included in the invention.

Polynucleotides of the invention will be capable of selectively hybridizing to the corresponding portion of the GS region, or to the corresponding ORFs of Mtb described herein. "selectively hybridizing" indicates that the polynucleotides will 15 hybridize, under conditions of medium to high stringency (for example 0.03 M sodium chloride and 0.03 M sodium citrate at from about 50°C to about 60°C) to the corresponding portion of SEQ ID NO:3 or 4 or the complementary strands thereof but not to genomic DNA from mycobacteria which are usually non-pathogenic including 20 non-pathogenic species of M.avium. Such polynucleotides will generally be generally at least 68%, e.g. at least 70%, preferably at least 80 or 90% and more preferably at least 95% homologous to the corresponding DNA of GS. The corresponding portion will be of over a region of at least 20, preferably at least 30, for instance at least 40, 60 or 100 or more contiguous nucleotides.

By "corresponding portion" it is meant a sequence from the GS region of the same or substantially similar size which has been determined, for example by computer alignment, to have the greatest degree of homology to the polynucleotide.

Any combination of the above mentioned degrees of homology and minimum sizes may be used to define polynucleotides of the invention, with the more stringent combinations (i.e. higher homology over longer lengths) being preferred. Thus for example a polynucleotide which is at least 80% homologous over 25, preferably 30 nucleotides forms one aspect of the invention, as

- 10 -

does a polynucleotide which is at least 90% homologous over 40 nucleotides.

A further class of polynucleotides of the invention is the class of polynucleotides encoding polypeptides of the invention, the polypeptides of the invention being defined in section B below. Due to the redundancy of the genetic code as such, polynucleotides may be of a lower degree of homology than required for selective hybridization to the GS region. However, when such polynucleotides encode polypeptides of the invention these polynucleotides form a further aspect. It may for example be desirable where polypeptides of the invention are produced recombinantly to increase the GC content of such polynucleotides. This increase in GC content may result in higher levels of expression via codon usage more appropriate to the host cell in which recombinant expression is taking place.

An additional class of polynucleotides of the invention are those obtainable from cosmids MTCY277 and MT024 (containing Mtb genomic sequences), which polynucleotides consist essentially of the fragment of the cosmid containing an open reading frame encoding any one of the homologous ORFs B, C, E or F respectively. Such polynucleotides are referred to below as Mtb polynucleotides. However, where reference is made to polynucleotides in general such reference includes Mtb polynucleotides unless the context In addition, the invention is explicitly to the contrary. provides polynucleotides which encode the same polypeptide as the abovementioned ORFs of Mtb but which, due to the redundancy of the genetic code, have different nucleotide sequences. form further Mtb polynucleotides of the invention. Fragments of Mtb polynucleotides suitable for use as probes or primers also form a further aspect of the invention.

The invention further provides polynucleotides in substantially isolated form capable of selectively hybridizing (where selectively hybridizing is as defined above) to the Mtb polynucleotides of the invention.

20

25

35

The invention further provides the Mtb polynucleotides of the at either the 5' invention linked, and/or 3' polynucleotide sequences to which they are not naturally contiguous. Such sequences will typically be sequences found in 5 cloning or expression vectors, such as promoters, 5' untranslated sequence, 3' untranslated sequence or termination sequences. The sequences may also include further coding sequences such as signal sequences used in recombinant production of proteins.

Further polynucleotides of the invention are illustrated in the 10 accompanying examples.

Polynucleotides of the invention may be used to produce a primer, e.q. a PCR primer, a primer for an alternative amplification reaction, a probe e.g. labelled with a revealing label by conventional means using radioactive or non-radioactive labels or a probe linked covalently to a solid phase, or the may be cloned into vectors. Such primers, polynucleotides probes and other fragments will be at least 15, preferably at least 20, for example at least 25, 30 or 40 or more nucleotides in length, and are also encompassed by the term polynucleotides of the invention as used herein.

Primers of the invention which are preferred include primers directed to any part of the ORFs defined herein. The ORFs from other isolates of pathogenic mycobacteria which contain a GS region may be determined and conserved regions within each individual ORF may be identified. Primers directed to such conserved regions form a further preferred aspect of the In addition, the primers and other polynucleotides invention. of the invention may be used to identify, obtain and isolate ORFs capable of selectively hybridizing to the polynucleotides of the 30 invention which are present in pathogenic mycobacteria but which are not part of a pathogenicity island in that particular species of bacteria. Thus in addition to the ORFs B, C, E and F which have been identified in Mtb, similar ORFs may be identified in other pathogens and ORFs corresponding to the GS ORFs C, D, E, F and H, may also be identified.

Polynucleotides such as DNA polynucleotides and probes according to the invention may be produced recombinantly, synthetically, or by any means available to those of skill in the art. They may also be cloned by standard techniques.

In general, primers will be produced by synthetic means, involving a step-wise manufacture of the desired nucleic acid sequence one nucleotide at a time. Techniques for accomplishing this using automated techniques are readily available in the art. Longer polynucleotides will generally be produced using 10 recombinant means, for example using a PCR (polymerase chain reaction) cloning techniques. This will involve making a pair or primers (e.g. of about 15-30 nucleotides) to a region of GS, which it is desired to clone, bringing the primers into contact with genomic DNA from a mycobacterium or a vector carrying the 15 GS sequence, performing a polymerase chain reaction under conditions which bring about amplification of the desired region, isolating the amplified fragment (e.g. by purifying the reaction mixture on an agarose gel) and recovering the amplified DNA. The primers may be designed to contain suitable restriction enzyme recognition sites so that the amplified DNA can be cloned into a suitable cloning vector.

Such techniques may be used to obtain all or part of the GS or ORF sequences described herein, as well as further genomic clones containing full open reading frames. Although in general such techniques are well known in the art, reference may be made in particular to Sambrook J., Fritsch EF., Maniatis T (1989). Molecular cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, New York, Cold Spring Harbor Laboratory.

Polynucleotides which are not 100% homologous to the sequences 30 of the present invention but fall within the scope of the invention can be obtained in a number of ways.

Other isolates or strains of pathogenic mycobacteria will be expected to contain allelic variants of the GS sequences described herein, and these may be obtained for example by probing genomic DNA libraries made from such isolates or strains

- 13 -

of bacteria using GS or ORF sequences as probes under conditions of medium to high stringency (for example 0.03M sodium chloride and 0.03M sodium citrate at from about 50°C to about 60°C).

A particularly preferred group of pathogenic mycobacteria are isolates of *M.paratuberculosis*. Polynucleotides based on GS regions from such bacteria are particularly preferred. Preferred fragments of such regions include fragments encoding individual open reading frames including the preferred groups and combinations of open reading frames discussed above.

Alternatively, such polynucleotides may be obtained by site 10 directed mutagenesis of the GS or ORF sequences or allelic variants thereof. This may be useful where for example silent codon changes are required to sequences to optimise codon for a particular host which cell in preferences polynucleotide sequences are being expressed. Other sequence changes may be desired in order to introduce restriction enzyme recognition sites, or to alter the property or function of the polypeptides encoded by the polynucleotides of the invention. Such altered property or function will include the addition of amino acid sequences of consensus signal peptides known in the art to effect transport and secretion of the modified polypeptide Another altered property will include of the invention. metagenesis of a catalytic residue or generation of fusion proteins with another polypeptide. Such fusion proteins may be with an enzyme, with an antibody or with a cytokine or other ligand for a receptor, to target a polypeptide of the invention to a specific cell type in vitro or in vivo.

The invention further provides double stranded polynucleotides comprising a polynucleotide of the invention and its complement.

Polynucleotides or primers of the invention may carry a revealing label. Suitable labels include radioisotopes such as ³²P or ³⁵S, enzyme labels, other protein labels or smaller labels such as biotin or fluorophores. Such labels may be added to polynucleotides or primers of the invention and may be detected using by techniques known per se.

35

- 14 -

Polynucleotides or primers of the invention or fragments thereof labelled or unlabelled may be used by a person skilled in the art in nucleic acid-based tests for the presence or absence of Mptb, Mavs, other GS-containing pathogenic mycobacteria, or Mtb applied to samples of body fluids, tissues, or excreta from animals and humans, as well as to food and environmental samples such as river or ground water and domestic water supplies.

Human and animal body fluids include sputum, blood, serum, plasma, saliva, milk, urine, csf, semen, faeces and infected discharges. Tissues include intestine, mouth ulcers, skin, lymph nodes, spleen, lung and liver obtained surgically or by a biopsy technique. Animals particularly include commercial livestock such as cattle, sheep, goats, deer, rabbits but wild animals and animals in zoos may also be tested.

Such tests comprise bringing a human or animal body fluid or tissue extract, or an extract of an environmental or food sample, into contact with a probe comprising a polynucleotide or primer of the invention under hybridising conditions and detecting any duplex formed between the probe and nucleic acid in the sample.

Such detection may be achieved using techniques such as PCR or by immobilising the probe on a solid support, removing nucleic acid in the sample which is not hybridized to the probe, and then detecting nucleic acid which has hybridized to the probe. Alternatively, the sample nucleic acid may be immobilized on a solid support, and the amount of probe bound to such a support can be detected. Suitable assay methods of this any other formats can be found in for example WO89/03891 and WO90/13567.

Polynucleotides of the invention or fragments thereof labelled or unlabelled may also be used to identify and characterise different strains of Mptb, Mavs, other GS-containing pathogenic mycobacteria, or Mtb, and properties such as drug resistance or susceptibility.

The probes of the invention may conveniently be packaged in the form of a test kit in a suitable container. In such kits the probe may be bound to a solid support where the assay format for

- 15 -

which the kit is designed requires such binding. The kit may also contain suitable reagents for treating the sample to be probed, hybridising the probe to nucleic acid in the sample, control reagents, instructions, and the like.

5 The use of polynucleotides of the invention in the diagnosis of inflammatory diseases such as Crohn's disease or sarcoidosis in humans or Johne's disease in animals form a preferred aspect of the invention. The polynucleotides may also be used in the prognosis of these diseases. For example, the response of a human or animal subject in response to antibiotic, vaccination or other therapies may be monitored by utilizing the diagnostic methods of the invention over the course of a period of treatment and following such treatment.

The use of Mtb polynucleotides (particularly in the form of probes and primers) of the invention in the above-described methods form a further aspect of the invention, particularly for the detection, diagnosis or prognosis of Mtb infections.

B. Polypeptides.

invention include polypeptides the Polypeptides of 20 substantially isolated form encoded by GS. This includes the encoded by the positive length polypeptides complementary negative strands of GS. Each of the full length polypeptides will contain one of the amino acid sequences set out in Seq ID NOs:6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28 and 29. Polypeptides of the invention further include variants of 25 such sequences, including naturally occurring allelic variants and synthetic variants which are substantially homologous to said polypeptides. In this context, substantial homology is regarded as a sequence which has at least 70%, e.g. 80%, 90%, 95% or 98% 30 amino acid homology (identity) over 30 or more, e.g 40, 50 or 100 amino acids. For example, one group of substantially homolgous polypeptides are those which have at least 95% amino acid identity to a polypeptide of any one of Seq ID NOs:6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28 and 29 over their entire length.

35 Even more preferably, this homology is 98%.

Polypeptides of the invention further include the polypeptide sequences of the homologous ORFs of Mtb, namely Seq ID Nos. 31, 33, 35, 37 and 39. Unless explicitly specified to the contrary, reference to polypeptides of the invention and their fragments include these Mtb polypeptides and fragments, and variants thereof (substanially homologous to said sequences) as defined herein.

Polypeptides of the invention may be obtained by the standard techniques mentioned above. Polypeptides of the invention also include fragments of the above mentioned full length polypeptides and variants thereof, including fragments of the sequences set out in SEQ ID NOs:6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 29, 31, 33, 35, 37 and 39. Such fragments for example of 8, 10, 12, 15 or up to 30 or 40 amino acids may also be obtained synthetically using standard techniques known in the art.

Preferred fragments include those which include an epitope, especially an epitope which is specific to the pathogenicity of the mycobacterial cell from which the polypeptide is derived. Suitable fragments will be at least about 5, e.g. 8, 10, 12, 15 or 20 amino acids in size, or larger. Epitopes may be determined either by techniques such as peptide scanning techniques as described by Geysen et al, Mol.Immunol., 23; 709-715 (1986), as well as other techniques known in the art.

The term "an epitope which is specific to the pathogenicity of the mycobacterial cell" means that the epitope is encoded by a portion of the GS region, or by the corresponding ORF sequences of Mtb which can be used to distinguish mycobacteria which are pathogenic by from related non-pathogenic mycobacteria including non-pathogenic species of M.avium. This may be determined using routine methodology. A candidate epitope from an ORF may be prepared and used to immunise an animal such as a rat or rabbit in order to generate antibodies. The antibodies may then be used to detect the presence of the epitope in pathogenic mycobacteria and to confirm that non-pathogenic mycobacteria do not contain any proteins which react with the epitope. Epitopes may be linear or conformational.

- 17 -

Polypeptides of the invention may be in a substantially isolated form. It will be understood that the polypeptide may be mixed with carriers or diluents which will not interfere with the intended purpose of the polypeptide and still be regarded as substantially isolated. A polypeptide of the invention may also be in a substantially purified form, in which case it will generally comprise the polypeptide in a preparation in which more than 90%, e.g. 95%, 98% or 99% of the polypeptide in the preparation is a polypeptide of the invention.

10 Polypeptides of the invention may be modified to confer a desired property or function for example by the addition of Histidine residues to assist their purification or by the addition of a signal sequence to promote their secretion from a cell.

Thus, polypeptides of the invention include fusion proteins which comprise a polypeptide encoding all or part of one or more of an ORF of the invention fused at the N- or C-terminus to a second sequence to provide the desired property or function. Sequences which promote secretion from a cell include, for example the yeast α -factor signal sequence.

20 A polypeptide of the invention may be labelled with a revealing label. The revealing label may be any suitable label which allows the polypeptide to be detected. Suitable labels include radioisotopes, e.g. ¹²⁵I, ³⁵S enzymes, antibodies, polynucleotides and ligands such as biotin. Labelled polypeptides of the invention may be used in diagnostic procedures such as immunoassays in order to determine the amount of a polypeptide of the invention in a sample. Polypeptides or labelled polypeptides of the invention may also be used in serological or cell mediated immune assays for the detection of immune reactivity to said polypeptides in animals and humans using standard protocols.

A polypeptide or labelled polypeptide of the invention or fragment thereof may also be fixed to a solid phase, for example the surface of an immunoassay well, microparticle, dipstick or biosensor. Such labelled and/or immobilized polypeptides may be

20

35

packaged into kits in a suitable container along with suitable reagents, controls, instructions and the like.

Such polypeptides and kits may be used in methods of detection of antibodies or cell mediated immunoreactivity, to the mycobacterial proteins and peptides encoded by the ORFs of the invention and their allelic variants and fragments, using immunoassay. Such host antibodies or cell mediated immune reactivity will occur in humans or animals with an immune system which detects and reacts against polypeptides of the invention.

The antibodies may be present in a biological sample from such humans or animals, where the biological sample may be a sample as defined above particularly blood, milk or saliva.

Immunoassay methods are well known in the art and will generally comprise:

(a) providing a polypeptide of the invention comprising an epitope bindable by an antibody against said mycobacterial polypeptide;

(b) incubating a biological sample with said polypeptide under conditions which allow for the formation of an antibody-antigen complex; and

(c) determining whether antibody-antigen complex comprising said polypeptide is formed.

Immunoassay methods for cell mediated immune reactivity in animals and humans are also well known in the art (e.g. as described by Weir et al 1994, J.Immunol Methods 176; 93-101) and will generally comprise

- (a) providing a polypeptide of the invention comprising an epitope bindable by a lymphocyte or macrophage or other cell receptor;
- 30 (b) incubating a cell sample with said polypeptide under conditions which allow for a cellular immune response such as release of cytokines or other mediator to occur; and
 - (c) detecting the presence of said cytokine or mediator in the incubate.

Polypeptides of the invention may be made by standard synthetic means well known in the art or recombinantly, as described below.

Polypeptides of the invention or fragments thereof labelled or unlabelled may also be used to identify and characterise different strains of Mptb, Mavs, other GS-containing pathogenic mycobacteria, or Mtb, and properties such as drug resistance or susceptibility.

The polypeptides of the invention may conveniently be packaged in the form of a test kit in a suitable container. In such kits the polypeptide may be bound to a solid support where the assay format for which the kit is designed requires such binding. The kit may also contain suitable reagents for treating the sample to be examined, control reagents, instructions, and the like.

The use of polypeptides of the invention in the diagnosis of inflammatory diseases such as Crohn's disease or sarcoidosis in humans or Johne's disease in animals form a preferred aspect of the invention. The polypeptides may also be used in the prognosis of these diseases. For example, the response of a human or animal subject in response to antibiotic or other therapies may be monitored by utilizing the diagnostic methods of the invention over the course of a period of treatment and following such treatment.

The use of Mtb polypeptides of the invention in the abovedescribed methods form a further aspect of the invention, 25 particularly for the detection, diagnosis or prognosis of Mtb infections.

Polypeptides of the invention may also be used in assay methods for identifying candidate chemical compounds which will be useful in inhibiting, binding to or disrupting the function of said polypeptides required for pathogenicity. In general, such assays involve bringing the polypeptide into contact with a candidate inhibitor compound and observing the ability of the compound to disrupt, bind to or interfer with the polypeptide.

There are a number of ways in which the assay may be formatted. For example, those polypeptides which have an enzymatic function may be assayed using labelled substrates for the enzyme, and the amount of, or rate of, conversion of the substrate into a product measured, e.g by chromatograpy such as HPLC or by a colourimetric assay. Suitable labels include ³⁵S, ¹²⁵I, biotin or enzymes such as horse radish peroxidase.

For example, the gene product of ORF C is believed to have GDP-mannose dehydratase activity. Thus an assay for inhbitors of the gene product may utilise for example labelled GDP-mannose, GDP or mannose and the activity of the gene product followed. ORF D encodes a gene related to the synthesis and regulation of capuslar polysaccharides, which are often associated with invasiveness and pathogenicity. Labelled polysaccharide substrates may be used in assays of the ORF D gene product. The gene product of ORF F encodes a protein with putative glucosyl transferase activity and thus labelled amino sugars such as β -1-3-N-acetylglucosamine may be used as substrates in assays.

Candidate chemical compounds which may be used may be natural or synthetic chemical compounds used in drug screening programmes. Extracts of plants which contain several characterised or uncharacterised components may also be used.

Alternatively, the a polypeptide of the invention may be screened against a panel of peptides, nucleic acids or other chemical functionalities which are generated by combinatorial chemistry. This will allow the definition of chemical entities which bind to polypeptides of the invention. Typically, the polypeptide of the invention will be brought into contact with a panel of compounds from a combinantorial library, with either the panel or the polypeptide being immobilized on a solid phase, under conditions suitable for the polypeptide to bind to the panel. The solid phase will then be washed under conditions in which only specific interactions between the polypeptide and individual members of the panel are retained, and those specific members may be utilized in further assays or used to design further panels of candidate ompounds.

For example, a number of assay methods to define peptide interaction with peptides are known. For example, WO86/00991 describes a method for determining mimotopes which comprises making panels of catamer preparations, for example octamers of amino acids, at which one or more of the positions is defined and the remaining positions are randomly made up of other amino acids, determining which catamer binds to a protein of interest and re-screening the protein of interest against a further panel based on the most reactive catamer in which one or more additional designated positions are systematically varied. This may be repeated throughout a number of cycles and used to build up a sequence of a binding candidate compound of interest.

WO89/03430 describes screening methods which permit the preparation of specific mimotopes which mimic the immunological activity of a desired analyte. These mimotopes are identified by reacting a panel of individual peptides wherein said peptides are of systematically varying hydrophobicity, amphipathic characteristics and charge patterns, using an antibody against an antigen of interest. Thus in the present case antibodies against the a polypeptide of the inventoin may be employed and mimotope peptides from such panels may be identified.

C. Vectors.

Polynucleotides of the invention can be incorporated into a recombinant replicable vector. The vector may be used to replicate the nucleic acid in a compatible host cell. Thus in a further embodiment, the invention provides a method of making polynucleotides of the invention by introducing a polynucleotide of the invention into a replicable vector, introducing the vector into a compatible host cell, and growing the host cell under conditions which bring about replication of the vector. The vector may be recovered from the host cell. Suitable host cells are described below in connection with expression vectors.

D. Expression Vectors.

Preferably, a polynucleotide of the invention in a vector is operably linked to a control sequence which is capable of providing for the expression of the coding sequence by the host cell, i.e. the vector is an expression vector. The term "operably 5 linked" refers to a juxtaposition wherein the components described are in a relationship permitting them to function in their intended manner. A control sequence "operably linked" to a coding sequence is ligated in such a way that expression of the coding sequence is achieved under conditions compatible with the Such vectors may be transformed into a 10 control sequences. suitable host cell as described above to provide for expression of a polypeptide of the invention. Thus, in a further aspect the invention provides a process for preparing polypeptides according to the invention which comprises cultivating a host cell 15 transformed or transfected with an expression vector as described above, under conditions to provide for expression by the vector of a coding sequence encoding the polypeptides, and recovering the expressed polypeptides.

A further embodiment of the invention provides vectors for the replication and expression of polynucleotides of the invention, or fragments thereof. The vectors may be for example, plasmid, virus or phage vectors provided with an origin of replication, optionally a promoter for the expression of the said polynucleotide and optionally a regulator of the promoter. vectors may contain one or more selectable marker genes, for example an ampicillin resistance gene in the case of a bacterial plasmid or a neomycin resistance gene for a mammalian vector. Vectors may be used in vitro, for example for the production of RNA or used to transfect or transform a host cell. The vector 30 may also be adapted to be used in vivo, for example in a method of naked DNA vaccination or gene therapy. A further embodiment of the invention provides host cells transformed or transfected with the vectors for the replication and expression of polynucleotides of the invention, including the DNA of GS, the 35 open reading frames thereof and other corresponding ORFs particularly ORFs B, C, E and F from Mtb. The cells will be chosen to be compatible with the said vector and may for example be bacterial, yeast, insect or mammalian.

Expression vectors are widely available in the art and can be obtained commercially. Mammalian expression vectors may comprise a mammalian or viral promoter. Mammalian promoters include the metallothionien promoter. Viral promoters include promoters from adenovirus, the SV40 large T promoter and retroviral LTR promoters. Promoters compatible with insect cells include the polyhedrin promoter. Yeast promoters include the alcohol dehydrogenase promoter. Bacterial promoters include the β -galactosidase promoter.

10 The expression vectors may also comprise enhancers, and in the case of eukaryotic vectors polyadenylation signal sequence downstream of the coding sequence being expressed.

Polypeptides of the invention may be expressed in suitable host cells, for example bacterial, yeast, plant, insect and mammalian cells, and recovered using standard purification techniques including, for example affinity chromatography, HPLC or other chromatographic separation techniques.

Polynucleotides according to the invention may also be inserted into the vectors described above in an antisense orientation in order to provide for the production of antisense RNA. Antisense RNA or other antisense polynucleotides or ligands may also be produced by synthetic means. Such antisense polynucleotides may be used in a method of controlling the levels of the proteins encoded by the ORFs of the invention in a mycobacterial cell.

- 25 Polynucleotides of the invention may also be carried by vectors suitable for gene therapy methods. Such gene therapy methods include those designed to provide vaccination against diseases caused by pathogenic mycobacteria or to boost the immune response of a human or animal infected with a pathogenic mycobacteria.
- For example, Ziegner et al, AIDS, 1995, 9;43-50 describes the use of a replication defective recombinant amphotropic retrovirus to boost the immune response in patients with HIV infection. Such a retrovirus may be modified to carry a polynucleotide encoding a polypeptide or fragment thereof of the invention and the

15

20

25

retrovirus delivered to the cells of a human or animal subject in order to provide an immune response against said polypeptide. The retrovirus may be delivered directly to the patient or may be used to infecte cells ex-vivo, e.g. fibroblast cells, which are then introduced into the patient, optionally after being inactivated. The cells are desirably autologous or HLA-matched cells from the human or animal subject.

Gene therapy methods including methods for boosting an immune response to a particluar pathogen are disclosed generally in for example WO95/14091, the disclosure of which is incoporated herein by reference. Recombinant viral vectors include retroviral vectors, adenoviral vectors, adeno-associated viral vectors, vaccinia virus vectors, herpes virus vectors and alphavirus vectors. Alpha virus vectors are described in, for example, WO95/07994, the disclosure of which is incorporated herein by reference.

Where direct administration of the recombinant viral vector is contemplated, either in the form of naked nucleic acid or in the form of packaged particles carrying the nucleic acid this may be done by any suitable means, for example oral administration or intravenous injection. From 10⁵ to 10⁸ c.f.u of virus represents a typical dose, which may be repeated for example weekly over a period of a few months. Administration of autologous or HLA-matched cells infected with the virus may be more convenient in some cases. This will generally be achieved by administering doses, for example from 10⁵ to 10⁸ cells per dose which may be repeated as described above.

The recombinant viral vector may further comprise nucleic acid capable of expressing an accessory molecule of the immune system designed to increase the immune response. Such a moleclue may be for example and interferon, particularly interferon gamma, an interleukin, for example IL-1 α , IL-1 β or IL-2, or an HLA class I or II moleclue. This may be particularly desirable where the vector is intended for use in the treatment of humans or animals already infected with a mycobacteria and it is desired to boost the immune response.

30

- 25 -

E. Antibodies.

The invention also provides monoclonal or polyclonal antibodies to polypeptides of the invention or fragments thereof. The invention further provides a process for the production of monoclonal or polyclonal antibodies to polypeptides of the invention. Monoclonal antibodies may be prepared by conventional hybridoma technology using the polypeptides of the invention or peptide fragments thereof, as immunogens. Polyclonal antibodies may also be prepared by conventional means which comprise inoculating a host animal, for example a rat or a rabbit, with a polypeptide of the invention or peptide fragment thereof and recovering immune serum.

In order that such antibodies may be made, the invention also provides polypeptides of the invention or fragments thereof haptenised to another polypeptide for use as immunogens in animals or humans.

For the purposes of this invention, the term "antibody", unless specified to the contrary, includes fragments of whole antibodies which retain their binding activity for a polypeptide of the invention. Such fragments include Fv, F(ab') and F(ab')₂ fragments, as well as single chain antibodies. Furthermore, the antibodies and fragments thereof may be humanised antibodies, e.g. as described in EP-A-239400.

Antibodies may be used in methods of detecting polypeptides of 25 the invention present in biological samples (where such samples include the human or animal body samples, and environmental samples, mentioned above) by a method which comprises:

- (a) providing an antibody of the invention;
- (b) incubating a biological sample with said antibody under conditions which allow for the formation of an antibody-antigen complex; and
 - (c) determining whether antibody-antigen complex comprising said antibody is formed.

- 26 -

Antibodies of the invention may be bound to a solid support for example an immunoassay well, microparticle, dipstick or biosensor and/or packaged into kits in a suitable container along with suitable reagents, controls, instructions and the like.

5 Antibodies of the invention may be used in the detection, diagnosis and prognosis of diseases as descirbed above in relation to polypeptides of the invention.

F. Compositions.

The present invention also provides compositions comprising a polynucleotide or polypeptide of the invention together with a carrier or diluent. Compositions of the invention also include compositions comprising a nucleic acid, particularly and expression vector, of the invention. Compositions further include those carrying a recombinant virus of the invention.

15 Such compositions include pharmaceutical compositions in which case the carrier or diluent will be pharmaceutically acceptable.

Pharmaceutically acceptable carriers or diluents include those used in formulations suitable for inhalation as well as oral, parenteral (e.g. intramuscular or intravenous or transcutaneous) administration. The formulations may conveniently be presented in unit dosage form and may be prepared by any of the methods well known in the art of pharmacy. Such methods include the step of bringing into association the active ingredient with the carrier which constitutes one or more accessory ingredients. In general the formulations are prepared by uniformly and intimately bringing into association the active ingredient with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.

For example, formulations suitable for parenteral administration include aqueous and non-aqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the intended recipient, and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening

25

agents, and liposomes or other microparticulate systems which are designed to target the polynucleotide or the polypeptide of the invention to blood components or one or more organs, or to target cells such as M cells of the intestine after oral administration.

- 27 -

5 G. Vaccines.

In another aspect, the invention provides novel vaccines for the prevention and treatment of infections caused by Mptb, Mavs, other GS-containing pathogenic mycobacteria and Mtb in animals and humans. The term "vaccine" as used herein means an agent 10 used to stimulate the immune system of a vertebrate, particularly a warm blooded vertebrate including humans, so as to provide protection against future harm by an organism to which the vaccine is directed or to assist in the eradication of an organism in the treatment of established infection. system will be stimulated by the production of cellular immunity antibodies, desirably neutralizing antibodies, directed to epitopes found on or in a pathogenic mycobacterium which expresses any one of the ORFs of the invention. The antibody so produced may be any of the immunological classes, such as the immunoglobulins A, D, E, G or M. Vaccines which stimulate the production of IgA are interest since this is the principle immunoglobulin produced by the secretory system of warm-blooded animals, and the production of such antibodies will help prevent infection or colonization of the intestinal tract. However an IgM and IgG response will also be desirable for systemic infections such as Crohn's disease or tuberculosis.

Vaccines of the invention include polynucleotides of invention or fragments thereof in suitable vectors administered by injection of naked DNA using standard protocols. Polynucleotides of the invention or fragments thereof in suitable vectors for the expression of the polypeptides of the invention may be given by injection, inhalation or by mouth. vectors include M.bovis BCG, M.smegmatis or other mycobacteria, Corynebacteria, Salmonella or other agents according to established protocols. 35

- 28 -

Polypeptides of the invention or fragments substantially isolated form may be used as vaccines by injection, inhalation, oral administration or by transcutaneous application according to standard protocols. Adjuvants (such as Iscoms or 5 polylactide-coglycolide encapsulation), cytokines such as IL-12 and other immunomodulators may be used for the selective enhancement of the cell mediated or humoral immunological responses. Vaccination with polynucleotides and/or polypeptides of the invention may be undertaken to increase the susceptibility of pathogenic mycobacteria to antimicrobial agents in vivo.

In instances wherein the polypeptide is correctly configured so as to provide the correct epitope, but is too small to be immunogenic, the polypeptide may be linked to a suitable carrier.

A number of techniques for obtaining such linkage are known in 15 the art, including the formation of disulfide linkages using Nsuccinimidyl-3-(2-pyridylthio) propionate (SPDP) and succinimidyl 4-(N-maleimido-methyl)cyclohexane-1-carboxylate (SMCC) obtained from Pierce Company, Rockford, Illinois, (if the peptide lacks a sulfhydryl group, this can be provided by addition of a 20 cysteine residue). These reagents create a disulfide linkage between themselves and peptide cysteine residues on one protein and an amide linkage through the epsilon-amino on a lysine, or other free amino group in the other. A variety of such disulfide/amide-forming agents are known. See, for example, Immun Rev (1982) 62:185. Other bifunctional coupling agents form a thioether rather than a disulfide linkage. Many of these thioether-forming agents are commercially available and include reactive esters of 6-maleimidocaproic acid, 2-bromoacetic acid, 2-iodoacetic acid, 4-(N-maleimido-methyl)cyclohexane-1-carboxylic acid, and the like. The carboxyl group can be activated by combining them with succinimide or 1-hydroxyl-2-nitro-4-sulfonic Additional methods of coupling antigens acid, sodium salt. employs the rotavirus/"binding peptide" system described in EPO Pub. No. 259,149, the disclosure of which is incorporated herein by reference. The foregoing list is not meant to be exhaustive, and modifications of the named compounds can clearly be used.

Any carrier may be used which does not itself induce the production of antibodies harmful to the host. Suitable carriers are typically large, slowly metabolized macromolecules such as proteins; polysaccharides, such as latex functionalized Sepharose®, agarose, cellulose, cellulose beads and the like; polymeric amino acids, such as polyglutamic acid, polylysine, polylactide-coglycolide and the like; amino acid copolymers; and inactive virus particles. Especially useful protein substrates are serum albumins, keyhole limpet hemocyanin, immunoglobulin molecules, thyroglobulin, ovalbumin, tetanus toxoid, and other proteins well known to those skilled in the art.

The immunogenicity of the epitopes may also be enhanced by preparing them in mammalian or yeast systems fused with or assembled with particle-forming proteins such as, for example, that associated with hepatitis B surface antigen. See, e.g., US-A-4,722,840. Constructs wherein the epitope is linked directly to the particle-forming protein coding sequences produce hybrids which are immunogenic with respect to the epitope. In addition, all of the vectors prepared include epitopes specific to HBV, having various degrees of immunogenicity, such as, for example, the pre-S peptide.

In addition, portions of the particle-forming protein coding sequence may be replaced with codons encoding an epitope of the invention. In this replacement, regions which are not required to mediate the aggregation of the units to form immunogenic particles in yeast or mammals can be deleted, thus eliminating additional HBV antigenic sites from competition with the epitope of the invention.

Vaccines may be prepared from one or more immunogenic polypeptides of the invention. These polypeptides may be expressed in various host cells (e.g., bacteria, yeast, insect, or mammalian cells), or alternatively may be isolated from viral preparations or made synthetically.

In addition to the above, it is also possible to prepare live vaccines of attenuated microorganisms which express one or more

25

recombinant polypeptides of the invention. Suitable attenuated microorganisms are known in the art and include, for example, viruses (e.g., vaccinia virus), as well as bacteria.

The preparation of vaccines which contain an immunogenic polypeptide(s) as active ingredients, is known to one skilled in the art. Typically, such vaccines are prepared as injectables. or as suitably encapsulated oral preparations and either liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid prior to injestion or injection may also be prepared. The preparation may also be emulsified, or the protein encapsulated in liposomes. The active immunogenic often mixed with excipients which ingredients are pharmaceutically acceptable and compatible with the active ingredient. Suitable excipients are, for example, water, saline, 15 dextrose, glycerol, ethanol, or the like and combinations thereof. In addition, if desired, the vaccine may contain minor amounts of auxiliary substances such as wetting or emulsifying agents, pH buffering agents, and/or adjuvants which enhance the effectiveness of the vaccine. Examples of adjuvants which may 20 be effective include but are not limited to: aluminum hydroxide, N-acetyl-muramyl-L-threonyl-D-isoglutamine (thr-MDP), N-acetylnor-muramyl-L-alanyl-D-isoglutamine (CGP 11637, referred to as nor-MDP), N-acetylmuramyl-L-alanyl-D-isoglutaminyl-L-alanine-2-(1'-2'-dipalmitoyl-sn-glycero-3-hydroxyphosphoryloxy)-ethylamine (CGP 19835A, referred to as MTP-PE), and RIBI, which contains three components extracted from bacteria, monophosphoryl lipid A, trehalose dimycolate and cell wall skeleton (MPL+TDM+CWS) in a 2% squalene/Tween® 80 emulsion. The effectiveness of an adjuvant may be determined by measuring the amount of antibodies directed against an immunogenic polypeptide containing an antigenic sequence resulting from administration of this polypeptide in vaccines which are also comprised of the various adjuvants.

The vaccines are conventionally administered parenterally, by injection, for example, either subcutaneously or intramuscularly. 35 Additional formulations which are suitable for other modes of administration include suppositories, oral formulations or as

15

30

enemas. For suppositories, traditional binders and carriers may include, for example, polyalkylene glycols or triglycerides; such suppositories may be formed from mixtures containing the active ingredient in the range of 0.5% to 10%, preferably 1% - 2%. Oral formulations include such normally employed excipients as, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, and the like. These compositions take the form of solutions, suspensions, tablets, pills, capsules, sustained release formulations or powders and contain 10% - 95% of active ingredient, preferably 25% - 70%.

The proteins may be formulated into the vaccine as neutral or salt forms. Pharmaceutically acceptable salts include the acid addition salts (formed with free amino groups of the peptide) and which are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids such as acetic, oxalic, tartaric, maleic, and the like. Salts formed with the free carboxyl groups may also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, 2-ethylamino ethanol, histidine, procaine, and the like.

The vaccines are administered in a manner compatible with the dosage formulation, and in such amount as will be prophylactically and/or therapeutically effective. The quantity to be administered, which is generally in the range of $5\mu g$ to $250\mu g$, of antigen per dose, depends on the subject to be treated, capacity of the subject's immune system to synthesize antibodies, mode of administration and the degree of protection desired. Precise amounts of active ingredient required to be administered may depend on the judgement of the practitioner and may be peculiar to each subject.

The vaccine may be given in a single dose schedule, or preferably in a multiple dose schedule. A multiple dose schedule is one in which a primary course of vaccination may be with 1-10 separate doses, followed by other doses given at subsequent time intervals

required to maintain and or reenforce the immune response, for example, at 1-4 months for a second dose, and if needed, a subsequent dose(s) after several months. The dosage regimen will also, at least in part, be determined by the need of the individual and be dependent upon the judgement of practitioner.

In a further aspect of the invention, there is provided an attenuated vaccine comprising a normally pathogenic mycobacteria which harbours an attenuating mutation in any one of the genes encoding a polypeptide of the invention. The gene is selected from the group of ORFs A, B, C, D, E, F, G and H, including the homologous ORFs B, C, E and F in Mtb.

The mycobacteria may be used in the form of killed bacteria or as a live attenuated vaccine. There are advantages to a live 15 attenuated vaccine. The whole live organism is used, rather than dead cells or selected cell components which may exhibit modified or denatured antigens. Protein antigens in the outer membrane will maintain their tertiary and quaternary structures. Therefore the potential to elicit a good protective long term immunity should be higher.

The term "mutation" and the like refers to a genetic lesion in a gene which renders the gene non-functional. This may be at either the level of transcription or translation. The term thus envisages deletion of the entire gene or substantial portions 25 thereof, and also point mutations in the coding sequence which result in truncated gene products unable to carry out the normal function of the gene.

A mutation introduced into a bacterium of the invention will generally be a non-reverting attenuating mutation. Non-reverting means that for practical purposes the probability of the mutated 30 gene being restored to its normal function is small, for example less than 1 in 106 such as less than 1 in 109 or even less than 1 in 10¹².

An attenuated mycobacteria of the invention may be in isolated form. This is usually desirable when the bacterium is to be used for the purposes of vaccination. The term "isolated" means that the bacterium is in a form in which it can be cultured, processed or otherwise used in a form in which it can be readily identified and in which it is substantially uncontaminated by other bacterial strains, for example non-attenuated parent strains or unrelated bacterial strains. The term "isolated bacterium" thus encompasses cultures of a bacterial mutant of the invention, for example in the form of colonies on a solid medium or in the form of a liquid culture, as well as frozen or dried preparations of the strains.

In a preferred aspect, the attenuated mycobacterium further comprises at least one additional mutation. This may be a 15 mutation in a gene responsible for the production of products essential to bacterial growth which are absent in a human or animal host. For example, mutations to the gene for aspartate semi-aldehyde dehydrogenase (asd) have been proposed for the production of attenuated strains of Salmonella. The asd gene is described further in Gene (1993) 129; 123-128. A lesion in the asd gene, encoding the enzyme aspartate β -semialdehyde dehydrogenase would render the organism auxotrophic for the essential nutrient diaminopelic acid (DAP), which can be provided exogenously during bulk culture of the vaccine strain. 25 this compound is an essential constituent of the cell wall for gram-negative and some gram-positive organisms and is absent from mammalian or other vertebrate tissues, mutants would undergo lysis after about three rounds of division in such tissues. Analogous mutations may be made to the attenuated mycobacteria of the invention.

In addition or in the alternative, the attenuated mycobacteria The recA mutation knocks out may carry a recA mutation. homologous recombination - the process which is exploited for the construction of the mutations. Once the recA mutation has been incorporated the strain will be unable to repair the constructed deletion mutations. Such a mutation will provide attenuated strains in which the possibility of homologous recombination to

20

25

30

35

with DNA from wild-type strains has been minimized. RecA genes have been widely studied in the art and their sequences are available. Further modifications may be made for additional safety.

The invention further provides a process for preparing a vaccine composition comprising an attenuated bacterium according to the invention process comprises (a) inoculating a culture vessel containing a nutrient medium suitable for growth of said bacterium; (b) culturing said bacterium; (c) recovering said bacteria and (d) mixing said bacteria with a pharmaceutically acceptable diluent or carrier.

Attenuated bacterial strains according to the invention may be constructed using recombinant DNA methodology which is known per se. In general, bacterial genes may be mutated by a process of targeted homologous recombination in which a DNA construct containing a mutated form of the gene is introduced into a host bacterium which it is desired to attenuate. The construct will recombine with the wild-type gene carried by the host and thus the mutated gene may be incorporated into the host genome to provide a bacterium of the present invention which may then be isolated.

The mutated gene may be obtained by introducing deletions into the gene, e.g by digesting with a restriction enzyme which cuts the coding sequence twice to excise a portion of the gene and then religating under conditions in which the excised portion is not reintroduced into the cut gene. Alternatively frame shift mutations may be introduced by cutting with a restriction enzyme which leaves overhanging 5' and 3' termini, filling in and/or trimming back the overhangs, and religating. Similar mutations may be made by site directed mutagenesis. These are only examples of the types of techniques which will readily be at the disposal of those of skill in the art.

Various assays are available to detect successful recombination. In the case of attenuations which mutate a target gene necessary for the production of an essential metabolite or catabolite - 35 -

compound, selection may be carried out by screening for bacteria unable to grow in the absence of such a compound. Bacteria may also be screened with antibodies or nucleic acids of the invention to determine the absence of production of a mutated gene product of the invention or to confirm that the genetic lesion introduced - e.g. a deletion - has been incorporated into the genome of the attenuated strain.

The concentration of the attenuated strain in the vaccine will be formulated to allow convenient unit dosage forms to be prepared. Concentrations of from about 10⁴ to 10⁹ bacteria per ml will generally be suitable, e.g. from about 10⁵ to 10⁸ such as about 10⁶ per ml. Live attenuated organisms may be administered subcutaneously or intramuscularly at up to 10⁸ organisms in one or more doses, e.g from around 10⁵ to 10⁸, e.g about 10⁶ or 10⁷ organisms in a single dose.

The vaccines of the invention may be administered to recipients to treat established disease or in order to protect them against diseases caused by the corresponding wild type mycobacteria, such as inflammatory diseases such as Crohn's disease or sarcoidosis in humans or Johne's disease in animals. The vaccine may be administered by any suitable route. In general, subcutaneous or intramuscular injection is most convenient, but oral, intranasal and colorectal administration may also be used.

The following Examples illustrates aspects of the invention.

25 EXAMPLE 1

Tests for the presence of the GS identifier sequence were performed on 5μ l bacterial DNA extracts (25 μ g/ml to 500 μ g/ml) using polymerase chain reaction based on the oligonucleotide primers 5'-GATGCCGTGAGGAGGTAAAGCTGC-3' (Seq ID No. 40) and 5'-GATACGGCTCTTGAATCCTGCACG-3' (Seq ID No. 41) from within the identifier DNA sequences (Seq.ID Nos 1 and 2). PCR was performed for 40 cycles in the presence of 1.5 mM magnesium and an annealing temperature of 58°C. The presence or absence of the correct amplification product indicated the presence or absence

25

of GS identifier sequence in the corresponding bacterium. identifier sequence is shown to be present in all the laboratory and field strains of Mptb and Mavs tested. This includes Mptb isolates 0025 (bovine CVL Weybridge), 0021 (caprine, Moredun). (bovine, Moredun), 0139 (human, Chiodini 1984), 0209. 0208, 0211, 0210, 0212, 0207, 0204, 0206 (bovine, Whipple 1990). All Mptb strains were IS900 positive. The Mavs strains include 0010 and 0012 (woodpigeon, Thorel) 0018 (armadillo, Portaels) and 0034, 0037, 0038, 0040 (AIDS, Hoffner). All Mavs strains were 10 IS902 positive. One pathogenic M.avium strain 0033 (AIDS, Hoffner) also contained GS identifier sequence. GS identifier sequence is absent from other mycobacteria including other M.avium, M.malmoense, M.szulgai, M.gordonae, M. fortuitum, M. phlei, as well as E. coli, S. areus, Nocardia sp, Streptococcus sp. Shigella sp. Pseudomonas sp. 15

Example 2:

To obtain the full sequence of GS in Mavs and Mptb we generated a genomic library of Mavs using the restriction endonuclease EcoRI and cloning into the vector pUC18. This achieved a representative library which was screened with 32P-labelled identifier sequence yielding a positive clone containing a 17kbp insert. We constructed a restriction map of this insert and identified GS as fragments unique to Mavs and Mptb and not occurring in laboratory strains of M.avium. These fragments were sub-cloned into pUC18 and pGEM4Z. We identified GS contained within an 8kb region. The full nucleotide sequence was determined for GS on both DNA strands using primer walking and automated DNA sequencing. DNA sequence for GS in Mptb was obtained using overlapping PCR products generated using PwoDNA polymerase, a proofreading thermostable enzyme. The final DNA 30 sequences were derived using the University of Wisconsin GCG gel assembly software package.

Example 3:

The DNA sequence of GS in Mavs and Mptb was found to be more The ORFs encoded in GS were identified 35 than 99% homologous. using GeneRunner and DNAStar computer programmes. Eight ORFs were identified and designated GSA, GSB, GSC, GSD, GSE, GSF, GSG

20

- 37 -

Database comparisons were carried out against the GenEMBL Database release version 48.0 (9/96), using the BLAST and BLIXEM programmes. GSA and GSB encoded proteins of 13.5kDa and 30.7kDa respectively, both of unknown functions. GSC encoded 5 a protein of 38.4kDa with a 65% homology to the amino acid sequence of rfbD of V.cholerae, a 62% amino acid sequence homology to gmd of E.coli and a 58% homology to gca of Ps.aeruginosa which are all GDP-D-mannose dehydratases. Equivalent gene products in H.influenzae, S.dysenteriae. Y.enterocolitica, N.gonorrhoea, K.pneumoniae and rfbD Salmonella enterica are all involved in '0'-antigen processing GSD encoded a protein of known to be linked to pathogenicity. 37.1kDa which showed 58% homology at the DNA level to wcaG from E.coli, a gene involved in the synthesis and regulation of 15 capsular polysaccharides, also related to pathogenicity. was found to have a > 30% amino acid homology to rfbT of V. cholerae, involved in the transport of specific LPS components across the cell membrane. In V. cholerae the gene product causes a seroconversion from the Inaba to the Ogawa 'epidemic' strain. GSF encoded a protein of 30.2kDa which was homologous in the range 25-40% at the amino acid level to several glucosyl transferases such as rfpA of K.pneumoniae, rfbB of K.pneumoniae, lgtD of H.influenzae, lsi of N.gonorrhoae. In E.coli an equivalent gene galE adds β -1-3 N-acetylglucosamine to galactose, 25 the latter only found in 'O' and 'M' antigens which are also related to pathogenicity. GSH comprising the ORFs GSH1 and GSH2 encodes a protein totalling about 60kDa which is a putative transposase with a 40 - 43% homology at the amino acid level to the equivalent gene product of IS21 in E.coli. This family of 30 insertion sequences is broadly distributed amongst gram negative bacteria and is responsible for mobility and transposition of genetic elements. An IS21- like element in B.fragilis is split either side of the β -lactamase gene controlling its activation and expression. We programmed an E.coli S30 cell-free extract 35 with plasmid DNA containing the ORF GSH under the control of a lac promoter in the presence of a 35S-methionine, demonstrated the translation of an abundant 60kDa protein. The proteins homologous to GS encoded in other organisms are in general highly antigenic. Thus the proteins encoded by the ORFs

The state of the s

in GS may be used in immunoassays of antibody or cell mediated immuno-reactivity for diagnosing infections caused by mycobacteria, particularly Mptb, Mavs and Mtb. Enhancement of host immune recognition of GS encoded proteins by vaccination using naked specific DNA or recombinant GS proteins, may be used in the prevention and treatment of infections caused by Mptb, Mavs and Mtb in humans and animals. Mutation or deletion of all or some of the ORFs A to H in GS may be used to generate attenuated strains of Mptb, Mavs or Mtb with lower pathogenicity for use as living or killed vaccines in humans and animals. Such vaccines are particularly relevant to Johne's disease in animals, to diseases caused by Mptb in humans such as Crohn's disease, and to the management of tuberculosis especially where the disease is caused by multiple drug-resistant organisms.

25

- 39 -

SEQUENCE LISTING

Seq. ID No.1

	5'- 1	GATCCAACTA-	AACCCGATGG	AACCCCGCGC	AAACTATTGG	ACGTCTCCGC	GCTACGCAGT
	61	TGGGTTGGCG	CCCGCGAATC	GCACTGAAAG	AGGGCATCGA	TGCAACGGTG	TCGTGGTACC
5	121	GCACAAATGC	CGATGCCGTG	AGGAGGTAAA	GCTGCGGGCC	GGCCGATGTT	ATCCCTCCGG
	181	CCGGACGGGT	AGGGCGACCT	GCCATCGAGT	GGTACGGCAG	TCGCCTGGCC	GGCGAGGCGC
	241	ATGGCCTATG	TGAGTATCCC	ATAGCCTGGC	TTGGCTCGCC	CCTACGCATT	ATCAGTTGAC
	301	CGCTTTCGCG	CCACGTCGCA	GGCTTGCGGC	AGCATCCCGT	TCAGGTCTCC	TCATGGTCCG
	361	GTGTGGCACG	ACCACGCAAG	CTCGAACCGA	CTCGTTTCCC	AATTTCGCAT	GCTAATATCG
10	421	CTCGATGGAT	TTTTTGCGCA	ACGCCGGCTT	GATGGCTCGT	AACGTTAGCA	CCGAGATGCT
	481	GCGCCACTCC	GAACGAAAGC	GCCTATTAGT	AAACCAAGTC	GAAGCATACG	GAGTCAACGT
						GCTTTGCGTC	
	601	CAAGAGCCGT	ATCGTTTCCT	TTGAACCTCT	TTCGGGGCCA	TTTGCGCAAC	TAACGCGCAA
	661	GTCGGCATCG	GATC -3'				

15 Seq. ID No.2

5'-1 GATCCGATGC CGACTTGCGC GTTAGTTGCG CAAATGGCCC CGAAAGAGGT TCAAAGGAAA
61 CGATACGGCT CTTGAATCCT GCACGACGCA AAGCGCTACC GAACTGGCCG GAGTTAGCAC
121 CGACATCAAT AACAACGTTG ACTCCGTATG CTTCGACTTG GTTTACTAAT AGGCGCTTTC
181 GTTCGGAGTG GCGCAGCATC TCGGTGCTAA CGTTACGAGC CATCAAGCCG GCGTTGCGCA
241 AAAAATCCAT CGAGCGATAT TAGCATGCGA AATTGGGAAA CGAGTCGGTT CGAGCTTGCG
301 TGGTCGTGCC ACACCGGACC ATGAGGAGAC CTGAACGGGA TGCTGCCGCA AGCCTGCGAC
361 GTGGCGCGAA AGCGGTCAAC TGATAATGCG TAGGGGCGAG CCAAGCCAGG CTATGGGATA
421 CTCACATAGG CCATGCGCCT CGCCGGCCAG GCGACTGCCG TACCACTCGA TGGCAGGTCG
481 CCCTACCCGT CCGGCCGGAG GGATAACATC GGCCGGCCCG CAGCTTTACC TCCTCACGGC
541 ATCGGCATTT GTGCGGTACC ACGACACCGT TGCATCGATG CCCTCTTTCA GTGCGGTTCG
601 CGGGCGCCAA CCCAACTGCG TAGCGCGGAG ACGTCCAATA GTTTGCGCGG GGTTCCATCG
661 GGTTTAGTTG GATC -3'

Seq. ID No.3

	1		TTGGAGACGA			
	51		GATCTGGTCG			
_	101		TGTACCGGTC			
5	151		GTCAGGTCCG			
	201		AATGACGTCC			
	251		TCAGCCCGTT			
	301		AATCGGGACA			
	351	TGATCGATAT	CGACACAGAC	GACATCGTTG	CCGCTATCCG	CGAGACAGGC
10	401		AGGCCTACAT			
	451		AAGTCCCCGA			
	501	TACCCTCCGT	GGGTAATTCG	CATGTCGCGT	TCGTAAGGAG	CAGCCAGCGA
	551	GTCGGGGACG	TTCGGTGAGA	GAGTCGCAGG	ACTACGAGGT	TGCCGGTGCG
	601	ATACATCACA	GTGTTGCGTC	TGTCGGCAAC	GATGCAGCAA	GAACCCACGG
15	651	GGCAGCCCTG	AACTGCGCGC	ATGACCGGTC	CTTGTCCTGG	CACCTITGAT
	701	CGGCCACCGC	TTCCATGCGA	ACATGACCGG	AATCCATAGC	GCGTGGTCAA
	751	GCAGCGGGGA	GGTAGACGTC	GGTGTCATCT	GCTCCAACCG	TGTCGGTGAT
	801	AACGATTTCG	CTGAACGATC	TCGAGGGATT	GAAAAGCACC	GTGGAGAGCG
	851	TTCGCGCGCA	GCGCTATGGG	GGGCGAATCG	AGCACATCGT	CATCGACGGT
20	901	GGATCGGGCG	ACGCCGTCGT	GGAGTATCTG	TCCGGCGATC	CTGGCTTTGC
	951	ATATTGGCAA	TCTCAGCCCG	ACAACGGGAG	ATATGACGCG	ATGAATCAGG
	1001	GCATTGCCCA	TTCGTCGGGC	GACCTGTTGT	GGTTTATGCA	CTCCACGGAT
	1051	CGTTTCTCCG	ATCCAGATGC	AGTCGCTTCC	GTGGTGGAGG	CGCTCTCGGG
	1101	GCATGGACCA	GTACGTGATT	TGTGGGGTTA	CGGGAAAAAC	AACCTTGTCG
25	1151	GACTCGACGG	CAAACCACTT	TTCCCTCGGC	CGTACGGCTA	TATGCCGTTT
	1201	AAGATGCGGA	AATTTCTGCT	CGGCGCGACG	GTTGCGCATC	AGGCGACATT
	1251	CTTCGGCGCG	TCGCTGGTAG	CCAAGTTGGG	CGGTTACGAT	CTTGATTTTG
	1301	GACTCGAGGC	GGACCAGCTG	TTCATCTACC	GTGCCGCACT	AATACGGCCT
	1351	CCCGTCACGA	TCGACCGCGT	GGTTTGCGAC	TTCGATGTCA	CGGGACCTGG
30	1401	TTCAACCCAG	CCCATCCGTG	AGCACTATCG	GACCCTGCGG	CGGCTCTGGG
	1451	ACCTGCATGG	CGACTACCCG	CTGGGTGGGC	GCAGAGTGTC	GTGGGCTTAC
	1501	TTGCGTGTGA	AGGAGTACTT	GATTCGGGCC	GACCTGGCCG	CATTCAACGC
	1551	GGTAAAGTTC	TTGCGAGCGA	AGTTCGCCAG	AGCTTCGCGG	AAGCAAAATT
	1601	CATAGAAACC	AACTTCTACT	GCCTGACCTG	AGCAGCGCCG	AGGCGCGCAG
35	1651	CGCGATCAGT	GCGACCTGAA	CGGCCAGGTG	GAAAGCGCCA	CCGATCCCGG
	1701	CACCGAGTGC	CTGACGCTTC	GGATCCCTTG	CACCACAACG	agagtgagag
	1751	CGCCATGATG	AGGAAATATC	GGCTGGGCGG	AGTCAACGCC	GGAGTGACAA
	1801	AAGTGAGAAC	CCGGTGAAGC	GAGCGCTTAT	AACAGGGATC	ACGGGGCAGG
	1851	ATGGTTCCTA	CCTCGCCGAG	CTACTACTGA	GCAAGGGATA	CGAGGTTCAC
40	1901	GGGCTCGTTC	GTCGAGCTTC	GACGTTTAAC	ACGTCGCGGA	TCGATCACCT
	1951	CTACGTTGAC	CCACACCAAC	CGGGCGCGCG	CTTGTTCTTG	CACTATGCAG
	2001	ACCTCACTGA	CGGCACCCGG	TTGGTGACCC	TGCTCAGCAG	TATCGACCCG
	2051	GATGAGGTCT	ACAACCTCGC	AGCGCAGTCC	CATGTGCGCG	TCAGCTTTGA
	2101	CGAGCCAGTG	CATACCGGAG	ACACCACCGG	CATGGGATCG	ATCCGACTTC
45	2151	TGGAAGCAGT	CCGCCTTTCT	CGGGTGGACT	GCCGGTTCTA	TCAGGCTTCC
	2201	TCGTCGGAGA	TGTTCGGCGC	ATCTCCGCCA	CCGCAGAACG	AATCGACGCC
	2251		CGTTCGCCAT			
	2301		CTATCGAGAG			
	2351	TTGTTCAACC	ATGAGTCCCC	CCGGCGCGGC	GAGACTTTCG	TGACCCGAAA
50	2401		GCCGTGGCGC			
	2451					GCCCGAATAT
	2501	GTCGAGGGGA	TGTGGAGGAT	GTTGCAAGCG	CCTGAACCTG	ATGACTACGT

				ACACCGTACG T		
	2601	TTGACCATGT	CGGGCTCGAC	TGGCAAAAGC C	CGTCAAGTT	TGACGACCGC
	2651	TATTTGCGTC	CCACCGAGGT	CGATTCGCTA C	STAGGAGATG	CCGACAAGGC
	2701	GGCCCAGTCA	CTCGGCTGGA	AAGCTTCGGT 1	CATACTGGT	GAACTCGCGC
5	2751	GCATCATGGT	GGACGCGGAC	ATCGCCGCGT 1	TGGAGTGCGA	TGGCACACCA
	2801	TGGATCGACA	CGCCGATGTT	GCCTGGTTGG (GCAGAGTAA	GTTGACGACT
	2851	ACACCTGGGC	CTCTGGACCG	CGCAACGCCC (ETGTATATCG	CCGGTCATCG
	2901	GGGGCTGGTC	GGCTCAGCGC	TCGTACGTAG A	ATTTGAGGCC	GAGGGGTTCA
	2951			CGCGATGAGA		
10	3001			TGAGACAAGA (
	3051			TCATGGCGAA		
	3101			ATCCAGACCA		
	3151			CCTTTTCCTC (
	3201			TCCACGAGAG		
15				TATGCGATCG		
10	3251 3301			CCAATATGGG		
				CCGGCGACAA		
	3351			CGTCGATATG .		
	3401			GGGGACCGGT .		
00	3451			GCGCATGCCT		
20	3501					
	3551			GTGGGCACCG		
	3601			TACAGCGGTG		
	3651			ATGGAACCCC		
	3701			TGGCGCCCGC		
25	3751			GTACCGCACA		
	3801			ATGTTATCCC		
	3851			GGCAGTCGCC		
	3901			CTGGCTTGGC		
	3951			TCGCAGGCTT		
30	4001			GCACGACCAC		
	4051			TATCGCTCGA		
	4101			TAGTACCGAG		
	4151			AATTCAAAGC		
	4201			GGCCAGTTCG		
35	4251			TTCCTTTGAA		
	4301			CATCGGATCC		
	4351			GAGACGATTA		
	4401			GCTGCCGATG		
	4451			TTGGCACCGA		
40	4501			TITCIGAACC		
	4551			CGAGAAGCAG		
	4601			TCGGCATGCA		
	4651	CGTTGTACGA	AGGTGACATO	CTGATTCATG	AAGCGCTTGA	ACTTGTCTAT
	4701	TCCCTAGGTT	TCAGACTGAG	GGGTTTGTTG	CCCGGCTTTA	CGGATCCGCG
45	4751	CAATGGTCG	ATGCTTCAAC	CTGACGGCAT	TITCTTCCGT	GGGGACGATT
	4801	GACATAAAT		ACCCTGCCGG		
	4851			CTAATCGACT		
	4901			r gecegeree		
	4951	CTGCGCCAG	GTTCTCGAT	A ATTATCCCTA	CCTTCAATG	AGCGGTGACG
50	5001	CTGCAAGCC	GCCTCGGAA	G CATCGTCGGG	CAGACCTAC	GGGAAGTGGA
=	5051	AGTGGTCCT	r GTCGACGGC	G GTTCGACCGA	TCGGACCCT	GACATCGCGA
	5101			C GGCTCGCGAC		
	5151			C CATGAACCGC		

					_	
	5201	CGAATGGGTA	CTTTTTTTAG	GCGCCGACGA	CACCCTCTAC	GAACCAACCA
	5251	CGTTGGCCCA	GGTAGCCGCT	TTTCTCGGCG	ACCATGCGGC	AAGCCATCTT
	5301	GTCTATGGCG	ATGTTGTGAT	GCGTTCGACG	AAAAGCCGGC	ATGCCGGACC
	5351	TTTCGACCTC	GACCGCCTCC	TATTTGAGAC	GAATTTGTGC	CACCAATCGA
5	5401	TCTTTTACCG	CCGTGAGCTT	TTCGACGGCA	TCGGCCCTTA	CAACCTGCGC
	5451	TACCGAGTCT	GGGCGGACTG	GGACTTCAAT	ATTCGCTGCT	TCTCCAACCC
	5501	GGCGCTGATT	ACCCGCTACA	TGGACGTCGT	GATTTCCGAA	TACAACGACA
	5551	TGACCGGCTT	CAGCATGAGG	CAGGGGACTG	ATAAAGAGTT	CAGAAAACGG
	5601	CTGCCAATGT	ACTTCTGGGT	TGCAGGGTGG	GAGACTTGCA	GGCGCATGCT
10	5651	GGCGTTTTTG	AAAGACAAGG	AGAATCGCCG	TCTGGCCTTG	CGTACGCGGT
	5701	TGATAAGGGT	TAAGGCCGTC	TCCAAAGAAC	GAAGCGCAGA	ACCGTAGTCG
	5751	CGGATCCACA	TTGGACTTCT	TTAACGCGTT	TGCGTCCTGA	TCCACCTTTC
	5801	AAGCCCGTTC	CGCGTAACGC	GGCGCGCAGA	GAGTGGTCGC	ATATCGCATC
	5851	ACTGTTCTCG	TGCCAGTGCT	TGGAAAGCGT	CGAGCACTCT	GGTTCGCGTT
15	5901	CTTGACGTTC	GCGCCCGCTC	CTAGAGGTAG	CGTGTCACGT	GACTGAAGCC
	5951	AATGAGTGCA	ACTCGGCGTC	GCGAAAGGTT	TCAGTCGCGG	TTGAGCAAGA
	6001	CACCGCAAGA	CTACTGGAGT	GCGTGCACAA	GCGCCTCCAG	CTCGCGGCTG
	6051	AAAGCGGATG	CAAAGGGATT	CGAAGCTTGA	GCAACATGCG	AAGGGGAGAA
	6101	CGGCCTATGA	GGCTGGGACA	GGTTTTCGAT	CCGCGCGCGA	ATGCACTGTC
20	6151	AATGGCCAAG	TAGAAGTCCC	CGCTGGTGGC	CAGCAGAAGT	CCCCACTCCG
	6201	CTGCGGGTGG	TTGGCTAATT	CTTGGCGGCT	CCCTTCTTGT	GGTCGGCGTG
	6251	GCGCATCCGG	TAGGACTCGC	CGGAGGTGAC	GACGATGCTG	GCGTGGTGCA
	6301	GCAGCCGATC	GAGGATGCTG	GCGGCGGTGG	TGTGCTCGGG	CAGGAATCGC
	6351	CCCCATTGTT	CGAAGGGCCA	ATGCGAGGCG	ATGGCCAGGG	AGCGGCGCTC
25	6401	GTAGCCGGCA	GCCACGAGCC	GGAACAACAG	TTGAGTCCCG	GTGTCGTCGA
	6451	GCGGGGCGAA	GCCGATCTCG	TCCAAGATGA	CCAGATCCGC	GCGGAGCAGG
	6501	GTGTCGATGA	TCTTGCCGAC	GGTGTTGTCG	GCCAGGCCGC	GGTAGAGGAC
	6551	CTCGATCAGG	TCGGCGGCGG	TGAAGTAGCG	GACTTTGAAT	CCGGCGTGGA
	6601	CGGCAGCGTG	CCCGCAGCCG	ATGAGCAGGT	GACTTTTGCC	CGTACCAGGT
30	6651	GGGCCAATGA	CCGCCAGGTT	CTGTTGTGCC	CGAATCCATT	CCAGGCTCGA
	6701		AACGTGGCTG			
	6751	CGTCGAGGGT	CTTGGTGACC	GGGAAGGCTG	CGGCCTTGAG	ACGGTTGGCG
	6801		CATCGCGGGC			
	6851		GGTGTCCAGC			
35	6901		GCGCACCGTG			
	6951		CCAGCGGTGC			
	7001		AGGCCGTCCC			
	7051		TCGACGGTGG			
40	7101		TGGGGTGCCG			
40	7151		ACCGGCGAAA			
	7201		CCGTGGGCGG			
	7251		GGTGTTGCCG			
	7301		CCAATGCGCA			
45	7351		GAGGGTGCGG			
40	7401		ACCTGGGCTG CCAACAGGAT			
	7451		ACGAGCCGCT			
	7501		GAGGCCGTCG			
	7551 7601		GCGAGGGCAG			
50	7601		GCGAGGCAG			
5 0	7651 7701		TAGTTGCGCC			
	7751		ACGCAGCTTC			
	7801		CAGAGGTTCT			
	,001	AGCG I NGCCN	Chonderici			

- 43 -

7851 CGTGGCAGAA GTCCGGAACG AAGCCATAGT GGGACGCGAA TCGCACATAA
7901 TCCGGTGTTG GAACAACAAC ATTGGCGACG ACACCACCTT TGAGGCAGCC
7951 CATCCGGTCG GCCAGGATCT TGGCCGGAAC CCCACCGATC GCCTC

Seq. ID No.4

_							20000233
5		TTCTACTGCC					
		CCAGGTGGAA					
		CACAACGAGA					
		GTGACAAAAG					
		GTTCCTACCT					
10		GAGCTTCGAC					
		GCGCGCGCTT					
		TCAGCAGTAT					
		GCTTTGACGA					
		AAGCAGTCCG					
15		TCGGCGCATC					
		GCGCGGCCAA					
		TCGCAGTGAA					
		CCCGAAAGAT					
		TGGGCAACCT					
20		GGAGGATGTT					
		CCGTACGTGA					
		TCAAGTTTGA					
		ACAGGGCGGC					
		TCATGGTGGA					
25		CGATGTTGCC					
		AACGCCCGTG					
		TGAGGCCGAG					
		CCGAGCCGCA					
		CGCACGGGTC					
30		CCTCCGAATC					
		TTTCCTCGGT					
		TTTATTGACT					
		TATCCTGCAA					
		GACTAACCTC					
35		GCTCATCCGT					
		. GACCGGTACT					
		CCTTTTGGAA					
		CATTAGCGAG					
		GGATCCAACT					
40		. GTTGGGTTGG					
							TTATCCCTCC
							CCGGCGAGGC
							TTATCAGTTG
							CCTCATGGTC
45							ATGCTAATAT
							CACCGAGATG
	252	1 CTGCGCCACT	TCGAACGAA	A GCGCCTATT	A GTAAACCAAT	TCAAAGCATA	CGGAGTCAAC
							TCGTGCAGGA
	264:	1 TTCAAGAGC	GTATCGTTT	CTTTGAACC	r CTTTCGGGGG	. CATTTGCGC	ACTAACGCGC
50	270	1 GAGTCGGCA	r cggatccac	r atgggagtg	r CACCAGTATO	, CCCTAGGGG	CGCCGATGAG

- 44 -

		2761	ACGATTACCA	TCAATGTGGC	AGGCAATGCG	GGGGCAAGTA	GTTCCGTGCT	GCCGATGCTT
		2821	AAAAGTCATC	AAGATGCCTT	TCCTCCCGCG	AATTATATTG	GCACCGAAGA	CGTTGCAATA
		2881	CACCGCCTTG	ATTCGGTTGC	ATCAGAATTT	CTGAACCCTA	CCGATGTTAC	TTTCCTGAAG
		2941	ATCGACGTAC	AGGGTTTCGA	GAAGCAGGTT	ATCGCGGGCA	GTAAGTCAAC	GCTTAACGAA
5		3001	AGCTGCGTCG	GCATGCAACT	CGAACTTTCT	TTTATTCCGT	TGTACGAAGG	TGACATGCTG
		3061	ATTCATGAAG	CGCTTGAACT	TGTCTATTCC	CTAGGTTTCA	GACTGACGGG	TTTGTTGCCC
		3121	GGATTTACGG	ATCCGCGCAA	TGGTCGAATG	CTTCAAGCTG	ACGGCATTTT	CTTCCGTGGG
		3181	GACGATTGAC	ATAAATGCTT	GCGTCGGCAC	CCTGCCGGTA	TCCAAACGGG	CGATCTGGTG
		3241	AGCCGGCCTC	CCGGGCACCT	AATCGACTAT	CTAAATTGAG	GCGGCCGCGA	CGTGCGGCAC
10		3301	GAACAGGTGG	CCGGCTGCTA	GCGTTACACA	CGTCATGACT	GCGCCAGTGT	TCTCGATAAT
		3361	TATCCCTACC	TTCAATGCAG	CGGTGACGCT	GCAAGCCTGC	CTCGGAAGCA	TCGTCGGGCA
		3421	GACCTACCGG	GAAGTGGAAG	TGGTCCTTGT	CGACGCCGGT	TCGACCGATC	GGACCCTCGA
		3481	CATCGCGAAC	AGTTTCCGCC	CGGAACTCGG	CTCGCGACTG	GTCGTTCACA	GCGGGCCCGA
		3541	TGATGGCCCC	TACGACGCCA	TGAACCGCGG	CGTCGGCGTA	GCCACAGGCG	AATGGGTACT
15		3601	TTTTTTAGGC	GCCGACGACA	CCCTCTACGA	ACCAACCACG	TTGGCCCAGG	TAGCCGCTTT
					GCCATCTTGT			
					TCGACCTCGA			
					GTGAGCTTTT			
					ACTTCAATAT			
20					TTTCCGAATA			
					GAAAACGGCT			
					CGTTTTTGAA			
					AGGCCGTCTC			
					AACGCGTTTG			
25					GTGGTCGCAT			
20					TTCGCGTTCT			
					TGAGTGCAAC			
					ACTGGAGTGC			
		430T	GAGCAAGACA	CCGCMGAG1	neromeroe	0.100		
	a		_ =					
	Seq.	ID N	0.5					
20						2020033000	teasettate	gacgatgacg
30								gacgatcacc cgtcaggtcc
								cgcgtgctcg
								cctcgcaatc
25								cgatcttggc
35					i egacateget	geegetatee	gcyayacayy	cgcccgtgac
		361	gaggcctaca	tageetga				
	_		_					
	Seq.	ID N	10.6					
		,	M T 3 T T T	1 C A 17 D T	GTVDLS	. T T T L Y	RSMYDF	MS
40					APLSPA			
70					SPFSR			
					TOTOTI	~~		

91 TACEEQIDLGLIDIDTDDIVAAIRETGARD

121 E A Y I A

- 45 -

Seq. ID No.7

1 gtgtcatctg ctccaaccgt gtcggtgata acgatttcgc tgaacgatct cgagggattg 61 aaaagcaccg tggagagcgt tegegegeag cgctatgggg ggcgaatcga gcacatcgtc 121 atcgacggtg gatcgggcga cgccgtcgtg gagtatctgt ccggcgatcc tggctttgca 181 tartggcaat ctcagcccga caacgggaga tatgacgcga tgaatcaggg cattgcccat 5 241 togtogggog acctgttgtg gtttatgcac tocacggatc gtttctccga tccagatgca 301 gtcgcttccg tggtggaggc gctctcgggg catggaccag tacgtgattt gtggggttac 361 gggaaaaaca accttgtcgg actcgacggc aaaccacttt tccctcggcc gtacggctat 421 atgccgttta agatgcggaa atttctgctc ggcgcgacgg ttgcgcatca ggcgacattc 481 ttcggcgcgt cgctggtagc caagttgggc ggttacgatc ttgattttgg actcgaggcg 10 541 gaccagetgt teatetaceg tgeegeacta atacggeete cegteacgat egaccgegtg 601 gtttgcgact tcgatgtcac gggacctggt tcaacccagc ccatccgtga gcactatcgg 661 accordegge ggctctggga cotgoatgge gactaccege tggggtgggeg cagagtgteg 721 tgggcttact tgcgtgtgaa ggagtacitg attcgggccg acctggccgc attcaacgcg 15 781 gtaaagttot tgogagogaa gttogocaga gcttogogga agcaaaatto atag

Seq. ID No.8

1 V S S A P T V S V I T I S L N D L E G L K S T V E S V R A Q

31 R Y G G R I E H I V I D G G S G D A V V E Y L S G D P G F A

61 Y W Q S Q P D N G R Y D A M N Q G I A H S S G D L L W F M H

20 91 S T D R F S D P D A V A S V V E A L S G H G P V R D L W G Y

121 G K N N L V G L D G K P L F P R P Y G Y M P F K M R K F L L

151 G A T V A H Q A T F F G A S L V A K L G G Y D L D F G L E A

181 D Q L F I Y R A A L I R P P V T I D R V V C D F D V T G P G

211 S T Q P I R E H Y R T L R R L W D L H G D Y P L G G R R V S

25 241 W A Y L R V K E Y L I R A D L A A F N A V K F L R A K F A R

Seq. ID No.9

1 gtgaagcgag cgcttataac agggatcacg gggcaggatg gttcctacct cgccgagcta 61 ctactgagca agggatacga ggttcacggg ctcgttcgtc gagcttcgac gtttaacacg 121 tcgcggatcg atcacctcta cgttgaccca caccaaccgg gcgcgcgctt gttcttgcac 30 181 tatgcagacc tcactgacgg cacccggttg gtgaccctgc tcagcagtat cgacccggat 241 gaggtotaca acctogoago goagtocoat gtgogogtoa gotttgacga gocagtgoat 301 accggagaca ccaccggcat gggatcgatc cgacttetgg aagcagteeg cetttetegg 361 gtggactgcc ggttctatca ggcttcctcg tcggagatgt tcggcgcatc tccgccaccg 421 cagaacgaat cgacgccgtt ctatccccgt tcgccatacg gcgcggccaa ggtcttctcg 35 481 tactggacga ctcgcaacta tcgagaggcg tacggattat tcgcagtgaa tggcatcttg 541 ttcaaccatg agtoccoccg gogoggogag actttogtga cocgaaagat cacgogtgoc 601 gtggcgcgca tccgagctgg cgtccaatcg gaggtctata tgggcaacct cgatgcgatc 661 cgcgactggg gctacgcgcc cgaatatgtc gaggggatgt ggaggatgtt gcaagcgcct 721 gaacctgatg actacgtcct ggcgacaggg cgtggttaca ccgtacgtga gttcgctcaa 40 781 getgettttg accatgtegg getegaetgg caaaagegeg teaagtttga egaeegetat 841 ttgcgtccca ccgaggtcga ttcgctagta ggagatgccg acaaggcggc ccagtcactc 901 ggctggaaag cttcggttca tactggtgaa ctcgcgcgca tcatggtgga cgcggacatc 961 geogegttgg agtgegatgg cacaccatgg ategacacge cgatgttgee tggttgggge 45 1021 agagtaagtt ga

Seq. ID No.10

Seq. ID No.11

15 1 gtgaagcgag cgcttataac agggatcacg gggcaggatg gttcctacct cgccgagcta 61 ctactgagca agggatacga ggttcacggg ctcgttcgtc gagcttcgac gtttaacacg 121 tegeggateg atcaceteta egttgaceca caccaacegg gegegegett gttettgeac 181 tatgcagacc teactgacgg cacceggttg gtgaccetge teagcagtat egacceggat 241 gaggtotaca acctogoago goagtocoat gtgcgcgtca gotttgacga gccagtgcat 20 301 accggagaca ccaccggcat gggatcgatc cgacttctgg aagcagtccg cctttctcgg 361 gtggactgcc ggttctatca ggcttcctcg tcggagatgt tcggcgcatc tccgccaccg 421 cagaacgaat cgacgccgtt ctatccccgt tcgccatacg gcgcggccaa ggtcttctcg 481 tactggacga ctcgcaacta tcgagaggcg tacggattat tcgcagtgaa tggcatcttg 541 ttcaaccatg agtccccccg gegeggegag actttegtga ceegaaagat caegegtgee 25 601 gtggegegea teegagetgg egteeaateg gaggtetata tgggeaacet egatgegate 661 cgcgactggg gctacgcgcc cgaatatgtc gaggggatgt ggaggatgtt gcaagcgcct 721 gaacctgatg actacgtect ggcgacaggg cgtggttaca ccgtacgtga gttcgetcaa 781 getgettttg accaegtegg getegaetgg caaaageaeg teaagtttga egaeegetat 841 ttgcgcccca ccgaggtcga ttcgctagta ggagatgccg acagggcggc ccagtcactc 30 901 ggctggaaag cttcggttca tactggtgaa ctcgcgcgca tcatggtgga cgcggacatc 961 geogegtegg agtgegatgg cacaccatgg ategacaege egatgttgee tggttgggge 1021 ggagtaagtt ga

Seq. ID No.12

Seq. ID No.13

	1	gtgcgatggc	acaccatgga	togacacgec	gatgttgcct	ggttggggca	gagtaagttg
	61	acgactacac	ctgggcctct	ggaccgcgca	acgcccgtgt	atategeegg	tcatcggggg
	121	ctggtcggct	cagcgctcgt	acgtagattt	gaggccgagg	ggttcaccaa	teteattgtg
5	181	cgatcacgcg	atgagattga	tetgaeggae	cgagccgcaa	cgtttgattt	tgtgtctgag
	241	acaagaccac	aggtgatcat	cgatgcggcc	gcacgggtcg	geggeateat	ggcgaataac
	301	acctatcccg	cggacttctt	gtccgaaaac	ctccgaatcc	agaccaattt	gctcgacgca
	361	gctgtcgccg	tgcgtgtgcc	geggeteett	ttcctcggtt	cgtcatgcat	ctacccgaag
	421	tacgctccgc	aacctatcca	cgagagtgct	ttattgactg	gccctttgga	gcccaccaac
10	481	gacgcgtatg	cgatcgccaa	gatcgccggt	atcctgcaag	ttcaggcggt	taggcgccaa
	541	tatgggctgg	cgtggatctc	tgcgatgccg	actaacctct	acggacccgg	cgacaacttc
	601	tccccgtccg	ggtcgcatct	cttgccggcg	ctcatccgtc	gatatgagga	agccaaagct
	661	ggtggtgcag	aagaggtgac	gaattggggg	accggtactc	cgcggcgcga	acttctgcat
	721	gtcgacgatc	tggcgagcgc	atgcctgttc	cttttggaac	atttcgatgg	tccgaaccac
15	781	gtcaacgtgg	gcaccggcgt	cgatcacagc	attagcgaga	tegeagaeat	ggtcgctaca
	841	gcggtgggct	acatcggcga	aacacgttgg	gatccaacta	aacccgatgg	aaccccgcgc
	901	aaactattgg	acgtctccgc	gctacgcgag	ttgggttggc	gcccgcgaat	cgcactgaaa
	961	gacggcatcg	atgcaacggt	gtcgtggtac	cgcacaaatg	ccgatgccgt	gaggaggtaa

Seq. ID No.14

20	1	ν	R	W	H	T	M	D	R	Н	A	D	V	A	W	L	G	Q	s	K	L	T	т	T	P	G	P	Ļ	D	R	A
	31	T	P	v	Y	I	A	G	Н	R	G	L	٧	G	s	Α	L	v	R	R	F	E	A	Ε	G	F	T	N	L	I	V
	61	R	S	R	D	Ε	I	D	L	T	ם	R	A	A	T	F	D	F	V	s	E	Т	R	P	Q	v	I	I	D	A	A
	91	A	R	v	G	G	I	М	A	N	N	T	Y	P	A	D	F	L	s	Ε	N	L	R	I	Q	T	N	L	L	D	Α
	121	A	V	A	V	R	V	P	R	L	L	F	L	G	s	s	С	I	Y	P	K	Y	A	P	Q	P	I	Ħ	E	s	A
25	151	L	L	T	G	P	L	Ε	P	T	N	D	A	Y	A	I	A	ĸ	I	A	G	I	L	Q	V	Q	A	V	R	R	Q
	181	Y	G	L	A	W	I	s	A	М	p	T	N	L	Y	G	P	G	Đ	N	F	s	P	s	G	s	H	L	L	P	A
	211	Ŀ	I	R	R	Y	E	Ε	A	ĸ	A	G	G	A	E	E	v	т	N	W	G	т	G	Т	P	R	R	E	L	L	H
	241	v	D	D	L	A	Ş	A	C	L	F	L	L	E	Н	F	D	G	P	N	Н	v	N	v	G	T	G	٧	D	Н	s
	271	I	s	E	I	A	D	м	V	A	т	A	v	G	Y	I	G	E	T	R	W	Ð	₽	T	K	p	D	G	T	P	R
30	301	К	L	L	D	v	s	Α	L	R	Ε	L	G	W	R	₽	R	I	A	L	ĸ	D	G	I	D	A	T	٧	s	W	Y
	221	ъ	4	ХT	ħ	ъ	A	17	Ð	-																					

many the

- 48 -

Seq. ID No.15

1 gtgcgatggc acaccatgga tcgacacgcc gatgttgcct ggttggggcg gagtaagttg 61 acgactacac ctgggcctct ggaccgcgca acgcccgtgt atatcgccgg tcatcggggg 121 ctggtcggct cagcgctcgt acgtagattt gaggccgagg ggttcaccaa tctcattgtg 181 cgatcacgcg atgagattga tctgacggac cgagccgcaa cgtttgattt tgtgtctgag 5 241 acaagaccac aggtgatcat cgatgcggcc gcacgggtcg gcggcatcat ggcgaataac 301 acctatocog oggacitott gioogaaaac otoogaatoo agaccaatit gotogaogoa 361 getgtegeeg tgegtgtgee geggeteett tteeteggtt egteatgeat etaecegaag 421 tacgeteege aacetateea egagagtget ttattgactg gecetttgga geceaceaac 10 481 gacgcgtatg cgatcgccaa gatcgccggt atcctgcaag ttcaggcggt taggcgccaa 541 tatgggetgg cgtggatete tgegatgeeg actaacetet acggaceegg cgacaactte 601 teccegtecg ggtegeatet ettgeeggeg etcateegte gatatgagga agecaaaget 661 ggtggtgcag aagaggtgac gaattggggg accggtactc cgcggcgcga acttctgcat 721 gtcgacgatc tggcgagcgc atgcctgttc cttttggaac atttcgatgg tccgaaccac 781 gtcaacgtgg gcaccggcgt cgatcacagc attagcgaga tcgcagacat ggtcgctacg 15 841 geggtggget acateggega aacaegttgg gatecaacta aaccegatgg aacceegege 901 aaactattgg acgtctccgc gctacgcgag ttgggttggc gcccgcgaat cgcactgaaa 961 gacggcatcg afgcaacggt gtcgtggtac cgcacaaatg ccgatgccgt gaggaggtaa

Seq. ID No.16

Seq. ID No.17

1 atggattttt tgcgcaacgc cggcttgatg gctcgtaacg ttagtaccga gatgctgcgc 61 cacttegaac gaaagegeet attagtaaac caatteaaag cataeggagt caaegttgtt 35 121 attgatgteg gtgetaacte eggeeagtte ggtagegett tgegtegtge aggatteaag 181 ageogtateg titectitiga acctetiteg gggecattig egeaactaac gegeaagteg 241 gcatcggatc cactatggga gtgtcaccag tatgccctag gcgacgccga tgagacgatt 301 accatcaatg tggcaggcaa tgcgggggca agtagttccg tgctgccgat gcttaaaagt 361 catcaagatg cotttoctoc ogogaattat attggcaccg aagacgttgc aatacaccgc 40 421 cttgattcgg ttgcatcaga atttctgaac cctaccgatg ttactttcct gaagatcgac 481 gtacagggtt tegagaagca ggttateaeg ggeagtaagt caacgettaa egaaagetge 541 gtcggcatgc aactcgaact ttcttttatt ccgttgtacg aaggtgacat gctgattcat 601 gaagegettg aacttgteta treectaggt treagaerga egggtttgtt geeeggettt 661 acggatccgc gcaatggtcg aatgcttcaa gctgacggca ttttcttccg tggggacgat 45 721 tga

20

- 49 -

Seg. ID No.18

1 M D F L R N A G L M A R N V S T E M L R H F E R K R L L V N
31 Q F K A Y G V N V V I D V G A N S G Q F G S A L R R A G F K
61 S R I V S F E P L S G P F A Q L T R K S A S D P L W E C H Q
5 91 Y A L G D A D E T I T I N V A G N A G A S S S V L P M L K S
121 H Q D A F P P A N Y I G T E D V A I H R L D S V A S E F L N
151 P T D V T F L K I D V Q G F E K Q V I T G S K S T L N E S C
181 V G M Q L E L S F I P L Y E G D M L I H E A L E L V Y S L G
211 F R L T G L L P G F T D P R N G R M L Q A D G I F F R G D D

10 Seq. ID No.19

1 atggatttt tgggaacge eggettgatg getegtaacg ttageacega gatgetgege 61 cacttegaac gaaagegeet attagtaaac caatteaaag cataeggagt caaegttgtt 121 attgatgteg gtgetaacte eggecagtte ggtagegett tgegtegtge aggatteaag 181 ageegtateg ttteetttga acetettteg gggecatttg egeaactaac gegegagteg 241 geateggate cactatggga gtgteaceag tatgeectag gegacgeega tgagaegatt 301 aceateaatg tggeaggeaa tgegggggea agtagteeg tgetgeegat gettaaaagt 361 cateaagatg eettteetee egegaattat attggeaceg aagaegttge aataeacege 421 ettgattegg ttgeateaga atteetgaac eetacegatg ttaettteet gaagategae 481 gtacagggtt tegagaagea ggttategg ggeagtaagt caaegettaa egaaagetge 541 gteggeatge aactegaact tteetttatt eegttgtaeg aaggtgacat getgateat 601 gaagegettg aacttgteta tteeetaagt tteeagaetga egggtttgtt geeeggattt 661 aeggateege geaatggteg aatgetteaa getgacggea tttteetteeg tggggaegat 721 tga

Seq. ID No.20

 - 50 -

Seq. ID No.21

1 atgactgoge cagtgttete gataattate cetacettea atgeageggt gacgetgeaa 61 gcctgcctcg gaagcatcgt cgggcagacc taccgggaag tggaagtggt ccttgtcgac 121 ggeggttega eegateggae cetegaeate gegaacagtt teegeeegga acteggeteg 5 181 cqactqqtcg ttcacagcgg gcccgatgat ggcccctacg acgccatgaa ccgcggcgtc 241 ggcgtggcca caggcgaatg ggtacttttt ttaggcgccg acgacaccct ctacgaacca 301 accaegitgg cecaggiage egetittete ggegaecatg eggeaageea tettgietat 361 ggcgatgttg tgatgcgttc gacgaaaagc cggcatgccg gacctttcga cctcgaccgc 421 ctcctatttq agacgaattt gtgccaccaa tcgatctttt accgccgtga gcttttcgac 10 481 ggcatcggcc cttacaacct gcgctaccga gtctgggcgg actgggactt caatattcgc 541 tgcttctcca accoggeget gattaccege tacatggacg tegtgattte egaatacaac 601 gacatgaccg gcttcagcat gaggcagggg actgataaag agttcagaaa acggctgcca 661 atgtacttct gggttgcagg gtgggagact tgcaggcgca tgctggcgtt tttgaaagac 721 aaggagaatc gccgtctggc cttgcgtacg cggttgataa gggttaaggc cgtctccaaa 15 781 gaacgaagcg cagaaccgta g

Seq. ID No.22

1 M T A P V F S I I I P T F N A A V T L Q A C L G S I V G Q T

31 Y R E V E V V L V D G G S T D R T L D I A N S F R P E L G S

61 R L V V H S G P D D G P Y D A M N R G V G V A T G E W V L F

91 L G A D D T L Y E P T T L A Q V A A F L G D H A A S H L V Y

121 G D V V M R S T K S R H A G P F D L D R L L F E T N L C H Q

151 S I F Y R R E L F D G I G P Y N L R Y R V W A D W D F N I R

181 C F S N P A L I T R Y M D V V I S E Y N D M T G F S M R Q G

211 T D K E F R K R L P M Y F W V A G W E T C R R M L A F L K D

25 24 K E N R R L A L R T R L I R V K A V S K E R S A E P

Seq. ID No.23

1 atgactgege cagtgttete gataattate cetacettea atgeageggt gacgetgeaa 61 gcctgcctcg gaagcatcgt cgggcagacc taccgggaag tggaagtggt ccttgtcgac 121 ggcggttcga ccgatcggac cctcgacatc gcgaacagtt tccgcccgga actcggctcg 30 181 cgactggtcg ttcacagcgg gcccgatgat ggcccctacg acgccatgaa ccgcggcgtc 241 ggcgtagcca caggcgaatg ggtacttttt ttaggcgccg acgacaccct ctacgaacca 301 accaegitgg eccaggiage egetittete ggegaceatg eggeaageea tettgietat 361 ggcgatgttg tgatgcgttc gacgaaaagc cggcatgccg gacctttcga cctcgaccgc 421 ctcctatttg agacgaattt gtgccaccaa tcgatctttt accgccgtga gcttttcgac 481 ggcatcggcc cttacaacct gcgctaccga gtctgggcgg actgggactt caatattcgc 35 541 tgcttctcca acceggeget gattaccege tacatggacg tegtgattte egaatacaac 601 gacatgaccg gcttcagcat gaggcagggg actgataaag agttcagaaa acggctgcca 661 atgtacttct gggttgcagg gtgggagact tgcaggcgca tgctggcgtt tttgaaagac 721 aaggagaatc geegtetgge ettgegtaeg eggttgataa gggttaagge egteteeaaa 40 781 gaacgaagcg cagaaccgta g

- 51 -

Seq. ID No.24

1 M T A P V F S I I I P T F N A A V T L Q A C L G S I V G Q T

31 Y R E V E V V L V D G G S T D R T L D I A N S F R P E L G S

61 R L V V H S G P D D G P Y D A M N R G V G V A T G E W V L F

91 L G A D D T L Y E P T T L A Q V A A F L G D H A A S H L V Y

121 G D V V M R S T K S R H A G P F D L D R L L F E T N L C H Q

151 S I F Y R R E L F D G I G P Y N L R Y R V W A D W D F N I R

181 C F S N P A L I T R Y M D V V I S E Y N D M T G F S M R Q G

211 T D K E F R K R L P M Y F W V A G W E T C R R M L A F L K D

Seq. ID No.25

1 gtggccagca gaagtcccca ctccgctgcg ggtggttggc taattcttgg cggctccctt 61 cttgtggtcg gcgtggcgca tccggtagga ctcgccggag gtgacgacga tgctggcgtg 121 gtgcagcagc cgatcgagga tgctggcggc ggtggtgtgc tcgggcagga atcgccccca 181 ttgttcgaag ggccaatgcg aggcgatggc cagggagcgg cgctcgtagc cggcagccac 15 241 gagccggaac aacagttgag tcccggtgtc gtcgagcggg gcgaagccga tctcgtccaa 301 gatgaccaga teegegegga geagggtgte gatgatettg eegaeggtgt tgteggeeag 361 gccgcggtag aggacctcga tcaggtcggc ggcggtgaag tagcggactt tgaatccggc 421 gtggacggca gcgtgcccgc agccgatgag caggtgactt ttgcccgtac caggtgggcc 481 aatgaccgcc aggttctgtt gtgcccgaat ccattccagg ctcgacaggt agtcgaacgt 20 541 ggctgcggtg atcgacgatc cggtgacgtc gaacccgtcg agggtcttgg tgaccgggaa 601 ggctgcggcc ttgagacggt tggcggtgtt ggaggcatcg cgggcagcga tctcggcctc 661 aaccaacgte egcaggatet ceteeggtgt ceagegttge gtettggega ettgeaacac 721 ctcggcggcg ttgcggcgca ccgtggccag cttcaaccgc cgcagcgccg cgtcaaggtc 781 ageagecage ggtgeegeeg aggaeggtge caeeggettg geageggtgg teatgaggee 25 841 gtcccgtcgg tggtgttgat cttgtag

Seq. ID No.26

- 52 -

Seq. ID No.27

		atgggctgcc					
		cgattcgcgt					
		aagggcatcg					
5	181	accgaagctg	cgttagccgg	tgagcaggtc	gacctacgtg	ccctcaacgc	ccaggcgcaa
	241	ctatggtgcg	ccgaggtcaa	tgccacggtc	cactcggaga	tctgcgccgt	gcccaacgat
	301	cgcttggttg	acgagcgcac	cgtcttgagg	gagetgeect	cgctgcggcc	gacgatcggc
	361	teggggtegg	tgcgccgtaa	ggtcgacggc	ctctcgtgca	tccgttacgg	ctcagctcgt
		tactcggtgc					
10		ctgatcctgt					
	541	ggtgaggtgt	ccatcctcga	tgaacactac	gacggaccca	gacccgcacc	ctcgcgtggt
		cctcgcccga					
		ttcctcgtcg					
		ctcggccttg					
15		gcgtttcgcc					
		ccacaacccc					
	901	tcgttggagg	cctacaagat	caacaccacc	gacgggacgg	cctcatgacc	accgctgcca
	961	agccggtggc	accgtcctcg	geggeaeege	tggctgctga	ccttgacgcg	gegetgegge
	1021	ggttgaagct	ggccacggtg	cgccgcaacg	ccgccgaggt	gttgcaagtc	gccaagacgc
20	1081	aacgctggac	accggaggag	atcctgcgga	cgttggttga	ggccgagatc	getgeeegeg
	1141	atgeetecaa	caccgccaac	cgtctcaagg	ccgcagcctt	cccggtcacc	aagaccctcg
	1201	acgggttcga	cgtcaccgga	tcgtcgatca	ccgcagccac	gttcgactac	ctgtcgagcc
	1261	tggaatggat	tcgggcacaa	cagaacctgg	cggtcattgg	cccacctggt	acgggcaaaa
	1321	gtcacctgct	categgetge	gggcacgctg	ccgtccacgc	cggattcaaa	gteegetaet
25	1381	tcaccgccgc	cgacctgatc	gaggtcctct	accgcggcct	ggccgacaac	accgtcggca
	1441	agatcatcga	caccetgete	cgcgcggato	tggtcatctt	ggacgagatc	ggettegeee
	1501	cgctcgacga	caccgggact	caactgttgt	tccggctcgt	ggctgccggc	tacgagcgcc
	1561	gatacatgga	categeeteg	cattggccct	: tcgaacaatg	ggggcgatto	ctgcccgagc
	1621	acaccaccgc	cgccagcato	ctcgatcggc	: tgctgcacca	cgccagcatc	gtcgtcacct
30	1681	ccggcgagtc	ctaccggatg	cgccacgccg	g accacaagaa	gggagccgcc	aagaattag

Seq. ID No.28

```
1 M G C L K G G V V A N V V V P T P D Y V R F A S H Y G F V P 31 D F C H G A D P Q S K G I V E N L C G Y A Q D D L A V P L L 61 T E A A L A G E Q V D L R A L N A Q A Q L W C A E V N A T V 9 L G S G S V R R K V D G L S C I R Y G S A R Y S V P Q R L V G A E V N A T V 15 L T V A V V V D H G A L I L L E P A T G V I V A E H E L V S P 18 L G E V S I L D E H Y D G P R P A P S R G P R P K T Q A E K R 18 L G L G A A H G E Q A L I D A L R R A V A F R R F R A A D V 27 R S I L A A G A G T P Q P R P A G D A L V L D L P T V E T R 301 S L E A Y K I N T T D G T A S
```

- 53 -

Seq. ID No.29

1 M T T A A K P V A P S S A A P L A A D L D A A L R R L K L A
31 T V R R N A A E V L Q V A K T Q R W T P E E I L R T L V E A
61 E I A A R D A S N T A N R L K A A A F P V T K T L D G F D V
91 T G S S I T A A T F D Y L S S L E W I R A Q Q N L A V I G P
121 P G T G K S H L L I G C G H A A V H A G F K V R Y F T A A D
151 L I E V L Y R G L A D N T V G K I I D T L L R A D L V I L D
181 E I G F A P L D D T G T Q L L F R L V A A G Y E R R S L A I
211 A S H W P F E Q W G R F L P E H T T A A S I L D R L L H H A
241 S I V V T S G E S Y R M R H A D H K K G A A K N

Seq. ID No.30

1 gtgacgtctg ctccgaccgt ctcggtgata acgatctcgt tcaacgacct cgacgggttg 61 cagegeaegg tgaaaagtgt gegggegeaa egetaeeggg gaegeatega geacategta 121 ategaeggtg geageggega egaegtggtg geatacetgt eegggtgtga aceaggette 181 gegtattggc agtccgagcc cgacggcggg cggtacgacg cgatgaacca gggcatcgcg 15 241 cacgcategg gtgatetgtt gtggttettg cacteegeeg ategttttte egggeeegae 301 gtggtagccc aggccgtgga ggcgctatcc ggcaagggac cggtgtccga attgtggggc 361 ttcgggatgg atcgtctcgt cgggctcgat cgggtgcgcg gcccgatacc tttcagcctg 421 cgcaaattee tggeeggeaa geaggttgtt eegeateaag categttett eggateateg 481 ctggtggcca agatcggtgg ctacgacett gattteggga tegeegeega eeaggaatte 20 541 atattgeggg cegegetggt atgegageeg gteacgatte ggtgtgtget gtgegagtte 601 gacaccaegg gegteggete geacegggaa ceaagegegg tetteggtga tetgegeege 661 atgggcgacc ttcatcgccg ctacccgttc gggggaaggc gaatatcaca tgcctaccta 721 cgcggccggg agttctacgc ctacaacagt cgattctggg aaaacgtctt cacgcgaatg 25 781 tcgaaatag

Seq. ID No.31

1 M T S A P T V S V I T I S F N D L D G L Q R T V K S V R A Q
31 R Y R G R I E H I V I D G G S G D D V V A Y L S G C E P G F
61 A Y W Q S E P D G G R Y D A M N Q G I A H A S G D L L W F L
30 91 H S A D R F S G P D V V A Q A V E A L S G K G P V S E L W G
121 F G M D R L V G L D R V R G P I P F S L R K F L A G K Q V V
151 P H Q A S F F G S S L V A K I G G Y D L D F G I A A D Q E F
181 I L R A A L V C E P V T I R C V L C E F D T T G V G S H R E
211 P S A V F G D L R R M G D L H R R Y P F G G R R I S H A Y L
35 241 R G R E F Y A Y N S R F W E N V F T R M S K

- 54 -

```
Seq. ID No.32
```

1 gtgaagegag egeteateae eggaateaee ggeeaggaeg getegtatet egeegaaetg 61 ctgctggcca aggggtatga ggttcacggg ctcatccggc gcgcttcgac gttcaacacc 121 tegeggateg atcaceteta egtegaceeg caccaacegg gegegegget gtttetgese 181 tatggtgace tgategacgg aacceggttg gtgaccetge tgagcaccat cgaaccegac 5 241 gaggtgtaca acctggcggc gcagtcacac gtgcgggtga gcttcgacga acccgtgcac 301 accggtgaca ccaccggcat gggatccatg cgactgctgg aagccgttcg gctctctcgg 361 gtgcactgcc gcttctatca ggcgtcctcg tcggagatgt tcggcgcctc gccgccaccg 421 cagaacgage tgacgccgtt ctacccgcgg tcaccgtatg gcgccgccaa ggtctattcg 481 tactgggcga cccgcaatta tcgcgaagcg tacggattgt tcgccgttaa cggcatcttg 10 541 ttcaatcacg aatcaccgcg gcgcggtgag acgttcgtga cccgaaagat caccagggcc 601 gtggcacgca tcaaggccgg tatccagtcc gaggtctata tgggcaatct ggatgcggtc 661 cgcgactggg ggtacgcgcc cgaatacgtc gaaggcatgt ggcggatgct gcagaccgac 721 gagecegaeg acttegtttt ggegaeeggg egeggtttea eegtgegtga gttegegegg 781 gccgcgttcg agcatgccgg tttggactgg cagcagtacg tgaaattcga ccaacgctat 15 841 ctgcggccca ccgaggtgga ttcgctgatc ggcgacgcga ccaaggctgc cgaattgctg 901 ggctggaggg cttcggtgca cactgacgag ttggctcgga tcatggtcga cgcggacatg 961 gcggcgctgg agtgcgaagg caagccgtgg atcgacaagc cgatgatcgc cggccggaca 1021 tga

20 Seq. ID No.33

1 MKRALITGITGQQDGSYLAELLLAKGYEVHG
31 LIRRASTFNTSRIDHLYVDPHQPGARLFLH
61 YGDLIDGTRLVTLLSTIEPDEVYNLAAQSH
91 VRVSFDEPVHTGDTTGMGSMRLLEAVRLSR
25 121 VHCRFYQASSSEMFGASPPPQNELTPFYPR
151 SPYGAAKVYSYWATRNYREAYGLFAVNGIL
181 FNHESPRRGETFVTRKITRAVARIKAGIQS
211 EVYMGNLDAVRDWGYAPEYVEGMWRMLQTD
241 EPDDFVLATGRGFTVREFARAAFEHAGLDW
30 271 QQYVKFDQRYLRPTEVDSLIGDATKAAELL
301 GWRASVHTDELARIMVDADMAALECEGKPW

Seq. ID No.34

1 atgaggetgg eccgtegege teggaacate ttgegtegea aeggeatega ggtgtegege 61 tactttgeeg aactggaetg ggaacgeaat ttettgegee aactgeaate geategggte 35 121 agtgeegtge tegatgtegg ggeeaatteg gggeagtaeg ceaggggtet gegeggegeg 181 ggettegegg geegeategt etegttegag eegetgeeeg ggeeetttge egtettgeag 241 egcagegeet ecaeggaeee gttgtgggaa tgeeggeget gtgegetggg egatgtegat 301 ggaaccatet egateaaegt egeeggeaae gagggegeea geagtteegt ettgeegatg 361 ttgaaacgac atcaggacgo ctttccacca gccaactacg tgggcgccca acgggtgccg 40 421 atacatogac togattoogt ggotgoagac gttotgoggo coaacgatat tgogttottg 481 aagategaeg ttcaaggatt egagaageag gtgategegg gtggegatte aaeggtgeae 541 gaccgatgcg tcggcatgca gctcgagctg tctttccagc cgttgtacga gggtggcatg 601 ctcatccgcg aggcgctcga tctcgtggat tcgttgggct ttacgctctc gggattgcaa 661 cccggtttca ccgacccccg caacggtcga atgctgcagg ccgatggcat cttcttccgg 45 721 ggcagcgatt ga

- 55 -

Seq. ID No.35

1 M R L A R R A R N I L R R N G I E V S R Y F A E L D W E R N
31 F L R Q L Q S H R V S A V L D V G A N S G Q Y A R G L R G A
61 G F A G R I V S F E P L P G P F A V L Q R S A S T D P L W E
91 C R R C A L G D V D G T I S I N V A G N E G A S S S V L P M
121 L K R H Q D A F P P A N Y V G A Q R V P I H R L D S V A A D
151 V L R P N D I A F L K I D V Q G F E K Q V I A G G D S T V H
181 D R C V G M Q L E L S F Q P L Y E G G M L I R E A L D L V D
211 S L G F T L S G L Q P G F T D P R N G R M L Q A D G I F F R

Seq. ID No.36

1 gtgaaatcgt tgaaactcgc tegttcate gegegtageg cegeettega ggtttegege
61 egetattetg agegagacet gaageactag tttgtgaage aacteaaate gegtegggta
121 gatgtegttt tegatgtegg egecaactea ggacaataeg eegeeggeet eegeeggea
181 geatataagg geegeattgt etegttegaa eegetateeg gaeegtttae gattettggaa
241 ageaaagegt eaacggatee actttgggat tgeeggeage atgegttggg egattetgat
301 ggaaeggtta egateaatat egeaggaaae geeggteaga geagtteegt ettgeeatg
361 etgaaaagte ateagaaege tttteeeceeg geaaactatg teggtaeea agaggegtee
421 atacategae ttgatteegt ggegeeagaa tttetaggea tgaaeggtt egettteete
20 481 aaggtegaeg tteaaggett tgaaaageag gtgetegeeg ggggeaaate aaceatagat
541 gaeeattgeg teggeatgea aetegaaetg teetteetee egettgaea aggtggeatg
601 eteatteetg aageeetega tetegtgtat teettggget teaeggteat eggattgetg
661 eettgttea ttgatgeaaa taatggtega atgttgeagg eegaeggeat ettetteegee
721 gaggaegatt ga

25 Seq. ID No.37

30

1 M K S L K L A R F I A R S A A F E V S R R Y S E R D L K H Q
31 F V K Q L K S R R V D V V F D F T V G A N S G Q Y A A G L R
61 R A A Y K G R I V S F E P L S G P F T I L E S K A S T D P L
91 W D C R Q H A L G D S D G T V T I N I A G N A G Q S S S V L
121 P M L K S H Q N A F P P A N Y V G T Q E A S I H R L D S V A
151 P E F L G M N G V A F L K V D V Q G F E K Q V L A G G K S T
181 I D D H C V G M Q L E L S F L P L Y E G G M L I P E A L D L
211 V Y S L G F T L T G L L P C F I D A N N G R M L Q A D G I F

- 56 -

Seq. ID No.38

1 atggtgcaga cgaaacgata cgccggcttg accgcagcta acacaaagaa agtcgccatg 61 gccgcaccaa tgttttcgat catcatcccc accttgaacg tggctgcggt attgcctgcc 121 tgcctcgaca gcatcgcccg tcagacctgc ggtgacttcg agctggtact ggtcgacggc 5 181 ggctcgacgg acgaaaccct cgacatcgcc aacattttcg cccccaacct cggcgagcgg 241 ttgatcattc atcgcgacac cgaccagggc gtctacgacg ccatgaaccg cggcgtggac 301 ctggccaccg gaacgtggtt gctctttctg ggcgcggacg acagcctgta cgaggctgac 361 accottggcgc gggtggccgc cttcattggc gaacacgagc ccagcgatct ggtatatggc 421 gacgtgatca tgcgctcaac caatttccgc tggggtggcg ccttcgacct cgaccgtctg 10 481 ttgttcaagc gcaacatctg ccatcaggcg atcttctacc gccgcggact cttcggcacc 541 atoggtocot acaacotoog ctacogggto otggoogact gggacttcaa tattogotgo 601 ttttccaacc cagcgctcgt cacccgctac atgcacgtgg tcgttgcaag ctacaacgaa 661 theggeggge teageaatac gategtegac aaggagtttt tgaagegget geegatgtee 721 acgagactog gcataagget ggtcatagtt ctggtgegea ggtggccaaa ggtgatcage 15 781 agggccatgg taatgcgcac cgtcatttct tggcggcgcc gacgttag

Seq. ID No.39

1 M V Q T K R Y A G L T A A N T K K V A M A A P M F S I I I P
31 T L N V A A V L P A C L D S I A R Q T C G D F E L V L V D G
61 G S T D E T L D I A N I F A P N L G E R L I I H R D T D Q G
91 V Y D A M N R G V D L A T G T W L L F L G A D D S L Y E A D
121 T L A R V A A F I G E H E P S D L V Y G D V I M R S T N F R
151 W G G A F D L D R L L F K R N I C H Q A I F Y R R G L F G T
181 I G P Y N L R Y R V L A D W D F N I R C F S N P A L V T R Y
211 M H V V V A S Y N E F G G L S N T I V D K E F L K R L P M S
25 241 T R L G I R L V I V L V R R W P K V I S R A M V M R T V I S
271 W R R R

Seq 40:

GATGCCGTGAGGAGGTAAAGCTGC

Seq 41:

30 GATACGGCTCTTGAATCCTGCACG

₹~,

CLAIMS

- 1. A polypeptide in substantially isolated form which comprises a sequence selected from the sequences of Seq.ID.No: 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28 and 29, or a polypeptide substantially homologous thereto.
- 2. A polypeptide in substantially isolated form which comprises a sequence selected from the sequences of Seq.ID.No: 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28 and 29.
- 3. A polypeptide which comprises a fragment of a polypeptide defined in claim 1 or 2, said fragment comprising at least 12 amino acids and an epitope.
- 4. A polynucleotide in substantially isolated form which encodes a polypeptide according to any one of claims 1 to 3.
- 5. A polynucleotide in substantially isolated form which is capable of selectively hybridizing to Seq.ID.No: 3 or 4 or a fragment thereof.
- 6. A polynucleotide fragment according to claim 5 which comprises a sequence selected from the sequences of Seq.ID.No: 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25 and 27, or a polynucleotide at least 90% homologous thereto.
- 7. A polynucleotide in substantially isolated form comprising a sequence selected from the sequences of Seq.ID.No: 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25 and 27.
- 8. A polynucleotide probe which comprises a fragment of at least 15 nucleotides of a polynucleotide as defined in any one of claims 4 to 7, optionally carrying a revealing label.

#1.

- 9. A recombinant vector carrying a polynucleotide as defined in any one of claims 4 to 7.
- 10. An antibody capable of binding a polypeptide or fragment thereof as defined in any one of claims 1 to 3.
- 11. An antibody capable of binding a polypeptide or fragment thereof wherein the polypeptide is a polypeptide which comprises a sequence selected from the sequences of Seq.ID.No: 31, 33, 35, 37 and 39 or is a peptide substantially homogolous thereto.
- 12. A test kit for detecting the presence or absence of a pathogenic mycobacterium in a sample which comprises a polynucleotide according to any one of claims 4 to 8, a polypeptide according to any one of claims 1 to 3, a polypeptide which comprises a sequence selected from the sequences of Seq.ID.No: 31, 33, 35, 37 and 39 or a polypeptide substantially homogolous thereto, or an antibody according to, any one of claims 10 or 11.
- 13. A method of detecting the presence or absence of antibodies in an animal or human, against a pathogenic mycobacteria in a sample which comprises:
 - (a) providing a polypeptide according to any one of claims 1 to 3 or a polypeptide which comprises a sequence selected from the sequences of Seq.ID.No: 31, 33, 35, 37 and 39 or a polypeptide substantially homogolous thereto, which comprises an epitope;
 - (b) incubating a biological sample with said polypeptide under conditions which allow for the formation of an antibody-antigen complex; and
 - (c) determining whether antibody-antigen complex . comprising said polypeptide is formed.
- 14. A method of detecting the presence or absence of a polypeptide according to any one of claims 1 to 3 or a polypeptide which comprises a sequence selected from the

sequences of Seq.ID.No: 31, 33, 35, 37 and 39 or a polypeptide substantially homogolous thereto in a biological sample which method which comprises:

- (a) providing an antibody according to any one of claims 10 and 11;
- (b) incubating a biological sample with said antibody under conditions which allow for the formation of an antibody-antigen complex; and
- (c) determining whether antibody-antigen complex comprising said antibody is formed.
- 15. A method of detecting the presence or absence of cell mediated immune reactivity in an animal or human, to a polypeptide according to claims 1 to 3 or a polypeptide which comprises a sequence selected from the sequences of Seq.ID.No: 31, 33, 35, 37 and 39 or a polypeptide substantially homogolous thereto, which method comprises
 - (a) providing a polypeptide according to any one of claims 1 to 3 or a polypeptide which comprises a sequence selected from the sequences of Seq.ID.No: 31, 33, 35, 37 and 39 or a polypeptide substantially homogolous thereto, which comprises an epitope;
 - (b) incubating a cell sample with said polypeptide under conditions which allow for a cellular immune response such as release of cytokines or other mediator or reaction to occur; and
 - (c) detecting the presence of said cytokine or mediator or cellular response in the incubate.
- 16. A pharmaceutical composition comprising a polypeptide according to any one of claims 1 to 3 in a suitable carrier or diluent.
- 17. A composition according to claim 16 or a composition comprising a polypeptide which comprises a sequence selected from the sequences of Seq.ID.No: 31, 33, 35, 37 and 39 or a polypeptide substantially homogolous thereto,

1. Sept.

for use in the treatment or prevention of diseases caused by mycobacteria.

- 18. A method of treating or preventing mycobacterial disease in an animal or human caused by mycobacteria which express a polypeptide according to claims 1 to 3 or a polypeptide which comprises a sequence selected from the sequences of Seq.ID.No: 31, 33, 35, 37 and 39 or a polypeptide substantially homogolous thereto, which method comprises vaccinating or treating an animal or human with an effective amount of said polypeptide.
- 19. A method of treating or preventing mycobacterial diseases in animals or humans caused by mycobacteria containing the polynucleotide of Seq.ID.No: 3 or 4, which method comprises vaccinating or treating an animal or human with an effective amount of a polynucleotide according to claims 4 to 7, a vector according to claim 9 or a polynucleotide which encodes a polypeptide which comprises a sequence selected from the sequences of Seq.ID.No: 31, 33, 35, 37 and 39 or a polypeptide substantially homogolous thereto.
- 20. A method according to claims 18 or 19 for increasing the in vivo susceptibility of mycobacteria to antimicrobial drugs.
- 21. A normally pathogenic mycobacterium, whose pathogenicity is mediated in all or in part by the presence or the expression of a polypeptide as defined in any one of claims 1 to 3 or a polypeptide which comprises a sequence selected from the sequences of Seq.ID.No: 31, 33, 35, 37 and 39 or a polypeptide substantially homogolous thereto, which mycobacterium harbours an attenuating mutation in a gene encoding one of the said polypeptides.
- 22. A vaccine comprising a mycobacterium as claimed in claim 21.

23. A vaccine according to claim 22 wherein the mycobacteria is selected from Mavs, Mptb and Mtb.

British - -

A 11 a 12 See 1 E 1 E 1 E

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of

HERMON-TAYLOR et al.

Serial No. To Be Assigned

Filed: Concurrently Herewith

For: NOVEL POLYNUCLEOTIDES AND

POLYPEPTIDES IN PATHOGENIC

MYCOBACTERIA AND THEIR USE AS DIAGNOSTICS, VACCINES AND TARGETS

FOR CHEMOTHERAPY

* * * * * * * * * *

November 6, 2000

Atty Ref.:

Examiner:

Group:

117-323

Not Yet Assigned

Not Yet Assigned

Assistant Commissioner for Patents Washington, DC 20231

SUBMISSION OF FORMAL DRAWINGS

Sir:

Enclosed herewith is one (1) sheet of formal, inked drawings for the aboveidentified application.

Respectfully submitted,

NIXON & VANDERHYE P.C.

By:

B.J. Sadoff

Reg. No. 36,663

BJS:jls

1100 North Glebe Road, 8th Floor

Arlington, VA 22201-4714 Telephone: (703) 816-4000 Facsimile: (703) 816-4100

117-250 N,70283B DMG/IJB/ap

Land State Many And The Teach Control of the State Sta

RULE 63 (37 C.F.R. 1.63) DECLARATION AND POWER OF ATTORNEY FOR PATENT APPLICATION IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

a below named inventor. I hereby declare that my residence, post office address and citizenship are as stated below next to my name, and I believe in the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

NOVEL POLYNUCLEOTIDES AND POLYPEPTIDES IN PATHOGENIC MYCOBACTERIA AND THEIR USE AS DIAGNOSTICS, VACCINES AND

the specification of whent (pheck applicable box(s)): is attached hereto was filed as PCT International application No. pCT/GB98/03221 vas filed as PCT International application No. pCT/GB98/03221 No. pCT/GB98/0			TARGE	ETS FOR CHEMOTHER	APY			
is strached harefol was filed as PCT International application No. PCT/GB98/03221 on 23 December 1996 was filed as PCT International application No. PCT/GB98/03221 on 23 December 1996 Ihereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above. I acknowledge the duty to disclose information which is material to the patentiability of this application in accordance with 37 C. F.R. 1.56. I hereby claim freely priority benefits under \$5 U.S.C. 119365 of any foreign application (From priority Foreign Application). Country Great Britain Country Great Britain Interby claim the benefit under 35 U.S.C. 139365 of all prior United States provisional applications; have also dentified below any foreign application for patient for inventor's cardificate having a filing date before that of the application number 9529178.0 Interby claim the benefit under 35 U.S.C. 139365 of all prior United States provisional applications is listed below. Application Number 9529178.0 Interby claim the benefit under 35 U.S.C. 120365 of all prior United States provisional applications is listed above or below and, insofar as the subject matter of each of the claims of this application is not disclosed in such prior applications in the manner provided by the first paragraph of 35 U.S.C. 112, I acknowledge the duty to disclose material information as defined in 37 C.F.R. 1,56 which occurred between the filing date of the prior U.S.P.C. 112, I acknowledge the duty to disclose material information as defined in 37 C.F.R. 1,56 which occurred between the filing date of the prior U.S.P.C. 112, I acknowledge the duty to disclose material information as defined in 37 C.F.R. 1,56 which occurred between the filing date of the prior U.S.P.C. 112, I acknowledge the duty to disclose material information as defined in 37 C.F.R. 1,56 which occurred between the filing date of the prior U.S.P.C. 112, I acknowledge the duty to disclose material info	the spec	ification of which (check a	pplicable box(s)):					
was field as PCT international application No. was field as PCT international application No. PCTTGB996/3221 on 23 December 1996 22 December 1997 I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above. I acknowledge the duty to disclose information which is material to the patientsbility of this application in accordance with 37 C.F.R. 1.55. I hereby claim foreign priority benefits under 35 U.S.C. 119/365 of any foreign application to the patientsbility of this application in accordance with 37 C.F.R. 1.55. I hereby claim foreign priority benefits under 35 U.S.C. 119/365 of any foreign application for pratent or inventor's cartificate having a filing date before that of the application. Application Number Priority Foreign Application(s): Application Number Country I hereby claim the benefit under 35 U.S.C. §119(e) of any United States provisional applications listed above or below and, insofar as the subject matter of each of the claims of this application. I hereby claim the benefit under 35 U.S.C. \$119(e) of any United States and PCT international applications listed above or below and, insofar as the subject matter of each of the claims of this application is not disclosed in such prior applications in the manner provided by the first paragraph of 35 U.S.C. 11, 12, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14			• •					/AU DIA N- 447 2551
A state of as PCT International application No. and (if applicable to U.S. or PCT application) was amended on 22 December 1997. I hereby state that I have revewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above. I acknowledge the duty to disclose information which is material to the professional profession	□ w:				rial No.			(Atty DRt. No. 117-200)
I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above. I acknowledge the duty to disclose information which is material to the patentability of this application in accordance with 37 C.F.R. 1,56. I hereby claim foreign priority benefits under 35 U.S.C. 119/365 of any foreign application(s) for patent or inventor's certificate leaving a filing date before that all statements are the disclose and have also dendrified below any foreign application for patent or inventor's certificate leaving a filing date before that of the application on which priority is claimed or, if no priority is claimed, before the filing date of this application. Priority Foreign Application(s): Application Number Country Great Birtain 1 hereby claim the benefit under 35 U.S.C. \$119(e) of any United States provisional applications [sited above or below and, insofar as the subject matter of each of the claime of this application is not disclosed in such prior applications listed above or below and, insofar as the subject matter of each of the claime of this application is not disclosed in such prior applications in the manner provided by the first paragraph of 35 U.S.C. 112, I schrowledge the tuty to disclose material information as defined in 37 C.F.R. 1.58 which occurred between the filing date of the prior prior of the claims of the prior applications and the national or PCT international filing date of this application. Day/Month/Year Filed Status: patented pending, abandoned pending, ab	1 3 1 W	as filed as PCT Internation	al application No.			on 23 Decemb	er 1996	
I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above. I acknowledge the duty to disclose information which is material to the patentability of this application in accordance with 37 C.F.R. 1.56. I hereby claim foreign priority benefits under 35 U.S.C. 139365 or any froiring applications for patent or inventor's certificate lawring a filing date before that of the application or which priority is claimed or, if no priority is claimed, before the filing date of this application. Country Application Number Great Britain Country Great Britain I hereby claim the benefit under 35 U.S.C. \$119(e) of any United States provisional application(s) listed below. Application Number Date/Month/Year Filed I hereby claim the benefit under 35 U.S.C. \$119(e) of any United States and PCT International applications listed above or below and, insofar as the subject matter of each of the claims of this application is not disclosed in such prior applications in the manner provided by the first paragraph of 35 U.S.C. 120,365 of all prior U.S.C. 112,1.84 Acknowledge the duty to disclose meterial information as defined in 37 C.F.R. 1.56 which occurred between the filing date of the prior applications and the national or PCT international filing date or this application. Prior U.S.PCT Application(s): Application Serial No. Day/Month/Year Filed Day/Month/Year Filed Day/Month/Year Filed Day/Month/Year Filed Position Serial No. PCT/GB96/03221 Day/Month/Year Filed Day/Month/Year Filed Position Serial No. PCT/GB96/03221 Day/Month/Year Filed Position	and (if a	pplicable to U.S. or PCT at	oplication) was amended on	22 December 199	7			
Application Number I hereby claim the benefit under 35 U.S.C. §119(e) of any United States provisional application(s) listed below. Application Number I hereby claim the benefit under 35 U.S.C. 120/365 of all prior United States provisional applications listed above or below and, insofar as the subject matter of each of the claims of this application is not disclosed in such prior applications in the manner provided by the first paragraph of 35 U.S.C. 112, I schrowledge the duty to disclose material information as defined in 37 C.F.R. 1.56 which occurred between the filling date of the prior applications and the national or PCT international filling date of this application. Prior U.S./PCT Application(s): Application Serial No. Day/Month/Year Filed Status: patented pending, abandoned PCT/GB96/03221 I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge are true and that such willful false statements may leopardize the validity of the better, and further that these statements ware made with the knowledge are true and that such willful false statements may leopardize the validity of the ingrisonment, or both, under Section 1001 of Title 13 of the United States Code and that such willful false statements may leopardize the validity of the application or any patent issued thereon. And I hereby appoint NIXON & VANDERHYE P.C., 1100 North Glebe Rd., 8° Floor, Arrington, IVA application or any patent issued thereon. And I hereby appoint NIXON & VANDERHYE P.C., 1100 North Glebe Rd., 8° Floor, Arrington, IVA application or any patent statements was perspected by the same address) individually and collectively my attorneys to prosecute this application and to transact all business in the Patent and Trademark Office address; Individually and collectively my attorneys to prosecute this application and to transact all business in the Patent and Trameran	amendm with 37 (listed be which pr Priority f	nent referred to above. I as C.F.R. 1.56. I hereby claim flow and have also identified flority is claimed or, if no pro- foreign Application(s):	cknowledge the duty to disclos n foreign priority benefits unde nd below any foreign applicatio	se information which is main of 35 U.S.C. 119/365 of ar in for patent or inventor's ing date of this application	atenal to t ny foreign certificate	ne patentability of the application(s) for patentability	atent of i	nventor's certificate hat of the application on
I hereby claim the benefit under 35 U.S.C. §119(e) of any United States provisional application(s) listed below. Application Number I hereby claim the benefit under 35 U.S.C. 120/365 of all prior United States and PCT International applications listed above or below and, insofar as the subject matter of each of the claims of this application is not disclosed in such prior applications in the manner provided by the first paragraph of 35 U.S.C. 112, I acknowledge the duty to disclose material information as defined in 37 C.F.R. 1.56 which occurred between the filling date of the prior applications and the national or PCT international filling date of this application as and the national or PCT international filling date of this application applications serial No. Prior U.S./PCT Application(s): Application Serial No. Day/Month/Year Filed Day/Month/Year Filed Day/Month/Year Filed Day/Month/Year Filed Post Office Address: Day/Month/Year Filed Day/Month/Year Filed Day/Month/Year Filed Post Office Address: Day/Month/Year Filed Day/Month/Year Filed Day/Month/Year Filed Post Office Address: Day/Month/Year Filed Day/Month/Year Filed Day/Month/Year Filed Day/Month/Year Filed Post Office Address: Day/Month/Year Filed Day/Month/Year Filed Day/Month/Year Filed Day/Month/Year Filed Day/Month/Year Filed Post Office Address: Day/Month/Year Filed Day/M				_				
I hereby claim the benefit under 35 U.S.C. 120/365 of all prior United States and PCT International applications listed above or below and, insofar as the subject matter of each of the claims of this application is not disclosed in such prior applications in the manner provided by the first paragraph of 35 U.S.C. 112, I acknowledge the duty to disclose material information as defined in 37 C.F.R. 1.56 which occurred between the filing date of the prior applications and the national or PCT international filling date of this application. Prior U.S./PCT Application(s): Application Serial No. PCT/GB96/03221 I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful fates statements and the like so made are punishable by fine or limprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful sate statements may leopardize the validity of the imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful sate statements may leopardize the validity of the imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful sate statements may leopardize the validity of the imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful sate statements may leopardize the validity of the imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful sate statements made on information and belief are believed to be firecable and the statements and the file soft of the prior punished by fine or any patent issued thereon 1001 of Title 18 of the United States Code and that such willful sate statements made on information and belief are believed to be firecable. I hereby declare that all statements made on information and belief are believed to be firecable and th	9526178	3.0		GICAL DINAIII				
Prior U.S./PCT Application(s): Application Serial No. PCT/GB96/03221 Day/Month/Year Filed 23 December 1996 I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 19 of the United States Code and that such willful false statements may leopardize the validity of the application or any patent issued thereon. And i hereby appoint NiXON & VANDERHYE P.C., 1100 North Glebe Rd., 8 th Floor, Arlington, VA application or any patent issued thereon. And i hereby appoint NiXON & VANDERHYE P.C., 1100 North Glebe Rd., 8 th Floor, Arlington, VA application and to transact all business in the Patent and Trademark Office address) individually and collectively my attorneys to prosecute this application and to transact all business in the Patent and Trademark Office connected therewith and with the resulting patent: Arthur R. Crawford, 25327; Larry S. Nixon, 25640; Robert A. Vanderhye, 27076; James T. Hosmer, connected therewith and with the resulting patent: Arthur R. Crawford, 25327; Larry S. Nixon, 25640; Robert A. Vanderhye, 27076; James T. Hosmer, Spooner, 27393; Leonard C. Mitchard, 29009; Duane M. Byers, 33363; Jeffry H. Nelson, 30481; John R. Lastova, 33149; H. Warren Burman, Jr. 29365; Spooner, 27393; Leonard C. Mitchard, 29009; Duane M. Byers, 33363; Jeffry H. Nelson, 30481; John R. Lastova, 33149; H. Warren Burman, Jr. 29365; J. Scott Davidson, 33489; Alan M. Kagen, 36178; William J. Griffin, 31260; Robert A. Molan, 29834; Michael J. Keenan, 32106; Robert A. Molan, 29834; Michael J.	I hereby	claim the benefit under 35 ect matter of each of the ct	5 U.S.C. 120/365 of all prior Ur laims of this application is not v to disclose material informat	nited States and PCT Inte disclosed in such prior again as defined in 37 C.F.I	ernational	applications listed a	VILLOU DY	TIO III Of Peragraps, at an
Prior U.S./PCT Application(s): Application Serial No. PCT/GB96/03221 Day/Month/Year Filed 23 December 1996 Day/Month/Year Filed 23 December 1996 Perior U.S./PCT Application(s): Application Serial No. PCT/GB96/03221 I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 13 of the United States Code and that such willful false statements may legopardize the validity of the application or any patent issued thereon. And I hereby spopint NIXON & VANDERHYE P.C., 1100 North Glebe Rd., 8 th Floor, Arlington, VA 22201-4714, telephone number (703) 818-4000 (to whom all communications are to be directed), and the following attorneys thereof (of the same address) individually and collectively my attorneys to prosecute this application and to transact all business in the Patent and Tradamark Orffice address): individually and collectively my attorneys to prosecute this application and to transact all business in the Patent and Tradamark Orffice connected therewith and with the resulting patent: Arthur R. Crawford, 25327; Larry S. Nixon, 25640; Robert A. Vanderhya, 27076; James T. Hosmer, 20184; Robert W. Faris, 31352; Richard G. Besha, 22770; Mark E. Nusbaum, 32346; Michael J. Keenan, 32106; Bryan H. Davidson, 30251; Stanley C. 30184; Robert W. Faris, 31250; Robert A. Wanderhya, 27076; James T. Hosmer, 20184; Robert W. Faris, 31252; Robert A. Wanderhya, 27076; James T. Hosmer, 20184; Robert W. Faris, 31352; Richard G. Besha, 22770; Mark E. Nusbaum, 32346; Michael J. Keenan, 32106; Bryan H. Davidson, 30251; Stanley C. 30184; Robert W. Faris, 31260; Robert A. Wanderhya, 27076; James D. Berquist, 34776; Updeep S. Gill, 37334.* I Inventor's Signature: Inventor: Inventor: Inventor: Inventor: Inventor: Inventor: Inventor: Inventor: Inv								Status: natented
I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 13 of the United States Code and that such willful false statements may leopardize the validity of the imprisonment, or both, under Section 1001 of Title 13 of the United States Code and that such willful false statements may leopardize the validity of the imprisonment, or both, under Section 1001 of Title 13 of the United States Code and that such willful false statements may leopardize the validity of the imprisonment, or both, under Section 1001 of Title 13 of the United States Code and that such willful false statements may leopardize the validity of the imprisonment, or both, under Section 1001 of Title 13 of the United States Code and that such willful false statements may leopardize the validity of the imprisonment, or both, under Section 1001 of Title 13 of the United States Code and that such willful false statements and the like so made are punishable by fine or between the like so made are punishable by fine or imprisonments and the like so made are punishable by fine or between the like so made are punishable by fine or between the like so made are punishable by fine or between the like so made are punishable by fine or between the like so made are punishable by fine or between the like so made are punishable by fine or between the like so made are punishable by fine or between the such with like such with like so made are punishable by fine or between the such with like so made are punishable by fine or between the such with like so made are punishable by fine or between the such with like so made are punishable by fine or between the such with like so made are punishable by fine or between the such willing to, NAD and the false statements and leads at suc	Prior U.	.S./PCT Application(s):						
I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 13 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon. And I hereby appoint NIXON & VANDERHYE P.C., 1100 North Glebe Rd., 8 th Floor, Arlington, VA application or any patent issued thereon. And I hereby appoint NIXON & VANDERHYE P.C., 1100 North Glebe Rd., 8 th Floor, Arlington, VA application or any patent issued thereon. And I hereby appoint NIXON & VANDERHYE P.C., 1100 North Glebe Rd., 8 th Floor, Arlington, VA application or any patent issued thereon. And I hereby appoint NIXON & VANDERHYE P.C., 1100 North Glebe Rd., 8 th Floor, Arlington, VA application or any patent issued thereon. And I hereby application and to transact all business in the Patent and Trademark Office connected therewith and with the resulting patent. Arthur R. Crawford, 25327; Larry S. Nixon, 25640; Robert A. Vanderhye, 27076; James T. Hosmer, 30184; Robert W. Faris, 31352; Richard G. Besha, 22770; Mark E. Nusbaum, 32348; Michael J. Keenan, 32106; Bryan H. Davidson, 30251; Stanley C. Spooner, 27393; Leonard C. Mitchard, 29009; Duane M. Byers, 33363; Jeffry H. Nelson, 30481; John R. Lastova, 33149; H. Warren Burnarm, Jr. 29365; J. Scott Davidson, 33489; Alan M. Kagen, 36178; William J. Griffin, 31260; Robert A. Molan, 29834; B. J. Sadolf, 36663; James D. Berquist, 34776; Updeep S. Gill, 37334.* 1. Inventor's Signature:								pending, abandoned
be true; and further that these statements were made with the knowledge that willful false statements and the last of polyment or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the same application or any patent issued thereon. And I hereby appoint NIXON & VANDERHYE P.C., 1100 North Glebe Rd., 8th Floor, Arlington, VA 22201-4714, telephone number (703) 816-4000 (to whom all communications are to be directed, and the following attorneys thereof (of the same address) individually and collectively my attorneys to prosecute this application and to transact all business in the Patent and Trademark Office connected therewith and with the resulting patent: Arthur R. Crawford, 25327; Larry S. Nixon, 25640; Robert A. Vanderhya, 27076; James T. Hosmer, 30184; Robert W. Faris, 31352; Richard G. Besha, 22770; Mark E. Nusbaum, 32348; Michael J. Keenan, 32106; Bryan H. Davidson, 30251; Stanley C. Spooner, 27393; Leonard C. Mitchard, 29009; Duane M. Byers, 33363; Jeffry H. Nelson, 30481; John R. Lastova, 33149; H. Warren Burnam, Jr. 29366; Spooner, 27393; Leonard C. Mitchard, 29009; Duane M. Byers, 33363; Jeffry H. Nelson, 30481; John R. Lastova, 33149; H. Warren Burnam, Jr. 29366; B. J. Sadoff, 36663; James D. Berquist, 34776; Updeep S. Gill, 37334.* 1. Inventor's Signature: Inventor: Millington (first) MI (last) (ast) (ast) (ast) (ast) (ast) (citizenship) 2. Inventor's Signature: Time (first) MI (last) (ast) (citizenship) 3. September 19 August 19 Augus 19 August 19 August 19 August 19 August 19 August 19 August 19 A	PCT/GE	396/03221		23 December 1996				
Residence: (city) Post Office Address: (Zip Code) Inventor's Signature: Inventor: Residence: (city) Post Office Address: (Kirst) Residence: (city) Post Office Address: (Kirst) MI (State/country) United Kingdom St. George's Hospital Medical School, Dept. Of Surgery, Cranmer Terrace, London, United Kingdom SW17 ORE Date: DORAN (Iast) (Isst) (Isst) (Inventor: Residence: (city) Post Office Address: 1/8 Oxford Street, Whillington, Australia	be true; imprison applicat 22201-4 address connect 30184; Spoone Thomas B. J. Sa	and further that these statement, or both, under Section or any patent issued that 1714, telephone number (s) individually and collective ted therewith and with the Robert W. Faris, 31352; Rer. 27393; Leonard C. Mitch S. E. Byme, 32205; Mary J. adoff, 36663; James D. Beilnventor's Signature:	ements were made with the kind 1001 of Title 13 of the Unit lereon. And I hereby appoint I (703) 816-4000 (to whom all dely my attorneys to prosecute resulting patent: Arthur R. Crichard G. Besha, 22770; Mark hard, 2900s; Duane M. Byers, Wilson, 32955; J. Scott David rquist, 34776; Updeep S. Gill,	nowledge that willful false ted States Code and that NIXON & VANDERHYE is communications are to this application and to trawford, 25327; Larry S. N. E. Nusbaum, 32348; Mic 33363; Jeffry H. Nelson, 3449; Alan M. Kag 37334.*	statement such will! P.C., 1100 be direct all such act al	ful false statements of North Glebe Rd., and the following business in the Pate 540; Robert A. Vandeenan, 32106; Bryaohn R. Lastova, 331; William J. Griffin, Date:	may Jeon 8th Flooring attorniont and Terhye, 2'n H. Dav 49; H. W. 31260; F	pardize the validity of the r. Artington, VA eys thereof (of the same rademark Office 7076; James T. Hosmer, idson, 30251; Stanley C. farren Burnam, Jr. 29366; tobert A. Molan, 29834;
2. Inventor's Signature: Inventor: Residence: (city) Post Office Address: (Zip Code) SW17 DRE Jan Date: 5 8 1998 Australian (citizenship) Whillington Post Office Address: Whillington Post Office Address: (Zip Code) Whillington (first) Whillington, Australia Visit Code)			(first)	(sta	ite/countr	(last) v) United Kingdo	om_	
2. Inventor's Signature: Inventor: Tim DORAN Australian (first) MI (last) (citizenship) Residence: (city) Post Office Address: 1/8 Oxford Street, Whilfilngton, Australia			St. George's Hospital Med	Ilcal School, Dept. Of Su	urgery, C	ranmer Terrace, Lo	ondon, t	Inited Kingdom
2. Inventor's Signature: Inventor: Inventor: Residence: (city) Post Office Address: 1/8 Oxford Street, Whilfilington, Australia								
Inventor: TIm (first) MI (last) (citizenship) Residence: (city) Post Office Address: 1/8 Oxford Street, WhillIngton, Australia	•	, ,	V Tim		Dar.	m Date:	S	
Residence: (city) Whitlington (state/country) Australia Post Office Address: 1/8 Oxford Street, Whillington, Australia	۷.	_	Tim		1	OORAN		
Residence: (city) Whillington (state/country) Australia Post Office Address: 1/8 Oxford Street, Whillington, Australia		іпуеліог:		MI		(last)		(citizenship)
Post Office Address: 1/8 Oxford Street, Whillington, Australia		Porudonan: (nity)	. ,		ate/countr	y) Australia		
(7) Cods) VIC 3219			1/8 Oxford Street, Whilling	ton, Australia				
(ZIP CODE) VIO 3213 and attach sheet with same information and signature and date for each.		(Tin Code)	V/IC 2219					
		(ZID COGE)	check how (3) and attach a	heet with same Informa	ation and	signature and date	e for eac	h.

RULE 63 (37 C.F.R. 1.63) DECLARATION AND POWER OF ATTORNEY

 \blacktriangle

FOR PATENT APPLICATION IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Page 2		IN THE UNITED) STATES PATENT AF	ND IRADEMAKK OFFI	CE	
•				1///		, 1
3.	Inventor's Signature:	Abulla		MM	Date:	14/8/98
٠.	Inventor:	Donglas		MILLAR		British
	mventor.	(first)	MI	(last)		(citizenship)
	Residence: (city)	North Ryde	1411	(state/country) Austr	alia	(Gillacitoria)
	Post Office Address:		omolecular Engineering	P.O. Box 184, North Ryd		lia .
	(Zip Cods)	NSW 2113	oniologian chighteethig	7.0. DOX 104, NORTH RYC	6, AU3016	
	(Zip Cods)	11317 2113				
4.	Inventor's Signature:	10 Mint		Today.	Date:	5/8/98
٦.	Inventor:	Mark		TIZARD	_ Date.	British
	mentor.	(first)	MI	(last)		(citizenship)
-	Residence: (city)	London	(44)	(state/country) United	i Kinado	
	Post Office Address:		al Medical School Dent	Of Surgery, Cranmer Te		
	(Zip Code)	SW17 ORE	di medida Gariodi, Bept	or cargery, crammer re	11400, 60	ndon, omtag rangdom
	(Zip Code)	JULY ORE				
5.	Inventor's Signature:	n ///	1000		Date:	24.7.98
٥.	Inventor:	Mark	o oyan	LOUGHLIN	- Jake.	British
	inventor.	(first)	MI	(last)		(citizenship)
	Residence: (city)	London	1011	(state/country) United	1 Kinado	
	Post Office Address:		al Medical School Dont	Of Surgery, Cranmer Te		
		SW17 ORE	ar medical Scriddi, Dept.	Ot Surgery, Craimler 16	rrace, co	idon, dinica rinigadin
	(Zip Code)	24411 046				
6.	Inventor's Signature:	& Nasu.		Summer	Date:	14th July 1998
u,	inventor;	Nazira	<u></u>	SUMAR		British
	inventor;	(first)	MI	(last)		(citizenship)
	Condense (nd)	London	(41)	(state/country) United	Kinada	
	Residence: (city)		al Madical Cabool Done	Of Surgery, Cranmer Te		
	Post Office Address:	SW17 ORE	ai Medicai School, Dept.	Of Surgery, Grainner 18	riace, Lui	ndon, omtad (mgaom
	(Zip Code)	SWIT UKE				((
7.	Inventor's Signature:	\sim	und le		Date:	27/7/98
7.	Inventor:	John		FORD	- 5410.	British
	myentor.	(first)	MI	(last)		(citizenship)
	Residence: (city)	London		(state/country) United	Kingdor	
	Post Office Address:		al Madical School Dept	Of Surgery, Cranmer Te		
		SW17 ORE	ai Medicai School, Dept	Or Surgery, Crammer Te	iidee, co	neon, omiocrimgeon
	(Zip Code)	SWITTORE				
8.	Inventor's Signature				Date:	
٥.	Inventor:					
	myentor.	(first)	Mi	(last)		(citlzenship)
	Residence: (city)	(11131)		(state/country)		(4,
	Post Office Address:			(0.000.000)		
	(Zip Code)					
	(Lip 4 00c)					
9.	Inventor's Signature:				Date:	
J .	Inventor:					
	m. on.o.	(first)	MI	(last)		(citizenship)
	Residence: (city)	V ···y		(state/country)		
	Post Office Address:			_ `		
	(Zip Code)					
	(E.P 000c)				***************************************	
10.	Inventor's Signature:				Date:	
. • .	Inventor;		7			
		(first)	MI	(last)		(citizenship)
	Residence: (city)	. ,		(state/country)		
	Post Office Address:	***				
	(Zip Code)					
	,i /	***************************************				
11.	Inventor's Signature:				_ Date:	
	inventor:				-	
		(first)	MI	(last)		(citizenship)
	Residence: (city)			(state/country)		
	Post Office Address:					
	(Zip Code)					

SEQUENCE LISTING

- <110> Hermon-Taylor, John
 Doran, Tim
 Millar, Douglas
 Tizard, Mark
 Loughlin, Mark
 Sumar, Nazira
- <120> NOVEL POLYNUCLEOTIDES AND POLYPEPTIDES IN PATHOGENIC MYCOBACTERIA AND THEIR USE AS DIAGNOSTICS, VACCINES AND TARGETS FOR CHEMOTHERAPY
- <130> 117-260
- <140> 09/091,538
- <141> 1998-06-19
- <150> PCT/GB96/03221
- <151> 1996-12-23
- <150> GB 9526178.0
- <151> 1995-12-21
- <160> 41
- <170> PatentIn Ver. 2.0
- <210> 1
- <211> 674
- <212> DNA
- <213> Mycobacterium
- <400> 1
- gatccaacta aacccgatgg aaccccgcgc aaactattgg acgtctccgc gctacgcagt 60
- tgggttggcg cccgcgaatc gcactgaaag agggcatcga tgcaacggtg tcgtggtacc 120
- gcacaaatgc cgatgccgtg aggaggtaaa gctgcgggcc ggccgatgtt atccctccgg 180
- ceggaegggt agggegaect gecategagt ggtaeggeag tegeetggee ggegaggege 240
- atggcctatg tgagtatece atageetgge ttggctegee ectaegeatt ateagttgae 300
- cgctttcgcg ccacgtcgca ggcttgcggc agcatcccgt tcaggtctcc tcatggtccg 360
- gtgtggcacg accacgcaag ctcgaaccga ctcgtttccc aatttcgcat gctaatatcg 420
- ctcgatggat tttttgcgca acgccggctt gatggctcgt aacgttagca ccgagatgct 480
- gegecactee gaacgaaage geetattagt aaaccaagte gaagcataeg gagteaaegt 540
- tgttattgat gteggtgeta acteeggeea gtteggtage getttgegte gtgeaggatt 600
- caagagccgt atcgtttcct ttgaacctct ttcggggcca tttgcgcaac taacgcgcaa 660

674

gtcggcatcg gatc

<212> DNA <213> Mycobacterium

<400> 2
gatccgatgc cgacttgcgc gttagttgcg caaatggccc cgaaagaggt tcaaaggaaa 60
cgatacggct cttgaatect gcacgacgaa aagcgctacc gaactggccg gagttagcac 120
cgacatcaat aacaacgttg actccgtatg cttcgacttg gtttactaat aggcgctttc 180
gttcggagtg gcgcagcatc tcggtgctaa cgttacgagc catcaagccg gcgttgcgca 240
aaaaatccat cgagcgatat tagcatgcga aattgggaaa cgagtcggtt cgagcttgcg 300
tggtcgtgcc acaccggacc atgagagaac ctgaacggga tgctgccgca agcctgcgac 360
gtggcgcgaa agcggtcaac tgataatgcg taggggcgag ccaagccagg ctatgggata 420
ctcacatagg ccatgcgct cgccggccag gcgactgccg taccactcga tggcaggtcg 480
ccctacccgt ccggccgag ggataacatc ggccggcccg cagctttacc tcctcacggc 540
atcggcattt gtgcggtacc acgacaccgt tgcatcgatg ccctctttca gtgcgattcg 600
cgggcgcaa cccaactgcg tagcgcgga acgtccaata gtttgcgcgg ggttccatcg 660
ggtttagttg gatc

<210> 3 <211> 7995 <212> DNA

<213> Mycobacterium

<400> 3
gaattctgggg ttggagacga cgtcgaactc ctggtcggtc ttgcttcgaa tgatcgctgt 60
gatctggtcg gcggtgccga caggaaccgt cgacttgtcg acgatcacct tgtaccggtc 120
gatgtatgac ccaatgtcgt ccgcaaccga gaagacgtac gtcaggtccg ccgcccgct 180
ttcacccatg ggcgtcggga cggcgatgaa aatgacgtcc gcgtgctcga ttccgcgttg 240
ccggtcggtg gtgaagtcaa tcagcccgtt ctcacggttc ctcgcaatca actcccaacc 300
cgggctcgaa aatcgggaca ctgcctgcga ggagcaaatc gatcttggcc tgatcgatat 360
cgacacagac gacatcgttg ccgctatccg cgagacaggc gcccgtgacg aggcctacat 420
agcctgatcc gaccaccgaa atttcaaga tgaccccttc aagtccccga tcggtcgacg 480
accatactgc cgcaactctg taccctccgt gggtaattcg catgtcgcgt tcgtaaggag 540
cagccagcag gtcgggacg ttcggtgaa gagtcgcagg actacgaggt tgccggtgcg 600
atacatcaca gtgttgcgtc tgtcggcaac gatgcagca gaacccacgg ggcagccctg 660
aactgcgcgc atgaccggt cttgtcctgg cacctttgat cggccaccgc ttccatgcga 720
acatgaccgg aatccatagc gcgtggtcaa gcagcggga ggtagacgtc ggtgtcatct 780

getecaaceg tgteggtgat aacgattteg etgaacgate tegagggatt gaaaageace 840 gtggagageg ttegegegea gegetatggg gggegaateg ageaeategt categaeggt 900 ggatcgggcg acgccgtcgt ggagtatctg tccggcgatc ctggctttgc atattggcaa 960 teteageeeg acaaegggag atatgaegeg atgaateagg geattgeeea ttegteggge 1020 gacctgttgt ggtttatgca ctccacggat cgtttctccg atccagatgc agtcqcttcc 1080 gtggtggagg cgctctcggg gcatggacca gtacgtgatt tgtggggtta cgggaaaaac 1140 aacettgteg gaetegaegg caaaceaett tteeetegge egtaeggeta tatgeegttt 1200 aagatgegga aatttetget eggegegaeg gttgegeate aggegaeatt etteggegeg 1260 tegetggtag ceaagttggg eggttacgat ettgattttg gaetegagge ggaecagetg 1320 ttcatctacc gtgccgcact aatacggcct cccgtcacga tcgaccgcgt ggtttgcgac 1380 ttcgatgtca cgggacctgg ttcaacccag cccatccgtg agcactatcg gaccctgcgg 1440 cggctctggg acctgcatgg cgactacccg ctgggtgggc gcagagtgtc gtgggcttac 1500 ttgcgtgtga aggagtactt gattcgggcc gacctggccg cattcaacgc ggtaaagttc 1560 ttgcgagcga agttcgccag agcttcgcgg aagcaaaatt catagaaacc aacttctact 1620 gcctgacctg agcagcgcg aggcgcgcag cgcgatcagt gcgacctgaa cggccaggtg 1680 gaaagcgcca ccgatcccgg caccgagtgc ctgacgcttc ggatcccttg caccacaacg 1740 agagtgagag cgccatgatg aggaaatatc ggctgggcgg agtcaacgcc ggagtgacaa 1800 aagtgagaac ccggtgaagc gagcgcttat aacagggatc acggggcagg atggttccta 1860 cctcgccgag ctactactga gcaagggata cgaggttcac gggctcgttc gtcgagcttc 1920 gacgtttaac acgtcgcgga tcgatcacct ctacgttgac ccacaccaac cgggcgcgcg 1980 cttgttcttg cactatgcag acctcactga cggcacccgg ttggtgaccc tgctcagcag 2040 tatcgacccg gatgaggtct acaacctcgc agcgcagtcc catgtgcgcg tcagctttga 2100 cgagccagtg cataccggag acaccaccgg catgggatcg atccgacttc tggaaqcagt 2160 ccgcctttct cgggtggact gccggttcta tcaggcttcc tcgtcggaga tgttcggcgc 2220 atotocgoca cogcagaacg aatogacgoc gttotatoco cgttogocat acggogogoc 2280 caaggtette tegtaetgga egaetegeaa etategagag gegtaeggat tattegeagt 2340 gaatggcatc ttgttcaacc atgagtcccc ccggcgcggc gagactttcg tgacccgaaa 2400 gatcacgcgt gccgtggcgc gcatccgagc tggcgtccaa tcggaggtct atatgggcaa 2460 cctcgatgcg atccgcgact ggggctacgc gcccgaatat gtcgagggga tgtggaggat 2520 gttgcaagcg cctgaacctg atgactacgt cctggcgaca gggcgtggtt acaccgtacg 2580 tgagttcgct caagctgctt ttgaccatgt cgggctcgac tggcaaaagc gcgtcaagtt 2640

tgacgaccgc tatttgcgtc ccaccgaggt cgattcgcta gtaggagatg ccgacaaggc 2700 ggcccagtca ctcggctgga aagcttcggt tcatactggt gaactcgcgc gcatcatggt 2760 ggacgcggac atcgccgcgt tggagtgcga tggcacacca tggatcgaca cgccgatgtt 2820 gcctggttgg ggcagagtaa gttgacgact acacctgggc ctctggaccg cgcaacgccc 2880 gtgtatatcg ccggtcatcg ggggctggtc ggctcagcgc tcgtacgtag atttgaggcc 2940 gaggggttca ccaatctcat tgtgcgatca cgcgatgaga ttgatctgac ggaccgagcc 3000 gcaacgtttg attttgtgtc tgagacaaga ccacaggtga tcatcgatgc ggccgcacgg 3060 gtcggcggca tcatggcgaa taacacctat cccgcggact tcttgtccga aaacctccga 3120 atccagacca atttgctcga cgcagctgtc gccgtgcgtg tgccgcggct ccttttcctc 3180 ggttcgtcat gcatctaccc gaagtacgct ccgcaaccta tccacgagag tgctttattg 3240 actggccctt tggagcccac caacgacgcg tatgcgatcg ccaagatcgc cggtatcctg 3300 caagttcagg cggttaggcg ccaatatggg ctggcgtgga tctctgcgat gccgactaac 3360 ctctacggac ccggcgacaa cttctccccg tccgggtcgc atctcttgcc ggcgctcatc 3420 cgtcgatatg aggaagccaa agctggtggt gcagaagagg tgacgaattg ggggaccggt 3480 acteegegge gegaacttet geatgtegae gatetggega gegeatgeet gtteettttg 3540 gaacatttcg atggtccgaa ccacgtcaac gtgggcaccg gcgtcgatca cagcattagc 3600 gagategeag acatggtege tacageggtg ggetacateg gegaaacaeg ttgggateca 3660 actaaacccg atggaacccc gcgcaaacta ttggacgtct ccgcgctacg cgagttgggt 3720 tggcgcccgc gaatcgcact gaaagacggc atcgatgcaa cggtgtcgtg gtaccgcaca 3780 aatgeegatg cegtgaggag gtaaagetge gggteggeeg atgttateee teeggeegga 3840 cgggtggggc gacctgccgt cgagtggtac ggcagtcgcc tggccggcga ggcgcgtggc 3900 ctatgggagt atccaatage etggettgge tegecectae geattateag ttgaeegett 3960 tegegecage tegeaggett geggeageat ecceptteagg teteetcatg gteeggtgtg 4020 gcacgaccac gcaagetega acegactegt tteccaattt egcatgetaa tategetega 4080 tggatttttt gegeaacgee ggettgatgg etegtaacgt tagtacegag atgetgegee 4140 acttcgaacg aaagcgccta ttagtaaacc aattcaaagc atacggagtc aacgttgtta 4200 ttgatgtcgg tgctaactcc ggccagttcg gtagcgcttt gcgtcgtgca ggattcaaga 4260 gccgtatcgt ttcctttgaa cctctttcgg ggccatttgc gcaactaacg cgcaagtcgg 4320 catcggatcc actatgggag tgtcaccagt atgccctagg cgacgccgat gagacgatta 4380 ccatcaatgt ggcaggcaat gcgggggcaa gtagttccgt gctgccgatg cttaaaagtc 4440

atcaagatge ettteeteee gegaattata ttggeaeega agaegttgea atacaeegee 4500 ttgattcggt tgcatcagaa tttctgaacc ctaccgatgt tactttcctg aagatcgacg 4560 tacagggttt cgagaagcag gttatcacgg gcagtaagtc aacgcttaac gaaagctgcg 4620 tcggcatgca actcgaactt tcttttattc cgttgtacga aggtgacatg ctgattcatg 4680 aagegettga aettgtetat teeetaggtt teagaetgae gggtttgttg eeeggettta 4740 eggateegeg caatggtega atgetteaag etgaeggeat titetteegt ggggaegatt 4800 gacataaatg ctccgtcggc accctgccgg tatccaaacg ggcgatctgg tgagccggcc 4860 tecegggeae etaategaet atetaaattg aggeggeege gaegtgegge acgaacaggt 4920 ggccggctgc tagcgttaca cacgtcatga ctgcgccagt gttctcgata attatcccta 4980 cetteaatge ageggtgacg etgcaageet geeteggaag categteggg cagacetace 5040 gggaagtgga agtggtcctt gtcgacggcg gttcgaccga tcggaccctc gacatcgcga 5100 acagtttccg cccggaactc ggctcgcgac tggtcgttca cagcgggccc gatgatggcc 5160 cctacgacgc catgaaccgc ggcgtcggcg tggccacagg cgaatgggta ctttttttag 5220 gcgccgacga caccetetae gaaccaacca cgttggccca ggtagccgct tttctcggcg 5280 accatgcggc aagccatctt gtctatggcg atgttgtgat gcgttcgacg aaaagccggc 5340 atgccggacc tttcgacctc gaccgcctcc tatttgagac gaatttgtgc caccaatcga 5400 tettttaceg eegtgagett ttegaeggea teggeeetta caacetgege tacegagtet 5460 gggcggactg ggacttcaat attcgctgct tctccaaccc ggcgctgatt acccgctaca 5520 tggacgtcgt gatttccgaa tacaacgaca tgaccggctt cagcatgagg caggggactg 5580 ataaagagtt cagaaaacgg ctgccaatgt acttctgggt tgcagggtgg gagacttgca 5640 ggcgcatgct ggcgtttttg aaagacaagg agaatcgccg tctggccttg cgtacgcggt 5700 tgataagggt taaggccgtc tccaaagaac gaagcgcaga accgtagtcg cggatccaca 5760 ttggacttct ttaacgcgtt tgcgtcctga tccacctttc aagcccgttc cgcgtaacgc 5820 ggcgcgcaga gagtggtcgc atatcgcatc actgttctcg tgccagtgct tggaaagcgt 5880 egageactet ggttegegtt ettgaegtte gegeeegete etagaggtag egtgteaegt 5940 gactgaagcc aatgagtgca actcggcgtc gcgaaaggtt tcagtcgcgg ttgagcaaga 6000 caccgcaaga ctactggagt gcgtgcacaa gcgcctccag ctcgcggctg aaagcggatg 6060 caaagggatt cgaagcttga gcaacatgcg aaggggagaa cggcctatga ggctgggaca 6120 ggttttcgat ccgcgcgcga atgcactgtc aatggccaag tagaagtccc cgctggtggc 6180 cagcagaagt coccactoog ctgcgggtgg ttggctaatt cttggcggct cccttcttgt 6240 ggtcggcgtg gcgcatccgg taggactcgc cggaggtgac gacgatgctg gcgtggtgca 6300

gcagccgatc gaggatgctg gcggcggtgg tgtgctcggg caggaatcgc ccccattgtt 6360 cgaagggcca atgcgaggcg atggccaggg agcggcgctc gtagccggca gccacgagcc 6420 ggaacaacag ttgagtcccg gtgtcgtcga gcggggcgaa gccgatctcg tccaagatga 6480 ccagatccgc gcggagcagg gtgtcgatga tcttgccgac ggtgttgtcg gccaggccgc 6540 ggtagaggac ctcgatcagg tcggcggcgg tgaagtagcg gactttgaat ccggcgtgga 6600 cggcagcgtg cccgcagccg atgagcaggt gacttttgcc cgtaccaggt gggccaatga 6660 ccgccaggtt ctgttgtgcc cgaatccatt ccaggctcga caggtagtcg aacgtggctg 6720 cggtgatcga cgatccggtg acgtcgaacc cgtcgagggt cttggtgacc gggaaggctg 6780 eggeettgag aeggttggeg gtgttggagg categeggge agegateteg geeteaacea 6840 acgtccgcag gatctcctcc ggtgtccagc gttgcgtctt ggcgacttgc aacacctcgg 6900 cggcgttgcg gcgcaccgtg gccagcttca accgccgcag cgccgcgtca aggtcagcag 6960 ccagcggtgc cgccgaggac ggtgccaccg gcttggcagc ggtggtcatg aggccgtccc 7020 gtcggtggtg ttgatcttgt aggcctccaa cgagcgggtc tcgacggtgg gcagatcgag 7080 cacgagtgcg tcgccggcgg ggcggggttg tggggtgccg gcgccggcgg ccaggatcga 7140 gegeaegteg geagegegga aceggegaaa egeaacegee eggegeageg egteaateaa 7200 agectigting cogtigging egecaaggee gageagaatg togagttogg atticaging 7260 ggtgttgccg atcgcagcag caccgacgag gaactgctgc gcttcggttc ccaatgcgca 7320 gaatcgtttc tctgcttggg ttttcgggcg aggaccacgc gagggtgcgg gtctgggtcc 7380 gtcgtagtgt tcatcgagga tggacacete acetgggetg acgagetegt geteggeeae 7440 gatcacaccg gtcgcaggtt ccaacaggat cagggcgcca tgatcgacca ccaccgccac 7500 ggtggcaccg acgagccgct gaggcaccga gtaacgagct gagccgtaac ggatgcacga 7560 gaggeegteg acettaegge geacegaeee egageegate gteggeegea gegagggeag 7620 ctccctcaag acggtgcgct cgtcaaccaa gcgatcgttg ggcacggcgc agatctccga 7680 gtggaccgtg gcattgacct cggcgcacca tagttgcgcc tgggcgttga gggcacgtag 7740 gtcgacctgc tcaccggcta acgcagcttc ggtcagcagc ggcaccgcaa ggtcgtcctg 7800 agcgtagcca cagaggttct ccacgatgcc cttcgattgc ggatccgcac cgtggcagaa 7860 gtccggaacg aagccatagt gggacgcgaa tcgcacataa tccggtgttg gaacaacaac 7920 attggcgacg acaccacctt tgaggcagcc catccggtcg gccaggatct tggccggaac 7980 cccaccgatc gcctc 7995

<211> 4435

<212> DNA

<213> Mycobacterium

<400> 4

ttctactgcc tgacctgagc agcgccgagg cgcgcagcgc gatcactgcg acctgaatgg 60 ccaggtggaa agcgccaccg atcccggcac cgagtgcctg acgattcgga tcccttgcac 120 cacaacgaga gtgagaccgc catgatgacg aaatatcggc tgggcggagt caacgccgga 180 gtgacaaaag tgagaacccg gtgaagcgag cgcttataac agggatcacg gggcaggatg 240 gttcctacct cgccgagcta ctactgagca agggatacga ggttcacggg ctcgttcgtc 300 gagettegae gtttaacaeg tegeggateg ateaceteta egttgaceea caccaacegg 360 gegegegett gttettgeae tatgeagaee teaetgaegg caeceggttg gtgaeeetge 420 tcagcagtat cgacccggat gaggtctaca acctcgcagc gcagtcccat gtgcgcgtca 480 gctttgacga gccagtgcat accggagaca ccaccggcat gggatcgatc cgacttctgg 540 aagcagtccg cctttctcgg gtggactgcc ggttctatca ggcttcctcg tcggagatgt 600 teggegeate teegceaceg cagaacgaat egacgeegtt etateeeegt tegecataeg 660 gcgcggccaa ggtcttctcg tactggacga ctcgcaacta tcgagaggcg tacggattat 720 tegeagtgaa tggcatettg tteaaceatg agteeceeg gegeggegag aetttegtga 780 cccgaaagat cacgcgtgcc gtggcgcgca tccgagctgg ctgccaatcg gaggtctata 840 tgggcaacct cgatgcgatc cgcgactggg gctacgcgcc cgaatatgtc gaggggatgt 900 ggaggatgtt gcaagcgcct gaacctgatg actacgtcct ggcgacaggg cgtggttaca 960 ccgtacgtga gttcgctcaa gctgcttttg accacgtcgg gctcgactgg caaaagcacg 1020 tcaagtttga cgaccgctat ttgcgcccca ccgaggtcga ttcgctagta ggagatgccg 1080 acagggegge ceagteacte ggetggaaag etteggttea tactggtgaa etegegegea 1140 tcatggtgga cgcggacatc gccgcgtcgg agtgcgatgg cacaccatgg atcgacacgc 1200 cgatgttgcc tggttggggc ggagtaagtt gacgactaca cctgggcctc tggaccgcgc 1260 aacgcccgtg tatatcgccg gtcatcgggg gctggtcggc tcagcgctcg tacgtagatt 1320 tgaggccgag gggttcacca atctcattgt gcgatcacgc gatgagattg atctgacgga 1380 ccgagccgca acgtttgatt ttgtgtctga gacaagacca caggtgatca tcgatgcggc 1440 cgcacgggtc ggcggcatca tggcgaataa cacctatccc gcggacttct tgtccgaaaa 1500 cctccgaatc cagaccaatt tgctcgacgc agctgtcgcc gtgcgtgtgc cgcggctcct 1560 tttcctcggt tcgtcatgca tctacccgaa gtacgctccg caacctatcc acgagagtgc 1620 tttattgact ggccctttgg agcccaccaa cgacgcgtat gcgatcgcca agatcgccgg 1680

tatcctgcaa gttcaggcgg ttaggcgcca atatgggctg gcgtggatct ctgcgatgcc 1740 gactaacctc tacggacccg gcgacaactt ctccccgtcc gggtcgcatc tcttgccggc 1800 gctcatccgt cgatatgagg aagccaaagc tggtggtgca gaagaggtga cgaattgggg 1860 gaccggtact ccgcggcgcg aacttctgca tgtcgacgat ctggcgagcg catgcctgtt 1920 ccttttggaa catttcgatg gtccgaacca cgtcaacgtg ggcaccggcg tcgatcacag 1980 cattagcgag atcgcagaca tggtcgctac ggcggtgggc tacatcggcg aaacacgttg 2040 ggatccaact aaacccgatg gaaccccgcg caaactattg gacgtctccg cgctacgcga 2100 gttgggttgg cgcccgcgaa tcgcactgaa agacggcatc gatgcaacgg tgtcgtggta 2160 ccgcacaaat gccgatgccg tgaggaggta aagctgcggg ccggccgatg ttatccctcc 2220 ggccggacgg gtagggcgac ctgccatcga gtggtacggc agtcgcctgg ccggcgaggc 2280 gcatggccta tgggagtatc ccatagcctg gcttggctcg cccctacgca ttatcagttg 2340 accepttteg egecageteg caggetegeg geageatece gtteaggtet ceteatggte 2400 cggtgtggca cgaccacgca agctcgaacc gactcgtttc ccaatttcgc atgctaatat 2460 cgctcgatgg attttttgcg caacgccggc ttgatggctc gtaacgttag caccgagatg 2520 ctgcgccact tcgaacgaaa gcgcctatta gtaaaccaat tcaaagcata cggagtcaac 2580 gttgttattg atgtcggtgc taactccggc cagttcggta gcgctttgcg tcgtgcagga 2640 ttcaagagcc gtatcgtttc ctttgaacct ctttcggggc catttgcgca actaacgcgc 2700 gagtcggcat cggatccact atgggagtgt caccagtatg ccctaggcga cgccgatgag 2760 acgattacca tcaatgtggc aggcaatgcg ggggcaagta gttccgtgct gccgatgctt 2820 aaaagtcatc aagatgcctt tcctcccgcg aattatattg gcaccgaaga cgttgcaata 2880 caccgccttg attcggttgc atcagaattt ctgaacccta ccgatgttac tttcctgaag 2940 atcgacgtac agggtttcga gaagcaggtt atcgcgggca gtaagtcaac gcttaacgaa 3000 agctgcgtcg gcatgcaact cgaactttct tttattccgt tgtacgaagg tgacatgctg 3060 attcatgaag cgcttgaact tgtctattcc ctaggtttca gactgacggg tttgttgccc 3120 ggatttacgg atccgcgcaa tggtcgaatg cttcaagctg acggcatttt cttccgtggg 3180 gacgattgac ataaatgctt gcgtcggcac cctgccggta tccaaacggg cgatctggtg 3240 agceggeete eegggeacet aategaetat etaaattgag geggeegega egtgeggeac 3300 gaacaggtgg ccggctgcta gcgttacaca cgtcatgact gcgccagtgt tctcgataat 3360 tatecetace tteaatgeag eggtgaeget geaageetge eteggaagea tegtegggea 3420 gacctaccgg gaagtggaag tggtccttgt cgacggcggt tcgaccgatc ggaccctcga 3480 categogaac agttteegee eggaactegg etegegactg gtegtteaca gegggeeega 3540

tgatggcccc tacgacgcca tgaaccgcgg cgtcggcgta gccacaggcg aatgggtact 3600 ttttttaggc gccgacgaca ccctctacga accaaccacg ttggcccagg tagccgcttt 3660 tctcggcgac catgcggcaa gccatcttgt ctatggcgat gttggatgc gttcgacgaa 3720 aagccggcat gccggacctt tcgacctcga ccgcctccta tttgagacga atttgtgcca 3780 ccaatcgatc ttttaccgcc gtgagcttt cgacggcate ggcccttaca acctgcgcta 3840 ccgagtctgg gcggactggg acttcaatat tcgctgcttc tccaacccgg cgctgattac 3900 ccgctacata gacgtcgtga tttccgaata caacgacatg accggcttca gcatgaggca 3960 ggggactgat aaagagttca gaaaacggct gccaatgtac tcttgggttg cagggtggga 4020 gacttgcagg cgcatgctgg cgtttttgaa agacaaggag aatcgcgttc tggccttgcg 4080 tacgcggttg ataagggtta aggccgtcc caaagaacga agcgcagaac cgtagtcgg 4140 gatccacatt ggacttctt aacgcgtttg cgtcctgat cacctttcaa ccccgttccg 4200 cgtgacggg cgcgcagaag gtggtcgcat atcgcgtcac tgttctcgtg ccagtgctg 4320 tgtcacgtga ctgaagccaa tgggtgcaac tcggcgtcg gaaaggtttc agtcgggtt 4380 gagcaagaca ccgcaagaca tgagtgcaac tcggcgtcg gaaaggtttc agtcgggtt 4380 gagcaagaca ccgcaagac accgcaagac ccgcaagac cc

<210> 5 <211> 378 <212> DNA <213> Mycobacterium

<213> Mycobacterium

<220> <221> CDS <222> (1)..(375)

tcg acg atc acc ttg tac cgg tcg atg tat gac cca atg tcg tcc gca 96 Ser Thr Ile Thr Leu Tyr Arg Ser Met Tyr Asp Pro Met Ser Ser Ala 20 25 30

acc gag aag acg tac gtc agg tcc gcc ccg ctt tca ccc atg ggc
Thr Glu Lys Thr Tyr Val Arg Ser Ala Ala Pro Leu Ser Pro Met Gly
35
40

gtc ggg acg gcg atg aaa atg acg tcc gcg tgc tcg att ccg cgt tgc 192
Val Gly Thr Ala Met Lys Met Thr Ser Ala Cys Ser Ile Pro Arg Cys
50 55 60

cgg tcg gtg gtg aag tca atc agc ccg ttc tca cgg ttc ctc gca atc
Arg Ser Val Val Lys Ser Ile Ser Pro Phe Ser Arg Phe Leu Ala Ile
65 70 75 80

aac too caa coo ggg oto gaa aat ogg gac act goo tgo gag gag caa 288 Asn Ser Gln Pro Gly Leu Glu Asn Arg Asp Thr Ala Cys Glu Glu Gln atc gat ctt ggc ctg atc gat atc gac aca gac gac atc gtt gcc gct 336 Ile Asp Leu Gly Leu Ile Asp Ile Asp Thr Asp Asp Ile Val Ala Ala 100 105 atc cgc gag aca ggc gcc cgt gac gag gcc tac ata gcc tga 378 Ile Arg Glu Thr Gly Ala Arg Asp Glu Ala Tyr Ile Ala <210> 6 <211> 125 <212> PRT <213> Mycobacterium <400> 6 Met Ile Ala Val Ile Trp Ser Ala Val Pro Thr Gly Thr Val Asp Leu Ser Thr Ile Thr Leu Tyr Arg Ser Met Tyr Asp Pro Met Ser Ser Ala 25 Thr Glu Lys Thr Tyr Val Arg Ser Ala Ala Pro Leu Ser Pro Met Gly 40 Val Gly Thr Ala Met Lys Met Thr Ser Ala Cys Ser Ile Pro Arg Cys Arg Ser Val Val Lys Ser Ile Ser Pro Phe Ser Arg Phe Leu Ala Ile 70 Asn Ser Gln Pro Gly Leu Glu Asn Arg Asp Thr Ala Cys Glu Glu Gln Ile Asp Leu Gly Leu Ile Asp Ile Asp Thr Asp Asp Ile Val Ala Ala Ile Arg Glu Thr Gly Ala Arg Asp Glu Ala Tyr Ile Ala 120 <210> 7 <211> 834 <212> DNA <213> Mycobacterium <220> <221> CDS <222> (1)..(831) <400> 7 gtg tca tct gct cca acc gtg tcg gtg ata acg att tcg ctg aac gat Val Ser Ser Ala Pro Thr Val Ser Val Ile Thr Ile Ser Leu Asn Asp 10

cto Lei	e gaç ı Glı	g gga	tto Leu 20	ı Lys	ago Ser	acc Thr	gtg Val	gaq Glu 25	ı Sei	gtt Val	cgo Arg	gcg JAla	g cad a Gli 30	n Ar	tat Tyr	96
G17 āāā	A GJ7 A AAA	g ega / Arg 35	1 TTE	gag Glu	g cac His	ato Ile	gtc Val 40	Ile	gad Asp	ggt Gly	gga Gly	tcç Ser 45	Gl	c gad y Asp	gcc Ala	144
gto Val	gtg Val	. Git	tat Tyr	ctg Leu	tco Ser	ggc Gly 55	' Asp	cct Pro	ggc Gly	ttt Phe	gca Ala 60	Tyr	tgg Tr	g caa O Glr	tct Ser	192
cag Gln - 65	Pro	gac Asp	aac Asn	ggg Gly	aga Arg 70	Tyr	gac Asp	gcg Ala	atg Met	aat Asn 75	Gln	ggc	att Ile	gco Ala	cat His 80	240
tcg Ser	tcg Ser	ggc	gac Asp	ctg Leu 85	ttg Leu	tgg Trp	ttt Phe	atg Met	cac His 90	Ser	acg Thr	gat Asp	cgt Arg	tto Phe 95	tcc Ser	288
gat Asp	cca Pro	gat Asp	gca Ala 100	gtc Val	gct Ala	tcc Ser	gtg Val	gtg Val 105	gag Glu	gcg Ala	ctc Leu	tcg Ser	999 Gly 110	His	gga Gly	336
cca Pro	gta Val	cgt Arg 115	gat Asp	ttg Leu	tgg Trp	ggt Gly	tac Tyr 120	ggg Gly	aaa Lys	aac Asn	aac Asn	ctt Leu 125	gtc Val	gga Gly	ctc Leu	384
gac Asp	ggc Gly 130	aaa Lys	cca Pro	ctt Leu	ttc Phe	cct Pro 135	cgg Arg	ccg Pro	tac Tyr	ggc Gly	tat Tyr 140	atg Met	ccg Pro	ttt Phe	aag Lys	432
atg Met 145	cgg Arg	aaa Lys	ttt Phe	ctg Leu	ctc Leu 150	ggc Gly	gcg Ala	acg Thr	gtt Val	gcg Ala 155	cat Hıs	cag Gln	gcg Ala	aca Thr	ttc Phe 160	480
ttc Phe	ggc Gly	gcg Ala	tcg Ser	ctg Leu 165	gta Val	gcc Ala	aag Lys	ttg Leu	ggc Gly 170	ggt Gly	tac Tyr	gat Asp	ctt Leu	gat Asp 175	ttt Phe	528
gga Gly	ctc Leu	gag Glu	gcg Ala 180	gac Asp	cag Gln	ctg Leu	ttc Phe	atc Ile 185	tac Tyr	cgt Arg	gcc Ala	gca Ala	cta Leu 190	ata Ile	cgg Arg	576
cct Pro	ccc Pro	gtc Val 195	acg Thr	atc Ile	gac Asp	cgc Arg	gtg Val 200	gtt Val	tgc Cys	gac Asp	ttc Phe	gat Asp 205	gtc Val	acg Thr	gga Gly	624
cct Pro	ggt Gly 210	tca Ser	acc Thr	cag Gln	ccc Pro	atc Ile 215	cgt Arg	gag Glu	cac His	tat Tyr	cgg Arg 220	acc Thr	ctg Leu	cgg Arg	cgg Arg	672
ctc Leu 225	tgg Trp	gac Asp	ctg Leu	cat His	ggc Gly 230	gac Asp	tac Tyr	ccg Pro	ctg Leu	ggt Gly 235	ggg	cgc Arg	aga Arg	gtg Val	tcg Ser 240	720
tgg Trp	gct Ala	tac Tyr	ttg Leu	cgt Arg 245	gtg Val	aag Lys	gag Glu	Tyr	ttg Leu 250	att Ile	cgg Arg	gcc Ala	gac Asp	ctg Leu 255	gcc Ala	768

gca ttc aac gcg gta aag ttc ttg cga gcg aag ttc gcc aga gct tcg Ala Phe Asn Ala Val Lys Phe Leu Arg Ala Lys Phe Ala Arg Ala Ser 260 265 270

cgg aag caa aat tca tag Arg Lys Gln Asn Ser 275

834

<210> 8 <211> 277 <212> PRT <213> Mycobacterium

<400> 8

Val Ser Ser Ala Pro Thr Val Ser Val Ile Thr Ile Ser Leu Asn Asp 1 5 10 15

Leu Glu Gly Leu Lys Ser Thr Val Glu Ser Val Arg Ala Gln Arg Tyr 20 25 30

Gly Gly Arg Ile Glu His Ile Val Ile Asp Gly Gly Ser Gly Asp Ala
35 40 45

Val Val Glu Tyr Leu Ser Gly Asp Pro Gly Phe Ala Tyr Trp Gln Ser 50 60

Gln Pro Asp Asn Gly Arg Tyr Asp Ala Met Asn Gln Gly Ile Ala His 65 70 75 80

Ser Ser Gly Asp Leu Leu Trp Phe Met His Ser Thr Asp Arg Phe Ser 85 90 95

Asp Pro Asp Ala Val Ala Ser Val Val Glu Ala Leu Ser Gly His Gly 100 105 110

Pro Val Arg Asp Leu Trp Gly Tyr Gly Lys Asn Asn Leu Val Gly Leu 115 $$ 120 $$ 125

Asp Gly Lys Pro Leu Phe Pro Arg Pro Tyr Gly Tyr Met Pro Phe Lys 130 140

Met Arg Lys Phe Leu Leu Gly Ala Thr Val Ala His Gln Ala Thr Phe 145 150 155 160

Phe Gly Ala Ser Leu Val Ala Lys Leu Gly Gly Tyr Asp Leu Asp Phe 165 170 175

Gly Leu Glu Ala Asp Gln Leu Phe Ile Tyr Arg Ala Ala Leu Ile Arg 180 185 190

Pro Pro Val Thr Ile Asp Arg Val Val Cys Asp Phe Asp Val Thr Gly
195 200 205

Pro Gly Ser Thr Gln Pro Ile Arg Glu His Tyr Arg Thr Leu Arg Arg 210 215 220

Leu Trp Asp Leu His Gly Asp Tyr Pro Leu Gly Gly Arg Arg Val Ser 235 235 240

```
Trp Ala Tyr Leu Arg Val Lys Glu Tyr Leu Ile Arg Ala Asp Leu Ala
Ala Phe Asn Ala Val Lys Phe Leu Arg Ala Lys Phe Ala Arg Ala Ser
                                 265
Arg Lys Gln Asn Ser
        275
<210> 9
<211> 1032
<212> DNA
<213> Mycobacterium
<220>
<221> CDS
<222> (1)..(1029)
<400> 9
gtg aag cga gcg ctt ata aca ggg atc acg ggg cag gat ggt tcc tac
Val Lys Arg Ala Leu Ile Thr Gly Ile Thr Gly Gln Asp Gly Ser Tyr
ctc gcc gag cta cta ctg agc aag gga tac gag gtt cac ggg ctc gtt
Leu Ala Glu Leu Leu Ser Lys Gly Tyr Glu Val His Gly Leu Val
cgt cga gct tcg acg ttt aac acg tcg cgg atc gat cac ctc tac gtt
                                                                  144
Arg Arg Ala Ser Thr Phe Asn Thr Ser Arg Ile Asp His Leu Tyr Val
         35
gac cca cac caa ccg ggc gcg cgc ttg ttc ttg cac tat gca gac ctc
                                                                  192
Asp Pro His Gln Pro Gly Ala Arg Leu Phe Leu His Tyr Ala Asp Leu
     50
act gac ggc acc cgg ttg gtg acc ctg ctc agc agt atc gac ccg gat
Thr Asp Gly Thr Arg Leu Val Thr Leu Leu Ser Ser Ile Asp Pro Asp
65
                     70
gag gtc tac aac ctc gca gcg cag tcc cat gtg cgc gtc agc ttt gac
Glu Val Tyr Asn Leu Ala Ala Gln Ser His Val Arg Val Ser Phe Asp
gag cca gtg cat acc gga gac acc acc ggc atg gga tcg atc cga ctt
                                                                  336
Glu Pro Val His Thr Gly Asp Thr Thr Gly Met Gly Ser Ile Arg Leu
            100
                                105
```

ctg gaa gca gtc cgc ctt tct cgg gtg gac tgc cgg ttc tat cag gct 384 Leu Glu Ala Val Arg Leu Ser Arg Val Asp Cys Arg Phe Tyr Gln Ala 115 120 125

tcc tcg tcg gag atg ttc ggc gca tct ccg cca ccg cag aac gaa tcg
Ser Ser Ser Glu Met Phe Gly Ala Ser Pro Pro Pro Gln Asn Glu Ser
130 135 140

acg ccg ttc tat ccc cgt tcg cca tac ggc gcg gcc aag gtc ttc tcg
Thr Pro Phe Tyr Pro Arg Ser Pro Tyr Gly Ala Ala Lys Val Phe Ser
145
150
160

	g acg ac Thr Th										528
	atc tte Ile Le 18	u Phe A									576
	c cga aa Arg Ly 195										624
-	g gag gt Glu Va)				_		-	-			672
	g ccc ga Pro Gl	u Tyr V									720
	gat gad Asp Asp								_	_	768
	gct ca. Ala Gl: 26	n Ala A									816
	aag tt Lys Pho 275							-	-	-	864
	a gga ga . Gly As _i										912
	cat ac His Th	r Gly G									960
	g ttg gad Leu Gli										1008
	tgg gg Trp Gl:	y Arg V	-	tga							1032

<210> 10

<211> 343

<212> PRT

<213> Mycobacterium

<400> 10

Val Lys Arg Ala Leu Ile Thr Gly Ile Thr Gly Gln Asp Gly Ser Tyr $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Leu Ala Glu Leu Leu Ser Lys Gly Tyr Glu Val His Gly Leu Val 20 25 30

Arg Arg Ala Ser Thr Phe Asn Thr Ser Arg Ile Asp His Leu Tyr Val 35 40 45

Asp Pro His Gln Pro Gly Ala Arg Leu Phe Leu His Tyr Ala Asp Leu 50 55 60

Thr Asp Gly Thr Arg Leu Val Thr Leu Leu Ser Ser Ile Asp Pro Asp 65 70 75 80

Glu Val Tyr Asn Leu Ala Ala Gln Ser His Val Arg Val Ser Phe Asp \$85\$ 90 95

Glu Pro Val His Thr Gly Asp Thr Thr Gly Met Gly Ser Ile Arg Leu 100 105 110

Leu Glu Ala Val Arg Leu Ser Arg Val Asp Cys Arg Phe Tyr Gln Ala 115 120 125

Ser Ser Ser Glu Met Phe Gly Ala Ser Pro Pro Pro Gln Asn Glu Ser 130 135 140

Thr Pro Phe Tyr Pro Arg Ser Pro Tyr Gly Ala Ala Lys Val Phe Ser 145 150 155 160

Tyr Trp Thr Thr Arg Asn Tyr Arg Glu Ala Tyr Gly Leu Phe Ala Val 165 170 175

Asn Gly Ile Leu Phe Asn His Glu Ser Pro Arg Arg Gly Glu Thr Phe 180 185 190

Val Thr Arg Lys Ile Thr Arg Ala Val Ala Arg Ile Arg Ala Gly Val 195 200 205

Gln Ser Glu Val Tyr Met Gly Asn Leu Asp Ala Ile Arg Asp Trp Gly 210 215 220

Tyr Ala Pro Glu Tyr Val Glu Gly Met Trp Arg Met Leu Gln Ala Pro 225 230 235 240

Glu Pro Asp Asp Tyr Val Leu Ala Thr Gly Arg Gly Tyr Thr Val Arg 245 250 255

Glu Phe Ala Gln Ala Ala Phe Asp His Val Gly Leu Asp Trp Gln Lys 260 265 270

Arg Val Lys Phe Asp Asp Arg Tyr Leu Arg Pro Thr Glu Val Asp Ser 275 280 285

Leu Val Gly Asp Ala Asp Lys Ala Ala Gln Ser Leu Gly Trp Lys Ala 290 295 300

Ser Val His Thr Gly Glu Leu Ala Arg Ile Met Val Asp Ala Asp Ile 305 310 315 320

Ala Ala Leu Glu Cys Asp Gly Thr Pro Trp Ile Asp Thr Pro Met Leu 325 330 335

Pro Gly Trp Gly Arg Val Ser 340

<210> 11

```
<211> 1032
<212> DNA
<213> Mycobacterium
<220>
<221> CDS
<222> (1)..(1029)
<400> 11
gtg aag cga gcg ctt ata aca ggg atc acg ggg cag gat ggt tcc tac
Val Lys Arg Ala Leu Ile Thr Gly Ile Thr Gly Gln Asp Gly Ser Tyr
ctc gcc gag cta cta ctg agc aag gga tac gag gtt cac ggg ctc gtt
Leu Ala Glu Leu Leu Ser Lys Gly Tyr Glu Val His Gly Leu Val
                                 25
cgt cga gct tcg acg ttt aac acg tcg cgg atc gat cac ctc tac gtt
Arg Arg Ala Ser Thr Phe Asn Thr Ser Arg Ile Asp His Leu Tyr Val
gac cca cac caa ccg ggc gcg cgc ttg ttc ttg cac tat gca gac ctc
Asp Pro His Gln Pro Gly Ala Arg Leu Phe Leu His Tyr Ala Asp Leu
act gac ggc acc cgg ttg gtg acc ctg ctc agc agt atc gac ccg gat
                                                                   240
Thr Asp Gly Thr Arg Leu Val Thr Leu Leu Ser Ser Ile Asp Pro Asp
                     70
gag gtc tac aac ctc gca gcg cag tcc cat gtg cgc gtc agc ttt gac
                                                                   288
Glu Val Tyr Asn Leu Ala Ala Gln Ser His Val Arg Val Ser Phe Asp
gaq cca gtg cat acc gga gac acc acc ggc atg gga tcg atc cga ctt
Glu Pro Val His Thr Gly Asp Thr Thr Gly Met Gly Ser Ile Arg Leu
            100
ctg gaa gca gtc cgc ctt tct cgg gtg gac tgc cgg ttc tat cag gct
Leu Glu Ala Val Arg Leu Ser Arg Val Asp Cys Arg Phe Tyr Gln Ala
        115
                             120
tcc tcg tcg gag atg ttc ggc gca tct ccg cca ccg cag aac gaa tcg
Ser Ser Ser Glu Met Phe Gly Ala Ser Pro Pro Pro Gln Asn Glu Ser
    130
                                                                   480
acg ccg ttc tat ccc cgt tcg cca tac ggc gcg gcc aag gtc ttc tcg
Thr Pro Phe Tyr Pro Arg Ser Pro Tyr Gly Ala Ala Lys Val Phe Ser
145
                    150
tac tgg acg act cgc aac tat cga gag gcg tac gga tta ttc gca gtg
Tyr Trp Thr Thr Arg Asn Tyr Arg Glu Ala Tyr Gly Leu Phe Ala Val
aat qqc atc ttq ttc aac cat gag tcc ccc cgg cgc ggc gag act ttc
Asn Gly Ile Leu Phe Asn His Glu Ser Pro Arg Arg Gly Glu Thr Phe
gtg acc cga aag atc acg cgt gcc gtg gcg cgc atc cga gct ggc gtc
Val Thr Arg Lys Ile Thr Arg Ala Val Ala Arg Ile Arg Ala Gly Val
                             200
```

caa Gln	tcg Ser 210	gag Glu	gtc Val	tat Tyr	atg Met	ggc Gly 215	aac Asn	ctc Leu	gat Asp	gcg Ala	atc Ile 220	cgc Arg	gac Asp	tgg Trp	ggc Gly	672
			gaa Glu													720
			gac Asp													768
			caa Gln 260													816
cac His	gtc Val	aag Lys 275	ttt Phe	gac Asp	gac Asp	cgc Arg	tat Tyr 280	ttg Leu	cgc Arg	ccc Pro	acc Thr	gag Glu 285	gtc Val	gat Asp	tcg Ser	864
cta Leu	gta Val 290	gga Gly	gat Asp	gcc Ala	gac Asp	agg Arg 295	gcg Ala	gcc Ala	cag Gln	tca Ser	ctc Leu 300	ggc Gly	tgg Trp	aaa Lys	gct Ala	912
			act Thr													960
			gag Glu													1008
			ggc Gly 340				tga									1032
<213 <213	0> 1: 1> 3: 2> PI 3> My	43 RT	acte:	rium												
)> 1: Tys		Ala	Ten	Tle	Thr	Gl v	Tla	ጥ ኮ ድ	GI v	Gln	Asn	Gly	Sar	ጥ _ህ ታ	
1	тÃ2	ALG	AIA	5	110	1111	Giy	116	10	GIY	GIII	nop	GLY	15	171	
Leu	Ala	Glu	Leu 20	Leu	Leu	Ser	Lys	Gly 25	Tyr	Glu	Val	His	Gly 30	Leu	Val	
Arg	Arg	Ala 35	Ser	Thr	Phe	Asn	Thr 40	Ser	Arg	Ile	Asp	His 45	Leu	Tyr	Val	
Asp	Pro 50	His	Gln	Pro	Gly	Ala 55	Arg	Leu	Phe	Leu	His 60	Tyr	Ala	Asp	Leu	
Thr 65	Asp	Gly	Thr	Arg	Leu 70	Val	Thr	Leu	Leu	Ser 75	Ser	Ile	Asp	Pro	Asp 80	
Glu	Val	Tyr	Asn	Leu 85	Ala	Ala	Gln	Ser	His 90	Val	Arg	Val	Ser	Phe 95	Asp	

Glu Pro Val His Thr Gly Asp Thr Thr Gly Met Gly Ser Ile Arg Leu 100 105 110

Leu Glu Ala Val Arg Leu Ser Arg Val Asp Cys Arg Phe Tyr Gln Ala 115 120 125

Ser Ser Ser Glu Met Phe Gly Ala Ser Pro Pro Pro Gln Asn Glu Ser 130 135 140

Thr Pro Phe Tyr Pro Arg Ser Pro Tyr Gly Ala Ala Lys Val Phe Ser 145 150 155 160

Tyr Trp Thr Thr Arg Asn Tyr Arg Glu Ala Tyr Gly Leu Phe Ala Val 165 170 175

Asn Gly Ile Leu Phe Asn His Glu Ser Pro Arg Arg Gly Glu Thr Phe 180 185 190

Val Thr Arg Lys Ile Thr Arg Ala Val Ala Arg Ile Arg Ala Gly Val 195 200 205

Gln Ser Glu Val Tyr Met Gly Asn Leu Asp Ala Ile Arg Asp Trp Gly 210 215 220

Tyr Ala Pro Glu Tyr Val Glu Gly Met Trp Arg Met Leu Gln Ala Pro 225 230 235 240

Glu Pro Asp Asp Tyr Val Leu Ala Thr Gly Arg Gly Tyr Thr Val Arg \$245\$ \$250\$

Glu Phe Ala Gln Ala Ala Phe Asp His Val Gly Leu Asp Trp Gln Lys 260 265 270

His Val Lys Phe Asp Asp Arg Tyr Leu Arg Pro Thr Glu Val Asp Ser 275 280 285

Leu Val Gly Asp Ala Asp Arg Ala Ala Gln Ser Leu Gly Trp Lys Ala 290 295 300

Ser Val His Thr Gly Glu Leu Ala Arg Ile Met Val Asp Ala Asp Ile 305 310 315

Ala Ala Ser Glu Cys Asp Gly Thr Pro Trp Ile Asp Thr Pro Met Leu 325 330 335

Pro Gly Trp Gly Gly Val Ser 340

<210> 13

<211> 1020

<212> DNA

<213> Mycobacterium

<220>

<221> CDS

<222> (1)..(1017)

<400> 13 gtg cga tg	gg cac a	acc atg	gat cg	a cac	gcc	gat	gtt	gcc	tgg	ttg	ggg	48
Val Arg Ti	op His T	Thr Met 5	Asp Ar	g His	Ala 10	Asp	Val	Ala	Trp	Leu 15	Gly	
cag agt aa Gln Ser Ly												96
gtg tat at Val Tyr I				y Leu								144
aga ttt ga Arg Phe Gi 50	ag gcc g lu Ala G	gag ggg Glu Gly	ttc ac Phe Th 55	c aat r Asn	ctc Leu	att Ile	gtg Val 60	cga Arg	tca Ser	cgc Arg	gat Asp	192
gag att ga Glu Ile As 65	at ctg a sp Leu T	acg gac Thr Asp 70	cga gc Arg Al	c gca a Ala	acg Thr	ttt Phe 75	gat Asp	ttt Phe	gtg Val	tct Ser	gag Glu 80	240
aca aga co Thr Arg P	ca cag q ro Gln \	gtg atc Val Ile 85	atc ga Ile As	t gcg p Ala	gcc Ala 90	gca Ala	cgg Arg	gtc Val	ggc Gly	ggc Gly 95	atc Ile	288
atg gcg a Met Ala A												336
atc cag a Ile Gln T				a Ala								384
ctc ctt to Leu Leu Po 130												432
cct atc c Pro Ile H 145												480
gac gcg t Asp Ala T	yr Ala :											528
gtt agg c Val Arg A					Ile							576
ctc tac g Leu Tyr G 1				e Ser								624
ccg gcg c Pro Ala L 210												672
gag gtg a Glu Val T 225												720

gtc (gac Asp	gat Asp	ctg Leu	gcg Ala 245	agc Ser	gca Ala	tgc Cys	ctg Leu	ttc Phe 250	ctt Leu	ttg Leu	gaa Glu	cat His	ttc Phe 255	gat Asp	768
ggt Gly	ccg Pro	aac Asn	cac His 260	gtc Val	aac Asn	gtg Val	ggc Gly	acc Thr 265	ggc Gly	gtc Val	gat Asp	cac His	agc Ser 270	att Ile	agc Ser	816
gag Glu	atc Ile	gca Ala 275	gac Asp	atg Met	gtc Val	gct Ala	aca Thr 280	gcg Ala	gtg Val	ggc Gly	tac Tyr	atc Ile 285	ggc Gly	gaa Glu	aca Thr	864
cgt Arg	tgg Trp 290	gat Asp	cca Pro	act Thr	aaa Lys	ccc Pro 295	gat Asp	gga Gly	acc Thr	ccg Pro	cgc Arg 300	aaa Lys	cta Leu	ttg Leu	gac Asp	912
gtc Val 305	tcc Ser	gcg Ala	cta Leu	cgc Arg	gag Glu 310	ttg Leu	ggt Gly	tgg Trp	cgc Arg	ccg Pro 315	cga Arg	atc Ile	gca Ala	ctg Leu	aaa Lys 320	960
gac Asp	ggc Gly	atc Ile	gat Asp	gca Ala 325	acg Thr	gtg Val	tcg Ser	tgg Trp	tac Tyr 330	cgc Arg	aca Thr	aat Asn	gcc Ala	gat Asp 335	gcc Ala	1008
gtg Val		agg Arg	taa													1020
<210)> 1	4														
<211 <212 <213	?> P		acte	rium												
<212 <213 <400	2> P1 3> M ₂ 0> 1	RT ycoba			Met	Asp	Arg	His	Ala 10	Asp	Val	Ala	Trp	Leu 15	Gly	
<212 <213 <400 Val	2> P1 3> M; 0> 1 Arg	RT ycoba 4	His	Thr 5					10					15		
<212 <213 <400 Val 1 Gln	2> P1 3> Mg 3> Mg 3> 1 Arg Ser	RT ycoba 4 Trp	His Leu 20	Thr 5 Thr	Thr	Thr	Pro	Gly 25	10 Pro	Leu	Asp	Arg	Ala 30 Leu	15 Thr	Pro	
<212 <213 <400 Val Gln Val	2> P1 3> M3 0> 1 Arg Ser	RT ycoba Trp Lys Ile 35 Glu	His Leu 20 Ala	Thr 5 Thr Gly	Thr	Thr	Pro Gly 40	Gly 25 Leu	10 Pro Val	Leu Gly	Asp	Arg Ala 45	Ala 30 Leu	15 Thr Val	Pro	
<212 <213 <400 Val Gln Val Arg	2> P1 3> M3 0> 1 Arg Ser Tyr Phe 50	RT ycoba 4 Trp Lys Ile 35 Glu	His Leu 20 Ala Ala	Thr 5 Thr Gly	Thr His	Thr Arg Phe 55	Pro Gly 40 Thr	Gly 25 Leu Asn	10 Pro Val Leu	Leu Gly Ile	Asp Ser Val 60 Asp	Arg Ala 45 Arg	Ala 30 Leu Ser	15 Thr Val	Pro	
<212 <213 <400 Val Gln Val Arg Glu 65	2> Pi 3> My 3> My 3> 1 Arg Ser Tyr Phe 50	RT ycoba 4 Trp Lys Ile 35 Glu Asp	His Leu 20 Ala Ala	Thr 5 Thr Gly Glu	Thr His Gly Asp 70	Thr Arg Phe 55	Pro Gly 40 Thr	Gly 25 Leu Asn	10 Pro Val Leu Thr	Leu Gly Ile Phe 75	Asp Ser Val 60 Asp	Arg Ala 45 Arg	Ala 30 Leu Ser	15 Thr Val Arg	Pro Arg Asp Glu 80	
<212 <213 <400 Val Gln Val Arg Glu 65 Thr	2> Pi 3> My 3> My 3> 1 Arg Ser Tyr Phee 50	RT ycoba 4 Trp Lys Ile 35 Glu Asp	His Leu 20 Ala Ala Leu Gln	Thr 5 Thr Gly Glu Thr Val 85	Thr His Gly Asp 70	Thr Arg Phe 55 Arg	Pro Gly 40 Thr Ala	Gly 25 Leu Asn Ala	10 Pro Val Leu Thr Ala 90 Phe	Leu Gly Ile Phe 75	Asp Val 60 Asp	Arg Ala 45 Arg Phe	Ala 30 Leu Ser Val	Thr Val Arg Ser Gly 95	Pro Arg Asp Glu 80	
<212 <213 <400 Val Gln Val Arg Glu 65 Thr	2> Pi 3> My 0> 1 Arg Ser Tyr Phe 50 Ile Arg	RT ycoba 4 Trp Lys Ile 35 Glu Asp Pro Asn	His Leu 20 Ala Ala Leu Gln Asn 100 Asn	Thr 5 Thr Gly Glu Thr 85 Thr	Thr His Gly Asp 70 Ile	Thr Arg Phe 55 Arg Ile	Pro Gly 40 Thr Ala Asp	Gly 25 Leu Asn Ala Ala Asp 105	10 Pro Val Leu Thr Ala 90 Phe	Leu Gly Ile Phe 75 Ala	Asp Val 60 Asp Arg	Arg Ala 45 Arg Phe Val	Ala 30 Leu Ser Val Gly Asn 110	Thr Val Arg Ser Gly 95	Pro Arg Asp Glu 80	

Pro 145	Ile	His	Glu	Ser	Ala 150	Leu	Leu	Thr	Gly	Pro 155	Leu	Glu	Pro	Thr	Asn 160	
Asp	Ala	Tyr	Ala	Ile 165	Ala	Lys	Ile	Ala	Gly 170	Ile	Leu	Gln	Val	Gln 175	Ala	
Val	Arg	Arg	Gln 180	Tyr	Gly	Leu	Ala	Trp 185	Ile	Ser	Ala	Met	Pro 190	Thr	Asn	
Leu	Tyr	Gly 195	Pro	Gly	Asp	Asn	Phe 200	Ser	Pro	Ser	Gly	Ser 205	His	Leu	Leu	
Pro	Ala 210	Leu	Ile	Arg	Arg	Tyr 215	Glu	Glu	Ala	Lys	Ala 220	Gly	Gly	Ala	Glu	
Glu 225	Val	Thr	Asn	Trp	Gly 230	Thr	Gly	Thr	Pro	Arg 235	Arg	Glu	Leu	Leu	His 240	
Val	Asp	Asp	Leu	Ala 245	Ser	Ala	Cys	Leu	Phe 250	Leu	Leu	Glu	His	Phe 255	Asp	
Gly	Pro	Asn	His 260	Val	Asn	Val	Gly	Thr 265	Gly	Val	Asp	His	Ser 270	Ile	Ser	
Glu	Ile	Ala 275	Asp	Met	Val	Ala	Thr 280	Ala	Val	Gly	Tyr	Ile 285	Gly	Glu	Thr	
Arg	Trp 290	Asp	Pro	Thr	Lys	Pro 295	Asp	Gly	Thr	Pro	Arg 300	Lys	Leu	Leu	Asp	
Val 305	Ser	Ala	Leu	Arg	Glu 310	Leu	Gly	Trp	Arg	Pro 315	Arg	Ile	Ala	Leu	Lys 320	
Asp	Gly	Ile	Asp	Ala 325	Thr	Val	Ser	Trp	Tyr 330	Arg	Thr	Asn	Ala	Asp 335	Ala	
Val	Arg	Arg														
<21 <21	0> 1: 1> 1(2> Di 3> M	020 An	acte:	rium												
	0> 1> CI 2> (1		(101	7)												
gtg		tgg		acc Thr 5												48
				acg Thr												96
				ggt Gly												14

aga Arg	ttt Phe 50	gag Glu	gcc Ala	gag Glu	ggg Gly	ttc Phe 55	acc Thr	aat Asn	ctc Leu	att Ile	gtg Val 60	cga Arg	tca Ser	cgc Arg	gat Asp	192
gag Glu 65	att Ile	gat Asp	ctg Leu	acg Thr	gac Asp 70	cga Arg	gcc Ala	gca Ala	acg Thr	ttt Phe 75	gat Asp	ttt Phe	gtg Val	tct Ser	gag Glu 80	240
aca Thr	aga Arg	cca Pro	cag Gln	gtg Val 85	atc Ile	atc Ile	gat Asp	gcg Ala	gcc Ala 90	gca Ala	cgg Arg	gtc Val	ggc Gly	ggc Gly 95	atc Ile	288
atg Met	gcg Ala	aat Asn	aac Asn 100	acc Thr	tat Tyr	ccc Pro	gcg Ala	gac Asp 105	ttc Phe	ttg Leu	tcc Ser	gaa Glu	aac Asn 110	ctc Leu	cga Arg	336
atc Ile	cag Gln	acc Thr 115	aat Asn	ttg Leu	ctc Leu	gac Asp	gca Ala 120	gct Ala	gtc Val	gcc Ala	gtg Val	cgt Arg 125	gtg Val	ccg Pro	cgg Arg	384
ctc Leu	ctt Leu 130	ttc Phe	ctc Leu	ggt Gly	tcg Ser	tca Ser 135	tgc Cys	atc Ile	tac Tyr	ccg Pro	aag Lys 140	tac Tyr	gct Ala	ccg Pro	caa Gln	432
cct Pro 145	atc Ile	cac His	gag Glu	agt Ser	gct Ala 150	tta Leu	ttg Leu	act Thr	ggc Gly	cct Pro 155	ttg Leu	gag Glu	ccc Pro	acc Thr	aac Asn 160	480
											ctg Leu					528
											gcg Ala					576
											ggg Gly					624
											gct Ala 220					672
											cgc Arg					720
gtc Val	gac Asp	gat Asp	ctg Leu	gcg Ala 245	agc Ser	gca Ala	tgc Cys	ctg Leu	ttc Phe 250	ctt Leu	ttg Leu	gaa Glu	cat His	ttc Phe 255	gat Asp	768
ggt Gly	ccg Pro	aac Asn	cac His 260	gtc Val	aac Asn	gtg Val	ggc Gly	acc Thr 265	ggc Gly	gtc Val	gat Asp	cac His	agc Ser 270	att Ile	agc Ser	816
			Āsp					Ala			tac Tyr		Gly			864

			cca Pro												
			cta Leu												
			gat Asp												
	agg Arg		taa												
<211 <212	0> 16 1> 33 2> PE 3> My	39 RT	acter	rium											
)> 16 Arg		His	Thr 5	Met	Asp	Arg	His	Ala 10	Asp	Val	Ala	Trp	Leu 15	Gly
Arg	Ser	Lys	Leu 20	Thr	Thr	Thr	Pro	Gly 25	Pro	Leu	Asp	Arg	Ala 30	Thr	Pro
Val	Tyr	Ile 35	Ala	Gly	His	Arg	Gly 40	Leu	Val	Gly	Ser	Ala 45	Leu	Val	Arg
Arg	Phe 50	Glu	Ala	Glu	Gly	Phe 55	Thr	Asn	Leu	Ile	Val 60	Arg	Ser	Arg	Asp
Glu 65	Ile	Asp	Leu	Thr	Asp 70	Arg	Ala	Ala	Thr	Phe 75	Asp	Phe	Val	Ser	Glu 80
Thr	Arg	Pro	Gln	Val 85	Ile	Ile	Asp	Ala	Ala 90	Ala	Arg	Val	Gly	Gly 95	Ile
Met	Ala	Asn	Asn 100	Thr	Tyr	Pro	Ala	Asp 105	Phe	Leu	Ser	Glu	Asn 110	Leu	Arg
Ile	Gln	Thr 115	Asn	Leu	Leu	Asp	Ala 120	Ala	Val	Ala	Val	Arg 125	Val	Pro	Arg
Leu	Leu 130	Phe	Leu	Gly	Ser	Ser 135	Cys	Ile	Tyr	Pro	Lys 140	Tyr	Ala	Pro	Gln
Pro 145	Ile	His	Glu	Ser	Ala 150	Leu	Leu	Thr	Gly	Pro 155	Leu	Glu	Pro	Thr	Asn 160
Asp	Ala	Tyr	Ala	Ile 165	Ala	Lys	Ile	Ala	Gly 170	Ile	Leu	Gln	Val	Gln 175	Ala
Val	Arg	Arg	Gln 180	Tyr	Gly	Leu	Ala	Trp 185	Ile	Ser	Ala	Met	Pro 190	Thr	Asn
Leu	Tyr	Gly 195	Pro	Gly	Asp	Asn	Phe 200	Ser	Pro	Ser	Gly	Ser 205	His	Leu	Leu

. . .

Pro Ala Leu Ile Arg Arg Tyr Glu Glu Ala Lys Ala Gly Gly Ala Glu

	210					215					220					
Glu 225	Val	Thr	Asn	Trp	Gly 230	Thr	Gly	Thr	Pro	Arg 235	Arg	Glu	Leu	Leu	His 240	
Val	Asp	Asp	Leu	Ala 245	Ser	Ala	Cys	Leu	Phe 250	Leu	Leu	Glu	His	Phe 255	Asp	
Gly	Pro	Asn	His 260	Val	Asn	Val	Gly	Thr 265	Gly	Val	Asp	His	Ser 270	Ile	Ser	
Glu	Ile	Ala 275	Asp	Met	Val	Ala	Thr 280	Ala	Val	Gly	Tyr	Ile 285	Gly	Glu	Thr	
Arg	Trp 290	Asp	Pro	Thr	Lys	Pro 295	Asp	Gly	Thr	Pro	Arg 300	Lys	Leu	Leu	Asp	
Val 305	Ser	Ala	Leu	Arg	Glu 310	Leu	Gly	Trp	Arg	Pro 315	Arg	Ile	Ala	Leu	Lys 320	
Asp	Gly	Ile	Asp	Ala 325	Thr	Val	Ser	Trp	Tyr 330	Arg	Thr	Asn	Ala	Asp 335	Ala	
Val	Arg	Arg														
<211 <212	0> 17 L> 72 2> DN 3> My	23 NA	actei	cium												
)> L> CI 2> (1		(720)	ı												
<400)> 17	7														
	gat Asp															48
	atg Met															96
	gca Ala															144
	ttc Phe 50															192
	ttt Phe															240
	tcg Ser															288

gat gag acg att Asp Glu Thr Ile 100											336
tcc gtg ctg ccg Ser Val Leu Pro 115											384
aat tat att ggc Asn Tyr Ile Gly 130	Thr Glu										432
gca tca gaa ttt Ala Ser Glu Phe 145											480
gta cag ggt ttc Val Gln Gly Phe			Ile	_	-	_					528
aac gaa agc tgc Asn Glu Ser Cys 180											576
tac gaa ggt gac Tyr Glu Gly Asp 195											624
cta ggt ttc aga Leu Gly Phe Arg 210	Leu Thr		_				-	_	_		672
aat ggt cga atg Asn Gly Arg Met 225							-		_	-	720
tga											723
<210> 18 <211> 240 <212> PRT <213> Mycobactes	rium						,				
<400> 18 Met Asp Phe Leu 1	Arg Asn	Ala Gly	Leu	Met 10	Ala	Arg	Asn	Val	Ser 15	Thr	
Glu Met Leu Arg 20	His Phe	Glu Arg	Lys 25	Arg	Leu	Leu	Val	Asn 30	Gln	Phe	
Lys Ala Tyr Gly 35	Val Asn	Val Val 40	Ile	Asp	Val	Gly	Ala 45	Asn	Ser	Gly	
Gln Phe Gly Ser 50	Ala Leu	Arg Arg 55	Ala	Gly	Phe	Lys 60	Ser	Arg	Ile	Val	
Ser Phe Glu Pro 65	Leu Ser 70	Gly Pro	Phe	Ala	Gln 75	Leu	Thr	Arg	Lys	Ser 80	

1	Ala	Ser	Asp	Pro	Leu 85	Trp	Glu	Cys	His	Gln 90	Tyr	Ala	Leu	Gly	Asp 95	Ala	
1	Asp	Glu	Thr	Ile 100	Thr	Ile	Asn	Val	Ala 105	Gly	Asn	Ala	Gly	Ala 110	Ser	Ser	
	Ser	Val	Leu 115	Pro	Met	Leu	Lys	Ser 120	His	Gln	Asp	Ala	Phe 125	Pro	Pro	Ala	
Ž	Asn	Tyr 130	Ile	Gly	Thr	Glu	Asp 135	Val	Ala	Ile	His	Arg 140	Leu	Asp	Ser	Val	
	Ala 145	Ser	Glu	Phe	Leu	Asn 150	Pro	Thr	Asp	Val	Thr 155	Phe	Leu	Lys	Ile	Asp 160	
7	Val	Gln	Gly	Phe	Glu 165	Lys	Gln	Val	Ile	Thr 170	Gly	Ser	Lys	Ser	Thr 175	Leu	
7	naA	Glu	Ser	Cys 180	Val	Gly	Met	Gln	Leu 185	Glu	Leu	Ser	Phe	Ile 190	Pro	Leu	
7	Tyr	Glu	Gly 195	Asp	Met	Leu	Ile	His 200	Glu	Ala	Leu	Glu	Leu 205	Val	Tyr	Ser	
I	Leu	Gly 210	Phe	Arg	Leu	Thr	Gly 215	Leu	Leu	Pro	Gly	Phe 220	Thr	Asp	Pro	Arg	
	Asn 225	Gly	Arg	Met	Leu	Gln 230	Ala	Asp	Gly	Ile	Phe 235	Phe	Arg	Gly	Asp	Asp 240	
<	<211 <212)> 19 .> 72 ?> DN B> My	23 IA	actei	cium												
<		.> CI		(720)	ŀ												
ć	atg)> 19 gat Asp	ttt	ttg Leu	cgc Arg 5	aac Asn	gcc Ala	ggc Gly	ttg Leu	atg Met 10	gct Ala	cgt Arg	aac Asn	gtt Val	agc Ser 15	acc Thr	48
Ċ	gag Glu	atg Met	ctg Leu	cgc Arg	cac His	ttc Phe	gaa Glu	cga Arg	Lys	cgc Arg	cta Leu	tta Leu	gta Val	Asn	caa Gln	ttc Phe	96
				20					25					30			
I	aaa Lys	gca Ala	tac Tyr 35	gga Gly	gtc Val	aac Asn	gtt Val	gtt Val 40	att	gat Asp	gtc Val	ggt Gly	gct Ala 45	aac	tcc Ser	ggc Gly	144
I	Lys cag	Ala	Tyr 35 ggt	gga	Val gct	Asn ttg	Val cgt	Val 40 cgt	att Ile gca	Asp gga	Val ttc	Gly aag	Ala 45 agc	aac Asn cgt	Ser atc	Gly gtt	144

gca tcg gat Ala Ser Asp						
gat gag acg Asp Glu Thr		e Asn Val A				
tcc gtg ctg Ser Val Leu 115		-	-	_		
aat tat att Asn Tyr Ile 130						
gca tca gaa Ala Ser Glu 145	_	n Pro Thr	Asp Val T	_	-	-
gta cag ggt Val Gln Gly				-		
aac gaa agc Asn Glu Ser		y Met Gln :	-		-	-
tac gaa ggt Tyr Glu Gly 195	-	-		-	-	
cta ggt ttc Leu Gly Phe 210						
aat ggt cga Asn Gly Arg 225		n Ala Asp	Gly Ile F			
tga						723
<210> 20 <211> 240 <212> PRT <213> Mycob	acterium					

<400> 20

Glu Met Leu Arg His Phe Glu Arg Lys Arg Leu Leu Val Asn Gln Phe 20 25 30

Lys Ala Tyr Gly Val Asn Val Val Ile Asp Val Gly Ala Asn Ser Gly 35 40 45

Gln Phe Gly Ser Ala Leu Arg Arg Ala Gly Phe Lys Ser Arg Ile Val $50 \hspace{1cm} 55 \hspace{1cm} 60$

Ser 65	Phe	Glu	Pro	Leu	Ser 70	Gly	Pro	Phe	Ala	Gln 75	Leu	Thr	Arg	Glu	Ser 80	
Ala	Ser	Asp	Pro	Leu 85	Trp	Glu	Cys	His	Gln 90	Tyr	Ala	Leu	Gly	Asp 95	Ala	
Asp	Glu	Thr	Ile 100	Thr	Ile	Asn	Val	Ala 105	Gly	Asn	Ala	Gly	Ala 110	Ser	Ser	
Ser	Val	Leu 115	Pro	Met	Leu	Lys	Ser 120	His	Gln	Asp	Ala	Phe 125	Pro	Pro	Ala	
Asn	Tyr 130	Ile	Gly	Thr	Glu	Asp 135	Val	Ala	Ile	His	Arg 140	Leu	Asp	Ser	Val	
Ala 145	Ser	Glu	Phe	Leu	Asn 150	Pro	Thr	Asp	Val	Thr 155	Phe	Leu	Lys	Ile	Asp 160	
Val	Gln	Gly	Phe	Glu 165	Lys	Gln	Val	Ile	Ala 170	Gly	Ser	Lys	Ser	Thr 175	Leu	
Asn	Glu	Ser	Cys 180	Val	Gly	Met	Gln	Leu 185	Glu	Leu	Ser	Phe	Ile 190	Pro	Leu	
Tyr	Glu	Gly 195	Asp	Met	Leu	Ile	His 200	Glu	Ala	Leu	Glu	Leu 205	Val	Tyr	Ser	
Leu	Gly 210	Phe	Arg	Leu	Thr	Gly 215	Leu	Leu	Pro	Gly	Phe 220	Thr	Asp	Pro	Arg	
Asn 225	Gly	Arg	Met	Leu	Gln 230	Ala	Asp	Gly	Ile	Phe 235	Phe	Arg	Gly	Asp	Asp 240	
<210> 21 <211> 801 <212> DNA <213> Mycobacterium																
)> !> CE ?> (1		(798)	ı												
atg)> 21 act	gcg	cca	gtg	ttc	tcg	ata	att	atc	cct	acc	ttc	aat	qca	aca	48
Met 1	Thr	Ala	Pro	Val 5	Phe	Ser	Ile	Ile	Ile 10	Pro	Thr	Phe	Asn	Ala 15	Ala	
gtg Val	acg Thr	ctg Leu	caa Gln 20	gcc Ala	tgc Cys	ctc Leu	gga Gly	agc Ser 25	atc Ile	gtc Val	ggg Gly	cag Gln	acc Thr 30	tac Tyr	cgg Arg	96
gaa Glu	gtg Val	gaa Glu 35	gtg Val	gtc Val	ctt Leu	gtc Val	gac Asp 40	ggc Gly	ggt Gly	tcg Ser	acc Thr	gat Asp 45	cgg Arg	acc Thr	ctc Leu	144
gac Asp	atc Ile 50	gcg Ala	aac Asn	agt Ser	ttc Phe	cgc Arg 55	ccg Pro	gaa Glu	ctc Leu	ggc Gly	tcg Ser 60	cga Arg	ctg Leu	gtc Val	gtt Val	192

			gat Asp										240
	 -		ggc Gly 85	-		_				-	 -		288
	-		acc Thr				-	-	-				336
			cat His										384
			gcc Ala										432
_	-	_	cac His		_			_	_			_	480
			tac Tyr 165										528
		_	tgc Cys										576
			tcc Ser										624
_		-	aaa Lys			-		 _		-			672
			gag Glu										720
			cgt Arg 245										768
			gaa Glu					tag					801

<210> 22

<211> 266

<212> PRT

<213> Mycobacterium

<400> 22

Met Thr Ala Pro Val Phe Ser Ile Ile Ile Pro Thr Phe Asn Ala Ala 1 5 10 15

Val Thr Leu Gln Ala Cys Leu Gly Ser Ile Val Gly Gln Thr Tyr Arg 20 25 30

Glu Val Glu Val Leu Val Asp Gly Gly Ser Thr Asp Arg Thr Leu 35 40 45

Asp Ile Ala Asn Ser Phe Arg Pro Glu Leu Gly Ser Arg Leu Val Val 50 60

His Ser Gly Pro Asp Asp Gly Pro Tyr Asp Ala Met Asn Arg Gly Val 65 70 75 80

Gly Val Ala Thr Gly Glu Trp Val Leu Phe Leu Gly Ala Asp Asp Thr 85 90 95

Leu Tyr Glu Pro Thr Thr Leu Ala Gln Val Ala Ala Phe Leu Gly Asp 100 105 110

His Ala Ser His Leu Val Tyr Gly Asp Val Val Met Arg Ser Thr 115 $$ 120 $$ 125

Lys Ser Arg His Ala Gly Pro Phe Asp Leu Asp Arg Leu Leu Phe Glu 130 135 140

Thr Asn Leu Cys His Gln Ser Ile Phe Tyr Arg Arg Glu Leu Phe Asp 145 150 155 160

Gly Ile Gly Pro Tyr Asn Leu Arg Tyr Arg Val Trp Ala Asp Trp Asp 165 170 175

Phe Asn Ile Arg Cys Phe Ser Asn Pro Ala Leu Ile Thr Arg Tyr Met 180 185 190

Asp Val Val Ile Ser Glu Tyr Asn Asp Met Thr Gly Phe Ser Met Arg 195 200 205

Gln Gly Thr Asp Lys Glu Phe Arg Lys Arg Leu Pro Met Tyr Phe Trp 210 215 220

Val Ala Gly Trp Glu Thr Cys Arg Arg Met Leu Ala Phe Leu Lys Asp 225 230 235 240

Lys Glu Asn Arg Arg Leu Ala Leu Arg Thr Arg Leu Ile Arg Val Lys 245 250 255

Ala Val Ser Lys Glu Arg Ser Ala Glu Pro 260 265

<210> 23

<211> 801

<212> DNA

<213> Mycobacterium

<220>

<221> CDS

<222> (1)..(798)

<400> 23 atg act gcg cca gtg ttc tcg ata att atc cct acc ttc aat gca gcg 48																
atg a Met 1						_								-		48
gtg a	-	_		-	-			_		-		_				96
gaa o Glu '																144
gac a																192
cac a His :	_			-	-				-	_	_		_		_	240
ggc (288
ctc ' Leu '																336
cat (384
aaa Lys	_			-				-		-	-					432
acg Thr 145																480
ggc . Gly																528
ttc . Phe .																576
gac Asp																624
cag Gln																672
gtt Val 225																720

801

aag gag aat cgc cgt ctg gcc ttg cgt acg cgg ttg ata agg gtt aag Lys Glu Asn Arg Arg Leu Ala Leu Arg Thr Arg Leu Ile Arg Val Lys 245 250 gcc gtc tcc aaa gaa cga agc gca gaa ccg tag Ala Val Ser Lys Glu Arg Ser Ala Glu Pro <210> 24 <211> 266 <212> PRT <213> Mycobacterium <400> 24 Met Thr Ala Pro Val Phe Ser Ile Ile Ile Pro Thr Phe Asn Ala Ala Val Thr Leu Gln Ala Cys Leu Gly Ser Ile Val Gly Gln Thr Tyr Arg Glu Val Glu Val Val Leu Val Asp Gly Gly Ser Thr Asp Arg Thr Leu 40 Asp Ile Ala Asn Ser Phe Arg Pro Glu Leu Gly Ser Arg Leu Val Val His Ser Gly Pro Asp Asp Gly Pro Tyr Asp Ala Met Asn Arg Gly Val Gly Val Ala Thr Gly Glu Trp Val Leu Phe Leu Gly Ala Asp Asp Thr Leu Tyr Glu Pro Thr Thr Leu Ala Gln Val Ala Ala Phe Leu Gly Asp His Ala Ala Ser His Leu Val Tyr Gly Asp Val Val Met Arg Ser Thr Lys Ser Arg His Ala Gly Pro Phe Asp Leu Asp Arg Leu Leu Phe Glu Thr Asn Leu Cys His Gln Ser Ile Phe Tyr Arg Arg Glu Leu Phe Asp Gly Ile Gly Pro Tyr Asn Leu Arg Tyr Arg Val Trp Ala Asp Trp Asp 170 Phe Asn Ile Arg Cys Phe Ser Asn Pro Ala Leu Ile Thr Arg Tyr Met 180 185 Asp Val Val Ile Ser Glu Tyr Asn Asp Met Thr Gly Phe Ser Met Arg 200 Gln Gly Thr Asp Lys Glu Phe Arg Lys Arg Leu Pro Met Tyr Phe Trp 210 215

Val Ala Gly Trp Glu Thr Cys Arg Arg Met Leu Ala Phe Leu Lys Asp

235

230

Lys Glu Asn Arg Arg Leu Ala Leu Arg Thr Arg Leu Ile Arg Val Lys 245 250 255

Ala Val Ser Lys Glu Arg Ser Ala Glu Pro 260 265

165

<210> 25 <211> 867 <212> DNA <213> Mycobacterium <220> <221> CDS <222> (1)..(864) <400> 25 gtg gcc agc aga agt ccc cac tcc gct gcg ggt tgg cta att ctt Val Ala Ser Arg Ser Pro His Ser Ala Ala Gly Gly Trp Leu Ile Leu ggc ggc tcc ctt ctt gtg gtc ggc gtg gcg cat ccg gta gga ctc gcc Gly Gly Ser Leu Leu Val Val Gly Val Ala His Pro Val Gly Leu Ala 25 gga ggt gac gat gct ggc gtg gtg cag cag ccg atc gag gat gct 144 Gly Gly Asp Asp Asp Ala Gly Val Val Gln Gln Pro Ile Glu Asp Ala 40 ggc ggc ggt gtg ctc ggg cag gaa tcg ccc cca ttg ttc gaa ggg 192 Gly Gly Gly Val Leu Gly Gln Glu Ser Pro Pro Leu Phe Glu Gly cca atg cga ggc gat ggc cag gga gcg ctc gta gcc ggc agc cac Pro Met Arg Gly Asp Gly Gln Gly Ala Ala Leu Val Ala Gly Ser His gag ccg gaa caa cag ttg agt ccc ggt gtc gtc gag cgg ggc gaa gcc Glu Pro Glu Gln Gln Leu Ser Pro Gly Val Val Glu Arg Gly Glu Ala gat ctc gtc caa gat gac cag atc cgc gcg gag cag ggt gtc gat gat Asp Leu Val Gln Asp Asp Gln Ile Arg Ala Glu Gln Gly Val Asp Asp ctt gcc gac ggt gtt gtc ggc cag gcc gcg gta gag gac ctc gat cag 384 Leu Ala Asp Gly Val Val Gly Gln Ala Ala Val Glu Asp Leu Asp Gln 115 125 gtc ggc ggc ggt gaa gta gcg gac ttt gaa tcc ggc gtg gac ggc agc Val Gly Gly Glu Val Ala Asp Phe Glu Ser Gly Val Asp Gly Ser 130 gtg ccc gca gcc gat gag cag gtg act ttt gcc cgt acc agg tgg gcc Val Pro Ala Ala Asp Glu Gln Val Thr Phe Ala Arg Thr Arg Trp Ala 145 150 aat gac cgc cag gtt ctg ttg tgc ccg aat cca ttc cag gct cga cag Asn Asp Arg Gln Val Leu Leu Cys Pro Asn Pro Phe Gln Ala Arg Gln

170

gta Val	a gto L Val	gaa Glu	cgt Arg 180	Gly	tgc Cys	ggt Gly	gat Asp	cga Arg 185	, Arg	tcc Ser	ggt Gly	gac Asp	gto Val 190	LĞlı	a ccc ı Pro	576
gto Val	gag . Glu	ggt Gly 195	Leu	ggt Gly	gac Asp	cgg Arg	gaa Glu 200	Gly	tgc Cys	ggc Gly	ctt Leu	gag Glu 205	Thi	g gtt Val	ggc Gly	624
ggt Gl	gtt Val 210	GLy	ggc Gly	atc Ile	gcg Ala	ggc Gly 215	Ser	gat Asp	ctc Leu	ggc	cto Leu 220	Asn	caa Glr	a cgt a Arg	ccg Pro	672
caç Glr 225	ı Asp	ctc Leu	ctc Leu	cgg Arg	tgt Cys 230	cca Pro	gcg Ala	ttg Leu	cgt Arg	ctt Leu 235	Gly	gac Asp	ttg Leu	r caa Glr	cac His 240	720
cto Leu	ggc Gly	ggc Gly	gtt Val	gcg Ala 245	gcg Ala	cac His	cgt Arg	ggc Gly	cag Gln 250	ctt Leu	caa Gln	ccg Pro	ccg Pro	cag Gln 255	g cgc Arg	768
cgc Arg	gtc Val	aag Lys	gtc Val 260	agc Ser	agc Ser	cag Gln	cgg Arg	tgc Cys 265	cgc Arg	cga Arg	gga Gly	cgg Arg	tgc Cys 270	His	cgg Arg	816
ctt Leu	ggc Gly	agc Ser 275	ggt Gly	ggt Gly	cat His	gag Glu	gcc Ala 280	gtc Val	ccg Pro	tcg Ser	gtg Val	gtg Val 285	ttg Leu	atc Ile	ttg Leu	864
tag																867
<21 <21	0> 20 1> 28 2> PI 3> My	38 RT	ncter	rium												
<21 <21 <21 <40	1> 28 2> PB 3> My 0> 20	38 RT ycoba			December											
<21 <21 <21 <40	1> 28 2> PH 3> My	38 RT ycoba			Pro	His	Ser	Ala	Ala 10	Gly	Gly	Trp	Leu	Ile 15	Leu	
<21 <21 <21 <40 Val 1	1> 28 2> PH 3> My 0> 20 Ala	38 RT ycoba Ser Ser	Arg Leu 20	Ser 5 Leu	Val	Val	Gly	Val 25	10 Ala	His	Pro	Val	Gly 30	15 Leu	Ala	
<21 <21 <21 <40 Val 1	1> 28 2> PH 3> My 0> 20 Ala	38 RT ycoba Ser Ser	Arg Leu 20	Ser 5 Leu	Val	Val	Gly	Val 25	10 Ala	His	Pro	Val	Gly 30	15 Leu	Ala	
<21 <21 <21 <40 Val 1 Gly	1> 28 2> PH 3> My 0> 20 Ala	38 RT ycoba Ser Ser Asp 35	Arg Leu 20 Asp	Ser 5 Leu Asp	Val Ala	Val Gly	Gly Val 40	Val 25 Val	10 Ala Gln	His Gln	Pro Pro	Val Ile 45	Gly 30 Glu	15 Leu Asp	Ala Ala	
<21 <21 <21 <40 Val 1 Gly Gly	1> 28 2> PH 3> My 0> 26 Ala Gly Gly	38 RT ycoba Ser Ser Asp 35	Arg Leu 20 Asp Gly	Ser 5 Leu Asp Val	Val Ala Leu	Val Gly Gly 55	Gly Val 40 Gln	Val 25 Val Glu	10 Ala Gln Ser	His Gln Pro	Pro Pro Pro 60	Val Ile 45 Leu	Gly 30 Glu Phe	15 Leu Asp Glu	Ala Ala Gly	
<21 <21 <21 <40 Val Gly Gly Pro 65	1> 28 2> PH 3> My 0> 20 Ala Gly Gly 50	38 RT ycoba 5 Ser Ser Asp 35 Gly	Arg Leu 20 Asp Gly	Ser 5 Leu Asp Val	Val Ala Leu Gly 70	Val Gly Gly 55 Gln	Gly Val 40 Gln Gly	Val 25 Val Glu Ala	10 Ala Gln Ser	His Gln Pro Leu 75	Pro Pro Pro 60 Val	Val Ile 45 Leu Ala	Gly 30 Glu Phe Gly	15 Leu Asp Glu Ser	Ala Ala Gly His 80	
<21 <21 <21 <40 Val Gly Gly Gly Pro 65 Glu	1> 28 2> PH 3> My 0> 20 Ala Gly Gly 50 Met	38 RT ycoba 5 Ser Ser Asp 35 Gly Arg	Arg Leu 20 Asp Gly Gly	Ser 5 Leu Asp Val Asp Gln 85	Val Ala Leu Gly 70 Leu	Val Gly 55 Gln Ser	Gly Val 40 Gln Gly Pro	Val 25 Val Glu Ala	Ala Gln Ser Ala Val	His Gln Pro Leu 75 Val	Pro Pro 60 Val	Val Ile 45 Leu Ala Arg	Gly 30 Glu Phe Gly	15 Leu Asp Glu Ser Glu 95	Ala Ala Gly His 80 Ala	

```
Val Gly Gly Glu Val Ala Asp Phe Glu Ser Gly Val Asp Gly Ser
Val Pro Ala Ala Asp Glu Gln Val Thr Phe Ala Arg Thr Arg Trp Ala
                                         155
Asn Asp Arg Gln Val Leu Leu Cys Pro Asn Pro Phe Gln Ala Arg Gln
                                     170
Val Val Glu Arg Gly Cys Gly Asp Arg Arg Ser Gly Asp Val Glu Pro
            180
                                 185
Val Glu Gly Leu Gly Asp Arg Glu Gly Cys Gly Leu Glu Thr Val Gly
Gly Val Gly Gly Ile Ala Gly Ser Asp Leu Gly Leu Asn Gln Arg Pro
Gln Asp Leu Leu Arg Cys Pro Ala Leu Arg Leu Gly Asp Leu Gln His
                    230
Leu Gly Gly Val Ala Ala His Arg Gly Gln Leu Gln Pro Pro Gln Arg
Arg Val Lys Val Ser Ser Gln Arg Cys Arg Arg Gly Arg Cys His Arg
Leu Gly Ser Gly Gly His Glu Ala Val Pro Ser Val Val Leu Ile Leu
<210> 27
<211> 1739
<212> DNA
<213> Mycobacterium
<220>
<221> CDS
<222> (1)..(945)
<400> 27
atg ggc tgc ctc aaa ggt ggt gtc gtc gcc aat gtt gtt gtt cca aca
Met Gly Cys Leu Lys Gly Gly Val Val Ala Asn Val Val Val Pro Thr
ccg gat tat gtg cga ttc gcg tcc cac tat ggc ttc gtt ccg gac ttc
Pro Asp Tyr Val Arg Phe Ala Ser His Tyr Gly Phe Val Pro Asp Phe
tgc cac ggt gcg gat ccg caa tcg aag ggc atc gtg gag aac ctc tgt
Cys His Gly Ala Asp Pro Gln Ser Lys Gly Ile Val Glu Asn Leu Cys
         35
ggc tac gct cag gac gac ctt gcg gtg ccg ctg ctg acc gaa gct gcg
Gly Tyr Ala Gln Asp Asp Leu Ala Val Pro Leu Leu Thr Glu Ala Ala
tta gcc ggt gag cag gtc gac cta cgt gcc ctc aac gcc cag gcg caa
Leu Ala Gly Glu Gln Val Asp Leu Arg Ala Leu Asn Ala Gln Ala Gln
 65
                     70
```

	tgg Trp															288
	ccc Pro															336
ccc Pro	tcg Ser	ctg Leu 115	cgg Arg	ccg Pro	acg Thr	atc Ile	ggc Gly 120	tcg Ser	ggg Gly	tcg Ser	gtg Val	cgc Arg 125	cgt Arg	aag Lys	gtc Val	384
	ggc Gly 130															432
cag Gln 145	cgg Arg	ctc Leu	gtc Val	ggt Gly	gcc Ala 150	acc Thr	gtg Val	gcg Ala	gtg Val	gtg Val 155	gtc Val	gat Asp	cat His	ggc Gly	gcc Ala 160	480
ctg Leu	atc Ile	ctg Leu	ttg Leu	gaa Glu 165	cct Pro	gcg Ala	acc Thr	ggt Gly	gtg Val 170	atc Ile	gtg Val	gcc Ala	gag Glu	cac His 175	gag Glu	528
	gtc Val															576
	aga Arg															624
aaa Lys	cga Arg 210	ttc Phe	tgc Cys	gca Ala	ttg Leu	gga Gly 215	acc Thr	gaa Glu	gcg Ala	cag Gln	cag Gln 220	ttc Phe	ctc Leu	gtc Val	ggt Gly	672
	gct Ala															720
ctc Leu	ggc Gly	ctt Leu	ggc Gly	gcc Ala 245	gcc Ala	cac Hıs	ggc Gly	gaa Glu	cag Gln 250	gct Ala	ttg Leu	att Ile	gac Asp	gcg Ala 255	ctg Leu	768
cgc Arg	cgg Arg	gcg Ala	gtt Val 260	gcg Ala	ttt Phe	cgc Arg	cgg Arg	ttc Phe 265	cgc Arg	gct Ala	gcc Ala	gac Asp	gtg Val 270	cgc Arg	tcg Ser	816
atc Ile	ctg Leu	gcc Ala 275	gcc Ala	ggc Gly	gcc Ala	ggc Gly	acc Thr 280	cca Pro	caa Gln	ccc Pro	cgc Arg	ccc Pro 285	gcc Ala	ggc Gly	gac Asp	864
gca Ala	ctc Leu 290	gtg Val	ctc Leu	gat Asp	ctg Leu	ccc Pro 295	acc Thr	gtc Val	gag Glu	acc Thr	cgc Arg 300	tcg Ser	ttg Leu	gag Glu	gcc Ala	912
tac Tyr 305	aag Lys	atc Ile	aac Asn	acc Thr	acc Thr 310	gac Asp	gg g Gly	acg Thr	gcc Ala	tca Ser 315	tgac	cacc	gc t	gcca	agccg	965

gtggcaccgt ceteggegge accgetgget getgacettg acgeggeget geggeggttg 1025

aagetggeea eggtgegeeg eaacgeegee gaggtgttge aagtegeeaa gaegeaacge 1085
tggacacegg aggagateet geggaegttg gttgaggeeg agategetge eegggatgee 1145
tecaacaceg ecaacegtet eaaggeegea geetteeegg teaceaagae eetegaegg 1205
ttegaegtea eeggategte gateacegea geeaegtteg actacetgte gageetggaa 1265
tggatteggg cacaacagaa eetggeggte attggeecae etggtaeggg caaaagteae 1325
etgeteateg getgegggea egetgeegte eaegeeggat teaaagteeg etaetteaee 1385
geegeegaee tgategaggt eetetaeege ggeetggeeg acaacacegt eggeaagate 1445
ategaeacee tgeteegge ggatetggte atettggaeg agateggett egeeeegete 1505
gaegaeaceg ggaeteaact gttgtteegg etegtggetg eeggetaega gegeegetee 1565
etggeeateg eetegeattg geeettegaa eaatggggge gatteetgee egageacace 1625
acegeegeea geateetega teggetgetg eaecaegeea geategtegt eaecteegge 1685
gagteetaee ggatggeea egeegaeeae aagaagggag eegeeaagaa ttag 1739

<210> 28 <211> 315 <212> PRT <213> Mycobacterium

<400> 28

Met Gly Cys Leu Lys Gly Gly Val Val Ala Asn Val Val Val Pro Thr
1 5 10 15

Pro Asp Tyr Val Arg Phe Ala Ser His Tyr Gly Phe Val Pro Asp Phe \$20\$ \$25\$ \$30

Cys His Gly Ala Asp Pro Gln Ser Lys Gly Ile Val Glu Asn Leu Cys 35 40 45

Gly Tyr Ala Gln Asp Asp Leu Ala Val Pro Leu Leu Thr Glu Ala Ala 50 55 60

Leu Ala Gly Glu Gln Val Asp Leu Arg Ala Leu Asn Ala Gln Ala Gln 65 70 75 80

Leu Trp Cys Ala Glu Val Asn Ala Thr Val His Ser Glu Ile Cys Ala \$85\$ 90 95

Val Pro Asn Asp Arg Leu Val Asp Glu Arg Thr Val Leu Arg Glu Leu 100 105 110

Pro Ser Leu Arg Pro Thr Ile Gly Ser Gly Ser Val Arg Arg Lys Val 115 120 125

Asp Gly Leu Ser Cys Ile Arg Tyr Gly Ser Ala Arg Tyr Ser Val Pro 130 135 140

Gln Arg Leu Val Gly Ala Thr Val Ala Val Val Val Asp His Gly Ala 145 150 155 160

Leu Ile Leu Leu Glu Pro Ala Thr Gly Val Ile Val Ala Glu His Glu 165 170 175

Leu Val Ser Pro Gly Glu Val Ser Ile Leu Asp Glu His Tyr Asp Gly 180 185 190

Pro Arg Pro Ala Pro Ser Arg Gly Pro Arg Pro Lys Thr Gln Ala Glu 195 200 205

Lys Arg Phe Cys Ala Leu Gly Thr Glu Ala Gln Gln Phe Leu Val Gly 210 215 220

Ala Ala Ile Gly Asn Thr Arg Leu Lys Ser Glu Leu Asp Ile Leu 225 235 240

Leu Gly Leu Gly Ala Ala His Gly Glu Gln Ala Leu Ile Asp Ala Leu 245 250 255

Arg Arg Ala Val Ala Phe Arg Arg Phe Arg Ala Ala Asp Val Arg Ser 260 265 270

Ile Leu Ala Ala Gly Ala Gly Thr Pro Gln Pro Arg Pro Ala Gly Asp 275 280 285

Ala Leu Val Leu Asp Leu Pro Thr Val Glu Thr Arg Ser Leu Glu Ala 290 295 300

Tyr Lys Ile Asn Thr Thr Asp Gly Thr Ala Ser 305 310 315

<210> 29

<211> 264

<212> PRT

<213> Mycobacterium

<220>

<221> DOMAIN

<222> (1)..(264)

<223> amino acid sequence is encoded by nucleotides 945-1736 of SEQ ID NO:27

<400> 29

Met Thr Thr Ala Ala Lys Pro Val Ala Pro Ser Ser Ala Ala Pro Leu 1 5 10 15

Ala Ala Asp Leu Asp Ala Ala Leu Arg Arg Leu Lys Leu Ala Thr Val 20 25 30

Arg Arg Asn Ala Ala Glu Val Leu Gln Val Ala Lys Thr Gln Arg Trp 35 40 45

Thr Pro Glu Glu Ile Leu Arg Thr Leu Val Glu Ala Glu Ile Ala Ala 50 55 60

Arg Asp Ala Ser Asn Thr Ala Asn Arg Leu Lys Ala Ala Ala Phe Pro 65 70 75 80

Val Thr Lys Thr Leu Asp Gly Phe Asp Val Thr Gly Ser Ser Ile Thr 85 90 95

Ala	Ala	Thr	Phe 100	Asp	Tyr	Leu	Ser	Ser 105	Leu	Glu	Trp	Ile	Arg 110	Ala	Gln	
Gln	Asn	Leu 115	Ala	Val	Ile	Gly	Pro 120	Pro	Gly	Thr	Gly	Lys 125	Ser	His	Leu	
Leu	Ile 130	Gly	Cys	Gly	His	Ala 135	Ala	Val	His	Ala	Gly 140	Phe	Lys	Val	Arg	
Tyr 145	Phe	Thr	Ala	Ala	Asp 150	Leu	Ile	Glu	Val	Leu 155	Tyr	Arg	Gly	Leu	Ala 160	
Asp	Asn	Thr	Val	Gly 165	Lys	Ile	Ile	Asp	Thr 170	Leu	Leu	Arg	Ala	Asp 175	Leu	
Val	Ile	Leu	Asp 180	Glu	Ile	Gly	Phe	Ala 185	Pro	Leu	Asp	Asp	Thr 190	Gly	Thr	
Gln	Leu	Leu 195	Phe	Arg	Leu	Val	Ala 200	Ala	Gly	Tyr	Glu	Arg 205	Arg	Ser	Leu	
Ala	Ile 210	Ala	Ser	His	Trp	Pro 215	Phe	Glu	Gln	Trp	Gly 220	Arg	Phe	Leu	Pro	
Glu 225	His	Thr	Thr	Ala	Ala 230	Ser	Ile	Leu	Asp	Arg 235	Leu	Leu	His	His	Ala 240	
Ser	Ile	Val	Val	Thr 245	Ser	Gly	Glu	Ser	Tyr 250	Arg	Met	Arg	His	Ala 255	Asp	
His	Lys	Lys	Gly 260	Ala	Ala	Lys	Asn									
<21 <21	0> 30 1> 78 2> DN 3> My	39 NA	actei	rium												
	0> 1> CI 2> (1		(786))												
gtg	0> 30 acg Thr	tct	gct Ala	ccg Pro 5	acc Thr	gtc Val	tcg Ser	gtg Val	ata Ile 10	acg Thr	atc Ile	tcg Ser	ttc Phe	aac Asn 15	gac Asp	48
ctc Leu	gac Asp	ggg Gly	ttg Leu 20	cag Gln	cgc Arg	acg Thr	gtg Val	aaa Lys 25	agt Ser	gtg Val	cgg Arg	gcg Ala	caa Gln 30	cgc Arg	tac Tyr	96
cgg Arg	gga Gly	cgc Arg 35	atc Ile	gag Glu	cac His	atc Ile	gta Val 40	atc Ile	gac Asp	ggt Gly	ggc Gly	agc Ser 45	ggc Gly	gac Asp	gac Asp	144
gtg Val	gtg Val 50	gca Ala	tac Tyr	ctg Leu	tcc Ser	ggg Gly 55	tgt Cys	gaa Glu	cca Pro	ggc Gly	ttc Phe 60	gcg Ala	tat Tyr	tgg Trp	cag Gln	192

			gac Asp													240
			ggt Gly													288
tcc Ser	ggg	ccc Pro	gac Asp 100	gtg Val	gta Val	gcc Ala	cag Gln	gcc Ala 105	gtg Val	gag Glu	gcg Ala	cta Leu	tcc Ser 110	ggc Gly	aag Lys	336
			tcc Ser													384
			gtg Val													432
			cag Gln													480
ctg Leu	gtg Val	gcc Ala	aag Lys	atc Ile 165	ggt Gly	ggc Gly	tac Tyr	gac Asp	ctt Leu 170	gat Asp	ttc Phe	ggg Gly	atc Ile	gcc Ala 175	gcc Ala	528
			ttc Phe 180													576
att Ile	cgg Arg	tgt Cys 195	gtg Val	ctg Leu	tgc Cys	gag Glu	ttc Phe 200	gac Asp	acc Thr	acg Thr	ggc Gly	gtc Val 205	ggc Gly	tcg Ser	cac His	624
			agc Ser													672
			tac Tyr													720
cgc Arg	ggc Gly	cgg Arg	gag Glu	ttc Phe 245	tac Tyr	gcc Ala	tac Tyr	aac Asn	agt Ser 250	cga Arg	ttc Phe	tgg Trp	gaa Glu	aac Asn 255	gtc Val	768
	_	_	atg Met 260	-		tag										789

<210> 31

<211> 262

<212> PRT

<213> Mycobacterium

<400> 31

Met Thr Ser Ala Pro Thr Val Ser Val Ile Thr Ile Ser Phe Asn Asp 1 5 10 15

Leu Asp Gly Leu Gln Arg Thr Val Lys Ser Val Arg Ala Gln Arg Tyr
20 25 30

Arg Gly Arg Ile Glu His Ile Val Ile Asp Gly Gly Ser Gly Asp Asp 35 40 45

Val Val Ala Tyr Leu Ser Gly Cys Glu Pro Gly Phe Ala Tyr Trp Gln 50 55 60

Ser Glu Pro Asp Gly Gly Arg Tyr Asp Ala Met Asn Gln Gly Ile Ala 65 70 75 80

His Ala Ser Gly Asp Leu Leu Trp Phe Leu His Ser Ala Asp Arg Phe
85 90 95

Gly Pro Val Ser Glu Leu Trp Gly Phe Gly Met Asp Arg Leu Val Gly 115 120 125

Leu Asp Arg Val Arg Gly Pro Ile Pro Phe Ser Leu Arg Lys Phe Leu 130 135 140

Ala Gly Lys Gln Val Val Pro His Gln Ala Ser Phe Phe Gly Ser Ser 145 150155160

Leu Val Ala Lys Ile Gly Gly Tyr Asp Leu Asp Phe Gly Ile Ala Ala 165 170 175

Asp Gln Glu Phe Ile Leu Arg Ala Ala Leu Val Cys Glu Pro Val Thr 180 185 190

Ile Arg Cys Val Leu Cys Glu Phe Asp Thr Thr Gly Val Gly Ser His 195 200 205

Arg Glu Pro Ser Ala Val Phe Gly Asp Leu Arg Arg Met Gly Asp Leu 210 215 220

His Arg Arg Tyr Pro Phe Gly Gly Arg Arg Ile Ser His Ala Tyr Leu 225 230 235 240

Arg Gly Arg Glu Phe Tyr Ala Tyr Asn Ser Arg Phe Trp Glu Asn Val\$245\$ \$250\$ \$255\$

Phe Thr Arg Met Ser Lys 260

<210> 32

<211> 1023

<212> DNA

<213> Mycobacterium

<220>

<221> CDS

<222> (1)..(1020)

<400> 32							
gtg aag cga Met Lys Arg 1				Gly Gln			48
ctc gcc gaa Leu Ala Glu							96
cgg cgc gct Arg Arg Ala 35	Ser Thr Ph		Ser Arg				144
gac ccg cac Asp Pro His 50			-	_	Tyr Gly		192
atc gac gga Ile Asp Gly 65	Thr Arg Le			~	_	_	240
gag gtg tac Glu Val Tyr		-		Val Arg		_	288
gaa ccc gtg Glu Pro Val							336
ctg gaa gcc Leu Glu Ala 115			Val His				384
tcc tcg tcg Ser Ser Ser 130				_	Gln Asn		432
acg ccg ttc Thr Pro Phe 145		g Ser Pro					480
tac tgg gcg Tyr Trp Ala				Tyr Gly			528
aac ggc atc Asn Gly Ile	ttg ttc aa Leu Phe As 180	t cac gaa n His Glu	tca ccg Ser Pro 185	cgg cgc Arg Arg	ggt gag Gly Glu 190	acg ttc Thr Phe	576
gtg acc cga Val Thr Arg 195	aag atc ac Lys Ile Th	c agg gcc r Arg Ala 200	Val Ala	cgc atc Arg Ile	aag gcc Lys Ala 205	ggt atc Gly Ile	624
cag tcc gag Gln Ser Glu 210	gtc tat at Val Tyr Me	g ggc aat t Gly Asn 215	ctg gat Leu Asp	gcg gtc Ala Val 220	cgc gac Arg Asp	tgg ggg Trp Gly	672
tac gcg ccc Tyr Ala Pro 225	gaa tac gt Glu Tyr Va 23	l Glu Gly	atg tgg Met Trp	cgg atg Arg Met 235	ctg cag Leu Gln	acc gac Thr Asp 240	720

Glu Pro Asp	gac ttc Asp Phe 245											768
gag ttc gcg Glu Phe Ala					-		_	-		_	_	816
tac gtg aaa Tyr Val Lys 275												864
ctg atc ggc Leu Ile Gly 290			s Ala									912
tcg gtg cac Ser Val His 305												960
gcg gcg ctg Ala Ala Leu												1008
gcc ggc cgg Ala Gly Arg	_											1023
<210> 33												
<211> 340 <212> PRT <213> Mycoba	acterium											
<212> PRT		Ile Th	r Gly	Ile	Thr 10	Gly	Gln	Asp	Gly	Ser 15	Tyr	
<212> PRT <213> Mycoba <400> 33 Met Lys Arg	Ala Leu 5				10			_	-	15	_	
<212> PRT <213> Mycoba <400> 33 Met Lys Arg 1	Ala Leu 5 Leu Leu 20	Leu Al	a Lys	Gly 25	10 Tyr	Glu	Val	His	Gly 30	15 Leu	Ile	
<212> PRT <213> Mycoba <400> 33 Met Lys Arg 1 Leu Ala Glu	Ala Leu 5 Leu Leu 20 Ser Thr	Leu Al	a Lys n Thr 40 a Arg	Gly 25 Ser	10 Tyr Arg	Glu	Val Asp	His His 45	Gly 30 Leu	15 Leu Tyr	Ile Val	
<212> PRT <213> Mycoba <400> 33 Met Lys Arg 1 Leu Ala Glu Arg Arg Ala 35 Asp Pro His	Ala Leu 5 Leu Leu 20 Ser Thr Gln Pro	Leu Al Phe As Gly Al 5	a Lys Thr 40 Arg	Gly 25 Ser Leu	10 Tyr Arg Phe	Glu Ile Leu	Val Asp His 60	His His 45	Gly 30 Leu Gly	15 Leu Tyr Asp	Ile Val Leu	
<pre><212> PRT <213> Mycoba <400> 33 Met Lys Arg</pre>	Ala Leu 5 Leu Leu 20 Ser Thr Gln Pro Thr Arg	Leu Al Phe As Gly Al 5 Leu Va 70	a Lys Thr 40 Arg Thr	Gly 25 Ser Leu	10 Tyr Arg Phe Leu	Glu Ile Leu Ser 75	Val Asp His 60	His 45 Tyr	Gly 30 Leu Gly	15 Leu Tyr Asp	Ile Val Leu Asp	
<212> PRT <213> Mycoba <400> 33 Met Lys Arg	Ala Leu 5 Leu Leu 20 Ser Thr Gln Pro Thr Arg Asn Leu 85	Leu Al Phe As Gly Al 5 Leu Va 70 Ala Al	a Lys n Thr 40 a Arg b Thr	Gly 25 Ser Leu Leu	Tyr Arg Phe Leu His	Glu Ile Leu Ser 75 Val	Val Asp His 60 Thr	His 45 Tyr Ile Val	Gly 30 Leu Gly Glu Ser	15 Leu Tyr Asp Pro	Ile Val Leu Asp 80 Asp	
<212> PRT <213> Mycoba <400> 33 Met Lys Arg 1 Leu Ala Glu Arg Arg Ala 35 Asp Pro His 50 Ile Asp Gly 65 Glu Val Tyr	Ala Leu 5 Leu Leu 20 Ser Thr Gln Pro Thr Arg Asn Leu 85 His Thr	Leu Al Phe As Gly Al 5 Leu Va 70 Ala Al Gly As	a Lys Thr 40 a Arg Thr Gln	Gly 25 Ser Leu Leu Ser Thr	Tyr Arg Phe Leu His 90 Gly	Glu Ile Leu Ser 75 Val	Val Asp His 60 Thr Arg	His 45 Tyr Ile Val	Gly 30 Leu Gly Glu Ser Met	15 Leu Tyr Asp Pro Phe 95 Arg	Ile Val Leu Asp 80 Asp	

Thr Pro Phe Tyr Pro Arg Ser Pro Tyr Gly Ala Ala Lys Val Tyr Ser Tyr Trp Ala Thr Arg Asn Tyr Arg Glu Ala Tyr Gly Leu Phe Ala Val 170 Asn Gly Ile Leu Phe Asn His Glu Ser Pro Arg Arg Gly Glu Thr Phe 185 Val Thr Arg Lys Ile Thr Arg Ala Val Ala Arg Ile Lys Ala Gly Ile 200 Gln Ser Glu Val Tyr Met Gly Asn Leu Asp Ala Val Arg Asp Trp Gly Tyr Ala Pro Glu Tyr Val Glu Gly Met Trp Arg Met Leu Gln Thr Asp 235 Glu Pro Asp Asp Phe Val Leu Ala Thr Gly Arg Gly Phe Thr Val Arg Glu Phe Ala Arg Ala Ala Phe Glu His Ala Gly Leu Asp Trp Gln Gln Tyr Val Lys Phe Asp Gln Arg Tyr Leu Arg Pro Thr Glu Val Asp Ser Leu Ile Gly Asp Ala Thr Lys Ala Ala Glu Leu Leu Gly Trp Arg Ala Ser Val His Thr Asp Glu Leu Ala Arg Ile Met Val Asp Ala Asp Met 315 Ala Ala Leu Glu Cys Glu Gly Lys Pro Trp Ile Asp Lys Pro Met Ile 330 Ala Gly Arg Thr 340 <210> 34 <211> 732 <212> DNA <213> Mycobacterium <220> <221> CDS <222> (1)..(729) <400> 34 atg agg ctg gcc cgt cgc gct cgg aac atc ttg cgt cgc aac ggc atc Met Arg Leu Ala Arg Arg Ala Arg Asn Ile Leu Arg Arg Asn Gly Ile gag gtg tcg cgc tac ttt gcc gaa ctg gac tgg gaa cgc aat ttc ttg Glu Val Ser Arg Tyr Phe Ala Glu Leu Asp Trp Glu Arg Asn Phe Leu 20 25

		ctg Leu 35														144
aat Asn	tcg Ser 50	ggg Gly	cag Gln	tac Tyr	gcc Ala	agg Arg 55	ggt Gly	ctg Leu	cgc Arg	ggc Gly	gcg Ala 60	ggc Gly	ttc Phe	gcg Ala	ggc Gly	192
ege Arg 65	atc Ile	gtc Val	tcg Ser	ttc Phe	gag Glu 70	ccg Pro	ctg Leu	ccc Pro	ggg Gly	ccc Pro 75	ttt Phe	gcc Ala	gtc Val	ttg Leu	cag Gln 80	240
cgc Arg	agc Ser	gcc Ala	tcc Ser	acg Thr 85	gac Asp	ccg Pro	ttg Leu	tgg Trp	gaa Glu 90	tgc Cys	cgg Arg	cgc Arg	tgt Cys	gcg Ala 95	ctg Leu	288
ggc	gat Asp	gtc Val	gat Asp 100	gga Gly	acc Thr	atc Ile	tcg Ser	atc Ile 105	aac Asn	gtc Val	gcc Ala	ggc Gly	aac Asn 110	gag Glu	ggc Gly	336
gcc Ala	agc Ser	agt Ser 115	tcc Ser	gtc Val	ttg Leu	ccg Pro	atg Met 120	ttg Leu	aaa Lys	cga Arg	cat His	cag Gln 125	gac Asp	gcc Ala	ttt Phe	384
cca Pro	cca Pro 130	gcc Ala	aac Asn	tac Tyr	gtg Val	ggc Gly 135	gcc Ala	caa Gln	cgg Arg	gtg Val	ccg Pro 140	ata Ile	cat His	cga Arg	ctc Leu	432
gat Asp 145	tcc Ser	gtg Val	gct Ala	gca Ala	gac Asp 150	gtt Val	ctg Leu	cgg Arg	ccc Pro	aac Asn 155	gat Asp	att Ile	gcg Ala	ttc Phe	ttg Leu 160	480
Lys	Ile	gac Asp	Val	Gln 165	Gly	Phe	Glu	Lys	Gln 170	Val	Ile	Ala	Gly	Gly 175	Asp	528
tca Ser	acg Thr	gtg Val	cac His 180	gac Asp	cga Arg	tgc Cys	gtc Val	ggc Gly 185	atg Met	cag Gln	ctc Leu	gag Glu	ctg Leu 190	tct Ser	ttc Phe	576
Gln	Pro	ttg Leu 195	Tyr	Glu	Gly	Gly	Met 200	Leu	Ile	Arg	Glu	Ala 205	Leu	Āsp	Leu	624
Val	Asp 210	tcg Ser	Leu	Gly	Phe	Thr 215	Leu	Ser	Gly	Leu	Gln 220	Pro	Gly	Phe	Thr	672
gac Asp 225	ccc Pro	cgc Arg	aac Asn	ggt Gly	cga Arg 230	atg Met	ctg Leu	cag Gln	gcc Ala	gat Asp 235	ggc Gly	atc Ile	ttc Phe	ttc Phe	cgg Arg 240	720
	agc Ser	gat Asp	tga													732

<210> 35 <211> 243 <212> PRT

<213> Mycobacterium

<400> 35

Met Arg Leu Ala Arg Arg Ala Arg Asn Ile Leu Arg Arg Asn Gly Ile 1 5 10 15

Glu Val Ser Arg Tyr Phe Ala Glu Leu Asp Trp Glu Arg Asn Phe Leu 20 25 30

Arg Gln Leu Gln Ser His Arg Val Ser Ala Val Leu Asp Val Gly Ala 35 40 45

Asn Ser Gly Gln Tyr Ala Arg Gly Leu Arg Gly Ala Gly Phe Ala Gly 50 60

Arg Ile Val Ser Phe Glu Pro Leu Pro Gly Pro Phe Ala Val Leu Gln 65 70 75 80

Arg Ser Ala Ser Thr Asp Pro Leu Trp Glu Cys Arg Arg Cys Ala Leu 85 90 95

Gly Asp Val Asp Gly Thr Ile Ser Ile Asn Val Ala Gly Asn Glu Gly 100 105 110

Ala Ser Ser Ser Val Leu Pro Met Leu Lys Arg His Gln Asp Ala Phe 115 120 125

Pro Pro Ala Asn Tyr Val Gly Ala Gln Arg Val Pro Ile His Arg Leu 130 135 140

Asp Ser Val Ala Ala Asp Val Leu Arg Pro Asn Asp Ile Ala Phe Leu 145 150 155 160

Lys Ile Asp Val Gln Gly Phe Glu Lys Gln Val Ile Ala Gly Gly Asp 165 170 175

Ser Thr Val His Asp Arg Cys Val Gly Met Gln Leu Glu Leu Ser Phe 180 185 190

Gln Pro Leu Tyr Glu Gly Gly Met Leu Ile Arg Glu Ala Leu Asp Leu 195 200 205

Val Asp Ser Leu Gly Phe Thr Leu Ser Gly Leu Gln Pro Gly Phe Thr 210 215 220

Asp Pro Arg Asn Gly Arg Met Leu Gln Ala Asp Gly Ile Phe Phe Arg 225 230 235 240

Gly Ser Asp

<210> 36

<211> 732

<212> DNA

<213> Mycobacterium

<220>

<221> CDS

<222> (1)..(729)

<400> 3	6										
gtg aaa Met Lys 1											48
gag gtt Glu Val											96
aag caa Lys Gln											144
aac tca Asn Ser 50	Gly		-	-		_	_	-	-	-	 192
cgc att Arg Ile 65											240
agc aaa Ser Lys											288
ggc gat Gly Asp											336
cag ago Gln Ser	-	-	_		 _		_		_	-	384
ccc ccg Pro Pro 130	Ala										432
gat tcc Asp Ser 145											480
aag gto Lys Val											528
tca acc Ser Thr											576
ctg ccg Leu Pro											624
gtg tat Val Tyr 210	Ser										672
gat gca Asp Ala 225											720

gag gac gat tga Glu Asp Asp

<210> 37

<211> 243

<212> PRT

<213> Mycobacterium

<400> 37

Met Lys Ser Leu Lys Leu Ala Arg Phe Ile Ala Arg Ser Ala Ala Phe 1 5 10 15

Glu Val Ser Arg Arg Tyr Ser Glu Arg Asp Leu Lys His Gln Phe Val \$20\$ \$25\$ 30

Lys Gln Leu Lys Ser Arg Arg Val Asp Val Val Phe Asp Val Gly Ala 35 40 45

Asn Ser Gly Gln Tyr Ala Ala Gly Leu Arg Arg Ala Ala Tyr Lys Gly 50 60

Arg Ile Val Ser Phe Glu Pro Leu Ser Gly Pro Phe Thr Ile Leu Glu 65 70 75 80

Ser Lys Ala Ser Thr Asp Pro Leu Trp Asp Cys Arg Gln His Ala Leu $85 \hspace{1cm} 90 \hspace{1cm} 95$

Gly Asp Ser Asp Gly Thr Val Thr Ile Asn Ile Ala Gly Asn Ala Gly 100 105 110

Gln Ser Ser Val Leu Pro Met Leu Lys Ser His Gln Asn Ala Phe 115 120 125

Pro Pro Ala Asn Tyr Val Gly Thr Gln Glu Ala Ser Ile His Arg Leu 130 135 140

Asp Ser Val Ala Pro Glu Phe Leu Gly Met Asn Gly Val Ala Phe Leu 145 150 155 160

Lys Val Asp Val Gln Gly Phe Glu Lys Gln Val Leu Ala Gly Gly Lys 165 170 175

Ser Thr Ile Asp Asp His Cys Val Gly Met Gln Leu Glu Leu Ser Phe 180 185 190

Leu Pro Leu Tyr Glu Gly Gly Met Leu Ile Pro Glu Ala Leu Asp Leu 195 200 205

Val Tyr Ser Leu Gly Phe Thr Leu Thr Gly Leu Leu Pro Cys Phe Ile 210 215 220

Asp Ala Asn Asn Gly Arg Met Leu Gln Ala Asp Gly Ile Phe Phe Arg 225 230 235 240

Glu Asp Asp

<210> 38 <211> 828

<212> DNA <213> Mycobacterium	m		
<220> <221> CDS <222> (1)(825)			
<400> 38 atg gtg cag acg aa Met Val Gln Thr Ly 1	a cga tac gcc (s Arg Tyr Ala (5	ggc ttg acc gca g Gly Leu Thr Ala A 10	ct aac aca aag 48 la Asn Thr Lys 15
aaa gtc gcc atg gc Lys Val Ala Met Al 20	cc gca cca atg d a Ala Pro Met 1	ttt tog atc atc a Phe Ser Ile Ile I 25	tc ccc acc ttg 96 le Pro Thr Leu 30
aac gtg gct gcg gt Asn Val Ala Ala Va 35	ta ttg cct gcc al Leu Pro Ala (tgc ctc gac agc a Cys Leu Asp Ser I	tc gcc cgt cag 144 le Ala Arg Gln 45
acc tgc ggt gac tt Thr Cys Gly Asp Ph 50	cc gag ctg gta ne Glu Leu Val	ctg gtc gac ggc g Leu Val Asp Gly G 60	gc tcg acg gac 192 ly Ser Thr Asp
gaa acc ctc gac at Glu Thr Leu Asp Il 65	cc gcc aac att le Ala Asn Ile 70	ttc gcc ccc aac c Phe Ala Pro Asn I 75	etc ggc gag cgg 240 Leu Gly Glu Arg 80
ttg atc att cat cg Leu Ile Ile His Ar	gc gac acc gac rg Asp Thr Asp 35	cag ggc gtc tac g Gln Gly Val Tyr <i>F</i> 90	gac gcc atg aac 288 Asp Ala Met Asn 95
cgc ggc gtg gac ct Arg Gly Val Asp Le 100	tg gcc acc gga eu Ala Thr Gly	acg tgg ttg ctc t Thr Trp Leu Leu I 105	ctt ctg ggc gcg 336 Phe Leu Gly Ala 110
gac gac agc ctg ta Asp Asp Ser Leu Ty 115	ac gag gct gac yr Glu Ala Asp 120	Thr Leu Ala Arg \	gtg gcc gcc ttc 384 Val Ala Ala Phe
att ggc gaa cac ga Ile Gly Glu His Gi 130	ag ccc agc gat lu Pro Ser Asp 135	ctg gta tat ggc o Leu Val Tyr Gly i 140	gac gtg atc atg 432 Asp Val Ile Met
cgc tca acc aat to Arg Ser Thr Asn Ph 145	tc cgc tgg ggt he Arg Trp Gly 150	ggc gcc ttc gac o Gly Ala Phe Asp 1 155	ctc gac cgt ctg 480 Leu Asp Arg Leu 160
ttg ttc aag cgc aa Leu Phe Lys Arg A:	ac atc tgc cat sn Ile Cys His 65	cag gcg atc ttc Gln Ala Ile Phe '	tac cgc cgc gga 528 Tyr Arg Arg Gly 175
ctc ttc ggc acc at Leu Phe Gly Thr I 180	tc ggt ccc tac le Gly Pro Tyr	aac ctc cgc tac Asn Leu Arg Tyr 185	cgg gtc ctg gcc 576 Arg Val Leu Ala 190
gac tgg gac ttc a Asp Trp Asp Phe A 195	at att cgc tgc sn Ile Arg Cys 200	Phe Ser Asn Pro	gcg ctc gtc acc 624 Ala Leu Val Thr 205

cgc tac atg cac Arg Tyr Met His 210	gtg gtc Val Val	gtt gca Val Ala 215	agc tac Ser Tyr	aac gaa Asn Glu 220	Phe (ggc gg Gly Gl	gg ctc ly Leu	672
agc aat acg atc Ser Asn Thr Ile 225	gtc gac Val Asp 230	aag gag Lys Glu	ttt ttg Phe Leu	aag cgg Lys Arg 235	ctg of Leu l	ccg at Pro Me	tg tcc et Ser 240	720
acg aga ctc ggo Thr Arg Leu Gly	ata agg Ile Arg 245	ctg gtc Leu Val	ata gtt Ile Val 250	ctg gtg Leu Val	g cgc a	Arg T	gg cca rp Pro 55	768
aag gtg atc agg Lys Val Ile Ser 260	Arg Ala	atg gta Met Val	atg cgc Met Arg 265	acc gto Thr Val	Ile	tct te Ser Ti 270	gg cgg rp Arg	816
cgc cga cgt tag Arg Arg Arg 275	ī							828
<210> 39 <211> 275 <212> PRT <213> Mycobacte	erium							
<400> 39 Met Val Gln Th	Lys Arg 5	Tyr Ala	Gly Leu 10		a Ala	Asn T	hr Lys 15	
Lys Val Ala Me		Pro Met	Phe Ser 25	: Ile Il	e Ile	Pro T	hr Leu	
Asn Val Ala Al 35	a Val Leu	Pro Ala		ı Asp Se	r Ile 45	Ala A	Arg Gln	
Thr Cys Gly As	o Phe Glu	Leu Val	Leu Val	l Asp Gl 6		Ser I	Chr Asp	
Glu Thr Leu As 65	o Ile Ala 70				n Leu	Gly G	Glu Arg 80	
Leu Ile Ile Hi	s Arg Asp 85	Thr Asp	Gln Gly 90		r Asp	Ala N	Met Asn 95	
Arg Gly Val As	_	a Thr Gly	Thr Trp	o Leu Le	u Phe	Leu (Gly Ala	
Asp Asp Ser Le	u Tyr Glı	ı Ala Asp 120		u Ala Ar	g Val 125	Ala A	Ala Phe	
Ile Gly Glu Hi 130	s Glu Pro	Ser Asp 135	Leu Va	l Tyr Gl 14		Val :	Ile Met	
Arg Ser Thr As	n Phe Aro		Gly Al	a Phe As 155	p Leu	Asp A	Arg Leu 160	
Leu Phe Lys Ar	g Asn Ile 165	e Cys His	s Gln Al. 17		ne Tyr		Arg Gly 175	

Leu	Phe	Gly	Thr 180	Ile	Gly	Pro	Tyr	Asn 185	Leu	Arg	Tyr	Arg	Val 190	Leu	Ala	
Asp	Trp	Asp 195	Phe	Asn	Ile	Arg	Cys 200	Phe	Ser	Asn	Pro	Ala 205	Leu	Val	Thr	
Arg	Tyr 210	Met	His	Val	Val	Val 215	Ala	Ser	Tyr	Asn	Glu 220	Phe	Gly	Gly	Leu	
Ser 225	Asn	Thr	Ile	Val	Asp 230	Lys	Glu	Phe	Leu	Lys 235	Arg	Leu	Pro	Met	Ser 240	
Thr	Arg	Leu	Gly	Ile 245	Arg	Leu	Val	Ile	Val 250	Leu	Val	Arg	Arg	Trp 255	Pro	
Lys	Val	Ile	Ser 260	Arg	Ala	Met	Val	Met 265	Arg	Thr	Val	Ile	Ser 270	Trp	Arg	
Arg	Arg	Arg 275														
<21 <21	0> 4 1> 2 2> D 3> M	4 NA	acte	rium												
	0> 4 gccg		ggag	gtaa	ag c	tgc										24
<21 <21	0> 4 1> 2 2> D 3> M	4 NA	acte	rium												
	0> 4 acgg		ttga	atcc	tg c	acg										24

The first the first the first that

ACCOUNTS OF THE PROPERTY OF TH