enteredoven

REPORT OF FIELD OBSERVATIONS

Pageof		ntinued on Next Page	N Col	Copy Sent to Client: Y
- G			səlim	Mileage:
		X 22		
			2.	
	8			
	¥			
			99	
				Gescription:
Stop:	:hst2	Observation Period		Dbserver:
		Weather:		ocation:
		Project:		:tineil
	-,			:.oN do
T W T F S S	M	Date:		. 014 401

Name: Make

Pate: 12/19/19

Gas Flux Data Form

Field Notes:

Site ID:

11/1							
1 1	1,5,50		063.8	0802,831	6h. C	69	4
	SL 881	-	919.8	8066.1811	Shill	16	•
	[18.PC]	850	6.63.8	0590,171	(5.0)	87	0 1
1	(Vm	1 ' '		N20 Area	əmiT əlqme	Vringe ID	Bucket
	CO2 Peak Height	CO2 Peak Height	NZO				#
							
	/ = 010		C \ C \ C				
	18.318	 	819.8	087, 3711	645 CI	NY	٥
	968		617.5	1911° 2040	Elvill	10	
otes	1 (Vm)	(111/11111)	51 98	HS98 8811	21-101	- 00	à 9
1	, , ,	, , ,		N20 Area	9miT 9lqms2	Ol agninya	Bucket
	tdpigH Jegg 500	CO2 Peak Height	NZ0	<u>L</u>			
(Grans	Shill	r:	·		· · · · · · · · · · · · · · · · · · ·	T	
WHE I'MEND	21/ 20		Cvoois	100000	() ()	1000	
50 rot 2	05.281		5.663	16875 E. S.F.	5h:61	(E)	1
30) 30			619.8	P.58 211	1/2 6!	7	
Votes	ST'(75)	(111/11171)		HOU IN ET	1 HEQI	JH	0
	, , ,	CO2 Peak Height		N20 Area	əmiT əlqme2	Ol agniny2	Bucket
	140:011 1000 200	CO2 Beat Hoight	N20				
						1	
	9987	-	2.623	HE LE, 000	04021	l in a	
	hal			BC 701	Qhil		
	140.50			911/2° 966	15.01	E.A.3	
Notes	(Vm)	(ա/աղ)	Retention	N20 Area	Sample Time	CL 28WWAG	
9 9		CO2 Peak Height	NZO	20.10 OCM	omiT alame2	(1) epuity?	Bucket
					····		
*3	[149.87]		De 92	30.000	15.21	1/ 0	
	52910		233 3.626		11:39	ING	
	92)			100° 1986	45:01	900	Q
Notes	(Vm)	(ա/աժ)	Retention	N20 Area	อกนี elqme2		Bucket
	CO2 Peak Height	CO2 Peak Height	NZO		, <u>, , , , , , , , , , , , , , , , , , </u>	Ol anaim.2	40/101/4
							•
	61.810				9001	MINAR	10, 35h
Notes	(Vm)	(ա/աղ)	Retention	N20 Area	Sample Time	Syringe ID	Standard
	CO2 Peak Height	CO2 Peak Height	N20				Field
							

bitelli me & You

0050 GC. 965 0096 SL'SBS G.000) SL: HSZ 9.000) OS:HSC 5.000 GL'EST 009 96,981 009 96.981 " _009 G17. E81 MOH BHO.8625 hoths . SLSC 6712, Past 9891.068 Suz, ugzo 45.468 · WOLS

8° 685

(198C)

me me till 300

DM

Date: 13/19/19

Gas Flux Data Form

Field Notes:

	PE.GTE		<u> </u>	Me or			
	78.22C			0815,881		53	5
	136.12	 		17778th 16		ての	3
	(/w	1 (00.600		P60P - 860		17	5
			etention (µ	λη Seas Rea	M əmiT əlqma	Vringe ID S	Bucket
(1)	O2 Peak Height	O2 Peak Height	Z0 C	N	ľ		
	2016/200					T	T :
	61,768		992	975 8C	1 8h'S	59	Σ
	03.450			1087.0564	8hie	T	
	182.95			9629 101			5
səto	N (Am)	(w/wr	l) uoitnete		84:1	67	2
	CO2 Peak Height	O2 Peak Height	150		M əmiT əlqme	Ol ogniny	Bucket
		7	91 061	<u> </u>			
			T				
	769.608		-				
	26, PLC			9155 490	Shis	79	1
	Ge. P.C.			12869° 050	5 Pig	TM	E
otes				9180000	Eh:1	ES	E
30401			Retention (NZO Area			
A	CO2 Peak Height	CO2 Peak Height	NZO		'	[] uiini	4043118
						200	L
					T		
	75.734			0469 8601	anis		
	332			8287 720		27	8
	05.76			8689, POOI	9:40	ld	6.
Notes		(m/ml)	Retention	700/	Chil-	27	6
	CO2 Peak Height	COZ PEZK MEIBNT		,	Sample Time	Syringe ID	Bucket
		11.11-4 605	NZO				1
	C9:09/7		1) (1 6 O			
				RIS'HSOLL.	3:35	TX	h
	0.75			068P , 750	3.3	TJ	1
Notes	143,17			2851 hook	WJ 9211	EL	-
304014	(Vm)	(m/mul)	Retention	N20 Area	emiT elqme2		Bucket
	CO2 Peak Height	CO2 Peak Height	NZO			u,;3	todoug
r							
Notes	(/m)	(m/ml)	Retention	Palwork	auu adam		
	CO2 Peak Height	COZ Peak Heigh		M20 Area	emiT elqme2	Syringe II	Standard
		3 5 5 5	N20				Field
			<i>3</i> 4	\mathcal{M}	****		<u> </u>
				111			

58 h9'b	920111	6161.1	1-10
10,2653	5603,11	/P90.)	6-17
28518	00H2 b	alto.1	01-15
89±116	ts1+101	0600,1	2-10
8'3d Jd	Sh5 19'b	8480'1	9-10
PHIE.F	1495'8	12011	4-11
4.0904	Pfp6,8		5-11
105\$5.8	5862		h - 11
PP18.8	8564,01	h4+01	8-17
19:430x	hllh'H	£9 h0')	t-11
Otst'9	5084'8	res_ (hQ ')	12-6T
5828'9	1582'8	98601	01-11
8000,7	Stih 8	tt hoil	5-67
£288'£	theh'b	ZH80.1	9-47
18 £ 5 '8	5 286 3	8190'1	1-47
18 14'9	PPU1.8	10000	5-62
abth'E	othe h	0910'	6-67
15 18 15	18845.F	09501	(y-4)
0406'5	hhei'y	68FO.1	8-62
69 £ 5'9	PS. 61.8	E811.1	h-87
im ha	[105 + col	3600	101
3/1/1 0	1 1 24 .0[I my man	1 411

began tracking an unseasonably warm storm coming out of Hawaii and moving east and northeast toward the mainland. Some speculated that the storm's moderate temperature was in part due to global warming and could cause serious flooding in the Northern Rockies, which did in fact take place two days later. Three days after the rains subsided (the day before yesterday), the pond containing cyanide experienced a breech of the dam holding back the highly toxic chemicals. Efforts to contain the 1,000,000+ gallons of chemicals failed yesterday morning and the material began leaking into the slow moving but wide Kootenai River at Troy. Word of the spill hit the wire services last night, after you went to sleep, after a difficult day of mediating a dispute between social service providers seeking a grant from the County in which you live. By the time between social service providers seeking a grant from the County in which you live. By the time you wake up and sip your first cup of morning coffee and turn on the TV, the morning news is all over the story.

Reporters spin tales of an international incident speculating a catastrophe greater in magnitude than the Exxon Valdez oil spill. This spill constitutes a potentially significant problem that threatens water supplies, tourism, jobs, fish and wildlife, and public health in the Northwest, and threatens water supplies, tourism, jobs, fish and wildlife, and public health in the Northwest, and Canada – a disaster that holds the promise of full employment for environmental, tort, and

The media in its typical role is looking for people to blame and obvious negligent actions on the part of all involved. Rumors are flying about the DMG and its unwillingness to enforce its own laws, Blue Mountain's lack of financial capacity, the Forest Service for its leasing practices, the EPA for not being aware of the potential hazards, infighting among the various National Forest Supervisors, implications on US-Canadian relations, and its impact on spawning salmon down river. No one in government is talking, except President Trump and Canada's Prime Minister Justin Trudeau who both cite the situation as a bi-national emergency requiring immediate attention, problem solving and mitigation.

		4h979	P388.T	1.1346	650
		0,6 Ep, 8	84.01	087111	0191
		8150,8	63486	84011	691
		3549.8	8615'9	68901	891
		FRIH.F	SE79-8	90811	991
		st bs't	40963	22411	191
		9560,8	439 E. T	46011	rat
		+90+'S	S980'L	7580.1	957
		2508,2	9795'L	L880.1	497
		560P.3	6.5329	[pp0.1	F53
		2996'9	2P84.3	[11333	751
		2260,8	SS be'b	16111	L90
		4850.3	Cho1't	99711	990
		Ersb'h	YEEL'S	65901	490
		40927	'cttl'b	4580,1	697
		9hettit	8h £ 1'b	8121.1	790
(a)		te 95'S	8698'9	89601	0190
		99 £ 2'9	SLIL'L	9181.1	658
		8 HSZ'9	J 0.20. J	T021.1	99)
Z (20)		5866'8	10.6463	8211	TS)
E8/1	1.02	1 + CAT	1,02 1 post	I ray ha	01

N:490:7 @ Yuli War 44/1

a Initials Date	Datum Datum	Carbon Carbon Clay Sand Silt 0-10cm (%) 10-40cm (%) 10-40cm (%) 10-40cm (%)	Evidence of Ring Bulk Bulk Bulk recent grazing? Infiltrometer Diameter Com (Vol (mL) (cm) (cm)		Water Infiltration Bulk Density Carbon	Catenal Time1 Time2 Extrapolate? Wet Dry Rock Vol Max Depth Position (hh:mm:ss) (hh:mm:ss) (hh:mm:ss)					
Date	atum				Water Infiltration	Time2 (hh:mm:ss)	1				
Init			Evidence recent gra			<u> </u>		 11.			
Rangeland Monitoring Network Soil Data		Ø			2	Bare Depth (cm)					
nitoring N	.i	TERISTIC			tion	. Deg.					
angeland Mo	Point Count ID:	SITE CHARACTERISTICS	בסמפוסו	SAMPLE DATA	Sampling Location	Sample No.					

Equation for extrapolated infiltration time:

 $Extrapolated time = \frac{45min * 450ml}{Volume infiltrated}$

Where volume infiltrated = π (7.6cm)² * (2.5cm – ht of water remaining)

		14 69 01	Poll	OIHL
	61719	0606.7	81701	<u>bbl</u>
	8951't	PEP3.8	Ob90'	8hL
	69 tt.8	ECC\$01	EL801	961
	€098'9	b91L\	Lieil	时
	6198.5	916091	S1991	CHY
	8£18'S	2988.9	Po80.1	E 473
	(৮१०'9	9881°L	069991	hb7
	75.86	6019:9	0140.1	9 67
	2842.9	beb9°L	8740./	LHO
	8.3833	Ç199 b	8960°1	<u>r</u> 87
	&shl'b	9588,01	GRU, I	G&T
	S10995	EL98.P	(2499)	HEL
	ΣΣ 48.0]	Oeohie	i. P140,1	
	{8H'Ł	- 16/15	B [500.1	. F.S.T.
	Peze.) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	S L199'1	C9 10
	१७७ १			
Guraze	0846.			98)
	P865	if Pre8	8 8850	C38
Jo shon	SOS	it HOLI'		
John Berger	\ <u>i</u> \@ <u>\</u> 0 +	PUDIT 1:05 M	hall hall	. J

			1
	Called the Albertain		
			3
			1

13 THE8.78 (28,0923) 39,947 E9LE E / 1844, GE / 61801, 15 977 9E406E/181816/ 66216:22 C'2 ECTO, 9.9 / 9.00 / 600 18.7 Ct 8008.66 23.69 1 6-363.15 77) 0194:6/ 1954:6/69559.2 011 1264.p @deTA.p/ @ & 2PT.T 63 90599 / 698 pp p 9 PTITES 1,8 527 POPES / PRAIRS / PERIPIT 111.P/ 01491.P/ p288P.T SIFI 1\$995°C1/LL80'S1/69666'L 15 SNS LEPS:11/184711 / 64036.T CTE PHP4.61/ OGHC, 6/2828.7 CTH PESS 11 / 8P6911 10990.8 C^{7} 3 11.878 | | 8369 68832.3 ててつ (zug) beloss tar post OHHO: 11/02/89:11 9 p p 23. T QIt1 PR8.01 / PRP8.01 7.57209 btl 9569°81/ LIHL'81 6/040.8 8 T1 98HO'II / 18980'II PPPP.T 91 OBPO. E1 1 1931. E1 6.05759 14 JMS (P) dry(9) SML (M) HOU OI म्लानियान्यम्

OCH . HO SOI

11131 Sollmisture

			Value of the state of	
				1
원생일 이동생 경우 하고 있다.				
	A STATE OF THE STA			
그는 사람들은 남은 회를 가게 되었다.				
				The Cart
引起的关键的 被数据对抗效性等性				
			2000年 新亚克斯克 · 图是	

Mame: Avery noznácí

Date: 01/30/2020

Gas Flux Data Form

Site ID: T3

Field Notes:

	91,16	622 7]	85:11	C2-0-131	9		
	(vm)	(ա/ավ)	Retention	N20 Area	Sample Time	Syringe ID	Bucket
	CO2 Peak Height	CO2 Peak Height	NZO				
			55:11	OHEH HSH	mg 1, 0		
			£8,11	hiet'9-th	· ·	- 1	c.
	Hibi	0£0'55	11:31	8154 4541	4S: Σ	工工	3
	51,91	9th'te	11:12	4892,2121	75:2	77	<u>S</u>
	(1/12	bht'Sl	01:11	1878 2121	9:1	TS	
Notes	(Vm)	(ա/ավ)	Retention	M20 Area	Sample Time	Ol əgninv2	Bucket
	CO2 Peak Height		N20				
810 CO	11,191	F23.86				· · · · · · · · · · · · · · · · · · ·	
600 CO.S	19,09	913,88	GI P	0.000 13 + 0.1		12	
	80,19)	049.52	Po:11	1519, 8000	8:50	72	<u>t</u>
	70,19)	284.26	10,28	095955151	Pp: Z	13	
	40,91	846,21	25,01	4981 10 51	bp:1	78	上
Notes	(Vm)	(ա/աղ)	Retention	M20 Area	Sample Time	Syringe ID	Bucket
	CO2 Peak Height	CO2 Peak Height	NZO				
					01:0		
	16109	789,88	£4;01	FPZE. 2121	3:45	77	b
	00,191	73,007	64,0!	4850, pp 1	545.	てへ	b
	1 - 1 - 1	b5h191	10:39	123313489	24.1	TN	Þ
	hsigi						
Notes	(Vm)	(ա/աղ)	Retention	M20 Area	Sample Time	Syringe ID	Bucket
Notes	(Vm)		NZO			Ol agriny?	Bucket
sətoN	(Vm)	(ա/աղ)	0ZN 98:01	898811114	1'0	Ol egniny?	Bucket
Notes	CO2 Peak Height (mV)	CO2 Peak Height	96;01 10;31	8988,14H	01/10		
Notes	CO2 Peak Height (mV)	GOZ Peak Height	02N 96:01 [6:01 [7:0]	2402,624 2402,624 2402,624	75: 5 m/l.0 1,0	57	8
sətoN	(MV) (16:58 (MV)	(trm/m) CO2 Peak Height A4, 子い	02N 98:01 18:01 51:01	8988,144 260,624 260,624 260,634	2:39 G. [] G. [] G. []	2.3 2.4 5.4	8
sətoN	18:54 (8:57 (8:57 (MV)	(tm/m) タス・イもの カイ・ティギ カイ・ティギ	98:01 98:01 [8:01 50:01 \$0:01	0520,0871 0570,637 0570,637 0570,637	1.39 2.39 1.00 1.00	F3 C3 KT	8 8 8
sejoN sejoN	(mV) + S.	(tm/m) 37.460 34.714 (tm/m)	Retention 10:04 10:04 10:04 10:36	8988,144 260,624 260,624 260,634	2:39 G. [] G. [] G. []	F3 C3 KT	8 8 8
	(mV) + S.	(tm/m) タス・イもの カイ・ティギ カイ・ティギ	98:01 98:01 [8:01 50:01 \$0:01	0520,0871 0570,637 0570,637 0570,637	1.39 2.39 1.00 1.00	F3 C3 KT	8 8 8
	(mV) + S.	(tm/m) 37.460 34.714 (tm/m)	Retention 10:04 10:04 10:04 10:36	0520,0871 0570,637 0570,637 0570,637	1.39 2.39 1.00 1.00	F3 C3 KT	8 8 8
	(mV) + S.	(tm/m) 37.460 34.714 (tm/m)	Retention 10:04 10:04 10:04 10:36	0520,0871 0570,637 0570,637 0570,637	1.39 2.39 1.00 1.00	F3 C3 KT	8 8 8
sətoN	CO2 Peak Height (mV) (B. 56 (8.57 (8.57 (8.57	CO2 Peak Height (µm/m) 37.460 34.7-8	N20 Retention 10:04 10:04 10:36 10:36	NZO Area OJPJ, JJ 41/ OSZO, 6230 PF 90.68 P1 Z602,624	Sample Time 2:34 8:34 8:34 9:100	E3 C3 SAkinge ID	Bucket 8
	(MV) CO2 Peak Height (WV) かん (B: 54 (B: 54 (B: 54 (B: 58	CO2 Peak Height (µm/m) 37.460 34.7-8	Retention 10:04 10:04 10:04 10:36	NZO Area OJPJ, JJ 41/ OSZO, 6230 PF 90.68 P1 Z602,624	1.39 2.39 1.00 1.00	E3 C3 SAkinge ID	8

2182, FPH1 3251, JISI

EEGE EIST

297.462

-FF0,000

b22'9]

CSIli

hh:11

11:38

19:13

£1:61

91:10

8S: E

89: 2

85:1

E0

74

DJ

7

7

9290 P76,88 3290 Y6P,38 0626 1,5t'98 115 961'11 118 FHE.11 115 240111 012 955.86 200,78 018. 018 bts'tk (0) m) wr

.

Name: 2M

七2:101

98:61

[4:42

(Vm)

Date: \\30\ [S]

Gas Flux Data Form

Bucket

2010[4]	(/ \tau /						1
	CO2 Peak Height	CO2 Peak Height	NZO				5000
	he: b1	PO6.86					
81014	(10:43	70P,86			12.15	Se 100	
mes als	रिष', भूत	71.394	8:38	1298,0216	14,12	6 mg	6
	16,191	84.870	8:33	9644,1631	17.69	491	7
		560.21	£4.8	901810851	17-11	40	\Q
	06/19	1 (1		N20 Area	Sample Time	Syringe ID	Bucket
Notes	(Vm)						~·
	CO2 Peak Height	CO2 Peak Height	NZO F.V.E.				,
							0×1 MAD1
					(0 17)		
	101/10	14.590			28 TVA	7	Standard
	(2001)	(ɯ/ɯrl)	Retention	N20 Area	Sample Time	Guringe ID	
Notes	(//ш/	1	l .	1			Field
1	CO2 Peak Height	CO2 Peak Height	00.0			.00	
	<u> </u>				r. 10	105 F	Field Notes
					(_	a (M :	Field Notes
			Site ID:				

	CO2 Peak Height	tdaiaH Jeag CO2	1811	HISE 11Hh	m111.0		
		905'18	81 b	8841, 6241 8000, 604	3.188	59	-01
	86,48 19,38	94267	10.19	2r00,0221	Sample Time SP, / S	Ol əgniny2 /A / ⊄	lO Bucket
sətoN	CO2 Peak Height (WM)	CO2 Peak Height			<u> </u>		
		2 to 129	< 4 .8	Shon'tha	37:5	HS	1

55.8

8,50

hnis

Retention

25,499

184.25

[85.2]

(m/ml)

Ehen'thal

89-18 4451

1297, 7100

N20 Area

				1		I		
	[र्91'४)	8516	peat, ppH1	£5'.2	or	2
520	'h1	851P1 19138	755.47	821,6	tert '9051	£7.6	Y ET	- 2 -
	}	ZE: b1	Sho'SI	9417	4525 5151	Sample Time	ol aguing	Bucket
Г		(Vm)	(ɯ/ɯn)		1	amiT alame?	G, san, s	
		CO2 Peak Height	CO2 Peak Height	NZO			L	
L	018	1951, 196	ZHE18F					
	018	[4:35]	668.FF	Th'.b	4562 88 HI	(5:5	14 Og	9
CF. 7, 6 א		45121	042 1/1	35'.6	4154, 25.12	25:6	05	9
		2216	919'91	वं अव	Evet ppp/	1129	17	9
		18/161	(111 (11191)	Retention	N20 Area	əmiT əlqma	Syringe ID	Bucket
	Notes	(Vm)	CO2 Peak Height	l .		11:10	<u> </u>	
	_	theigh year con	14-1-11-1-4-0-0	7.8.7	HISE INH	0.1810		

Shit

Syringe ID Sample Time

.ex	
18:8 8986, 891 H	
16:8 838p, 331 p	1
PO:8 F6PZ.581 P	,
60;8 P266. 44H	1.0
95:4 0888 7:15h	1.0
.2.2 1. Endows told > PP: F BOHJ, ZGF	1.0
12:4 0	Q
tbbb (2 =) { 55.4 0 }	9
Los	hobret GEN

Gas Flux Data Form

Field Notes:

Site ID: TA Date: 01/30/2020 Name: Avery

Measurements					10.	7.1	· · · · · · ·
Bucket 45	96,96	452 h1	56 51	Eashs bhi	<i>\$0:1</i>	12	D
7 - 0	Prof	856/h1	811,21	sohs tthi	to:4	八十二	b
	(Vm)	(ɯ/ɯn)	Retention	M20 Area	Sample Time	Syringe ID	Bucket
	CO2 Peak Height	CO2 Peak Height	N20				
				I			
	81,06	581.21	E 1',5 1	Had bon	65:21	ト土	8
	F1,06	£09'51	नवीर्दे	656P. 1841	bS:11	立	8
	91'.0%	Vhh'9]	रिए:हर	1684 2871	<u> हिः ।</u>	7	8
Notes	-	(m/m ₁)	Retention	N20 Area	Sample Time		Bucket
334314	CO2 Peak Height		NZO	33.7 00.10	,	di	V-1,1-1-G
<u> </u>	74-:-11-1	74-:-11-1	oc.ii,	l.			
	SILOK	h11'91	25.61	887P, 497	25:21	TH	Ł
	51:00	(Philas	18: तव	EF50.08P1	25:11	73	<u>し</u> と
ESt'S1' 10	C1 #100	-530	13:143	onlh'obhl	ES:01	71	Ł
sətoN		(m/wrl)	Retention	N20 Area	Sample Time	Syringe ID	Bucket
	CO2 Peak Height	CO2 Peak Height	NZO				
918	11;0e	38,560	48:61	48846 14 H	1.0		
O1 &	01106	442,88	25.8	8904, HHH	A111.0		
					C47'71	→ 7	(
3	90,10	£98.21	98,81	1593,3880	57:21	てそ	5
.	80106 01,106	とっている	06,61	C988 + CG1	54:11	E3	5
	01106 80106 to:08	ths'hl ove's1	06,61 p1,61	2988, FOR	Sb:11 Sb:01	E3 27	5
sejon	(Vm) 40,0% 80,06 01,06	2 h5'h1 90'e'S1 (m/m1)	Retention	C988 + CG1	54:11	E3 27	<u>5</u>
	(Vm) 40,0% 80,06 01,06	ths'hl ove's1	06,61 p1,61	2988, FOR	Sb:11 Sb:01	E3 27	5
	(Vm) 40,0% 80,06 01,06	2 h5'h1 90'e'S1 (m/m1)	Retention	2988, FOR	Sb:11 Sb:01	E3 27	5
	CO2 Peak Height (Wm) \$\phi \cap \cap \cap \cap \cap \cap \cap \cap	CO2 Peak Height S. AO	N20 Retention P1,'61 O6,'61	N20 Area 1493,4736 G88,4001	Sample Times	Syringe ID	Bucket 2
	AO!Ob CO2 Peak Height (mV) AO!Op	(4,127) (4,124) (5) (4,542) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5	N20 Retention P1,'61 O6,'81	1520, 8846 N20 Area C482, 9736	Sample Time Semple Time Sp:11	Syringe ID	Bucket 5
	\$0,'05 \$0,'05 (mV) \$0,'07 \$0,'08	[5.564 (4,1),7 (202 Peak Height (4m/m)	12,07 2,07 2,14 2,14 2,14 2,30	1517,4492 1520,8896 N20 Area C485,4736	19:40 Sample Time 10:45 Sp:11	U2 Syringe ID 52	2 Bucket 5
Notes	30,05 30,05 \$0,05 (mV) \$0,07 \$0,07	15.652 19.564 (4,1)27 (02 Peak Height (4,542	(1'.55 12'.0 12'.07 12'.07 12'.07 12'.07	1487, 3152 1570, 8896 N20 Area 1493,9736	10:40 11:40 12:41 Sample Time 29:11	XX XX Syringe ID SX XX	S S S S S S S S S S S S S S S S S S S
	(MV) \$0.05 \$0.05 \$0.05 \$0.05 (MV) \$0.07 \$0.07	(km/m) 15.652 [5.564 (km/m) 15.800	Retention (1), 5 テー (2), 0 ト (3), 0 ト (4), 1 ト (4), 1 ト (4), 1 ト (4), 1 ト (4), 3 ト	1517,4492 1520,8896 N20 Area C485,4736	19:40 Sample Time 10:45 Sp:11	XX XX Syringe ID SX XX	S S S S S S S S S S S S S S S S S S S
Notes	(MV) \$0.05 \$0.05 \$0.05 \$0.05 (MV) \$0.07 \$0.07	15.652 19.564 (4,1)27 (02 Peak Height (4,542	(1'.55 12'.0 12'.07 12'.07 12'.07 12'.07	1487, 3152 1570, 8896 N20 Area 1493,9736	10:40 11:40 12:41 Sample Time 29:11	XX XX Syringe ID SX XX	S S S S S S S S S S S S S S S S S S S
Notes	(MV) \$0.05 \$0.05 \$0.05 \$0.05 (MV) \$0.07 \$0.07	(km/m) 15.652 [5.564 (km/m) 15.800	Retention (1), 5 テー (2), 0 ト (3), 0 ト (4), 1 ト (4), 1 ト (4), 1 ト (4), 1 ト (4), 3 ト	1487, 3152 1570, 8896 N20 Area 1493,9736	10:40 11:40 12:41 Sample Time 29:11	XX XX Syringe ID SX XX	S S S S S S S S S S S S S S S S S S S
Notes	(MV) \$0.05 \$0.05 \$0.05 \$0.05 (MV) \$0.07 \$0.07	(km/m) 15.652 [5.564 (km/m) 15.800	Retention (1), 5 テー (2), 0 ト (3), 0 ト (4), 1 ト (4), 1 ト (4), 1 ト (4), 1 ト (4), 3 ト	1487, 3152 1570, 8896 N20 Area 1493,9736	10:40 11:40 12:41 Sample Time 29:11	XX XX Syringe ID SX XX	S S S S S S S S S S S S S S S S S S S
Notes	CO2 Peak Height AO!O5 AO!O5 AO!O5 AO!O5 AO!O6 AO!O6	(km/m) 15.652 [5.564 (km/m) 15.800	Retention (1), 5 テー (2), 0 ト (3), 0 ト (4), 1 ト (4), 1 ト (4), 1 ト (4), 1 ト (4), 3 ト	1487, 3152 1570, 8896 N20 Area 1493,9736	10:40 11:40 12:41 Sample Time 29:11	Syringe ID	Bucket
Notes	(MV) CO2 Peak Height Ao;o7 Ao;o5 Ao;o5 (MV) (MV) Ao;o7	CO2 Peak Height (µm/m) 15.652 [5.564 14,1h7 CO2 Peak Height	N20 (1',5ケ (1',5ケ (13',0) (N20 (13',07 (13',07 (13',07	N20 Area 487, 3152 517, 4442 520, 8846 N20 Area	Sample Time 19:40 19:40 19:40 19:40 19:40 19:40	Syringe ID	Bucket

Name: Jacob Wereken

(MM)

CO2 Peak Height CO2 Peak Height

30,554

OS' bh 1

(m/mrl)

Date: 1/14/20

Gas Flux Data Form

Site ID:

Field Notes: W, Wlaster

Syringe ID Sample Time

Ubm OD 364,68 96:11 2.000 45.38 E hz fr. nih レニ (ա/աո) Syringe ID Sample Time Standard (\M) N20 Area Notes Retention CO2 Peak Height CO2 Peak Height Field **N**50

N50

Retention

1121	723 00				7,113,3			
1523, 2280	(th'8)	05,45		Or98'80b	भिने १९८	63	0)	
9128 '8551	F81.31	118,00		トタれ、560個分	hh:11	25.	O)	
Notes Nac	(Vm)	(ɯ/ɯ̩n)	Retention	N20 Area	Sample Time	Ol agniny2	Bucket	
ſ	CO2 Peak Height	CO2 Peak Height	, OZN					
3.				2741 2396	45,51		O.W MAY I	13
0200				8056, 8 & 48	J8;85		168WHO	, by
0808 ,2221	362,08	79'bh!		8084'b8b	(h)	てつ	b	•
0915, F031 xx	20.66	48.52		coff. 20P	14:61	5,	b	
hta (18 51	11,152	WOS.18	र्ट डेड मनर्ड	> Color City	[hill	1.	6	
Og W seton		(ա/աղ)	Retention	N20 Area	əmiT əlqms2	Syringe ID	Bucket	
`	CO2 Peak Height	CO2 Peak Height	N20					
				-11-14-2				
Ohbb a								
1491, 4496	124.55	61,051		846, 2998	£8;1	ret.	9	
1239,7902	13,233	02,26]	9175,816-	3914881h	13:35	47	. 8	
1239'9851	13.581	व्यव । । अन		90st'ht8	-EE:11	64	9	
								

	ı			1				
	ŀ	308 he	00,081		8150,0121	8411	Id	1
		985.pg	213.75		4P62, P 821	84,61	Z	1
		509b	J76,0F		94.99,24 21	2h111	5₩	
Γ	Notes	(vm)	(ɯ/ɯnl)	Retention	N20 Area	Sample Time	Ol agniny2	Bucket
		CO2 Peak Height	CO2 Peak Height	NZO				

1547.7463

N20 Area

1:44

<u>F9</u>

01

Bucket

					,	
£09'08	48, PH1		C029, EHS1	1:23	15	8
19.131	134,25		h0991 S551	19:25	てフ	8
13"440	19713		2098, 8 m 21	11123	119	8
(vm)	(ɯ/ɯrl)	Retention	N20 Area	Sample Time	Syringe ID	Bucket
CO2 Peak Height	CO2 Peak Height	N20				

1

YTht'ths1

, benzinz on cline & O)

4916'8th 1'C 8086'85t5 9885'145

After & Stemelands

5560'205

Date: 1114/20 Name: Saw

Gas Flux Data Form

Samballe

Field Notes: Site ID: CLOUds in Signt.

-	0,058	058,33		1.88.3371		00005	<u>+</u>
<u></u>	505.81	133.32		3 MP8, FF71	75:71	52	<u>+</u>
<u> </u>	785,51	dd'192		1607,4834	75:11	TX	h
	(Vm)	(ա/ավ)	Retention	N20 Area	Sample Time	Gl sgninv2	Bucket
		CO2 Peak Height	NZO		#		
	74. 11 1 2333						
Г							
	90'42d	29.841		てりした、そり31	8h.1	49	7
	18,937	54.75	50H1.6151	H841-1071	84:21	EZ	7
1	14'P32	St'901		91 Ht 'H891	8011	TC	2
Notes	(vm)	(m/ml)	Retention	N20 Area	Sample Time	Ol agniny?	Bucket
	·	CO2 Peak Height	NZO				
	₹88,41	00,561		1601 55mg	Et: 1	t∀	Ł
	13.462	156	-(Da, 1)D	950b t 191	15:43	7 W	<u>,t</u>
	248,81	101.92		h-L02 5911	8h:11	65	7
Notes	(Vm)	(w/wn)	Retention	N20 Area	Sample Time	Syringe ID	Bucket
	CO2 Peak Height	CO2 Peak Height	NZO				
	10,133	000.PF		0827, FE 6]	86:1	40	ξ.
	15,187	24,011		5464.8141	88:21	7.0	£
	146,61	84.635		JSRP, 6431	88:11	70	
Notes	4 1	(ɯ/ɯn)	Retention	N20 Area	9miT əlqms2	Syringe ID	Bucket
		CO2 Peak Height	N20				
						7\1	
	218.36	ts'hbl		4568, Fall		2 A	5
	£48.21	112,75		(COT, 452)		71300	50
	र्शन'।।	83,750	725h'5891		18:11	TA	5
Notes	(Vm)	(m/mt)	Retention	N20 Area	əmiT əlqms	Syringe ID	Bucket
	CO2 Peak Height	CO2 Peak Height	NZ0				
						70	Em 11
chit					(0)	75000	6 Church
ON	24'215	81.258		exon'hsh		Bohnell	5'6001
SetoV) (w/wrl	Retention	N20 Area	əmiT əlqms	Syringe ID	
		O2 Peak Height	NZ0		<u> </u>	1	Field
					^ ^		^

48pp , 1648	roge, etic)
0580, 1228	4026. SA44) .
9790,9128	Htt1'0808	
	1861 5961	\
3408,9800	8489'88 61	
GOT8, 3405	4989 6691	
8451,4826	88+1,25 MI	1
H591'1458	4084, E141	
4959 HSH	4701, 1094	1.0
2064'0bE	926,0352	1,0
2hht'81h	et+1, +18	1,0
539,5038	4214:281	1,0
EEH8'845	933,2180	1.0
	9	0
	Q	
	,	
	for A	Notalisasios Osl