GREEN'S THEOREM

Written by Daniel Volinski at danielvolinski@yahoo.es

```
(%i2) info:build_info()$info@version;
                                                                                     (\%o2)
5.38.1
(%i2) reset()$kill(all)$
(%i1) derivabbrev:true$
(%i2) ratprint:false$
(%i3) fpprintprec:5$
(%i4) load(linearalgebra)$
(%i5) if get('draw,'version)=false then load(draw)$
(%i6) wxplot_size: [1024,768]$
(%i7) if get('drawdf,'version)=false then load(drawdf)$
(%i8) set_draw_defaults(xtics=1,ytics=1,ztics=1,xyplane=0,nticks=100)$
(%i9) if get('vect,'version)=false then load(vect)$
(\%i10) norm(u):=block(ratsimp(radcan(\sqrt{(u.u)})))$
(%i11) normalize(v):=block(v/norm(v))$
(\%i12) angle(u,v):=block([junk:radcan(((u.u)*(v.v)))],acos(u.v/junk))$
(\%i13) mycross(va,vb):=[va[2]*vb[3]-va[3]*vb[2],va[3]*vb[1]-va[1]*vb[3],va[1]*vb[2]-va[2]*vb[1]]$
(%i14) if get('cartan,'version)=false then load(cartan)$
(%i15) declare(trigsimp,evfun)$
```

1 Green's Theorem

Based on Michael Penn Video Green's Theorem

Let C be a positively oriented, piecewise smooth, simple closed curve bounding the region D. If P and Q have continuous partial derivatives on an open region containing D then,

$$\oint_C P \, \mathrm{d}x + Q \, \mathrm{d}y = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, \mathrm{d}A$$

2 Verification Example 1

```
Based on Michael Penn Video Verification Example 1 Calculate \oint_C x \, dx + y \, dy where C is the line segment (0,1) \to (0,0) \to (1,0), parabola y = 1 - x^2 \, (1,0) \to (0,1) (%i16) kill(labels,t,x,y,z)$

Define the space \mathbb{R}^2
(%i1) \zeta: [x,y]$
(%i2) scalefactors(\zeta)$
(%i3) init_cartan(\zeta)$
```

Vector field $\vec{F} \in \mathbb{R}^2$

$$F = [x, y] \tag{\%t4}$$

2D Direction field

(%i5) wxdrawdf(F,[x,-5,5],[y,-5,5])\$

 $\nabla \times \vec{F} \in \mathbb{R}^2$

(%i6) ldisplay(curlF:ev(express(curl(F)),diff))\$

$$curl F = 0 (\%t6)$$

Work form $\alpha \in \mathcal{A}^1(\mathbb{R}^2)$

(%i7) $ldisplay(\alpha:F.cartan_basis)$ \$

$$\alpha = y \, dy + x \, dx \tag{\%t7}$$

 $d\alpha \in \mathcal{A}^2(\mathbb{R}^2)$

(%i8) $ldisplay(d\alpha:edit(ext_diff(\alpha)))$ \$

$$d\alpha = 0 \tag{\%t8}$$

 $\nabla \cdot \vec{F} \in \mathbb{R}$

(%i9) ldisplay(divF:ev(express(div(F)),diff))\$

$$divF = 2 (\%t9)$$

Flux form $\beta \in \mathcal{A}^1(\mathbb{R}^2)$

(%i10) $ldisplay(\beta:F[1]*cartan_basis[2]-F[2]*cartan_basis[1])$ \$

$$\beta = x \, dy - y \, dx \tag{\%t10}$$

 $d\beta \in \mathcal{A}^2(\mathbb{R}^2)$

(%i11) $ldisplay(d\beta:ext_diff(\beta))$ \$

$$d\beta = 2dx \, dy \tag{\%t11}$$

(%i12) d β /apply("*", cartan_basis);

2 (%o12)

End points

(%i15) A: [0,1]\$B: [0,0]\$C: [1,0]\$

Curve $\vec{C}_1 \in \mathbb{R}^2$

(%i16) ldisplay(C₋1:t*B+(1-t)*A)\$

$$C_1 = [0, 1 - t] \tag{\%t16}$$

Derivative of the curve \vec{C}_1

(%i17) ldisplay($(\'^1:diff(\'_1,t))$)\$

$$C'_1 = [0, -1] \tag{\%t17}$$

 $\vec{F} \circ \vec{C_1}$

(%i18) ldisplay(FoC₁:subst(map("=", ζ ,C₁),F))\$

$$FoC_1 = [0, 1 - t] \tag{\%t18}$$

 $\vec{F} \cdot \vec{C}_1' \in \mathbb{R}$

(%i19) ldisplay $(T_1:FoC_1.C\'_1)$ \$

$$T_1 = t - 1 \tag{\%t19}$$

Pullback $\vec{C}_1^* \alpha \in \mathcal{A}^1(\mathbb{R}^2)$

(%i20) ldisplay(P₋1:C\',_1|subst(map("=", ζ ,C₋1), α))\$

$$P_1 = t - 1 \tag{\%t20}$$

Line integral I_1

(%i21) I_1: 'integrate(T_1,t,0,1)\$

(%i22) ldisplay(I_1=box(ev(I_1,integrate)))\$

$$\int_0^1 t - 1dt = \left(-\frac{1}{2}\right) \tag{\%t22}$$

Curve $\vec{C}_2 \in \mathbb{R}^2$

(%i23) ldisplay(C_2:t*C+(1-t)*B)\$

$$C_2 = [t, 0]$$
 (%t23)

Derivative of the curve \vec{C}_2

(%i24) ldisplay($(\'_2:diff(\'_2,t))$)\$

$$C'_2 = [1, 0]$$
 (%t24)

 $\vec{F} \circ \vec{C_2}$

(%i25) ldisplay(FoC_2:subst(map("=", ζ ,C_2),F))\$

$$FoC_2 = [t, 0] \tag{\%t25}$$

 $\vec{F}\cdot\vec{C}_2'\in\mathbb{R}$

(%i26) ldisplay(T_2:FoC_2.C\',_2)\$

$$T_2 = t (\%t26)$$

Pullback $\vec{C}_2^* \alpha \in \mathcal{A}^1(\mathbb{R}^2)$

(%i27) ldisplay(P_2:C\',2|subst(map("=", ζ ,C_2), α))\$

$$P_2 = t (\%t27)$$

Line integral I_2

(%i28) I_2: 'integrate(T_2,t,0,1)\$

(%i29) ldisplay(I_2=box(ev(I_2,integrate)))\$

$$\int_0^1 t dt = \left(\frac{1}{2}\right) \tag{\%t29}$$

Curve $\vec{C}_3 \in \mathbb{R}^2$

(%i30) ldisplay(C_3:[-t,1-t²])\$

$$C_3 = [-t, 1 - t^2] \tag{\%t30}$$

Derivative of the curve \vec{C}_3

(%i31) ldisplay((%i31)) display((%i31)) \$

$$C'_3 = [-1, -2t] \tag{\%t31}$$

 $\vec{F} \circ \vec{C_3}$

(%i32) ldisplay(FoC_3:subst(map("=", ζ ,C_3),F))\$

$$FoC_3 = [-t, 1 - t^2] \tag{\%t32}$$

 $\vec{F} \cdot \vec{C}_3' \in \mathbb{R}$

(%i33) ldisplay(T_3:expand(FoC_3.C\',_3))\$

$$T_3 = 2t^3 - t$$
 (%t33)

Pullback $\vec{C}_3^* \alpha \in \mathcal{A}^1(\mathbb{R}^2)$

(%i34) ldisplay(P_3:C\',3|subst(map("=", ζ ,C_3), α))\$

$$P_3 = 2t^3 - t (\%t34)$$

Line integral I_3

(%i35) I_3: 'integrate(T_3,t,0,1)\$

(%i36) ldisplay(I_3=box(ev(I_3,integrate)))\$

$$\int_0^1 2t^3 - tdt = (0) \tag{\%t36}$$

Total line integral $I_1 + I_2 + I_3$

(%i37) ldisplay(I_1+I_2+I_3=box(ev(I_1+I_2+I_3,integrate)))\$

$$\int_{0}^{1} 2t^{3} - tdt + \int_{0}^{1} tdt + \int_{0}^{1} t - 1dt = (0)$$
 (%t37)

Use Green's Theorem

Graphics

(%t39)

3 Verification Example 2

Based on Michael Penn Video Verification Example 2

Verify Green's theorem where:

$$D = \{(x, y) \mid 1 \le x^2 + y^2 \le 4\} \quad , \quad \oint_C xy^2 \, dy - x^2 y \, dx$$

(%i40) kill(labels,t,x,y,z)\$

Define the space \mathbb{R}^2

- (%i1) $\zeta:[x,y]$ \$
- (%i2) scalefactors(ζ)\$
- (%i3) init_cartan(ζ)\$

Vector field $\vec{F} \in \mathbb{R}^2$

(%i4)
$$ldisplay(F: [-x^2*y, x*y^2])$$
\$

$$F = [-x^2y, x\,y^2] \tag{\%t4}$$

2D Direction field

(%i5) wxdrawdf(F,[x,-5,5],[y,-5,5])\$

 $\nabla \times \vec{F} \in \mathbb{R}^2$

(%i6) ldisplay(curlF:ev(express(curl(F)),diff))\$

$$curlF = y^2 + x^2 \tag{\%t6}$$

Work form $\alpha \in \mathcal{A}^1(\mathbb{R}^2)$

(%i7) $ldisplay(\alpha:F.cartan_basis)$ \$

$$\alpha = x y^2 dy - x^2 y dx \tag{\%t7}$$

 $d\alpha \in \mathcal{A}^2(\mathbb{R}^2)$

(%i8) $ldisplay(d\alpha:edit(ext_diff(\alpha)))$ \$

$$d\alpha = (y^2 + x^2) dx dy \tag{\%t8}$$

 $\nabla \cdot \vec{F} \in \mathbb{R}$

(%i9) ldisplay(divF:ev(express(div(F)),diff))\$

$$divF = 0 (\%t9)$$

Flux form $\beta \in \mathcal{A}^1(\mathbb{R}^2)$

(%i10) $ldisplay(\beta:F[1]*cartan_basis[2]-F[2]*cartan_basis[1])$ \$

$$\beta = -x^2 y \, dy - x \, y^2 \, dx \tag{\%t10}$$

 $d\beta \in \mathcal{A}^2(\mathbb{R}^2)$

(%i11) ldisplay(d β :ext_diff(β))\$

$$d\beta = 0 \tag{\%t11}$$

(%i12) d β /apply("*",cartan_basis);

0 (%o12)

Curve $\vec{C}_1 \in \mathbb{R}^2$

(%i13) ldisplay(C₋₁: [2*cos(t),2*sin(t)])\$

$$C_1 = [2\cos(t), 2\sin(t)]$$
 (%t13)

Derivative of the curve \vec{C}_1

(%i14) ldisplay($(\'_1:diff((_1,t)))$ \$

$$C'_{1} = [-2\sin(t), 2\cos(t)]$$
 (%t14)

 $\vec{F} \circ \vec{C_1}$

(%i15) ldisplay(FoC₁:subst(map("=", ζ ,C₁),F))\$

$$FoC_1 = [-8\cos(t)^2 \sin(t), 8\cos(t)\sin(t)^2]$$
 (%t15)

 $\vec{F} \cdot \vec{C}_1' \in \mathbb{R}$

(%i16) ldisplay(T₋1:FoC₋1.C\',-1)\$

$$T_1 = 32\cos(t)^2 \sin(t)^2$$
 (%t16)

Pullback $\vec{C}_1^* \alpha \in \mathcal{A}^1(\mathbb{R}^2)$

(%i17) $ldisplay(P_1:C\'_1|subst(map("=",\zeta,C_1),\alpha))$ \$

$$P_1 = 32\cos(t)^2 \sin(t)^2 \tag{\%t17}$$

Line integral I_1

(%i18) I_1: 'integrate(T_1,t,0,2* π)\$

(%i19) ldisplay(I_1=box(ev(I_1,integrate)))\$

$$32 \int_0^{2\pi} \cos(t)^2 \sin(t)^2 dt = (8\pi)$$
 (%t19)

Curve $\vec{C}_2 \in \mathbb{R}^2$

(%i20) ldisplay(C₂:[cos(t),sin(t)])\$

$$C_2 = [\cos(t), \sin(t)] \tag{\%t20}$$

Derivative of the curve \vec{C}_2

(%i21) ldisplay($(\'_2:diff((\'_2,t)))$ \$

$$C'_{2} = [-\sin(t), \cos(t)]$$
 (%t21)

 $\vec{F} \circ \vec{C_2}$

(%i22) ldisplay(FoC_2:subst(map("=",(,C_2),F))\$

$$FoC_2 = [-\cos(t)^2 \sin(t), \cos(t) \sin(t)^2]$$
 (%t22)

 $\vec{F}\cdot\vec{C}_2'\in\mathbb{R}$

(%i23) ldisplay(T_2:FoC_2.C\',2)\$

$$T_2 = 2\cos(t)^2 \sin(t)^2$$
 (%t23)

Pullback $\vec{C}_2^* \alpha \in \mathcal{A}^1(\mathbb{R}^2)$

(%i24) ldisplay(P_2:C\',2|subst(map("=", ζ ,C_2), α))\$

$$P_2 = 2\cos(t)^2 \sin(t)^2$$
 (%t24)

Line integral I_2

(%i25) I_2: 'integrate(T_2,t,0,2* π)\$

(%i26) ldisplay(I_2=box(ev(I_2,integrate)))\$

$$2\int_{0}^{2\pi} \cos(t)^{2} \sin(t)^{2} dt = \left(\frac{\pi}{2}\right) \tag{\%t26}$$

Total line integral $I_2 - I_1$

(%i27) ldisplay(I_1-I_2=box(ev(I_1-I_2,integrate)))\$

$$30 \int_0^{2\pi} \cos(t)^2 \sin(t)^2 dt = \left(\frac{15\pi}{2}\right)$$
 (%t27)

Graphics

```
\label{eq:color=blue} \begin{tabular}{ll} (\%i28) & wxdraw2d(proportional\_axes=xy,xrange=[-2.5,2.5], yrange=[-2.5,2.5], \\ & color=red,apply(parametric,append(C_1,[t,0,2*\pi])), \\ & color=blue,apply(parametric,append(C_2,[t,0,2*\pi])), \\ & color=black,label(["C_1",1.5,1.5],["C_2",0.8,0.8])) \end{tabular}
```


(%t28)

Use Green's Theorem

Change to polar coordinates

(%i30) assume($r \ge 0$)\$ assume($0 \le t, t \le 2*\pi$)\$

 $(\%i31) \xi: [r,t]$ \$

(%i32) ldisplay(Tr:[r*cos(t),r*sin(t)])\$

$$Tr = [r\cos(t), r\sin(t)] \tag{\%t32}$$

(%i33) ldisplay(J:jacobian(Tr, ξ))\$

$$J = \begin{pmatrix} \cos(t) & -r\sin(t) \\ \sin(t) & r\cos(t) \end{pmatrix}$$
 (%t33)

(%i34) ldisplay(lg:trigsimp(transpose(J).J))\$

$$lg = \begin{pmatrix} 1 & 0 \\ 0 & r^2 \end{pmatrix} \tag{\%t34}$$

(%i35) ldisplay(Jdet:trigsimp(determinant(J)))\$

$$Jdet = r (\%t35)$$

 $\left(
abla imes ec{F}
ight) \circ ec{Tr} \in \mathbb{R}$

(%i36) ldisplay(T:trigsimp(subst(map("=", ζ ,Tr),curlF)))\$

$$T = r^2 \tag{\%t36}$$

Pullback $\vec{Tr}^* d\alpha \in \mathcal{A}^2(\mathbb{R}^2)$

(%i37) $ldisplay(P:trigsimp(diff(Tr,t)|(diff(Tr,r)|subst(map("=",<math>\zeta$,Tr),d α))))\$

$$P = r^3 \tag{\%t37}$$

Surface integral

(%i38) I: 'integrate('integrate(T*Jdet,r,1,2),t,0,2* π)\$

(%i39) ldisplay(I=box(ev(I,integrate)))\$

$$2\pi \int_{1}^{2} r^{3} dr = \left(\frac{15\pi}{2}\right) \tag{\%t39}$$

Clean up

(%i41) forget(
$$r \ge 0$$
)\$
forget($0 \le t, t \le 2*\pi$)\$

4 Two more Green's theorem examples

Based on Michael Penn Video Two more Green's theorem examples

C is a right angle triangle with vertices (-1,2),(4,2),(4,5) Calculate

$$\oint_C \sin(x^2) \, \mathrm{d}x + (3x - y) \, \mathrm{d}y$$

(%i42) kill(labels,t,x,y,z)\$

Define the space \mathbb{R}^2

- (%i1) $\zeta:[x,y]$ \$
- (%i2) scalefactors(ζ)\$
- (%i3) init_cartan(ζ)\$

Vector field $\vec{F} \in \mathbb{R}^2$

(
$$\%$$
i4) ldisplay(F:[sin(x^2),3*x-y])\$

$$F = \left[\sin\left(x^2\right), 3x - y\right] \tag{\%t4}$$

2D Direction field

(%i5) wxdrawdf(F,[x,-5,5],[y,-5,5])\$

 $\nabla \times \vec{F} \in \mathbb{R}^2$

(%i6) ldisplay(curlF:ev(express(curl(F)),diff))\$

$$curl F = 3 (\%t6)$$

Work form $\alpha \in \mathcal{A}^1(\mathbb{R}^2)$

(%i7) $ldisplay(\alpha:F.cartan_basis)$ \$

$$\alpha = (3x - y) dy + \sin(x^2) dx \tag{\%t7}$$

 $d\alpha \in \mathcal{A}^2(\mathbb{R}^2)$

(%i8) $ldisplay(d\alpha:edit(ext_diff(\alpha)))$ \$

$$d\alpha = 3dx dy \tag{\%t8}$$

(%i9) $d\alpha/apply("*", cartan_basis);$

$$3$$
 (%o9)

 $\nabla \cdot \vec{F} \in \mathbb{R}$

(%i10) ldisplay(divF:ev(express(div(F)),diff))\$

$$divF = 2x \cos(x^2) - 1 \tag{\%t10}$$

Flux form $\beta \in \mathcal{A}^1(\mathbb{R}^2)$

(%i11) $ldisplay(\beta:F[1]*cartan_basis[2]-F[2]*cartan_basis[1])$ \$

$$\beta = \sin(x^2) \, dy - (3x - y) \, dx \tag{\%t11}$$

 $d\beta \in \mathcal{A}^2(\mathbb{R}^2)$

(%i12) $ldisplay(d\beta:edit(ext_diff(\beta)))$ \$

$$d\beta = (2x \cos(x^2) - 1) \, dx \, dy \tag{\%t12}$$

(%i13) d β /apply("*", cartan_basis);

$$2x\cos\left(x^2\right) - 1\tag{\%o13}$$

End points

Curve $\vec{C}_1 \in \mathbb{R}^2$

(%i17) ldisplay(C_1:ratsimp(t*B+(1-t)*A))\$

$$C_1 = [5t - 1, 2] \tag{\%t17}$$

Derivative of the curve \vec{C}_1

(%i18) ldisplay($(\'^1:diff(\'_1,t))$ \$

$$C'_1 = [5, 0]$$
 (%t18)

 $\vec{F} \circ \vec{C_1}$

(%i19) ldisplay(FoC_1:subst(map("=", ζ ,C_1),F))\$

$$FoC_1 = \left[\sin\left((5t-1)^2\right), 3(5t-1) - 2\right]$$
 (%t19)

 $\vec{F} \cdot \vec{C}_1' \in \mathbb{R}$

(%i20) ldisplay(T_1:expand(FoC_1.C\'_1))\$

$$T_1 = 5\sin(25t^2 - 10t + 1) \tag{\%t20}$$

Pullback $\vec{C}_1^* \alpha \in \mathcal{A}^1(\mathbb{R}^2)$

(%i21) $ldisplay(P_1:C\'_1|subst(map("=",\zeta,C_1),\alpha))$ \$

$$P_1 = 5\sin(25t^2 - 10t + 1) \tag{\%t21}$$

Line integral I_1

(%i22) I_1: 'integrate(T_1,t,0,1)\$

Curve $\vec{C}_2 \in \mathbb{R}^2$

(%i23) ldisplay(C_2:ratsimp(t*C+(1-t)*B))\$

$$C_2 = [4, 3t + 2] \tag{\%t23}$$

Derivative of the curve \vec{C}_2

(%i24) ldisplay((%i24)) 1 display((%i24)) 1 display((%i24) 1 display((%i24)) 1 display((%i24) 1 display((%i24) 1 display((%i24)) 1 display((%i24) 1 display((%i2

$$C'_2 = [0, 3]$$
 (%t24)

 $\vec{F} \circ \vec{C_2}$

(%i25) ldisplay(FoC_2:subst(map("=", ζ ,C_2),F))\$

$$FoC_2 = [\sin(16), 10 - 3t] \tag{\%t25}$$

 $\vec{F}\cdot\vec{C}_2'\in\mathbb{R}$

(%i26) ldisplay(T_2:expand(FoC_2.C\',2))\$

$$T_2 = 30 - 9t$$
 (%t26)

Pullback $\vec{C}_2^* \alpha \in \mathcal{A}^1(\mathbb{R}^2)$

(%i27) $ldisplay(P_2:C\'_2|subst(map("=",\zeta,C_2),\alpha))$ \$

$$P_2 = 30 - 9t (\%t27)$$

Line integral I_2

(%i28) I_2: 'integrate(T_2,t,0,1)\$

(%i29) ldisplay(I_2=box(ev(I_2,integrate)))\$

$$\int_{0}^{1} 30 - 9t dt = \left(\frac{51}{2}\right) \tag{\%t29}$$

Curve $\vec{C}_3 \in \mathbb{R}^2$

(%i30) ldisplay(C₃:ratsimp(t*A+(1-t)*C))\$

$$C_3 = [4 - 5t, 5 - 3t] \tag{\%t30}$$

Derivative of the curve \vec{C}_3

(%i31) ldisplay($\mathbb{C} \setminus ^3$:diff(\mathbb{C}_3 ,t))\$

$$C'_3 = [-5, -3]$$
 (%t31)

 $\vec{F} \circ \vec{C}_3$

(%i32) ldisplay(FoC_3:ratsimp(subst(map("=", ζ ,C_3),F)))\$

$$FoC_3 = \left[\sin\left(25t^2 - 40t + 16\right), 7 - 12t\right] \tag{\%t32}$$

 $\vec{F} \cdot \vec{C}_3' \in \mathbb{R}$

(%i33) ldisplay(T_3:expand(FoC_3.C\',_3))\$

$$T_3 = -5\sin(25t^2 - 40t + 16) + 36t - 21 \tag{\%t33}$$

Pullback $\vec{C}_3^* \alpha \in \mathcal{A}^1(\mathbb{R}^2)$

(%i34) $ldisplay(P_3:C\',3|subst(map("=",\zeta,C_3),\alpha))$ \$

$$P_3 = -5\sin(25t^2 - 40t + 16) + 36t - 21 \tag{\%t34}$$

Line integral I_3

(%i35) I_3: 'integrate(T_3,t,0,1)\$

Total line integral $I_1 + I_2 + I_3$

(%i36) ldisplay(I_1+I_2+I_3=box(ev(I_1+I_2+I_3,integrate,ratsimp)))\$

$$5\int_0^1 \sin\left(25t^2 - 10t + 1\right)dt + \int_0^1 -5\sin\left(25t^2 - 40t + 16\right) + 36t - 21dt + \int_0^1 30 - 9tdt = \left(\frac{45}{2}\right) \quad (\%t36)$$

Use Green's Theorem

(%i37) rhs(first(solve(eliminate(map("=",
$$\zeta$$
,C_3),[t]),y)));
$$\frac{3x+13}{5}$$
 (%o37)

(%i38) I: 'integrate('integrate(curlF,y,2,%),x,-1,4)\$

(%i39) ldisplay(I=box(ev(I,integrate)))\$

$$3\int_{-1}^{4} \frac{3x+13}{5} - 2dx = \left(\frac{45}{2}\right) \tag{\%t39}$$

Graphics

Find area of ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

(%i41) kill(labels,a,b)\$

(%i1) assume(a>0,b>0)\$

(%i2) declare([a,b],constant)\$

(%i3) E:x²/a²+y²/b²=1\$

(%i4) sol:solve(E,y);

$$y = -\frac{b\sqrt{a^2 - x^2}}{a}, y = \frac{b\sqrt{a^2 - x^2}}{a}$$
 (sol)

(%i5) I:'integrate('integrate(1,y,0,rhs(sol[2])),x,-a,a)+
 'integrate('integrate(1,y,rhs(sol[1]),0),x,-a,a)\$

(%i6) ldisplay(I=box(ev(I,integrate)))\$

$$\frac{2b \int_{-a}^{a} \sqrt{a^2 - x^2} dx}{a} = (\pi ab) \tag{\%t6}$$

Vector field $\vec{F}_1 \in \mathbb{R}^2$

(%i7) ldisplay(F_1:[0,x])\$

$$F_1 = [0, x] \tag{\%t7}$$

 $\nabla imes \vec{F_1} \in \mathbb{R}^2$

(%i8) ldisplay(curlF_1:ev(express(curl(F_1)),diff))\$

$$curlF_1 = 1 \tag{\%t8}$$

Vector field $\vec{F}_2 \in \mathbb{R}^2$

(%i9) ldisplay(F_2:[-y,0])\$

$$F_2 = [-y, 0] \tag{\%t9}$$

 $\nabla imes \vec{F}_2 \in \mathbb{R}^2$

(%i10) ldisplay(curlF_2:ev(express(curl(F_2)),diff))\$

$$curl F_2 = 1 \tag{\%t10}$$

Vector field $\vec{F}_3 \in \mathbb{R}^2$

(%i11) ldisplay(F₋3: $\frac{1}{2}*(F_-1+F_-2))$ \$

$$F_3 = \left[-\frac{y}{2}, \frac{x}{2} \right] \tag{\%t11}$$

 $\nabla imes \vec{F}_3 \in \mathbb{R}^2$

(%i12) ldisplay(curlF_3:ev(express(curl(F_3)),diff))\$

$$curl F_3 = 1 \tag{\%t12}$$

Work form $\alpha_3 \in \mathcal{A}^1(\mathbb{R}^2)$

(%i13) ldisplay(α_3 :F_3.cartan_basis)\$

$$\alpha_3 = \frac{x \, dy}{2} - \frac{y \, dx}{2} \tag{\%t13}$$

 $d\alpha_3 \in \mathcal{A}^2(\mathbb{R}^2)$

(%i14) ldisplay(d $\alpha_{-}3$:ext_diff($\alpha_{-}3$))\$

$$d\alpha_3 = dx \, dy \tag{\%t14}$$

(%i15) d α _3/apply("*",cartan_basis);

1 (%o15)

 $\nabla \cdot \vec{F}_3 \in \mathbb{R}$

(%i16) ldisplay(divF_3:ev(express(div(F_3)),diff))\$

$$divF_3 = 0 (\%t16)$$

Flux form $\beta_3 \in \mathcal{A}^1(\mathbb{R}^2)$

(%i17) $ldisplay(\beta_3:first(F_3)*cartan_basis[2]-second(F_3)*cartan_basis[1])$ \$

$$\beta_3 = -\frac{y\,dy}{2} - \frac{x\,dx}{2} \tag{\%t17}$$

 $d\beta_3 \in \mathcal{A}^2(\mathbb{R}^2)$

(%i18) ldisplay(d β _3:edit(ext_diff(β _3)))\$

$$d\beta_3 = 0 \tag{\%t18}$$

(%i19) $d\beta_3$ /apply("*", cartan_basis);

0 (%o19)

$$A(D) = \iint_D dA = \frac{1}{2} \oint_C -y \, dx + x \, dy$$

Parametrize the ellipse

(%i20) assume $(0 \le t, t \le 2 * \pi)$ \$

(%i21) ldisplay(r:[a*cos(t),b*sin(t)])\$

$$r = [a\cos(t), b\sin(t)] \tag{\%t21}$$

Verify this is an ellipse

$$\label{eq:constraints} \mbox{(\%i22)} \mbox{ is(trigsimp(subst(map("=", \zeta, r), E)));}$$

true (%o22)

Derivative of the curve \vec{r}

(%i23) ldisplay $(r\ ':diff(r,t))$ \$

$$r' = [-a\sin(t), b\cos(t)] \tag{\%t23}$$

 $\vec{F}_3 \circ \vec{r}$

(%i24) ldisplay(For_3:subst(map("=", ζ ,r),F_3))\$

$$For_3 = \left[-\frac{b\sin(t)}{2}, \frac{a\cos(t)}{2} \right] \tag{\%t24}$$

 $\vec{F}_3 \cdot \vec{r}' \in \mathbb{R}$

(%i25) ldisplay(T_3:trigsimp(For_3.r\'))\$

$$T_3 = \frac{ab}{2} \tag{\%t25}$$

Pullback $\vec{r}^* \alpha_3 \in \mathcal{A}^1(\mathbb{R}^2)$

(%i26) ldisplay(P_3:trigsimp(r\',|subst(map("=", ζ ,r), α _3)))\$

$$P_3 = \frac{ab}{2} \tag{\%t26}$$

Line integral I_3

(
$$\%$$
i27) ldisplay(I_3:box('integrate(T_3,t,0,2* π)))\$

$$I_3 = (\pi ab) \tag{\%t27}$$

Clean up

(%i29) forget(a>0,b>0)\$ forget(0
$$\leq$$
t,t \leq 2* π)\$

5 Vector forms of Green's Theorem

Based on Michael Penn Video Vector forms of Green's Theorem

```
 \begin{tabular}{ll} (\%i30) & & & & & & \\ & (\%i30) & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &
```

Vector field $\vec{F} \in \mathbb{R}^2$

(%i4) ldisplay(
$$F: [x^2*y, x*z, z^3]$$
)\$

$$F = [x^2y, xz, z^3] \tag{\%t4}$$

3D Direction field

- (%i8) /* compute vectors at the given points */ define(vf3d(x,y,z),vector(ζ ,F))\$ vect3:makelist(vf3d(k[1],k[2],k[3]),k,points3d)\$
- (%i9) wxdraw3d([head_length=0.1,color=blue,head_angle=25,unit_vectors=true],vect3)\$

(%t9)

 $\nabla \times \vec{F} \in \mathbb{R}^3$

(%i10) ldisplay(curlF:ev(express(curl(F)),diff))\$

$$curlF = [-x, 0, z - x^2]$$
 (%t10)

Work form $\alpha \in \mathcal{A}^1(\mathbb{R}^3)$

(%i11) $ldisplay(\alpha:F.cartan_basis)$ \$

$$\alpha = z^3 dz + xz dy + x^2 y dx \tag{\%t11}$$

 $d\alpha \in \mathcal{A}^2(\mathbb{R}^3)$

(%i12) $ldisplay(d\alpha:edit(ext_diff(\alpha)))$ \$

$$d\alpha = (z - x^2) dx dy - x dy dz$$
 (%t12)

 $\nabla \cdot \vec{F} \in \mathbb{R}$

(%i13) ldisplay(divF:ev(express(div(F)),diff))\$

$$divF = 3z^2 + 2xy \tag{\%t13}$$

Flux form $\beta \in \mathcal{A}^2(\mathbb{R}^3)$

(%i14) $ldisplay(\beta:F[1]*cartan_basis[2] \sim cartan_basis[3] + F[2]*cartan_basis[3] \sim cartan_basis[1] + F[3]*cartan_basis[1] \sim cartan_basis[2])$ \$

$$\beta = x^2 y \, dy \, dz - xz \, dx \, dz + z^3 \, dx \, dy \tag{\%t14}$$

 $d\beta \in \mathcal{A}^2(\mathbb{R}^3)$

(%i15) ldisplay(d β :edit(ext_diff(β)))\$

$$d\beta = (3z^2 + 2xy) dx dy dz \tag{\%t15}$$

(%i16) d β /apply("*",cartan_basis);

$$3z^2 + 2xy \tag{\%o16}$$

Based on Opentextbc Website 41 Green's Theorem

Based on Openstax Website 6.4 Green's Theorem

Circulation Form of Green's Theorem

$$\oint_C \vec{F} \, d\vec{r} = \oint_C P \, dx + Q \, dy = \iint_D (Q_x - P_y) \, dA$$

Flux Form of Green's Theorem

$$\oint_C \vec{F} \cdot \vec{N} \, \mathrm{d}s = \iint_D \left(P_x + Q_y \right) \, \mathrm{d}A$$

Define the space \mathbb{R}^2

 $(\%i17) \zeta: [x,y]$ \$

(%i18) scalefactors(ζ)\$

(%i19) init_cartan(ζ)\$

Vector field $\vec{F} \in \mathbb{R}^2$

(%i20) F: [P,Q]\$

(%i21) depends (F, ζ)\$

Version 1 of Green's theorem (Circulation Form)

$$\oint_C \vec{F} \, \mathrm{d}\vec{r} = \iint_D \left(\nabla \times \vec{F} \right) \, \mathrm{d}A$$

 $\nabla \times \vec{F} \in \mathbb{R}^2$

(%i22) ldisplay(curlF:ev(express(curl(F)),diff))\$

$$curlF = Q_x - P_y \tag{\%t22}$$

Work form $\alpha \in \mathcal{A}^1(\mathbb{R}^2)$

(%i23) ldisplay(α :F.cartan_basis)\$

$$\alpha = Q \, dy + P \, dx \tag{\%t23}$$

 $d\alpha \in \mathcal{A}^2(\mathbb{R}^2)$

(%i24) $ldisplay(d\alpha:edit(ext_diff(\alpha)))$ \$

$$d\alpha = (Q_x - P_y) dx dy (\%t24)$$

Version 2 of Green's theorem (Flux Form)

$$\oint_C \left(\vec{F} \cdot \hat{n} \right) \, \mathrm{d}s = \iint_D \left(\nabla \cdot \vec{F} \right) \, \mathrm{d}A$$

 $\nabla \cdot \vec{F} \in \mathbb{R}$

(%i25) ldisplay(divF:ev(express(div(F)),diff))\$

$$divF = Q_y + P_x \tag{\%t25}$$

Flux form $\beta \in \mathcal{A}^2(\mathbb{R}^2)$

(%i26) ldisplay(β :F[1]*cartan_basis[2]-F[2]*cartan_basis[1])\$

$$\beta = P \, dy - Q \, dx \tag{\%t26}$$

 $d\beta \in \mathcal{A}^2(\mathbb{R}^2)$

(%i27) ldisplay(d β :edit(ext_diff(β)))\$

$$d\beta = (Q_y + P_x) dx dy (\%t27)$$

(%i28) d β /apply("*",cartan_basis);

$$Q_y + P_x \tag{\%o28}$$

6 When Green's theorem doesn't apply

Based on Michael Penn Video When Green's theorem doesn't apply Find all possible values of $\oint_C \vec{F} \cdot d\vec{r}$ where C satisfies all the conditions.

```
(%i29) kill(labels,t,x,y)$

Define the space \mathbb{R}^2

(%i1) \zeta: [x,y]$

(%i2) scalefactors(\zeta)$

(%i3) init_cartan(\zeta)$

Parameters

(%i4) assume(a>0)$

(%i5) declare(a,constant)$

(%i6) params: [a=1]$
```

Vector field $\vec{F} \in \mathbb{R}^2$

(%i7) ldisplay(F:1/(
$$x^2+y^2$$
)*[y,-x])\$

$$F = \left[\frac{y}{y^2 + x^2}, -\frac{x}{y^2 + x^2} \right] \tag{\%t7}$$

2D Direction field

(%i8) wxdrawdf(F,[x,-5,5],[y,-5,5])\$

 $\nabla \times \vec{F} \in \mathbb{R}^2$

(%i9) ldisplay(curlF:ratsimp(ev(express(curl(F)),diff)))\$

$$curl F = 0 (\%t9)$$

Potential

(%i10) ldisplay(ϕ :potential(F))\$

$$\phi = \operatorname{atan}\left(\frac{x}{y}\right) \tag{\%t10}$$

Work form $\alpha \in \mathcal{A}^1(\mathbb{R}^2)$

(%i11) $ldisplay(\alpha:factor(F.cartan_basis))$ \$

$$\alpha = -\frac{x \, dy - y \, dx}{y^2 + x^2} \tag{\%t11}$$

 $d\alpha \in \mathcal{A}^2(\mathbb{R}^2)$

(%i12) ldisplay(d α :ratsimp(edit(ext_diff(α))))\$

$$d\alpha = 0 \tag{\%t12}$$

 $\nabla \cdot \vec{F} \in \mathbb{R}$

(%i13) ldisplay(divF:ev(express(div(F)),diff))\$

$$divF = 0 (\%t13)$$

Flux form $\beta \in \mathcal{A}^1(\mathbb{R}^2)$

(%i14) $ldisplay(\beta:factor(F[1]*cartan_basis[2]-F[2]*cartan_basis[1]))$ \$

$$\beta = \frac{y \, dy + x \, dx}{y^2 + x^2} \tag{\%t14}$$

 $d\beta \in \mathcal{A}^2(\mathbb{R}^2)$

(%i15) ldisplay(d β :edit(ext_diff(β)))\$

$$d\beta = 0 \tag{\%t15}$$

Curve $\vec{r}_a \in \mathbb{R}^2$

(%i16) ldisplay(r_a: [a*cos(t),a*sin(t)])\$

$$r_a = [a\cos(t), a\sin(t)] \tag{\%t16}$$

Derivative of the curve \vec{r}_a

(%i17) ldisplay $(r\,'_a:diff(r_a,t))$ \$

$$r'_{a} = [-a\sin(t), a\cos(t)]$$
 (%t17)

 $\vec{F} \circ \vec{r}_a$

(%i18) ldisplay(For_a:trigsimp(subst(map("=", ζ ,r_a),F)))\$

$$For_{a} = \left[\frac{\sin(t)}{a}, -\frac{\cos(t)}{a}\right] \tag{\%t18}$$

 $\vec{F}\cdot\vec{r}_a'\in\mathbb{R}$

(%i19) ldisplay(T_a:trigsimp(For_a.r\',a))\$

$$T_a = -1 \tag{\%t19}$$

Pullback $\vec{r}_a^* \alpha \in \mathcal{A}^1(\mathbb{R}^2)$

(%i20) ldisplay(P_a:trigsimp(r\',_a|subst(map("=", ζ ,r_a), α)))\$

$$P_a = -1 \tag{\%t20}$$

Line integral I_a

(%i21) ldisplay(I_a : 'integrate(T_a , t, 0, 2* π))\$

$$I_a = -2\pi \tag{\%t21}$$

Clean up

(%i22) forget(a>0)\$