Exercise Sheet 2

Discrete Mathematics, 2021.9.16

Note: The following exercises involve a new logical operators \oplus . Its truth table is as follows:

p	q	$p \oplus q$
\mathbf{T}	\mathbf{T}	\mathbf{F}
${f T}$	\mathbf{F}	${f T}$
\mathbf{F}	${f T}$	${f T}$
\mathbf{F}	\mathbf{F}	${f F}$

- 1. a) Prove: $p \vee \neg q, q \vee \neg r \vDash p \vee \neg r$.
 - b) Prove: $p \vDash p \lor \neg p$.
- 2. a) Prove: if $\phi \vDash \psi$ then $\phi \land \psi \equiv \phi$ and $\phi \lor \psi \equiv \psi$.
 - b) Use the conclusion above to prove absorption laws that we learnt in class.
- 3. a) Prove that $\neg(p \land \neg q) \equiv \neg p \lor q$.
 - b) Prove that $\neg(p \oplus q) \equiv (\neg p) \oplus q$.
 - c) Prove that $p \oplus (\neg p) \oplus q \equiv \neg q$.
- 4. Consider the compound proposition $\phi = \neg(p \land \neg(q \oplus r))$ where p, q, r are propositional variables. Give a disjunctive normal form of ϕ .