

AO3400/A

30V N-Channel MOSFET

General Description

The AO3400/A combines advanced trench MOSFET technology with a low resistance package to provide extremely low $R_{\rm DS(ON)}.$ This device is suitable for use as a load switch or in PWM applications.

Product Summary

 $\begin{array}{ll} V_{DS} & 30V \\ I_{D} \; (at \; V_{GS} \! = \! 12V) & 5.2A \\ R_{DS(ON)} \; (at \; V_{GS} \! = \! 10V) & < 28m \, \Omega \\ R_{DS(ON)} \; (at \; V_{GS} \! = \! 4.5V) & < 33m \Omega \end{array}$

• Pin Configuration

Absolute Maximum Ratings T _A =25℃ unless otherwise noted							
Parameter		ymbol	Maximum	Units			
Drain-Source Voltage		DS	30	V			
Gate-Source Voltage		GS	±12	V			
Continuous Drain	T _A =25℃		5.7				
Current	T _A =70℃		4.7	A			
Pulsed Drain Current C		м	30				
	T _A =25℃		1.4	W			
Power Dissipation ^B	T _A =70℃	D	0.9	VV			
Junction and Storage Temperature Range		_J , T _{STG}	-55 to 150	C			

Thermal Characteristics									
Parameter	Symbol	Тур	Max	Units					
Maximum Junction-to-Ambient A	t ≤ 10s	D	70	90	℃/W				
Maximum Junction-to-Ambient AD	Steady-State	$R_{\theta JA}$	100	125	€/M				
Maximum Junction-to-Lead	Steady-State	$R_{\theta JL}$	63	80	℃/W				

Electrical Characteristics (T_J=25℃ unless otherwise noted)

Symbol	Parameter	Conditions		Тур	Max	Units			
STATIC PARAMETERS									
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D=250\mu A,\ V_{GS}=0V$	30			V			
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =20V, V _{GS} =0V			1 30	μΑ			
I _{GSS}	Gate-Body leakage current	V _{DS} =0V, V _{GS} = ±12V			100	nA			
$V_{GS(th)}$	Gate Threshold Voltage	V _{DS} =V _{GS} I _D =250μA	0.5	0.7	1_	V			
I _{D(ON)}	On state drain current	V _{GS} =4.5V, V _{DS} =5V	30			Α			
	Static Drain-Source On-Resistance	V _{GS} =10V, I _D =6A T _J =125℃		23 28	29 38	mΩ			
		V _{GS} =4.5V, I _D =4.8A		24	30	mΩ			
		V _{GS} =2.5V, I _D =3.5A		28	35	$m\Omega$			
g _{FS}	Forward Transconductance	V_{DS} =5V, I_D =5.7A		33		S			
V_{SD}	Diode Forward Voltage	I _S =1.25A,V _{GS} =0V		0.7	1.3	V			
Is	Maximum Body-Diode Continuous Curre			2	Α				
DYNAMIC	PARAMETERS	#							
C _{iss}	Input Capacitance			680		pF			
Coss	Output Capacitance	V_{GS} =0V, V_{DS} =15V, f=1MHz		250		pF			
C _{rss}	Reverse Transfer Capacitance			200		pF			
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1MHz		6		Ω			
SWITCHII	NG PARAMETERS								
Q_g	Total Gate Charge			5	10	nC			
Q_{gs}	Gate Source Charge	V_{GS} =4.5V, V_{DS} =10V, I_{D} =6A		1		nC			
Q_{gd}	Gate Drain Charge			1.1		nC			
t _{D(on)}	Turn-On DelayTime			8	15	ns			
t _r	Turn-On Rise Time	$V_{DD} = 10V, R_L = 10\Omega, I_{DS} = 1A,$		6	12	ns			
$t_{D(off)}$	Turn-Off DelayTime	V_{GEN} =4.5V, R_{G} =6 Ω		19	35	ns			
t _f	Turn-Off Fall Time			7	23	ns			
t _{rr}	Body Diode Reverse Recovery Time	I _F =5.7A, dI/dt=100A/μs	7	8.5	10	ns			
Q_{rr}	Body Diode Reverse Recovery Charge	I _F =5.7A, dI/dt=100A/μs	2	2.6	3.1	nC			

Typical Performance Characteristics

Power Dissipation

T_j - Junction Temperature (°C)

Safe Operation Area

V_{DS} - Drain - Source V⁻Kage (V)

Output Character stics

Drain Current

T_j- Junction Temporature / C)

Therma' Transie ' Impedance

Square Wave Pulse Duration (sec)

Drain-Source On Resistance

ID- Drain Current (A)

V_{DS} - Drain - Source Voltage (V)

Package Information

DISCLAIMER

ZHENYANGA RESER VES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. ZHENYANG DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICIENCE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

