NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY

PAST YEAR PAPER SOLUTIONS with credits to Teo Wei Hao

MA2202 Abstract Algebra I AY 2005/2006 Sem 2

Question 1

(a) If $k \in \mathbb{Z}$ such that $m \mid k$ and $n \mid k$, then there exists $a, b \in \mathbb{Z}$ such that am = bn = k. Also as gcd(m, n) = 1, there exists $s, t \in \mathbb{Z}$ such that sm + tn = 1. This give us,

$$k = k(sm + tn)$$

$$= bn(sm) + am(tn)$$

$$= mn(bs + at).$$

Thus $mn \mid k$.

(b) Since $p \mid k^2$, by Euclid's Lemma, we have $p \mid k$. Similarly, $q \mid k$. Together with the fact that p and q are distinct primes, we have $pq = \text{lcm}(p,q) \mid k$.

Question 2

- (a) We have $\alpha = \begin{pmatrix} 1 & 2 & 4 & 10 & 5 & 9 & 8 & 6 \end{pmatrix} \begin{pmatrix} 3 \end{pmatrix} \begin{pmatrix} 7 \end{pmatrix}$. Thus $\operatorname{sgn}(\alpha) = (-1)^{10-3} = -1$ and $\alpha^{-1} = \begin{pmatrix} 1 & 6 & 8 & 9 & 5 & 10 & 4 & 2 \end{pmatrix}$.
- (b) We have,

$$\alpha\beta\alpha^{-1} = (\alpha(2) \ \alpha(6) \ \alpha(1) \ \alpha(3))$$
$$= (2 \ 7 \ 3 \ 5).$$

Question 3

- (a) As HK = KH is non-empty, we can let $a_1, a_2 \in HK$. This implies that there exists $h_1, h_2 \in H$, $k_1, k_2 \in K$ such that $a_1 = h_1k_1$, $a_2 = h_2k_2$. Since K is a group, there exists $k_3 \in K$ such that $k_3 = k_1k_2^{-1}$. Since HK = KH, there exists $h_3 \in H$, $k_4 \in K$ such that $h_3k_4 = k_3h_2^{-1}$. Lastly since H is a group, there exists $h_4 \in H$ such that $h_4 = h_1h_3$. Thus we have $a_1a_2^{-1} = (h_1k_1)(h_2k_2)^{-1} = h_1k_1k_2^{-1}h_2^{-1} = h_1k_3h_2^{-1} = h_1h_3k_4 = h_4k_4 \in HK$. Therefore $HK \leq G$.
- (b) For any $h \in H$, $k \in K$, we have $(kh)^{-1} = h^{-1}k^{-1} \in HK$. Since $HK \leq G$, we have $kh \in HK$. Thus $KH \subseteq HK$. We have $k^{-1}h^{-1} \in KH \subseteq HK$. Thus there exists $h' \in H$, $k' \in K$ such that $k^{-1}h^{-1} = h'k'$. This give us $hk = \left(k^{-1}h^{-1}\right)^{-1} = (h'k')^{-1} = k'^{-1}h'^{-1} \in KH$, i.e. $HK \subseteq KH$. Therefore HK = KH.

Page: 1 of 3

Question 4

- (a) Let $G = A_4$, and $H = \langle \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \rangle \leq G$. We have $\begin{pmatrix} 1 & 4 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 4 \end{pmatrix} \begin{pmatrix} 2 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 3 & 4 \end{pmatrix} \not\in H$. Thus $\begin{pmatrix} 1 & 4 & 2 \end{pmatrix} H \neq \begin{pmatrix} 1 & 4 \end{pmatrix} \begin{pmatrix} 2 & 3 \end{pmatrix} H$. However, $\begin{pmatrix} 1 & 4 & 2 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} 1 & 4 \end{pmatrix} \begin{pmatrix} 2 & 3 \end{pmatrix} \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \in H$. This give us $H \begin{pmatrix} 1 & 4 & 2 \end{pmatrix} = H \begin{pmatrix} 1 & 4 \end{pmatrix} \begin{pmatrix} 2 & 3 \end{pmatrix}$.
- (b) Our given condition is equivalent to if $a, b \in G$ such that aH = bH, then Ha = Hb. For all $g \in G$, $h \in H$, let $ghg^{-1} = k$, i.e. gh = kg. This give us gH = ghH = kgH. Thus, we have Hg = Hkg, i.e. $k = (kg)(g^{-1}) \in H$. Therefore $H \triangleleft G$.

Question 5

(a) Let $f: G/(H \cap K) \to G/H \times G/K$ be such that $f(g(H \cap K)) = (gH, gK)$. Now for $g_1, g_2 \in G$, we have

$$(g_1H, g_1K) = (g_2H, g_2K) \Leftrightarrow g_1^{-1}g_2 \in H \text{ and } g_1^{-1}g_2 \in K$$
$$\Leftrightarrow g_1^{-1}g_2 \in H \cap K$$
$$\Leftrightarrow g_1(H \cap K) = g_2(H \cap K).$$

Thus f is a well-defined injective function. Therefore,

$$|G/(H \cap K)| \leq |G/H \times G/K|$$
$$[G: H \cap K] \leq [G: H] \cdot [G: K].$$

Note: Here G/H, G/K and $G/(H \cap K)$ are not quotient groups, but are just sets of left cosets.

(b) By Lagrange's Theorem, $|H \cap K| \mid |H|$ and $|H \cap K| \mid |K|$, thus $|H \cap K| \mid \gcd(|H|, |K|)$. In particular, $|H \cap K| \leq \gcd(|H|, |K|) \leq a|H| + b|K|$ for any $a, b \in \mathbb{Z}$. Since $\gcd([G:H], [G:K]) = 1$, there exists $s, t \in \mathbb{Z}$ such that

$$s\left(\frac{|G|}{|H|}\right) + t\left(\frac{|G|}{|K|}\right) = 1$$
$$|G|(s|K| + t|H|) = |H| \cdot |K|.$$

Thus, we get $|G| \cdot |H \cap K| \leq |G| \cdot \gcd(|H|, |K|) \leq |G| (s|K| + t|H|) = |H| \cdot |K|$. Rearranging, we get $[G:H] \cdot [G:K] = \frac{|G|^2}{|H| \cdot |K|} \leq \frac{|G|}{|H \cap K|} = [G:H \cap K]$. Combining with (5a), we get $[G:H \cap K] = [G:H] \cdot [G:K]$.

Question 6

Let the 10 stripes be vertically orientated, and numbered 1 to 10 from left to right respectively. Let $C = \{c_1, c_2, c_3, c_4\}$ be the set of 4 colours.

Let set $X = \{(a_1, a_2, \dots, a_{10}) \mid a_i \in C, i = 1, 2, \dots 10\}$ correspond to the colouring given to stripe 1 to 10 in that order. We notice that colouring $(a_1, a_2, \dots, a_9, a_{10})$ is identical to $(a_{10}, a_9, \dots, a_2, a_1)$.

Thus let group $G = \langle (1 \ 10) (2 \ 9) (3 \ 8) (4 \ 7) (5 \ 6) \rangle$.

We define an action $\alpha: G \times X \to X$ such that $\alpha_g(a_1, a_2, \dots a_{10}) = (a_{g(1)}, a_{g(2)}, \dots, a_{g(10)})$. The number of orbits N correspond to the number of distinct flags. Now,

$$N = \frac{1}{2} \left[\text{Fix} (1_G) + \text{Fix} ((1 \ 10) (2 \ 9) (3 \ 8) (4 \ 7) (5 \ 6)) \right].$$

Every $x \in X$ is fixed by 1_G , and thus $Fix(1_G) = 4^{10}$.

For $(1\ 10)(2\ 9)(3\ 8)(4\ 7)(5\ 6)$ to fix x,x must have the same colour for each cycle. Therefore, Fix $((1\ 10)(2\ 9)(3\ 8)(4\ 7)(5\ 6))=4^5$. This give us $N=\frac{1}{2}(4^{10}+4^5)=524800$.

Therefore there are 524800 distinct flags in total.

Question 7

- (a) Let $a \in G$ such that $G/Z(G) = \langle aZ(G) \rangle$. For any $g \in G$, there exists $k \in \mathbb{Z}$ such that $g \in a^k Z(G)$. Thus there exists $z \in Z(G)$ such that $g = a^k z$.

 This give us $ag = a \left(a^k z \right) = a^{k+1} z = a^k (az) = a^k (za) = \left(a^k z \right) a = ga$, i.e. $a \in Z(G)$.

 Therefore we have [G: Z(G)] = 1, i.e. G = Z(G).
- (b) Let $f: G \to H$ be the surjective function $f(\sigma) = \tau_{\sigma}$. For $g \in G$, we have $(\tau_{\sigma_1} \cdot \tau_{\sigma_2})(g) = \tau_{\sigma_1} \left(\sigma_2 g \sigma_2^{-1}\right) = \sigma_1 \sigma_2 g \sigma_2^{-1} \sigma_1^{-1} = \tau_{\sigma_1 \sigma_2}(g)$. Thus $f(\sigma_1 \sigma_2) = \tau_{\sigma_1 \sigma_2} = \tau_{\sigma_1} \cdot \tau_{\sigma_2} = f(\sigma_1) \cdot f(\sigma_2)$. This give us f to be a homomorphism.

Now

$$\ker(f) = \{ \sigma \in G \mid \tau_{\sigma} = 1_{H} \}$$

$$= \{ \sigma \in G \mid \sigma g \sigma^{-1} = g, g \in G \}$$

$$= \{ \sigma \in G \mid \sigma g = g \sigma, g \in G \}$$

$$= Z(G).$$

Therefore by First Isomorphism Theorem, we have $G/Z(G) \simeq H$.

Question 8

(a) Let $S = \{g \in G, g^2 \neq 1_G\}$ and $T = \{g \in G, g^2 = 1_G\}$ and |S| = 2r. Thus we can rename the elements of G to be in $S = \{s_1, s_1^{-1}, s_2, s_2^{-1}, \dots, s_r, s_r^{-1}\}$ and $T = \{t_1, t_2, \dots, t_{n-2r}\}$.

Now since *G* is abelian, we have $x = s_1 s_1^{-1} s_2 s_2^{-1} \cdots s_r s_r^{-1} t_1 t_2 \cdots t_{n-2r} = t_1 t_2 \cdots t_{n-2r}$. Thus again as *G* is abelian, we have $x^2 = t_1^2 t_2^2 \cdots t_{n-2r}^2 = 1_G$.

- (b) We are given that $T = \{1_G, b\}$. Thus using result of (8a.), we get $x = 1_G b = b$.
- (c) If $y^2 \equiv 1 \mod p$, then $p \mid (y^2 1) = (y 1)(y + 1)$. Since p is prime, by Euclid's Lemma, $p \mid y - 1$ or $p \mid y + 1$, i.e. $y \equiv 1 \mod p$ or $y \equiv -1 \mod p$.

Let us consider the group $(\mathbb{Z}/p\mathbb{Z})^*$. As established above, we have $x = [1]_p$ and $x = [-1]_p$ to be the only solutions to $x^2 = [1]_p$. Since $p \neq 2$, $[1]_p \neq [-1]_p$. Thus from (8b.), we get $[(p-1)!]_p = [1]_p[2]_p \cdots [p-1]_p = [-1]_p$, i.e. $(p-1)! \equiv -1 \mod p$.