

#### MTH223A

Yvette Fajardo-Lim

Theorem and Homomorphisms

Lagrange's

Homomorph

Kernel and Imag
of a
Homomorphism

# MTH223A LECTURE NOTES CHAPTER 4

Yvette Fajardo-Lim

Mathematics and Statistics Department De La Salle University - Manila



### Outline

#### MTH223A

Yvette Fajardo-Lim

Theorem an Homomorphisms Cosets Lagrange's Theorem

Homomorphism Kernel and Imag of a Homomorphism

- Lagrange's Theorem and Homomorphisms
  - Cosets
  - Lagrange's Theorem
  - Homomorphisms
  - Kernel and Image of a Homomorphism



## Outline

#### MTH223A

Yvette Fajardo-Lim

Lagrange's Theorem an Homomorphisms Cosets

Lagrange's Theorem Homomorphis

Homomorphism: Kernel and Imag of a Homomorphism

- 1 Lagrange's Theorem and Homomorphisms
  - Cosets
  - Lagrange's Theorem
  - Homomorphisms
  - Kernel and Image of a Homomorphism



#### MTH223A

Yvette Fajardo-Lim

Lagrange's Theorem and Homomorphisms Cosets

Theorem
Homomorphism
Kernel and Imag
of a
Homomorphism

### Definition

For any  $g \in G$ , the subset  $Hg = \{hg | h \in H\}$  of G is called a right coset of H.

- $lue{1}$   $g \in Hg$ , since g = eg and  $e \in H$ .
- ② If H is finite, say  $H = \{h_1, \dots h_n\}$ , then  $Hg = \{h_1g, \dots, h_ng\}$  and these elements  $h_ig$  are all distinct by the Cancelation Laws.
- lacksquare H is one of its right cosets, since H = He.
- Although each element  $g \in G$  gives a right coset Hg, there is no claim that we obtain a different right coset for each element, in fact as we shall see this only happens if  $H = \{e\}$ .



#### MTH223A

**Yvette** Faiardo-Lim

Theorem and Cosets

#### Definition

For any  $g \in G$ , the subset  $Hg = \{hg | h \in H\}$  of G is called a right coset of H.

- $\mathbf{0}$   $g \in Hg$ , since g = eg and  $e \in H$ .



#### MTH223A

Yvette Fajardo-Lim

Lagrange's
Theorem and
Homomorphisms
Cosets
Lagrange's
Theorem

Theorem
Homomorphisms
Kernel and Image
of a
Homomorphism

### Definition

For any  $g \in G$ , the subset  $Hg = \{hg | h \in H\}$  of G is called a right coset of H.

- $oldsymbol{0}$   $g \in Hg$ , since g = eg and  $e \in H$ .
- 2 If H is finite, say  $H = \{h_1, \dots h_n\}$ , then  $Hg = \{h_1g, \dots, h_ng\}$  and these elements  $h_ig$  are all distinct by the Cancelation Laws.
- $\odot$  H is one of its right cosets, since H = He.
- Although each element g ∈ G gives a right coset Hg, there is no claim that we obtain a different right coset for each element, in fact as we shall see this only happens if H = {e}.



#### MTH223A

Yvette Fajardo-Lim

Lagrange's Theorem and Homomorphisms Cosets Lagrange's Theorem

Theorem
Homomorphisms
Kernel and Image
of a
Homomorphism

### Definition

For any  $g \in G$ , the subset  $Hg = \{hg | h \in H\}$  of G is called a right coset of H.

- $oldsymbol{0}$   $g \in Hg$ , since g = eg and  $e \in H$ .
- 2 If H is finite, say  $H = \{h_1, \dots h_n\}$ , then  $Hg = \{h_1g, \dots, h_ng\}$  and these elements  $h_ig$  are all distinct by the Cancelation Laws.
- **3** H is one of its right cosets, since H = He.
- Although each element g ∈ G gives a right coset Hg, there is no claim that we obtain a different right coset for each element, in fact as we shall see this only happens if H = {e}.



#### MTH223A

Yvette Fajardo-Lim

Lagrange's
Theorem and
Homomorphisms
Cosets
Lagrange's
Theorem

#### Definition

For any  $g \in G$ , the subset  $Hg = \{hg | h \in H\}$  of G is called a right coset of H.

- $oldsymbol{0}$   $g \in Hg$ , since g = eg and  $e \in H$ .
- If H is finite, say  $H = \{h_1, \dots h_n\}$ , then  $Hg = \{h_1g, \dots, h_ng\}$  and these elements  $h_ig$  are all distinct by the Cancelation Laws.
- **3** H is one of its right cosets, since H = He.
- **1** Although each element g ∈ G gives a right coset Hg, there is no claim that we obtain a different right coset for each element, in fact as we shall see this only happens if  $H = \{e\}$ .



MTH223A

Yvette Fajardo-Lim

Lagrange's
Theorem and
Homomorphisms
Cosets
Lagrange's

Lagrange's Theorem Homomorphis

Kernel and Image of a Homomorphism

### Example

Let  $G = \mathbb{Z}$  and  $H = 4\mathbb{Z}$ . We have the following right cosets of H:

$$4\mathbb{Z} + 0 = \{4n | n \in \mathbb{Z}\} = \{\dots, -8, -4, 0, 4, 8, \dots\},\$$

$$4\mathbb{Z} + 1 = \{4n + 1 | n \in \mathbb{Z}\} = \{\dots, -7, -3, 1, 5, 9, \dots\},\$$

$$4\mathbb{Z} + 2 = \{4n + 2 | n \in \mathbb{Z}\} = \{\dots, -6, -2, 2, 6, 10, \dots\},\$$

 $4\mathbb{Z} + 3 = \{4n + 3 | n \in \mathbb{Z}\} = \{\dots, -5, -1, 3, 7, 11, \dots\}.$ 



#### MTH223A

Yvette Fajardo-Lin

Theorem an Homomorphisms Cosets Lagrange's Theorem

Theorem
Homomorphisms
Kernel and Imago
of a
Homomorphism

### Theorem

If  $H \leq G$ , the relation  $\sim$  defined on G by  $a \sim b \iff ab^{-1} \in H$  is an equivalence relation; the equivalence class containing a is the right coset Ha.



#### MTH223A

**Yvette** Fajardo-Lim

Cosets

### Example

| Take $G = D_4$ . |        |                  |        |        |        |        |        |        |                  |
|------------------|--------|------------------|--------|--------|--------|--------|--------|--------|------------------|
|                  | *      | e                | а      | $a^2$  | $a^3$  | b      | ab     | $a^2b$ | a³b ∣            |
| Ī                | е      | е                | а      | $a^2$  | $a^3$  | b      | ab     | a²b    | a <sup>3</sup> b |
|                  | а      | а                | $a^2$  | $a^3$  | e      | ab     | $a^2b$ | $a^3b$ | b                |
|                  | $a^2$  | $a^2$            | $a^3$  | e      | а      | $a^2b$ | $a^3b$ | b      | ab               |
|                  | $a^3$  | $a^3$            | е      | а      | $a^2$  | $a^3b$ | b      | ab     | ab <sup>2</sup>  |
|                  | b      | b                | $a^3b$ | $a^2b$ | ab     | e      | $a^3$  | $a^2$  | а                |
|                  | ab     | ab               | b      | $a^3b$ | $a^2b$ | а      | e      | $a^3$  | $a^2$            |
|                  | $a^2b$ | a <sup>2</sup> b | ab     | b      | $a^3b$ | $a^2$  | а      | e      | $a^3$            |
|                  | $a^3b$ | a³b              | $a^2b$ | ab     | b      | $a^3$  | $a^2$  | а      | е                |

If  $H = \{e, b\}$  then

$$He = \{e, b\} = Hb$$
  
 $Ha = \{a, ba\} = \{a, a^3b\} = Ha^3b$   
 $Ha^2 = \{a^2, ba^2\} = \{a^2, a^2b\} = Ha^2b$   
 $Ha^3 = \{a^3, ba^3\} = \{a^3, ab\} = Hab$ 



MTH223A

Yvette Fajardo-Lim

Lagrange's
Theorem and
Homomorphisms
Cosets
Lagrange's
Theorem
Homomorphisms

In an exactly similar way we may define the left cosets of a subgroup H of G as the subsets of the form gH for  $g \in G$ . Their properties are analogous to those of right cosets; the left coset version of theorem 4.1 uses the element  $a^{-1}b$  instead of  $ab^{-1}$ . Clearly, if G is abelian then left and right cosets are the same thing.



#### MTH223A

Yvette Fajardo-Lim

Lagrange's Theorem and Homomorphisms

#### Cosets

Lagrange's Theorem

Kernel and Imag
of a

In the previous example, the left cosets of H are

$$eH = \{e,b\} = bH$$
  
 $aH = \{a,ab\} = abH$   
 $a^2H = \{a^2,a^2b\} = a^2bH$   
 $a^3H = \{a^3,a^3b\} = a^3bH$ 

In general left and right cosets may be different.



### Outline

#### MTH223A

Yvette Fajardo-Lim

Lagrange's Theorem an Homomorphisms

Lagrange's Theorem

Kernel and Imag of a Homomorphism

- 1 Lagrange's Theorem and Homomorphisms
  - Cosets
  - Lagrange's Theorem
  - Homomorphisms
  - Kernel and Image of a Homomorphism



MTH223A

Yvette Faiardo-Lim

Lagrange's Theorem and Homomorphisms

Lagrange's Theorem

Kernel and Image of a

#### Theorem

(Lagrange's Theorem) If G is a finite group and  $H \leq G$ , then |H| divides |G|.

- ①  $D_4$  has subgroups  $\{e, a, a^2, a^3\}$  and  $\{e, b\}$ , and 4|8, 2|8
- ②  $(\mathbb{Z}_6,+)$  has subgroups  $\{0,2,4\}$  and  $\{0,3\}$ , and 3|6,2|6.



MTH223A

Yvette Fajardo-Lim

Lagrange's Theorem and Homomorphisms

Lagrange's Theorem

Kernel and Image of a Homomorphism

#### Theorem

(Lagrange's Theorem) If G is a finite group and  $H \leq G$ , then |H| divides |G|.

- **1**  $D_4$  has subgroups  $\{e, a, a^2, a^3\}$  and  $\{e, b\}$ , and 4|8, 2|8.
- **2**  $(\mathbb{Z}_6, +)$  has subgroups  $\{0, 2, 4\}$  and  $\{0, 3\}$ , and 3|6, 2|6



MTH223A

Yvette Fajardo-Lim

Lagrange's Theorem and Homomorphisms

Lagrange's Theorem

Kernel and Image of a Homomorphism

#### Theorem

(Lagrange's Theorem) If G is a finite group and  $H \leq G$ , then |H| divides |G|.

- **1**  $D_4$  has subgroups  $\{e, a, a^2, a^3\}$  and  $\{e, b\}$ , and 4|8, 2|8.
- **2**  $(\mathbb{Z}_6, +)$  has subgroups  $\{0, 2, 4\}$  and  $\{0, 3\}$ , and 3|6, 2|6.



MTH223A

Yvette Fajardo-Lim

Lagrange's Theorem and Homomorphisms

Lagrange's Theorem

Kernel and Imag of a Homomorphism

### Remark

Note that we have also shown that the number of right cosets of H in G is |G|/|H|; we call this number the index of H in G, and write it as |G:H|.

### Corollary

If |G| = n and  $g \in G$ , then o(g)|n and  $g^n = e$ 

- The elements of D<sub>4</sub> have orders 1, 2 and 4, each of which divides 8.
- The elements of  $(Z_6, +)$  have orders 1, 2, 3 and 6, each of which divides 6



MTH223A

Yvette Fajardo-Lim

Lagrange's Theorem and Homomorphisms

Lagrange's Theorem

Kernel and Image of a Homomorphism

### Remark

Note that we have also shown that the number of right cosets of H in G is |G|/|H|; we call this number the index of H in G, and write it as |G:H|.

### Corollary

If |G| = n and  $g \in G$ , then o(g)|n and  $g^n = e$ .

- The elements of D<sub>4</sub> have orders 1, 2 and 4, each of which divides 8.
- 2 The elements of  $(Z_6, +)$  have orders 1, 2, 3 and 6, each of which divides 6.



MTH223A

Yvette Fajardo-Lim

Lagrange's Theorem and Homomorphisms

Lagrange's Theorem

Kernel and Image of a Homomorphism

### Remark

Note that we have also shown that the number of right cosets of H in G is |G|/|H|; we call this number the index of H in G, and write it as |G:H|.

### Corollary

If |G| = n and  $g \in G$ , then o(g)|n and  $g^n = e$ .

- The elements of D<sub>4</sub> have orders 1, 2 and 4, each of which divides 8.
- 2 The elements of  $(Z_6, +)$  have orders 1, 2, 3 and 6, each of which divides 6.



MTH223A

Yvette Fajardo-Lim

Lagrange's Theorem and Homomorphisms

Lagrange's Theorem

Kernel and Image of a Homomorphism

### Remark

Note that we have also shown that the number of right cosets of H in G is |G|/|H|; we call this number the index of H in G, and write it as |G:H|.

### Corollary

If |G| = n and  $g \in G$ , then o(g)|n and  $g^n = e$ .

- The elements of D₄ have orders 1, 2 and 4, each of which divides 8.
- 2 The elements of  $(Z_6, +)$  have orders 1, 2, 3 and 6, each of which divides 6.



MTH223A

Yvette Faiardo-Lim

Lagrange's Theorem and Homomorphisms

Lagrange's Theorem

Kernel and Imag of a Homomorphism

### Corollary

A group of prime order is cyclic, and has no proper non-trivial subgroups; any non-identity element generates the group.

#### Example

The group you filled up with  $\{u, w, x, y, z\}$  is cyclic since its order is 5.



MTH223A

Yvette Fajardo-Lim

Lagrange's Theorem and Homomorphisms

Lagrange's Theorem

Kernel and Image of a Homomorphism

### Corollary

A group of prime order is cyclic, and has no proper non-trivial subgroups; any non-identity element generates the group.

### Example

The group you filled up with  $\{u, w, x, y, z\}$  is cyclic since its order is 5.



MTH223A

Yvette Fajardo-Lim

Lagrange's Theorem and Homomorphisms

Lagrange's Theorem

Kernel and Image of a

### **Theorem**

If  $H, K \leq G$  and (|H|, |K|) = 1, then  $H \cap K = \{e\}$ .

### Example

If  $G = (\mathbb{Z}_6, +)$  we may take  $H = \{0, 2, 4\}$  and  $K = \{0, 3\}$  then |H| = 3, |K| = 2 and (3, 2) = 1, and  $H \cap K = \{0\}$ .



MTH223A

Yvette Faiardo-Lim

Lagrange's Theorem an Homomorphisms

Lagrange's Theorem

Kernel and Image of a Homomorphism

#### **Theorem**

If  $H, K \leq G$  and (|H|, |K|) = 1, then  $H \cap K = \{e\}$ .

### Example

If  $G = (\mathbb{Z}_6, +)$  we may take  $H = \{0, 2, 4\}$  and  $K = \{0, 3\}$ , then |H| = 3, |K| = 2 and (3, 2) = 1, and  $H \cap K = \{0\}$ .



## Outline

#### MTH223A

Yvette Fajardo-Lim

Lagrange's Theorem an Homomorphisms Cosets Lagrange's

Homomorphisms

Kernel and Image of a

- 1 Lagrange's Theorem and Homomorphisms
  - Cosets
  - Lagrange's Theorem
  - Homomorphisms
  - Kernel and Image of a Homomorphism



MTH223A

Yvette Fajardo-Lim

Lagrange's Theorem and Homomorphisms Cosets Lagrange's Theorem

Homomorphisms
Kernel and Image
of a

#### Definition

Let G and H be groups. A map  $\phi: G \to H$  is called a homomorphism if

$$\phi(ab) = \phi(a)\phi(b)$$
 for all  $a, b \in G$ .

A homomorphism which is one-to-one is or injective called a **monomorphism**. If it is onto or surjective, then it is called an **epimorphism**. A homomorphism which is both one-to-one and onto or bijective is called an **isomorphism**. If there is an isomorphism  $G \to H$ , we say that G and H are **isomorphic**, and write  $G \cong H$ .



MTH223A

Yvette Fajardo-Lim

Lagrange's Theorem and Homomorphisms Cosets Lagrange's

Homomorphisms
Kernel and Image
of a

#### Remark

Two finite groups G and H are isomorphic if their Cayley tables have the same structure, it is only the names of the elements which are different. Hence, we can "replace" the elements of G by those of H which is a bijection, and as the element in row a and column b is ab, we need the element in row  $\phi(a)$  and column  $\phi(b)$  to be  $\phi(ab)$ .



MTH223A

**Yvette** Faiardo-Lim

Theorem and

Homomorphisms

### Example

The map  $\phi: (\mathbb{Z}, +) \to (\mathbb{Z}, +)$  defined by  $\phi(n) = 2n$  for all  $n \in \mathbb{Z}$  is a homomorphism, since

$$\phi(m+n) = 2(m+n) = 2m + 2n = \phi(m) + \phi(n)$$

for all  $m, n \in \mathbb{Z}$ .

If  $m, n \in \mathbb{Z}$  such that  $\phi(m) = 2m = 2n = \phi(n)$ , then m = nand hence  $\phi$  is one-to-one. However, all odd integers have no pre-images under  $\phi$  and hence  $\phi$  is not onto.



#### MTH223A

Yvette Fajardo-Lim

Lagrange's Theorem and Homomorphisms <sup>Cosets</sup>

Theorem

Homomorphisms
Kernel and Image

### Example

The map  $\phi: (\mathbb{R}, +) \to (\mathbb{R}^+, \bullet)$  defined by  $\phi(x) = e^x$  for all  $x \in \mathbb{R}$  is a homomorphism, since

$$\phi(x+y)=e^{(x+y)}=e^xe^y=\phi(x)\phi(y)$$

for all 
$$x, y \in \mathbb{R}$$
. If  $x, y \in \mathbb{R}$  such that  $\phi(x) = e^x = e^y = \phi(y)$ ,

then x = y. Also, if  $y \in \mathbb{R}^+$  then we can find  $x = \ln y$  such that  $e^x = y$ . This means that  $\phi$  is both one-to-one and onto and hence,  $\phi$  is an isomorphism.



MTH223A

Yvette Fajardo-Lim

Lagrange's Theorem and Homomorphisms Cosets Lagrange's

Homomorphisms Kernel and Image

### Example

The map  $\phi: (\mathbb{Z}, +) \to (\mathbb{Z}_n, +)$  defined by  $\phi(r) = [r]$  for all  $r \in \mathbb{Z}$  is a homomorphism, since

$$\phi(r+s) = [r+s] = [r] + [s] = \phi(r) + \phi(s)$$

for all  $r, s \in \mathbb{R}^*$ .

If  $x, y \in \mathbb{Z}$ ,  $x \neq y$  such that  $x = q_1 n + r$ ,  $y = q_2 n + r$ , then  $\phi(x) = \phi(q_1 n + r) = r = \phi(y)$ , which shows that  $\phi$  is not one-to-one. On the other hand, if  $r \in \mathbb{Z}_n$ , then for all integer values of q, we have  $x = qn + r \in \mathbb{Z}$  and  $\phi(x) = \phi(qn + r) = r$ , which means that  $\phi$  is onto and therefore an epimorphism.



MTH223A

**Yvette** Faiardo-Lim

Homomorphisms

#### Theorem

Let  $\phi: G \to H$  be a homomorphism, then:

② 
$$\phi(g^{-1}) = \phi(g)^{-1}$$
 for all  $g \in G$ .;

$$\phi(g^n) = \phi(g)^n$$
 for all  $g \in G, n \in \mathbb{Z}^+$ 



MTH223A

**Yvette** Faiardo-Lim

Homomorphisms

#### Theorem

Let  $\phi: G \to H$  be a homomorphism, then:

**2** 
$$\phi(g^{-1}) = \phi(g)^{-1}$$
 for all  $g \in G$ .;

$$\phi(g^n) = \phi(g)^n$$
 for all  $g \in G, n \in \mathbb{Z}^+$ 



MTH223A

Yvette Fajardo-Lim

Lagrange's Theorem an Homomorphisms

Lagrange Theorem

Homomorphisms

Homomorphi

Kernel and Image of a Homomorphism

#### **Theorem**

Let  $\phi: G \to H$  be a homomorphism, then:

**2** 
$$\phi(g^{-1}) = \phi(g)^{-1}$$
 for all  $g \in G$ .;

$$\bullet$$
  $\phi(g^n) = \phi(g)^n$  for all  $g \in G, n \in \mathbb{Z}^+$ .

#### Remark

Note that if G and H are both additive groups, then (3) is written  $\phi(ng) = n\phi(g)$ .



MTH223A

Yvette Fajardo-Lim

Lagrange's Theorem and Homomorphisms Cosets

Lagrange' Theorem

Homomorphisms

Kernel and Image of a

#### **Theorem**

Let  $\phi: G \to H$  be a homomorphism, then:

**2** 
$$\phi(g^{-1}) = \phi(g)^{-1}$$
 for all  $g \in G$ .;

$$\bullet$$
  $\phi(g^n) = \phi(g)^n$  for all  $g \in G, n \in \mathbb{Z}^+$ .

#### Remark

Note that if G and H are both additive groups, then (3) is written  $\phi(ng) = n\phi(g)$ .



#### MTH223A

Yvette Fajardo-Lim

I neorem an Homomorphisms Cosets Lagrange's Theorem

Lagrange's

Homomorphisms
Kernel and Image
of a
Homomorphism

- Take  $G = (\mathbb{R}^*, \bullet)$  and  $H = (\mathbb{R}^*, \bullet)$  with the map  $\phi : G \to H$  defined by  $\phi(x) = x^2$  for all  $x \in \mathbb{R}^*$ : we have  $e_G = 1$ , and  $\phi(1) = 1^2 = 1 = e_H$ ; the inverse of  $x \in G$  is  $\frac{1}{x}$ , and  $\phi\left(\frac{1}{x}\right) = \left(\frac{1}{x}\right)^2 = \frac{1}{x^2}$  which is the inverse of  $x^2 = \phi(x)$ ; the nth power of x is  $x^n$ , and  $\phi(x^n) = (x^n)^2 = x^2 n = (x^2)^n$ , which is the nth power of  $x^2 = \phi(x)$ .
- 2 Take  $G = (\mathbb{R}, +)$  and  $H = (\mathbb{R}^+, \bullet)$ , with the map  $\phi : G \to H$  defined by  $\phi(x) = e^x$  for all  $x\mathbb{R}$ : we have  $e_G = 0$ , and  $\phi(0) = e^0 = 1 = e_H$ ; the inverse of  $x \in G$  is -x, and  $\phi(-x) = e^{-x}$ , which is the inverse of  $e^x = \phi(x)$ ; the nth power of  $x \in G$  is  $x \in G$ . Which is the inverse of  $x \in G$  is  $x \in G$ .



### MTH223A

Yvette Fajardo-Lim

Lagrange's

Theorem and Homomorphisms Cosets Lagrange's Theorem

## Example

- Take  $G = (\mathbb{R}^*, \bullet)$  and  $H = (\mathbb{R}^*, \bullet)$  with the map  $\phi : G \to H$  defined by  $\phi(x) = x^2$  for all  $x \in \mathbb{R}^*$ : we have  $e_G = 1$ , and  $\phi(1) = 1^2 = 1 = e_H$ ; the inverse of  $x \in G$  is  $\frac{1}{x}$ , and  $\phi\left(\frac{1}{x}\right) = \left(\frac{1}{x}\right)^2 = \frac{1}{x^2}$  which is the inverse of  $x^2 = \phi(x)$ ; the nth power of x is  $x^n$ , and  $\phi(x^n) = (x^n)^2 = x^2 n = (x^2)^n$ , which is the nth power of  $x^2 = \phi(x)$ .
- **2** Take  $G = (\mathbb{R}, +)$  and  $H = (\mathbb{R}^+, \bullet)$ , with the map  $\phi : G \to H$  defined by  $\phi(x) = e^x$  for all  $x\mathbb{R}$ : we have  $e_G = 0$ , and  $\phi(0) = e^0 = 1 = e_H$ ; the inverse of  $x \in G$  is -x, and  $\phi(-x) = e^{-x}$ , which is the inverse of  $e^x = \phi(x)$ ; the nth power of x is nx, and  $\phi(nx) = e^{(nx)} = (e^x)^n$ , which is the nth power of  $e^x = \phi(x)$ .

¥



MTH223A

Yvette Fajardo-Lim

Lagrange's Theorem and Homomorphisms Cosets

Lagrange

Homomorphisms

Kernel and Image of a

## Corollary

If G has finite order n and  $\phi: G \to H$  is a homomorphism, then the order of  $\phi(g)$  divides n; if  $\phi$  is one-to-one, then the order of  $\phi(g)$  equals n.

## Example

Consider the multiplicative groups  $\mathbb{R}^*$  and  $\mathbb{R}^+$ ; the element -1 of  $\mathbb{R}^*$  has order 2, whereas  $\mathbb{R}^+$  has no such element, so they cannot be isomorphic.



MTH223A

Yvette Fajardo-Lim

Lagrange's
Theorem and
Homomorphisms
Cosets
Lagrange's

Lagrange Theorem

Homomorphisms
Kernel and Image

## Corollary

If G has finite order n and  $\phi: G \to H$  is a homomorphism, then the order of  $\phi(g)$  divides n; if  $\phi$  is one-to-one, then the order of  $\phi(g)$  equals n.

## Example

Consider the multiplicative groups  $\mathbb{R}^*$  and  $\mathbb{R}^+$ ; the element -1 of  $\mathbb{R}^*$  has order 2, whereas  $\mathbb{R}^+$  has no such element, so they cannot be isomorphic.



MTH223A

Yvette Fajardo-Lim

Lagrange's Theorem an Homomorphisms

Lagrang

Hamamarah

Homomorphisms

Kernel and Image of a Homomorphism

## Theorem

If  $\phi: G \to H$  and  $\theta: H \to K$  are both homomorphisms, so is

 $\phi \circ \theta : \mathbf{G} \to \mathbf{K}$ .

### Theorem

If  $\phi: G \to H$  is an isomorphism, so is  $\phi^{-1}: H \to G$ 



MTH223A

Yvette Fajardo-Lii

Lagrange's
Theorem and
Homomorphisms
Cosets

Lagrang

Theorem

Homomorphisms

Kernel and Image of a

## Theorem

If  $\phi: G \to H$  and  $\theta: H \to K$  are both homomorphisms, so is

 $\phi \circ \theta : \mathbf{G} \to \mathbf{K}$ .

## Theorem

If  $\phi: G \to H$  is an isomorphism, so is  $\phi^{-1}: H \to G$ .



MTH223A

Yvette Fajardo-Lim

Lagrange's Theorem and Homomorphisms Cosets

Theorem

Homomorphisms Kernel and Image

### Definition

An isomorphism  $\phi: G \to G$  is called an **automorphism** of G.

### Remark

The previous two theorems show that the set of automorphisms of G actually form a group.

### Theorem

Any two cyclic groups of the same order are isomorphic



MTH223A

Yvette Fajardo-Lim

Lagrange's Theorem and Homomorphisms Cosets Lagrange's

Theorem
Homomorphisms

Kernel and Image of a Homomorphism

### Definition

An isomorphism  $\phi: G \to G$  is called an **automorphism** of G.

### Remark

The previous two theorems show that the set of automorphisms of G actually form a group.

### **Theorem**

Any two cyclic groups of the same order are isomorphic.



MTH223A

Yvette Fajardo-Lim

Lagrange's Theorem and Homomorphisms Cosets Lagrange's

Theorem

Homomorphisms
Kernel and Image
of a

### Definition

An isomorphism  $\phi: G \to G$  is called an **automorphism** of G.

### Remark

The previous two theorems show that the set of automorphisms of G actually form a group.

### Theorem

Any two cyclic groups of the same order are isomorphic.



## Outline

#### MTH223A

Yvette Fajardo-Lim

Lagrange's Theorem an Homomorphisms Cosets Lagrange's

Homomorphisms Kernel and Image

Kernel and Imag of a Homomorphism

- Lagrange's Theorem and Homomorphisms
  - Cosets
  - Lagrange's Theorem
  - Homomorphisms
  - Kernel and Image of a Homomorphism



#### MTH223A

Yvette Fajardo-Lim

Lagrange's Theorem and Homomorphisms

Theorem

Kernel and Image of a Homomorphism

### Definition

Given a homomorphism  $\phi: G \to H$ , the **kernel** of  $\phi$  is the subset  $Ker\phi = \{g \in G | \phi(G) = e_H\}$  of G, while the image of  $\phi$  is the subset  $\phi(G) = \{\phi(g) | g \in G\}$  of G.

- ① If  $\phi: (\mathbb{Z}, +) \to (\mathbb{Z}, +)$  is defined by  $\phi(n) = 2n$  for all  $n \in \mathbb{Z}$ , then  $\operatorname{Ker} \phi = \{0\}$  and  $\phi(G) = 2\mathbb{Z}$ .
- ② If  $\phi: (\mathbb{R}^*, \bullet) \to (\mathbb{R}^*, \bullet)$  defined by  $\phi(x) = x^2$  for all  $x \in \mathbb{R}^*$ , then  $Ker \phi = \{-1, 1\}$  and  $\phi(G) = \mathbb{R}^+$ .
- If  $\phi: (\mathbb{R}, +) \to (\mathbb{R}^+, \bullet)$  defined by  $\phi(x) = e^x$  for all  $x \in \mathbb{R}$ , then  $Ker\phi = \{0\}$  and  $\phi(G) = \mathbb{R}^+$ .
- If  $\phi: (\mathbb{Z}, +) \to (\mathbb{Z}_n, +)$  defined by  $\phi(r) = [r]$  for all  $r \in \mathbb{Z}$ , then  $Ker \phi = \{n\mathbb{Z}\}$  and  $\phi(G) = \mathbb{Z}_n$ .



#### MTH223A

Yvette Fajardo-Lim

Lagrange's Theorem and Homomorphisms Cosets Lagrange's Theorem

Kernel and Image of a Homomorphism

## Definition

Given a homomorphism  $\phi: G \to H$ , the **kernel** of  $\phi$  is the subset  $Ker\phi = \{g \in G | \phi(G) = e_H\}$  of G, while the image of  $\phi$  is the subset  $\phi(G) = \{\phi(g) | g \in G\}$  of G.

- If  $\phi: (\mathbb{Z}, +) \to (\mathbb{Z}, +)$  is defined by  $\phi(n) = 2n$  for all  $n \in \mathbb{Z}$ , then  $\operatorname{Ker} \phi = \{0\}$  and  $\phi(G) = 2\mathbb{Z}$ .
- ② If  $\phi: (\mathbb{R}^*, \bullet) \to (\mathbb{R}^*, \bullet)$  defined by  $\phi(x) = x^2$  for all  $x \in \mathbb{R}^*$ , then  $Ker \phi = \{-1, 1\}$  and  $\phi(G) = \mathbb{R}^+$ .
- If  $\phi: (\mathbb{R}, +) \to (\mathbb{R}^+, \bullet)$  defined by  $\phi(x) = e^x$  for all  $x \in \mathbb{R}$ , then  $\operatorname{Ker} \phi = \{0\}$  and  $\phi(G) = \mathbb{R}^+$ .
- If  $\phi: (\mathbb{Z}, +) \to (\mathbb{Z}_n, +)$  defined by  $\phi(r) = [r]$  for all  $r \in \mathbb{Z}_n$  then  $\ker \phi = \int n\mathbb{Z}_n ds \, ds \, ds = \mathbb{Z}_n$



#### MTH223A

Yvette Fajardo-Lim

Lagrange's Theorem and Homomorphisms Cosets Lagrange's Theorem

Kernel and Image of a Homomorphism

## Definition

Given a homomorphism  $\phi: G \to H$ , the **kernel** of  $\phi$  is the subset  $Ker\phi = \{g \in G | \phi(G) = e_H\}$  of G, while the image of  $\phi$  is the subset  $\phi(G) = \{\phi(g) | g \in G\}$  of H.

- If  $\phi: (\mathbb{Z}, +) \to (\mathbb{Z}, +)$  is defined by  $\phi(n) = 2n$  for all  $n \in \mathbb{Z}$ , then  $\operatorname{Ker} \phi = \{0\}$  and  $\phi(G) = 2\mathbb{Z}$ .
- 2 If  $\phi: (\mathbb{R}^*, \bullet) \to (\mathbb{R}^*, \bullet)$  defined by  $\phi(x) = x^2$  for all  $x \in \mathbb{R}^*$ , then  $Ker \phi = \{-1, 1\}$  and  $\phi(G) = \mathbb{R}^+$ .
- If  $\phi: (\mathbb{R}, +) \to (\mathbb{R}^+, \bullet)$  defined by  $\phi(x) = e^x$  for all  $x \in \mathbb{R}$ , then  $Ker \phi = \{0\}$  and  $\phi(G) = \mathbb{R}^+$ .
- ① If  $\phi: (\mathbb{Z}, +) \to (\mathbb{Z}_n, +)$  defined by  $\phi(r) = [r]$  for all  $r \in \mathbb{Z}$ , then  $Ker\phi = \{n\mathbb{Z}\}$  and  $\phi(G) = \mathbb{Z}_n$ .



#### MTH223A

Yvette Fajardo-Lim

Lagrange's Theorem and Homomorphisms Cosets Lagrange's Theorem

Kernel and Image of a Homomorphism

## Definition

Given a homomorphism  $\phi: G \to H$ , the **kernel** of  $\phi$  is the subset  $Ker\phi = \{g \in G | \phi(G) = e_H\}$  of G, while the image of  $\phi$  is the subset  $\phi(G) = \{\phi(g) | g \in G\}$  of H.

- If  $\phi: (\mathbb{Z}, +) \to (\mathbb{Z}, +)$  is defined by  $\phi(n) = 2n$  for all  $n \in \mathbb{Z}$ , then  $\operatorname{Ker} \phi = \{0\}$  and  $\phi(G) = 2\mathbb{Z}$ .
- 2 If  $\phi: (\mathbb{R}^*, \bullet) \to (\mathbb{R}^*, \bullet)$  defined by  $\phi(x) = x^2$  for all  $x \in \mathbb{R}^*$ , then  $Ker \phi = \{-1, 1\}$  and  $\phi(G) = \mathbb{R}^+$ .
- **3** If  $\phi: (\mathbb{R}, +) \to (\mathbb{R}^+, \bullet)$  defined by  $\phi(x) = e^x$  for all  $x \in \mathbb{R}$ , then  $Ker\phi = \{0\}$  and  $\phi(G) = \mathbb{R}^+$ .
- ① If  $\phi: (\mathbb{Z}, +) \to (\mathbb{Z}_n, +)$  defined by  $\phi(r) = [r]$  for all  $r \in \mathbb{Z}$ , then  $Ker\phi = \{n\mathbb{Z}\}$  and  $\phi(G) = \mathbb{Z}_n$ .

#### MTH223A

Yvette Fajardo-Lim

Lagrange's Theorem and Homomorphisms Cosets Lagrange's Theorem

Kernel and Image of a Homomorphism

## Definition

Given a homomorphism  $\phi: G \to H$ , the **kernel** of  $\phi$  is the subset  $Ker\phi = \{g \in G | \phi(G) = e_H\}$  of G, while the image of  $\phi$  is the subset  $\phi(G) = \{\phi(g) | g \in G\}$  of H.

- If  $\phi: (\mathbb{Z}, +) \to (\mathbb{Z}, +)$  is defined by  $\phi(n) = 2n$  for all  $n \in \mathbb{Z}$ , then  $\operatorname{Ker} \phi = \{0\}$  and  $\phi(G) = 2\mathbb{Z}$ .
- 2 If  $\phi: (\mathbb{R}^*, \bullet) \to (\mathbb{R}^*, \bullet)$  defined by  $\phi(x) = x^2$  for all  $x \in \mathbb{R}^*$ , then  $Ker \phi = \{-1, 1\}$  and  $\phi(G) = \mathbb{R}^+$ .
- If  $\phi: (\mathbb{R}, +) \to (\mathbb{R}^+, \bullet)$  defined by  $\phi(x) = e^x$  for all  $x \in \mathbb{R}$ , then  $Ker \phi = \{0\}$  and  $\phi(G) = \mathbb{R}^+$ .
- If  $\phi: (\mathbb{Z}, +) \to (\mathbb{Z}_n, +)$  defined by  $\phi(r) = [r]$  for all  $r \in \mathbb{Z}$ , then  $\operatorname{Ker} \phi = \{n\mathbb{Z}\}$  and  $\phi(G) = \mathbb{Z}_n$ .



#### MTH223A

Yvette Fajardo-Lim

Lagrange's Theorem and Homomorphisms <sub>Cosets</sub>

Lagrange's Theorem

Kernel and Image of a Homomorphism

### **Theorem**

If  $\phi: G \to H$  is a homomorphism, then  $Ker \phi \leq G$  and  $\phi(G) \leq G$ .

### Theorem

If G is cyclic and  $\phi: G \to H$  is a homomorphism, then  $\phi(G)$  is also cyclic.

### **Theorem**

 $\phi: G \to H$  is one-to-one if and only if  $Ker \phi = \{e_G\}$ .



#### MTH223A

Yvette Fajardo-Lim

Lagrange's Theorem and Homomorphisms

Lagrange's Theorem Homomorphis

Kernel and Image of a Homomorphism

### **Theorem**

If  $\phi: G \to H$  is a homomorphism, then  $Ker \phi \leq G$  and  $\phi(G) \leq G$ .

### **Theorem**

If G is cyclic and  $\phi: G \to H$  is a homomorphism, then  $\phi(G)$  is also cyclic.

## Theorem

 $\phi: G \to H$  is one-to-one if and only if  $Ker \phi = \{e_G\}$ 



#### MTH223A

Yvette Fajardo-Lim

Lagrange's
Theorem and
Homomorphisms

Cosets
Lagrange's

Theorem Homomorphis

Kernel and Image of a Homomorphism

### **Theorem**

If  $\phi: G \to H$  is a homomorphism, then  $Ker \phi \leq G$  and  $\phi(G) \leq G$ .

### **Theorem**

If G is cyclic and  $\phi: G \to H$  is a homomorphism, then  $\phi(G)$  is also cyclic.

## Theorem

 $\phi: G \to H$  is one-to-one if and only if  $Ker \phi = \{e_G\}$ .



#### MTH223A

Yvette Fajardo-Lim

Lagrange's Theorem and Homomorphisms

Lagrange Theorem

Homomorphisms
Kernel and Image
of a
Homomorphism

### **Theorem**

Let  $\phi: G \to H$  be a homomorphism with  $Ker \phi = K$ , and take  $g \in G$  and  $h \in \phi(G)$ ; then the set  $\{x \in G | \phi(x) = h\}$  equals the right coset Kg.

## Example

Take the homomorphism  $\phi: (\mathbb{Z}, +) \to (\mathbb{Z}_5, +)$  defined by  $\phi(r) = [r]$  for all  $r \in \mathbb{Z}$ ; then  $\text{Ker}\phi = 5\mathbb{Z}$ . If we take g = 7 then  $h = \phi(g) = [7] = [2]$ ; the set of elements  $x \in \mathbb{Z}$  with  $\phi(x) = [2]$  is the right coset  $5\mathbb{Z} + 2 = 5\mathbb{Z} + 7$ .



MTH223A

Yvette Fajardo-Lim

Lagrange's Theorem and Homomorphisms Cosets

Lagrange Theorem

Kernel and Image of a Homomorphism

### **Theorem**

Let  $\phi: G \to H$  be a homomorphism with  $Ker \phi = K$ , and take  $g \in G$  and  $h \in \phi(G)$ ; then the set  $\{x \in G | \phi(x) = h\}$  equals the right coset Kg.

## Example

Take the homomorphism  $\phi: (\mathbb{Z}, +) \to (\mathbb{Z}_5, +)$  defined by  $\phi(r) = [r]$  for all  $r \in \mathbb{Z}$ ; then  $\text{Ker}\phi = 5\mathbb{Z}$ . If we take g = 7 then  $h = \phi(g) = [7] = [2]$ ; the set of elements  $x \in \mathbb{Z}$  with  $\phi(x) = [2]$  is the right coset  $5\mathbb{Z} + 2 = 5\mathbb{Z} + 7$ .



#### MTH223A

Yvette Faiardo-Lim

Theorem and

Kernel and Image Homomorphism

## Corollary

Let  $\phi: G \to H$  be a homomorphism, and suppose

|G| = n,  $|Ker\phi| = m$ ,  $\phi(G) = r$ ; then n = mr.



MTH223A

Yvette Fajardo-Lim

Lagrange's Theorem and Homomorphisms

Homomorphisms
Kernel and Image
of a
Homomorphism

## Corollary

Let  $\phi: G \to H$  be a homomorphism, and suppose |G| = n,  $|Ker \phi| = m$ ,  $\phi(G) = r$ ; then n = mr.

## Example

If |G| = 16 and |H| = 9, the only homomorphism  $\phi : G \to H$  is the trivial map sending all elements of G to  $e_H$  since  $|\phi(G)|$  must divide both 16 and 9, it must be 1, so  $\phi(G) = e_H$ .