

神经网络的数据表示

数字化万物,一切皆可张量

祥水村东头@AI识堂

《Python 深度営习》读书笔记系列课程(对应2.2节 pp24-29)

目录

() 何为张量

2 张量的分类

04 现实世界中的张量

本次胶片内容、及涉及相关代码均可移步至Github进行下载

我的代码 Github 地址:

https://github.com/david-cal/Reading-Note-for-Chollet-of-Deep-Learning-with-Python

张量定义 (pp 23)

张量(tensor),是一种数据容器,具体来说就是多维numpy数组,不同维度的数组由不同数目的轴构成。

0,1,2,3 4,5,6,7 8,9,10,11

12,13,14,15 16,17,18,19 20,21,22,23 0,1,2,3 4,5,6,7 8,9,10,11 [0,1,2,3]

er D	张量类别	维度数(轴数)	示例
$\frac{2}{\sqrt{2}} \int_{v_{m}}^{2} \frac{1}{\sqrt{2}} \int_{v_{m}$	标量 (OD张量)	0	np.array (12)
$\frac{m_0 = \frac{M_m}{N_A}}{2e U_m}$	向量 (1D张量)	1 X	np.array ([12, 3, 6, 14, 7])
18 46, = 1 e= 11 Side 1 1 2 5 3 kTN	矩阵 (2D张量)	2 ***	np.array ([[5,78,2,34,0] , [6,79,3,35,1] , [7,80,4,36,2]],)
2 e Um	矩阵的组合 (3D及更高维度张量)	- -	np.array([[[5,78,2,34,0], [6,79,3,35,1], [7,80,4,36,2]], \(\)
$\frac{3kTN_A}{M_{mm}} = \frac{3kTN_A}{M_{mm}} = \frac{2}{2\omega s} \frac{1}{2\omega s} $	S = 1 SRMT MR 10 E Shpg		[[5,78,2,34,0], [6,79,3,35,1], [7,80,4,36,2]],])

张量切片(slicing),访问张量部分元素

现实世界中的张量——文本

Count how many times each unique word occurs in text.

- > 对每个单词进行独热编码
- > 每个单词由11位向量表示

•	count	each	how	in	many	occurs	text	times	unique	word
0	1	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0
0	0	0	0	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	1	0	0	0	0
0	0	0	0	1	0	0	0	0	0	0
0	0	0	0	0	0	0	1	0	0	0
1	0	0	0	0	0	0	0	0	0	0

现实世界中的张量——图片

"人生之旅历途甚长,所争欲不在一年半月, 万不可因此着急失望,招精神上之萎靡"

> ——梁启超致梁思成家书 献给正在逐梦路上努力奔跑的你我他

感谢聆听 THANK YOU 本次胶片内容、及涉及相关代码均可移步至Github进行下载 感谢您的投币三连!

我的代码 Github 地址:

https://github.com/david-cal/Reading-Note-for-Chollet-of-Deep-Learning-with-Python