Inference for sample means

Lecture 12b (STAT 24400 F24)

1/16

Confidence intervals for μ

• If X_1,\ldots,X_n are i.i.d. with mean μ and variance σ^2 (not necessarily normal), then

$$\bar{X} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$$

is an approximate $1-\alpha$ confidence interval for μ , i.e.,

$$\mathbb{P}\Big(\mu \in \bar{X} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\Big) \approx 1 - \alpha$$

(when σ^2 is known).

Confidence intervals for μ

• Suppose $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$

We've derived

$$\mathbb{P}\Big(|\bar{X} - \mu| > z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\Big) = \alpha$$

where $z_{\alpha/2} = \Phi^{-1}(1 - \alpha/2)$, recall $\Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-t^2/2} dt$.

We may state the equation as

$$\mathbb{P}\Big(|\bar{X} - \mu| \le z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\Big) = 1 - \alpha$$

Equivalently,

$$\mathbb{P}\Big(\bar{X} - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{X} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\Big) = 1 - \alpha$$

which can be written as

$$\mathbb{P}\Big(\mu \in \bar{X} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\Big) = 1 - \alpha$$

this is a $(1-\alpha)$ confidence interval for μ

(when σ^2 is known).

2/16

Confidence intervals for $\boldsymbol{\mu}$

In practice, generally cannot compute $ar{X}\pm z_{\alpha/2}\cdot rac{\sigma}{\sqrt{n}}$ since σ^2 is unknown.

Can we use sample variance S^2 in place of σ^2 ?

• Suppose $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathsf{N}(\mu, \sigma^2)$

We just learned

$$t_{n-1}^{-1}(1-lpha/2)$$
, where $F_{t_{n-1}}=\mathsf{CDF}$ of t_{n-1}

$$\frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t_{n-1} \quad \Rightarrow \quad \mathbb{P}\left(|\bar{X} - \mu| > t_{n-1,\alpha/2} \cdot \frac{S}{\sqrt{n}}\right) = \alpha$$

$$\Rightarrow \quad \mathbb{P}\left(\mu \in \bar{X} \pm t_{n-1,\alpha/2} \cdot \frac{S}{\sqrt{n}}\right) = 1 - \alpha$$
this is a $(1 - \alpha)$ confidence interval for μ

Remarks: t- vs z-confidence intervals for μ

• Note that the t distribution has heavier tails than the normal,

$$t_{n-1,\alpha/2} > z_{\alpha/2}$$

- Therefore, in general, the confidence interval for μ is wider if σ^2 unknown.
- For large n, they will be similar: $t_{n-1,\alpha/2} \setminus z_{\alpha/2}$ as $n \to \infty$.

5/16

Why "confidence"?

If $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$, then we've calculated

$$\mathbb{P}(\mu\in\ ar{X}\pm 1.96\cdotrac{\sigma}{\sqrt{n}})=95\%$$
 (& a similar calculation for σ^2 unknown with t distr.)

<u>Caution</u>: Suppose n=100 and $\sigma^2=1$, and we observe data $\bar{X}=5.5$. Is it correct to write

$$\mathbb{P}(\mu \in 5.5 \pm 1.96 \cdot \frac{1}{\sqrt{100}}) = 95\%$$
?

No. This is incorrect — the parameter μ is not random!

Analogy: if X=# Heads out of 4 coin tosses, $\mathbb{P}(X=0)=\frac{1}{2^4}$. But after observing X=3 Heads, we can't write $\mathbb{P}(3=0)=\frac{1}{2^4}$.

Confidence intervals for μ : overview

• If $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$,

these confidence intervals have $1 - \alpha$ coverage for μ :

- If σ^2 is known, use $\bar{X} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$
- If σ^2 is unknown, use $ar{X} \pm t_{n-1, lpha/2} \cdot rac{\mathcal{S}}{\sqrt{n}}$
- If X_1, \ldots, X_n are i.i.d. with mean μ ,

then the confidence intervals above have $\approx 1-\alpha$ coverage (as long as n is not too small)

6/16

Why "confidence" (rather than probability)

We say we have 95% <u>confidence</u> that μ lies in 5.5 \pm 1.96 \cdot $\frac{1}{\sqrt{100}}$

Interpretation: if 1000 researchers run the same experiment, and each researcher computes a conf. int. $\bar{X}\pm 1.96\cdot \frac{1}{\sqrt{100}}$, then $\approx 95\%$ of these intervals will contain μ the value of \bar{X} will be different for each research

Comparison: Bayesian inference for μ

Recall the Bayesian inference framework:

- The unknown parameter is random, drawn from the prior distribution
- After observing data, compute the parameter's posterior distribution

For data $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$, to perform inference on μ :

- If σ^2 is known, we should choose a prior distribution for μ
- If σ^2 is unknown, we should choose a prior distribution for (μ, σ^2) (even if we are only interested in estimating μ)

9/16

Bayesian inference for μ (σ^2 is known) cont.

⇒ The conditional density (i.e., the posterior density) satisfies

$$f_{\mu|X_1,...,X_n}(t \mid x_1,...,x_n) = \frac{f_{\mu,X_1,...,X_n}(t,x_1,...,x_n)}{f_{X_1,...,X_n}(x_1,...,x_n)}$$

$$= \left(\frac{\text{terms not}}{\text{depending on } t} \right) \cdot \exp \left\{ -\frac{\left(t - \left[\overline{x} \cdot \frac{n/\sigma^2}{n/\sigma^2 + 1/\sigma_0^2} + \mu_0 \cdot \frac{1/\sigma_0^2}{n/\sigma^2 + 1/\sigma_0^2} \right] \right)^2}{2 \cdot \frac{1}{n/\sigma^2 + 1/\sigma_0^2}} \right\}$$

 \implies The posterior distribution is:

$$\mu \mid X_1, \dots, X_n \sim \mathsf{N}\left(\underbrace{\bar{X} \cdot \frac{n/\sigma^2}{n/\sigma^2 + 1/\sigma_0^2} + \mu_0 \cdot \frac{1/\sigma_0^2}{n/\sigma^2 + 1/\sigma_0^2}}_{\approx \bar{X} \text{ if } n \text{ large}}, \underbrace{\frac{1}{n/\sigma^2 + 1/\sigma_0^2}}_{\approx \frac{\sigma^2}{\sigma^2} \text{ if } n \text{ large}}\right)$$

Bayesian inference for μ (σ^2 is known)

Simple case: σ^2 is known

$$\begin{cases} \mu & \sim \ \mathsf{N}(\mu_0, \sigma_0^2) \ \leftarrow \ \mathsf{the \ prior \ distribution} \\ X_1, \dots, X_n \mid \mu & \stackrel{\mathsf{iid}}{\sim} \ \mathsf{N}(\mu, \sigma^2) \end{cases}$$

Calculate the joint distribution:

$$\begin{split} f_{\mu,X_1,\dots,X_n}(t,x_1,\dots,x_n) &= f_{\mu}(t) \cdot f_{X_1,\dots,X_n|\mu}(x_1,\dots,x_n|t) \\ &= \underbrace{\frac{1}{\sqrt{2\pi\sigma_0^2}} e^{-(t-\mu_0)^2/2\sigma_0^2}}_{\text{prior density}} \cdot \underbrace{\prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x_i-t)^2/2\sigma^2}}_{\text{likelihood}} \end{split}$$

$$= \left(\frac{\text{terms not}}{\text{depending on } t} \right) \cdot \exp \left\{ -\frac{\left(t - \left[\bar{\mathbf{x}} \cdot \frac{n/\sigma^2}{n/\sigma^2 + 1/\sigma_0^2} + \mu_0 \cdot \frac{1/\sigma_0^2}{n/\sigma^2 + 1/\sigma_0^2} \right] \right)^2}{2 \cdot \frac{1}{n/\sigma^2 + 1/\sigma_0^2}} \right\}$$

10 / 16

Bayesian inference for μ (σ^2 is known) cont.

Using the posterior distribution, can also compute posterior probabilities, e.g., $\mathbb{P}(\mu > 0 \mid X_1, \dots, X_n)$.

We can also compute a credible interval —

$$\mathbb{P}\Big(\mu \in \Big(\underline{\bar{X}} \cdot \frac{n/\sigma^2}{n/\sigma^2 + 1/\sigma_0^2} + \mu_0 \cdot \frac{1/\sigma_0^2}{n/\sigma^2 + 1/\sigma_0^2} \Big) \pm z_{\alpha/2} \cdot \sqrt{\frac{1}{n/\sigma^2 + 1/\sigma_0^2}} \ \Big| \ X_1, \dots, X_n \Big) = 1 - \alpha$$

$$\approx \underline{\bar{X}} \text{ if } n \text{ large}$$

interval endpoints are \approx equal

 \Rightarrow For large *n*, Bayesian credible interval \approx frequentist confidence interval

interpretation: posterior prob. for a random μ

interpretation: "confidence" for a non-random μ

11 / 16

Bayesian inference for μ (Remarks)

Remarks

Although the Bayesian credible interval for μ and the frequentist confidence interval for μ have similar endpoints, their interpretations are very different.

13 / 16

Recap - population parameters and sample statistics

 X_1, \dots, X_n are of a common distribution we want to learn.

- $\mu = \mathbb{E}(X_i)$ is called the population mean, often the quantity we want to estimate.
- $\sigma^2 = \mathbb{E}[(X_i \mu)^2]$ is called the population variance, we may also want to learn.
- In general, $\mathbb{E}(X_i^r)$ is called the *r*th population moment.
- In general, the distribution may be parametrized by some population parameter θ .

The X_i 's will be observed (as data) to make inference on population parameters.

- $\{X_1, \dots, X_n\}$ is sometimes called the sample (realized into numbers once observed).
- *n* is called the sample size.
- $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ is called the sample mean.
- $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$ is called the sample variance.
- $\frac{1}{n} \sum_{i=1}^{n} X_i^r$ is called the *r*th sample moment.

Bayesian inference for μ (σ^2 unknown, outline)

If μ and σ^2 are both unknown...

$$\begin{cases} (\mu, \sigma^2) \sim \text{Prior density } f_{\mu, \sigma^2} \\ X_1, \dots, X_n \mid \mu, \sigma^2 \stackrel{\text{iid}}{\sim} \text{N}(\mu, \sigma^2) \end{cases}$$

Joint distribution:

$$f_{\mu,\sigma^2,X_1,...,X_n}(t,z,x_1,...,x_n) = f_{\mu,\sigma^2}(t,z) \cdot \prod_{i=1}^n \frac{1}{\sqrt{2\pi z}} e^{-(x_i-t)^2/2z}$$

If only interested in the posterior distribution of μ , we marginalize over σ^2 :

$$f_{\mu,X_1,...,X_n}(t,x_1,...,x_n) = \int_{z=0}^{\infty} f_{\mu,\sigma^2,X_1,...,X_n}(t,z,x_1,...,x_n) dz.$$

And then calculate the conditional density $f_{\mu\mid X_1,...,X_n}(t\mid x_1,...,x_n)$ to find the posterior distribution of μ .

14 / 16

Look ahead

Next, we will look into parameter estimation systematically.

- Criteria of a good estimator.
- Method of moments for parameter estimation.
- · Likelihood method for parameter estimation and beyond.