

Linux Kernel

Trainer: Leonid Karpov

Организация курса

Карпов Леонид leonid.karpov@auriga.com

Структура курса:

- 1. История и обзор ОС Linux сегодня
- 2. Организация файловой системы, системные вызовы
- 3. Менеджмент памяти
- 4. Процессы, планировщик задач
- 5. Обработчики прерываний, примитивы синхронизации

- Ранние ЭВМ (Z1, ENIAC, Colossus, 1936-1944)
 - Программа задается в аналоговом виде (коммутационная доска, перфокарты)
 - Однотипные задачи
- Развитие ЭВМ, возможность хранить программу в ОЗУ (Manchester Mark I, EDSAC, EDSAC-2, IBM 709, 1945-1960)
 - Выполнение программы занимает меньше времени, чем её запуск
 - Появляется необходимость планировать задачи и разделять ресурсы между пользователями
 - Batch processing прообраз скриптов, выполяется программой-монитором (предшественник ОС)
- Появление первых ОС:
 - CTSS (Compatible Time-Sharing System, 1961, MIT) многопользовательская ОС, time-sharing, защищенный режим ядра, консольные команды
 - Multics (Multiplexed Information and Computing Service, 1964, MIT, GE, Bell Labs (AT&T)) концепция виртуальной памяти, иерархическая файловая система, динамическая линковка

- UNIX, изначально Unics (Uniplexed Information and Computing Service, Bell Labs (AT&T), 1969-1978)
 - Многопользовательная многозадачная система
 - Терминал и командная строка (Bourne Shell)
 - Представление устройств в виде файлов
 - Мультиплатформенность
- BSD (Berkeley Software Distribution, 1978)
 - Изначально аддон для Research UNIX, затем код UNIX был заменён
 - Лицензия BSD
 - Сетевой стек, сокеты Беркли (POSIX)
- Коммерческие версии UNIX
 - UNIX System V (начиная с 1983, AT&T)
 - SunOS (ныне Solaris)
 - IBM AIX
 - HP-UX
 - Начало разработки единого стандарта Single UNIX Specification

- MINIX (Andrew Tanenbaum, 1987)
 - UNIX-подобная ОС, не наследник UNIX
 - Микроядерная архитектура
 - Первые версии пример реализации архитектуры в учебных целях
- Проект GNU (GNU's not Unix, Richard Stallman, 1983)
 - Идея свободного ПО с открытым исходным кодом (GPL)
 - Hurd официальное ядро GNU OS
 - К 1991 г. разработано множество утилит (emacs, bash, gcc etc.)
- Linux (Linus Torvalds, 1991)
 - Minix и GNU оказали влияние на ОС
 - Была задумана совместимой с UNIX
 - Цель реализации воплотить свои идеи реализации ОС, хобби
 - Портированы bash и gcc
 - Разработка подхвачена энтузиастами

- Стандарты UNIX:
 - POSIX (Portable Operating System Interface) набор стандартов, определяющих интерфейс ОС, требует сертификации
 - SUS (Single UNIX Specification) определяет реализацию интерфейса, включает в себя POSIX, позволяет использовать торговую марку UNIX требует оплаты
 - Примеры сертифицированных UNIX систем IBM AIX, HP-UX, Mac OS X, Solaris
- UNIX-подобные ОС:
 - Поведение соответствует концепциям UNIX/Образованы под влиянием UNIX четкого определения нет
 - Могут быть сертифицированы по стандарту POSIX, (например, QNX Neutrino, Integrity, LynxOS)
- Стандарты GNU/Linux:
 - Не сертифицирована по стандартам SUS и POSIX
 - Большинство версий POSIX-совместимые (не сертифицированы, но соответствуют стандарту)
 - Проект LSB (Linux Standard Base) разработан для дистрибутивов GNU/Linux, опирается на существующие спецификации (POSIX, SUS и другие открытые стандарты), расширяя и дополняя их

- Масштаб разработки Linux:
 - 1991 версия 0.01, 10 тыс. строк кода
 - 1994 версия 1.0, 310 тыс. строк кода
 - 1996 версия 2.0, 777 тыс. строк кода
 - 2003 версия 2.6, почти 6 млн строк кода
 - 2008 совокупный труд оценен в 73 000 человеко-лет
 - 2011 версия 3.0, 14 млн строк кода
 - 2015 версия 4.0, 19 млн строк кода
 - 2019 версия 5.0, 26 млн строк кода
- Дистрибутивы GNU/Linux:
 - Состоит из ядра Linux, библиотек GNU, оконного менеджера, дополнительного ПО, документации и окружения (KDE, Gnome, xfce...)
 - На данный момент существует 276 известных дистрибутивов (по данным distrowatch.com)
 - Коммерческие дистрибутивы (RHEL, SUSE Linux), часть кода ядра Linux продукт коммерческой разработки

- Распространенность GNU/Linux: (по данным gs.statcounter.com и w3techs.com на 2020 г.)
 - Среди десктопных ОС менее 2%
 - Среди публичных серверных ОС (веб, почтовые, DNS сервера) около 40%
 - Среди встраиваемых систем около 38%
 - Среди мэйнфреймов около 28%
 - Среди суперкомпьютеров 100% (на 2017 г.)
 - Android (основан на ядре Linux) среди мобильных устройств около 70%
- Плюсы Linux:
 - Возможность тонкой настройки
 - UNIX-подобность позволяет легко переключаться между разными UNIX-подобными ОС
 - Широкая база драйверов и поддерживаемых платформ
 - Открытый исходный код возможность изучения и экспериментирования
 - Множество дистрибутивов

O630p Linux

- Задачи ОС:
 - Абстрагирование от аппаратной платформы предоставление интерфейса пользовательским программам (системные вызовы, интерфейс файловой системы)
 - Защита системных ресурсов (пространство пользователя и ядра)
 - Распределение системных ресурсов (изолированные процессы, контроль доступа к файлам)
- Основные концепции GNU/Linux:
 - Является многопользовательской системой
 - Предоставляет различные права доступа к файлам на основании User ID и Group ID
 - Является многозадачной системой поддерживает изолированные друг от друга процессы
 - Воплощает модульную архитектуру ядра ОС
 - Использует интерфейс командной строки
 - Поддерживает простое конфигурирование с помощью текстовых файлов
 - Представляет ресурсы в виде файлов
 - Поддерживает конвейеры
 - Воплощает иерархическую файловую систему

- User space:
 - Пользовательский интерфейс (Библиотеки, API)
 - Системные задачи (утилиты, демоны, системные программы)
- Kernel space:
 - Взаимодействие с аппаратной частью (процессор, ввод/вывод, прерывания, прочие устройства)
 - Менеджмент ресурсов (процессы, планировщик, отображение памяти)

- Виртуальное адресное пространство это максимально доступное адресное пространство для отображения физической памяти
- Объем виртуальной памяти и объём физической оперативной памяти не связаны друг с другом
- Адресное пространство включает:
 - Kernel space располагается по смещению PAGE_OFFSET, адреса отображены на одинаковые физические страницы для всех процессов,
 - User space уникально для процесса, адреса отображены на разные физические страницы (хотя виртуальные адреса могут быть одинаковыми)
 - Смещение и размер обоих пространств зависит от архитектуры и конфигурации системы разрядности CPU, конфигурации Page Table
 - Смещение пространства ядра может быть сконфигурировано случайным образом (CONFIG_RANDOMIZE_BASE)

Основные состояния ОС:

- Режим пользователя:
 - Непривилегированный режим процессора (напр., Ring 3 для x86, PL0 для ARM)
 - Доступ к памяти процесса в User Space, контролируется с помощью Page Table
 - Ограниченный набор инструкций процессора
 - Нет прямого доступа к Hardware для этого нужны драйвера
 - Запросы к ОС через системные вызовы
- Режим ядра:
 - Привилегированный режим процессора (напр., Ring 0 для x86, PL1 для ARM)
 - Доступ ко всей памяти
 - Исполнение привилегированных инструкций
 - Прямой доступ к HW

Способы исполнения программ:

- Процесс:
 - Создается как потомок уже существующего процесса
 - Имеет собственное пространство пользователя
 - Может создать несколько потоков исполнения
- Поток:
 - Использует адресное пространство процесса
 - Может переключаться между режимами пользователя и ядра с помощью прерываний или системных вызовов
 - Собственный user stack в user space
 - Собственный kernel stack в kernel space
- Ядерный поток:
 - Выполняется только в режиме ядра
 - Не имеет пользовательского пространства
 - Обычно создаются для выполнения регулярных действий в ядре (напр. обработка прерываний от устройства или регулярные действия)

Вопросы