Class_Piggybank_2

จงเขียนคลาส piggybank เพื่อผลิตอ็อบเจกต์กระปุกออมสิน ที่สามารถหยอดเหรียญ<mark>มูลค่าอะไรก็ได้</mark> โดยจำกัดจำนวนเหรียญ<u>รวมทุกแบบ</u>ใน กระปุกแล้ว<u>ห้ามเกิน 100 เหรียญ</u> (ถ้าหยอดแล้วเกินไม่รับเพิ่ม) ตามโครงของคลาสและตัวอย่างการใช้งานข้างล่างนี้

โครงของคลาส piggybank	ตัวอย่างการใช้งาน piggybank	:
class piggybank: definit(self): # มีตัวแปร self.coins เก็บ dict เริ่มต้นให้ว่าง ๆ	<pre>p1 = piggybank() print(int(p1))</pre>	# 0
# มี key เป็นมูลค่าเหรียญ และ value เป็นจำนวนเหรียญ	p1.add(0.25, 4) print(float(p1))	# เพิ่มเหรียญ 25 สตางค์ 4 เหรียญ # 1.0
def add (self, v, n): # ถ้าเพิ่มจำนวนเหรียญในกระปุกอีก n เหรียญแล้วเกิน 100 # จะไม่ให้เพิ่ม ให้คืน False แทนว่า เพิ่มไม่สำเร็จ # แปลง v เป็น float ก่อน (เพิ่ม 5 กับ 5.0 จะได้เหมือนกัน) # ถ้ากระปุกไม่เคยมีเหรียญ v ทำ self.coins[v]= 0	p1.add(0.50, 1) print(float(p1)) p1.add(10, 1)	# เพิ่มเหรียญ 50 สตางค์ 1 เหรียญ # 1.5 # เพิ่มเหรียญ 10 บาท 1 เหรียญ
#ทำคำสั่ง self.coins[v] += n #คืน True แทนว่าเพิ่มสำเร็จ	<pre>print(float(p1)) print(p1)</pre>	# 11.5 # {0.25:4, 0.5:1, 10.0:1}
deffloat(self): # นำค่าของเหรียญคูณกับจำนวนเหรียญ ของเหรียญทุกแบบ # ต้องคืนจำนวนแบบ float เท่านั้น อยากคืนศูนย์ ก็ต้อง 0.0	<pre>print(p1.add(10, 1)) print(float(p1))</pre>	# True เพิ่มได้ # 21.5
defstr(self): # คืนสตริงที่แสดงจำนวนเหรียญแต่ละแบบตามตัวอย่าง # โดยให้เรียงเหรียญ <mark>ตามมูลค่าจากน้อยไปมาก</mark>	<pre>print(p1.add(1,94)) print(float(p1))</pre>	# False เพิ่มไม่ได้ เกิน 100 เหรียญ # 21.5

เมท็อด __float_ ถูกเรียกเมื่อ float(p) ทำงาน โดยที่ p เป็น piggybank ได้ผลลัพธ์เป็น float แทนค่าของ p
เมท็อด str ถูกเรียกเมื่อ str(p) ทำงาน โดยที่ p เป็น piggybank ได้ผลลัพธ์เป็นสตริงแทนค่าของ p

การส่งตรวจ

ให้นำโปรแกรมข้างล่างนี้ ต่อท้าย class piggybank ที่เขียนข้างบนนี้ แล้วจึงส่งให้ grader ตรวจ

```
cmd1 = input().split(';')
cmd2 = input().split(';')
p1 = piggybank(); p2 = piggybank()
for c in cmd1: eval(c)
for c in cmd2: eval(c)
```

ข้อมูลนำเข้า

คำสั่งต่าง ๆ เพื่อการทดสอบคลาส

ข้อมูลส่งออก

ผลการทำงานของโปรแกรมข้างบนที่อาศัยคลาส piggybank

ตัวอย่าง

input (จากแป้นพิมพ์)	output (ทางจอภาพ)
<pre>p1.add(1.11,2); print(float(p1), p1) print(float(p2), p2)</pre>	2.22 {1.11:2} 0.0 {}
p1.add(0.25,1);p1.add(5,1);p1.add(0.25,2);p1.add(5.0,1) print(float(p1), str(p1))	10.75 {0.25:3, 5.0:2}
p1.add(0.25,1); print(p1.add(0.25,100)) print(p1.add(0.25,99)); print(float(p1))	False True 25.0