CALL LIBRARIES AND THEIR DATA

```
In [46]:
          import seaborn as sns
          sns.get_dataset_names()
          ['anagrams',
Out[46]:
           'anscombe',
           'attention',
           'brain_networks',
           'car crashes',
           'diamonds',
           'dots',
           'dowjones',
           'exercise',
           'flights',
           'fmri',
           'geyser',
           'glue',
           'healthexp',
           'iris',
           'mpg',
           'penguins',
           'planets',
           'seaice',
           'taxis',
           'tips',
           'titanic']
```

1-How to Import Libraries?

```
In [2]: import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
```

How we Read the Data?

```
In [3]: music = pd.read_csv("mxmh_survey_results.csv")
```

3-How we Call the Data?

```
In [5]: music.head(10)
```

Out[5]:

0	Timestamp	Age	Primary streaming service	Hours per day	While working	Instrumentalist	Composer	Fav genre	Exploratory	F lang
0	8/27/2022 19:29:02	18.0	Spotify	3.0	Yes	Yes	Yes	Latin	Yes	
1	8/27/2022 19:57:31	63.0	Pandora	1.5	Yes	No	No	Rock	Yes	
2	8/27/2022 21:28:18	18.0	Spotify	4.0	No	No	No	Video game music	No	
3	8/27/2022 21:40:40	61.0	YouTube Music	2.5	Yes	No	Yes	Jazz	Yes	
4	8/27/2022 21:54:47	18.0	Spotify	4.0	Yes	No	No	R&B	Yes	
5	8/27/2022 21:56:50	18.0	Spotify	5.0	Yes	Yes	Yes	Jazz	Yes	
6	8/27/2022 22:00:29	18.0	YouTube Music	3.0	Yes	Yes	No	Video game music	Yes	
7	, 8/27/2022 22:18:59	21.0	Spotify	1.0	Yes	No	No	К рор	Yes	
8	8/27/2022 22:33:05	19.0	Spotify	6.0	Yes	No	No	Rock	No	
9	8/27/2022 22:44:03	18.0	I do not use a streaming service.	1.0	Yes	No	No	R&B	Yes	

10 rows × 33 columns

4-Define the shape of Data?

In [7]: music.shape

Out[7]: (736, 33)

5-How to get whole data Information?

In [8]: music.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 736 entries, 0 to 735
Data columns (total 33 columns):

#	Column	Non-Null Count	Dtype
0	Timestamp	736 non-null	object
1	Age	735 non-null	float64
2	Primary streaming service	735 non-null	object
3	Hours per day	736 non-null	float64
4	While working	733 non-null	object
5	Instrumentalist	732 non-null	object
6	Composer	735 non-null	object
7	Fav genre	736 non-null	object
8	Exploratory	736 non-null	object
9	Foreign languages	732 non-null	object
10	BPM	629 non-null	float64
11	Frequency [Classical]	736 non-null	object
12	Frequency [Country]	736 non-null	object
13	Frequency [EDM]	736 non-null	object
14	Frequency [Folk]	736 non-null	object
15	Frequency [Gospel]	736 non-null	object
16	Frequency [Hip hop]	736 non-null	object
17	Frequency [Jazz]	736 non-null	object
18	Frequency [K pop]	736 non-null	object
19	Frequency [Latin]	736 non-null	object
20	Frequency [Lofi]	736 non-null	object
21	Frequency [Metal]	736 non-null	object
22	Frequency [Pop]	736 non-null	object
23	Frequency [R&B]	736 non-null	object
24	Frequency [Rap]	736 non-null	object
25	Frequency [Rock]	736 non-null	object
26	<pre>Frequency [Video game music]</pre>	736 non-null	object
27	Anxiety	736 non-null	float64
28	Depression	736 non-null	float64
29	Insomnia	736 non-null	float64
30	OCD	736 non-null	float64
31	Music effects	728 non-null	object
32	Permissions	736 non-null	object
dtvne	es: float64(7), object(26)		

dtypes: float64(7), object(26)
memory usage: 189.9+ KB

6-How to describe Data?

In [11]: music.describe()

Out[11]:

	Age	Hours per day	ВРМ	Anxiety	Depression	Insomnia	OCD
count	735.000000	736.000000	6.290000e+02	736.000000	736.000000	736.000000	736.000000
mean	25.206803	3.572758	1.589948e+06	5.837636	4.796196	3.738451	2.637228
std	12.054970	3.028199	3.987261e+07	2.793054	3.028870	3.088689	2.842017
min	10.000000	0.000000	0.000000e+00	0.000000	0.000000	0.000000	0.000000
25%	18.000000	2.000000	1.000000e+02	4.000000	2.000000	1.000000	0.000000
50%	21.000000	3.000000	1.200000e+02	6.000000	5.000000	3.000000	2.000000
75%	28.000000	5.000000	1.440000e+02	8.000000	7.000000	6.000000	5.000000
max	89.000000	24.000000	1.000000e+09	10.000000	10.000000	10.000000	10.000000

7-How many number of unique values in a Data?

<pre>music.nunique()</pre>			
[12]: music.nunique()			
ut[12]: Timestamp	735		
Age	61		
Primary streaming service	6		
Hours per day	27		
While working	2		
Instrumentalist	2		
Composer	2		
Fav genre	16		
Exploratory	2		
Foreign languages	2		
BPM	135		
Frequency [Classical]	4		
Frequency [Country]	4		
Frequency [EDM]	4		
Frequency [Folk]	4		
Frequency [Gospel]	4		
Frequency [Hip hop]	4		
Frequency [Jazz]	4		
Frequency [K pop]	4		
Frequency [Latin]	4		
Frequency [Lofi]	4		
Frequency [Metal]	4		
Frequency [Pop]	4		
Frequency [R&B]	4		
Frequency [Rap]	4		
Frequency [Rock]	4		
Frequency [Video game music]	4		
Anxiety	12		
Depression	12		
Insomnia	12		
OCD	13		
Music effects	3		
Permissions	1		
dtype: int64			

8-How we do Data cleaning by using pandas and numpy?

Data is already cleaned so there is no need for data cleaning.

PLOTTING

9-Count Plot

NOTE: In count plot there is only one numerical X variable we use.

Import libraries:

```
In [30]: import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
```

Read Data:

```
In [ ]: music = pd.read_csv("mxmh_survey_results.csv")
```

Read Data of first 10 values:

```
In [31]: music.head(10)
```

Out[31]:

0	Timestamp	Age	Primary streaming service	Hours per day	While working	Instrumentalist	Composer	Fav genre	Exploratory	F lang
	8/27/2022 19:29:02	18.0	Spotify	3.0	Yes	Yes	Yes	Latin	Yes	
	8/27/2022 19:57:31	63.0	Pandora	1.5	Yes	No	No	Rock	Yes	
2	8/27/2022 21:28:18	18.0	Spotify	4.0	No	No	No	Video game music	No	
3	8/27/2022 21:40:40	61.0	YouTube Music	2.5	Yes	No	Yes	Jazz	Yes	
4	8/27/2022 21:54:47	18.0	Spotify	4.0	Yes	No	No	R&B	Yes	
!	8/27/2022 21:56:50	18.0	Spotify	5.0	Yes	Yes	Yes	Jazz	Yes	
	8/27/2022 22:00:29	18.0	YouTube Music	3.0	Yes	Yes	No	Video game music	Yes	
-	8/27/2022 22:18:59	21.0	Spotify	1.0	Yes	No	No	К рор	Yes	
	8/27/2022 22:33:05	19.0	Spotify	6.0	Yes	No	No	Rock	No	
9	8/27/2022 22:44:03	18.0	I do not use a streaming service.	1.0	Yes	No	No	R&B	Yes	

10 rows × 33 columns

Set Style:

```
In [33]: sns.set_style("white")
```

Draw plot:

```
In [34]: # set figure size
plt.figure(figsize=(8,5))

p=sns.countplot(x="Composer", data=music, hue="Composer", saturation=4, palette='dark'
plt.title("andriod-games data")
plt.show()
```

andriod-games data

How we select random color & Horizental count plot:

```
In [35]: plt.figure(figsize=(8,5))

p=sns.countplot(y="Primary streaming service", data=music, hue="Composer", saturation=custom_palette = sns.color_palette("Paired", 2)
sns.palplot(custom_palette)

plt.title("andriod-games data")
plt.show()
```


Multiple variables in Countplot & with different style:

```
In [37]: sns.set_style("whitegrid")
  music = pd.read_csv("mxmh_survey_results.csv")

plt.figure(figsize=(8,5))

p=sns.countplot(x="Primary streaming service", data=music, hue="Frequency [R&B]", satuplt.show()

140

Frequency [R&B]

Sometimes

Never
```


10-Box/Boxen Plot.

NOTE: In box & Boxen plot we use two X & Y variable may contain one numeric and one cetagorical data. (Quartile, outliyers, median, positive skewed, negative skewed)

Set Style:

```
In [38]: sns.set_style("white")
```

Simple Box Plot with labels:

```
In [42]: plt.figure(figsize=(8,5))
    sns.boxplot(x="Music effects", y="Age", data=music)
    plt.xlabel("What is Music effects ", size=10, weight='bold')
    plt.ylabel("What is your Age", size=10, weight='bold')
    plt.title("Music Data", size=10, weight='bold')
    plt.show()
```


Box Plot with Mean:

```
plt.figure(figsize=(8,5))
sns.boxplot(x="Music effects", y="Age", data=music, showmeans=True, meanprops= {"market plt.xlabel("What is Music effects ", size=10, weight='bold')
plt.ylabel("What is your Age", size=10, weight='bold')
plt.title("Music Data", size=10, weight='bold')
plt.show()
```


In []:

BOXEN PLOT with 2 variable:

```
In [48]: plt.figure(figsize=(8,5))
    sns.boxenplot(x="Exploratory", y="Age", data=music)
    plt.xlabel("What is Music effects ", size=10, weight='bold')
    plt.ylabel("What is your Age", size=10, weight='bold')
    plt.title("Music Data", size=10, weight='bold')
    plt.show()
```


Boxplot with swarmplot:

```
In [56]: sns.boxplot(data =music, x='Music effects',y='Age',showmeans= True,)
sns.swarmplot(data =music, x='Music effects',y='Age', size=3, color='black')
plt.show()

E:\New folder\lib\site-packages\seaborn\categorical.py:1296: UserWarning: 14.4% of the points cannot be placed; you may want to decrease the size of the markers or use st ripplot.
    warnings.warn(msg, UserWarning)
```


Single Boxen Plot:

```
In [60]: sns.boxenplot(x="Hours per day",data=music, palette='Dark2')
plt.show()
```


Single Box Plot:

Boxplot with Dodge:

```
In [67]: plt.figure(figsize=(8,5))
    p=sns.boxplot(x="Hours per day", y="Frequency [Rap]", hue="Composer", data=music, pale
    plt.xlabel("What is Music Timing ", size=10, weight='bold')
    plt.ylabel("What is Frequency of Rap", size=10, weight='bold')
    plt.title("Music Data", size=10, weight='bold')
    plt.show()
```


11-Bar Plot.

NOTE: In line plot X variable in cetagorical form & Y is in numeric. (Is data followed normal distribution or not)

Multiple variable bar plot:

```
In [73]: sns.catplot(data = music, x='Music effects',y='Age',hue="Fav genre", kind='bar', capsi
plt.show()
```


Group bar plot:

In [72]: sns.catplot(data = music, x='Music effects',y='Age',hue="Composer", kind='bar', capsiz
plt.show()

Seperating groups:

Removing Error bars:

horizental bar plot:

In [77]: P=sns.barplot(x="Age", y="Music effects", data=music, linewidth=5, facecolor=(1, 1, 1, plt.show()

12-Histogram Plot.

NOTE: In Histogram plot only one numerical variable we use. (it usually tell us about normal distribution, and how our data is spreaded)

Simple Hist plot:

Hist plot by adjusting bin size:

```
In [86]: sns.histplot(data=music, x='OCD', palette='Antique', binwidth=2)
plt.show()
```


Hist plot by adjusting number os bins:

```
In [89]: sns.histplot(data=music, x='Insomnia', palette='03', bins=10)
plt.show()
```


13-Histogram show with trend line

```
In [78]: sns.histplot(data=music, x="Hours per day", kde=True)
plt.show
```

Out[78]: <function matplotlib.pyplot.show(close=None, block=None)>

In [79]: sns.histplot(data=music, x="OCD", kde=True)
plt.show()


```
In [82]: sns.histplot(data=music, x="Anxiety", kde=True)
plt.show()
```


In [83]: sns.histplot(data=music, x="Insomnia", kde=True)
plt.show()

14-Scatter Plot.

NOTE: In Scatter plot we use two X & Y variable both may contain numerical data. (corelation)


```
In [94]: sns.scatterplot(data = music, x='OCD',y='Age',hue="Composer")
plt.show()
```


15-Violin Plot

```
In [101... sns.catplot(data = music, x='Composer',y='Age',hue='Frequency [R&B]',kind='violin')
    plt.show()
```


In [102... sns.catplot(data = music, x='Frequency [R&B]',y='Age',hue='Composer',kind='violin')
plt.show()

In [104... sns.catplot(data = music, x='Composer',y='Age',hue='Primary streaming service',kind='\
plt.show()

In [106... sns.catplot(data = music, x='Composer',y='Age',hue='Primary streaming service', col='E
 plt.show()

In [108... sns.catplot(data = music, x='Frequency [R&B]',y='Age',hue='Composer',kind='violin', complt.show()

In [111...

```
sns.catplot(data = music, x='Frequency [R&B]',y='Age',hue='Composer',kind='violin', costs.swarmplot(data = music, x='Frequency [R&B]',y='Age',size=2)
plt.show()
```


16-Line Plot

NOTE: In line plot we use two X & Y variable both may contain numerical data. (trend line, link, if one variable icreases which type of effects on other variable)

```
In [113... sns.lineplot(data=music, x='OCD',y='Age', color = 'red')
plt.show()
```


In [115... sns.lineplot(data=music, x='Anxiety',y='Age', color = 'Green')
 plt.show()


```
In [120... sns.lineplot(data=music, x='OCD',y='Age', hue='Composer', palette="dark")
   plt.show()
```


In [121... sns.lineplot(data = music, x='Hours per day',y='Age',hue='Primary streaming service')
plt.show()


```
In [122... sns.lineplot(data = music, x='Hours per day',y='Age',hue='Fav genre')
plt.show()
```



```
In [ ]: sns.stripplot(data= music, x= "lunch", y= "math score", jitter=True, hue="gender")
    plt.show()
```

17-Stripplot

```
In [125... sns.stripplot(data= music, x='Music effects',y='Age',hue="Composer", jitter=True)
plt.show()
```


18-Draw a simple liner line graph

```
In [126... sns.lmplot( data = music, x='Hours per day',y='Age' ,hue='Fav genre')
    plt.show()
```


19-Scatterplot Matrix

```
In [143... sns.pairplot(music, hue="Composer")
   plt.show()
```


20-Anscombe's quartet

In [144... sns.lmplot(data=music, x="Anxiety", y="Age", col="Frequency [R&B]", hue="Frequency [R&B]", plt.show()

21-Joint kernel density estimate

In [147... sns.jointplot(data=music,x="Anxiety", y="Age", hue="Frequency [R&B]", kind="kde")
 plt.show()

тр Г 1.