What are we weighting for?

A mechanistic model for probability weighting

Ole Peters Alexander Adamou Yonatan Berman Mark Kirstein

D-TEA 2020, 16 June 2020

Main Results

Ergodicity

Estimatio

Conclusio

Main Results

Ergodicity

Ergodicity Question

Estimatio

Canalusis

Definition of Probability Weighting (PW)

(Tversky and Kahneman 1992, p. 310, Fig. 1, relabelled axes)

- low probabilities treated as higher; high probabilities treated as lower
- stable empirical pattern: inverse-S shape
- Cumulative Prospect Theory (CPT)

Classical interpretation of PW:

maladaptive irrational cognitive bias

In search of a mechanism

- \hookrightarrow How does this pattern emerge?

Task: model payout, x, of a gamble as a random variable.

Disinterested Observer (DO)

DO assigns PDF p(x)CDF $F_p(x)$

Decision Maker (DM)

DM assigns different PDF w(x) $CDF F_w(x)$

Mark Kirstein

Main Result

Ergodicity

Estimatio

Conclusio

Scales, Locations, Shapes

.

Main Result

Ergodicity

Estimatio

. . .

Thought experiment: DM assumes greater scale

Mark Kirste

Main Result

.....

Ergodicity

Estimatio

. . .

For the case of two Gaussians with different scale we derive a functional form

$$w(p) = p^{\frac{1}{\alpha^2}} \underbrace{\frac{\left(2\pi\sigma^2\right)^{\frac{1-\alpha^2}{2\alpha^2}}}{\alpha}}_{\text{normalisation factor}} , \qquad (1)$$

where

- DO's scale is σ
- DM's scale is $\alpha\sigma$
- $\alpha < 1 \rightarrow \mathsf{S}$ shape
- ullet $\alpha > 1
 ightarrow$ inverse-S shape

Mark Kirstein

Main Result

Ergodicity Question

Estimation

Conclusi

Interim conclusion

- DM's greater scale gives inverse-S shape (unimodal distributions)
- difference in locations gives asymmetry
- reproduces observations of probability weighting

Job done. Thank you for your attention ;)

The Ergodicity Question

D 1 1 111

Ergodicity

Question

Conclusio

Typical DO concern

What happens on average to the ensemble of subjects?

Typical DM concern

What happens to me on average over time?

Why DM's greater scale?

iviain Result

Weighting

Question

Estimatio

Conclusio

- DM has no control over experiment
- experiment may be unclear to DM
- DM may not trust DO
- . .

Experiencing probabilities

- iviaiii ivesuit
- Ergodicity Question
- Estimation
- . . .

- probabilities are not observable
- probabilities encountered as
 - known frequency in ensemble of experiments (DO)
 - frequencies estimated over time (DM)
- → estimates have uncertainties cautious DM accounts for these

Main Results

Rare Event
• p(x) = 0.001

100 observations

• $\sim 99.5\%$ get 0 or 1 events

• $\hat{p}(x) = 0$ or $\hat{p}(x) = 0.01$

 \hookrightarrow 1000% uncertainty in $\hat{p}(x)$

Common Event

• p(x) = 0.5

• 100 observations

ullet $\sim 99.5\%$ get between 35 and 65 events,

• $0.35 < \hat{p}(x) < 0.65$

 $\hookrightarrow \pm 15\%$ uncertainty in $\hat{p}(x)$

 \hookrightarrow small p(x), small count \hookrightarrow small count, big uncertainty

DMs don't like surprises

To avoid surprises, DMs add estimation uncertainty $\varepsilon[p(x)]$ to every estimated probability, then normalize, s.t.

$$w(x) = \frac{p(x) + \varepsilon [p(x)]}{\int (p(s) + \varepsilon [p(s)]) ds}$$

Main Results

Ergodicity

Estimatio

DMs don't like surprises

To avoid surprises, DMs add estimation uncertainty $\varepsilon[p(x)]$ to every estimated probability, then normalize, s.t.

$$w(x) = \frac{p(x) + \varepsilon [p(x)]}{\int (p(s) + \varepsilon [p(s)]) ds}$$

Main Resul

Ergodicity Question

Estimatic

Conclusio

Classical interpretation of PW:

maladaptive irrational cognitive bias

Ergodicity Economics and probability weighting

- inverse-S shape: neutral indicator of different models of the world
- reported observations consistent with DM's extra uncertainty
- may arise from DM estimating probabilities over time
- \hookrightarrow Probability weighting is rational cautious behaviour under uncertainty over time
- Manuscript at https://www.researchers.one/article/2020-04-14
- Interactive code at https://bit.ly/lml-pw-count-b

Main Resul Probability

Question

. . .

Classical interpretation of PW:

maladaptive irrational cognitive bias

Ergodicity Economics and probability weighting

- inverse-S shape: neutral indicator of different models of the world
- reported observations consistent with DM's extra uncertainty
- may arise from DM estimating probabilities over time
- → Probability weighting is rational cautious behaviour under uncertainty over time
- Manuscript at https://www.researchers.one/article/2020-04-14
- Interactive code at https://bit.ly/lml-pw-count-b

Thank you for your attention!

References

Tversky, Amos and Daniel Kahneman (1992). "Advances in Prospect Theory: Cumulative Representation of Uncertainty". *Journal of Risk and Uncertainty* 5 (4), pp. 297–323. DOI:10.1007/BF00122574 (cit. on p. 4).