

Prerequisites:

- Start Gcloud instance
- Pull and start Docker image (marcelmittelstaedt/spark_base:latest)
- Start HDFS and YARN
- Start Jupyter Notebook
- Execute all preparation and example tasks of previous HandsOn slides of last lecture

2

1.) Start Spark Session:

3

2. Create External Spark Table title_ratings on HDFS containing data of IMDb file title.ratings.tsv

```
# EXERCISE 2) Create External Spark Table title ratings on HDFS containing data of IMDb file title.ratings.tsv
# Read IMDb title ratings CSV file from HDFS
df title ratings = spark.read \
    .format('csv') \
   .options(header='true', delimiter='\t', nullValue='null', inferSchema='true') \
    .load('/user/hadoop/imdb/title ratings/*.tsv')
# Save Dataframe back to HDFS (partitioned) as EXTERNAL TABLE and Parquet files
df title ratings.write \
    .format("parquet") \
    .mode("overwrite") \
    .option('path', '/user/hadoop/imdb/title ratings table') \
    .saveAsTable('default.title ratings')
# Check Results:
spark.sql('SELECT * FROM default.title ratings').show(3)
+----+
    tconst | averageRating | numVotes
tt0000001
                    5.7
                            1685
tt0000002
                    6.0
                             208
 tt0000003|
                    6.5
                            1425
only showing top 3 rows
```

3. Create External Spark Table name basics on HDFS containing data of IMDb file name.basics.tsv

```
# EXERCISE 3) Create External Spark Table name basics on HDFS containing data of IMDb file name.basics.tsv
# Read IMDb name basics CSV file from HDFS
df name basics = spark.read \
    .format('csv') \
    .options(header='true', delimiter='\t', nullValue='null', inferSchema='true') \
    .load('/user/hadoop/imdb/name basics/*.tsv')
# Save Dataframe back to HDFS (partitioned) as EXTERNAL TABLE and Parquet files
df name basics.write \
    .format("parquet") \
    .mode("overwrite") \
    .option('path', '/user/hadoop/imdb/name basics table') \
    .saveAsTable('default.name basics')
# Check Results:
spark.sql('SELECT * FROM default.name basics').show(3)
```

```
primaryName|birthYear|deathYear|
                                                  primaryProfession
   nconst
nm2511361
                                            \N | writer, editor, pro... | tt2261585, tt01922...
              Shane Vahey
                                  \N|
nm2511363 Adolf Seilacher
                                  \N|
                                                                null
                                            \N|casting departmen...|tt4029524,tt77364...
nm2511364
             Nora Brennan
                                  \N|
```

4.a) How many **movies** and how many **TV series** are within the IMDB dataset?

```
# EXERCISE 4a) How many movies and how many TV series are within the IMDB dataset?
# Programmatical Approach
from pyspark.sql.functions import col
df = spark.table('default.title basics partitioned') \
   .where(col('titleType').isin(['movie', 'tvSeries'])) \
   .groupBy('titleType') \
   .count()
df.show(100)
+----+
|titleType| count|
+----+
 tvSeries 202321
    movie | 569437
+----+
# EXERCISE 4a) How many movies and how many TV series are within the IMDB dataset?
# SQL Approach
df = spark.sql('''
   SELECT titleType, count(*)
   FROM default.title basics partitioned
   WHERE titleType IN ("movie", "tvSeries")
   GROUP BY titleType
   1111
df.show(100)
+----+
|titleType|count(1)|
+----+
 tvSeries 202321
    movie| 569437
+----+
```

4.b) Who is the **youngest** actor/writer/... within the dataset?

```
# EXERCISE 4b) Who is the youngest actor/writer/... within the dataset?
# Programmatical Approach
from pyspark.sgl.functions import col
df = spark.table('default.name basics') \
   .where(col('birthYear') != '\\N') \
    .sort(col('birthYear').desc())
df.show(3)
                   primaryName|birthYear|deathYear|primaryProfession|
  nm0894719
                  Sarah Vernon
                                   2021
                                                          actress | tt0084987,tt0090499
 nm11763191
                    Win Wilson
                                              \N|
                                                                                 \N
                                   2020
                                                            null
nm12122609 Adam James Sanderson
                                   2020
only showing top 3 rows
# EXERCISE 4b) Who is the youngest actor/writer/... within the dataset?
# SQL Approach
df = spark.sql(r"SELECT * FROM default.name basics WHERE birthYear <> '\\N' ORDER BY birthYear DESC")
df.show(3)
                   primaryName|birthYear|deathYear|primaryProfession|
 nm0894719
                  Sarah Vernon
                                  2021
                                                          actress | tt0084987, tt0090499
                                              \N|
nm11763191
                    Win Wilson
                                  2020
                                                            null
nm12122609 Adam James Sanderson
                                  2020
                                                            actor
                                                                         tt12668798
only showing top 3 rows
```

- - equal or newer than year 2010
 - have an average rating equal or better than 8,1
 - have been voted more than 100.000 times

```
# EXERCISE 4c) Create a list (tconst, original title, start year, average rating, num votes) of movies which are:
# - equal or newer than year 2010
  - have an average rating equal or better than 8,1
# Programmatical Approach
from pyspark.sql.functions import col
df_title_basics = spark.table('default.title_basics partitioned')
df title ratings = spark.table('default.title ratings')
# JOIN Data Frames
joined df = df title basics.join(df title ratings, ['tconst'])
# Filter DF
df = joined df \
    .where(col('startYear') >= '2010') \
    .where(col('averageRating') > 8.1) \
    .where(col('numVotes') > 100000) \
    .select('tconst', 'originalTitle', 'startYear', 'averageRating', 'numVotes')
# Show Result
df.show(10, False)
```

tconst	originalTitle	startYear	averageRating	numVote
tt7221388	Cobra Kai	+ 2018	8.6	110286
	Avengers: Infinity War	2018	8.4	843065
tt4633694	Spider-Man: Into the Spider-Verse	2018	8.4	380545
tt6763664	The Haunting of Hill House	2018	8.6	183333
tt6966692	Green Book	2018	8.2	384828
tt2380307	Coco	2017	8.4	389537
tt3647998	Taboo	2017	8.4	115867
tt3920596	Big Little Lies	2017	8.5	157469
tt5071412	Ozark	2017	8.4	189152
tt5290382	Mindhunter	2017	8.6	218549

only showing top 10 rows

4.d) Save result of c) as external Spark Table to HDFS.

```
# EXERCISE 4d) Save result of c) as external Spark Table to HDFS.
# Save Dataframe back to HDFS as external table and Parquet files
df.write \
   .format("parquet") \
   .mode("overwrite") \
   .option('path', '/user/hadoop/imdb/top_movies_table') \
   .saveAsTable('default.top movies')
# Check Result
spark.sql('SELECT * FROM default.top movies').show(3)
                originalTitle|startYear|averageRating|numVotes
   tconst
|tt4158110|
                   Mr. Robot
                                 2015
                                                   334399
tt4508902 One Punch Man: Wa...
                                 2015
                                                   117086
|tt2431438|
                                 2015
                      Sense8
                                              8.3
                                                   139787
only showing top 3 rows
```

- 5. Create a Spark Table name_basics_partitioned, which:
 - contains all columns of table name_basics
 - is partitioned by column partition_is_alive, containing:
 - "alive" in case actor is still alive
 - "dead" in case actor is already dead

```
EXERCISE 5) Create a Spark Table name_basics_partitioned, which:
   - contains all columns of table name basics
   - is partitioned by column partition is alive, containing:
       - "alive" in case actor is still alive
       - "dead" in case actor is already dead
from pyspark.sql.functions import col, when, lit
df = spark.table('default.name basics')
# Add column 'partition is alive'
df name basics = df.withColumn('partition is alive',
                               when(col('deathYear') == '\\N', lit('alive')).otherwise(lit('dead')))
# Save Dataframe back to HDFS (partitioned) as EXTERNAL TABLE and Parquet files
df name basics.repartition('partition is alive').write \
    .format("parquet") \
    .mode("overwrite") \
    .option('path', '/user/hadoop/imdb/name basics partitioned table') \
    .partitionBy('partition is alive') \
    .saveAsTable('default.name basics partitioned')
# Check Results:
spark.sgl('SELECT * FROM default.name basics partitioned WHERE primaryName = "Heath Ledger"').show(3)
```

6. Create a partitioned Spark table imdb_movies_and_ratings_partitioned, Which:

- contains all columns of the two tables title_basics_partitioned

and title_ratings and

- is partitioned by start year of movie (create and add column partition_year).

```
# EXERCISE 6) Create a partitioned Spark table imdb movies and ratings partitioned, which:
  - contains all columns of the two tables title basics partitioned and title ratings and
   - is partitioned by start year of movie (create and add column partition year).
# Programmatical Approach
from pyspark.sql.functions import col
df_title_basics = spark.table('default.title_basics_partitioned')
df title ratings = spark.table('default.title ratings')
# Join DataFrames
joined df = df title basics.join(df title ratings, ['tconst'])
# Add partition column
df = joined df.withColumn('partition year', col('startYear'))
# Save DataFrame as external Spark table partitioned by column 'partition year'
df.repartition('partition year').write \
    .format("parquet") \
    .mode("overwrite") \
    .option('path', '/user/hadoop/imdb/imdb movies and ratings partitioned table') \
    .partitionBy('partition year') \
    .saveAsTable('default.imdb movies and ratings partitioned')
# Check Results:
spark.sql('SELECT tconst, titleType, primaryTitle, startYear, endYear, partition year '
           FROM default.imdb movies and ratings partitioned').show(3)
```

only showing top 3 rows

- 7. Create following plot, which visualizes:
 - the amount of movies (type!)
 - per year
 - since 2000


```
# EXERCISE 7) Create following plot, which visualizes:
    - the amount of movies (type!)
   - per year
   - since 2000
import matplotlib.pyplot as plt
import pandas
# Create DataFrame to be plotted
df = spark.table('default.title basics partitioned') \
    .select('startYear', 'titleType') \
    .where(col('startYear') > 2000) \
    .where(col('titleType') == 'movie') \
    .groupBy('startYear') \
    .count() \
    .sort(col('startYear').asc())
# Convert Spark DataFrame to Pandas DataFrame
pandas df = df.toPandas()
# Plot DataFrame
pandas_df.plot.bar(x='startYear', y='count')
```

<AxesSubplot:xlabel='startYear'>

