EECS 545: Machine Learning

Lecture 20. Hidden Markov Models

Honglak Lee 3/23/2011

Outline

Hidden Markov Models

Sequential Data

- Some data has intrinsic sequential structure.
 - Time series: speech, EKGs, stock market, etc.
 - Spatial sequences: DNA, natural language, etc.

- We could treat data points as i.i.d. samples
 - But that's false (they are not i.i.d.), so any conclusions we draw are likely to be wrong.
 - We are ignoring valuable constraints in the data.

Markov Chains

• A Markov chain is a series of random variables $z^{(1)}, \ldots, z^{(M)}$, such that

$$p(\mathbf{z}^{(m+1)}|\mathbf{z}^{(1)},\dots,\mathbf{z}^{(m)}) = p(\mathbf{z}^{(m+1)}|\mathbf{z}^{(m)})$$

$$= (\mathsf{k-1}) \quad \mathsf{k}^{m} \quad (\mathsf{k-1}) \quad \mathsf{k}^{m}$$

- This is the *Markov property*, and can be summarized as:
 - The future is independent of the past, given the present.
- Often used to model temporal evolution.

Markov Models

If a sequence has the Markov property

$$p(\mathbf{x}_n|\mathbf{x}_1,\ldots,\mathbf{x}_{n-1})=p(\mathbf{x}_n|\mathbf{x}_{n-1})$$

then the joint probability distribution

$$\underline{p(\mathbf{x}_1,\ldots,\mathbf{x}_N)} = \prod_{n=1}^N p(\mathbf{x}_n|\mathbf{x}_1,\ldots,\mathbf{x}_{n-1})$$

has a simplified form

mplified form
$$P^{(X_1,X_2,X_3)} = P^{(X_1)} P^{(X_2|X_1)} P^{(X_3|X_1,X_2)}$$

$$p(\mathbf{x}_1, \dots, \mathbf{x}_N) = p(\mathbf{x}_1) \prod_{n=2}^N p(\mathbf{x}_n | \mathbf{x}_{n-1}) \quad P(\mathbf{x}_1 | \mathbf{x}_{n-1})$$

$$(X) \longrightarrow (X) \longrightarrow (X) \longrightarrow ...$$

Higher-Order Markov Chains

 We can extend the concept of Markov chain to more complex, but still local, kinds of dependency.

$$p(\mathbf{x}_1, \dots, \mathbf{x}_N) = p(\mathbf{x}_1) p(\mathbf{x}_2 | \mathbf{x}_1) \prod_{n=3}^N p(\mathbf{x}_n | \mathbf{x}_{n-1}, \mathbf{x}_{n-2})$$

$$\boxed{\qquad \qquad } \gamma(\mathbf{x}_1 | \mathbf{p}_{\mathbf{x}_1})$$

Markov chain with latent variable

• For each observation x_n , we assume there is a latent variable z_n , and the z_n form a Markov chain.

Markov chain with latent variable

- This leads to
 - Hidden Markov Models
 - when the latent variable is discrete, and
 - Linear Dynamical Systems
 - when the latent variable is Gaussian.

• Use 1-of-K coding for values of z_n . $Z_{n\bar{i}} = 1$ iff Z_n is k+h state

A is the table of transition probabilities.

$$A_{jk} \equiv p(z_{\underline{n}} = 1 | z_{\underline{n-1}(j)} = 1)$$

 This is not a graph of variables. These are transitions among values of one variable.

Lattice representation of transition diagram

The prior distribution at the initial state:

$$p(\mathbf{z}_1|\pi) = \prod_{k=1}^{K} \pi_k^{z_{1k}} \qquad \begin{array}{c} p(\mathbf{z}_1 = \mathbf{1}) = \pi_1 \\ p(\mathbf{z}_1 = \mathbf{1}) = \pi_2 \\ p(\mathbf{z}_1 = \mathbf{1}) = \pi_2 \end{array}$$

The conditional distribution (transition table):

$$p(\mathbf{z}_n|\mathbf{z}_{n-1},\mathbf{A}) = \prod_{k=1}^K \prod_{j=1}^K A_{jk}^{\frac{1}{2n-1,j} \frac{1}{2nk}} \text{ at time in, states}$$
 at time in, states

• Emission probabilities of observables: $p(z_n = k^{11}|z_m)$

$$p(\mathbf{x}_n|\mathbf{z}_n,\phi) = \prod_{k=1}^{K} p(\mathbf{x}_n|\phi_k)^{\widehat{z_{nk}}} = 1$$

 So, the overall joint probability distribution, over both observed and latent variables, is

$$p(\mathbf{X}, \mathbf{Z}|\theta) = p(\mathbf{z}_1|\pi) \left[\prod_{n=2}^{N} p(\mathbf{z}_n|\mathbf{z}_{n-1}, \mathbf{A}) \right] \prod_{m=1}^{N} p(\mathbf{x}_m|\mathbf{z}_m, \phi)$$

• The parameters are: $\theta = \{\pi, \mathbf{A}, \phi\}$

We can use EM to estimate these from data X.

Generative sampling from HMM

Transition: 90% of staying in the same state,
 5% chance of transition to each other state.

Constraints on HMM transitions

- Left-to-right constraint to describe a temporal process.
- Max change constraint to describe continuity.

HMM for online handwritten digits

 One set of states for the top arc, then a cusp, then a set of states for the base.

Maximum Likelihood for the HMM

• Given a set X of observations, we want to use maximum likelihood to estimate the

parameters
$$\theta = \{ \overline{x}, (A), \phi \}$$

- and the latent variables **Z**.

$$p(\mathbf{X}|\theta) = \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\theta) \qquad \underset{\theta}{\text{Mosep:}} \sum_{i \in I} Q_{i} \text{Mark}(i)$$

Estep: QerP(z/x)

Part of applying E-M to this will be evaluating

$$p(\mathbf{Z}|\mathbf{X},\theta^{\text{old}})$$

$$p(\mathbf{Z}|\mathbf{X},\theta^{\text$$

Part of the E-step is evaluating

$$p(\mathbf{Z}|\mathbf{X}, \theta^{\mathrm{old}})$$

a key term is

is
$$\gamma(\mathbf{z}_n) = p(\mathbf{z}_n|\mathbf{X}) = \frac{p(\mathbf{X}|\mathbf{z}_n)p(\mathbf{z}_n)}{p(\mathbf{X})}$$

where

$$\gamma(\mathbf{z}_n) = \frac{p(\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{z}_n) p(\mathbf{x}_{n+1}, \dots, \mathbf{x}_N | \mathbf{z}_n)}{p(\mathbf{X})} = \frac{\alpha(\mathbf{z}_n) \beta(\mathbf{z}_n)}{p(\mathbf{X})}$$

we define

$$a(\mathbf{z}_n) \equiv p(\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{z}_n)$$
 $p(\mathbf{x}_n, \mathbf{x}_n)$ p

Forward-Backward Algorithm

Treat these terms as messages:

$$\alpha(\mathbf{z}_n) \equiv p(\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{z}_n)$$

 $\beta(\mathbf{z}_n) \equiv p(\mathbf{x}_{n+1}, \dots, \mathbf{x}_N | \mathbf{z}_n)$

Send one forward__

$$\alpha(\mathbf{z}_n) = p(\mathbf{x}_n | \mathbf{z}_n) \sum_{\mathbf{z}_{n-1}} \alpha(\mathbf{z}_{n-1}) p(\mathbf{z}_n | \mathbf{z}_{n-1})$$

And the other backward

$$\beta(\mathbf{z}_n) = \sum_{\mathbf{z}_{n+1}} \beta(\mathbf{z}_{n+1}) p(\mathbf{x}_{n+1} | \mathbf{z}_{n+1}) p(\mathbf{z}_{n+1} | \mathbf{z}_n)$$

Q. Verify this

$$\beta(Z_n) = P(X_{n+1} \cdot \cdot \cdot \cdot X_N \mid Z_n)$$

$$= \sum_{Z_{n+1}} P(X_{n+1} \cdot \cdot \cdot \cdot \cdot X_N \mid Z_{n+1} \mid Z_n)$$

$$= \sum_{Z_{n+1}} P(X_{n+2} \cdot \cdot \cdot \cdot \cdot \cdot \cdot X_N \mid Z_{n+1} \mid Z_n) P(X_{n+1} \mid Z_{n+1}) P(Z_{n+1} \mid Z_n)$$

$$= \sum_{Z_{n+1}} P(X_{n+2} \cdot \cdot \cdot \cdot \cdot \cdot \cdot X_N \mid Z_{n+1} \mid Z_n) P(X_{n+1} \mid Z_{n+1}) P(Z_{n+1} \mid Z_n)$$

Forward-Backward Algorithm

Forward and Backward computations

E-M for HMMs

The E-Step estimates the latent variables

$$p(\mathbf{Z}|\mathbf{X}, \theta^{\text{old}})$$

The M-Step updates the parameters

$$\theta = \{\pi, \mathbf{A}, \phi\}$$

• After convergence, we have the maximum likelihood values of all these, but not the most likely path

Q. Derive the update rule for M-step

Estep:
$$Q(Z_1) \propto Q(Z_1) \beta(Z_1)$$

Mstep: $P(Z_1=k) = \frac{Counts(Z_1=k)}{\sum Counts(Z_1=k')} = \frac{Q(Z_1=k) \beta(Z_1=k)}{\sum Q(Z_1=j) \beta(Z_1=j)}$

$$P(X_{1}|Z_{n-k}) = Y_{k} = \sum_{n=1}^{N} \frac{X_{n}}{A(Z_{n}=k)}$$

$$N(X_{n}|M_{k},Z_{k})$$

$$\sum_{k=1}^{N} \frac{X_{n}}{A(Z_{n}=k)} \frac{X_{n}}{A(Z_{n}=k)}$$

$$\sum_{n=1}^{N} \frac{X_{n}-M_{k}}{A(Z_{n}=k)} \frac{X_{n}-M_{k}}{A(Z_{n}=k)}$$

$$\lim_{n \to \infty} \frac{X_{n}-M_{k}}{A(Z_{n}=k)} \frac{X_{n}-M_{k}}{A(Z_{n}=k)}$$

$$\lim_{n \to \infty} \frac{X_{n}-M_{k}}{A(Z_{n}=k)} \frac{X_{n}-M_{k}}{A(Z_{n}=k)}$$

$$\lim_{n \to \infty} \frac{X_{n}-M_{k}}{A(Z_{n}=k)} \frac{X_{n}-M_{k}}{A(Z_{n}=k)}$$

The Viterbi Algorithm

- This assumes that we have the HMM model including its parameters $\theta = \{\pi, \mathbf{A}, \phi\}$
- We are given the sequence X of observations and we want the most likely sequence Z of states. $V \in \mathbb{R}^n$

The Viterbi Algorithm

- For each state in z_n , keep track of
 - the probability of reaching that state,
 - the most likely path for reaching that state, and
 - the probability of that path (the Viterbi path).

- This can be updated to z_{n+1} in K^2 time.
 - Multiply by the emission probability of \mathbf{x}_n ,
 - and all possible transition probabilities.

Next

Reinforcement Learning

- Four lectures from the Sutton & Barto book
 - The RL problem and the MDP solution approach
 - Finding optimal policies: DP and MC
 - Finding optimal policies: temporal differences
 - Generalization and function approximation

Other Material on Learning

- Mitchell, Machine Learning, 1997.
- From Russell & Norvig, Artificial Intelligence: A Modern Approach, second edition, 2003
 - Ch.18: Decision trees, ensemble methods, and computational learning theory.
 - Ch.19: Learning and prior knowledge.
 - Ch.20: Statistical learning (cf. Bishop)
 - Ch.21: Reinforcement learning (cf. Sutton & Barto)
- From Bishop, PRML.
 - Ch.14: Combining models (including boosting)