Shiash InfoTech Solution

Customer Churn Prediction using Machine Learning

Presented by Yugaash Sridhar

Abstract

This project analyzes customer behavior using machine learning to predict churn, identify high-risk groups, and provide actionable insights through visualizations, enabling targeted retention strategies to boost loyalty and profitability.

Overview

01 Introduction 05 Model Evaluation 09 Result

02 Dataset Overview 06 Feature Importance 10 Conclusion

03 Data Preprocessing 07 Visualizations

04 Model Selection 08 Insights and Recommendations

Introduction

Objective:

- Predict customer churn and understand behavior trends.
- Enable businesses to reduce churn and improve profitability.

Problem Statement:

- High customer churn leads to revenue loss.
- Early identification enables better retention strategies.

Approach: Use machine learning models and visualizations to analyze patterns

Dataset Overview

Dataset Information:

- Source: Telco Customer Churn Dataset (e.g., Kaggle).
- Number of Records: [e.g., 7043 rows]
- Features: 21 columns, including demographics, service details, and financial information.
- Target Variable: Churn (1 = Churned, 0 = Not Churned).

Sample Features:

- Tenure: Duration with the company.
- Monthly Charges: Monthly subscription fee.
- ContractType: Month-to-Month, One Year, etc.
- PaymentMethod: Credit Card, Bank Transfer, etc.

Data Preprocessing

Missing Value Handling:

• Filled missing values in TotalCharges with the median.

Encoding Categorical Variables:

- Label Encoding for binary columns (e.g., Churn).
- One-Hot Encoding for multi-category columns (e.g., InternetService).

Scaling:

• Standardized numerical columns like MonthlyCharges and Tenure using StandardScaler.

Feature Selection:

• Removed redundant columns (e.g., CustomerID).

Model Selection

- Algorithm Used: Random Forest Classifier
 - Why Random Forest?
 - Handles mixed data types (categorical + numerical).
 - Robust to overfitting.
 - Provides feature importance insights.
- Hyperparameters:
 - Number of Trees: 100
 - Random State: 42

Model Evaluation

Performance Metrics:

Accuracy, Precision, Recall, F1-Score

Confusion Matrix:

• Visualize predictions

(e.g., True Positives, False Negatives).

• Include a heatmap of the confusion matrix.

Feature Importance

Top Features:

a. Monthly Charges: Customers with higher charges tend to churn.

b. Tenure: Short-tenure customers are more likely to churn.

c. ContractType: Month-to-month contracts have higher churn rates.

Visualizations

Insights and Recommendations

Insights:

- Customers with high MonthlyCharges and short Tenure are more likely to churn.
- Month-to-Month contracts have the highest churn rate.
- Internet service type impacts churn (e.g., Fiber Optic customers churn more).

Recommendations:

- 1. Offer discounts for high-charges customers.
- 2. Create loyalty programs for new customers.
- 3. Improve service quality for at-risk segments (e.g., Fiber Optic users).

Conclusion

The Customer Churn Prediction Project utilized a Random Forest model with high accuracy to predict churn and identify at-risk customers. Key factors like MonthlyCharges, Tenure, and ContractType revealed that 27% of customers churned, driven by high charges, short tenure, and month-to-month contracts. Visual insights highlighted correlations between churn and service usage. Recommendations include offering discounts to high-paying customers, loyalty programs for short-tenure users, and service improvements for Fiber Optic users, enhancing retention and profitability.

