

Tomosipo tutorial

Dirk Schut 21 June 2021

This presentation

- 1. What is Tomosipo
- 2. Installing Tomosipo
- 3. Three examples
 - a. Projection operator in simple 2D geometry
 - b. Unconventional geometry and visualization
 - c. FleX-ray FDK reconstruction
- 4. Deep learning
- 5. Questions

All scripts are available on git: https://github.com/D1rk123/tomosipo_examples

What is Tomosipo?

- CT projection library in Python
 - Astra backend
- Pytonic interface
- Flexible in defining geometries
- Good integration with other libraries

Interacting libraries

- PyTorch compatibility
 - Use Tomosipo operators in neural networks
 - Very fast CPU/GPU operations from pytorch available
- Reconstruction algorithms available in ts_algorithms repository
 - Implemented in Python -> flexible and readable
 - Using PyTorch -> fast
- Visualisation options
 - Render your geometry to mp4 or svg file
 - Visualize data using PyQtGraph

My experience with Tomosipo

- Implemented Noise2Inverse neural network variations for Allard at the start of my PhD
- Used Tomosipo for my own research on carousel geometry CT
- Contributed FDK-implementation to ts_algorithms
 - Optimized this code to handle big FleX-Ray datasets

My experience with Tomosipo

- Implemented Noise2Inverse neural network variations for Allard at the start of my PhD
- Used Tomosipo for my own research on carousel geometry CT
- Contributed FDK-implementation to ts_algorithms
 - Optimized this code to handle big FleX-Ray datasets

Disclaimer: I haven't used Astra/ODL/Flexbox, so I can't compare

Installing Tomosipo

- Tomosipo and ts_algorithms can be installed using pip
- Required packages:
 - Latest Astra 1.9.x development version
 - For ts_algorithms: pytorch version >= 1.7
 - For visualisation: ffmpeg, ffmpeg-python, pyqtgraph, pyqt, pyopengl

Installing Tomosipo

- Tomosipo and ts_algorithms can be installed using pip
- Required packages:
 - Latest Astra 1.9.x development version
 - For ts_algorithms: pytorch version >= 1.7
 - For visualisation: ffmpeg, ffmpeg-python, pyqtgraph, pyqt, pyopengl
- Both Pytorch and Astra rely on the cudatoolkit package:
 - o at most version 10.1 for the cluster
 - o at least version 11.0 for RTX3070 cards in new workstations
 - at most version 11.0 for Astra
 - version 11.0 not supported in pytorch 1.8 so use pytorch 1.7 instead

Conda installation script

11.0 for RTX30XX cards

```
conda create -n to_ex python=3.8 cudatoolkit=10.1 pytorch=1.7
astra-toolbox numpy scikit-image matplotlib tifffile tqdm ffmpeg
ffmpeg-python pyqtgraph pyqt pyopengl -c pytorch -c
astra-toolbox/label/dev -c defaults -c conda-forge

conda activate to_ex
pip install git+https://github.com/ahendriksen/tomosipo.git@develop
pip install git+https://github.com/ahendriksen/ts algorithms.git
```

Geometries in tomosipo

- Volume geometry specifies the volume
 - o Properties: size, position, resolution
- Projection geometry specifies the projection setup
 - Type: Cone or parallel beam
- Geometries are always 3D
 - [z, y, x] coordinates are used for volume data, and [height, time, width] for projection data, so
 the first dimension can be 1 for 2D setups
- Operator can be derived from a volume and projection geometry


```
import tomosipo as ts
from matplotlib import pyplot as plt
# Setup 2D volume and parallel projection geometry
vg = ts.volume(shape=(1, 256, 256))
pg = ts.parallel(angles=384, shape=(1, 384))
# Create an operator from the geometries
A = ts.operator(vg, pg)
# Create hollow cube phantom
x = np.zeros(A.domain_shape)
x[:, 10:-10, 10:-10] = 1.0
x[:, 40:-40, 40:-40] = 0.0
# Project the volume data to obtain the projection data and backproject it again
y = A(x)
b = A.T(y)
plt.figure(figsize=(9, 3))
plt.subplot(131); plt.imshow(x[0, ...]); plt.title("Volume data")
plt.subplot(132); plt.imshow(y[0, ...]); plt.title("Projection data")
plt.subplot(133); plt.imshow(b[0, ...]); plt.title("Backprojection")
plt.show()
```

import numpy as np

Making geometries just as complex as you need to

- All geometries have a standard form and a more flexible vector form
 - Standard forms assume a still volume and a rotating detector setup
 - o In vector form the orientation can change for every projection
- Standard geometries have good defaults
 - If only shape is provided, 1x1x1 voxels are assumed
 - If no position is defined, position at the origin is assumed
- Vector form geometries can be created in two ways
 - Create a vector geometry directly by providing the parameters as a vector over time
 - Convert a standard geometry and apply a transformation

Visualizing geometries

- Two possibilities:
 - o .mp4 video
 - animated .svg vector graphics
- Very simple
 - Just call ts.qt.animate or ts.svg functions with any number of geometries as arguments
- Displaying
 - save to file
 - show in Jupyter notebook

Working with PyTorch

- Torch Tensors behave very similarly to Numpy arrays
- Computations on the gpu also possible
 - Call tensor_name.cuda() to copy a tensor to the gpu
 - Call tensor name.cpu() to copy a tensor to RAM
- Tomosipo operators can act on Torch Tensors just like Numpy arrays
 - You get back the same type as you put in (numpy, gpu tensor, cpu tensor)
- ts_algorithms requires tensor input


```
import torch
import tomosipo as ts
import tomosipo.torch_support
from tomosipo.qt import animate
import ts_algorithms as tsa
from matplotlib import pyplot as plt
nump_proj = 500
# Setup 2D volume and fan beam projection geometry
vg = ts.volume(shape=(1, 256, 256), size=(0.1, 0.5, 0.5))
pg = ts.cone(shape=(1, 384), size=(0.1, 5), src_orig_dist=2.25, src_det_dist=3)
# Setup the a rotation and translation transform
tra = ts.translate(axis=np.array((0, 0, 1)), alpha=np.linspace(-2.5, 2.5, nump_proj))
rot = ts.rotate(pos=0, axis=np.array((1, 0, 0)), angles=np.linspace(0, 3*np.pi, nump_proj))
# Apply transformations to the volume geometry
vg = tra * rot * vg.to_vec()
pg = pg.to_vec()
# Create an operator from the transformed geometries
A = ts.operator(vg, pg)
```

import numpy as np

```
# Make an animation of the geometries and save it
s = ts.scale(1.8)
animation = animate(s * vg, s * pg)
animation.save("geometry_video.mp4")
# Create hollow cube phantom and copy it to the GPU
x = torch.zeros(A.domain_shape)
x[:, 10:-10, 10:-10] = 1.0
x[:, 40:-40, 40:-40] = 0.0
x = x.cuda()
# Project the volume data to obtain the projection data
y = A(x)
# Reconstruct using SIRT and copy everything back to RAM
recon = tsa.sirt(A, y, num_iterations=100)
recon = recon.cpu(); x = x.cpu(); y = y.cpu()
plt.figure(figsize=(9, 3))
plt.subplot(131); plt.imshow(x[0, ...]); plt.title("Volume data")
plt.subplot(132); plt.imshow(y[0, ...]); plt.title("Projection data")
plt.subplot(133); plt.imshow(recon[0, ...]); plt.title("Reconstruction")
plt.show()
```


FleX-ray example

- Datasets take up a lot of memory
 - o FDK algorithm
- Load the geometry from scan_settings.txt file

Working with large FleX-ray data

- High resolution FleX-ray dataset
 - Full resolution 1912 x 1520
 - 3600 projections
 - 21 GB on harddisk stored as 16 bit ints
 - 42 GB in memory stored as 32 bit floats
- Reconstruction volume of 1912x1912x1520 is also 22GB
- FDK algorithm optimized to work on CWI workstations
 - 64GB memory available
- Only works when no other copies are made

Working with large FleX-ray data

- High resolution FleX-ray dataset
 - Full resolution 1912 x 1520
 - o 3600 projections
 - 21 GB on harddisk stored as 16 bit ints
 - 42 GB in memory stored as 32 bit floats
- Reconstruction volume of 1912x1912x1520 is also 22GB
- FDK algorithm optimized to work on CWI workstations
 - 64GB memory available
- Only works when no other copies are made
- Memory use not the runtime bottleneck
 - +-13.5 minutes on workstation, +-26 minutes on voxel1 (with 128GB memory)
 - 72.5s with half the resolution and half the projections

Avoiding copies

- Load images directly into array
- Preprocess in place
- Do FDK weighting and filtering in place
 - Use overwrite_y=True in the FDK call
- Converting between torch and numpy does not copy the data

```
# Preprocesses the projection data without making copies
def preprocess_in_place(y, dark, flat):
    dark = dark[:, None, :]
    flat = flat[:, None, :]
    y -= dark
    y /= (flat - dark)
    torch.log_(y)
    y *= -1
```

Parse the scan settings

- Three settings needed for FDK reconstruction
 - Source detector distance
 - Source object distance
 - Binned pixel size
- Available in scan settings.txt file
 - Name: value format

```
SCAN DURATION : 7 minutes
```

COR: 478.000497

VC: 383.056383

HC: 478.000394

SDD: 1098.000000

SOD: 1001.305645

Voxel size : 136.425614

Magnification: 1.096568

```
# The function parse_scan_settings reads the scan settings.txt into a dictionary
scan_settings = parse_scan_settings(data_path / "scan settings.txt")
# Read the required settings from the file
src_det_dist = float(scan_settings["SDD"])
src_obj_dist = float(scan_settings["SOD"])
pixel_size = float(scan_settings["Binned pixel size"])
# Derive the other settings from the input data
detector_hor_res = y.shape[2]
detector_ver_res = y.shape[0]
num_angles = y.shape[1]
# Make volume and projection geometries with the parameters
vg = ts.volume(
    shape=(detector_ver_res, detector_hor_res, detector_hor_res),
    size=np.array((detector_ver_res, detector_hor_res, detector_hor_res))*pixel_size
pg = ts.cone(
    angles=num_angles,
    shape=(detector_ver_res, detector_hor_res),
    size=np.array((detector_ver_res, detector_hor_res))*pixel_size,
    src_det_dist = src_det_dist,
    src_orig_dist = src_obj_dist
# Combine the geometries into an operator
op = ts.operator(vg, pg)
```

```
# Make an FDK reconstruction
# If you are using large projection data you may want to use overwrite_y=True
reconstruction = tsa.fdk(A=op, y=y, overwrite_y=True)
print("Finished reconstruction")
# Variable y was overwritten with a filtered version of y because overwrite_y=True
# You probably don't want to use this so delete y to free up memory
del y
```

save_stack(save_path, reconstruction.numpy(), exist_ok=True)

Calibrating the projection geometry

Use a vector cone beam projection geometry to describe the exact setup

- FDK implementation is flexible
 - Allows off axis rotations
 - Allows non centered detectors
 - FDK approximations get worse further from the cone beam center.

Including operators in PyTorch neural networks

- Tomosipo operators can be converted to a differentiable PyTorch layer
 - tomosipo.torch_support.to_autograd(operator)
- Usable in a neural network like any other layer

Recap

- Tomosipo is useful in many situations
 - FleX-ray reconstructions
 - Unconventional geometries
 - CT operators in neural networks
- Pytorch integration allows fast reconstruction algorithms in Python
 - Both on CPU and GPU
- ts_algorithms already implements some reconstruction algorithms
 - FBP, FDK, SIRT, Chambolle-Pock based 2D TV minimization

Useful links

- Tomosipo examples
 - https://github.com/D1rk123/tomosipo_examples
- Tomosipo documentation
 - https://aahendriksen.gitlab.io/tomosipo/topics/index.html
- Tomosipo online tutorial by Allard
 - https://blog.allardhendriksen.nl/cwi-ci-group/advent-of-tomosipo-introduction/
- Git repositories
 - https://github.com/ahendriksen/tomosipo
 - https://github.com/ahendriksen/ts_algorithms

Tomosipo tutorial

Dirk Schut 21 June 2021