Learning Causal Semantic Representation for out-of-Distribution Prediction

Chang Liu¹, Xinwei Sun¹, Jindong Wang¹, Haoyue Tang², Tao Li³, Tao Qin¹, Wei Chen¹, Tie-Yan Liu¹.

¹ Microsoft Research Asia

² Tsinghua University

³ Peking University

Introduction

The problem:

 Deep supervised learning lacks robustness to out-of-distribution (OOD) samples.

Reason behind:

- The learned representation mixes both semantic factor s (e.g., shape) and variation factor v (e.g., position, background), since both are **correlated** to y.
- But only s causes y: intervening v does not change y.

Goal:

Learning the causal representation for OOD prediction.

Train:

"0" (misleading

to "1")

Train:

"Husky"

"Wolf"

Test:

"Husky" (misleading to "Wolf")

Introduction

In this work,

- Causal Semantic Generative model (CSG): describes latent causal structure.
- Methods for OOD prediction (OOD generalization and domain adaptation).
- Theory for identifying the semantic factor and the subsequent benefits for OOD prediction.

Related Work

- Domain adaptation/generalization.
 - Observation-level causality: not suitable for general data like images.
 - Domain-invariant representation: inference invariance; insufficient to identify latent factors.
 - Latent generative models: inference invariance; semantic-variation independence; lack of identifiability guarantee.
- Learning disentangled representation.
 - Impossible in unsupervised learning, despite some empirical success.
 - With an auxiliary variable [Khemakhem'20a,b]: require sufficiently many different values of the variable (thus unsuitable for y); no description for domain change.

Related Work

- Generative supervised learning.
 - Few utilized the causal implications of the model.
 - Some aim at estimating causal/treatment effect: not suitable for OOD prediction.
- Causality with latent variables.
 - Most works still focus on the consequence on observation-level causality.
 - Works that identify latent variables do not have semantic-variation split.
- Causal discriminative learning.
 - Lack of identifiability guarantee and structure to capture causal relations.

• Formal definition of causality: "two variables have a causal relation, if intervening the cause (by changing external variables out of the considered system) may change the effect, but not vice versa" [Pearl'09; Peters'17].

- Causal Semantic Generative (CSG) Model
 - The need of latent variable z: $x \leftrightarrow y$ (breaking a camera sensor unit $x \leftrightarrow$ label y), $y \nrightarrow x$ (labeling noise $y \nrightarrow$ image x). (For labeling process from image x: labelers are doing inference; preference may change from person to person.)

•

•

•

• Formal definition of causality: "two variables have a causal relation, if intervening the cause (by changing external variables out of the considered system) may change the effect, but not vice versa" [Pearl'09; Peters'17].

- Causal Semantic Generative (CSG) Model
 - The need of latent variable z: $x \leftrightarrow y$ (breaking a camera sensor unit $x \leftrightarrow$ label y), $y \nrightarrow x$ (labeling noise $y \nrightarrow$ image x). (For labeling process from image x: labelers are doing inference; preference may change from person to person.)
 - $z \to (x, y)$: changing object shape z in the scene \to image x, label y; breaking sensor x or labeling noise $y \nrightarrow$ object shape z in the scene. (Particularly, different from works with $y \to s$: our y may be a noisy observation.)
 - No x-y edge: attribute all x-y relations to latent factors ("purely common cause", promotes identification) (breaking sensor x / labeling noise y while fixing all factors $z \nrightarrow$ label y / image x).

•

•

•

• Formal definition of causality: "two variables have a causal relation, if intervening the cause (by changing external variables out of the considered system) may change the effect, but not vice versa" [Pearl'09; Peters'17].

- Causal Semantic Generative (CSG) Model
 - The need of latent variable z: $x \nrightarrow y$ (breaking a camera sensor unit $x \nrightarrow$ label y), $y \nrightarrow x$ (labeling noise $y \nrightarrow$ image x). (For labeling process from image x: labelers are doing inference; preference may change from person to person.)
 - $z \to (x, y)$: changing object shape z in the scene \to image x, label y; breaking sensor x or labeling noise $y \nrightarrow$ object shape z in the scene. (Particularly, different from works with $y \to s$: our y may be a noisy observation.)
 - No x-y edge: attribute all x-y relations to latent factors ("purely common cause", promotes identification) (breaking sensor x / labeling noise y while fixing all factors $z \nrightarrow$ label y / image x).
 - z = (s, v): not all factors cause y (changing background $v \nrightarrow$ label y).
 - s-v has a relation, which is often spurious (desk ~ workspace, bed ~ bedroom, but putting a desk in bedroom does not turn it into a bed).
 - Denoted as $p := \langle p_{s,v}, p_{x|s,v}, p_{v|s} \rangle$.

• The **causal invariance** principle:

Causal mechanisms p(x|s,v) and p(y|s) are domain-invariant, while the prior p(s,v) is the source of domain shift.

- Comparison to **inference invariance**: p(s, v|x) is invariant.
 - Domain adapt./gen., invariant risk min.: use a shared encoder across domains.
 - Special case of causal invariance when generative mechanisms are almost deterministic and invertible (inferring object position from image, extracting F0 from audio).
 - When they are not, inference is ambiguous and rely on domain-specific prior.

domain-specific $p(s, v|x) \propto p(s, v)p(x|s, v)$ $\neq 0 \text{ for multiple } (s, v)$

Inference ambiguity in Noisy ("5" or "3"?) and Degenerate (A or B nearer?) generative mechanisms.

true data distribution $\frac{1}{v} = \int p(s, v)p(x|s, v)p(y|s) \,\mathrm{d}s \,\mathrm{d}v$ is hard to evaluate.

- Direct MLE: $\max_{p} \mathbb{E}_{p^*(x,y)}[\log p(x,y)]$.
- Standard ELBO: using a tractable inference model q(s, v|x, y),

$$\mathcal{L}_{p,q}(x,y) \coloneqq \mathbb{E}_{q(S, v|x,y)} \left[\log \frac{p(s,v,x,y)}{q(S,v|x,y)} \right] \le \log p(x,y).$$

- $\max_{q} \mathcal{L}_{p,q}(x,y)$ makes $q(s,v|x,y) \to p(s,v|x,y)$ and $\mathcal{L}_{p,q}(x,y) \to \log p(x,y)$.
- Prediction is still hard: hard to leverage q(s, v|x, y).

- Use a q(s, v, y|x) model:
 - For prediction: ancestral sampling.

• For learning:
$$\mathbb{E}_{p^*(x,y)} \left[\mathcal{L}_{p,\,q(S,\,v|x,\,y) = q(S,\,v,\,y|x)/\int q(s,v,y|x) \, \mathrm{d}s\mathrm{d}v}(x,y) \right] \\ = \mathbb{E}_{p^*(x)} \left[\mathbb{E}_{p^*(y|x)} [\log q(y|x)] + \mathbb{E}_{q(S,\,v,\,y|x)} \left[\frac{p^*(y|x)}{q(y|x)} \log \frac{p(s,v,x,y)}{q(s,v,y|x)} \right] \right].$$

11

(negative) cross-entropy: makes $q(y|x) \rightarrow p^*(y|x)$

$$=\mathcal{L}_{p,\,q(S,\,v,\,y|x)}(x) \text{ when } q(y|x)=p^*(y|x):$$
 makes $q(s,v,y|x)\to p(s,v,y|x),\,\mathcal{L}_{p,\,q(S,\,v,\,y|x)}(x)\to p(x)$

Since p(s, v, y|x) = p(s, v|x)p(y|s), let q(s, v, y|x) = q(s, v|x)p(y|s)

• Use a q(s, v, y|x) model:

$$\mathcal{L}_{p,\,q(S,\,v|x,\,y)=[q(S,\,v|x),p]}(x,y) = \log q(y|x) + \frac{1}{q(y|x)} \mathbb{E}_{q(S,\,v|x)} \left[p(y|s) \log \frac{p(s,v)p(x|S,\,v)}{q(S,\,v|x)} \right].$$

CSG-ind: for prediction in an unknown test domain (OOD gen.)

- Use an **ind**ependent prior $p^{\perp}(s, v) := p(s)p(v)$:
 - Discard the spurious s-v correlation; defensive choice.
 - Larger entropy than p(s, v): reduce training-domain-specific information.
 - Randomized experiment by independently soft-intervening s or v.
- On the test domain:
 - Prediction: $p^{\perp}(y|x) \approx \mathbb{E}_{q^{\perp}(s,v|x)}[p(y|s)]$. Different from p(y|x) (inference invariance).
- On the training domain: avoid the q(s, v|x) model.
- Following the relation b/w their targets, let $q(s,v|x) = \frac{p(s,v)}{p^{\perp}(s,v)} \frac{p^{\perp}(x)}{p(x)} q^{\perp}(s,v|x)$: $\mathcal{L}_{p,q(s,v|x,y)=[q^{\perp}(s,v|x),p]}(x,y) = \log \pi(y|x) + \frac{1}{\pi(y|x)} \mathbb{E}_{q^{\perp}(s,v|x)} \left[\frac{p(s,v)}{p^{\perp}(s,v)} p(y|s) \log \frac{p^{\perp}(s,v)p(x|s,v)}{q^{\perp}(s,v|x)} \right],$

where
$$\pi(y|x) \coloneqq \mathbb{E}_{q^{\perp}(S, v|x)} \left[\frac{p(s,v)}{p^{\perp}(s,v)} p(y|s) \right].$$

CSG-DA: for prediction in a test domain with unsupervised data (domain adaptation)

- On the test domain:
 - Learn the test-domain prior $\tilde{p}(s, v)$ by fitting $\tilde{p}^*(x)$ using ELBO:

$$\mathcal{L}_{\tilde{p},\,\tilde{q}}(x) \coloneqq \mathbb{E}_{\tilde{q}(S,\,\mathcal{V}|\mathcal{X})}\left[\log\frac{\tilde{p}(s,\mathcal{V})p(\mathcal{X}|S,\,\mathcal{V})}{\tilde{q}(S,\,\mathcal{V}|\mathcal{X})}\right] \le \log\tilde{p}(x).$$

- Prediction: $\tilde{p}(y|x) \approx \mathbb{E}_{\tilde{q}(s,v|x)}[p(y|s)]$. Different from p(y|x) (inference invariance).
- On the training domain: avoid the q(s, v|x) model.
- Following the relation b/w their targets, let $q(s,v|x) = \frac{\tilde{p}(x)}{p(x)} \frac{p(s,v)}{\tilde{p}(s,v)} \tilde{q}(s,v|x)$: $\mathcal{L}_{p,\,q(s,\,v|x,\,y)=[\tilde{q}(s,\,v|x),p]}(x,y) = \log \pi(y|x) + \frac{1}{\pi(y|x)} \mathbb{E}_{\tilde{q}(s,\,v|x)} \left[\frac{p(s,v)}{\tilde{p}(s,v)} p(y|s) \log \frac{\tilde{p}(s,v)p(x|s,v)}{\tilde{q}(s,v|x)} \right],$

where
$$\pi(y|x) = \mathbb{E}_{\tilde{q}(S, v|x)} \left[\frac{p(s,v)}{\tilde{p}(s,v)} p(y|s) \right].$$

Implementation details.

- Instantiating the model by parsing a general discriminative model:
 - In CSG, $y \perp (x, v)|s$, so no $v \rightarrow y$. We then have p(y|s).
 - In CSG, $s \mid \perp v \mid x$, so let $v \rightarrow s$. We then have $q(s, v \mid x)$.
 - Use an additional model for p(x|s,v).
- Implementing the prior.

- Multivariate Gaussian: $p(s,v) = \mathcal{N}\begin{pmatrix} s \\ v \end{pmatrix} \begin{vmatrix} \mu_s \\ \mu_v \end{pmatrix}$, $\Sigma = \begin{pmatrix} \Sigma_{ss} & \Sigma_{sv} \\ \Sigma_{vs} & \Sigma_{vv} \end{pmatrix}$ (no causal direction).
 Parameterize $\Sigma = LL^\mathsf{T}$, $L = \begin{pmatrix} L_{ss} & 0 \\ M_{vs} & L_{vv} \end{pmatrix}$ (L_{ss} , L_{vv} are lower-triangular with positive diagonals).
 $p(v|s) = \mathcal{N}(v|\mu_{v|s}, \Sigma_{v|s})$, where $\mu_{v|s} = \mu_v + M_{vs}L_{ss}^{-1}(s \mu_s)$, $\Sigma_{v|s} = L_{vv}L_{vv}^\mathsf{T}$.
- Model selection.
 - Use a validation set from the training domain.
 - For **CSG-ind/DA**, use $p(y|x) \propto \pi(y|x)$ ($\neq p^{\perp}(y|x)$ or $\tilde{p}(y|x)$) to evaluate validation accuracy.

Identifiability on the training domain.

- **Definition** (semantic-identification). A CSG p is said semantic-identified, if there exists a homeomorphism Φ on $\mathcal{S} \times \mathcal{V}$, s.t.: (i) $\Phi^{\mathcal{S}}(s^*, v^*)$ is constant of v^* , and (ii) Φ is a reparameterization of the ground-truth CSG p^* : $\Phi_{\#}[p_{s,v}^*] = p_{s,v}, p^*(x|s^*, v^*) = p(x|\Phi(s^*, v^*)), p^*(y|s^*) = p(y|\Phi^{\mathcal{S}}(s^*)).$
 - Reparameterization: describes the degree of freedom given $p(x,y) = p^*(x,y)$.
 - v-constancy: Φ is *semantic-preserving* (the learned s does not mix the ground-truth v^* into it).
 - **Proposition**: equivalent relation if \mathcal{V} is connected and is either open or closed in $\mathbb{R}^{d_{\mathcal{V}}}$.
- Related concepts:
 - Neither sufficient nor necessary to **statistical independence**.
 - Weaker than **disentanglement**: the learned v can be entangled with ground-truth s^* .

Identifiability on the training domain.

- Assumptions.
 - (A1)[additive noise] There exist functions f and g with bounded derivatives up to 3rd-order, and indep. r.v.s μ and ν , s.t.:

$$p(x|s,v) = p_{\mu}(x - f(s,v))$$
, and $p(y|s) = p_{\nu}(y - g(s))$ for continuous y or $Cat(y|g(s))$ for categorical y .

- Required to disable the anti-causal direction.
- Excludes GAN, flow-based models.
- (A2)[bijectivity] f is bijective and g is injective.
 - A common sufficient condition for the fundamental requirement of causal minimality.
 - ullet Otherwise, s and v are allowed to have dummy dimensions.
 - The manifold hypothesis relaxes f to be injective, and allows $d_{\mathcal{S}} + d_{\mathcal{V}} < d_{\mathcal{X}}$.

Identifiability on the training domain.

- **Theorem** (semantic-identifiability). Assume **A1,A2**, bounded $\log p_{s,v}^*$ up to 2nd-order, and:
 - (i) $\frac{1}{\sigma_{\mu}^2} \to \infty$, where $\sigma_{\mu}^2 \coloneqq \mathbb{E}[\mu^{\mathsf{T}}\mu]$, or
 - (ii) p_{μ} has an a.e. non-zero characteristic function (e.g., a Gaussian distribution).

Then a well-learned CSG (s.t. $p(x,y) = p^*(x,y)$) is semantic-identified.

- (Appropriate condition) One cannot identify s in extreme cases (all "0"'s are on the left and all "1"'s are on the right): excluded by the condition on $\log p_{s,v}^*$.
- (Intuition) In other cases, v for each s is noisy, so mixing s with v worsens training accuracy.
- Condition (i) requires a *strong* causal mechanism: nearly deterministic and invertible. Condition (ii) covers more than inference invariance.
- Does not contradict the impossibility result of disentanglement [Locatello'19]: only identify s as a whole; asymmetry from missing $v \rightarrow y$.

Benefit for OOD prediction.

- The test-domain ground-truth CSG $\tilde{p}^* = \langle \tilde{p}_{s,v}^*, p_{x|s,v}^*, p_{y|s}^* \rangle$ (due to causal invariance).
- Theorem (OOD gen. error) With A1,A2, the test-domain prediction error of a semantic-identified CSG p is bounded $(B'_{f^{-1}}, B'_g)$ bounds the Jacobian 2-norms of f^{-1} , g, and $\tilde{p}_{s,v} := \Phi_{\#}[\tilde{p}^*_{s,v}]$: $\mathbb{E}_{\tilde{p}^*(x)} \|\mathbb{E}[y|x] \widetilde{\mathbb{E}}^*[y|x]\|_2^2 \le \sigma_{\mu}^4 B'_{f^{-1}} B'_g^2 \mathbb{E}_{\tilde{p}_{s,v}} \|\nabla \log(\tilde{p}_{s,v}/p_{s,v})\|_2^2. \quad \text{(up to } O(\sigma_{\mu}^4)\text{)}$
 - For a *strong* causal mechanism p(x|s,v), the bound is small.
 - $\mathbb{E}_{\tilde{p}_{s,v}} \|\nabla \log(\tilde{p}_{s,v}/p_{s,v})\|_2^2$: FisherDiv $(\tilde{p}_{s,v}\|p_{s,v})$, "OODness" for prediction.
 - CSG-ind tends to have a smaller error bound: smaller FisherDiv $(\tilde{p}_{s,v}\|\cdot)\Rightarrow$ distr. with a larger support, and $p_{s,v}^{\perp}$ has a larger support than $p_{s,v}$.
- **Theorem** (domain adaptation error) Assume the same for identifiability and the learned CSG p is semantic-identified. Then a well-learned (s.t. $\tilde{p}(x) = \tilde{p}^*(x)$) new prior (i) $\tilde{p}_{s,v} = \Phi_{\#}[\tilde{p}_{s,v}^*]$ is a reparametrized ground-truth $\tilde{p}_{s,v}^*$, and (ii) it leads to an accurate prediction: $\tilde{\mathbb{E}}[y|x] = \tilde{\mathbb{E}}^*[y|x]$, $\forall x \in \text{supp}(\tilde{p}_x^*)$.

ang Liu (MSRA)

18

Experiments

Baselines:

- For OOD generalization,
 - CE (cross entropy): standard supervised learning.
 - CNBB (ConvNet with Batch Balancing): a discriminative causal method.
- For domain adaptation,
 - DANN, DAN, CDAN, MDD, BNM: classical domain adaptation methods.

CSGz / CSGz-DA

- For an ablation study,
 - CSGz / CSGz-DA: generative methods without separating z as s and v.

Datasets:

- Shifted MNIST.
 - Training dataset: "0"s are horiz. shifted by $\delta_0 \sim \mathcal{N}(-5,1^2)$ px, "1"s by $\delta_1 \sim \mathcal{N}(5,1^2)$ px.
 - Two test datasets: (1) $\delta_0 = \delta_1 = 0$; (2) $\delta_0, \delta_1 \sim \mathcal{N}(0, 2^2)$.
- ImageCLEF-DA.
- PACS, VLCS.

Experiments

OOD generalization

 OOD prediction performance

task		CE	CNBB	CSGz	CSG	CSG-ind
Shifted- MNIST	$\delta_0 = \delta_1 = 0$ $\delta_0, \delta_1 \sim \mathcal{N}(0, 2^2)$	42.9±3.1 47.8±1.5	54.7±3.3 59.2±2.4	53.0±6.7 54.8±5.6	81.4±7.4 61.7±3.6	$82.6{\scriptstyle \pm 4.0}\atop 62.3{\scriptstyle \pm 2.2}$
Image CLEF- DA	$\begin{array}{c} \mathbf{C} {\rightarrow} \mathbf{P} \\ \mathbf{P} {\rightarrow} \mathbf{C} \\ \mathbf{I} {\rightarrow} \mathbf{P} \\ \mathbf{P} {\rightarrow} \mathbf{I} \end{array}$		91.7±0.2 75.4±0.6	91.6±0.9 77.0±0.2	92.3±0.4 76.9±0.3	74.0±1.3 92.7±0.2 77.2±0.2 90.9±0.2
PACS	others \rightarrow P others \rightarrow A others \rightarrow C others \rightarrow S		73.1±0.3 50.2±1.2	$87.3 \pm 0.8 \ 84.3 \pm 0.9$	88.5 ± 0.6 84.4±0.9	97.8±0.2 88.6±0.6 84.6±0.8 81.1±1.2

Domain adaptation

More suitable scenarios:

Solve the spurious correlation problem in cases with diverse \boldsymbol{v} for each \boldsymbol{s} (easier identification).

1		task	DANN	DAN	CDAN	MDD	BNM	CSGz-DA	CSG-DA
 		$\delta_0 = \delta_1 = 0 \mid \delta_0, \delta_1 \sim \mathcal{N}(0, 2^2) \mid$	1					78.0±27.2 68.1±17.4	97.6±4.0 72.0±9.2
_	Image CLEF- DA	$egin{array}{c} \mathbf{C} { ightarrow} \mathbf{P} \\ \mathbf{P} { ightarrow} \mathbf{C} \\ \mathbf{I} { ightarrow} \mathbf{P} \\ \mathbf{P} { ightarrow} \mathbf{I} \end{array}$	75.0±0.6	$89.8{\scriptstyle\pm0.4\atop74.5{\scriptstyle\pm0.4}}$	74.5±0.3 93.5±0.4 76.7±0.3 90.6±0.3	$92.1{\scriptstyle\pm0.6\atop76.8{\scriptstyle\pm0.4}}$	93.5 ± 2.8 76.7±1.4	74.3±0.3 92.7±0.4 77.0±0.3 90.6±0.4	75.1±0.5 93.4±0.3 77.4±0.3 91.1±0.5
_	PACS	others \rightarrow P others \rightarrow A others \rightarrow C others \rightarrow S	85.9±0.5	$84.5{\scriptstyle\pm1.2}\atop81.9{\scriptstyle\pm1.9}$	97.0±0.4 84.0±0.9 78.5±1.5 71.8±3.9	88.1±0.8 83.2±1.1	86.4±0.4 83.6±1.7	97.6±0.4 88.0±0.8 84.6±0.9 80.9±1.2	97.9±0.2 88.8±0.7 84.7±0.8 81.4±0.8

Experiments

Visualization (using LIME [Ribeiro'16])
 OOD generalization

CE

CSG-ind

Domain adaptation

MDD

CSG-DA

Thanks!

https://arxiv.org/abs/2011.01681

References

- [Ribeiro'16] M. T. Ribeiro, S. Singh, and C. Guestrin. "Why should I trust you?": Explaining the predictions of any classifier. In *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016*, pages 1135–1144, 2016.
- [Khemakhem'20a] I. Khemakhem, D. P. Kingma, R. P. Monti, and A. Hyvärinen. Variational autoencoders and nonlinear ICA: A unifying framework. In the 23rd International Conference on Artificial Intelligence and Statistics, 26-28 August 2020, Online [Palermo, Sicily, Italy], volume 108 of Proceedings of Machine Learning Research, pages 2207–2217, 2020.
- [Khemakhem'20b] I. Khemakhem, R. P. Monti, D. P. Kingma, and A. Hyvärinen. ICE-BeeM: Identifiable conditional energy-based deep models. *arXiv preprint arXiv:2002.11537*, 2020.
- [Pearl'09] J. Pearl. Causality. Cambridge university press, 2009.
- [Peters'17] J. Peters, D. Janzing, and B. Schölkopf. *Elements of causal inference: foundations and learning algorithms*. MIT press, 2017.
- [Locatello'19] F. Locatello, S. Bauer, M. Lucic, G. Raetsch, S. Gelly, B. Schölkopf, and O. Bachem. Challenging common assumptions in the unsupervised learning of disentangled representations. In *Proceedings of the 36th International Conference on Machine Learning*, volume 97 of *Proceedings of Machine Learning Research*, pages 4114–4124, Long Beach, California, USA, 09–15 Jun 2019. PMLR.