Matias D. Cattaneo[†]

Rocio Titiunik[‡]

Gonzalo Vazquez-Bare§

December 30, 2020

Abstract

We introduce the R (and Stata) package rdmulti, which includes three commands (rdmc, rdmcplot, rdms) for analyzing Regression Discontinuity (RD) designs with multiple cutoffs or multiple scores. The command rdmc applies to non-cummulative and cummulative multi-cutoff RD settings. It calculates pooled and cutoff-specific RD treatment effects, and provides robust bias-corrected inference procedures. Post estimation and inference is allowed. The command rdmcplot offers RD plots for multi-cutoff settings. Finally, the command rdms concerns multi-score settings, covering in particular cumulative cutoffs and two running variables contexts. It also calculates pooled and cutoff-specific RD treatment effects, provides robust bias-corrected inference procedures, and allows for post-estimation estimation and inference. These commands employ the Stata (and R) package rdrobust for plotting, estimation, and inference. Companion R functions with the same syntax and capabilities are provided.

Keywords: regression discontinuity designs, quasi-experimental techniques, causal inference, multiple cutoffs, multiple scores.

^{*}We thank Sebastian Calonico and Nicolas Idrobo for helpful comments and discussions.

[†]Department of Operations Research and Financial Engineering, Princeton University.

[‡]Department of Politics, Princeton University.

[§]Department of Economics, UC Santa Barbara.

Contents

1	Intro	oduction	1
2	Illus	stration of Methods	1
	2.1	Multiple non-cumulative cutoffs using rdmc	1
	2.2	Cumulative cutoffs using rdms	5
	2.3	Bivariate score using rdms	7

1 Introduction

This article illustrates the R package rdmulti, which analyzes RD designs with multiple cutoffs or scores. The functions in this package have the same syntax and offer the same functionalities as our companion Stata commands described in Cattaneo, Titiunik, and Vazquez-Bare [forthcoming].

For brevity, we focus exclusively on software implementation issues. Extensive discussion and details on methodological and practical aspects can be found in Cattaneo, Keele, Titiunik, and Vazquez-Bare [2016] and Cattaneo, Idrobo, and Titiunik [2018a,b].

For help on the functions' syntax and related issues, please refer to reference manual. For related Stata and R packages useful for analysis of RD designs, visit:

```
https://rdpackages.github.io/
```

2 Illustration of Methods

We illustrate how to implement the functions described above using simulated data. This section replicates, as close as possible, section 5 of Cattaneo, Titiunik, and Vazquez-Bare [forthcoming].

First, to install the rdmulti package, type:

```
install.packages("rdmulti")
```

2.1 Multiple non-cumulative cutoffs using rdmc

We begin by illustrating rdms using a simulated dataset, simdata_multic. In this dataset, y is the outcome variable, x is the running variable and c is a variable indicating the cutoff that each unit in the sample faces. As shown below, there are four different cutoffs, each with the sample sample size.

```
> data <- read.csv('simdata_multic.csv')
> Y <- data$y
> X <- data$x
> C <- data$c</pre>
```

We begin by illustrating rdmc using a simulated dataset, simdata_multic. In this dataset, y is the outcome variable, x is the running variable and c is a variable indicating the cutoff that each unit in the sample faces. As shown below, there are four different cutoffs, each with the sample sample size.

33.00	484.831	0.000	421.184	552.531	14.662	14.662	289	0.540
66.00	297.981	0.000	220.348	362.268	11.952	11.952	246	0.460
Weighted	398.915	0.000	348.742	445.141			535	
Pooled	436.400	0.001	179.336	676.631	13.684	13.684	550	
								======

The output shows the cutoff-specific estimate at each cutoff, together with the corresponding robust bias-corrected p-value, 95 percent robust confidence interval and sample size at each cutoff, and two "global" estimates. The first one is a weighted average of the cutoff specific estimates using the estimated weights described in Cattaneo, Titiunik, and Vazquez-Bare [forthcoming]. These estimated weights are shown in the last column. The second one is the pooled estimate obtained by normalizing the running variable. While these two estimators converge to the same population parameter, they can differ in finite samples as seen in this example. In this example, the effect is statistically insignificant at the lowest cutoff, with evidence of a positive treatment effect at the remaining three cutoffs. Given the distribution of the running variable and the sample size at each cutoff, the weighted and pooled estimates give approximately the same weight to each cutoff.

All the results in the above display are calculated using rdrobust. The user can specify options for rdrobust to calculate both the pooled estimates using the option pooled_opt. For instance, the syntax below specifies a bandwidth of 20 and a local quadratic polynomial for the pooled estimand. By default, rdmc omits the output from rdrobust when estimating the effects. The output from the pooled effect estimation can be displayed using the option verbose, which we use below to show how the options are passed to rdrobust.

```
> aux <- rdmc(Y,X,C,pooled_opt=paste('h=20','p=2',sep=','),verbose=TRUE)
Call: rdrobust</pre>
```

2000

Number of obs.	2000		
BW type	Manual		
Kernel	Triangular		
VCE method	NN		
Number of Obs.	968	1032	
Eff. Number of Obs.	409	416	
Order est. (p)	2	2	
Order bias (q)	3	3	
BW est. (h)	20.000	20.000	
BW bias (b)	20.000	20.000	
rho (h/b)	1.000	1.000	
Unique Obs.	968	1032	

Number of Obs.

Method Coef. Std. Err. z P>|z| [95% C.I.]

Conventional	437.042	129.798	3.367	0.001	[182.643 , 691.441]
Robust	-	-	3.012	0.003	[185.618 , 877.381]

Cutoff	Coef.	P-value	95,	6 СІ	hl	hr	Nh	Weight
33.00 66.00	484.831 297.981	0.000	421.184 220.348	552.531 362.268	14.662 11.952	14.662 11.952	289 246	0.540
Weighted Pooled	398.915 437.042	0.000	348.742 185.618	445.141 877.381	. 20.000	. 20.000	535 825	

The following syntax shows how to manually change options for the cutoff-specific estimates.

> aux <- rdmc(Y,X,C,h=c(11,10))

Cutoff	Coef.	P-value	95)	" CI	hl	hr	Nh	Weight
33.00 66.00	495.429 303.769	0.000	368.129 220.396	563.215 403.320	11.000 10.000	11.000 10.000	207 209	0.498 0.502
Weighted Pooled	399.138 436.400	0.000	321.557 179.336	455.233 676.631	. 13.684	. 13.684	416 550	

The command rdmcplot jointly plots the estimated regression functions at each cutoff. The basic syntax is the following:

```
> aux <- rdmcplot(Y,X,C)</pre>
```


Figure 1. Multiple RD plot.

Finally, the plot can be restricted to a bandwidth using the option h and to use a polynomial of a specified order using the option p, as shown below. This option allows the user to plot the linear fit and estimated treatment effects at each cutoff.

```
\verb"aux <- rdmcplot(Y,X,C,h=c(11,12),pvec=c(1,1))"
```


Figure 2. Multiple RD plot.

2.2 Cumulative cutoffs using rdms

We know illustrate the use of rdms for cumulative cutoffs using the simulated dataset simdata_cumul. In this dataset, the running variable ranges from 0 to 100, and units with running variable below 33 receive a certain treatment level d_1 whereas units with running variable above 66 receive another treatment level d_2 . In this setting, the cutoffs are indicated as a short variable in the dataset, where each row indicates a cutoff.

```
> aux <- rdmcplot(Y,X,C)
> data <- read.csv('simdata_cumul.csv')
> Y <- data$y
> X <- data$x
> cvec <- c(data$c[1],data$c[2])</pre>
```

The syntax for cumulative cutoffs is similar to rdmc. The user specifies the outcome variable, the running variable and the cutoffs as follows:

```
> aux <- rdms(Y,X,cvec)</pre>
```

Cutoff	Coef.	P-value	95%	CI	hl	hr	Nh
=======================================							
33.00	395.492	0.000	363.761	423.856	15.109	15.109	286
66.00	342.872	0.000	315.952	373.959	12.221	12.221	265

Options like the bandwidth, the bandwidth and the kernel for each cutoff-specific effect can be specified as shown below.

> aux <- rdms(Y,X,cvec,h=c(11,8),kernel=c('uniform','triangular'))</pre>

==========							
Cutoff	Coef.	ef. P-value		95% CI		hr	Nh
33.00	394.470	0.000	351.649	438.725	11.000	11.000	215
66.00	342.505	0.000	301.556	375.947	8.000	8.000	166

Without further information, the rdms command could be using any observation above the cutoff 33 to estimate the effect of the first treatment level d_1 . This implies that some observations in the range [66, 100] are used. But these observations receive the second treatment level, d_2 . This feature can result in inconsistent estimators for τ_1 . To avoid this problem, the user can specify the range of observations to be used around each cutoff. In this case, we can restrict the range at the first cutoff (33) to go from 0 to 65.5, to ensure that no observations above 66 are used, and the range at the second cutoff (66) to go from 33.5 to 100. This can be done as follows.

> aux <- rdms(Y,X,cvec,range = matrix(c(0,33.5,65.5,100),ncol=2))

20100 000121 100110 101000 101000 21	Cutoff	Coef.	P-value	95%	& CI	hl	hr	Nh
			0.000	0001121	1001110	201000	20.000	214 246

The pooled estimate can be obtained using rdmc. For this, we need to assign each unit in the sample a value for the cutoff. One possibility is to assign each unit to the closest cutoff. For this, we generate a variable named cutoff that equals 33 for units with score below 49.5 (the middle point between 33 and 66), and equals 66 for units above 49.5.

```
> cutoff <- cvec[1]*(X<=49.5) + cvec[2]*(X>49.5)
> aux <- rdmc(Y,X,cutoff)</pre>
```

Cutoff	Coef.	P-value	95%	€ CI	hl	hr	Nh	Weight
33.00 66.00	389.528 341.015	0.000	332.937 300.389	443.686 377.332	6.261 5.042	6.261 5.042	119 105	0.531
Weighted Pooled	366.788 363.968	0.000 0.000	330.626 180.111	399.637 551.784	8.137	8.137	224 333	

Finally, we can use the variable cutoff to plot the regression functions using rdmcplot.

aux <- rdmcplot(Y,X,cutoff,col_bins=rep('darkblue',2),col_xline=rep('darkblue',2),nopoly=TRUE)</pre>

Figure 3. Multiple RD plot.

2.3 Bivariate score using rdms

We now illustrate the use of rdms to analyze RD designs with two running variables using the simulated dataset simdata_multis. In this dataset, there are two running variables, x1 and x2, ranging between 0 and 100, and units receive the treatment when $x1 \le 50$ and $x2 \le 50$. We look at three cutoffs on the boundary: (25,50), (50,50) and (50,25).

```
> data <- read.csv('simdata_multis.csv')
> Y <- data$y
> X1 <- data$x1
> X2 <- data$x2
> zvar <- data$t
> cvec <- c(data$c1[1],data$c1[2],data$c1[3])
> cvec2 <- c(data$c2[1],data$c2[2],data$c2[3])</pre>
```

The basic syntax is the following:

```
> aux <- rdms(Y,X1,cvec,X2,zvar,cvec2)</pre>
```

Cutoff	Coef.	P-value	95%	% CI	hl	hr	Nh
(25.00,50.00)	243.842	0.111	-50.929	491.180	11.122	11.122	42
(50.00,50.00)	578.691	0.000	410.825	764.877	13.831	13.831	47
(50.00,25.00)	722.444	0.000	451.493	1060.149	10.834	10.834	38

Information to estimate each cutoff-specific estimate can be provided as illustrated before. For instance, to specify cutoff-specific bandwidths:

> aux <- rdms(Y,X1,cvec,X2,zvar,cvec2,h=c(15,13,17))</pre>

Cutoff	Coef.	P-value	95%	CI	hl	hr	Nh
(25.00,50.00)	336.121	0.233	-119.352	491.365	15.000	15.000	87
(50.00,50.00)	583.047	0.000	501.940	1101.236	13.000	13.000	42
(50.00,25.00)	620.692	0.000	464.920	1159.992	17.000	17.000	86

Finally, the **xnorm** option allows the user to specify the normalized running variable to calculate a pooled estimate. In this case, we define the normalized running variable as the closest perpendicular distance to the boundary defined by the treatment assignment.

```
> xnorm <- apply(cbind(abs(50-X1),abs(50-X2)),1,min)*(2*zvar-1)
```

> aux <- rdms(Y,X1,cvec,X2,zvar,cvec2,xnorm=xnorm)</pre>

Cutoff	Coef.	P-value	95% CI		hl	hr	Nh
(25.00,50.00) (50.00,50.00) (50.00,25.00)	243.842 578.691 722.444	0.111 0.000 0.000	-50.929 410.825 451.493	491.180 764.877 1060.149	11.122 13.831 10.834	11.122 13.831 10.834	42 47 38
Pooled	447.017	0.000	389.330	496.852	12.726	12.726	433

References

Matias D. Cattaneo, Luke Keele, Rocio Titiunik, and Gonzalo Vazquez-Bare. Interpreting regression discontinuity designs with multiple cutoffs. *Journal of Politics*, 78(4):1229–1248, 2016.

Matias D. Cattaneo, Nicolás Idrobo, and Rocío Titiunik. A Practical Introduction to Regression Discontinuity Designs: Foundations. Cambridge Elements: Quantitative and Computational Methods for Social Science, Cambridge University Press, 2018a.

- Matias D. Cattaneo, Nicolás Idrobo, and Rocío Titiunik. A Practical Introduction to Regression Discontinuity Designs: Extensions. Cambridge Elements: Quantitative and Computational Methods for Social Science, Cambridge University Press, 2018b.
- Matias D. Cattaneo, Rocio Titiunik, and Gonzalo Vazquez-Bare. Analysis of regression discontinuity designs with multiple cutoffs or scores. *Stata Journal*, forthcoming.