Congratulations! You passed!

Grade received 100% Latest Submission Grade 100% To pass 80% or higher

Retake the assignment in 59m

1/1 point

What does flow_from_directory give you on the ImageDataGenerator?	1 / 1 point
The ability to easily load images for training	
The ability to pick the size of training images	
The ability to automatically label images based on their directory name	
All of the above	
Correct That's right! The flow_from_directory method takes the path to a directory & generates batches of augmented data.	
2. If my Image is sized 150x150, and I pass a 3x3 Convolution over it, what size is the resulting image?	1 / 1 point
O 450x450	
() 153x153	
150x150 (a) 148x148	
© Correct	
Nailed it! Applying a 3x3 convolution would result in a 148x148 image.	
3. If my data is sized 150x150, and I use Pooling of size 2x2, what size will the resulting image be?	1/1 point
75x75	
O 300x300	
149x149 146x148	
✓ Correct Nailed it! Applying 2x2 pooling would result in a 75x75 image.	
4. If I want to view the history of my training, how can I access it?	
	1/1 point
Use a model.fit_generator Create a variable 'history' and assign it to the return of model.fit or model.fit_generator	
O Download the model and inspect it	
Pass the parameter 'history=true' to the model.fit	
 Correct Exactly! The History.history attribute is a record of training loss values and metrics values at successive epochs. 	
·	
5. What's the name of the API that allows you to inspect the impact of convolutions on the images?	1/1 point
The model.layers API The model.layers API	
The model.convolutions API The model.images API	
○ The model.pools API	
(Correct	
6. When exploring the graphs, the loss levelled out at about .75 after 2 epochs, but the accuracy climbed close to after 15 epochs. What's the significance of this?	1.0 1/1 point
There was no point training after 2 epochs, as we overfit to the validation data	
There was no point training after 2 epochs, as we overfit to the training data	
A bigger training set would give us better validation accuracy A bigger validation set would give us better training accuracy	
(c) Correct	
Correct! Those values indicate overfitting to the training data.	
$\textbf{7.} \ \ \textbf{Why is the validation accuracy a better indicator of model performance than training accuracy?}$	1/1 point
It isn't, they're equally valuable	
There's no relationship between them	
The validation accuracy is based on images that the model hasn't been trained with, and thus a better indicator of how the model will perform with new images.	
 The validation dataset is smaller, and thus less accurate at measuring accuracy, so its performance isn't as important 	\$
⊙ Correct	

8. Why is overfitting more likely to occur on smaller datasets?

 $\bigcirc \ \ \mathsf{Because} \ \mathsf{in} \ \mathsf{a} \ \mathsf{smaller} \ \mathsf{dataset}, \mathsf{your} \ \mathsf{validation} \ \mathsf{data} \ \mathsf{is} \ \mathsf{more} \ \mathsf{likely} \ \mathsf{to} \ \mathsf{look} \ \mathsf{like} \ \mathsf{your} \ \mathsf{training} \ \mathsf{data}$

- O Because there isn't enough data to activate all the convolutions or neurons
- $\bigcirc \ \ \mathsf{Because} \ \mathsf{with} \ \mathsf{less} \ \mathsf{data}, \mathsf{the} \ \mathsf{training} \ \mathsf{will} \ \mathsf{take} \ \mathsf{place} \ \mathsf{more} \ \mathsf{quickly}, \mathsf{and} \ \mathsf{some} \ \mathsf{features} \ \mathsf{may} \ \mathsf{be} \ \mathsf{missed}$
- Because there's less likelihood of all possible features being encountered in the training process.

○ Correct
Undoubtedly! A smaller size decreases the likelihood that the model will recognize all possible features

1. **The content of the content of during training.