Communicate_Data

April 8, 2021

Importing Libraries

```
[1]: import numpy as np
    import matplotlib.pyplot as plt
    import matplotlib.image as mpimg
    import pandas as pd
    import seaborn as sb
    import os
    from google.colab import drive
[2]: drive.mount('/content/drive')
```

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).

```
[3]: cd /content/drive/MyDrive/Professional/Udacity/Capstone/
```

/content/drive/MyDrive/Professional/Udacity/Capstone

```
[4]: ls
```

```
201902-fordgobike-tripdata.csv
                                                  oak_png.PNG
                                                  sf_png.PNG
bay_area.png
Communicate Data
                                                  sj_png.PNG
```

'Communicate Data Capstone Slide Deck.gslides'

0.2 Importing and Cleaning Data

```
[5]: # Importing CSV file
   df = pd.read_csv('201902-fordgobike-tripdata.csv')
[6]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 183412 entries, 0 to 183411
Data columns (total 16 columns):
    Column
                              Non-Null Count
                                               Dtype
```

```
183412 non-null int64
     0
         duration_sec
         start_time
     1
                                  183412 non-null
                                                   object
     2
         end_time
                                  183412 non-null
                                                   object
     3
         start station id
                                  183215 non-null float64
     4
         start_station_name
                                  183215 non-null
                                                   object
         start_station_latitude
                                  183412 non-null float64
     6
         start_station_longitude
                                  183412 non-null float64
     7
         end_station_id
                                  183215 non-null float64
                                  183215 non-null object
     8
         end_station_name
         end_station_latitude
                                  183412 non-null float64
     10 end_station_longitude
                                  183412 non-null float64
     11 bike_id
                                  183412 non-null
                                                   int64
        user_type
                                  183412 non-null
                                                   object
     13 member_birth_year
                                  175147 non-null float64
                                  175147 non-null object
     14 member_gender
     15 bike_share_for_all_trip 183412 non-null
                                                   object
    dtypes: float64(7), int64(2), object(7)
    memory usage: 22.4+ MB
 [7]: # Create a copy to clean
     df_clean = df.copy()
 [8]: # Drop null columns
     df_clean.dropna(inplace=True)
 [9]: # Changing to correct data types
     df_clean = df_clean.astype({"start_station_id": int, "end_station_id": int,u

¬"bike_id": int})
     df_clean = df_clean.astype({"member_birth_year": int})
     df_clean.start_time = pd.to_datetime(df_clean.start_time, format='%Y-%m-%d %H:
     →%M:%S')
     df_clean.end_time = pd.to_datetime(df_clean.end_time, format='\%Y-\%m-\%d \%H:\%M:
[10]: # No duplicates
     sum(df_clean.duplicated())
[10]: 0
        Exploratory Data Analysis
```

0.3.1 Starting Stations

[11]: df_clean.head()

```
Which stations are the busiest stations?
```

```
[11]: duration_sec start_time ... member_gender bike_share_for_all_trip 0 52185 2019-02-28 17:32:10.145 ... Male
```

```
No
     2
               61854 2019-02-28 12:13:13.218
                                                           Male
     No
     3
               36490 2019-02-28 17:54:26.010
                                                           Other
     No
                1585 2019-02-28 23:54:18.549
     4
                                                           Male
     Yes
     5
                1793 2019-02-28 23:49:58.632 ...
                                                           Male
     No
     [5 rows x 16 columns]
[12]: df_clean.info()
    <class 'pandas.core.frame.DataFrame'>
    Int64Index: 174952 entries, 0 to 183411
    Data columns (total 16 columns):
     #
         Column
                                  Non-Null Count
                                                    Dtype
         _____
                                   _____
                                                    ----
     0
         duration_sec
                                   174952 non-null
                                                    int64
                                  174952 non-null datetime64[ns]
     1
         start_time
     2
                                  174952 non-null datetime64[ns]
         end time
     3
         start_station_id
                                  174952 non-null
                                                    int64
     4
         start station name
                                  174952 non-null
                                                    object
     5
         start_station_latitude
                                   174952 non-null
                                                    float64
         start_station_longitude
                                  174952 non-null float64
     7
         end_station_id
                                   174952 non-null
                                                    int64
                                  174952 non-null object
         end_station_name
     9
         end_station_latitude
                                  174952 non-null
                                                    float64
     10
         end_station_longitude
                                  174952 non-null float64
     11
        bike_id
                                  174952 non-null
                                                    int64
     12
                                   174952 non-null
        user_type
                                                    object
         member_birth_year
                                  174952 non-null
                                                    int64
         member_gender
                                  174952 non-null
                                                    object
     15 bike_share_for_all_trip 174952 non-null
                                                    object
    dtypes: datetime64[ns](2), float64(4), int64(5), object(5)
    memory usage: 22.7+ MB
[13]: # Grouping by start_station_id and creating a new dataframe
     df_test = df_clean.groupby("start_station_id").mean().
     →sort_values(by="start_station_id").reset_index()
[14]: df_test
          start_station_id duration_sec
                                                   bike_id
                                                            member_birth_year
                                          . . .
     0
                                                                   1985.307252
                         3
                              855.046183
                                          . . .
                                               4656.118321
     1
                         4
                              958.767568
                                               4837.493694
                                                                   1983.491892
     2
                         5
                              827.316231
                                               4619.324627
                                                                   1984.952892
     3
                         6
                              915.508354
                                               4887.746835
                                                                   1983.709367
```

[14]:

```
4
                    7
                          632.424280 ...
                                            4329.561952
                                                                1982.998748
                                 . . .
. .
                   . . .
324
                  385
                          646.489855
                                           4024.098551
                                                                1984.173913
325
                  386
                          720.313084
                                           4733.598131
                                                                1984.719626
326
                         1319.529412
                                      ... 4633.058824
                                                                1987.588235
                  388
327
                  389
                         1117.153846
                                           4803.076923
                                                                1978.846154
                          912.937500
328
                  398
                                      ... 5164.625000
                                                                1983.687500
```

[329 rows x 9 columns]

```
[15]: plt.figure(figsize = [28,6])
sb.barplot(data=df_test, x='start_station_id', y='duration_sec');
plt.xticks(rotation=90);
```


This question is too high level. Not much to do with this data. Will use deeper questions to find more specific results.

0.3.2 Station Difference Frequency

Which stations have the highest start trip and lowest end trip and vice versa? This would be interesting to know which stations may have a surplus of bikes over time while other stations may have a deficit of bikes.

```
[17]: # Verify dataframe was created correctly df_station_freq.head()
```

```
[17]:
        station_id
                     start_count
                                     end_count
                                                 difference
                 58
                              3649
                                          3709
                                                         -60
                  67
     1
                              3408
                                          4624
                                                       -1216
     2
                 81
                              2952
                                          2782
                                                         170
     3
                  21
                              2711
                                                        -750
                                          3461
     4
                  3
                              2620
                                          2854
                                                        -234
```


This chart shows that there are certain stations where people take out more bikes than bikes are returned to and vice versa. Will isolate the extremes (top 5 and bottom 5)

[19]: station_id start_count end_count difference 5 30 2577 2870 293

```
10
               6
                           1975
                                        2341
                                                       366
6
              15
                           2541
                                        3151
                                                        610
3
              21
                           2711
                                        3461
                                                       750
1
              67
                           3408
                                        4624
                                                      1216
```


0.3.3 Frequency per date/time

Is there a time during the day our bikes are being used the most? Is there a day of the week our bikes are being used the most?

```
[21]: # Create new columns for hour of day and weekday
     df_clean["hour"] = df_clean.start_time.dt.hour
     df_clean['weekday'] = df_clean.start_time.dt.weekday + 1
[22]: # Counting occurrence of a trip during specific time (hour and weekday)
     df_hour = df_clean.hour.value_counts().reset_index()
     df hour.columns=['hour', 'hour count']
     df_weekday = df_clean.weekday.value_counts().reset_index()
     df_weekday.columns=['weekday', 'weekday_count']
[23]: fig, axes = plt.subplots(2, 1, figsize=(10, 10))
     sb.barplot(data=df_hour, ax=axes[0], x='hour', y='hour_count', color='blue', u
     →alpha=0.5, order=df_hour.sort_values('hour').hour);
     axes[0].set_title('Total Bike Trips by each Hour')
     axes[0].set(xlabel='Hour of Day', ylabel='Total Count')
     sb.barplot(data=df_weekday, ax=axes[1], x='weekday', y='weekday_count',_
     →color='orange', alpha=0.5, order=df_weekday.sort_values('weekday').weekday);
     axes[1].set_title('Total Bike Trips by Weekday')
     axes[1].set(xlabel='Weekday', ylabel='Total Count')
     axes[1].
     set_xticklabels(['Monday','Tuesday','Wednesday','Thursday','Friday','Saturday','Sunday'])
    plt.show()
```


0.3.4 Demographic

Which is the most popular demographic for our bike service?

```
[24]: # Check member birth years

df_member_year = df_clean.member_birth_year.unique()

df_member_year.sort()

df_member_year

[24]: array([1878, 1900, 1901, 1902, 1910, 1920, 1927, 1928, 1930, 1931, 1933,

1934, 1938, 1939, 1941, 1942, 1943, 1944, 1945, 1946, 1947, 1948,

1949, 1950, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1958, 1959,

1960, 1961, 1962, 1963, 1964, 1965, 1966, 1967, 1968, 1969, 1970,

1971, 1972, 1973, 1974, 1975, 1976, 1977, 1978, 1979, 1980, 1981,

1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992,
```

```
1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001])
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: UserWarning: Boolean Series key will be reindexed to match DataFrame index.

```
[26]: plt.figure(figsize = (30,15))

cmap = sb.cubehelix_palette(dark=0, light=1, as_cmap=True)
    sb.heatmap(df_demo, cmap=cmap)
    plt.title('Total Number of Bike Trips by Gender and Birth Year Demographic')
    plt.xlabel('Birth Year')
    plt.ylabel('Gender')
    plt.yticks(rotation = 0)

plt.show()
```


0.3.5 Geolocation

Which geographical areas have the highest usage of our bike service?

Interesting to see that we have 3 groups of data corresponding to 3 cities: San Francisco, Oakland and San Jose

```
[28]: # Creating separate df for each of the 3 clustered locations (cities: San_ Francisco, Oaklan, San Jose)

df_sf = df_clean[df.start_station_longitude < -122.32].reset_index(drop=True)

df_oak = df_clean[df.start_station_longitude >= -122.32]

df_oak = df_oak[df.start_station_longitude < -122].reset_index(drop=True)

df_sj = df_clean[df.start_station_longitude >= -122].reset_index(drop=True)

# Verifying all data points are allocated to a dataframe

df_sf.shape[0] + df_oak.shape[0] + df_sj.shape[0] == df_clean.shape[0]
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: UserWarning: Boolean Series key will be reindexed to match DataFrame index.

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:4: UserWarning: Boolean Series key will be reindexed to match DataFrame index. after removing the cwd from sys.path.

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:5: UserWarning: Boolean Series key will be reindexed to match DataFrame index.

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:7: UserWarning: Boolean Series key will be reindexed to match DataFrame index. import sys

[28]: True

```
[29]: df_sf_plt = df_sf.groupby(['start_station_latitude',__

→ 'start_station_longitude']).size()
    df_sf_plt = df_sf_plt.reset_index()
    df_sf_plt.columns = ['latitude', 'longitude', 'count']
    df_oak_plt = df_oak.groupby(['start_station_latitude',_
     df_oak_plt = df_oak_plt.reset_index()
    df_oak_plt.columns = ['latitude', 'longitude', 'count']
    df_sj_plt = df_sj.groupby(['start_station_latitude',_

¬'start_station_longitude']).size()
    df_sj_plt = df_sj_plt.reset_index()
    df_sj_plt.columns = ['latitude', 'longitude', 'count']
[30]: # Find geographical locations and plotting overlay on google maps
    sf_img = mpimg.imread('sf_png.PNG')
    oak_img = mpimg.imread('oak_png.PNG')
    sj_img = mpimg.imread('sj_png.PNG')
```

```
fig, axes = plt.subplots(1, 3, figsize=(30, 10))
sb.scatterplot(ax=axes[0], data = df_sf_plt, x='longitude', y='latitude', u
→hue='count', size='count', sizes=(20,200));
→aspect='auto')
axes[0].set_title('Density Map of Total Bike Trips in San Francisco')
sb.scatterplot(ax=axes[1], data = df_oak_plt, x='longitude', y='latitude', u
→hue='count', size='count', sizes=(20,200));
axes[1].imshow(oak_img, extent=[-122.32, -122.17, 37.75, 37.9], alpha=0.5,
→aspect='auto')
axes[1].set_title('Density Map of Total Bike Trips in Oakland')
sb.scatterplot(ax=axes[2], data = df_sj_plt, x='longitude', y='latitude', u
→hue='count', size='count', sizes=(20,200));
axes[2].imshow(sj_img, extent=[-121.95, -121.8, 37.275, 37.425], alpha=0.5,
→aspect='auto')
axes[2].set_title('Density Map of Total Bike Trips in San Jose')
plt.show()
```


[30]: