Lending Clu	b Loan Data
An analysis using S	AS Enterprise Miner
	Gopesh Vijayvergiya Rasika Kulkarni Kriti Jain Rajnath Geddi

INDEX

S.No.	Topic	Page No.
1.	Executive Summary	2
2.	Project Motivation	3
3.	Data Description	3
4.	BI Model: Target variable - Not_fully_funded	4
5.	BI Model: Target Variable - Will Default	15
6.	BI Model: Target Variable - Will Default Tracker	21
7	References	25

1. EXECUTIVE SUMMARY

1.1 Mission Statement

The objective of this project to build two models:

- a model that will predict if a loan will be fully funded by investors or not
- a model that predicts if a loan will be defaulted or not

1.2 Introduction

Lending Club (LC) is an online peer to peer lending platform headquartered in San Francisco, California. It facilitates investors in searching and browsing the loan listings and helps them select loans that they want to invest in. Investors make money from interest. Lending Club makes money by charging borrowers an origination fee and investors a service fee.

For assessing the risk associated with their borrowers, Lending Club primarily relies on a grade and sub-grade system that it assigns them based on their credit history. This information is then made available to investors who fund the loan requests, so that the investors can decide which loan request and how much of that loan request they will fund. In addition to the grade information, Lending Club provides historical loan performance data to investors for more comprehensive analysis.

2. PROJECT MOTIVATION

We selected this dataset because our team was unfamiliar with the domain and it would add the challenge of learning about the data while trying to extract meaningful information from of it. The dataset had many observations and attributes and it would give us the opportunity to explore different techniques in data pre-processing and data mining.

3. DATA DESCRIPTION

The data is second-hand data that was obtained from www.kaggle.com. The dataset contains the data of only approved loans by the LendingClub between 2007 and 2015.

The dataset has 75 variables and 880,000+ observations. The attributes include information about the borrowers such as their open accounts, months since last delinquency, amount of loan requested, amount of loan funded by investor, employment length, annual income, lending club assigned loan grade, interest rate, installments etc.

Following are our target variables:

- not_fully_funded (binary 0 No / 1 Yes)
- will_default (binary 0 No / 1 Yes)

We have rejected variables having missing values greater than 50% and those that were not relevant for the analysis such as

- IDs
- URL
- Employee Title
- Description

4. BI Model: Target variable - Not_fully_funded

Fig: 4.1 – Process flow diagram for target variable not_fully_funded

We have created the target variable not_fully_funded that represents whether the loan is fully funded by an investor or not.

4.1 DATA EXPLORATION

The initial exploration was done using the File Import node by turning on the summarize option to 'Yes'. We can see from the below statistics table variables with high missing values:

Fig: 4.2 - List of missing values

The StatExplorer node ranks all the variables based on their worth in predicting the target variable. We also need to identify the variables with high worth having large number of missing values and need to reject or impute them.

Fig: 4.3 – Variable worth for the target variable not_fully_funded

Target variable breakdown:

Fig: 4.4 - Classification of the target variable not_fully_funded

From the fig 4.4, we can see that the baseline misclassification rate is 11.33%

4.2 DATA PARTITIONING

We have partitioned the data into training as 60% and validation as 40% of the initial dataset. The training data is used to create models to predict the outcome while the validation data helps to assess the model.

4.3 DATA PRE-PROCESSING

Dropping variables: Since we created the target variable Not_fully_funded from the two variables funded_amt and funded_amt_inv, we have rejected funded_amt_inv as incorporating it in the analysis was resulting in near perfect model due to its direct relation with the target variable.

Transform variables: We have created 3 variables open_rv, total_open_il, Total_open_acc by combining already existing columns in our dataset to simplify the computation. open_rv was created combining open_rv_12m and open_rv_24m i.e. number of revolving trades opened in past 12 and 24 months. We did the same thing for total_open_il by combining open_il_6m, open_il_12m, open_il_24m i.e. the number of installment accounts opened in the past 6,12 and 24 months. And lastly, we created Total_open_acc by combining open_acc and open_acc_6m which represents the number of open credit lines in the borrower's credit files.

Fig: 4.5 – Creation of three new variables by combining existing variables

4.4 INTERACTIVE BINNING

Transform Node: We used transform node to transform variables such as:

- Months since last delinquency
- Months since last public record
- Months since last derogatory comment

These variables had approximately 97% missing values, but we have assumed that a missing value means that it has been a very long time since or the person has never had a record against them. For this reason, we have transformed these variables using transform and interactive binning to be used has whether a person has a record against them (irrespective of when) or not.

Conversion of continuous variables to categorical:

To get more discernible results, we used interactive binning to convert continuous variables like interest rate, dti, last payment amount, total payment, employment length, delinquencies in the past 2 years into categorical variables.

Fig: 4.6 – Categorizing continuous variable int_rate

After Categorizing

Fig: 4.6 shows that as the interest rate increases, the percent of defaulted loans (1) also increases.

Category reduction of nominal variable - purpose:

Before Categorizing

The nominal variable purpose had 14 levels, we created 5 categories by combining similar purposes.

Before categorizing

After categorizing

Fig: 4.7 – Reducing categories of nominal variable purpose

Removing outliers and reducing the skewness: The replacement, transform and impute nodes were used in conjunction for removing the outliers and reducing the skewness of the data.

Replacement node: The replacement node was used to remove values that were outside of \pm 3 standard deviations away from the mean.

Transform Node: We have used the transform node to reduce the skewness of variables using a logarithmic transformation for all the variables. This helped us in drastically reducing the skewness of highly skewed variables.

Impute: We have used the default impute method which uses the mean to impute the missing values for interval variables and count to impute for class variables.

Following are the results after removing outliers, transforming and imputing:

Fig: 4.8 – Results – removing outliers, reducing skewness and imputing

4.5 Models for target variable not_fully_funded

We used decision tree and logistics regression and tried 6 different models.

4.6 Model Comparison Results

Below are the results of the model comparison node. Using misclassification rate as the selection criterion, SAS EM has selected "Tree7 (Decision tree after bin)" as the best model.

Fig: 4.9 – Fit statistics of models for target variable not_fully_funded

Below are the ROC curves for different models that we tried. The ROC curves show that the "Tree7 (Decision tree after bin)" is the best model.

Fig: 4.10 - ROC curves of models for target variable not_fully_funded

Below is the cumulative lift chart for all the models:

Fig: 4.11 – Cumulative lift of models for target variable not_fully_funded

Below are the results for our best model:

Fig: 4.12 – Cumulative lift of Tree7 for target variable not_fully_funded

From the Fig: 4.12, we can see that for 40% of the total approved loans, 2.11 times the loan will not be fully funded by the investors.

Fig: 4.13 – Fit statistics for Tree7 for target variable not_fully_funded

Confusion matrix:

Actual							
		0	1				
_	0	311999	34628				
Predicted		(True -)	(False -)				
Pr	1	2713	5613				
		(False +)	(True +)				

Fig: 4.14 - Confusion matrix for Tree7 for target variable not_fully_funded

Data Role=	TRAIN Target	=not_fully_f	unded Target	Label=not_fully_funded
False Negative	True Negative	False Positive	True Positive	
51880	468183	3885	8478	
Data Role=	VALIDATE Tar	get=not_full	y_funded Tar	get Label=not_fully_funded
False	True	False	True	
Negative	Negative	Positive	Positive	
34628	311999	2713	5613	

Fig: 4.15 – Event classification table for Tree7 for target variable not_fully_funded

4.7 Business implications

It is important to estimate the effect of misclassify the target variable. The errors can be classified into two types:

- False Positive
- False Negative

The more expensive error is the false negative error where the model predicts a 0 - meaning a loan is fully funded when it is actually not i.e. 1. The implications for this is that the lending club may not hold sufficient reserve funds to fund the loan thereby losing out on profit and customers.

4.8 Conclusion

This model was designed to help Lending club decide how much money they should keep in reserve, if they were to fund loans that were not fully funded by investors. Our best model returned a misclassification rate of 10.52% and we were unable to reduce it further. We suspect that the data is insufficient in the respect that we don't have the information about the credit history and credit score of the borrowers.

5. BI Model: Target Variable - Will Default

The following model will be used to predict the outcome of a loan whether it will be defaulted or not:

 $Fig: 5.1-Process \ flow \ diagram \ for \ target \ variable \ will_default$

5.1 DATA EXPLORATION

From the diagram below, we can see that the baseline misclassification error is 19.4%.

Fig: 5.2 – Classification for target variable will_default

5.2 DATA PRE-PROCESSING

We have used a filter to remove observations that have a loan status of current, in grace period, late, and issued. These observations were removed since our target is to predict if a loan will be defaulted on or not. We were left with 250,000+ observations after filtering out the classes of target variables that were unnecessary to our model.

Target Variable: Replacement and Transform nodes were used to create a new binary target variable – Will_Default where 0 - No (Loan Fully Repaid), 1 - Yes (Loan will be defaulted on).

Following is the picture showing the transformation for the target variable:

Fig: 5.3 – Creating target variable will_default

Data Partitioning: The data was partitioned as Train -60% and Validate -40%.

Dropping variables: We rejected variables that had missing values above 50% and very less variable worth. We rejected variables like recoveries, coll_rec_fee (collection recovery fee), out_prncp (outstanding principal) as incorporating it in the analysis was resulting in near perfect model due to its direct relation with the target variable. We also rejected variables like last_pymnt (last payment), tot_pymnt (total payment), tot_received_prncp (total received principal) and tot_received_int (total received interest) as this information would be unavailable at the time of deciding whether to fund a loan or not.

Transform Node: We used transform node to transform variables such as:

- Months since last delinquency
- Months since last public record
- Months since last derogatory comment

These variables had approximately 97% missing values, but we have assumed that a missing value means that it has been a very long time since or the person has never had a record against them. For this reason, we have transformed these variables using transform and interactive binning to be used has whether a person has a record against them (irrespective of when) or not.

Conversion of continuous variables to categorical:

To get more discernible results, we used interactive binning to convert continuous variables like interest rate, dti, last payment amount, total payment, employment length, delinquencies in the past 2 years into categorical variables.

Before Categorizing

After Categorizing

Fig: 5.4 – Categorizing continuous variable int_rate

Fig: 5.4 shows that as the interest rate increases, the percent of defaulted loans (1) also increases.

Category reduction of nominal variable - purpose:

The nominal variable purpose had 14 levels, we created 5 categories by combining similar purposes.

Before categorizing

After categorizing

Fig: 5.5 – Reducing categories of nominal variable purpose

To reduce the skewness of the following variables we used the Log 10 method in the Transform node:

Fig: 5.6 – Transformation to reduce skewness

Two variables had missing values of 1% and 8% and they were imputed with the median value (replacing by mean did not change the misclassification rate of the model).

Fig: 5.7 – Imputing the missing values

Variable selection using Variable Selection Node:

We used the variable selection node to check for the variables that SAS EM would select for the model based on their correlation to the target variable. We ran a regression model after running the variable selection node on default settings.

5.3 Models for target variable will_default

We used decision tree and logistic regression to predict our target variable. Our models utilized different inputs:

- With/without reducing skewness
- With/without imputing for missing values
- Categorizing continuous and nominal variables

5.4 Model Comparison

We used the model comparison node to assess our models. Below is the output of the model comparison node:

Selected Model Select	Model Node ted Model	Model Description	Target Variable	Selection Criterion: Valid: Misclassification Rate	Train: Average Squared Error	Train: Average Error Function	Valid: Mean Square Error
Y	Reg3 Reg5 Reg2	Regression (3) Regression (5) Regression (2)	will default will default will default	0.182134 0.182173 0.182232	0.139919	0.445124	0.140177 0.140059 0.140394
	Tree2 Tree4 Req	Decision Tree (2) Decision Tree (4) Regression	will default will default will default	0.182812 0.182812 0.183068	0.149384		0.139673

Fig: 5.8 – Fit statistics for the models for target variable will_default

Below are the ROC curves for the 6 models that we tried.

Fig: 5.9 - ROC curves for the models for target variable will_default

The cumulative lift chart for the 6 models is below:

Fig: 5.10 – Cumulative lift chart for the models for target variable will_default

Best Model – Regression (3):

SAS EM chose Regression (3) as the best model for this data. This regression is the one that was used after categorizing some continuous and nominal variables, reducing skewness using Log 10 transformation, and imputing missing values as described in the preprocessing section.

Fig: 5.11 – Cumulative lift chart for the regression (3) model for target variable will_default

Target	Fit Statistics	Statistics Label	Train	Validation
will default	AIC	Akaike's Information Criterion	135952.9	
will default	ASE	Average Squared Error	0.139975	0.14017
will default	ASE AVERR	Average Error Function	0.445361	0.14017 0.44592
will default will default	DFE	Degrees of Freedom for Error	0.139975 0.445361 152457	
will default	DFM	Model Degrees of Freedom	54	
will default	DFT	Total Degrees of Freedom	152511 305022 135844.9	
will default	DIV ERR FPE	Divisor for ASE	305022	203356 90680.66
will default	ERR	Error Function	135844.9	90680.66
will default	FPE	Final Prediction Error	0.140074	
will default	MAX MSE	Maximum Absolute Error	0.988366 0.140024	0.993t 0.14017
will default	MSE	Mean Square Error	0.140024	0.14017
will default	NOBS	Sum of Frequencies	152511	101678
WIII CIETALIIT	NW	Number of Estimate Weights	54	
will default will default will default	RASE	Root Average Sum of Squares	0.374132	0.374402
will default	RFPE	Root Final Prediction Error	0.374264	
will default	RMSE	Root Mean Squared Error	0.374198	0.37440
will default	SBC SSE	Schwarz's Bayesian Criterion	136489.4	
will default	SSE	Sum of Squared Errors	42695.31	28505.76
will default	SUMW	Sum of Case Weights Times Freq	305022	
will default	MISC	Misclassification Rate	0.182216	0.182134

Fig: 5.12 – Fit Statistics for the regression (3) model for target variable will_default

Confusion Matrix:

Actual - Will_Default						
ıult		0 – [No]	1 – [Yes]			
)efa	0 – [No]	82819	18248			
- Will_Default		(True -)	(False -)			
cted	1 – [Yes]	271	340			
Predicted		(False +)	(True +)			

Fig: 5.13 – Confusion matrix for the regression (3) model for target variable will_default

5.5 Business implication

When predicting whether the loan will be defaulted on or not, the more expensive error is the false negative. In this case, the model predicts a 0 i.e. loan will be fully paid when actually it will be defaulted on. This will lead to the investor losing both the principal and the profit (interest).

In the false positive error, the model predicts 1 i.e. loan will be defaulted on when it will be fully paid. In this case, the investors lose out on the profit that they would have made by funding the loan.

5.6 Conclusion

This model was designed to help investors decide which loans to invest in. Our best model returned a misclassification rate of 18.22%. This business model helps in the decision making of whether to invest in a loan or not.

6. BI Model - Will_Default - Tracker

We tried to create a model that can be used as a tracker by investors to predict if their investment — a funded loan — will be fully repaid or defaulted on. For this reason, we have included previously rejected variables such as last_pymnt (last payment), tot_pymnt (total payment), tot_received_prncp (total received principal) and tot_received_int (total received interest). This model can be used by investors to track progress and outcome of their loan and plan their own finances accordingly. For instance, if they are relying on the profit from funding the loan and they can predict that the loan will be defaulted on, they can make alternative arrangements for the funds.

6.1 Model Comparison - Will_Default Tracker:

We used the model comparison node to assess our models. Below is the output of the model comparison node:

Selected Model	Predecessor Node	Model Node	Model Description	Target Variable	Selection Criterion: Valid: Misclassification Rate	Valid: Average Squared Error	Valid: Mean Square Error A	Valid: Root Mean Square Error	Train: Misclassifica tion Rate	Train: Average Squared Error	Train: Root Mean Squared Error
Υ	Tree2 Tree4	Tree2 Tree4	Decision Tree (2) Decision Tree (4)		0.031492 0.053276				0.0303	0.0241	
	Reg3 Reg2 Reg	Req3 Req2 Req	Regression (2) Regression	will default will default will default	0.063288 0.063347 0.089803	0.0515	. 0.0515 . 0.0516 0.0620	0.2270 0.2272 0.24906	0.0611	0.0502	0.2242 0.2243 0.2468
	Rea5	Req5	Regression (5)	will default	0.106355		. 0.0721		0.1034		0.2667

Fig: 6.1 – Fit statistics for the models for target variable will_default tracker

SAS EM chose the decision tree (2) as the best model for this dataset based on the Misclassification rate of the Validation dataset. This decision tree was the model that used the inputs after categorizing the continuous and nominal variables as mentioned in the preprocessing step.

Below are the ROC curves for the 6 models that we tried. The ROC curves show that the decision tree (2) closely follows the left and top border and is the best model for this dataset.

Fig: 6.2-ROC curves for the models for target variable will_default tracker

The cumulative lift chart for the 6 models that we tried is below:

 $Fig: 6.3-Cumulative\ lift\ chart\ for\ the\ models\ for\ target\ variable\ will_default\ tracker$

Best Model - Decision Tree (2)

Cumulative Lift Chart and Fit Statistics:

Fig: 6.4 – Cumulative lift chart for the decision tree (2) for target variable will_default tracker

Fig: 6.5 – Fit Statistics for the decision tree (2) for target variable will_default tracker

Confusion Matrix:

Actual						
		0 – [No]	1 – [Yes]			
	0 – [No]	82137	2249			
Predicted		(True -)	(False -)			
Pr	1 – [Yes]	953	16339			
		(False +)	(True +)			

Fig: 6.6 - Confusion matrix for the decision tree (2) for target variable will_default tracker

6.2 Business implication

When using the tracker model, the more expensive error is the false positive. In the false positive error, the model predicts 1 i.e. loan will be defaulted on when it will be fully paid. In this case, the investors lose out on the opportunity to further invest their profits.

6.3 Conclusion

This model was designed to help investors track the progress and outcome of the loans to invest in. Our best model returned a misclassification rate of 3.03%.

7. References

- www.kaggle.com
- www.lendingclub.com