IFOS-2017 -> Papor II

5)(d) Evaluate Je X dx using the Composite trapezoidal rule with four decimal precission. i.e, with the absolute value of the error not exceeding 5×10-5.

 \Rightarrow we choose ten interval for this problem. $\therefore f(x) = e^{-x^2}$, a=0, b=1, $n=10 \Rightarrow h=\frac{1-0}{10}=0.1$

		,	
$x_{10} = 1.0$	0.36788	0.36788	0-49486
$\chi_9 = 0.9$	0.44486		0.52792
x8 = 0.8	0.52792	-	0.61263
X7=0.7	0.61263		0.69768
Xe = 0.6	0.69768		
X5 = 0.5	0.77880		0.85219
$x_4 = 0.4$	0.85214		0.85214
$\chi_3 = 0-3$	0.91393	<u>or</u>	0.91393
X2 = 0-2	0.96079		0.96079
x = 0.1	0.99005		0.99005
$\chi_0 = 0$	1.00000	1.00000	
X:	i=0 to 10	$\hat{c} = 0,10$	1=1,2,3,4,5,6,7,8,9
nci.	Yi	1,0	3 14 1

Σy;=1·36788=γ;) Σy;=6·77880 (= γ2)

Now, by The Treapertoidal Trule, in $\int_{0}^{1} e^{-x^{2}} dx = \frac{h}{2} \left[y_{0} + y_{10} + 2 \left(y_{1} + y_{2} + y_{3} + y_{4} + y_{5} + y_{6} + y_{7} + y_{8} + y_{9} \right) \right]$ $= \frac{h}{2} \left[y_{2} + 2 y_{2} \right] = \frac{0.1}{2} \times 14.92548$ = 0.746274 $\approx 0.7463 \quad \text{Copproximate value}$

7) (a) Find the real root of the equation, x3+x2+3x+4=0, correct upto five places of decimal using Newton-Raphson method.

 \Rightarrow (et, $f(x) = \chi^3 + \chi^2 + 3\chi + 4$, there is no 'tre' real root. ·· f(-2)=-6 <0 4 f(-1)= 1 >0, f(x)=3x2+2x+3

Thus f(x) = 0 has a real root between (-2) and (-1)

Now, we take, x=-1 & Compute Scessive approx. in a table

n	Xn	f(Xn)	f'(Mn)	$h_n = -\frac{f(x_n)}{f'(x_n)}$	$\chi_{n+1} = \chi_n + h_n$
0	-1	1	1. A	-0.25	-1.25
1	-1.25	-0.1406	,25 5.187!	0.027108	-1.222892
2	-1:22289	12 -0.005	2003 5.040	Q -	_ 4 00 4 4
3	-1.22249	15 -0.000	002 5-0384	192 0.0000004	-1.2224946

Thus, -1.22249 is the root of the given equation, Correct upto four decimal places.

T) (b) A river is 80 metre vide, the depth y, in metre of the river at the distance x from the one bank is given by the following table,

,	X	0	10	20	30	40	50	60	70	80	
	d	0	4	7	9	12	15	14	8	3	

Find the area of cross-section of the river using simpson's 13rd rule.

Then $A = \int (xy) dx$

and h=10.

840 840 60 560 560 70 80 240 240 Z2=240(=Y,) Z2=1620(=Y2) Z2=1460(=Y3) Now by Simpson's Uzord orule, A= h (20+28+4(21+25+27+2)+2(22+24+26)) = h[1,+412+273] = 10 [246 +(4x1620) +(2x1460)] $=\frac{10}{3}[0640]=10711.11 \text{ Sq.m.}$ 7) (c) Find y for x=0.2 taking h=0.1 by modified euler method and compute the evror, given that, dy = x+y, y(0) =1. > here, f(x,y) = x+y, x0 =0, y0 = 1, h=0.1 · f(xo, yo) = 0+1 = 1 we have, y(1) = yo + hf (xo, yo) = 1+0.1 = 1.1 $f(x_1, y_1') = 0.1 + 1.1 = 1.2$: 2nd Approximation of y, is, $y_{1}^{(2)} = y_{1} + \frac{h}{2} \left[f(x_{0}, y_{0}) + f(x_{1}, y_{1}^{(2)}) \right] = 1.11$

£ 21,3,5,7

40

270

750

120,8

i20 to8

40

140

270

480

750

10

20

30

40

50

° 22.4,6

140

480

of f(x, y) = 0.1+1.11 = 1.21 : y(3) = yo + 2 [f(xo, yo) + f(xy, y(2))] = 1+9=[1+1-21] = 1.1105 $f(x_1, x_1^{(3)}) = 0.1 + 1.1165 = 1.2105$ Y(4) = 70+ 2 [f(16,1/6)+f(14,1/9)] = 1.110525 since, $y_1^{(3)} = y_1^{(4)}$ hence, $y_1 = 1.1105$ Now, y = 4+hf(x, 4) =1.1105+0.180.1+1.1105}=1.23155 $f(x_2, x_2^{(1)}) = 0.2 + 1.23155 = 1.43155$ Then, $y_2^{(2)} = y_1 + \frac{h}{2} \left[f(x_1, y_1) + f(x_2, y_2^{(1)}) \right]$ = 1.1105+01[30-1+1.1105]+1-43155]=1-2426025 $f(x_2, y_2^{(2)}) = 1.4426025$ Then, $y_2^{(3)} = y_1 + \frac{h}{2} \left[f(x_1, y_1) + f(x_2, y_2) \right]$ = 1.1105+ D.1 [30.1+1.1105] + 1.44260259 = 1.243155Then $y_2^{(4)} = y_1 + y_2 \left[f(x_1, y_1) + f(x_2, y_2^{(2)}) \right]$ = 1.1105+ 0.1 [50.1+1.405]+\$0.2+1.243155] = 1.24318275 0. 42 = 42 = 1.2432 (correct up to 4 decimal place) Hence y=1.2432, is the Solution of the given equation at x=0.2.