Reconfiguration of Satisfying Assignments and Subset Sums: Easy to Find, Hard to Connect

Jean Cardinal, Erik Demaine, David Eppstein, Robert Hearn, *Andrew Winslow*

Reconfiguration: a SAT Example

$$X_1 = F$$

 $X_2 = F$ $(F \lor \neg F) \land (\neg F \lor F) \land (\neg F \lor \neg F)$
 $X_3 = F$

$$X_1 = F$$
 $X_2 = F$ $(F \lor \neg F) \land (\neg F \lor F \lor F) \land (\neg F \lor \neg F) \land X_3 = F$

$$\downarrow flip X_3$$

$$X_1 = F$$

$$X_2 = F$$

$$X_2 = F$$

$$X_3 = F$$

$$X_4 = F$$

$$X_5 = F$$

$$X_7 = F$$

$$X_1 = F$$

 $X_2 = F$ $(F \lor \neg F) \land (\neg F \lor F \lor F) \land (\neg F \lor \neg F \lor \neg F)$
 $X_3 = F$
 $\downarrow flip x_3$
 $X_1 = F$
 $X_2 = F$ $(F \lor \neg F) \land (\neg F \lor F \lor T) \land (\neg F \lor \neg F \lor \neg T)$
 $X_3 = T$
 $\downarrow flip x_1$
 $X_1 = T$
 $X_2 = F$ $(T \lor \neg F) \land (\neg T \lor F \lor T) \land (\neg T \lor \neg F \lor \neg T)$
 $X_3 = T$

```
X_1 = F
X_2 = F (F \lor \neg F) \land (\neg F \lor F \lor F) \land (\neg F \lor \neg F \lor \neg F)
x_3 = F
   \iint flip x_3
X_1 = F
x_2 = F (F \vee –F) Keeping formula satisfied –F \vee –T)
X_3 = T

↓ flip x₁
X_1 = T
X_2 = F (T \lor \neg F) \land (\neg T \lor F \lor T) \land (\neg T \lor \neg F \lor \neg T)
X_3 = T
```

$$X_1 = F$$

 $X_2 = F$ $(F \lor \neg F) \land (\neg F \lor F \lor F) \land (\neg F \lor \neg F)$
 $X_3 = F$

$$\downarrow \downarrow$$

$$\downarrow X_1 = T$$

$$X_2 = T \quad (T \lor \neg T) \land (\neg T \lor T \lor F) \land (\neg T \lor \neg F) \lor \neg F)$$

$$X_3 = F$$

$$X_1 = F$$
 $X_2 = F$
 $X_3 = F$
 $X_3 = F$

$$\downarrow \downarrow$$
Impossible
$$\downarrow X_1 = T$$
 $\downarrow X_2 = T$
 $\downarrow (T \lor \neg T) \land (\neg T \lor T \lor F) \land (\neg T \lor \neg F \lor \neg F)$

 $X_3 = F$

Reconfiguration: a Subset Sum Example

$$S = \{2, 3, 7\}$$

$$2 + 3 + 7 = 12$$

$$S = \{2, 3, 7\}$$

$$S = \{5, 7\}$$

$$S = \{5, 3, 4\}$$

$$2 + 3 + 7 = 12$$

$$5 + 7 = 12$$

$$5 + 3 + 4 = 12$$

$$S = \{2, 3, 7\}$$

$$\downarrow S = \{2, 4, 6\}$$

$$2 + 3 + 7 = 12$$

$$5 + 3 + 4 = 12$$

$$2 + 3 + 7 = 12$$

$$5 + 3 + 4 = 12$$

$$2 + 3 + 7 = 12$$

$$5 + 3 + 4 = 12$$

2 + 3 + 7 = 12

$$S = \{2, 3, 7\}$$

Impossible

$$5 + 3 + 4 = 12$$

$$S = \{2, 4, 6\}$$

Input:

- An instance of 3SAT Ф.
- A satisfying assignment A of Φ.
- A satisfying assignment B of Φ.

Output:

Whether A can be reconfigured into B.

Input:

- 3SAT formula $(x_1 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3)$
- $x_1 = F$, $x_2 = F$, $x_3 = F$.
- $x_1 = T$, $x_2 = F$, $x_3 = T$.

Output: Yes (can be reconfigured).

Input:

- 3SAT formula $(x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_2 \vee x_3) \wedge (\neg x_1 \vee \neg x_2 \vee \neg x_3)$
- $x_1 = F$, $x_2 = F$, $x_3 = F$.
- $X_1 = T$, $X_2 = T$, $X_3 = F$.

Output: No (cannot be reconfigured).

Theorem: the 3SAT reconfiguration problem is PSPACE-complete.

problems solvable in n^{O(1)} space

Corollary: some reconfigurations require exponentially many variable flips.

SAT Variants

1-in-3SAT

One-in-three (1-in-3): satisfying assignment if 1 (but not 2 or 3) true literals per clause.

$$(X_1 \lor X_3 \lor X_4) \land (X_2 \lor X_2 \lor X_4) \land (X_1 \lor X_2 \lor X_4)$$

$$X_1 = F$$
 $X_2 = F$
 $X_3 = F$
 $X_4 = T$

(F \vee F \vee T) \wedge (F \vee F \vee T)
 \wedge (F \vee F \vee T)
 \wedge (F \vee F \vee T)
 \wedge (F \vee F \vee T)
 \wedge (F \vee F \vee T)
 \wedge (F \vee F \vee T)
 \wedge (T \vee F \vee T)

 $X_4 = T$

Theorem: the 2SAT reconfiguration problem is in P. [Gopalan et al. 2009]

Theorem: the 1-in-3SAT reconfiguration problem is in P (always "No").

<u>Theorem:</u> the 3SAT reconfiguration problem is PSPACE-complete.

Theorem: the 2SAT reconfiguration problem is in P. [Gopalan et al. 2009]

Theorem: the 1-in-3SAT reconfiguration problem is in P (always "No").

<u>Theorem:</u> the 3SAT reconfiguration problem is PSPACE-complete.

Is there a SAT variant whose:

- Solving problem ("Does a satisfying assignment exist?") is in P.
- Reconfiguration problem is PSPACE-complete.

Theorem: the 2SAT reconfiguration problem is in P. [Gopalan et al. 2009]

Theorem: the 1-in-3SAT reconfiguration problem is in P (always "No").

<u>Theorem:</u> the 3SAT reconfiguration problem is PSPACE-complete.

Is there a SAT variant whose:

- Solving problem ("Does a satisfying assignment exist?") is in P.
- Reconfiguration problem is PSPACE-complete.

Yes, monotone planar NAE 3SAT.

Monotone: no negated variables.

Planar: graph of variables and clauses is planar.

Not-All-Equal (NAE): satisfying assignment if 1 or 2 (but not 3) true literals per clause.

 $(X_1 \lor X_2 \lor X_4) \land (X_2 \lor X_2 \lor X_4) \land (X_1 \lor X_2 \lor X_3)$

$$(X_1 \lor X_2 \lor X_4) \land (X_2 \lor X_2 \lor X_4) \land (X_1 \lor X_2 \lor X_3)$$
 C_1
 C_2
 C_3

$$(X_1 \lor X_2 \lor X_4) \land (X_2 \lor X_2 \lor X_4) \land (X_1 \lor X_2 \lor X_3)$$

$$X_1 = T$$
 $X_2 = F$
 $X_3 = T$
 $X_4 = T$
 $X_4 = T$
 $X_5 = T$
 $X_4 = T$
 $X_5 = T$
 $X_6 = T$
 $X_7 = T$
 $X_8 = T$
 $X_9 = T$
 X

Monotone planar NAE 3SAT solving is in P [Moret 1988]

<u>Theorem:</u> monotone planar NAE 3SAT reconfiguration is PSPACE-complete.

Reduction is from non-deterministic constraint logic (NCL)

weight 1 → Each node needs weight 2 → incoming weight ≥2

weight 1
Each node needs weight 2
incoming weight ≥2

NCL reconfiguration is PSPACE-complete, even for:

- Planar, degree-3 graphs.
- Only two types of nodes:
- Proved by [DH 2005]

3SAT Reconfiguration is PSPACE-hard

Create a variable for orientation of each edge.

Create a clause set for each node.

<u>Theorem:</u> monotone planar NAE 3SAT reconfiguration is PSPACE-complete.

Reduction is from non-deterministic constraint logic (NCL).

Other easy-to-solve, hard-to-connect problems

Easy-to-Solve Hard-to-Connect Problems

Reconfiguring planar graph 4-colorings. [Bonsma, Cerceda 2009]

Reconfiguring shortest paths. [Bonsma 2013]

Unary Input Subset Sum

Two options for subset sum reconfiguration:

- 1. Swap x, y and x+y, keep target sum.
- 2. Add/remove x, keep sum in target range.

Option 1 Option 2 $S = \{2, 3, 7\}$ $S = \{2, 3, 7\}$ $S = \{5, 7\}$ $S = \{3, 7\}$ $S = \{5, 7\}$ $S = \{3, 7\}$ $S = \{5, 3, 4\}$ $S = \{3, 4, 7\}$

Unary Input Subset Sum

Two options for subset sum reconfiguration:

- 1. Swap x, y and x+y, keep target sum.
- 2. Add/remove x, keep sum in target range.

Unary Input Subset Sum

Two options for subset sum reconfiguration:

- 1. Swap x, y and x+y, keep target sum.
- 2. Add/remove x, keep sum in target range.

Option 1 Option 2
$$S = \{2, 3, 7\}$$

$$S = \{3, 4, 7\}$$

$$S = \{5, 3, 4\}$$

$$S = \{5, 3, 4\}$$

$$S = \{3, 4, 7\}$$

Subset Sum Reconfiguration

Theorem: subset sum reconfiguration via swapping x, y and x+y is strongly PSPACE-complete.

Reduction is from *token sliding*: reconfiguring independent sets via swapping adjacent vertices.

Reconfiguration problem is PSPACE-complete, even for 3-regular graphs [DH 2005]

Conclusion

Two new "easy-to-solve, hard-to-connect" problems:

- monotone planar NAE 3SAT
- subset sum via swapping x, y and x+y.

Open:

- PSPACE-hardness of subset sum via add/remove x?
- Meta-theorems on reconfiguration for problems in P?
 - Dichotomy theorem for SAT [Gopalan et al. 2009]

Reconfiguration of Satisfying Assignments and Subset Sums: Easy to Find, Hard to Connect

Jean Cardinal, Erik Demaine, David Eppstein, Robert Hearn, *Andrew Winslow*

