- 1. (a) Sets A and B are equal to each other.
 - (b) |A| = |B| = 3, |C| = 3, |D| = 3, |E| = 3, |F| = 3
 - (c) i. True
 - ii. False
 - iii. True
 - iv. True
 - v. True
- 2. (a) $V = \{-2, -1, 0, 1, 2, 3, 4, 5, 6\}, |V| = 9$
 - (b) $V = \{t \in \mathbb{Z} | t < -3\} \cup \{t \in \mathbb{Z} | t > 7\}, |V| = \infty$
 - (c) $B \times A = \{(x, p), (x, q), (x, r), (y, p), (y, q), (y, r)\}, |B \times A| = 6$
- 3. (a) $A \times B = \{(m, g), (m, h), (n, g), (n, h), (o, g), (o, h), (p, g), (p, h)\}, |A \times B| = 8$
 - (b) $B \times A = \{(g, m), (g, n), (g, o), (g, p), (h, m), (h, n), (h, o), (h, p)\}, |B \times A| = 8$
 - $(c) \ A \times A = \{(m, m), (m, n), (m, o), (m, p), (n, m), (n, n), (n, o), (n, p), (o, m), (o, n), (o, o), (o, p), (p, m), (o, n), (o, n$
 - (d) $B \times B = \{(g, g), (g, h), (h, g), (h, h)\}, |B \times B| = 4$
- 4. (a) $A \times B = \{(10, 2), (10, 3), (10, 4), (11, 2), (11, 3), (11, 4), (12, 2), (12, 3), (12, 4)\}$
 - (b) i. No
 - ii. Yes

 $|A \times A| = 16$

- (c) $R = \{(10, 2), (11, 3), (12, 4)\}$
- (d) Domain of R is A and co-domain of R is B.
- (e) R is a function because every element in A is related to exactly one element in B.
- 5. (a) i. $p \wedge q$
 - ii. $r \vee \neg q$
 - iii. $\neg (p \land r)$
 - iv. $\neg r \land \neg q$
 - (b) i. False
 - ii. True
 - iii. False
 - iv. True
 - v. False
 - vi. True

		p	q	r	$p \lor (\neg q \land r)$
		Т	Т	Т	T
		Т	Т	F	T
		Т	F	Т	${ m T}$
6.	(a)	Т	F	F	${ m T}$
		F	Т	Т	F
		F	Т	F	F
		F	F	Т	${ m T}$
		F	F	F	F

	p	q	r	$ (p \lor q) \land (\neg p \lor (q \land \neg r)) $
	Т	Т	Т	T
	Т	Т	F	T
	Т	F	Т	${ m T}$
(b)	Т	F	F	${ m F}$
. ,	F	Т	Т	${ m T}$
	F	Т	F	${f T}$
	F	F	Т	${ m F}$
	F	F	F	F

- (c) $p \wedge (p \vee q)$ is equivalent to p because $p \wedge (p \vee q) = p \wedge \top = p$
- 7. $(p \oplus q) \land r = (p \land \neg q \lor \neg p \land q) \land r$ because the definition of Exclusive OR is $p \oplus q = p \land \neg q \lor \neg p \land q$