## **AODV in MATLAB**

**CpE 6420 Project Presentations** 

**Stuart Miller** 



## Agenda

- > Background
- > Examples
- > Traffic Statistics
- > Future Work
- > Conclusions
- > Demo



#### **AODV** Routing Algorithm

- > Routing protocol for ad-hoc wireless networks
- > Outlined in RFC 3561
  - C. Perkins, E. Belding-Royer, S. Das, "Ad hoc On-Demand Distance Vector (AODV) Routing", RFC 3561,
     July 2003. (https://www.rfc-editor.org/rfc/rfc3561.txt)
- > Utilized by Zigbee specification



#### **AODV** Principles

- > Reactive routing protocol
- > Reduces network-wide broadcasts
- > Lower overhead
- > Discovers routes only as necessary
- > Relies on flooding for route discovery
- > Each node maintains its own route table

```
- classdef node
2
3
            properties
                 name:
                 routeTable:
                 connectedNodes:
                 seaNum;
                 color:
                 pathFrom:
                 circle:
                 text;
14 -
            end
16
                 function obj = node(name, xin, yin)
18 -
                     obj.routeTable = table(1,1,1,1,1);
```



#### **AODV** Route Messages

- > Route Request (RREQ) -----
  - Sent when a node doesn't have a valid path to the destination, triggers flooding
- > Route Reply (RREPL) ————
  - Sent back to source when the destination is reached or an intermediate node has a route to the destination.
- > Route Error (RERR) -----
  - Send back up the path of propagation by a node when its link to the intended destination breaks
- > Data ----
  - Just normal packets containing actual information



#### Approach

- > Implement in MATLAB, make use of high-quality GUI environment
- > Focus on resiliency throughout node movement (broken links, etc.)
- > Serve as more of a demonstration tool rather than an indepth simulation
- > Focus on showing step-by-step progress of algorithm



## Agenda

- > Background
- > Examples
- > Traffic Statistics
- > Future Work
- > Conclusions
- > Demo





- Sending node D -> G
- All routing tables start empty
- > D floods with RREQ
- > G replies with **RREPL**
- Data sent once route established

> Subsequent transmissions require no new overhead MISSOURI

> Reverse routes set up during flooding

SeqNum: 1

dest

lifeTime

segNum

> Forward route set up during reply

SeqNum: 1

dest

Node g

hopCnt

nextHop



Node i

hopCnt

seqNum

lifeTime

nextHop

SeqNum: 1

lifeTime

segNum

| <b>4</b> | ODV Sim - 1 | able View |        |        |          |     |        |         |        |        |          |    |         |         |        | _      | □ ×      |
|----------|-------------|-----------|--------|--------|----------|-----|--------|---------|--------|--------|----------|----|---------|---------|--------|--------|----------|
| Seq      | Num: 1      |           | Node a |        |          | Sec | Num: 1 |         | Node b |        |          | Se | qNum: 1 |         | Node c |        |          |
|          | dest        | nextHop   | hopCnt | seqNum | lifeTime |     | dest   | nextHop | hopCnt | seqNum | lifeTime |    | dest    | nextHop | hopCnt | seqNum | lifeTime |
| 1 0      | i           | d         | 1      | 1      | 1        | 1   | d      | С       | 2      | 1      | 1        | 1  | d       | d       | 1      | 1      | 1        |
| 2 9      | )           | е         | 2      | 1      | 2        |     |        |         |        |        |          |    |         |         |        |        |          |
|          |             |           |        |        |          |     |        |         |        |        |          |    |         |         |        |        |          |
| Seq      | Num: 1      |           | Node d |        |          | Sec | Num: 1 |         | Node e |        |          | Se | qNum: 1 |         | Node f |        |          |
|          | dest        | nextHop   | hopCnt | seqNum | lifeTime |     | dest   | nextHop | hopCnt | seqNum | lifeTime |    | dest    | nextHop | hopCnt | seqNum | lifeTime |
| 1 9      |             | а         | 3      | 1      | 2        | 1   | d      | а       | 2      | 1      | 1        | 1  | d       | d       | 1      | 1      | 1        |
|          |             |           |        |        |          | 2   | g      | g       | 1      | 1      | 2        |    |         |         |        |        |          |

Node h

hopCnt

nextHop

- Sending node C -> G
- Intermediates nodes have route info from Ex. 1



- > C floods with RREQ
- > D,A,&G all reply with **RREPL**
- > C picks reply with smallest hop count to destination
- Data sent once route established



#### > More routes added

Node g

hopCnt

seqNum

lifeTime

nextHop

SeqNum: 3

dest



Node i

hopCnt

seqNum

lifeTime

nextHop



|             |              |          |        |        |          |    |        |         |        |        |          |     |        | Б       |        |        | 7       |
|-------------|--------------|----------|--------|--------|----------|----|--------|---------|--------|--------|----------|-----|--------|---------|--------|--------|---------|
|             |              |          |        |        |          |    |        |         |        |        |          |     |        |         |        |        |         |
| <b>▲</b> AC | DDV Sim - Ta | ble View |        |        |          |    |        |         |        |        |          |     |        |         |        | _      |         |
| SeqNu       | um: 7        |          | Node a |        |          | Se | Num: 3 |         | Node b |        |          | Seq | Num: 1 |         | Node c |        |         |
|             | dest         | nextHop  | hopCnt | seqNum | lifeTime |    | dest   | nextHop | hopCnt | seqNum | lifeTime |     | dest   | nextHop | hopCnt | seqNum | lifeTin |
| 1 d         |              | d        | 1      | 1      | 1        | 1  | d      | С       | 2      | 1      | 1        | 1   | d      | d       | 1      |        | 1       |
| 2 g         |              | е        | 2      | 1      | 3        | 2  | С      | С       | 1      | 1      | 1        | 2   | g      | е       | 2      |        | 1       |
| 3 c         |              | С        | 1      | 1      | 1        |    |        |         |        |        |          |     |        |         |        |        |         |

| <b></b> | AODV Sim - Ta | able View |        |        |          |    |         |         |        |        |          |     |        |         |        | _      |         |
|---------|---------------|-----------|--------|--------|----------|----|---------|---------|--------|--------|----------|-----|--------|---------|--------|--------|---------|
| Sec     | Num: 7        |           | Node a |        |          | Se | qNum: 3 |         | Node b |        |          | Sec | Num: 1 |         | Node c |        |         |
|         | dest          | nextHop   | hopCnt | seqNum | lifeTime |    | dest    | nextHop | hopCnt | seqNum | lifeTime |     | dest   | nextHop | hopCnt | seqNum | lifeTir |
| 1       | d             | d         | 1      | 1      | 1        | 1  | d       | С       | 2      | 1      | 1        | 1   | d      | d       | 1      | 1      | 1       |
| 2       | g             | е         | 2      | 1      | 3        | 2  | С       | С       | 1      | 1      | 1        | 2   | g      | е       | 2      | 1      | 1       |
| 3       | С             | С         | 1      | 1      | 1        |    |         |         |        |        |          |     |        |         |        |        |         |
| Sec     | Num: 1        |           | Node d |        |          | Se | gNum: 3 |         | Node e |        |          | Sec | Num: 5 |         | Node f |        |         |
|         |               |           |        |        |          |    |         |         |        |        |          |     |        |         |        |        |         |

|      | h      |         | N-d-d  |        |          | 800 | Num: 3   |         | Node e |        |          | 800 | Num: 5    |         | Node f |        |          | ī |
|------|--------|---------|--------|--------|----------|-----|----------|---------|--------|--------|----------|-----|-----------|---------|--------|--------|----------|---|
| SeqN | Num: 1 |         | Node d |        |          | Seq | Nulli. 3 |         | Noue e |        |          | Sec | INUIII. O |         | Noue I |        |          | _ |
| Seq1 | dest   | nextHop | hopCnt | seqNum | lifeTime | Seq | dest     | nextHop | hopCnt | seqNum | lifeTime | Sec | dest      | nextHop | hopCnt | seqNum | lifeTime |   |

Node h

nextHop

hopCnt

seqNum

lifeTime

SeqNum: 5

dest

| 3  | С      | С       | 1      | 1      | 1 1      |     |        |         |        |        |          |     |        |         |        |        |      |
|----|--------|---------|--------|--------|----------|-----|--------|---------|--------|--------|----------|-----|--------|---------|--------|--------|------|
| Se | Num: 1 |         | Node d |        |          | Sec | Num: 3 |         | Node e |        |          | Sec | Num: 5 |         | Node f |        |      |
|    | dest   | nextHop | hopCnt | seqNum | lifeTime |     | dest   | nextHop | hopCnt | seqNum | lifeTime |     | dest   | nextHop | hopCnt | seqNum | life |
| 1  | g      | a       | 3      | 1      | 1 3      | 1   | d      | a       | 2      | 1      |          | 1 1 | d      | d       | 1      | 1      |      |

SeqNum: 1

1 d

dest



- Sending node D -> G again
- Node E has been moved, breaking links

- > D tries sending normally
- > A can't reach E anymore, so replies with RERR
- > A now knows no routes, so must flood
- > C knows a route to G so replies
- > D sends to G





Node b

Node e

Node h

hopCnt

hopCnt

hopCnt

seqNum

seqNum

seqNum

lifeTime

lifeTime

lifeTime

nextHop

nextHop

nextHop

- > The RERR canceled out A->G
- > The sequence numbers changed

lifeTime

lifeTime

lifeTime

seqNum

seqNum

seqNum

SeqNum: 1

SegNum: 2

SeaNum: 2

2 c

2 g

1 d

dest

dest

dest

AODV Sim - Table View

dest

dest

dest

SeqNum: 2

SeqNum: 1

SeqNum: 1

2 c

Node a

Node d

Node g

hopCnt

hopCnt

hopCnt

nextHop

nextHop

nextHop

d





| e B     |        |        | <u> </u> |
|---------|--------|--------|----------|
|         |        | _      |          |
|         | Node c |        |          |
| nextHop | hopCnt | seaNum | lif      |

lifeTime

seqNum

| Node c                |     |
|-----------------------|-----|
| nextHop hopCnt seqNum | lif |
| d 1 1                 |     |

|   | e b     |        | •      | •        |
|---|---------|--------|--------|----------|
|   |         |        | _      |          |
|   |         |        |        | <u> </u> |
|   |         | Node c |        |          |
| t | nextHop | hopCnt | seqNum | li       |
|   | d       | 1      | 1      |          |
|   | е       | 2      | 1      |          |

SeqNum: 1

SeqNum: 1

SeaNum: 1

dest

dest

2 9

2 c

1 d

| 6       |        |        | <b>+</b> |
|---------|--------|--------|----------|
|         |        | _      | _ ×      |
|         | Node c |        |          |
| nextHop | hopCnt | seqNum | lifeTime |
| d       | 1      | 1      |          |
| е       | 2      | 1      |          |
|         |        |        |          |
|         | Node f |        |          |
| nextHop | hopCnt | seqNum | lifeTime |

Node i

nextHop

hopCnt





Much shuffling, routes have almost all changed

- > Multiple route cancellations
- > Once C receives a **reply**, it sends out **data**, to the node with the lowest hop count to destination, expecting it to make it
- > Floods multiple times
- > D's route to F is still valid though



SeqNum: 28

3 a

7 b

3 b

5 f

8

9 c

SeqNum: 21

dest

nextHop

nextHop

е

Node c

hopCnt

Node g

hopCnt

2

seqNum

2

20

28

lifeTime

SeqNum: 19

SeqNum: 25

3

5

6

8

3 a

lifeTime

lifeTime

Node d

hopCnt

Node h

hopCnt

seqNum

seqNum

2

22

2

27

nextHop

nextHop

nextHop

nextHop

nextHop

SeqNum: 21

3

5 d

8 f

3 a

5 b

8 c

1 9

2 e 3 h

5 b

6 d 8 c

SeqNum: 21

dest

SeqNum: 27

dest

AODV Sim - Table View

nextHop

С

d

C

nextHop

Node a

Node e

Node i

hopCnt

hopCnt

2

seqNum

lifeTime

lifeTime

lifeTime

2

seqNum

SeqNum: 16

1 9

2 e 3 h

4 b
5 j
6 d
7 f

8 c

9 i SeqNum: 20

2 h 3 a

4 5 b

6

8

7 c

1 9

2 e 3 h 4 a

5 f

6 b
7 j
8 d

9 c

SeqNum: 22



Node b

hopCnt

Node f

hopCnt

Node j

hopCnt

seqNum

22

seqNum

28

27

lifeTime

lifeTime

lifeTime

## Agenda

- > Background
- > Examples
- > Traffic Statistics
- > Future Work
- > Conclusions
- > Demo



#### Static Network



- > 500 random packets sent
- > No movement, nodes remain in the same place
- > No RERRs



#### Static Network



- > No movement
- > Propagation delays



#### Mobile Network



- > 500 random packets sent
- > Movement every 50 packets



#### Static Network



- > Movement every 50 packets
- > Propagation delays



## **Highly Mobile Network**



- > 500 random packets sent
- > Movement every 5 packets sent



#### Static Network



- > Movement every 50 packets sent
- > Propagation delays



#### **One-Dimensional Network**



- > 500 random packets sent
- > Movement every 5 packets sent
- > Nodes only move in the X direction



#### **One-Dimensional Network**

#### **Two-Dimensional Network**



#### **One-Dimensional Network**





## Agenda

- > Background
- > Examples
- > Traffic Statistics
- > Future Work
- > Conclusions
- > Demo



#### **Future Work**

- > Compare to other protocol like DSDV or DSR
- > Implement other sources of delay such as queuing



#### **FONTS**

- > Background
- > Examples
- > Traffic Statistics
- > Future Work
- > Conclusions
- > Demo



#### Conclusions

- > Highly congested networks are a burden for any protocol
- > AODV handles link breakage with minimal overhead in simplistic cases
- > Works best when there aren't multiple routes to choose or cancel out



## Agenda

- > Background
- > Examples
- > Traffic Statistics
- > Future Work
- > Conclusions
- > Demo



#### Demo



## Questions?

