Condition Number

Sensitivity of linear system

Outline

- Vector norms
- Matrix norms
- Condition numbers
- Usage of condition number
- Estimation of condition number

Norms

- Norm: A metric for measuring entities
 - Vectors, matrices, ...
 - Norm ≈ length
- Assuming x is the entity, then a norm ||x|| must obey the following rules
 - 1. $||x|| \ge 0$
 - 2. $\|\alpha * x\| = |\alpha| * \|x\|$, where α is a scalar.
 - $3. ||x + y|| \le ||x|| + ||y||,$
 - 4. $||x * y|| \le ||x|| * ||y||$, where '*' denotes a product operator.

Vector Norms

• 1-norm

$$\vec{x} = [x_0 \dots x_{n-1}]^T,$$

 $||\vec{x}||_1 = \sum_{i=0}^{n-1} |x_i|.$

• 2-norm

$$\|\vec{x}\|_{2} = (\sum_{i=0}^{n-1} x_{i}^{2})^{\frac{1}{2}}$$
$$= \sqrt{x_{0}^{2} + \dots + x_{n-1}^{2}}$$

• ∞-norm

$$\|\vec{x}\|_{\infty} = \max_{i} |x_i|,$$

• *p*-norm

$$\|\vec{x}\|_p = (\sum_{i=0}^{n-1} x_i^p)^{\frac{1}{p}}.$$

Assuming $||\vec{x}|| \le 1$ $(\vec{x}: positional vector)$, based on different norms, the regions containing \vec{x} are different:

Red diamond: 1-norm

- Green circle: 2-norm

Blue square: ∞-norm

Regions confined by other norms are between the blue square and green circle.

Questions

• $\vec{x} = [x_0 \quad ... \quad x_{n-1}]^T$, which norm of x is the max?

Answer: the 1-norm

• Given a vector x, which norm of x is the min?

Answer: ∞-norm

• Why use different norms?

Answer: depending on applications

• Given an error vector e, which norm makes the following condition be the most difficult to achieve $||e|| \le \varepsilon$?

Answer:

- 1-norm is the hardest
- $-\infty$ -norm is the easiest.

- 1-norm, $\|\vec{x}\|_1 = \sum_{i=0}^{n-1} |x_i|$.
 - 2-norm, $\|\vec{x}\|_2 = \sqrt{x_0^2 + \dots + x_{n-1}^2}$
 - ∞ -norm, $\|\vec{x}\|_{\infty} = \max_{i} |x_i|$,

Matrix Norms

- Using vector-induced matrix norms
- Assuming that *A* is an *n* by *n* matrix, then a vector-induced norm of *A* is defined as

```
||A|| = \sup(||Ax||), x \in \mathbb{R}^n \text{ and } ||x|| = 1.
```

• Shortcuts

 $||A||_1 = \max_j \sum_{i=0}^{n-1} |a_{ij}|$, max column-wise sum of entry magnitudes.

 $||A||_{\infty} = \max_{i} \sum_{j=0}^{n-1} |a_{ij}|$, max row-wise sum of entry magnitudes.

 $||A||_2 = \max_i |\lambda_i|$, λ_i is the ith eigenvalue, max eigenvalue magnitude.

Example

• Given a matrix, compute its 1-norm, 2-norm, and ∞ -norm.

$$A = \begin{bmatrix} 6 & 2 & 3 \\ 2 & 8 & 1 \\ 3 & 1 & 5 \end{bmatrix},$$

• The norms are as follows

Summations of columns: 11, 11, 9

Summations of rows: 11, 11, 9

Eigen values: {10.4753, 6.1242, 2.4005}

1-norm: 11

2-norm: 10.4753

co-norm: 11

Questions

• For vector norms:

$$\|\vec{x}\|_1 \ge \|\vec{x}\|_2 \ge \|\vec{x}\|_{\infty}$$

- Do these relations hold for matrix norms? Answer: No.
- Are there other matrix norms? Answer: Yes.
- Entry-wise matrix norm:

$$||A||_p = \left(\sum \sum |a_{ij}|^p\right)^{1/p}. p = 1, 2, ...$$

- Trace norm of matrix: $||A^TA||_2$,
 - Assume A is a real matrix

Perturbed Right Hand Side

- Given a linear system Ax = b, if the rhs b is perturbed then
 - The system Ax = b becomes $Ax = (b + \Delta b)$.
- The solution will not be x but $x + \Delta x$ such that $A(x + \Delta x) = (b + \Delta b)$.
- What is the relation between the perturbation Δb and the error Δx ?
 - Depending on the sensitivity of A.

Perturbed Right Hand Side

• What's the effect of the perturbation upon the solution?

$$A(x + \Delta x) = (b + \Delta b).$$

$$x + \Delta x = A^{-1}(b + \Delta b).$$

$$\Delta x = A^{-1}b + A^{-1}\Delta b - x = A^{-1}\Delta b.$$

$$\|\Delta x\| \le \|A^{-1}\| \cdot \|\Delta b\|.$$

- Divided both sides by ||x||, we have

$$\frac{\|\Delta x\|}{\|x\|} \le \|A^{-1}\| \left(\frac{\|\Delta b\|}{\|x\|}\right).$$

- Multiply the right side by $\frac{\|b\|}{\|b\|}$, we have

$$\frac{\|\Delta x\|}{\|x\|} \le \|A^{-1}\| \left(\frac{\|\Delta b\|}{\|b\|}\right) \left(\frac{\|b\|}{\|x\|}\right).$$

- Since b = Ax, we have $||b|| \le ||A|| \cdot ||x||$ and

$$\frac{\|\Delta x\|}{\|x\|} \leq \|A^{-1}\| \left(\frac{\|\Delta b\|}{\|b\|}\right) \left(\frac{\|A\|\cdot \|x\|}{\|x\|}\right) = \|A^{-1}\| \cdot \|A\| \left(\frac{\|\Delta b\|}{\|b\|}\right).$$

The Condition Number

Previous result shows:

```
\frac{\|\Delta x\|}{\|x\|} \le \|A^{-1}\| \cdot \|A\| \left(\frac{\|\Delta b\|}{\|b\|}\right). //The relative error of x is bounded by a multiple of the relative error of b.
```

- The following term is called the **condition number** of this system $cond(A) = ||A^{-1}|| \cdot ||A||$.
- The condition number is used to measure the sensitivity of the linear system:
 - If a small perturbation is added into the right hand side, how much does the solution be affected?

$$\frac{\|\Delta x\|}{\|x\|} \le cond(A) \left(\frac{\|\Delta b\|}{\|b\|}\right).$$

- Large condition number \rightarrow unstable system \rightarrow loss of significant digits.
- Small condition number \rightarrow stable system $\rightarrow x$ can be solved more accurately. (Or the dimension n can be larger under the same error criterion.)

Perturbation of A

- Assume A is perturbed $A \rightarrow A + \Delta A$. We have $(A + \Delta A)(x + \Delta x) = b$.
- How much does the solution be influenced?

- Let
$$\tilde{A} = (A + \Delta A)$$
 and $\tilde{x} = (x + \Delta x)$.
 $\tilde{A}\tilde{x} = b$,
 $\tilde{x} = \tilde{A}^{-1}b = \tilde{A}^{-1}(Ax) = \tilde{A}^{-1}(A + \tilde{A} - \tilde{A})x$
 $= x + \tilde{A}^{-1}(A - \tilde{A})x = x - \tilde{A}^{-1}(\Delta A)x$.

• Move x to the left side

$$\tilde{x} - x = \Delta x = -\tilde{A}^{-1}(\Delta A)x$$
.

• Take norm on both sides and divide the norms by ||x||

$$\frac{\|\Delta x\|}{\|x\|} = \|\tilde{A}^{-1}(\Delta A)\| \le \|\tilde{A}^{-1}\| \cdot \|\tilde{A}\| \frac{\|\Delta A\|}{\|\tilde{A}\|} = cond(\tilde{A}) \left(\frac{\|\Delta A\|}{\|\tilde{A}\|}\right).$$

Perturbation

The other relation:

$$\frac{\|\Delta x\|}{\|x\|} \le \frac{cond(A)}{1-cond(A)\frac{\|\Delta A\|}{\|A\|}} \left(\frac{\|\Delta A\|}{\|A\|}\right).$$

Consider the *scaling factor*:

$$S = \frac{cond(A)}{1 - cond(A) \frac{\|\Delta A\|}{\|A\|}}$$
:

Assume the perturbation is small,

$$S(c) = \frac{c}{1-\epsilon c}$$

Or

$$\frac{\|\Delta x\|}{\|x + \Delta x\|} \le cond(A) \left(\frac{\|\Delta A\|}{\|A\|}\right).$$

black: $\epsilon = 10^{-8}$, purple: $\epsilon = 10^{-7}$, red: $\epsilon = 10^{-6}$, green: $\epsilon = 10^{-5}$, blue: $\epsilon = 10^{-4}$.

S(c) and the condition number cond(A)

Condition Number, Hilbert Matrix

• Hilbert matrix

$$a_{ij} = \frac{1}{i+j+1}$$
, $0 \le i, j \le n-1$.

Condition numbers of Hilbert matrices

$$n = 2$$
, $cond(A) = 19.282$
 $n = 4$, $cond(A) = 1551.4$
 $n = 8$, $cond(A) = 1.5258e+10$
 $n = 16$, $cond(A) = 6.5341e+17$

$$A = \begin{bmatrix} 1 & 1/2 & 1/3 \\ 1/2 & 1/3 & 1/4 \\ 1/3 & 1/4 & 1/5 \end{bmatrix}$$

Estimation of cond(A)

- The condition number is defined as $cond(A) = ||A^{-1}|| \cdot ||A||$
- The norm of A can be computed. (Using the shortcut methods).
- How to compute $||A^{-1}||$?

$$Ax = b, x = A^{-1}b$$

$$||x|| \le ||A^{-1}|| \cdot ||b||$$
. Thus $||A^{-1}|| \ge \frac{||x||}{||b||}$.

- Random generate several rhs b_i and solve the system

$$Ax_i = b_i$$
, i=1,2,...,k.

- LU-decomposition is helpful.
- Compute $\max_{i} \left(\frac{\|x_i\|}{\|b_i\|} \right)$;

$$cond(A) \approx ||A|| \cdot \left[\max_{i} \left(\frac{||x_i||}{||b_i||}\right)\right];$$