Algoritmos e Programação

Professor Marcus Vinícius Midena Ramos

Colegiado de Engenharia de Computação

(74)3614.1936

marcus.ramos@univasf.edu.br

www.univasf.edu.br/~marcus.ramos

Objetivos:

- Desenvolver o raciocínio lógico e abstrato;
- Dominar o processo básico de desenvolvimento de programas;
- Compreender e saber usar o computador como ferramenta de produtividade pessoal e profissional, além dos aplicativos comerciais;
- Conseguir autonomia na organização e implementação de soluções mecanizadas para os seus próprios problemas.

Computador

- Ferramenta indispensável;
- Faz parte das nossas vidas;
- Por si só não faz nada de útil;
- Grande capacidade de resolução de problemas;
- Necessita ser instruído.

Computador

- Capaz apenas de excutar poucas tarefas básicas distintas, todas muito simples;
- É extremamente rápido;
- Possui um comportamento previsível;
- É excelente para reproduzir "roteiros" pré-concebidos;
- Não se cansa e pode ser usado à exaustão.

Computador = Hardware (corpo) + Software (alma)

- ✓ O corpo fornece suporte para a alma.
- ✓ O corpo procura suprir as necessidades da alma.
- ✓ O corpo pode criar novas possibilidades para a alma, ou então estabeldcer limitações.
- ✓ A alma se expressa através do corpo.
- ✓ A alma usa os recursos do corpo.

Computador

• Hardware:

- ✓ Parte física: placas, periféricos, circuitos, cabos e componentes.
- ✓ Quanto mais usado, <u>mais</u> propenso à falhas.
- ✓ Sozinho, não serve para nada.
- ✓ Vem pronto da fábrica.

Computador

• Software:

- ✓ Parte intangível:
 conhecimentos e idéias que
 fazem o hardware exibir
 um certo comportamento.
- ✓ Quanto mais usado, <u>menos</u> propenso à falhas.
- ✓ Confere funcionalidade ao hardware.
- ✓ Pode ser adquirido ou desenvolvido.

Software

• Comprar?

- ✓ Oferta;
- ✓ Soluções de prateleira, não personalizadas;
- ✓ Custo de aquisição;
- ✓ Vínculos (plataforma, localização, performance, funcionalidade etc.)
- ✓ Custo de personalização;

Software

• Desenvolver?

- ✓ Recursos próprios ou de terceiros (contratação).
- ✓ Custo de criação;
- ✓ Custo de manutenção;
- ✓ Conhecimento tecnológico;
- ✓ Personalização.

Nosso objetivo

- Desenvolver software
- ✓ Organização de idéias;
- ✓ Modelo de funcionamento do computador;
- ✓ Conceitos básicos de programação;
- ✓ Transcrição para linguagens apropriadas;
- ✓ Comunicação e interação com o computador;
- ✓ Obtenção dos resultados pretendidos;
- ✓ Prática em laboratório.

Desenvolver software

Roteiro

- ı. Problema;
- 2. Solução;
- 3. Algoritmo;
- 4. Programa;
- 5. Resultados.

Problema

- ✓ Precisa ser conhecido em todos os seus aspectos;
- ✓ É necessário ter resposta para todas as perguntas que dele possam suscitar;
- ✓ É fundamental considerar todas as situações adversas;
- ✓ Nenhuma faceta deve ser omitida.

Solução

- ✓ Existe solução para o problema?
- ✓ Qual o custo da sua implementação?
- ✓ Qual o custo da sua execução?
- ✓ Como iremos representála?

Algoritmo

- ✓ Representação de uma solução para um problema, com algumas características:
 - Seqüência finita de etapas;
 - Individualmente, existe realização possível para cada uma das etapas consideradas;
 - Termina após um tempo finito.

Algoritmo

- ✓ Representação:
 - Linguagem natural;
 - Pseudocódigo (linguagem textual com poucos símbolos e regras, que são simples);
 - Fluxograma (linguagem visual composta por poucos símbolos e regras)
- ✓ Um algoritmo expressa uma solução para um problema.

Terminou?

Não!!!

Acontece que...

Computadores não entendem (normalmente, ou pelo menos da forma como nós precisamos):

- Linguagens naturais;
- Pseudocódigos;
- Fluxogramas.

Precisamos ir além...

Algoritmo!

Não estou entendendo!!!!

O que o computador entende afinal?

Faça isso. Depois aquilo. Se OK, então pare, senão refaça tudo.

Temos um problema de comunicação

Solução?

Melhorar um pouco as coisas prá ele (computador) sem piorar tanto prá nós (humanos).

- ⇒ Escrever um "programa" de computador, a partir do algoritmo.
- ⇒ Para isso, vamos usar uma "linguagem de programação".
- ⇒ Um pouco mais complexas do que as linguagens usadas para representar algoritmos;
- ⇒ Mas mais fáceis de serem entendidas pelo computador.

Java? C? C++?

Delphi?

Pascal?

HTML?

Perl?

Python?

Ruby?

Fortran?

Assembly?

PHP?

Cobol?

SQL?

Lisp?

Prolog?

Java!!

C++!!

Delphi!!

Pascal!!

HTML!!

Perl!!

Python!!

Ruby!!

Fortran!!

Assembly!!

PHP!!

Cobol!!

SQL!!

Lisp!!

Prolog!!

E...?

Sim, vamos precisar traduzir algoritmos para programas.

Sim, precisaremos conhecer (pelo menos) duas linguagens.

<u>Sim</u>, cometeremos erros nas traduções.

C'est la vie...

Eu não existo.

Como ficamos então?

Sua parte:

Problema

Solução

Algoritmo

Programa (alto nível)

Parte do computador (com a sua supervisão...):

Programa (alto nível)

Programa (baixo nível)

Execução

Resultados

⇒Deu errado?

⇒Não era bem isso que você queria? Não tem problema.

Volte à prancheta...

E descubra onde está o erro.

Problema Solução Algoritmo Programa (alto nível) Programa (baixo nível) Execução Resultados