CENG 113 – Programming Basics

Lab 13

Recursions

Recursive Functions

- A function calls itself one or more times.
- Solves smaller instances of the same problem and combines the results.
- Base Case (Exit Condition):
 Where the problem can be solved without further recursion.
- Recursion can lead to an infinite
 loop, if the base case is never met.

Exercises

Harmonic Sum

 Write a <u>recursive function</u> that calculates the harmonic sum for the first n terms.

```
get_harmonic_sum(5) → 1+1/2+1/3+1/4+1/5
```

Reversed List

• Write a recursive function to reverse a list.

```
get_reversed_list([1,2,3]) \rightarrow [3,2,1]
```

Count Digits

- Write a <u>recursive function</u> count_digits(n, k) that counts the number of digits with value k for n.
- Write another <u>recursive function</u>
 count_digits_upto(n, k) that uses
 count_digits to count total number of digits with value k in [0, n].

```
count_digits_upto(15052,5) \rightarrow 2 count_digits_upto(13, 1) \rightarrow 6
```

Binary Search

Write a <u>recursive function</u> binary_search(arr,
 1, r, k) that performs binary search over arr.

```
I : Index of the beginning element
Index of the ending element
Searching element
```

```
binary_search([1,3,6,7,9], 0, \overline{4}, 6) \rightarrow 2 binary_search([1,3,6,7,9], 0, 4, 5) \rightarrow -1
```

Egg Dropping (Bonus)

 Write a <u>recursive function</u> egg_drop(n, k) that returns the minimum number of trials required (in worst case) to find f.

n: Total number of floors in the building
 k: The number of eggs to be dropped
 f: The highest floor from which an egg can be dropped
 without

Details: https://brilliant.org/wiki/egg-dropping/