libopenvgr 0.80

作成: Doxygen 1.6.1

Fri Jun 24 10:38:14 2011

Contents

1	デー	タ構造類	索引		1
	1.1	データ	構造		1
2	ファ	イル索	31		3
	2.1	ファイ	ル一覧.		3
3	デー	タ構造			5
	3.1	クラス	_impl_Ca	meraCaptureService	5
		3.1.1	コンスト	ラクタとデストラクタ	5
			3.1.1.1	~_impl_CameraCaptureService	5
		3.1.2	関数		5
			3.1.2.1	_dispatch	5
			3.1.2.2	take_one_frame	6
	3.2	クラス	_objref_C	CameraCaptureService	7
		3.2.1	コンスト	ラクタとデストラクタ	7
			3.2.1.1	_objref_CameraCaptureService	7
			3.2.1.2	_objref_CameraCaptureService	7
			3.2.1.3	\sim _objref_CameraCaptureService	7
		3.2.2	関数		7
			3.2.2.1	take_one_frame	8
		3.2.3	フレンド	と関連する関数	8
			3.2.3.1	CameraCaptureService	8
	3.3	クラス	_pof_Can	neraCaptureService	9
		3.3.1	コンスト	ラクタとデストラクタ	9
			3.3.1.1	_pof_CameraCaptureService	9
			3.3.1.2	~_pof_CameraCaptureService	9

ii CONTENTS

	3.3.2	関数
		3.3.2.1 is_a
		3.3.2.2 newObjRef
3.4	構造体	x_recogImage
	3.4.1	構造体 10
		3.4.1.1 bytePerPixel
		3.4.1.2 colsize
		3.4.1.3 pixel
		3.4.1.4 rowsize
3.5	構造体	CalibParam
	3.5.1	説明
	3.5.2	構造体 12
		3.5.2.1 CameraL
		3.5.2.2 CameraR
		3.5.2.3 CameraV
		3.5.2.4 colsize
		3.5.2.5 numOfCameras
		3.5.2.6 rowsize
3.6	クラス	CameraCaptureService
	3.6.1	型定義 13
		3.6.1.1 _ptr_type
		3.6.1.2 _var_type
	3.6.2	コンストラクタとデストラクタ
		3.6.2.1 ~CameraCaptureService
	3.6.3	関数
		3.6.3.1 _duplicate
		3.6.3.2 _marshalObjRef
		3.6.3.3 _narrow
		3.6.3.4 _nil
		3.6.3.5 _this
		3.6.3.6 _unchecked_narrow
		3.6.3.7 _unmarshalObjRef
	3.6.4	構造体 14
		3.6.4.1 _PD_repoId

CONTENTS	ii i

3.7	クラフ	CameraCaptureService_Helper
J. 1	3.7.1	型定義
	3.7.1	3.7.1.1 _ptr_type
	3.7.2	関数
	3.7.2	3.7.2.1 _nil
		3.7.2.2 duplicate
		3.7.2.3 is_nil
		3.7.2.4 marshalObjRef
		3.7.2.5 release
		3.7.2.6 unmarshalObjRef
3.8	構造体	CameraImage
	3.8.1	型定義
		3.8.1.1 _var_type
	3.8.2	関数
		3.8.2.1 operator<<=
		3.8.2.2 operator>>=
	3.8.3	構造体
		3.8.3.1 captured_time
		3.8.3.2 extrinsic
		3.8.3.3 image
		3.8.3.4 intrinsic
.9	構造体	CameraIntrinsicParameter
	3.9.1	型定義
		3.9.1.1 _ORL_matrix_element
		3.9.1.2 _distortion_coefficient_seq
		3.9.1.3 _matrix_element_slice
		3.9.1.4 _var_type
	3.9.2	関数
		3.9.2.1 operator<<=
		3.9.2.2 operator>>=
	3.9.3	構造体
		3.9.3.1 distortion_coefficient
		3.9.3.2 matrix_element
3.10	構造体	CameraParam

iv CONTENTS

3.10.1	Ⅰ 説明	23
3.10.2	2 構造体	23
	3.10.2.1 cx	23
	3.10.2.2 cy	23
	3.10.2.3 Distortion	23
	3.10.2.4 fx	23
	3.10.2.5 fy	23
	3.10.2.6 intrinsicMatrix	23
	3.10.2.7 Position	23
	3.10.2.8 Rotation	24
	3.10.2.9 rRotation	24
	3.10.2.10 Translation	24
3.11 構造体	本 Circle	25
3.11.1	〔説明	26
3.11.2	2 構造体	26
	3.11.2.1 center	26
	3.11.2.2 label	26
	3.11.2.3 n	26
	3.11.2.4 normal	26
	3.11.2.5 numOfTracePoints	26
	3.11.2.6 orientation	26
	3.11.2.7 projected	26
	3.11.2.8 radius	27
	3.11.2.9 side	27
	3.11.2.10 tracepoints	27
	3.11.2.11 transformed	27
3.12 構造体	本 CircleCandidate	28
3.12.1	〔説明	28
3.12.2	2 構造体	28
	3.12.2.1 center	28
	3.12.2.2 normal	28
	3.12.2.3 radius	28
	3.12.2.4 valid	29
3.13 構造体	本 Data_2D	30

<u>CONTENTS</u> v

3.13.1	構造体	30
	3.13.1.1 col	30
	3.13.1.2 row	30
3.14 構造体	DistortionParam	31
3.14.1	説明	31
3.14.2	構造体	31
	3.14.2.1 k1	31
	3.14.2.2 k2	31
	3.14.2.3 k3	31
	3.14.2.4 p1	32
	3.14.2.5 p2	32
3.15 構造体	EllipseGroup	33
3.15.1	説明	33
3.15.2	構造体	33
	3.15.2.1 groupCenter	33
	3.15.2.2 groupNums	33
	3.15.2.3 nCurrNum	33
3.16 構造体	Feature2D	34
3.16.1	説明	35
3.16.2	構造体	35
	3.16.2.1 all	35
	3.16.2.2 axis	35
	3.16.2.3 center	36
	3.16.2.4 coef	36
	3.16.2.5 direction	36
	3.16.2.6 end	36
	3.16.2.7 endPoint	36
	3.16.2.8 endSPoint	36
	3.16.2.9 error	36
	3.16.2.10 ev	36
	3.16.2.11 lineAngle	36
	3.16.2.12 lineLength	36
	3.16.2.13 lineLength1	37
	3.16.2.14 lineLength2	37

vi CONTENTS

3.16.2.15 middleSPoint	37
3.16.2.16 nPoints	37
3.16.2.17 nTrack	37
3.16.2.18 start	37
3.16.2.19 startPoint	37
3.16.2.20 startSPoint	37
3.16.2.21 type	37
3.17 構造体 Features2D	38
3.17.1 説明	38
3.17.2 構造体	38
3.17.2.1 feature	39
3.17.2.2 nAlloc	39
3.17.2.3 nFeature	39
3.17.2.4 nTrack	39
3.17.2.5 track	39
3.18 構造体 Features3D	40
3.18.1 説明	41
3.18.2 構造体	41
3.18.2.1 calib	41
3.18.2.2 Circles	41
3.18.2.3 edge	41
3.18.2.4 image	41
3.18.2.5 numOfCircles	42
3.18.2.6 numOfVertices	42
3.18.2.7 pointCounts	42
3.18.2.8 trace_edge	42
3.18.2.9 trace_pdist	42
3.18.2.10 trace_search	42
3.18.2.11 traceCounts	42
3.18.2.12 Vertices	42
3.19 構造体 ImageData	43
3.19.1 型定義	43
3.19.1.1 _raw_data_seq	43
3.19.1.2 _var_type	43

CONTENTS	vii

3	3.19.2	関数	43
		3.19.2.1 operator<<=	43
		3.19.2.2 operator>>=	44
3	3.19.3	構造体	44
		3.19.3.1 format	44
		3.19.3.2 height	44
		3.19.3.3 raw_data	44
		3.19.3.4 width	44
3.20 %	ウラス	Mat44_copyHelper	45
3	3.20.1	関数	45
		3.20.1.1 alloc	45
		3.20.1.2 dup	45
		3.20.1.3 free	45
3.21 橇	冓造体	Match3Dresults	46
3	3.21.1	説明	46
3	3.21.2	構造体	46
		3.21.2.1 error	46
		3.21.2.2 numOfResults	47
		3.21.2.3 Results	47
3.22 橇	冓造体	MatchResult	48
3	3.22.1	説明	48
3	3.22.2	構造体	48
		3.22.2.1 mat	48
		3.22.2.2 model	49
		3.22.2.3 n	49
		3.22.2.4 scene	49
		3.22.2.5 score	49
		3.22.2.6 type	49
		3.22.2.7 vec	49
3.23 橇	冓造体	ModelFileInfo	50
3	3.23.1	説明	50
3	3.23.2	構造体	50
		3.23.2.1 model	50
		3.23.2.2 modelNum	51

viii CONTENTS

3.24	構造体	ModelFile	eInfoNode	. 52
	3.24.1	説明		. 52
	3.24.2	構造体		. 52
		3.24.2.1	$id \dots \dots$. 52
		3.24.2.2	path	. 52
3.25	構造体	MultiCan	neraImage	. 53
	3.25.1	型定義		. 53
		3.25.1.1	_image_seq_seq	. 53
		3.25.1.2	_var_type	. 53
	3.25.2	関数		. 53
		3.25.2.1	operator<<=	. 53
		3.25.2.2	operator>>=	. 54
	3.25.3	構造体		. 54
		3.25.3.1	camera_set_id	. 54
		3.25.3.2	image_seq	. 54
3.26	構造体	P2D		. 55
	3.26.1	説明		. 55
	3.26.2	構造体		. 55
		3.26.2.1	colrow	. 55
3.27	構造体	P3D		. 56
	3.27.1	説明		. 56
	3.27.2	構造体		. 56
		3.27.2.1	xyz	. 56
3.28	構造体	Parameter	'S	. 57
	3.28.1	説明		. 58
	3.28.2	構造体		. 58
		3.28.2.1	colsize	. 58
		3.28.2.2	dbgdisp	. 58
		3.28.2.3	dbgimag	. 58
		3.28.2.4	dbgtext	. 58
		3.28.2.5	feature2D	
		3.28.2.6	imgsize	
		3.28.2.7	match	
		3.28.2.8	outputCandNum	
			÷	

CONTENTS	iy

3.28.2.9 pa	iring	8
3.28.2.10 ro	wsize	9
3.28.2.11 ste	reo	9
3.29 構造体 ParametersFe	eature2D 6	0
3.29.1 説明		1
3.29.2 構造体		1
3.29.2.1 ed	geDetectFunction 6	1
3.29.2.2 ed	geStrength 6	2
3.29.2.3 id		2
3.29.2.4 ma	ax_distance_ellipse_grouping 6	2
3.29.2.5 ma	ax_distance_ellipse_pairing 6	2
3.29.2.6 ma	ax_distance_end_points 6	2
3.29.2.7 ma	ax_flatness_ellipse 6	2
3.29.2.8 ma	ax_length_delete_line 6	2
3.29.2.9 ma	ax_length_ellipse_axisL 6	2
3.29.2.10 ma	axErrorofConicFit 6	2
3.29.2.11 ma	axErrorofLineFit 6	2
3.29.2.12 mi	n_distance_ellipse_pairing 6	2
3.29.2.13 mi	n_filling_ellipse 6	3
3.29.2.14 mi	n_length_ellipse_axis 6	3
3.29.2.15 mi	n_length_ellipse_axisL 6	3
3.29.2.16 mi	n_length_ellipse_axisS 6	3
3.29.2.17 mi	n_length_hyperbola_data 6	3
3.29.2.18 mi	n_length_hyperbola_vector 6	3
3.29.2.19 mi	n_length_line 6	3
3.29.2.20 mi	n_radian_hyperbola 6	3
3.29.2.21 mi	nFragment 6	3
3.29.2.22 ov	erlapRatioCircle 6	3
3.29.2.23 ov	erlapRatioLine 6	4
3.30 構造体 ParametersM	Tatch 6	5
3.30.1 説明		5
3.30.2 構造体		5
3.30.2.1 ed	ge 6	5
3.30.2.2 int	erval 6	5

X CONTENTS

	3.30.2.3	pdist	66
	3.30.2.4	search	66
	3.30.2.5	tolerance1	66
	3.30.2.6	tolerance2	66
3.31 構造体	Narmeter	sStereo	67
3.31.1	説明		67
3.31.2	構造体		67
	3.31.2.1	amax	68
	3.31.2.2	amin	68
	3.31.2.3	depf	68
	3.31.2.4	depn	68
	3.31.2.5	ethr	68
	3.31.2.6	lmax	68
	3.31.2.7	lmin	68
	3.31.2.8	ndif	68
	3.31.2.9	rdif	68
3.32 構造体	RTVCM_	_Box	69
3.32.1	説明		69
3.32.2	構造体		69
	3.32.2.1	$n \ldots \ldots \ldots \ldots$	69
	3.32.2.2	nVertex	70
	3.32.2.3	reserved	70
	3.32.2.4	Rotate	70
	3.32.2.5	Trans	70
	3.32.2.6	x	70
	3.32.2.7	y	70
	3.32.2.8	z	70
3.33 構造体	RTVCM_	_Circle	71
3.33.1	説明		71
3.33.2	構造体		71
	3.33.2.1	center	71
	3.33.2.2	$n \ldots \ldots \ldots \ldots$	71
	3.33.2.3	ncyliner	72
	3.33.2.4	normal	72

CONTENTS	xi
CONTENTS	

	3.33.2.5 radius	72
	3.33.2.6 reserved	72
3.34 構造体	RTVCM_Cylinder	73
3.34.1	説明	73
3.34.2	構造体	73
	3.34.2.1 height	73
	3.34.2.2 n	74
	3.34.2.3 nCircle	74
	3.34.2.4 radius	74
	3.34.2.5 reserved	74
	3.34.2.6 Rotate	74
	3.34.2.7 Trans	74
3.35 構造体	RTVCM_Vertex	75
3.35.1	説明	75
3.35.2	構造体	75
	3.35.2.1 angle	75
	3.35.2.2 endpoint1	76
	3.35.2.3 endpoint2	76
	3.35.2.4 n	76
	3.35.2.5 nbox	76
	3.35.2.6 position	76
	3.35.2.7 reserved	76
3.36 構造体	RTVertexCircleModel	77
3.36.1	説明	78
3.36.2	構造体	78
	3.36.2.1 box	78
	3.36.2.2 circle	78
	3.36.2.3 cylinder	78
	3.36.2.4 depth	79
	3.36.2.5 gravity	79
	3.36.2.6 height	79
	3.36.2.7 label	79
	3.36.2.8 n	79
	3.36.2.9 ncircle	79

xii CONTENTS

		3.36.2.10 ncylinder	79
		3.36.2.11 nvertex	79
		3.36.2.12 nvox	79
		3.36.2.13 radius	79
		3.36.2.14 reserved	80
		3.36.2.15 vertex	80
		3.36.2.16 width	80
3.37	'構造体	S StereoCalib	81
	3.37.1	説明	81
	3.37.2	構造体	81
		3.37.2.1 baselineLR	81
		3.37.2.2 baselineLV	81
		3.37.2.3 baselineRV	82
		3.37.2.4 height	82
		3.37.2.5 numOfCameras	82
		3.37.2.6 width	82
3.38	構造体	S StereoConic	83
	3.38.1	説明	84
	3.38.2	構造体	84
		3.38.2.1 center	84
		3.38.2.2 circle	84
		3.38.2.3 error	84
		3.38.2.4 featureL	84
		3.38.2.5 featureR	84
		3.38.2.6 type	84
		3.38.2.7 valid	84
		3.38.2.8 vertex	84
	144.544.71	3.38.2.9 work	85
3.39		StereoData	86
	3.39.1	説明	86
	3.39.2		86
		3.39.2.1 conics	87
- · -	14454-71	3.39.2.2 numOfconics	87
3.40) 愽造体	TimedCameraImage	88

ONTENTS	xiii
3.40.1 型定義	. 88
3.40.1.1 _var_type	. 89
3.40.2 関数	
3.40.2.1 operator<<=	
3.40.2.2 operator>>=	
3.40.3 構造体	
3.40.3.1 data	. 89
3.40.3.2 error_code	. 89
3.40.3.3 tm	
3.41 構造体 TimedMultiCameraImage	. 90
3.41.1 型定義	. 90
3.41.1.1 _var_type	
3.41.2 関数	
3.41.2.1 operator<<=	
3.41.2.2 operator>>=	
3.41.3 構造体	. 91
3.41.3.1 data	. 91
3.41.3.2 error_code	. 91
3.41.3.3 tm	. 91
3.42 構造体 Trace	. 92
3.42.1 説明	. 92
3.42.2 構造体	. 92
3.42.2.1 colrow	. 92
3.42.2.2 direction	. 93
3.42.2.3 edge	. 93
3.42.2.4 label	. 93
3.42.2.5 peaker	. 93
3.42.2.6 search	. 93
3.42.2.7 weight	. 93
3.42.2.8 xyz	. 93
3.43 構造体 Track	. 94
3.43.1 説明	. 94
3.43.2 構造体	. 94
3.43.2.1 nPoint	. 94

xiv CONTENTS

		3.43.2.2 offset	94
		3.43.2.3 Point	94
3.44	クラス	Vec3_copyHelper	95
	3.44.1	関数	95
		3.44.1.1 alloc	95
		3.44.1.2 dup	95
		3.44.1.3 free	95
3.45	構造体	Vertex	96
	3.45.1	説明	97
	3.45.2	構造体	97
		3.45.2.1 angle	97
		3.45.2.2 direction1	97
		3.45.2.3 direction2	97
		3.45.2.4 endpoint1	97
		3.45.2.5 endpoint2	98
		3.45.2.6 label	98
		3.45.2.7 n	98
		3.45.2.8 numOfTracePoints	98
		3.45.2.9 orientation	98
		3.45.2.10 position	98
		3.45.2.11 projected	98
		3.45.2.12 side	98
		3.45.2.13 tracepoints	98
		3.45.2.14 transformed	98
3.46	構造体	VertexCandidate	99
	3.46.1	説明	00
	3.46.2	構造体 16	00
		3.46.2.1 angle	00
		3.46.2.2 endpoint1	00
		3.46.2.3 endpoint2	00
		3.46.2.4 len1	00
		3.46.2.5 len2	00
		3.46.2.6 n1	00
		3.46.2.7 n2	00

CONTENTS xv

			3.46.2.8 n3
			3.46.2.9 position
			3.46.2.10 valid
			3.46.2.11 vector1
			3.46.2.12 vector2
4	ファ	イル	
	4.1	calib.c	pp
		4.1.1	説明
		4.1.2	関数
			4.1.2.1 distortPosition
			4.1.2.2 undistortPosition
	4.2	calib.h	
		4.2.1	説明
		4.2.2	関数
			4.2.2.1 distortPosition
			4.2.2.2 undistortPosition
	4.3	calibU	til.cpp
		4.3.1	関数
			4.3.1.1 setCalibFromCameraImage
	4.4	calibU	til.h
		4.4.1	説明
		4.4.2	関数
			4.4.2.1 setCalibFromCameraImage
	4.5	circle.c	pp
		4.5.1	説明
		4.5.2	関数
			4.5.2.1 EllipseToCircle
	4.6	circle.l	h
		4.6.1	説明
		4.6.2	関数
			4.6.2.1 EllipseToCircle
	4.7	commo	on.h
		4.7.1	説明

xvi CONTENTS

	4.7.2	マクロ定義	.5
		4.7.2.1 INVISIBLE	.5
		4.7.2.2 VISIBLE	.5
		4.7.2.3 VISION_EPS	.5
	4.7.3	列挙型	.5
		4.7.3.1 StereoPairing	.5
4.8	conic.c	pp	6
	4.8.1	説明11	6
	4.8.2	関数	.7
		4.8.2.1 addConicSum	7
		4.8.2.2 clearConicSum	7
		4.8.2.3 distanceConic	.7
		4.8.2.4 fitConic	.7
		4.8.2.5 fitConicAny	7
		4.8.2.6 getConicProperty	.7
		4.8.2.7 getConicType	.7
		4.8.2.8 subConicSum	7
4.9	conic.h	1	8
	4.9.1	説明11	9
	4.9.2	列拳型11	9
		4.9.2.1 ConicType	9
	4.9.3	関数	9
		4.9.3.1 addConicSum	9
		4.9.3.2 clearConicSum	20
		4.9.3.3 distanceConic	20
		4.9.3.4 fitConic	20
		4.9.3.5 fitConicAny	20
		4.9.3.6 getConicProperty	20
		4.9.3.7 getConicType	20
		4.9.3.8 subConicSum	20
4.10	debugu	ıtil.cpp	21
	4.10.1	説明12	22
	4.10.2	関数	22
		4.10.2.1 drawDetectedEllipses	22

CONTRIBUTE	•
CONTENTS	XVI

	4.10.2.2 drawDetectedLines	122
	4.10.2.3 drawDetectedVertices	122
	4.10.2.4 drawEdgeImage	122
	4.10.2.5 drawInputImage	123
	4.10.2.6 drawStereoCircles	123
	4.10.2.7 drawStereoCorrespondence	123
	4.10.2.8 drawStereoVertices	123
	4.10.2.9 drawTrackPoints	123
	4.10.2.10 printStereoCircles	123
	4.10.2.11 printStereoVertices	123
4.11 debugu	ıtil.h	124
4.11.1	説明	125
4.11.2	関数	125
	4.11.2.1 drawDetectedEllipses	125
	4.11.2.2 drawDetectedLines	125
	4.11.2.3 drawDetectedVertices	125
	4.11.2.4 drawEdgeImage	125
	4.11.2.5 drawInputImage	126
	4.11.2.6 drawStereoCircles	126
	4.11.2.7 drawStereoCorrespondence	126
	4.11.2.8 drawStereoVertices	126
	4.11.2.9 drawTrackPoints	126
	4.11.2.10 printStereoCircles	126
	4.11.2.11 printStereoVertices	126
4.12 extract	Edge.cpp	127
4.12.1	説明	128
4.12.2	マクロ定義・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	128
	4.12.2.1 Edge	128
	4.12.2.2 Gray	128
4.12.3	関数	128
	4.12.3.1 extractEdge	128
4.13 extract	Edge.h	129
4.13.1	説明	130
4.13.2	マクロ定義	130

xviii CONTENTS

4.13.2.1 EE6
4.13.2.2 EE7
4.13.2.3 EEcandidate
4.13.2.4 EEerasedThin
4.13.2.5 EEextended
4.13.2.6 EEnotEdge
4.13.2.7 EEnotSearched
4.13.2.8 EEsearchedLarge
4.13.2.9 EEsearchedSmall
4.13.3 関数
4.13.3.1 extractEdge
4.14 extractFeature.cpp
4.14.1 説明
4.14.2 マクロ定義
4.14.2.1 Work
4.14.3 関数
4.14.3.1 destructFeatures
4.14.3.2 extractFeatures
4.14.3.3 ImageToFeature2D
4.15 extractFeature.h
4.15.1 説明
4.15.2 関数
4.15.2.1 destructFeatures
4.15.2.2 ImageToFeature2D
4.16 imageUtil.cpp
4.16.1 説明
4.16.2 関数
4.16.2.1 convertCameraIntrinsicParameterToCvMat 137
4.16.2.2 convertTimedMultiCameraImageToIplImage 137
4.16.2.3 convertTimedMultiCameraImageToRecogImage 137
4.16.2.4 convertTimedMultiCameraImageToUndistortIplImage 138
4.16.2.5 createUndistortionMap
4.16.2.6 createUndistortionMapFromTimedMultiCameraImage138
4.16.2.7 freeUndistortIplImage

CONTENTS xix

4.17 imageUtil.h	139
4.17.1 説明	140
4.17.2 関数	140
4.17.2.1 convertTimedMultiCameraImageToIplImage 1	140
4.17.2.2 convertTimedMultiCameraImageToRecogImage 1	140
4.17.2.3 convertTimedMultiCameraImageToUndistortIplImage I	140
4.17.2.4 createUndistortionMapFromTimedMultiCameraImage	141
4.17.2.5 freeUndistortIpIImage	141
4.18 Img.hh	142
4.18.1 マクロ定義	146
4.18.1.1 _core_attr	146
4.18.1.2 _dyn_attr	146
4.18.1.3 USE_core_stub_in_nt_dll_NOT_DEFINED_Img . 1	146
4.18.1.4 USE_dyn_stub_in_nt_dll_NOT_DEFINED_Img 1	146
4.18.1.5 USE_stub_in_nt_dll_NOT_DEFINED_Img 1	146
4.18.2 型定義 1	146
4.18.2.1 CameraCaptureService_out	146
4.18.2.2 CameraCaptureService_ptr	146
4.18.2.3 CameraCaptureService_var	147
4.18.2.4 CameraCaptureServiceRef	147
4.18.2.5 CameraImage_out	147
4.18.2.6 CameraImage_var	147
4.18.2.7 CameraIntrinsicParameter_out	147
4.18.2.8 CameraIntrinsicParameter_var	147
4.18.2.9 ColorFormat_out	147
4.18.2.10 ImageData_out	147
4.18.2.11 ImageData_var	147
4.18.2.12 Mat44	148
4.18.2.13 Mat44_forany	148
4.18.2.14 Mat44_out	148
4.18.2.15 Mat44_slice	148
4.18.2.16 Mat44_var	148
4.18.2.17 MultiCameraImage_out	148
4.18.2.18 MultiCameraImage_var	148

XX CONTENTS

		4.18.2.19	TimedCamera	Image_out		 	 		148
		4.18.2.20	TimedCamera	aImage_var		 	 		148
		4.18.2.21	TimedMultiC	ameraImage	_out	 	 		149
		4.18.2.22	TimedMultiC	ameraImage	_var	 	 		149
		4.18.2.23	Vec3			 	 		149
		4.18.2.24	Vec3_forany			 	 		149
		4.18.2.25	Vec3_out			 	 		149
		4.18.2.26	Vec3_slice .			 	 		149
		4.18.2.27	Vec3_var			 	 		149
4.	18.3	列挙型				 	 		149
		4.18.3.1	ColorFormat			 	 		149
4.	18.4	関数				 	 		150
		4.18.4.1	Mat44_alloc			 	 		150
		4.18.4.2	Mat44_copy			 	 		150
		4.18.4.3	Mat44_dup.			 	 		150
		4.18.4.4	Mat44_free			 	 		150
		4.18.4.5	operator<<=			 	 		150
		4.18.4.6	operator<<=			 	 		150
		4.18.4.7	operator<<=			 	 		150
		4.18.4.8	operator<<=			 	 		150
		4.18.4.9	operator<<=			 	 		151
		4.18.4.10	operator<<=			 	 		151
		4.18.4.11	operator<<=			 	 		151
		4.18.4.12	operator<<=			 	 		151
			operator<<=						151
		4.18.4.14	operator<<=			 	 		151
		4.18.4.15	operator<<=			 	 	 •	151
		4.18.4.16	operator<<=			 	 		151
		4.18.4.17	operator<<=			 	 	 •	151
			operator<<=			 	 		152
		4.18.4.19	operator<<=			 	 		152
		4.18.4.20	operator<<=			 	 		152
			operator<<=						152
		4.18.4.22	operator<<=			 	 		152

CONTENTS xxi

	4.18.4.23 operator>>=	152
	4.18.4.24 operator>>=	152
	4.18.4.25 operator>>=	152
	4.18.4.26 operator>>=	152
	4.18.4.27 operator>>=	153
	4.18.4.28 operator>>=	153
	4.18.4.29 operator>>=	153
	4.18.4.30 operator>>=	153
	4.18.4.31 operator>>=	153
	4.18.4.32 operator>>=	153
	4.18.4.33 operator>>=	153
	4.18.4.34 operator>>=	153
	4.18.4.35 operator>>=	153
	4.18.4.36 operator>>=	154
	4.18.4.37 operator>>=	154
	4.18.4.38 operator>>=	154
	4.18.4.39 operator>>=	154
	4.18.4.40 Vec3_alloc	154
	4.18.4.41 Vec3_copy	154
	4.18.4.42 Vec3_dup	154
	4.18.4.43 Vec3_free	154
4.18.5	变数	154
	4.18.5.1 _tc_CameraCaptureService	154
	4.18.5.2 _tc_CameraImage	155
	4.18.5.3 _tc_CameraIntrinsicParameter	155
	4.18.5.4 _tc_ColorFormat	155
	4.18.5.5 _tc_ImageData	155
	4.18.5.6 _tc_Mat44	155
	4.18.5.7 _tc_MultiCameraImage	155
	4.18.5.8 _tc_TimedCameraImage	155
	4.18.5.9 _tc_TimedMultiCameraImage	155
	4.18.5.10 _tc_Vec3	155
4.19 local.h		156
4.20 match3	Dfeature.cpp	157

xxii CONTENTS

	4.20.1	説明	158
	4.20.2	関数	158
		4.20.2.1 freeFeatures3D	158
		4.20.2.2 freeMatch3Dresults	158
		4.20.2.3 matchFeatures3d	158
4.21	match3	BDfeature.h	159
	4.21.1	説明	160
	4.21.2	列拳型	161
		4.21.2.1 m3df_side	161
	4.21.3	関数	161
		4.21.3.1 freeFeatures3D	161
		4.21.3.2 freeMatch3Dresults	161
		4.21.3.3 matchFeatures3d	161
		4.21.3.4 matchPairedCircles	161
4.22	2 modell	Fileio.cpp	162
	4.22.1	関数	162
		4.22.1.1 loadModelFile	162
4.23	3 modell	Fileio.h	163
	4.23.1	説明	163
	4.23.2	関数	163
		4.23.2.1 loadModelFile	164
4.24	modell	ListFileIO.cpp	165
	4.24.1	関数	165
		4.24.1.1 clearModelFileInfo	165
		4.24.1.2 loadModelListFile	165
4.25	modell	ListFileIO.h	166
	4.25.1	説明	166
	4.25.2	マクロ定義	166
		4.25.2.1 MAX_PATH	167
	4.25.3	関数	167
		4.25.3.1 clearModelFileInfo	167
		4.25.3.2 loadModelListFile	167
4.26	6 model _I	points.cpp	168
	4.26.1	説明	169

CONTE	ENTS		xxiii
	4.26.2	列拳型	 169
		4.26.2.1 Azimuth	 169
	4.26.3	関数	 169
		4.26.3.1 drawModelPoints	 170
		4.26.3.2 getPointOnCircle	 170
		4.26.3.3 getPropertyVector	 170
		4.26.3.4 makeModelPoints	 170
		4.26.3.5 traceModelPointsMultiCameras	 170
4.27	modelp	points.h	 171
	4.27.1	説明	 172
	4.27.2	関数	 172
		4.27.2.1 drawModelPoints	 172
		4.27.2.2 getPointOnCircle	 172
		4.27.2.3 getPropertyVector	 172
		4.27.2.4 makeModelPoints	 172
		4.27.2.5 traceModelPointsMultiCameras	 172
4.28	pairedo	circle.cpp	 173
	4.28.1	説明	 173
	4.28.2	関数	 174
		4.28.2.1 matchPairedCircles	 174
4.29	parame	eters.h	 175
	4.29.1	説明	 176
	4.29.2	型定義	 176
		4.29.2.1 ParametersStereo	 176
4.30	quaterr	nion.c	 177
	4.30.1	関数	 177
		4.30.1.1 quat_conj	 177
		4.30.1.2 quat_copy	 178
		4.30.1.3 quat_fprintf	 178
		4.30.1.4 quat_irot	 178
		4.30.1.5 quat_make_from_rvec	 178
		4.30.1.6 quat_mult	 178
		4.30.1.7 quat_norm2	 178
		4.30.1.8 quat_normalize	 178

xxiv CONTENTS

	4.30.1.9 quat_q_from_R	178
	4.30.1.10 quat_R_from_q	178
	4.30.1.11 quat_rot	178
4.31 quaterr	nion.h	179
4.31.1	マクロ定義	180
	4.31.1.1 QUAT_EPS	180
	4.31.1.2 quat_fprint	180
	4.31.1.3 quat_im	180
	4.31.1.4 QUAT_INIT_ONE	180
	4.31.1.5 QUAT_INIT_ZERO	180
	4.31.1.6 quat_print	180
	4.31.1.7 quat_printf	180
	4.31.1.8 quat_re	181
4.31.2	型定義	181
	4.31.2.1 quaternion_t	181
4.31.3	関数	181
	4.31.3.1 quat_conj	181
	4.31.3.2 quat_copy	181
	4.31.3.3 quat_fprintf	181
	4.31.3.4 quat_irot	181
	4.31.3.5 quat_make_from_rvec	181
	4.31.3.6 quat_mult	181
	4.31.3.7 quat_norm2	181
	4.31.3.8 quat_normalize	182
	4.31.3.9 quat_q_from_R	182
	4.31.3.10 quat_R_from_q	182
	4.31.3.11 quat_rot	182
4.32 recogIi	mage.cpp	183
4.32.1	説明	183
4.32.2	関数	183
	4.32.2.1 constructImage	184
	4.32.2.2 destructImage	184
	4.32.2.3 rgb2grayImage	184
4.33 recogIi	mage.h	185

CONTENTS	XXV
----------	-----

	4.33.1	説明	186
	4.33.2	型定義	186
		4.33.2.1 RecogImage	186
	4.33.3	関数	186
		4.33.3.1 constructImage	186
		4.33.3.2 destructImage	186
		4.33.3.3 rgb2grayImage	186
4.34	4 recogP	arameter.cpp	187
	4.34.1	列拳型	188
		4.34.1.1 paramKey	188
	4.34.2	関数	188
		4.34.2.1 loadDebugParameter	188
		4.34.2.2 loadRecogParameter	188
		4.34.2.3 setDefaultRecogParameter	189
4.3	5 recogP	arameter.h	190
	4.35.1	説明	190
	4.35.2	関数	190
		4.35.2.1 loadDebugParameter	190
		4.35.2.2 loadRecogParameter	191
		4.35.2.3 setDefaultRecogParameter	191
4.30	6 recogR	esult.h	192
	4.36.1	説明	192
	4.36.2	マクロ定義	192
		4.36.2.1 RecogResultElementNum	192
	4.36.3	列拳型	192
		4.36.3.1 RecogResultElement	192
4.3	7 rtvcm.c	рр	194
	4.37.1	説明	195
	4.37.2	関数	195
		4.37.2.1 convertRTVCMtoFeatures3D	195
		4.37.2.2 freeRTVCM	195
		4.37.2.3 readRTVCModel	195
		4.37.2.4 reverseCircle	195
		4.37.2.5 reverseVertex	195

xxvi CONTENTS

4.38	rtvcm.l	1	196
	4.38.1	説明	197
	4.38.2	型定義	197
		4.38.2.1 RTVCM	197
		4.38.2.2 RTVCM_Label	197
	4.38.3	関数	197
		4.38.3.1 convertRTVCMtoFeatures3D	197
		4.38.3.2 freeRTVCM	197
		4.38.3.3 readRTVCModel	197
		4.38.3.4 reverseCircle	198
		4.38.3.5 reverseVertex	198
4.39	score2	d.cpp	199
	4.39.1	説明	200
	4.39.2	マクロ定義	200
		4.39.2.1 BOTTOMOFFSET	200
		4.39.2.2 COL_TABLE	200
		4.39.2.3 EDGE_SEARCH_2SIZE	200
		4.39.2.4 EDGE_SEARCH_MAX	200
		4.39.2.5 EDGE_SEARCH_SIZE	200
		4.39.2.6 ROW_TABLE	200
	4.39.3	関数	200
		4.39.3.1 compareResultScore	201
		4.39.3.2 getResultScore	201
		4.39.3.3 isValidPixelPosition	201
		4.39.3.4 tracePoint	201
4.40	score2	d.h	202
	4.40.1	説明	202
	4.40.2	関数	202
		4.40.2.1 compareResultScore	202
		4.40.2.2 getResultScore	202
		4.40.2.3 tracePoint	202
4.41	stereo.	срр	203
	4.41.1	説明	204
	4.41.2	関数	204

xxvii

4.41.2.1 calculateLR2XYZ	204
4.41.2.2 calculateSightVector	204
4.41.2.3 freeStereoData	204
4.41.2.4 projectXYZ2LR	205
4.41.2.5 setFeature3D	205
4.41.2.6 setFeature3D_TBLAND	205
4.41.2.7 setFeature3D_TBLOR 2	205
4.41.2.8 StereoCorrespondence	205
4.42 stereo.h	206
4.42.1 説明	207
4.42.2 関数2	208
4.42.2.1 calculateLR2XYZ 2	208
4.42.2.2 calculateSightVector	208
4.42.2.3 freeStereoData	208
4.42.2.4 projectXYZ2LR	208
4.42.2.5 setFeature3D	208
4.42.2.6 setFeature3D_TBLAND	208
4.42.2.7 setFeature3D_TBLOR	208
4.42.2.8 StereoCorrespondence	208
4.43 vectorutil.cpp	209
4.43.1 説明	210
4.43.2 関数2	210
4.43.2.1 addV3	210
4.43.2.2 copyV2	210
4.43.2.3 copyV3	210
4.43.2.4 getAngle2D	210
4.43.2.5 getCrossProductV3	210
4.43.2.6 getDirectionVector	210
4.43.2.7 getDistanceV2	211
4.43.2.8 getDistanceV3	211
4.43.2.9 getInnerProductV3	211
4.43.2.10 getNormV2	211
4.43.2.11 getNormV3	211
4.43.2.12 getOrthogonalDir	211

xxviii CONTENTS

CONTENTS		xxix
	4.44.2.14.15. cm M22	216
	4.44.3.14 inverseM33	216
	4.44.3.15 isZero	216
	4.44.3.16 mulM33	216
	4.44.3.17 mulM33V3	216
	4.44.3.18 mulV2S	216
	4.44.3.19 mulV3S	216
	4.44.3.20 normalizeV2	217
	4.44.3.21 normalizeV3	217
	4.44.3.22 quaternion_rotation	217
	4.44.3.23 subM33	217
	4.44.3.24 subV3	217
	4.44.3.25 transposeM33	217
4.45 vertex.c	pp	218
4.45.1	説明	218
4.45.2	関数	219
	4.45.2.1 HyperbolaToVertex	219
4.46 vertex.h		220
	説明	220
	関数	220
		220
	4.46.2.1 HyperbolaToVertex	
	rrorCode.h	221
	説明	221
4.47.2	列拳型	221
	1.47.2.1 VisionErrorCode	221

Chapter 1

データ構造索引

1.1 データ構造

データ構造の説明です。

_impl_CameraCaptureService
_objref_CameraCaptureService
_pof_CameraCaptureService
_recogImage
CalibParam (キャリブレーションパラメータ)
CameraCaptureService
CameraCaptureService_Helper
CameraImage
CameraIntrinsicParameter
CameraParam (カメラパラメータ)
Circle (3 次元円情報)
CircleCandidate (三次元円特徴候補データ) 28
Data_2D
DistortionParam (歪みパラメータ) 31
EllipseGroup (楕円重複除去用グループ情報)
Feature 2D (各 2 次元特徴)
Features2D (2 次元特徴情報)
Features 3D (3 次元特徴情報)
ImageData
Mat44_copyHelper
Match3Dresults (全認識結果) 46
MatchResult (各認識結果情報)
ModelFileInfo (モデルファイルリスト)50
ModelFileInfoNode (モデルリストのノード)
MultiCameraImage
P2D (2 次元位置情報)
P3D (3 次元位置情報)
Parameters (全パラメータ)
Parameters Feature 2D (2 次元特徴抽出用パラメータ) 60

ParametersMatch (認識用パラメータ)	65
ParmetersStereo (ステレオ対応処理用パラメータ)	67
RTVCM_Box (モデル内の立方体データ)	69
RTVCM_Circle (モデル内の円データ)	71
RTVCM_Cylinder (モデル内の円筒データ)	73
RTVCM_Vertex (モデル内の頂点データ)	
RTVertexCircleModel (モデルデータ構造体)	77
StereoCalib (ステレオカメラキャリブレーションデータ)	81
StereoConic (二次曲線ステレオ対応データ)	83
StereoData (ステレオ対応データ)	86
TimedCameraImage	
TimedMultiCameraImage	90
Trace (認識結果評価用サンプリング点列情報)	92
Track (輪郭情報)	94
Vec3_copyHelper	95
Vertex (3 次元頂点情報)	96
VertexCandidate (三次元頂点特徴候補データ)	99

Chapter 2

ファイル索引

2.1 ファイル一覧

これはファイル一覧です。

calib.cpp (キャリブレーション関連の関数)
calib.h (キャリブレーション関連の関数)
calibUtil.cpp
calibUtil.h (キャリブレーションデータの変換関連)108
circle.cpp (3 次元円特徴生成関連関数)
circle.h (3 次元円特徴生成関連関数)
common.h (各種の共通定義)
conic.cpp (二次曲線特徵抽出関連関数)
conic.h (二次曲線特徴抽出関連関数)
debugutil.cpp (デバッグ用関数)
debugutil.h (デバッグ用関数)
extractEdge.cpp (エッジ抽出関連関数)
extractEdge.h (エッジ抽出関連関数)
extractFeature.cpp (2 次元特徴抽出関連関数)
extractFeature.h (2 次元特徴抽出関連関数)
imageUtil.cpp (画像入出力関数)136
imageUtil.h (画像入出力関連)139
Img.hh
local.h
match3Dfeature.cpp (3 次元特徴による認識関連関数)
match3Dfeature.h (3 次元特徴による認識関連関数)
modelFileio.cpp
modelFileio.h (モデルをファイルから読み込む。)
modelListFileIO.cpp
modelListFileIO.h (モデルファイルの入出力関連)166
modelpoints.cpp (モデル評価点生成関連関数)
modelpoints.h (モデル評価点生成関連関数)
pairedcircle.cpp (2 円照合関連関数)173
parameters.h (処理パラメータ設定関連関数)

4 ファイル索引

quaternion.c
quaternion.h
recogImage.cpp (画像入出力関数)
recogImage.h (画像入出力関数)
recogParameter.cpp
recogParameter.h (認識パラメータ設定関連)
recogResult.h (認識結果の定義)
rtvcm.cpp (モデル入出力関連関数)
rtvcm.h (モデル入出力関連関数)
score2d.cpp (2 次元評価関連関数)
score2d.h (2 次元評価関連関数)
stereo.cpp (ステレオ処理関連関数)
stereo.h (ステレオ処理関連関数)....................206
vectorutil.cpp (ベクトル処理、行列処理 ユーティリティ関数) 209
vectorutil.h (ベクトル処理、行列処理 ユーティリティ関数) 213
vertex.cpp (3 次元頂点特徴生成関連関数)
vertex.h (3 次元頂点特徴生成関連関数)
visionErrorCode h (仮り値の定義) 221

Chapter 3

データ構造

3.1 クラス _impl_CameraCaptureService

#include <Img.hh>

Public メソッド

- virtual ~_impl_CameraCaptureService ()
- virtual void take_one_frame ()=0
- virtual _CORBA_Boolean _dispatch (omniCallHandle &)

3.1.1 コンストラクタとデストラクタ

- 3.1.1.1 virtual _impl_CameraCaptureService:: \sim _impl_CameraCaptureService () [virtual]
- 3.1.2 関数
- 3.1.2.1 virtual _CORBA_Boolean _impl_CameraCaptureService::_dispatch (omniCallHandle &) [virtual]

3.1.2.2 virtual void _impl_CameraCaptureService::take_one_frame() [pure virtual]

このクラスの説明は次のファイルから生成されました:

• Img.hh

libopenvgr に対して Fri Jun 24 10:38:14 2011 に生成されました。 Doxygen

3.2 クラス _objref_CameraCaptureService

#include <Img.hh>

Public メソッド

- void take_one_frame ()
- _objref_CameraCaptureService ()
- _objref_CameraCaptureService (omniIOR *, omniIdentity *)

Protected メソッド

• virtual ~_objref_CameraCaptureService ()

フレンド

• class CameraCaptureService

3.2.1 コンストラクタとデストラクタ

- 3.2.1.1 _objref_CameraCaptureService::_objref_CameraCaptureService () [inline]
- 3.2.1.2 _objref_CameraCaptureService::_objref_CameraCaptureService (omniIOR *, omniIdentity *)
- 3.2.1.3 virtual _objref_CameraCaptureService::∼_objref_CameraCaptureService () [protected,
 virtual]
- 3.2.2 関数

- 3.2.2.1 void _objref_CameraCaptureService::take_one_frame ()
- 3.2.3 フレンドと関連する関数
- 3.2.3.1 friend class CameraCaptureService [friend]

このクラスの説明は次のファイルから生成されました:

• Img.hh

libopenvgr に対して Fri Jun 24 10:38:14 2011 に生成されました。 Doxygen

3.3 クラス _pof_CameraCaptureService

#include <Img.hh>

Public メソッド

- _pof_CameraCaptureService ()
- virtual ~_pof_CameraCaptureService ()
- virtual omniObjRef * newObjRef (omniIOR *, omniIdentity *)
- virtual _CORBA_Boolean is_a (const char *) const

3.3.1 コンストラクタとデストラクタ

- 3.3.1.1 _pof_CameraCaptureService::_pof_CameraCaptureService () [inline]
- 3.3.2 関数
- 3.3.2.1 virtual_CORBA_Boolean_pof_CameraCaptureService::is_a (const char *) const [virtual]
- 3.3.2.2 virtual omniObjRef* _pof_CameraCaptureService::newObjRef (omniIOR *, omniIdentity *) [virtual]

このクラスの説明は次のファイルから生成されました:

• Img.hh

3.4 構造体 _recogImage

#include <recogImage.h>

変数

- int colsize
- int rowsize
- int bytePerPixel
- unsigned char * pixel

3.4.1 構造体

- 3.4.1.1 int _recogImage::bytePerPixel
- 3.4.1.2 int _recogImage::colsize
- 3.4.1.3 unsigned char* _recogImage::pixel
- 3.4.1.4 int _recogImage::rowsize

この構造体の説明は次のファイルから生成されました:

• recogImage.h

3.5 構造体 CalibParam

キャリブレーションパラメータ

#include <calib.h>CalibParam のコラボレーション図

変数

- int numOfCameras カメラ数
- int colsize 画像幅
- int rowsize 画像高さ
- CameraParam CameraL
 左カメラの実画像とワールド座標の関係の全パラメータ

CameraParam CameraR
 右カメラの実画像とワールド座標の関係の全パラメータ

CameraParam CameraV
 右カメラの実画像とワールド座標の関係の全パラメータ

3.5.1 説明

キャリブレーションパラメータ

3.5.2 構造体

3.5.2.1 CameraParam CalibParam::CameraL

左カメラの実画像とワールド座標の関係の全パラメータ

3.5.2.2 CameraParam CalibParam::CameraR

右カメラの実画像とワールド座標の関係の全パラメータ

3.5.2.3 CameraParam CalibParam::CameraV

右カメラの実画像とワールド座標の関係の全パラメータ

3.5.2.4 int CalibParam::colsize

画像幅

3.5.2.5 int CalibParam::numOfCameras

カメラ数

3.5.2.6 int CalibParam::rowsize

画像高さ

この構造体の説明は次のファイルから生成されました:

• calib.h

3.6 クラス CameraCaptureService

#include <Img.hh>

Public 型

- typedef CameraCaptureService_ptr _ptr_type
- typedef CameraCaptureService_var _var_type

Public メソッド

- virtual ~CameraCaptureService ()
- inline::Img::CameraCaptureService_ptr _this ()

Static Public メソッド

- static _ptr_type _duplicate (_ptr_type)
- static _ptr_type _narrow (CORBA::Object_ptr)
- static _ptr_type _unchecked_narrow (CORBA::Object_ptr)
- static _ptr_type _nil ()
- static void _marshalObjRef (_ptr_type, cdrStream &)
- static _ptr_type _unmarshalObjRef (cdrStream &s)

Static Public 变数

• static _core_attr const char * _PD_repoId

3.6.1 型定義

- 3.6.1.1 typedef CameraCaptureService_ptr CameraCaptureService::_ptr_type
- 3.6.1.2 typedef CameraCaptureService_var CameraCaptureService::_var_type
- 3.6.2 コンストラクタとデストラクタ

 $\textbf{3.6.2.1} \quad \textbf{virtual CameraCaptureService::} \sim \textbf{CameraCaptureService ()} \\ \textbf{[virtual]}$

- 3.6.3 関数
- 3.6.3.2 static void CameraCaptureService::_marshalObjRef (_ptr_type, cdrStream &) [inline, static]
- 3.6.3.3 static _ptr_type CameraCaptureService::_narrow (CORBA::Object_ptr) [static]
- 3.6.3.4 static _ptr_type CameraCaptureService::_nil() [static]
- $\textbf{3.6.3.5} \quad in line :: Img:: Camera Capture Service _ptr \ Camera Capture Service :: _this \\ () \quad [\verb"inline"]$
- 3.6.3.6 static _ptr_type CameraCaptureService::_unchecked_narrow (CORBA::Object_ptr) [static]
- 3.6.3.7 static _ptr_type CameraCaptureService::_unmarshalObjRef (cdrStream & s) [inline, static]
- 3.6.4 構造体

3.6.4.1 _core_attr const char* CameraCaptureService::_PD_repoId [static]

このクラスの説明は次のファイルから生成されました:

• Img.hh

3.7 クラス CameraCaptureService_Helper

#include <Img.hh>

Public 型

• typedef CameraCaptureService_ptr _ptr_type

Static Public メソッド

- static _ptr_type _nil ()
- static _CORBA_Boolean is_nil (_ptr_type)
- static void release (_ptr_type)
- static void duplicate (_ptr_type)
- static void marshalObjRef (_ptr_type, cdrStream &)
- static _ptr_type unmarshalObjRef (cdrStream &)

3.7.1 型定義

- ${\bf 3.7.1.1} \quad type def \ Camera Capture Service_ptr \ Camera Capture Service_Helper::_-ptr_type$
- 3.7.2 関数
- 3.7.2.1 static _ptr_type CameraCaptureService_Helper::_nil() [static]
- 3.7.2.2 static void CameraCaptureService_Helper::duplicate (_ptr_type) [static]
- 3.7.2.3 static _CORBA_Boolean CameraCaptureService_Helper::is_nil (_ptr_type) [static]

- 3.7.2.4 static void CameraCaptureService_Helper::marshalObjRef (_ptr_type, cdrStream &) [static]
- 3.7.2.5 static void CameraCaptureService_Helper::release (_ptr_type) [static]
- 3.7.2.6 static _ptr_type CameraCaptureService_Helper::unmarshalObjRef (cdrStream &) [static]

このクラスの説明は次のファイルから生成されました:

• Img.hh

3.8 構造体 CameraImage

#include <Img.hh>CameraImage のコラボレーション図

Public 型

• typedef _CORBA_ConstrType_Variable_Var< CameraImage > _var_type

Public メソッド

- void operator>>= (cdrStream &) const
- void operator <<= (cdrStream &)

変数

- RTC::Time captured_time
- ImageData image
- CameraIntrinsicParameter intrinsic
- Mat44 extrinsic

3.8.1 型定義

- 3.8.1.1 typedef _CORBA_ConstrType_Variable_Var<CameraImage>
 CameraImage::_var_type
- 3.8.2 関数

- 3.8.2.1 void CameraImage::operator<<= (cdrStream &)
- 3.8.2.2 void CameraImage::operator>>= (cdrStream &) const
- 3.8.3 構造体
- 3.8.3.1 RTC::Time CameraImage::captured_time
- 3.8.3.2 Mat44 CameraImage::extrinsic
- 3.8.3.3 ImageData CameraImage::image
- 3.8.3.4 CameraIntrinsicParameter CameraImage::intrinsic

この構造体の説明は次のファイルから生成されました:

• Img.hh

3.9 構造体 CameraIntrinsicParameter

#include <Img.hh>

Public 型

- typedef _CORBA_ConstrType_Variable_Var< CameraIntrinsicParameter > _var_type
- typedef CORBA::Double _ORL_matrix_element [5]
- typedef CORBA::Double _matrix_element_slice
- typedef _CORBA_Unbounded_Sequence_w_FixSizeElement< CORBA::Double, 8, 8 > _distortion_coefficient_seq

Public メソッド

- void operator>>= (cdrStream &) const
- void operator <<= (cdrStream &)

変数

- CORBA::Double matrix_element [5]
- _distortion_coefficient_seq distortion_coefficient

3.9.1 型定義

- 3.9.1.1 typedef CORBA::Double CameraIntrinsicParameter::_0RL_matrix_element[5]
- 3.9.1.2 typedef _CORBA_Unbounded_Sequence_w_FixSizeElement < CORBA::Double, 8, 8 > CameraIntrinsicParameter::_distortion_coefficient_seq

- ${\bf 3.9.1.3} \quad type def \ CORBA:: Double \ Camera Intrinsic Parameter::_matrix_-element_slice$
- 3.9.1.4 typedef _CORBA_ConstrType_Variable_-Var<CameraIntrinsicParameter> CameraIntrinsicParameter::_var_type
- 3.9.2 関数
- 3.9.2.1 void CameraIntrinsicParameter::operator<<= (cdrStream &)
- 3.9.2.2 void CameraIntrinsicParameter::operator>>= (cdrStream &) const
- 3.9.3 構造体
- 3.9.3.1 _distortion_coefficient_seq CameraIntrinsicParameter::distortion_coefficient
- 3.9.3.2 CORBA::Double CameraIntrinsicParameter::matrix_element[5]

この構造体の説明は次のファイルから生成されました:

• Img.hh

3.10 構造体 CameraParam

カメラパラメータ

#include <calib.h>CameraParam のコラボレーション図

変数

- double cx
- double cy

レンズの光学的な中心

- double fx
- double fy

焦点距離 (ピクセル単位)

- double Rotation [3][3] 回転行列
- double Translation [3] 移動ベクトル
- double rRotation [3][3]
 回転行列の逆行列 (転置行列)
- double <u>Position</u> [3] カメラ位置 (-rR・T)
- DistortionParam Distortion

歪みパラメータ

double intrinsicMatrix [3][3]
 内部パラメータ行列

3.10.1 説明

カメラパラメータ

3.10.2 構造体

3.10.2.1 double CameraParam::cx

3.10.2.2 double CameraParam::cy

レンズの光学的な中心

3.10.2.3 DistortionParam CameraParam::Distortion

歪みパラメータ

3.10.2.4 double CameraParam::fx

3.10.2.5 double CameraParam::fy

焦点距離 (ピクセル単位)

3.10.2.6 double CameraParam::intrinsicMatrix[3][3]

内部パラメータ行列

3.10.2.7 double CameraParam::Position[3]

カメラ位置 (-rR・T)

3.10.2.8 double CameraParam::Rotation[3][3]

回転行列

3.10.2.9 double CameraParam::rRotation[3][3]

回転行列の逆行列 (転置行列)

3.10.2.10 double CameraParam::Translation[3]

移動ベクトル

この構造体の説明は次のファイルから生成されました:

• calib.h

libopenvgr に対して Fri Jun 24 10:38:14 2011 に生成されました。 Doxygen

3.11 構造体 Circle 25

3.11 構造体 Circle

3次元円情報

#include <match3Dfeature.h>Circleのコラボレーション図

変数

- int label
- int n

通し番号

• int side

表裏情報

• double radius

半径

• double center [3]

中心位置

• double normal [3]

法線

• double orientation [4][4]

認識用姿勢行列

• int numOfTracePoints

認識評価用のサンプリング点列数

• Trace * tracepoints

認識評価用のサンプリング点列情報

P3D * transformed
 認識時の位置・姿勢変換後の 3 次元点列

- P2D * projected
 2 次元評価時の画像投影 2 次元点列
- 3.11.1 説明
- 3次元円情報
- 3.11.2 構造体
- 3.11.2.1 double Circle::center[3]

中心位置

- 3.11.2.2 int Circle::label
- 3.11.2.3 int Circle::n

通し番号

3.11.2.4 double Circle::normal[3]

法線

3.11.2.5 int Circle::numOfTracePoints

認識評価用のサンプリング点列数

3.11.2.6 double Circle::orientation[4][4]

認識用姿勢行列

- 3.11.2.7 P2D* Circle::projected
- 2次元評価時の画像投影2次元点列

3.11.2.8 double Circle::radius

半径

3.11.2.9 int Circle::side

表裏情報

3.11.2.10 Trace* Circle::tracepoints

認識評価用のサンプリング点列情報

3.11.2.11 P3D* Circle::transformed

認識時の位置・姿勢変換後の3次元点列 この構造体の説明は次のファイルから生成されました:

• match3Dfeature.h

3.12 構造体 CircleCandidate

```
三次元円特徴候補データ
```

#include <stereo.h>

変数

• int valid

有効・無効フラグ

• double center [3] 中心座標

double normal [3]法線ベクトル(単位化済)

• double radius 半径

3.12.1 説明

三次元円特徴候補データ

3.12.2 構造体

3.12.2.1 double CircleCandidate::center[3]

中心座標

3.12.2.2 double CircleCandidate::normal[3]

法線ベクトル (単位化済)

3.12.2.3 double CircleCandidate::radius

半径

3.12.2.4 int CircleCandidate::valid

有効・無効フラグ

この構造体の説明は次のファイルから生成されました:

• stereo.h

3.13 構造体 Data_2D

#include <common.h>

変数

- double col
- double row

3.13.1 構造体

3.13.1.1 double Data_2D::col

3.13.1.2 double Data_2D::row

この構造体の説明は次のファイルから生成されました:

• common.h

3.14 構造体 DistortionParam

歪みパラメータ

#include <calib.h>

変数

- double k1
- double k2

半径方向の歪み係数

- double p1
- double p2

円周方向の歪み係数

• double k3

半径方向の歪み係数

3.14.1 説明

歪みパラメータ

3.14.2 構造体

3.14.2.1 double DistortionParam::k1

3.14.2.2 double DistortionParam::k2

半径方向の歪み係数

3.14.2.3 double DistortionParam::k3

半径方向の歪み係数

3.14.2.4 double DistortionParam::p1

3.14.2.5 double DistortionParam::p2

円周方向の歪み係数

この構造体の説明は次のファイルから生成されました:

• calib.h

3.15 構造体 EllipseGroup

楕円重複除去用グループ情報

#include <extractFeature.h>

変数

- int * groupNumsグループ要素番号
- double groupCenter [2]

 (work) グループの中心座標
- int nCurrNum (work) グループ要素数

3.15.1 説明

楕円重複除去用グループ情報

3.15.2 構造体

3.15.2.1 double EllipseGroup::groupCenter[2]

(work) グループの中心座標

3.15.2.2 int* EllipseGroup::groupNums

グループ要素番号

3.15.2.3 int EllipseGroup::nCurrNum

(work) グループ要素数

この構造体の説明は次のファイルから生成されました:

• extractFeature.h

3.16 構造体 Feature2D

各2次元特徴

#include <extractFeature.h>

変数

- ConicType type 二次曲線の分類
- double coef [6]
- double center [2]

楕円中心または、双曲線の漸近線交点

- double startPoint [2] 曲線上の始点
- double endPoint [2] 曲線上の終点
- int start 始点番号
- int end 終点番号
- int all

輪郭全体の点数 (nPoint)

- double startSPoint [2]
 点列の始点の位置
- double middleSPoint [2] 点列の中間の位置
- double endSPoint [2] 点列の終点の位置
- double ev [2][2] 楕円の回転行列
- double axis [2]

楕円の長半径、短半径

- double direction [2] 直線の方向ベクトル
- int nPoints特徴抽出に使われた点数
- int nTrack 輪郭番号
- double error 当てはめ誤差
- double lineLength 直線の長さ
- double lineLength1 双曲線の線分 I の長さ
- double lineLength2 双曲線の線分 2 の長さ
- double lineAngle 双曲線の 2 線分のなす角度

3.16.1 説明

各 2 次元特徴

3.16.2 構造体

3.16.2.1 int Feature2D::all

輪郭全体の点数 (nPoint)

3.16.2.2 double Feature2D::axis[2]

楕円の長半径、短半径

3.16.2.3 double Feature2D::center[2]

楕円中心または、双曲線の漸近線交点

3.16.2.4 double Feature2D::coef[6]

二次曲線の係数。 a x^2 + bxy + c y^2 + d x + e y + f = 0, a = coef[0], ... , f = coef[5] に対応

3.16.2.5 double Feature2D::direction[2]

直線の方向ベクトル

3.16.2.6 int Feature2D::end

終点番号

3.16.2.7 double Feature2D::endPoint[2]

曲線上の終点

3.16.2.8 double Feature2D::endSPoint[2]

点列の終点の位置

3.16.2.9 double Feature2D::error

当てはめ誤差

3.16.2.10 double Feature2D::ev[2][2]

楕円の回転行列

3.16.2.11 double Feature2D::lineAngle

双曲線の2線分のなす角度

3.16.2.12 double Feature2D::lineLength

直線の長さ

3.16.2.13 double Feature2D::lineLength1

双曲線の線分1の長さ

3.16.2.14 double Feature2D::lineLength2

双曲線の線分2の長さ

3.16.2.15 double Feature2D::middleSPoint[2]

点列の中間の位置

3.16.2.16 int Feature2D::nPoints

特徴抽出に使われた点数

3.16.2.17 int Feature2D::nTrack

輪郭番号

3.16.2.18 int Feature2D::start

始点番号

3.16.2.19 double Feature2D::startPoint[2]

曲線上の始点

3.16.2.20 double Feature2D::startSPoint[2]

点列の始点の位置

3.16.2.21 ConicType Feature2D::type

- 二次曲線の分類
- この構造体の説明は次のファイルから生成されました:
 - extractFeature.h

3.17 構造体 Features2D

2 次元特徴情報

#include <extractFeature.h>Features2D のコラボレーション図

変数

- int nAlloc メモリ確保量
- int nFeature 2 次元特徴数
- Feature 2D * feature 2 次元特徴情報
- int nTrack 輪郭数
- Track * track 輪郭情報

3.17.1 説明

2次元特徴情報

3.17.2 構造体

3.17.2.1 Feature2D* Features2D::feature

2 次元特徴情報

3.17.2.2 int Features2D::nAlloc

メモリ確保量

3.17.2.3 int Features2D::nFeature

2 次元特徴数

3.17.2.4 int Features2D::nTrack

輪郭数

3.17.2.5 Track* Features2D::track

輪郭情報

この構造体の説明は次のファイルから生成されました:

• extractFeature.h

3.18 構造体 Features3D

3次元特徴情報

#include <match3Dfeature.h>Features3Dのコラボレーション図

変数

- CalibParam * calib キャリブレーションデータポインタ
- int numOfVertices3次元頂点特徵数
- Vertex * Vertices 3 次元頂点特徴
- int numOfCircles3次元円特徴数
- Circle * Circles 3 次元円特徴
- uchar * image [3] 原画像ポインタ

- uchar * edge [3] エッジ画像ポインタ
- double trace_pdist2 次元評価時の評価点間隔
- int trace_search2 次元評価時の探索範囲
- int trace_edge2 次元評価時の有効エッジ強度閾値
- int pointCounts 2 次元評価のための全評価点数
- double traceCounts2次元評価に用いた評価点数
- 3.18.1 説明
- 3次元特徴情報
- 3.18.2 構造体
- 3.18.2.1 CalibParam* Features3D::calib

キャリブレーションデータポインタ

- 3.18.2.2 Circle* Features3D::Circles
- 3 次元円特徴
- 3.18.2.3 uchar* Features3D::edge[3]

エッジ画像ポインタ

3.18.2.4 uchar* Features3D::image[3]

原画像ポインタ

- 3.18.2.5 int Features3D::numOfCircles
- 3 次元円特徴数
- 3.18.2.6 int Features3D::numOfVertices
- 3次元頂点特徴数
- 3.18.2.7 int Features3D::pointCounts
- 2次元評価のための全評価点数
- 3.18.2.8 int Features3D::trace_edge
- 2次元評価時の有効エッジ強度閾値
- 3.18.2.9 double Features3D::trace_pdist
- 2次元評価時の評価点間隔
- 3.18.2.10 int Features3D::trace_search
- 2次元評価時の探索範囲
- 3.18.2.11 double Features3D::traceCounts
- 2次元評価に用いた評価点数
- 3.18.2.12 Vertex* Features3D::Vertices
- 3 次元頂点特徴
- この構造体の説明は次のファイルから生成されました:
 - match3Dfeature.h

3.19 構造体 ImageData

```
#include <Img.hh>
```

Public 型

- typedef _CORBA_ConstrType_Variable_Var< ImageData > _var_type
- typedef _CORBA_Unbounded_Sequence_Octet _raw_data_seq

Public メソッド

- void operator>>= (cdrStream &) const
- void operator<<= (cdrStream &)

変数

- CORBA::Long width
- CORBA::Long height
- ColorFormat format
- _raw_data_seq raw_data

3.19.1 型定義

- ${\bf 3.19.1.2} \quad typedef_CORBA_ConstrType_Variable_Var < ImageData > \\ ImageData ::_var_type$
- 3.19.2 関数
- 3.19.2.1 void ImageData::operator<<= (cdrStream &)

- 3.19.2.2 void ImageData::operator>>= (cdrStream &) const
- 3.19.3 構造体
- 3.19.3.1 ColorFormat ImageData::format
- 3.19.3.2 CORBA::Long ImageData::height
- 3.19.3.3 _raw_data_seq ImageData::raw_data
- 3.19.3.4 CORBA::Long ImageData::width

この構造体の説明は次のファイルから生成されました:

• Img.hh

libopenvgr に対して Fri Jun 24 10:38:14 2011 に生成されました。 Doxygen

3.20 クラス Mat44_copyHelper

#include <Img.hh>

Static Public メソッド

- static Mat44_slice * alloc ()
- static Mat44_slice * dup (const Mat44_slice *p)
- static void free (Mat44_slice *p)

3.20.1 関数

```
3.20.1.1 static Mat44_slice* Mat44_copyHelper::alloc() [inline, static]
```

- 3.20.1.2 static Mat44_slice* Mat44_copyHelper::dup (const Mat44_slice * p) [inline, static]
- 3.20.1.3 static void Mat44_copyHelper::free (Mat44_slice * p) [inline, static]

このクラスの説明は次のファイルから生成されました:

• Img.hh

3.21 構造体 Match3Dresults

全認識結果

#include <match3Dfeature.h>Match3Dresultsのコラボレーション図

変数

- int error認識エラーフラグ
- int numOfResults認識結果数
- MatchResult * Results
 各認識結果

3.21.1 説明

全認識結果

3.21.2 構造体

3.21.2.1 int Match3Dresults::error

認識エラーフラグ

3.21.2.2 int Match3Dresults::numOfResults

認識結果数

3.21.2.3 MatchResult* Match3Dresults::Results

各認識結果

この構造体の説明は次のファイルから生成されました:

• match3Dfeature.h

3.22 構造体 MatchResult

各認識結果情報

#include <match3Dfeature.h>

変数

• int n 通し番号

int type特徴タイプ 0:頂点、1:単円、2:2円

int scene [2]シーン特徴番号

int model [2]モデル特徴番号

• double score 2 次元評価値

• double mat [4][4] 変換行列

double vec [7]変換行列の7次元のベクトル(位置+回転)表現

3.22.1 説明

各認識結果情報

3.22.2 構造体

3.22.2.1 double MatchResult::mat[4][4]

变換行列

3.22.2.2 int MatchResult::model[2]

モデル特徴番号

3.22.2.3 int MatchResult::n

通し番号

3.22.2.4 int MatchResult::scene[2]

シーン特徴番号

3.22.2.5 double MatchResult::score

2 次元評価値

3.22.2.6 int MatchResult::type

特徴タイプ 0:頂点、1:単円、2:2円

3.22.2.7 double MatchResult::vec[7]

変換行列の7次元のベクトル(位置+回転)表現 この構造体の説明は次のファイルから生成されました:

• match3Dfeature.h

3.23 構造体 ModelFileInfo

モデルファイルリスト

#include <modelListFileIO.h>ModelFileInfoのコラボレーション図

変数

- ModelFileInfoNode * model モデルリスト
- int modelNum モデル数

3.23.1 説明

モデルファイルリスト

3.23.2 構造体

3.23.2.1 ModelFileInfoNode* ModelFileInfo::model

モデルリスト

3.23.2.2 int ModelFileInfo::modelNum

モデル数

この構造体の説明は次のファイルから生成されました:

• modelListFileIO.h

3.24 構造体 ModelFileInfoNode

モデルリストのノード

#include <modelListFileIO.h>

変数

• int id

モデル ID

• char path [MAX_PATH] モデルファイル名

3.24.1 説明

モデルリストのノード

3.24.2 構造体

3.24.2.1 int ModelFileInfoNode::id

モデル ID

3.24.2.2 char ModelFileInfoNode::path[MAX_PATH]

モデルファイル名

この構造体の説明は次のファイルから生成されました:

• modelListFileIO.h

3.25 構造体 MultiCameraImage

#include <Img.hh>

Public 型

- typedef _CORBA_ConstrType_Variable_Var< <u>MultiCameraImage</u> > _var_type
- $\bullet \ typedef_CORBA_Unbounded_Sequence < CameraImage > _image_seq_seq\\$

Public メソッド

- void operator>>= (cdrStream &) const
- void operator <<= (cdrStream &)

変数

- _image_seq_seq image_seq
- CORBA::Long camera_set_id

3.25.1 型定義

- 3.25.1.1 typedef _CORBA_Unbounded_Sequence< CameraImage > MultiCameraImage::_image_seq_seq
- 3.25.1.2 typedef _CORBA_ConstrType_Variable_Var<MultiCameraImage> MultiCameraImage::_var_type
- 3.25.2 関数
- 3.25.2.1 void MultiCameraImage::operator<<= (cdrStream &)

- 3.25.2.2 void MultiCameraImage::operator>>= (cdrStream &) const
- 3.25.3 構造体
- 3.25.3.1 CORBA::Long MultiCameraImage::camera_set_id
- 3.25.3.2 _image_seq_seq MultiCameraImage::image_seq
- この構造体の説明は次のファイルから生成されました:
 - Img.hh

libopenvgr に対して Fri Jun 24 10:38:14 2011 に生成されました。 Doxygen

3.26 構造体 P2D 55

3.26 構造体 P2D

2 次元位置情報

#include <match3Dfeature.h>

変数

- double colrow [2] 2 次元座標
- 3.26.1 説明
- 2 次元位置情報
- 3.26.2 構造体
- **3.26.2.1** double P2D::colrow[2]
- 2 次元座標
- この構造体の説明は次のファイルから生成されました:
 - match3Dfeature.h

3.27 構造体 P3D

3 次元位置情報

#include <match3Dfeature.h>

変数

• double xyz [3] 3 次元座標

3.27.1 説明

3 次元位置情報

3.27.2 構造体

3.27.2.1 double P3D::xyz[3]

- 3 次元座標
- この構造体の説明は次のファイルから生成されました:
 - match3Dfeature.h

3.28 構造体 Parameters

全パラメータ

#include <parameters.h>Parametersのコラボレーション図

変数

- ParametersFeature2D feature2D
- ParametersStereo stereo
- ParametersMatch match
- StereoPairing pairing
- int outputCandNum 出力候補数
- int colsize

画像サイズ横(画素)

• int rowsize

画像サイズ縦(画素)

• int imgsize

画像サイズ総画素数

• int dbgtext

デバッグテキスト生成

• int dbgimag

デバッグ画像生成

• int dbgdisp

デバッグ画像表示

3.28.1 説明

全パラメータ

3.28.2 構造体

3.28.2.1 int Parameters::colsize

画像サイズ横(画素)

3.28.2.2 int Parameters::dbgdisp

デバッグ画像表示

3.28.2.3 int Parameters::dbgimag

デバッグ画像生成

3.28.2.4 int Parameters::dbgtext

デバッグテキスト生成

3.28.2.5 ParametersFeature2D Parameters::feature2D

3.28.2.6 int Parameters::imgsize

画像サイズ総画素数

3.28.2.7 ParametersMatch Parameters::match

3.28.2.8 int Parameters::outputCandNum

出力候補数

3.28.2.9 StereoPairing Parameters::pairing

3.28.2.10 int Parameters::rowsize

画像サイズ縦(画素)

3.28.2.11 ParametersStereo Parameters::stereo

この構造体の説明は次のファイルから生成されました:

• parameters.h

3.29 構造体 ParametersFeature2D

2次元特徴抽出用パラメータ

#include <parameters.h>

变数

• int id

ID 番号.

• int edgeDetectFunction

エッジ検出アルゴリズム (0: Sobel3x3 1: Sobel 5x5)

• double edgeStrength

検出するエッジの最低微分強度

• int minFragment

検出するエッジの最低外周長(画素)

• double maxErrorofLineFit

直線をあてはめる時の最大誤差(画素)

- double maxErrorofConicFit
 - 二次曲線をあてはめる時の最大誤差(画素)
- double overlapRatioLine

直線、双曲線の特徴点を抽出する区間の重複可能な最大比率 ($0.0 \sim 1.0$)

• double overlapRatioCircle

楕円の特徴点を抽出する区間の重複可能な最大比率 ($0.0 \sim 1.0$)

• double max_length_delete_line

削除する直線の最大の長さ(画素)

• double min_radian_hyperbola

双曲線のなす角度閾値 (0.180 度に近いものを除去する)(ラジアン)

• double min_length_hyperbola_data

双曲線での中心からデータまでの距離の閾値(画素)

• double min_length_hyperbola_vector

双曲線での中心から端点までの距離の閾値(画素)

- double min_length_ellipse_axis 楕円の軸長の閾値(画素)
- double min_filling_ellipse
 楕円の充填率の閾値(0.0~1.0)
- double max_flatness_ellipse 楕円の偏平率(長軸/短軸)
- double max_distance_end_points
 端点間距離の閾値(画素)
- double min_length_line 直線の長さの閾値(画素)
- double max_distance_ellipse_grouping
 中心距離判定閾値(画素)
- double min_distance_ellipse_pairing
 中心距離判定閾値(画素)
- double max_distance_ellipse_pairing
 中心距離判定閾値(画素)
- double min_length_ellipse_axisS 楕円の軸長の閾値(画素)
- double min_length_ellipse_axisL 楕円の軸長の閾値(画素)
- double max_length_ellipse_axisL 楕円の軸長の閾値(画素)

3.29.1 説明

2次元特徴抽出用パラメータ

3.29.2 構造体

3.29.2.1 int ParametersFeature2D::edgeDetectFunction

エッジ検出アルゴリズム (0: Sobel3x3 1: Sobel 5x5)

3.29.2.2 double ParametersFeature2D::edgeStrength

検出するエッジの最低微分強度

3.29.2.3 int ParametersFeature2D::id

ID 番号.

3.29.2.4 double ParametersFeature2D::max_distance_ellipse_grouping

中心距離判定閾値(画素)

3.29.2.5 double ParametersFeature2D::max_distance_ellipse_pairing

中心距離判定閾値(画素)

3.29.2.6 double ParametersFeature2D::max_distance_end_points

端点間距離の閾値(画素)

3.29.2.7 double ParametersFeature2D::max_flatness_ellipse

楕円の偏平率(長軸/短軸)

3.29.2.8 double ParametersFeature2D::max_length_delete_line

削除する直線の最大の長さ(画素)

3.29.2.9 double ParametersFeature2D::max_length_ellipse_axisL

楕円の軸長の閾値(画素)

3.29.2.10 double ParametersFeature2D::maxErrorofConicFit

二次曲線をあてはめる時の最大誤差(画素)

3.29.2.11 double ParametersFeature2D::maxErrorofLineFit

直線をあてはめる時の最大誤差(画素)

3.29.2.12 double ParametersFeature2D::min_distance_ellipse_pairing

中心距離判定閾値(画素)

3.29.2.13 double ParametersFeature2D::min_filling_ellipse

楕円の充填率の閾値(0.0~1.0)

3.29.2.14 double ParametersFeature2D::min length ellipse axis

楕円の軸長の閾値(画素)

3.29.2.15 double ParametersFeature2D::min_length_ellipse_axisL

楕円の軸長の閾値(画素)

3.29.2.16 double ParametersFeature2D::min_length_ellipse_axisS

楕円の軸長の閾値(画素)

3.29.2.17 double ParametersFeature2D::min_length_hyperbola_data

双曲線での中心からデータまでの距離の閾値(画素)

3.29.2.18 double ParametersFeature2D::min_length_hyperbola_vector

双曲線での中心から端点までの距離の閾値(画素)

3.29.2.19 double ParametersFeature2D::min_length_line

直線の長さの閾値(画素)

3.29.2.20 double ParametersFeature2D::min_radian_hyperbola

双曲線のなす角度閾値(0,180度に近いものを除去する)(ラジアン)

3.29.2.21 int ParametersFeature2D::minFragment

検出するエッジの最低外周長(画素)

3.29.2.22 double ParametersFeature2D::overlapRatioCircle

楕円の特徴点を抽出する区間の重複可能な最大比率 (0.0~1.0)

${\bf 3.29.2.23} \quad double\ Parameters Feature 2D:: overlap Ratio Line$

直線、双曲線の特徴点を抽出する区間の重複可能な最大比率 (0.0~1.0) この構造体の説明は次のファイルから生成されました:

• parameters.h

3.30 構造体 ParametersMatch

認識用パラメータ

#include <parameters.h>

変数

- double tolerance1
 頂点の角度差の許容割合(%)
- double tolerance2
 円の半径の差の許容割合(%)
- double pdist モデルサンプル点間隔 (*mm*)
- double interval
 評価時サンプル点間隔(画素)
- int search 評価時エッジ探索範囲(画素)
- int edge 評価時エッジ強度閾値

3.30.1 説明

認識用パラメータ

3.30.2 構造体

3.30.2.1 int ParametersMatch::edge

評価時エッジ強度閾値

3.30.2.2 double ParametersMatch::interval

評価時サンプル点間隔(画素)

3.30.2.3 double ParametersMatch::pdist

モデルサンプル点間隔 (mm)

3.30.2.4 int ParametersMatch::search

評価時エッジ探索範囲(画素)

3.30.2.5 double ParametersMatch::tolerance1

頂点の角度差の許容割合 (%)

3.30.2.6 double ParametersMatch::tolerance2

円の半径の差の許容割合 (%)

この構造体の説明は次のファイルから生成されました:

• parameters.h

3.31 構造体 ParmetersStereo

ステレオ対応処理用パラメータ

#include <parameters.h>

変数

- double ethr 対応誤差閾値 (mm)
- double rdif 半径許容差 (mm)
- double ndif 左右法線角度許容差(度)
- double depn 円中心・頂点位置奥行開始 (*mm*)
- double depf 円中心・頂点位置奥行終了 (*mm*)
- double amin 頂点 角度最小値(度)
- double amax 頂点 角度最大値(度)
- double lmin 頂点 線分最小値 (mm)
- double lmax 頂点 線分最大値 (*mm*)

3.31.1 説明

ステレオ対応処理用パラメータ

3.31.2 構造体

3.31.2.1 double ParmetersStereo::amax

頂点 角度最大値(度)

3.31.2.2 double ParmetersStereo::amin

頂点 角度最小値(度)

3.31.2.3 double ParmetersStereo::depf

円中心・頂点位置奥行終了 (mm)

3.31.2.4 double ParmetersStereo::depn

円中心・頂点位置奥行開始 (mm)

3.31.2.5 double ParmetersStereo::ethr

対応誤差閾値(mm)

3.31.2.6 double ParmetersStereo::lmax

頂点 線分最大値 (mm)

3.31.2.7 double ParmetersStereo::lmin

頂点 線分最小値 (mm)

3.31.2.8 double ParmetersStereo::ndif

左右法線角度許容差(度)

3.31.2.9 double ParmetersStereo::rdif

半径許容差 (mm)

この構造体の説明は次のファイルから生成されました:

• parameters.h

3.32 構造体 RTVCM_Box

モデル内の立方体データ

#include <rtvcm.h>

変数

- int n 通し番号
- double x
- double y
- double z

幅、奥行き、高さ

- double Rotate [3][3] 基準位置からの回転
- double Trans [3] 基準位置からの移動
- int nVertex [24] 頂点通し番号列
- void * reserved 拡張

3.32.1 説明

モデル内の立方体データ

3.32.2 構造体

3.32.2.1 int RTVCM_Box::n

通し番号

3.32.2.2 int RTVCM_Box::nVertex[24]

頂点通し番号列

3.32.2.3 void* RTVCM_Box::reserved

拡張

3.32.2.4 double RTVCM_Box::Rotate[3][3]

基準位置からの回転

3.32.2.5 double RTVCM_Box::Trans[3]

基準位置からの移動

3.32.2.6 double RTVCM_Box::x

3.32.2.7 double RTVCM_Box::y

3.32.2.8 double RTVCM_Box::z

幅、奥行き、高さ

この構造体の説明は次のファイルから生成されました:

• rtvcm.h

3.33 構造体 RTVCM_Circle

モデル内の円データ

#include <rtvcm.h>

変数

• int n 通し番号

• double radius 半径

• double center [3] 中心の 3 次元位置

- double normal [3] 3 次元法線方向
- int ncyliner属する円筒の通し番号
- void * reserved 拡張

3.33.1 説明

モデル内の円データ

3.33.2 構造体

3.33.2.1 double RTVCM_Circle::center[3]

中心の3次元位置

3.33.2.2 int RTVCM_Circle::n

通し番号

3.33.2.3 int RTVCM_Circle::ncyliner

属する円筒の通し番号

3.33.2.4 double RTVCM_Circle::normal[3]

3次元法線方向

3.33.2.5 double RTVCM_Circle::radius

半径

3.33.2.6 void* RTVCM_Circle::reserved

拡張

この構造体の説明は次のファイルから生成されました:

• rtvcm.h

3.34 構造体 RTVCM_Cylinder

モデル内の円筒データ

#include <rtvcm.h>

変数

• int n 通し番号

• double radius 半径

• double height 高さ

• double Rotate [3][3] 基準位置からの回転

• double Trans [3] 基準位置からの移動

• int * nCircle [2] 構成円の通し番号配列

• void * reserved 拡張

3.34.1 説明

モデル内の円筒データ

3.34.2 構造体

3.34.2.1 double RTVCM_Cylinder::height

高さ

3.34.2.2 int RTVCM_Cylinder::n

通し番号

3.34.2.3 int* RTVCM_Cylinder::nCircle[2]

構成円の通し番号配列

3.34.2.4 double RTVCM_Cylinder::radius

半径

3.34.2.5 void* RTVCM_Cylinder::reserved

拡張

3.34.2.6 double RTVCM_Cylinder::Rotate[3][3]

基準位置からの回転

3.34.2.7 double RTVCM_Cylinder::Trans[3]

基準位置からの移動

この構造体の説明は次のファイルから生成されました:

• rtvcm.h

3.35 構造体 RTVCM_Vertex

モデル内の頂点データ

#include <rtvcm.h>

変数

• int n

通し番号

• double position [3]

3 次元位置

• double endpoint1 [3]

3次元端点1

• double endpoint2 [3]

3次元端点2

• double angle

2直線のなす角度

• int nbox

属する立方体の通し番号

• void * reserved

拡張

3.35.1 説明

モデル内の頂点データ

3.35.2 構造体

3.35.2.1 double RTVCM_Vertex::angle

2直線のなす角度

3.35.2.2 double RTVCM_Vertex::endpoint1[3]

3次元端点1

3.35.2.3 double RTVCM_Vertex::endpoint2[3]

3次元端点2

3.35.2.4 int RTVCM_Vertex::n

通し番号

3.35.2.5 int RTVCM_Vertex::nbox

属する立方体の通し番号

3.35.2.6 double RTVCM_Vertex::position[3]

3 次元位置

3.35.2.7 void* RTVCM_Vertex::reserved

拡張

この構造体の説明は次のファイルから生成されました:

• rtvcm.h

3.36 構造体 RTVertexCircleModel

モデルデータ構造体

#include <rtvcm.h>RTVertexCircleModelのコラボレーション図

変数

- RTVCM_Label label
 - 属性
- int n

通し番号

• double gravity [3]

重心

• double width

属性が立方体の場合は幅(x),(円柱の場合は外接矩形の幅(x)に使っても良い)

• double height

属性が立方体の場合は奥行き (y), 円柱の場合は高さ (y)

• double depth

属性が立方体の場合は高さ (z), (円柱の場合は外接矩形の奥行き (z) に使っても良い)

• double radius

属性が円柱の場合の半径

• int nvertex

頂点数

• RTVCM_Vertex * vertex 頂点列

• int ncircle

円数

• RTVCM_Circle * circle 円列

• int nvox 直方体数

• RTVCM_Box * box 直方体列(表示用)

• int ncylinder 円筒数

• RTVCM_Cylinder * cylinder 円筒列 (表示用)

• void * reserved 拡張

3.36.1 説明

モデルデータ構造体

3.36.2 構造体

3.36.2.1 RTVCM_Box* RTVertexCircleModel::box

直方体列(表示用)

3.36.2.2 RTVCM_Circle* RTVertexCircleModel::circle

円列

 ${\bf 3.36.2.3} \quad RTVCM_Cylinder*\ RTVertexCircleModel::cylinder$

円筒列(表示用)

3.36.2.4 double RTVertexCircleModel::depth

属性が立方体の場合は高さ (z), (円柱の場合は外接矩形の奥行き (z) に使っても良い)

3.36.2.5 double RTVertexCircleModel::gravity[3]

重心

3.36.2.6 double RTVertexCircleModel::height

属性が立方体の場合は奥行き (y), 円柱の場合は高さ (y)

3.36.2.7 RTVCM_Label RTVertexCircleModel::label

属性

3.36.2.8 int RTVertexCircleModel::n

通し番号

3.36.2.9 int RTVertexCircleModel::ncircle

円数

3.36.2.10 int RTVertexCircleModel::ncylinder

円筒数

3.36.2.11 int RTVertexCircleModel::nvertex

頂点数

3.36.2.12 int RTVertexCircleModel::nvox

直方体数

3.36.2.13 double RTVertexCircleModel::radius

属性が円柱の場合の半径

3.36.2.14 void* RTVertexCircleModel::reserved

拡張

3.36.2.15 RTVCM_Vertex* RTVertexCircleModel::vertex

頂点列

3.36.2.16 double RTVertexCircleModel::width

属性が立方体の場合は幅 (x), (円柱の場合は外接矩形の幅 (x) に使っても良い) この構造体の説明は次のファイルから生成されました:

• rtvcm.h

libopenvgr に対して Fri Jun 24 10:38:14 2011 に生成されました。 Doxygen

3.37 構造体 StereoCalib

ステレオカメラキャリブレーションデータ

#include <stereo.h>

変数

- int numOfCameras
 ステレオセットのカメラ数
- int width 画像幅
- int height 画像高さ
- double baselineLR *LR* 間ベースライン長.
- double baselineLV LV 間ベースライン長.
- double baselineRV RV 間ベースライン長.

3.37.1 説明

ステレオカメラキャリブレーションデータ

3.37.2 構造体

3.37.2.1 double StereoCalib::baselineLR

LR 間ベースライン長.

3.37.2.2 double StereoCalib::baselineLV

LV 間ベースライン長.

3.37.2.3 double StereoCalib::baselineRV

RV 間ベースライン長.

3.37.2.4 int StereoCalib::height

画像高さ

3.37.2.5 int StereoCalib::numOfCameras

ステレオセットのカメラ数

3.37.2.6 int StereoCalib::width

画像幅

この構造体の説明は次のファイルから生成されました:

• stereo.h

3.38 構造体 StereoConic

二次曲線ステレオ対応データ

#include <stereo.h>StereoConicのコラボレーション図

変数

- ConicType type二次曲線のタイプ
- Feature2D * featureL 左画像の2次元特徴
- Feature2D * featureR 右画像の2次元特徴
- int valid 有効無効フラグ
- double errorステレオ対応誤差
- double center [3] 復元円中心、復元頂点の 3 次元座標
- union {
 VertexCandidate vertex
 頂点として処理した場合に保存する頂点情報
 CircleCandidate circle
 円として処理した場合に保存する円情報
 } work

- 3.38.1 説明
- 二次曲線ステレオ対応データ
- 3.38.2 構造体
- 3.38.2.1 double StereoConic::center[3]

復元円中心、復元頂点の3次元座標

3.38.2.2 CircleCandidate StereoConic::circle

円として処理した場合に保存する円情報

3.38.2.3 double StereoConic::error

ステレオ対応誤差

3.38.2.4 Feature2D* StereoConic::featureL

左画像の2次元特徴

3.38.2.5 Feature2D* StereoConic::featureR

右画像の2次元特徴

3.38.2.6 ConicType StereoConic::type

二次曲線のタイプ

3.38.2.7 int StereoConic::valid

有効無効フラグ

3.38.2.8 VertexCandidate StereoConic::vertex

頂点として処理した場合に保存する頂点情報

3.38.2.9 union { ... } StereoConic::work

この構造体の説明は次のファイルから生成されました:

• stereo.h

3.39 構造体 StereoData

ステレオ対応データ

#include <stereo.h>StereoDataのコラボレーション図

変数

- int numOfconics
 - 2次曲線ステレオ対応個数
- StereoConic * conics
 - 2次曲線ステレオ対応データ

3.39.1 説明

ステレオ対応データ

3.39.2 構造体

3.39.2.1 StereoConic* StereoData::conics

2次曲線ステレオ対応データ

3.39.2.2 int StereoData::numOfconics

- 2次曲線ステレオ対応個数
- この構造体の説明は次のファイルから生成されました:
 - stereo.h

3.40 構造体 TimedCameraImage

#include <Img.hh>TimedCameraImage のコラボレーション図

Public 型

typedef _CORBA_ConstrType_Variable_Var< TimedCameraImage > _var_type

Public メソッド

- void operator>>= (cdrStream &) const
- void operator <<= (cdrStream &)

変数

- RTC::Time tm
- CameraImage data
- CORBA::Long error_code

3.40.1 型定義

- ${\bf 3.40.1.1} \quad typedef_CORBA_ConstrType_Variable_Var < TimedCameraImage > \\ TimedCameraImage :: _var_type$
- 3.40.2 関数
- 3.40.2.1 void TimedCameraImage::operator<<= (cdrStream &)
- 3.40.2.2 void TimedCameraImage::operator>>= (cdrStream &) const
- 3.40.3 構造体
- 3.40.3.1 CameraImage TimedCameraImage::data
- 3.40.3.2 CORBA::Long TimedCameraImage::error_code
- 3.40.3.3 RTC::Time TimedCameraImage::tm

この構造体の説明は次のファイルから生成されました:

• Img.hh

3.41 構造体 TimedMultiCameraImage

#include <Img.hh>TimedMultiCameraImage のコラボレーション図

Public 型

typedef _CORBA_ConstrType_Variable_Var< TimedMultiCameraImage > _var_type

Public メソッド

- void operator>>= (cdrStream &) const
- void operator <<= (cdrStream &)

変数

- RTC::Time tm
- MultiCameraImage data
- CORBA::Long error_code

3.41.1 型定義

3.41.1.1 typedef _CORBA_ConstrType_Variable_-Var<TimedMultiCameraImage> TimedMultiCameraImage::_var_type

3.41.2 関数

- 3.41.2.1 void TimedMultiCameraImage::operator<<= (cdrStream &)
- 3.41.2.2 void TimedMultiCameraImage::operator>>= (cdrStream &) const
- 3.41.3 構造体
- 3.41.3.1 MultiCameraImage TimedMultiCameraImage::data
- 3.41.3.2 CORBA::Long TimedMultiCameraImage::error_code
- 3.41.3.3 RTC::Time TimedMultiCameraImage::tm

この構造体の説明は次のファイルから生成されました:

• Img.hh

3.42 構造体 Trace

認識結果評価用サンプリング点列情報

#include <match3Dfeature.h>

変数

• int label

ラベル:可視情報 (VISIBLE/INVISIBLE)

- double weight
- double xyz [4]

3 次元位置情報 (mm)

• double colrow [2]

画像投影位置情報(画素)

• int direction

対応エッジ探索方向

• int search

対応エッジの距離(画素)

• int edge

対応エッジの強度

• double peaker [2]

対応エッジ点の位置(画素)

3.42.1 説明

認識結果評価用サンプリング点列情報

3.42.2 構造体

3.42.2.1 double Trace::colrow[2]

画像投影位置情報(画素)

3.42 構造体 Trace 93

3.42.2.2 int Trace::direction

対応エッジ探索方向

3.42.2.3 int Trace::edge

対応エッジの強度

3.42.2.4 int Trace::label

ラベル:可視情報 (VISIBLE/INVISIBLE)

3.42.2.5 double Trace::peakcr[2]

対応エッジ点の位置(画素)

3.42.2.6 int Trace::search

対応エッジの距離(画素)

3.42.2.7 double Trace::weight

3.42.2.8 double Trace::xyz[4]

3 次元位置情報 (mm)

この構造体の説明は次のファイルから生成されました:

• match3Dfeature.h

3.43 構造体 Track

輪郭情報

#include <extractFeature.h>

変数

• int nPoint 点数

• int * Point 点列

double offset [2] 楕円係数計算時のオフセット

3.43.1 説明

輪郭情報

3.43.2 構造体

3.43.2.1 int Track::nPoint

点数

3.43.2.2 double Track::offset[2]

楕円係数計算時のオフセット

3.43.2.3 int* Track::Point

点列

この構造体の説明は次のファイルから生成されました:

• extractFeature.h

3.44 クラス Vec3_copyHelper

```
#include <Img.hh>
```

Static Public メソッド

- static Vec3_slice * alloc ()
- static Vec3_slice * dup (const Vec3_slice *p)
- static void free (Vec3_slice *p)

3.44.1 関数

```
3.44.1.1 static Vec3_slice* Vec3_copyHelper::alloc() [inline, static]
```

```
3.44.1.2 static Vec3_slice* Vec3_copyHelper::dup (const Vec3_slice * p) [inline, static]
```

3.44.1.3 static void Vec3_copyHelper::free (Vec3_slice * p) [inline, static]

このクラスの説明は次のファイルから生成されました:

• Img.hh

3.45 構造体 Vertex

3 次元頂点情報

#include <match3Dfeature.h>Vertex のコラボレーション図

変数

• int label

ラベル:可視情報 (VISIBLE/INVISIBLE)

• int n

通し番号

• int side

表裏情報

- double position [3] 頂点の 3 次元位置 (mm)
- double endpoint1 [3] 辺の端点 (mm)
- double endpoint2 [3] 辺の端点 (mm)
- double direction1 [3] 辺の方向
- double direction2 [3] 辺の方向

- double orientation [4][4] 認識用姿勢行列
- double angle 頂点角度 (ラジアン)
- int numOfTracePoints認識評価用のサンプリング点列数
- Trace * tracepoints
 認識評価用のサンプリング点列情報
- P3D * transformed
 認識時の位置・姿勢変換後の 3 次元点列 (mm)
- P2D * projected
 2 次元評価時の画像投影 2 次元点列 (画素
- 3.45.1 説明
- 3次元頂点情報
- 3.45.2 構造体
- 3.45.2.1 double Vertex::angle

頂点角度 (ラジアン)

3.45.2.2 double Vertex::direction1[3]

辺の方向

3.45.2.3 double Vertex::direction2[3]

辺の方向

3.45.2.4 double Vertex::endpoint1[3]

辺の端点 (mm)

3.45.2.5 double Vertex::endpoint2[3]

辺の端点 (mm)

3.45.2.6 int Vertex::label

ラベル:可視情報 (VISIBLE/INVISIBLE)

3.45.2.7 int Vertex::n

通し番号

3.45.2.8 int Vertex::numOfTracePoints

認識評価用のサンプリング点列数

3.45.2.9 double Vertex::orientation[4][4]

認識用姿勢行列

3.45.2.10 double Vertex::position[3]

頂点の3次元位置 (mm)

3.45.2.11 P2D* Vertex::projected

2次元評価時の画像投影2次元点列(画素

3.45.2.12 int Vertex::side

表裏情報

3.45.2.13 Trace* Vertex::tracepoints

認識評価用のサンプリング点列情報

3.45.2.14 P3D* Vertex::transformed

認識時の位置・姿勢変換後の 3 次元点列 (mm)

この構造体の説明は次のファイルから生成されました:

• match3Dfeature.h

3.46 構造体 VertexCandidate

三次元頂点特徴候補データ

#include <stereo.h>

変数

• int valid 有効・無効フラグ

• int n1

for debug

• int n2

for debug

• int n3

for debug

• double angle 頂点を成す線分の角度

• double position [3] 頂点座標

• double endpoint1 [3] 端点 *I* 座標

• double endpoint2 [3] 端点 2座標

• double vector1 [3]

端点 / 向き単位ベクトル

double vector2 [3]端点 2 向き単位ベクトル

• double len1 線分 I の長さ

• double len2

線分2の長さ

3.46.1 説明

三次元頂点特徴候補データ

3.46.2 構造体

3.46.2.1 double VertexCandidate::angle

頂点を成す線分の角度

3.46.2.2 double VertexCandidate::endpoint1[3]

端点1座標

3.46.2.3 double VertexCandidate::endpoint2[3]

端点2座標

3.46.2.4 double VertexCandidate::len1

線分1の長さ

3.46.2.5 double VertexCandidate::len2

線分2の長さ

3.46.2.6 int VertexCandidate::n1

for debug

3.46.2.7 int VertexCandidate::n2

for debug

3.46.2.8 int VertexCandidate::n3

for debug

3.46.2.9 double VertexCandidate::position[3]

頂点座標

3.46.2.10 int VertexCandidate::valid

有効・無効フラグ

3.46.2.11 double VertexCandidate::vector1[3]

端点1向き単位ベクトル

3.46.2.12 double VertexCandidate::vector2[3]

端点2向き単位ベクトル

この構造体の説明は次のファイルから生成されました:

• stereo.h

Chapter 4

ファイル

4.1 calib.cpp

キャリプレーション関連の関数#include <stdio.h>

```
#include <cxcore.h>
```

#include <cv.h>

#include "common.h"

#include "vectorutil.h"

#include "calib.h"

calib.cpp のインクルード依存関係図

関数

• void undistortPosition (Data_2D *icPos, Data_2D iPos, CameraParam *cameraParam)

104 ファイル

• void distortPosition (Data_2D *iPos2D, Data_2D icPos2D, CameraParam *cameraParam)

4.1.1 説明

キャリブレーション関連の関数

日付:

\$Date:: 2011-06-23 14:52:42 +0900 #\$

4.1.2 関数

4.1.2.1 void distortPosition (Data_2D * iPos2D, Data_2D icPos2D, CameraParam * cameraParam)

4.1.2.2 void undistortPosition (Data_2D * *icPos*, Data_2D *iPos*, CameraParam * *cameraParam*)

4.2 calib.h 105

4.2 calib.h

キャリブレーション関連の関数#include "common.h" calib.h のインクルード依存関係図

このグラフは、どのファイルから直接、間接的にインクルードされているかを示しています。

データ構造

- struct DistortionParam 歪みパラメータ
- struct CameraParamカメラパラメータ
- struct CalibParam キャリプレーションパラメータ

106 ファイル

関数

• void undistortPosition (Data_2D *icPos, Data_2D iPos, CameraParam *cameraParam)

• void distortPosition (Data_2D *iPos2D, Data_2D icPos2D, CameraParam *cameraParam)

4.2.1 説明

キャリブレーション関連の関数

日付:

\$Date:: 2011-06-23 14:52:42 +0900 #\$

4.2.2 関数

4.2.2.1 void distortPosition (Data_2D * iPos2D, Data_2D icPos2D, CameraParam * cameraParam)

4.2.2.2 void undistortPosition (Data_2D * icPos, Data_2D iPos, CameraParam * cameraParam)

4.3 calibUtil.cpp 107

4.3 calibUtil.cpp

#include "calibUtil.h"
#include "vectorutil.h"
calibUtil.cpp のインクルード依存関係図

関数

• void setCalibFromCameraImage (const Img::CameraImage &image, CameraParam &camera)

4.3.1 関数

4.3.1.1 void setCalibFromCameraImage (const Img::CameraImage & image, CameraParam & camera)

CameraImage 内のキャリブレーションデータを、 Calib 構造体にセットする。

108 ファイル

4.4 calibUtil.h

キャリブレーションデータの変換関連#include "match3Dfeature.h" #include "Img.hh"

calibUtil.h のインクルード依存関係図

このグラフは、どのファイルから直接、間接的にインクルードされているかを示しています。

関数

• void setCalibFromCameraImage (const Img::CameraImage &image, CameraParam &camera)

4.4.1 説明

キャリブレーションデータの変換関連

4.4.2 関数

4.4 calibUtil.h 109

4.4.2.1 void setCalibFromCameraImage (const Img::CameraImage & image, CameraParam & camera)

CameraImage 内のキャリブレーションデータを、 Calib 構造体にセットする。

110 ファイル

4.5 circle.cpp

3次元円特徵生成関連関数#include "stereo.h"

#include "vectorutil.h"

#include "debugutil.h"

#include "modelpoints.h"

circle.cpp のインクルード依存関係図

関数

• void EllipseToCircle (StereoPairing pairing, CalibParam calib, StereoData &stereo, unsigned char *edgeL, unsigned char *edgeR, Parameters parameters)

4.5.1 説明

3 次元円特徴生成関連関数

日付:

\$Date:: 2011-06-23 14:52:42 +0900 #\$

4.5 circle.cpp 111

4.5.2 関数

4.5.2.1 void EllipseToCircle (StereoPairing pairing, CalibParam calib, StereoData & stereo, unsigned char * edgeL, unsigned char * edgeR, Parameters parameters)

112 ファイル

4.6 circle.h

3次元円特徵生成関連関数#include "extractFeature.h"

#include "stereo.h"

circle.h のインクルード依存関係図

関数

• void EllipseToCircle (StereoPairing pairing, CalibParam calib, StereoData &stereo, unsigned char *edgeL, unsigned char *edgeR, Parameters parameters)

4.6.1 説明

3次元円特徵生成関連関数

日付:

\$Date:: 2011-06-23 14:52:42 +0900 #\$

4.6.2 関数

4.6 circle.h 113

4.6.2.1 void EllipseToCircle (StereoPairing pairing, CalibParam calib, StereoData & stereo, unsigned char * edgeL, unsigned char * edgeR, Parameters parameters)

4.7 common.h

各種の共通定義#include <math.h> common.h のインクルード依存関係図

このグラフは、どのファイルから直接、間接的にインクルードされているかを示しています。

データ構造

• struct Data_2D

マクロ定義

- #define VISION_EPS 1.0e-10
- #define VISIBLE 1
- #define INVISIBLE 0

列挙型

enum StereoPairing {DBL_LR, DBL_LV, DBL_RV, TBL_OR,TBL_AND }

4.7 common.h 115

4.7.1 説明

各種の共通定義

日付:

\$Date:: 2011-06-23 14:52:42 +0900 #\$

4.7.2 マクロ定義

4.7.2.1 #define INVISIBLE 0

4.7.2.2 #define VISIBLE 1

4.7.2.3 #define VISION_EPS 1.0e-10

4.7.3 列挙型

4.7.3.1 enum StereoPairing

列挙型の値:

 DBL_LR

 DBL_LV

DBL_RV

TBL_OR

 TBL_AND

4.8 conic.cpp

二次曲線特徵抽出関連関数#include <math.h>

```
#include <string.h>
#include <stdio.h>
#include "vectorutil.h"
#include "parameters.h"
#include "conic.h"
```

conic.cpp のインクルード依存関係図

関数

- void clearConicSum (double sum[5][5])
- void addConicSum (double sum[5][5], int *point, double *offset)
- void subConicSum (double sum[5][5], int *point, double *offset)
- double distanceConic (double coef[6], int *point)
- ConicType getConicType (double coef[6])
- void getConicProperty (double coef[6], ConicType *type, double center[2], double axis[2][2], double *Laxis, double *Saxis)
- int fitConic (double sum[5][5], double coef[3][6], double *offset)
- ConicType fitConicAny (double retcoef[6], double *retError, double sum[5][5], int *point, const int nPoint, const int start, const int end, Parameters parameters, int line_detect_flag, double *offset)

4.8.1 説明

二次曲線特徵抽出関連関数

4.8 conic.cpp 117

日付:

\$Date:: 2011-06-23 14:52:42 +0900 #\$

- 4.8.2 関数
- 4.8.2.1 void addConicSum (double sum[5][5], int * point, double * offset)
- 4.8.2.2 void clearConicSum (double sum[5][5])
- **4.8.2.3** double distanceConic (double *coef*[6], int * *point*)
- 4.8.2.4 int fitConic (double sum[5][5], double coef[3][6], double * offset)
- 4.8.2.5 ConicType fitConicAny (double retcoef[6], double * retError, double sum[5][5], int * point, const int nPoint, const int start, const int end, Parameters parameters, int line_detect_flag, double * offset)
- 4.8.2.6 void getConicProperty (double *coef*[6], ConicType * *type*, double *center*[2], double *axis*[2][2], double * *Laxis*, double * *Saxis*)
- **4.8.2.7** ConicType getConicType (double *coef*[6])
- **4.8.2.8** void subConicSum (double sum[5][5], int * point, double * offset)

4.9 conic.h

二次曲線特徴抽出関連関数#include <math.h>

#include "parameters.h"

conic.h のインクルード依存関係図

このグラフは、どのファイルから直接、間接的にインクルードされているかを示しています。

列挙型

enum ConicType {
 ConicType_Unknown, ConicType_Line, ConicType_Ellipse, ConicType_Parabola }

4.9 conic.h 119

関数

- void clearConicSum (double sum[5][5])
- void addConicSum (double sum[5][5], int *point, double *offset)
- void subConicSum (double sum[5][5], int *point, double *offset)
- double distanceConic (double coef[6], int *point)
- ConicType getConicType (double coef[6])
- void getConicProperty (double coef[6], ConicType *type, double center[2], double axis[2][2], double *Laxis, double *Saxis)
- int fitConic (double sum[5][5], double coef[3][6], double *offset)
- ConicType fitConicAny (double retcoef[6], double *retError, double sum[5][5], int *point, const int nPoint, const int start, const int end, Parameters parameters, int line_detect_flag, double *offset)

4.9.1 説明

二次曲線特徵抽出関連関数

日付:

\$Date:: 2011-06-23 14:52:42 +0900 #\$

4.9.2 列挙型

4.9.2.1 enum ConicType

列挙型の値:

ConicType_Unknown
ConicType_Line
ConicType_Ellipse
ConicType_Hyperbola
ConicType_Parabola

4.9.3 関数

4.9.3.1 void addConicSum (double sum[5][5], int * point, double * offset)

- 4.9.3.2 void clearConicSum (double sum[5][5])
- **4.9.3.3** double distanceConic (double *coef*[6], int * *point*)
- 4.9.3.4 int fitConic (double sum[5][5], double coef[3][6], double * offset)
- 4.9.3.5 ConicType fitConicAny (double retcoef[6], double * retError, double sum[5][5], int * point, const int nPoint, const int start, const int end, Parameters parameters, int line_detect_flag, double * offset)
- 4.9.3.6 void getConicProperty (double *coef*[6], ConicType * *type*, double *center*[2], double *axis*[2][2], double * *Laxis*, double * *Saxis*)
- **4.9.3.7** ConicType getConicType (double *coef*[6])
- 4.9.3.8 void subConicSum (double sum[5][5], int * point, double * offset)

4.10 debugutil.cpp

```
デバッグ用関数#include <stdio.h>
```

```
#include <highgui.h>
#include "debugutil.h"
#include "vectorutil.h"
#include "visionErrorCode.h"
#include "modelpoints.h"
```

debugutil.cpp のインクルード依存関係図

関数

- int drawInputImage (const uchar *src, const Parameters ¶meters)
- int drawEdgeImage (const uchar *edge, const Parameters ¶meters)
- int drawDetectedLines (const uchar *edge, const Features2D *lineFeatures, const Parameters ¶meters)
- int drawDetectedVertices (const Features2D *features, const Parameters ¶meters)
- int drawTrackPoints (const Features2D *features, const Parameters ¶meters)

• int drawDetectedEllipses (const uchar *edge, const Features2D *features, const Parameters ¶meters)

- int drawStereoCorrespondence (const StereoData &stereo, int pairing, const Parameters ¶meters)
- int drawStereoVertices (const uchar *edge, const StereoData &stereo, int pairing, const Parameters ¶meters, const CameraParam *cameraParam)
- int drawStereoCircles (const uchar *edge, const StereoData &stereo, int pairing, const Parameters ¶meters, const CameraParam *cameraParam)
- int printStereoVertices (const StereoData &stereo, int pairing)
- int printStereoCircles (const StereoData &stereo, int pairing)

4.10.1 説明

デバッグ用関数

日付:

\$Date:: 2011-06-23 14:52:42 +0900 #\$

4.10.2 関数

- 4.10.2.1 int drawDetectedEllipses (const uchar * edge, const Features2D * features, const Parameters & parameters)
- 4.10.2.2 int drawDetectedLines (const uchar * edge, const Features2D * lineFeatures, const Parameters & parameters)
- **4.10.2.3** int drawDetectedVertices (const Features2D * features, const Parameters & parameters)
- 4.10.2.4 int drawEdgeImage (const uchar * edge, const Parameters & parameters)

4.10.2.5	int drawInputImage (const uchar * src,	const Parameters &
	parameters)	

- 4.10.2.6 int drawStereoCircles (const uchar * edge, const StereoData & stereo, int pairing, const Parameters & parameters, const CameraParam * cameraParam)
- 4.10.2.7 int drawStereoCorrespondence (const StereoData & stereo, int pairing, const Parameters & parameters)
- 4.10.2.8 int drawStereoVertices (const uchar * edge, const StereoData & stereo, int pairing, const Parameters & parameters, const CameraParam * cameraParam)
- 4.10.2.9 int drawTrackPoints (const Features2D * features, const Parameters & parameters)
- 4.10.2.10 int printStereoCircles (const StereoData & stereo, int pairing)
- 4.10.2.11 int printStereoVertices (const StereoData & stereo, int pairing)

4.11 debugutil.h

デバッグ用関数#include "stereo.h" debugutil.h のインクルード依存関係図

このグラフは、どのファイルから直接、間接的にインクルードされているかを示しています。

関数

- int drawInputImage (const uchar *src, const Parameters ¶meters)
- int drawEdgeImage (const uchar *edge, const Parameters ¶meters)
- int drawDetectedLines (const uchar *edge, const Features2D *lineFeatures, const Parameters ¶meters)
- int drawDetectedVertices (const Features2D *features, const Parameters ¶meters)
- int drawDetectedEllipses (const uchar *edge, const Features2D *features, const Parameters ¶meters)

- int drawTrackPoints (const Features2D *features, const Parameters ¶meters)
- int drawStereoCorrespondence (const StereoData &stereo, int pairing, const Parameters ¶meters)
- int drawStereoVertices (const uchar *edge, const StereoData &stereo, int pairing, const Parameters ¶meters, const CameraParam *cameraParam)
- int drawStereoCircles (const uchar *edge, const StereoData &stereo, int pairing, const Parameters ¶meters, const CameraParam *cameraParam)
- int printStereoVertices (const StereoData &stereo, int pairing)
- int printStereoCircles (const StereoData &stereo, int pairing)

4.11.1 説明

デバッグ用関数

日付:

\$Date:: 2011-06-23 14:52:42 +0900 #\$

4.11.2 関数

- 4.11.2.1 int drawDetectedEllipses (const uchar * edge, const Features2D * features, const Parameters & parameters)
- 4.11.2.2 int drawDetectedLines (const uchar * edge, const Features2D * lineFeatures, const Parameters & parameters)
- **4.11.2.3** int drawDetectedVertices (const Features2D * features, const Parameters & parameters)
- **4.11.2.4** int drawEdgeImage (const uchar * *edge*, const Parameters & *parameters*)

4.11.2.5	int drawInputImage (const uchar * src, const Parameters & parameters)
4.11.2.6	int drawStereoCircles (const uchar * edge, const StereoData & stereo, int pairing, const Parameters & parameters, const CameraParam * cameraParam)
4.11.2.7	int drawStereoCorrespondence (const StereoData & stereo, int pairing const Parameters & parameters)
4.11.2.8	int drawStereoVertices (const uchar * edge, const StereoData & stereo int pairing, const Parameters & parameters, const CameraParam * cameraParam)
4.11.2.9	int drawTrackPoints (const Features2D * features, const Parameters & parameters)
4.11.2.10	int printStereoCircles (const StereoData & stereo, int pairing)
4.11.2.11	int printStereoVertices (const StereoData & stereo, int pairing)

4.12 extractEdge.cpp

```
エッジ抽出関連関数#include <stdio.h>
```

```
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <cv.h>
#include <highgui.h>
#include <cxtypes.h>
#include <cxcore.h>
#include "parameters.h"
#include "extractEdge.h"
extractEdge.cpp のインクルード依存関係図
```


マクロ定義

- #define Gray(col, row) (gray[(row)*colsize+(col)])
- #define Edge(col, row) (edge[(row)*colsize+(col)])

関数

• void extractEdge (unsigned char *edge, unsigned char *gray, const int threshold, Parameters parameters)

4.12.1 説明

エッジ抽出関連関数

日付:

\$Date:: 2011-06-23 14:52:42 +0900 #\$

4.12.2 マクロ定義

4.12.2.1 #define Edge(col, row) (edge[(row)*colsize+(col)])

4.12.2.2 #define Gray(col, row) (gray[(row)*colsize+(col)])

4.12.3 関数

4.12.3.1 void extractEdge (unsigned char * *edge*, unsigned char * *gray*, const int *threshold*, Parameters *parameters*)

4.13 extractEdge.h

エッジ抽出関連関数#include "parameters.h" extractEdge.h のインクルード依存関係図

このグラフは、どのファイルから直接、間接的にインクルードされているかを示しています。

マクロ定義

- #define EEnotEdge (0)
- #define EEerasedThin (1)
- #define EEcandidate (2)
- #define EEnotSearched (2)
- #define EEsearchedSmall (3)
- #define EEsearchedLarge (4)
- #define EEextended (5)
- #define **EE6** (6)
- #define **EE7** (7)

関数

• void extractEdge (unsigned char *edge, unsigned char *gray, const int threshold, Parameters parameters)

4.13.1 説明

エッジ抽出関連関数

日付:

\$Date:: 2011-06-23 14:52:42 +0900 #\$

4.13.2 マクロ定義

- **4.13.2.1** #define EE6 (6)
- **4.13.2.2** #define EE7 (7)
- 4.13.2.3 #define EEcandidate (2)
- 4.13.2.4 #define EEerasedThin (1)
- **4.13.2.5** #define EEextended (5)
- **4.13.2.6** #define EEnotEdge (0)
- 4.13.2.7 #define EEnotSearched (2)
- 4.13.2.8 #define EEsearchedLarge (4)

- 4.13.2.9 #define EEsearchedSmall (3)
- 4.13.3 関数
- 4.13.3.1 void extractEdge (unsigned char * edge, unsigned char * gray, const int threshold, Parameters parameters)

4.14 extractFeature.cpp

2次元特徵抽出関連関数#include "extractEdge.h"

```
#include "extractFeature.h"
```

#include "vectorutil.h"

#include "debugutil.h"

extractFeature.cpp のインクルード依存関係図

マクロ定義

• #define Work(col, row) (work[(row)*colsize+(col)])

関数

- void destructFeatures (Features2D *features)
 2 次元特徴情報のメモリ解放
- Features2D * extractFeatures (unsigned char *edge, Parameters parameters, Features3D model)
- Features2D * ImageToFeature2D (unsigned char *src, unsigned char *edge, Parameters parameters, Features3D model)

ステレオ画像の一枚から二次元特徴の抽出

4.14.1 説明

2 次元特徵抽出関連関数

日付:

\$Date:: 2011-06-23 14:52:42 +0900 #\$

4.14.2 マクロ定義

- 4.14.2.1 #define Work(col, row) (work[(row)*colsize+(col)])
- 4.14.3 関数
- **4.14.3.1** void destructFeatures (Features2D * features)
- 2次元特徴情報のメモリ解放
- **4.14.3.2** Features2D* extractFeatures (unsigned char * edge, Parameters parameters, Features3D model)
- **4.14.3.3** Features2D* ImageToFeature2D (unsigned char * src, unsigned char * edge, Parameters parameters, Features3D model)

ステレオ画像の一枚から二次元特徴の抽出

4.15 extractFeature.h

2次元特徵抽出関連関数#include "conic.h"

#include "match3Dfeature.h"

extractFeature.h のインクルード依存関係図

このグラフは、どのファイルから直接、間接的にインクルードされているかを示しています。

データ構造

- struct Feature2D 各 2 次元特徴
- struct Track 輪郭情報
- struct Features2D

2次元特徵情報

• struct EllipseGroup

楕円重複除去用グループ情報

関数

- void destructFeatures (Features2D *features)
 2 次元特徴情報のメモリ解放
- Features2D * ImageToFeature2D (unsigned char *src, unsigned char *edge, Parameters parameters, Features3D model)

ステレオ画像の一枚から二次元特徴の抽出

4.15.1 説明

2 次元特徵抽出関連関数

日付:

\$Date:: 2011-06-23 14:52:42 +0900 #\$

4.15.2 関数

- 4.15.2.1 void destructFeatures (Features2D * features)
- 2次元特徴情報のメモリ解放
- 4.15.2.2 Features2D* ImageToFeature2D (unsigned char * src, unsigned char * edge, Parameters parameters, Features3D model)

ステレオ画像の一枚から二次元特徴の抽出

4.16 imageUtil.cpp

画像入出力関数#include <stdio.h>

```
#include <stdlib.h>
```

#include <math.h>

#include <string.h>

#include <cv.h>

#include "recogImage.h"

#include "imageUtil.h"

#include "visionErrorCode.h"

imageUtil.cpp のインクルード依存関係図

関数

• int convertCameraIntrinsicParameterToCvMat (const Img::CameraIntrinsicParameter &intrinsic, CvMat **intrinsic_matrix, Cv-Mat **distortion_coeffs)

CameraIntrinsicParameter 構造体を OpenCV の CvMat 構造体形式に変換する。.

 int createUndistortionMap (int width, int height, const Img::CameraIntrinsicParameter &intrinsic, IplImage **mapx, IplImage **mapy)

CameraIntrinsicParameter 構造体から、OpenCV の歪み補正マップを作成する。.

TimedMultiCameraImage 構造体のそれぞれの画像の歪み補正マップを作成する。.

- IplImage ** convertTimedMultiCameraImageToUndistortIplImage (const Img::TimedMultiCameraImage &frame, IplImage ***mapx, IplImage ***mapy)
- void freeUndistortIpIImage (IpIImage **resultImage, IpIImage
 **undistortMapX, IpIImage **undistortMapY, int imageNum)
- IplImage ** convertTimedMultiCameraImageToIplImage (const Img::TimedMultiCameraImage &frame)
- RecogImage ** convertTimedMultiCameraImageToRecogImage (const Img::TimedMultiCameraImage &frame)

4.16.1 説明

画像入出力関数

日付:

\$Date:: 2011-06-23 14:52:42 +0900 #\$

4.16.2 関数

4.16.2.1 int convertCameraIntrinsicParameterToCvMat (const Img::CameraIntrinsicParameter & intrinsic, CvMat ** intrinsic_matrix, CvMat ** distortion_coeffs)

CameraIntrinsicParameter 構造体を OpenCV の CvMat 構造体形式に変換する。.

4.16.2.2 IplImage** convertTimedMultiCameraImageToIplImage (const Img::TimedMultiCameraImage & frame)

TimedMultiCameraIamge 画像データを OpenCV の IplImage 構造体形式に変換する。 ImageData::raw_data は、TopLeft、RGB 順、行単位での padding なし。 画像 1 枚ごとに個別の IplImage 構造体を作成する。 画像は channel 数 3 で確保する。

4.16.2.3 RecogImage** convertTimedMultiCameraImageToRecogImage (const Img::TimedMultiCameraImage & frame)

TimedMultiCameraImage 画像データを、RecogImage 構造体形式に変換する。 カラー画像はグレー画像に変換する。

4.16.2.4 IplImage** convertTimedMultiCameraImageToUndistortIplImage (const Img::TimedMultiCameraImage & frame, IplImage *** mapx, IplImage *** mapy)

TimedMultiCameraIamge 画像データを、歪みを補正して OpenCV の IplImage 構造体形式に変換する。 ImageData::raw_data は、TopLeft、RGB 順、行単位での padding なし。画像 1 枚ごとに個別の IplImage 構造体を作成する。画像は channel 数 3 で確保する。

4.16.2.5 int createUndistortionMap (int width, int height, const Img::CameraIntrinsicParameter & intrinsic, IplImage ** mapx, IplImage ** mapy)

CameraIntrinsicParameter 構造体から、OpenCV の歪み補正マップを作成する。.

4.16.2.6 int createUndistortionMapFromTimedMultiCameraImage (const Img::TimedMultiCameraImage & frame, IplImage *** mapx, IplImage *** mapy)

TimedMultiCameraImage 構造体のそれぞれの画像の歪み補正マップを作成する。.

4.16.2.7 void freeUndistortIplImage (IplImage ** resultImage, IplImage ** undistortMapX, IplImage ** undistortMapY, int imageNum)

convertTimedMultiCameraImageToUndistortIplImage によって 確保されたメモリを 開放する

libopenvgr に対して Fri Jun 24 10:38:14 2011 に生成されました。 Doxygen

4.17 imageUtil.h

4.17 imageUtil.h

画像入出力関連#include "recogImage.h"

#include "match3Dfeature.h"

#include "Img.hh"

imageUtil.h のインクルード依存関係図

このグラフは、どのファイルから直接、間接的にインクルードされているかを示しています。

関数

 int createUndistortionMapFromTimedMultiCameraImage (const Img::TimedMultiCameraImage &frame, IplImage ***mapx, IplImage ***mapy)

TimedMultiCameraImage 構造体のそれぞれの画像の歪み補正マップを作成する。.

- IplImage ** convertTimedMultiCameraImageToUndistortIplImage (const Img::TimedMultiCameraImage &frame, IplImage ***mapx, IplImage ***mapy)
- void freeUndistortIpIImage (IpIImage **resultImage, IpIImage **undistortMapX, IpIImage **undistortMapY, int imageNum)

 IplImage ** convertTimedMultiCameraImageToIplImage (const Img::TimedMultiCameraImage &frame)

 RecogImage ** convertTimedMultiCameraImageToRecogImage (const Img::TimedMultiCameraImage &frame)

4.17.1 説明

画像入出力関連

日付:

\$Date:: 2011-06-23 14:52:42 +0900 #\$

4.17.2 関数

4.17.2.1 IplImage** convertTimedMultiCameraImageToIplImage (const Img::TimedMultiCameraImage & frame)

TimedMultiCameraImage 画像データを、OpenCV の IplImage 構造体形式に変換する。 画像 1 枚ごとに個別の IplImage 構造体を作成する。 画像は、channel 数 3 で確保する。

TimedMultiCameraIamge 画像データを OpenCV の IplImage 構造体形式に変換する。 ImageData::raw_data は、TopLeft、RGB 順、行単位での padding なし。 画像 1 枚ごとに個別の IplImage 構造体を作成する。 画像は channel 数 3 で確保する。

4.17.2.2 RecogImage** convertTimedMultiCameraImageToRecogImage (const Img::TimedMultiCameraImage & frame)

TimedMultiCameraImage 画像データを、RecogImage 構造体形式に変換する。 画像は 1 枚ごとに個別の RecogImage 構造体を作成する。

TimedMultiCameraImage 画像データを、RecogImage 構造体形式に変換する。 カラー画像はグレー画像に変換する。

4.17.2.3 IplImage** convertTimedMultiCameraImageToUndistortIplImage (const Img::TimedMultiCameraImage & frame, IplImage *** mapx, IplImage *** mapy)

TimedMultiCameraImage 画像データを、歪み補正をして OpenCV の IplImage 構造体形式に変換する。 画像 1 枚ごとに個別の IplImage 構造体を作成する。 画像 は、channel 数 3 で確保する。

TimedMultiCameraIamge 画像データを、歪みを補正して OpenCV の IplImage 構造体形式に変換する。 ImageData::raw_data は、TopLeft、RGB 順、行単位での

4.17 imageUtil.h

padding なし。 画像 1 枚ごとに個別の IplImage 構造体を作成する。 画像は channel 数 3 で確保する。

4.17.2.4 int createUndistortionMapFromTimedMultiCameraImage (const Img::TimedMultiCameraImage & frame, IplImage *** mapx, IplImage *** mapy)

TimedMultiCameraImage 構造体のそれぞれの画像の歪み補正マップを作成する。.

4.17.2.5 void freeUndistortIplImage (IplImage ** resultImage, IplImage ** undistortMapX, IplImage ** undistortMapY, int imageNum)

convertTimedMultiCameraImageToUndistortIplImage によって 確保されたメモリを開放する

4.18 Img.hh

#include <omniORB4/CORBA.h>

#include <BasicDataType.hh>

Img.hh のインクルード依存関係図

このグラフは、どのファイルから直接、間接的にインクルードされているかを示しています。

データ構造

- class Vec3_copyHelper
- class Mat44_copyHelper
- struct ImageData
- struct CameraIntrinsicParameter
- struct CameraImage
- struct TimedCameraImage
- struct MultiCameraImage
- struct TimedMultiCameraImage
- class CameraCaptureService_Helper
- class CameraCaptureService
- class _objref_CameraCaptureService
- class _pof_CameraCaptureService
- class _impl_CameraCaptureService
- class CameraCaptureService

4.18 Img.hh 143

マクロ定義

- #define USE_stub_in_nt_dll_NOT_DEFINED_Img
- #define USE_core_stub_in_nt_dll_NOT_DEFINED_Img
- #define USE_dyn_stub_in_nt_dll_NOT_DEFINED_Img
- #define core attr
- #define dyn attr

型定義

- typedef CORBA::Double Vec3 [3]
- typedef CORBA::Double Vec3_slice
- typedef _CORBA_Array_Fix_Var< Vec3_copyHelper, Vec3_slice > Vec3_var
- typedef _CORBA_Array_Fix_Forany< Vec3_copyHelper, Vec3_slice > Vec3_forany
- typedef Vec3_slice * Vec3_out
- typedef CORBA::Double Mat44 [4][4]
- typedef CORBA::Double Mat44_slice [4]
- typedef _CORBA_Array_Fix_Var< Mat44_copyHelper, Mat44_slice > Mat44_var
- typedef _CORBA_Array_Fix_Forany< Mat44_copyHelper, Mat44_slice > Mat44_forany
- typedef Mat44_slice * Mat44_out
- typedef ColorFormat & ColorFormat out
- typedef ImageData::_var_type ImageData_var
- typedef CameraIntrinsicParameter::_var_type CameraIntrinsicParameter_var
- typedef __CORBA_ConstrType_Variable_OUT_arg<
 CameraIntrinsicParameter, CameraIntrinsicParameter_out
- typedef CameraImage::_var_type CameraImage_var
- typedef _CORBA_ConstrType_Variable_OUT_arg< CameraImage, CameraImage_var > CameraImage_out
- typedef TimedCameraImage::_var_type TimedCameraImage_var
- typedef _CORBA_ConstrType_Variable_OUT_arg
 TimedCameraImage_var > TimedCameraImage_out
- typedef MultiCameraImage::_var_type MultiCameraImage_var
- typedef _CORBA_ConstrType_Variable_OUT_arg< MultiCameraImage, MultiCameraImage_var > MultiCameraImage_out
- typedef TimedMultiCameraImage::_var_type TimedMultiCameraImage_var
- typedef _objref_CameraCaptureService * CameraCaptureService_ptr
- typedef CameraCaptureService_ptr CameraCaptureServiceRef

- typedef _CORBA_ObjRef_Var< _objref_CameraCaptureService, CameraCaptureService_Helper > CameraCaptureService_var
- typedef _CORBA_ObjRef_OUT_arg< _objref_CameraCaptureService, CameraCaptureService_Helper > CameraCaptureService_out

列挙型

enum ColorFormat { CF_UNKNOWN, CF_GRAY, CF_RGB }

関数

- _CORBA_MODULE_INLINE Vec3_slice * Vec3_alloc ()
- CORBA MODULE INLINE Vec3 slice * Vec3 dup (const Vec3 slice * s)
- _CORBA_MODULE_INLINE void Vec3_copy (Vec3_slice *_to, const Vec3_slice *_from)
- CORBA MODULE INLINE void Vec3 free (Vec3 slice * s)
- _CORBA_MODULE_INLINE Mat44_slice * Mat44_alloc ()
- _CORBA_MODULE_INLINE Mat44_slice * Mat44_dup (const Mat44_slice *_s)
- _CORBA_MODULE_INLINE void Mat44_copy (Mat44_slice *_to, const Mat44_slice *_from)
- _CORBA_MODULE_INLINE void Mat44_free (Mat44_slice *_s)
- _CORBA_MODULE_END _CORBA_MODULE OBV_Img _CORBA_MODULE_BEG_CORBA_MODULE_END void operator<<=(CORBA::Any &_a, const Img::Vec3_forany &_s)
- CORBA::Boolean operator>>= (const CORBA::Any &_a, Img::Vec3_forany &_s)
- void operator <<= (CORBA::Any &_a, const Img::Mat44_forany &_s)
- CORBA::Boolean operator>>= (const CORBA::Any &_a, Img::Mat44_forany &_s)
- void operator>>= (Img::ColorFormat _e, cdrStream &s)
- void operator <<= (Img::ColorFormat &_e, cdrStream &s)
- void operator <<= (CORBA::Any &_a, Img::ColorFormat _s)
- CORBA::Boolean operator>>= (const CORBA::Any &_a, Img::ColorFormat &_s)
- void operator <<= (CORBA::Any &_a, const Img::ImageData &_s)
- void operator <<= (CORBA::Any &_a, Img::ImageData *_sp)
- CORBA::Boolean operator>>= (const CORBA::Any &_a, Img::ImageData *&_sp)
- CORBA::Boolean operator>>= (const CORBA::Any &_a, const Img::ImageData *&_sp)
- void operator<<= (CORBA::Any &_a, const Img::CameraIntrinsicParameter &_s)
- void operator <<= (CORBA::Any &_a, Img::CameraIntrinsicParameter *_sp)
- CORBA::Boolean operator>>= (const CORBA::Any &_a, Img::CameraIntrinsicParameter *&_sp)

4.18 Img.hh 145

• CORBA::Boolean operator>>= (const CORBA::Any &_a, const Img::CameraIntrinsicParameter *&_sp)

- void operator <<= (CORBA::Any &_a, const Img::CameraImage &_s)
- void operator<<= (CORBA::Any &_a, Img::CameraImage *_sp)
- CORBA::Boolean operator>>= (const CORBA::Any &_a, Img::CameraImage *& sp)
- CORBA::Boolean operator>>= (const CORBA::Any &_a, const Img::CameraImage *&_sp)
- void operator <<= (CORBA::Any &_a, const Img::TimedCameraImage &_s)
- void operator <<= (CORBA::Any &_a, Img::TimedCameraImage *_sp)
- CORBA::Boolean operator>>= (const CORBA::Any &_a, Img::TimedCameraImage *&_sp)
- CORBA::Boolean operator>>= (const CORBA::Any &_a, const Img::TimedCameraImage *&_sp)
- void operator <<= (CORBA::Any &_a, const Img::MultiCameraImage &_s)
- void operator <<= (CORBA::Any &_a, Img::MultiCameraImage *_sp)
- CORBA::Boolean operator>>= (const CORBA::Any &_a, Img::MultiCameraImage *&_sp)
- CORBA::Boolean operator>>= (const CORBA::Any &_a, const Img::MultiCameraImage *&_sp)
- void operator<<= (CORBA::Any &_a, const Img::TimedMultiCameraImage & s)
- void operator <<= (CORBA::Any &_a, Img::TimedMultiCameraImage *_sp)
- CORBA::Boolean operator>>= (const CORBA::Any &_a, Img::TimedMultiCameraImage *& sp)
- CORBA::Boolean operator>>= (const CORBA::Any &_a, const Img::TimedMultiCameraImage *&_sp)
- void operator<<= (CORBA::Any &_a, Img::CameraCaptureService_ptr _s)
- void operator<<= (CORBA::Any &_a, Img::CameraCaptureService_ptr *_s)
- CORBA::Boolean operator>>= (const CORBA::Any &_a, Img::CameraCaptureService_ptr &_s)

变数

- _CORBA_MODULE Img _CORBA_MODULE_BEG _CORBA_MODULE_-VAR _dyn_attr const CORBA::TypeCode_ptr _tc_Vec3
- _CORBA_MODULE_VAR _dyn_attr const CORBA::TypeCode_ptr _tc_Mat44
- _CORBA_MODULE_VAR _dyn_attr const CORBA::TypeCode_ptr _tc_ColorFormat
- _CORBA_MODULE_VAR _dyn_attr const CORBA::TypeCode_ptr _tc_ImageData
- _CORBA_MODULE_VAR _dyn_attr const CORBA::TypeCode_ptr _tc_CameraIntrinsicParameter
- _CORBA_MODULE_VAR _dyn_attr const CORBA::TypeCode_ptr _tc_CameraImage
- _CORBA_MODULE_VAR _dyn_attr const CORBA::TypeCode_ptr _tc_TimedCameraImage

	_CORBA_MODULE_VAR	_dyn_attr	const	CORBA::TypeCode_ptr
•	_tc_MultiCameraImage _CORBA_MODULE_VAR	_dyn_attr	const	CORBA::TypeCode_ptr
•	_tc_TimedMultiCameraImage _CORBA_MODULE_VAR _tc_CameraCaptureService	_dyn_attr	const	CORBA::TypeCode_ptr

4.18.1 マクロ定義

- 4.18.1.1 #define _core_attr
- 4.18.1.2 #define _dyn_attr
- 4.18.1.3 #define USE_core_stub_in_nt_dll_NOT_DEFINED_Img
- 4.18.1.4 #define USE_dyn_stub_in_nt_dll_NOT_DEFINED_Img
- 4.18.1.5 #define USE_stub_in_nt_dll_NOT_DEFINED_Img
- 4.18.2 型定義
- 4.18.2.1 typedef _CORBA_ObjRef_OUT_arg<_objref_-CameraCaptureService,CameraCaptureService_Helper > CameraCaptureService_out
- $\textbf{4.18.2.2} \quad type def_objref_Camera Capture Service * Camera Capture Service_ptr$

4.18 Img.hh 147

4.18.2.3	typedef _CORBA_ObjRef_Var<_objref_CameraCaptureService, CameraCaptureService_Helper> CameraCaptureService_var
4.18.2.4	$type def\ Camera Capture Service_ptr\ Camera Capture Service Ref$
4.18.2.5	typedef _CORBA_ConstrType_Variable_OUT_arg< CameraImage,CameraImage_var > CameraImage_out
4.18.2.6	typedef CameraImage::_var_type CameraImage_var
4.18.2.7	typedef _CORBA_ConstrType_Variable_OUT_arg< CameraIntrinsicParameter,CameraIntrinsicParameter_var > CameraIntrinsicParameter_out
4.18.2.8	typedef CameraIntrinsicParameter::_var_type CameraIntrinsicParameter_var
4.18.2.9	typedef ColorFormat_out
4.18.2.10	typedef _CORBA_ConstrType_Variable_OUT_arg< ImageData,ImageData_var > ImageData_out
4.18.2.11	typedef ImageData::_var_type ImageData_var

4.18.2.12	typedef CORBA::Double Mat44[4][4]

- 4.18.2.13 typedef _CORBA_Array_Fix_Forany<Mat44_copyHelper,Mat44_slice> Mat44_forany
- 4.18.2.14 typedef Mat44_slice* Mat44_out
- 4.18.2.15 typedef CORBA::Double Mat44_slice[4]
- $\begin{array}{ll} \textbf{4.18.2.16} & \textbf{typedef}_\textbf{CORBA}_\textbf{Array}_\textbf{Fix}_\textbf{Var} < \textbf{Mat44}_\textbf{copyHelper}, \textbf{Mat44}_\textbf{slice} > \\ & \textbf{Mat44}_\textbf{var} \end{array}$
- 4.18.2.17 typedef _CORBA_ConstrType_Variable_OUT_arg< MultiCameraImage,MultiCameraImage_var > MultiCameraImage_out
- 4.18.2.18 typedef MultiCameraImage::_var_type MultiCameraImage_var
- 4.18.2.19 typedef _CORBA_ConstrType_Variable_OUT_arg< TimedCameraImage,TimedCameraImage_var > TimedCameraImage_out
- 4.18.2.20 typedef TimedCameraImage::_var_type TimedCameraImage_var

4.18 Img.hh 149

4.18.2.21	typedef _CORBA_ConstrType_Variable_OUT_arg< TimedMultiCameraImage,TimedMultiCameraImage_var > TimedMultiCameraImage_out		
4.18.2.22	typedef TimedMultiCameraImage::_var_type TimedMultiCameraImage_var		
4.18.2.23	typedef CORBA::Double Vec3[3]		
4.18.2.24	typedef _CORBA_Array_Fix_Forany <vec3_copyhelper,vec3_slice>Vec3_forany</vec3_copyhelper,vec3_slice>		
4.18.2.25	typedef Vec3_slice* Vec3_out		
4.18.2.26	typedef CORBA::Double Vec3_slice		
4.18.2.27	typedef _CORBA_Array_Fix_Var <vec3_copyhelper,vec3_slice> Vec3_var</vec3_copyhelper,vec3_slice>		
4.18.3	列拳型		
4.18.3.1	enum ColorFormat		
列挙型の値:			
CF_UNKNOWN			
CF_GRAY			
CF_RGB			

```
4.18.4 関数
```

- 4.18.4.1 _CORBA_MODULE_INLINE Mat44_slice* Mat44_alloc ()
- 4.18.4.2 _CORBA_MODULE_INLINE void Mat44_copy (Mat44_slice * _to, const Mat44_slice * _from)
- 4.18.4.3 _CORBA_MODULE_INLINE Mat44_slice* Mat44_dup (const Mat44_slice * _s)
- 4.18.4.4 _CORBA_MODULE_INLINE void Mat44_free (Mat44_slice * _s)
- 4.18.4.5 void operator <<= (CORBA::Any & _a, Img::CameraCaptureService_ptr * _s)
- 4.18.4.6 void operator <<= (CORBA::Any & _a, Img::CameraCaptureService_ptr_s)
- 4.18.4.7 void operator <<= (CORBA::Any & _a, Img::TimedMultiCameraImage * _sp)
- 4.18.4.8 void operator <<= (CORBA::Any & _a, const Img::TimedMultiCameraImage & _s)

4.18 Img.hh 151

```
4.18.4.9 void operator<<= (CORBA::Any & _a, Img::MultiCameraImage * _sp)
```

- 4.18.4.10 void operator <<= (CORBA::Any & _a, const Img::MultiCameraImage & _s)
- 4.18.4.11 void operator <<= (CORBA::Any & _a, Img::TimedCameraImage * _sp)
- 4.18.4.12 void operator <<= (CORBA::Any & _a, const Img::TimedCameraImage & _s)
- 4.18.4.13 void operator <<= (CORBA::Any & _a, Img::CameraImage * _sp)
- 4.18.4.14 void operator<<= (CORBA::Any & _a, const Img::CameraImage & _s)
- 4.18.4.15 void operator <<= (CORBA::Any & _a, Img::CameraIntrinsicParameter * _sp)
- 4.18.4.16 void operator <<= (CORBA::Any & _a, const Img::CameraIntrinsicParameter & _s)
- 4.18.4.17 void operator <<= (CORBA::Any & _a, Img::ImageData * _sp)

- 4.18.4.18 void operator <<= (CORBA::Any & _a, const Img::ImageData & _s)
- 4.18.4.19 void operator <<= (CORBA::Any & _a, Img::ColorFormat _s)
- 4.18.4.20 void operator <<= (Img::ColorFormat & _e, cdrStream & s)
 [inline]
- 4.18.4.21 void operator <<= (CORBA::Any & _a, const Img::Mat44_forany & _s)
- 4.18.4.22 _CORBA_MODULE_END _CORBA_MODULE OBV_Img _CORBA_MODULE_BEG _CORBA_MODULE_END void operator<<= (CORBA::Any & _a, const Img::Vec3_forany & _s)
- 4.18.4.23 CORBA::Boolean operator>>= (const CORBA::Any & _a, Img::CameraCaptureService_ptr & _s)
- 4.18.4.24 CORBA::Boolean operator>>= (const CORBA::Any & _a, const Img::TimedMultiCameraImage *& _sp)
- 4.18.4.25 CORBA::Boolean operator>>= (const CORBA::Any & _a, Img::TimedMultiCameraImage *& _sp)
- 4.18.4.26 CORBA::Boolean operator>>= (const CORBA::Any & _a, const Img::MultiCameraImage *& _sp)

4.18 Img.hh 153

4.18.4.27	CORBA::Boolean operator>>= (const CORBA::Any & _a,
	Img::MultiCameraImage *& sp)

- 4.18.4.28 CORBA::Boolean operator>>= (const CORBA::Any & _a, const Img::TimedCameraImage *& _sp)
- 4.18.4.29 CORBA::Boolean operator>>= (const CORBA::Any & _a, Img::TimedCameraImage *& _sp)
- 4.18.4.30 CORBA::Boolean operator>>= (const CORBA::Any & _a, const Img::CameraImage *& _sp)
- 4.18.4.31 CORBA::Boolean operator>>= (const CORBA::Any & _a, Img::CameraImage *& _sp)
- 4.18.4.32 CORBA::Boolean operator>>= (const CORBA::Any & _a, const Img::CameraIntrinsicParameter *& _sp)
- 4.18.4.33 CORBA::Boolean operator>>= (const CORBA::Any & _a, Img::CameraIntrinsicParameter *& _sp)
- 4.18.4.34 CORBA::Boolean operator>>= (const CORBA::Any & _a, const Img::ImageData *& _sp)
- 4.18.4.35 CORBA::Boolean operator>>= (const CORBA::Any & _a, Img::ImageData *& _sp)

4.18.4.36	CORBA::Boolean operator>>= (const CORBA::Any & _a,
	Img::ColorFormat & _s)

- 4.18.4.37 void operator>>= (Img::ColorFormat _e, cdrStream & s) [inline]
- 4.18.4.38 CORBA::Boolean operator>>= (const CORBA::Any & $_a$, Img::Mat44_forany & $_s$)
- 4.18.4.39 CORBA::Boolean operator>>= (const CORBA::Any & _a, Img::Vec3_forany & _s)
- 4.18.4.40 _CORBA_MODULE_INLINE Vec3_slice* Vec3_alloc ()
- 4.18.4.41 _CORBA_MODULE_INLINE void Vec3_copy (Vec3_slice * _to, const Vec3_slice * _from)
- 4.18.4.42 _CORBA_MODULE_INLINE Vec3_slice* Vec3_dup (const Vec3_slice * _s)
- 4.18.4.43 _CORBA_MODULE_INLINE void Vec3_free (Vec3_slice * _s)
- 4.18.5 变数
- 4.18.5.1 _CORBA_MODULE_VAR _dyn_attr const CORBA::TypeCode_ptr _tc_CameraCaptureService

4.18 Img.hh 155

4.18.5.2	_CORBA_MODULE_VAR	_dyn_attr const CORBA::TypeCode_ptr
	tc CameraImage	

- 4.18.5.3 _CORBA_MODULE_VAR _dyn_attr const CORBA::TypeCode_ptr _tc_CameraIntrinsicParameter
- 4.18.5.4 _CORBA_MODULE_VAR _dyn_attr const CORBA::TypeCode_ptr _tc_ColorFormat
- 4.18.5.5 _CORBA_MODULE_VAR _dyn_attr const CORBA::TypeCode_ptr _tc_ImageData
- 4.18.5.6 _CORBA_MODULE_VAR _dyn_attr const CORBA::TypeCode_ptr _tc_Mat44
- 4.18.5.7 _CORBA_MODULE_VAR _dyn_attr const CORBA::TypeCode_ptr _tc_MultiCameraImage
- 4.18.5.8 _CORBA_MODULE_VAR _dyn_attr const CORBA::TypeCode_ptr _tc_TimedCameraImage
- 4.18.5.9 _CORBA_MODULE_VAR _dyn_attr const CORBA::TypeCode_ptr _tc_TimedMultiCameraImage
- 4.18.5.10 _CORBA_MODULE Img _CORBA_MODULE_BEG _CORBA_MODULE_VAR _dyn_attr const CORBA::TypeCode_ptr _tc_Vec3

4.19 local.h

#include <math.h>

local.h のインクルード依存関係図

このグラフは、どのファイルから直接、間接的にインクルードされているかを示しています。

4.20 match3Dfeature.cpp

```
3次元特徴による認識関連関数#include <math.h>
```

```
#include <cxtypes.h>
#include <cxcore.h>
#include <cv.h>
#include <highgui.h>
#include "parameters.h"
#include "calib.h"
#include "vectorutil.h"
#include "modelpoints.h"
#include "score2d.h"
#include "match3Dfeature.h"
```

match3Dfeature.cpp のインクルード依存関係図

関数

- void freeFeatures3D (Features3D *feature)
 3 次元特徴データのメモリ解放
- void freeMatch3Dresults (Match3Dresults *holder)
 認識結果データのメモリ解除

• Match3Dresults matchFeatures3d (Features3D &scene, Features3D &model, unsigned char *edgeL, unsigned char *edgeR, unsigned char *edgeV, Parameters ¶meters)

4.20.1 説明

3次元特徴による認識関連関数

日付:

\$Date:: 2011-06-23 14:52:42 +0900 #\$

4.20.2 関数

4.20.2.1 void freeFeatures3D (Features3D * feature)

3次元特徴データのメモリ解放

4.20.2.2 void freeMatch3Dresults (Match3Dresults * *holder*)

認識結果データのメモリ解除

4.20.2.3 Match3Dresults matchFeatures3d (Features3D & scene, Features3D & model, unsigned char * edgeL, unsigned char * edgeR, unsigned char * edgeV, Parameters & parameters)

認識:シーン特徴とモデル特徴の照合 戻り値:認識結果

4.21 match3Dfeature.h

3次元特徴による認識関連関数#include <cxcore.h>

#include "parameters.h"

#include "calib.h"

match3Dfeature.h のインクルード依存関係図

このグラフは、どのファイルから直接、間接的にインクルードされているかを示しています。

データ構造

- struct Trace 認識結果評価用サンプリング点列情報
- struct P3D 3 次元位置情報
- struct P2D

2 次元位置情報

• struct Vertex

3 次元頂点情報

• struct Circle

3 次元円情報

• struct Features3D

3 次元特徴情報

struct MatchResult
 各認識結果情報

• struct Match3Dresults 全認識結果

列挙型

enum m3df_side { M3DF_FRONT = 0, M3DF_BACK = 1 } 表裏を表す定数

関数

- void freeMatch3Dresults (Match3Dresults *holder)
 認識結果データのメモリ解除
- void freeFeatures3D (Features3D *feature)
 3 次元特徴データのメモリ解放
- Match3Dresults matchFeatures3d (Features3D &scene, Features3D &model, unsigned char *edgeL, unsigned char *edgeR, unsigned char *edgeV, Parameters ¶meters)
- Match3Dresults matchPairedCircles (Features3D &scene, Features3D &model, double tolerance, StereoPairing &pairing)

4.21.1 説明

3次元特徴による認識関連関数

日付:

\$Date:: 2011-06-23 14:52:42 +0900 #\$

4.21.2 列挙型

4.21.2.1 enum m3df_side

表裏を表す定数

列挙型の値:

M3DF_FRONT M3DF_BACK

4.21.3 関数

- **4.21.3.1** void freeFeatures3D (Features3D * feature)
- 3次元特徴データのメモリ解放
- **4.21.3.2** void freeMatch3Dresults (Match3Dresults * *holder*)

認識結果データのメモリ解除

4.21.3.3 Match3Dresults matchFeatures3d (Features3D & scene, Features3D & model, unsigned char * edgeL, unsigned char * edgeR, unsigned char * edgeV, Parameters & parameters)

認識:シーン特徴とモデル特徴の照合 戻り値:認識結果

- 4.21.3.4 Match3Dresults matchPairedCircles (Features3D & scene, Features3D & model, double tolerance, StereoPairing & pairing)
- 2円を使った照合 戻り値:認識結果

4.22 modelFileio.cpp

```
#include "modelFileio.h"
#include "rtvcm.h"
#include "visionErrorCode.h"
modelFileio.cpp のインクルード依存関係図
```


関数

int loadModelFile (char *path, Features3D &model)
 モデルデータをファイルから読み込む。

4.22.1 関数

4.22.1.1 int loadModelFile (char * path, Features3D & model)

モデルデータをファイルから読み込む。

4.23 modelFileio.h

4.23 modelFileio.h

モデルをファイルから読み込む。#include "match3Dfeature.h" modelFileio.h のインクルード依存関係図

このグラフは、どのファイルから直接、間接的にインクルードされているかを示しています。

関数

int loadModelFile (char *path, Features3D &model)
 モデルデータをファイルから読み込む。

4.23.1 説明

モデルをファイルから読み込む。

4.23.2 関数

4.23.2.1 int loadModelFile (char * path, Features3D & model)

モデルデータをファイルから読み込む。

4.24 modelListFileIO.cpp

```
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include "modelListFileIO.h"
#include "visionErrorCode.h"
modelListFileIO.cpp のインクルード依存関係図
```


関数

- int loadModelListFile (char *filename, ModelFileInfo *mfInfo)
- void clearModelFileInfo (ModelFileInfo *mfInfo)
 モデルリストをクリアする。

4.24.1 関数

4.24.1.1 void clearModelFileInfo (ModelFileInfo * mfInfo)

モデルリストをクリアする。

4.24.1.2 int loadModelListFile (char * filename, ModelFileInfo * mfInfo)

モデル一覧ファイルを読み込んで、モデル ID とモデルファイル名の対応リストを保持する。

4.25 modelListFileIO.h

モデルファイルの入出力関連このグラフは、どのファイルから直接、間接的にインクルードされているかを示しています。

データ構造

- struct ModelFileInfoNode
 モデルリストのノード
- struct ModelFileInfo モデルファイルリスト

マクロ定義

• #define MAX_PATH 256

関数

- int loadModelListFile (char *filename, ModelFileInfo *mfInfo)
- void clearModelFileInfo (ModelFileInfo *mfInfo)

モデルリストをクリアする。

4.25.1 説明

モデルファイルの入出力関連

4.25.2 マクロ定義

- 4.25.2.1 #define MAX_PATH 256
- 4.25.3 関数
- 4.25.3.1 void clearModelFileInfo (ModelFileInfo * mfInfo)

モデルリストをクリアする。

4.25.3.2 int loadModelListFile (char * filename, ModelFileInfo * mfInfo)

モデル一覧ファイルを読み込んで、モデル ID とモデルファイル名の対応リストを保持する。

4.26 modelpoints.cpp

モデル評価点生成関連関数#include <math.h>

```
#include <cv.h>
#include <highgui.h>
#include "common.h"

#include "quaternion.h"

#include "stereo.h"

#include "match3Dfeature.h"

#include "score2d.h"

#include "vectorutil.h"

#include "modelpoints.h"
```

modelpoints.cpp のインクルード依存関係図

列举型

enum Azimuth {
 AZIMUTH_S = 0, AZIMUTH_SE = 1, AZIMUTH_E = 2, AZIMUTH_NE = 3,
 AZIMUTH_N = 4, AZIMUTH_NW = 5, AZIMUTH_W = 6, AZIMUTH_SW = 7,
 AZIMUTH_NONE = -1 }

関数

- int getPointOnCircle (double normal[3], double radius, double point[3])
 円の始点座標計算
- void drawModelPoints (Features3D *model, double matrix[4][4], char *filename, int p_camera, unsigned char *img, int lineThickness)

モデル評価点の描画(認識結果確認表示用)

- int makeModelPoints (Features3D *model, double pdist)
- void getPropertyVector (double mat[4][4], double vec[7])
 合同変換行列を位置ベクトルと回転ベクトルを合わせた 7 次元ベクトルに変換する
- double traceModelPointsMultiCameras (Features3D *model, StereoPairing &pairing, double matrix[4][4])

4.26.1 説明

モデル評価点生成関連関数

日付:

\$Date:: 2011-06-23 14:52:42 +0900 #\$

4.26.2 列挙型

4.26.2.1 enum Azimuth

列挙型の値:

AZIMUTH_S

AZIMUTH_SE

AZIMUTH_E

AZIMUTH NE

AZIMUTH_N

AZIMUTH_NW

 $AZIMUTH_W$

AZIMUTH_SW

AZIMUTH_NONE

4.26.3 関数

4.26.3.1 void drawModelPoints (Features3D * model, double matrix[4][4], char * filename, int p_camera, unsigned char * img, int lineThickness)

モデル評価点の描画(認識結果確認表示用)

4.26.3.2 int getPointOnCircle (double *normal*[3], double *radius*, double *point*[3])

円の始点座標計算

4.26.3.3 void getPropertyVector (double mat[4][4], double vec[7])

合同変換行列を位置ベクトルと回転ベクトルを合わせた 7 次元ベクトルに変換する

4.26.3.4 int makeModelPoints (Features3D * model, double pdist)

モデルの評価点の生成 戻り値:総評価点数

4.26.3.5 double traceModelPointsMultiCameras (Features3D * model, StereoPairing & pairing, double matrix[4][4])

使用した全画像を用いた2次元評価値計算戻り値:2次元評価値

4.27 modelpoints.h

モデル評価点生成関連関数#include "match3Dfeature.h" modelpoints.h のインクルード依存関係図

このグラフは、どのファイルから直接、間接的にインクルードされているかを示しています。

関数

- void drawModelPoints (Features3D *model, double matrix[4][4], char *filename, int p_camera, unsigned char *img, int lineThickness)
 モデル評価点の描画(認識結果確認表示用)
- int makeModelPoints (Features3D *model, double pdist)
- void getPropertyVector (double mat[4][4], double vec[7])
 合同変換行列を位置ベクトルと回転ベクトルを合わせた 7 次元ベクトルに変換する
- double traceModelPointsMultiCameras (Features3D *model, StereoPairing &pairing, double matrix[4][4])
- int getPointOnCircle (double normal[3], double radius, double point[3]) 円の始点座標計算

4.27.1 説明

モデル評価点生成関連関数

日付:

\$Date:: 2011-06-23 14:52:42 +0900 #\$

4.27.2 関数

4.27.2.1 void drawModelPoints (Features3D * model, double matrix[4][4], char * filename, int p_camera, unsigned char * img, int lineThickness)

モデル評価点の描画(認識結果確認表示用)

4.27.2.2 int getPointOnCircle (double *normal*[3], double *radius*, double *point*[3])

円の始点座標計算

4.27.2.3 void getPropertyVector (double mat[4][4], double vec[7])

合同変換行列を位置ベクトルと回転ベクトルを合わせた7次元ベクトルに変換する

4.27.2.4 int makeModelPoints (Features3D * model, double pdist)

モデルの評価点の生成 戻り値:総評価点数

4.27.2.5 double traceModelPointsMultiCameras (Features3D * model, StereoPairing & pairing, double matrix[4][4])

使用した全画像を用いた2次元評価値計算戻り値:2次元評価値

4.28 pairedcircle.cpp

```
2円照合関連関数#include <stdio.h>
```

```
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <float.h>
#include "match3Dfeature.h"
#include "score2d.h"
#include "vectorutil.h"
#include "modelpoints.h"
```

pairedcircle.cpp のインクルード依存関係図

関数

 Match3Dresults matchPairedCircles (Features3D &scene, Features3D &model, double tolerance, StereoPairing &pairing)

4.28.1 説明

2 円照合関連関数

日付:

\$Date:: 2011-06-23 14:52:42 +0900 #\$

4.28.2 関数

4.28.2.1 Match3Dresults matchPairedCircles (Features3D & scene, Features3D & model, double tolerance, StereoPairing & pairing)

2円を使った照合 戻り値:認識結果

4.29 parameters.h

処理パラメータ設定関連関数#include "common.h" parameters.h のインクルード依存関係図

このグラフは、どのファイルから直接、間接的にインクルードされているかを示しています。

データ構造

- struct ParametersFeature2D2 次元特徴抽出用パラメータ
- struct ParmetersStereo
 ステレオ対応処理用パラメータ
- struct ParametersMatch 認識用パラメータ
- struct Parameters 全パラメータ

型定義

• typedef struct ParmetersStereo ParametersStereo ステレオ対応処理用パラメータ

4.29.1 説明

処理パラメータ設定関連関数

日付:

\$Date:: 2011-06-23 14:52:42 +0900 #\$

4.29.2 型定義

4.29.2.1 typedef struct ParmetersStereo ParametersStereo

ステレオ対応処理用パラメータ

4.30 quaternion.c

```
#include <stdio.h>
#include <math.h>
#include "quaternion.h"
#include "local.h"
quaternion.c のインクルード依存関係図
```


関数

- void quat_fprintf (FILE *fp, const char *fmt, const char sep, const quaternion_t
 q)
- void quat_copy (quaternion_t dst, const quaternion_t src)
- void quat_mult (quaternion_t result, const quaternion_t q1, const quaternion_t q2)
- void quat_conj (quaternion_t result, const quaternion_t q)
- double quat_norm2 (const quaternion_t q)
- double quat_normalize (quaternion_t q)
- void quat_rot (double result[3], const quaternion_t q, const double x[3])
- void quat_irot (double result[3], const quaternion_t q, const double x[3])
- void quat_make_from_rvec (quaternion_t result, const double theta, const double x, const double y, const double z)
- void quat_R_from_q (double *R, const int ldim, const quaternion_t q)
- void quat_q_from_R (quaternion_t q, const double *R, const int ldim)

4.30.1 関数

4.30.1.1 void quat_conj (quaternion_t result, const quaternion_t q)

- 4.30.1.2 void quat_copy (quaternion_t dst, const quaternion_t src)
- 4.30.1.3 void quat_fprintf (FILE *fp, const char *fmt, const char sep, const quaternion_t q)
- 4.30.1.4 void quat_irot (double result[3], const quaternion_t q, const double x[3])
- 4.30.1.5 void quat_make_from_rvec (quaternion_t *result*, const double *theta*, const double *x*, const double *y*, const double *z*)
- 4.30.1.6 void quat_mult (quaternion_t result, const quaternion_t q1, const quaternion_t q2)
- 4.30.1.7 double quat_norm2 (const quaternion_t q)
- **4.30.1.8** double quat_normalize (quaternion_t *q*)
- 4.30.1.9 void quat_q_from_R (quaternion_t q, const double * R, const int ldim)
- 4.30.1.10 void quat_R_from_q (double * R, const int ldim, const quaternion_t q)
- 4.30.1.11 void quat_rot (double result[3], const quaternion_t q, const double x[3])

4.31 quaternion.h

#include <stdio.h>

quaternion.h のインクルード依存関係図

このグラフは、どのファイルから直接、間接的にインクルードされているかを示しています。

マクロ定義

- #define QUAT_EPS 1.0e-15
- #define QUAT_INIT_ZERO {0.0, 0.0, 0.0, 0.0}
- #define QUAT_INIT_ONE {0.0, 0.0, 0.0, 1.0}
- #define quat_re(q) (q)[3]
- #define quat_im(q, i) (q)[(i)]
- #define quat_printf(fmt, sep, q) quat_fprintf(stdout, (fmt), (sep), (q))
- #define quat_fprint(fp, q) quat_fprintf ((fp), "% 10.3g", ' ', (q))
- #define quat_print(q) quat_fprintf (stdout, "% 10.3g", '', (q))

型定義

• typedef double quaternion_t [4]

関数

- void quat_fprintf (FILE *fp, const char *fmt, const char sep, const quaternion_t
 q)
- void quat_copy (quaternion_t dst, const quaternion_t src)

• void quat_mult (quaternion_t result, const quaternion_t q1, const quaternion_t q2)

- void quat_conj (quaternion_t result, const quaternion_t q)
- double quat_norm2 (const quaternion_t q)
- double quat_normalize (quaternion_t q)
- void quat_rot (double result[3], const quaternion_t q, const double x[3])
- void quat_irot (double result[3], const quaternion_t q, const double x[3])
- void quat_make_from_rvec (quaternion_t result, const double theta, const double x, const double y, const double z)
- void quat_R_from_q (double *R, const int ldim, const quaternion_t q)
- void quat_q_from_R (quaternion_t q, const double *R, const int ldim)

4.31.1 マクロ定義

- 4.31.1.1 #define QUAT_EPS 1.0e-15
- **4.31.1.2** #define quat_fprint(fp, q) quat_fprintf ((fp), "% 10.3g", '', (q))
- 4.31.1.3 #define quat_im(q, i) (q)[(i)]
- **4.31.1.4** #define QUAT_INIT_ONE {0.0, 0.0, 0.0, 1.0}
- 4.31.1.5 #define QUAT_INIT_ZERO {0.0, 0.0, 0.0, 0.0}
- 4.31.1.6 #define quat_print(q) quat_fprintf (stdout, "% 10.3g", '', (q))
- 4.31.1.7 #define quat_printf(fmt, sep, q) quat_fprintf(stdout, (fmt), (sep), (q))

- **4.31.1.8** #define quat_re(q) (q)[3]
- 4.31.2 型定義
- 4.31.2.1 typedef double quaternion_t[4]
- 4.31.3 関数
- **4.31.3.1** void quat_conj (quaternion_t result, const quaternion_t q)
- 4.31.3.2 void quat_copy (quaternion_t dst, const quaternion_t src)
- 4.31.3.3 void quat_fprintf (FILE *fp, const char *fmt, const char sep, const quaternion_t q)
- 4.31.3.4 void quat_irot (double result[3], const quaternion_t q, const double x[3])
- 4.31.3.5 void quat_make_from_rvec (quaternion_t result, const double theta, const double x, const double y, const double z)
- 4.31.3.6 void quat_mult (quaternion_t result, const quaternion_t q1, const quaternion_t q2)
- **4.31.3.7** double quat_norm2 (const quaternion_t q)

- **4.31.3.8** double quat_normalize (quaternion_t q)
- 4.31.3.9 void quat_q_from_R (quaternion_t q, const double * R, const int ldim)
- **4.31.3.10** void quat_R_from_q (double * R, const int *ldim*, const quaternion_t q)
- 4.31.3.11 void quat_rot (double result[3], const quaternion_t q, const double x[3])

4.32 recogImage.cpp

画像入出力関数#include <stdlib.h>

#include <string.h>

#include "recogImage.h"

recogImage.cpp のインクルード依存関係図

関数

• RecogImage * constructImage (const int colsize, const int rowsize, const int bytePerPixel)

画像メモリの確保と初期化

- void destructImage (RecogImage *image)
 画像メモリの解放
- void rgb2grayImage (RecogImage *target, RecogImage *source)
 RGB 画像から Grey 画像への変換.

4.32.1 説明

画像入出力関数

日付:

\$Date:: 2011-06-23 14:52:42 +0900 #\$

4.32.2 関数

4.32.2.1 RecogImage* constructImage (const int *colsize*, const int *rowsize*, const int *bytePerPixel*)

画像メモリの確保と初期化

 $\textbf{4.32.2.2} \quad void \ destructImage} \ (RecogImage*{\it image})$

画像メモリの解放

4.32.2.3 void rgb2grayImage (RecogImage * target, RecogImage * source)

RGB 画像から Grey 画像への変換.

libopenvgr に対して Fri Jun 24 10:38:14 2011 に生成されました。 Doxygen

4.33 recogImage.h

画像入出力関数#include "common.h" recogImage.h のインクルード依存関係図

このグラフは、どのファイルから直接、間接的にインクルードされているかを示しています。

データ構造

• struct _recogImage

型定義

• typedef struct _recogImage RecogImage

関数

• RecogImage * constructImage (const int colsize, const int rowsize, const int bytePerPixel)

画像メモリの確保と初期化

• void destructImage (RecogImage *image)

画像メモリの解放

void rgb2grayImage (RecogImage *target, RecogImage *source)
 RGB 画像から Grey 画像への変換.

4.33.1 説明

画像入出力関数

日付:

\$Date:: 2011-06-23 14:52:42 +0900 #\$

- 4.33.2 型定義
- 4.33.2.1 typedef struct _recogImage RecogImage
- 4.33.3 関数
- 4.33.3.1 RecogImage* constructImage (const int *colsize*, const int *rowsize*, const int *bytePerPixel*)

画像メモリの確保と初期化

4.33.3.2 void destructImage (RecogImage * *image*)

画像メモリの解放

4.33.3.3 void rgb2grayImage (RecogImage * target, RecogImage * source)

RGB 画像から Grey 画像への変換.

4.34 recogParameter.cpp

```
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "parameters.h"
#include "visionErrorCode.h"
```

recogParameter.cpp のインクルード依存関係図

列挙型

```
    enum paramKey {
        eStereoPair, eOutputCandNum, eEdgeDetectFunction, eEdgeStrength,
        eMaxErrorOfLineFit, eMaxErrorOfConicFit, eOverlapRatioLine,
        eOverlapRatioCircle,
        eMinLengthLine2D, eHDMax, eDepN, eDepF,
        eAMin, eAMax, eLMin, eLMax,
        eStereoError, eMatchEdge, eParamSentinel }
```

関数

- void setDefaultRecogParameter (Parameters ¶m)
 Parameters 構造体にデフォルト値をセットする。.
- int loadRecogParameter (char *path, Parameters ¶m)
 ファイルから、Parameters 構造体に設定値を読み込む。
- int loadDebugParameter (int text, int image, int display, Parameters ¶m)

4.34.1 列挙型

4.34.1.1 enum paramKey

列挙型の値:

eStereoPair

eOutputCandNum

eEdgeDetectFunction

eEdgeStrength

e Max Error Of Line Fit

eMaxErrorOfConicFit

e Overlap Ratio Line

eOverlapRatioCircle

eMinLengthLine2D

eHDMax

eDepN

eDepF

eAMin

eAMax

eLMin

eLMax

eStereoError

eMatchEdge

eParamSentinel

4.34.2 関数

4.34.2.1 int loadDebugParameter (int *text*, int *image*, int *display*, Parameters & *param*)

4.34.2.2 int loadRecogParameter (char * path, Parameters & param)

ファイルから、Parameters 構造体に設定値を読み込む。

4.34.2.3 void setDefaultRecogParameter (Parameters & param)

Parameters 構造体にデフォルト値をセットする。.

4.35 recogParameter.h

認識パラメータ設定関連#include "parameters.h" recogParameter.h のインクルード依存関係図

関数

- void setDefaultRecogParameter (Parameters ¶m)
 Parameters 構造体にデフォルト値をセットする。.
- int loadRecogParameter (char *path, Parameters ¶m)
 ファイルから、Parameters 構造体に設定値を読み込む。
- int loadDebugParameter (int text, int image, int display, Parameters ¶m)

4.35.1 説明

認識パラメータ設定関連

4.35.2 関数

4.35.2.1 int loadDebugParameter (int *text*, int *image*, int *display*, Parameters & *param*)

4.35.2.2 int loadRecogParameter (char * path, Parameters & param)

ファイルから、Parameters 構造体に設定値を読み込む。

4.35.2.3 void setDefaultRecogParameter (Parameters & param)

Parameters 構造体にデフォルト値をセットする。.

4.36 recogResult.h

認識結果の定義

マクロ定義

• #define RecogResultElementNum 20

列挙型

```
    enum RecogResultElement {
        eRRCameraID, eRRModelID, eRRCandNo, eRRCoordNo,
        eRRRecogReliability, eRRErrorCode, eRRReserve1, eRRReserve2,
        eRRR00, eRRR01, eRRR02, eRRTx,
        eRRR11, eRRR12, eRRTy,
        eRRR20, eRRR21, eRRR22, eRRTz }
```

4.36.1 説明

認識結果の定義

4.36.2 マクロ定義

- 4.36.2.1 #define RecogResultElementNum 20
- 4.36.3 列挙型

4.36.3.1 enum RecogResultElement

```
列挙型の値:
```

```
eRRCameraID
eRRModelID
eRRCandNo
eRRCoordNo
```

eRRRecogReliability

eRRErrorCode

eRRReserve1

eRRReserve2

eRRR00

eRRR01

eRRR02

eRRTx

eRRR10

eRRR11

eRRR12

eRRTy

eRRR20

eRRR21

eRRR22

eRRTz

4.37 rtvcm.cpp

モデル入出力関連関数#include <iostream>

```
#include <fstream>
#include <string>
#include <math.h>
#include "match3Dfeature.h"
#include "vectorutil.h"
#include "rtvcm.h"
#include "visionErrorCode.h"
```

rtvcm.cpp のインクルード依存関係図

関数

- void freeRTVCM (RTVCM &rtvcm)
 モデルデータのメモリ解放
- int readRTVCModel (char *filename, RTVCM &rtvcm)
- void reverse Vertex (Vertex src, Vertex &dst)
 3 次元頂点データの裏データ作成
- void reverseCircle (Circle src, Circle &dst)
 3 次元円データの裏データ作成
- int convertRTVCMtoFeatures3D (RTVCM rtvcm, Features3D &feature) モデルデータから 3 次元特徴データへの変換

4.37 rtvcm.cpp 195

4.37.1 説明

モデル入出力関連関数

日付:

\$Date:: 2011-06-23 14:52:42 +0900 #\$

4.37.2 関数

4.37.2.1 int convertRTVCMtoFeatures3D (RTVCM rtvcm, Features3D & feature)

モデルデータから3次元特徴データへの変換

4.37.2.2 void freeRTVCM (RTVCM & rtvcm)

モデルデータのメモリ解放

4.37.2.3 int readRTVCModel (char * filename, RTVCM & rtvcm)

モデルデータの読み込み 戻り値:エラーコード

4.37.2.4 void reverseCircle (Circle src, Circle & dst)

3次元円データの裏データ作成

4.37.2.5 void reverseVertex (Vertex src, Vertex & dst)

3次元頂点データの裏データ作成

4.38 rtvcm.h

モデル入出力関連関数このグラフは、どのファイルから直接、間接的にインクルードされているかを示しています。

データ構造

- struct RTVCM_Vertex モデル内の頂点データ
- struct RTVCM_Circleモデル内の円データ
- struct RTVCM_Boxモデル内の立方体データ
- struct RTVCM_Cylinder
 モデル内の円筒データ
- struct RTVertexCircleModel
 モデルデータ構造体

型定義

- typedef int RTVCM_Label
- typedef struct RTVertexCircleModel RTVCM
 モデルデータ構造体

関数

- void freeRTVCM (RTVCM &rtvcm)
 モデルデータのメモリ解放
- int readRTVCModel (char *filename, RTVCM &rtvcm)

4.38 rtvcm.h 197

void reverse Vertex (Vertex src, Vertex &dst)
 3 次元頂点データの裏データ作成

- void reverseCircle (Circle src, Circle &dst)
 3 次元円データの裏データ作成
- int convertRTVCMtoFeatures3D (RTVCM rtvcm, Features3D &feature) モデルデータから 3 次元特徴データへの変換

4.38.1 説明

モデル入出力関連関数

日付:

\$Date:: 2011-06-23 14:52:42 +0900 #\$

4.38.2 型定義

4.38.2.1 typedef struct RTVertexCircleModel RTVCM

モデルデータ構造体

- 4.38.2.2 typedef int RTVCM_Label
- 4.38.3 関数

4.38.3.1 int convertRTVCMtoFeatures3D (RTVCM rtvcm, Features3D & feature)

モデルデータから3次元特徴データへの変換

4.38.3.2 void freeRTVCM (RTVCM & rtvcm)

モデルデータのメモリ解放

4.38.3.3 int readRTVCModel (char * filename, RTVCM & rtvcm)

モデルデータの読み込み 戻り値:エラーコード

- 4.38.3.4 void reverseCircle (Circle src, Circle & dst)
- 3次元円データの裏データ作成
- 4.38.3.5 void reverseVertex (Vertex src, Vertex & dst)
- 3次元頂点データの裏データ作成

4.39 score2d.cpp 199

4.39 score2d.cpp

2次元評価関連関数#include <stdio.h>

```
#include <assert.h>
#include <stdlib.h>
#include <math.h>
#include "modelpoints.h"
#include "match3Dfeature.h"
#include "score2d.h"
```

score2d.cpp のインクルード依存関係図

マクロ定義

- #define COL_TABLE {1, 1, 0, -1, -1, -1, 0, 1}
- #define ROW_TABLE {0, -1, -1, -1, 0, 1, 1, 1}
- #define BOTTOMOFFSET 1
- #define EDGE SEARCH MAX 36
- #define EDGE_SEARCH_SIZE EDGE_SEARCH_MAX
- #define EDGE_SEARCH_2SIZE (((EDGE_SEARCH_-SIZE)*2)+1+BOTTOMOFFSET)

関数

• int isValidPixelPosition (int col, int row, Features3D *finfo)

- int compareResultScore (const void *c1, const void *c2)
- int tracePoint (Features3D *finfo, Trace *data, int p_search, int p_edge, int p_camera)
- void getResultScore (MatchResult *results, int numOfResults, Features3D *model, StereoPairing &pairing, double weight)

4.39.1 説明

2 次元評価関連関数

日付:

\$Date:: 2011-06-23 14:52:42 +0900 #\$

4.39.2 マクロ定義

- 4.39.2.1 #define BOTTOMOFFSET 1
- 4.39.2.2 #define COL_TABLE {1, 1, 0, -1, -1, -1, 0, 1}
- 4.39.2.3 #define EDGE_SEARCH_2SIZE (((EDGE_SEARCH_-SIZE)*2)+1+BOTTOMOFFSET)
- 4.39.2.4 #define EDGE_SEARCH_MAX 36
- 4.39.2.5 #define EDGE_SEARCH_SIZE EDGE_SEARCH_MAX
- 4.39.2.6 #define ROW_TABLE {0, -1, -1, -1, 0, 1, 1, 1}
- 4.39.3 関数

4.39 score2d.cpp 201

- **4.39.3.1** int compareResultScore (const void * c1, const void * c2)
- 4.39.3.2 void getResultScore (MatchResult * results, int numOfResults, Features3D * model, StereoPairing & pairing, double weight)
- 4.39.3.3 int is Valid Pixel Position (int col, int row, Features 3D * finfo) [inline]
- 4.39.3.4 int tracePoint (Features3D * finfo, Trace * data, int p_search, int p_edge , int p_camera)

4.40 score2d.h

2次元評価関連関数このグラフは、どのファイルから直接、間接的にインクルードされているかを示しています。

関数

- int tracePoint (Features3D *finfo, Trace *data, int p_search, int p_edge, int p_camera)
- int compareResultScore (const void *c1, const void *c2)
- void getResultScore (MatchResult *results, int numOfResults, Features3D *model, StereoPairing &pairing, double weight)

4.40.1 説明

2 次元評価関連関数

日付:

\$Date:: 2011-06-23 14:52:42 +0900 #\$

4.40.2 関数

- **4.40.2.1** int compareResultScore (const void *c1, const void *c2)
- 4.40.2.2 void getResultScore (MatchResult * results, int numOfResults, Features3D * model, StereoPairing & pairing, double weight)
- 4.40.2.3 int tracePoint (Features3D * finfo, Trace * data, int p_search , int p_edge , int p_camera)

4.41 stereo.cpp 203

4.41 stereo.cpp

ステレオ処理関連関数#include "stereo.h"

#include "vectorutil.h"

#include "rtvcm.h"

#include "debugutil.h"

stereo.cpp のインクルード依存関係図

関数

• void calculateSightVector (double *SightVector, Data_2D icPos, CameraParam *cameraParam)

歪み補正点座標 (X', Y') より視線ベクトルを計算する

- double calculateLR2XYZ (double position3D[3], Data_2D posL, Data_2D posR, CameraParam *camParamL, CameraParam *camParamR)
- void projectXYZ2LR (Data_2D *pos2D, double position[3], CameraParam *cameraParam)

3次元点の2次元画像上への投影点座標を求める

• void freeStereoData (StereoData *stereo)

ステレオ対応データのメモリ解放

• StereoData StereoCorrespondence (StereoPairing pairing, CalibParam calib, Features2D *left, Features2D *right, Parameters parameters)

• bool setFeature3D (StereoData &stereo, Features3D &feature)

ステレオ処理結果を3次元特徴構造体へセットする

• bool setFeature3D_TBLOR (StereoData &stereoLR, StereoData &stereoLV, StereoData &stereoRV, Features3D &feature)

ステレオ処理結果を3次元特徴構造体へセットする:3眼OR処理

• bool setFeature3D_TBLAND (StereoData &stereoLR, StereoData &stereoLV, Features3D &feature)

ステレオ処理結果を3次元特徴構造体へセットする:3眼AND処理

4.41.1 説明

ステレオ処理関連関数

日付:

\$Date:: 2011-06-23 14:52:42 +0900 #\$

4.41.2 関数

4.41.2.1 double calculateLR2XYZ (double position3D[3], Data_2D posL, Data_2D posR, CameraParam * camParamL, CameraParam * camParamR)

ステレオ対応点から3次元座標を計算する戻り値:復元誤差=2つの視線(エピポーラ線)間の距離

4.41.2.2 void calculateSightVector (double * SightVector, Data_2D icPos, CameraParam * cameraParam)

歪み補正点座標 (X',Y') より視線ベクトルを計算する

4.41.2.3 void freeStereoData (StereoData * stereo)

ステレオ対応データのメモリ解放

4.41 stereo.cpp 205

- 4.41.2.4 void projectXYZ2LR (Data_2D * pos2D, double position[3], CameraParam * cameraParam)
- 3次元点の2次元画像上への投影点座標を求める
- 4.41.2.5 bool setFeature3D (StereoData & stereo, Features3D & feature)
- ステレオ処理結果を3次元特徴構造体へセットする
- 4.41.2.6 bool setFeature3D_TBLAND (StereoData & stereoLR, StereoData & stereoLV, Features3D & feature)
- ステレオ処理結果を3次元特徴構造体へセットする:3眼AND処理
- 4.41.2.7 bool setFeature3D_TBLOR (StereoData & stereoLR, StereoData & stereoLV, StereoData & stereoRV, Features3D & feature)
- ステレオ処理結果を3次元特徴構造体へセットする:3眼〇R処理
- 4.41.2.8 StereoData StereoCorrespondence (StereoPairing pairing, CalibParam calib, Features2D * left, Features2D * right, Parameters parameters)

ステレオ対応データの作成 戻り値:ステレオ対応データ

4.42 stereo.h

ステレオ処理関連関数#include "calib.h"

#include "extractFeature.h"

#include "match3Dfeature.h"

stereo.h のインクルード依存関係図

このグラフは、どのファイルから直接、間接的にインクルードされているかを示しています。

データ構造

- struct StereoCalibステレオカメラキャリプレーションデータ
- struct VertexCandidate
 三次元頂点特徴候補データ

4.42 stereo.h 207

- struct CircleCandidate
 - 三次元円特徴候補データ
- struct StereoConic
 - 二次曲線ステレオ対応データ
- struct StereoData

ステレオ対応データ

関数

• void calculateSightVector (double *SightVector, Data_2D icPos, CameraParam *cameraParam)

歪み補正点座標 (X', Y') より視線ベクトルを計算する

- double calculateLR2XYZ (double position3D[3], Data_2D posL, Data_2D posR, CameraParam *camParamL, CameraParam *camParamR)
- void projectXYZ2LR (Data_2D *pos2D, double position[3], CameraParam *cameraParam)
 - 3次元点の2次元画像上への投影点座標を求める
- void freeStereoData (StereoData *stereo)

ステレオ対応データのメモリ解放

- StereoData StereoCorrespondence (StereoPairing pairing, CalibParam calib, Features2D *left, Features2D *right, Parameters parameters)
- bool setFeature3D (StereoData &stereo, Features3D &feature)

ステレオ処理結果を3次元特徴構造体へセットする

• bool setFeature3D_TBLOR (StereoData &stereoLR, StereoData &stereoLV, StereoData &stereoRV, Features3D &feature)

ステレオ処理結果を3次元特徴構造体へセットする:3眼〇尺処理

• bool setFeature3D_TBLAND (StereoData &stereoLR, StereoData &stereoLV, Features3D &feature)

ステレオ処理結果を3次元特徴構造体へセットする:3眼AND処理

4.42.1 説明

ステレオ処理関連関数

日付:

\$Date:: 2011-06-23 14:52:42 +0900 #\$

4.42.2 関数

4.42.2.1 double calculateLR2XYZ (double position3D[3], Data_2D posL, Data_2D posR, CameraParam * camParamL, CameraParam * camParamR)

ステレオ対応点から3次元座標を計算する戻り値:復元誤差=2つの視線(エピポーラ線)間の距離

4.42.2.2 void calculateSightVector (double * SightVector, Data_2D icPos, CameraParam * cameraParam)

歪み補正点座標 (X', Y') より視線ベクトルを計算する

4.42.2.3 void freeStereoData (StereoData * stereo)

ステレオ対応データのメモリ解放

4.42.2.4 void projectXYZ2LR (Data_2D * pos2D, double position[3], CameraParam * cameraParam)

3次元点の2次元画像上への投影点座標を求める

4.42.2.5 bool setFeature3D (StereoData & stereo, Features3D & feature)

ステレオ処理結果を3次元特徴構造体へセットする

4.42.2.6 bool setFeature3D_TBLAND (StereoData & stereoLR, StereoData & stereoLV, Features3D & feature)

ステレオ処理結果を3次元特徴構造体へセットする:3眼AND処理

4.42.2.7 bool setFeature3D_TBLOR (StereoData & stereoLR, StereoData & stereoLV, StereoData & stereoRV, Features3D & feature)

ステレオ処理結果を3次元特徴構造体へセットする:3眼〇R処理

4.42.2.8 StereoData StereoCorrespondence (StereoPairing pairing, CalibParam calib, Features2D * left, Features2D * right, Parameters parameters)

ステレオ対応データの作成 戻り値:ステレオ対応データ

4.43 vectorutil.cpp

ベクトル処理、行列処理 ユーティリティ関数#include <cxtypes.h>

```
#include <cxcore.h>
#include "vectorutil.h"
#include "common.h"
#include "quaternion.h"
```

vectorutil.cpp のインクルード依存関係図

関数

- int isZero (double value)
- void copyV2 (V2 in, V2 out)
- void mulV2S (V2 in, const double s, V2 out)
- double getNormV2 (V2 in)
- void normalizeV2 (V2 in, V2 out)
- double getDistanceV2 (V2 in1, V2 in2)
- double getAngle2D (double vec1[2], double vec2[2])
- void zeroV3 (V3 out)
- void copyV3 (V3 in, V3 out)
- void addV3 (V3 in1, V3 in2, V3 out)
- void subV3 (V3 in1, V3 in2, V3 out)
- void mulV3S (const double s, V3 in, V3 out)
- void normalizeV3 (V3 in, V3 out)
- double getNormV3 (V3 in)
- double getInnerProductV3 (V3 in1, V3 in2)
- void getCrossProductV3 (V3 in1, V3 in2, V3 out)
- double getDistanceV3 (V3 in1, V3 in2)
- void subM33 (M33 in1, M33 in2, M33 out)
- void transposeM33 (M33 in, M33 out)

- void mulM33 (M33 in1, M33 in2, M33 out)
- void mulM33V3 (M33 in1, V3 in2, V3 out)
- int inverseM33 (M33 in, M33 out)
- void getDirectionVector (double tail[3], double head[3], double data[3], CvMat *vec)
- int getOrthogonalDir (double axis[3], double normal[3], double dir[3])
- int getOrthogonalDir (CvMat *axis, CvMat *normal, CvMat *dir)
- void quaternion_rotation (quaternion_t q, const double radian, double axis[3])

4.43.1 説明

ベクトル処理、行列処理 ユーティリティ関数

日付:

\$Date:: 2011-06-23 14:52:42 +0900 #\$

4.43.2 関数

- 4.43.2.1 void addV3 (V3 in1, V3 in2, V3 out)
- 4.43.2.2 void copyV2 (V2 in, V2 out)
- 4.43.2.3 void copyV3 (V3 in, V3 out)
- 4.43.2.4 double getAngle2D (double vec1[2], double vec2[2])
- 4.43.2.5 void getCrossProductV3 (V3 in1, V3 in2, V3 out)
- 4.43.2.6 void getDirectionVector (double *tail*[3], double *head*[3], double *data*[3], CvMat * *vec*)

- 4.43.2.7 double getDistanceV2 (V2 in1, V2 in2)
- 4.43.2.8 double getDistanceV3 (V3 in1, V3 in2)
- 4.43.2.9 double getInnerProductV3 (V3 in1, V3 in2)
- 4.43.2.10 double getNormV2 (V2 *in*)
- 4.43.2.11 double getNormV3 (V3 in)
- 4.43.2.12 int getOrthogonalDir (CvMat * axis, CvMat * normal, CvMat * dir)
- 4.43.2.13 int getOrthogonalDir (double axis[3], double normal[3], double dir[3])
- 4.43.2.14 int inverseM33 (M33 in, M33 out)
- 4.43.2.15 int isZero (double value)
- 4.43.2.16 void mulM33 (M33 in1, M33 in2, M33 out)

4.43.2.17 void mulM33V3 (M33 in1, V3 in2, V3 out)

4.43.2.18	void mulV2S (V2 in, const double s, V2 out)
4.43.2.19	void mulV3S (const double s, V3 in, V3 out)
4.43.2.20	void normalizeV2 (V2 in, V2 out)
4.43.2.21	void normalizeV3 (V3 in, V3 out)
4.43.2.22	void quaternion_rotation (quaternion_t q , const double $radian$, double $axis[3]$)

- 4.43.2.23 void subM33 (M33 in1, M33 in2, M33 out)
- 4.43.2.24 void subV3 (V3 in1, V3 in2, V3 out)
- 4.43.2.25 void transposeM33 (M33 in, M33 out)
- 4.43.2.26 void zeroV3 (V3 out)

4.44 vectorutil.h 213

4.44 vectorutil.h

ベクトル処理、行列処理 ユーティリティ関数#include <cxcore.h>

#include "common.h"

#include "quaternion.h"

vectorutil.h のインクルード依存関係図

このグラフは、どのファイルから直接、間接的にインクルードされているかを示しています。

型定義

- typedef double V2 [2] 2 dimensional vector
- typedef double V3 [3]
- typedef double M33 [3][3]

3 dimensional vector

• typedel double M33 [3][3]3x3 matrix

関数

- int isZero (double value)
- void copyV2 (V2 in, V2 out)
- void mulV2S (V2 in, const double s, V2 out)
- void normalizeV2 (V2 in, V2 out)

- double getNormV2 (V2 in)
- double getDistanceV2 (V2 in1, V2 in2)
- double getAngle2D (double vec1[2], double vec2[2])
- void copyV3 (V3 in, V3 out)
- void addV3 (V3 in1, V3 in2, V3 out)
- void subV3 (V3 in1, V3 in2, V3 out)
- void mulV3S (const double s, V3 in, V3 out)
- void normalizeV3 (V3 in, V3 out)
- double getInnerProductV3 (V3 in1, V3 in2)
- double getNormV3 (V3 in)
- void getCrossProductV3 (V3 in1, V3 in2, V3 out)
- double getDistanceV3 (V3 in1, V3 in2)
- void subM33 (M33 in1, M33 in2, M33 out)
- void transposeM33 (M33 in, M33 out)
- void mulM33 (M33 in1, M33 in2, M33 out)
- void mulM33V3 (M33 in1, V3 in2, V3 out)
- int inverseM33 (M33 in, M33 out)
- void getDirectionVector (double tail[3], double head[3], double data[3], CvMat *vec)
- int getOrthogonalDir (double axis[3], double normal[3], double dir[3])
- int getOrthogonalDir (CvMat *axis, CvMat *normal, CvMat *dir)
- void quaternion_rotation (quaternion_t q, const double radian, double axis[3])

4.44.1 説明

ベクトル処理、行列処理 ユーティリティ関数

日付:

\$Date:: 2011-06-23 14:52:42 +0900 #\$

4.44.2 型定義

4.44.2.1 typedef double M33[3][3]

3x3 matrix

4.44.2.2 typedef double V2[2]

2 dimensional vector

4.44.2.3 typedef double V3[3]

3 dimensional vector

4.44 vectorutil.h 215

4.4	14.3	閗	数
		125	

- 4.44.3.1 void addV3 (V3 in1, V3 in2, V3 out)
- 4.44.3.2 void copyV2 (V2 in, V2 out)
- 4.44.3.3 void copyV3 (V3 in, V3 out)
- 4.44.3.4 double getAngle2D (double vec1[2], double vec2[2])
- 4.44.3.5 void getCrossProductV3 (V3 in1, V3 in2, V3 out)
- 4.44.3.6 void getDirectionVector (double *tail*[3], double *head*[3], double *data*[3], CvMat * *vec*)
- 4.44.3.7 double getDistanceV2 (V2 in1, V2 in2)
- 4.44.3.8 double getDistanceV3 (V3 in1, V3 in2)
- 4.44.3.9 double getInnerProductV3 (V3 in1, V3 in2)

4.44.3.10	double getNormV2 (V2 in)
4.44.3.11	double getNormV3 (V3 in)
4.44.3.12	$int\ getOrthogonalDir\ (CvMat*{\it axis},\ CvMat*{\it normal},\ CvMat*{\it dir})$
4.44.3.13	int get Orthogonal Dir (double $axis[3]$, double $normal[3]$, double $dir[3]$)
4.44.3.14	int inverseM33 (M33 in, M33 out)
4.44.3.15	int isZero (double <i>value</i>)
4.44.3.16	void mulM33 (M33 in1, M33 in2, M33 out)
4.44.3.17	void mulM33V3 (M33 in1, V3 in2, V3 out)
4.44.3.18	void mulV2S (V2 in, const double s, V2 out)
4.44.3.19	void mulV3S (const double s, V3 in, V3 out)

4.44 vectorutil.h 217

- 4.44.3.20 void normalizeV2 (V2 in, V2 out)
- 4.44.3.21 void normalizeV3 (V3 in, V3 out)
- 4.44.3.22 void quaternion_rotation (quaternion_t q, const double radian, double axis[3])
- 4.44.3.23 void subM33 (M33 in1, M33 in2, M33 out)
- 4.44.3.24 void subV3 (V3 in1, V3 in2, V3 out)
- 4.44.3.25 void transposeM33 (M33 in, M33 out)

4.45 vertex.cpp

3次元頂点特徵生成関連関数#include "stereo.h"

#include "vectorutil.h"
#include "debugutil.h"

vertex.cpp のインクルード依存関係図

関数

• void HyperbolaToVertex (StereoPairing pairing, CalibParam calib, StereoData &stereo, Features2D *left, Features2D *right, unsigned char *edgeL, unsigned char *edgeR, Parameters parameters)

二次元双曲線データから三次元頂点データを生成

4.45.1 説明

3次元頂点特徵生成関連関数

日付:

\$Date:: 2011-06-23 14:52:42 +0900 #\$

4.45 vertex.cpp 219

4.45.2 関数

4.45.2.1 void HyperbolaToVertex (StereoPairing pairing, CalibParam calib, StereoData & stereo, Features2D * left, Features2D * right, unsigned char * edgeL, unsigned char * edgeR, Parameters parameters)

二次元双曲線データから三次元頂点データを生成

4.46 vertex.h

3次元頂点特徵生成関連関数

関数

• void HyperbolaToVertex (StereoPairing pairing, CalibParam calib, StereoData &stereo, Features2D *left, Features2D *right, unsigned char *edgeL, unsigned char *edgeR, Parameters parameters)

二次元双曲線データから三次元頂点データを生成

4.46.1 説明

3次元頂点特徵生成関連関数

日付:

\$Date:: 2011-06-23 14:52:42 +0900 #\$

4.46.2 関数

4.46.2.1 void HyperbolaToVertex (StereoPairing pairing, CalibParam calib, StereoData & stereo, Features2D * left, Features2D * right, unsigned char * edgeL, unsigned char * edgeR, Parameters parameters)

二次元双曲線データから三次元頂点データを生成

4.47 visionErrorCode.h

返り値の定義このグラフは、どのファイルから直接、間接的にインクルードされているかを示しています。

列挙型

• enum VisionErrorCode {

VISION_PARAM_ERROR = -1, VISION_MALLOC_ERROR = -2, VISION_FILE_OPEN_ERROR = -3, VISION_FILE_FORMAT_ERROR = -4,

VISION_ILLEGAL_IMAGE_SIZE = -101, VISION_INPUT_NOIMAGE = -102, VISION_DIFF_IMAGE_SIZE = -103, VISION_DIFF_IMAGE_COLOR_MODEL = -104, VISION_NO_MODEL_FILE = -105 }

4.47.1 説明

返り値の定義

4.47.2 列挙型

4.47.2.1 enum VisionErrorCode

列挙型の値:

VISION_PARAM_ERROR 関数の引数エラー
VISION_MALLOC_ERROR メモリ領域確保エラー
VISION_FILE_OPEN_ERROR ファイルオープンエラー
VISION_FILE_FORMAT_ERROR ファイルフォーマットエラー
VISION_ILLEGAL_IMAGE_SIZE 入力画像の幅または高さが 0
VISION_INPUT_NOIMAGE 入力された画像が 1 枚以下
VISION_DIFF_IMAGE_SIZE 入力された画像のサイズが同一でない

VISION_DIFF_IMAGE_COLOR_MODEL 入力された画像のカラーモデルが同一でない

VISION_NO_MODEL_FILE 入力されたモデル番号に該当するモデルデータがない