Recursive factorial

For positive values of \mathbf{n} , let's write \mathbf{n} ! as we did before, as a product of numbers starting from \mathbf{n} and going down to $\mathbf{1}$: \mathbf{n} ! = $\mathbf{n} \cdot (\mathbf{n} - \mathbf{1}) \cdots 2 \cdot \mathbf{1}$. But notice that $(\mathbf{n} - \mathbf{1}) \cdots 2 \cdot \mathbf{1}$ is another way of writing $(\mathbf{n} - \mathbf{1})$!, and so we can say that \mathbf{n} ! = $\mathbf{n} \cdot (\mathbf{n} - \mathbf{1})$!. Did you see what we just did? We wrote \mathbf{n} ! as a product in which one of the factors is $(\mathbf{n} - \mathbf{1})$!. We said that you can compute \mathbf{n} ! by computing $(\mathbf{n} - \mathbf{1})$! and then multiplying the result of computing $(\mathbf{n} - \mathbf{1})$! by \mathbf{n} . You can compute the factorial function on \mathbf{n} by first computing the factorial function on $\mathbf{n} - \mathbf{1}$. We say that computing $(\mathbf{n} - \mathbf{1})$! is a subproblem that we solve to compute \mathbf{n} !.

Let's look at an example: computing 5!.

- You can compute 5! as 5.4!.
- Now you need to solve the subproblem of computing **4!**, which you can compute as **4·3!**.
- Now you need to solve the subproblem of computing 3!, which is $3 \cdot 2!$.
- Now 2!, which is 2.1!.
- Now you need to compute 1!. You could say that 1! equals 1, because it's
 the product of all the integers from 1 through 1. Or you can apply the
 formula that 1! = 1.0!. Let's do it by applying the formula.
- We defined **0!** to equal **1**.
- Now you can compute $1! = 1 \cdot 0! = 1$.
- Having computed 1! = 1, you can compute $2! = 2 \cdot 1! = 2$.
- Having computed 2! = 2, you can compute $3! = 3 \cdot 2! = 6$.
- Having computed 3! = 6, you can compute $4! = 4 \cdot 3! = 24$.
- Finally, having computed 4! = 24, you can finish up by computing 5! = 5.4! = 120.

So now we have another way of thinking about how to compute the value of

n!, for all nonnegative integers n:

- If n = 0, then declare that n! = 1.
- Otherwise, n must be positive. Solve the subproblem of computing
 (n−1)!, multiply this result by n, and declare n! equal to the result of this
 product.

When we're computing **n!** in this way, we call the first case, where we immediately know the answer, the **base case**, and we call the second case, where we have to compute the same function but on a different value, the **recursive case**.