

Sistemas Operacionais Exercícios Dos Alunos

Prof. Josivan (VAN)

Sistemas Operacionais

Parâmetros do Exercício

•Algoritmo: FIFO

•**Processos**: A (7), B (4), C (4), D (5) Chegaram nesta

ordem

•Quantum: 2

•Regras:

- Se um processo sofre preempção, ele volta ao estado de "Bloqueado".
- Se um processo necessita de I/O ou digitação, ele vai para "Bloqueado".
- Quando um processo termina, ele sai do sistema,

FIFO

A (7), B (4), C (4), D (5)

1. Surgem os processos

3. Continua executando

7. Continua executando

8. Digitação Necessária

9. Digitação Concluída

10. Processo termina

11. I/O Necessário

12. I/O Termina

4. Processo termina

5. I/O Necessário

6. I/O Concluído

Passo

2. O primeiro processo é escalonado

Exec.

Α

Α

В

В

С

С

D

A,B,C,D

B,C,D

C,D

C,D

C,D

D

D

D

B,C,D

Pronto

Sistemas Operacionais

Parâmetros do Exercício

•Algoritmo: SJF (Shortest Job First)

•Processos: A (7), B (4), C (4), D (5) Chegaram nesta

ordem

•Quantum: 2

•Regras:

- Se um processo sofre preempção, ele volta ao estado de "Pronto".
- Se um processo necessita de I/O ou digitação, ele vai para "Bloqueado".
- Quando um processo termina, ele sai do sistema,

SJF A (7), B (4), C (4), D (5)

RAM

Passo	Exec.	Pronto	Bloqueado
1. Surgem os processos	-	A,B,C,D	-
2. O primeiro processo escalonado	В	A,C,D	-
3. Continua executando	В	A,C,D	-
4. Processo termina	С	A,D	-
5. I/O Necessário	-	A,D	C(I/O)
6. I/O Concluído	С	A,D	-
7. Continua executando	D	A	-
8. Digitação Necessária	-	A	D(dig)
9. Digitação Concluída	D	A	-
10. Processo termina	A	-	-
11. I/O Necessário	-	-	A(I/O
12. I/O Termina	-	-	-

Sistemas Operacionais

Parâmetros do Exercício

•Algoritmo: Round Robin

•**Processos:** A (7), B (4), C (4), D (5) Chegaram nesta

ordem

•Quantum: 2

•Regras:

- Se um processo sofre preempção, ele volta ao estado de "Pronto".
- Se um processo necessita de I/O ou digitação, ele vai para "Bloqueado".
- Quando um processo termina, ele sai do sistema,

1. Surgem os processos

2. A CPU está livre

RAM

Round Robin A (7), B (4), C (4), D (5) Q=2

3. Processa e faz Preempção Forçad

4. Processa e Processo é terminado

7. Processa e faz Preempção Forçad

8. Processa e Digitação Necessária

9. Processa e Digitação Concluída

10. Processa e Processo é terminado

12. Último Processo é encerrado (Kill)

5. Processa e I/O Necessário

6. Processa e I/O é Concluído

11. Processa e I/O Necessário

Exec.

A(2)

B(2)

C(2)

D(2)

A(2)

C(2)

D(2)

A(1)

A,B,C,D

A,B,C,D

B,C,D,A(5)

C,D,A(5)

A(5),B(2)

D(3),A(3)

A(3)

B(2),C(2),D(3)

D,A(5)

Pronto

Bloqueado
-
-
-
-
B(I/O)
-
-
B(dig)
-
<u>-</u>
A(I/O)
I

Sistemas Operacionais

Exercícios De Estatístico Dos algoritmos De Escalonamento

Prof. Josivan (VAN)

FIFO - Facil

Processos e ordem de execução	Execução
P6	
P3	
P8	
P5	
P1	
P4	
P7	
P2	

- 1) Considere o algoritmo FIFO/FCFS e calcule os tempos:
- a) Total de Execução = P6(5), P3(7), P8(13), P5(7), P1(8), P4(7), P7(3), P2(5)
- b) Médio de Execução = ${}^{5+7+13+7+8+7+3+5=55}_{55/8=6,875}$
- c) Total de Espera = 0+5+12+25+32+40+47+50=211
- d) Médio de Espera = $^{211/8=26,375}$

SJF - Facil

Processos e ordem de execução	Execução
P6	
P3	
P8	
P5	
P1	
P4	
P7	
P2	

- 2) Considere o algoritmo SJF e calcule os tempos:
- a) Total de Execução = P7(3), P6(5), P2(5), P3(7), P4(7), P5(7), P1(8), P8(13)
- b) Médio de Execução = ${3+5+5+7+7+7+8+13=55 \atop 55/8=6,875}$
- c) Total de Espera = 0+3+8+13+20+27+34+42=147
- d) Médio de Espera = 147/8=18,375

Desafio – Round Robin - Difícil

3) O escalonamento de CPU trata do problema de decidir qual dos processos na fila de prontos. Deve ser entregue à CPU. Considere que o algoritmo de escalonamento Round-Robin esteja sendo utilizado. E que o conjunto de processos abaixo chegue no momento 0, com o tempo de execução de cada processo indicado em milissegundos. Dados: os processos W, Y, Z, X, chegados/criados nesta ordem, segundo apresenta o Quadro 2.

Processo	Tempo de Execução (ms)		
W	15	Tempo Total de Espera 26	Tempo Total(ms) 41
Υ	5	5	10
Z	6	25	31
X	5	15	20

Considere que será utilizado um quantum (time-slice) de 5 millissegundos, calcule:

- a) O tempo de espera total. 26+5+25+15=71ms
- b) O tempo de espera médio. 71/4=17,75 ms
- c) O tempo total de Execução. 41+10+31+20=102
- d) O tempo médio de execução. 102/4=25,5 ms

Material de aula desenvolvido em conjunto com os professores: Gilberto Pinto, Luis Naito, Luiz Carlos e Pavão.

