Automates - CM8

 $\begin{array}{c} \text{Cl\'ement } A_{\mathrm{GRET}} \\ \text{clement.agret@cyu.fr} \end{array}$

CY Cergy Paris Université

Théorème de Kleene

Theorem (Kleene)

$$REC(A) = RAT(A).$$

Preuve (constructive) du théorème

Nous allons montrer:

•
$$RAT(A) \subseteq REC(A)$$
:

• $REC(A) \subseteq RAT(A)$:

Conséquences du théorème de Kleene

Proposition 1

L'intersection, le complémentaire, le miroir de langages rationnels sont rationnels.

Plan du cours

Minimis at ion

Exemple introductif

Proposition 2

Pour tout langage rationnel, il existe un unique automate déterministe complet avec un nombre minimal d'états.

Idée

On considère un automate déterministe complet.

Depuis chaque état, un certain langage est reconnu :

Equivalence de Nérode

Définition 1: Équivalence de Nérode

Deux états p et q sont équivalents si $L_p = L_q$.

Dans l'automate précédent :

Automate minimal

Proposition 3

L'automate <u>quotient</u> obtenu en fusionnant les états équivalents pour l'équivalence de Nérode est l'automate déterministe minimal pour ce langage.

Calcul de l'équivalence de Nérode

Proposition 4

Soit \sim l'équivalence de Nérode : alors pour tous états q et q',

Calcul de l'équivalence de Nérode

Idée :

- \bullet Calculer des équivalences \sim_0, \sim_1, \dots de plus en plus précises.
- $\bullet \sim_0$:

• $q \sim_{n+1} q' \Leftrightarrow$

Résultat

Proposition 5

Au bout d'un certain rang n, $\sim_n = \sim_{n+1}$.

Alors \sim_n est l'équivalence de Nérode.

Résumé

Exemple 1

Exemple 1 (2)

Exemple 1 (3)

Exemple 1 (4)

Exemple 2 : automate qui n'est pas complet

Exemple 2 : automate qui n'est pas complet (2)

Application:

L'automate minimal est unique!

Proposition 6

Deux automates, ou expressions rationnelles, sont équivalentes si on obtient le même automate minimal à partir d'elles.

Exemple : est-ce que a(ba)* = (ab)*a ?