© Laurent Garcin MP Dumont d'Urville

Devoir à la maison n°16

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1

Soit $\lambda_1, \dots, \lambda_n$ des réels positifs deux à deux distincts. On peut supposer $\lambda_1 < \dots < \lambda_n$. Soit $(\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n$ tel que $\sum_{i=1}^n \alpha_i \phi_{\lambda_i} = 0$. Supposons que $(\alpha_1, \dots, \alpha_n) \neq (0, \dots, 0)$ et soit alors $j = \min\{i \in [1, n], \alpha_i \neq 0\}$. Alors $\sum_{i=j}^n \alpha_i \phi_{\lambda_i} = 0$.

Mais, comme $\alpha_j \neq 0$ et $\lambda_j < \dots < \lambda_n$, $\sum_{i=j}^n \alpha_i \phi_{\lambda_i} \sim \alpha_j \phi_{\lambda_j}$ d'où une contradiction. Ainsi $(\alpha_1, \dots, \alpha_n)$ est nul et $(\phi_{\lambda})_{\lambda \geq 0}$ est libre.

Notons D'_n le déterminant obtenu à partir de D_n en remplaçant la dernière colonne par

$$\begin{pmatrix}
R(a_1) \\
R(a_2) \\
\vdots \\
R(a_n)
\end{pmatrix}$$

Comme $R(a_1) = \cdots = R(a_{n-1}) = 0$, en développant D'_n par rapport à sa dernière colonne, on obtient $D'_n = R(a_n)D_{n-1}$. Par ailleurs, en effectuant sur D'_n l'opération $C_n \leftarrow C_n - \sum_{k=1}^{n-1} A_k C_k$, on obtient $D'_n = A_n D_n$ en factorisant la dernière colonne obtenue par A_n . On en déduit que $A_n D_n = R(a_n)D_{n-1}$.

3 Supposons que $b_n \neq b_k$ pour tout $k \in [1, n-1]$. Remarquons alors que

$$A_n = [(X + b_n)R(X)](-b_n) = \frac{(-1)^{n-1} \prod_{k=1}^{n-1} (b_n + a_k)}{\prod_{k=1}^{n-1} (b_k - b_n)} = \frac{\prod_{k=1}^{n-1} (a_k + b_n)}{\prod_{k=1}^{n-1} (b_n - b_k)}$$

Par ailleurs,

$$R(a_n) = \frac{\prod_{k=1}^{n-1} (a_n - a_k)}{\prod_{k=1}^{n} (a_n + b_k)}$$

On en déduit que

$$D_n = \frac{R(a_n)}{A_n} D_{n-1} = \frac{\prod_{k=1}^{n-1} (a_n - a_k)(b_n - b_k)}{(a_n + b_n) \prod_{k=1}^{n-1} (a_k + b_n) \prod_{k=1}^{n-1} (a_n + b_k)} D_{n-1}$$

Cette relation est encore valable s'il existe $k \in [[1, n-1]]$ puisque D_n est alors nul (deux colonnes identiques). On obtient alors la formule voulue par récurrence.

Par caractérisation séquentielle de la borne inférieure, il existe une suite $(y_n) \in A^{\mathbb{N}}$ telle que $||x-y_n|| \underset{n \to +\infty}{\longrightarrow} d(x, A) = 0$. Autrement dit, (y_n) converge vers x. Par caractérisation séquentielle de l'adhérence, $x \in \overline{A}$.

Est Pour tout $n \in \mathbb{N}$, $A_n \subset A_{n+1} \subset A$ donc $d(x,A) \le d(x,A_{n+1}) \le d(x,A_n)$. La suite $(d(x,A_n))$ est décroissante et minorée par d(x,A); elle converge vers un réel $\delta \ge d(x,A)$. Supposons que $\delta > d(x,A)$. Par définition de la borne inférieure, il existe alors $y \in A$ tel que

$$\forall n \in \mathbb{N}, \ d(x, A) \le ||x - y|| < \delta \le d(x, A_n)$$

Ceci est absurde puisque y appartient à A et donc à l'un des A_n .

© Laurent Garcin MP Dumont d'Urville

6 $|B \cap V|$ est la boule fermée de centre x et de rayon ||x|| de l'espace vectoriel normé V. On en déduit que $|B \cap V|$ est fermé et borné dans V qui est de dimension finie. Ainsi $B \cap V$ est compact de V et donc un compact de E. Comme $B \cap V \subset V$, $d(x, V) \leq d(x, B \cap V)$. Soit alors $y \in V$.

- Si $y \in B$, alors $||x y|| \ge d(x, B \cap V)$.
- Si $y \notin B$, alors ||x y|| > ||x||. Or il est clair que $0_E \in B \cap V$ de sorte que

$$||x - y|| > ||x|| = ||x - 0_{\rm E}|| \ge d(x, {\rm B} \cap {\rm V})$$

Finalement, pour tout $y \in V$, $||x - y|| \ge d(x, B \cap V)$. On en déduit que $d(x, V) \ge d(x, B \cap V)$ puis $d(x, V) = d(x, B \cap V)$.

7 L'application $y \mapsto ||x - y||$ est continue car 1-lipschitzienne (considérer la seconde inégalité triangulaire). Cette application admet donc un minimum sur le compact $B \cap V$. Il existe donc $y \in \cap B \cap V \subset V$ tel que

$$||x - y|| = \min_{v \in B \cap V} ||x - y|| = d(x, B \cap V) = d(x, V)$$

8 Notons y le projeté orthogonal de x sur V. Alors $y \in V$ de sorte que $d(x, V) \le ||x - y||$. De plus, $x - y \in V^{\perp}$ et Pour tout $z \in F$, $y - z \in V$ et donc, d'après le théorème de Pythagore,

$$||x - z||^2 = ||(x - y) + (y - z)||^2 = ||x - y||^2 + ||y - z||^2 \ge ||x - y||^2$$

ou encore

$$\forall z \in V, \|x - z\| \ge \|x - y\|$$

On en déduit que $d(x, V) \ge ||x - y||$ puis que d(x, V) = ||x - y||. Soit $z \in V$ tel que ||x - z|| = d(x, V) = ||x - y||. On a vu précédemment

$$||x - z||^2 = ||x - y||^2 + ||y - z||^2$$

On en déduit que ||y - z|| = 0 i.e. y = z.

9 Supposons que (x_1, \dots, x_n) soit liée. Il existe donc $(\lambda_1, \dots, \lambda_n) \in \mathbb{R}_n$ non nul tel que $\sum_{i=1}^n \lambda_j x_j = 0$. Par bilinéarité du

produit scalaire, $\sum_{j=1}^{n} \lambda_j \langle x_i, x_j \rangle = 0$ pour tout $i \in [1, n]$. En notant C_1, \dots, C_n les colonnes de $M(x_1, \dots, x_n)$, on a donc

$$\sum_{j=1}^{n} \lambda_{j} C_{j} = 0.$$
 La famille des colonnes de $M(x_{1}, \dots, x_{n})$ est donc liée et $G(x_{1}, \dots, x_{n}) = 0.$

Réciproquement, supposons que la $G(x_1, ..., x_n)$ soit liée. Il existe donc $(\lambda_1, ..., \lambda_n) \in \mathbb{R}_n$ non nul tel que $\sum_{j=1}^n \lambda_j C_j = 0$ i.e. $\sum_{j=1}^n \lambda_j \langle x_i, x_j \rangle = 0$ ou encore $\langle \sum_{j=1}^n \lambda_j x_j, x_i \rangle = 0$ pour tout $i \in [1, n]$. Ainsi $\sum_{j=1}^n \lambda_j x_j \in \text{vect}(x_1, ..., x_n) \cap \text{vect}(x_1, ..., x_n)^{\perp} = 0$ of done life

Notons $y = \sum_{i=1}^{n} \lambda_i x_i$ le projeté orthogonal de x sur V. En effectuant l'opération $C_{n+1} \leftarrow C_{n+1} - \sum_{i=1}^{n} \lambda_i C_i$, la dernière colonne de $G(x_1, ..., x_n, x)$ devient par bilinéarité du produit scalaire,

$$\begin{pmatrix} \langle x_1, x - y \rangle \\ \langle x_2, x - y \rangle \\ \vdots \\ \langle x_n, x - y \rangle \\ \langle x, x - y \rangle \end{pmatrix}$$

Or $x - y \in V^{\perp}$ donc $\langle x_i, x - y \rangle = 0$ pour tout $i \in [1, n]$. De plus,

$$\langle x, x - y \rangle = \langle x - y, x - y \rangle + \langle y, x - y \rangle = ||x - y||^2 = d(x, V)^2$$

En développant le déterminant obtenu par rapport à sa dernière colonne, on obtient donc

$$G(x_1,...,x_n,x) = d(x,V)^2 G(x_1,...,x_n)$$

Comme $(x_1, ..., x_n)$ est libre, $G(x_1, ..., x_n) \neq 0$, ce qui permet de conclure.

© Laurent Garcin MP Dumont d'Urville

11 Soit $f \in \mathcal{C}([0,1])$. Alors, pour tout $x \in [0,1]$, $0 \le |f(x)| \le N_{\infty}(f)$ puis, $|f(x)|^2 \le N_{\infty}(f)^2$ et enfin, par croissance de l'intégrale

$$N_2(f)^2 = \int_0^1 |f(x)|^2 dx \le \int_0^1 N_\infty(f)^2 dx = N_\infty(f)^2$$

Ainsi $N_2(f) \leq N_{\infty}(f)$.

Soit A une partie de $\mathcal{C}([0,1])$ et $f \in (A)^{\infty}$. Il existe donc une suite (f_n) d'éléments de A convergeant vers f pour la norme N_{∞} . Ainsi $N_{\infty}(f_n - f) \underset{n \to +\infty}{\longrightarrow} 0$. Or

$$\forall n \in \mathbb{N}, \ 0 \leq N_2(f_n - f) \leq N_{\infty}(f_n - f)$$

donc $N_2(f_n - f) \xrightarrow[n \to +\infty]{} 0$. Ainsi (f_n) converge vers f pour la norme N_2 et $f \in (A)^2$. Par conséquent, $(A)^\infty \subset (A)^2$.

12 Pour tout $n \in \mathbb{N}^*$,

$$N_2(\phi_0 - \phi_{1/n})^2 = \int_0^1 (1 - x^{1/n})^2 dx = \int_0^1 (1 - 2x^{1/n} + x^{2/n}) dx = 1 - \frac{2}{1/n + 1} + \frac{1}{2/n + 1} \xrightarrow[n \to +\infty]{} 1 - 2 + 1 = 0$$

Ainsi $(\phi_{1/n})$ est une suite délements de V_0 convergeant vers ϕ_0 pour la norme 2. On en déduit que $\phi_0 \in \overline{V_0}^2$.

Soit $f \in \mathcal{C}([0,1])$. On considère une suite (ψ_n) d'éléments de V_0 convergeant vers ϕ_0 pour la norme N_2 (par exemple, la suite de la question précédente). Alors $(f\psi_n)$ est encore une suite d'éléments de V_0 et

$$\forall n \in \mathbb{N}, \ N_2(f - f\psi_n)^2 = \int_0^1 |f(x)|^2 |\phi_0(x) - \psi_n(x)|^2 \ dx \le N_\infty(f)^2 N_2(\phi_0 - \psi_n)$$

Par conséquent,

$$\forall n \in \mathbb{N}, \ N_2(f - f\psi_n) \le N_{\infty}(f)N_2(\phi_0 - \psi_n)$$

On en déduit que $N_2(f - f\psi_n) \xrightarrow[n \to +\infty]{} 0$ i.e. $(f\psi_n)$ converge vers f pour la norme N_2 . Ceci prouve que V_0 est dense dans $\mathcal{C}([0,1])$ pour la norme N_2 .

Pour tout $f \in V_0$, $N_{\infty}(f - \phi_0) \ge |f(0) - \phi_0(0)| = 1$ donc $\phi_0 \notin \overline{V_0}^{\infty}$ et V_0 n'est pas dense dans $\mathcal{C}([0, 1])$ pour la norme N_{∞} .

Soit V un sous-espace vectoriel d'un espace vectoriel normé. Alors $0 \in V \subset \overline{V}$. Soit $(x, y) \in (\overline{V})^2$ et $(\lambda, \mu) \in \mathbb{R}^2$. Il existe alors deux suites (x_n) et (y_n) d'éléments de V convergeant respectivement vers x et y. Comme V est un sous-espace vectoriel, $(\lambda x_n + \mu y_n)$ est une suite d'éléments de V qui converge vers $\lambda x + \mu y$ par opérations. Ainsi $\lambda x + \mu y \in \overline{V}$. On en déduit que \overline{V} est également un sous-espace vectoriel.

15 Si V est dense dans $\mathcal{C}([0,1])$ pour la norme N_{∞} , il est clair que $\varphi_m \in \overline{V}^{\infty}$ pour tout entier $m \geq 0$. Si $\varphi_m \in \overline{V}^{\infty}$ pour tout entier $m \geq 0$, alors $\operatorname{vect}(\varphi_m, m \in \mathbb{N}) \subset \overline{V}^{\infty}$ est un sous-espace vectoriel de $\mathcal{C}([0,1])$. Mais $\operatorname{vect}(\varphi_m, m \in \mathbb{N})$ est dense dans $\mathcal{C}([0,1])$ pour la norme N_{∞} d'après le théorème de Weierstrass. Comme \overline{V}^{∞} est fermé pour la norme N_{∞} , $\mathcal{C}([0,1]) = \overline{\operatorname{vect}(\varphi_m, m \in \mathbb{N})}^{\infty} \subset \overline{V}^{\infty}$ et donc $\overline{V}^{\infty} = \mathcal{C}([0,1])$.

16 A nouveau, il est clair que si V est dense pour la norme N_2 , il est clair que $\phi_m \in \overline{V}^2$ pour tout entier $m \ge 0$. Supposons maintenant que $\phi_m \in \overline{V}^2$ pour tout entier $m \ge 0$. Pour simplifier, notons $W = \overline{V}^2$. Comme précédemment, $\mathcal{C}([0,1]) = \overline{\text{vect}(\phi_m, m \in \mathbb{N})}^{\infty} \subset \overline{W}^{\infty}$. Ainsi $\overline{W}^{\infty} = \mathcal{C}([0,1])$. Or, d'après la question 11, $\overline{W}^{\infty} \subset \overline{W}^2$ donc $\overline{W}^2 = \mathcal{C}([0,1])$. Mais comme $W = \overline{V}^2$, $\overline{W}^2 = \overline{V}^2$. Finalement $\overline{V}^2 = \mathcal{C}([0,1])$ i.e. V est dense dans $\mathcal{C}([0,1])$ pour la norme N_2 .

Remarquons tout d'abord que (W_n) est croissante pour l'inclusion et que $W = \bigcup_{n \in \mathbb{N}} W_n$ de sorte que pour tout $f \in \mathcal{C}([0,1]), d(f,W) = \lim_{n \to +\infty} d(f,W_n)$ d'après la question 5.

Supposons que W est dense dans $\mathcal{C}([0,1])$ pour la norme N_2 . Soit $\mu \in \mathbb{N}$. Alors $\varphi_{\mu} \in \overline{W}$ et $\lim_{n \to +\infty} d(\varphi_{\mu}, W_n) = d(\varphi_{\mu}, W) = 0$

Supposons que pour tout entier $\mu \geq 0$, $\lim_{n \to +\infty} d(\phi_{\mu}, W_n) = 0$. Alors $d(\phi_{\mu}, W) = 0$ pour tout $\mu \in \mathbb{N}$. Ceci signifie que $\phi_{\mu} \in \overline{W}^2$ pour tout $\mu \in \mathbb{N}$ d'après la question **4**. Enfin, on déduit avec la question **16** que W est dense dans $\mathcal{C}([0,1])$ pour la norme N_2 .

© Laurent Garcin MP Dumont d'Urville

18 Soit $\mu \in \mathbb{R}_+$. D'après la question **10**,

$$d(\phi_{\mu}, W_n)^2 = \frac{G(\phi_{\lambda_0}, \dots, \phi_{\lambda_n}, \phi_{\mu})}{G(\phi_{\lambda_1}, \dots, \phi_{\lambda_n})}$$

Or pour tout $(a,b) \in \mathbb{R}^2_+$, $\langle \phi_a, \phi_b \rangle = \frac{1}{\alpha + \beta + 1}$. Ainsi $G(\phi_{\lambda_0}, \dots, \phi_{\lambda_n})$ est un déterminant de Cauchy D_n dans lequel on a choisi $a_k = b_k = \lambda_k + 1/2$. Il en est de même pour $G(\phi_{\lambda_0}, \dots, \phi_{\lambda_n}, \phi_{\mu})$. En utilisant la relation de récurrence déterminée à la question 3, on obtient

$$G(\phi_{\lambda_0}, \dots, \phi_{\lambda_n}, \phi_{\mu}) = G(\phi_{\lambda_0}, \dots, \phi_{\lambda_n}) \frac{\prod_{k=0}^n (\mu - \lambda_k)^2}{(2\mu + 1) \prod_{k=0}^n (\lambda_k + \mu + 1)^2}$$

On en déduit que

$$d(\phi_{\mu}, W_n) = \frac{1}{\sqrt{2\mu + 1}} \frac{\prod_{k=0}^{n} |\mu - \lambda_k|}{\prod_{k=0}^{n} (\lambda_k + \mu + 1)}$$

REMARQUE. On n'a en fait pas besoin de l'expression explicite des déterminants de Cauchy mais seulement de la relation de récurrence qui les lie.

| 19 | Soit $\mu \geq 0$.

Si (λ_k) diverge vers $+\infty$, il est clair que $\left(\frac{|\lambda_k - \mu|}{\lambda_k + \mu + 1}\right)$ converge vers 1. Réciproquement, supposons que $\left(\frac{|\lambda_k - \mu|}{\lambda_k + \mu + 1}\right)$ converge vers 1. Posons comme indiqué dans l'énoncé, $f: x \in [0, \mu] \mapsto$ $\frac{\mu - x}{x + \mu + 1}$. La suite $(|f(\lambda_k)|)$ converge alors vers 1. La fonction f décroît de $\frac{\mu}{\mu + 1} < 1$ vers 0 sur $[0, \mu]$. On en déduit que $\lambda_k \ge \mu$ à partir d'un certain rang et la suite $(-f(\lambda_k))$ converge vers 1 La fonction -f est continue et strictement croissante sur $[\mu, +\infty[$ donc elle induit une bijection de $[\mu, +\infty[$ sur [0,1[car $\lim_{-\infty} -f=1.$ Il s'ensuit que $\lim_{1} (-f)^{-1} = +\infty$ et donc

Remarquons déjà que W est dense dans $\mathcal{C}([0,1])$ pour la norme N_2 si et seulement si $d(\phi_\mu, W_n) = 0$ pour tout $\mu \in \mathbb{N} \setminus \{\lambda_k, \ k \in \mathbb{N}\}$ puisque, s'il existe $k \in \mathbb{N}$ tel que $\mu = \lambda_k$, alors $d(\phi_\mu, W_n) = 0$ pour tout entier $n \ge k$.

Par passage au logarithme, W est donc dense dans $\mathcal{C}([0,1])$ pour la norme N_2 si et seulement si $\sum_{k\in\mathbb{N}}\ln\frac{|\lambda_k-\mu|}{\lambda_k+\mu+1}$ diverge

vers $-\infty$ pour tout $\mu \in \mathbb{N} \setminus \{\lambda_k, \ k \in \mathbb{N}\}$. Si la série $\sum \frac{1}{\lambda_k}$ converge, alors $\frac{1}{\lambda_k} \underset{k \to +\infty}{\longrightarrow} 0$ i.e. $\lambda_k \underset{k \to +\infty}{\longrightarrow} +\infty$ (les λ_k sont positifs). Soit $\mu \in \mathbb{N} \setminus \{\lambda_k, \ k \in \mathbb{N}\}$. On en déduit

$$\ln\frac{|\lambda_k-\mu|}{\lambda_k+\mu+1} = \ln\frac{\lambda_k-\mu}{\lambda_k+\mu+1} = \ln\left(1-\frac{2\mu+1}{\lambda_k+\mu+1}\right) \underset{k\to+\infty}{\sim} -\frac{2\mu+1}{\lambda_k}$$

La série $\sum_{k \in \mathbb{N}} \ln \frac{|\lambda_k - \mu|}{\lambda_k + \mu + 1}$ converge donc.

Réciproquement, supposons que pour tout $\mu \in \mathbb{N} \setminus \{\lambda_k, k \in \mathbb{N}\}$, $\sum_{k \in \mathbb{N}} \ln \frac{|\lambda_k - \mu|}{\lambda_k + \mu + 1}$ converge. On choisit μ arbitrairement.

Alors $\frac{|\lambda_k - \mu|}{|\lambda_k + \mu|} \xrightarrow{k \to +\infty} 1$ puis $\lambda_k \xrightarrow{k \to +\infty} +\infty$ d'après la question précédente. On montre comme précédemment que

$$\ln \frac{|\lambda_k - \mu|}{\lambda_k + \mu + 1} \underset{k \to +\infty}{\sim} -\frac{2\mu + 1}{\lambda_k}$$

et on en déquit que $\sum \frac{1}{\lambda_k}$ converge.

On a donc bien montré que W était dense dans $\mathcal{C}([0,1])$ si et seulement si $\sum \frac{1}{\lambda_L}$ divergeait.

 $\boxed{\textbf{21}} \ \text{Supposons que W est dense dans $\mathcal{C}([0,1])$ pour la norme N_{∞}. Alors $\mathcal{C}([0,1]) = \overline{W}^{\infty} \subset \overline{W}^2$ d'après la question $\textbf{11}$ and $\textbf{12}$ and $\textbf{13}$ are supposed by the supposed of the supposed by the supposed$ et W est donc dense dans $\mathcal{C}([0,1])$ pour la norme N_2 . D'après la question précédente, $\sum_{k} \frac{1}{\lambda_k}$ diverge.

© Laurent Garcin MP Dumont d'Urville

Remarquons que puisque μ et les λ_k sont dans $[1, +\infty[, (\phi_{\mu} - \psi)(0) = 0]$. Par ailleurs,

$$(\phi_{\mu} - \psi)' = \mu p h i_{\mu-1} - \sum_{k=0}^{n} a_k \lambda_k \phi_{\lambda_k - 1}$$

Il suffit donc de montrer que pour tout $f \in \mathcal{C}^1([0,1])$ s'annulant en 0, $N_{\infty}(f) \leq N_2(f')$. Soit donc $f \in \mathcal{C}^1([0,1])$ s'annulant en 0. D'après l'inégalité de Cauchy-Schwarz, pour tout $x \in [0,1]$,

$$f(x)^2 = \left(\int_0^x f'(t) dt\right)^2 \le \left(\int_0^x dt\right)^2 \left(\int_0^x f'(t)^2 dt\right)^2 \le \left(\int_0^1 f'(t)^2 dt\right)^2 = N_2(f)^2$$

Ainsi $|f(x)| \le N_2(f)$ pour tout $x \in [0, 1]$ i.e. $N_{\infty}(f) \le N_2(f')$.

23 Supposons que $\sum \frac{1}{\lambda_k}$ diverge. Alors la série $\sum \frac{1}{\lambda_k-1}$ diverge également. En effet, si $\lambda_k \xrightarrow[]{} +\infty$, $\frac{1}{\lambda_k-1} \sim \frac{1}{\lambda_k}$ et $\sum \frac{1}{\lambda_k}$ diverge. Sinon, $\sum \frac{1}{\lambda_k-1}$ diverge grossièrement. On en déduit avec la question **20** que vect(ϕ_{λ_k-1} , $k \in \mathbb{N}$) est dense dans $\mathcal{C}([0,1])$ pour la norme \mathbb{N}_2 .

Remarquons déjà que puisque $\lambda_0=0,\,\varphi_0\in \mathbb{W}\subset \overline{\mathbb{W}}^\infty.$ Soit alors un entier $\mu\geq 1$. Soit également $\epsilon>0.$ Par densité de $\mathrm{vect}(\varphi_{\lambda_k-1},\,k\in\mathbb{N})$ dans $\mathcal{C}([0,1])$ pour la norme N_2 , il existe $n\in\mathbb{N}$ et $(b_0,\dots,b_n)\in\mathbb{R}^{n+1}$ tels que

$$N_{\infty}(\mu\phi_{\mu-1} - \sum_{k=0}^{n} b_k\phi_{\lambda_k-1}) \le \varepsilon$$

On pose alors $\psi = \sum_{k=0}^{n} \frac{b_k}{\lambda_k} \phi_{\lambda_k}$ et la question précédente montre que

$$N_{\infty}(\varphi_{\mu} - \psi) \le N_{\infty}(\mu \varphi_{\mu-1} - \sum_{k=0}^{n} b_k \varphi_{\lambda_k-1}) \le \varepsilon$$

On en déduit que $\varphi_{\mu} \in \overline{W}^{\infty}$ pour tout $\mu \in \mathbb{N}$. Comme \overline{W}^{∞} est un sous-espace vectoriel de $\mathcal{C}([0,1])$, vect $(\varphi_{\mu}, \ \mu \in \mathbb{N}) \subset \overline{W}^{\infty}$. Comme \overline{W}^{∞} est fermé pour la norme N^{∞} , $\overline{\text{vect}(\varphi_{\mu}, \ \mu \in \mathbb{N})}^{\infty} \subset \overline{W}^{\infty}$. Le théorème de Weierstrass stipule que $\overline{\text{vect}(\varphi_{\mu}, \ \mu \in \mathbb{N})}^{\infty} = \mathcal{C}([0,1])$, ce qui permet de conclure.

Posons $m=\inf_{k\geq 1}\lambda_k,\ \mu_k=\frac{\lambda_k}{m}$ pour tout $k\in\mathbb{N}$. Alors $\mu_0=0$ et $\mu_k\geq 1$ pour tout $k\in\mathbb{N}^*$. La question précédente montre que $V=\mathrm{vect}(\varphi_{\mu_k},\ k\in\mathbb{N})$ est dense dans $\mathcal{C}([0,1])$ pour la norme N_∞ . Soit $f\in\mathcal{C}([0,1])$. Posons $g:x\mapsto f(x^{1/m})$. Il existe donc une suite (v_n) d'éléments de V convergeant vers g pour la norme N_∞ i.e. $N_\infty(g-v_n)\stackrel{\longrightarrow}{\longrightarrow} 0$. Posons alors $w_n:x\mapsto v_n(x^m)$ pour tout $n\in\mathbb{N}$. Puisque pour tout $k\in\mathbb{N}$ et tout $x\in[0,1]$, $\varphi_{\mu_k}(x^m)=\varphi_{\lambda_k}(x)$, (w_n) est alors une suite d'éléments de V. De plus, comme V0 et ablit une bijection de V1 dans lui-même,

$$N_{\infty}(g - v_n) = \sup_{x \in [0,1]} |g(x) - v_n(x)| = \sup_{x \in [0,1]} |g(x^m) - v_n(x^m)| = \sup_{x \in [0,1]} |f(x) - w_n(x)| = N_{\infty}(f - w_n)$$

Ainsi $N_{\infty}(f-w_n) \xrightarrow[n \to +\infty]{} 0$ i.e. (w_n) est une suite d'éléments de W convergeant vers f pour la norme N_{∞} . Il s'ensuit que W est encore dense dans $\mathcal{C}([0,1])$ pour la norme N_{∞} .