Annexure 1: Normal Distribution Table

NORMAL DISTRIBUTION TABLE

	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
	1 .5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
.2		.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
		.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
.4	4 .6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
	5 .6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
.6		.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
		.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
3.		.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
9.		.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0		.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1		.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2		.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3		.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	4 .9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.8	5 .9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6		.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7		.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8		.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	9 .9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.		.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2		.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3		.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4		.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
	- 0000	00.40	0044	0040	0045	00.40	00.40	00.40	0054	0050
2.5		.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6		.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7		.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8		.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	9 .9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0		.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1		.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2		.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3		.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	4 .9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998

Annexure 2: Important Formulae

1.
$$s = \sqrt{\{1 \div (n-1) \times \sum \mu_t^2\} - \{1 \div n(n-1) \times (\sum \mu_t)^2\}}$$

2.
$$\sigma_n^2 = \sum_{i=1}^m \quad \propto_i \, \mu^2_{n-i}$$

3.
$$\sigma_n^2 = \gamma V_L + \sum_{i=1}^m \sigma_i \mu_{n-i}^2$$

4.
$$\sigma_n^2 = \lambda \sigma_{n-1}^2 + (1-\lambda) \mu_{n-1}^2$$

5.
$$\sigma_{n}^{2} = \gamma V_{L} + \alpha \mu_{n-1}^{2} + \beta \sigma_{n-1}^{2}$$

6.
$$C = S_0 N(d_1) - Ke^{-rT} N(d_2)$$

7.
$$P = Ke^{-rT}N(-d_2) - S_0N(-d_1)$$

8.
$$C = S_0 e^{-qt} N(d_1) - Ke^{-rT} N(d_2)$$

9.
$$P = Ke^{-rT}N(-d_2) - S_0e^{-qt}N(-d_1)$$

10.
$$\Theta = -\frac{S_0 N'(d_1) \sigma}{2\sqrt{T}} - rKe^{-rT}N(d_2)$$

11.
$$\Theta = -\frac{S_0 \, \mathrm{N}'(\mathrm{d}_1) \, \sigma}{2\sqrt{T}} + \, \mathrm{rKe}^{-\mathrm{rT}} \mathrm{N}(-\mathrm{d}_2)$$

12.
$$\Theta = \frac{S_0 \, N'(d_1) \sigma e^{-q \, T}}{2 \sqrt{T}} + q S_0 N(d_1) e^{-q T} - r K e^{-r T} N(d_2)$$

13.
$$\Theta = \frac{S_0 \, N'(d_1) \sigma e^{-qT}}{2\sqrt{T}} - qS_0 N(-d_1) e^{-qT} + rKe^{-rT}N(-d_2)$$