Molecular modeling in drug discovery

- ligand-based drug design
 - similarity searching
 - pharmacophore models (sometimes SBDD)
- structure-based drug design
 - protein-ligand docking
 - simulation-based methods

Structure-based drug design

	Targets	Ligands
Source	PDB (www.pdb.org)	ZINC (zinc.docking.org) ChEMBL, PubChem
Formats	PDB, mol2	mol2, sdf, smiles
Viewers	VMD, UCSF Chimera, Pymol and others	Chemaxon tools
Utilities	finding sites – fpocket conversion – OpenBabel	conversion – OpenBabel

Docking tasks

- prediction of binding mode(s)
- virtual screening
- other purposes

Docking essentials

- protein structure
- ligand structure
- algorithm:
 genetic algorithms, ant colony optimization, simulated annealing, incremental building
- scoring function:
 - potential energy
 - potential of mean force
 - empirical

Docking pitfalls

- protein heterogeneity dynamics/induced fit, protonation states, tautomers, water, cofactors ...
- ligand structure tautomers, protonation states, rings, cis/trans and other isomers, salts ...
- too much rotatable bonds
- metals
- poor scoring performance
- poorly druggable or difficult for docking sites

Caution

- docking is a compromise between speed and accuracy!
- error of ~2 kcal/mol for well established docking models
- it systematically over/under estimates affinities for some classes of targets or ligands
- predicted affinity tends to increase with ligand size
- be careful about removal of bound cofactors, proteins etc.

Virtual screening

- 1. chose and prepare target site
- 2. download a library of compounds
- 3. filter unwanted compounds
- 4. dock compounds
- 5. select the best compounds
- 6. purchase them and test them

Virtual screening

Retrospective vs. prospective

Receiver-operator curve (ROC)

