Tarea 3

Integrantes:

- David Alejandro Alquichire Rincón dalquichire@unal.edu.co
- Kevin Felipe Marroquín Olaya kfmarroquino@unal.edu.co
- Tomas David Rodríguez Agudelo trodrigueza@unal.edu.co

Librerias que utilizaremos:

```
using Pkg, PlutoUI, Graphs, GLMakie, GraphMakie, Makie.Colors,
GraphMakie.NetworkLayout, Random, CSV, DataFrames, Plots, Statistics
```

Primer Punto

a) Use un algoritmo MCMC, para generar 100 muestras aproximadas $(X_{10^3}, X_{10^4}, X_{10^5})$ del modelo de Ising, con inversos de temperatura $\beta=0,0.1,\cdots,0.9,1$

Solución:

Definamos el valor de k:

```
5
1 k
```

```
1 @bind k PlutoUI.Slider(5:20; default = 5, show_value = true) # Tamaño grilla
```

Para este notebook usaremos k=5 debido a los tiempos de ejecución.

Inicialicemos el grafo reticular, haciendo uso de la librería Graphs:

```
▶[(0.0, 0.0), (0.0, 0.1), (0.0, 0.2), (0.0, 0.3), (0.0, 0.4), (0.1, 0.0), (0.1, 0.1), (0.1, 0.1)

1 begin
2    g_1a = Graphs.grid([k, k]) # Grafo reticular kxk
3    vcolor_1a = [:white for i in 1:nv(g_1a)];
4    custom_layout_1a = [(i,j) for i = 0:0.1:( (k-1)*0.1 ) for j = 0:0.1:( (k-1)*0.1)];
end
```


Definamos el valor de β :

```
beta_1a = 0.01

1 beta_1a = 0.01
```

```
neighbor_vertex (generic function with 1 method)
 1 function neighbor_vertex(g, v, p)
        k_plus = 0
        k_{minus} = 0
 3
        for i in edges(g)
            if src(i) == v
                if p.node_color[][dst(i)] == :white
                    k_{minus} += 1
                elseif p.node_color[][dst(i)] == :black
                    k_plus += 1
                end
            elseif dst(i) == v;
                if p.node_color[][src(i)] == :white
                    k_{minus} += 1
                elseif p.node_color[][src(i)] == :black
                    k_plus += 1
                end
            end
        end
        return k_plus, k_minus
   end
```

Implementamos el Gibbs sampler:

```
gibbs_sampler (generic function with 1 method)
 1 # Construcción Gibbs Sampler
 3 # -1 -> Blanco
 4 # +1 -> Gris
   function gibbs_sampler(g, p)
        global k
        v = rand( 1:k^2); # Seleccionar vértice aleatoriamente
        k_plus_v, k_minus_v = neighbor_vertex(g, v, p) # Obtener número de vecinos
                                                  # con -1 y con +1.
        u_n1 = rand()
        # println(u_n1)
        bound_upp = exp(2*beta_1a*(k_plus_v - k_minus_v)) / (exp(2*beta_1a*(k_plus_v - k_minus_v))
        k_{minus_v}) + 1
        # println(bound_upp)
        if u_n1 < bound_upp</pre>
            p.node_color[][v] = :black
            p.node_color = p.node_color[]
        else
            p.node_color[][v] = :white
            p.node_color = p.node_color[]
        end
        # println(u_n1 < bound_upp)</pre>
26 end
```

Corremos la cadena con un total de 10^5 pasos:

Visualicemos X_{10^3} , X_{10^4} y X_{10^5} :


```
neighbor_vertex_ (generic function with 1 method)
gibbs_sampler_ (generic function with 1 method)
```

Para generar las 100 muestras, consideremos $\beta = 0.1, 0.2, 0.3, \ldots, 0.8, 0.9$.

```
beta_values = ▶[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]

1 beta_values = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
```

Inicializamos un diccionario para guardar las muestras:

```
samples = ▶Dict()

1 samples = Dict{Float64, Vector{Vector{Symbol}}}()
```

Generamos las muestras por cada valor de β :

```
1 for beta in beta_values
      Random.seed!(100) # Semilla para replicar resultados
      samples[beta] = Vector{Vector{Vector{Symbol}}}()
      # Generar 100 muestras para cada beta
      for _ in 1:100
          node_colors = [:white for i in 1:nv(g_1a)]
          sample_states = Vector{Vector{Symbol}}()
          # Correr Gibbs sampler
          for i in 1:10<sup>5</sup>
              node_colors = gibbs_sampler_(g_1a, node_colors, beta)
              # Guardar estados
              push!(sample_states, copy(node_colors))
          end
          # Guardar estados de la muestra
          push!(samples[beta], sample_states)
      end
  end
```

Creamos una figura para mostrar los resultados, visualizaremos los estados X_{10^3} , X_{10^4} y X_{10^5} de la última muestra obtenida para cada β .

Veamos algunas estadísticas:

```
for beta in beta_values
for (j, j1) in enumerate([10^3, 10^4, 10^5])
state_index = j1
avg_black = mean([count(x -> x == :black, sample[state_index]) for sample in samples[beta]])
println("Para β = $beta, t = 10^$(j+2), el promedio de nodos negros es:
$avg_black")
end
end
```

```
Para \beta = 0.1, t = 10<sup>3</sup>, el promedio de nodos negros es: 12.51
                                                                                         3
Para \beta = 0.1, t = 10<sup>5</sup>, el promedio de nodos negros es: 12.49
Para \beta = 0.2, t = 10<sup>3</sup>, el promedio de nodos negros es: 12.41
Para \beta = 0.2, t = 10^4, el promedio de nodos negros es: 12.71
Para \beta = 0.2, t = 10<sup>5</sup>, el promedio de nodos negros es: 12.77
Para \beta = 0.3, t = 10<sup>3</sup>, el promedio de nodos negros es: 12.26
Para \beta = 0.3, t = 10^4, el promedio de nodos negros es: 12.85
Para \beta = 0.4, t = 10^3, el promedio de nodos negros es: 12.17
Para \beta = 0.4, t = 10<sup>4</sup>, el promedio de nodos negros es: 12.59
Para \beta = 0.4, t = 10<sup>5</sup>, el promedio de nodos negros es: 11.8
Para \beta = 0.5, t = 10^3, el promedio de nodos negros es: 8.9
Para \beta = 0.5, t = 10^4, el promedio de nodos negros es: 11.68
Para \beta = 0.6, t = 10^3, el promedio de nodos negros es: 4.43
Para \beta = 0.6, t = 10<sup>4</sup>, el promedio de nodos negros es: 11.6
Para \beta = 0.6, t = 10^5, el promedio de nodos negros es: 11.25
Para \beta = 0.7, t = 10<sup>3</sup>, el promedio de nodos negros es: 2.37
Para \beta = 0.7, t = 10<sup>4</sup>, el promedio de nodos negros es: 7.41
Para \beta = 0.7, t = 10<sup>5</sup>, el promedio de nodos negros es: 10.64
Para \beta = 0.8, t = 10^3, el promedio de nodos negros es: 0.93
Para \beta = 0.8, t = 10<sup>4</sup>, el promedio de nodos negros es: 2.1
Para \beta = 0.9, t = 10^3, el promedio de nodos negros es: 0.38
Para \beta = 0.9, t = 10^4, el promedio de nodos negros es: 0.82
Para \beta = 0.9, t = 10^5, el promedio de nodos negros es: 2.96
```


Lo cual tiene mucho sentido pues para $oldsymbol{eta}$ mayor a $oldsymbol{eta_c}$ el valor de un spin tiende a dominar el retículo.

También mostraremos el código en caso de que quisiéramos implementar las cadeas utilizando Metropolis en lugar de Gibbs sampler:

```
metropolis_step (generic function with 1 method)
 1 function metropolis_step(g, node_colors, beta)
        v = rand(1:nv(g))
        current_color = node_colors[v]
        proposed_color = (current_color == :white) ? :black : :white
        # Calcular el cambio en la energía
        delta_E = 0
        for neighbor in neighbors(g, v)
            if node_colors[neighbor] == current_color
                delta_E += 2
            else
                delta_E -= 2
            end
        end
        # Calcular la probabilidad de aceptación
        acceptance_prob = min(1, exp(-beta * delta_E))
        # Decidir si aceptar el cambio
        if rand() < acceptance_prob</pre>
            node_colors[v] = proposed_color
        end
        return node_colors
24 end
```

Generaríamos las muestras así:

```
begin
Random.seed!(100) # Semilla para replicar resultados
samples_m = Dict{Float64, Vector{Vector{Vector{Symbol}}}}()

for beta in beta_values
samples_m[beta] = [run_metropolis(g_1a, beta, 10^5) for _ in 1:100]
end
end
```

Así visualizaríamos los estados X_{10^3} , X_{10^4} y X_{10^5} de la última muestra obtenida para cada eta:

Para ver algunas estadísticas:

```
for beta in beta_values
    for (j, j1) in enumerate([10^3, 10^4, 10^5])
        state_index = j1
        avg_black = mean([count(x -> x == :black, sample[state_index]) for sample
    in samples_m[beta]])
        println("Para β = $beta, t = 10^$(j+2), el promedio de nodos negros es:
    $avg_black")
    end
end
end
```

b) Use el algoritmo de Propp-Wilson para obtener 100 muestras exactas del modelo de Ising, tomando los mismos valores para β que en el inciso **a)**

Solución:

Modificamos brevemente la función gibbs_sampler para conservar los mismo números aleatorios que se van utilizado (los guardaremos en random_dict. Los guardaremos en las cadenas que generaremos usando el algoritmo Propp-Wilson:

```
gibbs_sampler_pw (generic function with 1 method)
 1 begin
       global random_dict = Dict{Int, Float64}()
       function gibbs_sampler_pw(g, p, time)
            v = rand(1:k^2);
            k_plus_v, k_minus_v = neighbor_vertex(g, v, p)
            if !haskey(random_dict, time)
                random_dict[time] = rand()
            end
            u_n1 = random_dict[time]
            bound_upp = exp(2*beta_1a*(k_plus_v - k_minus_v)) / (exp(2*beta_1a*
            (k_plus_v - k_minus_v)) + 1)
            if u_n1 < bound_upp</pre>
                p.node_color[][v] = :black
                p.node_color = p.node_color[]
            else
                p.node_color[][v] = :white
                p.node_color = p.node_color[]
            end
       end
25 end
```

Tomamos el mismo orden parcial que vimos en clase, y tomamos los retículos donde todos los vértices son blancos (O-1) y donde todos los vértices son negros (O+1).

```
Propp_Wilson_iter (generic function with 1 method)
 1 # Ejecutar Propp-Wilson con Sandwiching
 3 function Propp_Wilson_iter(n) # time of starting: 2^n
        g_{min} = Graphs.grid([k, k])
        vcolor_min = [:white for i in 1:nv(g_min)]
        custom_layout_min = [(i,j) \text{ for } i = 0:0.1:((k-1)*0.1) \text{ for } j = 0:0.1:(
        (k-1)*0.1
        f_min, ax_min, p_min = graphplot(g_min; layout= custom_layout_min,
        node_color=vcolor_min, edge_width=0.3, node_size=20);
        hidedecorations!(ax_min)
        hidespines!(ax_min)
        ax_min.aspect = DataAspect()
        g_{max} = Graphs.grid([k, k])
        vcolor_max = [:black for i in 1:nv(g_max)]
        custom_layout_max = [(i,j) \text{ for } i = 0:0.1:((k-1)*0.1) \text{ for } j = 0:0.1:((k-1)*0.1)
        ) ]
        f_max, ax_max, p_max = graphplot(g_max; layout= custom_layout_max,
        node_color=vcolor_max, edge_width=0.3, node_size=20);
        hidedecorations!(ax_max)
        hidespines!(ax_max)
        ax_max.aspect = DataAspect()
       for i in -2^n:0
            gibbs_sampler_pw(g_min, p_min, i)
            gibbs_sampler_pw(g_max, p_max, i)
        end
        return (f_max, ax_max, p_max), (f_min, ax_min, p_min)
```

A continuación corremos el algoritmo. Una modificación notable es que las cadenas coalescerán en el momento en el que el número de nodos negros sea el mismo o difieran en uno a lo sumo, esto debido a que el tiempo de coalescencia para que las cadenas lleguen a exactamente el mismo estado parece ser muy grande. En términos prácticos conseguimos los resultados deseados.

end

```
begin
      \mathbf{m}_{-} = 0
      mi_{-} = 0
3
      n = 1;
      while true
           Graph_max, Graph_min = Propp_Wilson_iter(n)
           # println(Graph_max[3].node_color)
           # println(Graph_min[3].node_color)
           n += 1
           if abs( count( i->(i == :black) , Graph_max[3].node_color[]) - count( i->
           (i == :black), Graph_min[3].node_color[])) <= 1</pre>
               m_{-} = Graph_{-}max[1]
               mi_ = Graph_min[1]
               break
           end
      end
  end
```

A continuación podemos observar los estados finales de las dos cadenas corridas (max-min).

1 mi_

```
gibbs_sampler_pw_ (generic function with 1 method)
 1 function gibbs_sampler_pw_(g, node_colors, beta, time)
       v = rand(1:nv(g))
       k_plus, k_minus = neighbor_vertex_(g, v, node_colors)
 4
       if !haskey(random_dict, time)
            random_dict[time] = rand()
       end
       u_n1 = random_dict[time]
       bound_upp = exp(2*beta*(k_plus - k_minus)) / (exp(2*beta*(k_plus - k_minus)) +
   1)
       if u_n1 < bound_upp</pre>
            node_colors[v] = :black
       else
            node_colors[v] = :white
       end
       return node_colors
   end
```

Generamos las muestras utilizadas utilizando los valores β del punto anterior (0.1, 0.4, 0.9).

```
1 Enter cell code...
```

```
bDict()

1 begin
2    samples_pw = Dict{Float64, Vector{Vector{Symbol}}}()
3    coalescence_times = Dict{Float64, Vector{Int}}()
4 end
```

```
for beta in [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
samples_pw[beta] = Vector{Vector{Symbol}}()
coalescence_times[beta] = Vector{Int}()
for _ in 1:100
node_colors_, coalesence_time = run_propp_wilson_(beta, true)
push!(samples_pw[beta], node_colors_)
push!(coalescence_times[beta], coalesence_time)
end
end
end
end
```


Allí podemos visualizar el cambio de fase a partir del valor crítico eta_c .

c) Estime con los incisos anteriores, $\mathbb{E}[M(\eta)]$, donde $M(\eta) = rac{1}{|V_k|} \sum_{x \in V_k} \eta_x$

Reporte:

- Tiempo de coalescencia en P-W.
- Comparación de las estimativas obtenidas en c).

Solución:

Comparación de las estimativas:

Definimos la función para calcular la magnetización de una configuración dada:

```
calculate_M (generic function with 1 method)

1 function calculate_M(config)
2 return abs(mean(config .== :black) - mean(config .== :white))
3 end
```

Definimos la función para calcular el promedio de la magnetización en un conjunto dado de muestras:

```
promedio_M (generic function with 1 method)

1 function promedio_M(samples)
2    return mean(calculate_M.(samples))
3 end
```

Recordemos que guardamos las muestras obtenidas mediante MCMC (caso Gibbs sampler) y Prop-Wilson en los diccionarios samples y samples_pw, respectivamente.

Visualización tomando el valor absoluto de las magnetizaciones:

MCMC vs PW: Magnetización promedio 1.0 MCMC P-W 0.2 0.4 0.2 0.4 0.6 0.8 1 begin

```
begin

p_avg = Plots.plot(beta_values, [avg_mag_mcmc[beta] for beta in beta_values],
    label = "MCMC", maker = :circle, linewidth=2, size = (600, 400))

Plots.plot!(beta_values, [avg_mag_pw[beta] for beta in beta_values], label = "P-W", maker = :square, linewidth=2)

Plots.xlabel!(p_avg, "β")
Plots.ylabel!(p_avg, "Magnetización promedio")
Plots.title!(p_avg, "MCMC vs PW: Magnetización promedio")
end
```

Para los tiempos de coalescencia, tuvimos que parar antes las cadenas debido al tiempo que se tomaban en converger, podemos estimar debido a los tiempos que en su momento duraba el problema ejecutándose que al menos para $\beta > \beta_c$ los tiempos son mayores a 2^{25} . En cualquier caso podemos observar en la gráfica anterior que se obtienen los resultados que se esperarían.

Segundo Punto

Una hormiga ha sido desajolada de su colonia ubicada en el punto (0,0) de la parcela $[0,1] \times [0,1]$. Decide entonces la hormiga visitar todas las otras 75 colonias de su parcela sin repetir.

Reporte:

- Esquema de enfriamento usado.
- Distancia mínima obtenida.
- Mapa generado para la hormiga.

Primero, leemos el archivo csv con las coordenadas:

```
locations =
                                       Coordenada X
                                                         Coordenada Y
                                                       "0"
                                     "O"
                                 1
                                 2
                                     "0,640194804"
                                                       "0,8766190504"
                                 3
                                     "0,2934596053"
                                                       "0,3496503006"
                                     "0,7900258247"
                                                       "0,9329749235"
                                 4
                                     "0,8887102598"
                                                       "0,240910138"
                                 6
                                     "0,9651210325"
                                                       "0,8005837321"
                                     "0,6899746576"
                                                       "0,8337593556"
                                 7
                                     "0,240618119"
                                                       "0,2446297373"
                                     "0,5374522203"
                                                       "0,1268334208"
                                 9
                                 10
                                     "0,02671012213"
                                                       "0,299350216"
                                  more
                                                       "0,07265280872"
                                     "0,7520991723"
                                 76
 1 locations_ = CSV.read("ant_points.csv", DataFrame)
```

y las guardamos usando el tipo de dato Float64 (flotantes):

```
begin
locations__ = replace.(locations_, ","=>".");

x_points = parse.(Float64, locations__."Coordenada X");
y_points = parse.(Float64, locations__."Coordenada Y");
end
```

```
▶[0.0, 0.640195, 0.29346, 0.790026, 0.88871, 0.965121, 0.689975, 0.240618, 0.537452, 0.026

1 x_points
```

```
▶[0.0, 0.876619, 0.34965, 0.932975, 0.24091, 0.800584, 0.833759, 0.24463, 0.126833, 0.2993

1 y_points
```

a) Use "simulated annealing" para ayudarle a la hormiga a encontrar el camino más corto que recorra todas las parcelas.

Solución:

Creamos la función dist_path para calcular la distancia entre cada par de colonias de acuerdo a sus coordenadas

```
dist_path (generic function with 1 method)
```

```
1  # function: distance of path.
2  function dist_path(x::Vector, y::Vector)
3
4    dist = 0.0
5    n = length(x_points)
6
7    for i in 1:(n-1)
        dist += sqrt( (y[i+1] - y[i])^2 + (x[i+1] - x[i])^2)
9    end
10
11    return dist
12
13 end
```

Ahora con la siguiente función new_neighboor se le asigna un nuevo vecino a cada colonia a partir de la lista original

Ahora creamos la función simulated_annealing_1 usando el algoritmo de simulated annealing para optimizar la distancia entre cada par de colonias la cual convergera a una solución final a medida que la temperatura T baja.

simulated_annealing_1 (generic function with 1 method) 1 function simulated_annealing_1(x::Vector, y::Vector) # Simulate Metropolis Chain 3 # cooling schedule (1, 1/10, 1/100, 1/1000, ...) and (1, 10, 100, 1000, ...) curr_points = Dict("x" => x, "y" => y) # $final_neighboor = (p2_x, p2_y)$ n = 1# execute markov chain with transition matrix given in class while n < 7for i in 1:10ⁿ # max 10⁶ $T = 1/(10^n)$ p2_x, p2_y = new_neighboor(curr_points["x"], curr_points["y"]) e = dist_path(curr_points["x"], curr_points["y"]) $e_{-} = dist_{path}(p2_{x}, p2_{y})$ u = rand()if $u < min(1, exp((e - e_{-})/T))$ curr_points = Dict("x" => p2_x, "y" => p2_y) #else final_neighboor = (curr_points["x"], curr_points["y"]) end end n += 1end return curr_points end

La función devolverá una solución optimizada (en forma de un diccionario con las nuevas coordenadas x, y), la cual se almacenará en final_neighboor.

```
final_neighboor =

Dict("x" ⇒ [0.0, 0.133813, 0.183704, 0.262884, 0.240618, 0.280562, 0.353121, 0.398956, (

#gr(size = (800,800))
2 # scatter(x, y)
3 final_neighboor = simulated_annealing_1(x_points, y_points)
```

Ahora graficamos las colonias y el recorrido optimizado:

Obteniendo la siguiente distancia:

```
7.376463295493744

1 dist_path(final_neighboor["x"], final_neighboor["y"])
```

b) Repita el item a) si se sabe que la hormiga retornará a su colonia original, después de haber

recorrido todas las otras colonias.

Solución:

Para este punto incluimos el punto de partida para obtener la ruta más corta en la cual la hormiga recorre todos los puntos y vuelve al punto de origen.

```
▶[0.0, 0.876619, 0.34965, 0.932975, 0.24091, 0.800584, 0.833759, 0.24463, 0.126833, 0.2993

1 begin
2 push!(x_points_b, 0)
3 push!(y_points_b, 0)
4 end
```


Obteniendo la siguiente distancia:

```
7.054698150065478

1 dist_path(final_neighboor_b["x"], final_neighboor_b["y"])
2
3 # Notar que para n = 7, ya no da un camino que minimice la distancia.
```