Problem 1.

Let α and β be positive integers, and define the function

$$f_{\alpha,\beta}(x) = \begin{cases} x^{\alpha} \sin\left(\frac{1}{x^{\beta}}\right) & x \neq 0 \\ 0 & x = 0 \end{cases}.$$

- (a) Find the values of α and β such that $f_{\alpha,\beta}$ is everywhere continuous.
- (b) Find the values of α and β such that $f_{\alpha,\beta}$ is differentiable for $x \neq 0$. Give the formula for $f'_{\alpha,\beta}$ when $x \neq 0$.
- (c) Find the values of α and β such that $f_{\alpha,\beta}$ is differentiable at x=0.
- (d) Find the values of α and β such that $f'_{\alpha,\beta}$ is continuous at x=0.

Solution. 1.(a)

Fix some $\alpha, \beta \in \mathbb{N}$. It is known that for all $\alpha, \beta \in \mathbb{N}$, x^{α} , $\sin(x)$, and $\frac{1}{x^{\beta}}$ are continuous at all $x \neq 0$. Then, $\sin\left(\frac{1}{x^{\beta}}\right)$ is continuous at all $x \neq 0$ (as a composition of continuous on $\mathbb{R} \setminus \{0\}$ functions), and consequently $x^{\alpha} \sin\left(\frac{1}{x^{\beta}}\right)$ is continuous at all $x \neq 0$ (as a product of continuous on $\mathbb{R} \setminus \{0\}$ functions). Thus, $f_{\alpha,\beta}(x)$ is continuous at all $x \in \mathbb{R} \setminus \{0\}$.

Since $|\sin(x)| \le 1$ for all $x \in \mathbb{R}$. We have that $(\forall x \in \mathbb{R} \setminus \{0\}) \left[0 \le \left|x^{\alpha} \sin\left(\frac{1}{x^{\beta}}\right)\right| = \left|x^{\alpha}\right| \cdot \left|\sin\left(\frac{1}{x^{\beta}}\right)\right| \le \left|x^{\alpha}\right|\right]$. Thus, as $\lim_{x\to 0} 0 = \lim_{x\to 0} \left|x^{\alpha}\right| = 0$, according to the **Squeeze Theorem**, $\lim_{x\to 0} \left|x^{\alpha} \sin\left(\frac{1}{x^{\beta}}\right)\right| = 0$, and $\lim_{x\to 0} x^{\alpha} \sin\left(\frac{1}{x^{\beta}}\right) = 0$. Then, as $f_{\alpha,\beta}(x) = x^{\alpha} \sin\left(\frac{1}{x^{\beta}}\right)$ for all $x \in \mathbb{R} \setminus \{0\}$, we have that $\lim_{x\to 0} f_{\alpha,\beta}(x) = 0 = f_{\alpha,\beta}(0)$. Thus, it was proven that $f_{\alpha,\beta}$ is continuous at x = 0.

To sum up, for every choice of $\alpha, \beta \in \mathbb{N}$, $f_{\alpha,\beta}$ is continuous at all $x \in \mathbb{R}$.

Solution. 1.(b)

Fix some $\alpha, \beta \in \mathbb{N}$.

Since $\sin(x)$ is differentiable on \mathbb{R} and $\frac{1}{x^{\beta}}$ is differentiable at $x \neq 0$, according to the **Chain Rule**, $\sin\left(\frac{1}{x^{\beta}}\right)$ is differentiable on $\mathbb{R} \setminus \{0\}$, and for $x \neq 0$

$$\left(\sin\left(\frac{1}{x^{\beta}}\right)\right)' = \left(\frac{1}{x^{\beta}}\right)' \cdot \sin'\left(\frac{1}{x^{\beta}}\right) = \frac{-\beta}{x^{\beta+1}} \cdot \cos\left(\frac{1}{x^{\beta}}\right) = -\frac{\beta\cos\left(\frac{1}{x^{\beta}}\right)}{x^{\beta+1}}.$$

Now, according to the **Product Rule**, for $x \neq 0$, $x^{\alpha} \sin\left(\frac{1}{x^{\beta}}\right)$ is differentiable and

$$f'_{\alpha,\beta}(x) = \left(x^{\alpha} \sin\left(\frac{1}{x^{\beta}}\right)\right)' = (x^{\alpha})' \cdot \sin\left(\frac{1}{x^{\beta}}\right) + x^{\alpha} \cdot \left(\sin\left(\frac{1}{x^{\beta}}\right)\right)'$$

$$= \alpha x^{\alpha - 1} \cdot \sin\left(\frac{1}{x^{\beta}}\right) - x^{\alpha} \cdot \frac{\beta \cos\left(\frac{1}{x^{\beta}}\right)}{x^{\beta + 1}}$$

$$= \alpha \cdot x^{\alpha - 1} \cdot \sin\left(\frac{1}{x^{\beta}}\right) - \beta \cdot x^{\alpha - \beta - 1} \cdot \cos\left(\frac{1}{x^{\beta}}\right).$$

Thus, for every choice of $\alpha, \beta \in \mathbb{N}$, $f_{\alpha,\beta}$ is differentiable at all $x \in \mathbb{R} \setminus \{0\}$ and the formula for the derivative function is $f'_{\alpha,\beta}(x) = \alpha \cdot x^{\alpha-1} \cdot \sin\left(\frac{1}{x^{\beta}}\right) - \beta \cdot x^{\alpha-\beta-1} \cdot \cos\left(\frac{1}{x^{\beta}}\right)$ at all $x \in \mathbb{R} \setminus \{0\}$.

1

A6 Q1 MAT157: Alex R

Solution. 1.(c)

Assume $\alpha = 1$. Fix some $\beta \in \mathbb{N}$. It will be proven that $f_{\alpha,\beta}$ is not differentiable at x = 0. For a contradiction assume the opposite, then

$$f'_{\alpha,\beta}(0) = \lim_{x \to 0} \frac{x^{\alpha} \sin\left(\frac{1}{x^{\beta}}\right) - f(0)}{x - 0} = \lim_{x \to 0} \left[x^{\alpha - 1} \sin\left(\frac{1}{x^{\beta}}\right) \right] = \lim_{x \to 0} \left[\sin\left(\frac{1}{x^{\beta}}\right) \right].$$

Notice that for all $\varepsilon > 0$ and for every $z = \sin(\theta) \in [-1, 1]$, exists x in $(0, \varepsilon)$ such that $\sin(\frac{1}{x^{\beta}}) = z$. This is so, because, if we fix z, θ , and ε , then exists $n \in \mathbb{N}$ such that $(2\pi n + \theta) > \varepsilon^{-\beta} > 0$, which means we can take $x = (2\pi n + \theta)^{-1/\beta} < \varepsilon$, and then $\sin(x^{-\beta}) = \sin(2\pi n + \theta) = \sin(\theta) = z$.

Since $(\forall \epsilon > 0)(\forall z \in [-1,1])(\exists x \in (0,\epsilon))[\sin(x^{-\beta}) = z]$, we can deduce that $\lim_{x \to 0^+} \sin(x^{-\beta})$ is not defined. Thus, the limit $\lim_{x \to 0} \left[\sin\left(\frac{1}{x^{\beta}}\right)\right]$ does not exist, as well as the $f'_{\alpha,\beta}(0)$.

Now, assume $\alpha > 1$. Fix some $(\alpha - 1), \beta \in \mathbb{N}$. It will be proven that $f_{\alpha,\beta}$ is differentiable at x = 0.

In Q1.(a), using the Squeeze Theorem, it was proven that for $a, b \in \mathbb{N}$, $\lim_{x\to 0} x^a \sin(x^{-b}) = 0$. Since now $(\alpha - 1), \beta \in \mathbb{N}$, it can be concluded that $\lim_{x\to 0} [x^{\alpha-1}\sin(x^{-\beta})] = 0$. Then, $f'_{\alpha,\beta}(0)$ exists and

$$f'_{\alpha,\beta}(0) = \lim_{x \to 0} \frac{x^{\alpha} \sin\left(\frac{1}{x^{\beta}}\right) - f(0)}{x - 0} = \lim_{x \to 0} \left[x^{\alpha - 1} \sin\left(\frac{1}{x^{\beta}}\right) \right] = 0.$$

To sum up, $f_{\alpha,\beta}$ is differentiable at x=0, iff $\alpha>1$.

Solution. 1.(d)

The function $f'_{\alpha,\beta}$ is continuous at x=0, iff $\lim_{x\to 0} f'_{\alpha,\beta}(x) = f'_{\alpha,\beta}(0) = 0$. Since $f'_{\alpha,\beta}(0)$ exists, $\alpha > 1$.

Then, according to Q1.(b), $f'_{\alpha,\beta}(x) = \left[\alpha \cdot x^{\alpha-1} \cdot \sin\left(x^{-\beta}\right) - \beta \cdot x^{\alpha-\beta-1} \cdot \cos\left(x^{-\beta}\right)\right]$ at all $x \in \mathbb{R} \setminus \{0\}$.

In **Q1.(c)**, it was proven that $\lim_{x\to 0} x^a \sin(x^{-b})$ exists, iff a>0. Since $\cos(\theta)=\sin(\theta+\pi/2)$, in the **Q1.(c)** proof, we can replace $z=\sin(\theta)$ with $z=\sin(\theta+\pi/2)$, to show that $\lim_{x\to 0} x^a \cos(x^{-b})$ exists, iff a>0. The **Q1.(a)** bit is analogous, as it is true that $|\cos(\theta)| \le 1$ for all $\theta \in \mathbb{R}$. Also, those limits are equal to 0, if they exist.

Thus, $\alpha \cdot x^{\alpha-1} \cdot \sin\left(x^{-\beta}\right)$ is continuous at x = 0, iff $\alpha > 1$, and $\beta \cdot x^{\alpha-\beta-1} \cdot \cos\left(x^{-\beta}\right)$ is continuous at x = 0, iff $\alpha > \beta + 1$. We already know that $\alpha > 1$. If $1 < \alpha \le \beta + 1$, $f'_{\alpha,\beta}$ is discontinuous at x = 0, since exactly one of its two terms is discontinuous at 0. (For $\lim_{x\to 0} f'_{\alpha,\beta}(x)$ as the sum of limits of its two terms, the first limit is 0, and another one is not defined). Therefore, $f'_{\alpha,\beta}$ as a sum of those terms is continuous at x = 0, iff $\alpha > \beta + 1$.

To sum up, $f'_{\alpha,\beta}$ is continuous at x = 0, iff $\alpha > \beta + 1$.