AMENDMENTS TO THE CLAIMS

Claim 1. (Original): A compound of formula I

wherein

L is either a direct bond, an -O-, -S-, -S(O)-, -SO₂-, -N(R_{5a})-, -SO₂N(R_{5b})-, -N(R_{5b})SO₂-, -C(O)N(R_{5c})- or -N(R_{5c})C(O)- bridge, or a C₁-C₄alkylene, C₂-C₄alkenylene or C₂-C₄alkynylene chain which may be mono- or poly-substituted by R₅ and/or interrupted once or twice by an -O-, -S-, -S(O)-, -SO₂-, -N(R_{5d})-, -SO₂N(R_{5e})-, -N(R_{5e})SO₂-, -C(O)N(R_{5f})- and/or -N(R_{5f})C(O)- bridge, and when two such bridges are present those bridges are separated at least by one carbon atom, and W is bonded to L by way of a carbon atom or a -N(R_{5e})SO₂- or -N(R_{5f})C(O)- bridge when the bridge L is bonded to the nitrogen atom of W;

W is a 4- to 7-membered, saturated, partially saturated or unsaturated ring system U

$$- (R_8)r \qquad (U),$$

which contains a ring element U_1 , and may contain from one to four further ring nitrogen atoms, and/or two further ring oxygen atoms, and/or two further ring sulfur atoms and/or one or two further ring elements U_2 , and the ring system U may be mono- or poly-substituted at a saturated or unsaturated ring carbon atom and/or at a ring nitrogen atom by a group R_8 , and two substituents R_8 together are a further fused-on or spirocyclic 3- to 7-membered ring system which may be unsaturated, partially saturated or fully saturated and may in turn be substituted by one or more groups R_{8a} and/or interrupted once or twice by a ring element -O-, -S-, -N(R_{8b})- and/or -C(=O)-; and U_1 and U_2 are each independently of the other(s) -C(=O)-, -C(=S)-, -C(=N R_6)-, -(N=O)-, -S(=O)- or -SO₂-;

 R_3 and R_4 are each independently of the other C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, C_1 - C_3 alkoxy- C_1 - C_3 alkoxy, hydrogen, hydroxy, mercapto, halogen, C_1 - C_3 alkoxy, C_1 - C_3 -

 C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylsulfinyl, C_1 - C_3 haloalkylsulfonyl or C_1 - C_3 alkylsulfonyloxy;

 R_5 is halogen, C_1 - C_3 alkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkoxy- C_1 - C_2 - C_3 Alkoxy- C_1 - C_3 Alkoxy- C_1 - C_3 Alkoxy- C_1 - C_2 - C_1 - C_3 Alkoxy- C_1 - C_2 - C_3 Alkoxy- C_1 - C_3 Alkoxy- C_1 - C_3 Alkoxy- C_1 - C_3 Alkoxy- C_1 - C_2 - C_3 Alkoxy- C_1

 R_{5a} , R_{5b} and R_{5e} are independently hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl or C_1 - C_3 alkoxy- C_1 - C_3 alkyl;

 R_{5d} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, C_1 - C_3 alkoxy- C_1 - C_3 alkyl, benzyl, cyano, formyl, C_1 - C_4 alkylcarbonyl, C_1 - C_4 alkoxycarbonyl, C_1 - C_4 alkylsulfonyl or phenylsulfonyl, it being possible for the phenyl-containing groups to be substituted by R_7 ;

R_{5c} and R_{5f} are each independently of the other hydrogen or C₁-C₃alkyl;

 R_6 is C_1 - C_6 alkyl, hydroxy, C_1 - C_6 alkoxy, cyano or nitro;

 R_7 is halogen, C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, hydroxy, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, cyano or nitro; each R_8 independently is hydrogen, halogen, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_3 - C_6 cycloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, hydroxy, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_3 - C_6 alkenyloxy, C_3 - C_6 alkynyloxy, C_1 - C_3 alkoxy- C_1 - C_3 alkoxy, mercapto, C_1 - C_6 alkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfonyloxy, C_1 - C_6 haloalkylsulfonyloxy, C_3 - C_6 alkenylthio, C_3 - C_6 alkynylthio, amino, C_1 - C_6 alkylamino, di(C_1 - C_6 alkyl)amino, C_1 - C_3 alkoxy- C_1 - C_3 alkoxy- C_1 - C_3 alkyl, formyl, C_1 - C_4 alkylcarbonyl, C_1 - C_4 alkoxycarbonyl, benzyloxycarbonyl, C_1 - C_4 alkylthiocarbonyl, carboxy, cyano, carbamoyl, phenyl, benzyl, heteroaryl or heterocyclyl, it being possible for the phenyl, benzyl, heteroaryl and heterocyclyl groups to be mono- or poly-substituted by R_{7a} ;

each R_{7a} independently is halogen, C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, hydroxy, C_1 - C_3 alkoxy, C_3 -haloalkoxy, cyano or nitro;

each R_{8a} independently is halogen, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_3 - C_6 cycloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, hydroxy, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_3 - C_6 alkenyloxy, C_3 - C_6 alkynyloxy, mercapto, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfonyl, C_1 - C_4 alkylcarbonyl, C_1 - C_4 alkoxycarbonyl, cyano or nitro;

 R_{8b} is hydrogen, C_1 - C_3 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, C_1 - C_3 alkoxy- C_1 - C_3 alkyl or benzyl, it being possible for the phenyl group to be substituted by R_{7b} ;

R_{7b} is halogen, C₁-C₃alkyl, C₁-C₃haloalkyl, hydroxy, C₁-C₃alkoxy, C₁-C₃haloalkoxy, cyano or nitro;

p is 0 or 1;

r is 1, 2, 3, 4, 5 or 6;

with the provisos that

a) R₈ and R_{8a} as halogen or hydrogenmercapto cannot be bonded to a nitrogen atom,

b) U_1 as -C(=O)- or -C(=S)- does not form a tautomeric form with a substituent R_8 as hydrogen when the radical W is bonded to the pyridyl group by way of a C_1 - C_4 alkylene, C_2 - C_4 alkenylene or C_2 - C_4 alkynylene chain L that is interrupted by -O-, -S-, -S(O)-, -SO₂-, -N(R_{5d})-, -SO₂N(R_{5e})- or – N(R_{5e})SO₂-,

c) U_1 as -C(=S)- does not form a tautomeric form with a substituent R_8 as hydrogen when the radical W is bonded to the pyridyl group by way of a -CH=CH- or -C \equiv C- bridge L or by way of a C_1 - C_4 alkylene chain L that is interrupted by -O-, -S-, -S(O)-, -SO₂- or -N(C_1 - C_4 alkyl)-,

d) U_1 as -C(=S)- or $-C(=NR_6)$ - wherein R_6 is C_1 - C_6 alkyl or C_1 - C_6 alkoxy does not form a tautomeric form with a substituent R_8 as hydrogen when the radical W is bonded to the pyridyl group directly or by way of a C_1 - C_4 alkylene chain L;

either

Q is a group Q₁

$$\begin{array}{c}
X_1 \\
A_1 \\
A_2 \\
A_3
\end{array}$$

$$O \qquad (Q_1),$$

wherein

 A_1 is $C(R_{11}R_{12})$ or NR_{13} ;

 A_2 is $C(R_{14}R_{15})_m$, C(O), oxygen, NR_{16} or $S(O)_q$;

 A_3 is $C(R_{17}R_{18})$ or NR_{19} ;

with the proviso that A_2 is other than $S(O)_q$ when A_1 is NR_{13} and/or A_3 is NR_{19} ;

 X_1 is hydroxy, O^-M^+ , wherein M^+ is a metal cation or an ammonium cation; halogen or $S(O)_nR_9$, wherein

m is 1 or 2;

q, n and k are each independently of the others 0, 1 or 2;

 R_9 is C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl, C_2 - C_{12} alkynyl, C_3 - C_{12} allenyl, C_3 - C_{12} cycloalkyl, C_5 - C_{12} cycloalkenyl, R_{10} - C_1 - C_{12} alkylene or R_{10} - C_2 - C_{12} alkenylene, wherein the alkylene or alkenylene chain may be

interrupted by -O-, -S(O)_k- and/or -C(O)- and/or mono- to penta-substituted by R_{20} ; or phenyl, which may be mono- to penta-substituted by R_{7c} ;

R_{7c} is halogen, C₁-C₃alkyl, C₁-C₃haloalkyl, hydroxy, C₁-C₃alkoxy, C₁-C₃haloalkoxy, cyano or nitro;

 R_{10} is halogen, cyano, rhodano, hydroxy, C_1 - C_6 alkoxy, C_2 - C_6 alkenyloxy, C_2 - C_6 alkynyloxy, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfonyl, C_2 - C_6 alkenylthio, C_2 - C_6 alkynylthio, C_1 - C_6 alkylsulfonyloxy, phenylsulfonyloxy, C_1 - C_6 alkylcarbonyloxy, benzoyloxy, C_1 - C_4 alkoxy-carbonyloxy, C_1 - C_6 alkylcarbonyl, C_1 - C_4 alkoxy-carbonyl, benzoyl, aminocarbonyl, C_1 - C_4 alkyl-aminocarbonyl, C_3 - C_6 cycloalkyl, phenyl, phenoxy, phenylthio, phenylsulfinyl or phenylsulfonyl; it being possible for the phenyl-containing groups in turn to be substituted by R_{7d} ;

 R_{7d} is halogen, C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, hydroxy, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, cyano or nitro; R_{20} is hydroxy, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfonyl, cyano, carbamoyl, carboxy, C_1 - C_4 alkoxycarbonyl or phenyl; it being possible for phenyl to be substituted by R_{7e} ;

 R_{7e} is halogen, C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, hydroxy, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, cyano or nitro; R_{11} and R_{17} are each independently of the other hydrogen, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfonyl, C_1 - C_4 alkylsulfonyl, C_1 - C_4 alkoxycarbonyl, hydroxy, C_1 - C_4 alkoxy, C_3 - C_4 alkenyloxy, C_3 - C_4 alkynyloxy, hydroxy- C_1 - C_4 alkyl, C_1 - C_4 alkylsulfonyloxy- C_1 - C_4 alkyl, halogen, cyano or nitro;

or, when A_2 is $C(R_{14}R_{15})_m$, R_{17} together with R_{11} forms a direct bond or a C_1 - C_3 alkylene bridge; R_{12} and R_{18} are each independently of the other hydrogen, C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfonyl;

or R_{12} together with R_{11} , and/or R_{18} together with R_{17} form a C_2 - C_5 alkylene chain which may be interrupted by -O-, -C(O)-, -O- and -C(O)- or -S(O)_t-;

 R_{13} and R_{19} are each independently of the other hydrogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_3 - C_4 alkenyl, C_3 - C_4 alkynyl or C_1 - C_4 alkoxy;

 R_{14} is hydrogen, hydroxy, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 hydroxyalkyl, C_1 - C_4 alkoxy- C_1 - C_3 -alkyl, C_1 - C_4 alkylthio- C_1 - C_3 alkyl, C_1 - C_4 alkylcarbonyloxy- C_1 - C_3 alkyl, C_1 - C_4 alkylsulfonyloxy- C_1 - C_3 alkyl, tosyloxy- C_1 - C_3 alkyl, di(C_1 - C_4 alkoxy)- C_1 - C_3 alkyl, C_1 - C_4 alkoxycarbonyl, C_3 - C_5 -oxacycloalkyl, C_3 - C_5 thiacycloalkyl, C_3 - C_4 dioxacycloalkyl, C_3 - C_4 dithiacycloalkyl, C_3 - C_4 oxathiacycloalkyl, formyl, C_1 - C_4 alkoxyiminomethyl, carbamoyl, C_1 - C_4 alkylaminocarbonyl or di-(C_1 - C_4 alkyl)aminocarbonyl;

or R_{14} together with R_{11} , R_{12} , R_{13} , R_{15} , R_{17} , R_{18} or R_{19} or, when m is 2, also together with R_{14} forms a direct bond or a C_1 - C_4 alkylene bridge;

R₁₅ is hydrogen, C₁-C₃alkyl or C₁-C₃haloalkyl;

 R_{16} is hydrogen, C_1 - C_3 alkyl, C_1 - C_4 alkoxycarbonyl, C_1 - C_4 alkylcarbonyl or N,N-di(C_1 - C_4 alkyl)aminocarbonyl;

or

Q is a group Q₂

$$R_{21}$$
 N R_{22} (Q_2)

wherein

R₂₁ and R₂₂ are hydrogen or C₁-C₄alkyl;

 X_2 is hydroxy, O^-M^+ , wherein M^+ is an alkali metal cation or ammonium cation; halogen, C_1 - C_{12} alkylsulfonyloxy, C_1 - C_{12} alkylthio, C_1 - C_{12} alkylsulfinyl, C_1 - C_{12} alkylsulfonyl, C_1 - C_{12} alkylsulfonyl, C_1 - C_{12} alkylsulfonyl, C_1 - C_{12} alkylsulfonyl, C_1 - C_6 alkoxy- C_1 - C_6 alkoxy- C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkoxy- C_1 - C_6 alkylsulfonyl, C_3 - C_{12} alkenylsulfinyl, C_3 - C_{12} alkenylsulfinyl, C_3 - C_{12} alkenylsulfonyl, C_3 - C_1 -alkynylsulfinyl, C_3 - C_1 -alkynylsulfonyl, C_1 - C_4 alkoxycarbonyl- C_1 - C_4 alkoxycarbonyl- C_1 - C_4 alkylsulfonyl, benzyloxy or phenylcarbonylmethoxy; it being possible for the phenyl-containing groups to be substituted by R_{76} ;

 R_{7f} is halogen, C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, hydroxy, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, cyano or nitro; or

Q is a group Q₃

$$R_{32}$$
 (Q_3) , Q_{31}

wherein

 R_{31} is C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_3 - C_6 cycloalkyl or halo-substituted C_3 - C_6 cycloalkyl;

R₃₂ is hydrogen, C₁-C₄alkoxycarbonyl, carboxy or a group S(O)_sR₃₃;

 R_{33} is C_1 - C_6 alkyl or C_1 - C_3 alkylene, which may be substituted by halogen, C_1 - C_3 alkoxy, C_2 - C_3 alkenyl or by C_2 - C_3 alkynyl; and

s is 0, 1 or 2;

or

Q is a group Q4

wherein

 R_{41} is C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_3 - C_6 cycloalkyl or halo-substituted C_3 - C_6 cycloalkyl; or an agrochemically acceptable salt or any stereoisomer or tautomer of a compound of formula 1.

Claim 2 (Original): A compound of formula II

wherein Y is chlorine, cyano, hydroxy, C₁-C₄alkoxy, benzyloxy, phenoxy, allyloxy, a group

or a group Q_0 , wherein Q_0 is accordingly a group Q linked to oxygen and Q, L, U₁, R₁, R₂, R₃, R₄, R₃₁, R₃₂, R₃₃ and p are as defined for formula I in claim 1.

Claim 3 (Currently Amended): A herbicidal and plant-growth-inhibiting composition, which comprises a herbicidally effective amount of a compound of formula I, according to claim 1, on an inert carrier.

Claim 4 (Currently Amended): A method of controlling undesired plant growth, which comprises applying a herbicidally effective amount of a compound of formula I, according to claim 1, or of a composition comprising such a compound, to the plants or to the locus thereof.

Claim 5 (Currently Amended): A method of inhibiting plant growth, which comprises applying a herbicidally effective amount of a compound of formula I, according to claim 1, or of a composition comprising such a compound, to the plants or to the locus thereof.