Funções geradoras

André Gustavo dos Santos¹

Departamento de Informática Universidade Federal de Viçosa

INF230 - 2021/1

Conteúdo

- 1 Funções geradores
- 2 Fatos úteis
- 3 Teorema binomial estendido
- 4 Funções úteis
- 5 Aplicações
- 6 Convolução

Os slides seguintes são baseados nas seção 8.4 do livro texto da disciplina:

Introdução

ROSEN, Kenneth H. Discrete mathematics and its applications. McGraw-Hill Education, 8th edition, 2018

Introdução

Introdução

- Funções geradores são usadas para representar sequências de forma eficiente, codificando seus termos como coeficientes de potências de uma variável x em uma série formal
- Elas podem ser usadas para resolver diversos problemas de contagem
- Também podem ser usadas para resolver relações de recorrências
- São usadas ainda para provar algumas identidades combinatórias

4/29

Definição

Introdução

Definição

Uma função geradora para a sequência $a_0, a_1, \ldots, a_k, \ldots$ de números reais é a série infinita

$$G(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_k x^k + \dots = \sum_{k=0}^{\infty} a_k x^k$$

 \blacksquare É chamada função geradora ordinária de $\{a_k\}$ para distinguir de outros tipos

 André Gustavo
 UFV
 Funções geradoras
 INF230 - 2021/1
 5 / 29

Exemplos

Introdução

Sequência $\{a_k\}$ com $a_k=3$

$$G(x) = \sum_{k=0}^{\infty} 3x^k$$

Sequência $\{a_k\}$ com $a_k = k + 1$

$$G(x) = \sum_{k=0}^{\infty} (k+1)x^k$$

Sequência $\{a_k\}$ com $a_k = 2^k$

$$G(x) = \sum_{k=0}^{\infty} 2^k x^k$$

6/29

 Funções geradores
 Fatos úteis
 Teorema binomial estendido
 Funções úteis
 Aplicações
 Convolução

 00●0
 0000
 0000
 0000
 0000
 0000
 0

Sequências finitas

Introdução,

- Podemos definir funções geradores para sequências finitas de números reais
- Dada uma sequência a_0, a_1, \dots, a_n , podemos estendê-la para uma sequência infinita acrescentando $a_{n+1} = 0, a_{n+2} = 0$ e assim por diante
- A função geradora desta sequência será um polinômio de grau n porque nenhum termo $a_i x^j$ com j > n aparece na sequência, isto é,

$$G(x) = a_0 + a_1 + \cdots + a_n x^n$$

Qual a função geradora da sequência 1, 1, 1, 1, 1, 1?

$$G(x) = 1 + x + x^2 + x^3 + x^4 + x^5$$

- Como $1 + x + x^2 + x^3 + x^4 + x^5 = (x^6 1)/(x 1)$ quando $x \ne 1$, podemos dizer que $G(x) = (x^6 1)/(x 1)$ é uma função geradora da sequência 1, 1, 1, 1, 1, 1
- As potências de x são apenas locais para os termos da sequência, não precisamos nos preocupar com o fato de G(1) não ser definida

7/29

Exemplo

Introdução

Seja m um inteiro positivo e $a_k = C(m, k)$ para k = 0, 1, 2, ..., m. Qual a função geradora da sequência $a_0, a_1, a_2, ..., a_m$?

$$G(x) = C(m, 0) + C(m, 1)x + C(m, 2)x^{2} + \cdots + C(m, m)x^{m}$$

O teorema binomial mostra que $G(x) = (1 + x)^m$.

8/29

Séries de potências formais

Introdução

- Quando usadas na solução de problemas de contagem, são tratadas como séries de potências formais¹
- Assim, são tratadas como objetos algébricos, sem preocupação com convergência
- Entretanto, quando convergem, algumas operações de séries de potências formais podem ser usadas
- Vamos usar algumas séries de potências de algumas funções em torno de x = 0
- Alguns fatos importantes sobre séries infinitas, quando usadas com funções geradoras, são listados a seguir
- Detalhes podem ser vistos em livros de Cálculo

9/29

¹generalização de funções polinomiais, permitindo infinitos termos

Fatos úteis

Introdução

Função f(x) = 1/(1-x)

A função f(x) = 1/(1-x) é função geradora da sequência $1, 1, 1, \dots$ porque

$$1/(1-x) = 1 + x + x^2 + \dots$$

para |x| < 1.

Função f(x) = 1/(1 - ax)

A função f(x) = 1/(1 - ax) é função geradora da sequência $1, a, a^2, a^3, \ldots$ porque

$$1/(1-ax) = 1 + ax + a^2x^2 + \dots$$

quando |ax| < 1, ou, de forma equivalente, quando |x| < 1/|a| para $a \neq 0$.

Soma e produto

Introdução

Teorema 1

■ Seja
$$(x) = \sum_{k=0}^{\infty} a_k x^k$$
 e $g(x) = \sum_{k=0}^{\infty} b_k x^k$

■ Então

$$f(x) + g(x) = \sum_{k=0}^{\infty} a_k x^k + b_k x^k$$

$$f(x)g(x) = \sum_{k=0}^{\infty} \left(\sum_{j=0}^{k} a_j b_{k-j}\right) x^k$$

Exemplo

Introdução

Seja
$$f(x) = 1/(1-x)^2$$
.

Quais os coeficientes de a_0, a_1, a_2, \ldots na expansão $f(x) = \sum_{k=0}^{\infty} a_k x^k$?

- Vimos anteriormente que $1/(1-x) = 1 + x + x^2 + \dots$
- Do teorema 1, $f(x) = 1/(1-x)^2 = \sum_{k=0}^{\infty} \left(\sum_{j=0}^{k} 1\right) x^k = \sum_{k=0}^{\infty} (k+1)x^k$.
- Pode ser obtido também por diferenciação, derivando $1 + x + x^2 + \dots$
- Derivadas são bastante úteis para produzir novas identidades a partir de funções geradoras conhecidas

Binômio estendido

Introdução

Já vimos que a solução de muitos problemas de contagem usam binômios

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n(n-1)\dots(n-k+1)}{k!}$$

 Para usar funções geradoras, precisamos aplicar o teorema binomial em expoentes não inteiros. A seguinte definição estende os coeficientes binomiais.

Definição

Seja *u* um número real e *k* um inteiro não negativo.

O coeficiente binomial estendido $\binom{u}{k}$ é dado por

$$\binom{u}{k} = \begin{cases} \frac{u(u-1)\dots(u-k+1)}{k!} & \text{if } k > 0\\ 1 & \text{if } k = 0 \end{cases}$$

Note que é a mesma definição para k > 0, sem o uso de fatorial, já que u é real

 André Gustavo
 UFV
 Funções geradoras
 INF230 - 2021/1
 13 / 29

Exemplo

Introdução

Encontre os valores dos coeficientes binomiais de $\binom{1/2}{3}$ e $\binom{-2}{3}$

Pela definição, com u = 1/2 e k = 3

$${\binom{1/2}{3}} = \frac{(1/2)(1/2-1)(1/2-2)}{3!} = \frac{1}{16}$$

■ Pela definição, com u = -2 e k = 3

$$\binom{-2}{3} = \frac{(-2)(-2-1)(-2-2)}{3!} = -4$$

Relação útil

Introdução

 Quando o parâmetro do topo é inteiro negativo, os coeficientes binomiais estendidos podem ser escritos em termos de coeficientes binomiais ordinários

$${\binom{-n}{r}} = \frac{(-n)(-n-1)\dots(-n-r+1)}{r!}$$

$$= \frac{(-1)^r n(n+1)\dots(n+r-1)}{r!}$$

$$= \frac{(-1)^r (n+r-1)\dots(n+1)n}{r!}$$

$$= \frac{(-1)^r (n+r-1)!}{r!}$$

$$= (-1)^r {\binom{n+r-1}{r}}$$

 André Gustavo
 UFV
 Funções geradoras
 INF230 - 2021/1
 15 / 29

Teorema binomial estendido

Introdução

Teorema binomial estendido

Seja x um número real com |x| < 1 e seja u um número real. Então

$$(1+x)^{u} = \sum_{k=0}^{\infty} {u \choose k} x^{k}$$

■ Note que quando u é inteiro positivo, o teorema binomial estendido se reduz ao teorema binomial, porque $\binom{u}{\nu} = 0$ se k > u.

Funções geradores Fatos úteis **Teorema binomial estendido** Funções úteis Aplicações Convolução 0000 0000 00000 0

Exemplo

Introdução

Encontre a função geradora para $(1 + x)^{-n}$ quando n é inteiro positivo

Pelo teorema binomial estendido, temos que

$$(1+x)^{-n} = \sum_{k=0}^{\infty} {\binom{-n}{k}} x^k$$

Pela relação anterior para valor negativo no topo, chegamos a

$$(1+x)^{-n} = \sum_{k=0}^{\infty} (-1)^k {n+k-1 \choose k} x^k$$

Encontre a função geradora para $(1-x)^{-n}$ quando n é inteiro positivo

 \blacksquare Substituindo x por -x no resultado anterior, chegamos a

$$(1+x)^{-n} = \sum_{k=0}^{\infty} {n+k-1 \choose k} x^k$$

TABLE 1 Useful Generating Functions.	
G(x)	a_k
$(1+x)^n = \sum_{k=0}^n C(n,k)x^k$	C(n,k)
$= 1 + C(n, 1)x + C(n, 2)x^{2} + \dots + x^{n}$	
$(1+ax)^n = \sum_{k=0}^n C(n,k)a^k x^k$	$C(n,k)a^k$
$= 1 + C(n, 1)ax + C(n, 2)a^2x^2 + \dots + a^nx^n$	
$(1 + x^{r})^{n} = \sum_{k=0}^{n} C(n, k) x^{rk}$	$C(n, k/r)$ if $r \mid k$; 0 otherwise
$= 1 + C(n, 1)x^{r} + C(n, 2)x^{2r} + \dots + x^{rn}$	

Fonte: Tabela 1 da seção 8.4 do livro texto da disciplina

Resumo de funções geradoras usadas com frequência

$\frac{1 - x^{n+1}}{1 - x} = \sum_{k=0}^{n} x^k = 1 + x + x^2 + \dots + x^n$	1 if $k \le n$; 0 otherwise
$\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k = 1 + x + x^2 + \dots$	1
$\frac{1}{1 - ax} = \sum_{k=0}^{\infty} a^k x^k = 1 + ax + a^2 x^2 + \dots$	a^k
$\frac{1}{1-x^r} = \sum_{k=0}^{\infty} x^{rk} = 1 + x^r + x^{2r} + \cdots$	1 if <i>r</i> <i>k</i> ; 0 otherwise

Fonte: Tabela 1 da seção 8.4 do livro texto da disciplina

 André Gustavo
 UFV
 Funções geradoras
 INF230 - 2021/1
 19 / 29

Resumo de funções geradoras usadas com frequência

$$\frac{1}{(1-x)^2} = \sum_{k=0}^{\infty} (k+1)x^k = 1 + 2x + 3x^2 + \cdots \qquad k+1$$

$$\frac{1}{(1-x)^n} = \sum_{k=0}^{\infty} C(n+k-1,k)x^k \qquad C(n+k-1,k) = C(n+k-1,n-1)$$

$$= 1 + C(n,1)x + C(n+1,2)x^2 + \cdots$$

$$\frac{1}{(1+x)^n} = \sum_{k=0}^{\infty} C(n+k-1,k)(-1)^k x^k \qquad (-1)^k C(n+k-1,k) = (-1)^k C(n+k-1,n-1)$$

$$= 1 - C(n,1)x + C(n+1,2)x^2 - \cdots$$

$$\frac{1}{(1-ax)^n} = \sum_{k=0}^{\infty} C(n+k-1,k)a^k x^k \qquad C(n+k-1,k)a^k = C(n+k-1,n-1)a^k$$

Fonte: Tabela 1 da seção 8.4 do livro texto da disciplina

Introdução

 André Gustavo
 UFV
 Funções geradoras
 INF230 - 2021/1
 20 / 29

Resumo de funções geradoras usadas com frequência

$$e^{x} = \sum_{k=0}^{\infty} \frac{x^{k}}{k!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$$

$$\ln(1+x) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} x^{k} = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots$$

$$(-1)^{k+1}/k$$

Fonte: Tabela 1 da seção 8.4 do livro texto da disciplina

 André Gustavo
 UFV
 Funções geradoras
 INF230 - 2021/1
 21 / 29

Aplicações em problemas de contagem

Encontre o número de soluções de $e_1 + e_2 + e_3 = 17$ com e_1, e_2, e_3 inteiros não negativos e $2 \le e_1 \le 5, 3 \le e_2 \le 6, 4 \le e_3 \le 7$

■ É o coeficiente de x^{17} na expansão de $(x^2 + x^3 + x^4 + x^5)(x^3 + x^4 + x^5 + x^6)(x^4 + x^5 + x^6 + x^7)$

Por que?

Introdução

- porque x₁₇ deve ser obtido multiplicando-se três termos, um de cada soma
- ou seja, um x^{e_1} com $2 \le e_1 \le 5$, um x^{e_2} com $3 \le e_2 \le 6$ e um x^{e_3} com $4 \le e_3 \le 7$, tal que $e_1 + e_2 + e_3 = 17$, exatamente o mesmo problema

Qual a solução?

- Inspecionamento os termos vemos que o coeficiente de x¹⁷ é 3
- Portanto há 3 soluções
- Embora encontrar esse valor não seja mais fácil que enumerar as soluções do problema original, o método pode ser usado em outros problemas de contagem com fórmulas especiais; além disso, existem ferramentas de cálculo algébrico que fornecem resultados da expansão dessas expressões

Aplicações em problemas de contagem

Introdução

De quantas formas oito biscoitos podem ser distribuídos entre três crianças se cada uma recebe pelo menos dois e não mais que quatro?

- Coeficiente de x^8 na expressão $(x^2 + x^3 + x^4)^3$
- O expoente de cada fator é o número de biscoitos recebido por cada criança
- Como x⁸ tem coeficiente 6 na expressão, há 6 formas distintas de distribuí-los

Aplicações em problemas de contagem

De quantas formas podemos inserir moedas de \$1, \$2 e \$5 em uma máquina de venda automática para pagar um valor \$r?

- Depende se a ordem importa ou não. Por exemplo, podemos pagar \$3 de duas formas, se a ordem não importa (3 de \$1 ou 1 de \$1 e 1 de \$2), mas se a ordem importa são 3 formas (3 de \$1, 1 de \$1 e 1 de \$2 ou 1 de \$2 e 1 de \$1)
- Se a ordem não importa, só precisamos saber quantos de cada tipo
 - Coefficiente de x' na expressão $(1 + x + x^2 + x^3 + \dots)(1 + x^2 + x^4 + x^6 + \dots)(1 + x^5 + x^{10} + x^{15} + \dots)$
 - O primeiro fator é o número de moedas de \$1, o segundo de \$2 e o terceiro de \$5
 - Por exemplo, para pagar \$7 devemos encontrar o coeficiente de x^7 , que é 6
- Se a ordem importa

Introdução

- Coeficiente de x^r na expressão $(x + x^2 + x^5)^n$ é o número de maneiras com n moedas
- Pois cada uma das n moedas pode ser de \$1, \$2 ou \$5
- O total é então o coeficiente de x^r em $1 + (x + x^2 + x^5) + (x + x^2 + x^5)^2 + (x + x^2 + x^5)^3 + \dots = \frac{1}{1 (x + x^2 + x^5)}$
- Por exemplo, para pagar \$7 devemos encontrar o coeficiente de x^7 , que é 26

Aplicações em problemas de contagem envolvendo combinações

Use funções geradoras para calcular o número de k-combinações de n elementos

■ Seja f(x) a função geradora para $\{a_k\}$, número de k-combinações:

$$f(x) = \sum_{k=0}^{n} a_k x^k$$

- Cada elemento contribui com o termo (1 + x) nessa função geradora
- Então, $f(x) = (1 + x)^n$, e pelo teorema binomial, $f(x) = \binom{n}{k} x^k$
- Portanto, o número de k-combinações de n elementos é $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

 André Gustavo
 UFV
 Funções geradoras
 INF230 - 2021/1
 25 / 29

Introdução

Aplicações em problemas de contagem envolvendo combinações

Use funções geradoras para número de r-combinações de n elementos com repetição

Seja f(x) a função geradora para $\{a_r\}$, número de r-combinações com repetição:

$$f(x) = \sum_{r=0}^{\infty} a_r x^r$$

Cada elemento contribui com o termo $(1 + x + x^2 + x^3 + ...)$ nessa função

■ Então,
$$f(x) = (1 + x + x^2 + x^3 + \dots)^n$$

■ Considerando
$$|x| < 1$$
 temos que $(1 + x + x^2 + x^3 + ...) = 1/(1 - x)$

■ Então,
$$f(x) = 1/(1-x)^n = (1-x)^{-n}$$

Pelo teorema binomial estendido,
$$(1-x)^{-n} = (1+(-x))^{-n} = \sum_{r=0}^{\infty} {\binom{-n}{r}} (-x)^r$$

■ Vimos uma relação útil anterior, que
$$\binom{-n}{r} = (-1)^r \binom{n+r-1}{r}$$

■ O coeficiente de
$$x^r$$
 é então $\binom{-n}{r}(-1)^r = (-1)^r \binom{n+r-1}{r}(-1)^r = \binom{n+r-1}{r}$

O número de
$$r$$
-combinações de n elementos com repetição é $\binom{n+r-1}{r}$

26/29

Aplicações em problemas de contagem envolvendo combinações

Use funções geradoras para o número de maneiras de selecionar r objetos entre n tipos diferentes se devemos selecionar pelo menos um de cada tipo

- Como precisamos selecionar pelo menos um de cada tipo, cada tipo contribui com o termo ($x + x^2 + x^3 + ...$) na função geradora da sequência { a_n }
- Então, $f(x) = (x + x^2 + x^3 + ...)^n = x^n (1 + x + x^2 + ...)^n = x^n / (1 x)^n$
- Temos então

$$f(x) = x^{n}/(1-x)^{n} = x^{n}(1-x)^{-n}$$

$$= x^{n} \sum_{r=0}^{\infty} {n \choose r} (-x)^{r}$$

$$= x^{n} \sum_{r=0}^{\infty} (-1)^{r} {n+r-1 \choose r} (-1)^{r} x^{r}$$

$$= \sum_{r=0}^{\infty} {n+r-1 \choose r} x^{n+r} = \sum_{t=n}^{\infty} {t-1 \choose t-n} x^{t}$$
(substituindo $t = n+r$)

O coeficiente de x^r é então $\binom{r-1}{r-n}$ (note que vale 0 para r < n)

27 / 29

Aplicações em relações de recorrência

Introdução

 Podemos resolver uma relação de recorrência encontrando uma fórmula explícita para a função geradora associada

Resolva a recorrência $a_k = 3a_{k-1}$ para k = 1, 2, ... com condição inicial $a_0 = 2$

Seja
$$G(x)$$
 a função geradora para a sequência $\{a_k\}$, isto é, $G(x) = \sum_{k=0}^{\infty} a_k x^k$

■ Note que
$$xG(x) = \sum_{k=0}^{\infty} a_k x^{k+1} = \sum_{k=1}^{\infty} a_{k-1} x^k$$

$$G(x) - 3xG(x) = \sum_{k=0}^{\infty} a_k x^k - 3 \sum_{k=1}^{\infty} a_{k-1} x^k$$
$$= a_0 + \sum_{k=1}^{\infty} (a_k - 3a_{k-1}) x^k$$

(pois
$$a_0 = 2 e a_k = 3a_{k-1}$$
)

Temos então
$$G(x) = 2/(1-3x)$$
, e, usando $1/(1-ax) = \sum_{k=0}^{\infty} a^k x^k$:

$$G(x) = 2\sum_{k=0}^{\infty} 3^k x^k = \sum_{k=0}^{\infty} 2 \cdot 3^k x^k$$

Consequentemente, $a_k = 2 \cdot 3^k$.

Convolução

Introdução

Definição

A convolução de duas sequências $\{a_n\}=a_0,a_1,a_2,\dots$ e $\{b_n\}=b_0,b_1,b_2,\dots$ é a sequência $\{\sum_k a_k b_{n-k}\}=a_0 b_0,a_0 b_1+a_1 b_0,a_0 b_2+a_1 b_1+a_2 b_0,\dots$

- Note que corresponde à multiplicação de suas funções geradoras
- Isto facilita avaliar muitas somas que seriam difíceis de outra maneira

 André Gustavo
 UFV
 Funções geradoras
 INF230 - 2021/1
 29 / 29