CERDAS MENGUASAI GIS

CERDAS MENGUASAI GISDalam 24 Jam

Rolly M. Awangga Informatics Research Center

Kreatif Industri Nusantara

Penulis:

Rolly Maulana Awangga

ISBN: 978-602-53897-0-2

Editor.

M. Yusril Helmi Setyawan

Penyunting:

Syafrial Fachrie Pane Khaera Tunnisa Diana Asri Wijayanti

Desain sampul dan Tata letak:

Deza Martha Akbar

Penerbit:

Kreatif Industri Nusantara

Redaksi:

Jl. Ligar Nyawang No. 2 Bandung 40191 Tel. 022 2045-8529

Email: awangga@kreatif.co.id

Distributor:

Informatics Research Center Jl. Sariasih No. 54 Bandung 40151 Email: irc@poltekpos.ac.id

Cetakan Pertama, 2019

Hak cipta dilindungi undang-undang Dilarang memperbanyak karya tulis ini dalam bentuk dan dengan cara apapun tanpa ijin tertulis dari penerbit

'Jika Kamu tidak dapat menahan lelahnya belajar, Maka kamu harus sanggup menahan perihnya Kebodohan.' Imam Syafi'i

CONTRIBUTORS		

ROLLY MAULANA AWANGGA, Informatics Research Center., Politeknik Pos Indone-

sia, Bandung, Indonesia

CONTENTS IN BRIEF

1	PENGENALAN SISTEM INFORMASI GEOGRAFIS	1
2	Membuat Data Vektor	3
3	SUMBER-SUMBER DATA GEOSPASIAL	5
4	WFS DAN WCS	11
5	Datum WGS84 DAN NAD83	15

DAFTAR ISI

Dafta	ır Gam	bar	xi
Dafta	ır Tabe	1	xiii
Forev	vord		xvii
Kata	Pengai	ntar	xix
Ackn	owledg	gments	xxi
Acro	nyms		xxiii
Gloss	sary		xxv
List c	of Sym	bols	xxvii
	duction <i>Maula</i>	n ana Awangga, S.T., M.T.	xxix
1	PEN	GENALAN SISTEM INFORMASI GEOGRAFIS	1
	1.1	Definisi GIS	1
2	Mem	buat Data Vektor	3
	2.1	Membuat Data Vektor	3
			ix

v	DAFTAR	IC

		2.1.1	Pengertian Data Vektor	3
	2.2	Tutoria	l Membuat data vektor	4
3	SUM	BER-SU	IMBER DATA GEOSPASIAL	5
	3.1	SUMB	ER-SUMBER DATA GEOSPASIAL	5
		3.1.1	Pendahuluan	7
4	WFS	DAN W	cs	11
	4.1	WFS D	OAN WCS	11
		4.1.1	Web Feature Service(WFS)	11
		4.1.2	Cara Membuat Peta Indonesia Melalui WFS	13
5	Datu	m WGS	84 DAN NAD83	15
	5.1	Datum	WGS84 DAN NAD83	15
		5.1.1	Pengertian DATUM	15
Daft	ar Pust	aka		17
Inde	X			19

DAFTAR GAMBAR

2.1	peroses instalasi python	4
2.2	pengecekan python	4
3.1	Ina Geoportal	7
3.2	USGS Earth Explorer	8
3.3	USGS Data Worldclim	8
3.4	Global Forest Change	9
3.5	Data Tanah Soil Grid	9
3.6	USGS GloVis	10
3.7	Theia- Land Data Center	10
4.1	menunjukkan bagaimana WFS mengubah permintaan menjadi respons	13
4.2	Mengcopy folder data	14

DAFTAR TABEL

5.1 Ellipsoid Geosentrik WGS84

16

Listings

FOREWORD	
Sepatah kata dari Kaprodi, Kabag Kemahasiswaan dan Mahasiswa	

KATA PENGANTAR

Buku ini diciptakan bagi yang awam dengan git sekalipun.

R. M. AWANGGA

Bandung, Jawa Barat Februari, 2019

ACKNOWLEDGMENTS

Terima kasih atas semua masukan dari para mahasiswa agar bisa membuat buku ini lebih baik dan lebih mudah dimengerti.

Terima kasih ini juga ditujukan khusus untuk team IRC yang telah fokus untuk belajar dan memahami bagaimana buku ini mendampingi proses Intership.

R. M. A.

ACRONYMS

ACGIH American Conference of Governmental Industrial Hygienists

AEC Atomic Energy Commission

OSHA Occupational Health and Safety Commission

SAMA Scientific Apparatus Makers Association

GLOSSARY

git Merupakan manajemen sumber kode yang dibuat oleh linus tor-

vald.

bash Merupakan bahasa sistem operasi berbasiskan *NIX.

linux Sistem operasi berbasis sumber kode terbuka yang dibuat oleh Li-

nus Torvald

SYMBOLS

- A Amplitude
- & Propositional logic symbol
- a Filter Coefficient
- B Number of Beats

INTRODUCTION

ROLLY MAULANA AWANGGA, S.T., M.T.

Informatics Research Center Bandung, Jawa Barat, Indonesia

Pada era disruptif saat ini. git merupakan sebuah kebutuhan dalam sebuah organisasi pengembangan perangkat lunak. Buku ini diharapkan bisa menjadi penghantar para programmer, analis, IT Operation dan Project Manajer. Dalam melakukan implementasi git pada diri dan organisasinya.

Rumusnya cuman sebagai contoh aja biar keren[1].

$$ABCD\mathcal{E}\mathcal{F}\alpha\beta\Gamma\Delta\sum_{def}^{abc}\tag{I.1}$$

PENGENALAN SISTEM INFORMASI GEOGRAFIS

1.1 Definisi GIS

Sistem Informasi Geografis atau disingkat SIG dalam bahasa Inggris Geographic Information System (disingkat GIS) merupakan sistem informasi khusus yang mengelola data yang memiliki informasi spasial (bereferensi keruangan). Atau dalam arti yang lebih sempit adalah sistem komputer yang memiliki kemampuan untuk membangun, menyimpan, mengelola dan menampilkan informasi bereferensi geografis atau data geospasial untuk mendukung pengambilan keputusan dalam perencanaan dan pengelolaan suatu wilayah, misalnya data yang diidentifikasi menurut lokasinya, dalam sebuah database. Para praktisi juga memasukkan orang yang membangun dan mengoperasikannya dan data sebagai bagian dari sistem ini. Teknologi Sistem Informasi Geografis dapat digunakan untuk investigasi ilmiah, pengelolaan sumber daya, perencanaan pembangunan, kartografi dan perencanaan rute. Misalnya, SIG bisa membantu perencana untuk secara cepat menghitung waktu tanggap darurat saat terjadi bencana alam, atau SIG dapat digunaan untuk mencari lahan basah (wetlands) yang membutuhkan perlindungan dari polusi atau dapat digunakan mencari informasi sebuah tempat khusus dan banyak manfaat lain yang dapat ikembangkan dalam sistem informasi geografis ini.

MEMBUAT DATA VEKTOR

2.1 Membuat Data Vektor

Disusun oleh:

Eko cahyono putro 1164035 Nur Arkhamia Batubara 1164049

2.1.1 Pengertian Data Vektor

Data vektor merupakan tipe data yang umum ditemukan dalam SIG. Sebuah vektor pada intinya merupakan sesuatu yang berbentuk sebuah titik, atau garis yang menghubungkan titik-titik tersebut. Dengan kata lain, titik, garis, dan poligon merupakan vektor (garis lengkung merupakan vektor juga).

Salah satu hal yang penting untuk dicatat adalah *layer* QGIS hanya mengandung satu tipe fitur. Artinya, satu layer tidak dapat mengandung fitur titik dan fitur garis, karena mereka merupakan tipe data yang berbeda. Namun apabila anda ingin memiliki sebuah *file* yang memiliki *polygon* sekolah dan file lain yang memiliki titik-titik sekolah, anda dapat menambahkan mereka sebagai dua *layer* yang terpisah[2].

2.2 Tutorial Membuat data vektor

Hal pertama yang harus dilakukan untuk membuat data vektor adalah :

1. Menginstall python 3.6.6

Gambar 2.1 peroses instalasi python

2. Untuk mengecek apakan python sudah terinstall atau belum bisa menggunakan command prompt pada computer anda.

Gambar 2.2 pengecekan python

SUMBER-SUMBER DATA GEOSPASIAL

3.1 SUMBER-SUMBER DATA GEOSPASIAL

Istilah geospatial data dapat juga diganti dengan spatial data atau data GIS (geospatial information system data) adalah data tentang aspek fisik dan administratif dari sebuah objek geografis. Aspek fisik di sini mencakup pula bentuk anthropogenic dan bentuk alam baik yang terdapat di permukaan maupun di bawah permukaan bumi. Bentuk anthropogenic mengandung di dalamnya fenomena seperti jalan, rel kereta api, bangunan, jembatan, dan sebagainya. Juga terdapat bentuk alam tertentu saja yakni sungai, danau, pantai, daratan tinggi, dan sebagainya. Sedangkan aspek administratif adalah pembagian atau pembatasan sosio-kultural yang dibuat oleh suatu organisasi atau badan untuk keperluan pengaturan dan pemakaian sumberdaya alam. Termasuk dalam aspek administratif ini adalah batas negara, pembagian wilayah administrasi, zona, kode pos, batas kepemilikan tanah, dan sebagainya.

Sumber informasi tercetak yang dianjurkannya adalah "GIS Data Sources" karangan Decker (terbitan John Wiley & Sons, 2001) dan "GIS and Public Data" karangan Ralston (terbitan Dalmar Learning, 2004). Beberapa portal dan clearing house internasional juga menyediakan informasi tentang sumber-sumber data GIS, misalnya:

6	SUMBER-SUMBER DATA GEOSPASIAL
1.	Geospatial One-Stop
2.	National Spatial Data Clearinghouse
3.	GIS Data Depo
4.	Geography Network
5.	USGS EROS Data Center
6.	The National Map
7.	NGA Geospatial Engine
8.	The Harvard Geospatial Library
9.	Alexandria Digital Library
10.	Global Land Cover Facility
S	ementara penjaja data swasta internasional yang dianggap populer adalah:
1.	ESRI
2.	East View Cartographic
3.	Map Mart
4.	GfK Macon
5.	GIS Data Depot
6.	LAND INFO
7.	LeadDog Consulting
8.	Collins-Bartholomew
9.	ACASIAN
10.	Digital Globe
11.	GeoEye
12.	MapInfo

3.1.1 Pendahuluan

Dalam dunia geospasial tidak jauh dengan data spasial. Data spasial ibarat hokum mutlak diperlukan dalam membuat peta atau melakukan analisis spasial. Namun kendalanya tidak semua data-data yang diperlukan tersedia. Dalam uraian berikut akan membahas sumber data spasial dari open geodata.

1. Ina Geoportal Ina Geoportal adalah sumber data geospasial resmi untuk Indonesia yang dibangun, dipelihara dan diawasi langsung oleh Badan Informasi Geospasial (BIG) yang di mana merupakan lembaga pemerintah yang bertanggung jawab penuh atas data geospasial nasional. Melalui Ina Geoportal ini kita dapat men-download data-data peta rupa bumi dalam skala 250 ribu, 50 ribu dan 25 ribu. Proses mendapatkan datanya pun cukup mudah, Kita hanya perlu mengisikan Nama, email, jenis data RBI, jenis pengguna dan terakhir tentu saja kita harus menyetujui ketentuan undang-undang yang berlaku. Pada gambar 4.1 merupakan tampilannya

Gambar 3.1 Ina Geoportal

- 2. USGS Earth Explorer USGS earth explorer merupakan sumber data spasial yang disediakan oleh lembaga survey geologi Amerika Serikat. Di earth explorer ini disediakan cukup banyak sekali data dengan berbagai macam tema, resolusi dan sensor, seperti citra satelit, Lidar, cuaca, radar, landcover dan lain sebagainya. Data-data tersedia umumnya mencakup data di wilayah Amerika. Namun, tidak hanya data-data tersebut yang tersedia melainkan data-data dengan cakupan global seperti data Digital Elevation Model (DEM), SRTM, citra satelit Landsat, monitoring vegetasi dan lain-lain. Pada gambar 3.2 merupakan tampilannya
- 3. Worldclim Worldclim adalam sumber data geospasial yang menyediakan data curah hujan guna melakukan proses analisis spasial yang tersedia dalam format spasial. Worldclim menyuguhkan data curah hujan dan data iklim secara umum yang meliputi temperatur tahunan serta bulanan. Data ini diperoleh dari stasiun-stasiun cuaca di seluruh dunia yang dikumpulkan jadi satu dari tahun 1960-1990 (versi 1.4) dan 1970-2000 (versi 2). Data-data yang dikumpulkan

Gambar 3.2 USGS Earth Explorer

kemudian diolah dan dianalisa sehingga dapat diprediksi data iklim untuk masa lalu, sekarang dan masa yang akan datang. Jadi, data ini bukan termasuk data realtime, akan tetapi analisa data iklim selama 30 tahun. Data wordelim dapat diperoleh dalam format raster dengan resolusi 1 km. Pada gambar 3.3 merupakan tampilannya

Gambar 3.3 USGS Data Worldclim

- 4. Global Forest Change Global Forest Change seperti merupakan data yang memonitor perubahan hutan. Data ini diperoleh dari analisis time series citra satelit Landsat mulai tahun 2000, dan terus diperbaharui secara berkala. Sampai saat tulisan ini ditulis data yang tersedia sampai tahun 2014. Karena dianalisa dari data citra satelit Landsat maka data ini memiliki resolusi 30 meter, sehingga cocok untuk digunakan untuk analisa data dengan skala menengah. Data ini dikelola oleh Universitas Maryland Amerika Serikat. Cakupan data ini bersifat global dan dapat didownload dalam format "tif" dengan satu tile/scene berukuran 10 derajat x 10 derajat. Pada gambar 3.4 merupakan tampilannya
- 5. Soil Grid Soil Grid menyediakan informasi data tanah secara global. Karena sifatnya global tentu saja memiliki akurasi yang kasar dibandingkan dengan

Gambar 3.4 Global Forest Change

data jenis tanah dengan cakupan nasional atau provinsi. Data soil grid diperoleh dari analisa data-data tanah secara global yang diolah secara statisitk dengan metode kovarian dan regresi. Jenis tanah, kandungan carbon, air, gypsum dan lain-lain baik untuk tanah lapisan atas(top soil) maupun lapisan bawah (sub soil) adalah informasi yang dapat diperoleh dari Soil Grid. Data tersebut dapat didownload dalam format geotiff. Pada gambar 3.5 merupakan tampilannya

Gambar 3.5 Data Tanah Soil Grid

- 6. USGS GloVis Sumber data geospasial yang menyediakan data geografis tentang bahaya alam yang mengancam kehidupan dan mata pencaharian, air, energi, mineral, dan sumber daya alam lainnya. Juga dampak kesehatan ekosistem dan lingkungan sekitar serta dampak perubahan iklim dan penggunaan lahan. Ilmuwan USGS GloVis sedang mengembangkan metode dan alat baru untuk memungkinkan informasi yang tepat waktu, relevan, dan berguna tentang Bumi dan prosesnya. Pada gambar 3.6 merupakan tampilannya
- 7. Theia- Land Data Center Theia-Land Data Center adalah organisasi antar-lembaga nasional Prancis yang dirancang untuk mendorong penggunaan gambar yang didapatkan dari hasil pengamatan ruang permukaan tanah. Theia menawarkan komunitas ilmiah dan aktor kebijakan publik dari berbagai gambar di berbagai skala, metode dan layanan. Pada gambar 3.7 merupakan tampilannya

Gambar 3.6 USGS GloVis

Gambar 3.7 Theia- Land Data Center

WFS DAN WCS

4.1 WFS DAN WCS

4.1.1 Web Feature Service(WFS)

Web Feature Service (WFS) merupakan penyedia antarmuka yang memungkinkan permintaan atau request untuk fitur geografis di seluruh web menggunakan panggilan platform-independen. operasi dasarnya termasuk GetCapabilities, DescribeFeature-Type dan GetFeature. Seseorang dapat berpikir tentang fitur geografis sebagai "kode sumber" di belakang peta, sedangkan antarmuka WMS atau online pemetaan portal keramik seperti Google Maps kembali hanya gambar, yang akhir-pengguna tidak dapat mengedit atau spasial menganalisis [3]. WFS dapat berupa layanan publikasi data geospasial pada tingkat fitur data spasial melalui media web. Disamping penyajian data spasial melalui gambar/image yang dilakukan oleh WMS, klien dapat memperoleh informasi data geospasial hingga ke lever fitur yaitu baik geometri maupun data atributnya. Spesifikasi OGC untuk WFS menggunakan teknologi XML (Extensible Markup Language) dan protokol HTTP (Hyper Text Transfer Protocol) sebagai media penyampaiannya [4]. Web Feature Service (WFS) merupakan suatu perubahan dalam pembuatan, pertukaran dan modifikasi data informasi geografis dalam inter-

net. Perbedanya dengan WMS terletak pada kemampuan WFS melakukan publikasi data spasial hingga pada tingkatan unsur. Client WFS dapat memperoleh informasi unsur spasial dalam bentuk vektor, baik pada tingkatan geometri maupun atributnya. Salah satu format data WFS yang paling sering digunakan adalah GeoJSON. GeoJSON menurut situs resminya geojson.org adalah suatu format encoding dari berbagai struktur data spasial. GeoJSON mencakup format-format data geometry berikut: Point, LineString, Polygon, MultiPoint, MultiLineString, dan MultiPolygon [5]. Meskipun sumber data dalam layanan WFS bervariasi tergantung pada server yang digunakan, database geografis, shapefile adalah suatu keharusan. OGC tidak memberlakukan batasan apa pun pada masalah ini. Selain itu, data yang disajikan adalah GML [6], format pertukaran data berbasis XML. Selain itu, tergantung pada server yang digunakan dalam format berbeda seperti GeoJSON, CSV (Comma Seperated Value), KML, DXF, GeoRSS dapat dilayani.

Dengan WFS, tidak ada aliran data langsung dari server ke klien, sehingga data dapat ditransmisikan dari klien ke server. Pengguna dapat mengubah data pada data yang masuk (menyisipkan, memperbarui, menghapus) untuk mengirimkannya ke server dan memperbarui data. Layanan WFS tersebut disebut Transactional WFS atau WFS-T [7]. Anda dapat menemukan beberapa server yang melayani WFS di bawah ini. Feature server adalah,

- 1. GeoServer,
- 2. Server ArcGIS,
- 3. Server OGIS,
- 4. MapServer (TinyOWS)

Desktop QGIS:

- 1. ArcGIS Desktop (Ekstensi Interoperabilitas),
- 2. uDig,
- 3. OpenLayers,
- 4. Gaia 3,
- 5. GRASS GIS

Sebuah web mapping server yang dapat mengembalikan data geografis aktual yang terdiri dari gambar peta tersebut. Hal ini memungkinkan pengguna untuk dapat membuat peta mereka sendiri dan aplikasi dari data, untuk mengkonversi data antara format tertentu, dan dapat melakukan manipulasi data geografis baku dilayani. Protokol yang digunakan untuk mengembalikan suatu data fitur geografis disebut Web Fitur Layanan (WFS) [8]. Pada gambar 4.1 menunjukkan proses dimana WFS mengubah permintaan menjadi respons.

Operasi dasar dari WFS antara lain adalah GetCapabilities, DescribeFeatureType dan GetFeature. Operasi yang lebih kompleks tersedia dalam layanan WFS-T (Web

Gambar 4.1 menunjukkan bagaimana WFS mengubah permintaan menjadi respons

Feature Service – Transactional) yang memungkinkan pengguna untuk membuat (menyisipkan), menghapus, memperbarui dan mengunci instance fitur, serta fitur query, Sehingga transaksi dapat disimpan dengan benar dalam datastore (misalnya, SQL RDBMS), semantik transaksi diterapkan.

Tidak seperti OGC Web Map Service (WMS), yang menampilkan gambar peta, layanan WFS menampilkan fitur sebenarnya dengan geometri dan data atribut yang dapat digunakan dalam semua jenis analisis geospasial. Layanan WFS juga mendukung filter yang memungkinkan pengguna untuk melakukan query spasial dan pengaturan data atribut.

Layanan WFS menggunakan Geography Markup Language (GML) untuk menyandikan data fitur. Adapun GML ialah cara untuk merepresentasikan informasi geografis menggunakan XML (Extensible Markup Language) [9].

Web Feature Service merupakan suatu layanan publikasi data geospasial pada tingkat fitur data spasial melalui media web. Disamping penyajian data spasial melalui gambar yang dilakukan oleh WMS, pengguna dapat mendapatkan informasi data geospasial hingga ke lever fitur yaitu baik geometri maupun data atributnya. Spesifikasi OGC untuk WFS menggunakan teknologi Extensible Markup Language dan protocol Hyper Text Transfer Protocol sebagai media penyampaiannya.

4.1.2 Cara Membuat Peta Indonesia Melalui WFS

1. Pertama yaitu copy kan folder data

Gambar 4.2 Mengcopy folder data

DATUM WGS84 DAN NAD83

5.1 Datum WGS84 DAN NAD83

5.1.1 Pengertian DATUM

Datum merupakan sebuah istilah yang dicetuskan oleh Alfred North Whitehead untuk menunjukan berbagai varian informasi yang dimiliki oleh entitas aktual. Di dalam sistem filsafat proses, datum dapat diperoleh melalui peristiwa konkresi. Setiap entitas aktual memiliki berbagai macam datum. Saat entitas aktual sudah mencapai kepenuhannya, satisfaction, ia akan mengalami peristiwa yang biasa disebut konkresi. Peristiwa inilah yang membuat entitas aktual memberikan informasi-informasi bagi potensi terbentuknya entitas aktual lainnya. Informasi-informasi inilah yang disebut dengan datum. Di dalam setiap peristiwa prehensi datum dapat diterima sebagai potensi informasi yang relevan dalam pembentukan entitas aktual dan datum dapat ditolak berdasarkan pertimbangan relevansi entitas aktual yang akan terbentuk. Proses diterimanya datum sebagai informasi relevan dari entitas aktual lainnya melalui peristiwa prehensi yang disebut sebagai prehensi positif. Proses ditolaknya datum sebagai informasi relevan dari entitas aktual lainnya melalui peristiwa prehensi yang disebut sebagai prehensi positif. Satu potensi entitas aktual merasakan

banyak datum dari berbagai entitas aktual yang ada di dalam semesta. Ketika entitas aktual hendak mewujudkan dirinya, ia akan merasakan banyak datum. Datum yang dirasakan oleh entitas aktual merupakan datum-datum yang telah mengalami proses penolakan dan proses penerimaan yang panjang di dalam ruang dan waktu oleh entitas aktual melalui prehensi. Datum yang diterima sebagai informasi yang relevan bagi suatu potensi terbentuknya entitas aktual yang baru, merupakan datum yang telah mengalami proses ditolak dan diterima melalui prehensi oleh entitas aktual sebelumnya. Datum yang lahir dari peristiwa konkresi merupakan datum-datum yang khas dan baru. Datum yang satu berbeda dengan datum yang lainnya. Sebuah entitas aktual terdiri dari berbagai macam datum. Datum-datum ini terbentuk secara unik melalui peristiwa konkresi. Datum geodetik atau referensi permukaan atau georeferensi merupakan parameter yang digunakan sebagai acuan untuk mendefinisikan geometri ellipsoid bumi. Datum geodetik diukur menggunakan metode manual hingga metode yang memiliki akurasi yang lebih akurat, yakni menggunakan satelit.

Tabel 5.1 Ellipsoid Geosentrik WGS84

Parameter	Notasi	Nilai
Sumbu Panjang	a	6378137 m
Penggepengan	f	1/298.257223563
Kecepatan Sudut Bumi	W	$7292115.0 \times 10^{-11} \text{ rad }$ s ⁻¹
Konstanta Gravitasi Bumi (termasuk massa atmosfernya)	GM	3986004.418 x 108 $\text{m}^3 s^{-2}$

DAFTAR PUSTAKA

- R. Awangga, "Sampeu: Servicing web map tile service over web map service to increase computation performance," in *IOP Conference Series: Earth and Environmental Science*, vol. 145, no. 1. IOP Publishing, 2018, p. 012057.
- A. Setiawan, Membuka Wawasan dengan Geografi untuk Kelas X SMA/MA. Deepublish, 2018.
- F. Franto and A. Bahri, "Integrasi perangkat lunak arcgis 9.3, xampp, mapserver for window dan geoserver dalam rangka penyusunan peta geologi pulau bangka digital berbasis web," PROMINE, vol. 3, no. 2, 2015.
- D. K. Ayuningtias, "Aplikasi pemantauan kondisi bangunan daerah irigasi berbasis geographic information system (gis)(studi kasus jaringan irigasi rentang)," Ph.D. dissertation, Universitas Widyatama, 2014.
- 5. Y. Wibowo, "Seminar nasional teknologi terapan 2016 sekolah vokasi universitas gadjah mada. yogyakarta, 19 november 2016."
- A. P. Putri, "Pembuatan web mapping bangunan cagar budaya untuk mengetahui pendapatan asli daerah (studi kasus: Kabupaten mojokerto, jawa timur)," Ph.D. dissertation, ITN Malang, 2018.
- 7. N. B. Khair, "Pembuatan sistem informasi tempat wisata di kabupaten banyuwangi berbasis web mapping," Ph.D. dissertation, ITN MALANG, 2016.
- K. M. Purab, "Penyajian hasil survei pemetaan kawasan pesisir dan pulau-pulau kecil," Ph.D. dissertation, ITN Malang, 2015.

18 DAFTAR PUSTAKA

9. T. Aditya, "Peluang dan tantangan integrasi peta dan aplikasi geospasial melalui pemetaan kolaboratif berbasis srgi 2013."

Index

disruptif, xxix modern, xxix