1. Introduction

This document serves as the Data Appendix for the time series project "Spring Arrival Weather Data". It provides a structured overview of the datasets and transformations applied, from raw input data to analysis data.

2. Data Pipeline Workflow

Step 1: Input Data Files

Charlottesville Weather Data (charlottesville_weather.csv)

• Unit of Observation:

Each row represents a **daily weather observation** in Charlottesville, Virginia.

• Key Variables:

- o time The date of the weather observation
- Precipitation (mm) Daily precipitation in millimeters
- Wind Direction (°) Wind direction in degrees
- Wind Speed (km/h) Wind speed in kilometers per hour
- Pressure (hPa) Atmospheric pressure in hectopascals
- Avg Temp (°F) Average daily temperature (converted from Celsius)
- Min Temp (°F) Minimum daily temperature (converted from Celsius)
- Max Temp (°F) Maximum daily temperature (converted from Celsius)

• Purpose:

This **raw dataset** is the primary source of daily weather observations used to investigate winter temperature patterns and define whether Charlottesville reaches 60°F by March 20.

• **Processing Steps:** Data was acquired from a weather API (e.g., Meteostat), columns were renamed, temperatures were converted from Celsius to Fahrenheit, then the file was sorted by date and saved as charlottesville weather.csv.

Step 2: Cleaned Data

Cleaned Weather Data (cleaned charlottesville weather.csv)

• Unit of Observation:

Each row is still a **daily weather observation** in Charlottesville, but now cleaned and preprocessed.

• Key Variables:

- time Date of observation (sorted)
- Precipitation (mm), Wind Direction (°), Wind Speed (km/h), Pressure (hPa) –
 Same as raw data, but cleaned
- Avg Temp (°F), Min Temp (°F), Max Temp (°F) Temperature columns, with missing values interpolated

• Purpose:

This intermediate dataset ensures missing values are handled (via interpolation/backfilling) and that data is sorted and ready for further aggregation.

• **Processing Steps:** Missing values in the raw daily data were addressed via linear interpolation and backfill, and the cleaned, sorted dataset was saved as cleaned charlottesville weather.csv.

Step 3: Analysis Data

Logistic Regression Data (merged_charlottesville_weather.csv)

• Unit of Observation:

Each row corresponds to **one winter season** (December through March).

- o For December, the year remains the same.
- For January, February, and March, the season is assigned to the previous December's year.

• Key Variables:

- Season_Year Identifier for the winter season (e.g., 2024 if it's December 2024 to March 2025)
- AvgTemp_Mean, AvgTemp_Min, AvgTemp_Max, AvgTemp_Std Aggregated temperature statistics
- Prcp Sum, Prcp Mean Total and average precipitation over the winter months
- Pressure Mean Average atmospheric pressure for the season
- WindSpeed Mean Average wind speed
- Spring_Arrival Binary variable: 1 if any day on or before March 20 reached ≥60°F, else 0

• Purpose:

This dataset is used for **logistic regression analysis** to predict whether Charlottesville

reaches 60°F by March 20 based on aggregated winter weather features.

• **Processing Steps:** The cleaned data was aggregated by winter season (December–March) to compute summary statistics (mean, min, max, std, etc.), a binary target was defined (≥60°F by March 20 or not), and the resulting season-level dataset was saved as merged_charlottesville_weather.csv.

3. Summary Statistics and Visualizations

Spring Arrival (0 = Late, 1 = Early)

Summary Statistics for Weather Features (Merged Data)

	count	mean	Sta	min	max
AvgTemp_Mean	22.0	41.84	2.99	37.47	46.4
AvgTemp_Min	22.0	18.96	4.84	10.4	28.76
AvgTemp_Max	22.0	67.08	3.74	59.72	73.22
AvgTemp_Std	22.0	10.05	1.15	8.08	12.04
Prcp_Sum	22.0	144.16	103.9	0.0	373.0
Prcp_Mean	22.0	1.21	0.88	0.0	3.06
Pressure_Mean	22.0	1018.7	1.27	1015.43	1020.68
WindSpeed_Mean	22.0	8.52	0.87	6.97	9.93