

Status of Track-based Geometry in the Endcap

Jim Pivarski

Alexei Safonov

Texas A&M University

Károly Banicz

US-CMS

12 December, 2008

- CSC Overlaps results in more detail
- ▶ Plan to align endcap disks/rings with standAloneMuons, with cross-checks
- Proposed procedure for combining photogrammetry, hardware, and track-based results in the endcap

- ▶ Baseline alignment procedure shown to require 10–100 pb⁻¹ for a few hundred micron precision
- Quicker alternative:
 - 1. relative alignment of chambers in each ring (CSC Overlaps)
 - 2. align whole ring with a small number of quality tracks
- Particularly good for layer alignment

Overlaps chamber alignment:

- select tracks that pass through overlap of chambers in a ring
- require consistency in pair of segments: slope and intercept
- 3. solve system

System is over-constrained: must be consistent with a circle ("closure")

Interdependencies between alignment parameters are unidirectional

- 0. Fit segment of track in each chamber to $\phi(z) = a + bz$
- 1. Align φ_y angles (rotation around vertical axis)

$$\Delta b \rightarrow 0$$

2. Align $r\phi$ positions (rotation around beamline)

$$\Delta a \rightarrow 0$$

3. Align φ_z angles (rotation in the detector plane)

$$d(\Delta a)/dy \rightarrow 0$$

- Parameters decouple when aligned in this order (for example, φ_y depends only on Δb , but $r\phi$ depends on Δa and Δb)
- ▶ These are all of the rigid-body parameters accessible to overlaps tracks

Demonstration in Monte Carlo Jim Pivarski

- Randomly misalign chambers and apply procedure using beam-halo Monte Carlo
 - statistics are roughly the same as September beam-halo
 - some chambers have more tracks, others less because ϕ distribution not perfectly modeled
- Plot aligned position minus true position in simulation (resolution)
- Unaligned is grey, aligned is yellow; one histogram entry per chamber
 - $\delta \varphi_{v} \sim 1 \text{ mrad}, \quad \delta r \phi \sim 230 \ \mu \text{m}, \quad \delta \varphi_{z} \sim 0.25 \text{ mrad}$

Alignment in real data

- ► Aligned ME-2/1 and ME-3/1 using beam-halo data
- Compared with photogrammetry
 - only track-based alignment sensitive to φ_y (only two alignment pins)
- Plot corrections relative to ideal geometry for each chamber
 - track-based: solid histogram
 - photogrammetry: blue points
- Physical misalignments are \sim 2 mrad in φ_y , 1 mm in $r\phi$, and 1 mrad in φ_z
- Corrections from independent methods follow each other closely

MF-2/1 chamber number

Alignment in real data

- ► Aligned ME−2/1 and ME−3/1 using beam-halo data
- Compared with photogrammetry
 - only track-based alignment sensitive to φ_y (only two alignment pins)
- Plot corrections relative to ideal geometry for each chamber
 - track-based: solid histogram
 - photogrammetry: blue points
- Physical misalignments are \sim 2 mrad in φ_y , 1 mm in $r\phi$, and 1 mrad in φ_z
- Corrections from independent methods follow each other closely

MF-3/1 chamber number

7/16

Determine accuracy from PG Jim Pivarski

- \triangleright RMS difference between track-based and PG: 340 μ m, 0.42 mrad
- Photogrammetry $r\phi$ uncertainty is $(300/\sqrt{2}) \mu m = 210 \mu m$
- $r\phi$ errors in track-based method alone = $\sqrt{340^2 210^2} = 270 \ \mu \text{m}$
- φ_z errors = $\sqrt{0.42^2 (0.3 \cdot \sqrt{2} \text{ mm}/1.85 \text{ m})^2} = 0.35 \text{ mrad}$

- ▶ Each residual distribution represents the difference in alignment between two chambers
- ▶ Must sum to zero: $(x_1 x_2) + (x_2 x_3) + ... + (x_N x_1) = 0$
- $\triangleright \varphi_v$ and φ_z residuals have always summed to zero ("closed")
- $ightharpoonup r\phi$ residuals closed in MC, but not in data
- Agreement with photogrammetry ruled out possibility of alignment mistake; pointed to error in CMSSW chamber description
 - active volume of chambers is 2.5 mm closer to beamline, or
 - active volume is 800 μ m wider than in description
- ▶ Oleg found 10 μ m rounding error in strip width description
 - multiplied by \sim 80 strips \approx 800 μ m wider active volume
- ▶ Implemented correction; ME-2/1, -3/1 closure is now perfect!

		before (mm)	after (mm)
$\sum (r\phi_i - r\phi_{i+1})$	ME-2/1	+14.30	-0.72 ± 0.42
chamber i	ME - 3/1	+15.90	-0.36 ± 0.51

- Strip geometry correction will go into CMSSW_3_0_X (where it won't introduce an error into the existing MC)
- CSCOverlapsAlignmentAlgorithm will go into the new Alignment/MuonAlignmentAlgorithms directory for CMSSW_3_0_X
- ► Triggers and AlCa paths have been defined to collect overlaps data from beam-halo and collisions events
 - we'll probably keep using it into the collisions era, at least until globalMuon methods are fully validated
 - ▶ like the hardware system, it can provide quick monitoring (in $r\phi$, φ_z , and to a lesser extent, φ_v)
 - not likely to work with a cosmic ray track source, but we only need something known to work with beam
 - these results are from 62232 (9 minutes of beam-2)

CSC layer alignment

Jim Pivarski 11/16

- First first look at layer alignment by Karoly in MTCC
- ► Internal chamber data can only simultaneously determine four layers and a straight track, insensitive to shear

method of fixing track to layers 1 and 6:

- Overlap events allow us to add one degree of freedom per chamber
 - five layers is enough to describe complete internal alignment

Plots of layer residuals

Jim Pivarski 12/16

Test in Monte Carlo with 36× statistics (folded all pairs)

▶ residuals (blue points) reproduce misalignment pattern (histogram)

Example in data: chamber 7, layer 1 and chamber 8, layer 6 are fixed

Typical scale and resolution

Jim Pivarski 13/16

- ▶ Observed \sim 100 μ m layer misalignments in ME-2/1 and -3/1
 - technique requires chambers to be previously aligned
 - (and must be followed by a chamber re-alignment)
- About half as large as misalignments observed in MTCC (which was ME+)
- ▶ Resolution with full beam-halo run is 40–100 μ m, hard to see misalignments
- ▶ I have not cross-checked these with FAST measurements yet

Status

- Not yet integrated into an alignment routine: just illustrative plots
- Layers only need to be aligned once
- ▶ Definitive CSC layer alignment will probably be done with early collisions

- globalMuon statistics are very poor in the endcap, and the tight geometric cuts implied by the requirement that they pass through the tracker might be a source of bias
- When we have a standAloneMuon refitter, this is what I have in mind for CRAFT:

► These are the cross-checks that we did in CRUZET, with the addition of linking the barrel to the tracker

Proposed combining procedure Jim Pivarski 15/16 The following makes the best use of all available endcap data:

CMS

Alignment step	Parameters updated	Responsible
1. Photogrammetry	all but φ_y for most chambers	Karoly & Oleg
2. Straight-line monitors	$r\phi$, z , φ_x , φ_z for monitored chambers, averages for the rest	Florida Tech
3. CSC Overlaps	$r\phi$, φ_y , φ_z for all chambers, keeping average of monitored chambers fixed	Texas A&M
4. Disk alignment	whole-disk 6 d.o.f.	Texas A&M

- In the end, photogrammetry supplied the radial positions, SLMs provide z and ϕ_x of disk-bulging and the $r\phi$ connection between rings, Overlaps provide $r\phi$, φ_y , and φ_z of individual chambers, and Disk alignment connects to the tracker (or barrel if there are still globalMuon issues)
- ► Communication at each step proceeds through CSCAlignmentRcds

CSC Overlaps procedure is in good shape

- ► CSC layer alignment can be done with many of the same tools
- StandAlone refitter for cosmics will allow us to do deeper cross-checks of globalMuons and align the endcap disks
- Proposed a procedure for combining results from our complimentary alignments