Homework Quiz 5

Due 27 Oct at 6:00 **Points** 220 **Questions** 22

Available 20 Oct at 6:00 - 27 Oct at 6:00 Time limit None

Instructions

Please keep in mind that in Linear Algebra, definitions are important! Also, a Linear Algebra concept can be described in multiple ways.

If you are not sure what a new term means (homogenous, translation etc) please check its definition from the lecture notes or textbook

This quiz was locked 27 Oct at 6:00.

Attempt history

	Attempt	Time	Score
LATEST	Attempt 1	34 minutes	200 out of 220

Score for this quiz: 200 out of 220

Submitted 27 Oct at 3:45

This attempt took 34 minutes.

Question 1

10 / 10 pts

A and **b** are defined as below. Denote the columns of A by a₁, a₂, a₃.

Is b in the set $\{a_1, a_2, a_3\}$? (not span!)

$$A = \begin{bmatrix} 1 & 0 & -4 \\ 0 & 3 & -2 \\ -2 & 6 & 3 \end{bmatrix}, b = \begin{bmatrix} 4 \\ 1 \\ -4 \end{bmatrix}$$

no

Question 2

10 / 10 pts

A and **b** are defined as below. Denote the columns of A by a_1 , a_2 , a_3 .

How many vectors are in the set $\{a_1, a_2, a_3\}$? (not span!)

$$A = \left[\begin{array}{ccc} 1 & 0 & -4 \\ 0 & 3 & -2 \\ -2 & 6 & 3 \end{array} \right], b = \left[\begin{array}{c} 4 \\ 1 \\ -4 \end{array} \right]$$

2

Correct!

- 3
- 0 4
- 0 1
- 0

Question 3

10 / 10 pts

A and **b** are defined as below. Denote the columns of A by a_1 , a_2 , a_3 , and set $W = \text{Span}\{a_1, a_2, a_3\}$.

Is b in W?

$$A = \left[\begin{array}{ccc} 1 & 0 & -4 \\ 0 & 3 & -2 \\ -2 & 6 & 3 \end{array} \right], b = \left[\begin{array}{c} 4 \\ 1 \\ -4 \end{array} \right]$$

Correct!

- yes
- no

A and **b** are defined as below. Denote the columns of A by a_1 , a_2 , a_3 , and set $W = \text{Span}\{a_1, a_2, a_3\}$.

How many vectors are in W?

$$A = \begin{bmatrix} 1 & 0 & -4 \\ 0 & 3 & -2 \\ -2 & 6 & 3 \end{bmatrix}, b = \begin{bmatrix} 4 \\ 1 \\ -4 \end{bmatrix}$$

- 0
- 0 4
- 2
- 3
- 0 1

Correct!

infinitely many

Question 5

10 / 10 pts

A and **b** are defined as below. Denote the columns of A by a_1 , a_2 , a_3 , and set $W = \text{Span}\{a_1, a_2, a_3\}$.

Is a₁ in W?

$$A = \begin{bmatrix} 1 & 0 & -4 \\ 0 & 3 & -2 \\ -2 & 6 & 3 \end{bmatrix}, b = \begin{bmatrix} 4 \\ 1 \\ -4 \end{bmatrix}$$

- yes
- no

Question 6

10 / 10 pts

A is defined as below.

How many rows of A contain a pivot position?

$$A = \left[\begin{array}{cccc} 1 & 3 & 0 & 3 \\ -1 & -1 & -1 & 1 \\ 0 & -4 & 2 & -8 \\ 2 & 0 & 3 & -1 \end{array} \right]$$

4

Correct!

- 3
- 2
- 0 1
- 0

Question 7

10 / 10 pts

A is defined as below.

Does the equation Ax = b have a solution for each b in R^4 ?

$$A = \left[\begin{array}{cccc} 1 & 3 & 0 & 3 \\ -1 & -1 & -1 & 1 \\ 0 & -4 & 2 & -8 \\ 2 & 0 & 3 & -1 \end{array} \right]$$

- no
- yes

Question 8

10 / 10 pts

A is defined as below.

Can each vector in R⁴ be written as a linear combination of the columns of the matrix *A*?

$$A = \left[\begin{array}{cccc} 1 & 3 & 0 & 3 \\ -1 & -1 & -1 & 1 \\ 0 & -4 & 2 & -8 \\ 2 & 0 & 3 & -1 \end{array} \right]$$

yes

Correct!

no

Question 9

10 / 10 pts

A is defined as below.

Do the columns of A span \mathbb{R}^4 ?

$$A = \left[\begin{array}{cccc} 1 & 3 & 0 & 3 \\ -1 & -1 & -1 & 1 \\ 0 & -4 & 2 & -8 \\ 2 & 0 & 3 & -1 \end{array} \right]$$

yes

Correct!

no

	Question 10	10 / 10 pts
	If x is a nontrivial solution of Ax=0, then every entries the statement true or false?	ry in x is nonzero.
	O True	
Correct!	False	
_	Question 11	0 / 10 pts
	The equation $Ax = b$ is homogeneous if the zero x is the statement true or false?	ector is a solution.
rect answer	O True	
Answered	False	
	Question 12	10 / 10 pts
	The equation $x = x_2u + x_3v$ with x_2 and x_3 as free nor v a multiple of the other), describes a plane the ls the statement true or false?	
Correct!	True	
	○ False	

	Question 13	10 / 10 pts
	The solution set of $Ax = b$ is always obtained by translated set of $Ax = 0$. Is the statement true or false?	iting the solution
	○ True	
Correct!	False	
	Question 14	10 / 10 pts
	If A is $3x3$ with three pivot positions, then $Ax = 0$ has a	nontrivial solution.
	○ True	
Correct!	False	
	Question 15	10 / 10 pts
	If A is $3x3$ with three pivot positions, then $Ax = b$ has a in \mathbb{R}^3 .	solution for every b
Correct!	True	
	○ False	

	Question 16	10 / 10 pts
	If A is $3x3$ with two pivot positions, then $Ax = 0$ has a nontrivi	al solution.
Correct!	True	
	False	
_		
_	Question 17	10 / 10 pts
	If A is $3x3$ with two pivot positions, then $Ax = b$ has a solution in \mathbb{R}^3 .	n for every b
	○ True	
Correct!	False	
_		
	Question 18	0 / 10 pts
	If A is $3x2$ with two pivot positions, then $Ax = 0$ has a nontrivi	al solution.
ou Answered	True	
orrect answer	False	
L		

Question 19

10 / 10 pts

	If A is $3x2$ with two pivot positions, then $Ax = b$ has a solution for every b in \mathbb{R}^3 .
	O True
Correct!	False
	Question 20 10 / 10 pts
	If A is $2x4$ with two pivot positions, then $Ax = 0$ has a nontrivial solution.
Correct!	True
	False
	Question 21 10 / 10 pts
	If A is $2x4$ with two pivot positions, then $Ax = b$ has a solution for every b in \mathbb{R}^2 .
Correct!	True
	False
	Question 22 10 / 10 pts
	Consider the system of equations

$$x_1 + 2x_2 - 3x_3 = 5$$

 $2x_1 + x_2 - 3x_3 = 13$

$$-x_1+x_2=-8$$

What is a parametric form of the solution set, and how can we visualize it? Here c is a free scalar parameter.

x = [1; 1; 1] + c[7; -1; 0]This describes a line which ha

This describes a line which passes through the points [7; -1; 0] and [1; 1; 1].

x = [1; 1; 1] + c[7; -1; 0]

This describes a plane which passes through the origin and the points [7; -1; 0] and [1; 1; 1].

x = [7; -1; 0] + c[1; 1; 1]

This describes a plane which passes through the origin and the points [7; -1; 0] and [1; 1; 1] .

x = [7; -1; 0] + c[1; 1; 1]

This describes a line which passes through the origin and the point [7; -1; 0].

x = [7; -1; 0] + c[1; 1; 1]

This describes a line which passes through the points [7; -1; 0] and [1; 1; 1].

x = [7; -1; 0] + c[1; 1; 1]

This describes a line which passes through the origin and the point [1; 1; 1]

Correct!

$$x = [7; -1; 0] + c[1; 1; 1]$$

This describes a line which passes through the points [7; -1; 0] and [8; 0; 1]

.

Quiz score: 200 out of 220