CS410 Project Proposal - Automatic Crawler of Faculty Pages

Net IDs: ap41, gangyao2, sg54
Group Name: Team Texas

Project Scope:

- 1. Develop an automatic crawling tool that grabs URLs from a given university web page.
- 2. Train a classification model with a training instance for determining if a URL corresponds to a faculty directory page.
- 3. Identify the URLs corresponding to faculty member biographies.
- 4. Validate the classification models.

One possible solution is depicted in the following figure, showing how we can combine a Classification Model with page structure analysis.

The following figure describes how the Classification Model will use a Training Set to build the model and a Test Set to measure the accuracy.

Project Overview:

- What is the function of the tool?
 - Crawling a university home page to find a URLs of faculty directory pages.
 An example of this would be:
 - https://anthropology.stanford.edu/people/faculty
 - Given the faculty directory page, the automatic crawler should again identify each faculty URL. Example: https://aa.stanford.edu/people/faculty/grid
- Who will benefit from such a tool?
 - We believe our tool can be expanded upon for a variety of use cases involving a full repository of faculty across universities.
 - Some use case examples include:
 - Users trying to establish a faculty census at a university.

- Students looking to contact people working on common areas of research. Once the automatic crawler is integrated with a system like the *ExpertSearch*, such use case will be possible.
- PhD applicants looking for specific instructors/Pls to work with based on the field they are focused on.
- Organizations looking for people with the expertise to solve problems faced in the industry.
- Does this kind of tool already exist? If similar tools exist, how is your tool different from them? Would people care about the difference?
 - In terms of finding research papers and experts at universities around the world, it seems like GoogleScholar has been of great use in recent years.
 - There are instances of very robust commercial topic crawlers assisted by AI: https://www.scrapestorm.com
 - Even in the specific topic of interest (faculty pages), there have been efforts: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6114776/
 - Our tool would be different from these in that it would serve to build a framework with which to access the information for any faculty member belonging to any university. It will be general and easily extended to fit any use case requiring this information.
- What existing resources can you use?
 - A tool like scrapy (https://scapy.net/) would allow us to make the process of finding URLs and anchor texts easier, which will be the main input for our *Prediction Models (Classifiers)*.
 - The existing faculty pages in the ExpertSearch system can be used as
 positive examples in training our Prediction Model. We still need to acquire
 negative example by crawling/scraping different kinds of websites.
 - A library such as scikit-learn (https://scikit-learn.org/stable/) is a good option to train the Classification Model.
 - Scikit-learn SVM library to train the SVM classification model or
 - Scikit-learn Naïve Bayes library to train the Naïve Bayes classification model.
- What techniques/algorithms will you use to develop the tool? (It's fine if you just mention some vague idea.)
 - We will use a Machine Learning Model such as Logistic Regression or SVM, Naïve Bayes or Pattern-Based Classification like DPClass to develop the tool.
 - To evaluate the classifier, we will use F-measure and a test set which will be independent from the training set.
 - The URLs should be tokenized and passed to our Classifier. We could also use the anchor text as an input to avoid problems such as an "empty URL".
 - o The crawler would have courtesy considerations to avoid robot exclusion.

- In the implementation we might need a mechanism where the crawler should abandon fruitless explorations.
- We are considering that the crawler will follow a Breadth-First exploration logic.
- How will you demonstrate the usefulness of your tool?
 - With a set of University URLs (preferably not in the training set) the tool will output the faculty URLs.
- A very rough timeline to show when you expect to finish what. (The timeline doesn't have to be accurate.)

References:

- Allison C. Morgan, Samuel F. Way, Aaron Clauset, Automatically assembling a full census of an academic field. PLoS ONE, April 2018, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6114776/
- 2. A Comprehensive Study of Features and Algorithms for URL-Based Topic Classification, https://ingmarweber.de/wp-content/uploads/2013/07/A-Comprehensive-Study-of-Features-and-Algorithms-for-URL-Based-Topic-Classification.pdf