FORMULÁRIO - CONTROLE ESTATÍSTICO DO PROCESSO

p/ Média	p/ Amplitude
$LCS = \overline{\overline{x}} + A_2 \overline{R}$	$LCS = D_4 \overline{R}$
$LC = \overline{\overline{x}}$	$LC = \overline{R}$
$LCI = \overline{\overline{x}} - A_2 \overline{R}$	$LCI = D_3 \overline{R}$

$$\overline{R} = \frac{\sum_{i=1}^{k} R_i}{k} = \frac{R_1 + R_2 + \dots + R_k}{k}$$

$$\overline{\overline{x}} = \frac{\sum_{i=1}^{k} \overline{x}_i}{k} = \frac{\overline{x}_1 + \overline{x}_2 + \dots + \overline{x}_k}{k}$$

$$\overline{x}_i = \frac{\sum_{j=1}^{n} x_j}{n}; \qquad R_i = X_j (MAX) - X_j (MIN)$$

$$C_p = \frac{LES - LEI}{6\hat{\sigma}}$$

$$C_{pk} = \min\left\{\frac{LES - \overline{\overline{x}}}{3\hat{\sigma}}, \frac{\overline{\overline{x}} - LEI}{3\hat{\sigma}}\right\}$$

$$\hat{\sigma} = \frac{\overline{R}}{d_2}, \qquad \hat{\sigma} = \frac{\overline{s}}{c_4}, \qquad z = \frac{LE - \overline{\overline{x}}}{\hat{\sigma}}$$

p/ Média	p/ Desvio Padrão
$LCS = \overline{\overline{x}} + A_3 \overline{s}$	$LCS = B_4 \overline{s}$
$LC = \overline{\overline{x}}$	$LC = \overline{s}$
$LCI = \overline{\overline{x}} - A_3 \overline{s}$	$LCI = B_3 \overline{s}$

$$\bar{s} = \frac{\sum_{i=1}^{k} s_i}{k} \qquad s_i = \sqrt{\frac{\sum_{j=1}^{n} (x_j - \bar{x})^2}{n - 1}}$$

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n - 1}} \qquad s = \sqrt{\frac{\sum_{i=1}^{n} x_i^2 - (n\bar{x}^2)}{n - 1}}$$

p/ Valores Individuais	p/ Amplitude Móvel
$LCS = \overline{x} + 3\frac{\overline{R}}{\overline{x}}$	$LCS = D_4 \overline{R}$
$LCS = x + 3 \frac{1}{d_2}$	$LC = \overline{R}$
$LC = \overline{x}$	$LCI = D_3 \overline{R}$
$LCI = \overline{x} - 3\frac{\overline{R}}{d_2}$	

$$\overline{x} = \frac{\sum_{i=1}^{k} x_i}{k} \qquad \overline{R} = \frac{\sum_{i=1}^{k-n+1} R_i}{k-n+1}$$

p/ Proporção (p) de Não-Conformes

Se <i>n</i> for variável	Se <i>n</i> constante
$LCS = \overline{p} + 3\sigma_{p_i}$	$LCS = \overline{p} + 3\sigma_{\overline{p}}$
$LC = \overline{p}$	$LC = \overline{p}$
$LCI = \overline{p} - 3\sigma_{p_i}$	$LCI = \overline{p} - 3\sigma_{\overline{p}}$
onde	onde:
$\sigma_{p_i} = \frac{\sqrt{\overline{p}(1-\overline{p})}}{\sqrt{n_i}}$	$\sigma_p = \frac{\sqrt{\overline{p}(1-\overline{p})}}{\sqrt{\overline{n}}}$
e	e
$\overline{p} = \frac{\sum_{i=1}^{k} d_i}{\sum_{i=1}^{k} n_i} = \frac{d_1 + d_2 + \dots d_k}{n_1 + n_2 + \dots + n_k}$	$\overline{p} = \frac{\sum_{i=1}^{k} p_i}{k}$ $p_i = \frac{d_i}{n_i}$

o Número (np) de Não-conformes

onde:

$$LCS = n\overline{p} + 3\sigma_{np} \quad \text{onde:}$$

$$LC = n\overline{p}$$

$$LCI = n\overline{p} - 3\sigma_{np} \quad n\overline{p} = \frac{\sum_{i=1}^{k} d_i}{k} = \frac{d_1 + d_2 + ...d_k}{k}$$

p/ Número (c) de Não-conformidades

pritamero (e) as	pritamero (e) de rido comormados		
$LCS = \overline{c} + 3\sigma_c$	onde:		
·	$\sigma_c = \sqrt{\overline{c}}$		
$LC = \overline{c}$	<u>k</u>		
	$\bar{c} = \frac{\sum_{i=1}^{c} c_i}{\sum_{i=1}^{c} c_i} = \frac{c_1 + c_2 + \dots + c_k}{\sum_{i=1}^{c} c_i}$		
$LCI = \overline{c} - 3\sigma_c$	$c = \frac{1}{k} = \frac{1}{k}$		

p/ o Número (u) de Não-conformidades por Unidade

Omade	
Se <i>n</i> for variável	Se <i>n</i> constante
$LCS = \overline{u} + 3\sigma_{u_i}$	$LCS = \overline{u} + 3\sigma_u$
$LC = \overline{u}$	$LC = \overline{u}$
$LCI = \overline{u} - 3\sigma_{u_i}$	$LCI = \overline{u} - 3\sigma_u$
onde:	onde:
$\sigma_{u_i} = \sqrt{\frac{\overline{u}}{n_i}} e$	$\sigma_u = \sqrt{\frac{\overline{u}}{\overline{n}}}, \ \overline{n} = n$
$\overline{u} = \frac{\sum_{i=1}^{k} c_i}{\sum_{i=1}^{k} n_i} = \frac{c_1 + c_2 + \dots + c_k}{n_1 + n_2 + \dots + n_k}$	$\overline{u} = \frac{\sum_{i=1}^{k} u_i}{k}$ $u_i = \frac{c_i}{n_i}$