Ejercicios 1

Prof. Jhon Fredy Tavera Bucurú

2025

1. escribe el vector verde y el rojo en terminos de los vectores u, v, w.

2. (new!) Sean \vec{U} , \vec{V} y \vec{W} vectores geométricos en el plano tales que

$$\|\vec{V}\| = 4, \qquad \|\vec{U}\| = 3, \qquad \|\vec{W}\| = 2,$$

$$\dim(\vec{V}) = 140^{\circ}, \qquad \dim(\vec{U}) = 80^{\circ}, \qquad \dim(\vec{W}) = 20^{\circ}.$$

- a) Determine $\|\vec{V} + \vec{U}\|$ y dir $(\vec{V} + \vec{U})$.
- b) Determine $\|\vec{V} + \vec{U} + 2\vec{W}\|$ y dir $(3(\vec{V} + \vec{U} + 2\vec{W}))$.
- 3. Un equipo de rescate sale del puesto de mando (punto A) y sigue una ruta con brújula para bordear barrancos y lagunas: camina 1 km hacia el **norte geográfico**; luego gira a la **derecha** 30° y camina 1 km; después gira a la **izquierda** 60° y camina 1 km; más adelante gira a la **derecha** 45° y camina 1 km; finalmente gira a la **izquierda** 90° y camina 1 km.
 - (a) ¿Cuánto debe girar a la **derecha** para volver a caminar en dirección al **norte geográfico**?
 - (b) ¿Cuánto debe girar y en qué dirección (**izquierda** o **derecha**) y cuántos **kilómetros** debe caminar para regresar al punto de partida A?
- 4. Suponga que una persona camina 1 km en dirección al norte geografico. Luego gira a la derecha 15° 14′ y camina 1 km más, luego gira a la izquierda 34° 14″ y camina 1 km más, finalmente gira a la izquierda 13° 13′ 25″ y camina 1 km más.
 - a) Cuanto debe girar a la derecha para poder caminar otra vez en dirección hacia el norte georafico?
 - b) Cuanto debe girar y en que dirección (izquierda o derecha) y cuantos kilometros debe caminar para poder regresar al punto de partida?

1

5. Probar que $a(b\vec{u}) = (ab)\vec{u}$

6. En la figura se observa un punto **verde** (punto de partida) y un punto **rojo** (punto de llegada). El área central marcada corresponde a un **cuadrado** que no puede ser atravesado ni tocado en la trayectoria. Determine el conjunto mínimo de vectores $\vec{v}_1, \vec{v}_2, \vec{v}_3, \ldots$ que, sumados en orden, describan un camino que parta desde el punto verde y termine en el punto rojo, rodeando el cuadrado central y evitando cualquier contacto con sus lados o vértices. Presente el diagrama con los vectores en orden, la norma y la dirección de cada vector y la comprobación de que su suma lleva exactamente desde el punto de partida hasta el punto de llegada.

7. En la figura se observa un punto **verde** (origen) y un punto **rojo** (destino). La región demarcada con **línea negra más gruesa** (bucle superior, corredor inferior y curva circular a la derecha) representa un *obstáculo*: la trayectoria *no puede tocarlo ni cruzarlo*. Defina la menor cantidad de vectores $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ que, sumados en ese orden, conduzcan desde el punto verde hasta el punto rojo sin interceptar dicho obstáculo. Entregue: (i) el croquis con los vectores dibujados en orden, (ii) las normas y direcciones de los vectores; compruebe usando geogebra).

- 8. Probar que $(a+b)\vec{u} = a\vec{u} + b\vec{u}$
- 6. Sean \vec{u} , \vec{v} y \vec{w} vectores del plano. Probar que

$$\vec{u} + \vec{v} = \vec{u} + \vec{w} \implies \vec{v} = \vec{w}.$$

- 7. Sea \vec{v} un vector tal que $||\vec{v}|| = 4$ y dir $(\vec{v}) = 45^{\circ}$.
 - a) Dibujar un vector \vec{x} tal que $||\vec{x}|| = 9$ y $\operatorname{dir}(\vec{x}) = \operatorname{dir}(\vec{v})$.
 - b) Dibujar un vector \vec{y} tal que $||\vec{y}|| = 5$ y la dirección de \vec{y} es la opuesta a la dirección de \vec{v} .
 - c) Expresar los vectores \vec{x} y \vec{y} como múltiplos escalares del vector \vec{v} .

- 8. Sean A, B, C y D puntos del plano tales que D esté sobre el segmento \overline{AB} y su distancia al punto A es $\frac{2}{3}$ de la distancia entre A y B. Si E es el punto medio del segmento de recta \overline{AC} , expresar el vector \overrightarrow{DE} en términos de \overrightarrow{AB} y \overrightarrow{AC} .
- 9. Suponiendo que $\overrightarrow{AD} = \frac{1}{4} \overrightarrow{AB}$ y $\overrightarrow{BE} = \frac{1}{2} \overrightarrow{BC}$, expresar \overrightarrow{DE} en términos de \overrightarrow{AB} y \overrightarrow{BC} .
- 10. Considere un cuadrilátero ABCD y sean P,Q,R,S los puntos medios de sus lados AB,BC,CD y DA respectivamente. Demostrar, utilizando vectores geométricos, que P,Q,R,S son los vértices de un paralelogramo. (Ayuda: vea el ejemplo 1.9).
- 11. Demostrar vectorialmente que las diagonales de un paralelogramo se cortan en su punto medio.
- 12. Dados los vectores geométricos \vec{v} , \vec{u} y \vec{w} tales que $||\vec{v}|| = 5$, $||\vec{u}|| = 8$, $||\vec{w}|| = 10$, $\text{dir}(\vec{v}) = 60^\circ$, $\text{dir}(\vec{u}) = 120^\circ$ y $\text{dir}(\vec{w}) = 180^\circ$:
 - a) Dibujar los vectores \vec{v} , \vec{u} y \vec{w} .
 - b) Encontrar la descomposición de \vec{w} en las direcciones de \vec{u} y \vec{v} ; es decir, hallar escalares a,b tales que

$$\vec{w} = a\,\hat{\vec{u}} + b\,\hat{\vec{v}},$$

donde $\widehat{\vec{u}}$ y $\widehat{\vec{v}}$ son los vectores unitarios en las direcciones de \vec{u} y $\vec{v}.$

13. Los vectores geométricos \vec{u} , \vec{v} , \vec{w} que se muestran en la figura (no incluida) son tales que $\|\vec{u}\| = 1$, $\|\vec{v}\| = 3$, $\|\vec{w}\| = 5$ y el ángulo entre \vec{u} y \vec{w} es de 150°. Hallar la descomposición de \vec{w} en las direcciones de \vec{u} y \vec{v} , es decir, encontrar $a, b \in \mathbb{R}$ tales que

$$\vec{w} = a\,\hat{\vec{u}} + b\,\hat{\vec{v}}.$$

- 14. Sean \vec{u} , \vec{w} y \vec{z} los vectores en la figura (b), tales que $\|\vec{u}\| = 6$, $\|\vec{w}\| = 5$ y $\|\vec{z}\| = 4$.
 - a) Encontrar la magnitud de $\vec{u} + \vec{w} + \vec{z}$ y el ángulo entre este vector y el vector \vec{u} .
 - b) Hallar los escalares a y b tales que $\vec{w} = a \vec{u} + b \vec{z}$.
 - c) Hallar la descomposición de \vec{u} en las direcciones de \vec{z} y \vec{w} . Ilustrarlo gráficamente.
- 15. Sea \vec{u} el vector tal que $||\vec{u}|| = 5$ y dir $(\vec{u}) = 30^{\circ}$. Para todo vector que satisfaga las condiciones dadas en cada literal, dibujar proj $_{\vec{u}}$ \vec{v} y calcular su magnitud.

3

- a) $\|\vec{v}\| = 4$, $\operatorname{dir}(\vec{v}) = 150^{\circ}$.
- b) $\|\vec{v}\| = 6$ y el ángulo entre \vec{u} y \vec{v} mide 60°.
- 16. Sean \vec{u} y \vec{v} vectores tales que $\|\vec{u}\| = 6$ y $\|\vec{v}\| = 10$.

- a) Suponiendo que el ángulo entre \vec{u} y \vec{v} es de 120°, hallar el escalar a tal que proj $_{\vec{u}}$ $\vec{v}=a$ \vec{u} .
- b) ¿Cuál es la componente escalar de \vec{v} en la dirección del vector \vec{u} ?
- 17. Sean \vec{u} y \vec{v} vectores tales que $||\vec{u}|| = 7$, $dir(\vec{u}) = 120^{\circ}$, $||\vec{v}|| = 8$ y $dir(\vec{v}) = 225^{\circ}$.
 - a) Dibujar los vectores \vec{u} y \vec{v} .
 - b) Descomponer gráficamente el vector \vec{u} como la suma de un vector \vec{p} paralelo al vector \vec{v} y un vector \vec{q} perpendicular a \vec{u} . Hallar las magnitudes de los vectores \vec{p} y \vec{q} .
- 18. Se coloca un objeto que pesa 6 libras sobre una rampa con una inclinación de 30°. Hallar la magnitud de la fuerza que se requiere para evitar que el objeto ruede por la rampa.
- 19. Sean \vec{u} , \vec{v} , \vec{w} vectores tales que $||\vec{u}|| = 3$, $||\vec{v}|| = 4$ y $||\vec{w}|| = 2$ y sea

$$\vec{z} = 2\vec{u} - \vec{v} + 3\vec{w}.$$

Calcular $\vec{z} \cdot \vec{v}$ sabiendo que el ángulo entre \vec{u} y \vec{v} es de 60° y el ángulo entre \vec{v} y \vec{w} es de 120°.

- 20. Sean \vec{v} y \vec{w} vectores. Probar que:
 - a) $\|\vec{v} + \vec{w}\|^2 = \|\vec{v}\|^2 + 2(\vec{v} \cdot \vec{w}) + \|\vec{w}\|^2$.
 - b) $(\vec{v} + \vec{w}) \cdot (\vec{v} \vec{w}) = ||\vec{v}||^2 ||\vec{w}||^2$.
- 21. Calcular $\vec{u} \cdot \vec{v}$ sabiendo que $\vec{u} + \vec{v} + \vec{w} = \vec{0}$, $||\vec{u}|| = 5$, $||\vec{v}|| = 6$ y $||\vec{w}|| = 7$.
- 22. Sean \vec{v} y \vec{w} vectores. Probar:
 - a) (Teorema de Pitágoras) \vec{v} y \vec{w} son perpendiculares si y sólo si

$$\|\vec{v} + \vec{w}\|^2 = \|\vec{v}\|^2 + \|\vec{w}\|^2.$$

b) (Ley del paralelogramo)

$$\|\vec{v} + \vec{w}\|^2 + \|\vec{v} - \vec{w}\|^2 = 2(\|\vec{v}\|^2 + \|\vec{w}\|^2).$$

(Es decir, la suma de los cuadrados de las longitudes de las diagonales de un paralelogramo es igual a la suma de los cuadrados de las longitudes de sus cuatro lados.)

c) (Identidad de polarización)

$$\|\vec{v} + \vec{w}\|^2 - \|\vec{v} - \vec{w}\|^2 = 4(\vec{v} \cdot \vec{w}).$$

- 23. Demostrar, empleando la identidad de polarización, que las diagonales de un paralelogramo tienen igual longitud si y sólo si el paralelogramo es un rectángulo.
- 24. Sean \vec{u} , \vec{v} y \vec{w} vectores geométricos tales que $\|\vec{v}\| = 4$, $\|\vec{w}\| = \frac{1}{\sqrt{3}}$ y \vec{u} es unitario. Si $\|\vec{u} \vec{v} + \vec{w}\| = \|\vec{u} + \vec{v} + \vec{w}\|$ y el ángulo entre \vec{u} y \vec{v} es $\frac{\pi}{3}$ radianes:
 - a) Calcular el ángulo entre \vec{v} y \vec{w} .
 - b) Calcular la magnitud de la proyección de \vec{v} sobre \vec{w} .
- 25. Sean \vec{u} , \vec{v} y \vec{w} vectores geométricos tales que $\|\vec{v}\| = 4$, $\|\vec{w}\| = \frac{1}{\sqrt{3}}$ y \vec{u} es unitario. Si $\|\vec{u} \vec{v} + \vec{w}\| = \|\vec{u} + \vec{v} + \vec{w}\|$ y el ángulo entre \vec{u} y \vec{v} es $\frac{\pi}{3}$ radianes:

- a) Calcular el ángulo entre \vec{v} y \vec{w} .
- b) Calcular la magnitud de la proyección de \vec{v} sobre \vec{w} .

26. Hallar la descomposición canónica de cada uno de los siguientes vectores:

a)
$$\vec{v}$$
 tal que $||\vec{v}|| = 6$ y dir $(\vec{v}) = 225^{\circ}$.

b)
$$\vec{u}$$
 tal que $||\vec{u}|| = 5$ y dir $(\vec{u}) = 270^{\circ}$.

c)
$$\vec{w}$$
 tal que $||\vec{w}|| = 3$ y dir $(\vec{w}) = \frac{\pi}{6}$ radianes.

27. Si $\vec{x} = 3i - 4j$, hallar:

- a) La magnitud y dirección de \vec{x} .
- b) La descomposición canónica del vector \vec{w} de magnitud 7 y dirección opuesta a la de \vec{x} .
- c) La descomposición canónica de cada uno de los vectores de longitud $4\sqrt{2}$ que forma ángulo de 45° con el vector \vec{x} .

28. Sean $\vec{u} = 2\mathbf{i} - 5\mathbf{j}$, $\vec{v} = 3\mathbf{i} + \mathbf{j}$, $\vec{w} = -2\mathbf{i} + 3\mathbf{j}$. Hallar la descomposición canónica, la magnitud y la dirección de los siguientes vectores:

a)
$$2\vec{u} - \vec{v}$$
.

b)
$$\vec{u} - \vec{v} + \vec{w}$$
.

c)
$$3\vec{u} + 2\vec{v} - \vec{w}$$
.

29. Considerar el diagrama de fuerzas de la siguiente figura.

La fuerza \vec{F} tiene una magnitud de 20 newtons y el sistema se encuentra en equilibrio, es decir, $\vec{F} + \vec{T_1} + \vec{T_2} = \vec{0}$. Hallar la descomposición canónica de \vec{F} , $\vec{T_1}$ y $\vec{T_2}$.

30. Realizar los ejercicios 12 y 13 (sección 1.4), utilizando la descomposición canónica de los vectores dados.

5

31. Sean $\vec{u} = -3\mathbf{i} + 4\mathbf{j}$, $\vec{v} = 5\mathbf{i} - \mathbf{j}$ y $\vec{w} = 7\mathbf{i} + \mathbf{j}$. Calcular:

$$a)$$
 $\vec{u} \cdot (2\vec{v} - \vec{w}).$

$$b) \quad \|\vec{u}\| \, (\vec{v} \cdot \vec{w}).$$

$$c) \parallel (\vec{u} \cdot \vec{v}) \vec{w} \parallel.$$

32. Calcular $\vec{v} \cdot \vec{w}$.

a) Si
$$\|\vec{v}\| = 2$$
, $\|\vec{w}\| = 3$ y el ángulo entre \vec{v} y \vec{w} es $\frac{\pi}{3}$ radianes.

b) Si
$$\vec{v} = 2\mathbf{i} - 3\mathbf{j}$$
 y $\vec{w} = 2\mathbf{i}$.

- 33. Para cada par de vectores \vec{u} y \vec{v} dados a continuación, determinar si ellos son perpendiculares, si el ángulo entre ellos es agudo o si el ángulo entre ellos es obtuso. Calcular la proyección de \vec{u} sobre \vec{v} .
 - a) $\vec{u} = 6\mathbf{i} + \mathbf{j}$, $\vec{v} = 2\mathbf{i} 3\mathbf{j}$.
 - b) $\vec{u} = -6\mathbf{i} + 4\mathbf{j}, \quad \vec{v} = 4\mathbf{i} + 6\mathbf{j}.$
 - c) $\vec{u} = 3\mathbf{i} \mathbf{j}$, $\vec{v} = \mathbf{i} + 4\mathbf{j}$.
- 34. Sean $\vec{u}_1 = \frac{\sqrt{2}}{2} \mathbf{i} + \frac{\sqrt{2}}{2} \mathbf{j} \ \mathbf{y} \ \vec{u}_2 = -\frac{\sqrt{2}}{2} \mathbf{i} + \frac{\sqrt{2}}{2} \mathbf{j}.$
 - a) Probar que \vec{u}_1 y \vec{u}_2 son perpendiculares.
 - b) Hallar la descomposición de cada uno de los vectores \mathbf{i} , \mathbf{j} y $-2\mathbf{i}+3\mathbf{j}$ en las direcciones de \vec{u}_1 y \vec{u}_2 .
- 35. Sea $\vec{w} = 7\mathbf{i} 5\mathbf{j}$. Para cada par de vectores \vec{u} y \vec{v} dados a continuación:
 - a) Determinar si existen escalares a y b tales que $\vec{w} = a\vec{u} + b\vec{v}$.
 - b) Si la respuesta en (a) es afirmativa, hallar los valores de a y b.
 - a) $\vec{u} = \mathbf{i} \mathbf{j}$, $\vec{v} = 2\mathbf{i} 3\mathbf{j}$.
 - b) $\vec{u} = \mathbf{i} 2\mathbf{j}, \quad \vec{v} = -2\mathbf{i} + 4\mathbf{j}.$
- 36. Sean $\vec{u} = 3\mathbf{i} + 4\mathbf{j}$ y $\vec{v} = \mathbf{i} + \alpha\mathbf{j}$. Encontrar los valores de α para los cuales se satisface la condición dada en cada caso.
 - a) $\vec{u} \perp \vec{v}$.
 - b) El ángulo entre \vec{u} y \vec{v} es $\frac{\pi}{4}$ radianes.
- 37. Para el par de vectores \vec{v} y \vec{w} dados en cada literal, calcular el producto escalar, el coseno del ángulo entre ellos, determinar si son perpendiculares, verificar la desigualdad de Cauchy–Schwarz y hallar $\operatorname{proj}_{\vec{w}} \vec{v}$ y $\operatorname{proj}_{\vec{v}} \vec{w}$.
 - a) $\vec{v} = 4\mathbf{i}$, $\vec{w} = \mathbf{i} + \mathbf{j}$.
 - b) $\vec{v} = 4 \mathbf{i} + 3 \mathbf{j}$, $\vec{w} = \frac{1}{2} \mathbf{i} \frac{2}{3} \mathbf{j}$.
 - c) $\vec{v} = -2\mathbf{i} + 18\mathbf{j}$, $\vec{w} = \frac{3}{2}\mathbf{i} \frac{1}{6}\mathbf{j}$.
- 38. Sean $\vec{u} = a\mathbf{i} + b\mathbf{j}$ y $\vec{v} = c\mathbf{i} + d\mathbf{j}$, con $\vec{v} \neq \vec{0}$. Encontrar una condición necesaria y suficiente sobre a, b, c, d para que \vec{v} y proj $_{\vec{v}}$ \vec{u} tengan:
 - a) la misma dirección;
 - b) dirección contraria.
- 39. Para cada par de puntos dados, encontrar el punto R tal que el cuadrilátero OPRQ sea un paralelogramo.

a)
$$P = \begin{pmatrix} -3 \\ 5 \end{pmatrix}$$
, $Q = \begin{pmatrix} -4 \\ -4 \end{pmatrix}$.

b)
$$P = \begin{pmatrix} 4 \\ 0 \end{pmatrix}, \quad Q = \begin{pmatrix} 2 \\ 6 \end{pmatrix}.$$

40. Sean
$$P = \begin{pmatrix} 1 \\ -2 \end{pmatrix}, Q = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 y $R = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$.

- a) Hallar la descomposición canónica de cada uno de los vectores $\overrightarrow{QP}, \overrightarrow{QR}$ y \overrightarrow{PR} .
- b) Mostrar que los puntos P, Q y R no son colineales.
- c) Si M es el punto medio del segmento \overline{PR} , hallar la descomposición canónica y la magnitud de \overrightarrow{QM} .
- d) Si B es el baricentro del triángulo PQR, hallar la descomposición canónica y la magnitud del vector \overrightarrow{QB} .
- e) Encontrar el ángulo que forman los vectores \overrightarrow{QP} y \overrightarrow{QR} .
- f) Sea S el punto de intersección de la bisectriz del ángulo entre \overrightarrow{QP} y \overrightarrow{QR} con el segmento \overline{PR} . Hallar la descomposición canónica de \overrightarrow{QS} .
- 41. Sean $P = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$, $Q = \begin{pmatrix} 5 \\ 7 \end{pmatrix}$, $R = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$ y $S = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ puntos de \mathbb{R}^2 . Calcular $\operatorname{proj}_{\overrightarrow{PQ}} \overrightarrow{RS}$ y $\operatorname{proj}_{\overrightarrow{RS}} \overrightarrow{PQ}$.
- 42. Un triángulo tiene como vértices los puntos $A = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$, $B = \begin{pmatrix} 4 \\ -2 \end{pmatrix}$ y $C = \begin{pmatrix} -3 \\ 6 \end{pmatrix}$. Hallar:
 - a) Cada uno de sus ángulos interiores.
 - b) El área del triángulo.
- 43. Se
a \vec{u} un vector no nulo y sea \vec{z} un vector cualquiera. Probar que, para cualquier
 escalar no nulo r,

$$\operatorname{proj}_{r\vec{u}}\vec{z} = \operatorname{proj}_{\vec{u}}\vec{z}.$$

44. Sean \vec{u} y \vec{v} vectores geométricos no nulos. Mostrar que \vec{u} y \vec{v} son paralelos si y sólo si proj $_{\vec{v}}$ \vec{u} = \vec{u} .

Referencias

[1] Abraham Asmar Charris, Patricia Restrepo de Peláez, Rosa Franco Arbeláez y Fernando Vargas Hernández. Geometría vectorial y analítica: una introducción al álgebra lineal. Medellín: Universidad Nacional de Colombia, Sede Medellín (Centro de Publicaciones), 2007. 554 pp. ISBN 978-958-8256-38-2. Disponible en: https://davidbuiles.wordpress.com/wp-content/uploads/2010/03/geometria-vectorial-y-analitica.pdf.