Day 1 solution

acpty

September 30, 2019

前言

我好菜啊

罔两「栖息于禅寺的妖蝶」

这是一道简单的计数题 数感强的选手也可以通过打表发现答案

罔两「栖息于禅寺的妖蝶」

这道题应该有很多种推导方法,这里讲一下出题人的蒻做法: 设选出来的数从小到大为 $a_1,a_2,a_3...,a_m$,考虑令 $b_i=a_i+i$,我们会发现,b中全是偶数并且两两互不相同,一个b唯一对应一个a 那么问题等价于从1到n+m中选择m个偶数的方案数这个显然就是从1到 $\left\lfloor \frac{n+m}{2} \right\rfloor$ 中选m个数答案是 $\left(\left\lfloor \frac{n+m}{2} \right\rfloor \right)$

很早之前有的想法然后搞出来这道题 大概是考察选手的分类讨论能力和对线段树的熟悉程度 熟练的OI选手应当在1个小时之内完成本题

有很多种方法能够通过本题,这里同样只介绍出题人的做法: 设询问区间为[x,y],对于每个线段树区间[l,r],我们统计有多少个[x,y]的子区间会影响到[l,r] 把所有区间分成4类:

- 1.[l,r]包含[x,y]
- 2.[l,r]和[x,y]真相交
- 3.[x,y]包含[l,r]
- 4.[x,y]和[l,r]没有交集

第4类对答案没有贡献不考虑 第1类显然[x,y]的所有子区间都会影响[l,r] 第2类其实分成左相交和右相交两类,不过没有本质区别 贡献可以用总区间数-和[l,r]不相交的区间数 第3类稍微麻烦一点,贡献是总区间数-和[l,r]不相交的区间数-完 全包含[l,r]父亲的区间数

第1,2类区间总共只有 $O(\log n)$ 个,可以暴力计算 考虑第3类区间,在线段树上是 $O(\log n)$ 个子树,考虑预处理 写出贡献式子可以发现对于某个区间[l,r],若[x,y]包含[l,r],对答 案的贡献可以写成 $Ax^2 + Bxy + Cy^2 + Dx + Ey + F$ 的形式 直接对于每个点预处理出所有的系数然后求子树和 复杂度 $O(n\log n)$

Source:[Codeforces 878 E] 这是一道不太难的贪心题,但是不注意细节很容易丢分为了平衡两天的难度这道题就放简单了一点

我们先考虑如何O(n)处理一次询问注意到每个数对答案的贡献一定是2的次幂我们可以把答案表示成 $\sum_{i=1}^{n} a_i * 2^{k_i}$ 其中 $k_1 = 0, 1 \le k_i \le k_{i-1} + 1$

贪心的想,每个 k_i 只有两种取值,要么 $k_i = 1$,要么 $k_i = k_{i-1} + 1$ 也就是说答案可以划分成很多块,每块由 $k_i = 1$ 开头(第一块 $k_1 = 0$),然后剩余的 $k_i = k_{i-1} + 1$

假设我们已经把1到i-1的块给划分出来了,考虑加入i1.若 a_i <0,则自成一块2.若 $a_i \geq 0$,则和前一块合并注意合并的时候可能引发再次合并

我们考虑把询问离线 从左到右加入数,暴力维护所有的块,考虑所有以i为右端点的询问,找到左端点所在的块,将其从中断开 正确性的话,容易发现对于一个块的所有前缀都是负的,所有后 缀都是正的,断开之后不会形成新的块,后面的块也不会合并上 来,所以是复合我们上面说的结果的 我们可以用并查集来维护每个块,复杂度是 $O(n\alpha(n))$ 注意判断overflow和负数