Práctico 9: Transformaciones lineales. Núcleo e Imágen.

- 1. Sean V, W, U k-espacios vectoriales y supongamos que $T: V \to W, S: W \to U$ son transformaciones lineales. Demostrar que $S \circ T$ y λT son transformaciones lineales, donde $\lambda \in \mathbb{k}$.
- 2. ¿Cuáles de las siguientes funciones de \mathbb{R}^n en \mathbb{R}^m son transformaciones lineales?
 - (a) T(x,y) = (1+x,y).
 - (b) T(x,y) = (y, x, x 2y).
 - (c) T(x, y) = xy.
 - (d) T(x, y, z) = 3x 2y + 7z.
- 3. Consideremos el \mathbb{R} -espacio vectorial $\mathbb{R}_{>0} = \{x \in \mathbb{R} : x > 0\}$ con las operaciones $x \oplus y = x \cdot y$ y $\lambda \odot x = x^{\lambda}$ (ver Ejercicio 2 del práctico 7). Demostrar que la función

$$exp: \mathbb{R} \to \mathbb{R}_{>0}, \quad exp(r) = e^r,$$

es una transformación lineal. Donde a $\mathbb R$ se lo considera con la estructura usual de $\mathbb R$ -espacio vectorial.

- 4. Sea V un espacio vectorial y $T:V\to V$ una transformación lineal idempotente; es decir que cumple que $T\circ T=T$. Demostrar que $Im(T)\oplus Nu(T)=V$.
- 5. Para cada una de las siguientes funciones de $\mathbb C$ en $\mathbb C$, decidir si son $\mathbb R$ -lineales o $\mathbb C$ -lineales.
 - (a) T(z) = iz.
 - (b) $R(z) = \overline{z}$.
 - (c) S(z) = Re(z) + Im(z).
- 6. En cada caso, si es posible, dar una transformación lineal $T: \mathbb{R}^n \to \mathbb{R}^m$ que satisfaga las condiciones exigidas. Si existe, estudiar la unicidad; si no existe, explicar porqué no es posible definirla.
 - (a) T(0,1) = (1,2,0,0), T(1,0) = (1,1,0,0).
 - (b) T(1,1,1) = (0,1,3), T(1,2,1) = (1,1,3), T(2,1,1) = (3,1,0).
 - (c) T(1,1,1) = (3,2), T(1,0,1) = (1,1), T(0,1,0) = (1,0).
 - (d) T(0,1,1) = (1,2,0,0), T(1,0,0) = (1,1,0,0).
- 7. Sea $T: \mathbb{R}^6 \to \mathbb{R}^2$ una transformación lineal survectiva y $W \subseteq \mathbb{R}^6$ un subespacio de dimensión 3. Demostrar que existe un $w \in W$ con $w \neq 0$ tal que T(w) = 0.
- 8. Dar una transformación lineal $T: \mathbb{R}^3 \to \mathbb{R}^3$ tal que su imagen sea el subespacio generado por (1,0,-1) y (1,2,2). Hallar T(x,y,z).
- 9. Definir una transformación lineal $T: \mathbb{R}^4 \to \mathbb{R}^2$ tal que T(1,-1,1,1) = (1,0) y T(1,1,1,1) = (0,1) y hallar T(x,y,z,w).
- 10. Definir una transformación lineal $T: \mathbb{R}^3 \to \mathbb{R}^{2 \times 2}$ tal que $\operatorname{Nu}(T) = \{(x,y,z): z=2x=y\}$ e $\operatorname{Im}(T) = \left\{\begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| b=a-c, b-d=a+c\right\}$. Hallar T(x,y,z).
- 11. Probar que no existe una transformación lineal $T: \mathbb{R}^3 \to \mathbb{R}^{2 \times 2}$ tal que $\operatorname{Nu}(T) = \{(x, y, z) : z = 2x = y\}$ e $\operatorname{Im}(T) = \left\{\begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| b d = a + c \right\}.$
- 12. Sea $T: M_2(\mathbb{R}) \to \mathbb{R}_3[x]$ la función dada por

$$T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = (a-d)x^2 + cx + (a+b+c+d).$$

(a) Demostrar que T es una transformación lineal.

- (b) Calcular la dimensión del núcleo de T.
- 13. Consideremos $C^2([0,1])$ el \mathbb{R} -espacio vectorial de funciones $f:[0,1] \to \mathbb{R}$ que son dos veces difenciables con $f^{(2)}$ continua y $C^1([0,1])$ el \mathbb{R} -espacio vectorial de funciones $f:[0,1] \to \mathbb{R}$ que son diferenciables tal que f' continua.
 - (a) Demostrar que las funciones $D:C^2([0,1])\to C^1([0,1]),\,I:C^1([0,1])\to C^2([0,1])$ dadas por

$$D(f)(x) = f'(x), \qquad I(f)(x) = \int_0^x f(t)dt$$

son transformaciones lineales.

- (b) Demostrar que $D \circ I = Id$ pero que $I \circ D \neq Id$.
- 14. Sea $n \in \mathbb{N}$ y consideremos los \mathbb{R} -espacios vectoriales $\mathbb{R}[x]$ y $\mathbb{R}_n[x]$.
 - (a) Demostrar que para todo $q \in \mathbb{R}[x]$ la función $T : \mathbb{R}[x] \to \mathbb{R}[x]$, T(p(x)) = p(q(x)) es una transformación lineal. Demostrar que si q no es el polinomio constante cero, entonces Nu(T) = 0. Cúando T es suryectiva?
 - (b) Decidir cuáles de las siguientes transformaciones lineales de V en V son isomorfismos.

(a)
$$T(p(x)) = p(x-1)$$
. (b) $S(p(x)) = xp'(x)$. (c) $Q(p(x)) = p(x) + p'(x)$.

(c) Demostrar que para todo $a \in \mathbb{R}$ el conjunto

$$\{1, x-a, (x-a)^2, \dots, (x-a)^{n-1}\}\$$

es una base de $\mathbb{R}_n[x]$.

- 15. Sean $n \in \mathbb{N}$ y k un cuerpo. Consideremos el k-espacio vectorial de matrices $M_n(\mathbb{k})$.
 - (a) Es la función determinante $det: M_n(\mathbb{k}) \to \mathbb{k}$ una transformación lineal?
 - (b) Es la función traza Tr : $M_n(\mathbb{k}) \to \mathbb{k}$ una transformación lineal?
 - (c) Consideremos W el subespacio vectorial de $M_n(\mathbb{R})$ generado por matrices de la forma AB BA donde $A, B \in M_n(\mathbb{R})$. Demostrar que dim $W = n^2 1$.

16. Sea
$$A = \begin{bmatrix} 0 & 2 & 0 & 1 \\ 1 & 3 & 0 & 1 \\ -1 & -1 & 0 & 0 \\ 3 & 0 & 3 & 0 \\ 2 & 1 & 1 & 0 \end{bmatrix}$$
 y sea $T : \mathbb{R}^4 \to \mathbb{R}^5$ dada por $T(X) = AX$.

- (a) Decir cuáles de los siguientes vectores están en el núcleo: (1, 2, 3, 4), (1, -1, -1, 2), (1, 0, 2, 1).
- (b) Decir cuáles de los siguientes vectores están en la imagen: (2,3,-1,0,1), (1,1,0,3,1), (1,0,2,1,0).
- (c) Dar una base del núcleo.
- (d) Dar una base de la imagen.
- (e) Describir la imagen implícitamente.

17. Sea
$$T: \mathbb{C} \longrightarrow M_2(\mathbb{R})$$
 definida por $T(a+ib) = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$.

- (a) Probar que T es \mathbb{R} -lineal.
- (b) Probar que T es inyectiva. Notar que eso implica que el espacio vectorial real de los números complejos es isomorfo al subespacio de matrices 2×2 de la forma $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$.
- (c) Probar que T(zw) = T(z)T(w) para todo $z, w \in \mathbb{C}$.
- 18. Sean $T:V\longrightarrow W$ y $S:W\longrightarrow U$ transformaciones lineales. Demostrar que:
 - (a) Si T v S son sobrevectivas, entonces $S \circ T$ es sobrevectiva.
 - (b) Si T y S son inyectivas, entonces $S \circ T$ es inyectiva.
 - (c) Si S no es sobreyectiva, entonces $S\circ T$ no es sobreyectiva.
 - (d) Si T no es inyectiva, entonces ST no es inyectiva.

- (e) ¿Puede ser S sobreyectiva y $S \circ T$ no?
- (f) ¿Puede ser T invectiva y $S \circ T$ no?
- 19. Dar una base del núcleo y caracterizar por ecuaciones la imagen de las siguientes transformaciones lineales:
 - (a) $T: \mathbb{K}^3 \longrightarrow \mathbb{K}^3$, T(x, y, z) = (x + 2y + 3z, y z, 0).
 - (b) $T: \mathbb{K}^2 \longrightarrow \mathbb{K}^3$, T(x,y) = (x y, x + y, 2x + 3y).
 - (c) $T: \mathbb{R}_3[x] \to \mathbb{R}^2$, T(p(x)) = (p(1), p(2))
 - (d) $T: \mathbb{R}^3 \to M_2(\mathbb{R}), T(x_1, x_2, x_3) = \begin{bmatrix} -2x_1 x_2 & x_1 2x_3 \\ -x_1 & x_2 + x_3 \end{bmatrix}$

Ejercicios Adicionales

- 20. En cada uno de los siguientes casos, definir, cuando sea posible, una transformación lineal $T: \mathbb{R}^3 \to \mathbb{R}^3$ que satisfaga las condiciones exigidas. Cuando no sea posible, justificar por qué.
 - (a) $\dim \operatorname{Im} T = 1$.
 - (b) $\dim \operatorname{Im} T = 2 \text{ y } \dim \operatorname{Nu} T = 2.$
 - (c) $(1,1,0) \in \operatorname{Im} T \ y \ (0,1,1) \in \operatorname{Nu} T$.
 - (d) $(1,1,0) \in \operatorname{Im} T$, (0,1,1), $(1,2,1) \in \operatorname{Nu} T$.
 - (e) $\operatorname{Im} T \subseteq \operatorname{Nu} T$.
 - (f) Nu $T \subseteq \operatorname{Im} T$.
- 21. Sea $A \in M_n(\mathbb{k})$ una matriz y sean $L_A, T_A : M_n(\mathbb{k}) \to M_n(\mathbb{k})$ las transformaciones lineales definidas por:

$$L_A(B) = AB, \qquad T_A(B) = AB - BA.$$

- (a) Demostrar que en efecto L_A y T_A son transformaciones lineales.
- (b) Demostrar que $L_A = 0$ si y sólo si A = 0.
- (c) ¿Es cierto que $T_A = 0$ si y sólo si A = 0?
- (d) Determinar $\{A: I_n \in \operatorname{Im} L_A\}$ y $\{A: I_n \in \operatorname{Im} T_A\}$.
- 22. ¿Cuáles de las siguientes funciones de \mathbb{R}^n en \mathbb{R}^m son transformaciones lineales?
 - (a) $T(x_1, \ldots, x_n) = (x_1, -x_1, x_2, -x_2, \ldots, x_n, -x_n).$
 - (b) $T(x_1, \ldots, x_n) = (x_1, 2x_2, \ldots, nx_n).$
 - (c) $T(x_1, \ldots, x_n) = (x_1, x_1 + x_2, \ldots, x_1 + x_2 + \cdots + x_n).$
 - (d) $T(x_1, \ldots, x_n) = (x_1, x_1 \cdot x_2, \ldots, x_1 \cdot x_2 \cdot \cdots \cdot x_n).$
- 23. Para cada una de las siguientes matrices A_i , sea T la transformación lineal dada por $T(X) = A_i X$.

$$A_1 = \begin{bmatrix} 0 & 2 & -1 \\ 1 & 1 & -1 \\ 1 & -1 & 0 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 1 & -1 & 0 & 1 \\ 0 & 2 & -1 & 1 \end{bmatrix}, \quad A_3 = \begin{bmatrix} 1 & 2 & 1 & -1 \\ 0 & 1 & 1 & 3 \\ 1 & 0 & 2 & -1 \end{bmatrix}.$$

- (a) Dar una base del núcleo.
- (b) Dar una base de la imagen.
- (c) Describir la imagen implícitamente.
- 24. Sea V un \Bbbk espacio vectorial y $T:V\to V$ una transformación lineal. Asumamos que existe un $m\in\mathbb{N}$ y un vector $v\in V$ tales que $T^m(v)=0$ pero que $T^{m-1}(v)\neq 0$. Demostrar que el conjunto

$$\{v, T(v), T^2(v), \dots, T^{m-1}(v)\}$$

es linealmente independiente.

25. Sea $n \in \mathbb{N}$ y $f_i:[a,b] \to \mathbb{R}$ un conjunto de funciones continuas, $i=1,\ldots,n$. Definamos A la matriz cuadrada $n \times n$ dada por

$$A_{ij} = \int_{a}^{b} f_i(t) f_j(t) dt.$$

(a) Sea $X \in \mathbb{R}^n$ un vector de coordenadas $X_i = x_i$. Demostrar que

$$X^{t}AX = \int_{a}^{b} \left(\sum_{i=1}^{n} x_{i} f_{i}(t)\right)^{2} dt$$

- (b) Demostrar que det(A) = 0 (en particular existe X tal que AX = 0) si y sólo si el conjunto $\{f_i\}_{i=1..n}$ es linealmente dependiente en el \mathbb{R} -espacio vectorial C([a,b]).
- 26. Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ una transformación lineal.
 - (a) Demostrar que existe un subespacio vectorial W de \mathbb{R}^3 de dimensión 1 tal que $T(W) \subseteq W$. Es decir un subespacio invariante por T de dimensión 1.
 - (b) Demostrar que existe un subespacio vectorial U de \mathbb{R}^3 de dimensión 2 tal que $T(U) \subseteq W$. Es decir un subespacio invariante por T de dimensión 2.
- 27. Sea \mathbbm{k} un cuerpo y sean V, U \mathbbm{k} -espacios vectoriales. Vamos a denotar por $\mathrm{Hom}_{\mathbbm{k}}(V, U)$ al espacio de transformaciones lineales de V a U.
 - (a) Demostrar que $\operatorname{Hom}_{\mathbb{k}}(V,U)$ es un \mathbb{k} -espacio vectorial.
 - (b) Como caso particular, para todo espacio vectorial V se puede formar el espacio vectorial dual

$$V^* = \operatorname{Hom}_{\mathbb{k}}(V, \mathbb{k}).$$

Si $T: U \to V$ es una transformación lineal, definimos la dual o transpuesta por $T^*: V^* \to U^*$ dada por $T^*(f) = f \circ T$. Demostrar que T^* es una transformación lineal.

(c) Sea $\mathcal{B} = \{v_1, \dots, v_n\}$ una base de V. Demostrar que para todo $j = 1, \dots, n$ existe una transformación lineal $f_i : V \to \mathbb{K}$ tal que

$$f_j(v_i) = \begin{cases} 0 & \text{si } i \neq j \\ 1 & \text{si } i = j \end{cases}$$

Demostrar que $\{f_1,\ldots,f_n\}$ es una base de V^* . Dicha base se llama la base dual \mathcal{B} .

- (d) Si $f \in V^*$, probar que $f = \sum_{i=1}^n f(v_i) f_i$.
- (e) Sean U y V espacios vectoriales de dimensión finita. Para cada $u \in U, f: V \to \mathbb{K}$ transformación lineal, la función

$$T_{u,f}: V \to U, \qquad T_{u,f}(v) = f(v) \cdot u,$$

es una tranformación lineal.

- (f) Sean U y V espacios vectoriales de dimensión finita. Sea $\{u_i\}$ una base de U, $\{v_j\}$ una base de V con su base dual $\{f_j\}$. Demostrar que el conjunto $\{T_{u_i,f_j}\}$ es una base de $\operatorname{Hom}_{\mathbb{K}}(V,U)$. Concluir que $\dim \operatorname{Hom}_{\mathbb{K}}(V,U) = \dim V$. $\dim U$.
- (g) Si V es un k-espacio vectorial de dimensión finita. Entonces podemos considerar el doble dual V^{**} . Demostrar que $L:V\to V^{**}$ dada por L(v)(f)=f(v), para todo $v\in V$, $f\in V^*$ define un isomorfismo lineal.
- 28. Sean V y W espacios vectoriales sobre un cuerpo \mathbb{k} , y sea $U:V\to W$ un isomorfismo. Probar que $L:\operatorname{Hom}_{\mathbb{k}}(V,V)\longrightarrow \operatorname{Hom}_{\mathbb{k}}(W,W)$, definida por $L(T)=UTU^{-1}$, es un isomorfismo lineal.