测验, 4 个问题

下一项

1/1分

1。

Consider a task with input sequences of fixed length. Could RNN architecture still be useful for such task?

Yes

正确

RNN could be useful since it may need much less number of parameters.

1/1分

2。

Consider an RNN for a language generation task. \hat{y}_t is an output of this RNN at each time step, L is a length of the input sequence, N is a number of words in the vocabulary. Choose correct statements about \hat{y}_t :

 \hat{y}_t is a vector of length N .

正确

The output at each time step is a distribution over a vocabulary, therefore the length of \hat{y}_t is equal to the vocabulary size.

未选择的是正确的

RNN and Backpropagation

测验, 4 个问题

 \hat{y}_t is a vector of length L imes N .

未选择的是正确的

lacksquare Each element of \hat{y}_t is either 0 or 1.

未选择的是正确的

igspace Each element of \hat{y}_t is a number from 0 to 1.

正确

Elements of \hat{y}_t are probabilities so they are numbers from 0 to 1 and the sum of them equal to 1.

 $oxed{igsquare}$ Each element of \hat{y}_t is a number from 0 to N .

未选择的是正确的

1/1分

3。

4/4 分 (100%)

RNN and Backpropagation $(a_1 + b_h)$

4/4 分 (100%)

测验, 4 个问题

$$\hat{m{y}}_t = f_y(Uh_t + b_y)$$

Calculate the gradient of the loss L with respect to the bias vector b_y . $\frac{\partial L}{\partial b_y}=$?

$$\bigcirc \quad \frac{\partial L}{\partial b_y} = \frac{\partial L}{\partial \hat{y}_t} \, \frac{\partial \hat{y}_t}{\partial b_y}$$

$$\frac{\partial L}{\partial b_y} = \sum_{t=0}^{T} \left[\frac{\partial L_t}{\partial \hat{y}_t} \, \frac{\partial \hat{y}_t}{\partial b_y} \right]$$

正确

It is correct since b_y influence each L_t only once trough \hat{y}_t .

$$\bigcirc \qquad \frac{\partial L}{\partial b_y} = \sum_{t=0}^{T} \left[\frac{\partial L_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial h_t} \frac{\partial h_t}{\partial b_y} \right]$$

$$\frac{\partial L}{\partial b_y} = \sum_{t=0}^{T} \left[\frac{\partial L_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial h_t} \sum_{k=0}^{t} \frac{\partial h_k}{\partial b_y} \right]$$

$$\frac{\partial L}{\partial b_y} = \sum_{t=0}^{T} \left[\frac{\partial L_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial h_t} \sum_{k=0}^{t} \left(\prod_{i=k+1}^{t} \frac{\partial h_i}{\partial h_{i-1}} \right) \frac{\partial h_k}{\partial b_y} \right]$$

Consider the RNN network from the previous question. Calculate the gradient of the loss \boldsymbol{L} with respect to the bias

RNN and Backpropagation

4/4 分 (100%)

测验, 4 个问题

$$\frac{\partial L}{\partial b_h} = \frac{\partial L_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial h_t} \frac{\partial h_t}{\partial b_h}$$

$$\frac{\partial L}{\partial b_h} = \sum_{t=0}^{T} \left[\frac{\partial L_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial h_t} \frac{\partial h_t}{\partial b_h} \right]$$

$$\frac{\partial L}{\partial b_h} = \sum_{t=0}^{T} \left[\frac{\partial L_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial h_t} \sum_{k=0}^{t} \frac{\partial h_k}{\partial b_h} \right]$$

$$\begin{array}{ccc} & & & & & \\ \hline & \frac{\partial L}{\partial b_h} = \sum_{t=0}^{T} \left[\frac{\partial L_t}{\partial \hat{y}_t} \; \frac{\partial \hat{y}_t}{\partial h_t} \; \sum_{k=0}^{t} \left(\prod_{i=k+1}^{t} \frac{\partial h_i}{\partial h_{i-1}} \right) \frac{\partial h_k}{\partial b_h} \right] \end{array}$$

正确

It is correct. Hidden units depend on b_h at each time step, therefore we need to backpropagate through time here.

