## Aprendizaje profundo

#### PERCEPTRÓN MULTICAPA

Gibran Fuentes-Pineda Agosto 2021

#### Neurona natural



Imagen del usuario Quasar de Wikipedia, traducida al español (CC BY-SA 3.0)

### Comunicación entre neuronas



#### Neurona artificial: unidad de umbral lineal



- · Elementos básicos
  - 1. Pesos sinápticos
  - 2. Estímulo cumulativo
  - 3. Todo o nada (activación)

$$\hat{y} = a = \phi(b + \sum_{i=1}^{m} w_i \cdot x_i)$$
$$= \phi(b + \mathbf{w}^{\top} \cdot \mathbf{x})$$

## Forma general de neurona artificial



- · Elementos básicos
  - 1. Pesos sinápticos
  - 2. Estímulo cumulativo
  - 3. Todo o nada (activación)

$$\hat{y} = a = \phi(b + \sum_{i=1}^{m} w_i \cdot x_i)$$
$$= \phi(b + \mathbf{w}^{\top} \cdot \mathbf{x})$$

5

# Compuerta AND ( $\wedge$ )



| <i>X</i> <sub>1</sub> | <i>X</i> <sub>2</sub> | AND (∧) |
|-----------------------|-----------------------|---------|
| 0                     | 0                     | 0       |
| 0                     | 1                     | 0       |
| 1                     | 0                     | 0       |
| 1                     | 1                     | 1       |

# Compuerta AND (∧)



| <i>X</i> <sub>1</sub> | <i>X</i> <sub>2</sub> | $AND\left(\wedge\right)$ |
|-----------------------|-----------------------|--------------------------|
| 0                     | 0                     | 0                        |
| 0                     | 1                     | 0                        |
| 1                     | 0                     | 0                        |
| 1                     | 1                     | 1                        |

## Compuerta AND $(\land)$



| <i>X</i> <sub>1</sub> | <i>X</i> <sub>2</sub> | $AND\left(\wedge\right)$ |
|-----------------------|-----------------------|--------------------------|
| 0                     | 0                     | 0                        |
| 0                     | 1                     | 0                        |
| 1                     | 0                     | 0                        |
| 1                     | 1                     | 1                        |

## Compuerta AND $(\land)$



| <i>X</i> <sub>1</sub> | <i>X</i> <sub>2</sub> | $AND\left(\wedge\right)$ |
|-----------------------|-----------------------|--------------------------|
| 0                     | 0                     | 0                        |
| 0                     | 1                     | 0                        |
| 1                     | 0                     | 0                        |
| 1                     | 1                     | 1                        |

9

## Compuerta AND $(\land)$



| <i>X</i> <sub>1</sub> | <i>X</i> <sub>2</sub> | AND (∧) |
|-----------------------|-----------------------|---------|
| 0                     | 0                     | 0       |
| 0                     | 1                     | 0       |
| 1                     | 0                     | 0       |
| 1                     | 1                     | 1       |

# Compuerta NOR (↓)



| <i>X</i> <sub>1</sub> | <i>X</i> <sub>2</sub> | NOR (↓) |
|-----------------------|-----------------------|---------|
| 0                     | 0                     | 1       |
| 0                     | 1                     | 0       |
| 1                     | 0                     | 0       |
| 1                     | 1                     | 0       |



| <i>X</i> <sub>1</sub> | <i>X</i> <sub>2</sub> | NOR (↓) |
|-----------------------|-----------------------|---------|
| 0                     | 0                     | 1       |
| 0                     | 1                     | 0       |
| 1                     | 0                     | 0       |
| 1                     | 1                     | 0       |



| <i>X</i> <sub>1</sub> | <i>X</i> <sub>2</sub> | NOR (↓) |
|-----------------------|-----------------------|---------|
| 0                     | 0                     | 1       |
| 0                     | 1                     | 0       |
| 1                     | 0                     | 0       |
| 1                     | 1                     | 0       |



| <i>X</i> <sub>1</sub> | <i>X</i> <sub>2</sub> | NOR (↓) |
|-----------------------|-----------------------|---------|
| 0                     | 0                     | 1       |
| 0                     | 1                     | 0       |
| 1                     | 0                     | 0       |
| 1                     | 1                     | 0       |



| <i>X</i> <sub>1</sub> | <i>X</i> <sub>2</sub> | NOR (↓) |
|-----------------------|-----------------------|---------|
| 0                     | 0                     | 1       |
| 0                     | 1                     | 0       |
| 1                     | 0                     | 0       |
| 1                     | 1                     | 0       |

## Compuerta NOT $(\neg)$



| <i>X</i> <sub>1</sub> | NOT (¬) |
|-----------------------|---------|
| 0                     | 1       |
| 1                     | 0       |

## Compuerta NOT $(\neg)$



| <i>X</i> <sub>1</sub> | NOT (¬) |
|-----------------------|---------|
| 0                     | 1       |
| 1                     | 0       |

## Compuerta NOT $(\neg)$



| <i>X</i> <sub>1</sub> | NOT (¬) |
|-----------------------|---------|
| 0                     | 1       |
| 1                     | 0       |

## Algoritmo de aprendizaje: perceptrón

- Inicializa pesos y sesgo con ceros o un número aleatorio pequeño
- 2. Para cada ejemplo en el conjunto de entrenamiento 21 Calcula la salida

$$\hat{\mathbf{y}}^{(i)} = \phi(\mathbf{w}[t]^{\top}\mathbf{x}^{(i)} + b)$$

2.2 Actualiza cada peso  $w_j$ , j = 1, ..., d y el sesgo b

$$w_j[t+1] = w_j[t] + (y^{(i)} - \hat{y}^{(i)}) \cdot x_j^{(i)}$$
  
$$b[t+1] = b[t] + (y^{(i)} - \hat{y}^{(i)})$$

3. Realiza hasta que converja o hayan pasado un número de épocas<sup>1</sup>

<sup>&</sup>lt;sup>1</sup>Le llamamos época a pasar por todos los ejemplos del conjunto de entrenamiento una vez

#### Neurona con función de activación lineal o identidad



$$\frac{lineal(z) = z}{dlineal(z)} = 1$$

· Función de pérdida: error cuadráticos medio (ECM)

$$ECM(y, \mathbf{\hat{y}}) = \frac{1}{2} \sum_{i=1}^{N} (\hat{y}^{(i)} - y^{(i)})^{2}$$
$$\frac{\partial ECM}{\partial w_{j}} = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}^{(i)} - y^{(i)}) \cdot x_{j}^{(i)}$$
$$\frac{\partial ECM}{\partial b} = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}^{(i)} - y^{(i)})$$

## Neurona con función de activación sigmoide o logística



$$sigm(z) = \frac{1}{1 + exp(-z)}$$
$$\frac{d sigm(z)}{dz} = sigm(z)(1 - sigm(z))$$

· Función de pérdida: entropía cruzada binaria (ECB)

$$ECB(\mathbf{y}, \mathbf{\hat{y}}) = -\sum_{i=1}^{N} \left[ y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)}) \right]$$

$$\frac{\partial ECB}{\partial w_{j}} = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}^{(i)} - y^{(i)}) \cdot x_{j}^{(i)}$$

$$\frac{\partial ECB}{\partial b} = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}^{(i)} - y^{(i)})$$

## Clasificación multietiqueta



· Función de pérdida: ECB de cada categoría

$$ECB(\mathbf{y}_{k}, \mathbf{\hat{y}}_{k}) = -\sum_{i=1}^{N} \left[ y_{k}^{(i)} \log \hat{y}_{k}^{(i)} + (1 - y_{k}^{(i)}) \log (1 - \hat{y}_{k}^{(i)}) \right]$$

### Clasificación softmax (1)



### Clasificación softmax (2)

 Neuronas de la capa de salida tienen una función de activación softmax compartida, dada por

softmax(z)<sub>i</sub> = 
$$\frac{e^{z_i}}{\sum_{i=1}^{K} e^{z_i}}$$
,  $i = 1, ..., K$ 

· Función de pérdida: entropía cruzada categórica (ECC)

$$ECC(\mathbf{Y}, \mathbf{\hat{Y}}) = -\sum_{i=1}^{N} \sum_{k=1}^{K} \left[ y_k^{(i)} \cdot \log \frac{e^{z_k^{(i)}}}{\sum_{j} e^{z_j^{(i)}}} \right] x_j^{(i)}$$
$$\frac{\partial ECC}{\partial w_j} = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{\hat{Y}}^{(i)} - \mathbf{y}^{(i)}) \otimes \mathbf{x}^{(i)}$$
$$\frac{\partial ECC}{\partial b} = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{\hat{Y}}^{(i)} - \mathbf{y}^{(i)})$$

### Entrenamiento: minimización de pérdida

· Para los casos anteriores la función de pérdida es convexa



### Entrenamiento: descenso por gradiente (GD)

 Algoritmo iterativo de primer orden que va moviendo los pesos w y sesgos b hacia donde la pérdida descienda más rápido en el vecindario, esto es,

$$\boldsymbol{\theta}^{[t+1]} = \boldsymbol{\theta}^{[t]} - \alpha \nabla \mathcal{L}(\boldsymbol{\theta}^{[t]})$$

donde

$$oldsymbol{ heta} = \{ \mathsf{w}, \mathsf{b} \}$$

$$abla \mathcal{L}(oldsymbol{ heta}^{[t]}) = \left[ rac{\partial \mathcal{L}}{\partial oldsymbol{ heta}_0^{[t]}}, \cdots, rac{\partial \mathcal{L}}{\partial oldsymbol{ heta}_d^{[t]}} 
ight]$$

 $\cdot$  A lpha se le conoce como tasa de aprendizaje

### Entrenamiento: descenso por gradiente estocástico (SGD)

- Aproximación estocástica de GD: estima  $\nabla \mathcal{L}(\boldsymbol{\theta}^{[t]})$  y actualiza pesos y sesgos con un minilote  $\mathcal{B}$  de ejemplos de entrenamiento
  - $\cdot |\mathcal{B}|$  es un hiperparámetro
  - Es común dividir y ordenar aleatoriamente el conjunto de n ejemplos de entrenamiento en k minilotes ( $|\mathcal{B}| \times k \approx n$ ); una época ocurre cada vez que se han considerado los k minilotes

















### Sensibilidad a tasa de aprendizaje $\alpha$



#### Sensibilidad a tasa de aprendizaje $\alpha$



#### Sensibilidad a tasa de aprendizaje $\alpha$



## Sensibilidad a tasa de aprendizaje lpha



#### Problemas no lineales

· ¿Cómo modelamos una computer XOR?

| <i>X</i> <sub>1</sub> | <i>X</i> <sub>2</sub> | XOR |
|-----------------------|-----------------------|-----|
| 0                     | 0                     | 0   |
| 0                     | 1                     | 1   |
| 1                     | 0                     | 1   |
| 1                     | 1                     | 0   |
|                       |                       |     |

#### Problemas no lineales

· ¿Cómo modelamos una computer XOR?

| <i>X</i> <sub>1</sub> | <i>X</i> <sub>2</sub> | XOR |
|-----------------------|-----------------------|-----|
| 0                     | 0                     | 0   |
| 0                     | 1                     | 1   |
| 1                     | 0                     | 1   |
| 1                     | 1                     | 0   |

 Minsky y Papert demostraron que era imposible aprender la XOR con perceptrones

### Múltiples capas

· Podemos usar la fórmula

$$X_1 \oplus X_2 = (X_1 \vee X_2) \wedge \neg (X_1 \wedge X_2)$$



#### Red neuronal densa



#### Pérdida para redes neuronales multicapa

 Para múltiples capas de neuronas la función de pérdida no es convexa



#### Entrenamiento de redes neuronales multicapa

- Usualmente a través del descenso por gradiente estocástico (SGD) o variantes
- Aunque en problemas convexos SGD aproxima al GD, en la práctica se ha observado que en el entrenamiento de redes neuronales SGD encuentra mejores soluciones, especialmente con minilotes pequeños<sup>2,3,4</sup>
- Problema: calcular eficientemente las derivadas parciales respecto a los pesos y sesgos de las capas ocultas

<sup>&</sup>lt;sup>2</sup>Kleinberg et al. An Alternative View: When Does SGD Escape Local Minima?, 2018

<sup>&</sup>lt;sup>3</sup>Zhu et al. The Anisotropic Noise in Stochastic Gradient Descent: Its Behavior of Escaping from Sharp Minima and Regularization Effects, 2019.

<sup>&</sup>lt;sup>4</sup>Keskar et al. On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima, 2017.

## Cálculo del gradiente en redes densas (1)



## Cálculo del gradiente en redes densas (2)



## Cálculo del gradiente en redes densas (3)



## Cálculo del gradiente en redes densas (4)



### Algoritmo de retro-propagación

- 1. Propagamos cada entrada  $\mathbf{x}^{(i)}$  hacia adelante para generar la correspondiente salida  $\mathbf{\hat{y}}^{(i)}$
- Calculamos derivadas parciales de la pérdida respecto a cada peso y sesgo capa por capa, empezando con la de salida y propagándolas hacia atrás para calcular las de la capa anterior

### Cálculo del gradiente por retropropagación (1)



### Cálculo del gradiente por retropropagación (2)



### Cálculo del gradiente por retropropagación (3)



## Cálculo del gradiente por retropropagación (4)



## Ejemplo: propagación hacia adelante

- Considera una red densa con 1 capa de entrada, 1 capa oculta con o neuronas con activación sigmoide y 1 neurona de salida con activación lineal.
- La propagación hacia adelante estaría dada de la siguiente manera:

$$a^{\{1\}} = x^{(i)}$$

$$z^{\{2\}} = W^{\{1\}} \cdot a^{\{1\}}$$

$$a^{\{2\}} = \phi(z^{\{2\}})$$

$$z^{\{3\}} = W^{\{2\}} \cdot a^{\{2\}}$$

$$a^{\{3\}} = \phi(z^{\{3\}})$$

$$\hat{y} = a^{\{3\}}$$

#### Ejemplo: función de pérdida ECM

 Suponiendo una tarea de regresión y la función de pérdida ECM:

$$ECM(\mathbf{y}, \mathbf{\hat{y}}) = \frac{1}{2} \sum_{i=1}^{N} (y^{(i)} - \hat{y}^{(i)})^2$$

## Ejemplo: retropropagación (1)

 Calculamos el gradiente de la función de pérdida con respecto a W<sup>{2}</sup> de la siguiente forma

$$\frac{\partial ECM}{\partial \mathbf{W}^{\{2\}}} = \frac{\partial \sum_{i} \frac{1}{2} (y^{(i)} - \hat{y}^{(i)})^{2}}{\partial \mathbf{W}^{\{2\}}}$$

$$= \frac{\sum_{i} \partial \frac{1}{2} (y^{(i)} - \hat{y}^{(i)})^{2}}{\partial \mathbf{W}^{\{2\}}}$$

$$\frac{\partial \frac{1}{2} (y - \hat{y})^{2}}{\partial \mathbf{W}^{\{2\}}} = (y - \hat{y}) \cdot \left( -\frac{\partial \hat{y}}{\partial \mathbf{W}^{\{2\}}} \right)$$

$$= (y - \hat{y}) \cdot \left( -\frac{\partial \hat{y}}{\partial z^{\{3\}}} \cdot \frac{\partial z^{\{3\}}}{\partial \mathbf{W}^{\{2\}}} \right)$$

$$= \underbrace{-(y - \hat{y}) \cdot \frac{\partial \hat{y}}{\partial z^{\{3\}}}}_{\delta^{\{3\}}} \cdot \mathbf{a}^{\{2\}}$$

## Ejemplo: retropropagación (2)

 Calculamos el gradiente de la función de pérdida respecto a W<sup>{1}</sup> de la siguiente forma

$$\frac{\partial ECM}{\partial \mathbf{W}^{\{1\}}} = \frac{\partial \sum_{i} \frac{1}{2} (y^{(i)} - \hat{y}^{(i)})^{2}}{\partial \mathbf{W}^{\{1\}}}$$

$$= \frac{\sum_{i} \partial \frac{1}{2} (y^{(i)} - \hat{y}^{(i)})^{2}}{\partial \mathbf{W}^{\{1\}}}$$

$$\frac{\partial \frac{1}{2} (y - \hat{y})^{2}}{\partial \mathbf{W}^{\{1\}}} = (y - \hat{y}) \left( -\frac{\partial \hat{y}}{\partial \mathbf{W}^{\{1\}}} \right)$$

$$= (y - \hat{y}) \left( -\frac{\partial \hat{y}}{\partial \mathbf{z}^{\{3\}}} \cdot \frac{\partial z^{\{3\}}}{\partial \mathbf{W}^{\{1\}}} \right)$$

$$= \underbrace{-(y - \hat{y}) \cdot \frac{\partial \hat{y}}{\partial z^{\{3\}}}}_{\delta^{\{3\}}} \cdot \frac{\partial z^{\{3\}}}{\partial \mathbf{W}^{\{1\}}} = \delta^{\{3\}} \cdot \frac{\partial z^{\{3\}}}{\partial \mathbf{W}^{\{1\}}}$$

# Ejemplo: retropropagación (3)

$$\begin{split} &= \delta^{\{3\}} \cdot \left( \overbrace{\frac{\partial z^{\{3\}}}{\partial a^{\{2\}}}}^{\mathsf{W}^{\{2\}}} \cdot \frac{\partial a^{\{2\}}}{\partial \mathsf{W}^{\{1\}}} \right) \\ &= \delta^{\{3\}} \cdot \mathsf{W}^{\{2\}} \cdot \left( \frac{\partial a^{\{2\}}}{\partial \mathsf{W}^{\{1\}}} \right) \\ &= \delta^{\{3\}} \cdot \mathsf{W}^{\{2\}} \cdot \left( \frac{\partial a^{\{2\}}}{\partial \mathsf{z}^{\{2\}}} \cdot \underbrace{\frac{\partial \mathsf{z}^{\{2\}}}{\partial \mathsf{w}^{\{1\}}}}_{\mathsf{x}^{(i)}} \right) \\ &= \delta^{\{3\}} \cdot \mathsf{W}^{\{2\}} \cdot \frac{\partial a^{\{2\}}}{\partial \mathsf{z}^{\{2\}}} \cdot \mathsf{x}^{(i)} \end{split}$$

#### Características generales de las redes neuronales densas

- Aproximadores universales (con 1 sola capa oculta con un número finito de neuronas<sup>5,6</sup>)
- Frecuentemente sobreparametrizados<sup>7</sup>
- Usualmente empleados como bloques de clasificación (no tan profundos) en conjunto con otros tipos de capas

 $<sup>^{5}\</sup>mbox{Cybenko}.$  Approximation by Superpositions of a Sigmoidal Function, 1989

<sup>&</sup>lt;sup>6</sup>Hornik et al. Multilayer Feedforward Networks are Universal Approximators, 1989.

<sup>&</sup>lt;sup>'</sup>Allen-Zhu et al. Learning and Generalization in Overparameterized Neural Networks, Going Beyond Two Layers, 2020.