数字电路与数字逻辑实验 -实验2:组合逻辑电路分析与设计1

陈刚 副教授,无人系统研究所 数据科学与计算机学院 中山大学

https://www.usilab.cn/team/chengang/

组合逻辑和时序逻辑

•组合逻辑

- •输出直接由输入决定
- 电路上没有回环
- •例如: ALU, 加法器
- Verilog语句: assign c=a?1:0;

•时序逻辑

- •输出取决于输入和历史输出
- 例如: 计数器, memory
- Verilog语句:
 always @(poseedge clk)
 a

实验目的

- 组合逻辑电路的分析方法
- 组合逻辑电路的设计方法
- 熟悉编码器原理和常用4位二进制编码特点

实验基础知识

- 组合逻辑和时序逻辑
 - 组合逻辑电路中不带存储单元,输出与历史无关
 - 例如: Verilog中有阻塞赋值和非阻塞赋值来描述两种逻辑
- 组合逻辑电路设计与分析方法
 - 根据给定事件的因果关系列出真值表
 - 由真值表写函数式
 - 对函数式进行化简或变换
 - 画出逻辑图,并测试逻辑功能

组合逻辑:编码器

• 编码器: 它能将输入的每一个高、低电平信号编成一个对应的二进制代码输出

	输入										输	出							
I ₀	Iı	I_2	I ₃	I ₄	I ₅	I ₆	I ₇	I ₈	I ₉	I ₁₀	I ₁₁	I ₁₂	I ₁₃	I ₁₄	I ₁₅	Y3	\mathbf{Y}_2	\mathbf{Y}_1	Y ₀
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	1
0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	1	0
0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	1	1
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	1
0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	1	0
0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	1	1
0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1

• 8421 码和格雷码

- 8421 码:由于代码从左到右的每一位二进制数 1 依次表示 8、 4、 2、 1,所以这种代码被称为 8421 码。将 8421 码每一位二进制数 1 代表的十进制数加起来得到的结果就是其所代表的十进制数码,因此非常容易与十进制数码进行转换。 比如:74LS197 加法器输出就是 8421码。
- **格雷码:** 格雷码每一位的状态变化都按一定顺序循环。有很多种定义方式。本实验采用如下方式: 当格雷码按照下表顺序从 0000 状态开始依次变化,则 G0 是按 0110 顺序循环, G1 是按 00111100 顺序循环, G2 是按 0000111111110000 顺序循环,即格雷码自右向左,每位状态循环中连续的 0、1 数码都翻倍。

• 8421码和格雷码

	二进	制码		格雷码						
Q3	Q2	Q1	Q0	G3	G2	G1	G0			
0	0	0	0	0	0	0	0			
0	0	0	1	0	0	0	0			
0	0	1	0	0	0	0	1			
0	0	1	1	0	0	0	1			
0	1	0	0	0	1	1	0			
0	1	0	1	0	1	1	0			
0	1	1	0	0	1	1	1			
0	1	1	1	0	1	1	1			
1	0	0	0	1	1	0	0			
1	0	0	1	1	1	0	0			
1	0	1	0	1	1	0	1			
1	0	1	1	1	1	0	1			
1	1	0	0	1	0	1	0			
1	1	0	1	1	0	1	0			
1	1	1	0	1	0	1	1			
1	1	1	1	1	0	1	1			

• 8421码和格雷码

	二进	制码		格雷码						
Q3	Q2	Q1	Q0	G3	G2	G1	G0			
0	0	0	0	0	0	0	0			
0	0	0	1	0	0	0	0			
0	0	1	0	0	0	0	1			
0	0	1	1	0	0	0	1			
0	1	0	0	0	1	1	0			
0	1	0	1	0	1	1	0			
0	1	1	0	0	1	1	1			
0	1	1	1	0	1	1	1			
1	0	0	0	1	1	0	0			
1	0	0	1	1	1	0	0			
1	0	1	0	1	1	0	1			
1	0	1	1	1	1	0	1			
1	1	0	0	1	0	1	0			
1	1	0	1	1	0	1	0			
1	1	1	0	1	0	1	1			
1	1	1	1	1	0	1	1			

- ✓ 根据给定事件的因果关系列 出真值表
- ✓ 由真值表写函数式
- ✓ 对函数式进行化简或变换
- ✓ 画出逻辑图,并测试逻辑功能

• 8421码和格雷码

	二进	制码		格雷码					
Q3	Q2	Q1	Q0	G3	G2	G1	G0		
0	0	0	0	0	0	0	0		
0	0	0	1	0	0	0	0		
0	0	1	0	0	0	0	1		
0	0	1	1	0	0	0	1		
0	1	0	0	0	1	1	0		
0	1	0	1	0	1	1	0		
0	1	1	0	0	1	1	1		
0	1	1	1	0	1	1	1		
1	0	0	0	1	1	0	0		
1	0	0	1	1	1	0	0		
1	0	1	0	1	1	0	1		
1	0	1	1	1	1	0	1		
1	1	0	0	1	0	1	0		
1	1	0	1	1	0	1	0		
1	1	1	0	1	0	1	1		
1	1	1	1	1	0	1	1		

- ✓ 由真值表写函数式
 - ✓ 罗列所有的'1'的组合逻辑
 - ✓ 然和把所有 '1' 项或起来
- ✓ 对函数式进行化简或变换

$$G_3 = Q_3 \overline{Q_2} \overline{Q_1} \overline{Q_0} + Q_3 \overline{Q_1} \overline{Q_0}$$

G2=?

G1=?

G0 = ?

• 与非门

- 7400: 四2输入与非门
- 7410: 三3输入与非门
- 7420: 双4输入与非门
- 7430: 单8输入与非门
- 或门
 - 74LS32: 四2输入或门(小功率<u>肖特基</u>版本)
- 与门
 - 四2输入与门7408
- 非门
 - 7404

实验内容1

- 设计一个代码转换电路,输入为 4 位二进制码输出 为 4 位循环码。 4 位二进制码与格雷码的对照关系 如实验原理表格所示。
- 对代码转换电路进行静态测试。(任意选择3种状态)
- 74LS197 构成的十六进制计数器作为代码转换电路的 输入信号源,作为代码转换电路的输入,输出接逻辑 分析仪,记录逻辑分析仪的输出并比对结果。

实验报告

- 实验报告格式要求
 - 包含实验内容,实验原理,实验设计(电路设计),实验结果-分析-结论
- 写出详细的设计过程。用 Proteus 软件画出电路图并仿真电路功能。
- 按实验内容描述完成实验的过程,分析实验中出现的问题,记录并打印出波形,并分析波形与电路功能间的关系。
- 总结组合逻辑电路分析方法与设计过程, 以及本实验过程心得。

Questions?

Comments?

Discussion?