

Lecture 5. Features and Fitting RANSAC

Juan Carlos Niebles and Jiajun Wu
CS131 Computer Vision: Foundations and Applications

What will we learn today?

- A model fitting method for line detection
 - RANSAC

Fitting as Search in Parametric Space

- Let's say we have chosen a parametric model for a set of features
 - For example, we have a line equation that we want to fit to a set of edge points
- We can 'search' in parameter space by trying many potential parameter values and see which set of parameters 'agree'/fit with our set of features
- Three main questions:
 - What model represents this set of features best?
 - Which of several model instances gets which feature?
 - How many model instances are there?
- Computational complexity is important
 - It is infeasible to examine every possible set of parameters and every possible combination of features

Example: Line Fitting

• Why fit lines? Many objects characterized by presence of straight lines

Difficulty of Line Fitting

- Extra edge points (clutter), multiple models:
 - Which points go with which line, if any?
- Only some parts of each line detected, and some parts are missing:
 - How to find a line that bridges missing evidence?
- Noise in measured edge points, orientations:
 - How to detect true underlying parameters?

Voting as a fitting technique

- It's not feasible to check all combinations of features by fitting a model to each possible subset. For example, the naïve line fitting we saw last time was O(N²).
- Voting is a general technique where we let the features vote for all models that are compatible with it.
 - Cycle through features, cast votes for model parameters.
 - Look for model parameters that receive a lot of votes.
- Noise & clutter features will cast votes too, but typically their votes should be inconsistent with the majority of "good" features.
- Ok if some features not observed, as model can span multiple fragments.

RANSAC [Fischler & Bolles 1981]

- RANdom SAmple Consensus
- Approach: we want to avoid the impact of outliers, so let's look for "inliers", and use only those.
- Intuition: if an outlier is chosen to compute the current fit, then the resulting line won't have much support from rest of the points.

RANSAC [Fischler & Bolles 1981]

RANSAC loop:

Repeat for k iterations:

- 1. Randomly select a *seed group* of points on which to perform a model estimate (e.g., a group of edge points)
- 2. Compute model parameters from seed group
- 3. Find *inliers* to this model
- 4. If the number of inliers is sufficiently large, re-compute least-squares estimate of model on all of the inliers
- Keep the model with the largest number of inliers

- Task: Estimate the best line
 - How many points do we need to estimate the line?

Algorithm 15.4: RANSAC: fitting lines using random sample consensus

Determine:

n — the smallest number of points required

k — the number of iterations required

t — the threshold used to identify a point that fits well

d — the number of nearby points required to assert a model fits well

Until k iterations have occurred

Draw a sample of n points from the data uniformly and at random

Fit to that set of n points

For each data point outside the sample

Test the distance from the point to the line against t; if the distance from the point to the line is less than t, the point is close

end

If there are d or more points close to the line then there is a good fit. Refit the line using all these points.

end

Use the best fit from this collection, using the fitting error as a criterion

RANSAC: How many iterations "k"?

- How many samples are needed?
 - Suppose w is fraction of inliers (points from line).
 - -n points needed to define hypothesis (2 for lines)
 - -k samples chosen.
- Prob. that a single sample of n points is correct: w^n
- Prob. that a single sample of n points fails: $1 w^n$
- Prob. that all k samples fail is: $(1 w^n)^k$
- Prob. that at least one of the k samples is correct: $1 (1 w^n)^k$
- \Rightarrow Choose k high enough to keep this below desired failure rate.

RANSAC: Computed k (p=0.99)

Sample size	Proportion of outliers						
n	5 %	10%	20%	25%	30%	40%	50%
2	2	3	5	6	7	11	17
3	3	4	7	9	11	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
6	4	7	16	24	37	97	293
7	4	8	20	33	54	163	588
8	5	9	26	44	78	272	1177

Refining RANSAC estimate

- RANSAC computes its best estimate from a minimal sample of n
 points, and divides all data points into inliers and outliers using this
 estimate.
- We can improve this initial estimate by estimation over all inliers (e.g. with standard least-squares minimization).
- But this may change inliers, so alternate fitting with re-classification as inlier/outlier.

RANSAC: Pros and Cons

• Pros:

- General method suited for a wide range of model fitting problems
- Easy to implement and easy to calculate its failure rate

• Cons:

- Only handles a moderate percentage of outliers without cost blowing up
- Many real problems have high rate of outliers (but sometimes selective choice of random subsets can help)
- A voting strategy, The Hough transform, can handle high percentage of outliers

Summary

- RANSAC
 - Algorithm
 - Analysis
 - Number of samples
 - Pros and cons