TD-3 : Application au contrôle qualité d'une gourde décorée

Vous devez concevoir un système de vision pour inspecter des bouteilles décorées en rotation à l'aide d'une caméra linéaire. Voici les spécifications du problème :

Spécifications:

• Cadence de production : 5 bouteilles en 3 secondes

• Dimensions: hauteur 25 cm, diamètre 45 mm

• Précision : détection de 0,15 mm

Utilisez un notebook Jupyter ou code Python pour répondre aux questions suivantes :

Questions

1. Périmètre maximal

Calculez le périmètre maximal de la bouteille.

2. Vitesse maximale d'un élément décoratif

Déterminez la vitesse maximale de déplacement d'un élément du motif sur la surface de la bouteille.

3. Résolution minimale du capteur CCD linéaire

Calculez le nombre minimal de pixels (N) nécessaires pour équiper le capteur CCD linéaire, en prenant un coefficient de sécurité de 2.

4. Nombre de lignes nécessaires pour le scan

Calculez le nombre total de lignes que la caméra doit capturer pour scanner une bouteille, en appliquant le même coefficient de sécurité.

5. Fréquence de la caméra

Déterminez la fréquence d'acquisition (en images par seconde) requise pour suivre la cadence de production.

6. Temps d'exposition maximal

Sachant que le temps de transfert d'une ligne est de 15×10 -5 secondes, calculez le temps d'exposition maximal restant pour la caméra.

7. Choix d'une caméra adaptée

Trouvez une caméra répondant aux besoins définis (distributeurs recommandés : Basler, Thorlabs, IDS Imaging, Keyence, etc.).

8. Grandissement de l'image

Calculez le grandissement de l'image pour la caméra identifiée.

9. Distance de travail et choix de focale

Calculez la distance de travail pour des focales de 6 mm, 8 mm et 12 mm. La distance maximale de travail disponible est de 1 mètre. Déterminez la meilleure focale.

10. Ajustement du temps d'exposition

Lors d'un premier test avec un temps d'exposition initial 1.5×10 -4 secondes, la valeur maximale de l'image est de 45. En supposant que la réponse de la caméra est linéaire et que son capteur est de 8 bits, de combien devez-vous augmenter le temps d'exposition pour exploiter toute la dynamique du capteur ?

11. Exploitation de la dynamique du capteur

Est-il possible d'exploiter pleinement la dynamique du capteur tout en respectant la cadence de production ? Si ce n'est pas possible, proposez une solution alternative.