

advanced network science initiative (ansi)

PowerModels.jl a Brief Introduction

Carleton Coffrin, et. al.

A Bit About Me

- Trained as Computer Scientist
 - BS University of Connecticut
 - PhD Brown University

Pascal Van Hentenryck

Laurent Michel

A Bit About Me

- Trained as Computer Scientist
 - BS University of Connecticut
 - PhD Brown University
- Know about CS Stuff
 - Software Engineering
 - Programming Language Design
 - Computational Research Focus

Pascal Van Hentenryck

Laurent Michel

A Bit About Me

• Discrete Optimization Research

- Generalist
 - Local Search / Heuristics
 - Constraint Programming
 - MIP
 - NLP & MINLP (more recently)

Discrete Optimization

A Bit About LANL

- Advanced Network Science Initiative (ANSI)
- 10+ Diverse Staff
 - Optimization, ML, Applied Math, Statistical Physics
- Applications in complex networks
 - e.g. Electric Power, Natural Gas, Water
- Developing novel algorithmic methods

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

A Bit About LANL

ANSI LOVES JuliaOpt

Outline

- Motivation
 - Challenges of R&D in Power Network Optimization
- A Brief Introduction to PowerModels.jl
- Plans for the Near-Future

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Motivation

AC Power Flow

$$\theta_r = 0$$

$$p_i^g - \mathbf{p}_i^d = \sum_{(i,j) \in E \cup E^R} p_{ij} \quad \forall i \in N$$

$$q_i^g - q_i^d = \sum_{(i,j) \in E \cup E^R} q_{ij} \quad \forall i \in N$$

$$p_{ij} = \boldsymbol{g}_{ij}v_i^2 - \boldsymbol{g}_{ij}v_iv_j\cos(\theta_{ij}^{\Delta}) - \boldsymbol{b}_{ij}v_iv_j\sin(\theta_{ij}^{\Delta}) \quad (i,j) \in E \cup E^R$$

$$q_{ij} = -\boldsymbol{b}_{ij}v_i^2 + \boldsymbol{b}_{ij}v_iv_j\cos(\theta_{ij}^{\Delta}) - \boldsymbol{g}_{ij}v_iv_j\sin(\theta_{ij}^{\Delta}) \quad (i,j) \in E \cup E^R$$

$$\theta_{ij}^{\Delta} = \theta_i - \theta_j \ \forall (i,j) \in E$$

$$p_{ij}^2 + q_{ij}^2 \le (s_{ij}^u)^2 \ \forall (i,j) \in E \cup E^R$$

$\theta_r = 0$ AC Power Flow

$$p_i^g - p_i^d = \sum_{(i,j) \in E \cup E^R} p_{ij} \ \ \forall i \in N$$
 Flow Conservation (i.e. KCL)

$$q_i^g - q_i^d = \sum_{(i,j) \in E \cup E^R} q_{ij} \quad \forall i \in N$$

$$p_{ij} = \mathbf{g}_{ij}v_i^2 - \mathbf{g}_{ij}v_iv_j\cos(\theta_{ij}^{\Delta}) - \mathbf{b}_{ij}v_iv_j\sin(\theta_{ij}^{\Delta}) \quad (i,j) \in E \cup E^R$$

$$q_{ij} = -\mathbf{b}_{ij}v_i^2 + \mathbf{b}_{ij}v_iv_j\cos(\theta_{ij}^{\Delta}) - \mathbf{g}_{ij}v_iv_j\sin(\theta_{ij}^{\Delta}) \quad (i,j) \in E \cup E^R$$

$$\theta_{ij}^{\Delta} = \theta_i - \theta_j \quad \forall (i,j) \in E$$

$$p_{ij}^2 + q_{ij}^2 \leq (\mathbf{s}_{ij}^{\mathbf{u}})^2 \quad \forall (i,j) \in E \cup E^R$$

 $\theta_{r} = 0$

AC Power Flow

$$p_i^g - p_i^d = \sum_{(i,j) \in E \cup E^R} p_{ij} \ \forall i \in N$$
 Flow Conservation (i.e. KCL)

$$q_i^g - q_i^d = \sum_{(i,j) \in E \cup E^R} q_{ij} \quad \forall i \in N$$

$$p_{ij} = \boldsymbol{g}_{ij}v_i^2 - \boldsymbol{g}_{ij}v_iv_j\cos(\theta_{ij}^{\Delta}) - \boldsymbol{b}_{ij}v_iv_j\sin(\theta_{ij}^{\Delta}) \quad (i,j) \in E \cup E^R$$
 Line Power Flow
$$q_{ij} = -\boldsymbol{b}_{ij}v_i^2 + \boldsymbol{b}_{ij}v_iv_j\cos(\theta_{ij}^{\Delta}) - \boldsymbol{g}_{ij}v_iv_j\sin(\theta_{ij}^{\Delta}) \quad (i,j) \in E \cup E^R$$
 (i.e. Ohm's Law)

(i.e. Ohm's Law)

$$\theta_{ij}^{\Delta} = \theta_i - \theta_j \ \forall (i,j) \in E$$

$$p_{ij}^2 + q_{ij}^2 \le (s_{ij}^u)^2 \ \forall (i,j) \in E \cup E^R$$

AC Power Flow $\theta_{r} = 0$

$$p_i^g - p_i^d = \sum_{(i,j) \in E \cup E^R} p_{ij} \ \forall i \in N$$
 Flow Conservation (i.e. KCL)

$$q_i^g - q_i^d = \sum_{(i,j) \in E \cup E^R} q_{ij} \quad \forall i \in N$$

$$p_{ij} = \boldsymbol{g}_{ij}v_i^2 - \boldsymbol{g}_{ij}v_iv_j\cos(\theta_{ij}^{\Delta}) - \boldsymbol{b}_{ij}v_iv_j\sin(\theta_{ij}^{\Delta}) \quad (i,j) \in E \cup E_{\bullet}^R$$

$$q_{ij} = -\boldsymbol{b}_{ij}v_i^2 + \boldsymbol{b}_{ij}v_iv_j\cos(\theta_{ij}^{\Delta}) - \boldsymbol{g}_{ij}v_iv_j\sin(\theta_{ij}^{\Delta}) \quad (i,j) \in E \cup E^R$$

Line Power Flow (i.e. Ohm's Law)

$$\theta_{ij}^{\Delta} = \theta_i - \theta_j \ \forall (i,j) \in E$$

$$p_{ij}^2 + q_{ij}^2 \leq (s_{ij}^u)^2 \ \forall (i,j) \in E \cup E^R$$
Line Flow Limits

$$\theta_r = 0$$

AC Power Flow

$$p_i^g - p_i^d = \sum_{(i,j) \in E \cup E^R} p_{ij} \ \forall i \in N$$
 Flow Conservation (i.e. KCL)

$$q_i^g - q_i^d = \sum_{(i,j) \in E \cup E^R} q_{ij} \quad \forall i \in N$$

$$p_{ij} = \boldsymbol{g}_{ij}v_i^2 - \boldsymbol{g}_{ij}v_iv_j\cos(\theta_{ij}^{\Delta}) - \boldsymbol{b}_{ij}v_iv_j\sin(\theta_{ij}^{\Delta}) \quad (i,j) \in E \cup E_i^R$$

$$q_{ij} = -\boldsymbol{b}_{ij}v_i^2 + \boldsymbol{b}_{ij}v_iv_j\cos(\theta_{ij}^{\Delta}) - \boldsymbol{g}_{ij}v_iv_j\sin(\theta_{ij}^{\Delta}) \quad (i,j) \in E \cup E_i^R$$

Line Power Flow (i.e. Ohm's Law)

$$\theta_{ij}^{\Delta} = \theta_i - \theta_j \quad \forall (i,j) \in E \longleftarrow$$

 $p_{ij}^2 + q_{ij}^2 \leq (\boldsymbol{s}_{ij}^{\boldsymbol{u}})^2 \ \, \forall (i,j) \in E \cup E^R \qquad \qquad \text{Line Flow Limits}$

IEEE TRANSACTIONS ON POWER SYSTEMS

AC-Feasibility on Tree Networks is NP-Hard

Karsten Lehmann, Alban Grastien, and Pascal Van Hentenryck

Abstract—Recent years have witnessed significant interest in convex relaxations of the power flows, with several papers showing that the second-order cone relaxation is tight for tree networks under various conditions on loads or voltages. This paper shows that ac-feasibility, i.e., to find whether some generator dispatch can satisfy a given demand, is NP-hard for tree networks.

Index Terms—Computational complexity, optimal power flow (OPF).

Nomenclature

 \mathcal{N} AC-network.

N Set of buses.

 N_G Set of generators.

 N_L Set of loads.

Bus of a network.

i Bus of a network.

I. Introduction

ANY interesting applications in power systems, including optimal power flows, optimize an objective function over the steady-state power flow equations, which are nonlinear and nonconvex. These applications typically include an *ac-feasibility* (AC-FEAS) subproblem: find whether some generator dispatch can satisfy a given demand.

Although the set of ac-feasible solutions is in general a non-convex set, this does not imply that the ac-feasibility problem is NP-hard, as nonconvexity does not imply NP-hardness. For example, the family of optimization problems min y such that $0 \le y \le \prod_{i=1}^n x_i$ where $n \in \mathbb{N}$ has a nonconvex constraint and a nonconvex solution set but the optimal solution is always y = 0 and can be trivially computed.

The first NP-hardness proof for ac-feasibility was given for a cyclic network structure in [1]. It relies on a variant of the dc

DC Power Flow Approximation

$$\theta_{r} = 0$$

$$p_{i}^{g} - p_{i}^{d} = \sum_{(i,j) \in E \cup E^{R}} p_{ij} \ \forall i \in N$$

$$p_{ij} = -\mathbf{b}_{ij}(\theta_{ij}^{\Delta}) \ (i,j) \in E \cup E^{R}$$

$$\theta_{ij}^{\Delta} = \theta_{i} - \theta_{j} \ \forall (i,j) \in E$$

$$|p_{ij}| \leq \mathbf{s}_{ij}^{u} \ \forall (i,j) \in E \cup E^{R}$$

DC Power Flow Approximation

$$\begin{split} & \theta_{\boldsymbol{r}} = 0 \\ & p_i^g - \boldsymbol{p}_i^d = \sum_{(i,j) \in E \cup E^R} p_{ij} \ \, \forall i \in N \\ & p_{ij} = -\boldsymbol{b}_{ij}(\theta_{ij}^\Delta) \ \, (i,j) \in E \cup E^R \quad \longleftarrow \text{Linear Model} \\ & \theta_{ij}^\Delta = \theta_i - \theta_j \ \, \forall (i,j) \in E \\ & |p_{ij}| \leq \boldsymbol{s}_{ij}^{\boldsymbol{u}} \ \, \forall (i,j) \in E \cup E^R \end{split}$$

SOC Power Flow Relaxation

$$\begin{aligned} p_i^g - \boldsymbol{p}_i^d &= \sum_{(i,j) \in E \cup E^R} p_{ij} \ \forall i \in N \\ q_i^g - \boldsymbol{q}_i^d &= \sum_{(i,j) \in E \cup E^R} q_{ij} \ \forall i \in N \\ p_{ij} &= \boldsymbol{g}_{ij} w_i - \boldsymbol{g}_{ij} w_{ij}^R - \boldsymbol{b}_{ij} w_{ij}^I \ (i,j) \in E \cup E^R \\ q_{ij} &= -\boldsymbol{b}_{ij} w_i + \boldsymbol{b}_{ij} w_{ij}^R - \boldsymbol{g}_{ij} w_{ij}^I \ (i,j) \in E \cup E^R \\ p_{ij}^2 + q_{ij}^2 &\leq (\boldsymbol{s}_{ij}^{\boldsymbol{u}})^2 \ \forall (i,j) \in E \cup E^R \\ (w_{ij}^R)^2 + (w_{ij}^I)^2 &\leq w_i w_j \ (i,j) \in E \\ \boldsymbol{\theta}_{ij}^{\boldsymbol{\Delta} l} w_{ij}^R &\leq w_{ij}^I \leq w_{ij}^R \boldsymbol{\theta}_{ij}^{\boldsymbol{\Delta} \boldsymbol{u}} \ (i,j) \in E \end{aligned}$$

SOC Power Flow Relaxation

$$\begin{aligned} p_i^g - \boldsymbol{p}_i^d &= \sum_{(i,j) \in E \cup E^R} p_{ij} \ \forall i \in N \\ q_i^g - \boldsymbol{q}_i^d &= \sum_{(i,j) \in E \cup E^R} q_{ij} \ \forall i \in N \\ p_{ij} &= \boldsymbol{g}_{ij} w_i - \boldsymbol{g}_{ij} w_{ij}^R - \boldsymbol{b}_{ij} w_{ij}^I \ (i,j) \in E \cup E^R \\ q_{ij} &= -\boldsymbol{b}_{ij} w_i + \boldsymbol{b}_{ij} w_{ij}^R - \boldsymbol{g}_{ij} w_{ij}^I \ (i,j) \in E \cup E^R \\ p_{ij}^2 + q_{ij}^2 &\leq (\boldsymbol{s}_{ij}^{\boldsymbol{u}})^2 \ \forall (i,j) \in E \cup E^R \\ (w_{ij}^R)^2 + (w_{ij}^I)^2 &\leq w_i w_j \ (i,j) \in E \end{aligned}$$

Convex Constraints

R&D Challenges

- Two Core Issues
 - Power Flow Formulations
 - Test Cases for Benchmarking

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

The Formulation Problem

 It is possible to publish a new approximation or relaxation, without comparing to many previous works

The Formulation Problem

- It is possible to publish a new approximation or relaxation, without comparing to many previous works
- There has been an explosion of proposed power flow alternatives (often hard to find)

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

The Formulation Problem

- It is possible to publish a new approximation or relaxation, without comparing to many previous works
- There has been an explosion of proposed power flow alternatives (often hard to find)
- No clear top performers, in terms of citations at least...

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Formulation Taxonomy (as of 2014)

Just Relaxations

The Instance Problem

 It is possible to publish a new method, by only testing on a few (5-10)

The Instance Problem

- It is possible to publish a new method, by only testing on a few (5-10)
- typically these are very-easy test cases
 - e.g. convex objective function with no binding constraints

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

The Instance Problem

- It is possible to publish a new method, by only testing on a few (5-10)
- typically these are very-easy test cases
 - e.g. convex objective function with no binding constraints
- Industry more-or-less ignores academic results
 - One reason is that the test cases are too easy

My Solution?

My Solution?

A novel scientific methodology

My Solution?

A novel scientific methodology

Brute-Force R&D Run All Formulations on All Instances

"No clever ideas required!"

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

AMPL Implementation

- AC_b_only.mod
- AC_basic.mod
- AC_cb.mod
- AC_cb2.mod
- AC_cp.mod
- AC_current_inject.mod
- AC_current.mod
- AC_distflow_cvx.mod
- AC_first_order.mod
- AC_global_rect.mod
- AC_global_w_rect.mod
- AC_global_w.mod
- AC_global.mod
- AC_line_flex.mod
- AC_line_fp.mod
- AC_line_fp2.mod
- AC_II_theta.mod

- AC_loss.mod
- AC_nf_lb_lin.mod
- AC_nf_lin.mod
- AC_nf_ll_cvx.mod
- AC_nf_II.mod
- AC_pf_opf.mod
- AC_pf_soft.mod
- AC_pf.mod
- AC_polar.mod
- AC_poly_cvx.mod
- AC_poly_ll_cvx.mod
- AC_rect_cvx.mod
- AC_rect_gamma_lin.mod
- AC_rect_gamma.mod
- AC_rect_ll_cvx.mod
- AC_rect_nf_cvx.mod
- AC_rect_polar.mod
- AC_rect.mod

- DC_cp.mod
- DC_distflow_cvx.mod
- DC_II_cvx.mod
- DC_II.mod
- DC_nf_ll_cvx.mod
- DC_nf.mod
- DC.mod

- QC_bus_flex.mod
- QC_cs_cvx.mod
- QC_cut_cvx_fp.mod
- QC_cut_flex_nlp.mod
- QC_cvx_fp_qp.mod
- QC_cvx_fp.mod
- QC_cvx_init.mod
- QC_cvx_sym.mod
- QC_cvx.mod
- QC_dir_cvx.mod
- QC_flex_cvx_pre.mod
- QC_flex_cvx.mod
- QC_flex_nlp_pre.mod
- QC_flex_nlp.mod
- QC_line_flex_nlp.mod
- QC_line_flex.mod
- QC_line_fp2_nlp.mod
- QC_line_fp2.mod
- QC_ncvx.mod
- QC_nlp_old.mod
- QC_nlp.mod
- QC_tan_cvx.mod
- QC_w_cvx.mod
- QPAC.mod

- SOC_cut_flex_cvx.mod
- SOC_cvx_fp.mod
- SOC_flex_cvx.mod
- SOC_w_cs.mod
- SOC_w_cvx_er.mod
- SOC_w_cvx_er2.mod
- SOC_w_cvx_lp.mod
- SOC_w_cvx.mod
- SOC_w_cyc3.mod
- SOC_w_Inc_cvx.mod
- SOC_w_sdp3.mod
- SOC_w_tan_cvx.mod
- SOC_w_theta.mod
- SOC_w.mod
- SOC_wl_cvx.mod

Test Case Archive

NESTA

The Nicta Energy System Test Case Archive

Carleton Coffrin^{1,2,3}, Dan Gordon¹, and Paul Scott^{1,2}

¹Optimisation Research Group, NICTA ²College of Engineering and Computer Science, Australian National University ³Computing and Information Systems, University of Melbourne

August 12, 2016

Abstract

In recent years the power systems research community has seen an explosion of work applying operations research techniques to challenging power network optimization problems. Regardless of the application under consideration, all of these works rely on power system test cases for evaluation and validation. However, many of the well established power system test cases were developed as far back as the 1960s with the aim of testing AC power flow algorithms. It is unclear if these power flow test cases are suitable for power system optimization studies. This report surveys all of the publicly available AC transmission system test cases, to the best of our knowledge, and assess their suitability for optimization tasks. It finds that many of the traditional test cases are missing key network operation constraints, such as line thermal limits and generator capability curves. To incorporate these missing constraints, data driven models are developed from a variety of publicly available data sources. The resulting extended test cases form a compressive archive, NESTA, for the evaluation and validation of power system optimization algorithms.

https://arxiv.org/abs/1411.0359

Test Case Archive

NESTA

The Nicta Energy System Test Case Archive

Carleton Coffrin^{1,2,3}, Dan Gordon¹, and Paul Scott^{1,2}

¹Optimisation Research Group, NICTA ²College of Engineering and Computer Science, Australian National University ³Computing and Information Systems, University of Melbourne

August 12, 2016

Abstract

In recent years the power systems research community has seen an explosion of work applying operations research techniques to challenging power network optimization problems. Regardless of the application under consideration, all of these works rely on power system test cases for evaluation and validation. However, many of the well established power system test cases were developed as far back as the 1960s with the aim of testing AC power flow algorithms. It is unclear if these power flow test cases are suitable for power system optimization studies. This report surveys all of the publicly available AC transmission system test cases, to the best of our knowledge, and assess their suitability for optimization tasks. It finds that many of the traditional test cases are missing key network operation constraints, such as line thermal limits and generator capability curves. To incorporate these missing constraints, data driven models are developed from a variety of publicly available data sources. The resulting extended test cases form a compressive archive, NESTA, for the evaluation and validation of power system optimization algorithms.

https://arxiv.org/abs/1411.0359

35 base cases

 $nesta_case3_lmbd$ nesta_case4_gs $nesta_case5_pjm$ $\overline{\mathrm{nesta_case6_c}}$ nesta_case6_ww nesta_case9_wscc nesta_case14_ieee nesta_case24_ieee_rts nesta_case29_edin $nesta_case30_as$ $nesta_case30_fsr$ nesta_case30_ieee nesta_case39_epri nesta_case57_ieee nesta_case73_ieee_rts nesta_case89_pegase nesta_case118_ieee nesta_case162_ieee_dtc nesta_case189_edin nesta_case300_ieee nesta_case1354_pegase nesta_case1394sop_eir nesta_case1397sp_eir nesta_case1460wp_eir nesta_case2224_edin nesta_case2383wp_mp nesta_case2736sp_mp nesta_case2737sop_mp nesta_case2746wp_mp nesta_case2746wop_mp $nesta_case2869_pegase$ nesta_case3012wp_mp $nesta_case3120sp_mp$ nesta_case3375wp_mp nesta_case9241_pegase

API

nesta_case3_lmbd__api nesta_case4_gs__api nesta_case5_pjm__api nesta_case6_c_api nesta_case6_ww__api nesta_case9_wscc__api nesta_case14_ieee__api nesta_case24_ieee_rts__api nesta_case29_edin__api nesta_case30_as__api nesta_case30_fsr__api nesta_case30_ieee__api nesta_case39_epri__api nesta_case57_ieee__api nesta_case73_ieee_rts__api nesta_case89_pegase__api nesta_case118_ieee__api nesta_case162_ieee_dtc__api nesta_case189_edin__api nesta_case300_ieee__api nesta_case1354_pegase__api nesta_case1394sop_eir__api nesta_case1397sp_eir__api nesta_case1460wp_eir__api nesta_case2224_edin__api nesta_case2383wp_mp__api nesta_case2736sp_mp__api nesta_case2737sop_mp__api nesta_case2746wp_mp_api nesta_case2746wop_mp__api nesta_case2869_pegase__api nesta_case3012wp_mp__api nesta_case3120sp_mp__api nesta_case3375wp_mp__api nesta_case9241_pegase__api

SAD

 $nesta_case3_lmbd__sad$ nesta_case4_gs__sad $nesta_case5_pjm__sad$ $nesta_case6_c__sad$ $nesta_case6_ww__sad$ nesta_case9_wscc__sad nesta_case14_ieee__sad nesta_case24_ieee_rts__sad nesta_case29_edin__sad $nesta_case30_as__sad$ nesta_case30_fsr__sad nesta_case30_ieee__sad nesta_case39_epri__sad nesta_case57_ieee__sad nesta_case73_ieee_rts__sad $nesta_case89_pegase_sad$ nesta_case118_ieee__sad nesta_case162_ieee_dtc__sad nesta_case189_edin__sad nesta_case300_ieee__sad nesta_case1354_pegase__sad nesta_case1394sop_eir__sad nesta_case1397sp_eir__sad nesta_case1460wp_eir__sad nesta_case2224_edin__sad $nesta_case2383wp_mp__sad$ $nesta_case2736sp_mp__sad$ $nesta_case2737sop_mp__sad$ nesta_case2746wp_mp__sad nesta_case2746wop_mp__sad $nesta_case2869_pegase__sad$ nesta_case3012wp_mp_sad nesta_case3120sp_mp_sad nesta_case3375wp_mp__sad nesta_case9241_pegase__sad

Brute Force R&D Example

The QC Relaxation: Theoretical and Computational Results on Optimal Power Flow

https://arxiv.org/abs/1502.07847

Brute Force R&D Example

The QC Relaxation: Theoretical and Computational Results on Optimal Power Flow

https://arxiv.org/abs/1502.07847

Power Formulations

TABLE III

QUALITY AND RUNTIME RESULTS OF AC POWER FLOW RELAXATIONS											
	\$/h		Optimality					me (seconds	*		
Test Case	AC	SDP	QC	SOC	CP	AC	SDP	QC	SOC	CP	
Typical Operating Conditions (TYP)											
nesta_case3_lmbd	5812.64	0.39	1.24	1.32	2.99	0.12	4.16	0.07	0.05	0.03	
nesta_case5_pjm	17551.89	5.22	14.54	14.54	15.62	0.04	5.36	0.09	0.03	0.05	
nesta_case30_ieee	204.97	0.00	15.64	15.88	27.91	0.09	8.38	0.17	0.07	0.06	
nesta_case118_ieee	3718.64	0.06	1.72	2.07	7.87	0.41	12.62	0.87	0.43	0.05	
nesta_case162_ieee_dtc	4230.23	1.08	4.00	4.03	15.44	0.61	35.20	1.48	0.31	0.04	
nesta case300 ieee	16891.28	0.08	1.17	1.18	n.a.	0.80	29.69	2.83	0.65	n.a.	
nesta_case2224_edin	38127.69	1.22	6.03	6.09	8.45	11.42	690.16	65.59	45.99	0.33	
nesta_case2383wp_mp	1868511.78	0.37	1.04	1.05	5.35	12.41	1966.10	57.87	12.91	0.80	
nesta_case3012wp_mp	2600842.72	_	1.00	1.02	n.a.	12.40	14588.79 [†]	53.59	19.15	n.a.	
nesta_case9241_pegase	315913.26		1.67		n.a.	132.25		3064.42		n.a.	
nesta_case>2+1_pegase	313713.20	Canaa		estina Ca				3001.12		11.4.	
Congested Operating Conditions (API) nesta case3 lmbd api 367.74 1.26 1.83 3.30 14.79 0.18 4.41 0.09 0.05 0.23											
nesta_case3_lmbdapi	367.74		1.83	3.30	14.79	0.18	4.41	0.09	0.05	0.23	
nesta_case6_wwapi	273.76	0.00*	13.14	13.33	17.17	0.34	13.19	0.07	0.06	0.03	
nesta_case14_ieeeapi	325.56	0.00	1.34	1.34	8.89	0.19	5.64	0.11	0.08	0.94	
nesta_case24_ieee_rtsapi	6421.37	1.45	13.77	20.70	24.12	0.14	7.50	0.26	0.09	0.04	
nesta_case30_asapi	571.13	0.00	4.76	4.76	8.01	0.38	6.12	0.17	0.11	1.11	
nesta_case30_fsrapi	372.14	11.06	45.97	45.97	48.80	0.25	7.25	0.19	0.09	0.92	
nesta_case30_ieeeapi	415.53	0.00	1.01	1.01	12.75	0.07	6.60	0.19	0.09	0.03	
nesta_case39_epriapi	7466.25	0.00	2.97	2.99	13.31	0.10	7.36	0.29	0.12	0.04	
nesta_case73_ieee_rtsapi	20123.98	4.29	12.01	14.34	17.83	0.48	10.03	0.66	0.20	0.06	
nesta_case89_pegaseapi	4288.02	18.11	20.39	20.43	22.60	1.16	21.58	1.29	0.81	0.04	
nesta_case118_ieeeapi	10325.27	31.50	43.93	44.08	49.69	0.46	12.59	0.84	0.25	0.05	
nesta_case162_ieee_dtcapi	6111.68	0.85	1.33	1.34	19.39	0.50	36.85	1.53	0.39	0.05	
nesta_case189_edinapi	1982.82	0.05	5.78	5.78	n.a.	1.07	16.10	1.14	0.33	n.a.	
nesta_case2224_edinapi	46235.43	1.10	2.77	2.77	9.07	12.28	672.04	81.66	88.33	0.33	
nesta_case2383wp_mpapi	23499.48	0.10	1.12	1.12	3.10	9.50	1421.39	28.37	10.25	0.34	
nesta_case2736sp_mpapi	25437.70	0.07	1.32	1.33	3.89	9.21	2278.77	41.29	10.51	0.36	
nesta_case2737sop_mpapi	21192.40	0.00	1.05	1.06	4.62	9.29	1887.22	30.94	9.91	0.32	
nesta_case2869_pegaseapi	96573.10	0.92*	1.49	1.49	5.16	21.03	1579.87	102.55	161.96	0.37	
nesta_case3120sp_mpapi	22874.98	_	3.02	3.03	n.a.	14.92	15018.93 [†]	41.72	12.19	n.a.	
nesta_case9241_pegase_api	241975.18		2.45	2.59	n.a.	140.73		3511.60	8387.11	n.a.	
		Small A	nole Diff	erence Co	onditions	(SAD)	I				
nesta_case3_lmbdsad	5992.72	2.06	1.24*	4.28	5.90	0.19	4.39	0.10	0.05	0.03	
nesta_case4_gs_sad	324.02	0.05	0.81	4.90	66.06	0.15	4.16	0.06	0.06	0.03	
nesta_case5_pimsad	26423.32	0.00	1.10	3.61	43.95	0.08	5.35	0.00	0.05	0.07	
nesta_case6_c_sad	24.43	0.00	0.40	1.36	6.79	0.06	5.32	0.11	0.05	0.03	
nesta_case9_wsccsad	5590.09	0.00	0.40	1.50	6.69	0.20	4.18	0.11	0.05	0.02	
nesta_case24_ieee_rtssad	79804.96	6.05	3.88	11.42	23.56	0.14	6.24	0.19	0.03	0.03	
		28.44	20.57		36.79	0.10	9.19	1.73	0.11	0.04	
nesta_case29_edinsad nesta_case30_assad	46933.26 914.44	0.47	3.07	34.47 9.16	16.06	0.70	6.49	0.22	0.27	0.06	
		0.47			27.96	0.18	7.49	0.22	0.09	0.03	
nesta_case30_ieeesad	205.11		3.96	5.84	27.96	0.12					
nesta_case73_ieee_rtssad	235241.70	4.10	3.51	8.37			9.48	0.87	0.20	0.07	
nesta_case118_ieeesad	4324.17	7.57	8.32	12.89	20.77	0.56	14.14	0.98	0.31	0.06	
nesta_case162_ieee_dtcsad	4369.19	3.65	6.91	7.08	18.13	0.81	39.71	1.70	0.36	0.05	
nesta_case189_edinsad	914.61	1.20*	2.22	2.25	n.a.	0.65	14.83	1.27	0.46	n.a.	
nesta_case300_ieeesad	16910.23	0.13	1.16	1.26	n.a.	1.01	29.63	2.81	0.76	n.a.	
nesta_case2224_edinsad	38385.14	1.22	5.57	6.18	9.06	11.53	691.53	50.34	65.68	0.33	
nesta_case2383wp_mpsad	1935308.12	1.30	2.97	4.00	8.62	16.25	1785.26	40.71	12.57	0.80	
nesta_case2736sp_mpsad	1337042.77	2.18*	2.01	2.34	4.56	13.22	1737.25	35.42	11.31	0.48	
nesta_case2737sop_mpsad	795429.36	2.24*	2.21	2.42	3.95	13.01	2153.37	32.05	9.69	0.39	
nesta_case2746wp_mpsad	1672150.46	2.41*	1.83	2.44	5.43	14.01	2840.32	35.66	13.32	0.56	
nesta_case2746wop_mpsad	1241955.30	2.71*	2.48	2.94	5.14	14.51	2306.18	32.41	23.22	0.42	
nesta_case3012wp_mpsad	2635451.29		1.92	2.12	n.a.	15.79	13548.13 [†]	46.59	28.41	n.a.	
nesta_case3120sp_mpsad	2203807.23		2.56	2.79	n.a.	30.01	16804.55 [†]	53.81	15.69	n.a.	
nesta_case9241_pegasesad	315932.06		0.80	1.75	n.a.	80.30	_	3531.62	33437.86	n.a.	
hold - the relayation provided a	6 11 40		•							4	

bold - the relaxation provided a feasible AC power flow, * - solver reported numerical accuracy warnings, —,† - iteration or memory limit

Brute Force R&D Example

The QC Relaxation: Theoretical and Computational Results on Optimal Power Flow

https://arxiv.org/abs/1502.07847

Power Formulations

TABLE III

	OHALITY AND	DIINTIM		ABLE III		ELOW DEI	AVATIONS				
	QUALITY AND RUNTIME RESULTS OF AC POWER S/h Optimality Gap (%)				R FLOW RELAXATIONS Runtime (seconds)						
Test Case	AC	SDP	QC	SOC	CP	AC	SDP	QC	SOC	CP	
					ditions (T	1					
nesta_case3_lmbd	5812.64	0.39	1.24	1.32	2.99	0.12	4.16	0.07	0.05	0.03	
nesta_case5_pjm	17551.89	5.22	14.54	14.54	15.62	0.12	5.36	0.07	0.03	0.05	
nesta_case30_ieee	204.97	0.00	15.64	15.88	27.91	0.04	8.38	0.07	0.03	0.05	
nesta_case30_iccc	3718.64	0.06	1.72	2.07	7.87	0.09	12.62	0.17	0.07	0.05	
nesta_case162_ieee_dtc	4230.23	1.08	4.00	4.03	15.44	0.41	35.20	1.48	0.43	0.03	
nesta_case300_ieee	16891.28	0.08	1.17	1.18	n.a.	0.80	29.69	2.83	0.51	n.a.	
nesta_case2224_edin	38127.69	1.22	6.03	6.09	8.45	11.42	690.16	65.59	45.99	0.33	
nesta_case2383wp_mp	1868511.78	0.37	1.04	1.05	5.35	12.41	1966.10	57.87	12.91	0.80	
nesta_case3012wp_mp	2600842.72	0.57	1.00	1.02	n.a.	12.40	14588.79 [†]	53.59	19.15	n.a.	
nesta_case9241_pegase	315913.26		1.67	1.02	n.a.	132.25	14366.79	3064.42	19.13	n.a.	
nesta_ease/241_pegase	313713.20	<u> </u>						3004.42		11.a.	
Congested Operating Conditions (API) nesta_case3_lmbd_api 367.74 1.26 1.83 3.30 14.79 0.18 4.41 0.09 0.05 0.23											
nesta_case3_lmbdapi	367.74	1		3.30						1	
nesta_case6_wwapi	273.76	0.00*	13.14	13.33	17.17	0.34	13.19	0.07	0.06	0.03	
nesta_case14_ieeeapi	325.56	0.00	1.34	1.34	8.89	0.19	5.64	0.11	0.08	0.94	
nesta_case24_ieee_rtsapi	6421.37	1.45	13.77	20.70	24.12	0.14	7.50	0.26	0.09	0.04	
nesta_case30_asapi	571.13 372.14	0.00	4.76 45.97	4.76 45.97	8.01 48.80	0.38 0.25	6.12 7.25	0.17	0.11	1.11	
nesta_case30_fsrapi		11.06				0.25		0.19 0.19	0.09	0.92	
nesta_case30_ieeeapi	415.53	0.00 0.00	1.01 2.97	1.01 2.99	12.75	0.07	6.60 7.36	0.19	0.09	0.03	
nesta_case39_epriapi	7466.25	4.29	12.01	14.34	17.83	0.10		0.29	0.12	0.04	
nesta_case73_ieee_rtsapi	20123.98 4288.02	18.11	20.39	20.43	22.60	1.16	10.03 21.58	1.29	0.20	0.06	
nesta_case89_pegaseapi nesta_case118_ieeeapi	10325.27	31.50	43.93	44.08	49.69	0.46	12.59	0.84	0.81	0.04	
nesta_case162_ieee_dtcapi	6111.68	0.85	1.33	1.34	19.39	0.40	36.85	1.53	0.23	0.05	
nesta_case189_edinapi	1982.82	0.05	5.78	5.78		1.07	16.10	1.33	0.39	n.a.	
nesta_case2224_edinapi	46235.43	1.10	2.77	2.77	n.a. 9.07	12.28	672.04	81.66	88.33	0.33	
nesta_case2383wp_mpapi	23499.48	0.10	1.12	1.12	3.10	9.50	1421.39	28.37	10.25	0.33	
nesta_case2736sp_mp_api	25437.70	0.10	1.12	1.12	3.10	9.30	2278.77	41.29	10.23	0.34	
nesta_case2737sop_mpapi	21192.40	0.07	1.05	1.06	4.62	9.21	1887.22	30.94	9.91	0.30	
nesta_case2869_pegaseapi	96573.10	0.00	1.03	1.49	5.16	21.03	1579.87	102.55	161.96	0.32	
	22874.98	0.92	3.02	3.03		14.92	15018.93 [†]	41.72	12.19		
nesta_case3120sp_mpapi nesta_case9241_pegaseapi	241975.18	_	2.45	2.59	n.a.	140.73	13018.93	3511.60	8387.11	n.a.	
nesta_casc9241_pegascapi	241973.10	C 11 A			n.a.	l		3311.00	0307.11	11.a.	
	5002.72		_		onditions	` '	4.20	0.10	0.05	1 0 02	
nesta_case3_lmbdsad	5992.72	2.06	1.24*	4.28	5.90	0.19	4.39	0.10	0.05	0.03	
nesta_case4_gssad	324.02	0.05	0.81	4.90	66.06	0.24	4.16	0.06	0.06	0.07	
nesta_case5_pjmsad	26423.32	0.00	1.10	3.61	43.95	0.08	5.35	0.11	0.05	0.03	
nesta_case6_csad nesta_case9_wsccsad	24.43 5590.09	0.00	0.40	1.36 1.50	6.79 6.69	0.26	5.32 4.18	0.11	0.05 0.05	0.02	
nesta_case24_ieee_rtssad	79804.96	6.05	3.88	11.42	23.56	0.14	6.24	0.19	0.03	0.03	
nesta_case24_leee_ftssad	46933.26	28.44	20.57	34.47	36.79	0.10	9.19	1.73	0.11	0.04	
nesta_case30_assad	914.44	0.47	3.07	9.16	16.06	0.70	6.49	0.22	0.27	0.00	
nesta_case30_ieeesad	205.11	0.47	3.96	5.84	27.96	0.18	7.49	0.22	0.09	0.03	
nesta_case73_ieee_rtssad	235241.70	4.10	3.51	8.37	22.21	0.12	9.48	0.18	0.09	0.03	
nesta_case118_ieeesad	4324.17	7.57	8.32	12.89	20.77	0.56	14.14	0.87	0.20	0.07	
nesta_case162_ieee_dtcsad	4369.19	3.65	6.91	7.08	18.13	0.30	39.71	1.70	0.31	0.05	
nesta_case189_edinsad	914.61	1.20*	2.22	2.25	n.a.	0.65	14.83	1.70	0.36	n.a.	
nesta_case300_ieeesad	16910.23	0.13	1.16	1.26	n.a.	1.01	29.63	2.81	0.40	n.a.	
nesta_case2224_edinsad	38385.14	1.22	5.57	6.18	9.06	11.53	691.53	50.34	65.68	0.33	
nesta_case2383wp_mpsad	1935308.12	1.30	2.97	4.00	8.62	16.25	1785.26	40.71	12.57	0.80	
nesta_case2736sp_mpsad	1337042.77	2.18*	2.01	2.34	4.56	13.22	1737.25	35.42	11.31	0.48	
nesta_case2737sop_mpsad	795429.36	2.24*	2.21	2.42	3.95	13.01	2153.37	32.05	9.69	0.39	
nesta_case2746wp_mpsad	1672150.46	2.41*	1.83	2.44	5.43	14.01	2840.32	35.66	13.32	0.56	
nesta_case2746wop_mpsad	1241955.30	2.71*	2.48	2.94	5.14	14.51	2306.18	32.41	23.22	0.42	
nesta_case3012wp_mpsad	2635451.29		1.92	2.12	n.a.	15.79	13548.13 [†]	46.59	28.41	n.a.	
nesta_case3120sp_mpsad	2203807.23		2.56	2.79	n.a.	30.01	16804.55 [†]	53.81	15.69	n.a.	
nesta_case9241_pegasesad	315932.06		0.80	1.75	n.a.	80.30		3531.62	33437.86	n.a.	
hold - the relayation provided a						l		1	n or memors		

bold - the relaxation provided a feasible AC power flow, * - solver reported numerical accuracy warnings, —,† - iteration or memory limit

UNCLASSIFIED

Unexpected

Insights!

Brute Force R&D Lessons Learned

- Reproducing previous works is challenging
 - working from a base implementation is very helpful

Brute Force R&D Lessons Learned

- Reproducing previous works is challenging
 - working from a base implementation is very helpful
- AMPL was not built for this...
 - limited means to avoid excessive code replication
 - really hard to automate from the command line
 - limited licenses was the bottle neck in the All Formulations by All Instances Experiment

The Matpower Effect

- If a formulation is not implemented in Matpower, it does not exist
 - At least for the majority of Power System PhD students

Inception of PowerModels. I

- A baseline implementation of Power Flow formulations from the literature
 - Hopefully, mitigates the Matpower effect

Inception of PowerModels. I

- A baseline implementation of Power Flow formulations from the literature
 - Hopefully, mitigates the Matpower effect
- Using Julia/JuMP Resolves the AMPL Issues
 - Easy to automate at the command line
 - Fully open-source makes large-scale experiments easy
 - Julia enables advanced software design

My Dream

- I learn about a newly proposed Power Flow formulation
- It is implemented in PowerModels.jl and tested on all started test cases, in 7 days or less

My Dream

- I learn about a newly proposed Power Flow formulation
- It is implemented in PowerModels.jl and tested on all started test cases, in 7 days or less
- Lots of code abstractions in PowerModels.jl to enable this

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

The Value of Open-Source

TABLE III

QUALITY AND RUNTIME RESULTS OF AC POWER FLOW RELAXATIONS										
	\$/h		Optimality					ime (second		
Test Case	AC	SDP	QC	SOC	CP	AC	SDP	QC	SOC	CP
		Typic	al Operat	ing Cond	litions (T	YP)				
nesta_case3_lmbd	5812.64	0.39	1.24	1.32	2.99	0.12	4.16	0.07	0.05	0.03
nesta_case5_pjm	17551.89	5.22	14.54	14.54	15.62	0.04	5.36	0.09	0.03	0.05
nesta_case30_ieee	204.97	0.00	15.64	15.88	27.91	0.09	8.38	0.17	0.07	0.06
nesta_case118_ieee	3718.64	0.06	1.72	2.07	7.87	0.41	12.62	0.87	0.43	0.05
nesta_case162_ieee_dtc	4230.23	1.08	4.00	4.03	15.44	0.61	35.20	1.48	0.31	0.04
nesta_case300_ieee	16891.28	0.08	1.17	1.18	n.a.	0.80	29.69	2.83	0.65	n.a.
nesta_case2224_edin	38127.69	1.22	6.03	6.09	8.45	11.42	690.16	65.59	45.99	0.33
nesta_case2383wp_mp	1868511.78	0.37	1.04	1.05	5.35	12.41	1966.10	57.87	12.91	0.80
nesta_case3012wp_mp	2600842.72		1.00	1.02	n.a.	12.40	14588.79 [†]	53.59	19.15	n.a.
nesta_case9241_pegase	315913.26		1.67	1.02	n.a.	132.25	14300.75	3064.42	17.13	n.a.
nesta_ease/2+1_pegase	313713.20			··				3004.42		ıı.a.
Congested Operating Conditions (API)										
nesta_case3_lmbdapi	367.74	1.26	1.83	3.30	14.79	0.18	4.41	0.09	0.05	0.23
nesta_case6_wwapi	273.76	0.00*	13.14	13.33	17.17	0.34	13.19	0.07	0.06	0.03
nesta_case14_ieeeapi	325.56	0.00	1.34	1.34	8.89	0.19	5.64	0.11	0.08	0.94
nesta_case24_ieee_rtsapi	6421.37	1.45	13.77	20.70	24.12	0.14	7.50	0.26	0.09	0.04
nesta_case30_asapi	571.13	0.00	4.76	4.76	8.01	0.38	6.12	0.17	0.11	1.11
nesta_case30_fsrapi	372.14	11.06	45.97	45.97	48.80	0.25	7.25	0.19	0.09	0.92
nesta_case30_ieeeapi	415.53	0.00	1.01	1.01	12.75	0.07	6.60	0.19	0.09	0.03
nesta_case39_epriapi	7466.25	0.00	2.97	2.99	13.31	0.10	7.36	0.29	0.12	0.04
nesta_case73_ieee_rtsapi	20123.98	4.29	12.01	14.34	17.83	0.48	10.03	0.66	0.20	0.06
nesta_case89_pegaseapi	4288.02	18.11	20.39	20.43	22.60	1.16	21.58	1.29	0.81	0.04
nesta_case118_ieeeapi	10325.27	31.50	43.93	44.08	49.69	0.46	12.59	0.84	0.25	0.05
nesta_case162_ieee_dtcapi	6111.68	0.85	1.33	1.34	19.39	0.50	36.85	1.53	0.39	0.05
nesta_case189_edinapi	1982.82	0.05	5.78	5.78	n.a.	1.07	16.10	1.14	0.33	n.a.
nesta_case2224_edinapi	46235.43	1.10	2.77	2.77	9.07	12.28	672.04	81.66	88.33	0.33
nesta_case2383wp_mpapi	23499.48	0.10	1.12	1.12	3.10	9.50	1421.39	28.37	10.25	0.34
nesta_case2736sp_mpapi	25437.70	0.07	1.32	1.33	3.89	9.21	2278.77	41.29	10.51	0.36
nesta_case2737sop_mpapi	21192.40	0.00	1.05	1.06	4.62	9.29	1887.22	30.94	9.91	0.32
nesta_case2869_pegaseapi	96573.10	0.92*	1.49	1.49	5.16	21.03	1579.87	102.55	161.96	0.37
nesta_case3120sp_mpapi	22874.98	_	3.02	3.03	n.a.	14.92	15018.93 [†]	41.72	12.19	n.a.
nesta_case9241_pegaseapi	241975.18	_	2.45	2.59	n.a.	140.73		3511.60	8387.11	n.a.
		Small A	nole Diff	erence Co	onditions	(SAD)				
Small Angle Difference Conditions (SAD) nesta_case3_lmbd_sad 5992.72 2.06 1.24* 4.28 5.90 0.19 4.39 0.10 0.05 0.03										0.03
nesta_case4_gssad	324.02	0.05	0.81	4.90	66.06	0.24	4.16	0.06	0.06	0.07
nesta_case5_pjmsad	26423.32	0.00	1.10	3.61	43.95	0.08	5.35	0.00	0.05	0.07
nesta_case6_csad	24.43	0.00	0.40	1.36	6.79	0.26	5.32	0.11	0.05	0.02
nesta_case9_wsccsad	5590.09	0.00	0.41	1.50	6.69	0.14	4.18	0.11	0.05	0.02
nesta_case24_ieee_rtssad	79804.96	6.05	3.88	11.42	23.56	0.14	6.24	0.30	0.03	0.03
nesta_case29_edinsad	46933.26	28.44	20.57	34.47	36.79	0.70	9.19	1.73	0.27	0.04
nesta_case29_cdmsad	914.44	0.47	3.07	9.16	16.06	0.78	6.49	0.22	0.09	0.03
nesta_case30_ieeesad	205.11	0.47	3.96	5.84	27.96	0.18	7.49	0.22	0.09	0.03
nesta_case73_ieee_rts_sad	235241.70	4.10	3.51	8.37	22.21	0.12	9.48	0.18	0.09	0.03
nesta_case118_ieeesad	4324.17	7.57	8.32	12.89	20.77	0.56	14.14	0.87	0.20	0.07
		3.65	6.91	7.08	18.13	0.30		1.70	0.36	0.05
nesta_case162_ieee_dtcsad nesta_case189_edinsad	4369.19 914.61	1.20*	2.22	2.25		0.81	39.71 14.83	1.70	0.36	
				1.26	n.a.	1.01		2.81	0.46	n.a.
nesta_case300_ieeesad	16910.23	0.13	1.16	6.18	n.a.		29.63			n.a.
nesta_case2224_edinsad	38385.14	1.22	5.57		9.06	11.53	691.53	50.34	65.68	0.33
nesta_case2383wp_mpsad	1935308.12	1.30	2.97	4.00	8.62	16.25	1785.26	40.71	12.57	0.80
nesta_case2736sp_mpsad	1337042.77	2.18*	2.01	2.34	4.56	13.22	1737.25	35.42	11.31	0.48
nesta_case2737sop_mpsad	795429.36	2.24*	2.21	2.42	3.95	13.01	2153.37	32.05	9.69	0.39
nesta_case2746wp_mpsad	1672150.46	2.41*	1.83	2.44	5.43	14.01	2840.32	35.66	13.32	0.56
nesta_case2746wop_mpsad	1241955.30	2.71*	2.48	2.94	5.14	14.51	2306.18	32.41	23.22	0.42
nesta_case3012wp_mpsad	2635451.29	_	1.92	2.12	n.a.	15.79	13548.13 [†]	46.59	28.41	n.a.
nesta_case3120sp_mpsad	2203807.23	_	2.56	2.79	n.a.	30.01	16804.55 [†]	53.81	15.69	n.a.
nesta_case9241_pegasesad	315932.06	_	0.80	1.75	n.a.	80.30		3531.62	33437.86	n.a.
hold - the relayation provided a	facaible AC ma	д			1	-1		4 '44'		1: :

bold - the relaxation provided a feasible AC power flow, * - solver reported numerical accuracy warnings, —,† - iteration or memory limit

The Value of Open-Source

			T	ABLE III	[
	QUALITY AND					FLOW REI				
	\$/h		Optimality					ime (second		
Test Case	AC	SDP	QC	SOC	CP	AC	SDP	QC	SOC	CP
Typical Operating Conditions (TYP)										
nesta_case3_lmbd	5812.64	0.39	1.24	1.32	2.99	0.12	4.16	0.07	0.05	0.03
nesta_case5_pjm	17551.89	5.22	14.54	14.54	15.62	0.04	5.36	0.09	0.03	0.05
nesta_case30_ieee	204.97	0.00	15.64	15.88	27.91	0.09	8.38	0.17	0.07	0.06
nesta_case118_ieee	3718.64	0.06	1.72	2.07	7.87	0.41	12.62	0.87	0.43	0.05
nesta_case162_ieee_dtc	4230.23	1.08	4.00	4.03	15.44	0.61	35.20	1.48	0.31	0.04
nesta_case300_ieee	16891.28	0.08	1.17	1.18	n.a.	0.80	29.69	2.83	0.65	n.a.
nesta_case2224_edin	38127.69	1.22	6.03	6.09	8.45	11.42	690.16	65.59	45.99	0.33
nesta_case2383wp_mp	1868511.78	0.37	1.04	1.05	5.35	12.41	1966.10	57.87	12.91	0.80
nesta_case3012wp_mp	2600842.72	_	1.00	1.02	n.a.	12.40	14588.79 [†]	53.59	19.15	n.a.
nesta_case9241_pegase	315913.26	_	1.67	_	n.a.	132.25		3064.42	_	n.a.
Congested Operating Conditions (API)										
nesta_case3_lmbdapi	367.74	1.26	1.83	3.30	14.79	0.18	4.41	0.09	0.05	0.23
nesta_case6_wwapi	273.76	0.00*	13.14	13.33	17.17	0.34	13.19	0.07	0.06	0.03
nesta_case14_ieeeapi	325.56	0.00	1.34	1.34	8.89	0.19	5.64	0.11	0.08	0.94
nesta_case24_ieee_rtsapi	6421.37	1.45	13.77	20.70	24.12	0.14	7.50	0.26	0.09	0.04
nesta_case30_asapi	571.13	0.00	4.76	4.76	8.01	0.38	6.12	0.17	0.11	1.11
nesta_case30_fsrapi	372.14	11.06	45.97	45.97	48.80	0.25	7.25	0.19	0.09	0.92
nesta_case30_ieeeapi	415.53	0.00	1.01	1.01	12.75	0.07	6.60	0.19	0.09	0.03
nesta_case39_epriapi	7466.25	0.00	2.97	2.99	13.31	0.10	7.36	0.29	0.12	0.04
nesta_case73_ieee_rts_api	20123.98	4.29	12.01	14.34	17.83	0.48	10.03	0.66	0.20	0.06
nesta_case89_pegaseapi	4288.02	18.11	20.39	20.43	22.60	1.16	21.58	1.29	0.81	0.04
nesta_case118_ieeeapi	10325.27	31.50	43.93	44.08	49.69	0.46	12.59	0.84	0.25	0.05
nesta_case162_ieee_dtcapi	6111.68	0.85	1.33	1.34	19.39	0.50	36.85	1.53	0.39	0.05
nesta_case189_edinapi	1982.82	0.05	5.78	5.78	n.a.	1.07	16.10	1.14	0.33	n.a.
nesta_case2224_edinapi	46235.43	1.10	2.77	2.77	9.07	12.28	672.04	81.66	88.33	0.33
nesta_case2383wp_mp_api	23499.48	0.10	1.12	1.12	3.10	9.50	1421.39	28.37	10.25	0.34
nesta_case2736sp_mpapi	25437.70	0.07	1.32	1.33	3.89	9.21	2278.77	41.29	10.51	0.36
nesta_case2737sop_mpapi	21192.40	0.00	1.05	1.06	4.62	9.29	1887.22	30.94	9.91	0.32
nesta_case2869_pegaseapi	96573.10	0.92*	1.49	1.49	5.16	21.03	1579.87	102.55	161.96	0.37
nesta_case3120sp_mpapi	22874.98	- 0.72	3.02	3.03	n.a.	14.92	15018.93 [†]	41.72	12.19	n.a.
nesta_case9241_pegaseapi	241975.18		2.45	2.59	n.a.	140.73		3511.60	8387.11	n.a.
Small Angle Difference Conditions (SAD)										
nesta_case3_lmbdsad	5992.72		1.24*		5.90		4.39	0.10	0.05	0.03
		2.06		4.28 4.90		0.19			0.03	0.03
nesta_case4_gssad nesta_case5_pjmsad	324.02 26423.32	0.05 0.00	0.81	3.61	66.06 43.95	0.24	4.16 5.35	0.06 0.11	0.06	0.07
nesta_case5_pjmsad nesta_case6_csad			0.40	1.36	6.79	0.08			0.03	0.03
	24.43	0.00					5.32	0.11	0.03	0.02
nesta_case9_wsccsad	5590.09 79804.96	0.00	0.41 3.88	1.50 11.42	6.69	0.14	4.18 6.24	0.19	0.05	0.03
nesta_case24_ieee_rtssad		6.05								1
nesta_case29_edinsad	46933.26	28.44	20.57	34.47	36.79	0.70	9.19	1.73	0.27	0.06
nesta_case30_assad	914.44	0.47	3.07	9.16	16.06	0.18	6.49	0.22	0.09	0.03
nesta_case30_ieeesad	205.11	0.00	3.96	5.84	27.96	0.12	7.49	0.18	0.09	0.03
nesta_case73_ieee_rtssad	235241.70	4.10	3.51	8.37	22.21	0.30	9.48	0.87	0.20	0.07
nesta_case118_ieeesad	4324.17	7.57	8.32	12.89	20.77	0.56	14.14	0.98	0.31	0.06
nesta_case162_ieee_dtcsad	4369.19	3.65	6.91	7.08	18.13	0.81	39.71	1.70	0.36	0.05
nesta_case189_edinsad	914.61	1.20*	2.22	2.25	n.a.	0.65	14.83	1.27	0.46	n.a.
nesta_case300_ieeesad	16910.23	0.13	1.16	1.26	n.a.	1.01	29.63	2.81	0.76	n.a.
nesta_case2224_edinsad	38385.14	1.22	5.57	6.18	9.06	11.53	691.53	50.34	65.68	0.33
nesta_case2383wp_mpsad	1935308.12	1.30	2.97	4.00	8.62	16.25	1785.26	40.71	12.57	0.80
nesta_case2736sp_mpsad	1337042.77	2.18*	2.01	2.34	4.56	13.22	1737.25	35.42	11.31	0.48
nesta_case2737sop_mpsad	795429.36	2.24*	2.21	2.42	3.95	13.01	2153.37	32.05	9.69	0.39
nesta_case2746wp_mpsad	1672150.46	2.41*	1.83	2.44	5.43	14.01	2840.32	35.66	13.32	0.56
nesta_case2746wop_mpsad	1241955.30	2.71*	2.48	2.94	5.14	14.51	2306.18	32.41	23.22	0.42
nesta_case3012wp_mpsad	2635451.29	_	1.92	2.12	n.a.	15.79	13548.13 [†]	46.59	28.41	n.a.
nesta_case3120sp_mpsad	2203807.23		2.56	2.79	n.a.	30.01	16804.55 [†]	53.81	15.69	n.a.
4 0041 1	215022.06	T	0.00	1 75		00.20	_	2521.62	22427.06	

bold - the relaxation provided a feasible AC power flow, * - solver reported numerical accuracy warnings, —,† - iteration or memory limit

https://lanl-ansi.github.io/PowerModels.jl/latest/

Software Versions

PowerModels.jl: v0.3.1-18-ga0785a2, a0785a28341986f92cebeee9a4be3482a6dd4d2e

lpopt.jl: v0.2.6, 959b9c67e396a6e2307fc022d26b0d95692ee6a4

NESTA: v0.6.1, 466cd045d852c8c2cd86167b91ad8fa842ddf3da

Hardware: Dual Intel 2.10GHz CPUs, 128GB RAM

Typical Operating Conditions (TYP)

Case Name	Nodes	Edges	AC (\$/h)	QC Gap (%)	SOC Gap (%)	AC Time (sec.)	QC Time (sec.)	SOC Time (sec.)
nesta_case3_cc	3	3	2.0756e+02	1.55	1.62	5	2	2
nesta_case3_cgs	3	3	1.0171e+02	1.69	1.69	5	2	2
nesta_case3_lmbd	3	3	5.8126e+03	1.22	1.32	5	2	2
nesta_case3_ch	3	5	9.8740e+01	100.01	100.01	5	2	2
nesta_case4_gs	4	4	1.5643e+02	0.01	0.01	5	2	2
nesta_case5_pjm	5	6	1.7552e+04	14.55	14.55	5	2	2
······································	Г	7	0.0000-+00	0.04	0.04	_	0	0

PowerModels.jl Core Features

PowerModels.jl

Under Construction

UNCLASSIFIED

PowerModels.jl Structure

PowerModels.jl Structure

Average user not interested in the modeling details, just wants it to work.

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Matpower Data is the R&D Standard

```
function mpc = nesta case3 lmbd
mpc.version = '2';
mpc.baseMVA = 100.0;
mpc.bus = [
                               40.0
                                                                               -0.0000
                                                                                            240.0
                       110.0
                                                                1.10000
                                                                                                              1.10000
                                                                                                                             0.90000;
                       110.0
                                                                0.92617
                                                                               7.25883
                                                                                            240.0 1
                                                                                                              1.10000
                                                                                                                             0.90000;
                               40.0
                       95.0
                               50.0
                                              0.0
                                                                              -17.26710
                                                                                                              1.10000
                                                                                                                             0.90000;
                                                                0.90000
                                                                                            240.0 2
];
mpc.gen = [
                               54.697 1000.0 -1000.0
                                                                     100.0
                                                                                    2000.0 0.0
                                                                                                                                                 0.0
                                                             1.1
                                                                                                                                 0.0
                                                                                                                                         0.0
                148.067
                                                                                                                          0.0
                                                             0.92617
                                                                                            2000.0
                                                                                                                                         0.0
                                                                                                                                                0.0
                170.006
                               -8.791 1000.0 -1000.0
                                                                                                           0.0
                                                                                                                  0.0
                                                                                                                          0.0
                                                                                                                                 0.0
                                                                            100.0
                                                                                                   0.0
                               1000.0 -1000.0
                                                      0.9
                                                             100.0
                                                                            0.0
                                                                                    0.0
                                                                                            0.0
                                                                                                   0.0
                                                                                                           0.0
                                                                                                                  0.0
                                                                                                                          0.0
                                                                                                                                 0.0
                                                                                                                                         0.0
                                                                                                                                                0.0
                0.0
];
mpc.gencost = [
                                         0.110000
                                                        5.000000
                                                                       0.00000;
                0.0
                       0.0
                       0.0
                                         0.085000
                0.0
                                                        1.200000
                                                                       0.00000;
                0.0
                       0.0
                                         0.00000
                                                                       0.000000;
                                                        0.00000
];
mpc.branch = |
```

UNCLASSIFIED

0.0

0.0

0.0

0.0

0.0

0.0

-30.0

-30.0

-30.0

30.0;

30.0;

30.0;

0.0

0.0

0.0

];

0.065

0.025

0.042

0.62

0.75

0.9

0.45

0.7

9000.0 0.0

9000.0 0.0

50.0

0.0


```
using PowerModels
```

```
network_data = PowerModels.parse_file("nesta_case3_lmbd.m")
```



```
using PowerModels
network_data = PowerModels.parse_file("nesta_case3_lmbd.m")
```


raw text

```
ing PowerModels

network_data = PowerModels.parse_file("nesta_case3_lmbd.m")
```



```
using PowerModels
network_data = PowerModels.parse_file("nesta_case3_lmbd.m")
println(network_data["bus"]["1"]["pd"])
> 1.1
```



```
using PowerModels
network_data = PowerModels.parse_file("nesta_case3_lmbd.m")
println(network_data["bus"]["1"]["pd"])
> 1.1
```

Parser supports user-defined extensions to the Matpower format

https://lanl-ansi.github.io/PowerModels.jl/latest/data.html

UNCLASSIFIED


```
using PowerModels; using Ipopt
solver = IpoptSolver()
```



```
using PowerModels; using Ipopt
solver = IpoptSolver()

result = run_ac_opf("nesta_case3_lmbd.m", solver)
```



```
using PowerModels; using Ipopt
solver = IpoptSolver()

result = run_ac_opf("nesta_case3_lmbd.m", solver)

result = run_dc_opf("nesta_case3_lmbd.m", solver)
```



```
using PowerModels; using Ipopt
solver = IpoptSolver()

result = run_ac_opf("nesta_case3_lmbd.m", solver)

result = run_dc_opf("nesta_case3_lmbd.m", solver)

run_opf("nesta_case3_lmbd.m", ACPPowerModel, solver)
```



```
using PowerModels; using Ipopt
solver = IpoptSolver()

result = run_ac_opf("nesta_case3_lmbd.m", solver)

result = run_dc_opf("nesta_case3_lmbd.m", solver)

Non-Convex Form

run_opf("nesta_case3_lmbd.m", ACPPowerModel, solver)
```



```
using PowerModels; using Ipopt
solver = IpoptSolver()

result = run_ac_opf("nesta_case3_lmbd.m", solver)

result = run_dc_opf("nesta_case3_lmbd.m", solver)

Non-Convex Form

Linear Approximation

run_opf("nesta_case3_lmbd.m", ACPPowerModel, solver)

run_opf("nesta_case3_lmbd.m", DCPPowerModel, solver)
```



```
using PowerModels; using Ipopt
solver = IpoptSolver()
result = run_ac_opf("nesta_case3_lmbd.m", solver)
                                                     Non-Convex Form
result = run_dc_opf("nesta_case3_lmbd.m", solver)
                                                     Linear Approximation
run_opf("nesta_case3_lmbd.m", ACPPowerModel, solver)
                                                      Convex Relaxation
run_opf("nesta_case3_lmbd.m", DCPPowerModel, solver)
run opf("nesta case3 lmbd.m", SOCWRPowerModel, solver)
```


Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

```
using PowerModels; using Ipopt
 solver = IpoptSolver()
 result = run_ac_opf("nesta_case3_lmbd.m", solver)
                                                      Non-Convex Form
 result = run_dc_opf("nesta_case3_lmbd.m", solver)
                                                      Linear Approximation
run_opf( nesta_case3_lmbd.m", ACPPowerModel, solver)
                                                      Convex Relaxation
run_opf("nesta_case3_lmbd.m", DCPPowerModel, solver)
 run opf( nesta case3 lmbd.m", SOCWRPowerModel, solver)
```


Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

```
using PowerModels; using Ipopt
solver = IpoptSolver()

result = run_opf("nesta_case3_lmbd.m", ACPPowerModel, solver)
```



```
using PowerModels; using Ipopt julia dictionary (standard structure)
solver = IpoptSolver()
result = run_opf("nesta_case3_lmbd.m", ACPPowerModel, solver)
```



```
using PowerModels; using Ipopt julia dictionary (standard structure)
solver = IpoptSolver()

result = run_opf("nesta_case3_lmbd.m", ACPPowerModel, solver)

println(result["objective"])
> 5812.64293503618
```



```
using PowerModels; using Ipopt julia dictionary (standard structure)
solver = IpoptSolver()

result = run_opf("nesta_case3_lmbd.m", ACPPowerModel, solver)

println(result["objective"])
> 5812.64293503618

println(result["solve_time"])
> 0.009732971
```



```
julia dictionary (standard structure)
using PowerModels; using Ipopt
solver = IpoptSolver()
result = run opf("nesta case3 lmbd.m", ACPPowerModel, solver)
println(result["objective"])
> 5812.64293503618
println(result["solve time"])
> 0.009732971
println(result["solution"])
> Dict{String,Any}(Pair{String,Any}("baseMVA",100.0),Pair{String,Any}
("gen", Dict{String, Any}(Pair{String, Any}("1", Dict{String, Any}...
```


Modifying Network Data

```
using PowerModels; using Ipopt
solver = IpoptSolver()
network_data = PowerModels.parse_file("nesta_case3_lmbd.m")
```


Modifying Network Data

```
using PowerModels; using Ipopt
solver = IpoptSolver()

network_data = PowerModels.parse_file("nesta_case3_lmbd.m")
network_data["bus"]["3"]["pd"] = 0.0
network_data["bus"]["3"]["qd"] = 0.0
result_1 = run_ac_opf(network_data, solver)
```


Modifying Network Data

```
using PowerModels; using Ipopt
solver = IpoptSolver()
network_data = PowerModels.parse_file("nesta_case3_lmbd.m")
network data["bus"]["3"]["pd"] = 0.0
network data["bus"]["3"]["qd"] = 0.0
result 1 = run ac opf(network data, solver)
network data["bus"]["3"]["pd"] = 1.0
network data["bus"]["3"]["qd"] = 0.5
result_2 = run_ac_opf(network_data, solver)
```


Solving Different Problems

```
using PowerModels; using Ipopt
solver = IpoptSolver()
```


Solving Different Problems

```
using PowerModels; using Ipopt
solver = IpoptSolver()

# Base Non-Convex Model
run_pf("case5_pjm_tnep.m", ACPPowerModel, solver)
run_opf("case5_pjm_tnep.m", ACPPowerModel, solver)
run_ots("case5_pjm_tnep.m", ACPPowerModel, solver)
run_tnep("case5_pjm_tnep.m", ACPPowerModel, solver)
```



```
using PowerModels; using Ipopt
solver = IpoptSolver()

# Base Non-Convex Model
run_pf("case5_pjm_tnep.m", ACPPowerModel, solver)
run_opf("case5_pjm_tnep.m", ACPPowerModel, solver)
run_ots("case5_pjm_tnep.m", ACPPowerModel, solver)
run_tnep("case5_pjm_tnep.m", ACPPowerModel, solver)
```



```
using PowerModels; using Ipopt
solver = IpoptSolver()

# Base Non-Convex Model
run_pf("case5_pjm_tnep.m", ACPPowerModel, solver)
run_opf("case5_pjm_tnep.m", ACPPowerModel, solver)
run_ots("case5_pjm_tnep.m", ACPPowerModel, solver)
run_ots("case5_pjm_tnep.m", ACPPowerModel, solver)
run_tnep("case5_pjm_tnep.m", ACPPowerModel, solver)
```



```
Problem Class
using PowerModels; using Ipopt
solver = IpoptSolver()
                                              Problem Formulation
# Base Non-Convex Model
run_pf("case5_pjm_tnep.m", ACPPowerModel, solver)
run_opf("case5_pjm_tnep.m", ACPPowerModel, solver)
run_ots("case5_pjm_tnep.m", ACPPowerModel, solver)
run_tnep("case5_pjm_tnep.m", ACPPowerModel, solver)
# Linear Approximation
run_pf("case5_pjm_tnep.m", DCPPowerModel, solver)
run_opf("case5_pjm_tnep.m", DCPPowerModel, solver)
run_ots("case5_pjm_tnep.m", DCPPowerModel, solver)
run_tnep("case5_pjm_tnep.m", DCPPowerModel, solver)
```

UNCLASSIFIED


```
Problem Class
using PowerModels; using Ipopt
solver = IpoptSolver()
                                              Problem Formulation
# Base Non-Convex Model
run_pf("case5_pjm_tnep.m", ACPPowerModel, solver)
run_opf("case5_pjm_tnep.m", ACPPowerModel, solver)
run_ots("case5_pjm_tnep.m", ACPPowerModel, solver)
run_tnep("case5_pjm_tnep.m", ACPPowerModel, solver)
# Linear Approximation
run_pf("case5_pjm_tnep.m", DCPPowerModel, solver)
run_opf("case5_pjm_tnep.m", DCPPowerModel, solver)
run ots("case5 pjm tnep.m", DCPPowerModel, solver)
run_tnep("case5_pjm_tnep.m",
                             DCPPowerModel _
                             UNCLASSIFIED
```



```
Problem Class
using PowerModels; using Ipopt
solver = IpoptSolver()
                                              Problem Formulation
# Base Non-Convex Model
run_pf("case5_pjm_tnep.m", ACPPowerModel, solver)
run_opf("case5_pjm_tnep.m", ACPPowerModel, solver)
run_ots("case5_pjm_tnep.m", ACPPowerModel, solver)
run_tnep("case5_pjm_tnep.m", ACPPowerModel, solver)
                                                    Linear Formulation
# Linear Approximation
run_pf("case5_pjm_tnep.m", DCPPowerModel, solver)
run_opf("case5_pjm_tnep.m", DCPPowerModel, solver)
run ots("case5 pjm tnep.m", DCPPowerModel, solver)
run_tnep("case5_pjm_tnep.m",
                             DCPPowerModel _
```


UNCLASSIFIED

```
using PowerModels; using Ipopt
solver = IpoptSolver()
# Base Non-Convex Model
run_pf("case5_pjm_tnep.m", ACPPowerModel, solver)
run_opf("case5_pjm_tnep.m", ACPPowerModel, solver)
run_ots("case5_pjm_tnep.m", ACPPowerModel, solver)
run_tnep("case5_pjm_tnep.m", ACPPowerModel, solver)
# Convex Relaxation
run_pf("case5_pjm_tnep.m", SOCWRPowerModel, solver)
run_opf("case5_pjm_tnep.m", SOCWRPowerModel, solver)
run_ots("case5_pjm_tnep.m" SOCWRPowerModel, solver)
run_tnep("case5_pjm_tnep.m", SOCWRPowerModel, solver)
                                 UNCLASSIFIED
```



```
using PowerModels; using Ipopt
solver = IpoptSolver()
# Base Non-Convex Model
run_pf("case5_pjm_tnep.m", ACPPowerModel, solver)
run_opf("case5_pjm_tnep.m", ACPPowerModel, solver)
run_ots("case5_pjm_tnep.m", ACPPowerModel, solver)
run_tnep("case5_pjm_tnep.m", ACPPowerModel, solver)
                                                          Convex Formulation
# Convex Relaxation
run_pf("case5_pjm_tnep.m", SOCWRPowerModel, solver)
run_opf("case5_pjm_tnep.m", SOCWRPowerModel, solver)
run_ots("case5_pjm_tnep.m" SOCWRPowerModel, solver)
run_tnep("case5_pjm_tnep.m", SOCWRPowerModel, solver)
```


UNCLASSIFIED

```
This software design
using PowerModels; using Ipopt
                                       helps to organize 100s of possible
solver = IpoptSolver()
                                      Problem / Formulation combinations
# Base Non-Convex Model
run_pf("case5_pjm_tnep.m", ACPPowerModel, solver)
run_opf("case5_pjm_tnep.m", ACPPowerModel, solver)
run_ots("case5_pjm_tnep.m", ACPPowerModel, solver)
run_tnep("case5_pjm_tnep.m", ACPPowerModel, solver)
                                                    Convex Formulation
# Convex Relaxation
run_pf("case5_pjm_tnep.m", SOCWRPowerModel, solver)
run_opf("case5_pjm_tnep.m" SOCWRPowerModel, solver)
run_ots("case5_pjm_tnep.m" SOCWRPowerModel, solver)
run_tnep("case5_pjm_tnep.m", SOCWRPowerModel, solver)
```


UNCLASSIFIED

```
using PowerModels; using Ipopt
solver = IpoptSolver()

result = run_opf("nesta_case3_lmbd.m", ACPPowerModel, solver)
```



```
using PowerModels; using Ipopt
solver = IpoptSolver()

result = run_opf("nesta_case3_lmbd.m", ACPPowerModel, solver)

pm = build_generic_model("nesta_case3_lmbd.m", ACPPowerModel, PowerModels.post_opf)
result = solve_generic_model(pm, solver)
```



```
using PowerModels; using Ipopt
solver = IpoptSolver()

result = run_opf("nesta_case3_lmbd.m", ACPPowerModel, solver)

pm = build_generic_model("nesta_case3_lmbd.m", ACPPowerModel, PowerModels.post_opf)
result = solve_generic_model(pm, solver)
```



```
PowerModels Internal
using PowerModels; using Ipopt
                                                     Data Structure
solver = IpoptSolver()
result = run opf("nesta case3 lmbd.m", ACPPowerModel, solver)
pm = build_generic_model("nesta_case3_lmbd.m", ACPPowerModel, PowerModels.post_opf)
result = solve generic model(pm, solver)
pm = build_generic_model("nesta_case3_lmbd.m", ACPPowerModel, PowerModels.post_opf)
println(pm.model) # show / modify the JuMP model
result = solve generic model(pm, solver)
```



```
PowerModels Internal
using PowerModels; using Ipopt
                                                     Data Structure
solver = IpoptSolver()
result = run opf("nesta case3 lmbd.m", ACPPowerModel, solver)
pm = build generic_model("nesta_case3_lmbd.m", ACPPowerModel, PowerModels.post_opf)
result = solve generic model(pm, solver)
pm = build_generic_model("nesta_case3_lmbd.m", ACPPowerModel, PowerModels.post_opf)
println(pm.model) # show / modify the JuMP model
result = solve generic model(pm, solver)
```


Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

```
PowerModels Internal
using PowerModels; using Ipopt
                                                     Data Structure
solver = IpoptSolver()
result = run_opf("nesta_case3_lmbd.m", ACPPowerModel, solver)
pm = build generic_model("nesta_case3_lmbd.m", ACPPowerModel, PowerModels.post_opf)
result = solve generic model(pm, solver)
pm = build_generic_model("nesta_case3_lmbd.m", ACPPowerModel, PowerModels!post_opf)
println(pm.model) # show / modify the JuMP model
result = solve generic model(pm, solver)
```


Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

PowerModels Problem Definition (OPF)

```
function post_opf(pm::GenericPowerModel)
    variable_voltage(pm)
    variable_generation(pm)
    variable_line_flow(pm)
    objective_min_fuel_cost(pm)
    constraint_theta_ref(pm)
    constraint_voltage(pm)
    for (i,bus) in pm.ref[:bus]
        constraint_kcl_shunt(pm, bus)
    end
    for (i,branch) in pm.ref[:branch]
        constraint_ohms_yt_from(pm, branch)
        constraint_ohms_yt_to(pm, branch)
        constraint_phase_angle_difference(pm, branch)
        constraint_thermal_limit_from(pm, branch)
        constraint thermal limit to(pm, branch)
    end
end
```


PowerModels Problem Definition (OPF)

```
function post_opf(pm::GenericPowerModel)
    variable_voltage(pm)
    variable_generation(pm)
    variable_line_flow(pm)
    objective_min_fuel_cost(pm)
    constraint_theta_ref(pm)
    constraint_voltage(pm)
    for (i,bus) in pm.ref[:bus]
        constraint_kcl_shunt(pm, bus)
    end
    for (i,branch) in pm.ref[:branch]
        constraint_ohms_yt_from(pm, branch)
        constraint_ohms_yt_to(pm, branch)
        constraint_phase_angle_difference(pm, branch)
        constraint_thermal_limit_from(pm, branch)
        constraint_thermal_limit_to(pm, branch)
    end
```

variables:

$$S_i^g \ \forall i \in N$$
$$V_i \ \forall i \in N$$

minimize:

$$\sum_{i \in N} f(S_i^g)$$

subject to:

$$(\boldsymbol{v}_{i}^{l})^{2} \leq V_{i}V_{i}^{*} \leq (\boldsymbol{v}_{i}^{u})^{2} \quad \forall i \in N$$

$$\boldsymbol{S}_{i}^{gl} \leq \boldsymbol{S}_{i}^{g} \leq \boldsymbol{S}_{i}^{gu} \quad \forall i \in N$$

$$\boldsymbol{S}_{i}^{g} - \boldsymbol{S}_{i}^{d} = \sum_{(i,j) \in E \cup E^{R}} S_{ij} \quad \forall i \in N$$

$$\boldsymbol{S}_{ij} = \boldsymbol{Y}_{ij}^{*}V_{i}V_{i}^{*} - \boldsymbol{Y}_{ij}^{*}V_{i}V_{j}^{*} \quad (i,j) \in E \cup E^{R}$$

$$|S_{ij}|^{2} \leq (\boldsymbol{s}_{ij}^{u})^{2} \quad \forall (i,j) \in E \cup E^{R}$$

$$-\boldsymbol{\theta}_{ij}^{\Delta} \leq \angle(V_{i}V_{i}^{*}) \leq \boldsymbol{\theta}_{ij}^{\Delta} \quad \forall (i,j) \in E$$

end

PowerModels Problem Definition (OPF)

```
function post_opf(pm::GenericPowerModel)
                                                                                             Implicit
      variable_voltage(pm)
      variable_generation(pm)
                                                                                             variables:
      variable_line_flow(pm) =
                                                                                                       \longrightarrow S_i^g \ \forall i \in N
      objective_min_fuel_cost(pm)
                                                                                                           \forall V_i \ \forall i \in N
                                                                                             minimize:
      constraint_theta_ref(pm)
      constraint_voltage(pm)
      for (i,bus) in pm.ref[:bus]
            constraint_kcl_shunt(pm, bus)
                                                                                           subject to:
      end
                                                                                                        (\boldsymbol{v}_i^{\boldsymbol{l}})^2 \le V_i V_i^* \le (\boldsymbol{v}_i^{\boldsymbol{u}})^2 \quad \forall i \in N
                                                                                                          S_i^{gl} \le S_i^g \le S_i^{gu} \ \forall i \in N
      for (i,branch) in pm.ref[:branch]
            constraint_ohms_yt_from(pm, branch)
                                                                                                          S_i^g - S_i^d = \sum_{i=1}^{d} S_{ij} \ \forall i \in N
            constraint_ohms_yt_to(pm, branch)
                                                                                                                         (i,j)\in E\cup E^R
            constraint_phase_angle_difference(pm, branch)
                                                                                                         S_{ij} = Y_{ij}^* V_i V_i^* - Y_{ij}^* V_i V_j^* \quad (i,j) \in E \cup E^R
            constraint_thermal_limit_from(pm, branch)—
                                                                                                         |S_{ij}|^2 \le (s_{ij}^u)^2 \quad \forall (i,j) \in E \cup E^R
            constraint_thermal_limit_to(pm, branch) =
                                                                                                         \boldsymbol{\theta}_{ij}^{\Delta} \leq \angle(V_i V_j^*) \leq \boldsymbol{\theta}_{ij}^{\Delta} \ \forall (i,j) \in E
      ena
end
```


PowerModels.jl Road Map

vX.Y.Z

Will be zero for some time

vX.Y.Z

Will be zero for some time

vX.Y.Z

breaking changes

Will be zero for some time

vX.Y.Z

breaking changes

Non-breaking changes

- v0.1.0 (2016 Q2-Q3)
 - First draft (basically learning Julia / JuMP)

- v0.1.0 (2016 Q2-Q3)
 - First draft (basically learning Julia / JuMP)
- v0.2.0 (2016 Q3-Q4)
 - First public version, Thanks to Miles

- v0.1.0 (2016 Q2-Q3)
 - First draft (basically learning Julia / JuMP)
- **v0.2.0** (2016 Q3-Q4)
 - First public version, Thanks to Miles
- v0.3.0 (2017 Q1-Present)
 - Significant engineering improvements

- v0.1.0 (2016 Q2-Q3)
 - First draft (basically learning Julia / JuMP)
- v0.2.0 (2016 Q3-Q4)
 - First public version, Thanks to Miles
- v0.3.0 (2017 Q1-Present)
 - Significant engineering improvements
- v0.4.0 (2017, I hope)
 - Massive renaming of stuff
 - Adding many more formulations from the literature

 This is a community resource for established problems and formulations

- This is a community resource for established problems and formulations
- Excited to add,
 - New problem classes
 - New formulations (especially complex ones, e.g. moment-based relaxations)

- This is a community resource for established problems and formulations
- Excited to add,
 - New problem classes
 - New formulations (especially complex ones, e.g. moment-based relaxations)
- Addressing anything in the github issues

Questions / Comments?

cjc@lanl.gov


```
run_opf("nesta_case3_lmbd.m", ACPPowerModel, solver)
run_opf("nesta_case3_lmbd.m", DCPPowerModel, solver)
run_opf("nesta_case3_lmbd.m", SOCWRPowerModel, solver)
```



```
run_opf("nesta_case3_lmbd.m", ACPPowerModel, solver)
run_opf("nesta_case3_lmbd.m", DCPPowerModel, solver)
run_opf("nesta_case3_lmbd.m", SOCWRPowerModel, solver)
                               GenericPowerModel
                             AbstractWRPowerModel
                                                                 DCPPowerModel
 ACPPowerModel
                SOCWRPowerModel
                                              QCWRPowerModel
```


UNCLASSIFIED

```
run_opf("nesta_case3_lmbd.m", ACPPowerModel, solver)
  run_opf("nesta_case3_lmbd.m", DCPPowerModel, solver)
run_opf("nesta_case3_lmbd.m", SOCWRPowerModel, solver)
Shared Modeling
                                 GenericPowerModel
                               AbstractWRPowerModel
                                                                  DCPPowerModel
    ACPPowerModel
                  SOCWRPowerModel
                                                QCWRPowerModel
```


UNCLASSIFIED

```
run_opf("nesta_case3_lmbd.m", ACPPowerModel, solver)
  run_opf("nesta_case3_lmbd.m", DCPPowerModel, solver)
run_opf("nesta_case3_lmbd.m", SOCWRPowerModel, solver)
                                                                      Formulation
Shared Modeling
                                                                 Specialized Modeling
                                 GenericPowerModel
                                                                 DCPPowerModel
    ACPPowerModel
                              AbstractWRPowerModel
                                               QCWRPowerModel
                  SOCWRPowerModel
```


