

Which of the following is correct?

UNIVERSITY OF BENIN, BENIN CITY

FIRST SEMESTER EXAMINATIONS 2023/2024 SESSION

(c) $1 - Cot^2\theta = Sec^2\theta$ (d) $1 + Cot^2\theta = Sec^2\theta$ (e) None of the above

(c) $1 - Cot^2\theta = Cosec^2$ (d) $1 + Cot^2\theta = Cosec^2\theta$ (e) None of the above

Which of the following is correct? (a) $1 - \tan^2 \theta = Co \sec^2 \theta$

(a) $1 - \tan^2 \theta = Sec^2 \theta$

(b) $1 + \tan^2 \theta = Sec^2 \theta$

(b) $1 + \tan^2 \theta = Co \sec^2 \theta$

мтнію

NAME

2.

	(c) 1 - Cor b - Cosec (d) 1 + Cor b - C	osce o (c) none or in	
	3. $Tan(A+B)$ is equal to (a) $\frac{\tan A + \tan B}{1 - \tan A \tan B}$	(b) $\frac{\tan A + \tan B}{1 + \tan A \tan B}$	(c) $\frac{\tan A - \tan B}{\sin A}$
		1 + tan A tan B	I – tan A tan B
	(d) $\frac{\tan A - \tan B}{1 + \tan A \tan B}$ (e) None of the above		
	4. Evaluate $Sin2A - Cos2A$ (a) $-2Sin^2A + 2$	SinACosA+1 (b) $-2C$	$\cos^2 A + 2SinACosA - 1$
	(c) $2Sin^2A + 2SinACosA - 1$ (d) $2SinACosA$		
:	5. Express Sin30 only in terms of powers of Sin	$n\theta$ (a) $3Sin\theta - 4Sin^2\theta$	(b) $4Sin^3\theta - 3Sin\theta$
	(c) $4\cos^3\theta - 3\cos\theta$ (1) $3\cos\theta - 4\cos^3\theta$	(e) None of the above	
6	Express Cos30 only it erms of powers of Co		(b) $4Sin^3\theta - 3Sin\theta$
	(c) $4\cos^3\theta - 3\cos\theta$ (d) $3\cos\theta - 4\cos^3\theta$,
7.	If $SinA = \frac{2t}{1+t^2}$ and $C_{t-1} = \frac{1-t^2}{1+t^2}$, find $\tan A$	(a) $\frac{t}{1+t^2}$ (b) $\frac{t}{1-t^2}$	(c) $\frac{2i}{1+i^2}$ (d) $\frac{2i}{1-i^2}$
	(e) None of the above		
8.	Evaluate $Sin(A+B) + Sin(A-B)$ (a) So	mACoxB (b) 2SinA	CosB (c) SinASinB
	(d) 2SinASinB (e) None of the above	,	
9.	If $Sin\theta = \frac{3}{5}$, find $Sin2\theta$ (a) $\frac{24}{25}$ (b) $\frac{12}{25}$		
10.	/123	12/25 (c) 44/125 (d)	-44/125 (e) None of
	the above	r o re	
11.	If $SinA = \frac{1}{5}$ and $SinB = \frac{12}{63}$, find $Sin(A + B)$	(a) $\frac{33}{65}$ (b) -	15/65 (c) 48/65
	(d) $-48/65$ (e) None if the above		
12.	Solve the equation $8Coxx + 15Sinx = \frac{17}{2}$. (a)	$x = 1^{\circ}56' \text{ or } 121^{\circ}56'$ (b	$x = 10^{\circ}58' \text{ or } 111^{\circ}58'$
	(c) $x = 15^{\circ}58'$ or $106^{\circ}58'$ (d) $x = 15^{\circ}56'$ or 1	20°56' (e) None of the	e above
13.	Evaluate Sin30 + Cos3d	(a) $-4(\cos^3\theta - S)$	$(in^3\theta) + 3(Sin\theta + Cos\theta)$
	Evaluate $Sin3\theta + Cos3\theta$ (b) $4(Cos^3\theta - Sin^3\theta) + 3(Sin\theta - Cos\theta)$	(c) $-3(Sin\theta - Co)$	$(s\theta) + 2(Cos^3\theta - Sin^3\theta)$
	(d) $24Cos^3\theta + 8Sin^3\theta - Cos\theta Sin\theta$ (e) None		
1.1	If $Sin\theta = \frac{2t}{1+t^2}$, evaluate $8Sin\theta Cos\theta - \tan\theta$	(a) $\frac{14t(1-2t^2+t^4)}{14t(1-2t^2+t^4)}$	(b) $\frac{2t(7-18t^2+7t^4)}{}$
	1+/2	$(1-t^2)(1+t^2)^2$	$(1-t^2)(1+t^2)^2$

(e) None of the above

15. If
$$Sin\frac{\theta}{2} = \frac{1}{\sqrt{1+t^2}}$$
 and $Cos\frac{\theta}{2} = \frac{t}{\sqrt{1+t^2}}$, find $Sin\theta - 2Sin\frac{\theta}{2}Cos\frac{\theta}{2}$ (a) 0 (b) $\frac{t}{\sqrt{1+t^2}}$ (c) $\frac{2t}{\sqrt{1+t^2}}$ (d) $\frac{1-t^2}{1+t^2}$ (e) None of the above

16. Which of the following is not correct? (a) $Sin(A+B) = SinACosB + CosASinB$ (b) $Cos(A+B) = CosACosB - SinASinB$ (c) $Sin(A-B) = SinACosB - CosASinB$

(b) Cos(A + B) = CosACosB - SinASinB(c) Sin(A - B) = SinACosB - CosASinB(d) Cos(A - B) = CosACosB + SinASinB (e) None of the above

17. If $\cos\theta = \frac{1}{7}$, find $2\sin\theta \tan\theta - 5\cos\theta$ (a) $-\frac{77}{35}$ (b) $\frac{77}{35}$ (c) $\frac{48}{35}$ (d) $-\frac{125}{35}$ (e) None of the above

18. If $Sec\theta = \frac{1}{4}$, find $5\frac{Sin\theta}{Cort\theta} - 3Cosec\theta$ (a) 1 (b) -1 (c) 2 (d) -2 (e) None of the above

19. If $Sec\theta = \frac{1}{4}$, find $1 + \tan^2 \theta$ (a) $\frac{5}{4}$ (b) $\frac{25}{4}$ (c) $\frac{25}{16}$ (d) $\frac{-25}{4}$ (e) None of the above

20. If $Cosec\theta = \frac{1}{3}$, find $1 + Col^2\theta$ (a) $\frac{9}{25}$ (b) $-\frac{9}{25}$ (c) $-\frac{25}{9}$ (d) $\frac{29}{9}$ (e) None of the above

21. Evaluate i (a) -i (b) -1 (c) i (d) 1 (e) None of the above

Evaluate i^{37} (a) -i (b) -1 (c) i (d) 1 (e) None of the above Evaluate $(1-i)^2$ (a) i (b) 2i (c) -2i (d) -i (e) None of the above 23.

Evaluate $\frac{1-i}{i}$ (a) 1+i (b) 1-i (c) -1+i (d) -1-i (e) None of the above

Evaluate $\frac{(1-i)^2}{1+i}$ (a) 1+i (b) 1-i (c) -1+i (d) -1-i (e) None of the above

Evaluate $(1+i)^2$ (a) 2i (b) -2i (c) 1+2i (d) 1-2i (e) None of the above 26.

27. If $Z_1 = 1 + 3i$ and $Z_2 = 7 + 2i$. find $Z_1 + Z_2$ (a) 8 + 5i (b) 6 + i (c) -8 - 5i (d) -6 - i(e) None of the above

If $Z_1 = 1 + 3i$ and $Z_2 = 7 + 2i$, find $Z_1 Z_2$ (a) 20 + 35i (b) 41 + 23i (c) 20 - 12i(d) 40-23i (e) None of the above

(a) $\frac{17}{85} + \frac{51}{85}i$ (b) $\frac{-17}{85} + \frac{51}{85}i$ (c) $\frac{-17}{85} - \frac{51}{85}i$ (d) $\frac{17}{85} - \frac{51}{85}i$ Evaluate $\frac{5-3i}{2+9i}$ 29. (e) None of the above

Evaluate $\frac{2+3i}{4-5i}$ (a) $\frac{22}{41} - \frac{7}{41}i$ (b) $\frac{7}{41} - \frac{22}{41}i$ (c) $\frac{7}{41} + \frac{22}{41}i$ (d) $\frac{-7}{41} + \frac{22}{41}i$ (e) None of the above

Evaluate $\frac{3-4i}{2-7i}$ (a) $\frac{34}{53} + \frac{13}{53}i$ (b) $\frac{34}{53} - \frac{13}{53}i$ (c) $\frac{-34}{53} - \frac{13}{53}i$ (d) $\frac{-34}{53} + \frac{13}{53}i$ (e) None of the above '

Express $\frac{(1+3i)^2}{2+i}$ in the form a+ib (a) 1+i (b) -1+2i (c) -2+4i (d) -2-4i32. (e) None of the above

Express $(2-i)^4$ in the form a+ib (a) -7-24i (b) 7-24i (c) 7+24i (d) -7+24i33. (e) None of the above

If Z = 2 - i, express $Z^2 + 2Z + 3$ in the form x + iy (a) 5 - 3i (b) 5 + 3i (c) 10 - 6i(d) 10+6i (e) None of the above

```
35. If z = 2 - i, express Z + \frac{1}{Z} in the form x + iy (a) \frac{6 - 2i}{5} (b) \frac{12}{5} - \frac{4}{5}i (c) \frac{-6}{5} - \frac{2}{5}i
         (d) \frac{-12}{5} - \frac{4}{5}i (e) None of the above
                                                                                                               (c) - 41 + 13i
                                                                                    (b) -41-13/
  36. If Z_1 = 3 - 4i and Z_2 = 7 + 5i, find Z_1Z_2
                                                                  (a) 41-13/
         (d) 41+13i (e) None of the above
                                                                                                                  (c) 36-13i
                                                                                          (b) 36+13i
  37. If Z_1 = 5 + 3i and Z_2 = 4 - 5i, find \overline{Z_1 Z_2} (a) -36 - 13i
         (d) -36+13i (e) None of the above
  38. Express 1 + \sqrt{3}i in polar form (a) Z = 2(Cos60^{\circ} + iSin60^{\circ}) (b) Z = \sqrt{3}(Cos60^{\circ} + iSin60^{\circ})
         (c) Z = 4(Cos30^{\circ} + iSin30^{\circ}) (d) Z = 2(Cos30^{\circ} + iSin30^{\circ}) (e) None of the above
  39. Express -1 - \sqrt{3}i in polar form (a) Z = 2(Cos240^{\circ} + iSin240^{\circ}) (b) Z = 2(Cos60^{\circ} + iSin60^{\circ})
         (c) Z = 2(Cos30^{\circ} + iSin3t_{i}^{\circ\circ}) (d) Z = \sqrt{3}(Cos240^{\circ} + iSin240^{\circ}) (e) None of the above
                                                                                                            (b) 1.54 - 1.281
  40. Express 2(Cos220^{\circ} + iSin220^{\circ}) in the form a+ib (a) 1.54 + 1.28i
         (c) -1.54 + 1.28i (d) -1.54 - 1.28i (e) None of the above
                                                                                     (b-3.42 - 9.41 (c) -3.42 + 9.41
         Express 10(Cos290° + i5 (290°)
                                                          (a) 3.42 - 9.41
                              (e) None of the above
         (d) 3.42 + 9.41
        Evaluate \frac{5(Cos150^{\circ} + iSin150^{\circ})}{3(Cos30^{\circ} + iSin30^{\circ})} (a) \frac{3}{5}(Cos120^{\circ} + iSin120^{\circ}) (b) \frac{3}{5}(Cos120^{\circ} - iSin120^{\circ})
        (c) \frac{5}{3}(Carl20^{\circ} + iSinl20^{\circ}) (d) \frac{5}{3}(Corl20^{\circ} - iSinl20^{\circ}) (e) None of the above
43. Evaluate (Cos\theta + iSin\theta)^{-m} (a) \frac{Cos\theta - iSin\theta}{(Cos\theta - iSin\theta)^{m}}
                                                                               (b) \cos\theta - i\sin\theta (c) \cos\theta + i\sin\theta
        (d) Cosm\theta - iSinm\theta (z) None of the above
                                                                                        (a) 0.2(Cos168.9° + iSin168.9°)
44. If Z = 2 + 3i, find Z = 5n polar form
                                                                                        (c) 0.2(Cos191.1" + iSin191.1")
       (b) 0.02(Cos168.9^{\circ} + iSin168.9^{\circ})
       (d) 0.02(Cos191.1^{\circ} + iSig191.1^{\circ}) (e) None of the above
                         cube root of 27(Cos \frac{3z}{6} + iSin \frac{3z}{6})
                                                                                         in
45. Find
      (a) 3 \left[ Cos\left(\frac{5\pi + 12\pi k}{18}\right) + iSin\left(\frac{5\pi + 12\pi k}{18}\right) \right] (b) 3 \left[ Cos\left(\frac{5\pi - 12\pi k}{18}\right) + iSin\left(\frac{5\pi - 12\pi k}{18}\right) \right]
      (c) \sqrt{3} \left[ Cos \left( \frac{5\pi + 12\pi k}{18} \right) + iSin \left( \frac{5\pi + 12\pi k}{18} \right) \right] (d) \sqrt{3} \left[ Cos \left( \frac{5\pi - 12\pi k}{18} \right) + iSin \left( \frac{5\pi - 12\pi k}{18} \right) \right]
      (e) None of the above
     If Z = Cos\theta + iSin\theta, find Z^{-1} (a) \frac{1}{Cos\theta - iSin\theta} (b) Cos\theta - iSin\theta (c) 2iSin\theta (d)
      2Cosθ (e) None of the above
     If Z = Cos\theta - iSin\theta, find Z'' + \frac{1}{Z^{\delta}} (a) 2iSin\theta (b) 2iSin\theta (c) 2Cosn\theta
     (e) None of the above
                                                                                                        (a) 2Cos3\theta + 6Cos\theta
    Express Cos'θ in terms of cosines of multiple angles
    (b) \frac{1}{4}(Cos3\theta + 3Cos\theta) (c) 4(Cos3\theta + 3Cos\theta) (d) \frac{1}{4}(Cos3\theta + 3Cos\theta) (e) None of the above
                                                                                         (b) 64-3.7i (c) 0.64-0.37i
```

Express $Z = e^{2^{\frac{1}{2}}}$ in the form a + ib(d) 0.64 + 0.37i (e) None of the above

(a) 6.4 - 3.71

- (b) $e^{-i\theta} = \cos\theta i\sin\theta$ 0. Which of the following is not correct? (a) $e^{i\theta} = Cos\theta + iSin\theta$ (c) $\cos\theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$ (d) $\sin\theta = \frac{e^{i\theta} + e^{-i\theta}}{2i}$ (e) None of the above
- (b) a set with two elements 51. The set $A = \{x/x \text{ is an integer}, 2 < x < 3\}$ (a) a singleton set (c) an empty set (d) the universal set (e) None of the above
- 52. Find x if |x + 3| = 2 (a) 1, 5 (b) 1. -5 (c)-1, -5 (d) -1, 5 (e) None of the above
- (a) x < 2, x > -8 (b) x > 2, x < -8 (c) -8 < x < 2 (d) 53. Find x if |x + 3| > 5x < 2, x < -8 (e) None of the above
- 54. Find y if $\left| \frac{y-3}{y+1} \right| < 2$ (a) $y > \frac{1}{3}$, y < -5 (b) $y < \frac{1}{3}$, y > -5 (c) $y > -\frac{1}{3}$, y < -5(d) $y > \frac{1}{2}$, y < 5 (e) None of the above
- 55. Evaluate ", for the following sequence 0, 7, 26, 63, 124.... (a) 7(r-1) (c) 7r (d) $r^3 - 1$ (e) None of the above
- 56. Evaluate the first 5 terms of the sequence whose u, is given as follows $\left(-\frac{1}{3}\right)^{-1}$ (a) $-1, \frac{1}{3}, -\frac{1}{9}, \frac{1}{27}, -\frac{1}{81}$ (b) $-1, -\frac{1}{3}, -\frac{1}{9}, -\frac{1}{27}, -\frac{1}{81}$ (c) $1, \frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \frac{1}{81}$ (d) 1, $-\frac{1}{3}$, $\frac{1}{9}$, $-\frac{1}{27}$, $\frac{1}{81}$ (e) None of the above
- The sum of the first n terms of a series is given as $S_n = n^3 2n$ for all values of n, find the 57. (a) $3r^2 + 3r + 1$ (b) $3r^2 + 3r - 1$ (c) $3r^2 - 3r + 1$ formula for the rth term
- (d) $3r^2 3r 1$ (e) None of the above (b) 32 (c) 11, 27, 43 Find the three arithmetic means between -5 and 59. (a) 27 (d) 27, 32, 37 (e) None of the above
- The second term of a geometric sequence is 24 and the fifth term is 81, find the seventh term. 59.
 - (a) $\frac{729}{4}$ (b) 81 (c) 729 (d) $\frac{81}{4}$ (e) None of the above Evaluate $\sum_{n=0}^{\infty} (2-3r)$ (c) $\frac{n(1+3n)}{2}$ (b) $\frac{n(3n-1)}{2}$ (c) $\frac{n(1-3n)}{2}$ (d) $-\frac{n(1-3n)}{2}$
- (e) None of the above The third term of an arithmetic progression is 18 and the seventh term is 30, find the sum of 61. the first thirty three terms

60.

(a) 1890 (b) 720 (c) 1980 (d) 1800 (e) None of the The third term of a geometric sequence is -1 and the seventh term is -81, find the ninth term.

62. The third term of a geometric sequence is -1 and the seventh term is
$$\frac{(a) -729}{(a) -729}$$
 (b) 729 (c) -81 (d) 81 (e) None of the above
$$\frac{25 - 11x}{(x+1)(x-2)(x-3)}$$
 into partial fraction (a) $\frac{2}{x+1}$ $\frac{3}{x-2}$ $\frac{1}{x-3}$

(b)
$$\frac{3}{x+1} - \frac{1}{x-2} - \frac{2}{x-3}$$
 (c) $\frac{3}{x+1} - \frac{1}{x-2} + \frac{2}{x-3}$ (d) $\frac{3}{x+1} + \frac{1}{x-2} - \frac{2}{x-3}$ (e) None of the above.

63	Solve the inequalities $3x + 12 > 0$ and $8 - 4x > 0$ (a) $-2 < x < 4$ (b) $-4 < x < 2$
63.	A CD 2 2 In None of the above
64.	c an arithmetic requirement is 7 and the last term is 70 and the sail is
	the number of terms. (a) / (b) 8 (c) 9 (d) to (c) the sum of the series
65.	If a and r are both positive, find the sum of $\frac{n+1}{2}$ (b) $(n-1)\log ar^{\frac{n+1}{2}}$
	IDE OF TIVE WILL TOP WILL TOP WILL THE WI
	(c) $(n+1)\log ar$ (d) $(n+1)\log ar^{\frac{n+1}{2}}$ (e) None of the above
"	(c) $(n+1)\log ar$ (d) $(n+1)\log ar^{-2}$ (e) None of the above Evaluate $\sum_{r=1}^{n} (3r+2)$ (a) $\frac{n(3n+3)}{2}$ (b) $\frac{n(3n-7)}{2}$ (c) $\frac{n(3n+7)}{2}$ (d) $\frac{n(3n-3)}{2}$
66.	Evaluate 2
	(e) None of the above $n(1-3n) = n(3n-1)$ (d) $n(5-3n)$
67.	(e) None of the above Evaluate $\sum_{r=1}^{n} (2-3r)$ (a) $\frac{n(1+3n)}{2}$ (b) $\frac{n(1-3n)}{2}$ (c) $\frac{n(3n-1)}{2}$ (d) $\frac{n(5-3n)}{2}$
	(e) None of the above Find the sum of the first 2n terms of the sequence $5 + 11 + 17 + 23 + \dots$ (a) $n(10n + 4)$
68	(12n + 4) $(12n + 9)$ (4) $n(12n + 4)$ (c) None of the above
69	c the first 2n terms of the sequence (1 + 30 + 20 + 20 + 30 +
0,	(a) $n(2n+1)(a+3b)$ (b) $(2n+1)(a+3b)$ (c) $n(n+1)(a+3b)$ (d) $2n(n+1)(a+3b)$
	(e) None of the above
70	The product of three numbers in geometric progression as None of the above
	second term (a) 4 (b) -4 (c) $\frac{1}{4}$ (d) $-\frac{1}{4}$ (e) None of the above
71	The third term of a geometric sequence is -1 and the seventh term is -81, find the ninth term. (a) 729 (b) -729 (c) -81 (d) 81 (e) None of the above
	(a) $1 - (b) = (c) 1 - (d) = $
72	
	(e) None of the above $(c) = \sqrt{5}$ $(c) = \sqrt{5}$ $(c) = \sqrt{5}$ $(c) = \sqrt{5}$
73	(e) None of the above Evaluate $1 + \sqrt{3} + 3 + 3\sqrt{3} + + 81\sqrt{3}$ (a) $242(1+\sqrt{3})$ (b) $\frac{242}{1+\sqrt{3}}$ (c) $121(1+\sqrt{3})$
	(d) $-\frac{242}{1+\sqrt{3}}$ (e) None of the above
74	The first and last term of a geometric progression are 3 and 768 respectively, if the sum of the
	series is 1533, find common ratio (a) 2 (b) 3 (c) 4 (d) 5 (e) None of the above Find the sum to which the following series converge $1 - x + x^3 - x^3 + \dots + x < 1$
75	. Find the sum to which the following series above
	(a) $\frac{1}{1-x}$. (b) $\frac{1}{1-x^2}$. (c) $\frac{x}{1-x^2}$. (d) $\frac{1}{1+x}$. (e) None of the above
76	Evaluate $\frac{1}{5} + \frac{1}{25} + \frac{1}{125} + \dots$ (a) $\frac{5}{4}$. (b) $\frac{1}{5}$. (c) $\frac{1}{4}$. (d) $\frac{4}{5}$. (e) None of the above
	Express 0.232323 (recurring) as a fraction (a) $\frac{23}{100}$ (b) $\frac{232}{1000}$ (c) $\frac{2323}{10000}$ (d) $\frac{23}{99}$
77	
	(e) None of the above (a) **'C, (b) *C, (c) *C, (d) **'C, (e) None of
78	Evaluate "C, + "C, (a) "'C, (b) "C, (c) "C, (d) C, (c) "C,

the above

80. Expand
$$(2+x)^3$$
 (a) $32+60x^1+60x^2+40x^3+10x^4+x^3$

(b)
$$16 + 80x^{1} + 80x^{2} + 40x^{3} + 10x^{4} + x^{5}$$
 (c) $32 + 60x^{1} + 60x^{2} + 30x^{3} + 10x^{4} + x^{5}$

(d)
$$32 + 80x^{1} + 80x^{2} + 40x^{3} + 10x^{4} + x^{5}$$
 (e) None of the above

81. Find the coefficient of
$$x^4$$
 in the expansion of $\left(x^2 + \frac{2y}{x}\right)^{13}$ (a) $210y^4$ (b) $6300y^4$ (c) $3360y^4$ (d) $1360y^4$ (e) None of the above

82. A box containing 2 yellow and 3 blue cards, in how many ways can 3 cards be chosen if at least one card must be blue (a) 9 (b) 20 (c) 10 (d) 6 (e) None of the above

In how many ways can the letters of the word PENCIL be arranged if the arrangement must begin with E and end with P (a) 120 (b) 24 (c) 60 (d) 6 (e) None of the above

How many three digit numbers can be formed using the digit 4, 5, 6 if any digit can be used more than once. (a) 12 (b) 18 (c) 27 (d) 6 (e) None of the above

In how many ways can the letters of the word CALCULUS be arranged (a) 8! (c) 6! (d) 5! (e) None of the above

How many 3 or 4 digit numbers can be formed using the digit 1, 6, 7, 8, 9 if repetition is not (a) 60 (b) 120 (c) 180 (d) 240 (e) None of the above

Find the values of x which satisfy $2x^2 - 7x + 9 < x^2 - 2x + 3$ (a) x < 2, x > 3(b) 3 < x < 4 (c) -2 < x < 3 (d) 2 < x < 3(e) None of the above

88. For what values of x is $\frac{1}{x-3} < 1$ (a) 3 < x < 4 (b) -3 < x < 4 (c) x > 3, x < 4

(d)
$$x < 3$$
, $x > 4$ (e) None of the above

89. For what values of x is
$$\frac{2x-1}{x+3} \le \frac{2}{3}$$
 (a) $-3 \le x \le \frac{9}{4}$ (b) $-3 \le x \le -\frac{9}{4}$

(c)
$$-\frac{9}{4} \le x \le 3$$
 (d) $\frac{9}{4} \le x \le 3$ (e) None of the above

90. Find x if
$$|x+3| \le 1$$
 (a) $-2 < x < 4$ (b) $-4 < x < 2$ (c) $-4 < x < -2$

(d)
$$-2 < x < 2$$
 (e) None of the above

91. Resolve the following into partial fractions
$$\frac{6x-10}{x^2-2x-3}$$
 (a) $\frac{2}{x-3}-\frac{4}{x+1}$

(b)
$$\frac{2}{x+3} + \frac{4}{x-1}$$
 (c) $\frac{2}{x-3} + \frac{4}{x+1}$ (d) $\frac{2}{x-3} - \frac{4}{x-1}$ (e) None of the above

(b)
$$\frac{2}{x+3} + \frac{1}{x-1}$$
 (c) $\frac{2}{x-3} + \frac{1}{x+1}$ (d) $\frac{2}{x-3} - \frac{1}{x-1}$ (e) None of the above (a) $\frac{3}{x+1} - \frac{2}{x-1}$

92. Resolve the following into partial fractions
$$\frac{x^3 - x^2 - 4}{x^2 - 1}$$
 (a) $\frac{3}{x+1} - \frac{2}{x-1}$ (b) $x - 1 + \frac{3}{x+1} - \frac{2}{x-1}$ (c) $x - 1 - \frac{3}{x+1} - \frac{2}{x-1}$ (d) $x - 1 - \frac{3}{x+1} + \frac{2}{x-1}$

93. Resolve the following into partial fractions
$$\frac{x^2 + 4x - 7}{(x+1)(x^2+4)}$$
 (a)
$$\frac{x-7}{(x^2+4)} - \frac{1}{x+1}$$

(b)
$$\frac{3x-1}{(x^2+4)} + \frac{2}{x+1}$$
 (c) $\frac{x+1}{(x^2+4)} + \frac{2}{x+1}$ (d) $\frac{3x+7}{(x^2+4)} - \frac{1}{x+1}$ (e) None of the

94. Resolve the following into partial fractions
$$\frac{x^2}{(x+1)^3}$$
 (a) $\frac{1}{x+1} - \frac{2}{(x+1)^2} + \frac{1}{(x+1)^3}$ (b) $\frac{1}{x+1} + \frac{1}{(x+1)^2} + \frac{1}{(x+1)^3}$ (c) $\frac{1}{x+1} - \frac{2}{(x+1)^2} - \frac{1}{(x+1)^3}$ (d) $\frac{1}{x+1} + \frac{2}{(x+1)^2} - \frac{1}{(x+1)^3}$

(e) None of the above

95. Resolve the following into partial fractions
$$\frac{4x+11}{(x^2+4x-5)}$$
 (a) $\frac{1}{2}(\frac{3}{x+5}-\frac{5}{x-1})$

(b)
$$\frac{1}{2} \left(\frac{3}{x-5} + \frac{5}{x+1} \right)$$
 (c) $\frac{1}{2} \left(\frac{3}{x-5} + \frac{5}{x-1} \right)$ (d) $\frac{1}{2} \left(\frac{3}{x+5} + \frac{5}{x-1} \right)$ (e) None of the

96. Resolve the following into partial fractions
$$\frac{x^2 + 2}{(2x + 1)(x^2 + 2x + 3)}$$

(a)
$$\frac{1}{2x+1} - \frac{1}{x^2+2x+3}$$
 (b) $\frac{1}{2x+1} + \frac{1}{x^2+2x+3}$ (c) $\frac{1}{2x+1} - \frac{3}{x^2+2x+3}$

(d)
$$\frac{1}{2x+1} - \frac{4}{x^2 + 2x + 3}$$
 (e) None of the above

Pr. Resolve the following into partial fractions.
$$\frac{7x+2}{(2x-3)(x+1)^2}$$
 (a) $\frac{2}{2x-3} \cdot \frac{1}{(x+1)^2} \cdot \frac{1}{(x+1)^2}$

(b)
$$\frac{2}{2x-3} + \frac{1}{x+1} + \frac{1}{(x+1)^2}$$
 (c) $\frac{2}{2x-3} + \frac{1}{x+1} - \frac{1}{(x+1)^2}$ (d) $\frac{2}{2x-3} - \frac{1}{x+1} + \frac{1}{(x+1)^2}$

(e) None of the above

Determine n and r if "
$$P_r = \frac{10!}{4!}$$
 (a) $n = 10, r = 4$ (b) $n = 10, r = 6$

(c)
$$n = 6$$
, $r = 4$ (d) $n = 10$, $r = 10$ (e) None of the above

committees are possible? (a) 420 (b) 60 (c) 23 (d) 360 (e) None of the description of the description. The set
$$A = \{x \mid x \text{ is an integer, } 2 < x < 3\}$$
 is (a) a singleton set (b) a set with two elements (c) an empty set (d) the universal set (e) None of the above

101. If a set A has n elements, then A has (a) 2" subsets (b) 2" subsets (c) 2" subsets (d) 2n subsets (e) None of the above

102. If the set $A = \{a, b, c\}$; then the power set of A has (a) three elements (b) eight elements (c) seven elements (d) six elements (e) None of the above

103. Which of the following is false (a) 0 is an integer (b) 0 is a natural number (c) 0 is a real number (d) 0 is a rational number (e) None of the above

104. List the elements of the following set $\{x^2 + 1 \mid x \text{ is an integer and } 1 < x < 5\}$ (a) $\{2, 5, 10, 17, 26\}$ (b) $\{5, 10, 17, 26\}$ (c) $\{2, 5, 10, 17\}$ (d) $\{5, 10, 17\}$ (e) None of the above

105. Let the universal set $u = \{x \mid 1 \le x \le 20, x \text{ is an integer}\}$ $P = \{x - 1 \mid 10 \le x \le 18, x \text{ is even}\}$ $Q = \{x \mid 2 < x \le 15, x \text{ is odd}\}$. Find $P \cap Q'$ (a) {17} (b) {12, 17} (c) {17, 18} (d) ϕ (e) None of the above

06. Let $P = \{x - 1 \mid 10 \le x \le 18, x \text{ is even}\}$. $Q = \{x \mid 2 < x \le 15, x \text{ is odd}\}$ and $R = \{x \mid 1 < x \le 20, x \text{ is a multiple of 3}\}$. Find $P \cap (Q \cap R)$ (a) $\{3, 9, 15\}$ (b) $\{9, 15\}$ (c) ϕ (d) $\{3, 6, 9, 15\}$ (e) None of the above

107. Find B - A for the following pairs of sets $A = \{3.1\}$ and $B = \{4,1,6,3\}$ (a) $\{3,1\}$ (b) $\{4,6\}$ (c) $\{4,1\}$ (d) $\{4,3\}$ (e) None of the above

108. If $A = \{1, 2, 3, 4\}$ and $B = \{2, 4\}$ then $A \cup B = \{2, 4\}$ (b) $\{1, 2, 2, 3, 4, 4\}$ (c) $\{1, 2, 3, 4\}$ (d) ϕ (e) None of the above

109. Given, that $U = \{a, b, c, d, e, f, g\}$, $P = \{a, b, d, f\}$ and $Q = \{a, c, d, g\}$. Find $P \cup Q'$ (a) $\{b, e, f\}$ (b) $\{a, b, d, e\}$ (c) $\{a, b, d, f\}$ (c) $\{a, b, d, e, f\}$ (e) None of the above

110. Given that $P = \{a, b, d, f\}$. $Q = \{a, c, d\}$ and $R = \{f, c, a, d\}$. Find $P \cup Q \cup R$ (a) $\{a, b, c, d, f\}$ (b) $\{a, a, b, c, d\}$ (c) $\{a, b, c, c, f\}$ (d) $\{a, b, c, d, d\}$ (e) None of the above

111. If $A = \{1,2,3,6,8\}$ and $C = \{4,5,6,8\}$, find $A\Delta C$ (a) $\{1,2,3,4,5,6\}$ (b) $\{1,2,3,4,5\}$ (c) $\{1,2,3,4,5,8\}$ (d) ϕ (e) None of the above

112. If $A = \{1,2,3,6,8\}$, $B = \{2,5,6,7,9\}$ and $C = \{4,5,6,8\}$, find $(A\Delta B)\Delta C$ (a) $\{1,3,7,9\}$ (b) $\{4,6\}$ (c) $\{1,3,4,6,7,9\}$ (d) $\{1,3,7,8,9,5\}$ (e) None of the above

113. If $A = \{1,2,3,6,8\}$, $B = \{2,5,6,7,9\}$ and $C = \{4,5,6,8\}$, find $A \cap (B\Delta C)$ (a) $\{2,7,9\}$ (b) $\{4,7,8\}$ (c) $\{7,9\}$ (d) $\{2,8\}$ (e) None of the above

114. If $A = \{1,2,3,6,8\}$, $B = \{2,5,6,7,9\}$ and $C = \{4,5,6,8\}$, find $C \cup (A \triangle B)$ (a) $\{1,3,4,5,6,7,8,9\}$ (b) $\{1,2,3,6,8,9\}$ (c) $\{1,4,5,6,7,8,9\}$ (d) $\{3,4,5,6,7,8,9\}$ (e) None of the above

115. If A and B are any two sets then $(A \cap B)' = (a) A' \cap B'$ (b) $A' \cup B'$ (c) $A \cup B'$ (d) $A' \cap B$ (e) None of the above

116. If A and B are any two sets then $(A \cup B)' = (a) A \cup B'$ (b) $A' \cup B'$ (c) $A' \cap B$ (d) $A' \cap B$ (e) None of the above

117. If \cup is the universal set and A is any set then $A\Delta \cup = (a) A (b) \phi (c) \cup (d) A'$ (e) None of the above

118. For two sets A and B, $n(A \cup B) = (a) n(A) + n(B) - n(A \cap B)$. (b) $n(A) + n(B) - n(A \cup B)$ (c) $n(A) + n(B) + n(A \cap B)$ (d) $n(A) + n(B) + n(A \cup B)$ (e) None of the above

119. In a certain gathering of 200 students, 60% of them like Economics while 77% of them like History. How many students like both History and Economics? (a) 37 (b) 74 (c) 40 (d) 23 (e) None of the above

120. In a class of 125 students 4 belong to Music and Press clubs only, 5 belong to Press and Drama clubs only while 20 are members of Music and Drama clubs. The Press club has

65members and no student participates in only Music club. Given that the number in Press club only is the square of those in all three clubs. How many belong to only Drama if 10 students are not members of any of the clubs? (a) 49 (b) 13 (c) 37 (d) 22 (e) None of the above

- 121. In a class of 125 students 4 belong to Music and Press clubs only, 5 belong to Press and Drama clubs only while 20 are members of Music and Drama clubs. The Press club has 65members and no student participates in only Music club. Given that the number in Press club only is the square of those in all three clubs. What is the probability that a student in the class is in the drama club? (a) $\frac{37}{125}$ (b) $\frac{62}{115}$ (c) $\frac{37}{115}$ (d) $\frac{62}{125}$ (e) None of the above
- 122. The operation is defined by the relation $p \cdot q = \frac{(p-q)^2}{p+q}$ on the set of real numbers.

Evaluate 2.5 (a) $\frac{9}{7}$ (b) $\frac{-9}{7}$ (c) $\frac{3}{7}$ (d) $\frac{-3}{7}$ (e) None of the above

123. The operation Δ is defined by the relation $r\Delta s = |r-s|$ on the set of real numbers. Evaluate $2\Delta 9$ (a) -7 (b) 7 (c) 11 (d) -11 (e) None of the above

124. The operation • is defined by the relation $a \cdot b = \max(a, b - 1)$ on the set of real numbers. Evaluate $4 \cdot 10$ (a) 10 (b) 4 (c) 9 (d) 3 (e) None of the above

- 125. The operation is defined by the relation $u \cdot v = u^2 + v + 2$. Evaluate $3 \cdot 0$ (a) 2 (b) 3 (c) 5 (d) 11 (e) None of the above
- 126. The operation ∇ is defined by the relation $p\nabla q = \frac{p-q}{pq}$. Evaluate $6\nabla 2$ (a) $\frac{1}{3}$ (b) $\frac{-1}{3}$ (c) 3 (d) -3 (e) None of the above
- 127. The set $k = \{-1,0,1\}$ is closed under (a) + (b) × (c) (d) + (e) None of the above
- 128. The operation is defined by the relation $p \cdot q = \frac{(p-q)^2}{p+q}$. Evaluate (4•2)•3 (a) $\frac{2}{3}$

(b) $\frac{1}{2}$ (c) $\frac{49}{33}$ (d) $\frac{33}{19}$ (e) None of the above

129. For the set of integers Z determine the identity element under + (a) does not exist .(b) 1/2 (c) 1 (d) 0 (e) None of the above

130. For the set of integers Z determine the identity element under x (a) 1 (b) does not exist (c) 0 (d) 1/2 (e) None of the above

131. Find the inverse of the real number 7 under + (a) \frac{1}{7} (b) -7 (c) \frac{-1}{7} (d) does not exist

(e) None of the above

132. Find the inverse of the real number 7 under × (a) -7 (b) = (c) 1 (d) does not exist (e) None of the above

133. If x_1 and x_2 are the two roots of the quadratic equation $x^2 + \frac{b}{a}x + \frac{c}{a} = 0$ then sum of roots is

(a) $\frac{a}{b}$ (b) $\frac{-a}{b}$ (c) $\frac{b}{a}$ (d) $\frac{-b}{a}$ (e) None of the above

134. If x_1 and x_2 are the two roots of the quadratic equation $x^2 + \frac{b}{a}x + \frac{c}{a} = 0$ then product of roots

is (a) $\frac{c}{a}$ (b) $\frac{-c}{a}$ (c) $\frac{a}{c}$ (d) $\frac{-a}{c}$ (e) None of the above

135. If the equation $px^2 + 3x - 9 = 0$ has equal roots what is the value of p? (a) $\frac{1}{4}$ (b) $\frac{1}{4}$ (c) $\frac{1}{3}$ (d) $\frac{1}{3}$ (e) None of the above

136. If α and β are the roots of the equation $2x^2 + 6x - 5 = 0$ form the equation whose roots are $\alpha + \frac{1}{\beta}$, $\beta + \frac{1}{\alpha}$ (a) $10x^2 - 18x + 9 = 0$ (b) $10x^2 + 18x + 9 = 0$ (c) $10x^2 + 18x - 9 = 0$
(d) $10x^2 - 18x - 9 = 0$ (e) None of the above
137. If α and β are the roots of the equation $2x^2 + 6x - 5 = 0$ form the equation whose roots are
$\frac{\alpha}{\beta}$, $\frac{\beta}{\alpha}$ (a) $5x^2 - 28x + 5 = 0$ (b) $5x^2 + 28x - 5 = 0$ (c) $5x^2 - 28x - 5 = 0$
(d) $5x^2 + 28x + 5 = 0$
138. If α and β are the roots of the equation $2x^2 + 6x - 5 = 0$ form the equation whose roots are
α^3 , β^3 (a) $8x^2 + 396x - 125 = 0$ (b) $8x^2 - 396x - 125 = 0$ (c) $8x^2 + 396x + 125 = 0$
(d) $8x^2 - 396x + 125 = 0$ (e) None of the above
139. If α and β are the roots of a quadratic equation, find the quadratic equation given that
$\alpha - \beta = 3$ and $\alpha^2 - \beta^2 = 6$ (a) $4x^2 - 8x + 5 = 0$ (b) $4x^2 - 8x - 5 = 0$
A A A A A A A A A A A A A A A None of the above
140. Find the values of a for which the equation $(3a+1)x^2 + (a+2)x + 1 = 0$ has equation (a) $a = 0$ or $a = 8$ (b) $a = 0$ or $a = -8$ (c) $a = 8$ or $a = 2$ (d) $a = 8$ or $a = -2$ (e) None
of the above $c_1 = c_2 + c_3 + c_4 + c_5 + c_4 + c_5 + c_5$
of the above 141. Find the values of λ for which the roots of the equation $x^2 - (3\lambda + 1)x + \lambda^2 - 1 = 5\lambda$ are real (a) $\lambda \le 5$ or $\lambda \ge \frac{1}{3}$ (b) $\lambda \le -5$ or $\lambda \ge -\frac{1}{3}$ (c) $\lambda \ge 5$ or $\lambda \ge \frac{1}{3}$ (d) $\lambda \ge -5$ or $\lambda \le -\frac{1}{3}$
(e) None of the above
(e) None of the above (a) 6 (b) 5 (c) 3 (d) 11 (e) None of the above

143. Find the minimum value of $12x^2 + 24x + 13$ (a) 12 (b) 24 (c) 13 (d) -1

the above

144. For the function
$$y = 2x^2 - x - 10 = 0$$
 determine the turning point using the method of completing the square

(a) $\left(\frac{1}{4}, \frac{-81}{8}\right)$

(b) $\left(\frac{-1}{4}, \frac{-81}{8}\right)$

(c) $\left(\frac{-1}{4}, \frac{81}{8}\right)$

(d) $\left(\frac{1}{4}, \frac{81}{8}\right)$

(e) None of the above

145. For the function
$$y = 14 - 3x - 2x^2$$
 (a) $\left(\frac{-3}{4}, \frac{-121}{8}\right)$ (b) $\left(\frac{-3}{4}, \frac{121}{8}\right)$ (c) $\left(\frac{3}{4}, \frac{121}{8}\right)$

(d)
$$\left(\frac{3}{4}, \frac{-121}{8}\right)$$
 (e) None of the above

146. If α and β are the roots of the equation $ax^2 + bx + c = 0$, obtain in terms of a, b and c the value of $a^2 + \beta^2$ (a) $\frac{b^2 + 2ac}{a^2}$ (b) $\frac{b^2 - 2ac}{a^2}$ (c) $\frac{b^2 + 2ac}{a}$ (d) $\frac{b^2 - 2ac}{a}$ (e) None of

147. If α and β are the roots of the equation $ax^2 + bx + c = 0$, obtain in terms of a,b and c the value of $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$ (a) $\frac{b^2 - 2ac}{ac}$ (b) $\frac{b^2 + 2ac}{ac}$ (c) $\frac{a^2 + 2ac}{bc}$ (d) $\frac{c^2 - 2ac}{ab}$ (e) None of

148. Show by mathematical induction that if n is a positive integer 1+2+3+4+...+n=(a) $\frac{n(n-1)}{2}$ (b) $\frac{n(n+1)}{2}$ (c) n(n-1) (d) n(n+1) (e) None of the above

149. Show using mathematical induction that $3^{2n+1} + 2^{n+2}$ is divisible by 7 and for n = k + 1 it is equal to (a) $7(3^{2k+1}) + [3^{2k+1} + 2^{k+2}]$ (b) $7(3^{2k+1}) - [3^{2k+1} + 2^{k+2}]$ (c) $7(3^{2k+1}) + 2[3^{2k+1} + 2^{k+2}]$ (d) $7(3^{2k+1}) - 2[3^{2k+1} + 2^{k+2}]$ (e) None of the above