Лабораторная работа 2

Методы минимизации функций одной переменной, использующие информацию о производных целевой функции

Постановка задачи: Требуется найти безусловный минимум функции одной переменной f(x) т.е. такую точку $x^* \in U$, что $f(x^*) = \min_{x \in U} f(x)$. Значение точки минимума вычислить приближенно с заданной точностью ε .

В лабораторной работе №1 были рассмотрены прямые методы решения этой задачи. В данной работе рассматриваются методы, в которых используются значения производных целевой функции.

Пусть на предварительно выбранном интервале неопределенности $U_0 = [a;b]$ целевая функция f(x) является выпуклой дифференцируемой функцией. Тогда для f(x) необходимым и достаточным условием глобального минимума является условие

$$f'(x) = 0, \quad x \in U_0 = [a;b]$$
 (1)

Метод средней точки

Стратегия поиска: Если определение производной f'(x) в (1) не представляет затруднений, то в процедуре исключения отрезков методом дихотомии вычисление двух значений f(x) вблизи середины очередного отрезка можно заменить вычислением одного значения f'(x) в его средней точке $\overline{x} = \frac{a+b}{2}$. Сравнивая $f'(\overline{x})$ с нулем, делим отрезок поиска точки x^* ровно вдвое, причем на каждой итерации вычисляется только одно значение f'(x).

Алгоритм:

- 1. Выбрать начальный интервал неопределенности $U_{\scriptscriptstyle 0}$ = [a;b] и точность ε .
- 2. Положить $\bar{x} = \frac{a+b}{2}$. Вычислить $f'(\bar{x})$.
- 3. Проверка на окончание поиска: если $|f'(\bar{x})| \le \varepsilon$, то положить $x^* = \bar{x}$, $f^* = f(\bar{x})$ и завершить поиск, иначе перейти к шагу 4.
- 4. Сравнить $f'(\bar{x})$ с нулем. Если $f'(\bar{x}) > 0$, то продолжить поиск на отрезке $[a; \bar{x}]$, положив $b = \bar{x}$, иначе перейти к отрезку $[\bar{x}; b]$, положив $a = \bar{x}$. Перейти к шагу 2.

Метод хорд

Стратегия поиска: Пусть на концах отрезка [a;b] производная f'(x) имеет разные знаки, т.е. $f'(a) \cdot f'(b) < 0$. Тогда на интервале (a;b) найдется точка, в которой f'(x) обращается в нуль. В этом случае поиск точки минимума f(x) на отрезке [a;b] эквивалентен решению уравнения f'(x) = 0 на интервале (a;b).

Сущность метода хорд приближенного решения уравнения f'(x) = 0 на отрезке [a;b] при $f'(a) \cdot f'(b) < 0$ состоит в исключении отрезков путем определения точки \tilde{x} - точки пересечения с осью Ox хорды графика функции f'(x) на [a;b].

Координата точки \tilde{x} равна:

$$\widetilde{x} = a - \frac{f'(a)}{f'(a) - f'(b)}(a - b). \tag{2}$$

Отрезок дальнейшего поиска точки x^* (отрезок $[a; \tilde{x}]$ или $[\tilde{x}; b]$) выбирается в зависимости от знака $f'(\tilde{x})$ так же, как в методе средней точки. На каждой итерации, кроме первой, необходимо вычислять только одно новое значение f'(x).

Алгоритм:

- 1. Выбрать начальный интервал неопределенности $U_0 = [a;b]$ и точность ε .
- 2. Найти \tilde{x} по формуле (2). Вычислить $f'(\tilde{x})$. Перейти к шагу 3.
- 3. Проверка на окончание поиска: если $|f'(\widetilde{x})| \le \varepsilon$, то положить $x^* = \overline{x}$, $f^* = f(\overline{x})$ и завершить поиск, иначе перейти к шагу 4.
- 4. Переход к новому отрезку. Если $f'(\widetilde{x}) > 0$, то положить $b = \widetilde{x}$, $f'(b) = f'(\widetilde{x})$, иначе положить $a = \widetilde{x}$, $f'(a) = f'(\widetilde{x})$. Перейти к шагу 2.

Метод Ньютона

Стратегия поиска: Для приближенного решения уравнения (1) используется метод касательных. Пусть $x_0 \in [a;b]$ - нулевое, или начальное приближение к искомой точке x^* . Линеаризуем функцию F(x) = f'(x) в окрестности начальной точки, приближенно заменив дугу графика этой функции касательной в точке $(x_0, f'(x_0))$:

$$F(x) \approx F(x_0) + F'(x_0) \cdot (x - x_0)$$
 (3)

Выберем в качестве следующего приближения к x^* точку x_1 пересечения касательной с осью абсцисс. Приравнивая к нулю правую часть в (3), получим первый элемент $x_1 = x_0 - \frac{F(x_0)}{F'(x_0)}$ итерационной последовательности $\{x_k\}$, $k = 1, 2 \dots$

В очередной точке x_k строится линейная аппроксимация функции F(x) и точка, в которой эта аппроксимирующая функция обращается в нуль, используется в качестве следующего приближения x_{k+1} .

Уравнение касательной к графику F(x) в точке $x=x_k$ имеет вид $y=F(x_k)+F'(x_k)\cdot(x-x_k)$, поэтому точка $x=x_{k+1}$, найденная из условия y=0, определяется формулой $x_{k+1}=x_k-\frac{F(x_k)}{F'(x_k)}$. Возвращаясь к обозначению F(x)=f'(x), получим, что для решения уравнения f'(x)=0 необходимо построить последовательность

$$x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)}, \quad k = 0,1,...$$
 (4)

где x_0 - точка, выбранная в качестве начального приближения. Вычисления по формуле (4) производятся до тех пор, пока не выполнится неравенство $|f'(x_k)| \le \varepsilon$, после чего полагают $x^* \approx x_k$, $f^* \approx f(x_k)$.

Возможные модификации метода Ньютона

1. Метод Ньютона-Рафсона:

При переходе к новой итерации новая точка x_{k+1} рассчитывается по формуле:

$$x_{k+1} = x_k - \tau_k \frac{f'(x_k)}{f''(x_k)}, \quad 0 < \tau_k \le 1.$$

В простейшем варианте метода $\tau_k = \tau = const$ (значение $\tau = 1$ соответствует исходному методу Ньютона). Оптимальный набор параметров τ_k может быть найден из решения задачи минимизации:

$$\varphi(\tau) = f\left(x_k - \tau \frac{f'(x_k)}{f''(x_k)}\right) \rightarrow \min.$$

На практике для параметров τ_k обычно используется приближенное решение последней задачи:

$$au_k = \frac{\left(f'(x_k)\right)^2}{\left(f'(x_k)\right)^2 + \left(f'(\widetilde{x})\right)^2}$$
, где $\widetilde{x} = x_k - \frac{f'(x_k)}{f''(x_k)}$.

2. Метод Марквардта:

При переходе к новой итерации новая точка x_{k+1} рассчитывается по формуле:

$$x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k) + \mu_k}, \quad \mu_k > 0$$

Значение параметра μ_0 выбирается как минимум на порядок больше значения $f''(x_0)$.

При переходе к новой итерации новое значение μ_{k+1} полагают равным $\mu_{k+1} = \mu_k / 2$, если $f(x_{k+1}) < f(x_k)$, либо $\mu_{k+1} = 2\mu_k$ в противном случае.

Метод перебора (минимизации многомодальных функций)

<u>Стратегия поиска:</u> Применение этого метода строго обосновано лишь для унимодальной на [a;b] функции f(x). Однако, если вместо унимодальности потребовать, чтобы функция f(x) удовлетворяла на [a;b] условию Липшица

$$|f(x_1) - f(x_2)| \le L|x_1 - x_2|$$
, для всех $x_1, x_2 \in [a;b]$, (5)

то можно гарантировать определение минимального значения f^* методом перебора с любой заданной точностью. Сформулируем утверждение более строго.

Пусть функция f(x) удовлетворяет на отрезке [a;b] условию Липшица (5) с константой L и приближенные значения $x^* \approx x_m$, $f^* \approx f(x_m)$ найдены методом перебора с разбиением отрезка [a;b] на n частей. Тогда для погрешности δ_n определения минимального значения f^* справедлива оценка

$$\delta_n = f(x_m) - f^* \le L \cdot \frac{b - a}{2n} \,. \tag{6}$$

Замечание. Если функция f(x) многомодальна, то погрешность определения ее точки минимума может быть значительной, несмотря на то, что сам минимум f^* найден достаточно точно.

Однако во многих случаях практический интерес представляют те значения аргумента x (возможно, далекие от x^*), при которых целевая функция принимает

значения, достаточно близкие к минимальному. Это позволяет использовать метод перебора для многомодальных функций.

Метод ломаных (минимизации многомодальных функций)

<u>Ознакомиться со стратегией и алгоритмом метода ломаных</u> по главе 3 пособия на электронном носителе или по дополнительной литературе.

<u>Задания</u>

- 1. Написать в среде MATLAB функции, реализующие метод средней точки, метод хорд и метод Ньютона.
- 2. Выбрать для выполнения работы тестовую функцию, номер которой соответствует номеру Вашего компьютера. Например, для компьютера №3 это будет функция 3), для компьютера №13 функция 4): 13-9=4; для компьютера №23 это будет функция 5): $23-9\times2=5$.
- 1) $f(x) = x^3 3\sin x \rightarrow \min, x \in [0, 1].$
- 2) $f(x) = x^4 + x^2 + x + 1 \rightarrow \min, x \in [-1, 0].$

3)
$$f(x) = e^x + \frac{1}{x} \rightarrow \min, x \in [0,5, 1,5].$$

4)
$$f(x) = x^2 - 2x + e^{-x} \rightarrow \min, x \in [-1, 1, 5].$$

5)
$$f(x) = x \sin x + 2 \cos x \rightarrow \min, x \in [-6, -4].$$

6)
$$f(x) = x + \frac{1}{x^2} \rightarrow \min, x \in [1, 2].$$

7)
$$f(x) = 10x \ln x - \frac{x^2}{2} \rightarrow \min, x \in [0,1,1].$$

8)
$$f(x) = e^x - \frac{1}{3}x^3 + 2x \rightarrow \min, x \in [-2,5, -1].$$

9)
$$f(x) = x^2 - 2x - 2\cos x \rightarrow \min, x \in [-0.5, 1].$$

- 3. Для выбранной функции и для каждого рассмотренного выше метода изучить зависимость скорости работы (числа вычислений функции N) от заданного значения точности ε . Провести сравнение методов друг с другом. Объяснить полученные результаты.
- 4. Определить, сколько вычислений функции потребуется каждому методу для того, чтобы разность между численным решением и аналитическим решением, найденным в задании для численной реализации гл. 2, была меньше $\varepsilon = 10^{-4}$.
- 5. Сравнить полученные результаты с результатами выполнения задания для численной реализации гл. 2. Сформулировать достоинства и недостатки прямых методов и методов, использующих производную целевой функции.
 - 6. С помощью метода Ньютона решить задачу минимизации функции

$$f(x) = x \arctan x - \frac{1}{2} \ln(1 + x^2)$$
.

Определить диапазон начальных приближений, для которых применим метод Ньютона. Объяснить полученный результат.

7. Решить задачу предыдущего пункта с помощью одной из описанных выше модификаций метода Ньютона (метода Марквардта или метода Ньютона-Рафсона).

Определить диапазон начальных приближений, для которых применима выбранная модификация метода Ньютона. *Сравнить полученные результаты с результатами выполнения предыдущего пункта*.

8. Составить программу нахождения глобального минимума многомодальных функций методом перебора и методом ломаных. С ее помощью решить один из следующих наборов задач:

a)
$$f(x) = \frac{\cos x}{x^2} \to \min$$
, $x \in [1, 12]$; $f(x) = \frac{1}{10}x + 2\sin 4x \to \min$, $x \in [0, 4]$;

6)
$$f(x) = \frac{\cos(10x)}{e^x} \to \min$$
, $x \in [1, 5]$; $f(x) = 0.3\cos 2x + 2\sin(4x) \to \min$, $x \in [0, 4]$.

Сравнить найденные значения точек минимума с точными значениями, найденными аналитически. Сделать выводы о сравнительных достоинствах и недостатках метода перебора и метода ломаных.

9. Сдать лабораторную работу преподавателю, *ответив предварительно на все следующие контрольные вопросы*.

Контрольные вопросы к лабораторной работе 2

- 1. Пусть f(x) выпуклая дифференцируемая функция и $|f'(\bar{x})| \le \varepsilon$. Можно ли указать погрешности определения точки минимума x^* и минимального значения f^* по формулам $x^* = \bar{x}$, $f^* = f(\bar{x})$? Ответ пояснить рисунком.
- 2. Является ли условие $f'(\overline{x}) = 0$ достаточным для того, чтобы число \overline{x} было точкой минимума унимодальной, но не выпуклой функции f(x)? Ответ сопроводить примером.
- 3. Указать класс функций, для которых точное определение точки минимума гарантировано в результате всего одной итерации метода Ньютона.
- 4. Сформулировать достаточные условия сходимости метода Ньютона.
- 5. Сформулировать достаточные условия монотонной сходимости метода Ньютона. Всегда ли в этом случае скорость сходимости будет квадратичной?
- 6. Для каких выпуклых дважды дифференцируемых функций метод золотого сечения приводит к цели за меньшее количество итераций, чем метод Ньютона?
- 7. Минимизировать функцию $f(x) = (x-1)^8 \to \min, x \in [0;2]$ с помощью методов Ньютона и золотого сечения. Сравнить эти методы.
- 8. Сформулировать оценку погрешности определения минимума f^* многомодальной функции методом перебора.

- 9. Увеличение используемого значения константы Липшица L при реализации метода ломаных приводит к замедлению сходимости метода. Объяснить этот факт с помощью геометрической иллюстрации.
- 10. Показать с помощью рисунка, что если в методе ломаных используется ошибочно заниженное значение константы Липшица L, то задача минимизации может быть решена неверно.