

SEQUENCE LISTING

<110> Allan, Bernard
Gregoire, Francine
Lavan, Brian
Moodie, Shonna
Metabolex, Inc.

<120> Methods of Diagnosing & Treating Diabetes and Insulin
Resistance

<130> 016325-013900US

<140> US 10/516,635
<141> 2004-11-03

<150> US 60/386,085
<151> 2002-06-04

<150> US 60/386,331
<151> 2002-06-05

<150> WO PCT/US03/17725
<151> 2003-06-04

<160> 16

<170> PatentIn Ver. 2.1

<210> 1
<211> 2312
<212> DNA
<213> Homo sapiens

<220>
<223> human connective tissue growth factor (CTGF) cDNA

<220>
<221> CDS
<222> (146)..(1195)
<223> CTGF

<400> 1
tccagtgacg gagccgccccg gccgacagcc ccgagacgac agcccggcgc gtcccggtcc 60
ccacacctcgaa ccaccggccag cgctccagggc cccgcgtcc ccgctcgccg ccaccgcgccc 120
ctccgcgtccg cccgcagtgc caaccatgac cgccgcccagt atggggcccg tccgcgtcgc 180
cttcgtggtc ctccctcgcccc tctgcagccg gccggccgtc ggccagaact gcagcggggcc 240
gtgccgggtgc cccggacgagc cggcgcccg ctgcccggcg ggcgtgagcc tcgtgctgga 300
cggcgtcgccg tgctgcccggc tctgcccggc aa gca gctgggc gagctgtgca ccgagcgcga 360
ccccctgcgac cccgcacaagg gcctcttctg tgacttcggc tccccggcca accgcaagat 420
cggcgtgtgc accgcacaag atgggtgtcc ctgcataatcc ggtggtaacgg tggatccgcag 480
cggagagtcc ttccagagca gctgcaagta ccagtgcacg tgcctggacg gggcggtggg 540
ctgcataatcc ctgtgcagca tggacgttcg tctgcccggc cctgactgca ccttcccggag 600
gagggtcaag ctgcccggga aatgctgcga ggagtgggtg tgtgacgagc ccaaggacca 660
aaccgtgggt gggccctgccc tcggggctta ccgactggaa gacacgtttg gcccagaccc 720
aactatgatt agagccaaact gcctgggtcca gaccacagag tggagcgcct gttccaagac 780
ctgtgggatg ggcataatccca cccgggttac caatgacaac gcctcctgca ggcttagagaa 840
gcagagccgc ctgtgcataatgg tcaggcccttgc cgaagctgac ctggaaagaga acattaagaa 900
gggcaaaaag tgcatccgta ctcccaaaaat ctccaaggcct atcaagtttgc agctttctgg 960
ctgcaccagc atgaagacat accgagctaa attctgtggta gtatgtaccg acggccgatg 1020
ctgcacccccc cacagaacca ccaccctgccc ggtggagttc aagtgcctg acggcgaggt 1080

catgaagaag aacatgatgt tcatcaagac ctgtgcctgc cattacaact gtcccgaga 1140
caatgacatc tttgaatcgc tttactacag gaagatgtac ggagacatgg catgaagcca 1200
gagagtgaga gacattaact cattagactg gaacttgaac tgattcacat ctcattttc 1260
cgtaaaaatg atttcagtag cacaagttat ttaaatctgt ttttctaact gggggaaaag 1320
atccccaccc aattcaaaaac attgtgccat gtcaaacaaa tagtctatct tccccagaca 1380
ctggtttcaa gaatgtaag acttgacagt ggaactacat tagtacacag caccagaatg 1440
tatattaagg tttggctta ggagcagtgg gaggttacca gcagaaagg tagtacatc 1500
agatagctct tatacgatc atatgcctgc tatttgaagt gtaattgaga aggaaaattt 1560
tagcgtgctc actgacctgc ctgtagcccc agtgcacgct aggtgtgca ttctccagcc 1620
atcaagagac tgagtcaga ttttccttaa gtcagaacag cagactcagc tctgacattc 1680
tgattcgaat gacactgttc aggaatcgga atcctgtcgat ttagactgga cagctgtgg 1740
caagtgaatt tcctgtaaac agccagattt tttaaaattt atattgtaaa tattgtgtgt 1800
gtgtgtgtgt gtgtatatat atatatatat gtacagttat ctaagttat ttaaagttgt 1860
ttgtgccttt ttattttgt ttttaatgtct ttgatattc aatgttagcc tcaatttctg 1920
aacaccatag gttagaatgtt aagcttgc tgcgttcaa agcatgaaat ggatacttat 1980
atggaaattt tctcagatag aatgcacgatc cgtcaaaaca gattgttgc aaagggggagg 2040
catcagtgtc cttggcaggc tgatttctag ttaggaaatg tggtagctca cgctcaactt 2100
taatgaacaa atggcctta tttttttttt agtgcacttata tagctgtat cagttttttc 2160
acctggaaagc atttggcttct actttgatata gactgtttt cggacagttt atttggtag 2220
agtgtgacca aaagttacat gtttgcacct ttctagttga aaataaagta tttttttct 2280
aaaaaaaaaa aaaaacgaca gcaacggaaat tc 2312

<210> 2
<211> 349
<212> PRT
<213> Homo sapiens

<220>
<223> human connective tissue growth factor (CTGF)

<400> 2
Met Thr Ala Ala Ser Met Gly Pro Val Arg Val Ala Phe Val Val Leu
1 5 10 15

Leu Ala Leu Cys Ser Arg Pro Ala Val Gly Gln Asn Cys Ser Gly Pro
20 25 30

Cys Arg Cys Pro Asp Glu Pro Ala Pro Arg Cys Pro Ala Gly Val Ser
35 40 45

Leu Val Leu Asp Gly Cys Gly Cys Arg Val Cys Ala Lys Gln Leu
50 55 60

Gly Glu Leu Cys Thr Glu Arg Asp Pro Cys Asp Pro His Lys Gly Leu
65 70 75 80

Phe Cys Asp Phe Gly Ser Pro Ala Asn Arg Lys Ile Gly Val Cys Thr
85 90 95

Ala Lys Asp Gly Ala Pro Cys Ile Phe Gly Thr Val Tyr Arg Ser
100 105 110

Gly Glu Ser Phe Gln Ser Ser Cys Lys Tyr Gln Cys Thr Cys Leu Asp
115 120 125

Gly Ala Val Gly Cys Met Pro Leu Cys Ser Met Asp Val Arg Leu Pro
130 135 140

Ser Pro Asp Cys Pro Phe Pro Arg Arg Val Lys Leu Pro Gly Lys Cys
145 150 155 160

Cys Glu Glu Trp Val Cys Asp Glu Pro Lys Asp Gln Thr Val Val Gly
 165 170 175
 Pro Ala Leu Ala Ala Tyr Arg Leu Glu Asp Thr Phe Gly Pro Asp Pro
 180 185 190
 Thr Met Ile Arg Ala Asn Cys Leu Val Gln Thr Thr Glu Trp Ser Ala
 195 200 205
 Cys Ser Lys Thr Cys Gly Met Gly Ile Ser Thr Arg Val Thr Asn Asp
 210 215 220
 Asn Ala Ser Cys Arg Leu Glu Lys Gln Ser Arg Leu Cys Met Val Arg
 225 230 235 240
 Pro Cys Glu Ala Asp Leu Glu Glu Asn Ile Lys Lys Gly Lys Lys Cys
 245 250 255
 Ile Arg Thr Pro Lys Ile Ser Lys Pro Ile Lys Phe Glu Leu Ser Gly
 260 265 270
 Cys Thr Ser Met Lys Thr Tyr Arg Ala Lys Phe Cys Gly Val Cys Thr
 275 280 285
 Asp Gly Arg Cys Cys Thr Pro His Arg Thr Thr Thr Leu Pro Val Glu
 290 295 300
 Phe Lys Cys Pro Asp Gly Glu Val Met Lys Lys Asn Met Met Phe Ile
 305 310 315 320
 Lys Thr Cys Ala Cys His Tyr Asn Cys Pro Gly Asp Asn Asp Ile Phe
 325 330 335
 Glu Ser Leu Tyr Tyr Arg Lys Met Tyr Gly Asp Met Ala
 340 345

<210> 3
 <211> 2330
 <212> DNA
 <213> Mus musculus

<220>
 <223> mouse connective tissue growth factor (CTGF)
 homolog cDNA

<220>
 <221> CDS
 <222> (204)..(1250)
 <223> CTGF homolog

<400> 3
 agactcagcc agatccactc cagctccgac cccaggagac cgacccctc cagacggcag 60
 cagccccagc ccagccgaca accccagacg ccacccgcctg gagcgccag acaccaacct 120
 ccgccttctgt ccgaatccag gctccagccg cgcctctcg cgcctctgca ccctgcttg 180
 catcctcccta ccgcgtcccg atcatgctcg cctccgtcgc aggtcccatc agcctcgct 240
 tggtgctctt cgcctctgc accccggcctg ctacgggcca ggactgcagc ggcataatgtc 300
 agtgcgcagc cgaaggcagcg ccgcactgccc cccggccgt gaggctggtg ctggacggct 360
 gccggctgctg ccgcgtctgc gccaaggcagc tgggagaact gtgtacggag cgtgaccct 420
 gcgaccacca caaggccctc ttctgcgatt tcggctcccc cgccaaaccgc aagattggag 480
 tggcactgc caaagatggt gcaccctgtg tcttcgggtgg gtcgggtgtac cgcagcgggtg 540

agtccttcca aagcagctgc aaataccaat gcacttgctt gnatggggcc gtgggctg 600
 tgcccctatg cagcatggac gtgcgcctgc ccagccctga ctgccccttc ccgagaagg 660
 tcaagctgcc tggaaaatgc tgcgaggagt ggggtgtga cgagcccaag gaccgcacag 720
 cagttggccc tgccctagct gcctaccgac tggaaagacac atttggccca gacccaacta 780
 tcatgcgagc caactgcctg gtccagacca cagagtggag cgcctgttct aagacctgt 840
 gaatgggcat ctccacccga gttaccaatg acaataccctt ctgcagactg gagaaggcaga 900
 gccgcctctg catggtcagg ccctgcgaag ctgacctgga gaaaaacatt aagaaggcga 960
 aaaagtgcac ccggacacccat aaaaatgcacca agcctgtcaa gttttagctt tctggctgca 1020
 ccagtgtgaa gacatacagg gctaaggttt gcgggggtgtg cacagacggc cgctgctgca 1080
 caccgcacag aaccaccaact ctgcccaggat agtccaaatg ccccgatggc gagatcatga 1140
 aaaaagaatat gatgttcatc aagacctgtg cctgcattt caactgtcctt ggggacaatg 1200
 acatcttga gtcctgtac tacaggaaga tgtacggaga catggctaa agccaggaag 1260
 taagggacac gaactcatta gactataact tgaactgagt tgcacatcat tttcttctgt 1320
 aaaaacaatt acagtagcac attaattaa atctgtgttt ttaactaccg tgggaggaac 1380
 tatccccacca aagtgagaac gttatgtcat ggcacatacaa gtatgtc aacctcagac 1440
 actggtttcg agacagttt cacttgacag ttgttcattt ggcacatgtt ccagaacgc 1500
 cactgaggtt agtctcctgg aacagtggag atgcccaggag aaagaaaagac aggtactagc 1560
 tgagggttatt taaaaggcag cagtgtgcctt acttttggg gtgtaaaccgg ggagggaaat 1620
 tatagcatgc ttgcagacag acctgctcta gcgagagctg agcatgtgtc ctccactaga 1680
 tgaggcttag tccagctgtt cttaagaac agcagtttca gctctgacca ttctgattcc 1740
 agtgacactt gtcaggagtc agacgcctgtt ctgttagact ggacagctt tggcaagtaa 1800
 gtttgcctgt aacaagccag atttttattt atattgtaaa tattgtggat atatataat 1860
 atatataat atttgtacag ttatctaagt taatttaaag tcattttttt ttgttttaag 1920
 tgcttttggg attttaact gatagcctca aactccaaac accataggtt ggacacgaaag 1980
 cttatctgtt attcaaaaaca aaggagatac tgcagtggg attgtgaccc gaggactct 2040
 ctgtcagaac aaacaaaatgc tgtgcagggtt ataaagctat gtattggaaag tcagatttct 2100
 agtaggaaat gtggtcaaattt ccctgttggt gaacaaatgg cctttattaa gaaatggctg 2160
 gtcagggtt aggtccgattt cctaccagga agtgccttgc gcttcttga ttatgactgg 2220
 tttgggggtgg gggcagttt atttggtagt agtgcacca aaagttacat gtttgcaccc 2280
 totagttgaa aataaagtat atatataattt ttatataaaa aaaaaaaaaaa 2330

<210> 4
 <211> 348
 <212> PRT
 <213> Mus musculus

<220>
 <223> mouse connective tissue growth factor (CTGF)
 homolog

<400> 4
 Met Leu Ala Ser Val Ala Gly Pro Ile Ser Leu Ala Leu Val Leu Leu
 1 5 10 15

Ala Leu Cys Thr Arg Pro Ala Thr Gly Gln Asp Cys Ser Ala Gln Cys
 20 25 30

Gln Cys Ala Ala Glu Ala Ala Pro His Cys Pro Ala Gly Val Ser Leu
 35 40 45

Val Leu Asp Gly Cys Gly Cys Cys Arg Val Cys Ala Lys Gln Leu Gly
 50 55 60

Glu Leu Cys Thr Glu Arg Asp Pro Cys Asp Pro His Lys Gly Leu Phe
 65 70 75 80

Cys Asp Phe Gly Ser Pro Ala Asn Arg Lys Ile Gly Val Cys Thr Ala
 85 90 95

Lys Asp Gly Ala Pro Cys Val Phe Gly Gly Ser Val Tyr Arg Ser Gly
100 105 110

Glu Ser Phe Gln Ser Ser Cys Lys Tyr Gln Cys Thr Cys Leu Asp Gly
115 120 125

Ala Val Gly Cys Val Pro Leu Cys Ser Met Asp Val Arg Leu Pro Ser
130 135 140

Pro Asp Cys Pro Phe Pro Arg Arg Val Lys Leu Pro Gly Lys Cys Cys
145 150 155 160

Glu Glu Trp Val Cys Asp Glu Pro Lys Asp Arg Thr Ala Val Gly Pro
165 170 175

Ala Leu Ala Ala Tyr Arg Leu Glu Asp Thr Phe Gly Pro Asp Pro Thr
180 185 190

Met Met Arg Ala Asn Cys Leu Val Gln Thr Thr Glu Trp Ser Ala Cys
195 200 205

Ser Lys Thr Cys Gly Met Gly Ile Ser Thr Arg Val Thr Asn Asp Asn
210 215 220

Thr Phe Cys Arg Leu Glu Lys Gln Ser Arg Leu Cys Met Val Arg Pro
225 230 235 240

Cys Glu Ala Asp Leu Glu Asn Ile Lys Lys Gly Lys Lys Cys Ile
245 250 255

Arg Thr Pro Lys Ile Ala Lys Pro Val Lys Phe Glu Leu Ser Gly Cys
260 265 270

Thr Ser Val Lys Thr Tyr Arg Ala Lys Phe Cys Gly Val Cys Thr Asp
275 280 285

Gly Arg Cys Cys Thr Pro His Arg Thr Thr Thr Leu Pro Val Glu Phe
290 295 300

Lys Cys Pro Asp Gly Glu Ile Met Lys Lys Asn Met Met Phe Ile Lys
305 310 315 320

Thr Cys Ala Cys His Tyr Asn Cys Pro Gly Asp Asn Asp Ile Phe Glu
325 330 335

Ser Leu Tyr Tyr Arg Lys Met Tyr Gly Asp Met Ala
340 345

<210> 5

<211> 2345

<212> DNA

<213> Rattus norvegicus

<220>

<223> rat connective tissue growth factor (CTGF) homolog
cDNA

<220>
<221> CDS
<222> (225)..(1268)
<223> CTGF homolog

<400> 5
cacagtcctt ctctccaaga agactcagcc agacccactc cagtcggac cctaggagac 60
cgaccccttc cagacggcag cagcccccagc ccagtggaca accccaggag ccaccacctg 120
gagcgtccgg acaccaacccct ccgccccggag accgagtccaa ggctccggcc ggcggccctcg 180
tcgcctctgc accccctgt ggcgtccctt gcccgcggcc gaccatgtcc gcctccgtcg 240
cgggtcccgtagcgtcc ttgggtgtcc tcctctgcac ccggccctgccc accggccagg 300
actgcagcgc gcagtgtagc tgccgcagctg aagcggcgcgc ggcgtccgtga 360
gcctgggtgtggacggcgtcc ggctgtgtcc gcgtctgcgc caagcagctg ggagaactgt 420
gcacggagcg tgatccctgc gacccacaca aggtcttctt ctgcgacttc ggctccccc 480
ccaaaccgcaa gattggcgtg tgcaactgcca aagatggtgc accctgtgtc ttcggtgggt 540
ccgtgtaccc cagcggcgcag tccttccaaa gcagttgcaa ataccagtgc acttgcctgg 600
atggggccgt gggctgtgtc cccctgtgca gcatggacgt gcgcctgccc agccctgact 660
gcctttccc gagaagggtc aagctgcccggaaatgtctg tgaggagtgg gtgtgtgtatg 720
agcccaagga cgcacacgtg gttggccctg ccctagctgc ctaccgactg gaagacacat 780
ttggccctga cccaaactatg atgcgagcca actgcctggc ccagaccaca gagtggagcgc 840
cctgttctaa gacctgtggg atgggcatct ccacccgggtt taccatgac aataccttct 900
gcaggctgga gaagcagagt cgtctctgca tggtcaggcc ctgtgaagct gacctagagg 960
aaaacattaa gaaggcAAA aagtgcattcc ggacgcctaa aattgcctaa cctgtcaagt 1020
ttgagtttc tggctgcacc agtgtgaaga cctaccgggc taagttctgt ggggtgtgca 1080
cggacggcgcg ctgctgcaca ccgcacagaa ccaccacact gccgggtggag ttcaagtggcc 1140
ccgatggcga gatcatgaaa aagaacatga tggtcattccaa gacctgtgcc tgccatttaca 1200
actgtcccg ggacaatgac atctttgagt ccttgcata caggaagatg tatggagaca 1260
tggcgtaaag ccagggagta agggacacga actcatttag actataactt gaactgagtt 1320
acatcttattt ttcttctgtt aaaaaacaaa aaggattaca gtagcacatt aattttaaatc 1380
tgggttccta actgctgtgg gaaaaaacac cccaccgaag tgagaaccgt gtgtcattgt 1440
catgcaaata gcctgtcaat ctcagacact gtttcgaga cagtttagac ttgacagttg 1500
ttcaactagcg cacagtgaca gaacgcacac taaggtgagc ctcctggaa agtggagatg 1560
ccaggagaaa gacaggtact agctgaggtc attttaaaag cagcgatatg cctactttt 1620
ggagtgtgac aggggaggga cattatacg tggtcggaa cagacctgct ctagcaagag 1680
ctgggtgtgt gtcctccact cggtgaggtc gaagccagct attcttcag taagaacagc 1740
agtttcagcg ctgacattct gattccagtg acactggtcg ggagtccagaa ccttgcctat 1800
tagactggac agcttgcgtt aagtgaattt gcccgttaaca agccagattt ttatggatct 1860
tgtaaatattt gtggataaat atatatattt gtacagttt ctaagttaaat ttaaagacgt 1920
ttgtgcctat tggcttgcgtt ttaagtgcctt ttggaaatttt taaactgtata gcctcaaact 1980
ccaaacacca tcgataggac ataaagctt tctgtgattc aaaacaaagg agataactgca 2040
gtggaaactg taacctgagtt gactgtctgt cagaacatatt ggtacgtaga cggtaaagca 2100
atggatcaga agtcagattt ctgttagaa atgtaaaatc actgttggcg aacaaatggc 2160
ctttatattt aatggcttg ctcaggtaa ctggtcagat ttccacgagg aagtgtttgc 2220
tgcttctttt actatgactg gtttggagg cagtttattt gttgagagtg tgacccaaaag 2280
ttacatgtttt gcacccttctt agttgaaaat aaagtataata tattttata aaaaaaaaaa 2340
aaaaaa 2345

<210> 6
<211> 347
<212> PRT
<213> Rattus norvegicus

<220>
<223> rat connective tissue growth factor (CTGF) homolog

<400> 6
Met Leu Ala Ser Val Ala Gly Pro Val Ser Leu Ala Leu Val Leu Leu
1 5 10 15

Leu Cys Thr Arg Pro Ala Thr Gly Gln Asp Cys Ser Ala Gln Cys Gln
20 25 30

Cys Ala Ala Glu Ala Ala Pro Arg Cys Pro Ala Gly Val Ser Leu Val
35 40 45

Leu Asp Gly Cys Gly Cys Cys Arg Val Cys Ala Lys Gln Leu Gly Glu
50 55 60

Leu Cys Thr Glu Arg Asp Pro Cys Asp Pro His Lys Gly Leu Phe Cys
65 70 75 80

Asp Phe Gly Ser Pro Ala Asn Arg Lys Ile Gly Val Cys Thr Ala Lys
85 90 95

Asp Gly Ala Pro Cys Val Phe Gly Gly Ser Val Tyr Arg Ser Gly Glu
100 105 110

Ser Phe Gln Ser Ser Cys Lys Tyr Gln Cys Thr Cys Leu Asp Gly Ala
115 120 125

Val Gly Cys Val Pro Leu Cys Ser Met Asp Val Arg Leu Pro Ser Pro
130 135 140

Asp Cys Pro Phe Pro Arg Arg Val Lys Leu Pro Gly Lys Cys Cys Glu
145 150 155 160

Glu Trp Val Cys Asp Glu Pro Lys Asp Arg Thr Val Val Gly Pro Ala
165 170 175

Leu Ala Ala Tyr Arg Leu Glu Asp Thr Phe Gly Pro Asp Pro Thr Met
180 185 190

Met Arg Ala Asn Cys Leu Val Gln Thr Thr Glu Trp Ser Ala Cys Ser
195 200 205

Lys Thr Cys Gly Met Gly Ile Ser Thr Arg Val Thr Asn Asp Asn Thr
210 215 220

Phe Cys Arg Leu Glu Lys Gln Ser Arg Leu Cys Met Val Arg Pro Cys
225 230 235 240

Glu Ala Asp Leu Glu Glu Asn Ile Lys Lys Gly Lys Lys Cys Ile Arg
245 250 255

Thr Pro Lys Ile Ala Lys Pro Val Lys Phe Glu Leu Ser Gly Cys Thr
260 265 270

Ser Val Lys Thr Tyr Arg Ala Lys Phe Cys Gly Val Cys Thr Asp Gly
275 280 285

Arg Cys Cys Thr Pro His Arg Thr Thr Leu Pro Val Glu Phe Lys
290 295 300

Cys Pro Asp Gly Glu Ile Met Lys Lys Asn Met Met Phe Ile Lys Thr
305 310 315 320

Cys Ala Cys His Tyr Asn Cys Pro Gly Asp Asn Asp Ile Phe Glu Ser
325 330 335

Leu Tyr Tyr Arg Lys Met Tyr Gly Asp Met Ala
340 345

<210> 7
<211> 3085
<212> DNA
<213> Homo sapiens

<220>
<223> human transforming growth factor-beta (TGFB)
inducible early growth response (TIEG) cDNA

<220>
<221> CDS
<222> (320)..(1729)
<223> TIEG

<400> 7
ctcacgctct cttccctgc cgcctgcctt tctttttcc tttttttgtt ttggcgtctt 60
ggggctgtta cacacacgcg cgctgtccat tgcagttac ataaaggcgg ggcgcattat 120
gcaattataat tgtagcgat atttcaagag caatggctcg ttttctttagg atttcaacac 180
gaaggcatca tgcatttttgc aaaaactagt attgagaata ataccttgca acgtaaagaa 240
tggggggggg tatttttaca caatctctac tttgaccaaa cgagtcgtt cagttttctt 300
ttaatggaaa ataggagaaa tggagggaaag aatggaaatg atttctgaaa ggccaaaaga 360
gagtatgtat tcctggaaaca aaactgcaga gaaaagtgtat tttgaagctg tagaaggcact 420
tatgtcaatg agctgcagtt ggaagtctga ttttaagaaaa tacgttggaa acagacctgt 480
tacaccagta tctgattttgtt cagaggaaga gaatctgtt ccgggaacac ctgattttca 540
tacaatccca gcattttgtt tgactccacc ttacagtctt tctgacttttgc aaccctctca 600
agtgtcaaat ctgatggcac cagcgccatc tactgtacac ttcaagtcac tctcagatac 660
tgccaaaccc cacattgccc caccttcaa agaggaagaa aagagcccgatctgcccc 720
caaactcccc aaagctcagg caacaagtgt gattcgtcat acagctgtat cccagctatg 780
taaccaccag acctgccccaa taaaaggcagc cagcatcctc aactatcaga acaattctt 840
tagaagaaga acccacctaa atgttgaggc tgcagaaag aacataccat gtgcgcgtgt 900
gtcacccaaac agatccaaat gtgagagaaa cacagtggca gatgttgcgtt agaaagcaag 960
tgctgcactt tatgactttt ctgtgccttc ctcagagacg gtcatctgca ggtctcagcc 1020
agcccccgtt tccccacaac agaagtcaat gttggctctt ccacctgcag tatctgcagg 1080
gggagtgcac cctatgccc tcatctgcca gatggttccc ttccctgcca acaaccctgt 1140
tgtgacaaca gtcgttcccc gcactcctcc cagccagccca ccagccgtt gccccctgt 1200
tgtgttcatg ggcacacaag tccccaaagg cgctgtcatg tttgtggatc cccagccgt 1260
tgtgcagatg tcaaaacccctc cgggtgttag cccgaatggc accagactct ctcccattgc 1320
ccctgctccctt gggttttccc cttcagcagc aaaagtcaat cctcagatttgcattcatcaag 1380
gataaggagt cacatctgtt gcccacccagg atgtggcaag acatacttta aaagttccca 1440
tctgaaggcc cacacgagga cgcacacagg agaaaaggctt ttcagctgtt gctggaaagg 1500
ttgtgaaagg aggtttggcc gttctgtatgactgtccaga cacaggcga cccacacggg 1560
tgagaagaaa ttgcgttcc ccatgtgttcc cggcggttc atgaggagtgc accatgttgc 1620
caagcatgcc cggcgccatc tatcagccaa gaagctacca aactggcaga tggaaagttag 1680
caagctaaat gacattgttc tacctccaaac ccctgctccc acacagtgc agaccggaaa 1740
gtgaagagtc agaactaact ttggctctcc cgggagccag tgggtatgtt aaaaatgttc 1800
caactgcaagt ctgtggcccc acaacgtggg cttaaaggcag aagccccaca gcctggcact 1860
aaggccccgtt ctgggttagg tgactaaaag ggcttcggcc acaggcaggat cacagaaagg 1920
cagggttcat ttcttattcac ataagagaga tgagaaagctt tttatttctt tgaatatttt 1980
ttgtgaaagg cagatgaggat caacacaggt agcacagatt ttgaatctgtt gtgcattttt 2040
gttacttttac ttgtgttcc tatacttgatg accaactttt caatgttgcattt cttctaaagc 2100
actgggttca agaataatggg ggctggaaagg aaataaacat tacggtacag acatggagat 2160
gtaaaatggat ttgttatttatacaatattt gtcattttt tcttaggtt tcttctttat 2220
tatttcctgtt cttccagtc aacatcgtgg atgtgtatgat taaatataatc tagaactatc 2280
atttttacac tattgtgaat atttggaaattt gaaacgtgtt atattgttgcataa gaggccccaa 2340

agaattggaa tcctccttaa tttaattgct ttgaagcata gctacaattt gttttgcat 2400
 tttgttttggaa aggtttaac aaatgactgt atctaggcat ttcattatgc tttgaacttt 2460
 agtttgcctg cagtttcttg ttagatttggaa aaaattgtat accaatgtgt tttctgtaga 2520
 ctctaagata cactgcactt tgtagaaaaaaaactgaa gatgaaatat atattgtaaa 2580
 gaaggatataaagaatctt agataacttc ttgaaaaaaga tggcttatgt catcagtaaa 2640
 gtacctttat gttatgagga tataatgtgt gctttattga attagaaaaat tagtgaccat 2700
 tattcacagg tggacaaatg ttgtcctgtt aattatagg agtttttgg ggatgtggag 2760
 gtagttgggt agaaaaaatta tttagaacatt cactttgtt aacagtattt ctctttatt 2820
 ctgttatata gtggatgata tacacagtgaa caaaacaaaaa gtacattgtt taataatata 2880
 agtggaaaat gtcactatataat cttcccatat aacattgtt ttgtatattt ggttagatt 2940
 totgacatca aaacttggac ccttggaaaaaaaagttt aattaaaaaa aatccttgc 3000
 acttacaatt tgccacaatataat ttctttgtt gtactttata tcttgttac aataaagaat 3060
 tccctttggtaaaaaaaa 3085

<210> 8
 <211> 469
 <212> PRT
 <213> Homo sapiens

<220>
 <223> human transforming growth factor-beta (TGFB)
 inducible early growth response (TIEG)

<400> 8
 Met Glu Glu Arg Met Glu Met Ile Ser Glu Arg Pro Lys Glu Ser Met
 1 5 10 15

Tyr Ser Trp Asn Lys Thr Ala Glu Lys Ser Asp Phe Glu Ala Val Glu
 20 25 30

Ala Leu Met Ser Met Ser Cys Ser Trp Lys Ser Asp Phe Lys Lys Tyr
 35 40 45

Val Glu Asn Arg Pro Val Thr Pro Val Ser Asp Leu Ser Glu Glu Glu
 50 55 60

Asn Leu Leu Pro Gly Thr Pro Asp Phe His Thr Ile Pro Ala Phe Cys
 65 70 75 80

Leu Thr Pro Pro Tyr Ser Pro Ser Asp Phe Glu Pro Ser Gln Val Ser
 85 90 95

Asn Leu Met Ala Pro Ala Pro Ser Thr Val His Phe Lys Ser Leu Ser
 100 105 110

Asp Thr Ala Lys Pro His Ile Ala Ala Pro Phe Lys Glu Glu Lys
 115 120 125

Ser Pro Val Ser Ala Pro Lys Leu Pro Lys Ala Gln Ala Thr Ser Val
 130 135 140

Ile Arg His Thr Ala Asp Ala Gln Leu Cys Asn His Gln Thr Cys Pro
 145 150 155 160

Met Lys Ala Ala Ser Ile Leu Asn Tyr Gln Asn Asn Ser Phe Arg Arg
 165 170 175

Arg Thr His Leu Asn Val Glu Ala Ala Arg Lys Asn Ile Pro Cys Ala
 180 185 190

Ala Val Ser Pro Asn Arg Ser Lys Cys Glu Arg Asn Thr Val Ala Asp
195 200 205

Val Asp Glu Lys Ala Ser Ala Ala Leu Tyr Asp Phe Ser Val Pro Ser
210 215 220

Ser Glu Thr Val Ile Cys Arg Ser Gln Pro Ala Pro Val Ser Pro Gln
225 230 235 240

Gln Lys Ser Val Leu Val Ser Pro Pro Ala Val Ser Ala Gly Gly Val
245 250 255

Pro Pro Met Pro Val Ile Cys Gln Met Val Pro Leu Pro Ala Asn Asn
260 265 270

Pro Val Val Thr Thr Val Val Pro Ser Thr Pro Pro Ser Gln Pro Pro
275 280 285

Ala Val Cys Pro Pro Val Val Phe Met Gly Thr Gln Val Pro Lys Gly
290 295 300

Ala Val Met Phe Val Val Pro Gln Pro Val Val Gln Ser Ser Lys Pro
305 310 315 320

Pro Val Val Ser Pro Asn Gly Thr Arg Leu Ser Pro Ile Ala Pro Ala
325 330 335

Pro Gly Phe Ser Pro Ser Ala Ala Lys Val Thr Pro Gln Ile Asp Ser
340 345 350

Ser Arg Ile Arg Ser His Ile Cys Ser His Pro Gly Cys Gly Lys Thr
355 360 365

Tyr Phe Lys Ser Ser His Leu Lys Ala His Thr Arg Thr His Thr Gly
370 375 380

Glu Lys Pro Phe Ser Cys Ser Trp Lys Gly Cys Glu Arg Arg Phe Ala
385 390 395 400

Arg Ser Asp Glu Leu Ser Arg His Arg Arg Thr His Thr Gly Glu Lys
405 410 415

Lys Phe Ala Cys Pro Met Cys Asp Arg Arg Phe Met Arg Ser Asp His
420 425 430

Leu Thr Lys His Ala Arg Arg His Leu Ser Ala Lys Lys Leu Pro Asn
435 440 445

Trp Gln Met Glu Val Ser Lys Leu Asn Asp Ile Ala Leu Pro Pro Thr
450 455 460

Pro Ala Pro Thr Gln
465

<210> 9
<211> 3045
<212> DNA
<213> Mus musculus

agaagagttt tcttaaaaat tataaaaaat cacgagttac aatttgcaca atatttttg 3000
ttgaacttta taccttgtt acaataaaga cttttctttg gtata 3045

<210> 10
<211> 479
<212> PRT
<213> Mus musculus

<220>
<223> mouse transforming growth factor-beta (TGFB)
inducible early growth response (TIEG) homolog

<400> 10
Met Leu Asn Phe Gly Ala Ser Leu Gln Gln Ala Ser Glu Gly Lys Met
1 5 10 15

Glu Leu Ile Ser Glu Lys Pro Arg Glu Gly Met His Pro Trp Asp Lys
20 25 30

Ala Glu Gln Ser Asp Phe Glu Ala Val Glu Ala Leu Met Ser Met Ser
35 40 45

Cys Asp Trp Lys Ser His Phe Lys Lys Tyr Leu Glu Asn Arg Pro Val
50 55 60

Thr Pro Val Ser Asp Thr Ser Glu Asp Asp Ser Leu Leu Pro Gly Thr
65 70 75 80

Pro Asp Leu Gln Thr Val Pro Ala Phe Cys Leu Thr Pro Pro Tyr Ser
85 90 95

Pro Ser Asp Phe Glu Pro Ser Gln Gly Ser Asn Leu Thr Ala Ser Ala
100 105 110

Pro Ser Thr Gly His Phe Lys Ser Phe Ser Asp Ala Ala Lys Pro Pro
115 120 125

Gly Ala Thr Pro Phe Lys Glu Glu Lys Asn Pro Leu Ala Ala Pro
130 135 140

Pro Leu Pro Lys Ala Gln Ala Thr Ser Val Ile Arg His Thr Ala Asp
145 150 155 160

Ala Gln Leu Cys Asn His Gln Ser Cys Pro Val Lys Ala Ala Ser Ile
165 170 175

Leu Asn Tyr Gln Asp Asn Ser Phe Arg Arg Arg Thr His Gly Asn Val
180 185 190

Glu Ala Thr Arg Lys Asn Ile Pro Cys Ala Ala Val Ser Pro Asn Arg
195 200 205

Ser Lys Pro Glu Pro Ser Thr Val Ser Asp Gly Asp Glu Lys Ala Gly
210 215 220

Ala Ala Leu Tyr Asp Phe Ala Val Pro Ser Ser Glu Thr Val Ile Cys
225 230 235 240

Arg Ser Gln Pro Ala Pro Ser Ser Pro Val Gln Lys Ser Val Leu Val
245 250 255

Ser Ser Pro Thr Val Ser Thr Gly Gly Val Pro Pro Leu Pro Val Ile
 260 265 270
 Cys Gln Met Val Pro Leu Pro Ala Asn Asn Ser Leu Val Ser Thr Val
 275 280 285
 Val Pro Ser Thr Pro Pro Ser Gln Pro Pro Ala Val Cys Ser Pro Val
 290 295 300
 Leu Phe Met Gly Thr Gln Val Pro Glu Gly Thr Val Val Phe Val Val
 305 310 315 320
 Pro Gln Pro Val Val Gln Ser Pro Arg Pro Pro Val Val Ser Pro Ser
 325 330 335
 Gly Thr Arg Leu Ser Pro Ile Ala Pro Ala Pro Gly Phe Ser Pro Ser
 340 345 350
 Ala Ala Arg Val Thr Pro Gln Ile Asp Ser Ser Arg Val Arg Ser His
 355 360 365
 Ile Cys Ser His Pro Gly Cys Gly Lys Thr Tyr Phe Lys Ser Ser His
 370 375 380
 Leu Lys Ala His Val Arg Thr His Thr Gly Glu Lys Pro Phe Ser Cys
 385 390 395 400
 Ser Trp Lys Gly Cys Glu Arg Arg Phe Ala Arg Ser Asp Glu Leu Ser
 405 410 415
 Arg His Arg Arg Thr His Thr Gly Glu Lys Lys Phe Ala Cys Pro Met
 420 425 430
 Cys Asp Arg Arg Phe Met Arg Ser Asp His Leu Thr Lys His Ala Arg
 435 440 445
 Arg His Leu Ser Ala Lys Lys Leu Pro Asn Trp Gln Met Glu Val Ser
 450 455 460
 Lys Leu Asn Asp Ile Ala Leu Pro Pro Thr Pro Ala Ser Ala Gln
 465 470 475

<210> 11
 <211> 3115
 <212> DNA
 <213> Rattus norvegicus

<220>
 <223> rat transforming growth factor-beta (TGFB)
 inducible early growth response (TIEG) homolog
 cDNA

<220>
 <221> CDS
 <222> (316) .. (1758)
 <223> TIEG homolog

<400> 11
 ggagggaaaca cgggcctcg gggtgttac acgctccact gacagagctt cttgcagccg 60
 ggcagccgt gatcacgcgt ggccccgcca gcccattggc tgaggcctca cacacctttg 120

<210> 12
<211> 480
<212> PRT
<213> *Rattus norvegicus*

<220>
<223> rat transforming growth factor-beta (TGFB)
inducible early growth response (TIEG) homolog

<400> 12
Met Leu Asn Phe Gly Ala Ser Leu Gln Gln Ala Ser Glu Gly Lys Met
1 5 10 15

Glu Leu Ile Ser Glu Lys Ser Lys Glu Gly Ala His Pro Trp Asp Lys
20 25 30

Ala Glu Gln Ser Asp Phe Glu Ala Val Glu Ala Leu Met Ser Met Ser
35 40 45

Cys Asp Trp Lys Ser His Phe Lys Lys Tyr Leu Glu Asn Arg Pro Val
50 55 60

Thr Pro Val Ser Asp Thr Ser Glu Glu Asp Ser Leu Leu Pro Gly Thr
65 70 75 80

Pro Asp Leu Gln Thr Val Pro Ala Phe Cys Leu Thr Pro Pro Tyr Ser
85 90 95

Pro Ser Asp Phe Glu Pro Ser Gln Gly Ser Asn Leu Thr Ala Pro Ala
100 105 110

Pro Pro Thr Gly His Phe Arg Ser Leu Ser Asp Ala Ala Lys Pro Pro
115 120 125

Ser Ile Ala Pro Phe Lys Glu Glu Lys Ser Pro Leu Ala Ala Pro
130 135 140

Pro Leu Pro Lys Ala Gln Ala Thr Ser Val Ile Arg His Thr Ala Asp
145 150 155 160

Ala Gln Leu Cys Asn His Gln Ser Cys Pro Val Lys Ala Ala Ser Ile
165 170 175

Leu Asn Tyr Gln Asp Asn Ser Phe Arg Arg Arg Thr His Ile Asn Val
180 185 190

Glu Ala Thr Arg Lys Asn Ile Pro Cys Ala Ala Val Ser Pro Asn Arg
195 200 205

Pro Lys Pro Glu Pro Ser Thr Ala Ala Asn Gly Ala Glu Lys Ala Gly
210 215 220

Thr Ala Pro Tyr Asp Phe Ala Val Pro Ser Ser Glu Thr Val Ile Cys
225 230 235 240

Arg Ser Ser Gln Pro Ala Pro Thr Ser Pro Val Gln Lys Ser Val Leu
245 250 255

Met Ser Ser Pro Thr Val Ser Thr Gly Gly Val Pro Pro Leu Pro Val
260 265 270

Ile Cys Gln Met Val Pro Leu Pro Ala Asn Asn Ser Leu Val Thr Thr
275 280 285

Val Val Pro Ser Ser Pro Pro Ser Gln Pro Pro Ala Val Cys Ser Pro
290 295 300

Val Leu Phe Met Gly Thr Gln Val Pro Lys Gly Thr Val Met Phe Val
305 310 315 320

Val	Pro	Gln	Pro	Val	Val	Gln	Ser	Pro	Lys	Pro	Pro	Val	Val	Ser	Pro
325									330					335	
Asn	Gly	Thr	Arg	Leu	Ser	Pro	Ile	Ala	Pro	Ala	Pro	Gly	Phe	Ser	Pro
340									345					350	
Ser	Ala	Ala	Arg	Val	Thr	Pro	Gln	Ile	Asp	Ser	Ser	Arg	Val	Arg	Ser
355									360					365	
His	Ile	Cys	Ser	His	Pro	Gly	Cys	Gly	Lys	Thr	Tyr	Phe	Lys	Ser	Ser
370									375					380	
His	Leu	Lys	Ala	His	Val	Arg	Thr	His	Thr	Gly	Glu	Lys	Pro	Phe	Ser
385									390					395	
Cys	Ser	Trp	Lys	Gly	Cys	Glu	Arg	Arg	Phe	Ala	Arg	Ser	Asp	Glu	Leu
405									410					415	
Ser	Arg	His	Arg	Arg	Thr	His	Thr	Gly	Glu	Lys	Lys	Phe	Ala	Cys	Pro
420									425					430	
Met	Cys	Asp	Arg	Arg	Phe	Met	Arg	Ser	Asp	His	Leu	Thr	Lys	His	Ala
435									440					445	
Arg	Arg	His	Leu	Ser	Ala	Lys	Lys	Leu	Pro	Asn	Trp	Gln	Met	Glu	Val
450									455					460	
Ser	Lys	Leu	Asn	Asp	Ile	Ala	Leu	Pro	Pro	Ala	Thr	Ala	Ser	Ala	Gln
465									470					475	
															480

<210> 13
 <211> 2872
 <212> DNA
 <213> Homo sapiens

<220>
 <223> human transforming growth factor-beta (TGFB)
 inducible early growth response (TIEG) splice
 variant cDNA

<220>
 <221> CDS
 <222> (87)..(1529)
 <223> TIEG splice variant

<400> 13
 gaattcggca cgagcgcccc tctgtggcca agcagccagc agcctagcag ccagtcagct 60
 tgccgcggc ggccaaagcag ccaaccatgc tcaacttcgg tgcctctctc cagcagactg 120
 cggaggaaag aatggaaatg atttctgaaa ggccaaaaga gagttatgtat tcctggaaaca 180
 aaactgcaga gaaaagtgtat tttgaagctg tagaagact tatgtcaatg agctgcagg 240
 ggaagtctga ttttaagaaa tacgttggaaa acagacctgt tacaccagta tctgattttgt 300
 cagaggaaga gaatctgctt ccggaaacac ctgattttca tacaatccca gcattttgtt 360
 tgactccacc ttacagtccct tctgactttg aaccctctca agtgtcaaat ctgatggcac 420
 cagcgccatc tactgtacac ttcaagtccac tctcagatac tgccaaacct cacattgccc 480
 cacctttcaa agaggaagaa aagagccccag tatctgcccc caaactcccc aaagctcagg 540
 caacaagtgt gattcgtcat acagctgatg cccagctatg taaccaccag acctgccccaa 600
 taaaaggcagc cagcatcctc aactatcaga acaattcttt tagaagaaga acccacctaa 660
 atgttgaggc tgcaagaaag aacataccat gtggcgctgt gtcacccaaac agatccaaat 720
 gtgagagaaa cacagtggca gatgttgatg agaaagcaag tgctgcactt tatgacttt 780
 ctgtgccttc ctcagagacg gtcatctgca ggtctcagcc agccctgtg tccccacaac 840

agaagtca... gttggctctt ccacctgc... tatctgcagg gggagtgcc... cctatgc... 900
tcatctgcca gatggttccc cttcc... acaaccctgt t... g... gtcgttccc... 960
gcactcctcc cagccagcca ccagg... gcccccc... t... g... ggcacaca... 1020
tccccaaagg cgctgtcat... tttgtggta... cccagcc... t... g... tcaa... 1080
cggtggtag cccgaatggc accagact... cttcc... attcatca... gataagg... cacatctg... 1140
cttcagcagc aaaagtcact cctcagatt... aaagttcc... tctgaagg... cacacgag... 1200
gccaccagg atgtggcaag acatactt... aaagttcc... tctgaagg... cacacgag... 1260
cgcacacagg agaaaagcct ttcagctg... gctggaaagg ttgtgaaagg aggttgc... 1320
gttctgatga actgtccaga cacagg... cccacac... tgagaagaaa tttgcgtg... 1380
ccatgtgtga cccgcgg... atgaggag... accatttg... caagcatg... cggcgc... 1440
tatcagccaa gaagctacca aactggc... t... g... gacattg... 1500
tacctccaac cctgtctccc acacagt... agaccgg... gtgaagag... agaacta... 1560
ttggtctcag cgggagccag tgg... aaaaatg... cactg... ctgtg... 1620
acaacgtggg cttaaagcag aagccc... gcctgg... aaggccc... ctgggtt... 1680
tgactaaaag ggcttcggcc acaggcag... cacagaaagg cagg... ttcttatc... 1740
ataagagaga tgagaaagct ttattc... t... g... t... cagatg... 1800
caacacaggt agcacagatt ttgaatctg... gtgcata... gttactt... ttttgc... 1860
tatacttgag accaactttt caatgtgatt... cttctaa... actgg... agaatatg... 1920
agctggaaagg aaataaaacat tacgtacag acatgg... gtaaaatg... tttgtatt... 1980
tacaaatatt gtcatcttt tctagagtt... t... t... cttcc... 2040
aacatcg... atgttagt... taaatata... tagaactatc... attttac... tattgt... 2100
at... gaa... gaa... atattg... ggggccc... agaattgg... tcctc... 2160
ttaattg... ttgaagc... gctacaattt... gttttg... tttgtt... aaagtt... 2220
aaatgactgt atctagg... ttcattatg... ttgaactt... agtttgc... cagttc... 2280
ttagattt... aaaattgt... accaatgt... tttctgt... ctctaa... cactg... 2340
tgttagaaa aaaaactg... gatgaaat... atattgt... gatgaaat... taagaat... 2400
agataactt... ttgaaa... tggctt... catcagta... gtac... 2460
tataatgt... gctt... attagaa... tagt... tattc... tggaca... 2520
ttcgtcctg... taatttata... gagttt... gggatgt... ggtag... tagaaa... 2580
attagaacat tca... t... t... tctctt... tctgtt... agtgg... 2640
atcacac... gcaaa... agtacatt... t... t... taaa... tagt... 2700
tctcc... taacatt... tttgtat... ggggtg... ttctg... aaaactt... 2760
cccttgg... acaaa... agt... taatt... aaatc... gactt... ttgcaca... 2820
tttctt... t... t... t... t... caataa... ttc... ca... 2872

<210> 14
<211> 480
<212> PRT
<213> *Homo sapiens*

<220>
<223> human transforming growth factor-beta (TGF β)
inducible early growth response (TIEG) splice
variant

<400> 14
Met Leu Asn Phe Gly Ala Ser Leu Gln Gln Thr Ala Glu Glu Arg Met
1 5 10 15

Glu Met Ile Ser Glu Arg Pro Lys Glu Ser Met Tyr Ser Trp Asn Lys
20 25 30

Thr Ala Glu Lys Ser Asp Phe Glu Ala Val Glu Ala Leu Met Ser Met
35 40 45

Ser Cys Ser Trp Lys Ser Asp Phe Lys Lys Tyr Val Glu Asn Arg Pro
50 55 60

Thr Pro Asp Phe His Thr Ile Pro Ala Phe Cys Leu Thr Pro Pro Tyr
85 90 95

Ser Pro Ser Asp Phe Glu Pro Ser Gln Val Ser Asn Leu Met Ala Pro
100 105 110

Ala Pro Ser Thr Val His Phe Lys Ser Leu Ser Asp Thr Ala Lys Pro
115 120 125

His Ile Ala Ala Pro Phe Lys Glu Glu Lys Ser Pro Val Ser Ala
130 135 140

Pro Lys Leu Pro Lys Ala Gln Ala Thr Ser Val Ile Arg His Thr Ala
145 150 155 160

Asp Ala Gln Leu Cys Asn His Gln Thr Cys Pro Met Lys Ala Ala Ser
165 170 175

Ile Leu Asn Tyr Gln Asn Asn Ser Phe Arg Arg Arg Thr His Leu Asn
180 185 190

Val Glu Ala Ala Arg Lys Asn Ile Pro Cys Ala Ala Val Ser Pro Asn
195 200 205

Arg Ser Lys Cys Glu Arg Asn Thr Val Ala Asp Val Asp Glu Lys Ala
210 215 220

Ser Ala Ala Leu Tyr Asp Phe Ser Val Pro Ser Ser Glu Thr Val Ile
225 230 235 240

Cys Arg Ser Gln Pro Ala Pro Val Ser Pro Gln Gln Lys Ser Val Leu
245 250 255

Val Ser Pro Pro Ala Val Ser Ala Gly Gly Val Pro Pro Met Pro Val
260 265 270

Ile Cys Gln Met Val Pro Leu Pro Ala Asn Asn Pro Val Val Thr Thr
275 280 285

Val Val Pro Ser Thr Pro Pro Ser Gln Pro Pro Ala Val Cys Pro Pro
290 295 300

Val Val Phe Met Gly Thr Gln Val Pro Lys Gly Ala Val Met Phe Val
305 310 315 320

Val Pro Gln Pro Val Val Gln Ser Ser Lys Pro Pro Val Val Ser Pro
325 330 335

Asn Gly Thr Arg Leu Ser Pro Ile Ala Pro Ala Pro Gly Phe Ser Pro
340 345 350

Ser Ala Ala Lys Val Thr Pro Gln Ile Asp Ser Ser Arg Ile Arg Ser
355 360 365

His Ile Cys Ser His Pro Gly Cys Gly Lys Thr Tyr Phe Lys Ser Ser
370 375 380

His Leu Lys Ala His Thr Arg Thr His Thr Gly Glu Lys Pro Phe Ser
385 390 395 400

Cys Ser Trp Lys Gly Cys Glu Arg Arg Phe Ala Arg Ser Asp Glu Leu
405 410 415

Ser Arg His Arg Arg Thr His Thr Gly Glu Lys Lys Phe Ala Cys Pro
420 425 430

Met Cys Asp Arg Arg Phe Met Arg Ser Asp His Leu Thr Lys His Ala
435 440 445

Arg Arg His Leu Ser Ala Lys Lys Leu Pro Asn Trp Gln Met Glu Val
450 455 460

Ser Lys Leu Asn Asp Ile Ala Leu Pro Pro Thr Pro Ala Pro Thr Gln
465 470 475 480

<210> 15

<211> 6

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:hexahistidine
(His) affinity tag

<400> 15

His His His His His
1 5

<210> 16

<211> 200

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:poly-Gly
flexible linker

<220>

<221> MOD_RES

<222> (6)..(200)

<223> Gly residues from position 6 to 200 may be present
or absent

<400> 16

Gly
1 5 10 15

Gly
20 25 30

Gly
35 40 45

Gly
50 55 60

Gly
65 70 75 80

Gly
85 90 95

Gly
100 105 110

Gly
115 120 125

Gly
130 135 140

Gly
145 150 155 160

Gly
165 170 175

Gly
180 185 190

Gly Gly Gly Gly Gly Gly Gly
195 200