Teorema di Cantor

Uno dei teoremi fondamentali dell'informatica è il teorema di Cantor (1861). Questo teorema afferma che la cardinalità dell'insieme dei numeri naturali è inferiore alla cardinalità dell'insieme delle funzioni che vanno dai numeri naturali ai numeri naturali.

Teorema:

$$|N| < |N \rightarrow N|$$

Dimostrazione: Supponiamo che $|N| = |N \to N|$. Poichè il numero di funzioni è uguale a quello dei numeri, posso assegnare ad ognuna un indice e ordinarle in base a quello.

Costruisco ora una funzione $q(x) = f_x(x) + 1$, ovvero ottenuta prendendo la funzione di indice x e aggiungendoci 1.

Di conseguenza esisterà un numero \bar{n} tale che $g = f_{\bar{n}}$.

Quindi $f_{\bar{n}}(\bar{n}) = g(\bar{n}) = f_{\bar{n}}(\bar{n})$. Questo non è possibile perchè un numero non può essere uguale al suo seguito e quindi si genera un assurdo, che parte dalla supposizione iniziale.

Attenzione: la dimostrazione di Cantor vale anche nel caso in cui si abbia $|N \to 0, 1| \to g(x) = f_x(x)$, quindi se ho vero diventa falso o viceversa.

Cantor nell'informatica In informatica il teorema di Cantor può essere utilizzato per suddividere i problemi risolvibili tramite algoritmi da quelli non risolvibili. Infatti permette di dimostrare che che esistono problemi, ovvero funzioni input/output, non programmabili. Le ipotesi molto deboli del precedente ragionamento lo rendono applicabile a tutti i linguaggi di programmazione noti.

Alfabeti e linguaggi

Un alfabeto Σ è un insieme finito di simboli (entità astratte non definite). Con Σ^* si indica l'insieme costituito da tutte le stringhe su un fissato alfabeto Σ . La sua cardinalità è pari a quella dei numeri naturali ($|\Sigma^*| = |N|$).

Una **stringa** (o parola) σ è una sequenza finita di simboli uno dietro l'altro. Con le stringhe è possibile eseguire le seguenti operazioni:

- Concatenazione: $\sigma_1 \cdot \sigma_2$.

Se σ_1 , $\sigma_2 \in \Sigma^*$, allora $\sigma_1 \cdot \sigma_2 \in \Sigma^*$.

- Lunghezza: $|\cdot|:\Sigma\to N$

Esempio: $|\sigma_1 \cdot \sigma_2| = |\sigma_1| + |\sigma_2|$. Il simbolo ε rappresenta la stringa vuota. La lunghezza

della stringa vuota ($|\varepsilon|$) è 0.

Un linguaggio (formale) è un insieme di stringhe appartenenti all'insieme delle stringhe corrette Σ^* dell'alfabeto Σ :

$$\mathfrak{L}\subseteq \Sigma^*$$

Per ogni linguaggio valgono:

1. $\mathfrak{L}_1, \mathfrak{L}_2 \in \Sigma^*$ allora $\mathfrak{L}_1 \cdot \mathfrak{L}_2 = \{ \sigma | \sigma_1 \cdot \sigma_2 \text{ and } \sigma_1 \in \mathfrak{L}_1, \sigma_2 \in \mathfrak{L}_2 \}$

2. $\mathfrak{L}_1 \cup \mathfrak{L}_2 = \{ \sigma | \sigma_1 \in \mathfrak{L}_1 \text{ or } \sigma_2 \in \mathfrak{L}_2 \}$

3. $\mathfrak{L}^* = \bigcup_{n \in \mathbb{N}} \mathfrak{L}^n$

L'insieme vuoto \emptyset e l'insieme $\{\varepsilon\}$ sono due linguaggi formali di qualunque alfabeto. Il complemento di un linguaggio £ è:

$$\bar{\mathfrak{L}} = \{ \sigma | \sigma \in \Sigma^* \text{ and } \sigma \notin \mathfrak{L} \}$$

Definizione matematica di Σ^* : $\begin{cases} \mathfrak{L}^0 = \{\varepsilon\} \\ \mathfrak{L}^{n+1} = \mathfrak{L} \cdot \mathfrak{L}^n \end{cases}$

Esempio: se $\Sigma = \{a, b\}$ allora $\Sigma^* = \{\varepsilon, a, b, aa, ab, ba, bb, ...\}.$

Problema decisionale

Un problema decisionale può rappresentato tramite il seguente schema:

La cardinalità dell'insieme degli input è inferiore alla cardinalità dell'insieme dei numeri naturali. Quindi gli input sono un insieme finito 1 . Il linguaggio \mathfrak{L} , in questo caso, si definisce come segue:

$$\mathfrak{L} = \{ \sigma | f_{\mathfrak{L}}(\sigma) = 1 \}$$

con $f_{\mathfrak{L}}\in \Sigma^* \to \{0,1\}$. Con la nuova definizione del linguaggio, è possibile riscrivere il problema come segue:

¹I numeri naturali sono, in ordine, il primo infinito che si incontra, nonchè il più piccolo. Di conseguenza, tutto ciò che ha cardinalità inferiore è per forza finito.