Churn Prediction

Machine Learning Technical Presentation
Nathan Jones

Contents

- 1. Contextualización Técnica
- 2. Limpieza y Transformación de Datos
- 3. Enfoque en la Metodología
- 4. Resultados y Métricas de Evaluación
- 5. Discusión Sobre Limitaciones y Mejoras

Problema de *Clasificación Binario*: Churn vs No Churn

Datos

- Customer Churn Dataset: 500,000 filas
- 10 Variables
- 350,000 Train
- 150,000 Test
- 55% Churn

Datos Limpios, Predicciones Confiables

Variables Categoricas

- Gender
- Subscription Type: Basic, Standard, Premium
- Contract Length: Monthly, Quarterly, Annual

Variables Numericas

- **Persona**: age, gender,
- Tiempo: tenure, usage_frequency, last_interaction
- Problemas: support_calls,
- **Contrato**: subscription_type [encoded], contract_length [encoding].
- Pago: payment_delay, total_spend,
- Clasificador: churn

Varianza

Escalar datos en fase de preprocesamiento para modelos excepto Decision Classifiers.

Problema de Representativida d

Sesgos presentes en train y no en test:

- total_spend
- payment_delay
- support_calls
- last_interaction

Solución de Representativida d

Concatenación y Estratificación

Problema: Distribución Desequilibrado

Churn (1) se ve desproporcionadamente representado al principio de dataset, introduciendo sesgos al futuro modelo.

Solución para Distribución Desequilibrado

Aplicando shuffle (sklearn.utils), para equilibrar distribución.

Desarrollo Iterativo Incremental

Misma Metología, Distintos Modelos

Sklearn, Keras Libraries

- Logistic Regression Classifier
- Decision Tree Classifier
- Random Forest Classifier
- K Neighbours Classifier
- Support Vector Classifier con Principal Component Analysis
- Neural Network Sequential Model

Decision Tree Precisión/Recall

Modelo Optimizado: 99% recall

13% mejora en recall (class 1, churn).

- estimator__min_samples_split: 2
- estimator__min_samples_leaf: 5
- estimator__max_features: None
- estimator__max_depth: 10
- (class_weights='balanced')

Decision Tree Confusion Matrix

Valores reales para contextualizar el recall alto 99% y precisión 90% respeto al Churn (clase 1).

Feature Importance

Optimizar hoy, liderar mañana

Asunciónes Claves

- 1. Es más barato y rentable retener clientes existentes que atraer nuevos.
- 2. Es manageable asumir los costes adicionales de mantener los 10% de clientes erróneamente predichos 'Churn'.

A lo contrario, posible alteración:

- Mayor umbral para favorecer precisión y reducir falsos positivos.