Гамильтонов цикл: определения и примеры

- ullet Цикл в графе G называется гамильтоновым, если он содержит все вершины G по одному разу
 - ★ гамильтонов цикл это простой цикл, содержащий все вершины графа
 - \star как подграф, гамильтонов цикл изоморфен C_n , где n число вершин в G
- Гамильтонов путь это путь, содержащий все вершины G
 - гамильтонов цикл частный случай гамильтонова пути
- Граф гамильтонов если в нем есть гамильтонов цикл

Примеры:

- ★ Граф слева гамильтонов; например,
 - $v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow v_8 \rightarrow v_4 \rightarrow v_9 \rightarrow v_{12} \rightarrow v_{11} \rightarrow v_7 \rightarrow v_6 \rightarrow v_{10} \rightarrow v_5 \rightarrow v_1$
- ⋆ Граф справа негамильтонов
 - но гамильтонов путь в нем очевидно есть
- ★ Гамильтонов граф является связным (далее увидим, что двусвязным)
- * Считаем, что петель и кратных ребер нет (на гамильтоновость это не влияет)

Происхождение

- Задача об обходе конем: обойти доску $n \times n$ шахматным конем, посетив все поля по одному разу и вернувшись на исходное поле
 - впервые упоминается в индийском трактате IX века
 - занимались, в том числе, Муавр и Эйлер
 - справа приведено одно из решений для доски 8 imes 8
 - для нечетных n у задачи нет решения (почему?), поэтому для нечетных n не требуют возвращения в исходную точку

- Головоломка Гамильтона: обойти додекаэдр по ребрам, посетив все вершины по одному разу и вернувшись в исходную вершину
 - середина XIX века
 - справа приведено одно из решений
 - ★ графы всех правильных многогранников гамильтоновы
 - ★ существуют выпуклые многогранники с негамильтоновыми графами

Задача коммивояжера

- Задача коммивояжера (TSP): дан список городов, соединенных дорогами с известными длинами; коммивояжер должен посетить все города по одному разу и вернуться в свой город. Найти кратчайший маршрут коммивояжера
 - изучается математиками примерно с 1930-х
 - эвристика «идти в ближайший непосещенный город» может не найти ответ
 - термин: Джулия Робинсон (1949)
 - самая известная оптимизационная задача о графах
- Математическая формулировка: дан граф G = (V, E), в котором каждому ребру $e \in E$ приписан неотрицательный вес w(e); требуется найти в G гамильтонов цикл, сумма весов ребер в котором минимальна
 - * можно дополнить G до полного графа ребрами очень большого веса; если оптимальный маршрут в полном графе
 - * содержит добавленное ребро, то в исходном графе решения нет
 - \star не содержит добавленных ребер, то он оптимален в исходном графе
- Вариации:
 - евклидова TSP
 - вершины точки на плоскости, веса евклидовы расстояния
 - метрическая TSP
 - веса удовлетворяют неравенству треугольника: $w(v_1, v_2) \leqslant w(v_1, v_3) + w(v_3, v_2)$
 - асимметричная TSP
 - граф ориентирован, w(u, v) может не совпадать с w(v, u)
 - TSP с предшествованием
 - на вершинах задан (частичный) порядок, маршрут должен быть с ним согласован

Приложения задачи коммивояжера

Приложения:

- реальные логистические задачи
 - развоз товаров по магазинам, курьеры, школьные автобусы, . . .
- проектирование чипов
- сборка ДНК из фрагментов

Теорема Оре

- Если в графе очень много ребер, он должен быть гамильтоновым
- Наиболее известны три достаточных условия гамильтоновости: теорема Дирака (самое слабое), теорема Хватала (самое сильное) и

Теорема Оре

Пусть G — обыкновенный граф с n вершинами, n > 2. Если $\deg(u) + \deg(v) \geqslant n$ для любых двух несмежных вершин u и v графа G, то граф G гамильтонов.

Доказательство: от противного

- ullet пусть существует граф G, удовлетворяющий всем условиям теоремы и не являющийся гамильтоновым
- \star если возможно, добавим к G новое ребро так, чтобы граф остался негамильтоновым
- \star новый гра ϕ тоже удовлетворяет всем условиям теоремы
- будем повторять данную процедуру, пока это возможно
 в какой-то момент получим граф G', который удовлетворяет всем условиям теоремы и является максимальным негамильтоновым
 - превращается в гамильтонов при добавлении любого ребра
 - \bullet существование такого G' следует из того, что полный граф гамильтонов
- получим противоречие, построив гамильтонов цикл в $G' \Longrightarrow$

Доказательство теоремы Оре (окончание)

- ullet Пусть u и v произвольные несмежные вершины графа G'
- * В G' нет гамильтонова цикла, но при добавлении ребра (u, v) появится \Rightarrow в G' есть гамильтонов (u, v)-путь:

$$u = v_1 \underbrace{\hspace{1cm}}_{v_2} \cdots \underbrace{\hspace{1cm}}_{v_{n-1}} v_n = v$$

- ullet Пусть $S = \{i \mid u \text{ смежна с } v_{i+1}\}$ и $T = \{i \mid v \text{ смежна с } v_i\}$
 - $\star |S| = \deg(u), |T| = \deg(v)$
 - $\Rightarrow |S| + |T| \geqslant n$ по условию теоремы
 - ullet элементы множеств S и T являются числами 1 до $n{-}1$
 - $\Rightarrow S \cap T \neq \emptyset$
 - пусть $i \in S \cap T \Rightarrow$ в G' есть ребра (u, v_{i+1}) и (v_i, v) :

- \Rightarrow В графе G' есть гамильтонов цикл
 - $u \rightarrow v_2 \rightarrow \cdots \rightarrow v_i \rightarrow v \rightarrow v_{n-1} \rightarrow \cdots \rightarrow v_{i+1} \rightarrow u$
 - Требуемое противоречие получено

Гамильтоновость и двусвязность

Лемма

Любой гамильтонов граф двусвязен.

Доказательство:

- ullet если граф G не двусвязен, то в нем есть точка сочленения v
- по лемме о точке сочленения найдутся вершины u и w, отличные от v и такие, что любой (u,w)-путь содержит v
- \Rightarrow любой цикл в G, содержащий u и w, содержит v как минимум дважды
- \Rightarrow в G нет цикла, содержащего все вершины по одному разу
- ★ Не любой двусвязный граф гамильтонов

- Минимальный пример:
- Есть ли более сильные необходимые условия гамильтоновости?
- Множество вершин $\{v_1,\dots,v_k\}$ связного графа G называется обобщенной точкой сочленения k-го порядка, если граф $G-\{v_1,\dots,v_k\}$ имеет более k компонент связности
 - \star в графе из примера есть обобщенная точка сочленения ${\tt второго}$ порядка
 - ⋆ обобщенная точка сочленения первого порядка = точка сочленения

Необходимое условие гамильтоновости

Теорема

Любой гамильтонов граф не имеет обобщенных точек сочленения

- Доказательство:
 - пусть граф G имеет обобщенную точку сочленения $\{v_1,\dots,v_k\}$, а граф $G-\{v_1,\dots,v_k\}$ компоненты связности G_1,G_2,\dots,G_{k+1} :

- ★ компонент связности может быть и больше, но для рассуждения это неважно
- ullet рассмотрим какой-нибудь цикл C, содержащий все вершины графа G
- ullet обходя C, мы должны хотя бы раз зайти в «лепесток» подграф G_i $(i=1,\dots,k{+}1)$ и хотя бы раз из него выйти
- \Rightarrow C содержит хотя бы k+1 путь, соединяющий вершины из разных «лепестков»
- любой путь между вершинами из разных «лепестков» содержит какую-то из вершин v_1,\dots,v_k
- \Rightarrow по принципу Дирихле какая-то вершина v_i встречается по крайней мере в двух из упомянутых путей, т.е. дважды встречается в цикле C
- ⇒ С не гамильтонов цикл

Задачи поиска эйлерова и гамильтонова цикла: сравнение

- ★ Несмотря на внешнюю схожесть определений эйлерова и гамильтонова циклов, задачи поиска этих циклов в графе разительно отличаются по сложности
 - Поиск эйлерова цикла это вычислительно простая (tractable) задача:
 - \star теорема Эйлера критерий, позволяющий установить наличие или отсутствие эйлерова цикла в графе с n вершинами и m ребрами за время $O(n^2)$
 - \star если граф задан списками смежности, то и проверку связности, и вычисление степеней вершин можно реализовать за время O(m)
 - если эйлеров цикл есть, его легко найти (например, алгоритмом из доказательства теоремы Эйлера, хотя есть и другие)
 - \star при подходящей организации данных можно тоже уложиться во время O(m)
 - \star поиск эйлерова цикла характерный представитель класса P задач, разрешимых за полиномиальное от размера входных данных время
 - вычислительно простые = полиномиальные
- ★ Ни критерия гамильтоновости графа, ни эффективного алгоритма нахождения гамильтонова цикла в произвольном гамильтоновом графе не известно
- ★ В современной математике есть консенсус, что таких алгоритмов не существует: задача поиска гамильтонова цикла — вычислительно трудная (intractable)
 - * задачи о гамильтоновом цикле (включая задачу коммивояжера) входят в класс NP, содержащий P, а точнее, в подкласс наиболее трудных задач из NP, называемых NP-полными
 - \star доказательство строгости включения $P \subseteq NP$ одна из сложнейших проблем современной математики, самая известная из семи проблем тысячелетия
 - Подробности рассказываются в курсе теории алгоритмов

Простые и сложные задачи (окончание)

- Кроме задач об эйлеровом и гамильтоновом циклах нам встречалась еще одна интересная с точки зрения вычислительной сложности задача: проверка изоморфности двух графов
 - неизвестно, является ли эта задача трудной, простой или «промежуточной»
 - из NP-полноты проверки изоморфности следуют результаты теории сложности, которые выглядят нереалистично; поэтому есть консенсус, что она не NP-полна
 - если полиномиальный алгоритм существует, он вероятно очень сложен
 - \star с 1980-х годов известен алгоритм со сложностью $2^{O(\sqrt{n\log n})}$
 - \star в 2015 году Ласло Бабаи предъявил (а в 2017 исправил) алгоритм, проверяющий изоморфность за время $2^{O(\log^c n)}$, где c константа
 - ★ изоморфизм это перестановка, и задача проверки изоморфности оказалась задачей из теории групп, где все как правило очень сложно
- Трудные задачи оптимизации имеют важный дополнительный аспект: приближенные решения
 - \star для метрической (в том числе евклидовой) TSP существует полиномиальный алгоритм, гарантирующий нахождение гамильтонова цикла, вес которого не более чем в 1.5 раза превосходит вес минимального гамильтонова цикла
 - такой алгоритм называют 1.5-приближенным
 - ★ в общем случае таких алгоритмов нет
 - ! пусть вам свыше дан полиномиальный C-приближенный алгоритм для общей задачи TSP, где C>1 некоторая константа; постройте полиномиальный алгоритм поиска гамильтонова цикла

Дискретная математика