TMR4243 - MARINE CONTROL SYSTEMS II

Homework assignment 4

1 Input-to-State Stability

1.1 Task: ISS-Lyapunov function

For the following systems, assume that $||u|| \le u_{\text{max}}$. Show that $V(x) = \frac{1}{2}x^2$ is an ISS-Lyapunov function for the following systems:

 $\dot{x} = -x + u \tag{1}$

 $\dot{x} = -x^3 + x^2 u \tag{2}$

3. $\dot{x} = -x^5 + x^3 u \tag{3}$

4. $\dot{x} = -\left(1 + e^{|x|}\right)x + xu \tag{4}$

1.2 Task: ISS

In Homework Assignment 3 we were given the (simplified) mechanical dynamics of a diesel-generator

$$\dot{\delta} = \omega_B \left(\omega - \omega_0\right) \tag{5}$$

$$2H\dot{\omega} = t_m - D\omega - t_L + w(t) \tag{6}$$

where ω is the frequency, δ is the load angle, t_m is the control input torque, t_L is an electric load torque, w a bounded disturbance torque, $(H, D, \omega_B) > 0$ are constants, and ω_0 is the frequency of the connected electric power bus. Controlling δ to δ_{ref} and ω to ω_0 , we defined the error states $x = \operatorname{col}(e_{\delta}, e_{\omega}) = \operatorname{col}(\delta - \delta_{ref}, \omega - \omega_0)$, which gives

$$\dot{e}_{\delta} = \omega_B e_{\omega} \tag{7}$$

$$2H\dot{e}_{\omega} = t_m - De_{\omega} - D\omega_0 - t_L + w(t) \tag{8}$$

With the disturbance $||w|| \le w_0$ as input, show that the control law

$$u = t_m = -k_p e_\delta - k_d e_\omega + D\omega_0 + t_L, \tag{9}$$

with $k_p, k_d > 0$, renders the resulting closed-loop system ISS with respect to x = 0.

2 Feedback linearization

We will train on feedback linearization by considering the 3DOF horizontal vessel model

$$\dot{\eta} = R(\psi)\nu\tag{10}$$

$$M\dot{\nu} + C(\nu)\nu + D(\nu)\nu = \tau,\tag{11}$$

where $\eta = col(x, y, \psi)$ is the position/heading; $\nu = col(u, v, r)$ the velocities; $C(\nu)$ the Coriolis/centripetal matrix; $D(\nu) > 0$ a nonlinear damping matrix; $M = M^{\top} > 0$; τ the control force input; and $R(\psi)$ the rotation matrix:

$$R(\psi) = \begin{bmatrix} \cos \psi & -\sin \psi & 0\\ \sin \psi & \cos \psi & 0\\ 0 & 0 & 1 \end{bmatrix}. \tag{12}$$

This has the properties that $R(\psi)^{\top}R(\psi) = R(\psi)R(\psi)^{\top} = I$ and $\dot{R} = R(\psi)S(r)$ where

$$S(r) = \begin{bmatrix} 0 & -r & 0 \\ r & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = -S(r)^{\top}.$$
 (13)

2.1 Task: Feedback linearization

If the output to be controlled is $\eta \in \mathbb{R}^3$, do the following:

- 1. Explain the term "vector relative degree", and calculate the vector relative degree for the 3DOF vessel model.
- 2. Differentiate η according to the vector relative degree. What is the dimension of the zero dynamics?
- 3. Perform a full state feedback linearization design by differentiating η according to the vector relative degree.

2.2 Task: Feedback linarization by a nonlinear transformation

If the output to be controlled is $\eta \in \mathbb{R}^3$, define the transformation $z_1 := \eta$, $z_2 := R(\psi)\nu + C_1\eta$ where $C_1 = C_1^{\top} > 0$. This defines the state transformation $z = \operatorname{col}(z_1, z_2) = T(x)$, where $x := \operatorname{col}(\eta, \nu)$.

1. Show that this transforms the system into the controller form

$$\dot{z} = Az + B\Gamma(x)\left[u - \alpha(x)\right] \tag{14}$$

where (A, B) is controllable, and $\Gamma(x)$ is nonsingular for all x.

2. Design a full-state feedback linearization control law, and prove UGES of z=0 using Lyapunov's Direct Method.

2.3 Task: Zero dynamics

Assume for simplicity that $C(\nu) = 0$ and $D(\nu) = D > 0$ is a constant damping matrix.

For $\tau = \operatorname{col}(\tau_u, \tau_v, \tau_r) \in \mathbb{R}^3$, let

$$\tau_u = -k(u - u_0) = \gamma(u), \quad k > 0, u_0 > 0$$
(15)

$$\begin{bmatrix} \tau_v \\ \tau_r \end{bmatrix} = \begin{bmatrix} -Y_\delta \\ -N_\delta \end{bmatrix} \delta$$

$$\tau = B_1 \gamma(u) + B_2 \delta$$
(16)

$$\tau = B_1 \gamma(u) + B_2 \delta \tag{17}$$

$$B_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \qquad B_2 = \begin{bmatrix} 0 \\ -Y_{\delta} \\ -N_{\delta} \end{bmatrix}$$
 (18)

where $\delta \in \mathbb{R}$ is the new control input and (Y_{δ}, N_{δ}) are control gains. Let now the output to be controlled be the heading $\psi = h_{\psi}^{\top} \eta$, $h_{\psi} := \text{col}(0, 0, 1)$.

- 1. What is the relative degree of the system?
- 2. Differentiate the output according to the relative degree and identify the controlled dynamics and the internal dynamics (keeping vector notation).
- 3. Perform a partial feedback linearization design that controls the output to a constant reference heading ψ_{ref} .

References