

09/889609
JC18 Rec'd PCT/PTO 19 JUL 2001
PCT/US00/00938

WO 00/43526

-1-

SEQUENCE LISTING

<110> Wolosker, Herman

5 Takashashi, Maasaki
Mothet, Jean-Pierre
Ferris, Christopher
Snyder, Solomon

10 <120> Mammalian Serine Protease

<130> 01107.82348

15 <160> 10

<170> FastSEQ for Windows Version 3.0

<210> 1

20 <211> 1018
<212> DNA
<213> Mus musculus

<400> 1

25	atgtgtgctc agtactgcat ctcccttgct gatgttggaa aagctcatat caacattcaa	60
	gactctatcc acctcaccccc agtgctaaca agctccattt tgaatcaaat agcaggcgcc	120
	aatcttttct tc当地atgtga gctcttccag aaaactgggt ct当地taagat tc当地aggtgcc	180
	cttaatgcca tc当地aggcctt aattcctgac acgccagaag agaagcccaa agccgttagtt	240
	actcacagca gc当地aaacca tggccaagct ctcacccatg ct当地taaact ggaaggaatt	300
30	cctgcttaca ttgtgggtcc ccaaacagct cccaaactgca agaaaactggc aatccaaagcc	360
	tatggagcat cgatagtata ctgtgacccca agtgacgagt cc当地agaaaa ggtcactcaa	420
	agaattatgc aagaaacaga aggc当地tttgc gtccatccca accaggagcc tgc当地gtata	480
	gctggacaag gaacaattgc cctggaagtg ct当地accagg tt当地cttgggt agatgcactg	540
	gt当地taccag taggaggagg aggaatgggt gctggaatag cc当地acaat taaggccctg	600
35	aaaccttagt tgaaggtaata cgctgctgag ccctcgaatg cagatgactg ctaccagtct	660
	aaactgaaag gagaactgac ccccaatctt catcctccag aaaccatagc agatggtgcc	720
	aaatccagca ttggcttggaa tacctggctt attataagag accttggta tgatgtcttc	780
	actgtcaccg aagatgaaat caagtatgca acccagctgg tggggggag aatgaaactg	840
	ctcattgagc cgactgctgg cgtggcactg gctgcagtgc tgtctcagca tt当地caaaca	900
40	gtctctccag aagtaaagaa cgtctgcatt gtactcagtg gggggatgt agacctaacc	960

tccctgaact gggggggca ggctgaacgg ccagctcctt accagacggt ctgtttaa 1018

5 <210> 2
<211> 608
<212> DNA
<213> Homo sapiens

10 <220>
<221> misc_feature
<222> (1)...(608)

15 <221> misc_feature
<222> (1)...(608)
<223> n = A,T,C or G

15 <400> 2

ggcgccggcgc cgatgagctg agaaccatgt gtgctcagta ttgcatactcc tttgctgatg 60
ttgaaaaaggc tcataatcaac attcgagatt ctatccacct cacaccagtg ctaacaagct 120
ccatTTTgaa tcaactaaca gggcgcaatc ttttcttcaa atgtgaactc ttccagaaaa 180
20 caggatcttt taagattcgt ggtgctctca atgccgtcag aagcttggtt cctgatgctt 240
tagaaaaggaa gccgaaagct gttgttactc acagcagtgg aaaccatggc caggctctca 300
cctatgctgc caaattggaa ggaattcctg cttatattgt ggtgccccag acagctccag 360
actgtaaaaa acttgcaata caagcctacg gagcgtcaat tgtatactgt gaaccttagtg 420
atgaagtcca gagaaaatgt tgcaaaaagg agttacagaa gaaacagaag gcatcatggt 480
25 acatccccaaac caggaacctg cagtgtatgc tggacaaggg acaattgccc tggaaagtgt 540
gaaccagggtt ctttggtgg atccactggt ggnccctgta ggtggaagga ggaatgcttg 600
ccggaaat 608

30 <210> 3
<211> 509
<212> DNA
<213> Homo sapiens

35 <220>
<221> misc_feature
<222> (1)...(509)
<223> n = A,T,C or G

40 <400> 3

ctgatgccccaaatctttatcc tccagaaacc atagcagatg gtgtcaaatc cagcattggc 60

	ttgaancacc tggcctatta tcagggacct tgtggatgat atcttcactg tcacagagga	120
	tcaaattaag tgtcaaccc agctgggtg ggagaggatg aaactactca ttgaacctac	180
	agctgggtt ggagtggctg ctgtgctgtc tcaacattt caaactgttt ccccagaagt	240
	aaagaacatt tgtattgtgc tcagtggtgg aaatgttagac ttaacctcct ccataacttg	300
5	ggtgaagcag gctgaaaggc cagttctta tcagtctgtt tctgttaat ttacagaaaa	360
	ggaaatggtg ggaattcagt gtcttagat actgaagaca ttttgttcc tagtattgtc	420
	aactcttagt tatcagatTC ttaatggaga gtggctattt cattaaggtt taatagttt	480
	tttggacta agtagtgaa aaactttta	509
10	<210> 4	
	<211> 32	
	<212> DNA	
	<213> Mus musculus	
15	<400> 4	
	acgcgtcgac caccatgtgt gctcagtact gc	32
	<210> 5	
	<211> 34	
20	<212> DNA	
	<213> Mus musculus	
	<400> 5	
	ataagaatgc ggcccgcttaa acagaaaacccg tctg	34
25		
	<210> 6	
	<211> 27	
	<212> PRT	
	<213> Rat rattus	
30		
	<400> 6	
	Leu Leu Ile Glu Pro Thr Ala Gly Val Gly Leu Ala Ala Val Leu Ser	
	1 5 10 15	
	Gln His Phe Gln Thr Val Ser Pro Glu Val Lys	
35	20 25	
	<210> 7	
	<211> 25	
	<212> PRT	
40	<213> Rat rattus	

<400> 7

His Leu Asn Ile Gln Asp Ser Val His Leu Thr Pro Val Leu Thr Ser

1 5 10

15

Ser Ile Leu Asn Gln Ile Ala Gly Arg

5 20 25

<210> 8

<211> 339

<212> PRT

10 <213> Mus musculus

<400> 8

Met Cys Ala Gln Tyr Cys Ile Ser Phe Ala Asp Val Glu Lys Ala His

1 5 10 15

15 Ile Asn Ile Gln Asp Ser Ile His Leu Thr Pro Val Leu Thr Ser Ser
20 25 30

Ile Leu Asn Gln Ile Ala Gly Arg Asn Leu Phe Phe Lys Cys Glu Leu

35 40 45

Phe Gln Lys Thr Gly Ser Phe Lys Ile Arg Gly Ala Leu Asn Ala Ile

20 50 55 60

Arg Gly Leu Ile Pro Asp Thr Pro Glu Glu Lys Pro Lys Ala Val Val

65 70 75 80

Thr His Ser Ser Gly Asn His Gly Gln Ala Leu Thr Tyr Ala Ala Lys

85 90 95

25 Leu Glu Gly Ile Pro Ala Tyr Ile Val Val Pro Gln Thr Ala Pro Asn
100 105 110Cys Lys Lys Leu Ala Ile Gln Ala Tyr Gly Ala Ser Ile Val Tyr Cys
115 120 125

Asp Pro Ser Asp Glu Ser Arg Glu Lys Val Thr Gln Arg Ile Met Gln

30 130 135 140

Glu Thr Glu Gly Ile Leu Val His Pro Asn Gln Glu Pro Ala Val Ile
145 150 155 160Ala Gly Gln Gly Thr Ile Ala Leu Glu Val Leu Asn Gln Val Pro Leu
165 170 17535 Val Asp Ala Leu Val Val Pro Val Gly Gly Gly Gly Met Val Ala Gly
180 185 190Ile Ala Ile Thr Ile Lys Ala Leu Lys Pro Ser Val Lys Val Tyr Ala
195 200 205

Ala Glu Pro Ser Asn Ala Asp Asp Cys Tyr Gln Ser Lys Leu Lys Gly

40 210 215 220

```

20 <210> 9
     <211> 1023
     <212> DNA
     <213> Homo sapiens

25 <400> 9
      atgtgtgctc agtattgcacat ctcctttgtc gatgttgaaa aagctcatat caacattcga   60
      gattcttatcc acctcacacc agtgctaaca agtccattt tgaatcaact aacaggcgcc 120
      aatctttctc tcaaattgtga actcttccag aaaacaggat ctttaagat tcgtgggtc   180
      ctcaatgccg tcagaagctt gtttcctgtat gcttttagaaa ggaagccgaa agctgttgtt 240
      actcacagca gtggaaaccca tggccaggct ctcacctatg ctgccaaattt ggaaggaatt 300
      cctgcttata ttgtggtgcc ccagacagct ccagactgtt aaaaacttgc aatacaagcc 360
      30 tacggagcgt caattgtata ctgtgaacct agtgtatgtt ccagagaaaaa tgttgcaaaaa 420
      agagttacag aagaaacaga aggcatcatg gtacatcccc accaggagcc tgcagtgtata 480
      gctggacaag ggacaattgc cctggaaagtg ctgaaccagg ttcccttggg ggtatgcactg 540
      gtggcacctg taggtggagg aggaatgtt gctggaaatag caattacagt taaggctctg 600
      35 aaaccttagt gtaaggtata tgctgtgaa ccctcaaattt cagatgtactt ctaccagtcc 660
      aagctgttgggg ggaaactgtt gcccattttt tatcctccag aaaccatagc agatgggttc 720
      aaatccagca ttggcttgaa cacctggccct attatcaggg accttggatgaa tgatatcttc 780
      actgtcacag aggtatgtt gttttttttt gttttttttt gttttttttt gttttttttt 840
      ctcattgttggt ctacagctgg tttttttttt gttttttttt gttttttttt gttttttttt 900
      40 gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt 960
      tccctccatataa cttgggtgaa gcaggctgaa aggccagctt cttatcagtc tgttttgtt 1020

```

taa

1023

<210> 10
<211> 340
5 <212> PRT
<213> Homo sapiens

<400> 10

Met Cys Ala Gln Tyr Cys Ile Ser Phe Ala Asp Val Glu Lys Ala His
10 1 5 10 15
Ile Asn Ile Arg Asp Ser Ile His Leu Thr Pro Val Leu Thr Ser Ser
20 25 30
Ile Leu Asn Gln Leu Thr Gly Arg Asn Leu Phe Phe Lys Cys Glu Leu
35 40 45
15 Phe Gln Lys Thr Gly Ser Phe Lys Ile Arg Gly Ala Leu Asn Ala Val
50 55 60
Arg Ser Leu Val Pro Asp Ala Leu Glu Arg Lys Pro Lys Ala Val Val
65 70 75 80
Thr His Ser Ser Gly Asn His Gly Gln Ala Leu Thr Tyr Ala Ala Lys
20 85 90 95
Leu Glu Gly Ile Pro Ala Tyr Ile Val Val Pro Gln Thr Ala Pro Asp
100 105 110
Cys Lys Lys Leu Ala Ile Gln Ala Tyr Gly Ala Ser Ile Val Tyr Cys
115 120 125
25 Glu Pro Ser Asp Glu Ser Arg Glu Asn Val Ala Lys Arg Val Thr Glu
130 135 140
Glu Thr Glu Gly Ile Met Val His Pro Asn Gln Glu Pro Ala Val Ile
145 150 155 160
Ala Gly Gln Gly Thr Ile Ala Leu Glu Val Leu Asn Gln Val Pro Leu
30 165 170 175
Val Asp Ala Leu Val Val Pro Val Gly Gly Gly Met Leu Ala Gly
180 185 190
Ile Ala Ile Thr Val Lys Ala Leu Lys Pro Ser Val Lys Val Tyr Ala
195 200 205
35 Ala Glu Pro Ser Asn Ala Asp Asp Cys Tyr Gln Ser Lys Leu Lys Gly
210 215 220
Lys Leu Met Pro Asn Leu Tyr Pro Pro Glu Thr Ile Ala Asp Gly Val
225 230 235 240
Lys Ser Ser Ile Gly Leu Asn Thr Trp Pro Ile Ile Arg Asp Leu Val
40 245 250 255

-7-

Asp Asp Ile Phe Thr Val Thr Glu Asp Glu Ile Lys Cys Ala Thr Gln
260 265 270
Leu Val Trp Glu Arg Met Lys Leu Leu Ile Glu Pro Thr Ala Gly Val
275 280 285
5 Gly Val Ala Ala Val Leu Ser Gln His Phe Gln Thr Val Ser Pro Glu
290 295 300
Val Lys Asn Ile Cys Ile Val Leu Ser Gly Gly Asn Val Asp Leu Thr
305 310 315 320
Ser Ser Ile Thr Trp Val Lys Gln Ala Glu Arg Pro Ala Ser Tyr Gln
10 325 330 335
Ser Val Ser Val
340