COMP 250

Lecture 2

Binary number representations

Sept. 9, 2016

Base 10 (decimal) "digits" {0,1,2,..., 9}

e.g.
$$5819 = 5 * 10^3 + 8 * 10^2 + 1 * 10^1 + 9 * 10^0$$

Base 2 (binary) "bits" {0, 1}

e.g.

$$(11010)_2 = 1 * 2^4 + 1 * 2^3 + 0 * 2^2 + 1 * 2^1 + 0 * 2^0$$

<u>decimal</u>	<u>binary</u>
0	0
1	1
2	10
3	11
4	100
5	101
6	110
7	111
8	1000
9	1001
10	1010
11	1011
•	:

<u>decimal</u>	<u>binary</u>	
0	00000000	
1	0000001	
2	0000010	Fixed number of
3	0000011	bits (typically 8,
4	00000100	16, 32, 64)
5	00000101	
6	00000110	8 bits is called a
7	00000111	"byte".
8	00001000	
9	00001001	
10	00001010	
11	00001011	
•	•	

To converting from		
binary to decimal, you		
need to know the		
powers of 2.		

<u>n</u>	<u>2</u> ⁿ
0	1
1	2
2	4
3	8
4	16
5	32
6	64
7	128
8	256
9	512
10	1024
11	2048
:	•

$$(11010)_2 = 1 * 2^4 + 1 * 2^3 + 0 * 2^2 + 1 * 2^1 + 0 * 2^0$$

$$= 16 + 8 + 0 + 2 + 0$$

How to convert from decimal to binary?

$$(241)_{10} = (?)_2$$

I will present an algorithm for doing so, but let's first review some basic ideas.

$$m = (m/10) * 10 + m \% 10$$

I changed the following slightly after the lecture.

(Integer) division by 10 = dropping rightmost digit

Multiplication by 10 = shifting left by one digit

Remainder of integer division by 10 = rightmost digit

$$238 \% 10 = 8$$

<u>Claim:</u> the same idea works is binary.

$$m = m/2 * 2 + m \% 2$$

e.g.

$$m = (10011)_2$$

$$m/2 = (1001)_2$$

$$(m/2) * 2 = (10010)_2$$

$$m\% 2 = (00001)_2$$

$$M = \left(b_{n-1} b_{n-2} - b_2 b_1 b_0 \right)_z = \frac{1}{5} b_i 2^i$$

$$M/2 = (b_{n-1} b_{n-2} \cdots b_2 b_1)_2 = \sum_{i=1}^{n-1} b_i 2^{i-1}$$

Algorithm: convert from decimal to binary

$$i \in O$$

$$while \quad m > O$$

$$b[i] \leftarrow m ? o$$

$$m / 2$$

$$i \leftarrow i + 1$$

Example

Addition in binary

$$11010$$
 26
+ 1111 + 15
? 41

Addition in binary

carry
$$11110$$
 11010 26 $+ 1111$ $+ 15$ 101001 41

Grade school arithmetic in binary

- addition
- subtraction
- multiplication
- division

There is nothing special about base 10.

These algorithms work for binary (base 2) too.

How many bits N do we need to represent an integer n?

$$n = \sum_{i=0}^{N-1} b_i 2^i$$

That is, what is the relationship between n and N ?

To answer this question, we use:

$$2^{N} - 1 = \sum_{i=0}^{N-1} 2^{i}$$

$$= (2^{N-1} + 2^{N-2} + 2^{N-3} + \dots + 16 + 8 + 4 + 2 + 1)$$

which is a special case of the following, where x = 2.

$$\frac{x^N - 1}{x - 1} = 1 + x + x^2 + x^3 + \dots x^{N-1}$$

How many bits N do we need to represent an integer n?

$$n = \sum_{i=0}^{N-1} b_i 2^i \leq \sum_{i=0}^{N-1} 2^i$$

$$= 2^N - 1 \qquad \text{(previous slide)}$$

$$< 2^N$$

Taking the log (base 2) of both sides:

$$log_2 n < N$$

How many bits N do we need to represent an integer n?

$$n = \sum_{\overline{i=0}}^{N-1} b_i \, 2^i$$

We can assume that $b_{N-1} = 1$.

e.g. We ignore leftmost 0's of $(00000010011)_2$

$$n = \sum_{i=0}^{N-1} b_i 2^i \geq 2^{N-1}$$

Taking the log (base 2) of both sides:

$$\log_2 n \geq N-1$$
 Thus,
$$\log_2 n < N \leq (\log_2 n)+1$$

$$log_2 n < N \leq (log_2 n) + 1$$

Q: How many bits N do we **need** to represent n?

A: The largest integer less than or equal to $(log_2 n) + 1$.

We write:

$$N = floor((log_2 n) + 1)$$

where "floor" means "round down".

<u>n (decimal)</u>	n (binary)	$N = floor (1 + log_2 n)$
0	0	
1	1	1
2	10	2
3	11	2
4	100	3
5	101	3
6	110	3
7	111	3
8	1000	4
9	1001	4
10	1010	4
11	1011	4
•	•	•

The number of bits N that we need to represent an integer n is

$$N = floor((log_2 n) + 1)$$

which is $O(log_2 n)$.

BTW, we will use the above formula several times throughout the course.

I cannot remember it, so I don't expect you to either.

What about other 'bases'?

$$n = \sum_{i=0}^{N-1} a_i \ base^i$$

$$n = (a_{N-1} a_{N-2} \dots a_1 a_0)_{base}$$

where
$$0 \le a_i < base - 1$$

The arithmetic algorithms +,-,*,/ all work for arbitrary bases. So does the base conversion algorithm (which we saw only for binary).

$$m = (m/b) * b + m \% b$$

Note that this is equation we saw last lecture:

$$a = q * b + r$$

Other number representations

(covered in detail in COMP 273 – see my lecture notes if you are curious)

Q: How many bits are used to represent integers in a computer?

Q: How are negative integers represented?

Q: How are non-integers (fractional numbers) represented?