Ошибки в микросхеме К1986ВК025

Дата документа: 29/03/23

Настоящий документ содержит описание всех ошибок, выявленных в микросхемах K1986BK025 на момент создания данной версии документа.

Дата документа: 29/03/23

Статус документа

Настоящий документ является НЕКОНФИДЕНЦИАЛЬНЫМ.

Адрес в сети Интернет

http://www.milandr.ru

Обратная связь по продукту

Если у Вас есть какие-либо комментарии или предложения по данному продукту, свяжитесь с Вашим поставщиком, указав:

- название продукта;
- комментарии, либо краткое описание Ваших предложений;
- предпочтительный способ связи с Вами и контакты (организация, электронная почта, номер телефона).

Обратная связь по документу

Если у Вас есть какие-либо комментарии или предложения по данному документу, пожалуйста, пришлите их на электронную почту support@milandr.ru, указав:

- название документа;
- номер и/или дата документа;
- номер страницы;
- комментарии, либо краткое описание Ваших предложений;
- предпочтительный способ связи с Вами и контакты (организация, электронная почта, номер телефона).

Оглавление

Дата документа: 29/03/23

Обзор	4
Категории ошибок	
Сводная таблица ошибок	
Ошибки категории 1	6
0010 Зависание микроконтроллера при просадке питаний V_{CCA} и V_{CC}	6
Ошибки категории 2	7
0001 Паразитные импульсы высокой частоты на фронтах синхросигнала LSE генератора	7
0002 Не запуск микроконтроллера при несоблюдении порядка подачи питаний V_{CCA} и V_{CC}	3
0005 Возникновение исключительной ситуации при чтении ячейки flash памяти в момент выполнения инструкции из адреса читаемой ячейки (пример расчёт CRC суммы	
программы)	9
0006 Недопустимо использование пониженного напряжения питания менее +2,4В1	0
0009 Автоматический выбор канала тока для расчета мощностных характеристик1	1
Ошибки категории 3 1	
0003 Смещение порога срабатывания детектора напряжения батарейного питания PVDB 1	
0004 Отсутствие тримминга HSI генератора после старта программы1	3
0007 Накопление случайных данных с помощью ГСЧ с некорректной энтропией	4
0008 Частота генератора HSI составляет несколько кГц при напряжении питания меньше	
2,7B1	5
0011 Ошибка чтения данных при смене режима работы Flash	6
Лист регистрации изменений	

Обзор

Настоящий документ содержит описание ошибок в продукте с указанием категории критичности. Каждое описание содержит:

- уникальный идентификатор ошибки;
- текущий статус ошибки;

Дата документа: 29/03/23

- где существует отклонение от спецификации и условия, при которых возникает ошибка;
- последствия возникновения ошибки в типичных применениях;
- ограничения, рекомендации и способы обхода ошибки, где это возможно.

Категории ошибок

Ошибки разделены на три категории критичности:

Категория 1.

Ошибочное поведение, которое невозможно обойти. Ошибки данной категории серьезно ограничивают использование продукта во всех или в большинстве приложений, что делает устройство непригодным для использования.

Категория 2.

Ошибочное поведение, которое противоречит требуемому поведению. Ошибки данной категории могут ограничивать или серьезно ухудшать целевое использование указанных функций, но не делают продукт непригодным для использования во всех или в большинстве приложений.

Категория 3.

Ошибочное поведение, которое не было изначально определено, но не вызывает проблем в приложениях при соблюдении рекомендаций.

Сводная таблица ошибок

Дата документа: 29/03/23

В таблице указывается, в каких версиях микросхем присутствует ошибка. Наличие ошибки обозначено символом «Х».

Версия микросхем определяется датой изготовления, указанной на крышке корпуса микросхемы в формате $\Gamma\Gamma$ н. где $\Gamma\Gamma$ – год изготовления, Π – неделя изготовления.

ID	Ommonwo	Микросхемы, изготавливаемые с даты					
ID	Описание	2038 (рев.1)	2124 (рев.1.1)	2140 (рев.2)			
Като	егория 1						
0010	3ависание микроконтроллера при просадке питаний V_{CCA} и V_{CC}						
Като	егория 2						
0001	01 Паразитные импульсы высокой частоты на фронтах X X						
0002	$V_{\rm CCA}$ Не запуск микроконтроллера при несоблюдении и порядка подачи питаний $V_{\rm CCA}$ и $V_{\rm CC}$						
0005	Возникновение исключительной ситуации при чтении ячейки flash памяти в момент выполнения программы X X из адреса читаемой ячейки.						
0006	Недопустимо использование пониженного напряжения питания менее +2,4В.						
0009	Автоматический выбор канала тока для расчета мощностных характеристик	X	X	X			
Като	егория 3						
0003	Смещение порога срабатывания детектора X X напряжения батарейного питания PVDB						
0004	Отсутствие тримминга HSI генератора после старта программы X						
0007	Накопление случайных данных с помощью ГСЧ с некорректной энтропией	X	X				
0008	Частота генератора HSI составляет несколько кГц при напряжении питания меньше 2,7В	X	X	X			
0011	Ошибка чтения данных при смене режима работы Flash	X	X	X			

Ошибки категории 1

Дата документа: 29/03/23

0010 Зависание микроконтроллера при просадке питаний V_{CCA} и V_{CC}

Статус

Исследование.

Описание

Зависание микроконтроллера.

Условия

При просадке питаний V_{CCA} и V_{CC} до уровня 1,9 В - 2,0 В микроконтроллер зависает без возможности возврата в рабочий режим функционирования.

Последствия

Функциональный режим работы не стартует.

Рекомендации и способы обхода

Обеспечить включение внутреннего сторожевого таймера IWDG в бутовой программе или непосредственно после перехода в пользовательскую программу, тактируя ядро на частоте HSI/HSE = 8 МГц. После инициализации IWDG при необходимости осуществлять настройку PLL и переход на более высокую частоту тактирования ядра. Если сброс обеспечивается внешней микросхемой WatchDog, подключенной ко входу nRESET, то никаких действий не требуется.

Ошибки категории 2

Дата документа: 29/03/23

0001 Паразитные импульсы высокой частоты на фронтах синхросигнала LSE генератора

Статус

Исправлено в ревизии 2 (исследование).

Описание

При работе LSE генератора от внешнего кварцевого резонатора на фронтах синхросигнала наблюдаются паразитные импульсы высокой частоты.

Условия

Выбор режима работы LSE в регистре BKP_CLK с помощью бит lsebyp=0, lseon=1.

Последствия

Синхросигнал на выходе LSE не равен частоте 32 кГц. Что приводит к невозможности использования часов реального времени.

Рекомендации и способы обхода

Установить на вход OSC_IN32 внешний генератор 32 к Γ ц. Вход OSC_OUT32 оставить неподключенным (не использовать). В регистре BKP_CLK установить режим работы lsebyp=1, lseon=1.

0002 He запуск микроконтроллера при несоблюдении порядка подачи питаний $V_{\it CCA}$ и $V_{\it CC}$

Статус

Исправлено с ревизии 1.1.

Дата документа: 29/03/23

Описание

Микроконтроллер не стартует при подаче питаний.

Условия

Подача питаний V_{CCA} и V_{CC} на микроконтроллер происходит асинхронно, с разными фронтами, от разных источников питания.

Последствия

Аналоговая часть микроконтроллера переходит в тестовый режим работы. Функциональный режим работы не стартует.

Рекомендации и способы обхода

Гарантировать подачу питания V_{CCA} позже V_{CC} или из одного источника одновременно. При подаче питаний из разных источников обеспечить равные фронты нарастания питаний с помощью фильтрующих компонентов на плате.

0005 Возникновение исключительной ситуации при чтении ячейки flash памяти в момент выполнения инструкции из адреса читаемой ячейки (пример расчёт CRC суммы программы)

Статус

Исправлено в ревизии 2 (исследование).

Дата документа: 29/03/23

Описание

Возникновение исключительной ситуации в ядре микроконтроллера.

Условия

Выполнение операции чтения программой пользователя, размещённой во flash, ячейки памяти flash с адресом исполняемой в данный момент инструкции и установленной задержкой доступа Delay=1.

Последствия

Микроконтроллер переходит на вектор обработки исключительной ситуации.

Рекомендации и способы обхода

Производить чтение flash памяти программой пользователя только при размещении её в ОЗУ или ОТР при Delay=1. Если не требуется установка Delay=1, то при Delay=0 исключительной ситуации возникать не будет и программа пользователя может быть размещена в любой памяти.

Дата документа: 29/03/23

0006 Недопустимо использование пониженного напряжения питания менее +2,4В

Статус

Исправлено с ревизии 1.1.

Описание

Не запуск микроконтроллера на пониженном питании при отрицательной температуре.

Условия

Напряжение питания микросхемы менее +2,4В и температура окружающей среды -50°С.

Последствия

Микроконтроллер не функционирует в соответствии со спецификацией.

Рекомендации и способы обхода

Обеспечить напряжение питания микросхемы не менее +2,4В.

0009 Автоматический выбор канала тока для расчета мощностных характеристик

Статус

_

Описание

Дата документа: 29/03/23

При задании в регистре ADCUI_F0MD0 режима автоматического выбора канала I0/I3 тока, в блоке F0 не всегда происходит своевременное переключение канала тока I0/I3, если разница токов превышает 6 %.

Условия

Установка значения поля F0SEL_I_CH регистра ADCUI_F0MD0 в 2' b 00 или 2'b 11 и разница RMS-токов I0 и I3 больше или равна 6%.

Последствия

Не происходит аппаратное переключение токовых каналов для последующих расчетов мощностных характеристик.

Рекомендации и способы обхода

Автоматическое переключение токовых каналов необходимо реализовывать программным способом в ручном режиме, то есть не задействуя аппаратный механизм.

Ошибки категории 3

Дата документа: 29/03/23

0003 Смещение порога срабатывания детектора напряжения батарейного питания PVDB

Статус

Исправлено в ревизии 2 (исследование).

Описание

Диапазон срабатывания детектора напряжения батарейного питания смещён на 200-300 мВ.

Условия

При задании порога срабатывания с помощью бит PLSB[5:0] регистра PVDCS порог срабатывания будет занижен/завышен на величину порядка 200-300 мВ в зависимости от бита INVB.

Последствия

При установке порога +1.8 В и попытке снизить уровень питания батареи детектор не реагирует и не детектирует уменьшение границы ниже +1.8 В.

Рекомендации и способы обхода

При задании границы с помощью бит PLSB учитывать смещение. Минимально возможное значение PLSB=1.

0004 Отсутствие тримминга HSI генератора после старта программы

Статус

В ревизии 2 в ОТР добавлена информация о тримминге.

Описание

Дата документа: 29/03/23

При значении бит hsitrim=0 в регистре BKP_CLK батарейного домена частота внутреннего генератора HSI устанавливается в диапазоне 5-6 МГц.

Условия

После включения питания V_{CCB} батарейного домена биты подстройки частоты hsitrim сбрасываются в нулевое значение и не подстраивают частоту в значение 8 М Γ ц для HSI.

Последствия

В текущей инженерной версии UART загрузчика невозможно установить соединение на скорости 9600 бод. Только на скорости 4800 бод.

Рекомендации и способы обхода

Если при запуске микроконтроллера в режиме UART-загрузчика не происходит синхронизации с внешним устройством на скорости 9600 бод, то необходимо установить обмен на скорости 4800 бод.

В случае если после установки соединения с внешним устройством на скорости 4800 бод существует необходимость увеличить скорость обмена по UART, то с помощью команды CMD_BAUD нужно установить значение скорости обмена, в два раза превышающее требуемое значение. То есть для обмена на скорости 9600 бод, необходимо передать параметр, соответствующий скорости обмена 19 200.

0007 Накопление случайных данных с помощью ГСЧ с некорректной энтропией

Статус

Исправлено в ревизии 2.

Дата документа: 29/03/23

Описание

При аппаратном накоплении данных с помощью ГСЧ не обеспечивается их случайность.

Условия

Всегда.

Последствия

Данные не могут быть использованы в криптографических алгоритмах.

Рекомендации и способы обхода

Сбор данных необходимо производить программным путём. Время сбора данных может быть велико для криптографических алгоритмов. Текст программы доступен по ссылке: https://support.milandr.ru/base/primenenie/programmirovanie-32-razryadnykh-mk/osobennosti-primeneniya-know-how/45435/

0008 Частота генератора HSI составляет несколько кГц при напряжении питания меньше 2,7B

Статус

_

Описание

Дата документа: 29/03/23

При значении бит hsitrim[5:0]=0 в регистре BKP_CLK батарейного домена и Ucc ≤ 2.7В частота внутреннего генератора HSI составляет несколько кГц.

Условия

При подаче на микроконтроллер напряжения питания из диапазона [2,2; 2,7] В и при отсутствии подстройки частоты HSI-генератора с помощью тримминга (hsitrim[5:0]) частота HSI-генератора составляет величину несколько кГц.

Последствия

Долгий запуск микроконтроллера при подаче питания.

Рекомендации и способы обхода

В загрузочной программе первыми инструкциями необходимо устанавливать значение hsitrim[5:0] (20h или 40h), которое обеспечит требуемое значение частоты HSI-генератора или же работать только при напряжении питания, превышающем 2,7B. Во втором случае при значении бит hsitrim[5:0]=0 в регистре BKP_CLK батарейного домена частота внутреннего генератора HSI устанавливается в диапазоне 5-6 МГц.

Если в загрузочной программе не выполняется операция записи hsitrim[5:0], то необходимо обеспечить наличие бесперебойного батарейного питания и установленное значение hsitrim[5:0] в регистре ВКР СLК.

0011 Ошибка чтения данных при смене режима работы Flash

Статус

Не исправлено.

Дата документа: 29/03/23

Описание

Ошибочное чтение Flash-памяти в рабочем режиме при Delay = 1 после выхода из режима программирования (CON = 1).

Условия

При Delay = 1 возможно нарушение чтения из Flash-памяти в рабочем режиме CON = 0 (управление от ядра) после чтения Flash-памяти в режиме программирования CON = 1. Если до перехода в режим программирования для чтения 32-битного слова был установлен Delay = 0, но обращений к Flash-памяти в рабочем режиме между установкой Delay = 0 и переходом в режим программирования не было, ошибочное чтение не устраняется; если обращения к Flash-памяти в рабочем режиме были, нарушений нет.

Последствия

Происходит чтение некорректных данных/инструкций из Flash-памяти при CON = 0. Чтение некорректных инструкций может привести к исключительной ситуации ядра.

Рекомендации и способы обхода

Выбирать режим работы Delay = 0 для чтения при CON = 0 после чтения при CON = 1. Если используется Delay = 1, после чтения Flash-памяти при CON = 1 необходимо до последующих обращений к Flash-памяти при CON = 0 осуществить чтение одного 32-битного слова по любому адресу Flash-памяти для вычитки некорректного слова. Дальнейшие чтения будут осуществляться корректно.

Лист регистрации изменений

Дата документа: 29/03/23

Дата	Страница	Статус	ID	Категория	Описание
29.10.20					Документ создан
21.01.21					Добавлено описание ошибки 0004
16.02.21					Добавлено описание ошибки 0005
26.07.21					Добавлено больше информации по ошибке 005 и изменён статус всех ошибок
13.01.22					Изменён статус всех ошибок. Добавлено описание ошибок 0006 и 0007
17.10.22	6 8 10 11 15		0010 0002 0006 0009 0008		Добавлено описание ошибки Исправлен статус ошибки Исправлен статус ошибки Добавлено описание ошибки Добавлено описание ошибки
29.03.23	16		0011		Добавлено описание ошибки