Optimal Sequential Predictive Probability
Designs for Early Phase Expansion Cohorts

Emily C. Zabor Department of Quantitative Health Sciences

ENAR Annual Meeting March 29, 2022

This work was part of a joint effort

Alexander M. Kaizer

Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado-Anschutz Medical Campus, Aurora, CO USA

Elizabeth Garrett-Mayer

Division of Biostatistics and Research Data Governance, American Society of Clinical Oncology, Alexandria, VA USA

Brian P. Hobbs

Department of Population Health, University of Texas-Austin, Austin, TX USA

The use of expansion cohorts in phase I oncology trials is increasing over time

Table 2. Univariable Analysis of Relationship Between Trial Characteristics and Use of Expansion Cohort (N = 611)

Characteristics and ose of Expansion Conort (14 of 1)										
Use of EC										
No.	No.	%	OR	95% CI	P*					
Year										
90	11	12	1.4	1.2 to 1.6	< .001					
81	12	15								
100	20	20								
100	20	20								
132	45	34								
108	41	38								
	No. 90 81 100 100 132	No. No. 90 11 81 12 100 20 100 20 132 45	90 11 12 81 12 15 100 20 20 100 20 20 132 45 34	Use of EC No. No. % OR 90 11 12 1.4 81 12 15 100 20 20 100 20 20 132 45 34	Use of EC No. No. % OR 95% CI 90 11 12 1.4 1.2 to 1.6 81 12 15 100 20 20 100 20 20 132 45 34					

Manji et al. Evolution of clinical trial design in early drug development: systematic review of expansion cohort use in single-agent phase I cancer trials. J Clin Oncol. 2013 Nov 20;31(33):4260-7.

Trials with expansion cohorts have higher rate of phase II success; larger trials not necessarily better

Bugano et al. Use of Expansion Cohorts in Phase I Trials and Probability of Success in Phase II for 381 Anticancer Drugs. Clin Cancer Res. 2017 Aug 1;23(15):4020-4026.

Futility stopping can be used as a mechanism to achieve multiple phase I expansion cohort goals

Optimal sequential predictive probability design is ideal for this setting

Consider the setting of a one-arm clinical trial with a binary response endpoint

Each patient i either has the outcome(or not) such that $x_1 = 1(0)$. Then $X = \sum_{i=1}^{n} x_i$ is the total number of responses out of n patients observed so far of N patients total.

We test:

$$H_0: p \le p_0$$

VS

$$H_1: p \ge p_1$$

Bayesian statistical paradigm is the basis for sequential statistical learning

Prior: $\pi(p) \sim Beta(a_0, b_0)$ [Specifically Beta(0.5, 0.5) here]

Likelihood: $L_x(p) \propto p^x (1-p)^{n-x}$

Posterior: $p|x \sim Beta(a_0 + x, b_0 + n - x)$

The treatment is efficacious at posterior threshold θ if:

$$Pr(p > p_0|X) > \theta$$

Predictive probability monitoring stops the trial according to a threshold

The posterior predictive distribution of the number of future responses X^* in the remaining $n^* = N - n$ future patients follows:

Beta – binomial(
$$n^*$$
, $a_0 + x$, $b_0 + n - x$)

$$PPP = \sum_{x^*=0}^{n^*} Pr(X^* = x^*|x) \times I(Pr(p > p_0|X, X^* = x^*))$$

We stop for futility at predictive threshold θ^* if $PPP < \theta^*$.

Two optimization criteria are proposed to calibrate posterior and predictive thresholds

Operating characteristics of all designs are estimated in a simulation study

 $H_0: p \le 0.1$ $H_1: p \ge 0.3$

Proposed design is compared to two other common expansion cohort designs

- 1. Optimal sequential predictive probability
- 2. Simon's two-stage
 - ▶ Optimal
 - Minimax
- 3. Posterior probability monitoring

Simon's minimax assumes a type I error of 0.05 and power of 0.8

Venkatraman E. Seshan and Karissa Whiting (2022). clinfun: Clinical Trial Design and Data Analysis Functions. R package version 1.1.0. https://CRAN.R-project.org/package=clinfun

Simon's optimal assumes a type I error of 0.075 and power of 0.8 to achieve N=25

Venkatraman E. Seshan and Karissa Whiting (2022). clinfun: Clinical Trial Design and Data Analysis Functions. R package version 1.1.0. https://CRAN.R-project.org/package=clinfun

PP design examines 19 static PP thresholds

PPP design examines 19 PP and 4 PPP thresholds

Zabor EC, Hobbs, BP and Kane, MJ. (2021). http://www.emilyzabor.com/ppseq/

The OA design has type I error 0.087 and power 0.89

 Sequential predictive probability design with posterior threshold 0.93 and predictive threshold 0.1

The OE design has type I error 0.065 and power 0.77

- Sequential predictive probability design with posterior threshold 0.86 and predictive threshold 0.2
- Average 11 and 21.3 under null and alternative, respectively

The selected design's thresholds can be mapped to a set of decision rules for easy implementation

Phase I trial of atezolizumab planned three expansion cohorts; metastatic urothelial carcinoma added later

Herbst et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014 Nov 27:515(7528):563-7.

The planned design of the mUC expansion cohort was not clear

Original expansion cohort design:

- Total sample size of 40
- Single interim futility look: stop the trial if 0 responses in first 14 patients
- 4.4% chance of stopping if true response rate ≥ 20%

But mUC cohort enrolled 95 patients...

Six simulation settings were investigated based on the original/inferred atezolizumab trial design

Alternative response rate	N
0.2	95
0.3	95
0.3	95
0.2	40
0.3	40
0.3	40
	0.2 0.3 0.3 0.2 0.3

OE designs have higher power and lower average sample size under the null than protocol designs

*For N=95

Protocol designs have type I error < 0.01 and power around 50% when N=95

Null	Alt	Design	Post	Pred	α	$1-\beta$	N Null	N̄ Alt
0.1	0.2	OA	0.90	0.05	0.072	0.883	51	90
0.1	0.2	OE	0.95	0.15	0.041	0.723	32	78
0.1	0.2	Protocol	NA	NA	0.005	0.528	76	92
0.1	0.3	OA	0.96	0.05	0.029	0.992	45	95
0.1	0.3	OE	0.97	0.20	0.018	0.814	18	79
0.1	0.3	Protocol	NA	NA	0.000	0.499	76	95
0.2	0.3	OA	0.82	0.05	0.141	0.874	56	89
0.2	0.3	OE	0.86	0.10	0.081	0.703	39	75
0.2	0.3	Protocol	NA	NA	0.009	0.499	92	95

^{*}For N=95

R package {ppseq} implements optimal sequential predictive probability design

Zabor EC, Hobbs, BP and Kane, MJ. (2021). http://www.emilyzabor.com/ppseg/

Thank you! Questions?

Contact me:

✓zabore2@ccf.org

y @zabormetrics

?@zabore

