Embedded Control System with Industrial Interfaces

Project Documentation & Technical Submission

PROJECT TITLE

Industrial Relay Control System with Modbus RTU/TCP Communication

Submitted to: Octavia Carbon Technical Review Committee

Submitted by: Sharoun Madoya

Date: October 4th 2025

Email: Madoyashroun@gmail.com

Repository: https://github.com/Sharoun-Madoya/Octavia-Carbon-Interview-

Table of Contents

Project Documentation & Technical Submission	1
PROJECT TITLE	1
Industrial Relay Control System with Modbus RTU/TCP Communication	
EXECUTIVE SUMMARY	
Key Achievements:	
System Architecture	
MAIN CONTROL BOARD	
Core Controller	
Actuators	
Communication Interfaces	
Core System Block Diagram STM32 RELAY CONTROL SYSTEM	6
2. HARDWARE DESIGN	
2.1 Schematic Design (KiCad)	
SOFTWARE ARCHITECTURE	8
3.1 FreeRTOS Task Structure	8
Software Layers	8
SAFETY & RELIABILITY	
4.1 Multi-Level Watchdog System	
4.2 Fault Detection & Handling	
4.3 Isolation & Protection	
CONCLUSION	10
5.1 Project Achievements	10
5.2 Technical Excellence	10
5.3 Future Enhancements	10
CONTACT INFORMATION	11

EXECUTIVE SUMMARY

This project implements a robust industrial-grade embedded control system based on the **STM32F407VGT6 microcontroller** that drives **32 solid-state relays** with dual communication interfaces (**RS485/Modbus RTU** and **Ethernet/Modbus TCP**). The system is designed for seamless integration into industrial automation networks with emphasis on reliability, safety, and scalability.

Key Achievements:

- 32-channel relay control with optical isolation
- Modbus RTU slave interface (RS485) for PLC integration
- Modbus TCP server for Ethernet connectivity
- FreeRTOS-based real-time operation
- Industrial safety standards compliance
- Complete hardware and firmware solution

System Architecture

MAIN CONTROL BOARD

Core Controller

For an STM32 controller as the core need, with enough I/O pins, communication peripherals, and memory. An **STM32F407** is my preferable choice. This is because it has multiple UARTs (for RS485), an Ethernet MAC, and ample GPIOs.

Actuators

32x **PLC-RSC-24DC/21** relays. These are solid-state relays (SSRs) with a 24V DC control voltage. They are usually isolated, but I shall add another layer of isolation for safety.

Communication Interfaces

- **RS485:** A multi-drop serial bus. I choose a MAX485 transceiver IC.
- **Ethernet:** Using an Ethernet Physical Layer chip (LAN8720A), I connected it to the STM32's internal MAC. We'll implement a Modbus TCP server for industrial compatibility.

MAIN CONTROL BOARD

Core Controller

For an STM32 controller as the core need, with enough I/O pins, communication peripherals, and memory. An **STM32F407** is my preferable choice. This is because it has multiple UARTs (for RS485), an Ethernet MAC, and ample GPIOs.

Actuators

32x PLC-RSC-24DC/21 relays. These are solid-state relays (SSRs) with a 24V DC control voltage. They are usually isolated, but I shall add another layer of isolation for safety.

Communication Interfaces

- RS485: A multi-drop serial bus. I choose a MAX485 transceiver IC.
- Ethernet: Using an Ethernet Physical Layer chip (LAN8720A), I connected it to the STM32's internal MAC. We'll implement a Modbus TCP server for industrial compatibility.

GPIO PORTS

To Network Switch

Core System Block Diagram

STM32 RELAY CONTROL SYSTEM

HARDWARE DESIGN

2.1 Schematic Design (KiCad)

The complete schematic design includes:

2.1.1 Relay Driver Circuit

- 32× TLP291 optocouplers for galvanic isolation
- 32× 2N2222 NPN transistors for current amplification
- Current-limiting resistors (220 Ω) and base resistors (4.7k Ω)
- Bank-based organization (4 banks of 8 relays)

2.1.2 RS485 Interface

- ADM2483 isolated RS485 transceiver
- 120Ω termination with jumper selection
- TVS diodes for ESD protection
- Ferrite beads for EMI suppression

2.1.3 Ethernet Interface

- LAN8742A 10/100 Ethernet PHY
- RMII interface to STM32
- RJ45 with integrated magnetics
- Proper decoupling and crystal oscillator

SOFTWARE ARCHITECTURE

3.1 FreeRTOS Task Structure

Task	Stack Size	Responsibility
RelayControlTask	2KB	Relay state management
ModbusRTUTask	3KB	RS485 communication
EthernetTask	4KB	Network stack management
SystemMonitorTask	1KB	Watchdog & diagnostics

Software Layers

3.2 Hardware Abstraction Layer (HAL)

- STM32CubeMX generated initialization
- Custom drivers for relay control
- Communication peripheral management

Protocol Layer

- Modbus RTU slave implementation
- Modbus TCP server
- Protocol parsing and validation

Application Layer

- Relay control logic
- System state management
- User interface integration

SAFETY & RELIABILITY

4.1 Multi-Level Watchdog System

Hardware Watchdog (IWDG):

- 4-second timeout
- Independent clock source
- Critical system protection

Software Watchdog:

- Task monitoring
- Stack overflow detection
- Graceful degradation

4.2 Fault Detection & Handling

Error Categories:

- Communication timeouts
- Task starvation
- Stack overflow
- Power supply monitoring
- Relay state verification

4.3 Isolation & Protection

• 2500Vrms optical isolation between control and power domains

- ESD protection on all communication interfaces
- **Overcurrent protection** on relay outputs
- Proper creepage distances on PCB

CONCLUSION

5.1 Project Achievements

This project successfully delivers a comprehensive industrial control system that:

- 1. **Meets All Requirements**: Full implementation of 32-relay control with dual communication interfaces
- 2. Ensures Reliability: Robust fault detection, watchdog systems, and safety mechanisms
- 3. Provides Industrial Compatibility: Seamless integration with Siemens PLCs and standard Modbus tools
- 4. Offers Scalability: Architecture supports future expansion and protocol additions
- 5. **Maintains Safety**: Comprehensive isolation and protection mechanisms

5.2 Technical Excellence

The implementation demonstrates:

- Clean Architecture: Well-separated layers with clear interfaces
- **Robust Engineering**: Industrial-grade components and protection
- Efficient Coding: Optimized FreeRTOS task structure and memory usage
- **Comprehensive Documentation**: Complete schematics, code documentation, and testing procedures

5.3 Future Enhancements

Potential improvements for production deployment:

• Field Updates: USB DFU or Ethernet bootloader

- Advanced Diagnostics: Predictive maintenance features
- Web Interface: Configuration and monitoring portal
- Security Features: Protocol encryption and access control

CONTACT INFORMATION

Sharoun Madoya +254708810442

Embedded Systems Engineer

Email: Madoyashroun@gmail.com

GitHub: https://github.com/Sharoun-Madoya

Project Repository: https://github.com/Sharoun-Madoya/Octavia-Carbon-Interview-