Microprocesseurs	1	•	Travail	écrit	no 2
MILE ON OCC33CM 3	-		ilavali	CUIL	IIV &

Nom:

Prénom:

Classe: I/2

Date: 13.01.2014

Problème nº 1 (Processus de développement en C, passage d'arguments et scope (portée) des variables et méthodes) a. Décrivez succinctement l'organisation/la structure des fichiers (des sources à l'exécutable) en C.

b. Indiquez le scope (portée) des 3 fonctions ci-dessous:
fichier : file1.c
 extern void fnct1();

void fnct2(int, int){...}

static fnct3(float){...}

c. Indiquez la technique utilisée ainsi que le mode d'accès pour les 4 arguments de la fonction ci-dessous. struct S foo (const struct S1 a1, long a2, struct S3* a3, const long* a4);

d. Indiquez le scope (portée) des variables v1 à v6 pour l'exemple de code ci-dessous:

```
bool v2;
extern struct S3* v3;
int bar (long v4) {
    static long v5 = 0;
    int v6 = 1;
    return 0;
}
```

static struct \$1 v1;

Problème nº 2 (Interface C)

Décrivez en C l'interface de la bibliothèque « error messages» (header file « err_msg.h ») permettant de gérer des messages d'erreurs. L'interface comprendra une méthode pour initialiser (init) la bibliothèque, une méthode pour ajouter un nouveau message d'erreurs (add_msg), une méthode pour lire/obtenir (get) les messages d'erreurs les uns après les autres et une méthonde pour vider (flush) la liste des messages d'erreurs.

La méthode « add_msg » permettra de spécifier la sévérité de l'erreur (error, warning, info, debug) ainsi qu'un message (une chaîne de caractères).

La méthode « **get** » prendra un paramètre permettant de spécifier si l'on désire obtenir le 1^{er} message d'erreurs ou les suivants et retournera le message d'erreurs au moyen de la structure

- Sévérité: énumération
- Timestamp : valeur entière 64-bit non-signée

« struct err_msg_message » composée des champs suivants :

- Message: chaîne de caractères, maximum 512 caractères.
 La taille maximale d'un message d'erreurs devra être défini par une contante (symbole).
- Attribut permettant de chaîner dynamiquement les messages dans une liste

Fichier : err msg.h

Gac/T-2/01.2014 Page 2 / 5

Problème nº 3 (Programmation C)

Implémentez dans les règles de l'art deux fonctions de la bibliothèque standard C afin de satisfaire aux spécifications ci-dessous :

/* Description

This function copies up to *n* bytes from the memory region pointed to by *in* to the memory region pointed to by *out*. If a byte matching the *endchar* is encountered, the byte is copied and copying stops. If the regions overlap, the behavior is undefined.

Returns

memccpy returns a pointer to the first byte following the endchar in the out region. If no byte matching endchar was copied, then NULL is returned.

*/
void* memccpy(void *out, const void *in, int endchar, size_t n) {

```
/* Description
    strupr converts each character in the string at a to uppercase.
    Returns
    strupr returns its argument, a.
*/
char *strupr(char *a) {
```

Gac/T-2/01.2014

Problème nº 4 (Pilote de périphérique)

Le processeur i.MX27 de Freescale dispose de 6 timers. La figure ci-contre décrit sommairement les registres du contrôleur. Pour rappel, l'i.MX27 travaille en « little endian » et autorise des accès 8, 16 et 32 bits.

- Définissez l'interface C (structure, constantes, ...)
 pour le contrôleur ci-contre permettant l'implémentation d'un pilote de périphérique en C.
 Remarque : seuls les bits utiles au code doivent être déclarés.
- b. Déclarez la variable permettant d'accéder aux 3 premiers timers situés aux adresses 0x1000'3000, 0x1000'4000 et 0x1000'5000
- c. Pour le 1^{er} timer, écrivez le code permettant de:
 - Initialiser le contrôleur (mettre le bit SWR à 1 et TEN à 0), attendre que l'initialisation soit terminée (SWR à 0) et finalement mettre les bits CC et TEN à 1
 - ii. Poser le PRESCALER à 33
 - iii. Configurer le champ CLK_SOURCE à 4

Name		31	30	29	28	27	26	25	24	23	22	21	20	16	18	17	16
		18	14	13	12	51	10	9	- 4	7	6	5	4	2	2	1	0
0x1000_9000 (TCTL1)- 0x1000_F000 (TCTL6)	A	0	Ð	0	0	0	0	0	0	0	0	. 0	0	0	. 0	0	0
	W															i	1
	A	0	0	0	0	Û	cc	ОМ	FRR		AP	CAP	COM	O M OOLIGATE		TEN	
	W	SWR	- 0.5			1	LL	UW	PHH	U	AP:	TEN	PEN	CLK SOURCE			
0x1000_3004 (TPRER1)- 0x1000_F004 (TPRER6)	A	0	0	0	۵	0	0	ū	0	0	۵	0	0	0	0	0	0
	W							l				-				1	+-
	R	Q	0	0	0	0	· · · · · · · · · · · · · · · · · · ·										
	W						PRESCALER										
0x1000_3008 (TCMP1)- 0x1000_F008 (TCMP6)	R							-	- 1-					-	0.00		
	W		COMPARE VALUE														
	R	*****															
	W							C	DMPAFI	E VAL	.UE						
0x1000_300C	-	CAPTURE VALUE															
	R							C.	VPTUR	E VAL	UE.						
(TCR1)-	W							C	VPTUR	E VAL	UE				107		
(TCR1)-							_	C	APTUR	E VAL	UE					<u> </u>	
(TCR1)- 0x1000_F00C	w		_					C		E VAL	UE						
(TCR1)- 0x1009_F00C (TCR6)	W							C	APTUR	E VAL	UE .					. A	
(TCR1)- 0x1009 F00C (TCR6) 0x1000_3010 (TCR1)-	W B W						-	C.	APTUR	E VAL	WE						
(TCR1)- 0x1009_F00C (TCR6)	W B W							C	APTUR	E VAL	UE .UE						
(TCR1)- 0x1000_F00C (TCR6) 0x1000_3010 (TCN1)- 0x1000_F010	W B W						-	C	APTUR	E VAL	WE WE						
(TCR1)- 0x1000_F00C (TCR6) 0x1000_3010 (TCN1)- 0x1000_F010 (TCN6)	W R W	0	0 1	0		0	ā	C	APTUR	R VAL	WE WE	0	0	ō	-		0
(TCR1)- 0x1000_500C (TCR6) 0x1000_3010 (TCN1)- 0x1000_F010 (TCM6) 0x1000_3014 (TSTAT1)-	W B W R W	0	0 1		0	0	a	Co Co	APTUR DUNTE DUNTE	R VAL	UE UE		0	0	0		D
(TCR1)- 0x1000_F00C (TCR6) 0x1000_S010 (TCN1)- 0x1000_F010 (TCN6)	W R W R W	0		0 0	0	0	a 0	Co Co	APTUR DUNTE DUNTE	R VAL	UE UE		0	0	0	O CAP	0

Problème nº 5 (Pointeurs et pointeurs de fonctions)

Définissez la structure « struct fnct » et le type « pointeur de fonction » pour les 3 operéations ci-dessous permettant de construire les variables « fnct1» à « fnct6» et « fnct list».

```
static long f1 (struct fnct* f, int i, int j) {return (f->v+i) + (j*5); } static long f2 (struct fnct* f, int i, int j) {return (f->v/i) + (j<<1);} static long f3 (struct fnct* f, int i, int j) {return (f->v-i) + (j*j); }
```

```
static struct fnct fnctl = {1, "function1", f1, &fnct2};
static struct fnct fnct2 = {2, "function2", f2, 0};
static struct fnct fnct3 = {3, "function3", f3, &fnct4};
static struct fnct fnct4 = {4, "function3", f3, &fnct6};
static struct fnct fnct5 = {5, "function2", f2, &fnct1};
static struct fnct fnct6 = {6, "function1", f1, &fnct5};
static struct fnct* fnct_list = &fnct3;
```

Pour le code ci-dessous et pour chaque itération, indiquez la fonction appelée (f1, f2 ou f3) avec la valeur des arguments « i » et « j », ainsi que la valeur retournée et stockée dans le tableau « result ».

```
static long result[6] = {1,2,3,4,5,6};
int main () {
   struct fnct* f = fnct_list;
   int i = 0;
   while (f != 0) {
      int j = result[f->v%6];
      result[i] = f->fnct (f, i, j);
      f = f->next; i++;
   }
   return 0;
}
```

Iteration 1:	Iteration 2 :	Iteration 3:	Iteration 4:	Iteration 5 :
result[1]:	result [2] :	result [3] :	result [4]	result [5] :

Gac/T-2/01.2014 Page 5 / 5