

MODEL ODPOWIEDZI I SCHEMAT OCENIANIA KONKURS FIZYCZNY DLAUCZNIÓW KLAS VII-VIII SZKÓŁ PODSTAWOWYCH WOJEWÓDZTWA MAZOWIECKIEGO

ETAP REJONOWY 2021/2022

ZASADY OCENIANIA PRAC KONKURSOWYCH

- Każdy poprawny sposób rozwiązania przez ucznia zadań nie ujęty w modelu odpowiedzi powinien być uznawany za prawidłowy i uczeń otrzymuje maksymalną liczbę punktów.
- Treść i zakres odpowiedzi ucznia powinny wynikać z polecenia i być poprawne pod względem merytorycznym.
- Do zredagowania odpowiedzi uczeń używa poprawnej i powszechnie stosowanej terminologii naukowej.
- Jeżeli w jakiejkolwiek części uczeń przedstawi więcej niż jedno rozwiązanie i chociaż jedno będzie błędne, nie można uznać tej części rozwiązania za prawidłowe.
- Za odpowiedzi w zadaniach przyznaje się wyłącznie punkty całkowite. Nie stosuje się punktów ułamkowych.
- Wykonywanie obliczeń na wielkościach fizycznych powinno odbywać się z zastosowaniem rachunku jednostek.

Uczeń uczestniczący w **etapie rejonowym** konkursu przedmiotowego musi osiągnąć **co najmniej 85%** wszystkich punktów, aby zakwalifikować się do etapu wojewódzkiego. Maksymalna liczba punktów za ten arkusz jest równa **20.**

.

MODEL ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZADAŃ

Nr zadania	1	2	3	4	5	6	7	8
Poprawna odpowiedź	В	С	В	С	В	A	D	D
Liczba pkt.	1	1	1	1	1	1	1	1

Zadanie 9. (0-3 pkt.)

Przyjmijmy oznaczenia s – długość całej trasy, s_2 i s_3 – długości drugiego i trzeciego jej odcinka, odpowiednio. Wtedy:

- **1 pkt** wywnioskowanie z treści zadania, że $s_2/v_2 = s_3/v_3$ i $s_2 + s_3 = s/2$ oraz czas przebycia pierwszego odcinka trasy $t_1 = s/(2 v_1)$.
- **1 pkt** otrzymanie z tych związków zależności $s_3 = s \ v_3/(2 \ (v_2+v_3))$ oraz $t_2 = t_3 = s_3/v_3 = s/(2 \ (v_2+v_3))$, gdzie t_2 i t_3 czasy przebycia drugiego i trzeciego odcinka trasy, odpowiednio;
- 1 pkt obliczenie, na podstawie otrzymanych wyżej wyników, prędkości średniej:

$$v_{sr} = s/(t_1 + t_2 + t_3) = s/(t_1 + 2t_2) = 2 v_1 (v_2 + v_3)/(2v_1 + v_2 + v_3) = \frac{2 \times 20 \frac{\text{km}}{h} (4 \frac{\text{km}}{h} + 15 \frac{\text{km}}{h})}{2 \times 20 \frac{\text{km}}{h} + 4 \frac{\text{km}}{h} + 15 \frac{\text{km}}{h}} \approx 13 \text{ km/h}.$$

Uwaga! Oczywiście zadanie może zostać rozwiązane mniej "algebraicznie", z wykorzystaniem wartości liczbowych prędkości.

Zadanie 10. (0-3 pkt.)

- **1 pkt** zauważenie, że energia całkowita piłeczki E_c nie zmienia się i jest równa jej początkowej energii kinetycznej, oraz zapisanie tej energii $E_c = mv_0^2/2$;
- **1 pkt** zapisanie wyrażeń na energię potencjalną piłeczki na wysokości h, $E_p = m g h$ oraz jej energię kinetyczną na tej wysokości, $E_k = E_c E_p = m (v_0^2/2 g h)$;
- **1 pkt** zapisanie, podanego w treści zadania, związku energii E_p i E_k na poszukiwanej wysokości $E_p = 0.2$ E_k i, po uproszczeniu masy, g h = 0.2 $(v_0^2/2 g$ h). Stąd 1,2 g h = 0.1 v_0^2 , czyli $h = v_0^2/12$ $g = \frac{100 \text{ m}^2/\text{s}^2}{12 \times 10 \text{ m/s}^2} \approx 0.83 \text{ m}$.

Zadanie 11. (0 – 3 pkt.)

- 1 pkt zauważenie, że ciepło Q potrzebne do stopienia lodu o masie m, w temperaturze topnienia, jest proporcjonalne do tej masy Q = k m (k jest ciepłem topnienia, ale uczeń nie musi znać tej wielkości fizycznej) oraz, że ciepło efektywnie dostarczane przez urządzenie grzejne w czasie t wynosi $Q = P \eta t$.
- **1 pkt** porównanie obu ciepeł i obliczenie czasu topnienia lodu w obu przypadkach: $k m = P \eta t$, skąd $t = k m/P \eta$. Czasy topnienia lodu wynoszą więc: $t_I = k m_I/P_I \eta_I$ i $t_2 = k m_2/P_2 \eta_2$, odpowiednio;
- **1 pkt** zauważenie, że poszukiwana różnica czasów (dodatnia lub ujemna) $\Delta t = t_2 t_1 = k \ (m_2/P_2 \, \eta_2 m_1/P_1 \, \eta_1) \text{ i obliczenie, wobec nieznanego } k, \text{ wyrażenia w nawiasie, które okazuje się być równe zeru. Wyciągnięcie stąd wniosku, że lód w obu naczyniach stopił się w tym samym czasie.$

Zadanie 12(0-3 pkt.)

- 1 pkt zauważenie, że w obu krajach do zagotowania szklanki wody trzeba dostarczyć tyle samo ciepła. Ciepło to równe jest pracy wykonanej przez prąd elektryczny w czasie t; Q = UIt, gdzie U to przyłożone napięcie a I natężenie prądu płynącego przez grzałkę.
- **1 pkt** zauważenie, że It to ładunek elektryczny q, który przepłynął przez grzałkę w czasie t. Zapisanie tego związku dla obu krajów $Q = U_1 q_1$ i $Q = U_2 q_2$.
- 1 pkt porównanie obu wyrażeń i wyciągnięcie wniosku co do relacji ładunków przepływających przez grzałkę, potrzebnych do zagotowania szklanki wody w Polsce i miejscu letnich wakacji Janka: U₁ q₁ = U₂ q₂. Stąd q₂/q₁ = U₁/U₂ = 220 V/110 V = 2. Czyli w miejscu letnich wakacji Janka przez grzałkę musi przepłynąć 2 razy większy ładunek niż w Polsce.