Рубежный контроль №1

Выполнил: Иванников Александр Владимирович, группа ИУ5-23М

Описание задания:

Вариант №3

Для заданного набора данных произведите масштабирование данных (для одного признака) и преобразование категориальных признаков в количественные двумя способами (label encoding, one hot encoding) для одного признака.

```
In [1]:
```

```
from google.colab import drive, files
drive.mount('/content/drive')
```

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force remount=True).

```
In [0]:
```

```
from google.colab import files
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
os.listdir()
data = pd.read_csv('drive/My Drive/Files/dataset/BlackFriday.csv', sep=",")
```

Масштабирование данных

Возьмем параметр покупок:

```
In [3]:
```

```
plt.hist(data['Purchase'], 30, histtype='step')
plt.xlabel('Purchase in $')
plt.show()
```


Масштабируем данные по методу минимакса и Z-оценок:

```
In [4]:
```

```
from sklearn.preprocessing import MinMaxScaler, StandardScaler
```

```
sc1 = MinMaxScaler()
sc1_data = sc1.fit_transform(data[['Purchase']])

plt.hist(sc1_data, 30, histtype='step')
plt.xlabel('Purchase (scaled by minmax)')
plt.show()

/usr/local/lib/python3.6/dist-packages/sklearn/preprocessing/data.py:334: DataConversionWarning: D
ata with input dtype int64 were all converted to float64 by MinMaxScaler.
    return self.partial_fit(X, y)
```


In [5]:

```
sc2 = StandardScaler()
sc2_data = sc2.fit_transform(data[['Purchase']])

plt.hist(sc2_data, 30, histtype='step')
plt.xlabel('Purchase (scaled by standard)')
plt.show()

/usr/local/lib/python3.6/dist-packages/sklearn/preprocessing/data.py:645: DataConversionWarning: D
ata with input dtype int64 were all converted to float64 by StandardScaler.
    return self.partial_fit(X, y)
/usr/local/lib/python3.6/dist-packages/sklearn/base.py:464: DataConversionWarning: Data with input
dtype int64 were all converted to float64 by StandardScaler.
    return self.fit(X, **fit_params).transform(X)
```


Логичнее использовать масштабирование minmax, так как параметр имеет значения почти от 0 до большого значения (и поэтому логичнее маштабировать от 0 до 1).

Преобразование категориальных признаков

```
In [0]:
```

from sklearn.preprocessing import LabelEncoder, OneHotEncoder

Использование LabelEncoder

```
In [7]:
```

```
cat_temp_data = data[['Gender']]
cat_temp_data[0:10]
```

Out[7]:

	Gender
0	F
1	F
2	F
3	F
4	М
5	М
6	М
7	М
8	М

Сравним исходные данные и их целочисленные значения:

In [8]:

```
le = LabelEncoder()
cat_enc_le = le.fit_transform(cat_temp_data['Gender'])
cat_enc2 = pd.DataFrame({'Gender':cat_temp_data['Gender'], 'Gender bin':cat_enc_le})
cat_enc2[0:10]
```

Out[8]:

	Gender	Gender bin
0	F	0
1	F	0
2	F	0
3	F	0
4	М	1
5	М	1
6	М	1
7	М	1
8	М	1
9	М	1

Внедрим данные в исходные данные:

In [9]:

```
data.head(5)
```

Out[9]:

	User_ID	Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Years	Marital_Status	Product_Category_1 Pro
0	1000001	P00069042	F	0- 17	10	A	2	0	3

				17					
1	100001	P00248942	F	0-	10	Δ	2	n	1

```
User_ID Product_ID Gender Age Occupation City_Category Stay_In_Current_City_Years Marital_Status Product_Category_1
                                0-
                            F
2 1000001
           P00087842
                                            10
                                                          Α
                                                                                    2
                                                                                                  0
                                                                                                                    12
                                17
                                0-
17
3 1000001 P00085442
                                            10
                                                          Α
                                                                                                  0
                                                                                                                    12
4 1000002 P00285442
                           M 55+
                                            16
                                                          С
                                                                                                                     8
```

```
In [10]:
```

```
data2 = data
data2['Gender'] = cat_enc_le
data2.head(5)
```

Out[10]:

	User_ID	Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Years	Marital_Status	Product_Category_1 Pro
0	1000001	P00069042	0	0- 17	10	А	2	0	3
1	1000001	P00248942	0	0- 17	10	А	2	0	1
2	1000001	P00087842	0	0- 17	10	А	2	0	12
3	1000001	P00085442	0	0- 17	10	А	2	0	12
4	1000002	P00285442	1	55+	16	С	4+	0	8
4									Þ

Использование OneHotEncoder

In [11]:

```
ohe = OneHotEncoder()
cat_enc_ohe = ohe.fit_transform(data[['City_Category']])
cat_enc_ohe.todense()[0:10]
```

Out[11]:

In [12]:

```
data4 = pd.get_dummies(data[['City_Category']])
data4.head(5)
```

Out[12]:

	City_Category_A	City_Category_B	City_Category_C
0	1	0	0
1	1	0	0
2	1	0	0
3	1	0	0
4	0	0	1

Добавим в исходные данные новые столбцы:

In [13]:

data3=data2.join(data4) data3.head(5)

Out[13]:

	User_ID	Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Years	Marital_Status	Product_Category_1	Prc
0	1000001	P00069042	0	0- 17	10	А	2	0	3	
1	1000001	P00248942	0	0- 17	10	А	2	0	1	
2	1000001	P00087842	0	0- 17	10	А	2	0	12	
3	1000001	P00085442	0	0- 17	10	А	2	0	12	
4	1000002	P00285442	1	55+	16	С	4+	0	8	
4										Þ