Probability Distributions

Basic Probability Laws

- Union Rule: $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- Intersection Rule: $P(A \cap B) = P(A)P(B|A)$
- Complement Rule: $P(A^c) = 1 P(A)$
- Law of Total Probability: $P(A) = \sum P(A|B_i)P(B_i)$
- ullet Bayes' Theorem: $P(A|B)=rac{P(B|A)P(A)}{P(B)}$

1. Introduction to Probability Distributions

- **Definition**: A probability distribution describes how probabilities are distributed over different values of a random variable.
- Types:
 - Discrete Probability Distributions (e.g., Binomial, Poisson, Bernoulli)
 - Continuous Probability Distributions (e.g., Normal, Chi-Squared, T-Distribution)

2. Discrete Uniform Distribution

• Definition: A distribution where each possible outcome has an equal probability.

$$P(X=x)=rac{1}{n}, \quad ext{for } x \in \{x_1, x_2, ..., x_n\}$$

• Formula: where is the number of possible outcomes.

Example: Probability of rolling a fair six-sided die (each outcome has equal probability).

3. Binomial Distribution

- Definition: Models the number of successes in nn independent Bernoulli trials.
- Formula:

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

Example: Probability of getting exactly 3 heads in 5 coin flips (success probability p=0.5)

4. Bernoulli Distribution

- **Definition**: A special case of the binomial distribution where n=1n = 1.
- Formula:

$$P(X = 1) = p, \quad P(X = 0) = 1 - p$$

Example: Success or failure in a penalty kick (e.g., scoring with probability p=0.7).

5. Poisson Distribution

- **Definition**: Models the number of events occurring in a fixed interval of time/space.
- Formula:

$$P(X=k) = \frac{e^{-\lambda}\lambda^k}{k!}$$

Example: Number of customer arrivals per hour in a shop (with an average arrival rate λ =10)

6. Normal Distribution

- **Definition**: A continuous distribution describing many natural phenomena.
- Formula:

$$f(x)=rac{1}{\sigma\sqrt{2\pi}}e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

Example: Heights of people in a population (mean μ =170cm\mu = 170cm, standard deviation σ =10cm\sigma = 10cm).

7. Standard Normal Distribution

- **Definition**: A normal distribution with mean μ =0 and standard deviation σ =1.
- Usage: Used for statistical testing.

8. Student's T Distribution

- **Definition**: Used for small sample sizes instead of the normal distribution.
- Formula:

$$t=rac{X-\mu}{s/\sqrt{n}}$$

9. Chi-Squared Distribution

- **Definition**: Used in hypothesis testing and variance estimation.
- Formula:

$$:\chi^2=\sum (X_i^2)$$

10. Conditional Probability & Bayes' Theorem

• Law of Total Probability:

$$P(A) = \sum P(A|B_i)P(B_i)$$

Bayes' Theorem:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

11. Law of Large Numbers

• **Definition**: As the number of trials increases, the sample mean approaches the true mean.

12. Probability Density Functions

• **Definition**: Describes continuous probability distributions.

13. Poisson Process

• **Definition**: Models events occurring randomly over time.

14. Discrete & Continuous Random Variables

- Definition:
 - Discrete: Countable outcomes (e.g., number of students in a class).
 - Continuous: Infinite possible values (e.g., height of students).

15. Expected Value of Binomial Distribution

• Formula: E(X)=np

Example: Expected number of heads in 10 coin flips with p=0.5

16. Visualizing a Binomial Distribution

