PROG MiniProjet 1

Jeu en programmation objet

Nous allons utiliser la bibliothèque pygame pour créer un jeu en programmation orientée objet Les images, polices de caractères et le fichier jeu.py sont présents sur http://palmerio.drak.fr/

Défi 1

Transformer le script jeu.py en programmation orienté objet sous cette forme :

```
import pygame
import math
from random import *
                       Implémentation de la classe Balle
class Balle():
       def __init__(self,largeur,hauteur):
               pass
       def updatepos(self):
                                              # ne retourne rien
               pass
       def getX(self):
                                              # accesseur
               pass
         .... et les autres méthodes de classse
# Création de l'instance
maballe=Balle(largeur, hauteur)
# Boucle while du jeu
```

Défi 2

Créer un tableau contenant 50 balles différentes en mouvement désordonné.

Défi 3

Un clic de souris sur une balle doit la faire disparaître de l'affichage.

```
# Pour vous aider, rechercher :
# for event in pygame.event.get():
# event.type == pygame.MOUSEBUTTONDOWN:
```


Script " jeu.py "

import pygame import math from random import *

Initialisation de pygame

pygame.init()
clock = pygame.time.Clock()

Dimensions de la fenetre

largeur = 638 hauteur = 320 screen = pygame.display.set_mode((largeur, hauteur))

Chargement des images et de la police de caractères

fond = pygame.image.load('img/fond.jpg').convert()
balle = pygame.image.load('img/balle.png').convert_alpha()
font = pygame.font.Font('font/elite.ttf', 16)

Texte qui sera affiché au bas de la fenetre

WHITE = pygame.Color(255, 255, 255) text = font.render('Projet NSI', True, WHITE)

Coordonnees de la POSITION initiale de la balle (générees aléatoirement)

x = random()*largeur-55
y = random()*hauteur-55

Coordonnees de la VITESSE initiale de la balle (générees aléatoirement)

angle = 2*math.pi*random()
deltax = 5*math.cos(angle)
deltay = 5*math.sin(angle)

Boucle exécutée pendant toute la partie (Barre espace pour quitter le jeu)

continuer = True while continuer:

for event in pygame.event.get():
 if event.type == pygame.QUIT:
 continuer = False
 if event.type == pygame.KEYDOWN and event.key == pygame.K_SPACE:
 continuer = False

#calcul de la nouvelle position de la balle, la balle avance de deltax et de deltay suivant les axes

x = x + deltaxy = y + deltay

Rebonds sur les côtés du cadre pour gérer les changements de directions

if (x>largeur-50 and deltax>0) or (x<0 and deltax<0):
 deltax = -deltax
elif ((y>hauteur-50 and deltay>0) or (y<0 and deltay<0)):
 deltay = -deltay</pre>

Affichage des images à l'écran

screen.blit(fond, (0,0)) screen.blit(text, (490,300)) screen.blit(balle, (x, y))

Affichage de l'image avec une cadence de 50 images par seconde (modifiable)

pygame.display.update() clock.tick(50)

Fin de la boucle