University of Freiburg Dept. of Computer Science Prof. Dr. F. Kuhn P. Schneider

Advanced Algorithms Sample Solution Problem Set 7

Issued: Friday, June 14, 2019

Exercise 1: Maximum Flow as Zero Sum Game

Let G = (V, E) be a graph with edge capacities $c : E \to \{1\}$ and let $s, t \in V$ be the source and sink respectively. We can formulate the maximum flow problem as zero sum game as follows. Let P be the (rather large) set of s-t paths. We define a path player $\mathcal P$ which picks a path from P and an edge player $\mathcal E$ which picks an edge from E. Let $e \in E$ and $p \in P$ be the choices of $\mathcal E$ and $\mathcal P$. Then the payoff for $\mathcal E$ is 1 if $e \in p$, else 0. Show that the value of this game is $\frac{1}{\gamma}$ where γ is the value of the maximum s-t flow.

Sample Solution

Our goal is to show: (i) player \mathcal{P} has a strategy that guarantees it a loss of at most $1/\gamma$ and (ii) player \mathcal{E} has a strategy that guarantees it a win of at least $1/\gamma$. Given that (i),(ii) are true, the value of the game must obviously be $1/\gamma$.

Let f be a maximum flow on G. We use f to show (i). Let f(p) be the flow routed over some path $p \in P$. We define the probability that player \mathcal{P} picks path $p \in P$ as $q_p := \frac{f(p)}{\gamma}$. Now assume player \mathcal{E} picks some edge $e \in E$. Then the probability that e is on a path that player \mathcal{P} picks is

$$\sum_{p \ni e} q_p = \sum_{p \ni e} \frac{f(p)}{\gamma} \stackrel{c(e)=1}{\leq} \frac{1}{\gamma}.$$

To show (ii) we will formulate the max flow problem as a primal-dual pair of linear programs, with the goal of using strong duality to get a good strategy for player \mathcal{E} . For each $p \in P$ we define a variable x_p . Then max flow corresponds to the solution of the (large) LP:

$$\max \sum_{p \in P} x_p$$
s.t. $\forall e \in E : \sum_{p \ni e} x_p \le 1$
 $\forall p \in P : x_p \ge 0$

An optimal solution x_p^* , $p \in P$ corresponds to a max flow, hence $\sum_{p \in P} x_p^* = \gamma$. For the dual we define a variable x_e for each $e \in E$. We have

$$\min \sum_{e \in E} x_e$$
 s.t. $\forall p \in P : \sum_{e \in p} x_e \ge 1$ $\forall e \in E : x_e > 0$

Since the primal is feasible and bounded (by γ), strong duality tells us that the optimal solution x_e^* , $e \in E$ of the dual also has optimal value $\sum_{e \in E} x_e^* = \gamma$. Now we show that \mathcal{E} can get an optimal strategy out of the optimal solution to the above dual LP. Let \mathcal{E} pick an edge with probability $q_e := \frac{x_e^*}{\sum_{e \in E} x_e^*}$ Then for any path p player \mathcal{P} might choose we have

$$\sum_{e \in p} q_e \ge \frac{\sum_{e \in p} x_e^*}{\sum_{e \in E} x_e^*} \ge \frac{1}{\sum_{e \in E} x_e^*} = \frac{1}{\gamma}.$$

Exercise 2: Maximum Flow with Multiplicative Weight Updates

Let G = (V, E) be a graph with edge capacities $c : E \to \{1\}$ and let $s, t \in V$ be the source and sink respectively. Assume the value γ of the maximum s-t flow is given. Use MWU to efficiently compute a s-t flow f of total size γ , that has at most $(1+\varepsilon)$ flow per edge.

Sample Solution

Roughly speaking, our strategy is to let players \mathcal{P} and \mathcal{E} play MWU against each other with respect to the zero sum game defined above (c.f. Exercise 1). More precisely, as \mathcal{P} has a huge set of options to choose from (number of s-t-paths is potentially huge), we let only \mathcal{E} play MWU and let player \mathcal{P} respond each round in some more efficient manner.

We do this for a total of $T := \frac{4\gamma^2 \ln n}{\varepsilon^2}$ rounds where player \mathcal{E} will compute distributions $\mathbf{q}^1, \dots, \mathbf{q}^T$ with respect to some – yet to be defined – gain-function g_e^t . In step t we let player \mathcal{P} compute a good path $p^t \in P$ in response to the distribution \mathbf{q}^t (one that minimizes \mathcal{P} 's losses), from which we can define g_e^{t+1} for the next round. Our hope is that the paths p_1, \dots, p_T that player \mathcal{P} computes can be used to construct a good s-t-flow.

Initially, player \mathcal{E} starts with the $\mathbf{w}^0 = (1, ..., 1)$ vector (of dimension |E|) representing the uniform distribution \mathbf{q}^0 on edges (obtained by normalizing \mathbf{w}^0). In step $t \geq 1$ let \mathbf{q}^{t-1} be the distribution from the previous step. Then the optimal response of player \mathcal{P} is to choose the path p_t that minimizes $\sum_{e \in p} q_e^{t-1}$, i.e. the chance that player \mathcal{E} chooses an edge on p_t . This can be done by computing a shortest path in G with edge weights q_e^{t-1} . Subsequently, for each $e \in E$, we define the gain

$$g_e^t := \begin{cases} 1, & e \in p_t \\ 0, & \text{else} \end{cases}$$

and update our weights \boldsymbol{w}^t accordingly to obtain the next distribution \boldsymbol{q}^t on E. We obtain a result by taking the flow f that routes γ/T units of flow over each path p_t . As pseudocode:

Algorithm 1 ApproximateFlow $(G = (V, E), \gamma, \varepsilon)$

Obviously f has value γ . It remains to prove that f routes at most $1+\varepsilon$ units of flow over each edge. For a contradiction assume there is some edge $e \in E$ with more than $1+\varepsilon$ flow. Then more than $(1+\varepsilon)T/\gamma$ paths of the selected ones p_1, \ldots, p_T use e. Then, in hindsight, if player \mathcal{E} would have played

e all the time, he would have gained strictly more than $(1+\varepsilon)T/\gamma$ (thus the best edge $e^* \in E$ that player \mathcal{E} can choose is at least as good).

Now consider a maximum flow f^* of G. We can assume that the flow over each path that f^* induces is integral since all edge weights are. Since f^* has value γ and since the edge capacities are 1, there are γ paths that use their edges exclusively. Therefore player $\mathcal E$ can assign at most $1/\gamma$ total probability to each of the paths on average. Since player $\mathcal P$ will pick the shortest path in terms of total probability it will pick one that has at most $1/\gamma$ (no matter how the edge player assigns probabilities q^t). Therefore player $\mathcal E$ can win at most $1/\gamma$ each round in expectation, which is at most T/γ in total. Hence, due our choice of $T = \frac{4\gamma^2 \ln n}{\varepsilon^2}$, we obtain

$$\operatorname{regret} > \frac{(1+\varepsilon)T}{\gamma} - \frac{T}{\gamma} = \frac{\varepsilon T}{\gamma} = \frac{4\gamma \ln n}{\varepsilon}.$$

However, from the guarantees of MWU we know that the procedure has a regret of at most

$$\operatorname{regret} \leq 2\sqrt{T \ln n} = 2\sqrt{\frac{4\gamma^2 \ln^2 n}{\varepsilon^2}} = \frac{4\gamma \ln n}{\varepsilon},$$

a contradiction.