

Vektorverschneidung mit QGIS

Marco Hugentobler Sourcepole AG, Zürich www.sourcepole.ch

→P Inhalt

- > Vektorverschneidungen
- Vektorverschneidungen in der QGIS Processing toolbox
- OGIS native
- GRASS v.overlay
- SAGA
- Kleiner Benchmark

→P Vektorverschneidung

- OGC-Standard Simple feature access
 - Intersection
 - Union
 - Difference
 - SymDifference
- ISO SQL/MM
 - ST_Intersection
 - ST_Union
 - ST_Difference
 - ST_SymDifference

✓ P Vektorverschneidung

GDBC/CTI-S GeoConnections JTS Topology Suite - Version 1.4 Developer's Guide

Figure 4-1 - Overlay Operations

P Vektorverschneidung Layer

P QGIS Processing toolbox

P OGIS native algorithmen

- Geometrieverschneidung mit GEOS-Bibliothek
- Code in libqgisanalysis.dll/.so
 - OgsAlgorithmIntersection
 - OgsAlgorithmUnion
 - OgsAlgorithmDifference
 - OgsAlgorithmSymmetricalDifference
- > Verwendet nur die low-level Operationen intersection und difference

QGIS native algorithmen

> Probleme:

- Inputgeometrien müssen valide sein
 - Ceometrychecker / Topologieprüfung / qgis:checkvalidity
 - Beheben mit native:fixgeometries, Geometrychecker, oder von hand
- Sliverpolygone, wenn Geometrien nicht genau aufeinanderpassen
- In seltenen Fällen geos-Exceptions, auch wenn die Geometrien gültig sind

Sliverpolygone

GEOS-Exceptions

- Topologisches Datenmodell
 - Import kann bei grossen Datenmengen eine Weile dauern
- Parameter Operator: and / or / not / xor
- Parameter Einrastschwelle für Grenzen (snap)
- Kann auch mit ungültigen Geometrien umgehen

- System for Automated Geoscientific Analyses
- www.saga-gis.org
- > C++, braucht aber kein GEOS

Performance-Benchmark

- QGIS native vs. GRASS vs. SAGA
- Windows, QGIS 3.10.3, GRASS 7.8.2
- Daten aus dem Kanton Solothurn:
 - Wassergefahren (7'627 Polygone)
 - Bodenbedeckung (284'704 Polygone)

Benchmark1: Intersection

- Layer A: Wassergefahren Solothurn
- Layer B: Bodenbedeckung Solothurn
- OGIS native: 333s / 984s
- GRASS: 8969s/ 5499s
- > SAGA: 867s/250s

Benchmark2: Union

- Inputlayer: Wassergefahren, Bodenbedeckung Solothurn
- OGIS native: 2497s/6609s
- GRASS v.overlay: 5488s/5643s
- > SAGA:/31220s

Benchmark 3: difference

QGIS native: 18905s

- Vektorverschneidung immer noch erstaunlich rechenintensiv
- Alle getesteten Anwendungen rechnen nur mit einem Thread
- Grosse Performanceunterschiede

asourcepole