Le procédé de calcul et les propriétés des déterminants d'ordre trois se généralisent aux ordres supérieurs.

Règle de Sarrus

Cette règle n'est valable que pour l'ordre 3.

Système d'équations linéaires

Système de deux équations à deux inconnues

$$\begin{cases} a_1 x_1 + b_1 x_2 = c_1 \\ a_2 x_1 + b_2 x_2 = c_2 \end{cases}$$

Le nombre $D={\rm Det}(\vec a\,;\vec b)$ est le déterminant principal du système. Le système admet une solution unique si et seulement si $D\neq 0$

$$= \frac{\operatorname{Det}(\vec{c}; \vec{b})}{D} \left| x_2 = \frac{\operatorname{Det}(\vec{a}; \vec{c})}{D} \right| \text{ (règle de Cramer)}$$

Si D=0, alors le système admet soit une infinité de solutions, soit aucune solution.

Système de trois équations à trois inconnues

$$a_1x_1 + b_1x_2 + c_1x_3 = d_1$$

$$a_2x_1 + b_2x_2 + c_2x_3 = d_2$$

$$a_3x_1 + b_3x_2 + c_3x_3 = d_3$$

Le nombre $D={\rm Det}(\vec a;\vec b;\vec c)$ est le déterminant principal du système. Le système admet une solution unique si et seulement si $D\neq 0$

$$c_1 = \frac{\mathrm{Det}(\vec{d}; \vec{b}; \vec{c})}{D} \left[x_2 = \frac{\mathrm{Det}(\vec{a}; \vec{d}; \vec{c})}{D} \right] \left[x_3 = \frac{\mathrm{Det}(\vec{a}; \vec{b}; \vec{d})}{D} \right]$$

(règle de Cramer)

Si D=0, alors le système admet soit une infinité de solutions, soit aucune solution.

Ces résultats se généralisent aux systèmes de n équations linéaires à n incomuses, $n \ge 4$.

Matrice

On note
$$A = \begin{pmatrix} a_{11} & \cdots & a_{1m} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nm} \end{pmatrix} = (a_{ij}).$$

Cette matrice est de $type \ n \times m$ (n lignes, m colonnes).

Les nombres a_{ij} sont les éléments de la matrice.

Opérations sur les matrices

Somme de deux matrices

 $A+B=C=(c_{ij})$ avec $c_{ij}=a_{ij}+b_{ij}$ Chaque élément de la matrice A+B est égal à la somme des éléments correspondants de A et de A

On ne peut additionner que des matrices de même type.

Produit d'une matrice par un nombre réel λ

$$\lambda A=C=(c_{ij})$$
avec $c_{ij}=\lambda a_{ij}$ Chaque élément de la matrice A est multiplié par $\lambda.$

Produit d'une matrice $n \times m$ par une matrice $m \times p$

On note $A = (a_{ij})$ une matrice de type $n \times m$ et $B = (b_{jk})$ une matrice de type $m \times p$. Le produit AB est alors une matrice $C = (c_{ik})$ de type $n \times p$ définie par $c_{ik} = a_{i1}b_{1k} + a_{i2}b_{2k} + \ldots + a_{im}b_{mk} = \sum_{j=1}^{m} a_{ij}b_{jk}$

$$\begin{pmatrix} a_{i1} & a_{i2} & \dots & a_{im} \\ & & & & \\ & & & \vdots \\ & & & \\$$

Chaque élément c_{ik} de la matrice AB est égal à la somme des produits des éléments de la i-ème ligne de A par les éléments de la k-ième colonne de B.

On ne peut multiplier deux matrices que si le nombre de colonnes de la première est égal au nombre de lignes de la deuxième.

Matrices particulières

Une $matrice\ nulle,$ notée O, est une matrice dont tous les éléments sont nuls.

La matrice opposée de la matrice A est la matrice $-A = (-a_{ij})$

La matrice transposée de la matrice A, notée tA , est la matrice obtenue en échangeant les lignes et les colonnes de A. Ainsi, si A est de type $n \times m$, alors tA est de type $m \times n$ et on a ${}^tA = C = (c_{ij})$ avec $c_{ii} = a_{ii}$