Major Project Presentation

on

AI Story Telling Application

in

Sumedha Polawar 121B1D004

Aditi Ingale 121B1D059

Shivani Bahirat 121B1D060

Prasad Mangnale 121B1D067

(A. Y. 2024-25)

Under the guidance of

Prof. Vinayak Malavade

Department of Computer Engineering (Regional Language)
PCET's Pimpri Chinchwad College of Engineering

Contents

- Introduction
- Motivation
- Objective
- Literature Review
- Database Design
- Proposed System
- Project Plan
- Algorithm Details
- System Architecture
- UML Diagrams
- Testing
- Conclusion
- Paper Publication Details
- References

Introduction

- Modifying AI-generated narratives to conform to Marathi and English audiences' cultural values, customs, and storytelling preferences.
- Addressing language issues, such as grammatical and structural differences between Marathi Hindi and English storytelling.
- Developing qualitative and quantitative criteria to evaluate the effectiveness creativity and user engagement of AI- generated multi language stories
- According To Users Mood Generating the Abhang's in Marathi.

Motivation

- Bridging the Language and Cultural Gaps
- Encourage cross-cultural storytelling to bring together distinct language communities.
- Encourages Interactive Learning.
- ❖ Use AI-generated stories to make language learning more interesting and effective.
- Advancing AI in Digital Storytelling
- ❖ Leverage NLP and machine learning to generate meaningful, contextaware narratives.

Objectives

- To create an AI-powered interactive storytelling platform that supports Marathi, Hindi, and English, allowing for seamless multilingual storytelling.
- To increase user engagement, provide realistic and engaging story experiences that dynamically adjust to users' preferences and inputs.
- To provide accessibility through a user-friendly interface, the platform should be accessible for people of different ages and languages.

Literature Review

	Littlatuit Keview
Reference 1	AI Based Multilingual Chatbot: Advancing Higher Education in Rural Communities

machine learning for accurate query responses.

languages with a user-friendly interface.

Objectives

Proposed Solution

Results

Advantages

Limitations

use.

for rural users.

The AI-based multilingual chatbot provides a user-friendly interface with support for multiple local

languages, ensuring accessibility for rural students. Optimized response generation enables quick and relevant answers, empowering students with personalized educational support through AI and NLP technologies.

The proposed solution involves developing an AI-powered multilingual chatbot for rural communities, using NLP to provide educational support in local languages. It offers personalized assistance, leveraging

The AI-based multilingual chatbot improved user interaction and achieved over 90% efficiency in

The AI-based multilingual chatbot enhances accessibility by providing educational support in local

The chatbot may have content gaps, language limitations, and require internet access, posing challenges

delivering accurate responses. User feedback was highly positive, confirming its effectiveness and ease of

Reference 2	Noga Mudrik, Adam S. Charles 22 Dec 2022
Objectives	The Multi-Lingual DALL-E Storytime framework reduces AI language bias and enhances storytelling with coherent image sequences. It visualizes non-English content dynamically while allowing user customization.
Proposed Solution	The Multi-Lingual DALL-E Storytime framework enables coherent storytelling by generating sequential images for non-English narratives. It allows user customization, maintains a consistent artistic style, and enhances accessibility for non-English speakers.
Results	The framework successfully generated coherent visualizations for non-English texts, improving AI accessibility for diverse users. It maintained a consistent artistic style and allowed dynamic storytelling across multiple frames

The framework reduces language bias in AI-generated images, making storytelling accessible to

non-English speakers. Users can customize settings for consistency, ensuring tailored

The model relies on translations, which may lead to inaccuracies in meaning and representation.

Multi-Lingual DALL-E Storytime

storytelling experiences.

Advantages

Limitations

	20 Apr 2024
Objectives	MahaSQuAD aims to create a Marathi question-answering dataset by translating SQuAD into Marathi. The project addresses the lack of robust NLP resources for low-resource languages.
Proposed Solution	A robust translation approach is implemented to accurately map answers within translated passages. The dataset includes 118,516 training, 11,873 validation, and 11,803 test samples. Multiple models, including MahaBERT and mBERT, are trained and evaluated for performance.
Results	The dataset significantly improved Marathi question-answering capabilities, with monolingual models outperforming multilingual ones. MahaBERT and MahaRoBERTa achieved high accuracy, showing better contextual understanding. The approach proved effective in bridging linguistic gaps in Marathi NLP.

Ghatage, Aditya Kulkarni, Rajlaxmi Patil, Sharvi Endait, Raviraj Joshi

Reference 3

Limitations

MahaSQuAD: Bridging Linguistic Divides in Marathi Question-Answering Ruturaj

MahaSQuAD enhances NLP accessibility for Marathi speakers by providing a large, structured Advantages dataset. The scalable translation approach can be extended to other low-resource languages.

span alignment across translations remains a challenging task.

Automated translation may introduce minor inaccuracies and contextual mismatches. The dataset

relies on machine translation, which may not always capture linguistic nuances. Maintaining answer

Reference 4	Together We Can: Multilingual Automatic Post-Editing for Low-Resource Languages Sourabh Deoghare, Diptesh Kanojia, Pushpak Bhattacharyya 23 Oct 2024 (Cornell University)
Objectives	This study enhances machine translation quality for low-resource Indo-Aryan languages using multilingual Automatic Post-Editing (APE) . The research integrates Quality Estimation (QE) for better domain adaptation and translation correction.
Proposed Solution	A multilingual APE model is developed with synthetic Hindi-Marathi and Marathi-Hindi APE triplets to enable cross-linguistic transfer. The framework integrates multitask learning with QE for improved accuracy. Data augmentation and domain adaptation techniques further refine translation quality.
Results	The multilingual APE model outperformed single-language APE models, achieving up to 2.5 TER point improvements. Multitask learning boosted translation correction by over 1.29 TER points, with data augmentation adding further refinements.

Marathi pair remains uncertain and requires further study.

Advantages

Limitations

languages.

The system improves translation accuracy by leveraging linguistic similarities across languages. The

approach is scalable, providing a foundation for improving translations in other low-resource

Translation errors may persist due to limited authentic training data. Over-correction can occur,

leading to unnecessary modifications. The approach's effectiveness for languages outside the Hindi-

Database Design:

Key Fields in Firebase:

Field Name	Description
user_id	A unique ID for each session or user interaction.
age_group	The selected age bracket (e.g., 5–9, 10–14).
language	The language in which the story is requested (English/Hindi/Marathi).
story_category	The genre or theme of the story (e.g., Moral, Adventure, Fantasy).
generated_story	The final AI-generated story content.

For Abhang:

Field Name	Description		
abhang_id	Unique identifier for each Abhang.		
sant_name	Name of the poet-saint (e.g., Tukaram, Namdev, Dnyaneshwar, Eknath).		
emotion_tag	Emotion category (e.g., Happy, Motivational, Devotional, Sad).		
abhang_text	Complete poetic verse in Marathi.		

Proposed System

☐ Module-wise Implementation

Each module is developed separately:

- •User Input collects user preferences
- •AI Story Generator uses AI to create stories
- •**Text-to-Speech** narrates stories with voice control
- •Abhang Recommender fetches emotional poetry
- Video WebView plays curated YouTube content

☐ Firebase Integration

- •Real-time database used for storing user data, stories, links
- Optional authentication for personalization
- •Enables dynamic content delivery

☐ Testing & Optimization

- Functional testing across devices and Android versions
- Multilingual validation and performance tuning
- TTS voice clarity, AI story appropriateness

Project Plan

Phase	Tasks	Expected Duration
Phase1: Requirement	Gather functional & non-functional	2 Weeks
Analysis	requirements, feasibility study, risk	
	assessment	
Phase 2: System	Architecture design, technology stack	2 Weeks
Design	selection, database schema design	
Phase 3: Model	Train & fine-tune Gemini Pro 1.5 for	3 Weeks
Development &	storytelling and manually entering abhang	
Training	in firebase.	
Phase4: Web &	Develop Flask API & integrate with	4 Weeks
Hardware Integration	frontend UI	
Phase5: Testing &	AI accuracy, performance, and security	3 Weeks
Validation	testing	
Phase6:	Firebase hosting setup & cloud function	2 Weeks
Deployment&	scaling	
Optimization		
Phase7: Final Review	Prepare reports, user manuals,	2 Weeks
& Documentation	sustainability & risk assessments	
Phase8: Presentation	Demonstration, final evaluation, and	1 Week
& Feedback	project submission	

Algorithm Details:

NLP-Based Story Generation Algorithm (Generative AI):

Key Steps:

- 1. User Input Collection: a. Accepts inputs such as:
- i. Age Group (e.g., 3–7, 8–12) ii. Preferred Language (English, Hindi, Marathi)

2. Prompt Formation:

- a. Converts the collected user inputs into a structured and context-rich prompt.
- b. Example: "Generate a moral story for an 8-year-old in Marathi."

3. Story Generation:

- a. The generated prompt is passed to the NLP model.
- b. The model generates a complete story aligned with the selected parameters.

4. Post-Processing:

- a. Adjusts text length and formatting.
- b. Ensures clear paragraph separation and age-appropriate vocabulary.

5. Output Dispatch:

a. The final story is: i. Displayed on the mobile app screen for reading. ii. Sent to the TTS module for audio narration. This algorithm supports multilingual storytelling and adapts dynamically based on user preferences, ensuring a personalized experience.

Text-to-Speech (TTS) Conversion Algorithm:

Key Steps:

1.Story Input:

a. Receives story text from the NLP module once generation is complete.

2. Language Configuration:

a. Automatically detects and configures the language (English, Hindi, or Marathi) for narration.

3. Voice Output:

- a. Invokes the TextToSpeech.speak() method to start reading the story aloud.
- b. Voice pitch and speed can be adjusted for better clarity and listening experience.

4. User Controls:

- a. Provides buttons to:
- i. Play
- ii. Pause
- iii. Stop narration

5. Resource Management:

a. On completion or stop, the TTS engine is properly shut down to free resources and avoid memory leaks.

System Architecture

Use Case Diagram

Sequence Diagram

Unit Testing

Case ID	Test Scenario	Test Steps	Expected Result	Actual Result	Status
UT-01	AI Model generates accurate responses	1. Input text prompt 2. Run Gemini Pro 1.5 3. Check output	AI- generated content is contextually relevant	Story generated correctly	Pass
UT-02	API correctly processes AI requests	1. Send request to API 2. Verify response	API receives and processes request	API logged request successfully	Pass
UT-03	Firebase stores and retrieves real-time data	1. Store AI- generated response in Firebase 2. Retrieve data	Data is stored and retrieved instantly	Firebase updated in real time	Pass
UT-04	AI fails to generate content for ambiguous input	1. Input vague prompt 2. Run model	AI provides at least a partial response	Model to generate text	Pass
UT-05	API request to Firebase fails	1. Send request to Firebase and it updates	Data is updated successfully	Database updated	Pass

System Testing

Test Case ID	Test Scenario	Test Steps	Expected Result	Actual Result	Status
ST-01	Full system runs end-to- end successfully	1. User inputs query 2. AI generates text 3. Response stored in Firebase	AI-generated content is displayed in UI	End-to-end process worked correctly	Pass
ST-02	Multiple users receive unique responses	1. Two users input different prompts 2. Verify AI-generated text	Each user receives unique content	Different responses generated	Pass
ST-03	Response time meets performance goals	1. Measure time from input to response	Response generated in <2 sec	AI responded in 1.7 sec	Pass
ST-04	AI struggles with complex prompts	1. Input complex story scenario 2. Check AI response	AI generates relevant response	Model provided output	Pass
ST-05	Firebase fails to update real-time data	1. AI generates response 2. Flask updates Firebase 3. Check stored data	Data is stored successfully	update in Firebase	Pass

Conclusion

- Encourages language learning and cultural preservation, creating a respect for traditional storytelling in the digital era.
- Existing AI models, cloud-based deployment, and scalable design enable future expansion.
- Potential uses include education, entertainment, and crosscultural communication, making the system useful to a wide range of user groups.

Paper Publication Details

References

- [1] M. Ghosh, S. Chakraborty and A. Banerjee, " Automatic Story Generation Using Deep Learning Techniques, " 2020 International Conference on Computational Intelligence and Communication Technology (CICT), Ghaziabad, India, 2020, pp. 1-6.
- [2] S. V. Patel and R. A. Pandya, " Text-to-Speech Synthesis Using Android Platform, " 2019 IEEE International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), Coimbatore, India, 2019, pp. 1-5.
- [3] T. Nguyen, M. Tran and D. Pham, "Multilingual Natural Language Processing for Low-Resource Languages: A Survey," IEEE Access, vol. 8, pp. 26171–26189, 2020.
- [4] A. R. Dey and P. Dutta, " Firebase as BaaS for Android App Development, " 2021 IEEE International Conference on Computational and Intelligent Techniques in Science, Engineering and Technology (CITSET), 2021, pp. 173–177.
- [5] L. Liu and Y. Xu, " YouTube Video Recommendation Using User Preference and Content Analysis, " 2021 IEEE International Conference on Big Data and Smart Computing (BigComp), 2021, pp. 219–224.

