#### Mahn-Soo Choi (Korea University)

# Errata: A Quantum Computation Workbook

April 7, 2023

# Contents

| 1            | Postulates of Quantum Mechanics   | 3  |
|--------------|-----------------------------------|----|
| 2            | Quantum Computation: Overview     | 4  |
| 3            | Realizations of Quantum Computers | 6  |
| 4            | Quantum Algorithms                | 7  |
| 5            | Quantum Decoherence               | 8  |
| 6            | Quantum Error-Correction Codes    | 10 |
| 7            | Quantum Information Theory        | 12 |
| A            | Linear Algebra                    | 13 |
| В            | Superoperators                    | 14 |
| $\mathbf{C}$ | Group Theory                      | 15 |
| $\mathbf{F}$ | Solutions to Select Problems      | 16 |

# Notes

 $\bullet\,$  Those marked as "corrected" in the margin have been corrected in the eBook updated on April 3, 2023.

# Postulates of Quantum Mechanics

**Problem 1.10 (a), p. 30** The words "first" and "second" in the statements must be exchanged ( $p_2$  should also be replaced with  $p_1$  to be consistent with the rest subquestions). The correct statement should read as

What is the probability  $p_0$  to find the *second* qubit in  $|0\rangle$  (regardless of the *first* qubit)? Similarly, what is the probability  $p_1$  to find the *second* qubit in the state  $|1\rangle$ ?

# Quantum Computation: Overview

Section 2.1, p. 40, Eq. (2.17) The right-hand side of it should read as

$$\cdots = i \exp \left[ -i \frac{\pi}{2\sqrt{2}} \left( \hat{X} + \hat{Z} \right) \right].$$

corrected Section 2.2, p. 47, Eq. (2.31) It should read as

CNOT = 
$$\frac{1}{2} \left( \hat{I} + \hat{S}_{c}^{z} + \hat{S}_{t}^{x} - \hat{S}_{c}^{z} \hat{S}_{t}^{x} \right)$$

corrected Section 2.2, p. 64, Eq. (2.65) It should read as

$$UT_1T_2 = \begin{bmatrix} U_{11} & U_{12}'' & 0 & 0 \\ U_{21} & U_{22}'' & U_{23}'' & U_{24}' \\ U_{31} & U_{32}'' & U_{33}'' & U_{34}' \\ U_{41} & U_{42}'' & U_{43}'' & U_{44}' \end{bmatrix}.$$

corrected Section 2.2, p. 64, Eq. (2.66) It should read as

$$T_3 = \begin{bmatrix} \tilde{U}_{11}^* & \tilde{U}_{12}'' \\ \tilde{U}_{12}''^* & -\tilde{U}_{11} \\ & & 1 \\ & & & 1 \end{bmatrix}.$$

corrected Section 2.2, p. 64, Eq. (2.67) It should read as

$$UT_1T_2T_3 = \begin{bmatrix} U_{11}'' & 0 & 0 & 0\\ 0 & U_{22}''' & U_{23}'' & U_{24}'\\ 0 & U_{32}''' & U_{33}'' & U_{34}'\\ 0 & U_{42}''' & U_{43}'' & U_{44}' \end{bmatrix}.$$

corrected **Problem 2.3, p. 85, Eq. (2.93)** Equation (2.93) should read as

$$\cdots = \hat{S}^{\nu} \cos(\phi) - \sum_{\lambda} \hat{S}^{\lambda} \epsilon_{\lambda\mu\nu} \sin(\phi).$$

# Realizations of Quantum Computers

corrected Section 3.2, p. 100, line 5 from the top "It takes two Pauli X gates ..."  $\rightarrow$  "It takes two Hadamard gates ...".

corrected Section 3.3, p. 109, Eq. (3.51) It should read as

$$\cdots = \sum_{i} \cdots$$
.

corrected Section 3.3, p. 110, Eq. (3.54) It should read as

$$\cdots = \sum_{ij} \cdots$$

Section 3.4, p. 116 The first sentence of Section 3.4.1 should start with "Let us ...".

partially Section 3.4, p. 117, below Eq. (3.77) "..., we set  $\phi_2 = (-1)^m \beta$ ."  $\to$  "..., we set  $\phi_2 = (-1)^{x_1} \beta$ ."

In the updated eBook: "..., we set  $\phi_2=(-1)^{x1}\beta$ ."  $\to$  "..., we set  $\phi_2=(-1)^{x_1}\beta$ ."

Section 3.4, p. 119 The first sentence of Section 3.4.2 should start with "Let us ...".

# Quantum Algorithms

**Fig. 4.4b, p. 179** "... with respect to  $\omega$  ..."  $\rightarrow$  "... with respect to  $|v\rangle$  ..."

**Fig. 4.5a, p. 182**  $\theta, \theta/2 \to 2\theta, \theta$ , respectively. Here is the correct figure for Fig. 4.5a:



Section 4.2, p. 145, the second line of the opening paramgraph "... the best known ..."  $\rightarrow$  "... the known best ...".

Section 4.2, p. 147, just above Eq. (4.35) " $(a_z \oplus s) \cdot y = (a_z \cdot y) \oplus (s \oplus y)$ , it follows ..."  $\rightarrow$  " $(a_z \oplus s) \cdot y = (a_z \cdot y) \oplus (s \cdot y)$ , it follows ...".

Section 4.4, p. 161, Eq. (4.63) Symbol n must be replaced by m as follows

$$\left(\hat{H}^{\otimes m}\left|0\right\rangle\right)\otimes\left|\phi\right\rangle=\frac{1}{2^{m/2}}\sum_{x=0}^{2^{m}-1}\left|x\right\rangle\otimes\left|\phi\right\rangle.$$

Section 4.4, p. 161, below Eq. (4.64) "... performing the transformation  $\hat{U}$  repeatedly depending on the value y on the native register."  $\rightarrow$  "... performing the transformation  $\hat{U}$  repeatedly depending on value x on the native register."

**Problem 4.1 (a)** "Classically (...), ..." -> "Show that classically (...), ...".

### Quantum Decoherence

- Section 5.1 In several places, "Zender" must be corrected to "Zehnder".
- Section 5.1, p. 191, the last line "In the blue arm, photon passes through ..."  $\rightarrow$  "In the red arm, photon passes through ...".
- Section 5.1, p. 194, below Eq. (5.6) "Whence the photon detection probabilities ..."  $\rightarrow$  "Hence the photon detection probabilities...".
- Section 5.2, p. 206, Eq. (5.43) The second ' $\otimes$ ' should be removed from Eq. (5.43). That is, Eq. (5.43) should read as

$$|\Phi\rangle\langle\Phi| = \sum_{kl} |v_k\rangle\langle v_l| \otimes |v_k\rangle\langle v_l|.$$

- Fig. 5.4, p. 208, line 3 of the caption "... the success probability is 1/4 ..."  $\rightarrow$  "... the success probability is  $1/d^2$  for  $d = \dim \mathcal{V}$  ...".
- Section 5.2, p. 209, line 1 "... a success probability of 1/4 ..."  $\rightarrow$  "... a success probability of  $1/d^2$  for  $d = \dim \mathcal{V}$  ...".
- Section 5.2, p. 209, line 10 from top "... a success probability of 1/4 ..."  $\rightarrow$  "... a success probability of  $1/d^2$  ...".
- Section 5.2, p. 210, line 3 "... quantum operation:  $\mathscr{F}: \mathcal{L}(\mathcal{V}) \to \mathcal{L}(\mathcal{W})$  ..."  $\to$  "... quantum operation:  $\mathscr{F}: \mathcal{L}(\mathcal{V}) \to \mathcal{L}(\mathcal{V})$  ...".
- Section 5.2, p. 210, above Eq. (5.58) "than  $(\dim \mathcal{V}) \times (\dim \mathcal{W})$ . ... on  $\mathcal{V} \otimes \mathcal{W}$  ..."  $\rightarrow$  "than  $(\dim \mathcal{V})^2$ . ... on  $\mathcal{V} \otimes \mathcal{E}$  ...".
- Section 5.3, p. 216, line 8 "...probabilities  $\mathcal{F}_m(\hat{\rho})$ " must reads as "...probabilities  $\text{Tr}\left[\mathcal{F}_m(\hat{\rho})\right]$ ".
- Section 5.4, Eq. (5.99) It should read as

$$\hat{G} = \frac{1}{2} \sum_{\mu > 0} \hat{L}_{\mu}^{\dagger} \hat{L}_{\mu} \,.$$

Section 5.4, Eq. (5.147) It should read as

$$\frac{d\hat{\rho}}{dt} = \cdots$$
.

- Section 5.5, the first sentence, p. 234 "..., who close (or different) ..."  $\rightarrow$  "..., how close (or different) ...".
- Section 5.5, p. 236, just below Eq. (5.164) "... the canonical norm associate with ..."  $\rightarrow$  "... the canonical norm associated with ...".
- Section 5.5, p. 237, just below Eq. (5.177) "... traceless Hermitian operators  $(a_0)$  ..."  $\rightarrow$  "... traceless Hermitian operators  $(a_0 = 0)$  ...".
- Section 5.5, p. 244, the first line "associate with a POVM ..."  $\rightarrow$  "associated with a POVM ...".
- Section 5.5, p. 247, below Eq. (5.209) "... of two vectors normalized vectors ..."  $\rightarrow$  "... of two normalized vectors ...".
- Section 5.5, p. 248, below Eq. (5.215) "... to note that  $\hat{\rho}$  as two eigenvalues ..."  $\rightarrow$  "... to note that  $\hat{\rho}$  has two eigenvalues ...".
- Sectoin 5.5, p. 249, Eq. (5.224) It should reads

$$\cdots \geq \left| \left( \left\langle \Psi \right| \otimes \left\langle \epsilon_0 \right| \right) \hat{U} \hat{U}^{\dagger} \left( \left| \Phi \right\rangle \otimes \left| \epsilon_0 \right\rangle \right) \right| = \cdots.$$

Problem 5.4, p. 252, Eq.(5.234)  $\gamma_1 \rightarrow \gamma_\phi$ 

# Quantum Error-Correction Codes

- Section 6.1, p. 259, line 10 from the top "... the encoded state  $|\psi\rangle$  ..."  $\rightarrow$  "... the encoded state  $|\bar{\psi}\rangle$  ..."
- Section 6.1, p. 259, the second from the bottom "... the original encoded state  $|\psi\rangle$  ..."  $\rightarrow$  "... the original encoded state  $|\bar{\psi}\rangle$  ..."
- Section 6.1, p. 265, between Eqs. (6.8) and (6.9) "The phase-slip error ..."  $\rightarrow$  "The phase-flip error ...".
- Section 6.3, p. 288, Eq. (6.75)

$$\hat{U}(|0\rangle \otimes |\alpha\rangle) = |0\rangle \otimes |\alpha_0\rangle + |1\rangle \otimes \hat{A} |\alpha_1\rangle = \cdots$$

must be changed to

$$\hat{U}(|0\rangle \otimes |\alpha\rangle) = |0\rangle \otimes |\alpha_0\rangle + |1\rangle \otimes \hat{A} |\alpha_0\rangle = \cdots.$$

- Section 6.4, p. 298, above Eq. (6.101) "whence"  $\rightarrow$  "hence".
- **Section 6.4, p. 301** In the last sentence of the second paragraph of Section 6.4.2: "... the error sydromes for bit-flip errors ..."  $\rightarrow$  "... the error sydromes for phse-flip errors ...".
- Section 6.5, p. 309, line 5 from the bottom "These are difficult ..."  $\rightarrow$  "The toric codes are difficult ...".
- Section 6.5, p. 314, the last line at the bottom "A vertex on a rough edge ... with such a vertex ..."  $\rightarrow$  "A plaquette on a rough edge ... with such a plaquette ...".
- Section 6.5, p. 315, line 2 from the bottom "... logical operator  $\bar{Z}$  ..."  $\to$  "... logical operator  $\bar{X}$  ...".

- Section 6.5, p. 318, just below Eq. (6.120) "Plaquette and vertex operators ..."  $\rightarrow$  "Measurement of plaquette and vertex operators ...".
- Figure 6.9, p. 319, caption (b) "... and vertex defects (red ..."  $\rightarrow$  "... and plaquette defects (red ...".
- Section 6.5, p. 320, line 6 from the top "... upper example in Fig. 11b."  $\rightarrow$  "... upper example in Fig. 11.".

# Quantum Information Theory

Section 7.1, p. 327, Eq. (7.14) It should read as

$$\cdots \ge \frac{1-x}{\log_e 2}.$$

Section 7.3, p. 344, Eq. (7.77) It should read as

$$|\Psi_m\rangle = \binom{n}{m}^{-1/2} \cdots.$$

Section 7.3, p. 344, above Eq. (7.80) " ... diving ..."  $\rightarrow$  " ... dividing ..."

#### Appendix A

### Linear Algebra

- **Appendix A.1, p. 350, Definition A.3** "... there exists a solution ..."  $\rightarrow$  "... there exists a non-trivial solution ..."
- **Appendix A.1, p. 351, above Eq. (A.5)** "Whence u is orthogonal ..."  $\rightarrow$  "Hence u is orthogonal ...".
- Appendix A.4, p. 364, above Eq. (A.55) "Whence,  $\hat{A} \geq 0$ ."  $\rightarrow$  "Hence,  $\hat{A} \geq 0$ ."
- Appendix A.4, p. 363, below Eq. (A.59) "... eigenvalues  $\pm 1$ "  $\rightarrow$  "... eigenvalues  $e^{\mp i\phi}$ ".
- Appendix A.6, p. 369, below Eq. (A.79)  $N := W \rightarrow N := \dim W$ .

#### Appendix B

### Superoperators

Appendix B.1, p. 377, Eq. (B.6)  $\hat{S}^x \rightarrow \hat{S}^{\mu}$ .

Appendix B.2, below Exercise B.4

- "The following theorem confirms that any supermap ..." to "The following theorem confirms that any completely positive supermap ...".
- "... find a more compact ..."  $\rightarrow$  "... find more compact ...".

Appendix B.2, between Eqs. (B.30) and (B.31)

- $\{v_i\} \rightarrow \{|v_i\rangle\}$
- $|w_k\rangle \to \{|w_k\rangle\}$

Appendix B.4, p. 391, just below Eq. (B.53) "we have"  $\rightarrow$  "We have".

**Appendix B.4, p. 392, Eq. (B.56)**  $|\Psi\rangle\langle\Psi|$  should be replaced by  $|\Phi\rangle\langle\Phi|$ .

Appendix B.4, p. 393, the second last line "Whence, transposition ..."  $\rightarrow$  "Hence, transposition ...".

#### Appendix C

# Group Theory

```
Appendix C.1, p. 396, Definition C.1 (c) "... identity element e \in \mathcal{G} ..." \rightarrow "... identity element E \in \mathcal{G} ...".
```

Appendix C.2, p. 399, Theorem C.8 (b) "...  $\mathcal G$  an be ..."  $\to$  "...  $\mathcal G$  can be ...".

Appendix C.4, pp. 402, Defintion C.17 (a) "...  $\mathcal{G} \otimes \mathcal{G}'$  ..."  $\rightarrow$  "...  $\mathcal{G} \times \mathcal{G}'$  ...".

Appendix C.4, pp. 403, Eq. (C.22)  $\mathcal{G} \otimes \mathcal{G}' := \cdots \rightarrow \mathcal{G} \times \mathcal{G}' := \cdots$ .

#### Appendix F

#### Solutions to Select Problems

**Appendix F.3, p. 412** The heading "Quantum Computers" should be corrected to "Realizations of Quantum Comptuers" to match the original heading Chapter 3.

Appendix F.3, p. 412, Eq. (F.8)  $|D\rangle := \cdots \rightarrow |\Omega\rangle := \cdots$ .

Appendix F.3, p. 412, Eq. (F.11) It should read as

$$|D\rangle = \frac{|1\rangle \sin(\theta/2)e^{-i\phi/2} - \cdots}{\Omega}.$$

**Appendix F.3, p. 412, below Eq. (F.12)** "... the Berry phase as  $\gamma = -iA^{\phi} = \frac{1}{2}\cos\theta$ "  $\rightarrow$  "... the Berry phase as  $\gamma := -i\int_0^{2\pi} d\phi \, A^{\phi} = -2\pi i A^{\phi} = \pi\cos\theta$ ".

Appendix F.3, p. 412, above Eq. (F.13) "... the Abelina geometric ..."  $\rightarrow$  "... the Abelian geometric ...".

Appendix F.3, p. 412, Eq. (F.13) It should read as

$$U(\mathcal{C}) = e^{-i\gamma} = e^{-i\pi\cos\theta}$$

Appendix F.3, p. 413, above Eq. (F.17) "... a finite-finite dimensional ..."  $\rightarrow$  "... a finite-dimensional ..."

**Appendix F.5, p. 415** The heading "Decoherence" should be corrected to "Quantum Decoherence" to match the original heading Chapter 5.

Problem 6.7, p. 422, the display equation between (F.58) and (F.59)  $\hat{W}$  must be replaced with  $\hat{P}'''$ , i.e.,

$$\cdots (\hat{Z} \otimes \hat{W}) \cdots \rightarrow \cdots (\hat{Z} \otimes \hat{P}''') \cdots$$