Билеты по Алгебре и теории чисел 19-... 3 семестр. МОиАИС.

Никита Якунцев, Андрей Сотников, Никита Хатеев, to be continued...

12 января 2014 г.

Содержание

1	Фун	Функции многих переменных															2								
	1.1	Билет 19																							2
	1.2	Билет 20																							3

1 Функции многих переменных

Билет 19 1.1

Евклидово пространство. Простейшие свойства.

E - вещественное линейное пространство называется евклидовым, если задана функция $E \times E \to \mathbb{R}$, называемая скалярным произведением (обозн. $\forall x, y \; \exists (x, y) \in \mathbb{R}$) и выполнено 4 аксиомы:

- 1. $\forall x, y \in E (x, y) = (y, x)$
- 2. $\forall x_1, x_2, y \in E(x_1 + x_2, y) = (x_1, y) + (x_2, y)$
- 3. $\forall \alpha \in \mathbb{R} \ \forall x, y \in E \ (\alpha x, y) = \alpha(x, y)$
- 4. $\forall x \in E (x, x) > 0, x = 0 \Leftrightarrow (x, x) = 0$

Свойства:

- 1. **a)** $(0,y) = 0 \ \forall y \in E$
 - **b)** $(x,0) = 0 \ \forall x \in E$

Доказательство: а) $\overset{3 \ axiom}{\Rightarrow}$ при $\alpha=0 \ (0x,y)=0(x,y)=(0,y)=0, \ \forall y\in E$

2. a) $\forall n \in \mathbb{N} \, \forall \alpha_1 ... \alpha_n \in \mathbb{R} \, \forall x_1 ... x_n, y \in E$

$$\left(\sum_{i=1}^{n} \alpha_{i} x_{i}, y\right) = \sum_{i=1}^{n} \alpha_{i}\left(x_{i}, y\right)$$

Доказательство:

b)

1.2 Билет 20

Неравенство Коши-Буняковского.

Теорема 1 $\forall x,y \in E$ - евкл. пр-во; $|(x,y)^2| \le (x,x)*(y,y) \Leftrightarrow (x,y)^2 \le (x,x)*(y,y)$ Доказательство