第四章 中值定理及导数的应用

_	、单项选择题				
1.	若 $f(x)$ 在 (a,b) 内单调增加,则必有 $($ $)$.				
	(A) $f'(x) < 0$;	(B) $f'(x) > 0$	(C) $f'(x) \ge 0$;	(D) A, B, C 都不对.	
2.	函数 $y = f(x)$ 满足纪它的图形是().	条件: f(0)=1, f'(0)=	$=0$,当 $x \neq 0$ 时, $f'(x)$	$0 > 0, f''(x) \begin{cases} < 0, & x < 0 \\ > 0, & x > 0 \end{cases}$	
3.			成立的条件是() (C) 0 < <i>b</i> < <i>a</i> ;		
4.	关于函数 $y = x - \ln x$ (A) 有极小值 1;		的是 (). (C) 无极值 e-1;	(D) 有极小值 e-1.	
5.	关于函数 $y = 2x - l$ (A) 有极大值 $2 - 4 l n$ (C) 无极值;		正确的是 (). (B) 有极小值 2-4li (D) 有极小值 $\frac{1}{2}$.	n2;	
6.		(-∞,1)是凸的;			
7 .	曲线 $y = x^2 \ln x$ 在月	点 $\left(\frac{1}{e^4}, \frac{1}{e^2}\right)$ 近邻是().		

(C) 左侧近邻向上凸, 右侧近邻向上凹; (D) 左侧近邻向上凹, 右侧的邻向上凸;

(B) 向上凹的;

(A) 向上凸的;

8. 曲线 $y = e^{-x^2}$ 的拐点情况是 ().						
(A) 没有拐点;	(B) 有一个拐点;	(C) 有两个拐点;	(D) 有三个拐点.			
9. 若 $(x_0, f(x_0))$ 为连续曲线 $y = f(x)$ 上的凹弧与凸弧分界点,则().						
	(A) $(x_0, f(x_0))$ 必为曲线的拐点; (C) x_0 为 $f(x)$ 的极值点;		(B) $(x_0, f(x_0))$ 必定为曲线的驻点; (D) x_0 必定不是 $f(x)$ 的极值点;			
10. 曲线 $\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t) \end{cases} (a > 0) ().$						
(A) 有无穷多个 (C) 无拐点;	·拐点;	(B) 有两个拐点; (D) 有一个拐点.				
11. 点 $(0,1)$ 是曲线 $y = ax^3 + bx^2 + c$ 的拐点,则必有 ().						
(A) $a = 1$, $b = -$	-3, c = 1;	(B) a 任意, $b = 0$,	c = 1;			
(C) $a = 1$, $b = 0$), c 任意;	(D) $b = -3a, a \oplus$	意, $c=1$.			
 12. 关于曲线 y = ln x 的渐近线,下述结论正确的是(). (A) 只有水平渐近线; (B) 只有铅直渐近线; (C) 既有水平渐近线,又有铅直渐近线; (D) 既没有水平渐近线,也没有铅直渐近线. 						
13. $\lim_{x \to \frac{\pi}{2}} \left(\frac{\cos 5x}{\cos 3x} \right) =$		(C) 1:	(D) 5 /2			
(A) $-5/3$;	(B) -1;	(C) 1;	(D) 5/3.			
14. 在区间 [0,8] 内	14. 在区间 [0,8] 内, 对函数 $f(x) = \sqrt[3]{8x - x^2}$, 罗尔定理 ().					
(A) 不成立;	(A) 不成立;		(B) 成立, 并且 $f'(2) = 0$;			
(C) 成立, 并且	f'(4) = 0;	(D) 成立, 并且 f'	(8) = 0.			
	15. 设 $f(x)$ 在 $[a,b]$ 上连续, 在 (a,b) 内可导, 记 (I) $f(a) = f(b)$; (II) 在 (a,b) 内至少存在 ξ , 使 $f'(\xi) = 0$, 则 $($ $)$.					
(A) (I) 是 (II) 的	I) 是 (II) 的充分但非必要条件; (B) (I) 是 (II) 的必要但非充分条件;					
(C) (I) 是 (II) 的]充要条件;	(D) (I) 是 (II) 既非	充分,也非必要条件.			

16. 设 $f(x) = \begin{cases} 3 - x^2, & 0 \le |x| \le 1 \\ \frac{2}{x}, & 1 < |x| \le 2 \end{cases}$,则在区间内 (0,2) 满足 $f(2) - f(0) = f'(\xi)(2 - 0)$ 的 ξ 値().

- (A) 只有一个; (B) 不存在; (C) 有两个; (D) 有三个.

- **17.** 设 $a < b, ab < 0, f(x) = \frac{1}{x}$, 则在 a < x < b 内使 $f(b) f(a) = f'(\xi)(b a)$ 成立 的点 ξ ().
 - (A) 只有一点;
 - (B) 有两点;
 - (C) 不存在;
 - (D) 是否存在, 与 a,b 的具体数值有关.
- **18.** 设 f(x) 有直至 n+1 阶导数,则 $f(x) = \sum_{k=1}^{n} \frac{f^{(k)}(0)}{k!} x^k + R_n(x)$ 式中拉格朗日型余 项 $R_n(x) = ($) (设 $0 < \theta < 1$)
 - (A) $\frac{f^{(n)}(\theta x)}{n!}x^n;$
- (B) $\frac{f^{(n+1)}(\theta x)}{(n+1)!} x^{n+1};$
- (C) $\frac{f^{(n+1)}(x)}{(n+1)!} (\theta x)^{n+1};$
- (D) $\frac{f^{(n+1)}(\theta)}{(n+1)!} x^{n+1}$.
- **19.** 已知函数 $f(x) = x^3 + ax^2 + bx$ 在点 x = 1 处取得极值 -2, 则 ().
 - (A) a = -3, b = 0 且点 x = 1 为函数 f(x) 的极小值;
 - (B) a = 0, b = -3 且点 x = 1 为函数 f(x) 的极小值;
 - (C) a = -3, b = 0 且点 x = 1 为函数 f(x) 的极大值;
 - (D) a = 0, b = -3 且点 x = 1 为函数 f(x) 的极大值.
- **20.** 函数 $f(x) = \frac{\sqrt{x-1}}{x(x-1)(x-2)}$ 的所有渐近线有 () 条 (A) 4;(D) 1.
- 二、填空题
- **1.** 曲线 $y = 1 \sqrt[3]{x 2}$ 的拐点是
- **2.** 设函数 f(x) 在 (a,b) 内可导且满足 $f'(x) \equiv 0$, 则在 (a,b) 内 f(x) =

- **3.** 设函数 f(x) 在 x = 0 处具有二阶导数,且 f(0) = 0, f'(0) = 1, f''(0) = 3,则极限 $\lim_{x \to 0} \frac{f(x) x}{x^2} = \underline{\qquad}.$
- **4.** $\lim_{x\to 0} \frac{\ln(\cos ax)}{\ln(\cos bx)}$ 的值等于______, $(b \neq 0)$..
- **5.** 设 a > 0, 则 $\lim_{x \to +\infty} \frac{\ln x}{e^{ax}}$ 的值等于______.
- **6.** $f(x) = x^3$ 在 [0,1] 上满足拉格朗日中值定理的 $\xi =$ _____.
- **7.** 函数 $f(x) = 1 \sqrt[3]{x^2}$ 在 [-1, 1] 上不具有罗尔定理的结论, 其原因是由于 f(x) 不满足罗尔定理的一个条件_____.
- 8. $\lim_{x\to 0} \frac{3x \sin 3x}{x^3}$ 的值等于 ______.
- **9.** $\lim_{x \to +\infty} \frac{e^x}{x^a} =$ _______ (a > 0).
- **10.** $\lim_{x \to \pi} \frac{e^{\pi} e^{x}}{\sin 3x \sin x}$ 的值等于_____.
- **11.** $\lim_{x\to 0} \frac{e^{3x}-1-x}{2x}$ 的值等于______.
- **12.** $\lim_{x\to 0} \frac{e^{x^2} \cos x}{x^2}$ 的值等于______.
- **13.** $\lim_{x\to 0} \frac{x-\ln(1+x)}{x^2}$ 的值等于______.
- **14.** $\lim_{x \to \pi} \frac{\tan nx}{\tan mx}$ (其中 m, n 为正整数) 的值等于_____.
- **15.** $\lim_{x\to 0} \frac{x}{e^x e^{-x}}$ 的值等于______.
- **16.** $\lim_{x \to +\infty} \frac{x^k}{e^x}$ (其中 k > 0) 的值等于_____.
- 17. $\lim_{x \to +\infty} (\ln x)^{1/x} =$ _____.

18.
$$\lim_{h\to 0} \frac{\ln(x+h) + \ln(x-h) - 2\ln x}{h^2} = \underline{\hspace{1cm}}$$

19. 曲线
$$y = \frac{x^2}{2x+1}$$
 的斜渐近线为 ______.

20. 曲线
$$y = \frac{e^x}{x+1}$$
 有______ 个拐点.

三、计算题

- **1.** 判定函数 $f(x) = x + \cos x (0 \le x \le 2\pi)$ 的单调性.
- **2.** 求函数 $y = (x+1)^4 + e^x$ 的图形的抛点及凹凸区间.
- 3. 求极限 $\lim_{x \to \frac{\pi}{4}} \frac{\cos 2x}{e^{\sin 4x} e^{\sin 8x}}$.
- **4.** 设 f(x) 有一阶导数, f(0) = f'(0) = 1, 求 $\lim_{x \to 0} \frac{f(\sin x) 1}{\ln f(x)}$
- **5.** 求极限 $\lim_{x\to 0} \frac{12^x 5^{-3x}}{2\arcsin x x}$
- 6. 求极限

$$\lim_{x \to 1} \frac{\tanh(3x - 2)}{e^{x+1} - e^{x^2 + 1}}$$

- 7. 求极限 $\lim_{x\to 0} \frac{\ln|\sin ax|}{\ln|\sin bx|}$ (a,b 都是不为 0 的常数).
- 8. 试决定曲线 $y = ax^3 + bx^2 + cx + d$ 中的 a, b, c, d, 使得 x = -2 处曲线有水平 切线, (1,-10) 为拐点, 且点 (-2,44) 在曲线上.
- **9.** 求函数 $y = x^5 5x^4 + 5x^3 + 1$ 在 [-1,2] 上的最大值,最小值.
- **10.** 求曲线 $y = \frac{e^x}{1+x}$ 的渐近线

四、综合与应用题

1. 用长度为 l 米 (l > 0) 的篱笆在直的河岸边围成三面是篱笆一面是河的矩形场地, 求矩形场地的最大面积.

- 2. 要做一个圆锥形漏斗, 其母线长 20 cm, 要使其体积最大, 问其高应为多少?
- **3.** 设有一块边长为 *a* 的正方形铁皮,从四个角截去同样的小方块,做成一个无盖的方盒子,问小方块的边长为多少才使盒子的容积最大?
- 4. 设某产品的销售量 Q 与价格 P 之间有关系式为 $Q = \frac{1-P}{P}$
 - (1) 求需求弹性;
 - (2) 售价为 0.5 时的需求弹性. 并给出经济解释.
- 5. 某厂生产某种商品, 其年销售量为 100 万件, 每批生产需增加准备费 1000 元, 而 每件的库存费为 0.05 元. 如果年销售是均匀的, 且上批销售完后, 立即再生产下一批(此时商品库存量为批量的一半), 问分几批生产, 能使生产准备费及库存费 之和最小?
- **6.** 某商品的价格 P 与需求量 Q 的关系为 $P = 10 \frac{Q}{5}$,
 - (1) 求需求量为 20 及 30 时的总收益 R、平均收益 \overline{R} 及边际收益 R';
 - (2) Q 为多少时总收益最大?
- 7. 设 $f(x) = x^3 + ax^2 + bx$ 在 x = 1 处有极值 -2, 试确定系数 a, b, 并求出 y = f(x) 的所有极值点及拐点.
- 8. 在半径为R的球内,求体积最大的内接圆柱体的高.
- 9. 由三块同一宽度的板做成一个梯形的排水槽 (无上盖), 问侧面与底的倾角 α 为 多大时, 才使水槽的横断面积最大?
- **10.** 将半径为 r 的圆铁片, 剪去一个扇形, 问其中心角 α 为多大时, 才能使余下部分围成的圆锥形容器的容积最大?

五、证明题

- **1.** 设 f(x) 在 [1,e] 上连续, 在 (1,e) 内可导, 且 f(1)=0, f(e)=1, 证明方程 xf'(x)=1 在 (1,e) 内至少有一实根.
- **2.** 设 f(x) 在 [a,b] 上可导, 证明存在 $\xi \in (a,b)$, 使

$$\frac{1}{b-a} \begin{vmatrix} b^3 & a^3 \\ f(a) & f(b) \end{vmatrix} = \xi^2 \left[3f(\xi) + \xi f'(\xi) \right].$$

3. 设 f(x) 在 [1,2] 上连续, 在 (1, 2) 内可导, 且 f(2) = 0, 证明至少存在一点 $\xi \in (1,2)$, 使

$$f'(\xi) = -\frac{f(\xi)}{\xi \ln(\xi)}.$$

- **4.** 设 b > a > 0, 证明: $\ln \frac{b}{a} > \frac{2(b-a)}{a+b}$.
- **5.** 证明当 $x \neq 0$ 时, 有不等式 $e^x > 1 + x$.