경사면 위에서 원뿔대의 굴림 운동

15011 김경태

March 29, 2017

1 Introduction and Preliminaries

균일한 원형의 물체가 경사면을 굴러가는 운동은 일반물리학 책에서 쉽게 접할 수 있는 반면, 원기둥이 균일하지 않거나 원뿔대와 같이 원기둥 모양이 아닌 물체가 경사면을 굴러가는 문제는 생소할 것이다. 이 글에서는 그러한 생소한 상황을 다룰 것이다. 자명해 보이지만 먼저 "굴러간다"는 것이 무엇인지 정의하고, 그 정의로부터 구름유동의 가장 기본적인 성질을 유도하자.

정의 1. 물체가 경사면 위를 굴러가다는 것은, 물체와 경사면의 접촉점에서의 속력이 0인 것이다.

정리 1. 반지름 R인 원형 물체가 굴러갈 때, 원형 물체 중심의 속력 v와 중심에서 본 각속도 ω 사이에는 관계식 $v=R\omega$ 가 성립한다.

Proof. 접촉점에서의 속력은 원 중심의 선속력 v와 원 중심에서 본 접촉점의 선속력 $-R\omega$ 의 합이므로 $v-R\omega=0$ 이어야 한다. 따라서 $v=R\omega$ 이다.

정리 2. 물체가 굴러갈 때 역학적 에너지는 보존된다.

Proof. 물체에 작용하는 비보존력은 마찰력 \mathbf{f} 밖에 없다. 그런데, 마찰력이 작용하는 지점인 접촉점에서 $\mathbf{v}=\mathbf{0}$ 이므로, 마찰력이 물체에작용하는 일률은 $\mathbf{f}\cdot\mathbf{v}=0$ 이다. 따라서 물체가 굴러갈 때 역학적 에너지는 보존된다. □

2 경사면 위에서 원뿔대의 굴림 운동

이 장에서는 마찰계수가 큰 경사면 위에 있는 원뿔대의 운동을 다룰 것이다. 그림 1과 같은 원뿔대가 경사각 θ 인 경사면에 접촉 부분이 지면과 평행하도록 놓여 있다 (그림 $2, \phi = -90^{\circ}$). 원뿔대를 가만히 놓았을 때 이후 운동을 분석하자.

원뿔대의 운동은 꼭짓점의 속도 \mathbf{v}_{apex} 와 그림 2에 나타낸 두 방향의 축에 대한 각속도 Ω, ω 를 이용하여 완전히 나타내어진다. 좌표축을 그림 1과 같이 잡으면

$$\omega = (\omega \cos \alpha)\mathbf{r} + \omega \sin \alpha \hat{\mathbf{y}}, \quad \mathbf{\Omega} = \Omega \hat{\mathbf{y}}$$
 (1)

임을 알 수 있다. 여기서 \mathbf{r} 은 원뿔 꼭지점 좌표계에서 본 접촉점의 위치벡터이다. 접촉점에서의 속도 \mathbf{v} 는

$$\mathbf{v} = \mathbf{v}_{apex} + \omega \times \mathbf{r} + \mathbf{\Omega} \times \mathbf{r}$$

$$= \mathbf{v}_{apex} + (\Omega + \omega \sin \alpha)(\hat{\mathbf{y}} \times \mathbf{r})$$
(2)

이다. 임의의 접촉점의 위치벡터 \mathbf{r} 에 대해 $\mathbf{v} = \mathbf{0}$ 이기 위해서는

$$\mathbf{v}_{apex} = \mathbf{0}, \quad \Omega = \omega \sin \alpha \tag{3}$$

Figure 1: 원뿔대의 꼭짓점으로부터 질량 중심 사이의 거리는 h, 모선한의 길이는 l, 꼭짓각은 α 이다. 원뿔대의 질량은 m, 중심축에 대한 관성 모멘트는 I이다. 원뿔대가 중심축을 기준으로 회전하는 각속도는 ω 이다.

Figure 2: 원뿔대가 기울기 θ 인 평면에 놓여 있다. 원뿔대가 꼭짓점을 중심으로 "공전"하는 각속도는 $\Omega=\dot{\phi}$ 이다.

이어야 한다. 즉, 원뿔대는 꼭짓점이 고정된 채로 마치 진자처럼 진동한다. 다음으로 원뿔대의 진동주기 T를 구해보자. 가장 간단한 방법은 원뿔대의 에너지 E가 보존됨을 이용하는 것이다. 원뿔대의 질량 중심은 수평면으로부터 $\theta-\alpha$ 만큼(θ 가 아니다!) 기울어진 평면 위를 움직인다는 사실을 인지하자.

$$E = \frac{1}{2}I\omega^2 + \frac{1}{2}mh^2\dot{\phi}^2 - mg\sin(\theta - \alpha) \cdot h\cos\phi. \tag{4}$$

여기서 퍼텐셜 에너지의 기준점은 원뿔대의 꼭짓점으로 잡았다. 식 (3)에서 $\dot{\phi}=-\omega\sin\alpha$ 이므로

$$E = \frac{1}{2} \left(mh^2 + \frac{I}{\sin^2 \alpha} \right) \dot{\phi}^2 - mgh \sin(\theta - \alpha) \cos \phi$$

$$\stackrel{\text{let}}{=} \frac{1}{2} m_{\text{eff}} \dot{\phi}^2 + \frac{1}{2} mg_{\text{eff}} h \cos \phi$$
(5)

$$\dot{\phi}^2 = \frac{m}{m_{\text{eff}}} g_{\text{eff}} h \cos \phi \tag{6}$$

다음 적분식

$$\int_0^{\pi/2} \frac{d\phi}{\sqrt{\cos \phi}} = \sqrt{\frac{\pi^3}{2}} \frac{1}{\Gamma(3/4)^2}$$
 (7)

을 이용해 (Γ 는 감마 함수, MATLAB이 알려줬다.) (6)을 적분하면 원뿔대의 진동 주기는

$$T = \sqrt{\frac{8\pi^3 mgh\sin(\theta - \alpha)}{mh^2 + I/\sin^2 \alpha}} \frac{1}{\Gamma(3/4)^2}$$
(8)

임을 알 수 있다. 식 (6)은 원뿔대의 운동에 관한 모든 것을 말해준다. 이제 궁금한 것은 원뿔대가 굴러가기 위한 최소의 마찰 계수가 얼마인지이다. 이 문제를 고민해 봤지만 필자는 풀지 못하였다. 혹시 원뿔대가 굴러가기 위한 최소의 마찰 계수를 구하신 분은 필자에게 알려주기 바란다.