

МОДЕЛЬ ДЕФОРМИРУЕМОГО ОБЪЕКТА УПРАВЛЕНИЯ

Дружинин В. Г.

Научный руководитель: д.ф-м.н Морозов В.А.

РОБОТОТЕХНИКА В СОВРЕМЕННОЙ МЕДИЦИНЕ

Из-за несимметричности кончика иглы, при ее движении в тканях человека она будет отклоняться от прямолинейного движения

ЦЕЛЬ УПРАВЛЕНИЯ

Цель: расчёт и прогнозирование отклонения иглы от прямолинейного движения при перемещении иглы в мягких тканях пациента в режиме реального времени.

ОБЩАЯ ПОСТАНОВКА ЗАДАЧИ

- F_t сила, действующая на кончик иглы;
- F_f сила трения, возникающая при движении иглы внутри ткани;
- w(x) распределенная нагрузка (сила, которую оказывает ткань на поверхность иглы).
- F_{needle} сила с которой внедряется игла.

$$\vec{F}_{needle} = \vec{F}_t + \vec{F}_f + \vec{w}(x)$$

- Расчет движения иглы в плоскости Оху, деформация иглы в зависимости от поступательного движения;
- Расчет движения иглы в трехмерном пространстве в зависимости от вращательного и поступательного движения;

ОБЩАЯ ПОСТАНОВКА ЗАДАЧИ

Дополнительные подзадачи, повышающие точность решения:

- Моделирование процесса прокола, получение изгиба иглы перед внедрением ее в ткани (нагрузка и разгрузка иглы в процессе прокола);
- Моделирование движение иглы через материалы различной плотности различной (кожа, мышцы, орган);
- Моделирование влияние сил, создаваемых тканью при деформации на поверхность иглы;
- Моделирование силы трения при внедрении иглы в ткань;
- Моделирование деформации ткани человека.

ПОСТАНОВКА РЕШАЕМОЙ ЗАДАЧИ

- F сила, действующая на кончик иглы;
- v скорость движения иглы в тканях человека;
- α угол наклона острия иглы;
- γ угол под которым действует сила.
- F_{needle} сила с которой внедряется игла.

$$\vec{F}_{needle} = \vec{F}_t$$

Постановка задачи:

Расчет движения иглы в плоскости Oxy, отклонение иглы в зависимости от движения (увеличения I(t));

Линейная скорость, мм/с	Шаг времени, с
3	3,33·10 ⁻⁶
15	6,67·10 ⁻⁷
24	4,17·10 ⁻⁷
30	3,34·10 ⁻⁷

Расчет отклонения	Воздействие внешней среды
$y_n = \frac{Fl(t)^3}{2EJ_x} \tag{1}$	$F = C \frac{\rho v^2}{2} S \qquad (4)$
$J_x = \frac{\pi D^3 s}{12} $ (2) $y_{all} = \sum_{1}^{n-1} y_n + y_n $ (3)	$F_p = F \cdot \cos \gamma \qquad (5)$

Параметры

n — текущая итерация моделирования

 ρ – плотность – 1500 кг/м³

v – скорость движения иглы - от 3 до 30 мм/с

 $S = V^{2/3}$, где V - объем тела

l — длина иглы от 0 до 100 мм — изменяется с определённым шагом времени

E – модуль Юнга - 2.0·10¹¹ н/м²

 $s\,$ — модуль толщина стенки иглы — $0.1\,$ мм

D —диаметр среднего сечения иглы — 0.9 мм

РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ ПРИ РАЗНОЙ ПЛОТНОСТИ МАТЕРИЛА

Угол острия 45 градусов

Отклонение иглы в зависимости от скорости при различной плотности материала

РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ ПРИ РАЗНОМ УГЛЕ ОСТРИЯ

Плотность материала — 1500 кг/м^3

Отклонение иглы в зависимости от скорости при различных углах острия

ЭКСПЕРИМЕНТ

УПИ — устройство перемещения игл Угол острия иглы - 45 градусов Плотность материала 1500 кг/м³

РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ СРАВНЕНИЕ С ЭКСПЕРИМЕНТОМ

Плотность материала -1500 кг/м^3

Угол острия 45 градусов

- Разработана модель, описывающая отклонение иглы при движении в тканях человека в реальном времени;
- С помощь разработанной модели проведено моделирование движения иглы при различных начальных параметрах;
- В результате сравнения экспериментальных данных и результатов моделирования было показано, что данная модель после доработки, может быть использована для корректировки робототехнического комплекса

СПАСИБО ЗА ВНИМАНИЕ!!!

Дружинин В. Г.

Научный руководитель: д.ф-м.н. Морозов В.А.

Санкт-Петербургский государственный университет spbu.ru