TEMA D'ESAME

Domanda A

Siano $X = [x_3 \ x_2 \ x_1 \ x_0]$ ed $Y = [y_3 \ y_2 \ y_1 \ y_0]$ due parole binarie naturali di 4 bit.

- 1. Utilizzando unicamente full-adder (FA) e half-adder (HA), si realizzi la rete minima per il calcolo dell'espressione Z=4X+2Y+4. La dimensione di Z deve essere tale da rappresentare sempre correttamente il risultato dell'operazione.
- 2. Considerando i seguenti dati sulle porte, calcolare area e ritardo della rete ottenuta.

Porta	Area (μm²)	Ritardo (ns)
AND2	4	1.0
AND3	6	1.5
OR2	4	1.0

Porta	Area (μm²)	Ritardo (ns)
OR2	6	1.5
XOR2	9	2.0
NOT	2	0.5

Domanda B

Sintetizzare la seguente funzione:

$$f(x,y,z,w,t) = \Sigma(0,1,5,7,17,19,21,22,31), \Delta(2,3,8,23,24,30)$$

Mappare quindi la funzione ottenuta su una architettura costituita unicamente da look-up table a 4 ingressi ed una uscita. Rappresentare la rete ottenuta indicando chiaramente le variabili di ingresso/uscita di ogni look-up table e le funzioni realizzate dalle stesse.

Domanda C

Si minimizzi la seguente macchina a stati e la si sintetizzi mediante flip-flop di tipo JK.

Domanda D

Il data-path mostrato elabora dati su 16 bit e dispone di diversi segnali di controllo. L'ingresso X è sincrono con il clock del registro accumulatore e fornisce al circuito una sequenza di valori, uno ad ogni ciclo di clock. Si progetti una macchina a stati per il controllo del data-path in grado di produrre il comportamento descritto dal diagramma temporale mostrato in basso.

