Round 1

$$\int (3x^2 - 4x + 5) \mathrm{dx}$$

$$\int \tan x (\sin 2x + \cos x) \mathrm{d}x$$

$$\int \frac{1}{\sqrt{x^{-2} - x^2}} \mathrm{dx}$$

$$\int \sqrt{1-x^2} \mathrm{dx}$$

$$\int \sec x dx$$

$$\int_0^{\frac{1}{2}} \frac{x^2 + 3}{x^3 - 6x^2 + 11x - 6} \mathrm{dx}$$

$$\int \frac{1}{\sqrt{x}(x+1)} dx$$

$$\int_{-\infty}^{\infty} \frac{x^2 - 1}{(x^2 + 1)^2} \mathrm{d}x$$

$$\int 10^x dx$$

$$\int \frac{1}{e^x + e^{-x}} \mathrm{d}x$$

Round 2

$$\int \sin(x)\cos(x) + 2023 dx$$

$$\int \frac{2\cos^2(x)}{1 + \cos(x)} \mathrm{d}x$$

$$\int_0^{\frac{\pi}{2}} \frac{\sin^4(x)}{\sin^4(x) + \cos^4(x)} dx$$

$$\int_{-\pi}^{\pi} x \sin^2(x) \cos^5(x) dx$$

$$\int \frac{1}{x\sqrt{1-(\ln x)^2}} \mathrm{d}x$$

$$\int_0^3 \frac{x^3 + 3}{x^2 - 1} \mathrm{d}x$$

$$\int (3x^2 - 1)\ln(x+1)\mathrm{d}x$$

$$\int \frac{x^2 - 1}{x^2 + 1} \frac{1}{\sqrt{1 + x^4}} \mathrm{d}x$$

$$\int \frac{1}{1+x^4} \mathrm{d}x$$

$$\int \frac{\sin(x)}{\cos(x + \frac{\pi}{3})} \mathrm{d}x$$

Semi-finals round 1

$$\int_{2}^{\infty} \ln\left(1 - \frac{1}{\lfloor x \rfloor^{2}}\right) \mathrm{d}x$$

$$\int \cot^5 x \mathrm{d}x$$

$$\int \frac{e^x + 1}{e^{2x} + 1} \mathrm{d}x$$

Tiebreaker:

Let (x, y) be parametrically defined as $(a \cos \theta, b \sin \theta)$ where $0 \le \theta \le \pi$. Define a function f such that y = f(x) for all values of x. Find

$$\int_{-a}^{a} f(x) \mathrm{dx}$$

Semi-finals round 2

$$\int \frac{x^3 + x}{x^6 - 3x^4 + 3x^2 - 1} \mathrm{d}x$$

$$\int_0^1 \frac{1}{\left\lfloor \frac{1}{x} \right\rfloor} dx$$

$$\int \frac{\sqrt{x}}{1 + \sqrt[3]{x}} \mathrm{d}x$$

Tiebreaker:

$$\int (21x^{2023} - 420x^{69}) \ln x dx$$

Finals

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos x}{1 + e^{\frac{1}{x}}} \mathrm{d}x$$

Define the function $f_1(x) = e^x$ and any subsequent function $f_n(x) = e^{f_{n-1}(x)}$ where $n \in \mathbb{N}$. Find

$$\int f_n(x)f_{n-1}(x)...f_1(x)\mathrm{dx}$$

$$\int \frac{\cos^{1010} x}{\sin x \sqrt{\sin^{2022} x - \cos^{2022} x}} dx$$