Lec. 11: Approximation Algorithms

Outline

- Approximation Algorithms
- · Load Balancing
- . Bin Packing
- · Center Selection
- Maximum Weighted Cut
- Maximum Coverage
- Weighted Vertex Cover
- Metric Travelling Salesman Problem
- Knapsack Problem

NP-hard optimization problems

- Q. Suppose I need to solve an NP-hard problem. What should I do?
- A. Theory says you're unlikely to find a poly-time algorithm.

Must sacrifice one of three desired features.

- Solve problem to optimality.
- Solve problem in poly-time.
- Solve arbitrary instances of the problem.

Approximation algorithms

Key: provably close to optimal.

OPT: the value of an optimal solution,

SOL: the value of the solution that our algorithm returned.

Additive approximation algorithms:

- $SOL \leq OPT + c$ for a minimization problem
- $SOL \ge OPT c$ for a maximization proble

Multiplicative approximation algorithms:

- $SOL \le c \cdot OPT$ for a minimization problem
- $SOL \ge OPT/c$ for a maximization problem

Challenge. Need to prove a solution's value is close to optimum, without even knowing what optimum value is!

Time-accuracy tradeoff

Def. An algorithm $\bf A$ is a PTAS (Polynomial-Time Approximation Scheme) if for every $\epsilon>0$, $\bf A$ runs in polynomial time (which may depend on ϵ) and return a $(1+\epsilon)$ -approximate solution

• For example, A may run in time $n^{100/\epsilon}$.

Def. An algorithm A is a FPTAS (fully PTAS) if for every $\epsilon > 0$, A runs in time poly(n, $1/\epsilon$) and return a $(1 + \epsilon)$ -approximate solution

1. Load Balancing

Load Balancing

Input. m identical machines; n > m jobs, job j has processing time t_j .

Job scheduling:

- Each job must run contiguously on one machine.
- A machine can process at most one job at a time.

load of machine i is L_i = sum process times of jobs assigned to machine i makespan $L = max_i L_i$.

Load balancing. Assign each job to a machine to minimize makespan.

List scheduling algorithm

Consider n jobs in some fixed order (i.e. list).

Assign job j to machine whose load is smallest so far.

Thm. [Graham 1966] LS algorithm is a 2-approximation.

- First worst-case analysis of an approximation algorithm.
- * Need to compare resulting solution with optimal makespan L^* .

Lem.
$$L^* \ge \max\{\max_{1 \le j \le n} t_j, \frac{1}{m} \sum_{j=1}^n t_j\}.$$

List scheduling analysis

Thm. LS algorithm is a 2-approximation.

Pf. j's starting time $L-t_j=$ least load of machines at this time $\leq \frac{1}{m}\sum_{i=1}^{j-1}t_i \leq L^*-\frac{1}{m}t_j$

Thus,

$$L \le L^* + \left(1 - \frac{1}{m}\right)t_j \le L^* + \left(1 - \frac{1}{m}\right)L^* = \left(2 - \frac{1}{m}\right)L^*$$

Tight instance

- Q. Is our analysis tight?
- A. Essentially yes.

Ex: m machines, m(m-1) jobs length 1 jobs, one job of length m

					machine 2 idle
					machine 3 idle
					machine 4 idle
0					machine 5 idle
					machine 6 idle
					machine 7 idle
					machine 8 idle
					machine 9 idle
					machine 10 idle

m = 10

list scheduling makespan = 19

Tight instance

- Q. Is our analysis tight?
- A. Essentially yes.

Ex: m machines, m(m-1) jobs length 1 jobs, one job of length m

LPT Rule

Rationale:
$$L \leq L^* + \left(1 - \frac{1}{m}\right)t_j$$

 place the shorter jobs more towards the end of the schedule, where they can be used for finer load balancing.

Longest processing time (LPT). Sort n jobs in descending order of processing time, and then run list scheduling algorithm.

Observation. The first m jobs are put on m different machines

LPT Rule: simple analysis

Lem. $L^* \geq 2t_{m+1}$.

Pf. Among the first m+1 jobs, at least two are in the same machine \blacksquare

Thm. LPT rule is a 3/2 approximation algorithm.

Pf. If the last-finishing job $j \leq m$, then $L = L^*$.

$$L^{2}L \leq L^{*} + \left(1 - \frac{1}{m}\right)t_{j} \leq L^{*} + \frac{1}{2}\left(1 - \frac{1}{m}\right)L^{*} = \left(\frac{3}{2} - \frac{1}{m}\right)L^{*}$$

LPT Rule: tighter analysis

Q. Is our 3/2 analysis tight?

A. No.

Thm. [Graham 1969] LPT rule is a 4/3-approximation.

Pf. exercise.

Q. Is Graham's 4/3 analysis tight?

A. Essentially yes.

Tight instance: exercise

2. Bin Packing

Bin Packing

Input: n jobs, job j has processing time $t_i \leq 1$.

Packing: A partition of the jobs into groups of total load ≤ 1 . Each group corresponds to a bin (machine)

Bin packing: Find a partition with fewest groups (bins).

NP-complete to approximate within a factor less than 3/2!

Lower bound on optimum

 B^* : minimum number of bins

L: the set of "long" jobs with processing time > 1/2

Observation. $B^* \ge \max\{\left[\sum_j t_j\right], |L|\}.$

First-Fit (FF) algorithm

Put items in some fixed list (order), and for each job in the list:

- If the job fits into one of the currently open bins, then put it in the first of these bins.
- Otherwise, open a new bin and put the new job in it.

Key property. Among all open bins, all but one are more than half-full.

Thm. FF algorithm is a 2-approximation.

Pf. If $B > 2B^*$, then total load $> (2B^*)/2 = B^* \ge \left[\sum_j t_j\right]$.

First-Fit Decreasing (FFD) algorithm

FFD: Sort jobs in decreasing order of t_j , and then run FF algorithm.

Thm. FFD algorithm is a 3/2-approximation.

Pf. $k := \left[\frac{2}{3}B\right]$ and it is sufficient to show $k \leq \max\{|L|, \left[\sum_{j} t_{j}\right]\}$.

Assume k > |L|, and S := jobs in the bins $k, k + 1, \dots, B$.

- Each job in S is short and doesn't fit any of the first k-1 bins.
- $|S| \ge 2(B-k) + 1 \ge k 1$

Pair up k-1 jobs in S with the first k-1 bins.

Each pair has total load > 1, and the total load of all pairs > k - 1.

$$k-1 < \sum_{j} t_{j} \Longrightarrow k \le \left[\sum_{j} t_{j}\right]$$

3. Center Selection

Center Selection Problem

Input. n sites $s_1, ..., s_n$.

Center selection problem. Select k centers C so that maximum distance from a site to nearest center is minimized.

Center Selection Problem: metric distances

Notation.

- dist(x, y) = distance between x and y.
- dist(s_i , C) = min_{c ∈ C} dist(s_i , c) = distance from s_i to closest center.
- $r(C) = \max_i dist(s_i, C) = smallest covering radius.$

Goal. Find set of centers C that minimizes r(C), subject to |C| = k.

Metric Distance:

```
dist(x, x) = 0 (identity)
dist(x, y) = dist(y, x) (symmetry)
dist(x, y) \le dist(x, z) + dist(z, y) (triangle inequality)
```

Greedy algorithm: a false start

- · Put the first center at the best possible location for a single center
- Keep adding centers so as to reduce the covering radius each time by as much as possible.

Remark: arbitrarily bad!

Greedy algorithm

- Place the first center at an arbitrary given site, and
- repeatedly place the next center at the (the most dissatisfied) site farthest from any existing center.

```
C = {s<sub>1</sub>}
repeat k-1 times
Select a site s<sub>i</sub> with maximum dist(s<sub>i</sub>,C)
Add s<sub>i</sub> to C

site farthest from any center
return C
```

Observation. All centers in C are pairwise at least r(C) apart.

Analysis of greedy algorithm

Thm. Let C^* be an optimal set of k centers. Then $r(C) \le 2r(C^*)$. Pf. (by contradiction) Assume $r(C^*) < \frac{1}{2} r(C)$.

- The k disks centered at C of radius $r(C^*)$ are disjoint.
- Exactly one optimal center c_i* in each disk;
- Let c_i be the center of the disk containing c_i^* .
- For any site s and its closest center c_i^* in C^* , $dist(s, C) \le dist(s, c_i) \le dist(s, c_i^*) + dist(c_i^*, c_i) \le 2r(C^*)$.
- □ Thus $r(C) \le 2r(C^*)$. ■

Approximation hardness

Thm. Greedy algorithm is a 2-approximation for center selection problem.

Q. Is there hope of a 3/2-approximation? 4/3?

Thm. Unless P = NP, there is no ρ -approximation for center-selection problem for any ρ < 2.

4. Maximum Weighted Cut

Maximum Weighted Cut

Input: a non-negative edge-weighted graph G = (V, E; w)Max-weighted cut problem: find a cut of maximum total weight

Greedy algorithm

- Pick an arbitrary ordering 1, 2, ..., n of nodes
- Place node 1 at the left side, and repeatedly place the next node at the better side.

Analysis of greedy algorithm

Thm. The weight of the greedy cut is at least w(E)/2. Hence the greedy algorithm is 2-approximate.

Pf.

- Partition E into $E_2, E_3, ..., E_n$, where E_i = the set of edges between i and $\{1, ..., i-1\}$.
- Node i contributes at least $w(E_i)/2$ towards the cut.
- The total weight of the cut is at least w(E)/2.

Better approximation

- (1/0.878)-approximation: [Goemans-Williamson 1995] using semidefinite programming
 - best possible if the Unique Games Conjecture is true
- NP-hard to approximate better than 17/16 [Håstad 2001]

5. Maximum Coverage

Maximum Coverage

Input: a bipartite graph G = (U, W; E), and a positive integer $k \le |U|$ Goal: Find a k-subset S of U maximizing |N(S)|

```
S \coloneqq \emptyset;
repeat k times
u \coloneqq \text{a node in } U with maximum degree in G;
add u to S and remove u and its neighbors from G;
return S
```

Thm. Let S^* be an optimal solution and $opt := |N(S^*)|$. Then $|N(S)| \ge [1 - (1 - 1/k)^k] opt \ge (1 - 1/e) opt$.

Geometric decreasing of the optimality gap

$$S: u_1, u_2, \cdots, u_k$$

 $n_0 \coloneqq 0$; and $n_i \coloneqq |N(\{u_1, \cdots, u_i\})|$ for $1 \le i \le k$

Claim.
$$(opt - n_i) \le (1 - 1/k)(opt - n_{i-1}).$$

Pf. At the beginning of the iteration i,

- . # of nodes in $N(S^*)$ remaining in $G \ge opt n_{i-1}$
- $n_i n_{i-1} = \max \text{ degree of } G \ge (opt n_{i-1})/k$

Thus,

$$(opt - n_{i-1}) - (opt - n_i) = n_i - n_{i-1} \ge (opt - n_{i-1})/k$$

Approximation bound

$$(opt - n_k) \le (1 - 1/k)^k opt$$

 $|N(S)| = n_k \ge [1 - (1 - 1/k)^k] opt$

Q: Can we do better?

Thm. [Feige 1998] Unless P \neq NP, no poly-time algorithm can do better than 1-1/e.

Remark: Extended to submodular coverage

6. Weighted Vertex Cover

Weighted Vertex Cover

Weighted vertex cover. Given a graph G = (V, E; c) with vertex costs, find a vertex cover of minimum cost.

$$cost = 8$$

Frugal bidding

Bidding: Each edge e offers a bid (payment) $p(e) \ge 0$ for coverage

Frugalness. $p(\delta(v)) \le c(v)$ for each vertex v.

Claim. For any vertex cover S and any frugal bidding $p, c(S) \ge p(E)$.

Pf.
$$p(E) \leq \sum_{v \in S} p(\delta(v)) \leq \sum_{v \in S} c(v) = c(S)$$

Tight vertices: $p(\delta(v)) = c(v)$ (cost is covered by the collectable bids). Only tight vertices are willing to join the VC

Frugal bidding method

Set bids and find vertex cover simultaneously.

```
foreach e in E, p(e) \leftarrow 0 S \leftarrow \emptyset while (\exists edge without tight endpoints) select such an edge e increase p(e) maximally without violating frugalness add tight endpoints of e to S return S
```

Frugal bidding method: example

Frugal bidding method: analysis

Thm. Frugal bidding method is a 2-approximation.

Intuition: each edge's bid is competed by its 2 endpoints.

Pf. Let S^* be optimal vertex cover. We show $c(S) \leq 2c(S^*)$.

$$c(S) = \sum_{v \in S} c(v) = \sum_{v \in S} p(\delta(v))$$
 \longleftarrow all nodes in S are tight $\leq \sum_{v \in V} p(\delta(v))$ $= 2p(E)$ each edge counted twice $\leq 2c(S^*)$ frugalness lemma

(Unweighted) Vertex Cover: restriction

Compute a maximal matching M.

Return all matched vertices as a vertex cover.

$$opt \ge |M|$$

So, $2|M| \le 2opt$, and we have a 2-approximation algorithm!

Approximation hardness of Minimum Vertex Cover

- NP-complete to approximate within a factor of 1.36
- No (2ε) -approximation if the Unique Game Conjecture is true.
- Maximal IS: hard to approximate within $n^{1-\varepsilon}$.

7. Metric TSP

Metric Traveling Salesman Problem (TSP)

Input: n cities $c_1, ..., c_n$ with metric mutual distances

TSP: Find a Hamiltonian tour of shortest total length on the n cities

$$n = 13,509$$

Relaxing Hamiltonian tour to spanning cycle

Relaxation: allow vertex repetitions in the tour

Extracting Hamiltonian tour from spanning cycle

Traversing a spanning cycle but skipping previously-visited vertices yields a Hamiltonian tour of no greater length

Constructing a short spanning cycle

Christofides-Serdyukov algorithm [Christofides, 1976]:

an MST + a shortest perfect matching on its odd-degree vertices

= a spanning cycle

Lemma. $mst \le opt$, $matching \le opt/2$

Theorem: Christofides - Serdyukov algorithm is a 3/2-approximation.

Bound on optimal matching

matching M_1 + matching M_2 = short-cut optimal tour

optimal matching $\leq \min(M_1, M_2) \leq \text{opt/2}$

A tight instance

all other edges have distances given by the shortest paths

red tour ≈ n

output tour ≈ 1.5n

Can we do better?

- No better approx. algorithm is known.
- Assuming $P \neq NP$, no polynomial-time algorithm can do better than 220/219 = 1.004566... [Papadimitriou & Vempala, 2006].
- For Euclidean and related metrics, there exists a PTAS [Arora, 1998][Mitchell, 1999].

8. Knapsack

Knapsack Problem

Input. n items with specified sizes and profits s_i and p_i ; and a knapsack capacity B with $\max_i s_i \leq B < \sum_i s_i$

Def. The size and profit of a subset I of items:

$$s(I) = \sum_{i \in I} s_i$$
, $p(I) = \sum_{i \in I} p_i$

Def. For a subset I of items is feasible of $s(I) \leq B$

Knapsack problem: find a feasible subset with maximum profit.

Def. The return of an item i is $r_i = p_i/s_i$

Fractional Knapsack Problem

Fractional relaxation: allow a fraction of an item

Fractional greedy algorithm [Dantzig 1957]:

Sort the items by return in decreasing order: 1, 2, ..., n.

Compute the first m s.t. [1:m] is not feasible.

Add [1:m-1] and a fraction $\{B-s([1:m-1])\}/s_m$ of item m

Fractional optimum:

$$opt^* = p([1:m-1]) + \frac{B - s([1:m-1])}{s_m} p_m < p([1:m-1]) + p_m$$

Rounding the fractional greedy solution

Rounding: pick the more profitable I between [1:m-1] and m

Thm. $p(I) \geq opt/2$.

Pf.
$$opt \le opt^* < p([1:m-1]) + p_m \le 2p(I)$$

A PTAS with partial enumeration

[Sahni 1975]

k: a fixed positive integer constant

 $I \leftarrow$ the best feasible subset of less than k items; //enumeration for each feasible subset S of k items //enumeration $R \leftarrow \left\{j \notin S \colon p_j \leq \min_{i \in S} p_i\right\}$ //pruning compute the greedy extension $T \subseteq R$ of S //greedy extension if $p(S \cup T) > p(I)$ then $I \leftarrow S \cup T$ return I.

Analysis of the PTAS

Thm. The running time is $O(n^{k+1})$, and $p(I) \ge opt/(1+1/k)$.

Pf. Assume I is not optimal. Let O be an optimal solution. Then |O| > k. S: the set of k most profitable items in O

$$p(O \setminus S) < p(T) + p_m \le p(T) + p(S)/k$$

$$opt = p(0) \le p(T) + (1 + 1/k)p(S) \le (1 + 1/k)p(S \cup T) \le (1 + 1/k)p(I)$$

Recap: Dynamic programming for Knapsack

Assumption: the profits of all items are integers

Recap: solvable exactly by a 2-dim. DP in $O(n^2P)$ time & space, where $P \coloneqq \max_i p_i$

- States: min. size required to attain a profit q by the first k items.
- ullet DP table indexed by (k,q): n rows and at most nP columns
- Each entry can be computed in constant time (look up two entries).

Pseudo-polynomial time & space

Optimal solution is preserved by scaling of the profits.

Rounding & Scaling

Idea: Round (up or down) and then scale down the profits. Compute the optimal solution in this modified instance

- Suppose $P \ge 1000n$. Then $opt \ge P \ge 1000n$.
- Round up each profit to nearest multiple of $100:100[p_i/100]$.
 - * individual rounding error < 100.
 - * total rounding error < 100n < (1/10)opt.
- Compute the optimal solution w.r.t the up-rounded profits:
 - * scale down the up-rounded profits by 100 times: $p_i^* \coloneqq \lceil p_i/100 \rceil$
 - apply DP using this down-scaled profits
 - * the running time is 100 times faster.

FPTAS for KNAPSACK

[Ibarra-Kim 1975]

 $\varepsilon > 0$: a time-accuracy trade-off parameter

Let $K := \varepsilon P/n$; and define p^* by $p_i^* := \lceil p_i/K \rceil$ for $1 \le i \le n$. Apply DP with p^* and to find the most profitable set I. Return I.

Thm. $p(I) \ge (1 - \varepsilon)opt$ and the running time is $O(n^3/\varepsilon)$.

Analysis of the FPTAS

Let 0 be an optimal set.

For each i, $p_i \leq Kp_i^* = K[p_i/K] < p_i + K$.

$$opt = p(0) \le Kp^*(0) \le Kp^*(I) \le p(I) + nK = p(I) + \varepsilon P \le p(I) + \varepsilon opt$$

So,
$$p(I) \ge (1 - \varepsilon)opt$$
.

The DP with p^* has n rows and at most $n[P/K] = O(n^2/\epsilon)$ columns. So, the total time (and space) complexity is $O(n^3/\epsilon)$.

Further speedup with reduced DP columns

The number of DP columns nP can be replaced any $C \ge opt$ and the DP runs O(nC) time.

Choice of smaller C: Run the fractional greedy & rounding to output I_1 , and let

$$C \coloneqq \min\{p([1:n]), 2p(I_1)\}$$

If $C \leq 2n/\varepsilon$, then DP returns an optimal solution in $O(n^2/\varepsilon)$ time.

So, assume $C > 2n/\varepsilon$.

Further speedup with reduced DP columns

$$K := \varepsilon p(I_1)/n$$

Define p^* by $p_i^* \coloneqq \lfloor p_i/K \rfloor$ for $1 \le i \le n$ and $C^* = \lfloor C/K \rfloor$ Apply DP with p^* and C^* to find the most profitable set I_2 . Output the more profitable one I between I_1 and I_2 .

$$C^* = \lfloor C/K \rfloor \le 2p(I_1)/K \le 2n/\varepsilon$$

So, the total time (and space) complexity is $O(n^2/\varepsilon)$.

Thm.
$$p(I) \ge opt/(1 + \varepsilon)$$

Pf. For each i , $p_i - K < Kp_i^* = K\lfloor p_i/K \rfloor \le p_i$.
 $p(O) < Kp^*(O) + |O|K \le Kp^*(I_2) + nK \le p(I_2) + \varepsilon p(I_1) \le (1 + \varepsilon)p(I)$

Quick Summary on FPTAS

- 1. Modify the instance by rounding/scaling the numbers.
- 2. Use DP to compute an optimal solution S in the modified instance.
- 3. Output S as the approximate solution.

Other examples:

- Load balancing with fixed number of machines,
- Other variants of Knapsack
- Delay constrained shortest path