第二次高数沙龙讲座

经济统计 001 李名

2021年11月3日

目录

1. 微分中值定理

2. Taylor 定理

3. 综合题

Rolle 定理

定理

如果函数 f(x) 满足条件:

- 1. 在闭区间 [a,b] 上连续,
- 2. 在开区间 (a, b) 上可导,
- 3. 在端点处 f(a) = f(b),

则至少存在一点 $\xi \in (a, b)$,使得 $f'(\xi) = 0$.

巧妙构造函数来证明题中所给结论

例: 设 f(x) 在区间 I 上 n 阶可导, 且 $f^n(x) \neq 0$, 试证方程 f(x)=0 在区间 I 上最多有 n 个实根.

例: 设 f(x) 在区间 I 上 n 阶可导, 且 $f^n(x) \neq 0$, 试证方程 f(x)=0 在区间 I 上最多有 n 个实根.

反证法, 对相邻两个零点利用 Rolle 定理得到 f'(x) 至少有 n 个零点, 最后推出 $f^n(x) = 0$ 与题设矛盾

设 f(x) 在 [0,1] 上连续,在 (0,1) 内可导,f(0)=f(1) $=0,f(\frac{1}{2})=1$,求证: $\exists\xi\in(0,1)$,使 $f'(\xi)=1$

设 f(x) 在 [0,1] 上连续,在 (0,1) 内可导,f(0)=f(1) =0, $f(\frac{1}{2})=1$,求证:3 $\xi \in (0,1)$,使 $f'(\xi)=1$

证明 F(x)=f(x)-x 在 $(\frac{1}{2},1)$ 上有一个零点,接着在 0 与零点之间利用 Rolle 定理

例: 设函数 f(x),g(x) 在 [a,b] 上二阶可导,且 g"(x)≠0,f(a)=f(b)=g(a)=g(b)=0, 试证

- 1) 在 (a,b) 内 g(x)≠0:
- 2) 在 (a,b) 内至少有一点 ξ, 使得 $\frac{f(\xi)}{g(\xi)} = \frac{f''(\xi)}{g''(\xi)}$.

例: 设函数 f(x),g(x) 在 [a,b] 上二阶可导,且 $g''(x) \neq 0, f(a) = f(b) = g(a) = g(b) = 0$,试证

- 1) 在 (a,b) 内 g(x)≠0:
- 2) 在 (a,b) 内至少有一点 ξ, 使得 $\frac{f(\xi)}{g(\xi)} = \frac{f''(\xi)}{g''(\xi)}$.

- 1. 反证法
- 2. 构造 F(x)=g(x)f'(x)-f(x)g'(x)(Rolle 定理)

Lagrange 定理

定理

如果函数 f(x) 满足下列条件:

- 1. 在闭区间 [a, b] 上连续,
- 2. 在开区间 (a, b) 内可导,

则至少存在一点
$$\xi \in (a,b)$$
 使得 $f'(\xi) = \frac{f(b) - f(a)}{b-a}$

Lagrange 定理在证明上与函数性态有关方面是至关重要的

例: 设 f''(x) < 0, f(0) = 0, 证明对任何 $x_1 > 0$, $x_2 > 0$, 有 $f(x_1 + x_2) < f(x_1) + f(x_2)$

例: 设
$$f''(x) < 0$$
, $f(0) = 0$, 证明对任何 $x_1 > 0$, $x_2 > 0$, 有 $f(x_1 + x_2) < f(x_1) + f(x_2)$

- 1.Lagrange
- $2.F(x)=f(x+x_1)-f(x)$

例: 设 f''(x) < 0, 证明对任何 x_1, x_2 , 有

$$f(\frac{x_1+x_2}{2}) \le \frac{f(x_1)+f(x_2)}{2}$$

例: 设 f(x) 在 [a,b] 上连续, 在 (a,b) 内可导, 且 0 < a < b, 试证存在 $\xi, \eta \in (a,b)$, 使

$$f'(\xi) = \frac{\alpha + b}{2\eta} f'(\eta)$$

例: 设 f(x) 在 [a,b] 上连续, 在 (a,b) 内可导, 且 0 < a < b, 试证存在 $\xi, \eta \in (a,b)$, 使

$$f'(\xi) = \frac{\alpha + b}{2\eta} f'(\eta)$$

Lagrange 定理 +Cauchy 定理

例: 设函数 f(x) 在 [0,1] 上连续, 在 (0,1) 内可导, 且

- f(0)=0,f(1)=1, 证明:
- 1) 存在 c∈(0,1), 使得 f(c)=1-c
- 2) 存在两个不同的点 ξ , η \in (0,1), 使 f'(ξ)f'(η)=1

例: 设函数 f(x) 在 [0,1] 上连续, 在 (0,1) 内可导, 且

- f(0)=0,f(1)=1, 证明:
- 1) 存在 c∈(0,1), 使得 f(c)=1-c
- 2) 存在两个不同的点 $\xi, \eta \in (0,1)$, 使 $f'(\xi)f'(\eta)=1$

- 1. 构造函数利用 Rolle 定理
- 2. 注意题目中要求两个不同的点,考虑将 [0,1] 分为两个区间, 具体分割值根据需要证明的结论 (f(c)=1-c)

Cauchy 定理

定理

如果函数 f(x) 和 g(x) 满足下列条件:

- 1. 在闭区间 [a,b] 上都连续,
- 2. 在开区间 (a, b) 内都可导,
- 3. 在开区间 (a,b) 内 $g'(x) \neq 0$,

则至少有一点
$$\xi \in (a,b)$$
 使得 $\frac{f'(\xi)}{g'(\xi)} = \frac{f(b)-f(a)}{g(b)-g(a)}$.

例: 设函数 f(x) 在 [a,b] 上连续, 在 (a,b) 内可导,a>0, 证明: $\exists x_1, x_2, x_3 \in (a,b)$, 使

$$\frac{f'(x_1)}{2x_1} = (a^2 + b^2) \frac{f'(x_2)}{4x_2^3} = \frac{lnb - lna}{b^2 - a^2} x_3 f'(x_3)$$

例: 设函数 f(x) 在 [a,b] 上连续, 在 (a,b) 内可导,a>0, 证明:∃x₁, x₂, x₃ ∈ (*a, b*), 使

$$\frac{f'(x_1)}{2x_1} = (a^2 + b^2) \frac{f'(x_2)}{4x_2^3} = \frac{lnb - lna}{b^2 - a^2} x_3 f'(x_3)$$

Cauchy 定理: 分别取 $g_1(x) = x^2$, $g_2(x) = x^4$, $g_3(x) = lnx$

目录

1. 微分中值定理

2. Taylor 定理

3. 综合题

定理 (带 Peano 余项的泰勒公式)

设 f(x) 在 x_0 点存在 n 阶导数,则有

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + o((x - x_0)^n)$$

定理 (带 Langrange 余项的泰勒公式)

设 f(x) 在 x_0 的某邻域 $U(x_0)$ 内存在 n+1 阶导数,则 $\forall x \in U(x_0)$ 有

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x),$$

其中余项
$$R_n(x) = \frac{\mathbf{f}^{(n+1)}(\xi)}{(n+1)!} (\mathbf{x} - \mathbf{x_0})^{n+1}$$
, ξ 介于 x_0 和 x 之间.

定理 (带 Langrange 余项的泰勒公式)

设 f(x) 在 x_0 的某邻域 $U(x_0)$ 内存在 n+1 阶导数,则 $\forall x \in U(x_0)$ 有

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x),$$

其中余项 $R_n(x)=\frac{\mathbf{f^{(n+1)}}(\xi)}{(\mathbf{n+1})!}(\mathbf{x-x_0})^{\mathbf{n+1}}$, ξ 介于 x_0 和 x 之间. **在选择泰勒展开的点时要注意选择给定信息较多的点进行展开**

例: 计算极限
$$\lim_{x\to\infty} \left[x - x^2 \ln(1 + \frac{1}{x}) \right]$$

例: 求极限
$$\lim_{x\to 0} \frac{\sqrt{1+tanx}-\sqrt{1+sinx}}{xln(x+1)-x^2}$$

例: 求极限
$$\lim_{x\to 0} \frac{\sqrt{1+tanx}-\sqrt{1+sinx}}{xln(x+1)-x^2}$$

注意分母的阶数较高不可再用等价无穷小分开求极限. 答案为 $-\frac{1}{2}$

例: 已知
$$\lim_{x\to 0} \frac{\sin 6x + xf(x)}{x^3} = 0$$
, 求极限 $\lim_{x\to 0} \frac{6+f(x)}{x^2}$

例: 已知
$$\lim_{x\to 0} \frac{\sin 6x + xf(x)}{x^3} = 0$$
, 求极限 $\lim_{x\to 0} \frac{6+f(x)}{x^2}$

- 1.Taylor 定理展开
- 2. 分子加减 6x 凑分开的极限
- 3. 根据已知求得 f(x), 笨但是很有效.

例: 已知
$$f(0)=0, f'(0)=1$$
, 求
$$\lim_{n \to +\infty} \left[f\left(\frac{1}{n^2}\right) + f\left(\frac{2}{n^2}\right) + \dots + f\left(\frac{n}{n^2}\right) \right]$$
 因为
$$\lim_{n \to +\infty} f\left(\frac{1}{n^2}\right) = \lim_{n \to +\infty} \frac{1}{n^2} \times \frac{f\left(\frac{1}{n^2}\right)}{\frac{1}{n^2}}$$

$$= \lim_{n \to +\infty} \frac{f'\left(\frac{1}{n^2}\right)}{n^2}$$

$$= 0$$

所以: 原式 =0+0+...+0=0

例: 已知
$$f(0)=0, f'(0)=1$$
, 求
$$\lim_{n\to+\infty} \left[f\left(\frac{1}{n^2}\right) + f\left(\frac{2}{n^2}\right) + \dots + f\left(\frac{n}{n^2}\right)\right]$$
因为 $\lim_{n\to+\infty} f\left(\frac{1}{n^2}\right) = \lim_{n\to+\infty} \frac{1}{n^2} \times \frac{f\left(\frac{1}{n^2}\right)}{\frac{1}{n^2}}$

$$= \lim_{n\to+\infty} \frac{f'\left(\frac{1}{n^2}\right)}{n^2}$$

$$= 0$$

所以: 原式 =0+0+...+0=0

忽略了 $o(\frac{1}{n^2})$, 无穷个高阶无穷小的和未必是高阶无穷小

例: 设 f(x) 在 [0,1] 上二阶可导, $|f(x)| \le a$, $|f''(x)| \le b(a,b)$ 为非负实数), 证明: $\forall c \in (0,1)$, $|f'(c)| \le 2a + \frac{b}{2}$

例: 设 f(x) 在 [0,1] 上二阶可导, $|f(x)| \le a$, $|f''(x)| \le b(a,b)$ 为非负实数), 证明: $\forall c \in (0,1)$, $|f'(c)| \le 2a + \frac{b}{2}$

将 x=0 和 x=1 代入 f(x) 在 $x_0 = c$ 处的二阶 Taylor 公式

目录

1. 微分中值定理

2. Taylor 定理

3. 综合题

例: 求极限
$$\lim_{x \to +\infty} \left(\sqrt[6]{x^6 + x^5} - \sqrt[6]{x^6 - x^5} \right)$$

例: 求极限
$$\lim_{x\to+\infty} \left(\sqrt[6]{x^6+x^5} - \sqrt[6]{x^6-x^5} \right)$$

- 1. 利用等价无穷小做变换.
- 2. 考虑 $(1+x)^{\alpha}$ 的 Maclaurin 公式.
- 3.Lagrange 中值定理计算.

例: 设 f(x) 二阶可导,且 $|f''(x)| \le M$, $\lim_{x \to 1} \frac{f(x)}{(x-1)^2} = 1$, 证明,对任意的 a > 1, 有 $|f'(0)| + |f'(a)| \le Ma$.

例: 设 f(x) 二阶可导,且 $|f''(x)| \le M$, $\lim_{x \to 1} \frac{f(x)}{(x-1)^2} = 1$, 证明,对任意的 a > 1, 有 $|f'(0)| + |f'(a)| \le Ma$.

同时出现两个点的导数值, 利用 Taylor 未必能得到理想结果, 考虑在 [0,1] 和 [1,a] 上利用 Lagrange 定理.

Thanks for your listening