Probability Distribution

Random Variable

 A variable used to denote the numerical value of the outcome of an experiment is called the random variable, abbreviated as r.v.

• A random variable is denoted by capital letters X, Y, Z, and its values are denoted by $x_1, x_2, ..., y_1, y_2, ..., z_1, z_2, ...$ etc.

Discrete Random Variable

 A random variable is called a discrete random variable if it takes discrete (distinct) values

$$x_1, x_2, ... x_n ... in (a, b).$$

For example, number of floors in a building, number of kids in a family etc.

Continuous Random Variable

- A random variable is called a **continuous** random variable if it takes all values between an interval (a, b).
- For example, age, height, weight are continuous random variables.

Probability Distribution Of A discrete Random Variable

- Let X be a discrete random variable.
- Let $x_1, x_2, ... x_n$... be the possible values of X. with each possible outcome x_i we associate a number $p(x_i) = p(X = x_i) = p_i$ called the Probability of x_i .

- The numbers $p(x_i)$, i = 1, 2, ... n ... must satisfy the following conditions :
 - **1.** $p(x_i) \ge 0$ for all i
 - **2.** $\sum_{i=1} p(x_i) = 1$.
- The function p is called the probability function or probability mass function (p.m.f.) or probability density function (p.d.f.) of the random variable X and the set of pairs (x_i, p_i) is called the probability distribution of X.

• The probability distribution of a discrete random variable X taking values $x_1, x_2, x_3 \dots x_n \dots$ with probabilities $p_1, p_2, p_3 \dots p_n \dots where p_1 \geq 0$ and $\sum p_i = 1$ can be given in tabular form as.

X	x_1	x_2	<i>x</i> ₃	<i>x</i> _n
$P(X=x_i)$	p_1	p_2	p_3	p_n

Distribution Function of A Discrete Random Variable X

• Suppose, X is a random variable taking values $x_1, x_2 \dots x_n$ with probabilities

$$p(x_i), i = 1,2, ... n ...$$
 such that

(i)
$$p(x_i) \ge 0$$
 for all i, (ii) $\sum p(x_i) = 1$

Consider F defined by

$$F(x_i) = P(X \le x_i), i = 1,2,3,...$$

i.e. $F(x_i) = P(x_1) + P(x_2) + \cdots + P(x_i)$

then the function F is called the

cumulative distribution function or simply distribution function

- The set of pairs $\{x_i, F(x_i)\}$ is called the cumulative probability distribution.
- Consider the following table

X	x_1	x_2	<i>x</i> ₃	<i>x</i> _n
$F(x_i) = F(X = x_i)$	$P(x_1)$	$\sum_{1}^{2} P(x_i)$	$\sum_{1}^{3} P(x_i) \dots$	$\sum_{1}^{n} P(x_i) \dots$

The function F is called the distribution function

Probability Density Function Of A Continuous Random Variable

- A continuous function y = f(x) such that
 - (i) f(x) is integrable.
 - (ii) $f(x) \ge 0$
 - (iii) $\int_a^b f(x)dx = 1$ if X lies in [a,b] and

(iv)
$$\int_{\alpha}^{\beta} f(x) dx = P(\alpha \le X \le \beta)$$

where $\alpha < \alpha < \beta < b$

is called **probability desnity function** of a continuous random variable X.

- The curve given by y = f(x) is called the **probability density curve** or simply **probability curve**.
- The expression f(x)dx is usually denoted by df(x) and is known as **probability differential**

- You know that for discrete random variable the probability at $X=\mathcal{C}$ may not be zero.
- But, in a continuous random variable P(X = C) is always zero because

$$P(X=C) = \int_{C}^{C} f(x) dx$$

and this definite integral is zero.

For a continuous random variable X

$$P(\alpha \le X \le \beta) = P(\alpha < X < \beta)$$

= $P(\alpha < X \le \beta) = P(\alpha \le X < \beta)$

In other words we may include or may not include the end points in the interval.

Continuous Distribution Function

 If X is a continuous random variable X, having the probability density function f(x) then the function

$$F(x) = P(X \le x)$$

= $\int_{-\infty}^{x} f(t)dt, -\infty < x < \infty$

is called distribution function or cumulative distribution function of the random variable X.

Expectation of a Random Variable

• If a discrete random variable X assumes values $x_1, x_2 \dots x_n \dots$ with probability $P_1, P_2 \dots P_n \dots$ respectively then the mathematical expectation of X denoted by E(x) is defined by

$$E(X) = P_1 X_1 + P_2 X_2 + \dots + P_n X_n \dots$$
$$= \sum P_i X_i \quad \text{where } \sum P_i = 1.$$

This value is also referred to as **mean** value of X.

 Let X be a continuous random variable with probability density function f (x).

Then the mathematical expectation of X, denoted by E(X) is defined by

$$E(X) = \int_{-\infty}^{\infty} x \cdot f(x) dx$$
where, $\int_{-\infty}^{\infty} f(x) dx = 1$

Laws of Expectation

- If X is a discrete random variable such that $x_i \ge 0$ for all i, then $E(X) \ge 0$
- If X is a discrete (or continuous) random variable, a and b are constants then E(aX + b) = aE(X) + b
- Putting a=0. E(b)=b i.e. expectation of a constant is the constant itself.
- Putting b = 0. E(ax) = aE(X) i.e. for calculations the constant can be taken out.

• Putting $a=1, b=-\bar{X}$, $E(X-\bar{X})=0$.

Theorem of Addition:

The expectation of the sum (or difference) of two (discrete or continuous) variates is equal to the sum (or difference) of their expectations.

In symbols,
$$E(X \pm Y) = E(X) \pm E(Y)$$

• Theorem of Multiplication:

The expectation of the product of **two independent** variates (discrete or continuous) is equal to the product of their expectations if the expectation exist.

• In symbols, $E(XY) = E(X) \cdot E(Y)$

Note: It should be noted that the converse of the above theorem is not. If E(XY) = E(X). E(Y) then it does not mean that X, Y are independent.

VARIANCE

• Var (X) =
$$E(X - \overline{X})^2$$

= $E[X - E(X)]^2$
= $E[X^2 - 2XE(X) + \{E(X)\}^2]$
= $E(X^2) - 2E(X) \cdot E(X) + [E(X)]^2$
Var (X) = $E(X^2) - [E(X)]^2$

Properties of Variance

- Variance of a constant is zero, V(C) = 0.
- If X is a random variate and a, b are constants

then
$$V(aX + b) = a^2V(X)$$

•
$$V(aX) = a^2V(X)$$

•
$$V(X+b)=V(X)$$

- Note that E(aX + b) = aE(X) + bwe do not have V(aX + b) = aV(X) + b. Instead, we have $V(aX + b) = a^2V(X)$.
- $V(a_1X_1 + a_2X_2) = a_1^2V(X_1) + a_2^2V(X_2)$ Where X_1 and X_2 are independent random variates.
- If $a_1 = 1$, $a_2 = 1$, we get $V(X_1 + X_2) = V(X_1) + V(X_2)$ &
- If $a_1 = 1$, $a_2 = -1$, we get $V(X_1 X_2) = V(X_1) + V(X_2)$

EX.1 If X_1 has mean 4 and variance 9 and X_2 has mean -2 variance 4, and the two are independent, find $E(2X_1 + X_2 - 3)$ and $V(2X_1 + X_2 - 3)$

Solution: We have
$$E(X_1) = 4$$
, $V(X_1) = 9$, $E(X_2) = -2$ and $V(X_2) = 4$

$$E(2X_1 + X_2 - 3) = E(2X_1 + X_2) - 3$$

$$= 2E(X_1) + E(X_2) - 3$$

$$= 2(4) + (-2) - 3 = 3$$

$$V(2X_1 + X_2 - 3) = V(2X_1 + X_2)$$

$$= 2^2V(X_1) + V(X_2)$$

$$= 4(9) + 4 = 40$$

MEDIAN

- The median is the size of the item which lies at the middle
- For a continuous distribution the median M divides the area under the curve from x = a to x = b in to two equal parts.
- If M is the median then $\int_a^M f(x) dx = \int_M^b f(x) dx = \frac{1}{2}$
- By solving any one of the equations

$$\int_{a}^{M} f(x) dx = \frac{1}{2}, \quad or \quad \int_{M}^{b} f(x) dx = \frac{1}{2}$$

We can get the median M.

MODE

- Mode is the size of the item having maximum frequency
- Using the theory of maxima,
 mode is obtained by solving the equation

$$\frac{dy}{dx} = 0$$
 i.e. $f'(x) = 0$ with the condition that

$$\frac{d^2y}{dx^2}$$
 < 0 i. e. $f''(x)$ < 0 and that x lies in the interval $[a,b]$ of X.

EX.2 Given the following probability function of a discrete random variable X

Х	0	1	2	3	4	5	6	7
P(X=x)	0	С	2c	2c	3c	c^2	$2c^2$	$7c^2 + c$

Find (i) c (ii)
$$P(X \ge 6)$$
,

(iii)
$$P(X < 6)$$
,

(iv) k if,
$$P(X \le k) > 1/2$$
, where $k \in N$,

(v)
$$P(1.5 < X < 4.5/X > 2)$$

(vi)
$$E(X)$$
 (vii) $V(X)$

Solution: Since
$$\sum p_i = 1$$

c = -1 is not possible as it represents probability

$$\therefore c = 0.1$$

Hence the probability distribution of X is

X	0	1	2	3	4	5	6	7
$P \qquad (X = x)$	0	0.1	0.2	0.2	0.3	0.01	0.02	0.17

(ii)
$$P(X \ge 6) = P(X = 6) + P(X = 7)$$

 $= 0.02 + 0.17 = 0.19$
(iii) $P(X < 6) = 1 - P(X \ge 6)$
 $= 1 - 0.19 = 0.81$
(iv) To find k if, $P(X \le k) > 1/2$, where $k \in N$
 $P(X \le 0) = 0$
 $P(X \le 1) = 0.1$
 $P(X \le 2) = 0.3$
 $P(X \le 3) = 0.5$
 $P(X \le 4) = 0.8$
 $\therefore k = 4$

(v)
$$P(1.5 < X < 4.5/X > 2)$$

$$= \frac{P[(1.5 < X < 4.5) \cap (X > 2)]}{P(X > 2)}$$

$$= \frac{P(2 < X < 4.5)}{P(X > 2)}$$

$$= \frac{P(X = 3) + P(X = 4)}{P(X > 2)}$$

$$= \frac{0.5}{0.7} = \frac{5}{7}$$

(vi)
$$E(X) = \sum p_i x_i$$

= $0 \times 0 + 1 \times 0.1 + 2 \times 0.2 + 3 \times 0.2 + 4 \times 0.3 + 5$
 $\times 0.01 + 6 \times 0.02 + 7 \times 0.17$
= 3.66
(vii) To find $V(X)$

$$E(X^{2}) = \sum p_{i}x_{i}^{2}$$

$$= 1 \times 0.1 + 4 \times 0.2 + 9 \times 0.2 + 16 \times 0.3 + 25 \times 0.01$$

$$+ 36 \times 0.02 + 49 \times 0.17$$

$$= 16.8$$

$$V(x) = E(X^{2}) - [E(X)]^{2}$$

$$= 16.8 - (3.66)^{2}$$

$$= 3.4044$$

EX.3 The probability distribution of a discrete random variable is given by

X	0	1	2	3
P(X=x)	\overline{k}	0.3	0.5	\overline{k}

If $Y = X^2 + 2X$, find the probability distribution of Y, mean and variance of Y. What is the probability that 1 < y < 10?

Solution: Since
$$\sum p_i = 1$$

 $k + 0.3 + 0.5 + k = 1$
 $k = 0.1$

Hence, the p.d.f. of *X* is

X	0	1	2	3	Total
P(X=x)	0.1	0.3	0.5	0.1	1

Now, when X takes values 0, 1, 2, 3.

 $Y = X^2 + 2X$ takes values 0, 3, 8, 15 resply with respective probabilities

Y	0	3	8	15	Total
P(Y=y)	0.1	0.3	0.5	0.1	1

$$P(1 < Y < 10) = P(y = 3) + P(y = 8)$$

$$= 0.3 + 0.5 = 0.8$$
Now, mean $\overline{Y} = \sum p_i y_i$

$$= 0(0.1) + 3(0.3) + 8(0.5) + 15(0.1)$$

$$= 0 + 0.9 + 4.0 + 1.5 = 6.4$$

$$E(Y^2) = \sum p_i y_i^2$$

$$= 0^2(0.1) + 3^2(0.3) + 8^2(0.5) + 15^2(0.1)$$

$$= 0 + 2.7 + 32 + 22.5 = 57.2$$

$$\therefore \text{ Variance} = E(Y^2) - (E(Y))^2$$

$$= 57.2 - 40.96 = 16.24$$

EX.4 A r.v. X has the following probability distribution

X	-2	-1	0	1	2
P(X=x)	1/5	1/5	2/5	2/15	1/15

Find the probability distribution of

(i)
$$V = X^2 + 1$$
,

(ii)
$$W = X^2 + 2X + 3$$

V	1	2	5
P(V)	2/5	1/3	4/15

W	2	3	6	11
P(W)	1/5	3/5	2/15	1/15

EX. If the mean of the following distribution is 16 find m, n and variance

X : 8 12 16 20 24 $P(X = x) : \frac{1}{8} m n \frac{1}{4} \frac{1}{12}$

EX. A function is defined as

$$f(x) = \begin{cases} 0, & \text{for } x < 2\\ \frac{2x+3}{18}, & \text{for } 2 \le x \le 4\\ 0, & \text{for } x > 4 \end{cases}$$

Show that f(x) is a probability density function and find the probability that 2 < x < 3.

EX. A continuous random variable has probability density function

$$f(x) = 6(x - x^2), \ 0 \le x \le 1$$
 Find

- (i) mean (ii) Variance
- (iii) median (iv) mode
- (v) harmonic mean

(vi)
$$P(|x-m|<\sigma)$$

(vii)
$$P(\mu - 2\sigma < X < \mu + 2\sigma)$$

where $m = \text{median}, \mu = \text{mean}, \sigma = \text{S.D.}$

Solution:

(i)
$$E(X) = \int_0^1 x \cdot 6(x - x^2) dx$$

 $= 6 \int_0^1 (x^2 - x^3) dx$
 $= 6 \left[\frac{x^3}{3} - \frac{x^4}{4} \right]_0^1$
 $= 6 \left(\frac{1}{3} - \frac{1}{4} \right)$
 $= \frac{1}{3}$

(ii)
$$E(X^2) = \int_0^1 x^2 \cdot 6(x - x^2) dx$$

 $= 6 \int_0^1 (x^3 - 3x^4) dx$
 $= 6 \left[\frac{x^4}{4} - \frac{x^5}{5} \right]_0^1$
 $= 6 \left(\frac{1}{4} - \frac{1}{5} \right)$
 $= \frac{6}{20} = \frac{3}{10}$
 $\therefore \text{ Var. } (x) = E(X^2) - [E(X)]^2$
 $= \frac{3}{10} - \frac{1}{4} = \frac{1}{20}$

(iii) Median M is given by $\int_0^M 6(x-x^2) dx = \frac{1}{2}$

$$\therefore 6 \left[\frac{x^2}{2} - \frac{x^3}{3} \right]_0^M = \frac{1}{2}$$

$$\therefore 6 \left[\frac{M^2}{2} - \frac{M^3}{3} \right] = \frac{1}{2}$$

$$\therefore 3M^2 - 2M^3 = \frac{1}{2}$$

$$4M^3 - 6M^2 + 1 = 0$$

$$\therefore (2M-1)(2M^2-2M-1)=0$$

:
$$M = \frac{1}{2} \text{ or } \frac{2 \pm \sqrt{12}}{4} = \frac{1 \pm \sqrt{3}}{2}$$

Of the three values only M=1/2 lies in (0,1) Hence, M=1/2

(iv) For mode we must have f'(x) = 0 and f''(x) < 0

$$f'(x) = 6(1 - 2x) = 0$$

$$\therefore x = 1/2$$

$$f^{"}(x) = -12$$

$$\therefore$$
 Mode = $\frac{1}{2}$

(v) Harmonic mean is given by

$$\frac{1}{H} = \int_0^1 \frac{1}{x} \cdot 6(x - x^2) dx$$

$$= 6 \int_0^1 (1 - x) dx$$

$$= 6 \left[x - \frac{x^2}{2} \right]_0^1$$

$$= 6 \left[1 - \frac{1}{2} \right] = 3$$

$$\therefore H = \frac{1}{2}$$

(vi)
$$P(|x - M| < \sigma) = P(-\sigma < x - M < \sigma)$$

 $= P(M - \sigma < x < M + \sigma)$
 $= P(0.5 - 0.2236 < x < 0.5 + 0.2230)$
 $= P(0.2764 < x < 0.7236)$
 $= 6 \int_{0.2764}^{0.7236} (x - x^2) dx$
 $= 6 \left[\left(\frac{x^2}{2} - \frac{x^3}{3} \right)_{0.2764}^{0.7236} \right]$
 $= 6 \left[\left(\frac{(0.7236)^2}{2} - \frac{(0.7236)^3}{3} \right) \right]$
 $= 6[0.1355 - 0.0311] = 0.6264$

EX 5. If X is a continuous random variable with probability density function given by

$$f(x) = \begin{cases} k(x - x^3); & 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}$$

Find (i) k, (ii) mean,
(iii) variance, (iv) median.
(v) Mode

EX. A continuous random variable *X* has p.d.f.

$$f(x) = kx^2e^{-x}, x \ge 0.$$

Find k, mean and variance

EX. The daily consumption of electric power (in millon kwh) is a random variable X with probability distribution function

$$f(x) = \begin{cases} kxe^{-x/3}, & \text{for } x > 0\\ 0, & \text{for } x \le 0 \end{cases}$$

Find the value of k, the expectation of X and the probability that on a given day the electric consumption is more than expected value.

Ex. Let X be a continuous random variable with p.d.f. f(x) = kx(1-x), $0 \le x \le 1$. Find k and determine a number b such that

$$P(X \le b) = P(X \ge b)$$