Assessment for CASA0002 - Urban Simulation

https://github.com/ruicixia1/simulation

Part 1: London's underground resilience

I. Topological network

I.1. Centrality measures:

```
In [1]: # we will import all the necessary libraries
        import pandas as pd
        import numpy as np
        import geopandas as gpd
        import networkx as nx
        import matplotlib.pyplot as plt
        from matplotlib.pyplot import cm
        import json
        import re
        from shapely geometry import Point, LineString #this library is for manipulating geometr
        from scipy.spatial import distance
        C:\Users\lenovo\AppData\Local\Temp\ipykernel_38124\2494671397.py:2: DeprecationWarning:
        Pyarrow will become a required dependency of pandas in the next major release of pandas
        (pandas 3.0),
        (to allow more performant data types, such as the Arrow string type, and better interope
        rability with other libraries)
        but was not found to be installed on your system.
        If this would cause problems for you,
        please provide us feedback at https://github.com/pandas-dev/pandas/issues/54466
          import pandas as pd
```

Degree centrality, betweenness centrality and eigenvector centrality are the three most useful measures for identifying the most important nodes in the underground networks.

1. **Degree Centrality**: Measures the number of direct connections a node has and is useful for indicating the local importance of a node (Bloch, Jackson, and Tebaldi, 2019). Stations with high degree centrality are crucial as they serve as major hubs, connecting various lines and facilitating a high number of passenger movement volumns across the network. A station with high degree centrality can significantly impact the network's functionality if removed or disrupted. (deg(v) is the degree of vertex v, and N is the total number of vertices in the graph)

$$C_D(v) = rac{deg(v)}{N-1}$$

1. Betweenness Centrality: Quantifies the number of times a node acts as a bridge along the shortest path between two other nodes (Freeman, 1977). In the context of the underground, stations with high betweenness centrality are critical for maintaining network efficiency. They often serve as essential transfer points, and their removal could isolate network segments and increase travel times

dramatically. (σst is the total number of shortest paths from node s to node t and $\sigma st(v)$ is the number of those paths that pass through v.)

$$C_B(v) = \sum_{s
eq v
eq t \in V} rac{\sigma_{st}(v)}{\sigma_{st}}$$

Normalised:

$$C_B(v)=rac{2}{(n-1)(n-2)}C_B(v)$$

1. Eigenvector Centrality: This measure not only considers the number of connections a station has but also the quality of those connections (Bonacich, 1987). A station connected to other highly connected stations has higher eigenvector centrality. This is crucial for identifying influential stations within the network, highlighting nodes that, while they may not have the highest number of direct connections, are strategically positioned.

$$C_E(v) = rac{1}{\lambda} \sum_{t \in M(v)} C_E(t)$$

$$\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$$

```
In [2]: G = nx.read_graphml('london_updated.graphml')
In [3]: for node, data in G.nodes(data=True):
            # convert the string to a tuple
            coords_str = data['coords'].strip("()")
            # add the new key to the dictionary
            data['coords'] = tuple(map(float, coords_str.split(',')))
In [4]: # check
        is_connected = nx.is_connected(G)
        print(f"Graph is connected: {is_connected}")
        Graph is connected: True
In [5]: # To check node attributes:
        #G.nodes(data=True)
In [6]: # To check edge attributes:
        #G.edges(data=True)
        print(G.number_of_nodes())
        print(G.number_of_edges())
        467
In [8]: # Let's plot the tube network!
        # We can plot the tube network with the names of the stations as labels
        fig, ax = plt.subplots(figsize=(25,20))
        node_labels = nx.get_node_attributes(G, 'station_name')
        pos = nx.get_node_attributes(G, 'coords')
        nx.draw_networkx_nodes(G, pos, node_size=50, node_color='b')
        nx.draw_networkx_edges(G, pos, arrows=False, width=0.2)
```

```
nx.draw_networkx_labels(G,pos, node_labels, font_size=10, font_color='black')
plt.title("London tube network", fontsize=40)
plt.axis("off")
plt.show()
```

London tube network

Figure 1. London Tube Network

```
In [9]:
        # Compute centralities
        degree_centrality = nx.degree_centrality(G)
        betweenness_centrality = nx.betweenness_centrality(G)
        eigenvector_centrality = nx.eigenvector_centrality_numpy(G)
        # Sorting and selecting top 10
        sorted_degree = sorted(degree_centrality.items(), key=lambda x: x[1], reverse=True)[:10]
        sorted_betweenness = sorted(betweenness_centrality.items(), key=lambda x: x[1], reverse=
        sorted_eigenvector = sorted(eigenvector_centrality.items(), key=lambda x: x[1], reverse=
        # Create DataFrame from sorted lists
        combined_df = pd.DataFrame({
             'Rank': range(1, 11),
             'Degree Centrality Station': [x[0] for x in sorted_degree],
             'Degree Centrality Value': [x[1] for x in sorted_degree],
             'Betweenness Centrality Station': [x[0] for x in sorted_betweenness],
             'Betweenness Centrality Value': [x[1] for x in sorted_betweenness],
             'Eigenvector Centrality Station': [x[0] \text{ for } x \text{ in } sorted\_eigenvector],
             'Eigenvector Centrality Value': [x[1] for x in sorted_eigenvector]
        }).set_index('Rank')
```

	Centrality Centrality		Betweenness Centrality Value	Eigenvector Centrality Station	Eigenvector Centrality Value	
Rank						
1	Stratford	0.0225	Stratford	0.297846	Bank and Monument	0.383725
2	Bank and Monument	0.0200	Bank and Monument	0.290489	Liverpool Street	0.329191
3	Baker Street	0.0175	Liverpool Street	0.270807	Stratford	0.269574
4	King's Cross St. Pancras	0.0175	King's Cross St. Pancras	0.255307	Waterloo	0.249708
5	Liverpool Street	0.0150	Waterloo	0.243921	Moorgate	0.215343
6	West Ham	0.0150	Green Park	0.215835	Green Park	0.197023
7	Canning Town	0.0150	Euston	0.208324	Oxford Circus	0.183441
8	Waterloo	0.0150	Westminster	0.203335	Tower Hill	0.171839
9	Green Park	0.0150	Baker Street	0.191568	Westminster	0.168368
10	Oxford Circus	0.0150	Finchley Road	0.165085	Shadwell	0.159233

Table 1. The first 10 ranked nodes for degree centrality, betweenness centrality and eigenvector centrality

I.2. Impact measures:

Two global measures to evaluate the impact of node removal on the network are:

1. Global Efficiency(Mean Inverse Shortest Path $\operatorname{Length}(\langle l^{-1}\rangle)$): This measure provides a way of measuring the overall efficiency of the network by considering the inversed average shortest path length between all pairs of nodes in the network (Latora & Massimo, 2001). For the London Underground network, this means being able to assess the average number of stops a passenger needs to make to get from one stop to another across the network. A high average reverse shortest path length indicates that passengers can reach their destination with fewer transfers or they are use other routes when facing station interruptions, reflecting the high efficiency of the network.

$$\langle l^{-1}
angle = rac{1}{N(N-1)} \sum_{j\in V} \sum_{\substack{k
eq j \ k\in V}} rac{1}{g_{jk}}$$

 Modularity: This reflects the degree to which a network is compartmentalized into clusters or communities characterized by closely-knit connections within them. A substantial rise in modularity following the elimination of a node may suggest that vital links, which formerly integrated diverse communities and linked distinct areas, have been disrupted. The concept of modularity aids in understanding the network's architectural robustness.

$$Q = rac{1}{2m} \sum_{ij} \left[A_{ij} - rac{k_i k_j}{2m}
ight] \delta(c_i, c_j)$$

Global Efficientcy

```
In [10]: # calculate the shortest path between two stations
global_eff = nx.global_efficiency(G)
print(f"Global Efficiency: {global_eff}")

Global Efficiency: 0.10125619359721513
```

Modularity

```
In [11]: # greedy_modularity_communities
    from networkx.algorithms import community
    communities = community.greedy_modularity_communities(G)
    modularity = community.modularity(G, communities)
    print(f"Modularity: {modularity}")
```

Modularity: 0.8302138117924331

These measures are not specific to the London Underground; they can be generalized to evaluate the resilience of any network, such as social and biological networks. By comparing the changes in these global measures before and after the removal of critical nodes, researchers can identify the nodes or connections that have the greatest impact on the performance and structure of the network, thus providing guidance for network design and intervention.

I.3. Node removal:

a. non-sequential

1. Prepare the centrality measures and DataFrames

```
In [12]: # Determine the number of nodes to remove (10)
   num_nodes_to_remove = 10
```

2. Remove nodes and calculate metrics

```
G = nx.read_graphml('london_updated.graphml')
In [13]:
         G_degree = G.copy()
         degree_centrality = nx.degree_centrality(G_degree)
         # Sort nodes by degree centrality in descending order
         sorted_degree = sorted(degree_centrality.items(), key=lambda x: x[1], reverse=True)
         results_degree = [] # Prepare DataFrames to store the results
         # Remove nodes based on degree centrality and calculate metrics
         for i in range(num_nodes_to_remove):
             node, _ = sorted_degree[i]
             G_degree.remove_node(node)
             global_eff = nx.global_efficiency(G_degree)
             if G_degree.number_of_edges() > 0:
                 communities = community.greedy_modularity_communities(G_degree)
                 modularity = community.modularity(G_degree, communities)
             else:
                 modularity = None
             results_degree.append({'Removing nodes': (i + 1) / num_nodes_to_remove* 100, # Now
                                     'Degree Global Efficiency': global_eff,
                                     'Degree Modularity': modularity})
         degree = pd.DataFrame(results_degree)
```

```
G_betweenness = G.copy()
         betweenness_centrality = nx.betweenness_centrality(G_betweenness)
         # Sort nodes by degree centrality in descending order
         sorted_betweenness = sorted(betweenness_centrality.items(), key=lambda x: x[1], reverse=
         results_betweenness = []
         # Remove nodes based on betweenness centrality and calculate metrics
         for i in range(num_nodes_to_remove):
             node, _ = sorted_betweenness[i]
             G_betweenness.remove_node(node)
             global_eff = nx.global_efficiency(G_betweenness)
             if G_betweenness.number_of_edges() > 0:
                 communities = community.greedy_modularity_communities(G_betweenness)
                 modularity = community.modularity(G_betweenness, communities)
             else:
                 modularity = None
             results_betweenness.append({'Removing nodes': (i + 1) / num_nodes_to_remove* 100,
                                     'Betweenness Global Efficiency': global_eff,
                                     'Betweenness Modularity': modularity})
         betweenness = pd.DataFrame(results_betweenness)
         G = nx.read_graphml('london_updated.graphml')
In [15]:
         G_eigenvector = G.copy()
         try:
             # Increase the number of iterations
             eigenvector_centrality = nx.eigenvector_centrality(G_eigenvector, max_iter=500)
         except nx.PowerIterationFailedConvergence:
             print("Eigenvector centrality didn't converge. You might want to check the graph str
         sorted_eigenvector = sorted(eigenvector_centrality.items(), key=lambda x: x[1], reverse=
         results_eigenvector = []
         # Remove nodes based on eigenvector centrality and calculate metrics
         for i in range(num_nodes_to_remove):
             node, _ = sorted_eigenvector[i]
             G_eigenvector.remove_node(node)
             global_eff = nx.global_efficiency(G_eigenvector)
             if G_eigenvector.number_of_edges() > 0:
                 communities = community.greedy_modularity_communities(G_eigenvector)
                 modularity = community.modularity(G_eigenvector, communities)
             else:
                 modularity = None
             results_eigenvector.append({'Removing nodes': (i + 1) / num_nodes_to_remove* 100,
                                     'Eigenvector Global Efficiency': global_eff,
                                     'Eigenvector Modularity': modularity})
         eigenvector = pd.DataFrame(results_eigenvector)
```

3. Plot the global efficiency and modularity

G = nx.read_graphml('london_updated.graphml')

In [14]:

```
In [16]: fig, ax = plt.subplots(1, 2, figsize=(12, 5))

# Plot for Global efficiency
ax[0].plot(degree['Removing nodes'], degree['Degree Global Efficiency'], label='Degree C
ax[0].plot(betweenness['Removing nodes'], betweenness['Betweenness Global Efficiency'],
ax[0].plot(eigenvector['Removing nodes'], eigenvector['Eigenvector Global Efficiency'],
ax[0].set_xlabel('Removing nodes percentage(%)')
ax[0].set_ylabel('Global Efficiency')
ax[0].set_title('Global Efficiency after Node Removal')
```

```
ax[0].legend()

# Plot for Modularity
ax[1].plot(degree['Removing nodes'], degree['Degree Modularity'], label='Degree Centrali
ax[1].plot(betweenness['Removing nodes'], betweenness['Betweenness Modularity'], label='
ax[1].plot(eigenvector['Removing nodes'], eigenvector['Eigenvector Modularity'], label='
ax[1].set_xlabel('Removing nodes percentage(%)')
ax[1].set_ylabel('Modularity')
ax[1].set_title('Modularity after Node Removal')
ax[1].legend()

plt.tight_layout()
plt.show()
```


Figure 2. The plot of Non-sequential node removal of two strageties

```
In [17]: df_nonseq = pd.concat([
          degree[['Degree Global Efficiency', 'Degree Modularity']],
          betweenness[['Betweenness Global Efficiency', 'Betweenness Modularity']],
          eigenvector[['Eigenvector Global Efficiency', 'Eigenvector Modularity']]
], axis=1)

# The 'Removing nodes' column should only be calculated once since the process is the saidf_nonseq['Removing nodes Percentage'] = df_nonseq.index / 10 * 100

df_nonseq
```

Out[17]:

	Degree Global Efficiency	Degree Modularity	Betweenness Global Efficiency	Betweenness Modularity	Eigenvector Global Efficiency	Eigenvector Modularity	Removing nodes Percentage
0	0.088917	0.835713	0.088917	0.835713	0.096735	0.837980	0.0
1	0.085862	0.846760	0.085862	0.846760	0.094668	0.844449	10.0
2	0.082033	0.851936	0.084963	0.852144	0.084963	0.852144	20.0
3	0.075700	0.859645	0.078498	0.853169	0.082797	0.855688	30.0
4	0.073903	0.859145	0.075942	0.859505	0.082749	0.853656	40.0
5	0.071298	0.866774	0.074152	0.859879	0.080953	0.852218	50.0
6	0.067264	0.867009	0.068206	0.866295	0.080104	0.854965	60.0
7	0.065596	0.876919	0.067660	0.865889	0.079741	0.856036	70.0
8	0.064602	0.877156	0.064700	0.873230	0.079100	0.859264	80.0
9	0.063736	0.874912	0.063139	0.876708	0.077579	0.859977	90.0

b. sequential

1. Prepare the centrality measures and DataFrames

```
In [18]: num_nodes_to_remove = 10
```

2. Sequentially remove nodes and calculate metrics

```
G = nx.read_graphml('london_updated.graphml')
In [19]:
         G_seq_degree = G.copy()
         results = []
         for i in range(num_nodes_to_remove):
             # calculate the degree centrality of each node
             degree_centrality = nx.degree_centrality(G_seq_degree)
             # sort the dictionary by values in descending order
             sorted_degree = dict(sorted(degree_centrality.items(), key=lambda x: x[1], reverse=T
             # get the first key in the dictionary
             node_to_remove = list(sorted_degree.keys())[0]
             # save the node's name and the degree centrality value of the node to remove
             centrality_value = sorted_degree[node_to_remove]
             # remove the node from the graph
             G_seq_degree.remove_node(node_to_remove)
             # calculate the global efficiency
             global_eff = nx.global_efficiency(G_seg_degree)
             # calculate the modularity
             communities = community.greedy_modularity_communities(G_seq_degree)
             modularity = community.modularity(G_seq_degree, communities)
             results.append({
                 'Degree Removed Node': node_to_remove,
                 'Degree Centrality': centrality_value,
                 'Degree Global Efficiency': global_eff,
                 'Degree Modularity': modularity
                 })
         df_seq_degree = pd.DataFrame(results)
```

```
In [20]: G = nx.read_graphml('london_updated.graphml')
   G_seq_betweenness = G.copy()
   results = []

for i in range(num_nodes_to_remove):
    # calculate the betweenness centrality of each node
   betweenness_centrality = nx.betweenness_centrality(G_seq_betweenness)

# sort the dictionary by values in descending order
   sorted_betweenness = dict(sorted(betweenness_centrality.items(), key=lambda x: x[1],

# get the first key in the dictionary
   node_to_remove = list(sorted_betweenness.keys())[0]

# save the node's name and the betweenness centrality value of the node to remove
   centrality_value = sorted_betweenness[node_to_remove]
```

```
# remove the node from the graph
             G_seq_betweenness.remove_node(node_to_remove)
             # calculate the global efficiency
             global_eff = nx.global_efficiency(G_seq_betweenness)
             # calculate the modularity
             communities = community.greedy_modularity_communities(G_seq_betweenness)
             modularity = community.modularity(G_seq_betweenness, communities)
             results.append({
                 'Betweenness Removed Node': node_to_remove,
                 'Betweenness Centrality': centrality_value,
                 'Betweenness Global Efficiency': global_eff,
                 'Betweenness Modularity': modularity
                 })
         df_seq_betweenness = pd.DataFrame(results)
         G = nx.read_graphml('london_updated.graphml')
In [21]:
         G_seq_eigenvector = G.copy()
         results = []
         for i in range(num_nodes_to_remove):
                 # Calculate eigenvector centrality
                 eigenvector_centrality = nx.eigenvector_centrality(G_seq_eigenvector, max_iter=1
                 # remove the node with the highest eigenvector centrality
                 node_to_remove = max(eigenvector_centrality, key=eigenvector_centrality.get)
                 centrality_value = eigenvector_centrality[node_to_remove]
                 # remove the node from the graph
                 G_seq_eigenvector.remove_node(node_to_remove)
                 # calculate global efficiency
                 global_eff = nx.global_efficiency(G_seg_eigenvector)
                 # calculate modularity
                 if G_seq_eigenvector.number_of_nodes() > 0:
                     communities = community.greedy_modularity_communities(G_seq_eigenvector)
                     modularity = community.modularity(G_seq_eigenvector, communities)
                 else:
                     modularity = None
                 results.append({
                      'Eigenvector Removed Node': node_to_remove,
                      'Eigenvector Centrality': centrality_value,
                      'Eigenvector Global Efficiency': global_eff,
                      'Eigenvector Modularity': modularity
                 })
             except nx.PowerIterationFailedConvergence as e:
                 print(f"Convergence failed at iteration {i + 1}: {e}")
                 break # if the eigenvector centrality doesn't converge, stop the loop
         df_seq_eigenvector = pd.DataFrame(results)
In [22]: # Every graph has the same number of nodes, so we can use any of them to get the total n
         total_nodes = len(G_seq_degree.nodes) #get the total number of nodes
         # combine the three DataFrames
         df_seq = pd.concat([df_seq_degree, df_seq_betweenness, df_seq_eigenvector], axis=1)
         # calculate the percentage of nodes removed
```

```
df_seq['Removing nodes Percentage'] = df_seq.index /10 * 100

# display the DataFrame
df_seq
```

Out[22]:

	Degree Removed Node	Degree Centrality	Degree Global Efficiency	Degree Modularity	Betweenness Removed Node	Betweenness Centrality	Betweenness Global Efficiency	Betweenness Modularity	Eigen Rer
0	Stratford	0.022500	0.088917	0.835713	Stratford	0.297846	0.088917	0.835713	Ba Mon
1	Bank and Monument	0.020050	0.085862	0.846760	King's Cross St. Pancras	0.247262	0.084603	0.845011	
2	Baker Street	0.017588	0.082033	0.851936	Waterloo	0.254180	0.081829	0.856455	St
3	King's Cross St. Pancras	0.017632	0.075700	0.859645	Bank and Monument	0.214651	0.077678	0.860751	Earl's
4	Canning Town	0.015152	0.070396	0.866871	Canada Water	0.244903	0.072832	0.864249	Westr
5	Green Park	0.015190	0.069402	0.870024	West Hampstead	0.456831	0.053210	0.869824	Baker
6	Earl's Court	0.015228	0.067772	0.870985	Earl's Court	0.096182	0.051656	0.871192	King's St. Pa
7	Waterloo	0.012723	0.065936	0.872442	Shepherd's Bush	0.128852	0.045844	0.881066	C
8	Oxford Circus	0.012755	0.065069	0.874393	Euston	0.087075	0.041631	0.881247	Tu
9	Willesden Junction	0.012788	0.056748	0.886262	Baker Street	0.098437	0.038164	0.887931	Le

Table 3. Sequential node removal of two strageties

3. Plot the global efficiency and modularity

```
In [23]: fig, ax = plt.subplots(1, 2, figsize=(12, 5))
         # plot the global efficiency
         ax[0].plot(df_seq['Removing nodes Percentage'], df_seq['Degree Global Efficiency'], labe
         ax[0].plot(df_seq['Removing nodes Percentage'], df_seq['Betweenness Global Efficiency'],
         ax[0].plot(df_seq['Removing nodes Percentage'], df_seq['Eigenvector Global Efficiency'],
         ax[0].set_xlabel('Removing nodes percentage(%)')
         ax[0].set_ylabel('Global Efficiency')
         ax[0].set_title('Global Efficiency After Removing Nodes')
         ax[0].legend()
         # plot the modularity
         ax[1].plot(df_seq['Removing nodes Percentage'], df_seq['Degree Modularity'], label='Degr
         ax[1].plot(df_seq['Removing nodes Percentage'], df_seq['Betweenness Modularity'], label=
         ax[1].plot(df_seq['Removing nodes Percentage'], df_seq['Eigenvector Modularity'], label=
         ax[1].set_xlabel('Removing nodes percentage(%)')
         ax[1].set_ylabel('Modularity')
         ax[1].set_title('Modularity After Removing Nodes')
         ax[1].legend()
         plt.show()
```


Figure 3. The plot of Sequential node removal of two strageties

Combine the non-sequential and sequential Plot

```
In [24]: # Step 1: Rename the columns for non-sequential DataFrames
    df_nonseq.columns = [f'Non-Sequential {col}' for col in df_nonseq.columns]

# Step 3: Rename the columns for the sequential DataFrame
    df_seq.columns = [f'Sequential {col}' for col in df_seq.columns]

# Step 4: Combine the non-sequential and sequential DataFrames
    DF_combined = pd.concat([df_nonseq, df_seq], axis=1)
DF_combined.head()
```

Seque De Cent	Sequential Degree Removed Node	Non- Sequential Removing nodes Percentage	Non- Sequential Eigenvector Modularity	Non- Sequential Eigenvector Global Efficiency	Non- Sequential Betweenness Modularity	Non- Sequential Betweenness Global Efficiency	Non- Sequential Degree Modularity	Non- Sequential Degree Global Efficiency	
0.02	Stratford	0.0	0.837980	0.096735	0.835713	0.088917	0.835713	0.088917	0
0.02	Bank and Monument	10.0	0.844449	0.094668	0.846760	0.085862	0.846760	0.085862	1
0.01	Baker Street	20.0	0.852144	0.084963	0.852144	0.084963	0.851936	0.082033	2
0.01	King's Cross St. Pancras	30.0	0.855688	0.082797	0.853169	0.078498	0.859645	0.075700	3
0.01	Canning Town	40.0	0.853656	0.082749	0.859505	0.075942	0.859145	0.073903	4

Table 4. The Combined Non-sequential and Sequential node removal of two strageties

```
In [25]: fig, ax = plt.subplots(1, 2, figsize=(18, 5))
# plot the global efficiency
# Non-Sequential
ax[0].plot(DF_combined['Non-Sequential Removing nodes Percentage'], DF_combined['Non-Sequential Removing nodes Percentage']
```

```
label='Non-Sequential Degree Centrality', linestyle='--', color='red', alpha=
ax[0].plot(DF_combined['Non-Sequential Removing nodes Percentage'], DF_combined['Non-Seq
            label='Non-Sequential Betweenness Centrality', linestyle='--', color='green',
ax[0].plot(DF_combined['Non-Sequential Removing nodes Percentage'], DF_combined['Non-Seq
             label='Non-Sequential Eigenvector Centrality', linestyle='--', color='blue',
# Sequential
ax[0].plot(DF_combined['Sequential Removing nodes Percentage'], DF_combined['Sequential
             label='Sequential Degree Centrality', linestyle='-', color='cyan', alpha=0.7)
ax[0].plot(DF_combined['Sequential Removing nodes Percentage'], DF_combined['Sequential
             label='Sequential Betweenness Centrality', linestyle='-', color='olive', alph
ax[0].plot(DF_combined['Sequential Removing nodes Percentage'], DF_combined['Sequential
            label='Sequential Eigenvector Centrality', linestyle='-', color='brown', alph
ax[0].set_xlabel('Removing nodes (%)')
ax[0].set_ylabel('Global Efficiency')
ax[0].set_title('Global Efficiency After Removing Nodes')
ax[0].legend(loc='upper left', bbox_to_anchor=(1, 1))
# plot the modularity
# Non-Sequential
ax[1].plot(DF_combined['Non-Sequential Removing nodes Percentage'], DF_combined['Non-Seq
            label='Non-Sequential Degree Centrality', linestyle='--', color='red', alpha=
ax[1].plot(DF_combined['Non-Sequential Removing nodes Percentage'], DF_combined['Non-Seq
              label='Non-Sequential Betweenness Centrality', linestyle='--', color='green'
ax[1].plot(DF_combined['Non-Sequential Removing nodes Percentage'], DF_combined['Non-Seq
              label='Non-Sequential Eigenvector Centrality', linestyle='--', color='blue',
# Sequential
ax[1].plot(DF_combined['Sequential Removing nodes Percentage'], DF_combined['Sequential
              label='Sequential Degree Centrality', linestyle='-', color='cyan', alpha=0.7
ax[1].plot(DF_combined['Sequential Removing nodes Percentage'], DF_combined['Sequential
              label='Sequential Betweenness Centrality', linestyle='-', color='olive', alp
ax[1].plot(DF_combined['Sequential Removing nodes Percentage'], DF_combined['Sequential
              label='Sequential Eigenvector Centrality', linestyle='-', color='brown', alp
ax[1].set_xlabel('Removing nodes (%)')
ax[1].set_ylabel('Modularity')
ax[1].set_title('Modularity After Removing Nodes')
ax[1].legend(loc='upper left', bbox_to_anchor=(1, 1))
plt.tight_layout() # Adjust the layout so the legend fits without overlapping the plot
plt.show()
       Global Efficiency After Removing Nodes
                                                            Modularity After Removing Nodes
                                                    0.89
                                  Non-Sequential Degree Centrality
Non-Sequential Betweenness Centrality
                                                                                     Non-Sequential Degree Centrality
Non-Sequential Betweenness Centrality
 0.09
                                  Non-Sequential Eigenvector Centrality
                                                                                     Non-Sequential Eigenvector Centrality
                                                    0.88
                                  Sequential Degree Centrality
Sequential Betweenness Centrality
                                                                                     Sequential Degree Centrality
Sequential Betweenness Centrality
0.08
                                  Sequential Eigenvector Centrality
                                                                                     Sequential Eigenvector Centrality
                                                    0.87
0.07
                                                    0.86
경
0.06
                                                    0.85
 0.05
```

Figure 4. Comparision of Non-sequential and Sequential Node Removal of Two Strageties

Strategies for Studying resilience

Removing nodes (%)

Comparing the two strategies, the **sequential removal** is more realistic to the real life situation as the network efficiency should be recalluculated each time after the node removal(attack). As shown in the two

plots, they reveal the same situation, where the sequential removal would give greater impact on the network system(global efficiency drop more for sequential than for non-sequential; modularity increase higher for sequential and for non-sequential), as the recalculation would put the existing top one important node into the next round of node removal.

Centrality Measure

It is appeared that eigenvector change the least among the three centrality measures, while betweenness centrality measure is the most sensitive to the node removal for both removal patterns. **Betweenness Centrality**, the larger drop in global efficiency when nodes are removed based on betweenness centrality suggests that these nodes may play a more critical role in the flow through the network. These stations likely act as important bridges in the network, and their removal can significantly impact overall travel efficiency.

Impact measure for assessing damage

In terms of two removal strategies, from the plots shown in figure 3, both work very well, but in the case of examing the impact of node removal, **global efficiency** is a better choice compare to modularity as the modularity has this up and down changing pattern which could lead to confusion in the practice (global efficiency is changing in one direction).

II. Flows: weighted network

II.1. Define flow and the Top 10 nodes

Create DataFrame from sorted lists
combined_weighted_df = pd.DataFrame({

```
In [26]: G = nx.read_graphml('london_updated.graphml')
    G_weighted = G.copy()
    # To check edge attributes:
    #G.edges(data=True)
```

To consider the weighted network in the Underground, a weighted parameter "flows" and "length" can be used for the weighted network. I am going to use both since taking passengers into consideration can both relates to the traveling time (length/distance between the stations) and the commuting population density (flows). They are both important parameters when stations are removed.

Compare the weighted results to the topological results, the top 10 stations are semi-different.

```
In [27]: # computing the degree centrality
weighted_degree_centrality = {}
for node in G_weighted.nodes():
    weighted_degree = sum(weight for _, _, weight in G_weighted.edges(node, data='length weighted_degree_centrality[node] = weighted_degree

# computing the betweenness centrality
weighted_betweenness_centrality = nx.betweenness_centrality(G_weighted, weight='length')
# computing the eigenvector centrality
weighted_eigenvector_centrality = nx.eigenvector_centrality_numpy(G_weighted, weight='le

In [28]: # Sorting and selecting top 10
sorted_degree = sorted(weighted_degree_centrality.items(), key=lambda x: x[1], reverse=T sorted_betweenness = sorted(weighted_betweenness_centrality.items(), key=lambda x: x[1],
```

sorted_eigenvector = sorted(weighted_eigenvector_centrality.items(), key=lambda x: x[1],

```
'Rank': range(1, 11),
    'Degree Centrality Station': [x[0] for x in sorted_degree],
    'Degree Centrality Value': [x[1] for x in sorted_degree],
    'Betweenness Centrality Station': [x[0] for x in sorted_betweenness],
    'Betweenness Centrality Value': [x[1] for x in sorted_betweenness],
    'Eigenvector Centrality Station': [x[0] for x in sorted_eigenvector],
    'Eigenvector Centrality Value': [x[1] for x in sorted_eigenvector]
}).set_index('Rank')
# Display the DataFrame
display(combined_weighted_df)
```

	Degree Centrality Station	Degree Centrality Value	Betweenness Centrality Station	Betweenness Centrality Value	Eigenvector Centrality Station	Eigenvector Centrality Value
Rank						
1	Stratford	18809.755024	Bank and Monument	0.221504	Wembley Park	0.640161
2	Wembley Park	13955.803937	King's Cross St. Pancras	0.209674	Finchley Road	0.635998
3	Chalfont & Latimer	13214.405571	Stratford	0.182494	Baker Street	0.287363
4	Finchley Road	12201.911381	Baker Street	0.164248	Kingsbury	0.210939
5	Liverpool Street	12070.083236	Oxford Circus	0.157306	Neasden	0.168126
6	Willesden Junction	11100.258775	Euston	0.155138	Preston Road	0.104587
7	Baker Street	10613.160373	Earl's Court	0.143521	St. John's Wood	0.073800
8	King's Cross St. Pancras	10453.003671	Shadwell	0.139449	Bond Street	0.057430
9	Bank and Monument	9383.512648	Waterloo	0.130213	West Hampstead	0.054723
10	Heathrow Terminals 2 & 3	9054.318001	South Kensington	0.129110	Swiss Cottage	0.053379

Table 5. Top 10 Stations for a Weighted(length/distance) Tube Network

computing the degree centrality

```
In [29]:
         weighted_degree_centrality = {}
         for node in G_weighted.nodes():
             weighted_degree = sum(weight for _, _, weight in G_weighted.edges(node, data='flows'
             weighted_degree_centrality[node] = weighted_degree
         # computing the betweenness centrality
         weighted_betweenness_centrality = nx.betweenness_centrality(G_weighted, weight='flows')
         # computing the eigenvector centrality
         weighted_eigenvector_centrality = nx.eigenvector_centrality_numpy(G_weighted, weight='fl
         # Sorting and selecting top 10
In [30]:
         sorted_degree = sorted(weighted_degree_centrality.items(), key=lambda x: x[1], reverse=T
         sorted_betweenness = sorted(weighted_betweenness_centrality.items(), key=lambda x: x[1],
         sorted_eigenvector = sorted(weighted_eigenvector_centrality.items(), key=lambda x: x[1],
         # Create DataFrame from sorted lists
         combined_weighted_df = pd.DataFrame({
             'Rank': range(1, 11),
              'Degree Centrality Station': [x[0] for x in sorted_degree],
```

```
'Degree Centrality Value': [x[1] for x in sorted_degree],
    'Betweenness Centrality Station': [x[0] for x in sorted_betweenness],
    'Betweenness Centrality Value': [x[1] for x in sorted_betweenness],
    'Eigenvector Centrality Station': [x[0] for x in sorted_eigenvector],
    'Eigenvector Centrality Value': [x[1] for x in sorted_eigenvector]
}).set_index('Rank')

# Display the DataFrame
display(combined_weighted_df)
```

	Degree Centrality Station	Degree Centrality Value	Betweenness Centrality Station	Betweenness Centrality Value	Eigenvector Centrality Station	Eigenvector Centrality Value
Rank						
1	Green Park	713696	West Hampstead	0.396617	Green Park	0.527545
2	Bank and Monument	583541	Gospel Oak	0.295238	Westminster	0.495329
3	Waterloo	570862	Finchley Road & Frognal	0.285821	Waterloo	0.416148
4	King's Cross St. Pancras	483565	Hampstead Heath	0.284978	Bank and Monument	0.286512
5	Westminster	461343	Willesden Junction	0.267440	Victoria	0.279919
6	Liverpool Street	437335	Stratford	0.261758	Oxford Circus	0.202460
7	Victoria	383024	Brondesbury	0.243142	Bond Street	0.194256
8	Euston	374576	Brondesbury Park	0.241667	Liverpool Street	0.143603
9	Stratford	366679	Kensal Rise	0.240204	Southwark	0.076285
10	Oxford Circus	325756	Baker Street	0.169160	Sloane Square	0.075176

Table 6. Top 10 Stations for a Weighted (flows) Tube Network

Comparing the two tables above, it shows that when taking different weights into consideration can lead to quite different results.

11.2.

Global Efficiency and modularity are enough for examing the weighted network as the former one can be used for accessing "distance(length)" as the weight while the latter one be used for accessing "population(flows)" as the weight.

The **weighted global efficiency** is a measure of efficiency in a network, which is often used to quantify the efficiency of information or material flows between nodes in the network. The weights (weight) represent distances (distance) in this context, which means higher weights indicate larger distances, and hence, lower efficiency.

Definition: Given a weighted graph, the global efficiency E_{glob} is defined as the average inverse weighted shortest path length between each pair of nodes. For any two nodes u and v, the efficiency e(u,v) is given by $e(u,v)=\frac{1}{d(u,v)}$, where d(u,v) is the shortest weighted path length between nodes (weight).

Formula:

$$E_{glob} = rac{1}{N(N-1)} \sum_{u,v \in V, u
eq v} rac{1}{d(u,v)}$$

Here, N is the total number of nodes, V is the set of nodes, and d(u,v) is the weighted shortest path length between the nodes u and v (considering weights as distances).

```
In [31]:
        G_weighted = G.copy()
        def weighted_global_efficiency(G, node_all=None):
            """计算带权重的全局效率"""
            n = len(G)
            if n <= 1:
                return 0 # 如果图中只有一个或没有节点,全局效率为0
            if node_all is None:
                node_all = n
            dist_sum = 0
            path\_count = 0
            # 使用 Dijkstra 算法计算所有节点对之间的最短路径长度
            for lengths in nx.all_pairs_dijkstra_path_length(G, weight='distance'):
                for target, dist in lengths[1].items():
                    if dist >0:
                       # 只有当源节点和目标节点不同时,才计算效率
                       dist_sum += 1 / dist
                       path_count += 1
            # 如果有有效的路径对,计算平均全局效率;否则返回0
            if node_all > 1:
                return dist_sum / ((node_all * (node_all - 1)) / 2)
            else:
                return 0
        # 调用函数计算全局效率
        original_total_nodes = len(G_weighted)
        global_eff = weighted_global_efficiency(G_weighted, node_all=original_total_nodes)
        print("Weighted Global Efficiency:", global_eff)
```

Weighted Global Efficiency: 0.20251238719443027

For **weighted modularity**, a high modularity value indicates that the network can be clearly classified into modules or communities consisting of densely connected nodes internally. When calculating modularity, the weight parameter is used to indicate the importance of edges, such as traffic, capacity, etc., and in this case population flows, which helps to determine which connections are more critical to the community structure.

```
In [32]: G_weighted = G.copy()
    communities = community.greedy_modularity_communities(G_weighted, weight='flows')
    modularity = community.modularity(G_weighted, communities, weight='flows')
    print(f"Modularity is: {modularity}")

Modularity is: 0.7321343579048248
```

II.3. Remove the 3 highest ranked nodes

Using betweenness centrality:

```
In [33]: G_BC = G.copy()
    G_BC.nodes(data=True)
    node_name = "Bank and Monument"
```

```
G_BC.remove_node(node_name)
         # calculate the global efficiency
         global_eff = weighted_global_efficiency(G_BC, node_all=original_total_nodes)
         # calculate the modularity
         communities = community.greedy_modularity_communities(G_BC, weight='flows')
         modularity = community.modularity(G_BC, communities, weight='flows')
         print({'Removed Node': node_name,
                          'Global Efficiency': global_eff,
                         'Modularity': modularity})
         {'Removed Node': 'Bank and Monument', 'Global Efficiency': 0.19250457694682765, 'Modular
         ity': 0.7686870265089242}
         G_nonseq_removal_weighted = G.copy()
In [34]:
         betweenness = nx.betweenness_centrality(G, weight='length')
In [35]:
         # 将结果转换为DataFrame
         weighted_centrality_df = pd.DataFrame(list(betweenness.items()), columns=['Station', 'be']
         # 对介数中心性进行降序排序,并取前三个站点的名称
         top_3_betweenness = weighted_centrality_df.sort_values(by='betweenness_centrality', asce
In [36]: G_nonseq_removal_weighted = G.copy()
         # prepare the dataframe to store the results
         results = []
         remove_list = top_3_betweenness
         for node_name in remove_list:
             # remove the node from the graph
             G_nonseq_removal_weighted.remove_node(node_name)
             # calculate the global efficiency
             global_eff = weighted_global_efficiency(G_nonseq_removal_weighted, node_all=original)
             # calculate the modularity
             communities = community.greedy_modularity_communities(G_nonseq_removal_weighted, wei
             modularity = community.modularity(G_nonseq_removal_weighted, communities, weight='fl
             # save the results to the dataframe
             results.append({'Removed Node': node_name,
                              'Global Efficiency': global_eff,
                             'Modularity': modularity})
         df_nonseq_betweenness_weighted = pd.DataFrame(results)
         G_seq_removal_weighted = G.copy()
In [37]:
         results = []
         #remove the top one betweenness centrality node
         for i in range(3):
             # calculate the betweenness centrality
             betweenness_centrality = nx.betweenness_centrality(G_seq_removal_weighted, weight='l
             # sort the dictionary by values in descending order
             sorted_betweenness = dict(sorted(betweenness_centrality.items(), key=lambda x: x[1],
             # get the first key in the dictionary
             node_to_remove = list(sorted_betweenness.keys())[0]
             # remove the node from the graph
             G_seq_removal_weighted.remove_node(node_to_remove)
             # calculate the global efficiency
             global_eff = weighted_global_efficiency(G_seq_removal_weighted, node_all=original_to
             # calculate the modularity
             communities = community.greedy_modularity_communities(G_seq_removal_weighted, weight
             modularity = community.modularity(G_seq_removal_weighted, communities, weight='flows
             results.append({'Removed Node': node_to_remove,
                              'Global Efficiency': global_eff,
                             'Modularity': modularity})
         df_seq_betweenness_weighted = pd.DataFrame(results)
```

Out[38]:

	Removed Node Nonsequential	Global Efficiency Nonsequential	Modularity Nonsequential	Removed Node Sequential	Global Efficiency Sequential	Modularity Sequential
0	Bank and Monument	0.192505	0.768687	Bank and Monument	0.192505	0.768687
1	King's Cross St. Pancras	0.177976	0.787755	King's Cross St. Pancras	0.177976	0.787755
2	Stratford	0.158177	0.798175	Canada Water	0.163636	0.790404

Table 7. Top 3 Stations for a Weighted Tube Network

Non sequential seems to be slightly more damaged than the sequential way after the third removal while surprisingly stay the same in the first two removals. Therefore, Bank and Monument Station and St.Pancras Station and Stratford Station are the three most important stations in the tube network.

Part 2: Spatial Interaction models

III. Models and calibration

III.1. Model Definition

There is a famility of spatial interaction model that shows different sptial interaction patterns:

1. The Unconstrained Model The model describes the proportionality of the product of the mass of the origin and destination and the inversley proportional to the distance between them.

$$T_{ij} = k \frac{O_i^{\alpha} D_j^{\gamma}}{d_{ij}^{\beta}} \tag{1}$$

Wilson's version (1971) of the family of gravity models:

$$T_{ij} = kO_i^{\alpha} D_j^{\gamma} d_{ij}^{-\beta} \tag{2}$$

 T_{ij} : The flows from the origin station i to the destination station j.

 O_i : The origion station i 's population.

 D_j : The destination station j 's attractivness(jobs).

 d_{ij} : The cost or distance from station i to j.

K: The model parameters, or calibration constant.

 β : distance decay parameter.

2. The Singly-Constrained Model

It is usually used in the constomer transport behavior analysis. Constrain one parameter.

Production (orign) Constrained Spatial Interaction Model

$$T_{ij} = A_i O_i D_j \exp(-\beta c_{ij})$$
 subject to $\sum_{j=1}^m T_{ij} = O_i$ (3)

 A_i :Attractiveness of the destination.

Attraction (destination) Constrained Spatial Interaction Model

$$T_{ij} = B_j O_i D_j \exp(-\beta c_{ij})$$
 subject to $\sum_{i=1}^n T_{ij} = D_j$ (4)

 B_i : A scaling paprameter for alignment of origin i.

3. The Doubly-Costrained Model

It is a comprehensive model udapted from the singly-constrained model, where it sets both the origins and the destinations in the model as the fixed constrains.

$$T_{ij} = A_i O_i B_j D_j \exp(-\beta c_{ij})$$
 subject to $\sum_{j=1}^m T_{ij} = O_i$ and $\sum_{i=1}^n T_{ij} = D_j$ (5)

III.2. Model Calibration

Use singly-constrained model because we interested in the flows depend on the population(fixed) and the jobs/attractiveness of the places(not fixed) in the destination would be better suited for the scenario testing where one parameter is fixed and the other is not.

We need to make the model as accurately predict the actually flow as possible.

The rest of the notebook is some thinking process as I don't really understand the concept, so the rest of the codes are just the prove that I tried...

```
In [3]: # import all the necessary libraries
        import os
        import pandas as pd
        import numpy as np
        from scipy.optimize import minimize
        from scipy.special import expit
        import matplotlib.pyplot as plt
        import geopandas as gpd
        import seaborn as sns
        import folium
        import statsmodels.api as sm
        import scipy.stats
        from math import sqrt
        import statsmodels.formula.api as smf
        from scipy.stats import norm
        import networkx as nx
```

```
C:\Users\lenovo\AppData\Local\Temp\ipykernel_15608\2158460682.py:3: DeprecationWarning: Pyarrow will become a required dependency of pandas in the next major release of pandas (pandas 3.0), (to allow more performant data types, such as the Arrow string type, and better interope rability with other libraries) but was not found to be installed on your system. If this would cause problems for you,
```

```
please provide us feedback at https://github.com/pandas-dev/pandas/issues/54466
import pandas as pd
```

```
In [4]: df = pd.read_csv('London_flows.csv')
    df.head()
```

```
iobs
                                                                            distance
Out[4]:
             station_origin
                           station_destination flows population
          0
                                                                78549 8131.525097
               Abbey Road
                           Bank and Monument
                                                  0
                                                            599
          1
               Abbey Road
                                      Beckton
                                                  1
                                                            599
                                                                   442 8510.121774
          2
               Abbey Road
                                     Blackwall
                                                  3
                                                            599
                                                                   665 3775.448872
          3
               Abbey Road
                                 Canary Wharf
                                                            599
                                                                 58772 5086.514220
               Abbey Road
                                 Canning Town
                                                 37
                                                            599 15428 2228.923167
```

Table 8. London Flows

Data Preprocessing

```
In [5]: #(drop the rows that is zero and in this case drop Battersea Park as it has no data for
    df_drop = df[df['flows'] != 0]
    df_drop.head()
```

ıt[5]:		station_origin	station_destination	flows	population	jobs	distance
	1	Abbey Road	Beckton	1	599	442	8510.121774
	2	Abbey Road	Blackwall	3	599	665	3775.448872
	3	Abbey Road	Canary Wharf	1	599	58772	5086.514220
	4	Abbey Road	Canning Town	37	599	15428	2228.923167
	5	Abbey Road	Crossharbour	1	599	1208	6686.475560

Table 9. London Flows Revised

Log

```
In [6]:
        df_drop['flow'] = df_drop['flows']
        df_drop['log_flow'] = np.log(df_drop['flow'])
        df_drop['dist'] = df_drop['distance'] + 1e-6 + 1
        df_drop['log_dist'] = np.log(df_drop['dist'])
        df_drop['log_jobs'] = np.log(df_drop['jobs'])
        df_origin = df_drop.copy()
        df_drop.head()
        C:\Users\lenovo\AppData\Local\Temp\ipykernel_15608\4050372465.py:1: SettingWithCopyWarni
        ng:
        A value is trying to be set on a copy of a slice from a DataFrame.
        Try using .loc[row_indexer,col_indexer] = value instead
        See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_
        guide/indexing.html#returning-a-view-versus-a-copy
          df_drop['flow'] = df_drop['flows']
        C:\Users\lenovo\AppData\Local\Temp\ipykernel_15608\4050372465.py:2: SettingWithCopyWarni
        A value is trying to be set on a copy of a slice from a DataFrame.
        Try using .loc[row_indexer,col_indexer] = value instead
        See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_
```

```
guide/indexing.html#returning-a-view-versus-a-copy
  df_drop['log_flow'] = np.log(df_drop['flow'])
C:\Users\lenovo\AppData\Local\Temp\ipykernel_15608\4050372465.py:3: SettingWithCopyWarni
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_
guide/indexing.html#returning-a-view-versus-a-copy
  df_drop['dist'] = df_drop['distance'] + 1e-6 + 1
C:\Users\lenovo\AppData\Local\Temp\ipykernel_15608\4050372465.py:4: SettingWithCopyWarni
ng:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_
guide/indexing.html#returning-a-view-versus-a-copy
 df_drop['log_dist'] = np.log(df_drop['dist'])
C:\Users\lenovo\AppData\Local\Temp\ipykernel_15608\4050372465.py:5: SettingWithCopyWarni
ng:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_
guide/indexing.html#returning-a-view-versus-a-copy
  df_drop['log_jobs'] = np.log(df_drop['jobs'])
  station origin station destination flows population
                                               iobs
                                                       distance flow log_flow
                                                                                  dist
                                                                                       log
```

Out[6]: 1 442 8510.121774 Abbey Road Beckton 1 599 1 0.000000 8511.121775 9.049 2 Abbey Road Blackwall 3 599 665 3775.448872 3 1.098612 3776.448873 8.230 3 Abbey Road Canary Wharf 58772 5086.514220 1 0.000000 5087.514221 8.534 1 599 4 Abbey Road Canning Town 37 599 15428 2228.923167 37 3.610918 2229.923168 7.70! Crossharbour 599 1208 6686.475560 1 0.000000 6687.475561 8.80 Abbey Road

Table 10. London Flows Logged

```
print("variance of flows: ", df_origin['flows'].var())
In [7]:
        print("variance of log_flow: ", df_origin['log_flow'].var())
        variance of flows: 23804.54155601981
        variance of log_flow: 2.55093809831381
In [9]: fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(16, 6)) # 1行2列的子图,整体图形大小为16
        axes[0].hist(df_origin['flows'], bins=20, edgecolor='white', linewidth=0.5)
        axes[0].set_title('Histogram of observed flows')
        axes[0].set_yscale('log')
        axes[0].set_xlabel('Population flows')
        axes[0].set_ylabel('Frequency')
        axes[0].set_xlim(left=1)
        axes[1].hist(df_origin['log_flow'], bins=20, edgecolor='white', linewidth=0.5)
        axes[1].set_title('Histogram of observed log_flow')
        axes[1].set_yscale('log')
        axes[1].set_xlabel('Population flows (after log transformation)')
        axes[1].set_ylabel('Frequency')
        axes[1].set_xlim(left=0)
        plt.tight_layout()
        plt.show()
```


Figure 5. Traffic Flows Histograms of flows and logged flows

The histograms above shows that the flows is like a power-law distribution.

Plot the log-log Flow Plot

```
#subset the dataframe to the flows we want
In [11]:
         cdata_flows = df_origin[["flows", "distance"]]
         #remove all 0 values (logarithms can't deal with 0 values)
         cdata_flows = cdata_flows[(cdata_flows!=0).all(1)]
         #extract the x and y converting to log
         x = np.log(cdata_flows["flows"])
         y = np.log(cdata_flows["distance"])
         #create the subplot
         fig, ax = plt.subplots(figsize = (10,10))
         #plot the results along with the line of best fit
         sns.regplot(x=x, y=y, marker="+", ax=ax)
         # set the title
         ax.set_title("Log-Log plot of flows vs distance")
         ax.set_xlabel("log(distance)")
         ax.set_ylabel("log(flows)")
         plt.show()
```


Figure 5. Log-log Plot of Flows vs Distance

```
In [20]: #create the formula (the "-1" indicates no intercept in the regression model).
    formula = 'flow ~ station_origin + log_jobs + log_dist-1'
    #run a production constrained sim
    prodSim = smf.glm(formula = formula, data=df_drop, family=sm.families.Poisson()).fit()
    #let's have a look at it's summary
    print(prodSim.summary())
```

Generalized Linear Model Regression Results

```
______
                                 No. Observations:
Dep. Variable:
                           flow
                                                            43952
                           GLM
Model:
                                 Df Residuals:
                                                            43552
                        Poisson
                                Df Model:
Model Family:
                                                              399
Link Function:
                            Log
                                 Scale:
                                                           1.0000
Method:
                           IRLS
                                Log-Likelihood:
                                                      -1.0249e+06
Date:
                Mon, 29 Apr 2024
                                 Deviance:
                                                       1.8776e+06
                        17:19:15
Time:
                                 Pearson chi2:
                                                         2.98e+06
No. Iterations:
                                 Pseudo R-squ. (CS):
                             10
                                                            1.000
Covariance Type:
                    nonrobust
```

[0.025 0.975]	coef	std err	Z	P> z
station_origin[Abbey Road] -0.300 -0.137	-0.2183	0.042	-5.235	0.00
station_origin[Acton Central] 0.797 0.914	0.8557	0.030	28.646	0.00
tation_origin[Acton Town] 0.094 0.167	0.1308	0.019	7.019	0.00
tation_origin[Aldgate]	-0.3370	0.021	-16.424	0.00
-0.377 -0.297 tation_origin[Aldgate East]	-0.3595	0.020	-18.223	0.00
-0.398 -0.321 tation_origin[All Saints]	-0.2626	0.038	-6.959	0.00
-0.337 -0.189 tation_origin[Alperton]	-0.3821	0.026	-14.435	0.00
-0.434 -0.330 tation_origin[Amersham]	-0.3385	0.031	-11.069	0.00
-0.398 -0.279 tation_origin[Anerley]	0.7933	0.040	19.645	0.00
0.714 0.872 station_origin[Angel]	-0.1295	0.018	-7.329	0.00
-0.164 -0.095 station_origin[Archway]	0.4322	0.016	27.014	0.00
0.401 0.464 tation_origin[Arnos Grove]	-0.0183	0.020	-0.904	0.36
-0.058 0.021 tation_origin[Arsenal]	-0.5824	0.023	-25.050	0.00
-0.628 -0.537				
tation_origin[Baker Street] 0.413 0.469	0.4410	0.014	30.613	0.00
tation_origin[Balham] 0.990 1.043	1.0167	0.014	74.948	0.00
tation_origin[Bank and Monument] 1.647 1.687	1.6668	0.010	163.372	0.00
tation_origin[Barbican] -1.272 -1.156	-1.2140	0.030	-40.906	0.00
tation_origin[Barking] 0.897 0.953	0.9252	0.014	64.813	0.00
station_origin[Barkingside] -0.691 -0.576	-0.6337	0.029	-21.664	0.00
station_origin[Barons Court] 0.007 0.078	0.0426	0.018	2.369	0.01
tation_origin[Bayswater] -0.680 -0.575	-0.6274	0.027	-23.500	0.00
station_origin[Beckton]	0.7600	0.030	24.972	0.00
0.700 0.820 station_origin[Beckton Park]	-0.5616	0.059	-9.503	0.00
-0.677 -0.446 station_origin[Becontree]	-0.1522	0.023	-6.710	0.00
-0.197 -0.108 station_origin[Belsize Park]	-0.2653	0.021	-12.607	0.00
-0.307 -0.224 station_origin[Bermondsey]	0.1570	0.016	9.524	0.00
0.125 0.189 station_origin[Bethnal Green]	0.4184	0.015	28.042	0.00
0.389 0.448 station_origin[Blackfriars]	0.2024	0.015	13.954	0.00
0.174 0.231 station_origin[Blackhorse Road]	0.9236	0.014	65.661	0.00
0.896 0.951 station_origin[Blackwall]	0.0640	0.034	1.908	0.05
-0.002 0.130				

station_origin[Bond Street] -0.876 -0.783	-0.8295	0.024	-34.946	0.000
station_origin[Borough]	-1.1933	0.029	-41.748	0.000
-1.249 -1.137 station_origin[Boston Manor]	-0.7942	0.031	-26.027	0.000
-0.854 -0.734 station_origin[Bounds Green]	0.3028	0.018	17.284	0.000
0.268 0.337 station_origin[Bow Church]	0.6831	0.026	26.272	0.000
0.632 0.734 station_origin[Bow Road]	0.0892	0.018	4.937	0.000
0.054 0.125 station_origin[Brent Cross]	-0.6786	0.027	-24.747	0.000
-0.732 -0.625 station_origin[Brentwood]	2.3532	0.023	100.216	0.000
2.307 2.399 station_origin[Brixton]	1.7510	0.011	159.616	0.000
1.729 1.772 station_origin[Brockley]	1.6643	0.022	74.339	0.000
1.620 1.708 station_origin[Bromley-by-Bow]	-0.3710	0.022	-17.113	0.000
-0.413 -0.328 station_origin[Brondesbury]	1.0954	0.024	45.600	0.000
1.048 1.142 station_origin[Brondesbury Park]	0.0953	0.039	2.444	0.015
0.019 0.172 station_origin[Bruce Grove]	1.2098	0.033	36.276	0.000
1.144 1.275 station_origin[Buckhurst Hill]	-0.3926	0.027	-14.777	0.000
-0.445 -0.341 station_origin[Burnt Oak]	0.0914	0.020	4.484	0.000
0.051 0.131 station_origin[Bush Hill Park]	1.7340	0.028	61.446	0.000
1.679 1.789 station_origin[Bushey]	-0.2540	0.065	-3.882	0.000
-0.382 -0.126 station_origin[Caledonian Road]	-0.3757	0.021	-18.154	0.000
-0.416 -0.335 station_origin[Caledonian Road & Barnsbury]	-0.3721	0.044	-8.507	0.000
-0.458 -0.286 station_origin[Cambridge Heath]	-0.1308	0.056	-2.341	0.019
-0.240 -0.021 station_origin[Camden Road]	0.4536	0.030	15.106	0.000
0.395 0.512 station_origin[Camden Town]	-0.2356	0.019	-12.158	0.000
-0.274 -0.198 station_origin[Canada Water]	1.8160	0.011	171.799	0.000
1.795 1.837 station_origin[Canary Wharf]	1.2457	0.012	104.096	0.000
1.222 1.269 station_origin[Canning Town]	1.6142	0.011	145.100	0.000
1.592 1.636 station_origin[Cannon Street]	-0.1275	0.018	-7.022	0.000
-0.163 -0.092 station_origin[Canonbury]	1.0332	0.022	46.903	0.000
0.990 1.076 station_origin[Canons Park]	-0.0884	0.023	-3.882	0.000
-0.133 -0.044 station_origin[Carpenders Park]	1.2070	0.029	41.822	0.000
1.150 1.264 station_origin[Chadwell Heath]	2.6681	0.018	144.664	0.000
2.632 2.704 station_origin[Chalfont & Latimer]	-0.5473	0.034	-16.084	0.000
-0.614 -0.481 station_origin[Chalk Farm]	-0.4746	0.022	-21.329	0.000
-0.518 -0.431				

station_origin[Chancery Lane]	-1.3572	0.031	-44.161	0.000
-1.417 -1.297 station_origin[Charing Cross]	0.2105	0.015	14.037	0.000
0.181 0.240 station_origin[Chesham]	-0.5119	0.034	-14.975	0.000
-0.579 -0.445				
station_origin[Cheshunt] -0.051 0.251	0.1003	0.077	1.302	0.193
station_origin[Chigwell] -1.468 -1.283	-1.3755	0.047	-29.239	0.000
station_origin[Chingford] 2.063 2.156	2.1094	0.024	88.304	0.000
station_origin[Chiswick Park]	-0.7593	0.029	-25.888	0.000
-0.817 -0.702 station_origin[Chorleywood]	-0.6300	0.035	-18.155	0.000
-0.698 -0.562 station_origin[Clapham Common]	0.2460	0.017	14.653	0.000
0.213 0.279 station_origin[Clapham High Street]	1.4360	0.027	52.869	0.000
1.383 1.489 station_origin[Clapham Junction]	2.4342	0.015	163.988	0.000
2.405 2.463 station_origin[Clapham North]	-0.2898	0.021	-13.989	0.000
-0.330 -0.249 station_origin[Clapham South]	0.5902	0.015	38.943	0.000
0.560 0.620 station_origin[Clapton]	1.5294	0.027	56.074	0.000
1.476 1.583 station_origin[Cockfosters]	-0.8948	0.033	-27.142	0.000
-0.959 -0.830 station_origin[Colindale]	0.5961	0.016	36.331	0.000
0.564 0.628 station_origin[Colliers Wood]	0.5434	0.016	33.560	0.000
0.512 0.575 station_origin[Covent Garden]	-2.1935	0.049	-44.477	0.000
-2.290 -2.097 station_origin[Crossharbour]	0.6192	0.026	24.240	0.000
0.569 0.669 station_origin[Crouch Hill]	-0.0433	0.051	-0.843	0.399
-0.144 0.057 station_origin[Croxley]	-0.5418	0.033	-16.663	0.000
-0.606 -0.478 station_origin[Crystal Palace]	1.8507	0.024	75.963	0.000
1.803 1.898 station_origin[Custom House]	-0.0448	0.037	-1.218	0.223
-0.117 0.027 station_origin[Cutty Sark]	0.9829	0.023	42.035	0.000
0.937 1.029 station_origin[Cyprus]	-0.0361	0.046	-0.792	0.428
-0.125 0.053 station_origin[Dagenham East]	-0.2714	0.025	-11.021	0.000
-0.320 -0.223 station_origin[Dagenham Heathway]	0.2161	0.020	11.054	0.000
0.178 0.254 station_origin[Dalston Junction]	1.6873	0.018	93.147	0.000
1.652 1.723 station_origin[Dalston Kingsland] 1.378 1.458	1.4181	0.020	69.226	0.000
station_origin[Debden]	-0.3502	0.026	-13.239	0.000
-0.402 -0.298 station_origin[Denmark Hill]	1.6490	0.025	66.575	0.000
1.600 1.698 station_origin[Deptford Bridge] 1.161 1.247	1.2041	0.022	55.009	0.000
station_origin[Devons Road]	0.4058	0.028	14.393	0.000
0.351 0.461				

station_origin[Dollis Hill] -0.286 -0.200	-0.2429	0.022	-11.153	0.000
station_origin[Ealing Broadway] 1.351 1.400	1.3757	0.013	108.978	0.000
station_origin[Ealing Common] -0.476 -0.381	-0.4286	0.024	-17.788	0.000
station_origin[Earl's Court] 0.620 0.675	0.6477	0.014	46.548	0.000
station_origin[East Acton] -0.350 -0.262	-0.3058	0.022	-13.613	0.000
station_origin[East Finchley] 0.533 0.595	0.5641	0.016	35.496	0.000
station_origin[East Ham] 0.806 0.862	0.8343	0.014	57.922	0.000
station_origin[East India] 0.526 0.625	0.5758	0.025	22.756	0.000
station_origin[East Putney] 0.429 0.493	0.4607	0.016	28.386	0.000
station_origin[Eastcote] -0.031 0.055	0.0118	0.022	0.535	0.592
station_origin[Edgware] 0.186 0.263	0.2246	0.019	11.536	0.000
station_origin[Edgware Road] -0.491 -0.410	-0.4508	0.021	-21.833	0.000
station_origin[Edmonton Green] 1.600 1.693	1.6467	0.024	69.574	0.000
station_origin[Elephant & Castle] 0.605 0.657	0.6311	0.013	46.956	0.000
station_origin[Elm Park] 0.102 0.185	0.1435	0.021	6.742	0.000
station_origin[Elverson Road] 0.473 0.593	0.5331	0.031	17.318	0.000
station_origin[Embankment] -0.246 -0.177	-0.2116	0.018	-11.889	0.000
station_origin[Emerson Park] 2.467 2.683	2.5747	0.055	46.701	0.000
station_origin[Enfield Town] 1.973 2.071	2.0219	0.025	80.294	0.000
station_origin[Epping] 0.229 0.311	0.2704	0.021	12.963	0.000
station_origin[Euston] 1.209 1.253	1.2307	0.011	108.724	0.000
station_origin[Euston Square] 0.238 0.304	0.2709	0.017	16.239	0.000
station_origin[Fairlop] -0.892 -0.762	-0.8273	0.033	-25.021	0.000
station_origin[Farringdon] 0.107 0.172	0.1393	0.016	8.447	0.000
station_origin[Finchley Central] 0.669 0.730	0.6995	0.016	44.936	0.000
station_origin[Finchley Road] 0.233 0.300	0.2662	0.017	15.661	0.000
station_origin[Finchley Road & Frognal] 0.465 0.586	0.5252	0.031	17.025	0.000
station_origin[Finsbury Park] 1.772 1.815	1.7936	0.011	165.619	0.000
station_origin[Forest Gate] 1.850 1.938	1.8940	0.022	85.004	0.000
station_origin[Forest Hill] 1.843 1.929	1.8863	0.022	85.739	0.000
station_origin[Fulham Broadway] -0.178 -0.102	-0.1399	0.020	-7.161	0.000
station_origin[Gallions Reach] 0.103 0.262	0.1825	0.041	4.492	0.000
station_origin[Gants Hill] 0.522 0.587	0.5549	0.017	33.490	0.000
0.322 0.307				

station_origin[Gidea Park] 2.598 2.674	2.6358	0.019	135.280	0.000
station_origin[Gloucester Road] 0.045 0.111	0.0780	0.017	4.627	0.000
station_origin[Golders Green] 0.355 0.422	0.3884	0.017	22.813	0.000
station_origin[Goldhawk Road] -0.786 -0.673	-0.7297	0.029	-25.448	0.000
station_origin[Goodge Street] -2.469 -2.261	-2.3651	0.053	-44.650	0.000
station_origin[Goodmayes] 2.366 2.445	2.4054	0.020	119.642	0.000
station_origin[Gospel Oak] 0.261 0.384	0.3224	0.032	10.226	0.000
station_origin[Grange Hill] -1.223 -1.065	-1.1440	0.040	-28.437	0.000
station_origin[Great Portland Street] -1.135 -1.014	-1.0747	0.031	-34.756	0.000
station_origin[Green Park] -0.934 -0.842	-0.8880	0.024	-37.674	0.000
station_origin[Greenford] -0.057 0.026	-0.0157	0.021	-0.735	0.462
station_origin[Greenwich] 0.566 0.677	0.6218	0.028	21.920	0.000
station_origin[Gunnersbury] -0.334 -0.244	-0.2888	0.023	-12.652	0.000
station_origin[Hackney Central] 1.467 1.542	1.5042	0.019	78.186	0.000
station_origin[Hackney Downs] 0.533 0.670	0.6014	0.035	17.119	0.000
station_origin[Hackney Wick] 0.632 0.740	0.6860	0.027	25.051	0.000
station_origin[Haggerston] 0.930 1.022	0.9761	0.024	41.263	0.000
station_origin[Hainault] 0.140 0.219	0.1795	0.020	8.891	0.000
station_origin[Hammersmith] 1.081 1.130	1.1056	0.013	87.013	0.000
station_origin[Hampstead] -0.600 -0.504	-0.5518	0.025		0.000
station_origin[Hampstead Heath] 0.006 0.140	0.0734	0.034	2.148	0.032
station_origin[Hanger Lane] -0.389 -0.295	-0.3421	0.024	-14.148	0.000
station_origin[Harlesden] -0.776 -0.669 station_origin[Harold Wood]	-0.7228	0.027	-26.429 124.995	0.000
2.532 2.612 station_origin[Harringay Green Lanes]	2.5720 0.5629	0.045	12.463	0.000
0.474 0.651 station_origin[Harrow & Wealdstone]	-0.1905	0.026	-7.407	0.000
-0.241 -0.140 station_origin[Harrow-on-the-Hill]	0.8045	0.016	51.727	0.000
0.774 0.835 station_origin[Hatch End]	1.2104	0.035	34.212	0.000
1.141 1.280 station_origin[Hatton Cross]	-0.5263	0.029	-18.326	0.000
-0.583 -0.470 station_origin[Headstone Lane]	0.3292	0.047	7.002	0.000
0.237 0.421 station_origin[Heathrow Terminal 4]	-0.9471	0.036	-26.048	0.000
-1.018 -0.876 station_origin[Heathrow Terminal 5]	-0.9097	0.034	-26.766	0.000
-0.976 -0.843 station_origin[Heathrow Terminals 2 & 3]	-0.1878	0.023	-8.067	0.000
-0.233 -0.142	0.1070	3.023	3.001	3.000

station_origin[Hendon Central] 0.234 0.305	0.2693	0.018	14.848	0.000
station_origin[Heron Quays] 0.457 0.555	0.5060	0.025	20.179	0.000
station_origin[High Barnet] 0.172 0.250	0.2112	0.020	10.666	0.000
station_origin[High Street Kensington] -0.661 -0.570	-0.6159	0.023	-26.522	0.000
station_origin[Highams Park] 2.369 2.450	2.4095	0.020	117.979	0.000
station_origin[Highbury & Islington] 1.684 1.727	1.7054	0.011	157.842	0.000
station_origin[Highgate] 0.252 0.319	0.2854	0.017	16.532	0.000
station_origin[Hillingdon] -0.539 -0.425	-0.4819	0.029	-16.663	0.000
station_origin[Holborn] -1.143 -1.041	-1.0921	0.026	-42.080	0.000
station_origin[Holland Park] -0.868 -0.762	-0.8148	0.027	-30.243	0.000
station_origin[Holloway Road] -0.311 -0.232	-0.2713	0.020	-13.484	0.000
station_origin[Homerton] 1.248 1.323	1.2857	0.019	67.677	0.000
station_origin[Honor Oak Park] 1.460 1.559	1.5094	0.025	59.520	0.000
station_origin[Hornchurch] -0.281 -0.180	-0.2305	0.026	-8.876	0.000
station_origin[Hounslow Central] -0.243 -0.152	-0.1972	0.023	-8.510	0.000
station_origin[Hounslow East] -0.274 -0.182	-0.2280	0.023	-9.765	0.000
station_origin[Hounslow West] -0.282 -0.189	-0.2356	0.024	-9.883	0.000
station_origin[Hoxton] 0.245 0.371	0.3080	0.032	9.590	0.000
station_origin[Hyde Park Corner] -2.659 -2.413	-2.5360	0.063	-40.420	0.000
station_origin[Ickenham] -0.951 -0.802	-0.8762	0.038	-23.042	0.000
station_origin[Ilford] 2.844 2.909	2.8763	0.017	174.285	0.000
station_origin[Imperial Wharf] 0.457 0.594	0.5255	0.035	15.001	0.000
station_origin[Island Gardens] 0.505 0.614	0.5596	0.028	20.000	0.000
station_origin[Kennington] -0.290 -0.217	-0.2536	0.019	-13.487	0.000
station_origin[Kensal Green] -0.579 -0.481	-0.5297	0.025	-21.245	0.000
station_origin[Kensal Rise] 0.943 1.038	0.9907	0.024	40.874	0.000
station_origin[Kensington] -0.251 -0.060	-0.1556	0.049	-3.186	0.001
station_origin[Kentish Town] -0.505 -0.418	-0.4616	0.022	-20.822	0.000
station_origin[Kentish Town West] 9.82e-05 0.151	0.0754	0.038	1.963	0.050
station_origin[Kenton] -0.170 -0.044	-0.1067	0.032	-3.316	0.001
station_origin[Kew Gardens] -0.278 -0.188	-0.2329	0.023	-10.129	0.000
station_origin[Kilburn] 0.244 0.311	0.2773	0.017	16.141	0.000
station_origin[Kilburn High Road] 0.147 0.360	0.2533	0.054	4.651	0.000
0.141 0.300				

station_origin[Kilburn Park] -0.643 -0.547	-0.5949	0.025	-24.097	0.000
station_origin[King George V] 0.247 0.378	0.3125	0.033	9.376	0.000
station_origin[King's Cross St. Pancras] 1.672 1.712	1.6922	0.010	163.528	0.000
station_origin[Kingsbury] -0.040 0.043	0.0013	0.021	0.061	0.951
station_origin[Knightsbridge] -1.381 -1.259	-1.3200	0.031	-42.520	0.000
station_origin[Ladbroke Grove] -0.418 -0.330	-0.3743	0.022	-16.735	0.000
station_origin[Lambeth North] -1.473 -1.351	-1.4124	0.031	-45.320	0.000
station_origin[Lancaster Gate] -0.128 -0.053	-0.0905	0.019	-4.768	0.000
station_origin[Langdon Park] 0.385 0.493	0.4387	0.027	15.972	0.000
station_origin[Latimer Road] -1.341 -1.203	-1.2719	0.035	-36.106	0.000
station_origin[Leicester Square] -1.668 -1.539	-1.6035	0.033	-48.641	0.000
station_origin[Lewisham] 2.400 2.456	2.4281	0.014	169.225	0.000
station_origin[Leyton] 0.741 0.798	0.7698	0.015	53.036	0.000
station_origin[Leyton Midland Road] 1.263 1.401	1.3319	0.035	37.752	0.000
station_origin[Leytonstone] 0.665 0.725	0.6953	0.015	45.764	0.000
station_origin[Leytonstone High Road] 1.252 1.412	1.3322	0.041	32.625	0.000
station_origin[Limehouse] 1.355 1.416	1.3857	0.016	89.199	0.000
station_origin[Liverpool Street] 1.757 1.796	1.7764	0.010	175.130	0.000
station_origin[London Bridge] 1.488 1.525	1.5063	0.009	159.550	0.000
station_origin[London City Airport] 0.928 1.022	0.9751	0.024	40.803	0.000
station_origin[London Fields] 1.161 1.284	1.2225	0.031	38.863	0.000
station_origin[Loughton] 0.059 0.142	0.1003	0.021	4.709	0.000
station_origin[Maida Vale] -0.567 -0.476	-0.5215	0.023	-22.341	0.000
station_origin[Manor House] 0.317 0.380	0.3482	0.016	21.534	0.000
station_origin[Manor Park] 1.614 1.714	1.6642	0.025	65.334	0.000
station_origin[Mansion House] -1.801 -1.625	-1.7128	0.045	-38.191	0.000
station_origin[Marble Arch] -0.907 -0.809	-0.8578	0.025	-34.245	0.000
station_origin[Maryland] 0.624 0.761	0.6925	0.035	19.860	0.000
station_origin[Marylebone] 0.236 0.297	0.2663	0.015	17.300	0.000
station_origin[Mile End] 0.517 0.575	0.5463	0.015	37.132	0.000
station_origin[Mill Hill East] -0.766 -0.651	-0.7086	0.029	-24.182	0.000
station_origin[Moor Park] -1.007 -0.848	-0.9274	0.040	-22.936	0.000
station_origin[Moorgate] -0.109 -0.041	-0.0750	0.017	-4.341	0.000

station_origin[Morden]	0.9638	0.014	66.822	0.000
0.936 0.992 station_origin[Mornington Crescent]	-1.7056	0.039	-43.715	0.000
-1.782 -1.629 station_origin[Mudchute]	0.4595	0.028	16.126	0.000
0.404 0.515				
station_origin[Neasden] -0.331 -0.243	-0.2872	0.023	-12.711	0.000
station_origin[New Cross] 1.433 1.541	1.4869	0.028	53.778	0.000
station_origin[New Cross Gate] 1.261 1.361	1.3111	0.026	51.138	0.000
station_origin[Newbury Park] 0.367 0.438	0.4025	0.018	22.413	0.000
station_origin[North Acton] -0.072 0.007	-0.0323	0.020	-1.602	0.109
station_origin[North Ealing] -1.503 -1.325	-1.4139	0.045	-31.125	0.000
station_origin[North Greenwich]	1.0382	0.013	79.580	0.000
1.013 1.064 station_origin[North Harrow]	-0.2132	0.025	-8.637	0.000
-0.262 -0.165 station_origin[North Wembley]	-0.7994	0.032	-25.222	0.000
-0.862 -0.737 station_origin[Northfields]	0.0008	0.021	0.040	0.968
-0.039 0.041 station_origin[Northolt]	0.2881	0.019	15.089	0.000
0.251 0.326 station_origin[Northwick Park]	-0.2255	0.024	-9.553	0.000
-0.272 -0.179 station_origin[Northwood]	-0.0996	0.024	-4.129	0.000
-0.147 -0.052 station_origin[Northwood Hills]	-0.3670	0.028	-13.175	0.000
-0.422 -0.312 station_origin[Norwood Junction]	0.9101	0.039	23.087	0.000
0.833 0.987 station_origin[Notting Hill Gate]	0.1754	0.017	10.525	0.000
0.143 0.208 station_origin[Oakwood]	-0.3797	0.026	-14.890	0.000
-0.430 -0.330 station_origin[Old Street]	0.1097	0.016	6.805	0.000
0.078 0.141 station_origin[Osterley]	-0.6315	0.028	-22.486	0.000
-0.687 -0.576 station_origin[Oval]	-0.1827	0.019	-9.739	0.000
-0.219 -0.146 station_origin[Oxford Circus]	-0.6032	0.021	-29.076	0.000
-0.644 -0.563 station_origin[Paddington]	1.3449	0.010	132.677	0.000
1.325 1.365 station_origin[Park Royal]	-1.0552	0.043	-24.396	0.000
-1.140 -0.970 station_origin[Parsons Green]	0.1723	0.018	9.824	0.000
0.138 0.207 station_origin[Peckham Rye]	1.6364	0.022	74.102	0.000
1.593 1.680 station_origin[Penge West]	0.2800	0.053	5.257	0.000
0.176 0.384 station_origin[Perivale]	-0.4951	0.026	-18.711	0.000
-0.547 -0.443				
station_origin[Piccadilly Circus] -1.650 -1.524	-1.5874	0.032	-49.328	0.000
station_origin[Pimlico] -0.175 -0.104	-0.1394	0.018	-7.672	0.000
station_origin[Pinner] 0.164 0.245	0.2045	0.021	9.802	0.000

-0.037 0.036 station_origin[Pontoon Dock]	0.8941 0.6898 -0.1860 0.3533	0.024 0.023 0.023	37.355 30.563 -8.257	0.000
0.847 0.941 station_origin[Poplar] 0.646 0.734 station_origin[Preston Road]	0.6898	0.023	30.563	
0.646 0.734 station_origin[Preston Road]	-0.1860	0.023		0.000
station_origin[Preston Road]			-8.257	
-0.230 -0.142	0.3533	0.004		0.000
station_origin[Prince Regent] 0.287 0.420		0.034	10.452	0.000
station_origin[Pudding Mill Lane] -0.706 -0.514	-0.6102	0.049	-12.479	0.000
station_origin[Putney Bridge] -0.213 -0.132	-0.1725	0.020	-8.436	0.000
station_origin[Queen's Park] 0.337 0.401	0.3687	0.016	22.463	0.000
station_origin[Queens Road Peckham] 1.333 1.428	1.3804	0.024	56.879	0.000
station_origin[Queensbury] 0.040 0.121	0.0807	0.021	3.894	0.000
station_origin[Queensway] -0.353 -0.271	-0.3121	0.021	-14.791	0.000
station_origin[Ravenscourt Park] -0.744 -0.639	-0.6914	0.027	-25.723	0.000
station_origin[Rayners Lane] 0.209 0.285	0.2472	0.019	12.776	0.000
station_origin[Rectory Road] 1.199 1.330	1.2646	0.034	37.731	0.000
station_origin[Redbridge] -0.380 -0.287	-0.3335	0.024	-13.980	0.000
station_origin[Regent's Park] -2.227 -2.021	-2.1242	0.053	-40.359	0.000
station_origin[Richmond] 0.642 0.708	0.6751	0.017	40.509	0.000
station_origin[Rickmansworth] -0.489 -0.372	-0.4304	0.030	-14.460	0.000
station_origin[Roding Valley] -1.544 -1.347	-1.4455	0.050	-28.649	0.000
station_origin[Romford] 2.856 2.926	2.8911	0.018	163.538	0.000
station_origin[Rotherhithe] 0.888 0.992	0.9400	0.026	35.712	0.000
station_origin[Royal Albert] -0.054 0.103	0.0247	0.040	0.614	0.539
station_origin[Royal Oak] -0.901 -0.791	-0.8462	0.028	-30.159	0.000
station_origin[Royal Victoria] 0.995 1.088	1.0416	0.024	44.088	0.000
station_origin[Ruislip] -0.535 -0.420	-0.4774	0.029	-16.339	0.000
station_origin[Ruislip Gardens] -0.735 -0.604	-0.6693	0.034	-19.953	0.000
station_origin[Ruislip Manor] -0.525 -0.414	-0.4690	0.028	-16.562	0.000
station_origin[Russell Square] -1.177 -1.070	-1.1235	0.027	-41.420	0.000
station_origin[Seven Kings] 2.391 2.468	2.4296	0.020	123.646	0.000
station_origin[Seven Sisters] 1.633 1.678	1.6554	0.011	144.258	0.000
station_origin[Shadwell] 1.088 1.143	1.1153	0.014	78.745	0.000
station_origin[Shenfield] 0.615 0.867	0.7412	0.064	11.549	0.000
station_origin[Shepherd's Bush] 0.946 0.998	0.9719	0.013	74.222	0.000

station_origin[Shepherd's Bush Market] -0.543 -0.444	-0.4939	0.025	-19.590	0.000
station_origin[Shoreditch High Street] 0.501 0.633	0.5669	0.034	16.780	0.000
station_origin[Silver Street] 1.411 1.514	1.4622	0.026	55.473	0.000
station_origin[Sloane Square] 0.075 0.140	0.1079	0.017	6.491	0.000
station_origin[Snaresbrook] -0.521 -0.422	-0.4715	0.025	-18.555	0.000
station_origin[South Acton] 0.176 0.334	0.2548	0.040	6.316	0.000
station_origin[South Ealing] -0.348 -0.257	-0.3028	0.023	-13.004	0.000
station_origin[South Hampstead] -0.150 0.101	-0.0249	0.064	-0.389	0.697
station_origin[South Harrow] -0.447 -0.340	-0.3936	0.027	-14.415	0.000
station_origin[South Kensington] 0.071 0.136	0.1036	0.017	6.266	0.000
station_origin[South Kenton] -0.758 -0.633	-0.6952	0.032	-21.796	0.000
station_origin[South Quay] 0.488 0.589	0.5387	0.026	20.844	0.000
station_origin[South Ruislip] -0.497 -0.386	-0.4414	0.028	-15.574	0.000
station_origin[South Tottenham] 0.431 0.625	0.5280	0.049	10.671	0.000
station_origin[South Wimbledon] 0.254 0.327	0.2905	0.019	15.567	0.000
station_origin[South Woodford] 0.303 0.374	0.3388	0.018	18.782	0.000
station_origin[Southbury] 0.519 0.691	0.6050	0.044	13.843	0.000
station_origin[Southfields] 0.423 0.488	0.4552	0.017	27.561	0.000
station_origin[Southgate] 0.158 0.232	0.1953	0.019	10.333	0.000
station_origin[Southwark] -0.004 0.061	0.0288	0.017	1.728	0.084
station_origin[St James Street] 1.370 1.496	1.4331	0.032	44.680	0.000
station_origin[St. James's Park] -0.941 -0.843	-0.8919	0.025	-35.626	0.000
station_origin[St. John's Wood] -0.246 -0.170	-0.2080	0.020	-10.595	0.000
station_origin[St. Paul's] -1.502 -1.366	-1.4340	0.035	-41.170	0.000
station_origin[Stamford Brook] -0.573 -0.475	-0.5238	0.025	-20.974	0.000
station_origin[Stamford Hill] 0.457 0.637	0.5472	0.046	11.918	0.000
station_origin[Stanmore] 0.019 0.103	0.0611	0.022	2.834	0.005
station_origin[Star Lane] -0.601 -0.410	-0.5055	0.049	-10.419	0.000
station_origin[Stepney Green] -0.433 -0.351	-0.3922	0.021	-18.647	0.000
station_origin[Stockwell] 0.879 0.930	0.9043	0.013	69.431	0.000
station_origin[Stoke Newington] 0.962 1.085	1.0235	0.031	32.515	0.000
station_origin[Stonebridge Park] -0.791 -0.683	-0.7366	0.028	-26.778	0.000
station_origin[Stratford]	2.6001	0.010	270.721	0.000
2.581 2.619				

station_origin[Stratford High Street] -0.586 -0.382	-0.4841	0.052	-9.309	0.000
station_origin[Stratford International] 1.111 1.199	1.1552	0.023	51.169	0.000
station_origin[Sudbury Hill] -0.681 -0.568	-0.6244	0.029	-21.621	0.000
station_origin[Sudbury Town] -0.503 -0.395	-0.4487	0.027	-16.324	0.000
station_origin[Surrey Quays] 1.645 1.719	1.6816	0.019	89.079	0.000
station_origin[Swiss Cottage] -0.107 -0.033	-0.0699	0.019	-3.682	0.000
station_origin[Sydenham] 1.581 1.679	1.6301	0.025	65.415	0.000
station_origin[Temple] -2.398 -2.185	-2.2918	0.054	-42.266	0.000
station_origin[Theobalds Grove] 1.035 1.210	1.1228	0.045	25.142	0.000
station_origin[Theydon Bois] -1.061 -0.906	-0.9837	0.040	-24.838	0.000
station_origin[Tooting Bec] 0.634 0.693	0.6633	0.015	43.839	0.000
station_origin[Tooting Broadway] 0.995 1.049	1.0218	0.014	74.993	0.000
station_origin[Tottenham Court Road] -1.111 -1.012	-1.0616	0.025	-42.113	0.000
station_origin[Tottenham Hale] 0.946 1.001	0.9737	0.014	70.161	0.000
station_origin[Totteridge & Whetstone] -0.167 -0.078	-0.1226	0.023	-5.376	0.000
station_origin[Tower Gateway] 0.282 0.420	0.3511	0.035	9.946	0.000
station_origin[Tower Hill] 0.544 0.598	0.5713	0.014	41.392	0.000
station_origin[Tufnell Park] -0.340 -0.257	-0.2987	0.021	-14.195	0.000
station_origin[Turkey Street] 0.920 1.063	0.9918	0.037	27.161	0.000
station_origin[Turnham Green] 0.084 0.157	0.1204	0.019	6.405	0.000
station_origin[Turnpike Lane] 0.587 0.647	0.6170	0.015	40.743	0.000
station_origin[Upminster] -0.618 -0.468	-0.5433	0.038	-14.205	0.000
station_origin[Upminster Bridge] -0.954 -0.809	-0.8815	0.037	-23.795	0.000
station_origin[Upney] -0.511 -0.410	-0.4604	0.026	-17.938	0.000
station_origin[Upper Holloway] -0.191 0.015	-0.0878	0.053	-1.671	0.095
station_origin[Upton Park] 0.493 0.555	0.5242	0.016	33.304	0.000
station_origin[Uxbridge] 0.134 0.218	0.1759	0.021	8.290	0.000
station_origin[Vauxhall] 1.290 1.336	1.3127	0.012	112.104	0.000
station_origin[Victoria] 1.977 2.016	1.9966	0.010	200.871	0.000
station_origin[Walthamstow Central] 1.654 1.700	1.6774	0.012	142.824	0.000
station_origin[Walthamstow Queens Road] 1.504 1.631	1.5675	0.033	48.026	0.000
station_origin[Wandsworth Road] 0.469 0.630	0.5498	0.041	13.370	0.000
station_origin[Wanstead] -0.408 -0.313	-0.3604	0.024	-14.868	0.000
00				

station_origin[Wanstead Park]	1.4694	0.037	39.613	0.000
1.397 1.542 station_origin[Wapping]	0.7708	0.029	26.222	0.000
0.713 0.828 station_origin[Warren Street]	-0.8682	0.024	-35.581	0.000
-0.916 -0.820 station_origin[Warwick Avenue]	-0.4443	0.022	-19.943	0.000
-0.488 -0.401 station_origin[Waterloo]		0.009	262.929	0.000
2.245 2.279	2.2621			
station_origin[Watford] -0.373 -0.262	-0.3171	0.028	-11.173	0.000
station_origin[Watford High Street] 0.561 0.745	0.6532	0.047	13.882	0.000
station_origin[Watford Junction] 0.657 0.838	0.7476	0.046	16.254	0.000
station_origin[Wembley Central]	-0.1855	0.023	-8.064	0.000
-0.231 -0.140 station_origin[Wembley Park]	0.8162	0.015	54.558	0.000
0.787 0.845 station_origin[West Acton]	-0.8029	0.031	-26.241	0.000
-0.863 -0.743 station_origin[West Brompton]	-0.0506	0.018	-2.754	0.006
-0.087 -0.015 station_origin[West Croydon]	1.6482	0.029	57.223	0.000
1.592 1.705		0.027		
station_origin[West Finchley] -0.577 -0.471	-0.5236		-19.380	0.000
station_origin[West Ham] 0.802 0.856	0.8292	0.014	60.132	0.000
station_origin[West Hampstead] 0.904 0.956	0.9302	0.013	70.697	0.000
station_origin[West Harrow] -0.920 -0.792	-0.8558	0.033	-26.229	0.000
station_origin[West India Quay] -1.637 -1.327	-1.4819	0.079	-18.754	0.000
station_origin[West Kensington] -0.361 -0.278	-0.3197	0.021	-15.163	0.000
station_origin[West Ruislip] -0.624 -0.499	-0.5613	0.032	-17.629	0.000
station_origin[West Silvertown]	0.0782	0.034	2.268	0.023
0.011 0.146 station_origin[Westbourne Park]	-0.3436	0.022	-15.489	0.000
-0.387 -0.300 station_origin[Westferry]	0.7219	0.023	31.528	0.000
0.677 0.767 station_origin[Westminster]	-1.1113	0.027	-41.092	0.000
-1.164 -1.058 station_origin[White City]	-0.3054	0.022	-13.827	0.000
-0.349 -0.262 station_origin[White Hart Lane]	0.9841	0.032	30.403	0.000
0.921 1.048 station_origin[Whitechapel]	1.0286	0.012	82.585	0.000
1.004 1.053 station_origin[Willesden Green]	0.4912	0.016	30.696	0.000
0.460 0.523 station_origin[Willesden Junction]	0.4625	0.016	28.166	0.000
0.430 0.495 station_origin[Wimbledon]	1.0761	0.015	71.739	0.000
1.047 1.105				
station_origin[Wimbledon Park] -0.482 -0.380	-0.4308	0.026	-16.470	0.000
station_origin[Wood Green] 0.604 0.664	0.6337	0.015	41.736	0.000
station_origin[Wood Lane] -0.458 -0.335	-0.3966	0.032	-12.573	0.000

station_origin[[Wood Street]	1.6639	0.028	58.557	0.000
1.608	1.720				
station_origin[[Woodford]	0.5108	0.017	30.013	0.000
0.477	0.544				
station_origin[Woodgrange Park]	1.3528	0.044	30.635	0.000
1.266	1.439				
station_origin[Woodside Park]	0.0803	0.020	3.976	0.000
0.041	0.120				
station_origin[Woolwich Arsenal]	2.5141	0.014	174.224	0.000
2.486	2.542				
log_jobs		0.7378	0.001	1154.912	0.000
0.737	0.739				
log_dist		-0.3672	0.001	-572.567	0.000
-0.368	-0.366				
===========			======		=======

The γ parameter related to the destination attractiveness: 0.7378

The β distance decay parameter: -0.3672.

P value shows all the explainatory variables are statistically significant <0.01. The z score indicates that the jobs have the most influence on the model.

```
In [21]: #create some Oi and Dj columns in the dataframe and store row and column totals in them:
         #to create O_i, take cdatasub ...then... group by origcodenew ...then... summarise by ca
         O_i = pd.DataFrame(df_drop.groupby(["station_origin"])["flows"].agg(np.sum))
         O_i.rename(columns={"flows":"O_i"}, inplace = True)
         df_drop = df_drop.merge(O_i, on = "station_origin", how = "left" )
         D_j = pd.DataFrame(df_drop.groupby(["station_destination"])["flows"].agg(np.sum))
         D_j.rename(columns={"flows":"D_j"}, inplace = True)
         df_drop = df_drop.merge(D_j, on = "station_destination", how = "left" )
         C:\Users\lenovo\AppData\Local\Temp\ipykernel_15608\2847122089.py:3: FutureWarning: The p
         rovided callable <function sum at 0x000002137F7B09A0> is currently using SeriesGroupBy.s
         um. In a future version of pandas, the provided callable will be used directly. To keep
         current behavior pass the string "sum" instead.
           O_i = pd.DataFrame(df_drop.groupby(["station_origin"])["flows"].agg(np.sum))
         C:\Users\lenovo\AppData\Local\Temp\ipykernel_15608\2847122089.py:7: FutureWarning: The p
         rovided callable <function sum at 0x000002137F7B09A0> is currently using SeriesGroupBy.s
         um. In a future version of pandas, the provided callable will be used directly. To keep
         current behavior pass the string "sum" instead.
           D_j = pd.DataFrame(df_drop.groupby(["station_destination"])["flows"].agg(np.sum))
```

```
In [22]: coefs = pd.DataFrame(prodSim.params)
    coefs.reset_index(inplace=True)
    coefs.rename(columns = {0:"alpha_i", "index":"coef"}, inplace = True)
    to_repl = ["(station_origin)", "\[", "\]"]
    for x in to_repl:
        coefs["coef"] = coefs["coef"].str.replace(x, "",regex=True)
    coefs
    df_drop = df_drop.merge(coefs, left_on="station_origin", right_on="coef", how = "left")
    df_drop.drop(columns = ["coef"], inplace = True)
    df_drop.head()
```

Out[22]:		station_origin	station_destination	flows	population	jobs	distance	flow	log_flow	dist	log_
	0	Abbey Road	Beckton	1	599	442	8510.121774	1	0.000000	8511.121775	9.049
	1	Abbey Road	Blackwall	3	599	665	3775.448872	3	1.098612	3776.448873	8.23
	2	Abbey Road	Canary Wharf	1	599	58772	5086.514220	1	0.000000	5087.514221	8.53
	3	Abbey Road	Canning Town	37	599	15428	2228.923167	37	3.610918	2229.923168	7.709

```
4 Abbey Road Crossharbour 1 599 1208 6686.475560 1 0.000000 6687.475561 8.80
```

```
In [24]: alpha_i = prodSim.params[0:-2]
gamma = prodSim.params[-2]
beta = -prodSim.params[-1]
```

C:\Users\lenovo\AppData\Local\Temp\ipykernel_15608\1887813951.py:2: FutureWarning: Serie
s.__getitem__ treating keys as positions is deprecated. In a future version, integer key
s will always be treated as labels (consistent with DataFrame behavior). To access a val
ue by position, use `ser.iloc[pos]`
gamma = prodSim.params[-2]

C:\Users\lenovo\AppData\Local\Temp\ipykernel_15608\1887813951.py:3: FutureWarning: Serie
s.__getitem__ treating keys as positions is deprecated. In a future version, integer key
s will always be treated as labels (consistent with DataFrame behavior). To access a val
ue by position, use `ser.iloc[pos]`
beta = -prodSim.params[-1]

hara hara hara 1

Out[25]:		station_origin	station_destination	flows	population	jobs	distance	flow	log_flow	dist	log_
	0	Abbey Road	Beckton	1	599	442	8510.121774	1	0.000000	8511.121775	9.04
	1	Abbey Road	Blackwall	3	599	665	3775.448872	3	1.098612	3776.448873	8.23
	2	Abbey Road	Canary Wharf	1	599	58772	5086.514220	1	0.000000	5087.514221	8.53
	3	Abbey Road	Canning Town	37	599	15428	2228.923167	37	3.610918	2229.923168	7.709
	4	Abbey Road	Crossharbour	1	599	1208	6686.475560	1	0.000000	6687.475561	8.80
	5	Abbey Road	Cutty Sark	2	599	1748	8503.898909	2	0.693147	8504.898910	9.048
	6	Abbey Road	Cyprus	7	599	850	6532.099618	7	1.945910	6533.099619	8.78
	7	Abbey Road	Devons Road	1	599	611	3958.324171	1	0.000000	3959.324172	8.283
	8	Abbey Road	East India	2	599	1522	3384.141666	2	0.693147	3385.141667	8.12
	9	Abbey Road	Island Gardens	2	599	691	7706.296370	2	0.693147	7707.296371	8.949

Assessing the model output

```
In [ ]:
```

To test the "Goodness-of-fit" of the model, check the coefficient of determination (r^2) or the Square Root of Mean Squared Error (RMSE).

```
import scipy.stats

def CalcRSqaured(observed, estimated):
    """Calculate the r^2 from a series of observed and estimated target values
    inputs:
    Observed: Series of actual observed values
    estimated: Series of predicted values"""

    r, p = scipy.stats.pearsonr(observed, estimated)
    R2 = r **2
    return R2
```

In [46]: def CalcRMSE(observed, estimated):

```
"""Calculate Root Mean Square Error between a series of observed and estimated value
inputs:
Observed: Series of actual observed values
estimated: Series of predicted values"""

res = (observed -estimated)**2
RMSE = round(sqrt(res.mean()), 3)

return RMSE
```

Let's use poisson regression to test which model can get the best result:

Flow - Distance:

```
In [47]: best2_formula_double_sim_exp = "flow ~ station_origin + log_jobs + dist-1"
    best2_double_sim_exp = smf.glm(formula=best2_formula_double_sim_exp, data=df_origin, fam
    print("R-squared: ", CalcRSqaured(df_origin["flow"], best2_double_sim_exp.mu))
    print("RMSE: ", CalcRMSE(df_origin["flow"], best2_double_sim_exp.mu))

R-squared: 0.45590488914083815
    RMSE: 114.37

Flow - Logged distance:

In [48]: formula_double_sim_exp = "flow ~ station_origin + log_jobs + log_dist-1"
    double_sim_exp = smf.glm(formula=formula_double_sim_exp, data=df_origin, family=sm.famil
    print("R-squared: ", CalcRSqaured(df_origin["flow"], double_sim_exp.mu))
    print("RMSE: ", CalcRMSE(df_origin["flow"], double_sim_exp.mu))
    R-squared: 0.1683779372123963
```

Logged flow - distance:

RMSE: 152.287

```
In [49]: best_formula_double_sim_exp = "log_flow ~ station_origin + log_jobs + dist-1"

best_double_sim_exp = smf.glm(formula=best_formula_double_sim_exp, data=df_origin, famil

# print
print("R-squared: ", CalcRSqaured(df_origin["log_flow"], best_double_sim_exp.mu))
print("RMSE: ", CalcRMSE(df_origin["log_flow"], best_double_sim_exp.mu))
```

R-squared: 0.5387247573433747

RMSE: 1.088

The r square is the biggest and the RMSE is the smallest, therefore this combination has the best performance.

Logged flow - logged distance:

R-squared: 0.30449397993579636

RMSE: 1.44

IV. Scenarios

IV.1. Scenario A: Job Decrease

Cut half of the jobs in Canary Wharf while conserving the number of people commuting:

IV.2. Scenario B: Travel Cost Increase

Increase in travel cost can lead to decrease in the population parameter: I don't know how to calculate it.

IV.3. Discussion

Reference

Berche, B., C. von Ferber, T. Holovatch, and Yu. Holovatch. 2009. "Resilience of Public Transport Networks against Attacks." The European Physical Journal B 71 (1): 125–37. https://doi.org/10.1140/epjb/e2009-00291-3.

Bloch, Francis, Matthew O. Jackson, and Pietro Tebaldi. 2019. "Centrality Measures in Networks." SSRN Scholarly Paper ID 2749124. Rochester, NY: Social Science Research Network. https://doi.org/10.2139/ssrn.2749124

Bonacich, Phillip. 1987. "Power and Centrality: A Family of Measures." American Journal of Sociology 92 (5): 1170–82. https://doi.org/10.1086/228631.

Dijkstra, E.W. (1959). A note on two problems in connexion with graphs. Numer. Math. 1, 269–271. https://doi.org/10.1007/BF01386390

Freeman, L. (1977): "A set of measures of centrality based on betweenness," Sociometry, 40(1), 35-41.

Latora, Vito, and Massimo Marchiori. "Efficient behavior of small-world networks." Physical Review Letters 87.19 (2001): 198701. https://doi.org/10.1103/PhysRevLett.87.198701

Nguyen, Quang & Khanh, Nguyen & Cassi, Davide & Bellingeri, Michele. (2021). New Betweenness Centrality Node Attack Strategies for Real-World Complex Weighted Networks. Complexity. 2021. https://doi.org/10.1155/2021/1677445.

Wilson, A. G. (1971). 'A Family of Spatial Interaction Models, and Associated Developments'. Environment and Planning A: Economy and Space. SAGE Publications Ltd, 3 (1), pp. 1–32. doi: 10.1068/a030001.