EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

11199593

PUBLICATION DATE

27-07-99

APPLICATION DATE

31-08-98

APPLICATION NUMBER

10245072

APPLICANT: MITSUI CHEM INC;

INVENTOR: FUJITA TERUNORI;

INT.CL.

C07F 7/28 C07F 7/00 C07F 9/00

C08F 4/60 C08F 4/651 C08F 4/68 //

C08F 10/00

TITLE

TRANSITIC! METAL COMPOUND,

CATALYST FOR OLEFIN POLYMERIZATION AND POLYMERIZATION

I

П

m

W

ABSTRACT :

PROBLEM TO BE SOLVED: To obtain the subject new compound having excellent polymerization activity for olefin, useful as a catalytic component for olefin polymerization, providing a polymer having excellent properties, comprising a transition metal compound containing a specific aromatic amino compound as a ligand.

SOLUTION: This new transition metal compound is shown by formula I [R1 to R¹² are each H, a halogen, a hydrocarbon, a heterocyclic compound residue, an oxygen-containing group, a nitrogen-containing group, a sulfur- containing group or the like; A is O, S, Se or N-R⁵; D is $C(R^7)(R^8)$,

Si(R⁹)(R¹⁰), CO, SO₂, SO or the like; M is a transition metal atom

of the group 3 to the group 11 of the periodic table; X is H, a halogen, a hydrocarbon, an oxygen- containing group, a sulfur-containing group, a nitrogen-containing group or the like; (m) is 1-6; (n) is a number for satisfying the valence of M], formula II or the like and is useful as a catalytic component for olefin polymerization, etc. The compound is obtained by reacting an aromatic amino compound of formula III, formula IV or the like with a metal compound of the formula MK_k ((k) is a number for satisfying the valence of M).

COPYRIGHT: (C)1999,JPO

THIS PAGE BLANK (USPTO)

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-199593

(43)公開日 平成11年(1999)7月27日

(51) Int.Cl. ⁶		識別記号		FΙ			
C 0 7 F	7/28			C 0 7 F	7/28	F	
	7/00				7/00	Α	
	9/00				9/00	Α	
C08F	4/60			C08F	4/60		
	4/651				4/651		
		·	審查請求	未請求 請求	項の数7 OL (全 35	頁) 最終頁に続く	
(21)出願番号		特願平10-245072		(71)出顧			
(22)出顧日		平成10年(1998) 8 月31日		三井化学株式会社 東京都千代田区霞が関三丁目2番5号 (72)発明者 松居 成和			
(31)優先権主張番号 (32)優先日		特願平9-308399 平 9 (1997)11月11日		山口県玖珂郡和木町和木六丁目1番2号 三井化学株式会社内			
(33)優先権主張国		日本 (JP)		(72)発明	三谷 誠		
					山口県 玖珂郡和木町 和 三井化学株式会社内	1木六丁目1番2号	
				(72)発明	(72)発明者 藤田 照典 山口県玖珂郡和木町和木六丁目1番2号		
					三井化学株式会社内	1/1// 1 日 1 田 2 万	
				(74)代理	、 弁理士 中嶋 重光	(外1名)	

(54) 【発明の名称】 選移金属化合物およびオレフィン重合用触媒ならびに重合方法

(57)【要約】

【課題】 オレフィン重合用触媒に有用な新規な遷移金属化合物、該遷移金属化合物からなり優れた重合活性を有するオレフィン重合用触媒、該触媒を用いたオレフィンの重合方法を提供する。

【解決手段】 オレフィン重合用触媒は、(A)下記式

(I)の新規な遷移金属化合物と、(B)有機金属化合物、有機アルミニウムオキシ化合物、および遷移金属化合物(A)と反応してイオン対を形成する化合物よりなる群から選ばれる少なくとも1種の化合物とからなる。 【化1】

M:周期律表第3~11族の通移金属原子

m:1~6

A:-O-,-S-,-Se-,-N(R5)-

D:-C(R')(R*)-、-Si(R*)(R**)-等

R1~R12:水素、炭化水紫基等

n:Mの価数を満たす数 X:ハロゲン、炭化水森基等

SDOCID: <JP_411199593A__J_>

【特許請求の範囲】

【請求項1】 下記式(a)、(b)、(c)または(d)で表される化合物と、下記式(e)で表される金属化合物とを結合反応させて得られる遷移金属化合物; 【化1】

(式中、Aは、酸素原子、イオウ原子、セレン原子、または結合基- R^5 を有する窒素原子を示し、Dは、-C(R^7)(R^8)-、-Si(R^9)(R^{10})-、-CO-、-SO₂-、-SO-、または-P(O)(OR¹¹)-を示し、 R^1 ~ R^{12} は、互いに同一でも異なっていてもよい水素原子、ハロゲン原子、炭化水素基、ヘテロ環式化合物残基、酸素含有基、窒素含有基、ホウ素含有基、イオウ含有基、リン含有基、ケイ素含有基、ゲルマニウム含有基、またはスズ含有基を示し、これらのうち2個以上が互いに連結して環を形成していてもよい。)

【化2】

(式中、Aは、結合基- R^6 を有する酸素原子、イオウ原子、セレン原子、または結合基- R^6 および- R^6 を有する窒素原子を示し、Dは、- $C(R^7)(R^8)$ -、-Si(R^9)(R^{10})-、-CO-、- SO_2 -、-S〇-、または- $P(O)(OR^{11})$ -を示し、 R^1 ~ R^{11} は、互いに同一でも異なっていてもよい水素原子、ハロゲン原子、炭化水素基、ヘテロ環式化合物残基、酸素含有基、窒素含有基、オウ含有基、メン含有基、ケイ素含有基、ゲルマニウム含有基、またはスズ含有基を示し、これらのうち2個以上が互いに連結して環を形成していてもよい。)

【化3】

(式中、Aは、酸素原子、イオウ原子、セレン原子、または結合基 $-R^5$ を有する窒素原子を示し、Dは、-C(R^7)(R^8)-、-Si(R^9)(R^{10})-、-CO-、-SO $_2$ -、-SO-、または-P(O)(OR^{11})-を示し、 R^1 ~ R^{11} は、互いに同一でも異なっていてもよい水素

原子、ハロゲン原子、炭化水素基、ヘテロ環式化合物残基、酸素含有基、窒素含有基、ホウ素含有基、イオウ含有基、リン含有基、ケイ素含有基、ゲルマニウム含有基、またはスズ含有基を示し、これらのうち2個以上が互いに連結して環を形成していてもよい。)

【化4】

(式中、Aは、結合基-R6を有する酸素原子、イオウ原子、セレン原子、または結合基-R5 および-R6を有する窒素原子を示し、Dは、-C(R7)(R8)-、-Si(R9)(R10)-、-CO-、-SO2-、-SO-、または-P(O)(OR11)-を示し、R1~R12 は、互いに同一でも異なっていてもよい水素原子、ハロゲン原子、炭化水素基、ヘテロ環式化合物残基、酸素含有基、窒素含有基、オウ含有基、イオウ含有基、リン含有基を示し、これらのうち2個以上が互いに連結して環を形成していてもよい。)

MXk ··· (e)

(式中、Mは、周期律表第3~11族の遷移金属原子を示し、kは、Mの価数を満たす数であり、Xは、水素原子、ハロゲン原子、炭化水素基、酸素含有基、イオウ含有基、窒素含有基、ホウ素含有基、アルミニウム含有基、リン含有基、ハロゲン含有基、ヘテロ環式化合物を基、ケイ素含有基、ゲルマニウム含有基、またはスズ含有基を示し、kが2以上の場合は、Xで示される複数の基は互いに同一でも異なっていてもよく、またXで示される複数の基は互いに結合して環を形成してもよい。)【請求項2】 前記遷移金属化合物が、前記式(a)、(b)または(d)で表される化合物と、前記式(e)で表される金属化合物とを反応させて得られるものであって、金属原子と、該金属原子に結合する前記式(a)、(b)または(d)化合物に由来する配位子とのモル比が1~6である請求項1に記載の遷移金属化合物とある。

【請求項3】 前記遷移金属化合物が、前記式(c)で表される化合物と、前記式(e)で表される金属化合物とを反応させて得られるものであって、金属原子と、該金属原子に結合する前記式(c)の化合物に由来する配位子とのモル比が1~3である請求項1に記載の遷移金属化合物。

【請求項4】 下記一般式(I)~(IV)で表される遷 移金属化合物:

【化5】

$$\begin{array}{c}
R^{12} \\
R^{2} \\
R^{3}
\end{array}$$

$$\begin{array}{c}
A \\
R^{3}
\end{array}$$

$$\begin{array}{c}
A \\
\end{array}$$

$$\begin{array}{c}
A \\
\end{array}$$

【化6】

【化7】

$$\begin{array}{c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

(式中、A、D、R:~R¹¹は、前記式(c)のA、

D、R1~R11と同じ意味を表わし、mは、1~3の整数であり、mが複数のときは、一つの配位子に含まれるR1~R11のうちの1個の基と、他の配位子に含まれるR1~R11のうちの1個の基とが結合されていてもよく、R1同士、R2同士、R3同士、R4同士、R5同士、R7同士、R8同士、R9同士、R11同士は互いに同一でも異なっていてもよく、M、Xは、前記式(e)のM、Xと同じ意味を表わし、nは、Mの価数を満たす数であり、nが2以上の場合は、Xで示される複数の基は互いに同一でも異なっていてもよく、またXで示される複数の基は互いに同一でも異なっていてもよく、またXで示される複数の基は互いに同一でも異なっていてもよく、またXで示される複数の基は互いに結合して環を形成してもよい。)

【化8】

$$\begin{array}{c}
R^{12} \\
R^{2} \\
R^{3}
\end{array}$$

$$\begin{array}{c}
R^{4} \\
R^{3}
\end{array}$$

$$\begin{array}{c}
R^{4} \\
R^{3}
\end{array}$$

(式中、A、D、 $R^1 \sim R^{12}$ は、前記式(d)のA、D、 $R^1 \sim R^{12}$ と同じ意味を表わし、mは、 $1 \sim 6$ の整数であり、mが複数のときは、一つの配位子に含まれる $R^1 \sim R^{12}$ のうちの1個の基と、他の配位子に含まれる $R^1 \sim R^{12}$ のうちの1個の基とが結合されていてもよく、 R^1 同士、 R^2 同士、 R^3 同士、 R^4 同士、 R^5 同士、 R^6 同士、 R^7 同士、 R^8 同士、 R^9 同士、 R^{10} 同士、 R^{11} 同士、 R^{12} 同士は互いに同一でも異なっていてもよく、M、Xは、前記式(e)のM、Xと同じ意味を表わし、nは、Mの価数を満たす数であり、nが2以上の場合は、Xで示される複数の基は互いに同一でも異なっていてもよく、またXで示される複数の基は互いに結合して環を形成してもよい。)

【請求項5】(A)請求項1ないし4に記載の遷移金属化合物と、(B)(B-1)有機金属化合物、(B-2)有機アルミニウムオキシ化合物、および(B-3)遷移金属化合物(A)と反応してイオン対を形成する化合物よりなる群から選ばれる少なくとも1種の化合物と、からなることを特徴とするオレフィン重合用触媒。

【請求項6】 前記遷移金属化合物(A)と、(B-1):有機金属化合物、(B-2):有機アルミニウムオキシ化合物、および(B-3):遷移金属化合物(A)と反応してイオン対を形成する化合物よりなる群から選ばれる少なくとも1種の化合物(B)と、担体(C)とからなる請求項5に記載のオレフィン重合用触媒。

【請求項7】 請求項5ないし6に記載のオレフィン重合用触媒の存在下に、オレフィンを重合又は共重合させることを特徴とするオレフィンの重合方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は新規な遷移金属化合物に関する。また、該遷移金属化合物からなるオレフィン重合用触媒、ならびに該オレフィン重合用触媒を用いたオレフィンの重合方法に関する。

[0002]

【発明の技術的背景】オレフィン重合用触媒としては、いわゆるカミンスキー触媒がよく知られている。この触媒は非常に重合活性が高く、分子量分布が狭い重合体が得られるという特徴がある。このようなカミンスキー触媒に用いられる遷移金属化合物としては、たとえばビス(シクロペンタジエニル)ジルコニウムジクロリド(特開昭58-19309号公報参照)や、エチレンビス(4,5,6,7-テトラヒドロインデニル)ジルコニウムジクロリド(特開昭61-130314号公報参照)などが知られている。また重合に用いる遷移金属化合物が異なると、オレフィン重合活性や得られたポリオレフィンの性状が大きく異なることも知られている。さらに最近新しいオレフィン重合用触媒としてジイミン構造の配位子を持った遷移金属化合物(国際公開特許第9623010号参照)が提案されている。

【 O O O 3 】ところで一般にポリオレフィンは、機械的 特性などに優れているため、各種成形体用など種々の分 野に用いられているが、近年ポリオレフィンに対する物 性の要求が多様化しており、様々な性状のポリオレフィ ンが望まれている。また生産性の向上も課題である。

【 O O O 4 】 このような状況のもと、オレフィン重合活性に優れ、しかも優れた性状を有するポリオレフィンを製造しうるようなオレフィン重合用触媒の出現が望まれている。

[0005]

【発明が解決しようとする課題】本発明は、新規な遷移 金属化合物を提供し、該遷移金属化合物からなる優れた オレフィン重合活性を有するオレフィン重合用触媒、お よび該触媒を用いるオレフィンの重合方法を提供するこ とを目的とする。

[0006]

【課題を解決するための手段】本発明に係る遷移金属化合物は、下記式(a)、(b)、(c)または(d)で表される化合物と、下記式(e)で表される金属化合物とを結合反応させて得られることを特徴としている。

[0007]

【化9】

(式中、Aは、酸素原子、イオウ原子、セレン原子、または結合基ーR⁵を有する窒素原子を示し、Dは、-C

[0008]

【化10】

$$R^1$$
 A
 R^2
 A
 R^4
..... (b)

(式中、Aは、結合基-R⁶を有する酸素原子、イオウ原子、セレン原子、または結合基-R⁶および-R⁶を有する窒素原子を示し、Dは、-C(R⁷)(R⁸)-、-Si(R⁹)(R¹⁰)-、-CO-、-SO₂-、-SO-、または-P(O)(OR¹¹)-を示し、R¹~R¹¹は、互いに同一でも異なっていてもよい水素原子、ハロゲン原子、炭化水素基、ヘテロ環式化合物残基、酸素含有基、窒素含有基、ホウ素含有基、イオウ含有基、リン含有基、ケイ素含有基、ゲルマニウム含有基、またはスズ含有基を示し、これらのうち2個以上が互いに連結して環を形成していてもよい。但しR⁶は水素原子以外のものであることが望ましい。)

[0009]

【化11】

(式中、Aは、酸素原子、イオウ原子、セレン原子、または結合基 $-R^5$ を有する窒素原子を示し、Dは、-C(R^7)(R^8)-、-Si(R^9)(R^{10})-、-CO-、-SO $_2$ -、-SO-、または-P(O)(OR^{11})-を示し、 R^1 $-R^{11}$ は、互いに同一でも異なっていてもよい水素原子、ハロゲン原子、炭化水素基、ヘテロ環式化合物残基、酸素含有基、窒素含有基、ホウ素含有基、イオウ含有基、リン含有基、ケイ素含有基、ゲルマニウム含有基、またはスズ含有基を示し、これらのうち2個以上が互いに連結して環を形成していてもよい。)

[0010]

【化12】

(式中、Aは、結合基-R⁶を有する酸素原子、イオウ原子、セレン原子、または結合基-R⁶および-R⁶を有する窒素原子を示し、Dは、-C(R⁷)(R⁸)-、-Si(R²)(R¹⁰)-、-CO-、-SO₂-、-SO-、または P(O)(OR¹¹)-を示し、R¹~R¹²は、互いに同一でも異なっていてもよい水素原子、ハロゲン原子、炭化水素基、ヘテロ環式化合物残基、酸素含有基、窒素含有基、ホウ素含有基、イオウ含有基、リン含有基、ケイ素含有基、ゲルマニウム含有基、またはスズ含有基を示し、これらのうち2個以上が互いに連結して環を形成していてもよい。但しR⁶、R¹²は水素原子以外のものであることが望ましい。)

$$[0011]$$
 MXk \cdots (e)

(八中、Mは、周期律表第3~11族の遷移金属原子を 示し、kは、Mの価数を満たす数であり、Xは、水素原 子、ハロゲン原子、炭化水素基、酸素含有基、イオウ含 有基、電素含有基、ホウ素含有基、アルミニウム含有 基、リン含有基、ハロゲン含有基、ヘテロ環式化合物残 基、ケイ素含有基、ゲルマニウム含有基、またはスズ含 有基を示し、kが2以上の場合は、Xで示される複数の 基は互いに同一でも異なっていてもよく、またXで示さ れる複数の基は互いに結合して環を形成してもよい。) 【0012】前記遷移金属化合物では、前記式(a)、 (も)または(d)で表される化合物と、前記式(e) で表される金属化合物とを反応させて得られるものの場 合、企属原子と、該企属原子に結合する前記式(a)、 (b) または(d) 化合物に由来する配位子とのモル比 が1~6であることが好ましく、前記式(c)で表され る化合物と、前記式(e)で表される金属化合物とを反 応させて得られるものの場合、金属原子と、該金属原子 に結合する前記式(c)の化合物に由来する結合子との モル比が1~3であることが好ましい。なお、これ以後 前記式(a)、(b)、(c)、(d)で表される化合 物を配位子前駆体と呼ぶことが有る。

【0013】本発明に係る、好ましい第1の遷移金属化 合物は、下記式(I)で表される。

【化13】

(式中、A、D、R 1 ~R 1 2は、前記式 (a)のA、D、R 1 ~R 1 2と同じ意味を表わし、R 1 2は水素原子以外のものであることが望ましく、mは、1~6の整数であり、mが複数のときは、一つの配位子に含まれるR 1 ~R 1 2のうちの1個の基と、他の配位子に含まれるR 1 ~R 1 2のうちの1個の基とが結合されていてもよく、R 1 同士、R 2 同士、R 3 同士、R 4 同士、R 5 同士、R 1 同士、R 1 同士、R 1 同士、R 1 同士、R 1 1同士、R 1 2同士は互いに同一でも異なっていてもよく、M、Xは、前記式(e)のM、Xと同じ意味を表わし、nは、Mの価数を満たす数であり、nが2以上の場合は、Xで示される複数の基は互いに同一でも異なっていてもよく、またXで示される複数の基は互いに結合して環を形成してもよい。)

【0014】本発明に係る、好ましい第2の遷移金属化 合物は、下記式(II)で表される。

【化14】

(式中、A、D、 $R^1 \sim R^{11}$ は、前記式 (b) OA、D、 $R^1 \sim R^{11}$ と同じ意味を表わし、 R^6 は水素原子以外のものであることが望ましく、mは、 $1 \sim 3$ の整数であり、mが複数のときは、-つの配位子に含まれる $R^1 \sim R^{11}$ のうちの1個の基と、他の配位子に含まれる $R^1 \sim R^{11}$ のうちの1個の基とが結合されていてもよく、 R^1 同士、 R^2 同士、 R^3 同士、 R^4 同士、 R^5 同士、 R^6 同士、 R^7 同士、 R^6 同士、 R^9 同士、 R^{10} 同士、 R^{11} 同士は互いに同一でも異なっていてもよく、M、Xは、前記式(e) OM、Xと同じ意味を表わし、nは、Mの価数を満たす数であり、nが2以上の場合は、Xで示される複数の基は互いに同一でも異なっていてもよく、またXで示される複数の基は互いに結合して環を形成してもよい。)

【0015】本発明に係る、好ましい第3の遷移金属化 合物は下記式(III)で表される。

【化15】

(式中、A、D、 $R^1 \sim R^{11}$ は、前記式(c)のA、D、 $R^1 \sim R^{11}$ と同じ意味を表わし、mは、 $1 \sim 6$ の整

数であり、mが複数のときは、一つの配位子に含まれる $R^1 \sim R^{11}$ のうちの1個の基と、他の配位子に含まれる $R^1 \sim R^{11}$ のうちの1個の基とが結合されていてもよく、 R^1 同士、 R^2 同士、 R^3 同士、 R^4 同士、 R^5 同士、 R^7 同士、 R^8 同士、 R^9 同士、 R^{10} 同士、 R^{11} 同士は互いに同一でも異なっていてもよく、M、Xは、前記式(e)のM、Xと同じ意味を表わし、nは、Mの価数を満たす数であり、nが2以上の場合は、Xで示される複数の基は互いに同一でも異なっていてもよく、またXで示される複数の基は互いに結合して環を形成してもよい。)

【0016】本発明に係る、好ましい第4の遷移金属化 合物は、下記式(IV)で表される。

【化16】

(式中、A、D、R¹~R¹²は、前記式(d)のA、D、R¹~R¹²と同じ意味を表わし、R⁶、R¹²は水素原子以外のものであることが望ましく、mは、1~3の整数であり、mが複数のときは、一つの配位子に含まれるR¹~R¹²のうちの1個の基と、他の配位子に含まれるR¹~R¹²のうちの1個の基とが結合されていてもよく、R¹同士、R²同士、R³同士、R⁴同士、R⁵同士、R⁶同士、R⁷同士、R⁸同士、R¹⁰同士、R¹¹同士、R¹²同士は互いに同一でも異なっていてもよく、M、Xは、前記式(e)のM、Xと同じ意味を表わし、nは、Mの価数を満たす数であり、nが2以上の場合は、Xで示される複数の基は互いに結合して環を形成してもよい。)

【 0 0 1 7 】本発明に係るオレフィン重合用触媒は、 (A)前記の遷移金属化合物と、(B)(B-1)有機金属 化合物、(B-2)有機アルミニウムオキシ化合物、および

(B-3) 遷移金属化合物 (A) と反応してイオン対を形成する化合物よりなる群から選ばれる少なくとも1種の化合物と、からなることを特徴としている。

【0018】本発明のオレフィン重合触媒では、前記 (A) 遷移金属化合物が、前記式 (I) \sim (IV) におい CA を、結合基 $-R^6$ を有することもある、酸素原子または結合基 $-R^5$ を有する窒素原子とする化合物である

【 0019】また、本発明のオレフィン重合触媒では、前記 (A) 遷移金属化合物が、前記式 $(I) \sim (IV)$ において $De-C(R^7)(R^8)$ -または-CO-とする化合物であることが好ましい。

【0020】本発明に係るオレフィン重合用触媒では、前記遷移金属化合物(A)と、(B-1):有機金属化合物、(B-2):有機アルミニウムオキシ化合物、および(B-3):遷移金属化合物(A)と反応してイオン対を形成する化合物よりなる群から選ばれる少なくとも1種の化合物(B)に加えて、担体(C)を含んでいてもよい。

【0021】本発明に係るオレフィンの重合方法は、前記のような触媒の存在下に、オレフィンを重合または共重合させることを特徴としている。

[0022]

【発明の実施の形態】以下、本発明の遷移金属化合物、およびこの遷移金属化合物からなるオレフィン重合用触媒ならびにこの触媒を用いたオレフィンの重合方法について具体的に説明する。なお、本明細書において「重合」という語は、単独重合だけでなく、共重合をも包含した意味で用いられることがあり、「重合体」という語は、単独重合体だけでなく、共重合体をも包含した意味で用いられることがある。

【0023】本発明に係る遷移金属化合物は、前記式 (a)~(d)で表される化合物と、前記式(e)で表 される金属化合物とを結合反応させて得られるものであ る。

【0024】また、本発明に係る第1の遷移金属化合物は、前記式(I)で表され、本発明に係る第2の遷移金属化合物は、前記式(II)で表され、本発明に係る第3の遷移金属化合物は、前記式(III)で表され、本発明に係る第4の遷移金属化合物は、前記式(IV)で表される

【0025】さらに、本発明のオレフィン重合用触媒は、(A)前記遷移金属化合物と、(B)(B-1)有機金属化合物、(B-2)有機アルミニウムオキシ化合物、および(B-3)遷移金属化合物(A)と反応してイオン対を形成する化合物よりなる群から選ばれる少なくとも1種の化合物とから形成されている。まず、本発明の遷移金属化合物(A)とともに、それからなるオレフィン重合用触媒を形成する各触媒成分について説明する。

【0026】 (A) 遷移金属化合物

本発明で用いられる遷移金属化合物は、下記式(a)で表される第1の化合物、下記式(b)で表わされる第2の化合物、下記式(c)で表わされる第3の化合物、または下記式(d)で表わされる第4の化合物と、下記式(e)で表される金属化合物とを結合反応させて得られる

【0027】第1の化合物は次式(a)で表わされる。 【化17】

ことが好ましい。

【0028】式(a)中、Aは、酸素原子、イオウ原 子、セレン原子、または結合基-R5を有する窒素原子 を示す。このうち酸素原子、または結合基一R5を有す る窒素原子が好ましい。Dは、 $-C(R^7)(R^3)-$ 、-S $i(R^9)(R^{10}) - (-CO - (-SO_9 - (-SO - (3)))$ たは-P(O)(OR¹¹)-を示す(ここで、-は単結合を 表す。)。これらの中では、 $-C(R^7)(R^8)$ -、-COーが好ましい。R1~R12は、互いに同一でも異なって いてもよい水素原子、ハロゲン原子、炭化水素基、ヘテ ロ環式化合物残基、酸素含有基、窒素含有基、ホウ素含 有基、イオウ含有基、リン含有基、ケイ素含有基、ゲル マニウム含有基、またはスズ含有基を示し、これらのう ち2個以上が互いに連結して環を形成していてもよい。 但しR12は水素原子以外のものであることが望ましい。 【0029】より具体的には、R1~R12が水素原子、 ハロゲン原子、炭化水素基、ヘテロ環式化合物残基、炭 化水素置換シリル基、炭化水素置換シロキシ基、アルコ キシ基、アルキルチオ基、アリーロキシ基、アリールチ オ基、アシル基、エステル基、チオエステル基、アミド 基、イミド基、アミノ基、イミノ基、スルホンエステル 基、スルホンアミド基、シアノ基、ニトロ基、カルボキ シル基、スルホ基、メルカプト基またはヒドロキシ基で あることが好ましい。但しR12は水素原子以外のもので あることが望ましい。

【0030】ここで、ハロゲン原子としては、フッ素、 塩素、臭素、ヨウ素が挙げられる。炭化水素基として具 体的には、メチル、エチル、n-ブロピル、イソプロピ ル、n-ブチル、イソブチル、sec-ブチル、 tert-ブチ ル、ネオペンチル、nーヘキシルなどの炭素原子数が1~ 30、好ましくは1~20の直鎖状または分岐状のアル キル基;ビニル、アリル(allyl)、イソプロペニルなど の炭素原子数が2~30、好ましくは2~20の直鎖状 または分岐状のアルケニル基:エチニル、プロパルギル など炭素原子数が2~30、好ましくは2~20の直鎖 状または分岐状のアルキニル基;シクロプロピル、シク ロブチル、シクロペンチル、シクロヘキシル、アダマン チルなどの炭素原子数が3~30、好ましくは3~20 の環状飽和炭化水素基:シクロペンタジエニル、インデ ニル、フルオレニルなどの炭素数5~30の環状不飽和 炭化水素基;フェニル、ベンジル、ナフチル、ビフェニ ル、ターフェニル、フェナントリル、アントラセニルな どの炭素原子数が6~30、好ましくは6~20のアリ ール(aryl)基:トリル、iso-プロピルフェニル、t-ブチ ルフェニル、ジメチルフェニル、ジーtーブチルフェニル

【0031】上記炭化水素基は、水素原子がハロゲンで 置換されていてもよく、たとえば、トリフルオロメチ ル、ペンタフルオロフェニル、クロロフェニルなどの炭

などのアルキル置換アリール基などが挙げられる。

ル、ペンタフルオロフェニル、クロロフェニルなどの炭素原子数1~30、好ましくは1~20のハロゲン化炭化水素基が挙げられる。また、上記炭化水素基は、水素・原子が他の炭化水素基で置換されていてもよく、例えばベンジル、クミルなどのアリール基置換アルキル基などが挙げられる。

【0032】さらにまた、上記炭化水素基は、ヘテロ環 式化合物残基:アルコシキ基、アリーロキシ基、エステ ル基、エーテル基、アシル基、カルボキシル基、カルボ ナート基、ヒドロキシ基、ペルオキシ基、カルボン酸無 水物基などの酸素含有基; アミノ基、イミノ基、アミド 基、イミド基、ヒドラジノ基、ヒドラゾノ基、ニトロ 基、ニトロソ基、シアノ基、イソシアノ基、シアン酸エ ステル基、アミジノ基、ジアゾ基、アミノ基がアンモニ ウム塩となったものなどの窒素含有基:ボランジイル 基、ボラントリイル基、ジボラニル基などのホウ素含有 基;メルカプト基、チオエステル基、ジチオエステル 基、アルキルチオ基、アリールチオ基、チオアシル基、 チオエーテル基、チオシアン酸エステル基、イソチアン 酸エステル基、スルホンエステル基、スルホンアミド 基、チオカルボキシル基、ジチオカルボキシル基、スル ホ基、スルホニル基、スルフィニル基、スルフェニル基 などのイオウ含有基;ホスフィド基、ホスホリル基、チ オホスホリル基、ホスファト基などのリン含有基、ケイ 素含有基、ゲルマニウム含有基、またはスズ含有基を有 していてもよい。

【0033】これらのうち、特に、メチル、エチル、n-ブロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、t-ブチル、ネオペンチル、n-ヘキシルなどの炭素原子数1~30、好ましくは1~20の直鎖状または分岐状のアルキル基;フェニル、ナフチル、ビフェニル、ターフェニル、フェナントリル、アントラセニルなどの炭素原子数6~30、好ましくは6~20のアリール基;これらのアリール基にハロゲン原子、炭素原子数1~30、好ましくは1~20のアルキル基またはアルコキシ基、炭素原子数6~30、好ましくは6~20のアリール基またはアリーロキシ基等の置換基が1~5個置換した置換アリール基などが好ましい。

【0034】ヘテロ環式化合物残基としては、ピロール、ピリジン、ピリミジン、キノリン、トリアジンなどの含窒素化合物、フラン、ピランなどの含酸素化合物、チオフェンなどの含硫黄化合物などの残基、およびこれらのヘテロ環式化合物残基に炭素原子数が1~30、好ましくは1~20のアルキル基、アルコキシ基などの置換基がさらに置換した基などが挙げられる。

【0035】R¹~R¹²として示される酸素含有基、窒素含有基、ホウ素含有基、イオウ含有基、リン含有基と

しては、上記炭化水素基に含まれていてもよい置換基と して例示したものと同様のものが挙げられる。

【0036】ケイ素含有基としては、シリル基、シロキシ基、炭化水素置換シリル基、炭化水素置換シロキシ基など、具体的には、メチルシリル、ジメチルシリル、トリスチルシリル、エチルシリル、ジフェニルメチルシリル、トリフェニルシリル、ジメチルフェニルシリル、ジメチルフェニルシリル、ジメチルーセーブチルシリル、ジメチルフェニル)シリルなどが挙げられる。これらの中では、メチルシリル、ジメチルシリル、ドリスチルシリル、エチルシリル、ジエチルシリル、トリエチルシリル、ジメチルフェニルシリル、トリフェニルシリル、トリフェニルシリル、ドリフェニルシリル、ドリフェニルシリル、ドリフェニルシリル、ドリフェニルシリル、ドリフェニルシリル、ドリスチルショニルシリル、ドリスチルショニルシリル、ジスチルフェニルシリル、ドリフェニルシリル、ジスチルフェニルシリルが好ましい。炭化水素置換シロキシなどが挙げられる

【0037】ゲルマニウム含有基およびスズ含有基としては、前記ケイ素含有基のケイ素をゲルマニウムおよびスズに置換したものが挙げられる。

【0038】次に上記で説明したR1~R12の例について、より具体的に説明する。酸素含有基のうち、アルコキシ基としては、メトキシ、エトキシ、ロブロポキシ、イソプロポキシ、ロブトキシ、イソブトキシ、 tert-ブトキシなどが、アリーロキシ基としては、フェノキシ、2.6-ジメチルフェノキシ、2.4,6-トリメチルフェノキシなどが、アシル基としては、ホルミル基、アセチル基、ベンゾイル基、p-クロロベンゾイル基、p-メトキシベンゾイル基などが、エステル基としては、アセチルオキシ、ベンゾイルオキシ、メトキシカルボニル、フェノキシカルボニル、p-クロロフェノキシカルボニルなどが好ましく例示される。

【0039】窒素含有基のうち、アミド基としては、アセトアミド、N-メチルアセトアミド、N-メチルベンズアミドなどが、アミノ基としては、ジメチルアミノ、エチルメチルアミノ、ジフェニルアミノなどが、イミド基としては、アセトイミド、ベンズイミドなどが、イミノ基としては、メチルイミノ、エチルイミノ、プロピルイミノ、ブチルイミノ、フェニルイミノなどが好ましく例示される。

【0040】イオウ含有基のうち、アルキルチオ基としては、メチルチオ、エチルチオ等が、アリールチオ基としては、フェニルチオ、メチルフェニルチオ、ナフチルチオ等が、チオエステル基としては、アセチルチオ、ベンゾイルチオ、メチルチオカルボニル、フェニルチオカルボニルなどが、スルホン散エチル、スルホン酸フェニルなどが、スルホンアミド基としては、フェニルスルホンアミド、N-メチルーアートルエンスルホンアミドなどが好ましく挙げられる。

【0041】R¹~R¹²は、これらのうちの2個以上の基、好ましくは隣接する基が互いに連結して脂肪環、芳香環または、窒素原子などの異原子を含む炭化水素環を形成していてもよく、これらの環はさらに置換基を有していてもよい。

【0042】Dは、 $-C(R^7)(R^8)$ -、 $-Si(R^9)(R^{10})$ -、-CO-、 $-SO_2$ -、-SO-、 $-P(O)(OR^{11})$ -のいずれかを示す。 $-C(R^7)(R^8)$ -の好ましい例としては、上記以外にも、メチレン、1.1-シクロへキシレン、ジメチルメチレン、フェニルメチルメチレン、ジフェニルメチレンなどの基が挙げられる。 $-Si(R^9)(R^{10})$ -としては、メチルシリレン、ジメチルシリレン、ジ(-プロピル)シリレン、ジ(-プロピル)シリレン、ジ(-プロピル)シリレン、ジ(-プロピル)シリレン、ジ(- プロロフェニル)シリレン、グ(- アルキルシリレン、ジ(- クロロフェニル)シリレンなどのアルキルシリレン基が挙げられる。また、 $-P(O)(OR^{11})$ -中の-R11の好ましい例としては、メチル基、フェニル基が挙げられる。

【0043】上記式(a)の第1の化合物と結合反応させる金属化合物は次式(e)で表わされる。

 $MXk \cdots (e)$

【0044】式(e)中、Mは周期律表第3~11族の 遷移金属原子 (3族にはランタノイドも含まれる)を示 し、好ましくは3~10族(3族にはランタノイドも含 まれる)の金属原子であり、より好ましくは3~5族お よび8~10族の金属原子であり、特に好ましくは4族 または5族の金属原子である。具体的には、スカンジウ ム、イットリウム、ランタノイド、チタン、ジルコニウ ム、ハフニウム、バナジウム、ニオブ、タンタル、クロ ム、モリブデン、タングステン、マンガン、レニウム、 鉄、ルテニウム、コバルト、ロジウム、ニッケル、パラ ジウムなどであり、好ましくはスカンジウム、ランタノ イド、チタン、ジルコニウム、ハフニウム、バナジウ ム、ニオブ、タンタル、鉄、コバルト、ロジウム、ニッ ケル、パラジウムなどであり、より好ましくは、チタ ン、ジルコニウム、ハフニウム、バナジウム、ニオブ、 タンタル、鉄、コバルト、ロジウムなどであり、特に好 ましくはチタン、ジルコニウム、ハフニウムである。 【0045】kは、Mの価数を満たす数で、具体的には 0~6の整数である。例えば2価金属ではk=2、3価 金属ではk=3、4価金属ではk=4、5価金属ではk= 5、6 価金属ではk = 6である。例えばTi(IV)の

【0046】Xは、水素原子、ハロゲン原子、炭化水素基、酸素含有基、イオウ含有基、窒素含有基、ホウ素含有基、アルミニウム含有基、リン含有基、ハロゲン含有基、ヘテロ環式化合物残基、ケイ素含有基、ゲルマニウム含有基、またはスズ含有基を示す。これらのなかでは、ハロゲン原子が好ましく、とくにC1、Brが好ま

場合k=4、Ti(III)の場合k=3である。

LVI

【0047】ここで、ハロゲン原子としては、フッ素、 塩素、臭素、ヨウ素が挙げられる。炭化水素基として は、前記式(a)のR1~R12で例示したものと同様の ものが挙げられる。具体的には、メチル、エチル、プロ ピル、ブチル、ヘキシル、オクチル、ノニル、ドデシ ル、アイコシルなどのアルキル基;シクロペンチル、シ クロヘキシル、ノルボルニル、アダマンチルなどの炭素 原子数が3~30のシクロアルキル基;ビニル、プロペ ニル、シクロヘキセニルなどのアルケニル基;ベンジ ル、フェニルエチル、フェニルプロピルなどのアリール アルキル基:フェニル、トリル、ジメチルフェニル、ト リメチルフェニル、エチルフェニル、プロピルフェニ ル、ビフェニル、ナフチル、メチルナフチル、アントリ ル、フェナントリルなどのアリール基などが挙げられる が、これらに限定されるものではない。また、これらの 炭化水素基には、ハロゲン化炭化水素、具体的には炭素 原子数1~20の炭化水素基の少なくとも一つの水素が ハロゲンに置換した基も含まれる。これらのうち、炭素 原子数が1~20のものが好ましい。

【0048】また、ヘテロ環式化合物残基としては、前記式(a)の $R^1 \sim R^{12}$ で例示したものと同様のものが挙げられる。

【0049】酸素含有基としては、前記式(a)のR¹ ~R¹²で例示したものと同様のものが挙げられ、具体的には、ヒドロキシ基;メトキシ、エトキシ、プロポキシ、ブトキシなどのアルコシキ基;フェノキシ、メチルフェノキシ、ジメチルフェノキシ、ナフトキシなどのアリーロキシ基;フェニルメトキシ、フェニルエトキシなどのアリールアルコキシ基;アセトキシ基;カルボニル基;エノール基などが挙げられるが、これらに限定されるものではない。

【0050】イオウ含有基としては、前記式(a)のR¹~R¹²で例示したものと同様のものが挙げられ、具体的には、メチルスルフォネート、トリフルオロメタンスルフォネート、アートルエンスルフォネート、ドリメチルベンゼンスルフォネート、トリイソブチルベンゼンスルフォネート、トリイソブチルベンゼンスルフォネート、ペンタフルオロベンゼンスルフォネート、フェニルスルフィネート、ベンジルスルフィネート、フェニルスルフィネート、ベンジルスルフィネート、トリメチルベンゼンスルフィネート、ペンタフルオロベンゼンスルフィネート、ペンタフルオロベンゼンスルフィネート、ペンタフルオロベンゼンスルフィネートなどのスルフィネート基;アルキルチオ基;アリールチオ基などが挙げられるが、これらに限定されるものではない。

【0051】窒素含有基として具体的には、前記式 (a)の $R^1 \sim R^{12}$ で例示したものと同様のものが挙げ られ、具体的には、アミノ基:メチルアミノ、ジメチル アミノ、ジエチルアミノ、ジプロピルアミノ、ジブチル アミノ、ジシクロヘキシルアミノなどのアルキルアミノ 基:フェニルアミノ、ジフェニルアミノ、ジトリルアミ ノ、ジナフチルアミノ、メチルフェニルアミノなどのア リールアミノ基またはアルキルアリールアミノ基などが 挙げられるが、これらに限定されるものではない。

【0052】ホウ素含有基として具体的には、BR (Rは水素、アルキル基、置換基を有してもよいアリール基、ハロゲン原子等を示す)が挙げられる。

【0053】リン含有基として具体的には、トリメチルホスフィン、トリブチルホスフィン、トリシクロへキシルホスフィンなどのトリアルキルホスフィン基;トリフェニルホスフィン、トリトリルホスフィンなどのトリアリールホスフィン基;メチルホスファイト、エチルホスファイト、フェニルホスファイトなどのホスファイト基(ホスフィド基);ホスホン酸基;ホスフィン酸基などが挙げられるが、これらに限定されるものではない。

【0054】ケイ素含有基として具体的には、前記式(a)のR¹~R¹²で例示したものと同様のものが挙げられ、具体的には、フェニルシリル、ジフェニルシリル、トリメチルシリル、トリエチルシリル、トリプロピルシリル、トリシクロヘキシルシリル、トリフェニルシリル、メチルジフェニルシリル、トリトリルシリル、トリナフチルシリルなどの炭化水素置換シリルエーテルなどの炭化水素置換シリルエーテル基:トリメチルシリルメチルなどのケイ素置換アルキル基;トリメチルシリルフェニルなどのケイ素置換アリール基などが挙げられる。

【0055】ゲルマニウム含有基として具体的には、前記式(a)の $R^1 \sim R^{12}$ で例示したものと同様のものが挙げられ、具体的には、前記ケイ素含有基のケイ素をゲルマニウムに置換した基が挙げられる。

【0056】スズ含有基としては、前記式(a)のR¹ ~R¹²で例示したものと同様のものが挙げられ、より具体的には、前記ケイ素含有基のケイ素をスズに置換した基が挙げられる。

【0057】ハロゲン含有基として具体的には、P F_6 、 BF_4 などのフッ素含有基、 $C1O_4$ 、 $SbC1_6$ などの塩素含有基、 IO_4 などのヨウ素含有基が挙げられるが、これらに限定されるものではない。

【0058】アルミニウム含有基として具体的には、A 1R4(Rは水素、アルキル基、置換基を有してもよいア リール基、ハロゲン原子等を示す)が挙げられるが、こ れらに限定されるものではない。

【0059】なお、kが2以上の場合は、Xで示される 複数の基は互いに同一でも異なっていてもよく、またX で示される複数の基は互いに結合して環を形成してもよ い

【0060】前記(e)式のMXkの具体例として、TiCl₃、TiCl₄、TiBr₂、TiBr₄、ZrCl₄、ZrBr₄、HfBr₄、HfCl₄、VCl₄、VC

1₅、VBr₄、VBr₅、NbCl₅、NbBr₅、Ta Cl₅、TaBr₄、Ti(acac)₄、Ti(acac)₃、ZrC l₄のTHF(テトラヒドロフラン)錯体などが挙げられる。

【 0 0 6 1 】前記式(a)で表される化合物と、前記式(e)で表される金属化合物とを反応させて得られる遷移金属化合物では、金属原子と、該金属原子に結合する前記式(a)化合物に由来する配位子とのモル比が1~6であることが好ましい。この反応生成物のモル比は、単離された遷移金属化合物の元素分析およびマススペクトルで分析することにより確認することができる。

【0062】第2の化合物は次式(b)で表される。 【化18】

式(b)中、Aは、結合基一R6を有する酸素原子、イ オウ原子、セレン原子、または結合基ーR5および一R6 を有する窒素原子を示す。これらの中では、結合基-R 6を有する酸素原子、または結合基-R5および-R6を 有する窒素原子が好ましい。Dは、 $-C(R^7)(R^8)$ -、 $-Si(R^9)(R^{10})-, -CO-, -SO_2-, -SO$ -、または-P(O)(OR11)-を示す。これらの中で は、-C(R⁷)(R^S)-、<math>-CO-が好ましい。Dの具体 例は、前記式(a)におけるDと同様の基が挙げられ る。R1~R11は、互いに同一でも異なっていてもよい 水素原子、ハロゲン原子、炭化水素基、ヘテロ環式化合 物残基、酸素含有基、窒素含有基、ホウ素含有基、イオ ウ含有基、リン含有基、ケイ素含有基、ゲルマニウム含 有基、またはスズ含有基を示し、これらのうち2個以上 が互いに連結して環を形成していてもよい。但しR6は 水素原子以外のものであることが望ましい。R1~R11 は、具体的には前記式(a)におけるR1~R12と同様 の基が挙げられる。

【 O O 6 3】前記式(b)で表される化合物と、前記式(e)で表される金属化合物とを反応させて得られる遷移金属化合物では、金属原子と、該金属原子に結合する前記式(b)化合物に由来する配位子とのモル比が1~6であることが好ましい。

【0064】第3の化合物は次式(c)で表わされる。 【化19】

式(c)中、Aは、酸素原子、イオウ原子、セレン原

子、または結合基- R^5 を有する窒素原子を示す。これらの中では、酸素原子、または結合基- R^5 を有する窒素原子が好ましい。Dは、-Si (R^9)(R^{10})ー、-C0ー、-S0 $_2$ ー、-S0ー、または-P(O)(O1 $_1$)ーを示す。これらの中では、-C(R^7)(R^8)ー、-C0 ーが好ましい。D0具体例は、前記式(a)におけるD2 におけるD3 と同様の基が挙げられる。 $B^1 \sim B^{11}$ 4は、互いに同一でも異なっていてもよい水素原子、ハロゲン原子、炭化水素基、ヘテロ環式化合物残基、酸素含有基、室素含有基、ホウ素含有基、イオウ含有基、リン含有基、ケイ素含有基、ゲルマニウム含有基、またはスズ含有基を示し、これらのうち2個以上が互いに連結して環を形成していてもよい。 $B^1 \sim B^{11}$ 1は、具体的には前記式(a)における $B^1 \sim B^{12}$ 2 と同様の基が挙げられる。

【0065】前記式(c)で表される化合物と、前記式(e)で表される金属化合物とを反応させて得られる遷移金属化合物では、金属原子と、該金属原子に結合する前記式(c)化合物に由来する配位子とのモル比が1~3であることが好ましい。

【0066】第4の化合物は、次式(d)で表される。 【化20】

式(d)中、Aは、結合基-R6を有する酸素原子、イ オウ原子、セレン原子、または結合基-R5および-R6 を有する窒素原子を示す。これらの中では、結合基ーR 6を有する酸素原子、または結合基-R5および-R6を 有する窒素原子が好ましい。Dは、-C(R7)(R8)-、 $-Si(R^{9})(R^{10})-, -CO-, -SO_{2}-, -SO$ ー、またはーP(O)(OR¹¹)ーを示す。これらの中で は、 $-C(R^7)(R^8)-$ 、-CO-が好ましい。Dの具体 例は、前記式(a)におけるDと同様の基が挙げられ る。R1~R12は、互いに同一でも異なっていてもよ く、水素原子、ハロゲン原子、炭化水素基、ヘテロ環式 化合物残基、酸素含有基、窒素含有基、ホウ素含有基、 イオウ含有基、リン含有基、ケイ素含有基、ゲルマニウ ム含有基、またはスズ含有基を示し、これらのうち2個 以上が互いに連結して環を形成していてもよい。但しR 6、 R^{12} は水素原子以外のものであることが望ましい。 R¹~R¹²は、具体的には前記式(a)におけるR¹~R 11と同様の基が挙げられる。

【0067】前記式(d)で表される化合物と、前記式(e)で表される金属化合物とを反応させて得られる遷移金属化合物では、金属原子と、該金属原子に結合する前記式(d)化合物に由来する結合子とのモル比が1~6であることが好ましい。

【0068】前記式(a)~(d)で表される配位子と前記式(e)で表される金属化合物との反応方法は、特に制限されるものではないが、例えば、後に記載する様に、(a)~(d)式の化合物をそのまま(e)式の金属化合物と反応させるか、または、(a)~(c)式の化合物では、塩基と反応させてアニオンとした後(e)式の金属化合物と反応させる方法などによって行われる。

【0069】本発明に係る第1の遷移金属化合物は下記式(I)で表される化合物である。

【化21】

$$\begin{array}{c}
R^{12} \\
R^{1} \\
R^{2} \\
R^{3}
\end{array}$$

$$\begin{array}{c}
MXn \\
R^{2} \\
\end{array}$$

上式においてO……Mにおける原子間の……は、配位結合していることを示すが、本発明では、配位結合していないものも含む。

【0070】式(I)中、A、D、 $R^{1}\sim R^{12}$ は、前記式(a)のA、D、 $R^{1}\sim R^{12}$ と同じ意味を表わす。mは、 $1\sim 6$ の整数であり、mが複数のときは、一つの配位子に含まれる $R^{1}\sim R^{12}$ のうちの1個の基と、他の配位子に含まれる $R^{1}\sim R^{12}$ のうちの1個の基とが結合されていてもよく、 R^{1} 同士、 R^{2} 同士、 R^{3} 同士、 R^{4} 同士、 R^{5} 同士、 R^{7} 同士、 R^{8} 同士、 R^{9} 同士、 R^{10} 同士、 R^{11} 同士、 R^{12} 同士は互いに同一でも異なっていてもよく、M、Xは、前記式(e)のM、Xと同じ意味を表わす。nは、Mの価数を満たす数であり、nが 2以上の場合は、Xで示される複数の基は互いに同一でも異なっていてもよく、またXで示される複数の基は互いに結合して環を形成してもよい。

【0071】前記一般式(I)で表される遷移金属化合物において、mが2であり、一つの配位子に含まれる R^{1} ~ R^{12} のうちの1個の基と、他の配位子に含まれる R^{1} ~ R^{12} のうちの1個の基とが連結されている化合物は、たとえば下記一般式(I-a)で表される化合物である。

[0072]

【化22】

【OO73】式 (I-a) 中、A、D、 $R^1 \sim R^{12}$ 、M、Xは、それぞれ前記一般式 (I) のA、D、 $R^1 \sim R^{12}$ 、M、Xと同じであり、A'はAと同一でも異なっていてもよい酸素原子、イオウ原子、セレン原子、または、結合基として $-R^5$ を有する窒素原子を示す。D'はDと同一でも異なっていてもよく、 $-C(R^7')(R^8')-$ 、 $-Si(R^9')(R^{10'})-$ 、-CO-、 $-SO_2-$ 、-SO-、または $-P(O)(OR^{11'})-$ を示す。 $R^{1'} \sim R^{12'}$ はそれぞれ $R^1 \sim R^{12}$ と同じであり、特に好ましくは以下のような基が挙げられる。

【0074】 $R^{1'}\sim R^{12'}$ は、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭化水素基、ヘテロ環式化合物残基、酸素含有基、窒素含有基、ホウ素含有基、イオウ含有基、リン含有基、ケイ素含有基、ゲルマニウム含有基、またはスズ含有基を示し、具体的には前記式(a)の $R^{1}\sim R^{12}$ と同様の原子または基を示す。 $R^{1'}\sim R^{12'}$ のうちの2個以上の基、好ましくは隣接する基は互いに連結して脂肪族環、芳香族環または窒素原子などの異原子を含む炭化水素環を形成していてもよい。但し $R^{12'}$ は水素原子以外のものであることが望ましい。

【0075】Yは、R1~R12から選ばれる少なくとも

1以上の基と、R1'~R12'から選ばれる少なくとも1 以上の基とを結合する結合基または単結合である。結合 基は特に制限されるものではないが、好ましくは主鎖が 原子3個以上、より好ましくは4個以上20個以下、特 に好ましくは4個以上10個以下で構成された構造を有 する。なお、この結合基は置換基を有していてもよい。 【OO76】Yで示される結合基としては、酸素、イオ ウ、炭素、窒素、リン、ケイ素、セレン、スズ、ホウ素 などの中から選ばれる少なくとも1種の元素を含む基が 挙げられ、具体的には-O-、-S-、-Se-などの カルコゲン原子含有基;-NH-、-N(CH₃)₂-、-PHー、一P(CH₃)₂ーなどの窒素またはリン原子含有 基: $-CH_2-$ 、 $-CH_2-CH_2-$ 、 $-C(CH_3)_2-$ な どの炭素原子数が1~20の炭化水素基:ベンゼン、ナ フタレン、アントラセンなどの炭素原子数が6~20の 環状不飽和炭化水素残基;ピリジン、キノリン、チオフ ェン、フランなどのヘテロ原子を含む炭素原子数が3~ 20のヘテロ環式化合物残基: -SiH₂-、-Si(C H_3)₂ーなどのケイ素原子含有基、 $-SnH_2-$ 、-Sn(CH₃)。-などのスズ原子含有基:-BH-、-B(C H₃)ー、-BF-などのホウ素原子含有基など、または 単結合が挙げられる。

【0077】以下に、前記式(1)で表される遷移金属化合物の具体的な例を示すが、これらに限定されるものではない。なお、下記具体例においてMは周期律表第3~11族の遷移金属原子であり、具体例としてはスカンジウム、イットリウム、ランタノイド、チタン、ジルコニウム、ハフニウム、バナジウム、ニオブ、タングステン、マンガン、レニウム、チリブデン、タングステン、マンガン、レニウム、チラジウムなどであり、好ましくはスカンジウム、バナジウム、バラジウムなどであり、より好ましくは、チタンタル、パラジウムなどであり、より好ましくは、チタンタル、鉄、コバルト、ロジウムなどであり、よりがましくは、チタンタル、鉄、コバルト、ロジウムなどであり、特に好ましくはチタン、ジルコニウム、ハフニウムである。

【0078】Xは、C1、Br等のハロゲン、もしくはメチル等のアルキル基を示すが、これらに限定されるものではない。また、Xが複数ある場合は、これらは同じであっても、異なっていてもよい。

【0079】 nは金属Mの価数により決定される。例えば、2個のモノアニオン種が金属に結合している場合、2価金属ではn=0、3価金属ではn=1、4価金属ではn=2、5価金属ではn=3になる。例えば金属Mが Ti(IV)の場合は、n=2となり、Zr(IV)の場合は、n=2となり、Hf(IV)の場合は、n=2となる。【0080】また、化合物の例示中、Meはメチル基、Etはエチル基、i Prはi-プロピル基、t Buはtert -ブチル基、Phは7ェニル基を示す。

【化23】

OCCID: <.IP 411199593A .1 >

【0082】本発明に係る第2の遷移金属化合物は下記式(II)で表される化合物である。

【化25】

$$\begin{array}{c}
R^{1} & A \\
R^{2} & R^{4}
\end{array}$$
. . . (II)

✓ 上式においてA……Mにおける原子間の……は、配位結合していることを示すが、本発明では配位結合していないものも含む。

【0083】式 (II) 中、A、D、 $R^1 \sim R^{11}$ は、前記式(b) のA、D、 $R^1 \sim R^{11}$ と同じ意味を表す。mは、 $1 \sim 6$ の整数であり、mが複数のときは、一つの配位子に含まれる $R^1 \sim R^{11}$ のうちの1 個の基と、他の配位子に含まれる $R^1 \sim R^{11}$ のうちの1 個の基とが結合されていてもよく、 R^1 同士、 R^2 同士、 R^3 同士、 R^4 同士、 R^5 同士、 R^6 同士、 R^6 同士、 R^6 同士、 R^6 同士、 R^6

R・同十、L・同十に互いに同一でも異なっていてもよい

【①①81】M N.L. m記式(e)のM、Xと同じ意味を表示す。n.L. M.h価数を満たす数であり、nが2以上の場合は、N.C. L.される複数の基は互いに同一でも異なっていても1(、またXで示される複数の基は互いに結合して環を形成してもよい。

【0085】11+に 前記式(II)で表される遷移金属化合物の具体的に例を示すが、これらに限定されるものではない。ない。十記具体例においてMは周期律表第3~11放の点によいロニートンタノイド、チタン、ジルコニウム、イートリウム。ランタノイド、チタン、ジルコニウム、ハフニウム、ハナンウム、ニッケル、クロム、モリファン、クンステン、マンガン、レニウム、鉄、ルテニウム。コバルト、ロジウム、ニッケル、パラジウムなどであり、好ましくはスカンジウム、ランタノイド、チャン、シルコニウム、ハフニウム、バナジ

ウム、ニオブ、タンタル、鉄、コバルト、ロジウム、ニッケル、パラジウムなどであり、より好ましくは、チタン、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタル、鉄、コバルト、ロジウムなどであり、特に好ましくはチタン、ジルコニウム、ハフニウムである。【0086】Xは、C1、Br等のハロゲン、もしくはメチル等のアルキル基を示すが、これらに限定されるものではない。また、Xが複数ある場合は、これらは同じであっても、異なっていてもよい。 nは金属Mの価数により決定される。例えば、2個のモノアニオン種が金属に結合している場合、2価金属ではn=0、3価金属ではn=1、4価金属ではn=2、5価金属ではn=3になる。金属がTi(IV)の場合は、n=2となり、Hf(IV)の場合は、n=2となる。

【0087】 【化26】

【0089】式 (III) 中、A、D、R1~R11は、前記 式(c)のA、D、R¹~R¹¹と同じ意味を表す。m

【化27】

は、 $1\sim3$ の整数であり、mが複数のときは、-つの配位子に含まれる $R^1\sim R^{11}$ のうちの1個の基と、他の配位子に含まれる $R^1\sim R^{11}$ のうちの1個の基とが結合されていてもよく、 R^1 同士、 R^2 同士、 R^3 同士、 R^4 同士、 R^5 同士、 R^7 同士、 R^8 同士、 R^9 同士、 R^{10} 同士、 R^{11} 日士は互いに同一でも異なっていてもよい。

【0090】M、Xは、前記式(e)のM、Xと同じ意味を表わし、nは、Mの価数を満たす数であり、nが2以上の場合は、Xで示される複数の基は互いに同一でも異なっていてもよく、またXで示される複数の基は互いに結合して環を形成してもよい。

【0091】以下に、前記式 (III)で表される遷移金属化合物の具体的な例を示すが、これらに限定されるものではない。なお、下記具体例においてMは周期律表第3~11族の遷移金属原子であり、具体例としてはスカンジウム、イットリウム、ランタノイド、チタン、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、マンガン、レニウム、鉄、ルテニウム、コバルト、ロジウム、ニッケル、パラジウムなどであり、好ましくはスカンジウム、ランタノイド、チタン、ジルコニウム、ハフニウム、バ

ナジウム、ニオブ、タンタル、鉄、コバルト、ロジウム、ニッケル、パラジウムなどであり、より好ましくは、チタン、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタル、鉄、コバルト、ロジウムなどであり、特に好ましくはチタン、ジルコニウム、ハフニウムである。

【0092】Xは、C1、Br等のハロゲン、もしくはメチル等のアルキル基を示すが、これらに限定されるものではない。また、Xが複数ある場合は、これらは同じであっても、異なっていてもよい。

【0093】nは、金属Mの価数により決定される。1種の配位子が金属に結合している場合、2価金属ではn=0、3価金属ではn=1、4価金属ではn=2、5価金属ではn=3である。例えば、金属MがTi(IV)ではn=2、Zr(IV)ではn=2、Hf(IV)ではn=2、Co(II)ではn=0、Fe(II)ではn=0、Rh(II)ではn=0、Ni(II)ではn=0、Pd(II)ではn=0となる。

【0094】 【化28】

【0095】本允明に係る第4の遷移金属化合物は下記式(IV)で表される化合物である。

【化29】

上式において〇……M、A……Mにおける二つの原子間の……は、配位結合していることを示すが、本発明では、これらのうちのいずれか一方が配位結合していない場合も含む。なお、配位結合は、NMR、IR、X線結晶構造解析などにより確認することができる。

【0096】式 (IV) 中、A、D、 $R^1 \sim R^{12}$ は、前記式 (d) のA、D、 $R^1 \sim R^{12}$ と同じ意味を表す。m は、 $1 \sim 6$ の整数であり、mが複数のときは、一つの配位子に含まれる $R^1 \sim R^{12}$ のうちの1個の基と、他の配位子に含まれる $R^1 \sim R^{12}$ のうちの1個の基とが結合さ

れていてもよく、 R^1 同士、 R^2 同士、 R^8 同士、 R^6 同士、 R^6 同士、 R^6 同士、 R^6 同士、 R^1 同士、 R^{11} 同士、 R^{12} 同士は互いに同一でも異なっていてもよい。

【①①97】M、Xは、前記式(e)のM、Xと同じ意味を表わす。nは、Mの価数を満たす数であり、nが2以上の場合は、Xで示される複数の基は互いに同一でも異なっていてもよく、またXで示される複数の基は互いに結合して環を形成してもよい。

【0098】以下に、前記式 (IV) で表される遷移金属 化合物の具体的な例を示すが、これらに限定されるものではない。なお、下記具体例においてMは周期律表第3~11族の遷移金属原子であり、具体例としてはスカンジウム、イットリウム、ランタノイド、チタン、ジルコニウム、パフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、マンガン、レニウム、カ、ルテニウム、コバルト、ロジウム、ニッケル、バラジウムなどであり、好ましくはスカンジウム、ランタノイド、チタン、ジルコニウム、パフニウム、バナジ

ウム、ニオブ、タンタル、鉄、コバルト、ロジウム、ニッケル、パラジウムなどであり、より好ましくは、チタン、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタル、鉄、コバルト、ロジウム、ニッケル、パラジウムなどであり、特に好ましくは鉄、コバルト、ロジウム、ニッケル、パラジウムである。

【0099】Xは、C1、Br等のハロゲン、もしくはメチル等のアルキル基を示すが、これらに限定されるものではない。また、Xが複数ある場合は、これらは同じであっても、異なっていても良い。 nは、金属Mの価数により決定される。 1種の配位子が金属に配位している場合、2価金属ではn=2、3価金属ではn=3、4価金属ではn=4、5価金属ではn=5である。例えば、金属MがTi(IV)ではn=4、Zr(IV)ではn=4、Hf(IV)ではn=4、Co(II)ではn=2、Fe(II)ではn=2、Rh(II)ではn=2、Ni(II)ではn=2、Pd(II)ではn=2となる。

[0100]

【化30】

【 O 1 O 1 】以上のような遷移金属化合物(A)は、1種単独または2種以上組み合わせて用いられる。また、本発明のオレフィン重合用触媒には、上記遷移金属化合物(A)とともに他の遷移金属化合物、例えば窒素、酸素、イオウ、ホウ素またはリンなどのヘテロ原子を含有する配位子からなる公知の遷移金属化合物を組み合わせて用いることもできる。以下、組み合わせて用いることのできる他の遷移金属化合物について説明する。

【0102】他の遷移金属化合物

上記遷移金属化合物(A)以外の遷移金属化合物として、具体的には、下記のような遷移金属化合物を用いることができる。ただし、これらに限定されるものではない。

【0103】(a-1) 下記式で表される遷移金属イミド化合物:

【化31】

式中、Mは、周期表第8~10族の遷移金属原子を示し、好ましくはニッケル、パラジウムまたは白金である。

【0104】R²¹~R²⁴は、互いに同一でも異なっていてもよい炭素数1~50の炭化水素基、炭素数1~50のハロゲン化炭化水素基、炭化水素置換シリル基または窒素、酸素、リン、イオウおよびケイ素から選ばれる少なくとも1種の元素を含む置換基で置換された炭化水素基を示す。R²¹~R²⁴で表される基は、これらのうちの2個以上、好ましくは隣接する基が互いに連結して環を形成していてもよい。

【0105】Xは、水素原子、ハロゲン原子、炭素原子数1~20の炭化水素基、炭素原子数1~20のハロゲン化炭化水素基、酸素含有基、イオウ含有基、ケイ素含有基または窒素含有基を示し、qは、0~4の整数である。qが2以上の場合には、Xで示される複数の基は互いに同一であっても異なっていてもよい。

【0106】(a-2) 下記式で表される遷移金属アミド化合物:

【化32】

$$((E_m)A)_n < N > MX_p$$

式中、Mは、周期表第3~6族の遷移金属原子を示し、 チタン、ジルコニウムまたはハフニウムであることが好ましい。

【0107】R'およびR"は、互いに同一でも異なっていてもよく、水素原子、炭素数1~50の炭化水素基、炭素数1~50のハロゲン化炭化水素基、炭化水素置換シリル基、または、窒素、酸素、リン、硫黄およびケイ素から選ばれる少なくとも1種の元素を有する置換基を示す。

【0108】Aは、周期表第13~16族の原子を示し、具体的には、ホウ素、炭素、窒素、酸素、ケイ素、リン、硫黄、ゲルマニウム、セレン、スズなどが挙げられ、炭素またはケイ素であることが好ましい。mは、0~2の整数であり、nは、1~5の整数である。nが2以上の場合には、複数のAは、互いに同一でも異なっていてもよい。

【0109】Eは、炭素、水素、酸素、ハロゲン、窒素、硫黄、リン、ホウ素およびケイ素から選ばれる少な

くとも1種の元素を有する置換基である。mが2の場合、2個のEは、互いに同一でも異なっていてもよく、あるいは互いに連結して環を形成していてもよい。

【0110】Xは、水素原子、ハロゲン原子、炭素原子数が1~20の炭化水素基、炭素原子数が1~20のハロゲン化炭化水素基、酸素含有基、イオウ含有基、ケイ素含有基または窒素含有基を示し、pは、0~4の整数である。pが2以上の場合には、Xで示される複数の基は互いに同一でも異なっていてもよい。これらのうち、Xはハロゲン原子、炭素原子数が1~20の炭化水素基またはスルホネート基であることが好ましい。

【 0 1 1 1 】 (a-3) 下記式で表される遷移金属ジフェノキシ化合物:

【化33】

$$B \left(\begin{array}{c} A' \end{array} \right)_{m=0}^{m=0} MX_{n}$$

式中、Mは周期律表第3~11族の遷移金属原子を示し、1およびmはそれぞれ0または1の整数であり、AおよびA'は炭素原子数1~50の炭化水素基、炭素原子数1~50のハロゲン化炭化水素、または、酸素、硫黄またはケイ素を含有する置換基を持つ炭化水素基、または炭素原子数1~50のハロゲン化炭化水素基であり、AとA'は同一でも異なっていてもよい。

【0112】Bは、炭素原子数 $0\sim50$ の炭化水素基、炭素原子数 $1\sim50$ のハロゲン化炭化水素基、 R^1R^2Z で表される基、酸素または硫黄であり、ここで、 R^1 および R^2 は炭素原子数 $1\sim20$ の炭化水素基または少なくとも1個のヘテロ原子を含む炭素原子数 $1\sim20$ の炭化水素基であり、Zは炭素、窒素、硫黄、リンまたはケイ素を示す。

【0113】nは、Mの価数を満たす数である。Xは、水素原子、ハロゲン原子、炭素原子数1~20の炭化水素基、炭素原子数1~20のハロゲン化炭化水素基、酸素含有基、イオウ含有基、ケイ素含有基または窒素含有基を示し、nが2以上の場合は、Xで示される複数の基は互いに同一でも異なっていてもよく、或いは互いに結合して環を形成していてもよい。

【0114】(a-4) 下記式で表される少なくとも1個の ヘテロ原子を含むシクロペンタジエニル骨格を有する配 位子を含む遷移金属化合物:

【化34】

式中、Mは周期律表3~11族の遷移金属原子を示す。 Xは、周期律表第13、14または15族の原子を示 し、Xのうちの少なくとも1つは炭素以外の元素である。

【0115】Rは、互いに同一でも異なっていてもよい水素原子、ハロゲン原子、炭化水素基、ハロゲン化炭化水素基、炭化水素基置換シリル基、又は窒素、酸素、リン、イオウおよびケイ素から選ばれる少なくとも1種の元素を含む置換基で置換された炭化水素基を示し、2個以上のRが互いに連結して環を形成していてもよい。 a は、0または1であり、bは、 $1\sim4$ の整数であり、bが2以上の場合、各 $[((R)a)_5-X_5]$ 基は同一でも異なっていてもよく、さらにR同士が架橋していてもよい。

【0116】cは、Mの価数を満たす数である。Yは、水素原子、ハロゲン原子、炭素原子数1~20の炭化水素基、炭素原子数1~20のハロゲン化炭化水素基、酸素含有基、イオウ含有基、ケイ素含有基または窒素含有基を示す。cが2以上の場合は、Yで示される複数の基は互いに同一でも異なっていてもよく、また、Yで示される複数の基は互いに結合して環を形成してもよい。

【0117】(a-5) 式 RB(Pz)3MXnで表される遷移金属化合物:式中、Mは周期律表3~11族遷移金属化合物を示し、Rは水素原子、炭素原子数1~20の炭化水素基または炭素原子数1~20のハロゲン化炭化水素基を示し、Pzはピラゾイル基または置換ピラゾイル基を示す。

【0118】nは、Mの価数を満たす数である。Xは、水素原子、ハロゲン原子、炭素原子数1~20の炭化水素基、炭素原子数1~20のハロゲン化炭化水素基、酸素含有基、イオウ含有基、ケイ素含有基または窒素含有基を示し、nが2以上の場合は、Xで示される複数の基は互いに同一でも異なっていてもよく、あるいは互いに結合して環を形成してもよい。

【0119】(a-6) 下記式で示される遷移金属化合物: 【化35】

【0120】式中、 Y^1 および Y^3 は、互いに同一であっても異なっていてもよい周期律表第15族の元素であり、 Y^2 は周期律表第16族の元素である。 $R^{21}\sim R^{28}$ は、互いに同一でも異なっていてもよい水素原子、ハロゲン原子、炭素原子数 $1\sim20$ の炭化水素基、炭素原子数 $1\sim20$ のハロゲン化炭化水素基、酸素含有基、イオウ含有基またはケイ素含有基を示し、これらのうち2個以上が互いに連結して環を形成していてもよい。

【0121】(a-7) 下記式で表される化合物とVIII族の

遷移金属原子との化合物:

【化36】

$$R^{3}$$
 N — $P = N - R^{3}$

式中、 $R^{31} \sim R^{34}$ は、互いに同一でも異なっていてもよい水素原子、ハロゲン原子、炭素原子数 $1 \sim 20$ の炭化水素基または炭素原子数 $1 \sim 20$ のハロゲン化炭化水素基であり、これらのうち2個以上が互いに連結して環を形成していてもよい。

【0122】(a-8) 下記式で示される遷移金属化合物: 【化37】

$$\left(\begin{array}{c}
R^{48} \\
R^{47}
\end{array}\right)_{m} A_{n} \left(\begin{array}{c}
R^{42} \\
R^{43} \\
R^{44}
\end{array}\right)_{R^{45}} R^{46} \\
R^{45} \\
R^{45} \\
R^{45}$$

式中、Mは、周期律表第3~11族の遷移金属原子を示し、mは、0~3の整数であり、nは、0または1の整数であり、pは、1~3の整数であり、qは、Mの価数を満たす数である。

【0123】R⁴¹~R⁴⁸は、互いに同一でも異なっていてもよい水素原子、ハロゲン原子、炭素原子数1~20の炭化水素基、炭素原子数1~20のハロゲン化炭化水素基、酸素含有基、イオウ含有基、ケイ素含有基または窒素含有基を示し、これらのうちの2個以上が互いに連結して環を形成していてもよい。

【0124】Xは、水素原子、ハロゲン原子、炭素原子数1~20の炭化水素基、炭素原子数1~20のハロゲン化炭化水素基、酸素含有基、イオウ含有基、ケイ素含有基または窒素含有基を示し、qが2以上の場合は、Xで示される複数の基は互いに同一でも異なっていてもよく、またはXで示される複数の基は互いに結合して環を形成してもよい。

【0125】Yは、ボラータベンゼン環を架橋する基であり、炭素、ケイ素またはゲルマニウムを示す。Aは、周期律表第14、15または16族の元素を示す。

【0126】(a-9) 前記(a-4)以外のシクロペンタジエニル骨格を有する配位子を含む遷移金属化合物。

(a-10) マグネシウム、チタン、ハロゲンを必須成分と する化合物。

【0127】次に、(B)成分の各化合物について説明する。

(B-1) 有機金属化合物

本発明で用いられる(B-1)有機金属化合物として、具体的には下記のような周期律表第1、2族および第12、13族の有機金属化合物が用いられる。

【O128】(B-1a) 一般式 $R^a{}_m A1(OR^b)_n H_p X_q$ (式中、 R^a および R^b は、互いに同一でも異なっていて

もよい炭素原子数が $1\sim15$ 、好ましくは $1\sim4$ の炭化水素基を示し、Xはハロゲン原子を示し、mは $0\leq m\leq3$ 、nは $0\leq n<3$ 、pは $0\leq p<3$ 、qは $0\leq q<3$ の数であり、かつm+n+p+q=3である。)で表される有機アルミニウム化合物。

【0129】(B-1b) 一般式 M2A1R34

(式中、 M^2 はLi、NaまたはKを示し、 R^a は炭素原子数が $1\sim15$ 、好ましくは $1\sim4$ の炭化水素基を示す。)で表される周期律表第1 族金属とアルミニウムとの錯アルキル化物。

【0130】(B-1c) 一般式 RaRbM3

(式中、 R^a および R^b は、互いに同一でも異なっていてもよい炭素原子数が $1\sim15$ 、好ましくは $1\sim4$ の炭化水素基を示し、 M^a はMg、Z nまたはC dである。)で表される2族または1 2族金属のジアルキル化合物。【0 1 3 1 】前記の(B-1a)に属する有機アルミニウム化合物としては、次のような化合物を例示できる。一般式 R^a a A 1 (O $R^b)$ 3 a a

(式中、RaおよびRbは、互いに同一でも異なっていて もよい炭素原子数が1~15、好ましくは1~4の炭化 水素基を示し、mは、好ましくは1.5≦m≦3の数で ある。)で表される有機アルミニウム化合物、

一般式 RamAlX3-m

(式中、R^aは炭素原子数が $1\sim15$ 、好ましくは $1\sim4$ の炭化水素基を示し、Xはハロゲン原子を示し、mは好ましくは0<m<3である。)で表される有機アルミニウム化合物、

【0132】一般式 Ran AlH3-n

(式中、 R^a は炭素原子数が $1\sim15$ 、好ましくは $1\sim4$ の炭化水素基を示し、mは好ましくは $2\leq m<3$ である。) で表される有機アルミニウム化合物、

一般式 RanAl(ORb), Xan

(式中、R^aおよびR^bは、互いに同一でも異なっていてもよい炭素原子数が $1\sim15$ 、好ましくは $1\sim4$ の炭化水素基を示し、Xはハロゲン原子を示し、mは $0\leq m\leq3$ 、nは $0\leq n<3$ 、qは $0\leq q<3$ の数であり、かつm+n+q=3である。)で表される有機アルミニウム化合物。

【0133】(B-1a)に属する有機アルミニウム化合物として、より具体的には、トリメチルアルミニウム、トリエチルアルミニウム、トリーブチルアルミニウム、トリプロピルアルミニウム、トリペンチルアルミニウム、トリペキシルアルミニウム、トリオクチルアルミニウム、トリデシルアルミニウムなどのトリローアルキルアルミニウム・トリイソプロピルアルミニウム、トリイソブチルアルミニウム、トリをc-ブチルアルミニウム、トリtert-ブチルアルミニウム、トリ2-メチルブチルアルミニウム、トリ3-メチルペンチルアルミニウム、トリ3-メチルペンチルアルミニウム、トリ2-メチルペンチルアルミニウム、トリ2-メチルペンチルアルミニウム、トリ4-メチルペンチルアルミニウム、トリ4-メチルペンチルアルミニウム、トリ2-メチル

ヘキシルアルミニウム、トリ3-メチルヘキシルアルミニ ウム、トリ2-エチルヘキシルアルミニウムなどのトリ分 岐鎖アルキルアルミニウム:

【0135】イソブチルアルミニウムメトキシド、イソブチルアルミニウムエトキシド、イソブチルアルミニウムイソプロポキシドなどのアルキルアルミニウムアルコキシド;ジメチルアルミニウムメトキシド、ジエチルアルミニウムエトキシド、ジブチルアルミニウムブトキシドなどのジアルキルアルミニウムアルコキシド;エチルアルミニウムセスキエトキシド、ブチルアルミニウムセスキアルコキシド;

【0136】R^a2.5A1(OR^b)_{0.5}などで表される平均 組成を有する部分的にアルコキシ化されたアルキルアル ミニウム: ジエチルアルミニウムフェノキシド、ジエチ ルアルミニウム(2,6-ジ-t-ブチル-4-メチルフェノキシ ド)、エチルアルミニウムビス(2,6-ジ-t-ブチル-4-メ チルフェノキシド)、ジイソブチルアルミニウム(2,6-ジ-t- ブチル-4-メチルフェノキシド)、イソブチルア ルミニウムビス (2.6-ジ-t-ブチル-4-メチルフェノキシ ド) などのジアルキルアルミニウムアリーロキシド;ジ メチルアルミニウムクロリド、ジエチルアルミニウムク ロリド、ジブチルアルミニウムクロリド、ジエチルアル ミニウムブロミド、ジイソブチルアルミニウムクロリド などのジアルキルアルミニウムハライド;エチルアルミ ニウムセスキクロリド、ブチルアルミニウムセスキクロ リド、エチルアルミニウムセスキブロミドなどのアルキ ルアルミニウムセスキハライド;エチルアルミニウムジ クロリド、プロピルアルミニウムジクロリド、ブチルア ルミニウムジブロミドなどのアルキルアルミニウムジハ ライドなどの部分的にハロゲン化されたアルキルアルミ

【0137】ジエチルアルミニウムヒドリド、ジブチルアルミニウムヒドリドなどのジアルキルアルミニウムヒドリド、オチルアルミニウムジヒドリド、プロピルアルミニウムジヒドリドなどのアルキルアルミニウムジヒドリドなどその他の部分的に水素化されたアルキルアルミニウム;エチルアルミニウムエトキシクロリド、ブチルアルミニウムブトキシクロリド、エチルアルミニウムエトキシブロミドなどの部分的にアルコキシ化およびハロ

ゲン化されたアルキルアルミニウムなどが挙げられる。 【 0138】また(B-1a)に類似する化合物も使用することができ、たとえば窒素原子を介して2以上のアルミニウム化合物が結合した有機アルミニウム化合物も挙げるられる。このような化合物として、具体的には、(C_2H_5) $_2$ A1N(C_2H_5) $_4$ A1N(C_2H_5) $_5$ 1に属する化合物としては、LiA1(C_2H_5) $_4$ などが挙げられる。

【0140】またその他にも、(B-1)有機金属化合物としては、メチルリチウム、エチルリチウム、プロピルリチウム、ブチルリチウム、メチルマグネシウムブロミド、メチルマグネシウムクロリド、エチルマグネシウムブロミド、エチルマグネシウムクロリド、プロピルマグネシウムブロミド、プロピルマグネシウムクロリド、ブチルマグネシウムブロミド、ブチルマグネシウムクロリド、ジメチルマグネシウム、ジエチルマグネシウム、ジブチルマグネシウム、ブチルエチルマグネシウムなどを使用することもできる。

【0141】また重合系内で上記有機アルミニウム化合物が形成されるような化合物、たとえばハロゲン化アルミニウムとアルキルリチウムとの組合せ、またはハロゲン化アルミニウムとアルキルマグネシウムとの組合せなどを使用することもできる。

(B-1)有機金属化合物のなかでは、有機アルミニウム化合物が好ましい。上記のような(B-1)有機金属化合物は、1種単独でまたは2種以上組み合わせて用いられる。

【0142】(B-2) 有機アルミニウムオキシ化合物 本発明で用いられる(B-2) 有機アルミニウムオキシ化合物は、従来公知のアルミノキサンであってもよく、また特開平2-78687号公報に例示されているようなベンゼン不溶性の有機アルミニウムオキシ化合物であってもよい。

【0143】従来公知のアルミノキサンは、たとえば下 記のような方法によって製造することができ、通常、炭 化水素溶媒の溶液として得られる。

(1)吸着水を含有する化合物または結晶水を含有する 塩類、たとえば塩化マグネシウム水和物、硫酸銅水和 物、硫酸アルミニウム水和物、硫酸ニッケル水和物、塩 化第1セリウム水和物などの炭化水素媒体懸濁液に、ト リアルキルアルミニウムなどの有機アルミニウム化合物 を添加して、吸着水または結晶水と有機アルミニウム化 合物とを反応させる方法。

【0144】(2)ベンゼン、トルエン、エチルエーテル、テトラヒドロフランなどの媒体中で、トリアルキルアルミニウムなどの有機アルミニウム化合物に直接水、氷または水蒸気を作用させる方法。

(3) デカン、ベンゼン、トルエンなどの媒体中でトリアルキルアルミニウムなどの有機アルミニウム化合物

に、ジメチルスズオキシド、ジブチルスズオキシドなど の有機スズ酸化物を反応させる方法。

【0145】なお該アルミノキサンは、少量の有機金属成分を含有してもよい。また回収された上記のアルミノキサンの溶液から溶媒または未反応有機アルミニウム化合物を蒸留して除去した後、溶媒に再溶解またはアルミンキサンの貧溶媒に懸濁させてもよい。

【0146】アルミノキサンを調製する際に用いられる有機アルミニウム化合物として具体的には、前記(B-1a)に属する有機アルミニウム化合物として例示したものと同様の有機アルミニウム化合物が挙げられる。これらのうち、トリアルキルアルミニウム、トリシクロアルキルアルミニウムが好ましく、トリメチルアルミニウムが特に好ましい。上記のような有機アルミニウム化合物は、1種単独でまたは2種以上組み合せて用いられる。

【0147】アルミノキサンの調製に用いられる溶媒としては、ベンゼン、トルエン、キシレン、クメン、シメンなどの芳香族炭化水素、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、ヘキサデカン、オクタデカンなどの脂肪族炭化水素、シクロペンタン、シクロヘキサン、シクロオクタン、メチルシクロペンタンなどの脂環族炭化水素、ガソリン、灯油、軽油などの石油留分または上記芳香族炭化水素、脂肪族炭化水素、脂環族炭化水素のハロゲン化物とりわけ、塩素化物、臭素化物などの炭化水素溶媒が挙げられる。さらにエチルエーテル、テトラヒドロフランなどのエーテル類を用いることもできる。これらの溶媒のうち特に芳香族炭化水素または脂肪族炭化水素が好ましい。

【0148】また本発明で用いられるベンゼン不溶性の有機アルミニウムオキシ化合物は、60℃のベンゼンに溶解するA1成分がA1原子換算で通常10%以下、好ましくは5%以下、特に好ましくは2%以下であるもの、すなわちベンゼンに対して不溶性または難溶性であるものが好ましい。

【0149】本発明で用いられる有機アルミニウムオキシ化合物の例としては、下記一般式(i)で表されるボロンを含んだ有機アルミニウムオキシ化合物が挙げられる。

【化38】

式中、 R^{20} は炭素原子数が $1\sim10$ の炭化水素基を示す。 R^{21} は、互いに同一でも異なっていてもよい水素原子、ハロゲン原子、炭素原子数が $1\sim10$ の炭化水素基を示す。

【0150】前記一般式(i)で表されるボロンを含んだ有機アルミニウムオキシ化合物は、下記一般式(ii)で表されるアルキルボロン酸と、

$$R^{20}-B-(OH)_2 \qquad \cdots \qquad (ii)$$

(式中、R20は上記と同じ基を示す。)

有機アルミニウム化合物とを、不活性ガス雰囲気下に不活性溶媒中で、−80℃〜室温の温度で1分〜24時間反応させることにより製造できる。

【0151】前記一般式(ii)で表されるアルキルボロン酸の具体的なものとしては、メチルボロン酸、エチルボロン酸、イソプロピルボロン酸、n-ブロピルボロン酸、n-ブロピルボロン酸、n-ブキルボロン酸、イソブチルボロン酸、n-ヘキシルボロン酸、シクロヘキシルボロン酸、フェニルボロン酸、3,5-ジフルオロボロン酸、ペンタフルオロフェニルボロン酸等が挙げられる。これらの中では、メチルボロン酸、n-ブチルボロン酸、イソブチルボロン酸、3,5-ジフルオロフェニルボロン酸、ペンタフルオロフェニルボロン酸が好ましい。これらは1種単独でまたは2種以上組み合わせて用いられる。

【0152】このようなアルキルボロン酸と反応させる有機アルミニウム化合物として具体的には、前記(B-1a)に属する有機アルミニウム化合物として例示したものと同様の有機アルミニウム化合物が挙げられる。これらのうち、トリアルキルアルミニウム、トリシクロアルキルアルミニウムが好ましく、特にトリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウムが好ましい。これらは1種単独でまたは2種以上組み合わせて用いられる。

【0153】上記のような (B-2)有機アルミニウムオキシ化合物は、1種単独でまたは2種以上組み合せて用いられる。

【 O 1 5 4 】 (B-3) 遷移金属化合物(A)と反応してイオン対を形成する化合物

本発明で用いられる遷移金属化合物(A)と反応してイオン対を形成する化合物(B-3)(以下、「イオン化イオン性化合物」という。)は、前記遷移金属化合物(A)と反応してイオン対を形成する化合物である。従って、少なくとも前記遷移金属化合物(A)と接触させてイオン対を形成するものは、この化合物に含まれる。このような化合物としては、特開平1-501950号公報、特開平3-179005号公報、特開平3-179005号公報、特開平3-179006号公報、特開平3-207704号公報、USP-5321106号などに記載されたルイス酸、イオン性化合物、ボラン化合物およびカルボラン化合物などが挙げられる。さらに、ヘテロポリ化合物およびイソポリ化合物もあげることができる。

【0155】具体的には、ルイス酸としては、BR (Rは、フッ素、メチル基、トリフルオロメチル基などの置換基を有していてもよいフェニル基またはフッ素である。)で示される化合物が挙げられ、たとえば、トリフルオロボロン、トリフェニルボロン、トリス(4-フルオロフェニル)ボロン、トリス(3.5-ジフルオロフェ

ニル)ボロン、トリス(4-フルオロメチルフェニル)ボロン、トリス(ペンタフルオロフェニル)ボロン、トリス(p-トリル)ボロン、トリス(o-トリル)ボロン、トリス(3,5-ジメチルフェニル)ボロンなどが挙げられる。

【0156】イオン性化合物としては、たとえば下記一般式 (VI) で表される化合物が挙げられる。

【化39】

【0157】式中、R²²としては、H⁺、カルボニウムカチオン、オキソニウムカチオン、アンモニウムカチオン、ホスホニウムカチオン、シクロヘプチルトリエニルカチオン、遷移金属を有するフェロセニウムカチオンなどが挙げられる。R²³~R²⁶は、互いに同一でも異なっていてもよい有機基、好ましくはアリール基または置換アリール基である。

【0158】前記カルボニウムカチオンとして具体的には、トリフェニルカルボニウムカチオン、トリ(メチルフェニル)カルボニウムカチオン、トリ(ジメチルフェニル)カルボニウムカチオンなどの三置換カルボニウムカチオンなどが挙げられる。前記アンモニウムカチオンとして具体的には、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプチルアンモニウムカチオン、トリでルアンモニウムカチオン、トリでルアンモニウムカチオン、トリアンモニウムカチオン;N,N-ジメチルアニリニウムカチオン、N,N-ジエチルアニリニウムカチオンなどのN,N-ジアルキルアニリニウムカチオン;ジ(イソプロピル)アンモニウムカチオン、ジシクロヘキシルアンモニウムカチオンなどのジアルキルアンモニウムカチオンなどが挙げられる

【0159】前記ホスホニウムカチオンとして具体的には、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオンなどのトリアリールホスホニウムカチオンなどが挙げられる。

【0160】R²²としては、カルボニウムカチオン、アンモニウムカチオンなどが好ましく、特にトリフェニルカルボニウムカチオン、N.N-ジメチルアニリニウムカチオン、N.N-ジエチルアニリニウムカチオンが好ましい。【0161】またイオン性化合物として、トリアルキル置換アンモニウム塩、N.N-ジアルキルアニリニウム塩、ジアルキルアンモニウム塩、トリアリールホスフォニウム塩なども挙げられる。

【0162】トリアルキル置換アンモニウム塩として具体的には、たとえばトリエチルアンモニウムテトラ(フェニル)ホウ素、トリプロピルアンモニウムテトラ(フェニル)ホウ素、トリパロピルアンモニウムテトラ(フェニル)ホウ素、トリメチルアンモニウムテトラ(p-トリル)ホウ素、トリメチルアンモニウムテトラ(o-トリル)ホウ素、トリ(n-ブチル)アンモニウムテトラ(の、p-ジメチルフェニル)ホウ素、トリプロピルアンモニウムテトラ(o,p-ジメチルフェニル)ホウ素、トリ(n-ブチル)アンモニウムテトラ(p-トリフルオロメチルフェニル)ホウ素、トリ(n-ブチル)アンモニウムテトラ(アンエニカムテトラ(3,5-ジトリフルオロメチルフェニル)ホウ素、トリ(n-ブチル)アンモニウムテトラ(3,5-ジトリフルオロメチルフェニル)ホウ素、トリ(n-ブチル)アンモニウムテトラ(o-トリル)ホウ素などが挙げられる。

【0163】N,N-ジアルキルアニリニウム塩として具体的には、たとえばN,N-ジメチルアニリニウムテトラ(フェニル)ホウ素、N,N-ジエチルアニリニウムテトラ(フェニル)ホウ素、N,N-2,4,6-ペンタメチルアニリニウムテトラ(フェニル)ホウ素などが挙げられる。ジアルキルアンモニウム塩として具体的には、たとえばジ(1-プロピル)アンモニウムテトラ(ペンタフルオロフェニル)ホウ素、ジシクロヘキシルアンモニウムテトラ(フェニル)ホウ素などが挙げられる。

【O164】さらにイオン性化合物として、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、N.N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、フェロセニウムテトラ(ペンタフルオロフェニル)ボレート、トリフェニルカルベニウムペンタフェニルシクロペンタジエニル錯体、N.N-ジエチルアニリニウムペンタフェニルシクロペンタジエニル錯体、下記式(VII)または(VIII)で表されるホウ素化合物なども挙げられる。

【0165】 【化40】

$$\bigoplus_{\mathsf{H}(\mathsf{Et}_2\mathsf{O})_2} \mathsf{B}^{\bigcirc} (\mathsf{VII})$$

$$\mathsf{CF}_3 \qquad (\mathsf{VII})$$

(式中、E tはエチル基を示す。) 【化41】

$$\begin{array}{ccc}
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& &$$

【 0 1 6 6 】 ボラン化合物として具体的には、たとえば デカボラン (1 4); ビス [トリ (n-ブチル) アンモニ ウム] ノナボレート、ビス [トリ (n-ブチル) アンモニ ウム〕デカボレート、ビス〔トリ (n-ブチル) アンモニウム〕ウンデカボレート、ビス〔トリ (n-ブチル) アンモニウム〕ドデカボレート、ビス〔トリ (n-ブチル) アンモニウム〕デカクロロデカボレート、ビス〔トリ (n-ブチル) アンモニウム〕ドデカクロロドデカボレートなどのアニオンの塩; トリ (n-ブチル) アンモニウム ビス (ドデカハイドライドドデカボレート) コバルト酸塩 (III)、ビス〔トリ (n-ブチル) アンモニウム〕ビス (ドデカハイドライドドデカボレート) ニッケル酸塩 (III)などの金属ボランアニオンの塩などが挙げられる。

【0167】カルボラン化合物として具体的には、たと えば4-カルバノナボラン(14)、1,3-ジカルバノナボ ラン(13)、6,9-ジカルバデカボラン(14)、ドデ カハイドライド-1-フェニル-1,3- ジカルバノナボラ ン、ドデカハイドライド-1-メチル-1,3-ジカルバノナボ ラン、ウンデカハイドライド-1.3-ジメチル-1,3-ジカル バノナボラン、7,8-ジカルバウンデカボラン(13)、 2,7-ジカルバウンデカボラン(13)、ウンデカハイド ライド-7.8-ジメチル-7.8-ジカルバウンデカボラン、ド デカハイドライド-11-メチル-2,7-ジカルバウンデカボ ラン、トリ (n-ブチル) アンモニウム1-カルバデカボレ ート、トリ (n-ブチル) アンモニウム1-カルバウンデカ ボレート、トリ (n-ブチル) アンモニウム1-カルバドデ カボレート、トリ (n-ブチル) アンモニウム1-トリメチ ルシリル-1-カルバデカボレート、トリ (n-ブチル) ア ンモニウムブロモ-1-カルバドデカボレート、トリ(1-ブチル)アンモニウム6-カルバデカボレート(14)、 トリ (n-ブチル) アンモニウム6-カルバデカボレート (12)、トリ (n-ブチル) アンモニウム7-カルバウン デカボレート (13) 、トリ (n-ブチル) アンモニウム 7.8-ジカルバウンデカボレート(12)、トリ(n-ブチ ル)アンモニウム2,9-ジカルバウンデカボレート(1 2)、トリ (n-ブチル) アンモニウムドデカハイドライ ド-8-メチル-7,9-ジカルバウンデカボレート、トリ(n-ブチル) アンモニウムウンデカハイドライド-8- エチル -7,9-ジカルバウンデカボレート、トリ (n-ブチル) ア ンモニウムウンデカハイドライド-8- ブチル-7.9-ジカ ルバウンデカボレート、トリ (n-ブチル) アンモニウム ウンデカハイドライド-8- アリル-7,9-ジカルバウンデ カボレート、トリ (n-ブチル) アンモニウムウンデカハ イドライド-9-トリメチルシリル-7,8-ジカルバウンデカ ボレート、トリ (n-ブチル) アンモニウムウンデカハイ ドライド-4.6-ジブロモ-7-カルバウンデカボレートなど のアニオンの塩;

【0168】トリ (n-ブチル) アンモニウムビス (ノナハイドライド-1,3-ジカルバノナボレート) コバルト酸塩 (III)、トリ (n-ブチル) アンモニウムビス (ウンデカハイドライド-7.8- ジカルバウンデカボレート) 鉄酸塩 (III)、トリ (n-ブチル) アンモニウムビス (ウンデ

カバイトライト・ニューン カルバウンデカボレート) コバ ルト酸塩・111・ 1 リーローブチル) アンモニウムビス。 (ウンテカハイトライト-7.8- ジカルバウンデカボレー ト)ニッケリ配温 コロ・、トリ (n-ブチル) アンモニウ ムビス(ウ) ッケハイトライド-7,8- ジカルバウンデカ ボレート・計劃塩・HD、トリ(n-ブチル)アンモニウ ムビス(ウ) テクパイトライド-7,8- ジカルバウンデカ ボレートティ配唱・HD、トリ(n-ブチル)アンモニウ ムビス (ノナハイ) ッイド-7,8- ジメチル-7,8- ジカル バウンテカホレート・八酸塩(III)、トリ(n-ブチル) アンモニウムビス・イナハイドライド-7,8- ジメチルー 7.8-ジカルハウン・ウオレート) クロム酸塩 (III)、ト リ(n-ブチル・アンモニウムビス(トリブロモオクタハ イドライド-7.8- し ウル パウンデカボレート) コバルト 酸塩(III)、トリユートリ(ロブチル)アンモニウム) ビス (ウンデカハイトライト-7- カルバウンデカボレー ト) クロム酸塩(HD) ビスートリ (n-ブチル) アンモ ニウム) ピス (ウンデカハイドライド-7- カルバウンデ カボレート) マンカ: 配塩(IV)、ビス〔トリ(n-ブチ ル) アンモニウム・ヒス (ウンデカハイドライド-7-カ ルバウンデカボレート:コバルト酸塩(III)、ビス〔ト リ (n-ブチル) アンモニウス I ビス (ウンデカハイドラ イド-7- カルパウンテカボレート)ニッケル酸塩(IV) などの金属カルボランアにオンの塩などが挙げられる。 【0169】ヘテロホリ化合物は、ケイ素、リン、チタ ン。ゲルマニウム、ヒまもしては錫からなる原子と、バ ナジウム、ニオフ、モリブデンおよびタングステンから 選ばれる1種または2種以上の原子からなっている。具 体的には、リンバナジン酸、ゲルマノバナジン酸、ヒ素 バナジン酸、リンニイブ酸、ゲルマノニオブ酸、シリコ ノモリブデン酸、リンモリブデン酸、チタンモリブデン 酸、ゲルマノモリブデン酸、ヒ素モリブデン酸、錫モリ ブデン酸、リンタングステン酸、ゲルマノタングステン 酸、錫タングステン酸、リンモリブドバナジン酸、リン タングストバナジンン酸、ゲルマノタングストバナジン ン酸、リンモリブドタングストバナジン酸、ゲルマノモ リブドタングストハナジン酸、リンモリブドタングステ ン酸、リンモリブドニオブ酸、これらの酸の塩、例えば 周期律表第Ⅰa族またはⅠⅠa族の金属、具体的には、 リチウム、ナトリウム、カリウム、ルビジウム、セシウ ム、ベリリウム、マグネシウム、カルシウム、ストロン チウム、パリウム等との塩、およびトリフェニルエチル

【0170】ヘテロボリ化合物およびイソポリ化合物としては、上記の化合物の中の1種に限らず、2種以上用いることができる。上記のような(B-3)イオン化イオン性化合物は、1種単独でまたは2種以上組み合せて用いられる。

塩等の有機塩、およびイソボリ化合物を使用できるが、

【0171】本発明に係る遷移金属化合物を触媒とする

場合、助触媒成分としてのメチルアルミノキサンなどの 有機アルミニウムオキシ化合物(B-2)とを併用すると、 オレフィン化合物に対して非常に高い重合活性を示す。 また助触媒成分としてトリフェニルカルボニウムテトラ キス (ペンタフルオロフェニル) ボレートなどのイオン 化イオン性化合物(B-3)を用いると、良好な活性で非常 に分子量の高いオレフィン重合体が得られる。

【 O 1 7 2】また、本発明に係るオレフィン重合用触媒は、前記遷移金属化合物(A)、(B-1)有機金属化合物、(B-2)有機アルミニウムオキシ化合物、および(B-3)イオン化イオン性化合物から選ばれる少なくとも1種の化合物(B)とともに、必要に応じて後述するような担体(C)を用いることもできる。

【0173】(C)担体

本発明で用いられる(C)担体は、無機または有機の化合物であって、顆粒状ないしは微粒子状の固体である。 このうち無機化合物としては、多孔質酸化物、無機塩化物、粘土、粘土鉱物またはイオン交換性層状化合物が好ましい。

【0174】多孔質酸化物として、具体的には SiO_2 、 $A1_2O_3$ 、MgO、ZrO、 TiO_2 、 B_2O_3 、CaO、ZnO、BaO、 ThO_2 など、またはこれらを含む複合物または混合物を使用、例えば天然または合成ゼオライト、 SiO_2-MgO 、 $SiO_2-A1_2O_3$ 、 SiO_2-TiO_2 、 $SiO_2-V_2O_5$ 、 $SiO_2-Cr_2O_3$ 、 SiO_2-TiO_2-MgO などを使用することができる。これらのうち、 SiO_2 および/または $A1_2O_3$ を主成分とするものが好ましい。

【O175】なお、上記無機酸化物は、少量の Na_2CO_3 、 K_2CO_3 、 $CaCO_3$ 、 $MgCO_3$ 、 Na_2SO_4 、 $A1_2$ (SO_4) $_3$ 、 $BaSO_4$ 、 KNO_3 、Mg(NO_3) $_2$ 、A1(NO_3) $_3$ 、 Na_2O 、 K_2O 、 Li_2O などの炭酸塩、硫酸塩、硝酸塩、酸化物成分を含有していても差し支ない。

【 0 1 7 6 】 このような多孔質酸化物は、種類および製法によりその性状は異なるが、本発明に好ましく用いられる担体は、粒径が10~300μm、好ましくは20~200μmであって、比表面積が50~1000m²/g、好ましくは100~700m²/gの範囲にあり、細孔容積が0.3~3.0cm³/gの範囲にあることが望ましい。このような担体は、必要に応じて100~1000℃、好ましくは150~700℃で焼成して使用される。

【O177】無機塩化物としては、 $MgC1_2$ 、 $MgBr_2$ 、 $MnC1_2$ 、 $MnBr_2$ 等が用いられる。無機塩化物は、そのまま用いてもよいし、ボールミル、振動ミルにより粉砕した後に用いてもよい。また、アルコールなどの溶媒に無機塩化物を溶解させた後、析出剤によってを微粒子状に析出させたものを用いることもできる。

【0178】本発明で担体として用いられる粘土は、通

この限りではない

常粘土鉱物を主成分として構成される。また、本発明で担体として用いられるイオン交換性層状化合物は、イオン結合などによって構成される面が互いに弱い結合力で平行に積み重なった結晶構造を有する化合物であり、含有するイオンが交換性層状化合物である。また、これらの粘土鉱物、イオン交換性層状化合物としては、天然産のものに限らず、人工合成物を使用することもできる。また、粘土、粘土鉱物、また、六方細密パッキング型、アンチモン型、CdCl2型、CdI2型などの層状の結晶構造を有するイオン結晶性化合物などを例示することができる。

【0179】このような粘土、粘土鉱物としては、カオリン、ベントナイト、木節粘土、ガイロメ粘土、アロフェン、ヒシンゲル石、パイロフィライト、ウンモ群、モンモリロナイト群、バーミキュライト、リョクデイ石群、パリゴルスカイト、カオリナイト、ナクライト、ディッカイト、ハロイサイトなどが挙げられ、イオン交換性層状化合物としては、 $\alpha-Zr(HAsO_4)_2\cdot H_2$ O、 $\alpha-Zr(HPO_4)_2$ 、 $\alpha-Zr(KPO_4)_2\cdot 3$ H $_2$ O、 $\alpha-Ti(HPO_4)_2$ 、 $\alpha-Ti(HAsO_4)_2\cdot H_2$ O、 $\alpha-Sn(HPO_4)_2\cdot H_2$ O、 $r-Zr(HPO_4)_2$ 、 $r-Ti(NH_4PO_4)_2\cdot H_2$ Oなどの多価金属の結晶性酸性塩などが挙げられる。

【0180】このような粘土、粘土鉱物またはイオン交換性層状化合物は、水銀圧入法で測定した半径20オングストローム以上の細孔容積が0.1cc/g以上のものが好ましく、0.3~5cc/gのものが特に好ましい。ここで、細孔容積は、水銀ポロシメーターを用いた水銀圧入法により、細孔半径20~3×10⁴オングストロームの範囲について測定される。半径20オングストローム以上の細孔容積が0.1cc/gより小さいものを担体として用いた場合には、高い重合活性が得られにくい傾向がある。

【0181】本発明で用いられる粘土、粘土鉱物には、化学処理を施すことも好ましい。化学処理としては、表面に付着している不純物を除去する表面処理、粘土の結晶構造に影響を与える処理など、何れも使用できる。化学処理として具体的には、酸処理、アルカリ処理、塩類処理、有機物処理などが挙げられる。酸処理は、表面の不純物を取り除くほか、結晶構造中のA1、Fe、Mgなどの陽イオンを溶出させることによって表面積を増大させる。アルカリ処理では粘土の結晶構造が破壊され、粘土の構造の変化をもたらす。また、塩類処理、有機物処理では、イオン複合体、分子複合体、有機誘導体などを形成し、表面積や層間距離を変えることができる。

【0182】本発明で用いられるイオン交換性層状化合物は、イオン交換性を利用し、層間の交換性イオンを別

の大きな嵩高いイオンと交換することにより、層間が拡大した状態の層状化合物であってもよい。このような嵩高いイオンは、層状構造を支える支柱的な役割を担っており、通常、ピラーと呼ばれる。また、このように層状化合物の層間に別の物質を導入することをインターカレーションという。インターカレーションするゲスト化合物としては、 $TiCl_4$ 、 $ZrCl_4$ などの陽イオン性無機化合物、 $Ti(OR)_4$ 、 $Zr(OR)_4$ 、 $PO(OR)_3$ 、 $B(OR)_3$ などの金属アルコキシド(Rは炭化水素基など)、 $[Al_{13}O_4(OH)_{24}]^{7^+}$ 、 $[Zr_4(OH)_{14}]^{2^+}$ 、 $[Fe_3O(OCOCH_3)_6]^+$ などの金属水酸化物イオンなどが挙げられる。

【0183】これらの化合物は単独でまたは2種以上組み合わせて用いられる。また、これらの化合物をインターカレーションする際に、 $Si(OR)_4$ 、 $Al(OR)_3$ 、 $Ge(OR)_4$ などの金属アルコキシド(Rは炭化水素基など)などを加水分解して得た重合物、 SiO_2 などのコロイド状無機化合物などを共存させることもできる。また、ピラーとしては、上記金属水酸化物イオンを層間にインターカレーションした後に加熱脱水することにより生成する酸化物などが挙げられる。

【0184】本発明で用いられる粘土、粘土鉱物、イオン交換性層状化合物は、そのまま用いてもよく、またボールミル、ふるい分けなどの処理を行った後に用いてもよい。また、新たに水を添加吸着させ、あるいは加熱脱水処理した後に用いてもよい。さらに、単独で用いても、2種以上を組み合わせて用いてもよい。

【0185】これらのうち、好ましいものは粘土または 粘土鉱物であり、特に好ましいものはモンモリロナイト、バーミキュライト、ヘクトライト、テニオライトお よび合成雲母である。

【0186】有機化合物としては、粒径が10~300 μmの範囲にある顆粒状ないしは微粒子状固体を挙げることができる。具体的には、エチレン、プロピレン、1-ブテン、4-メチル-1-ペンテンなどの炭素原子数が2~14のα-オレフィンを主成分として生成される(共)重合体またはビニルシクロヘキサン、スチレンを主成分として生成される(共)をして生成される(共)重合体、およびびそれらの変成体を例示することができる。

【0187】本発明に係るオレフイン重合用触媒は、前記遷移金属化合物(A)、(B-1)有機金属化合物、(B-2)有機アルミニウムオキシ化合物、および(B-3)イオン化イオン性化合物から選ばれる少なくとも1種の化合物(B)、必要に応じて担体(C)と共に、さらに必要に応じて後述するような特定の有機化合物(D)を含むこともできる。

【0188】(D)有機化合物成分

本発明において、(D)有機化合物成分は、必要に応じて、重合性能および生成ポリマーの物性を向上させる目的で使用される。このような有機化合物としては、アル

コール類、フェノール性化合物、カルボン酸、リン化合物およびスルホン酸塩等が挙げられるが、これに限られるものではない。

【0189】アルコール類およびフェノール性化合物としては、通常、 R^{31} – OHで表されるものが使用され(ここで、 R^{31} は炭素原子数 $1\sim 50$ の炭化水素基または炭素原子数 $1\sim 50$ のハロゲン化炭化水素基を示す。)、アルコール類としては、 R^{31} がハロゲン化炭化水素のものが好ましい。また、フェノール性化合物としては、水酸基の α , α – 位が炭素数 $1\sim 20$ の炭化水素で置換されたものが好ましい。

【0191】スルホン酸塩としては、下記一般式(IX)で表されるものが使用される。

【化42】

$$(X_{m-n})-M_m \longrightarrow \left(O - \frac{O}{S} - R^{33}\right)_n \qquad (IX)$$

式中、Mは周期律表 $1\sim14$ 族の元素である。 R^{33} は水素、炭素原子数 $1\sim20$ の炭化水素基または炭素原子数 $1\sim20$ のハロゲン化炭化水素基である。X は水素原子、ハロゲン原子、炭素原子数が $1\sim20$ の炭化水素基、炭素原子数が $1\sim20$ のハロゲン化炭化水素基である。m は $1\sim7$ の整数であり、n は $1\leq n\leq7$ である。【0192】図1 に、本発明に係るオレフイン重合触媒の調製工程を示す。

【0193】次に、オレフイン重合方法について説明する。本発明に係るオレフイン重合方法は、上記の触媒の存在下にオレフインを(共)重合させることからなる。重合の際、各成分の使用法、添加順序は任意に選ばれるが、以下のような方法が例示される。

- (1) 成分(A)と、(B-1)有機金属化合物、(B-2)有機アルミニウムオキシ化合物および(B-3) イオン化イオン性化合物から選ばれる少なくとも1種の成分(B)(以下単に「成分(B)」という。)とを任意の順序で重合器に添加する方法。
- (2) 成分(A)と成分(B)とを予め接触させた触媒を 重合器に添加する方法。
- (3) 成分(A)と成分(B)を予め接触させた触媒成分、および成分(B)を任意の順序で重合器に添加する方法。この場合、成分(B)は、同一でも異なっていてもよい

【0194】(4) 成分(A) を担体(C) に担持した触媒成分、および成分(B) を任意の順序で重合器に添加する方法。

- (5) 成分(A)と成分(B)とを担体(C)に担持した 触媒を重合器に添加する方法。
- (6) 成分(A)と成分(B)とを担体(C)に担持した 触媒成分、および成分(B)を任意の順序で重合器に添 加する方法。この場合、成分(B)は、同一でも異なっ ていてもよい。

【0195】(7) 成分(B)を担体(C)に担持した触

媒成分、および成分(A)を任意の順序で重合器に添加する方法。

- (8) 成分(B)を担体(C)に担持した触媒成分、成分(A)、および成分(B)を任意の順序で重合器に添加する方法。この場合、成分(B)は、同一でも異なっていてもよい。
- (9) 成分(A)を担体(C)に担持した成分、および成分(B)を担体(C)に担持した成分を任意の順序で重合器に添加する方法。

【0196】(10) 成分(A)を担体(C)に担持した成分、成分(B)を担体(C)に担持した成分、および成分(B)を任意の順序で重合器に添加する方法。この場合、成分(B)は、同一でも異なっていてもよい。

- (11) 成分(A)、成分(B)、および有機化合物成分
- (D)を任意の順序で重合器に添加する方法。
- (12) 成分(B)と成分(D)をあらかじめ接触させた成分、および成分(A)を任意の順序で重合器に添加する方法。

【O197】(13) 成分(B)と成分(D)を担体

- (C)に担持した成分、および成分(A)を任意の順序で重合器に添加する方法。
- (14) 成分(A)と成分(B)を予め接触させた触媒成分、および成分(D)を任意の順序で重合器に添加する方法。
- (15) 成分 (A) と成分 (B) を予め接触させた触媒成分、および成分 (B)、成分 (D) を任意め順序で重合器に添加する方法。

【0198】(16) 成分(A)と成分(B)を予め接触させた触媒成分、および成分(B)と成分(D)をあらかじめ接触させた成分を任意の順序で重合器に添加する方法。

(17) 成分(A)を担体(C)に担持した成分、成分(B)、および成分(D)を任意の順序で重合器に添加する方法。

(18) 成分・ス・支担体(C) に担持した成分、および 成分・ド・上見 テ・ローを含らかじめ接触させた成分を 任意が呼ばて重け器に応加する方法。

【() 1 つり】 (1) (() 位分(A) と成分(B) と成分

(I) をすぐ住む。地壁で接触させた触媒成分を重合器 に添加すらも法

(20) 成分・ A・ E 成分(B) と成分(D) を予め接触 させた連程点 テーム L び成分(B) を任意の順序で重合 器に添加する方法 この場合、成分(B) は、同一でも 異なっていてもよい

- (21) 成分・A・と以分(D)と成分(D)を担体
- (C) に担持した神媒を重合器に添加する方法。
- (22) 成分(()・と切分(H))と成分(D)を担体
- (C) に担持した特殊式な、および成分(B)を任意の順序で重合器には 短りる方法。この場合、成分(B) は、同一でも異なっていてもよい

【0200】上記 5世体(C)に成分(A)および成分(B)が担告された固体触媒成分はオレフインが予備重合されていてもよい。

【0201】4元明に信るオレフインの重合方法では、 上記のようなオレフイン重合触媒の存在下に、オレフインを重合または共中合することによりオレフイン重合体 を得る。本元明では、重合は溶解重合、懸濁重合などの 液相重合法または気相重合法のいずれにおいても実施で きる。

【0202】液相重点法において用いられる不活性炭化水素媒体として具体的には、プロパン、ブタン、ペンタン、ヘキサン、ハフクン、オクタン、デカン、ドデカン、灯油などの脂肪放炭化水素;シクロペンタンなどの脂肪族炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭化水素;エチレンクロリド、クロルベンゼン、ジクロロメタンなどのハロゲン化炭化水素またはこれらの混合物などを挙げることができ、オレフイン自身を溶媒として用いることもできる

【0203】上記のようなオレフイン重合用触媒を用いて、オレフインの重合を行うに際して、成分(A)は、反応容積1リットル当り、通常10⁻¹²~10⁻²モル、好ましくは10 ~10 モルとなるような量で用いられる。本発明では、成分(A)を、比較的薄い濃度で用いた場合であっても、高い重合活性でオレフインを重合することができる

【0204】成分(B-1)は、成分(B-1)と、成分(A)中の遷移金属原子(M)とのモル比〔(B-1)/M〕が、通常0.01~100000、好ましくは0.05~50000となるような量で用いられる。成分(B-2)は、成分(B-2)中のアルミニウム原子と、成分(A)中の遷移金属原子(M)とのモル比〔(B-2)/M〕が、通常10~500000、好ましくは20~100000となるような量で用いられる。成分(B-3)は、成分(B-3)と、成

分(A)中の遷移金属原子(M)とのモル比〔(B-3)/ M〕が、通常1~10、好ましくは1~5となるような 量で用いられる。

【0205】成分(D)は、成分(B)に対して、成分(B-1)の場合、モル比〔(D)/(B-1)〕が通常0.01~10、好ましくは0.1~5となるような量で、成分(B-2)の場合、成分(D)と成分(B-2)中のアルミニウム原子とのモル比〔(D)/(B-2)〕が通常0.001~2、好ましくは0.005~1となるような量で、成分(B-3)の場合、モル比〔(D)/(B-3)〕が通常0.01~10、好ましくは0.1~5となるような量で用いられる。

【0206】また、このようなオレフィン重合触媒を用いたオレフィンの重合温度は、通常、-50~200 ℃、好ましくは0~170℃の範囲である。重合圧力は、通常、常圧~100kg/cm²、好ましくは常圧~50kg/cm²の条件であり、重合反応は、回分式、半連続式、連続式のいずれの方法においても行うことができる。さらに重合を反応条件の異なる2段以上に分けて行うことも可能である。

【0207】得られるオレフィン重合体の分子量は、重合系に水素を存在させるか、または重合温度を変化させることによって調節することができる。さらに、使用する成分(B)の違いにより調節することもできる。

【0208】このようなオレフィン重合触媒により重合することができるオレフィンとしては、炭素原子数が2~20の α ーオレフィン、たとえばエチレン、プロピレン、1-ブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、3-メチル-1-ペンテン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-スイコセン;炭素原子数が3~20の環状オレフィン、たとえばシクロペンテン、シクロヘプテン、ノルボルネン、5-メチル-2-ノルボルネン、テトラシクロドデセン、2-メチル1、4.5、8-ジメタノ-1、2、3、4、4a、5、8、8a-オクタヒドロナフタレン;

【0209】極性モノマー、たとえば、アクリル酸、メタクリル酸、フマル酸、無水マレイン酸、イタコン酸、無水イタコン酸、ビシクロ $\{2.2.1\}$ -5-ヘプテン-2.3-ジカルボン酸などの α , β -不飽和カルボン酸、およびこれらのナトリウム塩、カリウム塩、リチウム塩、亜鉛塩、マグネシウム塩、カルシウム塩などの金属塩;アクリル酸メチル、アクリル酸エチル、アクリル酸ローブロピル、アクリル酸イソプロピル、アクリル酸オテル、アクリル酸2-エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ローブチル、メタクリル酸エチル、メタクリル酸ローブチル、メタクリル酸イソプロピル、メタクリル酸ローブチル、メタクリル酸イソプロピル、メタクリル酸ローブチル、メタクリル酸イソプロピル、メタクリル酸ローブチル、メタクリル酸イソプロピル、メタクリル酸ローブチル、メタクリル酸イソプロピル、スクリル酸ローブチル、メタクリル酸ローブチル、メタクリル酸イソブチルなどの α , β -不飽和カルボン酸エステル;酢酸ビニル、プロピオン酸ビニル、カプロン酸ビニル、カプ

リン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、トリフルオロ酢酸ビニルなどのビニルエステル類: アクリル酸グリシジル、メタクリル酸グリシジル、イタコン酸モノグリシジルエステルなどの不飽和グリシジルなどが挙げられる。

【0210】 さらにビニルシクロへキサン、ジエンまたはホリエンなどを用いることもできる。このジエンまたはボリエンとしては、炭素原子数4~30、好ましくは4~20で 1個以上の二重結合を有する環状又は鎖状の化合物である。具体的には、ブタジエン、イソプレン、4-メチル-1.3- ペンタジエン、1,3-ペンタジエン、1,4-ペキサジエン、1,5-ヘキサジエン、1,6-オクタジエン、1,4-オクタジエン、1,5-オクタジエン、1,6-オクタジエン、1,7-オクタジエン、エチリデンノルボルネン、ビニルノルボルネン、ジシクロペンタジエン:7-メチル-1.6-オクタジエン、4-エチリデン-8-メチル-1,7-ノナジエン、5,9-ジメチル-1,4,8-デカトリエン:

【0211】さらに芳香族ビニル化合物、例えばスチレン、ローメチルスチレン、ローメチルスチレン、P-メチルスチレン、ローエチルスチレン、エチレン、エチレン、アーエチルスチレン、エトキシスチレン、エトキシスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルベンジルアセテート、ヒドロキシスチレン、ロークロスチレン、ロークロコスチレン、ジビニルベンゼンなどの官能基含有スチレン誘導体:および3-フェニルプロピレン、4-フェニルプロピレン、α-メチルステレンなどが挙げられる。

【0212】本発明に係るオレフィン重合用触媒は、高い重合活性を示し、また分子量分布の狭い重合体を得ることができる。さらに、2種以上のオレフィンを共重合したときに、組成分布が狭いオレフィン共重合体を得ることができる。

【0213】また、木発明に係るオレフィン重合用触媒は、 α -オレフィンと共役ジエンとの共重合に用いることもできる。ここで用いられる α -オレフィンとしては、上記と同様の炭素原子数が2~30、好ましくは2~20の直鎖状または分岐状の α -オレフィンが挙げられる。なかでもエチレン、プロピレン、1-ブテン、1-ペンテン、1-ペンテン、1-ペンテンが好ましく、エチレン、プロピレンが特に好ましい。これらの α -オレフィンは、1種単独でまたは2種以上組合わせて用いることができる。

【0214】また共役ジエンとしては、たとえば1,3 ーブタジエン、イソプレン、クロロプレン、1,3ーシ クロヘキサジエン、1,3ーペンタジエン、4ーメチル ー1,3ーペンタジエン、1,3ーヘキサジエン、1, 3ーオクタジエンなどの炭素原子数が4~30、好まし くは4~20の脂肪族共役ジエンが挙げられる。これら の共役ジエンは、1種単独でまたは2種以上組合わせて 用いることができる。

【0215】本発明では、さらに、αーオレフィンと非共役ジエンまたはボリエンを共重合させることも出来る。用いられる非共役ジエンまたはポリエンとしては、1、4ーペンタジエン、1、5ーペキサジエン、1、6ーオクタジエン、1、6ーオクタジエン、1、7ーオクタジエン、エチリデンノルボルネン、ビニルノルボルネン、ジシクロペンタジエン、7ーメチルー1、6ーオクタジエン、4ーエチリデンー8ーメチルー1、7ーノナジエン、5、9ージメチルー1、4、8ーデカトリエン等を挙げることができる。

【0216】次に、遷移金属化合物の製造方法について 説明する。

遷移金属化合物の製造方法

本発明に係る遷移金属化合物は、特に限定されることなく、たとえば以下のようにして製造することができる。 【0217】〈配位子前駆体の合成〉A部が酸素原子で、Dが一COーの場合、サリチル酸類またはその誘導体を原料とし、必要に応じてA部に置換基を導入して、電荷を調整することで対応する配位子前駆体を合成することができる。

【0218】<遷移金属化合物の合成>次に、こうして 得られた配位子前駆体を遷移金属M含有化合物と反応さ せることで、対応する遷移金属化合物を合成することが できる。具体的には、合成した配位子前駆体を溶媒に溶 解し、必要に応じて塩基と接触させて、Aが酸素原子で ある場合フェノキサイド塩を、Aがイオウ原子である場 合チオフェノキサイド塩を、AがR6を有する窒素原子 である場合配位子の窒素アニオンの塩を調製した後、金 属ハロゲン化物、金属アルキル化物等の金属化合物と低 温下で混合し、-78℃から室温、もしくは還流条件下 で、約1~48時間撹拌する。溶媒としては、このよう な反応に普通のものを使用できるが、なかでもエーテ ル、テトラヒドロフラン(THF)等の極性溶媒、トル エン等の炭化水素溶媒などが好ましく使用される。ま た、フェノキサイド塩などの配位子の塩を調製する際に 使用する塩基としては、rーブチルリチウム等のリチウム 塩、水素化ナトリウム等のナトリウム塩等の金属塩や、 トリエチルアミン、ピリジン等の有機塩基が好ましい が、この限りではない。

【0219】また、A部がR⁶を有する酸素原子、Dが -CO-でR¹²がHの場合、合成した配位子前駆体を溶 媒に溶解し、必要に応じて塩基と接触させて、カルボキ シレートなど-D-O⁻アニオンの塩を調製した後、金 属ハロゲン化物、金属アルキル化物等の金属化合物と低 温下で混合し、-78℃から室温、もしくは還流条件下 で、約1~48時間撹拌する。溶媒としては、このよう な反応に普通のものを使用できるが、なかでもエーテ ル、テトラヒドロフラン (THF)等の極性溶媒、トルエン等の炭化水素溶媒などが好ましく使用される。また、カルボキシレートなど-D-O-アニオンの塩を調製する際に使用する塩基としては、n-ブチルリチウム等のリチウム塩、水素化ナトリウム等のナトリウム塩等の金属塩や、トリエチルアミン、ピリジン等の有機塩基が好ましいが、この限りではない。

【0220】反応する配位子の数は、遷移金属M含有化合物と配位子前駆体との仕込み比を変えることにより調整することが出来るまた、化合物の性質によっては、フェノキサイド塩などの配位子の塩やカルボキシレートなど-D-O-アニオンの塩の調製を経由せず、配位子前駆体と金属化合物とを直接反応させることで、対応する遷移金属化合物を合成することもできる。たとえば、前記式(a)~(c)の化合物と塩基とを反応させて塩を生成させたのち、遷移金属ハロゲン化物と反応させて調製する。また、前記(a)~(d)式、特に(d)式の化合物を直接遷移金属ハロゲン化物と反応させて調製することもできる。

【0221】さらに、合成した遷移金属化合物中の金属Mを、常法により別の遷移金属と交換することも可能である。また、例えば $\mathbb{R}^1 \sim \mathbb{R}^{12}$ の何れかが水素原子である場合には、合成の任意の段階において、水素原子以外の置換基を導入することができる。

[0222]

【発明の効果】本発明により、オレフィン重合用触媒として有用な新規な遷移金属錯体が提供される。また、本発明に係るオレフィン重合用触媒は、オレフィンに対して高い重合活性を有する。さらに、本発明に係るオレフィンの重合方法によれば、高い重合活性でオレフィン(共)重合体を製造できる。

[0223]

【実施例】以下、実施例に基づいて本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。合成実施例で得られた化合物の構造は、270MHz¹HーNMR(日本電子GSH-270型)、FTーIR(SHIMAΖU FTIR-8200D型)、FD-質量分析(日本電子 SX-102A型)、金属合有量分析(乾式灰化・希硝酸溶解後ICP法により分析、機器:SHIMAΖU ICPS-8000型)、炭素、水素、窒素含有量分析(ヘラウス社 CHNO型)等を用いて決定した。また、極限粘度 [ヵ] は、135℃デカリン中で測定した。

【0224】以下に本発明に係る遷移金属化合物の具体的な合成例を示す。

(合成例1)

<化合物 B-1の合成>充分に乾燥、アルゴン置換した10 0mlの反応器に、3,5-ジーt-ブチルサリチル酸メチル0.7 8g(2.95mmol)とジエチルエーテル15mlを仕込み、-78 ℃に冷却し、撹拌した。これにn-ブチルリチウム2.0ml

(1.54mmol/ml-nへキサン溶液、3.08mmol)を5分かけて滴下し、その後ゆっくりと室温まで昇温し、室温で4時間攪拌を続け、リチウム塩溶液を調製した。この溶液を、-78℃に冷却した四塩化ジルコニウム0.35g(1.50mmol)のTHF15ml溶液に徐々に滴下した。滴下終了後、ゆっくりと室温まで昇温しながら攪拌を続けた。さらに室温で8時間攪拌した後、反応液を減圧濃縮し、析出した固体を塩化メチレン30mlに溶解し、不溶物を除去した。得られたろ液を減圧濃縮し、析出した固体をジエチルエーテルと塩化メチレンの混合溶液で洗浄、さらにヘキサンでリスラリーし、これを減圧乾燥させることにより下記式B-1で示される鮮黄色粉末の化合物を0.70g(収率68%)得た。

【化43】

FD-質量分析: (M+) 688

元素分析 : Zr; 13.3% (13.2) …()内は計算 値

【0225】(合成例2)

<化合物A-2の合成>充分に乾燥、アルゴン置換した10 Omlの反応器に、3,5-ジ-t-ブチルサリチル酸フェニル0. 65g(1.50mmol)とジエチルエーテル15mlを仕込み、-7 8℃に冷却し、攪拌した。これにn-ブチルリチウム1.0ml (1.54mmol/nl-nへキサン溶液、1.54mmol)を5分かけ て滴下し、その後ゆっくりと室温まで昇温し、室温で4 時間攪拌を続け、リチウム塩溶液を調製した。この溶液 を-78℃に冷却した四塩化チタン溶液1.40ml(0.5mmo 1/ml-ヘプタン溶液、0.70mmol) に徐々に滴下した。 滴下終了後、ゆっくりと室温まで昇温しながら撹拌を続 けた。さらに室温で4時間攪拌した後、反応液を減圧濃 縮し、析出した固体を塩化メチレン30mlに溶解し、不溶 物を除去した。得られたろ液を減圧濃縮し、析出した固 体をジエチルエーテルと塩化メチレンの混合溶液で洗 浄、さらにヘキサンでリスラリーし、これを減圧乾燥さ せることにより下記式 A-2で示される茶褐色粉末の化 合物を0.15g(収率28%)得た。

【化44】

FD·質量分析: (M+) 769

元素分析 : Ti;6.0%(6.2) ···()内は計算値

【0226】(合成例3)

<配位子下記式A-3の合成>充分に乾燥、アルゴン置 換した100mlの反応器に、3,5-ジ-t-ブチルサリチル 酸: 0.51g(2.0mmol)とジエチルエーテル15mlを仕込 み、-78℃に冷却し攪拌した。これにn-ブチルリチウム 2. 9ml (1. 54mmol/ml-nヘキサン溶液、4. 5mmol) を5 分かけて滴下し、その後ゆっくりと室温まで昇温し、室 温で4時間攪拌を続け、リチウム塩溶液を調製した。こ の溶液を-78℃に冷却した四塩化チタン溶液4. 0ml (0.5mmol/ml-ヘブタン溶液、2.0mmol) に徐々に滴 下した。滴下終了後、ゆっくりと室温まで昇温しながら 攪拌を続けた。さらに還流下で4時間攪拌した後、反応 液を減圧濃縮し、析出した固体を塩化メチレン30m1 に溶 解し、不溶物を除去した。得られたろ液を減圧濃縮し、 析出した固体をジエチルエーテルーへキサンの混合溶液 で洗浄、さらにヘキサンでリスラリー洗浄し、これを減 圧乾燥させることにより下記式A-3で示される赤茶色 粉末の化合物を0.35g(収率48%)得た。

【化45】

FD·質量分析: (M+) 366

元素分析 : Ti;12.8%(13.2) ···()内は計算値

【0227】(合成例4)

<化合物B-3の合成>充分に乾燥、アルゴン置換した10 Omlの反応器に、3、5-ジーt-ブチルサリチル酸;1、00g (4. Ommol) とテトラヒドロフラン15mlを仕込み、-78 ℃に冷却し、攪拌した。これにn-ブチルリチウム5.5ml (1.54mmol/ml-n-ヘキサン溶液、8.5mmol)を5分か けて滴下し、その後ゆっくりと室温まで昇温し、室温で 4時間攪拌を続け、リチウム塩溶液を調製した。この溶 液を-78℃に冷却し、四塩化ジルコニウム0.93g(4.0 Omnol)を徐々に添加した。滴下終了後、ゆっくりと室 温まで昇温しながら撹拌を続けた。さらに室温で8時間 攪拌した後、反応液を減圧濃縮し、析出した固体を塩化 メチレン30mlに溶解し、不溶物を除去した。得られたろ 液を減圧濃解し、析出した固体をジエチルエーテルと塩 化メチレンの混合溶液で再結晶、さらにヘキサンでリス ラリー洗浄し、これを減圧乾燥させることにより下記式 B-3で示される黄白色粉末の化合物を1.09g(収率66 %)得た。

【化46】

FD-質量分析: (M') 410

元素分析 : Zr; 21.8% (22.2) ···()内は 計算値

【0228】(合成例5)トルエン中、0℃で3.5-ジ-t-ブチルサリチル酸メチル:1.0g(3.78mno1)にフェニルマグネシウムプロミド(10mno1)を作用させることにより、対応する配位子下記式L4が得られた。(収率39%)

ここで得られた配位子 L4:0.58g(1.49mmol)を用い、合成例3と同様の方法で、下記式A-4で示される 緑褐色の粉末を0.08g(収率11%)得た。

【化47】

【化48】

FD-質量分析: (M+) 504

元素分析 : Ti; 9.4% (9.5) ···()内は計算値

【 O 2 2 9 】 (合成例 6) 1mol%のNi (acac)₂ 触媒存在下、THF中0℃でアントラニル: 2. Og (16. 8mmol) にフェニル亜鉛クロリド (34mmol) を作用させることにより、対応する配位子下記式L5が得られた。 (収率20%)

【化49】

ここで得られた配位子 L5:0.80g(2.28mmol)と四塩 化バナジウム0.46g(2.40mmol)を用い、合成例3と同 様の方法で下記式C-5で示される緑黒色の粉末を0.0 5g(収率5%)得た。

【化50】

FD-質量分析: (Mt) 471

元素分析 : V;10.7% (10.8) …()内 は計算値

【 O 2 3 O 】 (実施例 1) 充分に窒素置換した内容積50 Oml のガラス製オートクレーブにトルエン250mlを装入し、エチレン100リットル/hrで液相および気相をエチレンで飽和させる。その後、メチルアルミノキサン(MA II) をアルミニウム原子換算で1. 1875mmol、引き続き、台成例 1 で得られた化合物B-1を0. 005mmol加え重合を開始する。常圧のエチレンガス雰囲気下、25℃で30分間反応させた後、少量のイソブタノールを添加することにより重合を停止した。重合終了後、反応物を大量のメタノールに投入してホリマーを全量析出させた後、塩酸を加えてグラスフィルターで沪過した。ポリマーを80で、10時間で減圧乾燥した後、ポリエチレンを0. 02g得た。ジルコニウム1molあたりの重合活性は8kg/mol·hであった

【 O 2 3 1 】 (実施例 2) 合成例 2 得られた化合物 A - 2 を用い、実施例 1 と同様の条件で重合反応を行った結果、ボリエチレンを 0.02 8 得た。チタン 1 mol あたりの重合活性は 8 kg mol - hであった。

【0232】(実施例3)合成例3で得られた化合物A 3を用い、実施例1と同様の条件で重合反応を行った 結果、ボリエチレンを0. 19s得た。チタン1mol あたりの 重合活性は76kg/mol·hであり、得られたボリエチレン の極限粘度 [η] は6. 9dl/gであった。

【0233】(実施例4)合成例4で得られた化合物Bー3を用い、実施例1と同様の条件で重合反応を行った結果、ポリエチレンを0.12g得た。ジルコニウム1mo1あたりの重合活性は $48kg/mol\cdot h$ であり、得られたポリエチレンの極限粘度 [η]は12.5d1/gであった。

【0234】(実施例5)合成例5で得られた化合物A-4を用い、実施例1と同様の条件で重合反応を行った結果、ポリエチレンを0.04g得た。チタン1molあたりの重合活性は16kg/mol·hであった。

【0235】(実施例6)充分に窒素置換した内容積50 Omlのガラス製オートクレープにトルエン250mlを装入し、液相および気相をエチレン100リットル/hrで飽和させる。その後、トリイソブチルアルミニウム(TIBA)を0.25mmol、引き続き合成例6で得られた化合物C-5を0.005mmol、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート(TrB)を0.006mmol加え重合を開始する。常圧のエチレンガス雰囲気下、25℃で1時間反応させた後、少量のイソブタノールを添加することにより重合を停止する。重合終了後、反応物を大量のメタノールに投入してボリマーを全量析出させた後、塩酸を加えてグラスフィルターで沪過した。ポリマーを80℃、10時間で減圧乾燥すると、ポリエチレンが得られた。

【図面の簡単な説明】

【図1】本発明に係るオレフィン重合用触媒の調製工程を示す説明図である。

【図1】 .

(A) 遷移金属化合物

M:周期律表第3~11 族の遷移金属原子

 $m: 1 \sim 6$

 $A : -O - -S - -S e - -N(R^5) -$

D:-C(R⁷)(R⁸)-、-Si(R⁹)(R¹⁰)-等

R¹~R¹²:水素、炭化水素基等

n:Mの価数を満たす数

X:ハロゲン、炭化水素基等

(B)

有機金属化合物

オレフィン

有機アルミニウムオキシ化合物

遷移金属化合物と反応して イオン対を形成する化合物

(C) 第3成分

(担体)

フロントページの続き

(51) Int. Cl. 6

識別記号

FΙ

COSF 4/68

COSF 4/68

// CO8F 10/00

10/00

THIS PAGE BLANK (USPTO)