Unifala Unifala Unifala Unifala Unifala Universidade Federal de Alfenas Universidade Federal d

Matemática atuarial

Seguros Aula 9

Danilo Machado Pires

<u>danilo.pires@unifal-mg.edu.br</u>

Leonardo Henrique Costa

<u>Leonardo.costa@unifal-mg.edu.br</u>

SEGUROS DIFERIDOS

- > Produtos atuariais.
 - > Seguros de vida vitalício, seguro de vida temporário, seguro dotal puro e seguro dotal.
- Em alguns casos o segurado pode querer que a vigência se inicie alguns anos após a assinatura do contrato de seguro.
- ➤ O valor que a seguradora deverá gastar, em média, com o segurado cujo produto começará a vigorar daqui a "m" anos.

- Pensemos, inicialmente, no seguro de **vida vitalício** que paga 1 *u.m.* Ao final do momento de morte do segurado.
- > Porém, esse seguro de vida começará a vigorar daqui a "m" anos.

$$b = \begin{cases} 0 \; ; \; t = 0, 1, 2, ..., m \\ 1 \; ; \; t = m, m + 1, m + 2, ... \end{cases}$$

$$Z_T = \begin{cases} v^{T+1}; \ t = m, m+1, m+2, \dots \\ 0 \ c.c. \end{cases}$$

 \triangleright Caso em que T é discreto:

$$b = \begin{cases} 0 ; & t < m \\ 1; & t \ge m \end{cases}$$

$$Z_T = \begin{cases} v^{T+1} & ; T \ge m \\ 0 & c.c. \end{cases}$$

$$m_{i}A_{x} = E(Z_{T}) = \sum_{j=m}^{\omega-x-m} v^{j+1}{}_{j}p_{x}q_{x+j}$$

 \triangleright Fazendo j = m + t, tem-se:

$${}_{m|A_{x}} = \sum_{j=m}^{\omega - x - m} v^{j+1} {}_{j} p_{x} q_{x+j} = \sum_{t=0}^{\omega - x - m} v^{m+t+1} \underbrace{}_{m+t} p_{x} q_{x+m+t}$$

Lembrando que
$$\underbrace{m+tp_x} = \underbrace{mp_x \times_t p_{x+m}}$$
, então

$$_{m|A_{x}} = \sum_{t=0}^{\omega-x-m} v^{m+t+1} m p_{x} t p_{x+m} q_{x+m+t}$$

$$a_{m|A_{x}} = v^{m} {}_{m} p_{x} \sum_{t=0}^{\omega - x - m} v^{t+1} {}_{t} p_{(x+m)} q_{(x+m)+t}$$

$$_{m|}A_{x}=A_{x:\overline{m}|}{}_{1}A_{x+m}$$

Seguro de vida **vitalício** para uma pessoa de idade x + m

É, na verdade, o seguro de vida vitalício trazido a valor presente atuarial a data de hoje.

$$_{m|}A_{x} = _{m}E_{x}A_{x+m}$$

Outra forma de cálculo do mesmo seguro seria:

Demonstração:

$$A_x = \sum_{t=0}^{\infty} v^{t+1} {}_t p_x q_{x+t}$$

$$A_{x} = \sum_{t=0}^{m-1} v^{t+1} {}_{t} p_{x} q_{x+t} + \sum_{t=m}^{\omega-x-m} v^{t+1} {}_{t} p_{x} q_{x+t}$$

$$A_x = A_{x^1:\overline{m|}} + {}_{m|}A_x$$

$$_{m|}A_{x}=A_{x}-A_{x^{1}:\overline{m|}}$$

Unifal[®] Unifal[®] Unifal[®] Unifal[®] Un

> EXEMPLO 1

Pensemos no caso de uma pessoa (mulher) de 25 anos que deseja fazer um seguro vitalício, com 3 anos de carência. Ou seja, caso esse segurado faleça após 28 anos, o beneficiário receberá uma quantia de 1.u.m. Considere a taxa de juros de 4% ao ano e as seguintes probabilidade de morte e então calcule o prêmio puro:

Idade	q_X	p_{x}	l_x
25	0,00037	0,99963	100000
26	0,00039	0,99961	99963
27	0,00040	0,99960	99924,01
28	0,00042	0,99958	99884,04
29	0,00044	0,99956	99842,09
30	0,00045	0,99955	99798,16
31	0,00046	0,99954	99753,25
32	0,00048	0,99952	99707,37
33	0,00049	0,99951	99659,51
34	0,00050	0,99950	99610,67
35	0,00052	0,99948	99560,87

> EXEMPLO 1

Pensemos no caso de uma pessoa (mulher) de 25 anos que deseja fazer um seguro vitalício, com 3 anos de carência. Ou seja, caso esse segurado faleça após 28 anos, o beneficiário receberá uma quantia de 1.u.m. Considere uma taxa de juros de 4% ao ano e as seguintes probabilidade de morte e calcule o prêmio puro:

pu	ro:			
Idade	q_X	p_x	l_x	
25	0,00037	0,99963	100000	$A_{25} = 0,1079694$
26	0,00039	0,99961	99963	
27	0,00040	0,99960	99924,01	$_{3 }A_{25} = A_{25} - A_{25^{1}:\overline{3 }}$
28	0,00042	0,99958	99884,04	2
29	0,00044	0,99956	99842,09	$A_{25^{1}:\overline{3 }} = \sum v^{t+1} {}_{t}p_{25}q_{25+t} = 0,00107$
30	0,00045	0,99955	99798,16	$\overline{t=0}$
31	0,00046	0,99954	99753,25	$_{3 }A_{25} = 0.1079694 - 0.0010715$
32	0,00048	0,99952	99707,37	4 - 0.106079
33	0,00049	0,99951	99659,51	$_{3 }A_{25} = 0.106978$
34	0,00050	0,99950	99610,67	
35	0,00052	0,99948	99560,87	$_{3 }A_{25} = v^3 _{3}p_{25}A_{28}$

 \triangleright Para o caso em que T é discreto:

$$b = \begin{cases} 0 & ; t < m \\ 1 & ; t \ge m \end{cases}$$

$$Z_T = \begin{cases} v^{T+1} & ; T \ge m \\ 0 & c.c. \end{cases}$$

$$_{m|A_{\mathcal{X}}} = \sum_{t=m}^{\omega-x-m} v^{t+1} \,_{t} p_{x} q_{x+t}$$

$$_{m|}A_{x}=v^{m}_{m}p_{x}A_{x+m}$$

$$_{m|}A_{x}=A_{x}-A_{x^{1}}\overline{m|}$$

Para um seguro de uma pessoa de x anos, seja diferido por "m" anos como será o valor presente atuarial caso o seguro também seja:

- a) Temporário por "n" anos.
- b) Seguro dotal puro.

Dado que b = 1 e T_x discreto.

Unifala Unifala Unifala Unifala Unifala Unifala Universidade Federal de Alfenas Universidade F

Para um seguro de uma pessoa de x anos, seja diferido por "m" anos como será o valor presente atuarial caso o seguro também seja:

a) Temporário por "n" anos.

Dado que b = 1 e T discreto.

Resp.:

O seguro temporário por n para uma pessoa de x anos (caso discreto)

$$A_{x^{1}:\overline{n|}} = \sum_{t=0}^{n-1} v^{t+1} \,_{t} p_{x} q_{x+t}$$

Então:

> Temporário

$$_{m|A_{x^{1}:\overline{n|}}} = \sum_{t=m}^{(m+n)-1} v^{t+1} {}_{t}p_{x}q_{x+t}$$

Fazendo t = m + l, então:

$$m|A_{x^{1}:\overline{n|}} = \sum_{l=0}^{n-1} v^{m+l+1} {}_{(m+l)} p_{x} q_{x+(m+l)} = v^{m} \sum_{l=0}^{n-1} v^{l+1} {}_{(m+l)} p_{x} q_{x+(m+l)}$$

$$a_{m|A_{x^{1}:\overline{n|}}} = v^{m} \sum_{l=0}^{n-1} v^{l+1} \, _{m} p_{x} \, _{l} p_{x+m} \, q_{x+m+l}$$

$$m_l A_{x^1:\overline{n_l}} = v^m \, {}_{m} p_x \sum_{l=0}^{n-1} v^{l+1} \, {}_{l} p_{(x+m)} \, q_{(x+m)+l}$$

$$_{m|}A_{x^{1}:\overline{n|}}=v^{m}_{m}p_{x}A_{x^{1}+m:\overline{n|}}$$

$$_{m|A_{\mathcal{X}^1:\overline{n|}}} = A_{\mathcal{X}^1:\overline{m+n|}} - A_{\mathcal{X}^1:\overline{m|}}$$

Para um seguro de uma pessoa de x anos, seja diferido por "m" anos como será o valor presente atuarial caso o seguro também seja:

b) Seguro dotal puro.

Dado que b = 1 e T discreto.

Resp.:

O dotal puro por n para uma pessoa de x anos (caso discreto).

$$A_{x:\overline{n}|^1} = v^n {}_n p_x$$

> Dotal Puro

SEGUROS Vida temporários DIFERIDOS

$$Z_T = \begin{cases} v^{T+1} & ; T \ge m \\ 0 & c.c. \end{cases}$$

$$Z_T = \begin{cases} v^{T+1} \; ; & m \le T < (m+n) \\ 0 \; c.c. \end{cases}$$

$$_{m|}A_{x} = \sum_{t=m}^{\omega-x-m} v^{t+1} {}_{t}p_{x}q_{x+t}$$

$$_{m|}A_{x}=v^{m}_{m}p_{x}A_{x+m}$$

$$_{m|}A_{x}=A_{x}-A_{x^{1}:\overline{m|}}$$

$$a_{m|A_{x^{1}:\overline{n}|}} = \sum_{t=m}^{m+n-1} v^{t+1} {}_{t}p_{x}q_{x+t}$$

$$_{m|A_{x^1:\overline{n|}}} = v^m \,_{m} p_x A_{x^1+m:\overline{n|}}$$

$$_{m|A_{\mathcal{X}^{1}}:\overline{n|}}=A_{\mathcal{X}^{1}:\overline{m+n|}}-A_{\mathcal{X}^{1}:\overline{m|}}$$

SEGUROS Vida DIFERIDOS

> EXEMPLO 2

Seja x=25 que deseja fazer um seguro com benefício unitário que tenha cobertura de 5 anos, com 3 anos de carência. Considere a taxa de juros de 4% ao ano e a Tábua AT-49 e então calcule o prêmio puro único.

Idade	q_X
25	0,00077
26	0,00081
27	0,00085
28	0,00090
29	0,00095
30	0,00100
31	0,00107
32	0,00114
33	0,00121
34	0,00130
35	0,00139

Logo queremos calcular $_{3|}A_{25^{1}:\overline{5|}}$

$$Z_T = \begin{cases} \left(\frac{1}{1+0.04}\right)^{T+1} & 3 \le T < 8\\ 0 & c.c. \end{cases}$$

Idade	$q_X =_1 q_X$	$_1p_x=11q_x$	$_1l_x = \frac{l_{x+1}}{m}$	(m+n)-1
Universida		anno Universidade Per	p_{χ}	
25	0,00077	0,99923	100000	t=m
26	0,00081	0,99919	99923	$(3+5)^{-1}$ (1) $^{t+1}$
27	0,00085	0,99915	99842	$_{3 }A_{25^{1}:\bar{5} } = \sum_{t=3}^{(3+5)-1} \left(\frac{1}{1,04}\right)^{t+1} {}_{t}p_{25}q_{25+t}$
28	0,00090	0,99910	99757	$\overline{t=3}$
29	0,00095	0,99905	99667	
30	0,00100	0,99900	99572	$m A_{x^1:\overline{n} } = v^m m p_x A_{x^1+m:\overline{n} }$
31	0,00107	0,99893	99472	$m_1 \times m_1 \qquad mex \times mm_1$
32	0,00114	0,99886	99365	(5)-1 $t+1$
33	0,00121	0,99879	99251	$_{3 }A_{25^{1}:\overline{5} } = \left(\frac{1}{1,04}\right)^{3} _{3}p_{25} \sum_{t=0}^{(5)-1} \left(\frac{1}{1,04}\right)^{t+1} _{t}p_{28}q_{28+1}$
34	0,00130	0,99870	99131	$(1,04)$ $\underset{t=0}{\overset{\sim}{\smile}}$ $(1,04)$
35	0,00139	0,99861	99002	

$$Z_{T} = v^{T+1}; T \ge 0$$

$$A_{X} = \sum_{t=0}^{\infty} Z_{T} t p_{X} q_{X+t}$$

$$Z_{T} = \begin{cases} v^{T+1}; T = 0,1,2,...,n-1 \\ v^{T+1}; T = n,n+1,... \\ A_{X^{1},\overline{n}|} = \sum_{t=0}^{n-1} Z_{T} t p_{X} q_{X+t} \end{cases}$$

$$Z_{T} = \begin{cases} v^{T+1}; T = 0,1,2,...,n-1 \\ v^{T+1}; T = n,n+1,... \\ A_{X^{n}|} = \sum_{t=0}^{n-1} Z_{T} t p_{X} q_{X+t} \end{cases}$$

$$Z_{T} = \begin{cases} v^{T+1}; T = 0,1,...,n-1 \\ v^{n} : T = n,n+1,... \end{cases}$$

$$A_{X^{n}|} = A_{X^{1},\overline{n}|} + A_{X^{n}|}$$

$$Z_{T} = v^{T+1}; T \ge m$$

$$m|A_{X} = \sum_{t=m}^{\infty} Z_{T} t p_{X} q_{X+t}$$

$$m|A_{X} = v^{m} m p_{X} A_{X+m}$$

$$m|A_{X} = v^{m} m p_{X} A_{X+m}$$

$$m|A_{X^{1},\overline{n}|} = \sum_{t=m}^{m+n-1} Z_{T} t p_{X} q_{X+t}$$

$$m|A_{X^{1},\overline{n}|} = v^{m} m p_{X} A_{X+m}$$

$$m|A_{X^{1},\overline{n}|} = v^{m} m p_{X} A_{X^{1},m+n}$$

$$m|A_{X^{1},\overline{n}|} = v^{m} m p_{X} A_{X^{1},m+n}$$

$$m|A_{X^{1},\overline{n}|} = v^{m} m p_{X} A_{X^{1},m+n}$$

$$m|A_{X^{1},\overline{n}|} = A_{X^{1},\overline{n}+1} - A_{X^{1},\overline{n}+1}$$

$$Z_{T} = \begin{cases} e^{-\delta n}; T \ge n \\ 0; T < n \end{cases}$$

$$Z_{T} = \begin{cases} e^{-\delta n}; T \ge n \\ A_{X,\overline{n}} = Z_{T} n p_{X} \end{cases}$$

$$Z_{T} = \begin{cases} e^{-\delta n}; T \ge n \\ 0; T < n \end{cases}$$

$$Z_{T} = \begin{cases} e^{-\delta n}; T \ge n \\ 0; T < n \end{cases}$$

$$Z_{T} = \begin{cases} e^{-\delta n}; T \ge n \\ A_{X,\overline{n}} = Z_{T} n p_{X} \end{cases}$$

SEGUROS Vida DIFERIDOS – pago no momento da morte

> O valor presente atuarial vitalício diferido é :

$$b = \begin{cases} 0 ; & t < m \\ 1; & t \ge m \end{cases} \qquad Z_T = e^{-\delta T}; & T \ge m$$
$$m|\bar{A}_x = \int_m^\infty e^{-\delta t} f_{T_x}(t) dt$$

> O valor presente atuarial temporário diferido é

$$b = \begin{cases} 0 ; t < m \\ 1 ; m \le t \le m+n \end{cases} \quad Z_T = e^{-\delta T} ; m \le T \le m+n$$

$$m|\bar{A}_{\chi^1:\bar{n}|} = \int_m^{m+n} e^{-\delta t} f_{T_{\chi}}(t) dt$$

SEGURO DE VIDA INTEIRO

> Exemplo 3

Determine o valor do prêmio puro único a ser cobrado por um segurado que deseja contratar um seguro que pague $1\,u.m.$ no momento da morte, após 10 anos de carência. Considere que o tempo de vida adicional desse segurado tenha a seguinte função de densidade.

$$f_T(t) = 0.04e^{-0.04t}, t > 0$$

Considere também $\delta = 0.06$.

> Exemplo 3

$$_{10|}\bar{A}_{x}=\int_{10}^{\infty}e^{-0.06t}0.04e^{-0.04T}dt$$

$$_{10|}\bar{A}_{x} = \int_{10}^{\infty} e^{-0.06t} 0.04e^{-0.04t} dt = \int_{10}^{\infty} 0.04e^{-0.1t} dt$$

$$_{10|}\bar{A}_{x} = \lim_{t \to \infty} \left(-\frac{0.04}{0.1} e^{-0.1t} \right) + \frac{0.04}{0.1} e^{-0.1(10)}$$

$$_{10}|\bar{A}_{x}=0,147$$

Unifai Unifai Unifai Unifai Unifai Unifai Unifai Universidade Federal de Alfenas Universidade

Matemática atuarial

Seguros Aula 10

Danilo Machado Pires

<u>danilo.pires@unifal-mg.edu.br</u>

Leonardo Henrique Costa

<u>Leonardo.costa@unifal-mg.edu.br</u>

Pensemos no caso de uma pessoa de 25 anos que deseja fazer um seguro temporário por 5 anos, com 3 anos de carência. Ou seja, caso esse segurado faleça entre seus 28 e 33 anos, o beneficiário receberá uma quantia de 1.u.m. Considere uma taxa de juros de 4% ao ano e as seguintes probabilidade de morte e calcule o prêmio puro:

			(5+3)-1	
Idade	q_X		$\sum_{j=1}^{n} j+$	$^{-1}{}_{j}p_{25}q_{25+j}$
25	0,00077	$ _{3 }A_{25^{1}:\bar{5}}$		jP25Y25+j
26	0,00081		<i>j</i> =3	
27	0,00085	$_{21}A$	$_{25^{1}:\overline{5} } = v^{3} _{3} p_{2}$	5A201.FI
28	0,00090	3 ,	25 :5 5 5 2	328 :5
29	0,00095	$_{3 }A_{25}$	$A_{1:\overline{5} } = A_{25^{1}:\overline{5+3} }$	$\bar{1} - A_{25^{1}.\bar{21}}$
30	0,00100	51 25	.5 25 .515	25 .5
31	0,00107			
32	0,00114			
33	0,00121			
34	0,00130			
35	0,00139			

		prêmio<- function(i, idade, n,b) {
		<pre>pxx <- c(1, cumprod(px[(idade+1):(idade+n-1)]))</pre>
		qxx <- c(qx[(idade+1):(idade+n)])
		v <- (1/(i+1)) ^(1:n)
Universidade r	euerai de Ailenas Onivers	_ Ax <- b* sum(v*pxx*qxx)
Idade	q_X	return (Ax)
25	0,00077	}
26	0,00081	nifate I Inifate I Inifate I I
27	0,00085	dotal<-function(i,idade,n,b){
28	0,00090	V <- 1/(i+1)^n
29	0,00095	npx <- prod(px[(idade+1):(idade+n)])
30	0,00100	Dt <- V*npx*b
31	0,00107	return(Dt)
32	0,00114	
33	0,00121	
34	0,00130	
35	0,00139	

Pensemos no caso de uma pessoa de 25 anos que deseja fazer um seguro temporário por 5 anos, com 3 anos de carência. Ou seja, caso esse segurado faleça entre seus 28 e 33 anos, o beneficiário receberá uma quantia de 1.u.m. Considere uma taxa de juros de 4% ao ano e as seguintes probabilidade de morte e calcule o prêmio puro:

	2 10 11	$_{3 }A_{25^{1}:\overline{5} } = v^{3} _{3}p_{25}A_{28^{1}:\overline{5} }$
Idade	q_X	51 25 .51
25	0,00077	dotal(0.04,25,3,1) prêmio(0.04,28,5,1)
26	0,00081	
27	0,00085	
28	0,00090	$_{3 }A_{25^{1}:\overline{5 }} = A_{25^{1}:\overline{5+3 }} - A_{25^{1}:\overline{3 }}$
29	0,00095	
30	0,00100	prêmio(0.04,25,8,1) –prêmio(0.04,25,3,1)
31	0,00107	premo(0.04,23,0,1) premo(0.04,23,3,1)
32	0,00114	
33	0,00121	
34	0,00130	
35	0,00139	

Pensemos no caso de uma pessoa de 25 anos que deseja fazer um seguro vitalício, com 3 anos de carência. Considere uma taxa de juros de 4% ao ano e as seguintes probabilidade de morte e calcule o prêmio puro:

	24_101	101	$_{3 }A_{25} = v^3 _{3}p_{25}A_{28}$
Idade	q_X	41116 X	31 23 31 23 20
25	0,00077	????	
26	0,00081		
27	0,00085		
28	0,00090		$_{3 }A_{25} = A_{25} - A_{25^1:\overline{3 }}$
29	0,00095		Jnijaiž Unijaiž Un
30	0,00100	????	
31	0,00107		
32	0,00114		
33	0,00121		
34	0,00130		
35	0,00139		

Pensemos no caso de uma pessoa de 25 anos que deseja fazer um seguro vitalício, com 3 anos de carência. Considere uma taxa de juros de 4% ao ano e as seguintes probabilidade de morte e calcule o prêmio puro:

$$_{3|}A_{25} = v^3 \,_{3}p_{25}A_{28}$$

 $dotal(0.04,25,3,1) \times prêmio(0.04,28,max(Idade)-28,1)$

$$_{3|}A_{25} = A_{25} - A_{25^1:\overline{3|}}$$

prêmio(0.04,25,max(Idade)-25,1)-prêmio(0.04,25,3,1)

$$Z_{T} = v^{T+1}; T \ge 0$$

$$A_{x} = \sum_{t=0}^{\infty} Z_{T} t p_{x} q_{x+t}$$

$$Z_{T} = \begin{cases} v^{T+1}; T = 0,1,2,...,n-1 \\ v^{T+1}; T = 0,1,2,...,n-1 \\ v^{T+1}; T = 0,1,2,...,n-1 \end{cases}$$

$$A_{x^{1}:m} = \sum_{t=0}^{n-1} Z_{T} t p_{x} q_{x+t}$$

$$Z_{T} = \begin{cases} v^{T+1}; T = 0,1,2,...,n-1 \\ v^{T+1}; T = 0,n+1,... \\ A_{x^{m}} = X_{t^{m}} p_{x} q_{x+t} \end{cases}$$

$$Z_{T} = \begin{cases} v^{t+1}; T = 0,1,2,...,n-1 \\ v^{t+1}; T = 0,1,2,...,n-1 \\ A_{x^{m}} = X_{t^{m}} p_{x} q_{x+t} \end{cases}$$

$$Z_{T} = \begin{cases} v^{t+1}; T = 0,1,...,n-1 \\ v^{t+1}; T = 0,1,...,n-1 \\ v^{t+1}; T = 0,1,...,n-1 \end{cases}$$

$$Z_{T} = \begin{cases} v^{t+1}; T \ge m \\ m|A_{x} = \sum_{t=0}^{\infty} Z_{T} t p_{x} q_{x+t} \end{cases}$$

$$Z_{T} = v^{t+1}; T \ge m$$

$$Z_{T} = v^{t+1}; T$$

- Fim do ano \rightarrow Tabela de vida, na prática, quase no momento da morte.
- ➤ Suposição

$$T = (K + 1) - (1 - S)$$

- \succ Assumindo que T é independente de S e que $S \sim U_c(0,1)$.
- Considere o seguro de vida inteira pago no momento de morte:

$$\bar{A}_{x} = \int_{0}^{\infty} e^{-\delta t} t p_{x} \mu(x+t) dt = E(e^{-\delta T})$$

$$\bar{A}_{x} = E[e^{-\delta[(K+1)-(1-S)]}] = E[e^{-\delta(K+1)}e^{\delta(1-S)}]$$

$$\bar{A}_{x} = E[v^{(K+1)}]E[e^{\delta(1-S)}]$$

$$\bar{A}_{x} = A_{x} \int_{0}^{1} e^{\delta(1-s)} ds$$

$$\bar{A}_{x} = A_{x} \frac{e^{\delta} - 1}{\delta}$$

Substituindo $e^{\delta} = 1 + i$,

$$\bar{A}_x = A_x \frac{(1+i)-1}{\delta}$$

$$\bar{A}_{x} = A_{x} \frac{i}{\delta}$$

Uma pessoa de 25 anos deseja fazer um seguro de **vida inteiro** que paga 1 u.m. no momento da morte. Calcule o valor aproximado desse prêmio considerando que o prêmio pago para esse mesmo seguro com benefício pago ao final do ano de morte é de $A_{25}=0,11242$.

Considere que o tempo de sobrevida desse segurado pode ser modelado pela tábua AT-49 e a seguradora promete remunerar o capital em 5% ao ano.

Seguro de vida Inteiro

$$A_{25} = \sum_{t=0}^{90} \left(\frac{1}{1,05}\right)^{t+1} t p_{25} q_{25+t} \approx 0,11242$$

$$\bar{A}_{25} = A_{25} \frac{i}{\delta} = 0,11242 \left(\frac{0,05}{\ln 1,05}\right) \approx 0,1152076$$

Considerar uma pessoa de idade de 30 anos que decide fazer um seguro de vida vitalício pague um benefício de 1 u.m. ao final do ano de morte. Admita $\bar{A}_{30}=0,28317$ e que i=5%.

Unifal[®] Unifal[®] Unifal[®] Unifal[®] U

Unifal[®] Unifal

Considerar uma pessoa de idade de 30 anos que decide fazer um seguro de vida vital<u>í</u>cio pague um benefício de 1 u.m. ao final do ano de morte. Admita $A_{30}=0.28317$ e que i=5%.

Unifal[®] Unifal[®] Unifal[®] Unifal[®] Ui

$$A_{30} = \frac{\delta}{i}\bar{A}_{30} = \left(\frac{\ln 1,05}{0,05}\right)0,28317 \approx 0,2763182$$

Unifal[®] Unifal[®] Unifal[®] Unifal[®] Ur

> Vitalício

$$\bar{A}_{x} = A_{x} \frac{i}{\delta}$$

> Temporário

$$\bar{A}_{x^1:\bar{n}|} = A_{x^1:\bar{n}|} \frac{i}{\delta}$$

> Misto

$$\bar{A}_{x:\bar{n}|} = A_{x^1:\bar{n}|} \frac{i}{\delta} + A_{x:\bar{n}|^1}$$

> Fracionado

$$A_{\chi}^{(m)} = \frac{iA_{\chi}}{i^{(m)}}$$

$$i^{(m)} = m \left[1 - (1+i)^{-\frac{1}{m}} \right] v^{-\frac{1}{m}}$$