Part I: Theory of LoFT

Section I Overview:

LoFT (Low-order modelling of Floating Turbines) is an open-source framework designed for fast simulations of large amounts of floating offshore wind turbines (FOWTs) [1]. To achieve this, the key principle is to retain the overall system dynamics while minimizing the computational burden. In LoFT, the computational burden is reduced from two aspects: low-order modelling of FOWTs and simplified environmental loads. Moreover, to retain the overall system dynamics, wake effect is considered in the wind field modelling. The validation of LoFT against full-order models in OpenFAST can be found in the Appendix A.

A. Floating Offshore Wind Turbine Modelling

Specifically, for a single FOWT, the low-order model reserves degrees of freedoms (DoFs) that significantly influence the wind power capture, as shown in Fig. 1. The reserved DoFs $\mathbf{q} = [\psi, \theta_p, x_s, x_h]^T$ include the rotor azimuth, the platform pitch θ_p , the platform surge x_s and the platform heave x_h . These DoFs are selected according to experimental results. With these DoFs, in the time domain, the equations of motions can be expressed as:

$$\mathbf{M}\ddot{\mathbf{q}} + \mathbf{K}\mathbf{q} = \mathbf{F}_{hydro} + \mathbf{F}_{wind} + \mathbf{F}_{moor} \tag{1}$$

Here M is the mass or inertia matrix, K is the hydrostatic restoring matrix determined by gravity and buoyancy, F_{hydro} , F_{wind} and F_{moor} are the hydrodynamic, aerodynamic and mooring load, respectively.

Fig. 1. Low-order modelling of FOWTs

B. Wake Effect

LoFT reduces the computational burden by simplifying the turbine-level modelling. However, to

retain the overall system dynamics, in the farm level, wake effect is considered in the wind field modelling

Wake effect leads to a decreased wind velocity in downstream wind turbines, leading to the power reduction in the farm level. LoFT adopts TurboPark to describe the wake effect in an offshore wind farm. TurboPark is a parametric empirical wake model validated on 19 offshore wind farms in the real world [2].

C. Local controllers

In this subsection, the operation of the floating wind turbine is explicitly explained. A diagram of the FOWT control system is presented in Fig. 2. The control system is divided into two main components: a local blade pitch controller, a local generator torque controller.

The local blade pitch controller is designed to stabilize the platform motion and rotor speed of the FOWT in above-rated wind conditions. To achieve these objectives, it employs floating feedback and pitch saturation, thereby reducing rotor thrust variances. The local generator torque controller aims to maintain a stable rotor speed in under-rated wind conditions. There are two types of torque controllers. The first approach follows the "k- ω 2" law, which means its torque output is proportional to the square of the rotor speed. The second approach uses a Proportional-Integral (PI) controller to track the reference rotor speed calculated based on the wind speed. Additionally, a set-point smoother is introduced to ensure a smooth transition between the local blade pitch and torque controllers. More details about the local controller can be found in [3].

Fig. 2. The local controller of floating turbines

D. Primary frequency response

The primary frequency response of floating offshore wind turbines may lead to large platform motions, especially in above-rated wind conditions. This is due to the infamous negative damping issue, which was originally discussed in [4]. The negative damping issue refers to the phenomenon that the blade pitch actuation to maintain rotor speed will lead to large platform pitch motion. This is worse when an FOWT is participating the frequency regulation, because frequency regulation will lead to large rotor speed variation. Fig. 3 compares the dynamics of an IEA 15 MW semi-submersible FOWT during normal operation and its dynamics when providing frequency response, highlighting the changes in platform motion [5].

Fig. 3. The local controller of floating turbines

References:

- [1] M. Mei, P. Kou, Z. Zhang, Y. Zhang, Z. Xue, and D. Liang, "Primary frequency response of floating offshore wind turbines via deep reinforcement learning and domain randomization," *IEEE Trans. Sustain. Energy*, early access, Mar. 27, 2025, doi: 10.1109/TSTE.2025.3555266.
- [2] J. Pedersen, E. Svensson, L. Poulsen, and N. Nygaard, "Turbulence optimized park model with gaussian wake profile," in *J. Phys. Conf. Ser.*, vol. 2265, no. 2, p.022063. May 2022,
- [3] N. J. Abbas, D. S. Zalkind, L. Pao, and A. Wright, "A reference open-source controller for fixed and floating offshore wind turbines," Wind Energy Sci., vol. 7, no. 1, pp. 53–73, Jan. 2022.
- [4] T. J. Larsen and T. D. Hanson, "A method to avoid negative damped low frequent tower vibrations for a floating, pitch controlled wind turbine," J. Phys.: Conf. Ser., vol.75, no.1, Aug.2007, Art.no.012073.
- [5] 梅铭洋,寇鹏,张智豪,等.考虑平台运动的浮式海上风机频率响应控制[J]., 中国电机工程 学报 2025,45(12): 4681-4693.DOI:10.13334/j.0258-8013.pcsee.232721. MEI Mingyang, KOU Peng, ZHANG Zhihao et al, Control of Floating Offshore Wind Turbines for System Frequency Response Considering Platform Motions[J]. Proceedings of the CSEE.

2025,45(12): 4681-4693.DOI:10.13334/j.0258-8013.pcsee.232721. (in Chinese)

Section II Examples

Example 1: An Illustrative five-turbine case

This example shows how to change environment settings and simulate five IEA 15 MW semi-submersible FOWTs. The structure of a floating wind turbine is shown in Fig. 4. The output is shown in Fig. 5.

Fig. 4. The structure of a floating wind turbine in LoFT

Fig. 5. Floating wind turbine model output of Example 1

Example 2: A 70-turbine Floating Offshore Wind Farm

This example shows how to simulate 70 FOWTs considering wake effect. The layout and turbine power/thrust curves are shown in Fig. 6(a) and Fig. 6(b), respectively. the Timeaveraged wind field is shown in Fig.7. The simulation results, including power output and rotor speed, are shown in Fig.8 and Fig. 9. It should be noted that the results may vary due to stochastic wind field generation.

Fig. 6. Simulation Setup in Example 2 (a) layout (b) power and thrust curve of IEA

Fig. 7. Time-averaged wind field in example 2 using TurboPark (row 1 on the left)

Fig. 8. Average rotor speed of floating turbines in each row.

Fig. 9. Power output of floating turbines in each row.

In example 3, a modified IEEE 39-bus system is employed, as illustrated in Fig. 10. The system comprises 39 buses, 32 transmission lines, 10 synchronous generators (SGs), and 2 floating wind farms. Automatic generation control (AGC) is activated for the SGs to restore frequency when deviations are less than 0.2 Hz. Furthermore, to emulate a system with high renewable energy penetration, several SGs are replaced by constant power sources, which do not provide primary frequency reserves

All SGs are thermal units, each with a capacity of 1000 MVA. Among these units, SG 03, SG 07, and SG 10 do not provide primary frequency reserves, while SG 06 and SG 08 participate in AGC. To simplify the simulation, both floating wind farms are assumed to have identical specifications, each consisting of 70 IEA 15MW semi-submersible FOWTs arranged in ten rows, with seven turbines per row, representing a typical radiation topology for such wind farms.

means that the generator does not provide any primary frequency reserve.

Fig. 10. The modified IEEE-39bus system

Appendix: Validations

A. Validation against full-order models in OpenFAST

Fig. 11. Hub-height wind speeds and rotor-averaged wind speeds used in the validation (a) below-rated (b) aboverated condition

Fig. 12. Validation against full-order models in below-rated wind conditions

Fig. 13. Validation against full-order models in above-rated wind conditions

Part II: Community Tools for Floating Wind Turbines

LoFT (Low-Order modelling of floating wind turbines For Training) draws on the work of other open-source repositories. Below we give a list of them and collect their links and key features. Hope that this list will help beginners and developers.

Table 1. A list of open-source repositories for beginners in the area of floating wind turbines

Repository(link)	Key features	Main Purpose	Developers
OpenFast/Fast.Farm	Individual turbine or wind-farm	Model	NREL
	model (with a limited number of		
	wind turbines) written in Fortran;		
	can simulate steady or turbulent		
	inflow, regular or irregular waves;		
	and conduct structural/fatigue		
	analysis. The resulted are		
	validated by scaled experiments.		
WEC-Sim	Wave Energy Converter	Model	NREL
	Simulator (WEC-Sim), an open-		
	source code for simulating wave		
	energy converters. The code		
	implementations for		
	hydrodynamics and mooring		
	dynamics are similar and helpful		
	for modelling of floating wind		
	turbines.		
<u>RAFT</u>	RAFT - Response Amplitudes of	Design	NREL
	Floating Turbines, python codes		
	for frequency-domain analysis of		
	floating wind turbines. It presents		
	a design-oriented modelling of		
	floating wind turbines		
WISDEM	The Wind-Plant Integrated	Design	NREL
	System Design and Engineering		
	Model (WISDEM) is a set of		
	models for assessing overall wind		
	plant cost of energy (COE).		
	Helpful for design and economic		
	assessment of floating wind		
	turbines		
ROSCO	Reference open-source controller	Control	CU Boulder
	that can be used in OpenFAST;		/NREL
	when compiled, produces a		
	libdiscon.so controller that uses a		

	specified DISCON.IN file. The		
	controller for floating wind		
	turbines features floating		
	feedback, peak saturation and		
	detuned natural frequency.		
<u>Floris</u>	FLORIS is a controls-focused	Control	NREL
	wind farm simulation software		
	incorporating steady-state		
	engineering wake models into a		
	performance-focused Python		
	framework.		
MoorPy	MoorPy is a design-oriented	Design	NREL
	mooring system library for		
	Python based around a quasi-		
	static modeling approach.		
<u>HydroChrono</u>	HydroChrono is an emerging	Model	NREL
	hydrodynamics simulation tool		
	designed to model complex ocean		
	systems. Seamlessly integrated		
	with the Project Chrono physics		
	engine, it offers a powerful C++		
	API for a wide range of		
	simulations.		
QBlade	Built on the Project Chrono	Model	
	physics engine.		
MOST (link1, link2)	Modelling floating turbines based	Model	MOREnergyLab
(, <i>2)</i>	on Simscape multibody.		
TurboPark	TurbOPark is a parametric wake	Model	DTU
	model developed by Ørsted and		
	was validated on 19 offshore		
	wind farms coupled with a		
	blockage and a flow model.		
<u>LoFT</u>	Low-order modelling of floating	Control	XJTU
LOIT	wind turbines for reinforcement	Collifor	23010
	learning training.		