Convolutional Neural Network(CNN)

Our goal: recognize the image as boat

What is an image?

Grey image

- A grid of numbers (intensity values)
- Incomputing a matrix

Digit 8 in grey scale

Color image

Convolution

Extracting features from images

- Extract features by applying a sliding window function across image, called as convolution
- Why sliding window?
 - Detect the same feature at different positions in the input image

How do you apply convolution across image?

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

image

1	0	1
0	1	0
1	0	1

Convolutional filter

How do you apply convolution across image?

1,	1,	1,	0	0
0,0	1,	1,0	1	0
0 _{x1}	Q	1,	1	1
0	0	1	1	0
0	1	1	0	0

4

Image

Feature map

Example1

Different filters (weights) reveal a different characteristics of the input.

Example1

Different filters (weights) reveal a different characteristics of the input.

Different filters (weights) reveal a different characteristics of the input.

1	0	-1
2	0	-2
1	0	-1

Example2: Feature maps

 The convolution of a filter1 (with red outline) slides over the input image to produce a feature map.

 The convolution of another filter2 (with the green outline), over the same image gives a different feature map

Parameters for convolutional filters

Parameters for convolutional filters

The size of the feature maps are controlled by following parameters of convolution filters:

- Depth: It corresponds to the number of filters we use for the convolution operation
- Stride: It is the number of pixels by which we slide our filter matrix over the input matrix
- Padding: Adding zeros around the border, so that we can apply the filter to bordering elements of our input image matrix

7 by 7 input, 3 by 3 filter with stride 1

7 by 7 input, 3 by 3 filter with stride 2

3x3 output

Convolution for edge cases: zero pad the border

7 by 7 input, 3 by3 filter with stride1, pad with 1 pixelborder

7 by 7 output

Generalization: zero pad the border

 In general, convolution layer will be having filters of size F by F with stride 1. The number of zero pad borders will be (F-1)/2 to preserve size spatially

```
    E.g.,
    F = 3 => zero pad with 1
    F = 5 => zero pad with 2
    F = 7 => zero pad with 3
```

Pooling/Subsampling

Max pooling

Rectified Feature Map

Max pooling

What does pooling gives us?

Makes the feature dimension smaller and fixed size

 Invariance to small transformations i.e., reduce the effect of noises and shift or distortion

Fully connected layers

FC layer

- The output from the convolutional and pooling layers represent high-level features of the input image
- The purpose of the Fully Connected layer is to use these features for classifying the input image into various classes based on the training dataset

The final convolutional neural network

The Convolution + Pooling layers act as Feature Extractors from the input image while Fully Connected layer acts as a classifier.

Perceptron view of CNN

Convolution Filter = replicated perceptrons

Convolutional Filter = replicated perceptrons

Conv filter + Maxpooling + Conv filter +

Channels & Activation maps

3D Data

Data = 3D Tensor

• There is a vector of feature channels (e.g. RGB) at each spatial location

(pixel).

activation map

consider a second, green filter

- Multiple filters produce multiple output channels
- For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

Pooling across feature maps

- makes the representations smaller and more manageable
- operates over each activation map independently:

CNN for NLP

Filters + Pooling in NLP

- Each filter as detecting a specific feature, such as detecting if the sentence contains a negation like "not amazing" for example. If this phrase occurs somewhere in the sentence, the result of applying the filter to that region will yield a large value, but a small value in other regions.
- By performing the max operation you are keeping information about whether or not the feature appeared in the sentence, but you are losing information about where exactly it appeared.

Channels in NLP

 In image recognition you typically have RGB (red, green, blue) channels. In NLP, you could have a separate channels for different word embeddings (word2vec and GloVe), or you could have a channel for the same sentence represented in different languages, or phrased in different ways.

CNN learning algorithm

Overview of the learning algorithm

 Initialize the CNN with random weights for filters weights and FC neuron weights

 Apply back propagation algorithm to adjust the weights based on supervised data

CNN learning

 The trick is to not hand-fix the weights, but to train them. Train them such that when the network sees a picture of a dog, the last layer will say "dog".

CNN learning

Or when the network sees a picture of a cat, the last layer will say "cat".

CNN learning

 Or when the network sees a picture of a boat, the last layer will say "boat"... The more pictures the network sees, the better.

Train on **lots** of examples. Millions. Tens of millions. Wait a week for training to finish.

Share your network (the weights) with others who are not fortunate enough with GPU power.

CNN for classification

 Once trained we feed in an image or a crop, run through the network, and read out the class with the highest probability in the last (classif) layer.

