IPv6

SARRERA

- IPv4 (1970) \rightarrow Helbide falta \rightarrow 1990 arazoa konpontzen hasi.
- Helburuak:
 - Milaka milioi ostalari helbideratzeko
 - o Bideratze taulak murriztu.
 - o Protokoloak sinplifikatu → Paketeak azkarrago prozesatu.
 - Segurtasuna (autentifikazioa eta fidagarritasuna).
 - o Arreta handiagoa zerbitzu motari.
 - o Ostalari mugikorrak helbidea aldatu gabe.
 - o IPv4 protokoloa eta elkarrekin bizitzeko ahalmen berria.
- SIPP (Simple Internet Protocol Plus)→ Interneteko protokolo sinplea hobetua → IPv6

ONURAK

- IPv4 → 32 biteko luzera 128 biteko luzera izatera pasa.
- NAT (Network Address Translation) gehiagorik ez.
- IP konfigurazio automatikoa.
- Multicast trafikoaren bideraketa hobetu.
- Goiburu sinpleagoa.
- Paketeen bideratze prozesua hobetu.
- Zerbitzuaren kalitatea hobetu (QoS).
- Segurtasuna → Autentifikazioa eta enkriptatzea.
- Luzapen kopuru handiagoa eta aukera malguagoak.
- Administrazio sinplifikatua (ez da DHCP behar).

HELBIDEAK

- IPv4 → 32 bit luzera
 - o 11001000.01011000.00111101.01100100→ 200.88.61.100
- IPv6 \rightarrow 128 bit luzera \rightarrow Notazio zientifikoan $3 * 4 * 10^{38}$
 - Luzeegia → Hamaseitarrean.
 - Idazkera ofiziala → 16 biteko 8 talde ":" bereizita:
 - 805B:2D9D:DC28:0000:0000:FC57:D4C8:1FFF
 - Sinplifikatzeko 0-ak elkartu:
 - 805B:2D9D:DC28:0000:0000:FC57:D4C8:1FFF
 - Zero ondokoak ezabatu → 805B:2D9D:DC28:0:0:FC57:D4C8:1FFF
 - "::" balioa zero duen 16 biteko talde 1+ daude → 805B:2D9D:DC28::FC57:D4C8:1FFF
 - Puntu bikoitzeko talde 1+ ezin da egon, ezin dugulako jakin zenbat zero zeuden hasieran → 2001::25DE::CADE X
- IPv6 → Loopback helbidea (127.0.0.1 antzekoa)

- IPv4 eta IPv6 ingurune mistoetan → x:x:x:x:x:d.d.d.d
 - o X → Sei eremu esanguratsueneko balio hamaseitarrak (16 bit-ekoak)
 - D → Beste lau eremuko balio hamartarrak (8 bit-ekoak)
 - 805B:2D9D:DC28::FC57:212.200.31.255
- IPv4 bertsiotik IPv6 bertsiora → 0:0:0:0:0:0:212.200.31.255 →::212.200.31.255
- Broadcast helbiderik X.

MOTAK

- UNICAST:
 - Ohikoenak eta erabilienak.
 - o Interfaze/nodo bati esleitu → Bi nodoen arteko komunikazio zuzena.
- MULTIDIFUSIO:
 - Interfaze/nodo ugari identifikatu → Aldi berean hauekin komunikatu.
 - Bat-askoren teknika.
 - o Paketeak ordenagailu anitzak onartu.
 - o Broadcast trafikoa ezarri.
- ANYCAST:
 - Helbide batek interfaze anitz identifikatu.
 - o Paketeak ordenagailu bakarrak onartu.
 - Interfaze "hurbilenera" bidali ("router" metrikoak).
 - Routerretan soilik erabili.

ESPARRUA (SCOPE)

- Baliotasun eremua zehaztu:
 - Lotura lokala (link-local) → Sareko interfazera konektatutako loturan (LAN)
 - Leku lokala (site-local) → Router batekin elkarren artean konektatutako sare 1+ dauden lekutan (unibertsitateko campusa)
 - o Globala: Internet osoan balio du.
- Multicast esparrua 4 biteko eremua:
 - o link-local (2)
 - o site-local (5)
 - o organization-local (8): Erakunde bateko guneak (aurrizki bera)
 - o global (E)
- Helbideak beraien esparruan soilik bakarrak direla ziurtatu.
- Esparru bateko jatorria eta helmuga duten datagramak → Beste esparru batera X.

UNICAST-LINK LOKALA

- IPv4 helbide pribatuak bezala.
- Interfaze ID → Interfaze MAC-etik eratorria (abiaraztean automatikoki esleitua).
- Segmentu lokaletik kanpo bideratu X → Nodoei IP automatikoa eman.
- 0 Interface ID

 1111 1110 10

 FE80::/10
- Link-local helbidea FE80::/10 aurrizkia (falta direnak 0) → NetID.
- Nodo helbidea azken 64 bitak → MAC erabiliz ezarri (EUI-64 formatua).

EUI-64

- EC:B1:D7:3D:4B:7A → FE80:: EEB1:D7FF:FE3D:4B7F
- Urratsak:
 - 1. MAC helbidea: EC:B1:D7:3D:4B:7F
 - 2. FF:FE erdian sartu: EC:B1:D7:FF:FE:3D:4B:7F
 - 3. Notazioa IPv6-ra: ECB1:D7FF:FE3D:4B7F
 - 4. Lehenengo zortzikotea bitarrera: EC -- 11101100
 - 5. Seigarren bita inbertitu (0-tik kontatzen): 11101100 --> 11101110
 - 6. Hamasaitarrera eraldatu: 11101110 --> EE
 - 7. Zortzikotea kalkulatuarekin ordezkatu: EEB1:D7FF:FE3D:4B7F
 - 8. Gehitu link-local aurrizkia: FE80:: EEB1:D7FF:FE3D:4B7F

EC B1 D7 3D 4B 7A EC B1 D7 FF FE 3D 4B 7A EC B1 D7 FF FE 3D 4B 7A EE B1 D7 FF FE 3D 4B 7A

Interface ID

UNICAST UNIQUE LOCAL

- Unique Local Helbideak:
 - o Intranet hierarkikoetan → Unicast pribatuak.
 - Kanpora bideratzen X.
 - Azpi-helbideek Local-Site zaharrak ordezkatu (fec0::/10) - RFC 3879

- FORMATUA:
 - o fc00 :: / 7 Formatu aurrizkia.
 - o Aurrizkia lokalean (1) edo globalean (0) kudeatzen adierazi L bit-a.
 - o Gunearen identifikatzailea (Global ID 40 bit).
 - Ausaz hautatu behar da talkak → Talkak X.
 - Ostalariaren ID (64 bit).

UNICAST SITE LOCAL

- Helbide pribatuen baliokideak.
- Segmentu lokaletik kanpo bideratu daitezke → Paketeak sarearen segmentu desberdinetatik bidali (Internet X).
- 0 1111 1110 11 FECO::/10
- Lehenengo 10 bitak 11111111011 → Aurrizkiak FEC0 :: /10
- Hurrengo 54 bitak = 38 +16 sare ID.
- Azken 64 bitak interfazearen ID → Link Local helbideen moduan konfiguratu.

UNICAST GLOBAL

- Helbide publikoen baliokidea → Internet bidez bideratu.
- Global Routing Prefix (48 bit) → Paketeak Internetetik gune zehatz batera bideratu
- Une honetan 2000 :: /3 aurrizkiak erabili zeregin hauetarako.
 - Lehen hiru bitak $001 \rightarrow 2^{45}$ erakunde (ISP) desberdin.

- o 2000 (0010) Global Unicast baliozko helbidea.
- o 3000 (0011) Global Unicast baliozko helbidea.
- 4000 (0100) Global Unicast baliogabe helbidea (hasierako 3 bit estruktura galdu).
- 2000 eta 3000 aurrizkiak.
- Etorkizunean, aurrizki hau alda daiteke IANAren (Internet Assigned Numbers Authority) araudia dela eta.
 - o IPv6 Global Unicast helbideak mundu osoan esleitu eta kudeatu.
- 128 bitetatik lehenengo 64:
 - o Lehen 48 bit → Erakundeei esleitutako sarea i.
 - Bideratze Globalaren Aurrizkia.
 - Hurrengo 16 bit → Azpisarearen ID (SubnetID 16bits).
 - 65536 azpisare erakundeko.
- Gainerako 64 bit → Sareko ostalari ID (HostID).
- Azpisare bakoitzean 2^{64} = 18446744073709551616 host.
- Adibidea: 2001:0db8:3c4d:0015:0000:0000:1a2f:1a2b
 - o Lehenengo 48 bitak → Global Routing Prefix = 2001:0db8:3c4d
 - Hurrengo 16 bitak →SubNetID: 0015
 - o Azkenengo 64 bitak→ InterfaceID: 0000:0000:1a2f:1a2b

MULTICAST

- 8 biteko lehen taldea → Aurrizkia ff00 :: /8
- 4 bit hauek flag gisa erabili:
 - Lehen bitak (O) zero → Etorkizunean erabiltzeko gordeta.
 - Bigarrena (R) → Igorpen anitzeko helbidea (Rendezvous Point) biltzen duen ala ez.
 - Hirugarrena (P) → Multidifusio helbide honek aurrizkiari buruzko informazioa biltzen duen ala ez (RFC 3306).
 - O Azkena → Helbideak IANAk behin betiko esleitu (bit= 0) edo aldi baterako multicast helbidea (bit=1).
- Scope (esparrua) eremua igorpen anitzeko helbide baten eremua mugatzeko.
 - Esleitutako balioaren arabera:
 - 1 = nodo local
 - 2 = link local
 - 5 = site local
 - 14 = global (Internet)
 - ...
- GroupID → Multicast paketeen xede taldea mugatu.
 - 1 = all nodes (Scope = 1 | | 2).
 - 2 balioarekin tokiko loturaren nodo guztiei mezu bat bidaltzeko aukera.

SCOPE

1111 1111 FF00::/8 groupID

2 = all routers (Scope = 1 | | 2 | | 5).

ANYCAST

- Ez dira unicast helbideen desberdinak.
- Ezinezkoa da sintaxiaren arabera bereiztea → Esleitutako interfazeak soilik dakite.
- Helbide zehatza: Loopback → ::1/128

- Trafiko klasea (1 byte): Denbora errealeko entrega-eskakizun desberdinak dituzten paketeen arteko aldea (zerbitzu eremu motaren antzekoa).
- Fluxuaren etiketa (20 bit): Tratamendu bera behar duten paketeak identifikatu.
 - Ostalariak pakete sekuentziak aukera multzo batekin etiketatu.
 - \circ Bideratzaileek fluxuen jarraipena ightarrow Fluxu bereko paketeak modu eraginkorragoan prozesatu.
 - Ez dute pakete bakoitzaren goiburua berriro prozesatzen.
- Karga luzera (Payload Lenght 2 byte): Luzera finkoko goiburuak → Datuen tamaina du.
 - (65.536 bytes =216)
- Hurrengo goiburua (next header- 1byte): Goiburua sinplifikatu "hurrengo goiburua" dagoelako.
 - o Aukerei dagokie.
 - o Azkena bada → Protokoloa (6: TCP, 17: UDP, 58: ICMP ...).
 - o Goiburu mota zenbakiak protokolo mota zenbakietatik eratorriak → Gatazka X.
 - Ondorengo goiburuak kargaren zati gisa → Karga erabileraren luzeraren kalkuluan sartu.
- Salto muga (Hop limit 1 byte): Baimendutako saltu kopurua (TTLren baliokidea).
 - o Birbidaltze nodo bakoitzak kopurua batean gutxitu.
 - Ora ailegatu → Paketea jaitsi eta ICMPv6 "Saltoko muga gaindituta" mezua igorleari.
- Jatorri eta helmuga helbidea: 16 byte.
 - Lau zifra hamaseitarreko 8 talde.
 - 8000:0000:0000:0000:0123:4567:89AB:CDEF

- Aukerak hurrengo goiburuen arabera landu.
- Hauek oinarrizko goiburuaren (IPv6) eta garraio geruzaren goiburuaren artean.
- Kantitate edo tamaina finko X.

IPv4 EREMUAK DESAGERTU

- IHL
- Luzera finkodun goiburua
- Eremuak eta fragmentazioa
 - o Zatikatzea paketearen iturburuko nodoan bakarrik.
 - Paketea handiegia → Igorleak errore bat bidali ICMP mezu batekin eta iturburuak konexioko pakete guztien tamaina jaitsiko du.
 - O MTU 576 byte-tik IPv4-n 1284 byte-ra aldatzen da IPv6-n → Zailtzen da zatikatzea behar izatea.
 - Paketeak zatikatuak bidaltzea askoz errazagoa.
- Egiaztatze batura (checksum)
 - o Garraioa eta lotura geruzetan dago.
- Aukerak
 - o Horregatik daude luzapena edo ondorengo goiburuak.
 - Agertzen badira, izenburu finkoaren atzetik eta ordenan daude.

IPv4 ETA IPv6 BIZIKIDETZA

- Sareek elkarrekin bizi behar:
 - o Konektatu enpresaren IPv6 guneak IPv4 soilik onartzen duen sare baten bidez.
 - o Konetatu IPv4 guneak kanpoko IPv6 gune edo zerbitzariekin.
 - o Konektatu IPv4 ordenagailuak kanpoko IPv6 baliabideekin.

IPv4 ETA IPv6 KONPATIBILITATE

- Sareen eta erabiltzaileen ekipamenduen elkarbizitza eta migrazio progresiborako mekanismo sorta.
- Trantsizio mekanismoak hiru multzotan:
 - o Pila bikoitza.
 - Tunneling teknikak.
 - o Itzulpena (helbidea ez ezik goiburuaren itzulpena ere).

PILA BIKOITZA

- IPv6 sistema gehitzeak ez du IPv4 pila kentzen.
- Nodo bakoitzak bi protokoloen pilak ezarri.
- Pila bikoitzeko nodo bakoitzak bi sare helbide (IPv4 eta IPv6).
- Aplikazioek IP bertsioa aukeratzen dute → IPv4 eta IPv6-ren elkarbizitza mugagabea + IPv6ra berritzea, aplikazioz aplikazio.

TUNNELING

- IPv6 IPv4-ren bidez → IPv6 paketeak IPv4-n kapsulatu.
- IPv6 trafikoa IPv4 bidez birbidali.

IPv6 to IPv4 Itzulpena

- Paketeak IPv4tik IPv6ra eta alderantziz bihurtzen dituen sareko gailua erabili.
 - o Helbidea + Goiburua itzulita.
- IPv6 IPv4-ren bidez → IPv4 onartzen duten nodoek IPv6 bidez lan egiten jarraitzea baimendu.
- Ipv6 helbideak ipv4tik mapatuta.
- Goiburua bihurtzeko NAT tekniken luzapena.
- IPv6 to IPv4 Interneteko hornitzaileen lankidetzarik gabe IPv6 konexioa ahalbidetzeko.
- Bideratzaile batean (sare osoari konektibitatea) edo makina jakin batean funtzionatu.
 - o Bi kasuetan, IP helbide publikoa tunela sortzeko.
- Makina asko IPv4 Internetera konektatuta (NAT gailu 1+ bidez).
 - Eskuragarri dagoen IPv4 helbide publiko bakarra tunelaren amaierako NAT gailuari esleitu.
 - NAT gailu asko, baina ezin da eguneratu 6to4 aplikatzeko, arrazoi tekniko edo ekonomikoengatik.
- Sistemaren gakoa → IPv4 helbide publikoa txertatuta duten IPv6 helbideak esleitu.
 - Configuraziorik X → IPv4 publiko guztiak bakarrak, beraz, IPv6 baliokide bakarra.
- Helbide horiek j 2002 :: /16 aurrizkia.
 - IPv4 sarea zeharkatzeko IPv6 pakete bat bihurtzea beharrezkoa → Router-ak ezagutzen du sortutako IPv4 paketea zein helbidetara zuzendu behar den.
- IPv4 publiko baten IPv6 baten emaitzaren ADIBIDEA:
 - \circ IPv4 \rightarrow 1.2.3.4
 - \circ IPv6 \rightarrow 2002:0102:0304::1

Tipo de dirección	FP (binario)	FP (hexadecimal)
Reserved Address	0000 0000	0000::/8
Aggregatable Global Unicast Address	001	2000::/3
Link-Local Unicast Address	1111 1110 10	FE80::/10
Site-Local Unicast Address (en desuso)	1111 1110 11	FEC0::/10
Universal Local Address (ULA)	1111 110	FC00::/7
Multicast Address	1111 1111	FF00::/10