Skript QT2

6. Juli 2021

Inhaltsverzeichnis

U	Gru	ınastru	iktur der Quantenmecnanik	4
	0.1	Postul	ate	4
	0.2	Ortsra	um, Teilchen in 1D	4
1	Rela	ativisti	sche Quantenmechanik	5
	1.1	Kontin	nuierliche Symmetrien (Bsp. Rotationsinvarianz)	5
		1.1.1	Drehungen in 3D	5
		1.1.2	Darstellungen	5
		1.1.3	Drehungen in der Quantenmechanik	6
	1.2	Lorent	zinvarianz	7
		1.2.1	Lorentzgruppe	7
		1.2.2	Darstellungen	7
		1.2.3	Dirac spinoren und γ -Matrizen	8
	1.3	Überb	lick über relativistische Wellengleichungen	8
		1.3.1	Klein-Gordon-Gleichung	9
		1.3.2	Dirac-Gleichung	10
	1.4	Physik	und Lösungen der Diracgleichung	11
		1.4.1	Freie Lösungen, Impuls-/Spin-Eigenzustände	11
		1.4.2	Mehr zum Drehimpuls	12
		1.4.3	Kopplung ans elektromagnetische Feld	13
		1.4.4	Nichtrelativistischer Limes	13
		1.4.5	Weitere Konsequenzen: Spin-Bahn-Kopplung	15
2			heidbare Teilchen	
	Bo	soner	n und Fermionen	19
	2.1	Unters	cheidbare Teilchen	19
		2.1.1	Zustände	19

		2.1.2	Observablen/Operatoren	20
	2.2	Identis	sche/Ununterscheidbare Teilchen	20
		2.2.1	Prinzipien	20
		2.2.2	Zustände	21
	2.3	Einfac	che Anwendungen	23
		2.3.1	Grund- und angeregte Zustände	23
		2.3.2	Direkter Prozess vs. Austauschterm	24
		2.3.3	Wasserstoffmolekül H_2	25
	2.4	Erzeug	gungs- und Vernichtungsoperatoren	27
		2.4.1	Fock-Raum	27
		2.4.2	Erzeuger/Vernichter für Bosonen	27
		2.4.3	Erzeuger/Vernichter für Fermionen	28
		2.4.4	Besetzungszahldarstellung	29
		2.4.5	Formulierung von Observablen	30
		2.4.6	Kurz-Überblick über Anwendungen	32
	2.5	Ortsra	aum, Impulsraum, QFT (Spin=0)	33
		2.5.1	Zur Interpretation der letzten Ergebnisse	33
		2.5.2	Ortsraum	33
		2.5.3	Quantenfeldtheorie und Ortsraum	34
		2.5.4	Quantenfeldtheorie und Impulsraum	37
		2.5.5	Relativistische Quantenfeldtheorie	37
		2.5.6	Ausblick auf QFT für Vielteilchensysteme	39
3	$\operatorname{Str}\epsilon$	eutheo	rie	40
	3.1	Grund	lbegriffe	40
		3.1.1	Motivation	40
		3.1.2	Übersicht	40
		3.1.3	Grundstruktur der 3-dimensionalen Streuung (nichtrelativisch, elastisch)	41
	3.2	Detail	-Analyse der Potentialstreuung	42
		3.2.1	Differentialgleichung, Greenfunktion, Integralgleichung	42
		3.2.2	Bornsche Näherung	43
	3.3	Mathe	ematische Methoden - Funktionen in drei oder weniger dimensionaler Physik	44
		3.3.1	Komplexe und reelle Analysis	44
		3.3.2	dreidimensionale Funktionen, Kugelkoordinaten	45

3.4	3.4 Partialwellenmethode, Streuphasen		46
	3.4.1	Partialwellenentwicklung	46
	3.4.2	Optisches Theorem und Wirkungsquerschnitt	48
	3.4.3	Kleine Reichweite, kleine Energie	48

Kapitel 0

Grundstruktur der Quantenmechanik

0.1 Postulate

Essenz: Doppelspaltexperiment / Stern-Gerlach-Experiment

Zustand: eindeutig / maximal präpariertes physikalisches System, reproduzierbares Verhalten, eindeutige Zeitentwicklung. Beschreibung durch $|\psi\rangle$ eines Hilbertraums. Linearkombinationen erlaubt!

Observablen: Operatoren \hat{A} (hermitesch, da reelle Eigenwerte \leftrightarrow mögliche Messwerte)

Wahrscheinlichkeit: Für ein Messergebnis a_n ist die Wahrscheinlichkeit $|\langle a_n | \psi \rangle|^2$ (normierte Zustände).

Erwartungswert: (Korrollar) $\langle \psi | \hat{A} | \psi \rangle$

Zeitentwicklung: \hat{H} (Hamilton
operator), \hat{H} sei nicht expl. zeitabh.

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t} \langle \psi_1 | \hat{A} | \psi_2 \rangle = \langle \psi_1 | [\hat{A}, \hat{H}] | \psi_2 \rangle$$

Schrödinger-Bild

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t} |\psi(t)\rangle = \hat{H} |\psi(t)\rangle$$

Heisenberg-Bild

$$\begin{split} |\psi_H\rangle &= e^{i\hat{H}t}|\psi(t)\rangle \\ \hat{A}_H(t) &= e^{i\hat{H}t}\hat{A}e^{-i\hat{H}t} \\ i\hbar\frac{\mathrm{d}}{\mathrm{d}t}\hat{A}_H(t) &= [\hat{A}_H(t),\hat{H}] \end{split}$$

0.2 Ortsraum, Teilchen in 1D

Operatoren \hat{x} , \hat{p} , $[\hat{x}, \hat{p}] = i\hbar$.

EZe: $|x\rangle,\,|p\rangle$ (bilden jeweils Basis)

Wellenfunktionen: $\psi(x) := \langle x | \psi \rangle$, $\tilde{\psi}(p) := \langle p | \psi \rangle$

Kapitel 1

Relativistische Quantenmechanik

1.1 Kontinuierliche Symmetrien (Bsp. Rotationsinvarianz)

Frage: Was ist Drehimpuls?

1.1.1 Drehungen in 3D

 $(\rightarrow \text{Liegruppe } SO(3))$

Aktive Drehung: Bsp. $\mathbf{v}' = R_z(\theta)\mathbf{v}$ (Drehung um Winkel θ um z-Achse)

Infinitesimale Drehungen, $\theta = \varepsilon \to 0$:

$$R_z(\varepsilon) = \mathbf{1} - i\varepsilon \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \mathbf{1} - i\varepsilon \ell_z$$

$$\ell_z = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \ell_x = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} \qquad \ell_y = \begin{pmatrix} 0 & 0 & i \\ 0 & 0 & 0 \\ -i & 0 & 0 \end{pmatrix} \qquad (\ell_k)_{i,j} = -i\varepsilon_{ijk}$$

"Generatoren der zugehörigen Lie-Algebra"

Charakteristische Kommutatorrelation: $[\ell_i, \ell_j] = i\varepsilon_{ijk}\ell_k$

Endliche Drehungen: $R_z(\theta) = \exp(-i\theta\ell_z)$

1.1.2 Darstellungen

Eine Darstellung einer Gruppe ist eine Zuordnung: $R \mapsto D(R) = \text{Matrix} / \text{linearer Operator}, \text{ mit}$

$$D(R_1R_2) = D(R_1)D(R_2)$$

Physikalische Idee: Viele physikalische Größen \rightarrow angeben, wie sie sich unter Drehungen verhält.

• Impuls: $\mathbf{p} \longmapsto \mathbf{p}' = R\mathbf{p}$

• Energie: $E \longmapsto E' = E = D(R)E$ mit $\forall R : D(R) = 1$

• Ladung: $Q \mapsto Q' = Q$

• Dichte: $\rho \longmapsto \rho' : \rho'(R\mathbf{x}) = \rho(\mathbf{x})$

• Quantenzustand $|\psi\rangle \longmapsto |\psi'\rangle = \hat{D}(R)|\psi\rangle$

Generatoren für Darstellungen: $\theta = \varepsilon \to 0$

$$D(R_z(\varepsilon)) = \mathbf{1} - i\varepsilon J_z$$
 (Analog für x, y)

mit Operatoren J_x, J_y, J_z wie $D(R_z(\varepsilon))$, diese sind spezifisch für die Darstellung.

$$D(R_z(\theta)) = \exp(-i\theta J_z)$$

$$[J_i, J_j] = i\varepsilon_{ijk}J_k$$

Die Generatoren jeder Darstellung erfüllen dieselben Vertauschungsrelationen.

1.1.3 Drehungen in der Quantenmechanik

Darstellung von Drehungen:

$$\hat{D}(R_k(\theta)): |\psi\rangle \mapsto |\psi'\rangle = \hat{D}(R_k(\theta))|\psi\rangle$$

Gruppenstruktur:

$$\hat{D}(R_1R_2) = \hat{D}(R_1)\hat{D}(R_2)$$

Falls Symmetrie:

$$\langle \psi' | \phi' \rangle = \langle \psi | \phi \rangle \Leftrightarrow \langle \psi | \hat{D}^{\dagger} \hat{D} | \phi \rangle$$

 $\hat{D}(R)$ ist ein unitärer Operator. $[\hat{D}(R), H] = 0$.

Infinitesimale Drehung:

$$\hat{D}(R_k(\varepsilon)) = \mathbf{1} - i\varepsilon \hat{J}_k$$

Falls Symmetrie:

$$[\hat{J}_k, \hat{H}] = 0$$
 $[\hat{J}_i, \hat{J}_j] = i\varepsilon_{ijk}\hat{J}_k$

Per Definition: $\hat{\mathbf{J}}$ is Drehimpuls dieser Quantentheorie.

Konsequenzen bei solchen J-Operatoren: (QT1)

$$[\hat{J}_z, \hat{\mathbf{J}}] = 0$$
 $\hat{J}_{\pm} = \hat{J}_x \pm i\hat{J}_y$

Mögliche Eigenzustände: $|j,m\rangle$ mit $j=0,\frac{1}{2},1,\frac{3}{2},\dots$ und $m=-j,\dots,j$

Einfachste nicht-triviale Darstellung: $j=\frac{1}{2},$ d.h. 2-Zustandssystem $|\pm\rangle:=|j=\frac{1}{2},m=\pm\frac{1}{2}\rangle$.

$$|\psi\rangle = \psi_{+}|+\rangle + \psi_{-}|-\rangle$$

$$\psi \stackrel{R_k(\theta)}{\longmapsto} \psi' = \left(\mathbf{1} - i\theta \frac{\sigma_k}{2}\right) \psi$$

mit Pauli-Matrizen σ_k .

1.2 Lorentzinvarianz

1.2.1 Lorentzgruppe

Drehungen: $(t, \mathbf{r}) \longmapsto (t, R(\mathbf{r}))$

Boosts in x-Richtung:

$$\begin{pmatrix} t \\ x \\ y \\ z \end{pmatrix} \longmapsto \begin{pmatrix} \cosh \beta & \sinh \beta & 0 & 0 \\ \sinh \beta & \cosh \beta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} t \\ x \\ y \\ z \end{pmatrix}$$

Generatoren: ℓ_x, ℓ_y, ℓ_z wie gehabt. Boosts: $\Lambda_x(\beta) = \mathbf{1} - i\beta k_x + \mathcal{O}(\beta^2)$

6 Generatoren: Vertauschungsrelationen (und zyklisch):

$$[\ell_x, \ell_y] = i\ell_z$$
$$[k_x, k_y] = -i\ell_z$$
$$[\ell_x, k_y] = ik_z$$

1.2.2 Darstellungen

Def. Darstellung: Matrizen/Operatoren J_i , K_i , mit $[J_x, J_y] = iJ_z$, $[K_x, K_y] = -iJ_z$, $[J_x, K_y] = iK_z$. Triviale Darstellung: $J_i = 0$, $K_i = 0$

Spin $\frac{1}{2}$: $J_i = \sigma^i/2$, $K_i = -i\sigma^i/2$. Die Elemente des 2D Darstellungsraumes nennt man linkshändige Weyl-Spinoren. (Andere Variante mit $K_i = +i\sigma^i/2$: Elemente sind rechtshändige Weyl-Spinoren)

Partität/Raumspiegelung P: $\mathbf{x} \mapsto -\mathbf{x}$, $\mathbf{p} \mapsto -\mathbf{p}$, $\mathbf{J} \mapsto \mathbf{J}$, $\mathbf{K} \mapsto -\mathbf{K}$. Falls P-Transformation genutzt werden soll, sind beide Darstellungen nötig \Rightarrow 4D komplexer Spinorraum aus Dirac-Spinoren notwendig.

$$\Psi = \begin{pmatrix} \psi_{\alpha} \\ \overline{\psi}^{\dot{\alpha}} \end{pmatrix}$$

Darstellung für Diracspinoren:

$$J_i = \begin{pmatrix} \frac{\sigma^i}{2} & 0\\ 0 & \frac{\sigma^i}{2} \end{pmatrix} \qquad K_i = \begin{pmatrix} -i\frac{\sigma^i}{2} & 0\\ 0 & i\frac{\sigma^i}{2} \end{pmatrix}$$

Dirac
spinoren: 4-komponentige komplexe Spinoren. Einfachste Darstellung mit
 ${\it P-Transformation}.$

Lorentztransformationen und Darstellungen:

$$\Lambda^{\mu}{}_{\nu} = \delta^{\mu}{}_{\nu} + \omega^{\mu}{}_{\nu}$$

7

(mit infinitesimalem und antisymmetrischem $\omega^{\mu\nu}$ (wenn beide Indizes oben!), z.B Drehung, Boost)

$$\Lambda = \mathbf{1} - \frac{i}{2}\omega^{\mu\nu}L_{\mu\nu}$$

mit $L_{ij} = -L_{ji} = \varepsilon_{ijk} \ell_k$ und $L_{i0} = -L_{0i} = k_i$

Für eine Darstellung S:

$$S(\Lambda) := \mathbf{1} - \frac{i}{2} \omega^{\mu\nu} L_{\mu\nu}$$

1.2.3 Diracspinoren und γ -Matrizen

 $\psi = (\psi_1, \psi_2, \psi_3, \psi_4) = \text{komplexer Diracspinor}.$

Def γ -Matrizen: $\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}\mathbf{1}$

Weyl-Form:

$$\gamma^0 := \begin{pmatrix} 0 & \mathbf{1}_2 \\ \mathbf{1}_2 & 0 \end{pmatrix} \qquad \gamma^i \begin{pmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{pmatrix}$$

Die Generatoren \mathbf{J} , \mathbf{K} lassen sich so ausdrücken:

$$S_{\mu\nu} = \frac{i}{4} [\gamma_{\mu}, \gamma_{\nu}]$$

Dies reproduziert die Darstellungsmatrix $L_{\mu\nu}$ der Lorentztransformation.

$$\gamma^{\mu\dagger}\!\!:\,\gamma^{0\,\dagger}=\gamma^0,\,{\gamma^i}^\dagger=-\gamma^i=\gamma^0\gamma^i\gamma^0$$

$$S^{\dagger}_{\mu\nu} = \gamma^{0} S_{\mu\nu} \gamma^{0}$$

$$S^{-1}(\Lambda) = \mathbf{1} + \frac{i}{2} \omega^{\mu\nu} S_{\mu\nu} = \gamma^{0} S^{\dagger}(\Lambda) \gamma^{0}$$

Def Adjungierter Spinor: $\overline{\psi} := \psi^{\dagger} \gamma^0$

Lorentz:

$$\begin{split} \psi &\longmapsto S(\Lambda) \psi \\ \overline{\psi} &\longmapsto \overline{\psi} S^{-1}(\Lambda) \\ \overline{\psi} \psi &\longmapsto \overline{\psi} \psi \\ \overline{\psi} \gamma^{\mu} \psi &\longmapsto \Lambda^{\mu}{}_{\nu} \overline{\psi} \gamma^{\nu} \psi \\ S^{-1}(\Lambda) \gamma^{\mu} S(\Lambda) &= \Lambda^{\mu}{}_{\nu} \gamma^{\nu} \end{split}$$

1.3 Überblick über relativistische Wellengleichungen

Welche Gleichungen wären erlaubt durch Lorentzinvarianz?

Notation:

- 4-Vektoren: $(x^{\mu}) = (t, \mathbf{x}), (p^{\mu}) = (E, \mathbf{p})$
- Lorentzinvarianten sind Skalarprodukte, z.B. $p^{\mu}p_{\mu}=E^2-\mathbf{p}^2=:m^2$

• Ableitungen: $\partial_{\mu} = \left(\frac{\partial}{\partial x^{\mu}}\right) = (\partial_{t}, \nabla), \ \Box = \partial_{\mu}\partial^{\mu} = \partial_{t} - \Delta$

• Elektrodynamik: $j^{\mu} = (\rho, \mathbf{j})$, $\partial_{\mu} j^{\mu} = 0$, $A^{\mu} = (\phi, \mathbf{A})$, $F^{\mu\nu} = \partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu}$ Maxwell: $\partial_{\mu} F^{\mu\nu} = \mu_0 j^{\nu}$, homogene Gleichung automatisch durch Potentiale erfüllt. Lorentz-Transf.: $x'^{\mu} = \Lambda^{\mu}{}_{\nu} x^{\nu}$, $j'^{\mu}(x') = \Lambda^{\mu}{}_{\nu} j^{\nu}(x)$

1.3.1 Klein-Gordon-Gleichung

 $\phi(x)$ sei Skalarfeld $(\phi \mapsto \phi' \text{ mit } \phi'(x') = \phi(x)).$

$$\Box \phi(x) + m^2 \phi(x) = 0$$

Interpretation?

- Einfachste relativistische Differentialgleichung
- "erraten aus QM" (mit QM Ersetzungsregeln $E \to i\partial_t$, $\mathbf{p} \to -i\nabla$)
- Nichtrelativistischer Limes: ein Teilchen, $E \approx m + \text{Korrektur}$. Ansatz:

$$\psi(\mathbf{x},t) = e^{-imt} \psi_{n.r.}(\mathbf{x},t)$$

$$\Rightarrow \partial_t^2 \psi = (-2im\partial_t \psi_{n.r.} - m^2 \psi_{n.r.} + \mathcal{O}(\ddot{\psi}))e^{-imt}$$

$$\Rightarrow 2im\partial_t \psi_{n.r.} = -\Delta \psi_{n.r.}$$

• Klassische Feldgleichung:

$$\mathcal{L}_{KG} = (\partial^{\mu} \phi^*)(\partial_{\mu} \phi) - m^2 \phi^* \phi$$

Euler-Lagrange:

$$0 = \partial_{\rho} \frac{\partial \mathcal{L}}{\partial (\partial_{\rho} \phi^*)} - \frac{\partial \mathcal{L}}{\partial \phi^*}$$

Rolle als QM Wellengleichung für ein Teilchen in Ortsdarstellung:

Schrödinger-Gleichung nicht-relativistisch: $i\partial_t \psi = -\frac{\Delta}{2m} \psi$

Klein-Gordon-Gleichung: $-\partial_t^2 \phi = (-\Delta + m^2)\phi$

Aufenthaltwahrscheinlichkeitsdichte: Suche $(j^{\mu}) = (\rho, \mathbf{j})$ mit Kontinuitätsgleichung $\partial_{\mu} j^{\mu} = 0$:

$$\phi^*(\Box + m^2)\phi - \phi(\Box + m^2)\phi^* = 0$$
$$= \partial_{\mu}[\phi^*\partial^{\mu}\phi - \phi\partial^{\mu}\phi^*]$$

Definiere 4-Stromdichte:

$$j^{\mu} = \frac{i}{2m} \left[\phi^* \partial^{\mu} \phi - \phi \partial^{\mu} \phi^* \right]$$
$$\Rightarrow \mathbf{j} = -\frac{i}{2m} \left[\phi^* \nabla \phi - \phi \nabla \phi^* \right]$$
$$\Rightarrow \rho = \frac{i}{2m} \left[\phi^* \partial_t \phi - \phi \partial_t \phi^* \right]$$

Interpretation

- ρ ist nicht positiv definit! $\rho < 0$ möglich! Also kann ρ nicht als Aufenthaltswahrscheinlichkeit interpretiert werden.
- Lösungen: $\phi \sim e^{-iEt+i\mathbf{p}\cdot\mathbf{x}}$: $\rho = \frac{E}{m} > 0$, $\rho \sim e^{+iEt-i\mathbf{p}\cdot\mathbf{x}}$: $\rho = -\frac{E}{m} < 0$: negative Energie möglich!?
- Idee: KG-Gl. beschreibt zwei Teilchentypen (Teilchen + Antiteilchen) mit entgegengesetzten Ladungen. Interpretiere ρ als elektrische Ladungsdichte.

1.3.2 Dirac-Gleichung

 $\psi(x)$ sein "Dirac-Spinorfeld" d.h. $\psi \mapsto \psi'$ mit $\psi'(x') = S(\Lambda)\psi(x)$.

$$S(\Lambda) = \mathbf{1}_4 - \frac{i}{2}\omega^{\mu\nu}S_{\mu\nu}$$
$$S_{\mu\nu} = \frac{i}{4}[\gamma_{\mu}, \gamma_{\nu}]$$
$$\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}\mathbf{1}_4$$

Dirac-Gleichung:

$$(i\partial_{\mu}\gamma^{\mu} - m)\psi = 0$$

Interpretation:

- nicht einfachste Differenzialgleichung
- erraten von Dirac: gewünscht "Wurzel aus KG-Gleichung" (Herleitung ∧ Lit.)
- $\mathcal{L} = \overline{\psi}(i\partial_{\mu}\gamma^{\mu} m)\psi$
- Adjungierte Dirac-Gl. $i\partial_{\mu}\overline{\psi}\gamma^{\mu} + m\overline{\psi} = 0$

$$\Rightarrow \partial_{\mu}(\overline{\psi}\gamma^{\mu}\psi) = 0$$

• Def. $j^{\mu} = \overline{\psi} \gamma^{\mu} \psi$, $\rho = \psi^{\dagger} \psi$ ist positiv-definit

Vollständige Darstellung der Lorentztransformationen

$$\psi'(x) = S(\Lambda)\psi(\Lambda^{-1}x) = (\mathbf{1} - \frac{i}{2}\omega^{\mu\nu}S_{\mu\nu})\psi(x - \omega x)$$

und

$$\psi' = (1 - \frac{i}{2}\omega^{\mu\nu}\hat{J}_{\mu\nu})\psi$$

 $(\hat{J}$ Generatoren der Darstellung der Lorentz-Algebra auf dem Fkt.-Raum der Spinorfelder)

$$\implies \hat{J}_{\mu\nu} = i(x_{\mu}\partial_{\nu} - x_{\nu}\partial_{\mu}) + S_{\mu\nu}$$
$$\hat{J}_{\mu\nu} = \hat{L}_{\mu\nu} + S_{\mu\nu}$$

Analog zur KG-Gl. treten Inkonsistenzen auf, wenn man Diracgl. als 1-Teilchen-Theorie auffasst. Die Probleme sind ähnlich aber nicht gleich.

1.4 Physik und Lösungen der Diracgleichung

1.4.1 Freie Lösungen, Impuls-/Spin-Eigenzustände

Dirac-Gleichung: $(i\partial \!\!\!/ - m)\psi = 0$

Gesamt-Drehimpuls: $\hat{J}_{ij} = \hat{L}_{ij} + S_{ij}$. Spin-EZ: $\pm \frac{1}{2}$

Ansatz: $\psi(x) = w(p)e^{\mp ipx}$ (mit $px = p_{\mu}x^{\mu}$)

$$\Rightarrow (\pm p - m)w(p) = 0$$

Eigenwertgleichung für p!

Beachte: $p^2 = p^{\mu} \gamma_{\mu} p^{\nu} \gamma_{\nu} = p^{\mu} p^{\nu} \gamma_{\mu} \gamma_{\nu} = \frac{1}{2} p^{\mu} p^{\nu} \{ \gamma_{\mu}, \gamma_{\nu} \} = p^2 \mathbf{1}$

D.h. $\not p$ hat EWe $\pm \sqrt{p^2}$ vermutlich je 2-fach entartet. Nicht-triviale Lösung der EW-Gl. für $p^2=m^2$ \rightarrow Teilchen mit Ruhemasse m beschrieben.

Bezeichnungen der Lösungen

$$(\not p - m)u(p,s) = 0$$

$$(\not p + m)v(p, s) = 0$$

Beispiel: $p^2=m^2,\,(p^\mu)=(E,0,0,p_z)$ in z-Richtung, $E^2=p_z^2+m^2.$

$$p = p^{\mu} \gamma_{\mu} = E \gamma_0 + p_z \gamma_3 = E \gamma^0 - p_z \gamma^3 = \begin{pmatrix} \mathbf{1}E & -p_z \sigma^3 \\ p_z \sigma^3 & -\mathbf{1}E \end{pmatrix}$$

Es gilt $[p, S_{12}] = 0$, d.h. p und S_z haben simultane Eigenzustände. (allg. p und $\frac{\mathbf{p} \cdot \mathbf{S}}{|\mathbf{p}|} = \text{Helizitätsoperator}$ simultan Diagonalisierbar).

EW-Gleichung lösen:

$$u(p, +1/2) = N \cdot \begin{pmatrix} E + m \\ 0 \\ p_z \\ 0 \end{pmatrix}$$

$$u(p, -1/2) = N \cdot \begin{pmatrix} 0 \\ E+m \\ 0 \\ -p_z \end{pmatrix}$$

mit $N = \frac{1}{\sqrt{E+m}}$.

$$v(p, +1/2) = N \cdot \begin{pmatrix} p_z \\ 0 \\ E+m \\ 0 \end{pmatrix}$$

$$v(p, -1/2) = N \cdot \begin{pmatrix} 0 \\ -p_z \\ 0 \\ E+m \end{pmatrix}$$

Spinoren für andere \mathbf{p} : $\mathbf{p}=R\mathbf{p}_z=e^{-\frac{i}{2}\omega^{\mu\nu}L_{\mu\nu}}\mathbf{p}_z$:

$$u(p,s) = e^{-\frac{i}{2}\omega^{\mu\nu}S_{\mu\nu}}u(p_z,s)$$

Negative Energien

$$\psi(x) = u(p,s) = e^{-iEt + i\mathbf{p}\cdot\mathbf{x}}$$

$$\psi(x) = v(p,s) = e^{+iEt - i\mathbf{p}\cdot\mathbf{x}}$$

D.h. Energie (-E) < 0 für v-Lösungen.

1.4.2 Mehr zum Drehimpuls

Man betrachte die Diracgleichung als quantenmechanische 1-Teilchen-Gleichung. (sinnvoll, solange Antiteilchen und QFT Effekte vernachlässigbar sind).

Formulierung analog zur Schrödingergleichung im Ortsraum:

$$(i\partial \!\!\!/ - m)\psi = 0$$

Multiplikation mit γ^0 von links und nach Zeitableitung umstellen:

$$i\partial_t \psi = (-i\gamma^0 \gamma^i \partial_i + m\gamma^0) \psi =: \hat{H}_D^{(0)} \psi$$

Drehimpuls aus Darstellung der Lorentztransformation.

$$\hat{J}_{ij} = i(x_i\partial_j - x_j\partial_i) + \hat{S}_{ij} = \hat{L}_{ij} + \hat{S}_{ij}$$

$$\hat{\mathbf{J}} = \hat{\mathbf{L}} + \hat{\mathbf{S}}$$

Es gilt $[\hat{H}_D^{(0)}, \hat{\mathbf{J}}] = 0$, d.h. Gesamtdrehimpuls erhalten. $[\hat{H}_D^{(0)}, \hat{\mathbf{L}}] = \gamma^0 \gamma_1 \partial_y - \gamma^0 \gamma_2 \partial_x$.

Helizität

$$rac{\hat{\mathbf{S}}\cdot\hat{\mathbf{p}}}{|\hat{\mathbf{p}}|}$$

$$[\hat{H}_D^{(0)}, \hat{\mathbf{S}} \cdot \hat{\mathbf{p}}] = [\hat{H}_D^{(0)}, \frac{1}{2} \epsilon_{ijk} S_{ij} \hat{p}^k] = \sim \frac{1}{2} \epsilon_{ijk} \gamma^0 \gamma_i \partial_j \partial_k = 0$$

Es gibt simultane Eigenzustände zu Energie, Impuls, Helizität.

Interpretation der 4 Komponenten von ψ

Zu gegebenem Impuls p: 4 linear unabhängige Lösungen:

- E > 0, Helizität $\pm \frac{1}{2}$
- E < 0, Helizität $\pm \frac{1}{2}$

1.4.3 Kopplung ans elektromagnetische Feld

Freie Diracgleichung: $(i\gamma^{\mu}\partial_{\mu} - m)\psi = 0$

Freie Klein-Gordon-Gleichung: $(-\partial_{\mu}\partial^{\mu} - m^2)\phi = 0$

Relativistisches klassisches Teilchen: $L=\frac{1}{2}m\frac{\mathrm{d}x^{\mu}}{\mathrm{d}\tau}\frac{\mathrm{d}x_{\mu}}{\mathrm{d}\tau}$

Kopplung and e.m. Feld soll relativistisch invariant und eichinvariant sein. (Eichung $A^{\mu}(x) \mapsto A^{\mu}(x) + \partial^{\mu}\theta(x)$).

Klassisches Teilchen:

$$L = \frac{1}{2} m \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\tau} \frac{\mathrm{d}x_{\mu}}{\mathrm{d}\tau} - e \frac{\mathrm{d}x_{\mu}}{\mathrm{d}\tau} A^{\mu}(x)$$

(Einfachse denkbare relativistische WW, Wirkung ist eichinvariant, reproduziert Coulomb- und Lorentzkraft)

Kanonisch konjugierter Impuls:

$$\mathcal{P}^{\mu} = \frac{\partial L}{\partial \frac{\mathrm{d}x_{\mu}}{\mathrm{d}\tau}} = m \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\tau} - eA^{\mu}$$

$$\Rightarrow H = \frac{1}{2m} (\mathcal{P}^{\mu} + eA^{\mu})^2$$

Rezept: minimale Kopplung $\mathcal{P}^{\mu} \to \mathcal{P}^{\mu} + eA^{\mu}$, Klein-Gordon-Gleichung:

$$\left[(i\partial^{\mu} + eA^{\mu}) (i\partial_{\mu} + eA_{\mu}) - m^{2} \right] \phi = 0$$

Dirac-Gleichung:

$$(i\partial + eA - m)\psi = 0$$

Elektromagnetische Stromdichte:

$$j^{\mu}=e\overline{\psi}\gamma^{\mu}\psi$$

Eichinvarianz:

$$A^{\mu}(x) \longrightarrow A^{\mu}(x) + \partial^{\mu}\theta(x)$$

 $\psi(x) \longrightarrow e^{ie\theta(x)}\psi(x)$

Eichkovariante Ableitung: $D^{\mu}\psi:=(\partial^{\mu}-ieA^{\mu})\psi.$ Damit gilt $D^{\mu}\psi\longrightarrow e^{ie\theta(x)}D^{\mu}\psi$

1.4.4 Nichtrelativistischer Limes

Nichtrelativistische Schrödingergleichung mit e.m. Feld:

$$(i\partial_t + e\Phi)\psi = \frac{(\hat{\mathbf{p}} + e\mathbf{A})^2}{2m}\psi$$

Klein-Gordon-Gleichung:

$$\left[(i\partial^{\mu} + eA^{\mu}) \left(i\partial_{\mu} + eA_{\mu} \right) - m^2 \right] \phi = 0$$

$$(A^{\mu}) = (\Phi, \mathbf{A}), (i\partial^j) = (-i\partial_j) = (p^j).$$

Ansatz:

• ϕ ist Energie-EZ, $i\partial_t \phi = E\phi$

- E = m + klein, E > 0
- $e|A^{\mu}| \ll m$
- $|\partial_t A^{\mu}| \ll |mA^{\mu}|$
- $|p| \ll m$

Einsetzen in KG-Gl.:

$$[(i\partial_t + e\Phi)(E + e\Phi) - (\hat{\mathbf{p}} + e\mathbf{A})^2 - m^2] \phi = 0$$

Vernachlässigen von $\partial_t \Phi$:

$$\left[(E + e\Phi)^2 - (\hat{\mathbf{p}} + e\mathbf{A})^2 - m^2 \right] \phi = 0$$

Mit $E+e\Phi=m+(E-m+e\Phi)$ mit Vernachlässigung des Quadrates der letzten Klammer:

$$\left[2m(E - m + e\Phi) - (\hat{\mathbf{p}} + e\mathbf{A})^2\right]\phi = 0$$

Daraus folgt direkt die nichtrelativistische Schrödingergleichung.

Diracgleichung mit e.m. Feld

$$(i\not\!\!D-m)\psi=0$$

Ansatz wie oben. Aufteilung des Diracspinors in zwei Paulispinoren:

$$\psi = \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix}$$

$$\begin{pmatrix} iD_0 - m & iD_i\sigma^i \\ -iD_i\sigma^i & -iD_0 - m \end{pmatrix} \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix} = 0$$

Nach Ansatz: $iD_0 \to E + e\Phi$, $iD_i\sigma^i = -\sigma(\hat{\mathbf{p}} + e\mathbf{A})$.

$$(E - m + e\Phi)\psi_A - \boldsymbol{\sigma}(\hat{\mathbf{p}} + e\mathbf{A})\psi_B = 0$$
$$(-E - m - e\Phi)\psi_B + \boldsymbol{\sigma}(\hat{\mathbf{p}} + e\mathbf{A})\psi_A = 0$$

Eliminiere

$$\psi_{B} = \frac{\boldsymbol{\sigma}(\hat{\mathbf{p}} + e\mathbf{A})}{E + m + e\Phi} \psi_{A} \cong \left(\frac{1}{2m} + \mathcal{O}(m^{-2})\right) \boldsymbol{\sigma}(\hat{\mathbf{p}} + e\mathbf{A})$$

$$\Rightarrow (E - m + e\Phi)\psi_{A} = \frac{1}{2m} \left(\boldsymbol{\sigma}(\hat{\mathbf{p}} + e\mathbf{A})\right) \left(\boldsymbol{\sigma}(\hat{\mathbf{p}} + e\mathbf{A})\right) \psi_{A}$$

Vereinfachung der σ -Anteile

$$\begin{split} (\boldsymbol{\sigma}\cdot\hat{\mathbf{O}})(\boldsymbol{\sigma}\cdot\hat{\mathbf{O}}) &= \sigma^i\hat{O}^i\sigma^j\hat{O}^j = \sigma^i\sigma^j\hat{O}^i\hat{O}^j \\ &= \left(\frac{1}{2}\left\{\sigma^i,\sigma^j\right\} + \frac{1}{2}\left[\sigma^i,\sigma^j\right]\right)\hat{O}^i\hat{O}^j = \left(\delta^{ij} + i\epsilon^{ijk}\sigma^k\right)\hat{O}^i\hat{O}^j \\ &= \hat{\mathbf{O}}^2 + i\epsilon^{ijk}\sigma^k\frac{1}{2}[\hat{O}^i,\hat{O}^j] \end{split}$$

Hier:
$$\hat{\mathbf{O}} = (\hat{\mathbf{p}} + e\mathbf{A})$$
:

$$\cdots = (\hat{\mathbf{p}} + e\mathbf{A})^2 + i\epsilon^{ijk}\sigma^k(-i\partial_i eA^j)$$

$$= (\hat{\mathbf{p}} + e\mathbf{A})^2 + e\mathbf{B} \cdot \boldsymbol{\sigma}$$
$$(E - m + e\Phi)\psi_A = \left[\frac{(\hat{\mathbf{p}} + e\mathbf{A})^2}{2m} + \frac{e}{2m}\boldsymbol{\sigma} \cdot \mathbf{B}\right]\psi_A$$

Pauli-Gleichung enthält Term $\mathbf{S} \cdot \mathbf{B} \ (\mathbf{S} = \boldsymbol{\sigma}/2)$ mit Vorfaktor:

$$g_s \frac{e}{2m} \mathbf{S} \cdot \mathbf{B} \qquad , \qquad g_s = 2$$

Bedeutung des g_s -Terms Allg. Hamiltonian für magnetischen Dipol μ im B-Feld:

$$H = -\boldsymbol{\mu} \cdot \mathbf{B}_{ext}$$

Vergleich mit Pauli-Gleichung liefert $\mu_s = -g_s \frac{e}{2m} \mathbf{S}$ mit $g_s = 2$. Das ist ein intrinsisches magnetisches Dipolmoment, proportional zum Spin.

Vergleich mit klassischer Elektrodynamik (rotierende Ladungsverteilung, Ladung Q, Masse M, Drehimpuls \mathbf{L}) liefert $\boldsymbol{\mu} = \frac{Q}{M}\mathbf{L} \Rightarrow$ Klassisches Ergebnis entspricht g = 1.

Interpretation des ersten Terms (identisch in der nicht-relativistischen Schrödingergleichung)

$$\frac{(\hat{\mathbf{p}} + e\mathbf{A})^2}{2m} = \underbrace{\frac{\hat{\mathbf{p}}^2}{2m}}_{E_{bin}} + \underbrace{\frac{e}{2m}(\hat{\mathbf{p}}\mathbf{A} + \mathbf{A}\hat{\mathbf{p}}) + \frac{e^2}{2m}\mathbf{A}^2}_{\text{e.m. WW}}$$

Bsp. homogenes **B**-Feld: setze $\mathbf{A}(x) = -\frac{1}{2}(\mathbf{x} \times \mathbf{B})$, dann $\mathbf{B} = \nabla \times \mathbf{A}$.

$$\hat{\mathbf{p}}\mathbf{A} + \mathbf{A}\hat{\mathbf{p}} = \mathbf{B} \cdot \hat{\mathbf{L}}$$

$$\Rightarrow \text{Erster Term } = \frac{\hat{\mathbf{p}}^2}{2m} + \frac{e}{2m}\mathbf{B} \cdot \hat{\mathbf{L}} + \frac{e^2}{2m}\mathbf{A}^2$$

1.4.5 Weitere Konsequenzen: Spin-Bahn-Kopplung

Höhere Ordnungen im nicht-relativistischen Limes:

- Spin-Bahn-Kopplung $\sim \mathbf{L} \cdot \mathbf{S}$ (Feinstrukturaufspaltung)
- Darwin-Term
- Korrektur E-kin.

Saubere Herleitung durch systematische Entwicklung in Potenzen von m. $\frac{1}{m}$ sei eine kleine Größe. \rightarrow Foldy-Wouthuysen-Transformation/-Bild.

$$(i\not\!\!D-m)\psi = 0$$

$$\Leftrightarrow i\partial_t \psi = (-e\Phi + m\gamma^0 - iD_i\gamma^0\gamma^i)\psi = H_D\psi$$

Idee: Unitäre Transformation / neues "Bild", Zerlegung in 2-Spinoren.

$$\psi = e^{-iS}\psi' = e^{-iS}\begin{pmatrix} \psi'_A\\ \psi'_B \end{pmatrix}$$

S hermitesch, eventuell t-abhängig.

Neuer Hamiltonian:

$$i\partial_t \psi' = i\partial_t (e^{iS}\psi) = (i\partial_t e^{iS})\psi + e^{iS}i\partial_t \psi$$

$$= \left[(i\partial_t e^{iS})e^{-iS} + e^{iS}H_D e^{-iS} \right]\psi'$$

$$H'_D = i(i\dot{S} + \frac{i^2}{2}[S, \dot{S}] + \frac{i^3}{6}[S, [S, \dot{S}]] + \dots) + H_D + i[S, H_D] + \frac{i^2}{2}[S, [S, H_D]] + \dots$$

Idee 2: H'_D soll blockdiagonal sein in 2-Spinoren (bis zu bestimmter Ordnung) \to Gleichung für ψ'_A reicht aus.

Konkret:

$$H_D = m\gamma^0 + (-e\Phi) + \begin{pmatrix} 0 & (\mathbf{p} + e\mathbf{A}) \cdot \boldsymbol{\sigma} \\ (\mathbf{p} + e\mathbf{A}) \cdot \boldsymbol{\sigma} & 0 \end{pmatrix} = \underbrace{m\gamma^0}_{\mathcal{O}(m^1)} + \underbrace{\mathcal{E}}_{\mathcal{O}(m^0)} + \underbrace{\mathcal{O}}_{\mathcal{O}(m^0)}$$

Häufige Umformung: $\gamma^0 O = -O\gamma^0$ mit ungeradem Operator O.

1. Schritt: arbeite bis $\mathcal{O}(m^0)$: Setze $S = \mathcal{O}(m^{-1})$

$$H'_D = H_D + i[S, H_D] + \mathcal{O}(m^{-1}) = m\gamma^0 + \mathcal{E} + \mathcal{O} + i[S, m\gamma^0 + \mathcal{E} + \mathcal{O}] + \mathcal{O}(m^{-1})$$
$$= m\gamma^0 + \mathcal{E} + \mathcal{O} + i[S, m\gamma^0]$$

Lösung: $S = -\frac{i}{2m}\gamma^0 \mathcal{O}$

Damit H'_D komplett ausrechnen bis $\mathcal{O}(m^{-2})$:

$$H'_D = H_D + i[S, H_D] - \dot{S} + \frac{i^2}{2}[S, [S, H_D]] - \frac{i}{2}[S, \dot{S}] + \frac{i^3}{6}[S, [S, [S, H_D]]] + \mathcal{O}(m^{-3})$$

Für die einzelnen Terme finden Wirkung

$$i[S, H_D] = i \left[-\frac{i}{2m} \gamma^0 \mathcal{O}, m\gamma^0 + \mathcal{E} + \mathcal{O} \right] = -\mathcal{O} + \frac{1}{2m} \gamma^0 [\mathcal{O}, \mathcal{E}] + \frac{1}{m} \gamma^0 \mathcal{O}^2$$

$$-\dot{S} = \frac{i}{2m} \gamma^0 \dot{\mathcal{O}}$$

$$\frac{i}{2} [S, \dot{S}] = -\frac{i}{8m^2} [\mathcal{O}, \dot{\mathcal{O}}]$$

$$\frac{i^2}{2} [S, [S, H_D]] = -\frac{1}{2m} \gamma^0 \mathcal{O}^2 - \frac{1}{8m^2} [\mathcal{O}, [\mathcal{O}, \mathcal{E}]] - \frac{1}{2m^2} \mathcal{O}^3$$

$$\frac{i^3}{3!} [S, [S, [S, H_D]]] = \frac{1}{6m^2} \mathcal{O}^3$$

Der neue Hamiltonian ist nun

$$\begin{split} H_D' &= \underbrace{m\gamma^0 + \mathcal{E} + \frac{1}{2m}\gamma^0\mathcal{O}^2 - \frac{1}{8m^2}[\mathcal{O}, i\dot{\mathcal{O}} + [\mathcal{E}, \mathcal{O}]]}_{\text{gerade} =: H_{D, \text{even}}'} + \\ &= \underbrace{\frac{1}{2m}\gamma^0(i\dot{\mathcal{O}} + [\mathcal{O}, \mathcal{E}]) - \frac{1}{6m^2}\mathcal{O}^3}_{\text{ungerade} =: \mathcal{O}'} \\ &=: H_{D, \text{even}}' + \mathcal{O}' \end{split}$$

2. Schritt: arbeite bis $\mathcal{O}(m^-1)$:

In Analogie setzen wir $\psi' = e^{iS'}\psi''$ mit $S' = -\frac{i}{2m}\gamma^0\mathcal{O}'$ und erhalten

$$H_D'' = H_{D,\text{even}}' + i[S', \mathcal{E}] - \dot{S}' + \mathcal{O}(m^{-3}) := D_{D,\text{even}} + \mathcal{O}''$$

3. Schritt: arbeite bis $\mathcal{O}(m^{-2})$:

Wir setzen wieder $\psi'' = e^{i-iS''}\psi'''$ mit $S'' = -\frac{i}{2m}\gamma^0\mathcal{O}'' = \mathcal{O}(m^{-3})$.

HIER FEHLT NOCH DIE GLEICHUNG FÜR $H_D^{\prime\prime\prime}$

Vollständig ausgerechnet:

$$H_D''' = \underbrace{m\gamma^0 + \mathcal{E} + \frac{1}{2m}\gamma^0\mathcal{O}^2}_{\mathcal{O}(m^{-1})} - \underbrace{\frac{1}{8m^2}[\mathcal{O}, i\dot{\mathcal{O}} + [\mathcal{O}, \mathcal{E}]]}_{\mathcal{O}(m^{-2})}$$

- Terme bis $\mathcal{O}(m^{-1})$ liefern genau den Limes aus 1.4.4 inkl. des g-2-Terms
- Zusätzliche Terme der relativistischen Korrektur bis $\mathcal{O}(m^{-2})$

Wir diskutieren diese Terme anhand des Zentralpotentials mit $\mathbf{A} = 0$ und $\Psi(\mathbf{x}, t) = \Psi(r)$ mit $r = |\mathbf{x}|$. Es ergeben sich die Terme

$$\nabla \Psi(r) = \frac{\mathbf{x}}{r} \frac{\mathrm{d}\Psi}{\mathrm{d}r}$$

$$\mathbf{E} = -\nabla \Psi$$

$$\mathcal{E} = e\Psi$$

$$\mathcal{O} = \begin{pmatrix} 0 & \boldsymbol{\sigma} \cdot \mathbf{p} \\ \boldsymbol{\sigma} \cdot \mathbf{p} & 0 \end{pmatrix} = -i \begin{pmatrix} 0 & \boldsymbol{\sigma} \cdot \nabla \\ \boldsymbol{\sigma} \cdot \nabla & 0 \end{pmatrix}$$

$$[\mathcal{O}, \mathcal{E}] = -ie \begin{pmatrix} 0 & \boldsymbol{\sigma} \cdot \mathbf{E} \\ \boldsymbol{\sigma} \cdot \mathbf{E} & 0 \end{pmatrix}$$

$$[\mathcal{O}, [\mathcal{O}, \mathcal{E}]] = (-i)(-ie) \begin{pmatrix} [\boldsymbol{\sigma} \cdot \nabla, \boldsymbol{\sigma} \cdot \mathbf{E}] & 0 \\ 0 & [\boldsymbol{\sigma} \cdot \nabla, \boldsymbol{\sigma} \cdot \mathbf{E}] \end{pmatrix}$$

$$[\boldsymbol{\sigma} \cdot \nabla, \boldsymbol{\sigma} \cdot \mathbf{E}] = \sigma^{i} \sigma^{j} (\partial_{i} E^{j} + E^{j} \partial_{i}) - \sigma^{j} \sigma^{i} E^{j} \partial_{i}$$

$$= \nabla \cdot \mathbf{E} + \underbrace{i \boldsymbol{\sigma} \cdot (\nabla \times \mathbf{E})}_{=0} + \underbrace{i^{2} \epsilon^{ijk} \sigma^{k} E^{j} \partial_{i}}_{=2\boldsymbol{\sigma} \cdot (\mathbf{E} \times \boldsymbol{p})}$$

$$= \nabla \cdot \mathbf{E} - \frac{2}{r} \frac{\mathrm{d}\Psi}{\mathrm{d}r} \boldsymbol{\sigma} \cdot \mathbf{L}$$

Wir finden den nun bis zum $\mathcal{O}(m^{-2})$ Term blockdiagonalen Hamiltonian

$$H_D''' = \frac{e}{8m^2} \nabla \cdot \mathbf{E} - \frac{e}{2m^2r} \frac{\mathrm{d}\Psi}{\mathrm{d}r} \mathbf{S} \cdot \mathbf{L}$$

Der obere Block ist

$$H_{\text{eff}} = m + H_{\mathcal{O}(m^{-1})} + H_{\mathcal{O}(m^{-2})} + \dots$$

$$H_{\mathcal{O}(m^{-1})} = H_{\text{Pauli}} = -e\Psi + \frac{(\mathbf{p} + e\mathbf{A})^2}{2m} + \frac{e}{2m}\boldsymbol{\sigma} \cdot \mathbf{B}$$

$$H_{\mathcal{O}(m^{-2})} = \underbrace{\frac{e}{8m^2}\nabla \cdot \mathbf{E}}_{\text{Darwin-Term}} - \underbrace{\frac{e}{2m^2r}\frac{d\Psi}{dr}\mathbf{S} \cdot \mathbf{L}}_{\text{Spin-Bahn-Kopplung}}$$

Diskussion:

- Darwin-Term: beim Atom $\nabla \cdot \mathbf{E} = 4\pi \rho_{\mathrm{Kern}} \propto \delta^{(3)}(\mathbf{x})$ ergibt sich eine Korrektur für die s-Orbitale, die am Kern eine endliche Aufenthaltswahrscheinlichkeit haben
- Spin-Bahn-Koppluns: Wegen dieses Terms $[H_{\text{eff}}, \mathbf{S}] \neq 0$ und $[H_{\text{eff}}, \mathbf{L}] \neq 0$, aber $[H_{\text{eff}}, \mathbf{J}] = 0$.

Kapitel 2

Ununterscheidbare Teilchen

Bosonen und Fermionen

Klassisch: jedes Teilchen hat eine eindeutige Bahnkurve \rightarrow prinzipiell daran erkennbar.

QM: keine eindeutige Bahnkurve

Fragen

- Existieren "ununterscheidbare Teilchen"? \rightarrow Ja! (experimenteller Beweis)
- Wie beschreibt man das? \rightarrow Mehrteilchensysteme, Zustände, Hilberträume/Operatoren
- Nützlicher Formalismus? → Erzeuger/Vernichter, Zweite Quantisierung, Quantenfeldtheorie

2.1 Unterscheidbare Teilchen

2.1.1 Zustände

Basiszustände für zwei Teilchen ohne Wechselwirkung:

Basis für Teilchen 1: $|n^{(1)}\rangle$, n = 1, 2, ...

Basis für Teilchen 2: $|m^{(2)}\rangle$, $m=1,2,\ldots$

⇒ vernünftige Annahme: Basiszustände für Teilchen 1+2:

 $|n^{(1)}\rangle|m^{(2)}\rangle$, $n, m = 1, 2, \dots$ "Produktzustände"

Hilbertraum: Teilchen 1 $\mathcal{H}_1^{(1)}$, Teilchen 2 $\mathcal{H}_1^{(2)}$. (Oberer Index Teilchenindex, Unterer Index Teilchenzahl)

Teilchen 1+2: $\mathcal{H}_2 = \mathcal{H}_1^{(1)} \otimes \mathcal{H}_1^{(2)}$ (Produktraum)

• \mathcal{H}_2 enthält sowohl Produktzustände (separabel), z.B.

$$|1^{(1)}\rangle|2^{(2)}\rangle$$

oder

$$(|1^{(1)}\rangle + |3^{(1)}\rangle)(|5^{(2)}\rangle + |7^{(2)}\rangle)$$

aber auch verschränkte Zustände ("entangled"), z.B.

$$\frac{|1^{(1)}\rangle|1^{(2)}\rangle - |2^{(1)}\rangle|2^{(2)}\rangle}{\sqrt{2}}$$

Skalarprodukte "offensichtlich" übertragen

$$\left(\langle \psi^{(1)} | \langle \phi^{(2)} | \right) \left(| \psi'^{(1)} \rangle | \phi'^{(2)} \rangle \right) := \left(\langle \psi^{(1)} | \psi'^{(1)} \rangle \right) \cdot \left(\langle \phi^{(2)} | \phi'^{(2)} \rangle \right)$$

Schreibweise: $|\psi^{(1)}\rangle|\phi^{(2)}\rangle=|\psi,\phi\rangle$, Ortsraum-Wellenfunktion: $|x_1^{(1)}\rangle|x_2^{(2)}\rangle=|x_1,x_2\rangle$

$$\langle x_1, x_2 | \psi \rangle =: \psi(x_1, x_2)$$

2.1.2 Observablen/Operatoren

Observable: A_2 : hermitesche Operatoren auf \mathcal{H}_2

• Observablen, die nur ein Teilchen betreffen: entsprechen $A_1^{(1)}$:

$$\langle \psi^{(1)} | \langle \phi^{(2)} | A_2^{(1)} | \psi'^{(1)} \rangle | \phi'^{(2)} \rangle = \langle \psi^{(1)} | A_1^{(1)} | \psi'^{(1)} \rangle \cdot \langle \phi^{(2)} | \phi'^{(2)} \rangle$$
$$A_2^{(1)} = A_1^{(1)} \otimes \mathbf{1}$$

• Analog: Observable betrifft nur Teilchen 2:

$$B_2^{(2)} = \mathbf{1} \otimes B_1^{(2)}$$

Allgemeine Observable: keine Produktstruktur nötig! \to WW zwischen Teilchen! Bsp. Coulomb-Potenzial zwischen Teilchen 1 und 2:

$$\langle \psi^{(1)}, \phi^{(2)} | V_2 | \psi^{(1)}, \phi^{(2)} \rangle = \int d^3 x_1 d^3 x_2 \frac{-\alpha}{|\mathbf{x}_1 - \mathbf{x}_2|} |\psi(\mathbf{x}_1)|^2 |\phi(\mathbf{x}_2)|^2$$

$$\implies V_2 = \int d^3 x_1 d^3 x_2 (|\mathbf{x}_1^{(1)}\rangle \langle \mathbf{x}_1^{(1)} | \otimes |\mathbf{x}_2^{(2)}\rangle \langle \mathbf{x}_2^{(2)} |) \frac{-\alpha}{|\mathbf{x}_1 - \mathbf{x}_2|}$$

Hamiltonian:

$$H_2 = H_1^{(1)} \otimes \mathbf{1} + \mathbf{1} \otimes H_1^{(2)} + H_{WW}^{(1,2)}$$

2.2 Identische/Ununterscheidbare Teilchen

2.2.1 Prinzipien

Exp: Pauliprinzip, Fermigas, Gibbs Paradoxon (keine Mischungsentropie wenn gleichatomige Gase gemischt werden)

Bisheriger Formalismus reicht nicht aus, da die bisherigen Zustände zu detailliert sind (Zuordnung des Teilchenindexes ist überflüssig)

Fundamentale Beobachtungstatsache / Postulat Zustände eines Systems ununterscheidbarer Teilchen sind gegenüber Vertauschung der Teilchenindizes generell symmetrisch oder generell antisymmetrisch.

Bosonen (Spin ganzzahlig) $|...\psi, \phi...\rangle = +|...\phi, \psi...\rangle$

Fermionen (Spin halbzahlig) $|...\psi, \phi...\rangle = -|...\phi, \psi...\rangle$

2.2.2 Zustände

N-Teilchen Hilbertraum $\mathcal{H}_N = \mathcal{H}_1 \otimes \ldots \otimes \mathcal{H}_N$

Permutationsoperator P_{ij} :

$$P_{ij}|...\psi^{(i)}...\phi^{(j)}...\rangle = |...\phi^{(i)}...\psi^{(j)}...\rangle$$

$$(P_{ij})^2 = \mathbf{1}, (P_{ij})^{\dagger} = P_{ij}$$

(Anti-)symmetrischer Hilbertraum:

- $\mathcal{H}_N^{(+)}$ Teilchenraum mit $P_{ij}|\phi^{(+)}\rangle=|\phi^{(+)}\rangle$
- $\mathcal{H}_N^{(-)}$ Teilchenraum mit $P_{ij}|\phi^{(-)}\rangle = -|\phi^{(-)}\rangle$

Bsp. 2 Bosonen

- Basis \mathcal{H}_1 : $|n\rangle$
- Basis \mathcal{H}_2 : $|n^{(1)}, m^{(2)}\rangle$
- Basis

$$\mathcal{H}_2^{(+)}: \frac{|n^{(1)}m^{(2)}\rangle + |m^{(1)}n^{(2)}\rangle}{\sqrt{2}} =: |n,m\rangle^{(+)}$$

Bsp. 2 Fermionen (Vernachlässige Spin)

• Basis

$$\mathcal{H}_{2}^{(-)}: \frac{|n^{(1)}m^{(2)}\rangle - |m^{(1)}n^{(2)}\rangle}{\sqrt{2}} =: |n,m\rangle^{(-)}$$

Bsp. 2 Fermionen (Mit Spin)

- Basis \mathcal{H}_1 : $|n^{\uparrow}\rangle$, $|n^{\downarrow}\rangle$
- Basis \mathcal{H}_2 : Vier Kombinationen von n und m für verschiedene Spineinstellungen oder äquivalent:

$$|n^{(1)}m^{(2)}\rangle\otimes|\uparrow\uparrow\rangle,|n^{(1)}m^{(2)}\rangle\otimes\left(\frac{|\uparrow\downarrow\rangle+|\downarrow\uparrow\rangle}{\sqrt{2}}\right),|n^{(1)}m^{(2)}\rangle\otimes|\downarrow\downarrow\rangle,|n^{(1)}m^{(2)}\rangle\otimes\left(\frac{|\uparrow\downarrow\rangle-|\downarrow\uparrow\rangle}{\sqrt{2}}\right)$$

•
$$\mathcal{H}_{2}^{(1)}$$
:

$$\frac{|n^{(1)}m^{(2)}\rangle - |m^{(1)}n^{(2)}\rangle}{\sqrt{2}} \otimes \begin{cases} \frac{|\uparrow\uparrow\rangle}{\sqrt{2}} \\ \frac{|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle}{\sqrt{2}} \\ |\downarrow\downarrow\rangle \end{cases}$$
$$\frac{|n^{(1)}m^{(2)}\rangle + |m^{(1)}n^{(2)}\rangle}{\sqrt{2}} \otimes \frac{|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle}{\sqrt{2}}$$

Folgerung: Selber Ort unmöglich, wenn Spins gleich.

Frage: Sind obige Zustände eine Basis? Wie konstruiert man allgemein eine Basis von $\mathcal{H}_N^{(\pm)}$?

Antwort: Nimm Basis aus Produktzuständen von \mathcal{H}_N , symmetrisiere/antisymmetrisiere jedes Basiselement (wie für N=2 genutzt).

Def. Symmetrisierungsoperator

$$S_N^{(\pm)} := \frac{1}{N!} \sum_{\mathcal{P}} (\pm 1)^{\mathcal{P}} \mathcal{P}$$

mit Permutationsoperator \mathcal{P} (beliebiges Produkt von P_{ij} -Operatoren).

Es gilt:

(a)
$$P_{ij}S_N^{(\pm)} = \frac{1}{N!} \sum_{\mathcal{P}} (\pm)^{\mathcal{P}} P_{ij} \mathcal{P} = \pm S_N^{(\pm)} = S_N^{(\pm)} P_{ij}$$

(b)
$$\mathcal{P}S_{N}^{(\pm)} = (\pm 1)^{\mathcal{P}}S_{N}^{(\pm)}$$

(c) $S_N^{(\pm)}$ ist hermitesch.

(d)
$$S_N^{(\pm)} S_N^{(\pm)} = S_N^{(\pm)}$$

 $S_N^{(\pm)}$ sind hermitesche Projektionsoperatoren auf $\mathcal{H}_N^{(\pm)}$.

Konstruktion einer Basis

- Nimm Basis von \mathcal{H}_N aus Produktzuständen: $|n_1^{(1)}n_2^{(2)}\cdots n_N^{(N)}\rangle$
- Def. $S_N^{(\pm)} | n_1^{(1)} n_2^{(2)} \cdots n_N^{(N)} \rangle =: | n_1 \cdots n_N \rangle^{(\pm)}$
- Nimm beliebigen Zustand $|\psi_N^{\pm}\rangle \in \mathcal{H}_N^{\pm}$

$$\implies |\psi_N^{\pm}\rangle \in \mathcal{H}_N,$$

$$P_{ij}|\psi_N^{\pm}\rangle = \pm |\psi_N^{\pm}\rangle \implies S_N^{\pm}|\psi_N^{\pm}\rangle = +|\psi_N^{\pm}\rangle$$

$$\implies |\psi_N^{\pm}\rangle = S_N^{\pm} \left(\int |n_1^1 \dots n_N^N\rangle \langle n_1^1 \dots n_N^N| \right) \left(S_N^{\pm}\right)^{\dagger} |\psi_N^{\pm}\rangle$$

$$= \sum \int \underbrace{|n_1 \dots n_N\rangle}_{\text{Basiszustände}} \underbrace{\langle n_1 \dots n_N|\psi_N^{\pm}\rangle}_{\text{Koeffizienten}}$$

In der Tat stimmt die obige Antwort und die Basis ist durch die obige Gleichung gegeben.

• Normierung: per Konstruktion gilt die Vollständigkeitsrelation

$$\mathbf{1}_{\mathcal{H}_N^{\pm}} = \int |n_1 \dots n_N\rangle^{\pm} \langle n_1 \dots n_N|^{\pm}$$

wegen $S_N^{\pm}S_N^{\pm}=S_N^{\pm}$ aber anders normiert als im 2-Teilchen-Beispiel.

Observablen, weitere Motivation für Symmetrisierungspostulate

System aus N identischen Teilchen, A_N sei sinnvolle Observable, $|\psi_N\rangle$ und $|\phi_N\rangle$ seien sinnvolle Zustände.

- $|\psi_N\rangle$ und $P_{ij}|\psi_N\rangle$ "bedeuten das selbe"
- Sinnvolle Annahme für die Observablen

$$\langle \psi_N | A_N | \psi_N \rangle = \langle \psi_N | P_{ij} A_N P_{ij} | \psi_N \rangle$$

 $\implies A_N = P_{ij} A_N P_{ij} \implies [A_N, P_{ij}] = 0$

für jede sinnvolle Observable auf dem Raum der sinnvollen Zustände.

• Spezielle Observable $A_N := |\psi_N\rangle\langle\psi_N|$ ergibt

$$P_{ij}A_N|\psi_N\rangle = A_N P_{ij}|\psi_N\rangle \iff (P_{ij}|\phi_N\rangle)\langle\phi_N|\psi_N\rangle = |\phi_N\rangle\langle\phi_N|P_{ij}|\psi_N\rangle$$

Woraus schließlich folgt dass

$$\iff P_{ij}|\phi_N\rangle = \lambda|\phi_N\rangle \implies \lambda = \pm 1$$

.

- Das Symmetrisierungspostulat wird hierdurch suggestiert. Das Postulat selbst ist noch etwas stärker, denn es besagt, dass für jede Teilchensorte genau nur ein Vorzeichen erlaubt ist.
- Beispiele für Observablen

2 Teilchen unterscheidbar	$m{x}_1, m{x}_2; m{p}_1, m{p}_2; H = rac{m{p}_1^2}{2m} + rac{m{p}_2^2}{2m}; m{L}_1, m{L}_2, m{L}_{ m ges}$
	H sinnvoll, $\boldsymbol{x}_1, \boldsymbol{x}_2$ nicht sinnvoll
2 Teilchen ununterscheidbar	$x_1 - x_2$ nicht sinnvoll,
	aber $x_1 + x_2$, $(x_1 - x_2)^2$, $ x_1 - x_2 ^2$, x_1x_2 sinnvoll

- Vollständiges System kommutierender Observablen ist kompliziert.
- Oft möglich: Rechnen nicht direkt mit \mathcal{H}_N^{\pm} sondern in \mathcal{H} und mit einzelnen Observablen und am Ende: Spezialisieren/Einschränken auf symmetrische bzw. antisymmetrische Zustände.

2.3 Einfache Anwendungen

2.3.1 Grund- und angeregte Zustände

N Teilchen ohne Wechselwirkung;

- 1. Unterscheidbar: z.B. die Elektronen im He-Atom
- 2. Fermionen: z.B. Elektronen im Metall
- 3. Bosonen: mehrere H-Atome

Beispiel: Alle Teilchen im Potential mit möglichen Energien e_1, e_2, e_3, \ldots und Eigenzuständen $|1\rangle, |2\rangle, |3\rangle, \ldots$

- 1. Grundzustand $|1^1, 1^2\rangle$, $E = 2e_1$
 - 1. Angeregter Zustand $|1^12^2\rangle$ oder $|2^11^2\rangle$, $E=e_1+e_2$ 2-fach entartet.
- 2. Grundzustand N: $|1, 2, ..., N\rangle^-$, $E = e_1 + e_2 + ... + e_N$ nicht entartet. e_N ist die maximale besetzte Energie im Grundzustand, genannt Fermienergie
 - 1. Angeregter Zustand: $|1, 2, \dots, N-1, N+1\rangle^-$ nicht entartet! $\Delta E = e_{N+1} e_N$
- 3. Grundzustand N: $|1, 1, \ldots, 1\rangle^+$, $E = Ne_1$
 - 1. Angeregter Zustand: $|2,1,\ldots,1\rangle$ nicht entartet! $\Delta E = e_2 e_1$

2.3.2 Direkter Prozess vs. Austauschterm

Zwei Teilchen: $|\psi\rangle$, $|\phi\rangle$ \longrightarrow Prozess \longrightarrow $|n\rangle$, $|m\rangle$

Anfangszustand $|i\rangle \longrightarrow \text{Endzustand } |f\rangle$. Frage: Was ist die Wahrscheinlichkeit?

$$P_{i \to f} = |A_{i \to f}|^2$$

Unterscheidbar: (entweder nur links oder nur rechts):

• "direkt":

$$A_{i\rightarrow f}^d = \langle n^{(1)} m^{(2)} | \psi^{(i)} \phi^{(2)} \rangle = \langle n | \psi \rangle \langle m | \phi \rangle$$

• "Austauschterm":

$$A_{i \to f}^a = \langle m^{(1)} n^{(2)} | \psi^{(1)} \phi^{(2)} \rangle = \langle m | \psi \rangle \langle n | \phi \rangle$$

• Gesamtwahrscheinlichkeit: "entweder $\langle nm|$ oder $\langle mn|$ "

$$P_{i \to f} = |A_{i \to f}^d|^2 + |A_{i \to f}^a|^2$$

Bosonen:

$$\begin{split} |i\rangle &= \frac{|\psi\phi\rangle + |\phi\psi\rangle}{\sqrt{2}} \qquad |f\rangle = \frac{|nm\rangle + |mn\rangle}{\sqrt{2}} \\ A_{i\to f} &= \langle f|i\rangle = \frac{1}{2} \left(\langle \psi|n\rangle \langle \phi|m\rangle + \langle \phi|n\rangle \langle \psi|m\rangle \right) \cdot 2 = A^d_{i\to f} + A^a_{i\to f} \\ P_{i\to f} &= \left| A^d_{i\to f} + A^a_{i\to f} \right|^2 \end{split}$$

Fermionen (Analog):

$$P_{i \to f} = \left| A_{i \to f}^d - A_{i \to f}^a \right|^2$$

Spezialfall n = m: (Beide Teilchen gehen in den selben Zustand über)

- Fermionen: $P_{i \to f} = 0$
- Bosonen: $P_{i\to f} = 2|A^d_{i\to f}|^2$ (Doppelt so groß wie bei unterscheidbaren Teilchen)

2.3.3 Wasserstoffmolekül H₂

Chemische Bindung, gewisser Atomabstand R minimiert die Energie. Austauschwechselwirkung sehr wichtig \rightarrow Orts-Wellenfunktion.

Im Grundzustand: Orts-Wellenfunktion symmetrisch, Spin antisymmetrisch.

Annahme/Näherung: Kerne fixiert im Abstand R, Positionen der Kerne a und b, Elektronen 1 und 2

$$H = \frac{\mathbf{p}_1^2}{2m} + \frac{\mathbf{p}_2^2}{2m} - \alpha \left(\frac{1}{r_{1a}} + \frac{1}{r_{2a}} + \frac{1}{r_{1b}} + \frac{1}{r_{2b}} - \frac{1}{r_{12}} - \frac{1}{R} \right)$$

$$H = H_{1,a} + H_{2,b} - \alpha \left(\frac{1}{r_{1b}} + \frac{1}{r_{2a}} - \frac{1}{r_{12}} - \frac{1}{R} \right)$$

H-Atom-Zustände, Struktur der 2-Elektron-Zustände.

Erinnerung H-Atom:

Quantenzahlen $n, l, m: \psi_{nlm} \sim R_{nl}(r)Y_{lm}(\theta, \varphi)$

Grundzustand:

$$\psi_{100} = \frac{2}{\sqrt{4\pi}} a_B^{-\frac{3}{2}} e^{-\frac{r}{a_B}}$$

(Bohrscher Radius $a_B = \frac{1}{\alpha m}$).

Energien: $E_1 = -\frac{\alpha^2 m}{2}$, $E_n = \frac{E_1}{n^2}$ (Zusätzlich ungebundene Zustände mit E > 0)

H-Atom mit Proton im Punkt R_a

Selbe Energie-EW, Eigenzustände: $\psi_a(\mathbf{x}) = \psi_{\text{Ursprung}}(\mathbf{x} - \mathbf{R}_a)$

2-Elektron-Zustände 2 Basen von 1-T.-Zuständen um Proton $a | \psi_a, nlm \rangle$ und um Proton $b | \psi_b, nlm \rangle$ Basis von 2-Teilchen-Zuständen (antisymmetrisch): $\mathcal{H}_2^{(-)}$:

$$|\psi_{a,nlm}, \psi_{b,n'l'm'}\rangle^{(-)} \otimes \begin{cases} |\uparrow\uparrow\rangle \\ \frac{|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle}{\sqrt{2}} \\ |\downarrow\downarrow\rangle \end{cases}$$
$$|\psi_{a,nlm}, \psi_{b,n'l'm'}\rangle^{(+)} \otimes \left(\frac{|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle}{\sqrt{2}}\right)$$

Spinoperator kommutiert mit Hamiltonian, des Weiteren: $[S^2, S_z] = 0$. Simultane Eigenzustände:

$$|SM\rangle$$
 $S^2|SM\rangle = S(S+1)|SM\rangle$ $S_z|SM\rangle = M|SM\rangle$

Spin-Notation:

$$\begin{aligned} |1,1\rangle &:= |\uparrow\uparrow\rangle \\ |1,0\rangle &:= \frac{|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle}{\sqrt{2}} \\ |1,-1\rangle &:= |\downarrow\downarrow\rangle \\ |0,0\rangle &:= \frac{|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle}{\sqrt{2}} \end{aligned}$$

Damit Basis:

Ort antisymmetrisch, Spin S = 1: $|\psi_{a,nlm}, \psi_{b,n'l'm'}\rangle^{(-)} \otimes |1, M\rangle$ Ort symmetrisch, Spin S = 0: $|\psi_{a,nlm}, \psi_{b,n'l'm'}\rangle^{(+)} \otimes |0, 0\rangle$

Idee zur Lösung des H₂-Moleküls:

- Ziel: Grundzustandsenergie? Optimaler Abstand R?
- Annahme/Näherung: obigen Basiszustände sind Eigenzustände des vollen Moleküls (d.h. WW klein, H-Atome nur wenig beeinflusst)
- Variationsprinzip: Ansatz sinnvoller Zustände $|\psi_{\text{sinnvoll}}\rangle$

$$E_{var} = \frac{\langle \psi_{\text{sinnvoll}} | H | \psi_{\text{sinnvoll}} \rangle}{\langle \psi_{\text{sinnvoll}} | \psi_{\text{sinnvoll}} \rangle}$$

Auf jeden Fall: $E_{var} \geq E_{Grundzustand}$ (Gleichheit bei guter Wahl)

Heitler-London-Näherung

Wähle $|\psi_{\text{sinnvoll}}\rangle := |\psi\rangle^{(\pm)} = |\phi_a, \phi_b\rangle^{(\pm)} \otimes |SM\rangle$, wobei ϕ_a und ϕ_b die Grundzustände bezüglich der einzelnen H-Atome sind. Bei folgenden Matrixelementen: $\langle SM|SM\rangle = 1$ trägt nicht weiter bei \to ab jetzt nur noch Ortsraum betrachten.

$$\langle \boldsymbol{x} | \phi_{a,b} \rangle = \frac{2}{\sqrt{4\pi}} a_B^{-\frac{3}{2}} e^{-\frac{|\boldsymbol{x} - \boldsymbol{R}_{a,b}|}{a_B}}$$

Längere Rechnung ($\psi^{(\pm)}$ einsetzen und bekannte Skalarproduktrelationen, Normierung ausnutzen und beim Matrixelement auf Eigenzustände von Teilen des Hamiltonians achten):

(a)
$$\langle \psi^{(\pm)} | \psi^{(\pm)} \rangle = 1 \pm |L_{ab}|^2$$
 mit $L_{ab} = \langle \phi_a | \phi_b \rangle = \int d^3x \; \phi_a(\mathbf{x}) \phi_b(\mathbf{x}) \; (\ddot{\mathbf{U}} \text{berlapp}).$

(b)
$$\langle \psi^{(\pm)} | H | \psi^{(\pm)} \rangle = \langle \phi_a^{(1)} \phi_b^{(2)} | H | \phi_a^{(1)} \phi_b^{(2)} \rangle \pm \langle \phi_a^{(1)} \phi_b^{(2)} | H | \phi_b^{(1)} \phi_a^{(2)} \rangle$$

Diagonalterm:

$$\langle \phi_a^{(1)} \phi_b^{(2)} | H | \phi_a^{(1)} \phi_b^{(2)} \rangle = 2E_1 + C_{ab}$$

mit Coulomb-Zusatzenergie

$$C_{ab} = \frac{\alpha}{R} - \alpha \int d^3x \, |\phi_a(\mathbf{x})|^2 \frac{1}{|\mathbf{x} - \mathbf{R}_b|}$$
$$- \alpha \int d^3x \, |\phi_b(\mathbf{x})|^2 \frac{1}{|\mathbf{x} - \mathbf{R}_a|}$$
$$+ \alpha \int d^3x_1 \, d^3x_2 \frac{|\phi_a(\mathbf{x}_1)|^2 |\phi_b(\mathbf{x}_2)|^2}{|\mathbf{x}_1 - \mathbf{x}_2|}$$

Off-Diagonalterm:

$$\langle \phi_a^{(1)} \phi_b^{(2)} | H | \phi_b^{(1)} \phi_a^{(2)} \rangle = 2E_1 |L_{ab}|^2 + A_{ab}$$

mit Austauschterm

$$A_{ab} = \frac{\alpha}{R} |L_{ab}|^2 - \alpha L_{ab}^* \int d^3 x \, \frac{\phi_a^*(\boldsymbol{x})\phi_b(\boldsymbol{x})}{|\boldsymbol{x} - \boldsymbol{R}_a|}$$
$$- \alpha L_{ab} \int d^3 x \, \frac{\phi_a(\boldsymbol{x})\phi_b^*(\boldsymbol{x})}{|\boldsymbol{x} - \boldsymbol{R}_b|}$$
$$+ \alpha \int d^3 x_1 \, d^3 x_2 \frac{\phi_a^*(\boldsymbol{x}_1)\phi_b(\boldsymbol{x}_1)\phi_b^*(\boldsymbol{x}_2)\phi_a(\boldsymbol{x}_2)}{|\boldsymbol{x}_1 - \boldsymbol{x}_2|}$$

Damit

$$E_{var}^{(\pm)} = 2E_1 + \frac{C_{ab} \pm A_{ab}}{1 \pm |L_{ab}|^2}$$

numerisch ausrechnen!

Stabile Bindung? Für welches R?

2.4 Erzeugungs- und Vernichtungsoperatoren

2.4.1 Fock-Raum

Der Fock-Raum ist ein Zustandsraum, der sowohl 1-Teilchen-, also auch Mehr-Teilchen-Zustände enthält.

Start wie bisher: 1-Teilchenraum \mathcal{H}_1 , Basis $|n\rangle$ sei gegeben.

Nun füge hinzu:

- "Vakuumzustand" $|0\rangle$ (Nicht Nullvektor!), $\langle 0|0\rangle=1$
 - \rightarrow Vakuum-Hilbertraum $\mathcal{H}_0 = \{c|0\rangle, c \in \mathbb{C}\}$
- "Fockraum"

Bosonen: $\mathcal{F} := \mathcal{H}_0 \oplus \mathcal{H}_1 \oplus \mathcal{H}_2^{(+)} \oplus \mathcal{H}_3^{(+)} \oplus \dots$ Fermionen: $\mathcal{F} := \mathcal{H}_0 \oplus \mathcal{H}_1 \oplus \mathcal{H}_2^{(-)} \oplus \mathcal{H}_3^{(-)} \oplus \dots$

Basis von \mathcal{F} :

– Vakuum: $|0\rangle$

- 1-Teilchen: $|n\rangle$

- 2-Teilchen: $|n_1 n_2\rangle^{(\pm)}$

- 3-Teilchen: $|n_1n_2n_3\rangle^{(\pm)}$

Skalarprodukte:

$$\langle N\text{-Teilchen-Zustand}|M\text{-Teilchen-Zustand}\rangle = \begin{cases} 0 & N \neq M \\ \text{wie gehabt} & N = M \end{cases}$$

2.4.2 Erzeuger/Vernichter für Bosonen

Erzeugungsoperator a_n^{\dagger} "erzeugt ein zusätzliches Teilchen im Basiszustand $|n\rangle$ "

$$a_n^\dagger: \mathcal{H}_N^{(+)} \to \mathcal{H}_{N+1}^{(+)} \qquad a_n^\dagger |0\rangle = |n\rangle \qquad a_n^\dagger |m\rangle = \sqrt{2} |nm\rangle^{(+)} \qquad a_n^\dagger |mk\rangle^{(+)} = \sqrt{3} |nmk\rangle^{(+)}, \qquad \dots$$

Jeder Basiszustand des Fockraums lässt sich durch mehrfache Anwendung des Erzeugers auf das Vakuum gewinnen.

$$|n_1, ..., n_N\rangle^{(+)} = \frac{1}{\sqrt{N!}} a_{n_1}^{\dagger} \cdots a_{n_N}^{\dagger} |0\rangle$$

Vertauschungsrelationen Nimm einen beliebigen Basiszustand aus \mathcal{F}

$$a_{n_1}^{\dagger} a_{n_2}^{\dagger} | m_1, ..., m_N \rangle^{(+)} = \sqrt{(N+1)(N+2)} | n_1 n_2 m_1, ..., m_N \rangle^{(+)}$$

$$a_{n_2}^{\dagger} a_{n_1}^{\dagger} | m_1, ..., m_N \rangle^{(+)} = \sqrt{(N+1)(N+2)} | n_2 n_1 m_1, ..., m_N \rangle^{(+)}$$

$$\Rightarrow [a_{n_1}^\dagger, a_{n_2}^\dagger] = 0 \qquad \text{(F\"{u}r Bosonen)}$$

Vernichtungsoperator $a_n := (a_n^{\dagger})^{\dagger}$

$$a_n|0\rangle = 0$$

$$a_n|m\rangle = \begin{cases} 0 & n \neq m \\ |0\rangle & n = m \text{ (und Zustände normiert)} \end{cases}$$

$$a_n|m_1, ..., m_N\rangle^{(+)} = \frac{1}{\sqrt{N}} \sum_{i=1}^N \delta_{nm_i}|m_1...m_{i-1}m_{i+1}...m_N\rangle^{(+)}$$

Vertauschungsrelation

$$a_n a_m^{\dagger} |m_1 ... m_N\rangle^{(+)} = a_n \sqrt{N+1} |m m_1 ... m_N\rangle^{(+)} = \delta_{nm} |m_1 ... m_N\rangle + \sum_{i=1}^{N} \delta_{nm_i} |m m_1 ... m_{i-1} m_{i+1} ... m_N\rangle^{(+)}$$
$$a_m^{\dagger} a_n |m_1 ... m_N\rangle^{(+)} = \sum_{i=1}^{N} \delta_{nm_i} |m m_1 ... m_{i-1} m_{i+1} ... m_N\rangle^{(+)}$$

Differenz enthält nur δ_{nm} -Term.

$$[a_n, a_m^{\dagger}] = \delta_{nm} := \langle n | m \rangle$$
$$[a_n^{\dagger}, a_m^{\dagger}] = 0$$
$$[a_n, a_m] = 0$$

Diese Vertauschungsrelationen beschreiben die Bose-Natur der Teilchen.

2.4.3 Erzeuger/Vernichter für Fermionen

Erzeugungsoperator

$$c_n^{\dagger}: \mathcal{H}_N^{(-)} \to \mathcal{H}_{N+1}^- \qquad c_n^{\dagger} |0\rangle = |n\rangle \qquad c_n^{\dagger} |m\rangle = \sqrt{2} |nm\rangle^{(-)} \qquad \dots$$

$$|n_1, ..., n_N\rangle^{(-)} = \frac{1}{\sqrt{N!}} c_{n_1}^{\dagger} \cdots c_{n_N}^{\dagger} |0\rangle$$

Vernichter: $c_n := (c_n^{\dagger})^{\dagger}$

Vertauschungsrelationen Vorgehen analog zu Bosonen.

$$\{c_{n_1}^{\dagger} c_{n_2}^{\dagger}\} = 0$$

$$c_n |m_1 ... m_N\rangle^{(-)} = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} (-1)^{i-1} \delta_{nm_i} |m_1 ... m_{i-1} m_{i+1} ... m_N\rangle^{(-)}$$

$$\{c_n, c_m^{\dagger}\} = \delta_{nm} := \langle n|m\rangle$$

$$\{c_n^{\dagger}, c_m^{\dagger}\} = 0$$

$$\{c_n, c_m\} = 0$$

Diese Vertauschungsrelationen beschreiben die Fermi-Statistik.

2.4.4 Besetzungszahldarstellung

1.-T.-Basiszustände $|\psi_n\rangle$, Mehr-T.-Zustände z.B. $a_{\psi_{n_1}}^\dagger a_{\psi_{n_2}}^\dagger a_{\psi_{n_3}}^\dagger |0\rangle = \sqrt{3!} |\psi_{n_1}\psi_{n_2}\psi_{n_3}\rangle$

Äquivalente Charakterisierung: "... Teilchen mit Zustand ψ_i " $\to Besetzungszahldarstellung$ (Nur sinnvoll für sym./antisym. Zustände, mit abzählbarer Basis)

$$|\psi_1\psi_3\psi_6\rangle^{(\pm)} = |1,0,1,0,0,1,0,0,...\rangle$$

Häufig andere Normierung genutzt:

Bsp:

$$a_{\psi_{1}}^{\dagger} a_{\psi_{2}}^{\dagger} a_{\psi_{3}}^{\dagger} |0\rangle = \sqrt{3!} |\psi_{1} \psi_{3} \psi_{6}\rangle^{(\pm)}$$

$$|\psi_{1} \psi_{3} \psi_{6}\rangle^{(\pm)} = \frac{1}{3!} \sum_{\mathcal{P}} (\pm 1)^{\mathcal{P}} |\psi_{1} \psi_{3} \psi_{6}\rangle$$

$$\langle \psi_{1} \psi_{3} \psi_{6} | \psi_{1} \psi_{3} \psi_{6}\rangle^{(\pm)} = \frac{1}{3!}$$

$$a_{\psi_{1}}^{\dagger} a_{\psi_{1}}^{\dagger} a_{\psi_{5}}^{\dagger} |0\rangle = \sqrt{3!} |\psi_{1} \psi_{1} \psi_{5}\rangle^{(+)}$$

$$|\psi_{1} \psi_{1} \psi_{5}\rangle^{(+)} = \frac{1}{3!} \sum_{\mathcal{P}} |\psi_{1} \psi_{1} \psi_{5}\rangle$$

$$\langle \psi_{1} \psi_{1} \psi_{5} | \psi_{1} \psi_{1} \psi_{5}\rangle^{(+)} = \frac{2!}{3!}$$

Allgemein:

- Falls jeder Zustand maximal einfach besetzt ist, dann Umnormierung mit $\sqrt{N!}$
- Falls Zustände Besetzungszahlen $n_1, n_2, ...,$ haben, dann Umnormierung mit

$$\sim \sqrt{\frac{N!}{n_1!n_2!...}}$$

Besetzungszahldarstellung normiert

$$|n_1, n_2, \ldots\rangle = \pm \cdots \frac{\left(a_{\psi_2}^{\dagger}\right)^{n_2}}{\sqrt{n_2!}} \frac{\left(a_{\psi_1}^{\dagger}\right)^{n_1}}{\sqrt{n_1!}} |0\rangle$$

Vorzeichen für Bosonen immer +.

2.4.5 Formulierung von Observablen

Immer entweder Bose/Fermi aber immer mit a^{\dagger}/a

Nehme direkte normierte Basis $|\psi_n\rangle$

Besetzungszahloperator:

$$\hat{n}_{\psi_k} := a_{\psi_k}^{\dagger} a_{\psi_k}$$
$$\hat{n}_{\psi_k} |0\rangle = 0$$

Vertauschungsrelation:

$$\begin{split} \hat{n}_{\psi_k} a_{\psi_l}^\dagger &= a_{\psi_k}^\dagger a_{\psi_k} a_{\psi_l}^\dagger = a_{\psi_l}^\dagger \hat{n}_{\psi_k} + \delta_{kl} a_{\psi_l}^\dagger \\ [\hat{n}_{\psi_k}, a_{\psi_l}^\dagger] &= \delta_{kl} a_{\psi_l}^\dagger \qquad [\hat{n}_{\psi_k}, \left(a_{\psi_l}^\dagger\right)^{n_l}] = n_l \delta_{kl} \left(a_{\psi_l}^\dagger\right)^{n_l} \end{split}$$

$$\hat{n}_{\psi_k}|n_1, n_2, ..., n_k, ...\rangle = n_k|n_1, n_2, ..., n_k, ...\rangle$$

Teilchenzahloperator:

$$N := \sum_k \hat{n}_{\psi_k}$$

Nebenrechnung:

$$a_{\psi_k}^{\dagger} a_{\psi_l} |\psi_{n_1}, ..., \psi_{n_N}\rangle^{(\pm)} = \sum_{m=1}^{N} \delta_{ln_m} |\psi_{n_1}, ..., \psi_k, ..., \psi_{n_N}\rangle^{(\pm)}$$

(wobei ψ_k den Zustand ψ_{n_m} ersetzt)

Einteilchenobservablen: z.B. kinetische Energie:

$$T_1 = \frac{\mathbf{p}^2}{2m}$$

$$T_N = \sum_{m=1}^{N} T_1^{(m)}$$

Matrixelement zw. 1-T.-Zuständen

$$\langle \psi_k | T_1 | \psi_l \rangle =: T_{kl}$$

$$T_1 | \psi_l \rangle = \sum_k T_{kl} | \psi_k \rangle$$

Wirkung auf N-T.-Zustand:

$$T_N |\psi_{n_1}...\psi_{n_N}\rangle^{(\pm)} = \sum_{m=1}^N \sum_k T_{kn_m} |\psi_{n_1},...,\psi_k,...,\psi_{n_N}\rangle^{(\pm)}$$

Vergleich mit Nebenrechnung:

$$T_N = \sum_{k,l} T_{kl} \ a_{\psi_k}^{\dagger} a_{\psi_l}$$

Zwei-Teilchen-Observablen (z.B. Coulomb-Potential zwischen Teilchen i,j)

$$V_2^{(ij)}: \langle \psi_{k_1} \psi_{k_2} | V_2^{(12)} | \psi_{l_1} \psi_{l_2} \rangle =: V_{k_1, k_2, l_1, l_2}$$

$$V = \frac{1}{2} \sum_{i \neq j} V_2^{(ij)}$$

analog

$$V = \frac{1}{2} \sum_{k_1 k_2 l_1 l_2} V_{k_1, k_2, l_1, l_2} a_{\psi_{k_1}}^{\dagger} a_{\psi_{k_2}}^{\dagger} a_{\psi_{l_2}} a_{\psi_{l_1}}$$

Beispiel Impulsbasis:

Nicht diskret, sondern kontinuierlich. Impuls-EZ für 1 Teilchen $|\mathbf{p}\rangle$, W.fkt $\langle \mathbf{x}|\mathbf{p}\rangle = \frac{1}{\sqrt{2\pi}^3}e^{i\mathbf{p}\cdot\mathbf{x}}$

$$\langle \mathbf{p}' | \mathbf{p} \rangle = \delta^{(3)}(\mathbf{p} - \mathbf{p}')$$

Erzeuger/Vernichter, kontinuierlicher Index:

$$[a_{\mathbf{p}}, a_{\mathbf{p}'}^{\dagger}] = \delta^{(3)}(\mathbf{p} - \mathbf{p}')$$

Alles analog mit $\sum_{k,l} \to \int d^3p \, d^3p'$

$$T = \int d^3p \, d^3p' \, \frac{\mathbf{p}^2}{2m} \, \delta^{(3)}(\mathbf{p} - \mathbf{p}') a_{\mathbf{p}'}^{\dagger} a_{\mathbf{p}}$$

$$T = \int \mathrm{d}^3 p \, \frac{\mathbf{p}^2}{2m} \, a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}}$$

 $\hbox{2-Teilchen-Potentiale in Impuls$ $basis:} \\$

im Ortsraum: $V_2^{(12)} = V(\mathbf{x}_1 - \mathbf{x}_2)$:

$$V = \frac{1}{2} \sum \int V_{\mathbf{p}_{1}'\mathbf{p}_{2}'\mathbf{p}_{1}\mathbf{p}_{2}} a_{\mathbf{p}_{1}'}^{\dagger} a_{\mathbf{p}_{2}'}^{\dagger} a_{\mathbf{p}_{2}} a_{\mathbf{p}_{1}}$$

$$V_{\mathbf{p}_{1}'\mathbf{p}_{2}'\mathbf{p}_{1}\mathbf{p}_{2}} = \langle \mathbf{p}_{1}'\mathbf{p}_{2}'|V_{2}|\mathbf{p}_{1}\mathbf{p}_{2}\rangle$$

$$= \frac{1}{(2\pi)^{6}} \int d^{3}x_{1} d^{3}x_{2} e^{i(\mathbf{p}_{1}\mathbf{x}_{1}+\mathbf{p}_{2}\mathbf{x}_{2}-\mathbf{p}_{1}'\mathbf{x}_{1}-\mathbf{p}_{2}'\mathbf{x}_{2})} V(\mathbf{x}_{1}-\mathbf{x}_{2})$$

$$= \delta^{(3)}(\mathbf{p}_{1}+\mathbf{p}_{2}-\mathbf{p}_{1}'-\mathbf{p}_{2}') \cdot \frac{1}{(2\pi)^{3}} \int d^{3}z e^{i\mathbf{z}\mathbf{q}}V(\mathbf{z})$$

mit $\mathbf{z} = \mathbf{x}_1 - \mathbf{x}_2$ und $\mathbf{q} = \mathbf{p}_2' - \mathbf{p}_2$

$$V = \frac{1}{2} \int d^3 p_1 d^3 p_2 d^3 q \frac{1}{(2\pi)^3} \tilde{V}(\mathbf{q}) a_{\mathbf{p}_1 + \mathbf{q}}^{\dagger} a_{\mathbf{p}_2 - \mathbf{q}}^{\dagger} a_{\mathbf{p}_2} a_{\mathbf{p}_1}$$

2.4.6 Kurz-Überblick über Anwendungen

System identischer Teilchen mit 2.-T.-WW, endl. Volumen

$$H = \underbrace{T + V_{ext}}_{H_0} + V_2$$

Wähle 1-T-Basis aus H_0 Eigenzuständen:

$$H_0|\psi_n\rangle = E_n|\psi_n\rangle$$

Zugehöriger Erzeuger: a_n^{\dagger}

$$T + V_{ext} = \sum_{n} E_n a_n^{\dagger} a_n$$

 V_2 in Impulsbasis:

$$V_2 = \frac{2}{L^3} \sum_{\mathbf{p}, \mathbf{p}', \mathbf{q}} \tilde{V}(\mathbf{q}) a_{\mathbf{p} - \mathbf{q}}^{\dagger} a_{\mathbf{p}' + \mathbf{q}}^{\dagger} a_{\mathbf{p}'} a_{\mathbf{p}}$$

Genereller Hamiltonian für Festkörperelektronen mit spinunabhängigem V_2

$$H = \sum_{\mathbf{k},\sigma} \xi_{\mathbf{k}} c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} + \frac{1}{2L_3} \sum_{\mathbf{k}_1 \mathbf{k}_2 \mathbf{q} \sigma_1 \sigma_2} \tilde{V}(\mathbf{q}) c_{\mathbf{k}_1 - \mathbf{q}, \sigma_1}^{\dagger} c_{\mathbf{k}_2 + \mathbf{q}, \sigma_2}^{\dagger} c_{\mathbf{k}_2 \sigma_2} c_{\mathbf{k}_1 \sigma_1}$$

Genereller Hamiltonian für Bosegas mit Wechselwirkung:

$$H = \sum_{\mathbf{p}} \frac{\mathbf{p}^2}{2m} a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} + \frac{1}{2L^3} \sum_{\mathbf{p}_1 \mathbf{p}_2 \mathbf{q}} \tilde{V}(\mathbf{q}) a_{\mathbf{p}_1 - \mathbf{q}}^{\dagger} a_{\mathbf{p}_2 + \mathbf{q}}^{\dagger} a_{\mathbf{p}_2} a_{\mathbf{p}_1}$$

Anwendung: Hartree-Fock-Näherung

 $c_A^\dagger c_B^\dagger c_C c_D = \text{Produkt}$ aus Paar ABoder aus Paar A'B'

$$A = c_A^{\dagger} c_D$$
 $B = c_B^{\dagger} c_C$ $A' = c_A^{\dagger} c_C$ $B' = c_B^{\dagger} c_D$

Mean-field-Näherung:

$$A = \langle A \rangle + \delta A$$
 $B = \langle B \rangle + \delta B$

$$AB = (\langle A \rangle + \delta A)(\langle B \rangle + \delta B) \approx \langle A \rangle B + A \langle B \rangle - \langle A \rangle \langle B \rangle$$

H.F.-Näherung:

$$c^{\dagger}c^{\dagger}cc \approx A\langle B\rangle + B\langle A\rangle - \langle A\rangle\langle B\rangle - A'\langle B'\rangle - B'\langle A'\rangle + \langle A'\rangle\langle B'\rangle$$

(s. Wick-Theorem)

$$\Rightarrow \quad H^{\rm gen\"{a}hert} \approx {\rm Summe} \ {\rm von} \ {\rm Termen} \ \sim c^{\dagger}c$$

Weitere Anwendungsbeispiele: Supraleitung, Suprafluidität

2.5 Ortsraum, Impulsraum, QFT (Spin=0)

2.5.1 Zur Interpretation der letzten Ergebnisse

$$H = T + V$$

In Impulsbasis:

$$H = \int d^3p \, \frac{\mathbf{p}^2}{2m} a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} + \frac{1}{2} \int d^3p_1 \, d^3p_2 \, d^3q \, \tilde{V}(\mathbf{q}) a_{\mathbf{p}_1 - \mathbf{q}}^{\dagger} a_{\mathbf{p}_2 + \mathbf{q}}^{\dagger} a_{\mathbf{p}_2} a_{\mathbf{p}_1}$$

- freier Anteil: Summe über harmonische Oszillatoren mit $\omega_{\mathbf{p}} = \frac{\mathbf{p}^2}{2m}$.
- Zahl von Teilchen mit **p**: Anregungszahl des entsprechenden Oszillators $n_{\bf p}=a^{\dagger}_{\bf p}a_{\bf p}$
- Bedeutung der Oszillatoren: de Broglie-Wellen der Impuls-Eigenzustände
- Bedeutung von \sum bzw. $\int d^3p$: Oszillatoren sind unabhängig, T beschreibt keine Wechselwirkung zwischen den Teilchen.
- Wechselwirkungsanteil als Feynmandiagramm. (Siehe Vorlesung)
 Das gegebene Feynmandiagramm enthält zwei Teilchen mit Impulsen p₁ und p₂, die von links kommen und in der Mitte wechselwirken mit V(q) (Wie ein bosonisches Austauschteilchen gezeichnet). Danach kommen Teilchen mit veränderten Impulsen p₁ + q und p₂ q rechts raus.

2.5.2 Ortsraum

Ortsraum-EZ für ein Teilchen: $|\mathbf{x}\rangle$.

Erzeuger/Vernichter kontinuierlicher "Index": $a_{\mathbf{x}}^{\dagger}$. Andere Bezeichnung $\hat{\Psi}^{\dagger}(\mathbf{x})$.

$$\begin{split} [\hat{\Psi}(\mathbf{x}), \hat{\Psi}(\mathbf{y})]^{(\pm)} &= 0 \\ [\hat{\Psi}(\mathbf{x}), \hat{\Psi}^{\dagger}(\mathbf{y})]^{(\pm)} &= \delta^{(3)}(\mathbf{x} - \mathbf{y}) \\ \hat{\Psi}^{\dagger}(\mathbf{x})|0\rangle &= |\mathbf{x}\rangle \end{split}$$

Zusammenhang mit Impulsdarstellung:

$$\hat{\Psi}^{\dagger}(\mathbf{x}) = \frac{1}{\sqrt{2\pi^3}} \int d^3 p \, a_{\mathbf{p}}^{\dagger} e^{-i\mathbf{x}\cdot\mathbf{p}}$$

$$\hat{\Psi}(\mathbf{x}) = \frac{1}{\sqrt{2\pi^3}} \int d^3 p \, a_{\mathbf{p}} e^{i\mathbf{x}\cdot\mathbf{p}}$$

Dann mit 2-Teilchen-Potential:

$$V = \frac{1}{2} \int \mathrm{d}^3 x_1 \, \mathrm{d}^3 x_2 \, \hat{\Psi}^{\dagger}(\mathbf{x_1}) \hat{\Psi}^{\dagger}(\mathbf{x_2}) V(\mathbf{x_1} - \mathbf{x_2}) \hat{\Psi}(\mathbf{x_2}) \hat{\Psi}(\mathbf{x_1})$$

Dann freier 1-Teilchen-Hamiltonian:

$$T = \int d^3x_1 d^3x_2 \langle \mathbf{x}_2 | \frac{\mathbf{p}^2}{2m} | \mathbf{x}_1 \rangle \hat{\Psi}^{\dagger}(\mathbf{x}_2) \hat{\Psi}(\mathbf{x}_1)$$
$$= \int d^3x_1 d^3x_2 d^3p \frac{\mathbf{p}^2}{2m} \frac{e^{i(\mathbf{p}\mathbf{x}_2 - \mathbf{p}x_1)}}{(2\pi)^3} \hat{\Psi}^{\dagger}(\mathbf{x}_2) \hat{\Psi}(\mathbf{x}_1)$$

 \mathbf{p}^2 -Term durch Laplaceoperator ersetzen und partielle Integration.

$$= \int \mathrm{d}^3 x_1 \, \mathrm{d}^3 x_2 \, \mathrm{d}^3 p \frac{e^{i(\mathbf{p} \mathbf{x}_2 - \mathbf{p} x_1)}}{(2\pi)^3} \hat{\Psi}^{\dagger}(\mathbf{x_2}) \cdot \frac{-\Delta}{2m} \hat{\Psi}(\mathbf{x_1})$$

Integrieren nach **p** ergibt δ -Funktion.

$$T = \int d^3x \, \hat{\Psi}^{\dagger}(\mathbf{x}) \frac{-\Delta}{2m} \hat{\Psi}(\mathbf{x})$$

Bedeutung und Vergleich:

 $\hat{\Psi}(\mathbf{x})$:

- \bullet Vernichter für Teilchen bei \mathbf{x} .
- Definiert auf Fockraum.
- Auch Quantenfeldoperator genannt.
- Kann auf beliebige Zustände wirken.

 $\psi(x)$:

- 1-Teilchen-QM
- Wellenfunktion $\psi(x) = \langle \mathbf{x} | \psi \rangle$
- Charakterisiert einen bestimmten Zustand $|\psi\rangle$
- Nicht sinnvoll in Mehrteilchentheorie.

Die Ähnlichkeit motivierte den historischen Begriff zweite Quantisierung.

Relation: im Fockraum gibt es einen 1-Teilchen-Unterraum und 1-Teilchen-Zustände. Präpariere einen 1-Teilchen-Zustand $|\psi\rangle$. Dann:

$$\langle 0|\hat{\Psi}(\mathbf{x})|\psi\rangle = \psi(\mathbf{x})$$

2.5.3 Quantenfeldtheorie und Ortsraum

Betrachte nur freien Hamiltonian

$$H = \int d^3x \, \hat{\Psi}^{\dagger}(\mathbf{x}) \frac{-\Delta}{2m} \hat{\Psi}(\mathbf{x}) = \int d^3x \, \frac{1}{2m} (\nabla \hat{\Psi}^{\dagger}(\mathbf{x})) (\nabla \hat{\Psi}(\mathbf{x}))$$

Umgekehrte Sichtweise: starte von anderem Startpunkt \longrightarrow liefert Fockraum.

Starte mit einer klassischen Feldtheorie mit klassischem Feld $\psi(\mathbf{x}, t)$. (Bekannte klassische Feldtheorien sind die Elektrodynamik und die allgemeine Relativitätstheorie)

Lagrangedichte

$$\mathcal{L} = i\psi^*\dot{\psi} - \frac{1}{2m}|\nabla\psi|^2$$

Euler-Lagrange-Gleichungen (Subtilität: ψ^* und ψ als unabhängig betrachten)

$$\frac{\partial \mathcal{L}}{\partial \psi^*} = \frac{\partial}{\partial x^{\mu}} \frac{\partial \mathcal{L}}{\partial \left(\frac{\partial \psi^*}{\partial x^{\mu}}\right)}$$

$$\iff \qquad i\dot{\psi} = \frac{-\Delta}{2m}\psi$$

Die Form ist äquivalent zur Schrödingergleichung, die Bedeutung ist hier aber nur die einer klassischen Feldgleichung.

Kanonisch konjugierter Impuls

$$\pi = \frac{\partial \mathcal{L}}{\partial \dot{\psi}} = i\psi^*$$

Hamiltonian $H = \int d^3x \, \mathcal{H}$

$$\mathcal{H} = \pi \cdot \dot{\psi} - \mathcal{L} = \frac{1}{2m} |\nabla \psi|^2$$

Poissonklammern

$$\{A, B\}_{PK} := \int \left(\frac{\partial A}{\partial \psi(\mathbf{x})} \frac{\partial B}{\partial \pi(\mathbf{x})} - \frac{\partial B}{\partial \psi(\mathbf{x})} \frac{\partial A}{\partial \pi(\mathbf{x})} \right) d^3x$$
$$\frac{\partial \psi(\mathbf{x})}{\partial \psi(\mathbf{y})} = \delta^{(3)}(\mathbf{x} - \mathbf{y})$$
$$\{\psi(\mathbf{x}), \pi(\mathbf{y})\}_{PK} = \delta^{(3)}(\mathbf{x} - \mathbf{y})$$
$$\{\psi(\mathbf{x}), \psi(\mathbf{y})\}_{PK} = 0$$

Quantisierung Rezept: "kanonische Quantisierung"

Ersetze $ih\{\ ,\ \}_{PK}\longrightarrow [\ ,\]$. Die kanonische Quantisierung liefert Operatoren $\hat{\Psi}(\mathbf{x}),\,\hat{\pi}(\mathbf{x})=i\hat{\Psi}^{\dagger}(\mathbf{x}),\,\hat{\mathcal{H}}.$

$$[\hat{\Psi}(\mathbf{x}), \hat{\Psi}(\mathbf{y})]^{(\pm)} = 0 \qquad [\hat{\Psi}(\mathbf{x}), \hat{\Psi}^{\dagger}(\mathbf{y})]^{(\pm)} = \delta^{(3)}(\mathbf{x} - \mathbf{y})$$
$$\hat{H} = \int d^3x \, \hat{\mathcal{H}}(\mathbf{x}) = \int d^3x \, \frac{1}{2m} (\nabla \hat{\Psi}^{\dagger}(\mathbf{x})) (\nabla \hat{\Psi}(\mathbf{x}))$$

2.5.3. Anhang: Kanonische Quantisierung

Rezept, um eine sinnvolle Quantentheorie zu definieren.

Klassische Theorie	Quantentheorie
ein Paar von "kanonischen Variablen" q,\dot{q} "ein	Forderung: es existieren Operatoren auf dem Zu-
Freiheitsgrad"	standsraum mit \hat{q} , \hat{p} und
$L(q,\dot{q}) o q, p = \frac{\partial L}{\partial \dot{q}}$ kanon. konj. Impuls	$\hat{H} = H(\hat{q}, \hat{p})$
$ ightarrow H(q,p) = p\dot{q} - L$	$\min [\hat{A}, \hat{B}] = i\hbar \{A, B\}_{PK}$
Bewegungsgleichung	
$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \dot{q}} = \frac{\partial L}{\partial q}$	
oder äquivalent	
$\dot{q} = \frac{\partial H}{\partial p} , \dot{p} = -\frac{\partial H}{\partial q}$	
oder äquivalent	
$\frac{\mathrm{d}}{\mathrm{d}t}A = \{A, H\}_{PK}$	
mit	
$\{A, B\}_{PK} = \frac{\partial A}{\partial q} \frac{\partial B}{\partial p} - \frac{\partial A}{\partial p} \frac{\partial B}{\partial q}$	

Verallgemeinerung: viele Variablen $q_1(t)$, $q_2(t)$, $q_3(t)$,... bzw. unendlich viele Variablen und auch kontinuierliche Variablen $q_x(t) =: q(t,x)$ ("Feld")

Beispiel: Harmonischer Oszillator

$$L = \frac{m}{2}\dot{q}^2 - \frac{m\omega^2}{2}q^2$$

$$p = \frac{\partial L}{\partial \dot{q}} = m\dot{q}$$

$$H = p\dot{q} - L = \frac{p^2}{2m} + \frac{m\omega^2}{q}q^2$$

Bewegungsgleichung aus Lagrange

$$m\ddot{q} = -m\omega^2 q$$

Bewegungsgleichung aus Hamilton

$$\dot{p} = -m\omega^2 q$$
 , $\dot{q} = \frac{p}{m}$

QT: Operatoren $\hat{q},\,\hat{p}$ mit $[\hat{q},\hat{p}]=i\hbar$

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{m\omega^2}{2}\hat{q}^2$$

36

Aus dem Kommutator $[\hat{q}, \hat{p}] = i\hbar$ folgt

$$\langle x|p\rangle = N \cdot e^{ipx/\hbar}$$

In Ortsdarstellung folgt

$$\hat{p} = -i\hbar \frac{\partial}{\partial x}$$

Warum ist das Rezept sinnvoll? \rightarrow Die so erzeugte QT reproduziert die ursprüngliche klassische Theorie im klassischen Limes!

Beispiel:

$$\begin{split} \hbar \frac{\mathrm{d}}{\mathrm{d}t} \langle \psi | \hat{p} | \psi \rangle &= \langle \psi | i [\hat{H}, \hat{p}] | \psi \rangle \\ [\hat{H}, \hat{p}] &= m \omega^2 \hat{q} i \hbar \\ \Rightarrow \frac{\mathrm{d}}{\mathrm{d}t} \langle \hat{p} \rangle &= -m \omega^2 \langle \hat{q} \rangle \end{split}$$

D.h. die QT liefert, dass die Erwartungswerte die klassischen Bewegungsgleichungen erfüllen!

Ehrenfest-Theorem

$$\frac{\mathrm{d}}{\mathrm{d}t}\hat{A} = \frac{i}{\hbar}[\hat{H}, \hat{A}]$$

(Entspricht der klassischen Bewegungsgleichung mit Poissonklammern)

2.5.4 Quantenfeldtheorie und Impulsraum

Startpunkt: $\mathcal{L} = i\psi^*\psi - \frac{1}{2m}|\nabla\psi|^2$.

Wie kann man die Struktur des Zustandsraums ermitteln?

Ansatz: neue Operatoren $a_{\mathbf{p}}$:

$$\hat{\Psi}(\mathbf{x}) = \frac{1}{\sqrt{2\pi^3}} \int d^3 p \, a_{\mathbf{p}} \, e^{i\mathbf{p} \cdot \mathbf{x}}$$

simple Rechnung erzeugt Vertauschungsrelationen:

$$[a_{\mathbf{p}}, a_{\mathbf{p}'}] = 0$$
 , $[a_{\mathbf{p}}, a_{\mathbf{p}'}^{\dagger}] = \delta^{(3)}(\mathbf{p} - \mathbf{p}')$

Hamiltonian wird zu

$$\hat{H} \int \mathrm{d}^3 p \, \frac{\mathbf{p}^2}{2m} a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}}$$

[HIER FEHLT EIN GANZES STÜCK ZUM ERZEUGTEN FOCKRAUM UND ZUR INTERPRETATION DER ZUSTÄNDE - Vorlesung 16.06.2021]

2.5.5 Relativistische Quantenfeldtheorie

Frage: Kausalität? (Hier wurde viel gezeichnet... - Vorlesung 17.06.2021)

Man hat gezeigt, dass bei der Zeitentwicklung eines Orts-EZ zu einem späteren Zeitpunkt das Teilchen mit einer Wahrscheinlichkeit $\neq 0$ an einem raumartig getrennten Ort auftauchen kann \rightarrow nicht kausal!

Umformulierung mit Feldoperatoren

$$|\mathbf{x}\rangle = \hat{\Psi}^{\dagger}(\mathbf{x})|0\rangle$$

Heisenberg-Bild:

$$\hat{\Psi}_H(\mathbf{x},t) = e^{i\hat{H}t}\hat{\Psi}(\mathbf{x})e^{-i\hat{H}t} = \frac{1}{\sqrt{2\pi^3}}\int d^3p \, a_{\mathbf{p}} \, e^{-iE_{\mathbf{p}}t + i\mathbf{p}\mathbf{x}}$$

$$\hat{\Psi}_{H}^{\dagger}(\mathbf{x},t)|0\rangle = e^{i\hat{H}t}\hat{\Psi}^{\dagger}(\mathbf{x})|0\rangle = e^{i\hat{H}t}|\mathbf{x}\rangle$$

Kausalität: Übergang von Ereignis am Koordinatenursprung zu Ereignis am Raumzeitpunkt \mathbf{x} , t (Ortseigenzustände mit Zeitentwicklung)

$$\langle \mathbf{x}, t | 0, 0 \rangle = \langle 0 | \hat{\Psi}_H(\mathbf{x}, t) \hat{\Psi}_H^{\dagger}(0, 0) | 0 \rangle = \langle 0 | [\hat{\Psi}_H(\mathbf{x}, t), \hat{\Psi}_H^{\dagger}(0, 0)] | 0 \rangle$$

Problem:

$$[\hat{\Psi}_H(\mathbf{x},t),\hat{\Psi}_H^{\dagger}(0,0)] = \frac{1}{\sqrt{2\pi^2}} \int d^3p \ e^{-iE_{\mathbf{p}}t + i\mathbf{p}\mathbf{x}} =: \Delta(\mathbf{x},t) \neq 0 \quad (\text{sogar für } |\mathbf{x}| > ct)$$

Lösungsmöglichkeiten:

- $E_{\mathbf{p}} = \sqrt{\mathbf{p}^2 + m^2}$ korrekt relativistisch
- Lorenzinvariantes Integralmaß

$$\int d^3p \longrightarrow \int d^4p \, \delta((p^0)^2 - \mathbf{p}^2 - m^2)\theta(p^0)$$

Damit ist $\hat{\Psi}_H(\mathbf{x}, t)$ ein Skalarfeldoperator (unter Lorentztransformation). Vertauschungsrelation nicht wesentlich geändert, aber $\Delta(\mathbf{x}, t)$ ist jetzt lorentzinvariant.

$$\Delta(x^{\mu}) = \Delta(\Lambda^{\mu}_{\ \nu}x^{\nu})$$

• Es muss einen zweiten Teilchentyp geben, welcher die selbe Energie-Impuls-Relation haben sollte (selbe Ruhemasse), aber neue Erzeuger $b_{\mathbf{p}}^{\dagger}$, $\hat{\Phi}_{H}(\mathbf{x},t)$.

Kausaler Feldoperator:

$$\begin{split} \hat{\Psi}_{\text{kausal}}(\mathbf{x},t) &= \hat{\Psi}_{H}(\mathbf{x},t) + \hat{\Psi}_{H}^{\dagger}(\mathbf{x},t) \\ &= \int \mathrm{d}^{4}p \, \delta(p^{2} - m^{2}) \theta(p^{0}) \left[a_{\mathbf{p}} e^{-iE_{\mathbf{p}}t + i\mathbf{p}\mathbf{x}} + b_{\mathbf{p}}^{\dagger} e^{iE_{\mathbf{p}}t - i\mathbf{p}\mathbf{x}} \right] \end{split}$$

$$[\hat{\Psi}_{\rm kausal}(\mathbf{x},t),\hat{\Psi}^{\dagger}_{\rm kausal}(0,0) = \Delta(x^{\mu}) \mp \Delta(-x^{\mu})$$

Falls $|\mathbf{x}| > ct$: $-x^{\mu}$ und x^{μ} gehen durch Lorentztransformation ineinander über.

 \Rightarrow Aufgrund der Lorentzinvariant von Δ ist der Kommutator für raumartig getrennte Bosonen = 0.

Bedeutung

- relativistische QT muss QFT sein, um Kausalität zu ermöglichen
- Antiteilchen müssen existieren mit selber Ruhemasse \rightarrow Fundamentale Vorhersage \rightarrow bestätigt!
- Theorie aufgebaut aus kausalen Feldoperatoren, d.h. $a_{\bf p} \leftrightarrow b_{\bf p}^{\dagger}$ tauchen immer gemeinsam auf, z.B. auch im Hamiltonian.
 - \Rightarrow Teilchenvernichtung \leftrightarrow Antiteilchenerzeugung

Teilchenzahl kann nicht konstant bleiben \rightarrow bestätigt!

- Das Vorzeichen in $[\ ,\]^{(\pm)}$ muss sein \to Bosonen!
 - \Rightarrow fundamentale Vorhersage: Bosonen haben ganzzahligen Spin, Fermionen halbzahligen Spin \rightarrow bestätigt!

2.5.6 Ausblick auf QFT für Vielteilchensysteme

Lineare Kette mit Orten q_1, \ldots, q_N . Bsp. nur nächste-Nachbar-WW.

$$L = \sum_{i} \frac{m}{2} \dot{q}_{i}^{2} - \sum_{i} \kappa \frac{(q_{i+i} - q_{i})^{2}}{2}$$

 \Rightarrow Vibrationswellen/Schallwellen mit Dispersionsrelation $\omega(k)$

Quantisierung liefert Schallwellenquanten ("Phononen")

Kapitel 3

Streutheorie

3.1 Grundbegriffe

3.1.1 Motivation

Interessante Fragen:

- zeitabhängige Phänomene \rightarrow Prozesse
- Wie findet man \hat{H} aus gegebenen Energie-EW?

Streuung: Ein Teilchen bewegt sich auf ein Potential zu und wird abgelenkt. Die Ablenkung hängt mit der Struktur des Potentials zusammen.

Beispiel:

- elastische Streuung: Natur/innere Struktur der Teilchen ändert sich nicht, E, $|\mathbf{p}|$ bleiben gleich. (z.B. Rutherford, Compton, Bhabha, Rayleigh)
- inelastische Streuung: Innere Struktur der Teilchen kann sich ändern. (z.B. Photoeffekt, $e^- + H^{1s} \to e^- + H^{2s}, pp \to pp + \pi^0$)

3.1.2 Übersicht

[Hier gab es einige Zeichnungen]

Wichtige Parameter:

- Streuwahrscheinlichkeit in gewisse Winkel $\to \frac{d\sigma(\theta,\varphi)}{d\Omega}$
- Größe des Streuteilchens / "Ausdehnung" des Potentials \rightarrow de-Broglie-Wellenlänge $|\mathbf{p}| = \frac{h}{\lambda} \leftrightarrow$ Reichweite des Potentials.
 - Falls $\lambda \ll$ Reichweite \Rightarrow innere Struktur des Potentials auflösbar, sonst sehr einfache Winkelverteilung
- Stärke des Potentials \rightarrow falls $|V| \ll E$, evtl "Taylorentwicklung" in V möglich

Themenübersicht

• Allgemeine Formulierung:

S- T-Matrix, $\langle \sim$ freie Teilchen für $t \to \infty | \sim$ freie Teilchen bei $t \to -\infty, p_i \rangle$

Relation S-Matrix \leftrightarrow Wirkungsquerschnitt

optisches Theorem

exakte Gleichungen: Lippmann-Schwinger-Gleichung, Greensche Funktionen \rightarrow Näherungen

Näherungen: zeitabhängige Störungstheorie (→ Feynmandiagramme der Teilchenphysik)

• nichtrelativistische elastische Streuung an Potential $V(\mathbf{x})$

Spezialfall, in obigem enthalten

Streuwelle $\sim f(\theta, \varphi) \frac{e^{ikr}}{r}$

Relation $f \leftrightarrow \text{Wirkungsquerschnitt}$

Störungstheorie für kleines $V \to \text{Borusche N\"{a}}$ herung

Partialwellenentwicklung \rightarrow insbesondere für kleine Reichweite

• (Themenreihenfolge von unten nach oben)

3.1.3 Grundstruktur der 3-dimensionalen Streuung (nichtrelativisch, elastisch)

$$\hat{H} = \frac{\hat{\mathbf{p}}^2}{2m} + \hat{V} = \hat{H}_0 + \hat{V}$$

Annahme: $|\mathbf{x}| \cdot V(\mathbf{x}) \longrightarrow 0$ für $|\mathbf{x}| \to \infty$.

Suche Lösung $\psi(\mathbf{x},t)$ für einfallenden Zustand E, \mathbf{p} .

$$\hat{H}\psi = E\psi$$
 , $E = \frac{\hbar^2 \mathbf{k}^2}{2m} > 0$

Vgl. 1D Potentialstufe $V(x) \sim \Theta(a-|x|)$: Einfallende Welle resultiert in einer reflektierten und transmittierten Welle mit Koeffizienten r und t.

$$\psi(x) = \begin{cases} \text{links} & e^{ipx} + re^{-ipx} \\ \text{rechts} & te^{ipx} \\ \text{mitte} & \text{irgendwas} \end{cases}$$

Ansatz

• einlaufend: $\phi_{\mathbf{k}}(\mathbf{x}) = e^{i\mathbf{k}\mathbf{x}}$

• auslaufend: $f(\theta, \varphi) \frac{e^{ikr}}{r}$

$$\psi_{\text{gesamt}} \cong e^{i\mathbf{k}\mathbf{x}} + f(\theta, \varphi) \frac{e^{ikr}}{r}$$

Der Ansatz löst die Schrödingergleichung für $x \to \infty$.

Beweis:

$$\hat{H}\psi = \left[\frac{\hbar^2}{2m}(-i\nabla)^2 + V(\mathbf{x})\right]\psi = E\psi = \frac{\hbar^2\mathbf{k}^2}{2m}\psi$$

$$\Leftrightarrow \frac{\hbar^2}{2m}(-\Delta - \mathbf{k}^2)\psi(\mathbf{x}) = -V(\mathbf{x})\psi(\mathbf{x})$$

 $x \to \infty$:

$$(\Delta + \mathbf{k}^2)\Psi(\mathbf{x}) = 0$$

Das gilt trivialerweise für die einfallende Welle.

Gestreute Welle (Längere Rechnung \rightarrow schreibe Δ in Kugelkoordinaten)

$$\Delta \psi_{\text{streu}} \stackrel{r \to \infty}{=} (ik)^2 f(\theta, \varphi) \frac{e^{ikr}}{r} + \mathcal{O}(r^{-2}) = -k^2 \psi_{\text{streu}}$$

Damit haben wir die asymptotische Lösung durch einlaufendes ϕ und auslaufende Kugelwelle bestimmt, die interessante Größe ist die Streuamplitude $f(\theta, \varphi)$.

Messbare Stromdichten Gegeben sei ein Teilchenstrahl mit einer gegebenen Anzahl an Teilchen pro Zeit pro Fläche. := $|\mathbf{j}_{ein}|$ (Einlaufende Stromdichte)

Nach Streuung betrachten wir Teilchen in einem infinitesimalen Raumwinkel d Ω und zählen darin die Teilchen pro Zeit. := dI_{aus} (auslaufender Strom)

Das Verhältnis der beiden Größen wird als differenzieller Wirkungsquerschnitt d σ definiert:

$$d\sigma \cdot |\mathbf{j}_{ein}| = dI_{aus}$$

und

$$dI_{aus} = |\mathbf{j}_{streu}| \cdot r^2 d\Omega$$

Konkret mit obiger Streulösung:

$$\mathbf{j}_{\text{ein}} = \frac{\hbar \mathbf{k}}{m}$$
 $\mathbf{j}_{\text{aus}} = \frac{\hbar k \mathbf{e}_r}{m} \frac{1}{r^2} \cdot |f(\theta, \phi)|^2 + \mathcal{O}(r^{-3})$

Damit:

$$d\sigma = |f(\theta, \varphi)|^2 d\Omega$$

3.2 Detail-Analyse der Potentialstreuung

3.2.1 Differentialgleichung, Greenfunktion, Integralgleichung

Gewünscht: $\hat{H}\psi_{\mathbf{k}} = E\psi_{\mathbf{k}}, E = \frac{\hbar^2 \mathbf{k}^2}{2m}$

$$(\Delta + \mathbf{k}^2)\psi_{\mathbf{k}}(\mathbf{x}) = v(\mathbf{x})\psi_{\mathbf{k}}(\mathbf{x})$$
 mit $v(\mathbf{x}) := \frac{2m}{\hbar^2}V(\mathbf{x})$

Außerdem gewünscht ist die Randbedingung

$$\psi_{\mathbf{k}}(\mathbf{x}) \cong e^{i\mathbf{k}\cdot\mathbf{x}} + f(\theta, \varphi) \frac{e^{i\mathbf{k}\cdot\mathbf{x}}}{r}$$

Greensche-Funktion obigen Form der Schrödingergleichung:

$$(\Delta + k^2)G(\mathbf{x}) = \delta^{(3)}(\mathbf{x})$$
 mit dem "Yukawapotential" $G(\mathbf{x}) = -\frac{e^{ik|\mathbf{x}|}}{4\pi|\mathbf{x}|}$

Damit lässt sich die Schrödingergleichung zu einer Integralgleichung umformen:

$$\psi_{\mathbf{k}}(\mathbf{x}) = e^{i\mathbf{k}\cdot\mathbf{x}} + \int d^3x' G(\mathbf{x} - \mathbf{x}')v(\mathbf{x}')\psi_{\mathbf{k}}(\mathbf{x}')$$

Bemerkungen:

- Das ist eine Integralgleichung für $\psi_{\mathbf{k}}$ (immer noch nichttrivial)
- Ist äquivalent zur Schrödingergleichung (Beweis durch Einsetzen)
- Randbedingung ist auch erfüllt:

Ebene Welle steht schon da, das Integral werten wir für $|\mathbf{x}| \gg \text{Reichweite}$ des Potentials, $|\mathbf{x}| \gg |\mathbf{x}'|$ aus:

$$|\mathbf{x} - \mathbf{x}'| = |\mathbf{x}| (1 - \mathbf{e}_x \cdot \frac{\mathbf{x}'}{|\mathbf{x}|} + \dots) \stackrel{r \to \infty}{=} |\mathbf{x}| - \mathbf{e}_x \cdot \mathbf{x}'$$
$$\frac{e^{ik|\mathbf{x} - \mathbf{x}'|}}{|\mathbf{x} - \mathbf{x}'|} \cong \frac{e^{ikx}e^{-ik'x'}}{x} \quad \text{mit} \quad k' = \mathbf{e}'_x \cdot \mathbf{k}$$

Damit

$$\psi_k(\mathbf{x}) \cong e^{i\mathbf{k}\cdot\mathbf{x}} + \frac{e^{ikr}}{r} \cdot \underbrace{\left(-\frac{1}{4\pi}\right) \int d^3x' \, e^{-i\mathbf{k}'\mathbf{x}'} v(\mathbf{x}') \psi_{\mathbf{k}}(\mathbf{x}')}_{=f(\mathbf{e}_{\mathbf{k}'})=f(\theta,\varphi)}$$

3.2.2 Bornsche Näherung

Näherung für schwache Potentiale, V="klein"

$$\psi_{\mathbf{k}\mathbf{x}} = \phi_{\mathbf{k}\mathbf{x}} + \int_{x'} G_{xx'} v_{x'} \psi_{\mathbf{k}x'}$$

Variablen umbenennen:

$$\psi_{\mathbf{k}\mathbf{x}'} = \phi_{\mathbf{k}\mathbf{x}'} + \int_{x''} G_{x'x''} v_{x''} \psi_{\mathbf{k}x''}$$

Einsetzen der zweiten Gleichung in das erste Integral:

$$\psi_{\mathbf{k}\mathbf{x}} = \phi_{\mathbf{k}\mathbf{x}} + \int_{x'} G_{xx'} v_{x'} \phi_{\mathbf{k}x'} + \int_{x'} \int_{x''} G_{xx'} v_{x'} G_{x'x''} v_{x''} \psi_{\mathbf{k}x''}$$

Die ersten beiden Terme sind bekannt, der letzte enthält noch ψ . Durch Iteration dieses Verfahrens verschiebt sich der unbekannte Term weiter nach hinten. Es entsteht eine Potenzreihe in $v(\mathbf{x})$.

$$\psi_{\mathbf{k}}(\mathbf{x}) = \phi_{\mathbf{k}}(\mathbf{x}) + \psi_{\mathbf{k}}^{(1)}(\mathbf{x}) + \dots$$

Für alle Ordnungen gibt es eine explizite Form. Oft reichen wenige Ordnungen aus.

Allerdings: es ist nicht klar, ob $\psi_{\mathbf{k}}$ als Potenzreihe darstellbar bzw. ob die Potenzreihe konvergent ist.

Ergebnis für Streuamplitude

$$f = f^{(1)} + f^{(2)} + \dots$$

$$f^{(n)} = -\frac{m}{2\pi} \int d^3x' e^{-i\mathbf{k}\cdot\mathbf{x}} V(\mathbf{x}') \psi_{\mathbf{k}}^{(n-1)}(\mathbf{x}')$$

Besonders interessant: 1. Bornsche Näherung

$$f^{(1)} = -\frac{m}{2\pi} \int d^3x' \, e^{i(\mathbf{k} - \mathbf{k}')\mathbf{x}'} V(\mathbf{x})$$

3.3 Mathematische Methoden - Funktionen in drei oder weniger dimensionaler Physik

3.3.1 Komplexe und reelle Analysis

Funktionenräume

Besonders interessant sind die p Normen und L^p Räume

$$||f||_p := \left(\int |f(x)|^p dx \right)^{1/p}$$

 $L^p := \left\{ f \middle| ||f||_p < \infty \right\}$

mit gewissen Definitionsbereichen.

Interessant:

$$L^{1} \qquad \qquad \int |f(x)| dx < \infty$$

$$L^{2} \qquad \qquad \int |f(x)|^{2} dx < \infty$$

Distributionen

Die Distributionen $\delta(x), \theta(x)$, etc. als Element aus dem Dualraum der Testfunktionen $f \mapsto D(f) =$ " $\int \mathrm{d}x D(x) f(x)$ ". Eine Testfunktion ist nur in einem kompakten Bereich ungleich 0 und ∞ oft differenzierbar.

Fourier Transformation

$$f \in L^1 \implies \tilde{f}(k) := \int \mathrm{d}x e^{-ikx} f(x)$$
 existiert $\forall k$

Es sind $\tilde{f} \in L^1$ oder $\tilde{f} \notin L^1$ möglich. Wenn $f, \tilde{f} \in L^1$ gilt $f(x) = \frac{1}{2\pi} \int dk e^{+ikx} \tilde{f}(k)$ fast überall.

Für quadratintegrable Funktionen ist die Fouriertransformation nicht unbedingt konvergent. Es gilt das **Planchorel Theorem** nach dem sich die Fouriertrasformation als Abbildung $f \in L^2 \mapsto \tilde{f} \in L^2$ mit

- falls $f \in L^2$ und $f \in L^1$ enspricht die Fouriertransformation $\tilde{f}(k) = \int \mathrm{d}x e^{-ikx} f(x)$
- \tilde{f} ist aber sonst auch definiert, mit selber Schreibweise und $||f||_2 = \left\|\frac{1}{\sqrt{2\pi}}\tilde{f}\right\|_2$
- Es gilt die Verallgemeinerung des Inversionstheorems

Die Anwendung in der Quantenmehanik ist mit der Wellenfunktion $\Psi \in L^2$ im Hilbertraum der Quantenmechanik L^2 und den entsprechenden Fouriertransformationen

$$\tilde{\Psi}(p) = \int dx e^{-ipx} \Psi(x)$$

$$\Psi(x) = \int dp e^{ipx} \tilde{\Psi}(p)$$

Für Distributionen ist die Fouriertransformation über die Testfunktionen definiert.

Residuensatz für komplexe Analysis

Sei f holomorph in einem Gebiet G, bis auf Pole an Punkten $\{z_n\}$ (haben keinen Häufungswert in G)

$$\int_{\text{Geschl. Weg}T \text{in}G} f(z) dz = 2\pi i \sum_{z_n} \text{ind}_T(z_n) \text{Res}(f; z_n)$$

Eine wichtige, typische Anwendung ist die Integration im Reellen.

Beispiel

Herleitung der Fouriertransformation der Greenfunktion

$$-\frac{1}{4\pi} \frac{e^{ikr}}{r} = \lim_{\varepsilon \to 0_+} \int \frac{\mathrm{d}^3 q}{(2\pi)^3} \frac{e^{i\mathbf{q}\mathbf{x}}}{k^2 - q^2 + i\varepsilon}$$

Wir beginnen mit $\mathbf{q}\mathbf{x} = qr\cos\theta$ und finden

$$\int \frac{d^3q}{(2\pi)^3} \frac{e^{i\mathbf{q}\mathbf{x}}}{k^2 - q^2 + i\varepsilon} = \int \frac{q^2 dq d\cos\theta d\phi}{(2\pi)^3} \frac{e^{iqr\cos\theta}}{k^2 - q^2 + i\varepsilon}$$

$$= \frac{2\pi}{(2\pi)^3} \int \frac{q^2 dq}{k^2 - q^2 + i\epsilon} \frac{1}{iqr} \left(e^{iqr} - e^{-iqr} \right)$$

$$= \frac{1}{i(2\pi)^2 r} \int_0^\infty \frac{q dq}{k^2 - q^2 + i\epsilon} \left(e^{iqr} - e^{-iqr} \right)$$

$$= \frac{1}{i(2\pi)^2 r} \int_{-\infty}^\infty \frac{q dq}{k^2 - q^2 + i\epsilon} e^{iqr}$$

3.3.2 dreidimensionale Funktionen, Kugelkoordinaten

In Kugelkoordinaten:

$$\Delta = \frac{1}{r^2} \partial_r r^2 \partial_r - \frac{\mathbf{L}^2}{r^2} = \frac{1}{r} \partial_r^2 r - \frac{\mathbf{L}^2}{r^2}$$

Kugelflächenfunktionen dienen zur Beschreibung von Funktionen $f(\theta,\phi)$ auf Kugeloberflächen. Beispielsweise kann die Temperaturverteilung gut durch Kugelflächenfunktionen mit l=1 oder l=2 oder die Kosmische Hintergrundstrahlung mit $l\approx 200$ modelliert werden. Die Entwicklung ist

$$f(\theta,\phi) = \sum_{lm} c_{lm} Y_{lm}(\theta,\phi)$$

Es gilt $Y_{lm} = e^{im\phi} P_l^{|m|}(\cos\theta)$ mit den Legendrepolynomen $P_l(x) = \frac{1}{2^l l!} \left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^l (x^2 - 1)^l$. Die Normierung ist dabei $\int_{-1}^1 P_l(x) P_{l'}(x) \mathrm{d}x = \frac{2}{2l+1} \delta_{ll'}$.

Aus der Freien Schrödingergleichung $(k^2 + \Delta)\Psi = 0$ folgt mit $\Psi(r, \theta, \phi) = R(r)Y_{lm}(\theta, \phi)$

$$\frac{1}{r}\partial_r^2 rR + \left(k^2 - \frac{l(l+1)}{r^2}\right)R = 0$$

Wir verwenden $kr=\rho,$ $\partial_r^2=\partial_\rho^2k^2,$ $R(r)=\xi(kr)=\xi(\rho)$ woraus die sphärische Bessel-Differentialgleichung folgt

$$\frac{1}{\rho}\partial_{\rho}^{2}\rho\xi + \left(1 - \frac{l(l+1)}{\rho^{2}}\right)\chi = 0$$

Die Lösung sind die

 $\xi(\rho) = j_l(\rho)$ sphärischen Besselfunktionen

 $\xi(\rho)=n_l(\rho)$ sphärischen Neumannfunktionen, nicht regulär für $\rho\to 0$

In der asymptotischen Form $(\rho \to \infty)$ vernachlässigen wir $l(l+1)/\rho^2$ und erhalten

$$j_l(\rho) = \frac{\sin(\rho - l\pi/2)}{\rho}$$
 allgemein

$$j_l(\rho) = (-1)^l \rho^l \left(\frac{\mathrm{d}}{\mathrm{d}\rho}\right)^l \frac{\sin\rho}{\rho}$$
 exakt

Damit ergibt sich die allgemeine reguläre Lösung der freien Schrödingergleichung

$$\Psi(r,\theta,\phi) = \sum_{lm} c_{lm} j_l(kr) Y_{lm}(\theta,\phi)$$

Beispiel: ebene Welle

$$e^{i\mathbf{k}\mathbf{x}} = e^{ikr\cos\theta} = \sum_{l=0}^{\infty} i^l (2l+1)j_l(kr)P_l(\cos\theta)$$

3.4 Partialwellenmethode, Streuphasen

3.4.1 Partialwellenentwicklung

Nun: Zentralpotential $V = V(r) \implies f(\theta, \phi) = f(\theta)$

Schrödingergleichung: $H\psi = E\psi$, $E = \hbar^2 k^2/2m > 0$ bzw. $(\Delta + k^2)\psi = v(r)\psi$ mit $v(r) = \frac{2m}{\hbar^2}V(r)$.

Randbedingungen: $\psi(\mathbf{x}) = e^{i\mathbf{k}\mathbf{x}} + f(\theta)\frac{e^{ikr}}{r}$.

Ansatz: Entwicklung durch Y_{lm} aber nur m=0 trägt bei.

$$\psi(r, \theta, \phi) = \sum_{l} \frac{u_l(r)}{r} P_l(\cos \theta)$$
$$f(\theta) = \sum_{l} b_l P_l$$

Schrödingergleichung damit $\partial_r^2 u_l + k^2 u_l - \frac{l(l+1)}{r^2} u_l = v(r) u_l$ bzw. mit dem effektiven Potential $v_{\text{eff}} = v(r) + \frac{l(l+1)}{r^2}$

$$(\partial_r^2 + k^2)u_l(r) = v_{\text{eff}}(r)u_l(r)$$

Allgemeine Lösung für $r \to \infty$ mit $v_{\rm eff} \approx 0$ (kleine Reichweite) ist mir $u_l = \sin kr$ oder $u_l = \cos kr$ über die Besselfunktionen

$$u_l(r) = c_l \sin\left(kr - l\frac{\pi}{2} + \delta_l\right)$$

mit der Streuphase δ_l .

Zur Berechnung:

- explizite Lösung der Radialgleichung gegeben
- j_l und eventuell u_l tauchen Auf
- Randbedingungen einsetzen
- Lösung eindeutig bis auf Normierung
- Kann asymptotisches Verhalten auswerten und mit $Aj_l + Bu_l \leftrightarrow \sin\left(kr l\frac{\pi}{2} + \delta_l\right)$ vergleichen.

Vergleich / Auswertung der Randbedingungen:

Die allgemeine Lösung war

$$\psi = \sum_{l} c_{l} \frac{\sin\left(kr - l\frac{\pi}{2} + \delta_{l}\right)}{r} P_{l}(\cos\theta)$$

$$= \sum_{l} \frac{1}{r} \left(\frac{c_{l}}{2i} e^{ikr} e^{-il\frac{\pi}{2}} e^{i\delta} - \frac{c_{l}}{2i} e^{-ikr} e^{il\frac{\pi}{2}} e^{-i\delta}\right) P_{l}(\cos\theta)$$

Wir haben zusätzlich gefordert

$$\psi = e^{i\mathbf{k}\mathbf{x}} + f(\theta) \frac{e^{ikr}}{r}$$

$$= \sum_{l} \frac{1}{r} \left(\left[\frac{2l+1}{2ik} + b_l \right] e^{ikr} - e^{-ikr} (-1)^l \frac{2l+1}{2ik} \right) P_l(\cos \theta)$$

Ein Koeffizientenvergleich liefert

$$c_l = 2i(-1)^l e^{-il\frac{\pi}{2}} e^{i\delta_l} \frac{2l+1}{2ik} = e^{il\frac{\pi}{2}} e^{i\delta_l} \frac{2l+1}{k}$$
$$b_l = \frac{2l+1}{k} e^{i\delta_l} \sin \delta_l$$

Zusammenfassung

Falls δ_l bekannt gilt für $r \to \infty$:

$$\psi(r,\theta,\phi) = \sum_{l} \frac{2l+1}{2k} \left(\left[-i + 2e^{i\delta_l} \sin \delta_l \right] \frac{e^{ikr}}{r} + i(-1)^l \frac{e^{-ikr}}{r} \right) P_l(\cos \theta)$$

$$e^{i\mathbf{k}\mathbf{x}} = \sum_{l} \frac{2l+1}{2k} \left(-i \frac{e^{ikr}}{r} + i(-1)^l \frac{e^{-ikr}}{r} \right) P_l(\cos \theta)$$

$$f(\theta) = \sum_{l} \frac{2l+1}{2k} 2e^{i\delta_l} \sin \delta_l \frac{e^{ikr}}{r} P_l(\cos \theta)$$

3.4.2 Optisches Theorem und Wirkungsquerschnitt

Differentieller Wirkungsquerschnitt $\frac{\mathrm{d}\sigma}{\mathrm{d}\Sigma} = |f(\theta)|^2 = \sum_{ll'} \frac{(2l+1)(2l'+1)}{k^2} e^{i\delta_l - i\delta_{l'}} \sin \delta_l \sin \delta_{l'} P_l P_{l'}$ Totaler Wirkungsquerschnitt $\sigma = \int \mathrm{d}\sigma = \int \mathrm{d}\Sigma |f(\theta)|^2 = 2\pi \int_{-1}^1 \mathrm{d}\cos \theta |f(\theta)|^2$ $= \frac{2\pi}{k^2} \sum_{l} (2l+1) 2 \sin^2 \delta_l$

mit der Orthogonalität und Normalisierung der Legendrepolynome. Aufschlüsselung in $\sigma = \sum_l \sigma_l$ mit $\sigma_l = \frac{4\pi}{k^2}(2l+1)\sin^2\delta_l \leq \frac{4\pi}{k^2}(2l+1)$ (Unitaritätsschranke).

Nutzen:

- falls δ_l bekannt $\implies \sigma, d\sigma$ einfach erhaltbar
- δ_l -Bestimmung = Hauptarbeit
- oft ausreichend: nur kleine l betrachten, z.B. nur l = 0 ("s-Wellenstreuung")
- Ungleichung liefert absolute Obergrenze an σ_l (kann eventuell durch Bornsche Näherung verletzt sein)

Optisches Theorem

Wir erinnern uns dass $P_l(1) = 1$ und damit

$$f(\theta = 0) = \sum_{l} \frac{2l+1}{k} e^{i\delta_{l}} \sin \delta_{l}$$

$$\implies \sigma = \frac{4\pi}{k} \operatorname{Im} f(\theta = 0)$$

- Relation Wahrscheinlichkeit \leftrightarrow Imaginärteil der Vorwärtsstreuamplitude
- QM Wahrscheinlichkeit \leftrightarrow Wahrscheinlichkeitsamplitude
- Interpretation: Teilchenzahlerhaltung

$$e^{i\mathbf{k}\mathbf{x}} \stackrel{\text{nach Streuung}}{\Longrightarrow} e^{i\mathbf{k}\mathbf{x}} + f \frac{e^{ikr}}{r}$$

Gestreuter Anteil muss aus der Vorwärtsrichtung verschwinden. In $\theta = 0$ -Richtung muss destruktive Interferenz stattfinden. Das Ausmaß ist durch das optische Theorem gegeben.

3.4.3 Kleine Reichweite, kleine Energie

Streuung bei niedrigen Energien $k\to 0, kR_0\ll 1$ Ansatz für Radialgleichung: $(\partial_r^2+k^2)u(r)=v_{\rm eff}(r)u(r)$ für $l=0,\,v_{\rm eff}=v.$

1. Lösen innen: $r < R_0$ mit $u_{\rm in}(0) = 0 \implies u_{\rm in}$ eindeutig

2. Allgemeine Lösung außen $r > R_0, v(r) > 0$:

$$u_a(r) = Akrj_0(kr) + Bkrn_0(kr)$$

$$= A\sin kr + B\cos kr$$

$$= C\sin(kr + \delta_0) = C\sin kr\cos \delta_0 + C\cos kr\sin \delta_0$$

3. Anschlussbedingung bei $r=R_0$

$$\Delta_0 := \frac{u_{\text{in}'(R_0)}}{u_{\text{in}}} \stackrel{!}{=} \frac{u_a'(R_0)}{u_a(R_0)}$$
$$= k \frac{\cos kR_0 \cos \delta_0 - \sin kR_0 \sin \delta_0}{\sin kR_0 \cos \delta_0 + \cos kR_0 \sin \delta_0}$$

ergeben:

$$\tan \delta_0 = \frac{k \cos k R_0 - \sin k R_0 \Delta_0}{k \sin k R_0 + \cos k R_0 \Delta_0}$$

Üblicherweise ergibt sich tan $\delta_0=-a_0k$ für $k\to 0$ mit der Streulänge a_0 . Für l=0 folgt damit

$$\sigma = \sigma_0 + \frac{4\pi}{k^2} \sin^2 \delta_0 = 4\pi a_0^2$$