10.1 二重积分的概念与性质

1. 选择题

$$(1) \ \ \overset{\text{th}}{\boxtimes} I_1 = \iint\limits_{x^2 + y^2 \le 1} |xy| \, dxdy \, , I_2 = \iint\limits_{|x| + |y| \le 1} |xy| \, dxdy \, , I_3 = \iint\limits_{\substack{|x| \le 1, \\ |y| \le 1}} |xy| \, dxdy \, , \boxed{\square} \ \ (1)$$

 $\text{A. } I_3 > I_2 > I_1 \quad \text{B. } I_1 > I_2 > I_3 \quad \text{C. } I_2 > I_1 > I_3 \quad \text{D. } I_3 > I_1 > I_2$

$$(2) \ \ {\rm id} \ I_1 = \iint\limits_{(x-1)^2 + (y-1)^2 \le 1} e^{x+y} dx dy \ , \quad \ I_2 = \iint\limits_{(x-1)^2 + (y-1)^2 \le 1} \ln(x+y) dx dy \ ,$$

$$I_3 = \iint_{(x-1)^2 + (y-1)^2 \le 1} x + y dx dy$$
, \mathbb{M} ()

 $\text{A. } I_3 > I_2 > I_1 \quad \text{B. } I_1 > I_2 > I_3 \qquad \text{C. } I_3 > I_1 > I_2 \quad \text{D. } I_1 > I_3 > I_2$

(3) 设 $D = \{(x, y): 0 \le x \le 1, -\sqrt{x} \le y \le \sqrt{x}\}$, f(x) 是连续的奇函数, g(x) 是连续的偶 函数,则下列结论正确的是(

$$A. \iint_D f(y)g(x)dxdy = 0.$$

$$B. \iint_{D} f(x)g(y)dxdy = 0.$$

C.
$$\iint_D f(x) + g(y)dxdy = 0.$$
 D.
$$\iint_D f(y) + g(x)dxdy = 0.$$

$$D. \iint_{D} f(y) + g(x) dx dy = 0$$

(4) 如图,正方形 $\{(x,y): |x| \leq 1, |y| \leq 1\}$ 被其对角线划分为四个区域 $D_k (1 \leq k \leq 4)$,令

- A. I_1 B. I_2 C. I_3 D. I_4

2. 设 D_1, D_2, D_3 分别是单位圆在第一、二、三象限的部分, $I_1 = \iint\limits_{D_2} y dx dy$, $I_2 = \iint\limits_{D_2} y dx dy$,

$$I_{3} = \iint\limits_{D_{3}} y dx dy$$
, $I_{4} = \iint\limits_{D_{1} \cup D_{2}} y dx dy$, $I_{5} = \iint\limits_{D_{1} \cup D_{2} \cup D_{3}} y dx dy$, $I_{6} = \iint\limits_{D_{2} \cup D_{3}} y dx dy$, $I_{7} = \iint\limits_{D_{1}} x dx dy$, $I_{8} = \iint\limits_{D_{1} \cup D_{2}} x dx dy$, $I_{9} = \iint\limits_{D_{2} \cup D_{3}} x dx dy$, 判断下列叙述是否正确:

3. 填空题

(1) f(x,y) 在有界闭区域 D 上连续是 f(x,y) 在 D 上可积的 ______条件.

(3)
$$\mbox{if } D = \{(x, y) : x^2 + y^2 \le 1\}, \ \mbox{if } \mbox{if } \int_D x^3 \cos y + e^x \tan y dx dy = \underline{\hspace{1cm}}.$$

(4) 设
$$D = \{(x, y) : |x| + |y| \le 1\}$$
,则 $\iint_D \frac{3x \ln(y+1) + e^{x+2} \sin y}{x^2 + y^2 + 1} dx dy = \underline{\qquad}$

(5) 设
$$D$$
 由曲线 $y = x$ 、 $x = -1$ 和 $y = 1$ 围成的区域,则 $\iint_D x^3 \sin y dx dy = _____.$

10.2 二重积分的计算方法

1. 填空题

$$\int_{-1}^{0} dy \int_{1-y}^{2} f(x, y) dx = \underline{\qquad \qquad }$$

$$\int_{0}^{\frac{1}{4}} dy \int_{y}^{\sqrt{y}} f(x, y) dx + \int_{\frac{1}{4}}^{\frac{1}{2}} dy \int_{y}^{\frac{1}{2}} f(x, y) dx = \underline{\qquad \qquad }$$

$$\int_{0}^{2a} dx \int_{\sqrt{2ax-x^{2}}}^{\sqrt{2ax}} f(x, y) dy (a > 0) = \underline{\qquad \qquad }$$

$$\int_{0}^{1} dx \int_{2x-2}^{0} f(x, y) dy = \underline{\qquad \qquad }$$

(2) 将累次积分化为极坐标的形式

$$\int_0^{2a} dx \int_0^{\sqrt{2ax-x^2}} \sqrt{x^2 + y^2} dy = \underline{\qquad \qquad }$$
$$\int_0^a dx \int_0^{\sqrt{a^2 - x^2}} f(x^2 + y^2) dy = \underline{\qquad \qquad }$$

- (3) $\int_0^{\frac{\pi}{2}} d\theta \int_0^{\cos\theta} f(r\cos\theta, r\sin\theta) r dr$ 化为直角坐标累次积分为_____
- (4) 设 $D = \{(x,y) : |x| \le 1, |y| \le 1\}$, a,b 为 任 意 常 数 , 则 $\iint (ax+by)dxdy =$

2. 选择题

(1) 设区域
$$D = \{(x,y): x \le x^2 + y^2 \le 2x, y \ge 0\}$$
,则在极坐标下二重积分 $\iint_D xydxdy =$

A.
$$\int_0^{\frac{\pi}{2}} d\theta \int_{\cos\theta}^{2\cos\theta} r^2 \cos\theta \sin\theta dr$$
 B.
$$\int_0^{\frac{\pi}{2}} d\theta \int_{\cos\theta}^{2\cos\theta} r^3 \cos\theta \sin\theta dr$$

C.
$$\int_0^\pi d\theta \int_{\cos\theta}^{2\cos\theta} r^2 \cos\theta \sin\theta dr \qquad \text{D. } \int_0^\pi d\theta \int_{\cos\theta}^{2\cos\theta} r^3 \cos\theta \sin\theta dr$$

A.
$$\int_{1}^{2} dx \int_{1}^{4-x} f(x, y) dy$$
 B. $\int_{1}^{2} dx \int_{x}^{4-x} f(x, y) dy$

B.
$$\int_{1}^{2} dx \int_{x}^{4-x} f(x, y) dy$$

C.
$$\int_{1}^{2} dy \int_{1}^{4-y} f(x, y) dx$$
 D. $\int_{1}^{2} dy \int_{y}^{2} f(x, y) dx$

$$D. \int_{1}^{2} dy \int_{y}^{2} f(x, y) dx$$

(3) 设函数
$$f(x)$$
 连续。若 $F(u,v) = \iint_{D_{uv}} \frac{f(x^2 + y^2)}{\sqrt{x^2 + y^2}} dx dy$, 其中 D_{uv} 是第一象限内由圆周

$$x^2 + y^2 = 1$$
与 $x^2 + y^2 = u^2(u > 1)$ 和直线 $y = vx(v > 0)$ 、 x 轴所围成区域,则 $\frac{\partial F}{\partial u} = ($

A. $\arctan v f(u^2)$ B. $\frac{\arctan v}{u} f(u^2)$ C. $\arctan v f(u)$ D. $\frac{\arctan v}{u} f(u)$.

(4) 设函数 f(x,y) 连续,则二次积分 $\int_{\frac{\pi}{2}}^{\pi} \mathrm{d}x \int_{\sin x}^{1} f(x,y) \mathrm{d}y$ 等于(

- (A) $\int_0^1 dy \int_{\pi+\arcsin y}^{\pi} f(x,y) dx$ (B) $\int_0^1 dy \int_{\pi-\arcsin y}^{\pi} f(x,y) dx$ (C) $\int_0^1 dy \int_{\frac{\pi}{2}}^{\pi+\arcsin y} f(x,y) dx$ (D) $\int_0^1 dy \int_{\frac{\pi}{2}}^{\pi-\arcsin y} f(x,y) dx$

(5) 设区域 $D = \{(x,y) | x^2 + y^2 \le 4, x \ge 0, y \ge 0\}$, f(x) 为[0,2] 上的正值连续函数, a,b

为常数,则 $\iint_{\mathcal{D}} \frac{a\sqrt{f(x)} + b\sqrt{f(y)}}{\sqrt{f(x)} + \sqrt{f(y)}} d\sigma = ($)

- (A) $ab\pi$ (B) $\frac{ab}{2}\pi$. (C) $(a+b)\pi$. (D) $\frac{a+b}{2}\pi$.

3. 计算二重积分 $\iint_{D} \frac{x \sin y}{y} dx dy$, 其中 D 由 $y = x^2$ 与 y = x 所围成的平面闭区域.

$$\frac{1}{2}(1-\sin 1)$$

5. 计算二重积分 $\int_1^2 dy \int_y^2 \frac{x}{y \ln x} dx$.

6. 计算二重积分 $I = \iint_D (x-y) dx dy$, 其中 $D = \{(x,y): (x-1)^2 + (y-1)^2 \le 2, y \ge x\}$.

7. 计算二重积分 $\iint_D x^2 + y^2 dx dy$, 其中 $D \to x^2 + y^2 = 2y$ 、 $x^2 + y^2 = 4y$ 及 x = 0 在第一 象限所围成的平面闭区域.

8. 计算 $\iint_D |x-1| \, dx \, dy$, 其中 D 是第一象限内直线 y = x、 y = 0 及 $x^2 + y^2 = 2$ 所围成的区域

9. 计算积分 $\iint_D \frac{1+xy^2}{1+x^2+y^2} dxdy$, 其中 $D = \{(x,y): x^2+y^2 \le 1, y \ge 0\}$.

10. 计算积分 $\iint_D x^2 + 3x + 4y - 6dxdy$, 其中 $D = \{(x, y) : 1 \le x^2 + y^2 \le 4\}$.

