Assignment WW7_202122T1 due 11/27/2021 at 11:00pm HKT

1. (1 point) (a) Find the average value of $f(x) = 25 - x^2$ on the interval [0,5].

Answer: _____

(b) Find a value c in the interval [0,5] such that f(c) is equal to the average value.

Answer: _____

2. (1 point) In a certain city the temperature (in degrees Fahrenheit) t hours after 9am was approximated by the function

$$T(t) = 30 + 17\sin\left(\frac{\pi t}{12}\right)$$

Determine the temperature at 9 am. _____ Determine the temperature at 3 pm. _____

Find the average temperature during the period from 9 am to 9 pm. _____

3. (1 point)

The figure below to the left is a graph of f(x), and below to the right is g(x).

(a) What is the average value of f(x) on $0 \le x \le 2$? avg value = _____

(b)

What is the average value of g(x) on $0 \le x \le 2$? avg value = _____

(c)

What is the average value of $f(x) \cdot g(x)$ on $0 \le x \le 2$? avg value = _____

(**d**)

Is the following statement true?

 $Average(f) \cdot Average(g) = Average(f \cdot g)$

- A. Yes
- B. No

4. (1 point)

The average value of the function $v(x) = 5/x^2$ on the interval [1, c] is equal to 1. Find the value of c.

c = _____

5. (1 point)

The volume of the solid obtained by rotating the region enclosed by

$$y = e^{4x} + 3$$
, $y = 0$, $x = 0$, $x = 0.2$

about the x-axis can be computed using the "disk method" via the integral

$$V = \int_{a}^{b}$$
 ?

with limits of integration $a = \underline{\hspace{1cm}}$ and $b = \underline{\hspace{1cm}}$

6. (1 point) Find the area of the region enclosed between $f(x) = x^2 + 4x + 26$ and $g(x) = 2x^2 + 2x + 2$.

Area = _____

(**Note:** The graph above represents both functions f and g but is intentionally left unlabeled.)

7. (1 point)

Demonstrate how to find the area of the region 'R' bounded between the graphs 'x + 3y = 13' and ' $x + 5 = y^2$ ' by dragging all relevant statements below into the **right column** in an appropriate order.

(Leave all irrelevant or incorrect statements in the left column.)

0. hence its area is equal to the integral $\int_{-6}^{3} (y^2 - 5 - 13 + 3y) dy$

1. hence its area is equal to the integral $\int_{-6}^{3} (13-3y-y^2+5) dy$

- 2. on the right by $x = y^2 5$,
- 3. = -121.5
- 4. on the left by $x = y^2 5$,

5. =
$$\left(13y - \frac{3}{2}y^2 - \frac{1}{3}y^3 + 5y\right)\Big|_{-6}^{3}$$

- 6. = 121.5
- 7. on the right by x = 13 3y,
- 8. The region R can be viewed as a region bounded
- 9. over the interval [-6,3] on the y-axis,

10. =
$$\left(\frac{1}{3}y^3 - 5y - 13y + \frac{3}{2}y^2\right)\Big|_{-6}^{3}$$

11. on the left by x = 13 - 3y,

8. (1 point)

Find the area of the shaded region below.

Area = _____

9. (1 point)

Find the area of the region between the curves y = |x| and $y = x^2 - 2$.

Area between curves = _____

10. (1 point) Find the volume of the solid obtained by rotating the region bounded by

$$y = 4x^2, x = 1, y = 0,$$

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

about the *x*-axis.

Answer: _____

11. (1 point)

Find the volume of the solid obtained by rotating the region bounded by the curves $y = \tan^2(x)$, $x = \pi/4$, x = 0, and y = 0 about the *x*-axis.

Volume = _____

12. (1 point) Find the volume of the solid obtained by rotating the region bounded by

$$x = 2y^2$$
, $y = 1$, $x = 0$,

about the y-axis.

Answer: _____

13. (1 point) Let R be the region bounded by the circle $x^2 + y^2 = 1$ and let S be the solid obtained by rotating R about the axis y = -5.

The volume of $S = \pi \int_{-1}^{1} dx$.

14. (1 point) Find the volume of the solid obtained by rotating the region in the first quadrant bounded by the curves x = 0, y = 1, $x = y^4$, about the line y = 1.

Volume:

15. (1 point)

Find the volume of the solid that results when the region bounded by $y = \sqrt{x}$, y = 0 and x = 49 is revolved about the line x = 49.

Volume = _____