POLI 30 D: Political Inquiry Professor Umberto Mignozzetti (Based on DSS Materials)

Lecture 10 | Causal Inference with Observational Data I

Before we start

Announcements:

- Quizzes and Participation: On Canvas.
- GitHub page: https://github.com/umbertomig/POLI30Dpublic
- ▶ Piazza forum: Not sure what the link is. Ask your TA!
- ► Note to self: Turn on the mic!

Before we start

Recap: We learned:

- ► The definitions of theory, scientific theory, and hypotheses.
- Data, datasets, variables, and how to compute means.
- ► Causal effect, treatments, outcomes, and randomization.
- Sampling, descriptive statistics, and descriptive plots for one variable.
- Correlation between two continuous variables.
- Prediction of a binary and a non-binary variable.

Great job!

Do you have any questions about these contents?

Plan for Today

- Review: Causation and Randomized Experiments
- Observational Studies
- Confounding Variables or Confounders
 - Why Are Confounders a Problem?
 - Why Don't We Worry About Confounders in Randomized Experiments?
- How Can We Estimate Causal Effects with Observational Data?
 - Interpretation of $\widehat{\beta}$ When X Is the Treatment Variable and Y Is the Outcome Variable

Review: Causation

- ► To measure causal effects, we need to compare the factual outcome with the counterfactual outcome
 - ► Fundamental problem: We can never observe counterfactual outcomes
- ➤ To estimate causal effects, we must find or create a situation in which the treatment and control groups are comparable.
- Only when that assumption is satisfied can we use the factual outcome of one group as a good proxy for the counterfactual outcome of the other.

Review: Randomized Experiments

- ► In randomized experiments, we can rely on the random assignment of treatment to make treatment and control groups, on average, identical
- ► Thus, we can estimate the average treatment effect with the difference-in-means estimator

$$\overline{Y}_{\text{treatment group}} - \overline{Y}_{\text{control group}}$$

Observational Data

- ▶ But, what happens when we cannot conduct a randomized experiment and have to analyze observational data?
 - Observational data: data collected about naturally occurring events (i.e., researchers do not get to assign the treatment)
- We can no longer assume that treatment and control groups are comparable.
- We have to identify any relevant differences between treatment and control groups (known as confounding variables or confounders)
- ► Then, we have to statistically control for them, so that we may claim that the two groups comparable.

Confounders or Confounding Variables

- A confounding variable, or confounder, is a variable that affects both:
 - 1. The likelihood to receive the treatment X, and
 - 2. The outcome Y
- ightharpoonup In mathematical notation, we represent a potential confounding variable as Z

Confounders or Confounding Variables

- Suppose we are interested in the average causal effect of attending a private school, as opposed to a public one, on SAT performance.
- \blacktriangleright What is the treatment variable X?
 - ▶ What is the outcome variable *Y*?
 - Can you think of a potential confounder Z?

family wealth \nearrow private school \rightarrow test scores

- ightharpoonup They obscure the causal relationship between X and Y!
- ► In the example above, if we observed that, on average, private school students perform better than public school students, we would not know whether it is:
 - ▶ Because they attended a private school or
 - Because they came from wealthier families
- ► We would not know what portion of the observed differences in SAT performance (the difference-in-means estimator), if any, could be attributed to:
 - ► Attending a private school versus.
 - Coming from a wealthy family.

- ► In the presence of confounders, correlation does not necessarily imply causation.
- Just because two variables are highly correlated it does not mean that one causes the other:
 - ► There could be a third variable that causes both!
- lce cream sales and shark attacks are highly correlated.
 - ▶ Does this mean that eating ice cream increases the probability that a shark attacks you?

IN THE PRESENCE OF CONFOUNDERS

- Correlation does not imply causation.
- The treatment and control groups are not comparable.
- The difference-in-means estimator does **NOT** provide a valid estimate of the average causal effect!

Why Don't We Worry About Confounders in Randomized Experiments?

- Randomization of treatment assignment eliminates all potential confounders.
 - ► That is this is the gold standard for causal inference.
- ► Ensures that treatment and control are comparable by breaking the link between any potential confounder.
- ▶ If we have a lottery to determine who is going to attend the private school at random, then we break the wealth link.

family wealth \searrow lottery \longrightarrow private school \longrightarrow test scores

How Can We Estimate Causal Effects with Observational Data?

- ► We cannot rely on random treatment assignment to eliminate potential confounders.
- We must identify all potential confounding variables and statistically control for them using a multiple linear regression model.
- Before we learn how to do that, we will fit a linear regression model to find the difference-in-means estimator.

Using the Linear Regression to Compute the Difference-in-Means Estimator

When X is the treatment variable and Y is the outcome variable of interest, the estimated slope coefficient $(\widehat{\beta}_1)$ is equivalent to the difference-in-means estimator.

- Let's return to a beloved example: *Does Social Pressure*Affect Turnout?
- Registered voters were randomly assigned to either:
 - a. receive a message designed to induce social pressure, or
 - b. receive nothing

(Based on Alan S. Gerber, Donald P. Green, and Christopher W. Larimer. 2008. "Social Pressure and Voter Turnout: Evidence from a Large-Scale Field Experiment." *American Political Science Review*, 102 (1): 33-48.)

1. Load and look at the data:

2. Creating the treatment variable:

```
voting$pressure <- ifelse(voting$message=="yes", 1, 0)</pre>
```

3. Compute difference-in-means estimator directly

```
mean(voting$voted[voting$pressure==1]) -
  mean(voting$voted[voting$pressure==0])
## [1] 0.08130991
```

4. Alternatively, we can fit a linear model where X is the treatment variable and Y is the outcome variable.

Recall: the R function to fit a linear model is lm()

```
lm(voted ~ pressure, data=voting)
##
## Call:
## lm(formula = voted ~ pressure, data = voting)
##
## Coefficients:
## (Intercept) pressure
## 0.29664 0.08131
```

- Fitted model: voted = 0.30 + 0.08 pressure
- Note that $\hat{\beta}_1$ has the same value as the difference-in-means estimator above (both equal 0.08)

Interpretation of $\widehat{\beta}_1$ When X Is the Treatment Variable and Y Is the Outcome Variable

- ► Start same as in predictive models:
 - ▶ Definition: $\widehat{\beta}$ is the $\triangle \widehat{Y}$ associated with $\triangle X=1$
 - $\widehat{\beta}=0.08$ is the $\triangle \widehat{voted}$ associated with $\triangle pressure=1$
 - Receiving a social pressure inducing message is associated with a predicted increase in the probability of voting of 8 p.p., on average
- ▶ Unit of measurement of $\widehat{\beta}_1$? same as $\triangle \overline{Y}$.
 - Since Y is binary, $\triangle \overline{Y}$ is measured in p.p., and so is $\widehat{\beta}$ (after x 100)

Interpretation of $\widehat{\beta}_1$ When X Is the Treatment Variable and Y Is the Outcome Variable

- Since X is the treatment variable and Y is the outcome variable, $\widehat{\beta}_1$ is equivalent to the difference-in-means estimator
- As a result, we can interpret $\widehat{\beta}_1$ using causal langauge
- Predictive language: We estimate that receiving the message inducing social pressure is associated with a predicted increase in the probability of voting of 8 p.p., on average
- Causal language: We estimate that receiving the message inducing social pressure *increases* the probability of voting by 8 p.p., on average

Interpretation of $\widehat{\beta}_1$ When X Is the Treatment Variable and Y Is the Outcome Variable

- ► This should be a valid estimate of the average treatment effect if there are no confounding variables present:
 - ► If registered voters who received the message are comparable to the registered voters who did not.
- ➤ Since the data come from a randomized experiment there should be no confounding variables (why?)
- And thus the difference-in-means estimator should produce a valid estimate of the average treatment effect

Interpretation of $\widehat{\beta}_1$ When X Is the Treatment Variable

- One campompute theed for the directly or one can fit a simple linear regression model.
 - ► Same results!
- ► Conclusion: We estimate that receiving the message inducing social pressure increases the probability of voting by 8 percentage points, on average. This is a valid estimate of the average treatment effect if registered voters who received the message are comparable to the registered voters who did not (that is, if there a no confounding variables). Given that the data come from a randomized experiment, this is a reasonable assumption.
- ► Note that this is the same conclusion we arrived at in a previous lecture.

Interpretation of $\hat{\beta}_1$ When X Is the Treatment Variable

INTERPRETATION OF THE ESTIMATED SLOPE COEFFICIENT IN THE SIMPLE LINEAR MODEL:

- ▶ By default, we interpret $\widehat{\beta}_1$ using predictive language: It is the $\triangle \widehat{Y}$ associated with $\triangle X$ =1.
- When X is the treatment variable, then $\widehat{\beta}_1$ is equivalent to the difference-in-means estimator and, thus, we interpret $\widehat{\beta}_1$ using causal language: It is the $\triangle \widehat{Y}$ caused by $\triangle X$ =1. This causal interpretation is valid if there are no confounding variables: the treatment and control groups are comparable.

Summary

- ► Today's Class:
 - Observational Studies
 - Confounding Variables or Confounders
 - ► Why Are Confounders a Problem?
 - Why Don't We Worry About Confounders in Randomized Experiments?
 - ► How Can We Estimate Causal Effects with Observational Data?
 - ▶ Interpretation of $\widehat{\beta}_1$ when X is the Treatment Variable and Y Is the Outcome Variable.
- ▶ Next class:
 - More Causality with Observational Data:
 - ► We will use *Multiple Regression* models to control for confounders.

See you in the next class!