Simulator-Based Verification of Autonomous Vehicles: Agent-Based Test Generation

9:21am, 29 October 2020

1 Introduction

- **Time** is implicit and discrete, with agents choosing actions at each timestep, and a time resolution constant specifying the simulation time between timesteps
- State space is continuous and feature-based techniques are probably more effective than discretisation
- Actions may be multi-body and/or multi-effector
- Action space is continuous and discretisation typically requires durative actions
- **Observability** is full, meaning that a sensor model is not required (although partial observability can be simulated)
- **Initial state** may be given (meaning a partial policy is sufficient) or may not be given (meaning a complete policy is necessary)
- **Objectives** are goals states with transition costs/rewards, meaning in general that the horizon is indefinite, but a finite-horizon may also be imposed
- Model for transitions and objectives is unknown, but can be sampled through interaction with a simulator
- **Game** involving two or more players (agents), including a potentially adversarial design under verticiation (i.e. the ego agent)

2 Preliminaries

We rely on some standard mathematical notation: v_i is an element of vector $\mathbf{v} = (v_1, \dots, v_n)$ with $\mathbf{v}_{-i} = (v_1, \dots, v_{i-1}, v_{i+1}, \dots, v_n)$ the subvector of \mathbf{v} excluding v_i , |S| is the cardinality of set S, 2^S is the powerset of S, $\Delta(S)$ is the set of probability distributions over S, \mathbb{R} is the set of real numbers with $\mathbb{R}^{\geq 0}$ the subset of non-negative real numbers, and \mathbb{N} is the set of natural numbers. A function $f: X \to Y$ is a surjection if for each $y \in Y$ there exists some $x \in X$ such that f(x) = y. Given a function $f: X \to Y$, the inverse image of function f is a function $f_{B,N}^{-1}: Y \to 2^X$ defined for each $y \in Y$ as $f_{B,N}^{-1}(y) = \{x \in X \mid f(x) = y\}$.

2.1 SSP Games

A tuple (N, S, A, T, R, G) is a (fully observable, two-player, zero-sum) stochastic shortest path (SSP) game if $N = \{1, 2\}$ is a set of **players**, S is a (possibly infinite) set of **states**, $A = A_1 \times A_2$ is a set of **action profiles** with A_i the (possibly infinite) set of **actions** available to player $i \in N$, $G \subseteq S$ is a (possibly infinite) set of **goal states** for player $1, T: S \times A \to \Delta(S)$ is a (stochastic) **transition function** such that T(s, a, s) = 1 for each $s \in G$ and each $a \in A$, and $R: S \times A \times S \to \mathbb{R}$ is a **reward function** for player 1 such that R(s, a, s') = 0 for each $s \in G$, each $a \in A$, and each $s' \in S$. Let T(s, a, s') denote the probability of transitioning to state $s' \in S$ after executing action profile $a \in A$ in state $s \in S$ according to probability distribution T(s, a). An **execution** is a possibly infinite sequence $(s_1, a_1, s_2, a_2, \ldots)$ of states and action profiles. A **history** of length t is a finite execution $h_t = (s_1, a_1, \ldots, a_{t-1}, s_t)$ ending in a state. Let H_t be the set of histories of length t with $D = \{1, 2, \ldots, t_{max}\}$ the set of decision-steps up to horizon $t_{max} \in \mathbb{N} \cup \{\infty\}$ and $H = \{h \in H_t \mid t \in D\}$ the set of histories up to t_{max} .

A (mixed) **strategy** for player $i \in N$ is a probability distribution $\psi \in \Delta(A_i)$. A strategy ψ for player $i \in N$ is a **pure strategy** if $\psi(a) = 1$ for some $a \in A_i$. A (mixed) **policy** for player $i \in N$ is a function $\pi_i : H \to \Delta(A_i)$. Let $\pi_i(h, a)$ denote the probability that player $i \in N$ will execute action $a \in A_i$ in history $h \in H$ according to strategy $\pi_i(h)$. A policy π_i for player $i \in N$ is **pure** if $\pi_i(h, a) = 1$ for each $h \in H$ and some $a \in A_i$. A pure policy for player $i \in N$ may be written as $\pi_i : H \to A$. A policy π_i for player $i \in N$ is **Markovian** if $\pi_i(h) = \pi_i(h')$ for all $h, h' \in H$ such that t = t' and s = s' where h ends in state $s \in S$ after $t \in D$ timesteps (resp. h' ends in state $s' \in S$ after $t' \in D$ timesteps). A Markovian policy for player $i \in N$ may be written as $\pi_i : S \times D \to \Delta(A_i)$. A Markovian policy π_i for player $i \in N$ is **stationary** if $\pi_i(s, t) = \pi_i(s, t')$ for each $s \in S$ and all $t, t' \in D$, otherwise π_i is **non-stationary**. A stationary policy for player $i \in N$ may be written as $\pi_i : S \to \Delta(A_i)$.

A **policy profile** is a tuple $\pi = (\pi_1, \pi_2)$ where π_i is a policy for player $i \in N$. The (mixed) **strategy profile** for history $h \in H$ according to policy profile π is $\pi(h) = (\pi_1(h), \pi_2(h))$. A strategy profile $\pi(h)$ for history $h \in H$ is a **pure strategy profile** for h if $\pi_i(h)$ is a pure strategy for each $i \in N$. Let $\pi(h, a) = \prod_{i \in N} \pi_i(h, a_i)$ be the probability that action profile $a \in A$ will be executed in history $h \in H$ according to policy profile π .

The **expected value** of policy profile π for player $i \in N$ in history $h \in H$ is:

$$V_i(\boldsymbol{\pi}, h) = \sum_{\boldsymbol{a} \in A} \boldsymbol{\pi}(h, \boldsymbol{a}) \sum_{s' \in S} T(s, \boldsymbol{a}, s') \left[R_i(s, \boldsymbol{a}, s') + V_i(\boldsymbol{\pi}, [h, \boldsymbol{a}, s']) \right]$$
(1)

where h ends in state $s \in S$. Standard notions of optimality are not well-defined in SSP games when $V_i(\pi, h) = \infty$ for any history $h \in H$, or when $V_i(\pi, h') = -\infty$ for each $h' \in H$. For this reason, solution definitions typically rely on assumptions that the process will (eventually) terminate by reaching a goal state, ensuring finite expected value for a given policy profile. Let $\mathbb{P}(s \mid h, \pi, t)$ denote the probability of transitioning from history $h \in H$ to state $s \in S$ within $t \in \mathbb{N}$ timesteps by following policy profile π . A policy π_1 for player 1 is **proper** at history $h \in H$ if there exists some $t \in \mathbb{N}$ such that:

$$\mathbb{P}(G \mid h, \pi_1, \pi_2, t) = \sum_{s' \in G} \mathbb{P}(s' \mid h, \pi_1, \pi_2, t) = 1$$
 (2)

for any policy π_2 for player 2, otherwise π_1 is **improper** at h. A policy π_1 for player 1 is proper if π_1 is proper at each history $h \in H$, otherwise π_1 is improper. An SSP game is **solvable** if there exists a policy π_1 for player 1 such that π_1 is proper and $V(\pi'_1, h) = -\infty$ for any (improper) policy π'_1 for player 1 such that π'_1 is improper at history $h \in H$. A policy π^*_i for player 1 in a solvable SSP game is an **expectiminimax** policy for player 1 if π^*_i satisfies:

$$\underset{\boldsymbol{\pi}_{-i}}{\operatorname{argmin}} V_i(\boldsymbol{\pi}_i^*, \boldsymbol{\pi}_{-i}, h) \ge \underset{\boldsymbol{\pi}'_{-i}}{\operatorname{argmin}} V_i(\boldsymbol{\pi}'_i, \boldsymbol{\pi}'_{-i}, h) \tag{3}$$

for each policy π'_i for player 1 and each history $h \in H$. It is known that attention in SSP games can be restricted to stationary pure policies [].

¹The notions of proper and improper policies are undefined for player 2.

3 Framework

Definition 1. An agent-body-effector model is a tuple $(N, B, E, f_{B,N}, f_{E,B})$ where:

- $N = \{1, ..., n\}$ is a finite set of agents
- B is a finite set of bodies with $f_{B,N}: B \to N$ a surjection from bodies to agents
- *E* is a finite set of effectors with $f_{E,B}: E \to B$ a surjection from effectors to bodies and A(e) the non-empty (possibly infinite) set of actions available to $e \in E$

Corollary 1. $|N| \le |B| \le |E|$.

Figure 1: Agent-body-effector model

The set of bodies associated with agents $N' \subseteq N$ is defined as $B(N') = \{b \in f_{B,N}^{-1}(i) \mid i \in N'\}$. The set of effectors associated with bodies $B' \subseteq B$ is defined as $E(B') = \{e \in f_{E,B}^{-1}(b) \mid b \in B'\}$. Thus, the set of bodies B (resp. agents N) in an agent-body-effector model induces a partition of the set of effectors E, as illustrated in Figure 1. The set of (multi-)actions available to effectors $E' \subseteq E$ is defined as $A(E') = \times_{e \in E'} A(e)$. Thus, there exists a non-empty set of (multi-)actions available to each body (resp. agent).

Definition 2. Let $(N, B, E, f_{B,N}, f_{E,B})$ be an agent-body-effector model. An SSP game (N, S, A, T, R, G) is a test generation game if:

- $N = \{1, 2\}$ with 1 the tester agent and 2 the ego agent
- $A_i = A(E(B(\{i\})))$ is the set of actions available to agent $i \in N$
- $G \subseteq S$ is an assertion (or the precondition of an assertion)
- $(N, S, A, T, \mathbf{R}, G)$ is solvable

In the context of a test generation game, a test is an optimal policy (e.g. an expectiminimax policy) for player 1. An example of such a policy is shown in Figures 2 and 3. In other words, a test guarantees the triggering of an assertion within a finite number of timesteps while maximizing reward (or minimizing cost) for the tester agent, regardless of actions taken by the ego agent or of any chance outcomes. A test is also applicable (and optimal) for any initial state of a simulation run.

Figure 2: SSP game with initial state $s_1 \in S$ (2 denotes ego decision nodes, \spadesuit denotes chance nodes, policies are stationary and pure)

Figure 3: Visualisation of π^* from Figure 2

4 Experiments

Figure 4: Agent-based test generation in CAV-Gym: Pedestrians

Figure 5: CAV-Gym:Pedestrians

References

Appendix: Kinematics

A state is a tuple $s_i = (p_i, v_i, o_i)$ where $p_i \in \mathbb{R}^2$ is a position denoted $p_i = (p_i^x, p_i^y), v_i \in [v_{\min}, v_{\max}]$ is a velocity with $v_{\min}, v_{\max} \in \mathbb{R}^{\geq 0}$ such that $v_{\min} < v_{\max}$, and $o_i \in (-\pi, \pi]$ is an orientation (in radians). Let $b \in \mathbb{R}^{\geq 0}$ be a wheelbase constant. The positions of front and rear wheels $f_i, r_i \in \mathbb{R}^2$ in state $s_i = (p_i, v_i, o_i)$ are:

$$f_i = \left(p_i + \frac{b}{2} \cdot (\cos o_i, \sin o_i)\right) \tag{4}$$

$$r_i = \left(p_i - \frac{b}{2} \cdot (\cos o_i, \sin o_i)\right) \tag{5}$$

A body has two effectors: throttle and steering. An action is a tuple $a_i = (t_i, e_i)$ where $t_i \in [t_{\min}, t_{\max}]$ is a throttle with $t_{\min}, t_{\max} \in \mathbb{R}$ such that $t_{\min} < t_{\max}$, and $e_i \in (e_{\min}, e_{\max}]$ is a steering angle (in radians) with $e_{\min}, e_{\max} \in (-\pi, \pi]$ such that $e_{\min} < e_{\max}$. Let $\lambda \in \mathbb{R}^{>0}$ be a time resolution constant. If action $a_i = (t_i, e_i)$ is executed in state $s_i = (p_i, v_i, o_i)$, then the successor state is $s_{i+1} = (p_{i+1}, v_{i+1}, o_{i+1})$ where:

$$f_{i+1} = f_i + (v_i \cdot \lambda \cdot (\cos(o_i + e_i), \sin(o_i + e_i)))$$
(6)

$$r_{i+1} = r_i + (v_i \cdot \lambda \cdot (\cos o_i, \sin o_i)) \tag{7}$$

$$p_{i+1} = \frac{f_{i+1} + r_{i+1}}{2} \tag{8}$$

$$v_{i+1} = \min\{v_{\max}, \max\{v_{\min}, v_i + (\lambda \cdot t_i)\}\}$$
 (9)

$$o_{i+1} = \operatorname{atan2}\left(f_{i+1}^{y} - r_{i+1}^{y}, f_{i+1}^{x} - r_{i+1}^{x}\right)$$

$$\tag{10}$$

The body kinematics from Equations 4–10 are illustrated in Figure 6. Given states s_i and s_{i+1} such that $\lambda \cdot v_i > 0$ and $-1 \le \frac{f_{i+1}^x - f_i^x}{\lambda \cdot v_i} \le 1$ (resp. $-1 \le \frac{f_{i+1}^y - f_i^y}{\lambda \cdot v_i} \le 1$), then transitioning from s_i to s_{i+1} can be achieved by executing action $a_i = (t_i, e_i)$ in s_i where:

$$t_i = \frac{v_{i+1} - v_i}{\lambda} \tag{11}$$

$$e_{i} = \cos^{-1}\left(\frac{f_{i+1}^{x} - f_{i}^{x}}{\lambda \cdot v_{i}}\right) - o_{i} = \sin^{-1}\left(\frac{f_{i+1}^{y} - f_{i}^{y}}{\lambda \cdot v_{i}}\right) - o_{i}$$
 (12)

Figure 6: Body kinematics

Appendix: Algorithms

To do: Account for discretisation of continuous action spaces within each agent type (although, strictly speaking, QLearningAgent is the only agent type that requires a finite action space).

Algorithm 1: Simulator

```
persistent: environment e, agents N = \{1, \dots, n\}, terminator \psi \subseteq S

1 begin

2 | for each episode do

3 | s \leftarrow \text{reset } e

4 | for each timestep do

5 | a \leftarrow (\text{ChooseAction}_1(s), \dots, \text{ChooseAction}_n(s))

6 | r, s' \leftarrow \text{execute } a \text{ in } e

7 | for each agent \ i \in N \ do

8 | PROCESSFEEDBACK<sub>i</sub>(s, a_i, r_i, s')

9 | if s' \in \psi then break else s \leftarrow s'
```

Algorithm 2: RANDOMAGENT

```
persistent: exploration rate \epsilon \in [0, 1]

1 function ChooseAction(s)

2 | with probability \epsilon do

3 | return random choice from A(s)

4 | return \emptyset
```

Algorithm 3: ProgrammedRandomAgent

Algorithm 4: ProgrammedReactiveAgent

```
      persistent: programmed behaviour \pi: S \to A, trigger \varphi \subseteq S, terminator \psi \subseteq S

      1 function ChooseAction(s)

      2 | if \pi is active then

      3 | if s \in \psi then set \pi as inactive else return \pi(s)

      4 | if s \in \psi then

      5 | set \pi as active

      6 | return \pi(s)

      7 | return \varnothing
```

Algorithm 5: ProgrammedElectionAgent

```
persistent: programmed behaviour \pi: S \to A, terminator \psi \subseteq S, coordinator c

1 function ChooseAction(s)

2 | if \pi is active then

3 | | if s \in \psi then set \pi as inactive else return \pi(s)

4 | if elected by c then

5 | | set \pi as active

6 | | return \pi(s)

7 | return \emptyset
```

Algorithm 6: QLEARNINGAGENT

```
persistent: learning rate \alpha \in [0, 1], discount factor \gamma \in [0, 1), exploration rate \epsilon \in [0, 1], feature f_j : S \times A \to \mathbb{R} with weight w_j \in \mathbb{R} for j = 1, \ldots, m

1 function ChooseAction(s)

2 with probability \epsilon do

3 return random choice from A(s)

4 return random choice from argmax_{a \in A(s)} QValue(s, a)

5 procedure ProcessFeedback(s, a, r, s')

6 q \leftarrow (r + \gamma \cdot \max_{a' \in A(s')} \text{QValue}(s', a')) - \text{QValue}(s, a)

7 for each feature f_j do

8 w_j \leftarrow w_j + \alpha \cdot q \cdot f_j(s, a)

9 function QValue(s, a)

10 return \sum_{j=1}^m f_j(s, a) \cdot w_j
```