Analiza skupień zestawu parametrów samochodów amerykańskich, europejskich i japońskich wyprodukowanych w latach 1970-1982

Jerzy Marczewski Dawid Rozumkiewicz

Wojciech Pietraszuk Karol Hetmański

Przemysław Chachaj

1 Streszczenie

2 Słowa kluczowe

- klaster
- klateryzacja metoda klasyfikacji bez nadzoru (ang. usupervised learning), która grupuje elementy na względnie jednorodne klasy
- mpg (ang. miles per gallon) mile na galon
- objętość skokowa cylindra różnica pomiędzy maksymalną a minimalną objętością cylindra
- $\bullet\,$ objętość skokowa silnika iloczyn objętości skokowej cylindra i liczby cylindrów
- hp (ang. Horsepower)
- metoda k-średnich
- metoda Warda
- SOM (ang. Self-organizing map) sieć Kohonena
- BMU (ang. best matching unit) najlepiej dopasowana jednostka

3 Wprowadzenie

4 Przedmiot badania

4.1 Cel i zakres badania

- 4.2 (min. 1 cytowanie powiązane tematycznie i krótki opis co było badane)
- 4.3 Zmienne wybrane do analizy (opis i uzasadnienie zmiennych oraz podział na stymulanty/destymulanty) minimum sześć zmiennych

Do analizy wybrano następujące cechy diagnostyczne:

- X_1 mpg
- X_2 liczba cylidn
rów
- ullet X_3 objętość skokowa silnika
- X₄ hp
- X_5 waga (podana w funtach)
- X_6 przyspieszenie
- X_7 model (rok modelowy auta wyrażony w dwóch ostanich cyfrach roku)
- X_8 kraj pochodzenia (1 Stany Zjednoczone, 2 Europa, 3 Japonia)

4.4 Wstępna analiza danych

Statystyki opisowe

Wyniki średniej, mediany, minimum, maksimum, odchylenia standardowego, skośności dla każdej z cech zaokrąglone do dwóch miejsc po przeciunku:

	X_1	X_2	X_3	X_4	X_5	X_6	X_7	X_8
średnia	20.76	5.81	216.09	112.91	3139.32	15.31	74.35	1.46
mediana	19.2	6.0	225.0	100.0	3139.0	15.5	74.0	1.0
min	9	4	72	46	1613	9	70	1
max	43.1	8.0	455.0	230.0	5140.0	22.1	79.0	3.0
odchylenie standardowe	6.62	1.78	109.93	41.64	900.74	2.80	2.93	0.74
skośność	0.71	0.18	0.34	0.79	0.24	0.06	0.04	1.21

podstawowa wizualizacja np. boxplot, histogramy

braki danych, czy występują i jak je obsłużono

Braki danych występują jedynie dla cechy hp. Wszystkie samochody z brakiem danych zostały usunięte z danych za pomocą skryptu w R.

obserwacje odstające i w jaki sposób je obsłużono

5 Opis metod

5.1 wzory wraz z opisami oznaczeń

Metoda k-średnich

Celem metody jest przypisanie do wektorów r_i n
 wymiarowych wektorów danych, przy jak najmniejszym średnim błędzie kwantyzacji. Średni
 błąd kwantyzacji opisany jest wzorem:

$$D = \frac{1}{K} \sum_{i=1}^{K} d(x_i, r)$$

- \bullet K liczba elementów x_i przypisanych do wektora r
- d miara błędu kwantyzacji, najczęściej błąd kwadratowy opisany wzorem:

$$d(x,r) = \sum_{j=1}^{n} (x_j - r_j)^2$$

Metoda Warda

Odległość nowego skupienia od każdego pozostałego:

$$D_{pr} = a_1 \cdot d_{pr} + a_2 \cdot d_{qr} + b \cdot d_{pq}$$

- r numery skupień różne od p i q
- $\bullet \ D_{pr}$ odległość nowego od skupienia r
- d_{pr} odległość pierwotnego skupienia p od skupienia r
- d_{qr} odległość pierwotnego skupienia q od skupienia r
- d_{pq} wzajemna odległość pierwotnych skupień p i ${\bf q}$
- $a_1 = \frac{n_p + n_r}{n_p + n_q + n_r}$, $a_2 = \frac{n_q + n_r}{n_p + n_q + n_r}$, $b = \frac{-n_r}{n_p + n_q + n_r}$
- n liczebność pojedyńczych obiektów w poszczególnych obiektach

SOM

Wzór aktualizowania neuronu v z wagą wektora $W_v(s)$:

$$W_v(s+1) = W_v(s) + \theta(u, v, s) \cdot \alpha(s) \cdot (D(t) - W_v(s))$$

- s obecna iteracja
- $\bullet\,$ t indeks docelowego wektora danych wejściowych w zbiorze danych wejściowych D
- D(t) docelowy wektor danych wejściowych
- v indeks wektora w mapie
- $\bullet~W_v$ aktualny wektor wagi wezła v
- u to indeks BMU na mapie
- $\theta(u,v,s)$ jest ograniczeniem ze względu na odległość od BMU, zwykle nazywaną funkcją sąsiedztwa
- 5.2 cytowanie pracy w której zaproponowano metodę/ewentualnie pracy, w której użyto metodę
- 6 Rezultaty (w postaci tabelarycznej i/lub graficznej oraz omówienie wyników)
- 7 Podsumowanie (ocena realizacji celu, odniesienie do pozycji z przeglądu literatury)
- 8 Bibliografia
 - Algorithm AS 136: A K-Means Clustering Algorithm J. A. Hartigan and M. A. Wong
 - www.statystyka.az.pl
 - www.wikipedia.org