JĒDZIENI UN FORMULAS NO MAS TEORIJAS

λ – ieejas plūsmas intensitāte (klienti laika vienībā);

 μ – apkalpošanas intensitāte (cik katrs kanāls apkalpo klientus laika vienībā)

 t_{izs} – laiks starp izsaukumiem

$$\alpha = \frac{\lambda}{\mu}; \ \lambda = \frac{1}{t_{izs}}; \ \mu = \frac{1}{t_{apk}}$$

Sistēma ar atteikumiem

olotollia al attoritalinolli	
vienkanāla	n - kanālu
Varbūtība, ka kanāls nav aizņemts:	Varb., ka neviens kanāls nav aizņemts:
$p_0 = \frac{\mu}{\lambda + \mu}$	$p_0 = \left(\sum_{k=0}^n \frac{\alpha^k}{k!}\right)^{-1}$
$p_1 = \frac{\lambda}{\lambda + \mu}$	$p_k = \frac{\alpha^k}{k!} p_0$
Atteikuma varbūtība $p_a = p_1$	$p_a = p_n$
Relatīvā caurlaides spēja q = 1 - p _a	$q = 1 - p_a$
Absolūtā caurlaides spēja A= λ q	$A = \lambda q$
Vidējais aizņemto kanālu skaits z _a = p₁	$z_a = \alpha q$
Kanālu noslodzes koeficients η = p₁	$\eta = \frac{z_a}{n}$
	Vidējais dīkstāves laiks: $t_d = t_{apk} \frac{1-\eta}{\eta}$

Sistēma ar neierobežotu rindu ($\frac{\alpha}{n} \le 1$, k – klientu skaits sistēmā)

vienkanāla	n- kanālu
$p_0 = 1 - \alpha$	$p_0 = \left(\sum_{k=0}^n \frac{\alpha^k}{k!} + \frac{\alpha^{n+1}}{n!(n-\alpha)}\right)^{-1}$
Varb., ka sistēmā ir k klienti: $p_k = \alpha^k p_0$	$p_k = \frac{\alpha^k}{k!} p_0, \text{ ja } 1 \leq k \leq n \text{ un } p_k = \frac{\alpha^k}{n! n^{k-n}} p_0,$ ja $k \geq n$
Vidējais rindas garums $r = \frac{\alpha^2}{1-\alpha}$	$\bar{r} = \frac{\alpha^{n+1}}{n \cdot n! \left(1 - \frac{\alpha}{n}\right)^2} p_0$
Vidējais sistēmā esošo klientu skaits:	
$N_{sist} = \frac{\alpha}{1 - \alpha}$	$N_{sist} = r + \alpha$
Absolūtā caurlaides spēja A= λ	$A = \lambda$
Vidējais aizņemto kanālu skaits $z_a = \alpha$	$z_a = \alpha$
Relatīvā caurlaides spēja q = 1	q = 1
Atteikuma varbūtība $p_a = 0$	$p_a = 0$
Apkalpošanā esošo kl. skaits: $N_{apk} = \alpha$	$N_{apk} = \alpha$
Vidējais rindā stāvēšanas laiks: $T_r = \frac{\bar{r}}{\lambda}$	$T_r = \frac{\bar{r}}{\lambda}$
Vid. sistēmā pavadītais laiks: $T_{sist} = \frac{N_{sist}}{\lambda}$	$T_{sist} = \frac{N_{sist}}{\lambda}$