Model Selection Documentation

1. Models Evaluated

Four different modeling approaches were tested for predicting stock prices 5 days into the future:

1. Linear Regression (Baseline)

- o Simple, interpretable model to establish a performance baseline
- o Assumes linear relationships between features and target

2. Random Forest

- o Ensemble of decision trees to capture non-linear relationships
- o Reduces overfitting through bagging and feature randomization

3. XGBoost

- o Gradient boosting implementation optimized for performance
- Handles complex relationships and feature interactions

4. LSTM Neural Network

- Deep learning approach specialized for sequential data
- Capable of capturing long-term dependencies in time series

2. Evaluation Metrics

Models were evaluated using multiple metrics to assess different aspects of performance:

Statistical Metrics

- RMSE (Root Mean Squared Error): Measures the average magnitude of prediction errors
- MAE (Mean Absolute Error): Average absolute difference between predicted and actual values
- R² (Coefficient of Determination): Proportion of variance explained by the model

Trading-Specific Metrics

- Directional Accuracy: Percentage of correct predictions of price movement direction (up/down)
- **Profit Factor**: Ratio of gains from correct predictions to losses from incorrect predictions
- Maximum Drawdown: Largest drop in cumulative returns during the test period

3. Model Performance Comparison

Model	RMSE	MAE	Directional Accuracy	Profit Factor	Training Time
Linear Regression	4.87	3.92	53.2%	1.12	0.5s
Random Forest	3.21	2.58	58.7%	1.45	12s
XGBoost	2.94	2.31	62.3%	1.68	18s
LSTM	3.05	2.42	61.1%	1.59	5m 23s

Performance Visualization

Feature Importance (XGBoost)

Top 5 most important features:

- 1. Close_lag_1 (Previous day's closing price)
- 2. RSI (Relative Strength Index)
- 3. BB_upper (Upper Bollinger Band)
- 4. Volume_change_ratio (Volume change compared to 5-day average)
- 5. MACD (Moving Average Convergence Divergence)

4. Final Model Selection

XGBoost was selected as the final model based on the following considerations:

Advantages

- **Superior Performance**: Achieved the lowest RMSE (2.94) and highest directional accuracy (62.3%)
- Feature Importance: Provides clear insights into which factors drive predictions
- Robustness: Handles outliers and non-linear relationships effectively
- **Efficiency**: Reasonable training time compared to LSTM with similar performance

Hyperparameters

The final XGBoost model used the following hyperparameters:

- Learning rate: 0.05
- Max depth: 6
- Number of estimators: 200
- Subsample: 0.8
- Colsample bytree: 0.8
- Objective: 'reg:squarederror'

These parameters were selected through 5-fold time-series cross-validation to balance model complexity and generalization.

5. Model Limitations

Despite its strong performance, the XGBoost model has several limitations:

1. Market Regime Changes:

- o The model may not adapt quickly to fundamental market regime changes
- Performance degrades during unprecedented market conditions

2. Black Swan Events:

- o Extreme events like market crashes are underrepresented in training data
- Model cannot predict unpredictable news-driven price movements

3. Limited Feature Scope:

- o Relies primarily on technical indicators and price patterns
- Lacks incorporation of fundamental data, news sentiment, and macroeconomic factors

4. Prediction Horizon:

- Accuracy decreases as the prediction horizon increases
- 5-day predictions show reasonable accuracy, but longer horizons would be challenging

5. Overfitting Risk:

- Complex model may capture noise in historical patterns
- o Regular retraining and validation required to maintain performance

6. Potential Improvements

With additional time and resources, the following improvements could be implemented:

1. Alternative Data Integration:

- Incorporate news sentiment analysis
- Add macroeconomic indicators (interest rates, inflation, employment data)
- o Include sector-specific metrics and competitor performance

2. Advanced Modeling Techniques:

- Develop ensemble methods combining multiple models
- Implement time-varying parameter models that adapt to changing market conditions
- o Explore transformer-based architectures for better sequence modeling

3. Feature Engineering:

- Create features capturing market regime identification
- o Develop indicators of market sentiment from options data
- Engineer features representing supply/demand imbalances

4. Prediction Calibration:

- Generate prediction intervals rather than point estimates
- Calibrate predictions based on market volatility
- Implement Bayesian methods to quantify prediction uncertainty

5. Reinforcement Learning:

- o Frame the problem as a trading policy optimization
- Develop models that directly optimize trading performance rather than prediction accuracy