./sections/img/ntu.png

NANYANG TECHNOLOGICAL UNIVERSITY

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

Math Note

Deng Yue

Contents

1	Functional Analysis					
	1.1	RKHS		-		
			Functional Analysis Foundations			
Re	efere	nces		:		

iv Contents

Chapter 1

Functional Analysis

1.1 **RKHS**

1.1.1 Functional Analysis Foundations

Definition 1 (Norm)

Let \mathcal{F} be a vector space over \mathbb{R} . A function $\|\cdot\|_{\mathcal{F}}: \mathcal{F} \to [0, +\infty]$ is said to be a norm on \mathcal{F} if

- 1. $||f||_{\mathcal{F}} = 0$ iff $f = \mathbf{0}$ (norm separate points)
- 2. $\|\lambda f\|_{\mathcal{F}} = |\lambda| \|f\|_{\mathcal{F}}, \forall \lambda \in \mathbb{R}, \forall f \in \mathcal{F} \ (positive \ homogeneity)$
- 3. $||f+g||_{\mathcal{F}} \leq ||f||_{\mathcal{F}} + ||g||_{\mathcal{F}}, \forall f, g \in \mathcal{F} \ (triangle \ inequality)$

Distance: a notation of distance on $\mathcal{F}: d(f,g) = ||f-g||_{\mathcal{F}}$

Definition 2 (Convergent Sequence)

A sequence $\{f_n\}_{n=1}^{\infty}$ of elements of a normed vector space (\mathcal{F},\cdot) is said to converge to $f \in \mathcal{F}$ if for every $\epsilon > 0$, there exists $N = N(\epsilon) \in \mathbb{N}$

Definition 3 (Cauchy Sequence)

A sequence $\{f_n\}_{n=1}^{\infty}$ of elements of a normed vector space $(\mathcal{F}, \|\cdot\|_{\mathcal{F}})$ is said to be a Cauchy(fundamental) Sequence if for every $\epsilon > 0$, there exists $N = N(\epsilon) \in \mathbb{N}$, such that for all $n \geq N$, $\|f_n - f\| < \epsilon$

Definition 4 (Complete Space)

A space \mathcal{X} is complete if every Cauchy sequence in \mathcal{X} converges: it has a limit, and this limit is in \mathcal{X} .

Definition 5 (Banach Space)

Banach space is a complete normed space, i.e, it contains the limits of all its Cauchy sequences.

Bibliography

- [1] Armstrong, M.A. Basic Topology. England: Editorial Board, 2000.
- [2] Coxeter, H.S.M. *Introduction to Geometry*. Toronto: John Wiley and Sons Inc, 1969.
- [3] Chronister, James. Blender Basics. Estados Unidos: 2004.
- [4] Engelking, Ryszard. General Topology. Berlin: Hildermann, 1989.
- [5] Engelking, Ryszard y Karol Sieklucki. *Topology: A Geometric Approach*. Berlin: Hildermann, 1992.
- [6] Hatcher, Allen. *Algebraic Topology*. Cambridge: Cambridge University Press, 2002.
- [7] Hoffman, Kenneth y Ray Kunze. *Linear Algebra, second edition*. New Jersey: Prentice Hall. Inc, 1961.
- [8] Kackzynski, T., K. Mischainkow y M. Mrozen. Algebraic Topology: A Computational Approach. 2000.
- [9] Kosniowski, Czes. $Topolog\tilde{A}a$ Algebraica. Barcelona: Editorial Revert, 1986.
- [10] Lefschetz, Solomon. *Algebraic Topology*. Rhode Island: American Mathematical Society, 1991.
- [11] May, J. P. A Concise Course in Algebraic Topology. Chicago.
- [12] Mill, J. Van. Infinite-Dimensional Topology. Amsterdam: Elsevier Science Publications B. V, 1989.
- [13] Munkres, James R. Topology. New York: Prentice Hall Inc, 2000.
- [14] Roseman, Dennis. *Elementary Topology*. New Jersey: Prentice Hall Inc, 1999.
- [15] Sato, Hajime. Algebraic Topology: An Intuituve Approach. Rhode Island: American Mathematical Society, 1996.

4 Bibliography

[16] Zomorodian, Afra J. *Topology for Computing*. United States: Cambridge University Press, 2005.