Quarkslab

MIFARE Classic: exposing the static encrypted nonce variant

Y'en a un peu plus, j'vous l'mets quand même?

Philippe Teuwen

21-11-2024

What to expect?

Breaking MIFARE Classic in 2024 ??

FM11RF08S 芯片 EEPROM 存储器的出厂配置数据如下: Sector Block 13 | 14 | UID Chip Info FF FF FF Sector Block 14 | 15 FF FF FF Sector Block 13 | 14 | 15 FF FF FF

Reader

Tag

$$\begin{array}{c} \stackrel{\text{UID}}{\longleftarrow} \\ \stackrel{\text{AuthA/B for block X}}{\longrightarrow} \\ a_R := f(n_T) \\ \text{Generate } n_R \\ \\ \stackrel{\{n_R \mid a_R\}}{\longrightarrow} \\ \\ a_T \stackrel{?}{=} f'(n_T) \\ a_T := f'(n_T) \\ \end{array}$$

Reader

Tag

{AuthA/B for block Y}

$$\longrightarrow$$

$$\stackrel{\{n_T\}}{\longleftarrow}$$

Generate n_T

$$a_R \coloneqq f(n_T)$$

Generate n_R

$$\xrightarrow{\{n_R|a_R\}}$$

$$\overset{\{a_T\}}{\longleftarrow}$$

$$\begin{array}{l} a_R \stackrel{?}{=} f(n_T) \\ a_T \coloneqq f'(n_T) \end{array}$$

 $a_T \stackrel{?}{=} f'(n_T)$

1994 first Philips MIFARE Classic

1997 Infineon SLE44R35

2004 Fudan FM11RF08

2007-2009 the end

• 24C3 Mifare (Little Security Despite Obscurity)

1994 first Philips MIFARE Classic

1997 Infineon SLE44R35

2004 Fudan FM11RF08

2007-2009 the end

- 24C3 Mifare (Little Security Despite Obscurity)
- Dismantling MIFARE Classic

Reader+Tag

Reader-only

1994 first Philips MIFARE Classic

1997 Infineon SLE44R35

2004 Fudan FM11RF08

2007-2009 the end

- 24C3 Mifare (Little Security Despite Obscurity)
- Dismantling MIFARE Classic
- Dark Side Of Security by Obscurity and Cloning MiFare Classic Rail and Building Passes Anywhere

Card-only: Darkside attack

1994 first Philips MIFARE Classic

1997 Infineon SLE44R35

2004 Fudan FM11RF08

2007-2009 the end

- 24C3 Mifare (Little Security Despite Obscurity)
- Dismantling MIFARE Classic
- Dark Side Of Security by Obscurity and Cloning MiFare Classic Rail and Building Passes Anywhere
- Wirelessly Pickpocketing a Mifare Classic Card

Card-only: Nested attack

Reader Tag {AuthA/B for block Y} predictable, "16-bit" n_T $\{n_T\}$ (1-2 more times) key found!

1994 first Philips MIFARE Classic

1997 Infineon SLE44R35

2004 Fudan FM11RF08

2007-2009 the end? not really...

2010 MIFARE Plus (with Classic compatible SL1)

2014 MIFARE Classic EV1

Hardened cards

Reader Tag UID AuthA/B for block X truly random n_T n_T random no more NACK

1994 first Philips MIFARE Classic

1997 Infineon SLE44R35

2004 Fudan FM11RF08

2007-2009 the end? not really...

2010 MIFARE Plus (with Classic compatible SL1)

2014 MIFARE Classic EV1

2015 Ciphertext-only Cryptanalysis on Hardened Mifare Classic Cards

Hardnested attack

Static Encrypted Nonce cards

Resist all known card-only attacks

1994 first Philips MIFARE Classic

1997 Infineon SLE44R35

2004 Fudan FM11RF08

2010 MIFARE Plus (with Classic compatible SL1)

2014 MIFARE Classic EV1

2015 Ciphertext-only Cryptanalysis on Hardened Mifare Classic Cards

2020 Fudan FM11RF08S

FM11RF08S aka Static Encrypted Nonce cards

Static Encrypted Nonce depends on

- the card
- the sector
- the key itself

Static Encrypted Nonce depends on

- the card
- the sector
- the key itself

Assume a key is repeated across some sectors / cards

Reused Keys Nested Attack

Reused Keys Nested Attack

Lightweight fuzzing

Nested AuthA/B for block $X \longrightarrow X$

$$60xx = keyA$$

$$61xx = keyB$$

6000, 6200, 6800, 6a00 \rightarrow $\{n_T\}$ = 4e506c9c, auth successful with keyA

6100, 6300, 6900, 6b00 $\rightarrow \{n_T\}$ = 7bfc7a5b, auth successful with keyB

6400, 6600, 6c00, 6e00 $\rightarrow \{n_T\}$ = 65aaa443, auth failed

6500, 6700, 6d00, 6f00 \rightarrow $\{n_T\}$ = 55062952, auth failed

Reused Keys Nested Attack

Reused Keys Nested Attack

A396EFA4E24F

all sectors

all FM11RF08S tags

DEMO: Data Read

Data-first + Reader-only

DEMO: Data-first + Reader-only

Backdoored nested attack

6000, 6200, 6800, 6a00 $\rightarrow n_T$ = 75bfa373, auth successful with keyA 6100, 6300, 6900, 6b00 $\rightarrow n_T$ = 999c7562, auth successful with keyB 6400, 6600, 6c00, 6e00 $\rightarrow n_T$ = 75bfa373, auth successful with **A396EFA4E24F** 6500, 6700, 6d00, 6f00 $\rightarrow n_T$ = 999c7562, auth successful with **A396EFA4E24F**

Backdoored nested attack

Data-first attacks, supporting nested

Data-first + Reader-only, with nested auth support

Reader		Tag
	$\begin{array}{c} \operatorname{AuthA/B} \text{ for block X} \\ \longleftrightarrow \end{array}$	
	$\{n_T\}$ $\{n_B a_B\}$	
	$\xrightarrow{\langle n_R a_R \rangle}$	key found!
	$ \begin{array}{c} $	
	$\{ Read block X \}$	
		Sure!
	$ \begin{array}{c} \longleftrightarrow\\ \{\text{Read block X}\}\\ \longrightarrow \end{array} $	Sure!

Reversing Nested Nonce Generation

$$n_{T_0}, K_0, K_1 \rightarrow n_{T_1}$$

Faster Backdoored Nested Attack

DEMO: Full Card Recovery

Light-Fast Supply Chain Attack

DEMO: Light-Fast Supply Chain Attack

More Backdoors

 $FM11RF08 \Rightarrow A31667A8CEC1$

 $FM11RF32N \Rightarrow 518B3354E760$

With help of community:

 $FM11RF08S-7B \Rightarrow A396EFA4E24F$

 $FM1208-10 \Rightarrow A31667A8CEC1$

 $FM1216-137 \Rightarrow A31667A8CEC1$

one FM11RF08S \Rightarrow A31667A8CEC1

Official manufacturers...

 $MF1ICS5003 \Rightarrow A31667A8CEC1$

 $MF1ICS5004 \Rightarrow A31667A8CEC1$

 $SLE66R35 \Rightarrow A31667A8CEC1$

- 47-page https://eprint.iacr.org/2024/1275 (v1.2 2024-11-08)
- Proxmark3 Iceman fork 🤎
- 7 new commands/tools/scripts
- 4 updated commands with backdoor support

Contributions per week to master, line counts have been omitted because commit count exceeds 10,000.

- 47-page https://eprint.iacr.org/2024/1275 (v1.2 2024-11-08)
- Proxmark3 Iceman fork 🤎
 - ► 7 new commands/tools/scripts
 - ▶ 4 updated commands with backdoor support
- Flipper Zero
 - integration by Nathan Nye 🧡
 - merged in the official firmware 2 weeks ago

- 47-page https://eprint.iacr.org/2024/1275 (v1.2 2024-11-08)
- Proxmark3 Iceman fork 🤎
 - ► 7 new commands/tools/scripts
 - ▶ 4 updated commands with backdoor support
- Flipper Zero
 - integration by Nathan Nye 🧡
 - merged in the official firmware 2 weeks ago
- RFID Hacking by Iceman Discord
 - ► Great community **(*)**

