

Loops and the Fundamental Group

Dror Atariah Freie Universität Berlin

What is Seminar, 21/11/2008

Outline

Motivation

Loops

Relations Between Loops Loops Concatenation

Group Structure on Loops

Examples

Subset of plane The Circle The Torus

Study the Topology of Spaces

We want to study topological spaces

Study the Topology of Spaces

- We want to study topological spaces
- ▶ What is the difference between the following two spaces?

First let us have a look into the first example:

First let us have a look into the first example:

Each loop can be continuously contracted into a point.

Next, lets consider the second example:

Next, lets consider the second example:

Here, the *red* loop cannot be contracted to a point.

Next, lets consider the second example:

Here, the *red* loop cannot be contracted to a point. Let's introduce some definitions!

Definition (Loop)

Given a topological space X and the unit interval $I \subset \mathbb{R}$, a loop is a continuous map

$$\lambda:I\to X$$

such that $\lambda(0) = \lambda(1)$.

Some Conventions

Later on, we will consider topological spaces with a base point (X, x_0) , where X is the topological space, and x_0 is the base point.

- Later on, we will consider topological spaces with a base point (X, x_0) , where X is the topological space, and x_0 is the base point.
- ▶ For any loop λ we have $\lambda(0) = \lambda(1) = x_0$

Outline

Motivation

Loops

Relations Between Loops

Loops Concatenation

Group Structure on Loops

Examples

Subset of plane The Circle

Consider the following picture

Definition (Homotopy of loops)

Two loops λ , $\mu: I \to (X, x_0)$ are called *homotopic* with base point held fixed, or for short:

$$\lambda \simeq \mu \quad \text{rel}(0,1)$$

if there exists a continuous map $F: I \times I \rightarrow (X, x_0)$ such that the following holds:

- 1. $F(s, 0) = \lambda(s)$, $\forall s \in I$
- 2. $F(s, 1) = \mu(s)$, $\forall s \in I$
- 3. $F(0,t) = F(1,t) = x_0$, $\forall t \in I$

Definition (Homotopy of loops)

Two loops λ , $\mu: I \to (X, x_0)$ are called *homotopic* with base point held fixed, or for short:

$$\lambda \simeq \mu \quad \text{rel}(0,1)$$

if there exists a continuous map $F: I \times I \rightarrow (X, x_0)$ such that the following holds:

- 1. $F(s, 0) = \lambda(s), \forall s \in I$
- 2. $F(s, 1) = \mu(s)$, $\forall s \in I$
- 3. $F(0,t) = F(1,t) = x_0$, $\forall t \in I$

Definition (Homotopy of loops)

Two loops λ , $\mu: I \to (X, x_0)$ are called *homotopic* with base point held fixed, or for short:

$$\lambda \simeq \mu \quad \text{rel}(0,1)$$

if there exists a continuous map $F: I \times I \rightarrow (X, x_0)$ such that the following holds:

- 1. $F(s, 0) = \lambda(s)$, $\forall s \in I$
- 2. $F(s, 1) = \mu(s)$, $\forall s \in I$
- 3. $F(0,t) = F(1,t) = x_0$, $\forall t \in I$

The map F is called the *homotopy* between λ and μ .

Let's have a look at the following figure:

Let's have a look at the following figure:

▶ The red loops are homotopic, so are the green loops.

Let's have a look at the following figure:

► The red loops are homotopic, so are the green loops.

► Alert!

No red loop is homotopic to a green one.

Outline

Loops

Loops Concatenation

Definition

Given two loops $\lambda, \mu: I \to X$ with a base point x_0 , we define the concatenation of them as follows:

$$\lambda * \mu(t) = \begin{cases} \lambda(2t) & 0 \le t \le \frac{1}{2} \\ \mu(2t-1) & \frac{1}{2} \le t \le 1 \end{cases}$$

We first traverse along the red loop and then along the green one.

The homotopy relation between loops is an equivalence relation, that is:

The homotopy relation between loops is an equivalence relation, that is:

- ▶ $\lambda \simeq \lambda$ rel(0, 1)
- ► $\lambda \simeq \mu$ rel(0, 1) $\Rightarrow \mu \simeq \lambda$ rel(0, 1)
- ▶ $\lambda \simeq \mu$ rel(0, 1) and $\mu \simeq \tau$ rel(0, 1) $\Rightarrow \lambda \simeq \tau$ rel(0, 1)

The homotopy relation between loops is an equivalence relation, that is:

- ▶ $\lambda \simeq \lambda$ rel(0, 1)
- $\lambda \simeq \mu \quad \text{rel}(0,1) \Rightarrow \mu \simeq \lambda \quad \text{rel}(0,1)$
- ▶ $\lambda \simeq \mu$ rel(0, 1) and $\mu \simeq \tau$ rel(0, 1) $\Rightarrow \lambda \simeq \tau$ rel(0, 1)

Equivalence Classes

So we can consider the set of equivalence classes of loops $[\lambda]$ over a topological space X with base point x_0 .

The Group Operation

In order to have a group structure on the set of equivalence classes, we have to define a group operation.

The Group Operation

In order to have a group structure on the set of equivalence classes, we have to define a group operation.

Concatenation

We recall the concatenation *

In order to have a group structure on the set of equivalence classes, we have to define a group operation.

Concatenation

We recall the concatenation *

Definition (Group Operation)

Given two loop classes $[\lambda]$ and $[\mu]$ we define:

- 1. $[\lambda] * [\mu] := [\lambda * \mu]$
- 2. The inverse of $[\lambda]$ is given by $[\lambda^{-1}]$ that is $[\lambda]^{-1} = [\lambda^{-1}]$, where $\lambda^{-1}(t) = \lambda(1-t)$.

The Fundamental Group

Definition

Given a topological space X with a base point x_0 , the fundamental group, $\pi_1(X,x_0)$, is the set of equivalence classes of loops along with the operation *

Two More Definitions

Before we go on, for the sake of completeness!

Before we go on, for the sake of completeness!

Definition (The Constant Loop)

The constant loop in a pointed topological space (X, x_0) is the the map:

$$\xi:I\to x_0$$

that is $\xi(t) = x_0$ for all $t \in I$.

Before we go on, for the sake of completeness!

Definition (The Constant Loop)

The constant loop in a pointed topological space (X, x_0) is the the map:

$$\xi: I \rightarrow x_0$$

that is $\xi(t) = x_0$ for all $t \in I$.

Definition (Null-Homotopic)

A loop λ is called *null-homotopic* if it is homotopic to the constant loop.

Before we go on, for the sake of completeness!

Definition (The Constant Loop)

The constant loop in a pointed topological space (X, x_0) is the the map:

$$\xi: I \to x_0$$

that is $\xi(t) = x_0$ for all $t \in I$.

Definition (Null-Homotopic)

A loop λ is called *null-homotopic* if it is homotopic to the constant loop.

The Group's Unit Element

Note that the class of null-homotopic loops is the unit element of the fundamental group.

Example

- Here, concatenating the green loop to the red one does NOT change the homotopy type of the red loop
- ► In other words the green loop's class is the identity of the fundamental group

Outline

Motivation

Loops

Relations Between Loops Loops Concatenation

Group Structure on Loops

Examples

Subset of plane

The Circle

Consider the following pointed space

Set With No Holes

 Here all loops are null-homotopic, i.e. all are homotopic to the constant loop

Set With No Holes

- Here all loops are null-homotopic, i.e. all are homotopic to the constant loop
- This means that the fundamental group is trivial

Contractible Space - A side Remark

- If all loops are null-homotopic then the space is called contractible
- A contractible space is one which is homotopy equivalent to a one-point space

Definition (Homotopy Equivalent)

Two topological spaces X and Y are called homotopically equivalent, or of the same homotopy type, if there exists two maps $f: X \to Y$ and $g: Y \to X$ such that $f \circ g \simeq id_X$ and $g \circ f \simeq id_Y$.

Now Consider the following space

Set With a Hole

Set With a Hole

Here we have two types of loops:

- ▶ Those homotopically equivalent to the constant loop
- ► Those which enclose the hole

Set With a Hole

Here we have two types of loops:

- ▶ Those homotopically equivalent to the constant loop
- Those which enclose the hole

The Fundamental Group

What is the fundamental group in this case?

Outline

Motivation

Loops

Relations Between Loops Loops Concatenation

Group Structure on Loops

Examples

Subset of plane

The Circle

The Torus

Theorem

We have for any point $x_0 \in S^1$

$$\pi_1(S^1,x_0)=\mathbb{Z}$$

Theorem

We have for any point $x_0 \in S^1$

$$\pi_1(S^1, x_0) = \mathbb{Z}$$

Proof Outline.

- ► Up to rotations, all loops in S¹ are characterized by the number of times they wind around the origin
- ► A negative integer *i* is isomorphic to a loop winding *i* times clockwise
- ► Concatenation of loops in $\pi_1(S^1, x_0)$ is equivalent to addition of integers in $\mathbb Z$

Outline

Motivation

Loops

Relations Between Loops Loops Concatenation

Group Structure on Loops

Examples

Subset of plane The Circle

The Torus

The Fundamental Group of The Torus

▶ The torus can be given as a product of two circles: $T^2 = S^1 \times S^1$

The Fundamental Group of The Torus

- ► The torus can be given as a product of two circles: $T^2 = S^1 \times S^1$
- ► Thus, $\pi_1(T^2) = \pi_1(S^1 \times S^1) \cong \pi_1(S^1) \times \pi_1(S^1) \cong \mathbb{Z} \times \mathbb{Z}$

Freie Universität

The Fundamental Group of The Torus

- ► The torus can be given as a product of two circles: $T^2 = S^1 \times S^1$
- ► Thus, $\pi_1(T^2) = \pi_1(S^1 \times S^1) \cong \pi_1(S^1) \times \pi_1(S^1) \cong \mathbb{Z} \times \mathbb{Z}$
- ► The pair (i, j) of integers corresponds to a loop winding i times around the first circle and j times around the other one

Freie Universität

The Fundamental Group of The Torus

- ► The torus can be given as a product of two circles: $T^2 = S^1 \times S^1$
- ► Thus, $\pi_1(T^2) = \pi_1(S^1 \times S^1) \cong \pi_1(S^1) \times \pi_1(S^1) \cong \mathbb{Z} \times \mathbb{Z}$
- ► The pair (i, j) of integers corresponds to a loop winding i times around the first circle and j times around the other one

For Further Reading I

- Marvin J. Greenberg Lectures on Algebraic Topology.
- Allen Hatcher Algebraic Topology.

Thank you! atariah@mi.fu-berlin.de