UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN CS440/ECE448 Artificial Intelligence Exam 1

Spring 2023

February 20, 2023

Your Name:			
Your NetID:			

Instructions

- Please write your name on the top of every page.
- Have your ID ready; you will need to show it when you turn in your exam.
- This will be a CLOSED BOOK, CLOSED NOTES exam. You are permitted to bring and use only one 8.5x11 page of notes, front and back, handwritten or typed in a font size comparable to handwriting.
- No electronic devices (phones, tablets, calculators, computers etc.) are allowed.
- Make sure that your answer includes only the variables that it should include, but DO NOT simplify explicit numerical expressions. For example, the answer $x = \frac{1}{1 + \exp(-0.1)}$ is MUCH preferred (much easier for us to grade) than the answer x = 0.524979.

Name: Page 2/2

Possibly Useful Formulas

$$P(X = x | Y = y)P(Y = y) = P(Y = y | X = x)P(X = x)$$

$$P(X = x) = \sum_{y} P(X = x, Y = y)$$

$$E[f(X,Y)] = \sum_{x,y} f(x,y)P(X = x, Y = y)$$

Precision, Recall
$$=\frac{TP}{TP+FP}, \frac{TP}{TP+FN}$$

MPE=MAP: $f(x) = \arg \max (\log P(Y = y) + \log P(X = x | Y = y))$

Naive Bayes:
$$P(X = x | Y = y) \approx \prod_{i=1}^{n} P(W = w_i | Y = y)$$

Laplace Smoothing:
$$P(W = w_i) = \frac{k + \text{Count}(W = w_i)}{k + \sum_{v} (k + \text{Count}(W = v))}$$

Fairness: $P(Y|A) = \frac{P(Y|\hat{Y},A)P(\hat{Y}|A)}{P(\hat{Y}|Y,A)}$

Linear Regression:
$$\varepsilon_i = f(x_i) - y_i = b + w@x_i - y_i$$

Mean Squared Error:
$$MSE = \frac{1}{n} \sum_{i=1}^{n} \varepsilon_i^2$$

Linear Classifier:
$$f(x) = \arg\max_{k} w_k @ x + b$$

Cross-Entropy:
$$\mathcal{L} = -\frac{1}{n} \sum_{i=1}^{n} \log f_{y_i}(x_i)$$

Softmax: softmax
$$(w@x + b) = \frac{\exp(w_c@x + b_c)}{\sum_{k=0}^{V-1} \exp(w_k@x + b_k)}$$

Softmax Error:
$$\varepsilon_{i,c} = \begin{cases} f_c(x_i) - 1 & c = y_i \\ f_c(x_i) - 0 & \text{otherwise} \end{cases}$$

Gradient Descent:
$$w \leftarrow w - \eta \nabla_w \mathcal{L}$$

Neural Net:
$$h = \text{ReLU}(b_0 + w_0@x)$$
, $f = \text{softmax}(b_1 + w_1@h)$

$$\textbf{Back-Propagation:} \ \, \frac{\partial \mathscr{L}}{\partial h_j} = \sum_k \frac{\partial \mathscr{L}}{\partial f_k} \times \frac{\partial f_k}{\partial h_j}, \quad \frac{\partial \mathscr{L}}{\partial w_{0,k,j}} = \frac{\partial \mathscr{L}}{\partial h_k} \times \frac{\partial h_k}{\partial w_{0,k,j}}$$