UCAN@Lab

物聯網通訊與安全

第1章 物聯網 Internet of Things (IoT)

蘇維宗 (Wei-Tsung Su) suwt@au.edu.tw 564D

歷史版本

版本	說明	日期	負責人
v1.0	初版	2019/02/18	蘇維宗

History

Networked Devices

The concept of a network of smart devices was discussed as early as **1982**, with a modified <u>Coke</u> <u>vending machine</u> at Carnegie Mellon University becoming the first Internet-connected appliance, able to report its inventory and whether newly loaded drinks were cold or not.

Source: Wikipedia

Ubiquitous Computing

The most profound technologies are those that disappear. They weave themselves into the fabric of everyday life until they are indistinguishable from it.

Mark Weiser, Chief Scientist, Xerox PARC
The Computer for Twenty-First Century, Scientific American

1991

Source: Wikipedia

Inventor of Term "IoT"

Kevin Ashton was the first to use the term Internet of Things (IoT) in 1999 in the context of supply chain management with radio frequency identification (RFID)-tagged or barcoded items (things) offering greater efficiency and accountability to businesses.

Source: Wikipedia

Definition from Wikipedia

The Internet of things (IoT) is the network of devices such as vehicles, and home appliances that contain <u>electronics</u>, <u>software</u>, <u>sensors</u>, <u>actuators</u>, and <u>connectivity</u> which allows these things to connect, interact and exchange data.

IoT is a multiple-discipline engineering.

IoT Applications

IoT can be applied to our daily life.

IoT Ecosystem

IoT is heterogeneous in nature.

IoT Trends

212BB Connected Devices by 2020

Remark

- IoT is multi-discipline engineering.
- IoT is with massive number of devices.
- IoT can be applied to our daily life.
- IoT is heterogeneous in nature.
 - Most IoT devices are resource-constrained.

Discussion

What are the challenges of deploying an IoT application?

Current IoT Applications

Smart Home

For example,

Amazon Echo Google Assistant

Smart City

Networked Camera

NEWS ANALYSIS

Skynet in China: Real-life 'Person of Interest' spying in real time

Al married to CCTV surveillance in China uses facial recognition and GPS tracking to overlay personal identifying information on people and cars in real time.

Smart City: Smart Meters

measures and records the

household's water usage

HOW DO SMART METERS WORK?

Designed by Kara Nordstrom

sent to the water utility company

and is updated every four hours

In August, Cedar Park City Council contracted with Agua Metric to install and manage Sensus USA advanced water meters throughout the city. The meters will be installed throughout the fall, but usage data will not be available to utility customers until the spring.

made available to customers household's water usage and though an internet-based set budgets and alerts to dashboard on computers, tablets adjust usage to control their and smart phones spending

Page 14

Example use case: Connected car

Smart Car

IBM Smart Car

Smart Factory

Audi Smart Factory

IoT is changing our World

Security is Big Issue in IoT

There is Dark Side of IoT

IoT seems wonderful, but ...

Privacy

You may being monitored by IoT devices.

Privacy

IoT data can be utlized to threats in our real life.

Security

Easy to hijack

California Enacts First-in-Nation IoT Security Law

The nation's first IoT security act was just signed into law in California. The law isn't just about the IoT, but billions of small connected devices will have to add critical features if they're sold in the state after Jan. 1, 2020.

Hackers used hijacked webcams to bring down internet

Security of Smart Car

Hijacking smart car is possible.

Prequisites for a Good IoT

Vint Cerf and Max Srenges
Taking the Internet to the Next Physical Level
IEEE Computer Magzine, Feb. 2016

Enabling Technologies

Business layer

- Semantics: SensorML

Big Data Analytics: Apache Spark

IoT Five-layer Model

Each layer has its own functionality and can involve various generic technologies.

- Identity services: Shipments tracking

- Information aggregation services: Smart grids
- Collaborative aware services: Smart homes
- Ubiquitous services: Smart cities

Data exchange: CoAP, MQTT

Computation: Fog, Cloud

- Service Discovery: mDNS, Physical Web

Middleware layer

Application layer

- Identification: EPC, IPv6

- Communication: ZigBee, Z-Wave

Security: IPSecRouting: RPL

- Routing: RPL

- Passive: QR

- Semipassive: RFID

Active: Wearables

Network layer

Perception Layer Technologies

Passive

Quick Response (QR) Codes Passive RFID

Semipassive

Battery-powered RFID Infrared (IR)

Active

Active RFID
Smart Devices

Network Layer Technologies (Identification)

Naming solutions

Uniform Resource Identifier (URI)

Electronic Product Code (EPC)

Ubiquitous Code (<u>uCode</u>)

Addressing solutions

IPv4

IPv6

Remark

Identification focus on uniquely identifying an IoT device rather than **authenticate** and **authorize** an IoT device.

Network Layer Technologies (Communication)

Wired

Power-Line Communication (PLC) X10

Wireless

Near-Field Communication (NFC), Ultra-Wide Bandwidth (UWB) Wi-Fi, IEEE 802.15.4 (Zigbee), Z-Wave, Bluetooth SigFox, Long-Range Wide-Area Network (LoRaWAN), NB-IoT ANT+ Light Fidelity (Li-Fi)

Middleware Technologies (Service Discovery)

Service discovery enables requesting services without knowing the underlying infrastructure details.

Multicast DNS (mDNS)

DNS Service Discovery (DNS-SD)

HyperCat (JSON-based)

Universial Plug and Play (UPnP)

Middleware Technologies (Data Exchange)

Constrained Application Protocol (CoAP)

Extensibel Messaging and Presence Protocol (XMPP)

Message Queue Telemetry Transport (MQTT)

Advanced Message Queuing Protocol (AMQP)

Data Distributed Service (DDS)

Middleware Technologies (Computation)

Local

Local computations are performed using a processing unit or system on a chip (SoC).

(Reminder: most IoT devices are resource-constrained.)

Cloud

Cloud computing is preferable for applications in which sensors that reside in different places send generated data to the cloud for centralized processing.

(Reminder: IoT is with massive number of devices.)

Fog (or Edge)

A fog computing layer is ideally employed with the cloud to improve performance because it can be deployed near end users or nodes.

Key Challenges of Cloud-Based IoT

High or Unpredictable Latency

High Uplink Banwidth Requirements

No Filtering or Aggregation

Uninterrupt Internet Connection Required

Privacy and Security Concerns

Fog Computing for IoT, IEEE

Key Challenges of Fog-Based IoT

Technological Interoperability

Semantic Interoperability

Programmability

Scalability

Resilience and Reliability

Application Layer Technologies

Identification Services

Information Aggregation Services

Collaborative Aware Services

Ubiquitous Services

• • •

Business Layer Technologies (Sematics)

Sensor Model Language (SensorML)

Media Types for Sensor Markup Language (SenML)

Apache IoT Database (Apache IoTDB)

RESTFul API Modeling Language (RAML)

• •

Business Layer Technologies (Big Data Analytics)

Apache Spark

Apache Apex (focus on stramming data)

Apach Kafka (streaming middleware)

• •

IoT Operation System and Platform

IoT Operation Systems

Android Things (https://developer.android.com/things)

Embedded Linux (eg., Yacto, OpenWrt)

RIOT (https://riot-os.org)

Contiki (http://www.contiki-os.org)

Tiny OS (http://webs.cs.berkeley.edu/tos)

IoT Platform

AWS IoT Core (https://aws.amazon.com/tw/iot-core/)

Google IoT Core (https://cloud.google.com/iot-core/)

Microsoft IoT Hub (https://azure.microsoft.com/zh-tw/services/iot-hub/)

• •

IoT Platform Comparison

Platform	Data exchange	Security	Integration	Device management
AWS IoT	MQTT, HTTP	TLS, SigV4 ^{a)} , X.509 ^{b)}	REST API	Yes
IBM Watson	MQTT, HTTPS	TLS, IBM Cloud SSO ^{c)} , LDAP ^{d)}	REST and Real-time APIs	Yes
ThingWorx	MQTT, AMQP, XMPP, CoAP, DDS, WebSockets ^{e)}	ISO 27001 ^{f)} , LDAP	REST API	Yes
Bosch IoT Suite	MQTT, CoAP, AMQP, STOMP ⁶)	Unknown	REST API	Yes
Xively	HTTP, HTTPS, WebSocket, MQTT	SSL/TSL	REST API	No
EVRYTHNG	MQTT, CoAP, WebSockets	SSL	REST API	No
Kaa	MQTT, HTTP	RSA and AES	REST API	Yes

What's the next of IoT?

Digital Twin

A digital twin is a digital replica of a living or non-living physical entity.

By bridging the physical and the virtual world, data is transmitted seamlessly allowing the virtual entity to exist simultaneously with the physical entity.

Wikipedia

Lightweight and Flexible Security Mechanism

Lightweight Encryption

Adiantum (https://github.com/google/adiantum)

Adiantum-XChaCha20-AES encryption (generic) 37.120 cpb (32069 KB/s)

Adiantum-XChaCha20-AES decryption (generic) 37.123 cpb (32066 KB/s)

AES-256-XTS encryption (generic) 59.634 cpb (19961 KB/s)

AES-256-XTS decryption (generic) 60.136 cpb (19795 KB/s)

Flexible and Extensible Security Mechanism

Beebit (https://github.com/beebit-sec)

應用性/隱私權

如何在應用性與隱私權之間取得平衡? 運用支援細緻化存取控制的加密系統

Ciphertext-Policy Attribute-Based Encryption (CP-ABE)

DATA SECURITY 資料安全 DATA SHARING 資料分享

物聯網安全

Beebit (秘密)

開發物聯網安全

相關的開發工具

與系統。

Open Source

https://github.com/ucanlab/beebit-cpabe-sdk https://github.com/ucanlab/beebit-mqttc-sdk

物聯網裝置具有資源限制

對1MB的資料進行CP-ABE加解密(存取政策使用的屬性個數為1)的過程所需要的時間,如下

Raspberry Pi 3使用了155 ms, 其中(加密91ms; 傳輸1ms 解密63ms) PC (i7-4720HQ, 4GB)使用了34 ms, 其中 (加密23ms; 傳輸1ms 解密10ms)

差距近有5倍之多!!!

Discussion

How do you think about the next step of IoT?

Q&A

Computer History Museum, Mt. View, CA

