# Nombres complexes et trigonométrie

#### I. Formules de trigonométrie

#### 1. Formules d'addition

### Propriété.

Soit a et b deux réels.

$$\cos(a-b) = \cos(a)\cos(b) + \sin(a)\sin(b). \tag{8.1}$$

$$\sin(a-b) = \sin(a)\cos(b) - \sin(b)\cos(a). \tag{8.2}$$

$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b). \tag{8.3}$$

$$\sin(a+b) = \sin(a)\cos(b) + \sin(b)\cos(a). \tag{8.4}$$

Démonstration. Preuve de la première égalité.

Dans un repère orthonormé  $(O; \overrightarrow{i}, \overrightarrow{j})$  considérons deux vecteurs  $\overrightarrow{u}$  et  $\overrightarrow{v}$  unitaires (c'est-à-dire de norme 1) et tels que  $(\overrightarrow{\imath}; \overrightarrow{\imath}) = a$  et  $(\overrightarrow{\imath}; \overrightarrow{\imath}) = b$  (voir le schéma).



On sait que  $(\overrightarrow{u}; \overrightarrow{v}) = (\overrightarrow{u}; \overrightarrow{\imath}) + (\overrightarrow{\imath}; \overrightarrow{v}) = \dots$ . Or on a  $\overrightarrow{u}.\overrightarrow{v} = ||\overrightarrow{u}|| \times ||\overrightarrow{v}|| \times \cos(\overrightarrow{u}; \overrightarrow{v}) = \cos(b-a)$ donc  $\overrightarrow{u}.\overrightarrow{v} = \cos(b-a) = \cos(a-b)$  car  $\cos x = \dots$ .

On sait aussi que  $\overrightarrow{u}$   $\begin{pmatrix} \cos a \\ \sin a \end{pmatrix}$  et  $\overrightarrow{v}$   $\begin{pmatrix} \cos b \\ \sin b \end{pmatrix}$ . Et donc  $\overrightarrow{u}$ .  $\overrightarrow{v} = \cos a \cos b + \sin a \sin b$ .

On en déduit que :  $\cos(a-b) = \cos(a)\cos(b) + \sin(a)\sin(b)$ 

**Exemples.** Calculer  $\cos\left(\frac{7\pi}{12}\right)$  et  $\sin\left(\frac{\pi}{12}\right)$ .

## 2. Formules de duplication

Des formules d'addition précédentes, en prenant b=a, on en déduit les propriétés suivantes :

#### Propriétés.

Soit a un réel.

- $\cos(2a) = \cos^2(a) \sin^2(a)$  et  $\sin(2a) = 2\sin(a)\cos(a)$ .
- $\cos(2a) = 2\cos^2(a) 1$  et  $\cos(2a) = 1 2\sin^2(a)$ .
- $\cos^2(a) = \frac{\cos(2a) + 1}{2}$  et  $\sin^2(a) = \frac{1 \cos(2a)}{2}$ .



- **1.** Démonter que pour tout réel  $x : \sin(x) \cos(x) = \sqrt{2}\sin\left(x \frac{\pi}{4}\right)$ .
- **2.** (a) Exprimer  $\cos\left(x \frac{\pi}{6}\right)$  et  $\sin\left(x \frac{\pi}{6}\right)$  en fonction de  $\cos(x)$  et  $\sin(x)$ .
  - (b) En déduire les solutions dans  $]-\pi$ ;  $\pi$ ] de  $\cos(x)-\sqrt{3}\sin(x)=-1$ .

# II. Forme exponentielle d'un nombre complexe

# 1. Notation $e^{i\theta}$

#### Définition.

Pour tout réel  $\theta$ ,  $e^{i\theta} = \cos(\theta) + i\sin(\theta)$ .

#### Remarques.

- $e^{i\theta}$  est le nombre complexe de *module* 1 et d'*argument*  $\theta$ .
- Cas particuliers :  $e^{i0} = 1$ ,  $e^{i\pi} = -1$  et  $e^{i\frac{\pi}{2}} = i$ .

**Exemple.** Écrire la forme algébrique de  $ie^{i\frac{\pi}{3}}$ .

#### 2. Relation fonctionnelle

# Propriétés.

Soit  $\theta$  et  $\theta'$  deux nombres réels et n un entier relatif.

- $e^{i\theta} \times e^{i\theta'} = \underline{\hspace{1cm}}$
- $(e^{i\theta})^n = \underline{\hspace{1cm}}$
- $\bullet \ \frac{1}{e^{i\theta}} = \underline{\hspace{1cm}}.$
- $\bullet \ \frac{e^{i\theta}}{e^{i\theta'}} = \underline{\hspace{1cm}}.$
- $\bullet$   $e^{i\theta} =$

# **Exercice 2.8.** Simplifier les écritures suivantes :

- 1.  $(2e^{-i\frac{\pi}{2}})(3e^{i\frac{\pi}{3}})$ .
- **2.**  $\left(3e^{-i\frac{\pi}{3}}\right)^4$ .

#### Forme exponentielle d'un nombre complexe

#### Propriété.

Soit z un nombre complexe  $non\ nul,\ r$  et  $\theta$  deux réels avec r>0. |z|=r et  $\arg(z)=\theta\ [2\pi]\Longleftrightarrow z=r\mathrm{e}^{\mathrm{i}\theta}.$  L'écriture  $r\mathrm{e}^{\mathrm{i}\theta}$  est appelée  $forme\ exponentielle$  de z.



**Exercice 3.8.** On donne  $z = 1 + i\sqrt{3}$ .

- 1. Écrire z sous forme exponentielle.
- **2.** En déduire la forme exponentielle puis la forme algébrique de  $(1+i\sqrt{3})^{13}$ .

#### Formules d'Euler et de De Moivre III.

#### Formules d'Euler 1.

#### Propriété.

Pour tout réel  $\theta$ ,

$$\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2} \text{ et } \sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$



**Exercice 4.8.** Démontrer que pour tout réel x,

$$\cos(2x)\sin(3x) = \frac{1}{2}(\sin(5x) + \sin(x)).$$

#### 2. Formules de De Moivre

#### Propriété.

Pour tout réel  $\theta$  et tout entier naturel n,

$$\left(\cos(\theta) + \mathrm{i}\sin(\theta)\right)^n = \cos(n\theta) + \mathrm{i}\sin(n\theta)$$

**Exemple.** Utiliser la formule de De Moivre pour n=2 et retrouver les formules de duplication.