КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ 2021 Т. 10 № 1 С. 1–16

МАТЕМАТИЧЕСКИЕ осноВы И чИсЛЕнныЕ МЕтоДы МоДЕЛИроВАнИя

УДК: 519.63

Численное моделирование нестационарных задач переноса нейтронов в SP_3 приближении

Александр. В. Аввакумов^{1,а}, Александр О. Васильев^{2,b}

¹Национальный исследовательский центр «Курчатовский институт»,
 Россия, 123182, г. Москва, пл. Академика Курчатова, д. 1
 ²Северо-Восточный федеральный университет им. М.К. Аммосова,
 Россия, 677000, г. Якутск, ул. Белинского, д. 58

E-mail: a avvakumov2009@rambler.ru, b haska87@gmail.com

Для анализа активной зоны реактора, транспортное SP_3 приближение уравнения переноса нейтронов позволяет повысить точность стационарного и нестационарного расчетов по сравнению с диффузионным приближением. Кроме того, вычислительные затраты SP_3 расчетов намного меньше, чем у других транспортных методов более высокого порядка (S_N или P_N). Еще одним преимуществом SP_3 приближения является аналогичная структура уравнений, которая используется в диффузионном приближении. Следовательно, не составит труда реализовать вариант решения с использованием SP_3 приближения для многогрупповых диффузионных кодов, которые преимущественно применются для практических расчетов. В данной работе рассматривается применение SP_3 методологии, основанной на решении λ -спектральной задачи. Динамические процессы протестировны на примере бэнчмарка реактора TWIGL-2D. Для достижения геометрической общности применяется метод конечных элементов. Результаты рассчитанные диффузионным и SP_3 методами сравниваются с результатами эталонных расчетов.

Ключевые слова: уравнение переноса нейтронов, λ -спектральная задача, диффузионное приближение, SP3 приближение

Работа выполнена при поддержке гранта Российского Научного Фонда #19-71-00008

MATHEMATICAL MODELING AND NUMERICAL SIMULATION

UDC: 519.63

Numerical modeling of non-stationary problems of neutron transport in the SP₃ approximation

A. V. Avvakumov^{1,a}, A. O. Vasilev^{2,b}

¹National Research Center «Kurchatov Institute», Address ²North-Eastern Federal University, Address

E-mail: a avvakumov2009@rambler.ru, b haska87@gmail.com

The SP₃ approximation of the neutron transport equation allows improving the accuracy for both static and transient simulations for reactor core analysis compared with the diffusion approximation. Besides, the SP₃ calculation costs are much less than higher order transport methods (S_N or P_N). Another advantage of the SP₃ approximation is a similar structure of equations that is used in the diffusion method. Therefore, there is no difficulty to implement the SP₃ solution option to the multi-group neutron diffusion codes, which are mainly used for practical calculations. In this work, the application of the SP₃ methodology based on solution of the λ -spectral problem. Dynamic processes has been tested for the TWIGL-2D reactor benchmark test. The FEM is chosen to achieve the geometrical generality. The results calculated with the diffusion and SP₃ methods are compared with the reference calculation results.

Keywords: neutron transport equation, λ -spectal problem, diffusion approximation, SP₃ approximation

Citation: Computer Research and Modeling, 2021, vol. 10, no. 1, pp. 1–16 (Russian).

This work was supported by the grant of the Russian Science Foundation #19-71-00008

Введение

Диффузионное приближение уравнения переноса нейтронов широко используется в анализе ядерных реакторов, что позволяет проводить расчеты всей активной зоны с приемлемой точностью. Основная особенность уравнения диффузии нейтронов заключается в следующем: предполагается, что нейтронный ток пропорционален градиенту нейтронного потока (закон Фика) [Stacey, 2007]. Для обеспечения обоснованности диффузионной теории в современных диффузионных кодах, как правило, используется грубосеточная покассетная схема расчета с эффективными усредненными сечениями, подготовленные с использованием более точных транспортных приближений. Для улучшения ограничений диффузионного кода, связанных с ограничениям на шаг сетки, используются различные подходы, включая нодальные методы и методы конечных элементов [Lawrence, 1986]. Для многих ситуаций, представляющих интерес (например, для потвэлных расчетов с учетом сильно поглощающих управляющих стержней), применимость теории диффузии нейтронов ограничена. Следовательно, необходимо более строгое приближение для уравнения переноса нейтронов.

Решение уравнения переноса нейтронов [Lewis, Miller, 1984] является очень сложной задачей из-за семи независимых переменных: пять для пространственно-углового описания, одна для энергии и одна для времени. Для упрощения задачи переноса используются различные подходы, например, приближение сферических гармоник (P_N) [Azmy, Sartori, 2010]). Уравнение переноса нейтронов в P_N приближении получается путем разложения угловой зависимости потока нейтронов по N сферическим гармоникам. В последнее время широкое распространение получила простейшая версия метода P_N , а именно упрощенное P_N приближение (P_N) [McClarren, 2010].

Метод SP_N был впервые получен Гелбардом [Gelbard, 1961] в начале 1960-х годов. Детальный анализ метода SP_N усложняется тем фактом, что в научной литературе представлены, по крайней мере, четыре различных метода вывода. Две из этих формулировок - «традиционная» и «каноническая» — основаны на наблюдении о связи между плоской геометрией и общей трехмерной геометрией. Эти первые два подхода включают методы, которые сводят перенос нейтронов к угловому приближению низкого порядка. А третий вывод SP_N начинается с уравнения интегрального баланса и развивает точную связь между нейтронным скалярным потоком и расходимостью нейтронного тока, а не приближенное соотношение, которое является законом Фика. Каждый из различных подходов к SP_N приближению дает алгебраически эквивалентную систему уравнений, однако, это приближение ограничено относительно низкими порядками, такими как SP₂ или SP₃. В результате, метод SP_N ограничен теми же ограничениями, но несколько ослабленными, как и теория нодальной диффузии; то есть скалярный поток должен медленно меняться в пространстве, и модель не должна включать в себя сильно поглощающие области. В частности было показано, что результаты для SP_N ухудшаются в регионах, где преобладает поток нейтронов. Получающиеся уравнения SP_N являются эллиптическими, например, уравнения SP_3 состоят из двух уравнений диффузионного типа с двумя неизвестными потоками: скалярным потоком и вторым моментом углового потока. Более строгие теоретические основы методологии SP₃ были получены Брантли и Ларсеном [Brantley, Larsen, 2000] на основе вариационных методов.

Метод SP₃, как и ожидалось, может обеспечить повышение точности по сравнению с широко используемым методом диффузии. Кроме того, реализация уравнений SP₃ приближения в диффузионном коде является несложной задачей из-за схожей структуры SP₃ и уравнений диффузии. По этой причине метод SP₃ был принят в различных кодах расчета ядра, таких как DYN3D [Beckert, Grundmann, 2008], PARCS [Downar et al, 2009] и

других. В работе [Brewster, 2018] показано сравнение диффузионного и SP_3 методов для расчета реактивности регулирующего стержня в легководном реакторе. По сравнению с эталонным расчетом Монте-Карло метод SP_3 дает вдвое более точный результат по сравнению с методом диффузии. Согласно [Tada et al, 2008], применение теории SP_3 к потвэлным расчетам для геометрии BWR привело к значительному повышению точности вычислений по сравнению с методом диффузии. Кроме того, как выяснилось, время вычислений с использованием метода SP_3 всего в 1.5 раза больше, чем с использованием метода диффузии. Таким образом, метод SP_3 можно рассматривать как улучшенное приближение уравнения переноса нейтронов по сравнению с методом диффузии. В связи с этим, будет очень полезно сравнить результаты рассчитанные как диффузионным, так и SP_3 методами.

Для характеристики стационарных условий и динамического поведения реактора рассмотривают некоторые спектральные задачи. Стационарное состояние реактора обычно описывается решением λ -спектральной задачи, где фундаментальное собственное значение (наибольшее собственное значение) называется "эффективным коэффициентом размножения" для активной зоны реактора [Bell, Glasstone, 1970]. Динамическое поведение реактора естественно описать на основе приближенного решения α -спектральной задачи [?; ?]. А на больших временах можно говорить об асимптотическом поведении нейтронного потока, амплитуда которого равна $\exp(\alpha t)$ [?]. Ранее, комплексные собственные значения и собственные функции находились в спектральных задачах для некоторых численных тестов [?].

В данной работе рассматривается SP₃ приближение для нестационарной задачи многогруппового переноса нейтронов. Исследуются и сравниваются численные результаты полученные транспортным SP₃ и диффузионными расчетами. Для решения спектральных задач с несимметричными матрицами используются хорошо разработанные алгоритмы и соответствующее бесплатное программное обеспечение, включая библиотеку SLEPc (http://slepc.upv.es/). Программное обеспечение написано с использованием вычислительной платформы FEniCS [?] для решения краевых задач, описываемых дифференциальными уравнениями в частных производных, методом конечных элементов.

Постановка задачи

Моделируется нестационарный процесс в ядерном реакторе в транспортном SP₃ приближении [Brantley, Larsen, 2000]. Динамика нейтронного потока рассматривается в ограниченной выпуклой двухмерной или трехмерной области Ω ($\boldsymbol{x} = \{x_1, ..., x_d\} \in \Omega$, d = 2, 3) с границей $\partial\Omega$. Перенос нейтронов описывается системой уравнений:

$$\frac{1}{v_g} \frac{\partial \phi_{0,g}}{\partial t} - \frac{2}{v_g} \frac{\partial \phi_{2,g}}{\partial t} - \nabla \cdot D_{0,g} \nabla \phi_{0,g} + \Sigma_{r,g} \phi_{0,g} - 2\Sigma_{r,g} \phi_{2,g} =
= (1 - \beta) \chi_{n,g} S_{n,g} + S_{s,g} + \chi_{d,g} S_d,
\frac{9}{v_g} \frac{\partial \phi_{2,g}}{\partial t} - \frac{2}{v_g} \frac{\partial \phi_{0,g}}{\partial t} - \nabla \cdot D_{2,g} \nabla \phi_{2,g} + (5\Sigma_{t,g} + 4\Sigma_{r,g}) \phi_{2,g} - 2\Sigma_{r,g} \phi_{0,g} =
= -2(1 - \beta) \chi_{n,g} S_{n,g} - 2S_{s,g} - 2\chi_{d,g} S_d,$$
(1)

где

$$S_{n,g} = \sum_{g'=1}^{G} \nu \Sigma_{f,g'} \phi_{g'}, \quad S_{s,g} = \sum_{g \neq g'=1}^{G} \Sigma_{s,g' \to g} \phi_{g'}, \quad S_d = \sum_{m=1}^{M} \lambda_m c_m,$$

$$\phi_{0,g} = \phi_g + 2\phi_{2,g}, \quad D_{0,g} = \frac{1}{3\Sigma_{tr,g}}, \quad D_{2,g} = \frac{9}{7\Sigma_{t,g}}, \quad g = 1, 2, ..., G.$$

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ

Здесь G — число групп, $\phi_g(\boldsymbol{x})$ — скалярный поток нейтронов, $\phi_{0,g}(\boldsymbol{x})$ — псевдо 0-й момент углового потока, $\phi_{2,g}(\boldsymbol{x})$ — второй момент углового потока , $\Sigma_{t,g}$ — полное сечение, $\Sigma_{tr,g}$ — транспортное сечение, $\Sigma_{r,g}(\boldsymbol{x})$ — сечение увода, $\Sigma_{s,g'\to g}(\boldsymbol{x})$ — сечение рассеяния из группы g' в группу g, χ_g — спектр нейтронов, $\nu\Sigma_{f,g}(\boldsymbol{x})$ — сечение генерации, c_m — плотность источников запаздывающих нейтронов, λ_m — постоянная распада источников запаздывающих нейтронов, M — число типов запаздывающих нейтронов.

Плотность источников запаздывающих нейтронов описывается уравнениями

$$\frac{\partial c_m}{\partial t} + \lambda_m c_m = \beta_m \sum_{g=1}^G \nu \Sigma_{f,g} \phi_g, \quad m = 1, 2, ..., M,$$
(2)

где β_m — доля запаздывающих нейтронов m типа, причем

$$\beta = \sum_{m=1}^{M} \beta_m.$$

На границе области $\partial\Omega$ ставятся граничные условия Маршака:

$$\begin{bmatrix} J_{0,g}(\boldsymbol{x}) \\ J_{2,g}(\boldsymbol{x}) \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & -\frac{3}{8} \\ \frac{3}{8} & \frac{21}{8} \end{bmatrix} \begin{bmatrix} \phi_{0,g}(\boldsymbol{x}) \\ \phi_{2,g}(\boldsymbol{x}) \end{bmatrix}, \quad J_{i,g}(\boldsymbol{x}) = -D_{i,g} \nabla \phi_{i,g}(\boldsymbol{x}), \quad i = 0, 2.$$
(3)

Рассматривается задача для системы уравнений (1), (2) с краевыми условиями (3), и начальными условиями:

$$\phi_g(\mathbf{x},0) = \phi_g^0(\mathbf{x}), \quad g = 1, 2, ..., G, \quad c_m(\mathbf{x},0) = c_m^0(\mathbf{x}), \quad m = 1, 2, ..., M.$$
 (4)

Операторная формулировка

Запишем краевую задачу (1)–(4) в операторной форме. Определим векторы решений $\mathbf{u} = \{u_1, u_2, \cdots, u_G\}, u_g = \{\phi_{0,g}, \phi_{2,g}\}, \mathbf{c} = \{c_1, c_2, ..., c_M\}$ и матрицы

$$V = (\mathbf{v}_{gg'}), \quad \mathbf{v}_{gg'} = \delta_{gg'} \begin{bmatrix} \frac{1}{v_g} & -\frac{2}{v_g} \\ -\frac{2}{v_g} & \frac{9}{v_g} \end{bmatrix}, \quad D = (d_{gg'}), \quad d_{gg'} = \delta_{gg'} \begin{bmatrix} D_{0,g} & 0 \\ 0 & D_{2,g} \end{bmatrix},$$

$$A = (a_{gg'}), \quad a_{gg} = \begin{bmatrix} \Sigma_{r,g} & -2\Sigma_{r,g} \\ -2\Sigma_{r,g} & 5\Sigma_{t,g} + 4\Sigma_{r,g} \end{bmatrix}, \quad a_{gg'} = \begin{bmatrix} -\Sigma_{s,g' \to g} & 2\Sigma_{s,g' \to g} \\ 2\Sigma_{s,g' \to g} & -4\Sigma_{s,g' \to g} \end{bmatrix},$$

$$F = (f_{gg'}), \quad f_{gg'} = \begin{bmatrix} \chi_{n,g}\nu\Sigma_{f,g'} & -2\chi_{n,g}\nu\Sigma_{f,g'} \\ -2\chi_{n,g}\nu\Sigma_{f,g'} & 4\chi_{n,g}\nu\Sigma_{f,g'} \end{bmatrix}, \quad B = (b_{gm}), \quad b_{gm} = \begin{bmatrix} \chi_{d,g}\lambda_m \\ -2\chi_{d,g}\lambda_m \end{bmatrix},$$

$$\Lambda = (\lambda_{mm'}), \quad \lambda_{mm'} = \delta_{mm'}\lambda_m, \quad Q = (q_{mg}) \quad q_{mg} = \beta_m \begin{bmatrix} \nu\Sigma_{f,g} \\ -2\nu\Sigma_{f,g} \end{bmatrix},$$

где

$$\delta_{gg'} = \begin{cases} 1, & g = g', \\ 0, & g \neq g', \end{cases}$$

2021, T. 10, № 1, C. 1–16

есть символ Кронеккера. Будем работать на множестве векторов u, компоненты которого удовлетворяют граничным условиям (3). С учетом введенных обозначений система уравнений (1), (2) записывается в следующем виде:

$$V\frac{\partial \boldsymbol{u}}{\partial t} - \nabla \cdot D\nabla \boldsymbol{u} + A\boldsymbol{u} = (1 - \beta)F\boldsymbol{u} + B\boldsymbol{c},$$

$$\frac{\partial \boldsymbol{c}}{\partial t} + \Lambda \boldsymbol{c} = Q\boldsymbol{u}.$$
(5)

Без учета запаздывающих нейтронов имеем

$$V\frac{\partial \boldsymbol{u}}{\partial t} - \nabla \cdot D\nabla \boldsymbol{u} + A\boldsymbol{u} = F\boldsymbol{u}. \tag{6}$$

Для (5) и (6) рассматривается задача Коши, когда

$$\boldsymbol{u}(0) = \boldsymbol{u}^0, \quad \boldsymbol{c}(0) = \boldsymbol{c}^0, \tag{7}$$

где
$$\mathbf{u}^0 = \{u^0, u_2^0, ..., u_G^0\}$$
 и $\mathbf{c}^0 = \{c_1^0, c_2^0, ..., c_M^0\}$.

 λ -спектральная задача

Для характеристики динамических процессов в ядерном реакторе, которые описываются задачей Коши (5)-(7), применяются решения некоторых спектральных задач [?; ?; Stacey, 2007]. Обычно рассматривается спектральная задача, которая известна как λ -спектральная задача. Для системы уравнений (6), (7) без учета запаздывающих нейтронов, имеем

$$-\nabla \cdot D\nabla \varphi + A\varphi = \lambda^{(k)} F\varphi. \tag{8}$$

Для характеристики нейтронного поля привлекается минимальное собственное значение, так что

$$k = \frac{1}{\lambda_1^{(k)}}$$

есть эффективный коэффициент размножения. Значение $k=\lambda_1^{(k)}=1$ связано с критическим состоянием реактора, а соответствующая собственная функция $\varphi^{(1)}(\boldsymbol{x})$ есть стационарное решение уравнения (5), (6). При k>1 говорят о надкритическом состоянии реактора, при k<1— о подкритическом состоянии.

В силу несамосопряженности операторов нейтронного переноса будем иметь комплексные собственные значения (например, смотри [?]). Свойство действительности и положительности для системы уравнений нейтроники доказывается на основе принципа максимума при некоторых ограничениях на коэффициенты операторов переноса нейтронов [?]. Это касается также и несамосопряженного эллиптического оператора второго порядка [?].

Дискретизация

Аппроксимация по времени

Определим равномерную сетку по времени

$$\omega = \{t^n = n\tau, \quad n = 0, 1, ..., N, \quad \tau N = T\}$$

и будем использовать следующие обозначения $u^n = u(x, t^n)$, $c^n = c(x, t^n)$. При построении аппроксимаций по времени уравнений (2) используется численно-аналитический метод. Запишем уравнение (2) в эквивалентном виде

$$\frac{\partial e^{\lambda_m t} c_m}{\partial t} = \beta_m e^{\lambda_m t} \sum_{g=1}^G \nu \Sigma_{f,g} \phi_g, \quad m = 1, 2, ..., M.$$

Интегрирование от t^n до t^{n+1} дает

$$c_m^{n+1} = e^{-\lambda_m \tau} c_m^n + \beta_m \int_{t_n}^{t_{n+1}} e^{\lambda_m (t - t^{n+1})} \sum_{g=1}^G \nu \Sigma_{f,g} \phi_g dt, \quad m = 1, 2, ..., M.$$
 (9)

Для аппроксимации по времени рассмотрим чисто неявную схемы первого порядка аппроксимации. При использовании чисто неявной схемы возьмем подинтегральное выражение в правой части (9) при $t=t^{n+1}$. Для системы уравнений (5) неявная схема будет выглядить следующим образом

$$V \frac{\boldsymbol{u}^{n+1} - \boldsymbol{u}^{n}}{\tau} - \nabla \cdot D \nabla \boldsymbol{u}^{n+1} + A \boldsymbol{u}^{n+1} = (1 - \beta) F \boldsymbol{u}^{n+1} + B \boldsymbol{c}^{n+1},$$

$$\boldsymbol{c}^{n+1} = \widetilde{\Lambda} \boldsymbol{c}^{n} + \tau Q \boldsymbol{u}^{n+1},$$
(10)

где

$$\widetilde{\Lambda} = (\widetilde{\lambda}_{mm'}), \quad \widetilde{\lambda}_{mm'} = \delta_{mm'} e^{-\lambda_m \tau}, \quad m, m' = 1, 2, ..., M.$$

При рассмотрении процессов без учета запаздывающих нейтронов (6)) имеем

$$V\frac{\boldsymbol{u}^{n+1} - \boldsymbol{u}^n}{\tau} - \nabla \cdot D\nabla \boldsymbol{u}^{n+1} + A\boldsymbol{u}^{n+1} = F\boldsymbol{u}^{n+1}.$$
 (11)

Аппроксимация по пространству

Для аппроксимации по пространству будем использовать метод конечных элементов [?; ?]. Рассмотрим, например, аппроксимацию по пространству для чисто неявной схемы с учетом запаздывающих нейтронов (10). Пусть $H^1(\Omega)$ — пространство Соболева, состоящее из скалярных функций v таких, что v^2 и $|\nabla v|^2$ имеют конечный интеграл в Ω . Для векторных функций $\mathbf{v} = \{v_1, v_2, ..., v_d\}$ определим аналогично $V^d = [H^1(\Omega)]^d$, где d = 1, 2, ..., D (D = G + M). Для тестовых функций используем обозначения $\boldsymbol{\xi} = \{\xi_1, \xi_2, ..., \xi_G\}$, $\boldsymbol{\zeta} = \{\zeta_1, \zeta_2, ..., \zeta_M\}$. В вариационной форме задача (10) имеет вид: найти $\boldsymbol{u} \in V^G$, $\boldsymbol{c} \in V^M$, для которых имеет место

$$\int_{\Omega} \left(V \frac{\boldsymbol{u}^{n+1} - \boldsymbol{u}^{n}}{\tau} + A \boldsymbol{u}^{n+1} \right) \boldsymbol{\xi} d\boldsymbol{x} - \int_{\Omega} \nabla \cdot D \nabla \boldsymbol{u}^{n+1} \boldsymbol{\xi} d\boldsymbol{x} +
= \int_{\Omega} (1 - \beta) F \boldsymbol{u}^{n+1} \boldsymbol{\xi} d\boldsymbol{x} + \int_{\Omega} B \boldsymbol{c}^{n+1} \boldsymbol{\xi} d\boldsymbol{x}, \qquad (12)$$

$$\int_{\Omega} \boldsymbol{c}^{n+1} \boldsymbol{\zeta} d\boldsymbol{x} = \int_{\Omega} \widetilde{\Lambda} \boldsymbol{c}^{n} \boldsymbol{\zeta} d\boldsymbol{x} + \int_{\Omega} \tau Q \boldsymbol{\phi}^{n+1} \boldsymbol{\zeta} d\boldsymbol{x}$$

при всех $\boldsymbol{\xi} \in V^D, \ \boldsymbol{\zeta} \in V^M.$

Далее, необходимо перейти от непрерывной вариационной задачи (12) к дискретной задаче. Вводим конечномерные пространства конечных элементов $V_h^D \subset V^D$ и определяем в них дискретную вариационную задачу.

Численные примеры

Проводится численное моделирование нестационарного двухгруппового численного теста реактора TWIGL-2D. Исследуются и сравниваются численные результаты полученные транспортным SP_3 и диффузионными расчетами. В качестве начального условия задачи берется решения λ -спектральной задачи. Рассматривается три сценария динамического процесса.

Программное обеспечение написано с использованием вычислительной платформы FEniCS. Для решения спектральных задач с несимметричными матрицами применяется библиотека SLEPc. В расчетах варьируются следующие параметры:

- n число расчетных ячеек (конечных элементов) на ноду 8х8 см;
- p порядок конечных элементов;
- \bullet au шаг по времени.

Для диффузионной модели на внешней границе активной зоны рассматривается два вида условий границы с вакуумом: альбедный параметр $\gamma = 0.5$ и $\gamma = 100$.

Описание теста

Рис. 1. Геометрическая модель 1/4 активной зоны теста TWIGL-2D.

Рассматривается двумерный транспортный тест [?]. Моделирутся 1/4 часть активной зоны реактора, размеры которой составляют 160×160 см. На рисунке 1 показана геометрическая модель активной зоны, где цифрами показаны материалы различных сортов. На внешней границе активной зоны реактора задается условие границы с вакуумом.

Нейтронно-физические константы теста в общепринятых единицах представлены в таблице 1. Среднегрупповые скорости нейтронов в тесте одинаковы для всей среды и составляют $v_1=10^7~{\rm cm/c}$ и $v_2=2\cdot 10^5~{\rm cm/c}$. Спектр деления для мгновенных и запаздывающих нейтронов также одинаков для всей среды и равен $\chi_1=1$ и $\chi_2=0$. В тесте представлена одна эффективная группа запаздывающих нейтронов. Эффективная доля запаздывающих

Материал	1	2	3
Σ_{t1}	0.2481	0.2481	0.2644
Σ_{t2}	0.9833	0.9833	0.7167
Σ_{a1}	0.01	0.01	0.008
Σ_{a2}	0.15	0.15	0.05
$\Sigma_{s,1\to 2}$	0.01	0.01	0.01
$\Sigma_{s,1\to 1}$	0.2281	0.2281	0.2464
$\Sigma_{s,2\to 2}$	0.8333	0.8333	0.6667
$ u_1\Sigma_{f1}$	0.007	0.007	0.003
$\nu_2 \Sigma_{f2}$	0.2	0.2	0.06

Таблица 1. Диффузионные константы для теста TWIGL-2D.

нейтронов составляет $\beta=0.0075,$ а постоянная распада предшественников запаздывающих нейтронов $\lambda=0.08~{\rm c}^{-1}.$

Сценарий динамического процесса выглядит следующий образом:

- В начале решается λ -спектральная задача, решение которой принимается в качестве начального условия нестационарной задачи;
- Расчет нестационарной задачи происходит в течении 0.5 секунд;
- В каждый момент времени рассчитывается интегральная мощность

$$P(t) = a \int_{\Omega} \Sigma_f \phi d\mathbf{x},\tag{13}$$

где a — нормировочный коэффициент, соответствующий заданному значению интегральной мощности.

Все возмущения происходят в зоне 1 посредством изменения теплового сечения деления Σ_{a2} . В задаче представлены три сценария развития переходного процесса:

- Возмущение скачком TWIGL-S инициируется уменьшением Σ_{a2} на 0.0035 см $^{-1}$ в нулевой момент времени;
- Линейное возмущение TWIGL-R: Σ_{a2} линейно уменьшается на 0.0035 см $^{-1}$ с момента времени 0 секунд до 0.2 секунд;
- Комбинированное возмущение TWIGL-C происходит следующим образом: Σ_{a2} линейно уменьшается на $0.0035~{\rm cm}^{-1}$ в течении 0.2 секунд; в момент времени 0.2 секунд происходит скачкообразное увеличение на $0.00525~{\rm cm}^{-1}$; линейно увеличивается на $0.00175~{\rm cm}^{-1}$ с момента времени 0.2 секунд до 0.4 секунд; скачкообразное уменьшение на $0.0035~{\rm cm}^{-1}$ в момент времени 0.4 секунд.

В комбинированном случае представлены другие параметры для запаздывающих нейтронов: $v_1=10^7~{\rm cm/c}$ и $v_2=10^5~{\rm cm/c}$; эффективная доля запаздывающих нейтронов составляет $\beta=0.0064$; постоянная распада предшественников запаздывающих нейтронов $\lambda=0.08~{\rm c}^{-1}$.

Решение λ -спектральной задачи

В качестве эталонного решения для λ -спектральной задачи выступает результат полученный методом Монте-Карло по коду DeCART равный 0.91605 ([?]). Полученные результаты расчета λ -спектральной задачи для теста TWIGL-2D приведены в таблице 2. В таблице приняты следующие обозначения: $k_{dif}(\gamma)$ — эффективный коэффициент размножения по диффузионной модели для различных значений параметра альбеда; k_{sp_3} — эффективный коэффициент размножения по транспортной SP₃ модели; Δ — абсолютное отклонение от эталонного решения в pcm (10^{-5}) .

n	p	$k_{dif}(\gamma = 0.5)$	$\Delta_{dif}(\gamma = 0.5)$	$k_{dif}(\gamma = 100)$	$\Delta_{dif}(\gamma = 100)$	k_{sp_3}	Δ_{sp3}
	1	0.915519	-53.1	0.913286	-276.4	0.916144	9.4
2	2	0.915519	-53.1	0.913333	-271.7	0.916190	14.0
	3	0.915419	-63.1	0.913234	-281.6	0.916094	4.4
	1	0.915486	-56.4	0.913288	-276.2	0.916147	9.7
8	2	0.915423	-62.7	0.913238	-281.2	0.916096	4.6
	3	0.915408	-64.2	0.913223	-282.7	0.916076	2.6
	1	0.915434	-61.6	0.913245	-280.5	0.916102	5.2
32	2	0.915409	-64.1	0.913223	-282.7	0.916076	2.6
	3	0.915408	-64.2	0.913222	-282.8	0.916073	2.3
ref.		0.916050	_	0.916050	_	0.916050	

Таблица 2. Результаты расчета λ -спектральной задачи.

Представленные данные демонстрируют сходимость приближенно вычисляемых собственных значений при сгущении вычислительной сетки n и при увеличении степени полиномов конечных элементов p. На рисунках 2, 3 показаны расчеты нормированных мощностей (13) по нодам 8x8 см для всех трех случаев на мелкой сетке n=32 и p=3. Как и ожидалось, точность результатов полученных транспортным SP_3 методом по сравнению с диффузионным является более точным.

Рис. 2. Нормированная мощность диффузионных расчетов при $\gamma=0.5$ (справа) и $\gamma=100$ (слева) на мелкой сетке.

 ${\rm Puc.~3.~Hop}$ мированная мощность транспортного ${\rm SP}_3$ расчета на мелкой сетке.

Решение нестационарной задачи

Здесь показаны результаты решений нестационарной задачи для всех трех сценариев. Проводится сравнение результатов диффузионного и транспортного расчетов.

Представлены исследования различных шагов по времени для всех трех сценариев. В качестве тестовой сетки по пространству выбран средний вариант вычислительной сетки при $n=8,\ p=2$. Эталонным диффузионным/транспортным решением выступает результат полученный по диффузионной/транспортной модели на мелкой сетке (при $n=32,\ p=3,\ \tau=1$ мс). Погрешность оценивается как $\varepsilon_P(t)=|P_{ref}-P|$, где P_{ref} — эталонное диффузионное/транспортное решение.

Сценарий №1

В таблице 3 представлены результаты эталонных диффузионных и транспортного расчетов TWIGL-S в различные моменты времени. На рисунке 4 показаны эталонное транспортное решение TWIGL-S и погрешность ε_P диффузионных эталонных решений относительно транспортного эталонного решения.

На рисунке 5 представлена погрешность диффузионных расчетов на тестовой сетке при различных шагах по времени, а на рисунке 6 — для транспортного расчета. Полученные результаты демонстрируют сходимость решения при уменьшении шага по времени.

Таблица 3. Результаты расчетов TWIGL-S на мелкой сетке в различные моменты времени.

\overline{t}	$dif (\gamma = 0.5)$	$dif (\gamma = 100)$	SP_3
0.0	1.0000	1.0000	1.0000
0.1	2.0783	2.0613	2.0898
0.2	2.0961	2.0786	2.1079
0.3	2.1139	2.0959	2.1260
0.4	2.1319	2.1135	2.1442
0.5	2.1500	2.1311	2.1626

Рис. 4. Эталонное решение TWIGL-S (слева) и погрешность ε_P диффузионных расчетов на мелкой сетке (справа).

Рис. 5. Погрешность ε_P диффузионного расчета для тестовой сетки при $\gamma=0.5$ (справа) и $\gamma=100$ (слева) для TWIGL-S.

Сценарий №2

В таблице 4 представлены результаты эталонных диффузионных и транспортного расчетов TWIGL-R в различные моменты времени. На рисунке 7 показаны эталонное транспортное решение TWIGL-S и погрешность ε_P диффузионных эталонных решений относительно транспортного эталонного решения.

На рисунке 8 представлена погрешность диффузионных расчетов на тестовой сетке при различных шагах по времени, а на рисунке 9 — для транспортного расчета. Полученные результаты демонстрируют сходимость решения при уменьшении шага по времени.

Сценарий №3

В таблице 5 представлены результаты эталонных диффузионных и транспортного расчетов TWIGL-C в различные моменты времени. На рисунке 10 показаны эталонное транспортное решение TWIGL-C и погрешность ε_P диффузионных эталонных решений относительно транспортного эталонного решения.

На рисунке 11 представлена погрешность диффузионных расчетов на тестовой сетке при различных шагах по времени, а на рисунке 12 — для транспортного расчета. Полученные результаты демонстрируют сходимость решения при уменьшении шага по времени.

Рис. 6. Погрешность ε_P транспортного расчета для тестовой сетки для TWIGL-S.

Таблица 4. Результаты расчетов TWIGL-R на мелкой сетке в различные моменты времени.

\overline{t}	Dif $(\gamma = 0.5)$	Dif $(\gamma = 100)$	SP_3
0.0	1.0000	1.0000	1.0000
0.1	1.3112	1.3083	1.3134
0.2	1.9729	1.9595	1.9826
0.3	2.0921	2.0747	2.1038
0.4	2.1099	2.0921	2.1219
0.5	2.1278	2.1096	2.1401

Заключение

Рассмотрено численное моделирование уравнения переноса нейтронов в SP_3 приближении. В качестве численного примера рассмотрен двумерный тест реактора TWIGL в трех сценариях динамического процесса. Проводено сравнение результатов диффузионного и транспортного SP_3 расчетов. Представлены результаты исследования различных шагов по времени.

Вычислительный алгоритм приближенного решения базируется на стандартной конечно-элементной аппроксимации по пространству при использовании лагранжевых конечных элементов. Контроль точности решения проводился на последовательности сгущающихся сеток с использованием конечных элементов различной степени. Матричная спектральная задача решалась с применением свободной библиотеки SLEPc.

Как и ожидалось, точность стационарных и нестационарных SP_3 расчетов лучше чем у диффузионных расчетов. С другой стороны, время вычислений для нестационарных SP_3 расчетов в N раза больше чем у диффузионных.

Список литературы (References)

Azmy Y, Sartori E. Nuclear Computational Science: A Century in Review — Springer Science & Business Media, 2010. — 470 p.

Beckert C., Grundmann U.Development and verification of a nodal approach for solving the multigroup SP3 equations // Annals of Nuclear Energy. - 2008. - Vol. 35, No. 1. - P. 75–86.

Рис. 7. Эталонное решение TWIGL-R (слева) и погрешность ε_P диффузионных расчетов на мелкой сетке (справа)

Рис. 8. Погрешность ε_P диффузионного расчета для тестовой сетки при $\gamma=0.5$ (справа) и $\gamma=100$ (слева) для TWIGL-R.

Bell G. I., Glasstone S. Nuclear reactor theory — US Atomic Energy Commission, Washington, DC (United States), 1970.

Brewster W. J. Development and Monte Carlo validation of a finite element reactor analysis framework — Missouri University of Science and Technology, 2018.

Brantley P.S., Larsen E.W. The simplified P3 approximation // Nuclear science and engineering. -2000. - Vol. 134, No. 1. - P. 1–21.

Downar T., Xu Y., Seker V., Hudson N. Theory manual for the PARCS kinetics core simulator module — Department of Nuclear Engineering and Radiological Sciences University of Michigan, 2009.

Gelbard E. M. Simplified spherical harmonics equations and their use in shielding problems — Westinghouse Electric Corp. Bettis Atomic Power Lab., 1961.

Lawrence R. D. Progress in nodal methods for the solution of the neutron diffusion and transport equations // Progress in Nuclear Energy. — 1986. — Vol. 17, No. 3. — P. 271–301.

Lewis E. E., Miller W. F. Computational methods of neutron transport — John Wiley and Sons, $1984.-401~\mathrm{p}.$

McClarren R. G. Theoretical aspects of the simplified Pn equations // Transport Theory and Statistical Physics. -2010. Vol. 39, No. 2–4. -P. 73–109.

Stacey W. B. Nuclear Reactor Physics — Weinheim: wiley-vch, 2007. - 735 p.

Рис. 9. Погрешность ε_P транспортного расчета для тестовой сетки для TWIGL-S.

Таблица 5. Результаты расчетов TWIGL-C на мелкой сетке в различные моменты времени.

\overline{t}	Dif $(\gamma = 0.5)$	Dif $(\gamma = 100)$	SP_3
0.0	1.0000	1.0000	1.0000
0.1	1.3422	1.3393	1.3402
0.2	2.1686	2.1580	2.1757
0.3	0.7103	0.7119	0.7109
0.4	0.6452	0.6470	0.6455
0.5	1.0024	1.0024	1.0051

Tada K., Yamamoto A., Yamane Y., Kitamuray Y. Applicability of the diffusion and simplified P3 theories for pin-by-pin geometry of BWR // Journal of nuclear science and technology. — 2008. — Vol. 45, No. 10. — P. 997–1008.

Рис. 10. Эталонное решение TWIGL-C (слева) и погрешность ε_P диффузионных расчетов на мелкой сетке (справа)

Рис. 11. Погрешность ε_P диффузионного расчета для тестовой сетки при $\gamma=0.5$ (справа) и $\gamma=100$ (слева) для TWIGL-C.

Рис. 12. Погрешность ε_P транспортного расчета для тестовой сетки для TWIGL-C.