Algèbre Linéaire II -

Exercices complémentaires – Feuille 1

Exercice 1. Trouver toutes les matrices réelles qui commutent avec $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$.

Exercice 2. Soit $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

- 1. Calculer A^2 et A^3 .
- 2. Calculer A^n , quelque soit n un nombre naturel.

Exercice 3. Soit $A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.

- 1. Trouver toutes les matrices réelles qui commutent avec A.
- 2. Calculer A^n , quelque soit n un nombre naturel.

Exercice 4. Considérons les matrices $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$. Calculer B^3 et A^3 (Note que $A = B + I_3$).

Exercice 5. Prouver que $A^n = 2^{n-1}A$, où $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.

Exercice 6. On considère la matrice $A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.

- 1. Existe-t-il une matrice B telle que $AB = I_2$ (justifier votre réponse). Dans un cas affirmatif, trouver B.
- 2. La matrice A est-elle inversible? Justifier votre réponse.

Exercice 7. Soit $\mathcal{M}_{3,3}(\mathbb{R})$ l'espace vectoriel réel des matrices carrées réelles d'ordre 3 et considérons les matrices

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

Déterminer si A, B, C sont linéairement indépendantes dans $\mathcal{M}_{3,3}(\mathbb{R})$.

Exercice 8. Trouver toutes les matrices A dans $\mathcal{M}_{2,2}(\mathbb{R})$ telles que $A^2 = O_3$.

Exercice 9. Pour tout entier n, on définit $A_n = \begin{pmatrix} \cos(nx) & \sin(nx) \\ -\sin(nx) & \cos(nx) \end{pmatrix}$, avec $x \in \mathbb{R}$.

- 1. Démontrer que $A_n A_m = A_{n+m}$ pour tout couple d'entiers n, m.
- 2. En utilisant la formule précédente, calculer A_n^{-1} pour tout n.

Exercice 10. Soient P et Q deux matrices dans $\mathcal{M}_{n,n}(\mathbb{R})$ pour n un entier quelconque.

- 1. Sous quelles conditions l'égalité $(P+Q)(P-Q)=P^2-Q^2$ est vraie?
- 2. Déterminer si l'égalité précédente se vérifie pour $P = \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix}$ et $Q = \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix}$.

Exercice 11. Une matrice carrée A est dite orthogonale ssi elle vérifie $A^tA = I$. Déterminer les valeurs $a, b \in \mathbb{R}$ telles que la matrice

$$M = \begin{pmatrix} a & 0 & 0\\ 0 & \cos b & \sin b\\ 0 & -\sin b & \cos b \end{pmatrix}$$

est orthogonale.

Exercice 12. Soit la matrice complexe $A = \begin{pmatrix} 1 & 1+i \\ 1-i & 0 \end{pmatrix}$.

- 1. Démontrer que $A^2 A 2I_2 = O_2$.
- 2. En déduire que A est inversible dans $\mathcal{M}_{2,2}(\mathbb{C})$ et trouver A^{-1} .

Exercice 13. Soient les matrices

$$A = \begin{pmatrix} 1 & 1 & 2 \\ 2 & 0 & -1 \\ -6 & -1 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{pmatrix}$$

- 1. Montrer que $A^3 A^2 + 9A I = O_3$ et $B^3 9B^2 + 9B I_3 = O_3$.
- 2. Calculer A^{-1} et B^{-1} à partir des formules précédentes.

Exercice 14. Considérons $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$.

- 1. Démontrer que A vérifie une égalité du type $A^2 + \lambda A + \mu I_2 = O_2$ en obtenant $\lambda, \mu \in \mathbb{R}$.
- 2. Utiliser la formule précédente pour obtenir A^{-1} .

Exercice 15. Pour a un nombre réel, on définit $A = \begin{pmatrix} 3 & 0 & 8 \\ 3 & a & 6 \\ -2 & 0 & -5 \end{pmatrix}$.

- 1. Trouver a tel que $(A + I_3)^2 = O_3$.
- 2. Calculer A^{-1} pour la valeur de a obtenue précédemment.