Functional dependencies Tutorial II - Normalisations

Valentin CLÉMENT - vec16@ic.ac.uk

A **Decomposition** of a relation R(A, B, C, ...) means finding a set of relations $R_1(...)$, $R_2(...)$, ... such that $\bigcup_{i} \operatorname{attr}(R_i) = \operatorname{attr}(R)$. It is interesting if it is:

Lossless The original relation can be retrieved by joining the decomposed relations, i.e. if we decompose (R, \mathcal{F}) into S and T:

We need either
$$\left\{\begin{array}{l} \operatorname{attr}(S) \cap \operatorname{attr}(T) \to_{\mathcal{F}} \operatorname{attr}(S) \\ \operatorname{attr}(S) \cap \operatorname{attr}(T) \to_{\mathcal{F}} \operatorname{attr}(T) \end{array}\right.$$

Dependency preserving If we can check the functional dependencies \mathcal{F} of R without joining S and T, the decomposition is dependency preserving

Note that lossless decomposition is much more important in practice: dependency preservation is more of a 'nice to have'. Decomposition can help reduce *anomalies*.

A useful way of classifying decomposition is on properties they should have:

- BCNF The Boyce-Codd Normal Form requires that for every non trivial FD, *the LHS is a superkey*. We can decompose *any* relation into BCNF by *splitting it on each offending FD*. It is lossless, but *not necessarily* dependency preserving
 - 3NF The Third Normal Form: a slightly weaker form, where a FD is valid if its LHS is a superkey OR *every attribute on its RHS is prime* (i.e. it is part of at least one candidate key). We can obtain 3NF by adding every non-redundant relationship generated by a *canonical cover*, plus every *missing candidate key*.

We will see the details in the examples

Decompose relation R(A, B, C, D, E) in **3NF**, given the following functional dependencies:

- **▶** *BC* → *D*
- ▶ D → E
- ► *A* → *C*
- ► E → B

Reminder: One finds the 3NF decomposition by starting from an empty set of relations, and:

- For each FD LHS → RHS in a canonical cover, add relation LHS ∪ RHS, if it is not a subset of an existing one
- If none of the resulting relations include a key, add a new relation for that key.

Solution 1 3NF decomposition

FDs
$$BC \rightarrow D$$
, $D \rightarrow E$, $A \rightarrow C$, $E \rightarrow B$

- Canonical cover: everything is minimal.
 - $\mathcal{C} = \{ A \rightarrow C, BC \rightarrow D, D \rightarrow E, E \rightarrow B \}$
- ▶ Starting from $\{\}$, for $a \rightarrow b$ in C:
 - ▶ From $A \rightarrow C$, add $R_1(A, C)$: $\{R_1(A, C)\}$
 - ▶ From $BC \rightarrow D$, add $R_2(B, C, D)$: $\{R_1(A, C), R_2(B, C, D)\}$
 - ▶ From $D \to E$, add $R_3(D, E)$: $\{R_1(A, C), R_2(B, C, D), R_3(D, E)\}$
 - ► From $E \to B$, add $R_4(B, E)$: $\{R_1(A, C), R_2(B, C, D), R_3(D, E), R_4(B, E)\}$
- ▶ Candidate Keys: $\mathcal{K} = \{AB, AD, AE\}$. No relation contains any, so add $R_5(A, B)$, $R_5(A, D)$, or $R_5(A, E)$.

3NF decomposition: $\{R_5(A, B), R_1(A, C), R_2(B, C, D), R_4(B, E), R_3(D, E)\}$

Decompose relation R(A, B, C, D, E, F) in **3NF**, given the following functional dependencies:

- ► AB → CD
- ► CE → BD
- ▶ $BC \rightarrow AD$
- ► AF → B

Reminder: One finds the 3NF decomposition by starting from an empty set of relations, and:

- For each FD LHS → RHS in a canonical cover, add relation LHS ∪ RHS, if it is not a subset of an existing one
- If none of the resulting relations include a key, add a new relation for that key.

FDs
$$AB \rightarrow CD$$
, $CE \rightarrow BD$, $BC \rightarrow AD$, $AF \rightarrow B$

- ▶ Canonical cover: $\{AB \rightarrow CD, CE \rightarrow BD, BC \rightarrow AD, AF \rightarrow B\}$
- ightharpoonup Add $R_1(A, B, C, D)$
- ► Add *R*₂(*B*, *C*, *D*, *E*)
- ▶ Add $R_3(A, B, C, D)$? No, because $R_3 \subseteq R_1$
- ightharpoonup Add $R_4(A, B, F)$
- ▶ Is any $attr(R_i)^+ = attr(R)$? No: we need to add a key.
- ▶ $ABCDEF \mapsto ABEF \mapsto AEF$: Add $R_5(A, E, F)$

3NF decomposition:

$$\{R_1(A, B, C, D), R_2(B, C, D, E), R_4(A, B, F), R_5(A, E, F)\}$$

Decompose relation R(A, B, C, D, E, F) in **BCNF**, given the following functional dependencies:

- ightharpoonup AB
 ightharpoonup CD
- **▶** *CE* → *BD*
- ▶ $BC \rightarrow AD$
- ► AF → B

Reminder: One finds the BCNF decomposition by recursively:

- ▶ Splitting the relation on each offending FD, i.e. each FD $LHS \rightarrow RHS$ such that LHS is not a superkey into $R_1(LHS \cup RHS)$ and $R_2(ALL RHS)$
- Allocating to each child relation only the relations on its attributes

FDs
$$AB \rightarrow CD$$
, $CE \rightarrow BD$, $BC \rightarrow AD$, $AF \rightarrow B$

- ► AB is not a superkey: splitting R in $R_1(A, B, C, D)$ and $R_2(\{A, B, C, D, E, F\} \{C, D\}) = R_2(A, B, E, F)$
- ► AB → CD and BC → AD match BCNF criterion on R₁. Its keys are AB and BC, and no FD can be derived from A, B, C, D, AD, AC or BD, so R₁ is BCNF.
- ▶ $AF \rightarrow B$ applies to R_2 , but AF is not a superkey there: splitting into $R_{21}(A, B, F)$ and $R_{22}(\{A, B, E, F\} \{B\}) = R_{22}(A, E, F)$
- ▶ R₂₁ is BCNF: AF is a superkey, and no FD can be derived from A, B, F, AB or BF which applies there.
- R₂₂ is BCNF: there is no way to derive E or F from anything, and all derived FDs that apply boil down to A → A, which is trivial

BCNF decomposition: $\{R_1(A, B, C, D), R_{21}(A, B, F), R_{22}(A, E, F)\}$

Example 4 BCNF decomposition

Find a **BCNF** decomposition of R(A, B, C, D) with:

- ightharpoonup AB o D
- ightharpoonup D
 ightarrow C

Solution 4 BCNF decomposition

FDs
$$AB \rightarrow D$$
, $D \rightarrow C$

- ▶ $D \rightarrow C$ not BCNF: $R_1(C, D)$, $R_2(A, B, D)$
- ▶ R₁ is BCNF
- ► R₂ is BCNF

BCNF decomposition: $\{R_1(C, D), R_2(A, B, D)\}$

Example 5 BCNF decomposition

Find a **BCNF** decomposition of R(A, B, C, D)

- ► AB → C
- ightharpoonup C
 ightarrow D
- ightharpoonup D
 ightarrow A

FDs
$$AB \rightarrow C$$
, $C \rightarrow D$, $D \rightarrow A$

- ▶ $AB \rightarrow C$ matches BCNF: $\{A, B\}^+ = \{A, B, C, D\}$
- ▶ $C \rightarrow D$ is not BCNF: $\{C\}^+ = \{C, D\}$. Splitting as $R_1(C, D)$, $R_2(A, B, C)$
- ▶ R_1 is BCNF: $C \rightarrow D$ is the only relevant FD
- ▶ R_2 is *not* BCNF: derived FD $C \rightarrow D \rightarrow A \Rightarrow C \rightarrow A$ does not match BCNF: $\{C\}^+ = \{A, C\}$. Split $R_{21}(A, C)$, $R_{22}(A, B)$
- ► R₂₁ is BCNF
- ► R₂₂ is BCNF

BCNF decomposition: $\{R_1(C, D), R_{21}(A, C), R_{22}(A, B)\}$

Conclusion

3NF: Add relations one by one from the canonical cover, purging redundant ones. Add keys eventually, if needed.

BCNF: For each offending FD, split relation until you've reached BCNF. Do not forget *derived FDs*!

Questions?