

•

MPEG-2

- Outline
 - History and applications
 - Requirements
 - New features
 - Test Model 5
 - Bitstream syntax
 - Profiles and Levels
 - Scalability

18-796/Spring 1999/Chen

•

MPEG-2 Video

- ISO/IEC 13818-2 (or ITU-T H.262)
- Broadcast TV, cable/satellite TV, HDTV, video services on networks (e.g., ATM)
- 4~9 Mbits/s, interlaced video, and scalable coding
- History
 - Late 1990: started
 - Nov 1991: competitive tests of video
 - Collaborative phase
 - Nov 1993: Committee Draft for video

Parts of MPEG-2

- Parts:
 - ISO/IEC 13818-1: Systems
 - ISO/IEC 13818-2: Video
 - ISO/IEC 13818-3: Audio
 - ISO/IEC 13818-4: Compliance Testing
 - ISO/IEC 13818-5: Software
 - ISO/IEC 13818-6: DSM-CC
 - ISO/IEC 13818-7: NBC Audio
 - ISO/IEC 13818-8: 10-Bit Video (dropped!)
 - ISO/IEC 13818-9: Real-Time Interface
 - ISO/IEC 13818-10: DSM-CC Conformance

18-796/Spring 1999/Chen

•

Requirements

- ITU-R 601 interlaced video with high quality at 4~9 Mbits/s
- Random access/channel switching, seek and play in FF/FR using access points
- Allow video coding higher chroma resolution formats, e.g., 4:2:2 and 4:4:4
- Scalable video coding for multi-quality video applications
- System supporting audio-visual synchronized play/access for multiple streams
- Subset of the standard implementable as practical decoders

Additional Requirements

- Maximum interoperability/compatibility with MPEG-1
- Support coding of non-interlaced and interlaced formats of many frame rates
- Support video formats of various aspect ratios
- Low overhead syntax while supporting above requirements for overall efficiency
- Subset of the standard permits real-time encoder of reasonable complexity

18-796/Spring 1999/Chen

•

New Features

- Allows 4:2:2 and 4:4:4 formats
- Frame-pictures and field-pictures
- Frame/field adaptive DCT
- Frame/field/dual-prime adaptive motion compensation
- Alternate scan for DCT coefficients
- New VLC table for DCT coefficients
- Profiles and levels
- Nonlinear quantization table
 - Increased accuracy for small values

Additional New Features

- Chrominance samples horizontally co-sited as luminance samples
- Slices always start and end at the same row of macroblocks
- Concealment motion vectors for intra macroblocks
- Motion vectors always coded in half-pel
- Display aspect ratio specified in bitstream
 - Pel aspect ratio derived from it
- IDCT mismatch control
- Coefficient VLC table escape format not allowed if use of shorter VLC possible

Coding of Interlaced Video

- Frame-pictures or field-pictures
- Motion compensation
 - Frame prediction for frame-pictures
 - Same as MPEG-1
 - Field prediction for field-pictures
 - Field prediction for frame-pictures
 - Dual-prime
 - Field-pictures or frame-pictures
 - Only for P-pictures
 - 16×8 MC for field pictures

Performance

- PSNR at 4 Mbits/s
 - Frame-pictures, M=1

Sequence	Frame MC	Field MC	Frame/Field MC	Dualp MC	Frame/Field/Dualp MC
Flowergarden	27.72	28.06 (+0.34)	28.22 (+0.50)	28.39 (+0.67)	29.38 (+1.66)
Mobile & Cal	25.69	25.86 (+0.17)	26.04 (+0.35)	25.51 (-0.18)	26.63 (+0.94)
Football	34.20	35.60 (+1.40)	35.69 (+1.49)	35.69 (+1.49)	36.04 (+1.84)
Bus	28.99	30.26 (+1.27)	30.43 (+1.44)	30.70 (+1.71)	31.31 (+2.32)
Carousel	28.67	29.97 (+1.30)	30.07 (+1.40)	29.99 (+1.32)	30.53 (+1.86)

- Frame-pictures, M=3

Sequence	Frame MC	Field MC	Frame/Field MC
Flowergarden	29.07	29.20 (+0.13)	29.63 (+0.56)
Mobile & Cal	28.11	27.86 (-0.25)	28.27 (+0.16)
Football	34.54	35.01 (+0.47)	35.12 (+0.58)
Bus	30.79	31.32 (+0.53)	31.60 (+0.81)
Carousel	29.22	29.54 (+0.32)	29.73 (+0.51)

- Field-pictures, M=1

Sequence	Field MC	16x8 MC	Field/16x8 MC
Flowergarden	26.99	25.94 (-1.05)	27.18 (+0.19)
Mobile & Cal	25.02	23.61 (-1.41)	25.21 (+0.19)
Football	36.07	35.07 (-1.00)	35.89 (-0.18)
Bus	29.63	28.76 (-0.87)	29.83 (+0.20)
Carousel	30.31	29.30 (-1.01)	30.29 (+0.12)

Frame/Field Adaptive DCT

- Organize 16×16 block as frame blocks or filed blocks
- Compute correlation in vertical direction in each case
- Choose the case that has higher correlation

Frame blocks

Field blocks

18-796/Spring 1999/Chen

Performance

• PSNR at 4 Mbits/s

- M=1

Sequence	Frame DCT	Field DCT	Frame/Field DCT
Flowergarden	29.36	29.04 (-0.32)	29.38 (+0.02)
Mobile & Cal	26.66	25.87 (-0.79)	26.63 (-0.03)
Football	35.54	35.95 (+0.41)	36.04 (+0.50)
Bus	31.05	31.00 (-0.05)	31.31 (+0.26)
Carousel	29.68	30.36 (+0.68)	30.53 (+0.85)

- M=3

Sequence	Frame DCT	Field DCT	Frame/Field DCT
Flowergarden	29.61	29.46 (-0.15)	29.63 (+0.02)
Mobile & Cal	28.34	27.74 (-0.60)	28.27 (-0.07)
Football	34.67	35.04 (+0.37)	35.12 (+0.45)
Bus	31.34	31.41 (+0.07)	31.60 (+0.26)
Carousel	29.04	29.59 (+0.55)	29.73 (+0.69)

2D VLC (cont.) • FLC table for runs and levels - Following the escape code FLC codeword FLC codeword signed_level run 0000 00 0 1000 0000 0000 reserved 0000 01 1000 0000 0001 -2047 1000 0000 0010 0000 10 2 -2046 1111 1111 1111 -1 0000 0000 0000 not allowed 0000 0000 0001 +1 63 0111 1111 1111 +2047

•				
•				
	C_{0}	ding 1	for DC	1
	CU	umg i		•
Range of				
Differential DC	aren	SIZE VLC	SIZE VLC	VLIs
(DIFFs)	SIZE	Luminance	Chrominance	
-2047 to -1024	11	9*1	9*11	9*0 00 to 0 9*1 1
-1023 to -512	10	8*10	9*10	9*0 0 to 0 9*1
-511 to -256	9	7*1 0	8*10	9*0 to 0 8*1
-255 to -128	8	6*10	7*1 0	8*0 to 0 7*1
-127 to -64	7	5*10	6*10	7*0 to 0 6*1
-63 to -32	6	4*10	5*10	6*0to 0 5*1
-31 to -16	5	1110	4*10	5*0 to 0 4*1
-15 to -8	4	110	1110	4*0 to 0111
-7 to -4	3	101	110	000 to 011
-3 to -2	2	01	10	00 to 01
-1	1	00	01	0
0	0	100	00	
1	1	00	01	1
2 to 3	2	01	10	10 to 11
4 to 7	3	101	110	100 to 111
8 to 15 16 to 31	4 5	110 1110	1110 4*1 0	1000 to 4*1 1 4*0 to 5*1
32 to 63		4*1 0		1 5*0 to 6*1
64 to 127	6 7	5*1 0	5*1 0 6*1 0	1 5*0 to 6*1 1 6*0 to 7*1
128 to 255	8	6*10	7*10	1 7*0 to 7*1 1 7*0 to 8*1
256 to 511	9	7*10	8*1 O	1 8*0 to 9*1
512 to 1023	10	8*1 0	9*10	1 9*0 to 9*1
1024 to 2048	11	9*1	9*11	1 9*0 0 to 9*1 11
Range larger then MPE		, 1	, 11	18-796/Spring 199
range larger then Wil E	O I			10-790/Spring 1999

Test Model (TM) 5

- GOP with M=1 and 3
- Motion estimation
 - Frame/field/dual prime
 - Integer-pel full search followed by half-pel update
- Mode decision: MC/no MC, inter/intra
- Zigzag scan for inter; alternate scan for intra
- Quantization adaptation and rate control

Motion Estimation

- Motion estimation on 16×16 luminance blocks
- Chrominance motion vectors by dividing luminance motion vectors and truncating
- Half-pel update on integer motion vectors
- -2048 to +2047.5 pels for half-pel motion vectors
- Depending on motion modes and types:
 - Frame motion vectors
 - Field motion vectors
 - Motion vectors in forward direction
 - Motion vectors in backward direction

18-796/Spring 1999/Chen

14

•

Scalability Types

- Data Partitioning
- SNR Scalability
- Spatial Scalability
- Temporal Scalability
- Hybrid Scalability

Usage of Temporal Scalability

- Example 1
 - Picture structure for base layer with 2 B-frames
 - Enhancement layer uses either simple prediction or bidirectional prediction from the base layer
- Example 2
 - Stereoscopic scalability
 - The base layer is the video for one eye
 - The enhancement layer is the video for the other eye
- Example 3
 - The base layer is a normal TV signal at 30 Hz
 - The enhancement layer provides a compatible upgrade to 60 Hz Both progressive and interlaced 60 Hz are possible

18-796/Spring 1999/Chen

MPEG Average Quality

Bit Rate (Mbits/sec)	SIF-30 ~CVGA	CCIR 601 29.97 FPS ~VGA	HDTV 29.97 FPS	HDTV 60 FPS ~SVGA
1.1 Mbs	good	poor		
4.0 Mbs	excellent	good		
9.0 Mbs	excellent++	excellent		
18.0 Mbs		excellent++	good	good
28.0 Mbs			excellent	excellent

	SIF-30	CCIR 601	HDTV	HDTV
	~CGA	29.97 FPS	29.97 FPS	60 FPS
		~VGA		~SVGA
Pels	352	704	1920	1280
Lines	240	480	1080	720
Uncompressed Bit				
Rates (Mbps)	30.4	121.5	745.7	663.6

References

- Joan L. Mitchell et al., MPEG Video: Compression Standard, Chapman & Hall, New York, NY
- Barry G. Haskell, Atul Puri, Arun N. Netravali, Sec
 17.1, Digital Video: An Introduction to MPEG-2,
 Chapman & Hall, New York, NY