09 - Multivariate Two Sample Inference

Junvie Pailden

SIUE, F2017, Stat 589

September 19, 2017

Comparing Mean Vectors from Two Populations

Sample	Mean	Covariance
1	$\bar{\mathbf{x}}_1 = \frac{1}{n_1} \sum_{j=1}^{n_1} \mathbf{x}_{1j}$	$\mathbf{S}_1 = \frac{1}{n_1 - 1} \sum_{j=1}^{n_1} (\mathbf{x}_{1j} - \bar{\mathbf{x}}_1) (\mathbf{x}_{1j} - \bar{\mathbf{x}}_1)'$
2	$\bar{\mathbf{x}}_2 = \frac{1}{n_2} \sum_{j=1}^{n_2} \mathbf{x}_{2j}$	$\mathbf{S}_1 = \frac{1}{n_2 - 1} \sum_{j=1}^{n_2} (\mathbf{x}_{2j} - \bar{\mathbf{x}}_2) (\mathbf{x}_{2j} - \bar{\mathbf{x}}_2)'$

Let $\mu_1 = E(\mathbf{X}_1)$ and $\mu_2 = E(\mathbf{X}_2)$.

We want to answer the questions

- 1. Is $\mu_1 = \mu_2$ (or $\mu_1 \mu_2 = 0$)?
- 2. If $\mu_1 \neq \mu_2$, which component means are different?

Assumptions on the Structure of the Data

- The sample $\mathbf{X}_{11}, \mathbf{X}_{12}, \dots, \mathbf{X}_{1n_1}$ is a random sample from a population with mean μ_1 and covariance matrix Σ_1 .
- The sample $\mathbf{X}_{21}, \mathbf{X}_{22}, \dots, \mathbf{X}_{2n_2}$ is a random sample from a population with mean μ_2 and covariance matrix Σ_2 .
- The sample $\mathbf{X}_{11},\mathbf{X}_{12},\ldots,\mathbf{X}_{1n_1}$ are independent from $\mathbf{X}_{21},\mathbf{X}_{22},\ldots,\mathbf{X}_{2n_2}.$
- For small sample sizes, the populations are multivariate normal.
- Suppose $\Sigma_1 = \Sigma_2 = \Sigma$.

• We can pool the information in both samples in order to estimate the common variance Σ .

$$\begin{split} \mathbf{S}_{\mathsf{pooled}} &= \frac{\sum_{j=1}^{n_1} (\mathbf{x}_{1j} - \bar{\mathbf{x}}_1) (\mathbf{x}_{1j} - \bar{\mathbf{x}}_1)' + \sum_{j=1}^{n_2} (\mathbf{x}_{2j} - \bar{\mathbf{x}}_2) (\mathbf{x}_{2j} - \bar{\mathbf{x}}_2)'}{n_1 + n_2 - 2} \\ &= \frac{n_1 - 1}{n_1 + n_2 - 2} \mathbf{S}_1 + \frac{n_2 - 1}{n_1 + n_2 - 2} \mathbf{S}_2 \end{split}$$

Test the hypothesis $H_0: \mu_1 - \mu_2 = \delta_0$

• To test H_0 , we consider the squared statistical distance from $\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2$ to δ_0 . \item By the independence assumption,

$$Cov(\bar{\mathbf{X}}_1 - \bar{\mathbf{X}}_2) = Cov(\bar{\mathbf{X}}_1) + Cov(\bar{\mathbf{X}}_2) = \frac{1}{n_1}\Sigma + \frac{1}{n_1}\Sigma$$

• Because S_{pooled} estimates Σ , then

$$\left(\frac{1}{n_1} + \frac{1}{n_2}\right)$$
 S_{pooled}

is an estimator of $Cov(\bar{\mathbf{X}}_1 - \bar{\mathbf{X}}_2)$.

Test the hypothesis $H_0: \mu_1 - \mu_2 = \delta_0$

• The likelihood ratio test of $H_0: \mu_1 - \mu_2 = \delta_0$ is based on the the square of the statistical distance, T^2 . Reject H_0 if

$$T^{2} = (\bar{\mathbf{x}}_{1} - \bar{\mathbf{x}}_{2} - \delta_{0})' \left[\left(\frac{1}{n_{1}} + \frac{1}{n_{2}} \right) \mathbf{S}_{pooled} \right]^{-1} (\bar{\mathbf{x}}_{1} - \bar{\mathbf{x}}_{2} - \delta_{0})$$

$$> \frac{(n_{1} + n_{2} - 2)p}{(n_{1} + n_{2} - p - 1)} F_{p,n_{1} + n_{2} - p - 1}(\alpha) = c^{2}$$

Test
$$H_0: \mu_1 = \mu_2$$
 vs. $H_1: \mu_1 \neq \mu_2$

If $\mathbf{X}_{11}, \mathbf{X}_{12}, \ldots, \mathbf{X}_{1n_1}$ is a random sample of size n_1 from $N_p(\mu_1, \Sigma)$ and $\mathbf{X}_{21}, \mathbf{X}_{22}, \ldots, \mathbf{X}_{2n_2}$ is an independent random sample of size of n_2 from $N_p(\mu_2, \Sigma)$, then

$$T^2 = [\bar{\mathbf{X}}_1 - \bar{\mathbf{X}}_2 - (\mu_1 - \mu_2)]' \left[\left(\frac{1}{n_1} + \frac{1}{n_2} \right) \mathbf{S}_{\mathsf{pooled}} \right]^{-1} [\bar{\mathbf{X}}_1 - \bar{\mathbf{X}}_2 - (\mu_1 - \mu_2)]$$

is distributed as

$$\frac{(n_1+n_2-2)p}{(n_1+n_2-p-1)}F_{p,n_1+n_2-p-1}.$$

Consequently,

$$P\left[T^2 \le \frac{(n_1 + n_2 - 2)p}{(n_1 + n_2 - p - 1)} F_{p, n_1 + n_2 - p - 1}(\alpha)\right] = 1 - \alpha$$

Simultaneous Confidence Intervals

With probability $1 - \alpha$,

$$\mathbf{a}'(\bar{\mathbf{X}}_1 - \bar{\mathbf{X}}_2) \pm c\sqrt{\mathbf{a}'\left(\frac{1}{n_1} + \frac{1}{n_2}\right)\mathbf{S}_{\mathsf{pooled}}\mathbf{a}}$$

will cover $\mathbf{a}'(\mu_1 - \mu_2)$ for all \mathbf{a}' . In particular $\mu_{1i} - \mu_{2i}$ will be covered by

$$(\bar{X}_{1i} - \bar{X}_{2i}) \pm c \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right) s_{ii,pooled}}$$
 for $i = 1, 2, \dots, p$

Example: Bird Data

The tail lengths in millimeters (x_1) and wing lengths in millimeters (x_2) for 45 male hook-billed kites are given in file **T6-11.DAT**. Similar measurements for female hook-billed kites were given **T5-11.DAT**.

- Plot the male hook-billed kite data as a scatter diagram, and (visually) check for outliers.
- Test for equality of mean vectors for the populations of male and female hook-billed kites. Set $\alpha-.05$. If $H_0:\mu_1-\mu_2=0$ is rejected, find the linear combination most responsible for the rejection of H_0 .
- Determine the 95% confidence region for $\mu_1 \mu_2$ and 95% simultaneous confidence intervals for the components of $\mu_1 \mu_2$.
- Are male or female birds generally larger?

```
bird.females <- read.table("T5-12.DAT", header = F)
bird.males <- read.table("T6-11.DAT", header = F)
colnames(bird.females) =
    colnames(bird.males) = c("tail", "wing")</pre>
```

newbird.males <- bird.males[-31,]

points(bird.females, pch=3)

With Outlier

Without Outlier

Boxplots

n1 <- nrow(newbird.males); n2 <- nrow(bird.females)
gender <- c(rep("Male", n1), rep("Female", n2))</pre>

#

\$ tail : int 180 186 206 184 177 177 176 200 191 193

\$ wing : int 278 277 308 290 273 284 267 281 287 271

boxplot(tail ~ gender, data = new.dat, main = "Tail Measure

Tail Measurements

boxplot(wing ~ gender, data = new.dat, main = "Wing Measure")

Wing Measurements

Multivariate Energy Normality Tests

```
# # Energy test of multivariate normality: estimated parame
# data: x, sample size 44, dimension 2, replicates 199
# E-statistic = 0.7, p-value = 0.3
```

```
#
# Energy test of multivariate normality: estimated parame
#
# data: x, sample size 45, dimension 2, replicates 199
# E-statistic = 0.6, p-value = 0.5
```

energy::mvnorm.etest(bird.females, R = 199) # female

Summary Measures, Need mosaic Package

```
mosaic::favstats(tail ~ gender, data = new.dat)

# gender min Q1 median Q3 max mean sd n missing
# 1 Female 173 187 191 202 216 194 11.0 45 0
# 2 Male 170 178 186 192 212 187 9.4 44 0
```

```
mosaic::favstats(wing ~ gender, data = new.dat)
```

```
# gender min Q1 median Q3 max mean sd n missing
# 1 Female 245 271 282 286 310 280 14 45 0
# 2 Male 254 273 281 287 310 281 13 44 0
```

Multivariate Two-Sample Tests

 $H_0: \mu_1 - \mu_2 = 0$ (no difference between means)

```
#
# Hotelling's two sample T2-test
# data: newbird.males and bird.females
# T.2 = 10, df1 = 2, df2 = 90, p-value = 2e-05
# alternative hypothesis: true location difference is not only the same of the same
```

Reject H_0 at 1% level of significance. Strong evidence in the sample supporting the claim that the mean measurements between genders are different.