الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

امتحان شهادة بكالوريا التعليم الثانوي دورة جوان 2008

الشعبة : رياضيات وتقني رياضي

المدة : 04 ساعات ونصف

احتبار في مادة : العلوم الفيزيائية

على المترشح أن يختار أحد الموضوعين التاليين : الموضوع الأول : (20 نقطة)

التمرين الأول: (03 نقاط)

1/ لعنصر البولونيوم (Po) عدة نظائر مشعة، أحدها فقط طبيعي .

أ/ ما المقصود بكل مُن : النظير وَ النواة المشعّة ؟

- نعتبر أحد النظائر المشعّة، نواته $(^4P_0)$ والتي تتفكك إلى نواة الرصاص $(^3P_0)$ وتصدر

جسيما α . أكتب معادلة النفاعل المنمذج لتفكك نواة النظير ($f^{2}Po$) ثم استنتج قيمتي A و Z. 2 ليكن N_{0} عدد الأنوية المشعّة الموجودة في عينة من النظير $f^{2}Po$ في اللحظة $f^{2}Po$ ، $f^{2}Po$ الأنوية المشعّة غير المتفككة الموجودة فيها في اللحظة f^{2} .

باستخدام كاشف لإشعاعات (م) مجهز بعداد رقمي تم الحصول على جدول القياسات التالي:

t (jours)	0	20	50	80	100	120
N(t) No	1,00	0,90	0.78	0,67	0,61	0,55
$-\ln\!\left(\frac{N(t)}{No}\right)$						

أ/ أملأ الجدول السابق.

 $-\ln\left(\frac{N(t)}{No}\right)=f(t)$: البيان على ورقة ميليمترية البيان بارسم على ورقة البيان بارسم

يعطى سلم الرسم: - على محور الفواصل: 20jours → 1cm → 20jours التراتيب: 0.10 → 1cm → 20jours جـ/أكتب قانون التناقص الإشعاعي و هل يتوافق مع البيان السابق. برزر إجابتك.

د/ انطلاقا من البيان، استنتج قيمة م ، ثابت التفكك (ثابت الإشعاع) المميز للنظير Po ، 2 Po .

ه/ أعط عبارة زمن نصف عمر Po واحسب قيمته.

التمرين الثاني: (03 نقاط)

بغرض معرفة سلوك ومميزات وشيعة مقاومتها (r) وذاتيتها (L) ، نربطها على التسلسل بمولد ذي توتر كهربائي ثابت E=4,5V وقاطعة K .الشكل-1-

انقل مخطط الدارة على ورقة الإجابة وبين عليه جهة مرور التيار الكهربائي وجهتي السهمين الذين يمثلان التوتر الكهربائي بين طرفي الوشيعة وبين طرفي المولد.

الشكل -1 -

2- في اللحظة 0=1 تُغلق القاطعة : (K)

أ/ بتطبيق قانون جمع التوترات، أوجد المعادلة التفاضلية التي تعطي الشدة اللحظية (i(t) للتيار الكهربائي المار في الدارة.

ب/ بين أن المعادلة التفاضلية السابقة تقبل حلا من الشكل $I_0(1-e^{-\frac{r}{L}t})$ حيث I_0 هي الشدة العظمى للتيار الكهربائي المار في الدارة.

3- تُعطى الشَّدَة اللحظية للتيار الكهرباني بالعبارة $i(t) = 0,45(1-e^{-10t})$ حيث i(t) بالثانية و $i(t) = 0,45(1-e^{-10t})$ حيث i(t) بالأمبير احسب قيم المقادير الكهربانية التالية:

أ/ الشدة العظمى (١٥) للتيار الكهربائي المار في الدارة.

ب/ المقاومة (r) للوشيعة.

ج/ الذاتية (L) للوشيعة.

د/ ثابت الزمن (ד) المميز للدارة.

4- ١/ ما قيمة الطاقة المخزنة في الوشيعة في حالة النظام الدانم؟

ب- اكتب عبارة التوتر الكهرباني اللحظي بين طرفي الوشيعة.

ج/ احسب قيمة التوتر الكهربائي بين طرفي الوشيعة في اللحظة (£0,3).

التمرين الثالث: (03 نقاط)

 $C=1,0.10^{-2} \, \text{mol/L}$ وتركيزه المولي $V=100 \, \text{mL}$. $V=100 \, \text{mol/L}$ وتركيزه المولي $V=100 \, \text{mol/L}$. $V=100 \, \text{mol/L}$ وتركيزه المولى الإيثانويك حجمه $V=100 \, \text{mol/L}$. $V=1,2.10^{-2} \, \text{mol/L}$. V

احسب كتلة الحمض النقي المنحلة في الحجم V من المحلول.

2- أكتب معادلة التفاعل المنمذج لإنحلال حمض الإيثانويك في الماء.

3- أنشئ جدو لا لتقدم التفاعل. عرف التقدم الأعظمي Xmax وعبر عنه بدلالة التركيز C للمحلول وحجمه V.

4- أ/ أعط عبارة الناقلية النوعية 7 للمحلول:

- بدلالة الناقلية G للمحلول و الثابت k للخلية.

- بدلالة التركيز المولمي لشوارد الهيدرونيوم ، [H,O^]، والناقلية المولية الشاردية ،H,O. والناقلية المولية الشاردية ،ح_{CH,COO} (نهمل التشرد الذاتي للماء).

بـ/ استنتج عبارة $_{I_{3}O^{*}}$ في الحالة النهائية (حالة التوازن) بدلالة $_{H_{3}O^{*}}$ ، $_{H_{3}O^{*}}$ و $_{CH,COO^{*}}$. احسب قيمته

ج/ استنتج قيمة pH المحلول.

C أوجد عبارة كسر التفاعل Q_{rf} في الحالة النهائية (حالة التوازن) بدلالة Q_{rf} والتركيز Q_{rf} للمحلول. ماذا يمثل Q_{rf} في هذه الحالة؟

6/ أحسب pKa للثنائية (CH3COOH/CH3COO).

تعطی: M(O)=16g/mol ، M(H)=1g/mol ، M(C)=12g/mol

 $\hat{\lambda}_{H,O^{+}} = 35mS \ m^{2} \ mol^{-1} \ , \quad \hat{\lambda}_{CH,COO^{-}} = 4,1mS \ m^{2} \ mol^{-1} \ , \quad Ke = 10^{-14}$

التمرين الرابع: (03 نقاط)

يدور قمر اصطناعي كتلته (m) حول الأرض بحركة منتظمة ، فيرسم مسارا دانريا نصف قطره (r) ، ومركزه هو نفسه مركز الأرض.

1- مثل قوة جنب الأرض للقمر الاصطناعي واكتب عبارة قيمتها بدلالة r ، G ، M_T خيث : M_T كتلة الأرض ، m كتلة القمر الاصطناعي ، m ثابت الجذ ب العام m نصف قطر المسار (البعد بين مركزي الأرض والقمر الاصطناعي)

2- باستعمال التحليل البعدي أوجد وحدة ثابت الجذب العام (G) في الجملة الدولية (SI).

3- بين أن عبارة السرعة الخطية (٧) للقمر الاصطناعي في المرجع المركزي الأرضي تعطى بـ:

$$v = \sqrt{\frac{GM_T}{r}}$$

4- اكتب عبارة (v) بدلالة r و T حيث T دور القمر الاصطناعي.

 $r \cdot G \cdot M_T$ عبارة دور القمر الاصطناعي حول الأرض بدلالة $G \cdot M_T$

6- أ/ بين أن النسبة $(\frac{T^2}{r^3})$ ثابتة لأي قمر يدور حول الأرض، ثم احسب قيمتها العددية في المعلم المركزي الأرضى مقدرة بوحدة الجملة الدولية (SI).

ب/ إذا كان نصف قطر مسار قمر اصطناعي يدور حول الأرض $r = 2,66.10^4 km$ احسب دور حركته .

 $\pi^2 \simeq 10$ ' $G = 6.67.10^{-11} SI$: يعطى: ثابت الجذب العام : $M_{\odot} = 5.97 \cdot 10^{24} kg$: كتلة الأرض :

التمرين الخامس: (4 نقاط)

ملاحظة : نهمل تأثير الهواء وكل الاحتكاكات.

يُترك جسم نقطي (s) ، دون سرعة ابتدائية من النقطة Α لينزلق وفق خط الميل الأعظم AB لمستو مائل يصنع مع الأفق زاوية °30 = α. المسافة (AB=L) .

يتصل AB مماسيا في النقطة B بمسلك دائري (BC) مركزه (O) و نصف قطره (r) بحيث تكون النقاط يتصل AB مماسيا في النقطة B بمسلك دائري (BC) مركزه (O) و نصف قطره (r) بحيث تكون النقاط $C \cdot B \cdot A$ الشكل -2) معنى نفس المستوى الأفقى (الشكل -2) $r = 2m \quad L = 5m \quad g = 10m/s^2 \quad m = 0.2kg$

ا - أوجد عبارة سرعة الجسم (s) عند مروره بالنقطة B بدلالة α ، g ، α ، α ، α . ثم احسب قيمتها . 2 - حدد خصائص شعاع السرعة للجسم (s) في النقطة α .

3 - أرار أوجد بدلالة α · g · m عبارة شدة القوة التي تطبقها الطريق على الجسم (s) خلال انزلاقه على المستوى المائل. احسب قيمتها.

u = 7,37m / s بالنقطة u = 7,37m / s بالسرعة u = 7,37m / s بالنقطة u = 7,37m / s بالسرعة u = 7,37m / s

4 - عند وصول الجسم (s) إلى النقطة C يغادر المسار (BC) ليقفز في الهواء.

(s) المعادلة الديكارتية y=f(x) المعادلة الديكارتية y=f(x) المعادلة الديكارتية y=f(x)

ناخذ مبدأ الأزمنة (t=0) لحظة مغادرة الجسم النقطة C.

ب/ يسقط الجسم (s) على المستوي الأفقي المار بالنقطتين C ، B في النقطة M.

احسب المسافة C M .

التمرين التجريبي: (04 نقاط)

ننمذج التحول الكيميائي الحاصل بين المغنيزيوم Mg ومحلول حمض كلور الهيدروجين بتفاعل أكسدة ـ إرجاع معادلته:

$$Mg_{(s)} + 2H_3O^- = 2H_2O_{(t)} + H_{2(g)} + Mg_{(aq)}^{2+}$$

ندخل كتلة من معدن المغنيزيوم m=1,0g في كأس به محلول من حمض كلور الهيدروجين حجمه V=60mL وتركيزه المولي C=5,0mol/L ، فنلاحظ انطلاق غاز ثناني الهيدروجين وتزايد حجمه تدريجيا حتى اختفاء كتلة المغنيزيوم كليا.

نجمع غاز ثناني الهيدر وجين المنطلق ونقيس حجمه كل دقيقة فنحصل على النتانج المدونة في جدول القياسات أدناه :

t (min)	0	1	2	3	4	5	6	7	8
V_{H_2} (mL)	0	336	625	810	910	970	985	985	985
x (mol)									

1/ أنشئ جدو لا لتقدم التفاعل .

2/ أكمل جدول القياسات حيث x يمثل تقدم التفاعل.

رسم المنحنى البياني x = f(t) بسلم مناسب.

4/ عين التقدم النهائي X_f للتفاعل الكيميائي وحدد المتفاعل المحد .

5/أحسب سرعة تشكّل تُناني الهيدروجين في اللحظتين (t=3 min) ، (t=3 min).

عين زمن نصف التفاعل t_{1/2}

7/أحسب تركيز شوارد الهيدرونيوم (-H3O) في الوسط التفاعلي عند إنتهاء التحول الكيمياني.

ناخذ : M(Mg) = 24.3 g/mol

 $V_M=24L/mol$ الحجم المولي في شروط التجربة

الموضوع الثاني : (20 نقطة)

التمرين الأول: (03 نقاط).

- $C_{1}=1.0\times 10^{-2}\ mol.L^{-1}$ تركيزه المولّي $C_{6}H_{5}-COOH$ البنزويك $C_{6}H_{5}-COOH$ تركيزه المولّي $\sigma=0.86\times 10^{-2}\ S.m^{-1}$ نقيس عند التوازن في الدرجة C_{6} ناقليته النوعية فنجدها C_{6} C_{6}
 - 1- أكتب معادلة التفاعل المنمذج لتحول حمض البنزويك في الماء.
 - 2− أنشئ جدو لا لتقدم التفاعل.
 - S_{-} أحسب التراكيز المولية للأنواع الكيميائية المتواجدة في المحلول S_{1}) عند التوازن. تعطى الناقلية المولية للشاردة $H_{3}O^{+}$ و الشاردة $C_{6}H_{5}-COO^{-}$:

(نهمل النشرد الذاتي للماء) $\lambda_{H_3O^+} = 35.0 \times 10^{-3} S.m^2.mol^{-1}$ ، $\lambda_{C_4H_3-COO} = 3.24 \times 10^{-3} S.m^2.mol^{-1}$

- 4- أوجد النسبة النهائية ₁₁7 لتقدم التفاعل.ماذا تستنتج؟
 - K_{i} أحسب ثابت التوازن الكيميائي K_{i}
- المولمي المولمي المائيا (S_2) المحمض الساليسيليك، الذي يمكن أن نرمز له (HA)، تركيزه المولمي -II وله DH=3,2 وله $C_2=C_1$
 - -1 أوجد النسبة النهائية au_{2f} لِتَقدم تَفَاعل حمض الساليسيليك مع الماء.
 - auقارن بين au_{1f} و au_{2f} . استنتج أي الحمضين أقوى.

التمرين الثاني (03 نقاط).

المعطيات:

كتلة الشمس	$M_s = 2.0 \times 10^{30} kg$
نصف قطر مدار زحل	$r = 7.8 \times 10^8 km$
تابت الجذب العام	$G = 6,67 \times 10^{-11} SI$

الشكل-1

يدور كوكب زحل حول الشمس على مسار دائري مركزه ينطبق على مركز العطالة (O) للشمس ، بحركة منتظمة. الشكل-1

- 1- مثل القوة التي تطبقها الشمس على كوكب زحل ثم اعط عبارة قيمتها.
- 2- ندرس حركة كوكب زحل في المرجع المركزي الشمسي(الهيليومركزي) الذي نعتبره غاليليا. أ- عرّف المرجع المركزي الشمسي.
 - بتطبيق القانون الثاني لنيوتن، أوجد عبارة التسارع (a) لحركة مركز عطالة الكوكب
 زحل.
 - جـ أوجد العبارة الحرفية للسرعة (ν) للكوكب في المرجع المختار بدلالة ثابت الجذب العام(σ) وكتلة الشمس (σ) ونصف قطر المدار (σ)، ثم أحسب قيمتها.
- 3- اوجد عبارة الدور (T) لكوكب زحل حول الشمس بدلالة نصف قطر المدار (r) والسرعة (v)،
 ثم احسب قيمته.
 - 4- إستنتج عبارة القانون الثالث" لكبلر" و أذكر نصته.

التمرين الثالث: (03 نقاط)

توجد عدة طرق لتشخيص مرض السرطان ، منها طريقة التصوير الطبي التي تعتمد على تتبُع جزيئات سكر الغلوكوز التي تستبدل فيها مجموعة (OH-) بذرة الفلور 18 المشع. يتمركز سكر الغلوكوز في الخلايا السرطانية التي تستهلك كمية كبيرة منه. تتميز نواة الفلور $^{18}_{7/2}$ بزمن نصف عمر (min $^{18}_{1/2}$) ، لذا تحضر الجرعة في وقت مناسب قبل حقن المريض بها، حيث يكون نشاط العينة لحظة الحقن $^{19}_{1/2}$ 80. $^{10}_{1/2}$ 0.

تَتَفَكَكُ نُواةَ الْفُلُورِ 18 إلى نُواةَ الأُكْسَجِينِ 180.

1- أكتب معادلة التفكك وحدد طبيعة الإشعاع الصادر .

. بين أن ثابت التفكك λ يعطى بالعبارة: $\frac{\ln 2}{t_{1/2}}$. ثم احسب قيمته -2

D تحقر تقنيو التصوير الطبي جرعة (عينة) تحتوي على F_{g}^{18} في الساعة "الثامنة" صباحا لحقن مريض على الساعة "التاسعة" صباحا .

أ/ أحسب عدد أنوية الفلور 18F لحظة تحضير الجرعة.

ب/ ما هو الزمن المستغرق حتى يصبح نشاط العينة مساويا 1% من النشاط الذي كان عليه في الساعة الناسعة؟

التمرين الرابع: (3 نقطة)

في حصة للأعمال المخبرية ، اقترح الأستاذ على تلاميذه مخطط الدارة الممثلة في (الشكل-2) لدراسة ثنائي القطب RC.

تتكون الدارة من العناصر الكهربائية التالية:

E = 12V مولد توتره الكهربائي ثابت -

- مكثفة (غير مشحونة) سعتها C = 1,0 µF

 $R = 5 \times 10^3 \Omega$ ناقل أومي مقاومته

بادلة K

1 - نجعل البادلة في اللحظة (0 = t) على الوضع (1).
 أ/ ماذا يحدث للمكثفة ؟

 u_{AB} با كيف يمكن عمليا مشاهدة النطور الزمنى للتوتر الكهربائي u_{AB} ؟

 $RC \frac{du_{AB}}{dt} + u_{AB} = E$: بين أن المعادلة التفاضلية التي تحكم اشتغال الدارة الكهربائية عبارتها (τ) الثانية المميز للدارة، وبين باستعمال التحليل البعدي أنه يقدر بالثانية في النظام الدولي للوحدات (SI).

هــ/ بين أن المعادلة التفاضلية السابقة $(1-e^{-t})$ تقبل العبارة: $u_{AB} = E(1-e^{-t})$ حلا لها. e^{-t} أرسم شكل المنحنى البياني الممثل للتوتر الكهربائي $u_{AB} = f(t)$ وبين كيفية تحديد e^{-t} من البيان. e^{-t} قارن بين قيمة التوتر e^{-t} في اللحظة e^{-t} و e^{-t} ماذا تستنج؟

2- بعد الانتهاء من الدراسة السابقة، نجعل البادلة في الوضع (2).

أ/ ماذا يحدث للمكثفة ؟

ب/ أحسب قيمة الطاقة الأعظمية المحولة في الدارة الكهربائية .

التمرين الخامس : (04 نقاط) .

نريد در اسة تطور التحول الكيميائي الحاصل بين شوارد محلول S_1 لبيروكسوديكبريتات البوتاسيوم اريد در اسة تطور التحول الكيميائي الحاصل بين شوارد محلول S_2 لبير البوتاسيوم S_3 لبير المحلوث المحلو

ننمذج التحول الكيميائي الحاصل بالنفاعل الذي معادلته: $2I^-_{(\alpha p)} + S_2O_8^{2-}_{(\alpha p)} = I_{2(\alpha p)} + 2SO_+^{2-}_{(\alpha p)}$

- المشاركتين في النفاعل.
 - 2- أنشئ جدولا لتقدم التفاعل.
 - 3- حدّد المتفاعل المحد علما أن التحول تام.
- -4 عرق زمن نصف التفاعل $\binom{1}{1/2}$ واستنتج قيمته بيانيا.
- 5- أوجد التراكيز المولية للأنواع الكيميائية المتواجدة في الوسط التفاعلي عند اللحظة 1/2.
 - 6- استنتج بيانيا قيمة السرعة الحجمية للتفاعل في اللحظة 10min 1-1.

التمرين التجريبي (04 نقاط).

ورد في مطوية أمن الطرق الجدول التالي:

ν(km.h-1) سرعة السيارة	50	80	90	100	110
d ₁ (m) مسافة الاستجابة	14	22	25	28	31
المسافة الموافقة لمدة الكبح $d_2(m)$	14	35	45	55	67

عندما يَهُمُّ (يريد) سائق سيارة تسير بسرعة (\overline{v}) بالتوقف، فإن السيارة تقطع مسافة (d_1) خلال مدة عندما يَهُمُّ (يريد) سائق على المكابح [تُعرف (τ_1) بزمن استجابة السائق]. وتقطع السيارة مسافة (d_2) قبل أن يضغط السائق على المكابح [تُعرف (d_1) بزمن استجابة السائق]. وتقطع السيارة مسافة إلى خلال مدة (d_2) زمن مدة الكبح. تسمى (d_1) مسافة التوقف وتساوي مجموع المسافتين d_1 خلاء عملية الكبح لا يؤثر المحرك على السيارة.

نُقُوم بدر اسة حركة G (مركز عطالة سيارة كتلتها M) على طريق مستقيمة أفقية في مرجع أرضي، نعتبره غاليليا.

1- خلال مدة الاستجابة ، ، ، نعتبر المجموع الشعاعي للقوى المؤثرة على السيارة معدوما.
 أ/ ما هي طبيعة حركة مركز عطالة السيارة؟

ب/ استنادا إلى قياسات الجدول أحسب قيم النسب $\frac{d_1}{v}$. ما ذا تستنتج؟

جــ/ احسب قيمة المدة τ_1 (مقدرة بالثانية)، من أجل كل قيمة لــ d_1 في الجدول.

 2^{-i} ننمذج – خلال عملية الكبح – الأفعال المؤثرة على السيارة بقوى تطبق على مركز عطالتها. نعتبر القوى (قوة الكبح وقوى الاحتكاكات ومقاومة الهواء) المؤثرة على السيارة مكافئة لقوة واحدة \bar{F} ثابتة في القيمة، وجهتها عكس جهة شعاع السرعة.

ب/ لتكن v قيمة سرعة مركز عطالة السيارة في بداية الكبح. أوجد العلاقة الحرفية بين v^2 بتطبيق مبدأ إنحفاظ الطاقة.

 $v^2 = g(d_2)$ باستعمال الجدول السابق، ارسم المنحنى البياني الجدول السابق،

. \vec{F}_{f_G} قيمة البيان، استنج قيمة عند / د

 $M = 9.0 \times 10^2 kg$: تعطى كتلة السيارة

الإجابة النموذجية لموضوع لامتحان: البكالوريــــا دورة: جوان 2008 اختبار مادة: العلوم الفيزيائية الشعبة: رياضيات وتقني رياضي المدة: 04 ساعات ونصف

الموضوع الأول

العلامة		عناصر الإجابة						محاور الموضوع	
المجموع	مجزاة								
	0.25x2	ر وتختلف في ن) وجسيمات			نصر لها ا تلقائيا لتع	ُذرات عن 1. عة تتفكك	دالكتلي A نواة المث	1- أ/: العدا - ال	
	0.25x2	النواة المشعة تتفكك تلقائيا لتعطي نواة أخرى (إبن) وجسمات α أو β أو إشعاع γ . $- \frac{206}{2} Pb + \frac{4}{2} He \frac{200}{82} Pb + \frac{4}{2} He \frac{210}{84} Po 21$							
		t(jours)	0	20	50	80	100	120	<u></u>
3	0.25	$-\ln \frac{N(t)}{N_o}$	0	0,10	0,25	0,40	0,50	0,60	
		سار رسم البيان: خط مستقيم يمر بالمبدأ							
	0.5	-In (N(t)/N0)							
		0.1							
		0	grunn oug galiere et est	ina in a section in the sec		<i>(0</i>)	التناقص	ـ/ قانون	ج.
	0.25	$N=N_{o}e^{-\lambda t} \implies \frac{N(t)}{N_{o}} = -\lambda t$	N_{\circ} \Rightarrow -ln	$\frac{N(t)}{N} =$	λt ⇔ː	y=At	1	3	1

تا<u>ب</u> مد

		ختبار مادة : العلوم الفيزيانية الشعبة : رياضيات وتقني رياضي عناصر الإجابة	تابع الإجابة ا
	العلا	عناصر الإجابة	محاور الموضوع
المجموع	مجز أة		
	0.25	البيان المحصل عليه خط مستقيم يمر بالمبذأ عبارته من الشكل y=At وهي تتفق مع عبارة التنافص الإشعاعي.	
	0.25	λ ميل قيمة Δ ميل المستقيم $A = \frac{\Delta \left(-\ln \frac{N}{N_0}\right)}{\Delta t} = 5 \times 10^{-3} \text{ jours}^{\frac{1}{2}} = 5,78 \times 10^{-8} \text{s}^{-4}$	
	0.25	$A = \lambda$	
	0.25	$N=N_{o}e^{-\lambda t} \qquad t=t_{12} \implies \frac{N_{o}}{2} = N_{o} \ \tilde{e}^{\lambda t_{1/2}}$ $t_{1/2} = \frac{\ln 2}{\lambda} = 138,9 \ jours$	
		التمرين الثاني: (03 نقاط) L, r مخطط الدارة الكهربانية التمرين الثاني الكهربانية الك	
	0.25	$\begin{array}{c c} & & & \\ \hline & u_{AB} & & i \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline \end{array}$	
	0.25x2	الشكل -1 $\mathbf{u}_{AB} = L \frac{\mathrm{di}}{\mathrm{dt}} + \mathrm{ri} = E$ الشكل -1 $\mathbf{u}_{AB} = E$	
3	0.5	ب / تبيان أن : بالتعويض بالعبارتين : $\frac{\mathrm{di}}{\mathrm{dt}} = I_0 \cdot \frac{\mathrm{r}}{\mathrm{L}} (\mathrm{e}^{\mathrm{r}/\mathrm{L}t}) \qquad \mathrm{i}(t) = I_0 (1 - \mathrm{e}^{\mathrm{r}/\mathrm{L}t})$ في المعادلة التفاضلية نجد : $E - E = 0$. المعادلة التفاضلية : تقبل العبارة المعطة كحل لها	-
	0.25	$I_0 = \frac{E}{r} \Rightarrow I_0 = 0,45A$ ؛ $\frac{di}{dt} = 0$ ؛ $\frac{E}{r} \Rightarrow I_0 = 0,45A$	
	0.25 0.25 0.25 0.25	$\tau = \frac{L}{r} : 0.1S/2 \qquad L=1H /\rightarrow \cdot r=10\Omega /\rightarrow$ $E = \frac{1}{2}LI_0^2 = 0.101 \text{ joules} / -4$	
	0.25 0.25	$\mathbf{u_{AB}} = L \frac{di}{dt} + ri = 4,5e^{-10t}$ $\mathbf{u_{AB}}_{t=0.3} = 4,5e^{-3} = 0,224V$	
		-AB t=0.5 1,50 0,427 V	

بة اختبار مادة : العلوم الفيزيائية الشعبة : رياضيات وتقنى رياضي

-		المتبار المادة المحلوم التيرياتية المتلبة الرياسيات ولتني رياسي) الإحساب							
	العلا	· اختبار مادة: العلوم الفيريانية الشعبة: رياضيات ونفني رياضي	ور الموض							
المجموع	مجزأة									
	0.25	$n=CV=\frac{m}{M} \Rightarrow m = CVM = 60mg$ /1 $CH_3COOH_{(aq)} + H_2O_{(!)} = CH_3COO^{-}_{(aq)} + H_3O^{+}$ /2								
	0.25	$CH_{3}COOH_{(aq)} + H_{2}O_{(aq)} = CH_{3}COO^{-}_{(aq)} + H_{3}O^{+}$ المعادلة $CH_{3}COOH_{(aq)} + H_{2}O_{(aq)} = CH_{3}COO^{-}_{(aq)} + H_{3}O^{+}$ $CH_{3}COOH_{(aq)} + H_{3}O^{+}_{(aq)} = CH_{3}COO^{-}_{(aq)} + H_{3}O^{+}_{(aq)} = CH_{3}OO^{-}_{(aq)} = CH_$								
		ر المالية الم								
		X _{max} 0 // X _{max} X _{max}								
		التقدم الأعظمي Xmax هو التقدم الذي يبلغه التفاعل عندما يختفي المتفاعل المحد.								
		$CV-x_{max} = 0 \qquad x_{max} = CV=10^{-3} \text{mol}$								
		Λ_{max} Λ_{max} Λ_{max} Λ_{max} Λ_{max}								
	0.25									
3		$G=K\sigma \Rightarrow \sigma = \frac{G}{V}$								
	0.25	$\sigma = [H_3O^+].\lambda_{(H_3O^+)} + [CH_3COO^-].\lambda_{(CH_3COO^-)} / \hookrightarrow$								
		ج/ التوازن : - حـ اللـوازن :								
		$[CH_3COO^-] = [H_3O^+] = \frac{2}{\checkmark}$								
		$\frac{G}{K} = [H_3O^+] \left(\lambda_{H_3O^+} + \lambda_{CH_3COO^-} \right)$								
	0.25x2	$[H_3O^+] = \frac{G}{K(\lambda_{H,O^+} + \lambda_{CH,COO^+})} = 4.1 \times 10^{-4} mol / l$								
	0.25	1130 (11300)								
	0.23	$pH = -lg[H_3O^+] = 3,4$ / 2								
	0,25	$Q_{r} = \frac{[H_{3}O+]^{2}}{[CH_{3}COOH]} = \frac{[H_{3}O+]^{2}}{C-[H_{3}O+]^{2}}$								
	0.25	ر التفاعل عند التوان ثابت الحموضة Ka ثابت التوان ثابت الحموضة Ka								
		$(4.1 \times 10^{-4})^{2}$								
	0,25	95,9×10 ⁴								
	0.25	Ka=10 ^{-pKa} pKa=4,8 : و pKa 6								

وتقنى رياضي	الشعبة: رياضيات	مادة : العلوم الفيزيائية	تابع الاحابة اختبار
~ ~ ~ ~			·

*		لإجابة اختبار مادة : العلوم الفيزيائية الشعبة : رياضيات وتقني رياضي	تابع ا
(مة		لإجابة اختبار مادة : العلوم الفيزيائية الشعبة : رياضيات وتقني رياضي الموضوع	محاور
المجموع	مجزأة		
	0.25	(لتمرین الرابع: 03): التمرین الرابع $F = \frac{G \times m \times M_T}{r^2}$ /1 0 0 : وحدة ثابت الجذب العام 0 1	
	0.25	$G = \frac{F.r^{2}}{m.M_{T}}$ $G = \frac{[\text{Kg}] [\text{L}] [\text{S}^{-2}] [\text{L}^{2}]}{[\text{Kg}].[\text{Kg}]} , G : \text{kg}^{-1}.\text{m}^{3}.\text{s}^{-2}$	
	0.25	: عبارة السرعة الخطية : $F = \frac{G.mM_{T}}{r^{2}}$, $F=ma_{n}$	
3	0.5	$a_{N} = \frac{v^{2}}{r}, \frac{v^{2}}{r} = \frac{G.M_{T}}{r^{2}}, v = \sqrt{\frac{G.M_{T}}{r}}$	-
	0.25	$v=rac{2\pi r}{T}$: عبارة (v) بدلالة الدور $v=\frac{2\pi r}{T}$	
	0.25	$v = \frac{2\pi r}{T}$ $v = \sqrt{\frac{G.M_T}{r}} \Rightarrow T = 2\pi \sqrt{\frac{r^3}{G.M_T}}$ (T) عبارة / 5	
	0.25	: $(\frac{T^2}{r^3})$ النسبة ($\frac{T^2}{r^3}$) لا تتعلق بأي قمر ، بل تتعلق بكثلة $\frac{T^2}{r^3} = \frac{4\pi^2}{G.M_T} = k$ النسبة ($\frac{T^2}{r^3}$) ال	-
	0.25	الجسم المركزي فقط. $k = \frac{T^2}{r^3} = \frac{4 \pi^2}{G M_T}, k=9.9 \times 10^{-14} \text{ (SI)}$	
	0.25x2	ب/ الدور $T:$ $T=\sqrt{kr^3}$ ومنه $T=\sqrt{kr^3}$ اي $T=12h$	

بع الإجابة اختبار مادة: العلوم الفيزيائية الشعبة: رياضيات وتقنى رياضي

		خلبار ماده: العلوم القيريانية الشعبة: رياضيات ونفني رياضي	• •
دمة	العلا	عناصر الإجابة	وع
المجموع	مجزاة		
	0.25	التمرين الخامس: (04 نقاط) 1/ عبارة السرعة: بتطبيق مبدأ إنحفاظ انطاقة:	
	0.5	$E_{pA} - E_{CA} = E_{pB} + E_{CB} = C^{te}$ $V = \sqrt{2\alpha t \sin \alpha} \qquad V = 7.07 \text{m/s} \qquad (3.15)$	
	0.25	$V_B = \sqrt{2g L Sin \alpha}$. $V_B = 7,07m 75$ 2/ خصانص شعاع السرعة عند C : - الحامل: مماس لقوس الدائرة في النقطة C . - الجهة : جهة الحركة. - الطويلة : $7,07m/s$ لأن C تقع في نفس المستوى الأفقى مع C .	
	0.25	$\Sigma \vec{F} = \vec{0}$ yy $C = R_1 = mg\cos\alpha \Rightarrow R_1 = 1,73N$ /1 - 3	
	0.5	\overline{ON} \Rightarrow $R_2 = mg + ma_n = mg - \frac{mv^2}{r}$ \Rightarrow $R_2 = 7,44N/$	
4	0.25x2	A STRANGE CONTRACTOR OF THE PROPERTY OF THE PR	
	0.25	: (Cxy) معادلة المسار في $a_x = 0$ معادلة $a_x = 0$ $a_y = -g$	1
	0.25	$\begin{cases} a_y = -g \\ Y - V \cos \alpha \times t \end{cases}$	
	0.25	$\overrightarrow{OM} \begin{cases} X = V_c \cos \alpha \times t \\ Y = V_c \sin \alpha \times t - \frac{1}{2}gt^2 \end{cases} \qquad \overrightarrow{V} \begin{cases} V_x = V_c \cos \alpha \\ V_y = V_c \sin \alpha - gt \end{cases}$	
	0.5	$y = \frac{-0.5g}{V_c^2 \cos^2 \alpha} x^2 + xtg\alpha$	6
	0.5	$y_{M}=0$ النقطة (M) ترتيبها (M) ترتيبها $x_{M} = \frac{2V^{2}}{g}\cos\alpha \times \sin\alpha \Rightarrow x_{M} = 4{,}33m$	5
		g	

		اضىي	تقني ري	باضيات و	الشعبة : ري	ائية .	علوم الفيزيا	ختبار مادة : ال	تابع الإجابة ا	
#	ختبار مادة : العلوم الفيزيائية الشعبة : رياضيات وتقني رياضي العلامة العلامة العلامة مجزاة المجمو								محاور الموضوع	
المجموع	مجزاة									
	0.25	معادلة	التمرين التجريبي : (04 نقاط) -1 جدول التقدم : -1 -1 -1 -1 -1 -1 -1 -1							
		اح الحملة	كميات المادة بالمول التقدم ح الجملة التقدم ع الجملة							
			0 0,30 0 ح. ابتدائية							
		ر انتقالیة x 0,041-x 0,30-2x // x x								
		ح. نهائية	Xf	0,041-x _f	0,30-2x	. //	X_{f}	X _f		
	0.25			n(4) =	$X = \frac{V_{H_2}}{V_M}$	and the second s	. 1			
		t(min)	0	1 2	3	4	ون: 6 5	2- ملء الجد 8 7		
	0,5	V _{H2} (mL)	0	336 62			970 985	985 985		
		X (10	mel) 0	1.4 2,	,6 3,4	3,8	4,0 4,1	4,1 4,1		
4	0.5	x = f(t) = x $x = f(t) = x$ $x =$								
	0.5			$x_f =$	0,041mc	il بیان i	هائي : من الا ا	4- التقدم النو		
	0.25	حد هو Mg	فاعل الم	ومنه المت	$\begin{cases} \eta_{Mg} = \frac{n}{\Lambda} \\ \chi_{Mg} = \frac{n}{\Lambda} \end{cases}$	$\frac{1}{1} = \frac{1}{24}$	$\frac{5}{3} = 0,041m$	nol		
	0,25 0.25	$v = \frac{dx}{dt} = \frac{dr}{dt}$	Mg ومنه المتفاعل المحد هو $\eta_{Mg} = \frac{m}{M} = \frac{1,0}{24,3} = 0,041 mol$ $v = \frac{dx}{dt} = \frac{dn}{dt}$: هي سرعة التفاعل لأن : هي الهيدروجين: هي سرعة التفاعل لأن : $t_0 = 0$ $P_{t=0} = \frac{\Delta x}{\Delta t} \approx 2,0 \times 10^{-2} \mathrm{mol/min}$ عيل المماس : ميل المماس							
	0.25		t ₃ =	=3min F	$\sum_{t=3mn} = \frac{\Delta x}{\Delta t}$	-= 0,6	$\times 10^{-2} \mathrm{mol}$	min/ ميل المماس	-	

تا

ابع الإجابة اختبار مادة: العلوم الفيزيائية الشعبة: رياضيات وتقني رياضي

	اختبار مادة : العلوم الفيزيائية الشعبة : رياضيات وتقني رياضي عناصر الإجابة	تابع الإجابة
العلامة	عناصر الإجابة	معاور الموضوع
جزأة المجموع		
0.2	$V_{_3} < V_{_0}$ لأن تراكيز المتفاعلات تتناقص مع الزمن. $t_{_{1/2}}$: ومن نصف التفاعل $t_{_{1/2}}$	
0.2	هو المدة التي يبلغ فيها تقدم التفاعل نصف تقدمه النهائي	
	$t_{1/2} = 1,5 \text{min}$ نقر أ من البيان $t_{1/2} = 1,5 \text{min}$ -7	
0.2	46.30	
0.2	1	
	``	
	,	
		•

الإجابة النموذجية لموضوع لامتحان: البكالوريان دورة: جوان 2008 اختبار مادة: العلوم الفيزيائية الشعبة: رياضيات وتقني رياضي المدة: 04 ساعات ونصف

الموضوع الثاني

العلامة				'نإجابة	عناصر			محاور الموضوع
المجموع	جزاة	4				_		
	0.25	5		, حمض البنزويك والد ع،COOH _(aq) + H ₂ O		$O_{(aq)}^+ + H_3 O^+$		
	·		*1	a u accu		ل تقدم التفاعل:		
		عادلة الحالة		 		$C_6H_5COO_{(aq)}^- + H_6$		+ \
	0.25		التقدم	$n(C_6H_5COOH)$				
		ح.ابتدائية ح.انتقالية	0 x	n ₀ =CV	بزیاد ة ١ //	0 X	0 x	
		ح.نهایه	Xf	n ₀ - x n ₀ - x _f		X _f	X _f	
3	0.2:	5 [H ₃ C	$\mathbf{O}^+\Big]_f=0$	$\sigma = \lambda_{H_3O^+} \cdot \left[H_3O \right]$ $= \left[C_6H \right]$ $\frac{\sigma}{\lambda_{H_3O^+} + \lambda_{C_6H,COO^-}} = \frac{\sigma}{\sigma}$ $= \frac{\sigma}{\sigma}$ $= \frac{\sigma}{\sigma}$ $= \frac{\sigma}{\sigma}$	$\begin{bmatrix} - \end{bmatrix}_{f} + \lambda_{C_{6}H,6} \\ \begin{bmatrix} COO^{-} \end{bmatrix}_{f} \\ 0.86.10 \end{bmatrix}$	$=\frac{x_f}{V}$ جدول التقدم	: ر[-(لدينا من .	
	2×0.2	$5 \left \left[C_{_{6}} H \right] \right $		$H \Big]_f = \frac{n_0 - x_f}{V} = C$		•		l B
	0.2	5	$ au_f$	$=\frac{x_f}{x_{\text{max}}} = \frac{\left[H_3 O^{-1}\right]}{C_1}$	-= 0,022 =	التقدم پر : %2,2	4-/ نسبة	
	0.2	5			فير تام	التحوّل غ $rac{ au_f}{7_f} < 1$ تج أن حمض البنزو	بما أن	
						17	Ω	

العلامة

مجزأة

0.25

0.25

0.25X2

0.25X2

0.25

0.25X2

0.25

0.25

0.25

المجموع

تابع الإجابة اختبار مادة : العلوم الفيزيائية الشعبة : رياضيات وتقني رياضي محاور الموضوع عناصر الإجابة $= \frac{1}{2} \left[\frac{1$

		_
	الساليسليك أقوى من حمض البنزويك.	
	ب/ المقارنة بين $ au_{1f}$ ، $ au_{2f}$: بما أن $ ext{C}_1= ext{C}_2$ و $ au_{1f}$ نستنتج أن حمض	
0.25		
0.23	$ au_{2f} = \frac{\left[H_3O^+\right]_f}{C_2} = \frac{10^{-3.2}}{10^{-3}} = 0.063 = 6.3\% : au_{2f}$ المنابة النقدم	
0.25	$\begin{bmatrix} H_2O^+ \end{bmatrix}$ 10 ^{-3,2}	
	$K_1 = \frac{(0,22.10^{-3})^2}{9,78.10^{-3}} = 4,95.10^{-3}$	
	$(0.22 \cdot 10^{-3})^2$	
0.25	$[C_6H_5COOH]_f$	

(0.25X2) 0.25X2 $F_{S/J} = G \frac{Ms.mj}{r^2}$ $F_{S/J} = G \frac{Ms.mj}{r^2}$ 0.25 $F_{S/J} = G \frac{Ms.mj}{r^2}$ 0.25 $F_{S/J} = G \frac{Ms.mj}{r^2}$ مرجع مركزه الشمس ومحاوره الثلاثة موجهة نحو

مرجع مرکزه السّمس ومحاوره الثلاثه موجهه نحو تحدید مرجع مرکزه السّمس ومحاوره الثلاثه موجهه نحو تلاثه قد تلاثه نجوم ثابته. $\Sigma \vec{F} = m_{_{i}} \times \vec{a}_{_{G}}$ براره u عباره u : بتطبیق القانون الثانی لنیوتن نجد: u

 $2F = m_j \times a_G$: بتطبیق الفانون الناسي لنیونن بجد: a عبارة a عبارة

 $a_N = \frac{v^2}{r} \implies v = \sqrt{\frac{G.Ms}{r}} = 1.3 \times 10^4 \, m/s$:غبارة السرعة:

 $T = \frac{2\pi . r}{v} = 3,77 \times 10^8 S$ = 3,77 =

4- القانون الثالث لكيبلر: مربع دورا لكوكب يتناسب مع مكعب البعد المتوسط بين مركز الكوكب ومركز الشمس.

 $\frac{\mathrm{T}^2}{\mathrm{r}^3} = \frac{4\pi^2}{\mathrm{G.Ms}}$: نستنتج $v = \frac{2\pi.\mathrm{r}}{\mathrm{T}}$, $v = \sqrt{\frac{G.Ms}{r}}$

التمرين الثالث: (03 نقاط) (13 نقاط) (14 معادلة التفكك النووي: $X^{18} + X^{18} + X^{18} + X^{18}$ حسب مبدأ إنحفاظ العددين X و X نجد: X = A = 0 منه: X = A = 0 منه: X = A = 0

 eta^+ : الإشعاع الصادر eta^+

 $: \lambda = \frac{\ln 2}{t_{1/2}} / 2$

ضيات وتقني رياضي	الشعبة: ريا	العلوم الفيزيائية	ختبار مادة:	بع الإجابة ا.	نا
	عناصد الأحانا			عاهد المهضيه ع	_

المة الم	1-11	حنبار ماده : العلوم القيريالية السعبة : رياضيات و تقلي رياضي عناصر الأجابة	محاور الموضوع
المجموع	مجزأة	علصر الإجابة	محاور الموصوع
المجموح	مجراه		
	0.25	الدينا قانون التناقص الاشعاعي : $N\left(t ight)=N_{0}e^{-t/ au}$ ومنه	
	0.25	$\lambda = \frac{\ln 2}{t_{1/2}} \ln \frac{1}{2} = \ln e^{-\lambda t_{1/2}} \frac{N_0}{2} = N_0 e^{-\lambda t_{1/2}}$	
3	0.25	$\lambda = \frac{\ln 2}{t_{1/2}} \Rightarrow \lambda = \frac{0.693}{110 \times 60} = 1.05 \cdot 10^{-4} \text{s}^{-1} : \lambda + 10^{-4} \text{s}^{-1}$	
		3-أ/ عدد أنوية الفلور لحظة التحضير:	
	0.25x2	$N(t) = N_0 e^{-\lambda t}; A(t) = -\frac{dN(t)}{dt} = -\lambda N_0 e^{-\lambda t} = A_0 e^{-\lambda t}$	
	0.25	$N_0 = \frac{A(t)}{\lambda e^{-\lambda t}} = \frac{2,6.10^8}{1,05.10^{-4}e^{-1,05.10^{-1},3600}} \Rightarrow N_0 = 3,6.10^{12} noyaux : equation 1.05.10^{-4}e^{-1,05.10^{-4},3600}$	
		ب/ الزمن المستغرق ليصبح النشاط % 1 من النشاط عند الساعة التاسعة) : $A(t) = \frac{A_0}{100} = A_0 e^{-\lambda t} \rightarrow \frac{1}{100} = e^{-\lambda t}$	
	0.25	100 100 100 $-\ln 100 = -\lambda t \rightarrow t = \frac{1}{\lambda} \ln 100 = 4,4 \times 10^4 s$ ومنه:	
	0.25x2	$t \approx 12h, 12 \text{ min}, :$	
	0.25	التمرين الرابع: (03 نقاط) · · · · · · · · · · · · · · · · · · ·	-
	0.25	ب/ بواسطة راسم اهتزاز مهبطي ذو ذاكرة أو جهاز إعلام آلي مزود ببطاقة	
		مدخل. جـ/ المعادلة : بتطبيق قانون جمع التوترات:	
	0.25	$u_{AB} + Ri - E = 0 \Rightarrow u_{AB} + Ri = E$	
	0.25	$u_{AB} + RC \frac{du_{AB}}{dt} = E$ يأتي $i = \frac{dq_A}{dt} = C \frac{du_{AB}}{dt}$	
	0.23	au = RC : عبارة ثابت الزمن للدارة $ au = RC$ التحليل البعدي :	
		$U = R J \Rightarrow [R] = [U][I]^{-1}$	
	0.25	$i = C \frac{dU}{dt} \Rightarrow [C] = [I][T][U]^{-1}$	
		ومنه: $[\tau] = [R] \times [V] = [V] = [V] = [V] = [V]$ ومنه: $[T] = [T] = [T]$ له بعد الزمن فهو يقدر ب $[T] = [V] = [V]$	
		$u_{AB}=E\left(1-e^{-rac{t}{\tau}} ight)$: هـ/ العلاقة التي تحقق المعادلة التفاضلية السابقة هي	
	0.25x2	التعويض في المعادلة التفاضلية $u_{AB} + RC \frac{du_{AB}}{dt} = E$ بالعبارة:	1
		ومشتقها بالنسبة للزمن فنجد أن الطرفين متساويين: $u_{AB} = E\left(1-e^{-\frac{t}{\tau}}\right)$	
		أي أن المعادلة التفاضلية تقبل العبارة المعطاة كحل لها.	

تابع الإجابة اختبار مادة: العلوم الفيزيائية الشعبة: رياضيات وتقني رياضي

تابع محاو

		ختبار مادة : العلوم الفيزيانية الشعبة : رياضيات وتقني رياضي	تابع الإجابه ا.
رمة		عناصر الإجابة	محاور الموضوع
المجموع	مجزأة		
3	0.5	و/شكل المنحنى: E 12 H	
	0.25 0.25	$u_{AB}=11,9~V~,~t=5~\tau$ عند $u_{AB}=11,9~V~,~t=5~\tau$ عند $u_{AB}=11,9~V~,~t=5$ المكثفة في اللحظة $u_{AB}=\frac{11,9}{12}=\frac{u_{AB}}{E}$ من شحنتها $u_{AB}=\frac{11,9}{12}=\frac{u_{AB}}{E}$ من شحنتها $u_{AB}=\frac{11,9}{12}=\frac{11,9}{E}$ من شحنتها $u_{AB}=\frac{11,9}{12}=\frac{11,9}{E}$ من شحنتها $u_{AB}=\frac{11,9}{12}=\frac{11,9}{E}$	
	0.25	$E = \frac{1}{2}Cu_{\text{max}}^2 = \frac{1}{2} \times 1 \times 10^{-6} \times 12^2 \rightarrow E = 7, 2 \times 10^{-5} J$	
	0.25x2	التمرين الخامس : (04) نقاط) $(S_2O_{8(aq)}^{2-}/SO_{4(aq)}^{2-})$, $(I_{2(aq)}/I_{(aq)}^{-})$: $(I_{2(aq)}/I_{(aq)}^{-})$. $(I_{2(aq)}/I_{(aq)}^{-})$	
	0.25	المعادلة $S_2O_{8-(\alpha q)}^{2-} \div 2I_{-(\alpha q)}^- = I_{2(\alpha q)} + 2SO_{4-(\alpha q)}^{2-}$	
	l	: محديد المتفاعل المحد: $x_f = 0 \Rightarrow x_f = CV_1 = 2,0 \times 10^{-1} \times 50 \times 10^{-3} = 1,0 \times 10^{-2} mol$ $x_f = 0 \Rightarrow x_f = \frac{CV_2}{2} = \frac{1,0 \times 50 \times 10^{-3}}{2} = 2,5 \times 10^{-2} mol$ $x_f = 10^{-2} mol$ ومنه: $x_f = 10^{-2} mol$ المحد هو المتفاعل المحد هو المتفاعل نصف تقدّمه النهائي $x_f = \frac{x_f}{2}$ المتنتاج قيمة $x_f = \frac{x_f}{2}$	

الله الإجابة اختبار مادة: العلوم الفيزيائية الشعبة: رياضيات وتقنى رياضي

		العالم المنتبار مادة : العلوم الفيزيائيه الشعبة : رياضيات وتقني رياضي
نمة	العلا	الع الإجابة اختبار مادة: العلوم الفيزيائية الشعبة: رياضيات وتقني رياضي معاصر الإجابة على المعامرة المعامرة الإجابة العلوم الفيزيائية المعامرة الإجابة المعامرة المعا
المجموع	مجزأة	
	0.25x2	$n(S_2O_8^{2-}) = \frac{n_{01}}{2} = 5.10^{-3} \text{mol} = \frac{x_f}{2} = \frac{x_{\text{max}}}{2}$ يوافق $t_{1/2}$ $t_{1/2} = 17,5 \text{min} : 2$
		$r_{1_{2}}$ في اللحظة $r_{1_{2}}$
,	0.25	$\left[S_{2}O_{8}^{2-}\right]_{t/2} = \frac{C_{1}V_{1} - x}{V_{1} + V_{2}} = \frac{5 \times 10^{-3}}{0.1} = 5,0 \times 10^{-2} mol / L$
4	0.25	$[I_2]_{v_1} = \frac{x}{V_1 + V_2} = 5 \times 10^{-2} mol / L$
	0.25	$ [I^{-}]_{v_{1}} = \frac{C_{2}V_{2} - 2x}{V_{1} + V_{2}} = \frac{50 \times 10^{-3} - 2 \times 5 \times 10^{-3}}{0.1} = 4.0 \times 10^{-1} \text{mol } L^{-1} $
	0.25	$\left[SO_{4}^{2-}\right]_{V_{2}} = \frac{2x}{V_{1} + V_{2}} = 1,0 \times 10^{-1} mol L^{-1}$
	0.25	$\left[K^{\perp}\right]_{V_{1}} = \frac{2C_{1}V_{1} + C_{2}V_{2}}{V_{1} + V_{2}} = 7,0 \times 10^{-1} \text{mol } L^{-1}$
		6/ تعيينِ السرعة الحجمية في اللحظة 't=10min
	0.25	$v_{\rm rel} = \frac{1}{V} \frac{dx}{dt} \cdot x = n_{0!} - n_{(S_2 O_8^{2^-})}$ لدينا
		$\frac{dx}{dt} = \frac{dn_{(S_2O_8^{2-})}}{dt}$ سرعة التفاعل = سرعة الاختفاء
	0.25	من البيان نجد : $\frac{dn}{dt} = \frac{5 \times 10^{-3}}{7.5 \times 2.5} \approx -2.7 \times 10^{-4} mol / min$ الماس
	0.25	$v = \frac{1}{0.1} \times 2.7 \times 10^{-4} = 2.7 \times 10^{-3} \text{mol.} L^{-1} \text{min}^{-1}$:
		التمرين التجريبي: (04 نقاط)
	0.25	$\Sigma \overline{F} = \overline{0}$ duyar and it is τ_1 : τ_2 : τ_3 : τ_4 : τ_5 : τ_6
		فالحركة مستقيمة منتظمة
		$\frac{d_1}{v}$ النسبة $\frac{d_1}{v}$
	0.25	$\frac{d_1}{v}(S)$ 1,0 1,0 1,0 1,0
	0.25	v من الجدول نستنتج : $\frac{d_1}{v} = C^{ie}$ ومنه d_1 يتناسب طرديا مع
	0.25	$ au_1 = 1s$ عن الجدول نجد : من الجدول نجد عن الجدول عنه عنه الجدول تجد

	العلاما	الادارة اختيار مادة العلوم الفيزيائية الشعبة: رياضيات وتقني رياضي	- 17
المجموع		الإجابة اختبار مادة : العلوم الفيزيائية الشعبة : رياضيات وتقني رياضي عناصر الإجابة عناصر الإجابة	محاه
			,
	0.25x2	x المؤثرة على السيارة خلال عملية الكبح x المؤثرة على المؤثرة على السيارة خلال عملية الكبح x	
	0.25	d_2 و v^2 بيجاد العلاقة الحرفية بين v^2 و v^2 بيخاد العلاقة الحرفية بين $E_0 - W_{(\overline{F})} = E$ على الجملة (السيارة) بتطبيق مبدأ إنحفاظ الطاقة : $E_0 - W_{(\overline{F})} = W_{(\overline{F})}$ ومنه $E_0 = W_{(\overline{F})}$ عند التوقف : $E = 0$	
	0.25x2	$\frac{1}{2}Mv^{2} = F_{f/G} d_{2} \rightarrow v^{2} = \frac{2F_{f/G}}{M} d_{2}$	
4	0.25	$v^{2}(m/s)$: $v^{2} = f(d_{2})$ جـ/ رسم البيان $v^{2}(m/s)$ 192,9 493,8 625,0 771,6 933,6 $d_{2}(m)$ 14 35 45 55 67	
	0.25	$v^2 = k d_2$: در البيان عبارة عن مستقيم يمر بالمبدأ معادلته من الشكل عبارة عن مستقيم	
	0.25	دساب معامل التوجيه . k معامل التوجيه $k = \frac{\Delta v^2}{\Delta d_2} \simeq 14m/s^2$	-
	0,25	بالمطابقة بين العلاقة النظرية والبيانية نجد: $F_{f/G}=k\frac{M}{2} \text{eaib} kd_2=\frac{2F_{f/G}}{M}d_2$ $F_{f/G}=\frac{14\times 9.10^2}{2}=63.10^2N$	
	0.25x2	$v^2 = f(d_2)$: which is the property of the	