COMS 4772 Fall 2015: Homework #1

Daniel M Sheehan - dms2203@columbia.edu

Discussants: tudor

February 10, 2016

Problem 1

```
from scipy.io import loadmat
ocr = loadmat('ocr.mat')
import matplotlib.pyplot as plt
from matplotlib import cm
import random
import numpy as np
import datetime
import csv
def dist(x, y):
    diff = x.astype(np.float32) - y.astype(np.float32)
    return diff.dot(diff)
def nnClassifier(trainingData, trainingLabels, testData, testLabels):
    total_count = len(testLabels)
    wrong_count = 0
    for testVector, testLabel in zip(testData, testLabels):
        # find the closest training vector
        minDist = float('inf')
        minLabel = None
        for trainingVector, trainingLabel in zip(trainingData, trainingLabels):
            d = dist(testVector, trainingVector)
            #print 'd:', d, 'minDist:', minDist
            if d < minDist:</pre>
```

```
minDist = d
                minLabel = trainingLabel
        if minLabel[0] != testLabel[0]:
            wrong_count += 1
    print 'wrongcount:', wrong_count
    errorRate = float(wrong_count) / total_count
    print errorRate
    return errorRate
testData = ocr['testdata']
testLabels = ocr['testlabels']
sample_sizes = [1000,2000,4000,8000]
for i in range(10):
    dt = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    dt = dt.replace(' ','-').replace(':','-')
    print dt
    error_rates = []
    for n in sample sizes:
        print n
        sel = random.sample(xrange(60000),n)
        trainingData = ocr['data'][sel]
        trainingLabels = ocr['labels'][sel]
        e = nnClassifier(trainingData, trainingLabels, testData, testLabels)
        error_rates.append(e)
    print error_rates
    with open("data/output"+dt+".csv", "wb") as f:
        writer = csv.writer(f)
        row = sample_sizes, error_rates
        writer.writerows(row)
import glob, os
import pandas as pd
theFiles = glob.glob('data/*.csv')
df_list = []
for i in theFiles:
```

```
df = pd.read_csv(i)
df = df.T
df.columns = ['error_rate']
df['date'] = i.replace('data/output','').replace('.csv','')
df['samp'] = df.index
df_list.append(df)

df = pd.concat(df_list)
df.head(5)
```

	error_rate	date	samp
1000	0.1144	2016-02-05-11-00-00	1000
2000	0.0894	2016-02-05-11-00-00	2000
4000	0.0702	2016-02-05-11-00-00	4000
8000	0.0534	2016-02-05-11-00-00	8000
1000	0.1119	2016-02-05-11-41-39	1000

```
df['count'] = 1
dfg = df.groupby(['samp'],as_index=False).sum()
dfg['error_rate'] = dfg['error_rate'] / dfg['count']
dfg.head(10)
```

	samp	error_rate	count
0	1000	0.11471	10
1	2000	0.08724	10
2	4000	0.06922	10
3	8000	0.05479	10

```
dfgby = df.groupby(['samp']).std()
dfgby.head(10)
```

	error_rate	count
samp		
1000	0.003527	0
2000	0.003654	0
4000	0.001981	0
8000	0.002001	0

```
import matplotlib.pyplot as plt
plt.style.use('ggplot')
%matplotlib inline
#!/usr/bin/env python
import numpy as np
import matplotlib.pyplot as plt
x = dfg['samp']
y = dfg['error_rate']
theError = dfgby['error_rate']
# First illustrate basic pyplot interface, using defaults where possible.
plt.figure()
plt.errorbar(x, y, yerr=theError)#, xerr=0.2)
plt.title("Error Rate for 1-nearest neighbor classifier with Euclidean distance")
plt.ylim(ymax=0.13)
plt.xlim(xmin=0, xmax=9000)
(0, 9000)
```

Error Rate for 1-nearest neighbor classifier with Euclidean distance

Problem 2

$$P(X \mid class) = \prod_{j=1}^{d} \mu_j^{x_j} (1 - \mu_j)^{x_j}$$

$$L = log(\dots) \rightarrow \left(\frac{\delta L}{\mu_i}\right) = \delta$$

 $P(motorcycle) P(gas)...P(mouse) \leftarrow O$

$$\delta/N \to \left(\frac{1+O}{2+N}\right)$$

 $= (MLE \mid Laplace)$

 $P(Y \mid X)$

 $prediction = argmax_{forum} P(Y = forum|X)$

 $\propto P(X|forum)P(forum)$

$$\Rightarrow \prod_{j=1}^d \mu_i^{x_j} (1-\mu_j)^{1-x_j}$$
 # forum/total

 $P(data|\mu) \rightarrow P(data|\mu forum_1)$, $P(data|\mu forum_2)$

 $Likelihood = \prod P(word appears) P(!word appears)$

$$argmax_{y}(\prod_{j=1}^{d}\mu_{y,j}^{x_{j}}(1-\mu_{y,j})^{1-x_{j}})\pi_{y}$$

Linear classification : $y = w_o + w_1x_1 + w_2x_2 + \dots$

```
y = mx + b = w_o + \sum_{j=1}^{d} w_j x_j
log[(\prod_{j=1}^{d} \mu_{y,j}^{x_j} (1 - \mu_{y,j})^{1-x_j}) \pi_y]
= log \pi_y + \sum_{j=1}^{d} x_j log \mu_{y,j} + (1 - x_j) log (1 - \mu_{i,j})
= log \pi_y + \sum_j log (1 - \mu_{i,j}) + \sum_j [log \mu_{j,y} * log (1 - \mu_{i,j})] x_j
= b_y + w_y x_j \rightarrow w_y (forum \ or \ class), j (dimension \ or \ word \ index)
\prod_{j=1}^{d} \mu \dots (1 - \mu) \prod_y
b + wx (dot product)
```

```
from scipy.io import loadmat
import numpy as np
import pandas as pd
news = loadmat('news.mat')
def get_params(Xtr, Ytr):
    # finding w and b for each class
    Ytr = Ytr.flatten()
    theClasses = set(Ytr)#list of classes
    totCnt = len(Ytr)
    paramDict = {}
    for theClass in theClasses:
        idx = np.where(Ytr==theClass)[0]
        cnt = len(idx)
        xForThisClass = Xtr[idx]
        mu = (1 + xForThisClass.sum(axis=0)) / ( 2 + cnt)
        pi = cnt/float(totCnt)
        bias = np.log(pi) + np.log(1 - mu).sum() #lgo pi + sum of all log minus meu
        weights = np.log(mu) - np.log(1 - mu) #log meu, log 1 - meu
        paramDict[theClass] = {'bias':bias, 'weights':weights}
    return paramDict
def get_error_rate(params, Xtest, Ytest):
    total_count = len(Ytest)
    wrong_count = 0
    for testVector, testLabel in zip(Xtest, Ytest):
        #print testVector
        x = testVector
        maxLL = float('-inf')
```

```
minLabel = None
        for key, value in params.iteritems():
            # make a prediction for input testVector
            w = value['weights']
            b = value['bias']
            # print "weights shape:", w.shape, "bias shape:", b.shape, "x shape:", x.shape
            # # np.dot(w, x) #### no! x is not a numpy array
            # # w.dot(x) ##### x is not a numpy array
            # # np.dot(w, x.to array()) #### slow
            # # w.dot(x.to_array()) #### same
            # # x.dot(w)
            pred = x.dot(w.T) + b #should pred label 1-20?
            # if this prediction != testLabel, increment wrong_count
            if pred > maxLL:
                maxLL = pred
                minLabel = key
        if int(minLabel) != int(testLabel[0]):
            wrong_count += 1
   #print 'wrongcount:', wrong_count
    errorRate = float(wrong_count) / total_count
   #print errorRate
    return errorRate
   #which class has the highest w*x + b
Xtrain = news['data']
Ytrain = news['labels']
params = get_params(Xtrain, Ytrain)
print "Training error:", get_error_rate(params, Xtrain, Ytrain)
Xtest = news['testdata']
Ytest = news['testlabels']
print "Test error:", get_error_rate(params, Xtest, Ytest)
#----
dfv = pd.read_csv("news.vocab",header=None)
dfv.columns = ['word']
dfv['vuid'] = dfv.index + 1
dfg = pd.read_csv("news.groups",header=None)
dfg.columns = ['topic'] #just delcare col names here
dfg['topic'] = dfg.topic.str.split(' ',1).str[0]
dfg['guid'] = dfg.index + 1
```

```
df = pd.DataFrame(params)
df = df.T
df['guid'] = df.index
#print df.head(20) #print dfv.head(20) #print dfg.head(20)
df = df.merge(dfg, on='guid', how='left')
#print df.head(20)
dfw = df[['weights']]
dfw = dfw['weights'].tolist()
df_list = []
for i, k in enumerate(dfw):
    j = k.tolist()
    df = pd.DataFrame(j)
    df = df.T
    df.columns = ['weights']
    df['guid'] = i + 1
    df['vuid'] = df.index + 1
    df = df.sort('weights', ascending=False).head(20)
    #print df.head(25)
    df_list.append(df)
df = pd.concat(df_list)
df = df.merge(dfv, on='vuid', how='left').merge(dfg, on='guid', how='left')
print df.head(400)
df.to_csv('hw1-2.csv',index=False)
Training error: 0.216256988198
Test error: 0.37601598934
      weights guid vuid
                              word
                                                  topic
0
     3.854394
                  1
                       29
                                            alt.atheism
                               the
                                            alt.atheism
1
     2.516800
                  1
                       12
                                of
                                            alt.atheism
2
     2.487156
                  1
                       30
                                in
3
     2.375473
                  1
                      33
                                to
                                            alt.atheism
4
     2.070139
                       23
                                            alt.atheism
                  1
                               and
     1.989290
                                            alt.atheism
5
                  1
                      233
                              that
6
     1.755913
                       60
                                is
                                            alt.atheism
7
                      778
                                            alt.atheism
     1.457848
                  1
                            writes
                      42
     1.404548
8
                                            alt.atheism
                  1
                                it
9
                                            alt.atheism
     1.266150
                  1
                      474
                               you
10
     0.903257
                  1
                      722
                                            alt.atheism
                               not
```

ì						
	11	0.883123	1	144	be	alt.atheism
	12	0.775212	1	775	edu	alt.atheism
	13	0.756061	1	81	for	alt.atheism
	14	0.746535	1	251	this	alt.atheism
	15	0.671441	1	27	are	alt.atheism
	16	0.652956	1	922	have	alt.atheism
	17	0.508613	1	51	but	alt.atheism
	18	0.490957	1	48	on	alt.atheism
	19	0.464613	1	473	if	alt.atheism
	20	1.897778	2	29	the	comp.graphics
	21	1.539057	2	33	to	comp.graphics
	22	1.161351	2	23	and	comp.graphics
	23	1.123930	2	30	in	comp.graphics
	24	1.105485	2	12	of	comp.graphics
	25	0.929536	2	81	for	comp.graphics
	26	0.774026	2	60	is	comp.graphics
						· - ·
	27	0.596870	2	42	it	comp.graphics
	28	0.182322	2	233	that	comp.graphics
	29	0.106447	2	48	on	comp.graphics
	• •	• • •	• • •	• • •	• • •	•••
	370	1.070201	19	474	you	talk.politics.misc
	371	0.960271	19	251	this	talk.politics.misc
	372	0.938933	19	722	not	talk.politics.misc
	373	0.917793	19	27	are	talk.politics.misc
	374	0.896844	19	770	article	talk.politics.misc
	375	0.696368	19	922	have	talk.politics.misc
	376	0.657944	19	144	be	talk.politics.misc
	377	0.629431	19	48	on	talk.politics.misc
	378	0.426971	19	52	with	talk.politics.misc
	379	0.400103	19	388	as	talk.politics.misc
	380	3.186353	20	29	the	talk.religion.misc
				12	of	talk.religion.misc
	381	2.251292	20			•
	382	2.191359	20	30	in	talk.religion.misc
	383	2.162438	20	33	to	talk.religion.misc
	384	1.976494	20	60	is	talk.religion.misc
	385	1.904237	20	23	and	talk.religion.misc
	386	1.517065	20	233	that	talk.religion.misc
	387	1.008897	20	42	it	talk.religion.misc
	388	0.942363	20	722	not	talk.religion.misc
	389	0.765468	20	474	you	talk.religion.misc
	390	0.657640	20	778	writes	talk.religion.misc
	391	0.622530	20	922	have	talk.religion.misc
	392	0.610909	20	81	for	talk.religion.misc
	393	0.599328	20	27	are	talk.religion.misc
	394	0.530628	20	251	this	talk.religion.misc
	JJ-	0.550020	20	231	CIII	132K. 1 211P10H11H13C

```
144
                                     talk.religion.misc
395
     0.519300
                 20
396
     0.463131
                 20
                       48
                                    talk.religion.misc
                                 on
397
     0.363747
                 20
                       52
                               with
                                    talk.religion.misc
                                    talk.religion.misc
398
     0.352821
                 20
                                    talk.religion.misc
399
     0.331033
                 20
                      770
                            article
[400 rows x 5 columns]
```

/usr/local/lib/python2.7/site-packages/IPython/kernel/__main__.py:98: FutureWarning: sort(colur

Problem 3

$$P(Yes_{Y=1}) = 0.001$$

$$\pi_1 = "$$

$$P(Yes_{Y=0}) = 0.999$$

$$\pi_0 = "$$

$$\pi_1 = 200/300 = 2/3 \; \pi_2 = 100/300 = 1/3$$

$$not \rightarrow P(X|C_1) \ vs. \ P(X|C_2)$$

$$V \rightarrow P(C_1|X) \text{ vs. } P(C_2|X)$$

$$P(X|C_1)\pi_1 = P(X|C_2)\pi_2 C$$

$$P(X|C_1)\pi_1 = P(X|C_2)\pi_2C$$

find x

$$\pi_0 = 2/3 \; \pi_1 = 1/3$$

$$P(X|Y=0) = N(0,1) = \frac{1}{\sqrt{2\pi}}e^{-1/2*x^2}$$

$$P(X|Y=1) = N(1, 1/4) = \frac{1}{\sqrt{2\pi * 1/4}} e^{-1/2*(x-1)^2/(v4)}$$

$$P(X|Y = 0)\pi_0 = P(X|Y = 1)\pi_1 C$$

$$f * (x) = \begin{cases} 0 & x < b_1 \\ 1 & b_1 < x < b_2 \\ 0 & x > b_2 \end{cases}$$

Problem 4

a

```
C = \{red, orange, yellow, green, blue\}
n = 100 \ balls
n_{red}, n_{orange}, n_{yellow}, n_{green}, n_{blue}
p(red) = n_{red}/n
p(red, red) = n_{red}/n * n_{red}/n
p(differentcolor) = 1 - p(samecolor)
= 1 - [p(red, red) + p(orange, orange) + p(yellow, yellow) + p(green, green) + p(blue, blue)]
= 1 - \sum_{c \in C} (n_c/n)^2
= 1 - \sum_{c} (p_c)^2
```

b

$$entropyH = -\{p \ log \ p + (1-p)log(1-p)\}$$

$$max \ H \ wrt \ p \rightarrow p = 0.5$$

$$H = -\sum_k P_k log pk$$
 Paint each color 20 times.
$$\sigma(\omega_0 + \omega_1 x_1 + \omega_2 x_2 + \dots) \rightarrow [0,1]$$

 $P(Y_{class} = 1 \mid X_{data})$

posterior

$$P(Y = 1|X) = \frac{P(X, Y = 1)}{P(X)}$$

$$= \frac{P(X|Y=1)P(Y)}{P(X)}$$

$$\propto P(X|Y=1)P(Y)$$

likelihood – prior

$$P(Yes_{Y=1}) = 0.001$$

$$\pi_1 = "$$

$$P(Yes_{Y=0}) = 0.999$$

$$\pi_0 = "$$

$$\pi_1 = 200/300 = 2/3 \; \pi_2 = 100/300 = 1/3$$

$$not \rightarrow P(X|C_1) \ vs. \ P(X|C_2)$$

$$V \rightarrow P(C_1|X) \ vs. \ P(C_2|X)$$

$$P(X|C_1)\pi_1 = P(X|C_2)\pi_2 C$$

$$P(X|C_1)\pi_1 = P(X|C_2)\pi_2C$$

find x

$$\pi_0 = 2/3 \ \pi_1 = 1/3$$

$$P(X|Y=0) = N(0,1) = \frac{1}{\sqrt{2\pi}}e^{-1/2*x^2}$$

$$P(X|Y=1) = N(1, 1/4) = \frac{1}{\sqrt{2\pi * 1/4}} e^{-1/2*(x-1)^2/(v4)}$$

$$P(X|Y = 0)\pi_0 = P(X|Y = 1)\pi_1 C$$

$$f * (x) = \begin{cases} 0 & x < b_1 \\ 1 & b_1 < x < b_2 \\ 0 & x > b_2 \end{cases}$$