

Тест 01_1

R1 = 54
$$\Omega$$
 R2 = 61 Ω R3 = 68 Ω R4 = 75 Ω R5 = 82 Ω R6 = 89 Ω E1 = 28 V $J_1 = 0.016$ A

Визначити методом вузлових потенціалів такі величини:

- власні провідності вузлів 1, 2, 3 G₁₁= , G₂₂= , G₃₃= ;
- взаємні провідності до вузла 1 G_{12} = , G_{13} =
- \blacksquare вузлові струми $J_{11}=$, $J_{22}=$, $J_{33}=$;
- значення визначника власних і взаємних провідностей |∆G|= ;
- передавальні опори до вузла 1 R_{11} = , R_{12} = , R_{13} = ;
- часткові вузлові потенціали вузла 1 V11= , V12= , V13= ;
- вузловий потенціал вузла 1 V₁₁=

Тест 01_2

$$\begin{split} R1 &= 47 \cdot \Omega & R2 &= 54 \cdot \Omega \\ R3 &= 61 \cdot \Omega & R4 &= 68 \cdot \Omega \\ i_{L1}(t) &= I_{L1m} \cdot sin \big(2 \cdot \pi \cdot f_x + \psi_x \big) \\ I_{L1m} &= 8 \cdot mA \end{split}$$

$$\psi_x = 0.262 \qquad \psi_x = 15 \cdot deg$$

$$\text{L1} = \text{0.7} \cdot \text{mH} \qquad \text{L2} = \text{1.4} \cdot \text{mH} \quad \text{C1} = \text{0.276} \cdot \mu \text{F}$$

$$C2 = 0.552 \cdot \mu F$$

$$L2 = 2 \cdot L1$$
 $C2 = 2 \cdot C1$

Визначити символічним методом (за допомогою комплексних чисел) параметри вихідної напруги $u_v(t) = U_{vm} sin(2\pi f + \psi)$:

- амплітудне значення U_{ym}=___mV;
- діюче (середнє квадратичне) значення $U_y = U_{ym} / \sqrt{2} = ___ mV$;
- початкова фаза $\psi = \underline{\hspace{0.1cm}}$ radian;
- початкова фаза $\psi = _{deg}$.

Тест 01_3

$$R1 = 19\Omega$$
 $R2 := 2 \cdot R1$ $R3 := 3 \cdot R1$

$$R4 := 4 \cdot R1$$
 $R5 := R1$ $R6 := 6 \cdot R1$

$$L1 = 0.025 \cdot mH$$
 $C1 = 69.805 \cdot nF$

- 1. Визначити операторні опори всіх елементів
- 2.Побудувати операторну еквівалентну схему заданого кола
- 3.Вважаючи, що зображення вхідного сигналу $U_x(s)$ задане, визначити:
 - зображення вихідної напруги $U_{\nu}(s)$;
 - зображення напруги на ємнісному елементі $U_{Cl}(s)$
 - зображення струму в індуктивному елементі $I_{L1}(s)$
- 4.За знайденими зображеннями $U_y(s)$, $U_{CI}(s)$, $I_{LI}(s)$ і визначити операторні передавальні функції:

$$K_{y}(s) = \frac{U_{y}(s)}{U_{x}(s)}, K_{UC}(s) = \frac{U_{C1}(s)}{U_{x}(s)}, G_{IL}(s) = \frac{I_{L1}(s)}{U_{x}(s)}$$

$$L^{-1}\left[\frac{K_{\mathcal{Y}}(s)}{s}\right], h_{UC}(t) = L^{-1}\left[\frac{K_{UC}(s)}{s}\right], h_{IL}(t) = L^{-1}\left[\frac{G_{IL}(s)}{s}\right],$$
 для чого:

визначити і обчислити корені знаменника p_1, p_2 , p_3 ;

- знайти похідну від знаменника по s;
- підставити значення коренів у чисельник і похідну від знаменника і обчислити значення коефіцієнтів перехідних характеристик:
 - h_{1y} , h_{2y} , h_{3y} перехідної характеристики $h_y(t)$;
 - h_{1UC} , h_{2UC} , h_{3UC} перехідної характеристики $h_{UC}(t)$;
 - h_{1IL} , h_{2IL} , h_{3IL} перехідної характеристики $h_{IL}(t)$
- 6.Записати вирази для $h_{v}(t)$, $h_{UC}(t)$, $h_{IL}(t)$

Тест 02_1

R1 = 22
$$\Omega$$
 R2 = 28 Ω R3 = 34 Ω
R4 = 40 Ω R5 = 46 Ω R6 = 52 Ω
E1 = 6 V $J_1 = 3 \times 10^{-3}$ A

Визначити методом вузлових потенціалів такі величини:

- власні провідності вузлів 1, 2, 3 G_{11} = , G_{22} = , G_{33} = ;
- взаємні провідності до вузла 1 G_{12} = , G_{13} =
- \blacksquare вузлові струми $J_{11}=$, $J_{22}=$, $J_{33}=$;
- значення визначника власних і взаємних провідностей |∆G|= ;
- передавальні опори до вузла 1 R_{11} = , R_{12} = , R_{13} = ;
- часткові вузлові потенціали вузла 1 V11= , V12= , V13= ;
- вузловий потенціал вузла 1 V₁₁=

Тест 02 2

$$\begin{split} &R1 = 16 \cdot \Omega & R2 = 22 \cdot \Omega \\ &R3 = 28 \cdot \Omega & R4 = 34 \cdot \Omega \\ &i_{L1}(t) \equiv I_{L1m} \cdot sin \big(2 \cdot \pi \cdot f_x + \psi_x\big) \\ &I_{L1m} = 1 \cdot mA & f_x = 4.244 \times 10^3 \cdot Hz \\ &\psi_x = 0.131 & \psi_x = 7.5 \cdot deg \end{split}$$

Визначити символічним методом (за допомогою комплексних чисел) параметри вихідної напруги $u_y(t) = U_{ym} sin(2\pi f + \psi)$:

- амплітудне значення U_{ym}=___mV;
- діюче (середнє квадратичне) значення $U_y = U_{ym} / \sqrt{2} = ___ mV;$
- початкова фаза $\psi = \text{radian};$
- початкова фаза $\psi = _{deg}$.

Тест 02 3

- 1. Визначити операторні опори всіх елементів
- 2.Побудувати операторну еквівалентну схему заданого кола
- 3.Вважаючи, що зображення вхідного сигналу $U_x(s)$ задане, визначити:
 - зображення вихідної напруги $U_{\nu}(s)$;
 - зображення напруги на ємнісному елементі $U_{Cl}(s)$
 - зображення струму в індуктивному елементі $I_{L1}(s)$
- 4.За знайденими зображеннями $U_y(s)$, $U_{Cl}(s)$, $I_{Ll}(s)$ і визначити операторні передавальні функції:

$$K_{y}(s) = \frac{U_{y}(s)}{U_{x}(s)}, K_{UC}(s) = \frac{U_{C1}(s)}{U_{x}(s)}, G_{IL}(s) = \frac{I_{L1}(s)}{U_{x}(s)}$$

$$L^{-1}\left[\frac{K_{y}(s)}{s}\right]$$
, $h_{UC}(t)=L^{-1}\left[\frac{K_{UC}(s)}{s}\right]$, $h_{IL}(t)=L^{-1}\left[\frac{G_{IL}(s)}{s}\right]$, для чого: визначити і обчислити корені знаменника p_1,p_2 , p_3 ;

- знайти похідну від знаменника по s;
- підставити значення коренів у чисельник і похідну від знаменника і обчислити значення коефіцієнтів перехідних характеристик:
 - h_{1y} , h_{2y} , h_{3y} перехідної характеристики $h_v(t)$;
 - h_{1UC} , h_{2UC} , h_{3UC} перехідної характеристики $h_{UC}(t)$;
 - h_{1IL}, h_{2IL} , h_{3IL} перехідної характеристики $h_{IL}(t)$
- 6.Записати вирази для $h_{y}(t)$, $h_{UC}(t)$, $h_{IL}(t)$

Тест 03_1

R1 = 24
$$\Omega$$
 R2 = 31 Ω R3 = 38 Ω
R4 = 45 Ω R5 = 52 Ω R6 = 59 Ω
E1 = 7 V $J_1 = 4 \times 10^{-3}$ A

Визначити методом вузлових потенціалів такі величини:

- власні провідності вузлів 1, 2, 3 G₁₁= , G₂₂= , G₃₃= ;
- взаємні провідності до вузла 1 G_{12} = , G_{13} =
- \blacksquare вузлові струми $J_{11}=$, $J_{22}=$, $J_{33}=$;
- значення визначника власних і взаємних провідностей $|\Delta G| =$;
- передавальні опори до вузла 1 R_{11} = , R_{12} = , R_{13} = ;
- часткові вузлові потенціали вузла 1 V11= , V12= , V13= ;
- вузловий потенціал вузла 1 V₁₁=

Тест 03_2

$$\begin{split} &R1 = 17 \cdot \Omega &R2 = 24 \cdot \Omega \\ &R3 = 31 \cdot \Omega &R4 = 38 \cdot \Omega \\ &i_{L1}(t) \equiv I_{L1m} \cdot sin \big(2 \cdot \pi \cdot f_x + \psi_x\big) \\ &I_{L1m} = 2 \cdot mA &f_x = 3.865 \times 10^3 \cdot Hz \\ &\psi_x = 0.262 &\psi_x = 15 \cdot deg \end{split}$$

$$L1 = 0.7 \cdot mH$$
 $L2 = 1.4 \cdot mH$ $C1 = 1.716 \cdot \mu F$

$$C2 = 3.431 \cdot \mu F$$

$$L2 = 2 \cdot L1$$
 $C2 = 2 \cdot C1$

Визначити символічним методом (за допомогою комплексних чисел) параметри вихідної напруги $u_y(t) = U_{ym} sin(2\pi f + \psi)$:

- амплітудне значення $U_{vm}=$ mV;
- діюче (середнє квадратичне) значення $U_v = U_{vm} / \sqrt{2} = mV$;
- початкова фаза $\psi = \underline{\hspace{0.1cm}}$ radian;
- початкова фаза $\psi = \deg$.

- 1.Визначити операторні опори всіх елементів
- 2.Побудувати операторну еквівалентну схему заданого кола
- 3.Вважаючи, що зображення вхідного сигналу $U_x(s)$ задане, визначити:
 - зображення вихідної напруги $U_{\nu}(s)$;
 - зображення напруги на ємнісному елементі $U_{Cl}(s)$
 - зображення струму в індуктивному елементі $I_{L1}(s)$
- 4.За знайденими зображеннями $U_y(s)$, $U_{CI}(s)$, $I_{LI}(s)$ і визначити операторні передавальні функції:

$$K_{y}(s) = \frac{U_{y}(s)}{U_{x}(s)}, K_{UC}(s) = \frac{U_{C1}(s)}{U_{x}(s)}, G_{IL}(s) = \frac{I_{L1}(s)}{U_{x}(s)}$$

$$L^{-1}\left[rac{K_{\mathcal{Y}}(s)}{s}
ight]$$
, $h_{UC}(t)=L^{-1}\left[rac{K_{UC}(s)}{s}
ight]$, $h_{IL}(t)=L^{-1}\left[rac{G_{IL}(s)}{s}
ight]$, для чого:

- визначити і обчислити корені знаменника p_1, p_2, p_3 ;
- знайти похідну від знаменника по s;
- підставити значення коренів у чисельник і похідну від знаменника і обчислити значення коефіцієнтів перехідних характеристик:
 - h_{1v} , h_{2v} , h_{3v} перехідної характеристики $h_v(t)$;
 - h_{1UC} , h_{2UC} , h_{3UC} перехідної характеристики $h_{UC}(t)$;
 - h_{1IL} , h_{2IL} , h_{3IL} перехідної характеристики $h_{IL}(t)$
- 6. Записати вирази для $h_{v}(t)$, $h_{UC}(t)$, $h_{IL}(t)$

Тест 04_1

R1 = 26
$$\Omega$$
 R2 = 34 Ω R3 = 42 Ω
R4 = 50 Ω R5 = 58 Ω R6 = 66 Ω
E1 = 8 V $J_1 = 5 \times 10^{-3}$ A

Визначити методом вузлових потенціалів такі величини:

- власні провідності вузлів 1, 2, 3 G_{11} = , G_{22} = , G_{33} = ;
- взаємні провідності до вузла 1 G_{12} = , G_{13} =
- вузлові струми J_{11} = , J_{22} = , J_{33} = ;
- значення визначника власних і взаємних провідностей |∆G|= ;
- передавальні опори до вузла 1 R_{11} = , R_{12} = , R_{13} = ;
- часткові вузлові потенціали вузла 1 V11= , V12= , V13= ;
- вузловий потенціал вузла 1 V₁₁=

Тест 04 2

$$\begin{aligned} R1 &= 18 \cdot \Omega & R2 &= 26 \cdot \Omega \\ R3 &= 34 \cdot \Omega & R4 &= 42 \cdot \Omega \end{aligned}$$

$$i_{L1}(t) = I_{L1m} \cdot sin(2 \cdot \pi \cdot f_x + \psi_x)$$

$$I_{L1m} = 3 \cdot mA \qquad f_x = 3.581 \times 10^3 \cdot Hz$$

$$\psi_x = 0.393 \qquad \psi_x = 22.5 \cdot deg$$

 $L1 = 0.8 \cdot mH$ $L2 = 1.6 \cdot mH$ $C1 = 1.709 \cdot \mu F$ $C2 = 3.419 \cdot \mu F$ $L2 = 2 \cdot L1$ $C2 = 2 \cdot C1$

Визначити символічним методом (за допомогою комплексних чисел) параметри вихідної напруги $u_y(t) = U_{ym} sin(2\pi f + \psi)$:

- амплітудне значення $U_{ym} = _{m} mV$;
- діюче (середнє квадратичне) значення $U_y = U_{ym} / \sqrt{2} = ___ mV;$
- початкова фаза $\psi = \underline{\hspace{0.1cm}}$ radian;
- початкова фаза $\psi = _{deg}$.

Тест 04 3

- 1.Визначити операторні опори всіх елементів
- 2.Побудувати операторну еквівалентну схему заданого кола
- 3.Вважаючи, що зображення вхідного сигналу $U_x(s)$ задане, визначити:
 - зображення вихідної напруги $U_{\nu}(s)$;
 - зображення напруги на ємнісному елементі $U_{Cl}(s)$
 - зображення струму в індуктивному елементі $I_{L1}(s)$
- 4.За знайденими зображеннями $U_y(s)$, $U_{CI}(s)$, $I_{LI}(s)$ і визначити операторні передавальні функції:

$$K_y(s) = \frac{U_y(s)}{U_x(s)}, K_{UC}(s) = \frac{U_{C1}(s)}{U_x(s)}, G_{IL}(s) = \frac{I_{L1}(s)}{U_x(s)}$$

$$L^{-1}\left[rac{K_{\mathcal{Y}}(s)}{s}
ight]$$
, $h_{UC}(t)=L^{-1}\left[rac{K_{UC}(s)}{s}
ight]$, $h_{IL}(t)=L^{-1}\left[rac{G_{IL}(s)}{s}
ight]$, для чого:

- визначити і обчислити корені знаменника p_1, p_2, p_3 ;
- знайти похідну від знаменника по s;
- підставити значення коренів у чисельник і похідну від знаменника і обчислити значення коефіцієнтів перехідних характеристик:
 - h_{1y} , h_{2y} , h_{3y} перехідної характеристики $h_y(t)$;
 - h_{1UC} , h_{2UC} , h_{3UC} перехідної характеристики $h_{UC}(t)$;
 - h_{1IL} , h_{2IL} , h_{3IL} перехідної характеристики $h_{IL}(t)$
- 6.Записати вирази для $h_{v}(t)$, $h_{UC}(t)$, $h_{IL}(t)$

Тест 05_1

$$R1 = 28$$
 Ω $R2 = 37$ Ω $R3 = 46$ Ω

$$R4 = 55 \Omega R5 = 64 \Omega R6 = 73 \Omega$$

$$E1 = 9$$
 V $J_1 = 6 \times 10^{-3}$ A

Визначити методом вузлових потенціалів такі величини:

- власні провідності вузлів 1, 2, 3 G_{11} = , G_{22} = $, G_{33} =$
- взаємні провідності до вузла 1 G₁₂= $, G_{13}=$
- вузлові струми J_{11} = $, J_{22} =$
- значення визначника власних і взаємних провідностей | ΔG |= :
- передавальні опори до вузла 1 R_{11} = , R_{12} = , R_{13} =
- часткові вузлові потенціали вузла 1 V11= $\,$, V12= $\,$, V13= $\,$;
- вузловий потенціал вузла 1 V₁₁=

Тест 05 2

R1 = 19 ·
$$\Omega$$
 R2 = 28 · Ω
R3 = 37 · Ω R4 = 46 · Ω
 $i_{L1}(t) = I_{L1m} \cdot \sin(2 \cdot \pi \cdot f_x + \psi_x)$
 $I_{L1m} = 4 \cdot mA$ $f_x = 3.36 \times 10^3 \cdot Hz$
 $\psi_x = 0.524$ $\psi_x = 30 \cdot deg$

$$L1 = 0.9 \cdot mH$$
 $L2 = 1.8 \cdot mH$ $C1 = 1.692 \cdot \mu F$

$$C2 = 3.383 \cdot \mu F$$

 $L2 = 2 \cdot L1$ $C2 = 2 \cdot C1$

Визначити символічним методом (за допомогою комплексних чисел) параметри вихідної напруги $u_v(t)=U_{vm}\sin(2\pi f+\psi)$:

- амплітудне значення $U_{ym} = _{m} mV$;
- діюче (середнє квадратичне) значення $U_v = U_{vm} / \sqrt{2} = mV$;
- початкова фаза $\psi = \text{radian};$
- початкова фаза $\psi = _{deg}$.

Тест 05 3

- 1. Визначити операторні опори всіх елементів
- 2.Побудувати операторну еквівалентну схему заданого кола
- 3.Вважаючи, що зображення вхідного сигналу $U_x(s)$ задане, визначити:
 - зображення вихідної напруги $U_{\nu}(s)$;
 - зображення напруги на ємнісному елементі $U_{Cl}(s)$
 - зображення струму в індуктивному елементі $I_{L1}(s)$
- 4.За знайденими зображеннями $U_y(s)$, $U_{Cl}(s)$, $I_{Ll}(s)$ і визначити операторні передавальні функції:

$$K_{y}(s) = \frac{U_{y}(s)}{U_{x}(s)}, K_{UC}(s) = \frac{U_{C1}(s)}{U_{x}(s)}, G_{IL}(s) = \frac{I_{L1}(s)}{U_{x}(s)}$$

$$L^{-1}\left[\frac{K_{y}(s)}{s}\right]$$
, $h_{UC}(t)=L^{-1}\left[\frac{K_{UC}(s)}{s}\right]$, $h_{IL}(t)=L^{-1}\left[\frac{G_{IL}(s)}{s}\right]$, для чого: визначити і обчислити корені знаменника p_1,p_2 , p_3 ;

- знайти похідну від знаменника по s;
- підставити значення коренів у чисельник і похідну від знаменника і обчислити значення коефіцієнтів перехідних характеристик:
 - h_{1y} , h_{2y} , h_{3y} перехідної характеристики $h_y(t)$;
 - h_{1UC} , h_{2UC} , h_{3UC} перехідної характеристики $h_{UC}(t)$;
 - h_{1IL}, h_{2IL} , h_{3IL} перехідної характеристики $h_{IL}(t)$
- 6.Записати вирази для $h_y(t)$, $h_{UC}(t)$, $h_{IL}(t)$

Тест 06_1

Визначити методом вузлових потенціалів такі величини:

- власні провідності вузлів 1, 2, 3 G_{11} = , G_{22} = , G_{33} = ;
- взаємні провідності до вузла 1 G_{12} = , G_{13} = ;
- вузлові струми J_{11} = , J_{22} = , J_{33} = ;
- значення визначника власних і взаємних провідностей |∆G|= ;
- передавальні опори до вузла 1 R_{11} = , R_{12} = , R_{13} = ;
- часткові вузлові потенціали вузла 1 V11= , V12= , V13= ;
- вузловий потенціал вузла 1 V₁₁=

Тест 06_2

Визначити символічним методом (за допомогою комплексних чисел) параметри вихідної напруги $u_v(t) = U_{vm} sin(2\pi f + \psi)$:

- амплітудне значення $U_{vm} = mV$;
- діюче (середнє квадратичне) значення $U_y = U_{ym} / \sqrt{2} = ___ mV;$
- початкова фаза $\psi = \underline{\hspace{0.1cm}}$ radian;
- початкова фаза $\psi = _{deg}$.

Тест 06_3

- 1. Визначити операторні опори всіх елементів
- 2.Побудувати операторну еквівалентну схему заданого кола
- 3.Вважаючи, що зображення вхідного сигналу $U_x(s)$ задане, визначити:
 - зображення вихідної напруги $U_{\nu}(s)$;
 - зображення напруги на ємнісному елементі $U_{Cl}(s)$
 - зображення струму в індуктивному елементі $I_{L1}(s)$
- 4.За знайденими зображеннями $U_{\nu}(s)$, $U_{CI}(s)$, $I_{LI}(s)$ і визначити операторні передавальні функції:

$$K_{y}(s) = \frac{U_{y}(s)}{U_{x}(s)}, K_{UC}(s) = \frac{U_{C1}(s)}{U_{x}(s)}, G_{IL}(s) = \frac{I_{L1}(s)}{U_{x}(s)}$$

$$L^{-1}\left[\frac{K_{\mathcal{Y}}(s)}{s}\right]\!,\,h_{UC}(t)=L^{-1}\left[\frac{K_{UC}(s)}{s}\right]\!,h_{IL}(t)=L^{-1}\left[\frac{G_{IL}(s)}{s}\right]\!,$$
 для чого:

- визначити і обчислити корені знаменника p_1, p_2, p_3 ;
- знайти похідну від знаменника по s;
- підставити значення коренів у чисельник і похідну від знаменника і обчислити значення коефіцієнтів перехідних характеристик:
 - h_{1y} , h_{2y} , h_{3y} перехідної характеристики $h_y(t)$;
 - h_{1UC} , h_{2UC} , h_{3UC} перехідної характеристики $h_{UC}(t)$;
 - h_{1IL} , h_{2IL} , h_{3IL} перехідної характеристики $h_{IL}(t)$
- 6.Записати вирази для $h_y(t)$, $h_{UC}(t)$, $h_{IL}(t)$

Тест 07_1

$$R1 = 32$$
 Ω $R2 = 43$ Ω $R3 = 54$ Ω $R4 = 65$ Ω $R5 = 76$ Ω $R6 = 87$ Ω

E1 = 11 V
$$J_1 = 8 \times 10^{-3}$$
 A

Визначити методом вузлових потенціалів такі величини:

- власні провідності вузлів 1, 2, 3 G_{11} = , G_{22} =
- взаємні провідності до вузла 1 $G_{12}=$, $G_{13}=$;
- вузлові струми J_{11} = $, J_{22} =$
- значення визначника власних і взаємних провідностей $|\Delta G|$ = ;
- передавальні опори до вузла 1 $R_{11}=$, $R_{12}=$, $R_{13}=$; часткові вузлові потенціали вузла 1 V11= , V12= , V13= ;
- вузловий потенціал вузла 1 V₁₁=

Тест 07 2

$$\begin{aligned} &R1 = 21 \cdot \Omega & R2 = 32 \cdot \Omega \\ &R3 = 43 \cdot \Omega & R4 = 54 \cdot \Omega \\ &i_{L1}(t) = I_{L1m} \cdot sin \left(2 \cdot \pi \cdot f_x + \psi_x\right) \\ &I_{L1m} = 6 \cdot mA & f_x = 3.038 \times 10^3 \cdot Hz \\ &\psi_x = 0.785 & \psi_x = 45 \cdot deg \end{aligned}$$

$$\mbox{L1} = 1.1 \cdot \mbox{mH} \qquad \mbox{L2} = 2.2 \cdot \mbox{mH} \quad \mbox{C1} = 1.637 \cdot \mbox{μF} \qquad \mbox{C2} = 3.274 \cdot \mbox{μF}$$

$$C2 = 3.274 \cdot \mu F$$

 $L2 = 2 \cdot L1$ $C2 = 2 \cdot C1$

Визначити символічним методом (за допомогою комплексних чисел) параметри вихідної напруги $u_y(t)=U_{ym}\sin(2\pi f+\psi)$:

- амплітудне значення $U_{vm} = _{m} mV$;
- діюче (середнє квадратичне) значення $U_v = U_{vm} / \sqrt{2} = mV$;
- початкова фаза $\psi = \underline{\hspace{0.1cm}}$ radian;
- початкова фаза $\psi = \deg$.

Тест 07_3

- 1.Визначити операторні опори всіх елементів
- 2.Побудувати операторну еквівалентну схему заданого кола
- 3. Вважаючи, що зображення вхідного сигналу $U_x(s)$ задане, визначити:
 - зображення вихідної напруги $U_{\nu}(s)$;
 - зображення напруги на ємнісному елементі $U_{Cl}(s)$
 - зображення струму в індуктивному елементі $I_{L1}(s)$
- 4.За знайденими зображеннями $U_{y}(s)$, $U_{CI}(s)$, $I_{LI}(s)$ і визначити операторні передавальні функції:

$$K_{y}(s) = \frac{U_{y}(s)}{U_{x}(s)}, K_{UC}(s) = \frac{U_{C1}(s)}{U_{x}(s)}, G_{IL}(s) = \frac{I_{L1}(s)}{U_{x}(s)}$$

$$L^{-1}\left[rac{K_{\mathcal{Y}}(s)}{s}
ight]$$
, $h_{UC}(t)=L^{-1}\left[rac{K_{UC}(s)}{s}
ight]$, $h_{IL}(t)=L^{-1}\left[rac{G_{IL}(s)}{s}
ight]$, для чого:

- визначити і обчислити корені знаменника p_1, p_2, p_3 ;
- знайти похідну від знаменника по s;
- підставити значення коренів у чисельник і похідну від знаменника і обчислити значення коефіцієнтів перехідних характеристик:
 - h_{1y} , h_{2y} , h_{3y} перехідної характеристики $h_y(t)$;
 - h_{1UC} , h_{2UC} , h_{3UC} перехідної характеристики $h_{UC}(t)$;
 - h_{1IL} , h_{2IL} , h_{3IL} перехідної характеристики $h_{IL}(t)$
- 6.Записати вирази для $h_{v}(t)$, $h_{UC}(t)$, $h_{IL}(t)$

Тест 08_1

R1 = 34
$$\Omega$$
 R2 = 46 Ω R3 = 58 Ω
R4 = 70 Ω R5 = 82 Ω R6 = 94 Ω
E1 = 12 V $J_1 = 9 \times 10^{-3}$ A

Визначити методом вузлових потенціалів такі величини:

- власні провідності вузлів 1, 2, 3 G_{11} = , G_{22} = , G_{33} = ;
- взаємні провідності до вузла 1 G_{12} = , G_{13} = ;
- \blacksquare вузлові струми $J_{11}=$, $J_{22}=$, $J_{33}=$;
- значення визначника власних і взаємних провідностей |∆G|= ;
- передавальні опори до вузла 1 R_{11} = , R_{12} = , R_{13} = ;
- часткові вузлові потенціали вузла 1 V11= , V12= , V13= ;
- вузловий потенціал вузла 1 V₁₁=

Тест 08_2

Визначити символічним методом (за допомогою комплексних чисел) параметри вихідної напруги $u_v(t) = U_{vm} sin(2\pi f + \psi)$:

- амплітудне значення $U_{ym} = _{__} mV;$
- діюче (середнє квадратичне) значення $U_y = U_{ym} / \sqrt{2} = ___ mV;$
- початкова фаза $\psi = \text{radian};$
- початкова фаза $\psi = _{deg}$.

Тест 08_3

$$R1 = 29 \Omega$$
 $R2 := 2 \cdot R1$ $R3 := 3 \cdot R1$

$$R4 := 4 \cdot R1$$
 $R5 := R1$ $R6 := 6 \cdot R1$

$$L1 = 0.095 \cdot mH$$
 $C1 = 9.224 \cdot nF$

- 1.Визначити операторні опори всіх елементів
- 2.Побудувати операторну еквівалентну схему заданого кола
- 3. Вважаючи, що зображення вхідного сигналу $U_x(s)$ задане, визначити:
 - зображення вихідної напруги $U_{\nu}(s)$;
 - зображення напруги на ємнісному елементі $U_{Cl}(s)$
 - зображення струму в індуктивному елементі $I_{L1}(s)$
- 4.За знайденими зображеннями $U_{y}(s)$, $U_{CI}(s)$, $I_{LI}(s)$ і визначити операторні передавальні функції:

$$K_y(s) = \frac{U_y(s)}{U_x(s)}, K_{UC}(s) = \frac{U_{C1}(s)}{U_x(s)}, G_{IL}(s) = \frac{I_{L1}(s)}{U_x(s)}$$

$$L^{-1}\left[rac{K_{\mathcal{Y}}(s)}{s}
ight], h_{UC}(t) = L^{-1}\left[rac{K_{UC}(s)}{s}
ight], h_{IL}(t) = L^{-1}\left[rac{G_{IL}(s)}{s}
ight],$$
 для чого:

- визначити і обчислити корені знаменника p_1, p_2, p_3 ;
- знайти похідну від знаменника по s;
- підставити значення коренів у чисельник і похідну від знаменника і обчислити значення коефіцієнтів перехідних характеристик:
 - $h_{1\nu}$, $h_{2\nu}$, $h_{3\nu}$ перехідної характеристики $h_{\nu}(t)$;
 - h_{1UC} , h_{2UC} , h_{3UC} перехідної характеристики $h_{UC}(t)$;
 - h_{1IL} , h_{2IL} , h_{3IL} перехідної характеристики $h_{IL}(t)$
- 6. Записати вирази для $h_{v}(t)$, $h_{UC}(t)$, $h_{IL}(t)$

Тест 09_1

R1 = 36
$$\Omega$$
 R2 = 49 Ω R3 = 62 Ω R4 = 75 Ω R5 = 88 Ω R6 = 101 Ω E1 = 13 V $J_1 = 0.01$ A

Визначити методом вузлових потенціалів такі величини:

- власні провідності вузлів 1, 2, 3 G_{11} = , G_{22} = $, G_{33} =$
- взаємні провідності до вузла 1 G_{12} = , G_{13} = ;
- вузлові струми J_{11} = $J_{22}=$ $, J_{33} = ;$
- значення визначника власних і взаємних провідностей $|\Delta G|$ = ;
- передавальні опори до вузла 1 R_{11} = , R_{12} = , R_{13} =
- часткові вузлові потенціали вузла 1 V11= , V12= , V13= ;
- вузловий потенціал вузла 1 V₁₁=

Тест 09 2

R1 = 23 ·
$$\Omega$$
 R2 = 36 · Ω
R3 = 49 · Ω R4 = 62 · Ω
 $i_{L1}(t) = I_{L1m} \cdot \sin(2 \cdot \pi \cdot f_x + \psi_x)$

$$I_{L1m} = 8 \cdot mA \qquad \quad \mathbf{f}_x = 2.816 \times 10^3 \cdot \, \text{Hz}$$

$$\psi_x = 1.047 \qquad \quad \psi_x = 60 \, \cdot \, \text{deg}$$

$$\text{L1} = \text{1.3} \cdot \text{mH} \qquad \text{L2} = \text{2.6} \cdot \text{mH} \quad \text{C1} = \text{1.57} \cdot \mu \text{F} \qquad \text{C2} = \text{3.14} \cdot \mu \text{F}$$

$$L2 = 2 \cdot L1$$
 $C2 = 2 \cdot C1$

Визначити символічним методом (за допомогою комплексних чисел) параметри вихідної напруги $u_y(t)=U_{ym}\sin(2\pi f+\psi)$:

- амплітудне значення U_{ym}=___ mV;
- діюче (середнє квадратичне) значення $U_v = U_{vm} / \sqrt{2} =_{_} mV$;
- початкова фаза $\psi = \underline{\hspace{0.1cm}}$ radian;
- початкова фаза $\psi = _{deg}$.

Тест 09_3

$$R1 = 31 \Omega$$
 $R2 := 2 \cdot R1$ $R3 := 3 \cdot R1$

$$R4 := 4 \cdot R1$$
 $R5 := R1$ $R6 := 6 \cdot R1$

$$L1 = 0.11 \cdot mH$$
 $C1 = 7.131 \cdot nF$

- 1. Визначити операторні опори всіх елементів
- 2.Побудувати операторну еквівалентну схему заданого кола
- 3.Вважаючи, що зображення вхідного сигналу $U_x(s)$ задане, визначити:
 - зображення вихідної напруги $U_{\nu}(s)$;
 - зображення напруги на ємнісному елементі $U_{Cl}(s)$
 - зображення струму в індуктивному елементі $I_{L1}(s)$
- 4.За знайденими зображеннями $U_y(s)$, $U_{CI}(s)$, $I_{LI}(s)$ і визначити операторні передавальні функції:

$$K_{y}(s) = \frac{U_{y}(s)}{U_{x}(s)}, K_{UC}(s) = \frac{U_{C1}(s)}{U_{x}(s)}, G_{IL}(s) = \frac{I_{L1}(s)}{U_{x}(s)}$$

$$L^{-1}\left[\frac{K_{\mathcal{Y}}(s)}{s}\right], h_{UC}(t) = L^{-1}\left[\frac{K_{UC}(s)}{s}\right], h_{IL}(t) = L^{-1}\left[\frac{G_{IL}(s)}{s}\right],$$
 для чого:

визначити і обчислити корені знаменника p_1, p_2 , p_3 ;

- знайти похідну від знаменника по s;
- підставити значення коренів у чисельник і похідну від знаменника і обчислити значення коефіцієнтів перехідних характеристик:
 - h_{1y} , h_{2y} , h_{3y} перехідної характеристики $h_y(t)$;
 - h_{1UC} , h_{2UC} , h_{3UC} перехідної характеристики $h_{UC}(t)$;
 - h_{1IL} , h_{2IL} , h_{3IL} перехідної характеристики $h_{IL}(t)$
- 6.Записати вирази для $h_{v}(t)$, $h_{UC}(t)$, $h_{IL}(t)$

Тест 10_1

$$R1 = 38$$
 Ω $R2 = 52$ Ω $R3 = 66$ Ω $R4 = 80$ Ω $R5 = 94$ Ω $R6 = 108$ Ω Ω Ω Ω Ω Ω Ω

Визначити методом вузлових потенціалів такі величини:

- власні провідності вузлів 1, 2, 3 G_{11} = , G_{22} = , G_{33} = ;
- взаємні провідності до вузла 1 G_{12} = , G_{13} =
- вузлові струми J_{11} = , J_{22} = , J_{33} = ;
- значення визначника власних і взаємних провідностей |∆G|= ;
- передавальні опори до вузла 1 R_{11} = , R_{12} = , R_{13} = ;
- часткові вузлові потенціали вузла 1 V11= , V12= , V13= ;
- вузловий потенціал вузла 1 V₁₁=

Тест 10_2

Визначити символічним методом (за допомогою комплексних чисел) параметри вихідної напруги $u_v(t) = U_{vm} sin(2\pi f + \psi)$:

- амплітудне значення $U_{ym} = _{m} mV$;
- діюче (середнє квадратичне) значення $U_y = U_{ym} / \sqrt{2} = ___m mV$;
- початкова фаза $\psi = \text{radian};$
- початкова фаза $\psi = _{deg}$.

Тест 10_3

- 1. Визначити операторні опори всіх елементів
- 2.Побудувати операторну еквівалентну схему заданого кола
- 3.Вважаючи, що зображення вхідного сигналу $U_x(s)$ задане, визначити:
 - зображення вихідної напруги $U_{\nu}(s)$;
 - зображення напруги на ємнісному елементі $U_{Cl}(s)$
 - зображення струму в індуктивному елементі $I_{L1}(s)$
- 4.За знайденими зображеннями $U_y(s)$, $U_{CI}(s)$, $I_{LI}(s)$ і визначити операторні передавальні функції:

$$K_y(s) = \frac{U_y(s)}{U_x(s)}, K_{UC}(s) = \frac{U_{C1}(s)}{U_x(s)}, G_{IL}(s) = \frac{I_{L1}(s)}{U_x(s)}$$

$$L^{-1}\left[rac{K_{\mathcal{Y}}(s)}{s}
ight]$$
, $h_{UC}(t)=L^{-1}\left[rac{K_{UC}(s)}{s}
ight]$, $h_{IL}(t)=L^{-1}\left[rac{G_{IL}(s)}{s}
ight]$, для чого:

- визначити і обчислити корені знаменника p_1, p_2, p_3 ;
- знайти похідну від знаменника по s;
- підставити значення коренів у чисельник і похідну від знаменника і обчислити значення коефіцієнтів перехідних характеристик:
 - h_{1v} , h_{2v} , h_{3v} перехідної характеристики $h_v(t)$;
 - h_{1UC} , h_{2UC} , h_{3UC} перехідної характеристики $h_{UC}(t)$;
 - h_{1IL} , h_{2IL} , h_{3IL} перехідної характеристики $h_{IL}(t)$
- 6. Записати вирази для $h_{v}(t)$, $h_{UC}(t)$, $h_{IL}(t)$

Тест 11_1

Визначити методом вузлових потенціалів такі величини:

- власні провідності вузлів 1, 2, 3 G_{11} = , G_{22} = , G_{33} = ;
- взаємні провідності до вузла 1 G_{12} = , G_{13} =
- \blacksquare вузлові струми $J_{11}=$, $J_{22}=$, $J_{33}=$;
- значення визначника власних і взаємних провідностей |∆G|= ;
- передавальні опори до вузла 1 R_{11} = , R_{12} = , R_{13} = ;
- часткові вузлові потенціали вузла 1 V11= , V12= , V13= ;
- вузловий потенціал вузла 1 V₁₁=

Тест 11_2

Визначити символічним методом (за допомогою комплексних чисел) параметри вихідної напруги $u_y(t) = U_{ym} sin(2\pi f + \psi)$:

- амплітудне значення U_{уm}=___mV;
- діюче (середнє квадратичне) значення $U_v = U_{vm} / \sqrt{2} = mV$;
- початкова фаза $\psi =$ _radian;
- початкова фаза $\psi = _{deg}$.

Тест 11 3

$$R1 = 35\Omega$$
 $R2 := 2 \cdot R1$ $R3 := 3 \cdot R1$

$$R4 := 4 \cdot R1$$
 $R5 := R1$ $R6 := 6 \cdot R1$

$$L1 = 0.139 \cdot mH$$
 $C1 = 4.547 \cdot nF$

- 1. Визначити операторні опори всіх елементів
- 2.Побудувати операторну еквівалентну схему заданого кола
- 3.Вважаючи, що зображення вхідного сигналу $U_x(s)$ задане, визначити:
 - зображення вихідної напруги $U_y(s)$;
 - зображення напруги на ємнісному елементі $U_{CI}(s)$
 - зображення струму в індуктивному елементі $I_{Ll}(s)$
- 4.За знайденими зображеннями $U_{v}(s)$, $U_{CI}(s)$, $I_{LI}(s)$ і визначити операторні передавальні функції:

$$K_{y}(s) = \frac{U_{y}(s)}{U_{x}(s)}, K_{UC}(s) = \frac{U_{C1}(s)}{U_{x}(s)}, G_{IL}(s) = \frac{I_{L1}(s)}{U_{x}(s)}$$

$$L^{-1}\left[\frac{K_{\mathcal{Y}}(s)}{s}\right]\!,\,h_{UC}(t)=L^{-1}\left[\frac{K_{UC}(s)}{s}\right]\!,\!h_{IL}(t)=L^{-1}\left[\frac{G_{IL}(s)}{s}\right]\!,$$
 для чого:

- визначити і обчислити корені знаменника p_1, p_2, p_3 ;
- знайти похідну від знаменника по s;
- підставити значення коренів у чисельник і похідну від знаменника і обчислити значення коефіцієнтів перехідних характеристик:
 - h_{1y} , h_{2y} , h_{3y} перехідної характеристики $h_y(t)$;
 - h_{1UC} , h_{2UC} , h_{3UC} перехідної характеристики $h_{UC}(t)$;
 - h_{1IL} , h_{2IL} , h_{3IL} перехідної характеристики $h_{IL}(t)$
- 6.Записати вирази для $h_y(t)$, $h_{UC}(t)$, $h_{IL}(t)$

Тест 12_1

R1 = 32
$$\Omega$$
 R2 = 38 Ω R3 = 44 Ω
R4 = 50 Ω R5 = 56 Ω R6 = 62 Ω
E1 = 12 V $J_1 = 6 \times 10^{-3}$ A

Визначити методом вузлових потенціалів такі величини:

- власні провідності вузлів 1, 2, 3 G_{11} = $, G_{22} =$
- взаємні провідності до вузла 1 G_{12} = , G_{13} =
- вузлові струми J_{11} = $, J_{22} =$ $, J_{33} =$
- значення визначника власних і взаємних провідностей $|\Delta G|$;
- передавальні опори до вузла 1 R_{11} = , R_{12} = , R_{13} =
- часткові вузлові потенціали вузла 1 V11= $\,$, V12= $\,$, V13= $\,$;
- вузловий потенціал вузла 1 V₁₁=

Тест12_2

$$\begin{aligned} &R1 = 26 \cdot \Omega & R2 = 32 \cdot \Omega \\ &R3 = 38 \cdot \Omega & R4 = 44 \cdot \Omega \\ &i_{L1}(t) \equiv I_{L1m} \cdot \sin(2 \cdot \pi \cdot f_x + \psi_x) \\ &I_{L1m} = 2 \cdot mA & f_x = 6.897 \times 10^3 \cdot Hz \end{aligned}$$

$$\psi_{x} = 0.131 \qquad \psi_{x} = 7.5 \cdot deg$$

$$L1 = 0.6 \cdot mH \qquad L2 = 1.2 \cdot mH \quad C1 = 0.721 \cdot \mu F \qquad C2 = 1.442 \cdot \mu F$$

$$C2 = 1.442 \cdot \mu F$$

Визначити символічним методом (за допомогою комплексних чисел) параметри вихідної напруги $u_v(t)=U_{vm}\sin(2\pi f+\psi)$:

- амплітудне значення U_{vm}=___mV;
- діюче (середнє квадратичне) значення $U_y = U_{ym} / \sqrt{2} = ___ mV;$
- початкова фаза $\psi =$ _radian;
- початкова фаза ψ = __deg.

$$R1 = 17\Omega$$
 $R2 := 2 \cdot R1$ $R3 := 3 \cdot R1$

$$R4 := 4 \cdot R1$$
 $R5 := R1$ $R6 := 6 \cdot R1$

$$L1 = 0.012 \cdot mH$$
 $C1 = 170.219 \cdot nF$

- 1. Визначити операторні опори всіх елементів
- 2.Побудувати операторну еквівалентну схему заданого кола
- 3.Вважаючи, що зображення вхідного сигналу $U_x(s)$ задане, визначити:
 - зображення вихідної напруги $U_{\nu}(s)$;
 - зображення напруги на ємнісному елементі $U_{Cl}(s)$
 - зображення струму в індуктивному елементі $I_{L1}(s)$
- 4.За знайденими зображеннями $U_y(s)$, $U_{Cl}(s)$, $I_{Ll}(s)$ і визначити операторні передавальні функції:

$$K_{y}(s) = \frac{U_{y}(s)}{U_{x}(s)}, K_{UC}(s) = \frac{U_{C1}(s)}{U_{x}(s)}, G_{IL}(s) = \frac{I_{L1}(s)}{U_{x}(s)}$$

$$L^{-1}\left[\frac{K_{\mathcal{Y}}(s)}{s}\right]$$
, $h_{UC}(t)=L^{-1}\left[\frac{K_{UC}(s)}{s}\right]$, $h_{IL}(t)=L^{-1}\left[\frac{G_{IL}(s)}{s}\right]$, для чого: визначити і обчислити корені знаменника p_1,p_2 , p_3 ;

- знайти похідну від знаменника по s;
- підставити значення коренів у чисельник і похідну від знаменника і обчислити значення коефіцієнтів перехідних характеристик:
 - h_{1y} , h_{2y} , h_{3y} перехідної характеристики $h_v(t)$;
 - h_{1UC} , h_{2UC} , h_{3UC} перехідної характеристики $h_{UC}(t)$;
 - h_{1IL}, h_{2IL} , h_{3IL} перехідної характеристики $h_{IL}(t)$
- 6.Записати вирази для $h_{y}(t)$, $h_{UC}(t)$, $h_{IL}(t)$

Тест 13_1

R1 = 34
$$\Omega$$
 R2 = 41 Ω R3 = 48 Ω
R4 = 55 Ω R5 = 62 Ω R6 = 69 Ω
E1 = 14 V $J_1 = 8 \times 10^{-3}$ A

Визначити методом вузлових потенціалів такі величини:

- власні провідності вузлів 1, 2, 3 G₁₁= , G₂₂= , G₃₃= ;
- взаємні провідності до вузла 1 G_{12} , G_{13} ;
- вузлові струми J_{11} = , J_{22} = , J_{33} = ;
- значення визначника власних і взаємних провідностей $|\Delta G| =$;
- передавальні опори до вузла 1 R_{11} = , R_{12} = , R_{13} = ;
- часткові вузлові потенціали вузла 1 V11= , V12= , V13= ;
- вузловий потенціал вузла 1 V₁₁=

Тест 13 2

$$\begin{array}{lll} R1 = 27 \cdot \Omega & R2 = 34 \cdot \Omega \\ R3 = 41 \cdot \Omega & R4 = 48 \cdot \Omega \\ \\ i_{L1}(t) \equiv I_{L1m} \cdot \sin \left(2 \cdot \pi \cdot f_x + \psi_x\right) & \\ I_{L1m} = 4 \cdot mA & f_x = 6.139 \times 10^3 \cdot Hz & \\ \psi_x = 0.262 & \psi_x = 15 \cdot deg & \\ \\ L1 = 0.7 \cdot mH & L2 = 1.4 \cdot mH & C1 = 0.763 \cdot \mu F \end{array}$$

L1 =
$$0.7 \cdot mH$$
 L2 = $1.4 \cdot mH$ C1 = $0.763 \cdot \mu F$ C2 = $1.525 \cdot \mu F$
L2 = $2 \cdot L1$ C2 = $2 \cdot C1$

Визначити символічним методом (за допомогою комплексних чисел) параметри вихідної напруги $u_v(t) = U_{vm} sin(2\pi f + \psi)$:

- амплітудне значення $U_{ym} = _{m} mV$;
- діюче (середнє квадратичне) значення $U_y = U_{ym} / \sqrt{2} = ___ mV$;
- початкова фаза $\psi = \text{radian};$
- початкова фаза $\psi = _{deg}$.

Тест 13_3

- 1. Визначити операторні опори всіх елементів
- 2.Побудувати операторну еквівалентну схему заданого кола
- 3.Вважаючи, що зображення вхідного сигналу $U_x(s)$ задане, визначити:
 - зображення вихідної напруги $U_{\nu}(s)$;
 - зображення напруги на ємнісному елементі $U_{Cl}(s)$
 - зображення струму в індуктивному елементі $I_{L1}(s)$
- 4.За знайденими зображеннями $U_y(s)$, $U_{CI}(s)$, $I_{LI}(s)$ і визначити операторні передавальні функції:

$$K_{y}(s) = \frac{U_{y}(s)}{U_{x}(s)}, K_{UC}(s) = \frac{U_{C1}(s)}{U_{x}(s)}, G_{IL}(s) = \frac{I_{L1}(s)}{U_{x}(s)}$$

$$L^{-1}\left[\frac{K_{y}(s)}{s}\right]$$
, $h_{UC}(t)=L^{-1}\left[\frac{K_{UC}(s)}{s}\right]$, $h_{IL}(t)=L^{-1}\left[\frac{G_{IL}(s)}{s}\right]$, для чого:

- визначити і обчислити корені знаменника p_1, p_2, p_3 ;
- знайти похідну від знаменника по s;
- підставити значення коренів у чисельник і похідну від знаменника і обчислити значення коефіцієнтів перехідних характеристик:
 - $h_{1\nu}$, $h_{2\nu}$, $h_{3\nu}$ перехідної характеристики $h_{\nu}(t)$;
 - h_{1UC} , h_{2UC} , h_{3UC} перехідної характеристики $h_{UC}(t)$;
 - h_{1IL} , h_{2IL} , h_{3IL} перехідної характеристики $h_{IL}(t)$
- 6.Записати вирази для $h_y(t)$, $h_{UC}(t)$, $h_{IL}(t)$

Тест 14_1

$$R1 = 36$$
 Ω $R2 = 44$ Ω $R3 = 52$ Ω $R4 = 60$ Ω $R5 = 68$ Ω $R6 = 76$ Ω $E1 = 16$ V $J_1 = 0.01$ A

Визначити методом вузлових потенціалів такі величини:

- власні провідності вузлів 1, 2, 3 G_{11} =
- взаємні провідності до вузла 1 G_{12} = $, G_{13}=$
- вузлові струми J_{11} = $J_{22}=$ $J_{33}=$
- значення визначника власних і взаємних провідностей | ΔG |= ;
- передавальні опори до вузла 1 R_{11} = , R_{12} = , R_{13} =
- часткові вузлові потенціали вузла 1 V11= $^{\circ}$, V12= $^{\circ}$, V13= $^{\circ}$;
- вузловий потенціал вузла 1 V₁₁=

Тест 14 2

$$\begin{split} R1 &= 28 \cdot \Omega & R2 &= 36 \cdot \Omega \\ R3 &= 44 \cdot \Omega & R4 &= 52 \cdot \Omega \\ i_{L1}(t) &= I_{L1m} \cdot sin \Big(2 \cdot \pi \cdot f_x + \psi_x \Big) \\ I_{L1m} &= 6 \cdot mA & f_x &= 5.57 \times 10^3 \cdot Hz \\ \psi_x &= 0.393 & \psi_x &= 22.5 \cdot deg \end{split}$$

$$L1 = 0.8 \, \cdot \, mH \qquad L2 = 1.6 \, \cdot \, mH \quad C1 = 0.794 \, \cdot \, \mu F \qquad \qquad C2 = 1.587 \, \cdot \, \mu F$$

$$C2 = 1.587 \cdot \mu F$$

Визначити символічним методом (за допомогою комплексних чисел) параметри вихідної напруги $u_v(t)=U_{vm}\sin(2\pi f+\psi)$:

- амплітудне значення $U_{vm} = mV$;
- діюче (середнє квадратичне) значення $U_y = U_{ym} / \sqrt{2} = ___ mV$;
- початкова фаза $\psi = \text{radian};$
- початкова фаза $\psi = _{deg}$.

Тест 14 3

- 1. Визначити операторні опори всіх елементів
- 2.Побудувати операторну еквівалентну схему заданого кола
- 3.Вважаючи, що зображення вхідного сигналу $U_x(s)$ задане, визначити:
 - зображення вихідної напруги $U_{\nu}(s)$;
 - зображення напруги на ємнісному елементі $U_{Cl}(s)$
 - зображення струму в індуктивному елементі $I_{L1}(s)$
- 4.За знайденими зображеннями $U_y(s)$, $U_{Cl}(s)$, $I_{Ll}(s)$ і визначити операторні передавальні функції:

$$K_{y}(s) = \frac{U_{y}(s)}{U_{x}(s)}, K_{UC}(s) = \frac{U_{C1}(s)}{U_{x}(s)}, G_{IL}(s) = \frac{I_{L1}(s)}{U_{x}(s)}$$

$$L^{-1}\left[\frac{K_{y}(s)}{s}\right]$$
, $h_{UC}(t)=L^{-1}\left[\frac{K_{UC}(s)}{s}\right]$, $h_{IL}(t)=L^{-1}\left[\frac{G_{IL}(s)}{s}\right]$, для чого: визначити і обчислити корені знаменника p_1,p_2 , p_3 ;

- знайти похідну від знаменника по s;
- підставити значення коренів у чисельник і похідну від знаменника і обчислити значення коефіцієнтів перехідних характеристик:
 - h_{1y} , h_{2y} , h_{3y} перехідної характеристики $h_v(t)$;
 - h_{1UC} , h_{2UC} , h_{3UC} перехідної характеристики $h_{UC}(t)$;
 - h_{1IL}, h_{2IL} , h_{3IL} перехідної характеристики $h_{IL}(t)$
- 6.Записати вирази для $h_y(t)$, $h_{UC}(t)$, $h_{IL}(t)$

Тест 15_1

R1 = 38
$$\Omega$$
 R2 = 47 Ω R3 = 56 Ω
R4 = 65 Ω R5 = 74 Ω R6 = 83 Ω
E1 = 18 V $J_1 = 0.012$ A

Визначити методом вузлових потенціалів такі величини:

- власні провідності вузлів 1, 2, 3 G_{11} = , G_{22} =
- взаємні провідності до вузла 1 G_{12} = $, G_{13} = ;$
- $, J_{33}=$ вузлові струми J_{11} = $, J_{22} =$
- значення визначника власних і взаємних провідностей |ΔG|= ;
- передавальні опори до вузла 1 R_{11} = , R_{12} = , R_{13} =
- часткові вузлові потенціали вузла 1 V11= , V12= , V13= ;
- вузловий потенціал вузла 1 V₁₁=

Тест 15 2

$$\begin{aligned} &R1 = 29 \cdot \Omega & R2 = 38 \cdot \Omega \\ &R3 = 47 \cdot \Omega & R4 = 56 \cdot \Omega \end{aligned}$$

$$i_{L1}(t) = I_{L1m} \cdot \sin(2 \cdot \pi \cdot f_x + \psi_x)$$

$$I_{L1m} = 8 \cdot mA & f_x = 5.128 \times 10^3 \cdot Hz$$

$$\psi_x = 0.524 & \psi_x = 30 \cdot deg$$

$$L1 = 0.9 \cdot mH \qquad L2 = 1.8 \cdot mH \quad C1 = 0.817 \cdot \mu F \qquad C2 = 1.633 \cdot \mu F$$

$$C2 = 1.633 \cdot \mu F$$

 $L2 = 2 \cdot L1$ $C2 = 2 \cdot C1$

Визначити символічним методом (за допомогою комплексних чисел) параметри вихідної напруги $u_y(t)=U_{ym}\sin(2\pi f+\psi)$:

- амплітудне значення $U_{vm} = mV$;
- діюче (середнє квадратичне) значення $U_v = U_{vm} / \sqrt{2} = mV$;
- початкова фаза $\psi =$ __radian;
- початкова фаза $\psi = _{deg}$.

Тест 15 3

- 1.Визначити операторні опори всіх елементів
- 2.Побудувати операторну еквівалентну схему заданого кола
- 3.Вважаючи, що зображення вхідного сигналу $U_x(s)$ задане, визначити:
 - зображення вихідної напруги $U_{\nu}(s)$;
 - зображення напруги на ємнісному елементі $U_{Cl}(s)$
 - зображення струму в індуктивному елементі $I_{L1}(s)$
- 4.За знайденими зображеннями $U_y(s)$, $U_{CI}(s)$, $I_{LI}(s)$ і визначити операторні передавальні функції:

$$K_{y}(s) = \frac{U_{y}(s)}{U_{x}(s)}, K_{UC}(s) = \frac{U_{C1}(s)}{U_{x}(s)}, G_{IL}(s) = \frac{I_{L1}(s)}{U_{x}(s)}$$

$$L^{-1}\left[rac{K_{\mathcal{Y}}(s)}{s}
ight]$$
, $h_{UC}(t)=L^{-1}\left[rac{K_{UC}(s)}{s}
ight]$, $h_{IL}(t)=L^{-1}\left[rac{G_{IL}(s)}{s}
ight]$, для чого:

- визначити і обчислити корені знаменника p_1, p_2, p_3 ;
- знайти похідну від знаменника по s;
- підставити значення коренів у чисельник і похідну від знаменника і обчислити значення коефіцієнтів перехідних характеристик:
 - h_{1v} , h_{2v} , h_{3v} перехідної характеристики $h_v(t)$;
 - h_{1UC} , h_{2UC} , h_{3UC} перехідної характеристики $h_{UC}(t)$;
 - h_{1IL} , h_{2IL} , h_{3IL} перехідної характеристики $h_{IL}(t)$
- 6.Записати вирази для $h_{v}(t)$, $h_{UC}(t)$, $h_{IL}(t)$

Тест 16_1

R1 = 40
$$\Omega$$
 R2 = 50 Ω R3 = 60 Ω
R4 = 70 Ω R5 = 80 Ω R6 = 90 Ω
E1 = 20 V J_1 = 0.014 A

Визначити методом вузлових потенціалів такі величини:

- власні провідності вузлів 1, 2, 3 G₁₁= , G₂₂= , G₃₃= ;
- взаємні провідності до вузла 1 G_{12} = , G_{13} =
- \blacksquare вузлові струми $J_{11}=$, $J_{22}=$, $J_{33}=$;
- значення визначника власних і взаємних провідностей |∆G|= ;
- передавальні опори до вузла 1 R_{11} = , R_{12} = , R_{13} = ;
- часткові вузлові потенціали вузла 1 V11= , V12= , V13= ;
- вузловий потенціал вузла 1 V₁₁=

Тест 16 2

$$\begin{aligned} &R1 = 30 \cdot \Omega & R2 = 40 \cdot \Omega \\ &R3 = 50 \cdot \Omega & R4 = 60 \cdot \Omega \end{aligned}$$

$$i_{L1}(t) = I_{L1m} \cdot \sin(2 \cdot \pi \cdot f_x + \psi_x)$$

$$I_{L1m} = 10 \cdot mA & f_x = 4.775 \times 10^3 \cdot Hz$$

$$\psi_x = 0.654 & \psi_x = 37.5 \cdot deg$$

$$\phi_{\mathbf{x}} = 0.054$$
 $\phi_{\mathbf{x}} = 57.5$ deg

$$L1 = 1 \cdot mH \qquad \qquad L2 = 2 \cdot mH$$

$$L2 = 2 \cdot mH$$
 $C1 = 0.833 \cdot \mu F$ $C2 = 1.667 \cdot \mu F$

Визначити символічним методом (за допомогою комплексних чисел) параметри вихідної напруги $u_v(t) = U_{vm} sin(2\pi f + \psi)$:

- амплітудне значення U_{ym}=___ mV;
- діюче (середнє квадратичне) значення $U_y = U_{ym} / \sqrt{2} = ___ mV$;
- початкова фаза $\psi = \text{radian};$
- початкова фаза $\psi = _{deg}$.

Тест 16_3

- 1.Визначити операторні опори всіх елементів
- 2.Побудувати операторну еквівалентну схему заданого кола
- 3.Вважаючи, що зображення вхідного сигналу $U_x(s)$ задане, визначити:
 - зображення вихідної напруги $U_{\nu}(s)$;
 - зображення напруги на ємнісному елементі $U_{Cl}(s)$
 - зображення струму в індуктивному елементі $I_{L1}(s)$
- 4.За знайденими зображеннями $U_y(s)$, $U_{CI}(s)$, $I_{LI}(s)$ і визначити операторні передавальні функції:

$$K_{y}(s) = \frac{U_{y}(s)}{U_{x}(s)}, K_{UC}(s) = \frac{U_{C1}(s)}{U_{x}(s)}, G_{IL}(s) = \frac{I_{L1}(s)}{U_{x}(s)}$$

$$L^{-1}\left[rac{K_{\mathcal{Y}}(s)}{s}
ight], h_{UC}(t) = L^{-1}\left[rac{K_{UC}(s)}{s}
ight], h_{IL}(t) = L^{-1}\left[rac{G_{IL}(s)}{s}
ight],$$
 для чого:

- визначити і обчислити корені знаменника p_1, p_2, p_3 ;
- знайти похідну від знаменника по s;
- підставити значення коренів у чисельник і похідну від знаменника і обчислити значення коефіцієнтів перехідних характеристик:
 - h_{1v} , h_{2v} , h_{3v} перехідної характеристики $h_v(t)$;
 - h_{1UC} , h_{2UC} , h_{3UC} перехідної характеристики $h_{UC}(t)$;
 - h_{1IL} , h_{2IL} , h_{3IL} перехідної характеристики $h_{IL}(t)$
- 6.Записати вирази для $h_{v}(t)$, $h_{UC}(t)$, $h_{IL}(t)$

Тест 17_1

R1 = 42
$$\Omega$$
 R2 = 53 Ω R3 = 64 Ω
R4 = 75 Ω R5 = 86 Ω R6 = 97 Ω

E1 = 22 V $J_1 = 0.016 \text{ A}$

Визначити методом вузлових потенціалів такі величини:

- власні провідності вузлів 1, 2, 3 G_{11} = , G_{22} = $, G_{33} = ;$
- $, G_{13} =$ взаємні провідності до вузла 1 G₁₂=
- вузлові струми J_{11} = $, J_{22} =$
- значення визначника власних і взаємних провідностей | ΔG |= ;
- передавальні опори до вузла 1 R_{11} = , R_{12} = , R_{13} =
- часткові вузлові потенціали вузла 1 V11= $\,$, V12= $\,$, V13= $\,$;
- вузловий потенціал вузла 1 V₁₁=

Тест 17 2

$$R1 = 31 \cdot \Omega \qquad R2 = 42 \cdot \Omega$$

$$R3 = 53 \cdot \Omega \qquad R4 = 64 \cdot \Omega$$

$$i_{L1}(t) = I_{L1m} \cdot sin(2 \cdot \pi \cdot f_x + \psi_x)$$

$$I_{L1m} = 12 \cdot mA$$
 $f_x = 4.485 \times 10^3 \cdot Hz$

$$\psi_x = 0.785 \qquad \psi_x = 45 \cdot deg$$

$$L1 = 1.1 \cdot mH$$
 $L2 = 2.2 \cdot mH$ $C1 = 0.845 \cdot \mu F$ $C2 = 1.69 \cdot \mu F$

$$C2 = 1.69 \cdot \mu F$$

$$L2 = 2 \cdot L1$$
 $C2 = 2 \cdot C1$

Визначити символічним методом (за допомогою комплексних чисел) параметри вихідної напруги $u_v(t)=U_{vm}\sin(2\pi f+\psi)$:

- амплітудне значення U_{ym}=___mV;
- діюче (середнє квадратичне) значення $U_y = U_{ym} / \sqrt{2} = ___ mV$;
- початкова фаза $\psi =$ __radian;
- початкова фаза $\Psi = \deg$.

- 1. Визначити операторні опори всіх елементів
- 2.Побудувати операторну еквівалентну схему заданого кола
- 3.Вважаючи, що зображення вхідного сигналу $U_x(s)$ задане, визначити:
 - зображення вихідної напруги $U_{\nu}(s)$;
 - зображення напруги на ємнісному елементі $U_{Cl}(s)$
 - зображення струму в індуктивному елементі $I_{L1}(s)$
- 4.За знайденими зображеннями $U_y(s)$, $U_{Cl}(s)$, $I_{Ll}(s)$ і визначити операторні передавальні функції:

$$K_{y}(s) = \frac{U_{y}(s)}{U_{x}(s)}, K_{UC}(s) = \frac{U_{C1}(s)}{U_{x}(s)}, G_{IL}(s) = \frac{I_{L1}(s)}{U_{x}(s)}$$

$$L^{-1}\left[\frac{K_{y}(s)}{s}\right]$$
, $h_{UC}(t)=L^{-1}\left[\frac{K_{UC}(s)}{s}\right]$, $h_{IL}(t)=L^{-1}\left[\frac{G_{IL}(s)}{s}\right]$, для чого: визначити і обчислити корені знаменника p_1,p_2 , p_3 ;

- знайти похідну від знаменника по s;
- підставити значення коренів у чисельник і похідну від знаменника і обчислити значення коефіцієнтів перехідних характеристик:
 - h_{1y} , h_{2y} , h_{3y} перехідної характеристики $h_y(t)$;
 - h_{1UC} , h_{2UC} , h_{3UC} перехідної характеристики $h_{UC}(t)$;
 - h_{1IL}, h_{2IL} , h_{3IL} перехідної характеристики $h_{IL}(t)$
- 6.Записати вирази для $h_y(t)$, $h_{UC}(t)$, $h_{IL}(t)$

Тест 18_1

R1 = 44
$$\Omega$$
 R2 = 56 Ω R3 = 68 Ω
R4 = 80 Ω R5 = 92 Ω R6 = 104 Ω

$$E1 = 24 \text{ V}$$
 $J_1 = 0.018 \text{ A}$

Визначити методом вузлових потенціалів такі величини:

- власні провідності вузлів 1, 2, 3 G_{11} = , G_{22} = , G_{33} = ;
- взаємні провідності до вузла 1 G_{12} = , G_{13} =
- вузлові струми J_{11} = , J_{22} = , J_{33} = ;
- значення визначника власних і взаємних провідностей |∆G|= ;
- передавальні опори до вузла 1 R_{11} = , R_{12} = , R_{13} = ;
- часткові вузлові потенціали вузла 1 V11= , V12= , V13= ;
- вузловий потенціал вузла 1 V₁₁=

Тест 18 2

$$R1 = 32 \cdot \Omega \qquad R2 = 44 \cdot \Omega$$

$$R3 = 56 \cdot \Omega \qquad R4 = 68 \cdot \Omega$$

$$\textbf{\textit{i}}_{L1}(t) = \textbf{\textit{I}}_{L1m} \cdot sin \big(2 \cdot \pi \cdot f_x + \psi_x \big)$$

$$I_{L1m} = 14 \cdot mA$$
 $f_x = 4.244 \times 10^3 \cdot Hz$
 $\psi_x = 0.916$ $\psi_x = 52.5 \cdot deg$

$$\psi_{\rm X} = 0.916 \qquad \psi_{\rm X} = 52.5 \cdot {\rm deg}$$

$$\text{L1} = \text{1.2} \cdot \text{mH} \qquad \text{L2} = \text{2.4} \cdot \text{mH} \quad \text{C1} = \text{0.852} \cdot \mu \text{F}$$

$$C2 = 1.705 \cdot \mu F$$

$$L2 = 2 \cdot L1$$
 $C2 = 2 \cdot C1$

Визначити символічним методом (за допомогою комплексних чисел) параметри вихідної напруги $u_y(t) = U_{ym} sin(2\pi f + \psi)$:

- амплітудне значення $U_{ym} = _{m} mV$;
- діюче (середнє квадратичне) значення $U_y = U_{ym} / \sqrt{2} = ___ mV;$
- початкова фаза $\psi = _{\text{radian}};$
- початкова фаза $\psi = \deg$.

Тест 18_3

- 1. Визначити операторні опори всіх елементів
- 2.Побудувати операторну еквівалентну схему заданого кола
- 3.Вважаючи, що зображення вхідного сигналу $U_x(s)$ задане, визначити:
 - зображення вихідної напруги $U_{\nu}(s)$;
 - зображення напруги на ємнісному елементі $U_{Cl}(s)$
 - зображення струму в індуктивному елементі $I_{L1}(s)$
- 4.За знайденими зображеннями $U_y(s)$, $U_{CI}(s)$, $I_{LI}(s)$ і визначити операторні передавальні функції:

$$K_{y}(s) = \frac{U_{y}(s)}{U_{x}(s)}, K_{UC}(s) = \frac{U_{C1}(s)}{U_{x}(s)}, G_{IL}(s) = \frac{I_{L1}(s)}{U_{x}(s)}$$

$$L^{-1}\left[\frac{K_{\mathcal{Y}}(s)}{s}\right]\!,\,h_{UC}(t)=L^{-1}\left[\frac{K_{UC}(s)}{s}\right]\!,h_{IL}(t)=L^{-1}\left[\frac{G_{IL}(s)}{s}\right]\!,$$
 для чого:

- визначити і обчислити корені знаменника p_1, p_2, p_3 ;
- знайти похідну від знаменника по s;
- підставити значення коренів у чисельник і похідну від знаменника і обчислити значення коефіцієнтів перехідних характеристик:
 - h_{1y} , h_{2y} , h_{3y} перехідної характеристики $h_y(t)$;
 - h_{1UC} , h_{2UC} , h_{3UC} перехідної характеристики $h_{UC}(t)$;
 - h_{1IL} , h_{2IL} , h_{3IL} перехідної характеристики $h_{IL}(t)$
- 6.Записати вирази для $h_{v}(t)$, $h_{UC}(t)$, $h_{IL}(t)$

Білет 19

Тест 19_1

$$R1 = 46$$
 Ω $R2 = 59$ Ω $R3 = 72$ Ω

$$R4 = 85$$
 Ω $R5 = 98$ Ω $R6 = 111$ Ω

E1 = 26 V $J_1 = 0.02 \text{ A}$

Визначити методом вузлових потенціалів такі величини:

- власні провідності вузлів 1, 2, 3 G_{11} = , G_{22} = , G_{33} = ;
- взаємні провідності до вузла 1 G_{12} = , G_{13} =
- вузлові струми J_{11} = , J_{22} = , J_{33} = ;
- значення визначника власних і взаємних провідностей |∆G|= ;
- передавальні опори до вузла 1 R_{11} = , R_{12} = , R_{13} = ;
- часткові вузлові потенціали вузла 1 V11= , V12= , V13= ;
- вузловий потенціал вузла 1 V₁₁=

Тест 19 2

$$R1 = 33 \cdot \Omega \qquad R2 = 46 \cdot \Omega$$

$$R3 = 59 \cdot \Omega \qquad R4 = 72 \cdot \Omega$$

$$\mathbf{i}_{L1}(t) = \mathbf{I}_{L1m} \cdot \sin(2 \cdot \pi \cdot \mathbf{f}_x + \psi_x)$$

$$I_{L1m} = 16 \cdot mA$$
 $f_x = 4.04 \times 10^3 \cdot Hz$

$$\psi_x = 1.047$$
 $\psi_x = 60 \cdot \text{deg}$

$$L1 = 1.3 \cdot mH$$
 $L2 = 2.6 \cdot mH$ $C1 = 0.856 \cdot \mu F$

$$C2 = 1.713 \cdot \mu F$$

$$L2 = 2 \cdot L1$$
 $C2 = 2 \cdot C1$

- амплітудне значення $U_{ym} = _{m} mV$;
- діюче (середнє квадратичне) значення $U_y = U_{ym} / \sqrt{2} = ___ mV$;
- початкова фаза $\psi =$ __radian;
- початкова фаза $\psi = \deg$.

Тест 19 3

- 1.Визначити операторні опори всіх елементів
- 2.Побудувати операторну еквівалентну схему заданого кола
- 3.Вважаючи, що зображення вхідного сигналу $U_x(s)$ задане, визначити:
 - зображення вихідної напруги $U_{\nu}(s)$;
 - зображення напруги на ємнісному елементі $U_{Cl}(s)$
 - зображення струму в індуктивному елементі $I_{L1}(s)$
- 4.За знайденими зображеннями $U_{y}(s)$, $U_{CI}(s)$, $I_{LI}(s)$ і визначити операторні передавальні функції:

$$K_y(s) = \frac{U_y(s)}{U_x(s)}, K_{UC}(s) = \frac{U_{C1}(s)}{U_x(s)}, G_{IL}(s) = \frac{I_{L1}(s)}{U_x(s)}$$

$$L^{-1}\left[rac{K_{\mathcal{Y}}(s)}{s}
ight]$$
, $h_{UC}(t)=L^{-1}\left[rac{K_{UC}(s)}{s}
ight]$, $h_{IL}(t)=L^{-1}\left[rac{G_{IL}(s)}{s}
ight]$, для чого:

- визначити і обчислити корені знаменника p_1, p_2, p_3 ;
- знайти похідну від знаменника по s;
- підставити значення коренів у чисельник і похідну від знаменника і обчислити значення коефіцієнтів перехідних характеристик:
 - h_{1y} , h_{2y} , h_{3y} перехідної характеристики $h_y(t)$;
 - h_{1UC} , h_{2UC} , h_{3UC} перехідної характеристики $h_{UC}(t)$;
 - h_{1IL} , h_{2IL} , h_{3IL} перехідної характеристики $h_{IL}(t)$
- 6.Записати вирази для $h_{v}(t)$, $h_{UC}(t)$, $h_{IL}(t)$

Білет 20

Тест 20_1

R1 = 48
$$\Omega$$
 R2 = 62 Ω R3 = 76 Ω
R4 = 90 Ω R5 = 104 Ω R6 = 118 Ω
E1 = 28 V J₁ = 0.022 A

Визначити методом вузлових потенціалів такі величини:

- власні провідності вузлів 1, 2, 3 G_{11} = , G_{22} = , G_{33} = ;
- взаємні провідності до вузла 1 G_{12} = , G_{13} =
- вузлові струми J_{11} = , J_{22} = , J_{33} = ;
- значення визначника власних і взаємних провідностей |∆G|= ;
- передавальні опори до вузла 1 R_{11} = , R_{12} = , R_{13} = ;
- часткові вузлові потенціали вузла 1 V11= , V12= , V13= ;
- вузловий потенціал вузла 1 V₁₁=

Тест 20 2

- амплітудне значення U_{ym}=___ mV;
- діюче (середнє квадратичне) значення $U_y = U_{ym} / \sqrt{2} = ___ mV;$
- початкова фаза $\psi = \underline{\hspace{0.1cm}}$ radian;
- початкова фаза $\psi = \deg$.

$$R1 = 33 \Omega$$
 $R2 := 2 \cdot R1$ $R3 := 3 \cdot R1$

$$R4 := 4 \cdot R1$$
 $R5 := R1$ $R6 := 6 \cdot R1$

$$L1 = 0.124 \cdot mH$$
 $C1 = 5.641 \cdot nF$

- 1.Визначити операторні опори всіх елементів
- 2.Побудувати операторну еквівалентну схему заданого кола
- 3.Вважаючи, що зображення вхідного сигналу $U_x(s)$ задане, визначити:
 - зображення вихідної напруги $U_{\nu}(s)$;
 - зображення напруги на ємнісному елементі $U_{Cl}(s)$
 - зображення струму в індуктивному елементі $I_{L1}(s)$
- 4.За знайденими зображеннями $U_y(s)$, $U_{CI}(s)$, $I_{LI}(s)$ і визначити операторні передавальні функції:

$$K_y(s) = \frac{U_y(s)}{U_x(s)}, K_{UC}(s) = \frac{U_{C1}(s)}{U_x(s)}, G_{IL}(s) = \frac{I_{L1}(s)}{U_x(s)}$$

$$L^{-1}\left[rac{K_{\mathcal{Y}}(s)}{s}
ight], h_{UC}(t) = L^{-1}\left[rac{K_{UC}(s)}{s}
ight], h_{IL}(t) = L^{-1}\left[rac{G_{IL}(s)}{s}
ight],$$
 для чого:

- визначити і обчислити корені знаменника p_1, p_2, p_3 ;
- знайти похідну від знаменника по s;
- підставити значення коренів у чисельник і похідну від знаменника і обчислити значення коефіцієнтів перехідних характеристик:
 - h_{1y} , h_{2y} , h_{3y} перехідної характеристики $h_y(t)$;
 - h_{1UC} , h_{2UC} , h_{3UC} перехідної характеристики $h_{UC}(t)$;
 - h_{1IL} , h_{2IL} , h_{3IL} перехідної характеристики $h_{IL}(t)$
- 6.Записати вирази для $h_{v}(t)$, $h_{UC}(t)$, $h_{IL}(t)$

Тест 21_1

Визначити методом вузлових потенціалів такі величини:

- власні провідності вузлів 1, 2, 3 G_{11} = , G_{22} = , G_{33} = ;
- взаємні провідності до вузла 1 G_{12} = , G_{13} =
- вузлові струми J_{11} = , J_{22} = , J_{33} = ;
- значення визначника власних і взаємних провідностей |∆G|= ;
- передавальні опори до вузла 1 R_{11} = , R_{12} = , R_{13} = ;
- часткові вузлові потенціали вузла 1 V11= , V12= , V13= ;
- вузловий потенціал вузла 1 V₁₁=

Тест 21_2

- амплітудне значення U_{ym}=___mV;
- діюче (середнє квадратичне) значення $U_y = U_{ym} / \sqrt{2} = ___ mV;$
- початкова фаза $\psi = \underline{\hspace{0.1cm}}$ radian;
- початкова фаза $\psi = \deg$.

Тест 21_3

$$R1 = 35 \Omega$$
 $R2 := 2 \cdot R1$ $R3 := 3 \cdot R1$

$$R4 := 4 \cdot R1$$
 $R5 := R1$ $R6 := 6 \cdot R1$

$$L1 = 0.139 \cdot mH$$
 $C1 = 4.547 \cdot nF$

- 1. Визначити операторні опори всіх елементів
- 2.Побудувати операторну еквівалентну схему заданого кола
- 3.Вважаючи, що зображення вхідного сигналу $U_x(s)$ задане, визначити:
 - зображення вихідної напруги $U_{\nu}(s)$;
 - зображення напруги на ємнісному елементі $U_{Cl}(s)$
 - зображення струму в індуктивному елементі $I_{L1}(s)$
- 4.За знайденими зображеннями $U_y(s)$, $U_{CI}(s)$, $I_{LI}(s)$ і визначити операторні передавальні функції:

$$K_{y}(s) = \frac{U_{y}(s)}{U_{x}(s)}, K_{UC}(s) = \frac{U_{C1}(s)}{U_{x}(s)}, G_{IL}(s) = \frac{I_{L1}(s)}{U_{x}(s)}$$

$$L^{-1}\left[\frac{K_{\mathcal{Y}}(s)}{s}\right], h_{UC}(t) = L^{-1}\left[\frac{K_{UC}(s)}{s}\right], h_{IL}(t) = L^{-1}\left[\frac{G_{IL}(s)}{s}\right],$$
 для чого:

визначити і обчислити корені знаменника p_1, p_2 , p_3 ;

- знайти похідну від знаменника по s;
- підставити значення коренів у чисельник і похідну від знаменника і обчислити значення коефіцієнтів перехідних характеристик:
 - h_{1y} , h_{2y} , h_{3y} перехідної характеристики $h_y(t)$;
 - h_{1UC} , h_{2UC} , h_{3UC} перехідної характеристики $h_{UC}(t)$;
 - h_{1IL} , h_{2IL} , h_{3IL} перехідної характеристики $h_{IL}(t)$
- 6.Записати вирази для $h_{v}(t)$, $h_{UC}(t)$, $h_{IL}(t)$

Тест 22_1

R1 = 42
$$\Omega$$
 R2 = 48 Ω R3 = 54 Ω
R4 = 60 Ω R5 = 66 Ω R6 = 72 Ω
E1 = 18 V $J_1 = 9 \times 10^{-3}$ A

Визначити методом вузлових потенціалів такі величини:

- власні провідності вузлів 1, 2, 3 G_{11} = , G_{22} = , G_{33} = ;
- взаємні провідності до вузла 1 G_{12} = , G_{13} = ;
- \blacksquare вузлові струми $J_{11}=$, $J_{22}=$, $J_{33}=$;
- значення визначника власних і взаємних провідностей |∆G|= ;
- передавальні опори до вузла 1 R_{11} = , R_{12} = , R_{13} = ;
- часткові вузлові потенціали вузла 1 V11= , V12= , V13= ;
- вузловий потенціал вузла 1 V₁₁=

Тест 22 2

$$\begin{array}{llll} R1 = 36 \cdot \Omega & R2 = 42 \cdot \Omega \\ R3 = 48 \cdot \Omega & R4 = 54 \cdot \Omega \\ \\ i_{L1}(t) \equiv I_{L1m} \cdot sin \left(2 \cdot \pi \cdot f_x + \psi_x\right) \\ \\ I_{L1m} = 3 \cdot mA & f_x = 9.549 \times 10^3 \cdot Hz \\ \\ \psi_x = 0.131 & \psi_x = 7.5 \cdot deg \\ \\ L1 = 0.6 \cdot mH & L2 = 1.2 \cdot mH & C1 = 0.397 \cdot \mu F \end{array}$$

 $C2 = 0.794 \cdot \mu F$

 $L2 = 2 \cdot L1$ $C2 = 2 \cdot C1$

- амплітудне значення U_{ym}=___mV;
- діюче (середнє квадратичне) значення $U_y = U_{ym} / \sqrt{2} = ___m mV$;
- початкова фаза $\psi = \underline{\hspace{0.1cm}}$ radian;
- початкова фаза $\psi = _{deg}$.

- 1.Визначити операторні опори всіх елементів
- 2.Побудувати операторну еквівалентну схему заданого кола
- 3.Вважаючи, що зображення вхідного сигналу $U_x(s)$ задане, визначити:
 - зображення вихідної напруги $U_{\nu}(s)$;
 - зображення напруги на ємнісному елементі $U_{Cl}(s)$
 - зображення струму в індуктивному елементі $I_{L1}(s)$
- 4.За знайденими зображеннями $U_y(s)$, $U_{CI}(s)$, $I_{LI}(s)$ і визначити операторні передавальні функції:

$$K_y(s) = \frac{U_y(s)}{U_x(s)}, K_{UC}(s) = \frac{U_{C1}(s)}{U_x(s)}, G_{IL}(s) = \frac{I_{L1}(s)}{U_x(s)}$$

$$L^{-1}\left[rac{K_{\mathcal{Y}}(s)}{s}
ight]$$
, $h_{UC}(t)=L^{-1}\left[rac{K_{UC}(s)}{s}
ight]$, $h_{IL}(t)=L^{-1}\left[rac{G_{IL}(s)}{s}
ight]$, для чого:

- визначити і обчислити корені знаменника p_1, p_2, p_3 ;
- знайти похідну від знаменника по s;
- підставити значення коренів у чисельник і похідну від знаменника і обчислити значення коефіцієнтів перехідних характеристик:
 - h_{1y} , h_{2y} , h_{3y} перехідної характеристики $h_y(t)$;
 - h_{1UC} , h_{2UC} , h_{3UC} перехідної характеристики $h_{UC}(t)$;
 - h_{1IL} , h_{2IL} , h_{3IL} перехідної характеристики $h_{IL}(t)$
- 6.Записати вирази для $h_{v}(t)$, $h_{UC}(t)$, $h_{IL}(t)$

Тест 23_1

R1 = 44
$$\Omega$$
 R2 = 51 Ω R3 = 58 Ω
R4 = 65 Ω R5 = 72 Ω R6 = 79 Ω

E1 = 21 V $J_1 = 0.012$ A

Визначити методом вузлових потенціалів такі величини:

- власні провідності вузлів 1, 2, 3 G_{11} = , G_{22} = , G_{33} = ;
- взаємні провідності до вузла 1 G_{12} = , G_{13} = ;
- \blacksquare вузлові струми $J_{11}=$, $J_{22}=$, $J_{33}=$
- значення визначника власних і взаємних провідностей |∆G|= ;
- передавальні опори до вузла 1 R_{11} = , R_{12} = , R_{13} = ;
- часткові вузлові потенціали вузла 1 V11= , V12= , V13= ;
- вузловий потенціал вузла 1 V₁₁=

Тест 23 2

$$R1 = 37 \cdot \Omega \qquad R2 = 44 \cdot \Omega$$

$$R3 = 51 \cdot \Omega \qquad R4 = 58 \cdot \Omega$$

$$i_{L1}(t) = I_{L1m} \cdot \sin(2 \cdot \pi \cdot f_x + \psi_x)$$

$$I_{L1m} = 6 \cdot mA \qquad f_x = 8.412 \times 10^3 \cdot Hz$$

$$\psi_x = 0.262 \qquad \psi_x = 15 \cdot deg$$

$$L1 = 0.7 \cdot mH \qquad \quad L2 = 1.4 \cdot mH \quad \quad C1 = 0.43 \, \cdot \, \mu F$$

$$C2 = 0.86 \cdot \mu F$$

$$L2 = 2 \cdot L1$$
 $C2 = 2 \cdot C1$

- амплітудне значення U_{ym}=___mV;
- діюче (середнє квадратичне) значення $U_y = U_{ym} / \sqrt{2} = ___ mV;$
- початкова фаза $\psi = \underline{\hspace{0.1cm}}$ radian;
- початкова фаза $\psi = _{deg}$.

Тест 23 3

$$R1 = 19\Omega$$
 $R2 := 2 \cdot R1$ $R3 := 3 \cdot R1$

$$R4 := 4 \cdot R1$$
 $R5 := R1$ $R6 := 6 \cdot R1$

$$L1 = 0.025 \cdot mH$$
 $C1 = 69.805 \cdot nF$

- 1. Визначити операторні опори всіх елементів
- 2. Побудувати операторну еквівалентну схему заданого кола
- 3.Вважаючи, що зображення вхідного сигналу $U_x(s)$ задане, визначити:
 - зображення вихідної напруги $U_{\nu}(s)$;
 - зображення напруги на ємнісному елементі $U_{CI}(s)$
 - зображення струму в індуктивному елементі $I_{L1}(s)$
- 4.За знайденими зображеннями $U_{v}(s)$, $U_{CI}(s)$, $I_{LI}(s)$ і визначити операторні передавальні функції:

$$K_{y}(s) = \frac{U_{y}(s)}{U_{x}(s)}, K_{UC}(s) = \frac{U_{C1}(s)}{U_{x}(s)}, G_{IL}(s) = \frac{I_{L1}(s)}{U_{x}(s)}$$

$$L^{-1}\left[\frac{K_{\mathcal{Y}}(s)}{s}\right]\!,\,h_{UC}(t)=L^{-1}\left[\frac{K_{UC}(s)}{s}\right]\!,\!h_{IL}(t)=L^{-1}\left[\frac{G_{IL}(s)}{s}\right]\!,$$
 для чого:

- визначити і обчислити корені знаменника p_1, p_2, p_3 ;
- знайти похідну від знаменника по s;
- підставити значення коренів у чисельник і похідну від знаменника і обчислити значення коефіцієнтів перехідних характеристик:
 - h_{1y} , h_{2y} , h_{3y} перехідної характеристики $h_y(t)$;
 - h_{1UC} , h_{2UC} , h_{3UC} перехідної характеристики $h_{UC}(t)$;
 - h_{1IL} , h_{2IL} , h_{3IL} перехідної характеристики $h_{IL}(t)$
- 6.Записати вирази для $h_y(t)$, $h_{UC}(t)$, $h_{IL}(t)$

Тест 24_1

R1 = 46
$$\Omega$$
 R2 = 54 Ω R3 = 62 Ω
R4 = 70 Ω R5 = 78 Ω R6 = 86 Ω
E1 = 24 V J_1 = 0.015 A

Визначити методом вузлових потенціалів такі величини:

- власні провідності вузлів 1, 2, 3 G_{11} = , G_{22} = , G_{33} = ;
- взаємні провідності до вузла 1 G_{12} = , G_{13} =
- \blacksquare вузлові струми $J_{11}=$, $J_{22}=$, $J_{33}=$;
- значення визначника власних і взаємних провідностей $|\Delta G|$ = ;
- передавальні опори до вузла 1 R_{11} = , R_{12} = , R_{13} = ;
- часткові вузлові потенціали вузла 1 V11= , V12= , V13= ;
- вузловий потенціал вузла 1 V₁₁=

Тест 24_2

- амплітудне значення $U_{vm} = mV$;
- діюче (середнє квадратичне) значення $U_y = U_{ym} / \sqrt{2} = __ mV;$
- початкова фаза $\psi = \underline{\hspace{0.1cm}}$ radian;
- початкова фаза $\psi = _{deg}$.

- 1. Визначити операторні опори всіх елементів
- 2.Побудувати операторну еквівалентну схему заданого кола
- 3.Вважаючи, що зображення вхідного сигналу $U_x(s)$ задане, визначити:
 - зображення вихідної напруги $U_{\nu}(s)$;
 - зображення напруги на ємнісному елементі $U_{Cl}(s)$
 - зображення струму в індуктивному елементі $I_{L1}(s)$
- 4.За знайденими зображеннями $U_y(s)$, $U_{Cl}(s)$, $I_{Ll}(s)$ і визначити операторні передавальні функції:

$$K_{y}(s) = \frac{U_{y}(s)}{U_{x}(s)}, K_{UC}(s) = \frac{U_{C1}(s)}{U_{x}(s)}, G_{IL}(s) = \frac{I_{L1}(s)}{U_{x}(s)}$$

$$L^{-1}\left[\frac{K_{\mathcal{Y}}(s)}{s}\right]$$
, $h_{UC}(t)=L^{-1}\left[\frac{K_{UC}(s)}{s}\right]$, $h_{IL}(t)=L^{-1}\left[\frac{G_{IL}(s)}{s}\right]$, для чого: визначити і обчислити корені знаменника p_1,p_2 , p_3 ;

- знайти похідну від знаменника по s;
- підставити значення коренів у чисельник і похідну від знаменника і обчислити значення коефіцієнтів перехідних характеристик:
 - h_{1y} , h_{2y} , h_{3y} перехідної характеристики $h_v(t)$;
 - h_{1UC} , h_{2UC} , h_{3UC} перехідної характеристики $h_{UC}(t)$;
 - h_{1IL}, h_{2IL} , h_{3IL} перехідної характеристики $h_{IL}(t)$
- 6.Записати вирази для $h_{y}(t)$, $h_{UC}(t)$, $h_{IL}(t)$

Тест 25_1

$$R1 = 48$$
 Ω $R2 = 57$ Ω $R3 = 66$ Ω $R4 = 75$ Ω $R5 = 84$ Ω $R6 = 93$ Ω Ω Ω

Визначити методом вузлових потенціалів такі величини:

- власні провідності вузлів 1, 2, 3 G_{11} = $, G_{33}=$
- взаємні провідності до вузла 1 G_{12} = $, G_{13} =$
- вузлові струми J_{11} = $J_{22}=$ $J_{33}=$
- значення визначника власних і взаємних провідностей $|\Delta G|$ = ;
- передавальні опори до вузла 1 R_{11} = , R_{12} = , R_{13} =
- вузловий потенціал вузла 1 V₁₁=

Тест 25 2

$$R1 = 39 \cdot \Omega \qquad R2 = 48 \cdot \Omega$$

$$R3 = 57 \cdot \Omega \qquad R4 = 66 \cdot \Omega$$

$$i_{L1}(t) = I_{L1m} \cdot \sin(2 \cdot \pi \cdot f_x + \psi_x)$$

$$I_{L1m} = 12 \cdot mA$$
 $f_x = 6.897 \times 10^3 \cdot Hz$

 $\psi_x = 0.524$ $\psi_x = 30 \cdot \text{deg}$

$$L1 = 0.9 \cdot mH$$
 $L2 = 1.8 \cdot mH$ $C1 = 0.481 \cdot \mu F$ $C2 = 0.962 \cdot \mu F$

$$L2 = 2 \cdot L1$$
 $C2 = 2 \cdot C1$

- амплітудне значення U_{ym}=___ mV;
- діюче (середнє квадратичне) значення $U_y = U_{ym} / \sqrt{2} = ___ mV$;
- початкова фаза $\psi =$ __radian;
- початкова фаза $\Psi = \deg$.

Тест 25_3

- 1. Визначити операторні опори всіх елементів
- 2.Побудувати операторну еквівалентну схему заданого кола
- 3.Вважаючи, що зображення вхідного сигналу $U_x(s)$ задане, визначити:
 - зображення вихідної напруги $U_{\nu}(s)$;
 - зображення напруги на ємнісному елементі $U_{Cl}(s)$
 - зображення струму в індуктивному елементі $I_{L1}(s)$
- 4.За знайденими зображеннями $U_y(s)$, $U_{CI}(s)$, $I_{LI}(s)$ і визначити операторні передавальні функції:

$$K_{y}(s) = \frac{U_{y}(s)}{U_{x}(s)}, K_{UC}(s) = \frac{U_{C1}(s)}{U_{x}(s)}, G_{IL}(s) = \frac{I_{L1}(s)}{U_{x}(s)}$$

$$L^{-1}\left[rac{K_{\mathcal{Y}}(s)}{s}
ight],\,h_{UC}(t)=L^{-1}\left[rac{K_{UC}(s)}{s}
ight],\!h_{IL}(t)=L^{-1}\left[rac{G_{IL}(s)}{s}
ight],$$
 для чого:

- визначити і обчислити корені знаменника p_1, p_2, p_3 ;
- знайти похідну від знаменника по s;
- підставити значення коренів у чисельник і похідну від знаменника і обчислити значення коефіцієнтів перехідних характеристик:
 - h_{1y} , h_{2y} , h_{3y} перехідної характеристики $h_y(t)$;
 - h_{1UC} , h_{2UC} , h_{3UC} перехідної характеристики $h_{UC}(t)$;
 - h_{1IL} , h_{2IL} , h_{3IL} перехідної характеристики $h_{IL}(t)$
- 6.Записати вирази для $h_y(t)$, $h_{UC}(t)$, $h_{IL}(t)$

Білет 26

Тест 26_1

 $R3 = 70 \Omega$

 $R6 = 100 \Omega$

Визначити методом вузлових потенціалів такі величини:

- власні провідності вузлів 1, 2, 3 G₁₁= , G₂₂= , G₃₃= ;
- взаємні провідності до вузла 1 G_{12} , G_{13} :
- \blacksquare вузлові струми $J_{11}=$, $J_{22}=$, $J_{33}=$;
- значення визначника власних і взаємних провідностей |∆G|= ;
- передавальні опори до вузла 1 R_{11} = , R_{12} = , R_{13} = ;
- часткові вузлові потенціали вузла 1 V11= , V12= , V13= ;
- вузловий потенціал вузла 1 V₁₁=

Тест 26_2

- амплітудне значення U_{уm}=___mV;
- діюче (середнє квадратичне) значення $U_y = U_{ym} / \sqrt{2} = ___ mV;$
- початкова фаза $\psi = \text{radian};$
- початкова фаза $\psi = _{deg}$.

- 1. Визначити операторні опори всіх елементів
- 2.Побудувати операторну еквівалентну схему заданого кола
- 3.Вважаючи, що зображення вхідного сигналу $U_x(s)$ задане, визначити:
 - зображення вихідної напруги $U_{\nu}(s)$;
 - зображення напруги на ємнісному елементі $U_{Cl}(s)$
 - зображення струму в індуктивному елементі $I_{L1}(s)$
- 4.За знайденими зображеннями $U_y(s)$, $U_{Cl}(s)$, $I_{Ll}(s)$ і визначити операторні передавальні функції:

$$K_{y}(s) = \frac{U_{y}(s)}{U_{x}(s)}, K_{UC}(s) = \frac{U_{C1}(s)}{U_{x}(s)}, G_{IL}(s) = \frac{I_{L1}(s)}{U_{x}(s)}$$

$$L^{-1}\left[\frac{K_{y}(s)}{s}\right]$$
, $h_{UC}(t)=L^{-1}\left[\frac{K_{UC}(s)}{s}\right]$, $h_{IL}(t)=L^{-1}\left[\frac{G_{IL}(s)}{s}\right]$, для чого: визначити і обчислити корені знаменника p_1,p_2 , p_3 ;

- знайти похідну від знаменника по s;
- підставити значення коренів у чисельник і похідну від знаменника і обчислити значення коефіцієнтів перехідних характеристик:
 - h_{1y} , h_{2y} , h_{3y} перехідної характеристики $h_v(t)$;
 - h_{1UC} , h_{2UC} , h_{3UC} перехідної характеристики $h_{UC}(t)$;
 - h_{1IL}, h_{2IL} , h_{3IL} перехідної характеристики $h_{IL}(t)$
- 6.Записати вирази для $h_y(t)$, $h_{UC}(t)$, $h_{IL}(t)$

Тест 27_1

R1 = 52
$$\Omega$$
 R2 = 63 Ω R3 = 74 Ω
R4 = 85 Ω R5 = 96 Ω R6 = 107 Ω
E1 = 33 V $J_1 = 0.024$ A

Визначити методом вузлових потенціалів такі величини:

- власні провідності вузлів 1, 2, 3 G₁₁= , G₂₂= , G₃₃= ;
- взаємні провідності до вузла 1 G_{12} = , G_{13} =
- \blacksquare вузлові струми $J_{11}=$, $J_{22}=$, $J_{33}=$;
- значення визначника власних і взаємних провідностей $|\Delta G| =$;
- передавальні опори до вузла 1 R_{11} = , R_{12} = , R_{13} = ;
- часткові вузлові потенціали вузла 1 V11= , V12= , V13= ;
- вузловий потенціал вузла 1 V₁₁=

Тест 27_2

$$\begin{split} R1 &= 41 \cdot \Omega & R2 &= 52 \cdot \Omega \\ R3 &= 63 \cdot \Omega & R4 &= 74 \cdot \Omega \\ i_{L1}(t) &= I_{L1m} \cdot sin \big(2 \cdot \pi \cdot \mathbf{f}_x + \psi_x \big) \end{split}$$

 $I_{L1m} = 18 \cdot mA$

$$\psi_x = 0.785$$
 $\psi_x = 45 \cdot deg$

$$L1 = 1.1 \cdot mH$$
 $L2 = 2.2 \cdot mH$ $C1 = 0.516 \cdot \mu F$ $C2 = 1.032 \cdot \mu F$

$$L2 = 2 \cdot L1$$
 $C2 = 2 \cdot C1$

- амплітудне значення $U_{ym} = mV$;
- діюче (середнє квадратичне) значення $U_y = U_{ym} / \sqrt{2} = ___ mV$;
- початкова фаза $\psi = \underline{\hspace{0.1cm}}$ radian;
- початкова фаза $\psi = \deg$.

- 1.Визначити операторні опори всіх елементів
- 2.Побудувати операторну еквівалентну схему заданого кола
- 3.Вважаючи, що зображення вхідного сигналу $U_x(s)$ задане, визначити:
 - зображення вихідної напруги $U_{\nu}(s)$;
 - зображення напруги на ємнісному елементі $U_{Cl}(s)$
 - зображення струму в індуктивному елементі $I_{L1}(s)$
- 4.За знайденими зображеннями $U_y(s)$, $U_{CI}(s)$, $I_{LI}(s)$ і визначити операторні передавальні функції:

$$K_{y}(s) = \frac{U_{y}(s)}{U_{x}(s)}, K_{UC}(s) = \frac{U_{C1}(s)}{U_{x}(s)}, G_{IL}(s) = \frac{I_{L1}(s)}{U_{x}(s)}$$

$$L^{-1}\left[rac{K_{\mathcal{Y}}(s)}{s}
ight]$$
, $h_{UC}(t)=L^{-1}\left[rac{K_{UC}(s)}{s}
ight]$, $h_{IL}(t)=L^{-1}\left[rac{G_{IL}(s)}{s}
ight]$, для чого:

- визначити і обчислити корені знаменника p_1, p_2, p_3 ;
- знайти похідну від знаменника по s;
- підставити значення коренів у чисельник і похідну від знаменника і обчислити значення коефіцієнтів перехідних характеристик:
 - h_{1y} , h_{2y} , h_{3y} перехідної характеристики $h_y(t)$;
 - h_{1UC} , h_{2UC} , h_{3UC} перехідної характеристики $h_{UC}(t)$;
 - h_{1IL} , h_{2IL} , h_{3IL} перехідної характеристики $h_{IL}(t)$
- 6.Записати вирази для $h_{v}(t)$, $h_{UC}(t)$, $h_{IL}(t)$

Тест 28_1

Визначити методом вузлових потенціалів такі величини:

- власні провідності вузлів 1, 2, 3 G_{11} = , G_{22} = , G_{33} = ;
- взаємні провідності до вузла 1 G_{12} = , G_{13} =
- \blacksquare вузлові струми J_{11} = , J_{22} = , J_{33} = ;
- значення визначника власних і взаємних провідностей |∆G|= ;
- передавальні опори до вузла 1 R_{11} = , R_{12} = , R_{13} = ;
- часткові вузлові потенціали вузла 1 V11= , V12= , V13= ;
- вузловий потенціал вузла 1 V₁₁=

Тест 28 2

- амплітудне значення $U_{ym} = mV$;
- діюче (середнє квадратичне) значення $U_v = U_{vm} / \sqrt{2} = mV$;
- початкова фаза $\psi = \underline{\hspace{0.2cm}}$ radian;
- початкова фаза $\psi = _{deg}$.

- 1.Визначити операторні опори всіх елементів
- 2.Побудувати операторну еквівалентну схему заданого кола
- 3.Вважаючи, що зображення вхідного сигналу $U_x(s)$ задане, визначити:
 - зображення вихідної напруги $U_{\nu}(s)$;
 - зображення напруги на ємнісному елементі $U_{Cl}(s)$
 - зображення струму в індуктивному елементі $I_{L1}(s)$
- 4.За знайденими зображеннями $U_y(s)$, $U_{CI}(s)$, $I_{LI}(s)$ і визначити операторні передавальні функції:

$$K_{y}(s) = \frac{U_{y}(s)}{U_{x}(s)}, K_{UC}(s) = \frac{U_{C1}(s)}{U_{x}(s)}, G_{IL}(s) = \frac{I_{L1}(s)}{U_{x}(s)}$$

$$L^{-1}\left[\frac{K_{y}(s)}{s}\right], h_{UC}(t) = L^{-1}\left[\frac{K_{UC}(s)}{s}\right], h_{IL}(t) = L^{-1}\left[\frac{G_{IL}(s)}{s}\right],$$
 для чого:

- визначити і обчислити корені знаменника p_1, p_2, p_3 ;
- знайти похідну від знаменника по s;
- підставити значення коренів у чисельник і похідну від знаменника і обчислити значення коефіцієнтів перехідних характеристик:
 - h_{1y} , h_{2y} , h_{3y} перехідної характеристики $h_y(t)$;
 - h_{1UC} , h_{2UC} , h_{3UC} перехідної характеристики $h_{UC}(t)$;
 - h_{1IL} , h_{2IL} , h_{3IL} перехідної характеристики $h_{IL}(t)$
- 6. Записати вирази для $h_{v}(t)$, $h_{UC}(t)$, $h_{IL}(t)$

Тест 29_1

R1 = 56
$$\Omega$$
 R2 = 69 Ω R3 = 82 Ω
R4 = 95 Ω R5 = 108 Ω R6 = 121 Ω
E1 = 39 V $J_1 = 0.03$ A

Визначити методом вузлових потенціалів такі величини:

- власні провідності вузлів 1, 2, 3 G_{11} =
- взаємні провідності до вузла 1 G_{12} = $, G_{13}=$
- вузлові струми J_{11} = $J_{22}=$ $J_{33}=$
- значення визначника власних і взаємних провідностей | ΔG |= ;
- передавальні опори до вузла 1 R_{11} = , R_{12} = , R_{13} =
- часткові вузлові потенціали вузла 1 V11= $^{\circ}$, V12= $^{\circ}$, V13= $^{\circ}$;
- вузловий потенціал вузла 1 V₁₁=

Тест 29 2

$$R1 = 43 \cdot \Omega \qquad R2 = 56 \cdot \Omega$$

$$R3 = 69 \cdot \Omega \qquad R4 = 82 \cdot \Omega$$

$$i_{L1}(t) = I_{L1m} \cdot \sin(2 \cdot \pi \cdot f_x + \psi_x)$$

 $I_{L1m} = 24 \cdot mA$

 $\psi_x = 60 \cdot \text{deg}$ $\psi_{x} = 1.047$

 $L1 = 1.3 \cdot mH$ $L2 = 2.6 \cdot mH$ $C1 = 0.54 \cdot \mu F$ $C2 = 1.08 \cdot \mu F$

 $L2 = 2 \cdot L1$ $C2 = 2 \cdot C1$

- амплітудне значення U_{ym}=___mV;
- діюче (середнє квадратичне) значення $U_v = U_{vm} / \sqrt{2} =_{_} mV$;
- початкова фаза $\psi = \underline{\hspace{0.1cm}}$ radian;
- початкова фаза $\Psi = \deg$.

- 1. Визначити операторні опори всіх елементів
- 2.Побудувати операторну еквівалентну схему заданого кола
- 3.Вважаючи, що зображення вхідного сигналу $U_x(s)$ задане, визначити:
 - зображення вихідної напруги $U_{\nu}(s)$;
 - зображення напруги на ємнісному елементі $U_{Cl}(s)$
 - зображення струму в індуктивному елементі $I_{L1}(s)$
- 4.За знайденими зображеннями $U_y(s)$, $U_{Cl}(s)$, $I_{Ll}(s)$ і визначити операторні передавальні функції:

$$K_{y}(s) = \frac{U_{y}(s)}{U_{x}(s)}, K_{UC}(s) = \frac{U_{C1}(s)}{U_{x}(s)}, G_{IL}(s) = \frac{I_{L1}(s)}{U_{x}(s)}$$

$$L^{-1}\left[\frac{K_{y}(s)}{s}\right]$$
, $h_{UC}(t)=L^{-1}\left[\frac{K_{UC}(s)}{s}\right]$, $h_{IL}(t)=L^{-1}\left[\frac{G_{IL}(s)}{s}\right]$, для чого: визначити і обчислити корені знаменника p_1,p_2 , p_3 ;

- знайти похідну від знаменника по s;
- підставити значення коренів у чисельник і похідну від знаменника і обчислити значення коефіцієнтів перехідних характеристик:
 - h_{1y} , h_{2y} , h_{3y} перехідної характеристики $h_y(t)$;
 - h_{1UC} , h_{2UC} , h_{3UC} перехідної характеристики $h_{UC}(t)$;
 - h_{1IL}, h_{2IL} , h_{3IL} перехідної характеристики $h_{IL}(t)$
- 6.Записати вирази для $h_y(t)$, $h_{UC}(t)$, $h_{IL}(t)$

Білет 30

Тест 30_1

Визначити методом вузлових потенціалів такі величини:

- власні провідності вузлів 1, 2, 3 G_{11} = , G_{22} = , G_{33} = ;
- взаємні провідності до вузла 1 G_{12} = , G_{13} = ;
- вузлові струми J_{11} = , J_{22} = , J_{33} = ;
- значення визначника власних і взаємних провідностей $|\Delta G|$ = ;
- передавальні опори до вузла 1 R_{11} = , R_{12} = , R_{13} = ;
- часткові вузлові потенціали вузла 1 V11= , V12= , V13= ;
- вузловий потенціал вузла 1 V₁₁=

Тест 30 2

- амплітудне значення U_{ym}=___ mV;
- діюче (середнє квадратичне) значення $U_v = U_{vm} / \sqrt{2} = mV$;
- початкова фаза $\psi = \underline{\hspace{0.1cm}}$ radian;
- початкова фаза $\psi = _{deg}$.

Тест 30_3

- 1. Визначити операторні опори всіх елементів
- 2.Побудувати операторну еквівалентну схему заданого кола
- 3.Вважаючи, що зображення вхідного сигналу $U_x(s)$ задане, визначити:
 - зображення вихідної напруги $U_{\nu}(s)$;
 - зображення напруги на ємнісному елементі $U_{Cl}(s)$
 - зображення струму в індуктивному елементі $I_{Ll}(s)$
- 4.За знайденими зображеннями $U_{v}(s)$, $U_{CI}(s)$, $I_{LI}(s)$ і визначити операторні передавальні функції:

$$K_{y}(s) = \frac{U_{y}(s)}{U_{x}(s)}, K_{UC}(s) = \frac{U_{C1}(s)}{U_{x}(s)}, G_{IL}(s) = \frac{I_{L1}(s)}{U_{x}(s)}$$

$$L^{-1}\left[\frac{K_{\mathcal{Y}}(s)}{s}\right]\!,\,h_{UC}(t)=L^{-1}\left[\frac{K_{UC}(s)}{s}\right]\!,h_{IL}(t)=L^{-1}\left[\frac{G_{IL}(s)}{s}\right]\!,$$
 для чого:

- визначити і обчислити корені знаменника p_1, p_2, p_3 ;
- знайти похідну від знаменника по s;
- підставити значення коренів у чисельник і похідну від знаменника і обчислити значення коефіцієнтів перехідних характеристик:
 - h_{1y} , h_{2y} , h_{3y} перехідної характеристики $h_y(t)$;
 - h_{1UC} , h_{2UC} , h_{3UC} перехідної характеристики $h_{UC}(t)$;
 - h_{1IL} , h_{2IL} , h_{3IL} перехідної характеристики $h_{IL}(t)$
- 6.Записати вирази для $h_y(t)$, $h_{UC}(t)$, $h_{IL}(t)$

Тест 31_1

R1 = 60
$$\Omega$$
 R2 = 75 Ω R3 = 90 Ω
R4 = 105 Ω R5 = 120 Ω R6 = 135 Ω
E1 = 45 V J_1 = 0.036 A

Визначити методом вузлових потенціалів такі величини:

- власні провідності вузлів 1, 2, 3 G₁₁= , G₂₂= , G₃₃= ;
- взаємні провідності до вузла 1 G_{12} = , G_{13} =
- \blacksquare вузлові струми J_{11} = , J_{22} = , J_{33} = ;
- значення визначника власних і взаємних провідностей $|\Delta G| =$;
- передавальні опори до вузла 1 R_{11} = , R_{12} = , R_{13} = ;
- часткові вузлові потенціали вузла 1 V11= , V12= , V13= ;
- вузловий потенціал вузла 1 V₁₁=

Тест 31 2

$$R1 = 45 \cdot \Omega \qquad R2 = 60 \cdot \Omega$$

$$R3 = 75 \cdot \Omega \qquad R4 = 90 \cdot \Omega$$

$$i_{L1}(t) = I_{L1m} \cdot \sin(2 \cdot \pi \cdot f_x + \psi_x)$$

$$I_{L1m} = 30 \cdot mA$$

$$\psi_x = 1.309 \qquad \psi_x = 75 \cdot deg$$

$$L1 = 1.5 \cdot mH \qquad L2 = 3 \cdot mH \qquad C1 = 0.556 \cdot \mu F \qquad C$$

- амплітудне значення $U_{ym} = mV$;
- діюче (середнє квадратичне) значення $U_v = U_{vm} / \sqrt{2} = mV$;
- початкова фаза $\psi = \underline{\hspace{0.1cm}}$ radian;
- початкова фаза ψ = __deg.

Тест 31 3

- 1.Визначити операторні опори всіх елементів
- 2.Побудувати операторну еквівалентну схему заданого кола
- 3.Вважаючи, що зображення вхідного сигналу $U_x(s)$ задане, визначити:
 - зображення вихідної напруги $U_{\nu}(s)$;
 - зображення напруги на ємнісному елементі $U_{Cl}(s)$
 - зображення струму в індуктивному елементі $I_{L1}(s)$
- 4.За знайденими зображеннями $U_{y}(s)$, $U_{CI}(s)$, $I_{LI}(s)$ і визначити операторні передавальні функції:

$$K_{y}(s) = \frac{U_{y}(s)}{U_{x}(s)}, K_{UC}(s) = \frac{U_{C1}(s)}{U_{x}(s)}, G_{IL}(s) = \frac{I_{L1}(s)}{U_{x}(s)}$$

$$L^{-1}\left[rac{K_{\mathcal{Y}}(s)}{s}
ight], h_{UC}(t) = L^{-1}\left[rac{K_{UC}(s)}{s}
ight], h_{IL}(t) = L^{-1}\left[rac{G_{IL}(s)}{s}
ight],$$
 для чого:

- визначити і обчислити корені знаменника p_1, p_2, p_3 ;
- знайти похідну від знаменника по s;
- підставити значення коренів у чисельник і похідну від знаменника і обчислити значення коефіцієнтів перехідних характеристик:
 - h_{1y} , h_{2y} , h_{3y} перехідної характеристики $h_y(t)$;
 - h_{1UC} , h_{2UC} , h_{3UC} перехідної характеристики $h_{UC}(t)$;
 - h_{1IL} , h_{2IL} , h_{3IL} перехідної характеристики $h_{IL}(t)$
- 6.Записати вирази для $h_{v}(t)$, $h_{UC}(t)$, $h_{IL}(t)$

Тест 32_1

R1 = 52
$$\Omega$$
 R2 = 58 Ω R3 = 64 Ω
R4 = 70 Ω R5 = 76 Ω R6 = 82 Ω
E1 = 24 V J₁ = 0.012 A

Визначити методом вузлових потенціалів такі величини:

- власні провідності вузлів 1, 2, 3 G_{11} = , G_{22} = $, G_{33} = ;$
- взаємні провідності до вузла 1 G_{12} , G_{13}
- вузлові струми $J_{11} = , J_{22} =$
- значення визначника власних і взаємних провідностей | ΔG |= ;
- передавальні опори до вузла 1 R_{11} = , R_{12} = , R_{13} =
- часткові вузлові потенціали вузла 1 V11= $^{\circ}$, V12= $^{\circ}$, V13= $^{\circ}$;
- вузловий потенціал вузла 1 V₁₁= .

Тест 32 2

$$\begin{split} R1 &= 46 \cdot \Omega & R2 &= 52 \cdot \Omega \\ R3 &= 58 \cdot \Omega & R4 &= 64 \cdot \Omega \\ i_{L1}(t) &= I_{L1m} \cdot sin \big(2 \cdot \pi \cdot f_x + \psi_x \big) \\ I_{L1m} &= 4 \cdot mA \end{split}$$

$$I_{L1m} = 4 \cdot mA$$

$$\psi_{x} = 0.131$$
 $\psi_{x} = 7.5 \cdot \text{deg}$

$$L1 = 0.6 \cdot mH \qquad L2 = 1.2 \cdot mH \quad C1 = 0.251 \cdot \mu F \qquad C2 = 0.502 \cdot \mu F$$

$$L2 = 2 \cdot L1$$
 $C2 = 2 \cdot C1$

- амплітудне значення $U_{vm}=$ mV;
- діюче (середнє квадратичне) значення $U_v = U_{vm} / \sqrt{2} = mV$;
- початкова фаза $\psi =$ __radian;
- початкова фаза $\psi = \deg$.

$$R1 = 17\Omega$$
 $R2 := 2 \cdot R1$ $R3 := 3 \cdot R1$

$$R4 := 4 \cdot R1$$
 $R5 := R1$ $R6 := 6 \cdot R1$

$$L1 = 0.012 \cdot mH$$
 $C1 = 170.219 \cdot nF$

- 1. Визначити операторні опори всіх елементів
- 2.Побудувати операторну еквівалентну схему заданого кола
- 3.Вважаючи, що зображення вхідного сигналу $U_x(s)$ задане, визначити:
 - зображення вихідної напруги $U_{\nu}(s)$;
 - зображення напруги на ємнісному елементі $U_{Cl}(s)$
 - зображення струму в індуктивному елементі $I_{L1}(s)$
- 4.За знайденими зображеннями $U_{y}(s)$, $U_{CI}(s)$, $I_{LI}(s)$ і визначити операторні передавальні функції:

$$K_{y}(s) = \frac{U_{y}(s)}{U_{x}(s)}, K_{UC}(s) = \frac{U_{C1}(s)}{U_{x}(s)}, G_{IL}(s) = \frac{I_{L1}(s)}{U_{x}(s)}$$

$$L^{-1}\left[rac{K_{\mathcal{Y}}(s)}{s}
ight]$$
, $h_{UC}(t)=L^{-1}\left[rac{K_{UC}(s)}{s}
ight]$, $h_{IL}(t)=L^{-1}\left[rac{G_{IL}(s)}{s}
ight]$, для чого:

- визначити і обчислити корені знаменника p_1, p_2, p_3 ;
- знайти похідну від знаменника по s;
- підставити значення коренів у чисельник і похідну від знаменника і обчислити значення коефіцієнтів перехідних характеристик:
 - h_{1v} , h_{2v} , h_{3v} перехідної характеристики $h_v(t)$;
 - h_{1UC} , h_{2UC} , h_{3UC} перехідної характеристики $h_{UC}(t)$;
 - h_{1IL} , h_{2IL} , h_{3IL} перехідної характеристики $h_{IL}(t)$
- 6. Записати вирази для $h_{v}(t)$, $h_{UC}(t)$, $h_{IL}(t)$