Verilog Netlist Enhancer

Alaa Mahmoud

Hadeel Mabrouk

Outline

- Project Description
- Approach
- Dependencies
- Design and Implementation
- Limitations
- Further Suggestions

Project Description

Implement a Verilog netlist modifier to enhance:

- Maximum Fanout
- Maximum Delay

By:

- Sizing up cells with large fan-out
- Cloning high fan-out cells
- Adding buffers to high fan-out cells

Approach

- Enhance Fanout by:
 - Cloning high fan-out cells
 - Adding buffers to high fan-out cells
- Enhance Maximum Delay by:
 - Sizing up cells with large fan-out

Dependencies

- Liberty Parser: for liberty file data extraction
- Regular Expression Operations (regex): for verilog files parsing
- NetworkX: for delay calculation and visual representation
- Matplotlib: for graph drawing

Design and Implementation

- Liberty Data Extraction Class
- Verilog Netlist Class

Liberty Data Extraction Class

- get_middle_capacitance()
 to return the value of the middle capacitance
- get_pin_capacitance(cell_name, pin_name) to return the capacitance of a certain input pin for a certain cell
- get_pin_delay(cell_name, pin_name, out_cap) to return the delay of a certain arc for a certain cell given the load capacitance

Verilog Netlist Class [Data Structures]

Netlist
 Composed of the circuit instance as key, and its inputs, output, and load capacitance as values

• Wires Dictionary

Composed of the wire name as key, and its source and destinations as values

Netlist Directed Graph
 Composed of cells as nodes, and wires as edges

Verilog Netlist Class [Functions]

- report_max_delay(): uses the longest path function of the DiGraph
- report_no_of_cells_of_each_type()
- max_fanout(): returns the maximum existing fanout of the circuit
- buffer_all(desired_fanout)

Verilog Netlist Class [Functions]

- clone_all(desired_fanout)
- **sizing_up(desired_delay):** applies greedy sizing algorithm to decrease the delay of the critical path
- nx.draw(get_graph()): visualizes the circuit as a directed graph
- to_v_netlist(): prints the updated verilog netlist

Limitations

- No support for circuits having cells with multiple outputs
- No support for delay calculation the rising and falling transitions of the inputs; it always chooses the larger transition delay
- It assumes fixed input transition time, and fixed output capacitance
- The list of the supported cells is fixed

Further Suggestions

- Using optimization algorithms to enhance the delay and fanout
- Enhancing the visualization of the circuit:
 - Making the nodes size and shape representative of its size and type
 - Highlighting violations in red
 - Making the thickness of the edge representative of its weight

Thank you!