Hypersignal VIDSP Studio Function List

1 Channel X Display

Displays input from a single channel

1 to 2 Demultiplexer

Demultiplexes one input channel to two channel output based on a select input

1 to 4 Demultiplexer

Demultiplexes one channel input to four channel outputs based on two control inputs

1/3 Octave Band Analyzer

Performs 1/3 octave band analysis on the input signal

1st Order Butterworth Filter

Performs 1st order Butterworth filtering on the input data based on some conditions

2 Channel X Display

Displays two waveforms on one grid

2 to 1 Multiplexer

Multiplexes two channel input to one channel output based on a select input

2 to 4 Decoder

Decodes two binary (0,1) inputs to four 1-hot outputs

2-Channel Display

Displays input from two channels in several display modes.

4 Input AND

Performs logical AND function on four input signals

4 Input OR

Performs logical OR function on four input signals

4 to 1 Multiplexer

Multiplexes four channel input to one channel output based on two control inputs

Absolute Value

Outputs the absolute value of the input signal

Accumulate

Accumulates data values of all frames

Add

Adds two input signals

AGC

Automatic Gain Control

Alarm Clock

Allows the user to set an alarm to go off at a specified time

Analog Meter

Implements an analog meter control

Annunciator

Changes appearance based on different threshold values

Arbitrary Signal Generator

Generates an arbitrary waveform via a mouse

ArcCosine(x)

Calculates the ArcCosine value of the input signal

ArcSine(x)

Calculates the ArcSine value of the input signal

ArcTangent(x)

Calculates the ArcTangent value of the input signal

Arctangent(y/x)

Quadrant Arctangent (Atan2)

Autocorrelation

Calculates the autocorrelation function of the input signal

Bartlett Window

Performs Bartlett windowing on the input signal

Biguad

Implements a biquad, and applies this to the input signal

Bit Mask

Masks off user-specified bits in the input signal

Bitmap Display

Displays a selected bitmap

Blackman Window

Performs Blackman windowing on the input signal

Boxcar Window

Performs Boxcar (Rectangle) windowing on the input signal

Buffer

Buffers and outputs a specified number of the input samples

Button

Button that produces an off/on value, can link to other buttons

CD Knob

CD Control Knob

Center Clip

Clips the input signal by comparing it to two specified threshold levels

Channel Information

Displays a channels information

Clip

Clips the data elements by comparing with two specified threshold levels

Command Switch

Switch for controlling (starting/stopping, etc.) worksheets, typically used for power switch

Complex to Real

Converts the complex input values to the corresponding real and imaginary values

Concatenate

Concatenates two input frames into one output frame

Constant Generator

Generates a constant (DC) waveform

Convert

Converts input data from integer to floating point, or from floating point to integer

Convolution

Convolves two input signals together

Correlation

Cross-correlates two input channel signals

Cosine Generator

Generates a cosine waveform

Cosine(X)

Calculates the cosine value of each element of an input signal

Data Display

Data Display for viewing data in multiple text formats - allows pasting to other windows applications

De-interleave 2 Channels

Separates one channel input into two channel output

De-interleave 3 Channels

Separates one channel input into three channel output

De-interleave 4 Channels

Separates one channel into four channel output

De-interleave 5 Channels

Separates one channel input into five channel output

De-Interleave 8 Channels

De-interleaves, or separates, one interleaved channel into eight channels

Decimal to Binary

Decimal to Binary conversion block function

Decimate

Decimates an input signal

Delay

Delays input by specified number of samples

DFT

Calculates the discrete Fourier transform of the input signal

Difference Equation

Difference Equation Function

Differentiate

Differentiates the input signal

Digital Display

Displays the input signal using digital numbers

Divide

Divides one signal by another

DTMF Keypad

DTMF Keypad

Exponential

Calculates the exponential function of the input signal

Extract Sample

Extracts sample from specified index of input data frame

FFT

Calculates the Fast Fourier Transform of the input signal

File Read

This block reads an input file.

File Write

Writes the input signal to a data file

FIR Filter

Applies an existing FIR filter to the input signal

Five Input Add

Adds the corresponding elements of five input signals

Five Position Toggle Switch

Five Position Vertical Toggle Switch

Fixed Offset

Adds a specified offset value to each element of the input signal

Four Input Add

Adds the corresponding elements of four input signals

Four Position Toggle Switch

Four Position Vertical Toggle Switch

Frame Count

Counts the number of frames the simulation has run

Frame Maximum

Finds the maximum of each frame of the input signal

Frame Mean

Calculates the mean for each frame of the input signal

Frame Minimum

Finds the minimum value for each frame of the input signal

Frame Range

Calculates the range of values of the input frame

Frame Size

Extracts the framesize of the input signal

Frame Standard Deviation

Calculates the frame standard deviation of the input signal

Frame Variance

Calculates the frame variance of the input signal

Frequency Zoom

Calculates the magnitude (frequency) of the input signal at any frequency range with any frequency step

Function Generator

Function Generator Control Front Panel

Gain

Multiplies each element of the input signal by a constant

General Knob

General knob used for offsets, etc.

Global Maximum

Finds the maximum value of all data passed through this block

Global Mean

Calculates the mean of all data passed through this block

Global Minimum

Finds the minimum value of all data passed through this block

Global Range

Calculates the range of values of the all input frames

Global Standard Deviation

Calculates the standard deviation of all data passed through this block

Global Variable

Global Variable to allow dynamic assignment, or placeholder, function

Global Variance

Calculates the variance of all data passed through this block

Hamming Window

Performs Hamming windowing on the input signal

Hanning Window

Performs Hanning windowing on the input signal

Horizontal Bar Chart

Horizontal bar chart

Horizontal Bar Graph

Graph data horizontally

Horizontal Slider

Horizontal slider control

Hyperbolic Cos(x)

Calculates the Hyperbolic Cosine value of each element of the input signal

Hyperbolic Sin(x)

Calculates the Hyperbolic Sine of the input signal

Hyperbolic Tan(x)

Calculates the Hyperbolic Tangent value of the input signal

IIR Filter

Applies an existing IIR filter to the input signal

Impulse Generator

Generates a unit impulse with the specified delay sample

Impulsive Noise Generator

Generates an impulse noise waveform

Integrate

Integrates the input signal

Interleave 2 Channels

Interleaves two channel inputs to one channel output

Interleave 3 Channels

Interleaves three channel inputs to one channel output

Interleave 4 Channels

Interleaves four channel inputs to one channel output

Interleave 5 Channels

Interleaves five channel inputs to one channel output

Interleave 8 channels

Interleaves, or combines, eight channels into one

Internet Receiver

Receive data through the internet

Internet Transmitter

Transmit data through the internet

Interpolate

Interpolates the input signal

Inverse DFT

Calculates the inverse Discrete Fourier Transform of the input signal

Inverse FFT

Calculates the inverse Fast Fourier Transform of the input signal

Keypad

Implements a keypad control

Knob

Implements a knob control

LED

User control LED which gets set when a threshold is reached

LED

Simple two bitmap LED control

LED Button

Simple LED Button

LED Meter

LED Meter indicator

LED Meter

Implements a light emitting diode meter control

Linear Fit

Performs a Linear curve fit to the input signal

Log

Calculates the natural logarithm (base e) value of each element of the input signal

Log10

Calculates the common logarithm (base 10) value of each element of the input signal

Logical AND

Performs logical AND function on two input signals

Logical NAND

Performs logical NAND function on two input signals

Logical NOR

Performs logical NOR function on two input signals

Logical NOT

Performs the logical NOT function on the input signal

Logical OR

Performs logical OR function on two input signals

Logical XOR

Performs logical XOR (Exclusive-OR) function on two input signals

Logx(y)

Calculates the logarithm (base x) value of each element of the input signal

Magnitude

Calculates the magnitude of the complex input signal

Modulus

Divides the input frame of data with the Modulus value

Momentary Button

Output different values when the button is in the pressed or non-pressed state

Multiply

Multiplies the corresponding elements of two input signals

Noise Generator

Generates a noise waveform with normal distribution

Notch Filter

Performs the notch filter

Numeric Indicator

Numeric display to display a single value

Octave Band Analyzer

Performs an octave band analysis on the input signal

Offset

Adds the element of channel 1 to each element of channel 0

Ones Complement

Performs ones complement bit conversion on each element of the input signal

Pad

Pads the output frame with the specified pad value

Peak Extractor

Finds peaks within a frame of data, either by position or magnitude

Peak Hold

Holds the peak value for each frame sample globally or for a number of frames

Phase

Calculates the ArcTangent of both the real and imaginary component of the complex input

Pow

Calculates the user specified exponent (power) value of the input signal

Power Spectrum

Performs an average in time across frames

PRN Generator

Generates a pseudo random noise waveform

Ramp Generator

Generates a ramp waveform

Real to Complex

Converts real and imaginary values into the corresponding complex values

Reciprocal

Calculates the 1/x value for a data sample x

Rectify

Performs either half or full wave rectification on the input signal

Replace Sample

Replaces sample with input value at specified index

Replace Subset

Replaces a subset of data at a specified location within a frame

Reverse

The Reverse block outputs the input data in reverse order.

Root Mean Square

Calculates the frame root mean square of the input signal

Sample Rate

This block obtains the sample rate information from the input channel

Sawtooth Generator

Generates a sawtooth signal

Scale

Multiplies or scales each element of channel 0 by the first value of channel 1

Schmidt Trigger

Schmidt Trigger

Serial Command Receiver

Receives commands from serial port

Shift Left

Applies a user-specified left shift to each data value of the input frame

Shift Right

Applies a user-specified right shift to each data value of the input frame

Sinc(x)

Calculates the Sinc (sinx/x) value of the input signal

Sine Generator

Generates a sine waveform

Sine(x)

Calculates the sine value of the input signal

Single Channel Display

Displays input from a single channel in several different display modes

Sound Card A/D

Sound card A/D

Sound Card D/A

Sound Card D/A

Spectral Inversion

Performs a spectral inversion (flipping spectrum) in the time domain

Spectrogram

Displays input from a single channel using color denoting amplitude

Split

Splits input frame into two output frames

Square

Calculates the square of the input signal

Square Root

Calculates the square root of the input signal

Square Wave Generator

Generates a square wave

Static Array (buffer)

Array used for holding results and feeding other blocks (ignores Data Ready condition)

Strobe

Finds the amplitude of the signal at the given index (zero-based) within the frame

Subset

The Subset block outputs a subset of the input data.

Subtract

Subtracts the corresponding elements of channel 1 input from channel 0 input

Sum

Outputs the sum of the input data frame values

Sweep (Chirp) Generator

Generates a sweep (Chirp) waveform

Table Lookup

Performs a table lookup function

Tangent(x)

Calculates the tangent value of the input signal

Terminate Block Diagram

Stops simulation at this block

Text Display

Text display block

Three Input Add

Adds the corresponding elements of three input signals

Three Position Toggle Switch

Three position vertical toggle switch

Threshold

Examines the input data and outputs zero if the data is not greater than the specified threshold

Time Sweep Control Knob

Time Sweep Control Knob

Timer

Generates a pulse or level change at a specified time interval

Toggle Button

User control button used to create an alternating 0/1 output value

Triangle Wave Generator

Generates a triangle waveform

Triggered Buffer

Buffers input data when the selected trigger criteria is met

Two Position Toggle Switch

Two position vertical toggle switch

Variable Notch Filter

Variable Notch Filter

Variable Signal Generator

Generates a signal based on the given equation

Vertical Bar Chart

Vertical bar chart

Vertical Bar Graph

Graph data vertically

Vertical Scaling Knob

General knob used for vertical trace control, etc.

Vertical Slider

Vertical slider control

Waveform Editor

Dynamically edit an incoming waveform

Write Com Port

Sends the input data out of the specified port

XY Display

Displays two channel signals using two orthogonal axes

Zero Crossing

Calculates the number of zero crossings in an input signal