Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

Лабораторна робота 6 з дисципліни «Методи оптимізації та планування експерименту»

> Виконав: Студент 2 курсу ФІОТ групи ІО-91 Самойленко Т.П.

> > Перевірив: Регіда П.Г.

<u>Мета роботи:</u> Провести трьохфакторний експеримент і отримати адекватну модель – рівняння регресії, використовуючи **рототабельний** композиційний план.

Варіант:

120	-30	20	-70	-10	-70	-40	2,1+1,7*x1+6,8*x2+6,6*x3+9,5*x1*x1+1,0*x2*x2+3,9*x3*x3+3,0*x1*x2+0,1*x1*x3+4,5*x2*x3+1,8*x1*x2*x3

Роздруківка програми:

```
from _pydecimal import Decimal
from scipy.stats import f
from pydecimal import Decimal
from scipy.stats import t
```

```
0.1 * X1 * X3 + 4.5 * X2 * X3 + 1.8 * X1 * X2 * X3 + randrange(0, 10) - 5
def find average(lst, orientation):
            average.append(sum(lst[rows]) / len(lst[rows]))
                number lst.append(lst[rows][column])
   return average
def a(first, second):
   from numpy.linalg import solve
def student test(b lst, number x=10):
   dispersion b = sqrt(dispersion b2)
```

```
t practice += average y[row] * matrix pfe[row][column - 1]
        if fabs(t practice / dispersion b) < t theoretical:</pre>
def fisher test():
def run_experiment():
   global f3
```

```
dispersion i += (matrix y[i][j] - average y[i]) ** 2
f1 = m - 1
f3 = f1 * f2
```

```
m.".format(q))
```

Результати роботи програми:

Матриця планування експеременту:														
X1	X2	Х3	X1X2	X1X3	X2X3	X1X2X3	X1X1	X2X2	X3X3	Yi ->				
-30.000	-70.000	-70.000	2100.000	2100.000	4900.000	-147000.000	900.000	4900.000	4900.000	-204470.900	-204466.900	-204465.900		
-30.000	-70.000	-40.000	2100.000	1200.000	2800.000	-84000.000	900.000	4900.000	1600.000	-113274.900	-113275.900	-113277.900		
-30.000	-10.000	-70.000	300.000	2100.000	700.000	-21000.000	900.000	100.000	4900.000	-6363.900	-6362.900	-6361.900		
-30.000	-10.000	-40.000	300.000	1200.000	400.000	-12000.000	900.000	100.000	1600.000	-4268.900	-4269.900	-4266.900		
20.000	-70.000	-70.000	-1400.000	-1400.000	4900.000	98000.000	400.000	4900.000	4900.000	221020.100	221019.100	221020.100		
20.000	-70.000	-40.000	-1400.000	-800.000	2800.000	56000.000	400.000	4900.000	1600.000	123355.100	123359.100	123353.100		
20.000	-10.000	-70.000	-200.000	-1400.000	700.000	14000.000	400.000	100.000	4900.000	50122.100	50126.100	50121.100		
20.000	-10.000	-40.000	-200.000	-800.000	400.000	8000.000	400.000	100.000	1600.000	25360.100	25360.100	25365.100		
-48.256	-40.000	-55.000	1930.000		2200.000	-106150.000	2328.062	1600.000	3025.000	-140311.456	-140316.456	-140316.456		
38.256	-40.000	-55.000	-1530.000	-2103.750	2200.000	84150.000	1463.062	1600.000	3025.000	183296.344	183298.344	183296.344		
-5.000	91.900	-55.000	459.500	275.000	5054.500	-25272.500	25.000	8445.610	3025.000	-1853.960	-1852.960	-1849.960		
-5.000	11.900	-55.000	-59.500	275.000	-654.500	3272.500	25.000	141.610	3025.000	14678.380	14677.380	14678.380		
-5.000	-40.000	-80.950	200.000	404.750	3238.000	-16190.000	25.000	1600.000	6552.903	12650.625	12647.625	12653.625		
-5.000	-40.000	-29.050	200.000	145.250	1162.000	-5810.000	25.000	1600.000	843.903	46.115	42.115	41.115		
-5.000	-40.000	-55.000	200.000	275.000	2200.000	-11000.000	25.000	1600.000	3025.000	3721.100	3716.100	3719.100		

```
Критерій Кохрена:
Дисперсія однорідна при рівні значимості 0.05.
Отримане рівняння регресії з урахуванням критерія Стьюдента
11.505 + 1.461 * X1 + 6.856 * X2 + 7.009 * X3 + 2.999 * X1X2 + 0.096 * X1X3 + 4.501 * X2X3+ 1.800 * X1X2X3 + 9.501 * X11^2 + 1.000 * X22^2 + 3.903 * X35^2 = ў
Перевірка
91 = -204467.361 ≈ -204467.900
92 = -113276.869 ≈ -113276.233
93 = -6362.527 ≈ -6362.900
94 = -6269.369 ≈ -6362.507
95 = 221020.239 ≈ 221019.767
96 = 123355.065 ≈ 123355.767
97 = 50123.406 ≈ 50123.100
98 = 25360.898 ≈ 25561.767
99 = -140314.647 ≈ -140314.790
910 = 183297.308 ≈ 183297.010
911 = -1852.266 ≈ -1852.293
912 = 14678.460 ≈ 14678.047
913 = 12649.487 ≈ 12650.625
914 = 44.933 ≈ 43.115
915 = 3718.764 ≈ 3718.767
Критерій Оішера
Рівняння регресії адекватне оригіналу
3а 10 секунд експеремент був адекватним 722 разів з 723
```

Висновок:

В даній лабораторній роботі я провів трьохфакторний експеримент і отримав адекватну модель – рівняння регресії, використовуючи ротабельний композиційний план.