OCTOBER 1976-REVISED MARCH 1988

- 3-State Outputs Interface Directly with System Bus
- Gated Output-Control Lines for Enabling or Disabling the Outputs
- Fully Independent Clock Virtually Eliminates Restrictions for Operating in One of of Two Modes:

Parallel Load Do Nothing (Hold)

For application as Bus Buffer Registers

TYPE	TYPICAL PROPAGATION	MAXIMUM CLOCK	TYPICAL POWER
	DELAY TIME	FREQUENCY	DISSIPATION
173	23 ns	35 MHz	250 mW
'LS173A	18 ns	50 MHz	95 mW

description

The '173 and 'LS173A four-bit registers include D-type flip-flops featuring totem-pole three-state outputs capable of driving highly capacitive or relatively lowimpedance loads. The high-impedance third state and increased high-logic-level drive provide these flip-flops with the capability of being connected directly to and driving the bus lines in a bus-organized system without need for interface or pull-up components. Up to 128 of the SN74173 or SN74LS173A outputs may be connected to a common bus and still drive two Series 54/74 or 54LS/74LS TTL normalized loads, respectively. Similarly, up to 49 of the SN54173 or SN54LS173A outputs can be connected to a common bus and drive one additional Series 54/74 or 54LS/74LS TTL normalized load, respectively. To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the output control circuitry is designed so that the average output disable times are shorter than the average output enable times.

SN54173, SN54LS173A...JOR,W PACKAGE SN74173...N PACKAGE SN74LS173A...DORN PACKAGE (TOP VIEW)

м []₁	U₁6]] V _{CC}
N □2	15 CLR
10. □3	14 🛮 1D
20 🛮 4	13 🛭 2D
3Q 🗌 5	12 🗍 3D
4Q 🗌 6	11 🗍 <u>4</u> D
CLK 7	10 🔲 🔂
GND 8	9 🔲 G1

SN54LS173A . . . FK PACKAGE
(TOP VIEW)

NC - No internal connection

FUNCTION TABLE

		INPUTS				
		DATA	ENABLE	DATA	OUTPUT	
CLEAR	CLOCK	Ğ1	G2	D	٥	
н	X	Х	×	х	L	
L	L	х	x	х	00	
L	†	н	×	x	σ ₀	
L	t	x	н	X	00	
L	†	L	L	L	L	
L	†	L	L	н	н	

When either M or N (or both) is (are) high the output is disabled to the high-impedance state; however sequential operation of the flip-flops is not affected.

Gated enable inputs are provided on these devices for controlling the entry of data into the flip-flops. When both data-enable inputs are low, data at the D inputs are loaded into their respective flip-flops on the next positive transition of the buffered clock input. Gate output control inputs are also provided. When both are low, the normal logic states (high or low levels) of the four outputs are available for driving the loads or bus lines. The outputs are disabled independently from the level of the clock by a high logic level at either output control input. The outputs then present a high impedance and neither load nor drive the bus line. Detailed operation is given in the function table.

PRODUCTION DATA documents centain information current as of publication data. Products conform to specifications per the terms of Texas instruments standard warranty. Production processing does not necessarily include testing of all parameters.

2-575

2-5/:

logic symbols† 'LS173A 173 CLR (15) CLR (15) M (1) ΕN N (2) ΕN N (2) G1 (9) p G1 (9) r G2 (10) C1 G2 (10) P C1 CLK_(7) CLK (7) 1D_(14) (3) - 10 10 (14) (3) ₽ - 10 2D_(13) (4) 20 (4) 2D_(13) -2Q 3D_(12) (5) 30 3D_(12) - 30 (6) 4D (11) 4D_(11) (6)

logic diagram (positive logic)

Pin numbers shown are for D, J, N, and W packages.

2-576

TTL Devices

[†] These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for D, J, N, and W packages.

schematics of inputs and outputs

recommended operating conditions

			N5417	3	SN74173	3	UNI.	
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage Voc		4.5	5	5.5	4.75	5	5.25	V
				-2			-5.2	mA
				16			16	mA
Input clock frequency, fclock		0		25	0		25	MH
Width of clock or clear pulse, tw		20			20			ns
	Data enable	17			17			1
	Data	10			10			ns
Secop time, igg	Clear inactive state	10			10			<u> </u>
	Data enable	2			2			ns
gh-level output current, IOH w-level output current, IOL put clock frequency, f _{clock} dth of clock or clear pulse, t _W tup time, t _{su}	Data	10			10			
Operating free-sir temperature, TA		-55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS†	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage		2			V
VIL	Low-level input voltage				0.8	<u> </u>
VIK	Input clamp voltage	V _{CC} = MIN, i ₁ = -12 mA			-1.5	<u> </u>
Voн	High-level output voltage	V _{CC} = MiN, V _{1H} = 2 V, V _{1L} = 0.8 V, i _{OH} = MAX	2.4			v
VOL	Low-level output voltage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, i _{OL} = 16 m	Δ .		0.4	V
IO(off)	Off-state (high-impedance state) output current	V _{CC} = MAX, V _O = 2.4 V V _{IH} = 2 V V _O = 0.4 V			40 40	μA
ել	Input current at maximum input voltage	VCC = MAX, VI = 5.5 V			1	mA
I _I H	High-level input current	V _{CC} = MAX, V ₁ = 2.4 V			40	_
I _I L	Low-level input current	VCC = MAX, VI = 0.4 V			-1.6	-
los	Short-circuit output current §	V _{CC} = MAX	-30		-70	-
ICC	Supply current	VCC = MAX, See Note 2		50	72	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C, RL = 400 Ω

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f	Maximum clock frequency		25	35		MHz
[†] max [†] PHL	Propagation delay time, high-to-low-level output from clear input	1		18	27	ns
TPLH	Propagation delay time, low-to-high-level output from clock input	Ci = 50 pF,		28	43	ns
tPHL	Propagation delay time, high-to-low-level output from clock input	See Note 3		19	31	
¹PZH	Output enable time to high level].	7	16	30	ns
†PZL	Output enable time to low level		7	21	30	
tPHZ	Output disable time from high level	CL = 5 pF,	3	5	14	ns
†PLZ	Output disable time from low level	See Note 3	3	11	20	<u> </u>

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

 $^{^{\}ddagger}$ All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}$ C.

[§] Not more than one output should be shorted at a time.

NOTE 2: ICC is measured with all outputs open; clear grounded following momentary connection to 4.5 V; N, G1, G2, and all data inputs grounded; and the clock input and M at 4.5 V.

SN54LS173A, SN74LS173A **4-BIT D-TYPE REGISTERS WITH 3-STATE OUTPUTS**

recommended operating conditions

		SA	154LS1	73A	12	174LS1	73A	UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH				-1			-2.6	mA
Low-level output current, IOL				12			24	mA
Input clock frequency, fclock		0		30	0	•	30	MHz
Width of clock or clear pulse, tw		25			25			ns
	Data enable	35			35			
High-level output current, IOH Low-level output current, IOL Input clock frequency, f _{clock} Width of clock or clear pulse, t _w Setup time, t _{su}	Data	17			17			ns
	Clear inactive state	10			10			
Held sime A	Data enable	0			0	-		
noid time, th	Data	3			3			ns
Operating free-air temperature, TA		-55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CON	DITIONS	SN	154LS17	13A	SN	174LS17	73A	UNIT
	, anameren	TEST CON	DITIONS'	MIN	TYP‡	MAX	MIN	·TYP‡	MAX	רואט [
V _{IH}	High-level input voltage			2			2			T V
VIL	Low-level input voltage					0.7	\top		0.8	T V
VIK	Input clamp voltage	V _{CC} = MIN,	I _I = −18 mA	\Box		-1.5	T		-1.5	V
Vон	High-level output voltage	V _{CC} = MIN, V _{IL} = V _{IL} max	V _{IH} = 2 V, I _{OH} = MAX	2,4	3.4	 	2.4	3,1		V
VOL	Low-level output voitage	V _{CC} = MIN,	I _{OL} = 12 mA		0.25	0.4		0.25	0.4	T
-UL	25th Svei Output Voitage	V _{IL} = 0.8 V	IOL = 24 mA				\vdash	0.35	0.5	∀ ′
lO(off)	Off-state (high-impedance state) output current	V _{CC} = MAX,	V _O = 2.7 V			20	\vdash		20	T.,
-0(011)		V _{IH} = 2 V	V _O = 0.4 V			-20	T		-20	μΑ
I _I	Input current at maximum input voltage	VCC = MAX,	V ₁ = 7 V	T		0.1	$\overline{}$		0.1	mA
ΊΗ	High-level input current	V _{CC} = MAX,	V ₁ = 2.7 V			20	T		20	μA
ΊL	Low-level input current	V _{CC} = MAX,	V ₁ = 0.4 V	т -		-0.4			-0.4	mA
los	Short-circuit output current §	VCC = MAX		-30		-130	-30		-130	mA
cc	Supply current	V _{CC} = MAX,	See Note 2		19	30		19	24	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C, RL = 667 Ω

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
fmax	Maximum clock frequency		30	50		MHz
^t PHL	Propagation delay time, high-to-low-level output from clear input			26	35	ns
tPLH .	Propagation delay time, low-to-high-level output from clock input	CL = 45 pF,		17	25	
†PHL	Propagation delay time, high-to-low-level output from clock input	See Note 3		22	30	ns
^t PZH	Output enable time to high level			15	23	_
^t PZL	Output enable time to low level			18	27	ns
tPHZ	Output disable time from high level	C _L = 5 pF,		11	20	
†PLZ	Output disable time from low level	See Note 3		11	17	ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

2-579

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C. § Not more than one output should be shorted at a time.

NOTE 2: ICC is measured with all outputs open; clear grounded following momentary connection to 4.5 V; N, G1, G2, and all data inputs grounded; and the clock input and M at 4.5 V.