Correction de l'interrogation n° 2

Questions de cours

Se référer au cours. Dans la seconde question, ne pas oublier la loi initiale μ .

Exercice I

- 1. La suite $(S_n)_{n\geqslant 0}$ est à valeurs dans \mathbb{Z} donc la suite $(Z_n)_{n\geqslant 0}$ est à valeurs dans $\{\cos(2k\pi/3): k\in \mathbb{Z}\}=\{-\frac{1}{2},1\}$. Ainsi, on prend $E=\{-\frac{1}{2},1\}$.
- 2. Si on s'intéresse à $\exp(2i\pi S_n/3)$, on a un triangle sur lequel notre marcheur saute en choisissant à chaque étape l'un des deux autres sommets au hasard. Un sommet est étiqueté 1, les deux autres $-\frac{1}{2}$. Ainsi, partant de 1, notre chaîne de Markov va forcément vers $-\frac{1}{2}$ mais, partant de $-\frac{1}{2}$, elle peut de façon équiprobable aller vers 1 ou $-\frac{1}{2}$. On s'attend donc à $Q(1,1)=0,\ Q\left(1,-\frac{1}{2}\right)=1,\ Q\left(-\frac{1}{2},1\right)=\frac{1}{2}$ et $Q\left(-\frac{1}{2},-\frac{1}{2}\right)=\frac{1}{2}$.

Exercice II

Cet exercice étudie les propriétés des martingales bornées dans \mathbf{L}^{∞} . La question 1 établit qu'elles jouissent de nombreuses propriétés. La question 2 montre que le théorème selon lequel toute martingale bornée dans \mathbf{L}^p converge dans \mathbf{L}^p , valide quand $1 , est faux lorsque <math>p = \infty$. Le fait que ce théorème est faux quand p = 1 a déjà été souligné plusieurs fois en TD.

1a. Comme (Z_n) est supposée bornée dans \mathbf{L}^{∞} , pour tout $p \in [1, \infty[$, elle est aussi bornée dans \mathbf{L}^p . Pour p > 1, cela suffit pour en déduire la convergence dans \mathbf{L}^p , puisque (Z_n) est une martingale.

La convergence dans \mathbf{L}^1 est également valide mais elle ne provient pas du théorème qu'on vient d'utiliser pour p=1, puisque ce théorème a besoin de prendre p dans $]1,\infty[$: plutôt, on constate qu'on a établi la convergence dans \mathbf{L}^2 , puisque $2 \in]1,\infty[$, de quoi découle la convergence dans \mathbf{L}^1 puisque $1 \leq 2$.

Ainsi, (Z_n) converge dans \mathbf{L}^p pour tout $p \in [1, \infty[$.

- **1b.** Prenons notre valeur de p préférée dans l'ensemble non vide $[1, \infty[$. La martingale (Z_n) étant bornée dans \mathbf{L}^p , elle converge presque sûrement.
- 1c. Prenons notre valeur de p préférée dans l'ensemble non vide $]1,\infty[$. On insiste sur le fait qu'on exclut ici le choix p=1. La suite de variables aléatoires (Z_n) étant bornée dans \mathbf{L}^p , elle est uniformément intégrable.
- **2a.** Soit $n \ge 0$. On a $\{T > n\} = \bigcap_{k=0}^n \{X_k \ne 1\}$. Or, pour tout $k \le n$, on a $\{X_k \ne 1\} \in \mathscr{F}_k \subset \mathscr{F}_n$. Par stabilité par union dénombrable (ici finie), il découle que $\{T > n\} \in \mathscr{F}_n$. Comme ceci est valable pour tout $n \ge 0$, la variable aléatoire T est un temps d'arrêt.
- **2b.** Comme M_{n+1} est à valeurs dans l'ensemble fini $\{-1,0,1\} \subset \mathbb{R}$, cette variable aléatoire est bien intégrable, ce qui légitime les calculs d'espérance conditionnelle à venir.

Traitons tout d'abord le cas où $k \leq n$. On a $M_{n+1} \mathbf{1}_{\{T=k\}} = Y_k \mathbf{1}_{\{T=k\}}$, qui est \mathscr{F}_k -mesurable comme produit de variables aléatoires qui le sont (en effet, T est un temps d'arrêt). Comme $k \leq n$, cela implique la \mathscr{F}_n -mesurabilité de $M_{n+1} \mathbf{1}_{\{T=k\}}$. Avec l'intégrabilité de cette variable aléatoire, cela donne $\mathbf{E}\left(M_{n+1} \mathbf{1}_{\{T=k\}} \mid \mathscr{F}_n\right) = M_{n+1} \mathbf{1}_{\{T=k\}}$ presque sûrement.

Traitons désormais le cas où k = n + 1. On a $M_{n+1} \mathbf{1}_{\{T = n+1\}} = Y_{n+1} \mathbf{1}_{\{T \geqslant n\}} \mathbf{1}_{\{X_{n+1} = 1\}}$. Dans cette dernière expression, le facteur $\mathbf{1}_{\{T \geqslant n\}}$ est \mathscr{F}_n -mesurable (car T est un temps d'arrêt) et les deux autres sont indépendants de \mathscr{F}_n . Par conséquent, on a $\mathbf{E} \left(M_{n+1} \mathbf{1}_{\{T = n+1\}} \mid \mathscr{F}_n \right) = \mathbf{E} \left(Y_{n+1} \mathbf{1}_{\{X_{n+1} = 1\}} \right) \mathbf{1}_{\{T \geqslant n\}} = \mathbf{E} \left(Y_{n+1} \right) \mathbf{E} \left(\mathbf{1}_{\{X_{n+1} = 1\}} \right) \mathbf{1}_{\{T \geqslant n\}}$, où la seconde égalité provient de l'indépendance de Y_{n+1} et X_{n+1} . Comme Y_{n+1} est d'espérance nulle, quand $K_n = n+1$, on a $\mathbf{E} \left(M_{n+1} \mathbf{1}_{\{T = k\}} \mid \mathscr{F}_n \right) = 0$ presque sûrement.

2c. Soit $n \ge 0$. Vérifions tout d'abord que M_n est \mathscr{F}_n -mesurable. Pour voir cela, on écrit $M_n = \sum_{k=0}^n Y_k \mathbf{1}_{\{T=k\}}$ et constate que le terme numéro k de cette somme est \mathscr{F}_k -mesurable donc \mathscr{F}_n -mesurable, puisque $k \le n$.

L'intégrabilité se traite comme vu à la question précédente.

Enfin, on a $\mathbf{E}(M_{n+1} \mid \mathscr{F}_n) = \mathbf{E}\left(\sum_{k=0}^{n+1} Y_k \mathbf{1}_{\{T=k\}} \mid \mathscr{F}_n\right) = \sum_{k=0}^{n+1} \mathbf{E}\left(Y_k \mathbf{1}_{\{T=k\}} \mid \mathscr{F}_n\right) = \sum_{k=0}^{n} Y_k \mathbf{1}_{\{T=k\}} + 0 = M_n$, où l'avant-dernière égalité découle de la question 2b. Ainsi, le processus (M_n) est bien une martingale pour la filtration (\mathscr{F}_n) .

2d. Puisque presque sûrement, tous les Y_n sont à valeurs dans $\{-1,1\}$, il est presque sûrement le cas que les M_n sont à valeurs dans $\{-1,0,1\}$. En particulier, on a $\sup_n \|M_n\|_{\infty} \leq 1 < \infty$ donc (M_n) est bien bornée dans \mathbf{L}^{∞} .

REMARQUE : En fait, on a $\sup_n \|M_n\|_{\infty} = 1$. Quant à la première phrase de l'argument, pour justifier que M_4 est à valeurs dans $\{-1,0,1\}$, on utilise non seulement le fait que Y_4 est à valeurs dans $\{-1,1\}$ mais aussi la même propriété pour les variables aléatoires Y_0, Y_1, Y_2, Y_3 .

2e. Soit $n \ge 0$. Considérons l'événement $\{X_0 = 0, \dots, X_n = 0, X_{n+1} = 1\}$. Par indépendance des X_k , cet événement a pour probabilité $2^{-n-2} > 0$. Or sur cet événement de probabilité non nulle, on a $|M_{n+1} - M_n| = 1$. Donc la quantité

 $\|M_{n+1} - M_n\|_{\infty}$ ne peut pas tendre vers 0 puisqu'elle vaut toujours au moins 1 (en fait exactement 1). En particulier, la suite (M_n) ne converge pas \mathbf{L}^{∞} : en effet, si la suite convergeait vers Z dans \mathbf{L}^{∞} , on aurait, par inégalité triangulaire, $\|M_{n+1} - M_n\|_{\infty} \leq \|M_{n+1} - Z\|_{\infty} + \|M_n - Z\|_{\infty} \xrightarrow[n \to \infty]{} 0$.

ALTERNATIVEMENT : En utilisant l'expression employée en question 2a et l'indépendance des X_k , on voit que $\mathbf{P}(T>n)=\prod_{k=0}^n\mathbf{P}(X_k\neq 1)=2^{-n-1}\xrightarrow[n\to\infty]{}0$. Ainsi, T est fini presque sûrement. Par conséquent, Y_T est bien définie 1 presque partout et (M_n) converge presque sûrement vers Y_T , en stationnant à partir du rang aléatoire T. Il suffit alors de vérifier que M_n ne converge pas vers Y_T dans \mathbf{L}^{∞} . Comme dans l'argument précédent, introduire l'événement $\{X_0=0,\ldots,X_n=0,X_{n+1}=1\}$ permet de s'en rendre compte.

L'idée générale derrière le contre-exemple étudié en II-2 est la suivante. Une martingale classique est la marche aléatoire de paramètre $p=\frac{1}{2}$. Si on veut quelque chose de borné dans \mathbf{L}^{∞} , on peut faire plus simple encore, à savoir un seul pas de cette marche. Mais c'est beaucoup trop simple pour donner lieu à un contre-exemple. Aussi, on décide d'effectuer cet unique pas à un instant T lui-même aléatoire. Visualisez bien qu'une trajectoire de (M_n) , cela consiste à valoir 0 pour tout $n < T(\omega)$ puis la valeur $Y_{T(\omega)}(\omega) \in \{-1,1\}$ pour tout $n > T(\omega)$.

Bonus I Soit $n \ge 0$. Soient x_1, \ldots, x_n des éléments de $\{-1, 1\}$. Calculons $\mathbf{P}(Y_{n+1} = 1 \mid X_1 = x_1, \ldots, X_n = x_n)$. Pour raccourcir, on note cette quantité $q(x_1, \ldots, x_n)$.

Quand S_n est un multiple de 2π , S_{n+1} ne l'est pas, ce qui implique $Y_{n+1} = -\frac{1}{2}$. Ainsi, quand $x_1 + \cdots + x_n$ est un multiple de 3, on a $\mathbf{P}(Y_{n+1} = 1 \mid X_1 = x_1, \dots, X_n = x_n) = 0$.

Traitons le cas où $x_1 + \cdots + x_n$ est de la forme 3k + 1. Alors on a $q(x_0, \dots, x_n) = \mathbf{P}(X_{n+1} = -1 \mid X_1 = x_1, \dots, X_n = x_n)$, qui vaut $\mathbf{P}(X_{n+1} = -1)$ car les variables aléatoires X_i sont indépendantes. Par conséquent, on a $q(x_1, \dots, x_n) = \frac{1}{2}$.

Traitons le cas où $x_1 + \cdots + x_n$ est de la forme 3k - 1. Alors on a $q(x_0, \dots, x_n) = \mathbf{P}(X_{n+1} = 1 \mid X_1 = x_1, \dots, X_n = x_n)$, qui vaut $\mathbf{P}(X_{n+1} = 1)$ car les variables aléatoires X_i sont indépendantes. Par conséquent, on a encore $q(x_1, \dots, x_n) = \frac{1}{2}$.

Comme $\{X_1 + \cdots + X_n \text{ est un multiple de } 3\} = \{Y_n = 1\}$, il résulte de ce qu'on vient de voir que $\mathbf{P}(Y_{n+1} = 1 \mid X_1, \dots, X_n)$ vaut presque sûrement $Q(Y_n, 1)$, pour Q la matrice posée en question 2 de l'exercice I. On remarque que cette expression est $\sigma(Y_0, \dots, Y_n)$ -mesurable.

Pour calculer $\mathbf{P}(Y_{n+1}=1\,|\,Y_0,\ldots,Y_n)$, on constate que chacune des variables aléatoires Y_0,\ldots,Y_n est $\sigma(X_1,\ldots,X_n)$ mesurable, ce qui indique que $\sigma(Y_0,\ldots,Y_n)\subset\sigma(X_1,\ldots,X_n)$. Cette inclusion justifie la première égalité de

$$\mathbf{P}(Y_{n+1} = 1 \mid Y_0, \dots, Y_n) = \mathbf{E}(\mathbf{P}(Y_{n+1} = 1 \mid X_1, \dots, X_n) \mid Y_0, \dots, Y_n) = \mathbf{E}(Q(Y_n, 1) \mid Y_0, \dots, Y_n) = Q(Y_n, 1)$$

et la dernière égalité provient de la $\sigma(Y_0,\ldots,Y_n)$ -mesurabilité de $Q(Y_n,1)$. On en déduit l'expression analogue

$$\mathbf{P}(Y_{n+1} = -\frac{1}{2} | Y_0, \dots, Y_n) = Q(Y_n, -\frac{1}{2})$$

par passage au complémentaire et parce que chaque ligne de Q est de somme 1. Ainsi, (Y_n) est bien une chaîne de Markov, de noyau de transition Q.

REMARQUE: Il est essentiel dans l'argument précédent que les variables aléatoires X_i soient de loi uniforme sur $\{-1,1\}$: c'est cela qui fait que $\mathbf{P}(Y_{n+1}=1\,|\,X_1,\ldots,X_n)$ peut s'exprimer d'une façon qui ne dépend que de Y_n — en général, on aurait une formule dépendant de S_n . Si on travaille avec un paramètre p quelconque (avec $\mathbf{P}(X_k=1)=p=1-\mathbf{P}(X_k=-1)$), il n'est plus vrai que (Y_n) est une chaîne de Markov. Par exemple, si on prend p=1, considérer la transition de l'instant 1 vers l'instant 2 conduit à poser $Q\left(-\frac{1}{2},-\frac{1}{2}\right)=1$ tandis que le passage de l'instant 2 à l'instant 3 donne $Q\left(-\frac{1}{2},-\frac{1}{2}\right)=0$.

Plus généralement, si (X_n) est une chaîne de Markov de noyau de transition P sur un ensemble d'états E et si $f: E \to E'$, voici une condition suffisante naturelle pour que $(f(X_n))$ soit une chaîne de Markov : on demande que pour tous x et x' dans E tels que f(x) = f(x') et tout $z \in E'$, on ait $\sum_{y \in f^{-1}(\{z\})} P(x, y) = \sum_{y \in f^{-1}(\{z\})} P(x', y)$.

Bonus II Posons $Z = Y_T$, qui est bien définie presque partout d'après la correction alternative de la question 2e. Une première façon de se rendre compte que ce choix de Z convient est de dire que quand on a une martingale fermée, prendre pour Z sa limite presque sûre est toujours un choix convenable 2 (et ici, on a identifié explicitement la limite presque sûre en constatant dans la correction alternative de 2e que c'était Y_T).

Alternativement, on peut procéder comme suit. On a $Z = \sum_{k=0}^{\infty} Y_k \mathbf{1}_{\{T=k\}}$. Pour $n \ge 0$, on a

$$\mathbf{E}\left(Z\,|\,\mathscr{F}_{n}\right)=\sum_{k=0}^{\infty}\mathbf{E}\left(Y_{k}\,\mathbf{1}_{\left\{T=k\right\}}\,|\,\mathscr{F}_{n}\right)=\sum_{k=0}^{n}Y_{k}\,\mathbf{1}_{\left\{T=k\right\}}=M_{n}.$$

La première égalité est licite par convergence dominée conditionnelle car $\mathbf{E}\left(\sum_{k=0}^{\infty}|Y_k|\mathbf{1}_{T=k}\right)=\sum_{k=0}^{\infty}\mathbf{E}(|Y_k|\mathbf{1}_{T=k})=\sum_{k=0}^{\infty}\mathbf{E}(\mathbf{1}_{T=k})=1<\infty$. L'égalité $\sum_{k=0}^{\infty}\mathbf{E}\left(Y_k\mathbf{1}_{T=k}\mid\mathscr{F}_n\right)=\sum_{k=0}^{n}Y_k\mathbf{1}_{T=k}$ s'obtient, elle, par le même raisonnement qu'en question 2c.

^{1.} Jusqu'à maintenant, on n'avait pas besoin d'avoir conscience de cela. En effet, quand on définit M_n , on n'a besoin de définir Y_T que sur l'événement $\{T \leq n\}$, et sur cet événement la définition ne pose aucun problème.

^{2.} Attention, même à égalité presque partout près, ce n'est pas le seul choix convenable. Si Z convient, alors Z' conviendra si et seulement si Z et Z' ont même espérance conditionnelle par rapport à la tribu $\mathscr{F}_{\infty} = \sigma\left(\bigcup_{n \in \mathbb{N}} \mathscr{F}_n\right)$.