Série 3 : Dipôle RLC

PHYSIQUE POUR TOUS

EXERCICE 1:

Un circuit électrique LC est constitué par :

- Un condensateur, de capacité *C*.
- Une bobine d'inductance *L* et de résistance négligeable.
- Un interrupteur *K* (figure 1).

On charge le condensateur (K ouvert) puis à la date t=0 s, on ferme l'interrupteur K.

1.

- 1. Établir l'équation différentielle régissant les variations de la tension u_C aux bornes du condensateur.
- 2. Montrer que $u_C(t) = U_{\text{max}} \sin(\omega_0 t + \varphi_{u_C})$ est une solution de l'équation différentielle à la condition que $\omega_0^2 = \frac{1}{LC}$. Déduire l'expression de la période propre T_0 des oscillations.
- 3. Déduire l'expression de l'intensité i(t) du courant électrique en fonction de U_{\max} , \mathcal{C} , ω_0 et φ_{u_C} .
- 4. En déduire que $i^2 = -\frac{c}{L}u_C^2 + \frac{c}{L}U_{\text{max}}^2$.

2

À l'aide d'un dispositif informatisé on a pu tracer :

- La courbe représentant l'évolution, au cours du temps, de i^2 en fonction de u_c^2 (figure 2).
- La courbe qui représente l'évolution de i^2 en fonction du temps (figure 3).
- 5. En exploitant le graphe :
 - $\circ\quad$ de la figure 2, prélever $I_{\rm max}$ et $U_{\rm max}.$
 - o de la figure 3, trouver la valeur de la pulsation propre ω_0 et la phase initiale de la tension u_C .
- 6. Calculer *C* et *L*. Déduire la valeur de l'énergie électrique emmagasinée initialement dans le condensateur.

EXERCICE 2: Étude du dipôle RLC

On réalise le montage, représenté dans la figure 1, comportant

- Un microampèremètre ;
- Deux conducteurs ohmiques de résistance R_0 et $R=40\Omega$;
- Une bobine (b) d'inductance L = 0.6H et de résistance interne $r = 8\Omega$;
- Deux interrupteurs K_1 et K_2 .
- Un condensateur de capacité C, non chargé initialement ; On ferme l'interrupteur K_1 à l'instant de date t = 0. L'intensité

du courant indiquée par le microampèremètre est $I_0 = 4\mu A$.

Lorsque la tension entre les bornes du condensateur prend la valeur $u_C = U_0$, on ouvre K_1 et on ferme

 K_2 à un instant pris comme nouvelle origine des dates (t = 0). Un système d'acquisition informatisé adéquat permet de tracer la courbe représentant la tension $u_R(t)$ (fig.5). (la droite (T1) représente la tangente à la courbe à t = 0.)

- 1. Établir l'équation différentielle régissant l'évolution de la charge q du condensateur.
- 2. Exprimer $\frac{dE_t}{dt}$ en fonction de R, r et i(t); E_t représente l'énergie totale du circuit à un instant t et i l'intens

du circuit à un instant t et i l'intensité du courant circulant dans le circuit au même instant.

- 3. Montrer que $U_0 = -\frac{L}{R} \cdot \left(\frac{du_R}{dt}\right)_{t=0}$ où $\left(\frac{du_R}{dt}\right)_{t=0}$ représente la dérivée par rapport au temps de u_R à t=0. Calculer U_0 .
- 4. Trouver $|E_I|$ l'énergie dissipée par effet Joule dans le circuit entre les instants t=0 et $t=t_1$ (fig.5).

EXERCICE 3: Décharge d'un condensateur dans le dipôle RL

On monte en série à un instant de date t=0 un condensateur de capacité $C=14,1\mu F$, totalement chargé, avec une bobine (b) d'inductance $L_0=0,18H$ et de résistance interne $r_0=5\Omega$ et un conducteur ohmique de résistance $R=20\Omega$ (figure 1). Un système de saisie informatique approprié permet de tracer la courbe représentant la tension $u_C(t)$ aux bornes du condensateur et la courbe représentant la tension $u_R(t)$ aux bornes du conducteur ohmique (figure 2).

- 1. Quel est parmi les trois régimes d'oscillations, celui qui correspond aux courbes obtenues sur la figure 4 ?
- 2. Établir l'équation différentielle vérifiée par la tension $u_{\mathcal{C}}(t)$.
- 3. Trouver l'énergie $|E_j|$ dissipée par effet joule dans le circuit entre les deux instants $t_1 = 0$ et $t_2 = 14$ ms.

