Faculté de Commerce et de Gestion

Première Année

Examen de Mathématiques

Semestre 1

Exercice 1

Soient les suites $(u_n)_{n\geq 0}$ et $(v_n)_{n\geq 0}$ définies par :

$$u_n = \frac{3 \cdot 2^n - 4n + 3}{2}$$
 et $v_n = \frac{3 \cdot 2^n + 4n - 3}{2}$

On définit les suites $(w_n)_{n\geq 0}$ et $(t_n)_{n\geq 0}$ par

$$w_n = u_n + v_n$$
 et $t_n = u_n - v_n$

- (i) Montrer que $(w_n)_{n>0}$ est géométrique. Donner sa raison et son premier terme.
- (ii) Montrer que $(t_n)_{n\geq 0}$ est arithmétique. Donner sa raison et son premier terme.
- (iii) Calculer $S_n = u_0 + u_1 + \dots + u_n$ (Indication: remarquer que $w_n + t_n = 2u_n$)

Exercice 2

Calculer les limites suivantes :

- $(i) \qquad \lim_{x \to 3} \left(\frac{x^2 4x + 3}{x 3} \right)$
- $(ii) \qquad \lim_{x \to -\infty} \left(\frac{x^4 2}{x^4}\right)$

Exercice 3

Soit f la fonction définie par :

$$f(x) = x^3 - 3x + 3$$

- (i) Etudier la fonction f et donner son tableau de variation.
- (ii) Montrer que l'équation f(x) = 0 admet au moins une racine sur son domaine de définition.
- (iii) Déterminer les extrémums locaux de la fonction f et préciser leur nature.