东南大学考试卷(A卷)

课程名称 信号与线性系统 考试学期 11-12 得分

适用专业 考试形式 闭卷 考试时间长度 120 分钟

题目	_	11	111	四	五.	六	七	八	九	+	+	总分
得分												
批阅人												

一、简单计算或论述证明题(共7题,共计56分)

1、已知某 LTI 连续因果系统的特征多项式为 $D(s) = s^5 + s^4 + 2s^3 + 2s^2 + 2s + 2$,试分析 其特征根在 s 左半开平面、虚轴以及 s 右半开平面上的个数,并判断该系统的稳定性。

2、求序列 $f_1(k) = \{-1, -2, 0, 2, 1; k = -2, -1, 0, 1, 2\}$ 和 $f_2(k) = \{-1, 2, 1; k = -1, 0, 1\}$ 的卷积 和。

3、已知 LTI 离散因果系统 $y(k+2) + \frac{1}{6}y(k+1) - \frac{1}{6}y(k) = e(k+1) + 2e(k)$,求该系统在 激励 $e(k) = 2^k$, $-\infty < k < +\infty$ 作用下的输出响应。

4、已知某系统函数为 $H(z) = \frac{9.5z}{(z-0.5)(10-z)}$ 求在以下两种收敛域:

|z|>10和0.5<|z|<10情况下系统的单位样值响应,并说明这两种情况下系统的稳定性与 因果性。

5、已知某系统函数 H(s)的极零点分布如图所示,且 H(0)=2。试写出系统函数,并判断该 系统是否为最小相位系统, 是否为全通系统。

6、已知一LTI 离散系统的单位函数响应为 $h(k) = \{1,0,2,3,2,0,1; k=0,1,2,3,4,5,6\}$,试 画出其框图,并判断它的稳定性。

二 (14 分) LTI 离散因果系统
$$y(k) - \frac{1}{4}y(k-1) - \frac{1}{8}y(k-2) = e(k) + e(k-1)$$
,已知 $y_{ij}(-1) = 6$, $y_{ij}(-2) = 36$,若 $e(k) = \varepsilon(k)$,

- 1、求系统的零输入响应、零状态响应和全响应;并分别指出上述全响应中的自然响应和受迫响应,以及瞬态响应和稳态响应。
 - 2、试给出系统直接型框图,并写出系统的状态方程和输出方程。

三(16 分)所示,一信号 $f_0(t)$ 包含了有用信号 s(t) 和干扰信号 j(t), $f_0(t)=s(t)+j(t)$,其中: $s(t)=\cos 2\pi +0.5\cos 4\pi$, $j(t)=100\cos 6\pi$,T=0.125秒, $h_2(k)=\varepsilon(k)-\varepsilon(k-4)$,需要经过图示的各种处理。问题如下:

- 1、给出 A 点信号的幅度谱;
- 2、给出滤波器 $H_1(j\omega)$ 频域表达式,其应能有效去除干扰信号;
- 3、采样周期 T 为 0.125 秒时,通过 C 点是否可以恢复出 B 点信号;
- 4、给出 C 点频谱;
- 5、画出 D 点时域波形;
- 6、给出 E 点的时域表达式。