Lecture 4

Lecture 1-3

In Computational analysis of physical problems we represent functions like f(x) as discrete points on a grid.

Why we do?

We can use these discrete values to quickly give numerical approximations to the derivative and the integral.

$$\frac{df}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

$$\frac{df}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x-h)}{2h}$$

more accurate because it's centered about the value of *x* where we want the derivative to be evaluated.

Lecture 1-3

Looked at how to calculate 1st derivative using MATLAB with some examples.

Assignment: how to calculate a second derivative.

how to choose the step size h.

How to use linear extrapolation to find the derivatives at the endpoints.

Plot the difference between the approximate and exact.

Differential eqn.

- A differential equation is an equation that contains one or more derivatives.
- initial condition is the value of the dependent variable when the independent variable is zero.
- A solution to a differential equation is a function that satisfies the equation and initial condition(s).

Next is \rightarrow Difference eqn.

Difference Equation

Example: Growth or Decay

We consider time advancing in small, incremental steps. For time, t, and length of a time step, Δt , the **previous time** is $t - \Delta t$.

System dynamics tool → population example

(rate of change of population (growth) → dP/dt = rP; r is the growth rate)

Difference eqn: where population(t) is the population at time t and $population(t - \Delta t)$ is the population at time $t - \Delta t$: $population(t) = population(t - \Delta t) + (growth) * \Delta t$

growth = growth_rate * population

Difference eqn.

```
(new population) = (old population) + (change in population) or  population(t) = population(t - \Delta t) + \Delta population
```

where **\Delta population** is a notation for the **change in population**.

We approximate the change in the population over one time step, Δ *population* or (*growth*) * Δt , as the finite difference of the population at one time step and at the previous time step, *population*(t) – *population*(t – Δt).

Difference eqn.

finite difference equation, indicates that the population at one time step is the population at the previous time step plus the change in population over that time interval:

 $population(t) = population(t - \Delta t) + \Delta population$

we have an approximation of the derivative *dP/dt* as follows:

growth = delta population/ delta t

Radioactive decay

Numerically solved the problem of Radioactive decay: If there are N atoms of an unstable element with an exponential decay rate of "r or gamma" then the DE of how N decreases in time is (note: decay rate and mean lifetime (tau) are different)

$$\frac{dN}{dt} = -\gamma N$$

which is just a single first order differential equation whose solution is

$$N(t) = N(0)e^{-\gamma t} .$$

the instantaneous rate of change of N with respect to t, N(t) = dN/dt, is the instantaneous rate of decay.

Algorithm (pseudocode) for simulation of radioactive decay

initialize simulationLengthinitialize $number_atoms$ initialize decay-Rate (or mean lifetime) initialize length of time step Δt $Num_of_Iterations \leftarrow simulationLength / \Delta t$

for *i* going from 1 through *num_of_iterations* do the following:

 $decay \leftarrow decay$ -Rate * $number_atoms$ $number_atoms \leftarrow number_atoms (+/-) decay * <math>\Delta t$ $t \leftarrow i * \Delta t$

display t, decay, and number_atoms

Imp considerations

- Output looks reasonable?
- Agree with exact results if available?
- Code gives the same result for different time steps.
- What errors?
- Characteristic time scale?