Analisi dell'HH-tree

Luigi Foscari

1 Parametri e metriche

I parametri della struttura dati sono

- \bullet m la dimensione massima delle foglie.
- b la taglia delle tabelle di hash nei nodi.
- n il numero di elementi inseriti (spesso sconosciuto a priori).

Le metriche analizzate sono

- Usage o utilizzo è la percentuale $\in [0,1]$ di riempimento delle foglie rispetto ad m.
- Depth è la profondità $\in \mathbb{N}$ dell'albero.

2 Relazione tra i parametri e le metriche

Le seguenti analisi hanno mostrano come gli unici valori sensati per m e b sono quelli minori di n e che conviene allontanarsi da valori troppo bassi per entrambi.

È necessario distinguere due implementazioni, nella prima, chiamata rigida, il parametro m rimane inalterato in tutta la struttura, nella seconda, chiamata adattiva, m è incrementato di 1 per ogni figlio, quindi una foglia a prodondità t avrà una lunghezza massima m+t.

2.1 Implementazione rigida

L'implementazione in question presenta una condizione sui parametri, nel caso in cui b=1 e m< n è invevitable una ricorsione infinita alla prima scissione, perchè non è possibile inserire tutti gli elementi in un solo bucket, ma non è neanche possibile utilizzare più di un bucket. Perciò b>1 o, meno efficientemente, $m\geq n$.

- \bullet Riguardo a b possiamo dire che
 - Se b=2 l'albero è binario, considerando che l'hashing è universale il valore atteso di utilizzo delle foglie è 1/2, La profondità è

$$\log_2\left(\frac{m}{2}+1\right)-1.$$

- Se $b \ge n$ in valore atteso la profondità è 1 e l'utilizzo è n/b.
- \bullet Riguardo ad m possiamo dire che
 - Se m=1 ogni foglia contiene al massimo un elemento, quindi in valore atteso l'utilizzo è 1/b e la profondità è al massimo n.
 - Se m=n l'utilizzo è sempre uguale a m/b, mentre la profondità è sempre 1.

2.2 Implementazione adattiva

- \bullet Riguardo a b possiamo dire che
 - Se b=1 l'utilizzo è sempre 1, perchè c'è una scissione ad ogni inserimento dopo l'm-esimo, mentre la profondità è n-m+1.
 - Se b=n l'utilizzo ha un valore atteso pari a n/me la profondità 1, ipotizzando che l'hashing utilizzato sia universale.
- \bullet Riguardo ad m possiamo dire che
 - Al crescere di m da 1 ad n la profondità e l'utilizzo tendono a scendere.
 - Dal momento in cui m=n non avvengono scissioni, perciò la profondità sarà sempre 1 e l'utilizzo al 100%.

$3\,$ MAGIC Gamma Telescope Dataset

È stato utilizzato un subset di n=50 righe del MAGIC Gamma Telescope Dataset. Per valori di m e b tra 1 e n sono stati calcolati utilizzo e profondità medi su 10 permutazioni. Questi sono i risultati.

4 Cloud DataSet

È stato utilizzato un subset di n=50 righe del Cloud DataSet. Per valori di m e b tra 1 e n sono stati calcolati utilizzo e profondità medi su 10 permutazioni. Questi sono i risultati.

5 Strutture dati analoghe

Un HH-tree con k mappe di feature su un universo \mathcal{X} permette di fare ricerca su più campi, espressi come feature degli elementi di \mathcal{X} . È possibile ottenere una struttura dati quasi analoga tramite l'utilizzo di molteplici tabelle di hash: gli elementi inseriti $S \subseteq \mathcal{X}$ sono conservati in un array A, sono create inoltre k tabelle di hash di taglia b, ad ognuna è associata una mappa.

- L'inserimento di un valore $x \in \mathcal{X}$ è effettuato aggiungendo all'array x e per ognuna delle tabelle di hash calcolare la posizione di x e inserire nella lista di collisione la posizione di x all'interno dell'array.
- La ricerca su un insieme di chiavi è definita nel seguente algoritmo

```
Data: A insieme degli elementi, C chiavi, T tabelle Output: Risultato della ricerca su c chiavi Sia R una copia di A for i=1,\ldots,|T| do | for j=1,\ldots,|C| do | Rimuovi da R ogni elemento che non compare in T[i][j] end end return R
```

 \bullet La cancellazione di effettua rimuovendo l'indice dell'elemento da ogni tabella di hash e l'elemento da A

Quindi l'inserimento è lineare su k, mentre la ricerca con un insieme di chiavi C è $O(|T||C|+n) = O(|T|k+n)^1$. Lo spazio occupato è invece O(n+|T|n). Inoltre l'inserimento occupa spazio O(n).

 $^{^{1}|}C| \leq k$