Partiel n° 2 de Physique

Les calculatrices et les documents ne sont pas autorisés. Réponses exclusivement sur le sujet

OCM (4 points; sans points négatifs)

1- La fonction d'état enthalpie est définie par :

- a) H = U PV b) H = W + Q c) H = U + TV d) H = U + PV

2- La variation infinitésimale de l'enthalpie dH lors d'une transformation réversible s'écrit :

NOM :

- a) $dH = \delta Q + PdV$ (b) $dH = \delta Q + VdP$ c) dH = dU + VdP

3- Lorsqu'un système fermé (gaz parfait) subit une transformation isotherme, la quantité de chaleur échangée avec le milieu extérieur est

- a) Q = W b) $Q = \Delta U$ c) Q = W d) Q = 0

4- Le travail des forces de pression de l'état (1) vers l'état (2) d'une transformation isobare s'écrit

- a) W = 0
- (b) $W = -P(V_2 V_1)$ c) $W = n.R.T_1 ln(\frac{V_2}{V_1})$

5- La quantité de chaleur échangée entre un gaz parfait et le milieu extérieur lors d'une transformation isochore réversible est

- a) $Q = nc_n \Delta T$
- $(b)Q = nc_v \Delta T \qquad c) Q = nR\Delta T$

6- Laquelle parmi les grandeurs suivantes n'est pas une fonction d'état ?

- a) Enthalpie H
- b) Energie interne U
- (c) Quantité de chaleur Q

7- Les variables d'état température et pression d'un gaz parfait qui subit une transformation isochore de l'état (1) vers l'état (2) vérifient :

- (a) $T_1 P_2 = T_2 P_1$ b) $T_1 P_1 = T_2 P_2$ c) $\frac{T_1}{P_2} = \frac{P_1}{T_2}$

8- La loi de Laplace écrite en fonction de la température et la pression donne

- a) $T \cdot P^{\gamma 1} = C$ b) $T^{\gamma} \cdot P^{\gamma 1} = C$ c) $T \cdot P^{\gamma + 1} = C$ d) $T^{\gamma} \cdot P^{1 \gamma} = C$

("C" étant une constante)

Exercice 1 Les 2 parties de l'exercice sont indépendantes. (6 points)

I. Compression isotherme.

Un gaz parfait, contenu dans un cylindre fermé par un piston et placé dans un four, subit une compression isotherme réversible d'un volume V_1 au volume $V_2 = \frac{V_1}{10}$. La pression initiale est $P_1 = 1$ bar. Le travail fourni au système gazeux est $W_{12} = 420 J$. La constante des gaz parfaits : R = 8,3 J. $mol^{-1} \cdot K^{-1}$

1- Calculer la quantité de chaleur cédée au milieu extérieur Q_{12} .

2- Donner l'expression de la pression finale P_2 en fonction de P_1 puis donner sa valeur en bar.

3- Donner l'expression du volume V_1 en fonction de W_{12} et P_1 , puis faire l'application numérique en litre arrondie à un chiffre après la virgule. On donne : ln(10) = 2,3.

$$W_{12} = -mRT_{1} \ln \left(\frac{V_{2}}{V_{1}} \right) = -P_{1}V_{1} \ln \left(\frac{V_{2}}{V_{1}} \right)$$

$$Car P_{1}V_{1} = mRT_{1} \left(gaz parfait \right).$$

$$dSai V_{1} = -\frac{W_{12}}{P_{1} \ln \left(\frac{1}{10} \right)} = \frac{W_{12}}{P_{1} \ln \left(\frac{1}{10} \right)} = \frac{420}{10^{5} \ln \left(\frac{1}{10} \right)} = \frac{18}{10^{5}} \ln \frac{3}{10^{5}}$$

4- Déterminer l'expression de la température T, en fonction de P_1 , V_1 , n et R, à laquelle s'effectuerait la compression s'il y avait n = 0.02 mol de gaz. Donner une estimation de la température en kelvin (un entier multiplié par une puissance de 10).

$$PV = MRT ; T = \frac{P_1 V_1}{MR}$$

$$T = \frac{10^5 \cdot 1.8 \cdot 10^3}{2 \cdot 10^{-2} \cdot 9.3} = \frac{1.8}{2 \cdot 8.3} \cdot 10^4 = \frac{18}{16.6} \cdot 10^3$$

$$\approx 10^{-2} \cdot 9.3 = \frac{1.8}{2 \cdot 8.3} \cdot 10^4 = \frac{18}{16.6} \cdot 10^3$$

II. Compression adiabatique

La compression adiabatique et réversible de n = 1 mol de gaz parfait monoatomique élève la température de ce gaz de $\Delta T = 100$ °C. On prendra la constante des gaz parfaits : $R = 8.3 J. mol^{-1} K^{-1}$.

1- Donner la quantité de chaleur échangée avec l'extérieur Q_{12} lors de la compression, justifier votre réponse.

2- Déterminer l'expression du travail W_{12} nécessaire pour réaliser cette compression en fonction de n, R et ΔT . Faire l'application numérique en Joule arrondie à l'unité.

Que = 0; Wie = DYe = MCV DT.
or gaz parfait mano atomi que:
$$Cv = \frac{3}{2}R$$
.
Wie = $1.\frac{3}{2}.8,3$. 100 . $(100^{\circ}C = \Delta\theta = \Delta T = 100 \text{ K})$
Wie = $1.7 \times 8,3 \times 100 = 1247 \text{ J}$.

3- Donner l'expression de la pression finale du gaz P_2 en fonction de la pression initiale P_1 , la température initiale T_1 , l'élévation de température ΔT et du coefficient Laplace γ .

Exercice 2 (5 points)

Une mole de gaz parfait de capacité thermique molaire à volume constant $c_v = \frac{5}{2}R$ et de capacité molaire à pression constante $c_p = \frac{7}{2}R$ est prise dans les conditions du point "a" dans la figure ci-contre. On lui fait décrire le chemin ab de 3 manières différentes

- le chemin acb;
- · le chemin adb;
- · le chemin direct ab.

On pose : $P_2 = 2P_1$ et $V_2 = 2V_1$.

Les points \mathbf{a} et \mathbf{b} appartiennent respectivement aux isothermes T_1 et T_2 . On suppose toutes les transformations réversibles. Les chemins \mathbf{ac} et \mathbf{db} sont des transformations isochores, alors que les chemins \mathbf{cb} et \mathbf{ad} sont des transformations isobares.

1- Montrer que : $T_2 = 4T_1$ et $T_c = T_d = 2 T_1$.

- 2- a) Exprimer les travaux des forces de pression W_{ac} , W_{cb} , en déduire le travail total W_{acb} en fonction de T_1 et de la constante des gaz parfaits R.
- b) Exprimer les travaux des forces de pression W_{ad} , W_{db} , en déduire le travail total W_{adb} en fonction de T_1 et de la constante des gaz parfaits R.
- c) Exprimer le travail W_{ab} (en considérant le chemin ab directement). Penser à exprimer la pression en fonction du volume sur la droite (ab). Donner le résultat en fonction de T_1 et de la constante des gaz parfaits R.
- d) Comparer les expressions Wabc , Wadb et Wab. Conclure.

3- Reprendre les questions 2a, 2b, 2c et 2d en exprimant cette fois la quantité de chaleur Q échangée avec le milieu extérieur. Donner le résultat en fonction de T_1 et de la constante des gaz parfaits R.

Exercice 3 Cycle réversible (5 points)

Une mole de gaz parfait caractérisé par le coefficient de Laplace $\gamma = C_p/C_v$, supposé constant, occupe à l'équilibre thermodynamique un volume V_1 à la température T_1 et sous la pression P_1 (état A). On comprime de façon réversible et adiabatique le gaz jusqu'au volume $V_2 = V_1/4$ (état B). On laisse alors le gaz revenir à la température T_1 en maintenant le volume constant (état C). Le gaz est ensuite détendu de façon réversible de sorte que sa température reste constante, jusqu'au volume V_1 (état A).

1- Représenter le cycle ABCA dans un diagramme (P, V).

2- Donner l'expression de la chaleur reçue en fonction de P_1 , V_1 . Vous préciserez de quel chemin il s'agit.

3- Donner l'expression du travail reçu en fonction de P_1 , V_1 et γ . Vous préciserez de quel chemin il s'agit.

4- Exprimer la pression P_C au point C en fonction de la pression P_1 .

5- a) Utiliser la loi de Laplace pour exprimer la pression P_B au point B en fonction de P_1 et γ .

b) En déduire l'expression de la température T_B au point B en fonction de T_1 et γ .

$$P_{B}V_{B} = RT_{B}$$
 $(M = 1 \text{ mol})$.
 $P_{B}.V_{4} = R.T_{B}$ $T_{B} = P_{A}.4 \frac{8.V_{4}}{4R}$.
 $T_{B} = P_{A}V_{A}.4 \frac{8-1}{8} = T_{A}.4 \frac{8-1}{4R}$.