Question number	Scheme	Marks
5(a)	f(-2) = 0, $f(-3) = 21$	M1
	$a(-2)^{3} + 5b(-2)^{2} + 8a(-2) - 4b = 0$ $a(-3)^{3} + 5b(-3)^{2} + 8a(-3) - 4b = 21$	A1
	a(-3) + 3b(-3) + 8a(-3) - 4b = 21 $2b = 3a$ $41b = 51a + 21$	M1
	$a = 2^*, b = 3$	Alcso
		A1 [5]
(b)	$\frac{2x^2 + 11x - 6}{x + 2 \sqrt{2x^3 + 15x^2 + 16x - 12}}$	M1
	ALT	
	$2x^{3} + 15x^{2} + 16x - 12 = (x+2)(Ax^{2} + Bx + C) \Rightarrow (x+2)(2x^{2} + 11x - 6)$	
	$2x^2 + 11x - 6 = (2x - 1)(x + 6)$	M1
	$(2x-1)(x+6) = 0 \Rightarrow 2x-1 = 0, x+6 = 0$	M1
	$x = -6, -2, \frac{1}{2}$	A1 [4]
	2	tal 9 marks

Question	Marks	Scheme
(a)	M1	For attempting either $f(-2) = 0$ or $f(-3) = 21$
		Allow $f(\pm 2) = 0$ or $f(\pm 3) = 21$ for this mark.
		Allow for $f(\pm 3) = 21$ with $a = 2$ assumed.
		For both correct equations in terms of a and b
	A1	$a(-2)^3 + 5b(-2)^2 + 8a(-2) - 4b = 0$
	AI	$a(-3)^3 + 5b(-3)^2 + 8a(-3) - 4b = 21$
		Evaluation not required for this mark, just the correct substitution.
		Attempts to solve their two linear simultaneous equation in a and b
	M1	2b = 3a
		41b = 51a + 21 Condone one slip provided consistent addition or subtraction if using elimination.
	A1	For $a = 2*$
	cso	
	A1	For $b=3$
(b)		For attempting division of $f(x) = 2x^3 + 15x^2 + 16x - 12$ by $(x+2)$ getting as far
		as $2x^2 + \cdots$
		$2x^2 + 11x - 6$
	M1	$x+2)2x^{3}+15x^{2}+16x-12$
		ALT

	Equates coefficients to find the 3TQ factor
	$2x^{3} + 15x^{2} + 16x - 12 = (x+2)(Ax^{2} + Bx + C) \Rightarrow (x+2)(2x^{2} + 11x - 6)$
	Must get as far as $(x + 2)(2x^2 + \cdots)$ for the mark.
	For attempting to factorise their 3TQ, but it must be a 3TQ
M1	$2x^2 + 11x - 6 = (2x - 1)(x + 6)$
	Refer to general guidance for what constitutes an attempt to factorise.
M1	An attempt to solve $f(x) = 0$
A1	For $x = -6, -2, \frac{1}{2}$
	$\frac{1}{2}$
	Note: Correct answers with no working scores M0M0M0A0

Question number	Scheme	Mar ks
6(a)(i)	$\frac{\sin 30^{\circ}}{\sin ACB} = \frac{\sin ACB}{\sin ACB}$	M1
	x = x+3	A1
	$\sin \theta^{\circ} = \frac{x+3}{2x} *$	cso
(ii)	$\cos^2 \theta^{\circ} = 1 - \left(\frac{x+3}{2x}\right)^2$	M1
	$\cos^2 \theta^{\circ} = \frac{(2x)^2 - (x+3)^2}{(2x)^2}$	M1
	$\cos \theta^{\circ} = \frac{\sqrt{3x^2 - 6x - 9}}{2x} *$	A1
Alt uso of	right-angled triangle with Pythagoras' theorem	[5]
Ait – use of	Adjacent = $\sqrt{(2x)^2 - (x+3)^2}$	[M1
	$\cos\theta = \frac{\sqrt{(2x)^2 - (x+3)^2}}{2x}$	M1
	$\cos \theta^{\circ} = \frac{\sqrt{3x^2 - 6x - 9}}{2x}$ *	A1]
(b)	$\cos \theta = \frac{\sqrt{(2x)^2 - (x+3)^2}}{2x}$ $\cos \theta^\circ = \frac{\sqrt{3x^2 - 6x - 9}}{2x} $ $\frac{\angle BAC}{30^\circ} = \frac{7}{2} \Rightarrow \angle BAC = 105^\circ$	B1
	$\theta = 180 - 30 - 105 = 45$	B1
	$\cos 45^{\circ} = \frac{\sqrt{2}}{2} = \frac{\sqrt{3x^2 - 6x - 9}}{2x} \Rightarrow 2x^2 = 3x^2 - 6x - 9 \Rightarrow x^2 - 6x - 9 = 0$	M1
	$x^{2}-6x-9=0 \Rightarrow (x-3)^{2}-18=0 \Rightarrow x=$	M1
	$x = 3 + 3\sqrt{2}$	A1 [5]
Alt – last th		1
	$\sin \theta^{\circ} = \frac{x+3}{2x} = \frac{\sqrt{2}}{2} \Rightarrow x+3 = \sqrt{2}x$	[M1
	$x+3 = \sqrt{2}x \Rightarrow x\left(\sqrt{2}-1\right) = 3 \Rightarrow x = \frac{3}{\sqrt{2}-1}$	M1
	$x = 3 + 3\sqrt{2}$	A1]
	Total 10	marks

Part	Marks	Scheme
(a) (i)		$\sin 30^{\circ} \sin ACB$
	M1	For using a correct sine rule to give, $\frac{\sin 30^{\circ}}{x} = \frac{\sin ACB}{x+3}$
	A1 cso	For correctly obtaining the expression for $\sin \theta$ $\sin \theta^{\circ} = \frac{x+3}{2x}$ *
(ii)	M1	For using the Pythagorean identity $\cos^2 \theta^{\circ} = 1 - \left(\frac{x+3}{2x}\right)^2$
	M1	For simplifying to form a single fraction $\cos^2 \theta^{\circ} = \frac{(2x)^2 - (x+3)^2}{(2x)^2}$
		For simplifying to achieve the given expression,
		$\cos \theta^{\circ} = \frac{\sqrt{3x^2 - 6x - 9}}{2x} *$
	A1	$\cos\theta = {2x}$
	cso	Note this is a show question
Alt – use o	f right-ang	led triangle with Pythagoras' theorem
	M1	For use of a right-angled triangle with Pythagoras' theorem to determine the
		adjacent
		$Adjacent = \sqrt{(2x)^2 - (x+3)^2}$
	M1	For use of cosine ratio
		$\cos \theta = \frac{\sqrt{(2x)^2 - (x+3)^2}}{2x}$ For simplifying to achieve the given expression,
	A1	For simplifying to achieve the given expression.
	cso	$\sqrt{3x^2-6x-9}$
		$\cos \theta^{\circ} = \frac{\sqrt{3x^2 - 6x - 9}}{2x} *$
		Note this is a show question
(b)		•
. ,	B1	For finding the size of $\angle BAC$ $\frac{\angle BAC}{30^{\circ}} = \frac{7}{2} \Rightarrow \angle BAC = 105^{\circ}$
	B1	For finding the value of $\theta = 180 - 30 - 105 = 45$
		For substituting the value of $\angle ABC$ into the given expression for $\cos \theta$ and
		forming a 3TQ, condone arithmetic errors in rearrangement.
		$\sqrt{2}$ $\sqrt{3}x^2 - 6x - 9$
	M1	$\cos 45^{\circ} = \frac{\sqrt{2}}{2} = \frac{\sqrt{3}x^{2} - 6x - 9}{2x} \Rightarrow 2x^{2} = 3x^{2} - 6x - 9 \Rightarrow x^{2} - 6x - 9 = 0$
		Allow for use of their 45° but this must come from an attempt at working with
		the ratio. Do not allow if their 45° is 30°. For an attempt to solve their 3TQ by any valid method (see general guidance)
		$x^2 - 6x - 9 = 0 \Rightarrow (x - 3)^2 - 18 = 0 \Rightarrow x = \dots$
	M1	$\begin{vmatrix} x & -0x - 9 - 0 \Rightarrow (x - 3) & -18 - 0 \Rightarrow x - \dots \end{vmatrix}$
	A1	For the correct value of x in the correct form $x = 3 + 3\sqrt{2}$
	cao	Allow $a = 3$, $b = 2$
Alternativ	e method	
1 xitti iiatiV	memou	For substituting the value of $\angle ABC$ into the given expression for $\sin \theta$ and
		forming a linear equation
	M1	$\sin \theta^{\circ} = \frac{x+3}{2x} = \frac{\sqrt{2}}{2} \Rightarrow x+3 = \sqrt{2}x$

M1	For an attempt to solve their linear equation $x+3 = \sqrt{2}x \Rightarrow x\left(\sqrt{2}-1\right) = 3 \Rightarrow x = \frac{3}{\sqrt{2}-1}$
A1	For the correct value of x in the correct form $x = 3 + 3\sqrt{2}$
cao	Allow $a = 3, b = 2$