ESCP 2023

Exercice 1 -

1. Je commence par calculer le carré de la matrice *A* :

$$A^{2} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1+1 & 1 & 1 \\ 1 & 1+1 & 1 \\ 1 & 1 & 1+1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} + \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} = A + 2I.$$

J'ai montré que $A^2 = A + 2I$. Alors $A^2 - A - 2I = 0_3$, matrice nulle d'ordre 3, ce qui signifie que le polynôme $x^2 - x - 2$, qui est bien de degré 2, est un polynôme annulateur de la matrice A.

2. a) Les valeurs propres possibles pour la matrice A sont parmi les racines d'un polynôme annulateur. Il me suffit donc de trouver les racines du polynôme $x^2 - x - 2$. Je calcule son discriminant : $\Delta = (-1)^2 - 4 \times 1 \times (-2) = 1 + 8 = 9 = 3^2 > 0$. Le polynôme admet donc deux racines :

$$x_1 = \frac{-(-1) + \sqrt{9}}{2 \times 1} = \frac{1+3}{2} = \frac{4}{2} = 2$$
 et $x_1 = \frac{1-3}{2} = \frac{-2}{2} = -1$.

Ainsi les deux valeurs propres possibles pour la matrice A sont -1 et 2.

b) En me servant du polynôme annulateur,

$$A^2-A-2I=0_3\quad\Longleftrightarrow\quad A^2-A=2I\quad\Longleftrightarrow\quad A\times\left(A-I\right)=2I\quad\Longleftrightarrow\quad A\times\left(\frac{1}{2}\left(A-I\right)\right)=I.$$

Grâce à cette équation, j'en déduis que la matrice *A* est inversible et que son inverse est donnée par

$$A^{-1} = \frac{1}{2} (A - I).$$

3. a) Je calcule les trois produits matriciels demandés :

$$AU = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1+1 \\ 1+1 \\ 1+1 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix} = 2 \times \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 2U,$$

$$AV = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1-1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = -1 \times \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = -V,$$

$$AW = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 1-1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} = -1 \times \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = -W.$$

Comme U est une matrice colonne non nulle telle que AU = 2U, alors 2 est effectivement valeur propre de A, associée au vecteur propre $U = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

De même, comme V est une matrice colonne non nulle telle que AV = -V, alors -1 est effectivement valeur propre de A, associée au vecteur propre $V = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$.

Enfin pour les mêmes raisons, W est un autre vecteur propre associé à la valeur propre -1.

b) Je calcule puis compare les deux produits matriciels. Comme les colonnes de Q sont les vecteurs propres de la matrice A_Q ; alors je connais déjà les colonnes de la matrice AQ:

$$A \times Q = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ 2 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix}$$
$$Q \times D = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix} \times \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ 2 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix}$$

Ainsi j'ai bien vérifié l'égalité matricielle AQ = QD.

c) Je calcule le produit matriciel QR:

$$Q \times R = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -2 \\ 1 & -2 & 1 \end{pmatrix} = \begin{pmatrix} 1+1+1 & 1-1 & 1-1 \\ 1+1-2 & 1+2 & 1-1 \\ 1-2+1 & 1-1 & 1+2 \end{pmatrix} = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix} = 3I.$$

Comme $Q \times R = 3I$, alors la matrice Q est inversible et son inverse est donnée par

$$Q^{-1} = \frac{1}{3}R$$
.

- d) Comme la matrice Q est inversible, alors l'équation AQ = QD se réécrit $A = QDQ^{-1}$, où la matrice D est diagonale et la matrice Q est inversible. Il s'agit de la définition d'une matrice diagonalisable. Donc la matrice A est bien diagonalisable.
- 4. a) Je raisonne par récurrence sur $n \in \mathbb{N}$.

Énoncé: Je note \mathcal{P}_n la propriété: $A^n = QD^nQ^{-1}$.

Initialisation: Pour n = 0,

$$A^0 = I$$
 et $QD^0Q^{-1} = QIQ^{-1} = QQ^{-1} = I$.

Ainsi \mathcal{P}_0 est vraie.

Hérédité : Soit $n \ge 0$. Je suppose que \mathcal{P}_n est vraie et je montre que \mathcal{P}_{n+1} l'est aussi. Par hypothèse de récurrence, $A^n = QD^nQ^{-1}$. Alors

$$A^{n+1} = A^n \times A = QD^nQ^{-1} \times QDQ^{-1} = QD^nIDQ^{-1} = QD^nDQ^{-1} = QD^{n+1}Q^{-1}.$$

Finalement \mathcal{P}_{n+1} est vraie et la propriété est héréditaire.

Conclusion : Comme la propriété est vraie pour n = 0 et est héréditaire, alors par principe de récurrence, \mathcal{P}_n est vraie pour tout $n \ge 0$, *i.e.*

$$\forall n \in \mathbb{N}, \quad A^n = QD^nQ^{-1}.$$

b) J'ai montré que pour tout entier $n \in \mathbb{N}$, $A^n = QD^nQ^{-1}$. Or je connais Q et Q^{-1} et comme D est une matrice diagonale, alors

$$D^{n} = \begin{pmatrix} 2^{n} & 0 & 0 \\ 0 & (-1)^{n} & 0 \\ 0 & 0 & (-1)^{n} \end{pmatrix}.$$

Pour obtenir la matrice A^n , il me suffit de calculer le produit $A^n = QD^nQ^{-1}$. Ici, seule la première ligne est demandée.

$$Q \times D^{n} = \begin{pmatrix} 1 & 1 & 1 \\ * & * & * \\ * & * & * \end{pmatrix} \times \begin{pmatrix} 2^{n} & 0 & 0 \\ 0 & (-1)^{n} & 0 \\ 0 & 0 & (-1)^{n} \end{pmatrix} = \begin{pmatrix} 2^{n} & (-1)^{n} & (-1)^{n} \\ * & * & * \\ * & * & * \end{pmatrix},$$

$$A^{n} = QD^{n} \times Q^{-1} = \begin{pmatrix} 2^{n} & (-1)^{n} & (-1)^{n} \\ * & * & * \\ * & * & * \end{pmatrix} \times \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -2 \\ 1 & -2 & 1 \end{pmatrix}$$

$$= \frac{1}{3} \begin{pmatrix} 2^{n} + (-1)^{n} + (-1)^{n} & 2^{n} + (-1)^{n} - 2 \times (-1)^{n} & 2^{n} - 2 \times (-1)^{n} + (-1)^{n} \\ * & * & * \end{pmatrix}$$

$$= \frac{1}{3} \begin{pmatrix} 2^{n} + 2 \times (-1)^{n} & 2^{n} - (-1)^{n} & 2^{n} - (-1)^{n} \\ * & * & * \end{pmatrix}.$$

$$= \frac{1}{3} \begin{pmatrix} 2^{n} + 2 \times (-1)^{n} & 2^{n} - (-1)^{n} & 2^{n} - (-1)^{n} \\ * & * & * \end{pmatrix}.$$

Je retrouve la formule annoncée par l'énoncé pour la première ligne de la matrice A^n .

5. a) À l'instant 0, le jeton se trouve sur le sommet 1 et il se déplace de façon équiprobable sur l'un des deux autres sommets. Ainsi le jeton quitte le sommet 1 et a une chance sur deux d'arriver sur les sommets 2 et 3 :

$$P(X_1 = 1) = 0$$
, $P(X_1 = 2) = \frac{1}{2}$ et $P(X_1 = 3) = \frac{1}{2}$.

Alors comme $\{[X_1 = 2], [X_1 = 3]\}$ forme un système complet d'événements, en utilisant la formule des probabilités totales et le fait que le jeton a une probabilité $\frac{1}{2}$ d'aller sur chacun des autres sommets, j'obtiens bien les formules annoncées par l'énoncé :

$$P(X_{2} = 1) = P(X_{1} = 2) \times P_{[X_{1} = 2]}(X_{2} = 1) + P(X_{1} = 3) \times P_{[X_{1} = 3]}(X_{2} = 1) = \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} = \frac{1}{2},$$

$$P(X_{2} = 2) = P(X_{1} = 2) \times P_{[X_{1} = 2]}(X_{2} = 2) + P(X_{1} = 3) \times P_{[X_{1} = 3]}(X_{2} = 2) = \frac{1}{2} \times 0 + \frac{1}{2} \times \frac{1}{2} = \frac{1}{4},$$

$$P(X_{2} = 3) = P(X_{1} = 2) \times P_{[X_{1} = 2]}(X_{2} = 3) + P(X_{1} = 3) \times P_{[X_{1} = 3]}(X_{2} = 3) = \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times 0 = \frac{1}{4}.$$

b) Je reprends un raisonnement similaire. Pour $n \ge 2$, $\{[X_n = 1], [X_n = 2], [X_n = 3]\}$ forme un système complet d'événements et pour tout $(i, j) \in [1, 3]^2$, les probabilités conditionnelles sont données par

$$P_{[X_n=i]}(X_{n+1}=j) = \begin{cases} 0 & \text{si } i=j, \\ \frac{1}{2} & \text{si } i \neq j. \end{cases}$$

Alors d'après la formule des probabilités totales,

$$P(X_{n+1} = 1) = \sum_{i=1}^{3} P(X_n = i) \times P_{[X_n = i]}(X_{n+1} = 1)$$

= $P(X_n = 1) \times 0 + P(X_n = 2) \times \frac{1}{2} + P(X_n = 3) \times \frac{1}{2} = \frac{1}{2}P(X_n = 2) + \frac{1}{2}P(X_n = 3)$

c) De la même manière, je peux démontrer que pour tout entier $n \ge 2$,

$$P(X_{n+1}=2) = \frac{1}{2}P(X_n=1) + \frac{1}{2}P(X_n=3)$$
 et $P(X_{n+1}=3) = \frac{1}{2}P(X_n=1) + \frac{1}{2}P(X_n=2)$.

Alors en posant B la matrice égale à $B = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix} = \frac{1}{2} \times \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} = \frac{1}{2}A$, j'obtiens bien que pour tout entier $n \geqslant 2$,

$$L_n \times B = (P(X_n = 1) \quad P(X_n = 2) \quad P(X_n = 3)) \times \frac{1}{2} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
$$= \frac{1}{2} (P(X_n = 2) + P(X_n = 3) \quad P(X_n = 1) + P(X_n = 3) \quad P(X_n = 1) + P(X_n = 2))$$
$$= (P(X_{n+1} = 1) \quad P(X_{n+1} = 2) \quad P(X_{n+1} = 3)) = L_{n+1}.$$

d) Je vérifie que $L_0 \times B$ soit bien égale à L_1 , puis que $L_1 \times B$ soit bien égale à L_2 :

$$L_0 \times B = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} \times \frac{1}{2} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \end{pmatrix} = L_1$$

$$L_1 \times B = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \end{pmatrix} \times \frac{1}{2} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} \frac{1}{2} + \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \end{pmatrix} = L_2$$

Ainsi l'égalité $L_{n+1} = L_n B$ est vérifiée pour tout entier $n \in \mathbb{N}$.

e) Je raisonne par récurrence sur $n \in \mathbb{N}$.

Énoncé: Je note \mathcal{P}_n la propriété: $L_n = L_0 B^n$.

Initialisation : Pour n = 0, $L_0 B^0 = L_0 \times I = L_0$. Ainsi \mathcal{P}_0 est vraie.

Hérédité: Soit $n \ge 0$. Je suppose que \mathcal{P}_n est vraie et je montre que \mathcal{P}_{n+1} l'est aussi. Par hypothèse de récurrence, $L_n = L_0 B^n$.

Et grâce à la question précédente, $L_{n+1} = L_n B$. Alors directement

$$L_{n+1} = L_n B = L_0 B^n \times B = L_0 B^{n+1}.$$

Finalement \mathcal{P}_{n+1} est vraie et la propriété est héréditaire.

Conclusion : Comme la propriété est vraie pour n = 0 et est héréditaire, alors par principe de récurrence, \mathcal{P}_n est vraie pour tout $n \ge 0$, *i.e.*

$$\forall n \in \mathbb{N}, \quad L_n = L_0 B^n.$$

f) La loi de X_n est donnée par les trois coefficients de la matrice L_n .

D'après la question **5.e**), $L_n = L_0 B^n$. D'après la question **5.c**), $B = \frac{1}{2} A$. Donc

$$L_n = L_0 \times \left(\frac{1}{2}A\right)^n = \left(\frac{1}{2}\right)^n \times L_0A^n.$$

En utilisant la question **4.b**), comme $L_0 = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$, alors

$$L_0 \times A^n = \frac{1}{3} (2^n + 2 \times (-1)^n \quad 2^n - (-1)^n \quad 2^n - (-1)^n).$$

Et finalement, en multipliant par $\left(\frac{1}{2}\right)^n$,

$$L_n = \frac{1}{3} \left(1 + 2 \times \left(-\frac{1}{2} \right)^n \quad 1 - \left(-\frac{1}{2} \right)^n \quad 1 - \left(-\frac{1}{2} \right)^n \right).$$

Ainsi pour tout $n \in \mathbb{N}$, la loi de X_n est donnée par

$$P(X_1 = 1) = \frac{1}{3} + \frac{2}{3} \times \left(-\frac{1}{2}\right)^n$$
, $P(X_1 = 2) = \frac{1}{3} - \frac{1}{3} \times \left(-\frac{1}{2}\right)^n$ et $P(X_1 = 3) = \frac{1}{3} - \frac{1}{3} \times \left(-\frac{1}{2}\right)^n$.

Exercice 2 -

- 1. Je montre que la fonction f vérifie les trois conditions d'une densité de probabilité :
 - Pour $x \notin [0,1]$, $f(x) = 0 \ge 0$ et pour $x \in [0,1]$, $f(x) = 4x(1-x^2) \ge 0$ car $x \ge 0$ et $1-x^2 \ge 0$ puisque $x \le 1$. Donc pour tout $x \in \mathbb{R}$, $f(x) \ge 0$.
 - Sur] $-\infty$,0[, f est continue car constante, sur [0,1], f est continue car polynomiale et sur]1, $+\infty$ [, f est continue car constante.

Donc f admet au plus deux points de discontinuité sur \mathbb{R} .

• Il me reste à montrer la convergence de l'intégrale $\int_{-\infty}^{+\infty} f(x) dx$. Je calcule séparément les trois intégrales suivantes :

$$\Rightarrow \int_{1}^{+\infty} f(x) dx = \int_{1}^{+\infty} 0 dx \text{ converge et vaut } 0.$$

$$\int_0^1 f(x) \, dx = \int_0^1 4x (1 - x^2) \, dx = \int_0^1 4x - 4x^3 \, dx.$$

L'intégrande est un polynôme, dont je détermine une primitive terme à terme :

$$\int_0^1 4x - 4x^3 \, dx = \left[4\frac{x^2}{2} - 4\frac{x^4}{4} \right]_0^1 = \left[2x^2 - x^4 \right]_0^1 = \left(2 \times 1^2 - 1^4 \right) - \left(2 \times 0^2 - 0^4 \right) = \left(2 - 1 \right) - 0 = 1.$$

Alors grâce à la relation de Chasles, l'intégrale impropre $\int_{-\infty}^{+\infty} f(x) dx$ converge et

$$\int_{-\infty}^{+\infty} f(x) \, \mathrm{d}x = \int_{-\infty}^{0} f(x) \, \mathrm{d}x + \int_{0}^{1} f(x) \, \mathrm{d}x + \int_{1}^{+\infty} f(x) \, \mathrm{d}x = 0 + 1 + 0 = 1.$$

Finalement, j'ai bien montré que f est une densité de probabilité.

- 2. a) La variable aléatoire X possède une espérance si et seulement si l'intégrale $\int_{-\infty}^{+\infty} x f(x) dx$ converge. Je calcule séparément les trois intégrales suivantes :
 - $\int_{-\infty}^{0} x f(x) dx = \int_{-\infty}^{0} x \times 0 dx = \int_{-\infty}^{0} 0 dx$ converge et vaut 0.
 - $\int_{1}^{+\infty} x f(x) dx = \int_{1}^{+\infty} x \times 0 dx = \int_{1}^{+\infty} 0 dx$ converge et vaut 0.
 - $\int_0^1 x f(x) dx = \int_0^1 4x^2 (1 x^2) dx = \int_0^1 4x^2 4x^4 dx$.

L'intégrande est un polynôme, dont je détermine une primitive terme à terme :

$$\int_0^1 4x^2 - 4x^4 dx = \left[4\frac{x^3}{3} - 4\frac{x^5}{5} \right]_0^1 = \left[\frac{4}{3}x^3 - \frac{4}{5}x^5 \right]_0^1 = \left(\frac{4}{3} \times 1^3 - \frac{4}{5} \times 1^5 \right) - 0 = \frac{20 - 12}{15} = \frac{8}{15}.$$

Alors grâce à la relation de Chasles, l'intégrale impropre $\int_{-\infty}^{+\infty} x f(x) dx$ converge et

$$\int_{-\infty}^{+\infty} x f(x) \, \mathrm{d}x = \int_{-\infty}^{0} x f(x) \, \mathrm{d}x + \int_{0}^{1} x f(x) \, \mathrm{d}x + \int_{1}^{+\infty} x f(x) \, \mathrm{d}x = 0 + \frac{8}{15} + 0 = \frac{8}{15}.$$

Finalement la variable aléatoire *X* possède une espérance et $E(X) = \int_{-\infty}^{+\infty} x f(x) dx = \frac{8}{15}$.

- b) La variable aléatoire X admet une variance si et seulement si l'intégrale $\int_{-\infty}^{+\infty} x^2 f(x) dx$ converge. Je calcule séparément les trois intégrales suivantes :
 - $\int_{-\infty}^{0} x^2 f(x) dx = \int_{-\infty}^{0} x^2 \times 0 dx = \int_{-\infty}^{0} 0 dx$ converge et vaut 0.
 - $\int_1^{+\infty} x^2 f(x) dx = \int_1^{+\infty} x^2 \times 0 dx = \int_1^{+\infty} 0 dx$ converge et vaut 0.
 - $\int_0^1 x^2 f(x) dx = \int_0^1 4x^3 (1 x^2) dx = \int_0^1 4x^3 4x^5 dx$.

L'intégrande est un polynôme, dont je détermine une primitive terme à terme :

$$\int_0^1 4x^3 - 4x^5 \, dx = \left[4\frac{x^4}{4} - 4\frac{x^6}{6} \right]_0^1 = \left[x^4 - \frac{2}{3}x^6 \right]_0^1 = \left(1^4 - \frac{2}{3} \times 1^6 \right) - 0 = 1 - \frac{2}{3} = \frac{1}{3}.$$

Alors grâce à la relation de Chasles, l'intégrale impropre $\int_{-\infty}^{+\infty} x^2 f(x) \, \mathrm{d}x$ converge et

$$\int_{-\infty}^{+\infty} x^2 f(x) \, \mathrm{d}x = \int_{-\infty}^{0} x^2 f(x) \, \mathrm{d}x + \int_{0}^{1} x^2 f(x) \, \mathrm{d}x + \int_{1}^{+\infty} x^2 f(x) \, \mathrm{d}x = 0 + \frac{1}{3} + 0 = \frac{1}{3}.$$

Ainsi la variable aléatoire X^2 possède une espérance et $E(X^2) = \int_{-\infty}^{+\infty} x^2 f(x) dx = \frac{1}{3}$.

Finalement, grâce à la formule de König-Huygens, j'en déduis que la variable aléatoire X possède une variance et

$$V(X) = E(X^{2}) - E(X)^{2} = \frac{1}{3} - \left(\frac{8}{15}\right)^{2} = \frac{1}{3} - \frac{64}{225} = \frac{75 - 64}{225} = \frac{11}{225}.$$

- 3. Pour déterminer la fonction de répartition, je raisonne à l'aide d'une disjonction de cas pour appliquer la définition : $F_X(x) = \int_0^x f(t) dt$.
 - Si x < 0, alors $F_X(x) = \int_{-\infty}^x f(t) dt = \int_{-\infty}^x 0 dt = 0$.
 - Si $0 \le x \le 1$, alors il me faut découper l'intégrale en deux morceaux :

$$F_X(x) = \int_{-\infty}^x f(t) dt = \int_{-\infty}^0 0 dt + \int_0^x 4t (1 - t^2) dt = 0 + (2 \times x^2 - x^4) - 0 = 2x^2 - x^4,$$

en réutilisant le calcul d'intégrale effectué à la question 1.

• Si x > 1, alors il me faut découper l'intégrale en trois morceaux :

$$F_X(x) = \int_{-\infty}^x f(t) dt = \int_{-\infty}^0 0 dt + \int_0^1 4t (1 - t^2) dt + \int_1^x 0 dt = 0 + 1 + 0 = 1,$$

toujours en réutilisant le calcul d'intégrale effectué à la question 1.

Il me reste alors à me ramener à la forme souhaitée par l'énoncé.

Je dois montrer que pour tout $x \in [0,1]$, $2x^2 - x^4 = 1 - (1 - x^2)^2$. Or pour $x \in [0,1]$,

$$1 - \left(1 - x^2\right)^2 = 1 - \left(1^2 - 2 \times 1 \times x^2 + \left(x^2\right)^2\right) = 1 - \left(1 - 2x^2 + x^4\right) = 1 - 1 + 2x^2 - x^4 = 2x^2 - x^4.$$

Ainsi j'ai bien montré que

$$\forall x \in \mathbb{R}, \quad F_X(x) = \begin{cases} 0 & \text{si } x < 0, \\ 1 - \left(1 - x^2\right)^2 & \text{si } 0 \le x \le 1, \\ 1 & \text{si } x > 1. \end{cases}$$

4. a) La fonction de répartition d'une loi uniforme sur l'intervalle [0,1] est donnée par

$$\forall x \in \mathbb{R}, \quad G(x) = \begin{cases} 0 & \text{si } x < 0, \\ x & \text{si } 0 \le x \le 1, \\ 1 & \text{si } x > 1. \end{cases}$$

b) Soit $x \in \mathbb{R}$. Comme *U* et *V* ont *G* pour fonction de répartition, alors

$$P(M > x) = P(U > x) \times P(V > x) = (1 - P(U \le x)) \times (1 - P(V \le x)) = (1 - G(x))^{2}.$$

Puis pour la fonction de répartition,

$$F_M(x) = P(M \le x) = 1 - P(M > x) = 1 - (1 - G(x))^2$$
.

c) En combinant les expressions obtenues aux deux questions précédentes, j'obtiens que

$$\forall x \in \mathbb{R}, \quad F_M(x) = \begin{cases} 0 & \text{si } x < 0, \\ 1 - \left(1 - x\right)^2 & \text{si } 0 \leqslant x \leqslant 1, \\ 1 & \text{si } x > 1. \end{cases}$$

- 5. a) De nouveau, j'opère par disjonction de cas selon les valeurs de x:
 - Si x < 0, alors $F_Z(x) = P(Z \le x) = P(\sqrt{M} \le x) = 0$ car une racine carrée ne peut pas être strictement négative.
 - Si $0 \leqslant x \leqslant 1$, alors $F_Z(x) = P(Z \leqslant x) = P(\sqrt{M} \leqslant x) = P(M \leqslant x^2)$ car $x \geqslant 0$. Et comme $0 \le x \le 1 \Longrightarrow 0 = 0^2 \le x^2 \le 1^2 = 1$, alors $F_Z(x) = F_M(x^2) = 1 - (1 - x^2)^2$.
 - Si x > 1, alors $F_Z(x) = P(Z \le x) = P(\sqrt{M} \le x) = P(M \le x^2) = \text{car } x \ge 0$. Et comme $x > 1 \implies x^2 > 1^2 = 1$, alors $F_Z(x) = F_M(x^2) = 1$.

Ainsi j'ai bien montré que

$$\forall x \in \mathbb{R}, \quad F_Z(x) = \begin{cases} 0 & \text{si } x < 0, \\ 1 - (1 - x^2)^2 & \text{si } 0 \le x \le 1, \\ 1 & \text{si } x > 1. \end{cases}$$

- b) Les deux variables aléatoires X et Z partagent la même fonction de répartition. Comme la fonction de répartition caractérise la loi, alors *X* et *Z* suivent la même loi.
- c) Grâce à la question précédente, pour simuler X, il suffit de simuler Z, qui est la racine carrée de la variable aléatoire *M*. Ainsi le script Python se complète ainsi :

1.	U=rd.random()
	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -

4.
$$X=np.sqrt(M)$$

Exercice 3 –

- 1. a)
 - b)
 - c)
- 2. a)
 - b)
 - c)
 - d)
- 3.
- 4.
- 5.

Exercice 4 -

1. a) Je raisonne par récurrence sur $n \in \mathbb{N}^*$.

Énoncé: Je note \mathcal{P}_n la propriété: " u_n est bien défini et strictement positif".

Initialisation : Pour n = 1, $u_1 = \frac{1}{2} > 0$ donc u_1 est bien défini et strictement positif. Ainsi \mathcal{P}_1 est vraie.

Hérédité: Soit $n \ge 1$. Je suppose que \mathcal{P}_n est vraie et je montre que \mathcal{P}_{n+1} l'est aussi. Par hypothèse de récurrence, u_n est bien défini et strictement positif. Comme $u_n > 0$, alors $2(n+1)u_n + 1 > 1$ est non nul donc le quotient

$$u_{n+1} = \frac{u_n}{2(n+1)u_n + 1}$$

est bien défini. Et comme numérateur et dénominateur sont strictement positifs, alors le quotient aussi. Donc u_{n+1} est strictement positif.

Finalement \mathcal{P}_{n+1} est vraie et la propriété est héréditaire.

Conclusion : Comme la propriété est vraie pour n = 1 et est héréditaire, alors par principe de récurrence, \mathcal{P}_n est vraie pour tout $n \ge 1$, *i.e.*

 $\forall n \in \mathbb{N}^*$, u_n est bien défini et strictement positif.

J'ai ainsi montré que la suite $(u_n)_{n \in \mathbb{N}^*}$ est bien définie et qu'il s'agit d'une suite de réels strictement positifs.

b) Voici la fonction Python complétée :

2. Je calcule u_2 puis u_3 à l'aide de la formule de récurrence donnée :

$$u_{2} = \frac{u_{1}}{2 \times (1+1) \times u_{1} + 1} = \frac{\frac{1}{2}}{2 \times 2 \times \frac{1}{2} + 1} = \frac{\frac{1}{2}}{2+1} = \frac{1}{2} \times \frac{1}{3} = \frac{1}{6},$$

$$u_{3} = \frac{u_{2}}{2 \times (2+1) \times u_{2} + 1} = \frac{\frac{1}{6}}{2 \times 3 \times \frac{1}{6} + 1} = \frac{\frac{1}{6}}{1+1} = \frac{1}{6} \times \frac{1}{2} = \frac{1}{12}.$$

3. a) J'ai déjà montré à la question 1. que pour tout $n \in \mathbb{N}^*$, $0 < u_{n+1}$.

Puis pour tout $n \in \mathbb{N}^*$, comme $2(n+1)u_n+1>2(n+1)u_n$, alors par décroissance de la fonction inverse, $\frac{1}{2(n+1)u_n+1} < \frac{1}{2(n+1)u_n}$.

Puis en multipliant par $u_n > 0$, $\frac{u_n}{2(n+1)u_n+1} < \frac{u_n}{2(n+1)u_n}$

i.e., en simplifiant par $u_n > 0$, $u_{n+1} < \frac{1}{2(n+1)}$.

J'ai bien montré que

$$\forall n \in \mathbb{N}^*, \quad 0 < u_{n+1} < \frac{1}{2(n+1)}.$$

b) Grâce au théorème des gendarmes, comme $\lim_{n\to+\infty} 0=0$ et $\lim_{n\to+\infty} \frac{1}{2(n+1)}=0$, alors j'en déduis que la suite $(u_n)_{n\in\mathbb{N}^*}$ converge et que

$$\lim_{n\to+\infty}u_n=0.$$

4. a) Soit $k \in \mathbb{N}^*$. Je calcule la différence $v_{k+1} - v_k$:

$$v_{k+1} - v_k = \frac{1}{u_{k+1}} - \frac{1}{u_k} = \frac{2(k+1)u_k + 1}{u_k} - \frac{1}{u_k} = \frac{2(k+1)u_k}{u_k} = 2(k+1).$$

- b) Si la suite $(v_k)_{k \in \mathbb{N}^*}$ était arithmétique, alors la différence entre deux termes consécutifs serait constante. Ici, ce n'est pas le cas : elle vaut 2(k+1), qui dépend de k. Donc la suite $(v_k)_{k \in \mathbb{N}^*}$ n'est pas arithmétique.
- c) Soit $n \in \mathbb{N}^*$. Je somme pour les k de 1 à n-1 l'équation obtenue à la question **4.a**). Je reconnais une somme télescopique d'un côté et la somme des premiers entiers de l'autre :

$$\sum_{k=1}^{n-1} v_{k+1} - v_k = v_2 - v_1 + v_3 - v_2 + v_4 - v_3 + \dots + v_{n-1} - v_{n-2} + v_n - v_{n-1}$$

$$= v_n - v_1 = v_n - \frac{1}{u_1} = v_n - \frac{1}{\frac{1}{2}} = v_n - 2,$$
et
$$\sum_{k=1}^{n-1} 2(k+1) = 2 \times \sum_{k=1}^{n-1} (k+1) = 2 \times \sum_{k=2}^{n} k = 2 \times \left(\frac{n(n-1)}{2} - 1\right) = n(n-1) - 2.$$

Ainsi j'ai montré que pour tout $n \in \mathbb{N}^*$, $v_n - 2 = n(n-1) - 2$, *i.e.* $v_n = n(n-1)$.

d) D'après la définition des termes v_n , alors pour tout entier $n \in \mathbb{N}^*$,

$$u_n = \frac{1}{v_n} = \frac{1}{n(n-1)}.$$

Enfin comme $\lim_{n \to +\infty} n(n-1) = +\infty$, je retrouve bien par quotient que $\lim_{n \to +\infty} u_n = 0$.

5. a) Je calcule la différence de fractions dans le but d'identifier les coefficients a et b. Soit $n \in \mathbb{N}^*$,

$$\frac{a}{n} - \frac{b}{n+1} = \frac{a(n+1) - bn}{n(n+1)} = \frac{(a-b)n + a}{n(n+1)}.$$

Ainsi par identification des coefficients,

$$u_n = \frac{a}{n} - \frac{b}{n+1} \iff \frac{1}{n(n+1)} = \frac{(a-b)n + a}{n(n+1)} \iff \begin{cases} a-b=0 \\ a=1 \end{cases} \iff \begin{cases} a=1 \\ b=1 \end{cases}$$

Ainsi j'ai montré que pour tout $n \in \mathbb{N}^*$, $u_n = \frac{1}{n} - \frac{1}{n+1}$.

b) Soit $N \in \mathbb{N}^*$. Je somme la relation obtenue à la question précédente pour tous les k allant de 1 à N. Je reconnais une somme télescopique :

$$\sum_{n=1}^{N} u_n = \sum_{n=1}^{N} \frac{1}{n} - \frac{1}{n+1} = \frac{1}{1} - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{N-2} - \frac{1}{N-1} + \frac{1}{N-1} - \frac{1}{N} = 1 - \frac{1}{N}.$$

c) Il me suffit alors de faire tendre N vers $+\infty$ dans l'expression de la somme partielle obtenue à la question précédente pour déterminer la nature de la série de terme général u_n .

Comme pour tout
$$N \in \mathbb{N}^*$$
, $\sum_{n=1}^n u_n = 1 - \frac{1}{N}$ et que $\lim_{N \to +\infty} 1 - \frac{1}{N} = 1$,

alors la série $\sum_{n\geq 1} u_n$ converge et $\sum_{n=1}^{+\infty} u_n = 1$.

6. a) J'ai montré que pour tout entier $n \in \mathbb{N}^* *$, le terme u_n est positif (question **1.**) et que la somme infinie de tous les termes u_n vaut 1 (question **5.c**)). Ainsi la suite $(u_n)_{n \in \mathbb{N}^*}$ décrit bien la loi d'une variable aléatoire discrète infinie.

b) Je calcule l'intégrale pour $n \in \mathbb{N}^*$:

$$\int_{n+1}^{n+2} \frac{1}{t} dt = \left[\ln(t) \right]_{n+1}^{n+2} = \ln(n+2) - \ln(n+1) = \ln\left(\frac{n+2}{n+1}\right) = \ln\left(1 + \frac{1}{n+1}\right) \leqslant \frac{1}{n+1}.$$

En effet, pour tout $x \in \mathbb{R}_+$, $\ln(1+x) \leq x$:

J'étudie la fonction $h(x) = \ln(1+x) - x$ définie sur \mathbb{R}_+ .

Sa dérivée est donnée par $h'(x) = \frac{1}{1+x} - 1 = -\frac{x}{1+x}$. Or pour $x \ge 0$, alors $h'(x) \le 0$ et la fonction h est décroissante.

Et comme $h(0) = \ln(1+0) - 0 = \ln(1) = 0$, alors pour tout $x \ge 0$,

 $h(x) \le h(0) = 0$ i.e. $\ln(1+x) - x \le 0$, soit $\ln(1+x) \le x$.

c) Soit $N \in \mathbb{N}^*$. Je somme la relation obtenue à la question précédente pour tous les kallant de 1 à N. Je reconnais une somme télescopique d'un côté :

$$\sum_{n=1}^{N} \frac{1}{n+1} \geqslant \sum_{n=1}^{N} \int_{n+1}^{n+2} \frac{1}{t} dt = \sum_{n=1}^{N} \ln(n+2) - \ln(n+1) = \ln(N+2) - \ln(1+1) = \ln(N+2) - \ln(N+2)$$

d) La variable aléatoire X possède une espérance si et seulement si la série $\sum_{n \ge 1} nu_n$ converge.

Or pour tout $n \in \mathbb{N}^*$, $nu_n = \frac{n}{n(n+1)} = \frac{1}{n+1}$.

Ainsi la somme partielle $\sum_{n=1}^{N} nu_n = \sum_{n=1}^{N} \frac{1}{n+1}$ est minorée par $\ln(N+2) - \ln(2)$, qui di-

verge vers $+\infty$ lorsque N tend vers $+\infty$. Par théorème de comparaison, j'en déduis que la série $\sum_{n\geqslant 1} nu_n$ diverge et donc que la variable aléatoire X n'admet pas d'espérance.