von JD., Seite 1 von 4 1 BeschreibendeStatistik 1.1 Beschreibende/Deskriptive Statis-Beobachtete Daten werden durch geeignete statistische Kennzahlen charakterisiert und durch geeignete Grafiken an-

Hilfszettel zur Klausur

theorie bewertet.

1.4 Modalwerte x_{mod}

schaulich gemacht. 1.2 Schließende/Induktive Statistik Aus beobachtete Daten werden Schlüsse gezogen und diese im Rahmen vorgege-

bener Modelle der Wahrscheinlichkeits-

malen) 1.5 Mittelwert, quantitativ R:mean(x)

Am häufigsten auftretende Ausprägun-

gen (insbesondere bei qualitativen Merk-

ten.**Empfindlich**gegenüber Ausreißern.

$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$ 1.6 Median, quantitativ R:median(x)

Schwerpunkt

Liegt in der Mitt der sortierten Daten x_i . Unempfindlich gegenüber Ausreißern.

 $x_{0.5} = \begin{cases} x_{\frac{n+1}{2}}, \text{ falls n ungerade} \\ \frac{1}{2}(x_{\frac{n}{2}} + x_{\frac{n}{2}+1}), \text{ falls n gerade} \end{cases}$

Streuungsmaße

1.7 Spannweite $\max x_i$ - $\min x_i$

1.8 Stichprobenvarianz s^2 R:var(x)

Verschiebungssatz: $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x}^2) = \frac{1}{n-1} (\sum_{i=1}^{n} x_i^2 - \sum_{i=1}^{n} x_i^2)$

 $n\bar{x}^2$) Gemittelte Summe der quadratischen Abweichung vom Mittelwert

1.9 Stichpr.standardabw. R:sd(x)

 $s = \sqrt{s}$ Streuungsmaß mit gleicher Einheit wie beobachteten Daten $x_i.\overline{x}$ minimiert die "quadratische Verlustfunktionöder die Varianz gibt das Minimum der Fehlerquadrate an.

 $\hat{F}(x_p) \approx p$; $\hat{F} = \text{kummul. rel. Häufigkeit}$; 1. Quartil = 0.25-Quantil; Median = 0.5-Quantil; 3. Quartil = 0.75-Quartil;

R:quantile(x, p). Teilt die **sortierten** Da-

ten x_i ca. im Verhältnis p: (1-p) d.h.

1.10 p-Quantile

$$x_{p} \begin{cases} x_{floor(np)+1}, np \in \mathbb{N} \\ \frac{1}{2}(x_{np} + x_{np+1}, np \notin \mathbb{N}) \end{cases}$$
 (2)

1.11 Interquartilsabstand I

$$I = x_{0.75} - x_{0.25}. \text{ Ist ein weiterer Streuungsparameter.}$$

1.12 Chebyshev $\frac{N(S_k)}{n} > 1 - \frac{1}{k^2}$, für alle $k \ge 1 \overline{x}$ der Durchschnitt, s > 0 die Stichproben-Standardabweichung von Beobachtungs-

werten $x_1, ..., x_n$. Sei $S_k = \{i, 1 \le i \le n : 0 \le P(E) \le 1; P(\Omega) = 1; |x_i - \overline{x}| < k \cdot s\}$; Für eine beliebige Zahl $P(\bigcup_{i=1}^{\infty}) = \sum_{i=1}^{\infty} P(E_i)$, falls $E_i \cap E_j = \emptyset$ $k \ge 1$ liegen mehr als $100 \cdot (1 - \frac{1}{k^2})$ Pro- für $i \ne j$ zent der Daten im Intervall von $\bar{x} - ks$ bis $\overline{x} + ks$. **Speziell:**Für k = 2 liegen mehr als

75% der Daten im 2s-Bereich um \bar{x} . Für

k=3 liegen mehr als 89% der Daten im 3s-Bereich um \overline{x} . Komplement Formulie- $P(\overline{E}) = 1 - P(E)$ rung: $\overline{S}_k = \{i | |x_i - \overline{x}| \ge k \cdot s\}; \frac{N(S_k)}{n} \le \frac{1}{k^2};$ Die Ungleichheit lifert nur eine sehr grobe Abschätzung, ist aber unabhängig von der Verteilung der Daten. Empiri-

Grafische Zusammenhang zwischen multivariaten Daten x und y durch ein Streudiagramm. Kennzahlen zur Untersuchung des Zusammenhangs: 1.14 Empirische Kovarianz R:cov(x,y); $s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) =$

1.13 Korrelation

(1) 1.15 Empir. Korrelk.koeff. r

$\frac{1}{n-1}(\sum_{i=1}^{n}(x_iy_i)-n\overline{xy}); S_{xy}>0$ steigend; $\ddot{S}_{xv} < 0$ fallend;

R:cor(x, y); $r = \frac{s_{xy}}{s_x s_y}$; Näherungsweise lin. Zusammenhang zw. x und y, falls $|\mathbf{r}| \approx 1$; Bemerkung: -Der Korrelationskoeffizi-

ent kann nur einen statistischen Zusammenhang beschreiben, keinen Kausalen; -Den Korrelationskoeffizient immer im Zusammenhang mit den Streudiagramm sehen (Anscombe-Quartett). 1.16 Regressionsgerade y

$y = mx + t \text{ mit } m = r \cdot \frac{s_y}{s} \text{ und } t = \overline{y} - m \cdot \overline{x};$ Für den Bereich $|\pm 0.7|$ bis $\pm 1 \Rightarrow$ linearer Zusammenhang.

2 Wahrscheinlichkeitsrechnung

Ergebnisraum Ω : Menge aller möglichen Ergebnisse eines Experiments

 $\bigcap_{i=1}^n E_i$ alle Ereignisse E_i treten ein. **Ge**genereignis $\overline{E} = \Omega / E$: Ereignis E tritt 2.5.3 Vierfeldertafel

Ereignis $E \subseteq \Omega$: beliebige Teilmenge des

Ergebnisraums Ω heißt sicheres Ereignis,

Vereinigung $E \cup F$: Ereignis E oder Ereig-

nis F treten ein. $\bigcup_{i=1}^{n} E_i$: mindestens ein

Schnitt $E \cap F$: Ereignis E und Ereignis F

Ø heißt unmögliches Ereignis

Ereignis E_i tritt ein.

2.3 Wahrscheinlichkeit

2.3.1 Satz 2.1

nicht ein (Komplement von E) **Disjunkte Ereignisse**E und F: $E \cap F = \emptyset$ 2.2 De Morgan'schen Regeln $\overline{E_1 \cup E_2} = \overline{E}_1 \cap \overline{E}_2$ $\overline{E_1 \cap E_2} = \overline{E}_1 \cup \overline{E}_2$

> $F) = P(E) \cdot P(F|E) = P(F) \cdot P(E|F)$ Tafel $= P(F) - P(F \cap \overline{E}) = P(E) - P(\overline{F} \cap E); P(\overline{F}|E) =$ 1 - P(F|E)

Elementarereignis $\omega \in \Omega$: einzelnes Ele- Zerlegung bzw. eine Partition von Ω . So-

 $P(F) = \sum_{i=1}^{n} P(F \cap E_i) = \sum_{i=1}^{n} P(F|E_i)$

Summe der Äste des Wahrscheinlich-

keitsbaums zu allen Schnitten $F \cap E_i$

 $P(F) = P(F \cap E) + P(F \cap \overline{E})$

 $P(\overline{F}) = P(\overline{F} \cap E) + P(\overline{F} \cap E)$

2.5.4 Formel von Bayes

aber nicht $P(E_k|F)$ Satz 2.4 $P(E_k|F) =$

2.5.5 Stochastische Unabhängig-

Übung Die Ereignisse E und F heißen

(stochastisch) unabhängig, wenn die In-

formation über das Eintreten des einen

Ereignisses die Wahrscheinlichkeit für

das Eintreten des anderen Ereignisses

Es gilt Falls die Ereignisse E, F unab-

hängig sind, dann sind auch: $\circ E, \overline{F}; \circ \overline{E}, F;$

P(E|F) = P(E) or $P(E \cap F) = P(E) \cdot P(F)$

E E

P(FAE) P(FAE) P(F)

P(FAE) P(FAE) P(F)

 $P(F|E_k) \cdot P(E_k)$

 $P(F|E_i) \cdot P(E_i)$

len Wahrscheinlichkeit.

nicht ändert, d.h. falls

 $\circ \overline{E}, \overline{F}$ unabhängig

Bemerkung

2.4 Laplace-Experiment Zufallsexperimente mit n gleich wahr-

(Übungsaufgabe!!! Ergänzen)

 $P(E \cup F) = P(E) + P(F) - P(E \cap F)$

sche Regeln 68% der Daten im Bereich scheinlichen Elementarereignissen. um $\overline{x} \pm s$. 95% um $\overline{x} \pm 2s$. 99.7% um $\overline{x} \pm 3s$. Dann berechnet sich die Wahrscheinlichkeit P(E) für $E \subseteq \Omega$ aus: $P(E) = \frac{\text{Anzahl der für E günstigen Ereignisse}}{\text{Anzahl der für E günstigen Ereignisse}}$ Anzahl der möglichen Ereignisse

$\frac{\text{Mächtigkeit von E}}{\text{Mächtigkeit von }\Omega} = \frac{|E|}{n}$ 2.5 Bedingte Wahrscheinlichkeit $P(E|F) = P_F(E) = \frac{|E \cap F|}{|F|} = \frac{P(E \cap F)}{P(F)}$

2.5.1 Satz 2.2

 $P(E \cap F) = P(E|F) \cdot P(F)$

 $P(E \cap F) = P(F|E) \cdot P(E)$

2.5.2 Satz der totalen Wahrscheinlichkeit

d.h. die Ereignisse bilde eine disjunkte

 Stochastische Unabhängigkeit bedeutet nicht notwendigerweise eine kausale Abhängigkeit

Veranschaulichung mit Venn Dia-

=> A, B stochastisch abhängig 3 Zufallsvariable Abbildung des abstrakte Ergebnisraums Ω auf \mathbb{R} . Eine Abbildung $X:\Omega\to\mathbb{R}$, $\omega \mapsto X(\omega) = \text{heißt Zufallsvariable (ZV). x}$ € R. heißt Realisation der ZV X.

 $P(E) = \frac{1}{2} = P(E(F))$

• $A, B \neq \emptyset$ und $A \cap B = \emptyset$

 $P(A \cap B) \stackrel{?}{=} P(A) \cdot P(B)$

gramm stock unabhanging P(E)= 12 < P(EIF)

 $\emptyset \neq P(A) \cdot P(B)$ da P(A) > 0 und

• Diskrete ZV: $X(\Omega) = x_1,...,x_2 (n \in$ \mathbb{N}); z.B. X = "Augensumme beim"• Stetige ZV: $X(\Omega) \subseteq \mathbb{R}$; "z.B. Körper-Satz 2.2 oben: $P(E \cap$

größe eines Menschen" 3.1 Verteilungsfunktion-allg. Die Wahrscheinlichkeit P(B) für ein Ereignis B in R wird zurückgefürht auf die

Wahrscheinlichkeit der entsprechenden Ereignisse in Ω . Für jedes $\vec{X} \in \mathbb{R}$ ist die Verteilungsfunktion F: $\mathbb{R} \rightarrow [0,1]$ einer ZV X definiert durch: Hilfreich, wenn man man $P(F|E_i)$ kennt, $F(x) = P(X \le x)$

• $0 \le F(x) \le 1$

• $P(a < X \le b) = F(b) - F(a)$

unendlich) ist die Wahrscheinlichkeits-

• $\lim_{x \to -\infty} F(X) = 0 \lim_{x \to \infty} F(x) = 1$ monoton wachsend • P(X > x) = 1 - F(x)

Nur Nenner!P(F) aus dem Satz der tota-3.2 Diskrete ZVs Für eine diskrete ZV X mit $X(\Omega) =$ $x_1,...,x_n$ (n endlich oder abzählbar

 $p(x) = \begin{cases} P(X = x_i), \text{falls } x_i \in X(\Omega) \\ 0, sonst \end{cases}$

• $F(x) = (P(X \le x) = \sum_{x_i \le x} p(x_i)$

• F(x) ist eine rechtseitig stetige Treppenfunktion mit Sprüngen

bei der Realisation von x_i .

funktion definiert durch:

3.3 Stegite ZVs

Stetige ZV X ist die Wahrscheinlichkeits-

dichte f $f: \mathbb{R} \to [0, \infty]$ definiert durch $P(a < X < b) = \int_a^b f(x) dx$

Es gilt:

• $F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt$ und F'(x) = f(x)

• F(x) ist stetig & $P(a < X \le b) =$ $P(a \le X \le b)$ wegen P(X = a) = 0

Sei $\Omega = \bigcup_{i=1}^n E_i$ mit $E_i \cap E_j = \emptyset$ für $i \neq j$

3.7 Varianz Hilfszettel zur Klausur von JD., Seite 2 von 4

3.5 Zusammenfassung 3.5.1 Diskrete ZV

3.4 Verteilungsfunktion

· Wahrscheinlichkeitsverteilung $p(x) \sum_{i=1}^{n} p(x_i) = 1x_i$ ist Realisation der ZV. • Verteilungsfunktion F(x) ist rechts-

seitig stetige Treppenfunktion. **Sprunghöhen:** $P(X = x_i) = F(x_i) \lim \neq 0$ • $P(a < X \le b) = F(b) - F(a) \ne P(a \le b)$ $X \leq b$

3.5.2 Stetige ZV • Dichtefunktion fx $\int_{-\infty}^{\infty} f(x)dx = 1$

• Verteilungsfunktion F(x) ist stetig mit F'(x) = f(x); $P(X = x_i) = 0$

• $P(a < X \le b) = F(b) - F(a) = P(a \le b)$ $X \le b) = F(a \le X < b) = P(a < X <$ 3.6 Erwartungswert

Der Erwartungswert E[X] = einer ZVX ist der **Schwerpunkt** ihrer Verteilung

or der durchschnittliche zu erwartende Wert der ZV. • diskrete ZV: $E[X] = \sum_{i=1}^{n} x_i \cdot p(x_i)$

- stetige ZV: $E[X] = \int_{-\infty}^{\infty} x \cdot f(x) dx$

ZV ist konstant. E[X] verhält sich linear. Eigenschaften von E[X]: • E[b] = b

- E[aX + b] = aE[X] + b
- $E[X_i + ... + X_n] = \sum_{i=1}^n E[X_i]$
- $\sum_{i=1}^{n} x_i$

3.6.1 Satz 3.1

Sei Y = g(X) eine Funktion der ZV X. Dann gilt:

- für diskrete ZV:E[g(X)] = $\sum_{i=1}^{n} g(x) \cdot p(x_i)$
- für stetige ZV: $E[g(X)] = \int_{-\infty}^{\infty} g(x)$. f(x)dx. Das vertauschen von E und g nur bei linearen Funktionen u $m\ddot{o}glich. \Rightarrow g(E[X])$

Die Varianz einer ZV X mit u ist ein quadratisches Streungsmaß. $\sigma^2 = Var[X] =$ $E[(X-)^2]$ falls x stetig $\int_{-\infty}^{\infty} (x-\mu)^2 \cdot f(x)$ $J_{ ext{Untergrenze}}^{\circ}$ Es wird normal mit - Inte-

g(X)Die Standardabweichung $\sigma = \sqrt{Var[X]}$ hat im Gegensatz zur Varianz die gleiche Dimension von die ZV X. • Var[b] = 0

• $Var[aX + b] = a^2 Var[X]$

3.7.1 Satz 3.2 $Var[X] = E[X^2] - (E[X])^2$ Beim Minuend

fach stehende x quadriert nicht f(x)!!!3.8 Z-Transformation, Standardisie-Sei X eine ZV mit μ und σ . Dann ist $Z = \frac{X - \mu}{\sigma} = \frac{x}{\sigma} - \frac{\mu(konstant)}{\sigma}$

wird beim Erwartungswert nur das ein-

3.9 Kovarianz Eigenschaften:

• Cov[X, Y] = Cov[Y, X]• Cov[X, X] = Var[X]• Cov[aX, Y] = aCov[X, Y]

definiert durch Cov[X,Y] =E[(X - E[X])(Y - E[Y]) Die Kovarianz beschreibt die Abhängigkeit zweier ZV X und Y. Je stärker diese Korrelieren, desto (betragsmäßig) größer ist die Kovarianz. Falls X, Y stochastisch unabhängig \Rightarrow Cov[X,Y] = 03.10 Satz 3.3

Die Kovarianz zweier ZV (X, Y)

3.10.1 Varianz einer Summe von

 $Cov[X, Y] = E[XY] - E[X] \cdot E[Y]$

• $Var[X_i + ... + X_n]$ $\sum_{i=1}^{n} \sum_{j=1}^{n} Cov[X_i, X_j]; Var[X_1 +$ X_2] = $Var[X_1] + Var[X_2] + 2Cov[X_1, X_2]$ • Falls X_i, X_j paarweise unabhängig !!!: $Var[X_1 + ... + X_n] = \sum_{i=1}^n Var[X_i]$

3.11 Overview $\mu \sigma$ 3.11.1 E[X]

 $E[aX + b] = AE[X] + b; EX_1 + ... + E_n =$ $\sum_{i=1}^n E[X_i];$ Falls X_1, X_2 unabhängig: $E[X_i] = \mu \Rightarrow E[\overline{X}] = E[\frac{1}{n}(X_1 + ... + X_n)] =$ teilung $X \sim H_{M,N,n}; E[X] = n\frac{M}{M+N};$ $\frac{1}{n}\sum_{i=1}^{n}E[x_i] = \frac{1}{n} \cdot n \cdot \mu = \mu$

3.11.2 Varianz $Var[aX + b] = a^2 Var[X]$

3.12 Quantile

Falls X_i, X_i parweise unabhängig: $Var[X_1 + ... + X_n] = \sum_{i=1}^n Var[X_i]$ $Var[X_i] = \sigma^2 \Longrightarrow Var[\overline{X}] = Var[\frac{1}{n}(x_1 + ... +$ $[x_n] = \frac{1}{n^2} \sum_{i=1}^n Var[X_i] = \frac{1}{n^2} \cdot n \cdot \sigma^2 = \frac{\sigma^2}{n}$

Sei X eine ZV mit Verteilungsfunktion F(x) und 0 . Dann ist das p-Quantil definiert als der Wert $x_n \in \mathbb{R}$ für $F(x_p) \ge p$. p-Quantil einer stetigen ZV mit streng monoton wachsenden

$F(x:)x_p = F^{-1}(p)d$. h. umkehrbar. 4 Spezielle Verteilung 4.1 Diskrete Verteilung

4.1.1 Bernouilliverteilung Indikatorvariable mit den Werten 1 bei Erfolg und 0 bei Misserfolg; Wahrschein-

lichkeit:P(X = 1) = p, P(X = 0) = 1 - p;**Verteilung:** $X \sim B_{1,p}$ p ist Erfolgswahr-

scheinlichkeit; $E[X] = p = \sum x_i \cdot p(x_i) = 1$.

p(1); $Var[X] = p(1-p) = E[X^2] - (E[X])^2 =$

 $p - p^2 = p(1 - p);$ 4.1.2 Binominalverteilung Anzahl der Erfolge beim n-maligen

Ziehen**mit** Zurücklegen; scheinlichkeit $P(x = k) = \binom{n}{k} \cdot p^k$

 $X \sim B_{n,p}$; E[X] = np; Var[X] =np(1-p); **R:** dbinom(k,n,p)=P(X=k) êWahrscheinlichkeits-/Dichtefunktion; pbinom(k,n,p)=F(k)≜Verteilungsfunktion; qbinom(q,n,p)=q-Quantil;

rbinom(k,n,p)\(\hat{p}\)kbinomialverteilte Zu-

fallszahlen;

4.1.3 Hypergeometrische Vertei- 4.2.2 Normalverteilung lung

Anzahl der Erfolge beim n-maligen Ziehen ohne Zurücklegen aus einer Menge mit M Elementen, die Erfolg bedeuten, und N Elementen, die Misserfolg Wahrscheinlichkeit P(X = k) = k

 $\frac{M}{M+N}$ $\hat{=}$ Tref ferwahrscheinlichkeit; $Var[X] = n \frac{M}{M+N} (1 - \frac{M}{M+N}) \frac{M+N-n}{M+N-1};$ $\rightarrow 1$ falls n klein im Verhältnis zu

4.1.4 Poisson-Verteilung Verteilung der seltenen Ereignisse Häufigkeit punktförmiger Ereignisse in ei-

phyper(k, M, N, n) = F(k);

zu erwartende Anzahl der Erfolge λ pro Maßeinheit (i. a. Zeiteinheit) sei bekannt. $k \in \mathbb{N}_0 \rightarrow diskret$ Wahrscheinlich- $\mathbf{keit}P(X=k) = \frac{\lambda^k}{k!}e^{-\lambda} \text{ mit } \sum_{k=0}^{\infty} P(X=k)$ k) = 1, $da \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = e^{\lambda}$; Verteilung $X \sim P_{\lambda}$; $E[X] = \lambda, da \sum_{k=0}^{\infty} k \frac{\lambda^{k}}{k!} e^{-\lambda} =$ $e^{-\lambda} \sum_{k=1}^{\infty} \lambda \frac{\lambda^{k-1}}{(k-1)!} = \lambda e^{-\lambda} \sum_{i=0}^{\infty} \frac{\lambda^{i}}{i!} = \lambda;$ $Var[X] = \lambda \mathbf{R} : dpois(k, \lambda) = P(X = k);$ $ppois(k, \lambda) = F(k);$ 4.1.5 Gleichverteilung

nem Kontinuum. Die durchschnittlich

Alle Werte $\{x_1,...,x_n\}$ einer ZV X sind gleich wahrscheinlich; **Wahrscheinlich**-

keit $P(X = x_k) = \frac{1}{n}$; Verteilung

von t Zeiteinheiten, dann beschreibt $X \sim U_{\{x_1,...,x_n\}}; E[X] = \frac{1}{n} \sum_{k=1}^n x_k = \overline{x};$ $Var[X] = \frac{1}{n} \sum_{k=1}^{n} x_k^2 - \overline{x}^2$; **R**: sample(1: N, n) $\hat{=}$ n Zufallszahlen zwischen 1 und

4.2.1 Stetige Gleichverteilung $(1 - p)^{n-k}, k \in [0, 1, ..., n]$; Verteilung Zufallszahlen aus einem Intervall [a, b]; tion; $Var[X] = \frac{1}{12}$; **R**: $dexp(x, \lambda) = f(x)$;

 $pexp(x, \lambda) = F(x)$; **Eigenschaft:** Eine ex-**Dichte:** $f(x) = \frac{1}{b-a}$ für $x \in [a,b]$; Verteilung: $X \sim U_{[a,b]}$; $E[X] = \frac{a+b}{2}$; $Var[X] = \frac{(b-a)^2}{12} \mathbf{R} : dunif(x, a, b) = f(x);$ puni f(x, a, b) = F(x); runi f(n) = n Zufalls-

n Zufallszahlen zwischen a und b;

4.2 Gleichverteilung

ist insbesondere Grenzverteilung unabhängiger Summen; $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right)};$ Verteilung: bedeuten. Gesamtum fang = M + N; $X \sim N_{\mu,\sigma^2}$; $E[X] = \mu$; $Var[X] = \sigma^2$; R: $dnorm(x, \mu, \sigma) = f(x); pnorm(x, \mu, \sigma) =$ $\frac{\binom{M}{k} \cdot \binom{N}{n-k}}{\binom{M+N}{k}}, k \in \{0,1,...,min\{n,M\}\};$ Vermalstelle von f(x) bei $x = \mu$; Wende**stelle** von f(x) bei $x = \mu \pm \sigma$; E[aX + b] =aE[X] + b; $Var[aX + b] = a^2Var[X]$; $X \sim N_{\mu,\sigma^2} \Rightarrow aX + b \sim N_{a\mu+b,a^2\sigma^2}$ und $\frac{X-\mu}{\sigma} \sim N_{0,1}; X_1 \sim N_{\mu_1,\sigma^2} \text{ und } X_2 \sim$ $\chi_{n_1}^2$ und $X_2 \sim \chi_2^2 \Rightarrow X_1 + X_2 \sim \chi_{n_1 + n_2}$

Beschreibt viele reale Situationen,

Dichte: $\varphi(x) = \frac{1}{\sqrt{2}}e^{(-\frac{1}{2}x^2)}$; Verteilung

4.2.3 Standardnormalverteilung

 X_1, X_2 stochastisch unabhängig

M+N; **R**: dhyper(k,M,N,n) = P(X = k); $N_{\mu_2,\sigma_2^2} \Rightarrow X_1 + X_2 \sim N_{\mu_1 + \mu_2,\sigma_1^2 + \sigma_2^2}$;

 $\phi(x) = \int_{-\infty}^{x} \varphi(t)dt$; Quantile: $\phi(-x) = 1$ $\phi(x) \Rightarrow -x_p = x_{1-p} \text{ z.B. } -x_{0.25} = x_{0.75};$ Schätzwerte: $Z = \frac{x-\mu}{\sigma} \sim N_{0.1}$

4.2.4 Exponential verteilung

Modellierung von Lebensdauern, Wartezeiten Sei $Y_t \sim P_{\lambda t}$ im Intervall [0,t]

die Exponentialverteilung die Wartezeit X bis zum Eintreten eines Ereignisses; Dichte- und Verteilungsfunktion: $f(x) = \lambda e^{-\lambda x} (x \ge 0)$ und F(x) = 1 $e^{-\lambda x}$; Verteilung: $X \sim Exp_{\lambda}$; E[X] = $\frac{1}{1} \Rightarrow$ Berechnung mit partieller Integra-

ponentialverteile ZV X ist gedächtnislos, d.h. P(X > s + t)|X > t = P(X > s); zahlen zwischen 0 und 1; runif(n, a, b) $\hat{=}$

4.2.5 Chiquadrat-Verteilung

 $Z_1,...,Z_n$ seien unabhängige, standardnormalverteilte ZV \Rightarrow X = $Z_1^2 + Z_n^2$ hat Chiquadratverteilung mit n Freiheitsgraden; Anwendungsmodell: Summen unabhängiger, standardnormalverteilter ZV; **Verteilung:** $X \sim \chi_n^2$; E[X] =n; Var[X] = 2n; \mathbf{R} : $\mathbf{d}chisq(x,n) = f(x)$; ppchisq(x, n) = F(x); Eigenschaft: $X_1 \sim$

Hilfszettel zur Klausur von JD., Seite 3 von 4

4.2.6 t-Verteilung $Z \sim N_{0.1}$ und $X \sim \chi_n^2 \Rightarrow Y = \frac{Z}{Y}$ ist t-

dungsmodell: Schätz- und Testverfahren bei unbekannter Varianz; **Verteilung:**
$$Y \sim t_n$$
; $E[Y] = 0$ für $n > 1$; $Var[Y] = \frac{n}{n-2}$ für $n > 2$; **R:** $dt(y,n) = f(x)$; $pt(y,n) = F(x)$; $qt(y,n) = F^{-1}(x)$; **Eigenschaften:** Für $n \rightarrow \infty$: $t_n \rightarrow N_{0,1}$; Achsensymmetrie der Dichtefunktion $\Rightarrow -y_p = x_{1-p}$

verteilt mit n Freiheitsgraden; Anwen-

Abbildung Dichtefunktion 5 Zentraler Grenzwertsatz $\mu\sigma^2$ bekannt aber nicht die Verteilung 5.1 ZGWS

Seien X_i (i = 1,...,n) unabhängige identische verteilte (i.i.d) ZV mit Erwartungswert μ und Varianz σ^2 . Dann gilt für hinreichend große n (>30) und $\overline{X} = \frac{1}{n} \sum_{i=1}^{n}$ näherungsweise: $\sum_{i=1}^{n} X_i \sim N_{n\mu,n\sigma^2} \&$

$$\sum_{i=1}^{n} \frac{n\mu,no}{n\mu,no}$$

$$\sum_{i=1}^{n} \frac{X_{i}-n\mu}{\sqrt{n}\cdot\sigma} \sim N_{0,1}$$

$$\sum_{i=1}^{n} \frac{X_{i}-n\mu}{\sqrt{n}\cdot\sigma}$$

$$\sum_{i=1}^{n} \frac{n\mu,no}{\sqrt{n}\cdot\sigma}$$

$$\sum X_i$$
 bezieht sich auf Y; $\sum X_i - n\mu$ bezieht sich auf X_i ; $\overline{X} \sim N_{\mu,\frac{\sigma^2}{n}} & \frac{\overline{X} - \mu}{\sigma} \sim N_{0,1}$; ist eine erwartungstreue Schätz für Erwartungswert μ , d. h. $E[\overline{X}]$ Der Satz gilt sogar allgemeiner, wenn 5.4.2 Stichprobenvarianz

die X_i abhängig und nicht identisch verteilt sind, vorausgesetzt kein X_i ist deut- Die lich dominanter?! als die anderen.Für die Voraussetzung des ZGW ist, dass damit $\sum_{i=1}^{n} X_i$ oder \overline{X} bei **hinreichend großem n** normalverteilt sind. Faustregel: **Je** schiefer die Verteilung der X_i , desto größer muss n sein: n>30: falls die unbekannte Verteilung ohne markanten Ausreißer, aber schief ist (Exponentialverteilung); n>15: falls die unbekann-

te Verteilung annähernd symmetrisch

ist(Binomialverteilung); $n \le 15$: falls die unbekannte Verteilung annähernd normalverteilt ist;

5.2 ϕ

 $-\phi^{-1}(p) = \phi^{-1}(1-p)$ Zusammenhang Aufgabentypen: Seien X_i i.i.d. ZV mit μ und σ^2 , aber unbekannter Verteilung. Dann sind $Z_1 = \frac{\sum X_i - n\mu}{\sqrt{n}\sigma}$ und $Z_2 = \frac{\overline{X} - \mu}{\sigma}$

näherungsweise standardnormalverteilt. · Es lassen sich Wahrscheinlichkeiten für $\sum X_i, \overline{X}, Z_1$ oder Z_2 berech-Es lässt sich n bestimmen, so dass,

zu vorgegebener Schranke k und Wahrscheinlichkeit p gilt: $P(Z_i >$ $k \ge p$ or $P(-k \le Z_i \le k) \ge p$ 5.4 Stichprobenverteilungen für nor-

malverteilte Grundgesamtheiten 5.4.1 Stichprobenmittel

Die Stichprobenfunktion $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ ist eine erwartungstreue Schätzfunktion für Erwartungswert μ , d. h. $E[\overline{X}] = \mu$

teilt sind, vorausgesetzt kein
$$X_i$$
 ist deutlich dominanter?! als die anderen. Für die Voraussetzung des ZGW ist, dass die X_i nicht normalverteilt sein müssen., damit $\sum_{i=1}^n X_i$ oder \overline{X} bei **hinreichend großem n** normalverteilt sind. Faustregel: **Je** schiefer die Verteilung der X_i , desto größer muss n sein: $\mathbf{n} > \mathbf{30}$: falls die unbekannte Verteilung ohne markanten Ausreißer, aber schief ist (Exponentialverteilung); $\mathbf{n} > \mathbf{15}$: falls die unbekannte Verteilung annähernd symmetrisch

Erwartungswert μ und Varianz σ^2 . Dann 6.7 Aufgabentypen gilt: bei unbekannter Varianz: $\frac{X-\mu}{c}\sqrt{n} \sim$ **Geg:** n, 1- α ; **Ges:** I s.o. **Geg:** \overline{X} , σ , 1 – α , L;

 $N_{0,1}$; $\frac{(n-1)S^2 = \sum (x-\overline{x})^2}{\sigma^2 \Rightarrow \text{Standardisierung}} \sim \chi_{n-1}^2$; **Bei** unbekannter Varianz: $\frac{X-\mu}{S}\sqrt{n} \sim t_{n-1}$;

6 Konfidenzintervall 6.1 Begriffe

Irrtumswahrscheinlichkeit = α ; Konfidenzniveau = $1 - \alpha$ = ; Konfidenzintervall 6.2 Punkschätzer

E[X]: Stichprobenmittel: $X = \frac{1}{n} \sum_{i=1}^{n} X_i$; Varianz: Stichprobenvarianz: $s^{\frac{1}{2}}$ =

ren Parameter, aber keine Aussage über Unsicherheit der Schätzung, Geringe Sicherheit für wahren Parameter; 6.3 Intervallschätzer Intervall für wahren Parameter, mit vorgegebener Sicherheit; Vor-

 $\frac{1}{n-1}\sum_{i=1}^{n}(X_i-\overline{X})^2$; Schätzwert für wah-

achtetes Signifikanzniveau gabe (95% or 99%); Dichtefunkti-

 $P(-a \le \overline{x} \le a) > 0.95$; σist unbekann-

 $P(x_{0.025} < \frac{x - \mu}{3} \sqrt{n} < x_{0.975}) \ge 0.95$

 $-1.96; N_{0.1}; 1.96;$ 6.4 μ , unbekannt, σ^2 , bekannt

$I =]\overline{X} - \phi^{-1}(1 - \frac{\alpha}{2}) \frac{\sigma}{\sqrt{n}}$

 $qnorm(1-\frac{\alpha}{2})$ 5% φ-1/0,95)≈ 1,64S 95% 2,5% \$\phi^{-1}(0,975) \approx 1,96

99% 0,5% p-1(0,995) ≈ 2,576

6.5 $\mu \& \sigma^2$, unbekannt $I =]\overline{X} - t_{n-1}^{-1} (1 - \frac{\alpha}{2}) \frac{S}{\sqrt{n}}, \overline{X} + t_{n-1}^{-1} (1 - \frac{\alpha}{2}) \frac{S}{\sqrt{n}}$

6.6 Zusammenfassung

Wie verändert sich das $(1 - \alpha)$ -Konfidenzintervall, n-größer ⇒ I kürzer; 1- α größer ⇒ I länger; Für $\frac{L}{2} = 2\phi^{-1}(1 - \frac{\alpha}{2})\frac{\sigma}{\sqrt{\pi}}\frac{1}{2} = 2\phi^{-1}(1 - \frac{\alpha}{2})\frac{\sigma}{\sqrt{\pi}}$ $H_1: \mu \neq \mu_0;$

 $L = 2\phi^{-1}(1-\frac{\alpha}{2})\frac{\sigma}{\sqrt{n}}$; Ges: n; $\sqrt{n} > 2\phi^{-1}(1-\frac{\alpha}{2})\frac{\sigma}{\sqrt{n}}$ $\frac{\alpha}{2}$) $\frac{\sigma}{L}$ Geg: n, I, L; Ges: 1- α ; 1 - $\frac{\alpha}{2}$ =

7 Hypothesentests Basierend auf n unabhängig und iden-

tisch Verteilte (i.i.d) Zufallsvariablen

 $X_1,...,X_n$ (Messungen) soll eine Entscheidung getroffen werden, ob eine Hypothese für einen unbekannten Erwartungswert μ gültig ist or nicht.

 α = Signifikanzniveau/ Fehlerwahrscheinlichkeit TG = Prüfgröße; TG* = standardisierte Prüfgröße; siginifikante Schlussfolgerung = H_0 verworfen \rightarrow klas-

7.2 Null- und Gegenhypothese Modell: Verteilung der Grundgesamtheit or Testgröße **TG** (häufig \bar{x}) ist bekannt bis auf einen Parameter, z.B. μ , für den eine Hypothese aufgestellt wird. TG ~

N_{μ,σ^2} ; **Nullhypothese:** H_0 : Angezweifelte Aussage, der widersprochen werden kann, wenn die Stichprobe einen Gegenbeweis liefert. $H_0: \mu = \mu_0$; Gegenhypo-

these H_1 : Gegenteil von H_0 z.B. $H_1 \neq \mu_0$;

 $tg = TG(x_1,...,x_n)$ der Prüfgröße TG; **Ab**-

7.3 Ablehnungsbereich, Fehler 1. & 2.

Treffen der Testentscheidung, basierend auf einer konkreten Stichprobe $\{x_1,...,x_n\}$; Berechnung der Realisation

lehnungsbereich / Kritischer Bereich C: Werte der Testgröße, die für H1, sprechen & bei Gültigkeit von H_0 mit Wahrscheinlichkeit $\leq \alpha$ (meist 0.1, 0.05, or 0.01) auftreten. Fehler 1. Art:α ist die Wahrscheinlichkeit, dass H_0 verworfen wird, obwohl sie richtig ist. Annahmebereich: Komplement \overline{C} des Ablehnungsbereichs. H_0 kann nicht abgeleht werden, falls $tg \in \overline{C}(P(tg \in \overline{C}) \ge 1 - \alpha)$. Fehler 2. Art: Die Wahrscheinlichkeit, dass H_0 nicht abgelehnt wird, obwohl sie falsch ist.

	restentscheidung		
Realität	H ₀ wird (nicht abgelehnt)	H_0 wird abgelehnt.	
H ₀ ist wahr.	richtig	falsch (Wsk: Fehler 1. Art)]
H ₀ ist falsch.	falsch (Wsk: Fehler 2. Art)	richtig	-
<u>«</u> 2	1- a # 2		-
11911	1		ļ
- φ¹(1-g)= ¢	- φ'(1-ξ) c	$H_0: u = u_0$:	-

 H_0 wird abgelehnt, falls tg = $TG(x_1,...,x_n) \in C$; H_0 wird angenom-

7.4 Klassischer Parametertest

men falls $tg = TG(x_1,...,x_n) \in C$; Der kritische Bereich ergibt sich analog zu den Konfidenzintervallen durch die Vorgabe eines kleinen Signifikanzniveau

α d.h. max. Wahrscheinlichkeit für

Wird dann H_0 verworfen, spricht man

von einer signifikanten Schlussfolgerung. Kann H_0 nicht verworfen werden, dann

lässt sich keine Aussage über den Fehler

Fehler 1. Art, mit standardisierter Prüfgröße TG* gilt: $P(TG \in C) \le \alpha \Leftrightarrow TG^* \in$ $[-\infty; \phi^{-1}(1-\frac{\alpha}{2})] \cup [\phi^{-1}(1-\frac{\alpha}{2}); \infty[; P(TG \in$ \overline{C}) $\geq 1 - \alpha \Leftrightarrow TG^* \in [\phi^{-1}(\frac{\alpha}{2}), \phi^{-1}(1 - \frac{\alpha}{2})];$

2. Art treffen & man spricht von einer schwachen Schlussfolgerung. 7.5 Zweiseitiger Gauß Test

sischer Parametertest; schwache Schluss- $H_0: \mu = \mu_0$ gegen $H_1: \mu \neq \mu_0$; $\overline{X} \sim$ folgerung = H_0 wird nicht verworfen \rightarrow

 $N_{\mu_0,\sigma_0^2/n} \Rightarrow \frac{X-\mu_0}{\sigma_0}\sqrt{n} \sim N_{0,1}; P_{\mu_0}(\overline{X} \in$ klassischer Parametertest. p-Wert = beob- $C) \le \alpha \Leftrightarrow |TG| = \frac{|\overline{X} - \mu_0|}{\sigma_0} \sqrt{n} > \phi^{-1}(1 - \frac{\alpha}{2});$ **Testentscheidung:** H_0 wird abgelehnt, falls $|TG| > \phi^{-1}(1-\frac{\alpha}{2})$; H_0 wird angenom-

7.6 Einseitiger Gauß Test 7.6.1 linksseitig

 $H_0: \mu \ge \mu_0 \text{ gegen } H_1: \mu < \mu_0$

men, falls $|TG| \le \phi^{-1}(1-\frac{\alpha}{2})$

7.6.2 rechtsseitig

 $H_0: \mu \le \mu_0 \text{ gegen } H_1: \mu > \mu_0$ $P_{u0}(\overline{X} \in C) \leq \alpha \Leftrightarrow TG = \frac{X - \mu_0}{\sigma_0} \sqrt{n} < C$

 $\phi^{-1}(\alpha)$; Testentscheidung: H_0 wird abgelehnt falls, $TG < \phi^{-1}(\alpha)$; H_0 wird angenommen, falls $TG \ge \phi^{-1}(\alpha)$;

unbekannt

Prüfgrößet $g = \frac{\overline{X} - \mu_0}{\sigma_0} \sqrt{n}$; $|tg| > \Phi^{-1} \left(1 - \frac{\alpha}{2}\right)$ $tg > \Phi^{-1}(1-\alpha)$

 $2(1 - \Phi(tg))$

rechtsseiti

9 Interpolation

Zu gegebenen Punkten (x_i, y_i) , i = 0, ..., n

mit $x_i \neq x_j$ für $i \neq j$ eine Funktion G (dies

ist nicht eindeutig! Abhängig von der Funktionsklasse), so dass $G(x_i) = y_i$, i =0,...,n (Interpolationsbedingung). Interpolation ist ungeeignet für verauschte Daten. Lösung: Approximation der kleinsten Quadrate. 9.1 Begriffe

Extrapolation \(\delta\) N\(\text{aherungwerte f\text{\text{u}r}}\) x-Werte außerhalb der Stützstellen; Dividierende Differenzen \(\delta\) Koeffizienten ci lassen sich rekursiv durch wiederholte Bildung von "Differenzquotien-

Unterschiedliche Darstellungen für ein

den beobachteten Wert tg der Prüfgröße ten"berechnen or einen noch stärker von μ_0 abweichen-9.2 Vandermonde/klassisch

Interpolationspolynom $G(x) = p_n(x)$ vom Grad n haben unterschiedliche Eigenschaften bei der nume-Berechnung.**Monombasis:** $x^0, x^1, x^2, x^3, ...; p_n(x) = a_n x^n + ... +$ $a_1x^1 + a_0x^0$; **Ziel:** Bestimmung d. Koeffizienten $a_0, a_1, ..., a_n$ $p_n(x_i) = y_i = a_n x_i^n + ... + a_1 x_i^1 + a_0 x^0$ für i = 0, ..., n; Für die eindeutige Lösung n+1

In Matrixform:
$$\begin{pmatrix}
x_0^n & \cdots & x_0^2 & x_1 & x_1 & x_1 \\
x_1^n & \cdots & x_1^n & x_1 & 1 \\
x_2^n & \cdots & x_2^n & x_1 & 1 \\
x_2^n & \cdots & x_2^n & x_2 & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x_n^n & \cdots & x_n^n & x_n & 1
\end{pmatrix}
\begin{pmatrix}
a_n \\
a_{n-1} \\
\vdots \\
a_0
\end{pmatrix} = \begin{pmatrix}
y_0 \\
y_1 \\
\vdots \\
y_n
\end{pmatrix}$$
gen; Die Koeffizientenmatrix ist die sog. **Van**-

Gleichungen: Interpolationsbedingun-

dermonde Matrix; Eigenschaften: Die Vandermonde Matrix ist nicht singulär(falls alle x_i verschieden); Rechenaufwand: $\mathcal{O}(n^3)$; Für große n sehr schlecht konditioniert & als Allgemeiner Ansatz ungeeignet.

9.3 Lagrange

2 Formeln; $p_n(x) = y_0 L_0(x) + y_1 L_1(x) + ... + y_n L_n(x)$; $L_k(x) \prod_{j=0; j \neq k}^n \frac{x-x_j}{x_k-y_j}$; Jede Basis-

funktion $L_k(x)$ ist ein Polynom vom Grad $\leq n$; **Bemerkung:** Findet Anwendung bei Numerischer Integration; Wenn Stützstellen x_i gleich bleiben & nur y_i ändern \Rightarrow keine Neuberechnung; Rechenaufwand $\mathcal{O}((n+1)^2)$; Kommen neue Stützpunkte hinzu ⇒ Neuberechnung!; Die Interpolationspolynome liefern nur sinnvolle Näherungswerte für x-Werte, die zwischen den gegebenen Stützstellen liegen; Extrapolation (Näherungwerte für x-Werte außerhalb der Stützstellen) kann zu großen

Tg unter H_0 ; Abweichungen führen.

!:Der p-Wert hängt von der konkreten Stichprobe ab, ist eine ZV. H_0 wird abgelehnt, falls $p - Wert \le \alpha$.;

Berechnung des p-Werts anhand der kon-

kreten Stichprobe mit der Verteilung der

8 Fehleranalyse

Derzeit ausgeklammert

Hilfszettel zur Klausur von **JD**., Seite 4 von 4

 $H_0 \mid H_1 \mid H_0$ ablehnen, falls

 $\mu \ge \mu_0 \mid \mu < \mu_0 \mid tg < t_{n-1}^{-1}(\alpha)$

 $\mu \le \mu_0 \mid \mu > \mu_0 \mid$

7.9 p-Wert

7.8 t-Test, μ , σ^2 unbekannt

Prüfgröße $tg = \frac{X - \mu_0}{S} \sqrt{n}$

 $\mu = \mu_0 \mid \mu \neq \mu_0 \mid |tg| > t_{n-1}^{-1} \left(1 - \frac{\alpha}{2}\right) \mid 2(1 - t_{n-1}(tg))$

 $tg > t_{n-1}^{-1} (1 - \alpha)$

Wahrscheinlichkeit, bei Zutreffen von H_0

den Wert zu bekommen. Der p-Wert

zu einer Hypothese H_0 ist der kleinste

Wert von α , für den H_0 noch abgelehnt

werden kann. **Je kleiner** der Wert, **desto**

kleiner ist der Fehler 1. Art & umso

signifikanter ist die Testentscheidung.

Nice to know Anhand des p-Werts kann

man für beliebige Werte von α eine

Falls p - Wert < 1%: sehr hohe Signifi-

Falls $1\% \le p - Wert < 5\%$: hohe Signifi-

Falls $5\% \le p - Wert \le 10\%$: Signifikanz

Falls p - Wert > 10%: keine Signifikanz

7.10 Zusammenhang I & Hypothesen-

zum Konfidenzniveau $1 - \alpha$; H_0 wird ab-

gelehnt, falls $\mu_0 \notin I$; H_0 wird angenom-

men, falls $\mu_0 \in I$; Das Konfidenzniveau

ist der Annahmebereich von H_0 zum Si-

7.11 Zusammenfassung klass. Hy-

Signifikanzniveau α wird vorgegeben; α & Verteilung der Testgröße unter H_0 wir der Ablehnungsbereich ermittelt. **Je**

kleiner (größer) α , desto kleiner (größ-

 $!: \alpha \& C$ hängen **nicht von** der konkreten

 H_0 wird abgelehnt, falls der ermittelte

Wert der Testgröße (beobachteter Wert)

in C liegt. **!:** Die tg hängt von der konkre-

ter) ist der Ablehnungsbereich;

ten Stichprobe ab. Sie ist eine ZV.

7.12 Test mittels p-Wert

 α wird vorgegeben.

Testentscheidung treffen;

tests zweiseitig

gnifikanzniveau α ;

po.test

Stichprobe ab;

9.4 Newton

Darstellung des Interpolanten, die auf ein gestaffeltes LGS führt & einfache Hinzunahme weiterer Punkte er-

9.7.1 Wahl der Stüztstellen Runge Funktion $(f) = \frac{1}{1+25x^2}$ äquidistan-

zung; Fehler ist Abhängig von der

Verteilung der Stützstellen; Der Fehler

ist bei großen n an den Intervallrändern

laubt. $p_n(x) = c_0 + c_1(x - x_0) + ... +$

Vorteile: Rechenaufwand $\mathcal{O}(n^2)$ Gleit-

punktoperationen; Hinzufügen weiterer

Stützstellen ohne großen Aufwand. An-

dere Koeffizienten bleiben unverändert.

 $p_n(x) = a_n x^n + ... + a_0$; Aufwand: 2n-1

9.5 Dividierende Differenzen

 $c_n(x-x_0)(x-x_1)...(x-x_{n-1})$

Polynom vom Grad n

tionsbedingungen?

9.6 Effizienz

9.6.1 klasisch

9.6.2 Horner Schema

9.7 Interpolationsfehler

mit $\theta \in [x_0; x_n]$

... + a_1) $x + a_0$; Aufwand: n Mult.

te Stützstellen das Interpolationspolynom nicht immer gegen die zugrundeliegende stetige Funktion konvergiert, wenn die Anzahl der Stützstellen & damit der Grad des Polynoms wächst. Lösung: Nicht-aquidistante Verteilung der Stützstellen, dichter an den Intervallgrenzen.

9.7.2 Chebyshev-Punkte

haben die Eigenschaft; senkrechte Projektion von gleichverteilten Punkten auf dem Einheitskreis. $t_k = cos \frac{(2k-1)\pi}{2n}, k =$ 1, ..., n, auf] - 1, 1[; Invtervall: a, b[: $x_k =$ $\sum f(t_i) \int_0^1 L_i(t) dt$

verteiltund Konvergenz erreicht. $T_1: \int_0^1 f(t)dt \approx \frac{1}{2}(f(0)+f(1)); \int_a^b f(x)dx \approx$ 9.8 Schwächen der Polynominterpola- $\frac{(b-a)}{2}(f(a)+f(b));$

 $\frac{a+b}{2} + \frac{b-a}{2}t_k$. \Rightarrow Fehler wird gleichmäßiger 10.2.1 Trapezregel

Das Resultierende LGS für die Koeffizi-Hoher Rechenaufwand bei meist keiner enten c_i hat gestaffelte Form. Interpolahoher Differenzierbarkeitsgrad benötigt

 T_n : Für Teilintervalle mit gleicher Länge: $h = \frac{b-a}{n}$; $T_n = h(\frac{f(x_0)}{2} + f(x_1) + ... + f(x_{n-1}) +$ wird; RB kann Interpolationsfehler sehr groß sein; Bei wachsenden n ist es unmöglich eine Konvergenz gegen die zu interpolierenden Funktion sicherzustellen; $\mathbf{\hat{R}}$: approx $\hat{=}$ lin Interpolation; Spline ≜ Spline interpolation; Bibliotheken für Polynominterpolation; 9.9 Spline Jede Funktion S_i ist ein Polynom vom

Grad $n \le k$; S(x) ist (k-1) - mal stetig differenzierbar, d.h. für alle x_i (i = 1, ..., n-1) gilt: $S_{i-1}(x_i) = S_i(x_i)$;

Ansatz: $S_i = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + c_i(x - x_i)^2$

9.9.1 Kubisch

 $d_i(x-x_i)^3$; Gleichungssystem: 4n Parameter $a_i, b_i, c_i, d_i (i = 0, ..., n - 1)$; 2n In $p_3(x) = a_3 x^3 + a_2 x^2 + a_1 + a_0 = ((a_3 + a_2)x + a_1)x + a_0$ terpolationsbedingungen: am Rand je a_1) $x + a_0$; Allg.: $p_n(x) = (...(a_n x + a_{n-1})x +$ nur eine. $S_i x_i = y_i$; $Si(x_{i+1}) = y_{i+1}$ für $(i = 0, 1, ..., n - 1) \Rightarrow$ Stetigkeit; **Stetigkeit der 1. Abl:** $S_{i}(x_{i+1}) = S_{i+1}(x_{i+1}); \Leftrightarrow$ Falls f hinreichend glatt ist & p_n das eindeutige Interpolationspolynom von Gradn n, dann $S_{i}'(x_{i+1}) - S_{i+1}'(x_{i+1}) = 0$; für i = 0, 1, ..., n gilt fürn den Interpolationsfehler: 2; Stetigkeit der 2. Abl.: $S_i''(x_{i+1}) =$ $f(x) - p_n(x) = \frac{f^{(n+1)}(\theta)}{(n+1)!}(x - x_0)...(x - x_n)$ $S_{i+1}^{"}(x_{i+1}); S_{i}^{"}(x_{i+1}) - S_{i+1}^{"}(x_{i}+1) = 0;$ für i = 0, 1, ..., n-2; natürlicher Rand**bedingungen:** $S_0''(x_0) = 0$; $S_{n-1}''(x_n) = 0$; nach geschickter Umformung der Glei-Vergleichbar zum Restglied bei der chungen hat das LGS Tridiagonalform. Taylorreihenentwicklung; Bemerkung: θ unbekannt, daher nur Fehlerabschät-**Rechenaufwand** O(n) Gleitpunktopera-

deutlich größer, als in der Intervallmitte in kleine Teilintervalle & Summe von Rechtecksflächen bilden; Interpolations mit Polynom höheren Gredes durch diskrete Punkte. 10.1 Def

Verbesserung der Näherung: Aufteilung

 $p_k \triangleq$ Interpolationspolynom; $I_n \triangleq$ Quadraturformel; $K \triangleq$ Fehlerkonstante des Ver-Für (globalen) Fehler $e_{In} = \int_a^b f(x) dx - I_n$ fahrens.; Singularität $\hat{=}$ isolierter Punkt einer Quadraturformel In der Ordnung p der ungewöhnliches Verhalten zeigt; auf [a, b] gilt: $|e_{In}| = (b-a)h^p K|f^{(p)}(\xi)|.\xi \in$ 10.2 Newton-Cotes

Das Intergral des p_k diens al Appr. für

das Int. von f(x); $\int_0^1 f(t)dt \approx \int_0^1 p_k(t)dt =$ $\sum_{i=0}^{k} \alpha_i f(t_i)$ Das Interpolationspolynom muss nicht explizit aufgestellt werden, es dient vorab der Bestimmung der Gewichte α_j ; $\int_0^1 p_k(t) = \int_0^1 \sum f(t_i) L_i(t) dt =$

10.2.2 SimpsonRegel

 $S_1: \int_0^1 f(t)dt \approx \frac{1}{6}(f(0) + 4f(0.5) + f(1));$ $\int_{a}^{b} f(x)dx \approx \frac{b-a}{6}(f(a) + 4f(\frac{a+b}{2}) + f(b));$ Für n = 1: $\frac{(b-a)}{2\cdot 1} \frac{1}{3} (f(a) + 4f(\frac{a+b}{2}) + f(b));$

Für n allg.: $\frac{(b-a)}{2n} \frac{1}{3} (f(a) + 4(a+h) +$... + 4f(b-h) + f(b) S_n : Beachte gerade Anzahl an Teilinvervallen!; Für 2n Teilintervalle, 2n+1 Knoten

 $\frac{h}{3}(f(x_0)+4f(x_1)+2f(x_2)+4f(x_3)+f(x_4));$ 3-Rule Falls α_i positiv. Integrations regel stabil;

 $k \le 7\&k = 9 \Rightarrow$ positive Gewichte; Bei

halbierung der Intervalle Nachfrage

vervierfacht or versechszehnfacht sich

mit gleicher Länge $h = \frac{b-a}{2n}$; $S_2 =$

der Fehler? 10.3 Ordnung Integrationsregel

Eine Integrationsregel hat Ordnung p,

wenn sie für Polynome vom Grad ≤ p-1 exakte Werte liefert; T_1 Ordnung 2 \Rightarrow exakt für Polynome Grad \leq 1; Ordnung Newton-Cotes Regeln: mind. Ordnung k+1 (k: GRad des Interpolationspolynoms); **Beweis der Ordnung:** 1 = $\int_0^1 x^0 dx \stackrel{!}{=} ; \frac{1}{2} = \int_0^1 x dx \stackrel{!}{=} ; \frac{1}{3} = \int_0^1 x^2 \stackrel{!}{=} ;$ $\frac{1}{4} = \int_0^1 x^3 \stackrel{!}{=};$

10.4 Fehler Quadratur

 $]a,b[,h] = \frac{b-a}{n} \& |e_{In}| \le (b-a)h^p K$ $max_{a < x < b} | f^{(p)}(x) |$;

10.5 Fehler T_n

Der Fehler ist proportional zu h^2 ; Eine Halbierung der Intervalllänge reduziert den Fehler um den Faktor $\frac{1}{4}$; Ein Integral kann beliebig genau approx. werden, falls h entsprechend klein gewählt

Hilfszettel zur Klausur von JD., Seite 5 von 4

wird. Aber Rundungsfehler bei vielen Rechenoperationen, verschlechtert wieder das Ergebnis. Vorteil von Verfahren höherer Ordnung: Weniger Teilintervalle nö-

tig.
$$|e_{T_n}| \le \frac{h^2}{12}(b-a)max_{a \le x \le b}|f''(x)|, K = \frac{1}{12}, h = \frac{b-a}{n}$$

10.6 Fehler S_n

Der Fehler ist proportional zu h^4 ; Eine Halbierung der Intervalllänge reduziert den Fehler um den Faktor $\frac{1}{16}$; $|e_{Sn}| \leq$ $\frac{h^4}{180}(b-a)max_{a \le x \le b}|f^4(x)|, h = \frac{(b-a)}{2n}, K =$ 10.7 Grenzen NeCo

viele äquidistante Knoten → Gewichte negativ → Verfahren instabil; geschlossene NeCoRe → Funktionsauswertung an RB → Problem mit Singularitäten. größtmögliche Ordnung unerreichbar wegen äquidistanten Knoten; Lösung:

10.8 GauQua

11 Allgemein

11.1 Symbole

Stichprobenstandardabweichung \(\hat{\pm}\) s; Standardabweichung $\hat{=}\sigma$

11.2 Abl.

 $sinx = cosx; cosx = -sinx; tanx = \frac{1}{cos^2x} = 1 + \sqrt[m]{\sqrt[n]{a}} = \sqrt[m]{a^{\frac{1}{n}}} = (a^{\frac{1}{n}})^{\frac{1}{m}} = a^{\frac{1}{m \cdot n}} = \sqrt[m]{a^{\frac{1}{n}}}$ $\ln x = \frac{1}{x}$; $\log_a x = \frac{1}{(\ln a) \cdot x}$;

11.3 Abl.Regeln

Faktorregel $y = C \cdot f(x) \Rightarrow y' = C \cdot f'(x)$; Summerregel $y = f_1(x) + f_2(x) + \dots +$ $f_n(x) \Rightarrow y' = f_1'(x) + f_2'(x) + ... + f_n'(x)$; **Pro-** $\begin{array}{ll}
J_1(x) \to y & = J_1(x) + J_2(x) + \dots + J_n(x) + 1 \\
duktregel \ y = u \cdot v \Rightarrow y' = u' \cdot v + v' \cdot u; \quad x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}; x_{1,2} = \frac{2a}{-b \mp \sqrt{b^2 - 4ac}}
\end{array}$ $y = u \cdot v \cdot x \Rightarrow y' = u' \cdot v \cdot w + u \cdot v' \cdot w + u \cdot v \cdot x';$ Quotientenregel $y = \frac{u}{v} \Rightarrow y' = \frac{u' \cdot v - u \cdot v'}{v^2}$; Kettenregel $f'(x) = F'(u)u'(x) = \tilde{F}'(u)$: Ableitung der Äußeren Funktion; $u'(x): (a+b)^2 = a^2 + 2ab + b^2$ 1. Binom; $(a+b)^3 = a^2 + b^2$ Ableitung der Inneren Funktion

11.4 Integralregel, elementar

Faktorregel $\int_a^b C \cdot f(x) dx = C \cdot \int_a^b f(x) dx$; Summenregel $\int_a^b [f_1(x) + ... + f_n(x)]dx =$ $\int_{a}^{b} f_{1}(x)dx + ... + \int_{a}^{b} f_{n}(x)dx$; Vertau- $\frac{a - 3a b + 3ab - 4}{6a^{2}b^{2} - 4ab^{3} + b^{4}}$ schungsregel $\int_{b}^{a} f(x)dx = -\int_{a}^{b} f(x)dx$; $\int_{a}^{a} f(x)dx = 0$; $\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx +$ $\int_{c}^{b} f(x)dx \text{ für } (a \le c \le b);$

11.5 Berechnung best. Integr.

$$\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

11.6 Potenzen

$$x^{-n} = \frac{1}{n}$$

$$\begin{aligned} a^0 &= 1, a^{-n} = \frac{1}{a^n} \\ a^m \cdot a^n &= a^{m+n} \\ \frac{a^m}{a^n} &= a^{m-n} text fra \neq 0 \\ !(a^m)^n &= (a^n)^m = a^{m\cdot n} \\ a^n \cdot b^n &= (a \cdot b)^n \\ \frac{a^n}{b^n} &= (\frac{a}{b})^n \text{ für } b \neq 0 \end{aligned} \end{aligned} \right. \begin{cases} m, n \in \mathbb{N}^*; \\ a, b \in \mathbb{R} \\ a > 0, b > 0: \\ \text{beliebig reele} \\ \text{Exponenten} \\ a > 0: a^b \\ &= e^{b \ln a} \end{aligned}$$

11.7 Wurzel

$$\sqrt{a^2} = |a|; b = a^n \Leftrightarrow a = \sqrt[n]{b}; \sqrt[n]{a} = a^{\frac{1}{n}};$$

 $\sqrt[n]{a \pm b} \neq \sqrt[n]{a} \pm \sqrt[n]{b}$

$$\frac{\sqrt[n]{a^{m}}}{\sqrt[n]{cos^{2}x}} = 1 + \sqrt[n]{\sqrt[n]{a^{m}}} = (a^{m})^{\frac{1}{n}} = a^{\frac{m}{n}} = (a^{\frac{1}{n}})^{m} = (\sqrt[n]{a})^{m}$$

$$\sqrt[n]{\sqrt[n]{a}} = \sqrt[m]{a^{\frac{1}{n}}} = (a^{\frac{1}{n}})^{\frac{1}{m}} = a^{\frac{1}{m \cdot n}} = \sqrt[m]{a}$$

$$\sqrt[n]{a} \cdot \sqrt[n]{b} = (a^{\frac{1}{n}}) \cdot (b^{\frac{1}{n}}) = (ab)^{\frac{1}{n}} = \sqrt[n]{ab}$$

$$\sqrt[n]{a} \cdot \sqrt[n]{b} = (a^{\frac{1}{n}}) \cdot (b^{\frac{1}{n}}) = (ab)^{\frac{1}{n}} = \sqrt[n]{ab}$$

$$\sqrt[n]{a} = a^{\frac{1}{m}} = (a^{\frac{1}{n}})^{\frac{1}{m}} = a^{\frac{1}{m \cdot n}} = \sqrt[n]{ab}$$

$$\sqrt[n]{a} = a^{\frac{1}{m}} = (a^{\frac{1}{n}})^{\frac{1}{m}} = a^{\frac{1}{m \cdot n}} = a^{\frac{1}{m \cdot n}} = \sqrt[n]{ab}$$

$$\sqrt[n]{a} = a^{\frac{1}{n}} = (a^{\frac{1}{n}})^{\frac{1}{m}} = a^{\frac{1}{m \cdot n}} = a^{\frac{1}{m \cdot n}} = \sqrt[n]{ab}$$

$$\sqrt[n]{a} = a^{\frac{1}{n}} = (a^{\frac{1}{n}})^{\frac{1}{m}} = a^{\frac{1}{m \cdot n}} = \sqrt[n]{ab}$$

$$\sqrt[n]{a} = a^{\frac{1}{n}} = (a^{\frac{1}{n}})^{\frac{1}{m}} = a^{\frac{1}{m \cdot n}} = \sqrt[n]{ab}$$

$$\sqrt[n]{a} = a^{\frac{1}{n}} = (a^{\frac{1}{n}})^{\frac{1}{m}} = a^{\frac{1}{m \cdot n}} = \sqrt[n]{ab}$$

$$\sqrt[n]{a} = a^{\frac{1}{n}} = (a^{\frac{1}{n}})^{\frac{1}{m}} = a^{\frac{1}{m \cdot n}} = \sqrt[n]{ab}$$

$$\sqrt[n]{a} = a^{\frac{1}{n}} = (a^{\frac{1}{n}})^{\frac{1}{m}} = a^{\frac{1}{m \cdot n}} = \sqrt[n]{ab}$$

$$\sqrt[n]{a} = a^{\frac{1}{n}} = (a^{\frac{1}{n}})^{\frac{1}{m}} = a^{\frac{1}{m \cdot n}} = \sqrt[n]{ab}$$

$$\sqrt[n]{a} = a^{\frac{1}{n}} = (a^{\frac{1}{n}})^{\frac{1}{m}} = a^{\frac{1}{m \cdot n}} = \sqrt[n]{ab}$$

$$\sqrt[n]{a} = a^{\frac{1}{n}} = (a^{\frac{1}{n}})^{\frac{1}{m}} = a^{\frac{1}{m \cdot n}} = \sqrt[n]{ab}$$

$$\sqrt[n]{a} = a^{\frac{1}{n}} = (a^{\frac{1}{n}})^{\frac{1}{m}} = a^{\frac{1}{m \cdot n}} = \sqrt[n]{ab}$$

$$\sqrt[n]{a} = a^{\frac{1}{n}} = (a^{\frac{1}{n}})^{\frac{1}{n}} = a^{\frac{1}{n}} = a^{\frac{1}{n}} = a^{\frac{1}{n}}$$

$$\sqrt[n]{a} = a^{\frac{1}{n}} = (a^{\frac{1}{n}})^{\frac{1}{n}} = a^{\frac{1}{n}} = a^{\frac{1}{n}} = a^{\frac{1}{n}}$$

$$\sqrt[n]{a} = a^{\frac{1}{n}} = (a^{\frac{1}{n}})^{\frac{1}{n}} = a^{\frac{1}{n}} = a^{\frac{1}{n}} = a^{\frac{1}{n}}$$

$$\sqrt[n]{a} = a^{\frac{1}{n}} = a^{\frac{1}{n}} = a^{\frac{1}{n}} = a^{\frac{1}{n}} = a^{\frac{1}{n}}$$

$$\sqrt[n]{a} = a^{\frac{1}{n}} = a^{\frac{1}{n}} = a^{\frac{1}{n}} = a^{\frac{1}{n}} = a^{\frac{1}{n}}$$

$$\sqrt[n]{a} = a^{\frac{1}{n}} = a^{\frac{1}{n}} = a^{\frac{1}{n}} = a^{\frac{1}{n}} = a^{\frac{1}{n}}$$

$$\sqrt[n]{a} = a^{\frac{1}{n}} = a^{\frac{1}{n}} = a^{\frac{1}{n}} = a^{\frac{1}n}$$

$$\sqrt[n]{a} = a^{\frac{1}{n}} = a^{\frac{1}{n}} = a^{\frac{1}{n}} = a^{\frac$$

11.8 Abc-Formel

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
; $x_{1,2} = \frac{2a}{-b \mp \sqrt{b^2 - 4ac}}$

11.9 Bin.Formel

$$(a+b)^2 = a^2 + 2ab + b^2$$
 1. Binom; $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$; $(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$
 $(a-b)^2 = a^2 - 2ab + b^2$; 2. Binom; $(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$; $(a-b)^4 = a^4 - 4a^3b + 6a^2b^2 - 4ab^3 + b^4$
 $(a+b)(a-b) = a^2 - b^2$ 3. Binom;

11.10 Einigungen

· Beim Runden mind. eine Nachkommastelle.