Algorithms

2.1 ELEMENTARY SORTS

- rules of the game
- selection sort
- insertion sort
- shellsort
- shuffling

2.1 ELEMENTARY SORTS

- rules of the game
- > selection sort
- insertion sort
- shellsort
- shuffling

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

Sorting problem

Ex. Student records in a university.

	Chen	3	А	991-878-4944	308 Blair
	Rohde	2	А	232-343-5555	343 Forbes
	Gazsi	4	В	766-093-9873	101 Brown
item	Furia	1	А	766-093-9873	101 Brown
	Kanaga	3	В	898-122-9643	22 Brown
	Andrews	3	А	664-480-0023	097 Little
key	Battle	4	С	874-088-1212	121 Whitman

Sort. Rearrange array of N items into ascending order.

Andrews	3	А	664-480-0023	097 Little
Battle	4	С	874-088-1212	121 Whitman
Chen	3	А	991-878-4944	308 Blair
Furia	1	Α	766-093-9873	101 Brown
Gazsi	4	В	766-093-9873	101 Brown
Kanaga	3	В	898-122-9643	22 Brown
Rohde	2	А	232-343-5555	343 Forbes

Sorting applications

Library of Congress numbers

FedEx packages

playing cards

contacts

Hogwarts houses

Sample sort client 1

- Goal. Sort any type of data.
- Ex 1. Sort random real numbers in ascending order.

seems artificial (stay tuned for an application)

```
public class Experiment
   public static void main(String[] args)
      int N = Integer.parseInt(args[0]);
      Double[] a = new Double[N];
      for (int i = 0; i < N; i++)
         a[i] = StdRandom.uniform();
      Insertion.sort(a);
      for (int i = 0; i < N; i++)
         StdOut.println(a[i]);
```

% java Experiment 10
0.08614716385210452
0.09054270895414829
0.10708746304898642
0.21166190071646818
0.363292849257276
0.460954145685913
0.5340026311350087
0.7216129793703496
0.9003500354411443
0.9293994908845686

Sample sort client 2

- Goal. Sort any type of data.
- Ex 2. Sort strings in alphabetical order.

```
public class StringSorter
   public static void main(String[] args)
      String[] a = StdIn.readAllStrings();
      Insertion.sort(a);
      for (int i = 0; i < a.length; i++)
         StdOut.println(a[i]);
       % more words3.txt
       bed bug dad yet zoo ... all bad yes
       % java StringSorter < words3.txt</pre>
       all bad bed bug dad ... yes yet zoo
        [suppressing newlines]
```

Sample sort client 3

- Goal. Sort any type of data.
- Ex 3. Sort the files in a given directory by filename.

```
import java.io.File;
public class FileSorter
   public static void main(String[] args)
      File directory = new File(args[0]);
      File[] files = directory.listFiles();
      Insertion.sort(files);
      for (int i = 0; i < files.length; i++)</pre>
         StdOut.println(files[i].getName());
```

% java FileSorter .
Insertion.class
InsertionX.class
InsertionX.java
Selection.class
Selection.java
Shell.class
Shell.java
ShellX.class
ShellX.java

Total order

Goal. Sort any type of data (for which sorting is well defined).

A total order is a binary relation \leq that satisfies:

- Antisymmetry: if both $v \le w$ and $w \le v$, then v = w.
- Transitivity: if both $v \le w$ and $w \le x$, then $v \le x$.
- Totality: either $v \le w$ or $w \le v$ or both.

Ex.

- Standard order for natural and real numbers.
- · Chronological order for dates or times.
- Alphabetical order for strings.

No transitivity. Rock-paper-scissors. No totality. PU course prerequisites.

violates transitivity

Callbacks

Goal. Sort any type of data (for which sorting is well defined).

Q. How can sort() know how to compare data of type Double, String, and java.io.File without any information about the type of an item's key?

Callback = reference to executable code.

- Client passes array of objects to sort() function.
- The sort() function calls object's compareTo() method as needed.

Implementing callbacks.

- Java: interfaces.
- C: function pointers.
- C++: class-type functors.
- C#: delegates.
- Python, Perl, ML, Javascript: first-class functions.

Callbacks: roadmap

client

```
public class StringSorter
{
   public static void main(String[] args)
   {
      String[] a = StdIn.readAllStrings();
      Insertion.sort(a);
      for (int i = 0; i < a.length; i++)
            StdOut.println(a[i]);
   }
}</pre>
```

data-type implementation

```
public class String
implements Comparable<String>
{
    ...
    public int compareTo(String b)
    {
        ...
        return -1;
        ...
        return +1;
        ...
        return 0;
    }
}
```

Comparable interface (built in to Java)

```
public interface Comparable<Item>
{
    public int compareTo(Item that);
}
```

key point: no dependence on String data type

sort implementation

```
public static void sort(Comparable[] a)
{
   int N = a.length;
   for (int i = 0; i < N; i++)
      for (int j = i; j > 0; j--)
        if (a[j].compareTo(a[j-1]) < 0)
        exch(a, j, j-1);
      else break;
}</pre>
```

Comparable API

Implement compareTo() so that v.compareTo(w)

- Defines a total order.
- Returns a negative integer, zero, or positive integer
 if v is less than, equal to, or greater than w, respectively.
- Throws an exception if incompatible types (or either is null).

Built-in comparable types. Integer, Double, String, Date, File, ... User-defined comparable types. Implement the Comparable interface.

Implementing the Comparable interface

Date data type. Simplified version of java.util.Date.

```
public class Date implements Comparable<Date>
{
   private final int month, day, year;
   public Date(int m, int d, int y)
                                                         only compare dates
                                                          to other dates
      month = m;
      day = d;
      year = y;
   public int compareTo(Date that)
      if (this.year < that.year ) return -1;
      if (this.year > that.year ) return +1;
      if (this.month < that.month) return -1;
      if (this.month > that.month) return +1;
      if (this.day < that.day ) return -1;
      if (this.day > that.day ) return +1;
      return 0;
```