

# Parallel Computing Lab assignment

Lucia Giorgi

20/03/25



## Index

1 Image augmentation

2 Implementation

3 Experiments and results



## Image augmentation

Perform Image augmentation using the library Albumentations

- N input images
- · M augmentations for each image



## Image augmentation





## Implementation

#### Inputs:

- input folder (with N images)
- output folder
- number of augmentations (M)
- number of parallel processes (parallel versions only)
- output result file

Random augmentations are performed by randomly choosing and combining transformations



## Implementation

#### Two loops:

- Images in the input folder (N)
- Augmentations (M for each image)
- $\Rightarrow$  Two possible parallelizations

Python multiprocessing



## **Parallelization**

### Parallelization on the augmentations



## **Parallelization**

### Parallelization on the images



# Experiments (1)

- N = 40
- M = 40
- Image size: 4000 × 3000

Sequential + Parallel versions

• 2 to 20 processes





### Parallelization on the augmentations







### Parallelization on the images





# Experiments (2)

- N = 40
- M = 40
- Image size: 400 × 300

Sequential + Parallel versions

• 2 to 30 processes





### Parallelization on the augmentations







#### Parallelization on the images





# **Examples**

Original:





# **Examples**

Augmentations:



