Sintesi della Dispensa: Connettività dei Grafi Geometrici Casuali

Basato sulla dispensa di P. Crescenzi, M. Di Ianni, M. Lalli

Abstract

Questa dispensa analizza il problema di determinare il minimo raggio di trasmissione che garantisce la connessione in una rete wireless ad hoc omogenea e stazionaria. La rete viene modellata come un grafo geometrico casuale e, attraverso strumenti probabilistici, vengono derivati un limite superiore e un limite inferiore per tale raggio, dimostrando che la soglia critica per la connettività è in $\Theta(\sqrt{\ln n/n})$.

1 Introduzione alle Reti Wireless ad Hoc

Le reti wireless ad hoc sono formate da nodi dotati di ricetrasmettitori che comunicano in modalità peerto-peer. La comunicazione avviene spesso in modalità multi-hop: se due nodi non possono connettersi direttamente, il messaggio viene inoltrato attraverso una catena di nodi intermedi.

Un'applicazione cruciale sono le **reti di sensori**, in cui nodi a bassa potenza raccolgono dati (es. temperatura, pressione) e li trasmettono nella rete per ottenere una visione globale dell'area monitorata. Affinché l'informazione possa fluire liberamente, è fondamentale che la topologia della rete sia **connessa**.

La questione centrale della dispensa è: quali sono le condizioni necessarie per garantire, con alta probabilità, che una rete di sensori sia connessa?.

2 Modello di Rete e Problema MTR

2.1 Formalizzazione del Modello

La rete viene formalizzata attraverso le seguenti definizioni.

- Configurazione di Rete (M_d) : Una rete stazionaria è una coppia $M_d = (N, P)$, dove N è l'insieme di n nodi e $P: N \to [0, 1]^d$ è una funzione che assegna a ogni nodo una posizione nel cubo unitario d-dimensionale. Per semplicità, la dispensa si concentra sul caso d = 2 (il quadrato unitario).
- Assegnazione di Raggio (RA): Si assume un'assegnazione omogenea, dove tutti i nodi hanno lo stesso raggio di trasmissione r.
- Grafo di Comunicazione (G): Dati M_d e RA, il grafo di comunicazione G = (N, E) ha un arco $(i, j) \in E$ se e solo se la distanza euclidea $d(P(i), P(j)) \le r$. Se le posizioni dei nodi sono scelte casualmente in modo uniforme, questo modello è noto come Grafo Geometrico Casuale (GGC).

2.2 Il Problema del Minimo Raggio di Trasmissione (MTR)

L'energia consumata per una trasmissione è proporzionale a r^2 (o una potenza superiore). Minimizzare r è quindi cruciale per estendere la durata della vita della rete, specialmente per i sensori alimentati a batteria.

Definizione 1 (Problema MTR). Dati n nodi distribuiti casualmente e uniformemente nel quadrato unitario $[0,1]^2$, qual è il valore minimo del raggio di trasmissione r^* tale che il grafo di comunicazione risultante sia connesso con alta probabilità?

Per "alta probabilità" si intende una probabilità che tende a 1 molto velocemente all'aumentare di n, tipicamente nella forma $1 - 1/n^c$ per una costante c > 0. Il valore di r^* dipende da n: all'aumentare di n, il raggio necessario per la connessione diminuisce.

3 Analisi Probabilistica del Problema MTR

La teoria classica dei grafi casuali (modello di Erdős-Rényi) non è direttamente applicabile, poiché l'esistenza degli archi in un GGC non è indipendente. Se un nodo u è connesso a w, deve essere connesso anche a qualsiasi nodo v più vicino di w. L'analisi si basa quindi su strumenti probabilistici più diretti, come i limiti di Chernoff.

L'obiettivo è dimostrare che il raggio critico $r^*(n)$ è in $\Theta\left(\sqrt{\frac{\ln n}{n}}\right)$.

3.1 Limite Superiore per r(n)

Teorema 1. Esiste una costante positiva γ_1 tale che, se $r(n) \geq \gamma_1 \sqrt{\frac{\ln n}{n}}$, il grafo di comunicazione $G^2(n,r(n))$ è connesso con alta probabilità.

Dimostrazione (schizzo). La prova si basa su una tecnica di discretizzazione dello spazio.

- 1. Partizionamento in celle: Il quadrato unitario $[0,1]^2$ viene suddiviso in $k^2(n)$ celle quadrate di lato 1/k(n).
- 2. Condizione di connessione locale: Si sceglie un raggio r(n) abbastanza grande da garantire che qualsiasi nodo in una cella sia connesso a tutti i nodi presenti nella stessa cella e in tutte le celle adiacenti. Un raggio sufficiente è $r(n) = \frac{\sqrt{5}}{k(n)}$.
- 3. Condizione di non-vacuità delle celle: Se si dimostra che, con alta probabilità, nessuna cella è vuota, allora la connessione locale tra celle adiacenti implica la connessione globale del grafo.
- 4. Applicazione dei limiti di Chernoff: Sia X(C) la variabile aleatoria che conta il numero di nodi in una cella C. La probabilità che un nodo cada in C è $p=1/k^2(n)$. Il valore atteso è $\mu=E[X(C)]=n/k^2(n)$. Sostituendo $k(n)=\frac{\sqrt{5}}{r(n)}$ e $r(n)=\gamma_1\sqrt{\frac{\ln n}{n}}$, si ottiene:

$$\mu = E[X(C)] = \frac{n \cdot r(n)^2}{5} = \frac{n}{5} \left(\gamma_1^2 \frac{\ln n}{n} \right) = \frac{\gamma_1^2}{5} \ln n$$

Usando un limite di Chernoff, la probabilità che una cella sia vuota (P[X(C) < 1]) è limitata superiormente da $\mu e^{1-\mu}$.

5. **Union Bound:** La probabilità che esista almeno una cella vuota è limitata dalla somma delle probabilità che ogni singola cella sia vuota.

$$P[\exists C : X(C) < 1] \le k^{2}(n) \cdot P[X(C) < 1] < k^{2}(n)\mu e^{1-\mu} \approx n \cdot e \cdot n^{-\frac{\gamma_{1}^{2}}{5}} = e \cdot n^{1-\frac{\gamma_{1}^{2}}{5}}$$

Questa probabilità tende a 0 se l'esponente di n è negativo, cioè se $1 - \frac{\gamma_1^2}{5} < 0$, che è vero se $\gamma_1 > \sqrt{5}$. Scegliendo γ_1 opportunamente, si garantisce che nessuna cella sia vuota con alta probabilità, e quindi il grafo è connesso.

3.2 Limite Inferiore per r(n)

Teorema 2. Per ogni costante c, se $r(n) = \sqrt{\frac{\ln n + c}{\pi n}}$, allora la probabilità che $G^2(n, r(n))$ sia non connesso non tende a zero per $n \to \infty$.

Dimostrazione (schizzo). La prova si basa sulla dimostrazione che, se il raggio è troppo piccolo, esiste una probabilità non trascurabile che almeno un nodo rimanga isolato.

- 1. **Probabilità di non connessione:** Se il grafo contiene almeno un nodo isolato, non è connesso. Quindi $P[\text{non connesso}] \ge P[\text{esiste un nodo isolato}].$
- 2. Probabilità che un nodo i sia isolato $(P[\mathcal{E}_i])$: Un nodo i è isolato se nessun altro nodo cade nel cerchio di raggio r(n) centrato su di esso. L'area di questo cerchio è $\pi r(n)^2$. La probabilità che un altro nodo non cada in quest'area è $(1 \pi r(n)^2)$. Per n 1 nodi, si ha:

$$P[\mathcal{E}_i] \ge (1 - \pi r(n)^2)^{n-1}$$

2

3. Sostituzione del valore di r(n): Sostituendo $r(n)^2 = \frac{\ln n + c}{\pi n}$, si ottiene:

$$P[\mathcal{E}_i] \ge \left(1 - \frac{\ln n + c}{n}\right)^{n-1}$$

Per n grande, questa espressione tende a $e^{-(\ln n + c)} = \frac{e^{-c}}{n}$.

4. Valore atteso del numero di nodi isolati: Il numero atteso di nodi isolati è circa $n \cdot P[\mathcal{E}_i] \approx n \cdot \frac{e^{-c}}{n} = e^{-c}$.

Poiché il numero atteso di nodi isolati converge a una costante positiva, la probabilità che esista almeno un nodo isolato (e quindi che il grafo non sia connesso) rimane maggiore di zero anche per $n \to \infty$. Questo dimostra che un raggio asintoticamente più piccolo di $\sqrt{\ln n/n}$ non è sufficiente a garantire la connettività.