24.903 Language & Structure III: Semantics and Pragmatics Spring 2003, 2-151, MW 1-2.30 February 24, 2003

1 The λ -notation for Functions

A traditional way of representing functions: $sq(x) = x^2$

function-name, variable, definition

The Lambda notation arranges things differently:

$$sq = \lambda x [x^2]$$

 $\lambda x[x^2]$ is called a λ -term. The structure of λ -terms is: λ variable [... (variable) ...]

- the variable inside the square brackets is bracketed because its presence is not obligatory.
- the value returned by the function is **whatever** the body of the λ -term, i.e. the expression within the square brackets evaluates to. This **whatever** could be a truth value (0, 1), a number, an individual, a set, a function etc.
- λ **abstraction**: the process of creating a λ term from an expression potentially containing a variable. The variable could be over anything a truth value, a number, an individual, a set, a function etc.
- λ conversion: the λ term is a function. When this function is applied to an argument, the resulting value can be computed by replacing the occurences of the (outermost) λ variable in the expression in square brackets by the argument.

2 More on Conversion

 $\mathbf{E}[\mathbf{M}/\mathbf{x}]$ means 'E with M substituted for all instances of x'.

2.1 α -Conversion

used to rename variables in λ terms

$$\begin{split} (\lambda x.[E])[y/x] &\Longrightarrow (\lambda y.[E[y/x]]) \\ (\lambda x.[x+2])[y/x] &\Longrightarrow \\ (\lambda y.[[x+2][y/x]]) &\Longrightarrow \\ (\lambda y.[y+2]) \end{split}$$

2.2 β -Conversion

used to apply functions, by replacing all instances of the variable in the body with the input.

$$\begin{split} &(\lambda x.[E])(y) \Longrightarrow E[y/x] \\ &(\lambda x.[x^3])(2) \Longrightarrow \\ &[x^3][2/x] \Longrightarrow 2^3 \end{split}$$

2.3 η -Conversion

used to simplify functions

$$(\lambda x.[f(x)]) \Longrightarrow f$$

The term λ -conversion is often used as cover term for the above operations.

2

3 Functions with Restrictions

Function, defined in the traditional way, come with a domain specification.

Let
$$f_1:Z\mapsto N$$
 be defined as $f_1(x)=x^2$, and let $f_2:N\mapsto N$ be defined as $f_2(x)=x^2$

Now f_1 and f_2 are not identical. $f_1(-7) = 49$, $f_2(-7)$ is undefined.

Domain specification can be incorporated into λ terms straightforwardly. The following conventions are used:

$$\begin{array}{l} f_{_{1}}: \lambda x \in Z[x^{_{2}}], \ f_{_{2}}: \lambda x \in N[x^{_{2}}] \\ f_{_{1}}: \lambda x[x \in Z|x^{_{2}}], \ f_{_{2}}: \lambda x[x \in N|x^{_{2}}] \end{array}$$

More generally functions with restrictions using the λ -notation are represented as follows: $\lambda\alpha:\phi.|\gamma|$

- $\boldsymbol{\alpha}$ is the argument variable,
- ϕ the domain condition,
- γ the value description.

4 Functions with Complex Arguments

Set arguments:

 $\lambda X[X \cup \{a,b,c\}]$

Function arguments:

 $\lambda f[f(2)]$

 $\lambda f[f(2) + f(3)]$ $\lambda f[f(f(2) + f(3))]$

- Function application may not always work out -

 $\lambda f[f(8-f(4))](\lambda x[x \in N|x^2])$

The curious function: $\lambda f.[f(f)]$

5 Functions with more than one argument

$$\begin{array}{l} \lambda x.[\lambda y.[x^2+y]] \\ \lambda x\lambda y.[x^2+y] \end{array}$$

The role of variables:

 $\lambda x[x^2] = \lambda y[y^2]$

Similarly

$$\lambda x \lambda y[x^2 + y] = \lambda y \lambda x[y^2 + x]$$
, but $\neq \lambda y \lambda x[x^2 + y]$
 $\neq \lambda x \lambda x[x^2 + x]$

What does $\lambda x \lambda x [x^2 + x]$ mean?

What is the relationship between $\lambda x \lambda y [x^2 + y]$ and $\lambda y \lambda x [x^2 + y]$?

ullet The combinator C

6 The Scope of a Variable

In a lambda term $\lambda x[...]$, the body of the λ -term [...] is the **scope** of x.

More precisely: the x after the λ binds any free instances of x in its scope.

free = not bound

Variable are born free - they get **bound** by the closest λ which has their name on it.

(1) a. $\lambda x[x^3 + x^2 + x + 1]$

All the x's in the square brackets are bound by the λx

b. $\lambda x . [x^3 + \lambda x . [x^2 + x + 1](x)]$

The x's inside the inner square brackets are bound by the inner λx . Only the argument to $\lambda x \cdot [x^2 + x + 1]$ and x^3 are bound by the top level λx .

(1b) can be rewritten more clearly as (2).

(2)
$$\lambda x.[x^3 + \lambda y[y^2 + y + 1](x)]$$

doing some λ conversion, we get $\lambda x.[x^3 + x^2 + x + 1]$

Moral of the story: the names of variables are not important. What matters are the dependencies between argument positions (within the square brackets) and the order in which those arguments are supplied.

 λ -conversion should not create spurious dependencies.

- (3) Common Pitfalls:
 - a. Undoing a dependency:

$$\lambda x.[x + (\lambda x.[x + 2])(y)](7) \not\Longrightarrow [7 + (\lambda x.[7 + 2])(y)]$$

b. Creating a spurious dependency:

$$\lambda x.[x + (\lambda y.[x + y])(2)](y) \not\Longrightarrow [x + (\lambda y.[y + y](2)]$$

Auxiliary Moral: Variable names aren't important, but they can cause confusion. Hence when possible use α -conversion to eliminate re-use of variable names.

7 Function Composition

Let $f:A\to B$ and $g:B\to C$, then the result of composing f with g is written as $g\circ f$, $g\circ f:A\to C$, and $(g\circ f)(x)=g(f(x))$

$$succ: N \to N$$
, $succ(x) = x + 1$
 $sq: N \to N$, $sq(x) = x^2$
What is $succ \circ sq$, $sq \circ succ$?

Using the λ calculus, we can define a λ term that given functions f and g computes $f \circ g$: $\lambda f[\lambda g[\lambda x[f(g(x))]]]$

- The combinator B
- (4) 'maternal grandfather' as the composition of mother function with the father function

Swedish morfar, farfar, farmor, mormor

8 Characteristic Functions as λ terms

The characteristic function f_A corresponding to a set A can be defined as follows:

(5)
$$f_A: U \to \{0, 1\}$$

 $x \to 1 \text{ if } x \in A$
 $x \to 0 \text{ if } x \notin A$

We can represent characteristic functions as λ terms:

(6)
$$f_A: \lambda x[x \in A]$$

The characteristic function for the set $B=\{x:x\geq 17 \text{ and } x \text{ is even }\}$ can be written as: $f_B=\lambda x|x\geq 17 \text{ and } x \text{ is even}]$

- the 'predicative' part of the set description and the body of a λ term are very similar.
- the one difference is that λ terms may have restrictors. For certain values, they may be undefined. This is unlike sets, where you're either in or out.