BUNDESREPUBLIK DEUTSCHLAND

1

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

100 59 584.7

Anmeldetag:

30. November 2000

Anmelder/Inhaber:

Beiersdorf AG,

Hamburg/DE

Bezeichnung:

Kosmetische oder dermatologische ge-

tränkte Tücher

IPC:

A 61 K 7/00

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der urrünglichen Unterlagen dieser Patentanmeldung.

> München, den 29. November 2001 **Deutsches Patent- und Markenamt** Der Präsident

Im Auftrag

Dzierzon

Beiersd rf Aktiengesellschaft Hamburg

5

Beschreibung

Kosmetische oder dermatologische getränkte Tücher

Die vorliegende Erfindung betrifft oberflächenstrukturierte kosmetische und dermatologische Tücher, welche mit dünnflüssigen kosmetischen und dermatologischen Tränkungslösungen befeuchtet sind. Insbesondere betrifft die Erfindung kosmetische und dermatologische getränkte Pflege-, Reinigungs- und Deotücher sowie getränkte Tücher zur Bekämpfung von Hautkrankheiten (wie Akne etc.) und solche, welche die Haut nach einem Sonnenbad gezielt pflegen und die Nachreaktionen der Haut auf die Einwirkung von UV-Strahlung vermindern.

Getränkte Tücher finden als Gegenstände des täglichen Bedarfs breiten Einsatz in unterschiedlichsten Bereichen. Sie erlauben unter anderem effiziente und hautschonende Reinigung und Pflege besonders auch in der Abwesenheit von (fließendem) Wasser.

Dabei besteht der eigentliche Gebrauchsgegenstand aus zwei Komponenten:

- a) einem trockenen Tuch, welches aus Materialien wie Papier und/oder unterschiedlichsten Mischungen aus Natur- oder Kunstfasern aufgebaut ist und
- b) einer niederviskosen Tränkungslösung.

30

20

Auch oberflächenstrukturierte Tücher sind an sich bekannt. Sie werden auf der Basis von Cellulose hergestellt und finden insbesondere als Haushaltstücher und zur perianalen Reinigung Verwendung. Ihre Struktur wird durch mechanische Prägung mittels Kalanderwalzen erzeugt. Derartige Tücher haben eine geringe Reißfestigkeit bei gleichzeitig großer Rauhigkeit und Härte. Sie eignen sich daher nur bedingt zur Verwendung an der menschlichen Haut.

Aufgabe der vorli genden Erfindung war es daher, kosmetische oder dermatologisch getränkte Tücher zu finden, die die Nachteile des Standes der Technik nicht zeigen und sich insbesondere zur Pflege und/oder Reinigung der Haut eignen.

5 Es war überraschend und für den Fachmann nicht vorauszusehen, daß kosmetische und dermatologische Tücher, wobei die Tücher aus einem wasserstrahlverfestigten und/oder wasserstrahlgeprägten Vlies bestehen, welche mit kosmetischen und dermatologischen Tränkungslösungen befeuchtet sind, die eine Viskosität von weniger als 2000 mPa·s aufweisen,

10 den Nachteilen des Standes der Technik abhelfen.

20

30

Die erfindungsgemäßen Tücher stellen die Kombination eines weichen, wasserunlöslichen, neuartig strukturierten Vliesgewebes (Nonwoven material) mit dünnflüssigen kosmetischen und dermatologischen Tränkungslösungen dar. Sie sind jeglicher Hinsicht überaus befriedigend und eignen sich dementsprechend ganz besonders, um als Grundlage für Zubereitungsformen mit vielfältigen Anwendungszwecken zu dienen. Die erfindungsgemäßen Tücher zeigen sehr gute sensorische und kosmetische Eigenschaften und zeichen sich ferner durch hervorragende Hautpflegedaten aus.

Das Vliesgewebe wird vorzugsweise als Spunlace-Material im Herstellungsprozeß durch Wasserstrahlen verfestigt. Die Strukturierung erfolgt dann vorteilhaft ebenfalls durch Wasserstrahlen. Durch diese Strukturierung entsteht eine gleichmäßige Abfolge von Erhebungen und Senken im Material. In Kombination mit geeigneten Tränkungslösungen ermöglicht diese Strukturierung durch ihre Erhebungen sowohl einen besseren Zugang zu Vertiefungen in der menschlichen Haut als auch durch ihre Strukturtäler eine erhöhte Schmutzaufnahmekapazität. Dies führt insgesamt zu einer deutlich verbesserten Reinigungsleistung.

Ein besserer Zugang zu Vertiefungen in der menschlichen Haut ist zudem zur Bekämpfung von Hautkrankheiten und Hautirritationen sowie zur wirksamen Entfaltung einer desodorierenden Wirkung von besonderer Bedeutung.

Die kosmetischen und dermatologischen Tränkungslösungen, mit welchen die erfindungsgemäßen Tücher befeuchtet sind, können in verschiedenen Formen vorliegen. Sie sind vorzugsweise dünnflüssig, insbesondere sprühbar und haben z. B. eine Viskosität

von weniger als 2000 mPa·s, insbesondere weniger als 1.500 mPa·s (Meßgerät: Haake Viskotester VT-02 bei 25 °C).

Die Tränkungslösungen im Sinne der vorliegenden Erfindung können bevorzugt neben einer oder mehrerer Ölphasen zusätzlich eine oder mehrere Wasserphasen enthalten und beispielsweise in Form von W/O-, O/W-, W/O/W- oder O/W/O-Emulsionen vorliegen. Solche Formulierungen können vorzugsweise auch eine Mikroemulsion, eine Pickering-Emulsion, eine sprühbare Emulsion oder eine Hydrodispersion sein.

Darüberhinaus können die erfindungsgemäßen Formulierungen aber auch vorteilhaft in Form von ölfreien Zubereitungen – wie beispielsweise als Gele oder (wäßrige, alkoholische, wäßrig-alkoholische) Lösungen – vorliegen.

Sofern die Tränkungslösung im Sinne der vorliegenden Erfindung eine Lösung oder Dispersion darstellt, können als Lösungsmittel verwendet werden:

Wasser oder wäßrige Lösungen

5

15

20

25

30

Alkohole, Diole oder Polyole niedriger C-Zahl, sowie deren Ether, vorzugsweise Ethanol, Isopropanol, Propylenglykol, Glycerin, Ethylenglykol, Ethylenglykolmonoethyl- oder -monobutylether, Propylenglykolmonomethyl, -monoethyl- oder -monobutylether, Diethylenglykolmonomethyl- oder -monoethylether und analoge Produkte.

Insbesondere werden Gemische der vorstehend genannten Lösungsmittel verwendet. Bei alkoholischen Lösungsmitteln kann Wasser ein weiterer Bestandteil sein.

Sofern die Tränkungslösung eine oder mehrere Wasserphasen enthält, können diese vorteilhaft übliche kosmetische Hilfsstoffe enthalten, wie beispielsweise Alkohole, insbesondere solche niedriger C-Zahl, vorzugsweise Ethanol und/oder Isopropanol, Diole oder Polyole niedriger C-Zahl sowie deren Ether, vorzugsweise Propylenglykol, Glycerin, Ethylenglykol, Ethylenglykolmonoethyl- oder -monobutylether, Propylenglykolmonomethyl, -monoethyl- oder -monobutylether, Diethylenglykolmonomethyl- oder -monoethylether und analoge Produkte sowie Polymere, Schaumstabilisatoren, Elektrolyte, Zuckerderivate und/oder Moisturizer.

Als Moisturizer werden Stoffe oder Stoffgemisch bezeichnet, welche kosmetischen oder dermatologischen Zubereitungen die Eigenschaft verleihen, nach dem Auftragen bzw. Verteilen auf der Hautoberfläche die Feuchtigkeitsabgabe der Homschicht (auch transepidermal water loss (TEWL) genannt) zu reduzieren und/oder die Hydratation der Homschicht positiv zu beeinflussen.

5

10

15

20

30

Vorteilhafte Moisturizer im Sinne der vorliegenden Erfindung sind beispielsweise Glycerin, Milchsäure, Pyrrolidoncarbonsäure und Harnstoff. Ferner ist es insbesondere von Vorteil, polymere Moisturizer aus der Gruppe der wasserlöslichen und/oder in Wasser quellbaren und/oder mit Hilfe von Wasser gelierbaren Polysaccharide zu verwenden. Insbesondere vorteilhaft sind beispielsweise Hyaluronsäure, Chitosan und/oder ein fucosereiches Polysaccharid, welches in den Chemical Abstracts unter der Registratumummer 178463-23-5 abgelegt und z. B. unter der Bezeichnung Fucogel®1000 von der Gesellschaft SOLABIA S.A. erhältlich ist.

Ferner vorteilhaft im Sinne der vorliegenden Erfindung sind wasserfreie Zubereitungen, welche neben einer oder mehreren Ölkomponenten weitere öllösliche Hilfs-, Zusatz-und/oder Wirkstoffe enthalten können.

Sofem die Tränkungslösung eine oder mehrere Ölphasen enthält, werden das oder die Öle im Sinne der vorliegenden Erfindung vorteilhaft gewählt aus der Gruppe der Ester aus gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkancarbonsäuren einer Kettenlänge von 3 bis 30 C-Atomen und gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkoholen einer Kettenlänge von 3 bis 30 C-Atomen, aus der Gruppe der Ester aus aromatischen Carbonsäuren und gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkoholen einer Kettenlänge von 3 bis 30 C-Atomen. Solche Esteröle können dann vorteilhaft gewählt werden aus der Gruppe Isopropylmyristat, Isopropylpalmitat, Isopropylstearat, Isopropyloleat, n-Butylstearat, n-Hexyllaurat, n-Decyloleat, Isooctylstearat, Isononylstearat, Isononylisononanoat, 2-Ethylhexylpalmitat, 2-Ethylhexyllaurat, 2-Hexyldecylstearat, 2-Octyldodecylpalmitat, Oleyloleat, Oleylerucat, Erucyloleat, Erucylerucat sowie synthetische, halbsynthetische und natürliche Gemische solcher Ester, z. B. Jojobaöl.

Ferner können die Öle vorteilhaft gewählt werden aus der Gruppe d r verzweigten und unverzweigten Kohlenwasserstoffe und -wachse, der Silkonöle, d r Dialkylether, der Gruppe der gesättigten oder ungesättigten, verzweigten oder unverzweigten Alkohole, sowie der Fettsäuretriglyceride, namentlich der Triglycerinester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren einer Kettenlänge von 8 bis 24, insbesondere 12 bis 18 C-Atomen. Die Fettsäuretriglyceride können beispielsweise vorteilhaft gewählt werden aus der Gruppe der synthetischen, halbsynthetischen und natürlichen Öle, z. B. Olivenöl, Sonnenblumenöl, Sojaöl, Erdnußöl, Rapsöl, Mandelöl, Palmöl, Kokosöl, Palmkernöl und dergleichen mehr.

10

5

Auch beliebige Abmischungen solcher Öl- und Wachskomponenten sind vorteilhaft im Sinne der vorliegenden Erfindung einzusetzen.

Vorteilhaft werden die Öle gewählt aus der Gruppe 2-Ethylhexylisostearat, Octyldodecanol, Isotridecylisononanoat, Isoeicosan, 2-Ethylhexylcocoat, C₁₂₋₁₅-Alkylbenzoat, Capryl-Caprinsäure-triglycerid, Dicaprylylether.

Besonders vorteilhaft sind Mischungen aus C_{12-15} -Alkylbenzoat und 2-Ethylhexylisostearat, Mischungen aus C_{12-15} -Alkylbenzoat und Isotridecylisononanoat sowie Mischungen aus C_{12-15} -Alkylbenzoat, 2-Ethylhexylisostearat und Isotridecylisononanoat.

Von den Kohlenwasserstoffen sind Paraffinöl, Squalan und Squalen vorteilhaft im Sinne der vorliegenden Erfindung zu verwenden.

25

20

Vorteilhaft kann die Ölphase ferner einen Gehalt an cyclischen oder linearen Silikonölen aufweisen oder vollständig aus solchen Ölen bestehen, wodurch beispielsweise W/S-(Wasser-in-Silikon-), S/W- (Silikon-in-Wasser-) Formulierungen und dergleichen mehr entstehen. Es wird allerdings bevorzugt, außer dem Silikonöl oder den Silikonölen einen zusätzlichen Gehalt an anderen Ölphasenkomponenten zu verwenden.

30

Vorteilhaft wird Cyclomethicon (Octamethylcyclotetrasiloxan) als erfindungsgemäß zu verwendendes Silikonöl eingesetzt. Aber auch andere Silikonöle sind vorteilhaft im Sinne der vortiegenden Erfindung zu verwenden, beispielsweise Hexamethylcyclotrisiloxan, Polydimethylsiloxan, Poly(methylphenylsiloxan).

Besonders vorteilhaft sind f mer Mischungen aus Cyclomethicon und Isotrid cylisononanoat, aus Cyclomethicon und 2-Ethylhexylisostearat.

Das oder die Öle werden ferner vorteilhaft aus der Gruppe der Phospholipide gewählt. Die Phospholipide sind Phosphorsäureester acylierter Glycerine. Von größter Bedeutung unter den Phosphatidylcholinen sind beispielsweise die Lecithine, welche sich durch die allgemeine Struktur

- auszeichnen, wobei R und R" typischerweise unverzweigte aliphatische Reste mit 15 oder 17 Kohlenstoffatomen und bis zu 4 cis-Doppelbindungen darstellen.
- Die Tücher im Sinne der vorliegenden Erfindung enthalten vorteilhaft eines oder mehrere waschaktive Tenside der folgenden vier Gruppen A bis D, insbesondere wenn sie als Reinigungstücher verwendet werden sollen:

A. Anionische Tenside

<

Vorteilhaft zu verwendende anionische Tenside sind

Acylaminosäuren (und deren Salze), wie

- 1. Acylglutamate, beispielsweise Natriumacylglutamat, Di-TEA-palmitoylaspartat und Natrium Caprylic/ Capric Glutamat,
- Acylpeptide, beispielsweise Palmitoyl hydrolysiertes Milchprotein, Natrium Cocoyl
 hydrolysiertes Soja Protein und Natrium-/ Kalium Cocoyl hydrolysiertes Kollagen,
 - 3. Sarcosinate, beispielsweise Myristoyl Sarcosin, TEA-lauroyl Sarcosinat, Natriumlauroylsarcosinat und Natriumcocoylsarkosinat,
 - Taurate, beispielsweise Natriumlauroyltaurat und Natriummethylcocoyltaurat,
- 30 Carbonsäuren und Derivate, wie

- 1. Carbonsäuren, beispielsweise Laurinsäure, Aluminiumstearat, Magn siumalkanolat und Zinkundecylenat,
- 2. Ester-Carbonsäuren, beispielsweise Calciumstearoyllactylat, Laureth-6 Citrat und Natrium PEG-4 Lauramidcarboxylat,
- 3. Ether-Carbonsäuren, beispielsweise Natriumlaureth-13 Carboxylat und Natrium PEG-6
 Cocamide Carboxylat,

Phosphorsäureester und Salze, wie beispielsweise DEA-Oleth-10 Phosphat und Dilaureth-4 Phosphat,

10

Sulfonsäuren und Salze, wie

- 1. Acyl-isethionate, z.B. Natrium-/ Ammoniumcocoyl-isethionat,
- 2. Alkylarylsulfonate,
- Alkylsulfonate, beispielsweise Natriumcocosmonoglyceridsulfat, Natrium C₁₂₋₁₄ Olefin sulfonat, Natriumlaurylsulfoacetat und Magnesium PEG-3 Cocamidsulfat,
 - 4. Sulfosuccinate, beispielsweise Dioctylnatriumsulfosuccinat, Dinatriumlaurethsulfosuccinat, Dinatriumlaurylsulfosuccinat und Dinatriumundecylenamido MEA-Sulfosuccinat

sowie

- 20 Schwefelsäureester, wie
 - 1. Alkylethersulfat, beispielsweise Natrium-, Ammonium-, Magnesium-, MIPA-, TIPA-Laurethsulfat, Natriummyrethsulfat und Natrium C₁₂₋₁₃ Parethsulfat,
 - 2. Alkylsulfate, beispielsweise Natrium-, Ammonium- und TEA- Laurylsulfat.

B. Kationische Tenside

Vorteilhaft zu verwendende kationische Tenside sind

- 1. Alkylamine,
- 2. Alkylimidazole,
- 3. Ethoxylierte Amine und
- 30 4. Quarternäre Tenside.

Quaternäre Tenside enthalten mindestens ein N-Atom, das mit 4 Alkyl- oder Arylgruppen kovalent verbunden ist. Dies führt, unabhängig vom pH Wert, zu einer positiven Ladung. Vorteilhaft sind Benzalkoniumchlorid, Alkylbetain, Alkylamidopropylbetain und Alkyl-amidopropylhydroxysultain.

C. Amphot re T nsid

Vorteilhaft zu verwendende amphotere Tenside sind

- 1. Acyl-/dialkylethylendiamin, beispielsweise Natriumacylamphoacetat, Dinatriumacylamphodipropionat, Dinatriumalkylamphodiacetat, Natriumacylamphohydroxypropylsulfonat, Dinatriumacylamphodiacetat und Natriumacylamphopropionat,
 - 2. N-Alkylaminosäuren, beispielsweise Aminopropylalkylglutamid, Alkylaminopropionsäure, Natriumalkylimidodipropionat und Lauroamphocarboxyglycinat.

10 D. Nicht-ionische Tenside

Vorteilhaft zu verwendende nicht-ionische Tenside sind

- 1. Alkohole,
- 2. Alkanolamide, wie Cocamide MEA/ DEA/ MIPA,
- 3. Aminoxide, wie Cocoamidopropylaminoxid,
- 4. Ester, die durch Veresterung von Carbonsäuren mit Ethylenoxid, Glycerin, Sorbitan oder anderen Alkoholen entstehen.
 - 5. Ether, beispielsweise ethoxylierte Alkohole, ethoxyliertes Lanolin, ethoxylierte Polysiloxane, propoxylierte POE Ether und Alkylpolyglycoside wie Laurylglucosid, Decylglycosid und Cocoglycosid.

Die Tränkungslösungen enthalten besonders vorteilhaft eines oder mehrere waschaktive Tenside aus den Gruppe der Tenside, welchen einen HLB-Wert von mehr als 25 haben, ganz besonders solche, welchen einen HLB-Wert von mehr als 35 haben.

Es ist vorteilhaft im Sinn der vorliegenden Erfindung, wenn der Gehalt an einem oder mehreren waschaktiven Tensiden in der kosmetischen oder dermatologischen Tränkungslösung aus dem Bereich von 5 bis 25 Gew.-%, ganz besonders vorteilhaft von 10 bis 15 Gew.-% gewählt wird, jeweils bezogen auf das Gesamtgewicht der Tränkungslösung.

Die Tränkungslösungen für die erfindungsgemäßen kosmetischen und dermatologischen Tücher enthalten weiterhin vorteilhaft auch Konservierungsmittel.

20

5

30

Konservierungsmittel sind antimikrobielle Substanzen, die beim Herstellungsproz ß einem Produkt (Nahrungs- oder Genußmittel, pharmazeutische, kosmetische oder auch chemisch-technische Zubereitungen) in geringen Mengen (gewöhnlich je nach Produkt zwischen ca. 0,0005 % und 1 % Aktivgehalt) zugesetzt werden. Konservierungsmittel sollen Produkte während der Herstellung, der Lagerung und des Gebrauchs vor Verunreinigungen durch Mikroorganismen insbesondere vor den mikrobiell bedingten nachteiligen Veränderungen schützen.

5

10

15

20

30

An ein Konservierungsmittel werden grundsätzlich nachfolgende Forderungen gestellt: Es muß ausreichend antimikrobiell wirksam, technologisch anwendbar und gesundheitlich unbedenklich sein. Die gesundheitliche Unbedenklichkeit muß aber auch die fertige Zubereitung, das Handelsprodukt erfüllen. Dabei ist zu berücksichtigen, daß Mikroorganismen in z. B. kosmetischen Mitteln primär produktionsbedingt vorhanden sein oder sekundär durch den Verbraucher in das kosmetische Mittel gelangen können.

Daher muß gewährleistet sein, daß das Fertigprodukt auch über den gesamten Verbrauchszeitraum sicher ist.

Die meisten für eine Konservierung vorgeschlagenen bzw. vorgesehenen Konservierungsmittel wirken bakteriostatisch und fungistatisch, gelegentlich auch bakterizid und fungizid: sie sollen geruch- und geschmacklos und in den zur Anwendung kommenden Dosen nach Möglichkeit löslich, nicht toxisch, hautverträglich und ausreichend wirksam sein. Die Konservierungsmittel müssen, um wirksam zu sein, in dem zu konservierenden Roh- oder Hilfsstoff gelöst sein. Da die meisten Konservierungsmittel besser fett- als wasserlöslich sind, muß damit gerechnet werden, daß z. B. in einer Emulsion, deren wäßrige Phase konserviert werden soll, das in die wäßrige Phase eingearbeitete Konservierungsmittel im Verlauf der Lagerung in die Fettphase auswandert und damit die Konservierung der wäßrigen Phase in Frage gestellt ist. Aus diesem Grunde empfiehlt es sich, eine Kombination von Konservierungsmitteln einzusetzen, d. h. die wäßrige Phase mit einem gut wasserlöslichen Konservierungsmittel, die Fettphase dagegen gleichzeitig mit einem fettlöslichen Konservierungsmittel zu konservieren.

Für ein kosmetisches Präparat braucht zwar in der Regel keine Sterilität gefordert zu werden, es muß aber frei von pathogenen Keimen sein und vor mikrobiell bedingten Veränderungen geschützt werden.

Man sollte berücksichtigen, daß verschiedene Emulsionstypen, wäßrige Lösungen, Suspensionen usw. eine unterschiedliche Konservierung brauchen, daß die konservierende Wirkung einzelner Konservierungsmittel von der Zusammensetzung und den physikalischen Eigenschaften der zu konservierenden Zubereitung abhängig ist, daß mit Interaktionen zwischen dem Konservierungsmittel, den Wirk- und Hilfsstoffen zu rechnen ist, daß verschiedene Wirk- oder Hilfsstoffe Konservierungsmittel adsorbieren und damit möglicherweise inaktivieren können, daß insbesondere in der Zubereitung enthaltene Hydrokolloide konzentrationsabhängig Konservierungsmittel in ihrer antimikrobiellen Aktivität behindern können und daß schließlich – wiederum in Abhängigkeit von der Konzentration und dem Typ des Konservierungsmittels – das Stratum comeum das Konservierungsmittel adsorbiert und das Konservierungsmittel dann möglicherweise zur Permeation und Absorption kommt.

In der Lebensmitteltechnologie zugelassene Konservierungsmittel, welche auch vorteilhaft im Sinne der vorliegenden Erfindung eingesetzt werden können, sind mit ihrer E-Nummer nachfolgend aufgeführt.

	<u> </u>		<u></u>
E 200	Sorbinsäure	E 227	Calciumhydrogensulfit
E 201	Natriumsorbat	E 228	Kaliumhydrogensulfit)
E 202	Kaliumsorbat	E 230	Biphenyl (Diphenyl)
E 203	Calciumsorbat	E 231	Orthophenylphenol
E 210	Benzoesäure	E 232	Natriumorthophenylphenolat
E 211	Natriumbenzoat	E 233	Thiabendazol
E 212	Kaliumbenzoat	E 235	Natamycin
E 213	Calciumbenzoat	E 236	Ameisensäure
E 214	p-Hydroxybenzoesäureethylester	E 237	Natriumformiat
E 215	p-Hydroxybenzoesäureethylester-Na-Salz	E 238	Calciumformiat
E 216	p-Hydroxybenzoesäure-n-propylester	E 239	Hexamethylentetramin
E 217	-Hydroxybenzoesäure-n-propylester-Na-Salz	E 249	Kaliumnitrit
E 218	p-Hydroxybenzoesäuremethylester	E 250	Natriumnitrit

5

10

15

20

p-Hydroxybenzoesäuremethylester-Na-Salz	E 251	Natriumnitrat
Schwefeldioxid	E 252	Kaliumnitrat
Natriumsulfit	E 280	Propionsäure
Natriumyhdrogensulfit	E 281	Natriumpropionat
Natriumdisulfit	E 282	Calciumpropionat
Kaliumdisulfit	E 283	Kaliumpropionat
Calciumsulfit	E 290	Kohlendioxid
	Schwefeldioxid Natriumsulfit Natriumyhdrogensulfit Natriumdisulfit Kaliumdisulfit	SchwefeldioxidE 252NatriumsulfitE 280NatriumyhdrogensulfitE 281NatriumdisulfitE 282KaliumdisulfitE 283

Ferner vorteilhaft sind in der Kosmetik gebräuchliche Konservierungsmittel oder Konservierungshilfsstoffe, wie Dibromdicyanobutan (2-Brom-2-brommethylglutarodinitril), Phenoxyethanol, 3-lod-2-propinylbutylcarbamat, 2-Brom-2-nitro-propan-1,3-diol, Imidazolidinyltoff, 5-Chlor-2-methyl-4-isothiazolin-3-on, 2-Chloracetamid, Benzalkoniumchlorid, penzylalkohol.

Besonders vorteilhafte kosmetische Tränkungslösungen im Sinne der vorliegenden Erfindung erhalten ferner Antioxidantien als Zusatz- oder Wirkstoffe. Erfindungsgemäß enthalten die Zubereitungen vorteilhaft eines oder mehrere Antioxidantien. Als günstige, aber dennoch fakultativ zu verwendende Antioxidantien können alle für kosmetische und/oder dermatologische Anwendungen geeigneten oder gebräuchlichen Antioxidantien verwendet werden.

Vorteilhaft werden die Antioxidantien gewählt aus der Gruppe bestehend aus Aminosäuren (z.B. Glycin, Histidin, Tyrosin, Tryptophan) und deren Derivate, Imidazole (z.B. Urocaninsäure) und deren Derivate, Peptide wie D,L-Carnosin, D-Carnosin, L-Carnosin und deren Derivate (z.B. Anserin), Carotinoide, Carotine (z.B. α-Carotin, β-Carotin, Lycopin) und deren Derivate, Liponsäure und deren Derivate (z.B. Dihydroliponsäure), Aurothioglucose, Propylthiouracil und andere Thiole (z.B. Thioredoxin, Glutathion, Cystein, Cystin, Cystamin und deren Glycosyl-, N-Acetyl-, Methyl-, Ethyl-, Propyl-, Amyl-, Butyl- und Lauryl-, Palmitoyl-, Oleyl-, γ-Linoleyl-, Cholesteryl - und Glycerylester) sowie deren Salze, Dilaurylthiodipropionat, Distearylthiodipropionat, Thiodipropionsäure und deren Derivate (Ester, Ether, Peptide, Lipide, Nukleotide, Nukleoside und Salze) sowie Sulfoximinverbindungen (z.B. Buthioninsulfoximine, Homocysteinsulfoximin, Buthioninsulfone, Penta-, Hexa-, Heptathioninsulfoximin) in sehr geringen verträglichen Dosierungen (z.B. pmol bis μmol/kg), ferner (Metall)-Chelatoren (z.B. α-Hydroxyfettsäuren, Palmitinsäure, Phytinsäu-

re, Lactoferrin), α-Hydroxysäuren (z.B. Zitronensäure, Milchsäure, Apfelsäur), Huminsäur , Gallensäur , Gallenextrakt , Bilirubin, Biliverdin, EDTA, EGTA und deren Derivate, ungesättigte Fettsäuren und deren Derivate (z.B. γ-Linolensäure, Linolsäure, Ölsäure), Folsäure und deren Derivate, Ubichinon und Ubichinol und deren Derivate, Vitamin C und Derivate (z.B. Ascorbylpalmitat, Mg - Ascorbylphosphat, Ascorbylacetat), Tocopherole und Derivate (z.B. Vitamin E - acetat), Vitamin A und Derivate (Vitamin A - palmitat) sowie Konyferylbenzoat des Benzoeharzes, Rutinsäure und deren Derivate, Ferulasäure und deren Derivate, Butylhydroxytoluol, Butylhydroxyanisol, Nordihydroguajakharzsäure, Nordihydroguajaretsäure, Trihydroxybutyrophenon, Hamsäure und deren Derivate, Mannose und deren Derivate, Zink und dessen Derivate (z.B. ZnO, ZnSO₄) Selen und dessen Derivate (z.B. Selenmethionin), Stilbene und deren Derivate (z.B. Stilbenoxid, Trans-Stilbenoxid) und die erfindungsgemäß geeigneten Derivate (Salze, Ester, Ether, Zucker, Nukleotide, Nukleoside, Peptide und Lipide) dieser genannten Wirkstoffe.

5

10

25

Besonders vorteilhaft im Sinne der vorliegenden Erfindung können wasserlösliche Antioxidantien eingesetzt werden.

Bevorzugte Wirkstoffe sind Antioxidantien, welche die Haut vor oxidativer Beanspruchung schützen können. Besonders bevorzugte Antioxidantien sind dabei Vitamin E und dessen Derivate sowie Vitamin A und dessen Derivate.

Die Menge der Antioxidantien (eine oder mehrere Verbindungen) in den Zubereitungen beträgt vorzugsweise 0,001 bis 30 Gew.-%, besonders bevorzugt 0,05 bis 20 Gew.-%, insbesondere 0,1 bis 10 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitung.

Sofem Vitamin E und/oder dessen Derivate das oder die Antioxidantien darstellen, ist vorteilhaft, deren jeweilige Konzentrationen aus dem Bereich von 0,001 bis 10 Gew.-%, bezogen auf das Gesamtgewicht der Formulierung, zu wählen.

30 Sofern Vitamin A bzw. Vitamin-A-Derivate, bzw. Carotine bzw. deren Derivate das oder die Antioxidantien darstellen, ist vorteilhaft, deren jeweilige Konzentrationen aus dem Bereich von 0,001 bis 10 Gew.-%, bezogen auf das Gesamtgewicht der Formulierung, zu wählen.

Erfindungsgemäß können die Wirkstoffe (in oder mehrere Verbindungen) auch sehr vorteilhaft gewählt werden aus der Gruppe der lipophilen Wirkstoffe, insbesondere aus folgender Gruppe:

Acetylsalicylsäure, Atropin, Azulen, Hydrocortison und dessen Derivaten, z.B. Hydrocortison-17-valerat, Vitamine, z.B. Ascorbinsäure und deren Derivate, Vitamine der B- und D-Reihe, sehr günstig das Vitamin B₁, das Vitamin B₁₂ das Vitamin D₁, aber auch Bisabolol, ungesättigte Fettsäuren, namentlich die essentiellen Fettsäuren (oft auch Vitamin F genannt), insbesondere die gamma-Linolensäure, Ölsäure, Eicosapentaënsäure, Docosahexaënsäure und deren Derivate, Chloramphenicol, Coffein, Prostaglandine, Thymol, Campher, Extrakte oder andere Produkte pflanzlicher und tierischer Herkunft, z.B. Nachtkerzenöl, Borretschöl oder Johannisbeerkernöl, Fischöle, Lebertran aber auch Ceramide und ceramidähnliche Verbindungen und so weiter.

Vorteilhaft ist es auch, die Wirkstoffe aus der Gruppe der rückfettenden Substanzen zu wählen, beispielsweise Purcellinöl, Eucerit[®] und Neocerit[®].

Besonders vorteilhaft werden der oder die Wirkstoffe ferner gewählt aus der Gruppe der NO-Synthasehemmer, insbesondere wenn die erfindungsgemäßen Zubereitungen zur Behandlung und Prophylaxe der Symptome der intrinsischen und/oder extrinsischen Hautalterung sowie zur Behandlung und Prophylaxe der schädlichen Auswirkungen ultravioletter Strahlung auf die Haut dienen sollen. Bevorzugter NO-Synthasehemmer ist das Nitroarginin.

20

- Getränkte Tücher im Sinne der vorliegenden Erfindung eignen sich dementsprechend insbesondere vorteilhaft zur Prophylaxe und Behandlung kosmetischer oder dermatologischer Hautveränderungen, wie sie z. B. bei der Hautalterung auftreten. Weiterhin vorteilhaft eignen sie sich gegen das Erscheinungsbild der trockenen bzw. rauhen Haut.
- Hautalterung wird z. B. durch endogene, genetisch determinierte Faktoren verursacht. In Epidermis und Dermis kommt es alterungsbedingt z. B. zu folgenden Strukturschäden und Funktionsstörungen, die auch unter den Begriff "Senile Xerosis" fallen können:
 - a) Trockenheit, Rauhigkeit und Ausbildung von (Trockenheits-) Fältchen,

b) Juckreiz und

5

¢

30

c) verminderte Rückfettung durch Talgdrüsen (z. B. nach dem Waschen).

Exogene Faktoren, wie UV-Licht und chemische Noxen, können kumulativ wirksam sein und z. B. die endogenen Alterungsprozesse beschleunigen bzw. sie ergänzen. In Epidermis und Dermis kommt es insbesondere durch exogene Faktoren z. B. zu folgenden Strukturschäden- und Funktionsstörungen in der Haut, die über Maß und Qualität der Schäden bei chronologischer Alterung hinausgehen:

- 10 d) Sichtbare Gefäßerweiterungen (Teleangiektasien, Cuperosis);
 - e) Schlaffheit und Ausbildung von Falten;
 - f) lokale Hyper-, Hypo- und Fehlpigmentierungen (z. B. Altersflecken) und
 - g) vergrößerte Anfälligkeit gegenüber mechanischem Stress (z. B. Rissigkeit).
- In einer besonderen Ausführungsform betrifft die vorliegende Erfindung insbesondere Produkte zur Pflege der auf natürliche Weise gealterten Haut, sowie zur Behandlung der Folgeschäden der Lichtalterung, insbesondere der unter a) bis g) aufgeführten Phänomene.
- Weiter vorteilhaft werden der oder die Wirkstoffe gewählt aus der Gruppe, welche Catechine und Gallensäureester von Catechinen und wäßrige bzw. organische Extrakte aus Pflanzen oder Pflanzenteilen umfaßt, die einen Gehalt an Catechinen oder Gallensäureestem von Catechinen aufweisen, wie beispielsweise den Blättern der Pflanzenfamilie Theaceae, insbesondere der Spezies Camellia sinensis (grüner Tee). Insbesondere vorteilhaft sind deren typische Inhaltsstoffe (wie z. B. Polyphenole bzw. Catechine, Coffein, Vitamine, Zucker, Mineralien, Aminosäuren, Lipide).

Catechine stellen eine Gruppe von Verbindungen dar, die als hydrierte Flavone oder Anthocyanidine aufzufassen sind und Derivate des "Catechins" (Catechol, 3,3',4',5,7-Flavanpentaol, 2-(3,4-Dihydroxyphenyl)-chroman-3,5,7-triol) darstellen. Auch Epicatechin ((2R,3R)-3,3',4',5,7-Flavanpentaol) ist ein vorteilhafter Wirkstoff im Sinne der vorliegenden Erfindung.

Vorteilhaft sind f mer pflanzliche Auszüge mit einem Gehalt an Catechinen, insbesondere Extrakte d s grünen Tees, wie z. B. Extrakte aus Blättern der Pflanzen d r Spezies Camellia spec., ganz besonders der Teesorten Camellia sinenis, C. assamica, C. taliensis bzw. C. irrawadiensis und Kreuzungen aus diesen mit beispielsweise Camellia japonica.

Bevorzugte Wirkstoffe sind femer Polyphenole bzw. Catechine aus der Gruppe (-)-Catechin, (+)-Catechin, (-)-Catechingallat, (-)-Gallocatechingallat, (+)-Epicatechin, (-)-Epicatechin, (-)-Epigallocatechin, (-)-Epigallocatechingallat.

10

5

Auch Flavon und seine Derivate (oft auch kollektiv "Flavone" genannt) sind vorteilhafte Wirkstoffe im Sinne der vorliegenden Erfindung. Sie sind durch folgende Grundstruktur gekennzeichnet (Substitutionspostitionen angegeben):

15

Einige der wichtigeren Flavone, welche auch bevorzugt in erfindungsgemäßen Tränkungslösungen eingesetzt werden können, sind in der nachstehenden Tabelle aufgeführt:

	OH-Substitutionspositionen							
	3	5	7	8	2'	3'	4'	5'
Flavon	_	-		-		-	_	
Flavonol	+		-	_		-		-
Chrysin		+	+	_	_	-		_
Galangin	+	+	+	_	-	-	-	_
Apigenin	-	+	+	-	-	-	+	-
Fisetin	+	-	+	_	-	+	+	-
Luteolin	-	+	+	-	-	+	+	-
Kämpferol	+	+	+	_	-	-	+	-
Quercetin	+	+	+	-	-	+	+	_

Morin	+	+	+	-	+	_	+	-
Robinetin	+	_	+	-	-	+	+	+
Gossypetin	+	+	+	+	-	+	+	-
Myricetin	+	+	+	_	-	+	+	+

In der Natur kommen Flavone in der Regel in glycosidierter Form vor.

10

Erfindungsgemäß werden die Flavonoide bevorzugt gewählt gewählt aus der Gruppe der Substanzen der generischen Strukturformel

$$Z_{1}$$

$$Z_{2}$$

$$Z_{3}$$

$$Z_{4}$$

$$Z_{6}$$

$$Z_{6}$$

$$Z_{6}$$

$$Z_{6}$$

$$Z_{7}$$

$$Z_{8}$$

$$Z_{7}$$

$$Z_{8}$$

$$Z_{8}$$

$$Z_{8}$$

$$Z_{8}$$

$$Z_{8}$$

$$Z_{9}$$

$$Z_{1}$$

$$Z_{2}$$

$$Z_{3}$$

$$Z_{4}$$

wobei Z₁ bis Z₇ unabhängig voneinander gewählt werden aus der Gruppe H, OH, Alkoxysowie Hydroxyalkoxy-, wobei die Alkoxy- bzw. Hydroxyalkoxygruppen verzweigt und unverzweigt sein und 1 bis 18 C-Atome aufweisen können, und wobei Gly gewählt wird aus der Gruppe der Mono- und Oligoglycosidreste.

Erfindungsgemäß können die Flavonoide aber auch vorteilhaft gewählt werden aus der Gruppe der Substanzen der generischen Strukturformel

Gly-O
$$Z_1$$
 Z_2 Z_3 Z_4 Z_6 Z_6 Z_6

wobei Z₁ bis Z₆ unabhängig voneinander gewählt werden aus der Gruppe H, OH, Alkoxysowie Hydroxyalkoxy-, wobei die Alkoxy- bzw. Hydroxyalkoxygruppen verzweigt und unverzweigt sein und 1 bis 18 C-Atome aufweisen können, und wobei Gly gewählt wird aus der Gruppe der Mono- und Oligoglycosidreste.

Bevorzugt können solch Strukturen gewählt werden aus der Gruppe der Substanzen der generischen Strukturformel

5

wobei Gly₁, Gly₂ und Gly₃ unabhängig voneinander Monoglycosidreste oder darstellen. Gly₂ bzw. Gly₃ können auch einzeln oder gemeinsam Absättigungen durch Wasserstoffatome darstellen.

Bevorzugt werden Gly₁, Gly₂ und Gly₃ unabhängig voneinander gewählt aus der Gruppe der Hexosylreste, insbesondere der Rhamnosylreste und Glucosylreste. Aber auch andere Hexosylreste, beispielsweise Allosyl, Altrosyl, Galactosyl, Gulosyl, Idosyl, Mannosyl und Talosyl sind gegebenenfalls vorteilhaft zu verwenden. Es kann auch erfindungsge-

mäß vorteilhaft sein, Pentosylreste zu verwenden.

15

Vorteilhaft werden Z_1 bis Z_5 unabhängig voneinander gewählt aus der Gruppe H, OH, Methoxy-, Ethoxy- sowie 2-Hydroxyethoxy-, und die Flavonglycoside haben die Struktur

20

$$Z_{1}$$

$$Z_{1}$$

$$Z_{2}$$

$$Z_{3}$$

$$Z_{5}$$

$$Z_{5}$$

$$Z_{6}$$

$$Gly_{1}-Gly_{2}$$

$$Gly_{3}$$

Besonders vorteilhaft werden die erfindungsgemäßen Flavonglycoside aus der Gruppe, welche durch die folgende Struktur wiedergegeben werden:

$$\begin{array}{c|c} Z_2 \\ \hline \\ OH \\ O \\ \hline \\ OH \\ O \\ \hline \\ Gly_3 \\ \end{array} \\ Z_3$$

wobei Gly₁, Gly₂ und Gly₃ unabhängig voneinander Monoglycosidreste oder darstellen. Gly₂ bzw. Gly₃ können auch einzeln oder gemeinsam Absättigungen durch Wasserstoffatome darstellen.

6 5

Bevorzugt werden Gly₁, Gly₂ und Gly₃ unabhängig voneinander gewählt aus der Gruppe der Hexosylreste, insbesondere der Rhamnosylreste und Glucosylreste. Aber auch andere Hexosylreste, beispielsweise Allosyl, Altrosyl, Galactosyl, Gulosyl, Idosyl, Mannosyl und Talosyl sind gegebenenfalls vorteilhaft zu verwenden. Es kann auch erfindungsgemäß vorteilhaft sein, Pentosylreste zu verwenden.

Besonders vorteilhaft im Sinne der vorliegenden Erfindung ist, das oder die Flavonglycoside zu wählen aus der Gruppe α -Glucosylrutin, α -Glucosylmyricetin, α -Glucosylisoquercetin, α -Glucosylguercitrin.

15

20

25

10

Erfindungsgemäß besonders bevorzugt ist α-Glucosylrutin.

ı i

Erfindungsgemäß vorteilhaft sind auch Naringin (Aurantiin, Naringenin-7-rhamnoglucosid), Hesperidin (3',5,7-Trihydroxy-4'-methoxyflavanon-7-rutinosid, Hesperidosid, Hesperetin-7-O-rutinosid). Rutin (3,3',4',5,7-Pentahydroxyflyvon-3-rutinosid, Quercetin-3-rutinosid, Sophorin, Birutan, Rutabion, Taurutin, Phytomelin, Melin), Troxerutin (3,5-Dihydroxy-3',4',7-tris(2-hydroxyethoxy)-flavon-3-(6-O-(6-deoxy- α -L-mannopyranosyl)- β -D-glucopyranosid)), Monoxerutin (3,3',4',5-Tetrahydroxy-7-(2-hydroxyethoxy)-flavon-3-(6-O-(6-deoxy- α -L-mannopyranosyl)- β -D-glucopyranosid)), Dihydrorobinetin (3,3',4',5',7-Pentahydroxyflavanon), Eriodictyol-7-glucosid (3',4',5,7-Tetrahydroxyflavanon-7-glucosid), Flavanomareïn (3',4',7,8-Tetrahydroxyflava

non-7-glucosid) und Isoquercetin (3,3',4',5,7-Pentahydroxyflavanon-3-(β -D-Glucopyranosid).

Vorteilhaft ist es auch, dem oder die Wirkstoffe aus der Gruppe der Ubichinone und 5 Plastochinone zu wählen.

Ubichinone zeichnen sich durch die Strukturformel

aus und stellen die am weitesten verbreiteten u. damit am besten untersuchten Biochinone dar. Ubichinone werden je nach Zahl der in der Seitenkette verknüpften Isopren-Einheiten als Q-1, Q-2, Q-3 usw. oder nach Anzahl der C-Atome als U-5, U-10, U-15 usw. bezeichnet. Sie treten bevorzugt mit bestimmten Kettenlängen auf, z. B. in einigen Mikroorganismen u. Hefen mit n=6. Bei den meisten Säugetieren einschließlich des Menschen überwiegt Q10.

Besonders vorteilhaft ist Coenzym Q10, welches durch folgende Strukturformel gekennzeichnet ist:

20

Plastochinone weisen die allgemeine Strukturformel

$$H_3C$$
 O
 CH_3
 O
 CH_3

auf. Plastoschinone unterscheiden sich in der Anzahl n der Isopren-Reste und werden endsprechend bezeichnet, z. B. PQ-9 (n=9). Ferner existieren andere Plastochinone mit unterschiedlichen Substituenten am Chinon-Ring.

15

20

Auch Kreatin und/oder Kreatinderivate sind bevorzugte Wirkstoffe im Sinne der vorliegenden Erfindung. Kreatin zeichnet sich durch folgende Struktur aus:

Bevorzugte Derivate sind Kreatinphosphat sowie Kreatinsulfat, Kreatinacetat, Kreatin10 ascorbat und die an der Carboxylgruppe mit mono- oder polyfunktionalen Alkoholen veresterten Derivate.

Ein weiterer vorteilhafter Wirkstoff ist L-Camitin [3-Hydroxy-4-(trimethylammonio)-buttersäurebetain]. Auch Acyl-Carnitine, welche gewählt aus der Gruppe der Substanzen der folgenden allgemeinen Strukturformel

wobei R gewählt wird aus der Gruppe der verzweigten und unverzweigten Alkylreste mit bis zu 10 Kohlenstoffatomen sind vorteilhafte Wirkstoffe im Sinne der vorliegenden Erfindung. Bevorzugt sind Propionylcamitin und insbesondere Acetylcamitin. Beide Entantiomere (D- und L-Form) sind vorteilhaft im Sinne der vorliegenden Erfindung zu verwenden. Es kann auch von Vorteil sein, beliebige Enantiomerengemische, beispielsweise ein Racemat aus D- und L-Form, zu verwenden.

Weitere vorteilhafte Wirkstoffe sind Sericosid, Pyridoxol, Vitamin K, Biotin und Aromastoffe.

Die Liste der genannten Wirkstoffe bzw. Wirkstoffkombinationen, die in den erfindungsgemäßen Tränkungslösungen verwendet werden können, soll selbstverständlich nicht limitierend sein. Die Wirkstoffe können einzelnen oder in beliebigen Kombinationen miteinander verwendet werden.

Günstig sind solche kosmetischen und dermatologischen Tücher, die in der Form eines Sonnenschutzmittels vorliegen. Es ist aber auch vorteilhaft im Sinne der vorliegenden Erfindungen, solche kosmetischen und dermatologischen Tücher zu erstellen, deren hauptsächlicher Anwendungszweck nicht der Schutz vor Sonnenlicht ist, die aber dennoch einen Gehalt an UV-Schutzsubstanzen enthalten.

15

30

Auch stellen UV-Schutzsubstanzen, ebenso wie Antioxidantien und, gewünschtenfalls, Konservierungsstoffe, einen wirksamen Schutz der Zubereitungen selbst gegen Verderb dar.

Dementsprechend enthalten die Tränkungslösungen im Sinne der vorliegenden Erfindung vorzugsweise neben einer oder mehreren erfindungsgemäßen UV-Filtersubstanzen zusätzlich mindestens eine weitere UV-A- und/oder UV-B-Filtersubstanz. Die Formulierungen können, obgleich nicht notwendig, gegebenenfalls auch ein oder mehrere organische und/oder anorganische Pigmente als UV-Filtersubstanzen enthalten, welche in der Wasser- und/oder der Ölphase vorliegen können.

Bevorzugte anorganische Pigmente sind Metalloxide und/oder andere in Wasser schwerlösliche oder unlösliche Metallverbindungen, insbesondere Oxide des Titans (TiO₂), Zinks (ZnO), Eisens (z. B. Fe₂O₃), Zirkoniums (ZrO₂), Siliciums (SiO₂), Mangans (z. B. MnO), Aluminiums (Al₂O₃), Cers (z. B. Ce₂O₃), Mischoxide der entsprechenden Metalle sowie Abmischungen aus solchen Oxiden.

Solche Pigmente können im Sinne der vorliegenden Erfindung vorteilhaft oberflächlich behandelt ("gecoatet") sein, wobei beispielsweise ein amphiphiler oder hydrophober Cha-

rakter gebildet werden bzw. erhalten bleiben soll. Diese Oberflächenbehandlung kann darin bestehen, daß die Pigmente nach an sich bekannten Verfahren mit einer dünnen hydrophoben Schicht versehen werden.

5 Erfindungsgemäß vorteilhaft sind z. B. Titandioxidpigmente, die mit Octylsilanol beschichtet sind. Geeignete Titandioxidpartikel sind unter der Handelsbezeichnung T805 bei der Firma Degussa erhältlich. Besonders vorteilhaft sind femer mit Aluminiumstearat beschichtete TiO₂-Pigmente, z. B. die unter der Handelsbezeichnung MT 100 T bei der Firma TAYCA erhältlichen.

10

Eine weitere vorteilhafte Beschichtung der anorganische Pigmente besteht aus Dimethylpolysiloxan (auch: Dimethicon), einem Gemisch vollmethylierter, linearer Siloxanpolymere, die endständig mit Trimethylsiloxy-Einheiten blockiert sind. Besonders vorteilhaft im Sinne der vortiegenden Erfindung sind Zinkoxid-Pigmente, die auf diese Weise beschichtet werden.

15

20

Vorteilhaft ist femer eine Beschichtung der anorganischen Pigmente mit einem Gemisch aus Dimethylpolysiloxan, insbesondere Dimethylpolysiloxan mit einer durchschnittlichen Kettenlänge von 200 bis 350 Dimethylsiloxan-Einheiten, und Silicagel, welches auch als Simethicone bezeichnet wird. Es ist insbesondere von Vorteil, wenn die anorganischen Pigmente zusätzlich mit Aluminiumhydroxid bzw. Aluminiumoxidhydrat (auch: Alumina, CAS-Nr.: 1333-84-2) beschichtet sind. Besonders vorteilhaft sind Titandioxide, die mit Simethicone und Alumina beschichtet sind, wobei die Beschichtung auch Wasser enthalten kann. Ein Beispiel hierfür ist das unter dem Handelsnamen Eusolex T2000 bei der Firma Merck erhältliche Titandioxid.

Vorteilhaftes organisches Pigment im Sinne der vorliegenden Erfindung ist das 2,2'-Methylen-bis-(6-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)-phenol) [INCI: Bisoctyltriazol], welches durch die chemische Strukturformel

gekennzeichnet ist und unter der Handelsbezeichnung Tinosorb® M bei der CIBA-Chemikalien GmbH erhältlich ist.

Vorteilhaft enthalten erfindungsgemäße Tränkungslösungen Substanzen, die UV-Strahlung im UV-A- und/oder UV-B-Bereich absorbieren, wobei die Gesamtmenge der Filtersubstanzen z. B. 0,1 Gew.-% bis 30 Gew.-%, vorzugsweise 0,5 bis 20 Gew.-%, insbesondere 1,0 bis 15,0 Gew.-% beträgt, bezogen auf das Gesamtgewicht der Zubereitungen, um kosmetische Tränkungslösungen zur Verfügung zu stellen, die das Haar bzw. die Haut vor dem gesamten Bereich der ultravioletten Strahlung schützen. Sie können auch als Sonnenschutzmittel fürs Haar oder die Haut dienen.

Vorteilhafte UV-A-Filtersubstanzen im Sinne der vorliegenden Erfindung sind Dibenzoylmethanderivate, insbesondere das 4-(tert.-Butyl)-4'-methoxydibenzoylmethan (CAS-Nr. 70356-09-1), welches von Givaudan unter der Marke Parsol® 1789 und von Merck unter der Handelsbezeichnung Eusolex® 9020 verkauft wird.

5

20

25

15

10

Weitere vorteilhafte UV-A-Filtersubstanzen sind die Phenylen-1,4-bis-(2-benzimidazyl)-3,3'-5,5'-tetrasulfonsäure und ihre Salze, besonders die entsprechenden Natrium-, Kalium- oder Triethanolammonium-Salze, insbesondere das Phenylen-1,4-bis-(2-benzimidazyl)-3,3'-5,5'-tetrasulfonsäure-bis-natriumsalz mit der INCI-Bezeichnung Bisimidazylate, welches beispielsweise unter der Handelsbezeichnung Neo Heliopan AP bei Haarmann&Reimer erhältlich ist sowie das 1,4-di(2-oxo-10-Sulfo-3-bornylidenmethyl)-Benzol und dessen Salze (besonders die entprechenden 10-Sulfato-verbindungen, insbesondere das entsprechende Natrium-, Kalium- oder Triethanolammonium-Salz), das auch als Benzol-1,4-di(2-oxo-3-bornylidenmethyl-10-sulfonsäure) bezeichnet wird.

Vorteilhafte UV-Filtersubstanzen im Sinne der vorliegenden Erfindung sind ferner sogenannte Breitbandfilter, d.h. Filtersubstanzen, die sowohl UV-A- als auch UV-B-Strahlung absorbieren.

5

Vorteilhafte Breitbandfilter oder UV-B-Filtersubstanzen sind beispielsweise Bis-Resorcinyltriazinderivate. Insbesondere bevorzugt sind das 2,4-Bis-{[4-(2-Ethyl-hexyloxy)-2-hydroxy]-phenyf}-6-(4-methoxyphenyf)-1,3,5-triazin (INCI: Aniso Triazin), welches unter der Handelsbezeichnung Tinosorb® S bei der CIBA-Chemikalien GmbH erhältlich ist, und das 4,4',4"-(1,3,5-Triazin-2,4,6-triyltriimino)-tris-benzoësäure-tris(2-ethylhexylester), synonym: 2,4,6-Tris-[anilino-(p-carbo-2'-ethyl-1'-hexyloxy)]-1,3,5-triazin (INCI: Octyl Triazone), welches von der BASF Aktiengesellschaft unter der Warenbezeichnung UVINUL® T 150 vertrieben wird.

10

Besonders bevorzugte UV-Filtersubstanz im Sinne der vorliegenden Erfindung ist ferner ein unsymmetrisch substituiertes s-Triazin, welches auch als Dioctylbutylamidotriazon (INCI: Dioctylbutamidotriazone) bezeichnet wird und unter der Handelsbezeichnung UVA-SORB HEB bei Sigma 3V erhältlich ist.

20

Vorteilhaft im Sinne der vorliegenden Erfindung sind ferner das 2,4-Bis-{[4-(3-sulfonato)-2-hydroxy-propyloxy)-2-hydroxy]-phenyl}-6-(4-methoxyphenyl)-1,3,5-triazin Natriumsalz, das 2,4-Bis-{[4-(3-(2-Propyloxy)-2-hydroxy-propyloxy)-2-hydroxy]-phenyl}-6-(4-methoxyphenyl)-1,3,5-triazin, das 2,4-Bis-{[4-(2-ethyl-hexyloxy)-2-hydroxy]-phenyl}-6-[4-(2-methoxyphenyl)-carboxyl)-phenylamino]-1,3,5-triazin, das 2,4-Bis-{[4-(3-(2-propyloxy)-2-hydroxypropyloxy)-2-hydroxy]-phenyl}-6-(4-methyl-pyrrol-2-yl)-1,3,5-triazin, das 2,4-Bis-{[4-(2-ethyl-hexyloxy)-2-hydroxy]-phenyl}-6-(4-methoxyphenyl)-1,3,5-triazin, das 2,4-Bis-{[4-(2"-methyl-propenyloxy)-2-hydroxy]-phenyl}-6-(4-methoxyphenyl)-1,3,5-triazin und das 2,4-Bis-{[4-(1',1',1',3',5',5',5'-Heptamethylsiloxy-2"-methyl-propyloxy)-2-hydroxy]-phenyl}-6-(4-methoxyphenyl)-1,3,5-triazin.

30

Ein vorteilhafter Breitbandfilter im Sinne der vorliegenden Erfindung ist das 2,2'-Methylenbis-(6-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)-phenol), welches unter der Handelsbezeichnung Tinosorb® M bei der CIBA-Chemikalien GmbH erhältlich ist. Vorteilhafter Breitbandfilter im Sinne der vorliegenden Erfindung ist ferner das 2-(2H-b n-zotriazol-2-yl)-4-methyl-6-[2-methyl-3-[1,3,3,3-tetramethyl-1-[(trimethylsilyl)oxy]disiloxanyl]propyl]-phenol (CAS-Nr.: 155633-54-8) mit der INCI-Bezeichnung Drometrizole Trisiloxane.

Die UV-B-Filter können öllöslich oder wasserlöslich sein. Vorteilhafte öllösliche UV-B-Filtersubstanzen sind z. B.:

- 3-Benzylidencampher-Derivate, vorzugsweise 3-(4-Methylbenzyliden)campher, 3-Benzylidencampher;
- 4-Aminobenzoesäure-Derivate, vorzugsweise 4-(Dimethylamino)-benzoesäure(2ethylhexyl)ester, 4-(Dimethylamino)benzoesäureamylester;
- 2,4,6-Trianilino-(p-carbo-2'-ethyl-1'-hexyloxy)-1,3,5-triazin;
- Ester der Benzalmalonsäure, vorzugsweise 4-Methoxybenzalmalonsäuredi(2-ethylhe xyl)ester;
 - Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure(2-ethylhexyl)ester, 4-Methoxyzimtsäureisopentylester;
 - Derivate des Benzophenons, vorzugsweise 2-Hydroxy-4-methoxybenzophenon, 2-Hydroxy-4-methoxy-4'-methylbenzophenon, 2,2'-Dihydroxy-4-methoxybenzophenon
- 20 sowie an Polymere gebundene UV-Filter.

Vorteilhafte wasserlösliche UV-B-Filtersubstanzen sind z. B.:

- Salze der 2-Phenylbenzimidazol-5-sulfonsäure, wie ihr Natrium-, Kalium- oder ihr Triethanolammonium-Salz, sowie die Sulfonsäure selbst;
- Sulfonsäure-Derivate des 3-Benzylidencamphers, wie z. B. 4-(2-Oxo-3-bornylidenmethyl)benzolsulfonsäure, 2-Methyl-5-(2-oxo-3-bornylidenmethyl)sulfonsäure und deren Salze.

Eine weiterere erfindungsgemäß vorteilhaft zu verwendende Lichtschutzfiltersubstanz ist das Ethylhexyl-2-cyano-3,3-diphenylacrylat (Octocrylen), welches von BASF unter der Bezeichnung Uvinul® N 539 erhältlich ist.

10

5

Es kann auch von inheblichem Vorteil sein, polymergebundene oder polymere UV-Filtersubstanzen in Tränkungslösungen gemäß der vorliegenden Erfindung zu verwenden, insbesondere solche, wie sie in der WO-A-92/20690 beschrieben werden.

Ferner kann es gegebenenfalls von Vorteil sein, erfindungsgemäß weitere UV-Aund/oder UV-B-Filter in die kosmetischen oder dermatologischen Tränkungslösungen
einzuarbeiten, beispielsweise bestimmte Salicylsäurederivate wie 4-Isopropylbenzylsalicylat, 2-Ethylhexylsalicylat (= Octylsalicylat), Homomenthylsalicylat.

Die Liste der genannten UV-Filter, die im Sinne der vorliegenden Erfindung eingesetzt werden können, soll selbstverständlich nicht limitierend sein.

15

20

Die erfindungsgemäßen kosmetischen und dermatologischen Tücher können ferner vorteilhaft Farbstoffe und/oder Farbpigmente enthalten, insbesondere wenn sie im Bereich der dekorativen Kosmetik verwendet werden sollen. Die Farbstoffe und -pigmente können aus der entsprechenden Positivliste der Kosmetikverordnung bzw. der EG-Liste kosmetischer Färbemittel ausgewählt werden. In den meisten Fällen sind sie mit den für Lebensmittel zugelassenen Farbstoffen identisch. Vorteilhafte Farbpigmente sind beispielsweise Titandioxid, Glimmer, Eisenoxide (z. B. Fe₂O₃, Fe₃O₄, FeO(OH)) und/oder Zinnoxid. Vorteilhafte Farbstoffe sind beispielsweise Carmin, Berliner Blau, Chromoxidgrün, Ultramarinblau und/oder Manganviolett. Es ist insbesondere vorteilhaft, die Farbstoffe und/oder Farbpigmente aus der folgenden Liste zu wählen. Die Colour Index Nummern (CIN) sind dem Rowe Colour Index, 3. Auflage, Society of Dyers and Colourists, Bradford, England, 1971 entnommen.

Chemische oder sonstige Bezeichnung	CIN	Farbe
Pigment Green	10006	grün
Acid Green 1	10020	grün
2,4-Dinitrohydroxynaphthalin-7-sulfosäure	10316	gelb
Pigment Yellow 1	11680	gelb
Pigment Yellow 3	11710	gelb
Pigment Orange 1	11725	orange
2,4-Dihydroxyazobenzol	11920	orange
Solvent Red 3	12010	rot

Chemisch drs nstig Bezichnung	CIN	Farb
1-(2'-Chlor-4'-nitro-1'-phenylazo)-2-hydroxynaphthalin	12085	rot
Pigment Red 3	12120	rot
Ceresrot; Sudanrot; Fettrot G	12150	rot
Pigment Red 112	12370	rot
Pigment Red 7	12420	rot
Pigment Brown 1	12480	braun
4-(2'-Methoxy-5'-sulfosäurediethylamid-1'-phenylazo)-3-hydroxy-5"-	12490	rot
chloro-2",4"-dimethoxy-2-naphthoesäureanilid		
Disperse Yellow 16	12700	gelb
1-(4-Sulfo-1-phenylazo)-4-amino-benzol-5-sulfosäure	13015	gelb
2,4-Dihydroxy-azobenzol-4'-sulfosäure	14270	orange
2-(2,4-Dimethylphenylazo-5-sulfosäure)-1-hydroxynaphthalin-4-sul-	14700	rot
fosäure		
2-(4-Sulfo-1-naphthylazo)-1-naphthol-4-sulfosäure	14720	rot
2-(6-Sulfo-2,4-xylylazo)-1-naphthol-5-sulfosäure	14815	rot
1-(4'-Sulfophenylazo)-2-hydroxynaphthalin	15510	orange
1-(2-Sulfosäure-4-chlor-5-carbonsäure-1-phenylazo)-2-hydroxy-	15525	rot
naphthalin		
1-(3-Methyl-phenylazo-4-sulfosäure)-2-hydroxynaphthalin	15580	rot
1-(4',(8')-Sulfosäurenaphthylazo)-2-hydroxynaphthalin	15620	rot
2-Hydroxy-1,2'-azonaphthalin-1'-sulfosäure	15630	rot
3-Hydroxy-4-phenylazo-2-naphthylcarbonsäure	15800	rot
1-(2-Sulfo-4-methyl-1-phenylazo)-2-naphthylcarbonsäure	15850	rot
1-(2-Sulfo-4-methyl-5-chlor-1-phenylazo)-2-hydroxy-naphthalin-3-	15865	rot
carbonsäure		
1-(2-Sulfo-1-naphthylazo)-2-hydroxynaphthalin-3-carbonsäure	15880	rot
1-(3-Sulfo-1-phenylazo)-2-naphthol-6-sulfosäure	15980	orange
1-(4-Sulfo-1-phenylazo)-2-naphthol-6-sulfosäure	15985	gelb
Allura Red	16035	rot
1-(4-Sulfo-1-naphthylazo)-2-naphthol-3,6-disulfosäure	16185	rot
Acid Orange 10	16230	orange
1-(4-Sulfo-1-naphthylazo)-2-naphthol-6,8-disulfosäure	16255	rot
1-(4-Sulfo-1-naphthylazo)-2-naphthol-3,6,8-trisulfosäure	16290	rot

Chemische d r sonstige B z ichnung	CIN	Farb
8-Amino-2 –phenylazo- 1 -naphthol-3,6-disulfosäure	17200	rot
Acid Red 1	18050	rot
Acid Red 155	18130	rot
Acid Yellow 121	18690	gelb
Acid Red 180	18736	rot
Acid Yellow 11	18820	gelb
Acid Yellow 17	18965	gelb
4-(4-Sulfo-1-phenylazo)-1-(4-sulfophenyl)-5-hydroxy-pyrazolon-3-	19140	gelb
carbonsäure		
Pigment Yellow 16	20040	gelb
2,6-(4'-Sulfo-2", 4"-dimethyl)-bis-phenylazo)1,3-dihydroxybenzol	20170	orange
Acid Black 1	20470	schwarz
Pigment Yellow 13	21100	gelb
Pigment Yellow 83	21108	gelb
Solvent Yellow	21230	gelb
Acid Red 163	24790	rot
Acid Red 73	27290	rot
2-[4'-(4"-Sulfo-1"-phenylazo)-7'-sulfo-1'-naphthylazo]-1-hydroxy-7-	27755	schwarz
aminonaphthalin-3,6-disulfosäure		
4'-[(4"-Sulfo-1"-phenylazo)-7'-sulfo-1'-naphthylazo]-1-hydroxy-8-	28440	schwarz
acetyl-aminonaphthalin-3,5-disulfosäure		
Direct Orange 34, 39, 44, 46, 60	40215	orange
Food Yellow	40800	orange
trans-β-Apo-8'-Carotinaldehyd (C₃₀)	40820	orange
trans-Apo-8'-Carotinsäure (C ₃₀)-ethylester	40825	orange
Canthaxanthin	40850	orange
Acid Blue 1	42045	blau
2,4-Disulfo-5-hydroxy-4'-4"-bis-(diethylamino)triphenyl-carbinol	42051	blau
4-[(-4-N-Ethyl-p-sulfobenzylamino)-phenyl-(4-hydroxy-2-sulfophe-	42053	grün
nyl)-(methylen)-1-(N-ethylN-p-sulfobenzyl)-2,5-cyclohexadienimin]		
Acid Blue 7	42080	blau
(N-Ethyl-p-sulfobenzyl-amino)-phenyl-(2-sulfophenyl)-methylen-(N-	42090	blau
ethyl-N-p-sulfo-benzyl) $\Delta^{2,5}$ -cyclohexadienimin		

Chemisch der's nstig Bezeichnung	CIN	Farb
Acid Green 9	42100	grün
Diethyl-di-sulfobenzyl-di-4-amino-2-chlor-di-2-methyl-fuchsonim-	42170	grün
monium		
Basic Violet 14	42510	violett
Basic Violet 2	42520	violett
2'-Methyl-4'-(N-ethyl-N-m-sulfobenzyl)-amino-4"-(N-diethyl)-amino-	42735	blau
2-methyl-N-ethylN-m-sulfobenzyl-fuchsonimmonium		
4'-(N-Dimethyl)-amino-4"-(N-phenyl)-aminonaphtho-N-dimethyl-	44045	blau
fuchsonimmonium		
2-Hydroxy-3,6-disulfo-4,4'-bis-dimethylaminonaphthofuchsonimmo-	44090	grün
nium		
Acid Red 52	45100	rot
3-(2'-Methylphenylamino)-6-(2'-methyl-4'-sulfophenylamino)-9-(2"-	45190	violett
carboxyphenyl)-xantheniumsalz		
Acid Red 50	45220	rot
Phenyl-2-oxyfluoron-2-carbonsäure	45350	gelb
4,5-Dibromfluorescein	45370	orange
2,4,5,7-Tetrabromfluorescein	45380	rot
Solvent Dye	45396	orange
Acid Red 98	45405	rot
3',4',5',6'-Tetrachlor-2,4,5,7-tetrabromfluorescein	45410	rot
4,5-Diiodfluorescein	45425	rot
2,4,5,7-Tetraiodfluorescein	45430	rot
Chinophthalon	47000	gelb
Chinophthalon-disulfosäure	47005	gelb
Acid Violet 50	50325	violett
Acid Black 2	50420	schwarz
Pigment Violet 23	51319	violett
1,2-Dioxyanthrachinon, Calcium-Aluminiumkomplex	58000	rot
3-Oxypyren-5,8,10-sulfosäure	59040	grün
1-Hydroxy-4-N-phenyl-aminoanthrachinon	60724	violett
1-Hydroxy-4-(4'-methylphenylamino)-anthrachinon	60725	violett
Acid Violet 23	60730	violett

	Chemisch d rs nstige Bezeichnung	CIN	Farb
	1,4-Di(4'-methyl-ph nylamino)-anthrachinon	61565	grün
	1,4-Bis-(o-sulfo-p-toluidino)-anthrachinon	61570	grün
	Acid Blue 80	61585	blau
	Acid Blue 62	62045	blau
	N,N'-Dihydro-1,2,1',2'-anthrachinonazin	69800	blau
	Vat Blue 6; Pigment Blue 64	69825	blau
	Vat Orange 7	71105	orange
	Indigo	73000	blau
	Indigo-disulfosäure	73015	blau
	4,4'-Dimethyl-6,6'-dichlorthioindigo	73360	rot
> ,	5,5'-Dichlor-7,7'-dimethylthioindigo	73385	violett
<i>'</i>	Quinacridone Violet 19	73900	violett
	Pigment Red 122	73915	rot
	Pigment Blue 16	74100	blau
	Phthalocyanine	74160	blau
	Direct Blue 86	74180	blau
	Chlorierte Phthalocyanine	74260	grün
	Natural Yellow 6,19; Natural Red 1	75100	gelb
	Bixin, Nor-Bixin	75120	orange
	Lycopin	75125	gelb
	trans-alpha-, beta- bzw. gamma-Carotin	75130	orange
	Keto- und/oder Hydroxylderivate des Carotins	75135	gelb
	Guanin oder Periglanzmittel	75170	weiß
	1,7-Bis-(4-hydroxy-3-methoxyphenyl)1,6-heptadien-3,5-dion	75300	gelb
	Komplexsalz (Na, Al, Ca) der Karminsäure	75470	rot
	Chlorophyll a und b; Kupferverbindungen der Chlorophylle und	75810	grün
	Chlorophylline		
	Aluminium	77000	weiß
	Tonerdehydrat	77002	weiß
	Wasserhaltige Aluminiumsilikate	77004	weiß
	Ultramarin	77007	blau
	Pigment Red 101 und 102	77015	rot
	Bariumsulfat	77120	weiß

Ch mische der sonstig Bez ichnung	CIN	Farbe
Bismutoxychlorid und seine Gemische mit Glimmer	77163	weiß
Calciumcarbonat	77220	weiß
Calciumsulfat	77231	weiß
Kohlenstoff	77266	schwarz
Pigment Black 9	77267	schwarz
Carbo medicinalis vegetabilis	77268:1	schwarz
Chromoxid	77288	grün
Chromoxid, wasserhaltig	77289	grün
Pigment Blue 28, Pigment Green 14	77346	grün
Pigment Metal 2	77400	braun
Gold	77480	braun
Eisenoxide und -hydoxide	77489	orange
Eisenoxid	77491	rot
Eisenoxidhydrat	77492	gelb
Eisenoxid	77499	schwarz
Mischungen aus Eisen(II)- und Eisen(III)-hexacyanoferrat	77510	blau
Pigment White 18	77713	weiß
Mangananimoniumdiphosphat	77742	violett
Manganphosphat; Mn₃(PO₄)₂ · 7 H20	77745	rot
Silber	77820	weiß
Titandioxid und seine Gemische mit Glimmer	77891	weiß
Zinkoxid	77947	weiß
6,7-Dimethyl-9-(1'-D-ribityl)-isoalloxazin, Lactoflavin		gelb
Zuckerkulör		braun
Capsanthin, Capsorubin		orange
Betanin		rot
Benzopyryliumsalze, Anthocyane		rot
Aluminium-, Zink-, Magnesium- und Calciumstearat		weiß
Bromthymolblau		blau
Bromkresolgrün		grün
Acid Red 195		rot

Sofern die erfindungsgemäßen Tücher für die Anwendung im Gesichtsbereich vorgesehen sind, ist s günstig, als Farbstoff eine oder mehrer Substanzen aus der folgenden Gruppe zu wählen: 2,4-Dihydroxyazobenzol, 1-(2'-Chlor-4'-nitro-1'-phenylazo)-2-hydroxynaphthalin, Ceresrot, 2-(4-Sulfo-1-naphthylazo)-1-naphthol-4-sulfosäure, Calciumsalz der 5 2-Hydroxy-1,2'-azonaphthalin-1'-sulfosäure, Calcium- und Bariumsalze der 1-(2-Sulfo-4methyl-1-phenylazo)-2-naphthylcarbonsäure, Calciumsalz der 1-(2-Sulfo-1-naphthylazo)-2-hydroxynaphthalin-3-carbonsäure, Aluminiumsalz der 1-(4-Sulfo-1-phenylazo)-2naphthol-6-sulfosäure, Aluminiumsalz der 1-(4-Sulfo-1-naphthylazo)-2-naphthol-3,6-disulfosäure, 1-(4-Sulfo-1-naphthylazo)-2-naphthol-6,8-disulfosäure, Aluminiumsalz der 4-10 (4-Sulfo-1-phenylazo)-1-(4-sulfophenyl)-5-hydroxy-pyrazolon-3-carbonsäure, Aluminiumund Zirkoniumsalze von 4,5-Dibromfluorescein, Aluminium- und Zirkoniumsalze von 2,4,5,7-Tetrabromfluorescein, 3',4',5',6'-Tetrachlor-2,4,5,7-tetrabromfluorescein und sein Aluminiumsalz, Aluminiumsalz von 2,4,5,7-Tetraiodfluorescein, Aluminiumsalz der Chinophthalon-disulfosäure, Aluminiumsalz der Indigo-disulfosäure, rotes und schwarzes 15 Eisenoxid (CIN: 77 491 (rot) und 77 499 (schwarz)), Eisenoxidhydrat (CIN: 77 492), Manganammoniumdiphosphat und Titandioxid.

Ferner vorteilhaft sind öllösliche Naturfarbstoffe, wie z. B. Paprikaextrakte, ß-Carotin oder Cochenille.

20

Vorteilhaft im Sinne der vorliegenden Erfindung sind ferner getränkte Tücher mit einem Gehalt an Perlglanzpigmenten. Bevorzugt sind insbesondere die im folgenden aufgelisteten Arten von Perlglanzpigmenten:

- Natürliche Perlglanzpigmente, wie z. B.
 - "Fischsilber" (Guanin/Hypoxanthin-Mischkristalle aus Fischschuppen) und
 - "Perlmutt" (vermahlene Muschelschalen)
- 2. Monokristalline Perlglanzpigmente wie z. B. Bismuthoxychlorid (BiOCI)
- 3. Schicht-Substrat Pigmente: z. B. Glimmer / Metalloxid
- 30 Basis für Perlglanzpigmente sind beispielsweise pulverförmige Pigmente oder Ricinusöldispersionen von Bismutoxychlorid und/oder Titandioxid sowie Bismutoxychlorid und/oder Titandioxid auf Glimmer. Insbesondere vorteihaft ist z. B. das unter der CIN 77163 aufgelistete Glanzpigment.

Vorteilhaft sind ferner beispielsweis die folgenden Perlglanzpigmentarten auf Basis von Glimmer/Metalloxid:

Gruppe	Belegung / Schichtdicke	Farbe
Silberweiße Perlglanzpigmente	TiO₂: 40 – 60 nm	silber
Interferenzpigmente	TiO ₂ : 60 – 80 nm	gelb
	TiO ₂ : 80 – 100 nm	rot
	TiO ₂ : 100 – 140 nm	blau
	TiO₂: 120 – 160 nm	grün
Farbglanzpigmente	Fe ₂ O ₃	bronze
	Fe ₂ O ₃	kupfer
	Fe ₂ O ₃	rot
	Fe ₂ O ₃	rotviolett
	Fe ₂ O ₃	rotgrün
	Fe ₂ O ₃	schwarz
Kombinationspigmente	TiO ₂ / Fe ₂ O ₃	Goldtöne
	TiO ₂ / Cr ₂ O ₃	grün
	TiO₂ / Berliner Blau	tiefblau
	TiO₂ / Carmin	rot

5 Besonders bevorzugt sind z.B. die von der Firma Merck unter den Handelsnamen Timiron, Colorona oder Dichrona erhältlichen Perlglanzpigmente.

Die Liste der genannten Perlglanzpigmente soll selbstverständlich nicht limitierend sein. Im Sinne der vorliegenden Erfindung vorteilhafte Perlglanzpigmente sind auf zahlreichen, an sich bekannten Wegen erhältlich. Beispielsweise lassen sich auch andere Substrate außer Glimmer mit weiteren Metalloxiden beschichten, wie z. B. Silica und dergleichen mehr. Vorteilhaft sind z. B. mit TiO₂ und Fe₂O₃ beschichtete SiO₂-Partikel ("Ronaspheren"), die von der Firma Merck vertrieben werden und sich besonders für die optische Reduktion feiner Fältchen eignen.

15

Es kann darüber hinaus von Vorteil sein, gänzlich auf ein Substrat wie Glimmer zu verzichten. Besonders bevorzugt sind Eisenperlglanzpigmente, welche ohne die Verwendung von Glimmer hergestellt werden. Solche Pigmente sind z. B. unter dem Handelsnamen Sicopearl Kupfer 1000 bei der Firma BASF erhältlich.

Besonders vorteilhaft sind ferner auch Effektpigmente, welche unter der Handelsbezeichnung Metasomes Standard / Glitter in verschiedenen Farben (yello, red, green, blue) von der Firma Flora Tech erhältlich sind. Die Glitterpartikel liegen hierbei in Gemischen mit verschiedenen Hilfs- und Farbstoffen (wie beispielsweise den Farbstoffen mit den Colour Index (CI) Nummem 19140, 77007, 77289, 77491) vor.

5

10

20

25

30

Die Farbstoffe und Pigmente können sowohl einzeln als auch im Gemisch vorliegen sowie gegenseitig miteinander beschichtet sein, wobei durch unterschiedliche Beschichtungsdicken im allgemeinen verschiedene Farbeffekte hervorgerufen werden. Die Gesamtmenge der Farbstoffe und farbgebenden Pigmente wird vorteilhaft aus dem Bereich von z. B. 0,1 Gew.-% bis 30 Gew.-%, vorzugsweise von 0,5 bis 15 Gew.-%, insbesondere von 1,0 bis 10 Gew.-% gewählt, jeweils bezogen auf das Gesamtgewicht der Tränkungslösungen.

Vorteilhaft im Sinne der vorliegenden Erfindung sind ferner Tücher, welche als kosmetische oder dermatologische Deo- bzw. Antitranspirant-Tücher Anwendung finden.

Als erfindungsgemäß besonders vorteilhaft enthalten diese einen oder mehrere der üblichen desodorierenden und/oder antitranspirant wirksamen Wirkstoffe, beispielsweise Geruchsüberdecker, wie die gängigen Parfümbestandteile, Geruchsabsorber, beispielsweise die in der Patentoffenlegungschrift DE-P 40 09 347 beschriebenen Schichtsilikate, von diesen insbesondere Montmorillonit, Kaolinit, Nontronit, Saponit, Hectorit, Bentonit, Smectit, ferner beispielsweise Zinksalze der Ricinolsäure. Keinhemmende Mittel sind ebenfalls geeignet, in die erfindungsgemäßen Zubereitungen eingearbeitet zu werden. Vorteilhafte Substanzen sind 2,4,4'-Trichlor-2'hydroxydiphenylether (Irgasan), 1,6-Di-(4-chlorphenylbiguanido)-hexan (Chlorhexidin), 3,4,4'-Trichlorcarbanilid, quaternäre Ammoniumverbindungen, Nelkenöl, Minzöl, Thymianöl, Triethylcitrat, Farnesol (3,7,11-Trimethyl-2,6,10-dodecatrien-1-ol) sowie die in den Patentoffenlegungsschriften DE-37 40 186, DE-39 38 140, DE-42 04 321, DE-42 29 707, DE-42 29 737, DE-42 37 081, DE-43 09 372, DE-43 24 219 beschriebenen wirksamen Agenzien.

Die üblichen Antitranspiranswirkstoffe können ebenfalls vorteilhaft verwendet werden, beispielsweise Aluminiumchlorid, Aluminiumchlorhydrat, -nitrat, -sulfat, -acetat usw. Ferner vorteilhaft sind auch Zink-, Magnesium- und Zirkoniumverbindungen. Übliche und

vorzugsweis zu verw ndende Antitranspiranswirkstoffe sind beispielsweise beschrieben in: H. P. Fiedler, Der Schweiß, Editio Cantor, Aulendorf, 2. Auflage, S. 303-377, Kapitel K: "Mittel zur Hemmung der Transpiration".

Es ist auch vorteilhaft im Sinne der vorliegenden Erfindung, solche kosmetischen und dermatologischen Tücher zu erstellen, deren hauptsächlicher Zweck nicht die Deo- bzw. Antitranspirantwirkung ist, die aber dennoch einen Gehalt an üblichen desodorierenden und/oder antitranspirant wirksamen Wirkstoffen aufweisen.

Die erfindungsgemäßen Tücher eignen sich femer hervorragend als Träger für dermatologische Wirkstoffe, z. B. als Träger für gegen Akne wirksame Substanzen. Akne ist eine Hauterkrankung mit verschiedenen Formen und Ursachen, gekennzeichnet durch nicht entzündliche und entzündliche Knötchen, ausgehend von verstopften Haarfollikeln (Komedonen), die zur Pustel-, Abszeß- und Narbenbildung führen kann. Am häufigsten ist die Acne vulgaris, die vorwiegend in der Pubertät auftritt. Ursächliche Bedingungen für die Acne vulgaris sind die Verhomung und Verstopfung der Haarfollikel-Mündung, die vom Blutspiegel der männlichen Sexualhormone abhängige Talgproduktion und die Produktion freier Fettsäuren und gewebeschädigender Enzyme durch Bakterien (*Propionibacterium acnes*).

20

25

10

15

Daher ist es vorteilhaft, den erfindungsgemäßen Tränkungslösungen gegen Akne wirksame Substanzen zuzugeben, die beispielsweise gegen *Propionibacterium acnes* wirksam sind (etwa solche, die in DE-OS 42 29 707, DE-OS 43 05 069, DE-OS 43 07 976, DE-OS 43 37 711, DE-OS 43 29 379 beschrieben werden) aber auch andere gegen Akne wirksame Substanzen, beispielsweise all-trans-Retinsäure, 13-cis-Retinsäure und verwandte Stoffe) oder antientzündliche Wirkstoffe, beispielsweise Batylalkohol (α-Octadecylglycerylether), Selachylalkohol (α-9-Octadecenylglycerylether), Chimylalkohol (α-Hexadecylglycerylether) und/oder Bisabolol sowie Antibiotika und/oder Keratolytika.

30

Keratolytika sind Stoffe, die verhomte Haut (wie z. B. Warzen, Hühneraugen, Schwielen und dergleichen mehr) erweichen, damit sich diese leichter entfernen läßt oder damit sie abfällt bzw. sich auflöst.

Alle gängigen gegen Akne wirksamen Substanzen können vorteilhaft genutzt werden, insbesonder Benzoylperoxid, Bituminosulfonate (Ammonium-, Natrium- und Calcium-Salze von Schieferöl-Sulfonsäuren), Salicylsäure (2-Hydroxybenzoesäure), Miconazol (1-[2-(2,4-Dichlorbenzyloxy)-2-(2,4-dichlorphenyl)-ethyl]-imidazol) und Derivate, Adapalen (6-[3-(1-Adamantyl)-4-methoxyphenyl]-2-naphthoesäure), Azelainsäure (Nonandisäure), Mesulfen (2,7--Dimethylthianthren, C₁₄H₁₂S₂) sowie Aluminiumoxid, Zinkoxid und/oder feinverteilter Schwefel.

5

15

20

30

Die Menge der Antiaknemittel (eine oder mehrere Verbindungen) in den Tränkungslösun-10 gen beträgt vorzugsweise 0,01 bis 30 Gew.-%, besonders bevorzugt 0,1 bis 20 Gew.-%, insbesondere 1 bis 10 Gew.-%, bezogen auf das Gesamtgewicht der Tränkungslösung.

Erfindungsgemäß werden in Kombination mit den dünnflüssigen kosmetischen und dermatologischen Tränkungslösungen Tücher eingesetzt, die aus einem insbesondere wasserstrahlverfestigten und/oder wasserstrahlgeprägten Vlies (Spunlaced-Material) bestehen.

Die in das Vlies eingebrachte Makroprägung kann jedes gewünschte Muster aufweisen. Die zu treffende Auswahl richtet sich nach zum einen nach der aufzubringenden Tränkung und zum anderen nach dem Einsatzfeld, auf dem das spätere Tuch Verwendung finden soll.

Große Kavitäten an der Vliesoberfläche und im Vlies erleichtem die Aufnahme von Schmutz und Verunreinigungen, wenn mit dem getränkten Tuch über die Haut gefahren wird. Die Reinigungswirkung wird gegenüber den ungeprägten Tüchern um ein Vielfaches gesteigert.

Bezogen auf das ungeprägte Vlies ist die Dicke des Vlieses mit den durch die Prägung erzeugten Erhebungen vorteilhafterweise ungefähr doppelt so groß. In bevorzugten Ausführungsformen ist das geprägte Vlies zwischen 5 % und 50 %, ganz besonders bevorzugt zwischen 10 % und 25 % dicker als das ungeprägte.

Das geprägte Vlies weist des weiteren besondere Eigenschaften auf, die die Verwendung als Trägermaterial für Emulsionen oder sonstigen Zubereitungen ermöglichen.

So beträgt di R ißkraft insb sondere

[N/50mm]

im trockenen Zustand Maschinenrichtung

>60, vorzugsweise >80

Querrichtung

>20, vorzugsweise >30

im getränkten Zustand Maschinenrichtung

>4, vorzugsweise >60

Querrichtung

>10, vorzugsweise >20

Die Dehnfähigkeit des Tuches beträgt vorzugsweise

im trockenen Zustand Maschinenrichtung 15 % bis 100 %, bevorzugt

20 % und 50 %

Quemichtung

40 % bis 120 %, bevorzugt

50 % und 85 %

im getränkten Zustand Maschinenrichtung

15 % bis 100 %, bevorzugt

20 % und 40 %

Querrichtung

40 % bis 120 %, bevorzugt

50 % und 85 %

5

Es hat sich als vorteilhaft herausgestellt für das Tuch, wenn dieses ein Gewicht von 35 bis 120 g/m², vorzugsweise von 40 bis 60 g/m², hat (gemessen bei 20 °C \pm 2 °C und bei einer Feuchtigkeit der Raumluft von 65 % \pm 5 % für 24 Stunden).

10

15

20

Die Dicke des Vlieses beträgt vorzugsweise 0,4 mm bis 1,5 mm, insbesondere 0,6 mm bis 0,9 mm.

Schließlich ist es für das Tuch besonders vorteilhaft, ein "surface linting" von weniger als 4 mg/1000mm², vorzugsweise weniger als 2 mg/1000mm² zu haben.

Als Ausgangsmaterialien für den Vliesstoff des Tuches können generell alle organischen und anorganischen Faserstoffe auf natürlicher und synthetischer Basis verwendet werden. Beispielhaft seien Viskose, Baumwolle, Jute, Hanf, Sisal, Seide, Wolle, Polypropylen, Polyester, Polyethylenterephthalat (PET), Aramid, Nylon, Polyvinylderivate, Polyurethane, Polylactid, Polyhydroxyalkanoat, Celluloseester und/oder Polyethylen sowie

auch mineralische Fasern wie Glasfasern oder Kohlenstoffasern angeführt. Die vorliegende Erfindung ist aber nicht auf die genannten Materialien beschränkt, sondern es können eine Vielzahl weiterer Fasern zur Vliesbildung eingesetzt werden.

In einer besonders vorteilhaften Ausführungsform des Vlieses bestehen die Fasem aus einer Mischung aus 70 % Viskose und 30 % PET.

Besonders vorteilhaft sind auch Fasern aus hochfesten Polymeren wie Polyamid, Polyester und/oder hochgerecktem Polyethylen.

10

Darüber hinaus können die Fasem auch eingefärbt sein, um die optische Attraktivität des Vlieses betonen und/oder erhöhen zu können. Die Fasem können zusätzlich UV-Stabilsatoren und/oder Konservierungsmittel enthalten.

Die zur Bildung des Tuches eingesetzten Fasem weisen vorzugsweise eine Wasseraufnahmerate von mehr als 60 mm/[10 min] (gemessen mit dem EDANA Test 10.1-72), insbesondere mehr als 80 mm/[10 min] auf.

Sodann weisen die zur Bildung des Tuches eingesetzten Fasern vorzugsweise ein Was-20 seraufnahmevermögen von mehr als 5 g/g (gemessen mit dem EDANA Test 10.1-72), insbesondere mehr als 8 g/g auf.

Die nachfolgenden Beispiele sollen die erfindungsgemäßen Tränkungslösungen verdeutlichen, ohne sie einzuschränken. Die Zahlenwerte in den Beispielen bedeuten Gewichtsprozente, bezogen auf das Gesamtgewicht der jeweiligen Zubereitungen.

Beispiele:

Beispiel 1

Bestandteil	Menge / Gew%
Paraffinum Liquidum	99,8
Parfum	0,2

5 Beispiel 2: Mikroemulsion

Bestandteil	Menge / Gew%
Wasser	82,0
Paraffinum Liquidum	8,0
Glycerin	5,0
Octylstearat	2,0
Glyceryl Stearate, Ceteareth-20, Cetea-	1,5
reth-12, Cetearyl Alcohol, Cetyl Palmitate	
Phenoxyeheanol, Methylparaben, Ethyl-	0,5
paraben, Propylparaben, Butylparaben,	
Isobutylparaben	
Parfum	0,4
Ceteareth-20	0,3
Methylparaben	0,3
Summe:	100,0

Beispiel 3: Mikroemulsion

Bestandteil	Menge / Gew%
Wasser	75,0
Paraffinum Liquidum	0,5
Glycerin	7,0
Octylstearat	1,0
Glyceryl Stearate, Ceteareth-20, Cetea-	3,0
reth-12, Cetearyl Alcohol, Cetyl Palmitate	
Phenoxyeheanol, Methylparaben, Ethyl-	0,5
paraben, Propylparaben, Butylparaben,	

Isobutylparaben	
Parfum	2,0
Ceteareth-20	10,0
Methylparaben	1,0
Summe:	100,0

Beispiel 4: wäßrige Tränkungslösung

Bestandteil	Menge / Gew%
Wasser	96,89
Butylenglykol	1,0
PEG-40 Hydrogenated Castor Oil	8,0
Phenoxyehanol, Methylparaben, Ethyl-	0,65
paraben, Propylparaben, Butylparaben,	
Isobutylparaben	
Kaliumsorbat	0,3
Parfum	0,2
Zitronensäure	0,16
Summe:	100,0

Beispiel 5: wäßrige Tränkungslösung

Bestandteil	Menge / Gew%
Wasser	95,0
Butylenglykol	1,0
PEG-40 Hydrogenated Castor Oil	1,0
Phenoxyethanol,Methylparaben, Ethylparaben, Propylparaben, Butylparaben, Isobutylparaben	1,5
Kaliumsorbat	0,5
Parfum	0,5
Zitronensäure	0,5
Summe:	100,0

Beispiel 6

Bestandteil	M ng /G w%
Cyclomethicone	65,5
Dimethicone	20,0
Silikongum	7,0
Phenyltrimethylmethicone	7,0
Parfum	0,5
Summe:	100,0

Beispiel 7: alkoholische Tränkungslösung

Bestandteil	Menge / Gew%
Ethanol	60,0
Wasser	34,5
Glycerin	5,0
Parfum	0,5
Summe:	100,0

5 Beispiel 8: alkoholische Tränkungslösung

Bestandteil	Menge / Gew%
Ethanol	60,0
Wasser	24,0
Glycerin	5,0
Isopropylalkohol	5,0
Ethylenediamine	1,0
Dexpanthenol	1,0
Carbomer	3,0
Parfum	0,5
Farbstoff	0,5
Summe:	100,0

Beispiel 9: After Sun-/Hautpflege-Mikroemulsion

Bestandt il	M nge / Gew%
Ceteth-15	6

Glycerylisostearate	2
Cetyl Alkohol	1
Dicaprylyl Carbonate	5
Octyldodecanol	3
Cylomethicone	1
Butylene Glycol	3
Ethanol	5
DMDM Hydantoin	0,6
Octoxyglycerin	1
Antioxydantien	0,5
Parfuem,	0,5
Farbstoffe	0,3
Wasser	ad 100

Beispiel 10: nicht fettende Körperpflegeemulsion

Bestandteil	Gew%
Ceteareth-12	6
Glyceryl Stearate	3,5
Cetyl Palmitate	3
Dicaprylyl Ether	5
Cycolmethicone	3
Phenyl Trimethicone	1
Paraffinwax	2
Glycerin	7,5
Parabene	1
Phenoxyethanol	1
AGR	0,5
Parfuem	0,5
Farbstoffe	0,5
Wasser	ad 100

B standt il	Gew%
Ceteareth-20	5,5
Glyceryl Stearate	4
Stearyl Alkohol	3
Dicaprylyl Ether	5
Octyldodecanol	3
Phenyl Trimethicone	1
Bis-Ethylhexyloxyphenol Methoxyphenyl	2
Triazine	
Octocrylene	7
Diethylhexyl Butamido Triazone	1
Ethylhexyl Methoxycinnamate	4
Butylene Glycol	1
Vitamin E Acetat	1
PVP/Hexadecene Copolymer	1
Parabene	1
Antioxydantien	0,5
Parfuem	0,5
Wasser	ad 100

Beispiel 12: Sonnenschutzformulierung

Bestandteil	Gew%
Ceteareth-20	6,5
Glyceryl Stearate	2
Stearyl Alkohol	1
Dicaprylyl Carbonate	5
Octyldodecanol	3
C12-15 Alkyl Benzoate	1
Titandioxid	2
Bis-Ethylhexyloxyphenol Methoxyphenyl	2
Triazine	
Octocrylene	7

Ethylhexyl Methoxycinnamat	4
Parabene	1
Antioxydantien	0,5
Parfuem	0,5
Wasser	ad 100

Beispiel 13: Sonnenschutzformulierung

Bestandteil	Gew%
Steareth-20	. 6,5
Glycerylisostearate	2
Cetyl Alkohol	1
Dicaprylyl Carbonate	5
Shea Butter	3
C12-15 Alkyl Benzoate	1
Bis-Ethylhexyloxyphenol Methoxyphenyl	2
Triazine	
Butylmethoxydibenzoylmethane	1
Ethylhexyl Triazone	2
Phenylbenzimidazol Sulfonsäure	2
Ethylhexyl Methoxycinnamate	4
Glycerin	10
Tricontanyl PVP	1
Citrat-Puffer	1
Parabene	1
Antioxydantien	0,5
Parfuem	0,5
Wasser	ad 100

Beispiel 14: Sonnenschutzformulierung

Bestandteil	Gew%
Ceteareth-30	7
Glycerylisostearate	2,5
Cetyl Alkohol	1

Dicaprylyl Carbonate	4
Capric/Caprylic Triglyceride	2
C12-15 Alkyl Benzoate	6
Methylen Bis-Benzotriazolyl Tetrame-	2
thylbutylphenol	:
Butyl Methoxydibenzoylmethane	2
Ethylhexyl Triazone	4
Bis-Imidazylat	2
Methylbenzylidene Camphor	4
Glycerin	5
PVP Hexadecene Copolymer	1
Parabene	1
Antioxydantien	0,5
Parfuem	0,5
Wasser	ad 100

Beispiel 15: Sonnenschutzformulierung

Bestandteil	Gew%
Ceteareth-20	7,5
Glyceryl Stearate	3
Cetyl Palmitate	1,5
Dicaprylyl Carbonate	5
Cocoglycerides	2
C12-15 Alkyl Benzoate	6
Barium Sulfate	2
Bis-Ethylhexyloxyphenol Methoxyphenyl	2
Triazine	
Ethylhexyl Triazone	4
Bis-Imidazylat	1
Phenylbenzimidazol Sulfonsäure	2
Methylbenzylidene Camphor	4
PVP Hexadecene Copolymer	1

NaOH	0,5
Parabene	1
Antioxydantien	0,5
Parfuem	0,5
Wasser	ad 100

Beispiel 16: After Sun-/Hautpflege-Formulierung

Bestandteil	Gew%
Ceteth-15	6
Glycerylisostearate	2
Cetyl Alkohol	1
Dicaprylyl Carbonate	5
Shea Butter	1
Octyldodecanol	3
Cylomethicone	1
Mineral Oil	2
Ethanol	5
Parabene	1
Antioxydantien	0,5
Parfuem	0,5
Wasser	ad 100

Öl – Beispiele

Öl-1

Bestandteil	Gew%
Capric/Caprylic Triglyceride	2
C12-15 Alkyl Benzoate	6
Butyl Methoxydibenzoylmethane	2
Ethylhexyl Triazone	2
Bis-Ethylhexyloxyphenol Methoxyphenyl	1
Triazine	
Methylbenzylidene Camphor	4
Shea Butter	1

Butylene Glycol Dicaprate/Dicaprylate	3
Dimethicone	5
Parabene	1
Antioxydantien	0,5
Parfuem	0,5
Mineraloil	ad 100

Öl-2

Bestandteil	Gew%
Dicaprylyl Carbonate	5
Bis-Ethylhexyloxyphenol Methoxyphenyl	2
Triazine	
Ethylhexyl Triazone	4
Methylbenzylidene Camphor	4
Shea Butter	1
Octyldodecanol	3
Cylomethicone	1
Vitamin E	1
Parfuem	0,5
Mineraloil	ad 100

Ö1-3

Öl-4

Bestandt il	G w%
Ethylhexyl Methoxycinnamate	10
Dicaprylyl Carbonate	5
Bis-Ethylhexyloxyphenol Methoxyphenyl Triazine	2
Diethylhexyl Butamido Triazone	4
Octocrylene	5
Shea Butter	1
Phenyltrimethicone	1
Vitamin E	1
Parfuem	1
Cyclomethicone	ad 100

Wäßrige Formulierung:

Bestandteil	Gew%
Bis-Imidazylat	1
Phenylbenzimidazol Sulfonsäure	2
Glycerin	10
Parabene	1
Antioxydantien	0,5
Parfuem	0,5
Wasser	ad 100

Patentansprüche:

- 1. Kosmetische und dermatologische Tücher, wobei die Tücher aus einem wass rstrahlverfestigten und/oder wasserstrahlgeprägten Vlies bestehen, welche mit kosmetischen und dermatologischen Tränkungslösungen befeuchtet sind, die eine Viskosität von weniger als 2000 mPa·s aufweisen.
- 2. Tücher nach Anspruch 1, dadurch gekennzeichnet, daß das Gewichtsverhältnis des ungetränkten Tuchs zu der Tränkungslösung aus dem Bereich von 1 : 1 bis 1 : 5 gewählt wird.

10

5

3. Tücher nach einem vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Tränkungslösung aus Ölen einschließlich Silikonölen und/oder lipohilen Substanzen besteht und/oder weniger als 0,5 Gew.-% Wasser – bezogen auf das Gesamtgewicht der Tränkungslösung – enthält.

15

20

4. Tücher nach einem vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Tränkungslösung neben einer oder mehrerer Ölphasen zusätzlich eine oder mehrere Wasserphasen enthält und in Form einer W/O-, O/W-, W/O/W- oder O/W/O-Emulsion, einer Mikroemulsion, einer Pickering-Emulsion, einer sprühbare Emulsion oder einer Hydrodispersion vorliegt.

- 5. Tücher nach einem vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Tränkungslösung zu mehr als 90 Gew.-% bezogen auf das Gesamtgewicht der Tränkungslösung aus Wasser besteht.
- 6. Tücher nach einem vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Tränkungslösung auf einer alkoholischen Basis beruht.
- 7. Tücher nach einem Ansprüche 3 bis 6, dadurch gekennzeichnet, daß die Tränkungslösung einen oder mehrere kosmetische oder dermatologische Hilfs-, Zusatzund/oder Wirkstoffe enthält, gewählt aus der Gruppe: Moisturizer, Wachse, Tenside, Konservierungsmittel, Antioxidantien, Farbstoffe, Pflanzenextrakte, UV-Filter, Pigmente, Deo- und Antitranspirant-Wirkstoffe, dermatologische Wirkstoffe sowie Parfüm.

Zusammenfassung:

5

Kosmetische und dermatologische Tücher, wobei die Tücher aus einem wasserstrahlverfestigten und/oder wasserstrahlgeprägten Vlies bestehen, welche mit kosmetischen und dermatologischen Tränkungslösungen befeuchtet sind, die eine Viskosität von weniger als 2000 mPa·s aufweisen.