Academic Year 2020-21

Tutorial #01

PH100: Mechanics and Thermodynamics

- 1. Consider two points located at r_1 and r_2 , separated by distance $r = |r_1 r_2|$. Find a vector \boldsymbol{A} from the origin to a point on the line between r_1 and r_2 at distance x r from the point at r_1 , where x is some number.
- 2. At t = 0, an elevator departs from the ground with uniform speed. At time T_1 a boy drops a marble through the floor. The marble falls with uniform acceleration $g = 9.8 \text{ m/s}^2$, and hits the ground T_2 seconds later. Find the height of the elevator at time T_1 .
- 3. By relative velocity we mean velocity with respect to a specified coordinate system. (The term velocity, alone, is understood to be relative to the observer's coordinate system.)
 - (a) A point is observed to have velocity V_A relative to coordinate system A. What is its velocity relative to coordinate system B, which is displaced from system A by distance R? (R can change in time.)
 - (b) Particles a and b move in opposite directions around a circle with angular speed \omega. At t = 0 they are both at the point r = l j, where l is the radius of the circle. Find the velocity of a relative to b.
- 4. The rate of change of acceleration is sometimes known as "jerk." Find the direction and magnitude of jerk for a particle moving in a circle of radius *R* at angular velocity \omega. Draw a vector diagram showing the instantaneous position, velocity, acceleration, and jerk.
- 5. A particle moves in a plane with constant radial velocity 4 m/s. The angular velocity is constant and has magnitude 2 rad/s. When the particle is 3 m from the origin, find the magnitude of (a) the velocity and (b) the acceleration.
- 6. A particle moves outward along a spiral. Its trajectory is given by $r = A \theta$, where A is a constant. $A = (1/\sqrt{pi}) \ m/rad$. θ increases in time according to $\theta = k \ t^2 / 2$, where k is a constant.
 - (a). Sketch the motion, and indicate the approximate velocity and acceleration at a few points.
 - (b). Show that when the radial acceleration is zero. At what angles do the radial and tangential accelerations have equal magnitude?