Série 2015

Procédures de qualification Installatrice-électricienne CFC Installateur-électricien CFC

Connaissances professionnelles écrites

Pos. 2.1 Bases technologiques

Dossier des expertes et experts

Temps: 30 minutes

Règle, équerre, chablon, calculatrice de poche sans transmission de Auxiliaires:

données et recueil de formules sans exemple de calcul.

Cotation: - Le nombre de points maximum est donné pour chaque exercice.

> - Pour obtenir le maximum de points, les formules et les calculs doivent figurer dans la solution ainsi que les résultats avec leur unité soulignés deux fois.

- Le cheminement de la solution doit être clair et son contrôle doit être aisé.
- Si dans un exercice on demande plusieurs réponses, vous êtes tenu de répondre à chacune d'elle. Les réponses sont évaluées dans l'ordre où elles sont données. Les réponses données en plus ne sont pas évaluées.
- S'il manque de la place, la solution peut être écrite au dos de la feuille et vous devez le mentionner sur l'exercice.

Nombres de points maximum : Barème: 17,0

16,5	-	17,0	Points = Note	6,0
14,5	-	16,0	Points = Note	5,5
13,0	-	14,0	Points = Note	5,0
11,5	-	12,5	Points = Note	4,5
9,5	-	11,0	Points = Note	4,0
8,0	-	9,0	Points = Note	3,5
6,0	-	7,5	Points = Note	3,0
4,5	-	5,5	Points = Note	2,5
3,0	-	4,0	Points = Note	2,0
1,0	-	2,5	Points = Note	1,5
0,0	-	0,5	Points = Note	1,0

Les solutions ne sont pas données pour des raisons didactiques

(Décision de la commission des tâches d'examens du 09.09.2008)

Délai d'attente : Cette épreuve d'examen ne peut pas être utilisée librement comme

exercice avant le 1er septembre 2016.

Groupe de travail EFA de l'USIE pour la profession Créé par : d'installatrice-électricienne CFC / installateur-électricien CFC

CSFO, département procédures de qualification, Berne

Editeur:

Exercices	Nombre de points maximal obtenus
3.2.1 1. Nommez les formes d'énergie disponibles aux différents points.	2
Energie absorbée Turbine à vapeur Générateur Lampe Lampe	
a) b) c) d)	
Solution :	
a) = Energie thermique	(0,5)
b) = Energie mécanique	(0,5)
c) = Energie électrique	(0,5)
d) = Energie lumineuse	(0,5)
 3.2.5 Une force s'exerce sur deux conducteurs parallèles lorsque ceux-ci sont parcourus par un courant électrique. 	2
a) Dessiner le champ magnétique engendré par les deux conducteurs lors ceux-ci sont parcourus par des courants de même sens.b) Quelle force agit sur les deux conducteurs ?	sque
Solution: a) ou	(1)
b) Lorsque le courant va dans la même direction, les conducteurs subissent une force d'attraction.	(1)

Exer	cices	Nombre of maximal	de points obtenus
	3.2.3		
3.	Tracez les affirmations incorrectes :	2	
	a) La résistance équivalente de deux résistances égales, couplées en parallèle, vaut :		
	- la moitié d'une des résistances.		
	- le double d'une des résistances.		
	le double d'une des resistantes.		
	b) La résistance équivalente de deux résistances égales, couplées en série,		
	est:		
	- plus grande qu'une des résistances.		
	- égale à une des résistances.		
	- plus petite qu'une des résistances.		
	Solution :		
	a) La résistance équivalente de deux résistances égales, couplées en	(1)	
	parallèle, vaut :		
	- la moitié d'une des résistances.		
	- le double d'une des résistances .		
	b) La résistance équivalente de deux résistances égales, couplées en série, est :	(1)	
	- plus grande qu'une des résistances.		
	- égale à une des résistances .		
	- plus petite qu'une des résistances .		
	3.5.3		
4.	Que vaut le moment de cette force ?	1	
	Cochez la bonne réponse.		
	F = 100N		
	25 cm		
	250		
	30.0°		
	<u> </u>		
	Solution :		
	$M = 0.25 \text{ m} \times 100 \text{ N} \times \sin 30^{\circ}$		
	$M = 0.25 \text{ m} \times 100 \text{ N} \times \sin 30$ $M = 0.25 \text{ m} \times 100 \text{ N} \times \cos 30^{\circ}$		
	$M = 0.25 \text{ m} \times 100 \text{ N} \times \cos 30$ $M = 0.25 \text{ m} \times 100 \text{ N} / \sin 30^{\circ}$		
	$M = 0.25 \text{ m} \times 100 \text{ N/sin 30}$ $M = 0.25 \text{ m} \times 100 \text{ N}$		
	Aucune réponse n'est correcte		
	La formule M = 0,25 m × 100 N est correcte.		

Exercices			de points obtenus
5.	3.1.1 Une plaque de cuivre a une largeur de 17 cm, une longueur de 270 mm et une épaisseur de 10 mm. Elle a un trou de fixation de 12 mm de diamètre, dans chacun des quatre coins.	3	
	Masse volumique du cuivre : $8.9 \frac{kg}{dm^3}$		
	Calculez la masse de cette plaque de cuivre.		
	Solution:		
	$A_{Plaque 1} = l \cdot b = 1,7 \text{ dm} \cdot 2,7 \text{ dm} = \underline{4,59 \text{ dm}^2}$	(0,5)	
	$A_{Trous} = (d^2 \cdot \frac{\pi}{4}) \cdot 4 = (0, 12 \ dm)^2 \cdot 0, 7854 \cdot 4 = \underline{0,0452 \ dm^2}$	(0,5)	
	$A_{Plaque} = A_{Plaque 1} - A_{Trous} = 4,59 \ dm^2 - 0,0452 \ dm^2 = \underline{4,545 \ dm^2}$	(0,5)	
	$m = \rho \cdot A \cdot h = 8,9 \frac{kg}{dm^3} \cdot 4,545 \ dm^2 \cdot 0,1 \ dm = \underbrace{\underline{4,045 \ kg}}_{\underline{\underline{}}}$	(1,5)	
	3.2.5		
6.	Soulignez la bonne réponse.	1	
	Pour un signal électrique alternatif, le temps d'une période correspond au temps :		
	a) d'une alternance négative.		
	b) entre la valeur maximale positive et la valeur maximale négative.		
	c) d'une alternance positive.		
	d) de l'écoulement d'une oscillation complète.		
	Solution :		
	a) d'une alternance négative.		
	b) entre la valeur maximale positive et la valeur maximale négative.		
	c) d'une alternance positive.		
	d) <u>de l'écoulement d'une oscillation complète.</u>		

Exercices		
 3.2.6 Quelle est la longueur maximale d'une ligne de cuivre de 1,5 mm² de sorte que pour un courant de charge de 8 A, la chute de tension en ligne ne dépasse pas 4 % de la tension de réseau (230 V) ? 	maximal 3	obtenus
Solution :		
$\Delta \mathbf{U} = \frac{\Delta \mathbf{U}_{[\%]} \cdot \mathbf{U}}{100 \%} = \frac{4 \% \cdot 230 \mathbf{V}}{100 \%} = \underline{9,2 \mathbf{V}}$	(0,5)	
$R = \frac{\Delta U}{I} = \frac{9,2 V}{8 A} = \underline{1,15 \Omega}$	(0,5)	
$l_{Cond.} = \frac{R \cdot A}{\rho} = \frac{1,15 \ \Omega \cdot 1,5 \ mm^2}{0,0175 \ \frac{\Omega \cdot mm^2}{m}} = \frac{98,57 \ m}{}$	(1)	
Longueur de la ligne = $\frac{l_{Cond.}}{2} = \frac{98,57 \text{ m}}{2} = \underline{\frac{49,29 \text{ m}}{2}}$	(1)	
 3.3.2 Un signal sinusoïdal est appliqué à un redresseur en pont (redresseur à double alternance). 	3	
 a) Tracez le signal de sortie (tension aux bornes de la résistance de charge). b) Calculez la valeur maximale de la tension de sortie si le signal d'entrée a une valeur efficace de 6 V. 		
(Remarque : La tension de seuil des diodes de redressement au silicium est de 0,7 V)		
u A		
t		
Solution:		
a) u	(1)	
b) $\widehat{\mathbf{U}_{\mathrm{E}}} = \sqrt{2} \cdot \mathbf{U} = \sqrt{2} \cdot 6 \mathbf{V} = 8, 485 \mathbf{V}$	(1)	
$\widehat{U_A} = 8,485 \text{ V} - 1,4 \text{ V} = \frac{7,09 \text{ V}}{200000000000000000000000000000000000$	(1)	
Total	17	