Geometría y Álgebra Lineal 2

Mauro Polenta Mora

Ejercicio 1

Consigna

Sea V un espacio vectorial de dimensión finita con producto interno.

1. Sean A y B subconjuntos de V. Probar que:

1. Si
$$A \subset B \Rightarrow B^{\perp} \subset A^{\perp}$$

$$2. \ A^{\perp} = [A]^{\perp}$$

3.
$$A \subset (A^{\perp})^{\perp}$$

2. Sean S y W subespacios de V. Probar que:

1.
$$S = (S^{\perp})^{\perp}$$

$$2. \ (S+W)^{\perp} = S^{\perp} \cap W^{\perp}$$

3.
$$(S \cap W)^{\perp} = S^{\perp} + W^{\perp}$$

Resolución

Parte 1

Subparte 1

Queremos probar que si $A \subset B \Rightarrow B^{\perp} \subset A^{\perp}$.

Empezando por la hipótesis, esta nos dice que si $a \in A$, entonces $a \in B$. Ahora, consideremos $v \in B^{\perp}$, por definición de complemento ortogonal sabemos que:

$$\langle v, b \rangle = 0 \quad \forall b \in B$$

Y como $A \subset B$, tenemos que esta afirmación es cierta también para todos los vectores $a \in A$:

$$\langle v, a \rangle = 0 \quad \forall a \in A$$

Por lo tanto $v \in A^{\perp}$, y como consideramos un v genérico dentro de B^{\perp} , esto es válido para todos los $v \in B^{\perp}$. Con esto concluimos que si $A \subset B \Rightarrow B^{\perp} \subset A^{\perp}$.

Subparte 2

Queremos probar que $A^{\perp} = [A]^{\perp}$.

Para esta parte probaremos que: 1. $[A]^{\perp} \subset A^{\perp}$ y 2. $A^{\perp} \subset [A]^{\perp}$

Empecemos por la primer parte.

Consideremos $v \in [A]^{\perp}$, esto implica que $\langle v, w \rangle = 0 \quad \forall w \in [A]$. Como $A \subset [A]$ (pues $a \in A$ es combinación lineal de vectores de [A]), entonces podemos decir que en particular:

•
$$\langle v, a \rangle \quad \forall a \in A$$

Por lo tanto $v \in A^{\perp}$.

Ahora vamos con la segunda parte:

Consideremos $v \in A^{\perp}$, esto implica que $\langle v, a \rangle = 0 \quad \forall a \in A$. Ahora, considerando que cualquier vector $w \in [A]$ se puede escribir como una combinación lineal de vectores de A, tenemos que:

$$\langle v, w \rangle = \left\langle v, \sum_{i=1}^{r} \alpha_i a_i \right\rangle = \sum_{i=1}^{r} \alpha_i \left\langle v, a_i \right\rangle = 0$$

Donde la última igualdad es verdadera pues $\forall a \in A \langle v, a \rangle = 0$.

Esto prueba la segunda afirmación y por lo tanto concluimos que: $A^{\perp} = [A]^{\perp}$.

Subparte 3

Queremos probar que $A \subset (A^{\perp})^{\perp}$.

Consideremos $a \in A$, queremos probar que $\forall v \in A^{\perp} \langle a, v \rangle = 0$, es decir que $a \in (A^{\perp})^{\perp}$. Observemos que esto es cierto $\forall a \in A$ pues, considerando un $v \in A^{\perp}$:

$$\langle a, v \rangle = \overline{\langle v, a \rangle} = \langle v, a \rangle = 0 \quad \forall a \in A$$

Donde en este último paso usamos la definición de A^{\perp} . \blacksquare

Parte 2

Subparte 1

Queremos probar que $S=(S^\perp)^\perp$

Para esto vamos a probar: 1. $S \subset (S^{\perp})^{\perp}$ 2. $(S^{\perp})^{\perp} \subset S$

Para la primera parte, la prueba es idéntica a la 1.3.

Para la segunda parte, usamos que $V=S\oplus S^{\perp}$. Por lo tanto, tomamos $v\in (S^{\perp})^{\perp}$ cualquiera tal que:

• $v = v_S + v_{S^{\perp}} \text{ con } v_S \in S \text{ y } v_{S^{\perp}} \in S^{\perp}$

Como $v \in (S^{\perp})^{\perp}$, tenemos que $\forall u \in S^{\perp} : \langle v, u \rangle = 0$. En particular, considerando $u = v_{S^{\perp}}$ tenemos que:

$$\langle v, v_{S^\perp} \rangle = \langle v_S + v_{S^\perp}, v_{S^\perp} \rangle = \langle v_S, v_{S^\perp} \rangle + \langle v_{S^\perp}, v_{S^\perp} \rangle = 0$$

Donde lo subrayado es igual a 0 pues tengo un elemento de S y uno de S^{\perp} . Con lo obtenido, tenemos que:

$$\langle v_{S^{\perp}}, v_{S^{\perp}} \rangle = \|v_{S^{\perp}}\| = 0$$

Lo que implica que $v_{S^{\perp}}=0$, entonces $v=v_S\in S$. Por lo que probamos lo que estabamos buscando. \blacksquare

Subparte 2

Queremos probar que $(S+W)^{\perp} = S^{\perp} \cap W^{\perp}$.

Para esto vamos a probar: 1. $(S+W)^{\perp} \subset S^{\perp} \cap W^{\perp}$ 2. $S^{\perp} \cap W^{\perp} \subset (S+W)^{\perp}$

PRIMERO: $(S+W)^{\perp} \subset S^{\perp} \cap W^{\perp}$

Consideremos $v \in (S+W)^{\perp}$, entonces:

$$\langle v, u \rangle = 0 \quad \forall u \in (S + W)$$

Desde donde se deriva que:

$$\langle v, s + w \rangle = 0 \quad \forall s \in S \ y \ \forall w \in W$$

Si tomamos $w = \vec{0}$ entonces tenemos que:

• $\langle v, s \rangle = 0 \quad \forall s \in S$

Lo cual implica que $v \in S^{\perp}$.

De la misma manera, si tomamos $s = \vec{0}$ entonces tenemos que:

• $\langle v, w \rangle = 0 \quad \forall w \in W$

Lo cual implica que $v \in W^{\perp}$.

Entonces, juntando las dos afirmaciones obtenemos que $v \in S^{\perp} \cap W^{\perp}$. Y como razonamos arbitrariamente, esto es válido $\forall v \in (S+W)^{\perp}$.

SEGUNDO: $S^{\perp} \cap W^{\perp} \subset (S+W)^{\perp}$

Consideremos $v \in S^{\perp} \cap W^{\perp}$, esto implica que:

1.
$$\langle v, s \rangle = 0 \quad \forall s \in S$$

2.
$$\langle v, w \rangle = 0 \quad \forall w \in W$$

De esto podemos derivar que:

•
$$\langle v, s + w \rangle = \langle v, s \rangle + \langle v, w \rangle = 0$$

Lo que significa que $v \in (S+W)^{\perp}$

Juntar las dos partes concluye la prueba.

Subparte 3

Queremos probar que $(S \cap W)^{\perp} = S^{\perp} + W^{\perp}$.

Usemos las propiedades probadas hasta ahora para ver que podemos decir sobre la igualdad:

$$\begin{split} (S\cap W)^\perp &= S^\perp + W^\perp \\ \iff &(\text{complemento ortogonal a ambos lados}) \\ ((S\cap W)^\perp)^\perp &= (S^\perp + W^\perp)^\perp \\ \iff &(\text{propiedad 2.1 y propiedad 2.2}) \\ S\cap W &= (S^\perp)^\perp \cap (W^\perp)^\perp \\ \iff &(\text{propiedad 2.1}) \\ S\cap W &= S\cap W \end{split}$$

Lo que prueba que esta propiedad es cierta.