ADC

WHY ADC?

Real life data is analog.

microcontroller processes digital.

Benefits of analog as compared to digital.

Process

- 1. Analog signal from sensor.
- 2. Converted from analog into digital.
- 3. Digital data processed by microcontroller.

Features

- 1) clock speed 50KHz to 200KHz
- 2) 8 channel (PA0 PA7)
- 3) 10 bit resolution
- 4) interrupt on ADC conversion completion
- 5) 0 Vcc ADC input voltage range
- 6) ADC start auto triggering or interrupt.
- 7) 2 modes: single conversion and free running.

Resolution

10 bit resolution.

implies what?

ADC prescaler

Why we need them?

50 Khz to 200 Khz

some predefined 2,4,8,16,32,64,128.

 $F_ADC = F_CPU / prescaler defined.$

There is a tradeoff between frequency and accuracy. More the frequency, less will be the accuracy.

Registers

The ADC has only four registers.

- 1. **ADC Multiplexer Selection Register ADMUX**: For selecting the reference voltage and the input channel.
- 2. **ADC Control and Status Register A ADCSRA**: As the name says it has the status of ADC and is also used for controlling it.
- The ADC Data Register ADCL and ADCH: The final result of conversion is here.

24.9.1 ADMUX – ADC Multiplexer Selection Register

Bit	7	6	5	4	3	2	1	0	
(0x7C)	REFS1	REFS0	ADLAR	-	MUX3	MUX2	MUX1	MUX0	ADMUX
Read/Write	R/W	RW	R/W	R	R/W	RW	R/W	RW	•
Initial Value	0	0	0	0	0	0	0	0	

Table 24-4. Input Channel Selections

MUX30	Single Ended Input	
0000	ADC0	
0001	ADC1	
0010	ADC2	
0011	ADC3	
0100	ADC4	
0101	ADC5	
0110	ADC6	
0111	ADC7	
1000	ADC8 ⁽¹⁾	
1001	(reserved)	
1010	(reserved)	
1011	(reserved)	
1100	(reserved)	
1101	(reserved)	
1110	1.1V (V _{BG})	
1111	0V (GND)	

Table 24-3. Voltage Reference Selections for ADC

REFS1	REFS0	Voltage Reference Selection	
0	0	AREF, Internal V _{ref} turned off	
0	1	AV _{CC} with external capacitor at AREF pin	
1	0	Reserved	
1	1	Internal 1.1V Voltage Reference with external capacitor at AREF pin	

24.9.2 ADCSRA – ADC Control and Status Register A

Bit	7	6	5	4	3	2	1	0	
(0x7A)	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	ADCSR
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

ADEN - ADC enable

ADSC - ADC start conversion

ADATE - ADC auto trigger enable

ADIF - ADC interrupt flag

ADIE - ADC interrupt enable

ADPS - ADC prescaler select bits

Table 24-5. ADC Prescaler Selections

ADPS2	ADPS1	ADPS0	Division Factor
0	0	0	2
0	0	1	2
0	1	0	4
0	1	1	8
1	0	0	16
1	0	1	32
1	1	0	64
1	1	1	128

resolution of 10 bits, so the result is in 10 bits.

ADCH holds the two most significant bits and rest all are stored in ADCL.

broken into ADCL and ADCH.

Hands on

LDR: As light decreases, resistance of LDR increases.

Connections: LDR 5V, A0 through

a resistor.

LED on D0.

Pseudo code

```
void adc_init()
{
Set the reference voltage in ADMUX.
in ADCSRA, enable ADEN
set a prescaler of 128 as 16000000/128 = 125000
}
```

```
adc read(){
Write ADSC 1
start infinite loop till ADSC is 1
return the value
}
```

Diljyot Singh (B.Tech IIITD)

Cyborg FB page : http://tinyurl.com/cyborg-fb

Cyborg website: http://tinyurl.com/cyborg-web

Electroholics FB page : http://tinyurl.com/electroholics-fb

Electroholics Website : http://tinyurl.com/electroholics

Contact us

Varun Kumar

Email ID: varun13169@iiitd.ac.in

Phone number: 09716057062

Diljyot Singh

Email ID: diljyot13132@iiitd.ac.in

Phone number: 08527055549

