

Rec'd PCT/PTO 13 DEC 2005
JL

SEQUENCE LISTING

<110> Williamson, Magali
Masters, John

<120> Cancer Associated Plexin B1 Mutations

<130> 620-373

<140> US 10/536,804

<141> 2005-05-27

<150> PCT/GB2003/005223

<151> 2003-11-28

<150> GB 0227908.1

<151> 2002-11-29

<160> 110

<170> PatentIn version 3.1

<210> 1

<211> 19

<212> DNA

<213> Homo sapiens

<400> 1

gcagacggcc cactgtgga

19

<210> 2

<211> 19

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (4)..(4)

<223> n is uncertain

<400> 2

gcanacggct cactgtgga

19

<210> 3

<211> 19

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (10)..(10)

<223> n is uncertain

<400> 3

gcagacggcn cactgtgga

19

<210> 4

<211> 19

<212> DNA
<213> Homo sapiens

<400> 4
gcagacggtc cactgtgga 19

<210> 5
<211> 19
<212> DNA
<213> Homo sapiens

<400> 5
tgccccagcc cttgctcca 19

<210> 6
<211> 19
<212> DNA
<213> Homo sapiens

<400> 6
tgccccagcc tttgctcca 19

<210> 7
<211> 19
<212> DNA
<213> Homo sapiens

<400> 7
tgtctgtata ccttcgtga 19

<210> 8
<211> 19
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (10)..(10)
<223> n is uncertain

<400> 8
tgtctgtatn ccttcgtga 19

<210> 9
<211> 19
<212> DNA
<213> Homo sapiens

<400> 9
tccctcgaaa gagcatgt 19

<210> 10
<211> 19
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (10)..(10)
<223> n is uncertain

<400> 10
tccctcgaa gagcatgta 19

<210> 11
<211> 19
<212> DNA
<213> Homo sapiens

<400> 11
ccaaatacac cttgaacga 19

<210> 12
<211> 19
<212> DNA
<213> Homo sapiens

<400> 12
ccaaatacat cttgaacga 19

<210> 13
<211> 19
<212> DNA
<213> Homo sapiens

<400> 13
acacacctgaa cgacaaccg 19

<210> 14
<211> 19
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (10)..(10)
<223> n is uncertain

<400> 14
acacacctgan cgacaaccg 19

<210> 15
<211> 19
<212> DNA
<213> Homo sapiens

<400> 15
gactgtgaca ccatctccc 19

<210> 16
<211> 19

<212> DNA
<213> Homo sapiens

<400> 16
tgcctctcac ccagcggcc 19

<210> 17
<211> 19
<212> DNA
<213> Homo sapiens

<400> 17
tgcctctcgc ccagcggcc 19

<210> 18
<211> 19
<212> DNA
<213> Homo sapiens

<400> 18
cccagcggcc agaccctcg 19

<210> 19
<211> 19
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (12)..(12)
<223> n is uncertain

<400> 19
cccagcggtc anaccctcg 19

<210> 20
<211> 19
<212> DNA
<213> Homo sapiens

<400> 20
cccagcggtc agaccctcg 19

<210> 21
<211> 19
<212> DNA
<213> Homo sapiens

<400> 21
ccctcgacc cttgatgtt 19

<210> 22
<211> 19
<212> DNA
<213> Homo sapiens

<400> 22
ccctcgcccttgatgtt 19

<210> 23
<211> 19
<212> DNA
<213> Homo sapiens

<400> 23
aaagaatgag gtgccccgc 19

<210> 24
<211> 20
<212> DNA
<213> Homo sapiens

<400> 24
aattgaatgg ggtgccccgc 20

<210> 25
<211> 19
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (9)..(9)
<223> n is uncertain

<400> 25
aaagaatgng gtgccccgc 19

<210> 26
<211> 19
<212> DNA
<213> Homo sapiens

<400> 26
ccccgccccg aaggctgcc 19

<210> 27
<211> 19
<212> DNA
<213> Homo sapiens

<400> 27
ccccgccccca aaggctgcc 19

<210> 28
<211> 13
<212> PRT
<213> Homo sapiens

<400> 28

Glu Ser Arg Arg Pro Thr Val Glu Gln Gly Leu Gly Gln

1 5 10

<210> 29
<211> 13
<212> PRT
<213> Homo sapiens

<400> 29

Glu Ser Arg Arg Leu Thr Val Glu Gln Gly Leu Gly Gln
1 5 10

<210> 30
<211> 13
<212> PRT
<213> Homo sapiens

<400> 30

Glu Ser Arg Arg Ser Thr Val Glu Gln Gly Leu Gly Gln
1 5 10

<210> 31
<211> 13
<212> PRT
<213> Homo sapiens

<400> 31

Glu Ser Arg Arg Pro Thr Val Glu Gln Thr Leu Gly Gln
1 5 10

<210> 32
<211> 13
<212> PRT
<213> Mus musculus

<400> 32

Asp Ser Arg Arg Pro Thr Val Glu Gln Gly Leu Gly Gln
1 5 10

<210> 33
<211> 13
<212> PRT
<213> Drosophila melanogaster

<400> 33

Gly Ser Pro Gln Thr Asn Tyr Asp Ala Ala Met Val Gln
1 5 10

<210> 34
<211> 13
<212> PRT
<213> Caenorhabditis elegans

<400> 34

Pro Ser Leu Ala Arg Thr Leu Pro Val Thr Leu Ala Gln
1 5 10

<210> 35

<211> 13

<212> PRT

<213> Homo sapiens

<400> 35

Asp Gly His Cys Ala Thr Val Arg Gln Gly Leu Thr Gln
1 5 10

<210> 36

<211> 13

<212> PRT

<213> Homo sapiens

<400> 36

Gly Asn Gly Gln Gln His Val Glu Lys Ala Leu Lys Leu
1 5 10

<210> 37

<211> 9

<212> PRT

<213> Homo sapiens

<400> 37

Ile Cys Leu Tyr Thr Phe Val Arg Asp
1 5

<210> 38

<211> 9

<212> PRT

<213> Homo sapiens

<400> 38

Ile Cys Leu Tyr Ala Phe Val Arg Asp
1 5

<210> 39

<211> 9

<212> PRT

<213> Drosophila melanogaster

<400> 39

Ile Cys Met Tyr Asp Tyr Leu Lys Glu
1 5

<210> 40

<211> 9

<212> PRT
<213> *Caenorhabditis elegans*

<400> 40

Ile Cys Leu Tyr Ser His Leu Thr Pro
1 5

<210> 41
<211> 9
<212> PRT
<213> *Homo sapiens*

<400> 41

Ile Cys Leu Tyr Ala Phe Leu Arg Glu
1 5

<210> 42
<211> 9
<212> PRT
<213> *Homo sapiens*

<400> 42

Ile Cys Leu Tyr Gln Tyr Leu Lys Asp
1 5

<210> 43
<211> 9
<212> PRT
<213> *Homo sapiens*

<400> 43

Phe Leu Leu His Lys Phe Leu Lys Glu
1 5

<210> 44
<211> 9
<212> PRT
<213> *Homo sapiens*

<400> 44

Leu Tyr Met Leu Phe Arg Gly Ile Lys
1 5

<210> 45
<211> 9
<212> PRT
<213> *Homo sapiens*

<400> 45

Leu Tyr Met Leu Ile Arg Gly Ile Lys
1 5

<210> 46
<211> 9
<212> PRT
<213> Drosophila melanogaster

<400> 46

Leu Phe Leu Leu Phe Lys Ala Ile Lys
1 5

<210> 47
<211> 8
<212> PRT
<213> Caenorhabditis elegans

<400> 47

Phe Tyr Leu Tyr Lys Ala Leu Gln
1 5

<210> 48
<211> 9
<212> PRT
<213> Homo sapiens

<400> 48

Leu Tyr Met Leu Phe Arg Ala Ile Gln
1 5

<210> 49
<211> 9
<212> PRT
<213> Homo sapiens

<400> 49

Leu Tyr Lys Leu Phe Lys Ala Ile Lys
1 5

<210> 50
<211> 15
<212> PRT
<213> Homo sapiens

<400> 50

Asp Ser Val Thr Gly Lys Ala Lys Tyr Thr Leu Asn Asp Asn Arg
1 5 10 15

<210> 51
<211> 15
<212> PRT
<213> Homo sapiens

<400> 51

Asp Ser Val Thr Ser Lys Ala Lys Tyr Thr Leu Asn Asp Asn Arg
1 5 10 15

<210> 52
<211> 15
<212> PRT
<213> Homo sapiens

<400> 52

Asp Ser Val Thr Gly Lys Thr Lys Tyr Thr Leu Asn Asp Asn Arg
1 5 10 15

<210> 53
<211> 15
<212> PRT
<213> Homo sapiens

<400> 53

Asp Ser Val Thr Gly Lys Ala Lys Tyr Ile Leu Asn Asp Asn Arg
1 5 10 15

<210> 54
<211> 15
<212> PRT
<213> Homo sapiens

<400> 54

Asp Ser Val Thr Gly Lys Ala Lys Tyr Thr Leu Ser Asp Asn Arg
1 5 10 15

<210> 55
<211> 15
<212> PRT
<213> Drosophila melanogaster

<400> 55

Asp Ala Ile Thr Asn Asp Ala Arg Tyr Ser Leu Ser Glu Glu Arg
1 5 10 15

<210> 56
<211> 15
<212> PRT
<213> Caenorhabditis elegans

<400> 56

Asp Ala Val Thr Gly Asp Ala Arg Tyr Thr Ile Asn Glu Ala Lys
1 5 10 15

<210> 57
<211> 15
<212> PRT
<213> Homo sapiens

<400> 57

Asp Ala Val Thr Gly Lys Ala Lys Arg Thr Ile Asn Asp Ser Arg
1 5 10 15

<210> 58

<211> 15

<212> PRT

<213> Homo sapiens

<400> 58

Asp Ala Val Gln Lys Lys Ala Lys Tyr Thr Leu Asn Asp Thr Gly
1 5 10 15

<210> 59

<211> 15

<212> PRT

<213> Homo sapiens

<400> 59

Asp Ala Ile Thr Gly Glu Ala Arg Tyr Ser Leu Ser Glu Asp Lys
1 5 10 15

<210> 60

<211> 8

<212> PRT

<213> Homo sapiens

<400> 60

Leu Asp Cys Asp Thr Ile Ser Gln
1 5

<210> 61

<211> 8

<212> PRT

<213> Homo sapiens

<400> 61

Leu Asp Cys Asp Ala Ile Ser Gln
1 5

<210> 62

<211> 8

<212> PRT

<213> Mus musculus

<400> 62

Leu Asp Thr Asp Thr Ile Ser Gln
1 5

<210> 63

<211> 8
<212> PRT
<213> Drosophila melanogaster

<400> 63

Asn Asp Trp Asp Thr Ile Ser Gln
1 5

<210> 64
<211> 8
<212> PRT
<213> Caenorhabditis elegans

<400> 64

His Ala Cys Asp Ala Ile Cys Gln
1 5

<210> 65
<211> 8
<212> PRT
<213> Homo sapiens

<400> 65

Leu Asp Thr Asp Thr Ile Thr Gln
1 5

<210> 66
<211> 8
<212> PRT
<213> Homo sapiens

<400> 66

Leu Asn Cys Asp Thr Ile Ser Gln
1 5

<210> 67
<211> 8
<212> PRT
<213> Homo sapiens

<400> 67

Leu Asn Cys Asp Thr Ile Thr Gln
1 5

<210> 68
<211> 8
<212> PRT
<213> Homo sapiens

<400> 68

Leu Asp Cys Asp Thr Val Thr Gln
1 5

<210> 69
<211> 15
<212> PRT
<213> Homo sapiens

<400> 69

Gly Val Pro Leu Thr Gln Arg Pro Asp Pro Arg Thr Leu Asp Val
1 5 10 15

<210> 70
<211> 15
<212> PRT
<213> Homo sapiens

<400> 70

Gly Val Pro Leu Ala Gln Arg Pro Asp Pro Arg Thr Leu Asp Val
1 5 10 15

<210> 71
<211> 15
<212> PRT
<213> Homo sapiens

<400> 71

Gly Val Pro Leu Thr Gln Arg Ser Asp Pro Arg Thr Leu Asp Val
1 5 10 15

<210> 72
<211> 15
<212> PRT
<213> Homo sapiens

<400> 72

Gly Val Pro Leu Thr Gln Arg Pro Asp Pro Arg Ala Leu Asp Val
1 5 10 15

<210> 73
<211> 15
<212> PRT
<213> Mus musculus

<400> 73

Gly Val Pro Leu Ala Gln Arg Pro Asp Ser Cys Thr Leu Asp Val
1 5 10 15

<210> 74
<211> 15
<212> PRT
<213> Drosophila melanogaster

<400> 74

Asn Thr Pro Phe Ser Met Lys Pro Ser Val Asn Glu Leu Asp Leu
1 5 10 15

<210> 75
<211> 15
<212> PRT
<213> *Caenorhabditis elegans*

<400> 75

Glu Thr Pro Leu Ser Gln Arg Pro Arg Ile Thr Gln Phe Glu Leu
1 5 10 15

<210> 76
<211> 15
<212> PRT
<213> *Homo sapiens*

<400> 76

Gly Thr Pro Phe Ser Gln Arg Pro Ser Val His Ala Leu Asp Leu
1 5 10 15

<210> 77
<211> 15
<212> PRT
<213> *Homo sapiens*

<400> 77

Gly Gln Pro Leu Thr Cys Trp Pro Arg Pro Asp Ser Val Val Leu
1 5 10 15

<210> 78
<211> 15
<212> PRT
<213> *Homo sapiens*

<400> 78

Asn Val Pro Tyr Ser Gln Arg Pro Arg Ala Val Asp Met Asp Ala
1 5 10 15

<210> 79
<211> 15
<212> PRT
<213> *Homo sapiens*

<400> 79

Gly Val Pro Tyr Ser Gln Arg Pro Lys Ala Ala Asp Met Asp Leu
1 5 10 15

<210> 80
<211> 9
<212> PRT

<213> Homo sapiens

<400> 80

Val Ala Gly His Leu Ile Leu Ser Asp
1 5

<210> 81

<211> 9

<212> PRT

<213> Homo sapiens

<400> 81

Val Ala Gly His Pro Ile Leu Ser Asp
1 5

<210> 82

<211> 9

<212> PRT

<213> Homo sapiens

<400> 82

Val Ala Gly His Phe Ile Leu Ser Asp
1 5

<210> 83

<211> 9

<212> PRT

<213> Drosophila melanogaster

<400> 83

Arg Gly Gly His Leu Thr Leu Gln Asp
1 5

<210> 84

<211> 9

<212> PRT

<213> Caenorhabditis elegans

<400> 84

Lys Arg Gly Asp Val Lys Leu Thr Asp
1 5

<210> 85

<211> 8

<212> PRT

<213> Homo sapiens

<400> 85

Ala Gly His Leu Thr Leu Ser Asp
1 5

<210> 86
<211> 8
<212> PRT
<213> Homo sapiens

<400> 86

Ser Thr Ala Gln Ile Leu Ser Asp
1 5

<210> 87
<211> 9
<212> PRT
<213> Homo sapiens

<400> 87

Arg Ala Ile Arg Val Val Leu Gln Asp
1 5

<210> 88
<211> 9
<212> PRT
<213> Homo sapiens

<400> 88

Arg Met Ala Arg Ile Ile Leu Gln Asp
1 5

<210> 89
<211> 10
<212> PRT
<213> Homo sapiens

<400> 89

Arg Arg Gly Ser Leu Arg Gly Gly Glu Arg
1 5 10

<210> 90
<211> 10
<212> PRT
<213> Homo sapiens

<400> 90

Arg Arg Gly Ser Leu Trp Gly Gly Glu Arg
1 5 10

<210> 91
<211> 10
<212> PRT
<213> Drosophila melanogaster

<400> 91

Asn Asn Ser Val Leu Ser Gly Gly Ser Pro

1 5 10

<210> 92
<211> 10
<212> PRT
<213> Homo sapiens

<400> 92

Cys Cys Ser Ser Leu Arg Glu Arg Glu Pro
1 5 10

<210> 93
<211> 8
<212> PRT
<213> Homo sapiens

<400> 93

Arg Arg Gly Ser Val Lys Glu Lys
1 5

<210> 94
<211> 4
<212> PRT
<213> Homo sapiens

<400> 94

Arg Arg Gly Ser
1

<210> 95
<211> 19
<212> DNA
<213> Homo sapiens

<400> 95
cacagtggc cgtctgctc 19

<210> 96
<211> 19
<212> DNA
<213> Homo sapiens

<400> 96
cacagtgagc cgtctgctc 19

<210> 97
<211> 19
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (9)..(9)
<223> n is uncertain

<400> 97
cacagtggnc cgtctgctc 19

<210> 98
<211> 19
<212> DNA
<213> Homo sapiens

<400> 98
ttggccttgc ctgtcacac 19

<210> 99
<211> 19
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (11)..(11)
<223> n is uncertain

<400> 99
ttggccttgc ntgtcacac 19

<210> 100
<211> 19
<212> DNA
<213> Homo sapiens

<400> 100
tgtatttggc cttgcctgt 19

<210> 101
<211> 19
<212> DNA
<213> Homo sapiens

<400> 101
tgtatttggt cttgcctgt 19

<210> 102
<211> 19
<212> DNA
<213> Homo sapiens

<400> 102
aaagaatgag gtgccccggc 19

<210> 103
<211> 19
<212> DNA
<213> Homo sapiens

<400> 103

aaagaatgaa gtgccccgc	19
<210> 104	
<211> 33	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 104	
gtccatctgt ctgtatgcct tcgtgagggt gag	33
<210> 105	
<211> 33	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 105	
ctcaccctca cgaaggcata cagacagatg gac	33
<210> 106	
<211> 32	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 106	
ggagtgcctc tcgcccagcg gccagaccct cg	32
<210> 107	
<211> 32	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 107	
cgagggtctg gccgctgggc gagaggcact cc	32
<210> 108	
<211> 32	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 108	
ggtggccggg caccccattc tttctgacga gg	32

<210> 109
<211> 32
<212> DNA
<213> Artificial sequence

<220>
<223> Primer

<400> 109
cctcgtaagaatgggg tgccggcca cc

<210> 110
<211> 4
<212> PRT
<213> Homo sapiens

<400> 110
Arg Arg Gly Ser
1

32