GRAFY

Graf, krawędzie, łuki

Grafem nazywamy parę G=(V,E), gdzie V=V(G) - (skończony) zbiór wierzchołków, E=E(G) - zbiór połączeń.

Połączenia:

- łuki w grafach skierowanych
- krawędzie w grafach nieskierowanych
- petle
- multipołączenia

Zamiast pisać $(u, v) \in E$ (gr. skierowane) lub $\{u, v\} \in E$ (gr. nieskierowane), piszemy prościej $uv \in E$. Mówimy, że wierzchołki u i v sąsiadują ze sobą, gdy $uv \in E$. Mówimy, że $u \in V$ jest incydentny z $e \in E$, gdy u jest jednym z końców e ($u \in e$ w przypadku gr. nieskierowanego).

Przykład

jest grafem G relacji $R = \{(a, b), (c, b), (a, c)\}.$

Tutaj $V = \{a, b, c\}$ i E = R.

Modele grafowe

Problem mostów królewieckich (Leonard Euler, 1736):

Czy można przejść przez każdy z mostów dokładnie jeden raz i powrócić do punktu wyjściowego?

Mosty królewieckie a) mapa, b) model grafowy

Figury (grafy) jednobieżne

Figura którą można narysować bez odrywania ołówka od papieru.

a) figura, b) oznaczenia krawędzi wyznaczają kolejność rysowania

Problem komiwojażera

Komiwojażer chce odwiedzić kilka miast i powrócić do punktu wyjścia. Jaką drogę powinien wybrać, by miała najmniejszą łączną długość?

Model grafowy problemu komiwojażera (mini.pw.edu.pl)

Przestrzeń rozwiązań w problemie z N miastami jest rzędu N! Zakładając, że jesteśmy w stanie oceniać 10^9 rozwiązań w czasie 1 sekundy, to znalezienie optymalnej trasy (cyklu Hamiltona, str. 11) w problemie komiwojażera dla N miast za pomocą przeglądu wszystkich tras trwa:

N	$N! \approx$	$czas \approx$
10	$3,6\cdot10^6$	3,6 ms
20	$2, 4 \cdot 10^{18}$	77, 1 lat
25	$1, 6 \cdot 10^{25}$	$4,9 \cdot 10^8 \text{ lat}$
50	$3 \cdot 10^{64}$	$9,6 \cdot 10^{47} \text{ lat}$
100	$9, 3 \cdot 10^{157}$	$2,9 \cdot 10^{141} \text{ lat}$

<u>Własności eliminacyjne</u> - metody przeglądu pośredniego elementów przestrzeni rozwiązań problemów optymalizacji dyskretnej

Problem sieci wodnej (W), gazowej (G) i elektrycznej (E). Są trzy domy H1, H2 i H3, z których każdy musi być podłączony przewodami do każdej z trzech sieci. Czy jest możliwe dokonanie takich połączeń bez skrzyżowania przewodów?

Rozprowadzanie sieci gazowej, wodnej i elektrycznej: a) mapa, b) model grafowy

Wierzchołki, drogi (ścieżki), cykle (kontury)

Definicja

Stopniem wierzchołka v w grafie G = (V, E) jest liczba

$$\deg_G(v) = |\{u \in V : uv \in E\}|.$$

v jest izolowany, gdy $\deg_G(v) = 0$.

v jest <u>liściem</u>, gdy $\deg_G(v) = 1$.

Definicja

Drogą z wierzchołka v do wierzchołka u w grafie G = (V, E) (w skrócie u - v) nazywamy ciąg (v_0, v_1, \ldots, v_k) , w którym

- $v_0 = u, v_k = v,$
- $(\forall i = 0, 1, \dots, k-1) (v_i v_{i+1} \in E),$
- $(\forall 0 \leqslant i, j \leqslant k-1) (i \neq j \Rightarrow v_i v_{i+1} \neq v_j v_{j+1}).$

Liczbę k nazywamy długością drogi.

Droga (v_0, v_1, \dots, v_k) jest <u>droga prosta,</u> jeśli ponadto

• $(\forall 0 \leq i, j \leq k) (v_i = v_j \Rightarrow \{i, j\} = \{0, k\}),$ tj. wierzchołki w drodze są parami różne, chyba że są to jej pierwszy i ostatni wierzchołek.

Definicja

Graf jest grafem spójnym \Leftrightarrow $(\forall u, v \in V) (\exists \operatorname{droga} u - v \le G).$

Definicja

Jeżeli $v_0 = v_k$ w drodze (v_0, v_1, \dots, v_k) , to drogę nazywamy <u>cyklem</u>. Cykl będący drogą prostą nazywamy cyklem prostym.

Definicja

Graf jest acykliczny wtedy i tylko wtedy, gdy nie zawiera cykli.

Definicja

Dopełnieniem G' grafu G = (V, E) nazywamy graf

$$G' = (V, V \times V \setminus E).$$

Zatem V(G) = V(G') i w G' sąsiadują te i tylko te wierzchołki, które nie sąsiadowały w G:

$$e = uv \in E(G') \iff e = uv \notin E(G).$$

Graf i jego dopełnienie

Definicja

Graf H=(W,F) nazywamy <u>podgrafem</u> grafu G=(V,E), gdy $W\subseteq V \text{ i } F\subseteq E, \text{ co oznaczamy jako } H\subseteq G.$

Graf i jego podgraf

Podsumowanie:

Stopień wierzchołka - liczba krawędzi z nim incydentnych.

<u>Droga</u> - ciąg wierzchołków, w którym każde dwa kolejne są połączone ze sobą. Długość drogi - liczba krawędzi drogi.

Graf spójny - między każdą parą wierzchołków istnieje droga.

Definicja

Graf G jest <u>r-regularny</u> \Leftrightarrow $(\forall v \in V(G))$ $\deg_G(v) = r$, tj. gdy wszystkie wierzchołki są tego samego stopnia r.

Graf 4-regularny o 7 wierzchołkach

Definicja

Graf <u>pełny</u> K_n o n wierzchołkach \Leftrightarrow $(\forall u, v \in V(K_n))$ $uv \in E(K_n)$. tj. gdy wszystkie wierzchołki są parami incydentne.

Izomorfizm grafów

Dwa grafy są izomorficzne jeśli zachodzi wzajemnie jednoznaczna odpowiedniość między ich wierzchołkami zachowująca relacje incydencji:

Definicja

Grafy
$$G_1 = (V_1, E_1)$$
 i $G_2 = (V_2, E_2)$ są izomorficzne $(G_1 \cong G_2)$, gdy $\left(\exists f : V_1 \xrightarrow{\stackrel{1-1}{\sim}} V_2\right) (\forall u, v \in V_1) (uv \in E_1 \iff f(u)f(v) \in E_2)$.

Przykłady izomorficznych grafów

Przykładowe niezmienniki izomorfizmu:

- liczba wierzchołków,
- ciąg stopni wierzchołków,
- liczba krawędzi,
- liczba dróg/cykli określonej długości.

<u>UWAGA:</u> współdzielenie powyższych cech przez dwa grafy nie gwarantuje istnienia izomorfizmu między nimi.

Drzewa

Definicja

<u>Drzewem</u> nazywamy spójny graf acykliczny.

Definicja

<u>Lasem</u> nazywamy graf acykliczny.

Definicja

 $\operatorname{dist}(u,v)$ — długość najkrótszej drogi u-v w grafie

Definicja

$$r(G) = \min_{u \in V(G)} \left(\max_{v \in V(G)} \operatorname{dist}(u, v) \right)$$
 — promień grafu G

Definicja

Wierzchołek $u \in V(G)$ jest wierzchołkiem centralnym w grafie G, jeżeli $r(G) = \max_{v \in V(G)} \mathrm{dist}(u,v).$

Twierdzenie.

Następujące warunki są równoważne

- 1. G = (V, E) jest drzewem.
- 2. $(\forall u, v \in V)$ ($\exists ! \text{droga (prosta) } u v$).
- 3. G jest spójny oraz |V| = |E| + 1.
- 4. G jest acykliczny oraz |V| = |E| + 1.
- 5. G jest spójny oraz $(\forall e \in E) (G e$ nie jest spójny).
- 6. G jest acykliczny oraz $(\forall e \notin E) (G + e$ posiada (dokładnie jeden) cykl).

Oczywiście $G - e = (V, E \setminus \{e\})$ oraz $G + e = (V, E \cup \{e\})$.

Twierdzenie Jordana.

Centrum dowolnego drzewa składa się z jednego wierzchołka lub z dwóch wierzchołków sąsiednich.

Drzewa binarne

Definicja

<u>Drzewo binarne</u> jest drzewem o jednym wierzchołku stopnia 2 i pozostałych wierzchołkach stopnia 1 lub 3.

Drzewo binarne

Właściwości drzew binarnych:

- \bullet liczba wierzchołków n w drzewie binarnym jest zawsze nieparzysta,
- liczba liści (wierzchołków wiszących) p jest równa p = (n+1)/2.

Pierwsza własność wynika z faktu, że w dowolnym grafie liczba wierzchołków nieparzystego stopnia jest parzysta (patrz zad. na listach).

Druga własność wynika z Twierdzenia oraz z Lematu o uściskach dłoni.

Grafy dwudzielne

Definicja

Grafy dwudzielny to graf G, którego wierzchołki można podzielić na dwie rozłączne klasy V_1 i V_2 bez połączeń w obrębie poszczególnych klas:

$$(\exists V_1, V_2 \subseteq V(G)) \ (\forall e \in E(G)) \ (e \cap V_1 \neq \emptyset \neq e \cap V_2)$$

$$V_1 \cap V_2 = \emptyset$$

$$V_1 \cup V_2 = V(G)$$

Jeśli dodatkowo

$$(\forall v_1 \in V_1, v_2 \in V_2) (v_1 v_2 \in E(G)),$$

to graf G nazywamy grafem dwudzielny pełnym i oznaczamy go symbolem $K_{m,n}$, gdzie $m = |V_1|$ i $n = |V_2|$.

Grafy K_5 i $K_{2,3}$ noszą nazwę $\operatorname{graf\'ow}$ $\operatorname{Kuratowskiego}$.

a) graf dwudzielny, b) graf dwudzielny pełny $K_{3,4}$

Twierdzenie.

W grafie dwudzielnym każdy cykl ma parzystą długość.

Grafy eulerowskie

Definicja

Cykl Eulera w grafie G jest to cykl zawierający wszystkie wierzchołki i krawędzie grafu G.

G jest grafem Eulera $\Leftrightarrow G$ ma cykl Eulera.

Twierdzenie Euler (1736).

Graf G jest grafem Eulera $\Leftrightarrow G$ jest spójny, |V(G)| > 1 i stopień każdego wierzchołka jest liczbą parzystą.

Grafy hamiltonowskie

Definicja

 $\frac{\text{Cykl Hamiltona}}{\text{dokładnie jeden}}$ w grafie G jest to cykl zawierający każdy wierzchołek

G jest grafem Hamiltona $\Leftrightarrow G$ ma cykl Hamiltona.

Grafy hamiltonowskie

Twierdzenie.

Jeżeli graf Gma $n\geqslant 3$ wierzchołków oraz

- (Dirac, 1952) ($\forall v \in V(G)$) $\deg(v) \geqslant \frac{n}{2}$ lub ogólniej
- (Ore, 1960) $(\forall u, v \in V(G)) \deg(u) + \deg(v) \ge n$,

to G jest grafem Hamiltona.

<u>UWAGA:</u> nie są to warunki wystarczające – przykłady.