第一届CMC数学类第2题

牛爷爷

2025年10月8日

1 题目描述

设 $\mathbb{C}^{n \times n}$ 是 $n \times n$ 复矩阵全体在通常的运算下所构成的复数域 \mathbb{C} 上的线性空间,

$$F = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 & -a_n \\ 1 & 0 & 0 & \cdots & 0 & -a_{n-1} \\ 0 & 1 & 0 & \cdots & 0 & -a_{n-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & -a_1 \end{pmatrix}$$

(1) 假设

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix},$$

若 AF = FA, 证明:

$$A = a_{n1}F^{n-1} + a_{n-1,1}F^{n-2} + \dots + a_{21}F + a_{11}E.$$

(2) 求 $\mathbb{C}^{n\times n}$ 的子空间

$$C(F) = \{X \in \mathbb{C}^{n \times n} \mid FX = XF\}$$

的维数。

2 思路分析

(1.1)记 $B = a_{n1}F^{n-1} + a_{n-1,1}F^{n-2} + \cdots + a_{21}F + a_{11}E$,要证明A=B,即证明A与B的列向量对应相等,即证明 $Ae_i = Be_i, \forall i \in [1, n]$,其中 e_i 表示第i个位置为1,其余位置为0的n维列向量

$$(1.2)$$
将 F , A列分块,即 $F = [e_2, e_3, \cdots, e_n, \beta], A = [\alpha_1, \alpha_2, \cdots, \alpha_n]$,又 $AF = FA$
 $AF = A[e_2, e_3, \cdots, e_n, \beta] = [Ae_2, Ae_3, \cdots, Ae_n, A\beta]$, $FA = F[\alpha_1, \alpha_2, \cdots, \alpha_n] = [F\alpha_1, F\alpha_2, \cdots, F\alpha_n]$
即 $Ae_{i+1} = F\alpha_i$, $\forall i \in [1, n-1]$

又 $\alpha_i = Ae_i$,故 $\alpha_{i+1} = F\alpha_i, \forall i \in [1, n-1]$

注意到 $Fe_i = e_{i+1}, \forall i \in [1, n-1], Fe_n = \beta$,则我们有 符号 e_1 e_2 表认 e_1 Fe_1

符号	e_1	e_2	 e_n
表达	e_1	Fe_1	 $F^{n-1}e_1$

 $Be_1 = a_{n,1}e_n + a_{n-1,1}e_{n-1} + \dots + a_{1,1}e_1 = \alpha_1 = Ae_1$ 又因为 $Be_2 = BFe_1 = FBe_1 = FAe_1 = AFe_1 = Ae_2$ 归纳可得 $Ae_i = Be_i, \forall i \in [1, n]$,证毕。

(2)利用线性无关定义及 符号 e_1 e_2 \cdots e_n 即可求解. 表达 e_1 Fe_1 \cdots $F^{n-1}e_1$

3 题目解答

将A,F列分块,记 $F=[e_2,e_3,\cdots,e_n,\beta], A=[\alpha_1,\alpha_2,\cdots,\alpha_n]$,于是 $AF=A[e_2,e_3,\cdots,e_n,\beta]=[Ae_2,Ae_3,\cdots,Ae_n,A\beta]$ $=[\alpha_2,\alpha_3,\cdots,\alpha_n,A\beta]$, $FA=F[\alpha_1,\alpha_2,\cdots,\alpha_n]=[F\alpha_1,F\alpha_2,\cdots,F\alpha_n]$,由AF=FA得

$$\alpha_i = Ae_{i+1} = \alpha_{i+1}, \quad \forall i \in \{1, 2, \dots, n-1\}$$
 (1)

$$\alpha_n = A\beta \tag{2}$$

又知道 $FI = F[e_1, e_2, \dots, e_{n-1}, e_n] = [e_2, e_3, \dots, e_n, \beta]$,立得

$$Fe_i = e_{i+1}, \forall i \in \{1, \dots, n-1\}$$
 (3)

从而递推得到

$$e_i = F^{i-1}e_1, \quad \forall i \in \{1, \cdots, n\} \tag{4}$$

记 $B = a_{n1}F^{n-1} + a_{n-1,1}F^{n-2} + \dots + a_{21}F + a_{11}E$,引入(4)式,有

$$Be_1 = a_{n1}F^{n-1}e_1 + a_{n-1,1}F^{n-2}e_1 + \dots + a_{21}Fe_1 + a_{11}e_1 = a_{n1}e_n + a_{n-1,1}e_{n-1} + \dots + a_{1,1}e_1 = \alpha_1 = Ae_1$$
 (5)

又 $Be_2 = BFe_1 = FBe_1 = F\alpha_1 = \alpha_2 = Ae_2$ (这里自己思考为什么BF=FB),递推可得A=B,第一问得证。

由第(1)问得 $X = a_{n1}F^{n-1} + a_{n-1,1}F^{n-2} + \dots + a_{21}F + a_{11}E$, 现设

$$X = a_n F^{n-1} + a_{n-1} F^{n-2} + \dots + a_2 F + a_1 = 0,$$

 $Xe_1 = X = a_n F^{n-1} e_1 + a_{n-1} F^{n-2} e_1 + \dots + a_2 F e_1 + a_1 e_1 = a_1 e_1 + a_2 e_2 + \dots + a_n e_n = 0$ 又 $e_1, e_2 \dots, e_n$ 为标准基,故 $a_1 = a_2 = \dots = a_n = 0$ 即n维