OPIM 5604 B15 – Predictive Modeling Assignment 3

Meghana Kasula (Net ID=mek15120)

■ Explore Missing Values

Missing Columns

Select Rows Color Cells

Exclude Rows Color Rows

Close

histogram for each of the

Missing Value Report Number of missing values for each column

Missing Value Snapshot Patterns of missing values with graphical map

Show only columns with missing Column Missing

Missing Value Clustering Hierarchical clustering of rows and columns miss

Multivariate SVD Imputation Imputation for wide problems using a singular value

Multivariate Normal Imputation Least squares prediction from the nonmissing variables in

protein

lecomposition with the power-method adapted for mi

explore

values.

△ Commands

"The work contained and presented here is my work and my work alone."

- 4.1 Breakfast Cereals. Use the data for the breakfast cereals example in Section 4.8 (Cereals.jmp) to explore and summarize the data as follows:
- a. Which variables are continuous/numerical? Which are ordinal? Which are nominal?

Continuous variables-calories protein, fat, sodium, fiber, carbo, sugars, potass, vitamins, shelf, weight, cups, rating.

Nominal variables - name, mfr and type.

b. Calculate the following summary statistics: mean, median, min, max, and standard deviation for each of the continuous variables, and the count for each categorical variable. This can be done using Cols > Columns Viewer.

13 Columns Cle	al Select Dis	stribution						Lower	Upper	Interquartile
Columns	N	N Missing	Min	Max	Mean	Std Dev	Median	Quartile	Quartile	Range
calories	77	0	50	160	106.88311688	19.484119057	110	100	110	10
protein	77	0	1	6	2.5454545455	1.0947897484	3	2	3	1
fat	77	0	0	5	1.012987013	1.0064725595	1	0	2	2
sodium	77	0	0	320	159.67532468	83.83229524	180	127.5	215	87.5
fiber	77	0	0	14	2.1519480519	2.3833639644	2	0.5	3	2.5
carbo	76	1	5	23	14.802631579	3.9073255537	14.5	12	17	5
sugars	76	1	0	15	7.0263157895	4.3786563668	7	3	11	8
potass	75	2	15	330	98.666666667	70.41063597	90	40	120	80
vitamins	77	0	0	100	28.246753247	22.342522501	25	25	25	0
shelf	77	0	1	3	2.2077922078	0.8325241001	2	1	3	2
weight	77	0	0.5	1.5	1.0296103896	0.1504767997	1	1	1	0
cups	77	0	0.25	1.5	0.821038961	0.2327161384	0.75	0.67	1	0.33
rating	77	0	18.042851	93.704912	42.665704987	14.047288744	40.400208	32.690838	51.2102925	18.5194545

Explore Outlier

Outliers are K spreads from the center

■ Robust Estimates and Outliers

16.401446

Select Rows Color Cells

Exclude Rows Color Rows

Add to Missing Value Code

values?

utilities >

missing

Change to Missing

Commands Robust Fit Outlier

Huber
Cauchy
Quartile

i. Is there any evidence of extreme values?

Yes, if we explore outliers through col>model utilities > explore outliers. We can see that vitamins, fat and weight has outliers which has been calculated using Huber spread and from Huber center. ii. Which, if any, of the variables is missing

If we explore outliers through col>model missing values.

We can see that potass, sugar and carbo has

c. Use Analyze > Distribution to plot a continuous

variables and create summary statistics. Based on the histograms and summary statistics, answer the following questions:

i. Which variables have the largest variability?

We can calculate the variability using coefficient of variance. Here coefficient of variance is particularly important since we are comparing data of two different sets, like potass and fat etc. this can give us the clear idea about variability in all measures. It's formula is-

Coefficient of variance = standard Deviation / Mean

Hence, after conducting the formula for each of the measures, I get to know that the vitamins have the highest coefficient of variance. Which is 0.788.

ii. Which variables seem skewed?

iii. Are there any values that seem extreme?

Rule of thumb is that acceptable amount of

skewness is between -1 to +1. Hence I have highlighted the values which are either lesser than -1 and more than 1. So, very skewed values are fat, fiber, potass and vitamins.

Yes, there are extreme values! I have highlighted all the extreme values in Yellow. Those are the outliers.

function of the shelf height (the variable *shelf*). If we were to predict consumer rating from shelf height, does it appear that we need to keep all three categories of shelf height?

As we look at the box plot on the right, we can observe that the plot at shelf 1 and shelf 3 are similar looking. Moreover, the plot at shelf 3 looks like a subset of plot 1. Hence, we can conclude combining the shelf 3 and 1 would not make much difference. We can effectively reduce the numbers of shelves to two.

- f. Compute the correlation table and generate a scatterplot matrix for the continuous variables (use *Analyze > Multivariate Methods > Multivariate*).
- i. Which pair of variables is most strongly correlated?

	calories	protein	fat	sodium	fiber	carbo	sugars	potass	vitamins	shelf	weight	cups	rating
calories	1.0000	0.0191	0.4986	0.3006	-0.2934	0.2576	0.5665	-0.0721	0.2654	0.0972	0.6961	0.0872	-0.6894
orotein	0.0191	1.0000	0.2084	-0.0547	0.5003	-0.0250	-0.2919	0.5637	0.0073	0.1339	0.2162	-0.2445	0.4706
fat	0.4986	0.2084	1.0000	-0.0054	0.0167	-0.3000	0.3025	0.2004	-0.0312	0.2637	0.2146	-0.1759	-0.4093
odium	0.3006	-0.0547	-0.0054	1.0000	-0.0707	0.2977	0.0589	-0.0426	0.3615	-0.0697	0.3086	0.1197	-0.4013
iber	-0.2934	0.5003	0.0167	-0.0707	1.0000	-0.3804	-0.1388	0.9115	-0.0322	0.2975	0.2472	-0.5131	0.5842
arbo	0.2576	-0.0250	-0.3000	0.2977	-0.3804	1.0000	-0.4712	-0.3650	0.2192	-0.1926	0.1385	0.3675	0.0887
sugars	0.5665	-0.2919	0.3025	0.0589	-0.1388	-0.4712	1.0000	0.0014	0.0982	0.0684	0.4558	-0.0490	-0.7639
ootass	-0.0721	0.5637	0.2004	-0.0426	0.9115	-0.3650	0.0014	1.0000	-0.0054	0.3858	0.4199	-0.5016	0.4160
/itamins	0.2654	0.0073	-0.0312	0.3615	-0.0322	0.2192	0.0982	-0.0054	1.0000	0.2993	0.3203	0.1284	-0.2405
helf	0.0972	0.1339	0.2637	-0.0697	0.2975	-0.1926	0.0684	0.3858	0.2993	1.0000	0.1908	-0.3353	0.0252
weight	0.6961	0.2162	0.2146	0.3086	0.2472	0.1385	0.4558	0.4199	0.3203	0.1908	1.0000	-0.1996	-0.2981
cups	0.0872	-0.2445	-0.1759	0.1197	-0.5131	0.3675	-0.0490	-0.5016	0.1284	-0.3353	-0.1996	1.0000	-0.2032
rating	-0.6894	0.4706	-0.4093	-0.4013	0.5842	0.0887	-0.7639	0.4160	-0.2405	0.0252	-0.2981	-0.2032	1.0000

analyze the correlations matrix above, the highest

correlation seems to be between the pair fiber and potass. They are highlighted in blue.

ii. How can we reduce the number of variables based on these correlations?

As we select on the red triangle beside principal components and save principal components "4", we get 4 new columns based on the correlations where all the measures are reduced.

The second picture represents the correlation matrix of those reduced variables. This is how we can reduce number of variables using correlations.

iii. How would the correlations change if we normalized the data first?

Correlation matrix is done only after the data is normalized. Hence, there would not be any difference if we differently normalize the data apply the correlation matrix.

The above one is the correlation matrix before standardizing attributes. The beside one is after. We can observe no change at all.

g. Consider the first column on the left under *Eigenvectors* in Figure 4.14. Describe briefly what this column represents.

Here, in first has the

Eigenv	/alues						
Number	Eigenvalu	e Percen	t 20 40 6	0 80 C	ım Percent		
1	7207.77	7 55.00	1		55.001		
2	4961.27	3 37.85	9		92.860		
3	498.364	0 3.80	3	1	96.663		
4	357.086	6 2.72	5	1 1	99.388		
5					99.939		
6	3.853	2 0.02	9		99.969		
7	2.760	3 0.02	1		99.990		
8		9 0.00	5		99.995		
9					99.998		
10					99.999		
11	0.059				100.000		
12					100.000		
13	0.003	0.00	0		100.000		
Eigenv	ectors						
	Prin1	Prin2	Prin3	Prin4	Prin5	Prin6	Prin
calories	0.07629	-0.00959	0.61056	-0.61793		0.11148	-0.1123
protein		0.00863				0.07855	-0.2799
fat			0.01598	-0.02603		-0.19240	-0.3403
sodium	0.98041	0.13452	-0.14089			0.02185	
fiber		0.03042				0.26427	-0.0832
carbo						-0.44395	0.73170
sugars			0.09946	-0.11648		0.70344	0.48650
potass	-0.12850	0.98741	0.03598	-0.04251		-0.04820	0.02484
vitamins	0.10134		0.70796	0.69787			
shelf						-0.06087	-0.0815
weight							0.0228
cups						-0.00726	
rating	-0.07681	0.07217	-0.30688	0.33775	0.74942	0.41590	-0.07587

first column, the Eigen vector Prin 1, it is evident that the principal component is dominated by Sodium content. It highest value of 0.98041 at 55.001%.

Figure 4.14 PCA output using all 13 numerical variables in the breakfast cereals dataset. The eigenvectors table gives results for the first seven

4.2 Chemical Features of Wine. Figure 4.17 shows the PCA output for analyses conducted on normalized (correlations) and non normalized data (covariances). Each variable represent a chemical characteristics of wine, and each case is a different wine.

a. The data are in the file Wine.jmp. Consider the variances in the columns labeled *Eigenvalue* for the principal components analysis conducted using covariance. Why is the variance for the first principal component so much larger than the others?

Here, instead of the correlations we will take covariance. We will have to do the following. Analyze> Multivariate Methods> Principal component > on covariance.

	Dula 4	Dutu 2	Dula 2	Dula 4	Doda F	Dula C	Dulu 7	Dula O	D-10	D-140	Dolo 4.4	Dulu 4.2	Dulu 4.3
	Prin1	Prin2	Prin3	Prin4	Prin5	Prin6	Prin7	Prin8	Prin9	Prin10	Prin11	Prin12	Prin13
Alcohol				0.14145	0.02034	0.19412	0.92328	0.28482	-0.08660				
Malic_Acid			0.12200	0.16039	-0.61288	0.74247	-0.15011	-0.06467				0.06730	
Ash			0.05199			0.04175	0.04501	-0.14934			0.95401	-0.13206	-0.17369
Ash_Alcalinity			0.93859	-0.33097	0.06435								
Magnesium		0.99934											
Total_Phenols				-0.07458	0.31525	0.27872		-0.17724	-0.25567	0.84720			
Flavanoids			-0.08544	-0.16909	0.52476	0.43360		-0.24812	-0.37831	-0.52014	-0.13320		0.06960
Nonflavanoid_Phenols											0.19918	0.14755	0.96647
Proanthocyanins					0.25118	0.24188	-0.30980	0.87043			0.13562		
Color_Intensity			0.29140	0.87889	0.33175		-0.11284	-0.08129	0.09903				
Hue				-0.06003						-0.03847	0.09751	0.97556	-0.16655
OD280_OD315				-0.17820	0.26064	0.28891	0.10197	-0.18671	0.87375				0.04419
Proline	0.99982												

Under the Principal component 1, Proline has highest variance. It is because it has the higher scale as compared to others.

b. Comment on the use of correlations versus covariances. Would the results change dramatically if PCA (in this example) were conducted on the correlations instead?

rind	Compor	nents: o	n Correlat	ions	Principal Components: on Covariances							
Eigenv	alues				Eigenvalues							
Number	Elgenvalue	Percent	20 40 60 80	Cum Percent	Number	Eigenvalue	Percent	20 40 60 80	Cum Percent			
1	4.7059	36,199		36.199	1	99201.79	99.809		99.809			
2	2.4970	19.207		55.406	2	172.5353	0.174		99.983			
3	1.4461	11.124		66.530	3	9.4361	0.009		99.992			
4	0.9190	7.069		73.599	4	4.9912	0.005		99.997			
5	0.8532	6.563	11111	80.162	5	1.2268	0.001		99.990			
6	0.6417	4.936	11111	85.098	6	0.8411	0.001		99.99			
7	0.5510	4.239	11111	89.337	7	0.2790	0.000		100.00			
8	0.3485	2.681		92.018	8	0.1514	0.000		100.00			
9	0.2889	2.222	11111	94.240	9	0.1121	0.000		100.000			
10	0.2509	1.930		96.170	10	0.0717	0.000		100.000			
11	0.2258	1.737		97.907	11	0.0376	0.000		100.000			
12	0.1688	1.298		99.205	12	0.0211	0.000		100.000			
13	0.1034	0.795		100.000	13	0.0062	0.000		100.000			

Figure 4.17 Principal Components of Normalized and Nonnormalized Wine Data.

As we can notice, the covariance is not entirely distributed. The first component itself is taking 99.808%. Since, proline is measures in different weight which is more than other measures or variable present. Where as in the correlation chart, the distribution is further more than covariance, and also the variance in weights are further considered and the data is normalized too.