

CA-IS1306x 支持外部时钟的 5-kV_{RMS} 隔离式 Sigma-Delta 调制器

1 产品特性

- 差分输入电压范围: ±250 mV
- 未编码的数据输出
- 低失调误差: 25°C 时±100 μV (最大值)
- 低增益误差: 25℃ 时±0.2% (最大值)
- 优异的温漂性能:
 - ±3.5 μV/°C (最大值) 失调温漂
 - ±40 ppm/°C (最大值)增益误差温漂
- 优异的交流性能:
 - 信噪比: 85 dB (典型值)
 - 总谐波失真: -93 dB (典型值)
- 16 位无失码
- 高边和低边均支持 3.3 V 和 5 V 供电电压
- 高共模瞬态抗扰度: ±150 kV/us (典型值)
- 为系统安全设计的故障诊断功能
- 宽工作温度范围: -40℃ 到 125℃
- 安全和法规认证(申请中)
 - 符合 DIN V VDE V 0884-11 (VDE V 0884-11): 2017-01 标准的 7070 V_{PK} 隔离耐压
 - 符合 UL 1577 认证, 1 分钟 5 kV_{RMS}
 - CQC 和 TUV 相关认证
- 额定工作电压下使用寿命大于 40 年

2 应用

- 工业电机控制和驱动
- 隔离式开关电源
- 不间断电源

3 概述

CA-IS1306x 器件是一系列为基于分流电阻的电流检测而优化的高精度隔离式 Sigma-Delta(ΣΔ)调制器。低的失调和增益误差以及相关温漂能够在全工作温度范围内保持测量的精度。

CA-IS1306x 器件采用二氧化硅(SiO₂)作为隔离层,支持符合 UL 1577 认证的高达 5 kV_{RMS} 的电气隔离。 该技术将高低压域分开从而防止低压器件被损坏,同时提供低辐射和高磁场抗扰度。高共模瞬态抗扰度(CMTI)

意味着 CA-IS1306x 器件在隔离层之间正确地传递信号,适合要求高压、大功率开关的工业电机控制和驱动应用场合。器件内部输入共模过压和高边电源丢失检测功能有助于故障诊断和系统安全。

CA-IS1306x 器件通过使用 sinc³ 滤波器能够在 78.1 kSPS 数据吞吐率时实现 16 位的分辨率,典型的信噪比(SNR)为 85 dB。外部时钟频率范围是从 5 MHz 到 21 MHz,便于同步,同时为使用提供灵活性。

CA-IS1306x 器件通过宽体 8 脚或者 16 脚 SOIC 封装,支持在额定扩展工业温度范围内(-40° C 到 125°C)正常工作。

器件信息

器件型号	封装	封装尺寸(标称 值)
CA- IS1306x25G	SOIC8-WB (G)	5.85 mm × 7.50 mm
CA- IS1306AMx	SOIC16-WB (W)	10.30 mm × 7.50 mm
CA- IS1306M25W	SOIC16-WB (W)	10.30 mm × 7.50 mm

简化电路图

4 订购指南

表 4-1 有效订购零件编号

订购型号	额定输入范围	封装形式	隔离等级	数字输出编码方式
CA-IS1306M25G	±250 mV	SOIC8-WB (G)	5000 V _{RMS}	非编码 CMOS 逻辑
CA-IS1306AM25W	±250 mV	SOIC16-WB (W)	5000 V _{RMS}	非编码 CMOS 逻辑
CA-IS1306M25W	±250 mV	SOIC16-WB (W)	5000 V _{RMS}	非编码 CMOS 逻辑

目录

1	产品	特性	1
2	应用		1
3	概述		1
4	订购	指南	2
5	修订	历史	3
6	引脚	功能描述	4
	6.1	CA-IS1306x25G	4
	6.2	CA-IS1306AM25W	5
	6.3	CA-IS1306M25W	6
7	产品	规格	7
	7.1	绝对最大额定值 ¹	7
	7.2	ESD 额定值	7
	7.3	建议工作条件	7
	7.4	热工特性	7
	7.5	功率额定值	7
	7.6	隔离特性	8
	7.7	相关安全认证	9
	7.8	电气特性: CA-IS1306x25	10
	7.9	开关特性	12
	7.10	典型特性	14
8	详细	说明	19

	8.1	系统概述	19
	8.2	特点描述	19
	8.2.	1 模拟输入	19
	8.2.	2 隔离层的信号传输	19
	8.2.	3 数字输出和编码	20
	8.2.	4 安全故障输出	21
	8.2.	5 超量程输出	21
9	应用信	這息	23
	9.1.	1 电流检测的典型应用	23
	9.1.	2 选择合适的 R _{shunt}	23
	9.1.	3 输入滤波器	23
	9.1.	4 电源供电推荐	24
	9.1.	5 数字滤波器	24
	9.1.	6 电压检测的误差分析	24
	9.1.	7 注意事项	25
10	连	 接信息	26
	10.1	SOIC8 宽体封装外形尺寸	26
	10.2	SOIC16 宽体封装外形尺寸	27
11	焆	基接信息	28
12	者	· 持信息	29
13	=	文字声明	
-3		シメノ 'ソJ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	

6 修订历史

修订版本号	修订内容	页码
Varsian 1 00	CA-IS1306M25 更新至量产数据	10~12
Version 1.00	增加典型特性图表	14~17
	增加 CA-IS1306AM25 料号及相关封装信息	5, 27
	更新 CMRR、PSRR 数据	10
Version 1.01	更新 I _{DVDD} 数据及相关典型特性图表	11, 17
	补充 INL、DNL、CMRR 和 PSRR 典型特性图表	18
Version 1.02	增加 CA-IS1306M25W 料号和引脚描述	1, 2, 6, 29
Version 1.03	删除料号 CA-IS1306E25G	29
Version 1.04	更新 UL 认证信息	9

6 引脚功能描述

6.1 CA-IS1306x25G

图 6-1 CA-IS1306x25G 引脚配置

表 6-1 CA-IS1306x25G 引脚功能描述

	PC 0 = 0.1 10=0001=0 0 1/1/1/2/1101HAZ			
引脚名称	CA-IS1306x	引脚类型	描述	
AVDD	1	电源	高边模拟供电电源,3V到5.5V	
AINP	2	输入	同相模拟输入	
AINN	3	输入	反相模拟输入	
AGND	4	地	高边模拟地	
DGND	5	地	低边数字地	
DOUT	6	输出	调制器数据输出	
CLKIN	7	输入	调制器时钟输入,内部有 1.5 MΩ 下拉电阻,支持 5 MHz 到 21 MHz	
DVDD	8	电源	低边数字供电电源,3V到5.5V	

CA-IS1306AM25W

图 6-2 CA-IS1306AM25W 引脚配置

表 6-2 CA-IS1306AM25W 引脚功能描述

		•	***************************************
引脚名称	引脚编号	引脚类型	描述
AVDD	1	电源	高边模拟供电电源,3V到5.5V
AINP	2	输入	同相模拟输入
AINN	3	输入	反相模拟输入
AGND	4, 8	地	高边模拟地
DGND	9, 16	地	低边数字地
DOUT	11	输出	调制器数据输出
CLKIN	13	输入	调制器时钟输入,内部有 1.5 MΩ 下拉电阻,支持 5 MHz 到 21 MHz
DVDD	14	电源	低边数字供电电源,3V到5.5V
NC	5, 6, 7	_	这些引脚内部无连接,可以悬空或者连接至 AVDD 或者 AGND
INC	10, 12, 15	_	这些引脚内部无连接,可以悬空或者连接至 DVDD 或者 DGND

6.3 CA-IS1306M25W

图 6-3 CA-IS1306M25W 引脚配置

表 6-3 CA-IS1306M25W 引脚功能描述

引脚名称	引脚编号	引脚类型	描述
AVDD	7	电源	高边模拟供电电源,3V到5.5V
AINP	2	输入	同相模拟输入
AINN	3	输入	反相模拟输入
AGND	4, 8	地	高边模拟地
DGND	9, 16	地	低边数字地
DOUT	11	输出	调制器数据输出
CLKIN	13	输入	调制器时钟输入,内部有 1.5 MΩ 下拉电阻,支持 5 MHz 到 21 MHz
DVDD	14	电源	低边数字供电电源,3V到5.5V
	1*	_	该引脚内部连接至 AVDD,可以连接至 AVDD 或者悬空
NC	5, 6	_	这些引脚内部无连接,可以悬空或者连接至 AVDD 或者 AGND
	10, 12, 15	_	这些引脚内部无连接,可以悬空或者连接至 DVDD 或者 DGND

7 产品规格

7.1 绝对最大额定值 1

上海川土微电子有限公司

	参数	最小值	最大值	单位
AVDD 或 DVDD	电源电压 2	-0.5	6.5	V
AINP 或 AINN	模拟输入电压	AGND – 6	6.5	V
CLKIN 或 DOUT	数字输入或输出电压	DGND - 0.5	DVDD + 0.5 ³	V
I _{IN}	输入电流至除电源外的任何引脚	-10	10	mA
Tj	结温		150	°C
T _{STG}	存储温度	-65	150	°C
A Yr				

备注:

- 1. 等于或超出上述绝对最大额定值可能会导致产品永久性损坏。这只是额定最值,并不能以这些条件或者在任何其它超出本技术规 范操作章节中所示规格的条件下,推断产品能否正常工作。长期在超出最大额定值条件下工作会影响产品的可靠性。
- 2. 所有电压均参照各自的地(AGND 或 DGND)且为峰值电压。
- 3. 最大电压不得超过 6.5 V。

7.2 ESD 额定值

		数值	単位
V _{ESD} 静电放电	人体模型(HBM),根据 ANSI/ESDA/JEDEC JS-001,所有引脚	±4000	V
	器件充电模型(CDM),根据 JEDEC 规范 JESD22-C101,所有引脚	±2000	V

7.3 建议工作条件

	参数	最小值	典型值	最大值	单位
AVDD	高边模拟供电电压,参照 AGND	3.0	5.0	5.5	V
DVDD	低边数字供电电压,参照 DGND	3.0	3.3	5.5	V
T _A	工作环境温度	-40		125	°C

7.4 热工特性

	热量参数	数值	单位
R _{0JA}	芯片结到环境的热阻	110.1	°C/W
R _{θJC(top)}	芯片结到壳(顶部)的热阻	51.7	°C/W
R _{θJB}	芯片结到板的热阻	66.4	°C/W
ψ ,,τ	芯片结到顶部的特征参数	16.0	°C/W
ψ ЈВ	芯片结到板的特征参数	64.5	°C/W
R _{0JC(bottom)}	芯片结到壳(底部)的热阻	NA	°C/W

7.5 功率额定值

	参数	测试条件	数值	単位
P _D	芯片最大功率损耗	CA-IS1306Mx, AVDD = DVDD = 5.5 V	129.25	mW
P _{D1}	高边最大功率损耗	AVDD = 5.5 V	90.75	mW
P _{D2}	低边最大功率损耗	CA-IS1306Mx, DVDD = 5.5 V	38.50	mW

7.6 隔离特性

	参数	测试条件	数值	单位
CLR	外部气隙(间隙)1	测量输入端至输出端,隔空最短距离	8	mm
CPG	外部爬电距离 1	测量输入端至输出端,沿壳体最短距离	8	mm
DTI	隔离距离	最小内部间隙 (内部距离)	19	μm
CTI	相对漏电指数	DIN EN 60112 (VDE 0303-11); IEC 60112	> 600	V
	材料组	根据 IEC 60664-1	I	
		额定市电电压≤ 300 V _{RMS}	I-IV	
	IEC 60664-1 过压类别	额定市电电压≤ 400 V _{RMS}	I-IV	
		额定市电电压 ≤ 600 V _{RMS}	1-111	
DIN V VD	E V 0884-11: 2017-01 ²			
V_{IORM}	最大重复峰值隔离电压	交流电压 (双极)	1414	V_{PK}
V	最大工作隔离电压	交流电压;时间相关的介质击穿(TDDB)测试	1000	V_{RMS}
V_{IOWM}	取八工下附齿电压	直流电压	1414	V_{DC}
V _{IOTM}	最大瞬态隔离电压	V _{TEST} = V _{IOTM} , t = 60 s(认证) V _{TEST} = 1.2 × V _{IOTM} t= 1 s(100% 量产测试)	7070	V _{PK}
V _{IOSM}	最大浪涌隔离电压3	测试方法根据 IEC 60065, 1.2/50 μs 波形, V _{TEST} = 1.6 × V _{IOSM} (认证)	6250	V_{PK}
q_{pd}	表征电荷 4	方法 b1, 常规测试(100% 量产测试) 和前期预处理 (抽样测试) V _{ini} = 1.2 × V _{IOTM} , t _{ini} = 1 s V _{pd(m)} = 1.875 × V _{IORM} , t _m = 1 s	≤5	pC
C _{IO}	栅电容,输入到输出5	$V_{10} = 0.4 \times \sin(2\pi ft), f = 1 \text{ MHz}$	~ 1	pF
		V _{IO} = 500 V, T _A = 25°C	> 1012	
R _{IO}	绝缘电阻	V _{IO} = 500 V, 100°C ≤ T _A ≤ 125°C	> 10 ¹¹	Ω
		$V_{10} = 500 \text{ V}, T_S = 150^{\circ}\text{C}$	> 109	
	污染度		2	
UL 1577		·		•
V _{ISO}	最大隔离电压	V _{TEST} = V _{ISO} , t = 60 s(认证) V _{TEST} = 1.2 × V _{ISO} , t = 1 s(100% 量产测试)	5000	V_{RMS}

备注:

- 1. 根据应用的特定设备隔离标准应用爬电距离和间隙要求。注意保持电路板设计的爬电距离和间隙距离,以确保印刷电路板上隔离器的安装焊盘不会缩短该距离。在某些情况下印刷电路板上的爬电距离和间隙变得相等。诸如在印刷电路板上插入凹槽的技术用于帮助增加这些规格。
- 2. 这种耦合器只适用于在最大工作额定值范围内的基本电气绝缘。应通过适当的保护电路确保符合安全额定值。
- 3. 测试在空气或油中进行,以确定隔离屏障的固有浪涌抗扰度。
- 4. 表征电荷是由局部放电引起的放电电荷 (pd)。
- 5. 栅两侧的所有引脚连接在一起,形成双端子器件。

7.7 相关安全认证

上海川土微电子有限公司

,,,, ,,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,		
VDE(申请中)	UL	TUV(申请中)
根据 DIN V VDE V 0884-11: 2017-01 认证	根据 UL 1577 器件认可程序认证	根据 EN 61010-1: 2010 (3rd Ed)
	SOIC8-WB:5000V _{RMS}	
	SOIC16-WB:5000V _{RMS}	
证书编号:	证书编号: E511334-20200520	证书编号:

7.8 电气特性: CA-IS1306x25

所有最大最小值在以下条件获得: $T_A = -40^{\circ}\text{C}$ 到 125°C,AVDD = 3 V 到 5.5 V,DVDD = 3 V 到 5.5 V,AINP = -250 mV 到 250 mV,AINN = AGND = 0 V,使用 $\sin c^3$ 滤波器,抽取率 OSR = 256,输出位宽配置成 16 位(除非另有说明)。所有典型值在 $T_A = 25^{\circ}\text{C}$,CLKIN = 20 MHz,AVDD = 5 V,DVDD = 3.3 V 时测得(除非另有说明)。

	参数	测试条件	最小值	典型值	最大值	单位
模拟输入		•				•
V _{Clipping}	满量程输入电压范围	AINP – AINN		±320		mV
V _{FSR}	额定线性输入电压范围	AINP – AINN	-250		250	mV
V _{CM}	输入共模电压范围	(AINP + AINN) / 2 到 AGND	-0.16		AVDD – 2.1	V
V _{CMOV}	共模过压阈值	(AINP + AINN) / 2 到 AGND	AVDD – 2			V
V _{CMOV_HYS}	共模过压阈值迟滞窗口			100		mV
C _{IN}	单端输入电容	AINN = AGND		2		pF
C _{IND}	差分输入电容			1		pF
R _{IN}	单端输入电阻	AINN = AGND		19		kΩ
R _{IND}	差分输入电阻			22		kΩ
I _{IN}	输入电流	AINP = AINN = AGND, $I_{IN} = (I_{INP} + I_{INN}) / 2$	-41	-30	-24	μА
TCI _{IN}	输入电流温漂			±1		nA/°C
I _{INOS}	输入失调电流	$I_{INOS} = I_{INP} - I_{INN}$		±5		nA
CNADD	十. 持. 抑. 如. D.	直流, AINP = AINN		-85		40
CMRR	共模抑制比	f _{IN} = 10 kHz, AINP = AINN		-85		dB
PSRR	电源抑制比	AVDD 处,直流,AINP = AINN = AGND		-98		- dB
FJNN	已 (水)中中 1七	AVDD 处,100-mV、10-kHz 纹波, AINP = AINN = AGND		-98		ив
BW_{IN}	输入-3 dB 带宽 ¹			1000		kHz
CMTI	共模瞬态抗扰度	AGND – DGND = 1.5 kV	100	150		kV/μs
调制器精	度					
DNL	微分非线性	分辨率: 16 位	-0.99		0.99	LSB
INL	积分非线性 2	分辨率: 16 位	-6	±2	6	LSB
Eo	失调误差	初始值,T _A = 25℃ 时, AINP = AINN = AGND	-100	±4.5	100	μV
TCEo	失调温漂		-3.5	±0.5	3.5	μV/°C
E _G	增益误差	初始值,T _A = 25℃ 时	-0.2%	±0.05%	0.2%	
TCE _G	增益误差温漂		-40	±20	40	ppm/°C
SNR	信噪比			85		dB
SINAD	信纳比	f _{IN} = 1 kHz,BW = 10 kHz		84		dB
THD	总谐波失真	IIN - I KHZ, DVV = IU KHZ		-93		dB
SFDR	无杂散动态范围			94		dB

备注:

- 1. 由设计保证。
- 2. INL 定义为当增益和失调误差被消除后偏离理想 ADC 传递函数的最大偏差,并且表示为额定线性满量程输入范围内的 LSB 数量。

参数	测试条件	最小值	典型值	最大值	单位	
	·	•				
输入电流	$DGND \le V_{IN} \le DVDD$	0		7	μΑ	
输入电容			4		pF	
输入电压逻辑高电平		0.7 × DVDD		DVDD + 0.3	V	
输入电压逻辑低电平		-0.3		0.3 × DVDD	V	
4	•	•				
输出负载电容	f _{CLKIN} = 20 MHz		30		pF	
	Ι _{ΟΗ} = -20 μΑ	DVDD - 0.1				
输出电 压逻辑品电平	I _{OH} = -4 mA	DVDD - 0.4			V	
松山市区架提优市亚	Ι _{ΟL} = 20 μΑ			0.1	.,	
制出电压	I _{OL} = 4 mA			0.4	V	
	•	•				
AVDD 欠压阈值	AVDD 上升处		2.5	2.7	V	
京 4 # e e e x	3.0 V ≤ AVDD ≤ 3.6 V		10.5	15.0	Л	
尚也供电电弧	4.5 V ≤ AVDD ≤ 5.5 V		11.5	16.5	mA	
低边供中中海 C = 15 p51	CA-IS1306M25, 3.0 V ≤ DVDD ≤ 3.6 V		3.3	5.3	m^	
瓜炒炭电电源,以=15 pF1	CA-IS1306M25, 4.5 V ≤ DVDD ≤ 5.5 V		4.0	7.0	mA	
	输入电流 输入电容 输入电压逻辑高电平 输入电压逻辑低电平 输出负载电容 输出电压逻辑高电平	输入电流 DGND ≤ V _{IN} ≤ DVDD 输入电容 输入电压逻辑高电平 输入电压逻辑低电平	輸入电流 DGND ≤ V _{IN} ≤ DVDD 0 0 输入电容	輸入电流 DGND ≤ V _{IN} ≤ DVDD 0 4 4 輸入电	輸入电流 DGND ≤ V _{IN} ≤ DVDD 0 7 輸入电容 4 輸入电压逻辑高电平 DVDD 0.3 輸入电压逻辑低电平 -0.3 DVDD + DVDD 0.3 輸出負载电容 f _{CLKIN} = 20 MHz 30 制出电压逻辑高电平 DVDD - 0.1 I _{OH} = −20 μA DVDD - 0.1 I _{OH} = −4 mA DVDD - 0.4 Mi出电压逻辑低电平 DVDD - 0.4 I _{OL} = 20 μA DVDD - 0.4 I _{OL} = 4 mA 0.4 I _{OL} = 4 mA DVDD + DVDD - 0.4 I _{OL} = 4 mA DVDD + DVDD - 0.4 I _{OL} = 4 mA DVDD + DVDD - 0.4 I _{OL} = 4 mA DVDD + DVDD - 0.4 I _{OL} = 4 mA DVDD + DVDD - 0.4 I _{OL} = 4 mA DVDD + DVDD - 0.4 I _{OL} = 4 mA DVDD + DVDD - 0.4 I _{OL} = 4 mA DVDD + DVDD - 0.4 I _{OL} = 4 mA DVDD + DVDDD + DVDD + D	

^{1.} C_L大约是 15 pF,包括探头和杂散电容。

7.9 开关特性

所有最大最小值在以下条件获得: $T_A = -40^{\circ}\text{C}$ 到 125°C,AVDD = 3 V 到 5.5 V,DVDD = 3 V 到 5.5 V,AINP = -250 mV 到 250 mV(针对 CAIS1306x25),AINN = AGND = 0 V,使用 $\sin c^3$ 滤波器,抽取率 OSR = 256,输出位宽配置成 16 位(除非另有说明)。 所有典型值在 $T_A = 25^{\circ}\text{C}$,AVDD = 5 V,DVDD = 3.3 V 时测得(除非另有说明)。

	参数	测试条件	最小值	典型值	最大值	单位
£	CLKIN 时钟频率	4.5 V ≤ AVDD ≤ 5.5 V	5		21	NALL-
f_{CLKIN}	CLKIN 时 钟	3.0 V ≤ AVDD ≤ 5.5 V	5		20	MHz
Duty	CLKIN 时钟占空比	t_{HIGH} / t_{CLKIN} , 3.0 V \leq AVDD \leq 5.5 V	45%	50%	55%	
Cycle CLKIN 时押百至几	CLMIN P) # 日工比	t_{HIGH} / t_{CLKIN} , 4.5 V \leq AVDD \leq 5.5 V	42.5%	50%	57.5%	
t _h	CLKIN 上升沿后的数据保持时间	C _L = 15 pF ¹ ; 见图 7-1	3.5			ns
t _d	CLKIN 上升沿后的数据延迟时间	C _L = 15 pF ¹ ; 见图 7-1			16	ns
t _r	DOUT 的上升时间(20%-80%)	C _L = 15 pF ¹		1.8	5	ns
t _f	DOUT 的下降时间(80%-20%)	C _L = 15 pF ¹		1.8	5	ns
t _{astart}	模拟启动时间	AVDD 阶跃到 3.0 V,3.0 V ≤ DVDD; 见图 7-2		500		μs
夕)计,			·			

备注:

1. CL 大约是 15 pF,包括探头和杂散电容。

图 7-2 CA-IS1306x 启动时序

7.10 典型特性

典型值测试条件: AINP = -250 mV 到 250 mV (针对 CA-IS1306x25), AINN = AGND = 0 V, AVDD = 5 V, DVDD = 3.3 V, CLKIN = 20 MHz, 使用 sinc³ 滤波器,抽取率 OSR = 256,输出位宽配置成 16 位(除非另有说明)。

图 7-9 高边共模过压阈值 vs 温度

图 7-10 高边共模过压阈值迟滞窗口 vs 温度

图 7-11 信噪比和信纳比 vs 温度

图 7-12 信噪比和信纳比 vs 高边供电电压

CHIPANALOG

8.1 系统概述

CA-IS1306x 器件是一系列为基于分流电阻的电流检测而优化的高精度隔离式 Sigma-Delta($\Sigma\Delta$)调制器。功能框图如图 8-1 所示。在高边,全差分运放先对分流电阻上的压降预放大然后驱动二阶 Sigma-Delta($\Sigma\Delta$)调制器。该调制器将模拟信号转换成 1 位的数字位流。为了在基于二氧化硅的隔离层的信号传输,数字位流通过使用简单的开关键控(OOK)调制方案和高频载波进一步调制。接收机(RX)在低边将接收到的调制信号恢复成原始的数字位流。为了整个芯片的同步,外部时钟被发送回高边,确保所有的时钟同源。输出位流与外部时钟在 CLKIN 引脚处同步。在额定输入范围内,串行位流中 1 的密度和模拟输入电压幅度成正比(详见数字输出和编码小节)。外部时钟输入有助于在系统层面的多通道电流检测的同步。

图 8-1 CA-IS1306x 功能框图

8.2 特点描述

8.2.1 模拟输入

CA-IS1306x 器件使用全差分运放对分流电阻上的压降进行预放大。对 CA-IS1306x25 来说前端差分运放的标称增益为 4,在额定输入电压范围内二阶 Sigma-Delta 调制器不会饱和。上述增益通过内部高精度电阻网络设定。数十千欧姆的输入电阻意味着如果 CA-IS1306x 器件被用在输入信号源是高阻的测试应用中会带来更多的增益和失调误差。

CA-IS1306x 的 ESD 结构支持绝对最大模拟输入电压(参照 AGND)从 AGND – 6 V 到 AVDD + 0.5 V。为了保证长期稳定性和器件的性能,CA-IS1306x 的差分模拟输入电压和输入共模电压必须保持在额定范围内。

8.2.2 隔离层的信号传输

CA-IS1306x 器件通过使用简单的开关键控(OOK)调制方案在基于二氧化硅的隔离层之间传输数字位流。该隔离层支持高低压域之间高达 5 kV_{RMS} 的电气隔离。隔离通道的框图如图 8-2 所示。如图 8-3 所示,当数字位流为高电平时,发射机(TX)通过高频载波对其进行调制,当数字位流为低电平时则不调制。接收机(RX)解调通过隔离层的信号并将其准确地恢复成数字位流。隔离通道采用全差分电容耦合架构,对共模瞬态噪声不敏感,因此可以最大化 CMTI 性能。该结构和相关电路同时提供低辐射和高磁场抗扰度。

8.2.3 数字输出和编码

模拟输入(AINP-AINN)和调制器输出的关系如图 8-4 所示。模拟输入 0 V 理论上对应数字位流中 0 和 1 出现的时间各占 50%。在数字输出位流中 1 的密度和对应的模拟输入电压可以通过下列等式计算:

Density
$$|_{ONEs} = (V_{IN} + V_{Clipping}) / (2 \times V_{Clipping})$$
 (式1)

式 1 只有在模拟输入电压在满量程输入范围内(对 CA-IS1306x25 来说为±320 mV)才成立。如果输入电压超过上述范围,Sigma-Delta调制器会饱和并表现出非线性,在上述条件下调制器输出固定为0或1。为了区分安全故障输出情况,每 128 个时钟周期会有一个 0(模拟输入对 CA-IS1306x25 来说为大于等于 320 mV)或 1(模拟输入对 CA-IS1306x25 来说为小于等于—320 mV)被插入到位流中(参考超量程输出小节获得详细信息)。

图 8-4 CA-IS1306x 调制器输出与模拟输入(AINP – AINN)的关系

8.2.4 安全故障输出

CA-IS1306x 器件具备安全故障输出功能,在下列两种情况下启动:

- 高边供电电压(AVDD)丢失;
- 共模输入电压 V_{CM} 超过共模过压阈值 V_{CMOV}。

如图 8-5 所示,当共模输入电压 V_{CM} 超过 V_{CMOV} 时,DOUT 输出保持为逻辑 1。当高边供电电压(AVDD)丢失时,DOUT 输出保持为逻辑 0。当两种情况同时发生时,高边供电电压(AVDD)丢失的优先级更高,因此 DOUT 输出保持为逻辑 0。该功能指示高边的异常情况,有助于故障诊断和系统安全。

8.2.5 超量程输出

如图 8-6 所示, 当模拟输入 V_{IN} ≥ |V_{Clipping}|时, CA-IS1306x 器件每 128 个时钟周期产生单个 0; 当模拟输入 V_{IN} ≤ -|V_{Clipping}|时, CA-IS1306x 器件每 128 个时钟周期产生单个 1。该超量程输出行为和故障安全输出行为不同,因此能在系统级别被识别。

图 8-6 CA-IS1306x 超量程输出波形

CHIPANALOG

9 应用信息

9.1.1 电流检测的典型应用

图 9-1 电流检测的典型应用

电流检测的典型应用如图 9-1 所示。CA-IS1306x 器件被用来放大分流电阻(R_{shunt})上的压降,然后通过 Sigma-Delta 调制器将模拟信号转换成数字位流并传输至低压侧供控制电路处理。CA-IS1306x 的差分输入和高 CMTI 确保在诸如工业电机驱动等高噪声、高功率开关应用中可靠和准确地测量。在开关时 R_{shunt} 到 PGND 的电压可以从 0 V 变化到高母线电压,因此隔离是必须的。CA-IS1306x 器件支持高达 5 kV_{RMS} 的电气隔离,因此十分适合高压工业应用场合。

在三相电机驱动应用中,上述电路可以被重复三次,每次对应一个相电流的测量。

9.1.2 选择合适的 R_{shunt}

分流电阻值的选择是功耗和测量精度之间的一种折中。小的电阻值可以减少功耗,而大的电阻值能充分利用 Sigma-Delta 调制器满量程输入范围内的全部性能。

考虑下列两个限制条件来选择合适的分流电阻的值:

- 由标称测量电流在 R_{shunt} 上产生的压降在额定线性差分输入范围 (V_{FSR}) 内;
- 由最大允许的电流在 R_{shunt} 上产生的压降一定不能超过满量程输入电压范围(|V_{Clipping}|)。

为了获得最好的性能,将分流电阻尽可能放在靠近 CA-IS1306x 的输入的位置并且保持输入连接布线的对称性。这确保发生在高边的噪声同等耦合到输入端并作为共模信号被抑制。推荐在 R_{shunt} 和 CA-IS1306x 的输入之间采用开尔文连接,从而消除走线和引脚上的压降的影响。

9.1.3 输入滤波器

一阶无源 RC 低通滤波器可以被放置在 R_{shunt} 和器件的输入之间来滤除高频噪声。选择 R_1 = R_2 = 10Ω 和 C_1 = 20 nF 可以提供大概 400 kHz 的截止频率。 R_1 和 R_2 应该选择比 CA-IS1306x 的输入电阻小得多的值来减少增益误差。

9.1.4 电源供电推荐

CA-IS1306x 的高边电源供电可以通过使用齐纳二极管(D_1)直接从高边栅极驱动的电源产生 $3.3 \ V$ 或 $5 \ V$ ($\pm 10\%$)电压。推荐在离 CA-IS1306x 的 AVDD 引脚尽可能近的位置放置 $0.1 \ \mu F$ 低等效串联电阻的解耦电容(C_2)。额外电容(C_3)被推荐用来更好地对高边供电路径进行滤波,其值可以从 $2.2 \ \mu F$ 到 $10 \ \mu F$ 的范围内选择。

类似的,0.1 μF 解耦电容(C_4)和从 2.2 μF 到 10 μF 的电容(C_5)应该放置在离 CA-IS1306x 的 DVDD 引脚尽可能近的位置来对低边供电路径进行滤波。

9.1.5 数字滤波器

CA-IS1306x 的输出是 1 位数字位流,由于 Sigma-Delta 调制器的工作机理包含丰富的高频被整形的量化噪声,需要片外数字滤波器(在诸如 FPGA 或 DSP 等控制器中实施)来滤除高频噪声从而获得数字码字。推荐使用 sinc³ 滤波器,主要有两方面理由:一方面结构简单,硬件消耗较低;另一方面该滤波器比在 CA-IS1306x 中应用的二阶 Sigma-Delta 调制器高一阶,可以从位流中重构原始输入信号的信息。式 2 是 sinc³ 滤波器的传递函数。

$$H(Z) = \left[\frac{1}{DR} \frac{\left(1 - Z^{-DR}\right)}{(1 - Z^{-1})} \right]^{3}$$
 (式 2)

式中 Z 是样本, DR 是抽取率。

抽取率(DR)是调制器时钟频率 f_{CLKIN} 和 $sinc^3$ 滤波器吞吐率 f_{DATA} 之间的比值,在这里也被称为过采样率(OSR)。

$$DR = OSR = f_{CLKIN}/f_{DATA}$$
 (式 3)

输出数据位宽由式4所示。

Data Width =
$$3 \times \log_2 DR$$
 (式 4)

在本数据手册中所有特性通过使用过采样率(OSR)为 256 并且截断 16 个最高位作为 16 位结果的 sinc³ 滤波器测试得到。

sinc³ 滤波器特性总结见表 9-1。当抽取率增加,sinc³ 滤波器的输出数据位宽也增加,同时吞吐率降低,继而获得更高的 SNR 性能。因此在数据速率和转换精度之间存在折中。

表 9-1 sinc³ 滤波器的特性(20-MHz f_{CLKIN})

Decimation Rate (DR)	f _{DATA} (kHz)	Output Data Width (Bits)	Filter Response (kHz)
32	625	15	163.7
64	312.5	18	81.8
128	156.2	21	40.9
256	78.1	24	20.4
512	39.1	27	10.2

9.1.6 电压检测的误差分析

如图 9-2 所示,CA-IS1306x 也可以被用在电压检测的应用中。电阻 R_{11} 、 R_{21} 和 R_{31} 组成电阻分压网络来缩小母线高压。 R_{11} 和 R_{21} 的值通常比 R_{31} 大很多,保证 CA-IS1306x 的输入电压在额定范围内。

在 CA-IS1306x 中,电阻 R_{41} 和 R_{51} (或 R_{42} 和 R_{52})被用来设定前端运放的增益。典型值对 CA-IS1306x25 而言 R_{41} = R_{42} = 12.5 k Ω , R_{51} = R_{52} = 50 k Ω 。电阻 R_{61} 和 R_{62} 被用来检测 CA-IS1306x 的输入共模电压,典型值是 R_{61} = R_{62} = 100 k Ω 。

首先考虑 R₃₂ 未使用的情况。CA-IS1306x 在这些应用中会产生额外的增益误差和失调。一方面,CA-IS1306x 有限的输入阻抗和外部检测电阻 R₃₁ 并联,导致阻抗变化继而产生额外的增益误差。另一方面,CA-IS1306x 的前端差分运放的输出共模电压 V_{CM} 偏置在 1.875 V,会产生偏置电流 I_{INP} 和 I_{INN} 流过前端电阻网络。偏置电流 I_{INP} 同时流过 R₃₁,而 I_{INN} 在没有 R₃₂ 的情况下直接流向 PGND,会导致不平衡继而产生额外的失调。

为了消除偏置电流的影响,和检测电阻 R_{31} 相同阻值的电阻 R_{32} 被推荐加在 VINN 和 PGND 之间。电阻 R_{31} 会带来额外的增益误差 E_{GA} ,如式 5 计算所得。

$$E_{GA} = R_{31} / (R_{31} + R_{41})$$
 (式 5)

为了减小上述增益误差, R_{31} 的值(相比于 R_{41})应该选取得尽可能小。该增益误差也可以在系统级别的增益修调中减小。

图 9-2 电压检测的典型应用

9.1.7 注意事项

使用时不要让 CA-IS1306x 的输入悬空,若 AINP 和 AINN 均悬空,输入共模会被内部偏置拉至高电压,在一些供电电压下可能会触发安全故障模式,可能会导致系统异常反应(参考安全故障输出获得详细信息)。

10 封装信息

10.1 SOIC8 宽体封装外形尺寸

下图描述了 CA-IS1306xxxG 隔离式调制器采用的 SOIC8 宽体封装大小尺寸和建议焊盘尺寸。图中尺寸以毫米为单位。

图 10-1 SOIC8 宽体封装外形尺寸图

CHIPANALOG

10.2 SOIC16 宽体封装外形尺寸

下图描述了 CA-IS1306AMxxW 隔离式调制器采用的 SOIC16 宽体封装大小尺寸和建议焊盘尺寸。图中尺寸以毫米为单位。

图 10-2 SOIC16 宽体封装外形尺寸图

11 焊接信息

图 11-1 焊接温度曲线

表 11-1 焊接温度参数

简要说明	无铅焊接
温升速率(T∟=217°C 至峰值 T _P)	最大 3°C/s
T _{smin} =150°C 到 T _{smax} =200°C 预热时间 t _s	60~120 秒
温度保持 217℃ 以上时间 t _L	60~150 秒
峰值温度 T _P	260°C
小于峰值温度 5℃ 以内时间 t _P	最长 30 秒
降温速率(峰值 T₂至 T∟=217°C)	最大 6°C/s
常温 25℃ 到峰值温度 T _P 时间	最长8分钟

12 卷带信息

REEL DIMENSIONS

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CA-IS1306M25G	SOIC	G	8	1000	330	16.4	12.05	6.15	3.3	16.0	16.0	Q1
CA- IS1306AM25W	SOIC	W	16	1000	330	16.4	10.9	10.7	3.2	12.0	16.0	Q1
CA-IS1306M25W	SOIC	W	16	1000	330	16.4	10.9	10.7	3.2	12.0	16.0	Q1

CHIPANALOG

13 重要声明

上述资料仅供参考使用,用于协助 Chipanalog 客户进行设计与研发。Chipanalog 有权在不事先通知的情况下,保留因技术革新而改变上述资料的权利。

Chipanalog 产品全部经过出厂测试。针对具体的实际应用,客户需负责自行评估,并确定是否适用。Chipanalog 对客户使用所述资源的授权仅限于开发所涉及 Chipanalog 产品的相关应用。除此之外不得复制或展示所述资源,如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,Chipanalog 对此概不负责。

商标信息

Chipanalog Inc.®、Chipanalog®为 Chipanalog 的注册商标。

http://www.chipanalog.com