Preliminary migrate analysis of M. californianus

MIGRATION RATE AND POPULATION SIZE ESTIMATION

using the coalescent and maximum likelihood or Bayesian inference

Migrate-n version 3.7.2 [April-12-18]

Program started at Wed Jun 2 13:54:44 2021 Program finished at Wed Jun 2 21:49:20 2021

Options

Datatype: DNA sequence data

Inheritance scalers in use for Thetas:

All loci use an inheritance scaler of 1.0

[The locus with a scaler of 1.0 used as reference]

Random number seed: (with internal timer) 1671111479

Start parameters:

Theta values were generated from guessed values

Theta = 0.01000

M values were generated from guessed values

M-matrix:

100000.00 [all are the same]

Connection type matrix:

where m = average (average over a group of Thetas or M,

s = symmetric M, S = symmetric 4Nm, 0 = zero, and not estimated,

* = free to vary, Thetas are on diagonal

Population	1	2	3	4	5	6	7	8	9	10	11	12
1 ElfinCo	*	S	0	0	0	0	0	0	0	0	0	0
2 Bamfiel	S	*	s	0	0	0	0	0	0	0	0	0
3 PortRen	0	S	*	S	0	0	0	0	0	0	0	0
4 WalkOnB	0	0	s	*	S	0	0	0	0	0	0	0
5 BodegaH	0	0	0	S	*	s	0	0	0	0	0	0
6 Davenpo	0	0	0	0	S	*	s	0	0	0	0	0
7 VistaDe	0	0	0	0	0	s	*	S	0	0	0	0
8 HazardR	0	0	0	0	0	0	s	*	s	0	0	0
9 Refugio	0	0	0	0	0	0	0	S	*	s	0	0
10 Carpint	0	0	0	0	0	0	0	0	s	*	s	0

11 WhitePo		0	0	0	0	0	0	0	0	0	s	*	s	
12 LaJolla		0	0	0	0	0	0	0	0	0	0	s	*	
Order of param														
1	Θ_1							<0	lispla	ayed:	>			
2	Θ_2							<0	lispla	ayed:	>			
3	Θ_3									ayed:				
4	Θ_4							<0	lispla	ayed:	>			
5	Θ_5^{T}									ayed:				
6	Θ_6									ayed:				
7	Θ_7									ayed:				
8	Θ_8									ayed:				
9	Θ_9									ayed:				
10	Θ_{10}									ayed:				
11	Θ_{11}									ayed:				
12	Θ_{12}									ayed:				
13	IVI ₂ .	->1	=	IVI	2->	₁ [s]		<0	lispla	ayed:	>			
24	M 1.	->2	=	IVI	2->	₁ [s]								
25	M 3.	->2	=	IVI	3->			<0	lispla	ayed:	>			
36		->3	=	M	5-/	₂ [s]								
37	M 4	->3	=	M	4->	₃ [s]		<0	lispla	ayed:	>			
48		->4	=	M	4-/	₃ [s]			P 1 -					
49	M 5	->4	=	M	5->	₄ [s]		<0	lispia	ayed:	>			
60	M 4	->5	=	M	5-/	₄ [s]			P 1 -					
61	N/I	->5	=	M	0 /	₅ [s]		<0	lispia	ayed:	>			
72	N /	->6	=	M	ローノ	₅ [s]			l' l .					
73	N/I	->6	=	IVI N/I	7->			<0	iispia	ayed:	>			
84	М ₆	->7	=	M	/-/	6 [s]	l	-0	liople	wod				
85 96	M 8.	->7	=	IVI IVI	8->	7 [S]	l	<0	iispia	ayed:	>			
97	M 7	->8	=	IVI N/I	8->	رد _{ا 7} [د]	l I	٠,٠	lionlo	wod.				
108	M ₉ .	->8	_		9->			<0	nspie	ayed:				
109	M 8-	->9	=	1VI	9->	رد _{ا 8} [د]	l I	~~	lienla	ayed:				
120	M 10	0->9	_	NΛ	10-	رد _{ا 9<} اما	l I	~0	iiohic	ay G U.	-			
121	M ₉ .	->10	_	M	10-	ام] ام]	l I	٧-	lishla	ayed:	>			
132	M 1	1->1	0_	M	11-	اد10 اها	l I	~0	opic	ay ou.	-			
133	M 10	0->1	1-	M	11– 12–	ادا) ادا	l I	۰,	lisnla	ayed:	>			
144	M 11	2->1	1_	M	12–	^{رد} ا (<	l I	~0	iispic	iy Cu.				
	M_{1}	1->1	2	171	12-	>1 l ³	ı							
Mutation rate an	nong loc	i:												Mutation rate is constant
Analysis strateg	y:													Bayesian inference
	•													

Proposal distributions for parameter

Parameter Proposal
Theta Metropolis sampling
M Slice sampling

Prior distribution for parameter

Parameter Prior Delta Bins Minimum Mean* Maximum Theta Exp window 0.000010 0.010000 10.000000 1.000000 500 0.000100 100000.000000 1000000.000000 100000.000000 Μ Exp window 500

Markov chain settings: Long chain

Number of chains 1

Recorded steps [a]1000Increment (record every x step [b]100Number of concurrent chains (replicates) [c]3Visited (sampled) parameter values [a*b*c]300000Number of discard trees per chain (burn-in)1000

Multiple Markov chains:

Static heating scheme 4 chains with temperatures

100000.00 3.00 1.50 1.00

Swapping interval is 1

Print options:

Data file: ../../mcalifornianus_210528.mig

Output file:

Posterior distribution raw histogram file:

bayesfile

Print data:

No

Print genealogies [only some for some data type]:

Data summary

Datatype: Sequence data
Number of loci: 1

Population	Locus	Gene copies
1 ElfinCo	1	19
2 Bamfiel	1	23
3 PortRen	1	15
4 WalkOnB	1	16
5 BodegaH	1	7
6 Davenpo	1	17
7 VistaDe	1	19
8 HazardR	1	23
9 Refugio	1	16
10 Carpint	1	19
11 WhitePo	1	11
12 LaJolla	1	8
Total of all populations	1	193

Bayesian Analysis: Posterior distribution table

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	Θ_1	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.02191
1	Θ_{2}	0.00001	0.00001	0.01001	0.08001	0.18001	0.09001	0.02851
1	Θ_3	0.00001	0.00001	0.01001	0.06001	0.18001	0.07001	0.02417
1	Θ_4	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.02186
1	Θ_5	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01891
1	Θ_6	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01593
1	Θ_{7}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01458
1	Θ_8	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01490
1	Θ_9	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00855
1	Θ_{10}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01374
1	Θ_{11}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01360
1	Θ_{12}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00694
1	M _{2->1}	16000.0	24000.0	33000.0	40000.0	112000.0	69000.0	65899.7
1	M _{1->2}	16000.0	24000.0	33000.0	40000.0	112000.0	69000.0	65899.7
1	M _{3->2}	0.0	0.0	7000.0	16000.0	24000.0	59000.0	58217.7
1	$M_{2->3}$	0.0	0.0	7000.0	16000.0	24000.0	59000.0	58217.7
1	$M_{4->3}$	58000.0	70000.0	85000.0	100000.0	110000.0	79000.0	67404.9
1	$M_{3->4}$	58000.0	70000.0	85000.0	100000.0	110000.0	79000.0	67404.9
1	$M_{5->4}$	4000.0	10000.0	25000.0	36000.0	42000.0	33000.0	60093.1
1	$M_{4->5}$	4000.0	10000.0	25000.0	36000.0	42000.0	33000.0	60093.1
1	M _{6->5}	20000.0	54000.0	71000.0	82000.0	0.00088	65000.0	59001.9
1	$M_{5->6}$	20000.0	54000.0	71000.0	82000.0	0.00088	65000.0	59001.9
1	M _{7->6}	66000.0	0.00008	93000.0	102000.0	120000.0	95000.0	93717.7
1	M _{6->7}	66000.0	0.00008	93000.0	102000.0	120000.0	95000.0	93717.7
1	M _{8->7}	24000.0	64000.0	81000.0	92000.0	126000.0	77000.0	74923.0
1	M _{7->8}	24000.0	64000.0	81000.0	92000.0	126000.0	77000.0	74923.0
1	M _{9->8}	40000.0	76000.0	91000.0	104000.0	110000.0	85000.0	79288.4
1	$M_{8->9}$	40000.0	76000.0	91000.0	104000.0	110000.0	85000.0	79288.4
1	M _{10->9}	42000.0	52000.0	69000.0	82000.0	92000.0	79000.0	88407.2
1	M _{9->10}	42000.0	52000.0	69000.0	82000.0	92000.0	79000.0	88407.2
1	M _{11->10}	48000.0	56000.0	71000.0	84000.0	94000.0	81000.0	101695.3
1	M _{10->11}	48000.0	56000.0	71000.0	84000.0	94000.0	81000.0	101695.3
1	M _{12->11}	62000.0	70000.0	89000.0	104000.0	124000.0	101000.0	110318.7
1	M _{11->12}	62000.0	70000.0	89000.0	104000.0	124000.0	101000.0	110318.7

Citation suggestions:

 Beerli P., 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341-345 Beerli P., 2007. Estimation of the population scaled mutation rate from microsatellite data, Genetics, 177:1967-1968. Beerli P., 2009. How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use? In Population Genetics for Animal Conservation, G. Bertorelle, M. W. Bruford, H. C. Hauffe, A. Rizzoli, and C. Vernesi, eds., vol. 17 of Conservation Biology, Cambridge University Press, Cambridge UK, pp. 42-79.

Migrate 3.7.2: (http://popgen.sc.fsu.edu) [program run on 13:54:44]

Log-Probability of the data given the model (marginal likelihood)

Use this value for Bayes factor calculations:

BF = Exp[ln(Prob(D | thisModel) - ln(Prob(D | otherModel) or as LBF = 2 (ln(Prob(D | thisModel) - ln(Prob(D | otherModel)) shows the support for thisModel]

Method	In(Prob(D Model))	Notes
Thermodynamic integration	-2267.937213	(1a)
	-2165.709896	(1b)
Harmonic mean	-1892.212915	(2)

(1a, 1b and 2) are approximations to the marginal likelihood, make sure that the program run long enough! (1a, 1b) and (2) should give similar results, in principle.

But (2) is overestimating the likelihood, it is presented for historical reasons and should not be used (1a, 1b) needs heating with chains that span a temperature range of 1.0 to at least 100,000.

(1b) is using a Bezier-curve to get better approximations for runs with low number of heated chains

Citation suggestions:

Beerli P. and M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations, Genetics, 185: 313-326.

Acceptance ratios for all parameters and the genealogies

Parameter	Accepted changes	Ratio		
Θ_1	993/4304	0.23072		
Θ_2^{-}	869/4504	0.19294		
$\Theta_3^{}$	1083/4309	0.25133		
Θ_4°	1300/4418	0.29425		
Θ_5	1210/4396	0.27525		
Θ_6°	793/4360	0.18188		
Θ_7°	1686/4387	0.38432		
$\Theta_8^{'}$	1739/4381	0.39694		
Θ_9°	919/4420	0.20792		
Θ_{10}	1835/4295	0.42724		
-) ₁₁	1775/4428	0.40086		
Θ_{12}^{11}	1177/4386	0.26835		
$\sqrt{12}_{2->1}$	4417/4417	1.00000		
$M_{1->2}^{2->1}$	4417/4417	1.00000		
$M_{3->2}$	4383/4383	1.00000		
$M_{2->3}^{3->2}$	4383/4383	1.00000		
$V_{4\rightarrow 3}^{2\rightarrow 3}$	4373/4373	1.00000		
$M_{3->4}$	4373/4373	1.00000		
VI 5->4	4411/4411	1.00000		
VI 4->5	4411/4411	1.00000		
M _{6->5}	4398/4398	1.00000		
$M_{5->6}^{0->3}$	4398/4398	1.00000		
$M_{7->6}^{3->6}$	4418/4418	1.00000		
$M_{6->7}^{7->6}$	4418/4418	1.00000		
M _{8->7}	4385/4385	1.00000		
$M_{7->8}^{8->7}$	4385/4385	1.00000		
M_{9-8}	4408/4408	1.00000		
$M_{8->9}^{9->8}$	4408/4408	1.00000		
M _{10->9}	4399/4399	1.00000		
$M_{9->10}^{10->9}$	4399/4399	1.00000		
$M_{11->10}^{9->10}$	4390/4390	1.00000		
$M_{10->11}^{11->10}$	4390/4390	1.00000		
10->11	4367/4367	1.00000		
$M_{12->11}$ $M_{11->12}$	4367/4367	1.00000		
Genealogies	39162/150262	0.26062		

MCMC-Autocorrelation and Effective MCMC Sample Size

Parameter	Autocorrelation	Effective Sampe Size
Θ_1	0.84200	261.00
Θ_2	0.87111	209.66
Θ_3	0.82132	298.17
Θ_4	0.74346	445.18
) ₅	0.73948	463.10
06	0.90077	161.63
) ₇	0.69152	551.22
) ₈	0.75185	431.10
$\mathbf{p}_{\mathbf{q}}$	0.86149	233.95
) ₁₀	0.69246	561.70
) ₁₁	0.72824	471.69
12	0.81444	319.16
1 2->1	0.84888	245.56
A 1->2	0.84888	245.56
1 3->2	0.78223	370.28
1 2->3	0.78223	370.28
1 4->3	0.80367	334.13
1 3->4	0.80367	334.13
1 5->4	0.81481	308.06
1 4->5	0.81481	308.06
1 6->5	0.84959	244.17
1 5->6	0.84959	244.17
1 7->6	0.81776	300.94
1 6->7	0.81776	300.94
1 8->7	0.86341	222.10
1 7->8	0.86341	222.10
1 9->8	0.85575	235.81
1 8->9	0.85575	235.81
1 10->9	0.86318	223.02
10->9	0.86318	223.02
1 11->10	0.84959	243.75
10->11	0.84959	243.75
12->11	0.87234	208.44
11->12	0.87234	208.44
n[Prob(D G)]	0.98986	15.27

Potential Problems

This section reports potential problems with your run, but such reporting is often not very accurate. Whith many parameters in a multilocus analysis, it is very common that some parameters for some loci will not be very

informative, triggering suggestions (for example to increase the prior range) that are not sensible. This suggestion tool will improve with time, therefore do not blindly follow its suggestions. If some parameters are flagged, inspect the tables carefully and judge wether an action is required. For example, if you run a Bayesian inference with sequence data, for macroscopic species there is rarely the need to increase the prior for Theta beyond 0.1; but if you use microsatellites it is rather common that your prior distribution for Theta should have a range from 0.0 to 100 or more. With many populations (>3) it is also very common that some migration routes are estimated poorly because the data contains little or no information for that route. Increasing the range will not help in such situations, reducing number of parameters may help in such situations.
No warning was recorded during the run