Oracle Trace Analyzer

A tool for identifying application performance problems.

Presented by

Joe Johnson

Senior Database Administrator

Lands' End

joe.johnson@yahoo.com

Objectives

- Examine traditional tuning techniques, comparing them to Trace Analyzer
- Overview how Trace Analyzer works
- Walk through a Trace Analyzer session
- Review sample Trace Analyzer results
- Describe Trace Analyzer limitations
- Review Trace Analyzer alternatives

Traditional Application Tuning Approaches

- Ratio analysis
- utlbstat/utlestat reports
- STATSPACK reports
- Checklists
- TKPROF output
- EM GUI tools

Traditional Application Tuning Drawbacks

- Unreliable
- Not reproducible
- Inadequate information
- Too much information
- Too broad in scope

Oracle Trace Analyzer

- Focused
- Reproducible
- Specific information
- Reliable

How Trace Analyzer Works

- Intended for use in Oracle Applications environments
- SQL script based
- Uses 10046 trace event
- Formats raw trace file
- Creates report
- Identifies bottlenecks

Trace Analyzer Setup

- Review Metalink Note 224270.1
- Download TRCA.zip
- Create repository tablespace
- Create repository tables

http://metalink.oracle.com

Sample Trace Analyzer Session

- 1. Identify session to trace
- 2. Activate 10046 trace for that session
- 3. Perform application activity
- 4. Deactivate 10046 trace for session
- 5. Confirm trace file creation

Sample Trace Analyzer Session

- 6. Format trace file using Trace Analyzer
- 7. Review results
- 8. Identify bottlenecks
- 9. Address bottlenecks

10. Regenerate trace file and confirm results

Step 1: Identify Session

- Identify a session to trace
 - Query V\$SESSION
 - Can be difficult with some applications
 - May have to trace multiple sessions
 - May have to examine several trace files

Step 1: Identify Session

```
SQL> select sid, serial#, username, osuser, machine, program

2 from v$session

3 where username = 'CEM';

SID SERIAL# USERNAME OSUSER MACHINE PROGRAM

7 35786 CEM oracle srvr040 JDBC Thin Client

19 41959 CEM oracle srvr040 JDBC Thin Client

43 63784 CEM oracle srvr040 JDBC Thin Client
```

• • •

Step 2: Activate Trace

- Modify system settings (if needed)
 - alter system set timed_statistics = true;
 - alter system set max_dump_file_size = 2147483647;
- Activate 10046 trace event
 - Version 8.1.7 +
 - dbms_system.set_ev
 - alter session
 - Version 8.1.6
 - oradebug
 - See Metalink Note 1058210.6

Step 2: Activate Trace

For another user session

```
sid serial# event level
```

SQL> exec sys.dbms_system.set_ev(7, 35786,10046, 8,'')

Trace levels:

- 0 no tracing
- 1 Least verbose, bind variables are displayed by name
- 4 Level 1 detail, with actual bind variable values displayed
- 8 Level 1 detail, plus wait events whose elapsed time > CPU time
- 12 Most verbose, combines level 1, 4, and 8 information

Step 2: Activate Trace

For your own session

SQL> alter session set events '10046 trace name context forever, level 8';

Step 3: Perform Actions

- Using one of the traced sessions:
 - Do the application activities that are performing poorly
 - Allow the activities to run to completion

Step 4: Deactivate Trace

- Turn off 10046 trace event
- Modify system settings (if needed)
 - alter system set timed_statistics =
 false;
 - alter system set
 max_dump_file_size = 5242880;

Step 4: Deactivate Trace

For another user session

SQL> exec sys.dbms_system.set_ev(7, 35786,10046, 0, '')

Step 4: Deactivate Trace

For your own session

SQL> alter session set events '10046 trace name context off';

Step 5: Confirm Trace File

- Confirm creation of trace file
 - Created in user_dump_dest directory
 - Identify by timestamp
 - Identify by process ID

Step 5: Confirm Trace File

Step 5: Confirm Trace File

```
$ ls -lat /u01/app/oracle/admin/PROD/udump/*213152*
-rw-rw---- 1 oracle dba 2924 Jan 10 13:51 ora_213152_prod.trc
```

Step 6: Format Trace File

- Run TRCANLZR.sql script
- Pass in trace file name
- Use UDUMP directory

Step 6: Format Trace File

SQL> start TRCANLZR.sql UDUMP ora_213152_prod.trc;

The trace file formatting process can be a resource intensive operation!

Step 7: Review Trace File

- Created in same directory as TRCANLZR.sql script
- TRCANLZR_ prefixes the formatted file name
- The .LOG suffix is added to the formatted trace file name

Step 7: Review Trace File

\$ ls -lat /u01/app/oracle/admin/PROD/udump/*213152*

```
-rw-rw--- 1 oracle dba 2924 Jan 10 13:51 ora_213152_prod.trc
-rw-rw---- 1 oracle dba 2924 Jan 10 13:51 TRCANLZR_ora_213152_prod.LOG
```

• Trace Analyzer report summarizes most impactful SQL

- CPU utilization
- Elapsed time
- Non-idle waits
- Idle waits
- These statements should be examined first

TOP SQL (SUMMARY OF CPU, ELAPSED AND WAITS PER TOP EXPENSIVE CURSOR)

cursor	user id	command type	count	cpu top	elapsed top	non-idle waits top	idle waits top
127	23	select	27	94.20 1	93.88 1	0.01	0.03
87	23	select	3	2.48 2	2.46	0.06	0.00
159	23	select	3	2.48 3	2.50 5	0.14	0.00
64	23	select	3	2.47 4	2.51 3	0.16	0.00
243	23	select	3	2.46 5	2.50	0.11	0.00
11	23	insert	419	0.50	2.60 2	2.12 1	0.99 4
263	23	select	4	2.41	2.50 4	0.10	0.21
156	23	select	3	0.00	0.62	0.61 2	0.00

. . .

```
CURSOR ID:127 LENGTH:256 ADDRESS:3e40ba80
HASH VALUE: 3390289568 OPTIMIZER GOAL: CHOOSE USER ID: 23 (CEM)
SELECT Attachment id
FROM attachments
WHERE AttType = 2 AND Attachment id NOT IN (SELECT Attachment id
FROM mess attach) AND Attachment id NOT IN (SELECT Attachment id
FROM templ attach)
AND Attachment id NOT IN (SELECT Attachment id FROM draft attach)
call count cpu elapsed disk query current rows
                                                  misses
Parse 9 0.00 0.01 0 0 0 0 1
Execute 9 0.00 0.00 0 0 0 0
                                                      0
Fetch 9 94.20 93.87 0 751344 36 1
total 27 94.20 93.88 0 751344 36 1 1
```

```
Rows Row Source Operation
            1 FILTER
       39665 .TABLE ACCESS FULL ATTACHMENTS
     39656 .INDEX FULL SCAN PK_MSG_ATTACH
          55 .INDEX FULL SCAN PK TMP ATTACH
           55 .INDEX FULL SCAN PK DRFT ATTACH
Explain Plan
...6 SELECT STATEMENT (COST=4 CARD=1 BYTES=7)
...5 .FILTER
...1 ..TABLE ACCESS (FULL) OF 'CEM.ATTACHMENTS' (COST=4 CARD=1 BYTES=7)
...2 ..INDEX (FULL SCAN) OF 'CEM.PK_MSG_ATTACH' (UNIQUE) (COST=26 CARD=1 BYTES=4)
...3 ..INDEX (FULL SCAN) OF 'CEM.PK_TMP_ATTACH' (UNIQUE) (COST=26 CARD=1 BYTES=8)
...4 ..INDEX (FULL SCAN) OF 'CEM.PK_DRFT_ATTACH' (UNIQUE) (COST=26 CARD=2 BYTES=8)
```

OWNER.TABLE_NAME

owner.index_name	num rows	blocks	sample last analyzed date				
CEM.ATTACHMENTS	4180	39	209 2004-11-06 07:46:00				
cem.pk_attachment	Missing index statistics						
CEM.DRAFT_ATTACH	220	2	11 2004-11-06 07:46:01				
cem.pk_drft_attach	Missing index statistics						
CEM.MESS_ATTACH	4160	31	208 2004-11-06 07:46:17				
cem.pk_msg_attach	Missing index statistics						
CEM.TEMPL_ATTACH	0	0	0 2004-11-06 07:46:24				
cem.pk_tmp_attach	Missing index statistics						

```
INDEX_NAME (UNIQUENESS) [indexed columns]

PK_ATTACHMENT (UNIQUE) [attachment_id]

PK_DRFT_ATTACH (UNIQUE) [messagekey attachment_id]

PK_MSG_ATTACH (UNIQUE) [messagekey attachment_id]

PK_TMP_ATTACH (UNIQUE) [templatekey attachment_id]
```

Event waited on	Times Waited 2	Count Gero Time	Max. Wait	Total Waited	Blocks Accessed
latch free (066 cache buffers chains)	 1	 0	 0.01	0.01	
SQL*Net message from client (idle)	36	33	0.01	0.03	
SQL*Net message to client (idle)	36	36	0.00	0.00	
total	73	69	0.01	0.04	0
non-idle waits	1	0	0.01	0.01	0
idle waits	72	69	0.01	0.03	

- Most Common Bottlenecks
 - Too many logical I/Os
 - Slow physical I/O
 - Latch and lock contention
 - Oracle Net

- Too many logical I/Os
 - Results in high DBBC hit ratio
 - Shows up in Trace Analyzer report as high CPU cursors and cursors with *cache buffers chains latch* and *cache buffers LRU chain* waits
 - Usually caused by bad SQL
 - -Stresses CPU

Slow physical I/O

 Caused by fewer, larger drives instead of more, smaller drives

Inadequate controller caches

- Shows up in Trace Analyzer report as cursors with *free buffer waits*, buffer busy waits, and log buffer space waits.

- Latch and lock contention
 - Shows up in Trace Analyzer
 Report as cursors with cache
 buffers chains latch waits, library
 cache latch waits, or cache buffers
 LRU chain
 - Locking issues can lead to perceived performance problems

Step 8: Identify Bottlenecks

Oracle Net

- Shows up in Trace Analyzer Report as cursors with SQL*Net message from client (idle) waits
- Shows up in Trace Analyzer Report as cursors with SQL*Net message to client (idle) waits
- A certain number of these are normal, excessive waits for these events should be investigated
- Connection poolers will cause these waits

Step 9: Address Bottlenecks

```
SELECT Attachment id
FROM attachments
WHERE AttType = 2 AND Attachment id NOT IN (SELECT Attachment id
FROM mess attach) AND Attachment id NOT IN (SELECT Attachment id
FROM templ attach)
AND Attachment id NOT IN (SELECT Attachment id FROM draft attach)
Explain Plan
...6 SELECT STATEMENT (COST=4 CARD=1 BYTES=7)
...5 .FILTER
...1 ..TABLE ACCESS (FULL) OF 'CEM.ATTACHMENTS' (COST=4 CARD=1 BYTES=7)
...2 ..INDEX (FULL SCAN) OF 'CEM.PK_MSG_ATTACH' (UNIQUE) (COST=26 CARD=1 BYTES=4)
...3 ..INDEX (FULL SCAN) OF 'CEM.PK TMP ATTACH' (UNIOUE) (COST=26 CARD=1 BYTES=8)
...4 ..INDEX (FULL SCAN) OF 'CEM.PK DRFT ATTACH' (UNIQUE) (COST=26 CARD=2 BYTES=8)
```

Step 9: Address Bottlenecks

```
create index CEM.LE_ATTTYPE_ATTID_IDX
on CEM.ATTACHMENTS (ATTACHMENT_ID, ATTYPE)
tablespace indx03;
exec sys.dbms_stats.gather_index_stats(ownname=>'CEM',indname =>'LE_ATTTYPE_ATTID_IDX');
```

Step 10: Regenerate Trace File

- Turn on 10046 trace event
- Perform application actions again
- Compare results to first trace file
- Start working on next bottleneck

Step 10: Regenerate Trace File

TOP SQL (SUMMARY OF CPU, ELAPSED AND WAITS PER TOP EXPENSIVE CURSOR)

cursor	user non-idle idle										
id	id	command type	count	cpu	top	elapsed	top	waits	top	waits	top
4	23	select	3	2.80	1	3.30	1	0.30	1	0.01	
3	23	select	26	0.90	2	1.07	2	0.23	2	0.12	1
5	23	select	3	0.02	3	0.02	3	0.00		0.00	
7	23	insert	3	0.02	4	0.00		0.00		0.01	5
1	23	set transaction	22	0.01	5	0.01	4	0.00	3	0.02	2
9	23	select	3	0.00		0.01	5	0.00		0.00	
6	23	set transaction	14	0.00		0.00		0.00	4	0.01	3
16	23	select	3	0.00		0.00		0.00	5	0.00	
10	23	select	3	0.00		0.00		0.00		0.01	4

Step 10: Regenerate Trace File

```
CURSOR ID:4
             LENGTH: 615 ADDRESS: 3fcf18b8 HASH_VALUE: 274392568 OPTIMIZER_GOAL: CHOOSE USER_ID: 23 (CEM)
SELECT mess_info.MessageKey,mess_info.M_FromRaw,mess_info.FromEaten,mess_type.TimeDone,
mess_info.M_Subject,mess_info.Source,mess_parsed.TrackingNumber,mess_parsed.TrackRefs,
mess_info.FromRefs,mess_parsed.CommentTag,mess_type.StatusFlags,mess_type.Type,mess_info.M_Reply_To,
mess_parsed.AccessMode,mess_type.Owner,mess_parsed.PksPriority,mess_type.PksOwner_id
FROM mess_info, mess_type, mess_parsed
WHERE mess_info.MessageKey=mess_type.MessageKey AND mess_type.MessageKey=mess_parsed.MessageKey
AND ( Lower(mess_info.M_FromRaw) LIKE Lower('%asmith@acme.com%') )
AND mess_type.Type <> 6 AND mess_type.Type <> 200
call
            count
                        cpu
                              elapsed
                                               disk
                                                                                       rows
                                                                                               misses
                                                           query
                                                                      current
Parse
                1
                       0.00
                                 0.01
                                                  0
                                                               0
                       0.00
                                 0.00
                                                               0
Execute
                       2.80
                                 3.29
                                               2887
                                                            8616
Fetch
                       2.80
                                 3.30
                                               2887
                                                            8616
                                                                           17
```

total

Trace Analyzer Limitations

- Only works with version 8.1.6 and above
- No support for Shared Server environments
- Adds some overhead while *generating* trace file
- Can add significant overhead while *formatting* trace file
- Repository tables have to be built in application schema

Things To Remember

- Collect traces in good times and bad
- Save trace files for future reference
- Use traces files during development

Other 10046 Trace File Utilities

Free Utilities:

- AppsDBA Resource Profiler (Perl based)
 - http://home.comcast.net/~arivenes/utilities_resource.htm
- Simple Profilier (requires HTML DB)
 - http://www.niall.litchfield.dial.pipex.com/SimpleProfiler/SimpleProfiler.html
- Analyzer
 - http://www.oraperf.com/

Commercial Utility:

- Hotsos Profiler
 - http://www.hotsos.com

Other Tuning Utilities

- Oracle 9i EM Top SQL, Oracle Expert, SQL
 Analyze, Top Sessions, and Index Tuning Wizard
- Oracle 10g Database Control
- Quest Central SQL Tuning Lab
- BMC SQL Explorer for Oracle
- Veritas i³ for Oracle

References

White Papers

- Oracle 9.2 Event 10046 Segment-level Statistics (Rivenes, 2003). See http://www.orapub.com/cgi/exodus.cgi?p1=sub&p2=abs148.
- Oracle System Performance Analysis Using Oracle Event 10046 (Millsap and Holt, 2002). See http://www.nyoug.org/hotsos_perf.pdf.
- Why a 99%+ Database Buffer Cache Hit Ratio is Not OK (Cary Millsap, 2001). See http://www.hotsos.com/e-library/abstract.php?id=6.
- Yet Another Performance Profiling Method (Kolk et. al., 1996). See http://oraperf.com/whitepapers.html.

References

Books

- Expert Oracle One-on-one, Tom Kyte (Wrox).
- Optimizing Oracle Performance, Millsap and Holt (O'Reilly).
- Oracle8i Internal Services for Waits, Latches, Locks, and Memory, Steve Adams (O'Reilly).

Presentations

• *OraPerf.com: Real Life Performance Data*, Oracle Open World Session #1493 (Kolk, 2004). See https://www.openworld2004.com/published/1493/1493_kolk.ppt

Thanks!

Contact information:

Joe Johnson

Senior Database Administrator

Lands' End

joe.johnson@yahoo.com

- Application was having sporadic performance problems
- Interface to use is an Excel spreadsheet
- Created 10046 Trace files
- Two statements had the highest wait times

WAITS FOR ALL NON-RECURSIVE STATEMENTS FOR USER 24 (SRCADMIN)

INSERT INTO TempTableNames(TempTableName) VALUES('Crosssum401374460')

Event waited on	Times Waited		Count Time	Max. Wait	Total Waited	Blocks Accessed
log file sync		1	0	0.00	0.00	
SQL*Net message from client (idle).		5	0	51.96	51.97	
SQL*Net message to client (idle)		5	0	0.00	0.00	
total		11	0	51.96	51.97	0

WAITS FOR ALL NON-RECURSIVE STATEMENTS FOR USER 24 (SRCADMIN)

INSERT INTO TempTableNames(TempTableName) VALUES('Crosssum389180482')

Event	Times	(Count	Max.	Total	Blocks
waited on	Waited	Zero	Time	Wait	Waited	Accessed
log file sync		1	0	0.00	0.00	
SQL*Net message from client (idle).		5	0	50.92	50.93	
SQL*Net message to client (idle)		5	0	0.00	0.00	
total		11	0	50.92	50.93	0

- Performance issue was in the Oracle Net layer
- Oracle Names was being used for database name resolution
- Changing to a local tnsnames.ora instead resolved the SQL*Net message from client waits

