РЕГУЛЯРНЫЕ ЯЗЫКИ И КОНЕЧНЫЕ АВТОМАТЫ

rst • Prev • Next • Last • Go Back • Full Screen • Close • Qui

1. Алфавит, слово, язык

Алфавит — это произвольное *непустое конечное множество* $V = \{a_1, \ldots, a_n\}$, *элементы* которого называют **буквами**, или **символами**.

Определение 6.1. Словом, или **цепочкой**, в алфавите V называют произвольный кортеж из множества V^k (k-ой $\partial e \kappa apmoso \ddot{u}$ cmenehu алфавита V) для различных $k=0,1,2,\ldots$

Например, если $V=\{a,b,c\}$, то (a), (b), (c), (a,b), (a,b,c), (c,b,a,a,c) и т. д. есть слова в V.

При k=0 получаем nycmoй kopmeæ, называемый в данном контексте **пустым словом**, или **пустой цепочкой** и обозначаемый λ . Множество всех слов в алфавите V обозначают V^* , а множество всех непустых слов в $V-V^+$. Слова будем записывать без угловых скобок и запятых. Так, для записанных выше слов получим: a, b, c, ab, abc, cbaac.

Пустое слово λ — это слово, не имеющее символов.

Длину слова w можно понимать как число составляющих это слово букв.

Определение 6.2. Языком в алфавите V называется произвольное подмножество множества V^* .

Поскольку языки есть множества слов, к языкам применимы теоретикомножественные операции \cup , \cap , \triangle , и т.д.

Определение 6.3. Соединением языков L_1 и L_2 называют язык L_1L_2 , состоящий из всех возможных соединений слов xy, в которых слово x принадлежит первому, а слово y — второму языку, т.е.

$$L_1L_2 = \{xy | x \in L_1 \text{ if } y \in L_2\}.$$

Пример 1. Если $V = \{a, b, c\}, L_1 = \{ab, bcc, cab\}, L_2 = \{ca, bcc\},$

$$L_1L_2 = \{abca, abbcc, bccca, bccbcc, cabca, cabbcc\}.$$

Формально можно записать:

$$(ab+bcc+cab)(ca+bcc) = abca+abbcc+bccca+bccbcc+cabca+cabbcc.$$

Соединение языков не коммутативно. Например,

$$L_2L_1 = \{caab, cabcc, cacab, bccab, bccbcc, bcccab\} \neq L_1L_2.$$

Операция соединения языков позволяет определить операцию возведения языка в произвольную натуральную степень: для любого $L \subseteq V^*$ $L^0 = \{\lambda\}$, а для любого n > 0 $L^n = L^{n-1}L$.

Итерацией языка L называют объединение всех его степеней:

$$L^* = \bigcup_{n=0}^{\infty} L^n.$$

Рассматривая объединение всех степений языка L, начиная с первой, получим **позитивную итерацию**

$$L^+ = \bigcup_{n=1}^{\infty} L^n.$$

Основное алгебраическое свойство множества всех языков в алфавите $\,V\,$ сформулировано в следующей теореме.

Теорема 1. Алгебра

$$\mathcal{L}(V) = (2^{V^*}, \cup, \cdot, \varnothing, \{\lambda\})$$

есть замкнутое полукольцо.

rst • Prev • Next • Last • Go Back • Full Screen • Close • Quit

В замкнутом полукольце $\mathcal{L}(V)$ всех языков в алфавите V рассмотрим подалгебру, порожденную множеством, состоящим из пустого языка, языка $\{\lambda\}$ и всех однобуквенных языков $\{a\}$, $a \in V$, и замкнутую относительно итерации. Эта подалгебра, обозначаемая $\mathcal{R}(V)$, является полукольцом с итерацией.

Элементы полукольца $\mathcal{R}(V)$ называются **регулярными множествами**, или **регулярными языками**.

Определение 6.4. Пусть фиксирован некоторый алфавит V. Тогда:

- 1) Пустое множество \varnothing , множество $\{\lambda\}$ (состоящее из одной пустой цепочки) и множество $\{a\}$ для каждого $a\in V$ является регулярным языком (множеством) в алфавите V.
- 2) Если P и Q регулярные языки в алфавите V, то объединение $P \cup Q$ и соединение PQ регулярные языки в алфавите V.
- 3) Если P регулярный язык в алфавите V, то итерация P^* регулярный язык в алфавите V.
- 4) Никаких других регулярных языков, кроме определенных в пп. (1) (3), не существует.

Алгебраические операции над регулярными множествами удобно представлять с помощью так называемых **регулярных выражений**.

Каждое регулярное выражение представляет (или обозначает) некоторое однозначно определяемое регулярное множество, причем:

- 1) регулярные выражения \varnothing , λ и a обозначают регулярные множества \varnothing , $\{\lambda\}$ и $\{a\}$ соответственно $(a \in V)$;
- 2) если регулярное выражение p обозначает регулярное множество P, а q обозначает Q, то регулярные выражения (p+q), (pq) и (p^*) обозначают регулярные множества $P \cup Q$, PQ и P^* соответственно.

Для регулярного выражения $\alpha\alpha^*$ или $\alpha^*\alpha$ будем использовать обозначение α^+ и называть это выражение позитивной итерацией выражения α .

2. Вычисление языка, допускаемого КА

Определение 6.5. Конечный автомат — это орграф, размеченный над полукольцом $\mathcal{R}(V)$ регулярных языков в алфавите V, с выделенной вершиной q_0 , которая называется начальной и выделенным подмножеством вершин F, каждый элемент которого называется заключительной вершиной.

На функцию разметки при этом накладываются следующие ограничения: метка каждой дуги есть либо язык $\{\lambda\}$, либо непустое подмножество алфавита V .

Вершины графа называют обычно в этом случае **состояниями ко- нечного автомата**, начальную вершину — **начальным состоянием**, заключительную вершину — **заключительным состоянием конечного автомата**.

Если $e = (q, r) - \partial y$ га автомата M, и ее метка $\varphi(e)$ есть регулярное выражение λ , то в этом случае будем говорить, что в автомате M возможен переход из состояния q в состояние r по пустой цепочке и писать $q \to_{\lambda} r$. Дугу с меткой λ будем называть λ -переходом (или пустой дугой).

Если же метка дуги e есть множество, содержащее входной символ a, то будем говорить, что в автомате M возможен **переход из** состояния q в состояние r по символу a и писать $q \rightarrow_a r$.

est • Prev • Next • Last • Go Back • Full S

Согласно общему определению метки пути в размеченном орграфе метка пути в конечном автомате есть соединениеметок входящих в этот путь дуг (в порядке их прохождения). Таким образом, метка любого пути конечной длины в конечном автомате есть регулярный язык.

Если цепочка $x \in \varphi(W)$, где W — некоторый nymb, ведущий из вершины q в вершину r конечного автомата M, то говорят, что **цепочка** x **читается на пути** W в M. Пишем $q \Rightarrow_x^* r$, если x читается на некотором пути из q в r.

Стоимость прохождения из состояния q в состояние r есть (согласно общему определению этого понятия в размеченных орграфах) объединение меток всех путей, ведущих из q в r, т. е. множество всех таких x, что $q \Rightarrow_x^* r$.

Язык L(M) конечного автомата M есть множество всех цепочек во входном алфавите, читаемых в M на некотором пути из начального состояния в какое-либо из заключительных.

Чтобы найти язык конечного автомата, надо вычислить сумму тех элементов матрицы стоимостей автомата, которые находятся на пересечении строки, соответствующей начальному состоянию q_0 и в столбцов, соответствующих всем заключительным состояниям $q_f \in F$.

Чтобы практически вычислить язык конечного автомата, лостаточно

Чтобы практически вычислить язык конечного автомата, достаточно решить систему уравнений

$$\xi = A\xi + \beta,\tag{1}$$

где A - квадратная матрица n -ого порядка, элемент a_{ij} которой есть регулярное выражение, служащее меткой дуги из вершины (состояния) q_i в вершину (состояние) q_j , если такая дуга существует, и есть регулярное выражение \varnothing , если нет дуги из q_i в q_j ;

 β — столбец, компоненты с номерами t_1, \ldots, t_m , соответствующих заключительным состояниям, равны единице полукольца (λ), а все остальные компоненты равны нулю полукольца (\varnothing).

(Ко всем уравнениям системы, соответствующим заключительным состояниям, добавляется слагаемое λ .)

Решение системы (1) будет иметь вид:

$$\xi = A^*\beta = A^* \begin{pmatrix} \varnothing \\ \vdots \\ \varnothing \\ \lambda \\ \vdots \\ \varnothing \\ \lambda \\ \lambda \\ \varnothing \\ \vdots \\ \varnothing \end{pmatrix} t_m$$

$$(2)$$

(элементы λ находятся в строках с номерами t_1, \ldots, t_m). Умножая в (2) матрицу A^* , равную матрице C стоимостей, на столбец β , получим столбец, s-я компонента которого x_s будет равна произведению s-ой строки матрицы C $(c_{s1}, \ldots, c_{st_1}, \ldots, c_{st_m}, \ldots c_{sn})$ на столбец β , т.е.

$$x_s = c_{st_1} + \ldots + c_{st_m},$$

Полученное регулярное выражение описывает язык конечного автомата.

rst • Prev • Next • Last • Go Back • Full Screen • Close

Рис. 1

Пример 2. Найдем язык конечного автомата, изображенного на рис. 1. Запишем для этого автомата систему уравнений:

$$x_0 = ax_1 + bx_2,$$

 $x_1 = bx_0 + ax_1,$
 $x_2 = ax_0 + bx_1 + \lambda,$

Слагаемое λ добавлено в уравнение для x_2 , так как вершина q_2 является заключительной.

First • Prev • Next • Last • Go Back • Full Screen • Close • Quit

Исключая x_0 , получим

$$x_1 = b(ax_1 + bx_2) + ax_1,$$

 $x_2 = a(ax_1 + bx_2) + bx_1 + \lambda.$

Отсюда

$$x_1 = (ba + a)^*b^2x_2,$$

 $x_2 = (a^2 + b)(ba + a)^*b^2x_2 + abx_2 + \lambda.$

Тогда

$$x_2 = ((a^2 + b)(ba + a)^*b^2 + ab)^*,$$

 $x_1 = (ba + a)^*b^2((a^2 + b)(ba + a)^*b^2 + ab)^*.$

Отсюда получаем регулярное выражение, обозначающее язык KA, как значение переменной x_0 :

$$x_0 = a(ba+a)^*b^2((a^2+b)(ba+a)^*b^2+ab)^* + b((a^2+b)(ba+a)^*b^2+ab)^*.$$

Полученное регулярное выражение достаточно сложно, и найти его, не располагая заранее разработанным алгоритмом, было бы затруднительно.

Задачи

- **6.1.** Доказать, что язык $L^{+k} = \bigcup L^i$ регулярен для любого k при условии i=k>0регулярности L.
- **6.2.** Привести примеры слов в алфавите $\{a,b,c\}$, которые задаются следующими регулярными выражениями:
 - (a) $(a+b)^*c^*(b+c)$;
 - (6) $((ab)^+(ca)^*)^*$;
 - (B) $(a^+(b+c)^*a+b^+(a+b)^*bc)^*$;
- 6.3. Найти языки, допускаемые конечными автоматами, заданными на рис. 2.

- 6.4. Найти язык, допускаемый конечным автоматом:
- (а) вход: q_1 ; выходы: q_2 , q_3 ; дуги: (q_1,q_2,a) , (q_1,q_4,a,b) , (q_2,q_4,a,b) , (q_3,q_4,λ) , (q_4,q_3,a,b) , (q_3,q_2,a,b) , (q_4,q_2,b) ;
- (б) входы: q_0 , q_1 ; выходы: q_2 , q_1 ; дуги: (q_0,q_2,a,b,c) , (q_0,q_1,a) , (q_1,q_0,a,b) , (q_1,q_2,a,c) , (q_2,q_0,c) , (q_2,q_2,a,b) .
 - 6.5. Решить систему линейных уравнений с регулярными коэффициентами:

$$\begin{cases} x_1 = (01^* + 1)x_1 + x_2, \\ x_2 = 1x_1 + 00x_3 + 11, \\ x_3 = x_1 + x_2 + \lambda. \end{cases}$$

Для регулярного выражения, задающего компоненту решения x_3 , построить допускающий его конечный автомат.

- **6.6.** Доказать, что линейное уравнение $x = \alpha x + \beta$ с регулярными коэффициентами:
 - (a) имеет единственное решение при $\lambda \notin \alpha$;
- (б) имеет бесконечно много решений при $\lambda \in \alpha$, причем общее решение можно записать в виде $x=\alpha^*(\beta+L)$, где L произвольный язык.
- **6.7.** Инверсия цепочки $x \in V^*$ это цепочка символов x^R , полученная переписыванием x справа налево, т.е. если $x = a_{j1} \dots a_{jn}$, то $x^R = a_{jn} \dots a_{j1}$. Доказать, что если L регулярный язык, то $L^R = \{y \mid y = x^R \, , \, x \in L\}$ регулярный язык. Дайте два варианта доказательства:
 - 1) используя только определение регулярного языка;
 - 2) используя конечные автоматы.