

1

Quantitative estimation of the impact of European teleconnections on interannual variation of East Asian winter temperature and monsoon

4

5

6 Young-Kwon Lim¹ and Hae-Dong Kim²

7

⁸ ¹ NASA Goddard Space Flight Center, Goddard Earth Sciences Technology
9 and Research (GESTAR), I. M. System Group, Maryland, U.S.A.
10 (Email: Young-Kwon.Lim@nasa.gov)

11

14

15

16 January 28, 2014

17 Submitted to Journal of Climate

18

19

Abstract

20 The impact of European teleconnections including the East Atlantic/West Russia
21 (EA/WR), the Scandinavia (SCA), and the East Atlantic (EA) on East Asian winter
22 temperature variability was quantified and compared with the combined effect of the Arctic
23 Oscillation (AO), the Western Pacific (WP), and the El-Niño Southern Oscillation (ENSO),
24 which are originated in the Northern Hemispheric high-latitudes or the Pacific. Three
25 European teleconnections explained 22–25% of the total monthly upper-tropospheric height
26 variance over Eurasia. Regression analysis revealed warming by EA/WR and EA and
27 cooling by SCA over mid-latitude East Asia during their positive phase and vice versa.
28 Temperature anomalies were largely explained by the advective temperature change
29 process at the lower troposphere. The average spatial correlation over East Asia (90–180°E,
30 10–80°N) for the last 34 winters between observed and reconstructed temperature
31 comprised of AO, WP and ENSO effect (AWE) was ~0.55, and adding the European
32 teleconnection components (ESE) to the reconstructed temperature improved the
33 correlation up to ~0.64. Lower level atmospheric structure demonstrated that approximately
34 five of the last 34 winters were significantly better explained by ESE than AWE to
35 determine East Asian seasonal winter temperatures. We also compared the impact between
36 EA/WR and AO on the 1) East Asian winter monsoon, 2) cold surge, and 3) the Siberian
37 high. These three were strongly coupled, and their spatial features and interannual variation
38 were somewhat better explained by EA/WR than AO. Results suggest that the EA/WR
39 impact must be treated more importantly than previously thought for a better understanding
40 of East Asian winter temperature and monsoon variability.

41

42 1. Introduction

43 The impact of planetary-scale circulation patterns (i.e., teleconnection) on East Asian
44 winter temperature variability have been explored in many studies primarily focusing on
45 the Arctic Oscillation (AO) (Jeong and Ho 2005; Park et al. 2011) or El Niño Southern
46 Oscillation (ENSO) (Chen et al. 2004). However, recent studies argue the decreasing role
47 of ENSO (He et al. 2013) and increasing role of other large-scale patterns to influence East
48 Asian winter temperatures. For example, Lim et al. (2012) and Liu et al. (2012) found the
49 importance of the Arctic sea ice variation to drive an anomalously warm or cold winter
50 over East Asian region. Another important factor that possibly affects East Asian winter
51 temperature is the teleconnection patterns originating in the North Atlantic. Several studies
52 have suggested the possible impact of the European teleconnections on East Asian winter
53 climate variability (Bueh and Nakamura 2009; Wang et al. 2011). The East Atlantic/West
54 Russia (EA/WR) (Barnston and Livezey 1987; Washington et al. 2000), Scandinavia (SCA)
55 (Wallace and Gutzler 1981), and East Atlantic (EA) (Bojariu and Reverdin 2002) patterns
56 are examples of European teleconnections suggesting to affect East Asian winter
57 temperatures. However, their importance in determining East Asian winter temperatures
58 has not attracted any significant or detailed investigations. Few studies have critically
59 examined the responsible dynamic mechanism and assessed the significance of their
60 impacts, compared with the relatively well-understood impacts originating from the Pacific
61 (e.g., the Western Pacific (WP) and the ENSO) or the Northern hemispheric high-latitudes
62 (e.g., AO).

63 The AO is understood to be a dominant teleconnection resolving East Asian winter
64 monsoon (EAWM) variability (Gong et al. 2001; Li and Yang 2010). However, Wang et al.

65 (2011) suggested the possible role of EA/WR in modulating EAWM variability. That study
66 found a correlated structure between meridional wind anomalies over East Asia in winter
67 and sea surface temperatures in the preceding summer over the North Atlantic, where the
68 study presumed was the source region for the EA/WR-like teleconnection pattern. We also
69 suggest that the large-scale pressure anomaly in central Russia driven by the EA/WR can
70 affect the EAWM significantly. This pressure pattern is strongly related to the Siberian high,
71 and as commented in Wu and Wang (2002b), this Siberian high may not be necessarily
72 dependent on the AO for influencing the EAWM. It would be worthwhile to compare the
73 strength of the EA/WR impact with the AO impact on East Asian winter temperatures
74 including winter monsoon.

75 The present study was motivated by the lack of understanding of the possible role of
76 European teleconnections in modulating East Asian winter temperatures and monsoon
77 variability. In this study, we intended to clarify whether the European teleconnections are
78 one of the dominant components comprising large-scale climate variability over East Asia.
79 Their impact was then quantitatively estimated through regression, correlation, and a
80 temperature advective process (Linkin and Nigam 2008) to better identify their role in
81 determining anomalous winter temperatures over East Asia. The degree of their
82 contribution to East Asian winter temperature was also compared with the combined effects
83 of AO, WP, and ENSO. Particularly, the impact of EA/WR and AO, respectively, on
84 EAWM activity was compared to better identify their importance to modulate East Asian
85 winter climate variability.

86 Section 2 describes the dataset and analysis method used in this study. Estimation of
87 the impact of European teleconnections and their comparison with the impact of AO, WP

88 and ENSO are addressed in Section 3. Section 3 also compares the strength between the
89 impact of EA/WR and AO on EAWM activity and the related cold surge, followed by
90 concluding remarks and discussion in Section 4.

91

92 2. Data and methods

93 The primary analytical methods utilized in this study are the rotated empirical
94 orthogonal function (REOF) technique (Richman 1986) and linear regression. The REOF
95 was applied to upper-tropospheric monthly height archived at the Modern Era
96 Retrospective analysis for Research and Applications (MERRA) reanalysis (Rienecker et
97 al. 2011). The analysis time period covers the past 34 winters from December–February
98 (DJF) 1979/80 through DJF 2012/13. Horizontal resolution of the data is 0.5° (latitude) \times
99 0.6667° (longitude). Lower-level (850 hPa) wind and temperature data were used to
100 investigate the thermal advective process over the East Asian domain. We also used 2
101 meter level MERRA temperature data to compare temperature anomalies induced by the
102 impact of European teleconnections with the observed temperature anomalies. Several
103 indices were used, including the East Asian winter monsoon index (EAWSI) (Jhun and
104 Lee 2004; Li and Yang 2010), the cold surge index (CSI) (Chang et al. 2005) and the
105 Siberian high index (SHI) (Panagiotopoulos et al. 2005) to investigate the impact of
106 EA/WR and AO on interannual variation of EAWM and the cold surge.

107

108 3. Results

109 *a. Impact of European teleconnections*

110 Dominant large-scale teleconnection patterns were captured using the upper level (250
111 hPa) geopotential height for the domain that spans Europe and Asia. The monthly
112 climatological cycle of the height field for DJF was removed and the REOF technique was
113 applied to capture the leading teleconnection patterns. Three European teleconnection
114 patterns that show height anomalies over East Asia (left panel in Fig. 1) were identified, as
115 well as patterns originating in the Pacific or the Northern hemispheric high-latitude such as
116 AO (right panel in Fig. 1). Anomalies are plotted on a positive phase basis in Fig. 1. The
117 sum of their percentage variance tended to be sensitive to a slight domain change, but it
118 varied within the range of 45–50%. We compared the principal component (PC) time series
119 with the corresponding teleconnection time series available from the National Center for
120 Environmental Prediction (NCEP)/Climate Prediction Center (CPC)
121 (ftp://ftp.cpc.ncep.noaa.gov/wd52dg/data/indices/tele_index.nh) to confirm if
122 teleconnection patterns captured here are reliable. We found that the PC and teleconnection
123 time series are highly correlated (>0.7).

124 The EA/WR pattern in Figure 1a consists of two large-scale anomalies over Europe
125 located in Western Europe and Russia north of the Caspian Sea (Barnston and Livezey
126 1987; Washington et al 2000; Wang et al 2011) and an anomaly over the mid-latitude Asian
127 sector. The pattern appears to have a large-scale wave propagation structure spanning the
128 Atlantic, Europe, western Russia, and East Asia. The positive height anomaly over East
129 Asia north of 40°N with the negative anomaly south of it implies anticyclonic circulation
130 with the easterly anomaly from the Pacific along 35–40°N during the positive phase,
131 whereas the opposite is true for the negative phase.

132 The SCA pattern shows height anomalies of the opposite sign occurring over the
133 Scandinavian Peninsula, and southern and eastern Europe (Fig. 1b) (Wallace and Gutzler
134 1981). In addition to the Scandinavian Peninsula and mid-latitude Europe (Bueh and
135 Nakamura 2007), the anomaly values over continental Asia indicate the possible SCA
136 impact on Asian winter climate variability.

137 Figure 1c shows the EA pattern characterized by strong north-south dipole anomalies
138 over the southern part of Europe (Sáenz et al 2001; Bojariu and Reverdin 2002). A positive
139 anomaly over the western part of continental Asia and a negative anomaly around China
140 and Mongolia are found, though their magnitudes are smaller than those over the Atlantic.
141 The southerly wind anomaly can be dominant along the eastern side of the negative height
142 anomaly over China, transporting a warm air mass to the eastern China, Korea, and Japan
143 during this positive EA phase.

144 Spatial distribution of the AO consists of the zonally symmetric alternating anomalies
145 in the Arctic and the Northern Hemispheric mid-latitudes (Fig. 1d) (Thompson and Wallace
146 1998). It is clear that an easterly anomaly crossing the southern part of Japan and Korea is
147 feasible during the positive phase, whereas the negative phase favors a westerly anomaly
148 along mid-latitude East Asia ($30\text{--}40^{\circ}\text{N}$) that could transport a continental cold air mass to
149 this region.

150 Figure 1e represents the WP pattern (Wallace and Gutzler 1981; Mo and Livezey 1986;
151 Barnston and Livezey 1987) characterized by a north-south dipole of height (or pressure)
152 anomalies over the northwestern Pacific. East Asian winter climate can be influenced by
153 circulation on the western side of these height anomalies. Additionally, the meridional
154 pressure gradient during the WP event can modulate intensity of upper-level westerlies

155 (Linkin and Nigam 2008). The height field associated with ENSO in Fig. 1f exhibits a
156 broad positive height anomaly distribution over the East Asian mid-latitudes (30–50°N) and
157 negative anomaly over the southeastern China during an El Niño episode, whereas the
158 opposite response will be true for the La Niña phase.

159 Actual temperature anomalies associated with each European teleconnection (EA/WR,
160 SCA and EA) were quantitatively estimated by regressing the monthly 2 meter air
161 temperature anomalies onto the monthly teleconnection time series. Figure 2a shows a
162 positive temperature response to the positive EA/WR, spanning Northern China, Mongolia,
163 Russia near Lake Baikal, Korea and Japan, whereas a cold temperature response is true for
164 the negative EA/WR. Specifically, the impact of EA/WR tends to be strong in Russia near
165 Lake Baikal with a temperature magnitude greater than 1K. With the magnitude smaller
166 than 1K, the areas affected by EA/WR with a statistical significance over East Asian mid-
167 latitudes are Korea, Japan and northern China north of 35°N.

168 Figure 2b clearly shows that nearly all Eurasia regions have a negative temperature
169 anomaly during the positive SCA. The SCA impact reaches East Asia including the
170 southeastern part of China. Negative temperature anomalies in the range of −1K–−0.5K are
171 found over northern China, Mongolia, and northern Korea, whereas a negative temperature
172 response smaller than that is distributed over Korea, Japan, and eastern China south of
173 40°N. In contrast, a weak positive temperature response < 0.5K is found over the
174 southeastern part of China.

175 The temperature pattern associated with the positive EA in Fig. 2c demonstrates wide
176 coverage of the EA impact spanning East Asia, as the influence over the Korean Peninsula
177 was suggested in Kim et al. (2012). The sign and magnitude of the anomaly is comparable

178 to that of EA/WR, exhibiting a value greater (less) than 0.5K over the region north (south)
179 of $\sim 40^{\circ}\text{N}$.

180 The right panels in Fig. 2 represent the regressed lower-level (850 hPa) temperature
181 advection [K day^{-1}] and circulation associated with each teleconnection. Advective
182 temperature change is calculated by $-\mathbf{V}_{Tel} \cdot \nabla T_{Cli}$ (Linkin and Nigam 2008). \mathbf{V}_{Tel} represents
183 the regressed horizontal winds related to each teleconnection, whereas T_{Cli} are the monthly
184 climatological temperatures. The contribution of the nonlinear component, $-\mathbf{V}_{Tel} \cdot \nabla T_{Tel}$,
185 and the other linear component, $-\mathbf{V}_{Cli} \cdot \nabla T_{Tel}$, was ignored because their values are an
186 order of magnitude smaller than $-\mathbf{V}_{Tel} \cdot \nabla T_{Cli}$. Figure 2d reveals that an anticyclonic
187 circulation was dominant during the positive EA/WR phase over the mid-latitude East Asia
188 and the western Pacific, where a positive height anomaly is seen in Fig. 1a. Favorable
189 conditions for a southerly wind anomaly developed, leading to a warm advection anomaly
190 over vast areas of East Asia covering Mongolia, China, Korea, and Japan. During the
191 positive SCA, the atmosphere is characterized by cold advection with a relatively weak
192 northerly wind anomaly over East Asia (Fig. 2e). In contrast, warm advection in
193 conjunction with southwesterly anomaly is observed over the southeastern China area with
194 statistical significance. The impact of positive EA is a warming over most of East Asian
195 domain, similar to the impact of a positive EA/WR. Figure 2f reveals that warm advection
196 and a southerly wind anomaly is dominant, linked to the eastern side of negative height
197 anomaly and the western side of the positive height anomaly over East Asia found in Fig.
198 1c.

199 The magnitude of wind vectors over East Asia is generally smaller than those over the
200 Siberian region because East Asia is situated in the far eastern side of the downstream

201 region of European teleconnections, where the eastward wave propagation associated with
202 the teleconnections could likely weaken (Bueh and Nakamura 2007; Wang et al 2011; Lim
203 and Kim 2013). However, wind anomalies appear strong enough to influence winter
204 temperature variability over East Asia, as illustrated in Fig. 2. Note that the temperature
205 anomaly and circulation in the event of the negative teleconnection phase can be
206 understood in an opposite manner. The cooling effect by EA/WR and EA and the warming
207 effect by SCA are feasible during their negative episodes.

208

209 *b. Comparison of the impact of European teleconnections with AO, WP, and ENSO*

210 Figures 1 and 2 strongly demonstrate that East Asian winter temperature variability is
211 determined not only by the combined effect of AO, WP, and ENSO (referred to as AWE),
212 but also by the European teleconnections (referred to as ESE). Here, we reconstructed the
213 three sets of monthly temperature data. One set contains the impacts of both AWE and ESE,
214 another contains the ESE effect only, and the other contains the AWE effect only. Data
215 reconstruction was completed by linear combination of the regressed temperature
216 anomalies and corresponding teleconnection time series. We then calculated the spatial
217 correlation between the reconstructed temperatures and observed temperature anomalies in
218 each year for the domain covering East Asia ($90\text{--}180^\circ\text{E}$, $10\text{--}80^\circ\text{N}$). Figure 3a is a time
219 series of the resulting spatial correlation values over all 34 winters. The red line
220 representing the correlation of temperatures due to AWE impact with the observations
221 reveals reasonable reproduction of the observed East Asian winter temperature variability,
222 producing a correlation average of 0.55 over all 34 winters. The blue line representing the
223 ESE impact has a correlation average of 0.51. More critical inspection of these time series

224 identified several winters such as 1982–83, 1989–90, 1996–97, 2003–04, 2004–05, 2008–
225 09, and 2011–12 when the observed temperatures were rather poorly reproduced by the
226 AWE impact (see the red line with correlations $< \sim 0.4$ for those seven winters). Of these
227 seven winters, observed temperatures during five winters, except 1989–90 and 2008–09,
228 were much better explained when both the AWE and ESE impacts were considered, as the
229 black line reflecting the combined effect of both AWE and ESE revealed improved
230 correlation values for those five winters. The correlation value due to the AWE impact was
231 only 0.04 on average for those five winters and the correlation significantly increased up to
232 0.65 after considering both the AWE and ESE impacts. Over all 34 winters, the time series
233 in black, representing the combined effect of AWE and ESE, improved the correlation
234 average to 0.64 from 0.55, which is the correlation due to the AWE impact only.

235 Figure 3b–3g illustrate that observed temperature distributions (Figs. 3d and 3g) are
236 remarkably better explained by considering both the AWE and ESE impacts for the
237 selected two year cases (1996–97 and 2011–12) mentioned in the previous paragraph
238 (Figures 3b and 3e) rather than considering the AWE impact only. Our analysis for the
239 other winter cases of 1982–83, 2003–04, and 2004–05 support this conclusion (figure not
240 shown). However, the remaining winters (28–29 winters) do not exhibit a significantly
241 greater correlation when both AWE and ESE impacts are considered, compared with
242 considering only the AWE impact, as shown in Fig. 3a (see similar correlation values
243 denoted by black and red for many winter cases). This result indicates that although the
244 ESE impact is important to significantly improve the correlation obtained by considering
245 AWE impact only, that significant improvement does not occur for all years. Many winter

246 cases reveal that the observed temperature was reasonably reproduced by AWE impacts
247 without a substantial addition of ESE impacts.

248 Atmospheric structures of lower-level temperature advection and circulation due to the
249 ESE impact (left panel in Fig. 4) and AWE impact (right panel in Fig. 4), respectively, were
250 compared for the three selected winters (1996–97, 2003–04 and 2011–12) to more clearly
251 demonstrate that the ESE impact sometimes play a crucial role in reliably explaining the
252 observed temperature distribution shown in Fig. 3. The spatial distribution of temperature
253 advection by the ESE impact for 1996–97 (Fig. 4a) and 2011–12 (Fig. 4c) better reproduces
254 the observed temperature distribution (Figs. 3d and 3g) than the pattern caused by the AWE
255 impact shown in Figs. 4d and 4f. Specifically, the 2011–12 winter was severely cold (Fig.
256 3g) over East Asia and seemed to be a result of European teleconnections that enhanced
257 cold advection (compare Figs. 4c and 4f). Additionally, the 2003–04 winter was recorded
258 as an anomalously warm winter over East Asia (<http://www.ncdc.noaa.gov/temp-and-precip/global-maps.php>) and this observational feature was better explained by ESE
259 impacts, as warm advection was found over continental East Asia in Fig. 4b but it was not
260 in Fig. 4e (AWE impacts).

262

263 *c. Impact of teleconnection on East Asian winter monsoon and cold surge*

264 East Asian winter temperature is largely influenced by frequency and intensity of cold
265 surges, which are closely linked to the EAWM. Previous studies have argued a dominant
266 role of AO in determining the EAWM activity and cold surge (Gong et al. 2001; Park et al.
267 2011). Park et al. (2011) also addressed, however, that occurrence of cold surge in the form
268 of wave train was little related to the AO phase, indicating that we still need a clarification

whether or not the AO phase is a predominant factor to determine EAWM activity and the cold surge over East Asia. In this section, we compared the impact of AO with the impact of EA/WR on 1) East Asian winter monsoon, 2) the cold surge and 3) the Siberian high to verify if the impact of AO is really the most dominant factor to determine variation in those three features. We first defined the EAWM index (EAWMI) (Fig. 5, red-solid line) following Jhun and Lee (2004) and Li and Yang (2010) based on variations in the upper-level westerly jet over East Asia. We found that those two indices were very highly correlated ($r = 0.87$). Table 1 shows temporal correlations between teleconnection indices (EA/WR and AO) and EAWMI time series. Negative correlation values indicate a strong EAWM during the negative phase of EA/WR and AO, and vice versa. It is clear that EAWMI has a stronger negative correlation with the EA/WR (-0.59) than with the AO (-0.24). Stronger negative correlations with the EA/WR are also found for the cold surge index (CSI) (Fig. 5, red-dashed line) and the Siberian high index (SHI) (Fig. 5, red-dotted line), which will be discussed in more detail later. Figure 5 shows that all indices (EAWMI, CSI, SHI, -EA/WR and -AO) exhibit upward trends for the periods $\sim 1988/89\text{--}2012/13$ winter. Calculating the correlation after removing this linear upward trend over the ~ 25 winters once again produced a stronger negative correlation with the EA/WR (~ -0.35) than with the AO (~ -0.10), which is no longer significant. This low correlation with the AO is consistent with Jhun and Lee (2004) and Wu et al. (2006) who suggested little correlation between AO and EAWM on an interannual time scale.

Atmospheric spatial patterns regressed onto the EAWMI were calculated and then compared with those regressed onto the negative phase of EA/WR and AO, respectively. Figure 6 clearly shows that strong EAWM over East Asia is characterized by below

average temperature (Fig. 6a), northerly flow coming from Siberia and the northwestern Pacific (Fig. 6b), enhanced upper-level westerly in mid-latitudes ($\sim 20^\circ\text{--}40^\circ\text{N}$) (Fig. 6c) and upper-level continental convergence and oceanic divergence (Fig. 6d). The spatial distributions of these patterns are quite close to the regressed patterns associated with the negative EA/WR shown in Figs. 7a–c. The temperature distribution in Fig. 6a also significantly resembles the pattern in Fig. 2a multiplied by -1 , indicating a strong EAWM during the negative EA/WR and vice versa. Figures 7d–f represents the negative AO impact and exhibit similar spatial distributions to those associated with EAWMI (Fig. 6), but the similarity between them is relatively weaker than that between the negative EA/WR (Figs. 7a–c) and EAWMI (Fig. 6). For example, the magnitude of upper level westerly anomalies and their locations shown in Fig. 6c are better explained by Fig. 7b than by Fig. 7e. The pressure distribution with the sea-land contrast and large-scale anomaly centered over Siberia seen in Fig. 6b is better reproduced by Fig. 7a than by Fig. 7d. Upper-level divergent/convergent flow between the Asian continent and the northwestern Pacific, which is a typical characteristic of large-scale monsoon circulation, is also better structured in Fig. 7c than in Fig. 7f. These characteristic differences imply a connection between EAWM and EA/WR comparable to or closer than a connection between EAWM and AO. Spatial correlations ($90^\circ\text{--}150^\circ\text{E}$ and $20^\circ\text{--}60^\circ\text{N}$) in Table 2 clarifies that EAWM activity has closer connection with the phase of EA/WR than with the AO. These results are somewhat different from several studies that argued the most dominant role for AO in determining the EAWM intensity (e.g., Gong et al. 2001; Wu and Wang 2002a). However, Gong et al. (2001) also suggested a significant contribution of the Eurasian teleconnection pattern (e.g., EA/WR) to better explain the interannual variation of EAWM and the Siberian high.

315 EAWM activity is also understood to be an indicator of cold surge activity (Jhun and
316 Lee 2004; Li and Yang 2010). Chang et al. (2005) defined CSI for the South China Sea and
317 southeastern Asia using the meridional wind component. We applied that definition to the
318 mid-latitudes for the domain of 90°–130°E and 40°–60°N, which covers northeastern Asia
319 and the eastern side of Siberian high. The CSI was defined as the area-averaged meridional
320 wind over this spatial domain (Fig. 5, red-dashed line). This region was selected because it
321 is a good pathway for the meridional wind coming from the Northern high-latitudes toward
322 mid-latitude East Asia. Note that merigional wind components were multiplied by -1 so
323 that the CSI value is positive during the cold surge year and vice versa. Regressed patterns
324 associated with the CSI were found to resemble Fig. 6, demonstrating that the EAWM is an
325 indicator of cold surge activity over East Asia (Fig. 8). The temporal correlation between
326 CSI and EAWMI is 0.77. Table 3 clearly demonstrates a stronger relationship between the
327 cold surge and negative EA/WR than with the negative AO, which is a good agreement
328 with the conclusion in Table 2.

329 The reason for the higher correlation between the EAWMI and CSI with the EA/WR
330 than with the AO seems to be associated with a better representation of the Siberian high
331 pressure variation due to the impact of EA/WR than AO. This, in turn, indicates that the
332 Siberian high may not be closely linked to the AO (Wu and Wang 2002b). For confirmation,
333 we calculated the Siberian high index (SHI) following Panagiotopoulos et al. (2005) and
334 Hasanean et al. (2013) and then examined its correlation with the EA/WR and AO,
335 respectively.

336 The temporal correlation between SHI vs. CSI and SHI vs. EAWMI is 0.81 and 0.69,
337 respectively, over the last 34 winters, indicating that the Siberian high is strongly coupled

338 with the winter monsoon and cold winters over East Asia (Gong and Ho 2002). The spatial
339 distributions regressed onto SHI shown in Fig. 9 are nearly consistent with the patterns
340 regressed onto EAWMI (Fig. 6). Spatial correlations (90° – 150° E and 20° – 60° N) between
341 SHI and two teleconnections (EA/WR and AO) shown in Table 4 demonstrate that EA/WR
342 better represents the variation in the Siberian high than that of AO. Cheung et al. (2012)
343 described the dominant role of Ural-Siberian blocking for influencing the EAWM. The
344 pressure pattern associated with the blocking (Fig. 3a in Cheung et al. (2012)) resembled
345 the typical pattern of EA/WR over Russia. Our results support the arguments by several
346 studies that the impact of AO alone does not faithfully explain the variation of Siberian
347 high (Wu and Wang 2002b) and the EAWM activity on an interannual time scale (Jhun and
348 Lee 2004).

349

350 4. Conclusion and discussion

351 We investigated the impacts of European teleconnections (ESE: EA/WR, SCA, and
352 EA) on East Asian winter temperature variability focusing on quantifying their impacts and
353 comparing with the impact of AWE (AO, WP and ENSO). The sum of ESE and AWE
354 explained 45–50% of the total monthly upper-troposphere height variance over Eurasia
355 with 22–25% each. Statistically significant temperature anomalies, which are associated
356 with one standard deviation in each teleconnection time series based on linear regression,
357 were found with a 0.5–1K amplitude over mid-latitude East Asia. We found that these
358 temperature anomalies were largely explained by the advective temperature change process
359 at the lower atmospheric level. Of the last 34 winters, five (1982–83, 1996–97, 2003–04,

360 2004–05, and 2011–12) exhibited significantly better reproduction of the observed seasonal
361 temperature anomalies due to the impact of ESE than that by AWE.

362 It appears that ESE’s overwhelming impact was often found when the strength of the
363 AO impact was weaker than average. The average amplitude of the AO indices obtained
364 from the NCEP/CPC for those five winters was 0.40 with a maximum of 0.98 (2003–04
365 winter), whereas the average over all 34 winters was 0.90.

366 We also determined that the conventional understanding that AO is the most dominant
367 teleconnection to affect the EAWM may need to be re-evaluated. The comparison between
368 the impact of EA/WR and AO on the EAWM activity, the cold surge and the Siberian high
369 provided consistent results that the EA/WR tends to better represent their interannual
370 variation. The EA/WR modulates the variation in the Siberian high more effectively than
371 that of the AO. As evidenced by correlations and regressed patterns in this study, variations
372 in the Siberian high and corresponding monsoon circulation, which leads to a
373 warmer/colder winter over East Asia, was more accurately reproduced by the EA/WR
374 impact, though the AO impact also explained them reasonably.

375 In this study, the North Atlantic Oscillation (NAO) was also captured as one of the
376 dominant REOF modes over the Eurasian domain. However, we did not consider the NAO
377 because of the very small magnitude of the regressed temperature anomalies over mid-
378 latitude East Asia. This is in agreement with Wang et al. (2005) who addressed regionality
379 of the NAO impact. As a result, no significant temperature anomalies were produced over
380 East Asia. Thus, the NAO contributed little to the interannual temperature variability and
381 spatial correlation discussed in Figure 3. Additionally, the calculated spatial correlations
382 with the EAWMI, CSI and SHI-associated patterns (Table 1 through 4) produced lower

383 correlation coefficients with the NAO (correlations not shown) than with any other
384 teleconnection. Jhun and Lee (2004) and Hong et al. (2008) suggested that the impact of
385 NAO is more related to the decadal-scale East Asian cold extreme variability or EAWM
386 rather than to interannual time-scale variability. Decadal-scale variation was not fully
387 examined in this study due to the limited analysis period. Nonetheless, the evidence
388 presented here indicated that the ESE impact, particularly the EA/WR, needs to be treated
389 more importantly than previously thought for a better understanding of the interannual
390 variations in East Asian winter temperature and monsoon.

391

392 Acknowledgement

393 This research was supported by the Scholar Research Grant of Keimyung University in
394 2013.

395

- 396 **References**
- 397 Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of
398 low-frequency atmospheric circulation patterns. *Mon. Wea. Rev.*, **115**, 1083-1126.
- 399 Bojariu, R., and G. Reverdin, 2002: Large-scale variability modes of freshwater flux and
400 precipitation over the Atlantic. *Clim. Dyn.*, **18**, 369-381.
- 401 Bueh, C., and H. Nakamura, 2007: Scandinavian pattern and its climate impact. *Quart. J.*
402 *Royal. Meteor. Sci.*, **133**, 2117-2131.
- 403 Chen, T.-C., W.-R. Huang, and J.-H. Yoon, 2004: Interannual variation of the East Asian
404 cold surge activity. *J. Climate*, **17**, 401-413.
- 405 Gong, D.-Y., S.-W. Wang, and J.-H. Zhu, 2001: East Asian winter monsoon and Arctic
406 Oscillation. *Geophys. Res. Lett.*, **28**, 2073-2076.
- Gong, D.-Y., and C.-H. Ho, 2002: Siberian high and climate change over middle to high
latitude Asia. *Theor. App. Climatol.*, **72**, 1-9.
- 407 Hasanean, H. M., M. Almazroui, P. D. Jones, and A. A. Alamoudi, 2013: Siberian high
408 variability and its teleconnectios with tropical circulations and surface air temperature
409 over Saudi Arabia. *Clim. Dyn.*, **41**, 2003-2018, doi:10.1007/s00382-012-1657-9.
- 410 He, S., H. Wang, and J. Liu, 2013: Changes in the relationship between ENSO and Asia-
411 Pacific midlatitude winter atmospheric circulation. *J. Climate*, **26**, 3377-3393.
- 412 Hong, C.-C., H.-H. Hsu, H.-H. Chia, and C.-Y. Wu, 2008: Decadal relationship between
413 the North Atlantic Oscillation and cold surge frequency in Taiwan. *Geophys. Res. Lett.*,
414 **35**, L24707, doi:10.1029/2008GL034766.

- 415 Jeong, J.-H., and C.-H. Ho, 2005: Changes in occurrence of cold surges over East Asia in
416 association with Arctic Oscillation. *Geophys. Res. Lett.*, **32**, L14704,
417 doi:10.1029/2005GL023024.
- 418 Jhun, J.-G., and E.-J. Lee, 2004: A new East Asian winter monsoon index and associated
419 characteristics of the winter monsoon. *J. Climate*, **17**, 711-726.
- 420 Kim, J.-S., S. Jain, and Y.-I. Moon, 2012: Atmospheric teleconnection-based conditional
421 streamflow distributions for the Han River and its sub-watersheds in Korea. *Int. J.*
422 *Climatol.*, **32**, 1466-1474.
- 423 Li, Y., and S. Yang, 2010: A dynamical index for the East Asian winter monsoon. *J.*
424 *Climate*, **23**, 4255-4262.
- 425 Lim, Y.-K., Y.-G. Ham, J.-H. Jeong, and J.-S. Kug, 2012: Improvement in simulation of
426 Eurasian winter climate variability with realistic Arctic sea ice condition in an
427 atmospheric GCM. *Env. Res. Lett.*, **7**, 044041(6pp) doi:10.1088/1748-9326/7/4/044041.
- 428 Lim, Y.-K., and H.-D. Kim, 2013: Impact of the dominant large-scale teleconnections on
429 winter temperaturevariability over East Asia. *J. Geophys. Res. Atmos.*, **118**, 7835–7848,
430 doi:10.1002/jgrd.50462.
- 431 Linkin, M. E., and S. Nigam, 2008: The North Pacific Oscillation – West Pacific
432 teleconnection pattern: mature-phase structure and winter impacts. *J. Climate*, **21**,
433 1979-1997.
- 434 Liu, J., J. A. Curry, H. Wang, M. Song, and R. M. Horton, 2012: Impact of declining Arctic
435 sea ice on winter snowfall. *PNAS*, **109**, 4074-4079.

- 436 Mo, K. C., and R. E. Livezey, 1986: Tropical-extratropical geopotential height
437 teleconnections during the northern hemisphere winter. *Mon. Wea. Rev.*, **114**, 2488-
438 2515.
- 439 Panagiotopoulos, F., M. Shahgedanova, A. Hannachi, and D. Stephenson, 2005: Observed
440 trends and teleconnections of the Siberian High. *J. Climate*, **18**, 1411-1422.
- 441 Park, T.-W., C.-H. Ho, and S. Yang, 2011: Relationship between the Arctic Oscillation and
442 cold surges over East Asia. *J. Climate*, **24**, 688-83.
- 443 Richman, M. B., 1986: Rotation of principal components. *J. Climatol.*, **6**, 293–335.
- 444 Riendecker, M. M., and Coauthors, 2011: MERRA – NASA’s Modern-Era Retrospective
445 Analysis for Research Applications. *J. Climate*, **24**, 3624-3648.
- 446 Sáenz, J., C. Rodríguez-Puebla, J. Fernández, and J. Zubillaga, 2001: Interpretation of
447 interannual winter temperature variations over southwestern Europe. *J. Geophys. Res.*,
448 **106**, D18, 20641-20651.
- 449 Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic oscillation signature in the
450 wintertime geopotential height and temperature fields. *Geophys. Res. Lett.*, **25**(9),
451 1297–1300, doi:10.1029/98GL00950.
- 452 Wang, D., C. Wang, X. Yang, and J. Lu, 2005: Winter Northern Hemisphere surface air
453 temperature variability associated with the Arctic Oscillation and North Atlantic
454 Oscillation. *Geophys. Res. Lett.*, **32**, L16706, doi:10.1029/2005GL022952.
- 455 Wang, X., C. Wang, W. Zhou, D. Wang, and J. Song, 2011: Teleconnected influence of
456 North Atlantic sea surface temperature on the El Niño onset. *Clim. Dyn.*, **37**, 663-676,
457 DOI:10.1007/s00382-010-0833-z.

- 458 Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field
459 during the Northern Hemisphere winter. *Mon. Wea. Rev.*, **109**, 784–812.
- 460 Washington, R., A. Hodson, E. Isaksson, and O. Macdonald, 2000: Northern hemisphere
461 teleconnection indices and the mass balance of Svalbard glaciers. *Int. J. Climatol.*, **20**,
462 473-487.
- 463 Wu, B., and J. Wang, 2002a: Possible impacts of winter Arctic Oscillation on Siberian high,
464 the East Asian winter monsoon and sea-ice extent. *Advan. Atmos. Sci.*, **19**, 297-320.
- 465 Wu, B., and J. Wang, 2002b: Winter Arctic Oscillation, Siberian high and East Asian
466 winter monsoon. *Geophys. Res. Lett.*, **29**, 1897, doi:10.1029/2002GL015373
- 467 Wu, B., R. Zhang, and R. D'Arrigo, 2006: Distinct modes of the East Asian winter
468 monsoon. *Mon. Wea. Rev.*, **134**, 2165-2179.
- 469

470

471 Table 1 Temporal correlation between the East Asian winter monsoon index (EAWSI),
472 cold surge index (CSI), Siberian high index (SHI), respectively, with teleconnection
473 indices (EA/WR and AO)

474

475

476

477

478

479

480

481

482

483

484

485

486

	EA/WR	AO
EAWSI	-0.59	-0.24
CSI	-0.54	-0.27
SHI	-0.57	-0.21

487

488 **Table 2 Spatial correlation between the pattern associated with the East Asian winter**
489 **monsoon index and teleconnection (EA/WR and AO)**

490

	T2m	UV850	SLP	U300	Velp
EAWMI .vs. EA/WR	-0.87	-0.86	-0.97	-0.92	-0.86
EAWMI .vs. AO	-0.66	-0.62	-0.56	-0.59	-0.72

491

492

493 **Table 3 Spatial correlation between the pattern associated with the cold surge index**
494 **and the teleconnection (EA/WR and AO)**

495

	T2m	UV850	SLP	U300	Velp
CSI .vs. EA/WR	-0.85	-0.84	-0.95	-0.92	-0.91
CSI .vs. AO	-0.60	-0.57	-0.54	-0.60	-0.68

496

497

498 **Table 4 Spatial correlation between the pattern associated with the Siberian high**
499 **index and the teleconnection (EA/WR and AO)**

500

	T2m	UV850	SLP	U300	Velp
SHI .vs. EA/WR	-0.92	-0.69	-0.97	-0.95	-0.71
SHI .vs. AO	-0.74	-0.62	-0.53	-0.65	-0.65

501

537 **Figure 1.** The non-normalized rotated empirical orthogonal functions (REOFs) of the
 538 monthly 250 hPa height [m] archived from a MERRA reanalysis. The analysis period
 539 included the last 34 winters from December–February (DJF) 1979/80 through DJF 2012/13.
 540 The left panel represents the distribution of European teleconnections (East Atlantic/West
 541 Russia, Scandinavia, and East Atlantic) whereas the right panel represents the Arctic
 542 Oscillation, the Western Pacific, and the El-Niño Southern Oscillation.
 543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

Figure 2. Distribution of the 2 meter air temperature anomalies (left panel) [K] and the atmospheric circulation and advective temperature change ($-V_{Tel} \cdot \nabla T_{Cli}$) [$K day^{-1}$] at 850 hPa (right panel) associated with one standard deviation in each European teleconnection time series based on linear regression. Shaded regions are where the anomaly values are statistically significant at 10%. Wind vectors statistically significant at 10% level are plotted as thick lines. V_{Tel} denotes the regressed horizontal winds, and T_{Cli} represents the climatological monthly temperatures. Note that the high-elevation region in continental Asia such as western China and the Tibetan area is treated as missing in the right panel.

587

588

589

590

608 **Figure 3.** Upper: Time series of the spatial correlation coefficients between observed
 609 temperature anomalies (temporal anomalies) and the reconstructed temperatures comprised
 610 of both AWE and ESE impacts (black), ESE impact (blue), and AWE impact (red),
 611 respectively, for the geographic domain shown in the lower panels. B) and E) represent the
 612 winter temperature anomalies by the combined effect of AWE and ESE for 1996–97 (B)
 613 and 2011–12 (E), respectively. C) and F) are the same as B) and E) but for the anomalies
 614 caused by the impact of AWE. Observed temperature anomaly distributions for those years
 615 are shown in D) and G) for comparison.

616

617

618

619

620

621 A) EA/WR,SCA,EA (1996–1997)

622 D) AO,ENSO,WP (1996–1997)

623 B) EA/WR,SCA,EA (2003–2004)

624 E) AO,ENSO,WP (2003–2004)

625 C) EA/WR,SCA,EA (2011–2012)

626 F) AO,ENSO,WP (2011–2012)

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

Figure 4. Distribution of the atmospheric circulation and advective temperature change ($-\nabla_{\text{Tel}} \cdot \nabla T_{\text{Cli}}$) [K day^{-1}] at 850 hPa caused by the impact of ESE (left panel) and AWE (right panel) for the three selected winter cases (1996–97, 2003–04, and 2011–12). Note that the high-elevation region in continental Asia such as western China and the Tibetan area is treated as missing.

662
663

670
671 **Figure 5.** Interannual variation in normalized EAWMI, CSI, SHI, -EA/WR, and -AO.
672 They are denoted by red-solid, red-dashed, red-dotted, black solid, and blue solid line,
673 respectively.

674

704 **Figure 6.** Horizontal distributions of atmospheric variables regressed onto EAWMI. Except
705 values are significant at the 10% level. Thick arrows on the bottom panel (B and D)
706 indicate vectors significant at the 10% level.
707
708

Figure 7. Horizontal distributions of atmospheric variables regressed onto –EA/WR (left) and –AO (right). Except velocity potential [$1.0\text{e}+5 \text{ m}^2\text{s}^{-1}$] on the bottom panel (C and F), shaded area indicates where values are significant at the 10% level. Thick arrows on the top (A and D) and bottom panel (C and F) indicate vectors significant at the 10% level.

Figure 8. Same as Figure 6 but for regression onto CSI.

788
789
790 Atmospheric structures regressed onto SHI
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819

Figure 9. Same as Figure 6 but for regression onto SHI.