RNA Sequencing Quality Control FastQC

RNA sequencing – alternative splicing

A cellular process in which **exons** from the **same gene** are **joined in different combinations**, leading to different, but related, **mRNA transcripts**. These **mRNAs** can be **translated to produce different proteins** with distinct **structures and functions** all from a single gene.

RNA sequencing – alternative splicing

Paired-end sequencing가 alternative splicing alignment에 유리한 이유

- Paired-end sequencing은 fragment의 3'과 5'에서 pair로 sequencing이 일어나는데 이때 read pair의 사이의 거리를 알 수 있기 때문에 이 정보를 활용할수 있다
- No alternative splicing : read pair의 거리 유지
- Alternative splicing : read pair의 거리가 늘어남

RNA sequencing – alternative splicing

Paired-end sequencing가 alternative splicing alignment에 대한 한계

- Other biases and limitations can result from the myriad computational methods that can be applied to RNA-seq data, such as differences in how ambiguous or multi-mapped reads are handled.
- the greatest potential for fundamentally addressing the inherent **limitations of short-read cDNA sequencing** lies with **long-read cDNA(e.g. full-length isoform reads**) sequencing and **dRNA-seq(direct RNA sequencing)** methods.

Pre trimming read QC

- Check pre trimming read quality
- Using FastQC

Trimming

- Remove low read quality (quality score < 20)
- Remove short read (read length < 20)
- Remove adapter sequence

Post trimming read QC

- Check post trimming read quality
- Using FastQC

Pre trimming	Post trimming	Pre trimming	Post trimming	
Summary	Summary	Summary	Summary	
Basic Statistics	Basic Statistics	Basic Statistics	Basic Statistics	
Per base sequence quality				
Per tile sequence quality				
Per sequence quality scores				
Per base sequence content				
Per sequence GC content				
Per base N content				
Sequence Length Distribution	Sequence Length Distribution	Sequence Length Distribution	Sequence Length Distribution	
Sequence Duplication Levels	Sequence Duplication Levels	Sequence Duplication Levels	Sequence Duplication Levels	
Overrepresented sequences	Overrepresented sequences	Overrepresented sequences	Overrepresented sequences	
Adapter Content	Adapter Content	Adapter Content	Adapter Content	
DID01	. 1	DID01 (

BID01_1 BID01_2

Pre base sequence quality

- 모든 read의 각 position에서 quality score의 분포 를 나타낸다.
- X axis : 모든 read의 base position
- Y axis : quality score
- Yellow box : represents 25 ~ 75 Precentiles
- Whiskers line : represents 10 ~ 90 Precentiles
- Red line: median
- Blue line : average quality score

Bad Illumina Data

Pre base sequence quality(BID01_1)

Per base sequence quality

Pre trimming

Pre base sequence quality(BID01_2)

Per base sequence quality

Pre trimming

Pre sequence quality scores

- 모든 read의 평균 quality score를 나타낸다.
- X axis: Mean sequence quality(Phred score)
- Y axis: Number of read

Bad Illumina Data

Pre sequence quality scores(BID01_1)

Pre trimming

Pre sequence quality scores(BID01_2)

Pre trimming

Pre base sequence content

- 각 base position에 대해 base의 각각의 비율
 을 나타냄
- Human의 base의 수는 균등하므로 plot의 line들은 서로 평행하게 나타나야 한다
- X axis : 모든 read의 base position
- Y axis : Base Precentage
- Red line : T%
- Blue line: C%
- Green line: A%
- Yellow(black) line : G%

Good Illumina Data

Pre base sequence content(BID01_1)

Pre trimming

Post trimming

Pre base sequence content(BID01_2)

Pre trimming

Pre sequence GC content

- 각 read의 GC content 분포를 나타낸다.
- Human DNA에는 GC content의 분포가 정규분 포로 나타난다.
- 때문에 예상되는 GC content의 분포와 관측되는 GC content의 분포를 비교한다.
- X axis : Mean GC content
- Y axis: Number of read
- Blue line : expected GC content 분포
- Read line: observed GC content 분포

Good Illumina Data

Pre sequence GC content(BID01_1)

Pre sequence GC content(BID01_2)

Pre trimming

Post trimming

Pre Base N Content

- 각 position의 base에서 N이 call된 Precentage 를 나타낸다
- Sequencing 과정에서 염기서열을 정확히 알 수 없을 때 N을 call 한다
- N content가 높으면 read의 quality가 떨어져 mapping 과정에서 문제가 발생한다

- X axis : 모든 read의 base position
- Y axis: Precentage of N content
- Red line : 해당 base position에 N content의
 Precentage

Pre Base N Content(BID01_1)

Pre trimming

Pre Base N Content(BID01_2)

Pre trimming

Sequence Length Distribution

- Read들의 sequence length를 나타낸다.
- X axis : sequence length
- Y axis: Number of read
- Read line : 해당 sequence length의 read의 개수

Good Illumina Data

Sequence Length Distribution(BID01_1)

Sequence Length Distribution(BID01_2)

Sequence Duplication Levels

• Duplicated sequence를 가진 read들의 수를 나타 낸다.

- X axis : sequence duplication level
- Y axis : Precentage
- Blue line : 해당 sequence duplication level에서 duplication된 Precentage
- Read line : 해당 sequence duplication level에서 duplication를 제거한 후 duplication Precentage

Sequence Duplication Levels(BID01_1)

Sequence Duplication Levels(BID01_2)

Adapter Content

• 각 read의 position 마다 adapter sequence가 얼마 나 포함되어 있는지 Precentage로 나타낸다.

- X axis : 모든 read의 base position
- Y axis : adapter Precentage
- Color line : read에 존재하는 다른 종류의 adapter와 poly A, poly G를 의미

Small RNA with read-through adapter

Adapter Content(BID01_1)

Pre trimming

Adapter Content(BID01_2)

Pre trimming

RNA sequencing – Alignment

- Alignment of the large sets of sequenced reads to a reference genome.
- Using STAR tool
- ➤ Seed search 과정과 clustering, stitching and scoring 과정으로 mapping 진행

RNA sequencing – Alignment

acceptor site

donor site

reference genome

Clustering, stitching and scoring:

Alignments of the entire read sequence by stitching together all the seeds that were aligned to the genome in the first phase.

RNA sequencing – Alignment

	Number of input reads	61005207		
	Average input read length	201		
	UNIQUE READS:	:		
Un:	iquely mapped reads number	54463221	MULTI-MAPPING READS:	
	Uniquely mapped reads %	89.28%	Number of reads mapped to multiple loci	4667909
	Average mapped length	200.68	% of reads mapped to multiple loci	7.65%
	Number of splices: Total	12932947	Number of reads mapped to too many loci	70690
Number of	splices: Annotated (sjdb)	12690090	% of reads mapped to too many loci	0.12%
	Number of splices: GT/AG	12797028	UNMAPPED READS:	
	Number of splices: GC/AG	92278	Number of reads unmapped: too many mismatches	0
	Number of splices: AT/AC	11517	% of reads unmapped: too many mismatches	0.00%
Number	of splices: Non-canonical	32124	Number of reads unmapped: too short % of reads unmapped: too short	1766919 2.90%
	Mismatch rate per base, %	0.32%	Number of reads unmapped: other	36468
	Deletion rate per base	0.01%	% of reads unmapped: other	0.06%
	Deletion average length	1.74	CHIMERIC READS:	
	Insertion rate per base	0.01%	Number of chimeric reads	Θ
	Insertion average length	1.51	% of chimeric reads	0.00%

> STAR mapping result

RNA sequencing – Quantify

Name	Description	Counts	
ENSG00	0000223972.5	DDX11L1 0	
ENSG00	0000227232.5	WASH7P 33	
ENSG00	0000278267.1	MIR6859-1	0
ENSG00	0000243485.5	MIR1302-2HG	0
ENSG00	0000237613.2	FAM138A 0	
ENSG00	0000268020.3	OR4G4P 20	
ENSG00	0000240361.2	OR4G11P 0	
ENSG00	000186092.7	0R4F5 0	
ENSG00	0000238009.6	RP11-34P13.7	7
ENSG00	0000233750.3	CICP27 0	
ENSG00	0000268903.1	RP11-34P13.15	25
ENSG00	000269981.1	RP11-34P13.16	44

Quantify results

RNA sequencing – 101 sample mapping reads percentage

Mapping RNA-seq Reads with STAR

Alexander Dobin, Thomas R. Gingeras

First published: 03 September 2015 | https://doi.org/10.1002/0471250953.bi1114s51 | Citations: 578

- Very good mapping rate : Uniquely mapping 90% 초과
- Good mapping rate : Uniquely mapping 80% 이상
- Low mapping rate : Uniquely mapping 50% 미만
 - > Indicative of a problem with library preparations or data processing

- Insufficient depletion of ribosomal RNA(rRNA)
- Poor sequencing quality
- Exogenous RNA/DNA contamination
- Computational processing problems

RNA sequencing – 101 sample mapped reads %

Sample ID	Uniquely mapped reads %	% of reads mapped to multiple loci	Uniquely + multiple mapped reads %
ID1	68.94	29.12	98.06
ID2	77.75	20.46	98.21
ID3	83.83	14.52	98.35
ID4	79.29	19.04	98.33
ID5	74.55	22.93	97.48
ID6	74.83	22.88	97.71
ID7	75.4	23.37	98.77
ID8	74.41	21.52	95.93
ID9	16.21	80.2	96.41
ID11	74.86	22.72	97.58
•••	•••	•••	•••
ID100	49.53	48.86	98.39
ID101	54.3	44.62	98.92
ID102	16.22	81.06	97.28
ID103	74.13	24.72	98.85
ID104	37.89	59.85	97.74
ID105	64.51	34.63	99.14
ID106	62.56	36.54	99.1
ID107	48.81	50.19	99

- Uniquely mapped reads % < 86% (11.64% ~ 85.19%)
- % of reads mapped to multiple loci < 85% (10.97% ~ 84.89%)
- Uniquely + multiple mapped reads % : 95.93% ~ 99.14%

RNA sequencing – 101 sample mapped reads percentage

RNA sequencing – 101 sample mapped reads percentage

• Uniquely mapped reads: 11.64% ~ 85.19% (average: 66.67%)

• Multiple loci mapped reads : 10.97% ~ 84.89% (average : 31.37 %)

• Total mapped reads: 95.93% ~ 99.14% (average: 98.04%)

RNA sequencing – 101 sample mapping reads percentage

11.64% ~ 85.19% (average : 66.67 %)

Low mapping rate (< 50%): 15 sample (ID9, ID27, ID34, ID40, ID50, ID59, ID66, ID72, ID74, ID84, ID92, ID100, ID102, ID104, ID107) As 15 CD patients showed high rRNA ratio (>40%) in sample QC, the RNA sequencing of these 15 samples were repeated and aligned to the reference genome

86 sample

101 sample

RNA sequencing – normalization

RPKM & FPKM(reads or fragments Pre kilobase of transcript Pre million mapped reads)

- It is suitable to compare gene expression levels within a single sample
- Rescaled to correct for both library size and gene length
- ▶ RPKM : read 기준으로 gene or transcript length를 보정 paired-end의 경우 2의 리드로 간주
- ➤ FPKM: fragment 기준으로 gene or transcript length를 보정 paired-end의 경우 두 개의 read가 한 fragment를 이루므로 한 개로 간주

$$RPKM_i \text{ or } FPKM_i = \frac{q_i}{\frac{l_i}{10^3} * \frac{\sum_j q_j}{10^6}} = \frac{q_i}{l_i * \sum_j q_j} * 10^9$$

- q_i : read(RPKM) or fragment(FPKM) counts
- l_i : gene or transcript length
- $\sum_{i} q_{i}$: total read(RPKM) or fragment(FPKM) counts

RNA sequencing – normalization

TPM(transcripts Pre million)

- TPM was introduced in an attempt to facilitate **comparisons across samples**
- The sum of all TPM values is the same in all samples

$$TPM_i = \frac{q_i/l_i}{\sum_{j} (q_j/l_j)} * 10^6 = \left(\frac{FPKM_i}{\sum_{j} FPKM_j}\right) * 10^6$$

- q_i : reads mapped to transcript
- l_i : transcript length
- $\sum_{i} (q_i/l_i)$: the sum of mapped reads to transcript normalized by transcript length.

RNA sequencing – normalization

RPKM & FPKM vs TPM example(× 10⁹ 생략)

Gene	Length	Sample 1 read count	Sample 2 read count	Sample 1 RPKM (FPKM)	Sample 2 RPKM (FPKM)	Sample 1 TPM	Sample 2 TPM
A	10	10	10	$10/(10 \times 25)$ = 0.04	$10/(10 \times 40)$ = 0.025	0.04 / 0.1 = 0.4	0.025 / 0.0625 = 0.4
В	5	5	0	$5/(5 \times 25)$ = 0.04	$5 / (0 \times 40)$ $= 0$	0.04 / 0.1 = 0.4	0 / 0.0625 $= 0$
C	20	10	30	$10/(20 \times 25)$ = 0.02	$30 / (20 \times 40)$ = 0.0375	0.02 / 0.1 = 0.2	0.0375 / 0.0625 = 0.6
Total				0.1	0.0625	1.0	1.0