INFO 284 – Machine Learning Clustering

Bjørnar Tessem

Types of unsupervised learning

Clustering

- Find inherent groupings in the data
 - · grouping customers by purchasing behaviour
 - · news by topic

Unsupervised transformations

- Create new representations of the data
 - easier to visualise
 - easier to learn from
- Dimensionality reduction

Clustering

Clustering methods

- K-Means
 - Iteratively move cluster centers
- Agglomerate clustering
 - Merge close groups
- DBSCAN
 - Include close data points in clusters
- Important parameters
 - Number of clusters
 - Distance measures

K-means clustering

k-Means Clustering

- Partition data points into k clusters
 - Each data point belongs to the cluster with the nearest average
 - Minimizes within-cluster variances.
- Algorithm
 - 1. Initialize with k random data points as center points.
 - 2. While cluster membership has changed for at least one data point:
 - Assign all data points to the closest cluster center (centroid)
 - Reset each centroid as the average of the data points assigned to it
 - Return k current center points and clusters

FO284

k-Means Clustering Properties

- · Pros
 - easy to understand and implement
 - runs relatively quickly
 - scales easily to large data sets
- Cons
 - Relies on random initialization
 - Restrictive on the shape of the data
 - Requires you to specify the number of clusters you are looking for
- Scikit
 - Runs the algorithm 10 times with 10 different random initialisations and keeps the best
 - MiniBatchKMeans class for handling very large datasets

k-Means Clustering Failure Cases

 A cluster is defined by its centre and is a convex shape.

• => non-convex shapes will not be clustered correctly

 k-means clustering assumes all clusters have the same "diameter"

 k-means clustering assumes all the directions are equally important for each cluster

Vector quantization

- k-means as a decomposition method
- PCA find directions of maximum variance in the data
- NMF find additive components, corresponding to "extremes" or "parts" of the data
- PCA, NMF Express the data points as a sum of components
- k-means
 - represent each data point using its cluster centre
 - The number of clusterings user determined
 - cluster centres as a "single component" that represents all the data points in the cluster

INFO284

Vector quantization vs PCA & NMF

Extracted Components

VFO284 47

Vector quantization at low dimensionality

we can use more clusters than there are input dimensions and classes.

0284

Agglomerative clustering

Agglomerative clustering

- · Each point is declared as its own cluster
- Two most similar clusters are merged until some stopping criterium is satisfied
- Different measures for similarity yield different clustering algorithms
- In scikit-learn: ward, average, complete, single

Dendrograms

DBSCAN algorithm

- Start by picking an arbitrary point
- Find all points within a distance of eps(ilon) or less from the start point
- If you find less than min_samples points, then
 - label the start point as "noise" (= does not belong to any cluster),
- else
 - label it as "core sample" and assign it a new cluster label
- Visit all the neighbours within eps distance of the new core samples.
 - If they do not belong to a cluster they are assigned to the new cluster label just created.
 - If they satisfy the core samples criterium mark as «core sample»
- The cluster grows until there are no more core samples left to grow from in the cluster
- Pick another unvisited point by random and repeat

DBSCAN properties

- DBSCAN works by identifying points that are in "crowded" regions of the feature space - referred to as "dense regions" of the feature space
- At the end there are three kinds of points:
 - · core samples,
 - points within eps of core samples (boundary points)
 - noise
- Multiple runs of the algorithm
 - the same clustering of core points and noise
 - boundary points cluster memberships depend on the order in which the core samples have been labeled

INFO284

DBSCAN Pros and Cons

Pros

- It doesn't require specification of number of clusters.
- It can find arbitrarily shaped clusters.
- Notion of noise making it robust vs outliers.
- Algorithm is designed to use with databases that can accelerate regional queries.

Cons:

- The algorithm is not deterministic on border points.
- It is sensitive to the value of eps. Setting eps requires understanding of scale of the data.
- Distance measure used has a big impact of the performance
- It cannot cluster datasets with large differences in densities.

JFO284 59

DBSCAN – Variation in parameters

DBSCAN and half moon data

Evaluating with ground truth

- Done during clustering algorithm development phase to estimate clustering quality
- · Adjusted rand index (ARI)

the number of pairs of elements in S

that are in different subsets in X and

in different subsets in Y

$$S = \{o_1, \dots, o_n\}$$

$$S = X_1 \cup \dots \cup X_k$$

$$S = Y_1 \cup \dots \cup Y_l$$

$$X = \{X_1, \dots, X_k\}$$

$$Y = \{Y_1, \dots, Y_l\}$$

ARI for half moon data

Evaluating without ground truth

- Silhouette coefficient is a measure of how similar an object is to its own cluster (cohesion) compared to other clusters (separation).
- Ranges from -1 to +1. High value indicates that the object is well matched to its own cluster and poorly matched to neighbouring clusters.
- If most objects have a high value, then the clustering configuration is appropriate. If many points have a low or negative value, then the clustering configuration may have too many or too few clusters.

IFO284 63

Robustness-based clustering metrics

- Not available in scikit-learn
- Run an algorithm after adding some noise in the data or using different parameter settings and compare the outcomes
- If many algorithm parameters and many perturbations in the data return the same result, it is likely to be trustworthy
- Often necessary to inspect the clustering "manually"

uib.no

