Concordia University FACULTY OF ENGINEERING AND COMPUTER SCIENCE

COURSE NUMERICAL METHODS IN ENGINEERING – ENGR391						
EXAMINATION ASSIGNMENT 1	TERM Winter 2018					
<u>Name</u>						
<u>ID</u>						
Section						
Instructions:	 Solve the problem below using MATLAB. Write your final answers in the box below. Annotate your MATLAB code to explain it. On Moodle, submit 2 files: one .m file for your Matlab code and one .pdf Use your last name and ID as the name of the files you submit, e.g. lastname_idnumber.m & lastname_idnumber.pdf Submission deadline is February 15th at 5:45 pm 					

Problem statement:

• Write a MATLAB user-defined function that solves for a root of a nonlinear equation f(x) = 0 using the Bisection method. Name the function Xs=BisectionRoot(Fun,a,b). The output argument Xs is the solution. The input argument Fun is a name for the function that calculates f(x) for a given x (it is a dummy name for the function that is imported in BisectionRoot); a and b are two points that bracket the root. The iterations should stop when the tolerance in f is smaller than 0.000001. The program should check if points a and b are on opposite sides of the solution. If not, the program should stop and display an error message.

Note: The tolerance in f is $|f(x_{TS}) - f(x_{NS})|$, where $f(x_{TS}) = 0$

• Use *BisectionRoot* to determine the root of $f(x) = x - 2e^{-x}$. Start with a = 0 and b = 1.

FINAL ANSWERS:

$x_{NS} =$		
number of iterations =		