INDIAN INSTITUTE OF TECHNOLOGY (INDIAN SCHOOL OF MINES) DHANBAD

MANAGEMENT STUDIES DEPARTMENT

"FINANCIAL ECONOMETRICS ASSIGNMENT"

Prepared By:

Jainendra Tripathy (21je0417), Kriti Thawaria (21je0485)

Kashish (21je0457), Umang Sinha (21je1005), Saksham Jha (21je0806)

Course: Financial Econometrics

Course Instructor: Prof. Aparna Krishna

Financial Econometrics Assignment

Initially, we are considering a model where total expenditure is the dependent variable, while food and non-food expenditures act as explanatory variables. In this setup, the variation in total expenditure can be fully accounted for by the explanatory variables. This is logical since total expenditure is merely the aggregate of food and non-food expenditures.

Source	SS	df	MS	Numbe	er of obs	=	1,129
	ž			F(2,	1126)	>	99999.00
Model	1.9336e+10	2	9.6678e+09	Prob	> F	=	0.0000
Residual	.000475549	1,126	4.2234e-07	7 R-sq	uared	=	1.0000
		Charles More Experience of Charles	WW.Maw.50.PCP.M.28496-5 04.55	- Adj 1	R-squared	=	1.0000
Total	1.9336e+10	1,128	17141429.8	B Root	MSE	=	.0006
exptot	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval
expfd	1	1.33e-08	7.5e+07	0.000		1	:
expnfd	1	6.25e-09	1.6e+08	0.000		1	
cons	.0000221	.0000498	0.44	0.657	000075	5	.0001197

Given this observation, including all expenditure terms in subsequent models may not be meaningful. As a result, we are solely considering food expenditure as our dependent variable in further modelling endeavours, disregarding other forms of expenditure.

• Proposed Hypothesis:

Our models focus on per capita food expenditure as the primary variable we're interested in. We're leaving out other expenditure categories because they're closely related to food expenditure. In Bangladeshi culture, the head of the household usually earns the most. So, factors like the head's age and education play a significant role in how much the household spends on food. Older, more educated heads of households tend to earn more, which means they're likely to spend more on food. We're also looking at total household assets as a factor. Families with more assets are more likely to spend on higher-quality but pricier food. Surprisingly, we're not considering family size as a factor. This is because, oddly enough, we found a negative connection between family size and food spending. This goes against common sense, where you'd expect larger families to spend more on food.

. corr famsize (obs=1,129)	expfd	
	famsize	expfd
famsize	1.0000	3
expfd	-0.1327	1.0000

This is the case where we are considering the SRF to be,

$$expfd = \widehat{\beta o} + \widehat{\beta 1} hhasset + \widehat{\beta 2} agehead + \widehat{\beta 3} educhead + \widehat{Ui}$$

We propose different models while keeping the dependent and independent variables the same. Initially, we're testing our hypothesis using the entire dataset. Since we haven't learned about incorporating dummy variables in regression yet, we're dividing the data further based on the sex of the household head (male or female) and village access. We assume that these factors also play a significant role in per capita food consumption. Then, we apply our hypothesis to models based on these subsets of data.

Model 01: Complete Data without divisions(sexhead and vaccess)

• Outlier Detection and Removal:

Code: graph matrix expfd agehead educhead hhasset (Here we are checking for the outlier)

Keypoint: Removing the outliers using winsorization: winsor variable_name, gen(winsorized_variable) p(#) and after this we have again checked the outlier.

Code: graph matrix winsorized_expfd winsorized_agehead winsorized_educhead winsorized_hhasse

educhead, Winsorized fraction .05

agehead, Winsorized fraction .05

agehead, Winsorized fraction .05

agehead, Winsorized fraction .05

hhasset, Winsorized fraction .05

Before (Removal of Outlier)

After (Removal of Outlier)

• Regression Analysis:

Now, we will make our linear regression based on the new variables (the removed outlier ones).

Code: regress winsorized_expfd winsorized_educhead winsorized_agehead winsorized_hhasset

Source		SS	df	MS			ber of obs	=		129 .17
Model Residual		949859 02e+09	3 1,125	1116499 1342405		Pro R-s	b > F quared	=	0.0 0.1	000 815
Total	1.84	52e+09	1,128	Adj R-squared 1635777.03 Root MSE		=	115			
winsorized_	_expfd	Coef	. St	d. Err.		t	P> t	[95%	Conf.	Interval]
winsorized_edu winsorized_ag winsorized_hh	gehead	91.3472 4.28041 .002463 2953.09	3 2.	0.36524 .977583 0002701 10.6958	1	. 04 . 44 . 12 . 99	0.000 0.151 0.000 0.000	69.0 -1.56 .001 2677	1829 9338	113.6467 10.12265 .0029936 3229.153

Interpretation: Here, we can see that the winsorized_agehead variable is not significant. And thus, will have no impact on expfd. While, others have a positive impact. And these variables can explain 17.93% of the dependent variable.

• Checking for the Normality of Residuals:

After this we will use predict r, residuals to store the residual in the variable r.

Code: predict r, residuals

Now we will Create plots to get a visual sense of whether or not normally distributed.

Code: kdensity r, normal **Code:** pnorm r

Interpretation: Here we are getting an idea that the residuals may not be normally distributed.

Test for normality (Shapiro-Wilk W test):

Code: swilk r

The Shapiro-Wilk test is a statistical test used to assess the null hypothesis that a sample comes from a normally distributed population.

	Shapiro-	Wilk W test	for normal	data	
Variable	Obs	W	V	Z	Prob>z
r	1,129	0.95107	34.464	8.809	0.00000

Interpretation: So, it's possible that our residuals don't follow a normal distribution. We reject the null hypothesis, which assumes that the residuals are normally distributed, because the probability (Prob>Z) is less than 0.05.

• Checking Homoscedasticity of Residuals

Breusch-pagan test for heteroscedasticity

Code: hettest

The null hypothesis for the Breusch-Pagan test is that there is homoscedasticity, meaning that the variance of the residuals is constant across all levels of the independent variables.

```
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: fitted values of winsorized_expfd

chi2(1) = 5.78
Prob > chi2 = 0.0162
```

Interpretation: But here, the p-value is less than 0.05, we would conclude that there is significant evidence of heteroskedasticity in the regression model.

Thus, we have heteroscedasticity. But, that won't be a problem if we are looking at the **central limit theorem.**

Removing Heteroscedasticity

Now we will focus on the **Robust Standard Errors**, this approach adjusts the standard errors of the regression coefficients to be robust to heteroskedasticity without directly modifying the estimation method.

Code: regress winsorized_expfd winsorized_educhead winsorized_agehead winsorized_hhasset, robust

Linear regression			Number F(3, 2 Prob 2 R-squa Root 1	> F ared	= = = = =		815
winsorized_expfd	Coef.	Robust Std. Err.	t	P> t	[95%	Conf.	Interval]
winsorized_educhead winsorized_agehead winsorized_hhasset cons	91.34721 4.280413 .0024637 2953.098	12.34543 2.981102 .0002856 138.5844	7.40 1.44 8.63 21.31	0.000 0.151 0.000 0.000	67.12 -1.568 .0019 2681	3732 9033	115.5699 10.12956 .0030241 3225.011

• Checking for Multicollinearity:

Code: vif

Variable	VIF	1/VIF
winsorized~t winsor~chead winsor~ehead	1.23 1.17 1.06	0.815326 0.854796 0.939007
Mean VIF	1.15	

Interpretation: Our model does not have troublesome multicollinearity, as our VIF is less than 10.

• Checking for Covariance between the independent variable and residual/error:

Code: corr r winsorized_educhead winsorized_agehead winsorized_hhasset

	r	wi~chead	wi~ehead	winsor~t
r winsor~chead winsor~ehead winsorized~t	1.0000 0.0000 -0.0000 0.0000	1.0000 -0.0309 0.3641	1.0000 0.2170	1.0000

Interpretation: Our model does not have multicollinearity, as our VIF is less than 10.

Model 02: Considering only the male and then taking the SRF of Model-01

• Outlier Detection and Removal:

Before (Removal of Outlier)

After (Removal of Outlier)

• Regression Analysis:

Now we will make our linear regression based on the new variables(the removed outlier one's)

Source		SS	df	MS			ber of ob:	5 =		025 .46
Model Residual		658855 93e+09	3 1,021	9955295 1301994		Pro R-s	b > F quared	=	0.0 0.1 0.1	000 835
Total	1.628	30e+09	1,024	1589839	.31	Adj R-squared Root MSE		a = =		141
winsorized_	expfd	Coef	f. St	d. Err.		t	P> t	[95%	Conf.	Interval]
winsorized_edu winsorized_ag winsorized_hh	gehead	92.9247 3.39081 .002345 2985.22	13 3. 57 .0	.57992 086155 002799 4.3872	1.	.02 .10 .38	0.000 0.272 0.000 0.000	-2.66 .001	0157 55119 .7965	115.6479 9.446744 .0028949 3268.551

Interpretation- For this case the **age of the head is insignificant** while the other **2 have a positive impact**, that we can see from the **T- test**. While the overall model is significant, the **explained variation is only 18.11%.**

• Checking for the normality of the residuals:

Code: kdensity r, normal **Code:** pnorm r

Interpretation- The residuals slightly vary from having a normal distribution. Applying a more numerical test to check for the same.

Test for normality (Shapiro-Wilk W test):

	Shapiro	-Wilk W tes	t for norma	l data	
Variable	Obs	W	V	Z	Prob>z
r	1,025	0.95456	29.309	8.374	0.00000

Interpretation- The residuals are not normally distributed. But looking at the **central limit theorem**, as we have many data points it will not give us a problem.

• Checking Homoscedasticity of Residuals:

Breusch-pagan test for heteroscedasticity

```
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: fitted values of winsorized_expfd

chi2(1) = 7.70
Prob > chi2 = 0.0055
```

Interpretation- We can **Reject the null hypothesis**, Thus our residuals are heteroscedastic. But looking at the **central limit theorem**, as we have many data points it will not give us a problem.

Removing Heteroscedasticity

Now we will focus on the **Robust Standard Errors:**

Linear regression			Numbe: F(3, : Prob : R-squa Root I	> F ared	= = = = =	72 0.0 0.1	025 .17 000 835 141
winsorized_expfd	Coef.	Robust Std. Err.	t	P> t	[95%	Conf.	Interval]
winsorized_educhead winsorized_agehead winsorized_hhasset cons	92.92474 3.390813 .0023457 2985.222	12.66038 3.074245 .0002939 142.4931	7.34 1.10 7.98 20.95	0.000 0.270 0.000 0.000	68.08 -2.641 .001 2705.	L749 L769	117.7681 9.423374 .0029225 3264.835

Interpretation- For this case the age of the head is insignificant while the other 2 have a positive impact, that we can see from the **T- test**. While the overall model is significant from **F-test**, the **explained variation is only 18.35%**.

• Checking for Multicollinearity:

Variable	VIF	1/VIF
winsorized~t winsor~chead winsor~ehead	1.24 1.18 1.07	0.807023 0.850510 0.938335
Mean VIF	1.16	

Interpretation- Since our VIF is less than 10, we do not have a problem of multicollinearity.

• Checking for Covariance between the independent variable and residual/error:

	r	wi~chead	wi~ehead	winsor~t
r winsor~chead winsor~ehead winsorized~t	1.0000 -0.0000 0.0000 0.0000	1.0000 -0.0100 0.3742	1.0000	1.0000

Interpretation- So, we can see that our residual has no correlation with the independent variables.

Conclusion- Thus, our regression model follows all the assumptions and is verified.

Model-03: Considering only the female and then taking the SRF of Model-01

Outlier Detection and Removal:

Before (Removal of Outlier)

After (Removal of Outlier)

• Regression Analysis:

Now we will make our linear regression based on the new variables(the removed outlier one's)

Source		SS	df	MS		umber of obs	=		10 4 .82
Model Residual		6294.6 672697	3 100	15235431.5 1726726.97	Pi R-	rob > F -squared dj R-squared	= =	0.0	000 093
Total	218:	378992	103	2120184.39		oot MSE	=		314
winsorized_	expfd	Coef.	St	d. Err.	t	P> t	[95%	Conf.	Interval]
winsorized_edu winsorized_aq winsorized_hh	gehead	175.2349 11.15372 .0035959 2639.41	11	76222 0010793	2.43 0.95 3.33 4.41	0.017 0.345 0.001 0.000	32.15 -12.3 .0014 1450	1822 4546	318.3176 34.48964 .0057373 3827.928

Interpretation- For this case, the age of the head is insignificant, while the other 2 have a positive impact, as we can see from the T-test. While the overall model is significant, the explained variation is only 18.56%.

Checking the normality of the residuals:

Code: kdensity r, normal **Code:** pnorm r

Test for normality (Shapiro-Wilk W test):

	Shapiro	-Wilk W tes	t for normal	l data	
Variable	Obs	W	٧	Z	Prob>z
r	104	0.91185	7.520	4.485	0.00000

Interpretation- The residuals are not normally distributed. But looking at the **central limit theorem**, as we do not have many data points it will give us a problem.

• Checking Homoscedasticity of Residuals

Breusch-pagan test for heteroscedasticity

```
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: fitted values of winsorized_expfd

chi2(1) = 0.06
Prob > chi2 = 0.8139
```

Interpretation- Here, we can infer that since Prob>chi2 is greater than 81% so our errors might be homoscedastic. That is our error's variance might be constant.

Our assumption of homoscedasticity is verified.

Here, we don't need to apply robust command to correct the violation of heteroskedasticity. But, we will try to look at it.

Linear regression			Number F(3, 1 Prob 1 R-squa Root N	> F ared	= = = =	9 0.0 0.2	
winsorized_expfd	Coef.	Robust Std. Err.	t	P> t	[95%	Conf.	Interval]
winsorized_educhead winsorized_agehead winsorized_hhasset _cons	175.2349 11.15372 .0035959 2639.41	76.59477 12.06031 .0011217 589.323	2.29 0.92 3.21 4.48	0.02 4 0.357 0.002 0.000	23.2° -12.7° .001:	7358	327.1967 35.08103 .0058213 3808.61

Interpretation- From here, we can reject Null Hypothesis for winsorized_educhead and winsorized_hhasset. But, our model is not significant for winsorized_agehead and we can not reject it on a 5% significance level.

• Checking for Covariance between the independent variable and residual/error:

	r	wi~chead	wi~ehead	winsor~t
r winsor~chead winsor~ehead winsorized~t	1.0000 0.0000 0.0000 -0.0000	1.0000 -0.1368 0.3037	1.0000 0.1509	1.0000

Interpretation- We can see that the **covariance** between r and winsorized_educhead, winsorized_hhasset, winsorized_agehead is **0**. Thus, there is no correlation among them. Thus, **our assumption is satisfied**.

• Checking for Multicollinearity:

Variable	VIF	1/VIF
winsorized~t winsor~chead winsor~ehead	1.15 1.14 1.06	0.870040 0.873671 0.940489
Mean VIF	1.12	

Interpretation- Since our **VIF** is less than 10, we do not have a problem of multicollinearity.

Conclusion- Thus, our regression model **does not follow all the assumptions**, we can say that our model is not fine. If proposed, the model will result in **biased analysis**.

Model 04: Considering only the male with vaccess and then taking the SRF of Model-01

• Outlier Detection and Removal:

Before (Removal of Outlier)

After (Removal of Outlier)

• Regression Analysis:

Now we will make our linear regression based on the new variables(the removed outlier one's)

Source	9	SS	df	MS		4000	er of ob: 856)	5 = =		860 .83
Model	2403	50145	3	8011671	5.2		> F	=	0.0	
Residual	1.165	8e+09	856	1361941	.26	R-sc	quared	=	0.1	709
9					- 20	Adj	R-squared	= £	0.1	680
Total	1.406	2e+09	859	1636987	.03	Root	MSE	=	1	167
winsorized_	expfd	Coef.	St	d. Err.		t	P> t	[95%	Conf.	Interval]
winsorized edu	chead	107.3164	13	.36998	8	.03	0.000	81.0	7465	133.5582
winsorized_ag	gehead	4.732908	3	.48775	1	.36	0.175	-2.11	2635	11.57845
winsorized_hh	nasset	.0019295	. 0	003207	6	.02	0.000		0013	.002559
	cons	2947.598	16	2.1943	18	.17	0.000	2629	252	3265.943

Interpretation- For this case the **age of the head is insignificant** while the other **2 have a positive impact**, that we can see from the **T- test**. While the overall model is significant, the **explained variation is only 16.80%.**

• Checking for the normality of the residuals.

Test for normality (Shapiro-Wilk W test):

	Shapiro-	Wilk W test	for normal	data	
Variable	Obs	W	V	z	Prob>z
r	860	0.95085	27.023	8.113	0.00000

Interpretation- The residuals are not normally distributed. But looking at the **central limit theorem**, as we have many data points it will not give us a problem.

• Checking Homoscedasticity of Residuals

Breusch-pagan test for heteroscedasticity

```
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: fitted values of winsorized_expfd

chi2(1) = 6.67
Prob > chi2 = 0.0098
```

Interpretation- We can **Reject the null hypothesis**, Thus our residuals are heteroscedastic. But looking at the **central limit theorem**, as we have many data points it will not give us a problem.

Removing Heteroscedasticity

To correct this,

Using Robust stata command with regression we get-

Linear regression			Number F(3, 6 Prob R-squa Root N	> F ared	=	57 0.0 0.1	
winsorized_expfd	Coef.	Robust Std. Err.	t	P> t	[95%	Conf.	Interval]
winsorized_educhead winsorized_agehead winsorized_hhasset _cons	107.3164 4.732908 .0019295 2947.598	14.71345 3.471978 .0003248 159.4952	7.29 1.36 5.94 18.48	0.000 0.173 0.000 0.000	78.4: -2.0: .001: 263	8168	136.1951 11.5475 .002567 3260.645

Interpretation- For this case the age of the head is insignificant while the other 2 have a positive impact, that we can see from the **T- test**. While the overall model is significant from **F-Test**, the explained variation is only **17.09**%.

• Checking for the Covariance between the independent variables and residuals:

	r	wi~chead	wi~ehead	winsor~t
r	1.0000			79
winsor~chead	-0.0000	1.0000		
winsor~ehead	-0.0000	-0.0256	1.0000	
winsorized~t	-0.0000	0.3908	0.2434	1.0000

Interpretation- So, we can see that our residual has **no correlation** with the independent variables.

<u>Checking for the Multicollinearity between the independent variables.</u>

Variable	VIF	1/VIF
winsorized~t	1.28	0.783018
winsor~chead	1.20	0.831789
winsor~ehead	1.08	0.923545
Mean VIF	1.19	

Interpretation- Since our VIF is less than 10, we do not have a problem of multicollinearity.

Conclusion- Thus, our regression model follows all the assumptions and is **verified**.

Model 05: Considering only the male without vaccess and then taking the SRF of Model-01

• Outlier Detection and Removal:

Before (Removal of Outlier)

After (Removal of Outlier)

• Regression Analysis:

Now we will make our linear regression based on the new variables(the removed outlier one's)

Source		SS	df	MS	Nι	umber of obs	=	-	165
		V P			— F	(3, 161)	= 10	23	.39
Model	61591	075.6	3	20530358	. 5 P1	cob > F	= 3	0.0	000
Residual	1412	92848	161	877595.32	27 R-	squared	=	0.3	036
3					— Ac	lj R-squared	<u>, = 2</u>	0.2	906
Total	2028	83923	164	1237097.0	9 R	ot MSE	=:	93	6.8
winsorized_	exprd	Coef.	51	d. Err.	t	P> t	[936	coni.	Interval]
	2000 * 04000		SPEAR	Mariante	100	77000-1700-1	5 00000000		47.0204000000000000000000000000000000000
winsorized_edu		49.59413	20	.81326	2.38	0.018	8.49	1934	90.69633
winsorized_ag		2.555757	6.	071629	0.42	0.674	-9.43	4546	14.54606
winsorized_hh	asset	.0032779		000475	6.90	0.000	.002	3398	.0042159
	cons	2940.176	2	92.833	10.04	0.000	2361	887	3518.464

Interpretation- For this case the **age of the head is insignificant** while the other **2 have a positive impact**, that we can see from the **T- test**. While the overall model is significant, the **explained variation is only 29.06%.**

• Checking for the Normality of Residuals:

Test for normality (Shapiro-Wilk W test):

	Shapiro-	Wilk W test	for normal	data	
Variable	Obs	W	V	Z	Prob>
r	165	0.98042	2.473	2.063	0.0195

Interpretation- The residuals are not normally distributed. But looking at the **central limit theorem**, as we have many data points it will not give us a problem.

• Checking for homoscedasticity of residuals:

Breusch-pagan test for heteroscedasticity

```
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: fitted values of winsorized_expfd

chi2(1) = 0.04
Prob > chi2 = 0.8424
```

Interpretation- We can not **reject the null hypothesis**, Thus our residuals might be homoscedastic. That is our error's variance might be constant.

Our assumption of homoscedasticity is verified.

Here, we don't need to apply robust command to correct the violation of heteroskedasticity. But, we will try to look at it.

Linear regression			Number F(3, 1 Prob 1 R-squa Root 1	> F ared		0.0 0.3	
winsorized_expfd	Coef.	Robust Std. Err.	-t	P> t	[95%	Conf.	Interval]
winsorized_educhead winsorized_agehead winsorized_hhasset _cons	49.59413 2.555757 .0032779 2940.176	22.67795 5.733985 .0004354 282.9549	2.19 0.45 7.53 10.39	0.030 0.656 0.000 0.000	4.809 -8.76 .002 2381	7763 4181	94.37873 13.87928 .0041376 3498.957

Interpretation- For this case the age of the head is insignificant while the other 2 have a positive impact, that we can see from the T- test. While the overall model is significant, the explained variation is only **30.36%**

• Checking for the Covariance between the independent variables and residuals:

	r	wi~chead w	w1~ehead	winsor~t
r	1.0000			
winsor~chead	-0.0000	1.0000		
winsor~ehead	-0.0000	0.0465	1.0000	
winsorized~t	0.0000	0.2839	0.1355	1.0000

Interpretation- So, we can see that our residual has no correlation with the independent variables.

• <u>Checking for the Multicollinearity between the independent variables.</u>

Variable	VIF	1/VIF
winsorized~t	1.11	0.904413
winsor~chead	1.09	0.919336
winsor~ehead	1.02	0.981567
Mean VIF	1.07	·

Interpretation- Since our VIF is less than 10, we do not have a problem of multicollinearity.

Conclusion- Thus, our regression model follows all the assumptions and is verified.

• Outlier Detection and Removal:

We have winsorized the data.

• Regression Analysis:

Source	5	SS	df	MS			er of obs 79)	=	8	83
Model	433194	185.1	3	14439828.		- B. S.) > F	=	0.0	
Residual	1375	1002	79	1741658.2	5	R-sc	quared	=	0.2	395
	The Property		10/10		-	Adj	R-squared	=	0.2	106
Total	18091	L0487	82	2206225.4	5	Root	MSE	()	131	9.7
winsorized_	expfd	Coef.	St	d. Err.	t	2	P> t	[95%	Conf.	Interval]
winsorized edu	chead	271.4694	11	5.8654	2.3	4	0.022	40.8	1100	502.0937
winsorized_ag	ehead	22.68626	13	. 68979	1.6	6	0.101	-4.56	2573	49.9351
winsorized_hh	asset	.0045505	.0	018337	2.4	8	0.015	.000	9007	.0082003
	cons	2027.259	68	3.3939	2.9	7	0.004	666.	9976	3387.521

Interpretation- For this case the age of the head is insignificant while the other 2 have a positive impact, that we can see from the T- test. While the overall model is significant, the explained variation is only **21.06%**.

• Checking for the normality of the residuals:

Test for normality (Shapiro-Wilk W test):

	Shapiro-	Wilk W test	for normal	data	
Variable	Obs	W	٧	Z	Prob>2
r	83	0.92376	5.394	3.700	0.00011

Interpretation- The residuals are not normally distributed. But looking at the **central limit theorem**, as we do not have many data points it will give us a problem.

• Checking Homoscedasticity of Residuals

Breusch-pagan test for heteroscedasticity

```
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: fitted values of winsorized_expfd

chi2(1) = 2.44

Prob > chi2 = 0.1183
```

Interpretation- Here, we can infer that since Prob>chi2 is greater than 0.05, so our errors are homoskedastic. That is our error's variance is constant.

Our assumption of homoscedasticity is verified.

Here, we don't need to apply robust command to correct the violation of heteroskedasticity. But, we will try to look at it.

Linear regression			Numbe:	r of obs			83
			F(3,	79)	=	6	. 44
			Prob	> F	:=:	0.0	006
			R-squ	ared		0.2	395
			Root 1	MSE	=	131	9.7
	-	Robust		11	5050		
winsorized_expfd	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
winsorized educhead	271.4694	125.2832	2.17	0.033	22.0	9944	520.8393
winsorized agehead	22.68626	14.75554	1.54	0.128	-6.683	3907	52.05644
winsorized hhasset	.0045505	.0020961	2.17	0.033	.000	3783	.0087227
	2027.259	693.2941	2.92	0.005	647.		3407.227

Interpretation- From here, we can reject Null Hypothesis for winsorized_educhead and winsorized_hhasset. But, our model is not significant for winsorized_agehead and we can not reject it on a 5% significance level. While the overall model is significant, the explained variation is only 23.95%.

• Checking for Covariance between the independent variable and residual/error:

	r	wi~chead v	wi~ehead	winsor~t
r	1.0000			
winsor~chead	0.0000	1.0000		
winsor~ehead	0.0000	-0.1359	1.0000	
winsorized~t	0.0000	0.4538	0.1059	1.0000

Interpretation: We can see that the **covariance** between r and winsorized_educhead, winsorized_hhasset, winsorized_agehead is **0**. Thus, there is no correlation among them. Thus, **our assumption is satisfied**.

• Checking for Multicollinearity:

Variable	VIF	1/VIF
winsor~chead	1.32	0.759805
winsorized~t	1.31	0.765423
winsor~ehead	1.06	0.946176
Mean VIF	1.23	

Interpretation: Since our **VIF** is less than 10, we do not have a problem of multicollinearity.

Conclusion- Thus, our regression model **does not follow all the assumptions**, we can say that our model is not fine. If proposed, the model will result in **biased analysis**.

Model-07: Considering only the female without vaccess and then taking the SRF of Model-01

• Outlier Detection and Removal:

We have winsorized the data.

• Regression Analysis:

winsorized_edu winsorized_ag winsorized_hh	ehead	42.35666 -24.2779 .0019567 4698.514	27	5.9325 .58584 012617 00.238	-0 1	.40 .88 .55	0.694 0.391 0.139 0.006	-82. 00	.1414 47893 07053 3.289	265.8547 33.92313 .0046187 7863.739
winsorized_		Coef.	PS Refixed	d. Err.		t	P> t			Interval]
Total	388046	24.6	20	1940231	. 23		R-squar	ed = =		(a) (a) (a)
Model Residual	57268 330778		3 17	1908934 1945754		R-sc	> F [uared	_	0.1	476
Source	S	3	df	MS		ac any or	er of ol 17)	bs = =		. 98

Interpretation: Negative Adjusted R-Squared shows that our model doesn't fit the data means residual errors are larger than the total sum of squares and that can happen in no-intercept regression.

• Checking for the normality of the residuals:

Test for normality (Shapiro-Wilk W test):

	Shapiro-	Wilk W test	for normal	data	
Variable	Obs	W	V	z	Prob>z
r	21	0.95174	1.183	0.339	0.36723

Interpretation- The residuals are not normally distributed. But looking at the **central limit theorem**, as we have many data points it will not give us a problem.

• Checking for heteroscedasticity:

Breusch-pagan test for heteroscedasticity

```
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: fitted values of winsorized_expfd

chi2(1) = 0.26
Prob > chi2 = 0.6088
```

Interpretation- Here, we can infer that since **Prob>chi2** is greater than **0.05** so our errors are **homoskedastic**. That is our error's variance is constant. **Our assumption of homoscedasticity is verified.**

Here, we don't need to apply robust command to correct the violation of heteroskedasticity. But, we will try to look at it.

Linear regression			Number	r of obs 17)	8 = 8	1	21 .13
			Prob :		8=8	0.3	661
			R-squa	ared	=	0.1	476
			Root I	MSE	=	139	4.9
winsorized expfd	Coef.	Robust Std. Err.	t	P> t	195%	Conf.	Interval
The second contract of	6.5000.000000	**************************************	06	Wene Strate		CONTRACTOR OF THE PROPERTY OF	
winsorized_educhead winsorized_agehead	42.35666 -24.2779	100.6141 28.03395	0.42 -0.87	0.679	-169.1 -83.4		254.6339 34.86858
winsorized_hhasset	.0019567	.0012306	1.59	0.130	000	6396	.004553
cons	4698.514	1676.043	2.80	0.012	1162	.372	8234.656

Interpretation- From here, we can reject Null Hypothesis for winsorized_educhead and winsorized_hhasset. But, our model is not significant for winsorized_agehead and we can not reject it on a 5% significance level. Also now the r-squared is 14.76%.

• Checking for the Covariance between the independent variables and residuals:

	r	wi~chead	wi~ehead	winsor~t
r	1.0000			
winsor~chead	0.0000	1.0000		
winsor~ehead	0.0000	-0.2406	1.0000	
winsorized~t	0.0000	-0.0092	0.3316	1.0000

Interpretation- We can see that the **covariance** between r and winsorized_educhead, winsorized_hhasset, winsorized_agehead is **0**. Thus, there is no correlation among them. Thus, **our assumption is satisfied**.

• Checking for the Multicollinearity:

1/V	VIF	Variable
0.8336	1.20	winsor~ehead
0.8847	1.13	winsorized~t
0.9365	1.07	winsor~chead
	1.13	Mean VIF

Interpretation- Since our **VIF** is less than 10, we do not have a problem of multicollinearity.

Conclusion- We will have to accept the null hypothesis for the entire model (F-test = 42%).