Symbole Newtona

- **1.** Znaleźć wzór na $\sum_{k=0}^{n} {n \choose k} r^k$ i $\sum_{k=0}^{n} (-1)^k {n \choose k} 10^k$.
- **2.** Używając argumentacji kombinatorycznej udowodnić tożsamość dla $n \ge 3$ (w podanej formie)

$$\binom{n}{k} - \binom{n-3}{k} = \binom{n-1}{k-1} + \binom{n-2}{k-1} + \binom{n-3}{k-1}.$$

Wskazówka: Niech S będzie zbiorem z 3 wyróżnionymi elementami $a,\ b$ i c. Zliczyć pewne k-kombinacje S.

3. Wyprowadzić wzór

$$1\binom{n}{1} + 2\binom{n}{2} + \ldots + n\binom{n}{n} = n2^{n-1}.$$

Wskazówka 1: zróżniczkować wzór na $(1+x)^n$. Wskazówka 2: Jesteś szefem zespołu n pracowników. Oblicz na ile sposobów możesz dać pewnej liczbie osób podwyżkę i dodatkowo jedną z tych osób awansować.

4. Przypomnijmy, że dla $x \in \mathbb{R}$ i naturalnej liczby $k \ge 1$ definiujemy

$$\begin{pmatrix} x \\ k \end{pmatrix} = \frac{x(x-1)\dots(x-k+1)}{k!}.$$

Dodatkowo, $\binom{x}{0} = 1$ i $\binom{x}{-k} = 0$. Udowodnić, że dla wszystkich liczb rzeczywistych x i wszystkich liczb całkowitych k i m zachodzą wzory

$$\begin{pmatrix} x \\ k \end{pmatrix} + \begin{pmatrix} x \\ k+1 \end{pmatrix} = \begin{pmatrix} x+1 \\ k+1 \end{pmatrix}, \quad \begin{pmatrix} -x \\ k \end{pmatrix} = (-1)^k \begin{pmatrix} x+k-1 \\ k \end{pmatrix}, \quad \begin{pmatrix} x \\ m \end{pmatrix} \begin{pmatrix} m \\ k \end{pmatrix} = \begin{pmatrix} x \\ k \end{pmatrix} \begin{pmatrix} x-k \\ m-k \end{pmatrix}.$$

5. Używając argumentacji kombinatorycznej pokazać, że dla wszystkich dodatnich liczb całkowitych $m_1,\ m_2$ i n mamy

$$\sum_{k=0}^{n} {m_1 \choose k} {m_2 \choose n-k} = {m_1 + m_2 \choose n}.$$

6. Znaleźć wzór na

$$\sum_{\substack{r, s, t \geqslant 0 \\ r+s+t=n}} {m_1 \choose r} {m_2 \choose s} {m_3 \choose t},$$

gdzie sumowanie odbywa się względem wszystkich nieujemnych liczb całkowitych $r,\ s$ i t spełniającyh r+s+t=n.

7. Udowonić za pomocą wzoru Taylora, że dla |x| < 1 i dowolnej liczby α zachodzi wzór

$$(1+x)^{\alpha} = \sum_{n=0}^{\infty} {\alpha \choose n} x^{n}.$$

8. Udowodnić przez indukcję, że dla dowolnej naturalnej liczby n mamy

$$\frac{1}{(1-z)^n} = \sum_{k=0}^{\infty} \binom{n+k-1}{k} z^k, \qquad |z| < 1.$$

9. Sprawdzić przez indukcję wzór

$$\sum_{k=m}^{n} \binom{k}{m} = \binom{n+1}{m+1}.$$

- 10. Obliczyć sumę $1^2+2^2+\ldots+n^2$ korzystając ze wzoru $m^2=2\binom{m}{2}+\binom{m}{1}$ oraz z poprzedniego zadania.
- 11. Znaleźć liczby całkowite a, b i c spełniające

$$m^3 = a \binom{m}{3} + b \binom{m}{2} + c \binom{m}{1}.$$

Następnie znaleźć wzór na $1^3 + 2^3 + 3^3 + \ldots + n^3$.

ZBIORY Z POWTÓRZENIAMI

- 12. Wyznaczyć liczbę 11 elementowych wariacji (z powtórzeniami) zbioru z powtórzeniami $S = \{3 \cdot a, 4 \cdot b, 5 \cdot c\}$. Wyznaczyć też liczbę 10 elementowych takich wariacji.
- 13. Wyznaczyć liczbę wszystkich kombinacji (dowolnego rozmiaru) zbioru z powtórzeniami $S = \{n_1 \cdot a_1, \dots, n_k \cdot a_k\}$.
- **14.** Wyznaczyć liczbę r elementowych kombinacji zbioru $\{1 \cdot a_1, \infty \cdot a_2, \ldots, \infty \cdot a_k\}$. Ogólniej, wyprowadzić wzór na liczbę r-kombinacji zbioru, w którym liczby powtórzeń są równe 1 lub ∞ .
- 15. Znaleźć liczbę rozwiązań równania $x_1 + x_2 + x_3 = 14$ w nieujemnych liczbach całkowitych.
- **16.** Znaleźć liczbę rozwiązań równania $x_1 + x_2 + x_3 + x_4 = 20$ w liczbach całkowitych takich, że $1 \le x_1$, $0 \le x_2$, $4 \le x_3$ i $2 \le x_4$.
- 17. Sekretarka pracuje w budynku położonym 9 przecznic na wschód i 7 na północ od swojego domu. Codziennie przechodząc do pracy przechodzi 16 odcinków ulic. Ile jest możliwych tras ? Załóżmy, że odcinek ulicy w kierunku wschodnim, zaczynający się 4 przecznice na wschód i 3 na północ, został zalany, a sekretarka nie umie (lub nie chce) pływać. Ile jest wtedy możliwych tras ?

ZASADA WŁĄCZEŃ I WYŁĄCZEŃ

18. Niech A_1,A_2,A_3 będą podzbiorami zbioru skończonego X. Sprawdzić, że

$$|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3| - |A_1 \cap A_2| - |A_1 \cap A_3| - |A_2 \cap A_3| + |A_1 \cap A_2 \cap A_3|.$$

- 19. Ile jest liczb całkowitych pomiędzy 1 i 10 000 (włącznie), niepodzielnych przez 4, 5 ani 6?
- **20.** Ile jest liczb całkowitych pomiędzy 1 i 10 000 (włącznie), które nie są kwadratami ani sześcianami liczb całkowitych ?
- **21.** Znaleźć liczbę rozwiązań równania $x_1 + x_2 + x_3 = 14$ w nieujemnych liczbach całkowitych nie przekraczających 8.
- **22.** Znaleźć liczbę rozwiązań równania $x_1 + x_2 + x_3 + x_4 = 20$ w liczbach całkowitych takich, że $1 \le x_1 \le 6, 0 \le x_2 \le 7, 4 \le x_3 \le 8$ i $2 \le x_4 \le 6$.

Zadanie uzupełniające (autorstwa Piotra BN, dla odczuwających niedosyt:-)

Udowodnić, że jeżeli dwie funkcje f, g określone na skończonym zbiorze X spełniają dla każdego $x \in X$ warunek $f(x) \neq g(x)$ to istnieje $A \subseteq X$, taki że $|A| \geqslant |X|/4$ i $f[A] \cap g[A] = \emptyset$.

Być może następująca wersja zawiera wskazówkę: jeżeli funkcja $h:X\to Y\times Y$ nie przyjmuje wartości na przekątnej to istnieje $B\subseteq Y$, taki że

$$\left|h^{-1}[B\times(Y\setminus B)]\right|\geqslant |X|/4.$$