${\rm RAF201G-Mi\delta misserispr\acute{o}f}$ 1

11. febrúar, 8:20-9:50

Prófið inniheldur fjögur dæmi sem hver um sig gilda 25 prósent. Setjið inn lausnir og útreikninga á Gradescope. Gangi ykkur vel!

Dæmi 1 – Jafngildisrás. Óháðar lindir

Finnið tómgangsspennu $v_{\rm oc}$, skammhlaupsstraum $i_{\rm sc}$ og jafngildisviðnám $R_{\rm eq}$ á milli póla a og b. Teiknið Thévenin jafngildisrásina.

Breyta	Gildi
$\overline{V_1}$	5 V
I_2	$2\mathrm{A}$
R_1, R_2	5Ω

Dæmi 2 – Jafngildisrás. Spennustýrð spennulind

Finnið tómgangsspennu $v_{\rm oc}$, skammhlaupsstraum $i_{\rm sc}$ og jafngildisviðnám $R_{\rm eq}$ á milli póla a og b. Teiknið Thévenin jafngildisrásina.

Breyta	Gildi
I_1	1 A
μ	4
R_1	4Ω
R_2	6Ω
R_3	10Ω

Dæmi 3 – Fullkominn aðgerðarmagnari

Hvaða nálgunum gerum við ráð fyrir varðandi straum og spennu $(v_{+/-}, i_{+/-})$ við plús/mínus póla fullkomins aðgerðarmagnara? Notið nálganirnar til að finna hlutfallið $v_{\rm out}/v_{\rm in}$.

Gildi 6Ω 42Ω 32Ω 16Ω

Dæmi 4 – Hnútpunktagreining (MNA)

Ritið KCL og KVL jöfnur sem duga til að leysa rásina hér að neðan. Setjið jöfnurnar upp í fylki. Athugið að ekki þarf að leysa fylkið.

Ábending: Hvað eru margir hnútpunktar og spennulindir? Hvað eru þá margar óþekktar breytur/jöfnur sem þarf að leysa?

BreytaGildi μ 3 I_1 $6 A$ R_1 $\frac{1}{6} \Omega$ R_2 $\frac{1}{3} \Omega$ R_3 $\frac{1}{2} \Omega$ R_4 $\frac{1}{30} \Omega$		
I_1 6 A R_1 $\frac{1}{6}\Omega$ R_2 $\frac{1}{3}\Omega$ R_3 $\frac{1}{2}\Omega$	Breyta	Gildi
R_1 $\frac{1}{6}\Omega$ R_2 $\frac{1}{3}\Omega$ R_3 $\frac{1}{2}\Omega$	μ	3
R_2 $\frac{1}{3}\Omega$ R_3 $\frac{1}{2}\Omega$	I_1	6 A
$R_3 \qquad \frac{1}{2} \Omega$	R_1	$\frac{1}{6}\Omega$
-	R_2	$\frac{1}{3}\Omega$
$R_4 \qquad \frac{1}{30} \Omega$	R_3	$\frac{1}{2}\Omega$
	R_4	$\frac{1}{30} \Omega$