Номера заданий для выполнения контрольной работы №3

Номера заданий контрольной работы №3 студент определяет по последним двум цифрам номера зачетной книжки (номер на магнитной карточке) из приведённой ниже таблицы. Например, № 5038, тогда студенту нужно выполнить задания, номера которых указаны в ячейке на пересечении 3 строки и 8 столбца.

Последняя цифра шифра											
		0	1	2	3	4	5	6	7	8	9
Предпоследняя цифра шифра	0	1,20, 29,38, 47,56	2,11, 30,39, 48,57	3,12, 21,40, 49,58	4,13, 22,31, 50,59	5,14, 23,32, 41,60	6,15, 24,33, 42,51	7,16, 25,34, 43,52	8,17, 26,35, 44,53	9,18, 27,36, 45,54	10,19, 28,37, 46,55
	1	1,11, 21,31, 41,51	2,12, 22,32, 42,52	3,13, 23,33, 43,53	4,14 24,34, 44,54	5,15, 25,35, 45,55	6,16, 26,36, 46,56	7,17, 27,37, 47,57	8,18, 28,38, 48,58	9,19, 29,39, 49,59	10,20, 30,40, 50,60
	2	10,11, 22,33, 44,55	9,20, 21,32, 43,54	8,19, 30,31, 42,53	7,18, 29,40, 41,52	6,17, 28,39, 50,51	5,16, 27,38, 49,60	4,15, 26,37, 48,59	3,14, 25,36, 47,58	2,13, 24,35, 46,57	1,12, 23,34, 45,56
	3	1,12, 21,32, 41,52	2,11, 22,31, 42,51	3,14, 23,34, 43,54	4,13, 24,33, 44,53	5,16, 25,36, 45,56	6,15, 26,35, 46,55	7,18, 27,38, 47,58	8,17, 28,37, 48,57	9,20, 29,40, 49,60	10,19, 30,39, 50,59
	4	2,11, 21,32, 43,53	3,12, 22,38, 49,59	4,13, 23,39, 45,55	5,14, 24,40, 41,51	6,15, 25,31, 47,57	7,16, 26,32, 43,53	8,17, 27,33, 49,59	9,18, 28,34, 45,55	10,19, 29,35, 41,51	1,20, 30,36, 42,52
	5	3,12, 27,33, 44,54	4,13, 25,39, 50,60	5,14, 28,38, 46,56	6,15, 24,31, 42,52	7,16, 23,40, 48,58	8,17, 22,33, 44,54	9,18, 28,32, 50,60	10,19, 25,35, 46,56	1,20, 26,34, 42,52	2,11, 21,37, 41,51
	6	4,11, 21,34, 45,55	5,12, 22,40, 41,51	6,13, 23,37, 47,57	7,14, 24,32, 43,53	8,15, 25,39, 49,59	9,16, 26,34, 45,55	10,17, 29,31, 41,51	1,18, 24,36, 47,57	2,19, 27,33, 43,53	3,20, 22,38, 50,60
	7	5,13, 28,35, 46,56	6,18, 24,31, 42,52	7,19, 29,36, 48,58	8,14, 25,33, 44,54	9,15, 22,38, 50,60	10,20, 27,35, 46,56	1,11, 26,40, 42,52	2,16, 23,37, 48,58	3,17, 28,32, 44,54	4,12 23,39, 49,59
	8	6,14, 27,36, 47,57	7,17, 23,32, 43,53	8,20, 30,35, 49,59	9,13, 26,34, 45,55	10,16, 21,37, 41,51	1,19, 28,36, 47,57	2,12, 27,39, 43,53	3,15, 22,38, 49,59	4,18, 29,31, 45,55	5,11, 24,40, 48,58
- 	9	7,15, 26,37, 48,58	8,16, 22,33, 44,54	9,11, 21,34, 50,60	10,12, 27,35, 46,56	1,17, 30,36, 42,52	2,18, 29,37, 48,58	3,13, 30,38, 44,54	4,14, 21,39, 50,60	5,19, 30,40, 46,56	6,20, 25,31, 47,57

Найти указанные пределы (не пользуясь правилом Лопиталя).

1. a)
$$\lim_{x \to \infty} \frac{1-2x}{3x-2}$$
; 6) $\lim_{x \to 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{3x}$; B) $\lim_{x \to 0} \frac{1-\cos x}{5x^2}$; Γ) $\lim_{x \to \infty} \left(\frac{x+3}{x-2}\right)^x$.

2. a)
$$\lim_{x \to 0} \frac{x^3 + 1}{2x^3 + 1}$$
; 6) $\lim_{x \to 7} \frac{\sqrt{2 + x} - 3}{x - 7}$; B) $\lim_{x \to 0} \frac{\arcsin 3x}{5x}$; Γ) $\lim_{x \to \infty} \left(\frac{2x - 1}{2x + 1}\right)^x$.

3. a)
$$\lim_{x \to \infty} \frac{2x^3 + x^2 - 5}{x^3 + x - 2}$$
; 6) $\lim_{x \to 1} \frac{x - \sqrt{x}}{x^2 - x}$; B) $\lim_{x \to 0} \frac{\sqrt{1 - \cos 2x}}{x}$; Γ) $\lim_{x \to \infty} \left(\frac{4x + 1}{4x}\right)^{2x}$.

4. a)
$$\lim_{x \to \infty} \frac{3x^4 + x^2 - 6}{2x^4 - x + 2}$$
; 6) $\lim_{x \to 0} \frac{x}{\sqrt{1 + 3x} - \sqrt{1}}$; B) $\lim_{x \to 0} \frac{5x}{arctgx}$; Γ) $\lim_{x \to 0} (1 + 2x)^{1/x}$.

5. a)
$$\lim_{x \to \infty} \frac{2x^2 + 6x - 5}{5x^2 - x - 1}$$
; 6) $\lim_{x \to 0} \frac{1 - \sqrt{1 - x^2}}{x^2}$; B) $\lim_{x \to 0} \frac{\cos x - \cos^3 x}{x^2}$;

$$\Gamma) \lim_{x \to +\infty} x \Big[\ln(x+1) - \ln x \Big].$$

6. a)
$$\lim_{x \to \infty} \frac{5x^4 + x + 3}{x^4 - 12x + 1}$$
; 6) $\lim_{x \to 0} \frac{\sqrt{1 + 3x} - \sqrt{1 - 2x}}{x + x^2}$; B) $\lim_{x \to 0} \frac{x^2 ctg 2x}{\sin 3x}$;

$$\Gamma$$
) $\lim_{x\to +\infty} (2x+1)[\ln(x+3)-\ln x].$

7. a)
$$\lim_{x \to \infty} \frac{5x^4 - 2x^2 - x}{x^4 + 3x^2 + 2}$$
; 6) $\lim_{x \to 0} \frac{\sqrt{1 + 3x^2} - 1}{x^2 + x^3}$; B) $\lim_{x \to 0} \frac{1 - \cos 6x}{1 - \cos 2x}$;

$$\Gamma$$
) $\lim_{x \to +\infty} (x-5) [\ln(x-3) - \ln x].$

8. a)
$$\lim_{x \to \infty} \frac{5x^2 - 3x + 1}{3x^2 + x - 5}$$
; 6) $\lim_{x \to 3} \frac{\sqrt{2x - 1} - \sqrt{5}}{x - 3}$; B) $\lim_{x \to 0} \frac{tg^2 \frac{x}{2}}{x^2}$; Γ) $\lim_{x \to 1} (7 - 6x)^{x/(3x - 3)}$.

9. a)
$$\lim_{x \to \infty} \frac{7x^4 - 2x^3 + 2}{x^4 + 3}$$
; 6) $\lim_{x \to 5} \frac{\sqrt{1 + 3x} - \sqrt{2x + 6}}{x^2 - 5x}$; B) $\lim_{x \to 0} \frac{1 - \cos 4x}{2x \cdot tg \cdot 2x}$;

$$\Gamma$$
) $\lim_{x\to 2} (3x-5)^{2x/(x^2-4)}$.

a)
$$\lim_{x \to \infty} \frac{8x^5 - 3x^2 + 9}{2x^5 + 2x^2 + 5}$$
; 6) $\lim_{x \to 2} \frac{x - 2}{\sqrt{2x} - 2}$; B) $\lim_{x \to 0} (5x \cdot ctg 3x)$; Г) $\lim_{x \to 3} (3x - 8)^{2/(x - 3)}$.

Найти производные $\frac{dy}{dx}$ данных функций.

11. a)
$$y = \frac{3x}{\sqrt[3]{2+x}} - 6 \cdot \sqrt[4]{x}$$
; 6) $y = \sin^3 2x$; B) $y = x \cdot \arcsin x + \sqrt{1-x^2}$;

$$\Gamma$$
) $y = x^{e^x}$; Д) $e^{xy} - x^2 + y^2 = 0$; e) $\begin{cases} x = 2t - \sin 2t, \\ y = \sin^3 t. \end{cases}$

12. a)
$$y = \frac{\sqrt{1+3x^2}}{2+3x^2}$$
; 6) $y = e^{-x^2} \cdot \cos(2x+3)$; B) $y = x^3 \cdot arctg \, 5x + \ln tgx$;

$$\Gamma$$
) $y = (\sin 3x)^{\sqrt{x}}$; Д) $y \cdot \ln x - x \cdot \ln y = x + y$; e)
$$\begin{cases} x = 2\cos^3 t, \\ y = \sin^3 2t. \end{cases}$$

13. a)
$$y = \sqrt[3]{x + \sqrt{x}}$$
; 6) $y = \frac{1 + \sin 2x}{1 - \sin 2x}$; B) $y = 5^{arctg3x}$;

$$\Gamma y = x^{\frac{2}{\ln^2 x}}; \quad \Pi e^{x+y} - x \cdot y = 0; \quad e \begin{cases} x = 2t - t^2, \\ y = 3t - t^3. \end{cases}$$

14. a)
$$y = (5x^2 - x + 3)^7$$
; 6) $y = \ln \sqrt{\frac{1 - x^6}{1 + x^6}}$; B) $y = arctg \sqrt{x^2 - 1}$;

$$\Gamma) y = (x^2 + 1)^{tg2x}; \quad \exists x \cdot \sin y - \cos y + \cos 2y = 0; \quad e) \begin{cases} x = \cos t + t \cdot \sin t, \\ y = \sin t - t \cdot \cos t. \end{cases}$$

15. a)
$$y = x \cdot \sqrt[3]{\frac{1+x}{1-x}}$$
; 6) $y = e^{\cos^2 3x}$; B) $y = \ln(\arcsin x)$;

Г)
$$y = (x^2 + x)^x$$
; Д) $tg(x + y) - x \cdot y = 0$; е) $\begin{cases} x = t - \sin t, \\ y = 1 - \cos t. \end{cases}$
a) $y = \sqrt[3]{\frac{1 + x^3}{1 - x^3}}$; б) $y = \sqrt{1 + \ln^2 x}$; в) $y = \arccos \frac{1}{x}$;

$$\Gamma) y = x^{arctgx}; \quad \Delta) y \cdot \sin x + \cos(x - y) = \cos x; \quad e) \begin{cases} x = t + \frac{1}{2} \cdot \sin 2t, \\ y = \cos^3 t. \end{cases}$$

17. a)
$$y = \left(1 + \sqrt{\frac{1+x}{1-x}}\right)^2$$
; 6) $y = \frac{\sin x}{1+tgx}$; B) $y = arctg(e^{3x})$;

г)
$$y = x^{\sqrt{x+1}}$$
; Д) $y + \arcsin(x+y) - 3x = 0$; е) $\begin{cases} x = ctgt, \\ y = (\cos t)^{-2}. \end{cases}$

18. a)
$$y = \sqrt{x^2 + 1} + \sqrt[3]{x^3 + 1}$$
; 6) $y = \frac{1}{3} \cdot tg^3 x - tgx + x$; B) $y = arcctg \frac{3 - x}{x - 2}$;

$$\Gamma) \ \ y = (\ln x)^x; \qquad \exists x - y + e^y \cdot arctgx = 0; \qquad e) \begin{cases} x = \cos 3t, \\ y = \sin 3t. \end{cases}$$

$$a) \ \ y = \sqrt[3]{1 + x \cdot \sqrt{x + 3}}; \qquad \delta) \ \ y = \sqrt{1 + \ln^2 x}; \qquad B) \ \ y = \frac{e^{x^2} + 1}{\sin 3x};$$

19. a)
$$y = \sqrt[3]{1 + x \cdot \sqrt{x + 3}}$$
; 6) $y = \sqrt{1 + \ln^2 x}$; B) $y = \frac{e^{x^2} + 1}{\sin 3x}$

Г)
$$y = (\cos x)^{tgx}$$
; Д) $e^{x+y} = \sin(x \cdot y)$; е) $\begin{cases} x = tgt, \\ y = (\sin t)^{-2}. \end{cases}$

20. a)
$$y = \frac{3}{\sqrt[3]{x^3 + 3x + 1}} - 2\sqrt{6x + 5}$$
; b) $y = \cos 2x \cdot \sin^2 x$; b) $y = \ln(arctgx)$;

$$\Gamma$$
) $y = \sqrt[x]{x}$; Д) $e^{x^2y} - (x+2y) = 0$; e) $\begin{cases} x = 3\cos t, \\ y = 4\sin^2 t. \end{cases}$

Найти производную $\frac{d^2y}{dx^2}$ данной функции.

21.
$$y = arctg(x^2)$$
. 22. $y = \ln(\ln x)$. 23. $y = x\sqrt{1 + x^2}$. 24. $y = x^2 \cdot \ln x$. 25. $y = x^3 \cdot \ln x$. 26. $y = \ln(\sin x)$. 27. $y = x \cdot e^{\frac{1}{x}}$. 28. $y = \ln^2 x$.

29.
$$y = \frac{1}{4} \cdot x^2 (2 \ln x - 3)$$
. $y = \frac{x}{\sqrt{1 - x^2}}$.

Найти пределы, используя правило Лопиталя.

31.
$$\lim_{x\to 0} \frac{x\cos x - \sin x}{x^3}$$
. 32. $\lim_{x\to 0} \frac{tgx - \sin x}{4x - \sin x}$. 33. $\lim_{x\to 0} \frac{1 - \cos x}{tgx}$. 34. $\lim_{x\to 0} \frac{\frac{\pi}{x}}{\frac{x}{x^2 - \sin x^2}}$. 35. $\lim_{x\to \frac{\pi}{2}} \frac{tg^3x}{tg^5x}$. 36. $\lim_{x\to 0} \frac{1 - \cos x^2}{x^2 - \sin x^2}$. 37. $\lim_{x\to 0} \frac{tgx - x}{x - \sin x}$. 38. $\lim_{x\to 0} \frac{x\cos x - \sin x}{x^3}$. 39. $\lim_{x\to 0} \frac{tgx - x}{2\sin x + x}$. 40. $\lim_{x\to 0} \frac{x}{1 - \cos x}$.

Найти наименьшее и наибольшее значения функции y = f(x) на отрезке [a, b].

41.
$$y = \frac{2x-1}{(x-1)^2}$$
, $\left[-\frac{1}{2}; 0 \right]$.

42. $y = \frac{3x}{x^2+1}$, $\left[0; 5 \right]$.

43. $y = \frac{x^3}{x^2-x+1}$, $\left[-1; 1 \right]$.

44. $y = \frac{x^3+4}{x^2}$, $\left[1; 2 \right]$.

45. $y = \frac{x}{9-x^2}$, $\left[-2; 2 \right]$.

46. $y = x^2-2x+\frac{2}{x-1}$, $\left[-1; 3 \right]$.

47. $y = 108x-x^4$, $\left[-1; 4 \right]$.

48. $y = \frac{x^4}{4}-6x^3+7$, $\left[16; 20 \right]$.

49. $y = 3x^4-16x^3+2$, $\left[-3; 1 \right]$.

50. $y = x^5 - 5x^4 + 5x^3 + 1$, [-1; 2].

Исследовать методами дифференциального исчисления функцию y = f(x) и, используя результаты исследования, построить график.

51.
$$y = \frac{x^2}{x-1}$$
. **52.** $y = \frac{x^2+1}{x^2-1}$. **53.** $y = \frac{4x^3+5}{x}$. **54.** $y = \frac{x^2-5}{x-3}$. **55.** $y = \frac{x^4}{x^3-1}$. **56.** $y = \frac{x^2-2x+2}{x-1}$. **57.** $y = \frac{x+1}{(x-1)^2}$. **58.** $y = \frac{4x^3}{x^3-1}$. **59.** $y = \frac{x^2}{4x^2-1}$. **60.** $y = \frac{2-x^2}{1-4x^2}$.