Sergio Garcia Tapia

Numerical Linear Algebra, Lloyd Trefethen and David Bau III

Lecture 1: Matrix-Vector Multiplication

June 20, 2024

# Lecture 1: Matrix-Vector Multiplication

**Exercise 1.** Let B be a  $4 \times 4$  matrix to which we apply the following operations:

- 1. double column 1,
- 2. half row 3,
- 3. add row 3 to row 1,
- 4. interchange columns 1 and 4,
- 5. subtract row 2 from each of the other rows,
- 6. replace column 4 by column 3,
- 7. delete column 1 (so that the column dimension is reduced by 1).
- (a) Write the result as a product of eight matrices.
- (b) Write it again as a product ABC (same B) of three matrices.

### Solution:

(a) To perform any operation on the columns, we can multiply by a matrix on the right, thinking of its columns as the weights that will be used to create a linear combination of the columns of the operand matrix. For example, to double column 1 of B, we multiply B on the right by  $D_1$ , where

$$D_1 = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

We now have  $BD_1$ . To perform row operations, we can instead operate with the transpose by relying on the identity

$$(SR)^T = R^T S^T$$

This enables us to think of the row operations as column operations. For example, to halve row 3 of  $BD_1$ , we instead think of halving column 3 of its transpose  $(BD_1)^T$ . Doing this is simply multiplying by  $D_2^T$  on the right, where

$$D_2^T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} D_2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Now we have  $(BD_1)^T D_2^T$ , which is equivalent to  $D_2(BD_1)$ . To add row 3 to row 1, we perform the equivalent of adding column 3 to column 1 of the transpose. To achieve this, we multiply the transpose on the right of our result so far by  $D_3^T$ , where

$$D_3^T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 3 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad D_3 = \begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Operating on the transpose results in  $(D_2BD_1)^TD_3^T$ , which is equivalent to the product  $D_3D_2BD_1$ . Next, to interchange columns 1 and 4, we multiply on the right by

$$D_4 = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

Thus we have  $(D_3D_2BD_1)D_4$ . To subtract row 2 from each of the other rows, we again think of it in terms of columns by using the transpose. This translates to subtracting column 2 of the transpose from the other transposed columns. To achieve this, we multiply the transpose of our result so far on the right by  $D_5^T$ , where

$$D_5^T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & -2 & -2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & & & 1 \end{bmatrix} \qquad D_5 = \begin{bmatrix} 1 & -2 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -2 & 1 & 0 \\ 0 & -2 & 0 & 1 \end{bmatrix}$$

This gives  $(D_3D_2BD_1D_4)^TD_5^T$ , so using our identity gives  $D_5(D_3D_2BD_1D_4)$ . To replace column 4 by column 3, we multiply by  $D_6$  on the right:

$$D_6 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Now our product is  $(D_5D_3D_2BD_1D_4)D_6$ . Finally, to delete column 1, we multiply on the right by  $D_7$ , where

$$D_7 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Our final result is  $(D_5D_3D_2BD_1D_4D_6)D_7$ , which is a product of 8 matrices.

(b) We let  $A = D_5 D_3 D_2$  and  $C = D_1 D_4 D_7$ .



Figure 1: Exercise 1.2: Block masses connected by springs in a line

**Exercise 2.** Suppose masses  $m_1, m_2, m_3, m_4$  are located at positions  $x_1, x_2, x_3, x_4$  in a line and connected by springs with constants  $k_{12}, k_{23}, k_{34}$  whose natural lengths of extension are  $\ell_{12}, \ell_{23}, \ell_{34}$ . Let  $f_1, f_2, f_3, f_4$  denote the rightward forces on the masses, e.g.,  $f_1 = k_{12}(x_2 - x_1 - \ell_{12})$ .

- (a) Write a  $4 \times 4$  matrix equation relating the column vectors f and x. Let K denote the matrix in this equation.
- (b) What are the dimensions of the entries of K in the physics sense (e.g., mass times time, distance divided by mass, etc.)?
- (c) What are the dimensions of det(K), again in the physics sense?
- (d) Suppose K is given numerical values based on the units meters, kilograms, and seconds. Now the system is rewritten with a matrix K' based on centimeters, grams, and seconds. What is the relationship of K' to K? What is the relationship of  $\det(K')$  to  $\det(K)$ ?

#### Solution:

(a) See Figure 1 for a picture I have created of the scenario described. I presume that the force  $f_1$  is calculated according to Hooke's Law, giving rightward force on  $m_1$  as the product of the spring constant  $k_{12}$  connecting  $m_1$  and  $m_2$  and the displacement of that spring from its relaxed position. When  $x_2 - x_1 = \ell_{12}$ , the spring is relaxed, and hence there is no force. When mass  $m_2$  is pulled right so that  $x_2 - x_1 > \ell_{12}$ , the displacement  $x_2 - x_1 - \ell_{12}$  is positive, inducing a force  $f_1$  on  $m_1$  that pulls  $m_1$  rightward, and similarly, a leftward force  $-f_1$  on  $m_2$  pulling  $m_2$  leftward. Since we are only asked for the rightward forces, and not the net force on each mass, we have

$$f_1 = k_{12}(x_2 - x_1 - \ell_{12})$$

$$f_2 = k_{23}(x_3 - x_2 - \ell_{23})$$

$$f_3 = k_{34}(x_4 - x_3 - \ell_{34})$$

$$f_4 = 0$$

We can compactly summarize this with the matrix equation f = K(x - l), where

$$f = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \end{bmatrix} \quad x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \quad \ell = \begin{bmatrix} 0 \\ \ell_{12} \\ \ell_{23} + \ell_{12} \\ \ell_{34} + \ell_{23} + \ell_{12} \end{bmatrix} \quad K = \begin{bmatrix} -k_{12} & k_{12} & 0 & 0 \\ 0 & -k_{23} & k_{23} & 0 \\ 0 & 0 & -k_{34} & k_{34} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

- (b)  $f_i$  has force dimensions and x and  $\ell$  have length dimensions. Thus each entry of k results from their ratio, which in turn has dimensions of force divided by length.
- (c) The dimensions of det(K) are force divided by length, all raised to the fourth power.
- (d) If K is given in units of meters, kilograms, and seconds, then the dimensions of the entry of K are given in the units  $\frac{kg \cdot m}{s^2}$ , where kg stands for kilograms, m for meters, and s for seconds. Meanwhile, K' is given in dimensions centimeters, grams, and seconds, which is  $\frac{g \cdot cm}{s^2}$ . Since 1kg = 1000g, and 1m = 100cm, we see that  $\frac{kg \cdot m}{s^2} = \frac{1000g \cdot 100cm}{s^2} = 10^6 \frac{g \cdot cm}{s^2}$ . Thus, the relationship between K and K' is  $K' = 10^6 \cdot K$ . Since  $\det(AB) = \det(A) \det(B)$ , it follows that  $\det(K') = \det(10^6 I \cdot K) = 10^6 \cdot \det(K)$ , where I is the identity matrix.

**Exercise 3.** Generalizing Example 1.3, we say that a square or rectangular matrix R with entries  $r_{ij}$  is upper-triangular if  $r_{ij} = 0$  for i > j. By considering what space is spanned by the first n columns of R using (1.8), show that if R is a nonsingular  $m \times m$  upper-triangular matrix, the  $R^{-1}$  is also upper-triangular. (The analogous result also holds for lower-triangular matrices).

## **Solution:**

*Proof.* If R is nonsingular, then it has a unique inverse  $R^{-1}$  such that

$$I = R^{-1}R = RR^{-1}$$

where I is the  $m \times m$  identity matrix. Denote the j-th column of I by  $e_j$  for  $j \in \{1, \ldots, m\}$ , and the i-th column of  $R^{-1}$  by  $z_i$ . Then since  $I = R^{-1}R$ , the j-th column of I is a linear combination of the columns of  $R^{-1}$  using the entries in the j-th column of R. By (1.8), we have

$$e_j = \sum_{i=1}^{m} r_{ij} z_i = \sum_{i=1}^{j} r_{ij} z_i$$

To show that  $z_{ij} = 0$  for i > j, we proceed by induction on j, the column index. If j = 1, then

$$e_1 = \sum_{i=1}^{1} r_{i1} z_i = r_{11} \cdot z_1$$

The first entry in  $e_1$  is 1 and the rest are 0. Since R is nonsigular and upper-triangular, its diagonal entries are nonzero, so  $a_{11\neq 0}$ . Dividing by  $a_{11}$  shows that  $z_1 = \frac{1}{a_{11}}e_1$ , and hence,  $z_{i1} = 0$  for i > 1.

Suppose j > 1 and the result holds for all columns of smaller column indices Now

$$e_j = \sum_{i=1}^{j} r_{ij} z_i = r_{jj} z_j + \sum_{i=1}^{j-1} r_{ij} z_i$$

$$z_j = \frac{1}{r_{jj}}e_j + \frac{1}{r_{jj}}\sum_{i=1}^{j-1} r_{ij}z_i$$

Note that  $r_{jj} \neq 0$  because R is a nonsingular upper-triangular matrix. By our inductive hypothesis,  $z_{ik} = 0$  for i > k whenever  $1 \leq i \leq j-1$ . Since the scalar multiple  $\frac{1}{r_{jj}}e_j$  of  $e_j$  only has a nonzero entry in its j-th slot, it satisfies  $e_{ij} = 0$  for i > j. Since  $z_{ij}$  is their sum as seen above, we conclude that it too satisfies  $z_{ij} = 0$  for i > j. We conclude by induction that  $R^{-1}$  is upper-triangular.

**Exercise 4.** Let  $f_1, \ldots, f_8$  be a set of functions ont he interval [1, 8], with the property that for any numbers  $d_1, \ldots, d_8$ , there exists a set of coefficients  $c_1, \ldots, c_8$  such that

$$\sum_{j=1}^{8} c_j f_j(i) = d_i, \quad i = 1, \dots, 8$$

- (a) Show by appealing to the theorems of this lecture that  $d_1, \ldots, d_8$  determine  $c_1, \ldots, c_8$  uniquely.
- (b) Let A be the  $8 \times 8$  matrix representing the linear mapping from data  $d_1, \ldots, d_8$  to coefficients  $c_1, \ldots, c_8$ . What is the i, j entry of  $A^{-1}$ ?

## Solution:

- (a) Proof. Let F be the  $8 \times 8$  matrix whose j-th column  $f_j$  represents the column vector  $(f_j(1), \ldots, f_j(8))$ , where  $j \in \{1, \ldots, 8\}$ . The given information implies that  $\operatorname{rank}(F) = 8$ . By Theorem 1.3, this implies that  $\operatorname{null}(A) = \{0\}$ . Thus,  $d_1, \ldots, d_8$  determines  $c_1, \ldots, c_8$  uniquely. Otherwise, if there is another list of coefficients  $c'_1, \ldots, c'_8$  that also yield  $d_1, \ldots, d_8$ , then the list  $c_1 c'_1, \ldots, c_8 c'_8$  yields  $d_1 d_1, \ldots, d_8 d_8$ ; that is, it yields the 0 vector. Since  $\operatorname{null}(A) = \{0\}$ , this implies that  $c_i = c'_i$  for all  $i \in \{1, \ldots, 8\}$ , and hence the  $c_i$ 's are uniquely determined.
- (b) Per the description of A and our definition of F, we see that  $A = F^{-1}$ , and hence  $A^{-1} = F$ . Thus, the i, j entry of  $A^{-1}$  is the value of the j-th function at i.