OPER 732: Optimization under Uncertainty Lecture 6: L-shaped Method

Department of Statistical Sciences and Operations Research Virginia Commonwealth University

Sept. 25, 2017

This lecture

```
S
H
A
P
E
D
M E T H O D
```

Benders decomposition for LP

Cutting planes algorithm:

- Iteratively solve the relaxation problem with a cut pool \mathcal{P} , which includes all cuts that have been added
- Generate a valid inequality if the relaxation solution $(\hat{x}, \hat{\theta})$ violates any, and update the relaxation problem by adding this cut

Questions on the cutting plane algorithm:

- Can we make sure that $\forall (\hat{x}, \hat{\theta})$ that $\hat{\theta} < f(\hat{x})$, we can generate a valid inequality to cut it off?
- 2 How to generate such a linear inequality?
- Will this procedure stop finitely?

Case 1: Optimality cut

If $f(\hat{x})$ is finite, according to LP duality:

$$f(\hat{x}) = \min\{q^\top y \mid Wy = h - T\hat{x}, y \ge 0\}$$
$$= \max\{(h - T\hat{x})^\top u \mid W^\top u \le q\}$$
$$= (h - T\hat{x})^\top \hat{u}$$

We have a valid inequality:

$$\theta \ge (h - Tx)^{\top} \hat{u},$$

that is violated by $(\hat{x}, \hat{\theta})$, and add it to the cut pool \mathcal{P}

Question 1 and 2 are solved, by strong duality

Case 2: Feasibility cut

If $f(\hat{x}) = +\infty$, then \hat{x} is not feasible, i.e., $\nexists y \ge 0$ that $Wy = h - T\hat{x}$. Let us solve a feasibility problem:

$$z(\hat{x}) := \min_{y \in \mathbb{R}_{+}^{n_2}} \sum_{i=1}^{n_2} (\xi_i + \eta_i)$$

s.t. $Wy + \xi - \eta = h - T\hat{x}$
 $\xi, \eta \in \mathbb{R}_{+}^{n_2}$

 $z(\hat{x}) > 0$ since \hat{x} is not feasible. The corresponding dual problem is:

$$z(\hat{x}) = \max_{v \in \mathbb{R}^{m_2}} (h - T\hat{x})^{\top} v$$
s.t. $W^{\top} v \le 0$

$$-1 \le v_i \le 1, \ \forall i = 1, 2, \dots, m_2$$

The optimal \hat{v} represents an extreme ray in the recession cone $\{v \in \mathbb{R}^{m_2} \mid W^\top v \leq 0\}$

Feasibility cut (continued)

Feasibility cut

$$\hat{v}^{\top}(h - Tx) \leq 0$$

- This is a valid inequality for all feasible x, why?
- This inequality is violated by current \hat{x} solution

Benders decomposition: a loop

• Suppose the current set of optimality cuts is \mathcal{O} , and set of feasibility cuts is \mathcal{F} . Obtain a relaxation solution $(\hat{x}, \hat{\theta})$ by solving:

$$\min_{x \in \mathbb{R}_{+}^{n_{1}}} c^{\top}x + \theta$$
s.t. $Ax = b$

$$E_{l}x + \theta \ge e_{l}, \ \forall l \in \mathcal{O}$$

$$D_{l}x \ge d_{l}, \ \forall l \in \mathcal{F},$$

- ② Check if \hat{x} is feasible by solving: $z(\hat{x}) = \max\{(h T\hat{x})^{\top}v \mid W^{\top}v \leq 0, v \in [-1, 1]^{m_2}\}$. If $z(\hat{x}) > 0$, add a feasibility cut to \mathcal{F} , and return to Step 1
- **3** Check if $\theta \ge f(\hat{x})$, by solving $f(\hat{x}) = \min\{q^\top y \mid Wy = h T\hat{x}, y \ge 0\}$. If yes, we claim \hat{x} is the optimal solution. Otherwise, add an optimality cut to \mathcal{O} , and return to Step 1

An example

min
$$1.5x + 2y_1 + y_2$$

s.t. $x + y_1 + y_2 \ge 4$
 $x + y_1 \ge 2$
 $x, y_1, y_2 \ge 0$

Finiteness of Benders decomposition

- Finiteness of feasibility cuts: \hat{v} of the feasibility cut $\hat{v}^{\top}(h Tx) \leq 0$ is an extreme ray in the recession cone $\{v \in \mathbb{R}^{m_2} \mid W^{\top}v \leq 0\}$
 - # extreme rays of a polyhedron is finite \Rightarrow a finite number of feasibility cuts are sufficient to ensure feasibility
- ② Finiteness of optimality cuts: \hat{u} of the optimality cut $\theta \geq \hat{u}^{\top}(h Tx)$ is an extreme point of polyhedron $\{u \mid W^{\top}u \leq q\}$

extreme points of a polyhedron is finite \Rightarrow a finite number of optimality cuts are sufficient to define the epigraph

Cutting plane algorithm

Benders decomposition is a cutting plane algorithm for solving LPs. Which algorithm will you choose to iteratively solve the relaxation LP? Why?

Dual simplex

- Dual multipliers remain feasible after adding cuts
- Hot startusing dual multipliers from the previous step

Cutting plane algorithm

Benders decomposition is a cutting plane algorithm for solving LPs. Which algorithm will you choose to iteratively solve the relaxation LP? Why?

Dual simplex!

- Dual multipliers remain feasible after adding cuts
- Hot startusing dual multipliers from the previous step

L-shaped method: Bender decomposition in stochastic programs

$$\min_{x \in \mathbb{R}_+^{n_1}} c^\top x + \sum_{k \in N} p_k Q_k(x)$$

s.t. $Ax = b$,

where

$$Q_k(x) = \min_{y^k \in \mathbb{R}_+^{n_2}} \{ (q^k)^\top y^k \mid Wy^k = h^k - T^k x \}$$

Let $\mathcal{Q}(x) = \sum_{k \in N} p_k Q_k(x)$, assume θ_0 is its lowerbound. The initial relaxation problem:

$$\begin{aligned} \min_{x \in \mathbb{R}^{n_1}_+} c^\top x + \theta \\ \text{s.t. } Ax = b \\ \theta \geq \theta_0 \end{aligned}$$

L-shaped method: Master problem

$$\min_{x \in \mathbb{R}_{+}^{n_{1}}} c^{\top}x + \theta$$
s.t. $Ax = b$

$$E_{l}x + \theta \ge e_{l}, \ \forall l \in \mathcal{O}$$

$$D_{l}x \ge d_{l}, \ \forall l \in \mathcal{F}.$$

Master problem is a relaxation of the original problem, constructed by all optimality cuts and feasibility cuts generated so far.

Let $(\hat{x}, \hat{\theta})$ be the solution to the master problem.

Subproblem: separable for each scenario *k*

Given a master problem solution $(\hat{x}, \hat{\theta})$, evaluate $Q(\hat{x}) = \sum_{k \in N} p_k Q_k(\hat{x})$:

- Solve each problem $Q_k(\hat{x})$ separately for each scenario k
- Use the solution to construct optimality and feasibility cuts

Feasibility cuts: if for some k that $Q_k(\hat{x}) = +\infty$, we generate a feasibility cut:

$$(h^k - T^k x)^\top v^k \le 0,$$

and add it to the set of feasibility cuts ${\mathcal F}$ in the master problem.

Subproblem: separable for each scenario *k*

If $\forall k \in N$, $Q_k(\hat{x}) < \infty$ (so \hat{x} is feasible), we look for an optimality cut:

$$\theta \ge \sum_{k \in N} p_k (h^k - T^k x)^\top u^k,$$

- For each $k \in N$, u^k is the optimal dual multiplier for problem $Q_k(\hat{x})$.
- We aggregate these dual information to construct a single cut.
- If this inequality is violated by the current $(\hat{x}, \hat{\theta})$, we add it to the set of optimality cuts \mathcal{O} in the master problem.
- Otherwise, we claim \hat{x} is the optimal solution.

An example

min
$$\mathbb{E}_{\xi}(y_1 + y_2)$$

s.t. $0 \le x \le 10$
 $y_1 - y_2 = \xi - x$
 $y_1, y_2 \ge 0$,

where ξ takes the values 1, 2, 4 with probability 1/3.

Multicut: disaggregated optimality cuts

Introduce a separate θ_k variable for each scenario $k \in N$:

$$\begin{aligned} & \min_{x \in \mathbb{R}_+^{n_1}} c^\top x + \sum_{k \in N} p_k \theta_k \\ & \text{s.t. } Ax = b \\ & D_l x \geq d_l, \ \forall l \in \mathcal{F} \\ & E_{l(k)} x + \theta_k \geq e_{l(k)}, \ \forall l(k) \in \mathcal{O}_k, \ \forall k \in N \end{aligned}$$

Optimality cuts are generated one for each scenario k, if violated by the relaxation solution (\hat{x}, θ_k) .

Single cut or multicut?

	Single cut	Multicut
Information for the first-stage	less detailed	more detailed
# of iterations	more	less
Size of problem formulation	less	more

A rule of thumb: the multicut approach is more effective when # of scenarios N is not significantly larger than # first-stage constraints m_1 .

Reading this week: Section 5.1 of textbook.