Exercícios de avaliação

Exercício 1.1 Especifique em alto nível e nível binário o sistema digital cuja entrada é um número inteiro de 0 a 9 e e cuja saída informa o número presente na entrada adicionado de 4 unidades.

Solução:

Especificação em alto nível - O sistema consiste de uma entrada x, uma saída z (como mostrado na Fig. 1.10) e relação entrada-saída dada por:

$$z = x + 4$$
.

Os valores de entrada permitidos foram definidos no enunciado:

$$x \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}.$$

Por conseguinte, tem-se:

$$z \in \{4,5,6,7,8,9,10,11,12,13\}.$$

Especificação em nível binário - Para fazer a especificação em nível binário é necessário especificar as entradas, saídas e a função de transferência em nível binário, ou seja, especificar os blocos C (codificador), D (decodificador) e $\underline{F_b}(\cdot)$ mostrados na Fig. 1.13. Será feita a descrição desses blocos usando tabelas.

O bloco C recebe como entrada um número inteiro x ($x \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$) e deve fornecer como saída um vetor binário. Para representar números de 0 a 9 são necessários pelo menos 4 *bits*. Para implementar o bloco C pode ser usada a tabela:

х	0	1	2	3	4	5	6	7	8	9
x_b	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001

O bloco D recebe como entrada um número binário $\underline{z_b}$ de 4 bits e como saída um número inteiro z. Como definido na especificação de alto nível $z \in \{4,5,6,7,8,9,10,11,12,13\}$. São necessários novamente pelo menos 4 bits para codificar todos os valores permitidos a z. A tabela mostra a implementação do bloco D:

<u>Zb</u>	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101
z	4	5	6	7	8	9	10	11	12	13

O bloco $\underline{F_b}(\cdot)$ recebe como entrada um número binário $\underline{x_b}$ de 4 *bits* e como saída o número binário $\underline{z_b}$ de 4 *bits*. A tabela para implementar O bloco $\underline{F_b}(\cdot)$:

	0000											
<u>Zb</u>	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101		

Exercícios de avaliação

Exercício 2.1 Usando apenas os postulados da álgebra de Boole mostre que a + a = a. **Solução:**

A demonstração para a + a = a parte do lado esquerdo da igualdade (a + a):

$$a+a=1\cdot(a+a)$$
 (usando postulado 2.3)
 $=(a+a')\cdot(a+a)$ (usando postulado 2.4)
 $=a+(a\cdot a')$ (usando postulado 2.2)
 $=a+0$ (usando postulado 2.4)
 $=a$ (usando postulado 2.3).

Exercício 2.2 Fazendo uso apenas dos postulados da álgebra de Boole e, possivelmente, de um dos teoremas demonstrados no capítulo mostre que: $(a \cdot b)' = a' + b'$.

Solução:

Será feita a demonstração para $(a \cdot b)' = a' + b'$. Se $a \cdot b$ é complemento de a' + b' como prega o enunciado então, necessariamente, as seguintes identidades devem ser válidas pelo postulado 2.4:

$$(a \cdot b) + (a' + b') = 1$$
 e
 $(a \cdot b) \cdot (a' + b') = 0.$ (2.21)

Fazendo o desenvolvimento de $(a \cdot b) + (a' + b')$:

$$(a \cdot b) + (a' + b') = (a' + b') + (a \cdot b)$$
 (usando postulado 2.1)

$$= [(a' + b') + a] \cdot [(a' + b') + b]$$
 (usando postulado 2.2)

$$= [b' + a' + a] \cdot [a' + b' + b]$$
 (usando postulado 2.1)

$$= [b' + 1] \cdot [a' + 1]$$
 (usando postulado 2.4)

$$= 1 \cdot 1$$
 (usando postulado 2.3),

$$= 1$$
 (usando postulado 2.3),

verifica-se que, de fato, $(a+b) + (a' \cdot b') = 1$.

Fazendo o desenvolvimento de $(a \cdot b) \cdot (a' + b')$:

$$(a \cdot b) \cdot (a' + b') = (a \cdot b \cdot a') + (a \cdot b \cdot b') \qquad \text{(usando postulado 2.2)}$$

$$= (a \cdot a' \cdot b) + (a \cdot b \cdot b') \qquad \text{(usando postulado 2.1)}$$

$$= (0 \cdot b) + (a \cdot 0) \qquad \text{(usando postulado 2.4)}$$

$$= 0 + 0 \qquad \text{(usando teorema 2.2.3)}$$

$$= 0 \qquad \text{(usando postulado 2.3)},$$

verifica-se de fato que $(a+b)\cdot(a'\cdot b')=0$. Assim, (2.22) e (2.23) mostram que a condição de (2.21) é satisfeita. Em conjunto com a unicidade do complemento (teorema 2.2.2) fica demonstrado o a identidade solicitada.