Data Mining in Action

Про метрики

Алексей Горчаков

2019 10 19 Суббота

Эпиграф

- "Если вы не можете что-то измерить, то вы не можете и улучшить это"
 - Кто-то приписывет это высказывание Уильяму Томсону, лорду Кельвину
 - Кто-то приписывает его отцу современного менеджмента.
 Питеру Друкеру
 - Я бы добавил, что вы не сможете понять, что вы это улучшили.
 - Тут стоит пошутить про продуктовое видение

План

- Мы поговорим про постановку задачи оценки качества решения
- Вспомним, что даже до привлечения признакового описания можно делать прогнозы
- Мы поговрим про метрики бинрной классификкации
 - Попутно еще раз быстро их вспомнив
- Мы поговрим про метрики регрессии
 - И их еще раз быстро вспомним

Наивная таксономия метрик качества

- метрики в производственных системах
 - онлайн/оффлайн
 - качество/бизнес
 - Прокси
- метрики при избретении новых методов машинного обучения
- метрики в соревнованиях по анализу данных

Общение с аудиторией

- Для чего нужны метрики в соревнованиях по машинному обучению?
 - Говоря о метриках, мы говорим о метриках качества в первую очередь.

Ответ лектора

- Чтобы выбрать победителя
- Ибо организаторы надеятся, что значение метрики адекватно оценивает качество нашего решения поставленной пред нами задачи
 - Вообще говоря, оценка получается точечной, со всеми вытекающими из этого последствиями
 - при сравнении двух подходов мы можем предпочесть один другому из-за шума
 - Мораль: ищи такие методы, котрые с "зазором" победят ближайших коллег по соревнованию. Иначе готовься к shakeup

Формальная постановка задача выбора метрики

- Есть истинные данные y_true на наборе объектов (метки, вещественные числа, списки каких-то сущностей, регионы на изображении и т.п.)
- Есть предсказания у_pred, полученные по признаковому описанию техже объектов
- Задача: численно оценить близость y_true и y_pred

Эти модели решают одну задачу

Но нам доступны только сухие значения разных метрик...

Logistic	Regres	ssion				SVC					
-		precision	recall	fl-score	support			precision	recall	f1-score	support
	Θ	0.86	0.85	0.85	254		Θ	0.96	0.96	0.96	250
	1	0.84	0.86	0.85	246		1	0.96	0.96	0.96	250
micro	avq	0.85	0.85	0.85	500	micro	avg	0.96	0.96	0.96	500
macro	avg	0.85	0.85	0.85	500	macro	avg	0.96	0.96	0.96	500
weighted	_	0.85	0.85	0.85	500	weighted	avg	0.96	0.96	0.96	500
RandomFor	restCl	lassifier				ExtraTree	eClass	sifier			
		precision	recall	f1-score	support			precision	recall	f1-score	support
	Θ	1.00	0.99	0.99	252		Θ	1.00	1.00	1.00	250
	1	0.99	1.00	0.99	248		1	1.00	1.00	1.00	250
micro	avg	0.99	0.99	0.99	500	micro	avg	1.00	1.00	1.00	500
macro	-	0.99	0.99	0.99	500	macro	avg	1.00	1.00	1.00	500
weighted	avg	0.99	0.99	0.99	500	weighted	avg	1.00	1.00	1.00	500

Что человечество придумало для оценки

- Метрики соревнований с boosters.pro:
 - RMSLE
 - MAE
 - WRMSE
 - AUC ROC
 - Accuracy
 - Logloss
 - Equal Error Rate
 - MNAP @ K

Почему метрик много?

- Вообще говоря, решение нашей задачи должно удовлетворять разному набору аспектов качества
- За нас в соревновании выбор сделал организатор. По его мнению, выбранная метрика лучше всего отражает требоания к решению

Что нам остается?

• Грамотно применить инструменты для оптимизации конкретной метрики качества в конкретном соревновании

Метрики и функции потерь

- Нужно понимать, как устроены наши инструменты: что реально они пытаются сделать (они обычно на train минимизируют функцию потерь)
- Если метрика соревнования напрямую не оптимизируется инструментами, придется подбирать гиперпараметры метода обучения так, чтобы минимизировать метрику задачи
 - Опасность: сама модель может переобучиться под под target на train в этот момент

Подходы к оптимизации target metric

- Оптимизируем метрику М1, отслеживаем метрику М2
 - Выходим когда М2 лучшая

План

- Мы поговорим про постановку задачи оценки качества решения
- Вспомним, что даже до привлечения признакового описания можно делать прогнозы
- Мы поговрим про метрики бинрной классификкации
 - Попутно еще раз быстро их вспомнив
- Мы поговрим про метрики регрессии
 - И их еще раз быстро вспомним

Константное предсказание

- Прежде чем начинать моделировать, полезно поставить точку отсчета: сделать несколько константных предсказаний и посмотреть, как они на public leaderboard себя проявляют
- Некоторые метрики качества допускают аналитическое вычисление наилучшего константного предсказания
- Но, если лень думать, то scipy.optimize
 - Вообще говоря, можно построить вероятностную модель и использовать всю мощь науки про оценку параметров распределения по ряду реализованных случайных величин.
 - Предсказывать тогда можно, например, математическим ожиданием или каким-то из квантилей

Константное предсказание

sklearn.dummy.DummyClassifier¶

class sklearn.dummy. DummyClassifier (strategy='stratified', random_state=None, constant=None)

[source]

DummyClassifier is a classifier that makes predictions using simple rules.

This classifier is useful as a simple baseline to compare with other (real) classifiers. Do not use it for real problems.

Read more in the User Guide.

Parameters: strategy: str, default="stratified"

Strategy to use to generate predictions.

- . "stratified": generates predictions by respecting the training set's class distribution.
- . "most_frequent": always predicts the most frequent label in the training set.
- "prior": always predicts the class that maximizes the class prior (like "most_frequent") and predict_proba returns the class prior.
- · "uniform": generates predictions uniformly at random.
- "constant": always predicts a constant label that is provided by the user. This is useful for metrics that evaluate a non-majority class

New in version 0.17: Dummy Classifier now supports prior fitting strategy using parameter prior.

random_state : int, RandomState instance or None, optional, default=None

If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random.

constant : int or str or array of shape = [n_outputs]

The explicit constant as predicted by the "constant" strategy. This parameter is useful only for the "constant" strategy.

План

- Мы поговорим про постановку задачи оценки качества решения
- Вспомним, что даже до привлечения признакового описания можно делать прогнозы
- Мы поговрим про метрики бинрной классификкации
 - Попутно еще раз быстро их вспомнив
- Мы поговрим про метрики регрессии
 - И их еще раз быстро вспомним

Метрики бинарной классификации

- Задачи могут быть нескольких типов
 - Нужно ответить какой класс у объекта
 - Какую иконку облачности/осадков нарисовать
 - Нажимать ли на тормоз самодвижемуся автомобилю
 - Выдавать ли кредит
 - Нужно оценить вероятность принадлежности к классу
 - Какова вероятность слонечной погоды/дождя
 - Какова вероятность, что пешеход выйдет перед машиной
 - Какова вероятность, что клиент не вернет кредит

Метрики качества выбора класса

- Метрики можно вычислять как функции от Confusion matrix
 - Не различающие ошибки первого и второго родов
 - (Balanced) Accuracy
 - Различающие
 - Precision
 - Recall
 - F1
 - Семейство F-measure

Метрики качества принадлежности к классу

- Правдоподобие или logloss
- AUC ROC

Ранжировщики и предсказатели вероятностей

- Если модель явно не оптимизирует logloss, то она может выдвать числа, которые лишь верно упорядочивают объекты по вероятности принадлежности к классу 1
 - Пример: KNNClassifier, RandomForestClassifier
- Если это так, то необходимо воспользоваться процедурами калибровки

Ранжировщики и предсказатели вероятностей

Калибровка вероятностей

Калибровка вероятностей

- Platt scaling
 - Просто обучи Logistic Regression на свои предсказания (похоже на стакинг)
- Isotonic regression
 - Просто обучи Isotonic Regression на свои предсказания (похоже на стакинг)
- Stacking
 - Просто обучи XGBoost или neural net на свои предсказания (точно стакинг)

Непосредственно метрики

• Дальше быстро пробежимся по метрикам

Confusion matrix

Пример:

```
In [14]: # Βαжно: первый аргумент - true values, βποροй - predicted values
# ποлучаем матрицу 2x2)
print(metrics.confusion_matrix(y_test, y_pred_class))

[[118 12]
[ 47 15]]
```

N = 192	Предсказан: 0	Предсказана: 1
Истинный: 0	118	12
Истинный: 1	47	15

TP, FP, TN, FN

N = 192	Предсказан: 0	Предсказана: 1
Истинный: 0	TN = 118	FP =12
Истинный: 1	FN = 47	TP = 15

- True Positives (TP): мы правильно предсказали 1
 - 15
- True Negatives (TN): мы правильно предсказали 0
 - 118
- False Positives (FP): мы неправильно предсказали 1
 - 12
 - Ошибка 1 типа
- False Negatives (FN): мы неправильно предсказали 0
 - 47
 - Ошибка 2 типа

Метрики из Confusion matrix

• Accuracy:
$$\frac{(TP+TN)}{(TP+TN+FP+FN)} = 0.693$$

- Sensitivity:
 - Когда исходное значение позитивны(1), как часто предсказания верны?
 - Как "sensitive" классификатор к обнаружению положительных классу?
 - Также известен как "True Positive Rate (TPR)" или "Recall" $\frac{TP}{(TN+FN)}=0.242$
- Specificity:
 - Как "specific" (или "selective") классификатор в предсказании позитивного класса?
 - False Positive Rate (FPR) = (1 Specificity) $\frac{TN}{(TN+FP)} = 0.907$

Метрики из Confusion matrix

• Prevalence:

$$\frac{(TN+FN)}{(TN+FP+FN+FP)} = 0.859$$

- Какой процент позитивных(1) значений у нас?
- Более высокая Prevalence подразумевает, что вы можете получить более высокую Precision даже при угадывании.

• Detection Rate:

$$\frac{TN}{(TN+FP+FN+FP)} = 0.615$$

- Правильно предсказанные 1 во всем сете
- Если у нас хорошая точность модели, при среднем Detection Rate, как будет меняться точность если в выборке будет больше единиц.

Метрики из Confusion matrix

Balanced Accuracy:

- $\frac{Sensitivity + Specificity}{2} = 0.574$
- Процент правильных предсказаний среди 0 и 1
- Подходит, если ваша выборка несбалансированная
- Precision:

$$\frac{TP}{(TP+FP)} = 0.556$$

- Когда мы предсказываем 1, как часто это верно
- F1-score:

$$\frac{2*Precision*Recall}{(Precision+Recall)} = 0.337$$

- Это комбинация Precision и Recall
- Подходит, если есть дисбаланс в выборке

Accuracy

```
Accuracy = np.mean(ytrue == ypred)
```

Лучшее константное решение - самый часто встречающийся класс

Precision and recall

False Positive - ошибка I рода (ложное срабатывание)

False Negative - ошибка II рода (объект пропущен)

Precision and recall

$$ext{Precision} = rac{tp}{tp + fp}$$
 $ext{Recall} = rac{tp}{tp + fn}$

F-score

$$F1 = 2 * \frac{precision * recall}{precision + recall}$$

F-score

```
F1 = 2 * \frac{precision * recall}{precision + recall}
```

F-score

$$F_{\beta} = (1 + \beta^2) * \frac{\text{precision* recall}}{(\beta^2 * \text{precision}) + \text{recall}}$$

при 0
beta<1 предпочтение отдаётся точности при beta >1 больший вес приобретает полнота

Доля правильно отранжированных пар:

```
ypred_i > ypred_j IF ytrue_i > ytrue_j
```

То же самое:

```
ypred_i > ypred_j IF ytrue_i == 1 and ytrue_j == 0
Ecлu ypred_i = ypred_j считаем,
```

Доля правильно отранжированных пар:

ypred_i > ypred_j если ytrue_i > ytrue_j

Или площадь под кривой:

Logloss

$$ext{LogLoss} = -rac{1}{n}\sum_{i=1}^n \left[y_i\log(\hat{y}_i) + (1-y_i)\log(1-\hat{y}_i)
ight].$$

Прогноз - действительное число от 0 до 1

Лучшее константное предсказание - среднее, то есть частота класса 1

Logloss

$$ext{LogLoss} = -rac{1}{n}\sum_{i=1}^n \left[y_i\log(\hat{y}_i) + (1-y_i)\log(1-\hat{y}_i)
ight]$$

Прогноз - действительное число от 0 до 1

Лучшее константное предсказание - среднее, то есть частота класса 1

Выгодней сделать много незначительно отличающихся от истины предсказаний, чем мало, отличающихся значительно

По X: abs(ytrue - ypred)

По У: LogLoss

План

- Мы поговорим про постановку задачи оценки качества решения
- Вспомним, что даже до привлечения признакового описания можно делать прогнозы
- Мы поговрим про метрики бинрной классификкации
 - Попутно еще раз быстро их вспомнив
- Мы поговрим про метрики регрессии
 - И их еще раз быстро вспомним

Метрики регресии

- Метрики, штрафующие за абсолюнтую ошибку
 - MAE, (R)MSE
- Метрики штрафующие за относительную ошибку
 - MAPE, SMAPE, RMSLE

Mean Absolute Error

$$ext{MAE} = rac{1}{n} \sum_{i=1}^n |y_i - \hat{y_i}|$$

Лучшее константное предсказание - медиана

Mean Absolute Error

$$ext{MAE} = rac{1}{n} \sum_{i=1}^n |y_i - \hat{y_i}|$$

Лучшее константное предсказание - медиана

Данные:

X	Υ
-1	0
-1	1
-1	1

Mean Absolute Error

$$ext{MAE} = rac{1}{n} \sum_{i=1}^n |y_i - \hat{y_i}|$$

Лучшее константное предсказание - медиана

Данные:

X	Y
-1	0
-1	1
-1	1

Минимизация ошибки:

Input interpretation:

minimize	function	$\frac{1}{3} \left(0 - x + 1 - x + 1 - x \right)$
	domain	$0 \le x \le 1$

2

Global minimum:

$$\min \left\{ \frac{1}{3} \left(|0-x| + |1-x| + |1-x| \right) \; \middle| \; 0 \le x \le 1 \right\} = \frac{1}{3} \; \text{ at } \; x = 1$$

Plot:

Root Mean Squared Error

$$ext{RMSE} = \sqrt{rac{1}{n}\sum_{i=1}^n (y_i - \hat{y}_i)^2}$$

Лучшее константное предсказание - среднее

Root Mean Squared Error

$$ext{RMSE} = \sqrt{rac{1}{n}\sum_{i=1}^n(y_i - \hat{y}_i)^2}$$

Лучшее константное предсказание - среднее

Данные:

X	Y
-1	0
-1	1
-1	1

Минимизация ошибки:

Input interpretation:

minimize	function	$\frac{1}{3}\left((0-x)^2+(1-x)^2+(1-x)^2\right)$
	domain	$0 \le x \le 1$

Global minimum:

$$\min\left\{\frac{1}{3}\left((0-x)^2+(1-x)^2+(1-x)^2\right)\,\Big|\,\,0\le x\le 1\right\}=\frac{2}{9}\ \ \text{at}\ \ x=\frac{2}{3}$$

Plot:

Из MSE и MAE в MSPE и MAPE

- Магазин 1: предсказано 9, продано 10, MSE = 1
- Магазин 2: предсказано 999, продано 1000, MSE = 1
- Магазин 1: предсказано 9, продано 10, MSE = 1
- Магазин 2: предсказано 900, продано 1000, MSE = 1000
- Магазин 1: предсказано 9, продано 10, relative_metric = 1
- Магазин 2: предсказано 900, продано 1000, relative_metric = 1

^{*} MAPE - Mean absolute percentage error

^{*} MSPE - Mean squared prediction error

Из MSE и MAE в MSPE и **MAPE**

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

MSPE =
$$\frac{100\%}{N} \sum_{i=1}^{N} \left(\frac{y_i - \hat{y}_i}{y_i} \right)^2$$
 MAPE = $\frac{100\%}{N} \sum_{i=1}^{N} \left| \frac{y_i - \hat{y}_i}{y_i} \right|$

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$
 MAE = $\frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|$

$$MAPE = \frac{100\%}{N} \sum_{i=1}^{N} \left| \frac{y_i - \hat{y}_i}{y_i} \right|$$

MSPE: константа

MSPE: константа

MSPE = $\frac{100\%}{N} \sum_{i=1}^{N} \left(\frac{y_i - \alpha}{y_i} \right)^2$

Лучшая константа: weighted target

МАРЕ: константа

Лучшая константа:

МАРЕ: константа

MAPE = $\frac{100\%}{N} \sum_{i=1}^{N} \left| \frac{y_i - \alpha}{y_i} \right|$

Лучшая константа: weighted target median

(R)MSLE: Root Mean Square Logarithmic Error

RMSLE =
$$\sqrt{\frac{1}{N} \sum_{i=1}^{N} (\log(y_i + 1) - \log(\hat{y}_i + 1))^2} =$$

= $RMSE (\log(y_i + 1), \log(\hat{y}_i + 1)) =$
= $\sqrt{MSE (\log(y_i + 1), \log(\hat{y}_i + 1))}$

(R)MSLE: Root Mean Square Logarithmic Error

Dat

XY

-1 4

1 | 3

-2 6

3 7

3 25

(R)MSLE: константа

RMSLE =
$$\sqrt{\frac{1}{N} \sum_{i=1}^{N} (\log(y_i + 1) - \log(\alpha + 1))^2} =$$
$$= RMSE (\log(y_i + 1), \log(\alpha + 1)) =$$
$$= \sqrt{MSE (\log(y_i + 1), \log(\alpha + 1))}$$

- Лучшая константа в логарифмическом пространстве это mean target value
- Чтобы получить ответ нужно взять экспоненту

(R)MSLE: константа

RMSLE =
$$\sqrt{\frac{1}{N} \sum_{i=1}^{N} (\log(y_i + 1) - \log(\alpha + 1))^2}$$

Dat

X	Y
-1	4
1	3
-2	6
3	7
3	25

План

- Мы поговорим про постановку задачи оценки качества решения
- Вспомним, что даже до привлечения признакового описания можно делать прогнозы
- Мы поговрим про метрики бинрной классификкации
 - Попутно еще раз быстро их вспомнив
- Мы поговрим про метрики регрессии
 - И их еще раз быстро вспомним

Бонус: как смешивать модели

Как смешивать?

- 1. Средние: арифметическое, геометрическое, гармоническое... Взвешивайте модели
- Смешивание ранков from scipy.stats import rankdata ypred = rankdata(ypred1) * w1

Как смешивать?

1. Метрики, чувствительные к значению:

```
RMSE, Logloss, etc y = y1 * w1 + y2 * (1 - w1) # взвешенное среднее y = np.sqrt(y1 * y2) # геометрическое средние
```

2. Метрики, чувствительные к порядку:

```
AUC (ROC)
y = y1 ** 2 + 0.3 * y2 ** 0.5 # всё, что угодно
```

Ссылки

- https://www.coursera.org/learn/competitive-data-science/home/week/3
- https://dyakonov.org/map/ [Метрики качества]
- https://www.youtube.com/watch?v=ypem9burgdA DMIA 2017 года