Experimento #3

Termistores

Objetivo: Introdução ao conceito de coeficiente térmico de dispositivos e à variação da resistividade de materiais condutores e semicondutores em função da temperatura. Caracterização elétrica, de termistores PTC (*Positive Temperature Coefficient*) e NTC (*Negative Temperature Coefficient*).

Material:

- Multímetro Digital: Minipa ET-1400 - Fonte DC: Minipa MPL-1303M

- Termistor: NTC 10D-9 - Resistor de 1Ω (2W)

1) Estabeleça um método experimental simples para identificar termistores que possuem coeficientes positivos (PTC) ou coeficientes negativos (NTC). Descreva o seu método na forma de um diagrama.

2) Monte o circuito da figura, e realize as medidas com o termistor NTC (R_1) das tensões V_A e V_B com o multímetro, sempre com a melhor escala, e sempre aumentando V_{DC} . Calcule os valores da tensão V_{AB} , da corrente I, e da resistência R_1 . Não faça medidas além de 1,0 ampere (I < 1,0A).

V_{DC}	V_A	V_B	$\mathbf{V}_{\mathbf{AB}}$	I	\mathbf{R}_1
0	0	0	0	0	-
0,5	502 ^[2]	$41,9^{[1]}$			
1,0	1006 ^[2]	156,4 ^[1]			
1,5	1505 ^[2]	338 ^[2]			
2,0	2,02 ^[3]	583 ^[2]			
2,5	2,51 ^[3]	892[2]			
Escalas: [1] 200mV; [2] 2000mV; [3] 20V					

3) Plote o gráfico dos pontos experimentais da Corrente I [A] x Tensão V_{AB} [V], para o termistor NTC.

4) Plote os valores experimentais da resistência $R_1[\Omega]$ do NTC em função das Temperaturas T [K] calculadas a partir do modelo de Steinhart-Hart, usando os parâmetros fornecidos pelo fabricante (r_∞ , R_0 , T_0) para o seu termistor. Plote no mesmo gráfico a curva $R_1[\Omega]$ x T [K] do modelo. Use o programa Scilab disponibilizado.

5) Responda:

a) **Pesquisa:** Descreva como termistores NTC e PTC podem ser usados para medir a temperatura. Proponha um circuito de medida e descreva como este Termômetro Eletrônico funciona.

b) Pesquisa: Compare os <u>principais</u> materiais que são usados na fabricação de termistores PTC e NTC. Cite as suas fontes, relatando a composição, o mecanismo de sensibilidade à temperatura, e como são construídos.

P.FDE - 2/2020 Prof. Marcus V. Batistuta