

CS 553

Lecture 6
Differential Cryptanalysis

Instructor Dr. Dhiman Saha

Image Source: Google

Differential Cryptanalysis (DC)

- ▶ Differential? $\Delta_x \rightarrow \Delta_y$
- ► Notion of difference of inputs △

Primary intuition

To study the propagation of differences through an SPN network focusing on the properties of the confusion (Sbox) and diffusion layers

- ► Trace differences of pairs of plaintexts in the decryption process.
- ▶ Deduce information about the key

Differential Cryptanalysis (DC)

- ▶ Differential? $\Delta_x \rightarrow \Delta_y$
- ► Notion of difference of inputs △

Primary intuition

To study the propagation of differences through an SPN network focusing on the properties of the confusion (Sbox) and diffusion layers

- ► Trace differences of pairs of plaintexts in the decryption process.
- ► Deduce information about the key

Key Recovery Framework

***Will be clearer later

Image Source: Security of Block Ciphers: From Algorithm Design to Hardware Implementation

- ► The discovery is generally attributed to Eli Biham and Adi Shamir in the late 1980s.
- ► However, in 1994, IBM claimed that DC was known to IBM as early as 1974.
- ► Within IBM, it was known as the "T-attack or "Tickle attack."
- Invented to break DES, did not succeed though
- ► A chosen plaintext attack.
- Applicable to many iterated block ciphers.

Resistance against DC a prerequisite for present-day block cipher proposals.

► Sypher001 encrypts 4 bits with two 4 bit keys

S-box

Х	0	1	2	3	4	5	6	7	8	9	а	b	С	d	е	f
<i>S</i> (<i>x</i>)	6	4	С	5	0	7	2	е	1	f	3	d	8	а	9	b

Encryption

Note

► No diffusion (permutation), only confusion (substitution)!

Assume we are given the encryptions of two messages m_0, m_1 .

First Observation: Key Annihilation

We Know:

$$u_0 \oplus u_1 = (m_0 \oplus k_0) \oplus (m_1 \oplus k_0) = m_0 \oplus m_1$$

even though we do not know k_0

Strategy

- ightharpoonup Guess k_1
- ightharpoonup Compute v_0' and v_1'
- Compute $u'_0 = S[v'_0]^{-1}$ and $u'_1 = S[v'_1]^{-1}$
- ightharpoonup Verify if $u_0 \oplus u_1 = u_0' \oplus u_1'$
- ► If not, then key guess was incorrect!

Example

• Given $m_0 = a$, $m_1 = 5$ and $c_0 = 9$, $c_1 = 6$

- Guess k_1

k_1	0	1	2	3	4	5	6	7	8	9	а	b	С	d	е	f
$u_0' \oplus u_1'$	е	b	е	е	d	8	d	f	f	d	8	d	е	е	b	е

- ightharpoonup Compare $u_0\oplus u_1$ and $u_0'\oplus u_1'$
- ightharpoonup Only candidates for k_1 are 7,8

• Given $m_0 = a$, $m_1 = 5$ and $c_0 = 9$, $c_1 = 6$

- ► Computer $u_0 \oplus u_1 = a \oplus 5 = f$
- ► Guess *k*₁

k ₁	0	1	2	3	4	5	6	7	8	9	а	b	С	d	е	f
$u_0' \oplus u_1'$	е	b	е	е	d	8	d	f	f	d	8	d	е	е	b	е

- \blacktriangleright Compare $u_0 \oplus u_1$ and $u_0' \oplus u_1'$
- \triangleright Only candidates for k_1 are 7,8

• Given $m_0 = a$, $m_1 = 5$ and $c_0 = 9$, $c_1 = 6$

- ► Computer $v_0 \oplus v_1 = 9 \oplus 6 =$ ____
- ightharpoonup Guess k_0

`	34C33 NO																
	k_0	0	1	2	3	4	5	6	7	8	9	а	b	С	d	е	f
	$v_0' \oplus v_1'$																

- ightharpoonup Compare $v_0 \oplus v_1$ and $v_0' \oplus v_1'$
- ► Only candidates for k₀ are _____

Take Away

- ► We know things about differences even though we do not know the individual values.
- ► We make a guess for the key and verify it by computing a bit backwards

Is it enough if we have a good guess for the difference?

Probably not, lets see out next cipher

► Sypher002 encrypts 4 bits with three 4 bit keys

S-box

X	0	1	2	3	4	5	6	7	8	9	а	b	С	d	е	f
S(x)	6	4	С	5	0	7	2	е	1	f	3	d	8	а	9	b

Encryption

Assume we are given the encryptions of two messages m_0, m_1 .

We can compute (after guessing k_2)

- $ightharpoonup u_0 \oplus u_1$
- $ightharpoonup x'_0$ and x'_1
- \blacktriangleright w'_0 and w'_1
- $\blacktriangleright \ v_0' \oplus v_1' = w_0' \oplus w_1'$

But we still cannot check our guess for k_2

More Powerful Attacker

Now, we make it a **chosen plaintext attack**:

Choose the starting difference

$$m_0 \oplus m_1 = u_0 \oplus u_1 = f$$

The Influence of the Sbox

We can compute (after guessing k_2)

- $\blacktriangleright u_0 \oplus u_1 = f$
- \triangleright $v_0' \oplus v_1'$

Question

Is there anything we can say about $v_0 \oplus v_1$ given that $u_0 \oplus u_1 =$

u_0	$u_1 = u_0 \oplus f$	$v_0 = S[u_0]$	$v_1 = S[u_1]$	$v_0 \oplus v_1$
0	f	6	b	d
1	е	4	9	d
2	d	С	a	6
3	С	5	8	d
4	b	0	d	d
5	a	7	3	4
6	9	2	f	d
7	8	е	1	f
8	7	1	е	f
9	6	f	2	d
a	5	3	7	4
b	4	d	0	d
С	3	8	5	d
d	2	а	C	6
е	1	9	4	d
f	0	b	6	d

Observations

- ► The difference is unevenly distributed. △
- Not all values occur.
- ► The difference *d* occurs 10 out of 16 times.

Thus, we assume that $v_0 \oplus v_1 = d$ and this enables us to verify our guess for k_2 .

We can compute (after guessing k_2)

- $ightharpoonup u_0 \oplus u_1 = f$
- \triangleright $v_0' \oplus v_1'$

Thus, we assume that $v_0 \oplus v_1 = d$ and this enables us to verify our guess for k_2 .

$$v_0 \oplus v_1 = d = v_0' \oplus v_1'$$

What if the assumption is right/wrong?

Right

If the assumption is right, the right key is one of the possible candidates

If the assumption is wrong, the right key might not be one of the possible candidates.

Still: If the assumption has a good probability (here : 10/16), the right key is a candidate more often than any wrong key.

- ▶ Initialize counters $T_i = 0$, one for each possible key k_2 .
- ► For each message/ciphertext pair do
 - ightharpoonup For each guess i for k_2 do
 - ► Compute $v_0' \oplus v_1'$
 - ▶ If $v_0' \oplus v_1' = d$ increase counter T_i
- Assume that the right key k_2 corresponds to the highest counter.

Assumption

Assume that a wrong guess for \underline{k}_2 gives a random value for $v_0 \oplus v_1$

This implies that after processing t pairs we can expect

- ► The counter for the correct key is $\approx \frac{t \times \frac{10}{16}}{t}$
- ▶ The counter for the wrong key is $\approx t \times \frac{1}{16}$

Again: Influence of Sbox

Observation

The attack was possible because for the input difference f the output differences where highly unbalanced.

Question

What happens for other input differences?

The Difference Distribution Table

2	

in \out	0	1	2	3	4	5	6	7	8	9	а	b	С	d	е	f
0	16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
1	-	-	6	-	-	-	-	2	-	2	-	-	2	-	4	-
2	-	6	6	-	-	-	-	-	-	2	2	-	-	-	-	-
3	-	-	-	6	-	2	-	-	2	-	-	-	4	-	2	-
4	-	-	-	2	-	2	4	-	-	2	2	2	-	-	2	-
5	-	2	2	-	4	-	-	4	2	-	-	2	-	-	-	-
6	-	-	2	-	4	-	-	2	2	-	2	2	2	-	-	-
7	-	-	-	-	-	4	4	-	2	2	2	2	-	-	-	-
8	-	-	-	-	-	2	-	2	4	-	-	4	-	2	-	2
9	-	2	-	-	-	2	2	2	-	4	2	-	-	-	-	2
a	-	-	-	-	2	2	-	-	-	4	4	-	2	2	-	-
b	-	-	-	2	2	-	2	2	2	-	-	4	-	-	2	-
С	-	4	-	2	-	2	-	-	2	-	-	-	-	-	6	-
d	-	-	-	-	-	-	2	2	-	-	-	-	6	2	-	4
е	-	2	-	4	2	-	-	-	-	-	2	-	-	-	-	6
f	-	-	-	-	2	-	2	-	-	-	-	-	-	10	-	2

How to interpret it?

Characteristics (A)

Definition

Characteristic Given an Sbox S, a pair (α, β) is called a characteristic with probability p, if the probability that two inputs with difference α provide outputs with difference β equals p. This is denoted as

 $\alpha \xrightarrow{S} \beta$

Examples for our Sbox

- ▶ $f \xrightarrow{S} d$ has probability $\frac{10}{16}$
- ▶ $d \xrightarrow{S} c$ has probability $\frac{6}{16}$
- $ightharpoonup c \xrightarrow{S} a$ has probability 0: Impossible Characteristic

