

CRISP-DM Process Model

CRoss-Industry Standard Process for Data Mining

Adaptation pour la Data Science

Adaptation pour le Machine Learning

Techniques - Association Rules

Objectif: Trouver les corrélations entre les éléments

Techniques:

Problème - Fairness

IMAGE NET (1,2 million d'images), mais :

- 45 % des images proviennent des États-Unis -> 4 % de la population mondiale
- 3% des images proviennent de l'Inde et de la Chine
- -> 36% de la population mondiale

Pour les algorithmes de vision par ordinateur -> la mariée est habillée en blanc -> ne reconnaît pas la mariée indienne habillée en rouge

Biobanque britannique (500 000 participants), mais:

- 5% ont une maladie cardiovasculaire -> mais c'est 10% de la population en général

Problème - Cas dupliquer

Méthodes:

- 1. Suppression des attributs sensibles (ex: Username, ID, postal Code, ...)
- 2. Data massaging (Sélection des cas les plus représentatifs de chaque classe)
- 3. Reweighting (Assignez un poids à chaque cas en fonction de leur proportion dans le dataset)

Problème - Classe Déséquilibrée

Méthodes:

- 1. Under-Sampling (Suppression aléatoire de cas de la classe majoritaire)
- 2. Over-Sampling (Dupliquer les cas des classes majoritaire ou en générer des nouveaux)

Problème - Difficulté de classification -

Technique - PCA

Objectif: Recrée des features plus intéressantes pour la classification

Méthode: Déplacement d'axes dans l'objectif de réduire la "variance" entre les attributs

Probabilistic method: Naïve Bayes

Méthode: Calculer la probabilité de chaque classe en fonction de la valeur des attributs connu

$$P(c \mid X) = P(x_1 \mid c) \times P(x_2 \mid c) \times \cdots \times P(x_n \mid c) \times P(c)$$

Conditional method: Decision Tree

Méthode: Création d'un arbre décisionnel afin d'identifier la classe

Distance method: KNN

Méthode: Calcul des distances entre chaque élément des cas connus, afin d'identifier la classe la plus proche de X

Clustering method: K-Means

Méthode: Mise en place de cluster (correspondant chacun à une classe). La comparaison entre le point X et le centroid des clusters permet de définir la classe de X.

Problème - Mesurer la performance

Calcul de l'Accuracy (nombre de bonne réponse sur le nombre de réponse).

Peut être combiner avec des alternatives: precision, recall, F-measure

Problème - Vérifier la Généralité

Lors de la phase d'apprentissage, il y a un risque que l'agencement des données soient avantageuse. Le modèle n'est pas tester sur les cas compliqué.

Pour l'identifier, il faut utiliser le K-fold cross validation.

Iris Dataset

Groupe: 3-5 personnes

Objectif: Mise en place d'un modèle pour identifier le

type de la plante

Workshop: https://github.com/nathan-hoche/Workshop-2024/blob/main/Track-IA/02-Clustering.ipynb

Aide: https://scikit-learn.org/stable/auto-examples/d atasets/plot iris dataset.html

Iris setosa

Iris versicolor

Iris virginica

Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
1	5.1	3.5	1.4	0.2	Iris-setosa
2	4.9	3	1.4	0.2	Iris-setosa
3	4.7	3.2	1.3	0.2	Iris-setosa
4	4.6	3.1	1.5	0.2	Iris-setosa
5	5	3.6	1.4	0.2	Iris-setosa
6	5.4	3.9	1.7	0.4	Iris-setosa
7	4.6	3.4	1.4	0.3	Iris-setosa
8	5	3.4	1.5	0.2	Iris-setosa
9	4.4	2.9	1.4	0.2	Iris-setosa
10	4.9	3.1	1.5	0.1	Iris-setosa
11	5.4	3.7	1.5	0.2	Iris-setosa
12	4.8	3.4	1.6	0.2	Iris-setosa
13	4.8	3	1.4	0.1	Iris-setosa
14	4.3	3	1.1	0.1	Iris-setosa
15	5.8	4	1.2	0.2	Iris-setosa
16	5.7	4.4	1.5	0.4	Iris-setosa
17	5.4	3.9	1.3	0.4	Iris-setosa
18	5.1	3.5	1.4	0.3	Iris-setosa
19	5.7	3.8	1.7	0.3	Iris-setosa

scikit-learn

Machine Learning in Python

Getting Started

Release Highlights for 1.4

GitHub

- Simple and efficient tools for predictive data analysis
- Accessible to everybody, and reusable in various contexts
- · Built on NumPy, SciPy, and matplotlib
- Open source, commercially usable BSD license

Classification

Identifying which category an object belongs to.

Applications: Spam detection, image recognition. Algorithms: Gradient boosting, nearest neighbors,

random forest, logistic regression, and more...

Examples

Regression

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, Stock prices.

Algorithms: Gradient boosting, nearest neighbors, random forest, ridge, and more...

2.0 1.5 -1.5

Examples

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation, Grouping experiment outcomes

Algorithms: k-Means, HDBSCAN, hierarchical clustering, and more...

K-means clustering on the digits dataset (PCA-reduced data) Centroids are marked with white cross

Examples

Dimensionality reduction

Model selection

Preprocessing

arch

2

Browse State-of-the-Art

Datasets

Methods

More ~

Browse State-of-the-Art

12,384 benchmarks 4,674 tasks 117,448 papers with code

Computer Vision

Semantic Segmentation

№ 280 benchmarks

4896 papers with code

12010)

Image Classification

332 benchmarks
 3506 papers with code

Contrastive Learning

△ 1 benchmark

1970 papers with code

430 benchmarks

1766 papers with code

430 benchmarks

440 benchmarks

4

▶ See all 1661 tasks

Natural Language Processing

✓ 7 benchmarks

3086 napers with code

Translation

Question Answering

2610 papers with code

Machine Translation

2060 papers with code

₩ 95 benchmarks

266 benchmarks

1367 papers with code

