Revision

Backpropagation

We need backpropagation to train:

- A: Linear regression
- B: Polynomial regression
- o C: Perceptron
- o D: Multi Layer Perceptron
- ∘ E: U-Net
- F: Transformer
- G: Generative Adverserial Networks

Backpropagation

- We need backpropagation to train:
 - A: Linear regression
 - o B: Polynomial regression
 - o C: Perceptron
 - D: Multi Layer Perceptron
 - E: U-Net
 - F: Transformer
 - G: Generative Adverserial Networks

Backpropagation

Draw a computation graph for z = (a + b) * (b + c)

$$z = (a+b)*(b+c)$$

Computation Graph

$$z = (a+b) * (b+c)$$

Forward Pass

$$z = (a+b) * (b+c)$$

Forward Pass

Backward Pass

Backward Pass

$$z = (a+b) * (b+c)$$

$$a = -1$$
 $b = 3$ $c = 4$

Transformers

Where in the transformer do we use:

- Self-Attention
- Masked Self-Attention
- Cross-Attention
- Masked Cross-Attention

?

Output

Transformers

Where in the transformer do we use:

- Self-Attention
- Masked Self-Attention

Cross-Attention $N \times$ Masked Cross-Attention Positional 6

Transformers

Why are the outputs going into the model? Is this different during training and testing?

[18H, 17G, 15F, 13C, 10F, 9C, 6E, 5H], Grade: 5

Grade: 1 -> easiest Grade 16 -> hardest

Training Data:

[18H, 17G, 15F, 13C, 10F, 9C, 6E, 5H], Grade: 5

. . . .

Design a neural network that takes a **route as input and outputs a grade.**

frictionlabs.com

Training Data:

[18H, 17G, 15F, 13C, 10F, 9C, 6E, 5H], Grade: 5

. . . .

Design a neural network that takes a **route as input and outputs a grade.**

Which type of network should we use?
Which type of loss function?

Training Data:

[18H, 17G, 15F, 13C, 10F, 9C, 6E, 5H], Grade: 5

. . . .

Design a neural network that takes a **route as input and outputs a grade.**

How can stop our network from overfitting?

Training Data:

[18H, 17G, 15F, 13C, 10F, 9C, 6E, 5H], Grade: 5

• • • •

Design a neural network that takes a **route as input and outputs a grade.**

How can stop our network from overfitting?

Training Data:

[18H, 17G, 15F, 13C, 10F, 9C, 6E, 5H], Grade: 5

. . . .

Design a neural network that takes a **grade as input and outputs a route.**