Höhere Analysis

Hans Knüpfer, Heidelberg University Wintersemester 2020/21

Diese Notizen sind nicht auf Fehler geprüft, nicht korrigiert und unvollständig (insbesondere einige Beweise). Sie sind ein zusätzliches Angebot an die Studierenden, sollen aber nicht die Vorlesungsmitschrift ersetzen. Die Mitschrift ist nur für die Studierenden der Vorlesung Höhere Analysis im Wintersemester 20/21, Universität Heidelberg, gedacht. Während des Semesters wird es kontinuierlich Updates der Mitschrift geben.

Inhaltsverzeichnis

1 Einführung		2		
2	Grundlagen der Maßtheorie			
	2.1	Ringe, σ -Algebren und Maße	7	
	2.2	Maßerweiterung	18	
	2.3	Das Lebesguemaß auf ℝ	26	

1 Einführung

Durchführung:

- Synchrone Vorlesung
 - Zeiten: Mo 9:30-11:00, Fr 13:15-14:45.
 - Platform: WebEx
- Asynchrone Materialien
 - Skript wird wöchentlich im Voraus.
 - Screencast ca 1x wöchentlich im Voraus.

Organisation:

- Informationen auf Moodle und Müsli
- Plenarübung: Mi 14:00-15:30
- Übungsbetrieb: 50% Punkte der Übungszettel für Klausurzulassung
- Klausur: Termin wird noch bekanntgeben. Wahrscheinlich letzte Vorlesungswoche.

Themen: Wir beschaftigen uns in diesem Semester mit

- Maßtheorie: Maße sind Abbildungen der Form $\mu: \mathscr{A} \to [0, \infty]$ für $\mathscr{A} \subset \mathscr{P}(X)$. Mit Maßen können wir z.B. das Volumen oder das Oberflächenmaß von Mengen $A \subset \mathbb{R}^n$ messen.
- Integrationstheorie: Wir führen das Lebesgue-Integral ein (eine Verallgemeinerung des Riemann-Integrals). Das Lebesgueintegral erlaubt insbesondere Konvergenzsätze wie den Satz von der dominierten Konvergenz, ...
- Integrationssätze: Wir führen wichtige Sätz aus der Integrationstheorie ein wie den Transformationssatz, Satz von Gauss, Fubini.

Literatur

- Ambrosio, Da Prato, Mennucci –Introduction to measure theory and integration: Hauptgrundlage des Kapitels über Maß– und Integrationstheorie.
- Evans, Gariepy Fine properties of functions: Bietet interessante weitergehende Informationen. Schöne Ideen, schreckliche Notation.
- Rudin Real Analysis

Wir beginnen mit einer kurzen Motivation der grundlegenden Themen der Vorlesung:

Problem mit Riemann-Integral. Sei r_1, \ldots , eine Aufzählung von $\mathbb{Q} \cap [0,1]$ und

$$f_k(x) = \begin{cases} 1 & \text{für } x \in \{r_1, \dots, r_k\}, \\ 0 & \text{sonst.} \end{cases}, \qquad f(x) = \begin{cases} 1 & \text{für } x \in [0, 1] \cap \mathbb{Q}, \\ 0 & \text{sonst.} \end{cases}$$

$$(1.1) \text{ leb-bspfkt}$$

Dann sind die Funktionen $f_k \geq 0$ sind Riemann-integrierbar und es gilt

$$\int_0^1 f_k dx = 0 \quad \text{und} \quad f_k \nearrow f \text{ punktweise monoton.}$$

Die Grenzfunktion f ist allerdings nicht Riemann-integrierbar. Die Klasse der Riemann-integrierbaren Funktionen ist also nicht abgeschlossen unter punktweiser monotoner Konvergenz. Wir führen daher einen allgemeineren Integrationsbegriff, bei dem auch der Grenzwert von integrablen Funktionsfolgen (und gewissen Bedingungen) integrierbar ist. Das Lebesgue-Integral bietet eine solche Erweiterung des Riemann-Integrals. Dies erlaubt dann die Herleitung von Konvergenzsätzen wie den Satz von der monotonen Konvergenz, welche die Integrabilität der Grenzfunktion sicherstellen.

Grundidee des Lebesgue-Integrals. Die Funktion f aus $(\widehat{1.1})$ ist an keinem Punkt $x \in [0,1]$ stetig. Eine Zerlegung des Definitionsbereiches in der Konstruktion von Oberund Untersummen führt also nicht zum Erfolg. Beim Lebesgueintegral wird nicht der Definitionsbereicht, sondern stattdessen der Bildbereich zerlegt. Für eine nichtnegative Funktion $f: \Omega \to [0,\infty), \Omega \subset \mathbb{R}^n$ betrachten wir die Mengen

$$E_k^{(h)} := f^{-1}((kh, (k+1)h]) \subset \Omega$$
 für $h > 0$ und $k \in \mathbb{Z}$.

Wir approximieren dann das Integral von f durch

$$\sum_{k=1}^{\infty} [kh] \mu(E_k^h) \leq \int_{\Omega} f(x) \, dx \leq \sum_{k=1}^{\infty} [(k+1)h] \mu(E_k^{(h)}). \tag{1.2}$$

Hierbei ist $\mu(E)$ das Volumen (allgemeiner <u>Maß</u>) der Menge $E \subset \Omega$. Das Integral ergibt sich dann aus (1.2) im Limes $h \to 0$. Man sieht leicht, dass mit diesem Integralbegriff die Funktion f aus (1.1) integrierbar ist!

Um das Lebesgueintegral zu konstruieren, müssen wir also das Maß einer Menge E kennen.

Das Maßproblem. Mit $\mathcal{P}(X)$ bezeichnen wir die Potenzmenge von X, d.h. die Menge aller Teilmengen von \mathbb{R}^n . Wir suchen nach einer Funktion

$$\mu: \mathscr{P}(\mathbb{R}^n) \to [0,\infty],$$

welche das Volumen von Teilmengen von \mathbb{R}^n misst. Wenn wir natürliche Annahmen an diese Maßfunktion stellen, dann führt dies auf das folgende Maßproblem:

magg proble

Problem 1.1 (Maßproblem). Wir suchen $\mu: \mathscr{P}(\mathbb{R}^n) \to [0, \infty]$ mit

itmas-add

(i)
$$\mu(\bigcup_{i\in\mathbb{N}} A_i) = \sum_{i\in\mathbb{N}} \mu(A_i)$$
 falls $A_i \cap A_j = \emptyset$ (σ -Additivität)

itmas-nor

(ii)
$$\mu(\emptyset) = 0, \, \mu([0,1]^n) = 1$$
 (Normierung)

itmas-in

(iii)
$$\mu(A+y) = \mu(A) \ \forall y \in \mathbb{R}^n$$
 (Translationsinvarianz)

Aus der σ -Additivität erhalten wir auch die Monotonie unserer Abbildung:

$$\mu(A) \le \mu(B) \quad \forall A \subset B.$$
 (Monotonie) (1.3) [itmas-mon]

Allerdings hat das Maßproblem 1.1 keine Lösung:

thm-vitali

Satz 1.2 (Vitali 1905). Es gibt <u>keine</u> Abbildung $\mu : \mathscr{P}(\mathbb{R}^n) \to [0, \infty]$, welche die Forderungen des Maßproblems erfüllt.

Beweis. Wir geben den Beweis für n=1, der Beweis für allgemeine n folgt analog.

Wir definieren die Äquivalenzrelation $x \sim y$ auf E := [0,1] durch $x \sim y$, genau dann wenn $x - y \in \mathbb{Q}$. Nach dem Auswahlaxiom (ein Axiom der Mengenlehre) gibt es eine Menge $M_0 \subset [0,1]$, welche aus jeder Äquivalenzklasse genau ein Element enthält, d.h. zu $y \in [0,1]$ gibt es genau ein $x \in M_0$ mit $x - y \in \mathbb{Q}$.

Sei q_i , $i \in \mathbb{N}$, eine Abzählung von $[0,1] \cap \mathbb{Q}$ und sei

$$M_j := M_0 + q_j$$
 für $j \in \mathbb{N}$.

Nach Konstruktion gilt

$$M_i\cap M_j=\emptyset \quad \forall i\neq j, \qquad [0,1]\subset \bigcup_{i=1}^\infty M_j\subset [0,2], \qquad \mu(M_i)\ =\ \mu(M_0)\ \forall i \qquad (1.4) \quad \text{ $\underline{\tt Mi-disj}$}$$

Falls μ die Forderungen (i)–(iii) des Maßproblems erfüllt, dann folgt aus (1.4), dass

$$1 \stackrel{(ii)}{=} \mu([0,1]) \stackrel{(\text{itmas mon wide}}{\leq} \mu(\bigcup_{i=0}^{(\text{itmas mon wide})} M_i) \stackrel{(i)}{=} \sum_{i=0}^{\infty} \mu(M_0) \stackrel{(\text{itmas mon wide})}{\leq} \mu([0,2]) \stackrel{(iiii)}{\leq} \infty.$$
 (1.5) Mi-wide

Aus (1.5) erhalten wir den Widerspruch
$$\mu(M_0) > 0$$
 und $\sum_i \mu(M_0) = \infty$.

Es ist also nicht möglich einen Maßbegriff zu definieren, so dass alle Teilmengen des \mathbb{R}^n messbar sind und so dass die Eigenschaften aus Problem 1.1 gelten. Wir suchen daher eine maximale Familie $\mathscr{A} \subset \mathscr{P}(\mathbb{R}^n)$ von messbaren Mengen und eine Funktion

$$\mu: \mathscr{A} \to [0, \infty],$$

welche die Eigenschaften des Maßproblems erfüllt.

Integration über allgemeinere Maße. Das Lebesgueintegral kann auch genutzt werden, um über allgemeinere Maße μ in allgemeinen Räumen X zu integrieren. Relevante Beispiele sind

- gewichtete Maße wie das Gaußmaß $e^{-x^2}dx$
- diskrete Maße wie das Zählmaß.
- Oberflächenmaße wie das (n-1)-dimensionale Hausdorffmaß \mathcal{H}^{n-1} .

Wir werden daher zuerst eine allgemeine Maßtheorie einführen.

2 Grundlagen der Maßtheorie

2.1 Ringe, σ -Algebren und Maße

Mit X bezeichnen wir eine nichtleere Menge. Die Potenzmenge $\mathscr{P}(X)$ bezeichnet die Menge aller Teilmengen von X. Der Raum $\mathscr{P}(X)$ wird durch die Operatoren \cup , \cap , c (Komplement) mit einer algebraischen Struktur versehen. Wir schreiben , $A \setminus B := A \cap B^c$ für die relative Differenz und $A \Delta B := (A \setminus B) \cup (B \setminus A)$ für die symmetrische Differenz. Wir erinnern an:

$$\left(\bigcup_{n=0}^{\infty} A_n\right)^c = \bigcap_{n=0}^{\infty} A_n^c$$
 (Identität von De Morgan).

In Analogie zu algebraischen Strukturen defininieren wir:

Definition 2.1 (Ring, Algebra). Eine Teilmenge $\mathscr{A} \subset \mathscr{P}(X)$ heißt Ring, falls

- (i) $\emptyset \in \mathscr{A}$.
- (ii) $A, B \in \mathscr{A} \Longrightarrow A \cup B, A \cap B, A \setminus B \in \mathscr{A}$.

Falls außerdem $X \in \mathcal{A}$, dann heißt \mathcal{A} Algebra.

Ein Ring ist also stabil unter den Operatoren \cup , \cap und \setminus (und damit auch Δ). Mit der obigen Definition ist $(\mathscr{A}, \Delta, \cap)$ dann auch ein Ring im algebraischen Sinne: Das neutrale Element bezüglich der "Addition" Δ ist \emptyset , das inverse Element zu A ist A. Man rechnet leicht nach, dass Kommutativ, Assoziativ und Distributivgesetz gelten. Falls \mathscr{A} eine Algebra ist, dann ist X das neutrales Element der Multiplikation.

Der Raum $\mathscr{P}(X)$ ist teilgeordnet durch die Ordnungsrelationen \subset , \supset . Entsprechend sagen wir, dass die Folge A_k monoton steigt, wenn $A_k \subset A_{k+1} \ \forall k \in \mathbb{N}$, wir sagen, dass

sie monoton fällt, wenn entsprechend $A_{k+1} \subset A_k$ gilt. Wir schreiben:

$$\limsup_{k \to \infty} A_k := \bigcap_{n=0}^{\infty} \bigcup_{k=n}^{\infty} A_k, \qquad \liminf_{k \to \infty} A_k := \bigcup_{n=0}^{\infty} \bigcap_{k=n}^{\infty} A_k$$

Die Menge $\limsup_k A_k$ besteht also aus den Elementen von X, die in unendlich vielen Mengen A_k enthalten sind. Die Menge $\liminf_k A_k$ besteht aus den Elementen von X, welche in allen, bis auf endlichen vielen Mengen A_k enthalten sind. Falls $\limsup_k A_k = \liminf_k A_k$, dann schreiben wir $\lim_{k\to\infty} A_k := \limsup_{k\to\infty} A_k = \liminf_{k\to\infty} A_k$. Falls die Folge $A_k \subset X$ monoton ist, dann existiert der Limes $\lim_{k\to\infty} A_k$. Wir bemerken, dass $A_k \to A$ genau dann, wenn $A_k \Delta A \to \emptyset$. Korrespondiert dieser Konvergenzbegriff zu einer Topologie (Übungsaufgabe)?

Falls die Folge monoton steigt, dann gilt $\lim_{k\to\infty} A_k = \bigcup_{k=0}^{\infty} A_k$. Falls die Folge monoton fällt, d.h. $A_{k+1} \subset A_k$, dann gilt $\lim_{k\to\infty} A_k = \bigcap_{k=0}^{\infty} A_k$. Wir schreiben $A_k \nearrow L$ beziehungsweise $A_k \searrow L$.

Eine Algebra, welche abgeschlossen unter Grenzwertbildung ist heißt σ -Algebra:

Definition 2.2 (σ -Algebra). $\mathscr{A} \subset \mathscr{P}(X)$ heißt σ -Algebra auf X, falls

- (i) A ist Algebra.
- (ii) $A_i \in \mathscr{A} \ \forall i \in \mathbb{N} \Longrightarrow \bigcup_{i=1}^{\infty} A_i \in \mathscr{A}$.

Falls $A_i \in \mathscr{A}$, dann folgt aus der De Morganschen Identität, dass die Mengen $\bigcap_{i=1}^{\infty} A_i$, lim inf A_i , lim sup $A_i \in \mathscr{A}$. Falls $A_i \in \mathscr{A}$ mit $A_i \to A$, dann gilt also insbesondere $A \in \mathscr{A}$.

Nach Definition ist $\mathscr{A} \subset \mathscr{P}(X)$ also eine σ -Algebra ist, genau dann wenn

- (i) $X, \emptyset \in \mathscr{A}$
- (ii) $A \in \mathscr{A} \Longrightarrow A^c \in \mathscr{A}$
- (iii) $A_i \in A \ \forall i \in \mathbb{N} \Longrightarrow \bigcup_{i=1}^{\infty} A_i \in \mathscr{A}$.

Wir bemerken, dass $\mathscr{P}(X)$ die größte σ -Algebra auf X ist. Die Menge $\{\emptyset, X\} \subset \mathscr{P}(X)$ ist die kleinste σ -Algebra auf X. Zu jeder Menge $\mathscr{F} \subset \mathscr{P}(X)$ gibt es eine kleinste σ -Algebra, welche \mathscr{F} enthält:

n-minsigalgebra

Satz 2.3 (Erzeugte σ -Algebra). $Sei \mathscr{F} \subset \mathscr{P}(X)$. Dann ist

$$\sigma(\mathscr{F}) \ := \ \bigcap \{\mathscr{A} : \mathscr{A} \ \textit{ist σ-Algebra mir $\mathscr{F} \subset \mathscr{A}$}\}.$$

die kleinste σ -Algebra, welche $\mathscr F$ enthält. $\sigma(\mathscr F)$ heißt die von $\mathscr F$ erzeugt σ -Algebra.

Beweis. Nach Konstruktion ist $\sigma(\mathscr{F}) \subset \mathscr{A}$ für jede σ -Algebra \mathscr{A} , welche \mathscr{F} enthält. Es bleibt zu zeigen, dass $\sigma(\mathscr{F})$ eine σ -Algebra ist. Sei \mathbb{A} die Menge aller σ -Algebra, welche \mathscr{F} enthalten. Es gilt $\mathscr{P}(X) \in \mathbb{A}$ und daher ist \mathbb{A} nicht leer. Wir prüfen die Bedingungen (i)–(iii) aus der obigen Bemerkung:

- (i) Nach Konstruktion gilt $\emptyset, X \in \sigma(\mathscr{A}) \ \forall \mathscr{A} \in \mathbb{A} \ \text{und daher} \ \emptyset, X \in \sigma(\mathscr{F}).$
- (ii) Falls $A \in \sigma(\mathscr{F})$, dann gilt $A \in \mathscr{A} \ \forall \mathscr{A} \in \mathbb{A}$. Da die Mengen \mathscr{A} σ -Algebren sind, erhalten wir $A^c \in \mathscr{A} \ \forall \mathscr{A} \in \mathbb{A}$ und daher $A^c \in \sigma(\mathscr{F})$.
- (iii) Falls $A_i \in \sigma(\mathscr{F})$, $i \in \mathbb{N}$, dann folgt $A_i \in \mathscr{A} \ \forall i \in \mathbb{N} \ \forall \mathscr{A} \in \mathbb{A}$. Damit folgt auch $\bigcup_{i=1}^{\infty} A_i \in \mathscr{A} \ \forall A \in \mathscr{A}$ und damit auch $\bigcup_{i=1}^{\infty} A_i \in \sigma(\mathscr{F})$.

Daher ist $\sigma(\mathscr{F})$ eine σ -Algebra.

Aus der Analysis wissen wir, dass sich jeder metrische Raum vervollständigen lässt. In diesem Sinne kann man $\sigma(\mathscr{F})$ die Vervollständigung des Mengensystems \mathscr{F} bezüglich unseres Konvergenzbegriffes für Mengen interpretieren.

 $\begin{array}{c|c}
[02.11.2020] \\
\hline
[06.11.2020]
\end{array}$

Definition 2.4 (Borel σ **-Algebra).** Sei X ein metrischer Raum und sei $\mathscr{T} \subset \mathscr{P}(X)$ die Topologie auf X, d.h. die Menge der offenen Mengen. Dann ist die Borel σ -Algebra definiert durch

$$\mathscr{B}(X) := \sigma(\mathscr{T}).$$

Nach Definition enthält $\mathcal{B}(X)$ alle offenen Mengen, alle abgschlossenen Mengen und die abzählbaren Druchschnitte und Vereinigungen dieser Mengen. Äquivalent wird die Borel σ -Algebra auch durch die abgeschlossen Mengen erzeugt. Elemente der Borel σ -Algebra heißen Borelmengen.

Wir betrachten nun additive und subadditive Funktionen auf $\mathscr{A} \subset \mathscr{P}(X)$:

Definition 2.5 (Additivität). Sei $\mathscr{A} \subset \mathscr{P}(X)$. Dann hei $\beta t \ \mu : \mathscr{A} \to [0, \infty]$

- (i) <u>subadditiv</u>, falls $\mu(A \cup B) \leq \mu(A) + \mu(B) \ \forall A, B \in \mathscr{A} \ mit \ A \cup B \in \mathscr{A}$.
- (ii) additiv, falls $\mu(A \cup B) = \mu(A) + \mu(B) \ \forall A, B \in \mathscr{A} \ mit \ A \cap B = \emptyset \ und \ A \cup B \in \mathscr{A}$.
- (iii) σ -<u>subadditiv</u>, falls für jede Folge $A_k \in \mathscr{A}$ mit $\bigcup_{k \in \mathbb{N}} A_k \in \mathscr{A}$ gilt

$$\mu(\bigcup_{k\in\mathbb{N}} A_k) \le \sum_{k\in\mathbb{N}} \mu(A_k) \qquad (\sigma\text{-Subadditivit}\ddot{a}t).$$

(iv) σ -<u>additiv</u>, falls für jede Folge $A_k \in \mathscr{A}$ mit $A_i \cap A_j = \emptyset$ für $i \neq j$ und $\bigcup_{k \in \mathbb{N}} A_k \in \mathscr{A}$

$$\mu(\bigcup_{k\in\mathbb{N}} A_k) = \sum_{k\in\mathbb{N}} \mu(A_k) \qquad (\sigma\text{-}Additivit"at).$$

Eine σ -additive Abbildung auf einer σ -Algebra nennen wir Maß:

Definition 2.6 (Maßraum, Maß).

- (i) Ein messbarer Raum (X, \mathcal{E}) ist eine Menge X mit einer σ -Algebra $\mathcal{E} \subset \mathscr{P}(X)$.
- (ii) Eine $\underline{Ma\beta} \ \mu : \mathscr{E} \to [0, \infty]$ ist eine σ -additive Funktion auf einem messbaren Raum (X, \mathscr{E}) $\overline{mit} \ \mu(\emptyset) = 0$. Dann hei $\beta t \ (X, \mathscr{E}, \mu)$ Ma β raum.

Das Maß $\mu: \mathscr{E} \to [0,\infty]$ heißt

- (iii) Wahrscheinlichkeitsmaß, falls $\mu(X) = 1$.
- (iv) endlich, falls $\mu(X) < \infty$,
- (v) σ -<u>endlich</u>, falls es $A_k \in \mathcal{E}$ gibt mit $\mu(A_k) < \infty \ \forall k \in \mathbb{N}$ und $X = \bigcup_{k \in \mathbb{N}} A_k$.
- (vi) Ein Punkt $x \in X$ heißt Atom, falls $\mu(\{x\}) > 0$.
- (vii) Falls X ein metrischer Raum ist, dann heißt μ Borelmaß, falls $\mathscr{B}(X) \subset \mathscr{E}$.

Wir hatten für das Maßproblem gesehen, dass wir nicht das Volumen aller Teilmengen $A \in \mathscr{P}(\mathbb{R}^n)$ des \mathbb{R}^n messen können. Wir werden zeigen, dass wir zumindest jede Borelmenge messen können (und sogar ein etwas größeres System von Mengen).

Beispiel 2.7 (Beispiele diskreter Maße).

(i) Sei X eine beliebige Menge. Das Diracmaß zum Punkt $x \in X$ ist

$$\delta_x(A) = \begin{cases} 1 & falls \ x \in A \\ 0 & sonst. \end{cases}$$

Das Diracmaß ist ein endliches Maß. Der Punkt $x \in X$ ist ein Atom von δ_x . Falls X ein metrischer Raum ist, dann ist δ_x ein Borelmaß.

(ii) Sei X eine beliebige Menge. Für $A \in \mathcal{P}(X)$ definieren wir das Zählmaß durch

$$\mu(A) = \left\{ \begin{array}{ll} \#A & \textit{falls A endlich viele Elemente enthält} \\ \infty & \textit{sonst}, \end{array} \right.$$

wobei #A die Anzahl der Elemente von A ist. Das Zählmaß ist genau dann endlich, wenn X endlich ist; es ist genau dann σ -endlich, wenn X abzählbar ist. Falls $X = \mathbb{R}^n$, dann ist das Zählmaß also nicht σ -endlich.

Aus der Additivität von Maßen erhalten wir direkt die folgenden Rechenregeln:

- $\mu(A \backslash B) = \mu(A) \mu(A \cap B) \ \forall A, B \in \mathscr{E}$.
- $\mu(A \cup B) = \mu(A) + \mu(B) \mu(A \cap B) \ \forall A, B \in \mathscr{E}.$

Diese beiden Aussagen folgen aus der Additivität des Maßes zusammen mit den disjunkten Zerlegungen $A = (A \backslash B) \cup (A \cap B)$, $A \cup B = (A \backslash B) \cup (B \backslash A) \cup (A \cap B)$. Aus der Definition von Maßen erhalten wir Monotonie, σ -Subadditivität und Stetigkeit des Maßes bezüglich monotoner Konvergenz:

prp-massinaus

Proposition 2.8 (Eigenschaften von Maßen). Sei (X, \mathcal{E}, μ) ein Maßraum. Dann

mu-mon

(i)
$$\mu(A) \le \mu(B) \ \forall A, B \in \mathscr{E} \ mit \ A \subset B.$$
 (Monotonie)

assinaus-iii

(ii)
$$\mu(\bigcup_{i=0}^{\infty} A_i) \le \sum_{i=0}^{\infty} \mu(A_i) \quad \forall A_i \in \mathcal{E}, i \in \mathbb{N}.$$
 (\sigma-Subadditivit\vec{a}t)

(iii) Falls
$$A_k \nearrow A$$
 oder $A_k \searrow A$ und $\mu(A_0) < \infty$ für $A_k \in \mathscr{A}$. Dann gilt $A \in \mathscr{E}$ und
$$\lim_{k \to \infty} \mu(A_k) = \mu(A)$$
 (Stetigkeit bzgl. monotoner Konvergenz)

Beweis. (i): Folgt aus der disjunkten Zerlegung $B = A \cup (B \setminus A)$.

(ii): Wir definieren induktiv $B_0 := A_0$ und $B_{k+1} := A_{k+1} \setminus \bigcup_{i=1}^k B_i \subset A_{k+1}$. Dann gilt $\bigcup_{i=0}^{\infty} B_i = \bigcup_{i=0}^{\infty} A_i$ und $\mu(B_k) \leq \mu(A_k) \ \forall k \in \mathbb{N}$ nach (i). Da die Mengen B_k paarweise disjunkt sind, erhalten wir

$$\mu(\bigcup_{k=0}^{\infty} A_k) = \mu(\bigcup_{k=0}^{\infty} B_k) = \sum_{k=0}^{\infty} \mu(B_k) \le \sum_{k=0}^{\infty} \mu(A_k).$$

(iii): Nach Annahme gilt $A = \bigcup_{i=0}^{\infty} A_k$ und damit $A \in \mathscr{E}$. Wir können $\mu(A_k) < \infty$ $\forall k \in \mathbb{N}$ annehmen, da die Aussage sonst trivialerweise erfüllt ist. Die Mengen $B_0 := A_0$ und $B_k := A_k \setminus A_{k-1}$ für $k \geq 1$ sind disjunkt und $\mu(B_k) = \mu(A_k) - \mu(A_{k-1})$. Daher

$$\mu(A) = \mu(\bigcup_{k=0}^{\infty} B_k) = \sum_{k=0}^{\infty} \mu(B_k) = \mu(A_0) + \sum_{k=1}^{\infty} (\mu(A_k) - \mu(A_{k-1})) = \lim_{k \to \infty} \mu(A_k).$$

Für $A_k \setminus A$ betrachte man die Folge $C_k := A_0 \setminus A_k$ an. Falls $\mu(A_0) < \infty$, dann gilt $\mu(C_k) = \mu(A_0) - \mu(A_k)$ und wir können das obige Argument anwenden.

9

[ANA3 WS-20/21 HEIDELBERG]

06.11.2020 - V1/P2

Gilt auch allgemein $\mu(A_k) \to \mu(A)$, falls $A_k \to A$ (Übungsaufgabe)? Ein weiterer nützlicher Begriff is der Begriff des äußeren Maßes.

Definition 2.9. Sei X eine Menge und $\mu^* : \mathscr{P}(X) \to [0, \infty]$. Dann heißt μ^* äußeres $Ma\beta$, falls

(i)
$$\mu^*(\emptyset) = 0$$
.

(ii)
$$F\ddot{u}r A \subset B \text{ ist } \mu^*(A) \leq \mu^*(B).$$
 (Monotonie)

(iii) μ^* ist σ subadditiv.

Wir geben einige Beispiele: Sei X ein Menge. Falls $\mu: \mathscr{P}(X) \to [0, \infty]$ gegeben ist durch

- $\mu(\emptyset) = 0$ und $\mu(A) = 1$ für alle $A \neq \emptyset$, oder
- $\mu(A) = 0$, falls $\#A < \infty$ und $\mu(A) = 1$

Dann ist μ ein äußeres Maß.

Maße und äußere Maße sind subadditiv und erfüllen damit eine wichtige Eigenschaft einer Norm. Allerdings folgt aus $\mu(A)=0$ im Allgemeinen nicht $A=\emptyset$. Eine Menge $A\in\mathscr{E}$ mit $\mu(A)=0$ heißt μ -Nullmenge. Es ist allerdings sinnvoll auch die Teilmengen von Nullmengen als Nullmengen zu bezeichnen:

Definition 2.10 (Nullmengen & fast überall Aussagen). Sei $\mathscr{E} \subset \mathscr{P}(X)$ und sei $\mu : \mathscr{E} \to [0, \infty]$ subadditiv.

- (i) $A \in \mathcal{P}(X)$ heißt μ -Nullmenge, falls es ein $B \in \mathcal{E}$ gibt mit $A \subset B$ und $\mu(B) = 0$.
- (ii) Eine Aussage P(x) gilt μ -fast überall, falls P(x) bis auf eine Nullmenge gilt.
- (iii) Sei Y ein topologischer Raum. Wir sagen, dass $f_k: X \to Y$ μ -fast überall gegen f konvergiert, falls es eine μ -Nullmenge $N \subset X$ gibt mit $f_k(x) \to f(x)$ für alle $x \in X \setminus N$.

Die Funktionenfolge $f_k: \mathbb{R} \to \mathbb{R}, f_k(x) = k\chi_{[0,\frac{1}{k}]}$ konvergiert f.ü. gegen f = 0.

Nach Definition ist jede σ -Algebra & vollständig in dem Sinne, dass $A_k \in \mathcal{E}$ und $A_k \to A$ schon die Aussage $A \in \mathcal{E}$ impliziert. Ein Maß $\mu: X \to [0, \infty]$ induziert eine Konvergenz: Wir können sagen, dass $A_k \to A$ bezüglich des Maßes μ konvergiert, falls $\mu(A\Delta A_k) \to 0$. Im Allgemeinen folgt aus $A_k \in \mathcal{E}$ und $\mu(A\Delta A_k) \to 0$ aber nicht $A \in \mathcal{E}$. Das Maß ist dann in diesem Sinne nicht vollständig. Jedes Maß lässt sich aber zu einem vollständigen Maß fortsetzen. Dies führt auf die folgende Definition:

allstaendigung

Satz 2.11 (Maßvervollständigung). Sei (X, \mathcal{E}, μ) ein Maßraum. Dann ist

$$\mathscr{E}_{\mu} := \{A \in \mathscr{P}(X) : \text{ es gibt } B, N \in \mathscr{E} \text{ mit } A \Delta B \subset N \text{ und } \mu(N) = 0\}.$$

eine σ -Algebra. Die Erweiterung $\overline{\mu}: \mathscr{E}_{\mu} \to [0,\infty]$ mit $\overline{\mu}(A) = \mu(B)$ ist ein Maß. Die Elemente von $E \in \mathscr{E}_{\mu}$ heißen μ -messbar Mengen. Das Maß $\overline{\mu}$ heißt Vervollständigung von μ . Falls $\mu = \overline{\mu}$, dann heisst das Maß μ vollständig. Entsprechend heißt der Maßraum (X,\mathscr{E},μ) vollständig, falls μ vollständig ist.

Beweis. Der Beweis ist Übungsaufgabe.

Für ein vollständiges Maß $\mu:\mathscr{E}\to[0,\infty]$ gilt insbesondere $A\in\mathscr{E}$ für jede Nullmenge A.

2.2 Maßerweiterung

Wir wenden uns wieder dem Maßproblem zu, d.h. das Ziel ist ein Maß zur Volumenmessung zu definieren. Wir betrachten zuerst die Menge der linksgeschlossenen Intervalle

$$\mathscr{J} := \{ [a, b) : a, b \in \mathbb{R} \}.$$

Wir benutzen dabei die Konvention, dass $[a,b) = \emptyset$ falls $b \le a$. Man zeigt leicht, dass

$$\mathscr{B}(\mathbb{R}) = \sigma(\mathscr{J}).$$

Dies folgt aus der Tatsache, dass sich jedes offene Intervall als abzählbare Überdeckung von Mengen in \mathscr{J} darstellen lässt und umgekehrt (Übungsaufgabe). Jedem Intervall $I=[a,b)\in\mathscr{J}$ mit $I\neq\emptyset$ ordnen wir die Länge |I|:=|b-a| und wir setzen $|\emptyset|=0$. In einem ersten Schritt definieren wir ein Volumenmaß auf der endlichen Vereingung von Mengen in \mathscr{J} :

lem-lebpram

Lemma 2.12 (Lebesgue-Prämaß). Sei $\mathscr{K} \subset \mathscr{P}(\mathbb{R})$ die Menge der Mengen, welche sich als endliche Vereinigung von linksgeschlossenen Intervallen darstellen lässt, d.h.

$$\mathcal{K} = \left\{ A \subset \mathbb{R} : A = \bigcup_{j=1}^{N} I_{j} \quad mit \ I_{j} \in \mathcal{J}, \ 1 \leq j \leq N, \ f\"{u}r \ ein \ N \in \mathbb{N}. \right\}$$
 (2.1) pra-AA

Wir definieren das Lebesgue-Präma $\beta \lambda : \mathcal{K} \to [0, \infty)$ durch

$$\lambda(A) := \inf \Big\{ \sum_{I \in \mathscr{I}} |I_j| : A = \bigcup_{j=1}^N I_j \text{für } N \in \mathbb{N} \text{ und } I_j \in \mathscr{J} \Big\},$$

Dann ist $\mathcal{K} \subset \mathcal{P}(\mathbb{R})$ ein Ring und λ ist σ -additiv auf \mathcal{K} .

Beweis. Man zeigt leicht, dass \mathscr{K} ein Ring ist. Wir bemerken, dass jede Menge $A \in \mathscr{K}$ als endliche, disjunkte Vereinigung von Mengen $I_j \in \mathscr{J}$ geschrieben werden kann. Mit einer solchen disjunkten Vereinigung gilt $\lambda(A) := \sum_{j=1}^{n} |I_j|$ und das Maß ist unabhängig von der Wahl der disjunkten Vereinigung. Die Details sind Übungsaufgabe.

 $\begin{bmatrix}
 06.11.2020 \\
 09.11.2020
 \end{bmatrix}$

Das Lebesgueprämaß $\lambda: \mathcal{K} \to [0, \infty]$ erfüllt die Eigenschaften (i)—(iii) des Maßproblemes ist aber nur auf dem kleinen System $\mathcal{K} \subset \mathcal{P}(\mathbb{R})$ von Mengen definiert. Unser Ziel ist λ zu einem Maß auf $\mathcal{B}(\mathbb{R}) = \sigma(\mathcal{K}) = \sigma(\mathcal{J})$ fortzusetzen. Die folgende Konstruktion geht auf Constantin Carathéodory (1873-1950) zurück.

Proposition 2.13 (Induziertes äußeres Maß). Sei $\mathscr{A} \subset \mathscr{P}(X)$ und sei $\mu : \mathscr{A} \to [0,\infty]$ σ -additiv. Sei $\mu^* : \mathscr{P}(X) \to [0,\infty]$ gegeben durch

$$\mu^*(E) := \inf\{\sum_{i=1}^{\infty} \mu(A_i) : \mathscr{A} \in \mathscr{A}, E \subset \bigcup_{i \in \mathbb{N}} A_i\}.$$

Dann ist μ^* äußeres Maß mit $\mu^* = \mu$ auf \mathscr{A} und heißt das von μ induzierte äußere Maß.

Beweis. Aus der Definition und der Monotonie von μ erhalten wir direkt, dass $\mu(A) = \mu^*(A) \ \forall A \in \mathscr{A}$. Insbesondere gilt $\mu^*(\emptyset) = 0$. Es bleibt zu zeigen, dass μ^* subadditiv ist: Sei $E_i \in \mathscr{P}(X)$ und sei $E := \bigcup_i E_i$. OBdA nehmen wir an, dass $\sum_i \mu^*(E_i) < \infty$. Nach Konstruktion gibt es dann zu $\varepsilon > 0$ und E_i eine Folge A_{ij} mit

$$\sum_{i=1}^{\infty} \mu^*(A_{ij}) < \mu^*(E_i) + \frac{\varepsilon}{2^{i+1}}, \quad \text{und} \quad E_i \subset \bigcup_i A_{ij}$$

Wir summieren über i und erhalten

$$\sum_{i,j=1}^{\infty} \mu^*(A_{ij}) < \sum_{i=1}^{\infty} \mu^*(E_i) + \varepsilon, \quad \text{und} \quad E \subset \bigcup_{i,j} A_{ij}$$

Die Subadditivität folgt im Limes $\varepsilon \to 0$.

Wir möchten zeigen, dass die Einschränkung von μ^* auf einer hinreichend großen Menge σ -additiv ist. Dafür benötigen wir einige technische Definitionen und Resultate:

prp-dynkin

Definition 2.14 (Dynkinsystem, π -System).

- (i) $\mathscr{D} \subset \mathscr{P}(X)$ heißt Dynkinsystem, falls
 - $\emptyset, X \in \mathscr{D}$.
 - $A \in \mathscr{D} \Longrightarrow A^c \in \mathscr{D}$.
 - $A_i \in \mathcal{D} \ \forall i \in \mathbb{N}, \ A_i \cap A_j = \emptyset \ \text{für } i \neq j \Longrightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{D}.$
- (ii) $\mathscr{K} \subset \mathscr{P}(X)$ heißt π -System, falls $\mathscr{K} \neq \emptyset$ und $A \cap B \in \mathscr{K} \ \forall A, B \in \mathscr{K}$.

Wir bemerken, dass das Mengensystem \mathcal{K} aus Lemma 2.1 eine Algebra und damit insbesondere ein π -System ist. Wir haben das folgende Resultat:

prp-dynkin

Proposition 2.15 (Dynkinsystem). Falls \mathscr{D} ein Dynkinsystem ist und $\mathscr{K} \subset \mathscr{D}$ ein π -System, dann ist $\sigma(\mathscr{K}) \subset \mathscr{D}$.

Beweis. Übungsaufgabe.

Falls insbesondere $\mathscr{A} \subset \mathscr{P}(X)$ sowohl Dynkinsystem als auch π -System ist, dann ist \mathscr{A} eine σ -Algebra. Die folgende Charakterisierung von messbaren Mengen in (2.2) heißt Carathéodory-Kriterion.

thm-cara

Satz 2.16 (Carathéodory). Sei $\mathscr{A} \subset \mathscr{P}(X)$ ein Ring. Sei $\mu : \mathscr{A} \to [0, \infty]$ σ -additiv und sei $\mu^* : \mathscr{P}(X) \to [0, \infty]$ das von μ induzierte äußere Maß. Sei

$$\mathscr{M} := \{ A \in \mathscr{P}(X) : \mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c) \quad \forall E \in \mathscr{P}(X). \}$$
 (2.2)

se-cara

Dann gilt

- (i) \mathcal{M} ist eine σ -Algebra mit $\mathcal{A} \subset \mathcal{M}$
- (ii) μ^* ist σ -additiv auf \mathcal{M} .
- (iii) Der Maßraum (X, \mathcal{M}, μ^*) ist vollständig.

Beweis. Da μ^* subadditiv ist, ist die Bedingung in (2.2) äquivalent zu

$$\mu^*(E \cap A) + \mu^*(E \cap A^c) \le \mu^*(E) \quad \forall E \in \mathscr{P}(X) \text{ mit } \mu^*(E) < \infty.$$
 (2.3) se-cara-2

Schritt 1: $\mathscr{A} \subset \mathscr{M}$: Sei $A \in \mathscr{A}$. Für $E \in \mathscr{P}(X)$ mit $\mu^*(E) < \infty$ wählen wir $B_i \in \mathscr{A}$ mit $\sum_{i=0}^{\infty} \mu^*(B_i) < \mu^*(E) + \varepsilon$ und $E \subset \bigcup_{i=0}^{\infty} B_i$. Da μ^* subbaditiv und auf \mathscr{A} additiv ist

13

[ANA3 WS-20/21 HEIDELBERG]

09.11.2020-V2/P1

erhalten wir

$$\mu^*(E \cap A) + \mu^*(E \cap A^c) \leq \sum_{i=0}^{\infty} \left(\mu^*(B_i \cap A) + \mu^*(B_i \cap A^c) \right) \stackrel{\text{(iii)} - add}{=} \sum_{i=0}^{\infty} \mu^*(B_i)$$
$$< \mu^*(E) + \varepsilon.$$

Im Limes $\varepsilon \to 0$ erhalten wir (2.3) und daher $A \in \mathcal{M}$.

Schritt 2: \mathcal{M} ist eine σ -Algebra. Nach Proposition 2.15 reicht es zu zeigen, dass \mathcal{M} ein Dynkinsystem und ein π -System ist. Nach Definition gilt $\emptyset, X \in \mathcal{M}$. Aus der Definition sieht man auch direkt, dass $A^c \in \mathcal{M}$, falls $A \in \mathcal{M}$.

Wir zeigen zuerst, dass $A \cup B \in \mathcal{M}$, falls $A, B \in \mathcal{M}$. Dafür schreiben wir $A \cup B = A \cup (B \cap A^c)$ als Vereinigung zweier disjunkter Mengen. Für $E \in \mathcal{P}(X)$ erhalten wir mit der Subadditivität von μ^* dann

$$\mu^* (E \cap (A \cup B)) + \mu^* (E \cap (A \cup B)^c) \leq \mu^* (E \cap A) + \mu^* (E \cap A^c \cap B) + \mu^* (E \cap A^c \cap B^c)$$
$$= \mu^* (E \cap A) + \mu^* (E \cap A^c)$$
$$= \mu^* (E).$$

Für die beiden Identitäten haben wir $A, B \in \mathcal{M}$ genutzt. Für $A, B \in \mathcal{M}$ gilt damit auch $A \cap B = (A^c \cup B^c)^c \in \mathcal{M}$. Damit ist \mathcal{M} ein π -System.

Indem wir E in $(2.2)^{\text{Se-cara}}$ durch $E \cap (A \cup B)$ ersetzen erhalten wir für alle $E \in \mathscr{P}(X)$

$$\mu^*(E \cap (A \cup B)) = \mu^*(E \cap A) + \mu^*(E \cap B) \quad \forall A, B \in \mathscr{M} \text{ mit } A \cap B = \emptyset.$$
 (2.4) EAB-zerl

Mit der Wahl $E := A \cup B$ gilt insbesondere

$$\mu^*(A \cup B) = \mu^*(A) + \mu^*(B) \qquad \forall A, B \in \mathscr{M} \text{ mit } A \cap B = \emptyset, \tag{2.5}$$

d.h. μ^* ist additiv auf \mathcal{M} .

Um zu sehen, dass \mathscr{M} ein Dunkinsystem ist reicht es zu zeigen, dass $S := \bigcup_n A_n \in \mathscr{M}$, falls die Mengen $A_n \in \mathscr{M}$ disjunkt sind. Nach der obigen Rechnung gilt $S_n := \bigcup_{i=1}^n A_i \in \mathscr{M}$. Da $S^c \subset S_n^c$ und für $E \in \mathscr{P}(X)$ gilt also

$$\mu^{*}(E) = \mu^{*}(E \cap S_{n}^{c}) + \mu^{*}(E \cap S_{n}) \geq \mu^{*}(E \cap S^{c}) + \mu^{*}(E \cap S_{n})$$

$$\stackrel{\text{EAB-zerl}}{\geq} \mu^{*}(E \cap S^{c}) + \sum_{i=1}^{n} \mu^{*}(E \cap A_{i}) \forall n \in \mathbb{N}.$$
(2.6) cae-2a

Da μ^* subadditiv ist, erhalten wir im Limes $n \to \infty$

$$\lim_{n \to \infty} \sum_{i=0}^{n} \mu^*(E \cap A_i) = \sum_{i=1}^{\infty} \mu^*(E \cap A_i) \ge \mu^*(E \cap S)$$
 (2.7) cae-2b

Wenn wir (2.7) in (2.6) einsezten, folgt $S \in \mathcal{M}$. Daher ist \mathcal{M} also sowohl Dynkinsystem als auch π -System und damit eine σ -Algebra.

Schritt 3: μ^* ist σ -additiv auf \mathcal{M} . Für eine Folge $A_n \in \mathcal{A}$ von disjunkten Mengen und da μ^* monoton ist, erhalten wir

$$\sum_{i=1}^{n} \mu^*(A_i) \stackrel{[\text{muad}]}{=} \mu^* \Big(\bigcup_{i=1}^{n} A_i\Big) \leq \mu^* \Big(\bigcup_{i=1}^{\infty} A_i\Big) \qquad \forall n \in \mathbb{N}.$$

Im Limes $n \to \infty$ erhalten wir die σ -Additivität von μ^* .

Schritt 4: Der Maßraum (X, \mathcal{M}, μ^*) ist vollständig. Sei $A, N \in \mathcal{M}$, sei $\mu^*(N) = 0$ und es gelte $B \subset A\Delta N$. Dann gilt (2.2) auch für B, d.h. $B \in \mathcal{M}$.

Die Eindeutigkeit der Maßerweiterung wird in folgender Proposition behandelt:

prp-lebeind

Proposition 2.17 (Eindeutigkeitskriterium). Seien μ_1 , μ_2 Maße auf (X, \mathcal{E}) und sei $\mathcal{F} := \{A \in \mathcal{E} : \mu_1(A) = \mu_2(A)\}$. Die folgenden beiden Bedingungen seien erfüllt:

- (i) Es gibt ein π -System $\mathcal{K} \subset \mathcal{F}$ mit $\sigma(\mathcal{K}) = \mathcal{E}$.
- (ii) Es gibt eine Folge $X_i \in \mathcal{E}$ mit $X_i \nearrow X$ und $\mu_1(X_i) = \mu_2(X_i) < \infty$.

Dann gilt $\mu_1 = \mu_2$ auf \mathscr{E} .

Beweis. Wir nehmen zuerst an, dass μ_1 , μ_2 endliche Maße sind. Offensichtlich gilt $\emptyset, X \in \mathscr{F}$. Für disjunkte Mengen $A_i \in \mathscr{F}$ gilt nach der σ -Additivität der Maße auch $\bigcup_{i=1}^{\infty} A_i \in \mathscr{F}$. Für $A \in \mathscr{F}$ gilt auch $\mu_1(A^c) = \mu_1(X) - \mu_1(A) = \mu_2(X) - \mu_2(A) = \mu_2(A^c)$, d.h. $A^c \in \mathscr{F}$. Daher ist \mathscr{F} ein Dynkinsystem. Mit Proposition 2.15 gilt dann $\sigma(\mathscr{K}) \subset \mathscr{F}$. Da $\mu_1 = \mu_2$ auf \mathscr{K} erhalten wir nach σ -Additivität der Maße auch $\mu_1 = \mu_2$ auf $\mathscr{E} = \sigma(\mathscr{K})$.

Wir betrachten nun den allgemeinen Fall, wenn μ_1 , μ_2 σ -endlich sind. Nach Voraussetzung gilt $\mu_1(X_i) = \mu_2(X_i) < \infty$ und $X_i \nearrow X$. Die Maße μ_1 , μ_2 sind endliche Maße auf (X_i, \mathscr{E}_i) für jedes $i \in \mathbb{N}$, wobei die σ -Algebra $\mathscr{E}_i \subset \mathscr{P}(X_i)$ gegeben ist durch $\mathscr{E}_i := \{E \in \mathscr{E} : E \subset X_i\}$. Nach Annahme gilt $\mu_1 = \mu_2$ auf dem π -System $\mathscr{K}_i := \{E \in \mathscr{K} : E \subset X_i\}$. Nach der vorherigen Rechnung erhalten wir $\mu_1 = \mu_2$ auf $\sigma(\mathscr{K}_i) \subset \mathscr{P}(X_i)$.

Wir betrachten nun die Mengen $\mathscr{F}_i := \{B \in \mathscr{P}(X) : B \cap X_i \in \sigma(\mathscr{K}_i)\}$. Dann ist \mathscr{F}_i eine σ -Algebra und $\mathscr{K} \subset \mathscr{F}_i$. Nach Proposition 2.15 gilt $\mathscr{E} = \sigma(\mathscr{K}) \subset \mathscr{F}_i$. Aus der σ -Algebraeigenschaft der Maße folgt also

$$\mu_1(B \cap X_i) = \mu_2(B \cap X_i) \qquad \forall B \in \mathscr{E} \ \forall i \in \mathbb{N}$$

Im Limes $i \to \infty$ ergibt dies $\mu_1 = \mu_2$ auf \mathscr{E} .

2.3Das Lebesguemaß auf \mathbb{R}

Mit der Konstruktion aus dem vorigen Kapitel können wir unser Prä-Lebesguemaß eindeutig zu einem Borelmaß erweitern:

Satz 2.18 (Lebesguemaß auf \mathbb{R}). Es qibt ein eindeutiges, translations invariantes $Ma\beta$

$$\lambda: \mathscr{B}(\mathbb{R}) \to [0, \infty]$$
 mit $\lambda([0, 1]) = 1$.

Dieses Maß heißt Lebesquemaß auf \mathbb{R} .

Beweis. Sei $\lambda: \mathcal{K} \to [0,\infty]$ das Lebesgue-Prämaß aus Lemma 2.12. Nach Satz 2.16 induziert dieses Pramäß eine Erweiterung $\lambda: \mathcal{M} \to [0, \infty]$. Da \mathcal{M} eine σ -Algebra ist, gilt $\mathscr{B}(\mathbb{R}) = \sigma(\mathscr{K}) \subset \mathscr{M}$. Durch Einschränkung unseres Maßes auf die Borelmengen erhalten wir also ein Borelmaß $\lambda: \mathcal{B}(\mathbb{R}) \to [0,\infty]$. Jedes weitere translationsinvariante, normierte Maß λ , welches die Anforderungen des Satzes erfüllt ist σ -endlich und erfüllt $\lambda = \lambda$ auf \mathcal{K} . Nach Proposition 2.17 ist die Erweiterung damit eindeutig definiert.

Für jedes $h \in \mathbb{R}$ ist auch $A \mapsto \lambda(A+h)$ eine σ -additive Erweiterung von $\lambda|_{\mathscr{A}}$. Aus der Eindeutigkeit der Erweiterung erhalten wir, dass λ translationsinvariant ist.

Das Lebesguemaß lässt sich aber zu einem vollständigen Maß erweitern:

• Das Lebesguemaß hat eine Erweiterung zu einem vollständigen Maß

$$\lambda: \mathscr{L}_1 \to [0, \infty]$$

 $\lambda: \mathscr{L}_1 \to [0,\infty]$ Die Erweiterung ist durch Satz 2.11 mit $\mathscr{L}_1 := \mathscr{M}$ gegeben.

- Die Mengen in \mathcal{L}_1 heißen auch Lebesguemengen.
- Es gilt $\mathscr{B}(\mathbb{R}) \subsetneq \mathscr{L}_1$ (Übungsaufgabe).

In der Literatur wird das Lebesguemaß auch als vollständiges Maß $\lambda: \mathscr{L}_1 \to [0,\infty]$ definiert (Ich folge der Notation aus dem Buch von Ambrosio). Die Notation ist dann in manchen Bereichen etwas umständlicher.

Wir haben in Proposition 2.8 gesehen, dass Maße stetig sind bezüglich der Approximation durch messbare Mengen. Borelmengen lassen sich im Lebesguemaß sogar durch offene bzw. abgeschlossene Mengen approximieren. Wir formulieren dies Aussage in einem etwas allgemeineren Setting:

Proposition 2.19 (Regularität von σ -endliche Maßen). Sei X ein metrischer Raum und sei $\mu: \mathcal{B}(X) \to [0, \infty]$ σ -endlich. Dann gilt für jedes $B \in \mathcal{B}(X)$:

$$\mu(B) \ = \ \sup\{\mu(A): A \subset B, \ abgeschlossen\} \ = \ \inf\{\mu(U): U \supset B, \ of\!fen\} \eqno(2.8)$$

inout-app

Beweis. Der Fall, wenn μ endlich ist: Wir nehmen zuerst an, dass μ ein endliches Maß ist. Sei \mathscr{K} die Menge, so dass (2.8) gilt. Wir bemerken zuerst, dass \mathscr{K} alle offenen Mengen enthalt. In der Tat, für eine U offen definieren wir die Folge abgeschlossener Mengen

$$A_n := \{x \in U : d(x, U^c) \ge \frac{1}{n}\} \subset U.$$

Dann gilt $A_n \nearrow U$ und damit $\mu(A_n) \nearrow \mu(U)$. Daher enthält \mathscr{K} alle offenen Mengen und es reicht zu zeigen, dass \mathscr{K} eine σ -Algebra ist.

Offensichtlich gilt $\emptyset, X \in \mathcal{K}$. Falls $B \in \mathcal{K}$, dann gilt nach Definition auch $B^c \in \mathcal{K}$ (da μ endlich ist). Sei nun $B_n \in \mathcal{K}$. Dann gibt es zu $\varepsilon > 0$ abgeschlossene Mengen A_n und offene Mengen U_n mit $A_n \subset B_n \subset U_n$ mit $\mu(A_n \setminus C_n) \leq \frac{\varepsilon}{2^{n+1}}$. Wir definieren $S := \bigcup_n A_n$ und $U := \bigcup_n U_n$. Dann gilt $S \subset \bigcup_n B_n \subset U$ und

$$\mu(U \backslash S) \leq \sum_{n} \frac{\varepsilon}{2^{n+1}} \leq \varepsilon.$$

Die Menge U ist offen, die Menge S im Allgemeinen aber nicht abgeschlossen. Allerdings sind die Mengen $S^n := \bigcup_{k=0}^n A_n$ abgeschlossen und es gilt $\mu(S^n) \nearrow \mu(S)$. Daher gibt es ein $n_0 \in \mathbb{N}$ mit $\mu(S^{n_0}) \ge \mu(S) - \varepsilon$. Mit der Wahl $A := S^{n_0}$ erhalten wir also $A \subset \bigcup_n B_n \subset U$ und $\mu(U \setminus A) \le 2\varepsilon$.

Der allgemeine Fall: Übungsaufgabe.

Nach Konstruktion des Lebesguemaßes ist jede abzählbare Menge eine Nullmenge (Übungsaufgabe). Ein Beispiel für eine Nullmengen, welche nicht abzählbar ist, ist die Cantormenge C. Diese ist wie folgt konstruiert: Sei $I_{0,1} = [0,1]$. Wir entfernen aus I_0 das mittlere offene Drittel des Intervalls und erhalten die beiden kompakten Intervalle $I_{1,1} = \frac{1}{3}[0,1]$, $I_{1,2} = \frac{1}{3}[2,3]$. Aus den beiden Intervallen $I_{1,1}$, $I_{1,2}$ entfernen wir jeweils das mittlere Drittel und erhalten die vier kompakten Intervalle $I_{2,1} = \frac{1}{9}[0,1]$, $I_{2,2} = \frac{1}{9}[2,3]$, $I_{2,3} = \frac{1}{9}[6,7]$, $I_{2,4} = \frac{1}{9}[8,9]$. Induktiv erhalten wir die kompakten Intervalle $I_{n,k}$ für $n \in \mathbb{N}$, $k = 1, \ldots, 2^n$. Die Cantormenge $C \subset [0,1]$ ist definiert

$$C := \bigcap_{n=0}^{\infty} C_n$$
 wobei $C_n := \bigcup_{k=1}^{2^n} I_{n,k}$.

Die Cantormenge gibt uns ein Beispiel für eine überabzählbare Nullmenge:

-cantormenge

Lemma 2.20 (Cantormenge). Sei $C \subset [0,1]$ die Cantormenge. Dann gilt

- (i) $C \subset [0,1]$ ist kompakt. Die Menge $[0,1] \setminus C$ ist dicht in [0,1].
- (ii) C ist überabzählbar
- (iii) $\lambda(C) = 0$.

Beweis. C is offenbar beschränkt und als Vereinigung abgeschlossener Mengen abgeschlossenb. Daher ist C kompakt. Wir zeigen als nächstes, dass $\lambda(C) = 0$. In der Tat, C_n ist die Vereinigung von 2^n disjunkten Intervallen der Länge 3^{-n} und daher $\mathcal{L}^n(C_n) = 2^n 3^{-n} = (\frac{2}{3})^n$. Aus der Monotonie des Lebesguemaßes erhalten wir also $\lambda(C) \leq \lim_{n \to \infty} (C_n) = 0$. Man kann zeigen, dass C gleichmächtig zu \mathbb{R} ist (Übungsaufgabe). Daraus folgt die Überabzählbarkeit von C.

Analog zur Definition des Lebesguesmaßes kann man auch allgemeiner s-dimensionale Maße konstrieren. Wir bemerken zuerst, dass für $n \in \mathbb{N}$ das Volumen der n-dimensionalen Einheitskugel gegeben ist durch $\alpha(n) := \pi^{\frac{n}{2}}/\Gamma(\frac{n}{2}+1)$. Das Hausdorffmaß ist dann durch Überdeckung mit skalierten Kugeln definiert:

Definition 2.21 (Hausdorffmaß). Sei $A \subset \mathbb{R}^n$, $0 \le s < \infty$. Sei $\alpha(s) := \pi^{\frac{s}{2}}/\Gamma(\frac{s}{2}+1)$, wobei Γ die Gamma-Funktion bezeichnet. Sei

$$\mathscr{H}^{s}_{\delta}(A) := \inf \Big\{ \sum_{j=1}^{\infty} \alpha(s) \Big(\frac{\operatorname{diam} C_{j}}{2} \Big)^{s} : A \subset \bigcup_{j \in \mathbb{N}} C_{j}, \operatorname{diam} C_{j} \leq \delta \Big\}.$$

Das Hausdorffmaß $\mathcal{H}^s: \mathcal{P}(\mathbb{R}^n) \to [0,\infty]$ ist dann definiert durch

$$\mathscr{H}^s(A) := \limsup_{s \to 0} \mathscr{H}^s_{\delta}(A).$$

Für jede Menge $A \subset \mathbb{R}^n$ ist $\mathscr{H}^s_{\delta}(A)$ monoton steigend für $s \to 0$, insbesondere ist der Limes $s \to 0$ wohldefiniert. Eine Menge $A \subset \mathbb{R}^n$ heißt \mathscr{H}^s -Nullmenge, falls $\mathscr{H}^s(A) = 0$. Frage: Geben Sie Beispiele für \mathscr{H}^s -Nullmengen im \mathbb{R}^n .

Die Einschränkung des Hausdorffmaßes auf Borelmengen ist ein Maß. Allgemein ist das Hausdorffmaß aber nur ein äußeres Maß. Ein Maß heißt lokal endlich, wenn es zu jedem Punkt eine Umgebung mit endlichem Maß gibt.

Satz 2.22 (Eigenschaften des Hausdorffmaßes). Sei $0 \le s < \infty$. Dann gilt

- (i) $\mathcal{H}^s: \mathcal{P}(\mathbb{R}^n) \to [0,\infty]$ ist ein äußeres Maß
- (ii) $\mathcal{H}^s: \mathcal{B}(\mathbb{R}^n) \to [0,\infty]$ ist ein Borelmaß (aber für $s \in (0,n)$ nicht lokal endlich).
- (iii) $\mathscr{H}^s(\lambda A) = \lambda^s(A) \qquad \forall A \in \mathscr{P}(X), \lambda > 0.$
- (iv) $\mathscr{H}^s(A+y) = \mathscr{H}^s(A) \qquad \forall A \in \mathscr{P}(X), y \in \mathbb{R}^n.$

Beweis. (i): Offensichtlich gilt $\mu(\emptyset) = 0$. Es bleibt zu zeigen, dass \mathscr{H}^s subadditiv ist. Dies ist Übungsaufgabe.

(ii): Zum Beweis verwendet man das Carathéodory-Kriterion (2.2). Übungsaufgabe.

Für n=0 ist \mathscr{H}^0 das Zählmaß. Für n=1 gilt außerdem $\mathscr{H}^1=\mathscr{L}^1$ auf $\mathscr{B}(\mathbb{R})$. Für s>n gilt $\mathscr{H}^s=0$. Für 0< s< n kann das Hausdorffmaß genutzt werden, um die Hausdorfdimension von Mengen $E\subset\mathbb{R}^n$ zu definieren:

$$\dim(E) := \inf\{s \ge 0 : \mathscr{H}^s(X) = 0\}.$$

Die Hausdorffdimension der Cantormenge ist ln 2/ln 3 (Übungsaufgabe).

Wir erweitern die Definition von Nullmengen im Skript wie folgt (auch in der schon gegebenen Definitino angepaßt):

• Sei $\mathscr{E} \subset \mathscr{P}(X)$ und sei $\mu : \mathscr{E} \to [0,\infty]$ subadditiv. Dann heißt $A \in \mathscr{E}$ eine μ -Nullmenge, falls $A \subset B$ für ein $B \in \mathscr{E}$ mit $\mu(B) = 0$. (bisher hatten wir angenommen, dass Nullmengen im Definitionsbereiches des Maßes liegen müssen)