♦ GUIA DE ESTUDOS – TEMA 02

Sistema Operacional: Lógica Booleana

© OBJETIVOS DE APRENDIZAGEM

- Conhecer a importância da lógica Booleana para o funcionamento do sistema;
- Compreender as operações lógicas de alto nível e suas regras;
- **Relacionar** números binários, operações lógicas e funcionamento de sistemas computacionais.

★ SEÇÃO 1 – INTRODUÇÃO À LÓGICA E SISTEMAS COMPUTACIONAIS

P O que é Lógica Booleana?

Lógica Booleana é um sistema lógico baseado em dois valores:

- 0 = FALSO / desligado
- 1 = VERDADEIRO / ligado

Criada por **George Boole**, essa lógica é a base dos sistemas digitais modernos.

P A lógica Booleana é o que permite que computadores "tomem decisões" com base em condições.

Por que computadores usam 0 e 1?

Computadores trabalham com circuitos elétricos:

- Ligado = 1 (tensão presente)
- Desligado = 0 (sem tensão)

Esses dois estados formam o **sistema binário** – fundamental para representar **dados, instruções e controle** no hardware e software.

🔢 SEÇÃO 2 – SISTEMA BINÁRIO

- O que é o sistema binário?
 - Base 2 (apenas dois dígitos: 0 e 1).
 - Cada bit representa um único 0 ou 1.
 - Byte = 8 bits → pode representar 256 valores (de 0 a 255).

Bits	Valor em Decimal
00000000	О
11111111	255
01000001	65 (letra 'A' no ASCII)

9 Como converter decimal → binário

Exemplo: 19

 $19 \div 2 = 9 \text{ resto } 1$

 $9 \div 2 = 4 \text{ resto } 1$

 $4 \div 2 = 2 \text{ resto } 0$

 $2 \div 2 = 1 \text{ resto } 0$

 $1 \div 2 = 0 \text{ resto } 1$

→ Ordem inversa dos restos = 10011

Como converter binário → decimal

Exemplo: 10011

$$1\times2^4 + 0\times2^3 + 0\times2^2 + 1\times2^1 + 1\times2^0$$

$$= 16 + 0 + 0 + 2 + 1 = **19**$$

https://www.calculadoraonline.com.br/conversao-bases

SEÇÃO 3 – REPRESENTAÇÃO DE DADOS

9 O que é ASCII?

ASCII (American Standard Code for Information Interchange) é um padrão de codificação para representar texto e símbolos com números binários.

Exemplo:

Letra	Decimal	Binário
А	65	01000001
а	97	01100001
0	48	00110000

Cada caractere digitado é traduzido para um número binário e compreendido pela máquina.

🔅 SEÇÃO 4 – PROCESSADOR E EXECUÇÃO DE INSTRUÇÕES

Como o processador usa o binário?

O processador:

- 1. Recebe dados binários;
- 2. Executa operações lógicas e aritméticas (com base em circuitos);
- 3. Devolve um resultado binário (que será traduzido em texto, imagem, som, etc.).

† SEÇÃO 5 – PORTAS LÓGICAS

O que são Portas Lógicas?

São circuitos eletrônicos que seguem regras da lógica Booleana.

Cada porta tem:

- Entradas (bits)
- Regras lógicas
- Uma saída

Porta AND (E)

A	В	Saída
0	0	0
0	1	0
1	0	0
1	1	1

Expressão: $S = A \cdot B$

✓ Porta OR (OU)

Α	В	Saída
0	0	0
0	1	1

F	1	В	Saída
1		0	1
1		1	1

Expressão: S = A + B

✓ Porta NOT (NÃO)

Α	Saída
0	1
1	0

Expressão: S = ¬A

Outras Portas:

Porta	Nome	Regra
XOR	Exclusivo	S = 1 se A ≠ B
NAND	E Negado	S = ¬(A ⋅ B)
NOR	OU Negado	S = ¬(A + B)

SEÇÃO 6 – APLICAÇÕES PRÁTICAS E RELAÇÃO COM SISTEMA OPERACIONAL

- O **sistema operacional** interpreta comandos (em linguagem binária) e os converte em ações.
- Lógica Booleana é usada na execução de programas, controle de dispositivos, decisões condicionais, e muito mais.
- Portas lógicas são a base de microprocessadores, memórias, e controladores de periféricos.

🗩 SEÇÃO 7 – ATIVIDADES PRÁTICAS

Atividade 1 – Conversão Binária

Converta os seguintes números decimais para binário:

- **a)** 8
- **b)** 23
- **c)** 42

Atividade 2 – Tabela Verdade

Complete a tabela verdade para a porta XOR:

Α	В	A ⊕ B
0	0	?
0	1	?
1	0	?
1	1	?

Atividade 3 – Codificação ASCII

Escreva as representações em binário para os caracteres:

- a) 'C'
- **b)** 'z'
- **c)** '5'

SEÇÃO 8 – RESUMO FINAL

ConceitoResumoBitUnidade binária (0 ou 1)ByteConjunto de 8 bitsSistema BinárioBase 2 – usado em computadoresASCIIPadrão de codificação de caracteresLógica BooleanaSistema lógico de 0 e 1

Portas Lógicas Circuitos que operam decisões binárias