Gabarito: Forças Intermoleculares

Renan Romariz e Gabriel Braun

Colégio e Curso Pensi, Coordenação de Química

Problemas

PROBLEMA 1. D

1G01

1G04

NH₂OH: Ligações de hidrogênio (hidrogênio ligado a nitrogênio e oxigênio). CBr₄: Ligações de London (molécula apolar). H₂SeO₄: Ligações de hidrogênio (hidrogênio ligado a oxigênio). SO₂: Dipolo-dipolo (molécula polar).

PROBLEMA 2. A 1G02

 H_2S : Dipolo-dipolo (molécula polar). Si H_4 : Ligações de London (molécula apolar). N_2H_4 : Ligações de hidrogênio (hidrogênio ligado a nitrogênio). CH_3F : Dipolo-dipolo (molécula polar).

PROBLEMA 3. D 1G03

1. CH₃Cl₃: molécula polar.

2. CH₂Cl₂: molécula polar.

3. CHCl₃: molécula polar.

4. CCl₄: molécula apolar.

PROBLEMA 4. C

1. O₂ : molécula apolar.

2. O₃: molécula polar.

3. CO₂: molécula apolar.

4. SO₂: molécula polar.

PROBLEMA 5. B 1G05

- 1. HCl : Dipolo-dipolo. NaCl : Ligação iônica. T_{eb} (HCl) < T_{eb} (NaCl)
- 2. $C_2H_5OC_2H_5$: Ligações de London. C_4H_9OH : Ligações de hidrogênio. T_{eb} ($C_2H_5OC_2H_5$) < T_{eb} (C_4H_9OH)
- 3. CHI $_3$: Dipolo-dipolo, M_{CHI}_3 = 394 g mol $^{-1}$. CHF $_3$: Dipolo-dipolo, M_{CHF}_3 = 70 g mol $^{-1}$. T_{eb} (CHI $_3$) > T_{eb} (CHF $_3$)
- 4. C_2H_4 : Ligações de London. CH_3OH : Ligações de hidrogênio. T_{eb} (C_2H_4)< T_{eb} (CH_3OH)

PROBLEMA 6. C 1G06

- 1. H_2S : Dipolo-dipolo, M_{H_2S} = 34 g mol $^{-1}$. H_2Se : Dipolo-dipolo, M_{H_2Se} = 81 g mol $^{-1}$. T_{eb} (H_2S) < T_{eb} (H_2Se)
- 2. NaCl : Ligação iônica. CHCl $_3$: Dipolo-dipolo. T $_{eb}$ (NaCl) > T_{eb} (CHCl $_3$)
- NH₃: Ligações de hidrogênio. PH₃: Dipolo-dipolo. T_{eb} (NH₃)
 T_{eb} (PH₃)
- 4. SiH₄: Ligações de London, M_{SiH_4} = 32 g mol⁻¹. SiF₄: Ligações de London, M_{SiF_4} = 104 g mol⁻¹. T_{eb} (SiH₄)< T_{eb} (SiF₄)

PROBLEMA 7. D

1G07

- PBr₃: Dipolo-dipolo, M_{PBr₃} = 271 g mol⁻¹. PF₃: Dipolo-dipolo1, M_{PF₃} = 88 g mol⁻¹. T_{eb} (PBr₃) > T_{eb} (PF₃)
- 2. SO_2 : Dipolo-dipolo, M_{SO_2} = 64 g mol⁻¹. O_3 : Dipolo-dipolo, M_{O_3} = 48 g mol⁻¹. T_{eb} (SO_2) > T_{eb} (O_3)
- 3. BF₃ : Ligações de London, M_{BF_3} = 68 g mol⁻¹. BCl₃ : Ligações de London, M_{BCl_3} = 117,5 g mol⁻¹. T_{eb} (BF₃) < T_{eb} (BCl₃)
- 4. AsF₃: Dipolo-dipolo. AsF₅: Ligações de London. T_{eb} (AsF₃) > T_{eb} (AsF₅)

PROBLEMA 8. D 1G08

- 1. BF $_3$: Ligações de London. ClF $_3$: Dipolo-dipolo. T_{eb} (BF $_3$) < T_{eb} (ClF $_3$)
- 2. SF_4 : Dipolo-dipolo. CF_4 : Ligações de London. T_{eb} (SF_4) > T_{eb} (CF_4)
- 3. cis-CHCl=CHCl : Dipolo-dipolo. trans-CHCl=CHCl : Ligações de London. T_{eb} (cis-CHCl=CHCl) > T_{eb} (trans-CHCl=CHCl)
- 4. NO $_2$: Dipolo-dipolo, M $_{NO_2}$ = 46 g mol $^{-1}$. N $_2$ O: Dipolo-dipolo, M $_{N_2O}$ = 44 g mol $^{-1}$. T $_{eb}$ (NO $_2$) > T $_{eb}$ (NO $_2$ O)

PROBLEMA 9. A 1G09

- Br_2 : Ligações de London, M_{Br_2} = 160 g mol⁻¹.
- Hg: Ligação metálica.
- CO₂: Ligações de London, M_{CO₂} = 44 g mol⁻¹.

 T_{eb} (CO₂) $\leq T_{eb}$ (Br₂) $\leq T_{eb}$ (Hg)

PROBLEMA 10. E

1G10

- 2-metilpentano: Ligações de London, M= 86 g mol⁻¹. Maior área superficial de contato entre os compostos com massa molar M= 86 g mol⁻¹.
- 3-metilpentano: Ligações de London, M= 86 g mol⁻¹. Menor área superficial de contato entre os compostos com massa molar M= 86 g mol⁻¹.
- 2,2-dimetilpentano: Ligações de London, M= 100 g mol⁻¹.
 Maior área superficial de contato entre os compostos com massa molar M= 100 g mol⁻¹.
- 2,3-dimetilpentano: Ligações de London, M= 100 g mol⁻¹.
 Menor área superficial de contato entre os compostos com massa molar M= 100 g mol⁻¹.

 T_{eb} (2,2-dimetilpentano) > T_{eb} (2,3-dimetilpentano) > T_{eb} (2-metilpentano) > T_{eb} (3-metilpentano)

^{*}Contato: gabriel.braun@pensi.com.br, (21)99848-4949

PROBLEMA 11. B 1G11 PROBLEMA 15. B

- 1. PH_3 : hidrogênio ligado ao fósforo.
- 2. HBr : hidrogênio ligado ao bromo.
- 3. C₂H₄ : hidrogênio ligado ao carbono.
- 4. HNO₂: hidrogênio ligado ao oxigênio.

PROBLEMA 12. C

1G12

- 1. CH₃-O-CH₃: hidrogênio ligado ao carbono.
- 2. CH₃-COOH : hidrogênio ligado ao oxigênio.
- 3. CH₃-CH₂-OH: hidrogênio ligado ao oxigênio.
- 4. CH₃-CHO: hidrogênio ligado ao carbono.

PROBLEMA 13. D

1G13

- 1. O ponto de ebulição de uma substâncoa está associado a quebra de suas ligações intermoleculares. Logo, quanto mais fortes forem essas ligações, mais energia será necessária para quebrá-las e portanto, maior será o ponto de ebulição.
- 2. A viscosidade é a propriedade física que caracteriza a resistência de um fluido ao escoamento, ou seja, quanto mais fortes forem as ligações intermoleculares, maior será a resistência e portanto, maior será a viscosidade.
- 3. A tensão superficial é um efeito físico que ocorre na interface entre duas fases químicas que faz com que a camada superficial de um líquido se comporte como uma membrana elástica de forma que quanto mais fortes forem as ligações intermoleculares, maior será a "constante elástica" dessa membrana e portanto, maior será a tensão superficial.
- 4. A pressão de vapor está associada a tendência de evaporação de um líquido, ou seja, está associada a energia necessária para romper as ligações intermoleculares deste de forma que quanto mais fortes forem essas ligações, maior a energia necessária para rompê-las e portanto, menor será a pressão de vapor.

PROBLEMA 14. D 1G14

- 1. O ponto de ebulição de uma substância está associado a quebra de suas ligações intermoleculares. Logo, quanto mais fortes forem essas ligações, mais energia será necessária para quebrá-las e portanto, maior será o ponto de ebulição.
- 2. A viscosidade é a propriedade física que caracteriza a resistência de um fluido ao escoamento, ou seja, quanto mais fortes forem as ligações intermoleculares, maior será a resistência e portanto, maior será a viscosidade.
- 3. A tensão superficial é um efeito físico que ocorre na interface entre duas fases químicas que faz com que a camada superficial de um líquido se comporte como uma membrana elástica de forma que quanto mais fortes forem as ligações intermoleculares, maior será a "constante elástica" dessa membrana e portanto, maior será a tensão superficial.
- 4. A pressão de vapor está associada a tendência de evaporação de um líquido, ou seja, está associada a energia necessária para romper as ligações intermoleculares deste de forma que quanto mais fortes forem essas ligações, maior a energia necessária para rompê-las e portanto, menor será a pressão de vapor.

PROBLEMA 15. B 1G15 CH_4 : Ligações de London, M_{CH_4} = 16 g mol⁻¹. CCl_4 : Ligações de

CH₄ : Ligações de London, M_{CH_4} = 16 g mol⁻¹. CCl₄ : Ligações de London, M_{CCl_4} = 154 g mol⁻¹. CBr₄ : Ligações de London, M_{CBr_4} = 332 g mol⁻¹. P_{vap} (CBr₄) < P_{vap} (CCl₄) < P_{vap} (CH₄)

PROBLEMA 16. A 1G16

Primeiro analisamos as forças intermoleculares: $CH_3CHO \rightarrow dipolo-dipolo \quad CH_3CH_2OH \quad \rightarrow \quad ligação de hidrogênio \quad CH_3CH_2CH_3 \quad \rightarrow \quad dipolo-induzido \quad Quanto \quad mais intensa a força, menor a pressão de vapor.$

$$F_{etanol} > F_{acetalde\'ido} > F_{propano}$$

$$P_{etanol} < P_{acetalde\'ido} < P_{propano}$$

PROBLEMA 17. C 1G17

- 1. KCl : Molécula iônica.
- 2. CCl₄: Molécula apolar.
- 3. CH₃COOH: Molécula polar.
- 4. C₆H₁₂: Molécula apolar.

PROBLEMA 18. C 1G18

- 1. NH₃: Molécula polar.
- 2. HNO₃: Molécula polar.
- 3. N₂: Molécula apolar.
- 4. Br₂: Molécula apolar.

PROBLEMA 19. C 1G19

- 1. $-NH_2$: Grupo polar.
- 2. $-CH_3$: Grupo apolar.
- 3. −Br : Grupo apolar.
- 4. −COOH : Grupo polar.

PROBLEMA 20. C 1G20

- 1. −OH : Grupo polar.
- 2. $-CH_2CH_3$: Grupo apolar.
- 3. $-CONH_2$: Grupo polar.
- 4. −Cl : Grupo apolar.

PROBLEMA 21. C 1G21

 C_6H_5SH : Dipolo-dipolo. C_6H_5OH : Ligações de hidrogênio. C_6H_6 : Ligações de London. η (C_6H_6) < η (C_6H_5SH) < η (C_6H_5OH)

PROBLEMA 22. C 1G22

CH₃CH₂OH : Ligações de hidrogênio (1 por molécula), $M_{\text{CH}_3\text{CH}_2\text{OH}} = 46 \, \text{g mol}^{-1}$. CH₂OHCHOHCH₂OH : Ligações de hidrogênio (3 por molécula). CH₂OHCH₂OH : Ligações de hidrogênio (2 por molécula). H₂O : Ligações de hidrogênio (2 por molécula), $M_{\text{H}_2\text{O}} = 18 \, \text{g mol}^{-1}$. η (H₂O) < η (CH₃CH₂OH) < η (CH₂OHCH₂OH) < η (CH₂OHCHOHCH₂OH)