第11讲 NP完全问题(下)

罗国杰

gluo@pku.edu.cn

2025年春季学期

算 P 法 K 设山 分 析 实 验

复习:证明NP完全性

→ 待证明: 问题 II=<D,Y> ∈ NPC

- ► 先证明 II ∈ NP
- 再证明 II ∈ NP-hard
 - ▶ 找某个合适的已知 NPC 问题 II'=<D',Y'>
 - ▶ 构造多项式变换 f: D'→D, 使 I' ∈ Y' 当且仅当 f(I') ∈ Y
 - 从而 П′ ≤_p П

- 3SAT实例: $F = (x_1 \lor \neg x_2 \lor x_3) \land (x_1 \lor x_2 \lor \neg x_3)$
 - ▶变元: {*x*₁, *x*₂, *x*₃}
 - ▶ 文字: x_1 , $\neg x_2$, x_3 , x_1 , x_2 , $\neg x_3$
 - ▶ 简单析取式: $C_1 = (x_1 \lor \neg x_2 \lor x_3)$ 和 $C_2 = (x_1 \lor x_2 \lor \neg x_3)$
 - ▶ 合取范式: $F = C_1 \land C_2 = (x_1 \lor \neg x_2 \lor x_3) \land (x_1 \lor x_2 \lor \neg x_3)$

构件 (Gadget)

3SAT 变元构件

 $C_{j} = Z_{j1} \vee Z_{j2} \vee Z_{j3}$ (b) Clause gadget

(a) Variable gadget

3SAT 互连构件

(c) Crossover gadget

顶点覆盖、独立集、团

设无向图 $G = \langle V, E \rangle$, $V' \subseteq V$ 。 $V' \neq G$ 的一个

- 顶点覆盖: G的每一条边都至少有一个顶点在 V'中。
- 独立集: 对任意的 $u, v \in V'$, 都有 $(u, v) \notin E$ 。
- 团: 对任意的 $u, v \in V'$ 且 $u \neq v$, 都有 $(u, v) \in E$.

- 引理 对任意的无向图 $G = \langle V, E \rangle$ 和子集 $V' \subseteq V$,下述命题是等价的:
 - (1) V' 是 G 的顶点覆盖,
 - (2) V V' 是 G 的独立集,
 - (3) V V' 是补图 $G_c = \langle V, E_c \rangle$ 的团。

顶点覆盖、独立集、团的判定问题

- 顶点覆盖 (VC): 任给一个无向图 $G = \langle V, E \rangle$ 和非负整数 $K \leq |V|$, 问 G 有顶点数不超过 K 的顶点覆盖吗?
- 独立集:任给一个无向图 $G = \langle V, E \rangle$ 和非负整数 $J \leq |V|$,问 G 有顶点数不小于 J 的独立集吗?
- 团:任给一个无向图 $G = \langle V, E \rangle$ 和非负整数 $J \leq |V|$,问 G 有顶点数不小于 J 的团吗?

■ 根据上页引理,容易把这3个问题中的任一个问题实例多项式时间变换到另一个问题实例。

顶点覆盖

定理 顶点覆盖是NP完全的。

证:

- VC∈NP: VC 的多项式验证算法: 存在多项式验证算法 ν(I, W), 在实例 I 及其顶点覆盖 V'作为证据(W=V') 时值为1
- $3SAT \leq_p VC$: 任给变元 $x_1, x_2, ..., x_n$ 的3元合取范式 $F = C_1 \wedge C_2 \wedge ... \wedge C_m$, 其中 $C_j = z_{j1} \vee z_{j2} \vee z_{j3}$, z_{jk} 是某个 x_i 或 $\neg x_i$ 。
- 如下构造VC的实例 f(F): $G = \langle V, E \rangle$ 和 K = n + 2m
- **其中** $V = V_1 \cup V_2$, $E = E_1 \cup E_2 \cup E_3$,

$$\begin{split} V_1 &= \{x_i, x_i^f \mid 1 \le i \le n\}, \ \ V_2 &= \{[z'_{jk}, j] \mid k = 1, 2, 3, \ 1 \le j \le m\}; \ \ E_1 = \{(x_i, x_i^f) \mid 1 \le i \le n\}, \\ E_2 &= \{([z'_{j1}, j], [z'_{j2}, j]), \ ([z'_{j2}, j], [z'_{j3}, j]), \ ([z'_{j3}, j], [z'_{j1}, j]) \mid 1 \le j \le m\}, \\ E_3 &= \{([z'_{jk}, j], \ z'_{jk}) \mid k = 1, 2, 3, \ 1 \le j \le m\}_{\circ} \end{split}$$

- 这里设 $C_j = z_{j1} \lor z_{j2} \lor z_{j3}$, 当 $z_{jk} = x_i$ 时, $z'_{jk} = x_i$; 当 $z_{jk} = \neg x_i$ 时, $z'_{jk} = x_i^f$.
- 例如,对应 $F = (x_1 \lor \neg x_2 \lor x_3) \land (x_1 \lor x_2 \lor \neg x_3)$ 的 f(F): K = 7, 图 G 如下

要证 F 是可满足的 ⇔ G 恰好有 K 个顶点的顶点覆盖。

- 任何顶点覆盖 V' 在 x_i 和 x^f_i 中至少取一个,在 $[z'_{j1,j}]$ 、 $[z'_{j2,j}]$ 和 $[z'_{j3,j}]$ 中至少取 2 个,故 V' 至 少有 n+2m 个顶点。
- 而 K = n + 2m,故任何顶点数不超过 K 的顶点覆盖 V' 恰好包含 K 个顶点,且在 x_i 和 x_i 中取一个,这恰好对应对 x_i 的赋值,取 x_i 对应 $t(x_i) = 1$,取 x_i 对应 $t(x_i) = 0$;每个三角形的顶点 $[z'_{j1},j]$ 、 $[z'_{j2},j]$ 和 $[z'_{j3},j]$ 中取 2 个。
- 设 $t \neq F$ 的成真赋值,对每一个 i ($1 \leq i \leq n$),若 $t(x_i) = 1$,则取 x_i ;若 $t(x_i) = 0$,则取 x_i 。
- 这n个顶点覆盖 E_1 。对每一个j ($1 \le j \le m$),由于 $t(C_j) = 1$, C_j 至少有一个文字 z_{jk} 的值为 1。
- 于是,从对应的三角形的顶点 $[z'_{jk},j]$ 引出的边 $([z'_{jk},j],z'_{jk})$ 已被覆盖。
- ▶ 取该三角形的另外2个顶点,这就覆盖了这个三角形的3条边和引出的另外2条边。
- 这样取到的 n + 2m 个顶点是 G 的一个顶点覆盖。

- 反之,设 $V'\subseteq V$ 是G的一个顶点覆盖且 $|V'|\leq K=n+2m$ 。
- 根据前面的分析,每一对 x_i 和 x_i 中恰好有一个属于 V',每一个三角形恰好有2个顶点属于V'。所以 |V'|=n+2m。
- 对每一个 i (1 ≤ i ≤ n), 若 $x_i \in V'$, 则令 $t(x_i) = 1$; 若 $x_i \in V'$, 则令 $t(x_i) = 0$.
- 对每一个j (1 ≤ j ≤ m),设 [z'_{jk} ,j] $\notin V'$,为了覆盖边 ([z'_{jk} ,j], z'_{jk}),必有 z'_{jk} $\in V'$ 。
- 由于 $t(z_{jk}) = 1$,从而 $t(C_j) = 1$ 。
- \blacksquare 因此, $t \in F$ 的成真赋值, 得证 F 是可满足的。
- \blacksquare G 有 2n + 3m 个顶点和 n + 6m 条边,显然能在多项式时间内构造 G 和 K。

构件设计法(Gadget-based Reduction)

- ▶ 上页定理证明中设计了2种"构件"——变元构件和简单析取式构件。
- 3SAT变元构件是一对顶点 x_i , x_i^f 及连接它们的边;
- 3SAT简单析取式构件是三角形。
- 用这些**构件与构件连接**构成 G, 每个构件各有其功能,
- 通过这种方式到达用 VC 的实例表达 3SAT 的实例的目的。

哈密顿回路与货郎问题

有向哈密顿回路:任给有向图 D,问:D中有哈密顿回路吗?定理 有向HC是NP完全的。

- 证 先证明有向HC∈NP(略),再证明 3SAT≤p有向HC。
- 任给变元 x_1 , x_2 , ..., x_n 的3元合取范式 $F = C_1 \land C_2 \land ... \land C_m$, 其中 $C_j = z_{j1} \lor z_{j2} \lor z_{j3}$, 每个 z_{jk} 是某个 x_i 或 $\neg x_i$ 。
- 采用构件设计法构造有向图 D。
- lacktriangle 表示变元 x_i 的构件是一条由一串水平的顶点组成的链 L_i ,相邻的两个顶点之间有一对方向相反的有向边。只有两种可能的方式通过 L_i 上的所有顶点——从左到右或者从右到左通过 L_i 上的所有顶点,这恰好对应 x_i 的值为1或者为0。
- 表示子句 C_j 的构件是一个顶点 C_j 。
- 添加 $s_0, s_1, ..., s_n$, 并通过它们把 $L_1, L_2, ..., L_n$ 连接起来。

两种构件之间的连接

● 关键是两种构件之间的连接: 链 L_i 有 3m + 1 的顶点,依次为 d_{i0} , a_{i1} , b_{i1} , d_{i1} , a_{i2} , b_{i2} , d_{i2} , ..., a_{im} , b_{im} , d_{im} 。 对每一个 $C_j = z_{j1} \lor z_{j2} \lor z_{j3}$,如果 $z_{jk} = x_i$,则添加 $\langle a_{ij}, c_j \rangle$ 和 $\langle c_j, b_{ij} \rangle$;如果 $z_{jk} = \neg x_i$,则添加 $\langle c_j, a_{ij} \rangle$ 和 $\langle b_{ij}, c_j \rangle$ 。

- 设 F 是可满足的, t 是 F 的成真赋值。
- 要根据 t 构造一条从 s_0 到 s_n ,最后回到 s_0 的哈密顿回路,先暂时不考虑所有的 c_i 。
- 依次对 i = 1,2,...,n 进行,若 $t(x_i) = 1$,则从 s_{i-1} 到 d_{i0} ,从左到右经过 L_i 的所有顶点到达 d_{im} ,再到 s_i ;若 $t(x_i) = 0$,则从 s_{i-1} 到 d_{im} ,从右到左经过 L_i 的所有顶点到达 d_{i0} ,再到 s_i 。
- 最后,从 s_n 回到 s_0 。
- \blacksquare 现在要将所有 c_i 插入这条回路。
- 设 $C_i = z_{i1} \lor z_{i2} \lor z_{i3}$,由于 $t(C_i) = 1$,必有 $k(1 \le k \le 3)$ 使得 $t(z_{ik}) = 1$ 。
- 若 $z_{jk} = xi$, 则通路从左到右经过 L_i , 且有有向边 $\langle a_{ij}, c_j \rangle$ 和 $\langle c_j, b_{ij} \rangle$ 。于是,可以把 c_j 插在 a_{ij} 与 b_{ij} 之间。若 $z_{jk} = \neg x_i$,则通路从右到左经过 L_i ,且有有向边 $\langle b_{ij}, c_j \rangle$ 和 $\langle c_j, a_{ij} \rangle$ 。于是,可以 把 c_j 插在 b_{ij} 与 a_{ij} 之间。
- 这就得到 D 中的一条哈密顿回路。

- 反之,设D有一条哈密顿回路P,P必须从 S_n 到 S_0 。
- 不妨设 P 从 S_0 开始到 S_n ,最后回到 S_0 结束。
- 我们称上面构造的那种哈密顿回路是正常的,即正常的回路从左到右或者从右到左通过每一条 L_i ,每一个 c_j 插在某个 a_{ij} 和 b_{ij} 或者 b_{ij} 和 a_{ij} 之间。
- 如果 P 是正常的,容易根据 P 规定 F 的一个成真赋值 t: 若 P 从左到右通过 L_i ,则令 $t(x_i) = 1$; 若 P 从右到左通过 L_i ,则令 $t(x_i) = 0$ 。
- 根据 c_i 插入 L_i 的方式,不难证明必有 $t(C_i) = 1$ 。
- 要证 P 一定是正常的。

- 要证 P 一定是正常的。假设不然,破坏正常性的唯一可能是 P 从某条链 L_s 上的顶点 u 到 c_i 后没有回到同一条链中的顶点,而是到另一条链 L_t ($s\neq t$) 中的顶点。
- 若 $u = a_{sj}$,由于 b_{sj} 只与 a_{sj} 、 c_j 及 d_{sj} 相邻,P已经过 a_{sj} 和 c_j , b_{sj} 只剩下一个相邻的顶点,故P不可能通过 b_{sj} 。
- 若 $u = b_{sj}$,由于 a_{sj} 只与 b_{sj} 、 c_j 及 $d_{s(j-1)}$ 相邻,P已经过 b_{sj} 和 c_j , a_{sj} 也只剩下一个相邻的顶点,故P不可能通过 a_{sj} 。
- 都与 P 是哈密顿回路矛盾, 所以 P 一定是正常的。

■ 构造 D 可以在多项式时间内完成。

HC与TSP

定理 HC 是 NP 完全的。

证: 先证明 $HC \subseteq NP$ (略) , 再证明 有向 $HC \leq p$ HC。

- 任给一个有向图 $D = \langle V, E \rangle$,要构造无向图 $G = \langle V', E' \rangle$ 使 D 有哈密顿回路当且仅当 G 有哈密顿回路。
- 把 D 的每一个顶点 v 替换成 3 个顶点 v^{in} , v^{mid} 和 v^{out} , 用边连接 v^{in} 和 v^{mid} 、以及 v^{mid} 和 v^{out} 。
- D 的每条有向边 $\langle u, v \rangle$ 在 G 中换成 (u^{out}, vin) 。
- $\mathbb{P} V' = \{vin, v^{mid}, v^{out} \mid v \in V\},$
- $E' = \{(u^{out}, v^{in}) \mid \langle u, v \rangle \in E\} \cup \{(v^{in}, v^{mid}), (v^{mid}, v^{out}) \mid v \in V\}_{\bullet}$

定理 TSP 是 NP 完全的。(证明略)

恰好覆盖

- ► 恰好覆盖: 给定有穷集 $A = \{a_1, a_2, ..., a_n\}$ 和 A 的子集的集合 $W = \{S_1, S_2, ..., S_m\}$,问: 存在子集 $U \subseteq W$ 使得 U 中的子集都是不相交的且它们的并集等于 A? 称 W 这样的子集 U 是 A 的恰好覆盖。
- 例如,设 $A = \{1,2,3,4,5\}$, $S_1 = \{1,2\}$, $S_2 = \{1,3,4\}$, $S_3 = \{2,4\}$, $S_4 = \{2,5\}$, 则 $\{S_2, S_4\}$ 是 A 的恰好覆盖。若把 S_4 改为 $S_4 = \{3,5\}$, 则不存在 A 的恰好覆盖。

■ 定理 恰好覆盖是NP完全的。

恰好覆盖: 证明

证 先证明恰好覆盖 \in NP(略),再证明可满足性 \leq_p 恰好覆盖。

- 任给变元 x_1 , x_2 , ..., x_n 的合取范式 $F = C_1 \land C_2 \land ... \land C_m$, 其中 $C_j = z_{j1} \lor z_{j2} \lor ... \lor z_{js_i}$.
- 取 $A = \{x_1, x_2, ..., x_n, C_1, C_2, ..., C_m\} \cup \{p_{jt} \mid 1 \le t \le s_j, 1 \le j \le m\}$,其中 p_{jt} 代表 C_j 中的文字 Z_{jt} 。
- W包含下述4个子集 $T^T_i = \{x_i, p_{jt} \mid z_{jt} = \neg x_i, 1 \le t \le s_j, 1 \le j \le m\}, 1 \le i \le n;$ $T^F_i = \{x_i, p_{jt} \mid z_{jt} = x_i, 1 \le t \le s_j, 1 \le j \le m\}, 1 \le i \le n;$ $C_{it} = \{C_i, p_{it}\}, 1 \le t \le s_i, 1 \le j \le m; \{p_{it}\}, 1 \le t \le s_i, 1 \le j \le m.$
- \blacksquare 要证 F 是可满足的当且仅当 W 含有 A 的恰好覆盖。
- 设 $U \subseteq W$ 是 A 的恰好覆盖,对每一个i,若 $T^T_i \in U$,则令 $t(x_i) = 1$;若 $T^F_i \in U$,则令 $t(x_i) = 0$ 。
- 对每一个 j,必有一个 $C_{jt} = \{C_j, p_{jt}\} \in U$ 。 $Z_{jt} = x_i$ 或 $\neg x_i$ 。
- 若 $T^T_i \in U$,则 $p_{jt} \notin T^T_i$,从而 $z_{jt} = x_i$ 。有 $t(x_i) = 1$,故 t 满足 C_j 。
- 若 $T^F_i \in U$,则 $p_{jt} \notin T^F_i$,从而 $z_{jt} = \neg x_i$ 。有 $t(x_i) = 0$,故 t 也满足 C_j 。得证 t 是 F 的成真赋值。

恰好覆盖: 证明

- \blacksquare 反之,设 $t \in F$ 的成真赋值。
- 对每一个 i, 若 $t(x_i) = 1$, 则 U 包含 T^T_i ; 若 $t(x_i) = 0$, 则 U 包含 T^F_i 。
- 对每一个 j,由于 t 满足 C_j , C_j 必有一个文字 Z_{jt} 使得 $t(Z_{jt}) = 1$,从而 U 中现有的子集不包含 p_{jt} 。
- 于是,可以把 C_{jt} 加入 U。至此,U 覆盖了所有的 x_i 和 C_j ,以及部分 p_{jt} 。
- 最后,把那些尚未被覆盖的 p_{it} 构成的单元子集 $\{p_{it}\}$ 加入 U,即可得到 A 的恰好覆盖。

■ 由于 F 中的文字数不超过 mn,故 $|A| \le n + m + mn$,W 中的子集数不超过 2n + 2mn,每个子集的大小不超过 n + 1。而且构造很简单,显然可以在多项式时间内完成。

子集和

■ 子集和:给定正整数集合 $X = \{x_1, x_2, \dots, x_n\}$ 及正整数 N,问存在 X 的子集 T,使得 T 中的元素之和等于 N 吗?

- 定理 子集和是NP完全的。
- 证: 先证明 子集和 \in NP (略) ,再证明 恰好覆盖 \leq_p 子集和。
- 给定有穷集 $A = \{a_1, a_2, \dots, a_n\}$ 和 A 的子集的集合 $W = \{S_1, S_2, \dots, S_m\}$,对应的子集和实例包括非负整数的集合 $X = \{x_1, x_2, \dots, x_m\}$ 及非负整数 N,每个 x_j 和 N 都可表成 kn 位的二进制数,这 kn 位分成 n 段,每段 k 位, $k = \lceil \log_2(m+1) \rceil$ 。

子集和:证明

- ► N 的每一段的第一位(最右的一位)为1,其余的为0。
- x_j 对应于子集 S_j 。
- 当 $a_i \in S_i$ 时,从左到右 x_i 的第 i 段的第一位为 1,其余的为 0。
- **一** 例如, $A = \{a_1, a_2, a_3, a_4\}, S_1 = \{a_1, a_2\}, S_2 = \{a_1, a_3, a_4\}, S_3 = \{a_2\},$ $N = 01010101, x_1 = 01010000, x_2 = 01000101, x_3 = 00010000.$
- 要证 W 中有 A 的恰好覆盖当且仅当存在子集 $T \subseteq X$ 使得 T 中元素之和等于 N.
- 设 $U \subseteq W$ 是 A 的恰好覆盖,令 $T = \{x_j \mid S_j \in U\}$ 。
- 由于 A 中的每一个元素在 U 的所有 S_j 中恰好出现一次,故对于二进制数的每一段,在 T 的所有 x_j 中恰好有一个的这一段为 00...01,从而 T 中所有元素之和等于 N。

子集和:证明

- 反过来,设 X 的子集 T 中元素之和等于 N, 令 $U = \{S_j \mid x_j \in T\}$ 。
- **■** T 中至多有 m 个数,每一段有 $k = \lceil \log_2(m+1) \rceil$ 位,最大值为 $2^k 1 \ge m$,故 T 中的数相加时不会出现段之间的进位。
- 从而,对于每一段,在T的所有 x_i 中恰好有一个的这一段为 00...01。
- 这意味着每一个 a_i 在 U 的所有 S_i 中恰好出现一次,即 U 是 A 的恰好覆盖。
- 构造 X 和 N 显然可以在多项式时间内完成。

0-1背包与伪多项式时间算法

- ▶ 定理 0-1背包是NP完全的。
 - ▶0-1背包是NP的(略)
 - ▶ 0-1背包是NP难的:子集和是0-1背包的子问题——限制0-1背包的实例中所有 $w_i = v_i$ 且 B = N。
- ▶ 注意: 0-1背包问题优化形式的动态规划算法, 其时间复杂度为 O(nB), 其中 n 是物品的个数, B 是重量限制。这不是多项式时间算法, 而是指数时间算法.

■ <mark>伪多项式时间算法</mark>: 算法的时间复杂度以 |I| 和 max(I)的某个二元多项式 p(|I|, max(I)) 为上界,其中 max(I) 是实例 I 中数的最大绝对值。

双机调度与装箱

- <mark>装箱</mark>: 给定 n 件物品,物品 j 的重量为正整数 w_j , $1 \le j \le n$,以及箱子数 K。规定每只箱子装入物品的总重量不超过正整数 B,问能用 K 只箱子装入所有的物品吗?
- **NUMB** Table Tab

■ 双机调度可以看作当箱子数 K = 2 时装箱的特殊情况——把物品看作作业,物品的重量是作业的处理时间,截止时间是每只箱子允许的最大重量。

双机调度与装箱

- 定理 双机调度是NP完全的。
- 证: 先证明 双机调度 \in NP (略) ,再证明 子集和 \leq_p 双机调度。
- 任给一个子集和实例: 非负整数集合 $X = \{x_1, x_2, \dots, x_n\}$ 及非负整数 N, 对应的 双机调度实例有 n + 2 项作业 J_1, J_2, \dots, J_{n+2} , 处理时间为 x_1, x_2, \dots, x_n , a, b, 截止时间为 D。
- 要求使得存在 X 的子集 T 当且仅当 N + a = M N + b = D。
- 于是, a = M 2N + b。
- 取 b = M + 2N, a = 2M, D = 2M + N, 其中 $M = x_1 + x_2 + \cdots + x_n$.
- 定理 装箱是NP完全的.

证明方法小结

NP-hard证明方法:

- · 选好一个已知的NP完全问题.
- 使用限制法, 局部替换法和构件设计法.

本讲总结

- 证明问题 II 是NP难的'
 - ▶选好一个已知的NP完全问题 II'
 - ▶证明 $\Pi' \leq_p \Pi$ 常用的证明方法:限制法、局部替换法、构件设计法

- 证明问题 II 是NP完全的
 - ▶Ⅱ是NP的
 - ▶Ⅱ是NP难的