

MATHEMATICAL REASONING Chapter 14

FRACCIONES

EL HOMBRE QUE CALCULABA

Estábamos caminando sin interrupción, cuando de repente vimos a tres hombres discutiendo al lado de unos camellos.

Beremías se acerco e intento enterarse de la situación y le preguntó a uno de los chicos.

Somos hermanos y recibimos, como herencia, 35 camellos. Según la voluntad de mi padre yo recibo la mitad, mi hermano Hamed una tercera parte, y Harim, una novena parte.

No sabemos, como dividir 35 camellos, y a cada división que uno propone protestan los otros dos, pues la mitad de 35 es 17 y medio. ¿Cómo hallar la tercera parte y la novena parte de 35, si tampoco son exactas las divisiones?

Beremías cogió mi camello para hacer la operación y dijo que iba a hacer una operación exacta con 36 camellos. Y le dijo al más viejo que el tenía que recibir 18.

Beremías le dijo a Hamed que el recibirá 12 camellos y a Harim le tocaban 4 camellos.

Finalmente me devolvió mi camello y los dos juntos aunque con diferentes camellos volvimos al camino Bagdad.

FRACCIONES

Recordemos que:

DEFINICIÓN DE FRACCIÓN

Es aquella división indicada de los enteros positivos a y b, que cumplen las condiciones:

<u>Ejemplos</u>

$$f = \frac{a}{b} \quad \begin{cases} a; b \in \mathbb{Z}^+ \\ a \neq b \end{cases}$$

FRACCIONES

EN GENERAL

$$\frac{PARTE}{TODO} \rightarrow es; son; representa$$

$$\rightarrow de; del; respecto de$$

¿Qué parte es 15 de 12? $\frac{Parte}{Todo} = \frac{15}{12} <> \frac{5}{4}$

Ejemplos ¿Qué parte de 15 es 12? $\frac{Parte}{Todo} = \frac{12}{15} <> \frac{12}{15}$

¿Qué fracción $\frac{Parte}{Todo} = \frac{18}{30} \Longleftrightarrow \frac{3}{5}$ respecto de 30?

FRACCIONES

GANANCIAS Y PÉRDIDAS EN FRACCIONES

GANA / AUMENTA	resulta
$\frac{1}{6}$ >+	$\frac{7}{6}$
$\frac{3}{8}$ >+	$\frac{11}{8}$
$\frac{a}{b}$ \supset +	$\frac{a+b}{b}$

pierde / disminuye	QUEDA
$\frac{1}{6}$ > -	<u>5</u> 6
$\frac{3}{8}$ > -	<u>5</u> 8
$\frac{a}{b}$) –	$\frac{b-a}{b}$

REDUCCIÓN A LA UNIDAD

Si Lucho puede pintar esa pared en 3 horas.

Entonces:

Si toda la obra la realiza en 3h, en una hora hará 1/3 de la obra.

REDUCCIÓN A LA UNIDAD

EN GENERAL

Si toda la obra lo realiza en un tiempo T, en una unidad de tiempo hará $\frac{1}{T}$ de la obra.

Por ejemplo

Dos obreros A y B pueden hacer una obra en 10 y 15 días respectivamente. Entonces,

	Obra total	En 1d	En 2d	En 3d
A	10d	$\frac{1}{10}$	$\frac{2}{10}$	$\frac{3}{10}$
\boldsymbol{B}	15 <i>d</i>	$\frac{1}{15}$	$\frac{2}{15}$	$\frac{3}{15}$

REDUCCIÓN A LA UNIDAD

OTRA FORMA:

Dos obreros A y B pueden hacer una obra en 10 y 15 días respectivamente. Si trabajan juntos, ¿en cuánto tiempo podrán terminar la obra?

Resolución

Sea el tiempo (en días) que demoran en hacer la obra: x

	Obra total	En 1d	$\left(\frac{1}{10} + \frac{1}{15} = \frac{1}{x}\right)^{30x}$
A	10d	$\frac{1}{10}$	3x + 2x = 30 $5x = 30$
B	15 <i>d</i>	$\frac{1}{15}$	$\Rightarrow x = 6$

Tiempo total = 6días

HELICO PRACTICE

Mario realizó 1/12 de su tarea. ¿Qué fracción de lo que queda debe realizar, para tener listo los 2/3 de su tarea?

RESOLUCIÓN TAREA TOTAL. 12X

REALIZA:
$$\frac{1}{12}$$
 (12X) = X LE QUEDA: 11X

DESEA TENER LISTO:
$$\frac{2}{3}(12X) = 8X$$

Por lo tanto: DESEATENER LISTO: 8X
LE QUEDA: 11X

$$f = \frac{8}{11}$$

En una reunión de 60 personas, los 3/10 del total son varones. ¿Cuántas mujeres deberán retirarse para que los varones sean ahora los 3/5 del nuevo total?

RESOLUCIÓN

TOTAL, PERSONAS: 60

VARONES:
$$\frac{3}{10}(60) = 18$$
 MUJERES: 42

PIDEN QUE LOS 18 VARONES QUE QUEDAN SEAN LOS 3/5 DEL NUEVO TOTAL "X".

$$\frac{3}{5}X = 18$$

$$X = 30$$
 MUJERES: 12

MUJERES QUE DEBEN RETIRARSE:
$$42 - 12 = 30$$

Se tiene una mezcla de 40L de líquido A, con 50L de líquido B. Si se extrae 18L de la mezcla. ¿Cuántos litros del líquido B salen?

OTRA FORMA:
$$A = 4K$$
 $B = 5K$ $9K = 18$ $K = 2$

Se descubrió а un mal empleado de una vinatería, que adulteraba los vinos para poder ganar en sus ventas; así, cierto día de un recipiente lleno de vino puro extrajo 1/3 de su contenido y lo reemplazó con agua, enseguida extrajo cuarto de la mezcla y reemplazó con agua, y por último extrajo 1/5 de la nueva mezcla y la reemplazó con agua. Si todavía hay 68 litros de vino puro en dicho recipiente, ¿Cuál era el contenido inicial?

Resolución:

Cantidad inicial de vino = x

Extrajo

Le queda

$$\frac{1^{\circ} \text{ vez}}{3}$$
. (X)

$$\frac{2}{3}$$
.(x)

$$\frac{1}{4} \cdot \frac{2}{3} \cdot (X)$$

$$\frac{3}{4}.\frac{2}{3}.(x)$$

$$\frac{1}{5}.\frac{3}{4}.\frac{2}{3}.(X)$$

$$\frac{4}{5}.\frac{3}{4}.\frac{2}{3}.(x)$$

$$\frac{4}{5} \cdot \frac{3}{4} \cdot \frac{2}{3} \cdot (x) = 68$$

A puede hacer una obra en 20 días y B lo podría hacer en 60 días. Si A y B trabajan juntos, ¿en cuántos días lo podrían terminar?

RESOLUCIÓN

	OBRATOTAL	EN1 DÍA
A	20 días	$\frac{1}{20}$
B	60 días	$\frac{1}{60}$
JUNTOS	x días	$\frac{1}{x}$

$$\left(\frac{1}{20} + \frac{1}{60} = \frac{1}{x}\right) 60x$$

$$3x + x = 60$$

$$4x = 60$$

$$\Rightarrow x = 15$$

Una piscina se llena mediante 3 grifos A, B y C que pueden llenarla en 6h, 4h y 3h respectivamente; si los 3 grifos funcionarán simultáneamente para llenar la piscina vacía ¿Cuánto tiempo tardarían?

RESOLUCIÓN

	OBRATOTAL	EN1 HORA
A	6 horas	$\frac{1}{6}$
В	4 horas	$\frac{1}{4}$
С	3 horas	$\frac{1}{3}$
Juntos	x horas	$\frac{1}{x}$

$$\left(\frac{1}{6} + \frac{1}{4} + \frac{1}{3} = \frac{1}{x}\right) 12x$$

$$2x + 3x + 4x = 12$$

$$9x = 12$$

$$\rightarrow x = \frac{12}{9}$$

$$horas <> 1h 20min$$

En la construcción de la piscina de un nuevo hotel, la empresa que proveía el sistema de llenado y desagüe del agua dejó las siguientes especificaciones para el modelo de piscina a instalar:

Grifo	Tiempo eficiente (h)
Llenado 1	6
Llenado 2	4
Desagüe	12

(Los tiempos son tomados con respecto al 100% del volumen)

Cuando la piscina estuvo instalada, el ingeniero a cargo, para comprobar las especificaciones dadas, abrió simultáneamente los tres grifos de la piscina; ¿Qué tiempo debía esperar el ingeniero para poder ver la piscina completamente llena y así verificar los datos del proveedor?

RESOLUCIÓN

	OBRATOTAL	EN1 HORA
A	6 horas	$\frac{1}{6}$
В	4 horas	$\frac{1}{4}$
С	12 horas	$\frac{1}{12}$
Juntos	x horas	$\frac{1}{x}$

$$\left(\frac{1}{6} + \frac{1}{4} - \frac{1}{12} = \frac{1}{x}\right) 12x$$

$$2x + 3x - x = 12$$

$$4x = 12$$

$$\rightarrow x = 3$$

Muchas gracias

