Examenul de bacalaureat național 2018 Proba E. c) Matematică M mate-info Clasa a XI-a BAREM DE EVALUARE ŞI DE NOTARE

Simulare

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$2(a + b) + i(a + ib) = 4 + 5i \leftrightarrow (2a + b) + i(a + 2b) = 4 + 5i$ and $a + a + ib = a + b \in \mathbb{D}$	2
1.	$2(a-ib)+i(a+ib)=4+5i \Leftrightarrow (2a-b)+i(a-2b)=4+5i, \text{ unde } z=a+ib, a,b \in \mathbb{R}$	3 p
	a=1, b=-2, deci z=1-2i	2p
2.	$(f \circ f)(x) = 3 - 2(3 - 2x) = 4x - 3$	2 p
	$4x - 3 < x \Leftrightarrow x \in (-\infty, 1)$	3 p
3.	$3^{x^2+1} \cdot 3^1 = 3^3 \Leftrightarrow x^2 + 2 = 3$	3p
	x = -1 sau $x = 1$	2p
4.	Mulțimea A are C_6^2 submulțimi cu două elemente, deci numărul cazurilor posibile este egal	1p
	cu 15	1þ
	Mulțimea A are C_3^2 submulțimi cu două elemente care conțin numai numere pare, deci	25
	numărul cazurilor favorabile este egal cu 3	2 p
	nr. cazuri favorabile _ 3 _ 1	•
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{3}{15} = \frac{1}{5}$	2p
5.	$\overrightarrow{DC} = \overrightarrow{AB}$, deci $\overrightarrow{v} = \overrightarrow{AB} + \overrightarrow{BM} = \overrightarrow{AM}$	3p
	$AM = 4\sqrt{2}$	2p
6.	$E\left(\frac{\pi}{4}\right) = \sin\frac{\pi}{6} - \cos\frac{2\pi}{3} =$	2p
	$\begin{pmatrix} 2 \\ 4 \end{pmatrix} \stackrel{\text{ond}}{=} 6 \stackrel{\text{odd}}{=} 3$	2p
	$=\frac{1}{2}-\left(-\frac{1}{2}\right)=1\in\mathbb{N}$	3р
	$\begin{bmatrix} 2 & (2) \end{bmatrix}$	Зþ

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(-2) = \begin{pmatrix} 2 & 6 & 1 \\ 6 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} \Rightarrow \det(A(-2)) = \begin{vmatrix} 2 & 6 & 1 \\ 6 & 2 & 1 \\ 0 & 0 & 1 \end{vmatrix} = $ $= 4 + 0 + 0 - 0 - 0 - 36 = -32$	2p 3p
b)	$\det(A(x) - xI_3) = \begin{vmatrix} x^2 & x^2 - x & 1 \\ x^2 - x & x^2 & 1 \\ 0 & 0 & 1 - x \end{vmatrix} = x^2 (1 - x)(2x - 1)$	3p
	$x^{2}(1-x)(2x-1) \ge 0 \Leftrightarrow x \in \left[\frac{1}{2},1\right] \cup \{0\}$	2 p

c)	$\Delta = \begin{vmatrix} a^2 + a & a^2 - a & 1 \\ a^2 - a & a^2 + a & 1 \\ 0 & 0 & 1 \end{vmatrix} = 4a^3$	2p
	Pentru orice a număr real nenul, obținem $\Delta \neq 0$, deci punctele P_a , P_{-a} și O nu sunt coliniare	3 p
2.a)	$M(x) \cdot M(-x) = \begin{pmatrix} 1 & 0 & x \\ 0 & 2^{x} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -x \\ 0 & 2^{-x} & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -x + x \\ 0 & 2^{x} \cdot 2^{-x} & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -x + x \\ 0 & 2^{x} \cdot 2^{-x} & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -x + x \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & $	3p
	$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = M(0), \text{ pentru orice număr real } x$	2p
b)	$M(x) \cdot M(-x) = M(-x) \cdot M(x) = I_3$, pentru orice număr real x	3 p
	Inversa matricei $M(x)$ este matricea $M(-x) = \begin{pmatrix} 1 & 0 & -x \\ 0 & 2^{-x} & 0 \\ 0 & 0 & 1 \end{pmatrix}, x \in \mathbb{R}$	2 p
c)	$M(1)+M(2)++M(n) = \begin{pmatrix} n & 0 & 1+2++n \\ 0 & 2^{1}+2^{2}++2^{n} & 0 \\ 0 & 0 & n \end{pmatrix}$	2p
	$\det(M(1) + M(2) + \dots + M(n)) = \begin{vmatrix} n & 0 & \frac{n(n+1)}{2} \\ 0 & 2(2^{n} - 1) & 0 \\ 0 & 0 & n \end{vmatrix} = 2n^{2}(2^{n} - 1), \text{ pentru orice număr }$ natural nenul n	3 p
	natural nemur n	

SUBIECTUL al III-lea

(30 de puncte)

1		
1.a)	$\lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0} \frac{x(x+2)}{x(x+1)^2} =$	2p
	$= \lim_{x \to 0} \frac{x+2}{(x+1)^2} = 2$	3 p
b)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x^2 + 2x}{(x+1)^2} = \lim_{x \to +\infty} \frac{x^2 + 2x}{x^2 + 2x + 1} = 1$	3p
	Dreapta de ecuație $y = 1$ este asimptotă orizontală spre $+\infty$ la graficul funcției f	2 p
c)	$\frac{a_{n+1}}{a_n} = f(n+1) = 1 - \frac{1}{n^2 + 4n + 4} < 1$, pentru orice număr natural nenul n	3 p
	Cum $a_n > 0$ pentru orice număr natural nenul n , obținem $a_{n+1} < a_n$, deci șirul $\left(a_n\right)_{n \ge 1}$ este descrescător	2p

2.a)	$\lim_{\substack{x \to 1 \\ x > 1}} f(x) = \lim_{\substack{x \to 1 \\ x > 1}} \frac{\sqrt{3x - 2} - 1}{x^2 - 1} = \lim_{\substack{x \to 1 \\ x > 1}} \frac{3x - 2 - 1}{(x - 1)(x + 1)(\sqrt{3x - 2} + 1)} =$	3p
	$= \lim_{\substack{x \to 1 \\ x > 1}} \frac{3}{(x+1)(\sqrt{3x-2}+1)} = \frac{3}{4}$	2 p
b)	Pentru orice număr real m , funcția f este continuă pe $\left(-\infty,1\right)$ și pe $\left(1,+\infty\right)$	2p
	$\lim_{\substack{x \to 1 \\ x < 1}} f(x) = \lim_{\substack{x \to 1 \\ x < 1}} \left(2^x + \sin(x - 1) + m\right) = 2 + m, \lim_{\substack{x \to 1 \\ x > 1}} f(x) = \frac{3}{4} \text{ si } f(1) = 2 + m, \text{ deci funcția } f$ este continuă pe $\mathbb{R} \Leftrightarrow m = -\frac{5}{4}$	3р
c)	$f(0) = -\frac{1}{4} - \sin 1, \ f(2) = \frac{1}{3}$	2p
	f este continuă pe \mathbb{R} și $f(0) \cdot f(2) < 0$, deci ecuația $f(x) = 0$ are cel puțin o soluție în intervalul $(0,2)$	3 p