光流模块使用手册

广	一品	名	称:	光流模块		
产	二品	类	别:			
产	≠ 品	代	号:	UP-FLOW-LC-302-3C		
绯	i i	制	人:	吕婧婧		
绯	副制	日	期:	2018. 08. 03		
	工作,					
	审核	人:				
	批准	人:		批准日期:		

upixels 优象®

修订记录

序号	修订内容	修订人	修订日期	版本	更改编号
1	初稿	吕婧婧	2018.08.03	V1.0	
2	二、外形尺寸结构图中图二	吕婧婧	2019.03.01	V1.1	
				(6)	
				. 12	
			- m	1/1/	
		No. of			
	431 PE 7				
	1,70				

目 录

一、	产品概述	4
	外形尺寸结构图	
	功能结构框图	5
	光流模块接入方式	5
五、	光流坐标系定义	6
六、	光流模块和飞控的数据交互方式	6
七、	光流模块输出数据结构定义	7

一、 产品概述

优象光流模块英文简称为 UP-FLOW, 光流模块包括光流主板、光流摄像头。

光流模块用于检测无人机在飞行过程中,水平方向的移动,并将结果传输给 飞控,飞控再结合高度数据,控制飞机,实现自动悬停。

本文档提供了模块的接口说明、尺寸、规格相关参数,以便相关人员基于本模块进行开发。

二、 外形尺寸结构图

本产品型号为 UP-FLOW-LC-302-3C, 硬件部分主要为主板。如图 1 所示, 主板尺寸结构示意图, 尺寸分别为: 长 22mm、宽 14mm。

图 1 UP-FLOW-LC-302-3C 产品结构图

图 2 UP-FLOW-LC-302-3C 主板尺寸结构图(单位: mm)

三、功能结构框图

光流模块在无 GPS 环境,实时检测飞机水平移动距离,实现对无人机的高精度的定位。利用摄像头拍摄画面从而获取无人机位移信息,通过拍摄获取图像数据后送入主控,在主控中经光流算法通过 UART 输出给飞控,以便控制飞机水平移动距离,达到悬停的目的。

图 3 光流功能框图

四、光流模块接入方式

光流模块可以用 UART 接口连接飞控,UART 数据格式为 1 个起始位,8 个数据位,1 个停止位,无校验位,波特率为 19200。光流模块和飞控的接口线序如图 4,其中 UART_TXD,UART_RXD 是以模块为参考, VCC 为 3. 0V—5. 0V 供电电源输入。3. 0V 供电时最大功耗为 90mW,5. 0V 供电时最大功耗 150mW。

图 4 光流模块接线方式

五、光流坐标系定义

光流的坐标系如图 5 所示,最终飞控获取数据,需根据飞控坐标系及光流的坐标系,做坐标转换。 Y

图 5 光流坐标系

六、光流模块初始化

光流模块上电后需由上位机通过 UART 接口初始化才能正常工作,光流模块上电到上位机初始化之间需至少延时 100ms。

七、光流模块对外输出数据结构定义:

光流模块对外输出的数据结构定义如下:

typedef struct optical_flow_data
{

int16_t flow_x_integral; // X 像素点累计时间内的累加位移(radians*10000)

// [除以 10000 乘以高度(mm)后为实际位移(mm)]

int16_t flow_y_integral; // Y 像素点累计时间内的累加位移(radians*10000)

// [除以 10000 乘以高度(mm)后为实际位移(mm)]

uint16_t integration_timespan; // 上一次发送光流数据到本次发送光流数据的累计时间(us)

uint16_t ground_distance; // 预留。默认为 999(0x03E7)

uint8_t valid; // 状态值:0(0x00)为光流数据不可用

//245(0xF5)为光流数据可用

uint8_t version; //版本号

} Upixels OpticalFlow;

通过串口向飞控发送数据前,光流模块会对数据结构进行封包,实际发送的数据包格式如图 6:

序号		包数据	内容说明
1	4 3	0xFE	数据包的开始标识(固定值 0xFE)
2	包 头	0x0A	光流数据结构体字节数(固定值 0x0A)
3		flow_x_integral 的低字节	X 像素点累计时间内的累加位移, (radians*10000) [除以 10000 乘以高度(mm) 后为实际位移(mm)]
4		flow_x_integral 的高字节	

5	光 流 数	flow_y_integral 的低字节	Y 像素点累计时间内的累加位移, (radians*10000) [除以10000乘以高度(mm)后为实际位移(mm)]
6	据结	flow_y_integral 的高字节	
7	构 体	integration_timespan 的低字节	上一次发送光流数据到本次发送光流数据的 累计时间(us)
8		integration_timespan的高字节	
9		ground_distance 的低字节	预留。默认为 999(0x03E7)
10		ground_distance 的高字节	ß
11		valid	状态值: 0(0x00)为光流数据不可用, 245(0xF5)为光流数据可用
12		version	光流模块的版本号
13	校验值	Xor	光流数据结构体(Byte 3 [*] Byte 12)10 个字节 的异或值
14	包 尾	0x55	数据包的结束标识(固定值 0x55)

图 6 数据包协议图

八、光流调试注意事项

- 1. 安装前注意镜头清理,确保镜头无污垢和保护膜遮挡。
- 2. 安装时注意,光流板与地面水平,并与机体(飞控板)垂直,不能有偏角,固定后确保镜头无遮挡,比如连接线与起落架等。
 - 3. 若要考虑与加速度计融合,则需确保光流与加速度计物理方向的一致性。
- 3. 当姿态变化较剧烈时应减少光流的比重,并用陀螺仪做好对光流的补偿,并注意光流与陀螺仪同步问题。
 - 4. 光流输出有少许毛刺,需要对数据进行低通虑波
 - 5. PID 控制上采用位置+速度的双环控制,并要加大 i 的作用。
 - 6. 在自主悬停时才启动光流,飞机起飞与打摇杆时,光流无效。