

مبانی بینایی کامپیوتر

مدرس: محمدرضا محمدی

پردازش تصویر در حوزه مکان

Image Processing in Spatial Domain

تطبیق هیستوگرام

- کاربردهایی وجود دارد که ارتقاء تصویر به روش یکنواخت ساختن هیستوگرام بهترین راه حل نیست
- در برخی موارد لازم است که هیستوگرام تصویر مورد پردازش مشابه با یک هیستوگرام از پیش تعیین شده باشد

• می توان ابتدا تابع متعادل سازی هیستوگرام تصویر ورودی را اعمال کرد و سپس معکوس تابع متعادل سازی تصویر مرجع را بر آن اعمال نمود

ارتقاء محلى

• روشهایی که تا کنون برای ارتقاء کیفیت تصویر معرفی شده است سراسری هستند و اطلاعات محلی در آنها لحاظ نشده است

• توابع استفاده شده تنها تابع شدت روشنایی پیکسل مورد نظر هستند و به موقعیت آن در تصویر حساس نیستند

ارتقاء محلى

• روشهایی که برای ارتقاء کنتراست اطلاعات محلی را در نظر میگیرند ارتقاء کنتراست سازگار (ACE) نامیده میشوند

• مثال:

متعادلسازی هیستوگرام سازگار

- برای بخشهای مختلف تصویر، هیستوگرامهای اختصاصی محاسبه شده و از آنها برای ارتقاء کنتراست تصویر استفاده میشود
 - روش ۱: تصویر به چند زیرتصویر بخشبندی شود و هر بخش جداگانه ارتقاء بیابد

متعادلسازی هیستوگرام سازگار

- برای بخشهای مختلف تصویر، هیستوگرامهای اختصاصی محاسبه شده و از آنها برای ارتقاء کنتراست تصویر استفاده میشود
 - روش ۱: تصویر به چند زیرتصویر بخشبندی شود و هر بخش جداگانه ارتقاء بیابد
 - روش۲: برای هر نقطه، تابع تبدیل به طور جداگانه بر حسب پیکسلهای همسایه محاسبه شود

CLAHE

- روش AHE باعث تقویت نویز در ناحیههای تقریبا یکنواخت می شود
- روش Contrast Limited AHE برای محدود ساختن میزان تقویت کنتراست پیشنهاد شده است

CLAHE

- روش AHE باعث تقویت نویز در ناحیههای تقریبا یکنواخت می شود
- روش Contrast Limited AHE برای محدود ساختن میزان تقویت کنتراست پیشنهاد شده است

CLAHE

- روش AHE باعث تقویت نویز در ناحیههای تقریبا یکنواخت می شود
- روش Contrast Limited AHE برای محدود ساختن میزان تقویت کنتراست پیشنهاد شده است

فیلتر در حوزه مکان

- در بسیاری از پردازشها، علاوه بر پیکسل (x,y)، پیکسلهای موجود در یک همسایگی آن نیز مورد استفاده قرار می گیرند
 - فیلتر خطی در حوزه مکان معادل به انجام کانولوشن میان تصویر و یک کرنل دوبعدی است

$$g(x,y) = w(-1,-1)f(x-1,y-1) + w(-1,0)f(x-1,y) + \dots + w(0,0)f(x,y) + \dots + w(1,1)f(x+1,y+1)$$

OpenCV

 $g(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)$

```
/*
Various border types, image boundaries are denoted with '|'

* BORDER_REPLICATE: aaaaaa|abcdefgh|hhhhhhh

* BORDER_REFLECT: fedcba|abcdefgh|hgfedcb

* BORDER_REFLECT_101: gfedcb|abcdefgh|gfedcba

* BORDER_WRAP: cdefgh|abcdefgh|abcdefg

* BORDER_CONSTANT: iiiii|abcdefgh|iiiii with some specified 'i'

*/
```

• حاشیه تصویر؟

کانولوشن و همبستگی

• همبستگی به مفهوم حرکت دادن فیلتر روی تصویر و محاسبه مجموع حاصلضرب در هر مکان است

$$(w \stackrel{\wedge}{\approx} f)(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)$$

• مکانزیم کانولوشن هم شبیه به همبستگی است با این تفاوت که ابتدا کرنل به اندازه ۱۸۰ درجه میچرخد

$$(w \star f)(x, y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) f(x - s, y - t)$$

Correlation

Origin f w 0 0 0 1 0 0 0 0 0 1 2 4 2 8 0 0 0 1 0 0 0 0 0 1 2 4 2 8 Starting position alignment

Correlation result

0 8 2 4 2 1 0 0

Convolution

Convolution result

Final position —

0 1 2 4 2 8 0 0

Padded f

\mathbf{T} Initial position for w

Correlation result

$$(w \Leftrightarrow f)(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)$$

Convolution result

$$(w \star f)(x, y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) f(x - s, y - t)$$