Гомельский государственный технический университет имени П.О. Сухого

Кафедра «Маркетинг и отраслевая экономика»

ЛАБОРАТОРНАЯ РАБОТА № 5 МОДЕЛИ И МЕТОДЫ РЕШЕНИЯ ЭКОНОМИКО-МАТЕМАТИЧЕСКИХ ЗАДАЧ ТРАНСПОРТНОГО ТИПА

по дисциплине: "Эконометрика и экономико-математические методы и модели"

Дата сдачи отчета 24.05.2021

Выполнил студент группы МГ-21 Мельников О.В.

Допуск к защите

Принял к.э.н., доцент Винник О.Г.

Цель работы: изучение решения оптимизационных задач математического программирования средствами Excel.

Задание: Имеется 10 поставщиков и 3 потребителя. По данным таблицы 1.1 требуется найти оптимальный план перевозок, используя Поиск решения в Excel.

Таблица 1.1

Объем перевозок и издержки доставки Сіј

								, ,			
Потреб. 1	19	3	5	9	8	1	10	2	5	3	75
Потреб. 2	4	1	2	5	1	7	2	1	5	0	140
Потреб. 3	1	2	3	4	1	4	3	8	0	3	160
Поставщики	20	30	40	50	40	50	40	30	35	40	Объемы
											поставки

Примечание: все данные выбраны абсолютно случайно в связи с отсутствием вариантов в задании.

В этой транспортной задаче закрытого типа требуется составить оптимальный план перевозок от j-поставщика к i-потребителю $\{Xij, i=1,...,3, j=1,...10\}$, при котором суммарные издержки доставки будут наименьшими, т.е. $F = \sum_{ij} Cij * Xij (\rightarrow min)$

Выполнение

1. Внес данные по издержкам *Сіј* из таблицы 4.1 в диапазон В1:К3, в соответствии с предложенным макетом создал на листе Excel таблицу, начиная с 4-ой строки, взяв за исходные данные нули. Результат данных действий выглядит следующим образом:

Таблица 1.2

Макет таблицы для решения задачи

	A	В	С	D	Е	F	G	Н	I	J	K	L
4	Потреб. 1	0	0	0	0	0	0	0	0	0	0	\sum
5	Потреб. 2	0	0	0	0	0	0	0	0	0	0	\sum
6	Потреб. 3	0	0	0	0	0	0	0	0	0	0	\sum
7	Поставщи ки	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ

2. Выполнил *Автосуммирование* и для функции цели $F = \sum_{ij} Cij * Xij$,в

ячейку D9 занёс формулу = *CУММПРОИЗВ* (*B1:K3*; *B4:K6*).

- 3. Выберал команду СЕРВИС→ ПОИСК РЕШЕНИЯ. В окне «Поиск Решения» внес:
 - в поле *Установить целевую ячейку* ссылку на D9;
 - в поле *Изменяя ячейки* ссылку на B4:K6;
 - установил переключатель на min;
 - чтобы задать ограничения, нажал кнопку *Добавить* и добавил ограничения, нажал кнопку ОК, а затем *Выполнить*.
- 4. Результаты сохранил в виде отчета о результатах:

Таким образом, мной было изучено и усвоено решение оптимизационных задач математического программирования средствами Excel.