Large-Sample Normal Approximation to the Posterior

First Observaton: for large n, the prior doesn't matter

Poisson Model

- Observe $X_1,\ldots,X_n;$ X_i is the number of seedlings in quadrat number i.• Data Model: $X_i|\Lambda=\lambda\stackrel{\text{i.i.d.}}{\sim} \operatorname{Poisson}(\lambda)$
- Suppose we use a Gamma prior for Λ
 - Example: $\Lambda \sim \text{Gamma}(1, 0.01)$ is fairly non-informative
- Think of the posterior pdf in terms of contributions from the prior and the likelihood

Simulation: Suppose $\lambda = 10$

n = 1

Prior, Likelihood, and Posterior - Different Vertical Scales

Log Prior, Log Likelihood, and Log Posterior - Same Vertical Scale

n = 100

Prior, Likelihood, and Posterior - Different Vertical Scales

Log Prior, Log Likelihood, and Log Posterior - Same Vertical Scale

