

特許協力条約に基づく国際出願願書

原本(出願用)

0	受理官庁記入欄 国際出願番号	
0-1		
0-2	国際出願日	
0-3	(受付印)	
0-4	様式-PCT/RO/101 この特許協力条約に基づく国際出願願書 は、 0-4-1 右記によって作成された。	PCT-SAFE [EASY mode] Version 3.50 (Build 0002.158)
0-5	申立て 出願人は、この国際出願が特許協力条約 に従って処理されることを請求する。	
0-6	出願人によって指定された受理官庁	日本国特許庁 (RO/JP)
0-7	出願人又は代理人の書類記号	PCT0301252S
I	発明の名称	太陽電池及びその製造方法
II	出願人 II-1 この欄に記載した者は II-2 右の指定国についての出願人である。	出願人である (applicant only) 米国を除く全ての指定国 (all designated States except US)
II-4ja	名称	信越半導体株式会社
II-4en	Name:	SHIN-ETSU HANDOTAI CO., LTD.
II-5ja	あて名	1000005 日本国
II-5en	Address:	東京都千代田区丸の内1丁目4番2号 4-2, Marunouchi 1-chome, Chiyoda-ku, Tokyo 1000005 Japan
II-6	国籍(国名)	日本国 JP
II-7	住所(国名)	日本国 JP
II-8	電話番号	03-3214-1831
II-9	ファクシミリ番号	03-3215-9040
II-11	出願人登録番号	000190149

特許協力条約に基づく国際出願願書

原本(出願用)

III-1	その他の出願人又は発明者 この欄に記載した者は	出願人である (applicant only)
III-1-2	右の指定国についての出願人である。	米国を除く全ての指定国 (all designated States except US)
III-1-4ja	名称	信越化学工業株式会社
III-1-4en	Name:	SHIN-ETSU CHEMICAL CO., LTD.
III-1-5ja	あて名	1000004 日本国 東京都千代田区大手町二丁目6番1号
III-1-5en	Address:	6-1, Ohtemachi 2-chome, Chiyoda-ku, Tokyo 1000004 Japan
III-1-6	国籍(国名)	日本国 JP
III-1-7	住所(国名)	日本国 JP
III-1-11	出願人登録番号	000002060
III-2	その他の出願人又は発明者 この欄に記載した者は	出願人である (applicant only)
III-2-2	右の指定国についての出願人である。	米国を除く全ての指定国 (all designated States except US)
III-2-4ja	名称	北陸先端科学技術大学院大学長が代表する日本国
III-2-4en	Name:	JAPAN as represented by PRESIDENT OF JAPAN ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
III-2-5ja	あて名	9231292 日本国 石川県能美郡辰口町旭台1丁目1番地
III-2-5en	Address:	1, Asahidai 1-chome, Tatsunokuchimachi, Nomi-gun, Ishikawa 9231292 Japan
III-2-6	国籍(国名)	日本国 JP
III-2-7	住所(国名)	日本国 JP
III-2-11	出願人登録番号	394023953

特許協力条約に基づく国際出願願書

原本(出願用)

III-3	その他の出願人又は発明者 この欄に記載した者は	出願人及び発明者である (applicant and inventor) 米国のみ (US only)
III-3-1	右の指定国についての出願人である。	高橋 正俊
III-3-2	氏名(姓名)	TAKAHASHI, Masatoshi
III-3-4en	Name (LAST, First):	1000005
III-3-5ja	あて名	日本国 東京都千代田区丸の内一丁目4番2号 信越半導体株 式会社 本社内
III-3-5en	Address:	c/o SHIN-ETSU HANDOTAI CO., LTD., 4-2, Marunouchi 1-chome, Chiyoda-ku, Tokyo 1000005
III-3-6	国籍(国名)	日本国 JP
III-3-7	住所(国名)	日本国 JP
III-4	その他の出願人又は発明者 この欄に記載した者は	出願人及び発明者である (applicant and inventor)
III-4-1	右の指定国についての出願人である。	米国のみ (US only)
III-4-2	氏名(姓名)	大塚 寛之
III-4-4en	Name (LAST, First):	OHTSUKA, Hiroyuki
III-4-5ja	あて名	1000005
III-4-5en	Address:	日本国 東京都千代田区丸の内一丁目4番2号 信越半導体株 式会社 本社内
III-4-6	国籍(国名)	c/o SHIN-ETSU HANDOTAI CO., LTD., 4-2, Marunouchi 1-chome, Chiyoda-ku, Tokyo 1000005
III-4-7	住所(国名)	日本国 JP
III-5	その他の出願人又は発明者 この欄に記載した者は	出願人及び発明者である (applicant and inventor)
III-5-1	右の指定国についての出願人である。	米国のみ (US only)
III-5-2	氏名(姓名)	松村 英樹
III-5-4en	Name (LAST, First):	MATSUMURA, Hideki
III-5-5ja	あて名	9218134
III-5-5en	Address:	日本国 石川県金沢市南四十万三丁目93番地 93, Minamishijima 3-chome, Kanazawa-shi, Ishikawa 9218134
III-5-6	国籍(国名)	日本国 JP
III-5-7	住所(国名)	日本国 JP

特許協力条約に基づく国際出願願書

原本(出願用)

III-6	その他の出願人又は発明者	出願人及び発明者である (applicant and inventor)
III-6-1	この欄に記載した者は	米国のみ (US only)
III-6-2	右の指定国についての出願人である。	
III-6-4ja	氏名(姓名)	増田 淳
III-6-4en	Name (LAST, First):	MASUDA, Atsushi
III-6-5ja	あて名	9218141
III-6-5en	Address:	日本国 石川県金沢市馬替二丁目56番1号 56-1, Magae 2-chome, Kanazawa-shi, Ishikawa 9218141 Japan
III-6-6	国籍(国名)	日本国 JP
III-6-7	住所(国名)	日本国 JP
III-7	その他の出願人又は発明者	出願人及び発明者である (applicant and inventor)
III-7-1	この欄に記載した者は	米国のみ (US only)
III-7-2	右の指定国についての出願人である。	
III-7-4ja	氏名(姓名)	和泉 亮
III-7-4en	Name (LAST, First):	IZUMI, Akira
III-7-5ja	あて名	8040015
III-7-5en	Address:	日本国 福岡県北九州市戸畠区仙水町三丁目1番地 1, Sensuicho 3-chome, Tobata-ku, Kitakyushu-shi, Fukuoka 8040015 Japan
III-7-6	国籍(国名)	日本国 JP
III-7-7	住所(国名)	日本国 JP
IV-1	代理人又は共通の代表者、通知のあて名 下記の者は国際機関において右記のごとく 出願人のために行動する。	代理人 (agent)
IV-1-1ja	氏名(姓名)	菅原 正倫
IV-1-1en	Name (LAST, First):	SUGAWARA, Seirin
IV-1-2ja	あて名	4600008
IV-1-2en	Address:	日本国 愛知県名古屋市中区栄二丁目9番30号 栄山吉ビル 菅原国際特許事務所 SUGAWARA & ASSOCIATES, Sakae Yamakichi Bldg., 9-30, Sakae 2-chome, Naka-ku, Nagoya-shi, Aichi 4600008 Japan
IV-1-3	電話番号	052-212-1301
IV-1-4	ファクシミリ番号	052-212-1302
IV-1-6	代理人登録番号	100095751

特許協力条約に基づく国際出願願書

原本(出願用)

V	国の指定		
V-1	この願書を用いてされた国際出願は、規則4.9(a)に基づき、国際出願の時点で拘束される全てのPCT締約国を指定し、取得しうるあらゆる種類の保護を求め、及び該当する場合には広域と国内特許の両方を求める国際出願となる。		
VI-1	先の国内出願に基づく優先権主張		
VI-1-1	出願日	2003年 05月 09日 (09. 05. 2003)	
VI-1-2	出願番号	2003-131797	
VI-1-3	国名	日本国 JP	
VI-2	優先権証明書送付の請求 上記の先の出願のうち、右記の番号のものについては、出願書類の認証原本を作成し国際事務局へ送付することを、受理官庁に対して請求している。	VI-1	
VII-1	特定された国際調査機関(ISA)	日本国特許庁 (ISA/JP)	
VIII	申立て	申立て数	
VIII-1	発明者の特定に関する申立て	-	
VIII-2	出願し及び特許を与えられる国際出願日ににおける出願人の資格に関する申立て	-	
VIII-3	先の出願の優先権を主張する国際出願日における出願人の資格に関する申立て	-	
VIII-4	発明者である旨の申立て(米国を指定国とする場合)	-	
VIII-5	不利にならない開示又は新規性喪失の例外に関する申立て	-	
IX	照合欄	用紙の枚数	添付された電子データ
IX-1	願書(申立てを含む)	6	✓
IX-2	明細書	28	-
IX-3	請求の範囲	6	-
IX-4	要約	1	✓
IX-5	図面	3	-
IX-7	合計	44	
IX-8	添付書類	添付	添付された電子データ
IX-9	手数料計算用紙	✓	-
IX-17	個別の委任状の原本	✓	-
IX-18	PCT-SAFE 電子出願	-	✓
IX-18	その他:	納付する手数料に相当する特許印紙を貼付した書面	
IX-19	要約書とともに提示する図の番号	1	
IX-20	国際出願の使用言語名	日本語	
X-1	出願人、代理人又は代表者の記名押印		
X-1-1	氏名(姓名)	菅原 正倫	
X-1-2	署名者の氏名		
X-1-3	権限		

特許協力条約に基づく国際出願願書

原本(出願用)

受理官庁記入欄

10-1	国際出願として提出された書類の実際の受理の日	
10-2	図面	
10-2-1	受理された	
10-2-2	不足図面がある	
10-3	国際出願として提出された書類を補完する書類又は図面であってその後期間内に提出されたものの実際の受理の日(訂正日)	
10-4	特許協力条約第11条(2)に基づく必要な補完の期間内の受理の日	
10-5	出願人により特定された国際調査機関	ISA/JP
10-6	調査手数料未払いにつき、国際調査機関に調査用写しを送付していない	

国際事務局記入欄

11-1	記録原本の受理の日	
------	-----------	--

PCT手数料計算用紙(願書付属書)

原本(出願用)

[この用紙は、国際出願の一部を構成せず、国際出願の用紙の枚数に算入しない]

0	受理官庁記入欄			
0-1	国際出願番号			
0-2	受理官庁の日付印			
0-4	様式-PCT/RO/101(付属書) このPCT手数料計算用紙は、 右記によって作成された。			
0-4-1	PCT-SAFE [EASY mode] Version 3.50 (Build 0002.158)			
0-9	出願人又は代理人の番類記号	PCT0301252S		
2	出願人	信越半導体株式会社		
12	所定の手数料の計算	金額/係数	小計(JPY)	
12-1	送付手数料 T	⇒	13000	
12-2-1	調査手数料 S	⇒	97000	
12-2-2	国際調査機関 JP			
12-3	国際出願手数料 (最初の30枚まで) i1	116000		
12-4	30枚を越える用紙の枚数 14			
12-5	用紙1枚の手数料 (x) 1200			
12-6	合計の手数料 i2 16800			
12-7	i1 + i2 = i 132800			
12-12	EASYによる減額 R -8300			
12-13	国際出願手数料の合計 (i-R) I ⇒ 124500			
12-17	納付するべき手数料の合計 (T+S+I+P)	⇒	234500	
12-19	支払方法	送付手数料：特許印紙 調査手数料：特許印紙 国際出願手数料：銀行口座への振込み		

出願人による言及

13-1-1	出願人による言及	弁理士 9575 菅原 正倫
--------	----------	----------------

送付手数料・調査手数料 110,000 円

委任状

2004年2月10日

私は、弁理士 菅原 正倫 氏を代理人と定めて、下記の権限を委任します。

言己

1. 特許協力条約に基づく国際出願

「太陽電池及びその製造方法」

に関する一切の件

2. 上記出願及び指定国の指定を取下げる件

3. 上記出願についての国際予備審査の請求に関する一切の件並びに請求及び選択国の選択を取下げる件

あて名 東京都千代田区丸の内1丁目4番2号
名称 信越半導体株式会社
代表者 小柳 俊一

あて名 東京都千代田区大手町二丁目6番1号
名称 信越化学工業株式会社
代表者 金川 千尋

あて名 石川県能美郡辰口町旭台1丁目1番地
名称 北陸先端科学技術大学院大学
代表者 学長 示村 悅二郎

委任状

2004年2月10日

私は、弁理士 菅原 正倫 氏を代理人と定めて、下記の権限を委任します。

言已

1. 特許協力条約に基づく国際出願

「太陽電池及びその製造方法」

に関する一切の件

2. 上記出願及び指定国の指定を取下げる件

3. 上記出願についての国際予備審査の請求に関する一切の件並びに請求及び選択国の選択を取下げる件

あて名 東京都千代田区丸の内一丁目4番2号
信越半導体株式会社 本社内

氏名 高橋 正俊

あて名 東京都千代田区丸の内一丁目4番2号
信越半導体株式会社 本社内

氏名 大塚 寛之

あて名 石川県金沢市南四十万三丁目93番地
松村 英樹

あて名 石川県金沢市馬替二丁目56番1号
増田 淳

あて名 福岡県北九州市戸畠区仙水町三丁目1番地
和泉 亮

明細書

太陽電池及びその製造方法

5 技術分野

この発明は、光エネルギーを直接電気エネルギーに変換する太陽電池とその製造方法に関する。

() 背景技術

10 太陽電池は、光エネルギーを電力に変換する半導体素子であり、p-n接合型、p-i-n型、ショットキー型などがあり、特にp-n接合型が広く用いられている。また、太陽電池をその基板材料をもとに分類すると、シリコン結晶系太陽電池、アモルファス（非晶質）シリコン系太陽電池、化合物半導体系太陽電池の3種類に大きく分けられる。シリコン結晶系太陽電池は、さらに、単結晶系太陽電池と多結晶系太陽電池に分類される。太陽電池用シリコン結晶基板は比較的容易に製造できることから、シリコン結晶系太陽電池が最も普及している。

() 上記のごとき太陽電池の出力特性は、一般に、ソーラーシミュレータを用いて出力電流電圧曲線を測定することにより評価される。この曲線上で、出力電流I_pと出力電圧V_pとの積 I_p · V_p が最大となる点P_mを最大出力P_mと呼び、該P_mを太陽電池に入射する総光エネルギー (S × I : Sは素子面積、Iは照射する光の強度) にて除した値：

$$\eta \equiv \{ P_m / (S \times I) \} \times 100 \quad (\%) \quad \cdots (1)$$

が太陽電池の変換効率 η として定義される。変換効率 η を高めるには、短絡電流I_{sc} (電流電圧曲線上にてV=0のときの出力電流値) あるいは開放電圧V_{oc} (同じく I=0 のときの出力電圧値) を大きくすること、及び、出力電流電圧曲線

をなるべく角型に近い形状のものとすることが重要である。なお、出力電流電圧曲線の角型の度合いは、一般に、

$$F_F \equiv I_{pm} \times V_{pm} / (I_{sc} \times V_{oc}) \quad \dots \quad (2)$$

にて定義されるフィルファクタ（曲線因子）により評価でき、該 F_F の値が 1 に近

- 5 いほど出力電流電圧曲線が理想的な角型に近づき、変換効率 η も高められることを意味する。

上記変換効率 η を向上させるには、キャリア（電子とホール）の表面再結合を低減することが重要である。具体的に説明すれば、単結晶シリコン又は多結晶シリコンなどを基板として用いた太陽電池においては、太陽光などの入射光によって光生成した少数キャリアが、主に拡散によって p-n 接合面へ到達した後、受光面及び裏面に取り付けられた電極から多数キャリアとして外部へ取り出され、電気エネルギーとなる。その際、電極面以外の基板表面に存在する界面準位を介して、本来電流として取り出すことのできたキャリアが再結合して失われることがあり、変換効率 η の低下につながる。

- 15 そこで、高効率太陽電池においては、半導体基板の受光面と裏面とを、電極とのコンタクト部を除いて絶縁膜で保護し、半導体基板と各絶縁膜との界面におけるキャリア再結合を抑制し、変換効率 η の向上が図られている（いわゆる表面パッシペーション効果）。このような絶縁膜としては、酸化珪素膜が古くから使われているが、屈折率が 1.4 程度と低く、受光面側に用いた場合の反射損失がやや大きいため、近年では、より高屈折率の窒化珪素が、パッシペーション効果だけでなく反射防止効果にも優れていることから、広く用いられるようになってきている。窒化珪素膜は、従来、熱 CVD、プラズマ CVD あるいは光 CVD などの CVD 法 (Chemical Vapor Deposition : 化学気相堆積法) によって形成される。この中で、最も一般的に普及しているのはプラズマ CVD である。

- 25 図 3 は、一般にダイレクトプラズマ CVD と呼ばれる、バッチ式平行平板プラズ

マ CVD 装置を模式的に示すものである。該装置は、排気装置 11 を備えた反応容器 1 、反応容器 1 内の所定位置に太陽電池基板 20 を配置するための基板ホルダ 8 1 、反応性ガスである所定の成膜用ガスを反応容器 1 内に導入する成膜用ガス導入路 31, 32 、導入されたガスにエネルギーを与えてプラズマを発生させる高周波路 31, 32 、及び、堆積雰囲気を一定温度に保つための抵抗加熱式ヒーター 90 を有する。該装置を用いて薄膜を堆積する場合、成膜用ガス導入路 31, 32 によって所定の成膜用ガスを所定の流量で反応容器 1 内に導入した後、高周波電源 82 を動作させて高周波電界を設定する。この操作により、基板ホルダ 81 間で高周波放電が発生して成膜用ガスがプラズマ化し、該プラズマによって生ずる反応を利用して、基板 20 の表面に得るべき絶縁膜が作製される。例えば、絶縁膜としてシリコン窒化膜を作製する場合には、成膜用ガスとしてシランを成膜用ガス導入路 31 から、アンモニアを成膜用ガス導入路 32 から導入・混合後、反応容器 1 に供給し、プラズマ中でのシランの分解反応等を利用してシリコン窒化膜を生成させる。

プラズマ CVD は、基板温度が 400°C 以下の低温であっても比較的高い堆積速度を有するため、太陽電池用の製造プロセスに多用されている。しかしながら、プラズマ中で生成される高エネルギー荷電粒子が、堆積した膜や基板表面に損傷（いわゆるプラズマダメージ）を与えやすいため、得られる窒化珪素膜は界面準位密度が高くなり、十分なパッシベーション効果が得られない問題がある。また、太陽電池の諸特性にも影響が及びやすい。

そこで、プラズマダメージを抑制した方法として、 ECR (電子サイクロトロン共鳴) プラズマを利用した CVD 法が提案されている。図 4 は、その装置の一例を模式的に示すものである。該方法は、従来のプラズマ CVD とは異なり、ラジカル種を分離して利用するために、処理すべき基板表面をプラズマ領域（プラズマゾーン）から離れた位置に配置する点に特徴があり、以下、リモートプラズマ CVD と称する。具体的には、成膜用ガス導入路 31 によって所定の成膜用ガスを所定の流

量で前室 101 内に導入した後、マイクロ波発生装置 102 を用いて、高周波電界の代わりにマイクロ波を前室 101 に印加する。このマイクロ波によって、キャリアガス兼成膜用ガスがプラズマ化し、反応活性種が発生する。該反応活性種は処理容器内 1 に流れこみ、成膜用ガス導入路 32 より供給された別の成膜用ガスと化学反応を起こすことにより、基板 20 の表面に絶縁膜が形成される。絶縁膜として窒化珪素膜を作製する場合は、キャリアガス兼成膜用ガスとして導入路 31 にアンモニアを、導入路 32 にシランをそれぞれ導入して混合し、プラズマ中によるアンモニアの分解反応等を利用して窒化珪素膜を生成する。上記リモートプラズマ CVD を用いるとプラズマダメージを多少は軽減できる。

しかし、いずれにしてもプラズマCVDを用いる限り、プラズマダメージが大きいことに変わりはなく、膜中のダングリングボンドの形成も顕著となるから、パッシベーション効果の向上には、多量の水素を膜中に含有させてダングリングボンドの封止を図る必要があった（また、周知のプラズマCVDでは、原料ガス由来の水素が必然的に多量に取り込まれてしまう背景もある）。その結果、得られる窒化珪素膜は最大で40atm%もの水素原子を含有しており、太陽光など紫外線を多く含む光の照射を受け続けると、パッシベーション効果が経時的に劣化する問題がある。

また、プラズマCVDによる窒化珪素膜では、いわゆるフィールド効果パッシベーションを得るために、膜組成を化学量論比から珪素過剰側に相当大きくシフトさせていた。すなわち、膜組成が珪素過剰側に大きく外れると、アニオン欠損により生ずる電子が半導体基板側に流出して、カチオン側の正電荷が固定電荷を形成するため、バンドベンディングが生じる。すると、接触界面の近傍にて半導体基板側に電子が過剰となる反転層が形成されるので、これをを利用してパッシベーション効果を高めることができる。

しかし、この構造には次のとく、大きな欠点がある。

①裏面電極として使用する場合、図5に示すように、p型基板111の電極64近傍に形成された反転層112が、電極面内での短絡113を引き起こしやすく、生成電流の低下につながる。

②電子流出による反転層形成により、フィールド効果パッシベーションが顕著とな

5 るのは基板のp型層側に適用した場合のみである。太陽電池において、基板のp型領域及びn型領域に光励起により生成するキャリアは少数キャリアであり、光吸収に寄与する基板の要部は、ライフトайムの長い電子が少数キャリアとなるp型の基板を使用することが有利であるが、この場合は、n型エミッタ層が形成される受光面側には十分なパッシベーション効果を発揮できなくなる。また、エミッタ層表面10 はドーパント濃度が高すぎるため、窒化珪素膜中の固定電荷程度ではバンドベンディングがほとんど起こらず、前述のフィールド効果パッシベーションは期待するべくもない。従って、エミッタ層においては、プラズマダメージの抑制、ひいてはそれによる界面準位抑制が、良好なパッシベーション特性の鍵を握ることになる。しかし、通常のプラズマCVDではダメージ抑制は難しいから、結局のところ良好な15 パッシベーション効果は得られない。

本発明の課題は、パッシベーション効果に優れ、また、パッシベーション効果の経時劣化を生じにくい絶縁膜を有した太陽電池と、その製造方法とを提供することにある。

20 発明の開示

上記の課題を解決するため、本発明の太陽電池の第一は、第一主表面に受光面が形成されるとともに、該受光面に照射される光に基づいて光起電力を発生させる半導体太陽電池基板を備え、該半導体太陽電池基板の受光面が、カチオン成分の主体が珪素である無機絶縁材料（以下、珪素系絶縁材料ともいう）からなる無機絶縁膜としての受光面側絶縁膜にて被覆され、該受光面側絶縁膜を、水素含有率が10原

子%未満の低水素含有無機絶縁膜として構成したことを特徴とする。なお、本明細書において「カチオン成分の主体が珪素である」とは、無機絶縁材料のカチオン成分の50%以上（望ましくは80%以上）が珪素であることを意味する。なお、以下に説明する本発明の効果が達成される限り、材料の絶縁性が過度に損なわれない範囲で、珪素以外のカチオンが含有されていてもよい。例えば、セシウムカチオンなどイオン半径の大きいアルカリ金属イオンを窒化膜中に導入し、膜中の固定電荷を増大して、フィールド効果パッシベーションの寄与を図る、といったことも可能である。

上記本発明の太陽電池の第一によると、受光面側絶縁膜を、高誘電率で良好なパッシベーション効果が得られる珪素系絶縁材料にて構成し、かつ、水素含有率が10原子%未満の低水素含有無機絶縁膜として構成したので、受光面側絶縁膜の紫外線に対する耐久性を大幅に向上できる。具体的には、太陽光や蛍光ランプなど、紫外線が多く含まれる光が長期間照射される環境下で使用した場合においても、絶縁膜のパッシベーション効果が経時劣化しにくく、ひいては変換効率 η を長期にわたって良好な値に維持できる。

珪素系絶縁膜はCVD法により形成できる。そして、本発明の太陽電池の製造方法の第一は、一主表面に受光面が形成されるとともに、該受光面に照射される光に基づいて光起電力を発生させるためのp-n接合を有した半導体太陽電池基板を備え、該半導体太陽電池基板の受光面が、カチオン成分の主体が珪素である無機絶縁膜よりなる受光面側絶縁膜にて被覆された太陽電池の製造方法において、受光面側絶縁膜を、反応容器内に半導体太陽電池基板とともに熱触媒体を配置し、珪素源ガスと、得るべき無機材料において珪素と結合するアニオン成分を生成するアニオン源ガスとを含有し、かつ、珪素源ガスとアニオン源ガスとの少なくともいずれかが、ガス分子中に水素原子を有する成膜用ガスを熱触媒体と接触させつつ半導体太陽電池基板の表面に供給し、該成膜用ガスの化学反応に基づき生成する無機絶縁材料を

該半導体太陽電池基板の表面に堆積させる触媒CVD法により、水素含有率が10原子%以下とされた低水素含有無機絶縁膜として形成することを特徴とする。

触媒CVD法自体は特開平10-83988号公報により公知であり、その成膜メカニズムに関しては次のとく推定されている。例えば窒化珪素膜を作製する場合、シラン (SiH_4) とアンモニア (NH_3) の混合ガスを成膜用ガスとして用いて導入する。熱触媒体は、一定以上の触媒活性を有する金属（又は合金）であればよく、例えばタンクスチン、モリブデン、タンタル、チタン又はバナジウムで構成することができる。導入されたシランガスが、所定温度に加熱された熱触媒体の表面を通過する際、水素分子の吸着解離反応に類似したシランの接触分解反応が生じ、 SiH_3^* 及び H^* という分解活性種が生成される。詳細なメカニズムは明らかではないが、シランを構成する一つの水素がタンクスチン表面に吸着することで、その水素とシリコンの結合が弱まってシランが分解し、タンクスチン表面への吸着が熱によって解かれて SiH_3^* 及び H^* という分解活性種が生成されると考えられる。アンモニアガスにも同様な接触分解反応が生じ、 NH_2^* 及び H^* という分解活性種が生成される。そして、これらの分解活性種が基板に到達してシリコン窒化膜の堆積に寄与する。即ち、反応式で示すと、 $\text{SiH}_4(g) \rightarrow \text{SiH}_3^*(g) + \text{H}^*(g)$ 、 $\text{NH}_3(g) \rightarrow \text{NH}_2^*(g) + \text{H}^*(g)$ 、 $a \text{ SiH}_3^*(g) + b \text{ NH}_2^*(g) \rightarrow c \text{ SiN}_x(s)$ となる。なお、gの添え字はガス状態、sの添え字は固体状態であることを意味する。このような触媒CVD法による成膜では、プラズマなしに成膜が行なえるので、プラズマCVD装置で見られたプラズマ中の高エネルギー荷電粒子による基板表面の損傷や荷電粒子の混入による絶縁膜の劣化といった問題は、原理的になくなる。また、基板がプラズマに晒されることによる温度上昇がないので、さらに低温プロセスが可能になるというメリットもある。

上記のごとく触媒CVD法を用いると、絶縁膜の組成を均一に保ちながら界面欠陥の少ない絶縁膜を基板上に堆積することができ、ひいてはパッシベーション効果

が非常に優れた珪素系絶縁膜を得ることができる。触媒CVD法によれば、触媒により反応効率が高められているため、成膜用ガスを水素等のキャリアガスで過度に希釈しなくとも良質の絶縁膜を堆積できる。また、成膜用ガスに由来した水素の残留量も小さく抑えることができる。該効果は、水素と結合を生じやすい珪素原子上のダングリングボンドの生成が抑制される組成（例えば、窒化珪素の場合、化学量論比から珪素過剰側にそれほど隔たっていない組成である）を選定したときに、特に大きくなる。これらのことから、CVD法によりつつも、水素含有率が10原子%以下の珪素系絶縁膜を容易に実現することができる。膜中の水素含有率を低減するには、成膜用ガスを水素希釈することなく反応容器に供給する方法を採用することがより効果的である。

本発明において、半導体太陽電池基板は、周知の太陽電池と同様に、単結晶シリコン、多結晶シリコン、ガリウムヒ素、ゲルマニウム、あるいはその複合材料で構成することができる。特に、変換効率と価格とのバランスを考慮すれば、単結晶シリコン基板を半導体太陽電池基板として用いることが望ましい（以下の、本発明の太陽電池の第二及び第三においても同様）。

本発明の太陽電池の第一においては、半導体太陽電池基板の第二主表面が、カチオン成分の主体が珪素である無機絶縁材料からなる無機絶縁膜としての裏面側絶縁膜にて覆われてなり、当該裏面側絶縁膜を覆う裏面電極が、該裏面側絶縁膜を貫通する導通部を介して半導体太陽電池基板の裏面と導通してなる構造を有するとともに、該裏面側絶縁膜を水素含有率が10原子%未満とされた低水素含有無機絶縁膜として構成することができる。裏面電極が裏面側絶縁膜の全体を被覆せず、裏面からの入射光も発電に寄与する両面受光型太陽電池においては、当該裏面側絶縁膜も低水素含有無機絶縁膜として構成しておけば、受光面側絶縁膜と同様に、耐紫外線特性ひいてはパッシベーション効果の経時的安定性を向上できる。

25 低水素含有無機絶縁膜の水素含有率が10原子%を超えると、紫外線照射により

パッシベーション効果が劣化しやすくなり、本発明の目的を達成できなくなる。他方、低水素含有無機絶縁膜の水素含有率が 1 原子%未満では耐紫外線特性の向上効果が飽和し、工程の煩雑化等によるコストアップを招来する惧れもある。従って、低水素含有無機絶縁膜の水素含有率は、望ましくは 1 原子%以上 10 原子%以下の範囲で調整するのがよく、より望ましくは 1 原子%以上 5 原子%以下とする。

本発明において、受光面側絶縁膜あるいは裏面側絶縁膜を構成する珪素系無機絶縁材料は、具体的には、窒化珪素、酸化珪素及び酸化窒化珪素のいずれかにて構成できる。このうち、窒化珪素はパッシベーション効果に優れるので本発明に効果的に使用できる。また、窒化珪素は屈折率が大きいため、受光面側絶縁膜に適用した場合、反射防止膜にも兼用できる利点がある（以下の、本発明の太陽電池の第二及び第三においても同様）。

特に、受光面側絶縁膜は、屈折率が 2 以上 2.5 以下の窒化珪素からなる低水素含有無機絶縁膜として構成することが望ましい。屈折率が 2 未満では反射防止効果が顕著でなくなり、また、屈折率が 2.5 を超えると、入射光の電流変換に寄与する波長域において受光面側絶縁膜に光学的な吸収を生じ、却って変換効率が低下することにつながる。受光面側絶縁膜は、屈折率が望ましくは 2 以上 2.1 以下となっているのがよい。

また、窒化珪素膜の屈折率は、その珪素／窒素原子比（Si/N 原子比）と密接な関係にあり、珪素の原子比率が大きくなるほど屈折率は高くなる傾向にある。ここで、屈折率を 2 以上 2.5 以下に調整しようとした場合、Si/N 原子比は、本発明者らの検討により、0.80 以上 1.80 以下の範囲に設定することが望ましいことがわかった。そして、該組成は、窒化珪素の化学量論比（Si/N = 0.75）に近く、従来のプラズマ CVD 法を採用した場合と異なり、珪素原子上のダングリングボンドを生じにくい利点も生ずる。その結果、触媒 CVD の窒化珪素生成の反応効率が良好であることも相俟って、成膜用ガスに由來した水素の膜中残留

量を大幅に低減することができ（10原子%以下；あるいは5原子%以下）、紫外線が照射されたときの、パッシベーション効果の経時劣化を極めて効果的に抑制することができる。

得るべき無機絶縁膜が上記窒化珪素膜である場合、反応容器内に成膜用ガスを、

5 Si/N原子比が0.80以上1.80以下の窒化珪素が得られるように、珪素源ガスとアニオン源ガスをなす窒素源ガスとの混合比を調整して供給すればよい。例えば珪素源ガスがシラン（水素化珪素を総称するものとする：具体的にはモノシリラン、ジシリランなど）であり、窒素源ガスがアンモニアであれば、シランとアンモニアの反応容器内への供給流量比により、得られる窒化珪素膜のSi/N原子比を調整することができる。また、珪素源ガスと窒素源ガスとの混合ガスの圧力によっても、窒化珪素膜のSi/N原子比を調整できる。具体的には、珪素源ガスと窒素源ガスとの混合比を一定とした場合、ガス圧力が高い場合は窒素リッチとなる方向に、逆にガス圧力が低い場合は珪素リッチとなる方向に、窒化珪素膜のSi/N原子比を調整可能である。

15 また、本発明の太陽電池の第一においては、裏面側絶縁膜を、反応容器内に半導体太陽電池基板とともに熱触媒体を配置し、珪素源ガスと窒素源ガスとを含有する成膜用ガスを熱触媒体と接触させつつ半導体太陽電池基板の表面に供給し、該成膜用ガスの化学反応に基づき生成する窒化珪素を該半導体太陽電池基板の表面に堆積させる触媒CVD法により、Si/N原子比が0.80以上1.80以下となるよう20 うに形成された窒化珪素膜とができる。

また、本発明の太陽電池の第二は、

第一主表面に受光面が形成されるとともに、該受光面に照射される光に基づいて光起電力を発生させる半導体太陽電池基板を備え、該半導体太陽電池基板の第二主表面が、窒化珪素からなる無機絶縁膜としての裏面側絶縁膜にて覆われてなり、当該裏面側絶縁膜を覆う裏面電極が、該裏面側絶縁膜を貫通する導通部を介して半導

体太陽電池基板の裏面と導通してなる構造を有するとともに、

裏面側絶縁膜を構成する窒化珪素膜は、反応容器内に半導体太陽電池基板とともに熱触媒体を配置し、珪素源ガスと窒素源ガスとを含有する成膜用ガスを熱触媒体と接触させつつ半導体太陽電池基板の表面に供給し、該成膜用ガスの化学反応に基づき生成する窒化珪素を該半導体太陽電池基板の表面に堆積させる触媒CVD法により、Si/N原子比が0.80以上1.80以下となるように形成されたものであることを特徴とする。

さらに、本発明の太陽電池の製造方法の第二は、

第一主表面に受光面が形成されるとともに、該受光面に照射される光に基づいて光起電力を発生させる半導体太陽電池基板を備え、該半導体太陽電池基板の第二主表面が、窒化珪素からなる無機絶縁膜としての裏面側絶縁膜にて覆われてなり、当該裏面側絶縁膜を覆う裏面電極が、該裏面側絶縁膜を貫通する導通部を介して半導体太陽電池基板の裏面と導通してなる構造を有する太陽電池の製造方法において、裏面側絶縁膜を構成する窒化珪素膜を、反応容器内に半導体太陽電池基板とともに熱触媒体を配置し、珪素源ガスと窒素源ガスとを含有する成膜用ガスを熱触媒体と接触させつつ半導体太陽電池基板の表面に供給し、該成膜用ガスの化学反応に基づき生成する窒化珪素を該半導体太陽電池基板の表面に堆積させる触媒CVD法により、Si/N原子比が0.80以上1.80以下となるように、珪素源ガスと窒素源ガスとの混合比を調整して形成することを特徴とする。珪素源ガス及び窒素源ガスとしては、前述のごとく、シラン及びアンモニアを用いることができる。

裏面側絶縁膜を、上記のごとく、触媒CVD法により、Si/N原子比が0.80以上1.80以下の窒化珪素膜として形成することにより、以下のような裏面側絶縁膜特有の新たな効果が生ずることとなる。すなわち、触媒CVD法の採用により、Si/N原子比が上記のように化学量論比に近い組成の窒化珪素膜を、ダングリングボンドの少ない低欠陥の膜として形成できる。このような膜は、組成が化学

量論比に近いので、珪素過剰となることによる電子由来の固定電荷が少なく、半導体太陽電池基板の裏面に接合したときのバンドベンディングを生じにくい。従って、基板側に形成される反転層も狭く、図5に示すような裏面電極面内での短絡が大幅に生じにくくなる。また、表面再結合のサイトとなるダングリングボンド等の欠陥が形成されにくいので、良好なパッシベーション効果が得られる。また、窒化珪素膜のSi/N原子比を0.80以上1.80以下とすることで水素含有率も低減できるから、裏面電極が裏面側絶縁膜の全体を被覆せず、裏面からの入射光も発電に寄与する両面受光型太陽電池においては、受光面側絶縁膜と同様に、耐紫外線特性ひいてはパッシベーション効果の経時的安定性を向上できる。

なお、上記のように、触媒CVD法により、Si/N原子比が0.80以上1.80以下の化学量論比に近い組成にて、欠陥の少ない高品質の窒化珪素膜が得られるので、反転層の極性が関与するフィールド効果パッシベーションに頼らずとも、良好なパッシベーション効果が得られ、結果的に該窒化珪素膜は、珪素過剰な窒化珪素膜と異なり、受光面側の絶縁膜としても、また、裏面側の絶縁膜としてもいずれでも活用でき、しかも、それぞれにおいて特有の効果を発揮できる。

次に、本発明の太陽電池及びその製造方法の第一及び第二においては、無機絶縁膜は、反応容器内に表面処理用ガスを導入し、該表面処理用ガスを熱触媒体と接触させつつ半導体太陽電池基板の表面に供給することによりこれを表面処理した後、当該表面処理後の半導体太陽電池基板表面に触媒CVD法により堆積することができる。通常のプラズマCVDでは、基板と絶縁膜の界面には、酸素原子を含む遷移層、例えば窒化珪素膜の場合は窒化酸化珪素膜が微量形成され、界面欠陥形成の要因となりうるが、上記のような表面処理を行なうと、遷移層を効果的に除去でき、界面欠陥発生をより効果的に抑制することができ、表面再結合による太陽電池の変換効率低下をより効果的に防止することができる。半導体太陽電池基板がシリコン基板であり、無機絶縁膜が窒化珪素膜である場合、表面処理用ガスとしては、例え

ばアンモニアガスを用いることが適當である。

また、本発明の太陽電池及びその製造方法の第一及び第二においては、無機絶縁膜は、触媒CVD法により半導体太陽電池基板表面に堆積された後、反応容器内に後処理用ガスを導入し、該後処理用ガスを熱触媒体と接触させつつ当該無機絶縁膜の表面に供給することにより後処理されたものとすることができる。

さらに、本発明の太陽電池の第三は、

第一主表面に受光面が形成されるとともに、該受光面に照射される光に基づいて光起電力を発生させる半導体太陽電池基板を備え、該半導体太陽電池基板の第二主表面が、カチオン成分の主体が珪素である無機絶縁膜よりなる無機絶縁膜としての裏面側絶縁膜にて覆われてなり、当該裏面側絶縁膜を覆う裏面電極が、該裏面側絶縁膜を貫通する導通部を介して半導体太陽電池基板の裏面と導通してなる構造を有するとともに、

無機絶縁膜は、反応容器内に半導体太陽電池基板とともに熱触媒体を配置し、珪素源ガスと、得るべき無機材料において珪素と結合するアニオン成分を生成するアニオン源ガスとを含有する成膜用ガスを熱触媒体と接触させつつ半導体太陽電池基板の表面に供給し、該成膜用ガスの化学反応に基づき生成する無機絶縁材料を該半導体太陽電池基板の表面に堆積させる触媒CVD法により堆積・形成した後、反応容器内に後処理用ガスを導入し、該後処理用ガスを熱触媒体と接触させつつ当該無機絶縁膜の表面に供給することにより後処理して得られたものであることを特徴とする。

さらに、本発明の太陽電池の製造方法の第三は、

第一主表面に受光面が形成されるとともに、該受光面に照射される光に基づいて光起電力を発生させる半導体太陽電池基板を備え、該半導体太陽電池基板の第二主表面が、カチオン成分の主体が珪素である無機絶縁膜よりなる裏面側絶縁膜にて覆われてなり、当該裏面側絶縁膜を覆う裏面電極が、該裏面側絶縁膜を貫通する導通

部を介して半導体太陽電池基板の裏面と導通してなる構造を有する太陽電池の製造方法において、

- 無機絶縁膜を、反応容器内に半導体太陽電池基板とともに熱触媒体を配置し、珪素源ガスと、得るべき無機材料において珪素と結合するアニオン成分を生成するアニオン源ガスとを含有する成膜用ガスを熱触媒体と接触させつつ半導体太陽電池基板の表面に供給し、該成膜用ガスの化学反応に基づき生成する無機絶縁材料を該半導体太陽電池基板の表面に堆積させる触媒CVD法により堆積・形成した後、反応容器内に後処理用ガスを導入し、該後処理用ガスを熱触媒体と接触させつつ当該無機絶縁膜の表面に供給することにより無機絶縁膜を後処理することを特徴とする。
- 本発明者は無機絶縁膜の堆積後に、後処理用ガスに対して、前述の表面処理と同様の熱触媒体により接触分解反応を引き起こしつつ、これを無機絶縁膜表面に供給して後処理を行なうことにより、さらに絶縁膜のパッシベーション特性が向上することを見いだした。なお、膜形成後に触媒を用いずに、水素雰囲気下で加熱して行なう後処理は水素アニール処理と称され周知であるが、上記本発明のように触媒を用いる方法は、これと比較してパッシベーション改善効果がはるかに優れる。その理由は、触媒反応により分解化学種を積極的に処理容器内に生成させ、その分解した化学種が絶縁膜中に拡散してダングリングボンドを封止するためではないかと推測される。そして、該方法によれば、通常の水素アニール処理よりも基板温度を下げられるため、該水素アニール処理と比べて、電極／基板間のコンタクトの特性を損なわずに、後処理を安定して行なうことができる利点もある。

図面の簡単な説明

図1は、本発明の太陽電池の断面概略図である。

図2は、本発明の太陽電池の製造方法に用いる薄膜作製装置の概略図である。

図3は、バッチ式平行平板ダイレクトプラズマCVD装置の概略図である。

図4は、枚葉式リモートプラズマCVD装置の概略図である。

図5は、裏面電極近傍での短絡を説明した概略図である。

発明を実施するための最良の形態

- 5 図1は、本発明の太陽電池を実施するための最良の形態を模式的に示す断面図である。該太陽電池100は、半導体太陽電池基板としての第一導電型のシリコン単結晶基板66（以下、単に基板66と記載する：本実施形態ではp型とする）の第一主表面側に、第二導電型層のエミッタ層65（本実施形態ではn型とする）が形成され、基板面内方向にp-n接合面167が形成されている。エミッタ層65の主表面には、出力取出用の電極63が形成されている。エミッタ層65は太陽電池の受光面を形成するので、p-n接合面167への光の入射効率を高めるために、電極63は、A1あるいはAg等により、例えは内部抵抗低減のため適当な間隔で形成された太いバスバー電極と、そのバスバー電極から所定間隔で櫛型に分岐するフィンガー電極とを有するものとして構成できる。そして、エミッタ層65の電極63の非形成領域が、窒化珪素からなる受光面側絶縁膜61にて覆われている。
- 10 15 他方、基板66の第二主表面（裏面）は、窒化珪素からなる裏面側絶縁膜62にて覆われてなり、当該裏面側絶縁膜62の全面がA1等からなる裏面電極64により覆われている。該裏面電極64は、該裏面側絶縁膜62を貫通する導通部（コンタクトホール67）を介して基板66の裏面と導通してなる。
- 20 シリコン単結晶基板66は、FZ（Floating Zone Melting）法及びCZ（Czochralski）法のいずれを用いてもよい。また、シリコン単結晶基板66に代えてGaAs単結晶基板や多結晶シリコン基板を用いることもできる。シリコン単結晶基板66を用いる場合は、結晶製造時にホウ素、ガリウムなどのIII族元素がドープされたp型基板を用いてもよく、又はリン、ヒ素などのV族元素がドープされたn型基板を用いてもよいが、本実施形態では上記のごとくp型基板を用いて

いる。なお、基板抵抗は $0.1 \Omega \cdot \text{cm}$ 以上 $10 \Omega \cdot \text{cm}$ 以下、望ましくは $0.5 \Omega \cdot \text{cm}$ 以上 $2 \Omega \cdot \text{cm}$ 以下とすることが、高性能の太陽電池を実現する上で好適である。また、基板厚さについては、 $50 \mu\text{m}$ 程度であれば、入射した光を太陽電池内にとらえることが可能であり、コスト面でも有利であるが、その後の基板への加工に対して十分な機械的強度を持つためには、 $150 \sim 300 \mu\text{m}$ であることが望ましい。
5

受光面側絶縁膜 6 1 は、水素含有率が 1 原子% 以上 10 原子% 以下、望ましくは 1 原子% 以上 5 原子% 以下の低水素含有無機絶縁膜として構成されている。その屈折率は 2 以上 2.5 以下であり、反射防止膜を兼ねている。さらに、Si/N 原子比が 0.80 以上 1.80 以下である。他方、裏面側絶縁膜 6 2 も、Si/N 原子比が 0.80 以上 1.80 以下の窒化珪素膜とされている（本実施形態においては、屈折率は 2 以上 2.5 以下であり、水素含有率は 1 原子% 以上 10 原子% 以下、望ましくは 1 原子% 以上 5 原子% 以下である）。これらはいずれも、反応容器内に半導体太陽電池基板とともに熱触媒体を配置し、珪素源ガスと窒素源ガスとを含有する成膜用ガスを熱触媒体と接触させつつ基板表面に供給し、該成膜用ガスの化学反応に基づき生成する窒化珪素を基板表面に堆積させる触媒 CVD 法により形成されたものである。
15

触媒 CVD 法による薄膜作製の詳細は、例えば上記特開平 10-83988 号公報及び特開平 8-250438 号公報により公知であるため、以下簡単に説明する。
20 図 2 は、本発明に使用できる薄膜作製装置の概略図である。該薄膜作製装置 200 は、排気装置 11 により内部が減圧される反応容器 1 を備え、該反応容器 1 内に設けられた基板ホルダ 21 上に基板 20 が配置される。また、基板ホルダ 21 上の基板 20 は、基板ヒーター 22（本実施形態では基板ホルダ 21 内に組み込まれている）により加熱される。さらに、反応容器 1 には、成膜用ガスを内部に導入するための成膜用ガス導入路 31, 32 と、同じく表面処理用ガスを内部に導入するため
25

の表面処理用ガス導入路33と、基板ホルダ21上の基板20に対向する形で容器内に設けられた熱触媒体50と、熱触媒体50を通電加熱する熱触媒体加熱用電源51とが設けられている。

5 排気装置11はターボ分子ポンプやロータリーポンプ等からなる多段の真空ポンプからなり、処理容器内を 10^{-8} Torr程度の圧力まで減圧可能とする。成膜用ガス導入路31、32は、成膜用ガスを処理容器内に導入するための円盤状のガス導入ヘッド35に接続されている。ガス導入ヘッド35は、内部が中空であり、前面に多数のガス吹き出し孔を有し、ガス吹き出し孔から成膜用ガスを基板20の主表面(成膜面)に向けて供給するようになっている。

10 热触媒体50は、ガス導入ヘッド35から基板20に向かう成膜用ガスの流通経路上に配置され、热触媒体加熱用電源51によって触媒活性化温度、例えば170°C程度に加熱される。供給された成膜用ガスは、热触媒体50と接触しつつ基板20の主表面に到達する。成膜用ガスは該接触により分解等の反応が促進されて反応活性種が生じ、基板20上に絶縁材料を堆積させる。本実施形態における熱触媒体50は、直径0.5mm程度のタンクステンワイヤーが鋸波状などに加工されたものであり、基板20よりも大きい面積をカバーできるようになっている。なお、基板温度は200°C以上400°C以下の比較的低温でよく、図1において、電極63及び64の形成後であっても、基板66とのコンタクト特性が損なわれる惧れがない。

20 上記のごとく、熱触媒体50を用いた触媒CVD法を採用することにより、従来のようなプラズマを使用することなく成膜が可能となるので、プラズマダメージによる基板表面の損傷や、荷電粒子の混入による絶縁膜の劣化といった問題は原理的になくなる。

25 なお、該成膜工程は、受光面側絶縁膜61及び裏面側絶縁膜のいずれについても略同様である。なお、成膜用ガス導入路31、32からそれぞれ導入されるシラン

とアンモニアとの流量を図示しないマスフローコントローラ等でモニタし、バルブ 31v, 32vにより流量比を制御することで、窒化珪素膜中の Si/N原子比を前記の範囲に調整することができる。なお、シランとアンモニアとは水素ガスによる希釈を行なわない。

5 热触媒体 50 は、界面欠陥低減のために成膜前に実施する基板の表面処理にも利用される。シリコン単結晶で構成された基板 20 の場合、通常、基板表面は自然酸化膜で覆われている。また、基板 20 の表面の自然酸化膜を予めフッ酸などによつて除去した場合においても、通常雰囲気下では酸化が速やかに起こるので、基板表層には酸素原子の結合した珪素原子種が多かれ少なかれ残留する。そこで、絶縁膜 10 を成膜するに先立って、表面処理用ガス導入路 33 からガス導入ヘッド 35 を経て、表面処理用ガスとしてのアンモニアガスを反応容器 1 内に導入する。すると、該アンモニアガスが熱触媒体 50 との接触分解反応によって活性種に変わり、基板表面を覆っている自然酸化膜の酸素原子（表面再結合のサイトとなりうる）が、窒化珪素からなる絶縁膜の構成原子である窒素原子に置換される。以後、既に説明した触媒 CVD 法により、絶縁膜の成膜プロセスを連続して行なう。この方法によれば、絶縁膜の組成を均一に保ちながら界面欠陥の少ない絶縁膜を基板上に堆積することができる。

なお、上記表面処理を行なうためには表面処理用ガス導入路 33 が必要であるが、成膜用ガスがシラン（珪素源ガス）とアンモニア（窒素源ガス：アニオン源ガス）の混合ガスであり、表面処理用ガスがアンモニアガスである場合のように、成膜用ガスと同種のガスが表面処理用ガスにも使用される場合、成膜用ガス導入路 31 を表面処理用ガス導入路に兼用することができる。なお、窒化珪素膜を成膜するための窒素源ガスとしては、上記のアンモニアの他、窒素ガスや他の窒素化合物ガスを用いてよい。そして、図 2 の装置構成では、表面処理用ガスもまた、成膜用ガスと同様にガス導入ヘッド 35 から基板 20 に供給され、熱触媒体 50 の表面付近を

通過することで、前述したような接触分解反応が生ずることにより、基板 20 の上記の表面処理反応が促進される。

また、熱触媒体 50 は、成膜後の絶縁膜のパッシベーション特性を向上させるための後処理にも利用される。すなわち、絶縁膜の堆積後に、後処理用ガス導入路 3 4 からアンモニアガスや水素ガスなどの後処理用ガスを導入し、表面処理と同様の熱触媒体 50 によって接触分解反応を引き起こして後処理を行なうことにより、さらに絶縁膜の特性を改善することができる。後処理として周知の水素アニール処理は、水素雰囲気下で、300～500°Cに基板を加熱して行なうが、上記の後処理は、熱触媒体 50 により分解化学種を積極的に処理容器内に生成させる点が根本的に異なり、分解した化学種が絶縁膜中に拡散してダングリングボンドを封止するためパッシベーション特性が改善されると考えられる。また、該方法によれば、通常の水素アニール処理よりも基板温度を下げられるため（例えば 200°C 以上 40 0°C 以下）、図 1において、電極 63 及び 64 を形成後に絶縁膜を形成しても、基板 66 と電極 63, 64 のコンタクト特性を損なう惧れもない。なお、この後処理時に膜中の水素含有量が若干増加する場合があるが、その増加代は 1 原子%以上 3 原子%以下の範囲に収まっていることが多く、成膜後の水素含有率が 5 原子%以下に留まつていれば、最終的な膜中の水素含有率が 10 原子%を超えることはない。以下、図 1 の太陽電池 100 の製造工程の一例について説明する（ここでは p 型基板を用いた場合について説明するが、n 型基板を用いた場合は、「n⁺」を「p⁺」と読みかえればよい。ただし、物理的な特性値は異なる）。また、以降の太陽電池作製方法は一例であり、これに限定されるものではない。まず、基板方位が (100) の単結晶シリコン基板 (FZ 法、B ドープ) 66 に対し、テクスチャエンジニアリングと呼ばれる異方性アルカリエッチングにより、表面に微細なピラミッド状の表面構造を形成する。通常水酸化ナトリウムとアルコールを混合したもの、あるいは炭酸カリウム、炭酸ナトリウムなどを水中に溶解させたものを用い、表面構造の大

きさは $1 \sim 10 \mu\text{m}$ 程度である。この構造により、受光面への入射光が複数回反射しながら基板内部へ効率的に取り込まれる。

その後、 n^+ 層、すなわちエミッタ層65を形成する。一般的にはリンに代表されるV族元素を、熱拡散、イオン打ち込みなどの公知の方法でドープする。 n^+ 層におけるドーパントの表面不純物濃度はシート抵抗が $40 \sim 200 \Omega/\square$ であるよう5に調整することが好ましい。そして、基板裏面の全面に上記の触媒CVD法により窒化珪素からなる裏面側絶縁膜62を形成し、次いでコンタクトホール67の部分をフォトリソグラフィー、機械研削あるいはレーザーアブレーションなどの方法によって開口した後、A1等からなる裏面電極64を真空蒸着法、スパッタ法など10によって堆積する。他方、基板66の受光面側は、エミッタ層65を形成する際の拡散時に堆積したリンガラスなどをエッチング除去した後、表面電極63をマスク蒸着などにより堆積し、その後、窒化珪素からなる受光面側絶縁膜61を同様の触媒CVD法により形成する。

通常の半導体デバイスのパッシベーション性能の評価は、金属／絶縁体／半導体15の積層構造(MIS構造)を形成して、容量－電圧特性(C－V特性)を調べることで見積もることが多い。太陽電池の場合は、拡張 Shockley-Read-Hall 表面再結合モデルから考察されるように、実効再結合速度は、界面準位密度及び膜中の固定電荷、及び電子とホールとの各捕獲断面積、基板不純物濃度、キャリア注入量などの影響を受ける。また、実験的には、窒化珪素膜中のダングリングボンドによるホールのトラップによりC－V測定においてヒステリシス効果が生じ、またトラップ20されたホールが紫外線照射など外部要因で解放されることもあるので、基板の履歴も測定結果に影響する。そのため、暗状態でのC－V特性から得られる界面準位密度及び膜中の固定電荷のみで、太陽電池の実際の動作状況を把握することは難しい。そこで裏面のパッシベーション性能の評価においては、バイアス光を測定サンプル25に照射することにより、キャリア注入状態を再現しながら太陽電池の動作状況をシ

ミュレーションし、ライフタイムスキャナーを用いて実効ライフタイムを測定することにより、実効表面再結合速度を見積もることが一般に行われている。他方、受光面側、すなわちエミッタ層 6 5 側は、高濃度に不純物が注入されているため、C-V 測定あるいは DLT S 測定の感度が低下し、また深さ方向に拡散の濃度分布があるため実効表面再結合速度の解析が難しい。そのため、受光面側のパッシベーション性能については、実際に太陽電池を作製し、その特性から評価することが多い。

従来のプラズマ CVD 法では、前述のごとくプラズマダメージが大きく、積極的に多量の水素を膜中に導入してダングリングボンドの封止を図る必要があった。本発明においては、受光面側絶縁膜 6 1 を触媒 CVD により形成することで、基板 6 6 にプラズマダメージが加わらないから非常に良好なパッシベーション特性が得られる。また、プラズマダメージによるダングリングボンドが生じにくいことから、水素を膜中に積極導入する必要がなく、膜組成も窒化珪素の化学量論組成 (Si / N 原子比 = 0.75) に近いものを採用すればよいので、プラズマ CVD 法により大量に水素導入した窒化珪素膜よりも、耐紫外線特性がはるかに良好である。

他方、窒化珪素膜の組成を化学量論比から珪素過剰側に大きくシフトさせる必要がないことは、耐紫外線特性が受光面側ほどには問題とならない裏面側絶縁膜 6 4 に適用した場合において、別の観点での効果を生ずる。つまり、膜組成が珪素過剰側に過剰にシフトしていないので、その接触界面付近にて基板 6 6 側に、図 5 のような大きな反転層が形成されることが抑制される。その結果、裏面電極 6 4 を経由した面内の短絡が効果的に防止され、変換効率の向上がもたらされる。

なお、触媒 CVD 法による成膜処理においては、成膜温度の選定が重要である。例えば、受光面側絶縁層 6 1 を反射防止膜として成膜する場合、成膜温度は 200°C ~ 400°C 程度が好ましく、なるべく高温に設定することが、堆積される膜中の欠陥もより一層減少するため、パッシベーション特性の点から好ましい。また、基板 6 6 の温度は、材料的にも構造的にも熱による変性を受ける温度以下に維持さ

れることが好ましい。なお、図1では電極63をエミッタ層65と接触させているが、これを、A1電極として、受光面側絶縁層61上にMISコンタクト形態で形成する場合は、成膜温度が400°Cを超えると、A1電極がエミッタ層を突き抜け
るスパイキングを起こし、短絡して性能の低下をもたらす。このため、成膜温度は
400°C以下にすることが重要である。

また、成膜に先立って前述の表面処理を行なう場合、熱触媒体50の温度は成膜時の触媒温度か、又はそれ以下であることが好ましく、通常1000~1700°Cの範囲で行われる。さらに、成膜後に後処理を行なう場合は、熱触媒体50の温度は表面処理と同様の条件で行われることが好ましく、通常の水素アニール処理を追加、あるいは代用することも基板あるいは電極と基板間のコンタクトの特性を損なわない限り可能である。

なお、裏面側絶縁膜62を通常の熱酸化膜として形成することもできる。この場合、周知のドライ酸化、ウェット酸化、パイロジエニック酸化などの手法を採用できる。この際、基板の両面が酸化されるため、裏面にレジストを塗布、乾燥した後、希フッ酸などによって受光面側の酸化膜を除去し、さらにレジストを除去する。この工程により、裏面の絶縁膜62が形成される。

以下、本発明の効果を確認するために行なった実験結果について説明する。

(実験例1)

抵抗率1.5Ωcm、3インチ丸形の(100)単結晶シリコン基板(FZ法、
Bドープ)を、2%フッ酸で1分洗浄した後、超純水で5分リンスし、乾燥窒素を
吹きつけて乾燥した。その後、触媒CVD法により屈折率2.4(Si/N原子比
=1.48:水素希釈なし)、膜厚80nmの窒化珪素膜を両面に堆積した。次に、
0.5sunの白色バイアス光を照射しながら、実効ライフタイムをライフタイム
スキャナーで測定し、同じ基板をケミカルパッシベーション処理(ヨウ素/エタノ
ール処理)したものとのライフタイム測定結果を基準として、表面再結合速度を算出

した。また、サンプルの片面を400Wのメタルハロゲンランプを光源とし、320 nm以下の波長成分をフィルターによってカットした紫外線に32時間及び128時間暴露した後、同様に表面再結合速度を算出した。また、窒化珪素膜中の水素含有率をFT-IR法により分析した。

5 (実験例2)

実験例1と同様の手順でシリコン基板を洗浄、乾燥し、触媒CVD法により、表面処理をアンモニアガスで行い、続いて屈折率2.4の窒化珪素膜を両面に堆積して、同様の測定を行った。

(実験例3)

10 実験例1と同様の手順でシリコン基板を洗浄、乾燥し、触媒CVD法により、表面処理をアンモニアガスで行い、続いて屈折率2.4の窒化珪素膜を両面に堆積した後、後処理を水素ガスで行い、同様の測定を行った。

(比較例1)

15 実験例1と同様の手順でシリコン基板を洗浄、乾燥し、ダイレクトプラズマCVD法（周波数100kHz：水素希釈なし）により、屈折率2.4の窒化珪素膜を両面に堆積して、同様の測定を行った。

(比較例2)

20 実験例1と同様の手順でシリコン基板を洗浄、乾燥し、リモートプラズマCVD法（マイクロ波2.5GHz：水素希釈なし）により、屈折率2.4の窒化珪素膜を両面に堆積して、同様の測定を行った。

以上の結果を表1に示す。

表 1

	実効表面再結合速度(cm/s)			変化率 128時間照射後 ／照射前
	紫外線 照射前	32 時間後	128 時間後	
実験例1	20	30	58	2.9
実験例2	18	25	45	2.5
実験例3	17	28	40	2.4
比較例1	96	185	542	5.6
比較例2	21	45	108	5.1

この結果によると、窒化珪素膜を触媒CVDにて形成した実験例1～実験例3の試験品は、いずれも膜中の水素含有率が5原子%以下と小さく、紫外線照射を継続しても実効表面再結合速度の増加は鈍い。すなわち、耐紫外線特性に優れていることがわかる。しかし、プラズマCVD法を用いた比較例1及び比較例2の試験品は、膜中の水素含有率が非常に高く、紫外線照射継続により実効表面再結合速度は急速に増加しており、実験例1～実験例3の結果には及ばないことがわかる。

10 (実験例4)

抵抗率 $0.5\Omega\text{cm}$ 、厚さ $300\mu\text{m}$ 、面寸法 $100\text{mm} \times 100\text{mm}$ の擬四角形状(100)単結晶シリコン基板(FZ法、Bドープ)を、濃水酸化ナトリウム水溶液中でダメージエッチし、その後水酸化ナトリウム水溶液/イソプロパノール混合溶液中で表面全体にテクスチャを形成した。基板をRCA洗浄した後、高温酸化(1000°C)し、片面をレジストで保護した後、バッファードフッ酸溶液中で酸化膜を片面だけエッティングした。レジストを除去した後、オキシ塩化リンをソースとしたリン拡散を 830°C で行い、表面のシート抵抗が $100\Omega/\square$ となるよう

に拡散した。その後、表面のリンガラスを2%フッ酸で除去し、マスク蒸着によつて受光面電極（T i / P d / A g）を蒸着した。裏面は機械加工により溝を形成し、その上から裏面電極（A 1）を蒸着した。その後、受光面側に触媒C V D法によつて屈折率が2. 1（S i / N原子比=1. 0 4：水素希釈なし）、膜厚が80 nm の窒化珪素膜を堆積した。完成した太陽電池の特性評価をソーラーシミュレータ（1. 5 sun）で測定した。

（実験例5）

実験例4と同様に裏面電極まで形成し、受光面側に触媒C V D法による表面処理をアンモニアガスで行い、続いて屈折率2. 1の窒化珪素膜を堆積して、同様の測定を行った。

（実験例6）

実験例4と同様に裏面電極まで形成し、受光面側に触媒C V D法による表面処理をアンモニアガスで行い、続いて屈折率2. 1の窒化珪素膜を堆積した後、後処理を水素ガスで行い、同様の測定を行った。

（比較例3）

実験例4と同様に裏面電極まで形成し、受光面側にダイレクトプラズマC V D法（周波数100 kHz）により、屈折率2. 1の窒化珪素膜を堆積して、同様の測定を行った。

（比較例4）

実験例4と同様に裏面電極まで形成し、受光面側にリモートプラズマC V D法（マイクロ波2. 5 GHz）により、屈折率2. 1の窒化珪素膜を堆積して、同様の測定を行った。

以上の結果を表2に示す。

表2

	フィルファクター (%)	変換効率 (%)	Voc (mV)	Jsc (mA/cm ²)
実験例4	80.0	19.5	650	37.5
実験例5	79.8	19.5	653	37.4
実験例6	80.5	19.9	655	37.8
比較例3	78.4	17.8	630	36.0
比較例4	79.0	18.8	642	37.0

この結果によると、窒化珪素膜を触媒CVDにて形成した実験例4～実験例6の試験品は、いずれも、変換効率を含めた全ての太陽電池特性において、プラズマCVD法を用いた比較例3及び比較例4の試験品の結果を凌駕していることがわかる。
5 また、実験例5及び実験例6のごとく、成膜前の基板表面処理及び後処理を同じ触媒を用いて行なうと、その差は一層顕著となっていることもわかる。

(実験例7)

抵抗率0.5Ωcm、厚さ300μm、面寸法100mm×100mmの擬四角形状(100)単結晶シリコン基板(FZ法、Bドープ)を、濃水酸化ナトリウム水溶液中でダメージエッチし、その後水酸化ナトリウム水溶液/イソプロパノール混合溶液中で表面全体にテクスチャを形成した。基板を2枚背中合わせにしてオキシ塩化リンをソースとしたリン拡散を830℃で行い、表面のシート抵抗が100Ω/□となるように拡散した。その後、表面のリンガラスを2%フッ酸で除去し、マスク蒸着によって受光面電極(Ti/Pd/Ag)を蒸着した。裏面は触媒CVD法による表面処理をアンモニアガスで行い、続いて屈折率が2.0(Si/N原子比=0.91:水素希釈なし)、膜厚が80nmの窒化珪素膜を堆積した後、機

機械加工により溝を形成し、その上から裏面電極（A 1）を蒸着した。その後、受光面側に触媒CVD法によって屈折率が2.1（Si/N原子比=1.04：水素希釈なし）、膜厚が80nmの窒化珪素膜を堆積した。完成した太陽電池の特性評価をソーラーシミュレータ（1.5sun）で測定した。

5 (実験例8)

裏面は触媒CVD法による表面処理をアンモニアガスで行い、続いて屈折率が2.0、膜厚が80nmの窒化珪素膜を堆積した後、後処理を水素ガスで行ったこと以外は、実験例7と同様に作製した太陽電池の特性評価をソーラーシミュレータ（1.5sun）で測定した。

10 (比較例5)

実験例7と同様に表面電極までを形成し、ダイレクトプラズマCVD法（周波数100kHz）により、裏面に屈折率2.0、受光面側に屈折率2.1の窒化珪素膜を堆積したこと以外は同様の工程を経て太陽電池を測定した。

(比較例6)

15 実験例7と同様に表面電極までを形成し、リモートプラズマCVD法（マイクロ波2.5GHz）により、裏面に屈折率2.0、受光面側に屈折率2.1の窒化珪素膜を堆積したこと以外は同様の工程を経て太陽電池を測定した。

以上の結果を表3に示す。

表 3

	フィルファクター (%)	変換効率 (%)	Voc (mV)	Jsc (mA/cm ²)
実験例7	79. 5	18. 5	645	36. 2
実験例8	79. 6	18. 8	649	36. 3
比較例5	77. 3	16. 1	628	33. 1
比較例6	78. 0	17. 2	635	34. 7

この結果によると、窒化珪素膜を触媒CVDにて形成した実験例7及び実験例8の試験品は、いずれも、変換効率を含めた全ての太陽電池特性において、プラズマCVD法を用いた比較例5及び比較例6の試験品の結果を凌駕していることがわかる。また、実験例5及び実験例6のごとく、成膜前の基板表面処理及び後処理を同じ触媒を用いて行なうと、その差は一層顕著となっていることもわかる。また、裏面側に窒化珪素膜を形成する場合、触媒CVDを用いた実験例7及び実験例8の結果は表2の結果と同様に良好であるが、プラズマCVD法を用いた比較例5及び比較例6は、裏面側に窒化珪素膜を形成することにより特性が却って悪化していることがわかる。これは、比較例の窒化珪素膜がフィールド効果パッシベーションとなるため、基板側の反転層が大きくなり、図5の短絡が顕著になったためであると考えられる。

請求の範囲

1. 第一主表面に受光面が形成されるとともに、該受光面に照射される光に基づいて光起電力を発生させる半導体太陽電池基板を備え、該半導体太陽電池基板の前記受光面が、カチオン成分の主体が珪素である無機絶縁材料からなる無機絶縁膜としての受光面側絶縁膜にて被覆され、該受光面側絶縁膜を、水素含有率が 10 原子%未満の低水素含有無機絶縁膜として構成したことを特徴とする太陽電池。
2. 前記半導体太陽電池基板の第二主表面が、カチオン成分の主体が珪素である無機絶縁材料からなる無機絶縁膜としての裏面側絶縁膜にて覆われてなり、当該裏面側絶縁膜を覆う裏面電極が、該裏面側絶縁膜を貫通する導通部を介して前記半導体太陽電池基板の裏面と導通してなる構造を有するとともに、該裏面側絶縁膜は、水素含有率が 10 原子%未満とされた低水素含有無機絶縁膜として構成されてなることを特徴とする請求の範囲第 1 項記載の太陽電池。
3. 前記低水素含有無機絶縁膜の水素含有率が 5 原子%以下であることを特徴とする請求の範囲第 1 項又は第 2 項に記載の太陽電池。
4. 前記受光面側絶縁膜が、屈折率が 2 以上 2.5 以下の窒化珪素からなる前記低水素含有無機絶縁膜とされたことを特徴とする請求の範囲第 1 項ないし第 3 項のいずれか 1 項に記載の太陽電池。
5. 前記無機絶縁膜は、反応容器内に前記半導体太陽電池基板とともに熱触媒体を配置し、珪素源ガスと、得るべき無機材料において珪素と結合するアニオン成分を生成するアニオン源ガスとを含有し、かつ、前記珪素源ガスと前記アニオン源ガスとの少なくともいずれかが、ガス分子中に水素原子を有する成膜用ガスを前記熱触媒体と接触させつつ前記半導体太陽電池基板の表面に供給し、該成膜用ガスの化学反応に基づき生成する無機絶縁材料を該半導体太陽電池基板の表面に堆積させる触媒 CVD 法により形成されたものであることを特徴とする請求の範囲第 1 項ない

し第4項のいずれか1項に記載の太陽電池。

6. 前記低水素含有無機絶縁膜は、Si/N原子比が0.80以上1.80以下となるように形成された窒化珪素膜であることを特徴とする請求の範囲第1項ないし第5項のいずれか1項に記載の太陽電池。

5 7. 前記窒化珪素膜の屈折率が2以上2.5以下であることを特徴とする請求の範囲第6項記載の太陽電池。

8. 前記裏面側絶縁膜が、反応容器内に前記半導体太陽電池基板とともに熱触媒体を配置し、珪素源ガスと窒素源ガスとを含有する成膜用ガスを前記熱触媒体と接触させつつ前記半導体太陽電池基板の表面に供給し、該成膜用ガスの化学反応に基づき生成する窒化珪素を該半導体太陽電池基板の表面に堆積させる触媒CVD法により、Si/N原子比が0.80以上1.80以下となるように形成された窒化珪素膜であることを特徴とする請求の範囲第1項ないし第7項のいずれか1項に記載の太陽電池。

9. 第一主表面に受光面が形成されるとともに、該受光面に照射される光に基づいて光起電力を発生させる半導体太陽電池基板を備え、該半導体太陽電池基板の第二主表面が、無機絶縁材料としての窒化珪素からなる無機絶縁膜としての裏面側絶縁膜にて覆われてなり、当該裏面側絶縁膜を覆う裏面電極が、該裏面側絶縁膜を貫通する導通部を介して前記半導体太陽電池基板の裏面と導通してなる構造を有するとともに、

20 前記裏面側絶縁膜を構成する窒化珪素膜は、反応容器内に前記半導体太陽電池基板とともに熱触媒体を配置し、珪素源ガスと窒素源ガスとを含有する成膜用ガスを前記熱触媒体と接触させつつ前記半導体太陽電池基板の表面に供給し、該成膜用ガスの化学反応に基づき生成する窒化珪素を該半導体太陽電池基板の表面に堆積させる触媒CVD法により、Si/N原子比が0.80以上1.80以下となるように形成されたものであることを特徴とする太陽電池。

10. 前記無機絶縁膜は、前記反応容器内に表面処理用ガスを導入し、該表面処理用ガスを前記熱触媒体と接触させつつ前記半導体太陽電池基板の表面に供給することによりこれを表面処理した後、当該表面処理後の半導体太陽電池基板表面に前記触媒CVD法により堆積されたものであることを特徴とする請求の範囲第1項な

5 いし第9項のいずれか1項に記載の太陽電池。

11. 前記半導体太陽電池基板がシリコン基板であり、前記無機絶縁膜が窒化珪素膜であり、前記表面処理用ガスがアンモニアガスであることを特徴とする請求の範囲第10項記載の太陽電池。

12. 前記無機絶縁膜は、前記触媒CVD法により前記半導体太陽電池基板表面に堆積された後、前記反応容器内に後処理用ガスを導入し、該後処理用ガスを前記熱触媒体と接触させつつ当該無機絶縁膜の表面に供給することにより後処理されたものであることを特徴とする請求の範囲第1項ないし第11項のいずれか1項に記載の太陽電池。

13. 第一主表面に受光面が形成されるとともに、該受光面に照射される光に基づいて光起電力を発生させる半導体太陽電池基板を備え、該半導体太陽電池基板の第二主表面が、カチオン成分の主体が珪素である無機絶縁膜よりなる裏面側絶縁膜にて覆われてなり、当該裏面側絶縁膜を覆う裏面電極が、該裏面側絶縁膜を貫通する導通部を介して前記半導体太陽電池基板の裏面と導通してなる構造を有するとともに、

20 前記無機絶縁膜は、反応容器内に前記半導体太陽電池基板とともに熱触媒体を配置し、珪素源ガスと、得るべき無機材料において珪素と結合するアニオン成分を生成するアニオン源ガスとを含有する成膜用ガスを前記熱触媒体と接触させつつ前記半導体太陽電池基板の表面に供給し、該成膜用ガスの化学反応に基づき生成する無機絶縁材料を該半導体太陽電池基板の表面に堆積させる触媒CVD法により堆積・
25 形成した後、前記反応容器内に後処理用ガスを導入し、該後処理用ガスを前記熱触

媒体と接触させつつ当該無機絶縁膜の表面に供給することにより後処理して得られたものであることを特徴とする太陽電池。

14. 第一主表面に受光面が形成されるとともに、該受光面に照射される光に基

づいて光起電力を発生させる半導体太陽電池基板を備え、該半導体太陽電池基板の

5 前記受光面が、カチオン成分の主体が珪素である無機絶縁膜よりなる受光面側絶縁
膜にて被覆された太陽電池の製造方法において、前記受光面側絶縁膜を、反応容器
内に前記半導体太陽電池基板とともに熱触媒体を配置し、珪素源ガスと、得るべき
無機材料において珪素と結合するアニオン成分を生成するアニオン源ガスとを含有
し、かつ、前記珪素源ガスと前記アニオン源ガスとの少なくともいづれかが、ガス
10 分子中に水素原子を有する成膜用ガスを前記熱触媒体と接触させつつ前記半導体太
陽電池基板の表面に供給し、該成膜用ガスの化学反応に基づき生成する無機絶縁材
料を該半導体太陽電池基板の表面に堆積させる触媒CVD法により、水素含有率が
10 原子%未満とされた低水素含有無機絶縁膜として形成することを特徴とする太
陽電池の製造方法。

15. 前記成膜用ガスを水素希釈することなく前記反応容器に供給することを特
徴とする請求の範囲第14項記載の太陽電池の製造方法。

16. 得るべき前記無機絶縁膜が窒化珪素膜であり、前記反応容器内に前記成膜
用ガスを、Si/N原子比が0.80以上1.80以下の窒化珪素が得られるよう
に、前記珪素源ガスと前記アニオン源ガスをなす窒素源ガスとの混合比を調整して
20 供給することを特徴とする請求の範囲第14項又は第15項に記載の太陽電池の製
造方法。

17. 第一主表面に受光面が形成されるとともに、該受光面に照射される光に基
づいて光起電力を発生させる半導体太陽電池基板を備え、該半導体太陽電池基板の
第二主表面が、窒化珪素からなる無機絶縁膜としての裏面側絶縁膜にて覆われてな
25 り、当該裏面側絶縁膜を覆う裏面電極が、該裏面側絶縁膜を貫通する導通部を介し

て前記半導体太陽電池基板の裏面と導通してなる構造を有する太陽電池の製造方法

において、

前記裏面側絶縁膜を構成する窒化珪素膜を、反応容器内に前記半導体太陽電池基

板とともに熱触媒体を配置し、珪素源ガスと窒素源ガスとを含有する成膜用ガスを

- 5 前記熱触媒体と接触させつつ前記半導体太陽電池基板の表面に供給し、該成膜用ガスの化学反応に基づき生成する窒化珪素を該半導体太陽電池基板の表面に堆積させる触媒CVD法により、Si/N原子比が0.80以上1.80以下となるように、前記珪素源ガスと前記窒素源ガスとの混合比を調整して形成することを特徴とする太陽電池の製造方法。

- 10 18. 前記珪素源ガス及び前記窒素源ガスとしてシラン及びアンモニアを用いることを特徴とする請求の範囲第17項記載の太陽電池の製造方法。

19. 前記無機絶縁膜を、前記反応容器内に表面処理用ガスを導入し、該表面処理用ガスを前記熱触媒体と接触させつつ前記半導体太陽電池基板の表面に供給することによりこれを表面処理した後、当該表面処理後の半導体太陽電池基板表面に前記触媒CVD法により堆積することを特徴とする請求の範囲第14項ないし第18項のいずれか1項に記載の太陽電池の製造方法。

- 20 20. 前記半導体太陽電池基板がシリコン基板であり、前記無機絶縁膜が窒化珪素膜であり、前記表面処理用ガスがアンモニアガスであることを特徴とする請求の範囲第19項に記載の太陽電池の製造方法。

21. 前記無機絶縁膜を、前記触媒CVD法により前記半導体太陽電池基板表面に堆積した後、前記反応容器内に後処理用ガスを導入し、該後処理用ガスを前記熱触媒体と接触させつつ当該無機絶縁膜の表面に供給することにより該無機絶縁膜を後処理することを特徴とする請求の範囲第14項ないし第20項のいずれか1項に記載の太陽電池の製造方法。

22. 第一主表面に受光面が形成されるとともに、該受光面に照射される光に基

づいて光起電力を発生させる半導体太陽電池基板を備え、該半導体太陽電池基板の第二主表面が、カチオン成分の主体が珪素である無機絶縁膜よりなる裏面側絶縁膜にて覆われてなり、当該裏面側絶縁膜を覆う裏面電極が、該裏面側絶縁膜を貫通する導通部を介して前記半導体太陽電池基板の裏面と導通してなる構造を有する太陽

5 電池の製造方法において、

前記無機絶縁膜を、反応容器内に前記半導体太陽電池基板とともに熱触媒体を配置し、珪素源ガスと、得るべき無機材料において珪素と結合するアニオン成分を生成するアニオン源ガスとを含有する成膜用ガスを前記熱触媒体と接触させつつ前記半導体太陽電池基板の表面に供給し、該成膜用ガスの化学反応に基づき生成する無機絶縁材料を該半導体太陽電池基板の表面に堆積させる触媒CVD法により堆積・形成した後、前記反応容器内に後処理用ガスを導入し、該後処理用ガスを前記熱触媒体と接触させつつ当該無機絶縁膜の表面に供給することにより前記無機絶縁膜を後処理することを特徴とする太陽電池の製造方法。

23. 前記半導体太陽電池基板がシリコン基板であり、前記無機絶縁膜が窒化珪素膜であり、前記後処理用ガスがアンモニアガス、水素ガス又はそれらの混合ガスであることを特徴とする請求の範囲第21項又は第22項に記載の太陽電池の製造方法。

要 約 書

太陽電池100においては、第一主表面に受光面が形成されるとともに、該受光面に照射される光に基づいて光起電力を発生させる半導体太陽電池基板66を備え、
5 該半導体太陽電池基板66の受光面が、カチオン成分の主体が珪素である無機絶縁材料からなる受光面側絶縁膜61にて被覆され、該受光面側絶縁膜61を、水素含有率が10原子%未満の低水素含有無機絶縁膜として構成する。これにより、パッシベーション効果に優れ、また、パッシベーション効果の経時劣化を生じにくい絶縁膜を有した太陽電池を提供する。

1/3

図1

図2

2/3

図3

図4

10/13556063

3/3

図5

特許協力条約

発信人 日本国特許庁（受理官庁）

出願人代理人
菅原 正倫

あて名 殿
〒 460 - 0008
日本国愛知県名古屋市中区栄二丁目9番30号 栄山吉ビル
菅原国際特許事務所

P C T

国際出願番号及び 国際出願日の通知書

(法施行規則第22条、第23条)
[PCT規則20.5(c)]

発送日（日、月、年）

13.04.2004

出願人又は代理人の書類記号	重 要 な 通 知	
PCT0301252S	国際出願番号	優先日（日、月、年）
国際出願番号 P C T / JP2004 / 004405	国際出願日（日、月、年） 29.03.2004	09.05.2003
出願人（氏名又は名称） 信越半導体株式会社		

1. この国際出願は、上記の国際出願番号及び国際出願日が付与されたことを通知する。

記録原本は、 13 日 04 月 2004 年 に国際事務局に送付した。

注 意

- a. 国際出願番号は、特許協力条約を表示する「PCT」の文字、斜線、受理官庁を表示する2文字コード（日本の場合JP）、西暦年の4桁の数字、斜線、及び6桁の数字からなっています。
- b. 国際出願日は、「特許協力条約に基づく国際出願に関する法律」第4条第1項の要件を満たした国際出願に付与されます。
- c. あて名等を変更したときは、速やかにあて名の変更届等を提出して下さい。
- d. 電子計算機による漢字処理のため、漢字の一部を当用漢字、又は、仮名に置き換えて表現してある場合もありますので御了承下さい。
- e. この通知に記載された出願人のあて名、氏名（名称）に誤りがあるときは申出により訂正します。
- f. 国際事務局は、受理官庁から記録原本を受領した場合には、出願人にその旨を速やかに通知（様式PCT/IB/301）する。記録原本を優先日から14箇月が満了しても受領していないときは、国際事務局は出願人にその旨を通知する。〔PCT規則22.1(c)〕

受理官庁の名称及びあて名 日本国特許庁 (RO/JP) 郵便番号 100-8915 日本国東京都千代田区霞が関三丁目4番3号 電話番号 03-3592-1308	権限のある職員 特許庁長官
--	------------------

特許協力条約

発信人 日本国特許庁（国際調査機関）

出願人代理人 菅原 正倫	殿
あて名 〒 460 - 0008	
日本国愛知県名古屋市中区栄二丁目 9番30号 栄山吉ビル 菅原国際特許事務所	

調査用写しの 受理の通知

[PCT規則25.1]

発送日（日、月、年）

13.04.2004

出願人又は代理人の書類記号 PCT0301252S	重 要 な 通 知	
国際出願番号 PCT / JP2004 / 004405	国際出願日（日、月、年） 29.03.2004	優先日（日、月、年） 09.05.2003
出願人（氏名又は名称） 信越半導体株式会社		

1. 国際調査機関と受理官庁が同一の機関でない場合、
国際出願の調査用写しを国際調査機関が下記の日に受理したので通知する。

国際調査機関と受理官庁が同一の機関である場合、
国際出願の調査用写しを下記の日に受理したので通知する。

13 日 04 月 2004 年 (受理の日)

2. 調査用の写しには、コンピューター読み取りが可能な形式によるヌクレオチド又はアミノ酸の配列表若しくは配列表に関連するテーブルが添付されている。
3. 国際調査報告及び見解書の作成期間
国際調査報告及び見解書の作成期間は、上記受理の日から3月又は優先日から9月のいずれか遅く満了する期間である。
4. この通知書の写しは、国際事務局及び上記第1項の第1文が適用される場合には受理官庁に送付した。

国際調査機関の名称及びあて名 日本国特許庁 (ISA/JP) 郵便番号 100-8915 電話番号 03-3592-1308 日本国東京都千代田区霞が関三丁目4番3号	権限のある職員 特許庁長官
様式 PCT / ISA / 202 (2004年1月)	