第三部分 代数结构

主要内容

- 代数系统
- 群与环(自学)
- 格与布尔代数

第九章 代数系统

主要内容

- 二元运算及其性质
- 一元和二元运算定义及其实例
- 二元运算的性质

代数系统

- 代数系统定义及其实例
- 子代数
- 积代数

代数系统的同态与同构

離散數學 9.1 二元运算及其性质

- 定义9.1 设S为集合,函数 $f: S \times S \rightarrow S$ 称为S上的二元运算,简称为二元运算。
- S中任何两个元素都可以进行运算,且运算的结果惟一.
- \bullet S中任何两个元素的运算结果都属于S,即S对该运算封闭.
- 例1 (1) 自然数集合N上的加法和乘法是N上的二元运算,但减 法和除法不是.
 - (2) 整数集合Z上的加法、减法和乘法都是Z上的二元运算, 而除法不是.
 - (3) 非零实数集R*上的乘法和除法都是R*上的二元运算, 而加法和减法不是.

实例

(4) 设 $M_n(\mathbf{R})$ 表示所有n 阶($n \ge 2$)实矩阵的集合,即

$$M_{n}(R) = \left\{ \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & & & \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \middle| a_{ij} \in R, i, j = 1, 2, ..., n \right\}$$

则矩阵加法和乘法都是 $M_n(\mathbf{R})$ 上的二元运算.

- (5) S 为任意集合,则 \cup 、 \cap 、 \cup 、 \cup 为P(S)上二元运算.
- (6) S^S 为S上的所有函数的集合,则合成运算°为 S^S 上二元运算.

離散數學一元运算的定义与实例

定义9.2 设S为集合,函数 $f:S \rightarrow S$ 称为S上的一元运算,简称一元运算。

例2

- (1) 求相反数是整数集合 Z, 有理数集合 Q 和实数集合 R 上的一元运算.
- (2) 求倒数是非零有理数集合Q*,非零实数集合R*上一元运算.
- (3) 求共轭复数是复数集合C上的一元运算.
- (4) 在幂集P(S)上规定全集为S,则求绝对补运算~是P(S)上的一元运算.
- (5) 设 S 为集合,令 A 为 S 上所有双射函数的集合, $A \subseteq S^S$,求一个双射函数的反函数为A上的一元运算.
- (6) 在 $n(n \ge 2)$ 阶实矩阵的集合 $M_n(\mathbf{R})$ 上,求转置矩阵是 $M_n(\mathbf{R})$ 上的一元运算.

離散數學 二元与一元运算的表示

1. 算符

可以用。,*,·, \oplus , \otimes , Δ 等符号表示二元或一元运算,称为算符.

对二元运算。,如果 x 与 y 运算得到 z,记做 $x \circ y = z$ 对一元运算 Δ , x 的运算结果记作 Δx .

2. 表示二元或一元运算的方法:解析公式和运算表

公式表示

例 设 R 为实数集合,如下定义 R 上的二元运算 *: $\forall x, y \in \mathbb{R}, x * y = x$.

那么
$$3*4=3$$
, $0.5*(-3)=0.5$

运算表

运算表:表示有穷集上的一元和二元运算

О	a_1 a_2	a_n
a_1	$a_1 \circ a_1 \ a_1 \circ a_2 \dots$	$a_1 \circ a_n$
a_2	$a_2 \circ a_1 \ a_2 \circ a_2 \dots$	$a_2 \circ a_n$
•	•••	
•		
•		
a_n	$a_n \circ a_1 \ a_n \circ a_2 \ \dots$	$a_n \circ a_n$

	$\circ a_i$
a_1	o <i>a</i> ₁
a_2	oa ₂
•	•
•	•
•	•
a_n	$\circ a_n$

二元运算的运算表

一元运算的运算表

运算表的实例

例3 设 $S=P(\{a,b\})$, S上的 \oplus 和 ~运算的运算表如下:

Ф	Ø	<i>{a}</i>	{ <i>b</i> }	$\{a,b\}$
Ø	Ø	<i>{a}</i>	{ <i>b</i> }	$\{a,b\}$
{a}	{ <i>a</i> }	$\{a\}$ \emptyset $\{a,b\}$	$\{a.b\}$	{ b }
{ <i>b</i> }	{ b }	$\{a,b\}$	Ø	{ <i>a</i> }
{a,b}	a,b	} {b}	<i>{a}</i>	Ø

x	~x
Ø	$\{a,b\}$
{ <i>a</i> }	{ b }
{ b }	{ <i>a</i> }
$\{a,b\}$	Ø

二元运算的性质

定义9.3 设。为S上的二元运算,

- (1) 若对任意 $x,y \in S$ 有 $x \circ y = y \circ x$, 则称运算在 S 上满足交换律.
- (2) 若对任意 $x, y, z \in S$ 有 $(x \circ y) \circ z = x \circ (y \circ z)$,则称运算在S上满足结合律.
- (3) 若对任意 $x \in S$ 有 $x \circ x = x$,则称运算在 S 上满足幂等律.
- 定义9.4设。和 * 为S上两个不同的二元运算,
- (1) 若对任意 $x, y, z \in S$ 有 $(x*y) \circ z = (x \circ z) * (y \circ z)$, $z \circ (x*y) = (z \circ x) * (z \circ y)$, 则称。运算对 * 运算满足分配律.
- (2) 若°和*都可交换,且对任意 $x,y \in S$ 有 $x \circ (x*y)=x, x*(x \circ y)=x,$

则称。和*运算满足吸收律.

实例

Z, Q, R 分别为整数、有理数、实数集; $M_n(R)$ 为 n 阶实矩阵集合, $n \ge 2$; P(B) 为幂集; A^A 为从 A 到 A 的函数集, $|A| \ge 2$

集合	运算	交换律	结合律	幂等律
Z,Q,R	普通加法+ 普通乘法×	有 有	有 有	无无
$M_n(R)$	矩阵加法+ 矩阵乘法×	有 无	有 有	无 无
P(B)	并∪ 交∩ 相对补- 对称差⊕	有有无有	有有无有	有有无无无
A^A	函数复合°	无	有	无

实例 (续)

Z, Q, R 分别为整数、有理数、实数集; $M_n(R)$ 为 n 阶实矩阵集合, $n \ge 2$; P(B) 为幂集; A^A 为从 A 到 A 的函数集, $|A| \ge 2$

集合	运算	分配律	吸收律
Z,Q,R	普通加法+与乘法×	×对+可分配 +对×不分配	无
$M_n(R)$	矩阵加法+与乘法×	×对+可分配 +对×不分配	无
P(B)	并∪与交∩	∪对∩可分配 ∩对∪可分配	有
	交∩与对称差⊕	○对⊕可分配	无

離散數學 特异元素:单位元、零元

定义9.5 设。为S上的二元运算,

(1) 如果存在 $e_l(\vec{u}e_r) \in S$,使得对任意 $x \in S$ 都有

$$e_l \circ x = x \ (\overrightarrow{\mathfrak{R}} x \circ e_r = x),$$

则称 $e_l(\mathbf{x}, \mathbf{e}_r)$ 是 S 中关于。运算的左(或右)单位元.

若 $e \in S$ 关于。运算既是左单位元又是右单位元,则称 e 为 S 上关于。运算的单位元、单位元也叫做幺元、

(2) 如果存在 $\theta_l(\bar{\mathbf{u}}\theta_r) \in S$,使得对任意 $x \in S$ 都有

$$\theta_l \circ x = \theta_l \ (\vec{\boxtimes} x \circ \theta_r = \theta r),$$

则称 $\theta_l(\vec{q}, \theta_r)$ 是 S 中关于。运算的左(或右)零元.

若 θ ∈ S 关于。运算既是左零元又是右零元,则称 θ 为 S 上 关于运算。的零元.

可逆元素和逆元

(3) 设。为S上的二元运算,令e为S中关于运算。的单位元.

对于 $x \in S$, 如果存在 $y_l(\mathbf{x}, \mathbf{y}_r) \in S$ 使得

$$y_l \circ x = e \quad (\overrightarrow{\mathfrak{g}} x \circ y_r = e)$$

则称 y_l (或 y_r)是 x 的左逆元 (或右逆元).

关于。运算,若 $y \in S$ 既是 x 的左逆元又是 x 的右逆元,则称 y 为 x 的逆元. 如果 x 的逆元存在,就称 x 是可逆的.

实例

集合	运算	单位元	零元	逆元
Z,Q,R	普通加法+	0	无	<i>x</i> 逆元 - <i>x</i>
	普通乘法×	1	0	<i>x</i> 逆元 <i>x</i> ⁻¹
				(x-1∈给定集
				合)
$M_n(R)$	矩阵加法+	n 阶全 0 矩阵	无	<i>X</i> 逆元– <i>X</i>
	矩阵乘法×	n 阶单位矩阵	n阶全0矩阵	X 的逆元 X^{-1}
				(<i>X</i> 可逆)
P(B)	并し	Ø	В	Ø的逆元为Ø
	交∩	B	Ø	B的逆元为B
	对称差⊕	Ø	无	X的逆元为X

定理9.1 设。为 S 上的二元运算, e_l 和 e_r 分别为 S 中关于运算的左和右单位元,则 $e_l = e_r = e$ 为 S 上关于。运算的惟一的单位元.

证: $e_l = e_l^{\circ} e_r$ (e_r 为右单位元), $e_l^{\circ} e_r = e_r$ (e_l 为左单位元) 所以 $e_l = e_r$,将这个单位元记作 e. 假设e' 也是S 中的单位元,则有 $e' = e^{\circ} e' = e$. 惟一性得证. 类似地可以证明关于零元的惟一性定理.

注意:

- 当 |S| ≥ 2, 单位元与零元是不同的;
- 当 |S| = 1时,这个元素既是单位元也是零元.

定理9.2 设。为 S 上可结合的二元运算,e 为该运算的单位元,对于 $x \in S$ 如果存在左逆元 y_l 和右逆元 y_r ,则有 $y_l = y_r = y_r$ 且 y 是 x 的惟一的逆元.

证: 由 $y_l \circ x = e \, \pi \, x \circ y_r = e \,$ 得

$$y_l = y_l \circ e = y_l \circ (x \circ y_r) = (y_l \circ x) \circ y_r = e \circ y_r = y_r$$

令 $y_l = y_r = y$,则 $y \in x$ 的逆元.

假若 $y' \in S$ 也是 x 的逆元,则

$$y'=y'\circ e=y'\circ (x\circ y)=(y'\circ x)\circ y=e\circ y=y$$

所以y是x惟一的逆元.

• 说明:对于可结合的二元运算,可逆元素 x 只有惟一的逆元,记作 x^{-1}

定义9.6 非空集合 S 和 S 上 k 个一元或二元运算 $f_1, f_2, ..., f_k$ 组成的系统称为代数系统,简称代数,记做< S, $f_1, f_2, ..., f_k$ >.

实例:

- (1) <N,+>, <Z,+,・>, <R,+,・> 是代数系统,+ 和・分别表示普通加法和乘法.
- (2) $< M_n(R)$, +, → 是代数系统, + 和 · 分别表示 n 阶($n \ge 2$)实矩 阵的加法和乘法.
- (3) $\langle Z_n, \oplus, \otimes \rangle$ 是代数系统, $Z_n = \{0,1,...,n-1\}$, \oplus 和 \otimes 分别表示 模 n 的 加 法 和 乘 法 , 对 于 $x,y \in Z_n$, $x \oplus y = (x + y) \bmod n$, $x \otimes y = (xy) \bmod n$
- $(4) < P(S), \cup, \cap, \sim$ 是代数系统, \cup 和 \cap 为并和交, \sim 为绝对补.

離散數學代数系统的成分与表示

构成代数系统的成分:

- 集合(也叫载体,规定了参与运算的元素)
- 运算(这里只讨论有限个二元和一元运算)
- 代数常数(通常是与运算相关的特异元素:如单位元等)
 研究代数系统时,如果把运算具有它的特异元素也作为系统的性质之一,那么这些特异元素可以作为系统的成分,叫做代数常数.

例如:代数系统 $\langle Z,+,0 \rangle$:集合 Z,运算 +,代数常数 0代数系统 $\langle P(S),\cup,\cap \rangle$:集合 P(S),运算 \cup 和 \cap ,无代数常数

代数系统的表示

- (1) 列出所有的成分:集合、运算、代数常数(如果存在)如 <**Z**,+,**0**>,<*P*(*S*), \cup , \cap >
- (2) 列出集合和运算,在规定系统性质时不涉及具有单位元的性质(无代数常数)

如 $\langle \mathbf{Z}, + \rangle$, $\langle P(S), \cup, \cap \rangle$

(3) 用集合名称简单标记代数系统 在前面已经对代数系统作了说明的前提下使用,如 代数系统 Z, P(B)

同类型与同种代数系统

定义9.7

- (1) 如果两个代数系统中运算的个数相同,对应运算的元数相同,且代数常数的个数也相同,则称它们是同类型的代数系统.
- (2) 如果两个同类型的代数系统规定的运算性质也相同,则称 为同种的代数系统.
- 例如 V_1 =< \mathbf{R} , +, ·, 0, 1>, V_2 =< $M_n(\mathbf{R})$, +, ·, 0, E>,0 为 n 阶全 0 矩阵,E为 n 阶单位矩阵, V_3 =<P(B), \cup , \cap , \emptyset , B>
- V_1 , V_2 , V_3 是同类型的代数系统,它们都含有2个二元运算, 2个代数常数.
- V_1, V_2 是同种的代数系统, V_1, V_2 与 V_3 不是同种的代数系统

运算性质比较

$oldsymbol{V_1}$	$oldsymbol{V_2}$	V_3	
+ 可交换、可结合	+ 可交换、可结合	U可交换、可结合	
·可交换、可结合	・可交換、可结合	∩可交换、可结合	
+ 满足消去律	+ 满足消去律	U不满足消去律	
・满足消去律	・不满足消去律	∩不满足消去律	
・对+可分配	・对 + 可分配	∩对∪可分配	
+ 对・不可分配	+ 对・不可分配	∪对∩可分配	
+ 与・没有吸收律	+ 与・没有吸收律	∪与∩满足吸收律	

定义9.8 设 $V=\langle S, f_1, f_2, ..., f_k \rangle$ 是代数系统,B 是 S 的非空子集,如果 B 对 $f_1, f_2, ..., f_k$ 都是封闭的,且 B 和 S 含有相同的代数常数,则称 $\langle B, f_1, f_2, ..., f_k \rangle$ 是 V 的子代数系统,简称子代数. 有时将子代数系统简记为 B.

实例

 $N \in \{Z, +\}$ 的子代数, $N \in \{Z, +\}$ 的子代数 $N-\{0\}$ 是 $\{Z, +\}$ 的子代数,但不是 $\{Z, +\}$ 的子代数 说明:

- 子代数和原代数是同种的代数系统
- 对于任何代数系统 $V=<S, f_1, f_2, ..., f_k>$, 其子代数一定存在.

关于子代数的术语

- (1) 最大的子代数: 就是 V 本身
- (2) 最小的子代数:如果令 V 中所有代数常数构成的集合是 B,且 B 对 V 中所有的运算都是封闭的,则 B 就构成了 V 的最小的子代数
- (3) 最大和最小的子代数称为V的平凡的子代数
- (4) 若B 是S 的真子集,则B构成的子代数称为 V 的真子代数.

例 设 $V=\langle Z,+,0\rangle$,令 $nZ=\{nz\mid z\in Z\}$,n为自然数,则 nZ 是 V的子代数

当n=1和0时,nZ是V的平凡的子代数; 其他的都是V的非平凡的真子代数。

定义9.9 设 $V_1 = \langle A, \circ \rangle$ 和 $V_2 = \langle B, * \rangle$ 是同类型的代数系统,。和

* 为二元运算,在集合 $A \times B$ 上如下定义二元运算。

 $\forall < a_1, b_1 >$, $< a_2, b_2 > \in A \times B$,有

 $<\!\!a_1,\!\!b_1\!\!>$ " $<\!\!a_2,\!\!b_2\!\!>$ = $<\!\!a_1\circ a_2,b_1\!\!*b_2\!\!>$

称 $V=\langle A\times B, \cdot \rangle$ 为 V_1 与 V_2 的积代数,记作 $V_1\times V_2$. 这时也称 V_1 和 V_2 为 V的因子代数.

- 定理9.3 设 $V_1 = \langle A, \circ \rangle$ 和 $V_2 = \langle B, * \rangle$ 是同类型的代数系统, $V_1 \times V_2 = \langle A \times B, \bullet \rangle$ 是它们的积代数.
 - (1) 如果。和 *运算是可交换(可结合、幂等)的,那么·运算也是可交换(可结合、幂等)的.
 - (2) 如果 e_1 和 e_2 (θ_1 和 θ_2)分别为。和 *运算的单位元(零元),那么 $<e_1$, $e_2>$ ($<\theta_1$, $\theta_2>$)也是 *运算的单位元(零元).
 - (3) 如果 x 和 y 分别为。和 *运算的可逆元素,那么< x,y>也是 *运算的可逆元素,其逆元就是 $< x^{-1}, y^{-1}>$.

離散數學 9.3 代数系统的同态与同构

定义9.10 设 $V_1 = \langle A, \circ \rangle$ 和 $V_2 = \langle B, * \rangle$ 是同类型的代数系统,

 $f: A \rightarrow B$,且 $\forall x, y \in A$ 有 $f(x \circ y) = f(x) * f(y)$,

则称 $f \in V_1$ 到 V_2 的同态映射,简称同态.

同态分类:

- (1) ƒ如果是单射,则称为单同态.
- (2) 如果是满射,则称为满同态,这时称 V_2 是 V_1 的同态像,记作 $V_1 \sim V_2$
- (3) 如果是双射,则称为同构,也称代数系统 V_1 同构于 V_2 ,记作 $V_1 \cong V_2$
- (4) 如果 $V_1=V_2$,则称作自同态.

離散數學

实例

(1) 设 V_1 =< Z_1 +>, V_2 =< Z_n , Θ >. 其中Z为整数集,+为普通加法; Z_n ={0,1,...,n-1}, Θ 为模n加. 令

 $f: \mathbb{Z} \to \mathbb{Z}_n$, $f(x) = (x) \mod n$

那么f是 V_1 到 V_2 的满同态.

(2) 设 V_1 =<R, +>, V_2 =<R*, ·>, 其中R和R*分别为实数集与非零实数集,+和·分别表示普通加法与乘法.令

 $f: \mathbf{R} \rightarrow \mathbf{R}^*$, $f(x) = \mathbf{e}^x$

则f是 V_1 到 V_2 的单同态.

(3) 设 $V=\langle Z,+\rangle$,其中Z为整数集,+为普通加法. $\forall a \in Z$,令 $f_a: Z \to Z$, $f_a(x)=ax$,

那么 f_a 是V的自同态. 当a=0时称 f_0 为零同态; 当 $a=\pm 1$ 时,称 f_a 为自同构; 除此之外其他的 f_a 都是单自同态.

第九章 习题课

主要内容

- 代数系统的构成: 非空集合、封闭的二元和一元运算、代数常数
- 二元运算性质和特异元素:交换律、结合律、幂等律、分配律、吸收律、单位元、零元、可逆元和逆元
- 同类型的与同种的代数系统
- 子代数的定义与实例
- 积代数的定义与性质
- 代数系统的同态与同构

基本要求

- 判断给定集合和运算能否构成代数系统
- 判断给定二元运算的性质
- 求而二元运算的特异元素
- 了解同类型和同种代数系统的概念
- 了解子代数的基本概念
- 计算积代数
- 判断函数是否为同态映射和同构映射

练习1

1. 设。运算为Q上的二元运算,

$$\forall x, y \in Q, \ x \circ y = x + y + 2xy,$$

- (1) 判断。运算是否满足交换律和结合律,并说明理由.
- (2) 求出。运算的单位元、零元和所有可逆元素的逆元.
- (1)。运算可交换,可结合.

任取
$$x, y \in Q$$
,

$$x \circ y = x + y + 2xy = y + x + 2yx = y \circ x,$$

任取 $x, y, z \in Q$,

$$(x \circ y) \circ z = (x+y+2xy)+z+2(x+y+2xy)z$$

= $x+y+z+2xy+2xz+2yz+4xyz$

$$x \circ (y \circ z) = x + (y + z + 2yz) + 2x(y + z + 2yz)$$

$$= x+y+z+2xy+2xz+2yz+4xyz$$

解答

(2) 设。运算的单位元和零元分别为 e 和 θ ,则对于任意 x 有 $x \circ e = x$ 成立,即

$$x+e+2xe = x \Rightarrow e = 0$$

由于。运算可交换,所以0是幺元.

对于任意 x 有 $x \circ \theta = \theta$ 成立,即

$$x + \theta + 2x \theta = \theta \Rightarrow x + 2x \theta = 0 \Rightarrow \theta = -1/2$$

给定x,设x的逆元为y,则有 $x \circ y = 0$ 成立,即

$$x+y+2xy = 0 \implies y = -\frac{x}{1+2x} \quad (x \neq -1/2)$$

因此当 $x \neq -1/2$ 时, $-\frac{x}{1+2x}$ 是 x 的逆元.

练习2

- 2. 下面是三个运算表
- (1) 说明那些运算是可交换的、可结合的、幂等的.
- (2) 求出每个运算的单位元、零元、所有可逆元素的逆元

*	a	b	c
a	c	a	b
b	a	b	\boldsymbol{c}
C	b	\boldsymbol{c}	a

0	a	b	c
а b	а <i>b</i>	а b	a b
c	C	c	C

•	a	b	c
a	a	b	C
b	b	C	\mathcal{C}
c	C	C	C

解答

- (1)*满足交换律,满足结合律,不满足幂等律.
 - 。不满足交换律,满足结合律,满足幂等律.
 - •满足交换律,满足结合律,不满足幂等律.
- (2)* 的单位元为b,没有零元, $a^{-1}=c$, $b^{-1}=b$, $c^{-1}=a$
 - 。的单位元和零元都不存在,没有可逆元素.
 - 的单位元为a,零元为c, $a^{-1}=a$,b,c 不是可逆元素.

说明:关于结合律的判断

需要针对运算元素的每种选择进行验证,若 |A|=n,一般需要验证 n^3 个等式.

单位元和零元不必参与验证.

通过对具体运算性质的分析也可能简化验证的复杂性.

练习3

- 3. 设 *G* 为非 0 实数集 *R** 关于普通乘法构成的代数系统,判断下述函数是否为 *G* 的自同态?如果不是,说明理由.如果是,判别它们是否为单同态、满同态、同构.
 - (1) f(x) = |x| + 1
 - (2) f(x) = |x|
 - (3) f(x) = 0
 - (4) f(x) = 2

- 解 (1) 不是同态,因为 $f(2\times2)=f(4)=5$, $f(2)\times f(2)=3\times3=9$
- (2) 是同态,不是单同态,也不是满同态,因为f(1)=f(-1),且 ran f 中没有负数.
- (3) 不是G 的自同态,因为f 不是 G 到 G 的函数
- (4) 不是G 的自同态,因为 $f(2\times2)=2$, $f(2)\times f(2)=2\times2=4$

说明: 判别或证明同态映射的方法

- $(2) \forall x, y \in G_1$,验证f(xy) = f(x)f(y)
- (3) 判断同态性质只需判断函数的单射、满射、双射性即可.