Московский Физико-Технический Институт (государственный университет)

Работа 26

1 Выполнение задания

1.1 Фильтры первого порядка

- 1. Соберем филтьтр с полюсом $\mu = 0.7$. Запустим его синтез и посмотрим информацию о синтезированном фильтре.
- 2. По частотной характеристике измерим коэффициенты передачи фильтра на нулевой частоте и на границе полосы Найквиста:

$$K_0 = 3.33$$
 $K_1 = 0,59$

Измерим граничную частоту филтра по уровню $-3dB \to f = 0.057$. Также измерим его постоянную времени τ - время спада до уровня $\frac{1}{e} \to \tau = 3$. Граничная частота фильтра связана с постоянной времени:

$$\frac{1}{2\pi\tau} \simeq 0.057$$

3. Подадим на вход гармонический сигнал и оценим коэффициенты передачи на частотах 0.05/2 и 0.95/2:

$$K_{\frac{0.05}{2}} = 0.92$$
 $K_{\frac{0.95}{2}} = 0.175$

- 4. Реализуем двукратную децимацию выходного потока фильтра. Посмотрим сигналы на выходе дециматора на частотах 0.05/2 и 0.95/2. Полоса Найквиста сузилась в два раза и мы получили две похожие по форме картины с отличающимися амплитудами.
- 5. Подадим на вход фильтра шум. Оценим уровни подавления шума на границах ± 500 и в середине ± 250 полосы Найквиста:

$$\pm 500 \rightarrow -15dB \quad \pm 250 \rightarrow -12dB$$

Измерим уровни подавления шума в точках pm250 после децимации:

$$\pm 250 \rightarrow -12dB$$

- 6. Вернемся к диалогу настройки фильтра и проанализируем его поведение при стремлении μ к единице ($\mu = 1$). Изучим осциллограммы его импульсной реакции и переходной характеристики (рис. 1).
- 7. Реализуем дифференцирующее звено с полюсом $\mu=0.7$. Измерим верхнюю граничную частоту по уровню $-3dB \to f_0=0.054$ и время спада $\tau=3$. Видим, что формула $f_0=\frac{1}{2\pi\tau}$ выполняется. Исследуем изменение временных и частотных характеристик при $\mu\to 0$. Изучим осциллограммы временных характеристик для двух значений μ (рис. 2).

Рис. 1: Импульсная реакция и переходная характеристика

Рис. 2: Осциллограммы временных характеристик для двух значений μ

8. Реализуем цифровой фазовращатель - звено:

$$H(x) = \frac{-\mu + x}{1 - \mu x} \Leftrightarrow H(z) = \frac{1 - \mu z}{z - \mu},$$

с полюсом μ и нулем $\frac{1}{\mu}$. Равномерность частотной характеристики возникает из-за того, что произведения расстояний до всех нулей и произведение расстояний для всех полюсов от точек на единичной окружности одинаковы. ФЧХ при стремлении μ к нулю представляет собой равномерно убывающую линейную функцию с уровнем -3dB на $\frac{9}{10}\frac{\pi}{2}$

1.2 Звенья второго порядка

1. Реализуем полосовое звено с $r_{\mu}=0.9$ и $\varphi_{\mu}=\frac{\pi}{4}$. Оценим резонансную частоту и двухстороннюю полосу пропускания по уровню -3dB:

$$f_0 \simeq 0.25 \quad \triangle f = 0.067$$

В таком случае эквивалентная добротность:

$$Q = \frac{f_0}{\triangle f} = 3.73$$

2. Изучим зависимость характеристик фильтра от r_{μ} приближая его к единице:

Рис. 3: Зависимость характеристик фильтра от r_{μ}

- 3. Реализуем фильтр с парой сопряженных лучей $g = [1 r_{\nu} \cdot (2cos\varphi_{\nu})r_{\nu}^2]$. Изучим последствия изменения r_{ν} от 0.5 до 4 при $2cos\varphi_{\nu} = \sqrt{2}$ и последствия изменения угла $2cos\varphi_{\nu} = 1, \sqrt{2}, \sqrt{3}, -1, -\sqrt{2}, -\sqrt{3}$.
- 4. Подтвердим, что звено с $r_{\mu}=0.8$ и $r_{\nu}=\frac{1}{r_{\mu}}=1.25$ является all pass фильтром с равномерной частотной характеристикой при любых одинаковых $\varphi_{\mu}, \varphi_{\nu}$.

1.3 Нерекурсивные FIR фильтры

- 1. Реализуем гребенчатый фильтр порядка N=3 с $H(x)=1-x^3$. Заметим, что при увеличении порядка фильтра увеличивается количество пиков.
- 2. Реализуем фильтр порядка N=7 с прямоугольной импульсной реакцией: h=[11111111], g=[1]. Измерим все четыре пиковые значения коэффициента передач:

$$K_1 = 18.1dB$$
 $K_2 = 5.27dB$ $K_3 = 1.63$ $K_4 = 0.18dB$

Убедились, что эти уровни не зависят от порядка N, и что тот же фильтр дают настройки h = [10000000, -1], g = [1 - 1]. Посмотрим на временную характеристику (рис. 4).

3. Организуем децимацию выхода этого фильтра по индексу D=4 (рис. 5). Повторим это для фильтра h=[1111] (рис. 6). На рисунках сверху показан спектр после децимации, а снизу до.

Рис. 4: Временная характеристика

Рис. 5: Фильтр h = [111111111], g = [1]

Рис. 6: Фильтр h = [1111]

4. Подадим на вход гармонический сигнал частоты 0.126/2. Оценим коэффициент передачи:

$$K \simeq 10$$

Запомним амплитуду и временную форму сигнала после децимации (D = 4). То же самое сделаем для сигналов при входных частотах $0.5/2 \pm 0.126/2$ и $1/2 \pm 0.126/2$:

$$2A = 18$$
 $K \simeq 10$

$$2A = 1$$
 $K = 0.5$

$$2A = 0.8$$
 $K = 0.4$

5. Изучим фильтры с временными окнами. Сравним характеристики оконных фильтров порядка 2N+1=41 с различными типами окон, измерив для каждого и них полуширину главного пика, уровень затухания в главном и побочном пиках:

	Главный	Побочный
Полуширина	0.025	0.024
Уровень затухания	0 dB	-13.3 dB

Сделаем то же самое для N = 40:

	Главный	Побочный
Полуширина	0.012	0.012
Уровень затухания	0 dB	-13.4 dB

6. Изучим фильтры с частными окнами. Реализуем фильтр с полосой в половину полосы Найквиста, набрав в поле *Numerator coefficients* fwdw(20,10,10). Измерим затухание в первом побочном пике и на границе полосы Найквиста. Повторим эти измерения изменяя интервал сглаживания - k = 8, 6, 4, 2, 0 (fwdw(N,k,n)):

k	Главный пик, dB	Побочный пик, dB
10	-16.3	-29.1
8	-21.9	-37.3
6	-28	-43.5
4	-31.6	-47
2	-34.1	-49.6
0	-36	-51.5

- 7. Увеличивая порядок N, синтезируем фильтр с $k = \frac{N}{4}, n = \frac{N}{2}$, который обеспечивает затухание 80 dB в дальней зоне N = 160.
- 8. Откроем модель 4-звенного СІС-фильтра из блоков ІС с задержкой N=12. Изучим временные (PULSE, STEP) и частотные (CHIRP) характеристики блоков и фильтра в целом (рис. $7,\,8,\,9$).

По графику спектральной плотности шума оценим ширину главного пика и уровни затухания в первых побочных пиках и пиках вблизи границы полосы Найквиста:

	Главный пик	Побочный пика	На границе
Ширина полосы	85	37.5	_
Уровень затухания	-15 dB	-65 dB	-100 dB

Работа 26 ВЫВОД

ристики (STEP)

Рис. 8: Временные характе- Рис. 9: Частотные характеристики (CHIRP)

Рис. 7: Временные характеристики (PULSE)

Сравнив уровни сигнала на выходе дециматора при частотах $a_1 = 1.01/24$ и $a_2 =$ $1/6 \pm 1.01/24$:

$$K_{a_1} = 0.17$$
 $K_{a_2} = 3 \cdot 10^{-4}$

1.4 FDATool Matlab

- 1. Изучим синтезатор equiripple FIR-фильтров. Синтезируем фильтр минимального порядка с wpass = 0.4, wstop = 0.5, Apass = 1, Astop = 60.
- 2. Изучим синтезатор типовых IIR-фильтров Баттерворта, Чебышева типов I и II и эллиптических. Синтезируем фильтры с параметрами wpass = 0.4, wstop = 0.5, Apass= 1, Astop = 60, изучим результаты.
- 3. Синтезируем FIR фильтр с характеристиками wpass = 0.3, wstop = 0.5, Apass = 1, Astop = 80 b и все четыре варианта IIR фильтров с теми же характеристиками. Запишем количество нулей у каждого фильтра:

Имя фильтра	Количество нулей
Equiripple	25
Butterworth	15
Chebyshev I	9
Chebyshev II	9
Elliptic	6

Заметим, что нам легче синтезировать фильтр с меньшим количеством нулей.

2 Вывод

В ходе данной работы мы научились пользоваться Matlab Simulink. Изучили фильтры первого и второго порядка, посмотрели как они влияют на различного вила сигналы. Узна
 Работа 26
 2
 ВЫВОД

ли, что такое децимация сигнала. Изучили нерекусивные FIR-фильтры. Изучили синтезатор IIR и FIR фильтров. На примере увидели преимущества IIR решений по сравнению с FIR.