Automatic Language Classification

Authors: Daniel Horowitz, Jeroni Carandell, Iosu Mendizabal

Motivation

Before starting any NLP application you need to know...

...what language you are going to target.

Our Approach

- Database of tweets
- Classification via N-gram models
 - Lidstone smoothing
 - Ranking models

Database - Parse The Cloud Application Platform

- Filled using:
 - Real twitter posts:
 - 4 languages: EN, ES, FR, PT.
 - Tagged them using the API of google translate.

- Parse. com
 - Authentication
 - App
- Twitter API
 - Authentication
 - Search
- Refining the results

- Motivation
 - Easy to use
 - Web based (Multiplatform)
 - Well integrated, with most of the programming languages
- Requirements
 - Accounts
 - App (API credentials)

Parse The Cloud Application Platform

Twitter API

- Authentication
 - Register as twitter developer
 - App (API credentials)
 - OAUTH 2 protocol
- Search
 - Language parameter (beta version)

Refining the results

- Google translate API for labeling
- Regular expressions
 - URL's
 - RT tags
 - Duplicated spaces
 - Accents, symbols and especial characters
- Duplicated tweets
 - Re-tweets
 - Advertisement

Classification

• N-gram models:

English ->

<- Spanish

Classification

- N-gram models
 - Probability of a sentence belonging to a language.
 - Problem: N-grams that are not in our dataset make probability of the sentence 0.
 - Solution: Lidstone smoothing

$$P_{LID}(X) = rac{count(X) + \lambda}{N + B\lambda}$$

Classification

- N-gram models
 - Ranking models

Experiments

Lidstone vs Ranking

	λ					
	0.1	0.3	0.5	0.7	1	
Error	0.40625	0.490625	0.528125	0.56875	0.60625	

	m							
n		20	50	80	110			
	50	0.33125	0.280898876404	0.274774774775	0.345945945946			
	80	0.331168831169	0.209302325581	0.224299065421	0.134831460674			
	110	0.32	0.322580645161	0.346153846154	0.325581395349			
	150	0.416666666667	0.3	0.32	0.333333333333			

Conclusions

- Our approach successfully classified different languages, with high precision.
- As for the ranking methods, the voting method proved to be much better.
- Ranking methods proved to be more efficient and less computationally expensive.

Future Work

- Weighted voting could be implemented for the ranking method, in order to generate more accurate results.
- Take into account the character encoding to have more precision.
- Extend the language scope to a wider set.

Questions?

