ÁLGEBRA Y GEOMETRÍA ANALÍTICA II - Ejercicio resuelto TEMA: SUBESPACIOS Y COORDENADAS.

Ejercicio 1 Consideremos el conjunto $S = \{ p \in \mathcal{P}_3[\mathbb{R}] : p(x+1) = p(-x), \forall x \in \mathbb{R} \}$:

- a. Mostrar que S es un subespacio de $\mathcal{P}_3[\mathbb{R}]$.
- b. Para todo $q \in S$ el polinomio -2q(x) + 7, ¿pertenece a S?
- c. Para todo $p \in S$ y t(x) = p(-x), ¿es cierto que $t \in S$?
- d. Exhibir una base B de S dar dim(S).

El resto del ejercicio está enunciado con relación a la base B dada en el ítem d.

- e. Verificar que $p(x) = 3x^2 3x + 5 \in S$ y dar las coordenadas $[p(x)]_B$.
- f. Si $q \in S$ verifica que $[q(x)]_B = \binom{a}{b}$ determinar $[-x^2 + x 2 + 2q(x)]_B$ en función de a y b.
- g. Si $B' = \{p_1(x), p_2(x)\}$ es otra base de S.
 - Si se cumple $C_{BB'} = \begin{pmatrix} 1 & -2 \\ 1 & -3 \end{pmatrix}$ determinar $p_1 \neq p_2$.
 - \circ Si se cumple $C_{B'B} = \begin{pmatrix} 1 & -2 \\ 1 & -3 \end{pmatrix}$, determinar p_1 y p_2 .

RESOLUCIÓN

a. S es un subespacio de $\mathcal{P}_3[\mathbb{R}]$

S es un subconjunto del conjunto de polinomios de grado a lo sumo 3 junto con el polinomio nulo (cuyo grado no está definido). S está definido por la siguiente condición:

Condición que define a los elementos de S

cada uno de los polinomios de S evaluado en un valor x más 1, da el mismo resultado que evaluar ese mismo polinomio en el valor opuesto -x (1)

Un ejemplo de polinomio que cumple la condición (1) es $h(x) = 3x^2 - 3x$ ya que:

$$h(x+1) = 3(x+1)^2 - 3(x+1) = 3x^2 + 3x = h(-x).$$

Luego S es no vacío, $h \in S$.

Comprobación de subespacio

S es subespacio si se cumplen todas las condiciones que definen un espacio vectorial; muchas de estas condiciones se heredan del espacio vectorial de base que es $\mathcal{P}_3[\mathbb{R}]$, por lo que sólo debemos comprobar que se cumplan las siguientes condiciones o propiedades (aunque la primera ya no haría falta pues vimos que es no vacío). Estas tres propiedades son:

- 1) $\mathbf{0} \in S$, es decir el polinomio nulo debe pertenecer a S
- 2) $\forall p_1 \in \mathcal{P}_3, \forall p_2 \in \mathcal{P}_3, \text{ si } p_1 \in S \text{ y } p_2 \in S \Rightarrow p = p_1 + p_2 \in S.$
- 3) $\forall k \in \mathbb{R}, \forall p \in \mathcal{P}_3, \text{ si } p \in S \Rightarrow kp \in S$

El polinomio nulo **0** evaluado en cualquier valor, da 0;

$$\mathbf{0}(x+1) = \mathbf{0}(-x) = 0.$$

La comprobación de las propiedades 2) y 3) puede hacerse de dos maneras: una es usando directamente la condición (1), la otra es obteniendo el tipo de polinomios que pertenecen a S. Lo haremos de las dos maneras. Al momento de resolver un ejercicio o problema sólo hay que elegir una manera de hacerlo.

Comprobación de propiedades 2) y 3) usando condición (1)

Sobre la suma Sean p_1 y p_2 polinomios de S, consideremos el polinomio p que resulta de su suma $p = p_1 + p_2$. Veamos si p cumple la condición (1), para ello debemos evaluar este polinomio en x + 1 y ver si el resultado es el mismo que evaluado en -x.

El polinomio suma puede evaluarse en cada término y luego sumar las evaluaciones.

$$p(x+1) = (p_1 + p_2)(x+1) = p_1(x+1) + p_2(x+1).$$
(1)

Como p_1 y p_2 pertencen a S, cumplen la condición que

$$p_1(x+1) = p_1(-x)$$

 $p_2(x+1) = p_2(-x)$

Luego reemplazando en la expresión de (1):

$$p(x+1) = (p_1 + p_2)(x+1)$$

$$= p_1(x+1) + p_2(x+1)$$

$$= p_1(-x) + p_2(-x)$$

$$= (p_1 + p_2)(-x)$$

Es decir, p(x+1) = p(-x) verficándose la condición 2) de la suma.

Sobre el producto por un escalar Sea $k \in \mathbb{R}$ y $p \in S$ (ojo! no es el mismo p del ítem anterior, se usa la misma letra pero denota otro objeto). Consideremos el polinomio kp el cual puede evaluarse multiplicando k por la evaluación de p.

$$(kp)(x+1) = k \cdot p(x+1) \tag{2}$$

Como $p \in S$, p(x+1) = p(-x). Usamos esta igualdad y reemplazamos en (2):

$$(kp)(x+1) = k \cdot p(x+1) = k \cdot p(-x) = (kp)(-x) \tag{3}$$

Y entonces (kp)(x+1) = (kp)(-x) verificándose la condición 3).

Por lo verificado anteriormente podemos asegurar que S es subespacio de \mathcal{P}_3 .

Comprobación de propiedades 2) y 3) hallando el tipo de polinomios del subconjunto S

Los polinomios de S son también polinomios de \mathcal{P}_3 y como tales tienen una forma genérica que es: $p(x) = ax^3 + bx^2 + cx + d$, donde a, b, c, d son números reales genéricos. La condición (1) que define a S permite dar restricciones sobre los coeficientes a, b, c, d.

$$p(x+1) = p(-x)$$

$$a(x+1)^3 + b(x+1)^2 + c(x+1) + d = a(-x)^3 + b(-x)^2 + c(-x) + d$$

$$ax^3 + (3a+b)x^2 + (3a+2b+c)x + (a+b+c+d) = -ax^3 + bx^2 - cx + d \text{ esto se obtiene desarrollando}$$
 el cubo y el cuadrado de un binomio, operando y asociando convenientemente

Dos polinomios son iguales cuando los coeficientes de los términos literales semejantes son iguales. Luego, se da lugar al siguiente sistema:

$$\begin{cases} a = -a \\ 3a+b = b \\ 3a+2b+c = -c \\ a+b+c+d = d \end{cases}$$

Resolviéndolo, obtenemos: a = 0, b = b; c = -b; d = d, es decir entonces que las cuaternas de coeficientes cumplen $(a, b, c, d) \in \text{gen}\{(0, 1, -1, 0); (0, 0, 0, 1)\}$ y entonces

$$S = \operatorname{gen}\{x^2 - x; 1\}$$

Un polinomio pertenece a S si y sólo si es combinación lineal de estos dos polinomios o sea que es de la forma: $p(x) = \alpha(x^2 - x) + \beta$, con $\alpha, \beta \in \mathbb{R}$.

Nota: No olvidar en qué espacio se está trabajando! Los elementos de S son polinomios NO SON CUATERNAS DE NÚMEROS REALES. A esta altura de la materia, no usaremos las identificaciones de los espacios vectoriales con \mathbb{R}^n cuando estemos trabajando con otros espacios vectoriales.

Sobre la suma Sean p_1 y p_2 dos polinomios de S, consideremos $p = p_1 + p_2$. Por la forma que tienen los elementos de S,

$$p = \lambda_1(x^2 - x) + \lambda_2 + \gamma_1(x^2 - x) + \gamma_2$$

$$p = \underbrace{(\lambda_1 + \gamma_1)}_{\alpha}(x^2 - x) + \underbrace{(\lambda_2 + \gamma_2)}_{\beta}$$

$$p = \alpha(x^2 - x) + \beta$$

Luego $p = p_1 + p_2$, que es la suma de dos polinomios de S, es también polinomio de S.

Sobre el producto por un escalar Sean $k \in \mathbb{R}$ y $p \in S$, consideremos el polinomio kp.

$$kp = k(\lambda_1(x^2 - x) + \lambda_2)$$

$$= \underbrace{k\lambda_1}_{\alpha}(x^2 - x) + \underbrace{k\lambda_2}_{\beta}$$

$$= \alpha(x^2 - x) + \beta$$

Luego kp, que es el producto de un escalar por un polinomio de S es también polinomio de S.

S es subespacio vectorial de \mathcal{P}_3

b. Si $q \in S$ el polinomio -2q(x) + 7, pertenece a S?

Para ver si -2q(x) + 7 pertnece a S, veamos si cumple la condición (1).

$$(-2q+7)(x+1)=-2q(x+1)+7,~$$
se evalúa cada polinomio y se suma, la constante 7 queda igual
$$=-2q(-x)+7,~~\text{pues}~q\in S$$

$$=~(-2q+7)(-x)$$

Como la evaluación del polinomio en x+1 y en -x da el mismo resultado, entonces $-2q(x)+7 \in S$.

c. Si $p \in S$ y t(x) = p(-x), les cierto que $t \in S$?

En este caso es más conveniente usar el forma explícita que tienen los polinomios de S. Consideremos $p \in S$, sabemos que $p = \lambda_1(x^2 - x) + \lambda_2$, veamos entonces cuál es la forma de t.

$$t(x) = p(-x) = \lambda_1((-x)^2 - (-x)) + \lambda_2$$

= $\lambda_1(x^2 + x) + \lambda_2$

La forma de t invita a pensar que tal vez haya algún $p \in S$ para el que el t asociado no pertenezca a subespacio S. Basta encontrar algún p que nos muestre que efectivamente no pertence.

Consideremos por ejemplo $p(x) = 3x^2 - 3x$ que pertenece a S, definamos $t(x) = p(-x) = 3x^2 + 3x$. Veamos si t pertenece a S evaluando en x + 1 y en -x.

$$t(x+1) = 3(x+1)^2 + 3(x+1) = 3x^2 + 9x + 6.$$

Por otro lado,

$$t(-x) = 3x^2 - 3x$$

Los polinomios $3x^2 + 9x + 6$ y $3x^2 - 3x$ no son iguales. Basta ver que hay coeficientes de término con igual parte literal que son distintos. También, para verificar que no son iguales, podríamos evaluar en un número y ver que dan distintos resultados, por ejemplo evaluamos en 1.

$$3 \cdot 1^2 + 9 \cdot 1 + 6 = 18$$
 v $3 \cdot 1 - 3 \cdot 1 = 0$.

Luego no es cierto que para todo $p \in S$, el polinomio t(x) = p(-x) también pertenece a S. Hemos mostrado que existe un polinomio p de S para el cual su t asociado no pertenece a él. Este polinomio brinda un contraejemplo de la proposión " $\forall p, si p \in S$ entonces el polinomio t definido por t(x) = p(-x) también pertenece a S", pues es un ejemplo que nos muestra que esta afirmación es falsa.

\mathbf{d} . Una base $\mathbf{de}\ S$

Ya tenemos un sistema de generadores de S: $\{x^2 - x, 1\}$. Basta ver que sus vectores son linealmente independientes:

$$a \cdot (x^2 - x) + b = 0x^2 + 0x + 0.$$

 $ax^2 - ax + b = 0x^2 + 0x + 0.$

Por igualdad de polinomios resulta: a = 0, -a = 0, b = 0, entonces son linealmente independientes.

Luego una base de S es
$$B = \{x^2 - x, 1\}$$
 y dim $S = 2$.

e. Verificar que $p(x) = 3x^2 - 3x + 5 \in S$ y dar las coordenadas $[p(x)]_B$

El polinomio p puede escribirse: $p(x) = 3 \cdot (x^2 - x) + 5 \cdot 1$. Luego es combinación lineal de la base de S, entonces pertenece al subespacio.

Las coordenadas de p, es decir los escalares que multiplican a cada vector de la base, son: 3 y 5. Luego,

$$[p(x)]_B = \begin{pmatrix} 3\\5 \end{pmatrix}.$$

f. Si $q \in S$ y se dan las coordenadas $[q(x)]_B$

Consideremos, de forma genérica, que $[q(x)]_B = \binom{a}{b}$ y determinemos $[-x^2 + x - 2 + 2q(x)]_B$ en función de a y b.

Debemos hallar los escalares que multiplican a los vectores de B en la combinación lineal. Observar que $q = a \cdot (x^2 - x) + b \cdot 1$ y entonces

$$-x^2 + x - 2 + 2q(x) = -(x^2 - x) + (-2) + 2q = (-1) \cdot (x^2 - x) + (-2) \cdot 1 + 2 \cdot (a \cdot (x^2 - x) + b \cdot 1).$$

Aplicando distributiva y asociativa, tenemos:

$$-x^{2} + x - 2 + 2q(x) = (-1 + 2a)(x^{2} - x) + (-2 + 2b) \cdot 1.$$

Luego,

$$[-x^2 + x - 2 + 2q(x)]_B = \begin{pmatrix} (-1+2a) \\ (-2+2b) \end{pmatrix}.$$

5

g. Si $B' = \{p_1(x), p_2(x)\}$ es otra base de S, determinar p_1 y p_2

$$\circ$$
 Si se cumple $C_{BB'} = \begin{pmatrix} 1 & -2 \\ 1 & -3 \end{pmatrix}$

Resolveremos este item de dos maneras.

Por sistema de ecuaciones donde las variables son vectores

Los términos de la matriz de cambio de coordenadas, da la información necesaria para escribir los vectores de la base B como combinación lineal de la base B'. Entonces:

$$[(x^2 - x)]_{B'} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 y $[1]_{B'} = \begin{pmatrix} -2 \\ -3 \end{pmatrix}$.

Luego,

$$x^{2} - x = 1 \cdot p_{1} + 1 \cdot p_{2}$$

 $1 = (-2) \cdot p_{1} + (-3) \cdot p_{2}$

Este es un sistema de ecuaciones lineales **de vectores**, sólo es lícito operar aplicando las propiedades de espacio vectorial. Así podríamos obtener los vectores p_1 y p_2 .

De la segunda ecuación, obtenemos:

$$p_2 = -\frac{1}{3}(1+2p_1).$$

Reemplazando en la primer ecuación,

$$x^{2} - x = 1 \cdot p_{1} + 1 \cdot (-\frac{1}{3}(1 + 2p_{1})),$$

luego,

$$x^2 - x = \frac{1}{3} \cdot p_1 - \frac{1}{3},$$

$$p_1 = 3x^2 - 3x + 1$$
 y por lo tanto $p_2 = -2x^2 + 2x - 1$

Con matriz inversa

Otra forma, que es más conveniente cuando se tiene una importante cantidad de vectores en la base, es hacerlo por la matriz inversa, sabiendo:

$$C_{B'B} = C_{BB'}^{-1}$$

Luego

$$C_{B'B} = \begin{pmatrix} 3 & -2 \\ 1 & -1 \end{pmatrix}.$$

En cada columna se tienen los escalares que forman la combinación lineal de los vectores de la base B, entonces:

$$p_1 = 3 \cdot (x^2 - x) + 1 \cdot 1$$

 $p_1 = 3x^2 - 3x + 1$

$$p_2 = -2 \cdot (x^2 - x) + (-1) \cdot 1$$

 $p_2 = -2x^2 + 2x - 1$

Así resulta:

$$B' = \{3x^2 - 3x + 1, -2x^2 + 2x - 1\}.$$

$$\circ$$
 Si se cumple $C_{B'B} = \begin{pmatrix} 1 & -2 \\ 1 & -3 \end{pmatrix}$

Nuevamente, en las columnas de esta matriz están los escalares para escribir los vectores de B' como combinación lineal de los vectores de B. Entonces:

$$p_{1} = 1(x^{2} - x) + 1 \cdot 1$$

$$p_{1} = x^{2} - x + 1$$

$$p_{2} = -2 \cdot (x^{2} - x) + (-3) \cdot 1$$

$$p_{2} = -2x^{2} - 2x - 3$$

Así resulta:

$$B' = \{x^2 - x + 1, -2x^2 - 2x - 3\}.$$

AUTOEVALUACIÓN

Temas: SUBESPACIOS - COORDENADAS - CAMBIO DE COORDENADAS - MATRIZ DE CAMBIO DE COORDENADAS.

Para resolver esta autoevaluación se supone que Ud. debe haber estudiado usando la guía de estudio 1, haber repasado el ejercicio resuelto de este archivo y haber resuelto los ejercicios de la práctica correspondiente a este tema.

1) (1p) Sea V espacio vectorial, $v \in V$ y $w \in V$ y $S \subseteq V$ tal que

$$S = \{ u \in V : u = \alpha v + \beta w, \alpha, \beta \in \mathbb{R} \}$$

- a) Probar que es subespacio.
- b) Lea el ejercicio resuelto, ¿con qué parte de la resolución se relaciona el item anterior? ¿se generaliza lo realizado en la resolución del ejercicio o el item anterior es un caso particular?
- 2) (2p) Dada la siguiente afirmación verdadera, indicar la justificación más adecuada entre las dadas

Sea $S \subseteq V$ subespacio del espacio vectorial V. $\forall s \in S$, $-s \in S$, siendo -s el opuesto aditivo de s.

- ∘ Dado que $\forall s \in V$, existe $-s \in V$ tal que s + (-s) = (-s) + s = 0 por propiedad de espacio vectorial, entonces si $s \in S$ entonces $-s \in S$.
- o Si $s \in S$, por ley de cierre del producto por un escalar (tercera condición de subespacio), $\forall k \in \mathbb{R}, k \cdot s \in S$. Dado que $\forall s \in V$, se prueba (Álgebra I) que $-s = (-1) \cdot s$, por la ley de cierre antes enunciada, $(-1)s \in S$ y entonces $-s \in S$.
- 3) (2p) Para el espacio vectorial $\mathcal{P}_2[\mathbb{R}]$ indicar cuáles de los siguientes subconjuntos son subespacios.
 - a) $\{p \in \mathcal{P}_2[\mathbb{R}] : p(0) + p(1) = 0\}.$
 - b) $\{p \in \mathcal{P}_2[\mathbb{R}] : p(0) + p(1) = -1\}.$
 - c) $\{p \in \mathcal{P}_2[\mathbb{R}] : p[X] = a_2 X^2 + a_1 X + a_0, \text{ tal que } -2a_1 = 0\}.$
 - d) $\{p \in \mathcal{P}_2[\mathbb{R}] : p[X] = \alpha(X^2 1) + \beta(2X^2 2), \alpha \in \mathbb{R}, \beta \in \mathbb{R}\}.$
- 4) (1p) En el ejercicio resuelto de arriba, ¿por qué la matriz $C_{BB'}$ es de 2×2 siendo que los elementos de S tienen tres términos?
- 5) (2p) Sea $B_2 = \{(0,1),(1,1)\}$ dos bases de \mathbb{R}^2 , se sabe que $[(1,3)]_{B_2} = \binom{2}{1}$, señalar entre las interpretaciones dadas, si hay alguna correcta:
 - \circ gráficamente, el segmento orientado asociado al par (1,3) es diagonal del paralelogramo formado por los segmentos orientados (0,2) y (1,1)
 - \circ el (1,3) es combinación lineal tal que: (1,3)=1(0,1)+2(1,1)

$$\circ$$
 el $\binom{2}{1} = 2(0,1) + 1(1,1)$

6) (2p) Sean $B_1 = \{v_1, v_2, v_3\}$, $B_2 = \{w_1, w_2, w_3\}$ y $B_3 = \{z_1, z_2, z_3\}$ bases de un mismo espacio vectorial V tales que

$$C_{B_1B_3} = \begin{pmatrix} -1 & 2 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & -1 \end{pmatrix} \qquad \text{y} \qquad \begin{cases} z_1 = -w_1 + 2w_2 + 3w_3 \\ z_2 = -w_2 + w_3 \\ z_3 = w_1 - w_3 \end{cases}$$

8

Hallar $C_{B_2B_1}$.