

### MetalRNet+:

Augmented One Shot Fine Grained Image Recognition Algorithm Based On Differentiable Data Augmentation

Talker: Kai Chen

Supervisor: Prof. Yanwei Fu

School of Computer Science, Fudan University

2020.06.16



01/ Key Words

02/ MetalRNet

03/ MetalRNet++

04/ Experiments



# Three Key Words

- Fine grained Image Recognition
- One Shot Learning
- MetalRNet++
  - Augmented MetalRNet [1]

# Quiz: Hawk or Falcon?



## Hawk

# Falcon





source: https://birdeden.com/distinguishing-between-hawks-falcons

# Fine-grained Image Recognition

- Much harder than normal classification.
  - Higher intra-class variance.
  - Lower inter-class variance.
- Difficult to collect data.
  - Can't use crowdsourcing.
  - Need expert annotator.
- Need one-shot learning.

# One Shot Learning

- Solution: Meta Learning
  - Deep Learning = Representation Learning
  - Meta Learning = Representation + Transfer Learning
- Goal: learn prior knowledge and generalize quickly to novel tasks
  - Embedding transfer learning into training process explicitly.
  - Always training on support set and evaluate on query set
- In this work we focus on finding a better prior model and releasing the difficulty of generalization, which can be thought as an optimization problem.

# Three Key Words

- Fine grained Image Recognition
- One Shot Learning
- MetalRNet++
  - Augmented MetalRNet [1]



# Can we generate more data?

How about state-of-the-art GANs?



Challenge: GAN training itself need a lot of data.

#### Fine-tune GANs trained on ImageNet.

One Million General Images



Transfer generative knowledge from one million general images to a domain specific image.

A Domain Specific Image





# Fine-tune BigGAN with a single image

$$L_G(G, \mathbf{I}_z, z) = L_1(G(z), \mathbf{I}_z) + \lambda_p * L_{perc}(G(z), \mathbf{I}_z) + \lambda_z * L_{EM}(z, r)$$

- Terminology:
  - G: GAN generator;
  - I<sub>z</sub>: Real Image;
  - z: random noise
  - $r \sim N(0,1)$

- Loss Function:
  - $L_1$ : Per-pixel L1 Loss;
  - *L*<sub>prec</sub>: Perceptual Loss;
  - $L_{EM}$ : Earth Moving Distance

#### Fine-tune Batch Norm Only

$$\hat{x} = \frac{x - \mathbb{E}(x)}{\sqrt{\text{Var}(x) + \epsilon}} \qquad h = \gamma \hat{x} + \beta$$

Original



Fine-Tune All



Fine-Tune BatchNorm



# Are generated image helpful?

- No! Accuracy drops :(
- GAN images usually do not help classification.
- Problem: Mode Collapse
- Challenge: How to utilize the generated images?

# Learn to reinforce with original



Use meta-learning to learn the best mixing strategy to help one-shot classifiers.



# Analysis: Advantage

- Intuition: Images following real data distribution may not need to seem real
- Image Fusion Network:
  - For generated images, complement information loss
  - For real images, increase data complexity and information entropy
  - Make the indifferentiable fusion operator differentiable

# Analysis: Problem

- Problem 1: Too many parameters
  - Under default setting, 2/3 parameters are used for image fusion network while only 1/3 parameters work for classification
- Problem 2: Robustness of global-inconsistent synthetic images
  - Synthetic images: local consistent and global inconsistent
  - Real & generated: local and global consistent
  - Optimization on two data domains: sub-optimal

## MetalRNet++ (Siamese)



- Use Siamese Network [2] in Image Fusion Network
  - Guarantee the same embedding space
  - Saving at least 1/3 parameters while keeping comparable accuracy
- Half learning rate for Image Fusion Network

## Implicit Global Inconsistent: Pilot Study

表 3.2: 5-way-1-shot conv4 from scratch accuracy (%) on CUB value using different implicit augmented methods. 1 stage means we don't use pretrained ProtoNet.

| Method                  | Backbone | ProtoNet Acc     | MetaIRNet Acc    |
|-------------------------|----------|------------------|------------------|
| 1 stage                 | Conv4    | -                | $60.31{\pm}2.46$ |
| ProtoNet                | Conv4    | $61.49{\pm}2.17$ | $62.80{\pm}2.08$ |
| Global softmax          | Conv4    | $61.49 \pm 2.17$ | $60.35 \pm 1.98$ |
| Mixup                   | Conv4    | $64.10{\pm}2.41$ | $63.04{\pm}2.14$ |
| Random Fusion (Beta)    | Conv4    | $63.58{\pm}2.46$ | $62.15{\pm}2.10$ |
| Random Fusion (Uniform) | Conv4    | $61.43 \pm 2.06$ | $61.13 \pm 2.12$ |

#### Conclusion:

- Implicit methods can't bring significant improvement
- Especially after long training process.

#### Explicit Global Inconsistent: MetalRNet++ (Block Dropout)

 Based on the 3 x 3 grid structure in image fusion network, during every forward propagation, we random drop some of the image patches to introduce inconsistence to all data points.

Original Fine-Tune

The second of the second







# MetalRNet++ (Block Dropout)

- Block Dropout: info dropping data augmentation [3]
  - We don't want to optimize on two separate data domains.
  - We can't make generated images closer to original ones
  - So can we introduce inconsistence to original images in reverse?
- Dropout Probability: 0.5 by default
  - Same with modern data augmentation in vision
  - Introduce no prior in this random process

## MetalRNet++ (Block Dropout)

- **Keep ratio:** 0.5 1.0 by default
- Centerness: always keep center patch
  - Balance between foreground information and background information [3]
- Variance: fix data variance in training time

$$r_{keep} = \frac{sum(mask == 1)}{sum(mask)}$$

$$\mathbf{I}_{augment} = \frac{1}{r_{keep}} * \mathbf{I} * mask$$

## MetalRNet++ (Block Dropout)

```
Algorithm 1 Block Dropout procedure f_{block\_dropout} of our MetaIRNet++
```

```
1: I \leftarrow \text{input image batch}
 2: prob ← dropout prob
 3: ratio \leftarrow keep ratio range, a list of length 2
 4: block_size ← block augmentation weight size (3 by default)
 5:
 6: if random.rand() > prob then
        return I
 8: end if
 9:
10: r_{keep} \leftarrow \text{random.uniform}(\text{ratio}[0], \text{ratio}[1])
11: mask \leftarrow mask\_generation(r_{keep})
12: mask[center] \leftarrow 1
13: mask \leftarrow mask.upsample(I.size())
14:
15: # because unsampling might change r_{keep} slightly
16: r_{keep} \leftarrow \text{sum}(mask == 1) / \text{sum}(mask)
17: mask \leftarrow 1/r_{keep} * mask
18: return I * mask
```

### MetalRNet++ Framework





# Implementation Details

- Dataset: Caltech-UCSD Bird Dataset [4]
- Two experiments setting:
  - Pre-trained: ImageNet pretrained ResNet-18
  - Scratch: Conv4 + two stage training
- Keep all hyperparameters and learning schedule same with MetalRNet

### Ablation Study: MetalRNet++ (Siamese)

表 4.1: MetaIRNet++(siamese) with pretrained ResNet-18's 5-way-1-shot accuracy (%) on CUB val set.

| Model                        | LR            | Params(M) | MACs(G) | Acc              |
|------------------------------|---------------|-----------|---------|------------------|
| MetaIRNet                    | 0.001         | 33.54     | 181.86  | $84.01{\pm}1.70$ |
| ${\it MetaIRNet++(siamese)}$ | 0.001         | 22.36     | 181.86  | $83.79 \pm 1.83$ |
| ${\it MetaIRNet++(siamese)}$ | 0.0005        | 22.36     | 181.86  | $87.98{\pm}1.54$ |
| ${\it MetaIRNet++(siamese)}$ | 0.0005 fusion | 22.36     | 181.86  | $83.40{\pm}1.73$ |
| Δ                            |               | 33.33%    | 0       | 0.61             |

表 4.2: MetaIRNet++(siamese) with conv4 from scratch's 5-way-1-shot accuracy (%) on CUB test set.

| Model                        | LR            | Params(M) | MACs(G) | Acc                |
|------------------------------|---------------|-----------|---------|--------------------|
| MetaIRNet                    | 0.001         | 22.48     | 81.76   | $62.80{\pm}2.08$   |
| ${\it MetaIRNet++(siamese)}$ | 0.001         | 11.30     | 81.76   | $61.78 \pm 2.05$   |
| ${\it MetaIRNet++(siamese)}$ | 0.0005        | 11.30     | 81.76   | $60.93 \pm 2.10$   |
| ${\it MetaIRNet++(siamese)}$ | 0.0005 fusion | 11.30     | 81.76   | $62.51 {\pm} 2.28$ |
| Δ                            |               | 49.73%    | 0       | 0.29               |

#### Ablation Study: MetalRNet++ (Siamese)

- Params, MACs and Accuracy:
  - Same MACs but saving at least 33.3% parameters
  - Still Comparable accuracy
  - Make end-to-end training "Generator + MetalRNet++" possible
- Half learning rate for image fusion network:
  - Narrow the gap between MetalRNet and MetalRNet++ (Siamese)

#### Ablation Study: MetalRNet++ (Siamese)

#### • Siamese or not:

- MetalRNet++(Siamese) always worse than MetalRNet
- Reason:
  - Real images and generated images: two domains
  - Two branches in fusion network is unbalanced: our goal is to reinforce real images
- If data is enough, separate branches achieves best
- Or using Siamese can still get comparable accuracy

#### Ablation Study: MetalRNet++ (Block Dropout)

表 4.3: MetaIRNet++(Block Dropout) with pretrained ResNet-18's 5-way-1-shot accuracy (%) on CUB val set. Variables are Dropout Prob and Centerness.

| Model           | Prob | Centerness | Acc              |
|-----------------|------|------------|------------------|
| MetaIRNet       | -    | -          | 84.01±1.70       |
| MetaIRNet++(BD) | 0.5  | 0          | $82.66{\pm}1.90$ |
| MetaIRNet++(BD) | 0.8  | 0          | $82.38{\pm}1.77$ |
| MetaIRNet++(BD) | 1.0  | 0          | $77.35 \pm 2.18$ |
| MetaIRNet++(BD) | 0.5  | 1          | $85.06{\pm}1.74$ |
| MetaIRNet++(BD) | 0.8  | 1          | $82.38{\pm}2.04$ |
| MetaIRNet++(BD) | 1.0  | 1          | $84.14{\pm}1.61$ |

表 4.4: MetaIRNet++(Block Dropout) with pretrained ResNet-18's 5-way-1-shot accuracy (%) on CUB val set. Variables are Keep Ratio.

| Model           | Keep Ratio | Acc                |
|-----------------|------------|--------------------|
| MetaIRNet       | -          | $84.01{\pm}1.70$   |
| MetaIRNet++(BD) | 0.8        | $84.69{\pm}1.77$   |
| MetaIRNet++(BD) | (0.3, 0.5) | $83.48{\pm}1.82$   |
| MetaIRNet++(BD) | (0.3, 0.8) | $82.85{\pm}2.08$   |
| MetaIRNet++(BD) | (0.3, 1.0) | $85.15 {\pm} 1.79$ |
| MetaIRNet++(BD) | (0.5, 0.8) | $84.74{\pm}1.68$   |
| MetaIRNet++(BD) | (0.5, 1.0) | $84.93{\pm}1.78$   |
| MetaIRNet++(BD) | (0.8, 1.0) | $85.10{\pm}1.80$   |

accuracy (%) on CUB val set. Variables are Variance Fix Method.

| Model           | Variance          | Acc              |
|-----------------|-------------------|------------------|
| MetaIRNet       | -                 | $84.01{\pm}1.70$ |
| MetaIRNet++(BD) | Sample Keep Ratio | $85.03 \pm 1.71$ |
| MetaIRNet++(BD) | Mean              | $85.49{\pm}1.64$ |

表 4.5: MetaIRNet++(Block Dropout) with pretrained ResNet-18's 5-way-1-shot 表 4.6: MetaIRNet++(Block Dropout) with pretrained ResNet-18's 5-way-1-shot accuracy (%) keeps raising.

| Model     | Change                      | Acc              | Δ      |
|-----------|-----------------------------|------------------|--------|
| MetaIRNet |                             | $84.01 \pm 1.70$ |        |
|           | + Prob $0.5$ and Centerness | $85.06 \pm 1.74$ | + 1.05 |
|           | + Keep ratio $(0.5, 1.0)$   | $84.93{\pm}1.78$ | + 0.92 |
|           | + / Mean                    | $85.49{\pm}1.64$ | + 1.48 |

#### MetalRNet++ on CUB Test Set: Pretrained

表 4.7: MetaIRNet++ with pretrained ResNet-18's 5-way-1-shot accuracy (%) on CUB test set. Results marked \* come from the original MetaIRNet[1] paper.

| Model                                    | Data Augmentation    | Acc                |
|------------------------------------------|----------------------|--------------------|
| Nearest Neighbor                         | -                    | $79.00 \pm 0.62$   |
| Logistic Regression                      | -                    | $81.17 \pm 0.60$   |
| *Softmax Regression                      | -                    | $80.77 {\pm} 0.60$ |
| Softmax Regression                       | -                    | $80.59 \pm 0.61$   |
| ProtoNet[15]                             | -                    | 81.73±0.63         |
| ProtoNet                                 | FinetuneGAN          | $78.82 {\pm} 0.70$ |
| *ProtoNet                                | FinetuneGAN          | $79.40 \pm 0.69$   |
| ProtoNet                                 | Flip                 | $82.66 {\pm} 0.61$ |
| ProtoNet                                 | Gaussian             | $81.75 \pm 0.63$   |
| ProtoNet                                 | FinetuneGAN, Mixup   | $82.24 \pm 0.60$   |
| $\mathrm{MetaIRNet}[\textcolor{red}{1}]$ | FinetuneGAN          | $84.13 {\pm} 0.58$ |
| MetaIRNet                                | FinetuneGAN, Flip    | $84.80 \pm 0.56$   |
| MetaIRNet++                              | FinetuneGAN          | $84.81 {\pm} 0.57$ |
| ${\it MetaIRNet++(siamese)}$             | FinetuneGAN          | $84.01 {\pm} 0.60$ |
| MetaIRNet++(BD)                          | FinetuneGAN          | $85.13 {\pm} 0.57$ |
| MetaIRNet++(BD)                          | FinetuneGAN, Flip    | $85.53 {\pm} 0.56$ |
| MetaIRNet++(BD)                          | FinetuneGAN, Dropout | $84.58 \pm 0.57$   |

#### MetalRNet++ on CUB Test Set: Scratch

表 4.8: MetaIRNet++ with conv4 from scratch's 5-way-1-shot accuracy (%) on CUB test set. Results marked \* come from the original MetaIRNet[1] paper.

| Model                   | Backbone  | Acc                |
|-------------------------|-----------|--------------------|
| MAML[14]                | Conv4     | $55.92 \pm 0.95$   |
| MatchingNet[49]         | Conv4     | $61.16 \pm 0.89$   |
| RelationNet[50]         | Conv4     | $62.45 {\pm} 0.98$ |
| ProtoNet[15]            | Conv4     | $63.50 \pm 0.70$   |
| *MetaIRNet[1]           | Conv4     | $65.86 {\pm} 0.72$ |
| ${\bf MetaIRNet}$       | Conv4     | $66.66 \pm 0.70$   |
| ${\bf MetaIRNet}{+}{+}$ | Conv4     | $65.76 \pm 0.73$   |
| MetaIRNet++(BD)         | Conv4     | $67.59 \pm 0.73$   |
| MetaIRNet++(BD)         | ResNet-18 | $68.22{\pm}0.74$   |

# Examples



### t-SNE of two random classes



- Visualization of three different types of data augmentation using samples from two random classes.
- MetalRNet++ extends the decision boundary.

# Robustness of $n_{aug}$



### Future Work

- To end-to-end training "Generator + MetalRNet++", which is a safer way to fine tune a GAN-like generator
- To decrease the Block Dropout's sensitivity of hyperparameters
- The minimum of  $n_{aug}$  is still  $n_{aug} = 1$ . We need to find a way to make full use of generated images.

# Summary

- An augmented method for one-shot fine-grained recognition.
- We propose
  - 1. Siamese Network to save at least 1/3 parameters at the same time of keeping comparable accuracy.
  - 2. Block Dropout to increase one-shot fine-grained recognition accuracy with constant computational complexity.
- Empirically demonstrates the effectiveness.
- Encourage more work on image patches for one shot learning

#### Reference

- [1] Satoshi, Fu, Crandall. Meta-Reinforced Synthetic Data for One-Shot Fine-Grained Visual Recognition. In NIPS, 2019
- [2] Spoel et al. Siamese Neural Networks for One-Shot Image Recognition. In ICML Workshop, 2015.
- [3] Chen et al. GridMask Data Augmentation, Arxiv.
- [4] Wan et al. The caltech-ucsd birds-200-2011 dataset, California Institute of Technology, 2011.
- [5] MetalRNet Slide.
- https://drive.google.com/file/d/1YQtKEn4ySVqsMMU66dS1JvVhDWp O4Qqz/view?usp=sharing

