In the name of GOD

WavLM:

Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing

Maryam Afshari

Sharif Speech and Language Processing Lab

- self-supervised learning (SSL) has achieved great success in the fields of (NLP)
- It leverages large amounts of text data to learn universal text representations, which can benefit almost all NLP downstream tasks by fine-tuning.
- Recently, SSL has also shown prominent results for speech processing, especially on phoneme classification (van den Oord et al., 2018) and (ASR) (Baevski et al., 2020b; Hsu et al., 2021a; Wang et al., 2021b).
- As speech signal contains multifaceted information including speaker identity, paralinguistics, spoken content, etc.

learning <u>universal representations for all speech tasks</u> is challenging.

- Building a general pre-trained model can be essential to the further development of speech processing, because it can utilize large-scale unlabeled data to boost the performance in downstream tasks, reducing data labeling efforts.
- In the past, it has been infeasible to build such a general model, as different tasks focus on different aspects of speech signals.

Speaker Verification

speaker characteristic

Spoken content

Speech Recognition

speaker characteristic

Spoken content

Speaker diarization &Speech separation

Multiple Speaker

- Building a general pre-trained model can be essential to the further development of speech processing, because it can utilize large-scale unlabeled data to boost the performance in downstream tasks, reducing data labeling efforts.
- In the past, it has been infeasible to build such a general model, as different tasks focus on different aspects of speech signals.

Speaker Verification

speaker characteristic

Spoken content

Speech Recognition

speaker characteristic

Spoken content

Speaker creates additional obstacles for learning general speech representations.

Multiple Speaker

Speaker Verification

https://huggingface.co/spaces/microsoft/wavlm-speaker-verification

Voice Authentication with WavLM + X-Vectors

This demo will compare two speech samples and determine if they are from the same speaker. Try it with your own voice!

Examples

Speaker Verification

https://huggingface.co/spaces/microsoft/wavlm-speaker-verification

Speaker Verification

https://huggingface.co/spaces/microsoft/wavlm-speaker-verification

Voice Authentication with WavLM + X-Vectors

This demo will compare two speech samples and determine if they are from the same speaker. Try it with your own voice!

Speech Separation

Let's **say we want to write a program to generate the lyrics of a song**. As we know this process includes the usage of <u>Automatic Speech Recognition(ASR)</u>. But will it be able to recognize the speech properly?

While some of the state-of-the-art methods can, it still won't be able to recognize the lyrics because of the background music.

Speech separation is also called the cocktail party problem.

The audio can contain background noise, music, speech by other speakers, or even a combination of these.

the task of extracting the target speech signal from a mixture of sounds as speech enhancement.

Example:

https://www.analyticsvidhya.com/blog/2021/08/speech-separation-by-facebook-ai-rese arch/#:~:text=What%20is%20speech%20separation%3F,-Let's%20say%20we&text=Speech%20separation%20is%20also%20called,of%20sounds%20as%20speech%20enhancement.

Speaker Diarization

In most **real-world scenarios** speech does not come in well defined <u>audio segments</u> with only one speaker. In most of the conversations that our algorithms will need to work with, **people will interrupt each other** and cutting the audio between sentences won't be a trivial task.

In many applications we will want to **identify multiple speakers in a conversation**, for example when writing a protocol of a meeting. For such occasions, **identifying the** different speakers and connect different sentences under the same speaker is a critical task.

It can be described as the question "who spoke when?" in an audio segment.

```
SPEAKER rec1 0 86.200 16.400 <NA> <NA> 1 <NA> <NA>`

SPEAKER rec1 0 103.050 5.830 <NA> <NA> 1 <NA> <NA>`

SPEAKER rec1 0 109.230 4.270 <NA> <NA> 1 <NA> <NA>`

SPEAKER rec1 0 113.760 8.625 <NA> <NA> 1 <NA> <NA>`

SPEAKER rec2 0 122.385 4.525 <NA> <NA> 2 <NA> <NA>`

SPEAKER rec2 0 127.230 6.230 <NA> <NA> 2 <NA> <NA>`

SPEAKER rec2 0 133.820 0.850 <NA> <NA> 2 <NA> <NA>`

NA>`

NA>`
```

- WavLM proves the potential of pre-trained models on full-stack speech tasks by using the weighted sum of embeddings from different layers.
- They find different layers contain information useful for different tasks.

For instance, the hidden states of the top layers are useful for ASR, while the bottom layers are more effective for speaker verification.

Drawbacks in existing pre-trained models

- 1. Current pre-trained models are unsatisfactory for multi-speaker tasks
- speech separation models trained on top of HuBERT, a top performed speech pre-trained model, achieve only marginal improvement compared with the models trained from scratch.
- because the pre-training methods do not sufficiently enforce the speaker discrimination, and the training data contain only single-speaker audios.
- Speech pretraining crucially relies on high quality and large quantities of unlabeled audios.
- audiobook data mismatches the data in a real scenario and using it exclusively hurts the model performance when the acoustic characteristics of the downstream tasks are different from those of the audiobook.
- To **eliminate** the audiobook data bias, we try to **gather data from different sources** as much as possible in our experiments.

In this paper:

- •The contribution of the paper can be summarized as follows:
- 1)WavLM sheds light on a **general pre-trained model** for **full stack speech processing tasks**, in contrast to the <u>previous SSL works</u> focusing on a group of similar tasks.
- 2)We propose <u>simple but effective modifications</u> to the existing pre-trained models, which show general and consistent improvements across downstream tasks.
- 3)We <u>scale-up self-supervised speech pre-training</u> with more **unlabeled data and longer training steps**.
- 4)We achieve **state-of-the- art results on the SUPERB benchmark**, and significantly <u>boost the performance for various speech processing tasks</u> on their representative benchmarks, including speech separation, speaker verification, and speaker diarization. The models and code are released to facilitate future research.

Related Work

Based on the training objective, SSL methods can be categorized into:

Generative learning

traced back to the **auto-encoding model**, which reconstructs the whole speech from **latent variables**, either <u>continuous or discrete</u>.

predict future frames from the history with an autoregressive model or

recover the masked frames from the corrupted speech with a non-autoregressive model

Discriminative learning

well-known examples : CPC , wav2vec , vq-wav2vec , wav2vec 2.0 , DiscreteBERT , HuBERT

CPC and the wav2vec series models use the contrastive InfoNCE loss to discriminate the correlated positive samples from negative samples

Multitask learning

is adopted in PASE and PASE+

They employ lots of pre-training objectives such as waveform generation, prosody regression and contrastive objectives.

Related Work

UniSpeech combines <u>self-supervised learning</u> and <u>supervised learning</u> for ASR, and shows impressive results on <u>multi-lingual testsets</u>.

Unlike SSL in computer vision (CV) and NLP fields, where <u>one pre-trained model is adapted to various downstream tasks</u>, most speech SSL methods **focus on phoneme classification and ASR**.

According to the results, HuBERT enjoys the best generalization ability in the overall evaluation. To better learn speaker characteristics, proposed UniSpeech-SAT, which extends the HuBERT framework with speaker aware pre-training. It significantly outperforms other pre-trained models on the speaker-relate tasks with a slight degradation on the ASR.

a concurrent work BigSSL also mentions large self-supervised learning model could handle various speech tasks.

The **difference** is that our work demonstrates that the full stack tasks can be handled by the <u>careful</u> <u>pre-training and fine-tuning strategy</u> design, even without scaling-up the model size to **8 billion parameters.**

Related Work (BigSSL)

Standard Training

Pre-training (wav2vec 2.0)

- ∘HuBERT is an SSL method which benefits from an <u>offline clustering step</u> to provide target labels for a <u>BERT-like prediction loss</u> (Devlin et al., 2019).
- ∘The <u>backbone</u> is a <u>Transformer encoder</u> (Vaswani et al., 2017) with **L** blocks.
- \circ During pre-training, the Transformer consumes masked acoustic features $\tilde{\mathbf{x}}$ and output hidden states h^L.
- ∘The network is optimized to predict the <u>discrete target sequence</u> \mathbf{z} , where each \mathbf{z}_{-} t ∈ [C] is a C-class categorical variable.

Fig. 1: The HuBERT approach predicts hidden cluster assignments of the masked frames (y_2, y_3, y_4) in the figure generated by one or more iterations of k-means clustering.

• The distribution over codewords is parameterized with

$$p(c|\mathbf{h}_t) = \frac{\exp\left(sim(\mathbf{h}_t^L \mathbf{W}^P, \mathbf{e}_c)/\tau\right)}{\sum_{c'=1}^{C} \exp\left(sim(\mathbf{h}_t^L \mathbf{W}^P, \mathbf{e}_{c'})/\tau\right)}$$

- where \mathbf{W}^P is a projection matrix, \mathbf{h}_t^L is the output hidden state for step t, \mathbf{e}_c is the embedding for codeword c, sim(a,b) computes the cosine similarity and $\tau=0.1$ scales the logit.
- A key ingredient of HuBERT is that the prediction loss is only applied over the masked regions, forcing the model to learn a combined acoustic and language model over the continuous inputs.

HuBERT adopts an iterative re-clustering and re-training process:

- For the first iteration, the targets are assigned by clustering the MFCC features of the training data
- For the second iteration, a new generation of training targets are created by clustering the latent representations generated by the first iteration trained model.

WavLM: Model Structure

Fig. 1: The HuBERT approach predicts hidden cluster assignments of the masked frames (y_2, y_3, y_4) in the figure generated by one or more iterations of k-means clustering.

WavLM: Model Structure

Convolutional feature encoder

The convolutional encoder is composed of seven blocks of temporal convolution followed by layer normalization and a GELU activation layer. The temporal convolutions have 512 channels with strides (5,2,2,2,2,2,2) and kernel widths (10,3,3,3,3,2,2), resulting in each output representing about 25ms of audio strided by 20ms.

Transformer encoder

The <u>convolutional output representations</u> **x** is **masked** as the <u>Transformer input</u>. The Transformer is equipped with a **convolution based relative position embedding layer** with kernel size 128 and 16 groups at the bottom.

WavLM GELU activation

Gaussian Error Linear Unit

GELU(x) =
$$xP(X \le x) = x\Phi(x)$$

$$\approx 0.5x \left(1 + \tanh\left[\sqrt{2/\pi} \left(x + 0.044715x^3\right)\right]\right)$$

WavLM: Model Structure

Following HuBERT, we also use the mask prediction loss to optimize our network as:

$$\mathcal{L} = -\sum_{l \in K} \sum_{t \in M} \log (z_t | \mathbf{h}_t)$$

- where M denotes the set of masked indices in time domain and \mathbf{h}_t^L is the Transformer output for step t.
- The model is trained for two or three iterations depending on the data size.
- \circ For the first iteration, we run k-means clustering on the MFCC features of the training data to obtain the training targets.
- \circ For the second and third iterations, we run k-means on the latent representations generated by the previous iteration model to get the new pre-training targets.

WavLM: gated relative position bias

gated relative position bias vs convolutional relative position embedding

WavLM

vs Hubert, Wav2vec2

- To improve the model, we employ gated relative position bias (Chi et al., 2021) which is encoded based on the offset between the "key" and "query" in the Transformer selfattention mechanism.
- Let $\{h_i\}_{i=1}^T$ denote the input hidden states for the self-attention module, each h_i is linearly projected to a triple of query, key and value (q_i, k_i, v_i) as:

$$q_i, k_i, v_i = h_i W^Q, h_i W^K, h_i W^Y$$

WavLM: gated relative position bias

• The self-attention $\{\tilde{h}\}_{i=1}^T$ outputs are computed via:

$$a_{ij} \propto \exp\left\{\frac{q_i \cdot k_j}{\sqrt{d_k}} + r_{i-j}\right\}$$
$$\tilde{h} = \sum_{j=1}^{T} a_{ij} v_j$$

- \circ where r_{i-j} is the gated relative position bias added to the attention logits.
- It is computed by:

$$g_i^{(update)}g_i^{(reset)} = \sigma(q_i \cdot u), \sigma(q_i \cdot w)$$

$$\tilde{r}_{i-j} = wg_i^{(reset)}d_{i-j}$$

$$r_{i-j} = d_{i-j} + g_i^{(update)}d_{i-j} + (1 - g_i^{(update)})\tilde{r}_{i-j}$$

the <u>same distance offset</u> between <u>two frames</u> tends to <u>play different roles</u> if <u>one frame</u> is silence while the other belongs to a speech segment.

WavLM: Masked Speech Denoising and Prediction

- We propose masked speech denoising and prediction framework to improve model robustness for complex acoustic environments and the preservation of speaker identity
- propose a masked speech denoising and prediction framework, where some inputs are simulated noisy/overlapped with masks and the target is to predict <u>pseudo-labels</u> of the origin speech on masked region.
- •Unlike existing masked speech modeling (HuBERT), which just focuses on the ASR task, the masked speech denoising allows us to extend pre-trained speech models to non-ASR tasks, since it implicitly models information we need in the speaker identification, separation, and diarization tasks.
- •further optimize the Transformer backbone and extend pre-training data to 94k publish English data.

WavLM: Utterance Mixing

Algorithm 1 Utterance Mixing

- 1: given a batch of speech utterances $U = \{u^i\}_{i=1}^B$ with batch size B and length L, mixing probability p
- 2: Choose S utterances $U^S \subset U$ by Bernoulli sampling with probability p
- 3: for each primary utterance $\mathbf{u}^{\text{pri}} \in \mathbf{U}^S$ do
- 4: Sample a secondary utterance \mathbf{u}^{sec} from discrete uniform distribution with probability $P(\mathbf{u}^{\text{sec}} = \mathbf{x}) = \frac{1}{B}, \mathbf{x} \in \mathbf{U}$
- 5: Sample the mix length l from discrete uniform distribution with probability $P(l=x)=\frac{2}{L}, x\in\{1,\cdots,\frac{L}{2}\}$
- 6: Sample a start position s^{pri} of \mathbf{u}^{pri} from discrete uniform distribution with probability $P(s^{\text{pri}}=x)=\frac{1}{L-l}, x\in\{1,\cdots,L-l\}$
- 7: Sample a start position s^{sec} of \mathbf{u}^{sec} from discrete uniform distribution with probability $P(s^{\text{sec}}=x)=\frac{1}{L-l}, x\in\{1,\cdots,L-l\}$
- 8: Sample the mixing energy ratio r from the continuous uniform distribution $\mathcal{U}(-5,5)$
- 9: Calculate the energy of the primary utterance $E^{\text{pri}} \leftarrow \frac{\sum \mathbf{u}^{\text{pri}} \cdot \mathbf{u}^{\text{pri}}}{L}$
- 10: Calculate the energy of the secondary utterance $E^{\text{sec}} \leftarrow \frac{\sum_{\mathbf{u}}^{\mathbf{vec}} \cdot \mathbf{u}^{\text{sec}}}{L}$
- 11: Calculate the mixing scale $scl \leftarrow \sqrt{\frac{E^{pri}}{10^{\frac{r}{10}}E^{sec}}}$
- 12: $\mathbf{u}^{\mathsf{pri}}[s^{\mathsf{pri}}:s^{\mathsf{pri}}+l] \leftarrow \mathbf{u}^{\mathsf{pri}}[s^{\mathsf{pri}}:s^{\mathsf{pri}}+l] + scl \cdot \mathbf{u}^{\mathsf{sec}}[s^{\mathsf{sec}}:s^{\mathsf{sec}}+l]$
- 13: return U

WavLM: Utterance Mixing

- •Introduce utterance mixing to improve the multi-speaker information modeling in pre-training. The utterance mixing method aims to <u>simulate the multi-speaker speech</u> for self-supervised pre-training when only <u>single-speaker pre training</u> data are available.
- •To generate the overlapped speech for pre-training, we <u>randomly select multiple utterances</u> from each <u>training batch</u>, and mix each of them with a<u>nother secondary utterance</u> at a random region.
- •The <u>secondary utterance</u> is randomly <u>selected from the same batch</u>, randomly <u>cropped and scaled</u> by a <u>random source energy ratio</u>. We ensure that the <u>overlap region</u> is less than 50% and refer the <u>speaker from the first utterance as main speaker</u>.
- •With the utterance mixing method, the mode<u>l</u> is trained to predict the content information corresponding to the main speaker with the mask prediction loss.

WavLM: Pre-Training Data

- We leverage large-scale unsupervised data from diverse domains to improve the robustness of our model.
- Previous works use LibriSpeech (Panayotov et al., 2015) or Libri-Light (Kahn et al., 2020) datasets for pre-training, which limits the generalization capability of the pre-trained model since the input data are all extracted from the audiobook.
- The background acoustics of the speech obtained from the audiobook is different from what is observed in real scenarios, since the real captured sounds are usually accompanied by various types of noise.

Experiment: Setup

• We first evaluate our models on **SUPERB**, which is designed to provide a <u>standard and comprehensive testbed</u> for pre-trained models on <u>various speech tasks</u>.

It covers 10 tasks

•These tasks can be grouped into four aspects of speech:

Content

∘Speaker

Semantics

∘ paralinguistics

Experiment: Universal Representation Evaluation

WavLM Base

parameters: 94.70M

corpus: LS 960 hr

WavLM Base+

parameters: 94.70M

corpus: Mix 94k hr

larger and more diverse pre-training data.

WavLM Large

parameters: 316.62M

corpus: Mix 94k hr

- 1) We use the same downstream models as the SUPERB implementations for each downstream task
- 2) Pre-trained models are *frozen* to <u>limit the space of the fine-tuning hyperparameter search</u>
- 3) The downstream models consume the weighted sum results of the <u>hidden states</u> extracted from each layer of the pre-trained model.

The **overall score** is computed by ourselves: we <u>multiply the QbE score with 100</u>, replace <u>each error rate score with (1 - error rate)</u>, and <u>average the scores of all tasks</u>.

10 task

TABLE I
UNIVERSAL SPEECH REPRESENTATION EVALUATION ON SUPERB RENCHMARK, PARAL DENOTE PARAL INGUISTICS ASPECT OF SPEECH

			2	Speaker			Co	ntent			Semantic	ParaL	Overall	
Method	#Params	Corpus	SID	ASV	SD	PR	ASR	KS	QbE	IC	01-071-00	SF	ER	
			Acc ↑	EER ↓	DER ↓	PER ↓	WER ↓	Acc ↑	MTWV ↑	Acc ↑	F1 ↑	CER ↓	Acc ↑	Score ↑
FBANK	0	-	8.5E-4	9.56	10.05	82.01	23.18	8.63	0.0058	9.10	69.64	52.94	35.39	40.5
PASE+ [37]	7.83M	LS 50 hr	37.99	11.61	8.68	58.87	25.11	82.54	0.0072	29.82	62.14	60.17	57.86	55.1
APC [25]	4.11M	LS 360 hr	60.42	8.56	10.53	41.98	21.28	91.01	0.0310	74.69	70.46	50.89	59.33	66.0
VQ-APC [24]	4.63M	LS 360 hr	60.15	8.72	10.45	41.08	21.20	91.11	0.0251	74.48	68.53	52.91	59.66	65.6
NPC [28]	19.38M	LS 360 hr	55.92	9.40	9.34	43.81	20.20	88.96	0.0246	69.44	72.79	48.44	59.08	65.2
Mockingjay [30]	85.12M	LS 360 hr	32.29	11.66	10.54	70.19	22.82	83.67	6.6E-04	34.33	61.59	58.89	50.28	53.5
TERA [29]	21.33M	LS 360 hr	57.57	15.89	9.96	49.17	18.17	89.48	0.0013	58.42	67.50	54.17	56.27	62.0
modified CPC [44]	1.84M	LL 60k hr	39.63	12.86	10.38	42.54	20.18	91.88	0.0326	64.09	71.19	49.91	60.96	63.2
wav2vec [33]	32.54M	LS 960 hr	56.56	7.99	9.9	31.58	15.86	95.59	0.0485	84.92	76.37	43.71	59.79	69.9
vq-wav2vec [34]	34.15M	LS 960 hr	38.80	10.38	9.93	33.48	17.71	93.38	0.0410	85.68	77.68	41.54	58.24	67.7
wav2vec 2.0 Base [5]	95.04M	LS 960 hr	75.18	6.02	6.08	5.74	6.43	96.23	0.0233	92.35	88.30	24.77	63.43	79.0
HuBERT Base [6]	94.68M	LS 960 hr	81.42	5.11	5.88	5.41	6.42	96.30	0.0736	98.34	88.53	25.20	64.92	80.8
WavLM Base	94.70M	LS 960 hr	84.51	4.69	4.55	4.84	6.21	96.79	0.0870	98.63	89.38	22.86	65.94	81.9
 w/o denoising task 	94.70M	LS 960 hr	84.39	4.91	6.03	4.85	6.08	96.79	0.0799	98.42	88.69	23.43	65.55	81.5
 w/o structure modification 	94.68M	LS 960 hr	84.74	4.61	4.72	5.22	6.80	96.79	0.0956	98.31	88.56	24.00	65.60	81.7
WavLM Base+	94.70M	Mix 94k hr	89.42	4.07	3.50	3.92	5.59	97.37	0.0988	99.00	90.58	21.20	68.65	83.3
wav2vec 2.0 Large [5]	317.38M	LL 60k hr	86.14	5.65	5.62	4.75	3.75	96.66	0.0489	95.28	87.11	27.31	65.64	80.8
HuBERT Large [6]	316.61M	LL 60k hr	90.33	5.98	5.75	3.53	3.62	95.29	0.0353	98.76	89.81	21.76	67.62	82.2
WavLM Large	316.62M	Mix 94k hr	95.49	3.77	3.24	3.06	3.44	97.86	0.0886	99.31	92.21	18,36	70.62	84.8

Table 1. Universal speech representation evaluation on SUPERB benchmark. ParaL denote Paralinguistics aspect of speech.

				Speaker			Co	ntent		1	Semantic	S	ParaL	Overall
Method	un cin acu en						ASR	KS	QbE	IC		SF	ER	
						1	WER ↓	Acc↑	MTWV↑	Acc ↑	F1↑	CER ↓	Acc↑	Score ↑
FBANK It is	a fair	compar	ison	as the	Э)1	23.18	8.63	0.0058	9.10	69.64	52.94	35.39	40.5
DACE (Payanalli et al. 2020)		lels use				17	25.11	82.54	0.0072	29.82	62.14	60.17	57.86	55.1
APC (Chung et al., 2019)						8	21.28	91.01	0.0310	74.69	70.46	50.89	59.33	66.0
VQ-APC (Chung et al., 2020)	ount o	f pre-tra	aininc	ı data	and)8	21.20	91.11	0.0251	74.48	68.53	52.91	59.66	65.6
NDC (Limetal 2020a)		•	_			31	20.20	88.96	0.0246	69.44	72.79	48.44	59.08	65.2
Mockingjay (Liu et al., 2020c)	numb	er of pa	rame	ters.		9	22.82	83.67	6.6E-04	34.33	61.59	58.89	50.28	53.5
TERA (Liu et al., 2020b)						7	18.17	89.48	0.0013	58.42	67.50	54.17	56.27	62.0
modified CPC (Rivière et al., 202						54	20.18	91.88	0.0326	64.09	71.19	49.91	60.96	63.2
wav2vec (Schneider et al., 2019)	$\overline{}$					51.58	15.86	95.59	0.0485	84.92	76.37	43.71	59.79	69.9
vq-wav2vec (Baevski et al., 2020a)	34.15	LS 960 hr	38.80	10.38	9.93	33.48	17.71	93.38	0.0410	85.68	77.68	41.54	58.24	67.7
wav2vec 2.0 Base (Baevski et al., 2020b)	95.04M	LS 960 hr	75.18	6.02	6.08	5.74	6.43	96.23	0.0233	92.35	88.30	24.77	63.43	79.0
HuBERT Base (Hsu et al., 2021a)	94.68M	LS 960 hr	81.42	5.11	5.88	5.41	6.42	96.30	0.0736	98.34	88.53	25.20	64.92	80.8
WavLM Base	94.70M	LS 960 hr	84.51	4.69	4.83	4.84	6.21	96.79	0.0870	98.63	89.38	22.86	65.94	81.9
 w/o utterance mixing 	94.70M	LS 960 hr	84.39	4.91	6.03	4.85	6.08	96.79	0.0799	98.42	88.69	23.43	65.55	81.5
- w/o structure modification	94.68M	LS 960 hr	84.74	4.61	4.72	5.22	6.80	96.79	0.0956	98.31	88.56	- 11 true	65.60	81.7
WavLM Base+	94.70M	Mix 94k hr	86.84	4.26	4.07	4.07	5.64	96.69	0.0990	99.16	89.73	21.54	67.98	82.8
wav2vec 2.0 Large (Baevski et al., 2020b)	317.38M	LL 60k hr	86.14	5.65	5.62	4.75	3.75	96.66	0.0489	95.28	87.11	27.31	65.64	80.8
HuBERT Large (Hsu et al., 2021a)	316.61M	LL 60k hr	90.33	5.98	5.75	3.53	3.62	95.29	0.0353	98.76	89.81	21.76	67.62	82.2
WavLM Large	316.62M	Mix 94k hr	95.25	4.04	3.47	3.09	3.51	97.40	0.0827	99.10	92.25	17.61	70.03	84.6

Table 1. Universal speech representation evaluation on SUPERB benchmark. ParaL denote Paralinguistics aspect of speech.

			Speaker				Co	ntent		Semantics			ParaL	Overall
Method	#Params	Corpus	SID	ASV	SD	PR	ASR	KS	QbE	IC	S	SF	ER	
			Acc ↑	EER↓	DER ↓	PER ↓	WER 1	Acc↑	MTWV↑	Acc↑	F1↑	CER ↓	Acc↑	Score ↑
FBANK	0	-	8.5E-4	9.56	10.05	82.01	23.18	8.63	0.0058	9.10	69.64	52.94	35.39	40.5
PASE+ (Ravanelli et al., 2020)	7.83M	LS 50 hr	37.99	11.61	8.68	58.87	25.11	82.54	0.0072	29.82	62.14	60.17	57.86	55.1
APC (Chung et al., 2019)	4.11M	LS 360 hr	60.42	8.56	10.53	41.98	21.28	91.01	0.0310	74.69	70.46	50.89	59.33	66.0
VQ-APC (Chung et al., 2020)	4.63M	LS 360 hr	60.15	8.72	10.45	41.08	21.20	91.11	0.0251	74.48	68.53	52.91	59.66	65.6
NPC (Liu et al., 2020a)	19.38M	LS 360 hr	55.92	9.40	9.34	43.81	20.20	88.96	0.0246	69.44	72.79	48.44	59.08	65.2
Mockingjay (Liu et al., 2020c)	85.12M	LS 360 hr	32.29	11.66	10.54	70.19	22.82	83.67	6.6E-04	34.33	61.59	58.89	50.28	53.5
TERA (Liu et al., 2020b)	21.33M	LS 360 hr	57.57	15.89	9.96	49.17	18.17	89.48	0.0013	58.42	67.50	54.17	56.27	62.0
modified CPC (Rivière et al., 2020)	1.84M	LL 60k hr	39.63	12.86	10.38	42.54	20.18	91.88	0.0326	64.09	71.19	49.91	60.96	63.2
wav2vec (Schneider et al., 2019)	32.54M	LS 960 hr	56.56	7.99	9.9	31.58	15.86	95.59	0.0485	84.92	76.37	43.71	59.79	69.9
vq-wav2vec (Baevski et al., 2020a)	34.15M	LS 960 hr	38.80	10.38	9.93	33.48	17.71	93.38	0.0410	85,68	77.68	41.54	58.24	67.7
wav2vec 2.0 Base (Baevski et al., 2020b)	95.04M	LS 960 hr	75.18	6.02	6.08	5.74	6.43	96.23	0.0233	92.35	88.30	24.77	63.43	79.0
HuBERT Base (Hsu et al., 2021a)	94.68M	LS 960 hr	81.42	5.11	5.88	5.41	6.42	96.30	0.0736	98.34	88.53	25.20	64.92	80.8
WavLM Base	94.70M	LS 960 hr	84.51	4.69	4.83	4.84	6.21	96.79	0.0870	98.63	89.38	22.86	65.94	81.9
 w/o utterance mixing 	94 70M	LS 960 hr			-03	4.85	6.08	9679	0.0799	98.42	88 69	23.43	65.55	81.5

WavLM Base+

wav2vec 2.0 Large (Baevski et al., 2020b) HuBERT Large (Hsu et al., 2021a) WavLM Large

WavLM Base performs better than wav2vec 2.0 Base and HuBERT Base on all downstream tasks.

⁻ w/o structure modification

Table 1. Universal speech representation evaluation on SUPERB benchmark. ParaL denote Paralinguistics aspect of speech.

			Speaker				Co	ntent		Semantics			ParaL	Overall
Method	#Params	Corpus	SID	ASV	SD	PR	ASR	KS	QbE	IC	S	F	ER	
A second second		i i i i i i i i i i i i i i i i i i i	Acc ↑	EER↓	DER ↓	PER ↓	WER ↓	Acc↑	MTWV↑	Acc↑	F1↑	CER ↓	Acc↑	Score ↑
FBANK	0	-	8.5E-4	9.56	10.05	82.01	23.18	8.63	0.0058	9.10	69.64	52.94	35.39	40.5
PASE+ (Ravanelli et al., 2020)	7.83M	LS 50 hr	37.99	11.61	8.68	58.87	25.11	82.54	0.0072	29.82	62.14	60.17	57.86	55.1
APC (Chung et al., 2019)	4.11M	LS 360 hr	60.42	8.56	10.53	41.98	21.28	91.01	0.0310	74.69	70.46	50.89	59.33	66.0
VQ-APC (Chung et al., 2020)	4.63M	LS 360 hr	60.15	8.72	10.45	41.08	21.20	91.11	0.0251	74.48	68.53	52.91	59.66	65.6
NPC (Liu et al., 2020a)	19.38M	LS 360 hr	55.92	9.40	9.34	43.81	20.20	88.96	0.0246	69.44	72.79	48.44	59.08	65.2
Mockingjay (Liu et al., 2020c)	85.12M	LS 360 hr	32.29	11.66	10.54	70.19	22.82	83.67	6.6E-04	34.33	61.59	58.89	50.28	53.5
TERA (Liu et al., 2020b)	21.33M	LS 360 hr	57.57	15.89	9.96	49.17	18.17	89.48	0.0013	58.42	67.50	54.17	56.27	62.0
modified CPC (Rivière et al., 2020)	1.84M	LL 60k hr	39.63	12.86	10.38	42.54	20.18	91.88	0.0326	64.09	71.19	49.91	60.96	63.2
wav2vec (Schneider et al., 2019)	32.54M	LS 960 hr	56.56	7.99	9.9	31.58	15.86	95.59	0.0485	84.92	76.37	43.71	59.79	69.9
vq-wav2vec (Baevski et al., 2020a)	34.15M	LS 960 hr	38.80	10.38	9.93	33.48	17.71	93.38	0.0410	85.68	77.68	41.54	58.24	67.7
wav2vec 2.0 Base (Baevski et al., 2020b)	95.04M	LS 960 hr	75.18	6.02	6.08	5.74	6.43	96.23	0.0233	92.35	88.30	24.77	63.43	79.0
HuBERT Base (Hsu et al., 2021a)	94.68M	LS 960 hr	81.42	5.11	5.88	5.41	6.42	96.30	0.0736	98.34	88.53	25.20	64.92	80.8
WavLM Base	94.70M	LS 960 hr	84.51	4.69	4.83	4.84	6.21	96.79	0.0870	98.63	89.38	22.86	65.94	81.9
 w/o utterance mixing 	94 70M	LS 960 hr				4.85	6.08	9679	0.0799	98.42	88 69	23.43	65.55	81.5

- w/o structure modification

WavLM Base+

wav2vec 2.0 Large (Baevski et al., 2020b) HuBERT Large (Hsu et al., 2021a) WavLM Large

WavLM Base performs better than wav2vec 2.0 Base and HuBERT Base on all downstream tasks.

indicate the effectiveness of our structure and the masked speech denoising modeling

Table 1. Universal speech representation evaluation on SUPERB benchmark. ParaL denote Paralinguistics aspect of speech.

				Speaker			Co	ntent		8	Semantic	S	ParaL	Overall
Method	#Params	Corpus	SID	ASV	SD	PR	ASR	KS	QbE	IC	S	SF	ER	
E HINE TO A			Acc ↑	EER↓	DER ↓	PER ↓	WER↓	Acc↑	MTWV↑	Acc↑	F1↑	CER \	Acc↑	Score ↑
FBANK	0	-	8.5E-4	9.56	10.05	82.01	23.18	8.63	0.0058	9.10	69.64	52.94	35.39	40.5
PASE+ (Ravanelli et al., 2020)	7.83M	LS 50 hr	37.99	11.61	8.68	58.87	25.11	82.54	0.0072	29.82	62.14	60.17	57.86	55.1
APC (Chung et al., 2019)	4.11M	LS 360 hr	60.42	8.56	10.53	41.98	21.28	91.01	0.0310	74.69	70.46	50.89	59.33	66.0
VQ-APC (Chung et al., 2020)	4.63M	LS 360 hr	60.15	8.72	10.45	41.08	21.20	91.11	0.0251	74.48	68.53	52.91	59.66	65.6
NPC (Liu et al., 2020a)	19.38M	LS 360 hr	55.92	9.40	9.34	43.81	20.20	88.96	0.0246	69.44	72.79	48.44	59.08	65.2
Mockingjay (Liu et al., 2020c)	85.12M	LS 360 hr	32.29	11.66	10.54	70.19	22.82	83.67	6.6E-04	34.33	61.59	58.89	50.28	53.5
TERA (Liu et al., 2020b)	21.33M	LS 360 hr	57.57	15.89	9.96	49.17	18.17	89.48	0.0013	58.42	67.50	54.17	56.27	62.0
modified CPC (Rivière et al., 2020)	1.84M	LL 60k hr	39.63	12.86	10.38	42.54	20.18	91.88	0.0326	64.09	71.19	49.91	60.96	63.2
wav2vec (Schneider et al., 2019)	32.54M	LS 960 hr	56.56	7.99	9.9	31.58	15.86	95.59	0.0485	84.92	76.37	43.71	59.79	69.9
vq-wav2vec (Baevski et al., 2020a)	34.15M	LS 960 hr	38.80	10.38	9.93	33.48	17.71	93.38	0.0410	85.68	77.68	41.54	58.24	67.7
wav2vec 2.0 Base (Baevski et al., 2020b)	95.04M	LS 960 hr	75.18	6.02	6.08	5.74	6.43	96.23	0.0233	92.35	88.30	24.77	63.43	79.0
HuBERT Base (Hsu et al., 2021a)	94.68M	LS 960 hr	81.42	5.11	5.88	5.41	6.42	96.30	0.0736	98.34	88.53	25.20	64.92	80.8
WavLM Base	94.70M	LS 960 hr	84.51	4.69	4.83	4.84	6.21	96.79	0.0870	98.63	89.38	22.86	65.94	81.9
 w/o utterance mixing 	94.70M	LS 960 hr	84.39	4,91	-02	4.85	6.08	96.79	0.0799	98.42	88.69	23.43	65.55	81.5
- w/o structure modification	94.68	1000 -	013				C 00	06.70	0.0056	00 21	00 50	24.00	65 60	01.7

 Wav LM Base+
 94.7

 wav 2vec 2.0 Large (Baevski et al., 2020b)
 317.3

 HuBERT Large (Hsu et al., 2021a)
 316.4

 Wav LM Large
 316.4

the most <u>impressive result</u> is speaker diarization, where the WavLM Base outperforms HuBERT Base by 22.6% relatively

Table 1. Universal speech representation evaluation on SUPERB benchmark. ParaL denote Paralinguistics aspect of speech.

				Speaker			Co	ntent		8	Semantic	S	ParaL	Overall
Method	#Params	Corpus	SID	ASV	SD	PR	ASR	KS	QbE	IC		SF	ER	
			Acc ↑	EER↓	DER ↓	PER ↓	WER 1	Acc↑	MTWV↑	Acc↑	F1↑	CER ↓	Acc↑	Score ↑
FBANK	0	-	8.5E-4	9.56	10.05	82.01	23.18	8.63	0.0058	9.10	69.64	52.94	35.39	40.5
PASE+ (Ravanelli et al., 2020)	7.83M	LS 50 hr	37.99	11.61	8.68	58.87	25.11	82.54	0.0072	29.82	62.14	60.17	57.86	55.1
APC (Chung et al., 2019)	4.11M	LS 360 hr	60.42	8.56	10.53	41.98	21.28	91.01	0.0310	74.69	70.46	50.89	59.33	66.0
VQ-APC (Chung et al., 2020)	4.63M	LS 360 hr	60.15	8.72	10.45	41.08	21.20	91.11	0.0251	74.48	68.53	52.91	59.66	65.6
NPC (Liu et al., 2020a)	19.38M	LS 360 hr	55.92	9.40	9.34	43.81	20.20	88.96	0.0246	69.44	72.79	48.44	59.08	65.2
Mockingjay (Liu et al., 2020c)	85.12M	LS 360 hr	32.29	11.66	10.54	70.19	22.82	83.67	6.6E-04	34.33	61.59	58.89	50.28	53.5
TERA (Liu et al., 2020b)	21.33M	LS 360 hr	57.57	15.89	9.96	49.17	18.17	89.48	0.0013	58.42	67.50	54.17	56.27	62.0
modified CPC (Rivière et al., 2020)	1.84M	LL 60k hr	39.63	12.86	10.38	42.54	20.18	91.88	0.0326	64.09	71.19	49.91	60.96	63.2
wav2vec (Schneider et al., 2019)	32.54M	LS 960 hr	56.56	7.99	9.9	31.58	15.86	95.59	0.0485	84.92	76.37	43.71	59.79	69.9
vq-wav2vec (Baevski et al., 2020a)	34.15M	LS 960 hr	38.80	10.38	9.93	33.48	17.71	93.38	0.0410	85.68	77.68	41.54	58.24	67.7
wav2vec 2.0 Base (Baevski et al., 2020b)	95.04M	LS 960 hr	75.18	6.02	6.08	5.74	6.43	96.23	0.0233	92.35	88.30	24.77	63.43	79.0
HuBERT Base (Hsu et al., 2021a)	94.68M	LS 960 hr	81.42	5.11	5.88	5.41	6.42	96.30	0.0736	98.34	88.53	25.20	64.92	80.8
WavLM Base	94.70M	LS 960 hr	84.51	4.69	4.83	4.84	6.21	96.79	0.0870	98.63	89.38	22.86	65.94	81.9
 w/o utterance mixing 	94.70M	LS 960 hr	84.39	4,91	-02	4.85	6.08	96.79	0.0799	98.42	88.69	23.43	65.55	81.5
- w/o structure modification	94.68	1000 -	013				C 00	0.670	0.0056	00 21	00 52	24.00	65 CD	017

 WavLM Base+
 94.7

 wav2vec 2.0 Large (Baevski et al., 2020b)
 317.3

 HuBERT Large (Hsu et al., 2021a)
 316.0

 WavLM Large
 316.0

explanation is that the additional overlapped speech forces the model to deal with multi-speaker signals during pre-training.

Ablation study to remove utterance mixing

316.61

316.62

HuBERT Large (Hsu et al., 2021a)

WavLM Large

Table 1. Universal speech representation evaluation on SUPERB benchmark. ParaL denote Paralinguistics aspect of speech.

				Speaker			Co	ntent			Semantic	S	ParaL	Overall
Method	#Params	Corpus	SID	ASV	SD	PR	ASR	KS	QbE	IC	S	F	ER	
E MINE TO A		i i i i i i i i i i i i i i i i i i i	Acc ↑	EER↓	DER ↓	PER ↓	WER↓	Acc↑	MTWV↑	Acc↑	F1↑	CER ↓	Acc↑	Score ↑
FBANK	0	-	8.5E-4	9.56	10.05	82.01	23.18	8.63	0.0058	9.10	69.64	52.94	35.39	40.5
PASE+ (Ravanelli et al., 2020)	7.83M	LS 50 hr	37.99	11.61	8.68	58.87	25.11	82.54	0.0072	29.82	62.14	60.17	57.86	55.1
APC (Chung et al., 2019)	4.11M	LS 360 hr	60.42	8.56	10.53	41.98	21.28	91.01	0.0310	74.69	70.46	50.89	59.33	66.0
VQ-APC (Chung et al., 2020)	4.63M	LS 360 hr	60.15	8.72	10.45	41.08	21.20	91.11	0.0251	74.48	68.53	52.91	59.66	65.6
NPC (Liu et al., 2020a)	19.38M	LS 360 hr	55.92	9.40	9.34	43.81	20.20	88.96	0.0246	69.44	72.79	48.44	59.08	65.2
Mockingjay (Liu et al., 2020c)	85.12M	LS 360 hr	32.29	11.66	10.54	70.19	22.82	83.67	6.6E-04	34.33	61.59	58.89	50.28	53.5
TERA (Liu et al., 2020b)	21.33M	LS 360 hr	57.57	15.89	9.96	49.17	18.17	89.48	0.0013	58.42	67.50	54.17	56.27	62.0
modified CPC (Rivière et al., 2020)	1.84M	LL 60k hr	39.63	12.86	10.38	42.54	20.18	91.88	0.0326	64.09	71.19	49.91	60.96	63.2
wav2vec (Schneider et al., 2019)	32.54M	LS 960 hr	56.56	7.99	9.9	31.58	15.86	95.59	0.0485	84.92	76.37	43.71	59.79	69.9
vq-wav2vec (Baevski et al., 2020a)	34.15M	LS 960 hr	38.80	10.38	9.93	33.48	17.71	93.38	0.0410	85.68	77.68	41.54	58.24	67.7
wav2vec 2.0 Base (Baevski et al., 2020b)	95.04M	LS 960 hr	75.18	6.02	6.08	5.74	6.43	96.23	0.0233	92.35	88.30	24.77	63.43	79.0
HuBERT Base (Hsu et al., 2021a)	94.68M	LS 960 hr	81.42	5.11	5.00	5.41	6.42	96.30	0.0736	98.34	88.53	25.20	64.92	80.8
WavLM Base	94.70M	LS 960 hr	84.51	4.69	4.83	4.84	6.21	96.79	0.0870	98.63	89.38	22.86	65.94	81.9
- w/o utterance mixing	94.70M	LS 960 hr	84.39	4.91	6.03	4.85	6.08	96,79	0.0799	98,42	88,69	23,43	65.55	81.5
- w/o structure modification	94.68M	LS 960 hr	84.74	4.61		5.22	6.80	96.79	0.0956	98.31	88.56	24.00	65.60	81.7
WavLM Base+	94.70M	Mix 94k hr	86.84				5.64	06.60	0.0000	00 16	80.73	21.54	67 08	82.8
wav2vec 2.0 Large (Baevski et al., 2020b)	317.38				<i>- (</i> (

The performance of "w/o utterance mixing" drops significantly for the speaker diarization task.

Ablation study to remove utterance mixing

316.61M

316.62M

HuBERT Large (Hsu et al., 2021a)

WavLM Large

Phoneme Recognition (PR) Automatic Speech Recognition (ASR)

Table 1. Universal speech representation evaluation on SUPERB benchmark. ParaL denote Paralinguistics aspect of speech.

				Speaker			Co	ntent		1	Semantic	S	ParaL	Overall
Method	#Params	Corpus	SID	ASV	SD	PR	ASR	KS	QbE	IC	5	SF	ER	
			Acc ↑	EER↓	DER ↓	PER ↓	WER ↓	Acc↑	MTWV↑	Acc↑	F1↑	CER \	Acc↑	Score ↑
FBANK	0	-	8.5E-4	9.56	10.05	82.01	23.18	8.63	0.0058	9.10	69.64	52.94	35.39	40.5
PASE+ (Ravanelli et al., 2020)	7.83M	LS 50 hr	37.99	11.61	8.68	58.87	25.11	82.54	0.0072	29.82	62.14	60.17	57.86	55.1
APC (Chung et al., 2019)	4.11M	LS 360 hr	60.42	8.56	10.53	41.98	21.28	91.01	0.0310	74.69	70.46	50.89	59.33	66.0
VQ-APC (Chung et al., 2020)	4.63M	LS 360 hr	60.15	8.72	10.45	41.08	21.20	91.11	0.0251	74.48	68.53	52.91	59.66	65.6
NPC (Liu et al., 2020a)	19.38M	LS 360 hr	55.92	9.40	9.34	43.81	20.20	88.96	0.0246	69.44	72.79	48.44	59.08	65.2
Mockingjay (Liu et al., 2020c)	85.12M	LS 360 hr	32.29	11.66	10.54	70.19	22.82	83.67	6.6E-04	34.33	61.59	58.89	50.28	53.5
TERA (Liu et al., 2020b)	21.33M	LS 360 hr	57.57	15.89	9.96	49.17	18.17	89.48	0.0013	58.42	67.50	54.17	56.27	62.0
modified CPC (Rivière et al., 2020)	1.84M	LL 60k hr	39.63	12.86	10.38	42.54	20.18	91.88	0.0326	64.09	71.19	49.91	60.96	63.2
wav2vec (Schneider et al., 2019)	32.54M	LS 960 hr	56.56	7.99	9.9	31.58	15.86	95.59	0.0485	84.92	76.37	43.71	59.79	69.9
vq-wav2vec (Baevski et al., 2020a)	34.15M	LS 960 hr	38.80	10.38	9.93	33.48	17.71	93.38	0.0410	85.68	77.68	41.54	58.24	67.7
wav2vec 2.0 Base (Baevski et al., 2020b)	95.04M	LS 960 hr	75.18	6.02	6.08	5.74	6.43	96.23	0.0233	92.35	88.30	24.77	63.43	79.0
HuBERT Base (Hsu et al., 2021a)	94.68M	LS 960 hr	81.42	5.11	5.88	5 41 2.71	6.42	96.30	0.0736	98.34	88.53	25.20	64.92	80.8
WavLM Base	94.70M	LS 960 hr	84.51	4.69	4.83	4.84	6.21	96.79	0.0870	98.63	89.38	22.86	65.94	81.9
- w/o utterance mixing	94.70M	LS 960 hr	84 30	4.91	6.03	1 25	6.08	9679	0.0799	98.42	88 69	23.43	65.55	81.5
- w/o structure modification	94.68M	LS 960 hr	84.74	4.61	4.72	5.22	6.80	96.79	0.0956	98.31	88.56	24.00	65.60	81.7
WavLM Base+	94.70M	Mix 94k hr	86.84	4.26	4.07		5.04	96.69	0.0990	99.16	89.73	21.54	67.98	82.8
wav2vec 2.0 Large (Baevski et al., 2020b)	317.38M	I - a	0.44					0	0.0400	05.00	07.44	27.24	25.21	00.0

in the "w/o structure modification" setting, performance degradation can be witnessed especially for PR and ASR tasks.

Ablation study to remove utterance mixing

316.61M

316.62M

HuBERT Large (Hsu et al., 2021a)

WavLM Large

Phoneme Recognition (PR) Automatic Speech Recognition (ASR)

Table 1. Universal speech representation evaluation on SUPERB benchmark. ParaL denote Paralinguistics aspect of speech.

				Speaker		/	Co	ntent		1	Semantic	S	ParaL	Overall
Method	#Params	Corpus	SID	ASV	SD	PR	ASR	KS	QbE	IC	5	SF	ER	
N. C.			Acc ↑	EER↓	DER ↓	PER↓	WER↓	Acc↑	MTWV↑	Acc↑	F1↑	CER ↓	Acc↑	Score ↑
FBANK	0	-	8.5E-4	9.56	10.05	82.01	23.18	8.63	0.0058	9.10	69.64	52.94	35.39	40.5
PASE+ (Ravanelli et al., 2020)	7.83M	LS 50 hr	37.99	11.61	8.68	58.87	25.11	82.54	0.0072	29.82	62.14	60.17	57.86	55.1
APC (Chung et al., 2019)	4.11M	LS 360 hr	60.42	8.56	10.53	41.98	21.28	91.01	0.0310	74.69	70.46	50.89	59.33	66.0
VQ-APC (Chung et al., 2020)	4.63M	LS 360 hr	60.15	8.72	10.45	41.08	21.20	91.11	0.0251	74.48	68.53	52.91	59.66	65.6
NPC (Liu et al., 2020a)	19.38M	LS 360 hr	55.92	9.40	9.34	43.81	20.20	88.96	0.0246	69.44	72.79	48.44	59.08	65.2
Mockingjay (Liu et al., 2020c)	85.12M	LS 360 hr	32.29	11.66	10.54	70.19	22.82	83.67	6.6E-04	34.33	61.59	58.89	50.28	53.5
TERA (Liu et al., 2020b)	21.33M	LS 360 hr	57.57	15.89	9.96	49.17	18.17	89.48	0.0013	58.42	67.50	54.17	56.27	62.0
modified CPC (Rivière et al., 2020)	1.84M	LL 60k hr	39.63	12.86	10.38	42.54	20.18	91.88	0.0326	64.09	71.19	49.91	60.96	63.2
wav2vec (Schneider et al., 2019)	32.54M	LS 960 hr	56.56	7.99	9.9	31.58	15.86	95.59	0.0485	84.92	76.37	43.71	59.79	69.9
vq-wav2vec (Baevski et al., 2020a)	34.15M	LS 960 hr	38.80	10.38	9.93	33.48	17.71	93.38	0.0410	85.68	77.68	41.54	58.24	67.7
wav2vec 2.0 Base (Baevski et al., 2020b)	95.04M	LS 960 hr	75.18	6.02	6.08	5.74	6.43	96.23	0.0233	92.35	88.30	24.77	63.43	79.0
HuBERT Base (Hsu et al., 2021a)	94.68M	LS 960 hr	81.42	5.11	5.88	5.44 J.71	6.42	96,30	0.0736	98.34	88.53	25.20	64.92	80.8
WavLM Base	94.70M	LS 960 hr	84.51	4.69	4.83	4.84	6.21	96.79	0.0870	98.63	89.38	22.86	65.94	81.9
- w/o utterance mixing	94 70M	LS 960 hr	84 39	4.91	6.03	1 25	80.8	9679	0.0799	98.42	88.69	23.43	65.55	81.5
- w/o structure modification	94.68M	LS 960 hr	84.74	4.61	4.72	5.22	6.80	96.79	0.0956	98.31	88.56	24.00	65.60	81.7
WavLM Base+	94.70M	Mix 94k hr	86.84	4.26	4.07		5.04	96.69	0.0990	99.16	89.73	21.54	67.98	82.8
wav2vec 2.0 Large (Baevski et al., 2020b)	317.38M	L	0.44					0	0.0400	05.00	07 44	27.24	-5-1	00.0

It indicates that the **gated relative position bias** contributes to the **performance improvement** of the **content related tasks**

Ablation study to remove <u>structure modification</u>

Table 1. Universal speech representation evaluation on SUPERB benchmark. ParaL denote Paralinguistics aspect of speech.

				Speaker			Co	ntent		1	Semantic	S	ParaL	Overall
Method	#Params	Corpus	SID	ASV	SD	PR	ASR	KS	QbE	IC	S	F	ER	
		1111	Acc ↑	EER↓	DER ↓	PER ↓	WER↓	Acc↑	MTWV↑	Acc↑	F1↑	CER ↓	Acc↑	Score ↑
FBANK	0	-	8.5E-4	9.56	10.05	82.01	23.18	8.63	0.0058	9.10	69.64	52.94	35.39	40.5
PASE+ (Ravanelli et al., 2020)	7.83M	LS 50 hr	37.99	11.61	8.68	58.87	25.11	82.54	0.0072	29.82	62.14	60.17	57.86	5.1
APC (Chung et al., 2019)	4.11M	LS 360 hr	60.42	8.56	10.53	41.98	21.28	91.01	0.0310	74.69	70.46	50.89	59.33	6.0
VQ-APC (Chung et al., 2020)	4.63M	LS 360 hr	60.15	8.72	10.45	41.08	21.20	91.11	0.0251	74.48	68.53	52.91	59.66	(5.6
NPC (Liu et al., 2020a)	19.38M	LS 360 hr	55.92	9.40	9.34	43.81	20.20	88.96	0.0246	69.44	72.79	48.44	59.08	65.2
Mockingjay (Liu et al., 2020c)	85.12M	LS 360 hr	32.29	11.66	10.54	70.19	22.82	83.67	6.6E-04	34.33	61.59	58.89	50.28	53.5
TERA (Liu et al., 2020b)	21.33M	LS 360 hr	57.57	15.89	9.96	49.17	18.17	89.48	0.0013	58.42	67.50	54.17	56.27	(2.0
modified CPC (Rivière et al., 2020)	1.84M	LL 60k hr	39.63	12.86	10.38	42.54	20.18	91.88	0.0326	64.09	71.19	49.91	60.96	(3.2
wav2vec (Schneider et al., 2019)	32.54M	LS 960 hr	56.56	7.99	9.9	31.58	15.86	95.59	0.0485	84.92	76.37	43.71	59.79	(9.9
vq-wav2vec (Baevski et al., 2020a)	34.15M	LS 960 hr	38.80	10.38	9.93	33.48	17.71	93.38	0.0410	85.68	77.68	41.54	58.24	(7.7
wav2vec 2.0 Base (Baevski et al., 2020b)	95.04M	LS 960 hr	75.18	6.02	6.08	5.74	6.43	96.23	0.0233	92.35	88.30	24.77	63.43	79.0
HuBERT Base (Hsu et al., 2021a)	94.68M	LS 960 hr	81.42	5.11	5.88	5.41	6.42	96.30	0.0736	98.34	88.53	25.20	64.92	8.08
WavLM Base	94.70M	LS 960 hr	84.51	4.69	4.83	4.84	6.21	96.79	0.0870	98.63	89.38	22.86	65.94	81.9
 w/o utterance mixing 	94.70M	LS 960 hr	84.39	4.91	6.03	4.85	6.08	96.79	0.0799	98.42	88.69	23.43	65.55	1.5
 w/o structure modification 	94.68M	LS 960 hr	84.74	4.61	4.72	5.22	6.80	96.79	0.0956	98.31	88.56	24.00	65.60	1.7
WavLM Base+	94.70M	Mix 94k hr	86.84	4.26	4.07	4.07	5.64	96.69	0.0990	99.16	89.73	21.54	67.98	82.8
wav2vec 2.0 Large (Baevski et al., 2020b)	317.38M	LL 60k hr	86.14	5.65	5.62	4.75	3.75	96.66	0.0489	95.28	87.11	27.31	0.3.04	80.8
HuBERT Large (Hsu et al., 2021a)	316.61M	LL 60k hr	90.33	5.98	5.75	3.53	3.62	95.29	0.0353	00			67.62	82.2
WavLM Large	316.62M													

WavLM performs very well on **semantic** and **paralinguistic**s tasks as well

Table 1. Universal speech representation evaluation on SUPERB benchmark. ParaL denote Paralinguistics aspect of speech.

				Speaker			Co	ntent			Semantic	S	ParaL	Overall
Method	#Params	Corpus	SID	ASV	SD	PR	ASR	KS	QbE	IC		SF	ER	
	0		Acc ↑	EER↓	DER ↓	PER↓	WER↓	Acc↑	MTWV↑	Acc↑	F1↑	CER ↓	Acc↑	Score ↑
FBANK	0	-	8.5E-4	9.56	10.05	82.01	23.18	8.63	0.0058	9.10	69.64	52.94	35.39	40.5
PASE+ (Ravanelli et al., 2020)	7.83M	LS 50 hr	37.99	11.61	8.68	58.87	25.11	82.54	0.0072	29.82	62.14	60.17	57.86	55.1
APC (Chung et al., 2019)	4.11M	LS 360 hr	60.42	8.56	10.53	41.98	21.28	91.01	0.0310	74.69	70.46	50.89	59.33	66.0
VQ-APC (Chung et al., 2020)	4.63M	LS 360 hr	60.15	8.72	10.45	41.08	21.20	91.11	0.0251	74.48	68.53	52.91	59.66	65.6
NPC (Liu et al., 2020a)	19.38M	LS 360 hr	55.92	9.40	9.34	43.81	20.20	88.96	0.0246	69.44	72.79	48.44	59.08	65.2
Mockingjay (Liu et al., 2020c)	85.12M	LS 360 hr	32.29	11.66	10.54	70.19	22.82	83.67	6.6E-04	34.33	61.59	58.89	50.28	53.5
TERA (Liu et al., 2020b)	21.33M	LS 360 hr	57.57	15.89	9.96	49.17	18.17	89.48	0.0013	58.42	67.50	54.17	56.27	62.0
modified CPC (Rivière et al., 2020)	1.84M	LL 60k hr	39.63	12.86	10.38	42.54	20.18	91.88	0.0326	64.09	71.19	49.91	60.96	63.2
wav2vec (Schneider et al., 2019)	32.54M	LS 960 hr	56.56	7.99	9.9	31.58	15.86	95.59	0.0485	84.92	76.37	43.71	59.79	69.9
vq-wav2vec (Baevski et al., 2020a)	34.15M	LS 960 hr	38.80	10.38	9.93	33.48	17.71	93.38	0.0410	85.68	77.68	41.54	58.24	67.7
wav2vec 2.0 Base (Baevski et al., 2020b)	95.04M	LS 960 hr	75.18	6.02	6.08	5.74	6.43	96.23	0.0233	92.35	88.30	24.77	63.43	79.0
HuBERT Base (Hsu et al., 2021a)	94.68M	LS 960 hr	81.42	5.11	5.88	5.41	6.42	96.30	0.0736	98.34	88.53	25.20	64.92	80.8
WavLM Base	94.70M	LS 960 hr	84.51	4.69	4.83	4.84	6.21	96.79	0.0870	98.63	89.38	22.86	65.94	81.9
 w/o utterance mixing 	94.70M	LS 960 hr	84.39	4.91	6.03	4.85	6.08	96.79	0.0799	98.42	88.69	23.43	65.55	81.5
- w/o structure modification	94.68M	LS 960 hr	84.74	4.61	4.72	5.22	6.80	96.79	0.0956	98.31	88.56	24.00	65.60	81.7
WavLM Base+	94.70M	Mix 94k hr	86.84	4.26	4.07	4.07	5.64	96.69	0.0990	99.16	89.73	21.54	67.98	82.8
wav2vec 2.0 Large (Baevski et al., 2020b)	317.38M	LL 60k hr	86.14	5.65	5.62	4.75			0.0489	95.28	87.11	27.31	65.64	80.8
HuBERT												6	67.62	82.2
WavLM I												1	70.03	84.6

demonstrating our model is general for the full stack speech processing tasks.

Table 1. Universal speech representation evaluation on SUPERB benchmark. ParaL denote Paralinguistics aspect of speech.

				Speaker			Co	ntent			Semantic	S	ParaL	Overall
Method	#Params	Corpus	SID	ASV	SD	PR	ASR	KS	QbE	IC	S	F	ER	
		1111	Acc ↑	EER↓	DER ↓	PER ↓	WER↓	Acc↑	MTWV ↑	Acc↑	F1↑	CER↓	Acc↑	Score ↑
FBANK	0	-	8.5E-4	9.56	10.05	82.01	23.18	8.63	0.0058	9.10	69.64	52.94	35.39	40.5
PASE+ (Ravanelli et al., 2020)	7.83M	LS 50 hr	37.99	11.61	8.68	58.87	25.11	82.54	0.0072	29.82	62.14	60.17	57.86	55.1
APC (Chung et al., 2019)	4.11M	LS 360 hr	60.42	8.56	10		21.20		0.0510			***		
VQ-APC (Chung et al., 2020)	4.63M	LS 360 hr	60.15	8.72	1									
NPC (Liu et al., 2020a)	19.38M	LS 360 hr	55.92	9.40		NavL	M Bas	e+ or	utperfo	rms t	he w	av2ve	ec 2.0	Large
Mockingjay (Liu et al., 2020c)	85.12M	LS 360 hr	32.29	11.66	1				-					8
TERA (Liu et al., 2020b)	21.33M	LS 360 hr	57.57	15.89	a	ına H	UBEK	ı Lar	ge in th	e ove	raii s	core.		
modified CPC (Rivière et al., 2020)	1.84M	LL 60k hr	39.63	12.86	1									
wav2vec (Schneider et al., 2019)	32.54M	LS 960 hr	56.56	7.99	9.7	51.50	15.00	10.01	0.0102	0.72	10.51	_		
vq-wav2vec (Baevski et al., 2020a)	34.15M	LS 960 hr	38.80	10.38	9.93	33.48	17.71	93.38	0.0410	85.68	77.68	41		
wav2vec 2.0 Base (Baevski et al., 2020b)	95.04M	LS 960 hr	75.18	6.02	6.08	5.74	6.43	96.23	0.0233	92.35	88.30	24.77		
HuBERT Base (Hsu et al., 2021a)	94.68M	LS 960 hr	81.42	5.11	5.88	5.41	6.42	96.30	0.0736	98.34	88.53	25.20	64.92	
WavLM Base	94.70M	LS 960 hr	84.51	4.69	4.83	4.84	6.21	96.79	0.0870	98.63	89.38	22.86	65.94	9
 w/o utterance mixing 	94.70M	LS 960 hr	84.39	4.91	6.03	4.85	6.08	96.79	0.0799	98.42	88.69	23.43	65.55	81.5
- w/o structure modification	94.68M	LS 960 hr	84.74	4.61	4.72	5.22	6.80	96.79	0.0956	98.31	88.56	24.00	65.60	81.7
WavLM Base+	94.70M	Mix 94k hr	86.84	4.26	4.07	4.07	5.64	96.69	0.0990	99.16	89.73	21.54	67.98	82.8
wav2vec 2.0 Large (Baevski et al., 2020b)	317.38M	LL 60k hr	86.14	5.65	5.62	4.75	3.75	96.66	0.0489	95.28	87.11	27.31	65.64	80.8
HuBERT Large (Hsu et al., 2021a)	316.61M	LL 60k hr	90.33	5.98	5.75	3.53	3.62	95.29	0.0353	98.76	89.81	21.76	67.62	82.2
WavLM Large	316.62M	Mix 94k hr	95.25	4.04	3.47	3.09	3.51	97.40	0.0827	99.10	92.25	17.61	70.03	84.6

Table 1. Universal speech representation evaluation on SUPERB benchmark. ParaL denote Paralinguistics aspect of speech.

				Speaker			Co	ntent			Semantic	S	ParaL	Overall
Method	#Params	Corpus	SID	ASV	SD	PR	ASR	KS	QbE	IC	S	F	ER	
		1111	Acc ↑	EER↓	DER ↓	PER ↓	WER↓	Acc↑	MTWV ↑	Acc↑	F1↑	CER↓	Acc↑	Score ↑
FBANK	0	-	8.5E-4	9.56	10.05	82.01	23.18	8.63	0.0058	9.10	69.64	52.94	35.39	40.5
PASE+ (Ravanelli et al., 2020)	7.83M	LS 50 hr	37.99	11.61	8.68	58.87	25.11	82.54	0.0072	29.82	62.14	60.17	57.86	55.1
APC (Chung et al., 2019)	4.11M	LS 360 hr	60.42	8.56	10	11.00	21.20		0.0810			***		
VQ-APC (Chung et al., 2020)	4.63M	LS 360 hr	60.15	8.72	1									
NPC (Liu et al., 2020a)	19.38M	LS 360 hr	55.92	9.40	i	ndica	tes th	nat th	ne 960 I	n dat	a are	insu	fficie	nt to
Mockingjay (Liu et al., 2020c)	85.12M	LS 360 hr	32.29	11.66	1									,,,,,
TERA (Liu et al., 2020b)	21.33M	LS 360 hr	57.57	15.89	l t	ulfill	the ca	apacı	ty of th	ne Ba	se m	odel.		
modified CPC (Rivière et al., 2020)	1.84M	LL 60k hr	39.63	12.86	1			-	•					
wav2vec (Schneider et al., 2019)	32.54M	LS 960 hr	56.56	7.99	9.7	51.50	15.00	10.01	0.0102	0.72	10.51	_		_
vq-wav2vec (Baevski et al., 2020a)	34.15M	LS 960 hr	38.80	10.38	9.93	33.48	17.71	93.38	0.0410	85.68	77.68	41		
wav2vec 2.0 Base (Baevski et al., 2020b)	95.04M	LS 960 hr	75.18	6.02	6.08	5.74	6.43	96.23	0.0233	92.35	88.30	24.77		
HuBERT Base (Hsu et al., 2021a)	94.68M	LS 960 hr	81.42	5.11	5.88	5.41	6.42	96.30	0.0736	98.34	88.53	25.20	64.92	
WavLM Base	94.70M	LS 960 hr	84.51	4.69	4.83	4.84	6.21	96.79	0.0870	98.63	89.38	22.86	65.94	9
 w/o utterance mixing 	94.70M	LS 960 hr	84.39	4.91	6.03	4.85	6.08	96.79	0.0799	98.42	88.69	23.43	65.55	81.5
- w/o structure modification	94.68M	LS 960 hr	84.74	4.61	4.72	5.22	6.80	96.79	0.0956	98.31	88.56	24.00	65.60	81.7
WavLM Base+	94.70M	Mix 94k hr	86.84	4.26	4.07	4.07	5.64	96.69	0.0990	99.16	89.73	21.54	67.98	82.8
wav2vec 2.0 Large (Baevski et al., 2020b)	317.38M	LL 60K DE	86.14	5.65	5.62	4.75	3.75	96.66	0.0489	95.28	87.11	27.31	65.64	80.8
HuBERT Large (Hsu et al., 2021a)	316.61M	LL 60k hr	90.33	5.98	5.75	3.53	3.62	95.29	0.0353	98.76	89.81	21.76	67.62	82.2
WavLM Large	316.62M	Mix 94k hr	95.25	4.04	3.47	3.09	3.51	97.40	0.0827	99.10	92.25	17.61	70.03	84.6

Table 1. Universal speech representation evaluation on SUPERB benchmark. ParaL denote Paralinguistics aspect of speech.

				Speaker			Co	ntent			Semantic	cs	ParaL	Overall
Method	#Params	Corpus	SID	ASV	SD	PR	ASR	KS	QbE	IC		SF	ER	
		1111	Acc ↑	EER↓	DER ↓	PER↓	WER↓	Acc↑	MTWV↑	Acc↑	F1↑	CER ↓	Acc↑	Score ↑
FBANK	0	-	8.5E-4	9.56	10.05	82.01	23.18	8.63	0.0058	9.10	69.64	52.94	35.39	40.5
PASE+ (Ravanelli et al., 2020)	7.83M	LS 50 hr	37.99	11.61	8.68	58.87	25.11	82.54	0.0072	29.82	62.14	60.17	57.86	55.1
APC (Chung et al., 2019)	4.11M	LS 360 hr	60.42	8.56	10.53	41.98	21.28	91.01	0.0310	74.69	70.46	50.89	59.33	66.0
VQ-APC (Chung et al., 2020)	4.63M	LS 360 hr	60.15	8.72	10.45	41.08	21.20	91.11	0.0251	74.48	68.53	52.91	59.66	65.6
NPC (Liu et al., 2020a)	19.38M	LS 360 hr	55.92	9.40	9.34	43.81	20.20	88.96	0.0246	69.44	72.79	48.44	59.08	65.2
Mockingjay (Liu et al., 2020c)	85.12M	LS 360 hr	32.29	11.66	10.54	70.19	22.82	83.67	6.6E-04	34.33	61.59	58.89	50.28	53.5
TERA (Liu et al., 2020b)	21.33M	LS 360 hr	57.57	15.89	9.96	49.17	18.17	89.48	0.0013	58.42	67.50	54.17	56.27	62.0
modified CPC (Rivière et al., 2020)	1.84M	LL 60k hr	39,63	12.86	10.38	12.54	20.18	01.88	0.0326	64.00	71 10	40.01	60.06	63.2
wav2vec (Schneider et al., 2019)	32.54M	LS 960 hr	56											
vq-wav2vec (Baevski et al., 2020a)	34.15M	LS 960 hr		Most t	a sks b	enefit [·]	from th	ne larg	ger mode	el size,	espe	cially f	or the	ASR.
wav2vec 2.0 Base (Baevski et al., 2020b)	95.04M	LS 960 hr	7:	Me ob	tain 3	8% wo	rd erro	r rate	reduction	on on	the A	SR by	mode	l scaling-up.
HuBERT Base (Hsu et al., 2021a)	94.68M	LS 960 hr	81	VVC OL	calli S	370 VVO	i u ci i c	niate	. i caacti	OII OII	LIIC A	SICDY	mouc	i scaiii g up.
WavLM Base	94.70M	LS 960 hr	84.											
 w/o utterance mixing 	94.70M	LS 960 hr	84.39	4.91	6.03			19	0.0799	98.42	88.69	23.43	65.55	81.5
- w/o structure modification	94.68M	LS 960 hr	84.74	4.61	4.72	5.22		96.79	0.0956	98.31	88.56	24.00	65.60	81.7
WavLM Base+	94.70M	Mix 94k hr	86.84	4.26	4.07	4.07	5.64	96.69	0.0990	99.16	89.73	21.54	67.98	82.8
wav2vec 2.0 Large (Baevski et al., 2020b)	317.38M	LL 60k hr	86.14	5.65	5.62	4.75	3.75	96.66	0.0489	95.28	87.11	27.31	65.64	80.8
HuBERT Large (Hsu et al., 2021a)	316.61M	LL 60k hr	90.33	5.98	5.75	3.53	3.62	95.29	0.0353	98.76	89.81	21.76	67.62	82.2
WavLM Large	316.62M	Mix 94k hr	95.25	4.04	3.47	3.09	3.51	97.40	0.0827	99.10	92.25	17.61	70.03	84.6

Speaker Identification (SID)

Table 1. Universal speech representation evaluation or SUPERB benchmark. ParaL denote Paralinguistics aspect of speech.

				Speaker			Co	ntent		(Semantic	S	ParaL	Overall
Method	#Params	Corpus	SID	ASV	SD	PR	ASR	KS	QbE	IC		SF	ER	
			Acc ↑	EER↓	DER ↓	PER↓	WER↓	Acc↑	MTWV↑	Acc↑	F1↑	CER ↓	Acc↑	Score ↑
FBANK	0		8.5E-4	9.56	10.05	82.01	23.18	8.63	0.0058	9.10	69.64	52.94	35.39	40.5
PASE+ (Ravanelli et al., 2020)	7.83M	LS 50 hr	37.99	11.61	8.68	58.87	25.11	82.54	0.0072	29.82	62.14	60.17	57.86	55.1
APC (Chung et al., 2019)	4.11M	LS 360 hr	60.42	8.56	10.53	41.98	21.28	91.01	0.0310	74.69	70.46	50.89	59.33	66.0
VQ-APC (Chung et al., 2020)	4.63M	LS 360 hr	60.15	8.72	10.45	41.08	21.20	91.11	0.0251	74.48	68.53	52.91	59.66	65.6
NPC (Liu et al., 2020a)	19.38M	LS 360 hr	55.92	9.40	9.34	43.81	20.20	88.96	0.0246	69.44	72.79	48.44	59.08	65.2
Mockingjay (Liu et al., 2020c)	85.12M	LS 360 hr	32.29	11.66	10.54	70.19	22.82	83.67	6.6E-04	34.33	61.59	58.89	50.28	53.5
TERA (Liu et al., 2020b)	21.33M	LS 360 hr	57.57	15.89	9.96	49.17	18.17	89.48	0.0013	58.42	67.50	54.17	56.27	62.0
modified CPC (Rivière et al., 2020)	1 84M	II 60k br	30.63	12.86	10.38	12.51	20.18	01 88	0.0326	64.00	71 10	10.91	60.96	63.2
wav2vec (Schneider et al., 2019)												71	59.79	69.9
vq-wav2vec (Baevski et al., 2020a) th	ere is 6. 0	07% abso	lute in	nprove	ement	on the	SID ta	sk , ind	dicating			54	58.24	67.7
wav2vec 2.0 Base (Baevski et al., 2	e large i	nodel siz	e also i	mnac	ts the	neake	r relat	ed tas	ke			77	63.43	79.0
HuBERT Base (Hsu et al., 2021a)	C 101 2 C 1	model 312		iii pere		1 SASSIFICE	I SIGIE	<u>Su bue</u>	ALC.			20	64.92	80.8
WavLM Base		_								ı		.86	65.94	81.9
 w/o utterance mixing 	94.70M	LS 900		.91	6.03	4.85	6.08	96.79	0.0799	98.42	88.69	23.43	65.55	81.5
 w/o structure modification 	94.68M	LS 960 hr		4.61	4.72	5.22	6.80	96.79	0.0956	98.31	88.56	24.00	65.60	81.7
WavLM Base+	94.70M	Mix 94k hr	86.84	4.26	4.07	4.07	5.64	96.69	0.0990	99.16	89.73	21.54	67.98	82.8
wav2vec 2.0 Large (Baevski et al., 2020b)	317.38M	LL 60k hr	86.14	5.65	5.62	4.75	3.75	96.66	0.0489	95.28	87.11	27.31	65.64	80.8
HuBERT Large (Hsu et al., 2021a)	316.61M	LL 60k hr	90.33	5.98	5.75	3.53	3.62	95.29	0.0353	98.76	89.81	21.76	67.62	82.2
WavLM Large	316.62M	Mix 94k hr	95.25	4.04	3.47	3.09	3.51	97.40	0.0827	99.10	92.25	17.61	70.03	84.6

weighted-sum the hidden states of different layers, and feed it to the task specific layer

the <u>weights of different layers</u> of HuBERT and WavLM models on the different downstream tasks

of SUPERB benchmark.

A larger weight indicates

a larger contribution of the layer.

for the Base models, the **contribution patterns of different layers** are **similar** between WavLM and HuBERT

observe that the **bottom layers** contribute **more to speaker related tasks**, such as <u>speaker identification</u>, <u>automatic speaker verification</u> and <u>speaker diarization</u>.

for the <u>automatic speech recognition</u>, <u>phoneme recognition</u>, <u>intent classification</u> and <u>slot filling</u> tasks, the **top** layers are more important

Base models learn speaker information with the bottom layers

while

the content and semantic information are encoded in the top layers.

The model behaviour is similar to the Large models.

END

Thanks for your attention ...

Table 1. Universal speech representation evaluation on SUPERB benchmark. ParaL denote Paralinguistics aspect of speech.

				Speaker			Co	ntent		8	Semanti	cs	ParaL	Overall
Method	#Params	Corpus	SID	ASV	SD	PR	ASR	KS	QbE	IC		SF	ER	
	0		Acc ↑	EER ↓	DER ↓	PER↓	WER↓	Acc↑	MTWV↑	Acc↑	F1↑	CER↓	Acc↑	Score ↑
FBANK	0	-	8.5E-4	9.56	10.05	82.01	23.18	8.63	0.0058	9.10	69.64	52.94	35.39	40.5
PASE+ (Ravanelli et al., 2020)	7.83M	LS 50 hr	37.99	11.61	8.68	58.87	25.11	82.54	0.0072	29.82	62.14	60.17	57.86	55.1
APC (Chung et al., 2019)	4.11M	LS 360 hr	60.42	8.56	10.53	41.98	21.28	91.01	0.0310	74.69	70.46	50.89	59.33	66.0
VQ-APC (Chung et al., 2020)	4.63M	LS 360 hr	60.15	8.72	10.45	41.08	21.20	91.11	0.0251	74.48	68.53	52.91	59.66	65.6
NPC (Liu et al., 2020a)	19.38M	LS 360 hr	55.92	9.40	9.34	43.81	20.20	88.96	0.0246	69.44	72.79	48.44	59.08	65.2
Mockingjay (Liu et al., 2020c)	85.12M	LS 360 hr	32.29	11.66	10.54	70.19	22.82	83.67	6.6E-04	34.33	61.59	58.89	50.28	53.5
TERA (Liu et al., 2020b)	21.33M	LS 360 hr	57.57	15.89	9.96	49.17	18.17	89.48	0.0013	58.42	67.50	54.17	56.27	62.0
modified CPC (Rivière et al., 2020)	1.84M	LL 60k hr	39.63	12.86	10.38	42.54	20.18	91.88	0.0326	64.09	71.19	49.91	60.96	63.2
wav2vec (Schneider et al., 2019)	32.54M	LS 960 hr	56.56	7.99	9.9	31.58	15.86	95.59	0.0485	84.92	76.37	43.71	59.79	69.9
rq-wav2vec (Bacvski et al., 2020a)	34.15M	LS 960 hr	38.80	10.38	9.93	33.48	17.71	93.38	0.0410	85.68	77.68	41.54	58.24	67.7
wav2vec 2.0 Base (Baevski et al., 2020b)	95.04M	LS 960 hr	75.18	6.02	6.08	5.74	6.43	96.23	0.0233	92.35	88.30	24.77	63.43	79.0
HuBERT Base (Hsu et al., 2021a)	94.68M	LS 960 hr	81.42	5.11	5.88	5.41	6.42	96.30	0.0736	98.34	88.53	25.20	64.92	80.8
WavLM Base	94.70M	LS 960 hr	84.51	4.69	4.83	4.84	6.21	96.79	0.0870	98.63	89.38	22.86	65.94	81.9
 w/o utterance mixing 	94.70M	LS 960 hr	84.39	4.91	6.03	4.85	6.08	96.79	0.0799	98.42	88.69	23.43	65.55	81.5
 w/o structure modification 	94.68M	LS 960 hr	84.74	4.61	4.72	5.22	6.80	96.79	Manual Street, Square,	98.31	88.56	24.00	65.60	81.7
WavLM Base+	94.70M	Mix 94k hr	86.84	4.26	4.07	4.07	5.64	96.69	0.0990	99.16	89.73	21.54	67.98	82.8
wav2vec 2.0 Large (Baevski et al., 2020b)	317.38M	LL 60k hr	86.14	5.65	5.62	4.75	3.75	96.66	0.0489	95.28	87.11	27.31	65.64	80.8
HuBERT Large (Hsu et al., 2021a)	316.61M	LL 60k hr	90.33	5.98	5.75	3.53	3.62	95.29	0.0353	98.76	89.81	21.76	67.62	82.2
WavLM Large	316.62M	Mix 94k hr	95.25	4.04	3.47	3.09	3.51	97.40	0.0827	99.10	92.25	17.61	70.03	84.6

Speaker Verification

Speaker Verification

Finetune the model with VoxCeleb2 dev data, and evaluate it on the VoxCeleb1

Model	Fix pre-train	Vox1-O	Vox1-E	Vox1-H
ECAPA-TDNN	-	0.87	1.12	2.12
HuBERT large	Yes	0.888	0.912	1.853
Wav2Vec2.0 (XLSR)	Yes	0.915	0.945	1.895
UniSpeech-SAT large	Yes	0.771	0.781	1.669
WavLM large	Yes	0.59	0.65	1.328
WavLM large	No	0.505	0.579	1.176
+Large Margin Finetune and Score Calibration				
HuBERT large	No	0.585	0.654	1.342
Wav2Vec2.0 (XLSR)	No	0.564	0.605	1.23
UniSpeech-SAT large	No	0.564	0.561	1.23
WavLM large (New)	No	0.33	0.477	0.984

Speaker Diarization

Speaker Diarization

Evaluation on the CALLHOME

Model	spk_2	spk_3	spk_4	spk_5	spk_6	spk_all
EEND-vector clustering	7.96	11.93	16.38	21.21	23.1	12.49
EEND-EDA clustering (SOTA)	7.11	11.88	14.37	25.95	21.95	11.84
HuBERT base	7.93	12.07	15.21	19.59	23.32	12.63
HuBERT large	7.39	11.97	15.76	19.82	22.10	12.40
UniSpeech-SAT large	5.93	10.66	12.9	16.48	23.25	10.92
WavLM Base	6.99	11.12	15.20	16.48	21.61	11.75
WavLm large	6.46	10.69	11.84	12.89	20.70	10.35

Speech Recognition

Speech Recogntion

Evaluate on the LibriSpeech

Model	Unlabled Data	LM	test-clean	test-other
	1-hour	labeled		
wav2vec 2.0 Base	LS-960	None	24.5	29.7
WavLM Base	LS-960	None	24.5	29.2
WavLM Base+	MIX-94K	None	22.8	26.7
DeCoAR 2.0	LS-960	4-gram	13.8	29.1
DiscreteBERT	LS-960	4-gram	9.0	17.6
wav2vec 2.0 Base	LS-960	4-gram	5.5	11.3
HuBERT Base	LS-960	4-gram	6.1	11.3
WavLM Base	LS-960	4-gram	5.7	10.8
WavLM Base+	MIX-94K	4-gram	5.4	9.8
wav2vec 2.0 Large	LL-60K	4-gram	3.8	7.1
WavLM Large	MIX-94K	4-gram	3.8	6.6
wav2vec2.0 Large	LL-60K	Transformer	2.9	5.8
HuBERT Large	LL-60K	Transformer	2.9	5.4
WavLM Large	MIX-94K	Transformer	2.9	5.1

10-hour labeled					
wav2vec 2.0	LS-960	None	11.1	17.6	
WavLM Base	LS-960	None	9.8	16.0	
WavLM Base+	MIX-94K	None	9.0	14.7	
DeCoAR 2.0	LS-960	4-gram	5.4	13.3	
DiscreteBERT	LS-960	4-gram	5.9	14.1	
wav2vec 2.0	LS-960	4-gram	4.3	9.5	
HuBERT Base	LS-960	4-gram	4.3	9.4	
WavLM Base	LS-960	4-gram	4.3	9.2	
WavLM Base+	MIX-94K	4-gram	4.2	8.8	
wav2vec 2.0 Large	LL-60K	4-gram	3.0	5.8	
WavLM Large	MIX-94K	4-gram	2.9	5.5	
wav2vec 2.0 Large	LL-60K	Transformer	2.6	4.9	
HuBERT Large	LL-60K	Transformer	2.4	4.6	
WavLM Large	MIX-94K	Transformer	2.4	4.6	

100-hour labeled				
wav2vec 2.0 Base	LS-960	None	6.1	13.3
WavLM Base	LS-960	None	5.7	12.0
WavLM Base+	MIX-94K	None	4.6	10.1
DeCoAR 2.0	LS-960	4-gram	5.0	12.1
DiscreteBERT	LS-960	4-gram	4.5	12.1
wav2vec 2.0 Base	LS-960	4-gram	3.4	8.0
HuBERT Base	LS-960	4-gram	3.4	8.1
WavLM Base	LS-960	4-gram	3.4	7.7
WavLM Base+	MIX-94K	4-gram	2.9	6.8
wav2vec 2.0 Large	LL-60K	4-gram	2.3	4.6
WavLM Large	MIX-94K	4-gram	2.3	4.6
wav2vec 2.0 Large	LL-60K	Transformer	2.0	4.0
HuBERT Large	LL-60K	Transformer	2.1	3.9
WavLM Large	MIX-94K	Transformer	2.1	4.0

Using

https://huggingface.co/spaces/microsoft/wavlm-speaker-verification

Voice Authentication with WavLM + X-Vectors

This demo will compare two speech samples and determine if they are from the same speaker. Try it with your own voice!

Speaker #1 Record		
Speaker #2 Record		
Clear	Submit	Screenshot

Examples

Pytorch code example

https://huggingface.co/docs/transformers/model_doc/wavlm

Implementation

https://colab.research.google.com/drive/1dHUzIHqh8vMBUt95bK-QzGn7025MZYOK?usp=sharing

https://colab.research.google.com/drive/1hz2oWHX0muHcTIM9p6O98ls0mmXwLNSz#scrollTo=HtDyCzD1Ez-b this one is simpler

PreTrained models:

https://github.com/microsoft/unilm/tree/master/wavlm

Pre-Trained Models

Model	Pre-training Dataset	Fine-tuning Dataset	Model
WavLM Base	960 hrs LibriSpeech	-	Azure Storage Google Drive
WavLM Base+	60k hrs Libri-Light + 10k hrs GigaSpeech + 24k hrs VoxPopuli	-	Azure Storage Google Drive
WavLM Large	60k hrs Libri-Light + 10k hrs GigaSpeech + 24k hrs VoxPopuli	-	Azure Storage Google Drive

Thanks for your attention ...

Background: HUBERT

- HuBERT is an SSL method which benefits from an offline clustering step to provide target labels for a BERT-like prediction loss (Devlin et al., 2019).
- \circ The backbone is a Transformer encoder (Vaswani et al., 2017) with \boldsymbol{L} blocks.
- \circ During pre-training, the Transformer consumes masked acoustic features $ilde{x}$ and output hidden states \mathbf{h}^L .
- The network is optimized to predict the discrete target sequence \mathbf{z} , where each $z_t \in [C]$ is a C-class categorical variable.

Introduction

- Building a general pre-trained model can be essential to the further development of speech processing, because it can utilize large-scale unlabeled data to boost the performance in downstream tasks, reducing data labeling efforts.
- In the past, it has been infeasible to build such a general model, as different tasks focus on different aspects of speech signals.

Speaker Verification

Speech Recognition

speaker characteristic

speaker characteristic

Spoken content

Spoken content