Proves d'accés a la Universitat. Curs 2008-2009

Electrotècnia

Sèrie 1

La prova consta de dues parts de dos exercicis cadascuna. La primera part és comuna, i la segona té dues opcions (A o B), de les quals cal triar-ne UNA.

PRIMERA PART

Exercici 1

[2,5 punts]

[En cada qüestió només es pot triar UNA resposta. Qüestió ben contestada, 0,5 punts; qüestió mal contestada, -0,16 punts; qüestió no contestada, 0 punts.]

Qüestió 1

Un transformador monofàsic, que es pot considerar ideal, té les tensions nominals següents: U = 240/24 V. Si pel costat de menys tensió proporciona un corrent de 10 A, el corrent pel costat de més tensió val:

- **a**) 1 A
- **b**) 2,4 A
- c) 10 A
- **d**) 24 A

Qüestió 2

En un circuit de corrent altern, en règim estacionari, en què es valoren la tensió i el corrent d'un condensador en el mateix sentit:

- a) El corrent va avançat 90° (¼ de període) respecte de la tensió.
- b) El corrent va retardat 90° (¼ de període) respecte de la tensió.
- c) El corrent i la tensió estan en fase.
- d) El corrent i la tensió no tenen cap relació de fase.

Qüestió 3

La resistència equivalent de dues resistències de valor $R=100~\Omega$ connectades en paral·lel és:

- a) 50Ω
- **b**) 100Ω
- c) 141Ω
- d) 200Ω

Qüestió 4

Un motor de corrent continu d'imants permanents, que treballa en condicions nominals, gira a 2 000 min⁻¹. Si el parell de càrrega esdevé nul, i es mantenen la resta de condicions, la velocitat serà:

- a) inferior a 2 000 min $^{-1}$.
- **b**) igual a 2 000 min⁻¹.
- c) superior a 2 000 min⁻¹.
- d) nul·la.

Qüestió 5

Treballant a 230 V, una resistència consumeix una potència $P=2\,000$ W. Si la tensió baixa a 200 V, el nou consum serà:

- a) 1512 W
- **b**) 1739 W
- c) 2000 W
- d) 2300 W

Exercici 2

[2,5 punts]

	$U_1 = 20 \text{ V}$ $U_2 = 30 \text{ V}$ $R_1 = 10 \Omega$ $R_2 = 10 \Omega$ $R_3 = 2 \Omega$	
--	--	--

Per al circuit de la figura, determineu:

Amb l'interruptor obert:

a) El corrent de R_2 .

[0,5 punts]

b) La potència de les fonts U_1 i U_2 .

[1 punt]

Amb l'interruptor tancat:

[0,5 punts]

c) El corrent de U₁.
d) La potència dissipada per R₃.

[0,5 punts]

SEGONA PART

OPCIÓ A

Exercici 3

[2,5 punts]

Per al circuit de la figura, determineu:

- a) La potència activa P consumida. [0,5 punts]
- **b**) El valor de la resistència R. [0,5 punts] *c*) El valor de la reactància $X_{\rm C}$ [0,5 punts]
- d) Els possibles valors de la reactància X_1 . [1 punt]

Exercici 4

[2,5 punts]

Un motor d'inducció té la placa de característiques següent:

P = 75 kW	<i>U</i> = 400/690 V	<i>I</i> = 131/76 A
$n = 2977 \text{ min}^{-1}$	$\cos \varphi = 0.88$	f = 50 Hz

Amb el motor treballant en condicions nominals, determineu:

- a) El rendiment η . [1 punt]
- *b*) El nombre *p* de parells de pols. [0,5 punts]
- *c*) El parell Γ desenvolupat. [0,5 punts] Si es vol connectar el motor a una xarxa de 400 V:
- d) Amb quina connexió caldria fer-ho i quins corrents de línia hi circularien? [0,5 punts]

OPCIÓ B

Exercici 3

[2,5 punts]

En el circuit de la figura, alimentat amb una tensió composta *U*, determineu:

- a) Els corrents de branca $I_{\rm R}$. [0,5 punts]
- **b**) Els corrents de línia $I_{\rm L}$. [0,5 punts]
- c) La potència activa P consumida. [0,5 punts]
- d) La potència reactiva Q consumida. [0,5 punts]
- *e*) El factor de potència *fdp*. [0,5 punts]

Exercici 4

[2,5 punts]

En el circuit de la figura, els díodes es poden considerar ideals.

Determineu la tensió del terminal O (V_0) quan les tensions dels terminals I_1 i I_2 $(V_1 \text{ i } V_2) \text{ són, respectivament:}$

- **a**) $V_1 = 5 \text{ V i } V_2 = 5 \text{ V}$ [0,5 punts]
- **b**) $V_1^1 = 0 \text{ V i } V_2^2 = 5 \text{ V, o bé } V_1 = 5 \text{ V i } V_2 = 0 \text{ V, o bé } V_1 = V_2 = 0 \text{ V}$ [0,5 punts] **c**) Quina és la potència dissipada per la resistència en les situacions de l'apartat *b*? [0,5 punts]
- d) Si la tensió de 5 V correspon al valor lògic alt (1 lògic), escriviu la taula de veritat de la funció lògica que té per entrades I, i I,, i per sortida, O. A quina funció lògica correspon? [1 punt]

