Delaunay Triangulation in Parallel

Adarsh Prakash

CSE 633 : Parallel Algorithms

University at Buffalo

Definition

Triangle formed by points A, B & C (\triangle ABC) is **Delaunay Triangle**, if no other points lie in the circumcircle of \triangle ABC.

Valid Delaunay Δs

Delaunay v/s **Voronoi**: **Duality**

A Voronoi diagram is constructed by connecting the centers of all the circumcircles formed by the Delaunay Triangles in a graph.

Algorithm

- Divide-and-conquer algorithm proposed by Leonidas Guibas and Jorge Stolfi [1].
- Follows closely the Voronoi construction algorithm from Shamos and Hoey [2].
- Difference is it clearly describes how to make use of quad-edge data structure to avoid computation of complete hull.
- Properties:
 - A quad-edge know their direction (origin-destination NOT point-point)
 - A quad-edges maintains pointers to all edges leaving from and terminating at their origin and destination. (4-8 pointers depending on implementation)
- Plan is to parallelize this algorithm.

Algorithm: Merge Step

Analysis

- Sequential runtime: O(n * logn) [T(n) = 2 * T(n/2) + O(n)]
- "Heavy" merge step with O(n). Parallelization possible?!!
- Analysis with *p* processors:
 - Each processor locally and simultaneously computes DT on $\frac{n}{p}$ points \rightarrow $O(\frac{n}{n} * \log(\frac{n}{n}))$
 - DTs from each processor is stitched together (happens logp times) →
 O(n * logp)
 - So, total runtime = $O\left\{\frac{n}{p} * log\left(\frac{n}{p}\right) + n * logp\right\}$
- If p = logn, runtime = O(n log(logn))
- Let's see if we can reach that theoretical target.

Plan

- Need for scaling rules out OpenMP.
- Implementation in MPI.
- Input is randomly generated points following Uniform Distribution.
- Preprocess input to sort by x-coordinate.
- Timeline: Finish serial code by this weekend and start parallelizing.

References

- Primitives for the Manipulation of General Subdivisions and the Computation of Voronoi Diagrams Guibas, L. and Stolfi, J.
- Closest-Point Problems Shamos, M.I. and Hoey, D.
- On computing Voronoi diagrams by divide-prune-and-conquer **Amato, N.M.** and **Ramos, E.A.**
- Chapter 10: Computational Geometry, Algorithms Sequential and Parallel Miller, R. and Boxer, L.