FIGURE 1 (SHEET 1)

1080	.CAAGCCTACAAGTCCTTCTGCGATACCTGATGTTCTTCAAGTTT
	LRSPDPGILAYKPGSESVHT
1020	961 TTAAGATCTCCAGATCCTGGCATCCTGGCTTATAAGCCAGGCTCAGAATCTGTACATACG
	ENEHFRDKSELEDKKVEEGK
960	901 GAAAATGAACATTTCCGGGACAAATCAGAACTTGAAGATAAAAAGGTAGAAGAGGGGAAA
	F L S N H I N S Y F K R K E K M S Q Q K
900	841 TTTTTATCAAATCATATTAATTCATATTTCAAACGTAAGGAAAAAATGTCTCAACAAAAG
	K R S L F H Y T S S I T T K F G D S F Y
840	781 AAACGCAGTCTTTTCATTACACAAGTTCTATAACCACAAAATTTGGAGACTCATTCTAC
	EKSPFPEEKSHIIDKEEDIG
780	721 GAAAAGAGTCCTTTTCCAGAAGAGAAAAGTCACATTATAGACAAAGAAGAAGATATAGGT
	K Q K N I K Q A I K S L K K Y S D K S A
720	B
	×
660	601 TTAGCTCAATTTAAGCCAAGTTCCCAAATTTTAAGAAAAGTATCGGATAGTGGCTGGTTA
	STLNSVSKAVFGNQNE M ISR
600	541 AGTACTTTGAACTCTGTTTCAAAGGCTGTTTTTGGCAATCAAAATGAAATGATTTCACGT
	LSTSAPKGLTKVNICMSRIK
540	481 CTTAGCACTTCTGCTCCCAAGGGACTTACAAAAGTGAACATTTGTATGTCCCGTATTAAA
	S C S K H C Y S P S N H G L H I G I L K
480	421 TCTTGCAGTAAGCACTGTTACTCTCCAAGCAACCATGGTTTACATATTGGGATTTTGAAA
	LQRGFHTNIIRCKWTKSEAH
420	AGGTTTTC
	S K Q L Y F L F S P K H Y W R I S H I S
360	CAAGCAACTGTATTTCTTGTTCTCACCTAAGCATTACTGGAGGATAAGCCACA
	TVDIYILLSNARSVCGKQR
300	241 ACTGTAGATATATATTTTACCTCCTTAGTAATGCAAGAAGTGTTTGTGGGAAGCAGAGA
	M S I N L
240	181 TCAAGAAGTGAGAGAATGTCATAGAAAATAAATGATTTTTAAGTTATGTCTATTAATCTG
180	Н
120	61 GCCGCTGCAGCCCTAGTGACTGCGGCCTGCATCCCGATTGTCTTCTCCTCCAAGGTCTAC
0	1 TGGAAGCTCAGCTGATGCAGGCCGGTTGGAGTGGACGTCATTGCCGGGAACGAGCGAG

FIGURE 1 (SHEET 2)

1501 1441 1381 1201 1081 AGTATTGCTAACTTTCTTCTCGTCCCACGGAAGGTGTACAAGCTTTAGTAGGTGGTTAT 1140 1261 TTTCCTGGAATCAACTCTCATTATTTGGGAGGCTGTCAGTATAAAATGTGGCAGGCCATT GGATCTGCACTGATGATTGAAACAGCAAGAAACCCCCACATGTCCTAAGGTAGCTGCTGTA AGTTGGAGCCATGCATTTTATGACAGTCAAACATGGGAAAACATTCTTAAGGATAGGATG GCCATATTAGCTTTCATGTTGGGGTTGTTTCATATGCCCTTGGATGAATGTGAGGAACTT S I D G G G T R G V V A L Q T L R K L V GAACTTACTCAGAAGCCAGTTCATCAGCTCTTTGATTACATTTGTGGTGTAAGCACAGGT 1680 TCAATTGATGGTGGAGGAACAAGGGGCGTGGTTGCTCCCAGACCCCTACGAAAATTAGTT 1620 GAAATTTTGGCCCTAATTGGCTATGTGGATCCAGTGAAAGGGAGAGGAATCCGAATTCTC CTGACTTTTCATCTTCTAGAATTTCCTGAAGGAAAAGGAGTGGCTGTCAAGGAAAGAATT 1440 TTAGTTCAGGCATTAAGAAGAACAACTGACCCAAAGCTCTGCATTACTAGGGTTGAAGAA 1380 GAGCCTGCTAAAACTGATCAGGCTGTCAGCAAAGACAGAAATGCAGAGGAGAAAAAAGCGT 1260 AGTACCATAGTAAATAGAGGGATAACACCCAAAGCTTTTGTGTTCAGAAACTATGGTCAT ATTCCATATTATTACGACTGAGACAAATTAAGGATGAAACTCTTCAGGCTGCAGTTAGA 1500 TATCGAAAATTAGGATCAGATGTATTTTCACAAAATGTCATTGTTGGAACAGTAAAAATG TTATCTCTTCAGCGAGAAAAGATTATCGCAAGGGTGAGTATTGATAACAGGACCCGGGCA Ы K I D Q LIG ٧ P S Ħ E E ĭ × KIIARVS z L ᆫ G Ч U < Þ ᄪ 日 × 二 겨 A Н U G) YVD Ħ ٧ 버 שי Ъ Н × щ ㄷ Ю Ю Ą Н ß S V K Y D S K S Ħ TEGVQ D. A T Ø ۲ Ч ഗ μĵ IKDE U Q Ħ Н Ø PVKG PKLC K D R N × M G K G V N P S I A N Þ ם א ו Ą Ю Ħ T C Д --] ΗD ⋖ z ᆫ < C Ľ A Þ Ø Þ Н < × Н U Z г Q Ю V K E Н വ L V G Ø Ø V S Þ 1560 1920 1980

FIGURE 1 (SHEET 3)

2761 2701 2641 3121 2941 2821 3301 3241 3061 3001 2881 2521 ATAAAATTAAAAACTGATATGTATGAAGGACTTCCATTCTTTTCAAAATTGTGATGAGTA 2461 AAAAAAGTTGCAAAAATATTAAGTCAAGAAAAAACAACTCTGCAGAAAATTAATGATTGG 2401 AAGCTGGATCAGCTGCAGTTGGAAGGGTTGAAATACATAGAAAAGAAATGAACAAAAAATG 2281 AGTGCTACAGATACAGAAGAAGTCCATATAATGCTTGATGGCCTGTTACCTCCTGACACC 2340 2221 GATGTGAGAAACACGGTAACATACACAAGCTTGAAAACTAAACTTTCTAATGTTATCAAC 2101 CAAGATGGAGGTTTGCTTCTGAATAACCCTTCGGCATTAGCTATGCATGAGTGTAAATGT 2160 2041 AGAGCCTCATCTGCTGCTCCAGGCTACTTTGCAGAATATGCATTGGGAAATGATCTTCAT 2100 3180 CTTTGGCCAGATGTGCCGTTAGAGTGCATAGTATCCCTGGGCACTGGACGTTATGAGAGT 2220 TATTTTAGATTCAATCCTGTAATGTGTGAAAACATACCTCTAGATGAAAGTCGAAATGAA AGGCTAATGTCATTTTAAAATTAATTTTTGTTCATAATGTAGCTCCCCTTTAGCCTTGA TACTGAGGAGATATTCCTATCATTAACAAAAATAAACTATTTAAATAATCTGTTGTTAAA CATGTTGAATTTATGTGATCATTGATTTTATTTCATATGGAAAAGCTAATTTCTTCTTAA GTAGATTTTAGTAGATATTGGTGTTATATTGTTTGATGTTTGAAAATATATTAATATATG GGGAACTAGGCTTTTAAGATGTTAATAATTAGCTAAGCTTTAGTAACCCTTACTGCTG TATGCTTATGTTCTCATAAATGAAGGTCTGTTTAGAAGATCAACCACATTCAATAAGGAA ACATAAAAAAGAACCAGATACAGTTTTCTATTCAGATATGTTTATTTTAACATTGTTTTGG AATATCATCTAAATAGATGCAGAAAAATGGAATTTTCTCTATTAAAGTATTTTACATTTG ATTTACATTACCTAATATTCTCACTAGCTATGTTCTCCAATCCACACTGCCTTTTATTGT TGCCGAACAAGAAACCGAAAGCTATATTGTACTGTGTATTTTTACTTTAGTCCTCATAAT AGACGGTGCTTCAACCAGCTTGCATAGCACAGAGAATATTCTTGGTTACAGAATTCATAT TTGTGGGGTTCGACATGAGTTAACTTTGAAATACGTATGAATTCTGGAGAATCCTGAAAA TATTAACTTTTCCAGATCTAACACTAGCTTATTCTTCCCTGTTATAAAATGGTTTGAACT TTAAAAAAGGTGAAGTTCCAGTCAACCACTTTTTACCCCTGAAATTTCAAGATAATGCTA I K L K T D M Y E G L P F F S K L K K V A K I L S Q E K T T L Q K I N LDQLQLEGLKYIERNEQ F R F N P V M C E ATDTEEVHIMLDGLLPP VRNTVTYTS PDVPLE G G L L L N N P S A L A M H CIVSLGTG YFAEYALG NIPLDE L X H X L S ഗ Ħ I A N Ħ 3120 3060 3000 2760 2940 2880 2280 3300 2400 3240 3180 2520 2460

open boxes are noncoding regions shaded regions are putative coding regions stippled lines replresent intron splicing

Splice Variants of iPLA $_2\gamma$

4/5/00

327 F	ω N P	1 2 3 161	w N ⊢
T V D I Y I Y L L S N A R S V C G K Q R S K Q L Y F L ACTGTAGATATATATATATATATATATATATATATATATA	M S I GCATTTCTTAAATGAAGCGTTCAAGAAGTGAGAGAATGTCATAGAAAATAAAT	Exon 2 Exon 2 Exon 2 Exon 19 Exon 19	EXON 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Full-length iPLA2y

Primers for PCR amplficiation of full-length 88kDa iPLA27:

Reverse primer M458 Sense primer M444 5'-TTTTGTCGACATGTCTATTAATCTGACTGTAGATA-3' 5'-GCATAGCATGCTCACAATTTTGAAAAGAATGGAAGTCC-3'

Sequence of 88kDa iPLA2 gamma:

gatagtggctggttaaaacagaaaaacatcaaacaagccatcaaatctctgaaaaaatat gaaatgatttcacgtttagctcaatttaagccaagttcccaaattttaagaaaagtatcg
E M I S R L A Q F K P S S Q I L R K V S atgtcccgtattaaaagtactttgaactctgtttcaaaggctgtttttggcaatcaaaat M S R I K S T L N S V S K A V F G N Q N attgggattttgaaacttagcacttctgctcccaagggacttacaaaagtgaacatttgt I G I L K L S T S A P K G L T K V N I C aaaagtgaagcacattcttgcagtaagcactgttactctccaagcaaccatggtttacat alaagccacatcagtctacaaagaggttttcatacaaacataataagatgtaaatggacc tgtgggaagcagaggaagcaagcaactgtatttcttgttctcacctaagcattactggagg atgtctattaatctgactgtagatatatatttacctccttagtaatgcaagaagtgtt atgtctcaacaaaggaaaatgaacatttccgggacaaatcagaacttgaagataaaaag ggagactcattctactttttatcaaatcatattaattcatatttcaaacgtaaggaaaaa gaagaagatataggtaaacgcagtctttttcattacacaagttctataaccacaaattt agtgacaaatcagcagaaaagagtccttttccagaagagaaaagtcacattatagacaaa D INLTVDIYIYLLS K Q R S K Q L Y F L F S P K H H I S L Q R G A H S C S K H C Y S P S N H F L S N H K O K N A Q г н т т s שי Ξ F H T N I I R C Ъ SNI K Q A I K S U T I O S S S н N A К и K W

gaatgtgaggaactttatcgaaaattaggatcagatgtattttcacaaaatgtcattgtt
E C E E L Y R K L G S D V F S Q N V I V ggtgtaagcacaggtgccatattagctttcatgttggggttgtttcatatgcccttggat G V S T G A I L A F M L G L F H M P L D ctacgaaaattagttgaacttactcagaagccagttcatcagctctttgattacatttgt L R K L V E L T Q K P V H Q L F D Y I C ggaatccgaattctctcaattgatggtggaggaacaaggggcgtggttgctctccagacc G I R I L S I D G G G T R G V V A L Q T caggctgcagttagagaaattttggccctaattggctatgtggatccagtgaaagggaga Q A A V R E I L A L I G Y V D P V K G R gtcaaggaaagaattattccatatttattacgactgagacaaattaaggatgaaactctt gaggagaaaaagcgtttatctcttcagcgagaaaagattatcgcaagggtgagtattgat E E K K R L S L Q R E K I I A R V S I D tcagaagaacaggaagagcctgctaaaaactgatcaggctgtcagcaaagacagaaatgca S E E Q E E P A K T D Q A V S K D R N A ttagtaggtggttatattggtggacttgtccccaaattaaagtatgattcaaagagtcag L V G G Y I G G L V P K L K Y D S K S Q gtttcaactaaacaaagtattgctaactttcttctcgtcccacggaaggtgtacaagct gaatctgtacatacggtggacaagcctacaagtccttctgcgatacctgatgttcttcaa gtagaagagggaaattaagatctccagatcctggcatcctggcttataagccaggctca ggaacagtaaaaatgagttggagccatgcattttatgacagtcaaacatgggaaaacatt actagggttgaagaactgacttttcatcttctagaatttcctgaaggaaaaggagtggct aacaggacccgggcattagttcaggcattaagaagaacaactgacccaaagctctgcatt aaggtagctgctgtaagtaccatagtaaatagagggataacacccaaagcttttgtgttc cttaaggataggatgggatctgcactgatgattgaaacagcaagaaaccccacatgtcct TRALVQA RIIPYLLRLRQIKD K L R S LTFHLLE D K P T S r o שי U Ā שי SAIPD ILAYKP r K 団

gaaagtcgaaatgaaaagctggatcagctgcagttggaagggttgaaatacatagaaaga E S R N E K L D Q L Q L E G L K Y I E R tctaatgttatcaacagtgctacagatacagaagaagtccatataatgcttgatggcctg S N V I N S A T D T E E V H I M L D G L ggacgttatgagagtgatgtgagaaacacggtaacatacacaagcttgaaaactaaactt G R Y E S D V R N T V T Y T S $\mbox{\ensuremath{\upsigma}}$ K T K L catgagtgtaaatgtctttggccagatgtgccgttagagtgcatagtatccctgggcact ggaaatgatcttcatcaagatggaggtttgcttctgaataacccttcggcattagctatg atgtggcaggccattagagcctcatctgctgctccaggctactttgcagaatatgcattg agaaactatggtcattttcctggaatcaactctcattatttgggaggctgtcagtataaa aatgaacaaaaatgaaaaaagttgcaaaaatattaagtcaagaaaaaacaactctgcag ttacctcctgacacctattttagattcaatcctgtaatgtgtgaaaacatacctctagat aaattgtga Z < z G G טי 0 C K C L W P D V Q A I R A S ⊣ TYF Ø K K V A ָם × D Ø G L L L N N P ഗ [דין Н ⋖ × A z × z z Н שי ഗ L Ю ъ Т Е ΑP U Ħ H 3 VMC ĸ ഗ YFAE Ø CIVS ש ഗ A L A M Ω ᆫ שי Ø Y A ⋖

FIGURE 5 (SHEET 1)

Sequence of 77kDa iPLA2 gamma: starting at amino acid 101 (nucleotide 301)

Primers for PCR amplficiation of 77kDa iPLA2γ:

Reverse primer M458 Sense primer m534 5'-GCATAGCATGCTCACAATTTTGAAAAGAATGGAAGTCC-3' 5'-TGAACGTCGACATGTCCCGTATTAAAA-3'

gtttcaactaaacaaagtattgctaactttctttctcgtcccacggaaggtgtacaagct V S T K Q S I A N F L S R P T E G V Q A gaatctgtacatacggtggacaagcctacaagtccttctgcgatacctgatgttcttcaa
E S V H T V D K P T S P S A I P D V L Q gtagaagaggggaaattaagatctccagatcctggcatcctggcttataagccaggctca V E E G K L R S P D P G I L A Y K P G S atgtctcaacaaaaggaaaatgaacatttccgggacaaatcagaacttgaagataaaaag M S Q Q K E N E H F R D K S E L E D K K ggagactcattctactttttatcaaatcatattaattcatatttcaaacgtaaggaaaaa G D S F Y F L S N H I N S Y F K R K E K gaagaagatataggtaaacgcagtctttttcattacacaagttctataaccacaaaattt E E D I G K R S L F H Y T S S I T T K F agtgacaaatcagcagaaaagagtccttttccagaagagaaaagtcacattatagacaaa SDKSAEKSPFPEEKSHIIDK gatagtggctggttaaaacagaaaaacatcaaacaagccatcaaatctctgaaaaaatat gaaatgatttcacgtttagctcaatttaagccaagttcccaaattttaagaaaagtatcg atgtcccgtattaaaagtactttgaactctgtttcaaaggctgtttttggcaatcaaaat tcagaagaacaggaagagcctgctaaaactgatcaggctgtcagcaaagacagaaatgca ttagtaggtggttatattggtggacttgtccccaaattaaagtatgattcaaagagtcag z Σ L K Q K N I K Q A I K S A Q F d H z × × ഗ שי ഗ × ഗ Ø വ I L A Y K P × ჯ დ Þ QIL × Ħ LKKY ×

ggaaatgatcttcatcaagatggaggtttgcttctgaataacccttcggcattagctatg G N D L H Q D G G L L L N N P S A L A M ggaatccgaattctctcaattgatggtggaggaacaaggggcgtggttgctctccagacogg IRILSIDGGTRGVVALQT gtcaaggaaagaattattccatatttattacgactgagacaaattaaggatgaaactctt V K E R I I P Y L L R L R Q I K D E T L aacaggacccgggcattagttcaggcattaagaagaacaactgacccaaagctctgcattN R T R A L V Q A L R R T T D P K L C I catgagtgtaaatgtctttggccagatgtgccgttagagtgcatagtatccctgggcactH E C K C L W P D V P L E C I V S L G T atgtggcaggccattagagcctcatctgctgctccaggctactttgcagaatatgcattg
M W Q A I R A S S A A P G Y F A E Y A L agaaactatggtcattttcctggaatcaactctcattatttgggaggctgtcagtataaaRNYGHFPGINSHYLGGCQYK aaggtagctgctgtaagtaccatagtaaatagagggataacacccaaagcttttgtgttc K V A A V S T I V N R G I T P K A F V F ggaacagtaaaaatgagttggagccatgcattttatgacagtcaaacatgggaaaacatt gaatgtgaggaactttatcgaaaattaggatcagatgtattttcacaaaatgtcattgtt ggtgtaagcacaggtgccatattagctttcatgttggggttgtttcatatgcccttggat caggctgcagttagagaaattttggccctaattggctatgtggatccagtgaaagggaga Q A A V R E I L A L I G Y V D P V K G R actagggttgaagaactgacttttcatcttctagaatttcctgaaggaaaaggagtggct ${\tt T}$ ${\tt R}$ ${\tt V}$ ${\tt E}$ ${\tt E}$ ${\tt L}$ ${\tt I}$ ${\tt F}$ ${\tt P}$ ${\tt E}$ ${\tt G}$ ${\tt K}$ ${\tt G}$ ${\tt V}$ ${\tt A}$ gaggagaaaaagcgtttatctcttcagcgagaaaagattatcgcaagggtgagtattgat cttaaggataggatgggatctgcactgatgattgaaacagcaagaaaccccacatgtcct ctacgaaaattagttgaacttactcagaagccagttcatcagctctttgattacatttgt ggacgttatgagagtgatgtgagaaacacggtaacatacacaagcttgaaaactaaactt G T V K M S K L V E L T Q K P V H Q L F D Y I C TGAILAFMLG E'LYRKLGS MGSALMIETARNPTC W S H A F Y D S Q T W E D V F S Q N V I V L F H M P L D

aaattgtga G R Y E S. D V R N T V T Y T S LKTKL

Sequence of 74kDa iPLA2 gamma: starting at amino acid 122 (nucleotide 364)

Primers for PCR amplfication of 74kDa iPLA2γ:

Reverse primer M458 Sense primer m533 5'- TCAAGTCGACATGATTTCACGTTTAGC -3'
5'-GCATAGCATGCTCACAATTTTGAAAAGAATGGAAGTCC-3'

gtttcaactaaacaaagtattgctaactttctttctcgtcccacggaaggtgtacaagct V S T K Q S I A N F L S R P T E G V Q A gaatctgtacatacggtggacaagcctacaagtccttctgcgatacctgatgttcttcaa ESVHTVDKPTSPSAIPDVLQ gtagaagaggggaaattaagatctccagatcctggcatcctggcttataagccaggctcaVEEGKLRSPDPGILAYKPGS atgtctcaacaaaggaaaatgaacatttccgggacaaatcagaacttgaagataaaaag ggagactcattctactttttatcaaatcatattaattcatatttcaaacgtaaggaaaaa gaagaagatataggtaaacgcagtctttttcattacacaagttctataaccacaaaattt E E D I G K R S L F H Y T S S I T K Fagtgacaaatcagcagaaaagagtccttttccagaagagaaaagtcacattatagacaaa gatagtggctggttaaaacagaaaaaacatcaaacaagccatcaaatctctgaaaaaatat DSGWLKQKNIKQAIKSLKKY atgatttcacgtttagctcaatttaagccaagttcccaaattttaagaaaagtatcg gaggagaaaaagcgtttatctcttcagcgagaaaagattatcgcaagggtgagtattgat ttagtaggtggttatattggtggacttgtccccaaattaaagtatgattcaaagagtcagLVGGYIGGLVPKLKYDSKSQ tcagaagaacaggaagagcctgctaaaactgatcaggctgtcagcaaagacagaaatgca S F Y F L S N H I N S Y F K R K E × QQKENEHFRDKSELEDKK SAEKS שי 푀 שי Q A V S I

tctaatgttatcaacagtgctacagatacagaagaagtccatataatgcttgatggcctç ggacgttatgagagtgatgtgagaaacacggtaacatacacaagcttgaaaactaaactt GRYESDVRNTVTYTSLKTKL catgagtgtaaatgtctttggccagatgtgccgttagagtgcatagtatccctgggcact ggaaatgatcttcatcaagatggaggtttgcttctgaataacccttcggcattagctatgG N D L H Q D G G L L L N N P S A L A M atgtggcaggccattagagcctcatctgctgctccaggctactttgcagaatatgcattg agaaactatggtcattttcctggaatcaactctcattatttgggaggctgtcagtataaa R N Y G H F P G I N S H Y L G G C Q Y K aaggtagctgctgtaagtaccatagtaaatagagggataacacccaaagcttttgtgttc K V A A V S T I V N R G I T P K A F V F cttaaggataggatgggatctgcactgatgattgaaacagcaagaaaccccacatgtcctLKDRMGSALMIETARNPTCP ggaacagtaaaaatgagttggagccatgcattttatgacagtcaaacatgggaaaacatt G T V K M S W S H A F Y D S Q T W E N I gaatgtgaggaactttatcgaaaattaggatcagatgtattttcacaaaatgtcattgtt
E C E E L Y R K L G S D V F S Q N V I V ggtgtaagcacaggtgccatattagctttcatgttggggttgtttcatatgcccttggat G V S T G A I L A F M L G L F H M P L D ctacgaaaattagttgaacttactcagaagccagttcatcagctctttgattacatttgtLRKLVELTQKPVHQLFDYIC ggaatccgaattctctcaattgatggtggaggaacaaggggcgtggttgctctccagacc G I R I L S I D G G G T R G V V A L Q T caggctgcagttagagaaattttggccctaattggctatgtggatccagtgaaagggagaQ A A V R E I L A L I G Y V D P V K G R gtcaaggaaagaattattccatatttattacgactgagacaaattaaggatgaaactctt VKERIIPYLLRLRQIKDETL actagggttgaagaactgacttttcatcttctagaatttcctgaaggaaaaggagtggct aacaggacccgggcattagttcaggcattaagaagaacaactgacccaaagctctgcatt TRALVQALRRTTDPKL LTFHLLE

aaattgtga aatgaacaaaaatgaaaaaagttgcaaaaatattaagtcaagaaaaaaacaactctgcag N E Q K M K K V A K I L S Q E K T T L Q gaaagtcgaaatgaaaagctggatcagctgcagttggaagggttgaaatacatagaaaga ttacctcctgacacctattttagattcaatcctgtaatgtgtgaaaacatacctctagat L P P D T Y F R F N P V M C E N I P L D K I N D W I K L K T D M Y E G L P F N V I N S Ħ K L D Q L Q L E G L K Y I E AT U Н 禸 Ч U

Sequence of 63kDa iPLA2 gamma

starting at amino acid 221 (nucleotide 661)

Sense primer M530 5'-:GTAAG'

Reverse primer M458

5'-:GTAAGTCGACAATGTCTCAACAAAAGG-3' 5'GCATAGCATGCTCACAATTTTGAAAAGAATGGAAGTCC-3')

gaggagaaaaagcgtttatctcttcagcgagaaaagattatcgcaagggtgagtattgat E E K K R L S L Q R E K I I A R V S I D gaatctgtacatacggtggacaagcctacaagtccttctgcgatacctgatgttcttcaa ESVHTVDKPTSPSAIPDVLQ gtagaagaggggaaattaagatctccagatcctggcatcctggcttataagccaggctcaVEEGKLRSPDPGILAYKPGS ggaatccgaattctctcaattgatggtggaggaacaaggggcgtggttgctctccagacc G I R I L S I D G G G T R G V V A L Q T caggctgcagttagagaaattttggccctaattggctatgtggatccagtgaaagggaga Q A A V R E I L A L I G Y V D P V K G R gtcaaggaaagaattattccatatttattacgactgagacaaattaaggatgaaactctt V K E R I I P Y L L R L R Q I K D E T L actagggttgaagaactgacttttcatcttctagaatttcctgaaggaaaaggagtggct T R V E E L T F H L L E F P E G K G V $\mathbb A$ aacaggacccgggcattagttcaggcattaagaagaacaactgacccaaagctctgcatt N R T R A L V Q A L R R T T D P K L C I gtttcaactaaacaaagtattgctaactttctttctcgtcccacggaaggtgtacaagctVSTKQSIANFLSRPTEGVQA atgtctcaacaaaaggaaaatgaacatttccgggacaaatcagaacttgaagataaaaag tcagaagaacaggaagagcctgctaaaaactgatcaggctgtcagcaaagacagaaatgca S E E Q E E P A K T D Q A V S K D R N A ctacgaaaattagttgaacttactcagaagccagttcatcagctctttgattacatttgt ttagtaggtggttatattggtggacttgtccccaaattaaagtatgattcaaagagtcag Ö H F R × VHQL K S E ᆫ

gaaagtcgaaatgaaaagctggatcagctgcagttggaagggttgaaatacatagaaaga ESRNEKLDQLQLEGLKYIER ggacgttatgagagtgatgtgagaaacacggtaacatacacaagcttgaaaactaaactt GRYESDVRNTVTYTSL/KTKL aaggtagctgctgtaagtaccatagtaaatagagggataacacccaaagcttttgtgttcKVAAVSTIVNRGITPKAFVF aaattgtga tctaatgttatcaacagtgctacagatacagaagaagtccatataatgcttgatggcctg S N V I N S A T D T E E V H I M L D G L ggaaatgatcttcatcaagatggaggtttgcttctgaataacccttcggcattagctatg atgtggcaggccattagagcctcatctgctgctccaggctactttgcagaatatgcattg cttaaggataggatgggatctgcactgatgattgaaacagcaagaaaccccacatgtcct ggaacagtaaaaatgagttggagccatgcattttatgacagtcaaacatgggaaaacatt gaatgtgaggaactttatcgaaaattaggatcagatgtattttcacaaaatgtcattgtt ggtgtaagcacaggtgccatattagctttcatgttggggttgtttcatatgcccttggat aatgaacaaaaaatgaaaaaagttgcaaaaatattaagtcaagaaaaaacaactctgcag ttacctcctgacacctattttagattcaatcctgtaatgtgtgaaaacatacctctagat catgagtgtaaatgtctttggccagatgtgccgttagagtgcatagtatccctgggcact agaaactatggtcattttcctggaatcaactctcattatttgggaggctgtcagtataaa U Y G H χ O ELYRKL TGAIL H Ø U L R A ഗ Þ Q ເນ P D A Ħ ഗ Q വ ᆫ щ H ഗ A F M z Ŋ G Н × < ۲ Z A A ש ۲ μJ ល Þ ഗ U ᆫ LNNP PGYF Y D S Q T Ľ ТХТ 凹 T A R V F S Q CIVS L F H M Q M ഗ a Σ 禸 Þ ש ·Q ᆫ Ľ שי Η ۷ К Ø Þ z

THE BUILDING WEST TO THE SET OF THE STATE OF

FIG. 9

THE REPORT OF THE PARTY OF THE

FIG. 12

FIG. 13

FIG. 14

FIG. 15

FIG. 16

FIG. 17

i

FIG. 18

<u>kDa</u> 105 75 -

Control Cyto

iPLA₂-γ¹ Cyto

63 kDa iPLA₂-γ Cyto

74 kDa iPLA₂-Y Cyto

Control Memb

 $iPLA_2-\gamma^1$ Memb

63 kDa iPLA₂-Y Memb

74 kDa iPLA₂-7 Memb

iPLA₂-7 Memb

PLA₂Y Truncation Mutants

FIG. 20

THE REPORT OF THE PARTY OF THE

... jt. 10 · 1

promoter \ bacculovirus iPLA2 g 23mer 74kDa Luciferase coding sequence 70KDa 23mer sequences for testing in luciferase assay system

FIG. 22

for translational repression of iPLA2 gamma in the luciferase expression system: Phosphorylated oligo pairs for sequence between nucleotide 364-455

1/2 tcgacctgatttcacgtttagctcaatt iPLA27 atgatttcacgtttagctcaatttaagccaagttcccaaattttaagaaaagtatcggatagtggctggttaaaacagaaaaacatcaaaca ggactaaagtgcaaatcgagttaaccgg

5/6 3/4 tcgactaagccaagttcccaaattttaa gattcggttcaagggtttaaaattccgg tcgacgaaaagtatcggatagtggctgg

£x . 3

7/8

tcgacttaaaacagaaaaacatcaaaca gaattttgtctttttgtagtttgtccgg gcttttcatagcctatcaccgaccccgg

tyo., 10 10 - .

FIG. 23

IG. 24

The first time that the first time was the first time the first time that the