



GPT=3



## **Adoption**

Time to reach 100 million users;

- Mobile phone 16 years
- Internet 7 years
- Facebook 4.5 years
- WhatsApp 3.5 years
- Instagram 2.5 years
- TikTok 9 months
- ChatGPT 2 months



### **Overview**

- Technical details on GPT-3.
  - a. Terminology
  - b. What is a language model
  - c. What is GPT-3
  - d. Architecture
  - e. Technical details
  - f. Capabilities of GPT-3
  - g. Limitation of GPT-3
  - h. Applications
  - i. Future of Al
- 2. Introduction to OpenAI API
- 3. Getting started with the API
  - a. How to obtain the API
  - b. Running few example codes



## **Terminology**

### Language Model:

 These models can predict the most likely next words, along with their probabilities, given a set of words.

### Zero/One/Few shot learning:

Refer to a model's ability to learn a new task with zero, one, or a few examples.

#### Transformer Models:

 Transformers are a family of deep learning models that are primarily used in natural language processing (NLP). They serve as the fundamental building block for many of the current state-of-the-art NLP architectures.

#### Token:

 Basic units of input and output text. Discrete units of text that model process. Can be a word of subwords.

#### Parameters:

 Refer to the numerical values that represent the weights and biases of the neural network architecture used by the model.



## What is a language model?

- Language models are trained on large datasets of natural language texts
- These models learn the underlying patterns and structures of language to predict the likelihood of sequence of words
- These models are used for natural language processing, machine translation, text classification, speech recognition, text-to-speech conversion and question and answering tasks.
- Most language models are trained, using statistical methods such as n-grams and markov models, and deep learning techniques such as neural networks.
- The significance is that most modern language models have typically been designed, using deep learning techniques. The most commonly used method is the transformer architecture, used in GPT-3 models.



## **State of Language Models**



Figure 1: Evolution of Language Models and their sizes [1]



### What is GPT-3

GPT stands for "Generative Pre-trained Transformer"

### **GPT:**

 GPT: first version of GPT, released in 2018. It had 117 million parameters and was trained on web-text

### **GPT-2:**

- Advanced version of GPT, released in 2019, had 1.5 billion parameters.
- 8 million web pages

### **GPT-3:**

- Is one of the best state-of-the-art language processing AI models developed
- GPT-3 is an autoregressive language model with 175 billion parameters, 10x time more than any previous method
- 45 terabyte of training data



### **Technical Details::Architecture**





Figure 2: The transformer model architecture [2]

## **Technical Details::Models and parameters**

| Model Name            | $n_{ m params}$ | $n_{ m layers}$ | $d_{ m model}$ | $n_{ m heads}$ | $d_{ m head}$ | Batch Size | Learning Rate        |
|-----------------------|-----------------|-----------------|----------------|----------------|---------------|------------|----------------------|
| GPT-3 Small           | 125M            | 12              | 768            | 12             | 64            | 0.5M       | $6.0 \times 10^{-4}$ |
| GPT-3 Medium          | 350M            | 24              | 1024           | 16             | 64            | 0.5M       | $3.0 \times 10^{-4}$ |
| GPT-3 Large           | 760M            | 24              | 1536           | 16             | 96            | 0.5M       | $2.5 \times 10^{-4}$ |
| GPT-3 XL              | 1.3B            | 24              | 2048           | 24             | 128           | 1 <b>M</b> | $2.0 \times 10^{-4}$ |
| GPT-3 2.7B            | 2.7B            | 32              | 2560           | 32             | 80            | 1 <b>M</b> | $1.6 \times 10^{-4}$ |
| GPT-3 6.7B            | 6.7B            | 32              | 4096           | 32             | 128           | 2M         | $1.2 \times 10^{-4}$ |
| GPT-3 13B             | 13.0B           | 40              | 5140           | 40             | 128           | 2M         | $1.0 \times 10^{-4}$ |
| GPT-3 175B or "GPT-3" | 175.0B          | 96              | 12288          | 96             | 128           | 3.2M       | $0.6 \times 10^{-4}$ |

Figure 3: Model, size, architecture, and learning hyper-parameters (batch size in tokens)



### **Technical Details::Dataset used for GPT-3**

| Dataset                 | Quantity (tokens) | Weight in training mix | Epochs elapsed when training for 300B tokens |
|-------------------------|-------------------|------------------------|----------------------------------------------|
| Common Crawl (filtered) | 410 billion       | 60%                    | 0.44                                         |
| WebText2                | 19 billion        | 22%                    | 2.9                                          |
| Books1                  | 12 billion        | 8%                     | 1.9                                          |
| Books2                  | 55 billion        | 8%                     | 0.43                                         |
| Wikipedia               | 3 billion         | 3%                     | 3.4                                          |

Figure 4: Dataset used for training the model. Trained 300 billion tokens.

CommonCrawl: 45TB, between 2016 - 2019, after filtering 570GB

WebText2: 40GB, of outbound links from Reddit, that are interesting and educational

Wikipedia: 6 million articles.



## **Technical Details::Computation power used**



Figure 5: Total computation used training compare to other state-of-the-art models (presented in log scale)

"As an example, it requires approximately 9.2 days on 512 V100 GPUs to train a 8.3B GPT-2 (Shoeybi et al., 2019), and 14.8 days on 10000 V100 GPUs to train a 175B GPT-3 (Patterson et al., 2021)"



## **Technical Details::Accuracy and Performance**



Figure 6: Performance over different in-context learning methods. Graph shows gains due to scaled up size of the model for zero-shot, one-shot and few-shot learning.



### **Technical Details::Evaluation and results**

### 1. LAMBADA dataset (archived 86% accuracy)



| Setting         | LAMBADA (acc) | LAMBADA (ppl)     | StoryCloze (acc) | HellaSwag<br>(acc) |
|-----------------|---------------|-------------------|------------------|--------------------|
| SOTA            | $68.0^{a}$    | 8.63 <sup>b</sup> | 91.8°            | 85.6 <sup>d</sup>  |
| GPT-3 Zero-Shot | 76.2          | 3.00              | 83.2             | 78.9               |
| GPT-3 One-Shot  | 72.5          | 3.35              | 84.7             | 78.1               |
| GPT-3 Few-Shot  | 86.4          | 1.92              | 87.7             | 79.3               |

Alice was friends with Bob. Alice went to visit her friend  $\_\_\_$ .  $\rightarrow$  Bob

George bought some baseball equipment, a ball, a glove, and a  $\_\_\_$ .  $\rightarrow$ 



### **Technical Details::Evaluation and results**

- **2. HellaSwag** (79.3%)
- **3. StoryCloze** (87.2%)
- 4. Closed Book Question Answering:
  - This measures the ability to answer questions on broad factual knowledge.
    - 1. Natural Questions
    - 2. WebQuestions dataset
    - 3. TriviaQA datasets
- 5. Translations:
  - From French to English, German to English, Romanian to English and vice versa.
- 6. Winograd Scheme-like tasks (89.7%)
- 7. Common Sense Reasoning: (82.8% Accuracy)

- 8. Comprehensive Reading tasks
- 9. SuperGLUE benchmark suite
- 10. Natural Language Inference (NLI) tasks
- 11. Synthetic and Qualitative Tasks
- 12. Arithmetic

- State-of-the-art results archived by GPT-3 are;
- 1. Cloze task and sentence and paragraph completion
- 2. Commonsense reasoning (PIQA dataset)



## Technical Details::Zero-shot, One-shot and Few-shot



Figure 7: Zero-shot and one-short learning - on the language model



## **Advantages/Capabilities of GPT-3**

### Language Generation:

• able to generate high-quality text that is often difficult to distinguish from human-generated text.

#### Language Understanding:

o can perform a variety of language understanding tasks, such as sentiment analysis, question answering, and summarization. It can also understand and generate text in multiple languages.

#### Zero-Shot and Few-Shot Learning:

 able to learn new tasks with zero or very few examples, making it a highly flexible and adaptable model(generalizable).

#### • Large-Scale Training:

 since it was trained on a massive dataset, the extensive training enables it to generate high-quality text with a rich vocabulary.

#### • Fewer Preprocessing Requirements:

 Unlike other NLP models, GPT-3 requires minimal preprocessing of data, making it easier and faster to work with.

#### Multi-Task Learning:

can perform multiple tasks, such as language translation, question answering, and summarization, without requiring separate training for each task.



### **Limitations of GPT-3**



Ex: Q: What is 24 times 42?

A: 1008

GPT-3 One-shot 86.4 65.5 78.7 14.0 14.0 3.5 3.8 27.4 14.3 99.6 GPT-3 Few-shot 100.0 98.9 80.4 94.2 25.5 26.8 9.3 9.9 29.2 21.3

Figure 8: Results on basic arithmetic tasks for GPT-3



### **Limitations of GPT-3**

#### Lack of real-world context:

GPT-3 relies on statistical patterns in language to generate text, which means it lacks true
understanding of the world and common sense reasoning.

### Limited factual accuracy:

 GPT-3 can generate text that is factually incorrect or biased, as it learns from the patterns in the data it is trained on, which can be biased or contain errors.

### Limited interpretability:

 GPT-3 is a complex model with millions of parameters, making it difficult to understand how it works or why it makes certain predictions.

### • Limited transferability:

 GPT-3 performs best on tasks that are similar to the ones it was trained on, and may not perform well on tasks that require knowledge from other domains.

#### Resource-intensive:

 GPT-3 requires significant computational resources to train and run, making it inaccessible to many researchers and developers.



### **Applications**

- 1. Text generation
- 2. Translation
- 3. Question answering
- 4. Chatbots and virtual assistant
- 5. Sentiment analysis
- 6. Summarization
- 7. Creative writing
- 8. Code generation
- 9. Personalization
- 10. Education
- 11. Voice assistants
- 12. Search Engines (Bing)





#### Q&A

Answer questions based on existing knowledge.



#### **Grammar correction**

Corrects sentences into standard English.



#### Summarize for a 2nd grader

Translates difficult text into simpler concepts.



#### Natural language to OpenAI API

Create code to call to the OpenAI API using a natural language instruction.



#### Text to command

Translate text into programmatic commands.



#### English to other languages

Translates English text into French, Spanish and Japanese.



#### Natural language to Stripe API

Create code to call the Stripe API using natural language.



#### SQL translate

Translate natural language to SQL queries.



#### Parse unstructured data

Create tables from long form text



#### Classification

Classify items into categories via example.



#### Python to natural language

Explain a piece of Python code in human understandable language.



#### Movie to Emoji

Convert movie titles into emoji.



#### Calculate Time Complexity

Find the time complexity of a function.



#### Translate programming languages

Translate from one programming language to another



#### Advanced tweet classifier

Advanced sentiment detection for a piece of text.



#### Explain code

Explain a complicated piece of code.



#### Keywords

Extract keywords from a block of text.



#### Factual answering

Guide the model towards factual answering by showing it how to respond to questions that fall outside its knowledge base. Using a '?' to indicate a response to words and phrases that it doesn't know provides a

### **Future**

- 1. Improved natural language understanding
- 2. Applications in new fields
- 3. Increased personalization
- 4. Collaboration between humans and Al
- 5. Ethical considerations



Image: Shutterstock



## **OpenAl API**

The API provides access to various pre-trained AI models, including language processing, natural language understanding, and machine learning models. This enables developers to build AI-powered applications without having to invest significant time and resources in developing their own AI models.

- > https://platform.openai.com/docs/quickstart
- > <a href="https://platform.openai.com/docs/api-reference/introduction"> https://platform.openai.com/docs/api-reference/introduction</a>

OpenAl API is offered in different languages;

- Official Libraries are; python, Node.JS

There are Community written libraries for almost any of other languages



## **OpenAl API: Available Models**

| LATEST MODEL       | DESCRIPTION                                                                                                                                                                                | MAX REQUEST  | TRAINING DATA  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|
| gpt-3.5-turbo      | Most capable GPT-3.5 model and optimized for chat at 1/10th the cost of text-davinci-003. Will be updated with our latest model iteration.                                                 | 4,096 tokens | Up to Sep 2021 |
| gpt-3.5-turbo-0301 | Snapshot of gpt-3.5-turbo from March 1st 2023. Unlike gpt-3.5-turbo, this model will not receive updates, and will only be supported for a three month period ending on June 1st 2023.     | 4,096 tokens | Up to Sep 2021 |
| text-davinci-003   | Can do any language task with better quality, longer output, and consistent instruction-following than the curie, babbage, or ada models. Also supports inserting completions within text. | 4,000 tokens | Up to Jun 2021 |
| text-davinci-002   | Similar capabilities to text-davinci-<br>003 but trained with supervised fine-<br>tuning instead of reinforcement learning                                                                 | 4,000 tokens | Up to Jun 2021 |
| code-davinci-002   | Optimized for code-completion tasks                                                                                                                                                        | 4,000 tokens | Up to Jun 2021 |



### **OpenAl API:** Basic usage

### > pip install openai

```
import os
import openai
# Load your API key from an environment variable or secret management service
openai.api key = os.getenv("OPENAI API KEY")
response = openai.Completion.create(model="text-davinci-003", prompt="Say this is
a test", temperature=0, max tokens=7)
```



## **OpenAl API: Getting started with API**

API Reference: <a href="https://platform.openai.com/docs/api-reference/introduction">https://platform.openai.com/docs/api-reference/introduction</a>

```
response = openai.Completion.create(
model="text-davinci-003",
prompt="prompt\n",
temperature=0,
max_tokens=100,
top_p=1,
frequency penalty=0.0,
presence_penalty=0.0,
stop=["\n"]
```

```
model: ID of the GPT model to use "davinci, ada,
curie"
prompt: text prompt to feed (upto 2048 tokens)
temperature [0, 2]: controls the "creativity". Higher
value gives diverse and unpredictable results,
lower will give predictable result
max tokens: maximum length of response (words)
n: number of responses to generate (choices)
stop: specifies a string to serve as stop criteria for
response
```



## **OpenAl API: Register to get the API (provide a \$5 free trial)**

1. <a href="https://platform.openai.com/">https://platform.openai.com/</a>





## **OpenAl API: Register to get the API (provide a \$5 free trial)**

## 2. https://platform.openai.com/account/usage



## 3. https://platform.openai.com/account/api-keys



## **OpenAl API: Development Environment**

4. https://jupyterenv.metaai.dev/hub/login





## Datasets for your own projects

OpenWebTextCorpus: Attempt to recreate the OpenAI's WebText2 dataset

https://skylion007.github.io/OpenWebTextCorpus/

CommonCrawl: Open repository of Web crawl data,

https://commoncrawl.org/the-data/get-started/



### References

[1] N. B. and I. Hogarth, "State of Al Report 2022." <a href="https://www.stateof.ai/">https://www.stateof.ai/</a>

[2] "OpenAl API." <a href="https://platform.openai.com">https://platform.openai.com</a>



# **Thank You**

