

Outline

- Hypothesis Testing
- Effect sizes
- Confidence Intervals
- Summary

Reasons for Hypothesis Testing

Is this data normally distributed?

Do both populations have the same central tendency and/or variance?

Null and Alternative Hypothesis

- Hypothesis testing evaluates assumptions about data
 - Assumption == Hypothesis
- Null Hypothesis (H_0)
 - Assumption of the test holds and is failed to be rejected at some level of significance.
- Alternative Hypothesis (H_1, H_a)
 - Assumption of the test does not hold and is rejected at some level of significance.
- Most important questions:
 - What is the assumption of a test?
 - What does "rejected at some level of significance" mean?

P-Values

- The probability of the observed data or more extreme data, given the null hypothesis is true.
 - Given the hypothesis, how likely is the data?
 - Not the same as given my data, how likely is the hypothesis!
 - Never use p-values as scores!
- Calculated using the probability density function of a test statistic
 - Given the hypothesis, how likely is this statistical value about the data?

Students t-Distribution

- Test statistic used for estimating mean values for normally distributed data
- Probability density function for the location of the deviation of a sample mean value from the real mean value

Example: Welch's t-Test

Also requires calculation of the degrees of freedom, which we omit here

- Null Hypothesis
 - The means of two normally distributed populations X_1 and X_2 are equal.
- t statistic for Welch's test:

•
$$t = \frac{mean(X_1) - mean(X_2)}{\sqrt{\frac{sd(X_1)^2}{N_1} + \frac{sd(X_2)^2}{N_2}}}$$

Null hypotheses of important tests

- Welch's t-test
 - The means of two normally distributed populations are equal
- Shapiro-Wilk test
 - A population of 3 to 5000 independent samples is normally distributed
- Kolmogorov-Smirnoff test
 - Two populations have the same probability distribution
- Mann-Whitney-U Test / Wilcoxon-Ranksum-test
 - The values from one population dominate the values of another population (more or less difference of means/medians)
- Levene's test
 - The variances of a group of populations are equal
- ANOVA
 - The mean values of a group of populations are equal

Combinations of Tests

- Example:
 - Are the mean values different?

Histogram of randomly generated data

0.0

0.2

0.4

0.6

-0.2

2.0

1.5

Significance and Confidence

- Significance level α
 - Probability of rejecting the null hypothesis, given that it is true
 - Depends on domain
 - Common values:
 - 0.05 (de-facto standard)
 - 0.005 (currently proposed newer standard to reduce false positives)
- Confidence level
 - Probability of not rejecting the null hypothesis, given that it is true
 - $1-\alpha$
- Used to evaluate tests
 - If p value > alpha fail to reject null hypothesis
 - If $p value \le alpha$ reject the null hypothesis \rightarrow significant result

Example for running tests

"fail to reject" instead of "accept"

p-value of Shapiro-Wilk test for "blue" data: 0.9292

The test found that the data sample was normal, failing to reject the null hypothesis at significance level alpha=0.005

p-value of Shapiro-Wilk test for "orange" data: 0.3986

The test found that the data sample was normal, failing to reject the null hypothesis at significance level alpha=0.005

Both populations normal. Using Welch's t-test.

p-value of Welch's t-tests: 0.048920

The test found that the population means are equal, failing to reject the null hypothesis at significance level alpha=0.005

Problems with hypothesis testing

- No binary results!
 - Results are probabilistic, i.e., you can reject/fail to reject the null hypothesis with a certain probability, but you cannot make binary claims.
- Using p-values for scoring
 - p-values describe the likelihood of the data, given the hypothesis
 - Not the same as likelihood of hypothesis, given data!
 - →Scoring makes no sense!
- p-hacking
 - Re-running tests with different data until a desired result is found
 - Often inadvertent, e.g., due to subgroup analysis

Outline

- Hypothesis Testing
- Effect sizes
- Confidence Intervals
- Summary

Significant ≠ Important

p-value of Shapiro-Wilk test for "blue" data: The test found that the data sample was normal, failing to rejec

gnificance level alpha=0.005

p-value of Shapiro-Wilk test for "orange" data: 0.8631

The test found that the data sample was normal, failing to reject the null hypothesis at significance level alpha=0.005

Both populations normal. Using Welch's t-test.

p-value of Welch's t-tests: 0.003965

The test found that the population means are not equal, rejecting the null hypothesis at significance level alpha=0.005

Is probably different

 Measures the distance between central tendency with respect to the variance

- Cohen's d
 - Difference of means relative to the standard deviation

•
$$d = \frac{mean(X_1) - mean(X_2)}{s}$$

- d=1 means that the difference of means is "one standard deviation"
- s is the pooled standard deviation

•
$$s = \sqrt{\frac{(N_1 - 1) \cdot sd(X_1)^2 + (N_2 - 1) \cdot sd(X_2)^2}{N_1 + N_2 - 2}}$$

Square root of the weighted mean of the variances

Effect size (Cohen's d): -0.129 - small effect

How do we know this is small?

Interpretation of Effect Sizes

According to Cohen and Sawilowsky

Cohen's d	Effect size
d < 0.01	Very small
d < 0.2	Small
d < 0.5	Medium
d < 0.8	Large
d < 1.2	Very Large
d < 2.0	Huge

- Designed for social sciences
- Should be used with care, but is broadly used in many domains

Outline

- Hypothesis Testing
- Effect sizes
- Confidence Intervals
- Summary

How accurate are estimations?

Example:

- You have twenty different data sources.
- You train on five of them and test on the other fifteen.
- The mean value of the 15 test values is 0.83, the standard deviation is 0.13.

We are assuming that everything is normally distributed. Similar formulas are available for non-normal data

- Definition:
 - A C% confidence interval θ for some parameter p is an interval that is expected with probability C% to contain p.
 - C is also called the confidence level

p

 Confidence interval for the mean value of normally distributed data with known standard deviation

•
$$\theta = \left[mean(X) - z_C \frac{sd(X)}{\sqrt{n}}, mean(X) + z_C \frac{sd(X)}{\sqrt{n}} \right]$$

 $\rightarrow \pm z_C \frac{sd(X)}{\sqrt{n}}$ uncertainty about the actual mean value

Explanation of z_C

• Choosen such that $[-z_C, z_C]$ is the C% confidence interval of the standard normal distribution

С	$\boldsymbol{z}_{\mathcal{C}}$
90%	1.645
95%	1.96
99%	2.58
99.5%	2.807
99.9%	3.291

In practice: look it up in a table

Example for Confidence Intervals

- Example (repeated):
 - The mean value of the 15 test values is 0.83, the standard deviation is 0.13.

С	$z_{\it C}$	heta
90%	1.645	[0.775, 0.885]
95%	1.96	[0.764, 0.896]
99%	2.58	[0.743, 0.916]
99.5%	2.807	[0.736, 0.924]
99.9%	3.291	[0.720, 0.940]

Interpretation of Confidence Intervals

- Correct interpretation of a C% confidence interval θ
 - C% chance that results of future replications fall into θ
 - No statistical difference from estimated parameter with C% confidence
 - There is a 1-C% probability of the observed data, if the true value for the estimate is outside of θ
- Wrong interpretation
 - The true value lies with C% probability in θ
 - C% of the observed data is in θ

Outline

- Hypothesis Testing
- Effect sizes
- Confidence Intervals
- Summary

Summary

- Hypothesis testing to evaluate significance of differences
 - Not significant → can be explained by random effects
 - Test results are probabilities, not binary true/false statements!
- Effect sizes to evaluate strengths of significant differences
- Confidence intervals to estimate accuracy of results
 - How stable are the results, if the experiment is repeated?
- All of the above are often misused or interpreted wrongly!