### TSN1101 Computer Architecture and Organisation.

003 Shift ALAHM & SHIFT

# 1 Number Systems and Codes

| Number  | Systems              |             |
|---------|----------------------|-------------|
|         | repeated 11          | Binary      |
| Decimal | $\xrightarrow{\div}$ | Octal       |
|         | <del></del>          | Hexadecimal |
|         | expand               |             |

Fraction - repeated multiplication 1

1 Octal digit = 3 Binary digit 1 Hex digit = 4 Bimary digit

### Codes

- Decimal NBCD (84217 0001 0101
- 1 Decimal - 2421 -. 0001 1011
- 3 Decimal - XS3 Decimal + 3 COO 11) → 8421 Decimal ← 8421-3(0011)
- (4) Binary Gray code 5100 B 60010
- **レ**ア ア ス 0110 B 0 0 1 1
- B G 1101 上ガスス G 0101 1001

#### Error Detection

| Parity Protocol | 125  | Parity Bit |
|-----------------|------|------------|
| Odd             | 099  | 0          |
|                 | Even | 1          |
| Even            | 000  | ٢          |
|                 | Even |            |

# 2 Data Representation and Arithmetic

# Sign-Magnitude

| LSB |   |           |
|-----|---|-----------|
| 0   | + | +0 and -0 |
|     | _ | - 31.10   |

# Ones Complement

complement to get -ve. +0 and -0.

## Twos Complement

Complement and add I to get -ve

Overflow Rule: two numbers of same sign added; result of opposite sign.

Subtraction Rule: A-B = A+(-B)

### Floating Point:

| 1 61+    | 8 bits                |                  |
|----------|-----------------------|------------------|
|          |                       | 13 bits          |
| Sign Bit | Biased Exponent       | Significand      |
|          | Actual Exponent + 127 | 0.15.111.1201.12 |
|          | → Binary              |                  |

+-x + C make them have some exponent)

M=0101; Q=1010;-M=1011 Booth Algorithm: 5x (-67 = -30

A Register Q-1 M Register a Register 1010 0000 0 0 0101 0000

0101 Shift +1011 1011 0101 A+A-M III 1010 Shift 1101 +0101 0010 1010 A+A+M 01011 0001 O Shift 1011 0101 A+A-M 1100 1110 0010 SHIFT

Product

#### Firsting Pundunt

| Thairig Trosuct    |               |
|--------------------|---------------|
| 110 0010           | 0010 1010     |
| 1's Complement     | Sign bit is O |
| →0001 1101         | 42            |
| 2°s complement     |               |
| → 0001 1110 (30)   |               |
| ·. · Sign bit is I |               |
| * -7^              |               |

### 3 Introduction to Digital Logic and Boolean Algebra

# Logic Gates

| NOT  | 0   |     |                      |
|------|-----|-----|----------------------|
| AND  |     |     |                      |
| OR   | D   |     |                      |
| NAND |     | AB  | [01:10:00]           |
| NOR  | 200 | A+B | LOOJ                 |
| XOR  |     | A B | [10,01]              |
| XNOR | oth | ABB | $\Gamma \infty$ 2117 |

# Boolean Algebra

| A+0=A                  | A - A = A                  |     |   |   |
|------------------------|----------------------------|-----|---|---|
| A+1=1                  | $A \cdot \overline{A} = 0$ |     |   |   |
| A.0 = 0                | $\overline{A} = A'$        |     |   |   |
| A-1 = A                | A+AB=A                     |     |   |   |
| A+A=A                  | A+AB=A+B                   |     |   |   |
| $A + \overline{A} = 1$ | CA+BOCA+CO-                | Δ + | 0 | _ |

# De Morgan's Theorem

$$\overline{X+Y} = \overline{X} + \overline{Y}$$



## Decoder/Encoder

- 1 Active-LOW output
  - only one low output
  - use NAND and NOT
- @ Active-HIGH output
  - only one high output use AND and NOT

#### 2x4 Decoder

#### 1 Active-HIGH OUTPUT

| A | Ao | Dp | PI  | Da  | D3 |
|---|----|----|-----|-----|----|
| 0 | 0  |    | 0   | 0   | 0  |
| 0 | ١  | 0  | , i | 0   | 0  |
| 1 | 0  | 0  | 0   | - 1 | 0  |
| i | 1  | 0  | C   |     |    |



#### @ Active - LOW output

| A | Ao | Do | Di | $D_2$ | D3 |
|---|----|----|----|-------|----|
| 0 | 0  | 0  | •  | 1     | 1  |
| 0 | ١  | 1  | 0  | - 1   | 1  |
| - | 0  | 1  | 1  | 0     | 1  |
| 1 | 1  | 1  |    | 1     | 0  |

## Decoder with Logic Gates

#### Full Adder:

SCエッソッマフ=ImClo204077

C(x,y,z)= Em(3,5,6,7)



#### 8×3 Encoder (Octal-to-Binary Encoder)

| D7 | DG | D <sub>5</sub> | P4 | D3 | 02 | D, | D° | Az | A, | Ao |
|----|----|----------------|----|----|----|----|----|----|----|----|
| 0  | 0  | 0              | 0  | O  | 0  | 0  | ě  | 0  | 0  | 0  |
| 0  | 0  | 0              | 0  | 0  | 0  | 1  | 0  | 0  | 0  | ı  |
| 0  | 0  | 0              | 0  | 0  | 1  | 0  | 0  | 0  | ¥  | 0  |
| 0  | 0  | 0              | 0  | 1  | O  | 0  | 0  | 0  | 1  | 1  |
| 0  | 0  | 0              | 1  | 0  | 0  | 0  | 0  | 1  | 0  | 0  |
| 0  | 0  | 1              | 0  | 0  | O  | 0  | 0  | 1  | 0  | 1  |
| 0  | 1  | 0              | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 0  |
| 1  | 0  | 0              | 0  | 0  | 0  | 0  | O  | 1  | 7  | 1  |

# 4x2 Priority Encoder

| Do | DI | 02 | DB | œ   | Y  |
|----|----|----|----|-----|----|
| 0  | 0  | 0  | 0  | ×   | ×  |
| i. | 0  | 0  | 0  | 0   | 0  |
| ×  |    | 0  | 0  | 0   | 1  |
| ×  | ×  | -  | 0  | · · | 0  |
| ×  | ×  | ×  | 1  | 1   | -1 |

|   |   | 10  |
|---|---|-----|
| T | T | 1 1 |
| 1 | 1 |     |
|   |   |     |
| 1 | 1 |     |
|   | 1 |     |

 $x = D_2 + D_3$ 

|   |   | 11                | 10                                      |
|---|---|-------------------|-----------------------------------------|
| × | 1 | 1                 | 1                                       |
| 1 | 1 | 1                 | 1                                       |
| 1 | 1 | 1                 | 1                                       |
|   | 1 | 1                 | 1                                       |
|   | × | × 1 1 1 1 1 1 1 1 | × t t t t t t t t t t t t t t t t t t t |

Y=D3+D102

