Importing Essential Libraries

In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn import metrics
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.model_selection import train_test_split
from sklearn.model selection import cross val score
from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.neighbors import KNeighborsRegressor
from sklearn.svm import SVR
import joblib
```

Importing Data

```
In [2]:
df = pd.read_csv('housing.csv')
df = df[\sim(df['MEDV'] >= 50.0)]
                                                         In [3]:
df.shape
                                                         Out[3]:
(490, 14)
                                                         In [4]:
X = df.drop('MEDV', axis = 1)
y = df['MEDV']
                                                         In [5]:
df.columns
                                                         Out[5]:
index(['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX',
'RM', 'AGE', 'DIS', 'RAD', 'TAX',
       'PTRATIO', 'B', 'LSTAT', 'MEDV'],
      dtype='object')
```

EDA

```
In [6]:
df.head()
                                                                  Out[6]:
             ZN INDUS CHAS
      CRIM
                                  NOX
                                         RM
                                             AGE
                                                       I
0 0.00632
             18.0
                    2.31
                              0 0.538
                                        6.575
                                               65.2 4.09
 1 0.02731
             0.0
                    7.07
                              0 0.469 6.421
                                               78.9 4.96
 2 0.02729
                    7.07
                              0 0.469 7.185
                                               61.1 4.96
             0.0
 3 0.03237
                              0 0.458 6.998
                    2.18
                                               45.8 6.06
             0.0
 4 0.06905
                              0 0.458 7.147
                                               54.2 6.06
             0.0
                    2.18
                                                     lacksquare
                                                                  In [7]:
df.isnull().sum()
                                                                  Out[7]:
CRIM
             0
\mathsf{ZN}
             0
INDUS
             0
CHAS
             0
NOX
             0
RM
             0
AGE
             0
DIS
             0
RAD
             0
TAX
             0
PTRATIO
             0
В
             0
```

```
MEDV
           0
dtype: int64
                                                         In [8]:
df['CHAS'].value_counts()
                                                         Out[8]:
0
     461
1
      29
Name: CHAS, dtype: int64
                                                         In [9]:
df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 490 entries, 0 to 505
Data columns (total 14 columns):
CRIM
           490 non-null float64
           490 non-null float64
ZN
INDUS
           490 non-null float64
CHAS
           490 non-null int64
NOX
           490 non-null float64
           490 non-null float64
RM
           490 non-null float64
AGE
DIS
           490 non-null float64
RAD
           490 non-null int64
TAX
           490 non-null int64
PTRATIO
           490 non-null float64
           490 non-null float64
В
LSTAT
           490 non-null float64
MEDV
           490 non-null float64
dtypes: float64(11), int64(3)
memory usage: 57.4 KB
                                                        In [10]:
```

0

LSTAT

df.describe().T

Out[10]:

	count	mean	std	min	25%	50%	
CRIM	490.0	3.643241	8.722154	0.00632	0.082045	0.24751	3.647422
ZN	490.0	11.112245	22.844626	0.00000	0.000000	0.00000	12.5
INDUS	490.0	11.113143	6.821302	0.74000	5.190000	9.69000	18.100000
CHAS	490.0	0.059184	0.236209	0.00000	0.000000	0.00000	0.0
NOX	490.0	0.554307	0.116688	0.38500	0.449000	0.53800	0.624000
RM	490.0	6.245471	0.653147	3.56100	5.881000	6.18500	6.5
AGE	490.0	68.278980	28.164790	2.90000	44.550000	76.80000	93.875000
DIS	490.0	3.834519	2.109948	1.13700	2.111050	3.27590	5.2
RAD	490.0	9.514286	8.691297	1.00000	4.000000	5.00000	24.000000
TAX	490.0	408.002041	168.065190	187.00000	280.250000	330.00000	666.0
PTRATIO	490.0	18.520000	2.110478	12.60000	17.400000	19.10000	20.200000
В	490.0	355.855449	92.634273	0.32000	375.912500	391.77000	396.3
LSTAT	490.0	12.924020	7.083180	1.98000	7.347500	11.67500	17.117500
MEDV	490.0	21.635918	7.865301	5.00000	16.700000	20.90000	24.6
4]]		Ŀ		

In [11]:

```
df.hist(edgecolor = 'black', linewidth = 1.2, figsize=(20,15)
)
plt.show()
```


In [12]:

```
plt.figure(figsize=(14,8))
sns.boxplot(data = df)
plt.xticks(rotation=45, fontsize=15)
plt.show()
```


Feature Selection

Using Correlation Matrix

```
In [13]:
```

```
plt.figure(figsize=(12,6))
sns.heatmap(df.corr(), annot=True, cmap='RdYlGn')
plt.show()
               -0.53 <mark>-0.054</mark> -0.51 0.31 -0.56
                                    .64 -0.71
                     1 0.086 0.045 0.071 -0.078 -0.033 -0.068 -0.12 0.042 -0.0065 0.075
                                                                             0.6
  CHAS -- 0.064 -0.054 0.036
       -0.22 0.31 -0.41 0.045
                                  -0.27 0.25 -0.2 -0.28 -0.29 0.12
                    0.071
                              0.25
                                                         0.3
                -0.71 -0.078 -0.77
                                                     -0.25
                                            1 0.91 0.46 -0.45
                              -0.2 0.45
  RAD - 0.63 -0.31 0.6 -0.033 0.61
                                                                            - -0.3
LSTAT - 0.46 -0.42
                   -0.0065 0.61 -0.61
                                      -0.54 0.51 0.57
      0.05 0.4 0.5 0.075 0.52 0.69 0.49 0.37 0.48 0.57 0.52 0.36 0.76 1.

CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT MEDV
```

Selecting Highly Correlated Features

In [14]:

```
correlation = df.corr()
corr = abs(correlation['MEDV'])
target_features = corr[corr > 0.5]
target_features.drop('MEDV', inplace=True)
target_features.plot(kind = 'barh')
plt.title('Selected Featues Using Correlation', fontsize=18)
plt.show()
```


Using Lasso Regression

```
In [15]:
```

```
from sklearn.linear_model import LassoCV
model = LassoCV(cv=5)
model.fit(X, y)
print(f'Best Alpha using LassoCV: %f' % model.alpha_)
print(f'Best Score using LassoCV: %f' % model.score(X, y))
coef = pd.Series(model.coef_, index=X.columns)

print(f'Lasso Picked {str(sum(coef != 0))} featres and remove
d other {str(sum(coef == 0))} featres')
```

Best Alpha using LassoCV: 0.755157
Best Score using LassoCV: 0.730376
Lasso Picked 11 featres and removed other 2 featres

In [16]:

```
imp_features = coef.sort_values(ascending=False)
plt.figure(figsize=(5,5))
imp_features.plot(kind= 'barh')
```

```
plt.title('Important Features using LassoCV')
plt.show()
```


Train Test Split

```
In [17]:
```

```
X = df[['RM', 'LSTAT', 'PTRATIO', 'INDUS', 'NOX', 'TAX', 'AGE
', 'CRIM']]
y = df['MEDV']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 42)
```

Checking Accuracy for Different Models

Without Scaling Data

In [18]:

```
accuracy = []
rmse = []
models = pd.Series([LinearRegression(), RandomForestRegressor
(n_estimators=100), DecisionTreeRegressor(),
                    KNeighborsRegressor(n_neighbors=3), SVR(k
ernel='linear', gamma='auto')])
regression = pd.Series(['Linear Reg', 'Random Forest Reg', 'D
ecision Tree Reg', 'KNN', 'SVR'])
for i in models:
   model = i
   model.fit(X_train, y_train)
   y_pred = model.predict(X_test)
   accuracy.append(model.score(X_test, y_test))
   rmse.append(np.sqrt(metrics.mean_squared_error(y_test, y_
pred)))
d = {'Accuracy': accuracy, 'RMSE' : rmse}
a = pd.DataFrame(d, index=regression)
plt.figure(figsize=(10,8))
plt.subplot(2,1,1)
a['Accuracy'].plot(kind = 'barh', edgecolor = 'y')
plt.style.use('ggplot')
plt.title('Accuracy without Scaling Data', fontsize = 20)
plt.yticks(fontsize=15)
plt.subplot(2,1,2)
a['RMSE'].plot(kind = 'barh', edgecolor = 'y')
plt.style.use('ggplot')
```

```
plt.title('Accuracy without Scaling Data', fontsize = 20)
plt.yticks(fontsize=15)
plt.tight_layout(h_pad=0.8)
plt.show()
```


Using Scaled Data

In [19]:

```
ecision Tree Reg', 'KNN', 'SVR'])
for i in models:
    model = i
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)
    accuracy.append(model.score(X_test, y_test))
    rmse.append(np.sqrt(metrics.mean_squared_error(y_test, y_
pred)))
d = {'Accuracy': accuracy, 'RMSE' : rmse}
a = pd.DataFrame(d, index=regression)
# print(a)
plt.figure(figsize=(10,8))
plt.subplot(2,1,1)
a['Accuracy'].plot(kind = 'barh')
plt.title('Accuracy with Scaled Data', fontsize= 20)
plt.yticks(fontsize=15)
plt.subplot(2,1,2)
a['RMSE'].plot(kind = 'barh')
plt.title('RMSe with Scaled Data', fontsize= 20)
plt.yticks(fontsize=15)
plt.tight_layout(h_pad=0.8)
plt.show()
```


Resacling and Normalizing Data in Pipeline

```
In [20]:
steps = [('scaler', StandardScaler()), ('RFR', RandomForestRe
gressor(n_estimators=100))]
pipeline = Pipeline(steps)
pipeline.fit(X_train, y_train)
# y_pred = pipeline.predict(X_test)
# print(pipeline.score(X_test, y_test))
                                                       Out[20]:
Pipeline(memory=None,
         steps=[('scaler',
                 StandardScaler(copy=True, wi
th_mean=True, with_std=True)),
                ('RFR',
                 RandomForestRegressor(bootst
rap=True, criterion='mse',
                                        max_de
pth=None, max_features='auto',
                                        max_le
af_nodes=None,
                                        min_im
purity_decrease=0.0,
                                        min_im
purity_split=None,
                                        min_sa
mples_leaf=1, min_samples_split=2,
                                        min_we
ight_fraction_leaf=0.0,
                                        n_esti
mators=100, n_jobs=None,
```

Saving Model

In [21]:

```
from joblib import dump, load
dump(pipeline, 'price_pred_model.pkl')
a = load('price_pred_model.pkl')
print(a.score(X_test, y_test))
```

0.8787411558595517