F107

Roll Number:

Number of Pages: 02

## Thapar Institute of Engineering & Technology, Patiala

Department of Computer Science and Engineering

## **END SEMESTER EXAMINATION**

| BE(COE Third Year): Semester-V(2020/21) | Course Code: UCS701                |
|-----------------------------------------|------------------------------------|
|                                         | Course Name: Theory of Computation |
| Jan 25, 2021                            | Monday, 14.30 - 16.30 Hrs          |
| Time: 2 Hours, M. Marks: 50             | Name Of Faculty: Dr Ajay Kumar, Dr |
|                                         | Rohit Ahuja                        |

Note: Attempt all questions with proper Justification. Without Justification Zero marks will be awarded. Assume missing data, if any, suitably. Attempt any 5 out of 7 questions.

- Q1(a) Convert the Regular expression  $1^*(10)^*1^*$  into  $\epsilon$ -NFA by using (2+2 **Thompson's Construction**. Employ  $\epsilon$ -closure to convert  $\epsilon$ -NFA into an +2) equivalent DFA. Finally convert DFA into an minimized DFA.
- Q1(b) Consider the unrestricted grammar over the singleton alphabet  $\Sigma = \{a\}$ , (4) having the start symbol S, and with the following productions.  $S \to AS \mid aT$   $Aa \to aaaA$   $AT \to T$   $T \to \varepsilon$

Generate the string w = aaaaaaaaaa using above grammar.

- Q2(a) Prove that the language  $L = \{a^i b^j \mid i, j \ge 0 \text{ and } | i j | \text{ is a prime } \}$  is not a (6) regular language using pumping lemma. (Note: 1 is not treated as a prime number.
- Q2(b) Design a minimal DFA corresponding to the following diagram. (4) (Consider A as starting and C as final state)



- Q3(a) Explain the mechanism of implementing a machine equivalent to Turing (3) Machine using Queue data structure with the help of any example.
- Q3(b) Write down the logic to design the Turing Machine for the language (7)  $L_3 = \{w \mid w \in \{0+1+2\}^* \text{ and } n_0(w) = n_1(w) = n_2(w)\}$   $n_0(w): \text{ number of 0's in the Turing Machine}$

|        | $n_1(w)$ : number of 1 s in the Turing Machine                                                                                                                                      |      |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|        | $n_2(w)$ : number of 2's in the Turing Machine                                                                                                                                      |      |
|        | Design the Turing machine for language $L_3$ and explain the processing of                                                                                                          |      |
| Q4 (a) | string <i>acbbca</i> . Consider the context-free grammar G over $\{a, b\}$ , with start symbol S, and with the following productions. $S \rightarrow aaB \mid Abb$                  | (4)  |
|        | $A 	o a \mid aA$<br>$B 	o b \mid bB$<br>Check whether the given grammar G is ambiguous or not. If it is                                                                             |      |
|        | ambiguous prove it with the help of an example.                                                                                                                                     |      |
| Q4(b)  | Design a Moore Machine to count the number of times substring "raj" appears in a string over alphabet $\Sigma = \{p, r, a, j\}$ and convert the Moore                               | (6)  |
| Q5(a)  | machine into an equivalent Mealy Machine. Convert the following grammar over $\Sigma = \{a,b,c,d\}$ to the Greibach Normal Form (GNF). $S \rightarrow aSd \mid T$                   | (7)  |
|        | $T \rightarrow bTc \mid \varepsilon$                                                                                                                                                |      |
| Q5(b)  | Prove that context-free languages are not closed under intersection with the help of an example.                                                                                    | (3)  |
| Q6     | Design regular expression, deterministic finite automaton and regular grammar for the following languages:                                                                          | (10) |
|        | a) $L_{6a} = \{w \mid w \in \{a,b\}^* \text{ and } w \text{ has b at every odd position and length of } w \text{ is odd}\}.$                                                        |      |
|        | b) $L_{6b} = \{w \mid w \in \{a,b\}^* \text{ and } w \text{ has both bb and aba as substring}\}.$                                                                                   |      |
| Q7(a)  | Design context-free grammar and pushdown automata for the language $L = \{a^m b^{n+m} c^n d^k \mid n, m, k \ge 0\}$ . Also write the transition function for the pushdown automata. | (7)  |
| Q7(b)  | Write down the Pumping lemma statement for context-free language and specify various conditions used in the Pumping lemma.                                                          | (3)  |
|        |                                                                                                                                                                                     |      |