### 1/12

# JC17 Rec'd PCT/PTO 17 JUN 2005

#### SEQUENCE LISTING

<110> Takeda Chemical Industries, Ltd.

<120> Preventing and treating agent for cancer

<130> 3130WOOP

<150> JP2002-373144

<151> 2002-12-24

<160> 14

<210> 1

<211> 751

<212> PRT

<213> Human

<400> 1

Met Gly Gln Thr Gly Lys Lys Ser Glu Lys Gly Pro Val Cys Trp Arg

5 10 15

Lys Arg Val Lys Ser Glu Tyr Met Arg Leu Arg Gln Leu Lys Arg Phe

20 25 30

Arg Arg Ala Asp Glu Val Lys Ser Met Phe Ser Ser Asn Arg Gln Lys

35 40 45

Ile Leu Glu Arg Thr Glu Ile Leu Asn Gln Glu Trp Lys Gln Arg Arg

50 55 60

Ile Gln Pro Val His Ile Leu Thr Ser Val Ser Ser Leu Arg Gly Thr

65 70 75 80

Arg Glu Cys Ser Val Thr Ser Asp Leu Asp Phe Pro Thr Gln Val Ile

|     |     |     |     | 85  |     |     |     |     | 90  |     |     |     |     | 95  |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Pro | Leu | Lys | Thr | Leu | Asn | Ala | Val | Ala | Ser | Val | Pro | Ile | Met | Tyr | Ser |
|     |     |     | 100 |     |     |     |     | 105 |     |     |     |     | 110 |     |     |
| Trp | Ser | Pro | Leu | Gln | Gln | Asn | Phe | Met | Val | Glu | Asp | Glu | Thr | Val | Leu |
|     |     | 115 |     |     |     |     | 120 |     |     |     |     | 125 |     |     |     |
| His | Asn | Ile | Pro | Tyr | Met | Gly | Asp | Glu | Val | Leu | Asp | Gln | Asp | Gly | Thr |
|     | 130 |     |     |     |     | 135 |     |     |     |     | 140 |     |     |     |     |
| Phe | Ile | Glu | Glu | Leu | Ile | Lys | Asn | Tyr | Asp | Gly | Lys | Val | His | Gly | Asp |
| 145 |     |     |     |     | 150 |     |     |     |     | 155 |     |     |     |     | 160 |
| Arg | Glu | Cys | Gly | Phe | Ile | Asn | Asp | Glu | Ile | Phe | Val | Glu | Leu | Val | Asn |
|     |     |     |     | 165 |     |     |     |     | 170 |     |     |     |     | 175 |     |
| Ala | Leu | Gly | Gln | Tyr | Asn | Asp | Gly | Asp | Asp |
|     |     |     | 180 |     |     |     |     | 185 |     |     |     |     | 190 |     |     |
| Pro | Glu | Glu | Arg | Glu | Glu | Lys | Gln | Lys | Asp | Leu | Glu | Asp | His | Arg | Asp |
|     |     | 195 |     |     |     |     | 200 |     |     |     |     | 205 |     |     |     |
| Asp | Lys | Glu | Ser | Arg | Pro | Pro | Arg | Lys | Phe | Pro | Ser | Asp | Lys | Ile | Phe |
|     | 210 |     |     |     |     | 215 |     |     |     |     | 220 |     |     |     |     |
| Glu | Ala | Ile | Ser | Ser | Met | Phe | Pro | Asp | Lys | Gly | Thr | Ala | Glu | Glu | Leu |
| 225 |     |     |     |     | 230 |     |     |     |     | 235 |     |     |     |     | 240 |
| Lys | Glu | Lys | Tyr | Lys | Glu | Leu | Thr | Glu | Gln | Gln | Leu | Pro | G1y | Ala | Leu |
|     |     |     |     | 245 |     |     |     |     | 250 |     |     |     |     | 255 |     |
| Pro | Pro | Glu | Cys | Thr | Pro | Asn | Ile | Asp | Gly | Pro | Asn | Ala | Lys | Ser | Val |
|     |     |     | 260 |     |     |     |     | 265 |     |     |     |     | 270 |     |     |
| Gln | Arg | Glu | Gln | Ser | Leu | His | Ser | Phe | His | Thr | Leu | Phe | Cys | Arg | Arg |
|     |     | 275 |     | -   |     |     | 280 |     |     |     |     | 285 |     |     |     |
| Cys | Phe | Lys | Tyr | Asp | Cys | Phe | Leu | His | Arg | Lys | Cys | Asn | Tyr | Ser | Phe |
|     | 290 |     |     |     |     | 295 |     |     |     |     | 300 |     |     |     |     |
| His | Ala | Thr | Pro | Asn | Thr | Tyr | Lys | Arg | Lys | Asn | Thr | Glu | Thr | Ala | Leu |
| 305 |     |     |     |     | 310 |     |     |     |     | 315 |     |     |     |     | 320 |

| Asp | Asn | Lys | Pro | Cys | Gly | Pro | Gln | Cys | Tyr | Gln | His | Leu | Glu | Gly | Ala |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|     |     |     |     | 325 |     |     |     |     | 330 |     |     |     |     | 335 |     |
| Lys | Glu | Phe | Ala | Ala | Ala | Leu | Thr | Ala | Glu | Arg | Ile | Lys | Thr | Pro | Pro |
|     |     |     | 340 |     |     |     |     | 345 |     |     |     |     | 350 |     |     |
| Lys | Arg | Pro | Gly | Gly | Arg | Arg | Arg | Gly | Arg | Leu | Pro | Asn | Asn | Ser | Ser |
|     |     | 355 |     |     |     |     | 360 |     |     |     |     | 365 |     |     |     |
| Arg | Pro | Ser | Thr | Pro | Thr | Ile | Asn | Val | Leu | Glu | Ser | Lys | Asp | Thr | Asp |
|     | 370 |     |     |     |     | 375 |     |     |     |     | 380 |     |     |     |     |
| Ser | Asp | Arg | Glu | Ala | Gly | Thr | Glu | Thr | Gly | Gly | Glu | Asn | Asn | Asp | Lys |
| 385 |     |     |     |     | 390 |     |     |     |     | 395 |     |     |     |     | 400 |
| Glu | Glu | Glu | Glu | Lys | Lys | Asp | Glu | Thr | Ser | Ser | Ser | Ser | Glu | Ala | Asn |
|     |     |     |     | 405 |     |     |     |     | 410 |     |     |     |     | 415 |     |
| Ser | Arg | Cys | Gln | Thr | Pro | Ile | Lys | Met | Lys | Pro | Asn | Ile | Glu | Pro | Pro |
|     |     |     | 420 |     |     |     |     | 425 |     |     |     |     | 430 |     |     |
| Glu | Asn | Val | Glu | Trp | Ser | Gly | Ala | Glu | Ala | Ser | Met | Phe | Arg | Val | Leu |
|     |     | 435 |     |     |     |     | 440 |     |     |     |     | 445 |     |     |     |
| Ile | Gly | Thr | Tyr | Tyr | Asp | Asn | Phe | Cys | Ala | Ile | Ala | Arg | Leu | Ile | Gly |
|     | 450 |     |     |     |     | 455 |     |     |     |     | 460 |     |     | ·   |     |
| Thr | Lys | Thr | Cys | Arg | Gln | Val | Tyr | Glu | Phe | Arg | Val | Lys | Glu | Ser | Ser |
| 465 |     |     |     |     | 470 |     |     |     |     | 475 |     |     |     |     | 480 |
| Ile | Ile | Ala | Pro | Ala | Pro | Ala | Glu | Asp | Val | Asp | Thr | Pro | Pro | Arg | Lys |
|     |     |     |     | 485 |     |     |     |     | 490 |     |     |     |     | 495 |     |
| Lys | Lys | Arg | Lys | His | Arg | Leu | Trp | Ala | Ala | His | Cys | Arg | Lys | Ile | Gln |
|     |     |     | 500 |     |     |     |     | 505 |     |     |     |     | 510 |     |     |
| Leu | Lys | Lys | Asp | G1y | Ser | Ser | Asn | His | Val | Tyr | Asn | Tyr | Gln | Pro | Cys |
|     |     | 515 |     |     |     |     | 520 |     |     |     |     | 525 |     |     |     |
| Asp | His | Pro | Arg | Gln | Pro | Cys | Asp | Ser | Ser | Cys | Pro | Cys | Val | Ile | Ala |
|     | 530 |     |     |     |     | 535 |     |     |     |     | 540 |     |     |     |     |
| G1n | Asn | Phe | Cys | Glú | Lys | Phe | Cys | Gln | Cys | Ser | Ser | Glu | Cys | Gln | Asn |

| 545 |     |     |     |     | 550 |     |     |     |     | 555 |     |     |     |     | 560 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Arg | Phe | Pro | Gly | Cys | Arg | Cys | Lys | Ala | Gln | Cys | Asn | Thr | Lys | Gln | Cys |
|     |     |     |     | 565 |     |     |     |     | 570 |     |     |     | •   | 575 |     |
| Pro | Cys | Tyr | Leu | Ala | Val | Arg | Glu | Cys | Asp | Pro | Asp | Leu | Cys | Leu | Thr |
|     |     |     | 580 |     |     |     |     | 585 |     |     |     |     | 590 |     |     |
| Cys | Gly | Ala | Ala | Asp | His | Trp | Asp | Ser | Lys | Asn | Val | Ser | Cys | Lys | Asn |
|     |     | 595 |     |     |     |     | 600 |     |     |     |     | 605 |     |     |     |
| Cys | Ser | Ile | Gln | Arg | Gly | Ser | Lys | Lys | His | Leu | Leu | Leu | Ala | Pro | Ser |
|     | 610 |     |     |     |     | 615 |     |     |     |     | 620 |     |     |     |     |
| Asp | Val | Ala | Gly | Trp | Gly | Ile | Phe | Ile | Lys | Asp | Pro | Val | Gln | Lys | Asn |
| 625 |     |     |     |     | 630 |     |     |     |     | 635 |     |     |     |     | 640 |
| Glu | Phe | Ile | Ser | Glu | Tyr | Cys | Gly | Glu | Ile | Ile | Ser | Gln | Asp | Glu | Ala |
|     |     |     |     | 645 |     |     |     |     | 650 |     |     |     |     | 655 |     |
| Asp | Arg | Arg | Gly | Lys | Val | Tyr | Asp | Lys | Tyr | Met | Cys | Ser | Phe | Leu | Phe |
|     |     |     | 660 |     |     |     |     | 665 |     |     |     |     | 670 |     |     |
| Asn | Leu | Asn | Asn | Asp | Phe | Val | Val | Asp | Ala | Thr | Arg | Lys | Gly | Asn | Lys |
|     |     | 675 |     |     |     |     | 680 |     |     |     |     | 685 |     |     |     |
| Ile | Arg | Phe | Ala | Asn | His | Ser | Val | Asn | Pro | Asn | Cys | Tyr | Ala | Lys | Val |
|     | 690 |     |     |     |     | 695 |     |     |     |     | 700 |     |     |     |     |
| Met | Met | Val | Asn | Gly | Asp | His | Arg | Ile | Gly | Ile | Phe | Ala | Lys | Arg | Ala |
| 705 |     |     |     | •   | 710 |     |     |     |     | 715 |     |     |     |     | 720 |
| Ile | Gln | Thr | Gly | Glu | Glu | Leu | Phe | Phe | Asp | Tyr | Arg | Tyr | Ser | Gln | Ala |
|     |     |     |     | 725 |     |     |     |     | 730 |     |     |     |     | 735 |     |
| Asp | Ala | Leu | Lys | Tyr | Val | Gly | Ile | Glu | Arg | Glu | Met | Glu | Ile | Pro |     |
|     |     |     | 740 |     |     |     |     | 745 |     |     |     |     | 750 |     |     |

⟨210⟩ 2

<211> 2253

<212> DNA

## <213> Human

## <400> 2

| 60   | gcgtgtaaaa | gttggcggaa | ggaccagttt | atctgagaag | ctgggaagaa | atgggccaga |
|------|------------|------------|------------|------------|------------|------------|
| 120  | agtaaagagt | gagctgatga | aggttcagac | acagctcaag | tgcgactgag | tcagagtaca |
| 180  | ccaagaatgg | aaatcttaaa | gaaagaacgg | gaaaattttg | ccaatcgtca | atgtttagtt |
| 240  | gcgcgggact | tgagctcatt | ctgacttctg | tgtgcacatc | ggatacagcc | aaacagcgaa |
| 300  | attaaagact | aagtcatccc | tttccaacac | tgacttggat | cggtgaccag | agggagtgtt |
| 360  | gcagaatttt | ctcccctaca | tattcttggt | acccataatg | ttgcttcagt | ctgaatgcag |
| 420  | agttttagat | tgggagatga | attccttata | tttacataac | atgaaactgt | atggtggaag |
| 480  | acacggggat | atgggaaagt | aaaaattatg | agaactaata | ctttcattga | caggatggta |
| 540  | ccttggtcaa | tggtgaatgc | tttgtggagt | tgatgaaatt | ggtttataaa | agagaatgtg |
| 600  | agaaaagcag | aagaaagaga | gacgatcctg | tgatgatgga | atgacgatga | tataatgatg |
| 660  | atttccttct | cacctcggaa | gaaagccgcc | agatgataaa | aggatcaccg | aaagatctgg |
| 720  | agaagaacta | agggcacagc | tttccagata | ttcctcaatg | ttgaagccat | gataaaattt |
| 780  | tcctgaatgt | gcgcacttcc | cagctcccag | caccgaacag | ataaagaact | aaggaaaaat |
| 840  | cttacactcc | gagagcaaag | tctgttcaga | aaatgctaaa | tagatggacc | acccccaaca |
| 900  | tcgtaagtgc | gcttcctaca | aaatatgact | gcgatgtttt | ttttctgtag | tttcatacgc |
| 960  | aacagctcta | agaacacaga | tataagcgga | acccaacact | ttcatgcaac | aattattctt |
| 1020 | ggagtttgct | agggagcaaa | cagcatttgg | acagtgttac | cttgtggacc | gacaacaaac |
| 1080 | ccgcagaaga | gtccaggagg | ccaccaaaac | gataaagacc | ccgctgagcg | gctgctctca |
| 1140 | gctggaatca | ccattaatgt | agcaccccca | tagcaggccc | ccaataacag | ggacggcttc |
| 1200 | caatgataaa | ggggagagaa | actgaaacgg | ggaagcaggg | acagtgatag | aaggatacag |
| 1260 | tcggtgtcaa | aagcaaattc | agctcctctg | tgaaacttcg | agaagaaaga | gaagaagaag |
| 1320 | gagtggtgct | atgtggagtg | cctcctgaga | aaatattgaa | agatgaagcc | acaccaataa |
| 1380 | tgccattgct | acaatttctg | acttactatg | cctcattggc | tgtttagagt | gaagcctcaa |
| 1440 | agaatctagc | ttagagtcaa | gtgtatgagt | atgtagacag | ggaccaaaac | aggttaattg |
| 1500 | gaagaggaaa | caaggaaaaa | gatactcctc | tgaggatgtg | cagctcccgc | atcatagctc |
| 1560 | ctcctctaac | aaaaggacgg | atacagctga | ctgcagaaag | gggctgcaca | caccggttgt |

1620 catgtttaca actatcaacc ctgtgatcat ccacggcagc cttgtgacag ttcgtgccct 1680 tgtgtgatag cacaaaattt ttgtgaaaag ttttgtcaat gtagttcaga gtgtcaaaac 1740 cgctttccgg gatgccgctg caaagcacag tgcaacacca agcagtgccc gtgctacctg 1800 gctgtccgag agtgtgaccc tgacctctgt cttacttgtg gagccgctga ccattgggac 1860 agtaaaaatg tgtcctgcaa gaactgcagt attcagcggg gctccaaaaa gcatctattg 1920 ctggcaccat ctgacgtggc aggctggggg atttttatca aagatcctgt gcagaaaaat 1980 gaattcatct cagaatactg tggagagatt atttctcaag atgaagctga cagaagaggg 2040 aaagtgtatg ataaatacat gtgcagcttt ctgttcaact tgaacaatga ttttgtggtg 2100 gatgcaaccc gcaagggtaa caaaattcgt tttgcaaatc attcggtaaa tccaaactgc 2160 tatgcaaaag ttatgatggt taacggtgat cacaggatag gtatttttgc caagagagcc 2220 atccagactg gcgaagagct gtttttgat tacagataca gccaggctga tgccctgaag 2253 tatgtcggca tcgaaagaga aatggaaatc cct

<210> 3

<211> 2695

<212> DNA

<213> Human

#### <400> 3

60 caaataaaag cgatggcgat tgggctgccg cgtttggcgc tcggtccggt cgcgtccgac 120 accoggtggg actcagaagg cagtggagcc ccggcggcgg cggcggcggc gcgcgggggc 180 gacgcgcggg aacaacgcga gtcggcgcgc gggacgaaga ataatcatgg gccagactgg 240 gaagaaatct gagaagggac cagtttgttg gcggaagcgt gtaaaatcag agtacatgcg 300 actgagacag ctcaagaggt tcagacgagc tgatgaagta aagagtatgt ttagttccaa 360 tcgtcagaaa attttggaaa gaacggaaat cttaaaccaa gaatggaaac agcgaaggat 420 acagcctgtg cacatcctga cttctgtgag ctcattgcgc gggactaggg agtgttcggt 480 gaccagtgac ttggattttc caacacaagt catcccatta aagactctga atgcagttgc 540 ttcagtaccc ataatgtatt cttggtctcc cctacagcag aattttatgg tggaagatga 600 aactgtttta cataacattc cttatatggg agatgaagtt ttagatcagg atggtacttt

660 cattgaagaa ctaataaaaa attatgatgg gaaagtacac ggggatagag aatgtgggtt 720 tataaatgat gaaatttttg tggagttggt gaatgccctt ggtcaatata atgatgatga 780 cgatgatgat gatggagacg atcctgaaga aagagaagaa aagcagaaag atctggagga 840 tcaccgagat gataaagaaa gccgcccacc tcggaaattt ccttctgata aaatttttga agccatttcc tcaatgtttc cagataaggg cacagcagaa gaactaaagg aaaaatataa 900 960 agaactcacc gaacagcagc tcccaggcgc acttcctcct gaatgtaccc ccaacataga 1020 tggaccaaat gctaaatctg ttcagagaga gcaaagctta cactcctttc atacgctttt 1080 ctgtaggcga tgttttaaat atgactgctt cctacatcgt aagtgcaatt attcttttca 1140 tgcaacaccc aacacttata agcggaagaa cacagaaaca gctctagaca acaaaccttg 1200 tggaccacag tgttaccagc atttggaggg agcaaaggag tttgctgctg ctctcaccgc 1260 tgagcggata aagaccccac caaaacgtcc aggaggccgc agaagaggac ggcttcccaa 1320 taacagtagc aggcccagca cccccaccat taatgtgctg gaatcaaagg atacagacag 1380 tgatagggaa gcagggactg aaacgggggg agagaacaat gataaagaag aagaagagaa 1440 gaaagatgaa acttcgagct cctctgaagc aaattctcgg tgtcaaacac caataaagat 1500 1560 tagagteete attggeaett actatgacaa tttetgtgee attgetaggt taattgggae 1620 caaaacatgt agacaggtgt atgagtttag agtcaaagaa tctagcatca tagctccagc 1680 tecegetgag gatgtggata etectecaag gaaaaagaag aggaaacace ggttgtggge 1740 tgcacactgc agaaagatac agctgaaaaa ggacggctcc tctaaccatg tttacaacta 1800 tcaaccctgt gatcatccac ggcagccttg tgacagttcg tgcccttgtg tgatagcaca 1860 aaatttttgt gaaaagtttt gtcaatgtag ttcagagtgt caaaaccgct ttccgggatg 1920 ccgctgcaaa gcacagtgca acaccaagca gtgcccgtgc tacctggctg tccgagagtg 1980 tgaccctgac ctctgtctta cttgtggagc cgctgaccat tgggacagta aaaatgtgtc 2040 ctgcaagaac tgcagtattc agcggggctc caaaaagcat ctattgctgg caccatctga 2100 cgtggcaggc tgggggattt ttatcaaaga tcctgtgcag aaaaatgaat tcatctcaga 2160 atactgtgga gagattattt ctcaagatga agctgacaga agagggaaag tgtatgataa 2220 atacatgtgc agctttctgt tcaacttgaa caatgatttt gtggtggatg caacccgcaa 2280 gggtaacaaa attcgttttg caaatcattc ggtaaatcca aactgctatg caaaagttat 2340 gatggttaac ggtgatcaca ggataggtat ttttgccaag agagccatcc agactggcga

| agagct  | gttt  | tttgattaca   | gatacagcca | ggctgatgcc | ctgaagtatg | tcggcatcga | 2400 |
|---------|-------|--------------|------------|------------|------------|------------|------|
| aagaga  | aatg  | gaaatccctt   | gacatctgct | acctcctccc | ccctcctctg | aaacagctgc | 2460 |
| cttagc  | ttca  | ggaacctcga   | gtactgtggg | caatttagaa | aaagaacatg | cagtttgaaa | 2520 |
| ttctga  | attt  | gcaaagtact   | gtaagaataa | tttatagtaa | tgagtttaaa | aatcaacttt | 2580 |
| ttattg  | cctt  | ctcaccagct   | gcaaagtgtt | ttgtaccagt | gaatttttgc | aataatgcag | 2640 |
| tatggt  | acat  | ttttcaactt   | tgaataaaga | atacttgaac | ttgtcaaaaa | aaaaa      | 2695 |
|         |       |              |            |            |            |            |      |
| <210>   | 4     |              |            |            |            |            |      |
| <211>   | 19    |              |            |            |            |            |      |
| <212>   | DNA   |              |            |            |            |            |      |
| <213>   | Artif | ficial Seque | ence       |            |            |            |      |
|         |       |              |            |            |            |            |      |
| <220>   |       |              |            |            |            |            |      |
| <223>   | Prime | er           |            |            |            |            |      |
|         |       |              |            |            |            |            |      |
| <400>   | 4     |              |            |            |            |            |      |
| gcgcgg  | gacg  | aagaataat    |            |            |            |            | 19   |
|         |       |              |            |            |            |            |      |
| <210>   | 5     |              |            |            |            |            |      |
| <211>   | 21    |              |            |            |            |            |      |
| <212> 1 | DNA   |              |            |            |            |            |      |
| <213>   | Artif | icial Seque  | ence       |            |            |            |      |
|         |       |              |            |            |            |            |      |
| <220>   |       |              |            |            |            |            |      |
| <223> 1 | Prime | er           |            |            |            |            |      |
|         |       |              |            |            |            |            |      |

⟨400⟩ 5

ggggaggagg tagcagatgt c

21

| ⟨210⟩ 6                   |    |
|---------------------------|----|
| <211> 18                  |    |
| <212> DNA                 |    |
| <213> Artificial Sequence |    |
|                           |    |
| <220>                     |    |
| <223> Primer              |    |
|                           |    |
| <400> 6                   |    |
| caagcagtgc ccgtgcta       | 18 |
|                           |    |
| <210> 7                   |    |
| <211> 21                  |    |
| <212> DNA                 |    |
| <213> Artificial Sequence |    |
| <b>(000)</b>              |    |
| <220>                     |    |
| <223> Primer              |    |
| <400> 7                   |    |
| agcggctcca caagtaagac a   | 21 |
|                           |    |
| <210> 8                   |    |
| <211> 25                  |    |
| <212> DNA                 |    |
| <213> Artificial Sequence |    |
|                           |    |
| <220>                     |    |
| <223> Prohe               |    |

| <400> 8                     |    |
|-----------------------------|----|
| tggctgtccg agagtgtgac cctga | 25 |
| <210> 9                     |    |
| ⟨211⟩ 20                    |    |
| <212> DNA                   |    |
| <213> Artificial Sequence   |    |
|                             |    |
| <220>                       |    |
| <223> oligonucleotide       |    |
|                             |    |
| <400> 9                     |    |
| aaacccacat tctctatccc       | 20 |
|                             |    |
| <210> 10                    |    |
| <211> 20                    |    |
| <212> DNA                   |    |
| <213> Artificial Sequence   |    |
|                             |    |
| <220>                       |    |
| <223> oligonucleotide       |    |
|                             |    |
| <400> 10                    |    |
| ccctatctct tacacccaaa       | 20 |
|                             |    |
| <210> 11                    |    |
| <211> 21                    |    |
| <212> DNA                   |    |

| <213> Artificial                       |    |
|----------------------------------------|----|
|                                        |    |
| <220>                                  |    |
| <223> DNA/RNA molecule used as a siRNA |    |
|                                        |    |
| <400> 11                               |    |
| aaguugaaca gaaagcugct t                | 21 |
|                                        |    |
| <210> 12                               |    |
| <211> 21                               |    |
| <212> DNA                              |    |
| <213> Artificial                       |    |
|                                        |    |
| <220>                                  |    |
| <223> DNA/RNA molecule used as a siRNA |    |
| (400) ita                              |    |
| <400> 12                               | 01 |
| gcagcuuucu guucaacuut t                | 21 |
| <210> 13                               |    |
| <211> 21                               |    |
| <212> DNA                              |    |
| <213> Artificial                       |    |
|                                        |    |
| <220>                                  |    |
| <223> DNA/RNA molecule used as a siRNA |    |
|                                        |    |
| <400> 13                               |    |
|                                        |    |

uucuccgaac gugucacgut t

. .

<210> 14

. <211> 21

<212> DNA

<213> Artificial

<220>

<223> DNA/RNA molecule used as a siRNA

<400> 14

acgugacacg uucggagaat t

21