Prof. Dr. S. Walcher Niclas Kruff, M. Sc. Dipl.-Gyml. Markus Hirshman

Februar 2019

Formelsammlung zur Vorlesung Analysis für Informatiker

Für alle $n \in \mathbb{N}$ und alle $x \in \mathbb{R}$ mit $x \ge -1$ ist $(1+x)^n \ge 1+nx$.

Für alle $n \in \mathbb{N}$ gilt: $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$.

Für alle $x, y \in \mathbb{R}$ gilt:

- $\bullet ||x+y| \le |x| + |y|$
- $\bullet |x| |y| \le |x y|$

Es gilt:

- $\lim_{n \to \infty} \frac{1}{n} = 0$, $\lim_{n \to \infty} \sqrt[n]{n} = 1$,

Reihendarstellung von exp: für alle $x \in \mathbb{R}$ ist $\exp(x) = e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$

Für alle $x, y \in \mathbb{R}$ gilt die Funktionalgleichung $\exp(x+y) = \exp(x) \exp(y)$

Reihendarstellung von Cosinus und Sinus: Für alle $x \in \mathbb{R}$ ist

$$\cos(x) := \operatorname{Re}(e^{ix}) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k},$$

$$\sin(x) := \operatorname{Im}(e^{ix}) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1}.$$

Für alle $x, y \in \mathbb{R}$ gilt: $\sin(x+y) = \sin(x)\cos(y) + \sin(y)\cos(x)$ $\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$

Wichtige Werte der trig. Funktionen $x \mapsto \sin(x), x \mapsto \cos(x), x \mapsto \tan(x), x \mapsto \exp(ix)$

x	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$	π	$3\pi/2$	2π
$\sin(x)$	0	$\frac{1}{2}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{3}$	1	0	-1	0
$\cos(x)$	1	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}$	0	-1	0	1
tan(x)	0	$\frac{1}{3}\sqrt{3}$	1	$\sqrt{3}$		0		0
$\exp(ix)$	1	$\frac{1}{2}(\sqrt{3}+i)$	$\frac{1}{2}\sqrt{2}(1+i)$	$\frac{1}{2}(1+i\sqrt{3})$	i	-1	-i	1

Funktionen mit bekannten Ableitungen:

$$f: \mathbb{R} \to \mathbb{R}, \ x \mapsto \sum_{k=0}^{n} a_k x^k, \quad f': \mathbb{R} \to \mathbb{R}, \ x \mapsto \sum_{k=1}^{n} k a_k x^{k-1} \text{ für } n \in \mathbb{N}_0$$

$$f: \mathbb{R} \to \mathbb{R}, \ x \mapsto \exp(x), \quad f': \mathbb{R} \to \mathbb{R}, \ x \mapsto \exp(x)$$

$$f: \mathbb{R} \to \mathbb{R}, \ x \mapsto \sin(x), \quad f': \mathbb{R} \to \mathbb{R}, \ x \mapsto \cos(x)$$

$$f: \mathbb{R} \to \mathbb{R}, \ x \mapsto \cos(x), \quad f': \mathbb{R} \to \mathbb{R}, \ x \mapsto -\sin(x)$$

$$f: \mathbb{R} \setminus \{\frac{\pi}{2} + \pi k \mid k \in \mathbb{Z}\} \to \mathbb{R}, \ x \mapsto \tan(x), \quad f': \mathbb{R} \setminus \{\frac{\pi}{2} + \pi k \mid k \in \mathbb{Z}\} \to \mathbb{R}, x \mapsto 1 + \tan^2(x)$$

$$f: \mathbb{R}_+^* \to \mathbb{R}, \ x \mapsto \ln(x), \ f': \mathbb{R}_+^* \to \mathbb{R}, \ x \mapsto \frac{1}{x}$$

$$f:\mathbb{R}_+^*\to\mathbb{R},\ x\mapsto x^\alpha,\quad f':\mathbb{R}_+^*\to\mathbb{R},\ x\mapsto\alpha x^{\alpha-1}\ \text{für }\alpha\in\mathbb{R}$$

$$f: \mathbb{R} \to \mathbb{R}, \ x \mapsto |x|, \ f': \mathbb{R}^* \to \mathbb{R}, \ x \mapsto \operatorname{sgn}(x)$$

$$f: \mathbb{R} \to \mathbb{R}, \ x \mapsto \arctan(x), \ f': \mathbb{R} \to \mathbb{R}, \ x \mapsto \frac{1}{1+x^2}$$