COVER PAGE

STATISTICS 608 - EXAM 1

June 12/13 2017

Student's Name (PRINT) RAJAN KAPOOR
Student's Name (PRINT) RAJAN KAPOOR Student's Email Address (PRINT) Y. Kapoor Otamu. edu
INSTRUCTIONS TO STUDENTS:
(1) Write your answers in the spaces provided on the examination paper. The last two (blank) pages can be used for
rough work or as additional space for answers. You have exactly 75 minutes to complete the exam within the time
frame 12:01 PM, CDT, 6/12/2017 to 12:01 PM, CDT 6/13/2017. The exam starts AFTER you have
downloaded and printed it. If you have been granted extra time by Disability Services, your proctor will have
been informed accordingly.
(2) Upon accessing the exam, you have a 30-minute buffer in which to download, print, scan and upload it to
Webassign. You may not work on the exam during this time.
(3) You may use your own computer together with a pocket calculator and/or any software package already
loaded on your computer to do calculations.
(4) The exam is <u>OPEN BOOK</u> . You may make use of the textbook and any other material that you saw fit to prepare
beforehand, either as hard copy or on your PC/Laptop.
(5) You may not access the internet other than to download and to upload the exam.
I attest that I spent no more than 75 minutes to complete the exam. I did not access the internet during the exam nor did I
receive assistance from anyone during the exam. I promise not to discuss or provide any information to anyone
concerning any aspect of this exam until after 3:31 PM on 6/13/2017.
Student's Signature Ryan
INSTRUCTIONS TO PROCTOR:
The exam starts only <u>after</u> the student has downloaded and printed it. <u>Immediately</u> after the exam ends, have the student scan the exam <u>with this cover sheet on top</u> to a PDF file and upload it to Webassign.
(1) I certify that the student's exam start time was 5:16 pm, and the exam completion time was 6:24 pm
(2) I certify that the student has followed all the INSTRUCTIONS TO STUDENTS listed above.
(3) I certify that the exam was scanned into a PDF and uploaded to Webassign in my presence.
Proctor's Printed Name Remote Proctor Proctor's Signature Rajan Date 06/12/12
Proctor's Signature Rajan Date 06/12/12

STATISTICS 608 - Examination 1

June 12/13, 2017 - Duration: **75 MINUTES**

Total points available: 22 (20 points = 100%)

PARTIAL CREDIT WILL ACCRUE FOR ALL RELEVANT WORK SHOWN. This paper consists of six (6) pages (including two pages for rough work).

Question 1
$$[1/2+1/2+1/2+1/2+2=4 \text{ points}]$$

This question is based on the attached data set Exam1data.txt (also available as Exam1data.xls and Exam1data.csv):

Y is the response variable, x is the predictor variable. In the following, you need not show any R, SAS or other code.

Fit a simple linear regression model $Y = \alpha + \beta x + e$ to the data and, without regard to whether the model fit is good or not,

1.1 write the least squares estimates of the intercept and slope;
$$\hat{\beta}_0 = -286 \cdot 21 \quad (\text{int}) \quad \hat{\beta}_1 = 372 \cdot 87 \quad (\text{*lope}) \quad \text{\sim}$$

1.2 write the standard error of the estimated slope.

1- RSS 1-918277 -0.7005 SST 918277+2147272 1.3 write the numerical value of \mathbb{R}^2 .

1.4 write your estimate of the error variance, i.e. of the variance of e; $\frac{RSS}{R} = \frac{19538}{19538}$

1.5 Write the 95% confidence interval for E[Y|x=1.7].

1.6 Write a 90% prediction interval for a new observation Y^* which is to be made at x = 1.7.

Question 2 [2 points] If $\sqrt{2}$

$$n = 16, \sum x_i^2 = 978.142 \text{ and } \bar{x} = 1.027,$$
then $SXX = \sum x_1^2 - \gamma \bar{x}^2 = 978.142 - 16 (1.027) = 961.71$
Oraștian 3 [1/2+1+1+1+1/2=4 points] $\sqrt{\frac{1}{2}}$

Question 3 [1/2+1+1+1+1/2=4 points] $3\frac{7}{2}$

A linear regression model

$$Y = \beta_0 + \beta_1 x + e$$

was fit to 21 pairs of (Y, x) observations. For these data

$$RSS = 261.855; \ \bar{x} = 1.03, \ SXX = 961.266.$$

To test the hypothesis $H_0: \beta_1=0.1$ at the 5% level of significance, (two tailed t test)

- a the degrees of freedom are $\nu = 19$ (21-2)
- b the critical value = $t_{0.05/2}$ = 2.093
- c the unbiased estimate of the error variance = $\frac{RSS}{N-2} = \frac{261.855}{19} = 73.7818$
- d the numerical value of the test statistic =

e The outcome of the test is (a) reject
$$H_0$$
; (b) accept H_0 .

$$\frac{\sum (x_0 - 5C)(y_0 - y_0)}{\sum x_0} = \frac{\sum (x_0 - x_0)y_0}{\sum x_0} = \frac{\sum x_0 y_0 - x_0 \sum y_0}{\sum x_0}$$

$$\frac{\sum x_0 y_0 - x_0 \sum y_0}{\sum x_0} = \frac{\sum x_0 y_0 - x_0 \sum y_0}{\sum x_0 y_0} = \frac{y_0 - x_0}{\sum x_0 y_0} = \frac{y_0 - x_$$

$$\frac{\hat{\beta}_{1}-0.1}{\text{Se}(\beta)} = \frac{\hat{\beta}_{1}-0.1}{\frac{S}{\sqrt{SXX}}} = \frac{\hat{\beta}_{1}-0.1}{\frac{3.712}{31}}$$

Question 4 [4 points]

Suppose Y has mean $\mu > 0$ and variance $g(\mu)$ and that 1/Y has variance equal to 1. Find the function g.

$$Vor(f(Y)) = [f'(\mu)]^2 Var(Y)$$

$$f(Y) = \frac{1}{2} \quad \forall y \in \mathcal{A}$$

$$Var(\frac{1}{2}) = \frac{1}{2} \quad \forall y \in \mathcal{A}$$

$$\Rightarrow f' = -\frac{1}{2} \quad \forall y \in \mathcal{A}$$

$$\Rightarrow f' = -\frac{1}{2} \quad \forall y \in \mathcal{A}$$

$$\Rightarrow f' = -\frac{1}{2} \quad \forall y \in \mathcal{A}$$

$$\Rightarrow f' = -\frac{1}{2} \quad \forall y \in \mathcal{A}$$

$$\Rightarrow f' = -\frac{1}{2} \quad \forall y \in \mathcal{A}$$

$$\Rightarrow f' = -\frac{1}{2} \quad \forall y \in \mathcal{A}$$

$$\Rightarrow f' = -\frac{1}{2} \quad \forall y \in \mathcal{A}$$

Question 5 [1+1+4=6 points]

In a simple linear regression model

$$y_i = \beta_0 + \beta_1 x_i + e_i$$

set

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

for $i = 1, \ldots, n$ and

$$\bar{y} = \frac{y_1 + \dots + y_n}{n}, \ \bar{x} = \frac{x_1 + \dots + x_n}{n}.$$

You may take the expressions for $\hat{\beta}_0$ and $\hat{\beta}_1$ on pages 18 and 19 in the textbook as given. Show that

5.1
$$y_i - \hat{y}_i = (y_i - \bar{y}) - \hat{\beta}_1(x_i - \bar{x})$$

$$y_i - \hat{\beta}_i = y_i - \hat{\beta}_1 \times i$$

$$= y_i - y + \hat{\beta}_1 \times i$$

$$= (y_i - y) - \hat{\beta}_1(x_i - \bar{x})$$

and that

5.2
$$\hat{y}_i - \bar{y} = \hat{\beta}_1(x_i - \bar{x}).$$

$$\hat{\beta}_i - \bar{\gamma} = \hat{\beta}_i + \hat{\beta}_1 \times i - (\hat{\beta}_0 + \hat{\beta}_1 \bar{\lambda})$$

$$= \hat{\beta}_0 + \hat{\beta}_1 \times i - \hat{\beta}_0 - \hat{\beta}_1 \bar{\lambda}$$

$$= \hat{\beta}_1 (\times e - \bar{\lambda})$$

Continued on next page.

Hence, show that

$$\begin{array}{lll}
5.3 & \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})(\hat{y}_{i} - \bar{y}) = 0. \\
\text{LHS} & = & \sum_{i=1}^{n} \left[(y_{i} - \bar{y}_{i}) - \hat{\beta}_{i} (x_{i} - \bar{x}_{i}) \right] \left[\hat{\beta}_{i} (x_{i} - \bar{x}_{i}) \right] \\
& = & \hat{\beta}_{i} \sum_{i=1}^{n} (y_{i} - \bar{y}_{i})(x_{i} - \bar{x}_{i}) - \hat{\beta}_{i}^{2} \sum_{i=1}^{n} (x_{i} - \bar{x}_{i})^{2} \\
& = & \hat{\beta}_{i} \left[\hat{\beta}_{i} \times \sum_{i=1}^{n} (x_{i} - \bar{x}_{i})^{2} - \hat{\beta}_{i}^{2} \times \sum_{i=1}^{n} (x_{i} - \bar{x}_{i})^{2} \right] \\
& = & \hat{\beta}_{i} \times \sum_{i=1}^{n} (x_{i} - \bar{x}_{i})^{2} - \hat{\beta}_{i} \times \sum_{i=1}^{n} (x_{i} - \bar{x}_{i})^{2} \\
& = & \hat{\beta}_{i} \times \sum_{i=1}^{n} (x_{i} - \bar{x}_{i})^{2} - \hat{\beta}_{i} \times \sum_{i=1}^{n} (x_{i} - \bar{x}_{i})^{2} \\
& = & \hat{\beta}_{i} \times \sum_{i=1}^{n} (x_{i} - \bar{x}_{i})^{2} - \hat{\beta}_{i} \times \sum_{i=1}^{n} (x_{i} - \bar{x}_{i})^{2} \\
& = & \hat{\beta}_{i} \times \sum_{i=1}^{n} (x_{i} - \bar{x}_{i})^{2} - \hat{\beta}_{i} \times \sum_{i=1}^{n} (x_{i} - \bar{x}_{i})^{2} \\
& = & \hat{\beta}_{i} \times \sum_{i=1}^{n} (x_{i} - \bar{x}_{i})^{2} - \hat{\beta}_{i} \times \sum_{i=1}^{n} (x_{i} - \bar{x}_{i})^{2} \\
& = & \hat{\beta}_{i} \times \sum_{i=1}^{n} (x_{i} - \bar{x}_{i})^{2} - \hat{\beta}_{i} \times \sum_{i=1}^{n} (x_{i} - \bar{x}_{i})^{2} \\
& = & \hat{\beta}_{i} \times \sum_{i=1}^{n} (x_{i} - \bar{x}_{i})^{2} - \hat{\beta}_{i} \times \sum_{i=1}^{n} (x_{i} - \bar{x}_{i})^{2} \\
& = & \hat{\beta}_{i} \times \sum_{i=1}^{n} (x_{i} - \bar{x}_{i})^{2} - \hat{\beta}_{i} \times \sum_{i=1}^{n} (x_{i} - \bar{x}_{i})^{2} \\
& = & \hat{\beta}_{i} \times \sum_{i=1}^{n} (x_{i} - \bar{x}_{i})^{2} - \hat{\beta}_{i} \times \sum_{i=1}^{n} (x_{i} - \bar{x}_{i})^{2} \\
& = & \hat{\beta}_{i} \times \sum_{i=1}^{n} (x_{i} - \bar{x}_{i})^{2} - \hat{\beta}_{i} \times \sum_{i=1}^{n} (x_{i} - \bar{x}_{i})^{2} \\
& = & \hat{\beta}_{i} \times \sum_{i=1}^{n} (x_{i} - \bar{x}_{i})^{2} - \hat{\beta}_{i} \times \sum_{i=1}^{n} (x_{i} - \bar{x}_{i})^{2} \\
& = & \hat{\beta}_{i} \times \sum_{i=1}^{n} (x_{i} - \bar{x}_{i})^{2} - \hat{\beta}_{i} \times \sum_{i=1}^{n} (x_{i} - \bar{x}_{i})^{2} \\
& = & \hat{\beta}_{i} \times \sum_{i=1}^{n} (x_{i} - \bar{x}_{i})^{2} - \hat{\beta}_{i} \times \sum_{i=1}^{n} (x_{i} - \bar{x}_{i})^{2} \\
& = & \hat{\beta}_{i} \times \sum_{i=1}^{n} (x_{i} - \bar{x}_{i})^{2} - \hat{\beta}_{i} \times \sum_{i=1}^{n} (x_{i} - \bar{x}_{i})^{2} \\
& = & \hat{\beta}_{i} \times \sum_{i=1}^{n} (x_{i} - \bar{x}_{i})^{2} - \hat{\beta}_{i} \times \sum_{i=1}^{n} (x_{i} - \bar{x}_{i})^{2} \\
& = & \hat{\beta}_{i} \times \sum_{i=1}^{n} (x_{i} - \bar{x}_{i})^{2} - \hat{\beta}_{i} \times \sum_{i=1}^{n} (x_{i} - \bar{x}_{$$

Space for rough work or additional calculations

$$\sum x_i y_i - x_i (y_i - y) - x$$

$$\sum y_i (x_i - x_i)$$

$$\sum x_i = \sum (x_i - x_i)$$

$$\sum x_i = \sum x_i - nx^2$$

$$\sum x_i^2 - nx^2$$

$$\sum y_i^2 + x_i = nx^2 + sxx$$

$$RSS = Z(y_i - \overline{y}^2 - \overline{y}^$$

をacyc −えるyc

$$= \frac{2}{3} (3i - 3)^{2} = \frac{2}{3} (3i - \hat{p}_{0} - \hat{p}_{1} - \hat{p}_{1})^{2}$$

$$= \frac{2}{3} (3i - \hat{p}_{0})^{2} = \frac{2}{3} (3i - \hat{p}_{0} - \hat{p}_{1} - \hat{p}_{1})^{2}$$

$$= \frac{2}{3} (3i - \hat{p}_{0})^{2} = \frac{2}{3} (3i - \hat{p}_{0} - \hat{p}_{1} - \hat{p}_{1})^{2}$$

$$= \frac{2}{3} (3i - \hat{p}_{0})^{2} = \frac{2}{3} (3i - \hat{p}_{0} - \hat{p}_{1} - \hat{p}_{0})^{2}$$

$$= \frac{2}{3} (3i - \hat{p}_{0})^{2} = \frac{2}{3} (3i - \hat{p}_{0} - \hat{p}_{0} - \hat{p}_{0})^{2}$$

$$= \frac{2}{3} (3i - \hat{p}_{0})^{2} = \frac{2}{3} (3i - \hat{p}_{0} - \hat{p}_{0} - \hat{p}_{0})^{2}$$

$$= \frac{2}{3} (3i - \hat{p}_{0} - \hat{p}_{0} - \hat{p}_{0} - \hat{p}_{0})^{2}$$

$$= \frac{2}{3} (3i - \hat{p}_{0} - \hat{p}_{0} - \hat{p}_{0} - \hat{p}_{0} - \hat{p}_{0})^{2}$$

$$= \frac{2}{3} (3i - \hat{p}_{0} - \hat{p}_{0} - \hat{p}_{0} - \hat{p}_{0} - \hat{p}_{0} - \hat{p}_{0})^{2}$$

Space for rough work or additional calculations