

COMP3431 Robot Software Architectures

Part 1 - Elements for Robotics Vision

Autonomous Driving

What you've seen so far in robotics vision

Blob detection / Color Thresholding

Slide 28 – Week 5

```
img = cv2.imread('road_img.jpg')
imgHSV = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(imgHSV, (20, 80, 70), (50, 255, 255))
result = cv2.bitwise_and(img, img, mask=mask)
```


What you've seen so far in robotics vision

Edge Detection

```
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
blur = cv2.blur(gray,(5,5))
_, th_img = cv2.threshold(blur,160,255,cv2.THRESH_BINARY)
edges = cv2.Canny(th_img,100,200)
```


Lines Detection

- Least Square
- RANSAC
 - Voting system, using inliners
 - Each potential line gets voted on by each data point, best wins
 - Might-endup with very similar lines
 - Need post-processing
- Other voting methods

 Algorithm used to find straight lines or any geometrically parametrized shapes (ellipses)

 It uses a voting procedure to find the most likely parameters of the shape to be detected

Hough Transform - Algorithm

Hough Transform - Algorithm

• In polar coordinates, a line l is represented by (ρ,θ) such that l is the tangent to the circle of radius ρ at a point p forming an angle θ with the x-axis

• Besides, the set of lines passing through the point (x, y) can be described in polar coordinates by:

$$\rho = x \cos(\theta) + y \sin(\theta)$$

 \theta , for \theta \in [0, \pi[

Hough Transform - Algorithm

• For each pixel that could belong to a line (i.e. pixel that belong to the edges), compute the whole list of lines that pass through this pixel.

Hough Transform - Algorithm

ρ

8

6

5

4

3

0

45

 For each pixel that could belong to a line (i.e. pixel that belong to the edges), compute the whole list of lines that pass through this pixel.

⇒Set of candidate lines

⇒Update the accumulator with the voiting count

Maximas are representing the lines

- Threshold per number of votes
- Select only lines that are sufficiently appart (between line gap)

Maximas are representing the lines

- Threshold per number of votes
- Select only lines that are sufficiently appart (between line gap)

input image

Go Further

Compute intersections or use line equations to find the homography.

Homography

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = H \cdot \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} = K \cdot [R|t] \cdot \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

H: Homography

K: Intrinsic Parameters

[R|t]: Extrinsic Parameters

Descriptors Matching
Transformation estimation

Calibration

Other Lines Descriptors

- LSD extractor
- Compute lines and descriptors

Tracking

- Object in motion
- Robot in motion

- Object Detection
 - => Frame by frame
- Motion estimation

• Reduce load from frame to frame detection

Tracking – Autonomous Vehicle

Tracking

- Step 1:
 - Detecting
 - Feature extraction and id naming
- Step 2:
 - Matching / Retrieval
 - Data association
 - Similarity measurement
 - Correlation

Reasoning with strong priors

Tracking – Problem Statement

- Input: Target
- Objective: Estimate the target state over time
- State:
 - Position
 - Appearance
 - Shape
 - Velocity
 - Affine transformation w.r.t previous patch

- 1/ Object representation
- 2 /Similarity measure
- 3/ Searching process

Tracking - Challenges

- Variations due to geometric changes (pose, articulation, scale)
- Variations due to photometric factors (illumination, appearance)
- Occlusions
- Non-linear motion
- Very limited resolution, blurry (standard recognition might fail)
- Similar objects in the scene

Tracking - Challenges

- Variations due to geometric changes (pose, articulation, scale)
- Variations due to photometric factors (illumination, appearance)
- Occlusions
- Non-linear motion
- Very limited resolution, blurry (standard recognition might fail)
- Similar objects in the scene

Tracking – Object Representation

- Goal:
 - we want a representation that is:
 - -Descriptive enough to disambiguate target VS background
 - -Flexible enough to cope with:
 - Scale
 - Pose
 - •Illumination
 - Partial occlusions

Tracking – Object Representation

- Object approximation:
 - -Segmentation /
 - Polygonal approximation
 - -Bounding ellipse/box
 - -Position only

Fig. 1. Object representations. (a) Centroid, (b) multiple points, (c) rectangular patch, (d) elliptical patch, (e) part-based multiple patches, (f) object skeleton, (g) complete object contour, (h) control points on object contour, (i) object silhouette.

Tracking – Affinity Measuring

General

$$aff(x,y) = \exp\left(-\frac{1}{2\sigma_d^2} ||f(x) - f(y)||^2\right)$$

- Example:
 - Distance
 - Intensity
 - Color
 - Region

Tracking – Object Representation with High Level Features

- SIFT
- BoW
- SURF
- Haar
- BRIEF/ORB
- FREAK

Tracking – Single Target

- Input: Bounding box at starting frame
- Output: next bounding boxes across the next frames

Tracking as Probabilistic Problem

Hidden Markov Model

Markov assumptions

$$p(x_k \mid x_{1:k-1}) = p(x_k \mid x_{k-1})$$
$$p(z_k \mid x_{1:k}) = p(z_k \mid x_k)$$

Tracking as Probabilistic Problem

- Recursive Bayes filters
- Find posterior
- State eq. (motion dynamics) $f(x_k | x_{k-1})$
- Observation eq. (image) $g(z_k \mid x_k)$

Prediction

$$p(x_k \mid z_{1:k-1}) = \int f(x_k \mid x_{k-1}) p(x_{k-1} \mid z_{1:k-1}) dx_{k-1}$$

 $p(x_k \mid z_{1:k})$

Update

$$p(x_k \mid z_{1:k}) = \frac{g(z_k \mid x_k)p(x_k \mid z_{1:k-1})}{\int g(z_k \mid x_k)p(x_k \mid z_{1:k-1})dx_k}$$

Tracking as Probabilistic Problem

- Solving Bayes Equations
 - Gaussian & Linear
 - Kalman filter [1]
 - Gaussian non-linear
 - Extended Kalman filter
 - Non-Gaussian non-linear
 - Monte Carlo methods (Condensation [2])
 - Hill-climbing on posterior
 - Mean-shift

- Input: a set of detection
- Output: state of each detection

Tracking- Conclusion

- Faster than Detection
 - No need to recompute descriptors on the whole image
 - Select a ROI
 - Uses prior information
- Can help when detection fails
 - Missing frames
 - False detection

- OpenCV API:
 - BOOSTING
 - MIL
 - KCF ...

Event-based camera

Event-based camera

