

Applicant: Finis et al.
Application No.: Not Yet Known

IN THE CLAIMS

1. (Original) Method for adjusting a relative angle of rotation (Φ) between a camshaft (12) and a crankshaft (5) using an electromechanical phase adjuster (11), comprising the steps:
 - calculating a deviation in the angle of rotation ($\Delta\Phi$) between a desired angle of rotation (Φ_{SOLL}) to be set and a determined actual angle of rotation (Φ_{IST}) in a first control loop,
 - calculating a desired adjustment speed (Ω_{SOLL}) dependent on the deviation of the angle of rotation ($\Delta\Phi$) using an angle of rotation adjuster (23),
 - calculating a deviation of the adjustment speed ($\Delta\Omega$) between a desired adjustment speed (Ω_{SOLL}) and an actual adjustment speed (Ω_{IST}) calculated from at least one measurement parameter in a second control loop cascaded below the first control loop,
 - calculating an output parameter dependent on the deviation of the adjustment speed ($\Delta\Omega$) through an adjustment speed adjuster (26) cascaded below the angle of rotation adjuster (23), and
 - adjusting the angle of rotation (Φ) as a function of the parameters calculated in the preceding steps using an electromechanical actuator (14).
2. (Currently amended) Method according to Claim 1, characterized in that ~~in that wherein~~ the actual adjustment speed (Ω_{IST}) is calculated at least from one rotational speed (Ω_s) of the actuator (14) and a superimposed rotational speed (Ω_U) of a drive shaft or a shaft coupled with the drive shaft.

3. (Currently amended) Method according to Claim 2, characterized in that wherein the superimposed rotational speed (Ω_U) is calculated at least from a rotational speed (Ω_K) of the crankshaft (5).
4. (Currently amended) Method according to Claim 1, ~~to 3,~~ characterized in that wherein the actual adjustment speed (Ω_{IST}) is calculated in a monitoring module (28).
5. (Currently amended) Method according to Claim 1, wherein ~~to 4,~~ characterized in that the output parameter of the adjustment speed adjuster (26) is a desired current (I_{SOLL}) of the actuator (14).
6. (Currently amended) Method according to Claim 5, characterized by further comprising the steps:
 - calculating a current deviation (ΔI) between the desired current (I_{SOLL}) and a measured actual current (I_{IST}) of the actuator (14) in a third control loop cascaded below the second control loop, and
 - calculating a control parameter dependent on the current deviation (ΔI) using a current adjuster (30) cascaded below the adjustment speed adjuster (26) before the adjustment of the angle of rotation (Φ).
7. (Currently amended) Method according to Claim 5, wherein ~~or 6,~~ characterized in that the desired current (I_{SOLL}) is limited to a maximum current value (I_{MAX}).

Applicant: Finis et al.
Application No.: Not Yet Known

8. (Original) Phase adjuster (11) for adjusting a relative angle of rotation (Φ) between a camshaft (12) and a crankshaft (5), comprising

- a first computing module (22) for calculating a deviation in the angle of rotation ($\Delta\Phi$) between a desired angle of rotation (Φ_{SOLL}) to be set and a determined actual angle of rotation (Φ_{IST}) in a first control loop,
- an angle of rotation adjuster (23) for calculating a desired adjustment speed (Ω_{SOLL}) dependent on the deviation in the angle of rotation ($\Delta\Phi$),
- a second computing module (24) for calculating a deviation in the desired adjustment speed ($\Delta\Omega$) between the desired adjustment speed (Ω_{SOLL}) and an actual adjustment speed (Ω_{IST}) calculated from at least one measurement parameter in a second control loop cascaded below the first control loop,
- an adjustment speed adjuster (26) cascaded below the angle of rotation adjuster (23) for calculating an output parameter dependent on the deviation in the adjustment speed ($\Delta\Omega$) for the adjustment speed, and
- an electromechanical actuator (14) for adjusting the angle of rotation (Φ).

9. (Currently amended) Phase adjuster according to Claim 8, further comprising

- a third computing module (29) for calculating a current deviation (ΔI) between a desired current (I_{SOLL}) and a measured actual current (I_{IST}) of the actuator (14) in a third control loop cascaded below the second control loop, and
- a current adjuster (30) cascaded below the adjustment speed adjuster (26) for calculating a control parameter dependent on the current deviation (ΔI) before adjusting the angle of rotation (Φ).

10. (Currently amended) Phase adjuster according to Claim 8, wherein or 9, characterized in that the actuator (14) is a DC motor.