EAIiIB	Autor:	Paweł Biłko	Rok II	Grupa 2a	Zespół 4
	Temat:	Numer ćwiczenia:			
Opracowanie danych pomiarowych			0		
Data wykonania	Data oddania	Zwrot do poprawki	Data oddania	Data zaliczenia	Ocena

1 Cel doświadczenia

Celem jest wyznaczenie przybliżonej wartości przyspieszenia ziemskiego w oparciu o zebrane pomiary, dotyczące okresów drgań wahadeł matematycznych o określonej długości.

2 Wstęp teoretyczny

Wahadło matematyczne

Wahadło matematyczne to masa punktowa zawieszona na nieskończenie cienkiej i nieważkiej nici, poruszająca się bez oporów powietrza. Po wychyleniu wahadła z położenia równowagi i wypuszczenia go zaczyna ono poruszać się okresowo. Okres drgań opisuje wzór:

$$T = 2\pi \sqrt{\frac{l}{g}}$$

Gdzie: T - okres drgań, l - długość nici, g - przyspieszenie ziemskie

3 Układ pomiarowy

Zestaw do pomiaru składa się ze statywu z cienką nicią wykonaną z lekkiego materiału oraz ciężarka o wymiarach liniowych niewielkich względem długości nici.

Rysunek 1: Zestaw wahadła prostego

4 Wykonanie ćwiczenia

Wyznaczenie wartości przyspieszenia ziemskiego

- 1. Zmierzenie długości nici
- 2. Wychylenie wahadła o niewielki kąt względem położenia równowagi
- 3. Po ustabilizowaniu drgań, pomiar czasu trwania 20 pełnych drgań

5 Wyniki pomiarów

5.1 Zmierzono czas wykonania 20 drgań dla wahadła długości l = 56,1 cm

Nr	Czas dla 20 drgań t [s]	Okres $T = t/20 [s]$
1	30,01	1,5005
2	29,97	1,4985
3	29,89	1,4945
4	30,15	1,5075
5	29,57	1,4785
6	29,48	1,4740
7	30,1	1,5050
8	29,64	1,4820
9	30,32	1,5160
10	29,4	1,4700

5.2 Zmierzono czas wykonania 15 drgań dla pięciu różnych długości wahadła

Nr	Długość [cm]	Czas dla 15 drgań t[s]	Okres $T_i = \frac{t}{15}[s]$	$T_i^2[s^2]$
1	48.3	19.40	1.2930	1.6718
2	36.5	16.84	1.1227	1.2605
3	28.6	15.86	1.0573	1.1179
4	20.3	12.60	0.8400	0.7056
5	12.0	9.69	0.6460	0.4173

6 Opracowanie wyników

6.1 Metoda pierwsza

- 1. Sprawdzam wyniki pomiarów w poszukiwaniu wartości odstających (błędu grubego).
- 2. Przyjmuję niepewność pomiaru długości wahadła $u(l)=0,4\ [cm]$ ze względu na niedokładność wyznaczenia środka ciężkości ciężarka oraz punktu zaczepienia wahadła
- 3. Obliczam średni okres $\overline{T} = 1,4927$
- 4. Obliczam niepewność pomiaru czasu $u(\overline{T}) = \sqrt{\frac{1}{10} \sum_{i=1}^{10} \left(T_i \overline{T}\right)^2} = 0,0049s$
- 5. Z otrzymanych wyników pomiarów l=0,561[m] i $\overline{T},$ podstawiając do wzoru obliczamy przyspieszenie ziemskie:

$$g = \frac{4\pi^2 l}{\overline{T}^2} = \frac{4\pi^2 * 0,561}{1,4927^2} = 9,94 \left[\frac{m}{s^2} \right]$$

6. Obliczamy niepewność złożoną zmierzonej wartości przyspieszenia ziemskiego $u_c(g)$:

$$u_c(g) = \sqrt{\left(\frac{\partial g}{\partial l}u(l)\right)^2 + \left(\frac{\partial g}{\partial T}u(T)\right)^2} = \sqrt{\left(\frac{4\pi^2}{\overline{T}^2}u(l)\right)^2 + \left(-\frac{8\pi^2 l}{\overline{T}^3}u(\overline{T})\right)^2} = \sqrt{\frac{4\pi^2}{\overline{T}^3}u(l)} = \sqrt{\frac{4\pi^2}{\overline{T}^3}u($$

$$= \sqrt{\left(\frac{4\pi^2}{1,4927^2} * 0,004\right)^2 + \left(-\frac{8\pi^2 * 0,561}{1,4927^3} * 0,0049\right)^2} = 0,12 \left[\frac{m}{s^2}\right]$$

7. Porównanie uzyskanej wartości przyspieszenia ziemskiego z wartością tabelaryczną $g_0=9,81\frac{m}{s^2}$:

$$|g - g_0| = 0, 13 \left[\frac{m}{s^2} \right] > u_c(g)$$

6.2 Metoda druga

Po naniesieniu pomiarów wraz z ich niepewnościami można zauważyć, że zależność długości wahadła i okresu nie jest liniowa. Jest to funkcja typu:

$$T=f(l)=k\sqrt{l}$$

gdzie

$$k = \frac{2\pi}{\sqrt{g}}$$

Rysunek 2: Wykres zależności okresu od długości wahadła

Natomiast zależność długości wahadła i kwadratu okresu jest zbliżona do funkcji liniowej. Korzystając z danych programu matematycznego znalazłem więc współcznnik a prostej regresji:

$$T^{2} = f(l) = al = 3,44l$$
$$u(a) = 0,23 \left\lceil \frac{s^{2}}{m} \right\rceil$$

Porównując oba wzory na T^2 otrzymujemy następującą zależność, z której możemy policzyć $g\colon$

$$3,44l = 4\pi^{2} \frac{l}{g}$$

$$g = \frac{4\pi^{2}}{3,44} = 11,48 \left[\frac{m}{s^{2}} \right]$$

$$u_{c}(g) = \frac{4\pi^{2}}{a^{2}} u(a) = 0,77 \left[\frac{m}{s^{2}} \right]$$

Sprawdzenie z wartością tabelaryczną:

$$g_0 = 9.81 \frac{m}{s^2}$$
: $|g - g_0| = 2.67 \left[\frac{m}{s^2} \right] > u_c(g)$

Wartość g wyznaczona z prostej regresji nie jest zgodna z wartością tablicową.

7 Wnioski

Metoda pierwsza dała znaczne lepsze przybliżenie wartości przyspieszenia ziemskiego niż metoda druga. Nie jest jednak wartością zgodną z wartością tablicową, co prawdopodobnie zostało spowodowane błędem grubym przy pomiarze ilości okresów.