Sakarya Üniversitesi Bilgisayar Mühendisliği

Güz 2015 BSM307 İşaretler ve Sistemler Örnek Final Soruları

1. Şekilde diyagramı verilen sistemin kararlı olması ve

nedensel olmaması için gerekli yakınsama bölgesi ve k^\prime nın alabileceği değer aralığını bulunuz. Şartı sağlayan bir k değeri için sistemin birim darbe cevabı

h(n)' yi bulunuz. |z| < |k| ve |k| > 1 olmalıdır. k = 2 için $h(n) = -2^n u(-n-1)$

2. Aşağıda verilen periyodik x(t) işaretinin Fourier serisi açılımını bulunuz.

$$\omega_0 = \frac{\pi}{T_0} \ a_k = \begin{cases} \frac{1}{T_0} & k \text{ tek} \\ 0 & k \text{ cift} \end{cases}$$

3.

a. Şekilde verilen x(t) işaretinin Fourier dönüşümünü bulunuz.

b. a şıkkında verilen x(t) işareti kullanılarak $x_1(t) = \sum_{k=-\infty}^{k=\infty} x(t-kT_1)$ eşitliği ile verilen periyodik işaretin temel periyodunu ve Fourier seri açılımını bulunuz. $\omega_0 = \frac{2\pi}{T_1} \quad a_k = \frac{1-\cos(k\omega_0)}{T_1}$

- **4.** $x_1(t)=e^{-a|t|}$ sürekli zaman işaretin Fourier dönüşümü $X_1(\omega)=\frac{2a}{a^2+\omega^2}$ olarak verildiğine göre $x_2(t)=\frac{1}{a^2+t^2}$ işaretinin Fourier dönüşümünü bulunuz. $X_2(\omega)=\frac{\pi}{a}e^{-a|\omega|}$
- 5. $x(t) = \cos\left(\frac{\omega_0}{2}t\right)$ olarak verilen işaret aşağıda verilen sisteme uygulandığında çıkışta elde edilecek y(t) işaretini bulunuz.

6. x(t) işareti periyodu $T_s=1$ ms olan darbe dizisiyle örneklenmektedir. Örneklemeden sonra elde edilen $x_s(t)$ işareti frekans spektrumu aşağıda verilen filtreden geçirilerek y(t) işareti elde edilmiştir. x(t)' nin aşağıdaki ifadelerine karşılık gelen y(t) işaretlerini bulunuz.

- a. $x(t) = \cos\left(500\pi t + \frac{\pi}{4}\right)$ $y(t) = \cos\left(500\pi t + \frac{\pi}{4}\right)$
- b. $x(t) = \cos\left(1500\pi t + \frac{\pi}{2}\right)$ $y(t) = \cos\left(500\pi t \frac{\pi}{2}\right)$
- c. $x(t) = \cos\left(1000\pi t + \frac{\pi}{2}\right)$ y(t) = 0