Music 424 Assignment 1

Mayank Sanganeria

1a) done

1b) for 10ms attack and 200ms release

Attack:

Release:

The attack and release times are marked in black

for 1ms attack and 50ms release

Attack:

Release:

Rough Sketch of envelopes:

1c)

Smooth	0.1ms
Tinky	1ms
Thuddy	50ms
transparent	100ms

Buzzy	50ms
Roomy	100ms
even	200ms

2. The compressor output is much smoother than the limiter output Compressor output:

Limiter output:

On drums and guitar, the Limiter is a lot more quite than the Compressor and appears much more subdued while the Compressor makes them sound brighter.

3.a) p=2

3.b) check next page

Let's say the input signal changes from μ to ν at n=0. So when $n<0, \lambda(n)=\mu$. When $n\geq 0$,

$$\lambda(n)^{p} = (a\lambda(n-1)^{p} + (1-a)\nu^{p})$$

$$\Rightarrow \lambda(0)^{p} = (a\mu^{p} + (1-a)\nu^{p})$$

$$\Rightarrow \lambda(1)^{p} = (a\lambda(0)^{p} + (1-a)\nu^{p})$$

$$= (a[(a\mu^{p} + (1-a)\nu^{p})^{1/p}]^{p} + (1-a)\nu^{p})$$

$$= (a(a\mu^{p} + (1-a)\nu^{p}) + (1-a)\nu^{p})$$

$$= (a^{2}\mu^{p} + a(1-a)\nu^{p} + (1-a)\nu^{p})$$

$$= (a^{2}\mu^{p} + (a+1)(1-a)\nu^{p})$$

$$= (a^{2}\mu^{p} + (a+1)(1-a)\nu^{p})$$

$$= (a[(a^{2}\mu^{p} + (a+1)(1-a)\nu^{p})^{1/p}]^{p} + (1-a)\nu^{p})$$

$$= (a(a^{2}\mu^{p} + (a+1)(1-a)\nu^{p}) + (1-a)\nu^{p})$$

$$= (a^{3}\mu^{p} + (a^{2} + a + 1)(1-a)\nu^{p})$$

$$\Rightarrow \lambda(n)^{p} = (a^{n+1}\mu^{p} + (a^{n} + a^{n-1} \dots + a + 1)(1-a)\nu^{p})$$

$$= (a^{n+1}\mu^{p} + (\frac{1-a^{n+1}}{1-a})(1-a)\nu^{p})$$

$$= (a^{n+1}\mu^{p} + (1-a^{n+1})\nu^{p})$$

We want to find the time constant when $\lambda(n)$ reaches the following value:

$$\begin{array}{rcl} \mu + (1 - 1/e)(\nu - \mu) & = & (a^{n+1}\mu^p + (1 - a^{n+1})\nu^p)^{1/p} \\ \Rightarrow a^{n+1}(\mu^p - \nu^p) + \nu^p & = & [\mu + (1 - 1/e)(\nu - \mu)]^p \\ \Rightarrow a^{n+1} & = & \frac{[\mu + (1 - 1/e)(\nu - \mu)]^p - \nu^p}{\mu^p - \nu^p} \end{array}$$

We know that $a = e^{1/-\tau_0}$ and therefore $ln(a) = -1/\tau_0$ When the signal is increasing (attack), $\mu < \nu$, and for simplicity, $\mu =$

$$0, \nu = 1$$

$$a^{n+1} = \frac{\nu^p - [\mu + (1 - 1/e)(\nu - \mu)]^p}{\nu^p - \mu^p}$$

$$\Rightarrow a^{n+1} = 1 - (1 - 1/e)^p$$

$$\Rightarrow n + 1 = \frac{\ln(1 - (1 - 1/e)^p)}{\ln(a)}$$

$$\approx \frac{-(1 - 1/e)^p}{\ln(a)}$$

$$\Rightarrow n = \tau_0 (1 - 1/e)^p - 1$$

The above approximation holds for large p only

When the signal is decreasing (release), $\mu > \nu$, and for simplicity, $\mu = 1, \nu = 0$

$$a^{n+1} = \frac{\left[\mu + (1-1/e)(\nu-\mu)\right]^p - \nu^p}{\mu^p - \nu^p}$$

$$\Rightarrow a^{n+1} = (1+(1-1/e)(-1))^p - 0$$

$$\Rightarrow n+1 = \frac{-p}{\ln(a)}$$

$$\Rightarrow n = \frac{-p}{\ln(a)} - 1$$

$$n = \tau_0 p - 1$$