Эффективные линейно-алгебраические алгоритмы поиска заданных подструктур в графах

И. В. Антонов

Научный руководитель: д.ф.-м.н., проф. Д. С. Малышев

30 июня 2022 г.

Цели и задачи

Цели и задачи:

- Изучение алгоритма Нешетрила и Поляка [1] поиска k-клик.
- Изучение стандарта GraphBLAS для имплементации линейно-алгебраических алгоритмов.
- Построение линейно-алгебраической версии алгоритма подсчета k-клик Нешетрила и Поляка, опираясь на работу Емелина и др. [2].
- Программная реализация параллельного линейно-алгебраического алгоритма подсчета k-клик с помощью стандарта GraphBLAS.

Алгоритм Нешетрила и Поляка

Концепция алгоритма поиска k клик:

- **1** Число k раскладывается как k = 3l + r, где $0 \le r \le 2$.
- **3** В графе l-клик находятся треугольники, соответствующие 3l-кликам.
- **4** Если $r \neq 0$, то 3l-клики дополняют до 3l + r-клик путем добавления r вершин.

Графовые матрицы

Определение

Пусть выбран набор клик $\{Clique(i)\}_{i=1}^p$. Матрицей инцидентности клик вершинам графа называется матрица $C \in \{0,1\}^{p \times n}$, построенная по правилу:

$$\boldsymbol{C}(i,j) = \begin{cases} 1, \ j \in Clique(i) \\ 0, \ j \notin Clique(i) \end{cases}$$

Определение

Клики Clique(i) и Clique(j) называются смежными, если любая вершина из клики Clique(i) смежна с любой вершиной из клики Clique(j).

Графовые матрицы

Определение

Пусть даны два набора клик $\{Clique_1(i)\}_{i=1}^{p_1}$, $\{Clique_2(j)\}_{j=1}^{p_2}$. Матрицей смежности первого и второго наборов клик называется матрица $M \in \{0,1\}^{p_1 \times p_2}$, которая задается по правилу:

$$m{M}(i,j) = egin{cases} 1, \ Clique_1(i) \$$
и $Clique_2(j) \$ смежны $0, \$ иначе

Будем обозначать через ${m M}_{l,r}$ - матрицу смежности всех l на r клик. В случае l=1 и r=1 данная матрица совпадает с ${m A}_G$ - матрицей смежности графа.

Вычисление матрицы смежности l-клик

- Дано: C_l матрица инцидентности l-клик вершинам графа.
- ullet Требуется: получить матрицу $oldsymbol{M}_{l,l}$ смежности l-клик.
- ullet Решение: вычислим матрицу $oldsymbol{C}_loldsymbol{A}_Goldsymbol{C}_l^T$, заменим в полученной матрице числа равные l^2 на 1, а остальные на 0.

Замечание

Отсутствует биекция между треугольниками в графе l-клик и 3l-кликами в исходном графе.

Для установления биекции усилим определение смежности клик $C_l(i,:)$ и $C_l(j,:)$ условием 1 :

$$max(nnz(\boldsymbol{C}_l(i,:))) < min(nnz(\boldsymbol{C}_l(j,:)))$$

Данное преобразование легко осуществить в линейно-алгебраических терминах.

 $^{^{1}}nnz(v)$ - множество индексов ненулевых элементов вектора v

Вычисление матрицы инцидентности 3l-клик вершинам графа

- Дано: C_l матрица инцидентности l-клик вершинам графа, $oldsymbol{M}_{l,l}$ – матрица смежности l-клик.
- ullet Требуется: найти матрицу $oldsymbol{C}_{3l}$ инцидентности 3l-клик вершинам графа.
- ullet Решение: вычислим матрицу $^2 \; m{B} = m{M}_{l,l} * m{M}_{l,l}^2$. Если $m{B}(i,j)
 eq 0$ и $[m{M}_{l,l}(i,:)*m{M}_{l,l}^T(j,:)](k)
 eq 0$, то $m{C}_l(i,:)+m{C}_l(j,:)+m{C}_l(k,:)-$ 3l-клика.

 $^{^{2}}A st B$ – поэлементное умножение матриц A и B

Вычисление матрицы инцидентности l+1-клик вершинам графа

- Дано: C_l матрица инцидентности l-клик вершинам графа, C_1 матрица инцидентности 1-клик вершинам графа (единичная матрица)
- Требуется: найти матрицу $m{C}_{l+1}$ инцидентности l+1-клик вершинам графа.
- ullet Решение: вычислим матрицу $m{B} = m{C}_l m{A}_G$. Если $m{B}(i,j) = l$, то $m{C}_l(i,:) + m{C}_1(j,:) l + 1$ -клика.

Подсчет 3l, 3l + 1, 3l + 2 клик

- Дано: C_l , C_{l+1} матрицы инцидентности l и l+1 клик вершинам графа соответственно.
- Требуется: подсчитать количество 3l, 3l + 1, 3l + 2 клик.
- Решение: вычислим матрицы $M_{l,l}$, $M_{l,l+1}$, $M_{l+1,l}$, $M_{l+1,l+1}$ смежности l и l клик, l и l+1 клик, l+1 и l клик, l+1 и l+1 клик соответственно. Подсчитаем количество клик из соотношений:
 - **1** Количество 3l-клик:

$$sum(\boldsymbol{M}_{l,l}*\boldsymbol{M}_{l,l}^2)$$

2 Количество 3l + 1-клик:

$$sum(\boldsymbol{M}_{l+1,l}*(\boldsymbol{M}_{l+1,l}\boldsymbol{M}_{l,l}))$$

3 Количество 3l + 2-клик:

$$sum(M_{l,l+1}*(M_{l,l+1}M_{l+1,l+1}))$$

Результаты вычислительных экспериментов

Алгоритм был реализован на языке Python с помощью библиотеки python-graphblas. Для проведения вычислительных экспериментов использовался высокопроизводительный вычислительный кластер "cHARISMa"(2 x Intel Xeon Gold 6152 2.1-3.7 ГГц (2*22 ядер), и 1536 ГБ оперативной памяти).

Результаты вычислительных экспериментов на графе com-DBLP [3] (317.080 вершин, 1.049.866 ребер).

k	время выполнения алгоритма (в секундах)	количество k -клик
3	0.16375	2224385
4	0.42499	16713192
5	1.91298	262663639
6	41.86686	4221802226
7	1461.2348	60913718813

При k=8 алгоритму не хватило оперативной памяти для хранения матрицы смежности 3 на 3 клик.

Заключение

Вывод:

• Данный алгоритм хорошо показал себя на **com-DBLP** [3], однако присутствует проблема с нехваткой оперативной памяти при больших размерностях (подсчет k-клик при k=8).

Дальнейшая перспектива:

• Изучение динамического алгоритма подсчета k-клик для решения проблем с нехваткой оперативной памяти.

Список использованной литературы

- [1] Jaroslav Nesetril and Svatopluk Poljak.
 On the complexity of the subgraph problem.
- [2] Maxim Emelin, Ilya Khlystov, Dmitriy Malyshev, and Olga Razvenskaya.

On linear algebraic algorithms for the subgraph matching problem and its variants.

- [3] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection. http://snap.stanford.edu/data, June 2014.
- [4] Jeremy Kepner.
 Graphblas mathematics provisional release 1.0 -.

Программная реализация

Спасибо за внимание!