GEOMETRÍA TOMO VIII

2nd SECONDARY

Retroalimentación

1. Calcular el área de la región sombreada.

2. Calcule el área de la región del sector circular sombreado.

RESOLUCIÓN:

Pide: El área de sector circular = S

$$S_{\triangleleft} = \frac{\pi \cdot 6^{2} \cdot 120^{\circ}}{360^{\circ}} = \frac{36 \pi}{3}$$

$$S_{\triangleleft} = 12 \pi u^2$$

HELICO | PRACTICE

3. En el gráfico, O es el centro del semicírculo, calcule el área de la región sombreada.

RESOLUCIÓN:

Pide: El área de la región

sombreada = Sx

$$Sx = S - S$$

$$Sx = 4.8 - \frac{\pi \cdot 4^2}{2}$$

$$Sx = 32 - 8\pi$$

$$Sx = 8(4-\pi) u^2$$

4. Si el volumen del rectoedro es 288 cm³, halle el valor de x.

RESOLUCIÓN:

Pide: El valor de x

$$288 = 12 \cdot x \cdot 6$$

$$288 = 72 \cdot x$$

$$4 = x$$

x = 4 cm

V = a.b.c

5. Calcule el volumen de un hexaedro regular si la suma de las longitudes de todos sus aristas es 48u.

RESOLUCIÓN:

a

a = 4

Pide: El volumen del hexaedro = V

a

Dato:

Suma de todas las aristas es 48

$$12 a = 48$$

$$V = a^3$$

$$V = 4^3$$

$$V = 64 u^3$$

a

6. En lafigura, AE = $5\sqrt{2}$. Calcule el área de la superficie total del cubo.

RESOLUCIÓN:

Pide: El área de la superficie total = AT

EL
 △ AFE (Notable 45°- 45°)

$$AF = FE = 5$$

$$AT = 150 u^2$$

7. Calcular el volumen del paralelepípedo mostrado.

RESOLUCIÓN:

Pide: El volumen del paralelepípedo = V

• EL ⊿BCD (Notable 37°-53°)

$$BC = 4$$
 $CD = 3$

$$V = a.b.c$$

$$V = 4.3.3$$

$$V = 36 u^3$$

8. Calcular el volumen el cilindro mostrado.

RESOLUCIÓN:

Piden: El volumen del cilindro = V

• EL △AFE (Notable 37°-53°)

$$OB = 3$$
 $AB = 4$

Volumen del cilindro:

$$V = \pi R^2.h$$

$$V = \pi \cdot 3^2 \cdot 4$$

$$V = 36\pi u^3$$

9. Calcular el radio de una esfera si su volumen mide $\frac{32}{2}$ π u³

RESOLUCIÓN:

Piden: El radio de la esfera = r

Volumen de la esfera

$$V_{(esf)} = \frac{4}{3} \pi r^3$$

Dato:

$$\frac{32}{3} \pi = \frac{4}{3} \pi r^{3}$$

$$8 = r^{3}$$

$$8 = r^3$$

10. En la figura, CB = 4. Calcule el área de la superficie esférica.

RESOLUCIÓN:

Piden: El área de la superficie esférica = As

EL ∠COB (Notable 45°-45°)

$$OC = OB = 2\sqrt{2}$$

Área de la de la esfera

$$A_{s(esf)} = 4.\pi r^2$$

As =
$$4\pi (2\sqrt{2})^2$$

$$As = 32\pi u^2$$