Métodos Numéricos

IMERL - Facultad de Ingeniería - UDELAR

Obligatorio 1 - 2010

Se considera la ecuación diferencial ordinaria de orden 2:

$$\begin{cases} y'' + a(t)y' + b(t)y + c(t) = 0 \\ y(t_0) = \alpha, \ y(t_1) = \beta, \ t \in [t_0, t_1] \end{cases}$$

con $a, b, c : [t_0, t_1] \to \mathbb{R}$.

El obligatorio consiste en:

- 1. a) Implementar Eliminación Gaussiana Económica para matrices banda, que dependerá de n, r, s donde n es el tamaño de la matriz, r el ancho de la banda horizontal y s el ancho de la banda vertical.
 - b) Implementar Sustitución Económica para matrices banda, idem 1.
 - c) Implementar el Algoritmo de Thomas, que dependerá sólo de 4 vectores, a, b, c, d. Donde a es la primer diagonal inferior de la matriz, b es la diagonal de la matriz, c es la primer diagonal superior y d es el término independiente.
 - d) Buscar alguna matriz tridiagonal donde no se pueda usar el algoritmo de Thomas.
 - e) Probar los códigos en matrices banda aleatorias y tridiagonales con $n=10^k,\,k=1:4,$ y comparar el tiempo de ejecución con el comando \de matlab/octave.
- 2. Para resolver la ecuación diferencial se deberá:
 - a) Particionar el intervalo [a, b] de manera equiespaciada.
 - b) Discretizar y'' usando cocientes incrementales con error de truncamiento de orden 2.
 - c) Idem 2.b para y'
 - d) Expresar el problema discretizado como un sistema lineal
 - e) Usar los algoritmos de la parte 1 para resolver la ecuación para los siguientes casos:
 - 1) a(t) = b(t) = 1, c(t) = sin(t), $t_0 = 0$, $t_1 = 2\pi$, $\alpha = \beta = 0$, $N = 10^6$.
 - 2) a(t) = 0, b(t) = 1, $c(t) = e^t$, $t_0 = 0$, $t_1 = 1$, $\alpha = 0$, $\beta = 1$, $N = 10^6$.
 - 3) $a(t)=t,\ b(t)=0,\ c(t)=0,\ t_0=0,\ t_1=1,\ \alpha=1,\ \beta=1,\ N=10^6.$
 - f) Resolver las ecuaciones diferenciales anteriores de forma analítica y hallar los errores con las aproximaciones halladas en el item anterior. La última dependera de la funcion erf. Usar el comando help para ver la definción.

1