РГПУ им. А.И. Герцена

Тема: «Теория графов»

Свистунова М. П., 2ИВТ (1) 2 подгруппа

Лабораторная работа №7

Методы решения сетевых задач

№1

Задача: найдите минимальный остов дерева представленного графа.

	x_1	x_2	x_3	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	<i>x</i> ₇
x_1	0	20	0	0	0	23	1
x_2	20	0	15	0	0	0	4
x_3	0	15	0	3	0	0	9
x_4	0	0	3	0	17	0	16
x_5	0	0	0	17	0	28	25
x_6	23	0	0	0	28	0	36
x_7	1	4	9	16	25	36	0

1. Работа с левой частью таблицы. Минимальный элемент $-(x_7, x_1)$

	x_1	x_2	x_3	x_4	<i>x</i> ₅	<i>x</i> ₆	<i>x</i> ₇
x_1							
x_2	20						
x_3	0	15					
x_4	0	0	3				
x_5	0	0	0	17			
x_6	23	0	0	0	28		
x_7	1	4	9	16	25	36	

2. Минимальный элемент – (x_4, x_3)

	x_1	x_2	x_3	x_4	<i>x</i> ₅	<i>x</i> ₆	<i>x</i> ₇
x_1							
x_2	20						
x_3	0	15					
x_4	0	0	3				
x_5	0	0	0	17			
x_6	23	0	0	0	28		
x_7	1	4	9	16	25	36	

3. Минимальный элемент – (x_7, x_2) По второму условию пункты x_1 и x_2 не должны соединяться, поэтому зачеркиваем элемент (x_2, x_1) .

	x_1	x_2	χ_3	x_4	x_5	x_6	x_7
x_1							
x_2	20						
x_3	0	15					
x_4	0	0	3				
x_5	0	0	0	17			
x_6	23	0	0	0	28		
x_7	1	4	9	16	25	36	

4. Минимальный элемент – (x_7, x_3)

По второму условию пункты x_2 и x_3 не должны соединяться, поэтому зачеркиваем элемент (x_3, x_2) .

По второму условию пункты x_7 и x_4 не должны соединяться, поэтому зачеркиваем элемент (x_7, x_4) .

	x_1	x_2	x_3	x_4	x_5	x_6	x_7
x_1							
x_2	20						
x_3	0	15					
x_4	0	0	3				
x_5	0	0	0	17			
x_6	23	0	0	0	28		
x_7	1	4	9	16	25	36	

5. Минимальный элемент – (x_5, x_4) По второму условию пункты x_5 и x_7 не должны соединяться, поэтому зачеркиваем элемент (x_7, x_5) .

	x_1	x_2	χ_3	χ_4	x_5	x_6	x_7
x_1							
x_2	20						
x_3	0	15					
x_4	0	0	3				
x_5	0	0	0	17			
x_6	23	0	0	0	28		
x_7	1	4	9	16	25	36	

6. Минимальный элемент – (x_6, x_1)

По второму условию пункты x_6 и x_7 не должны соединяться, поэтому зачеркиваем элемент (x_7, x_6) .

По второму условию пункты x_6 и x_5 не должны соединяться, поэтому зачеркиваем элемент (x_6, x_5) .

	x_1	x_2	x_3	x_4	x_5	x_6	x_7
x_1							
x_2	20						
χ_3	0	15					
x_4	0	0	3				
x_5	0	0	0	17			
x_6	23	0	0	0	28		
x_7	1	4	9	16	25	36	

7. Длина минимального остова:

$$(x_4, x_3) + (x_5, x_4) + (x_6, x_1) + (x_7, x_1) + (x_7, x_2) + (x_7, x_3) =$$

= 3 + 17 + 23 + 1 + 4 + 9 = 20 + 27 + 10 = 57

№2

Задача: найти кратчайший путь на представленном графе.

Кратчайший путь равен 1 (из x1 в x3).

Задача*: найти кратчайший путь их x0 в z.

	x_1	x_2	x_3	χ_4	x_5	Z
x_0	7	2				
x_0			1	5		10
	3		5			
x_3				3	7	
x_2 x_3 x_4		8			3	2
x_5				5		6

$$I(x_0) = 0^*, I(x_i) = \infty, x_i \neq x_0, p = x_0$$

1.
$$\Gamma\{x_0\} = \Gamma(x_0) = \{x_1, x_2\}$$

$$I(x_1) = \min[\infty, 0^* + 7] = 7$$

$$I(x_2) = \min[\infty, 0^* + 2] = 2$$

$$\min[I(x_1), I(x_2), I(x_3), I(x_4), I(x_5), I(z)] = \min[7, 2, \infty, \infty, \infty, \infty] = 2$$

$$x_2$$
: $I(x_2) = 2^*$, $p = 2$

2.
$$\Gamma\{x_2\} = \Gamma(x_2) = \{x_1, x_3\}$$

$$I(x_1) = \min[7, 2^* + 3] = 5$$

$$I(x_3) = \min[\infty, 2^* + 5] = 7$$

$$\min[I(x_1), I(x_3), I(x_4), I(x_5), I(z)] = \min[5, 7, \infty, \infty, \infty] = 5$$

$$x_1$$
: $I(x_1) = 5^*$, $p = 5$

3.
$$\Gamma\{x_1\} = \Gamma(x_1) = \{x_3, x_4, z\}$$

$$I(x_3) = \min[7, 5^* + 1] = 6$$

$$I(x_4) = \min[\infty, 5^* + 5] = 10$$

$$I(z) = \min[\infty, 5^* + 10] = 15$$

$$\min[I(x_3), I(x_4), I(x_5), I(z)] = \min[6, 10, \infty, 15] = 6$$

$$x_3$$
: $I(x_3) = 6^*$, $p = 6$

4.
$$\Gamma\{x_3\} = \Gamma(x_3) = \{x_4, x_5\}$$

$$I(x_4) = \min[10, 6^* + 3] = 9$$

$$I(x_5) = \min[\infty, 6^* + 7] = 13$$

$$\min[I(x_4), I(x_5), I(z)] = \min[9, 13, 15] = 9$$

$$x_4$$
: $I(x_4) = 9^*$, $p = 9$

5.
$$\Gamma\{x_4\} = \Gamma(x_4) = \{x_5, z\}$$

$$I(x_5) = \min[13, 9^* + 3] = 12$$

$$I(z) = \min[15, 9^* + 2] = 11$$

$$\min[I(x_5), I(z)] = \min[12, 11] = 11$$

$$z: I(z) = 11^*, p = 11$$

Кратчайший путь (x_0, z) :

1.
$$I(z') + c(z', z) = I(z) = 11$$

 $z' = x_1 : I(x_1) + c(x_1, z) = 5 + 10 = 15 \neq 11$
 $z' = x_4 : I(x_4) + c(x_4, z) = 9 + 2 = 11$
 $z' = x_5 : I(x_5) + c(x_5, z) = 12 + 6 = 18 \neq 11$
 $(x_0, ..., x_4, z)$
2. $I(x'_4) + c(x'_4, x_4) = I(x_4) = 9$
 $x'_4 = x_1 : I(x_1) + c(x_1, x_4) = 5 + 5 = 10 \neq 11$
 $x'_4 = x_3 : I(x_3) + c(x_3, x_4) = 9 + 2 = 11$
 $x'_4 = x_5 : I(x_5) + c(x_5, x_4) = 12 + 5 = 17 \neq 11$
 $(x_0, ..., x_3, x_4, z)$
3. $I(x'_3) + c(x'_3, x_3) = I(x_3) = 6$
 $x'_3 = x_1 : I(x_1) + c(x_1, x_3) = 5 + 1 = 6$
 $x'_3 = x_2 : I(x_2) + c(x_2, x_3) = 2 + 5 = 7 \neq 6$
 $(x_0, ..., x_1, x_3, x_4, z)$

4.
$$I(x'_1) + c(x'_1, x_1) = I(x_1) = 5$$

 $x'_1 = x_0 : I(x_0) + c(x_0, x_1) = 0 + 7 = 7 \neq 5$
 $x'_1 = x_2 : I(x_2) + c(x_2, x_1) = 2 + 3 = 5$
 $(x_0, \dots, x_2, x_1, x_3, x_4, z)$

1.
$$I(x'_2) + c(x'_2, x_2) = I(x_2) = 2$$

 $x'_2 = x_0 : I(x_0) + c(x_0, x_2) = 0 + 2 = 2$

Кратчайший путь $(x_0, x_2, x_1, x_3, x_4, z) = 11$.