纳米液滴在不同表面的浸润行为

小组成员: 石金泽 姜壬雯 吴汶津

Content

- **♦** Brief Introduction
- ♦ MD Simulation
- ♦ Analysis
 - ♦ Equilibrium Analysis
 - ♦ Structure Analysis
 - ♦ Dynamic Analysis
 - ♦ Contact Angle

Brief Introduction

Figure I: Wetting of different fluids: A shows a fluid with very little wetting, while C shows a fluid with more wetting. A has a large contact angle, and C has a small contact angle. as a large contact angle, and C has a small contact angle.

Figure 3: Elevation view, top view and side view of the model

Pair	ε(kcal/mol)	$oldsymbol{\sigma}(\mathring{\mathbf{A}})$
O-O	0.1020	3.1880
O-H	0.0836	1.7753
H-H	0.0460	0.4000
O-C/H-C	0.1143	3.2751
O-Cu	0.1700	3.1900
C-C	0.0860	3.400

Table. I. LJ parameters of different pairs. https://youtu.be/VGBzGGgnnTI

pair_style lj/cut/coul/cut 10.0
bond_style harmonic
angle_style hybrid charmm harmonic
dihedral_style charmm

```
fix 11 water langevin 300 300 1000 212894 fix 12 water nve/limit 0.1  Langevin\ equation: \\  unfix\ 12 \\  ma = -\xi v + f(v) + f' \\  fix\ 21\ water\ nve \\  run\ 50000
```

Equilibrium Analysis

Figure.4. The structures with different number of graphene layers reached dynamic equilibrium within 20ps.

Structure Analysis: RDF

Figure.5. Radial distribution function of oxygen atoms

Structure Analysis: Q6

Figure.5. Q_6 of the water droplets when there are 6 layers of graphene.

	fcc	hcp	random
Q_6	0.574	0.485	0.289

Table.2. Q_6 in different lattice structure.

Figure.6. Q_6 of water droplets when there are different number of graphene's layers. Q6 ascends with fluctuation, but eventually falls within the range of $0.27 \sim 0.28$, indicating that the structure of water droplets is random all the time.

Structure Analysis: Density in z direction

Graphyne 4

Graphyne 5

Structure Analysis: Density in z direction

Figure.8. Density in z direction basically invariant with the layer's number of Graphene.

Dynamic Analysis: MSD

Figure.9. MSD curve in this simulation when there are 6 layers of graphene.

Dynamic Analysis: E_k

Dynamic Analysis: E_k

Figure.12 v^2 for different initial height from graphene.

Dynamic Analysis: D'

Figure.13. "Diffusion Coefficient" for different initial height from graphene

"Diffusion Coefficient":
$$D' = \frac{1}{t} \sum_{i=1}^{N_{\alpha}} \langle |r_i(t) - r_i(0)|^2 \rangle$$

Contact Angle Analysis

$$\cos\theta = \cos\theta_{\infty} - \frac{\tau}{\gamma_{LV}} \times \frac{1}{r_B}$$

$$\cos\theta_{\infty} = \frac{\gamma_{SV} - \gamma_{SL}}{\gamma_{LV}}$$

Figure.14. Schematic diagram of infinite long liquid column simulation system. DOI: 10.7498/aps.68.20182307

Contact Angle Analysis

$$|AB| = \sqrt[2]{(x_A - x_B)^2 + (y_A - y_B)^2}$$

The same for BC, AC

$$\theta = \sum_{t1}^{tN} \arccos(\frac{|AB|^2 + |BC|^2 - |AC|^2}{2|AB||BC|}) / N$$

Where **N** is frame numbers

Figure.15. Contact angle measurement in Tracker.

Contact Angle Analysis

Figure.16. Contact angle with different layers.

Reference

- Rafiee J, Mi X, Gullapalli H, et al. Wetting transparency of graphene. Nat Mater. 2012;11(3):217-222. Published 2012 Jan 22. doi:10.1038/nmat3228
- 2. Shi Chao, Lin Chen-Sen, Chen Shuo, Zhu Jun. Molecular dynamics simulation of characteristic water molecular arrangement on graphene surface and wetting transparency of graphene. Acta Physica Sinica, 2019, 68(8): 086801. doi: 10.7498/aps.68.20182307
- Yanbin Wu and N. R. Aluru. Graphitic Carbon-Water Nonbonded Interaction Parameters. The Journal of Physical Chemistry B, 2013, 117 (29): 8802-8813.doi: 10.1021/jp402051t
- Joseph Eugene Andrews, Shayandev Sinha, Peter W. Chunga, Siddhartha Das. Wetting dynamics of a water nanodrop on graphene. *Phys. Chem. Chem. Phys.*, 2016, 18: 23482-23493.doi:10.1039/C6CP01936F
- Romain Perriot, Xiang Gu, You Lin, Vasily V. Zhakhovsky, and Ivan I. Oleynik. Screened environment-dependent reactive empirical bond-order potential for atomistic simulations of carbon materials. *Phys. Rev. B.*, 2013, 88:12. doi:10.1103/PhysRevB.88.064101
- 6. Saleh Bagheri, Abolghasem Shameli, Mehdi Darvishi, Ghasem Fakhrpour, Molecular investigation of water adsorption on graphene and graphyne surfaces, Physica E: Low-dimensional Systems and Nanostructures, Volume 90,2017, Pages 123-130, ISSN 1386-9477.