1-2基础过关

.数列 $\{x_n\}$ 有界是数列 $\{x_n\}$ 收敛的 (A) 充分非必要 (B) 必要非充分 (C) 充分必要 (D) 既非充分又非必要 (A) 充分非必要 (B) 必要非充分 (C)充分必要 (D) 既非充分又非必要 x_0 时右极限 $f(x_0^*)$ 及左极限 $f(x_0^*)$ 存在且相等是 $\lim_{x \to x_0} f(x)$ 存在的 (B) 必要非充分 (A) 充分非必要 (C) 充分必要 (D) 既非充分又非必要

5.下列命题中正确的是

极大的大的大多人

(A) 若 $\lim_{x \to x_0} f(x) \ge \lim_{x \to x_0} g(x)$, 则存在 $\delta > 0$, 当 $0 < |x - x_0| < \delta$ 时, $f(x) \ge g(x)$.

(B) 若 $\lim_{x \to x_0} f(x) = A$, $\lim_{x \to x_0} g(x) = B$ 且存在 $\delta > 0$, 使得当 $0 < |x - x_0| < \delta$ 时,有

 $f(x) \ge g(x)$, $\emptyset A \ge B$.

1C) 若存在 $\delta > 0$, 当 $0 < |x - x_0| < \delta$ 时, f(x) > g(x), 则 $\lim_{x \to x_0} f(x) \ge \lim_{x \to x_0} g(x)$.

(D) 若 $\lim_{x \to x_0} f(x) > \lim_{x \to x_0} g(x)$, 当 $0 < |x - x_0| < \delta$ 时, f(x) > g(x).

6.下列命题中不正确的是

- (A) 若数列极限 $\lim_{n\to\infty} x_n = a$, 则 $\lim_{n\to\infty} x_{n+k} = a$, 其中 k 为正整数.
- (B)/数列 $\lim_{n\to\infty} x_n = a \Leftrightarrow \lim_{n\to\infty} x_{2n-1} = \lim_{n\to\infty} x_{2n} = a$.
- (C) 数列 x_n 收敛(即 $\lim_{n\to\infty} x_n$ 存在),则 x_n 有界.
- (D) 若 f(x) 在 $(1,+\infty)$ 连续且 $\lim_{x\to+\infty} f(x) = A$,则 f(x) 在 $(1,+\infty)$ 内有界.

1 m xn = 1m An=0

- 7.设 $x_n \le z_n \le y_n$,且 $\lim_{n \to \infty} (x_n y_n) = 0$,则 $\lim_{n \to \infty} z_n$
- (A) 存在且等于零.
- (B) 存在但不一定等于零.
- (C) 不一定存在.
- (D) 一定不存在.

8.设 $\lim_{x\to x_0} f(x) = +\infty$, $\lim_{x\to x_0} g(x) = -\infty$, $\lim_{x\to x_0} h(x) = A$,则下列命题中不正确的是

$$\lim_{x \to x_0} \left[f(x) - g(x) \right] = +\infty$$

- $(B)/\lim_{x\to x_0} [f(x)g(x)] = \infty$ 有限于无病大的积为无穷大
- (C) $\lim_{x \to x_0} [f(x) h(x)] = +\infty$
- (D) $\lim_{x \to x_0} [f(x)h(x)] = \infty$
- 0.00 -> 0

9.下列叙述正确的是

- 如果 f(x) 在 x_0 某邻域内无界,则 $\lim_{x\to x_0} f(x) = \infty$. 无名太子 不
- (B) 如果 $\lim_{x \to x_0} f(x) = \infty$,则 f(x) 在 x_0 某邻域内无界.
- (c) $\lim_{x \to x_0} f(x)$ 不存在,则 $\lim_{x \to x_0} f(x) = \infty$.
- 如果 $\lim_{x \to x_0} f(x) = 0$,则 $\lim_{x \to x} \frac{1}{f(x)} = \infty$.

欢迎关注微信公众号【神灯考研】

21. "对任意给定的 $\varepsilon \in (0,1)$,总存在正整数N,当 $n \ge N$ 时,恒有 $\left(x_n - a\right)^2 \le \varepsilon$ "是数

列 $\{x_n\}$ 收敛于a的

- (A) 充分条件但非必要条件.
- (B) 必要条件但非充分条件.
- YETO, FN70, 5NONAS, 199/24-01-8.

- (C) 充分必要条件.
- (D) 既非充分条件又非必要条件.

22.设 $\{x_n\}$ 是数列,下列命题中正确的个数是

著 $\lim_{n\to\infty} |x_n| = a$,则 $\lim_{n\to\infty} x_{2n} = a$, $\lim_{n\to\infty} x_{2n-1} = -a$.

②若 $\lim_{n\to\infty} x_{2n} = a$, $\lim_{n\to\infty} x_{2n-1} = -a$, 则 $\lim_{n\to\infty} |x_n| = a$. α

 $\lim_{n\to\infty} \sin x_n = 0 \text{ , } \lim_{n\to\infty} x_n = 0 \text{ .}$ $\lim_{n\to\infty} x_n = 0 \text{ , } \lim_{n\to\infty} \sin x_n = 0 \text{ .}$

(A) 1 1 (B) 2 (C) 3 , D, 4

23.设 $\cos x - \cos^3 x = x \cdot \sin a(x)$, 其中 $|a(x)| < \frac{\pi}{2}$, 则当 $x \to 0$ 时, a(x) 是

- (A) 比 x 高阶的无穷小量.
 - 75Ma LX
- Im cosx-cosx = Im cosx sinx
- (B) 比 x 低阶的无穷小量.
- (C) 与 x 同阶但不等价的无穷小量.
- (D) 与 x 等价的无穷小量.

1m xx =1

24.设 $f(x) = \ln(1 + e^x)$, $g(x) = \ln^2 x$, $h(x) = e^{\sqrt{x}}$, 则当实充分大时有
(A) g(x) < h(x) < f(x).

(C) f(x) < g(x) < h(x).

- (B) h(x) < g(x) < f(x). (D) g(x) < f(x) < h(x).

对是值

Tim fix = lim InlHex)

25.设数列的通项为
$$x_n = \begin{cases} \frac{n^2 + \sqrt{n!}}{2^n}, & n$$
为奇数, 则当 $n \to \infty$ 时, x_n 是 $\frac{n^n}{n!}$, n 为偶数,

TAI 无穷小量

- (B) 无穷大量.
- (C) 有界变量但不是无穷小量.
- (D) 无界变量但不是无穷大量.

$$\lim_{N\to\infty} \frac{n^{\frac{1}{2}} + \sqrt{n!}}{2^{n}} = \lim_{N\to\infty} \frac{n^{\frac{1}{2}} + \sqrt{n}}{2^{n}} + \lim_{N\to\infty} \frac{\sqrt{n!}}{2^{n}}$$

$$\lim_{N\to\infty} \frac{n^{\frac{1}{2}} + \sqrt{n}}{2^{n}} = \lim_{N\to\infty} \frac{\sqrt{n!}}{2^{n}} = \lim_$$