Санкт-Петербургский Государственный Университет Saint-Petersburg State University

ЛАБОРАТОРИЯ ПРОЧНОСТИ МАТЕРИАЛОВ

ОТЧЕТ

По лабораторной работе 6

«Определение линейных и угловых перемещений статически определимой балки »

По дисциплине «Лабораторный практикум, лабораторная работа»

Выполнили:

Баталов С. А. Хайретдинова Д. Д.

Санкт-Петербург 2021

1 Цель работы

Под изгибом понимают такой вид деформации, при котором в поперечных сечениях исследуемого образца возникают изгибающие моменты. Стержень, работающий на изгиб, называют балкой. Балка называется статически определимой, если все усилия и моменты в ней можно определить из уравнения статики. В частности, используемая в работе балка с одной шарнирно-подвижной и одной шарнирно-неподвижной опорами является статически определимой.

При прямом поперечном изгибе ось бруса, искривляясь, остается в силовой плоскости. В результате деформации каждое из сечений занимает новое положение: их центры тяжести получают вертикальные и горизонтальные линейные перемещения, а сами сечения поворачивается на некоторый угол вокруг нейтральной оси. Гипотеза плоских сечений – при повороте сечения остаются плоскими и перпендикулярными изогнутой оси балки.

Цель работы заключается в измерении линейных и угловых перемещений, возникающих в статически определимой шарнирно закрепленной балке при изгибе ее сосредоточенной силой и сравнении измеренных величин с расчетными данными.

2	Теоретическое	исследование
---	---------------	--------------

3 Экспериментальная уствновка

4 Эксперимент

Рис. 1: Измерение длин балки

Измерили необходимые расстояния для 2 экспериментов: в 1-ом груз подвешен в точке 1, и во 2-ом груз подвешен в точке 2, также замерили высоту h и толщину b балки с оценкой погрешности.

Величина	Значение	Погрешность	Размерность	
b	5.4	±0.1		
h	36.1			
l_1	80			
l_2	142		MM	
l_3	153	±1		
l_4	203	<u></u>		
l_5	201			
l_6	83			

Таблица 1: Начальные данные.

Далее провели 2 эксперимента, постепенно нагружая, затем разружая балку, снимали показания с индикаторных головок часового типа и занесли в таблицу, учитывая, что систематическая погрешность измерений $\Delta x=10^{-2}{
m MM}$:

No	Р	1 эксперимент		2 эксперимент			
		Показания индикаторов			Показания индикаторов		
		1	2	3	1	2	3
	Н	$\cdot 10^{-2} \; \mathrm{MM}$			$\cdot 10^{-2} \; \mathrm{mm}$		
1	1	2	-5	1	1	-4	1
2	2	5	-10	3	4	-12	5
3	3	7	-15	4	6	-19	8
4	5	12	-26	7	10	-32	14
5	7	17	-37	10	15	-44	20
6	12	28	-63	18	25	-76	34
7	7	17	-37	11	15	-45	21
8	5	12	-27	7	11	-33	15
9	3	7	-16	4	7	-20	9
10	2	5	-11	3	4	-13	6
11	1	3	-6	1	2	-6	3

Таблица 2: Экспериментальные данные.

$\mathcal{N}_{\overline{o}}$	Р	1 эксперимент		2 эксперимент			
		Показания индикаторов			Показания индикаторов		
		1	2	3	1	2	3
	Н	мкм??? 0.01			мкм??? 0.01		
1	1						
2	2						
3	3						
4	5						
5	7						
6	12						

Таблица 3: Экспериментальные данные.

Рис. 2: Графики зависимости прогиба ν от нагрузки

Рис. 3: Графики зависимости прогиба ν от нагрузки

Рис. 4: Графики зависимости угла поворота θ от нагрузки

Рис. 5: Графики зависимости угла поворота θ от нагрузки