

# VE401 Probabilistic Methods in Eng. Solution Manual for RC 4

Chen Xiwen

March 29, 2020

## Assignment 3.4

A mathematics textbook has 200 pages on which typographical errors in the equations could occur. Suppose there are in fact five errors randomly dispersed among these 200 pages.

- 1. What is the probability that a random sample of 50 pages will contain at least one error?
- 2. How large must the random sample be to assure that at least three errors will be found with 90% probability? (You may use a normal approximation to the binomial distribution.)

#### Solution.

1. The problem is to randomly place the five errors in 200 pages, and each error has the same probability of being placed among the sampled pages.

$$P[\text{at least 1 error in 50 pages}] = 1 - P[0 \text{ error in 50 pages}]$$
  
=  $1 - \left(\frac{200 - 50}{200}\right)^5$   
=  $76.27\%$ .

2. Let the sample size be k. The number of selected errors follows a binomial distribution with

$$p = \frac{k}{200}, \qquad n = 5,$$

and thus the mean and standard deviation are given by

$$\mu = 5p = \frac{k}{40}, \qquad \sigma = \sqrt{5p(1-p)} = \sqrt{\frac{k}{40}\left(1 - \frac{k}{200}\right)}.$$

Let X be the number of errors in the sample. Then

$$P[X \ge 3] \ge 90\% \implies P[Y \ge 2.5] \ge 90\%,$$

where Y follows normal distribution. Transforming to standard normal variable Z, we have

$$P\left[Z \ge \frac{2.5 - \mu}{\sigma}\right] \ge 0.9 \quad \Rightarrow \quad F\left[\frac{2.5 - \mu}{\sigma}\right] \le 0.1 \quad \Rightarrow \quad \frac{2.5 - \mu}{\sigma} \le -1.28,$$

which gives k > 150.

<u>Note</u>. Some of you may have noticed that the requirements for "good approximation" specified in lecture slides are not satisfied. However, if we calculate using p = 0.75 and n = 5 for binomial distribution,

$$P[X \ge 3] = 1 - \mathtt{CDF}[\mathtt{BinomialDistribution}[5, 0.75], 2] = 0.896484,$$

which is quite close to 90%. This posterior validation shows the approximation is reasonable.

About half-unit correction. If X follows a binomial distribution with parameters n and p, and Y follows a normal distribution with mean  $\mu = np$  and variance  $\sigma^2 = np(1-p)$ . Recall normal approximation to binomial distribution,

$$P[X \le \mathbf{y}] = \sum_{x=0}^{y} \binom{n}{x} p^x (1-p)^{n-x} \approx \Phi\left(\frac{\mathbf{y} + 1/2 - np}{\sqrt{np(1-p)}}\right),$$

where  $\Phi$  is the cumulative distribution function for the standard normal distribution. Define

$$F(\mathbf{x}) := \Phi\left(\frac{\mathbf{x} - np}{\sqrt{np(1-p)}}\right).$$

Then the approximation is simply  $P[X \le y] \approx F(y+1/2)$ . We would like to approximate the cumulative distribution of X using the cumulative distribution of Y (denoted as  $\Phi$ ). Consider the following cases. What should be the corresponding approximation?

- 1.  $P[X \ge x_1]$ :
  - (a)  $1 F(x_1 + 0.5)$
  - (b)  $1 F(x_1 0.5)$
- 2.  $P[X > x_1]$ :
  - (a)  $1 F(x_1 + 0.5)$
  - (b)  $1 F(x_1 0.5)$
- 3.  $P[X \le x_2]$ :
  - (a)  $F(x_2 + 0.5)$
  - (b)  $F(x_2 0.5)$
- 4.  $P[X < x_2]$ :
  - (a)  $F(x_2 + 0.5)$
  - (b)  $F(x_2 0.5)$



Answer: 1. (b), 2. (a), 3. (a), 4. (b).

There are two ways that we can memorize it.

• We are approximating the integral of binomial density function. According to the figure, if we want  $P[X \leq x]$ , then we are calculating the area summing up to the right of x. Similarly, if we want P[X < x], we are summing up to the left of x.

• The original binomial approximation gives

$$P[X \le x] \approx F(x + 1/2),$$

which means that

$$P[X < x] = P[X \le x - 1] \approx F(x - 1 + 1/2) = F(x - 1/2).$$

With this in mind, whenever we want to calculate  $P[X \ge x]$  or P[X > x], we rewrite as

$$P[X \ge x] = 1 - P[X < x], \qquad P[X > x] = 1 - P[X \le x],$$

which falls in to the cases discussed above.

## Assignment 3.10

Let  $X = (X_1, X_2)$  be a random vector. Then we define the expectation vector and the variance-covariance matrix as follows.

$$E[X] := \begin{pmatrix} E[X_1] \\ E[X_2] \end{pmatrix}, \quad Var \ X := \begin{pmatrix} Var[X_1] & Cov(X_1, X_2) \\ Cov(X_2, X_1) & Var \ X_2 \end{pmatrix}.$$

Let A be a constant  $2 \times 2$  matrix and  $Y = (Y_1, Y_2) = AX$ .

- 1. Show that E[AX] = AE[X].
- 2. Show that  $Var(AX) = A(Var X)A^{T}$ .
- 3. Suppose  $X_1$  and  $X_2$  follow independent normal distributions with mean  $\mu_1$  and  $\mu_2$  and variances  $\sigma_1^2$  and  $\sigma_2^2$ , respectively. Show that the joint density is given by

$$f_X(x) = f_X(x_1, x_2) = \frac{1}{2\pi\sqrt{\det \Sigma_X}} e^{-\frac{1}{2}\langle x - \mu_X, \Sigma_X^{-1}(x - \mu_X)\rangle}$$

where  $\mu_X = (\mu_1, \mu_2)$  and  $\Sigma_X = \text{diag}(\sigma_1^2, \sigma_2^2)$  is the  $2 \times 2$  matrix with the variances on the diagonal and all other entries vanishing.

4. Suppose that  $X_1$  and  $X_2$  follow independent normal distributions with means  $\mu_1, \mu_2 \in \mathbb{R}$  and variances  $\sigma_1^2, \sigma_2^2 > 0$ , respectively. Let Y = AX where A is an invertible  $n \times n$  matrix. Show that

$$f_Y(y) = \frac{1}{2\pi\sqrt{|\det \Sigma_Y|}} e^{-\frac{1}{2}\langle y - \mu_Y, \Sigma_Y^{-1}(y - \mu_Y)\rangle}$$
(1)

where  $\mu_Y = \mathrm{E}[Y]$ ,  $\Sigma_Y = \mathrm{Var}\ Y$  and  $\langle \cdot, \cdot \rangle$  denotes the euclidean scalar product in  $\mathbb{R}^2$ .

5. Show that Eq. (1) can be written as

$$f_Y(y_1, y_2) = \frac{1}{2\pi\sigma_{Y_1}\sigma_{Y_2}\sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)} \left[ \left( \frac{y_1 - \mu_{Y_1}}{\sigma_{Y_1}} \right)^2 - 2\rho \left( \frac{y_1 - \mu_{Y_1}}{\sigma_{Y_1}} \right) \left( \frac{y_2 - \mu_{Y_2}}{\sigma_{Y_2}} \right) + \left( \frac{y_2 - \mu_{Y_2}}{\sigma_{Y_2}} \right)^2 \right]}$$

where  $\mu_{Y_i}$  is the mean and  $\sigma_{Y_i}^2$  the variance of  $Y_i$ , i = 1, 2, and  $\rho$  is the correlation of  $Y_1$  and  $Y_2$ .

#### Solution.

1. Following properties for expectation, we have

$$E[AX] = E\left[ \begin{pmatrix} a_{11}X_1 + a_{12}X_2 \\ a_{21}X_1 + a_{22}X_2 \end{pmatrix} \right] = \begin{pmatrix} a_{11}E[X_1] + a_{12}E[X_2] \\ a_{21}E[X_1] + a_{22}E[X_2] \end{pmatrix} = AE[X].$$

2. By definition, we have

$$\operatorname{Var}(AX) = \operatorname{Var} \begin{pmatrix} a_{11}X_1 + a_{12}X_2 \\ a_{21}X_1 + a_{22}X_2 \end{pmatrix}$$

$$= \begin{pmatrix} \operatorname{Var}(a_{11}X_1 + a_{12}) & \operatorname{Cov}(a_{11}X_1 + a_{12}X_2, a_{21}X_1 + a_{22}X_2) \\ \operatorname{Cov}(a_{21}X_1 + a_{22}X_2, a_{11}X_1 + a_{12}X_2) & \operatorname{Var}(a_{21}X_1 + a_{22}X_2) \end{pmatrix}.$$

From the properties of variance and covariance, we have

$$Var(a_{11}X_1 + a_{12}X_2) = a_{11}^2 Var X_1 + a_{12}^2 Var X_2 + 2a_{11}a_{12}Cov(X_1, X_2),$$
  

$$Var(a_{21}X_1 + a_{22}X_2) = a_{21}^2 Var X_1 + a_{22}^2 Var X_2 + 2a_{21}a_{22}Cov(X_1, X_2),$$

and

$$Cov(a_{11}X_1 + a_{12}X_2, a_{21}X_1 + a_{22}X_2) = Cov(a_{21}X_1 + a_{22}X_2, a_{11}X_1 + a_{12}X_2)$$

$$= a_{11}a_{21}Var(X_1) + a_{12}a_{22}Var(X_2) +$$

$$+ (a_{11}a_{22} + a_{12}a_{21})Cov(X_1, X_2).$$

Therefore,

$$A(\operatorname{Var} X)A^{T} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} a_{11}\operatorname{Var}X_{1} + a_{12}\operatorname{Cov}(X_{1}, X_{2}) & a_{21}\operatorname{Var}X_{1} + a_{22}\operatorname{Cov}(X_{1}, X_{2}) \\ a_{11}\operatorname{Cov}(X_{2}, X_{1}) + a_{12}\operatorname{Var}X_{2} & a_{21}\operatorname{Cov}(X_{1}, X_{2}) + a_{22}\operatorname{Var}X_{2} \end{pmatrix}$$
$$= \operatorname{Var}(AX).$$

3. We have

$$\sqrt{\det \Sigma_X} = \sigma_1 \sigma_2, \qquad \Sigma_X^{-1} = \begin{pmatrix} 1/\sigma_1^2 & 0 \\ 0 & 1/\sigma_2^2 \end{pmatrix}.$$

and

$$\langle x - \mu_X, \Sigma_X^{-1}(x - \mu_X) \rangle = \frac{(x_1 - \mu_1)^2}{\sigma_1^2} + \frac{(x_2 - \mu_2)^2}{\sigma_2^2}.$$

Since  $X_1$  and  $X_2$  are independent,

$$f_X(x) = f_X(x_1, x_2) = f_{X_1}(x_1) \cdot f_{X_2}(x_2)$$

$$= \frac{1}{2\pi\sigma_1\sigma_2} e^{-\frac{1}{2} \left(\frac{(x_1 - \mu_1)^2}{\sigma_1^2} + \frac{(x_2 - \mu_2)^2}{\sigma_2^2}\right)}$$

$$= \frac{1}{2\pi\sqrt{\det \Sigma_X}} e^{-\frac{1}{2}\langle x - \mu_X, \Sigma_X^{-1}(x - \mu_X)\rangle}.$$

4. Since Y = AX, from (1) and (2) we know that

$$\mu_Y = \mathrm{E}[AX] = A\mu_X, \qquad \Sigma_Y = A\Sigma_X A^T \quad \Rightarrow \quad \Sigma_Y^{-1} = (A^T)^{-1}\Sigma_X^{-1}A^{-1},$$
  
 $\Rightarrow \det \Sigma_Y = (\det A)^2 \det \Sigma_X.$ 

Using transformation of variables,

$$f_{Y}(y) = f_{Y} \circ (A^{-1}y) \cdot |\det A^{-1}|$$

$$= \frac{1}{2\pi\sqrt{\det \Sigma_{X}}} e^{-\frac{1}{2}\langle A^{-1}y - A^{-1}\mu_{Y}, \Sigma_{X}^{-1}(A^{-1}y - A^{-1}\mu_{Y})\rangle} \cdot \frac{1}{|\det A|}$$

$$= \frac{1}{2\pi\sqrt{\det \Sigma_{X}} \cdot (\det A)^{2}} e^{-\frac{1}{2}\langle y - \mu_{Y}, \Sigma_{Y}^{-1}(y - \mu_{Y})\rangle}$$

$$= \frac{1}{2\pi\sqrt{|\det \Sigma_{Y}|}} e^{-\frac{1}{2}\langle y - \mu_{Y}, \Sigma_{Y}^{-1}(y - \mu_{Y})\rangle}.$$

5. Rewriting  $\sqrt{|\det \Sigma_Y|}$  as

$$\sqrt{|\det \Sigma_Y|} = \sqrt{\sigma_{Y_1}^2 \sigma_{Y_2}^2 - \operatorname{Cov}^2(Y_1, Y_2)}$$

$$= \sigma_{Y_1} \sigma_{Y_2} \sqrt{1 - \left(\frac{\operatorname{Cov}(Y_1, Y_2)}{\sigma_{Y_1} \sigma_{Y_2}}\right)^2}$$

$$= \sigma_{Y_1} \sigma_{Y_2} \sqrt{1 - \rho^2},$$

and

$$\Sigma_Y = \begin{pmatrix} \sigma_{Y_1}^2 & \rho \sigma_{Y_1} \sigma_{Y_2} \\ \rho \sigma_{Y_1} \sigma_{Y_2} & \sigma_{Y_2}^2 \end{pmatrix} \quad \Rightarrow \quad \Sigma_Y^{-1} = \frac{1}{1 - \rho^2} \begin{pmatrix} \frac{1}{\sigma_{Y_1}^2} & -\frac{\rho}{\sigma_{Y_1} \sigma_{Y_2}} \\ -\frac{\rho}{\sigma_{Y_1} \sigma_{Y_2}} & \frac{1}{\sigma_{Y_2}^2} \end{pmatrix},$$

we have

$$\langle y - \mu_Y, \Sigma_Y(y - \mu_Y) \rangle = \frac{1}{1 - \rho^2} \langle \begin{pmatrix} y_1 - \mu_{Y_1} \\ y_2 - \mu_{Y_2} \end{pmatrix}, \begin{pmatrix} \frac{1}{\sigma_{Y_1}^2} & -\frac{\rho}{\sigma_{Y_1} \sigma_{Y_2}} \\ -\frac{\rho}{\sigma_{Y_1} \sigma_{Y_2}} & \frac{1}{\sigma_{Y_2}^2} \end{pmatrix} \rangle$$

$$= \frac{1}{1 - \rho^2} \left[ \left( \frac{y_1 - \mu_{Y_1}}{\sigma_{Y_1}} \right)^2 - 2\rho \left( \frac{y_1 - \mu_{Y_1}}{\sigma_{Y_1}} \right) \left( \frac{y_2 - \mu_{Y_2}}{\sigma_{Y_2}} \right) + \left( \frac{y_2 - \mu_{Y_2}}{\sigma_{Y_2}} \right)^2 \right].$$

Therefore, Eq. (1) can be written as

$$f_Y(y_1, y_2) = \frac{1}{2\pi\sigma_{Y_1}\sigma_{Y_2}\sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)} \left[ \left( \frac{y_1 - \mu_{Y_1}}{\sigma_{Y_1}} \right)^2 - 2\rho \left( \frac{y_1 - \mu_{Y_1}}{\sigma_{Y_1}} \right) \left( \frac{y_2 - \mu_{Y_2}}{\sigma_{Y_2}} \right) + \left( \frac{y_2 - \mu_{Y_2}}{\sigma_{Y_2}} \right)^2 \right]}.$$

# Assignment 3.11

A system consists of two independent components connected in series. The life span (in hours) of the component follows a Weibull distribution with  $\alpha = 0.006$  and  $\beta = 0.5$ ; the second has a lifespan in hours follows the exponential distribution with  $\beta = 1/25000$ .

- 1. Find the reliability of the system at 2500 hours.
- 2. Find the probability that the system will fail before 2000 hours.
- 3. If the two components are connected in parallel, what is the system reliability at 2500 hours?

#### Solution.

1. The reliability function for the two components are given by

$$R_1(t) = e^{-\alpha_1 t^{\beta_1}}, \qquad R_2(t) = 1 - \int_0^t f_{T_2}(x) dx$$
$$= 1 + e^{-\beta_2 x} \Big|_0^t = e^{-\beta_2 t}.$$

Therefore, the reliability of the system at t = 2500 is given by

$$R(t) = R_1(t) \cdot R_2(t) \implies R(2500) = 0.7408 \times 0.9048 = 0.6703.$$

2. The probability that the system fail before 2000h is given by

$$P[T < 2000] = 1 - R(2000) = 1 - 0.7059 = 0.2941.$$

3. The reliability at t = 2500 for the parallel system is

$$R(t) = 1 - (1 - R_1(t))(1 - R_2(t)) \Rightarrow R(2500) = 0.9753.$$

## Assignment 4.2

Let  $X_1, \ldots, X_n$  be a random sample of size n from a random variable with variance  $\sigma^2$ . We have seen that the sample variance

$$S_{n-1}^2 := \frac{1}{n-1} \sum_{k=1}^n (X_k - \overline{X})^2$$

is an unbiased estimator for  $\sigma^2$ . It can be shown that

$$Var(S_{n-1}^2) = MSE(S_{n-1}^2) = \frac{1}{n} \left( E[(X - \overline{X})^4] - \frac{n-3}{n-1} \sigma^4 \right) = \frac{1}{n} \left( \gamma_2 + \frac{2n}{n-1} \right) \sigma^4$$
 (2)

where  $\gamma_2 := E[(X - \mu)^4]/\sigma^4 - 3$  is called the *excess kurtosis* of a distribution.

1. Show that if X follows a normal distribution with mean  $\mu$  and variance  $\sigma^2$ ,

$$MSE(S_{n-1}^2) = \frac{2}{n-1}\sigma^4.$$

2. For a > 0 set

$$S_a^2 := \frac{n-1}{a} S_{n-1}^2.$$

Find  $MSE(S_a^2)$  and show that the mean square error is minimized for

$$a = n + 1 + \frac{n-1}{n}\gamma_2.$$

In the case of a normal distribution with mean  $\mu$  and variance  $\sigma^2$ , show that this reduces to a = n + 1.

#### Solution.

1. We know that,

$$MSE[S_{n-1}^2] = Var[S_{n-1}^2] + bias^2 = Var[S_{n-1}^2].$$

Since X follows a normal distribution,

$$\chi_{n-1}^2 = \frac{(n-1)S_{n-1}}{\sigma^2}$$

follows Chi-squared distribution with n-1 degrees of freedom. The variance is

$$\operatorname{Var}[\chi_{n-1}^2] = 2(n-1) \implies \operatorname{Var}[S_{n-1}^2] = \frac{\sigma^4}{(n-1)^2} \cdot 2(n-1) = \frac{2\sigma^4}{n-1}.$$

2. By definition, the MSE for  $S_a^2$  is given by

$$\begin{split} \mathrm{MSE}[S_a^2] &= \mathrm{E}[S_a^4 - 2\sigma^2 S_a^2 + \sigma^4] \\ &= \mathrm{E}[S_a^4] - 2\sigma^2 \cdot \frac{n-1}{a}\sigma^2 + \sigma^4 \\ &= \mathrm{E}[S_a^4] + \left(1 - \frac{2(n-1)}{a}\right)\sigma^4. \end{split}$$

Using Eq. (2) and property for variance, we have

$$\begin{split} \mathbf{E}[S_a^4] &= \mathbf{Var}[S_a^2] + \mathbf{E}[S_a^2]^2 \\ &= \frac{(n-1)^2}{a^2} \mathbf{Var}[S_{n-1}^2] + \frac{(n-1)^2}{a^2} \sigma^4, \\ \mathbf{MSE}[S_a^4] &= \frac{(n-1)^2}{a^2} \cdot \frac{1}{n} \left( \gamma_2 + \frac{2n}{n-1} \right) \sigma^4 + \frac{(n-1)^2}{a^2} \sigma^4 + \left( 1 - \frac{2(n-1)}{a} \right) \sigma^4 \\ &= \left[ x^2 \cdot \frac{1}{n} \left( \gamma_2 + \frac{2n}{n-1} \right) + x^2 - 2x + 1 \right] \sigma^4 \qquad \left( \text{let } x = \frac{n-1}{a} \right) \\ &= \left[ \left( \frac{\gamma_2}{n} + \frac{2}{n-1} + 1 \right) x^2 - 2x + 1 \right], \end{split}$$

which is maximized when

$$x = \frac{1}{\frac{\gamma_2}{n} + \frac{2}{n-1} + 1} = \frac{n-1}{a} \implies a = n+1 + \frac{n-1}{n}\gamma_2.$$

In case of normal distribution with mean  $\mu$  and variance  $\sigma^2$ , since

$$\gamma_2 = E\left[\frac{(X-\mu)^4}{\sigma^4}\right] - 3 = E[Z^4] - 3,$$

where Z follows a standard normal distribution and  $E[Z^4]$  is the 4th moment of it, given by

$$E[Z^4] = \frac{d^4 m_Z(t)}{dt^4} \bigg|_{t=0} = (t^4 + 6t^2 + 3)e^{\frac{1}{2}t^2} \bigg|_{t=0} = 3,$$

and thus

$$a = n + 1$$
.

## Mean and Variance for Estimators

We know that the mean square error is given by

$$\begin{aligned} \text{MSE}[\widehat{\theta}] &= \text{E}[(\widehat{\theta} - \theta)^2] \\ &= \text{E}[(\widehat{\theta} - \text{E}[\widehat{\theta}] + \text{E}[\widehat{\theta}] - \theta)^2] \\ &= \text{E}[(\widehat{\theta} - \text{E}[\widehat{\theta}])^2] + \text{E}[2(\widehat{\theta} - \text{E}[\widehat{\theta}])(\text{E}[\widehat{\theta}] - \theta)] + \text{E}[(\text{E}[\widehat{\theta}] - \theta)^2] \\ &= \text{Var } \widehat{\theta} + \text{bias}^2. \end{aligned}$$

MSE is an overall measurement of the quality of the estimator. This means that under the same MSE, estimators with lower bias have a larger variance, and vice versa. This is called the bias-variance trade-off. Therefore, depending on the context, we might prefer a smaller bias or smaller variance.

Here we analyze the mean and variance for unbiased estimators that we have seen in lectures and assignments. For now on, suppose we have sample  $X_1, \ldots, X_n$  from a population X with mean  $\mu$  and variance  $\sigma^2$ .

### Mean

The unbiased estimator for mean is given by

$$\widehat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

Then the mean and variance for this estimator are given by

$$E[\widehat{\mu}] = E\left[\frac{1}{n}\sum_{i=1}^{n} X_i\right] = \frac{1}{n}\sum_{i=1}^{n} E[X_i] = \mu,$$

$$\operatorname{Var}\widehat{\mu} = \operatorname{Var}\left(\frac{1}{n}\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} \frac{1}{n^2} \operatorname{Var} X_i = \frac{\sigma^2}{n}.$$

## Variance

The unbiased estimator for variance is given by

$$\widehat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2.$$

Then

$$\begin{split} \mathbf{E}[\widehat{\sigma^2}] &= \frac{1}{n-1} \mathbf{E} \left[ \sum_{i=1}^n X_i^2 - 2X_i \overline{X} + \overline{X}^2 \right] \\ &= \frac{1}{n-1} \mathbf{E} \left[ \sum_{i=1}^n X_i^2 - n \overline{X}^2 \right] \\ &= \frac{1}{n-1} \left( \sum_{i=1}^n \mathbf{E}[X_i^2] - n \mathbf{E}[\overline{X}^2] \right) \\ &= \frac{1}{n-1} \left( n(\sigma^2 + \mu^2) - n \left( \frac{\sigma^2}{n} + \mu^2 \right) \right) \\ &= \sigma^2. \end{split}$$

For variance of this estimator, we have

$$\operatorname{Var} \widehat{\sigma^2} = \operatorname{Var} \left( \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2 \right)$$
$$= \operatorname{E} \left[ \left( \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2 - \sigma^2 \right)^2 \right].$$

Rewriting sample variance as

$$S^{2} = \frac{1}{n-1} \left( \sum_{i=1}^{n} X_{i}^{2} - \frac{1}{n} \left( \sum_{i=1}^{n} X_{i} \right)^{2} \right)$$

$$= \frac{1}{n(n-1)} \left( (n-1) \sum_{i=1}^{n} X_{i}^{2} - 2 \sum_{i < j} X_{i} X_{j} \right)$$

$$= \frac{1}{n(n-1)} \sum_{i < j} (X_{i} - X_{j})^{2},$$

we have

$$\begin{split} \mathbf{E}[(\widehat{\sigma^2} - \sigma^2)^2] &= \mathbf{E}[S^4 - 2\sigma^2 S^2 + \sigma^4] \\ &= \mathbf{E}\left[\left(\frac{1}{n(n-1)} \sum_{i < j} (X_i - X_j)^2\right)^2\right] - \sigma^4 \\ &= \mathbf{E}\left[\left(\frac{1}{n(n-1)} \sum_{i < j} (X_i - X_j)^2\right) \left(\frac{1}{n(n-1)} \sum_{p < q} (X_p - X_q)^2\right)\right] - \sigma^4. \end{split}$$

Expanding the product above, we can have the following cases regarding the values of i, j and p, q. Denote the kth moment of X as  $E[X^k] = m_k$ .

• i = j, p = q. Since  $X_i$  and  $X_j$  are independent,

$$E[(X_i - X_j)^4] = E[X_i^4 - 4X_i^3 X_j + 6X_i^2 X_j^2 - 4X_i X_j^3 + X_j^4]$$
  
=  $2m_4 - 8m_1 m_3 + 6m_2^2$ .

There are  $\frac{n(n-1)}{2}$  ways of choosing i, j, and thus there are the same number of such terms.

•  $|\{i,j\} \cap \{p,q\}| = 1$ .  $|\cdot|$  is the cardinality of set. Suppose for now that j = q.

$$E[(X_i - X_j)^2 (X_p - X_q)^2] = E[(X_i X_p - X_i X_q - X_p X_q + X_q^2)^2]$$

$$= E[X_i^2 X_p^2 + X_i^2 X_q^2 + X_p^2 X_q^2 + X_q^4 - 2X_i^2 X_p X_q - 2X_i X_p^2 X_q + 2X_i X_p X_q^2 + 2X_i X_p X_q^2 - 2X_i X_q^3 - 2X_p X_q^3]$$

$$= m_4 + 3m_2^2 - 4m_1 m_3.$$

There are n(n-1)(n-2) ways of such terms.

•  $\underline{i \neq j \neq p \neq q}$ . Since the four variables are independent,

$$E[(X_i - X_j)^2 (X_p - X_q)^2] = (E[(X_i - X_j)^2])^2$$

$$= (E[X_i^2 - 2X_i X_j + X_j^2])^2$$

$$= (2m_2 - 2m_1^2)^2$$

$$= 4m_2^2 - 8m_1^2 m_2 + 4m_1^4.$$

There are  $\frac{n(n-1)(n-2)(n-3)}{4}$  ways of choosing i, j, p, q, and thus there are the same number of such terms.

Summing up, we have

$$E[\widehat{\sigma^2}] = \frac{1}{n^2(n-1)^2} E\left[\left(\sum_{i< j} (X_i - X_j)^2\right)^2\right]$$

$$= \frac{1}{n} \left(m_4 - 4m_1m_3 - \frac{n-3}{n-1}m_2^2 + \frac{4(2n-3)}{n-1}m_1^2m_2 - \frac{2(2n-3)}{n-1}m_1^4\right),$$

which coincides with what is given in Assignment 4.2, where

$$\frac{1}{n} \left( \gamma_2 + \frac{2n}{n-1} \right) \sigma^4 = \frac{1}{n} \left( \mathbb{E}[(X - \mu)^4] - \frac{n-3}{n-1} (m_2 - m_1^2)^2 \right) 
= \frac{1}{n} \left( \mathbb{E}[X^4 - 4X^3 \mu + 6X^2 \mu^2 - 4X\mu^3 + \mu^4] - \frac{n-3}{n-1} (m_2 - m_1^2)^2 \right) 
= \frac{1}{n} \left( m_4 - 4m_1 m_3 + 6m_1^2 m_2 - 3m_1^4 - \frac{n-3}{n-1} (m_1^4 - 2m_1^2 m_2 + m_2^2) \right) 
= \frac{1}{n} \left( m_4 - 4m_1 m_3 + \frac{8n-12}{n-1} m_1^2 m_2 - \frac{n-3}{n-1} m_2^2 - \frac{4n-6}{n-1} m_1^4 \right).$$