Analyse Fonctionnelle pour Physiciens

Baptiste Claudon January 19, 2021

Notes personnelles basées sur le cours de Simon Bossoney. Suit les cours d'Analyse I à III de Joachim Stubbe et le cours d'Analyse IV de Matthias Ruf.

Contents

I E	spaces Fonctionnels	
I.	Le théorème de Stone-Weierstrass	3
II.	Systèmes complets et orthonormés	5
II I	Mesures et intégrales	
III.	Séparation et partition	6
IV.	Mesures et fonctionnelles positives	7
V.	Résultats de densité	11
III	Opérateurs bornés	
VI.	Spectre des opérateurs bornés	13
VII.	Le calcul fonctionnel	14
VIII.	Décomposition Spectrale	14
IV	Opérateurs Non-bornés	
IX.	Notions fondamentales des opérateurs non-bornés	16
X.	Les théorèmes de Banach-Steinhaus et du graphe fermé	16
XI.	Le coeur et l'adjoint essentiel	18
XII.	Décomposition spectrale d'opérateurs non-bornés	19

Part I

Espaces Fonctionnels

I. LE THÉORÈME DE STONE-WEIERSTRASS

Théorème 1. Théorème de Diniz Soit (f_n) une suite de fonctions réelles et continues définies sur un compact $K \subset \mathbb{R}^n$ et convergent simplement et de manière monotone vers $f \in C(K,\mathbb{R})$. Alors cette suite converge uniformément vers f.

Preuve. Choisir, sans perte de généralité que (f_n) est décroissante et converge simplement vers 0. Soit $\epsilon > 0$. Poser pour $n \in \mathbb{N}$:

$$V_n = \{ x \in K : f_n(x) < \epsilon \} \tag{1}$$

Par continuité des fonctions de la suite, tous ces ensembles sont des ouverts. Puisque la suite tend vers 0, on a :

$$K = \bigcup_{n \in \mathbb{N}} V_n \tag{2}$$

K étant compact, il existe un nombre $F \in \mathbb{N}$ tel que

$$K = \bigcup_{n=0}^{F} V_n = K \tag{3}$$

Puisque la suite est monotone décroissante, on a que m < n implique $V_m \subseteq V_n$, donc $V_F = K$.

Définition 1. Soit F une famille de fonctions définies sur un ensemble $X \subset \mathbb{R}^n$. On dit que F sépare X si :

$$\forall x, y \in X, x \neq y, \exists f \in F : f(x) \neq f(y) \tag{4}$$

Définition 2. On dit que F ne s'annule pas sur X si :

$$\forall x \in X \exists f \in F : f(x) \neq 0 \tag{5}$$

Définition 3. Si B est un sous-ensemble d'une \mathbb{K} -algèbre A, alors la \mathbb{K} -algèbre engendrée par B, $\mathcal{A}_{\mathbb{K}}(B)$ est la plus petite \mathbb{K} -algèbre contenant B.

Théorème de Stone-Weierstrass Soit $X \subset \mathbb{R}^n$ un ensemble compact et soit $F \subseteq C(X, \mathbb{R})$ une famille de fonctions qui sépare X et qui ne s'annule pas sur X. Alors l'algèbre réelle $\mathcal{A}_{\mathbb{K}}(F)$ engendrée par F est uniformément dense dans $C(X, \mathbb{R})$:

$$\overline{\mathcal{A}_{\mathbb{K}}(F)}^{||\cdot||_{\infty}} = C(X, \mathbb{R}) \tag{6}$$

Preuve.

Lemme 1. Il existe une suite (P_n) de polynômes sur [-1,1] qui converge uniformément vers x. Définir la suite de polynômes par $P_0 = 0$ et :

$$\forall n \ge 0: P_{n+1}(x) = P_n(x) + \frac{1}{2}(x^2 - P_n(x)^2)$$
(7)

On déduit alors par récurrence que $\forall n \in \mathbb{N}, \forall x \in [-1,1]: 0 \leq P_n(x) \leq |x|$. Alors, on déduit que la suite (P_n) est croissante. Puisque qu'elle est majorée elle doit converger. La limite doit être point fixe de l'application donc est $x \mapsto |x|$. Par le théorème de Diniz 1, la convergence est uniforme.

Lemme 2. Si $f, g_i \in \overline{\mathcal{A}(F)}$, i = 1, ..., n, alors |f|, $\min_{i=1,...,n} g_i$, $\max_{i=1,...,n} g_i$ appartiement aussi à $\overline{\mathcal{A}(F)}$.

Si $f \neq 0$, poser $h = \frac{f}{||f||}$. Noter $h \in \overline{\mathcal{A}(F)}$ et a son image dans [-1,1]. Par le lemme 1, il existe un polynôme P tel que P(h) converge uniformément vers $\frac{|f|}{||f||}$. Pour $g_1, g_2 \in \overline{\mathcal{A}(F)}$, utiliser :

$$\min\{g_1, g_2\} = \frac{f + g + |f - g|}{2} \tag{8}$$

et

$$\max\{g_1, g_2\} = \frac{f + g - |f - g|}{2} \tag{9}$$

Conclure alors récursivement.

Lemme 3. Pour tous $x, y \in X$ et $x \neq y$, et pour tout couple de réels α, β , il existe un élément $f \in \mathcal{A}(F)$ tel que $f(x) = \alpha$ et $f(y) = \beta$.

Avec les hypothèses du théorème, pour z=x,y, il existe $h_z\in F:h_z(x)\neq 0.$ Il existe également $g\in F$ tel que $g(x)\neq g(y).$ La fonction :

$$f: X \to \mathbb{R}, t \mapsto \alpha \frac{g(t) - g(y)}{g(x) - g(y)} \frac{h_x(t)}{h_x(x)} + \beta \frac{g(t) - g(x)}{g(y) - g(x)} \frac{h_y(t)}{h_y(y)}$$
(10)

satisfait les hypothèses du lemme.

Lemme 4. Soient $f \in C(X,\mathbb{R}), x_0 \in X$ et $\epsilon > 0$. Alors il existe $g_{x_0,\epsilon} \in \overline{\mathcal{A}(F)}$:

$$g_{x_0,\epsilon}(x_0) = f(x_0) \text{ et } g_{x_0,\epsilon} < f + \epsilon$$
 (11)

Grâce au lemme 3, pour chaque $y \in X \setminus \{x_0\}$, on peut choisir $h_y \in \mathcal{A}(F)$ telle que $f(y) = h_y(y)$ et $f(x_0) = f_y(x_0)$. Puisque h_y et f sont continues, l'ensemble :

$$U_y = \{x \in X : h_y(x) < f(x) + \epsilon\}$$

$$\tag{12}$$

est un ouvert. Puisque $\forall y \in X, y \in U_y$, on a (l'inclusion réciproque étant explicite) :

$$X = \bigcup_{y \in X} U_y \tag{13}$$

Comme X est compact, il existe une sous-collection d'ouvert finie $\{U_{y_i}\}_{1\leq i\leq p}$ telle que :

$$X = \bigcup_{i=1}^{p} U_y \tag{14}$$

Poser alors $g_{x_0,\epsilon} = \max_{i=1,\dots,p} h_{y_i}$. Cette fonction satisfait les hypothèses du lemme et appartient à l'algèbre engendrée par le lemme 2.

Lemme 5. Soient $f \in C(X, \mathbb{R})$ et $\epsilon > 0$. Il existe une fonction $g \in \overline{\mathcal{A}(F)}$ telle que $f - \epsilon \leq g \leq f + \epsilon$.

Par le lemme 4, on peut choisir pour tout $x \in X$ une fonction $g_{x,\epsilon} \in \overline{\mathcal{A}(F)}$ telle que $g_{x,\epsilon}(x) = f(x)$ et $g_{x,\epsilon} < f + \epsilon$. Pour chaque $x \in V$, définir :

$$V_x = \{ z \in X : f(x) - \epsilon < q_{x,\epsilon}(z) \}$$

$$\tag{15}$$

Puisque $g_{x,\epsilon}$ est définie comme le maximum de plusieurs fonctions continues, elle est continue. V_x est donc ouvert pour chaque $x \in X$. Procédant comme auparavant, remarquer que l'union des membres de la famille d'ouverts vaut X, en extraire une sous-famille finie. Définir cette fois g comme le minimum des fonctions sélectionnées. Par le lemme g, $g \in \overline{\mathcal{A}(F)}$. Elle vérifie de plus les propriétés recherchées par le lemme, et plus généralement par le théorème de Stone-Weierstrass.

Corollaire 1. Soit $X \subset \mathbb{R}^n$ un ensemble compact et $F \subseteq C(X,\mathbb{C})$ une famille de fonction qui sépare X, invariante sous conjugaison complexe et qui ne s'annule pas sur X. Alors l'algèbre complexe $\mathcal{A}_{\mathbb{C}}(F)$ engendrée par F est uniformément dense dans $C(X,\mathbb{C})$, c'est-à-dire $f \in \overline{\mathcal{A}(F)}$.

Preuve. On a $F = F^*$ car :

$$F^* \subseteq F = (F^*)^* \subseteq F^* \tag{16}$$

Comme F sépare X et ne s'annule pas sur X, $G = (F + F^*) \cup i(F - F^*)$ ne s'annule pas sur X non plus et sépare aussi X. Or $F \subseteq C(X,\mathbb{R})$ et par le théorème de Stone-Weierstrass 2, $C(X,\mathbb{R}) = \overline{\mathcal{A}_{\mathbb{R}}(G)}$. Comme $C(X,\mathbb{C}) = C(X,\mathbb{R}) + iC(X,\mathbb{R})$ et que $\overline{\mathcal{A}_{\mathbb{R}}(G)}$, $i\overline{\mathcal{A}_{\mathbb{R}}(G)} \subset \overline{\mathcal{A}_{\mathbb{C}}(G)}$, on a que $C(X,\mathbb{C}) = \overline{\mathcal{A}_{\mathbb{C}}(G)}$. Or : $\mathcal{A}_{\mathbb{C}}(G) = \mathcal{A}_{\mathbb{C}}(F)$.

Corollaire 2. Soit $X \subset \mathbb{R}$ un ensemble compact. L'ensemble $\mathbb{C}[X]$ est uniformément dense dans $C(X,\mathbb{C})$.

Preuve. $\mathbb{C}[X] = \mathcal{A}_{\mathbb{C}}(\{1, id_X\})$ vérifie les hypothèses du corollaire 1.

Corollaire 3. Soit I = [a, b] un intervalle fermé de \mathbb{R} . L'algèbre engendrée sur les complexes par F défini comme :

$$F = \left\{ e^{2\pi n i \frac{x-a}{b-a}}, x \in I, n \in \mathbb{N} \right\}$$
 (17)

est uniformément dense dans $V = \{f : f \in C([a,b],\mathbb{C}), f(a) = f(b)\}.$

Preuve. La fonction φ définie par :

$$\varphi: [a,b] \to \partial B_1(0), x \mapsto e^{2\pi n i \frac{x-a}{b-a}}$$
(18)

induit un homéomorphisme isométrique $\Phi: C(\partial B_1(0), \mathbb{C}) \to V, f \mapsto f \circ \varphi.$ Or, $C(\partial B_1(0), \mathbb{C}) = \overline{\mathcal{A}_{\mathbb{C}}(\{1, z \mapsto z, z \mapsto z^*\})}$ puisque $\{1, z \mapsto z, z \mapsto z^*\}$ satisfait les hypothèses du corollaire 1 et $F = \Phi|_{\mathcal{A}_{\mathbb{C}}(\{1, z \mapsto z, z \mapsto z^*\})}.$

II. SYSTÈMES COMPLETS ET ORTHONORMÉS

Définition 4. Soit \mathcal{H} un \mathbb{K} -espace vectoriel. Une famille $F \subseteq \mathcal{H}$ est dite complète si l'ensemble $\mathrm{Vect}(F)$ des combinaisons linéaires d'éléments de F est un ensemble dense de \mathcal{H} .

Théorème 3. Soit \mathcal{H} un espace de Hilbert sur \mathbb{K} séparable. Soit $B = \{\varphi_n\}_{n \in I}$ une famille de vecteurs othonormée. Alors $|B| \leq |\mathbb{N}|$.

Preuve. Puisque \mathcal{H} est séparable, il existe une famille $D = \{\psi_n\}_{n \in \mathbb{N}} \subset \mathcal{H}$ dense dans \mathcal{H} . Il existe alors pour chaque $\varphi_k \in B$ un élément de $\psi_k \in D$ tel que $||\varphi_k - \psi_k|| \le 1/\sqrt{2}$. Si $\varphi_k \neq \varphi_l$, alors par orthonormalité $||\varphi_k - \varphi_l||^2 = 2$ est par conséquent, $||\varphi_k - \varphi_l|| = \sqrt{2}$. Mais alors, $\psi_k \neq \psi_l$ puisque la supposition contraire entraînerait $||\varphi_k - \varphi_l|| \le ||\varphi_k - \psi_k|| + ||\varphi_l - \psi_k|| < \sqrt{2}$, une contradiction. On a alors une fonction injective de B dans D.

Théorème 4. Soit \mathcal{H} un espace de Hilbert séparable. Il existe alors un système complet et orthonormé $\{b_n\}_{n\in I}$ avec $I\subseteq\mathbb{N}$.

Preuve. Comme \mathcal{H} est séparable, il existe une famille $D = \{d_n\}_{n \in \mathbb{N}}$ dense dans \mathcal{H} . On va itérativement construire une famille $\{v_n\}_{n \in J} \subseteq D$ de la manière suivante :

$$\varphi(n+1) = \inf\{k \in \mathbb{N} : k > \varphi(n) \text{ et } d_k \notin \text{Vect}[v_0, ..., v_n]\}$$
(19)

$$\varphi(0) = 0, v_{n+1} = d_{\varphi(n+1)} \tag{20}$$

Clairement, la famille $\{v_n\}_{n\in\mathbb{J}}$ est formée de vecteurs linéairement indépendants. De plus, $\mathrm{Vect}[v_n]_{n\in J}$ est dense dans \mathcal{H} , puisque $D\subseteq \mathrm{Vect}[v_n]_{n\in J}$. On forme maintenant une famille de vecteurs orthonormés à partir de $\{v_n\}_{n\in J}$ et $\mathrm{Vect}[v_n]_{n\in J}$.

$$b_n = \frac{1}{||v_n - \sum_{k=0}^{n-1} \langle b_k, v_n \rangle b_k||} \left(v_n - \sum_{k=0}^{n-1} \langle b_k, v_n \rangle b_k \right)$$
(21)

Manifestement, $\{b_n\}_{n\in J}$ est une famille de vecteurs orthonormés et $\text{Vect}[b_n]_{n\in J} = \text{Vect}[v_n]_{n\in J}$, de sorte de $\{b_n\}_{n\in J}$ forme un système complet.

Théorème 5. Soit $\{b_n\}_{n\in B}$, $B\subseteq \mathbb{N}$ une famille de vecteurs orthonormés d'un espace de Hilbert \mathcal{H} séparable. Alors, les affirmations suivantes sont équivalentes :

- 1. $\{b_n\}_{n\in B}$ est complet
- 2. $\forall x \in \mathcal{H}, \ x = \sum_{n \in B} \langle b_n, x \rangle b_n$
- 3. $\forall x, y \in \mathcal{H}, \langle x, y \rangle = \sum_{n \in B} \langle x, b_n \rangle \langle b_n, y \rangle$

Preuve. Montrer que 1. \Longrightarrow 2.. Pour $F \subseteq B$, $|F| < \infty$, former les espaces $V_F = \text{Vect}[\{b_n\}_{n \in F}]$. Tous ces espaces sont des sous-espaces vectoriels de \mathcal{H} fermés, complets et convexes. $\{b_n\}_{n \in B}$ étant complet, $\bigcup_{F \subseteq B: |F| < \infty} V_F$ est dense dans \mathcal{H} . Soient $x \in \mathcal{H}$, $\epsilon > 0$. Il existe alors un $y \in V_F$ tel que $||x - y|| < \epsilon$. A fortiori, notant x_{V_F} la projection de x sur V_F (et de même pour G ensuite), $||x - x_{V_F}|| < \epsilon$, et si $F \subseteq G \subseteq B$, $|G| < \infty$, on a :

$$||x - x_{V_G}|| = \inf\{||x - y|| : y \in V_G\} \le \inf\{||x - y|| : y \in V_F\} < \epsilon$$
(22)

C'est-à-dire, les projections de x sur les V_F convergent vers x. Poser $x_{V_F} = \sum_{n \in F} \lambda_n b_n$. Puisque $x - x_{V_F} \perp V_F$, on doit avoir pour $b_m \in V_F$:

$$0 = \langle x, b_m \rangle - \overline{\lambda} \langle b_m, b_m \rangle \tag{23}$$

d'où $\lambda_m = \langle b_m, x \rangle$ et enfin :

$$x = \lim_{n \to \infty} \sum_{k \in B, k \le n} \langle b_k, x \rangle b_k \tag{24}$$

Montrer que 2. \implies 3.

$$\langle x, y \rangle = \sum_{n \in B} \sum_{m \in B} \langle b_n, x \rangle \langle y, b_m \rangle \langle b_n, b_m \rangle = \sum_{n \in B} \langle x, b_n \rangle \langle b_n, y \rangle \tag{25}$$

Montrer que 3. \Longrightarrow 1.. En posant x=y, on obtient $||x||=\sum_{n\in B}|\langle x,b_n\rangle|^2<\infty$. Ainsi, la suite $\left(\sum_{k\in B,k\leq n}\right)_{n\in\mathbb{N}}\langle b_k,x\rangle b_k$ est une suite de Cauchy dont on a clairement la limite x car $(\langle x,b_k\rangle)_{k\in B}$ est une suite dans $l^2(B)$.

Part II

Mesures et intégrales

III. SÉPARATION ET PARTITION

Pour $A \subseteq \mathbb{R}^n$ et $x \in \mathbb{R}^n$, poser $d : \mathbb{R}^n \times \mathcal{P}(\mathbb{R}^n) \to \mathbb{R}^+$:

$$(x,A) \mapsto \inf\{|x-y| : y \in A\} \tag{26}$$

Théorème 6. Soit $A \subseteq \mathbb{R}^n$. Alors la fonction $d_A : \mathbb{R}^n \to \mathbb{R}^+$:

$$x \mapsto d(x, A) \tag{27}$$

est continue.

Preuve. Soit $A \neq \emptyset$. Soit $\epsilon > 0$ et $x, y \in \mathbb{R}^n$ tels que $|x - y| < \delta$. Supposer (autrement inverser les rôles) que $d_A(y) \leq d_A(x)$. Utilisant l'inégalité triangulaire :

$$|d_A(x) - d_A(y)| = \inf_{z \in A} d(x, z) - \inf_{z \in A} d(y, z) \le d(x, y) + \inf_{z \in A} d(y, z) - \inf_{z \in A} d(y, z) < \delta$$
(28)

Prendre
$$\delta = \epsilon$$
.

Définition 5. Un ensemble de \mathbb{R}^n est dit relativement compact si sa fermeture est compact.

Lemme 6. Soit un compact $K \subset \mathbb{R}^n$. Il existe alors un ouvert U relativement compact tel que $K \subset U$.

Preuve. Si $K = \emptyset$, prendre $U = B_1(x), x \in \mathbb{R}^n$. Sinon, considérer la famille d'ouverts $\{B_1(x)\}_{x \in K}$ qui recouvre K. Extraire une sous-famille finie $F \subset K$ qui recouvre K. L'ouvert :

$$U = \bigcup_{x \in F} B_1(x) \tag{29}$$

satisfait aux exigences du lemme.

Définition 6. Soient $K \subset V \subseteq \mathbb{R}^n$, avec K compact et V ouvert. On dit qu'une fonction $f \in C_c(\mathbb{R}^n, [0, 1])$ sépare K de $\mathbb{R}^n \setminus V$ et note $K \prec f \prec V$, si $f^{-1}\{1\}$ est un voisinage de K et si $\operatorname{supp}(f) \subset V$.

Lemme 7. Lemme d'Urysohn Soient $K \subset V \subseteq \mathbb{R}^n$, avec K compact et V ouvert. Il existe alors une fonction f telle que $K \prec f \prec V$.

Preuve. Par le lemme 6, il existe un ouvert U contenant K relativement compact. Remplaçant si nécessaire V par $V \cap U$, on peut supposer que V est relativement compact. La fonction :

$$g(x) = \frac{d(x, \mathbb{R}^n \setminus V)}{d(x, \mathbb{R}^n \setminus V) + d(x, K)}$$
(30)

est manifestement définie pour tout $x \in \mathbb{R}^n$ et continue comme combinaison de fonctions continues. De plus, $g|_K = 1$ et $g|_{\mathbb{R}^n \setminus V} = 0$. Soient alors les ouverts $W = g^{-1}[2/3, 1]$ et $U = g^{-1}[1/3, 1]$. Clairement, $K \subset W \subset \overline{U} \subset V$ et la fonction :

$$f(x) = \frac{d(x, \mathbb{R}^n \setminus U)}{d(x, \mathbb{R}^n \setminus U) + d(x, W)}$$
(31)

satisfait aux critères du lemme.

Définition 7. Soit K un compact de \mathbb{R}^n et $\{V_n\}_{1 \leq n \leq m}$ une collection finie d'ensembles ouverts qui recouvrent K. Une famille de m fonctions $f_n \prec V_n$ telles que :

$$\sum_{n=1}^{m} f_n(x) = 1, \forall x \in K \tag{32}$$

est appelée une partition de K subordonnée au recouvrement $\{V_n\}_{1 \le n \le m}$.

Corollaire 4. Soit $K \subset \mathbb{R}^n$ compact et $\{V_n\}_{1 \leq n \leq m}$ une collection finie d'ensembles ouverts qui recouvrent K. Il existe alors une partition de K subordonnée à $\{V_n\}_{1 \leq n \leq m}$.

Preuve. Soit $x \in K$. Il existe V_{n_x} du recouvrement tel que $x \in V_n$. Par le lemme d'Urysohn 7, il existe une fonction g_x telle que $\{x\} \prec g_x \prec V_{n_x}$. L'ensemble $K_x = g_x^{-1}\{1\}$ est alors un voisinage compact de $\{x\}$. Comme K est compact et puisque $\{K_x\}_{x\in K}$ recouvre K, il existe une sous-collection finie $\{K_{x_j}\}_{j=1,\dots,p}$ qui recouvre K. Pour chaque V_n du recouvrement initiale, poser :

$$C_n = \bigcup_{K_{x_j} \subset V_n, 1 \le i \le p} K_{x_j} \tag{33}$$

Tous les C_n sont compacts et leur collection recouvre K. De plus, $C_n \subset V_n$, n=1,...,m. Une nouvelle application du lemme d'Urysohn livre alors m fonctions h_n telles que $C_n \prec h_n \prec V_n$. Poser alors $f_1 = h_1$ et $f_n = h_n \prod_{k=1}^{n-1} (1-h_k)$, pour $n \geq 2$. Clairement, $f_n \prec V_n$ pour n=1,...,m et :

$$\sum_{n=1}^{m} f_n = 1 - \prod_{n=1}^{m} (1 - h_n) \tag{34}$$

De plus, si $x \in K$, $x \in C_n$ pour au moins un n, de sorte que $h_n(x) = 1$, c'est-à-dire la propriété espérée.

IV. MESURES ET FONCTIONNELLES POSITIVES

Définition 8. Une fonctionnelle $\Phi: C_c(\mathbb{R}^n, \mathbb{R}) \to \mathbb{R}$ est dite positive si $f \geq 0$ implique $\Phi(f) \geq 0$.

Définition 9. Soit $\Phi: C_c(\mathbb{R}^n, \mathbb{R})$ une fonctionnelle positive. Soient $K, V \subset \mathbb{R}^n$ avec K compact, V ouvert. Définir :

$$\mu(K) = \inf\{\Phi(f) : K \prec f\} \in \mathbb{R}^+ \tag{35}$$

$$\mu(V) = \sup\{\Phi(f) : f \prec V\} \in \mathbb{R}^+ \cup \{\infty\}$$
(36)

Lemme 8. Soient $K, V \subset \mathbb{R}^n$, K compact, V ouvert. Alors :

$$\mu(K) = \inf\{\mu(W) : K \subset W, W \text{ ouvert}\}\tag{37}$$

$$\mu(V) = \sup\{\mu(C) : C \subset V, C \text{ compact}\}$$
(38)

Preuve. Si $K \subset W \subset \mathbb{R}^n$, K compact, W ouvert, alors par le lemme d'Urysohn 7, il existe une fonction $K \prec f \prec W$. Puisque $f^{-1}\{1\}$ est un voisinage de K, on a :

$$\mu(K) = \inf\{\Phi(f) : K \prec f\} \ge \inf\{\mu(U) : K \subset U, U \text{ ouvert}\} \ge \mu(K)$$
(39)

Similairement, puisque pour une fonction $f \prec V$, on a $supp(f) \subset V$ et que supp(f) est compact, on :

$$\mu(V) = \sup\{\Phi(f) : f \prec V\} \le \sup\{\mu(C) : C \subset V, C \text{ compact}\} \le \mu(V) \tag{40}$$

Définition 10. On définit une mesure intérieure $\mu_* : \mathcal{P}(\mathbb{R}^n) \to \mathbb{R}_+ \cup \{\infty\}$ et une mesure extérieure $\mu^* : \mathcal{P}(\mathbb{R}^n) \to \mathbb{R}_+ \cup \{\infty\}$ par :

$$\mu_*(E) = \sup\{\mu(K) : K \subseteq E, K \text{ compact}\} \text{ et } \mu^*(E) = \inf\{\mu(V) : E \subseteq V, V \text{ ouvert}\}$$

$$\tag{41}$$

Lemme 9. Si $\{F_n\}_{n\in\mathbb{N}}$ est une suite de sous-ensembles de nombres réels positifs, alors :

$$\inf \left\{ \sum_{n=0}^{\infty} a_n | \forall k : a_k \in F_k \right\} = \sum_{n=0}^{\infty} \inf F_n \in \mathbb{R}_+ \cup \{\infty\}$$
 (42)

Preuve. Noter A le terme de gauche, B le terme de droite. D'abord, remarquer que B minore l'ensemble $\{\sum_{n=0}^{\infty} a_n | \forall k : a_k \in F_k\}$ donc $B \leq A$. Si $B = \infty$, alors A = B. Supposer donc $B < \infty$. Alors, $\forall n \geq 0$, inf $F_n < \infty$. Soit x > B et poser $\epsilon = x - B$.

$$\forall n \in \mathbb{N}, \exists a_n \in F_n : a_n < \inf F_n + \epsilon/2^{n+1} \tag{43}$$

Alors,
$$A \leq \sum_{n \geq 0} a_n \leq B + \epsilon = x$$
. Puisque x est arbitraire, $A \leq B$.

Lemme 10. La mesure intérieure μ_* est sur-additive alors que la mesure extérieure est sous-additive. C'est-à-dire que si $\{E_n\}_{n\in\mathbb{N}}$ est une suite de sous-ensembles de \mathbb{R}^n deux à deux disjoints, on a :

$$\mu_* \left(\bigcup_{n=0}^{\infty} E_n \right) \ge \sum_{n=0}^{\infty} \mu_*(E_n) \tag{44}$$

et

$$\mu^* \left(\bigcup_{n=0}^{\infty} E_n \right) \le \sum_{n=0}^{\infty} \mu^*(E_n) \tag{45}$$

Preuve. Pour montrer la première inégalité, il suffit de montrer que pour tout $m \in \mathbb{N}$:

$$\mu_* \left(\bigcup_{n=0}^m E_n \right) \ge \sum_{n=0}^m \mu_*(E_n)$$
 (46)

Par définition de la mesure extérieure,

$$\sum_{n=0}^{m} \mu_*(E_n) = \sup \left\{ \sum_{n=0}^{m} \mu(K_n) : K_n \subseteq E_n, K_n \text{ compact} \right\}$$

$$\tag{47}$$

Puisque l'union finie de compact est contenue dans l'union finie des $(E_n)_{n=0}^m$, il suffit de montrer que :

$$\mu\left(\bigcup_{n=0}^{m} K_n\right) \ge \sum_{n=0}^{m} \mu(K_n) \tag{48}$$

Plus simplement, il suffit de montrer que pour deux compacts disjoints K_1 et K_2 , $\mu(K_1 \cup K_2) \ge \mu(K_1) + \mu(K_2)$. Soit alors $K_1 \cup K_2 \prec f$. Comme K_1 est disjoint de K_2 , le lemme d'Urysohn 7 assure qu'il existe f_1 telle que $K_1 \prec f_1 \prec \mathbb{R}^N \backslash K_2$. Par le même argument, il existe f_2 telle que $K_2 \prec f_2 \prec \mathbb{R}^N \backslash \sup(f_1)$. Alors $K_1 \cup K_2 \prec f(f_1 + f_2) \leq f$, $K_1 \prec ff_1$ et $K_2 \prec ff_2$, de sorte que :

$$\Phi(f) \ge \Phi(ff_1) + \Phi(ff_2) \ge \mu(K_1) + \mu(K_2) \tag{49}$$

En prenant l'infimum sur toutes les fonctions f, on trouve $\mu(K_1 \cup K_2) \ge \mu(K_1) + \mu(K_2)$. Soit maintenant une suite d'ouverts $\{V_n\}_{n \in \mathbb{N}}$, $E_n \subseteq V_n$. Clairement, $\bigcup_{n=0}^{\infty} E_n \subseteq \bigcup_{n=0}^{\infty} V_n$. Soit $f \prec \bigcup_{n=0}^{\infty} V_n$. Puisque f est à support compact, le corollaire 4 implique qu'il existe une partition $(f_n)_{n=0}^m$ de supp(f) subordonnée au recouvrement fini $\{V_n\}_{n=0}^m$. Alors:

$$\Phi(f) = \Phi\left(f\sum_{n=0}^{m} f_n\right) = \sum_{n=0}^{m} \Phi(ff_n) \le \sum_{n=0}^{m} \mu(V_n) \le \sum_{n=0}^{\infty} \mu(V_n)$$
(50)

Il suit en prenant l'infimum à gauche :

$$\mu\left(\bigcup_{n=0}^{\infty} V_n\right) \le \sum_{n=0}^{\infty} \mu(V_n) \tag{51}$$

Par le lemme 9:

$$\mu^* \left(\bigcup_{n=0}^m E_n \right) \le \inf \left\{ \mu \left(\bigcup_{n=0}^m V_n \right) : \forall k, E_k \subseteq V_k \right\} \le \inf \left\{ \sum_{n=0}^\infty \mu(V_n) : \forall k, E_k \subseteq V_k \right\} = \sum_{n=0}^\infty \mu^*(E_n)$$
 (52)

Définition 11. Soit $\Phi: C_c(\mathbb{R}^N, \mathbb{R}) \to \mathbb{R}$ une fonctionnelle positive ainsi que ses mesures intérieures et extérieures μ_* et μ^* . Un ensemble $E \subseteq \mathbb{R}^N$ est dit mesurable si et seulement si pour tout compact $K \subset \mathbb{R}^N$:

$$\mu_*(K \cap E) = \mu^*(K \cap E) \tag{53}$$

La collection des ensembles mesurables est dénotée Σ .

Lemme 11. Soit $\{E_n\}_{n\in\mathbb{N}}\subseteq\Sigma$ une suite d'ensembles mesurables deux à deux disjoints. Alors $\bigcup_{n=0}^{\infty}E_n\in\Sigma$ et :

$$\mu_* \left(\bigcup_{n=0}^{\infty} E_n \right) = \sum_{n=0}^{\infty} \mu_*(E_n) \tag{54}$$

Preuve. Commencer par montrer que l'union des $\{E_n\}$ est dans Σ . Prendre $K \subset \mathbb{R}^n$ compact. Alors :

$$\mu_* \left(K \cap \bigcup_{n \in \mathbb{N}} E_n \right) = \mu_* \left(\bigcup_{n \in \mathbb{N}} K \cap E_n \right)$$

$$\leq \mu^* \left(\bigcup_{n \in \mathbb{N}} K \cap E_n \right), \text{ car } \mu_* \leq \mu^*$$

$$\leq \sum_{n \in \mathbb{N}} \mu^* (K \cap E_n), \text{ par sous-additivit\'e 10}$$

$$= \sum_{n \in \mathbb{N}} \mu_* (K \cap E_n), \text{ car } E_n \in \Sigma$$

$$\leq \sum_{n \in \mathbb{N}} \mu_* (E_n), \text{ par monotonie}$$

$$\leq \mu_* \left(\bigcup_{n \in \mathbb{N}} E_n \right), \text{ par sur-additivit\'e 10}$$
(55)

Ainsi, d'une part:

$$\mu_* \left(K \cap \bigcup_{n \in \mathbb{N}} E_n \right) \le \mu^* \left(K \cap \bigcup_{n \in \mathbb{N}} E_n \right) \le \sum_{n \in \mathbb{N}} \mu_* (K \cap E_n) \le \mu_* \left(K \cap \bigcup_{n \in \mathbb{N}} E_n \right)$$
 (56)

donc $\bigcup_{n\in\mathbb{N}} E_n \in \Sigma$. D'autre part, en prenant le supremum sur tous les compacts $K \subseteq \bigcup_{n\in\mathbb{N}} E_n$:

$$\mu_* \left(\bigcup_{n \in \mathbb{N}} E_n \right) \le \sum_{n \in \mathbb{N}} \mu_*(E_n) \le \mu_* \left(\bigcup_{n \in \mathbb{N}} E_n \right)$$
 (57)

Lemme 12. Soient $E, F \in \Sigma$, alors $E \setminus F \in \Sigma$.

Preuve. Soit $K \subset \mathbb{R}^N$ compact. Il reste à montrer que $\mu_*(K \cap (E \backslash F)) \ge \mu^*(K \cap (E \backslash F))$. Comme $K \cap (E \backslash F) \subseteq K$, $K \cap E \subseteq K$ et $K \cap F \subseteq K$, il existe des ouverts V_E et V_F de mesures extérieures finies tels que $K \cap E \subseteq V_E$ et $K \cap F \subseteq V_F$. Soient des compacts $K \subseteq K \cap E$ et $K \cap F \subseteq K \cap F$. On a alors :

$$K_E \backslash V_F \subseteq K \cap E \backslash K \cap F = K \cap (E \backslash F) \subseteq V_E \backslash K_F \tag{58}$$

Remarquer alors que $K_E \setminus V_F$ est compact, $V_E \setminus K_F$ est ouvert et que :

$$V_E \backslash K_F = (V_E \backslash K_E) \cup (K_E \backslash V_F) \cup (V_F \backslash K_F) \tag{59}$$

Par monotonie et sous-additivité de la mesure extérieure, on a :

$$\mu^{*}(K \cap (E \backslash F)) \leq \mu^{*}(V_{E} \backslash K_{F})$$

$$\leq \mu^{*}(V_{E} \backslash K_{E}) + \mu^{*}(K_{E} \backslash V_{F}) + \mu^{*}(V_{F} \backslash K_{F})$$

$$\leq \mu^{*}(V_{E}) - \mu^{*}(K_{E}) + \mu_{*}(K \cap (E \backslash F)) + \mu^{*}(V_{F}) - \mu^{*}(K_{F})$$
(60)

en utilisant la mesurabilité des compacts. Avec la mesurabilité de $K \cap E$ et $K \cap F$, on obtient de plus :

$$\inf\{\mu^*(V_E) - \mu^*(K_E) + \mu^*(V_F) - \mu^*(K_F) : K_E \subseteq K \cap E \subseteq V_E, K_F \subseteq K \cap F \subseteq V_F\} = 0$$
(61)

Théorème 7. Soit $\Phi: C_c(\mathbb{R}^N, \mathbb{R})) \to \mathbb{R}$ une fonctionnelle positive, sa mesure intérieure μ_* et extérieure μ^* ainsi sur les ensembles mesurables Σ . Alors Σ est une σ -algèbre borelienne. De plus μ définit alors une mesure régulière et complète sur Σ

Preuve. Clairement, $\emptyset \in \Sigma$. Le complémentaire d'une ensemble mesurable est mesurable par le lemme 12. Soit maintenant $\{E_n\}_{n\in\mathbb{N}}\subset\Sigma$. Poser $F_0=E_0$ et pour $n\geq 1$, $F_n=E_n\setminus(\bigcup_{0\geq m\geq n-1}F_m)$. $\{F_n\}_{n\in\mathbb{N}}\subset\Sigma$ par le lemme 11 et $\bigcup_{n\in\mathbb{N}}E_n=\bigcup_{n\in\mathbb{N}}E_n$. Ainsi, Σ est une σ -algèbre. Ensuite, puisque les fermés sont mesurables, les ouverts le sont aussi par le lemme 12,

c'est-à-dire Σ est borelienne. Montrer maintenant que μ définit bien une mesure sur Σ . Soit $E \in \Sigma$. Par sous-additivité de la mesure intérieure, la mesurabilité de E et des $B_n(0)$ ainsi que la sur-additivité de μ_* , on a :

$$\mu^{*}(E) = \mu^{*} \left(\left(\bigcup_{n \in \mathbb{N}^{*}} B_{n}(0) \right) \cap E \right)$$

$$= \mu^{*} \left(\left(\bigcup_{n \in \mathbb{N}^{*}} B_{n}(0) \backslash B_{n-1}(0) \right) \cap E \right)$$

$$\leq \sum_{n \in \mathbb{N}^{*}} \mu^{*}(B_{n}(0) \backslash B_{n-1}(0) \cap E)$$

$$= \sum_{n \in \mathbb{N}^{*}} \mu^{*}((B_{n}(0) \cap (B_{n}(0) \backslash B_{n-1}(0) \cap E))$$

$$= \sum_{n \in \mathbb{N}^{*}} \mu_{*}((B_{n}(0) \cap (B_{n}(0) \backslash B_{n-1}(0) \cap E))$$

$$= \sum_{n \in \mathbb{N}^{*}} \mu_{*}(B_{n}(0) \backslash B_{n-1}(0) \cap E)$$

$$= \mu_{*} \left(\left(\bigcup_{n \in \mathbb{N}^{*}} B_{n}(0) \backslash B_{n-1}(0) \right) \cap E \right)$$

$$= \mu_{*}(E)$$

$$(62)$$

En utilisant le lemme 11, il est clair que μ définit bien une mesure. La régularité de μ est claire par les dernières équations, et la complétude découle de la définition de μ .

Définition 12. Si Φ est l'intégrale de Riemann, alors μ est la mesure de Lebesgue.

Théorème 8. Théorème de Riesz-Kakutani Soit $\Phi: C_c(\mathbb{R}^n) \to \mathbb{R}$ une fonctionnelle positive. Il existe alors une mesure μ régulière et complète, définie sur une σ -algèbre $\Sigma \subseteq \mathcal{P}(\mathbb{R}^n)$ borelienne, telle que :

$$\forall f \in C_c(\mathbb{R}^n) : \Phi(f) = \int_{\mathbb{R}^n} f d\mu \tag{63}$$

Preuve. Il est suffisant de prouver le théorème dans le cas où f prend des valeurs réelles. En fait, il suffit de prouver que :

$$\forall f \in C_c(\mathbb{R}^N, \mathbb{R}) : \Phi f \le \int_{\mathbb{R}^N} f d\mu$$
 (64)

En effet, dès lors:

$$-\Phi f = \Phi(-f) \le \int_{\mathbb{R}^N} (-f) d\mu = -\int_{\mathbb{R}^N} f d\mu$$
 (65)

Soit K = supp(f) et [a, b] son image. Soit $\epsilon > 0$ et pour chaque i = 0, ..., n avec $y_i - y_{i-1} < \epsilon$:

$$y_0 < a < y_1 < \dots < y_n = b (66)$$

Définir pour chaque i = 1, ..., n:

$$E_i = \{ x \in \mathbb{R}^N : y_{i-1} < f(x) < y_i \} \cap K \tag{67}$$

Car f est continue, f est Borel-mesurable et les ensembles E_i sont des ensembles de Borel disjoints d'union K. Aussi, il existe des ouverts V_i tels que $E_i \subseteq V_i$ et $\mu(V_i) < \mu(E_i) + \epsilon/n$. De plus :

$$\forall x \in V_i : f(x) < y_i + \epsilon \tag{68}$$

Par le corollaire 4, il existe, pour chaque $i, h_i \prec V_i$ une partition de K extraite de la famille finie des $\{V_i\}_{i=1}^n$. En particulier, $f = \sum h_i f$ d'où :

$$\mu(K) \le \Phi\left(\sum_{i=1}^{n} h_i\right) = \sum_{i=1}^{n} \Phi h_i \tag{69}$$

D'autre part, puisque $h_i f \leq (y_i + \epsilon) h_i$ et $y_i < f(x) + \epsilon$ sur E_i :

$$\Phi f = \sum_{i=1}^{n} \Phi(h_i f) \le \sum_{i=1}^{n} (y_i + \epsilon) \Phi h_i = \sum_{i=1}^{n} (|a| + y_i + \epsilon) \Phi h_i - |a| \sum_{i=1}^{n} \Phi h_i \le \sum_{i=1}^{n} (|a| + y_i + \epsilon) (\mu(E_i) + \epsilon/n) - |a|\mu(K)$$

$$= \sum_{i=1}^{n} (y_i - \epsilon) \mu(E_i) + 2\epsilon \mu(K) + \frac{\epsilon}{n} \sum_{i=1}^{n} (|a| + y_i + \epsilon) \le \int_{\mathbb{R}^N} f d\mu + \epsilon (2\mu(K) + |a| + b + \epsilon) \tag{70}$$

V. RÉSULTATS DE DENSITÉ

Définition 13. Une mesure μ définie sur une σ -algèbre $\Sigma \subseteq \mathcal{P}(\mathbb{R}^n)$ borélienne est dite intérieurement régulière si :

$$\forall E \in \Sigma, \mu(E) = \sup\{\mu(K) : K \text{ compact et } K \subset E\}$$
(71)

Elle est dite extérieurement-régulière si

$$\forall E \in \Sigma, \mu(E) = \inf\{\mu(V) : V \text{ ouvert et } E \subset V\}$$
 (72)

Elle est enfin régulière si elle est simultanément extérieurement et intérieurement régulière, et localement finie si :

$$\forall x \in \mathbb{R}^n, \exists \text{ un ouvert } U \in \Sigma : x \in U \text{ et } \mu(U) < \infty$$
 (73)

Lemme 13. Une mesure régulière et localement finie μ dans \mathbb{R}^n assigne à tout compact K de \mathbb{R}^n une mesure finie.

Preuve. Pour chaque $x \in K$ il existe un ouvert V_x contenant x et de mesure finie. L'ensemble des tels V_x recouvre K, on peut donc en extraire un sous-recouvrement fini $(V_i)_{i=1,..p}$, associé aux $(x_i)_{i=1,..p}$. Poser :

$$E_i = K \bigcap_{i=1}^p \left(V_i \backslash \bigcup_{j=1}^{i-1} V_j \right) \tag{74}$$

La régularité de μ implique la mesurabilité de ces ensembles. De plus, $K = \bigcup_{i=1}^p E_i$ et cette union est disjointe. Ainsi :

$$\mu(K) = \sum_{i=1}^{p} \mu(E_i) \le \sum_{i=1}^{p} \mu(V_i) < \infty$$
 (75)

Lemme 14. L'espace des fonctions simples Lebesgue intégrables est dense dans $L^p(\mathbb{R}^n, \mu)$, pour une mesure régulière et localement finie μ .

Preuve. Trouvons $\varphi \in C_c(\mathbb{R}^n, \mathbb{R}^+)$ pour une fonction $f \in L^p(\mathbb{R}^n, \mu)$ positive. Poser pour $m \in \mathbb{N}$:

$$f_m: x \mapsto \chi_{B_m(0)}(x) \min\{f(x), m\}$$
 (76)

Alors, pour chaque $m \geq 0$, $f_m \in L^1(\mathbb{R}^n, \mu)$. Puisque $|f - f_m|^p \leq |f|^p$, le théorème de la convergence dominée implique que (f_m) converge vers f dans la norme $||\cdot||_p$. Il existe donc $k \in \mathbb{N}$ tel que $m \geq k$ implique $||f_k - f||_p < \epsilon/2$. Par définition de l'intégrale de Lebesgue, et puisque $f_m \in L^1(\mathbb{R}^n, \mu)$, on peut approcher f_m par une fonction étagée simple positive, celle-ci se laissant approcher par une fonction $\varphi \in C_c(\mathbb{R}^n, \mathbb{R}_+)$, telle que $||f_m - \varphi||_1 < \frac{\epsilon^p}{2^p m^{p-1}}$. Puisque f_m est majorée par m, on peut le supposer aussi pour φ . On a alors $|f_m(x) - \varphi(x)| \leq m$, et $|f_m - \varphi|^p \leq m^{p-1}|f_m - \varphi|$. Par conséquent,

$$||f_m - \varphi||_p^p \le m^{p-1}||f_m - \varphi||_1 \le \left(\frac{\epsilon}{2}\right)^p \tag{77}$$

C'est-à-dire $||f - \varphi||_p < \epsilon$.

Lemme 15. L'espace des combinaisons linéaires de fonctions indicatrices sur des ouverts de mesures finies ou sur des compacts est dense dans $L^p(\mathbb{R}^n, \mu)$, pour une mesure régulière et localement finie μ .

Preuve. Soient $\epsilon > 0$ et E un ensemble mesurable de \mathbb{R}^n et de mesure finie. Puisque μ est régulière, il existe un compact K_E et un ouvert V_E tel que $K_E \subseteq E \subseteq V_E$ et :

$$\mu(V_E) - \epsilon^p \le \mu(E) \le \mu(K_E) + \epsilon^p$$

. Il suit :

$$||\chi_{V_E} - \chi_E||_p, ||\chi_{K_E} - \chi_E||_p < \epsilon \tag{78}$$

Utiliser le lemme 14 pour conclure.

Lemme 16. Pour une mesure régulière et localement finie μ , l'espace des fonctions continues à support compact est dense dans $L^p(\mathbb{R}^n, \mu)$:

$$\overline{C_c(\mathbb{R}^n)}^{||\cdot||_{L^p(\mathbb{R}^n,\mu)}} = L^p(\mathbb{R}^n,\mu) \tag{79}$$

Preuve. Grâce au lemme 15, on peut se concentrer sur les indicatrices d'ouverts de mesure finie ou de compact. Par le lemme d'Urysohn 7, il existe $f \in C_c(\mathbb{R}^n)$ tel que $K \prec f \prec V$. Par monotonie de l'intégrale de Lebesgue, on a dans le cas où $\mu^K + \epsilon^p \geq \mu(V)$:

$$||\chi_K - f||_1, ||\chi_V - f||_1 \le \epsilon^p$$
 (80)

ce qui implique :

$$||\chi_K - f||_p, ||\chi_V - f||_1 \le \epsilon \tag{81}$$

Théorème 9. Pour une mesure régulière et localement finie μ , l'espace des fonctions continues à support compact et infiniment continument dérivable est dense dans $L^p(\mathbb{R}^n, \mu)$:

$$\overline{C_c^{\infty}(\mathbb{R}^n)}^{||\cdot||_{L^p(\mathbb{R}^n,\mu)}} = L^p(\mathbb{R}^n,\mu)$$
(82)

Preuve. Partir du lemme 16. Un compact dans \mathbb{R}^n étant fermé et borné, il doit pour une fonction $f \in C_c(\mathbb{R}^n)$ y avoir L > 0 tel que supp $(f) \subseteq [-L, L]^n$. La fonction étant uniformément continue sur ce dernier ensemble, il doit exister une fonction simple du type :

$$s = \sum_{l=1}^{m} s_l \chi_{d_n + [0, p[^n]}$$
(83)

telle que:

$$|f - s| < \frac{\epsilon}{\mu \left([-L, L]^n \right)^{1/p}} \implies ||f - s||_p < p \tag{84}$$

Finalement, pour un intervalle $[a, b]^n$, considérons les fonctions lisses du type $(f_n) = (\prod_{k=1}^m f_{m,k})$ où $m \in \mathbb{N}^*$ et

$$f_{m,k}(x_k) = \chi_{]a-1/m,b[}(x_k)e^{\frac{1}{m^2(x_k+1/m-a)(x_k-b)}}$$
(85)

Alors, $\lim_{m\to\infty} f_m(x) = \chi_{[a,b]^n}(x)$ simplement et chaque élément de la suite est intégrable. Par le théorème de la convergence dominée, la suite tend dans $L^p(\mathbb{R}^n)$ vers $\chi_{[a,b]^n}$.

Corollaire 5. Si λ est la mesure de Lebesgue, alors l'espace de Schwartz est dans $L^p(\mathbb{R}^n)$:

$$\overline{\mathscr{S}(\mathbb{R}^n)}^{||\cdot||_{L^p(\mathbb{R}^n,\lambda)}} = L^p(\mathbb{R}^n,\lambda) \tag{86}$$

Part III

Opérateurs bornés

Définition 14. Soient X, Y des espaces vectoriels normés et soit $A \in \mathcal{L}(X, Y)$. La transposée $A^T \in \mathcal{L}(Y^*, X^*)$ de A est définie par :

$$A^{T}(\eta) = \eta \circ A \tag{87}$$

Noter Γ l'application du théorème de Riesz-Fréchet l'isomorphisme anti-linéaire isométrique associant à chaque élément $x \in \mathcal{H}$ la fonctionnelle linéaire et continue de \mathcal{H}' définie par $x^*(y) = \langle y, x \rangle$.

Définition 15. Soit $A \in \mathcal{L}(\mathcal{H})$. L'adjoint de A est défini par :

$$A^* = \Gamma^{-1} \circ A^T \circ \Gamma \tag{88}$$

VI. SPECTRE DES OPÉRATEURS BORNÉS

L'ensemble des opérateurs de $\mathcal{L}(\mathcal{H})$, dits Hilbertiens, qui sont inversibles est noté $\operatorname{Inv}(\mathcal{L}(\mathcal{H}))$ ou $\operatorname{Inv}(\mathcal{H})$.

Théorème 10. Inv($\mathcal{L}(\mathcal{H})$) est un ouvert de $\mathcal{L}(\mathcal{H})$.

Preuve. Soient $A \in \text{Inv}(\mathcal{H})$, $B \in B_{||A^{-1}||}(A)$. Alors $||BA^{-1} - 1|| \le ||B - 1|| ||A^{-1}|| < 1$, c'est-à-dire $BA^{-1} \in \text{Inv}(\mathcal{H})$ et à fortiori B inversible.

Lemme 17. Si $A \in \mathcal{L}(\mathcal{H})$, alors $\sigma(A)$ est fermé et sous-ensemble du disque centré à l'origine de \mathbb{C} de rayon ||A||.

Preuve. Supposer que $|\lambda| > ||A||$, alors $||A\lambda^{-1}|| < 1$ et $1 - \lambda^{-1}A \in \text{Inv}(\mathcal{H})$. Par conséquent, $\lambda - A \in \text{Inv}(\mathcal{H})$ et $\lambda \notin \sigma(A)$. Si $\lambda \notin \sigma(A)$ et $|\mu - \lambda| < ||(A - \lambda)^{-1}||$, alors par le théorème 10, $A - \mu \in \text{Inv}(\mathcal{H})$. C'est-à-dire le complément spectre d'un opérateur est ouvert.

Définition 16. Le rayon spectral d'un opérateur $A \in \mathcal{L}(\mathcal{H})$ est défini par

$$r(A) = \sup\{||z|| : z \in \sigma(A)\}$$
 (89)

Théorème 11. Le spectre d'opérateurs bornés vérifie :

- 1. Si $U \in \mathcal{L}(\mathcal{H})$ est unitaire, alors $\sigma(U) \subseteq \partial B_1(0)$.
- 2. Si $A \in \mathcal{L}(\mathcal{H})$ est auto-adjoint, alors $\sigma(A) \subseteq [-||A||, ||A||] \subset \mathbb{R}$ et r(A) = ||A||.
- 3. Si $B \in \mathcal{L}(\mathcal{H})$ et p est un polynômes à coefficients $(a_k)_{0 \leq k \leq n}$ complexes, alors :

$$\sigma(p(B)) = p(\sigma(B)) \tag{90}$$

Preuve. 1. Soit $\lambda \in \mathbb{C}$ tel que $|\lambda| > 1$. Alors $U - \lambda = \lambda \left(\frac{U}{\lambda} - 1 \right)$ et $\left| \left| \frac{U}{\lambda} \right| \right| < 1$. Donc l'inverse de $\left(\frac{U}{\lambda} - 1 \right)$ existe. Si $\lambda \in B_1(0) \setminus \{0\}$, on a en utilisant que U^* est unitaire que $\lambda U^* < 1$, que $U - \lambda = U(1 - \lambda U^*)$ inversible. Si $\lambda = 0$, $U - \lambda = U^*$.

2. Le lemme 17 assure $r(A) \leq ||A||$. Montrer désormais que le spectre est réel. En effet, l'opérateur $\exp(iA)$ est unitaire. En utilisant le premier résultat, on conclut que le spectre est réel. Ensuite, supposer par l'absurde que ni ||A|| ni -||A|| ne fasse partie du spectre. Dans ce cas, $(A+||A||)(A-||A||)=A^2-||A||^2\in \operatorname{Inv}\mathcal{L}(\mathcal{H})$. Il existe donc $B\in\mathcal{L}(\mathcal{H})$ inverse de cet opérateur. De plus,

$$(\cdot,\cdot): \mathcal{H} \times \mathcal{H} \to \mathbb{C}, (x,y) \mapsto \langle x, (||A||^2 - A^2)y \rangle$$
 (91)

est une application sesqui-linéaire positive donc vérifie Cauchy-Schwartz. Par définition de la norme, il existe une suite $(x_n) \in \mathcal{H}$ de vecteurs unitaires telle que $||A|| = \lim_{n \to \infty} ||Ax_n||$. Alors, en utilisant que A est auto-adjoint :

$$1 = ||x_n||^2 = \langle (A^2 - ||A||^2)Bx_n, x_n \rangle = |\langle Bx_n, (||A||^2 - A^2)x_n \rangle|$$

$$\leq \langle Bx_n, (||A||^2 - A^2)Bx_n \rangle^{1/2} \langle x_n, (||A||^2 - A^2)x_n \rangle^{1/2} \leq ||B||^{1/2} (||A||^2 - ||Ax_n||^2)^{1/2}$$
(92)

Ce qui est absurde. Ainsi, $||A|| \in \sigma(A)$ ou $-||A|| \in \sigma(A)$.

3. Pour $\lambda \in \mathbb{C}$, $p(Z) - \lambda \in \mathbb{C}[Z]$. Par le théorème fondamental de l'algèbre, il existe n nombres complexes tels que $p(Z) - \lambda = a \prod_{j=1}^{n} (Z - \lambda_j), \ a \in \mathbb{C}$. Il suit :

$$\lambda \in \sigma(p(B)) \Leftrightarrow \exists k : \lambda_k \in \sigma(B) \Leftrightarrow \exists \lambda_k \in \sigma(B) : p(\lambda_k) - \lambda = 0 \Leftrightarrow \lambda \in p(\sigma(B))$$
(93)

VII. LE CALCUL FONCTIONNEL

Définition 17. Soit A un opérateur borné auto-adjoint sur un espace de Hilbert et $f \in C(\sigma(A), \mathbb{R})$. Définir :

$$f(A) = \lim_{n \to \infty} p_n(A) \tag{94}$$

pour (p_n) une suite de polynôme convergeant uniformément sur $\sigma(A)$ vers f.

Proposition 1. La définition 17 définit uniquement toutes les fonctions continues du spectre de A, borné et auto-adjoint, vers \mathbb{R} .

Preuve. D'après le théorème de Stone-Weierstrass 2, il existe une suite $(p_n)_{n\in\mathbb{N}}$ de polynômes à coefficients réels qui converge uniformément sur $\sigma(A)$ vers f. Poser la suite $(p_n(A))_{n\in\mathbb{N}}$ d'opérateurs auto-adjoints dans $\mathcal{L}(\mathcal{H})$. Puisque $\sigma(p_n(A)) = p_n(\sigma(A))$:

$$||p_n(A)||_{\mathcal{L}(\mathcal{H})} = r(p_n(A)) = \sup\{||\lambda|| : \lambda \in \sigma(p_n(A))\} = \sup\{||\lambda|| : \lambda \in p_n(\sigma(A))\} = ||p_n||_{L^{\infty}(\sigma(A))}$$
(95)

Par conséquence, puisque (p_n) est de Cauchy pour $||\cdot||_{L^{\infty}(\sigma(A))}$, $(p_n(A))$ est de Cauchy pour $||\cdot||_{\mathcal{L}(\mathcal{H})}$ et converge donc vers un élément dans $\mathcal{L}(\mathcal{H})$, qui est par définition f(A). Montrer que cette définition ne dépend pas de la suite de polynômes. Soit (q_n) une autre suite de polynômes convergeant uniformément sur $\sigma(A)$ vers f. Alors :

$$||f(A) - q_n(A)|| \le ||f(A) - p_n(A)|| + ||p_n(A) - q_n(A)|| \le ||f(A) - p_n(A)|| + ||p_n - f||_{L^{\infty}(\sigma(A))} + ||q_n - f||_{L^{\infty}(\sigma(A))}$$
(96)

d'où l'unicité de la définition.

Théorème 12. Soit $A \in \mathcal{L}(\mathcal{H})$ un opérateur auto-adjoint. Il existe alors un unique *-morphisme unitaire et isométrique $\Phi : C(\sigma(A)) \to \mathcal{L}(\mathcal{H})$ avec les propriétés suivantes :

- 1. $\Phi(x \mapsto 1) = 1$ et $\Phi(x \mapsto x) = A$
- 2. $\forall f, g \in C(\sigma(A)), \lambda \in \mathbb{C}$:

$$\Phi(f + \lambda g) = \Phi(f) + \lambda \Phi(g), \Phi(fg) = \Phi(f)\Phi(g), \Phi(f)^* = \Phi(\overline{f})$$
(97)

3. $\forall f \in C(\sigma(A), \mathbb{C}), ||\Phi(f)|| = ||f||_{L^{\infty}(\sigma(A))}$

Preuve. Prendre $\Phi(f) = f(A)$. Seul l'unicité demande une preuve explicite. Soit Ψ un tel morphisme. Pour tout polynôme $p \in \mathbb{C}[\sigma(A)], \ \Psi(p) = p(A)$. Comme ce morphisme est supposé isométrique et que l'ensemble des polynômes est dense dans $\{f(A): f \in C(\sigma(A))\}$ pour la norme opérateur, on peut conclure $\Psi(f) = f(A), \ \forall f \in C(\sigma(A))$.

VIII. DÉCOMPOSITION SPECTRALE

Théorème 13. Soient \mathcal{H} un espace de Hilbert séparable et $A \in \mathcal{L}(\mathcal{H})$ un opérateur auto-adjoint. Il existe alors une famille de vecteurs orthonormés $\{e_k : k \in K\}$, $|K| \leq |\mathbb{N}|$, telle que :

$$\mathcal{H} = \bigoplus_{k \in K} \overline{\{f(A)e_k : f \in C(\sigma(A))\}}$$
(98)

Preuve. Soit (b_n) une famille orthonormée, complète et dénombrable de \mathcal{H} . Considérer :

$$H_0 = \overline{\{f(A)b_0 : f \in C(\sigma(A))\}}$$
(99)

Il est invariant par calcul fonctionnel et fermé. Définir $j_1 = \min\{n \in \mathbb{N}^* : b_n \notin H_0\}$. Les b_i d'indice plus petits sont clairement toujours dans H_0 et $(1 - P_{H_0})b_{j_1} \neq 0$. Normaliser cette composante orthogonale et lui appliquer le calcul fonctionnel pour définir :

$$H_1 = \left\{ f(A) \frac{(1 - P_{H_0})b_{j_1}}{||(1 - P_{H_0})b_{j_1}||} : f \in C(\sigma(A))) \right\}^{\perp \perp}$$
(100)

Les deux espaces sont alors en somme direct et leur somme direct et un sous-espace vectoriel fermé de l'espace de Hilbert. Ils sont de plus invariants par calcul fonctionnel. Définir par récurrence $j_{n+1} = \min\{m \in \mathbb{N}^*, m \geq 1 + j_n : b_m \notin \bigoplus_{k=0}^n H_k\}$ et

$$H_{n+1} = \left\{ f(A) \frac{(1 - P_{\bigoplus_{k=0}^{n} H_k}) b_{j_{n+1}}}{\|(1 - P_{\bigoplus_{k=0}^{n} H_k}) b_{j_{n+1}}\|} : f \in C(\sigma(A)) \| \right\}^{\perp \perp}$$
(101)

C'est un sous-espace fermé de \mathcal{H} contenant par construction tous ses éléments. Conclusion établie.

Théorème 14. Décomposition spectrale des opérateurs auto-adjoints bornés Soient \mathcal{H} un espace de Hilbert séparable et $A \in \mathcal{L}(\mathcal{H})$ un opérateur auto-adjoint. Il existe alors une famille d'indice K de cardinalité au plus dénombrable, une famille de mesures boréliennes et régulières $\{\mu_k\}_{k\in K}$ sur $\sigma(A)$ et un isomorphime unitaire $V: \mathcal{H} \to \bigoplus_{k\in K} L^2(\sigma(A), \mu_k)$ tels que

$$VAV^{-1} = M_x \tag{102}$$

où M_x est l'opérateur de multiplication par x sur $\bigoplus_{k\in K} L^2(\sigma(A), \mu_k)$.

Preuve. Poursuivre avec les notations de la preuve du théorème 13. Remarquer que la fonctionnelle $\Phi_k : C(\sigma(A)) \to \mathbb{C}$

$$f \mapsto \langle e_k, f(A)e_k \rangle$$
 (103)

est, pour f positive, une fonctionnelle positive. D'après le théorème 8 et un résultat des exercices, il existe donc une mesure μ_k sur $\sigma(A)$ telle que

$$\forall f \in C(\sigma(A)), \Phi_k(f) = \int_{\sigma(A)} f d\mu_k \tag{104}$$

Si $f(A)e_k$, $g(A)e_k$ sont dans H_k , alors par le calcul fonctionnel et le théorème 8, on a :

$$\langle f(A)e_k, g(A)e_k \rangle = \langle e_k, \overline{f(A)}g(A)e_k \rangle = \langle e_k, \overline{f}g(A)e_k \rangle = \int_{\sigma(A)} \overline{f}gd\mu_k$$
 (105)

Par construction de H_k , $x \in H_k$ si et seulement si il existe une suite $(f_n)_{n \in \mathbb{N}} \subset C(\sigma(A))$ telle que $\lim_n ||x - f_n(A)e_k|| = 0$. La suite $(f_n(A))$ est donc une suite de Cauchy dans H_k et on a

$$||f_m(A)e_k - f_n(A)e_k||^2 = \langle e_k, (\overline{f_m(A) - f_n(A)})(f_m(A) - f_n(A))e_k \rangle = ||f_m - f_n||_{L^2(\sigma(A), \mu_k)}^2$$
(106)

La suite converge donc également dans $L^2(\sigma(A), \mu_k)$ vers un élément $f_x \in L^2(\sigma(A), \mu_k)$. Manifestement, par continuité des normes $||f_x||^2_{L^2(\sigma(A),\mu_k)} = ||x||^2_{H_k}$. L'application $H_k \to L^2(\sigma(A),\mu_k), x \mapsto f_x$ est donc un isomorphisme unitaire. Puisque $H = \bigoplus H_k$, x s'écrit de manière unique comme somme d'éléments x_k de H_k . Par la discussion précédente, il existe pour chaque $k \in K$ un isomorphisme unitaire V_k qui associe à x_k une fonction $f_{x,k} \in L^2(\sigma(A),\mu_k)$. Poser :

$$V: H \to \bigoplus_{k \in K} L^2(\sigma(A), \mu_k) \quad x \mapsto \bigoplus_{k \in K} f_{x,k}$$
 (107)

Montrer finalement que $VA = VM_x$. Par décomposition de \mathcal{H} :

$$VAx = VA \bigoplus_{k \in K} x_k \tag{108}$$

Par continuité de A et de V:

$$VAx = \bigoplus_{k \in K} VAx_k \tag{109}$$

Par définition des x_k et calcul fonctionnel :

$$VAx = \bigoplus_{k \in K} VA \lim_{n \to \infty} f_{n,k}(A)e_k \tag{110}$$

Par continuité de A:

$$VAx = \bigoplus_{k \in K} V \lim_{n \to \infty} M_x f_{n,k}(A) e_k$$
(111)

Par continuité de V:

$$VAx = \bigoplus_{k \in K} \lim_{n \to \infty} VM_x f_{n,k}(A) e_k$$
(112)

Par définition de V:

$$VAx = \bigoplus_{k \in K} \lim_{n \to \infty} M_x f_{n,k} \tag{113}$$

Et finalement par continuité de M_x et définitions de V et x:

$$VAx = \bigoplus_{k \in K} M_x \lim_{n \to \infty} f_{n,k} = M_x V x \tag{114}$$

Part IV

Opérateurs Non-bornés

IX. NOTIONS FONDAMENTALES DES OPÉRATEURS NON-BORNÉS

Définition 18. Soit (D(A), A) un opérateur. Le graphe G(A) est défini par

$$G(A) = \{(x, y) \in \mathcal{H} \otimes \mathcal{H} : x \in D(A), y = Ax\}$$
(115)

Définition 19. Si la fermeture du graphe d'un opérateur est le graphe d'un opérateur, on dit que cet opérateur est fermable.

Définition 20. L'opérateur (D(B), B) est une extension de (D(A), A) si et seulement si $G(A) \subset G(B)$. Noter $A \subset B$.

Définition 21. Soient $(D(A_1), A_1)$ et $(D(A_2), A_2)$ deux opérateurs. Alors $D(A_1 + A_2) = D(A_1) \cap D(A_2)$ et $D(A_2A_1) = \{x \in D(A_1) : A_1x \in D(A_2)\}$ et on définit sur ces ensembles :

$$(A_1 + A_2)x = A_1x + A_2x (A_2A_1)x = A_2(A_1x) (116)$$

Définition 22. Soit (D(A), A) un opérateur avec D(A) dense dans \mathcal{H} . Le domaine de l'adjoint est défini par $D(A^*)$ est défini par :

$$D(A^*) = \{ y \in \mathcal{H} : \exists! z_y \in \mathcal{H} : \forall x \in D(A), \langle y, Ax \rangle = \langle z_y, x \rangle \}$$
(117)

Définir l'action de l'adjoint par $y \mapsto z_y$.

Définition 23. Un opérateur densément défini est dit auto-adjoint si son graphe est égal à celui de son opérateur.

Définition 24. Un opérateur A densément défini est dit normal si son domaine de définition est égal à celui de son adjoint et si pour chaque élément $x \in D(A)$, $||A^*x|| = ||Ax||$.

Théorème 15. Soit (D(A), A) un opérateur sur \mathcal{H} . Alors :

$$G(A^*) = \left(G(-A)^t\right)^{\perp} \tag{118}$$

Avec le produit scalaire sur $\mathcal{H} \otimes \mathcal{H}$ définit comme la somme des produits scalaires des premières composantes avec les premières et des deuxièmes avec les deuxièmes. En particulier, l'adjoint d'un opérateur est toujours fermé.

Preuve. Soit $X = (x_1, x_2) \in (G(A)^t)^{\perp}$. De manière équivalente :

$$\forall Y = (y_1, y_2) \in G(A)^{-t} : \langle x_1, y_2 \rangle = \langle x_2, y_1 \rangle$$

$$\Leftrightarrow \forall Y = (y_1, y_2) \in G(A)^{-t} : \langle x_1, Ay_1 \rangle = \langle x_2, y_1 \rangle$$

$$\Leftrightarrow x_2 = A^* x_1$$
(119)

X. LES THÉORÈMES DE BANACH-STEINHAUS ET DU GRAPHE FERMÉ

Lemme 18. Soit $A \in \mathcal{L}(X,Y)$ pour deux espaces normés X et Y. Pour tout $x \in X$ et r > 0, on a :

$$\sup\{||Ax'||: x' \in B_r(x)\} \ge ||A||r \tag{120}$$

Preuve. Pour $\xi \in X$,

$$\max\{||A(x-\xi)||, ||A(x+\xi)||\} \ge \frac{1}{2}(||A(x-\xi)|| + ||A(x+\xi)||) \ge ||A\xi||$$
(121)

Conclure en passant au supremum pour $\xi \in B_r(0)$.

Définition 25. Une famille $\mathcal{F} \in \mathcal{L}(X,Y)$ est simplement bornée si pour tout $x \in X$, $\sup\{||Ax|| : A \in \mathcal{F}\} < \infty$ ou uniformément bornée si $\sup\{||A|| : A \in \mathcal{F}\} < \infty$.

Théorème 16. Théorème de Banach-Steinhaus Soient X un espace de Banach, Y un espace normé et $\mathcal{F} \subseteq \mathcal{L}(X,Y)$ une famille simplement bornée, alors \mathcal{F} est uniformément bornée.

Preuve. Supposer que la famille ne soit pas uniformément bornée. On peut alors choisir une suite d'opérateur $(A_n) \subseteq F$ telle que $||A_n|| \ge 4^n$. Poser $x_0 = 0$ et $x_n \in B_{3^{-n}}(x_{n-1})$ et $||A_nx_n|| \ge \frac{2}{3}||A_n||3^{-n}$, qui existe par le lemme précédent 18. La suite (x_n) étant de Cauchy, elle converge vers $x \in X$. De plus, $||x - x_n|| \le \frac{3^{-n}}{2}$. Mais, par construction des x_n et l'inégalité triangulaire inverse, on trouve :

$$||A_n x|| \ge \frac{3^{-n}}{6} ||A_n|| \ge \frac{4^n}{6 \times 3^n} \tag{122}$$

ce qui contredit la majoration simple.

Définition 26. Soit \mathcal{H} un espace de Hilbert. On dit qu'un sous-ensemble D est faiblement séquentiellement compact si pour toute suite (x_n) dans D, il existe $x \in D$ et une sous-suite $(y_m) \subseteq (x_n)$, telle que pour tout $v \in \mathcal{H}$:

$$\lim_{n \to \infty} \langle y_n, v \rangle = \langle x, v \rangle \tag{123}$$

Théorème 17. Théorème de Bolzano-Weierstrass Le disque unité $\overline{B_1(0)}$, dans un espace de Hilbert \mathcal{H} séparable, est séquentiellement compact.

Preuve. Soient $(x_n) \subset B_1(0)$ et (e_n) un système ortho-normé et complet de \mathcal{H} . Alors, pour tout $m \in \mathbb{N}$, la suite $(\langle x_n, e_m \rangle)_{n \in \mathbb{N}}$ est une suite bornée de \mathbb{C} . Pour m = 1, on peut choisir une sous-suite $(x_{n_k})_{k \in \mathbb{N}}$ qui converge vers un élément de l'espace de Hilbert dénoté par z_1 . Poser y_1 , d'indice N_1 , la premier élément de la sous-suite tel que pour tous les $k \geq N_1$, $|\langle x_{n_k}, e_1 \rangle| < 1$. Répéter le processus pour chaque m de manière à avoir une distance plus petite que $1/2^{m-1}$. Par itération, on construit une sous-suite (y_m) de (x_n) et une suite $(z_n) \subset \mathbb{C}$ telles que :

$$\forall k \in \mathbb{N} : \lim_{m \to \infty} \langle y_m, e_k \rangle = z_k \tag{124}$$

Pour tout $v \in \text{Vect}(e_i)$, on a alors $\lim_{m \to \infty} \langle y_m, v \rangle$ existe et :

$$\left| \lim_{m \to \infty} \langle y_m, v \rangle \right| \le \limsup_{m \to \infty} |\langle y_m, v \rangle| \le ||v|| \tag{125}$$

L'application $\operatorname{Vect}(e_i) \to \mathbb{C}$, $v \mapsto \lim_{m \to \infty} \langle y_m, v \rangle$ est alors une fonctionnelle linéaire bornée. Puisque (e_i) est une famille dense de l'espace de Hilbert, on peut étendre l'opérateur à tout l'espace. Le théorème de Riesz-Fréchet permet alors de conclure.

Lemme 19. Soit (D(T),T) un opérateur fermé et densément défini. Alors $D(T^*)$ est dense.

Preuve. Il suffit de montrer que $x \perp D(T^*)$ implique x = 0. x est orthogonal au domaine de l'adjoint si et seulement si (x,0) est orthogonal au graphe de l'adjoint, si et seulement si il est orthogonal à $G(-A)^{t^{\perp}}$ c'est-à-dire $x \in G(-A)^{t^{\perp}} = G(-A)^t$ car le graphe est fermé donc $(0,x) \in G(-A)$: x = -A0 = 0.

Lemme 20. Soit (D(T),T) un opérateur fermé sur un espace de Hilbert séparable \mathcal{H} avec $D(T)=\mathcal{H}$. Alors $D(T^*)=\mathcal{H}$.

Preuve. Comme D(T) est dense, T^* existe. Par le lemme 19, $D(T^*)$ est dense. Soit $v \in \mathcal{H}$ et choisir une suite $(v_n) \subset D(T^*)$, bornée, telle que $\lim_{n\to\infty} v_n = v$. Pour $w \in \mathcal{H}$, on a $\langle v_n, Tw \rangle = \langle T^*v_n, w \rangle$ et

$$\sup_{n \in \mathbb{N}} |\langle T^* v_n, w \rangle| \le \sup_{n \in \mathbb{N}} ||Tw|| ||v_n|| < \infty \tag{126}$$

Par le théorème de Banach-Steinhaus 16, $\sup_{n\in\mathbb{N}} < \infty$. Par Bolzano-Weierstrass 17, il existe une sous-suite $(T^*v_{\sigma(n)})_{n\in\mathbb{N}}$ de (T^*v_n) et un $y\in\mathcal{H}$, tels que

$$\forall x \in \mathcal{H}: \lim_{n \to \infty} \langle T^* v_{\sigma(n)}, x \rangle = \langle y, x \rangle = \langle v, Tx \rangle$$
(127)

Théorème 18. Théorème du graphe fermé Soit (D(T),T) un opérateur fermé sur un espace de Hilbert \mathcal{H} séparable avec $D(T) = \mathcal{H}$. Alors T est borné.

Preuve. Supposer T non-borné. Il existe une suite $(u_n) \subset B_1(0)$, telle que $\lim_{n\to\infty} ||Tu_n|| = \infty$. D'un autre côté, pour $x \in \mathcal{H} = D(T^*)$,

$$\sup_{n\in\mathbb{N}} |\langle Tu_n, x \rangle| = \sup_{n\in\mathbb{N}} |\langle u_n, T^*x \rangle| \le \sup_{n\in\mathbb{N}} ||u_n|| ||T^*x|| = ||T^*x||$$
(128)

XI. LE COEUR ET L'ADJOINT ESSENTIEL

Définition 27. Pour un opérateur (D(T), T) fermé, définir l'ensemble résolvant $\rho(T)$ par :

$$\rho(T) = \{ z \in \mathbb{C} : \ker(T - z) = 0 \text{ et } \mathcal{H} = \operatorname{ran}(T - z) \}$$
(129)

et le spectre $\sigma(T)=\mathbb{C}\backslash \rho(T)$. Pour $z\in \rho(T),\, R(z,T)=(T-z)^{-1}$ est appelé la résolvante.

Proposition 2. Une définition équivalente de l'ensemble résolvant est la suivante :

$$\rho(T) = \{ \lambda \in \mathbb{C} : \exists A \in \mathcal{L}(\mathcal{H}) : A(T - \lambda) = 1_{D(T)} \text{ et } (T - \lambda)A = 1 \}$$
(130)

Preuve. Montrer que la résolvante est bornée. Puisque (D(T),T) est fermé, le graphe de T l'est. Sa transposée l'est donc aussi, tout comme $G(T-\lambda)$, pour $\lambda \in \rho(T)$, ou encore $G(T-\lambda)^t = G(R(\lambda,t))$. L'opérateur $R(\lambda,T)$ est donc fermé, défini sur tout l'espace de Hilbert et le théorème du graphe fermé X implique alors que $R(\lambda,T) \in \mathcal{L}(\mathcal{H})$.

Proposition 3. Soit (D(T),T) un opérateur fermé. Alors $z \in \rho(T)$ si et seulement si $\overline{z} \in \rho(T^*)$ et

$$R(z,T)^* = R(\overline{z},T^*) \tag{131}$$

Preuve. Soit $z \in \mathbb{C}$. Pour que (T-z)x soit bien défini, il faut et suffit que Tx le soit, donc $x \in D(T)$. Donc D(T-z) = D(T). Puis, pour chaque $x \in D(T)$, et $y \in \mathcal{H}$, dire que $x \mapsto \langle y, (T-z)x \rangle$ est continu revient à dire que $x \mapsto \langle y, Tx \rangle - \langle \overline{z}y, x \rangle$ est continu, c'est-à-dire $x \in D(T^*)$. Ainsi, $D(T-z)^* = D(T^*)$ et $(T-z)^* = T^* - \overline{z}$. Soit $z \in \rho(T)$. Cela implique donc que $R(z,T) \in \mathcal{L}(\mathcal{H})$ avec

$$(T - \lambda)R(z, T) = 1_{\mathcal{H}} \tag{132}$$

et

$$R(z,T)(T-z) = 1_{D(T)}$$
(133)

Ainsi, $R(z,T)^* \in \mathcal{L}(\mathcal{H})$ et

$$G(R(z,T)^*) = G(-R(z,T))^{t^{\perp}} = G(-(T-z))^{\perp} = G(-(T-z))^{t^{\perp}}$$

$$= G(-(T-z))^{t^{\perp}} = G((T-z)^*)^t = G(T^* - \overline{z})^t$$
(134)

Ceci montre donc que $R(z,T)^* \in \mathcal{L}(\mathcal{H})$ est l'inverse borné de $T^* - \overline{z}$ et que par conséquence, $\overline{z} \in \rho(T^*)$, ainsi que $R(z,T)^* = R(\overline{z},T^*)$. La réciproque est une conséquence de cet argument, puisque T étant fermé, on a $T = T^{**}$.

Définition 28. Un opérateur (D(T), T) est dit symétrique si $T \subset T^*$ et D(T) est dense.

Lemme 21. Un opérateur (D(T),T) symétrique est fermable. De plus, $\ker(T\pm i)=\{0\}$ et

$$\overline{\operatorname{Ran}(T \pm i)} = \operatorname{Ran}(\overline{T} \pm i) \tag{135}$$

où $\overline{T} = T^{**}$ est la fermeture de T.

Preuve. Comme l'adjoint d'un opérateur densément défini existe toujours et qu'il est fermé, on a pour un opérateur symétrique que G(T) est contenu dans le graphe $G(T^*)$, qui lui est fermé. On a alors que T est fermable et que $\overline{G(T)} = G(T)^{\perp} = G(T^*)^{\perp} = G(T^*)$.

Puisque $T \subset T^*$, on a pour $x \in D(T)$, $\langle x, Tx \rangle = \langle T^*x, x \rangle = \langle Tx, T \rangle = \overline{\langle x, Tx \rangle}$. Ainsi

$$||(T \pm i)x||^2 = \langle Tx, Tx \rangle \mp i\langle x, Tx \rangle \pm i\langle Tx, x \rangle + \langle x, x \rangle$$

= $||Tx||^2 + ||x||^2 \ge ||x||^2, ||Tx||^2$ (136)

Ceci implique que $\operatorname{Ker}(T \pm i) = \{0\}$. De plus, ceci montre que $(y_n) = ((T \pm i)x_n)$ est une suite de Cauchy dans l'image de $T \pm i$ si et seulement (x_n) est de Cauchy dans D(T) et (Tx_n) est de Cauchy dans l'image de T, c'est-à-dire si et seulement si $(\lim x_n, \lim y_n) \in G(\overline{T})$. Donc, $\overline{\operatorname{Ran}(T \pm i)} = \operatorname{Ran}(\overline{T} \pm i)$.

Théorème 19. Théorème de von Neumann Soit (D(T),T) un opérateur symétrique et fermé sur un espace de Hilbert séparable (\mathcal{H}) . Alors T est auto-adjoint si et seulement si $i \in \rho(T)$. Dans un tel cas $\sigma(T) \subseteq \mathbb{R}$.

Preuve. Supposons d'abord que $\pm i \in \rho(T)$. Alors, $R(\pm i,T) \in \mathcal{L}(\mathcal{H})$ existent et $\mathrm{Ran}(T\pm i) = \mathcal{H}$. Pour $x \in D(T^*)$, il existe alors un $y \in D(T)$, tel que $(T^* \pm i)x = (T \pm i)y$. Puisque T est symétrique, $T \subset T^*$. Mais par la proposition précédente, $\pm i \in \rho(T^*)$ aussi, et x = y. Ainsi, $D(T) = D(T^*)$ et $T = T^*$.

Supposons maintenant que $T=T^*$. Alors, T est à fortiori symétrique, $T=\overline{T}$ et par le lemme précédent 21, $\operatorname{Ker}(T\pm i)=\{0\}$ et l'image de $t\pm i$ est fermée. Si x est orthogonal à l'image de $T\pm i$, alors $\forall y\in D(T): \langle x,(T\pm i)y\rangle=0$, de sorte que $D(T^*)=D(T)$ et $\langle (T\mp i)x,y\rangle=0$. Comme D(T) est dense dans \mathcal{H} , ceci implique que $(T\mp i)x=0$, donc $x\in \operatorname{Ker}(T\pm i)$, donc x=0. Ainsi, l'image de $T\pm i$ est l'espace de Hilbert entier. Comme $T\pm i$ sont des opérateurs fermés sur D(T), on a que $(T\pm i)^{-1}$ sont fermés aussi et définis sur tout \mathcal{H} . Par le théorème du graphe fermé, $(T\pm i)^{-1}\in \mathcal{L}(\mathcal{H})$ et $\pm i\in \rho(T)$. Supposons enfin que $T=T^*$ et que $z=a+ib,\ a\in\mathbb{R},\ b\in\mathbb{R}\backslash 0$. Alors $b^{-1}(T-a)$ est auto-adjoint aussi et $\pm i\in \rho(b^{-1}(T-a))$, d'où on conclut que $\pm ib\in \rho(T-a)$, où encore, que $a\pm ib\in \rho(T)$. Conclure que $\sigma(T)\subseteq\mathbb{R}$.

Définition 29. Un opérateur (D(T), T) symétrique est dit essentiellement auto-adjoint si sa fermeture $\overline{T} = T^{**}$ est auto-adjointe. Dans ce cas, D(T) est un coeur pour T^{**} .

Corollaire 6. Un opérateur (D(T), T) symétrique est essentiellement auto-adjoint si et seulement si l'une des deux conditions suivantes est vérifiée :

- $\overline{\operatorname{Ran}(T \pm i)} = \mathcal{H}$
- $Ker(T^* \pm i) = \{0\}$

Preuve. Commençons par noter que ces deux conditions sont équivalentes. En effet :

$$\overline{\operatorname{Ran}(T \pm i)} = \mathcal{H} \Leftrightarrow \operatorname{Ran}(T \pm i)^{\perp} = \{0\}$$
(137)

Mais l'orthogonal de l'image d'un opérateur n'est rien d'autre que le noyau de son adjoint et $(T \pm i)^* = T^* \mp i$.

Par le lemme précédent, $\overline{\text{Ran}(T \pm i)} = \text{Ran}(\overline{T} \pm i)$, donc $\overline{\text{Ran}(T \pm i)} = \mathcal{H}$ est équivalent à dire que $\overline{T} \pm i$ est une bijection entre $D(\overline{T})$ et \mathcal{H} .

Puisque $\overline{T} \pm i$ est fermé, $(\overline{T} \pm i)^{-1}$ l'est aussi et, d'après le théorème du graphe fermé X, on a que $(\overline{T} \pm i)^{-1} \in \mathcal{L}(\mathcal{H})$. On a alors $\pm i \in \rho(\overline{T})$, ce qui, par le théorème de von Neumann 19, est équivalent à dire que \overline{T} est auto-adjoint.

XII. DÉCOMPOSITION SPECTRALE D'OPÉRATEURS NON-BORNÉS

Proposition 4. Pour un opérateur A densément défini et fermé, on a la décomposition :

$$\mathcal{H} \bigoplus \mathcal{H} = G(A^*) \bigoplus G(-A)^t \tag{138}$$

Preuve. Clair puisque $G(A^*)$ est fermé, puisque qu'écrit comme le complément orthogonal d'un sous-espace fermé et convexe.

Lemme 22. Soient (D(A), A) un opérateur densément définit et fermé, et $u, v \in \mathcal{H}$. Il existe alors un unique couple $(x, y) \in D(A) \times D(A^*)$ tel que y - Ax = u et $x + A^*y = w$. De plus :

$$||u||^{2} + ||w||^{2} = ||x||^{2} + ||y||^{2} + ||Ax||^{2} + ||A^{*}y||^{2}$$
(139)

Preuve. Puisque $\mathcal{H} \bigoplus \mathcal{H} = G(A^*) \bigoplus G(A)^{-t}$, voir proposition 4, et que $(u, v) \in \mathcal{H} \bigoplus \mathcal{H}$, il existe une unique décomposition .

$$(u,v) = (y, A^*y) + (-Ax, x)$$
(140)

avec $(x,y) \in D(A) \times D(A^*)$. Par le théorème de Pythagore :

$$||u||^{2} + ||w||^{2} = ||(y, A^{*}y) + (-Ax, x)||_{\mathcal{H} \bigoplus \mathcal{H}}^{2} = ||y||^{2} + ||A^{*}y||^{2} + ||Ax||^{2} + ||x||^{2}$$
(141)

Théorème 20. Soit (D(A), A) un opérateur densément défini et fermé. Alors :

- 1. $(D(A^*A), 1 + A^*A)$ est un opérateur auto-adjoint
- 2. $1 + A^*A$ est une bijection entre $D(A^*A)$ et \mathcal{H}
- 3. $(1+A^*A)^{-1} \in \mathcal{L}(\mathcal{H})$ est auto-adjoint et $||(1+A^*A)^{-1}|| \leq 1$
- 4. $D(A^*A)$ est un coeur pour A

Preuve. Commençons par prouver que $1 + A^*A$ est une bijection entre $D(A^*A \text{ et } \mathcal{H})$. En appliquant le lemme 22 aux cas v = 0 et $w \in \mathcal{H}$, on trouve des couples $(x,y) \in D(A) \times D(A^*)$ tels que 0 = y - Ax et $w = x + A^*y$. Ceci implique que pour tout $w \in \mathcal{H}$, il existe un unique $x \in D(A)$, tel que $Ax \in D(A^*)$ et $1 + A^*A)x = w$. L'opérateur établit alors bien une bijection entre $D(A^*A \text{ et } \mathcal{H})$.

$$(1 + A^*A)^{-1} \in \mathcal{L}(\mathcal{H})$$
 et $||(1 + A^*A)^{-1}|| \le 1$ suivent de $||w||^2 = ||x||^2 + 2||Ax||^2 + ||A^*Ax||^2 \ge ||x||^2$.

Montrons maintenant que $(D(A^*A), 1 + A^*A)$ est auto-adjoint. Tout d'abord, cet opérateur est fermé car le graphe d'un opérateur borné est toujours fermé, que $G(B^{-1}) = G(B)^t$ et que le graphe d'un opérateur est fermé si et seulement si le graphe transposé l'est. Remarquer que $D(A^*A)$, et donc $D(1 + A^*A)$, est dense dans \mathcal{H} . Soit $y \in D(A^*A)^{\perp}$ et montrons que y = 0. Il doit exister un unique $x \in D(1 + A^*A)$ tel que $y = x + A^*Ax$. Alors :

$$0 = \langle x, y \rangle = \langle x, x + A^* A x \rangle = ||x||^2 + ||Ax||^2$$
(142)

donc x=0=Ax=y. Soit désormais $y\in D(1+A^*A)$. Il existe alors un unique $z\in \mathcal{H}$ tel que :

$$\langle y, x + A^* A x \rangle = \langle z, x \rangle \tag{143}$$

Mais $1 + A^*A$ étant une bijection, il doit exister un unique $y' \in D(1 + A^*A)$ tel que $z = y' + A^*Ay'$. Mais alors pour tout $x \in D(1 + A^*A)$:

$$\langle y, x + A^* A x \rangle = \langle z, x \rangle = \langle y', x + A^* A x \rangle \tag{144}$$

de sorte que y=y' et $z=y+A^*Ay$. Prenons maintenant $x,y\in\mathcal{H}$ arbitraires. Par bijectivité et le fait que $1+A^*A$ est auto-adjoint sur $D(A^*A)$:

$$\langle y, (1+A^*A)^{-1}x \rangle = \langle (1+A^*A)^{-1}y, x \rangle$$
 (145)

Montrer enfin le dernier point. Supposer $(x, Ax) \in G(A)$ est orthogonal dans $\mathcal{H} \bigoplus \mathcal{H}$ au graphe de A restreint à $D(A^*A)$ et montrons que x = 0. Cela provient du fait que pour tout $y \in D(A^*A)$, on a que :

$$0 = \langle (x, Ax), (y, Ay) \rangle = \langle x, y \rangle + \langle x, (1 + A^*A)y \rangle$$
(146)

Théorème 21. Soit (D(A), A) un opérateur normal. Alors

- 1. $x \in D(A^2) \implies (1 + A^*A)^{-1/2}x \in D(A^2)$
- 2. Pour $x \in D(A)$, $A(1+A^*A)^{-1}x = (1+A^*A)^{-1}Ax$ et $A^*(1+A^*A)^{-1}x = (1+A^*A)^{-1}A^*x$
- 3. Pour $x \in D(A^2)$, $A(1+A^*A)^{-1/2}x = (1+A^*A)^{-1/2}Ax$ et $A^*(1+A^*A)^{-1/2}x = (1+A^*A)^{-1/2}A^*x$
- 4. $(1+A^*A)^{-1/2}A$ et $(1+A^*A)^{-1/2}A^*$ sont bornés sur $D(A^2)$, de norme inférieure à 1, de sorte qu'il existe des extensions bornées uniques T_A et T_{A^*} . De plus, $T_A^* = T_{A^*}$
- 5. $1 T_{A*}T_A = (1 + A*A)^{-1}$

Preuve. Commencer par la discussion suivante. On a $D(A^2) = D(A^*A) = D(AA^*) = D(A^{*2})$. Par exemple :

$$x \in D(A^*A) \Leftrightarrow \forall y \in D(A) : y \mapsto \langle y, A^*Ax \rangle \in \mathcal{L}(D(A), \mathbb{C})$$

$$\Leftrightarrow \forall y \in D(A) : y \mapsto \sum_{k=0}^{3} i^k \langle A(y + i^k x), A(y + i^k x) \rangle \in \mathcal{L}(D(A), \mathbb{C})$$

$$\Leftrightarrow \forall y \in D(A) : y \mapsto \sum_{k=0}^{3} i^k ||A(y + i^k x)||^2 \in \mathcal{L}(D(A), \mathbb{C})$$

$$\Leftrightarrow \forall y \in D(A) : y \mapsto \sum_{k=0}^{3} i^k ||A(y + i^k x)||^2 \in \mathcal{L}(D(A), \mathbb{C})$$

$$\Leftrightarrow \forall y \in D(A) : y \mapsto \sum_{k=0}^{3} i^k ||A^*(y + i^k x)||^2 \in \mathcal{L}(D(A), \mathbb{C})$$

$$\Leftrightarrow \forall y \in D(A) : y \mapsto \langle A^*y, A^*x \rangle \in \mathcal{L}(D(A), \mathbb{C})$$

$$\Leftrightarrow A^*x \in D(A)$$

$$\Leftrightarrow x \in D(AA^*)$$

De plus, si $x \in D(A^2)$, alors :

$$\langle x, A^*Ax \rangle = \langle Ax, Ax \rangle = ||Ax||^2 = ||A^*x||^2 = \langle Ax, Ax \rangle = \langle x, AA^*x \rangle \tag{148}$$

et en appliquant encore une fois l'identité de polarisation, on a que pour un tel opérateur normal (D(A),A):

$$\forall x \in D(A^*A) = D(AA^*) : AA^*x = A^*Ax \tag{149}$$

Puisque $(1 + A^*A)^{-1}$ est borné, on peut par le calcul fonctionnel sur les opérateurs bornés définir l'opérateur $(1 + A^*A)^{-1/2}$. Celui-ci sera aussi borné, auto-adjoint et de norme inférieure à 1. Manifestement :

$$(1+A^*A)^{-1/2}(1+A^*A)^{-1/2} = (1+A^*A)^{-1}$$
(150)

Prouvons désormais chaque point explicitement.

- 1. Si $x \in D(A^2)$, il doit exister $y \in \mathcal{H}$ tel que $x = (1 + A^*A)y$. Mais alors, par le calcul fonctionnel, on a $(1 + A^*A)^{-1/2}x = (1 + A^*A)^{-3/2}y = (1 + A^*A)^{-1}(1 + A^*A)^{-1/2}y \in D(A^2)$.
- 2. Si $x \in D(A)$, il existe $y \in D(A^2)$ tel que $(1 + A^*A)y = x$. Ceci montre que $A^*Ay = x y \in D(A)$, d'où $y \in D(AA^*A)$, ou encore, $Ay \in D(AA^*) = D(A^*A)$. Ainsi, on a :

$$A(1 + A^*A)^{-1}x = Ay = (1 + A^*A)^{-1}(1 + A^*A)Ay = (1 + A^*A)^{-1}(Ay + A^*AAy)$$

= $(1 + A^*A)^{-1}(Ay + AA^*Ay) = (1 + A^*A)^{-1}A(1 + A^*A)y = (1 + A^*A)^{-1}Ax$ (151)

Le raisonnement pour l'autre égalité est analogue.

3. Par définition du calcul fonctionnel, il doit exister une suite (p_n) convergeant uniformément sur $\sigma(((1+A^*A)^{-1}))$ vers la fonction $x \mapsto \sqrt{x}$ de telle sorte que $||(1+A^*A)^{-1/2} - p_n((1+A^*A)^{-1})|| \to 0$. Pour $x, y \in D(A^2)$:

$$\langle x, A(1+A^*A)^{-1/2}y \rangle = \langle A^*x, (1+A^*A)^{-1/2}y \rangle = \langle A^*x, \lim_{n \to \infty} p_n((1+A^*A)^{-1})y \rangle = \lim_{n \to \infty} \langle A^*x, p_n((1+A^*A)^{-1})y \rangle$$

$$= \lim_{n \to \infty} \langle x, Ap_n((1+A^*A)^{-1})y \rangle = \lim_{n \to \infty} \langle x, p_n((1+A^*A)^{-1})Ay \rangle$$

$$= \langle x, \lim_{n \to \infty} p_n((A+A^*A)^{-1})Ay \rangle = \langle x, (1+A^*A)^{-1/2}Ay \rangle$$
(152)

Les éléments de matrices de $(1 + A^*A)^{-1/2}A$ et de $A(1 + A^*A)^{-1/2}$ étant égaux sur $D(A^2)$ qui est dense dans \mathcal{H} , on peut conclure.

4. Il existe des extensions bornées de T_A et T_{A^*} de $A(1+A^*A)^{-1/2}$ et $A^*(1+A^*A)^{-1/2}$ respectivement. De plus, $T_A^* = T_{A^*}$ et $||T_A|| \le 1$. Pour $x \in D(A^2)$, on a que :

$$||(1+A^*A)^{-1/2}Ax||^2 = \langle Ax, (1+A^*A)^{-1/2}(1+A^*A)^{-1/2}Ax \rangle = \langle Ax, (1+A^*A)^{-1}Ax \rangle = \langle x, A^*(1+A^*A)^{-1}Ax \rangle$$

$$= \langle x, A^*A(1+A^*A)^{-1}x \rangle \le \langle x, A^*A(1+A^*A)^{-1}x \rangle + \langle x, (1+A^*A)^{-1}x \rangle = \langle x, (1+A^*A)(1+A^*A)^{-1} \rangle = ||x||^2$$
(153)

L'opérateur $(1 + A^*A)^{-1/2}A$ est donc bien borné sur $D(A^2)$, de norme inférieure à 1, et possède donc une unique extension sur tout \mathcal{H} . Il en va de manière similaire pour $(1 + A^*A)^{-1/2}A^*$. Finalement, pour $x, y \in D(A^2)$, on a :

$$\langle x, A(1+A^*A)^{-1/2}y \rangle = \langle A^*x, (1+A^*A)^{-1/2}y \rangle = \langle (1+A^*A)^{-1/2}A^*x, y \rangle$$
(154)

ce qui montre bien que $(A(1+A^*A)^{-1/2})^* = (1+A^*A)^{-1/2}A^*$. L'extension de l'adjoint étant l'adjoint de l'extension, $T_A^* = T_{A^*}$.

5. Prendre à nouveau $x, y \in D(A)$:

$$\langle x, (1 - T_{A^*} T_A) y \rangle = \langle x, y \rangle - \langle T_A x, T_A y \rangle = \langle x, y \rangle - \langle (1 + A^* A)^{-1/2} A x, (1 + A^* A)^{-1/2} A y \rangle$$

$$= \langle x, y \rangle - \langle A x, (1 + A^* A)^{-1/2} (1 + A^* A)^{-1/2} A y \rangle = \langle x, y \rangle - \langle A x, (1 + A^* A)^{-1} A y \rangle$$

$$= \langle x, y \rangle - \langle x, A^* A (1 + A^* A)^{-1} y \rangle = \langle x, (1 + A^* A) (1 + A^* A)^{-1} y \rangle - \langle x, A^* A (1 + A^* A)^{-1} y \rangle$$

$$= \langle x, (1 + A^* A)^{-1} y \rangle$$
(155)

Ces deux opérateurs bornés ont donc les mêmes éléments de matrice sur un ensemble dense de \mathcal{H} et sont donc identiques.

Théorème 22. Soit (D(A), A) un opérateur auto-adjoint. Alors, il existe une famille dénombrable $(\nu_n)_{n \in B}$ de mesures boreliennes, régulières et finies sur $\sigma(A)$ et un unique opérateur unitaire $U : \mathcal{H} \to \bigoplus_{n \in B} L^2(\sigma(A), \nu_n)$ tels que

1.
$$UD(A) = \{(f_n)_{n \in B} \in \bigoplus_{n \in B} L^2(\sigma(A), \nu_n) : (xf_n(x))_{n \in B} \in \bigoplus_{n \in B} L^2(\sigma(A), \nu_n)\}$$

2. Sur D(A), on a $A = U^{-1}M_rU$

Preuve. Commençons par la discussion suivante. Si (D(A), A) est auto-adjoint, il est à fortiori normal. Par le théorème précédent 21, T_A est donc un opérateur auto-adjoint borné de norme inférieure à 1. Par conséquent son spectre est dans [-1,1] et par le théorème de la décomposition spectrale pour opérateurs auto-adjoints bornés 14, il existe une famille de mesures régulières boréliennes $(\mu_n)_{n\in B}$ sur $\sigma(A)$ et avec $|B| \leq |\mathbb{N}|$ et un opérateur unitaire V:

$$V: \mathcal{H} \to \bigoplus_{n \in B} L^2(\sigma(A), \mu_n): VT_A V^{-1} = M_x$$
(156)

Par le théorème 21, on a alors que :

$$(1+A^*A)^{-1} = 1 - T_A^2 = V^{-1}(1-M_T^2)V$$
(157)

Clairement:

$$VD(A^{2}) = V\operatorname{Ran}(1 + A^{*}A)^{-1} = \operatorname{Ran}(1 - M_{x}^{2}) = \left\{ ((1 - x^{2})f_{n}(x))_{n \in B} : (f_{n})_{n \in B} \in \bigoplus_{n \in B} L^{2}(\sigma(A), \mu_{n}) \right\}$$
(158)

Manifestement, on a aussi $V(1+A^*A)^{-1/2}V^{-1}=M_{\sqrt{1-x^2}}$. Puis sur $VD(A^2)$, on a :

$$M_x = VA(1+A^2)^{-1/2}V^{-1} = V(1+A^2)^{-1/2}AV^{-1} = V(1+A^2)^{-1/2}V^{-1}VAV^{-1} = M_{\sqrt{12}}VAV^{-1}$$
(159)

de sorte que sur $VD(A^2)$, $VAV^{-1} = M_{\frac{x}{\sqrt{1-x^2}}}$. Puisque $D(A^2)$ est un coeur pour A, G(A) sera la fermeture dans $\mathcal{H} \bigoplus \mathcal{H}$ du graphe de A restreint à $D(A^2)$. Puisque V est unitaire, on aura que (D(A), A) sera unitairement équivalent à la fermeture du graphe $M_{\frac{x}{\sqrt{1-x^2}}}$ restreint à $VD(A^2)$. De même, (D(A), A) est unitairement équivalent $(VD(A), M_{\frac{x}{\sqrt{1-x^2}}})$. Par le point 5 du théorème 21, $(1+A^2)^{-1} = 1 - T_A^2$ est une injection, de sorte que par unitarité de V, l'opérateur $1 - M_x^2$ est une bijection dans $\bigoplus_{n \in B} L^2(\sigma(A), \mu_n)$. Il en résulte que pour tout $n \in B$, $\mu_n\{-1, 1\} = 0$ car sinon le vecteur $\bigoplus_{k \in B} x_k$ avec $x_k = \delta_{nk}\chi_{\{-1, 1\}}$ serait un vecteur non-nul avec $1 - M_x^2 \bigoplus_{k \in B} x_k = 0$. Considérons alors

$$\varphi : \mathbb{R} \to]-1,1[,x\mapsto y=\varphi(x)=\frac{x}{\sqrt{x^2+1}}$$

Cette fonction est clairement une bijection continue avec inverse $\varphi^{-1}(y) = \frac{y}{\sqrt{1-x^2}}$. Si $\Sigma_n \subseteq \mathcal{P}(]-1,1[)$ est la σ -algèbre borélienne sur laquelle est définie μ_n , alors :

$$\Sigma_n^{\varphi} = \{ \varphi^{-1} \{ E \} : E \in \Sigma_n \}$$

$$\tag{160}$$

est une σ -algèbre borélienne de $\mathcal{P}(\mathbb{R})$. On définit alors une mesure ν_n :

$$\nu_n: F = \varphi^{-1}\{E\} \in \Sigma_n^{\varphi} \to \mathbb{R}_+, F \mapsto \mu_n(E) \tag{161}$$

Il est alors clair que f est une fonction Σ_n -mesurable si et seulement si $f \circ \varphi$ est Σ_n^{φ} -mesurable et que s est une fonction Σ -simple si et seulement si $s \circ \varphi$ est une fonction Σ_n^{φ} -simple. Par définition de ν_n , il est alors clair que pour une fonction Σ_n^{φ} -simple :

$$\int_{\mathbb{R}} s d\nu_n = \int_{\sigma(A)} s \circ \varphi^{-1} d\mu_n \tag{162}$$

et que par conséquent, la composition des fonctions par φ induit un isomorphisme unitaire $W_n: L^2(\sigma(A), \mu_n) \to L^2(\mathbb{R}, \nu_n)$. φ étant une bijection continue entre intervalles réels de sorte que des compacts de \mathbb{R} sont envoyés sur des compacts de]-1,1[, et que la régularité de μ_n a alors comme conséquence la régularité de ν_n . La composition par φ montre alors aussi que

$$W_n M_{\frac{y}{\sqrt{1-y^2}}} = M_x W_n \tag{163}$$

sur l'ensemble $VD(A)_n$ et la composition par φ nous donne que

$$W_n V D(A)_n = \left\{ \frac{f(x)}{\sqrt{1+x^2}} : f \in L^2(\mathbb{R}, \nu_n) \right\}$$
 (164)

Mais alors,

$$g \in W_n VD(A)_n \Leftrightarrow \int_{\mathbb{R}} \overline{g(x)} (1+x^2) g(x) d\nu_n < \infty \Leftrightarrow g, xg(x) \in L^2(\mathbb{R}, \nu_n)$$
 (165)

Ainsi:

$$W_n V D(A)_n = \{ f \in L^2(\mathbb{R}, \nu_n) : M_x f \in L^2(\mathbb{R}, \nu_n) \}$$
(166)

En définissant $W = \bigoplus_{n \in B} W_n$ et U = WV, on la conclusion du théorème.