Car Accident in Seattle

Coursera IBM Data Sciences Capstone Project

Introduction

- O Car accident in Seattle has a different severity level.
- O This study is to create a model to predict the severity level using data science.
- O There are 37 attribute and 194,673 rows in the raw data.

Data Preprocessing

Data Cleaning

- O Remove no meaning and duplicated data from the data set (a key data, description data)
- O data contain too many null value which is easily lead to incorrect prediction (more than 50% of the data)
- O After removal, there are 14 attribute left.

Data to be use to predict severity

_	Data	Meaning
	ADDRTYPE	Collision address type
	COLLISIONTYPE	Collision type
	PERSONCOUNT	The total number of people involved in the collision
	PEDCOUNT	The number of pedestrians involved in the collision
	PEDCYLCOUNT	The number of bicycles involved in the collision
/	VEHCOUNT	The number of vehicles involved in the collision
ı	JUNCTIONTYPE	Category of junction at which collision took place
	SDOT_COLCODE	A code given to the collision by SDOT
5	UNDERINFL	Whether or not a driver involved was under the influence of drugs or alcohol.
	WEATHER	A description of the weather conditions during the time of the collision
	ROADCOND	The condition of the road during the collision
	LIGHTCOND	The light conditions during the collision
	ST_COLCODE	A code provided by the state that describes the collision
	HITPARKEDCAR	Whether or not the collision involved hitting a parked car.

Handle Null Value

D : C !!	
Data field	Method
ST_COLCODE	Replace blank value (' ') as NaN and replace NaN with maximum frequency data
JUNCTIONTYPE	Replace 'Unknown' value as NaN and replace NaN with maximum frequency data
UNDERINFL	Replace 'Y' as 1 and 'N' as 0 and replace NaN with maximum frequency data
HITPARKEDCAR	Replace 'Y' as 1 and 'N' as 0
ADDRTYPE	Replace NaN with maximum frequency data
COLLISIONTYPE	Replace NaN with maximum frequency data
WEATHER	Replace NaN with maximum frequency data
ROADCOND	Replace NaN with maximum frequency data
LIGHTCOND	Replace NaN with maximum frequency data

Change Data Type and Normalization

- O Change ST_COLCODE, UNDERINFL, and HITPARKEDCAR to integer.
- O Change category data to integer
- O Normalize data

Split Testing and Training Data

O X = 'ADDRTYPE', 'COLLISIONTYPE', 'PERSONCOUNT', 'PEDCOUNT', 'PEDCYLCOUNT', 'VEHCOUNT', 'JUNCTIONTYPE', 'SDOT_COLCODE', 'UNDERINFL', 'WEATHER', 'ROADCOND', 'LIGHTCOND', 'ST_COLCODE', 'HITPARKEDCAR'

O y = 'SEVERITYCODE'

Data	Percentage of all data	Amount of data
Training	70%	136,271
Testing	30%	58,402

Data Exploration

Data to Predict

O Severity Code

Severity Code	Description	Amount of data
1	Prop damage	136,485
2	Injury	58,188

ADDRTYPE group by severity code

COLLISIONTYPE group by severity code

VEHCOUNT group by severity code

WEATHER group by severity code

ROADCOND group by severity code

LIGHTCOND group by severity code

Data Analysis

Pearson Correlation

Data	Pearson Correlation with SEVERITYCODE
SEVERITYCODE	1
PERSONCOUNT	0.130949
PEDCOUNT	0.246338
PEDCYLCOUNT	0.214218
VEHCOUNT	-0.054686
SDOT_COLCODE	0.188905
UNDERINFL	0.044377
ST_COLCODE	-0.165233
HITPARKEDCAR	-0.101498

O There is no linear correlation to SEVERITYCODE.

Decision Tree

- O Max depth = 5
- O Accuracy (the fraction of correctly classified samples) = 0.7537584329303791

K-Nearest Neighbor (KNN)

- O From experiments, K is 1 to 10, the best K is 8.
- O Accuracy (the fraction of correctly classified samples) = 0.7475771377692545

Logistic Regression

- O Use Solver Liblinear
- O Accuracy
 - O Jaccard similarity score = 0.7547344269031883
 - O Confusion matrix (F1 average) = 0.7173683103496501

Support Vector Machine (SVM)

- O Kernel 'rbf'
- O Accuracy
 - O The fraction of correctly classified samples = 0.7593404335467964
 - O Confusion matrix (F1 average) = 0.7173683103496501

Summary

- O Decision tree algorithm, K-Nearest Neighbor algorithm (KNN), Logistic Regression, and Support Vector Machine algorithm (SVM), shows similar ability to predict the severity level.
- O Decision tree and SVM has accuracy score 76%, where KNN and Logistic Regression have accuracy score 75%.