Experiment 1

In this experiment, the 2N3904 BJT was simulated in LTSPICE and the i_c - v_{CE} characteristic curves were obtained. From these curves, the current gain β was obtained at various collector-emitter voltages and base currents. The data is shown in Table 1. At $V_{CE} = 1$ V, the expected gain h_{FE} has a minimum of 70 (1 mA) and 100 (10 mA) and a maximum of 300. In the simulation, a current gain of just under 300 was calculated. At $V_{CE} = 10$ V, the gain exceeded 300, however an h_{FE} value was not listed for this voltage.

Table 1: Data collected from the i_c - v_{CE} curves and the current gains calculated.								
	V_{CE}	Approx. I_C (mA)	I_C (mA)	I_B (uA)	β (A/A)			
-	1	2	2.0972272	10	200 72272			

V_{CE}	Approx. I_C (mA)	I_C (mA)	I_B (uA)	β (A/A)
1	3	2.9872372	10	298.72372
1	12	11.692551	40	292.313775
10	3	3.2552434	10	325.52434
10	12	12.741939	40	318.548475

For small AC signals, the gain was found to be $\beta = 320.7$. This was determined by fixing $V_{CE} = 10$ V and measuring the collector current I_C at the base currents of 10 and 20 mA,

when
$$I_C$$
 at the base currents of 10 and 20 mA,
$$\beta_{ac} = \frac{\Delta I_C}{\Delta I_B} \bigg|_{V_{CE}=10}$$

$$= \frac{6.4623146 - 3.2552434 \text{ mA}}{10 \text{ uA}} = 320.71 \text{ V}, 12 \text{ mA}), \text{ the output resistance was determined}$$

At the point $(V_{ce}, I_c) \approx (10 \text{ V}, 12 \text{ mA})$, the output resistance was determined using the slope,

$$\begin{split} \text{Slope} &= \frac{12.747768 - 12.736109 \text{ mA}}{10.05 - 9.95 \text{ V}} \\ r_o &= 8576.92 \, \Omega \end{split}$$

The early voltage V_A was determined using this r_o ,

$$V_A = r_o I_c - V_{CE}$$

= 8.577 k $\Omega \times 12.74$ mA - 10 V
= 99.28 V

Next, the collector-emitter terminals of the transistor were reversed and the reverse current gain β_r was calculated at $V_{CE} = 4 \text{ V}$ and at a base current $I_B = 10 \,\mu\text{A}$,

$$\beta_r = \frac{39.77}{10} = 3.98$$

Experiment 2

The transistor was attached in a diode configuration, with the base and collector shorted together. Around a base current $I_B = 20 \,\mu\text{A}$, the slope was measured using two data points and the resistance r_π was calculated,

Slope =
$$\frac{20.032921-19.958448~\mu\text{A}}{702.5-702.4~\text{mV}} = 0.000\,744\,731\,\text{A/V}$$

$$r_{\pi} = 1342.77\,\Omega$$