| QUI055 - Química | Pontuação ↓ |                    |  |
|------------------|-------------|--------------------|--|
| Data: 05/02/2025 | Questões: 3 | Pontos totais: 3,0 |  |
| Matrícula:       | Nome:       |                    |  |

| Questão | Pontos | Nota |
|---------|--------|------|
| 1       | 1,0    |      |
| 2       | 1,0    |      |
| 3       | 1,0    |      |
| Total:  | 3,0    |      |

## Instruções:

- 1. Justifique todas as suas respostas.
- 2. Entregue as repostas manuscritas com essa folha anexa.
- 3. A Tabela Periódica dos Elementos está ao final da prova.

Valores de eletronegatividade de Pauling  $(\chi)$ .

| Elemento            | χ    | Elemento | χ    | Elemento     | χ    | Elemento     | χ    |
|---------------------|------|----------|------|--------------|------|--------------|------|
| $\mathbf{F}$        | 3,98 | О        | 3,44 | Cl           | 3,16 | N            | 3,04 |
| $\operatorname{Br}$ | 2,96 | I        | 2,66 | $\mathbf{S}$ | 2,58 | $\mathbf{C}$ | 2,55 |
| Н                   | 2,20 | Р        | 2,19 | В            | 2,04 | Si           | 1,90 |

1. (1,0) A reação do 2-metilpropeno com  $BH_3$  em  $Et_2O$  (éter etílico) e, em seguida,  $H_2O_2$  em uma solução 3 mol  $L^{-1}$  de NaOH gerou o 2-metilpropan-1-ol. Então, a reação desse álcool com clorocromato de piridínio (PCC) em diclorometano ( $CH_2Cl_2$ ) gerou o 2-metilpropanal, conforme mostra a síntese abaixo.

(a) As condições reacionais de formação do 2-metil propan-1-ol poderiam ser trocadas para uma solução 10 % (100 g  $\rm L^{-1})$  de  $\rm H_2SO_4?$  Caso não, qual produto seria formado preferencialmente, nesse caso? (b) Na etapa de formação do 2-metilpropanal, observou-se que rendimentos maiores são obtidos quando a reação é feita com o sistema vedado, solventes secos e com as vidrarias purgadas com N<sub>2</sub> ou Ar (argônio). Além disso, quando o sistema é exposto ao ar, **particularmente** em dias úmidos, observa-se a formação do ácido 2-metilpropanoico como contaminante. Justifique as observações experimentais.

Ácido 2-metilpropanoico

2. (1,0) Ao reagir o anisol (metoxibenzeno) com bromo molecular (Br<sub>2</sub>) na presença de brometo de ferro(III) (FeBr<sub>3</sub>), obteve-se o 4-bromoanisol. Então, esse produto foi reagido com (i) tiras de magnésio metálico em éter etílico (Et<sub>2</sub>O), (ii) butan-2-ona e, em seguida, (iii) uma solução aquosa saturada de cloreto de amônio, formando o 2-(4-metoxifenil)butan-2-ol. A síntese é ilustrada abaixo.

$$OCH_3 \xrightarrow{Br_2} Br$$

$$OCH_3 \xrightarrow{Br_2} Br$$

$$OCH_3 \xrightarrow{SR_2} Br$$

2-(4-metoxifenil)butan-2-ol

- (a) Justifique a regioquímica observada na formação do 4-bromoanisol.
- (b) Mostre o mecanismo de formação do álcool terciário a partir do 4-bromoanisol.
- (c) Ao utilizar gotas de  $H_2SO_4$  concentrado e aquecer a mistura à 60 °C ao invés de usar uma solução saturada de  $NH_4Cl$ , observou-se a formação do subproduto  $\bf A$  mostrado abaixo. Justifique essas observações experimentais.

3. (1,0) Ao reagir o benzaldeído com hidreto de lítio e alumínio (LiAlH<sub>4</sub>) em THF, adicionar uma solução de H<sub>2</sub>SO<sub>4</sub> 10 g L<sup>-1</sup> (1 %, m/v) e então reagir o produto com tribrometo de fósforo (PBr<sub>3</sub>), obteve-se o brometo de benzila. Ao reagir o brometo de benzila com tiras de magnésio metálico em THF anidro, 2-hidroxietanal e, em seguida, uma solução saturada de NH<sub>4</sub>Cl, esperava-se obter o 1-feniletano-1,2-diol (**A**). Todavia, obteve-se tolueno (metilbenzeno) e o próprio 2-hidroxetanal como produtos majoritários. A síntese é mostrada abaixo.

H 1. LiAlH<sub>4</sub>, THF  

$$2. H_3O^+$$
  
 $3. PBr_3$ 

Br 1. Mg, THF  
 $2. H_3O^+$   
 $3. NH_4Cl$ 

OH

A

(não observado)

- (a) Considerando que as condições reacionais de reduções com boroidreto de sódio (NaBH<sub>4</sub>) tendem a ser mais brandas que as usadas para o LiAlH<sub>4</sub>, essa troca seria possível na síntese do brometo de benzila?
- (b) Justifique a formação majoritária do tolueno e do 2-hidroxietanal ao invés do produto  ${\bf A}$ .
- (c) Qual estratégia de síntese poderia ser utilizada para a obtenção de **A** a partir do brometo de benzila?

