Examen du baccalauréat - Session principale - juin 2014

Section Mathématiques

Épreuve de Mathématiques

Corrigé

Exercice 1

1) a) A(0,0,0), C(6,6,0) et H(0,6,6)

$$\overrightarrow{AC} \begin{pmatrix} 6 \\ 6 \\ 0 \end{pmatrix}$$
, $\overrightarrow{AH} \begin{pmatrix} 0 \\ 6 \\ 6 \end{pmatrix}$ donc $\overrightarrow{AC} \wedge \overrightarrow{AH} \begin{pmatrix} 36 \\ -36 \\ 36 \end{pmatrix}$.

b) Le vecteur $\vec{n} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ est normal à (P) donc (P): x - y + z + d = 0 et puisque A est un point de (P), il

en résulte que (P): x - y + z = 0.

 $c) \begin{cases} $\left(EG\right) \parallel \left(AC\right) \\ $\left(EB\right) \parallel \left(CH\right) \end{cases} \ donc \ les \ plans \end{cases} \left(P\right) et \left(Q\right) \ sont \ parallèles \ donc \end{cases} \left(Q\right) \colon x-y+z+d=0 \ ,$

or $B(6,0,0) \in (Q)$, il en résulte que d=-6. D'où (Q): x-y+z-6=0.

- 2) a) $M(x,y,z) \in S \Leftrightarrow (x-1)^2 + (y+1)^2 + (z-1)^2 = 3$. On en déduit que la sphère S a pour rayon $R = \sqrt{3}$ et pour centre I(1,-1,1).
 - b) Soit (Δ) la perpendiculaire à (Q) et passant par A, (Δ): $\begin{cases} x = \alpha \\ y = -\alpha, \ \alpha \in \mathbb{R}. \\ z = \alpha \end{cases}$

$$J\left(x,y,z\right)\in\Delta\cap Q\Leftrightarrow \begin{cases} x=\alpha\\y=-\alpha\\z=\alpha\\x-y+z-6=0\end{cases}\Leftrightarrow \begin{cases} \alpha=2\\x=2\\y=-2\\z=2\end{cases}, \text{ il en résulte que }J\left(2,-2,2\right).$$

 $\begin{cases} A \in S \\ J \in S \end{cases} \text{ , on en déduit que [AJ] est un diamètre de } S.$ I = A * J

- c) $d(I,Q) = IJ = \sqrt{3} = R$ et $d(I,P) = IA = \sqrt{3} = R$ donc la sphère S est tangente à chacun des deux plans P et Q respectivement en A et J.
- 3) a) $A' = t(A) \Leftrightarrow \overrightarrow{AA'} = \overrightarrow{u} \text{ donc } A'(2,4,2).$

On pose
$$J'(x,y,z)$$
. $J'=t(J) \Leftrightarrow \overrightarrow{JJ'}=\overrightarrow{u} \Leftrightarrow \begin{cases} x-2=2\\ y+2=4 \Leftrightarrow \\ z-2=2 \end{cases} \begin{cases} x=4\\ y=2 \text{ donc } J'(4,2,4). \end{cases}$

b) Soit I' l'image de I par t.

On pose
$$I'(x,y,z)$$
. $I' = t(I) \Leftrightarrow \overrightarrow{II'} = \overrightarrow{u} \Leftrightarrow \begin{cases} x-1=2 \\ y+1=4 \Leftrightarrow \begin{cases} x=3 \\ y=3 \text{ donc } I'(3,3,3). \end{cases}$

Ainsi l'image de S par t est la sphère S' de centre I'(3,3,3) et de rayon $R = \sqrt{3}$.

c) $\vec{u} \cdot \vec{n} = 0$ donc \vec{u} est un vecteur de P et de Q, il en résulte que t(P) = P et t(Q) = Q.

La sphère S est tangente à chacun des deux plans P et Q respectivement en A et J donc S' = t(S) est tangente à chacun des deux plans t(P) = P et t(Q) = Q respectivement en A' et J'.

Exercice 2

1) a) Une mesure de l'angle de f est $(\overrightarrow{AC}, \overrightarrow{BD}) = (\overrightarrow{OC}, \overrightarrow{OD})[2\pi] = \frac{\pi}{2}[2\pi]$. Le rapport de f est $\frac{BD}{AC} = \frac{1}{3}$.

b)
$$\begin{cases} \left(\overrightarrow{OA}, \overrightarrow{OB}\right) \equiv \frac{\pi}{2} [2\pi] \\ \frac{OB}{OA} = \frac{\frac{1}{2}BD}{\frac{1}{2}AC} = \frac{1}{3} \end{cases}$$
 donc O est le centre de f.

2) a) On sait que [OA] est la hauteur issue de A dans le triangle ABD.

f(C) = D et f(D) = D' donc $(DD') \perp (CD)$ et $(CD) \parallel (AB)$ par suite $(DD') \perp (AB)$, il en résulte que (DD') est la droite qui porte la hauteur issue de D dans le triangle ABD.

D'autre part f(D) = D' donc $(\overrightarrow{OD}, \overrightarrow{OD'}) = \frac{\pi}{2} [2\pi]$ d'où $D' \in (OA)$. On en déduit que D' est l'orthocentre du triangle ABD.

On sait que f(D) = D' donc OD = 3OD' et puisque OA = 3OD donc OA = 9OD'.

- b) On sait que f(A) = B, f(B) = B', f(C) = D et f(D) = D', puisque ABCD est un losange donc BB'DD' est un losange.
- 3) a) g est la composée d'une similitude directe de rapport $\frac{1}{3}$ et d'un antidéplacement (similitude indirecte de rapport 1) donc g est une similitude indirecte de rapport $\frac{1}{3}$.

b)
$$g(O) = f \circ S_{(AC)}(O) = f(O) = O.$$

 $g(A) = f \circ S_{(AC)}(A) = f(A) = B.$
 $g(B) = f \circ S_{(AC)}(B) = f(D) = D'.$
 $g(C) = f \circ S_{(AC)}(C) = f(C) = D.$

$$g(D) = f \circ S_{(AC)}(D) = f(B) = B'.$$

- c) Puisque le rapport de g est $\frac{1}{3}$ et g(O) = O donc O est le centre de g et comme g(A) = B donc Δ est la droite qui porte la bissectrice intérieur de AOB.
- d) $M \in \Delta \cap (AB)$ donc $g(M) \in g(\Delta) \cap g((AB))$ donc $g(M) \in \Delta \cap (BD') = \{N\}$ d'où g(M) = N. De même, on montre que g(Q) = P par suite MQ = 3NP.

Exercice 3

- 1) a) Puisque $a \equiv 1 \pmod{10}$ donc $a^n \equiv 1 \pmod{10}, n \in \mathbb{N}^*$. Il en résulte que $1+a+\dots+a^9 \equiv 10 \pmod{10} \equiv 0 \pmod{10}$.
 - b) On sait que $a \equiv 1 \pmod{10}$ donc $a-1 \equiv 0 \pmod{10}$ donc il existe $k \in \mathbb{Z}$ tel que a-1=10k et $1+a+\dots+a^9\equiv 0 \pmod{10}$ donc il existe $k'\in\mathbb{Z}$ tel que $1+a+\dots+a^9\equiv 10k'$, il en résulte que $a^{10}-1=10^2kk'$ ou encore $a^{10}-1\equiv 0 \pmod{10^2}$ d'où $a^{10}\equiv 1 \pmod{10^2}$.
- 2) a)

Reste de b (mod10)	0	1	2	3	4	5	6	7	8	9
Reste de b ⁴ (mod10)	0	1	6	1	6	5	6	1	6	1

b) Soit r le reste de b (mod 10).

Si $r \in \{0, 2, 4, 6, 8\}$, alors 2 divise b et 10 donc $b \land 10 \ne 1$.

Si r = 5, alors 5 divise b et 10 donc $b \land 10 \ne 1$.

Si $r \in \{1,3,7,9\}$ alors b n'est divisible ni par 2 ni par 5 donc $b \land 10 = 1$.

Ainsi $b \wedge 10 = 1 \Leftrightarrow r \in \{1, 3, 7, 9\}$ et d'après a) $r \in \{1, 3, 7, 9\} \Leftrightarrow b^4 \equiv 1 \pmod{10}$, on en déduit que $b^4 \equiv 1 \pmod{10} \Leftrightarrow b \wedge 10 = 1$.

- 3) a) Si b est premier avec 10 alors d'après 2)b) $b^4 \equiv 1 \pmod{10}$ et d'après 1) $\left(b^4\right)^{10} \equiv 1 \pmod{10^2}$ d'où $b^{40} \equiv 1 \pmod{10^2}$.
 - b) $67 \wedge 10 = 1 \text{ donc } 67^{40} \equiv 1 \pmod{10^2} \text{ et } 67^2 \equiv 89 \pmod{10^2} \text{ donc } 67^{42} \equiv 89 \pmod{10^2}.$

Exercice 4

1) a)
$$\begin{cases} \lim_{x \to \left(-\frac{\pi}{4}\right)^{+}} 1 + \tan x = 0 \\ \lim_{x \to 0^{+}} \ln x = -\infty \end{cases} \quad \text{donc } \lim_{x \to \left(-\frac{\pi}{4}\right)^{+}} f\left(x\right) = -\infty.$$

$$\begin{cases} \lim_{x \to \left(\frac{\pi}{2}\right)^{-}} 1 + \tan x = +\infty \\ \lim_{x \to \left(\frac{\pi}{2}\right)^{-}} \text{donc } \lim_{x \to \left(\frac{\pi}{2}\right)^{-}} f\left(x\right) = +\infty. \end{cases}$$

- b) La fonction f est dérivable sur $\left] -\frac{\pi}{4}, \frac{\pi}{2} \right[$ et pour tout $x \in \left] -\frac{\pi}{4}, \frac{\pi}{2} \right[$, $f'(x) = \frac{1 + \tan^2 x}{1 + \tan x}$.
- c) Pour tout $x \in \left[-\frac{\pi}{4}, \frac{\pi}{2} \right], f'(x) = \frac{1 + \tan^2 x}{1 + \tan x} > 0$

Х	$-\frac{\pi}{4}$ $\frac{\pi}{2}$	_
f'(x)	+	
f	-∞	

2) a) $f(0) = \ln 1 = 0$ donc $O \in (C)$.

$$f\left(\frac{\pi}{4}\right) = \ln 2 \text{ donc } A \in (C).$$

$$f\left(\frac{\pi}{8}\right) = \ln\sqrt{2} = \frac{\ln 2}{2} \text{ donc } I \in (C).$$

b)

$$f\left(\frac{\pi}{4} - x\right) = \ln\left(1 + \tan\left(\frac{\pi}{4} - x\right)\right) = \ln\left(1 + \frac{1 - \tan x}{1 + \tan x}\right) = \ln\left(\frac{2}{1 + \tan x}\right) = \ln 2 - \ln\left(1 + \tan x\right) = \ln 2 - f\left(x\right).$$

- c) Pour tout $x \in \left] -\frac{\pi}{4}, \frac{\pi}{2} \right[, \frac{\pi}{4} x \in \left] -\frac{\pi}{4}, \frac{\pi}{2} \right[\text{ et } f\left(\frac{\pi}{4} x\right) = \ln 2 f\left(x\right) \text{ donc I est un centre de symétrie de (C).} \right]$
- 3) $T_0: y = x$.

- 4) a) Les surfaces S_1 et S_2 sont symétriques par rapport à I donc elles ont la même aire.
 - b) On désigne par $B\left(\frac{\pi}{8},0\right)$ et $C\left(\frac{\pi}{4},0\right)$.

 $\int_0^{\frac{\pi}{4}} \ln(1 + \tan x) dx \text{ est l'aire de la partie du plan limitée par (C), l'axe des abscisses et les droites}$ $x = 0 \text{ et } x = \frac{\pi}{4} \text{ donc}$

$$\int_{0}^{\frac{\pi}{4}} \ln \left(1 + \tan x\right) dx = A_{\text{triangleOBI}} - S_1 + A_{\text{trapèzeBCAI}} + S_2 = A_{\text{triangleOBI}} + A_{\text{trapèzeBCAI}} = A_{\text{triangleOAC}} = \frac{\pi}{8} \ln 2.$$

- 5) a) La fonction f est continue et strictement croissante sur $\left] -\frac{\pi}{4}, \frac{\pi}{2} \right[$ donc elle réalise une bijection de $\left[-\frac{\pi}{4}, \frac{\pi}{2} \right]$ sur $\left[-\frac{\pi}{4}, \frac{\pi}{2} \right] = \mathbb{R}$.
 - b) La fonction f est strictement croissante sur $\left] -\frac{\pi}{4}, \frac{\pi}{2} \right[$

La fonction f est dérivable sur $\left] -\frac{\pi}{4}, \frac{\pi}{2} \right[\text{ et } f'(x) = \frac{1 + \tan^2 x}{1 + \tan x} \neq 0 \text{ pour tout } x \in \left] -\frac{\pi}{4}, \frac{\pi}{2} \right[\text{ donc} \right]$

 $f^{-1} \text{ est d\'erivable sur } \mathbb{R} \text{ et } \left(f^{-1}\right)'\left(x\right) = \frac{1}{f'\left(f^{-1}\left(x\right)\right)} = \frac{1}{f'\left(y\right)} = \frac{1+\tan y}{1+\tan^2 y} \text{ avec}$

 $f^{-1}\left(x\right) = y \,, y \in \left] -\frac{\pi}{4}, \frac{\pi}{2} \right[\text{ et } x \in \mathbb{R} \iff f\left(y\right) = x \iff \ln\left(1 + \tan y\right) = x \iff \tan y = e^x - 1. \text{ on en déduit } \right]$

que pour tout $x \in \mathbb{R}$, $\left(f^{-1}\right)'(x) = \frac{e^x}{1 + \left(e^x - 1\right)^2}$.

c)
$$\int_{0}^{\ln 2} \frac{e^{x}}{1 + \left(e^{x} - 1\right)^{2}} dx = \int_{0}^{\ln 2} \left(f^{-1}\right)' \left(x\right) dx = \left[f^{-1}\left(x\right)\right]_{0}^{\ln 2} = f^{-1}\left(\ln 2\right) - f^{-1}\left(0\right) = \frac{\pi}{4}.$$