Statistics (cdf, ppf, prf) t_test, z_test

```
In [1]:
         import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
In [2]:
         t mean = 18.7 # given
         t std = 5.8 \# given
         n trips = 2000 #given
        Question 1
In [3]:
         #Asked: should earn over 20
In [4]:
         import scipy.stats as stats
In [5]:
         x = np.linspace(t mean-3*t std, t mean+3*t std, 100)
         plt.plot(x, stats.norm.pdf(x, t mean, t std));
         plt.plot([20,20,20],[0,0.01,0.07]);
         0.07
         0.06
         0.05
         0.04
         0.03
         0.02
         0.01
         0.00
        stats.norm.cdf
In [6]:
         #The formula to find the left area of the curve until 20
         stats.norm.cdf(20, t mean, t std)
        0.5886750107430825
Out[6]:
In [7]:
         # Then 1 - (above code) gives the right area of the curve
         1-stats.norm.cdf(20, t mean, t std)
        0.4113249892569175
Out[7]:
In [8]:
         # Now multiplying by number of trips
```

#(Because above calculation was for only one unit trip)

2000*0.41

```
Out[8]: 820.0
```

stats.binom.cdf(x, n, p)

0.7807245754350454

Out[16]:

In [17]:

```
x is the number of successes from n trials with the probability of success is p
 In [9]:
          # Let's find the probability of successes of having two tails
          # from three coin toss where p of having tails = 0.6
          print(3*((0.6**2)*((1-0.6)**1)))
          stats.binom.pmf(2,3,0.6) # pmf returns the p of successes
         0.43199999999999994
         0.43199999999999994
 Out[9]:
        Question 3
In [10]:
          n trips = 5
          # Asked: over 15 probability at least 3 trips out of 5 trips
          right area = 1 - stats.norm.cdf(15, t mean, t std)
In [11]:
          #"binom.cdf(num succ-1, num trials, prob)" Excel -> "=BINOMDIST(B2,C2,D2,1)
In [12]:
         print(right area)
          left area = 1-right area
          print(left area)
         0.7382407127058933
         0.2617592872941067
        Usually dist formulas calculates left curve area so if we need to know right
        area, we have to 1- left_area
In [13]:
          # This formula calculates the probability of having
          # 2 or less success from 5 trial whose probability = left area
          stats.binom.cdf(2,5,left_area)
         0.8836952614939727
Out[13]:
In [14]:
          # Not having 2 or less successes from 5 trials where p = left area
          stats.binom.sf(2,5,left area)
         0.11630473850602734
Out[14]:
In [15]:
          #Additional
          # If we are asked to find successes between [2 and 4], for example
In [16]:
          stats.binom.cdf(4,5,right area)
```

```
Out[17]:

In [18]: 
# This formula equals to excel formula --> BINOM.DIST.RANGE(5, right_area, 2, 4) stats.binom.cdf(4,5, right_area) - stats.binom.cdf(1, 5, right_area)

Out[18]: 
0.7621665771175891
```

Question 2

```
In [20]: stats.binom.cdf(0,5,left_a)
```

stats.binom.cdf(1, 5, right area)

0.018557998317456286

Out[20]: 0.21927542456495466

Question 8

Given:

$$p=0.6$$
 $\hat{p}=0.5$ $n=50$

Then:

$$egin{aligned} var &= \hat{p} * (1 - \hat{p}) \ std &= rac{\sqrt{var}}{\sqrt{n}} \ z &= rac{(p - \hat{p})}{ctd} \end{aligned}$$

 \hat{p} is a mean for Ha and p is from sample we got

from scipy.stats import norm

norm.cdf(1.96)

0.9750021048517795

norm.cdf(-1.96)

0.024997895148220435

stats.norm.ppf

```
In [21]:
# This formula will calculate z value, two-tail
# Where confidence interval for 99 %, z value is 2.575
```

```
# It means that 99% confidence interval lies
          #2.575 standard deviation from the mean
          \#where mean = 0 and std = 1
         2.5758293035489004
Out[21]:
In [22]:
          stats.norm.cdf(2.575)
          # It will give the confidence interval of the given value
          #(std of how many times far from the mean (z))
         0.9949879956682387
Out[22]:
In [23]:
          stats.norm.cdf(1.4142)
         0.9213484060057744
Out[23]:
In [24]:
          p \ val = 1 - stats.norm.cdf(1.4142)
          p_val
         0.07865159399422561
Out[24]:
         Question 10
In [25]:
          m = 85
          std\_sample = 32
          n = 16
In [26]:
          std r = std sample/np.sqrt(n)
In [27]:
          z =stats.norm.ppf(0.95)
In [28]:
          marg errors = z*std r
In [29]:
          conf int min = m-marg_errors
          conf int max = m+marg errors
In [30]:
          print(conf_int_min, 'to ', conf_int_max)
         71.84117098438823 to 98.15882901561177
In [31]:
          #Studnt, n=999, p<0.05, 2-tail\
          #equivalent to Excel T.INV(0.05,999) or T.INV.2T(0.1, 999)
          #90% confidence interval
          #print stats.t.ppf(1-0.025, 999)
          #Studnt, n=999, p<0.05%, Single tail\
          #equivalent to Excel TINV(2*0.05,999) \
          #print stats.t.ppf(1-0.05, 999)
```

stats.norm.ppf(0.995)

```
In [32]:
          #But t is used more
```

stats.t.ppf

```
In [33]:
          t = stats.t.ppf(0.95, 15)
          marg errors = std r*t
          conf_int_min = m-marg_errors
          conf int max = m+marg errors
          print(conf int min, 'to ', conf int max)
         70.97559715445956 to 99.02440284554044
```

Question 14

```
In [34]:
          uber = pd.read excel('data2.xlsx', sheet name = 'Uber pay')
In [35]:
          uber.head(2)
            DriverID
                         City Gender Trips Hourly Pay Unnamed: 5
Out[35]:
          0
                  1 New York
                                 Male
                                       493
                                                 7.49
                                                             NaN
          1
                  2
                       Boston
                                Male
                                     1195
                                                 8.20
                                                             NaN
In [36]:
          chic mal = uber[(uber['City']=='Chicago')&(uber['Gender']=='Male')]['Hourly Pay']
In [37]:
          std = chic mal.std()
          mean = chic mal.mean()
          n = len(chic mal)
In [38]:
          t = stats.t.ppf(0.975, 181)
          std n = std/np.sqrt(n)
In [39]:
          marg err = t*std n
          marg err
```

Question 15

Out[39]:

0.27923413996605523

```
In [40]:
          fem pay = uber[uber['Gender'] == 'Female']['Hourly Pay']
In [41]:
          mean = fem pay.mean()
          std = fem pay.std()
          n = len(fem pay)
In [42]:
          t = stats.t.ppf(0.975, n-1)
          std n = std/np.sqrt(n)
          marg err = t*std n
          conf int min = mean-marg err
```

```
conf int max = mean+marg err
          print(conf int min, conf int max)
         7.211959435480943 7.670625598532671
In [43]:
          male = uber['Gender'].value counts()[0]
          female = uber['Gender'].value counts()[1]
In [44]:
          p = female/(male+female)
          n = male+female
In [45]:
          z = stats.norm.ppf(0.975)
In [46]:
          t = stats.t.ppf(0.975, n-1)
In [47]:
          std = np.sqrt(p*(1-p)/n)
In [48]:
          marg err = t*std
          max conf = p+marg err
          min conf = p-marg err
          print(min conf, max conf)
         0.2657283864579868 0.32227161354201317
         Question 16
In [49]:
          # Ho: m \ge m sample
          # Ha: m< m sample
In [50]:
          population mean = 7.25
          sample mean = uber['Hourly Pay'].mean()
          alfa = 0.05
In [51]:
          n = len(uber)
          samp std = uber['Hourly Pay'].std()
          pop std = samp std/np.sqrt(n)
In [52]:
          z = (sample_mean - population_mean)/pop_std
In [53]:
          print(sample mean)
          print(samp std)
         7.893409999999993
         1.9947413528989075
         1000
Out[53]:
         stats.t.cdf
```

In [54]:

```
# that uber driver earns more than pop mean
         0.0
Out[54]:
In [55]:
          pop std
         0.06307926018086264
Out[55]:
In [56]:
          stats.norm.cdf(7.89, 7.25, 0.06)
         1.0
Out[56]:
         Question 18
         Two sample t test
In [57]:
          chicago = uber[uber['City'] == 'Chicago']['Hourly Pay']
          york = uber[uber['City'] =='New York']['Hourly Pay']
In [58]:
          ch m = chicago.mean()
          ch std = chicago.std()
          ch n = len(chicago)
          york m = york.mean()
          york std = york.std()
          york n = len(york)
In [59]:
          print(ch m, ch std, ch n, york m, york std, york n)
         8.071140684410652\ 1.998541508080747\ 263\ 7.882751842751838\ 1.9597766271731287\ 4071140684410652
In [60]:
          # Ho: ch m <= york m
          # Ha: ch m > york m
          t = (ch m-york m) / np.sqrt((ch std**2)/ch n + (york std**2)/york n)
In [61]:
          stats.t.cdf(t, ch n+york n-2)
         0.8848237669591617
Out[61]:
In [62]:
          # just another example:
In [63]:
          #Blackboard: Given:
```

p = 1 - stats.t.cdf(z, 999,0)

m1 = 82s1 = 2.4

we will reject the null H and agree with the Ha

```
s2 = 1.7
          n2 = 12
          alfa = 0.05
In [64]:
           t = (m1-m2)/np.sqrt((s1**2)/n1 + (s2**2)/n2)
          -2.5301595052287063
Out[64]:
In [65]:
           p = stats.t.cdf(t, 25)
In [66]:
           # It is two tail test, because m1 != m2 (either high or low)
           \# So alfa = alfa/2 = 0.025
          print(p)
          alfa/2
          0.00903684801412631
          0.025
Out[66]:
         **p is lower than alfa, so we reject Ho and accept Ha, which is:
         there is signicant difference between mean1 and mean2**
In [67]:
          hotel = pd.read excel('data2.xlsx', sheet name = 'hotel')
In [68]:
          hotel.head()
                                             Rate Cancelled
Out[68]:
             BookingID Channel
                                  Weekday
          0
                         Online
                                   Tuesday 385.56
                                                       False
          1
                    2
                         Online Wednesday
                                                       False
                                           305.15
                         Online
                                  Thursday 559.00
                                                       True
          3
                    4
                         Online
                                   Monday 424.15
                                                       False
                    5
                         Online
                                   Sunday 459.00
                                                       True
         Question 19
In [69]:
           rate = hotel['Rate']
In [70]:
           r m = rate.mean()
           r s = rate.std()
          r n = len(rate)
In [71]:
```

Asked: build 95% confidence interval for rate

z = stats.norm.ppf(0.975)
t = stats.t.ppf(0.975, 999)

print(z, t)

n1 = 15

m2 = 84

```
1.959963984540054 1.9623414611334487
In [72]:
          pop std = r s/np.sqrt(r n)
In [73]:
          marg er = pop std*z
In [74]:
          min conf = r m -marg er
          max conf = r m + marg er
          print(min conf, max conf)
         295.33095035193713 304.31864679106235
In [75]:
          marg er = pop std*t
          min\_conf = r\_m - marg\_er
          max conf = r m + marg er
          print(min conf, max conf)
         295.3254992216916 304.3240979213079
         Question 20
In [76]:
          # alfa = 0.05
          # Ho: r m <= 300
          # Ha: r m > 300
In [77]:
          t = (r_m-300)/pop_std \# We should (x-x_mean)/(std/sqrt(n))
In [78]:
          p = stats.t.cdf(t, 999) # to find how much area it will
          # cover when the distance from mean is equal to t*std
In [79]:
         0.4695529077738393
Out[79]:
         Question 21
In [80]:
          online = hotel[hotel['Channel']=='Online']['Rate']
          offline = hotel[hotel['Channel']!='Online']['Rate']
In [81]:
          of mean = offline.mean()
          of std = offline.std()
          of len = len(offline)
          on mean = online.mean()
          on std = online.std()
          on len = len(online)
In [82]:
          # Ho: of mean >= on mean
          # Ha: of mean < on mean
          alpha = 0.05
In [83]:
```

```
t = (of mean-on mean)/np.sqrt(of std**2/of len + on std**2/on len)
In [84]:
          stats.t.cdf(t, of len+on len-2) # p value is higher than alpha
         0.2890174472520236
Out[84]:
         Question 22
In [85]:
          hotel[hotel['Channel'] == 'Online'][['Rate',
                                              'Cancelled']].groupby('Cancelled').count()
Out[85]:
                   Rate
         Cancelled
             False
                    611
                    224
              True
In [86]:
          cancelled = 224
          not cancelled = 611
          percent = 20
          # Let's start
          p pop = 0.20
          p sample = cancelled/(cancelled+not cancelled)
          n = cancelled+not cancelled
          std = np.sqrt(p_pop*(1-p_pop)/n)
          z = (p sample - p pop)/std
         4.9314158489676245
Out[86]:
In [87]:
          # Ho: p sample =< 0.2
          # Ha: p sample > 0.2
          alpha = 0.05
          upper bound = 0.95
In [88]:
          print(p sample, std)
         0.2682634730538922 0.013842570804119656
In [89]:
          p = stats.norm.cdf(z)
In [90]:
          # stats.binom.cdf(p sample, 0.2, std) is different thing,
          # we can't use. (above)
          stats.norm.cdf(p sample*100, p pop*100, std*100)
         0.9999995918213253
Out[90]:
In [91]:
          p # it is higher than upper bound, so we reject null H,
          # therefore p sample is higher than 0.2
         0.9999995918213253
Out[91]:
```

Question 23

```
In [92]:
          stats.norm.cdf(6,8,12)  # area until 6 so 1- ..
           # gives the area starting from 6 till end
         0.43381616738909634
Out[92]:
In [93]:
          stats.norm.cdf(6,15,30) # the same like above
         0.3820885778110474
Out[93]:
         Question 24
In [94]:
          1-stats.norm.cdf(40,32.4, 3.6) # over 40
         0.01738138131111422
Out [94]:
         Question 25
In [95]:
          stats.norm.ppf(0.75, 32.4, 3.6)
          # gives the percentile (counter cdf)
           # it gives 75% point where mean = 32.4 and std = 3.6
         34.82816310070589
Out[95]:
         Question 26
In [96]:
          z m = 8
          z s = 12
          c m = 15
          cs = 30
In [97]:
          m diff = z_m-c_m
          s diff = np.sqrt(z s**2 + c s**2)
          z = m \text{ diff/s diff}
           #Asked: when m diff < 0
In [98]:
          {\tt m} diff
Out[98]:
In [99]:
          stats.norm.cdf(0, m diff, s diff) \# it is when m diff < 0
          0.5857573222326861
Out [99]:
In [100...
          stats.norm.cdf(z)
         0.41424267776731394
```

Question 27

Out [100...

```
In [101...
          n = 8
          price = 30
          mean = 0.08
          std = 0.12
          total = 400
In [102...
          single = total/n
          single
          50.0
Out [102...
In [103...
          stats.norm.cdf(50, 32.4, 3.6) # till 50
          1-stats.norm.cdf(50, 32.4, 3.6) # over 50
          # almost 0
          5.070335422630023e-07
Out [103...
In [104...
          c price = 30
          c mean= 0.08
          c std = 0.12
          z price = 40
          z mean = 0.15
          z std = 0.3
          minimize = 50
          n share = 20
In [105...
          stats.norm.ppf(0.5, 32.4, 3.6)
         32.4
Out [105...
In [106...
          new df=pd.DataFrame(np.arange(1,21))
In [107...
          new df['zoom price'] = z price
          new df['zoom mean'] = z mean
          new df['zoom std'] = z std
          new_df['cloud_price'] = c_price
          new df['cloud mean'] = c mean
          new df['cloud std'] = c std
In [108...
          new df = new df.rename(columns= {0:'share count'})
In [109...
          new df['zoom return'] = new df['share count']*(new df['zoom price']+
                                                            new df['zoom price']*new df['zoom mean'])
In [110...
          new df['zoom return std'] = np.sqrt(new df['zoom std']**2*new df['share count'])
In [111...
          new_df['cloud_return'] = new_df['share_count']*(new_df['cloud_price']+
                                                             new df['cloud price']*new df['cloud mean']
          new df['cloud return std'] = np.sqrt(new df['cloud std']**2*new df['share count'])
```

0 1 40 0.15 0.3 30 0.08 0.12 46 1 2 40 0.15 0.3 30 0.08 0.12 92 2 3 40 0.15 0.3 30 0.08 0.12 138 3 4 40 0.15 0.3 30 0.08 0.12 230 5 6 40 0.15 0.3 30 0.08 0.12 230 6 7 40 0.15 0.3 30 0.08 0.12 276 6 7 40 0.15 0.3 30 0.08 0.12 322 7 8 40 0.15 0.3 30 0.08 0.12 368 8 9 40 0.15 0.3 30 0.08 0.12 460 10 11 40 0.15 0.3 30 0.08 0.12 562	Out [112	;	share_count	zoom_price	zoom_mean	zoom_std	cloud_price	cloud_mean	cloud_std	zoom_return
2 3 40 0.15 0.3 30 0.08 0.12 188 3 4 40 0.15 0.3 30 0.08 0.12 184 4 5 40 0.16 0.3 30 0.08 0.12 230 5 6 40 0.15 0.3 30 0.08 0.12 276 6 7 40 0.16 0.3 30 0.08 0.12 322 7 8 40 0.15 0.3 30 0.08 0.12 322 8 9 40 0.15 0.3 30 0.08 0.12 460 10 11 40 0.15 0.3 30 0.08 0.12 460 10 11 40 0.15 0.3 30 0.08 0.12 506 11 12 40 0.15 0.3 30 0.08 0.12 506 11 12 40 0.15 0.3 30 0.08 0.12 566 12 13 40 0.15 0.3 30 0.08 0.12 566 13 14 40 0.15 0.3 30 0.08 0.12 598 13 14 40 0.15 0.3 30 0.08 0.12 598 13 14 40 0.15 0.3 30 0.08 0.12 598 15 16 40 0.15 0.3 30 0.08 0.12 694 16 17 40 0.15 0.3 30 0.08 0.12 786 16 17 40 0.15 0.3 30 0.08 0.12 786 17 18 40 0.15 0.3 30 0.08 0.12 786 18 19 40 0.15 0.3 30 0.08 0.12 786 19 20 40 0.15 0.3 30 0.08 0.12 920 n [113_ drive = pd.read_excel('data2.xlsx', sheet_name= 'drive-through') n [114_ drive = drive - through')										46.0
3		1	2	2 40	0.15	0.3	30	0.08	0.12	92.0
## 5		2	3	3 40	0.15	0.3	30	0.08	0.12	138.0
5 6 40 0.15 0.3 30 0.08 0.12 276 6 7 40 0.15 0.3 30 0.08 0.12 322 7 8 40 0.15 0.3 30 0.08 0.12 322 7 8 40 0.15 0.3 30 0.08 0.12 368 8 9 40 0.15 0.3 30 0.08 0.12 414 9 10 40 0.15 0.3 30 0.08 0.12 460 10 11 40 0.15 0.3 30 0.08 0.12 506 11 12 40 0.15 0.3 30 0.08 0.12 552 12 13 40 0.15 0.3 30 0.08 0.12 552 12 13 40 0.15 0.3 30 0.08 0.12 552 13 14 40 0.15 0.3 30 0.08 0.12 558 13 14 40 0.15 0.3 30 0.08 0.12 644 14 15 40 0.15 0.3 30 0.08 0.12 690 15 16 40 0.15 0.3 30 0.08 0.12 736 16 17 40 0.15 0.3 30 0.08 0.12 736 17 18 40 0.15 0.3 30 0.08 0.12 736 18 19 40 0.15 0.3 30 0.08 0.12 736 18 19 40 0.15 0.3 30 0.08 0.12 736 19 20 40 0.15 0.3 30 0.08 0.12 374 19 20 40 0.15 0.3 30 0.08 0.12 374 11 2 43.3 2 3 57.5 3 4 84.2 4 5 44.7 195 196 88.4		3	4	40	0.15	0.3	30	0.08	0.12	184.0
6 7 40 0.15 0.3 30 0.08 0.12 322 7 8 40 0.15 0.3 30 0.08 0.12 368 8 9 40 0.15 0.3 30 0.08 0.12 414 9 10 40 0.15 0.3 30 0.08 0.12 460 10 11 40 0.15 0.3 30 0.08 0.12 506 11 12 40 0.15 0.3 30 0.08 0.12 552 12 13 40 0.15 0.3 30 0.08 0.12 552 12 13 40 0.15 0.3 30 0.08 0.12 598 13 14 40 0.15 0.3 30 0.08 0.12 598 14 15 40 0.15 0.3 30 0.08 0.12 644 14 15 40 0.15 0.3 30 0.08 0.12 690 15 16 40 0.15 0.3 30 0.08 0.12 736 16 17 40 0.15 0.3 30 0.08 0.12 736 16 17 40 0.15 0.3 30 0.08 0.12 736 17 18 40 0.15 0.3 30 0.08 0.12 738 18 19 40 0.15 0.3 30 0.08 0.12 828 18 19 40 0.15 0.3 30 0.08 0.12 828 18 19 40 0.15 0.3 30 0.08 0.12 920 In [113 drive = pd.read_excel('data2.xlsx', sheet_name= 'drive-through') In [114 Customer Time 0 1 138.6 1 2 43.3 2 3 57.5 3 4 84.2 4 5 44.7 195 196 88.4		4	5	40	0.15	0.3	30	0.08	0.12	230.0
7 8 40 0.15 0.3 30 0.08 0.12 368 8 9 40 0.15 0.3 30 0.08 0.12 414 9 10 40 0.15 0.3 30 0.08 0.12 460 10 11 40 0.15 0.3 30 0.08 0.12 506 11 12 40 0.15 0.3 30 0.08 0.12 552 12 13 40 0.15 0.3 30 0.08 0.12 598 13 14 40 0.15 0.3 30 0.08 0.12 598 13 14 40 0.15 0.3 30 0.08 0.12 694 14 15 40 0.15 0.3 30 0.08 0.12 694 15 16 40 0.15 0.3 30 0.08 0.12 736 16 17 40 0.15 0.3 30 0.08 0.12 736 16 17 40 0.15 0.3 30 0.08 0.12 738 17 18 40 0.15 0.3 30 0.08 0.12 738 18 19 40 0.15 0.3 30 0.08 0.12 828 18 19 40 0.15 0.3 30 0.08 0.12 828 18 19 40 0.15 0.3 30 0.08 0.12 828 18 19 40 0.15 0.3 30 0.08 0.12 920 n [113 drive		5	6	40	0.15	0.3	30	0.08	0.12	276.0
8 9 40 0.15 0.3 30 0.08 0.12 414 9 10 40 0.15 0.3 30 0.08 0.12 460 10 11 40 0.15 0.3 30 0.08 0.12 566 11 12 40 0.15 0.3 30 0.08 0.12 566 11 12 13 40 0.15 0.3 30 0.08 0.12 586 13 14 40 0.15 0.3 30 0.08 0.12 588 13 14 40 0.15 0.3 30 0.08 0.12 644 14 15 40 0.15 0.3 30 0.08 0.12 684 14 15 40 0.15 0.3 30 0.08 0.12 689 15 16 40 0.15 0.3 30 0.08 0.12 736 16 17 40 0.15 0.3 30 0.08 0.12 736 17 18 40 0.15 0.3 30 0.08 0.12 736 18 19 40 0.15 0.3 30 0.08 0.12 828 18 19 40 0.15 0.3 30 0.08 0.12 828 18 19 40 0.15 0.3 30 0.08 0.12 828 19 20 40 0.15 0.3 30 0.08 0.12 828 11 113 drive = pd.read_excel('data2.xlsx', sheet_name= 'drive-through') 11 114 drive Customer Time 0 1 138.6 1 2 43.3 2 3 57.5 3 4 84.2 4 5 44.7 195 196 88.4		6	7	40	0.15	0.3	30	0.08	0.12	322.0
9 10 40 0.15 0.3 30 0.08 0.12 460 10 11 40 0.15 0.3 30 0.08 0.12 566 11 12 40 0.15 0.3 30 0.08 0.12 562 12 13 40 0.15 0.3 30 0.08 0.12 568 13 14 40 0.15 0.3 30 0.08 0.12 568 14 15 40 0.15 0.3 30 0.08 0.12 644 14 15 40 0.15 0.3 30 0.08 0.12 669 15 16 40 0.15 0.3 30 0.08 0.12 736 16 17 40 0.15 0.3 30 0.08 0.12 736 17 18 40 0.15 0.3 30 0.08 0.12 736 18 19 40 0.15 0.3 30 0.08 0.12 828 18 19 40 0.15 0.3 30 0.08 0.12 828 19 20 40 0.15 0.3 30 0.08 0.12 828 11 113 drive = pd.read_excel('data2.xlsx', sheet_name= 'drive-through') 11 114 drive 1 114		7	8	40	0.15	0.3	30	0.08	0.12	368.0
10		8	9	40	0.15	0.3	30	0.08	0.12	414.0
11 12 40 0.15 0.3 30 0.08 0.12 552 12 13 40 0.15 0.3 30 0.08 0.12 598 13 14 40 0.15 0.3 30 0.08 0.12 694 14 15 40 0.15 0.3 30 0.08 0.12 690 15 16 40 0.15 0.3 30 0.08 0.12 736 16 17 40 0.15 0.3 30 0.08 0.12 736 17 18 40 0.15 0.3 30 0.08 0.12 732 17 18 40 0.15 0.3 30 0.08 0.12 828 18 19 40 0.15 0.3 30 0.08 0.12 828 18 19 40 0.15 0.3 30 0.08 0.12 874 19 20 40 0.15 0.3 30 0.08 0.12 920 113 drive = pd.read_excel('data2.xlsx', sheet_name= 'drive-through') 1114 drive 0 1 138.6 1 2 43.3 2 3 57.5 3 4 84.2 4 5 44.7 195 196 88.4		9	10	40	0.15	0.3	30	0.08	0.12	460.0
12 13 40 0.15 0.3 30 0.08 0.12 598 13 14 40 0.15 0.3 30 0.08 0.12 644 14 15 40 0.15 0.3 30 0.08 0.12 690 15 16 40 0.15 0.3 30 0.08 0.12 736 16 17 40 0.15 0.3 30 0.08 0.12 732 17 18 40 0.15 0.3 30 0.08 0.12 828 18 19 40 0.15 0.3 30 0.08 0.12 828 18 19 40 0.15 0.3 30 0.08 0.12 874 19 20 40 0.15 0.3 30 0.08 0.12 874 19 20 40 0.15 0.3 30 0.08 0.12 920 In [114 drive = pd.read_excel('data2.xlsx', sheet_name= 'drive-through') The contraction of the contracti		10	11	40	0.15	0.3	30	0.08	0.12	506.0
13 14 40 0.15 0.3 30 0.08 0.12 644 14 15 40 0.15 0.3 30 0.08 0.12 690 15 16 40 0.15 0.3 30 0.08 0.12 736 16 17 40 0.15 0.3 30 0.08 0.12 736 17 18 40 0.15 0.3 30 0.08 0.12 828 18 19 40 0.15 0.3 30 0.08 0.12 828 18 19 40 0.15 0.3 30 0.08 0.12 874 19 20 40 0.15 0.3 30 0.08 0.12 874 19 20 40 0.15 0.3 30 0.08 0.12 920 In [113 drive = pd.read_excel('data2.xlsx', sheet_name= 'drive-through') The control of the contro		11	12	2 40	0.15	0.3	30	0.08	0.12	552.0
14		12	13	3 40	0.15	0.3	30	0.08	0.12	598.0
15		13	14	40	0.15	0.3	30	0.08	0.12	644.0
16		14	15	40	0.15	0.3	30	0.08	0.12	690.0
17		15	16	40	0.15	0.3	30	0.08	0.12	736.0
18		16	17	40	0.15	0.3	30	0.08	0.12	782.0
19		17	18	3 40	0.15	0.3	30	0.08	0.12	828.0
drive = pd.read_excel('data2.xlsx', sheet_name= 'drive-through') Customer Time		18	19	40	0.15	0.3	30	0.08	0.12	874.0
drive = pd.Tead_excet (data2.XISX / sheet_name= 'drive-through') drive Customer Time		19	20	40	0.15	0.3	30	0.08	0.12	920.0
Customer Time 0 1 138.6 1 2 43.3 2 3 57.5 3 4 84.2 4 5 44.7 195 196 88.4	n [113	dri	ve = pd.re	_			ough')			
0 1 138.6 1 2 43.3 2 3 57.5 3 4 84.2 4 5 44.7 195 196 88.4	n [114	dri	ve							
1 2 43.3 2 3 57.5 3 4 84.2 4 5 44.7 195 196 88.4	ut[114		Customer	Time						
2 3 57.5 3 4 84.2 4 5 44.7 195 196 88.4		0	1	138.6						
3 4 84.2 4 5 44.7 195 196 88.4		1	2	43.3						
4 5 44.7 195 196 88.4		2	3	57.5						
 195 196 88.4		3	4	84.2						
195 196 88.4		4	5	44.7						
		•••								
196 197 198.4		195	196	88.4						
		196	197	198.4						

36.9

47.6

```
        Customer
        Time

        199
        200
        50.7
```

200 rows × 2 columns

Question 29

1 st way for confidence interval when alpha = 0.90

```
In [117... mean= drive['Time'].mean()

In [118... t = stats.t.ppf(0.95, len(drive) - 1)

In [119... marg_err = t*st_err

In [120... mean-marg_err

Out[120... 89.31801144522497

In [121... mean+marg_err

Out[121... 105.05598855477506
```

2 nd way for confidence interval when alpha = 0.90

Question 30

```
In [123... light = pd.read_excel('data2.xlsx', sheet_name = 'lightbulbs')
In [124... light.head()
```

```
840.08
                   2
                       960.00
                   3 953.38
          3
                     981.14
          4
                  5 938.66
In [125...
          # Ho: life <= 1000;
          # Ha: life > 1000;
          alpha = 0.05
         1st way
In [126...
         mean = light['Lifetime'].mean()
          std = light['Lifetime'].std()
          n = len(light)
          pop std = std/np.sqrt(n)
In [127...
         t = (mean -1000)/pop std
         -1.0303562006210676
Out [127...
In [128...
          stats.t.cdf(t, n-1)
          # this tells us that
          # sample_mean - pop_mean < 0 has the area of 0.15,</pre>
          # so 1- p gives the area of sample mean-pop mean> 0
          1- stats.t.cdf(t, n-1) # this is final p value
         0.8473232451095432
Out[128...
         second way
In [129...
          stats.ttest 1samp(light['Lifetime'],
                             alternative = 'greater')
         Ttest 1sampResult(statistic=-1.0303562006210678, pvalue=0.8473232451095432)
Out[129...
         Question 31:
In [130...
         battery = pd.read excel('data2.xlsx', sheet name = 'battery')
In [131...
          # Ho: brand 1 = brand2
          # Ha: brand1 != brand2
          alpha = 0.05
```

1st:

Out [124... Lightbulb Lifetime

```
In [133...
          b1 mean=battery['brand 1'].mean()
          b1 std = battery['brand 1'].std()
          b2 mean=battery['brand 2'].mean()
          b2 std = battery['brand 2'].std()
          b1 len = len(battery['brand 1'])
          b2 len = len(battery['brand 2'])
In [134...
          t = (b1 mean - b2 mean)/np.sqrt(b1 std**2/b1 len + b2 std**2/b2 len)
In [135...
          0.7677462249616107
Out[135...
In [136...
          print(1 -stats.t.cdf(t, b1 len +b2 len -2))
           # alpha = 0.05/0.95 so we won't reject the null H;
           # There is no signifiant difference
          print((1 - stats.t.cdf(t, b1 len + b2 len - 2))*2)
         0.22177628637630398
         0.44355257275260795
         2nd:
In [137...
          stats.ttest ind(battery['brand 1'],
                           battery['brand 2'],
                           alternative = 'two-sided')
           # p value is 0.46, so divided by two (two sided)
         Ttest indResult(statistic=0.76774622496159, pvalue=0.4435525727526203)
Out[137...
In [138...
          df = pd.DataFrame({'col 1':[10, 9, 11, 8, 14, 6],
                              'col 2':[11, 12, 7, 10, 8,13]})
In [139...
          mean 1 = df['col 1'].mean()
          std 1 = df['col 1'].std()
          n 1 = len(df)
          mean 2 = df['col 2'].mean()
          std 2 = df['col 2'].std()
          n 2 = len(df)
In [140...
          t = (mean 1 - mean 2)/np.sqrt(std 1**2/n 1 + std 2**2/n 2)
          p = stats.t.cdf(t, n 1+n 2-2)
          print(t, p)
          -0.34188172937891387 0.3697579336002253
In [141...
          stats.ttest ind(df['col 1'],
                           df['col 2'],
                           alternative='two-sided')
         Ttest indResult(statistic=-0.34188172937891387, pvalue=0.7395158672004506)
Out[141...
```

battery.columns = ['battery', 'brand 1', 'brand 2']

In [132...

```
Question 33
In [142...
          train = pd.read excel('data2.xlsx', sheet name = 'training')
          train.head(3)
Out [142...
             Employee Score_Before Score_After
          0
                               84
                                           84
          1
                    2
                               66
                                           85
          2
                    3
                               84
                                           87
In [143...
          before = train['Score Before']
          after = train['Score After']
         1st:
In [144...
          b m = before.mean()
          b s = before.std()
          a m = after.mean()
          a s = after.std()
          n = len(before)
```

```
In [145...
          t = (b m - a m)/np.sqrt(b s**2/n + a s**2/n)
In [146...
          -7.241961961405006
Out[146...
In [147...
           1-stats.t.cdf(t, 2*n-2)
```

0.999999998640184 Out[147...

2nd

```
In [148...
          stats.ttest ind(before, after, alternative = 'greater')
         Ttest indResult(statistic=-7.241961961405005, pvalue=0.999999998640184)
Out[148...
In [149...
          !jupyter nbconvert --to webpdf Assign cdf.ipynb
         [NbConvertApp] Converting notebook Assign cdf.ipynb to webpdf
         [NbConvertApp] Writing 474545 bytes to Assign cdf.pdf
```