Sampling from unknown distributions

Feng Li feng.li@cufe.edu.cn

School of Statistics and Mathematics Central University of Finance and Economics Today we are going to learn...

Direct Methods

2 Indirect Methods

Only need Uniform

- Assume that we have a way to simulate from a uniform distribution between 0 and 1, $u \sim U(0,1)$
- If this is available, it is possible to simulate many other probability distributions.
- The most simple method is the Direct Method

→ Discrete Case: Example 1

- Assume that we want to simulate a binary variable X with $\Pr(X=0)=0.3$ and $\Pr(X=1)=0.7$
- Let $u \sim U(0,1)$. Then the following rule can be used

$$x = \begin{cases} 0 & \text{if } u < 0.3\\ 1 & \text{if } u > 0.3 \end{cases} \tag{1}$$

• It is expected that if this is repeated many times 30% X=0 and 70% X=1

→ Discrete Case: Example 2

- Assume that we want to **simulate a discrete variable** X **with probability** Pr(X=0)=0.3 and Pr(X=1)=0.25 and Pr(X=2)=0.45
- Let $u \sim U(0,1)$. Then the following rule can be used

$$x = \begin{cases} 0 & \text{if } u < 0.3\\ 1 & \text{if } 0.3 < u < 0.55\\ 2 & \text{if } u > 0.55 \end{cases}$$
 (2)

• It is expected that if this is repeated many times, roughly 30% X=0, 25% X=1 and 45% X=2

 \rightarrow Visualization: Example 1

→ Continuous Case

- How do we extend this idea to the continuous case?
- What was the step function in our discrete example?
- It is the cumulative distribution function (cdf)
- Can we replace the discrete cdf with a continuous cdf?
- Yes!

→ Visualization: Continuous

→ Visualization: Continuous

→ Visualization: Continuous

→ Continuous Case

- The cdf, F(X) takes values of X and gives a value between 0 and 1
- Here we take values between 0 and 1 and get a value of X
- What function do we use?
- We use the **Inverse cdf**

→ Probability Integral Transform

- If Y is a continuous random variable with cdf F(y), then the random variable $F_y^{-1}(U)$, where $U \sim \text{uniform}(O,1)$, has distribution F(y).
- Example: If Y ~ exponential(A), then the probability density function (PDF) is

$$f(x;\lambda) = \begin{cases} \lambda e^{-\lambda x} & x \geqslant 0, \\ 0 & x < 0. \end{cases}$$

and the cumulative distribution function (CDF) is given by

$$F(x; \lambda) = \begin{cases} 1 - e^{-\lambda x} & x \ge 0, \\ 0 & x < 0. \end{cases}$$

Then

$$F_Y^{-1}(U) = -\log(1-U)/\lambda$$

is an exponential random variable.

• Thus, if we generate $U_1,...,U_n$ as iid uniform random variables, $-\lambda(1-U_i)$, are iid exponential random variables with parameter λ .

Indirect simulation

- What if the cumulative distribution function is difficult to invert, or not even available?
- How to invert the cdf of a standard normal distribution?

$$F(x) = \int_{-\infty}^{x} (2\pi)^{-1/2} e^{-x^2/2} dx$$
 (3)

- It is still possible to simulate from this distribution?
- If the density is available, then the answer is YES!

The student's *t* distribution

• The student's t distribution has density function

$$f(t) = \frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu\pi}\Gamma(\frac{\nu}{2})} \left(1 + \frac{t^2}{\nu}\right)^{-\frac{\nu+1}{2}}$$

- It is similar to the normal but has fatter tails.
- It is not so easy to simulate from this distribution using the direct method.

Normal (red) vs Student's t (blue)

Normal vs Student's t

Normal vs Student's t

The idea

- Let $f_y(x)$ be the target distribution and $f_\nu(\nu)$ be the proposal distribution
- Simulate an x-coordinate from the proposal $f_{\nu}(x)$
- Simulate a y-coordinate from $U(0, M * f_v(x))$
- Reject any points that are not 'inside' $f_y(x)$

→ Reject and accept method

• Theorem: Let $Y \sim f_Y(y)$ and $V \sim f_\nu(\nu)$, where f_Y and f_V have common support with

$$M = sup_y f_Y(y)/f_V(y) < \infty.$$

To generate a random variable $Y \sim f_Y$, we do the following steps

- **1** Generate $U \sim \text{uniform}(0,1)$ and $V \sim f_V$ independently.
- 2 If

$$U < \frac{1}{M} \frac{f_Y(V)}{f_V(V)}$$

set Y = V; otherwise, return to step 1.

→ Reject and accept method: the proof

$$\begin{split} P(V\leqslant y|stopping \ rule) &= P(V\leqslant y|U<\frac{1}{M}\frac{f_Y(V)}{f_V(V)})\\ &= \frac{P(V\leqslant y, U<\frac{1}{M}\frac{f_Y(V)}{f_V(V)})}{P(U<\frac{1}{M}\frac{f_Y(V)}{f_V(V)})}\\ &= \frac{\int_{-\infty}^y \int_0^{\frac{1}{M}\frac{f_Y(V)}{f_V(V)}} du \ f_V(v) dv}{\int_{-\infty}^\infty \int_0^{\frac{1}{M}\frac{f_Y(V)}{f_V(V)}} du \ f_V(v) dv}\\ &= \frac{\int_{-\infty}^y \frac{1}{M}\frac{f_Y(V)}{f_V(V)} f_V(V) dv}{\int_{-\infty}^\infty \frac{1}{M}\frac{f_Y(V)}{f_V(V)} f_V(V) dv}\\ &= \int_{-\infty}^y f_Y(v) dv \end{split}$$

• Can have any M? In fact M shows the efficiency of the sampling algorithm, i.e. M = 1/P(stopping rule).

 \rightarrow Choosing $f_{\nu}(x)$ and M

- Two things are necessary for the accept/reject algorithm to work:
 - 1 The domain of p(x) and the domain of q(x) MUST be the same.
 - **2** The value of M must satisfy $M \ge \sup_{x} p(x)/q(x)$
- The algorithm will be more **efficient** if:
 - 1 The proposal q(x) is a good approximation to p(x)
 - 2 The value of M is $M = \sup_{x} p(x)/q(x)$

 \rightarrow A look at $f_y(x)/f_v(x)$

Normalizing Constant and Kernel

- Today we saw many density functions f(x)
- Many density functions can written as $f(x) = k\tilde{f}(x)$
- The part k is called the normalizing constant and the part $\tilde{f}(x)$ is called the kernel.
- For example the standard normal distribution is

$$p(x) = (2\pi)^{-1/2}e^{-x^2/2} \tag{4}$$

Normalizing Constant and Kernel

- Today we saw many density functions f(x)
- Many density functions can written as $f(x) = k\tilde{f}(x)$
- The part k is called the normalizing constant and the part $\tilde{f}(x)$ is called the kernel.
- For example the standard normal distribution is

$$p(x) = (2\pi)^{-1/2} e^{-x^2/2}$$
 (4)

Normalizing Constant and Kernel

What are the normalizing constant and kernel of the Beta function?

$$Beta(x; a, b) = \frac{\Gamma(a+b)}{(\Gamma(a)\Gamma(b))} x^{a-1} (1-x)^{b-1}$$
(5)

Accept/Reject and the normalising constant

- An advantage of the Accept/Reject algorithm is that is works, even if the normalizing constant is unavailable.
- Only the kernel is needed.
- There are many examples where the normalising constant is either unavailable or difficult to compute.
- This often happens in Bayesian analysis

Suggested Reading

• Jones (2009), Chapter 18