WHAT IS CLAIMED IS:

1	1.	A method for reducing a piston between a plurality of optical-	
2	collection devices configured to operate as a single optical device, such that the optical-		
3	collection devices are configured to capture select portions of wavefronts, the method		
4	comprising:		
5	pistoni	ng an adjustable-optical path of at least one of the optical-collection	
6	devices through a plurality of steps;		
7	collecti	ing a set of focused images and a set of defocused images for each step;	
8	Fourier	transforming the first and second sets of images to generate respective	
9	first and second sets of spectral information for the wavefronts;		
10	derivin	g a set of wavefront errors based on the first and second sets of spectral	
11	information using a phase diversity algorithm; and		
12	derivin	g a piston value for the piston from the wavefront errors using a multi-	
13	color interferometry algorithm.		
1	2.	The method of claim 1, wherein each of the wavefront error is	
2			
4	associated with a select	ct wavelength of the wavefronts.	
1	3.	The method of claim 1, wherein the set of wavefront errors includes at	
2	least first and second wavefront errors respectively associated with first and second		
3	wavelengths of the wavefronts.		
1	4	The mosthed of claims 2, whencing the first and accord available one	
1	4.	The method of claim 3, wherein the first and second wavelengths are	
2	less than the piston.		
1	5.	The method of claim 3, wherein the step of deriving the piston value	
2	includes:		
3		deriving a synthetic wavelength from at least the first and second	
4	wavelengths; and		
5		counting fringes of an interference pattern to determine the piston	
6	value.		
1	6.	The method of claim 5, wherein the synthetic wavelengths is larger	
2	than the first and second wavelengths.		

I	,	The method of claim 5, wherein an expression for the synthetic	
2	wavelength is:	$=\lambda_1\lambda_2/(\lambda_1-\lambda_2),$	
3	W	herein λ_1 is the first wavelength and λ_2 is the second wavelength.	
1	8	The method of claim 1, wherein the optical-collection devices include	
2	sub-aperture tele	scopes forming a portion of a multi-aperture telescope.	
1	9	The method of claim 1, wherein the optical-collection devices form a	
2	segmented primary collector.		
1	1	The method of claim 1, wherein the phase diversity algorithm includes	
2	the Gonsalves algorithm.		
1	1	. The method of claim 1, wherein:	
2		collecting the focused images includes generating a first set of	
3	interfero	rams having sample points that correspond to the steps; and	
4		collecting the defocused images includes generating a second set of	
5	interfero	rams having sample points that correspond to the steps.	
1	1	. The method of claim 1, wherein the focused images include focused	
2	images of interfe	rence patterns.	
1	1	. The method of claim 1, wherein the defocused images include	
2	defocused image	s of defocused interference patterns.	
1	1	. The method of claim 1, wherein an amount of focus of the defocused	
2	images is knowr		
1	1	. The method of claim 1, wherein collecting the set of focused images	
2	and the set of de	ocused images includes:	
3	C	mbining the select portions of the wavefronts to form a combined beam;	
4	sı	litting the combined beam into first and second beams with a beam splitter;	
5	C	llecting the first beam at an image plane on a first image-capture array; and	
6	C	llecting the second beam a distance from the image plane on a second	
7	image-capture as	ray.	

1	16. The method of claim 15, wherein the first and second image-capture		
2	arrays are a single image-capture array.		
1	17. The method of claim 1, further comprising reducing the piston of the		
2	optical-collection devices based on the piston value.		
_	operation devices susses on the protein value.		
1	18. A method for reducing a displacement between a plurality of optical-		
2	collection devices configured to operate as a single optical device, such that the optical-		
3	collection devices are configured to capture select portions of wavefronts, the method		
4	comprising:		
5	pistoning an adjustable-optical path of at least one of the optical-collection		
6	devices through a plurality of steps;		
7	collecting a set of focused images and a set of defocused images for each of		
8	the steps;		
9	Fourier transforming the first and second sets of images to derive respective		
10	first and second sets of spectral information for the wavefronts;		
11	generating a plurality of visible indicators of the displacement from the first		
12	and second sets of spectral information using a metric; and		
13	interpreting the visible indicators to determine a value for the displacement,		
14	the value for the displacement referred to as a displacement value.		
1	19. The method of claim 18, further comprising calculating the metric for a		
2	wavelength value associated with each of the steps.		
2	wavelength value associated with each of the steps.		
1	20. The method of claim 18, wherein a value for the displacement is		
2	indicated by a uniform-visible indicator.		
1	The mostle defeateing 20 footbar accommission and affective management		
1	21. The method of claim 20, further comprising performing pattern		
2	recognition on the visible indictors to determine the uniform-visible indicator.		
1	The method of claim 18, wherein the metric is a power metric.		
•			
1	23. The method of claim 22, wherein the power metric is represented by		
2	the equation $Mp = (G_0 * G_0 - G_d * G_d)/(G_0 * G_0 + G_d * G_d)$, wherein G_0 is a Fourier transform of		
3	an image function for the focused images and G _d is a Fourier transform of an image function		

for the defocused images.

1	24. The method of claim 23, wherein an image function is the convolution		
2	of the object function and optical system point spread function.		
1	25. A multi-aperture telescope comprising:		
2	a plurality of sub-aperture telescopes, wherein at least one of the sub-aperture		
3	telescopes has an adjustable-optical path;		
4	a Fourier transform module configured to transform focused and defocused		
5	image information collected by the sub-aperture telescopes and to generate spectral		
6	information from the focused and defocused image information;		
7	a phase diversity module configured to derive wavefront errors from the		
8	focused and defocused image information; wherein the wavefront errors are associated with		
9	select wavelengths collected by the sub-aperture telescopes; and		
10	a multi-color interferometry module configured to derive a displacement value		
11	indicative of a displacement between at least first and second sub-aperture telescopes of the		
12	plurality of sub-aperture telescopes.		