Безопасность DNS

Филипп Кулин

Откиньтесь на спинку кресла

Knot 3.0+

ppa:cz.nic-labs/knot-dns-latest
knot-dnsutils

copr @cznic/knot-dns-latest
knot-utils

ISC BIND 9.17.11+

ppa:isc/bind-dev
bind9-dnsutils

copr isc/bind-dev
isc-bind-bind-utils

docker cznic/knot:latest

- Эта презентация сделана с помощью L^AТ_ЕX
- · Я расскажу страшную сказку про DNS

DNS — всему голова

- Жизнь пользователей в сети
- · Запросы к API, работа с CDN
- Облака, микросервисы, автообнаружение и конфигурация
- Невообразимое количество всего

• SSHD определяет домен для подключившегося IP и этот факт является одним из источников седых волос у админов

- SSHD определяет домен для подключившегося IP и этот факт является одним из источников седых волос у админов
- · MySQL определяет домен для подключившегося IP

- SSHD определяет домен для подключившегося IP и этот факт является одним из источников седых волос у админов
- · MySQL определяет домен для подключившегося IP
- Apache определяет домен для подключившегося IP даже если HostnameLookups Off, но есть Require

- SSHD определяет домен для подключившегося IP и этот факт является одним из источников седых волос у админов
- · MySQL определяет домен для подключившегося IP
- Apache определяет домен для подключившегося IP даже если HostnameLookups Off, но есть Require
- Microsoft Windows постоянно шлёт DNS Update в сеть

- SSHD определяет домен для подключившегося IP и этот факт является одним из источников седых волос у админов
- · MySQL определяет домен для подключившегося IP
- Apache определяет домен для подключившегося IP даже если HostnameLookups Off, но есть Require
- Microsoft Windows постоянно шлёт DNS Update в сеть
- · Docker, Kubernetes, etc

- SSHD определяет домен для подключившегося IP и этот факт является одним из источников седых волос у админов
- · MySQL определяет домен для подключившегося IP
- Apache определяет домен для подключившегося IP даже если HostnameLookups Off, но есть Require
- Microsoft Windows постоянно шлёт DNS Update в сеть
- · Docker, Kubernetes, etc
- · Запустите tcpdump/WireShark

DNS — это просто?

Три каверзных вопроса:

- Каков максимальный размер доменного имени?
- Точку на конце надо ставить?
- Что именно спрашивает ресолвер, и что отвечают DNS-сервера при рекурсивном обходе?

Как устроен DNS

Особенности классического DNS

- · UDP транспорт. Нет соединения
- · Нет идентификации серверов DNS
- Нет контроля данных
- Нет шифрования

Угорозы в системе DNS

Заложенная в DNS безопасность

Заложенная в DNS безопасность

"... действия, которые с современной точки зрения могут показаться неправильными или ошибочными, часто оказывались естественным следствием господствовавшего в те времена понимания тех или иных вещей, а также ограниченности доступных ресурсов."

— Брайан Керниган²⁶

Основные проблемы

- Подделка
- Прослушка

Основные проблемы. Подделка

- Отравление, подмена
- Взлом серверов и замена записей
- · Поддельные серверы, BGP-injection
 - Атака на Route53 в апреле 2018 года²³
 www.internetsociety.org/blog/2018/04/amazons-route-53-bgp-hijack/
- Госрегулирование
 - Блокировка сайтов в Европе и России

```
dig +short @a.res-nsdi.ru. rutracker.org A
```


Основные проблемы. Прослушка

- Реклама, сбор статистики, что-то ещё²⁴
 en.wikipedia.org/wiki/DNS_hijacking#Manipulation_by_ISPs
- Шпионаж и промышленный шпионаж
- RFC7626: 73.1% могут быть узнаны по слепку DNS²⁷

Основные проблемы. Прослушка

- Реклама, сбор статистики, что-то ещё²⁴
 en.wikipedia.org/wiki/DNS_hijacking#Manipulation_by_ISPs
- Шпионаж и промышленный шпионаж
 - ... с использованием госрегулирования
- RFC7626: 73.1% могут быть узнаны по слепку DNS²⁷
- Госрегулирование
 - Помощь в оперативной блокировке²⁵ usher2.club/articles/mt-free-pre-block/

• Вы знаете, кто, когда и как использует какой DNS?

- Вы знаете, кто, когда и как использует какой DNS?
- Ваш сетевой периметр защищен? Точно?

- Вы знаете, кто, когда и как использует какой DNS?
- Ваш сетевой периметр защищен? Точно?
- Ваша сеть получает подписанные маршруты?

- Вы знаете, кто, когда и как использует какой DNS?
- Ваш сетевой периметр защищен? Точно?
- Ваша сеть получает подписанные маршруты?
 - Вы ведете журнал странных анонсов?

- Вы знаете, кто, когда и как использует какой DNS?
- Ваш сетевой периметр защищен? Точно?
- Ваша сеть получает подписанные маршруты?
 - Вы ведете журнал странных анонсов?
- Ваши сервисы проверяют сертификат соединения?

- Вы знаете, кто, когда и как использует какой DNS?
- Ваш сетевой периметр защищен? Точно?
- Ваша сеть получает подписанные маршруты?
 - Вы ведете журнал странных анонсов?
- Ваши сервисы проверяют сертификат соединения?
- · Однако, современные взломы чаще основаны на бардаке

Защита от подделки

- · He «взлетевший» DNSCurve
- · Расширение DNSSEC

DNSCurve

Концепция

- · Аутентификация авторитативного DNS-сервера
- Защита обмена между ресолвером и авторитативным сервером

Принцип действия

- Публичный ключ DNS-сервера с магическим префиксом "uz5" в NS-записи домена:
 - uz5 qry75vfy162c239jgx7v2knkwb01g3d04qd4379s6mtcx2f0828.dnscurve.io
- · Обмен с DNS-сервером шифруется

DNSCurve. Особенности

- Не меняет саму спецификацию DNS
- Основан на вере в целостность системы
- Не предусмотрена замена ключа
- Зависит от источника ответа
- Внедрение практически отсутствует

DNSSEC

- Концепция
 - Источник записи не важен. Используя доверенный корневой ключ, возможно проверить любую подписанную запись
- Принцип действия
 - Записи зоны подписаны ключом зоны
 - Подтверждения подписи выстраиваются в цепочку доверия

DNSSEC. Принцип действия

Подпись зоны

DNSSEC. Принцип действия

Подпись зоны

Цепочка доверия

DNSSEC. Особенности

- Источник ответа не важен
- Требует аккуратности и непрерывного обслуживания даже в статическом состоянии
- Требует стартовых настроек клиента требуются актуальные корневые ключи
- · Сложные реализации «отрицательного ответа»
- Большой размер ответа
- Крайне слабая глубина внедрения
- Это единственный вариант в этой категории

DNSSEC. Настройка клиентов

- Прозрачная проверка
 Потребитель получает фильтрованные ответы
- Явная проверка
 Потребитель явно указывает ресолверу, что хочет получить проверенный результат. Проверяет флаги ответа
- Усиленная проверка
 Потребитель проверяет подписи сам

delv @8.8.8.8 dxdt.ru A

DNSSEC. Must have

- Подпишите свои домены
 - · CoreDNS и Knot DNS отличные реализации

DNSSEC. Must have

- Подпишите свои домены
 - · CoreDNS и Knot DNS отличные реализации
- · Настройте ваши ресолверы на проверку DNSSEC
 - · CoreDNS не умеет проверять DNSSEC
 - · systemd-resolved, unbound, Knot Resolver умеют

DNSSEC. Вкусняшка SSHFP

SSH Fingerprint

- Запись SSHFP содержит хэш публичного ключа хоста
- · На клиенте /.ssh/config: VerifyHostKeyDNS yes
- · Ha сервере ssh-keygen -R 'hostname'
 - Не надо все алгоритмы, не тяните за собой легаси
- · Работает только с DNSSEC
- RFC 4255 SSH Fingerprint⁷

Защита от прослушки DNS

Шифрование сообщений

DNSCrypt

Защита от прослушки DNS

Шифрование сообщений

DNSCrypt

Защищенный канал

- DNS-over-HTTPS Google API
- DNS-over-TLS
- · DNS-over-HTTP/2
- · DNS-over-QUIC

Защита от прослушки DNS

Шифрование сообщений

DNSCrypt

Защищенный канал

- · DNS-over-HTTPS Google API
- DNS-over-TLS
- DNS-over-HTTP/2
- DNS-over-QUIC

Прочее

- · Минимизация QNAME при запросах
- · EDNSO Client subnets

DNSCrypt

Принцип действия

- Настройка мастер-ключа и имени сервера
- · Получение «короткого» ключа и сертификата
- · Запросы к серверу, идентичные DNSCurve

```
dig @77.88.8.78 -p 15353 2.dnscrypt-cert.browser.yandex.net. \
    -t TXT +short
```


DNSCrypt. Особенности

- Не меняет спецификацию DNS
- · Нет ни RFC, ни Draft. Только спецификация на сайте
- Не предусмотрена замена мастер-ключа
- Заметное количество программ
- Нет автообнаружения
- · Не «взлетел»

DNS-over-HTTPS (Google API)

Google предоставляет JSON-API к DNS Страница с описанием:

https://developers.google.com/speed/public-dns/docs/dns-over-https Массово используется для веб-приложений

```
curl -H 'accept: application/dns-json' \
   'https://dns.google/resolve?name=example.com' | jq

curl -H 'accept: application/dns-json' \
   'https://cloudflare-dns.com/dns-query?name=example.com' | jq
```


DNS-over-TLS (DoT)

- · Устанавливается защищенное TLS-соединение (порт 853)
- Внутри соединения стандартный DNS протокол
- Самая простая инсталляция проксирование nginx через ngx_stream_ssl_module на обычный DNS

```
kdig +tls @8.8.8.8 highload.ru # попробуйте 195.208.4.1 dig +tls @1.1.1.1 highload.ru
```


DNS-over-TLS (DoT)

- · Устанавливается защищенное TLS-соединение (порт 853)
- · Внутри соединения стандартный DNS протокол
- Самая простая инсталляция проксирование nginx через ngx_stream_ssl_module на обычный DNS

```
kdig +tls @8.8.8.8 highload.ru # попробуйте 195.208.4.1 dig +tls @1.1.1.1 highload.ru
```

· A есть ещё DNS-over-DTLS...

DNS-over-TLS (DoT)

- · Устанавливается защищенное TLS-соединение (порт 853)
- · Внутри соединения стандартный DNS протокол
- Самая простая инсталляция проксирование nginx через ngx_stream_ssl_module на обычный DNS

```
kdig +tls @8.8.8.8 highload.ru # попробуйте 195.208.4.1 dig +tls @1.1.1.1 highload.ru
```

- · A есть ещё DNS-over-DTLS...
- · ... и DNS-over-QUIC...

DNS-over-TLS (DoT). Особенности

- Не меняет спецификацию DNS
- · Требует установки TLS-соединения (дорого)
- Требует стартовых настроек клиента требует «бутстрапа» имени сервера
- · Нет автообнаружения
- Специальный 853 порт

DNS-over-HTTPS (DoH)

- Защищенным транспортом является обычный HTTP/2
- · Запросы/ответы стандартные DNS-пакеты
- Формируется специальный НТТР-запрос
 - · GET DNS-пакет кодируется в параметр
 - · POST DNS-пакет в application/dns-message

```
kdig +https @8.8.8.8 highload.ru # попробуйте 195.208.4.1 dig +https @1.1.1.1 highload.ru
```


DNS-over-HTTPS (DoH). Особенности

- Не меняет спецификацию DNS
- Требует установки HTTP/2-соединения (дорого)
- Требует стартовых настроек клиента требует «бутстрапа» имени сервера
- · Нет автообнаружения
- Не сильно выделяется в НТТР-трафике

Защита. Must have

- Ресолверы в зонах доверия или даже DoH/DoT до публичных серверов
- Локальные кэши в каждом периметре
 - · NodeLocal DNSCache в Kubernetes
 - · systemd-resolved, unbound, Knot Resolver
- DoT/DoH через недоверенные сети особенно локальные домены

Защита канала. Вот незадача

Минимизация QNAME

EDNS Client subnet

Это расширение DNS

- Добавляет в запрос подсеть клиента
- Например, для геобалансинга

Поддержка

· Google DNS принципиально да

· Cloudflare DNS принципиально нет

EDNS Client subnet

Это расширение DNS

- Добавляет в запрос подсеть клиента
- Например, для геобалансинга

Поддержка

· Google DNS принципиально да

```
dig +short @8.8.8.8 -t TXT o-o.myaddr.l.google.com
```

· Cloudflare DNS принципиально **нет**

```
dig +short @1.1.1.1 -t TXT o-o.myaddr.l.google.com
```


Известные сервисы отладки

- · whoami.akamai.net A
- · whoami.akamai.net AAAA
- · o-o.myaddr.l.google.com TXT
- · whoami.cloudflare.com TXT
- · whoami.ipv6.akahelp.net TXT
- · whoami.ipv4.akahelp.net TXT
- · whoami.ds.akahelp.net TXT

Как проверить ресолвер

Google Public DNS. DNS blocking and hijacking²⁸

```
dig -t TXT test.dns.google.com. '@dns.google.'
dig -t TXT +tcp locations.dns.google.com. '@dns.google.'
```

Have problems with 1.1.1.1? *Read Me First*29

```
dig +short CHAOS TXT id.server @1.1.1.1
dig @1.1.1.1 whoami.Cloudflare.com txt +short
```


Версия сервера

```
dig +short -c CHAOS -t TXT version.bind @8.8.8.8
dig +short -c CHAOS -t TXT id.server @1.1.1.1
```

- · RFC4892 идентификация сервера³⁰
- · HOSTNAME.BIND, VERSION.BIND, ID.SERVER

Настройка локальных кэшей

- · Включение/выключение QNAME
- · Манипуляции с Client subnet

Реакционизм. Подделка

- · Не позволяет подставлять «свой» ответ
 - Противоречит корпоративным политикам
 - Мешает спецслужбам проводить спецоперации
- Переусложненное обслуживание приводит к ошибкам

Реакционизм. Прослушка

- · Не позволяет анализировать DNS-запросы
 - Нарушает корпоративные стандарты безопасности
 - Мешает приложениям защиты отслеживать действия браузера
 - Создаёт видимость безопасности

Реакционизм. Прослушка

- · Не позволяет анализировать DNS-запросы
 - Нарушает корпоративные стандарты безопасности
 - Мешает приложениям защиты отслеживать действия браузера
 - Создаёт видимость безопасности
- Дополнительная нагрузка
- Цикл получения ответа неприемлемо долгий

Реакционизм. Госрегулирование

- Давление UK ISPA и IWF www.opennet.ru/opennews/art.shtml?num=51046
- Большинство «госблокировок» в мире основано на манипуляциях с DNS

Национальная система доменных имен

Госрегулирование РФ. НСДИ

Национальная система доменных имен

- Определена в законе 90-ФЗ от 01.05.2019
 Приказ Роскомнадзора от 31.07.2019 № 229
- · Государственный публичный DNS
- Дублирует. (корень)
- Уменьшает ущерб от манипуляций с .RU гипотетических, со стороны США в лице ICANN
- Обслуживается ЦМУ ССОП
- Предоставляется в том числе AXFR

Заложенная в НСДИ безопасность

Заложенная в НСДИ безопасность

Многое осталось за кадром

- · EDNS(0) Padding, Cookies, etc
- · Обслуживание DNS, DNSSEC, DoT/DoH
- · Применение DNSSEC: DANE, etc
- · Обзор серверов, включая stub-ресолверы
- Обзор клиентов и инструментов
- DNS Stamps (ссылки sdna://)
- · glibcиresolv.conf
- · Ampliphication attack, etc
- ...

Вопросы

Перед докладом я многое освежил в памяти, многое не вошло в доклад

В любом случае пишите мне

schors@gmail.com

Ссылки. DNSCurve и DNSCrypt

- [1] DNSCurve.io A Community for DNSCurve. Основной сайт DNSCurve. https://dnscurve.io/.
- [2] M. Dempsky. Link-Level Security for the Domain Name System. 26 φesp. 2010. https://datatracker.ietf.org/doc/html/draft-dempsky-dnscurve-01.
- [3] Dq is a package with DNS/DNSCurve related software. https://mojzis.com/software/dq/.
- [4] World's fastest-to-synchronize Secondary DNS service. Единственный известный DNS-сервис с поддержкой DNSCurve. https://www.buddyns.com/.
- [5] <u>DNSCrypt version 2 protocol specification</u>. https://dnscrypt.info/protocol/.
- [6] <u>dnscrypt-proxy</u>. https://github.com/DNSCrypt/dnscrypt-proxy.

Ссылки. DNSSEC

- [7] RFC 4255. Using DNS to Securely Publish Secure Shell (SSH) Key Fingerprints. AHB. 2006. https://datatracker.ietf.org/doc/html/rfc4255.
- [8] Визуализация DNSSEC. http://dnsviz.net/.
- [9] Филипп Кулин. DNSSEC. Руководство регистратора доменов. Дек. 2016. https://www.slideshare.net/schors/dnssec-71055077.
- [10] Филипп Кулин. DNSSEC. Руководство оператора доменов. Окт. 2017. https://www.slideshare.net/schors/enog14-dnssec.
- [11] RFC 4033. Введение в DNSSEC. Mapt 2005. https://tools.ietf.org/html/rfc4033.
- [12] RFC 4034. Ресурсные записи для DNSSEC. Mapt 2005. https://tools.ietf.org/html/rfc4034.
- [13] RFC 4035. Модификации протокола DNS для DNSSEC. Март 2005. https://tools.ietf.org/html/rfc4035.
- [14] RFC 6781. Эксплуатация DNSSEC. Дек. 2012. https://tools.ietf.org/html/rfc6781.
- [15] RFC 7583. Соображения по ротации ключей DNSSEC. Окт. 2015. https://tools.ietf.org/html/rfc7583.
- [16] RFC 7129. Authenticated Denial of Existence in the DNS. Определение белой лжи. Февр. 2014. https://datatracker.ietf.org/doc/html/rfc7129.
- [17] Dani Grant (Cloudflare). Economical With The Truth: Making DNSSEC Answers Cheap. Определение черной лжи. 24 июня 2016. https://blog.cloudflare.com/black-lies/.

Ссылки. DoH/Dot

- [18] RFC 7858. Specification for DNS over Transport Layer Security (TLS). Mai 2016. https://datatracker.ietf.org/doc/html/rfc7858.
- [19] RFC 8310. Usage Profiles for DNS over TLS and DNS over DTLS. Mapt 2018. https://datatracker.ietf.org/doc/html/rfc8310.
- [20] RFC 8484. DNS Queries over HTTPS (DoH). OKT. 2018. https://datatracker.ietf.org/doc/html/rfc8484.
- [21] Specification of DNS over Dedicated QUIC Connections. draft-huitema-dprive-dnsoquic-00. Mai 2020. https://datatracker.ietf.org/doc/html/draft-huitema-dprive-dnsoquic.
- [22] Experimental DNS-over-TLS Auto-discovery. https://github.com/CZ-NIC/knot-resolver/tree/c8cb9740f8ebd34219c7d860106969fcbb6c7bf6/modules/experimental dot auth.

Ссылки. Инциденты

- [23] Aftab Siddiqui. What Happened? The Amazon Route 53 BGP Hijack to Take Over Ethereum Cryptocurrency Wallets. 27 anp. 2018. https://www.internetsociety.org/blog/2018/04/amazons-route-53-bgp-hijack/.
- [24] Wikipedia. DNS hijacking. Manipulation by ISPs.
 https://en.wikipedia.org/wiki/DNS hijacking#Manipulation by ISPs.
- [25] Леонид Евдокимов. Тайный список запрещённых ресурсов. 25 сент. 2018. https://usher2.club/articles/mt-free-pre-block/.

Ссылки. Разное

- [26] Brian Kernighan. UNIX: A History and a Memoir. 18 OKT. 2019.
- [27] RFC 7816. DNS Query Name Minimisation to Improve Privacy. Mapt 2016. https://datatracker.ietf.org/doc/html/rfc7816.
- [28] Google Public DNS. Troubleshooting.
 https://developers.google.com/speed/public-dns/docs/troubleshooting.
- [29] Have problems with 1.1.1.1? *Read Me First*. https://community.cloudflare.com/t/have-problems-with-1-1-1-1-read-me-first/15902.
- [30] RFC 4892. Requirements for a Mechanism Identifying a Name Server Instance. Июнь 2007. https://datatracker.ietf.org/doc/html/rfc4892.
- [31] RFC 7871. EDNS(0) Client Subnet. Maй 2016. https://datatracker.ietf.org/doc/html/rfc7871.
- [32] Introducing a New whoami Tool for DNS Resolver Information.

 https://developer.akamai.com/blog/2018/05/10/introducing-new-whoami-tool-dns-resolver-information.

Ссылки. ЦАТЕХ

- [33] Beamer Overleaf, Online LaTeX Editor. https://www.overleaf.com/learn/latex/Beamer.
- [34] Uri Nativ. How to present code. 2016. https://www.slideshare.net/LookAtMySlides/codeware.
- [35] Филипп Кулин. Пишем презентации в LaTeX. 14 окт. 2019. https://habr.com/ru/post/471352/.

