

組込みソフト教育コンテンツの制作 検証モデル「データ送信システム」を教材に

関口賢三 gutti.twins@gmail.com

開発における問題点

時間的制約の要求を満たすための設計スキルの 中で「並行タスクの実行時間」を扱うスキルは重要 なものの1つである.これは、原理と仕組みの理解 に加え、どのような手法・設計・実装が有効か否か を考察する経験知が重要である。 ところが、設計 担当分野の細分化により、設計者が本スキルを身 につける機会が減少した. そこで本スキルを積ませ る教育コンテンツが望まれていた.

手法・ツールの適用による解決

施策として「並行タスクの実行時間」の設計スキル 向上を目的に教育コンテンツを試作し効果を分析 した. モデル検査器SPIN(注)はモデルの実行の振 舞いを網羅的に検証可能である。この特徴を生か しSPINで教材(検証モデルと検証クレーム)を制作 した。さらにこれをベースとした教育用コンテンツ で講習会を実施した. (注)SPINは時間を扱えない ため離散的時間カウンタをモデルに実装した。

施策

教材制作

- 検証モデル「データ送信システム」
- 検証クレーム・・・実行時間の要求
- 検証モデルをベースとした講習会資料 部内講習会

受講者

- ・形式手法ツール未経験者
- ・組込み設計経験者/未経験者混在

講習時間

週1回2時間x5回=10時間

意見交換

効果確認/今後の検討

教育用プロトタイ

制作した教育用検証モデル

効果確認分析/今後の対応

本制作はトライアルということで効果確認はアンケートで はなく意見交換で代替した.

目的とねらい	受講者の意見	分析	今後の対応
「並行タスクの実行時間」スキルの重要性を認識させる	『ソフト処理時間 が時間的要求の ポイントであるこ とが明確になっ た。』	有効: 狙いどおり 有識者:明確に理解 新人:検証クレームは 理解したが振舞いの 理解までは至らず	部内外へアプローチ
<i>SPINの有効性を 認識させる(1)</i> 要求の明確厳密化	『検証クレーム の意味は明確に 分かった』	<u>有効: 狙いどおり</u> 検証クレームの有効 性有り	設計モデル検証につ なぐ検討: (例)LTL(による検証
SPINの有効性を 認識させる (2) 実行の確からしさを 自ら確認できる	『検証クレーム に対して反例が 出るパラメータと の関係は分かっ た』 『コードを見て 追ってデバッグ してみないと からない』	要求の理解と検証だけでは不十分: 想定内 内設計モデル/モデル記述言語/モデル検査器の理解と設計モデルがでいる。 ではいるでは、これでは、では、では、では、では、では、では、では、では、では、では、では、では、で	次スライド参照のこと

受講者の意見	分析	今後の対応
『詳しいシーケンス図 が欲しい』	モデル設計図面が不充分 ・実行の観点の記述が不足	モデル設計図面の改善 仕様書に実行の意味を明記 (例) ・状態遷移図とシーケンス図の合体 ・イベント待ちや同期方法の明記
『プログラミング言語と 異なるようだ。 難し い!』	簡単な説明では不十分: 想定内 ・受講者はC++などの一般ブログ ラミング言語の知識をベースに考 えがち	教材の改善・追加 一般プログラミング言語との差 を出す教材とサンブル (例)
『トレースの解釈が難 しい』	・モデル記述言語(<u>promela</u>)が命 題であることが理解され難い ・モデル記述言語によるコーディン	・モデル記述言語(promela)の制約 - ステートメントが真なら進む - コールスタックなし
『深く理解したいので デバッグしてみたい』	ン・デバッグ・検証 経験必要 ・モデル検査器のしくみと理論に関する教育(例えばTop SEの基礎理論講座)が必要	- インライン関数で戻り値不可
『状態遷移図からモデル記述言語への変換の方法?』	詳細設計化に必須の課題 (教材で未記載)	<u>教材の追加</u> ・プロセスの公平性/同期/デッド ロックの関係性 ・実行の可能性とデッドロック

本制作はトップエスイーの設計モデル検査の導入用教材として の副次目的があった。これについても効果が確認できた。 田辺, 宇佐美, 吉岡, 設計モデル検証(基礎編)講座, トップエスイープロジェクト講義資料, NII, 2011

Zhiming Liu, Lecture Notes on Programming Concurrent Computer Systems, UNU/IIST,

May 2005