







Previous

Next





## Production design











CPI















#### Infrastructure design















- Dr. Pr

# BUSINESS DRIVERS - "WHY?"

#### FROM SUBJECT MATTER ORIENTED TO SHARED PROCESS ORIENTED SOFTWARE



#### REUSE AND SHARING SERVICES





#### AGILE BUSINESS PROCESSES

ADAPT QUICKER TO NEW POSSIBILITIES AND THREATS

- NEW DATA SOURCES
- NEW "PRODUCTS" BASED ON EXISTING DATA
- HARMONIZING STATISTICS
   QUICKLY RESPOND TO NEW REQUESTS



#### ENTERPRISE DATA MANAGEMENT

- METADATA
- · DATA LAKE
- NEW DATA SOURCES
   HARMONIZING DATA



#### FROM LEGACY TECHNOLOGY TO SOA AND/OR CLOUD



#### SPECIFIC ADVANCEMENTS



# FROM SUBJECT MATTER ORIENTED TO SHARED PROCESS ORIENTED SOFTWARE



# REUSE AND SHARING SERVICES

# INTERNALLY SHARING



# INTERNATIONAL SHARING



# AGILE BUSINESS PROCESSES

ADAPT QUICKER TO NEW POSSIBILITIES AND THREATS

- NEW DATA SOURCES
- NEW "PRODUCTS" BASED ON EXISTING DATA
- HARMONIZING STATISTICS
- QUICKLY RESPOND TO NEW REQUESTS



# ENTERPRISE DATA MANAGEMENT

- METADATA
- DATA LAKE
- NEW DATA SOURCES
- HARMONIZING DATA



# FROM LEGACY TECHNOLOGY TO SOA AND/OR CLOUD



# SPECIFIC ADVANCEMENTS









# STRATEGY

## ARCHITECTURE



## APPLICATION PORTFOLIO



- BUSINESS AREA
   STAFF / ROLES
- DEPARTMENT
- LOW-HANGING FRUIT
   SPECIFIC KPI

## TRENDS



- · DATA SCIENCE
- BIG DATA
   AI / ML
- · LOW CODE
- · HYBRID CLOUD

# ARCHITECTURE



# APPLICATION PORTFOLIO

## STABILITY

# 80 / 20 RULE

INVESTMENT POSSIBILITY



## RISK APPETITE

## CHANGE MANAGEMENT

- BUSINESS AREA
- · STAFF / ROLES
- DEPARTMENT
- LOW-HANGING FRUIT
- SPECIFIC KPI

# TRENDS



- DATA SCIENCE
- BIG DATA
- AI / ML
- Low Code
- HYBRID CLOUD











## Production design















CPI



GDP



















#### Infrastructure design









# Reference models



# Concepts - "What"





# Reference models





# Concepts - "What"

#### Metadata driven, GSBPM

Connection to GSIM & GSBPM



Sub process, an activity or a task - functionality



Business function

- chaining functionalities together



Statistical programs have different levels of stability in their designs



#### D2-1 Architecture recommendations



#### System, service and functionality

Relationships



Internal and external architecture



Information and services



Clustering of functionalities to services



Implementing functionality



Function as a service



Containers



## System context, environments and versioning



# Metadata driven, GSBPM

# Connection to GSIM & GSBPM



# Sub process, an activity or a task

- functionality

# **Business function**

- chaining functionalities together



# Statistical programs have different levels of stability in their designs

# System, service and functionality

# Relationships



# Internal and external architecture



# Information and services



# Clustering of functionalities to services



# Implementing functionality



# Function as a service



# Containers



# System context, environments and versioning



# Architecture design - "How?"

### Sandboxing for exploration

### Security





### Performance and Scalability



Resilient services and error handling

### Versioning

- Service ventioning
   Endpoint ventioning
   GSIM toructure ventioning
- information object into versioning



## Deployment

Containerization

Design principles for service autonomy

Data management

### Integration patterns





Host OS

Virtual Infrastructure

Physical Infrastructure -Server/Storage/Network



Multilingual support

Open source

Moving from legacy architecture to service oriented architecture

System/Application/Data Containerisation Host OS Virtual Infrastructure Physical Infrastructure -Server/Storage/Network

# Sandboxing for exploration

## Security



### Performance and Scalability



# Resilient services and error handling

### Versioning

- Service versioning
- · Endpoint versioning
- GSIM structure versioning
- Information object instance versioning

Deployment Containerization Design principles for service autonomy Data management

#### Integration patterns



|                     | majorine |  |
|---------------------|----------|--|
| Nesselle            |          |  |
| No. of Contract     |          |  |
| Militarios services |          |  |

## Multilingual support

Open source

## Moving from legacy architecture to service oriented architecture

### Development (Cookbook)

Real examples of architecture decision making



FLDR - the service

Schoolbook examples of architecture decision making



#### Real examples of architecture decision making









## EXAMPLE )

# IMPLEMENTATION OF CONTAINERIZATION



# EXAMPLE 2 IMPLEMENTATION OF METADATA DRIVEN VALIDATIONS WITH ADAPTORS









#### Schoolbook examples of architecture decision making



#### TUDE: the service.

#### Section of September 1

#### -

for some of the same of the sa

#### Colorism

#### for Logistian

#### Manual Military

#### SCENARIO 1

FROM DISCONNECTED
SERVICES TO CONNECTED
METADATA DRIVEN

SCENARIO Z

CONTEXT AWARE

SCENARIO 3

REVISITING DATA

SCENARIO 4

CONTAINERS AND

MULTIPLE ENVIRONMENTS DESIGN-DRIVEN
INFORMATION FLOWS

SCENARIO 5





#### SCENARIO 1

FROM DISCONNECTED

SERVICES TO CONNECTED

METADATA DRIVEN

## SCENARIO 1

FROM DISCONNECTED SERVICES TO CONNECTED METADATA DRIVEN











#### Reference models

#### Production design











CPI



GDP

#### Reference models

Concepts - "What"







#### Development (Cookbook)





#### Infrastructure design















