CSCI-1200 Data Structures Test 3 — Practice Problems

Note: This packet contains selected practice problems from Test 3 from three previous years. Your test will contain approximately one third as many problems (totalling ~ 100 pts).

1 Reducing Fractions with Pair Maps [30 pts]

Let's construct a data structure that explicitly stores the correspondence between a fraction and its simplified or reduced form (e.g., $\frac{2}{6} \rightarrow \frac{1}{3}$). Here's the code to construct the first of two map data structures we use in this problem. Note that the STL pair struct interface and implementation does include the definition of the operator<(const pair &a, const pair &b) function, which returns true if the first element of a is less than the first element of b, and false if the first element of b is less than the first element of a. If neither of these is the case, then operator< returns the result of comparing the second elements of a and b.

```
typedef ***PART_1*** map1_type;
map1_type map1;
map1[std::make_pair(2,4)] = std::make_pair(1,2);
map1[std::make_pair(4,8)] = std::make_pair(1,2);
map1[std::make_pair(3,6)] = std::make_pair(1,2);
map1[std::make_pair(2,6)] = std::make_pair(1,3);
map1[std::make_pair(3,9)] = std::make_pair(1,3);
map1[std::make_pair(4,6)] = std::make_pair(2,3);
map1[std::make_pair(2,8)] = std::make_pair(1,4);
```

1.1 The map1 Data Type [3 pts]

What is the type for the map1 data structure? Fill in the blank marked ***PART_1***.

1.2 Visualizing the Data Structure [6 pts]

Draw a picture to represent the map1 data structure that has been constructed by the commands above. As much as possible use the conventions from lecture and lab for drawing these pictures. Please be neat when drawing the picture so we can give you full credit.

Now we'll convert the data to another format. In the second version, we want to associate the reduced form of the fraction with one or more unsimplified fractions. Here's code to declare the second map:

```
typedef ***PART_3*** map2_type;
map2_type map2;

// code to initialize map2 from the data stored in map1
*** PART 4 ***
```

And on the right is a diagram of the map2 data structure storing the information from the initial example.

(1,2)	(2,4) (3,6) (4,8)
(1,3)	(2,6) (3,9)
(1,4)	(2,8)
(2,3)	(4,6)

1.3 The map2 Data Type [4 pts]

What is the type for the map2 data structure? Fill in the blank marked ***PART_3***.					

1.4 Map Conversion [8 pts]

Now write the fragment of code to fill in *** PART_4 *** that converts data stored in the variable map1 into the second map data structure format, storing it in variable map2. Study the example above, but your code should work for all examples of this type.

sample solution: 3 line(s) of code

Let's say the map1 data structure stores n unreduced fractions, but when reduced there are only m different fractions in reduced form, and the most common reduced form has k unreduced fractions. What is the Big O Notation for the code you just wrote? Write 2-3 sentences justifying your answer.

4 -		•		Г а 1
1.5	Counting	using	manl	4 nts
 -	Counting	asing	mapi	1 - 1200

Write a function named count_reduce_to_map1 that takes 3 arguments: map1 (of type map1_type), an 2 integers: numer and denom. The function should return the number of fractions stored in the map that
reduce to the fraction <pre>numer denom</pre> . For example, count_reduce_to_map1(map1,1,3) should return 2.
sample solution: 8 line(s) of code
In terms of n , m , and k as defined above, what is the Big O Notation for the count_reduce_to_map function? Write 1-2 sentences justifying your answer.
1.6 Counting using map2 [5 pts]
Now, write a very similar function named count_reduce_to_map2 that uses map2 instead of map1.
sample solution: $8 \text{ line}(s)$ of code
What is the Big O Notation for the count_reduce_to_map2? Justify your answer.

2 Word BST with Duplicates [20 pts]

Write a function named word_bst that takes one argument, an STL string named word, and returns a pointer to the root Node of a binary search tree created by adding the characters of the input word in order. The tree will allow duplicate characters. When a repeated character is added, it is added to both the left and the right subtrees.

You should write a helper function and your solution should use recursion.

sample solution: 21 line(s) of code

3 Constant Memory Breadth-First Traversal [31 pts]

Ben Bitdiddle sat through the Data Structures lecture covering breadth-first tree traversal and is determined to implement a constant memory implementation breadth-first traversal of a perfectly-balanced trinary tree. To meet the constant-time memory goal, he realizes this means no vector or list helper variables may be used, and furthermore, the implementation cannot use recursion.

Below is Ben's initial implementation. You'll write the missing functions and then analyze the algorithm for memory use and running time.

```
class Node {
public:
   int value;
   Node* left;
   Node* middle;
   Node* right;
   Node* parent;
};
```

```
void BreadthTraversal(Node *root) {
  int level = 0;
  while (true) {
                                                                        70
    Node* tmp = FirstNodeOnLevel(root,level);
    if (tmp == NULL) break;
                                                              43
                                                                        26
                                                                                   67
    std::cout << "level " << level << ": ";
    int level_count = NumNodesOnLevel(level);
                                                            1 92 65 40 98 48 59 15 44
    for (int i = 0; i < level_count; i++) {</pre>
      std::cout << " " << tmp->value;
                                                       level 0:
                                                                 70
      tmp = NextNodeOnLevel(tmp);
                                                       level 1: 43 26 67
    }
                                                       level 2: 1 92 65 40 98 48 59 15 44
    std::cout << std::endl;</pre>
    level++;
  }
}
```

3.1 Implement and Analyze FirstNodeOnLevel [6 pts]

For the above example, when passed level = 0, it returns the Node storing 70. When passed level = 1, it returns the Node storing 43. When passed level = 2, it returns the Node storing 1, etc.

	$sample\ solution.$	5 line(s) of code
For a tree with n nodes: Big O Notation for memory:	running time:	

3.2 Implement and Analyze NumNodesOnLevel [6 pts]

mplement the NumNodesOnLevel function. Level 0 has 1 node, Level 1 has 3 nodes, etc.					
		sample solution:	5 line(s) of code		
For a tree with n nodes: Big O Notation for memory:		running time:			

		samula salus	tion: 91 line(s) of coo
For a tree with a nodes.	Pig O Notation for manage		$tion: 21 \ line(s) \ of \ cool$
For a tree with n nodes:	Big O Notation for memory:		tion: 21 line(s) of cod
Γ			tion: $21 \ line(s) \ of \ cool$
For running time, Best Case:	For running		tion: $21 \ line(s)$ of $coolsymbol{coolsym$
For running time, Best Case: 3.4 Analyze BreadthTra What is the overall memory use	For running	ng time, Worst Case:	
What is the overall memory usa	For running versal [3 pts]	ng time, Worst Case:	
For running time, Best Case: 3.4 Analyze BreadthTra What is the overall memory use	For running versal [3 pts]	ng time, Worst Case:	

4 Tree Overlay [16 pts]

Write a recursive function named overlay that takes in two trees, t1 and t2, containing string data. The function will *overlay* and combine the data in the two trees. Where the shapes of the trees are similar, the value in the t2 Node is concatenated to the value in the t1 Node.

As shown in the example to the right, after the overlay function call, the combined tree is stored in the t1 variable and the t2 variable is an empty tree.

```
class Node {
  public:
    std::string value;
    Node* left;
    Node* right;
};
```



```
tl \rightarrow B1 t2 \rightarrow null

A R2

E 4

D 3 5
```

sample solution: 15 line(s) of code

5 Spelling Bee Re-Sting [33 pts]

Now that we have learned more sophisticated (and efficient!) data structures, let's revisit the statistics we computed in Homework 2, for the *Spelling Bee* game. Remember that the goal of the puzzle is to make English words using only the 7 letters for the day's puzzle. And furthermore, the words must use the center letter, in this example, the letter 'g'.

While the letter 'g' is required to be in every word, it is not necessarily the most frequently appearing letter across all 23 valid words in the solution. In fact, in this example, the letter 'a' appears 33 times, and the letter 'g' only appears 26 times. Our goal in this problem is to print the following statistics for a specific Spelling Bee puzzle:

```
The letter(s): 'f' & 't' appear 8 times.

The letter(s): 'l' & 'n' appear 11 times.

The letter(s): 'r' appear 12 times.

The letter(s): 'g' appear 26 times.

The letter(s): 'a' appear 33 times.

The letter(s): 'f' appear in 7 words.

The letter(s): 'l' & 't' appear in 8 words.

The letter(s): 'n' & 'r' appear in 11 words.

The letter(s): 'a' & 'g' appear in 23 words.
```

```
ragtag
raga
grant
gran
gall
gaga
gala
gnat
frag
gaff
tang
fragrant
flag
fang
alga
graft
gnarl
algal
flagrant
gang
gallant
agar
```

rang

To get started, carefully study the code below that reads the solution words from an input file stream named istr. It prepares two structures named frequency_of_total_usage and frequency_of_use_in_words that can be simply printed to the screen as shown above. The details of the code to print these variables is omitted from this problem.

```
total_uses_type total_uses;
used_in_words_type used_in_words;
// read in each solution word from the input file
std::string s;
while (istr >> s) {
  used_letters_type letters_in_this_word = collect_letters(s);
  increment_total_uses(total_uses, s);
  increment_used_in_words(used_in_words, letters_in_this_word);
}
// prepare the frequency statistics for printing
frequency_of_total_usage_type frequency_of_total_usage;
frequency_of_use_in_words_type frequency_of_use_in_words;
for (total_uses_type::iterator tu = total_uses.begin(); tu != total_uses.end(); tu++) {
  frequency_of_total_usage[tu->second].insert(tu->first);
for (used_in_words_type::iterator uw = used_in_words.begin(); uw != used_in_words.end(); uw++) {
  frequency_of_use_in_words[uw->second].insert(uw->first);
```

You will fill in some of the missing pieces of this implementation on the next few pages.

	5.1	Complete	these	Bee Sti	ing t	ypedefs	5	pts
--	-----	----------	-------	---------	-------	---------	---	-----

classes th	nat create "homemade" versions of	f these containers.	
typedef			used_letters_type;
typedef			total_uses_type;
typedef	total_uses_type used_in_words	_type;	_
typedef			<pre>frequency_of_total_usage_type;</pre>
typedef	frequency_of_total_usage_type	frequency_of_use_in_word	s_type;
5.2 C	Can you Picture This? [5 pt	as l	
we proce	ss the 2nd word in this example so	olution, ragtag. Also draw	s_in_this_word immediately after the data stored in the total_uses the solution file, rang and ragtag.
	letters_in_this_word	total_uses	used_in_words
5.3 I	mplement collect_letters [7 pts]	
			sample solution: 7 line(s) of code

IMPORTANT: In this problem, you are not allowed to use C-style arrays, STL vector, STL list, or any

Implement increment_total_uses [6 pts	1
	sample solution: 5 line(s) of code
Implement increment_used_in_words [7]	pts]
	sample solution: 7 line(s) of code
And Now Paint the Complete Picture	[3 pts]
n using conventions from lecture, draw diagrams for	the $\mathrm{data}\mathrm{stored}\mathrm{in}\mathrm{the}\mathtt{frequency_of_total_usage}$
requency_of_use_in_words structures after the repared for printing.	entire input file is processed and these structures
frequency_of_total_usage	frequency_of_use_in_words
1	Implement increment_used_in_words [7] And Now Paint the Complete Picture using conventions from lecture, draw diagrams for requency_of_use_in_words structures after the

6 Lightning Doesn't Strike Out Twice [20 pts]

In this problem we declare the following three container objects, and fill the containers with a very large number (n) of English words, represented as STL strings. The code for filling the structures is omitted.

```
std::vector<std::string> my_vec;
std::list<std::string> my_list;
std::set<std::string> my_set;
```

Below we call the do_it function with each version of the data. Assume that k is a positive integer and $k \ll n$. For each numbered line of the function, for each of these container objects, either:

- Indicate that the syntax is incorrect for the container and will not compile by drawing an 'X' in the box. You should then assume this line is commented out for that container. OR
- Specify the Big O Notation for that line in terms of k and/or n.

t€	emplate <class t=""> void do_it(T &d) {</class>	<pre>do_it(my_vec);</pre>	<pre>do_it(my_list);</pre>	<pre>do_it(my_set);</pre>
01	<pre>d.sort();</pre>			
02	<pre>std::sort(d.begin(),d.end());</pre>			
03	<pre>d.push_front("FIRST_THING");</pre>			
04	<pre>d.push_back("LAST_THING");</pre>			
	T::iterator itr;			
05	<pre>itr = d.end();</pre>			
06	for (int i = 0; i < k; i++) { itr; }			
07	itr -= k;			
08	<pre>itr = d.insert(itr,"A_MIDDLE_THING");</pre>			
09	<pre>itr = std::find(d.begin(),d.end(),"the");</pre>			
10	<pre>itr = d.find("the");</pre>			
	<pre>assert (itr != d.end());</pre>			
11	<pre>itr = d.erase(itr);</pre>			
12	std::cout << d.size() << std::endl;			

7 Unbalanced Tree Pruning [20 pts]

Write a function named keep_longest that takes as input a pointer to the root of a binary tree, and removes all of the nodes in the tree except the nodes that form the longest path from root to leaf node. You are encouraged to write helper function(s) as needed.

sample solution: 24 line(s) of code

8 Leaf Counting Construction [15 pts]

Write a function named create_tree that takes one argument, a positive integer named num_leaves and returns a pointer to the root Node of a binary tree that has the specified number of leaves and is at least approximately balanced. In addition to the number of leaves beneath it, each Node should also store the length of the longest and shortest paths from that node to a leaf node.

You may write the constructor for the Node class.

sample solution: 16 line(s) of code

parent: /

left:

num_leaves: 1

shortest: 0

parent:

left:

parent:

num_leaves:

shortest: 0

num_leaves: 2

right:

shortest: 1

longest: 1

num_leaves: 3 shortest: 1 longest: 2

parent:

parent:

num_leaves: 1

shortest: 0

longest: 0 left: / right:

9 Tree Traversal Bingo [9 pts]

For each of the diagrams below, write a letter corresponding to one of the following statements that accurately describes the diagram. Each letter should be used exactly once.

- (A) has post-order traversal: 1 2 3 4 5 6 7
- (B) is not a tree
- (C) has in-order traversal: 5 4 7 1 6 2 3
- (D) is a binary search tree
- (E) has breadth-first traversal: 7 6 5 4 3 2 1 $\,$
- (F) cannot be colored as a red-black tree

10 Order Up! [/ 48]

Alyssa P. Hacker is consulting for a restaurant to build a customer and order tracking system. Below is a small sample of the data structure she's designed. She explains that it uses 5 different STL data structures, but it does NOT use STL vector, or the C-style array, or any custom classes.

apple_pie			Victoria,1 B	Ben,2	Herta,1
happy_meal			Ben,1		
fanta	nuggets		Jacob,1 B	Ben,3	
salad	tea		Victoria,1 H	Herta,2	Jacob,1
burger	coke	fries	Jacob,1 V	victoria,1	
burger	fries	sprite	Jacob,1		
coke	fries	salad	Herta,1 V	/ictoria,1	

The design allows us to study the frequency of meals (combinations of items on the menu) ordered by customers, and who has ordered the meal most recently. For example, 3 different customers have ordered the meal "salad & tea". Herta has ordered that meal twice and Jacob has ordered it most recently.

To record a customer order in the structure above, we typically use the following 3 argument function:

Where data is the complete structure diagrammed above. This call will update the fifth row of the structure to record that Jacob has now ordered that meal twice, and furthermore, the sequence will be changed so that Jacob is last (swapping places with Victoria) because he has now ordered that meal most recently.

10.1 Fast Food typedefs [/ 6]

After looking ahead through the rest of this problem, let's define a few helpful typedefs. You will be graded on the convenience and efficiency of the overall structure. Also remember that Alyssa said she used 5 different STL types, but NOT vector.

10.2	Organizing the Meals [/ 6]
the sin	nple (1 item) meals and progress to	rant's desired organization for the meals. We should start with more complicated meals. Meals of the same complexity are ry helper function so this happens automatically.
		sample solution: 13 line(s) of code
10.3	Complexity Analysis [/ 6]
m diffe	erent meals (each with at most k menu	s on the menu and c unique customers. Customers have created u items). Any one meal has been ordered by at most d different omer. What is the Big 'O' Notation for the following functions?
placeC	Order Note: We don't ask you to	implement this.
namele	essOrder You will implement this	s on the next page (page 4).
orderM	MyFavorite You will implement t	this in a couple of pages (page 5).
	-y	The state of the s

10.4 Convenience for Our Most Loyal Customers: namelessOrder [/ 16]			
This structure allows us to streamline ordering for the most frequent customers. They don't even need to leave their name when they place an order. For example:			
${\tt namelessOrder(\ data\ ,}\ meal\ with\ nuggets\ and\ fanta\)};$			
prints "Welcome back, Ben!" and places his order (because Ben has ordered that meal more often than anyone else!) However, attempts to use this function can fail and result in error messages:			
namelessOrder(data , meal with salad, fries, and coke);			
will print to STDERR: "ERROR: What name should we put on this order?" (because two different people, Herta and Victoria, are tied for most times ordering that meal). And			
namelessOrder(data , meal with happy_meal and coke);			
will print to STDERR: "ERROR: No one's ordered this meal before!"			
sample solution: $\sim 30 \ line(s)$ of code			

10.5 We Know What You Want! orderMyFavorite [/ 14]				
Alternately, customers may re-order their personal favorite (most frequency	ently ordered) meal:				
<pre>orderMyFavorite(data , "Herta");</pre>					
which will respond with the success message: "Placing your order for salad & tea." However					
orderMyFavorite(data , "Victoria");					
<pre>prints the error message "ERROR: You have multiple, equally-favorite meals." (because Victo has ordered four different meals, one time each). And orderMyFavorite(data , "Louis"); prints "ERROR: We don't have any prior orders for you."</pre>					
	sample solution: $\sim 30 \text{ line(s)}$ of code				

11 Each Level, All Pairs [/ 16]

Write a function named each_level_all_pairs that takes in a pointer to the root Node of a binary tree and prints all pairs of values from each "level" of the tree. For example, the function will print the following 10 pairs for the tree on the right, which has 4 levels:

```
(2,3) (4,5)(4,6)(5,6) (7,8)(7,9)(7,10)(8,9)(8,10)(9,10)
```

There are no pairs from the top level (because there's only 1 value). There's 1 pair from the second level. We have 3 values and 3 pairs from the third level, and 4 values and 6 pairs from the lowest level. Note: The extra space between pairs of different levels is optional.

```
template <class T>
class Node {
public:
   T value;
   Node* left;
   Node* right;
};
```


sample solution: 18 line(s) of code

12 tREeVISION (Tree Revision) [

 $\left(\begin{array}{c} 20 \end{array}\right) \stackrel{foo}{\longrightarrow} a \qquad bar \stackrel{A}{\longrightarrow} A$ pointers
e and values. $\stackrel{C}{\longrightarrow} a \qquad \stackrel{C}{\longrightarrow} a \qquad \stackrel{C}{\longrightarrow} a \qquad \stackrel{C}{\longrightarrow} A$

Write a function named treevision that takes in two Node pointers and modifies the first tree to match the second tree in shape and values. The function returns a Trio of three numbers, indicating how many nodes were edited, how many nodes were added, and how many nodes were removed.

For example treevision(foo,bar) will return the values 2 3 1 because 2 nodes were edited $('a'\rightarrow'A'$ and $'d'\rightarrow'D')$, 3 nodes were added ('Q', 'F', and 'G') and 1 node was removed ('e').

```
class Node {
public:
    Node(char v):value(v){left=right=NULL;}
    char value;
    Node* left;
    Node* right;
};

class Trio {
    public:
        Trio(int e,int a,int r):edit(e),add(a),remove(r){}
        int edit;
        int add;
        int remove;
};
```

sample solution: 25 line(s) of code

13 Treeslinger Quick Draw! [/ 13]
Draw a balanced binary tree with in-order traversal: the fox jumped over the lazy dogs	Draw a binary search tree with leaves: 2^{10} , 10 , 10^2 , and $\sqrt{10}$.
Draw a balanced ternary tree with pre-order traversal: 13 12 11 10 9 8 7 6 5 4 3 2 1	Draw a red-black tree with values 'a'-'g', with root 'e' and 3 red nodes: 'b', 'd', and 'g'.