Introduction à la Théorie des Graphes

Partie 3: Coloration des sommets d'un graphe

Dr. Guelzim ibrahim

Email: ib.guelzim@gmail.com

Sommaire

- Colorer un graphe
- Nombre chromatique
 - o <u>Définition</u>
 - o **Encadrement**
 - o Théorème des 4 couleurs
- Algorithme de Welsh et Powell
- Application

Colorer un graphe

- Définition :
 - \circ Soit G = (V, E) un graphe non orienté.
 - Une <u>coloration</u> de G est l'attribution d'une couleur à chacun de ses sommets, de telle sorte que deux sommets adjacents ne soient pas colorés de la même couleur.
- Remarque. Il est clair que l'on ne pourra colorer que des graphes simples:
 - Si un graphe comporte une boucle:
 - càd qu'un sommet est adjacent à lui-même.
 - Il faudrait lui attribuer deux couleurs, ce qui est contraire à la définition.

Colorer un graphe

• Exemples de colorations de graphes :

Nombre chromatique

- Définition
 - \circ Soit G = (V, E) un graphe non orienté.
 - Le <u>nombre chromatique</u> de G est le nombre minimal de couleurs permettant de le colorer.
 - \circ On le notera $\chi(G)$.

Propriété :

- o Soit G un graphe non orienté complet à n sommets.
- \circ Le nombre chromatique de G, $\chi(G) = n$

Nombre chromatique

- Exemple:
 - o Il faut 5 couleurs pour colorer le graphe complet à 5 sommets :

- Minoration du nombre chromatique
 - \circ Soit G = (V, E) un graphe non orienté.
 - \circ Soit w(G) l'ordre maximum d'un sous-graphe complet de G.
 - \circ On a $w(G) \leq \chi(G)$

- Majoration du nombre chromatique
 - \circ Soit G = (V, E) un graphe non orienté.
 - \circ Soit $\Delta(G)$ le degré maximum des sommets de G.
 - On a $\chi(G) \leq \Delta(G) + 1$

- <u>Démonstration</u>: Raisonnons par l'absurde et supposons que $\chi(G) > \Delta(G) + 1$.
 - \circ Considérons une coloration optimale de G, i.e. une coloration comportant $\chi(G)$ couleurs.
 - \circ Indexons les différentes couleurs et prenons un sommet x donc la couleur est celle d'indice $\chi(G)$.
 - \circ Ce sommet possède nécessairement au plus $\Delta(G)$ sommets adjacents.
 - \circ Dans le pire des cas, il faut attribuer une couleur différente à chacun de ces sommets, ce qui utilise alors $\Delta(G)$ couleurs.
 - \circ Puisque $\chi(G) > \Delta(G) + 1$ il reste donc au moins une couleur non utilisée par le sommet x et ses sommets adjacents.
 - o On peut alors remplacer la couleur de x par celle-ci tout en conservant une coloration valide.
 - \circ On peut ensuite procéder de même pour tous les sommets possédant la couleur d'indice $\chi(G)$.
 - On obtient alors une coloration de G n'utilisant pas cette couleur.
 - o Ceci est absurde car cela contredit le fait que notre coloration était optimale.
 - O Notre hypothèse de départ était donc fausse.

• Considérons le graphe G non orienté suivant :

• On cherche donc un sous-graphe complet d'ordre maximum.

On trouve A,C,D,H:

- On a ainsi $4 \le \chi(G)$.
- Pour majorer le nombre chromatique de G,
- il faut calculer le degré maximum de ses sommets.
- Il s'agit de 5, degré des sommets A et C.
- On a donc $\chi(G) \leq 6$.
- Finalement, on obtient l'encadrement suivant :
 4 ≤ x(G) ≤ 6

- · Cet encadrement est utile mais peut parfois s'avérer inefficace.
- Déjà, il est souvent difficile de déterminer le sous-graphe complet d'ordre maximum,
- · à part sur des cas particuliers assez simples.
- D'autre part, la majoration peut se révéler très mauvaise
- comme dans le cas des graphes dits en étoile n = 9 :
 - o Sommet central du graphe étant d'ordre 8.
 - ∘ Majoration du nombre chromatique est $\chi(G) \leq n$
 - $\circ \chi(G) \leq 9$

- Cependant, on peut vérifier que $\chi(G) = 2$
- L'écart entre $\chi(G)$ et son majorant est donc conséquent.

Rappel: Graphes planaires

- Définition:
 - Soit G=(V,E) un graphe (orienté ou non).
 - On dira que G est planaire s'il admet une représentation sagittale où ses arêtes (ou arcs) ne se coupent pas
 - o Exemple:

Graphe planaire

Autre représentation

Nombre chromatique : Théorème des 4 couleurs

- Théorème des quatre couleurs :
 - o Le nombre chromatique d'un graphe planaire est au plus égal à 4.

- Théorème des quatre couleurs, formulation originelle :
 - Toute carte de géographie dont les régions sont contiguës peut être coloriée avec au plus 4 couleurs sans que deux pays limitrophes (frontaliers ou voisins) ne soient coloriées avec la même couleur.

Nombre chromatique : Théorème des 4 couleurs

• Exemple: carte composée de 6 régions

Nombre chromatique : Théorème des 4 couleurs

- O Chacune des régions est représentée par un sommet,
- o Chacune des frontières est représentée par une arête,

- o Ce graphe est nécessairement planaire
- o Pourra être colorié par au plus 4 couleurs.

o On constate cependant que 3 suffisent.

- Soit G = (V , E) un graphe non orienté. Les étapes de l'algorithme :
 - 1. Calculer le degré de chaque sommet.
 - 2. Trier les sommets par ordre décroissant de leur degré : $d(x1) \ge d(x2) \ge ... \ge d(xn)$
 - 3. Choisir une couleur pour le premier sommet x1.
 - 4. Parcourir la liste des sommets triés puis colorer de cette couleur le premier sommet non adjacent à x1 (s'il existe).
 - 5. Continuer la liste et colorer de même le prochain sommet non adjacent ni au premier ni au second.
 - 6. Faire de même jusqu'à épuisement de la liste.
 - 7. Prendre une seconde couleur pour le premier sommet non coloré de la liste et recommencer les étapes précédentes.
 - 8. Recommencer jusqu'à avoir coloré tous les sommets.

· Considerons le graphe ci-contre

• Calcul du degré de chaque sommet :

×	Α	В	С	D	Е	F	G	Н
d(x)	5	4	5	4	4	3	4	3

• Tri des sommets par ordre décroissant de leur degré :

×	Α	С	В	D	Е	G	F	Н
d(x)	5	5	4	4	4	4	3	3

- On choisit une couleur pour le premier sommet de cette liste triée.
- Colorons ainsi le sommet A en rouge par exemple.
- On parcourt ensuite la liste dans l'ordre.
 On constate que les sommets C, B et D sont adjacents au sommet A donc on ne les colore pas encore.
- Le premier sommet non adjacent à A est E, on le colore donc aussi en rouge.
- Les trois derniers sommets
 de la liste sont adjacents soit à A soit à E
 donc on ne les colore pas.

- On choisit une seconde couleur, le bleu, pour le premier sommet non coloré de la liste, i.e. le sommet C.
- On continue à parcourir la liste, on colore le sommet B aussi en bleu car il n'est pas adjacent à C.
- Tous les autres sommets de la liste sont adjacents soit à C soit à B donc on ne les colore pas.

- On réitère le procédé en colorant d'une troisième couleur, le vert, le premier sommet non encore coloré, càd le sommet D.
- Le sommet G n'est pas adjacent à D donc on le colore aussi en vert.
- On continue de parcourir la liste, et l'on colore aussi F en vert car il n'est ni adjacent à D ou à G.

• Le dernier sommet de la liste est adjacent à un sommet déjà coloré en vert, on ne le colore pas encore.

- On colore enfin le dernier sommet non coloré, i.e. H, avec une autre couleur,
- Par exemple le jaune.

• On a ainsi coloré ce graphe avec 4 couleurs. Cette coloration est optimale pour ce graphe car : $4 \le \chi(G) \le 6$

• Exercice : Considérons le graphe non orienté suivant :

· Appliquons l'alg de Welsh et Powell sur ce graphe.

· Correction :

• On trouve facilement une coloration utilisant seulement 3 couleurs :

- · Application: Problèmes d'incompatibilité
 - O Répartition de poissons dans des aquariums :
 - 8 poissons, désignés dans la suite par
 A, B, C, D, E, F, G et H, doivent
 être répartis dans un nombre minimum d'aquariums
 mais certains ne peuvent cohabiter.
 - o Le tableau ci-contre répertorie ces incompatibilités,

ollne	croix	ontro	dellx	noissons	sia	nifiant	au'ils	no	neuvent	nas	cohabiter
One	CIUIX		ueux	poissons	319	mijiami	yu 113	116	peuveni	pus	Conduite

 Déterminer 	le nombre minir	num d'aquariun	ns nécessaire	pour	loger	tous ces
poissons.						

	Α	В	С	D	E	F	G	Н
Α		Χ	Χ	X			X	X
В	Χ				Χ	Χ	X	
С	Χ			X		Χ	X	X
D	Χ		Χ		Χ			Х
Ε		Χ		Χ		Χ	Χ	
F		Χ	Χ		Χ			
G	Χ	Χ	Χ		Χ			
Н	Χ		Χ	Χ				

• On commence par associer à ce problème un graphe résumant les incompatibilités : un sommet par poisson, et une arête entre deux sommets indique que les poissons correspondants ne peuvent pas cohabiter.

On obtient:

	Α	В	С	D	E	F	G	Н
Α		X	X	X			X	X
В	X				Χ	X	X	
С	Χ			X		Χ	X	Χ
D	Χ		Χ		Χ			X
E		X		X		Χ	Х	
F		Χ	Χ		Χ			
G	Χ	Χ	Χ		Χ			
Н	X		X	X				

• Il nous faut ensuite colorer les sommets de ce graphe.

• On avait déjà déterminé le nombre chromatique de ce graphe qui valait 4 et que l'on pouvait le colorer comme suit :

• Il faudra donc utiliser 4 aquariums, et mettre ensemble les poissons A et E, les poissons B et C, les poissons D, F et G, et isoler le poisson H.

