SANNOLIKHETSLÄRA OCH STATISTIK FÖRELÄSNING 10

Mattias Villani

Avdelningen för Statistik och Maskininlärning Institutionen för datavetenskap Linköpings universitet

ÖVERSIKT

- ► Bayesiansk inferens
- ► Binomialmodell med beta prior
- Normalmodell med normal prior
- ► Multinomialmodell med Dirichlet prior

FREKVENTISTISK INFERENS

- Hittills på kursen: frekventistisk inferens.
 - **Parametrar** θ **är fixa** (icke slumpmässiga) storheter.
 - ▶ Data är slumpvariabler: $f(X_1, ..., X_n | \theta)$.
- Frekventistisk inferens: hur en metod beter sig över upprepade stickprov från populationen.
- Samplingfördelningar är i fokus. 'Vilka värden kan min estimator förväntas anta för olika stickprov?'
- Väntevärderiktighet: 'min skattningsmetod kommer att vara korrekt i genomsnitt' (sett över alla möjliga stickprov).
- ▶ Konfidensintervall: 'min intervallskattningsmetod kommer att täcka det sanna parametervärdet θ i 95% av alla möjliga stickprov från populationen'.
- ► Hypotestest: 'min testmetod kommer bara att dra fel slutsats i 5% av alla stickprov om nollhypotesen är sann'.

SUBJEKTIVA SANNOLIKHETER

- ▶ Du vet inte värdet på en populationsparameter θ . Du är osäker om θ . Påståendet $P(\theta \le 2)$ är meningsfullt.
- ▶ Det är osäkerheten som är relevant. Om θ är en fix, konstant, storhet eller ej spelar ingen roll.
- ightharpoonup Jag vet inte 10:e decimalen av π . Då kan jag säga

$$P(10 : e \text{ decimal av } \pi = 9) = 1/10.$$

- ▶ Det är **min** osäkerhet som spelar roll. Du kanske vet 10:e decimalen av π . För mig är π osäker och jag kan prata om sannolikhetsfördelningen för 10:e decimalen av π .
- ► Sannolikheter är ett subjektivt mått på personlig grad av tilltro.
- ▶ Bayesiansk statistik bygger på ett subjektivt sannolikhetsbegrepp.

THOMAS BAYES 1701-1761

SUBJEKTIVITET I VETENSKAPEN!

BAYESIANSK INFERENS

- ▶ Bernoullimodellen: $X_1, ..., X_n | \theta \sim \text{Bern}(\theta)$. T ex slantsingling.
- ▶ Sannolikheten för krona, θ , är okänd.
- Innan vi har börjat singla slant beskriver jag min osäkerhet om θ med min apriorifördelning: $\pi(\theta)$.
- ▶ a priori = före (före jag har observerat data).
- Antag nu att vi har observerat ett antal slantsinglingar: $X_1 = x_1, ..., X_n = x_n$ (t ex 0, 0, 1, 1, 0).
- ► Hur bör vi **uppdatera** vår apriorifördelning med denna datainformation? Hur lär vi oss från data? **Learning**.
- ▶ Aposteriorifördelning: $\pi(\theta|x_1,...,x_n)$. Posterior = efter (data).
- Bayesiansk inferens betingar på observerade data. P(Okänt | Känt).

BAYES SATS UPPDATERAR PRIOR TILL POSTERIOR

- ▶ Antag att θ bara kan anta värdena: 0.1, 0.2, ..., 0.9 (diskretisering).
- ► Kom ihåg: Bayes sats för händelser A och B:

- Låt t ex $A = \{\theta = 0.1\}$ och $B = \{X = x\}$.
- Bayes sats ger posteriorfördelningen:

$$P(\theta = 0.1|\mathbf{x}) = \frac{P(\mathbf{x}|\theta = 0.1)P(\theta = 0.1)}{P(\mathbf{x})}$$

där satsen om total sannolikhet ger

$$P(\mathbf{x}) = P(\mathbf{x}|\theta = 0.1)P(\theta = 0.1) + ... + P(\mathbf{x}|\theta = 0.9)P(\theta = 0.9)$$

BERNOULLIMODELL - S=2, F=3

BERNOULLIMODELL - S=20, F=30

BERNOULLIMODELL - S=200, F=300

BAYES SATS FÖR KONTINERLIGA VARIABLER

▶ Diskretisering $\theta \in \{\theta_1, \theta_2, ..., \theta_K\}$

$$P(\theta = \theta_i | \mathbf{x}) = \frac{P(\mathbf{x} | \theta = \theta_i) P(\theta = \theta_i)}{\sum_{j=1}^{K} P(\mathbf{x} | \theta = \theta_j) P(\theta = \theta_j)}$$

▶ Finare och finare grid $(\theta_{i+1} - \theta_i \rightarrow 0)$ ger

$$f(\theta|\mathbf{x}) = \frac{P(\mathbf{x}|\theta)f(\theta)}{\int P(\mathbf{x}|\theta)f(\theta)d\theta},$$

Bayes sats för kontinuerlig parameter θ

$$\pi(\theta|\mathbf{x}) = \frac{f(\mathbf{x}|\theta)\pi(\theta)}{\int f(\mathbf{x}|\theta)\pi(\theta)d\theta}$$

• Prior: $\pi(\theta)$

▶ Likelihood: $f(\mathbf{x}|\theta)$

• Posterior: $\pi(\hat{\theta}|\mathbf{x})$

SUBJEKTIVITET OCH OBJEKTIVITET

- $\rightarrow \pi(\theta)$ är en subjektiv fördelning som varierar från person till person baserat på erfarenhet etc.
- Hur vi lär oss från data, dvs uppdaterar från prior till posterior, bestäms av Bayes sats.
- ► Uppdateringmekanismen är objektiv (matematik).
- ▶ Resultat: när $n \to \infty$ (stora datamängder) kommer alla personers posteriors att konvergera till samma fördelning. Objektivitet genom subjektivt konsensus.
- ► Vid rapportering av resultat kan man använda icke-informativa apriorifördelningar (dvs svag information) eller priorinformation som är lättförståelig.
- ► Machine learning: mycket vanligt med aprioriinformation av typen: 'Jag tror att den okända funktionen är **mjuk**, men jag vet inte mycket mer om den exakta funktionsformen'.

BERNOULLI MED BETA PRIOR

- ▶ Bernoullimodellen: $X_1, ..., X_n | \theta \sim \text{Bern}(\theta)$. **Likelihood**: $\theta^s (1 \theta)^f$.
- ▶ $\theta \in [0, 1]$. Lämplig **prior**: $\theta \sim Beta(\alpha, \beta)$:

$$\pi(\theta) = \frac{1}{B(\alpha, \beta)} \theta^{\alpha - 1} \theta^{\beta - 1}$$

Posterior

$$\pi(\theta|\mathbf{x}) = \frac{f(\mathbf{x}|\theta)\pi(\theta)}{\int f(\mathbf{x}|\theta)\pi(\theta)d\theta} = \frac{\theta^{s}(1-\theta)^{f}\frac{1}{B(\alpha,\beta)}\theta^{\alpha-1}\theta^{\beta-1}}{\int \theta^{s}(1-\theta)^{f}\frac{1}{B(\alpha,\beta)}\theta^{\alpha-1}\theta^{\beta-1}d\theta}$$
$$= \frac{\theta^{\alpha+s-1}(1-\theta)^{\beta+f-1}}{\int \theta^{\alpha+s-1}(1-\theta)^{\beta+f-1}d\theta} = c \cdot \theta^{\alpha+s-1}(1-\theta)^{\beta+f-1}$$

där $c=1/\int \theta^{\alpha+s-1}(1-\theta)^{\beta+f-1}d\theta$ är en konstant (beror inte på θ).

► En täthet på formen $c \cdot \theta^{\alpha+s-1} (1-\theta)^{\beta+f-1}$ känns igen som en $Beta(\alpha+s,\beta+f)$:

$$\pi(\theta|\mathbf{x}) = \frac{1}{B(\alpha+s,\beta+f)} \theta^{(\alpha+s)-1} \theta^{(\beta+f)-1}.$$

BAYES SATS PÅ PROPORTIONELL FORM

- Notera att vi aldrig behövde räkna ut nämnaren i Bayes sats: $\int f(\mathbf{x}|\theta)\pi(\theta)d\theta.$ Vi kände igen Beta-fördelningen ändå.
- ► Tätheter måste integrera till ett. Proportionalitetskonstanter kan vi "strunta i".
- ► Enklare form av Bayes sats:

$$\pi(\theta|\mathbf{x}) \propto f(\mathbf{x}|\theta)\pi(\theta)$$

Posterior ∝ Likelihood × Prior

BERNOULLI-EXEMPEL: SPAM

- ▶ George har gått igenom 4601 e-mail (elbrev). 1813 av dessa var spam.
- ▶ Modell: Låt $x_i = 1$ om det i:te elbrevet var spam. Antag $x_i | \theta \stackrel{iid}{\sim} Bernoulli(\theta)$
- ▶ Prior: $\theta \sim \text{Beta}(\alpha, \beta)$.
- Posterior

$$\theta | \mathbf{x} \sim \textit{Beta}(\alpha + 1813, \beta + 2788)$$

SPAM DATA (N=10): FYRA OLIKA PRIORS

SPAM DATA (N=100): FYRA OLIKA PRIORS

SPAM DATA (N=4601): FYRA OLIKA PRIORS

NORMAL DATA, KÄND VARIANS - NORMAL PRIOR

- ▶ Modell: $X_1, ..., X_n \stackrel{iid}{\sim} N(\theta, \sigma^2), \sigma^2$ känd.
- ► Prior

$$\theta \sim N(\mu, \tau^2)$$

Posterior

$$p(\theta|x_1,...,x_n) \propto p(x_1,...,x_n|\theta,\sigma^2)p(\theta)$$

 $\propto N(\theta|\mu_x,\tau_x^2),$

där

$$\frac{1}{\tau_x^2} = \frac{n}{\sigma^2} + \frac{1}{\tau^2},$$

 $\mu_{\mathsf{x}} = \mathsf{w}\bar{\mathsf{x}} + (1-\mathsf{w})\mu,$

och

$$w = \frac{\frac{n}{\sigma^2}}{\frac{n}{\sigma^2} + \frac{1}{\sigma^2}}.$$

► Se Baron s. 344 för en härledning.

NORMAL DATA, KÄND VARIANS - NORMAL PRIOR

$$\theta \sim N(\mu, \tau^2) \stackrel{x_1, \dots, x_n}{\Longrightarrow} \theta | \mathbf{x} \sim N(\mu_x, \tau_x^2).$$

Posterior precision = Data precision + Prior precision

Posterior väntevärde =

 $\frac{\text{Data precision}}{\text{Posterior precision}} (\text{Data medelv\"{a}rde}) + \frac{\text{Prior precision}}{\text{Posterior precision}} (\text{Prior v\"{a}ntev\"{a}rde})$

- ▶ Data: x = (22.42, 34.01, 35.04, 38.74, 25.15).
- ▶ Modell: $X_1, ..., X_5 \sim N(\theta, \sigma^2)$.
- lacktriangle Antag $\sigma=5$ (mätningar kan variera $\pm 10 \mathrm{MBit}$ med 95% sannolikhet)
- Min prior: $\theta \sim N(50, 5^2)$.

Download speed data: x=(22.42)

23 / 33

Download speed data: x=(22.42, 34.01)

Download speed data: x=(22.42, 34.01, 35.04)

25 / 33

26 / 33

MULTINOMIAL MODELL MED DIRICHLET PRIOR

- ▶ Data: $y = (y_1, ... y_K)$. $y_k = \text{antalet obs i den } k$:te klassen.
- Exempel: K = 8, y_k antal som röstar på parti k i en valundersökning med $n = \sum_{k=1}^{K} y_k$ tillfrågade personer.
- ► Multinomial modell:

$$p(y|\theta) \propto \prod_{k=1}^K \theta_k^{y_k}$$
, där $\sum_{k=1}^K \theta_k = 1$.

• *Konjugerad prior*: Dirichlet($\alpha_1, ..., \alpha_K$)

$$p(\theta) \propto \prod_{k=1}^{K} \theta_k^{\alpha_k - 1}.$$

▶ Väntevärde för $\theta = (\theta_1, ..., \theta_K)' \sim Dirichlet(\alpha_1, ..., \alpha_K)$

$$\mathbb{E}(\theta_k) = \frac{\alpha_k}{\sum_{i=1}^K \alpha_i}$$

Variansen minskar för större α -värden. Icke-informativ prior har små värden, t ex $\alpha_k = 1$ för alla k.

DIRICHLETFÖRDELNINGEN

MULTINOMIAL MODEL WITH DIRICHLET PRIOR

Uppdatering från prior till posterior:

Modell:
$$y = (y_1, ..., y_K) \sim \text{Multin}(n; \theta_1, ..., \theta_K)$$

Prior: $\theta = (\theta_1, ..., \theta_K) \sim \text{Dirichlet}(\alpha_1, ..., \alpha_K)$
Posterior: $\theta | y \sim \text{Dirichlet}(\alpha_1 + y_1, ..., \alpha_K + y_K).$

- ► Simulering från en Dirichlet-fördelning:
 - ► Slumpa $x_1 \sim Gamma(\alpha_1, 1), ..., x_K \sim Gamma(\alpha_K, 1)$.
 - ▶ Beräkna $z_k = x_k / (\sum_{j=1}^K x_j)$.
 - **z** = $(z_1, ..., z_K)$ är nu en slumpvektor från Dirichlet $(\alpha_1, ..., \alpha_K)$ -fördelningen.

EXEMPEL: MARKNADSANDELAR

- ► En undersökning bland 513 smartphone-ägare gav:
 - ▶ 180 föredrar en iPhone
 - 230 föredrar en Androidtelefon
 - ▶ 62 föredrar en Blackberrytelefon
 - ▶ 41 föredrar något annat märke
- ► Tidigare undersökning: iPhone 30%, Android 30%, Blackberry 20% och Annat 20%.
- ► P(Android har störst marknadsandel | Data)
- ▶ Prior: $\alpha_1 = 15$, $\alpha_2 = 15$, $\alpha_3 = 10$ och $\alpha_4 = 10$ (prior info motsvarar en undersökning med 50 svarande)
- ▶ Posterior: $(\theta_1, \theta_2, \theta_3, \theta_4)|\mathbf{y} \sim \text{Dirichlet}(195, 245, 72, 51)$

R KOD FÖR MARKNADSANDELAR

```
# Setting up data and prior
y <- c(180,230,62,41) # The cell phone survey data (K=4)
alpha <- c(15,15,10,10) # Dirichlet prior hyperparameters
nIter <- 1000 # Number of posterior draws
# Defining a function that simulates from a Dirichlet distribution
SimDirichlet <- function(nIter, param){
  nCat <- length(param)
  thetaDraws <- as.data.frame(matrix(NA, nIter, nCat)) # Storage.
  for (j in 1:nCat){
    thetaDraws[,j] <- rgamma(nIter,param[j],1)
  for (i in 1:nTter){
    thetaDraws[i,] = thetaDraws[i,]/sum(thetaDraws[i,])
  return(thetaDraws)
# Posterior sampling from Dirichlet posterior
thetaDraws <- SimDirichlet(nIter,y + alpha)
```

R KOD FÖR MARKNADSANDELAR

```
# Posterior mean and standard deviation of Androids share (in %)
message(mean(100*thetaDraws[,2]))

## 43.5281011565501

message(sd(100*thetaDraws[,2]))

## 2.12159111747558

# Computing the posterior probability that Android is the largest
PrAndroidLargest <- sum(thetaDraws[,2] > max(thetaDraws[,c(1,3,4)]))/nIter
message(paste('Pr(Android has the largest market share) = ', PrAndroidLargest))

## Pr(Android has the largest market share) = 0.907
```

R CODE FOR MARKET SHARE EXAMPLE, CONT

