# Instant Auditing of Cloud Storage Access without Accumulating Attestations

Advicer: Gwan-Hwan Hwang Student: Wei-Chih Chien

NTNU CSIE CCLAB

2015.10.29

- Scenario
- Real-time Auditing Schemes
  - Intuitive Method
  - Instant Auditing of Cloud Storage Access by Cache Partial Merkle tree
  - My Method
- Protocol Detail
  - Flowchart
  - Initial
  - Read
  - Write
  - Audit
- Experimental Results
- Schedules

- Scenario
- 2 Real-time Auditing Schemes
  - Intuitive Method
  - Instant Auditing of Cloud Storage Access by Cache Partial Merkle tree
  - My Method
- Protocol Detail
  - Flowchart
  - Initial
  - Read
  - Write
  - Audit
- 4 Experimental Results
- Schedules

# Scenario

#### Why Real-time Auditing?



# Scenario (CON'T)

**Problems** 



# Scenario (CON'T)

**Problems** 





- Scenario
- Real-time Auditing Schemes
  - Intuitive Method
  - Instant Auditing of Cloud Storage Access by Cache Partial Merkle tree
  - My Method
- Protocol Detail
  - Flowchart
  - Initial
  - Read
  - Write
  - Audit
- 4 Experimental Results
- Schedules

# Intuitive Method



#### Instant Auditing of Cloud Storage Access by Cache Partial Merkle tree

2014 IEEE 6th International Conference on Cloud Computing Technology and Science



Worst-case:累積大量未更新的動作造成系統緩慢,⟨♂⟩ ⟨፮⟩ ⟨፮⟩ ፮ ᠀٩०

# My Method



Assumption: 同時有k個server上同一file出問題的機率 ≈ 0 = → へ = → へ へ

# Comparison

- Pros
  - Service Provider 不用累積證據
  - ② Client 不用佔用空間儲存證據
  - ③ 資料有多份備份
  - 4 花費較少的時間更新到最新的狀態
- Cons
  - 🕕 硬體成本較高
  - ② 需要處理多份 Response

- Scenario
- Real-time Auditing Schemes
  - Intuitive Method
  - Instant Auditing of Cloud Storage Access by Cache Partial Merkle tree
  - My Method
- Protocol Detail
  - Flowchart
  - Initial
  - Read
  - Write
  - Audit
- 4 Experimental Results
- Schedules

# **Flowchart**



#### File → Merkle Tree



#### **READ**

#### I. 2-step Handshake & Voting



$$\begin{split} & \text{REQ} = (\text{op}, [\text{op}]_{\text{pri(D)}}) \\ & \text{ACK} = (\text{result}, \ \text{REQ}, [\text{result}, \ \text{REQ}]_{\text{pri(S)}}) \end{split}$$



$$\begin{split} & \mathsf{REQ} = (\mathsf{op}, [\mathsf{op}]_{\mathsf{pri}(\mathsf{D})}) \\ & \mathsf{ACK} = (\mathsf{result}, \, \mathsf{REQ}, [\mathsf{result}, \, \mathsf{REQ}]_{\mathsf{pri}(\mathsf{S})}) \end{split}$$

#### **WRITE**

#### I. Upload



 $\mathsf{REQ} = (\mathsf{op}, [\mathsf{op}]_{\mathsf{pri}(\mathsf{D})})$ 

# **WRITE**

#### II. Update Merkle Tree



# WRITE

III. Voting



 $ACK = (result, REQ, [result, REQ]_{pri(S)})$ 

#### **AUDIT**

- ① Device 向 Synchronization Server 取得 Latest Ack.
- ② Device 再向 Service Provider 取得 前一版本的 Merkle Tree.
- 使用 Step I. 的 Ack 包含的檔案 Hash 值來更新 Step II. 的 Merkle Tree.



Prev. Merkle Tree

Latest Merkle Tree

● 比較 Device 自己算出的 Roothash 值是否和 Server 提供的相同.

- Scenario
- Real-time Auditing Schemes
  - Intuitive Method
  - Instant Auditing of Cloud Storage Access by Cache Partial Merkle tree
  - My Method
- Protocol Detail
  - Flowchart
  - Initial
  - Read
  - Write
  - Audit
- 4 Experimental Results
- Schedules

#### Create Merkle Tree

Account A 666 MB 42 files 6 directories

Table: THE EXECUTION TIME OF FOLLOWING OPERATIONS (IN MS)

| Operations                 | Senior | Му   |
|----------------------------|--------|------|
| Request 100 times DOWNLOAD | 6332   | 6609 |
| Request 100 times UPLOAD   | 4271   | 3054 |
| Audit after Download       | 48     | 12   |
| Audit after Upload         | 46     | 5    |

Test File: 1644 byte

- Scenario
- Real-time Auditing Schemes
  - Intuitive Method
  - Instant Auditing of Cloud Storage Access by Cache Partial Merkle tree
  - My Method
- Protocol Detail
  - Flowchart
  - Initial
  - Read
  - Write
  - Audit
- 4 Experimental Results
- Schedules

#### Schedules

- My Method Finished.
  - Merkle Tree Implements.
  - Operation Handle (Read, Write and Audit).
  - File Transmit.
  - Object Transmit (Serialization).
  - Synchronization Server Implements.
- Wei-Shian's Method Finished.
  - Attestation Chain Implements.
- Network Problems.
- O VM Problems.
- Design Different Experiments.

# Thank You