In how many ways can m balls be distributed into n boxes?

Boxes distinguishable?	Balls distinguishable?	Minimum number of balls allowed in a box	Maximum number of balls allowed in a box	Number of distributions
✓	√	0	∞	n^m
1	√	0	1	$\frac{n!}{(n-m)!}$
1	V	1	∞	n!S(m,n)
✓	×	0	∞	$\binom{n+m-1}{m}$
1	Х	0	1	$\binom{n}{m}$
1	×	1	∞	$\binom{m-1}{m-n}$
×	✓	0	∞	$\sum_{i=1}^{n} S(m,i)$
х	√	1	∞	S(m,n)
х	Х	0	∞	$\sum_{i=1}^{n} p(m,i)$
х	Х	1	∞	p(m,n)

Stirling number of the second kind:

$$S(m,n) = \frac{1}{n!} \sum_{i=0}^{n} (-1)^{i} \binom{n}{i} (n-i)^{m}$$

is the number of ways of partitioning a set with m elements into n nonempty sets.

Catalan number:

$$b_n = \binom{2n}{n} - \binom{2n}{n-1} = \frac{1}{n+1} \binom{2n}{n} = \frac{(2n)!}{n!(n+1)!}$$

is the number of length 2n binary strings in any initial segment of which the number of 0's never exceeds the number of 1's.

Derangement number:

$$d_n = n! \sum_{i=0}^n \frac{(-1)^i}{i!} = n! \sum_{i=2}^n \frac{(-1)^i}{i!}$$

is the number of permutations of n objects that leave no object in its original place.

<u>Inclusion-Exclusion Formulas:</u>

$$E_m = \sum_{i=0}^{n-m} (-i)^i \binom{m+i}{i} S_{m+i}$$

is the number of elements that lie in exactly m of the sets A_1, A_2, \ldots, A_n ;

$$L_{m} = \sum_{i=0}^{n-m} (-i)^{i} \binom{m-1+i}{i} S_{m+i}$$

is the number of elements that lie in at least m of the sets A_1, A_2, \ldots, A_n where $S_k = \sum_{1 \le i_1 < i_2 < \cdots < i_k \le n} |A_{i_1} \cap A_{i_2} \cap \cdots \cap A_{i_k}|$.