ESTADISTICA ESPACIAL

REGRESIÓN ESPACIAL

De vuelta...

- "Todos los lugares están relacionados pero los lugares más cercanos están más relacionados que los lugares lejanos"
- Los fenómenos sociales y físicos están frecuentemente agrupados en el espacio:

ej. Patrones de votación regional, segregación racial, cinturón de pobreza, cáncer de pulmón, valor de la vivienda, delincuencia, incendios forestales, hábitats de animales, especies de plantas, química del suelo

Análisis Espacial

Frecuentemente estas relaciones espaciales son ignoradas

Debilidad de nuestra habilidad para generar inferencias significativas sobre los procesos que estudiamos

 Los modelos de regresión espacial incluyen relaciones entre variables y sus valores de vecindad

Incluye como variables explicativas el valor del error, valores X o Y en regiones cercanas

Nos permite examinar el impacto que una observación tiene sobre observaciones próximas

¿Por qué preocuparse por las similitudes espaciales? (1)

- Nos dice algo más sobre lo que estamos estudiando
 - ✓ Hay un proceso que no se puede medir que afecta la salida sobre lo que estamos interesados?
 - ✓ Este proceso se manifiesta en el espacio?
 - ✓ Ej: procesos de interacción, difusión, legado étnico o histórico, efectos programáticos

¿Por qué preocuparse por las similitudes espaciales? (2)

- Violación de los supuestos de regresión
 - ✓ Los residuales no están correlacionados con cada uno
 - ✓ La varianza no es constante
- Si ignoramos las relaciones espaciales en nuestros datos:
 - ✓ Nuestros coeficientes de regresión estimados están sesgados/inconsistentes
 - ✓ El estadístico R2 es exagerado
 - ✓ Haremos hecho inferencias incorrectas
 - ✓ Nunca será publicado (no debería ser)
- Si los efectos espaciales están presentes y no se tienen en cuenta, el modelo no es exacto!!!

Si la autocorrelación espacial ocurre

- Puede haber Xs no medidas las cuales causan el fallo de independencia
 - ✓ Error no especificado
- Puede haber un proceso de "contagio" en el trabajo (Ys en una sola ubicación puede afectar las Ys en ubicaciones adyacentes)
- Los valores de Y pueden depender del valor de X en el mismo sitio así como en sitios cercanos
- Los errores estimados pueden estar correlacionados espacialmente entre unidades

Cómo tratar el componente espacial?

- Como un efecto sustantivo de interés
 - ✓ Incorporardentro de un modelo/explorar
 - ✓ Ej. Retardo espacial, regímenes espaciales
- Como un efecto de ruido debido a errores de especificación
 - ✓ Eliminar/Controlar
 - ✓ Ej. Error espacial

Pregunta

- "Un error entre la unidad espacial de observación y la extensión espacial de un fenómeno bajo consideración resultará en errores de medida espacial y autocorrelación espacial entre estos errores y ubicaciones contiguas?" Anselin & Bera, 1998
- ¿Por qué?

El Modelo de error espacial

- Examina la autocorrelación espacial entre los residuales de áreas adyacentes
- Trata la correlación espacial principalmente como un ruido
 - ✓ No tiene en cuenta la idea que la correlación espacial puede reflejar algún proceso significativo
- Errores espaciales positivos pueden reflejar un modelo no especificado (particularmente una variable omitida que es espacialmente agrupable)
- Si ignoramos los errores espaciales en los residuales:
 - ✓ Coeficientes imparciales
 - ✓ Los errores estándar están equivocados (p-valor equivocado)

Autocorrelación espacial en residuales Modelo de error espacial

• Incorpora efectos espaciales a través del error

$$y = x\beta + \varepsilon$$
$$\varepsilon = \lambda W \varepsilon + \xi$$

Donde:

- ε Es el vector de términos de error, ponderados espacialmente por la matriz de pesos
- λ es el coeficiente de error espacial
- ξ es el vector de errores no correlacionados
- Si no hay correlación espacial entre los errores, entonces $\lambda = 0$

Modelo de retardo espacial

- Incorpora dependencia espacial adicionando un "rezago espacial" DV
 (y) en la parte derecha de la ecuación de regresión
 - ✓ Otros modelos más complejos tampien incluyen rezafos expaciales IV (x)
- Tratar la correlación espacial como procesos o efectos de interés
 - ✓ Los valores de Y en un área están directamente influenciados por los valores de Y que se encuentran en las áreas vecinas.
 - ✓ Depende en cómo se defina el vecindario

Modelo de retardo espacial

- Un retardo espacial positivo provee evidencia que las Ys en áreas adyacentes covarían
- Si ignoramos la influencia del retardo espacial:
 - ✓ Coeficientes estarán sesgados
 - Si hay un efecto positivo de la vecindad en Ys, usualmente los coeficientes estarán sesgados hacia arriba
 - Los errores estándar serán equivocados (P-valor equivocado)

Autocorrelación Espacial en DV Modelo de retardo espacial

• Incorpora efectos espaciales mediante la incorporación de una variable dependiente retardada espacialmente como un predictor adicional

$$y = \rho Wy + x\beta + \varepsilon$$

• Donde,

Wy es el DV espacialmente retrasado para los pesos de la matriz W x es una matriz de observaciones de las variables explicativas

ε es un vector de errores

ρ Es el coeficiente espacial t

Si no hay dependencia espacial, y Y no depende de valores Y en la vecindad, ρ =0

Cómo calcular el retardo espacial?

• Y es el promedio de todos los vecinos

W =	0	1	0	0	0
	.25	0	.25	.25	.2 5
	0	.5	0	.5	0
	0		.33		3
	0	.5	0	.5	0

Area	y	Wy
1	5	(1*7)=7
2	7	(.25*5)+(.25*9)+(.25*12)+(.25*11)=9.25
3	9	(.5*7)+(.5*12)=9.5
4	12	(.33*7)+(.33*9)+(.33*11)=8.91
5	11	(.5*7)+(.5*12)=9.5

¿Qué tipo de modelo SR usar?

- Si los residuales están espacialmente correlacionados (Moran's I), entonces usar el diagnóstico Multiplicador Lagrange para determinar el modelo apropiado
 - Residuales de la regresión (LM-Error)
 - No correspondencia del proceso y unidades espaciales errores sistemáticos, correlacionados a través de unidades espaciales
 - Variable dependiente (LM-Retardo)
 - El proceso ha dado lugar a la distribución de variables agrupadas influencia de los valores vecinos en los valores unitarios
 - Autocorrelación espacial en ambos

Regresión Espacial en R Ejemplo: Precios de vivienda en Boston

CRIM	per capita crime rate by town
ZN	proportion of residential land zoned for lots over 25,000 ft ²
INDUS	proportion of non-retail business acres per town
CHAS	Charles River dummy variable (=1 if tract bounds river; 0 otherwise)
NOX	Nitrogen oxide concentration (parts per 10 million)
RM	average number of rooms per dwelling
AGE	proportion of owner-occupied units built prior to 1940
DIS	weighted distances to five Boston employment centres
RAD	index of accessibility to radial highways
TAX	full-value property-tax rate per \$10,000
PTRATIO	pupil-teacher ratio by town
В	1000(Bk - 0.63) ² where Bk is the proportion of blacks by town
LSTAT	% lower status of the population
MEDV	Median value of owner-occupied homes in \$1000's

Regresión Espacial en R

- Cargar Boston.shp
- Definir vecindad (k más cercano w/datos punto)
- Crear matriz de pesos
- Test de Moran de DV, gráfica de Moran
- Correr regresión OLS
- Verificar residuales de dependencia espacial
- Determinar cual modelo de RE utilizar
- Correr modelo de regresión espacial

Moran I en el DV

0.3273430100

```
•moran.test(boston$LOGMEDV, listw= bost_kdl_w)

•Moran's I test under randomisation data: boston$LOGMEDV

• weights: bost_kdl_w

• Moran I statistic standard deviate = 24.5658, p-value < 2.2e-16

• alternative hypothesis: greater sample estimates:

Moran I statistic Expectation Variance</pre>
```

0.0001797138

-0.0019801980

Moran para el DV

> moran.plot(boston\$LOGMEDV, bost_kd1_w,
labels=as.character(boston\$ID))

Regresión OLS

```
bostlm<-lm(LOGMEDV~RM + LSTAT + CRIM + ZN + CHAS + DIS,
data=boston)
Residuals:
   Min 10 Median 30 Max
-0.71552 -0.11248 -0.02159 0.10678 0.93024
Coefficients:
        Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.8718878 0.1316376 21.817 < 2e-16 ***
           0.1153095 0.0172813 6.672 6.70e-11 ***
RM
           -0.0345160 0.0019665 -17.552 < 2e-16 ***
LSTAT
           -0.0115726 0.0012476 -9.276 < 2e-16 ***
CRIM
          0.0019330 0.0005512 3.507 0.000494 ***
          0.1342672 0.0370521 3.624 0.000320 ***
CHAS
           -0.0302262 0.0066230 -4.564 6.33e-06 ***
DIS
Residual standard error: 0.2081 on 499 degrees of freedom
                         Adjusted R-squared: 0.7402
Multiple R-squared: 0.7433,
F-statistic: 240.8 on 6 and 499 DF, p-value: < 2.2e-16
```

Verificar residuales para la Autocorrelación espacial

0.0001666168

```
> boston$lmresid<-residuals(bostlm)
> lm.morantest(bostlm,bost_kd1_w)

Global Moran's I for regression residuals
Moran I statistic standard deviate = 5.8542, p-value = 2.396e-09
alternative hypothesis: greater
Sample estimates

Observed Moran's I Expectation Variance
```

-0.0054856590

0.0700808323

Determinar el tipo de dependencia

```
> lm.LMtests(bostlm, bost_kd1_w, test="all")

Lagrange multiplier diagnostics for spatial dependence

LMerr = 26.1243, df = 1, p-value = 3.201e-07

LMlag = 46.7233, df = 1, p-value = 8.175e-12

RLMerr = 5.0497, df = 1, p-value = 0.02463

RLMlag = 25.6486, df = 1, p-value = 4.096e-07

SARMA = 51.773, df = 2, p-value = 5.723e-12
```

- Tests robustos usados para encontrar una alternativa apropiada
- Solo use tests robustos cuando **AMBOS** LMErr y LMLag son significativos

Un diagnóstico adicional

```
> library(lmtest)

> bptest(bostlm)

    studentized Breusch-Pagan test

data: bostlm

BP = 70.9173, df = 6, p-value = 2.651e-13
```

• Indica que los errores son HETEROSCEDÁSTICOS: no es de extrañar, puesto que tenemos dependencia espacial

Correr un modelo de retardo espacial

```
> bostlag<-lagsarlm(LOGMEDV~RM + LSTAT + CRIM + ZN + CHAS +
   DIS, data=boston, bost kd1 w)
Type: lag
Coefficients: (asymptotic standard errors)
                       Std. Error z value Pr(>|z|)
          Estimate
(Intercept) 1.94228260 0.19267675 10.0805 < 2.2e-16
                       0.01655116 6.1375 8.382e-10
         0.10158292
        -0.03227679
                       0.00192717 -16.7483 < 2.2e-16
                       0.00120283 -8.5891 < 2.2e-16
CRIM
        -0.01033127
         0.00166558
                       0.00052968 3.1445 0.001664
CHAS
         0.07238573
                       0.03608725 2.0059 0.044872
        -0.04285133
                       0.00655158 -6.5406 6.127e-11
DIS
```

```
Rho: 0.34416, LR test value:37.426, p-value:9.4936e-10 Asymptotic
standard error: 0.051967
    z-value: 6.6226, p-value: 3.5291e-11 Wald statistic:
43.859, p-value: 3.5291e-11

Log likelihood: 98.51632 for lag model
ML residual variance (sigma squared): 0.03944, (sigma: 0.1986) AIC: -179.03, (AIC for lm: -143.61)
```

Unos diagnósticos más

Test LM de Autocorrelación residual

- La prueba LM sugiere que no hay más correlación espacial en los datos
- La prueba BP indica que permanece la heteroscedasticidad en los residuales, probablemente debido a malas especificaciones

Correr un modelo de error espacial

```
> bosterr<-errorsarlm(LOGMEDV~RM + LSTAT + CRIM + ZN + CHAS +
  DIS, data=boston, listw=bost kd1 w)
Type: error
Coefficients: (asymptotic standard errors)
          Estimate
                        Std. Error z value Pr(>|z|)
(Intercept) 2.96330332
                        0.13381870 22.1442 < 2.2e-16
         0.09816980
                        0.01700824 5.7719 7.838e-09
                        0.00194289 -17.5674 < 2.2e-16
LSTAT
        -0.03413153
        -0.01055839
                        0.00125282 -8.4277 < 2.2e-16
CRIM
                        0.00062018 3.2359 0.001212
         0.00200686
                        0.03766168 1.7333 0.083049
CHAS
         0.06527760
```

0.01064794 -2.6114 0.009017

```
Lambda: 0.59085, LR test value: 24.766, p-value:
6.4731e-07 Asymptotic standard error: 0.086787
z-value: 6.8081, p-value: 9.8916e-12 Wald
statistic: 46.35, p-value: 9.8918e-12

Log likelihood: 92.18617 for error model
ML residual variance (sigma squared): 0.03989, (sigma:
```

0.19972) AIC: -166.37, (AIC for lm: -143.61)

-0.02780598

Por qué no usar R²

- R² no es una medida confiable del ajuste del modelo para la regresión espacial
- R² es calculado basado en la relación entre la variación explicada y no explicada (residual)
 - Requiere que los residuales sean independientes uno de otro
- La razón para usar la regresión espacial es que encontremos Autocorrelación espacial en los residuales
 - Ej. Variaciones explicadas y no explicadas no son independientes en este escenario