Учреждение образования Гомельский государственный технический университет имени П.О. Сухого

Кафедра «Маркетинг и отраслевая экономика»

Лабораторная работа № 1 «Применение однофакторного и многофакторного регрессионного анализа (линейная и нелинейная модели) в задачах принятия решений» по дисциплине: "Эконометрика и экономико-математические методы и модели"

Дата сдачи отчета 01.03.2021 Выполнил студент группы МГ-21 Мельников О.В.

Допуск к защите Принял к.э.н., доцент Винник О.Г.

Цель работы: моделирование задач с произвольным количеством независимых факторов, определяющих экономическую ситуацию. Для моделирования используется метод регрессионного анализа с использованием инструментов Exce1.

Теоретическая часть:

Существует множество задач, в которых каждое значение у определяется целым набором независимых факторов х1, х2, ..., хп, значения которых определяются не только временными интервалами. В этих случаях при моделировании неизвестных оценок У определяемого фактора у уже требуется учитывать взаимосвязи фактических данных. Они определяются на основе взятых из наблюдений данных, которые задаются следующей матрицей (1):

y_1	x_{II}	x_{12}	 x_{In}
y_2	x_{21}	x_{22}	 x_{2n}
y_m	x_{m1}	x_{m2}	 x_{nn}

В таких задачах используют метод регрессионного анализа. Регрессия – статистический метод, позволяющий найти уравнение, которое наилучшим образом описывает множество данных. Уравнение регрессии $y=f(x_1,x_2,...,x_n)$ выбирают исходя характера взаимосвязей (2) ИЗ (наблюдаемого в опыте или графиках). Параметры на (коэффициенты, свободный член) находят по методу наименьших квадратов, находя сумму квадратов отклонений L фактических значений уі от найденных Уі по уравнению регрессии (2) при значениях факторов хік, взятых из матрицы (1):

$$L = \sum_{i=1}^{m} \left[V_i - Y C_{i1}, x_{i2}, ... x_{in} \right]^2$$

и затем минимизируя ее. Регрессионный анализ позволяет исследовать линейные и нелинейные взаимосвязи между задаваемыми факторами х1, х2, ..., хп и определяемым фактором у. Этот метод применяют как для прогнозирования, так и для оценки значений у при варьировании факторов х1, х2, ..., хп внутри интервалов их допустимых значений, например, для принятия решений по вопросам финансирования операций, проведения маркетинговых исследований и т. п.

Exce1 предоставляет следующие возможности для анализа:

- инструменты Пакета анализа (Регрессия и др.);
- функции ЛИНЕЙН, ТЕНДЕНЦИЯ, ЛГРФПРИБЛ для построения уравнений регрессии;
- функции FPACП, СТЬЮДРАСП для оценки достоверности уравнения регрессии и его коэффициентов;
- диаграммы и линии тренда для графической иллюстрации взаимосвязей.

Однофакторный линейный регрессионный анализ

Регрессия называется однофакторной (или парной), если она описывает зависимость между функцией и одной переменной. При однофакторном анализе в матрице (1) остаются только первый и второй столбцы данных, а уравнение регрессии (2) выглядит как Y=f(x1) или просто Y=f(x). Оно может быть как линейным Y=a*x+B, так и нелинейным.

Для получения уравнения регрессии необходимо:

- определить значения коэффициентов в уравнении;
- оценить достоверность полученного уравнения.

Задания к практической части:

Задание 1. По предлагаемым ниже данным о размерах спроса на бытовую технику за предыдущие периоды, проанализируйте возможность описания взаимосвязи данных линейной регрессией, проиллюстрировав зависимость размера спроса от уровня цены на диаграмме. Исходные данные по вариантам приведены в таблице 1.

Задание 2. Используя данные задания 1, выполните линейный регрессионный анализ с использованием Пакета анализа Exce1.

Задание 3. По данным задания 1 создайте линейную регрессию с использованием функции ЛИНЕЙН

Выполнение:

Выполнение задания 1:

1. Занёс данные в рабочий лист Excel в соответствии с вариантом, определяемом номером в журнале

Уровень цены	Размер спроса
8	5352
14	3970
24	2960
39	2000
47	1769
50	1741
64	1410
67	1400
72	526
80	13

Рисунок 1 – исходные данные

2. Проиллюстрировал данные на диаграмме, выделив весь диапазон исходных данных. и поместил на диаграмму величину достоверности аппроксимации (R^2).

Рисунок 2 – иллюстрация данных на диаграмме

Выполнение задания 2:

- 1. Загрузил команду Анализ данных в меню СЕРВИС
- 2. Выбрал команду СЕРВИС->АНАЛИЗ ДАННЫХ и инструмент Регрессия. В поле Входной интервал У ввёл ряд данных, характеризующих размер спроса на бытовую технику. В поле Входной интервал ввёл данные об уровне цены. В поле Выходной интервал ввёл адрес ячейки, начиная с которой хотел поместить результаты анализа.

Коэффициенты уравнения регрессии приведены в третьем разделе Вывода итогов. Здесь: • свободный коэффициент b — это У-пересечение; • коэффициент а — это Переменная X1; • R 2 — это R-квадрат.

3. Сравнил полученное уравнение регрессии с тем, которое было выдано на линии тренда в задании 1. Они совпали.

Регрессия						
Регрессионн	Линейная					
Необработан	ный вывод ДИ	ІНЕЙН				
	4951,536214					
6,606506419	344,7748285					
0,914264758	494,937133					
85,31051943	8					
20897900,78	1959702,125					
Статистика р	егрессии					
R^2	0,914264758					
Среднеквади	494,937133					
Число перем						
Наблюдения	10					
Скорректиро	0,903547852					
Дисперсионн	ый анализ (ДЛ	JOVA)				
	df	SS	MS	Ę	Значимость Р	
Регрессия	1	20897900,78	20897900,78	85,31051943	1,53095E-05	
Остатки	8	1959702,125	244962,7656			
Итог	9	22857602,9				
Уровень дов	0,95					
				Р-значение		
Пересечение	4951,536214	344,7748285	14,36165232	5,39596E-07	4156,484034	5746,588394
X1	-61,02013363	6,606506419	-9,236369386	1,53095E-05	-76,25476475	-45,78550251

Рисунок 3 - линейный регрессионный анализ с использованием Пакета анализа Libreoffice.

Выполнение задания 3:

1. Выделил блок свободных ячеек из 5 строк и 2 столбцов (для вывода результатов) и ввёл символ "=". Затем с помощью Мастера функций внёс формулу массива =ЛИНЕЙН . После появления диалогового окна скопировал диапазон данных о размере спроса на бытовую технику в «Изв_знач_у», а диапазон данных об уровне цен в «Изв_знач_х». В окна «Константа» и «Стат» ввёл слово «истина».

Для получения результата одновременно нажал Ctrl, Shift, Enter. В первой строке массива результатов выданы коэффициенты уравнения регрессии.

Таким образом, в уравнении регрессии У=в+а*х коэффициент b должен быть взят из первой ячейки второго столбца, а коэффициент а — из первой ячейки первого столбца.

В остальных ячейках содержатся данные для оценки достоверности

уравнения.

		X1	Прогнозное 🤰	Υ	Остатки
		8	4463,375145	5352	888,6248552
		14	4097,254343	3970	-127,254343
		24	3487,053007	2960	-527,0530067
		39	2571,751002	2000	-571,7510022
		47	2083,589933	1769	-314,5899332
		50	1900,529532	1741	-159,5295323
		64	1046,247661	1410	363,7523385
		67	863,1872606	1400	536,8127394
		72	558,0865924	526	-32,08659243
		80	69,92552339	13	-56,92552339
-61,0201336303	4951,5362138085				
6,60650641852	344,77482846373				
0,91426475762	494,93713299011				
85,3105194287	8				
20897900,7751	1959702,1248998				

Рисунок 4 — Создание линейной регрессионной функции через функцию ЛИНЕЙН

Так же мной были выполнены аналогичные действия, но с учётом изменённых данных:

Уровень цены	Размер спроса
1	4321
3	3241
6	3000
12	2000
23	1000
32	500
41	400
51	300
61	200
65	13

-57,31678846	3188,34526
9,720002047	363,3123012
0,81296221	705,5208431
34,77210512	8
17308151,22	3982077,28

Рисунок 5 — Результаты первого изменения исходных данных, отражённых в результатах

Уровень цены	Размер спроса
4	4321
7	3241
15	3000
25	2000
44	1000
78	500
109	400
187	300
211	200
278	13

-12,48193759	2693,269622
3,396685324	452,6521301
0,627971325	995,0235866
13,50371875	8
13369653	7920575,503

Рисунок 6— Результаты второго изменения исходных данных, отражённых в результатах

Уровень цены	Размер спроса
4	9876
7	8976
15	7685
25	6785
44	5864
78	4675
109	3543
187	2435
211	1112
278	17

-32,53496415	8213,649566
3,529270403	470,3208019
0,913962539	1033,863004
84,98275324	8
90835745,91	8550981,694

Рисунок 7 – Результаты третьего изменения исходных данных, отражённых в результатах

Таким образом, мной было освоено моделирование задач с одним независимым фактором, определяющим экономическую ситуацию. Для моделирования использовался метод регрессионного анализа с использованием инструментов Libreoffice.