EXERCISE - III

SUBJECTIVE QUESTIONS

1. What are the most general values of $\boldsymbol{\theta}$ which satisfy the equations,

(a)
$$\sin \theta = \frac{1}{\sqrt{2}}$$

(b) tan
$$(x - 1) = \sqrt{3}$$

(c)
$$tan\theta = -1$$

(d) cosec
$$\theta = \frac{2}{\sqrt{3}}$$

(e)
$$2\cot^2\theta = \csc^2\theta$$

2. Solve :
$$\sin 9\theta = \sin \theta$$

3. Solve :
$$\cot \theta + \tan \theta = 2 \csc \theta$$

4. Solve :
$$\sin 2\theta = \cos 3\theta$$

5. Solve :
$$\cot \theta = \tan 8\theta$$

6. Solve :
$$\tan^2 \theta - (1 + \sqrt{3}) \tan \theta + \sqrt{3} = 0$$

7. Find all the angles between 0° and 90° which satisfy the equation $\sec^2\theta$. $\csc^2\theta + 2$ $\csc^2\theta = 8$

8. Solve :
$$4 \cos \theta - 3 \sec \theta = 2 \tan \theta$$

9. Solve :
$$\cot \theta - \tan \theta = 2$$

10. Solve :
$$\sin \theta + \sin 3\theta + \sin 5\theta = 0$$

11. Solve :
$$\cos \theta + \sin \theta = \cos 2 \theta + \sin 2 \theta$$
.

12. Find all values of θ between 0° & 180° satisfying the equation; $\cos 6\theta + \cos 4\theta + \cos 2\theta + 1 = 0$.

13. Solve :
$$\cos^2 x + \cos^2 2x + \cos^2 3x = 1$$
.

14. Solve :
$$\sin^2 n\theta - \sin^2 (n-1)\theta = \sin^2 \theta$$
, where n is constant and $n \neq 0$, 1

15. Solve :
$$\sqrt{3} \sin \theta - \cos \theta = \sqrt{2}$$
.

16. Solve : cosec $\theta = \cot \theta + \sqrt{3}$.

17. Solve :
$$5 \sin \theta + 2 \cos \theta = 5$$

18. Solve :
$$tan 2\theta tan \theta = 1$$

19. Solve :
$$\tan \theta + \tan 2\theta + \sqrt{3} \tan \theta \tan 2\theta = \sqrt{3}$$

20. Solve :
$$\tan x \cdot \tan \left(x + \frac{\pi}{3} \right) \cdot \tan \left(x + \frac{2\pi}{3} \right) = \sqrt{3}$$
.

21. If
$$\tan \theta + \sin \phi = \frac{3}{2} \tan^2 \theta + \cos^2 \phi = \frac{7}{4}$$
 then find the general value of $\theta \& \phi$.

22. If α & β are two distinct roots of the equation, $a \tan \theta + b \sec \theta = c \text{ then prove that : } \tan (\alpha + \beta) = \frac{2ac}{a^2 - c^2} \, .$

23. If $\alpha \& \beta$ satisfy the equation, a $\cos 2\theta + b \sin 2\theta = c$ then prove that : $\cos^2 \alpha + \cos^2 \beta = \frac{a^2 + ac + b^2}{a^2 + b^2}$.

24. Solve the equation for

$$0 \le \theta \le 2\pi$$
; $(\sin 2\theta + \sqrt{3} \cos 2\theta)^2 - 5 = \cos \left(\frac{\pi}{6} - 2\theta\right)$.

25. Solve the equation : $1 + 2 \csc x = -\frac{\sec^2 \frac{x}{2}}{2}$

26. Solve the equation : $2 \sin x = 3 x^2 + 2 x + 3$.

27. Solve : $2 + 7 \tan^2 \theta = 3.25 \sec^2 \theta$ (0° < θ < 360°).

28. Solve the equation for x,

$$5^{\frac{1}{2}} + 5^{\frac{1}{2} + \log_5(\sin x)} = 15^{\frac{1}{2} + \log_{15}\cos x}$$

29. Find all the values of θ satisfying the equation; $\sin \theta + \sin 5 \theta = \sin 3 \theta$ such that $0 \le \theta \le \pi$.

- **30.** Solve the equality: $2 \sin 11 x + \cos 3x + \sqrt{3} \sin 3x = 0$
- **31.** Find all value of θ , between 0 & π , which satisfy the equation; $\cos \theta$. $\cos 2 \theta$. $\cos 3 \theta = 1/4$
- 32. Find the general solution of the equation,

$$2 + \tan x \cdot \cot \frac{x}{2} + \cot x \cdot \tan \frac{x}{2} = 0$$

- **33.** Solve for x, the equation $\sqrt{13-18\tan x}=6\tan x-3$, where $-2\pi < x < 2\pi$.
- **34.** Find the principal solution of the trigonometric equation

$$\sqrt{\cot 3x + \sin^2 x - \frac{1}{4}} + \sqrt{\sqrt{3}\cos x + \sin x - 2} = \sin \frac{3x}{2} - \frac{\sqrt{2}}{2}$$

- **35.** Determine the smallest positive value of x which satisfy the equation, $\sqrt{1+\sin 2x}-\sqrt{2}\cos 3x=0$.
- **36.** Given that A, B are positive acute angle, solve : $\sqrt{3} \sin 2 A = \sin 2B \& \sqrt{3} \sin^2 A + \sin^2 B = \frac{\sqrt{3} 1}{2}.$