| SRN             | Р       | Е       | S       |                                         |  |  |  |
|-----------------|---------|---------|---------|-----------------------------------------|--|--|--|
| 1904010 1005140 | 11.7.11 | F-17-51 | 1100000 | 110000000000000000000000000000000000000 |  |  |  |



## PES University, Bangalore (Established under Karnataka Act No. 16 of 2013)

**UE19CS205** 

END SEMESTER ASSESSMENT (ESA) - B.TECH III SEMESTER - December, 2020

## Automata Formal Languages & Logic Answer All Questions

Time: 3 Hrs

Max Marks: 100

| 1 | а | Answer the following:                                                                                                                                                                        |               |  |  |  |  |  |
|---|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|--|--|--|--|
|   |   | a) Construct a minimal DFA(DFA with minimum states) to accept binary strin                                                                                                                   | gs (5+3)      |  |  |  |  |  |
|   |   | that contain at most one occurrence of the string "00".                                                                                                                                      |               |  |  |  |  |  |
|   |   | b) Describe the language (i.e., set of all strings) accepted by the follow                                                                                                                   | wing          |  |  |  |  |  |
|   |   | automaton:                                                                                                                                                                                   |               |  |  |  |  |  |
|   |   | State Input = $a$ Input = $b$                                                                                                                                                                |               |  |  |  |  |  |
|   |   | $ ightarrow q_0$ $q_2$ $q_1$                                                                                                                                                                 |               |  |  |  |  |  |
|   |   | $q_1 \hspace{0.1cm} q_1 \hspace{0.1cm} q_1$                                                                                                                                                  |               |  |  |  |  |  |
|   |   | $q_2$ $q_3$ $q_2$                                                                                                                                                                            |               |  |  |  |  |  |
|   |   | $*q_3$ $q_3$ $q_2$                                                                                                                                                                           | -             |  |  |  |  |  |
|   |   |                                                                                                                                                                                              |               |  |  |  |  |  |
|   | b | Construct an NFA/ $\lambda$ -NFA that accepts the language over the alphabet {a, b} where words contain either "baa" as substring or where any 'a' is immediately followed at least two b's. | by 6          |  |  |  |  |  |
|   | С |                                                                                                                                                                                              | 6             |  |  |  |  |  |
|   |   | a a                                                                                                                                                                                          | [3+3]         |  |  |  |  |  |
|   |   | $\frac{\lambda}{q0}$ $\frac{\lambda}{q1}$                                                                                                                                                    | [2.5]         |  |  |  |  |  |
|   |   | d<br>d<br>d<br>d                                                                                                                                                                             |               |  |  |  |  |  |
|   |   | 1) What is the lambda closure of q0, q1 and q2. [3 marks]                                                                                                                                    |               |  |  |  |  |  |
|   |   | 2) Convert the NFA to DFA using Subset Construction and provide a Transition                                                                                                                 | 1 1           |  |  |  |  |  |
|   |   | diagram of converted DFA, clearly mention the start and the final state(s).                                                                                                                  | 1 1           |  |  |  |  |  |
|   |   | [3 marks]                                                                                                                                                                                    |               |  |  |  |  |  |
| 2 | а | Construct a regular expression for the regular language of strings over $\{a, b\}$ in who some number of $a$ 's is followed by some number of $b$ 's with the total length of                | hich 4<br>the |  |  |  |  |  |
|   |   | string being divisible by 3.                                                                                                                                                                 |               |  |  |  |  |  |

| SRN | P | Е | S |  |  |  |  |  |  |
|-----|---|---|---|--|--|--|--|--|--|
|-----|---|---|---|--|--|--|--|--|--|

1 ×

| _ |   |                                                                                                                           |       |
|---|---|---------------------------------------------------------------------------------------------------------------------------|-------|
|   | b |                                                                                                                           | 4     |
|   |   | a) What is the reversal of the given language L defined by regular expression                                             | (2+2) |
|   |   | 01*+10*                                                                                                                   |       |
|   |   | b) True or False: Regular expressions that do not contain the star operator can                                           |       |
|   |   | represent only finite languages.                                                                                          |       |
|   | С | Consider the following language over $\Sigma = \{ 0, E \}$ :                                                              | 6     |
|   |   | PARITY = $\{ w \mid w \text{ has even length and has the form } E^n \text{ or } w \text{ has odd length and has the } \}$ | (3+3) |
|   |   | form O <sup>n</sup> }                                                                                                     |       |
|   |   | For example, EE $\in$ PARITY, 00000 $\in$ PARITY, EEEE $\in$ PARITY, and $\varepsilon \in$ PARITY,                        |       |
|   |   | but                                                                                                                       |       |
|   |   | EEE ∉ PARITY, EO ∉ PARITY, and OOOO ∉ PARITY.                                                                             |       |
|   |   | Write a <b>regular expression</b> and <b>regular grammar</b> for PARITY.                                                  |       |
|   | d | Convert the finite automata to regular expression using state elimination method:                                         | 6     |
|   |   | Eliminate the states in the order : q1, q0                                                                                |       |
|   | - | C                                                                                                                         |       |
|   |   |                                                                                                                           |       |
|   |   |                                                                                                                           |       |
|   |   | ( q1 )                                                                                                                    |       |
|   | - | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                                                                     |       |
|   |   | 9/                                                                                                                        |       |
|   |   |                                                                                                                           |       |
|   |   |                                                                                                                           |       |
|   |   | $q_0$                                                                                                                     |       |
|   |   |                                                                                                                           |       |
|   | a | Construct a PDA for the language $L = \{a^nb^m \text{ where } m = n * 3 \text{ and } m,n >= 1\}$ . Make sure              | 5     |
|   |   | that the PDA is <b>deterministic</b> .                                                                                    |       |
|   | , |                                                                                                                           |       |
|   | b | Show that the grammar G with productions                                                                                  | 5     |
|   |   | $S \rightarrow a \mid aAb \mid abSb$                                                                                      |       |
|   |   | A → aAAb   bS is ambiguous.                                                                                               |       |
|   | - | Consider a language called ADD, which consists of all strings describing unary                                            | 10    |
|   | С | encodings of two sums that equal one another. For example:                                                                | 10    |
| ı |   | 1 + 3 = 4 would be encoded as 1+111=1111                                                                                  |       |
|   |   | 4 = 1 + 3 would be encoded as 1111=1111                                                                                   |       |
|   |   | 2 + 2 = 1 + 3 would be encoded as $1111 = 1 + 111$                                                                        |       |
|   |   | 2+0+2+0=0+4+0 would be encoded as 11+11+111+                                                                              |       |
| 1 |   | 0=0 would be encoded as =                                                                                                 |       |
| I |   | Notice that there can be any number of summands on each side of the =, but there                                          |       |
| ı |   | should be exactly one = in the string; thus 1=1=1 \iff ADD.                                                               |       |
|   |   | Answer the following:                                                                                                     |       |
|   |   | I. Write a CFG that generates ADD. [5 marks]                                                                              |       |
| 1 |   | II. Show a parse tree for 1+1=11+ and +=+. [5 marks]                                                                      |       |
|   | _ | Prove using pumping lemma that the language L={ $a^nb^mc^m$ , where $n \neq m$ }, is not a                                | -     |
| + | a | 110VC using pullipling lending that the language Let in it where it 2 mt is not a                                         | >< 1  |
| + | a | context-free language. [Note: list all the cases]                                                                         | 8     |

| _ |   | 100                                                |                                                                                                                                                                                                                                                                                | <del></del>                                                                                                                                  | j.                    |         |  |  |  |  |
|---|---|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------|--|--|--|--|
|   | b | Typ<br>Typ<br>Typ<br>Fill t                        | h of the languages below in the table e DEC It is Turing-decidable. e TMR It is Turing-recognizable, be NTR It is not Turing-recognizable the column "TYPE" with an appropri C or TMR or NTR).                                                                                 | ut not decidable.                                                                                                                            |                       | 4       |  |  |  |  |
|   |   | #                                                  | Langu                                                                                                                                                                                                                                                                          | age                                                                                                                                          | Туре                  |         |  |  |  |  |
|   |   | 1                                                  | $EQ_{TM} = \{ < M_1, M_2 >   M_1, M_2 \text{ are } T$                                                                                                                                                                                                                          | Ms with $L(M_1) = L(M_2)$ .                                                                                                                  |                       |         |  |  |  |  |
|   |   | 2                                                  | HALT $_{TM} = \{ < M, w >   M \text{ is a TM that}$                                                                                                                                                                                                                            | at halts on input w }.                                                                                                                       |                       |         |  |  |  |  |
|   |   | 3                                                  | $EQ_{DFA} = \{ < M_1, M_2 >   M_1, M_2 \text{ are } D_1$                                                                                                                                                                                                                       | FAs with $L(M_1) = L(M_2)$ }.                                                                                                                | -                     |         |  |  |  |  |
|   |   | 4                                                  | $\overline{A_{TM}}$ [Complement of $A_{TM}$ ] wh $A_{TM} = \{ < M, w >   M \text{ is a TM that acc} \}$                                                                                                                                                                        |                                                                                                                                              |                       | -       |  |  |  |  |
|   | С | What                                               | hat is the function computed by the following Turing Machines:                                                                                                                                                                                                                 |                                                                                                                                              |                       |         |  |  |  |  |
|   |   | Turi                                               | ing Machine 1                                                                                                                                                                                                                                                                  | Turing Machine 2                                                                                                                             |                       | (4+4)   |  |  |  |  |
|   |   |                                                    | q1                                                                                                                                                                                                                                                                             | do di                                                                                                    | □ , R                 |         |  |  |  |  |
| 5 | а | predic<br>(i) No                                   | P(x) be "x is a professor" Q(x) be "x is ignorant" R(x) be "x is vain" ss the following statements using quates given above, where the domain professors are ignorant. I ignorant people are vain.                                                                             | antifiers, logical connectives, an<br>consists of all people.                                                                                | d the                 | 4 (2+2) |  |  |  |  |
|   | b | Use Re P1 : "II P2 : "II P3 : "II P4 : "II P5 : "S | esolution Refutation to show that the f Superman were unable to prevent f Superman were unwilling to preve f Superman were able and willing to f Superman exists, then he is neither uperman does not prevent evil" the conclusion <b>Q</b> : "Superman does not prevent evil" | evil, then he would be powerless<br>nt evil, then he would be evil-mi<br>prevent evil, then he would prev<br>powerless nor evil-minded", and | nded",<br>vent evil". | 10      |  |  |  |  |

|     | Pr                                                                                                                                   | (int: Convert all the statements P1, P2,<br>opositional logic. Assume the following p<br>nversion:      |      |           |               |         |                    |         |       |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------|-----------|---------------|---------|--------------------|---------|-------|--|--|--|--|
|     |                                                                                                                                      | nversion:<br>ev: Superman prevents evil                                                                 |      |           |               |         |                    |         |       |  |  |  |  |
|     |                                                                                                                                      | le: Superman is able to prevent evil                                                                    |      |           |               |         |                    |         |       |  |  |  |  |
|     | willing: Superman is willing to prevent evil                                                                                         |                                                                                                         |      |           |               |         |                    |         |       |  |  |  |  |
|     | pless: Superman is powerless                                                                                                         |                                                                                                         |      |           |               |         |                    |         |       |  |  |  |  |
|     | evilm: Superman is evil-minded exists: Superman exists                                                                               |                                                                                                         |      |           |               |         |                    |         |       |  |  |  |  |
|     |                                                                                                                                      |                                                                                                         |      |           |               |         |                    |         |       |  |  |  |  |
|     | Ma                                                                                                                                   | arks distribution:                                                                                      |      |           |               |         |                    |         |       |  |  |  |  |
|     |                                                                                                                                      |                                                                                                         | e co | nclusion  | to sen        | tences  | in Pro             | nositi  | ional |  |  |  |  |
|     | <b>5 marks :</b> To convert the statements and the conclusion to sentences in Propositional logic using given propositional symbols. |                                                                                                         |      |           |               |         |                    |         |       |  |  |  |  |
|     |                                                                                                                                      | narks: To prove the conclusion Q using                                                                  | reso | lution re | futatio       | n.]     |                    |         |       |  |  |  |  |
| С   |                                                                                                                                      | nsider a group of men and women. Let,                                                                   |      |           |               |         |                    |         |       |  |  |  |  |
|     | M(x): x is a man                                                                                                                     |                                                                                                         |      |           |               |         |                    |         |       |  |  |  |  |
|     | W(x): x is a woman                                                                                                                   |                                                                                                         |      |           |               |         |                    |         |       |  |  |  |  |
|     | L(x, y) : x  likes  y                                                                                                                |                                                                                                         |      |           |               |         |                    |         |       |  |  |  |  |
|     | Match the following assertions with their equivalent logical expressions using the                                                   |                                                                                                         |      |           |               |         |                    |         |       |  |  |  |  |
|     | abo                                                                                                                                  | ve predicates.                                                                                          |      |           |               |         |                    |         |       |  |  |  |  |
| A A | 1                                                                                                                                    | Some men like all the women                                                                             | a    | )M)xE     | x) /\ \       | ≠y(W(   | y) → I             | (y, x)  | ))    |  |  |  |  |
|     | 2                                                                                                                                    | For every man, there is at least one woman who likes him                                                | b    | ∃x(M(:    | () /\ \       | /y(W(   | y) → L             | (x, y)  | ))    |  |  |  |  |
|     | _                                                                                                                                    |                                                                                                         |      |           |               | 1 2-3   |                    |         |       |  |  |  |  |
|     | 3                                                                                                                                    | Some women does not like any man                                                                        | С    | ∃x(M(x    | () A E        | y(W(y   | y) /\ L            | (x, y)) | )     |  |  |  |  |
|     | 4                                                                                                                                    | There is a man whom all women like                                                                      | d    | ∀x(M(x    | () → Ξ        | y(W(y   | y) / L             | (y, x)) | )     |  |  |  |  |
|     | 5                                                                                                                                    | There is a man who likes a woman                                                                        | е    | ∀x(W(x    | () → <i>t</i> | / y(M() | /) → L             | (x, y)) | )     |  |  |  |  |
|     | 6                                                                                                                                    | All women like all men                                                                                  | f    | ∃x(W(x    | x) /\ \       | y(M(y   | <sub>7</sub> ) → − | L(x, y  | 7)))  |  |  |  |  |
|     |                                                                                                                                      |                                                                                                         |      |           |               |         |                    |         |       |  |  |  |  |
|     | Provide your answer in the following format only:                                                                                    |                                                                                                         |      |           |               |         |                    |         |       |  |  |  |  |
|     | A                                                                                                                                    | ssertions                                                                                               |      | 1 2       | 3             | 4       | 5                  | 6       |       |  |  |  |  |
|     | ar                                                                                                                                   | quivalent logical expression(write your iswer as a,b,c,d,e,f only - one of them atches each assertion). |      |           |               |         |                    |         |       |  |  |  |  |

P E S

SRN