Data assimilation in an elastic friction model

Tom Gustafsson

20. September 2012

The problem

• Can we estimate weakly known parameters from a simple friction model by using tools of data assimilation?

Model, 2D

- Initial setting: Block, surface
- Boundary conditions

Abaqus/Standard 6.12-1, simulations on CSC

Steps of the simulation

• Step 1: 5 kN force acting downwards

• Step 2: Displacement of block's upper boundary by 70 cm to the right

Steps of the simulation: Displacement of the block

Done by using boundary conditions. Thus, a "slow displacement"

Steps of the simulation: Displacement of the block, 2

Inversion problem

- ullet Attempting to estimate friction coefficient μ
- As a priori knowledge: x-directional stress in chosen measurement points (~ strain gauge)

Ennen kuin jatketaan

Ennen kuin jatketaan 2

- Useampiulotteisen normaalijakauman karakterisoi kovarianssimatriisi Σ
- $\mathcal{N}_k(\mu_0, \mathbf{\Sigma})$, jossa $\mathbf{\Sigma} \in \mathbb{R}^{k \times k}$
- Neliömatriisi, diagonaalilla varianssit eri dimensioissa
- Muut alkiot kertovat dimensioiden välisen kovarianssin

Data-assimilaatio

- Pohjimmiltaan havaintojen ja mallin tuotaman informaation yhteensulauttamista
- Perinteisiä sovelluskohteita: Säähavaintomallit, valtamerimallit
- Data-assimilaation menetelmiä
 - 3DVar, 4DVar
 - Kalman Filter, Extended-, Ensemble-, ...
 - ...
- Tässä työssä Ensemble Kalman Filter, eli EnKF

Data-assimilaatio, yleistä

- ullet Systeemin (todellinen) tila $\psi^t \in \mathbb{R}^N$
- Mittaus $d \in \mathbb{R}^M$
 - Ei tarkka
 - ullet Suhde tilaan $oldsymbol{d} = oldsymbol{\mathsf{M}} oldsymbol{\psi}^t + oldsymbol{\epsilon}$
 - Mittamatriisi $\mathbf{M} \in \mathbb{R}^{M \times N}$
 - Virhe $\epsilon \sim \mathcal{N}_M(0, \mathbf{\Sigma})$
 - Kovarianssimatriisi $\mathbf{\Sigma} \in \mathbb{R}^{M \times M}$
- ullet Ennustettu tila $oldsymbol{\psi}^f \in \mathbb{R}^N$
 - Aluksi esim. mittauksien perusteella

Data-assimilaatio, yleistä 2

- ullet Todellinen tila ψ^t muuttuu ajan kuluessa
- Systeemin malli

$$\dot{\psi} = {\it G}(\psi,t)$$

Aikakehitys:

$$\boldsymbol{\psi}_{t+\Delta t}^f = \boldsymbol{\psi}_t^f + \int_t^{t+\Delta t} \boldsymbol{G}(\boldsymbol{\psi},t) \, \mathrm{d}t$$

- Malli epätäydellinen, eli ennusteen virhe kasvaa aikakehitettäessä
- Virheen kasvua kuvaa kovarianssimatriisi Q

Data-assimilaatio, esimerkki

$$N = M = 2$$
, $\mathbf{M} = \mathbf{I}$, $\mathbf{\Sigma} = \sigma \mathbf{I}$

Data-assimilaatio, esimerkki 2

Data-assimilaatio, yleistä 3

- ullet Tulkitaan normaalijakauma todennäköisyystiheysfunktiona $f(\psi,t)$
- Tällöin f:n aikakehitystä kuvaa Fokker-Planck -yhtälö

$$\frac{\partial f}{\partial t} + \sum_{i=1}^{N} \frac{\partial (G_i f)}{\partial \psi_i} = \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{\partial^2 (Q_{ij} f)}{\partial \psi_i \partial \psi_j}$$

ullet Yleinen tapaus ei ratkea analyyttisesti ightarrow EnKF

Ensemble Kalman Filter

- Idea: Otetaan n-kappaletta realisaatioita alkutilan normaalijakaumasta (⇒ kokoelma)
- Aikakehitetään näin saadun kokoelman jokaista tilaa erikseen operaattorin G avulla
- Tällöin ennusteen kovarianssimatriisia voidaan approksimoida lausekkeella

$$oldsymbol{\Sigma} pprox rac{1}{n-1} \sum_{j=1}^n \left(\psi_j^f - \overline{\psi^f}
ight) \left(\psi_j^f - \overline{\psi^f}
ight)^{\mathrm{T}}$$

Ensemble Kalman Filter, esimerkki

Ensemble Kalman Filter, esimerkki jatkuu

Ensemble Kalman Filter, analyysiongelma

- Tyypillisesti systeemistä saadaan mittadataa mittahetkillä t_1, t_2, t_3, \dots
- Analyysiongelma: Miten yhdistää optimaalisesti mallin ennuste ψ^f ja uusi mittaus d?

Ensemble Kalman Filter, analyysiongelma 2

Ensemble Kalman Filter, analyysiongelma 3

Ensemble Kalman Filter, analyysiongelman ratkaisu

- ullet Analysoitu tila $oldsymbol{\psi}^{\mathsf{a}} = oldsymbol{\psi}^{\mathsf{f}} + oldsymbol{\mathsf{K}}\left(oldsymbol{d} oldsymbol{\psi}^{\mathsf{f}}
 ight)$
 - Jos varianssit samat, $K = \frac{1}{2}$
 - Tässä tapauksessa

$$K = \frac{\sigma_{\psi}}{\sigma_{\psi} + \sigma_{d}}$$

Yleisesti

$$\mathsf{K} = \mathbf{\Sigma}_{\psi} \left(\mathbf{\Sigma}_{\psi} + \mathbf{\Sigma}_{d}
ight)^{-1}$$

Ensemble Kalman Filter, analyysiongelman ratkaisu

- ullet Analysoitu tila $oldsymbol{\psi}^{\mathsf{a}} = oldsymbol{\psi}^{\mathsf{f}} + oldsymbol{\mathsf{K}}\left(oldsymbol{d} oldsymbol{\psi}^{\mathsf{f}}
 ight)$
 - Jos varianssit samat, $K = \frac{1}{2}$
 - Tässä tapauksessa

$$K = \frac{\sigma_{\psi}}{\sigma_{\psi} + \sigma_{d}}$$

Yleisesti

$$\mathsf{K} = \mathbf{\Sigma}_{\psi} \left(\mathbf{\Sigma}_{\psi} + \mathbf{\Sigma}_{d}
ight)^{-1}$$

• Jos lisätään vielä mahdollisuus N>M, niin

$$oldsymbol{\psi}^{oldsymbol{a}} = oldsymbol{\psi}^{oldsymbol{f}} + oldsymbol{\Sigma}_{\psi} \mathsf{M}^{\mathrm{T}} \left(oldsymbol{\Sigma}_{d} + \mathsf{M} oldsymbol{\Sigma}_{\psi} \mathsf{M}^{\mathrm{T}}
ight)^{-1} \left(oldsymbol{d} - \mathsf{M} oldsymbol{\psi}^{oldsymbol{f}}
ight)$$

Ensemble Kalman Filter, parametrien estimointi

Nyt malli on

$$\dot{\psi} = {\it G}(\psi,t;lpha)$$

ullet Käytännössä jatketaan tilaa parametreilla lpha

$$\hat{oldsymbol{\psi}}^f = \left(oldsymbol{\psi}^f, \; oldsymbol{lpha}
ight)^{
m T}$$

- Karsitaan lisätyt parametrit vertailuista mitattujen arvojen kanssa muokkaamalla mittamatriisia
- → Estimoitavat parametrit loksahtavat kohdalleen ratkaistaessa analyysiongelma

Ensemble Kalman Filter, yhteenveto

Takaisin ongelmaan

Malli

- ullet Estimoitava parametri μ
- Määritellään tilaksi

$$\boldsymbol{\psi} = (\sigma_{\mathsf{x}}^1, \sigma_{\mathsf{x}}^2, \sigma_{\mathsf{x}}^3, \dots, \sigma_{\mathsf{x}}^N, \mu)^{\mathrm{T}}$$

- Alussa ei kosketusta ⇒ jännitykset nollia
- ullet Alkutilan määrää ainoastaan siis μ_0

Takaisin ongelmaan 2

- Tarvitaan
 - Alkuarvaus $\mu_0 = 0.6$
 - Alkuarvauksen virhe $\sigma_0 = 0.1$
 - Kokoelman koko n = 200
 - Alkukokoelma jakaumasta $\mathcal{N}(\mu_0, \sigma_0^2)$
- Alkukokoelman yksittäinen tila on siis muotoa

$$\psi_j = (\underbrace{0,0,\ldots,0,0}_{N \text{ kpl}},\mu_0 + \epsilon)^{\mathrm{T}}, \ j = 1,\ldots,n$$

- Mitta"hetket": Yläreunan siirtymät $\Delta x = 7, 14, 21, \dots, 70$
- Mittadata synteettisesti

Synteettisen mittadatan generointi

ullet Minimoidaan inversiorikosta o mittadata tiheämmästä verkosta

 Miten verrata tiheämmän ja harvemman verkon antamia jännityksiä?

Synteettisen mittadatan generointi 2

Tuloksia, $\mathbf{Q} = \mathbf{0}$

Tuloksia, mallivirheen vaikutus, n = 200

Kokoelman koon vaikutus, keskiarvo

Punainen: $\Delta x = 70$, sininen: $\Delta x = 42$, vihreä: $\Delta x = 14$

Kokoelman hajonta

Peräkkäisten analyysien varianssi

Kysymyks<u>iä?</u>