1. Introduzione

1.1. Prefazione

Questi appunti si rifanno alle lezioni 2023/2024 del corso Introduction to Machine Learning tenuto dalla docente Elisa Ricci, al libro 'Deep Learning' di Ian Goodfellow e Yoshua Bengio; ed infine al libro 'Hands on machine learning' di Aurélien Géron pubblicato da O'Reilly.

Gli appunti sono scritti con <u>typst</u>, senza una panoramica sui diversi argomenti, ma affrontandoli uno ad uno a seconda della necessità. All'interno di questa introduzione troverete solo i concetti basilari, utili alla comprensione dei successivi argomenti.

Figure 1: La relazione tra intelligenza artificiale, machine learning e deep learning.

1.2. Dataset

Il dataset è l'insieme dei dati disponibili per l'analisi. Su questo dataset si effettuano le operazioni di training e testing.

Il training set è il sottoinsieme del dataset utilizzato per addestrare il modello; mentre il test set è il sottoinsieme utilizzato per testare il modello. Il validation set è un sottoinsieme del training set utilizzato per regolare gli iperparametri del modello, prima della fase di testing.

Per generare questi sottinsiemi è necessario fare due assunzioni sui dati (i.i.d. assumption), ovvero che siano:

- indipendenti (non ci sia correlazione tra i dati del training set e del test set)
- identicamente distribuiti (prelevati dalla stessa distribuzione di probabilità p_{data})

1.3. Modello

L'obbiettivo, nel Machine Learning, è che il nostro modello performi bene su dati che non ha mai visto prima; questa abilità è detta *generalizzazione*. Ogni modello ha le sue peculiarità, e la scelta del modello giusto dipende dal problema (*task*) che si vuole risolvere. I modelli possono essere divisi in categorie, anche se con eccezioni e sfumature, a seconda del tipo di apprendimento:

- Supervised Learning: il modello apprende da un training set etichettato precedentemente.
- Unsupervised Learning: il modello apprende pattern o strutture dai dati senza etichette.
- Reinforcement Learning: il modello apprende attraverso il feedback di un ambiente.
- Semi-Supervised Learning: il modello apprende sia da dati etichettati che non etichettati. Viene utilizzato in sostituzione al supervised learning nei casi in cui etichettare i dati risulti troppo costoso o, richieda troppo tempo.

1.4. Tasks

Le principali task per cui viene adottato il Machine Learning sono:

- Classification: classificare un input in una delle classi predefinite.
- Regression: predire un valore numerico (continuo), dato un input.
- Transcription: convertire un input in testo. L'input può essere un'immagine, un audio, ecc.
- Machine Translation: tradurre un testo in un'altra lingua.
- Anomaly Detection: identificare pattern anomali nei dati.

- Synthesis: generare nuovi dati che seguano la stessa distribuzione dei dati originali. (e.g. textures, speech, ecc.)
- Denoising: in questo task il modello, ha come input un dato corrotto \tilde{x} e deve predire il dato originale bold(x); o meglio la distribuzione di probabilità $p(x|\tilde{x})$.
- Density Estimation:

1.5. Errors

Solitamente, quando si allena un modello si effettuano delle misure sull'errore. Questo errore viene chiamato **training error**; e durante la fase di training si mira a ridurlo.

Ciò che separa il Machine Learning da un semplice problema di ottimizzazione è che oltre a minimizzare il **training error** l'obbiettivo è di minimizzare anche il **generalization error** (anche noto come **test error**). Questo errore viene misurato in fase di test ed è definito, grosso modo, come: *il valore dell'errore atteso su un nuovo input*.

Proprio per questo le assunzioni fatte sui dati nella Sezione 1.2 sono necessarie.

2. Regressione Lineare

Come suggerisce il nome, la regressione lineare è un modello che risolve un problema di regressione, ovvero dato un vettore $x \in \mathbb{R}^n$ in input, restituisce un valore $y \in \mathbb{R}$ in output. L'output della regressione lineare è una funzione lineare dell'input.

Definiamo \hat{y} come il valore che il nostro modello predice, definiamo dunque l'output come:

$$\hat{y} = \boldsymbol{w}^{\top} \boldsymbol{x}$$

Dove: \boldsymbol{w} è un vettore di parametri.

Questi parametri, anche chiamati pesi, determinano il comportamento del sistema; in questo specifico caso si tratta del coefficiente per cui moltiplichiamo il vettore di input x.

$$\hat{y} = \boldsymbol{w}^{\top} \boldsymbol{x} + b$$

Questa è una affine function, ovvero una funzione lineare con una traslazione (b è noto come intercept term o bias). Come si può notare, inoltre, l'equazione assomiglia molto a quella di una retta in due dimensioni: y = mx + q. Infatti per un grado n = 1 la regressione lineare è proprio una retta.

Facciamo un breve esempio pratico: supponiamo di avere un <u>dataset con GDP per capita e un valore di soddisfazione della vita</u> per ogni paese del mondo e volessimo costruire un modello che preveda quest'ultimo valore¹.

Prima di tutto plottiamo i dati:

¹Questo valore viene misurato con la <u>scala di Cantril</u>.

Figure 2: Plot dei dati GDP vs Life-satisfaction degli ultimi dati disponibili per ogni paese. (ex Austria)

Ora proviamo ad utilizzare la regressione lineare per prevedere il livello di soddisfazione della vita in Austria, che abbiamo escluso dal training set, dato il suo GDP per capita:

Figure 3: Plot dei dati GDP vs Life-satisfaction con la regressione lineare e grado 1

L'austria nel 2022 aveva un GDP per capita di \$55,867 e un livello di felicità di 7,09. Il modello di regressione lineare ci dice che il livello di felicità previsto è di 6,66. Forse possiamo fare di meglio.

Torniamo sulla formula della regressione lineare, possiamo generalizzarla come:

$$\hat{y}=b+w_1x_1+w_2x_2+\ldots+w_nx_n$$

Dalla formula generalizzata capiamo che la regressione lineare può funzionare anche in più dimensioni, non solo con una variabile indipendente; ed in questo caso si dice "multivariata". Per esempio con 2 variabili indipendenti

avremo un piano. Dunque se aggiungessimo lo <u>Human Freedom Index</u> come feature, avremmo un modello tridimensionale:

3D Scatter Plot of GDP per capita, Freedom Index, and Cantril ladder score

Figure 4: Plot dei dati GDP e Freedom vs Life satisfaction in 3D

In questo caso la predizione del modello per l'Austria è di 6,80, più vicina al valore reale.

3. Polynomial Regression

Nel caso in cui non avessimo altre features a disposizione, o la distribuzione dei dati non fosse lineare, potremmo utilizzare una regressione polinomiale. Nel caso preso in esempio, abbiamo visto come la retta non fosse in grado di generalizzare particolarmente bene i dati. Prima di procedere con la pratica vediamo la formula della regressione polinomiale, anche se è abbastanza intuitiva e non ci dovrebbe essere nulla da spiegare:

$$\hat{y} = wx + b \underset{polinomiale}{\longrightarrow} \hat{y} = b + \sum_{i=1}^{n} w_i x^i$$

Applicando la regressione polinomiale con grado del polinomio: n=2 all'esempio visto in precedenza otteniamo:

Figure 5: Plot dei dati GDP vs Life satisfaction con la regressione lineare e grado 2

Ora il modello predice un valore di 7,01 per l'Austria, più vicino al valore reale. Proviamo con gradi ancora più alti:

Figure 6: Plot dei dati GDP vs Life satisfaction con la regressione lineare e grado 3 e 5 Con un grado 3 il modello predice un valore di 6,79, mentre con un grado 5 il modello predice un valore di 7,21.

Figure 7: Plot dei dati GDP vs Life satisfaction con la regressione lineare e grado 15 e 60

Se alzialiamo ulteriormente il grado del polinomio, il modello non migliorerà; anzi dalla tabella di seguito e dalle immagini precedenti dovrebbe essere chiaro come avere un grado del polinomio più alto non implichi che il modello generalizzi meglio.

grado	1	2	3	5	15	20	30	40	50	60
predizione	6.66	7.01	6.79	7.21	5.43	5.43	5.43	5.43	5.43	5.43
errore	±0.44	±0.09	±0.31	±0.11	±1.67	±1.67	±1.67	±1.67	±1.67	±1.67

Dopo questi due capitoli, dovrebbero sorgere al lettore almeno due domande:

- 1. Com'è possibile che la regressione lineare performi meglio della regressione polinomiale con grado ≥ 15? Innanzitutto è necessario precisare che come "test set" abbiamo utilizzato un solo data point. Tuttavia questo è un esempio del Tradeoff tra Bias e Varianza: nonostante la regressione lineare abbia un training error maggiore della regressione polinomiale in alcuni casi, è in grado di generalizzare meglio a causa della alta variabilità dei modelli con gradi più alti.
- 2. Come possiamo valutare il modello in modo rigoroso?

Per valutare il modello in maniera sistematica dovremmo innanzitutto dividere il dataset in training set e test set; in quanto il test set d'esempio è composto solo dall'Austria. Successivamente dobbiamo decidere come valutare l'errore del modello, una delle metriche più diffuse per la task di regressione è l'**errore quadratico medio** (MSE).

3. Come possiamo capire quale grado del polinomio è il migliore?

Il grado del polinomio è un **iperparametro** del modello; e per essere selzionato al meglio viene utilizzato un **validation set**.

Nel prossimo capitolo vedremo come valutare un modello di regressione, come selezionare il grado del polinomio.

4. Valutazione di un Modello di Regressione

Nei precedenti capitoli abbiamo valutato "a spanne" i modelli di regressione, per valutarli opportunamente dobbiamo avere a disposizione un dataset abbastanza grande da poterci permettere di suddividere i dati in training set e test set appunto. In generale la suddivisione si aggira attorno ad un rapporto $\underline{80/20}$ (80% training set, 20% test set), ma non esiste una regola fissa.

Una volta diviso il dataset, possiamo suddividere il training set in due parti; così da ottenere il validation set. Anche per questa suddivisione non esistono regole fisse.

4.1. Hyperparameters

Gli iperparametri sono parametri che non vengono appresi durante il training, ma che influenzano il comportamento del modello. Molti modelli di Machine Learning hanno iperparametri, per quanto riguarda la regressione lineare, di base, ha solo il grado del polinomio. Il grado del polinomio, come abbiamo visto precedentemente determina la capacità del modello. Allo stesso modo λ nella regolarizzazione, che vedremo successivamente è un iperparametro.

Gli iperparametri non vengono appresi durante il training, proprio perché se fosse così il modello non sarebbe in grado di generalizzare bene: ad esempio nella polinomial regression, se il grado del polinomio fosse un parametro appreso, il modello potrebbe avere un grado del polinomio molto alto, per minimizzare l'errore sul training set, ma non generalizzerebbe bene. Questo fenomeno è noto come **overfitting**; e da qui nasce la necessità di un validation set.

Ovviamente questa divisione dipende dalla quantità di dati a disposizione, nel caso del nostro esempio i dati a disposizione sono poco più di un centinaio; in questi casi è utile sfruttare la tecnica del **cross-validation**.

4.2. Underfitting e Overfitting

L'Underfitting si verifica quando il modello non ottiene buone prestazioni ne sul training set, ne sul test set.

L'Overfitting si verifica quando il modello ottiene buone prestazioni sul training set ma non sul test set.

The No Free Lunch Theorem Contrariamente a quanto si possa pensare, non esiste un modello che sia il migliore in assoluto per tutti i problemi.

4.3. Regulaization / Regolarizzazione

La regolarizzazione è una qualsiasi modifica che apportiamo al modello per ridurre l'errore di generalizzazione (ma non il training error).

Il comportamento dell'algoritmo è influenzato infatti, non solo dalla capacità del modello (spazio delle ipotesi); ma anche dall'identità delle funzioni utilizzate. Per esempio, la regressione lineare ha uno spazio delle ipotesi composto esclusivamente da funzioni lineari e, nel caso non ci sia relazione lineare tra i dati $(e.g. \sin(x))$, non sarà in grado di generalizzare bene.

Potremmo modificare il criterio di ottimizzazione per la regressione lineare includendo un termine regolarizzatore (denotato con $\Omega(w)$) nella funzione di costo.

Nello specifico caso del weight decay il rego è uguale a: $\Omega(w) = w^{\top}w$. Dunque il criterio sarà:

$$J(\boldsymbol{w}) = \text{MSE}_{\text{train}} + \lambda \boldsymbol{w}^{\top} \boldsymbol{w}$$

in questo modo minimiziamo una somma che comprende sia l'errore quadratico medio sul training set, sia il termine di regolarizzazione. In questo caso il termine λ è un iperparametro che regola l'importanza del termine di regolarizzazione. Con $\lambda=0$ il modello si comporta come una regressione lineare standard, mentre con $\lambda>0$ il modello tenderà a preferire pesi più piccoli, da questo il nome weight decay.

Figure 8: "Il modello utilizzato ha solo funzioni di grado 9, mentre il dataset è generato da una funzione quadratica."

Nel campo del Machine Learning esistono diverse varianti per quanto riguarda le tecniche di regolarizzazione. Famiglia delle L^p norme; generalizzata con la formula:

$$\|\boldsymbol{x}\|_p = \left(\sum_{i=1}^n \lvert x_i \rvert^p\right)^{\frac{1}{p}}$$

con n ad indicare le dimensioni e $p \in [1, +\infty)$.

- La norma 1 è banalmente la somma dei valori assoluti dei componenti.
- La norma 2 o Norma Euclidea, è la radice quadrata della somma dei quadrati dei valori:

$$\|\boldsymbol{x}\|_2 = \sqrt{\sum_{i=1}^n x_i^2}$$

.

4.4. Dataset Augmentation

Il miglior modo per avere un modello che generalizza bene è trainarlo su più dati e, spesso, il dataset a disposizione non è abbastanza grande. Un modo per risolvere questo problema sono le tecniche di dataset augmentation. Questo approccio è molto efficace con le task di classificazione, object recognition e speech recognition. Com'è facile immaginare per quanto concerne l'object recognition, possiamo ruotare, scalare, e traslare le immagini; per lo speech recognition possiamo aggiungere rumore alle registrazioni.

L'iniezione di rumore è alla base di alcuni modelli unsupervised, come il denoising autoencoder. La noise injection può inoltre essere implementata negli hidden layer.

5. KNN

Il K-Nearest Neighbors (KNN) è un modello **supervised**, utilizzato per la classificazione, che si basa sulla distanza tra i punti del dataset. Al momento della predizione, il modello calcola la distanza tra il nuovo punto ed altri k punti del dataset, e predice la classe del nuovo punto basandosi sulla classe più frequente tra i k punti più vicini.

Il KNN ha alcuni aspetti caratteristici:2

- È un modello **non parametrico**, cioè non necessita di assunzioni sulla distribuzione dei dati.
- È un lazy learner. Il termine *lazy learning* si riferisce all'approccio dell'apprendimento in cui il modello non fa praticamente nulla durante la fase di addestramento. In altre parole, l'algoritmo rimanda il processo di apprendimento fino a quando non è necessario fare una previsione.
- È un modello **instance-based**. L'*instance-based learning* è un tipo di apprendimento dove il modello memorizza semplicemente i dati di addestramento e non costruisce un modello esplicito per fare previsioni. Quando si richiede una previsione, il modello confronta il nuovo esempio con gli esempi memorizzati per fare una stima.
- K è appunto l'hyperparametro che determina il numero di data-points "vicini" da tenere in considerazione durante la predizione. Ne segue che se K=n, dove n è la cardinalità del mio dataset, allora verrà sempre predetta la classe con più elementi (underfitting). Se al contrario, viene impostato k=1 si ottiene un modello che sicuramente overfitta. Un valore di K dispari aiuta ad evitare situazioni di ambiguità. Come per tutti gli altri hyperparametri, si utilizza il validation set per determinare il K migliore.

Per l'esempio pratico di questo modello non useremo il classico dataset *Iris*, ma questo <u>dataset generato</u> <u>artificialmente</u>, contenente informazioni riguardo il sesso, l'altezza, il peso e l'indice corporeo di 500 persone:³

²Se la differenza tra *lazy* e *instance-based* non è chiara ora lo sarà nel capitolo dell'SVM.

³Gli autori degli appunti non credono che possano esistere persone alte 200cm e pesanti 45kg; perlomeno non vive.

Per riprendere ciò che abbiamo detto sopra, ecco qui un esempio di overfitting e underfitting con KNN:

Il fatto che overfitti si nota dalla presenza di molteplici "isole" all'interno delle diverse categorie (idealmente vorremmo che fosse a fasce); mentre l'underfitting si nota dalla presenza di una sola categoria o dall'assenza di alcune.

Come sempre per questi esempi il dataset è troppo piccolo ed il tempo è poco, per non complicarci troppo le cose evitiamo di utilizzare un validation set, impostiamo K=11 e vediamo come si comporta il modello.⁴

Una buona regola empirica se non sai quali valori prendere in considerazione per la scelta di K è $K=\sqrt{n}$ — Il web

⁴Sfortunatamente con questo dataset, utilizzando valori maggiori, si perdono categorie

5.1. Standardization and Scaling

I più scaltri tra i lettori si saranno chiesti se una feature può prevalere sulle altre, ebbene sì, nonostante il dataset presentato prima non lo dimostri può accadere; ed è compito nostro prevenire questo comportamento.

Gli strumenti presentati durante il corso sono la standardizzazione (o Z-score normalization) e il Min-Max scaling.

Fortunatamente per me, un maschio di 178cm che pesa 77kg rientra nella categoria 2 (Normal).

Contrariamente a quanto si possa pensare esistono diverse metriche che possono essere utilizzate per determinare la distanza da i data-points (indichiamo con x e y due punti nello spazio n-dimensionale e con $x_1, x_2, ..., x_n$ e $y_1, y_2, ..., y_n$ le loro coordinate):

La lunghezza della linea blu, rossa e gialla è la medesima e rappresenta la Manhattan distance tra i due punti (12). La lunghezza della linea verde rappresenta la Euclidean distance tra i due punti (6√2)

• Manhattan distance: la distanza di Manhattan è la somma delle differenze assolute tra le coordinate dei punti. La formula è la seguente:

$$D(x,y) = \sum_{i=1}^{n} |x_i - y_i|$$

• Euclidean distance: la distanza euclidea è la radice quadrata della somma dei quadrati delle differenze tra le coordinate dei punti. La formula è la seguente:

$$D(x,y) = \sqrt{\sum_{i=1}^{n} \left(x_i - y_i\right)^2}$$

 Minkowski distance: una generalizzazione della distanza euclidea e della distanza di Manhattan. La formula è la seguente:

$$D(x,y) = \left(\sum_{i=1}^{n} |x_i - y_i|^p\right)^{\frac{1}{p}} \text{ con } p \ge 1$$

• **Cosine distance**: la cosine distance è derivata dalla *cosine similarity*, che misura quanto due vettori sono orientati nella stessa direzione. La formula per la cosine similarity tra due vettori A e B è:

Cosine Similarity(
$$A, B$$
) = $\frac{A \cdot B}{\|A\| \|B\|}$

dove $A \cdot B$ è il prodotto scalare, mentre ||A|| ||B|| sono le norme dei vettori. La cosine similarity varia tra -1 e 1, dove 1 indica che i vettori puntano esattamente nella stessa direzione, 0 indica che sono ortogonali (non correlati), e -1 indica che puntano in direzioni opposte.

La cosine distance è semplicemente definita come:

Cosine Distance(
$$A, B$$
) = 1 – Cosine Similarity(A, B)

Dunque, la cosine distance varia tra 0 e 2. Un valore di 0 indica che i vettori sono identici in termini di direzione, mentre un valore di 1 indica che sono ortogonali.

La cosine distance è particolarmente utile in applicazioni come l'analisi di testi e il riconoscimento di immagini, dove i dati possono essere vettori di caratteristiche normalizzati. Per esempio nell'analisi dei testi ogni elento del vettore può rappresentare il numero di occorrenze di una certa parola.

5.2. Curse of Dimensionality

Il problema principale dell'utilizzo delle distanze è che queste crescono esponenzialmente al crescere delle dimensioni; questo problema è noto come **Curse of Dimensionality**. Con KNN è necessario avere un dataset denso, i data-point dello stesso gruppo devono essere vicini **in ogni dimensione**; a differenza di altri algoritmi. Inoltre, per ottenere una buona performance, il numero di dati deve crescere esponenzialmente con il numero delle dimensioni.

Possiamo osservare le distribuzioni delle distanze tra due punti in 1,2,3 dimensioni:

Per evidenziare l'andamento esponenziale trovate qui un grafico che indica la distanza media di due punti con coordinate [0; 100], in un sample composto da 1000 elementi, nelle dimensioni da 1D a 100D.

