- 1. **Overview** of the analysis: Explain the purpose of this analysis.
- 2. **Results**: Using bulleted lists and images to support your answers, address the following questions.
 - Data Preprocessing
 - o What variable(s) are considered the target(s) for your model?
 - The IS_SUCCESSFUL column in the classification_numeric dataframe that converted all the categorical to numeric values
 - o What variable(s) are considered to be the features for your model?
 - i. APPLICATION_TYPE—Alphabet Soup application type
 - ii. AFFILIATION—Affiliated sector of industry
 - iii. CLASSIFICATION—Government organization classification
 - iv. USE_CASE—Use case for funding
 - v. ORGANIZATION—Organization type
 - vi. STATUS—Active status
 - vii. INCOME_AMT—Income classification
 - viii. SPECIAL_CONSIDERATIONS—Special consideration for application
 - ix. ASK_AMT—Funding amount requested
 - What variable(s) are neither targets nor features, and should be removed from the input data?
 - EIN and NAME
 - How many neurons, layers, and activation functions did you select for your neural network model, and why?
 - i. Number of Neurons:
 - # number of layer1 neurons = 2*(number of inputs=43) = 86 ~ 80
 - hidden_nodes_layer1 = 80
 - # number of layer2 neurons: Between (input=80) and (output=1 classifier)
 - hidden_nodes_layer2 = 30
 - ii. We had 3 hidden layers: first hidden layer, second hidden layer, and output layers

- iii. Activation function was Sigmoid. Hidden layers activation function was Relu.
- # 1st Hidden Layer: 3520 params = [43 inputs (from input
- layer) * 80 neurons] + (80 bias terms)
- # 2nd Hidden Layer: 2430 params = [80 inputs (from 1st hidden
- layer) * 30 neurons] + (30 bias terms)
- # Output Layer: 31 params = [30 inputs (from 2nd hidden layer)
- * 1 neuron] + (1 bias term)
- Total params: 6,141
- Trainable params: 6,141
- Non-trainable params: 0
- o Were you able to achieve the target model performance?
 - Yes, almost 75% accuracy
- o What steps did you take to try and increase model performance?
 - To increase model performance, decreased the application_counts
 [application_counts < 68 and classification_counts [classification_counts < 290
 From the first notebook
- 3. **Summary**: Summarize the overall results of the deep learning model. Include a recommendation for how a different model could solve this classification problem, and explain your recommendation.
 - Results Summary: Good results → 70+ % accuracy in predicting whether or not applicants for funding will be successful
 - Recommendation: A Different model like Decision Tree Classifier, Random
 Forest, or Logistic Regression = all are binary classification
 - 1. All offer a simpler approach to classify the data
 - 2. Perform just as well as this neural network
 - 3. All have about 72% accuracy