Warmstarting the Constrained Optimal Filter Design Problem for Active Noise Control Systems in Conic Formulation

Yongjie Zhuang (Presenter)

Zhuang Mo

Yangfan Liu

Ray W. Herrick Laboratories,
Purdue University

Applications

For many practical active noise control applications:

• Multichannel systems: for large-size quiet zone.

• Multiple constraints: robust stability, enhancement, filter output power.

Interior of Vehicles

Range Hood

Air Conditioner

Infant Incubator

Background

One common approach for designing **constrained multichannel** controller: solve a **constrained optimization problem**

☐ Advantage: better noise control performance

☐ Challenge: significant computational effort

(large channel number, filter order, number of the constraints)

Background

This work is a continuation of our previous work of convex & cone formulation:

Zhuang and Liu, JASA 2021:

Constrained optimal filter design for multi-channel active noise control via convex optimization

Yongjie Zhuang^{a)} and Yangfan Liu^{b)}

Ray W. Herrick Laboratories, School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA

• Zhuang and Liu, InterNoise 2020:

Development and application of dual form conic formulation of multichannel active noise control filter design problem in frequency domain

• Zhuang and Liu, NoiseCon 2019:

San Diego, CA
NOISE-CON 2019
2019 August 26-28

Study on the Cone Programming Reformulation of Active Noise Control Filter Design in the Frequency Domain

Background

Benefits of shorter computational time:

☐ Reducing time and cost during product design circle

☐ Make continuously design possible for time-varying environment.

NOISE-CON 2022 June 13-15 Lexington, KY

Motivation

For proposed formulation, warmstarting strategies are difficult.

□Cold start:

choosing initial guess without information of approximate location of optimal solution.

e.g., use origin (0,0,...,0), or identity (1,1,...,1).

□Warm start:

choosing initial guess **using** information of approximate location of optimal solution.

e.g., the optimal solution of a similar but different environmental setup

Motivation

Why warmstarting strategies are important?

□ Commercial product design:

- Current product model may be a variation of previous models
- Product differs from prototype by batch manufactural error

☐Time-varying applications:

• the optimal filter coefficients of previous environment condition can be used as the initial guess when the condition changes.

Review — Control diagram

Noise

Signal

Secondary Path

Error

Signal

- Objective: minimize the power of \vec{e}
- Robust stability: the feedback loop $W_x \ \widehat{G}_{s_0}$
- Output power: Power of W_x or \vec{y}
- Disturbance enhancement: \vec{e} should not be amplified at certain frequency bands

Review — Convex and cone formulation

Convex formulation

Cost function: Quadratic function

Constraining total power of e

Constraints:

Enhancement: Quadratic function

Constraining normalized power of e

Filter response: Quadratic function

The magnitude of frequency response

Stability: Max of eigenvalue

Use Nyquist criterion

Robustness: Max of singular value

 $M-\Delta$ structure and small gain theory

Cone formulation

Cost function: Linear

Constraints:

Linear equalities or inequalities

Second-order cones:

$$\left\{ (y, \vec{\mathbf{x}}) \in \mathfrak{R} \times \mathfrak{R}^{n_i - 1} : y \ge ||\vec{\mathbf{x}}||_2 \right\}$$

Positive semidefinite cones:

 $\left\{ \operatorname{vec}(X) \in \mathfrak{R}^{n_i^2} : X \in \mathfrak{R}^{n_i \times n_i} \text{ is positive semidefinite} \right\}$

Method – Warmstarting challenges

For cone programming algorithm, each iteration should:

- Inside the constraint boundaries
- Away from boundary as much as possible (follow the central path)

Proposed by Anders Skajaa et al. in 2013

Use convex combination of cold start point and previous optimal point:

- Guarantees a usable initial guess (close enough to cold start)
- Very little extra computational effort for warm start point

Method – Convert PSD cones to SOCs

Convex formulation

Cost function: Quadratic function

Constraining total power of e

Constraints:

Enhancement: Quadratic function

Constraining normalized power of e

Filter response: Quadratic function

The magnitude of frequency response

Stability: Max of eigenvalue
Use Nyquist criterion

Robustness: Max of singular value

M- Δ structure and small gain theory

 Need second-order cone (SOC) only

 The stability and robustness constraints can only be reformulated equivalently to positive semidefinite (PSD) cones

 Some relaxation must be done to convert them to second-order cones (SOCs)

Stability: Max of eigenvalue

Use Nyquist criterion

Open Loop Response

 $\|\boldsymbol{W}_{x}(f_{k})\widehat{\boldsymbol{G}}_{s0}(f_{k})\|_{2} \leq C(f_{k})$

Robustness: Max of singular value

 $M-\Delta$ structure and small gain theory

Method 1: use max-norm properties:

$$||M||_{max} \le ||M||_2 \le \sqrt{mn} ||M||_2$$

PSD converts to SOCs:

$$\|\boldsymbol{W}_{x}(f_{k})\|_{max} \leq \frac{C(f_{k})}{\sqrt{N_{r}N_{s}}\|\widehat{\boldsymbol{G}}_{s0}(f_{k})\|_{2}}$$

Method 2: use Frobenius norm properties:

$$||M||_2 \le ||M||_F$$

PSD converts to SOCs:

$$tr(\widehat{\boldsymbol{G}}_{s0}^{\mathrm{H}}(f_k)\boldsymbol{W}_{x}^{\mathrm{H}}(f_k)\boldsymbol{W}_{x}(f_k)\widehat{\boldsymbol{G}}_{s0}(f_k)) \leq C^2(f_k)$$

Result — Experimental setup

A multi-channel active noise control system on a wind channel

Result – Comparison of two methods

Noise control performance

Method 1: use max-norm Method 2: use Frobenius norm

- Converting constraints will sacrifice performance
- Method 2 has better performance (less conservative)

Result – Warmstarting performance

Auto spectral density function of newly generated noise signal

$$S_{xx}^{new} \leq S_{xx}(E_n + \alpha P_n)$$

Measured auto spectral density function -known optimal filter coefficients

$$\boldsymbol{E}_n = \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{pmatrix}$$

Each element of P_n is generated by a standard Gaussian process

Perturbation ratio
-represents the changes
of environmental setup

Result – Warmstarting performance

 \blacksquare Perturbation ratio = 0.1% \blacksquare Perturbation ratio = 1.0% \blacksquare Perturbation ratio = 5.0%

Warm ratio: closer to 1, initial point closer to previous optimal solution When warm ratio is higher than 0.999, it goes outside the constraints.

Conclusion

- Two methods of converting the positive semidefinite cones into second order cones are proposed.
- After using the proposed formulation method 2, the iteration number can be reduced up to 45% when using the warmstarting strategy.
- For a relatively wide range of problem perturbation ratio (from 0.1% to 5%), the warmstarting method is **robust** when choosing the same warm ratio parameter.

Thank you!

