Метод существенной выборки для оценивания границ доверительных интервалов в задачах логистической регрессии

Леушева Виктория Витальевна, гр. 522

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: д. ф.-м. н., профессор М. С. Ермаков Рецензент: к. ф.-м. н., доцент Ю. Н. Каштанов

Санкт-Петербург 2014г.

Введение

Достоинство логистической регрессии: можно оценить вероятность исхода какого — либо события, принимающего два возможных значения 1 или 0.

Цель работы:

- Оценить малые вероятности отклонения оценок параметров логистической регрессии и нейронной сети с помощью метода существенной выборки;
- Построить оценки точных значений границ доверительных интервалов для оценок параметров логистической регрессии и нейронной сети.

Постановка задачи №1

Проведем численное моделирование на примере модели логистической регресии с двумя весовыми коэффициентами $\beta=(\beta_0,\beta_1).$

Независимый признак $X = (x_1, \dots, x_n)^\mathsf{T}$.

Логистическая функция:

$$p(X; \beta) = \frac{1}{1 + \exp(-(\beta_0 + \beta_1 X))}.$$

Зависимый признак $Y = (y_1, \dots, y_n)^\mathsf{T}$ моделируем с вероятностью $p(X; \beta)$:

$$P(y_i = 1|x_i) = p(x_i; \beta)$$
 $P(y_i = 0|x_i) = 1 - p(x_i; \beta).$

Параметр β_1 будем считать неизвестным.

Задача оценивания вероятности отклонения оценки параметра от его истинного значения:

$$A = P((\hat{\beta}_1 - \beta_1) > \Delta).$$

Метод максимального правдоподобия

Функция правдоподобия:

$$L(X;\beta) = \prod_{i=1}^{n} p(x_i;\beta)^{y_i} (1 - p(x_i;\beta))^{1-y_i} \to \max.$$

Логарифмируем функцию правдоподобия и записываем в более удобном виде:

$$\ln L(X;\beta) = \sum_{i=1}^{n} y_i \ln \frac{p(x_i;\beta)}{1 - p(x_i;\beta)} + \sum_{i=1}^{n} \ln(1 - p(x_i;\beta)).$$

Используя свойство логистической модели $\ln \frac{p(x)}{1-p(x)} = \beta_0 + \beta_1 X$, получаем:

$$\ln L(X;\beta) = \sum_{i=1}^{n} y_i (\beta_0 + \beta_1 x_i) - \sum_{i=1}^{n} \ln(1 + \exp(\beta_0 + \beta_1 x_i)).$$

Дифференцирование по неизвестному параметру β_1 :

$$\frac{\partial \ln L(X;\beta)}{\partial \beta_1} = \sum_{i=1}^n y_i x_i - \sum_{i=1}^n \frac{\exp(\beta_0 + \beta_1 x_i)}{1 + \exp(\beta_0 + \beta_1 x_i)} x_i = 0,$$
$$\sum_{i=1}^n y_i x_i = \sum_{i=1}^n p(x_i;\beta) x_i.$$

Итерационный численный метод Ньютона — Рафсона

Определим функционал $Q(\beta)$:

$$Q(\beta) = -\left(\sum_{i=1}^{n} y_i \ln p(x_i; \beta) + (1 - y_i) \ln(1 - p(x_i; \beta))\right).$$

Алгоритм метода Ньютона — Рафсона:

① Задаем начальное приближение оценки неизвестного параметра β_1 :

$$eta_1^0 = \ln rac{ar{Y}}{(1-ar{Y})},$$
 где $ar{Y} = rac{1}{n} \sum_{i=1}^n y_i;$

 Находим последующие приближения в соответствии с рекуррентным соотношением:

$$eta_1^k=eta_1^{k-1}-\eta_{k-1}(Q''(eta_1^{k-1}))^{-1}Q'(eta_1^{k-1})$$
, где η — шаг ;

 $oldsymbol{3}$ Повторяем пункт 2, пока значения eta_1^k не сойдутся.

Где:

$$Q'(\beta) = \frac{\partial Q(\beta)}{\partial \beta_1} = -\sum_{i=1}^n (y_i - p(x_i; \beta)) x_i,$$

$$Q''(\beta) = \frac{\partial^2 Q(\beta)}{\partial \beta_1^2} = \sum_{i=1}^n (1 - p(x_i; \beta)) p(x_i; \beta) x_i^2.$$

Метод существенной выборки

Наша задача состоит в вычислении вероятности:

$$A = P((\hat{\beta}_1 - \beta_1) > \Delta).$$

- ullet Исходная мера $p(X;eta_1)\Longleftrightarrow$ Новая мера $p(X;eta_1+\Delta),$ где $\Delta=rac{b\sqrt{\mathsf{D}\hat{eta}_1}}{\sqrt{n}}.$
- Моделируем k независимых величин $Y^{(j)} = (y_1^{(j)}, \dots, y_n^{(j)}), j = \overline{1,k}$ с вероятностью $p(X; \beta_1 + \Delta)$.
- ullet Считаем k оценок неизвестного параметра: $\hat{eta_1}^\Delta.$
- В качестве оценки вероятности берем:

$$\hat{\mathbf{A}}=rac{1}{k}\sum_{j=1}^k\mathcal{X}_{\{\hat{eta}_{1j}^\Delta>eta_1+\Delta\}}\prod_{i=1}^nrac{p(x_i;eta_1)}{p(x_i;eta_1+\Delta)}$$
, где

$$\begin{split} p(x_i; \beta_1) &= \frac{1}{1 + \exp(-\beta_0 - \beta_1 x_i)}, \\ p(x_i; \beta_1 + \Delta) &= \frac{1}{1 + \exp(-\beta_0 - (\beta_1 + \Delta) x_i)}. \end{split}$$

Результаты численного моделирования. Зависимость от n

Зависимость результата при различных значениях параметра n.

Рис. 1: Оценки вероятности при k=100, n=100,200,300

Рис. 2: Оценки вероятности при $k=150, \\ n=100, 200, 300$

Рис. 3: Оценки вероятности при k=200, n=100,200,300

Результаты численного моделирования. Зависимость от k

Зависимость результата при различных значениях параметра k.

Рис. 4: Оценки вероятности при n=200, k=100, 150, 200

Построение доверительных интервалов для оценок малых вероятностей

Оценка имеет вид:

$$\hat{\mathbf{A}} = \frac{1}{k} \sum_{j=1}^k \mathcal{X}_{\{\hat{\beta}_{1j}^\Delta > \beta_1 + \Delta\}} \prod_{i=1}^n \frac{p(x_i; \beta_1)}{p(x_i; \beta_1 + \Delta)}.$$

Для построения доверительных интервалов, считаем искомые оценки m раз, находим среднее значение $\mathrm{mean}(\hat{\mathbf{A}})$ и стандартное отклонение оценки s.

Доверительный интервал имеет вид:

$$\left(\mathsf{mean}(\hat{\mathbf{A}}) - c_{\gamma} \frac{s}{\sqrt{n}}, \mathsf{mean}(\hat{\mathbf{A}}) + c_{\gamma} \frac{s}{\sqrt{n}} \right),$$

где
$$c_{\gamma} = \Phi^{-1}\left(rac{1+\gamma}{2}
ight).$$

Результаты численного моделирования. Доверительные интервалы

Доверительные интервалы для оценок малых вероятностей.

Таблица 1: k = 100, n = 100

Смещение	1	1.5	2	2.5	3	3.5
Средние значение	0.16106	0.06459	0.02810	0.01374	0.00733	0.00420
Нижняя граница	0.15930	0.06376	0.02774	0.01354	0.00724	0.00415
Верхняя граница	0.16282	0.06542	0.02846	0.01394	0.00742	0.00425

Таблица 2: k = 100, n = 200

Смещение	1	1.5	2	2.5	3	3.5
Средние значение	0.09913	0.02953	0.00959	0.00337	0.00126	0.00050
Нижняя граница	0.09792	0.02920	0.00947	0.00332	0.00124	0.00049
Верхняя граница	0.10034	0.02986	0.00971	0.00342	0.00128	0.00051

Таблица 3: k = 100, n = 300

Смещение	1	1.5	2	2.5	3	3.5
Средние значение	0.07479	0.01872	0.00504	0.00146	0.00045	0.000148
Нижняя граница	0.07391	0.01849	0.00497	0.00144	0.00044	0.000146
Верхняя граница	0.07567	0.01895	0.00511	0.00147	0.00046	0.000150

Нейронная сеть. Математическая модель

Рис. 5: Биологическая модель

Нейронные сети возникли из попыток воспроизвести способность биологических нервных систем обучаться и исправлять ошибки, моделируя низкоуровневую структуру мозга.

Структурная схема нейрона:

- Входные сигналы $X_1, ..., X_n$;
- Весовые коэффициенты β_0, \dots, β_n ;
- $\begin{array}{ll} \bullet & \mathsf{Cymmatop} \; \sum = \\ \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_n X_n; \end{array}$
- ullet Функция активации нейрона $\sigma(\sum) = rac{1}{1 + \exp(-\sum)};$
- Выход Y.

Рис. 6: Математическая модель

Постановка задачи №2

Рис. 7: Нейронная сеть

Дано:

- ullet Входной слой X_1 , X_2 ;
- ullet Скрытый слой $\sigma_1(\sum_1)=rac{1}{1+\exp(-(eta_3+eta_1X_1))},$ $\sigma_2(\sum_2)=rac{1}{1+\exp(-(eta_4+eta_2X_2))};$
- ullet Весовые коэффициенты eta_1,\ldots,eta_6 ;
- ullet Выходной слой $\sigma_3(\sum_3)=rac{1}{1+\exp(-(eta_5\sigma_1(\sum_1)+eta_6\sigma_2(\sum_2)))}$.

Метод обратного распространения ошибки

- Инициализируем веса: $(\beta_1, \dots, \beta_6)$.
- Прямой ход.

Находим выходные значения сети на скрытом слое:

$$\sigma_1(\sum_1) = \frac{1}{1 + \exp(-(\beta_3 + \beta_1 X_1))}, \qquad \sigma_2(\sum_2) = \frac{1}{1 + \exp(-(\beta_4 + \beta_2 X_2))}.$$

Находим выходное значение сети на выходном слое: 1

$$\sigma_3(\Sigma_3) = \frac{1}{1 + \exp(-(\beta_5 \sigma_1(\Sigma_1) + \beta_6 \sigma_2(\Sigma_2)))}.$$

Пусть $Y_{\mathsf{иск}} = Y_{\mathsf{вых}} + \xi$, где $\xi \sim N(0, s^2)$. Ошибка для выходного слоя: $\delta = \xi$.

• Обратный ход.

Находим производные функции активации:

$$\sigma_1'(\sum_1) = \sigma_1(\sum_1)(1 - \sigma_1(\sum_1)), \qquad \sigma_2'(\sum_2) = \sigma_2(\sum_2)(1 - \sigma_2(\sum_2)),$$

$$\sigma_3'(\sum_3) = \sigma_3(\sum_3)(1 - \sigma_3(\sum_3)).$$

Ошибки для скрытого слоя: $\delta_1 = \delta \sigma_3'(\sum_3)\beta_5$ и $\delta_2 = \delta \sigma_3'(\sum_3)\beta_6$.

• Градиентный шаг (η — темп обучения):

$$\begin{array}{lll} \beta_1 = \beta_1 - \eta \delta_1 \sigma_1'(\sum_1) X_1, & \beta_2 = \beta_2 - \eta \delta_2 \sigma_2'(\sum_2) X_2, \\ \beta_3 = \beta_3 - \eta \delta_1 \sigma_1'(\sum_1), & \beta_4 = \beta_4 - \eta \delta_2 \sigma_2'(\sum_2), \\ \beta_5 = \beta_5 - \eta \delta \sigma_3'(\sum_3) \sigma_1(\sum_1), & \beta_6 = \beta_6 - \eta \delta \sigma_3'(\sum_3) \sigma_2(\sum_2). \end{array}$$

Алгоритм решения

Пусть мы знаем истинные значения весовых коэффициентов β_1, \dots, β_6 . Будем оценивать параметр β_1 .

Вспомним задачу оценивания вероятности отклонения оценки параметра от его истинного значения:

$$A = P((\hat{\beta}_1 - \beta_1) > \Delta).$$

Согласно методу существенной выборки в качестве оценки вероятности берем:

$$\hat{\mathbf{A}} = \frac{1}{k} \sum_{j=1}^k \mathcal{X}_{\{\hat{\beta}_{1j}^{\Delta} > \beta_1 + \Delta\}} \prod_{i=1}^n \frac{\frac{1}{\sqrt{2\pi}} \exp(-(Y_{\text{BbIX}} - \sigma_3(\sum_3; \beta_1))/2s^2)}{\frac{1}{\sqrt{2\pi}} \exp(-(Y_{\text{BbIX}} - \sigma_3(\sum_3; \beta_1 + \Delta))/2s^2)},$$

где s^2 — стандартное отклонение ошибки δ .

Численное моделирование. Нейронная сеть. Зависимость от n

Зависимость результата при различных значениях параметра n.

Рис. 8: Оценки вероятности при k=100, n=100,200,300

Рис. 9: Оценки вероятности при k=150, n=100,200,300

Рис. 10: Оценки вероятности при k=200, n=100,200,300

Численное моделирование. Нейронная сеть. Доверительные интервалы

Доверительные интервалы для оценок малых вероятностей.

Рис. 11: Доверительные интервалы при k=100, n=100

Рис. 12: Доверительные интервалы при k=100, n=200

Рис. 13: Доверительные интервалы при k=100, n=300

Заключение

- Рассмотрена задача вычисления малых вероятностей отклонения оценок параметров с помощью метода существенной выборки для
 - Логистической регрессии;
 - Нейронной сети.
- Полученные результаты могут быть применены для построения доверительных интервалов оценок.
- Построенные доверительные интервалы для оценок малых вероятностей распределений параметров логистической регрессии и нейронной сети показывают высокую точность предложенной процедуры моделирования.
- Высокое качество предложенной процедуры моделирования позволяет предположить, что она будет хорошо работать для более сложных моделей нейронных сетей.