```
13/01/2022
```

8) Use the nth form test tan divergence to determine whether the following seures diverges.

9 $\geq \frac{n^3}{n^2+1}$, bi) $\frac{1}{\sqrt{n}}$ c) $\frac{1}{\sqrt{n+1}}$

Troporties of convergent series: If zan and Ebn aue convergent services and c is a recal number then

i's could. Ecan is convergent and Ecan = c Ean

ii) sevier Elantba) is convengent and Elanton) = Sant Ebn

iii) souies Slan-bn) is convergent and ∑(an-bn) = ≥an - 2bn

Q> Using proporties of infinite series, evaluate the following:i) \(\geq \frac{2+3"}{\in n} \)

Let $an = \frac{2+3^n}{5^n} = \frac{2}{5^n} + \left(\frac{3}{5}\right)^n = 2\left(\frac{1}{5}\right)^n + \left(\frac{3}{5}\right)^n$

Now, $\geq 2(\frac{1}{2})^n$ is geometric could with $a=\frac{1}{2}x=\frac{1}{2}<1$

20, this revies converges.

souler $\leq (3/5)^n$ is geometric cervies with $\alpha = 1$, $\epsilon = 3/5 < 1$ so, it converges.

then 5 2+3" converge and

$$\frac{243^{n}}{n=0} = 2\sum_{n=0}^{\infty} \frac{1}{n} + \sum_{n=0}^{\infty} (3/5)^{n}$$

$$= 2\left(\frac{1}{1-1}/6\right) + \frac{1}{1-3}/6$$

$$= \frac{10}{4} + \frac{1}{2} = 3$$

$$= \frac{10}{4} + \frac{1}{2} = 3$$

$$= \sum_{n=1}^{\infty} \left(\frac{1}{n(n+1)} + \frac{1}{2^{n}}\right)$$

$$= \sum_{n=1}^$$

:. series converges + its series sum u 1. pho, $\sum_{n=1}^{\infty} \frac{1}{2^n}$ is a geometric series with $\alpha = \frac{1}{4}$, $\gamma = \frac{1}{2}$ <1

The series converges with sum = $\frac{a}{1-x} = \frac{1/2}{1-1/2} = \frac{a}{1-1/2}$.

.. Oriven couries converges with xum = 1+ 1 =2.

(a) We pusp of infinite review to evaluate the following seem

i)
$$\sum_{n=1}^{\infty} \left[s \left(\frac{2}{3} \right)^n - \frac{2^{n-1}}{7^n} \right]$$
 ixiq

$$\exists \sum_{N=1}^{\infty} \left[S\left(\frac{2}{3}\right)^{n} - \left(\frac{2}{3}\right)^{n} \cdot \frac{1}{2} \right]$$

$$= \sum_{n=1}^{\infty} 5 \left(\frac{2}{3}\right)^n - \sum_{n=1}^{\infty} \frac{1}{2} \left(\frac{2}{3}\right)^n$$

consider
$$\sum_{n=1}^{\infty} 5\left(\frac{2}{3}\right)^n$$

it's a geometric services with
$$\alpha = 40/3$$
, $r = 2/3 < 1$.

10 , 20/91

$$Sym = \frac{a}{1-7} = \frac{90/2}{1-2/2} = \frac{10}{1}$$

$$\frac{8}{2}$$
 $\frac{1}{2}$ $\left(\frac{2}{7}\right)^{1}$

$$\left(\frac{2}{7}\right)^n$$
is a grometric service with $a = \sqrt{7}$, $r = 2/7 < 1$

$$8 = \sqrt{7}$$

Pry St Yourelt 2> Determine of the geometric series converges on diverge of the denies converges tind sum? $(2) \times (4)^{n}$ $(3) \times (4)^{n}$ $(4) \times (4)^{n}$ $(4) \times (4)^{n}$ $(4) \times (4)^{n}$ $(4) \times (4)^{n}$ $(5) \times (4)^{n}$ $(7) \times (4)^{n}$ $(8) \times (1)^{n}$ $(8) \times (1)^{n}$ $(9) \times (1)^{n}$ $(1) \times (1)^{n}$ $(1) \times (1)^{n}$ $(2) \times (1)^{n}$ $(3) \times (1)^{n}$ $(4) \times (1)^$ $d > \sum_{n=0}^{\infty} (1.1)^n e > \sum_{n=0}^{\infty} (2/2)^n$ a) $\sum_{n=0}^{\infty} \left(\frac{4}{3}\right)^n \Rightarrow \sum_{n=0}^{\infty} \left(\frac{3}{4}\right)^n$ is a geometric review with q=61, r=3/4.

b) $\sum_{n=0}^{\infty} \frac{2^{n+1}}{5^n} \Rightarrow \sum_{n=0}^{\infty} \left(\frac{3}{4}\right)^n$ is a geometric veries with q=2, r=3/4. $C > \sum_{n=1}^{\infty} 3^{2n} \cdot s^{1-n} + \sum_{n=1}^{\infty} 3 \cdot 3^{n} \cdot \frac{s}{s^{n}} + \sum_{n=1}^{\infty} 1s \left(\frac{3}{2}\right)^{n}$ is grametre. with a=6, 7= 1/22 $S = \frac{6}{1-31} = \frac{20}{2} = 15$ d $\sum_{n=0}^{\infty} (1.1)^n$ $\alpha=1, r=1>1$ (4') 1 diverge.This is direngethe senses, so it direnges. e $\sum_{n=1}^{\infty} 5\left(\frac{2}{3}\right)^n$ is variously geometric series with $\alpha=10/3$

 $S = \frac{10/3}{1-2/1} = 10$

Couchy Guiteyion of convergence of services &] => there emis
A service Ean converges 174 for every \$ >0.
$\exists m \in \mathbb{N} \text{such that}$ $ S_n - S_m = a_{m+1} + a_{m+2} + \cdots + a_m $ $ S_n - S_m = a_{m+1} + a_{m+2} + \cdots + a_m $ $ S_n - S_m = a_{m+2} + \cdots + a_m $ $ S_n - S_m = a_{m+2} + \cdots + a_m $ $ S_n - S_m = a_{m+2} + \cdots + a_m $ $ S_n - S_m = a_{m+2} + \cdots + a_m $ $ S_n - S_m = a_{m+2} + \cdots + a_m $ $ S_n - S_m = a_{m+1} + a_{m+2} + \cdots + a_m $ $ S_n - S_m = a_{m+1} + a_{m+2} + \cdots + a_m $ $ S_n - S_m = a_{m+1} + a_{m+2} + \cdots + a_m $ $ S_n - S_m = a_{m+1} + a_{m+2} + \cdots + a_m $ $ S_n - S_m = a_{m+1} + a_{m+2} + \cdots + a_m $ $ S_n - S_m = a_{m+1} + a_{m+2} + \cdots + a_m $ $ S_n - S_m = a_{m+2} + \cdots + a_m $ $ S_n - S_m = a_{m+2} + \cdots + a_m $ $ S_n - S_m = a_{m+2} + \cdots + a_m $ $ S_n - S_m = S_m $ $ S_m = S_m$
Proof: Let series Σ an converges. The requence of partial sums (sn) converges. The sequence of partial sums is couchy sequences. The sequence of partial sums is couchy sequences. The for each \$\gamma > 0 \empty m \in N \text{such that} $ S_n - S_m < \xi + n > m \ge M$
i.e. (a,tazt - tan) -1.
Q's show that the series $\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + -$. doesn't converge
id: - let on the contrary = /n conveyer, Then
M septim sufficed to E & S/= 3 rot
such that $ S_N-S_M = \frac{1}{M+1} + \frac{1}{M+2} + + \frac{1}{M}$
$=\frac{1}{M+1}+\frac{1}{M+2}++\frac{1}{M}<\varepsilon(\frac{\varepsilon(-1)}{2})^{\frac{1}{M}}+\gamma\gamma M\geq M$

In positional for n=2m $\frac{1}{14+1}+\frac{1}{14+2}+\cdots+\frac{1}{2m}<\frac{1}{2}$ But, $\frac{1}{14+1}+\frac{1}{14+2}+\cdots+\frac{1}{2m}>\frac{1}{2m}+\frac{1}{2m}+\cdots+\frac{1}{2m}$ $=m\left[\frac{1}{2m}\right]=\frac{1}{2}$ Which contradicts we will down't converge.

Hence; the given certics down't converges.