

Datové modelování

Modely a reprezentace strukturovaných dat

doc. Ing. Radek Burget, Ph.D.

burgetr@fit.vutbr.cz

Strukturovaná data

- Strukturovaná data se v IS vyskytují v různých kontextech
 - Persistentní úložiště databáze
 - Soubory, HTTP komunikace serializace
 - Uživatelské rozhraní vizualizace
- Způsob reprezentace dat vychází z modelování
 - Abstrakce modelované reality
- Jak lze obecně popsat a následně reprezentovat strukturovaná data?

IIS – Datové modelování 2 / 49

Strukturovaná data

Jak vyrobit z jednoduchých údajů složitý?

IIS – Datové modelování 3 / 49

Kartézský součin A1 x A2

Výsledkem je **množina dvojic** – celkem 4 imes 3 = 12 dvojic.

IIS – Datové modelování 4 / 49

Kartézský součin

- Uspořádaná n-tice (a_1, a_2, \ldots, a_n)
- *Kartézský součin množin* $A_1 imes A_2 imes \cdots imes A_n$ je množina všech uspořádaných n-tic takových, že $a_1\in A_1, a_2\in A_2,\ldots,a_n\in A_n$
- Podstatné je, že v uspořádané n-tici je každá hodnota prvkem jediné z množin v kartézském součinu a to té, která jí indexem odpovídá

IIS – Datové modelování 5 / 49

Struktura a kolekce

IIS – Datové modelování 6 / 49

Základní typy

- Základní nestrukturované datové typy:
 - Celočíselné
 - Reálná čísla
 - Znaky / řetězce
 - Datum / čas
 - Výčtové typy apod.

IIS – Datové modelování 7 / 49

Strukturované datové typy

- Strukturovaný datový typ = datová struktura = metadata
 - Jak z jednodušších datových typů (ať už základních nebo i jednodušších strukturovaných) budovat složitější.
- Existují základní dva způsoby, jak strukturované datové typy vytvářet:
 - struktura a
 - kolekce.
- Vše je definováno předem, před vznikem hodnoty

IIS – Datové modelování 8 / 49

Struktura

- Strukturované hodnoty vytvářené:
 - Pevným počtem dílčích hodnot obecně různých typů
 - Tedy uspořádané n-tice, které jsou prvky kartézského součinu množin dílčích datových typů
 - Hodnoty jsou pojmenované, tzn. přistupuje se k nim přes jejich unikátní jméno
- Jako synonymum pro uspořádanou n-tici (tedy hodnotu) je velmi často užíván termín struktura nebo záznam. Jako synonymum pro kartézský součin (tedy datový typ) budeme často používat typ struktura nebo typ záznam.

IIS – Datové modelování 9 / 49

Schéma struktury

IIS – Datové modelování 10 / 49

Příklad datového typu struktura

```
structure Fyz0soba
  properties
    UplneJmeno:    string
    Jmeno:         string
    Prijmeni:         string
    DatumNaroz:         date
    end structure
```

Definujeme metadata.

IIS – Datové modelování 11 / 49

Hodnota struktury

jména vlastností	hodnoty vlastností		
UplneJmeno:	"Prof. Ing. Jan Novák, CSc."		
Jmeno:	"Jan"		
Prijmeni:	"Novák"		jméno vlastnosti
DatumNaroz:	24.5.1954		

...

IIS – Datové modelování 12 / 49

Kolekce

- *Kolekce* (synonyma jsou *řetězec*, *posloupnost*, *seznam*, *soubor*) je, na rozdíl od struktur, tvořena
 - Předem neomezeným počtem hodnot stejných datových typů.

IIS – Datové modelování 13 / 49

Kolekce

- Množina obsahuje obvykle každý prvek pouze jednou. Pokud je povoleno, aby daný prvek byl v množině vícekrát, mluvíme o multimnožině
- Tradiční seznam je uspořádanou multimnožinou
- Obecně lze vytvářet kolekce s prvky libovolných datových typů.
- Časté omezení je vytvářet pouze kolekce s prvky datového typu struktura

IIS – Datové modelování 14 / 49

Operace nad množinou

- Vkládání prvku do kolekce (add),
- Získání prvku z kolekce (item),
- Určení počtu prvků kolekce (count) a
- Rušení prvku kolekce (remove)

případně

Provádění operací nad všemi prvky (forall)

IIS – Datové modelování 15 / 49

Vlastnosti kolekce

- *Kurzor (iterator*), což je ukazovátko do kolekce, kterým lze posunovat oběma směry a nastavovat je do různých pozic v kolekci podle různých kriterií.
- Protože v průběhu práce s kurzorem se může kolekce měnit co do obsahu i
 počtu prvků, dělíme kurzory na stabilní, které na tuto skutečnost neberou zřetel
 a nestabilní, které reflektují změny
- Nad kolekcí může existovat jedno nebo více definovaných *uspořádání* jejich prvků podle různých klíčů.

IIS – Datové modelování 16 / 49

Schéma kolekce

IIS – Datové modelování 17 / 49

Příklad datového typu kolekce struktur

```
collection FyzickeOsoby of
   structure FyzOsoba
   properties
    UplneJmeno: string
   Jmeno: string
   Prijmeni: string
   DatumNaroz: date
   end structure
```

IIS – Datové modelování 18 / 49

Hodnota kolekce

IIS – Datové modelování 19 / 49

Agregáty

- Vlastnostmi kolekce jsou nejčastěji *agregáty (agregované hodnoty)*, což jsou hodnoty statisticky popisující prvky *kolekce* nejčastěji *číselných hodnot*.
 - počet prvků,
 - maximum,
 - minimum,
 - součet hodnot,
 - průměr atd.

IIS – Datové modelování 20 / 49

Objekt a prostá struktura

- Objekt je struktura s identifikací.
- Každému objektu v systému přiřazena *jednoznačná identifikace* nazývaná *OID* (object identification).
- Objekt je tedy struktura, jejíž systémovou a obvykle první vlastností je OID.
 Hodnotu OID generuje databázový systém při vzniku objektu a po celou dobu činnosti ji nemění.
- Tím, že má objekt OID, je *identifikovatelný* a tudíž i *odkazovatelný*. Má to za následek, že může figurovat jako *člen* ve *vztazích*. To struktura bez identifikace nemůže. Takovou strukturu bez OID budeme nadále nazývat *prostou strukturou*.

IIS – Datové modelování 21 / 49

Strukturované datové typy

IIS – Datové modelování 22 / 49

Zanořené kolekce a struktury

Obecně lze struktury a kolekce libovolně vzájemné vnořovat

```
structure ZANORENA

properties

A: integer

B: collection of structure

properties

C: integer

D: structure

end structure

end structure

end structure
```

IIS – Datové modelování 23 / 49

Graf hodnoty zanořených typů

IIS – Datové modelování 24 / 49

Datové modelování

Od struktury a kolekce k modelům

IIS – Datové modelování 25 / 49

Data, metadata, atd.

Data

- Konkrétní hodnota (výskyt)
- Např. "Jan Novák", "1250 Kč", ... (i strukturované hodnoty)
- Metadata = jak vypadají data
 - Formální popis struktury dat
 - Záleží na datovém modelu:
 - Relační: definice struktury tabulek (relací)
 - Objektový: definice tříd

IIS – Datové modelování 26 / 49

Další úrovně

- Každou úroveň metadat lze opět popsat
- meta-metadata = meta²data = jak vypadají metadata
 - Popis datového modelu
 - Např. relační: relace je kolekce struktur, SQL jako prostředek definice metadat, ...
- meta³data
 - Jak se popisuje databázový model kolekce, struktura, ...

• ... atd.

IIS – Datové modelování 27 / 49

Cíle modelování

- Zobrazit modelovanou realitu
 - Zjednodušení reality pro potřeby návrhu IS abstrakce
 - Konzultace s odborníky na cílovou doménu spolupráce
- Vytvořit popis pomocí prostředků příslušného datového modelu
 - Vytvořit metadata implementace
 - Různé prostředky podle způsobu použití

IIS – Datové modelování 28 / 49

Databázové modely

- Modely, které je schopen interpretovat systém pro řízení databázového systému SŘBD
- Jinak též zvané produkční modely
- V jejich definičním jazyku musejí být zapsána **metadata** pro všechny datové struktury uložené v databázi
- Prozatím budeme uvažovat jako produkční relační a objektový datový model.

IIS – Datové modelování 29 / 49

Konceptuální modely

- Slouží pro komunikaci mezi návrháři, případně se zákazníky
- Jsou formálně přesné a **převoditelné** na produkční modely
- Často jsou grafické pro větší přehlednost
- Nejběžnější konceptuální modely diagram tříd (UML) a E-R diagram

IIS – Datové modelování 30 / 49

Transformace mezi datovými modely

- Slouží nejčastěji pro transformaci konceptuálních modelů na produkční.
- Transformace je tím složitější, čím jsou modely více sémanticky odlišné.
- Nejčastěji se uvažuje transformace E-R diagramu na relační datový model.

IIS – Datové modelování 31 / 49

Konceptuální modely

IIS – Datové modelování 32 / 49

Entity-relationship (E-R) diagram

- Hlavní komponenty E-R diagramu jsou:
 - entita a
 - vztah (relationship nikoliv relation).
- Entity modelují objekty, které se vyskytují v modelovaném fyzickém systému
 - např. studenti, profesoři, předměty na vysoké škole
 - a jejich atributy
- Vztahy modelují spojení mezi entitami například profesoři *učí* předměty.
- Navíc tvoří důležitou část E-R specifikace integritních omezení na entitách a vztazích, např. profesor učí pouze jeden předmět v daném čase.

IIS – Datové modelování 33 / 49

Příklad E-R diagramu

IIS – Datové modelování 34 / 49

Diagram tříd

- Třídy
 - Jejich vlastnosti (jméno a datový typ)
- Vztahy
 - S různou kardinalitou
- Dědičnost
 - Generalizace specializace

IIS – Datové modelování 35 / 49

Příklad diagramu tříd

IIS – Datové modelování 36 / 49

Databázové modely

IIS – Datové modelování 37 / 49

Relační model dat

- Tabulka (= relace) v relačním modelu je kolekcí struktur, přičemž datové typy vlastností jsou jednoduché (tedy především ne odkazy/vztahy)
- Srovnej: Podmnožina kartézského součinu

```
collection of
structure
properties
jméno vlastnosti1: jednoduchý datový typ1
jméno vlastnosti2: jednoduchý datový typ2
...
jméno vlastnostin: jednoduchý datový typn
end structure
```

IIS – Datové modelování 38 / 49

Vztahy

- Umožňují odkazovat z jedné (strukturované) hodnoty (vlastníka) jinou (člen)
- Musí existovat datový typ jednoznačné identifikující (odkazující) strukturovanou hodnotu (např. OID)
- Vztah je definován prvkem vlastníka typu odkaz (reference) a členem, který je hodnotou odkazu identifikován.

IIS – Datové modelování 39 / 49

Vztahy

- Relační model dat vztahy přímo neobsahuje
 - Vytváří se až v okamžiku dotazování (JOIN apod.)
 - (Neplést s referenční integritou!)
- Objektový model
 - Vztahy lze tvořit pomocí OID

IIS – Datové modelování 40 / 49

Objektový model dat

- Základní typy + datový typ OID
- Objekt je vždy strukturou na nejvyšší úrovni
- Dva druhy neomezeně zanořených struktur
 - Kolekce (někdy omezení pouze na kolekce prostých struktur a OID)
 - Prosté struktury (ostatní)
- Další vlastnosti zde neřešené (dědičnost apod.)
- Odpadá nutnost transformace objektového modelu na schéma relační databáze

IIS – Datové modelování 41 / 49

Odkazované struktury (objekty)

```
structure VLASTNIK
   properties
      A: integer
      B: CLEN
end structure
object CLEN
   properties
      C: integer
      D: structure
end object
```

IIS – Datové modelování 42 / 49

Graf hodnoty odkazovaných typů

IIS – Datové modelování 43 / 49

Objektově-relační mapování (ORM)

- Čistě objektové databáze se v praxi vyskytují minimálně
- Relační databáze jsou oproti tomu rozšířené, výkonné a odladěné
- ORM je databázová vrstva zajišťující automatické mapování objektů na relace a zpět
 - Program pracuje s objekty (např. uživatelé, smlouvy, ...)
 - ORM vrstva vytváří SQL dotazy, transformuje data
- Zajišťuje konzistenci aplikace a schématu databáze
 - Možnost automatické tvorby schématu databáze apod.
 - Snazší úpravy aplikace

IIS – Datové modelování 44 / 49

ORM řešení

- Java
 - Standardní aplikační rozhraní JPA, Hibernate, ...
- PHP
 - Např. knihovna Doctrine
 - Použití do značné míry shodné s JPA
- Obdobně na dalších platformách
 - .NET, Python, JavaScript, ...
- Více v předmětu Pokročilé informační systémy

IIS – Datové modelování 45 / 49

Transformace modelů

- Mezi modely mohou existovat transformace, zejména, pokud jsou si sémanticky blízké
- Velmi častou je transformace E-R diagramu na relační datový model
 - viz. postup z IDS

IIS – Datové modelování 46 / 49

Jiné transformace

- Diagram tříd lze transformovat na relační model obdobně jako E-R diagram
 - Je nutno řešit dědičnost různé strategie
- Pro objektový databázový model lze přímo použít diagram tříd
 - V modelu se přímo definují třídy a jejich vlastnosti
 - Vztahy jsou reprezentovány vlastnostmi tříd
 - Odkazy na jiné objekty
 - o např. zbozi. vyrobna

IIS – Datové modelování 47 / 49

Závěr

- Ze struktur, kolekcí a základních typů můžeme vytvořit známé produkční i konceptuální modely
- Reprezentace kolekcí a struktur:
 - Textová reprezentace ve formálních jazycích serializace (1D) komunikace mezi složkami systému
 - Grafická reprezentace vizualizace (2D) vstup a výstup systému

IIS – Datové modelování 48 / 49

A to je vše!

Dotazy?

IIS – Datové modelování 49 / 49