7 Differential Forms

§ 7.1 Differential Forms: Basic Definitions

Definition 7.1 (Permutation). Let $\omega \in \mathfrak{T}_p^{(0,r)}(\mathcal{M})$. For a permutation $P \in S_r^{-1}$ and $V_1, V_2, \cdots, V_r \in T_p\mathcal{M}$,

$$P\omega(V_1, V_2, \cdots, V_r) \equiv \omega(V_{P(1)}, V_{P(2)}, \cdots, V_{P(r)})$$

The component of $P\omega$ is given by

$$P\omega(e_{\mu_1}, e_{\mu_2}, \cdots, e_{\mu_r}) = \omega_{\mu_{P(1)}\mu_{P(2)}\cdots\mu_{P(r)}}$$

Definition 7.2 (Symmetrizer and antisymmetrizer).

(1) The **symmetrizer** S is defined by

$$S\omega \equiv \frac{1}{r!} \sum_{P \in S_n} P\omega$$

Note that $S\omega$ is **totally symmetric**: $PS\omega = S\omega$ for arbitrary $P \in S_r$.

(2) The **antisymmetrizer** A is defined by

$$\mathcal{A}\omega \equiv \frac{1}{r!} \sum_{P \in S_r} \operatorname{sgn}(P) P\omega$$

where sgn(P) = +1 for even permutations and sgn(P) = -1 for odd permutations. Note that $\mathcal{A}\omega$ is **totally antisymmetric**: $P\mathcal{A}\omega = sgn(P)\mathcal{A}\omega$ for arbitrary $P \in S_r$.

Definition 7.3 (Differential forms). A **differential form of order** r (or an r-**form**) is a totally antisymmetric tensor of type (0, r). The vector space of r-forms in $p \in \mathcal{M}$ is denoted by $\Omega_n^r(\mathcal{M})$.

Remark. One-form like dx^{μ} is a differential form of order 1.

Then, how can we construct *r*-forms from *r* one-forms?

Definition 7.4 (Wedge product). The **wedge product** \land of r one-forms is defined by the totally antisymmetric tensor product.

$$dx^{\mu_1} \wedge dx^{\mu_2} \wedge \cdots \wedge dx^{\mu_r} \equiv \sum_{P \in S_r} \operatorname{sgn}(P) dx^{\mu_{P(1)}} \otimes \cdots \otimes dx^{\mu_{P(r)}}$$

¹Here, S_r denotes the *symmetric group of order r*.

Example 7.5. Let's construct 2-form and 3-form from the one-form dx^{μ} .

(1) Since $|S_2| = 2$, two terms emerge.

$$dx^{\mu} \wedge dx^{\nu} = dx^{\mu} \otimes dx^{\nu} - dx^{\nu} \otimes dx^{\mu}$$

(2) Since $|S_3| = 6$,

$$dx^{\lambda} \wedge dx^{\mu} \wedge dx^{\nu} = dx^{\lambda} \otimes dx^{\mu} \otimes dx^{\nu} - dx^{\lambda} \otimes dx^{\nu} \otimes dx^{\mu}$$
$$+ dx^{\mu} \otimes dx^{\nu} \otimes dx^{\lambda} - dx^{\mu} \otimes dx^{\lambda} \otimes dx^{\nu}$$
$$+ dx^{\nu} \otimes dx^{\lambda} \otimes dx^{\mu} - dx^{\nu} \otimes dx^{\mu} \otimes dx^{\lambda}$$

Observation 7.6. The wedge product satisfies:

- (1) $dx^{\mu_1} \wedge \cdots \wedge dx^{\mu_r} = 0$ if some index μ_i appears at least twice.
- (2) $dx^{\mu_1} \wedge \cdots \wedge dx^{\mu_r} = \operatorname{sgn}(P) dx^{\mu_{P(1)}} \wedge \cdots \wedge dx^{\mu_{P(r)}}$ (the constructed *r*-form is totally antisymmetric).
- (3) $dx^{\mu_1} \wedge \cdots \wedge dx^{\mu_r}$ is linear in each dx^{μ} (since *r*-forms are (0, r)-tensors).

Observation 7.7. The set of *r*-forms $dx^{\mu_1} \wedge \cdots \wedge dx^{\mu_r}$ forms a basis of $\Omega_p^r(\mathcal{M})$ and for $\omega \in \Omega_p^r(\mathcal{M})$,

$$\omega = \omega_{\mu_1 \cdots \mu_r} \, \mathrm{d} x^{\mu_1} \otimes \mathrm{d} x^{\mu_2} \otimes \cdots \otimes \mathrm{d} x^{\mu_r}$$
$$= \boxed{\frac{1}{r!} \omega_{\mu_1 \cdots \mu_r} \, \mathrm{d} x^{\mu_1} \wedge \mathrm{d} x^{\mu_2} \wedge \cdots \wedge \mathrm{d} x^{\mu_r}}$$

Observation 7.8. Consider a (0,2)-tensor $\omega_{\mu\nu}$. This tensor can be decomposed into symmetric and antisymmetric parts: the symmetric part

$$\sigma_{\mu\nu} = \frac{\omega_{\mu\nu} + \omega_{\nu\mu}}{2} \quad \rightarrow \quad \sigma_{\mu\nu} \, \mathrm{d}x^{\mu} \wedge \mathrm{d}x^{\nu} = 0$$

and antisymmetric part

$$\alpha_{\mu\nu} = \frac{\omega_{\mu\nu} - \omega_{\nu\mu}}{2} \quad \rightarrow \quad \alpha_{\mu\nu} \, \mathrm{d} x^{\mu} \wedge \mathrm{d} x^{\nu} = \frac{\omega_{\mu\nu} - \omega_{\nu\mu}}{2} \, \mathrm{d} x^{\mu} \wedge \mathrm{d} x^{\nu} = \omega_{\mu\nu} \, \mathrm{d} x^{\mu} \wedge \mathrm{d} x^{\nu}$$

Observe that only antisymmetric part of $\omega_{\mu\nu}$ can contribute to two-form.

Observation 7.9. Since there are $\binom{m}{r}$ choices in the set (μ_1, \dots, μ_r) from $(1, \dots, m)$,

$$\dim\Omega_p^r(\mathcal{M})=\binom{m}{r}$$

- Define $\Omega^0_p(\mathcal{M}) \equiv \mathbb{R}$.
- $\Omega^1_v(\mathcal{M}) = T_v^* \mathcal{M} (\dim T_v^* \mathcal{M} = m).$
- If $r \ngeq m$, some index appears at least twice in the antisymmetrical sum, so such differential form vanishes.
- Since $\binom{m}{r} = \binom{m}{m-r}$, dim $\Omega_p^r(\mathcal{M}) = \dim \Omega_p^{m-r}(\mathcal{M})$.
- Moreover, since $\Omega_p^r(\mathcal{M})$ is a vector space, $\Omega_p^r(\mathcal{M}) \simeq \Omega_p^{m-r}(\mathcal{M})$.

Until now, we used *wedge product* to construct r-forms. Can we make higher-order forms by combining q-forms and r-forms? Yes.

Definition 7.10. The **exterior product** of a *q*-form and a *r*-form

$$\wedge: \Omega^q_p(\mathcal{M}) \times \Omega^r_p(\mathcal{M}) o \Omega^{q+r}_p(\mathcal{M})$$

is defined by a trivial extension. For $\omega \in \Omega^q_p(\mathcal{M})$ and $\xi \in \Omega^r_p(\mathcal{M})$, the action of the (q+r)-form $\omega \wedge \xi$ on (q+r) vectors is defined by

$$(\omega \wedge \xi)(V_1, \dots, V_{q+r}) = \frac{1}{q!r!} \sum_{P \in S_{q+r}} \operatorname{sgn}(P)\omega(V_{P(1)}, \dots, V_{P(q)})\xi(V_{P(q+1)}, \dots, V_{P(q+r)})$$

Remark. If q + r > m, $\omega \wedge \xi$ vanishes naturally.

Remark. With this exterior product, we define an algebra

$$\Omega_p^*(\mathcal{M}) \equiv \Omega_p^0(\mathcal{M}) \oplus \Omega_p^1(\mathcal{M}) \oplus \cdots \oplus \Omega_p^m(\mathcal{M})$$

 $\Omega_p^*(\mathcal{M})$ denotes the space of all differential forms at p. This space is closed under the exterior product. Moreover, we may assign an r-form smoothly at each point on a manifold \mathcal{M} . We denote the space of smooth r-forms on \mathcal{M} by $\Omega^r(\mathcal{M})$.

	D : -	D:
<i>r</i> -form	Basis	Dimension
$\Omega^0(\mathcal{M})=\mathcal{F}(\mathcal{M})$	{1}	1
$\Omega^1(\mathcal{M}) = T^*\mathcal{M}$	$\{\mathrm{d}x^{\mu}\}$	m
$\Omega^2(\mathcal{M})$	$\{\mathrm{d} x^{\mu_1}\wedge\mathrm{d} x^{\mu_2}\}$	m(m-1)/2!
$\Omega^3(\mathcal{M})$	$\{\mathrm{d}x^{\mu_1}\wedge\mathrm{d}x^{\mu_2}\wedge\mathrm{d}x^{\mu_3}\}$	m(m-1)(m-2)/3!
÷.	<u>:</u>	÷:
$\Omega^m(\mathcal{M})$	$\{\mathrm{d}x^1\wedge\cdots\wedge\mathrm{d}x^m\}$	1

Table 1: The space of smooth *r*-forms.

Exercise 7.11. Consider a Cartesian coordinates (x, y) in \mathbb{R}^2 . Show that

$$dx \wedge dy = r dr \wedge d\theta$$

Proof.

$$dx \wedge dy = dx \otimes dy - dy \otimes dx$$

$$= (\cos \theta \, dr - r \sin \theta \, d\theta) \otimes (\sin \theta \, dr + r \cos \theta \, d\theta)$$

$$- (\sin \theta \, dr + r \cos \theta \, d\theta) \otimes (\cos \theta \, dr - r \sin \theta \, d\theta)$$

$$= r \, dr \otimes d\theta - r \, d\theta \otimes dr = r \, dr \wedge d\theta$$

We conclude this lecture by proving several important properties of exterior products. Before we do that, we prove this useful lemma first.

Lemma 7.12. Let $\xi \in \Omega_p^q(\mathcal{M})$ and $\eta \in \Omega_p^r(\mathcal{M})$. Then

$$\mathcal{A}(\mathcal{A}(\xi)\otimes\eta)=\mathcal{A}(\xi\otimes\eta)$$

Proof. By definition,

$$\mathcal{A}(\mathcal{A}(\xi) \otimes \eta) = \frac{1}{(q+r)!} \sum_{\sigma \in S_{q+r}} \operatorname{sgn}(\sigma) \sigma \left(\frac{1}{q!} \sum_{\tau \in S_q} \operatorname{sgn}(\tau) \tau \xi \otimes \eta \right)$$

If we interpret $\tau \in S_q$ as a permutation in S_{q+r} such that $\tau(i) = i \ (i = q+1, \cdots, q+r), \tau \xi \otimes \eta = \tau (\xi \otimes \eta).$

$$= \frac{1}{q!(q+r)!} \sum_{\sigma \in S_{q+r}} \sum_{\tau \in S_q} \operatorname{sgn}(\sigma) \operatorname{sgn}(\tau)(\sigma \tau)(\xi \otimes \eta)$$

Let $\mu = \sigma \tau \in S_{q+r}$. For each μ , there are q! ways to write $\mu = \sigma \tau$ with $\sigma \in S_{q+r}$ and $\tau \in S_q$, because each $\tau \in S_q$ determines a unique σ by $\sigma = \mu \tau^{-1}$. Hence,

$$=q!\cdot\frac{1}{q!(q+r)!}\sum_{\mu\in S_{q+r}}\operatorname{sgn}(\mu)\mu(\xi\otimes\eta)=\mathcal{A}(\xi\otimes\eta)$$

Exercise 7.13. Let $\xi \in \Omega^q_p(\mathcal{M})$, $\eta \in \Omega^r_p(\mathcal{M})$ and $\omega \in \Omega^s_p(\mathcal{M})$. Show that

- (1) $\xi \wedge \xi = 0$ if q is odd.
- (2) $\xi \wedge \eta = (-1)^{qr} \eta \wedge \xi$.
- (3) $(\xi \wedge \eta) \wedge \omega = \xi \wedge (\eta \wedge \omega)$.

Proof.

(1) Let $V_1, \dots, V_{2q} \in T_p \mathcal{M}$.

$$\begin{split} (\xi \wedge \xi)(V_1, \cdots, V_{2q}) &= \frac{1}{(q!)^2} \sum_{P \in S_{2q}} \operatorname{sgn}(P) \xi(V_{P(1)}, \cdots, V_{P(q)}) \xi(V_{P(q+1)}, \cdots, V_{P(2q)}) \\ &= -\frac{1}{(q!)^2} \sum_{P \in S_{2q}} \operatorname{sgn}(P) \xi(V_{P(q+1)}, \cdots, V_{P(2q)}) \xi(V_{P(1)}, \cdots, V_{P(q)}) = 0 \end{split}$$

Here, changing permutation

$$(P(1), \cdots, P(q), P(q+1), \cdots, P(2q))$$

to

$$(P(q+1), \cdots, P(2q), P(1), \cdots, P(q))$$

requires q^2 swaps. Hence, if q is odd, additional (-1) factor arises.

- (2) In the exactly same manner, you can show that $(-1)^{qr}$ factor arises from changing the order of two forms.
- (3) By definition,

$$\begin{split} (\xi \wedge \eta) \wedge \omega) &= \frac{(q+r+s)!}{(q+r)!s!} \mathcal{A}((\xi \wedge \eta) \otimes \omega) \\ &= \frac{(q+r+s)!}{(q+r)!s!} \frac{(q+r)!}{q!r!} \mathcal{A}(\mathcal{A}(\xi \otimes \eta) \otimes \omega) \\ &= \frac{(q+r+s)!}{q!r!s!} \mathcal{A}(\xi \otimes \eta \otimes \omega) \quad (\because \textbf{Lemma 7.12}) \end{split}$$

You can yield same expression for $\xi \wedge (\eta \wedge \omega)$.