Advanced Machine Learning

Ensemble Methods

Decision Trees, Averaging, Bagging

Outline

1. Decision Trees

2. Bagging

- We can reduce the variance and hence improve our generalisation error by averaging over different learning machines
- There are a number of different techniques for doing this that go by the name of ensemble methods or ensemble learning
- This trick can be used with many different learning machines, but is clearly most practical for machine that can be trained quickly

- We can reduce the variance and hence improve our generalisation error by averaging over different learning machines
- There are a number of different techniques for doing this that go by the name of ensemble methods or ensemble learning
- This trick can be used with many different learning machines, but is clearly most practical for machine that can be trained quickly

- We can reduce the variance and hence improve our generalisation error by averaging over different learning machines
- There are a number of different techniques for doing this that go by the name of ensemble methods or ensemble learning
- This trick can be used with many different learning machines, but is clearly most practical for machine that can be trained quickly

- We can reduce the variance and hence improve our generalisation error by averaging over different learning machines
- There are a number of different techniques for doing this that go by the name of ensemble methods or ensemble learning
- This trick can be used with many different learning machines, but is clearly most practical for machine that can be trained quickly
- (nevertheless, even for deep learning taking the average response of many machines is usually done to win competitions)

- One set of algorithms where ensembling are common place are decision trees
- These are particularly good for handling messy data
 - ★ categorical data
 - ★ mixture of data types
 - ★ missing data
 - ★ large data sets
 - multiclass
- In many competitions ensembled trees, particularly random forests and $gradient\ boosting$ beat all other techniques

- One set of algorithms where ensembling are common place are decision trees
- These are particularly good for handling messy data
 - ★ categorical data
 - ★ mixture of data types
 - ★ missing data
 - ★ large data sets
 - multiclass
- In many competitions ensembled trees, particularly random forests and $gradient\ boosting$ beat all other techniques

- One set of algorithms where ensembling are common place are decision trees
- These are particularly good for handling messy data
 - ★ categorical data
 - * mixture of data types
 - ★ missing data
 - ★ large data sets
 - multiclass
- In many competitions ensembled trees, particularly random forests and $gradient\ boosting$ beat all other techniques

- One set of algorithms where ensembling are common place are decision trees
- These are particularly good for handling messy data
 - ★ categorical data
 - ★ mixture of data types
 - ⋆ missing data
 - ★ large data sets
 - ★ multiclass
- In many competitions ensembled trees, particularly random forests and $gradient\ boosting$ beat all other techniques

- One set of algorithms where ensembling are common place are decision trees
- These are particularly good for handling messy data
 - ★ categorical data
 - ★ mixture of data types
 - ⋆ missing data
 - ★ large data sets
 - ★ multiclass
- In many competitions ensembled trees, particularly random forests and $gradient\ boosting$ beat all other techniques

- One set of algorithms where ensembling are common place are decision trees
- These are particularly good for handling messy data
 - ★ categorical data
 - ★ mixture of data types
 - ★ missing data
 - ★ large data sets
 - * multiclass
- In many competitions ensembled trees, particularly random forests and $gradient\ boosting$ beat all other techniques

- One set of algorithms where ensembling are common place are decision trees
- These are particularly good for handling messy data
 - ★ categorical data
 - ★ mixture of data types
 - ★ missing data
 - ★ large data sets
 - multiclass
- In many competitions ensembled trees, particularly random forests and $gradient\ boosting$ beat all other techniques

- A decision trees builds a binary tree to partition the data, $\mathcal{D} = \{(\boldsymbol{x}_i, y_i) | i = 1, ..., m\}$, into the leaves of the tree
- Each decision rule depends on a single feature
- ullet At each step the rule is chosen that maximise the "purity" of the leaf nodes
- Decisions can be made on numerical values or categories

- A decision trees builds a binary tree to partition the data, $\mathcal{D} = \{(\boldsymbol{x}_i, y_i) | i = 1, ..., m\}$, into the leaves of the tree
- Each decision rule depends on a single feature
- ullet At each step the rule is chosen that maximise the "purity" of the leaf nodes
- Decisions can be made on numerical values or categories

- A decision trees builds a binary tree to partition the data, $\mathcal{D} = \{(\boldsymbol{x}_i, y_i) | i = 1, ..., m\}$, into the leaves of the tree
- Each decision rule depends on a single feature
- At each step the rule is chosen that maximise the "purity" of the leaf nodes
- Decisions can be made on numerical values or categories

- A decision trees builds a binary tree to partition the data, $\mathcal{D} = \{(\boldsymbol{x}_i, y_i) | i = 1, ..., m\}$, into the leaves of the tree
- Each decision rule depends on a single feature
- ullet At each step the rule is chosen that maximise the "purity" of the leaf nodes
- Decisions can be made on numerical values or categories

Partitioning

- Consider a classification problems with examples (x,y) belonging to some classes $y \in \mathcal{C}$
- The data is partitioned by the tree into leaves

ullet The proportion of data points in leaf ${\mathcal L}$ belonging to class c is

$$p_c(\mathcal{L}) = \frac{1}{|\mathcal{L}|} \sum_{(\boldsymbol{x}, y) \in \mathcal{L}} [y = c]$$

where $[\![y=c]\!]=1$ if y=c and 0 otherwise

Partitioning

- Consider a classification problems with examples (x,y) belonging to some classes $y \in \mathcal{C}$
- The data is partitioned by the tree into leaves

ullet The proportion of data points in leaf ${\mathcal L}$ belonging to class c is

$$p_c(\mathcal{L}) = \frac{1}{|\mathcal{L}|} \sum_{(\boldsymbol{x}, y) \in \mathcal{L}} [y = c]$$

where $[\![y=c]\!]=1$ if y=c and 0 otherwise

Partitioning

- Consider a classification problems with examples (x,y) belonging to some classes $y \in \mathcal{C}$
- The data is partitioned by the tree into leaves

ullet The proportion of data points in leaf ${\cal L}$ belonging to class c is

$$p_c(\mathcal{L}) = \frac{1}{|\mathcal{L}|} \sum_{(\boldsymbol{x}, y) \in \mathcal{L}} [y = c]$$

where [y=c]=1 if y=c and 0 otherwise

Leaf Purity

- Two different purity measures, $Q_m(\mathcal{L})$, for a leaf node \mathcal{L} are commonly used
 - ★ Gini index

$$Q_m^g(\mathcal{L}) = \sum_{c \in \mathcal{C}} p_c(\mathcal{L}) (1 - p_c(\mathcal{L}))$$

 $\begin{array}{c|c}
 & p_c (1 - p_c) \\
\hline
 & p_c \\
\hline
 & 1
\end{array}$

Cross-entropy

$$Q_m^e(\mathcal{L}) = -\sum_{c \in \mathcal{C}} p_c(\mathcal{L}) \log(p_c(\mathcal{L}))$$

Leaf Purity

- Two different purity measures, $Q_m(\mathcal{L})$, for a leaf node \mathcal{L} are commonly used
 - **★ Gini index**

$$Q_m^g(\mathcal{L}) = \sum_{c \in \mathcal{C}} p_c(\mathcal{L}) (1 - p_c(\mathcal{L}))$$

Cross-entropy

$$Q_m^e(\mathcal{L}) = -\sum_{c \in \mathcal{C}} p_c(\mathcal{L}) \log(p_c(\mathcal{L}))$$

Leaf Purity

- Two different purity measures, $Q_m(\mathcal{L})$, for a leaf node \mathcal{L} are commonly used
 - ★ Gini index

$$Q_m^g(\mathcal{L}) = \sum_{c \in \mathcal{C}} p_c(\mathcal{L}) (1 - p_c(\mathcal{L}))$$

Cross-entropy

$$Q_m^e(\mathcal{L}) = -\sum_{c \in \mathcal{C}} p_c(\mathcal{L}) \log(p_c(\mathcal{L}))$$

- Decision trees are very useful for exploring new data sets—the tree shows what features are most important
- Decision trees can also be used for regression problems
 - * Approximate function by a series of rules
 - * Reduce variance between data points assigned to leaf nodes
- CART is a classic implementation that builds Classification And Regression Trees
- Decision trees depend strongly on the early decisions and so vary a lot for slightly different data sets

- Decision trees are very useful for exploring new data sets—the tree shows what features are most important
- Decision trees can also be used for regression problems
 - * Approximate function by a series of rules
 - * Reduce variance between data points assigned to leaf nodes
- CART is a classic implementation that builds Classification And Regression Trees
- Decision trees depend strongly on the early decisions and so vary a lot for slightly different data sets

- Decision trees are very useful for exploring new data sets—the tree shows what features are most important
- Decision trees can also be used for regression problems
 - * Approximate function by a series of rules
 - * Reduce variance between data points assigned to leaf nodes
- CART is a classic implementation that builds Classification And Regression Trees
- Decision trees depend strongly on the early decisions and so vary a lot for slightly different data sets

- Decision trees are very useful for exploring new data sets—the tree shows what features are most important
- Decision trees can also be used for regression problems
 - * Approximate function by a series of rules
 - * Reduce variance between data points assigned to leaf nodes
- CART is a classic implementation that builds Classification And Regression Trees
- Decision trees depend strongly on the early decisions and so vary a lot for slightly different data sets

- Decision trees are very useful for exploring new data sets—the tree shows what features are most important
- Decision trees can also be used for regression problems
 - * Approximate function by a series of rules
 - * Reduce variance between data points assigned to leaf nodes
- CART is a classic implementation that builds Classification And Regression Trees
- Decision trees depend strongly on the early decisions and so vary a lot for slightly different data sets

- Decision trees are very useful for exploring new data sets—the tree shows what features are most important
- Decision trees can also be used for regression problems
 - * Approximate function by a series of rules
 - * Reduce variance between data points assigned to leaf nodes
- CART is a classic implementation that builds Classification And Regression Trees
- Decision trees depend strongly on the early decisions and so vary a lot for slightly different data sets

- Decision trees are very useful for exploring new data sets—the tree shows what features are most important
- Decision trees can also be used for regression problems
 - * Approximate function by a series of rules
 - * Reduce variance between data points assigned to leaf nodes
- CART is a classic implementation that builds Classification And Regression Trees
- Decision trees depend strongly on the early decisions and so vary a lot for slightly different data sets

Observations

- Decision trees are very useful for exploring new data sets—the tree shows what features are most important
- Decision trees can also be used for regression problems
 - * Approximate function by a series of rules
 - * Reduce variance between data points assigned to leaf nodes
- CART is a classic implementation that builds Classification And Regression Trees
- Decision trees depend strongly on the early decisions and so vary a lot for slightly different data sets—high variance

Outline

- 1. Decision Trees
- 2. Bagging

- By taking the mean over many samples we can reduce the variance and thus improve our generalisation performance
- To get a feel for this consider estimating the mean of a random variable, X, from a number of samples (n=5 in the example below)

- By taking the mean over many samples we can reduce the variance and thus improve our generalisation performance
- To get a feel for this consider estimating the mean of a random variable, X, from a number of samples (n=5 in the example below)

- By taking the mean over many samples we can reduce the variance and thus improve our generalisation performance
- To get a feel for this consider estimating the mean of a random variable, X, from a number of samples (n=5 in the example below)

- By taking the mean over many samples we can reduce the variance and thus improve our generalisation performance
- To get a feel for this consider estimating the mean of a random variable, X, from a number of samples (n=5 in the example below)

- By taking the mean over many samples we can reduce the variance and thus improve our generalisation performance
- To get a feel for this consider estimating the mean of a random variable, X, from a number of samples (n=5 in the example below)

- By taking the mean over many samples we can reduce the variance and thus improve our generalisation performance
- To get a feel for this consider estimating the mean of a random variable, X, from a number of samples (n=5 in the example below)

- By taking the mean over many samples we can reduce the variance and thus improve our generalisation performance
- To get a feel for this consider estimating the mean of a random variable, X, from a number of samples (n=5 in the example below)

- By taking the mean over many samples we can reduce the variance and thus improve our generalisation performance
- To get a feel for this consider estimating the mean of a random variable, X, from a number of samples (n=5 in the example below)

- By taking the mean over many samples we can reduce the variance and thus improve our generalisation performance
- To get a feel for this consider estimating the mean of a random variable, X, from a number of samples (n=5 in the example below)

- By taking the mean over many samples we can reduce the variance and thus improve our generalisation performance
- To get a feel for this consider estimating the mean of a random variable, X, from a number of samples (n=5 in the example below)

- By taking the mean over many samples we can reduce the variance and thus improve our generalisation performance
- To get a feel for this consider estimating the mean of a random variable, X, from a number of samples (n=5 in the example below)

- By taking the mean over many samples we can reduce the variance and thus improve our generalisation performance
- To get a feel for this consider estimating the mean of a random variable, X, from a number of samples (n=5 in the example below)

- By taking the mean over many samples we can reduce the variance and thus improve our generalisation performance
- To get a feel for this consider estimating the mean of a random variable, X, from a number of samples (n=5 in the example below)

- By taking the mean over many samples we can reduce the variance and thus improve our generalisation performance
- To get a feel for this consider estimating the mean of a random variable, X, from a number of samples (n=5 in the example below)

- By taking the mean over many samples we can reduce the variance and thus improve our generalisation performance
- To get a feel for this consider estimating the mean of a random variable, X, from a number of samples (n=5 in the example below)

- By taking the mean over many samples we can reduce the variance and thus improve our generalisation performance
- To get a feel for this consider estimating the mean of a random variable, X, from a number of samples (n=5 in the example below)

- By taking the mean over many samples we can reduce the variance and thus improve our generalisation performance
- To get a feel for this consider estimating the mean of a random variable, X, from a number of samples (n=5 in the example below)

• The expected value of the mean, $\hat{\mu}_n$, of n random **independent** variables, X_i , is the expected value $\mu = \mathbb{E}[X_i]$

$$\mathbb{E}[\hat{\mu}_n] = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n}\sum_{i=1}^n \mathbb{E}[X_i] = \frac{1}{n}\sum_{i=1}^n \mu = \mu$$

$$\frac{1}{n^2} \mathbb{E} \left[\left(\sum_{i=1}^n (X_i - \mu) \right)^2 \right] = \frac{1}{n^2} \mathbb{E} \left[\sum_{i=1}^n (X_i - \mu)^2 + \sum_{i=1}^n \sum_{\substack{j=1\\j \neq i}}^n (X_i - \mu)(X_j - \mu) \right] \\
= \frac{1}{n^2} \sum_{i=1}^n \left(\mathbb{E} \left[(X_i - \mu)^2 \right] + \sum_{\substack{j=1\\j \neq i}}^n \mathbb{E} [X_i - \mu] \mathbb{E} [X_j - \mu] \right) \\
= \frac{1}{n^2} \sum_{i=1}^n \sigma^2 = \frac{1}{n} \sigma^2$$

• The expected value of the mean, $\hat{\mu}_n$, of n random **independent** variables, X_i , is the expected value $\mu = \mathbb{E}[X_i]$

$$\mathbb{E}[\hat{\mu}_n] = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n}\sum_{i=1}^n \mathbb{E}[X_i] = \frac{1}{n}\sum_{i=1}^n \mu = \mu$$

$$\frac{1}{n^2} \mathbb{E} \left[\left(\sum_{i=1}^n (X_i - \mu) \right)^2 \right] = \frac{1}{n^2} \mathbb{E} \left[\sum_{i=1}^n (X_i - \mu)^2 + \sum_{i=1}^n \sum_{\substack{j=1\\j \neq i}}^n (X_i - \mu)(X_j - \mu) \right] \\
= \frac{1}{n^2} \sum_{i=1}^n \left(\mathbb{E} \left[(X_i - \mu)^2 \right] + \sum_{\substack{j=1\\j \neq i}}^n \mathbb{E} [X_i - \mu] \mathbb{E} [X_j - \mu] \right) \\
= \frac{1}{n^2} \sum_{i=1}^n \sigma^2 = \frac{1}{n} \sigma^2$$

• The expected value of the mean, $\hat{\mu}_n$, of n random **independent** variables, X_i , is the expected value $\mu = \mathbb{E}[X_i]$

$$\mathbb{E}[\hat{\mu}_n] = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n}\sum_{i=1}^n \mathbb{E}[X_i] = \frac{1}{n}\sum_{i=1}^n \mu = \mu$$

$$\frac{1}{n^2} \mathbb{E} \left[\left(\sum_{i=1}^n (X_i - \mu) \right)^2 \right] = \frac{1}{n^2} \mathbb{E} \left[\sum_{i=1}^n (X_i - \mu)^2 + \sum_{i=1}^n \sum_{\substack{j=1 \ j \neq i}}^n (X_i - \mu)(X_j - \mu) \right]
= \frac{1}{n^2} \sum_{i=1}^n \left(\mathbb{E} \left[(X_i - \mu)^2 \right] + \sum_{\substack{j=1 \ j \neq i}}^n \mathbb{E} [X_i - \mu] \mathbb{E} [X_j - \mu] \right)
= \frac{1}{n^2} \sum_{i=1}^n \sigma^2 = \frac{1}{n} \sigma^2$$

• The expected value of the mean, $\hat{\mu}_n$, of n random **independent** variables, X_i , is the expected value $\mu = \mathbb{E}[X_i]$

$$\mathbb{E}[\hat{\mu}_n] = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n}\sum_{i=1}^n \mathbb{E}[X_i] = \frac{1}{n}\sum_{i=1}^n \mu = \mu$$

$$\frac{1}{n^2} \mathbb{E} \left[\left(\sum_{i=1}^n (X_i - \mu) \right)^2 \right] = \frac{1}{n^2} \mathbb{E} \left[\sum_{i=1}^n (X_i - \mu)^2 + \sum_{i=1}^n \sum_{\substack{j=1\\j \neq i}}^n (X_i - \mu)(X_j - \mu) \right]
= \frac{1}{n^2} \sum_{i=1}^n \left(\mathbb{E} \left[(X_i - \mu)^2 \right] + \sum_{\substack{j=1\\j \neq i}}^n \mathbb{E} [X_i - \mu] \mathbb{E} [X_j - \mu] \right)
= \frac{1}{n^2} \sum_{i=1}^n \sigma^2 = \frac{1}{n} \sigma^2$$

• The expected value of the mean, $\hat{\mu}_n$, of n random **independent** variables, X_i , is the expected value $\mu = \mathbb{E}[X_i]$

$$\mathbb{E}[\hat{\mu}_n] = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n}\sum_{i=1}^n \mathbb{E}[X_i] = \frac{1}{n}\sum_{i=1}^n \mu = \mu$$

$$\frac{1}{n^2} \mathbb{E} \left[\left(\sum_{i=1}^n (X_i - \mu) \right)^2 \right] = \frac{1}{n^2} \mathbb{E} \left[\sum_{i=1}^n (X_i - \mu)^2 + \sum_{i=1}^n \sum_{\substack{j=1\\j \neq i}}^n (X_i - \mu)(X_j - \mu) \right] \\
= \frac{1}{n^2} \sum_{i=1}^n \left(\mathbb{E} \left[(X_i - \mu)^2 \right] + \sum_{\substack{j=1\\j \neq i}}^n \mathbb{E} [X_i - \mu] \mathbb{E} [X_j - \mu] \right) \\
= \frac{1}{n^2} \sum_{i=1}^n \sigma^2 = \frac{1}{n} \sigma^2$$

• The expected value of the mean, $\hat{\mu}_n$, of n random **independent** variables, X_i , is the expected value $\mu = \mathbb{E}[X_i]$

$$\mathbb{E}[\hat{\mu}_n] = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n}\sum_{i=1}^n \mathbb{E}[X_i] = \frac{1}{n}\sum_{i=1}^n \mu = \mu$$

$$\frac{1}{n^2} \mathbb{E} \left[\left(\sum_{i=1}^n (X_i - \mu) \right)^2 \right] = \frac{1}{n^2} \mathbb{E} \left[\sum_{i=1}^n (X_i - \mu)^2 + \sum_{i=1}^n \sum_{\substack{j=1\\j \neq i}}^n (X_i - \mu)(X_j - \mu) \right] \\
= \frac{1}{n^2} \sum_{i=1}^n \left(\mathbb{E} \left[(X_i - \mu)^2 \right] + \sum_{\substack{j=1\\j \neq i}}^n \mathbb{E} [X_i - \mu] \mathbb{E} [X_j - \mu] \right) \\
= \frac{1}{n^2} \sum_{i=1}^n \sigma^2 = \frac{1}{n} \sigma^2$$

- To reduce the variance in a learning machine (such as a decision tree) we can average over many machines
- To average many machines they must learn something different
- We only have one data set, but we can resample from the data set to make them look a bit different—this is known a bootstrapping

- To reduce the variance in a learning machine (such as a decision tree) we can average over many machines
- To average many machines they must learn something different
- We only have one data set, but we can resample from the data set to make them look a bit different—this is known a bootstrapping

- To reduce the variance in a learning machine (such as a decision tree) we can average over many machines
- To average many machines they must learn something different
- We only have one data set, but we can resample from the data set to make them look a bit different—this is known a bootstrapping

- To reduce the variance in a learning machine (such as a decision tree) we can average over many machines
- To average many machines they must learn something different
- We only have one data set, but we can resample from the data set to make them look a bit different—this is known a bootstrapping

- To reduce the variance in a learning machine (such as a decision tree) we can average over many machines
- To average many machines they must learn something different
- We only have one data set, but we can resample from the data set to make them look a bit different—this is known a bootstrapping

```
(\boldsymbol{x}_1, y_1) \ (\boldsymbol{x}_2, y_2) \ (\boldsymbol{x}_3, y_3) \ (\boldsymbol{x}_4, y_4) \ (\boldsymbol{x}_5, y_5) \ (\boldsymbol{x}_6, y_6)
```

- To reduce the variance in a learning machine (such as a decision tree) we can average over many machines
- To average many machines they must learn something different
- We only have one data set, but we can resample from the data set to make them look a bit different—this is known a bootstrapping

$$(m{x}_5,\,y_5)$$
 $(m{x}_1,\,y_1) \,\,\, (m{x}_2,\,y_2) \,\,\, (m{x}_3,\,y_3) \,\,\, (m{x}_4,\,y_4) \,\, (m{x}_5,\,y_5) \,\,\, (m{x}_6,\,y_6)$

- To reduce the variance in a learning machine (such as a decision tree) we can average over many machines
- To average many machines they must learn something different
- We only have one data set, but we can resample from the data set to make them look a bit different—this is known a bootstrapping

$$(m{x}_5,\,y_5)$$
 $(m{x}_4,\,y_4)$ $(m{x}_1,\,y_1)$ $(m{x}_2,\,y_2)$ $(m{x}_3,\,y_3)$ $(m{x}_4,\,y_4)$ $(m{x}_5,\,y_5)$ $(m{x}_6,\,y_6)$

- To reduce the variance in a learning machine (such as a decision tree) we can average over many machines
- To average many machines they must learn something different
- We only have one data set, but we can resample from the data set to make them look a bit different—this is known a bootstrapping

$$(x_5, y_5) (x_4, y_4) (x_5, y_5)$$

$$(\boldsymbol{x}_1, y_1) \ (\boldsymbol{x}_2, y_2) \ (\boldsymbol{x}_3, y_3) \ (\boldsymbol{x}_4, y_4) \ (\boldsymbol{x}_5, y_5) \ (\boldsymbol{x}_6, y_6)$$

- To reduce the variance in a learning machine (such as a decision tree) we can average over many machines
- To average many machines they must learn something different
- We only have one data set, but we can resample from the data set to make them look a bit different—this is known a bootstrapping

$$(\boldsymbol{x}_5, y_5) (\boldsymbol{x}_4, y_4) (\boldsymbol{x}_5, y_5) (\boldsymbol{x}_6, y_6)$$

$$(\boldsymbol{x}_1, y_1) \ (\boldsymbol{x}_2, y_2) \ (\boldsymbol{x}_3, y_3) \ (\boldsymbol{x}_4, y_4) \ (\boldsymbol{x}_5, y_5) \ (\boldsymbol{x}_6, y_6)$$

- To reduce the variance in a learning machine (such as a decision tree) we can average over many machines
- To average many machines they must learn something different
- We only have one data set, but we can resample from the data set to make them look a bit different—this is known a bootstrapping

$$(\boldsymbol{x}_5, y_5) \ (\boldsymbol{x}_4, y_4) \ (\boldsymbol{x}_5, y_5) \ (\boldsymbol{x}_6, y_6) \ (\boldsymbol{x}_2, y_2)$$

$$(\boldsymbol{x}_1, y_1)$$
 (\boldsymbol{x}_2, y_2) (\boldsymbol{x}_3, y_3) (\boldsymbol{x}_4, y_4) (\boldsymbol{x}_5, y_5) (\boldsymbol{x}_6, y_6)

- To reduce the variance in a learning machine (such as a decision tree) we can average over many machines
- To average many machines they must learn something different
- We only have one data set, but we can resample from the data set to make them look a bit different—this is known a bootstrapping

$$(\boldsymbol{x}_5, y_5) (\boldsymbol{x}_4, y_4) (\boldsymbol{x}_5, y_5) (\boldsymbol{x}_6, y_6) (\boldsymbol{x}_2, y_2) (\boldsymbol{x}_1, y_1)$$

$$(x_1, y_1)$$
 (x_2, y_2) (x_3, y_3) (x_4, y_4) (x_5, y_5) (x_6, y_6)

- To reduce the variance in a learning machine (such as a decision tree) we can average over many machines
- To average many machines they must learn something different
- We only have one data set, but we can resample from the data set to make them look a bit different—this is known a bootstrapping

$$(\boldsymbol{x}_5,\,y_5) \;\; (\boldsymbol{x}_4,\,y_4) \;\; (\boldsymbol{x}_5,\,y_5) \;\; (\boldsymbol{x}_6,\,y_6) \;\; (\boldsymbol{x}_2,\,y_2) \;\; (\boldsymbol{x}_1,\,y_1) \ (\boldsymbol{x}_1,\,y_1) \;\; (\boldsymbol{x}_5,\,y_5) \;\; (\boldsymbol{x}_3,\,y_3) \;\; (\boldsymbol{x}_2,\,y_2) \;\; (\boldsymbol{x}_5,\,y_5) \;\; (\boldsymbol{x}_2,\,y_2) \ (\boldsymbol{x}_1,\,y_1) \;\; (\boldsymbol{x}_2,\,y_2) \;\; (\boldsymbol{x}_3,\,y_3) \;\; (\boldsymbol{x}_4,\,y_4) \;\; (\boldsymbol{x}_5,\,y_5) \;\; (\boldsymbol{x}_6,\,y_6)$$

- To reduce the variance in a learning machine (such as a decision tree) we can average over many machines
- To average many machines they must learn something different
- We only have one data set, but we can resample from the data set to make them look a bit different—this is known a bootstrapping

$$(\boldsymbol{x}_5,\,y_5) \;\; (\boldsymbol{x}_4,\,y_4) \;\; (\boldsymbol{x}_5,\,y_5) \;\; (\boldsymbol{x}_6,\,y_6) \;\; (\boldsymbol{x}_2,\,y_2) \;\; (\boldsymbol{x}_1,\,y_1) \\ (\boldsymbol{x}_1,\,y_1) \;\; (\boldsymbol{x}_5,\,y_5) \;\; (\boldsymbol{x}_3,\,y_3) \;\; (\boldsymbol{x}_2,\,y_2) \;\; (\boldsymbol{x}_5,\,y_5) \;\; (\boldsymbol{x}_2,\,y_2) \\ (\boldsymbol{x}_1,\,y_1) \;\; (\boldsymbol{x}_2,\,y_2) \;\; (\boldsymbol{x}_3,\,y_3) \;\; (\boldsymbol{x}_4,\,y_4) \;\; (\boldsymbol{x}_5,\,y_5) \;\; (\boldsymbol{x}_6,\,y_6) \\ (\boldsymbol{x}_1,\,y_1) \;\; (\boldsymbol{x}_2,\,y_2) \;\; (\boldsymbol{x}_3,\,y_3) \;\; (\boldsymbol{x}_4,\,y_4) \\ (\boldsymbol{x}_1,\,y_1) \;\; (\boldsymbol{x}_2,\,y_2) \;\; (\boldsymbol{x}_3,\,y_3) \;\; (\boldsymbol{x}_2,\,y_2) \;\; (\boldsymbol{x}_3,\,y_3) \;\; (\boldsymbol{x}_4,\,y_4) \\ (\boldsymbol{x}_1,\,y_1) \;\; (\boldsymbol{x}_2,\,y_2) \;\; (\boldsymbol{x}_3,\,y_3) \;\; (\boldsymbol{x}_2,\,y_2) \;\; (\boldsymbol{x}_3,\,y_3) \;\; (\boldsymbol{x}_4,\,y_4) \\ (\boldsymbol{x}_1,\,y_1) \;\; (\boldsymbol{x}_2,\,y_2) \;\; (\boldsymbol{x}_3,\,y_3) \;\; (\boldsymbol{x}_2,\,y_2) \;\; (\boldsymbol{x}_3,\,y_3) \;\; (\boldsymbol{x}_4,\,y_4) \\ (\boldsymbol{x}_1,\,y_2) \;\; (\boldsymbol{x}_2,\,y_2) \;\; (\boldsymbol{x}_3,\,y_3) \;\; (\boldsymbol{x}_3,\,y_3) \;\; (\boldsymbol{x}_4,\,y_4) \\ (\boldsymbol{x}_1,\,y_2) \;\; (\boldsymbol{x}_2,\,y_2) \;\; (\boldsymbol{x}_3,\,y_3) \;\; (\boldsymbol{x}_3,\,y_3) \;\; (\boldsymbol{x}_4,\,y_4) \\ (\boldsymbol{x}_1,\,y_2) \;\; (\boldsymbol{x}_2,\,y_2) \;\; (\boldsymbol{x}_3,\,y_3) \;\; (\boldsymbol{x}_3,\,y_3) \;\; (\boldsymbol{x}_4,\,y_4) \\ (\boldsymbol{x}_1,\,y_2) \;\; (\boldsymbol{x}_2,\,y_2) \;\; (\boldsymbol{x}_3,\,y_3) \;\; (\boldsymbol{x}_3,\,y_3) \;\; (\boldsymbol{x}_4,\,y_4) \\ (\boldsymbol{x}_1,\,y_2) \;\; (\boldsymbol{x}_2,\,y_2) \;\; (\boldsymbol{x}_3,\,y_3) \;\; (\boldsymbol{x}_3,\,y_3) \;\; (\boldsymbol{x}_4,\,y_4) \\ (\boldsymbol{x}_1,\,y_2) \;\; (\boldsymbol{x}_2,\,y_2) \;\; (\boldsymbol{x}_3,\,y_3) \;\; (\boldsymbol{x}_3,\,y_3) \;\; (\boldsymbol{x}_4,\,y_4) \\ (\boldsymbol{x}_1,\,y_2) \;\; (\boldsymbol{x}_2,\,y_2) \;\; (\boldsymbol{x}_3,\,y_3) \;\; (\boldsymbol{x}_3,\,y_3) \;\; (\boldsymbol{x}_4,\,y_4) \\ (\boldsymbol{x}_1,\,y_2) \;\; (\boldsymbol{x}_2,\,y_2) \;\; (\boldsymbol{x}_3,\,y_3) \;\; (\boldsymbol{x}_3,\,y_3) \;\; (\boldsymbol{x}_4,\,y_4) \\ (\boldsymbol{x}_1,\,y_2) \;\; (\boldsymbol{x}_2,\,y_2) \;\; (\boldsymbol{x}_3,\,y_3) \;\; (\boldsymbol{x}_3,\,y_3) \;\; (\boldsymbol{x}_4,\,y_4) \\ (\boldsymbol{x}_1,\,y_2) \;\; (\boldsymbol{x}_2,\,y_2) \;\; (\boldsymbol{x}_3,\,y_3) \;\; (\boldsymbol{x}_3,\,y_3) \;\; (\boldsymbol{x}_4,\,y_4) \\ (\boldsymbol{x}_1,\,y_2) \;\; (\boldsymbol{x}_2,\,y_2) \;\; (\boldsymbol{x}_3,\,y_3) \;\; (\boldsymbol{x}_3,\,y_3) \;\; (\boldsymbol{x}_4,\,y_4) \\ (\boldsymbol{x}_1,\,y_2) \;\; (\boldsymbol{x}_2,\,y_3) \;\; (\boldsymbol{x}_3,\,y_3) \;\; (\boldsymbol{x}_3,\,y_3) \;\; (\boldsymbol{x}_4,\,y_4) \\ (\boldsymbol{x}_1,\,y_2) \;\; (\boldsymbol{x}_2,\,y_3) \;\; (\boldsymbol{x}_3,\,y_3) \;\; (\boldsymbol{x}_3,\,y_3) \;\; (\boldsymbol{x}_4,\,y_4) \\ (\boldsymbol{x}_1,\,y_2) \;\; (\boldsymbol{x}_2,\,y_3) \;\; (\boldsymbol{x}_3,\,y_3) \;\; (\boldsymbol{x}_3,\,y_3) \;\; (\boldsymbol{x}_4,\,y_4) \\ (\boldsymbol{x}_1,\,y_2) \;\; (\boldsymbol{x}_2,\,y_3) \;\; (\boldsymbol{x}_3,\,y_3) \;\; (\boldsymbol{x}_3,\,y_3) \;\; (\boldsymbol{x}_4,\,y_4) \\ (\boldsymbol{x}_1,\,y_2) \;\; (\boldsymbol{x}_2,\,y_3) \;\; (\boldsymbol{x}_3,\,y_3) \;\; (\boldsymbol{x}_3,\,y_3) \;\; (\boldsymbol{x}_4,\,y_4) \\ (\boldsymbol{x}_1,\,y_2) \;\; (\boldsymbol{x}_2,\,$$

- To reduce the variance in a learning machine (such as a decision tree) we can average over many machines
- To average many machines they must learn something different
- We only have one data set, but we can resample from the data set to make them look a bit different—this is known a bootstrapping

$$(m{x}_5,\,y_5) \;\; (m{x}_4,\,y_4) \;\; (m{x}_5,\,y_5) \;\; (m{x}_6,\,y_6) \;\; (m{x}_2,\,y_2) \;\; (m{x}_1,\,y_1) \ (m{x}_1,\,y_1) \;\; (m{x}_2,\,y_2) \;\; (m{x}_3,\,y_3) \;\; (m{x}_2,\,y_2) \;\; (m{x}_5,\,y_5) \;\; (m{x}_2,\,y_2) \ (m{x}_1,\,y_1) \;\; (m{x}_2,\,y_2) \;\; (m{x}_3,\,y_3) \;\; (m{x}_4,\,y_4) \;\; (m{x}_3,\,y_3) \;\; (m{x}_4,\,y_4) \ (m{x}_4,\,y_4) \;\; (m{x}_3,\,y_3) \;\; (m{x}_1,\,y_1) \;\; (m{x}_6,\,y_6) \;\; (m{x}_4,\,y_4) \;\; (m{x}_6,\,y_6) \ (m{x}_4,\,y_4) \;\; (m{x}_6,\,y_6) \;\; \;\; (m{x}_6,\,y_6)$$

- To reduce the variance in a learning machine (such as a decision tree) we can average over many machines
- To average many machines they must learn something different
- We only have one data set, but we can resample from the data set to make them look a bit different—this is known a bootstrapping

$$(m{x}_5,\,y_5) \; (m{x}_4,\,y_4) \; (m{x}_5,\,y_5) \; (m{x}_6,\,y_6) \; (m{x}_2,\,y_2) \; (m{x}_1,\,y_1) \ (m{x}_1,\,y_1) \; (m{x}_2,\,y_2) \; (m{x}_3,\,y_3) \; (m{x}_2,\,y_2) \; (m{x}_5,\,y_5) \; (m{x}_2,\,y_2) \ (m{x}_1,\,y_1) \; (m{x}_2,\,y_2) \; (m{x}_3,\,y_3) \; (m{x}_4,\,y_4) \; (m{x}_5,\,y_5) \; (m{x}_2,\,y_2) \ (m{x}_4,\,y_4) \; (m{x}_3,\,y_3) \; (m{x}_1,\,y_1) \; (m{x}_3,\,y_3) \; (m{x}_4,\,y_4) \; (m{x}_6,\,y_6) \; (m{x}_4,\,y_4) \; (m{x}_6,\,y_6) \ (m{x}_4,\,y_4) \; (m{x}_6,\,y_6) \; (m{x}_4,\,y_4) \; (m{x}_6,\,y_6) \ (m{x}_2,\,y_2) \ (m{x}_3,\,y_3) \; (m{x}_2,\,y_2) \; (m{x}_3,\,y_3) \; (m{x}_4,\,y_4) \; (m{x}_6,\,y_6) \; (m{x}_2,\,y_2) \ (m{x}_3,\,y_3) \; (m{x}_4,\,y_4) \; (m{x}_6,\,y_6) \; (m{x}_4,\,y_4) \; (m{x}_6,\,y_6) \; (m{x}_2,\,y_2) \ (m{x}_3,\,y_3) \; (m{x}_4,\,y_4) \; (m{x}_6,\,y_6) \; (m{x}_4,\,y_4) \; (m{x}_6,\,y_6) \; (m{x}_4,\,y_4) \ (m{x}_6,\,y_6) \; (m{x}_4,\,y_4) \; (m{x}_6,\,y_6) \; (m{$$

- Bootstrapping is an early form of data augmentation
- For classification we get our different machines to vote
- For regression we can average the prediction of different machines
- Bagging improves the performance of decision trees
- However, we can usually do better using Boosting
- This is because our decision trees are correlated

- Bootstrapping is an early form of data augmentation
- For classification we get our different machines to vote
- For regression we can average the prediction of different machines
- Bagging improves the performance of decision trees
- However, we can usually do better using Boosting
- This is because our decision trees are correlated

- Bootstrapping is an early form of data augmentation
- For classification we get our different machines to vote
- For regression we can average the prediction of different machines
- Bagging improves the performance of decision trees
- However, we can usually do better using Boosting
- This is because our decision trees are correlated

- Bootstrapping is an early form of data augmentation
- For classification we get our different machines to vote
- For regression we can average the prediction of different machines
- Bagging improves the performance of decision trees
- However, we can usually do better using Boosting
- This is because our decision trees are correlated

- Bootstrapping is an early form of data augmentation
- For classification we get our different machines to vote
- For regression we can average the prediction of different machines
- Bagging improves the performance of decision trees
- However, we can usually do better using Boosting
- This is because our decision trees are correlated

- Bootstrapping is an early form of data augmentation
- For classification we get our different machines to vote
- For regression we can average the prediction of different machines
- Bagging improves the performance of decision trees
- However, we can usually do better using Boosting
- This is because our decision trees are correlated

Variance of Positive Correlated Variables

• If we calculate the variance of the mean of positively correlated variables with correlation ρ we find

$$\frac{1}{n^2} \mathbb{E}\left[\left(\sum_{i=1}^n X_i - \mu\right)^2\right] = \rho \sigma^2 + \frac{1-\rho}{n} \sigma^2$$

$$(\rho = \mathbb{E}[(X_i - \mu)(X_j - \mu)]/\sigma^2)$$

- As $n \to \infty$ the second term vanishes, but we are left with the first term
- If we want to do well we need our learning machines to be unbiased and decorrelated

Variance of Positive Correlated Variables

• If we calculate the variance of the mean of positively correlated variables with correlation ρ we find

$$\frac{1}{n^2} \mathbb{E}\left[\left(\sum_{i=1}^n X_i - \mu\right)^2\right] = \rho \sigma^2 + \frac{1-\rho}{n} \sigma^2$$

$$(\rho = \mathbb{E}[(X_i - \mu)(X_j - \mu)]/\sigma^2)$$

- As $n \to \infty$ the second term vanishes, but we are left with the first term
- If we want to do well we need our learning machines to be unbiased and decorrelated

Variance of Positive Correlated Variables

• If we calculate the variance of the mean of positively correlated variables with correlation ρ we find

$$\frac{1}{n^2} \mathbb{E}\left[\left(\sum_{i=1}^n X_i - \mu\right)^2\right] = \rho \sigma^2 + \frac{1-\rho}{n} \sigma^2$$

$$(\rho = \mathbb{E}[(X_i - \mu)(X_j - \mu)]/\sigma^2)$$

- As $n \to \infty$ the second term vanishes, but we are left with the first term
- If we want to do well we need our learning machines to be unbiased and decorrelated

- In random forests we average much less correlated trees
- To do this for each tree we choose a subset of $p' \ll p$ of the features on which to split the tree
- Typically p' can range from 1 to \sqrt{p}
- The trees aren't that good, but are very decorrelated
- By averaging over a huge number of trees (order of 1000) we typically get good results
- Random Forest won (wins?) many competitions

- In random forests we average much less correlated trees
- To do this for each tree we choose a subset of $p' \ll p$ of the features on which to split the tree
- Typically p' can range from 1 to \sqrt{p}
- The trees aren't that good, but are very decorrelated
- By averaging over a huge number of trees (order of 1000) we typically get good results
- Random Forest won (wins?) many competitions

- In random forests we average much less correlated trees
- To do this for each tree we choose a subset of $p' \ll p$ of the features on which to split the tree
- Typically p' can range from 1 to \sqrt{p}
- The trees aren't that good, but are very decorrelated
- By averaging over a huge number of trees (order of 1000) we typically get good results
- Random Forest won (wins?) many competitions

- In random forests we average much less correlated trees
- To do this for each tree we choose a subset of $p' \ll p$ of the features on which to split the tree
- Typically p' can range from 1 to \sqrt{p}
- The trees aren't that good, but are very decorrelated
- By averaging over a huge number of trees (order of 1000) we typically get good results
- Random Forest won (wins?) many competitions

- In random forests we average much less correlated trees
- To do this for each tree we choose a subset of $p' \ll p$ of the features on which to split the tree
- Typically p' can range from 1 to \sqrt{p}
- The trees aren't that good, but are very decorrelated
- By averaging over a huge number of trees (order of 1000) we typically get good results
- Random Forest won (wins?) many competitions

- In random forests we average much less correlated trees
- To do this for each tree we choose a subset of $p' \ll p$ of the features on which to split the tree
- Typically p' can range from 1 to \sqrt{p}
- The trees aren't that good, but are very decorrelated
- By averaging over a huge number of trees (order of 1000) we typically get good results
- Random Forest won (wins?) many competitions

- Ensemble methods have proved themselves to be very powerful
- They work by averaging over different machines, trying to reduce their variance
- Here the variance comes from forcing the machines to learn different functions using Bootstrap Aggregation
- Tend to work best with very simple models (true of random forest and boosting)—seems to reduce over-fitting
- Random forest is very powerful, but gradient boosting is competitive

- Ensemble methods have proved themselves to be very powerful
- They work by averaging over different machines, trying to reduce their variance
- Here the variance comes from forcing the machines to learn different functions using Bootstrap Aggregation
- Tend to work best with very simple models (true of random forest and boosting)—seems to reduce over-fitting
- Random forest is very powerful, but gradient boosting is competitive

- Ensemble methods have proved themselves to be very powerful
- They work by averaging over different machines, trying to reduce their variance
- Here the variance comes from forcing the machines to learn different functions using Bootstrap Aggregation
- Tend to work best with very simple models (true of random forest and boosting)—seems to reduce over-fitting
- Random forest is very powerful, but gradient boosting is competitive

- Ensemble methods have proved themselves to be very powerful
- They work by averaging over different machines, trying to reduce their variance
- Here the variance comes from forcing the machines to learn different functions using Bootstrap Aggregation
- Tend to work best with very simple models (true of random forest and boosting)—seems to reduce over-fitting
- Random forest is very powerful, but gradient boosting is competitive

- Ensemble methods have proved themselves to be very powerful
- They work by averaging over different machines, trying to reduce their variance
- Here the variance comes from forcing the machines to learn different functions using Bootstrap Aggregation
- Tend to work best with very simple models (true of random forest and boosting)—seems to reduce over-fitting
- Random forest is very powerful, but gradient boosting is competitive

- Ensemble methods have proved themselves to be very powerful
- They work by averaging over different machines, trying to reduce their variance
- Here the variance comes from forcing the machines to learn different functions using Bootstrap Aggregation
- Tend to work best with very simple models (true of random forest and boosting)—seems to reduce over-fitting
- Random forest is very powerful, but gradient boosting is competitive