TWSBR Two Wheel Self Balancing Robot

Dynamical Model

Coordinate Axis of TWSBR System

Fig.1 Coordinate Axis of TWSBR System

Equations

 The relationship between rotation angles of two wheels and location is,

equations for left wheel

$$\begin{cases} \ddot{X}_{RL} \times M_{RL} = H_{TL} - H_L + f_{RL} \\ \ddot{Y}_{RL} \times M_{RL} = V_{TL} - M_{RL}g - V_L \\ J_{RL} \times \ddot{\theta}_{RL} = C_L - H_{TL}R \end{cases}$$

$$\begin{cases} X_{RL} = \theta_{RL}R \\ X_{RR} = \theta_{RR}R \\ X_{RL} - X_{RR} = D \times \delta \end{cases}$$

Equations for body

$$\begin{cases} \ddot{X}_P \times M_P = H_R + H_L + f_P \\ \ddot{Y}_P \times M_P = V_R - M_P g + V_L \\ J_{RL} \times \ddot{\theta}_P = (V_R + V_L) L \sin \theta_P - (C_R + C_L) - (H_R + H_L) L \cos \theta_P \end{cases}$$

Linearization

Nonlinear Equations

$$\ddot{X}_{RM} = \frac{1}{J_{P}(2(J_{W}/R^{2} + M_{W}) + M_{P}) + 2(J_{W}/R^{2} + M_{W})M_{P}L^{2} + M_{P}^{2}L^{2}\sin^{2}\theta_{P}} \cdot \left[(J_{P} + M_{P}L^{2})M_{P}L\sin\theta_{P}\dot{\theta}_{P}^{2} - M_{P}^{2}L^{2}g\cos\theta_{P}\sin\theta_{P}} + \left(\frac{1}{R}(J_{P} + M_{P}L^{2}) + M_{P}L\cos\theta_{P} \right) (C_{R} + C_{L}) + (J_{P} + M_{P}L^{2}(f_{RR} + f_{RL})) \right]$$

$$\ddot{\theta}_{P} = -\frac{1}{J_{P}(2(J_{W}/R^{2} + M_{W}) + M_{P}) + 2(J_{W}/R^{2} + M_{W})M_{P}L^{2} + M_{P}^{2}L^{2}\sin^{2}\theta_{P}} \cdot \left[M_{P}^{2}L^{2}\sin\theta_{P}\cos\theta_{P}\dot{\theta}_{P}^{2} + \left(2(J_{W}/R^{2} + M_{W}) + M_{P} \right)M_{P}gL\sin\theta_{P}} - (M_{P}L\cos\theta_{P}/R + 2(J_{W}/R^{2} + M_{W}) + M_{P})(C_{R} + C_{L}) - M_{P}L\cos\theta_{P}(f_{RR} + f_{RL}) + 2(J_{W}/R^{2} + M_{W})L\cos\theta_{P}f_{P} \right]$$

$$\ddot{\delta} = [(C_{L} - C_{R})/R + (f_{L} - f_{R})]/(2J_{P}M_{W} + J_{W}D/R^{2})$$

Quiescent Point

 In order to design controller by chips, the above equations is approximated by method of linearization. That is, near the equilibrium point and in a small angle, set

$$\sin \theta_P \approx \theta_P, \cos \theta_P \approx 1$$

State Space

First Equation

$$\begin{pmatrix} \dot{X}_{RM} \\ \dot{V}_{RM} \\ \dot{\theta}_{P} \\ \dot{\delta} \\ \ddot{\mathcal{S}} \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & A_{23} & 0 & 0 & 0 \\ 0 & 0 & A_{23} & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & A_{43} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} X_{RM} \\ V_{RM} \\ \theta_{P} \\ \omega_{P} \\ \delta \\ \dot{\mathcal{S}} \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ B_{21} & B_{22} \\ 0 & 0 \\ B_{41} & B_{42} \\ 0 & 0 \\ B_{61} & B_{62} \end{pmatrix} \begin{pmatrix} C_{L} \\ C_{R} \end{pmatrix}$$

Change of variables

 Set state variable x , input variable u and Output variable y be,

$$x = \begin{bmatrix} X_{RM}, V_{RM}, \theta_p, \omega_P, \delta, \dot{\delta} \end{bmatrix}^T,$$

$$y = \begin{bmatrix} V_M, \theta_P, \dot{\delta} \end{bmatrix}^T,$$

$$u = \begin{bmatrix} C_L & C_R \end{bmatrix}^T$$

Standard State Space

$$\dot{x} = Ax + Bu = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & A_{23} & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & A_{43} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} X_{RM} \\ V_{RM} \\ \theta_P \\ \omega_P \\ \delta \\ \dot{\delta} \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ B_{21} & B_{22} \\ 0 & 0 \\ B_{41} & B_{42} \\ 0 & 0 \\ B_{61} & B_{62} \end{pmatrix} \begin{pmatrix} C_L \\ C_R \end{pmatrix}$$

$$y = Cx = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} X_{RM} \\ V_{RM} \\ \theta_P \\ \omega_P \\ \delta \\ \dot{\delta} \end{pmatrix}$$

where

$$A_{23} = \frac{-M_{p}^{2}L^{2}g}{M_{p}J_{p} + 2(J_{p} + M_{p}L^{2})(M_{W} + J_{W}/R^{2})}$$

$$A_{43} = \frac{M_{p}^{2}gL + 2M_{p}gL(M_{W} + J_{W}/R^{2})}{M_{p}J_{p} + 2(J_{p} + M_{p}L^{2})(M_{W} + J_{W}/R^{2})}$$

$$B_{21} = B_{22} = \frac{(J_{p} + M_{p}L^{2})/(R + M_{p}L)}{M_{p}J_{p} + 2(J_{p} + M_{p}L^{2})(M_{W} + J_{W}/R^{2})}$$

$$B_{41} = B_{42} = \frac{-(R + L)M_{p}/R - 2(M_{W} + J_{W}/R^{2})}{M_{p}J_{p} + 2(J_{p} + M_{p}L^{2})(M_{W} + J_{W}/R^{2})}$$

$$B_{61} = B_{62} = \frac{D/2R}{J_{p} + \frac{D^{2}}{2R}(M_{W}R + \frac{J_{W}}{R})}$$

Decoupling

$$\begin{pmatrix} \dot{X}_{RM} \\ \dot{V}_{RM} \\ \dot{\theta}_{P} \\ \dot{\omega}_{P} \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & A_{23} & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & A_{43} & 0 \end{pmatrix} \begin{pmatrix} X_{RM} \\ V_{RM} \\ \theta_{P} \\ \omega_{P} \end{pmatrix} + \begin{pmatrix} 0 \\ B_{21} \\ 0 \\ B_{41} \end{pmatrix} C_{\theta}$$

$$\begin{pmatrix} \dot{\delta} \\ \ddot{\delta} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \delta \\ \dot{\delta} \end{pmatrix} + \begin{pmatrix} 0 \\ B_{61} \end{pmatrix} C_{\delta}$$

$$\text{Let } D_{11} = D_{21} = D_{12} = D_{22} = 0.5 \text{, then}$$

$$\begin{pmatrix} C_{L} \\ C_{R} \end{pmatrix} = \begin{pmatrix} 0.5 & 0.5 \\ 0.5 & -0.5 \end{pmatrix} \begin{pmatrix} C_{\theta} \\ C_{\delta} \end{pmatrix}$$

Controller Design

List. 1 Specification of TWSBR

Elst. 1 Specification of 1 (1881)			
variable	value	variable	value
$M_{\scriptscriptstyle P}$	20 kg	R	0.2 m
$M_{\scriptscriptstyle W}$	6 kg	D	0.5 m
L	0.2 m	$J_{\scriptscriptstyle P}$	$0.27 kgm^2$
$J_{\scriptscriptstyle Py}$	$1.33kgm^2$	$J_{\scriptscriptstyle W}$	$0.12 kgm^2$

$$\begin{pmatrix} \dot{X}_{RM} \\ \dot{V}_{RM} \\ \dot{\theta}_{P} \\ \dot{\omega}_{P} \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & -6.388 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 60.6861 & 0 \end{pmatrix} \begin{pmatrix} X_{RM} \\ V_{RM} \\ \theta_{P} \\ \omega_{P} \end{pmatrix} + \begin{pmatrix} 0 \\ 0.3803 \\ 0 \\ -2.3629 \end{pmatrix} C_{\theta}$$

$$\begin{pmatrix} \dot{\delta} \\ \ddot{\delta} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \delta \\ \dot{\delta} \end{pmatrix} + \begin{pmatrix} 0 \\ 0.5085 \end{pmatrix} C_{\delta}$$

LINEAR QUADRATIC OPTIMAL CONTROL

Decoupling System

LQR Controller

With the decoupling system shown in Fig.4, two state-feedback controllers based on linear quadratic form are designed and the target function is set,

$$J = \int_0^\infty \left(X^T Q X + U^T R U \right) dt$$

and input is,

$$U = -KX$$

where $K = -R^{-1}B^TP$ and $R > 0, Q \ge 0$. P is the solution of Riccati differential equation, $\dot{P}(t) = -P(t)A(t) - A^T(t)P(t) + P(t)B(t)R^{-1}(t)B^T(t)P(t) - Q(t)$ $P(t_f) = F$ $t \in [t_0, t_f]$

As a conclusion, if there exits a positive definite P to satisfy the above Riccati differential equation, TWSBR is stable. And then K, the optimal feedback gain, can be calculated by P.

Simulation

Balancing Robot

• Set the given velocity of wheel motors and inclination of body are 0 at the initial time. And then a certain initial angle is given to the body, such as 0.1rad.

Fig7. Balance control experiment

Motion Control

 These above results show that the state feedback controller based on quadratic form can make TWSBR stable and has an effective control performance.