FAKULTA APLIKOVANÉ INFORMATIKY ÚSTAV POČÍTAČOVÝCH A KOMUNIKAČNÍCH SYSTÉMŮ							
STUDENT:		ROČNÍK:					
	Daniel Václav Kubíček	I.					
PŘEDMĚT:		DATUM:					
	Architektura počítačů	18.04.2024					
NÁZEV ÚLOH	IY:	I					
Technologie ukládání dat							

Zadání:

Seznamte se s principem uložení a kódování dat na disku. Zakódujte textový řetězec pomocí metod FM, MFM, RLL 2,7.

Postup:

- 1. Jako textový řetězec zvolte prvních 5 písmen ze svého příjmení (pokud máte kratší jméno, doplňte chybějící písmena ze jména křestního).
 - Kubic
- 2. Pomocí ASCII tabulky převeď te znaky do číselného tvaru.
 - 75 117 98 105 99
- 3. Posloupnost čísel převeďte do binární soustavy.
 - 01001011 01110101 01100010 01101001 01100011
- 4. Podle návodu aplikujte kódování FM, MFM a RLL 2,7.

FM:

Tabulka 1 FM Kódování

Bit	Zakódování
0	PN
1	PP

Výsledný kód řetězce:

MFM:

Tabulka 2 MFM Kódování

Bit	Zakódování
0	PN, jestliže je v řetězci 00
	NN, jestliže je v řetězci 10
1	NP

Výsledný kód řetězce:

RLL 2.7:

Tabulka 3 RLL Kódování

Bity	Zakódování
00	PNNN
01	NPNN
100	NNPNNN
101	PNNPNN
1100	NNNNPNNN
1101	NNPNNPNN
111	NNNPNN

Výsledný kód řetězce:

Odeslat

EFM modulace:

Obrázek 1 Kontrola kódování

- 6. V protokolu budou popsány všechny předchozí kroky pro uvedené kódování a vložený screenshot kontroly (http://terra.utb.cz/modulace/), kde bude vidět převod na původní řetězec u všech tří modulací.
- 7. Použijte program Active@Disk Editor (https://www.disk-editor.org/index.html) a vypište informace S.M.A.R.T. o SSD nebo HDD vašeho domácího počítače. Udělejte screenshot výsledku testu a analyzujte stav disku. Použijte jiný program, např. CrystalDiskInfo (https://osdn.net/projects/crystaldiskinfo/releases/), srovnejte a analyzujte hodnoty (doložte screenshotem). Zjistěte, které funkce (např. TRIM, NCQ, ...) jsou testovaným diskem podporovány (lze zjistit např. pomocí CrystalDiskInfo). Stručně popište význam podporovaných funkcí.

- Test proběhne na disku KBG50ZNT256G LS KIOXIA nejprve v programu Active@Disk Editor, následně v CrystalDiskInfo
- Můj SSD disk je v dobrém stavu a podporuje následující funkce: S. M.A.R.T., TRIM a VolatileWriteCache

Obrázek 2 Active disk Editor

Obrázek 3 Screenshot smart

Obrázek 4 Screenshot CrystalDiskInfo

S.M.A.R.T. – monitorovací systém pro počítačové pevné disky, který zjišťuje a podává zprávy o různých ukazatelích spolehlivosti a pomáhá předvídat selhání disku.

TRIM – zajišťuje komunikaci mezi operační pamětí a diskem, zabraňuje mazání či přepisování velkých částí paměti.

Volatile Write Cache – technologie používaná v některých typech SSD disků. Tato mezipaměť je určena k dočasnému ukládání zápisů na disk, aby se zlepšila rychlost zápisu dat.

- 8. Stručně popište metody, jakými lze zjistit informace o počtu a velikosti disků, připojených k počítači. Nejméně dva způsoby doložte screenshoty. Označte systémový disk. Zjistěte údaje o systémovém disku. Popište, jak jste informace zjistili. Určete, zda má systémový disk formát Master Boot Record (MBR) nebo GUID Partition Table (GPT).
 - Zobrazení informací o discích ve Windows. Do vyhledávání napíšeme *Správa počítačů* a následně klikneme na *Správu disků*.
 - Zobrazení v programu Active@Disk Editor. Po otevření programu klikneme na View, Explore my Computer a zobrazí se nám disky.

Obrázek 5 Zobrazení ve správci disků

Obrázek 6 Zobrazení v Active disk editoru

Označte systémový disk. Zjistěte údaje o systémovém disku. Popište, jak jste informace zjistili.

Disk 1 (disk C:) je systémový disk. K informacím se dostaneme po zobrazení *Správy počítače* ve Windows a následně *Správa disků*.

Odtud se dá vyčíst velikost disku 238,46 GB, z toho 100 MB je určeno pro Systémový oddíl EFI. Největší část – 237,61 GB je vymezená pro Spouštěcí oddíl, Stránkovací soubor, Stav systému a Základní datové oddíly. Dále 769 MB zbývá pro Oddíl pro obnovení

Obrázek 7 Informace o disku

Určete, zda má systémový disk formát Master Boot Record (MBR) nebo GUID Partition Table (GPT).

Obrázek 8 GPT

9. Je-li disk ve formátu MBR, udělejte screenshot kódu prvního sektoru disku a popište jeho obsah. Je-li disk ve formátu GPT, udělejte screenshoty LBA1 (GPT Header) a LBA2 (první 4 záznamy GUID Partition Table) a popište jejich obsah. Použijte program Active@Disk Editor. Vyznačte místo, kde jsou uloženy informace o rozdělení disku na oddíly. Informace interpretujte a hodnoty (umístění a velikost oddílu) ověřte jiným způsobem (popište vámi použitou jinou metodu).

GPT Header	000	
Signature (EFI PART)	000	45 46 49 20 50 41 52 54
Revision	800	00 00 01 00
Header size	012	92
Header CRC	016	72 28 85 14
(reserved)	020	00 00 00 00
Current LBA	024	1
Backup LBA	032	<u>500 118 191</u>
First usable LBA	040	<u>34</u>
Last usable LBA	048	<u>500 118 158</u>
Disk GUID	056	52 33 1A 39 F1 C7 04 47 BD 64 BE 13 34 32 D2
Starting LBA of entr	072	2
- Number of entries	080	128
Entry size	084	128
- CRC of partition arr	088	CF ED DE 67
(reserved)	092	00 00 00 00 00 00 00 00 00 00 00 00 00

Obrázek 9 GPT Header

Na druhém obrázku je tabulka, která obsahuje stejné hodnoty jako ta na prvním obrázku. Nicméně v této tabulce jsou jednotlivé hodnoty odděleny barevnými bloky. Každý blok (čtený zleva doprava) značí jeden řádek a odpovídající hodnotu v tabulce na prvním obrázku. První barevný blok označuje první řádek a odpovídající hodnotu, druhý blok označuje druhý řádek a hodnotu, třetí blok označuje třetí řádek a hodnotu atd

0000000200	45 46 49 20 50 41 52 54 00 00 01 00 5C 00 00 00 EFI PART\	
0000000210	72 28 85 14 00 00 00 00 00 00 00 00 00 00 00 00 r(
0000000220	AF 32 CF 1D 00 00 00 00 00 22 00 00 00 00 00 00 00	
0000000230	8E 32 CF 1D 00 00 00 00 52 33 1A 39 F1 C7 04 47 .2ïR3.9ñç.	
0000000240	BD 64 BE 13 34 32 D2 OF 02 00 00 00 00 00 00 00 4d3.42ò	
0000000250	80 00 00 00 80 00 00 00 CF ED DE 67 00 00 00 00	

Obrázek 10 GPT Header podrobně

Entry 1 (100 MB)	200	
Partition type GUID	200	EFI System Partition
- Unique partition G	210	79 48 FA 28 74 00 FA 42 84 F9 19 16 42 FC 97 8C
First LBA	220	2 048
Last LBA	228	206 847
- Attribute flags	230	00 00 00 00 00 00 80
Partition name	238	EFI system partition
Entry 2 (16.0 MB)	280	
- Partition type GUID	280	Microsoft Reserved Partition
 Unique partition G 	290	1F 28 28 0F 90 6A 26 41 98 78 A8 C0 3D DF D5
- First LBA	2A0	<u>206 848</u>
Last LBA	2A8	<u>239 615</u>
Attribute flags	2B0	00 00 00 00 00 00 80
Partition name	2B8	Microsoft reserved partition
Entry 3 (238 GB)	300	
- Partition type GUID	300	Basic Data Partition
- Unique partition G	310	E6 53 E2 7D 7B 22 91 40 B0 87 66 36 D2 93 15
First LBA	320	<u>239 616</u>
Last LBA	328	<u>498 540 543</u>
- Attribute flags	330	00 00 00 00 00 00 00 00
Partition name	338	Basic data partition
Entry 4 (769 MB)	380	
Partition type GUID	380	Windows Recovery Environment
- Unique partition G	390	90 97 F1 E5 73 02 23 48 87 F9 DC CC 2E 51 91 34
First LBA	3A0	<u>498 540 544</u>
Last LBA	3A8	<u>500 115 455</u>
- Attribute flags	3B0	01 00 00 00 00 00 00 80
Partition name	3B8	

Obrázek 11 LBA2

Zde je tabulka LBA2. Tento sektor obsahuje informace o čtyřech sektorech, na kterých je rozdělen systémový disk. První položka (Entry1) je rezervovaná pro oddíl EFI Systém Partition, druhá položka (Entry2) je rezervovaná pro oddíl Microsoft Reserved Partition, třetí položka (Entry3) je rezervovaná pro oddíl Basic Data Partition a poslední položka (Entry4) je rezervovaná pro oddíl Windows Recovery Environment. Data z těchto oddílů mohou být čtena stejným způsobem jako data v tabulce LBA1 (GPT Header).

Tato část textu popisuje, že se nachází další tabulka, která je rozdělena do oddílů čtyřmi barvami. Pokud chceme získat jednotlivá data, musíme kliknout na požadovaný oddíl v tabulce, která je vyobrazena výše. Poté se tabulka změní na barevnější verzi, kde jsou jednotlivé hodnoty v hexadecimální podobě označeny barevnými rámečky. Opět platí, že každý rámeček odpovídá jedné hodnotě v tabulce – první rámeček označuje první hodnotu, druhý rámeček druhou hodnotu atd.

0000000400	28 7	3 2A	C1	1F	F8	D2	11	BA	4B	00	A 0	C9	3E	C9	3B	(s*Á.øÒ.°K. É>É;
0000000410	79 4							84				42				yHú(t.úB.ùBüt).
0000000420	00 0											00				, in (0. u2. u
0000000120	00 0											49				E.F.IEFI
0000000440		0 79										20				s.y.s.t.e.mp. system p
0000000450	61 0											6F				a.r.t.i.t.i.o.n. artition
0000000460	00 0											00				
0000000470	00 0											00				
0000000480	16 E											F0				.ãÉã\.,M.}ù-ð®
0000000490	1F 2											3D				.((j&A.x¨À=βÕ°
00000004A0	00 2											00				.(ÿ\$
00000004B0	00 0											63				M.i.c.rMicr
00000004C0	6F 0											72				o.s.o.f.tr.e. osoft re
00000004D0	73 0											20				s.e.r.v.e.dp. served p
00000004E0	61 0													6E		a.r.t.i.t.i.o.n. artition
00000004F0	00 0											00				
0000000500	A2 A								C0			В7				¢ Đềå¹3D.Àh¶·&.C
0000000510	E6 5							в0				D2				æSâ}{".@°.f6òß
0000000520	00 A											00				ÿ.·
0000000530	00 0											73				B.a.s.iBasi
0000000540	63 0											20				cd.a.t.ap. c data p
0000000550	61 0											6F				a.r.t.i.t.i.o.n. artition
0000000560	00 0											00				
0000000570	00 0											00				
0000000580		B 94						A1							AC	¤».ΦÑ.@M;j;Õ.yÖ¬
0000000590	90 9											2E				ñås.#H.ùÜÌ.Q.4
00000005A0	00 2											00				. · · · · · ÿ'Ï · · · · · · · · · · ·
00000005B0		0 00										00				
00000005C0	00 0											00				
00000005D0		0 00						00	00					00		
00000005E0	00 0							00				00				
00000005F0	00 0														00	
1 220000000	000	- 00	0.0	0.0	00	0.0	50	0.0	00	00	00	0.0	50	0.0	50	

Obrázek 12 LBA 2 Podrobně

Informace o umístění a velikosti prvních čtyř oddílů lze získat z LBA2. Další oddíly jsou uloženy až od LBA33 a může jich být až 128. Na obrázku jsou první LBA oddíly označeny modře a poslední LBA oddíly červeně

Obrázek 13 LBA Oddíly

Spočítat rozdíl mezi poslední a první LBA v oddílu, výslednou hodnotu poté vynásobit počtem bajtů na jednu LBA (počet je roven velikosti sektoru) a převést na požadovanou jednotku.

- První LBA: 0800h = 2048

- Poslední LBA: 0327FFh = 206 847

 $-(206847 - 2048) * 512 B = 104857088 \div 2$ na dvacátou = 100 MB

V CMD jsem použil příkaz diskpart, poté list disk, sel disk 0 a poté list partition.

Obrázek 14 Ověření přes DiskPart

10. V případě, že vlastníte SSD disk, tak spočítejte a ověřte hodnotu TBW (Total Bytes Written).

Celkový Čtení	4058 GB
Celkový Zápis	3144 GB
Rychlost otáčení	(SSD)

Obrázek 15 TBW Disku

3,144 TBW

SEZNAM TABULEK

Tabulka 1 FM Kódování	1
Tabulka 2 MFM Kódování	2
Tabulka 3 RLL Kódování	2

SEZNAM OBRÁZKŮ

Obrázek 1 Kontrola kódování	2
Obrázek 2 Active disk Editor	3
Obrázek 3 Screenshot smart	3
Obrázek 4 Screenshot CrystalDiskInfo	4
Obrázek 5 Zobrazení ve správci disků	5
Obrázek 6 Zobrazení v Active disk editoru	5
Obrázek 7 Informace o disku	5
Obrázek 8 GPT	5
Obrázek 9 GPT Header	
Obrázek 10 GPT Header podrobně	6
Obrázek 11 LBA2	
Obrázek 12 LBA 2 Podrobně	8
Obrázek 13 LBA Oddíly	9
Obrázek 14 Ověření přes DiskPart	
Obrázek 15 TBW Disku	

SEZNAM POUŽITÉ LITERATURY

- [1] Wikipedie: Otevřená encyklopedie [online]. S.M.A.R.T. [cit. 2024-22-04]. Dostupné z: https://cs.wikipedia.org/wiki/S.M.A.R.T.
- [2] LC Technology International, Inc. Jak TRIM funguje [online]. LC Technology International, Inc. [cit. 2024-22-04]. Dostupné z: https://lc-tech.com/cs/jak-trim-funguje/