Assume a solution will be proportional to $e^{\lambda x}$ for some constant λ . Substitute $y(x) = e^{\lambda x}$ into the differential equation: $\frac{d^2}{dx^2}(e^{\lambda x}) - c e^{\lambda x} = 0$

Substitute $\frac{d^2}{dx^2}(e^{\lambda x}) = \lambda^2 e^{\lambda x}$:

Solve $\frac{d^2y(x)}{dx^2} - c y(x) = 0$:

$$\lambda^2 e^{\lambda x} - c e^{\lambda x} = 0$$

Factor out
$$e^{\lambda x}$$
:
 $(-c + \lambda^2) e^{\lambda x} = 0$

Since $e^{\lambda x} \neq 0$ for any finite λ , the zeros must come from the polynomial: $-c + \lambda^2 = 0$

Solve for
$$\lambda$$
:

 $\lambda = \sqrt{c}$ or $\lambda = -\sqrt{c}$

$$= \sqrt{c} \text{ or } \lambda = -\sqrt{c}$$

The root $\lambda = -\sqrt{c}$ gives $y_1(x) = k_1 e^{-\sqrt{c} x}$ as a solution, where k_1 is an arbitrary

constant.

The root
$$\lambda =$$

The root $\lambda = \sqrt{c}$ gives $y_2(x) = k_2 e^{\sqrt{c} x}$ as a solution, where k_2 is an arbitrary

constant. The general solution is the sum of the above solutions:

eneral solution is the sum of the above solution:

wer:
$$y(x) = y_1(x) + y_2(x) = \frac{k_1}{\sqrt{c} x} + k_2 e^{\sqrt{c} x}$$

Assume a solution will be proportional to $e^{\lambda x}$ for some constant λ . Substitute $y(x) = e^{\lambda x}$ into the differential equation: $\frac{d^2}{dx^2}(e^{\lambda x}) - c e^{\lambda x} = 0$

Substitute $\frac{d^2}{dx^2}(e^{\lambda x}) = \lambda^2 e^{\lambda x}$:

Solve $\frac{d^2y(x)}{dx^2} - c y(x) = 0$:

$$\lambda^2 e^{\lambda x} - c e^{\lambda x} = 0$$

Factor out
$$e^{\lambda x}$$
:
 $(-c + \lambda^2) e^{\lambda x} = 0$

Since $e^{\lambda x} \neq 0$ for any finite λ , the zeros must come from the polynomial: $-c + \lambda^2 = 0$

Solve for
$$\lambda$$
:

 $\lambda = \sqrt{c}$ or $\lambda = -\sqrt{c}$

$$= \sqrt{c} \text{ or } \lambda = -\sqrt{c}$$

The root $\lambda = -\sqrt{c}$ gives $y_1(x) = k_1 e^{-\sqrt{c} x}$ as a solution, where k_1 is an arbitrary

constant.

The root
$$\lambda =$$

The root $\lambda = \sqrt{c}$ gives $y_2(x) = k_2 e^{\sqrt{c} x}$ as a solution, where k_2 is an arbitrary

constant. The general solution is the sum of the above solutions:

eneral solution is the sum of the above solution:

wer:
$$y(x) = y_1(x) + y_2(x) = \frac{k_1}{\sqrt{c} x} + k_2 e^{\sqrt{c} x}$$