FORT SAM HOUSTON DINING FACILITIES

San Antonio, Texas

Energy Engineering Analysis Program (EEAP)

Final Submittal

Conducted by:

CARTER :: BURGESS
Consultants in Engineering, Architecture,
Planning and the Environment
3880 Hulen Street
Fort Worth, Texas 76107
(817) 735-6000

June, 1994

C&B Job No. 91109912F

DEPARTMENT OF THE ARMY

CONSTRUCTION ENGINEERING RESEARCH LABORATORIES, CORPS OF ENGINEERS P.O. BOX 9005

CHAMPAIGN, ILLINOIS 61826-9005

REPLY TO ATTENTION OF:

TR-I Library

17 Sep 1997

Based on SOW, these Energy Studies are unclassified/unlimited. Distribution A. Approved for public release.

Marie Wakeffeld, Librarian Engineering

ENERGY CONSERVATION ANALYSIS

BUILDING 2521 - BOWLING CENTER

Building 2521 is a single story brick facility consisting of 21,000 square feet. This facility contains a small snack bar area which consists of 1,100 square feet.

The operating hours are from 7:00 am to 12:00 am, seven days per week.

The lighting system is primarily fluorescent.

The mechanical system consists of packaged DX rooftop air handling units with gas furnaces.

Hot water is provided to the kitchen by a gas fired water heater. No automatic dishwashing equipment is utilized.

The following ECO's are recommended for Building 2521:

- 1. IV. A Night setback/setup thermostat
- 2. VII. D Reduce indoor/outdoor lighting to AEI levels
- 3. IX. A Replace incandescent lamps with compact fluorescents
- 4. IX. C Replace standard lamps with energy saving lamps
- 5. IX. D Replace standard ballast with energy saving ballast

DTIC QUALITY INSPECTED &

ENERGY CONSERVATION ANALYSIS

ENERGY CONSERVATION OPPORTUNITIES (ECO's) - BUILDING NO. 2521

ECO NO: IV. A.		
ECO NAME: Night set	back/setup thermost	at.
SUMMARY DATA (DI	EPENDENT):	
KWH Savings:	278	KWH/yr
Demand Savings:	0	KW/yr
Gas Savings:	2.1	MCF/yr
Cost Savings:	<u>\$ 17 </u>	/yr
Implementation Cost:	<u>\$ 122</u>	
Simple Payback:	7.1	Years
Savings to Investment:	1.88	

ECO DESCRIPTION:

Ratio (SIR):

Currently, a manual thermostat is used to control the existing air handling unit which serves the snack bar area. This ECO analyzes the installation of a programmable night setback/setup thermostat to reduce energy consumption during unoccupied periods.

COST SAVINGS CALCULATIONS:

(Refer to following SimpCalc)

IMPLEMENTATION COSTS:

(Refer to following Cost Estimate)

MAINTENANCE COSTS:

Maintenance costs of \$5.00/year is included in the LCCA for programming, battery replacement and failures.

LIFE CYCLE COST ANALYSIS:

(Refer to following ECIP Life Cycle Cost Summary)

TEXAS LoanSTAR Program - ECRM Simplified Calculation Ver 2.0

11/0	08/93	SimpCalc 2.0 SUMMARY (b)	/ FORM)	- FORT SAI	M HOUSTON			Pa	ige 1
Form	Facility	ECRM Desc. Page	KWH/Yr	KW	MCF/yr	mmBtu/Yr	\$/Yr	Imp.Cost	PayBack
c7-01	BLDG 2521 SNACK BAR	Prog Thermostat 1	278	.00	2.1	3.1	17	121	7.1
		*** SUB-TOTAL ***	278	.00	2.1	3.1	17	121	7.1
	** GRAND TOTAL **		278	.00	2.1	3.1	17	121	7.1

TEXAS LoanSTAR Program - ECRM Simplified Calculation Ver 2.0

11/0	8/93 Consolida	ated ECRM Detail - FORT SAM HOUSTON	Page	1
	=======================================			==
C7-0	01 Programmable Th	nermostats - BLDG 2521 SNACK BAR		(6
Cost	Source: means cost	t data		
Desc	ription: Install n	ight setback/setup thermostat.		
A)		U-Value of Walls		
B)		Wall Area (includes windows and doors)		
C)	05 BTU/hr-ft-F	U-Value of Roof		
D)		Roof Area		
E)	70 Degree/f	Heating Season Thermostat Setpoint		
F)	<u>55</u> Degree/F	Heating Season Thermostat Setback Setpoint		
G)	<u>750</u> Hours/yr	Heating Season Setback Hours		
		= <u>5</u> Hrs/day x <u>150</u> Days/yr	:	
H)	<u>74</u> Degree/F	Cooling Season Thermostat Setpoint		
()	90 Degree/F	Cooling Season Thermostat Setback Setpoint		
J)	1000 Hours/yr	Cooling Season Setback Hours		
		= <u>5</u> Hrs/day x <u>200</u> Days/yr		
()	<u>.7500</u>	Heating Equipment Efficiency (Table 2)		
.) \$	3.41 /MCF	Cost per MCF		
1)	8.57 BTUH/Watt	EER of Air Conditioning Unit (Table 1)		
1) \$	0360 /KWH	Cost per KWH - Summer		
) \$	121	Installed Cost =1 Thermostats x \$121/stat		
' 〉	146 BTU/hf-F	Total Envelope UA-Value		
2)	1.6 mmBTU/yr	Heating Load Reduction		
	7	Heating Cost Reduction		
	2.3 mmBTU/yr	Cooling Load Reduction		
	-	Cooling Cost Reduction		
		Annual Cost Savings		
/)	7.1 years	Simple Payback		

ECO NO/ BUILDING: IV. A.	BLDG 2521	CHECKED BY: DJY					
SUBMITTAL:	35.0%	DATE: 26-Oct-93					
PROJECT LOCATION: SAN	ANTONIO, TEXAS	ESTIMATOR: S.P. CLARK					
PROJECT NAME: FORT SA	M HOUSTON EEAP	PROJECT NO: 91109912F	PROJECT NO: 91109912F				
CARTER & BURGESS COST ESTIMATING ANALYSIS							

ECO NO/ BUILDING: IV. A. / BLDG 252	O NO/ BUILDING: IV. A. / BLDG 2521 CHECKED BY: DJY								
TASK DESCRIPTION	QUAN	ITITY			_ABOR	MATERIALS			TOTAL
	NO/UN		MH UN	HRS	UN PRICE	COST	UN PRICE		COST
	NO/ON	SOME	MITISOR	S11110S	Section 1100Ess	0.00		0.00	0
						0.00		0.00	ď
NIGHT SETBACK THERMOSTAT	1	EA			26.50	26.50	64.00		91
MIGHT SETBACK TILLIMOUTAL	'					0.00	555	0.00	O
						0.00		0.00	
						0.00		0.00	000000000000000000000000000000000000000
						0.00		0.00	0
						0.00		0.00	0
						0.00		0.00	0
						0.00		0.00	0
						0.00		0.00	0
						0.00		0.00	0
						0.00		0.00	0
			j			: 0.00		0.00	0
						0.00		0.00	0
						0.00		0.00	0
ļ						0.00 0.00		0.00 0.00	
						0.00		0.00	
						0.00		0.00	
						0.00	:	0.00	0
						0.00		0.00	0
	i i					0.00		0.00	0
						0.00		0.00	0
						0.00		0.00	Ö
						0.00		0.00	Ö
						0.00		0.00	Ŏ
				ľ		0.00		0.00	0
	-					0.00		0.00	0
						0.00		0.00	
						0.00		0.00	0
						0.00		0.00	0
						0.00		0.00	0
						0.00		0.00	0
						0.00		0.00	0
				1		0.00		0.00	Ü
		1				0.00		0.00	0
		1				0.00		0.00	0
		- 1				0.00		0.00 0.00	0
		- 1		į		0.00		0.00	0
				•		0.00		0.00	0
						0.00		0.00	Ö
		1				0.00		0.00	. 0
		1		l]	0.00		0.00	· 0
		l		I	Ì	0.00	ľ	0.00	ō
						0.00	i	0.00	0
		1			I	0.00	ľ	0.00	0
ļ .		l				0.00	j	0.00	0
		ŀ		I	j	0.00	j	0.00	0
	ļ	ŀ		I		0.00	į	0.00	0 0 0 0 0 0 0
		I		J		0.00	l	0.00	0
				ļ	ļ	0.00	1	0.00	0
.		ı	1	1	1	0.00	1	0.00	0
	ŀ	ı]		İ	0.00	ļ	0.00	0
	ŀ	l				0.00	1	0.00	0
		ı			1	0.00	i	0.00	0
SUBTOTAL		-			<u></u>	0.00 \$27		0.00 \$64	0
CONTENGENCY	10.00%		I	t	<u>.</u>	P 21		P 04	\$91
OVERHEAD & PROFIT									\$9 \$9
	10.00%						***************************************		
TOTAL									\$109

LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)

LOCATION: PROJECT TITLE: DISCRETE PORTI			USTON DININ	O IV. A NIG	EEAP	PROJECT NO. 91109912F FISCAL YEAR 1994 SETUP THERMOSTAT S. P. CLARK
1. INVESTMENT		1, 1990	ONOMIO EN E			0.11.00 til
A. CONSTRUCTION B. SIOH C. DESIGN COST D. TOTAL COST (E. SALVAGE VALUE F. PUBLIC UTILIT G. TOTAL INVEST	1A+1B+1C) JE OF EXISTIN Y COMPANY R	EBATE	\$109 \$6 \$7 \$122	\$0 \$0	 \$122	<u>!</u> :
2. ENERGY SAV	NGS (+)/COS 35-3273-X US		DUNT FACTOR	ns: <u>'N</u>	NOVEMBER 4,	1992
ENERGY SOURCE	COST \$/MBTU(1)	SAVINGS MBTU/YR(2)	ANNUAL \$ SAVINGS(3)	DISCOUNT FACTOR(4)	DISCOUNTE SAVINGS(5)	
A. ELEC B. DIST C. RESID D. NG E. PPG F. COAL G. SOLAR H. GEOTH I. BIOMA J. REFUS K. WIND L. OTHER M. DEMAND SAVI N. TOTAL	\$10.55 	2.17 2.17 3.119	\$10 \$0 \$0 \$7 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$17	11.77 13.83 16.15 15.34 11.12 12.82 11.12 11.12 11.12 11.12 11.12 11.12	\$118 \$0 \$0 \$110 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$228	
3. NON ENERGY A. ANNUAL RECU 1. DISCOUNT FAI 2. DISCOUNTED	RRING (+/-) CTOR (TABLE /		11.1	(\$56)		

LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)

B. NON RECURRING SAVINGS (+) OR COST(-)

7. ADJUSTED INTERNAL RATE OF RETURN (AIRR):

		•							
	ITEM	SAVINGS(+)	YEAR OF	DISCOUNT	DISCOUNTED SAV-				
		COST(-)(1)	OCCUR.(2)	FACTOR(3)	INGS(+)COST(-)(4)				
		7(1)		` '	. , , , , , , ,				
a.	N/A	\$0	1	0.96	\$ 0				
b.	N/A	\$0	2	0.92	\$0				
C.	N/A	\$0	3	0.89	\$0				
d.	N/A	\$0	4	0.85	\$0				
е.	N/A	\$0	5	0.82	\$0				
f.	N/A	\$0	6	0.79	\$0				
g.	N/A	\$0	7	0.76	\$0				
h.	N/A	\$0	8	0.73	\$0				
i	N/A	\$0	9	0.7	\$0				
i	N/A	\$0	10	0.68	\$0				
ķ.	N/A	\$0	11	0.65	\$0				
i.	N/A	\$0	12	0.62	\$0				
m.	N/A	\$0	13	0.6	\$0				
n.	N/A	\$0	14	0.58	\$0				
0.	N/A	\$0	15	0.56	\$0				
p.	TOTAL	\$0			\$0				
ρ.	101712			_					
C.	TOTAL NON EI	NERGY DISCO	UNTED SAVIN	GS (3A2 + 3Bp4)	(\$56)				
4. SIMPLE PAYBACK 1G/(2N3+3A+(3Bp1/ECONOMIC LIFE)): 10.0 YEARS									
5. T	5. TOTAL NET DISCOUNTED SAVINGS (2N5+3C): \$173								
6. S	6. SAVINGS TO INVESTMENT RATIO (SIR) 5/1G: 1.42								

6.5%

ENERGY CONSERVATION ANALYSIS

ENERGY CONSERVATION OPPORTUNITIES (ECO's) - BUILDING NO. 2521

ECO NO:

VII D & IX A, C, D

ECO NAME: Improve lighting efficiency.

SUMMARY DATA (DEPENDENT):

KWH Savings:

2994 KWH/yr

Demand Savings:

13.3 KW/yr

Gas Savings:

n/a MCF/yr

Cost Savings:

\$ 212 /yr

Implementation Cost:

\$ 866

Simple Payback:

4.1

Years

Savings to Investment:

2.75

Ratio (SIR):

ECO DESCRIPTION:

Currently, low efficiency lighting systems are in use. This ECO will update the lighting systems to improve efficiency while maintaining or increasing the current light levels. The existing lighting system and proposed retrofit action are as follows:

QTY	FIXTURE TYPE	ACTION
2	2-Lamp, 4' Fluor	Retrofit w/T8 lamps and electronic ballasts.
9	4-Lamp, 4' Fluor.	Retrofit w/T8 lamps and electronic ballasts.
10	Incand. downlight	Retrofit with compact fluor. lamps

COST SAVINGS CALCULATIONS:

(Refer to following Flex Output and Lighting Implementation Cost located in Appendix E)

Demand Savings = $(2.52 \, KW - 1.41 \, KW) (4 \, mo.x \$7.50 / KW + 8 \, mo.x \$6.25 / KW)$ = \$88.8 / yr

IMPLEMENTATION COSTS:

(Refer to following Flex Output)

LIFE CYCLE COST ANALYSIS:

(Refer to following ECIP Life Cycle Cost Summary)

	Annual Value Energy LCC \$	446 797
	Annual Value Maint LCC \$	67 34
	Present Value Energy LCC \$	6061 10836
	Present Value Maint LCC \$	467
)	Total Initial Cost	<i>111</i>
	Levelized Energy Cost cnts/kWh	
	Savings Invest. Ratio	
	Annual Energy Savings KWh	1249
	Annual Value Total LCC \$	537 846
	Present Value Total LCC \$	7305
	Net Present Value	4192
	Annual Energy KWh	1586 2835
	Project Name (*=Base)	BLD2521A *BLD2521B

Project Description: FT SAM HOUSTON EEAP

File Case
Names Description
BLD2521A POST RETROFIT CONDITION
BLD2521B EXISTING CONDITIONS

Whole Building Summary Report | Whole Building Summary Report |

Project: FT SAM HOUSTON EEAP

| File: H:\JOB\911099\12F\ELECT\FLEX\OUT\2521\BLD2521A.WBR
| ate: 10/16/1993

1586 kWh
1.410 kW
2216 kWh
227 kWh
1104 SqFt
110400 %
1.277 W/sqft Lighting Annual
Lighting Capacity
Annual Cooling Effect
Annual Heating Effect
Total Surveyed Floor Area:
Percent Survey Completed:
Lighting Power Density:

Costs	ts Initial		Energy	Maint.	Cooling	Heating	Total
PVLCC		777 57	2817 207	467 34	3284 242	-39 -3	7305 537

********************** | Lighting Level Comparison Report |

Project: FT SAM HOUSTON EEAP
File: H:\JOB\911099\12F\ELECT\FLEX\OUT\2521\BLD2521A.LLR
Date: 10/16/1993

Room Foot Candles	MAX	MIN	AVG	SDEV	MAX Room	MIN Room
Calculated	31.0	19.7	26.6	6.04	1-dining	3-stor
Measured	15.9	0.0	8.1	7.95	3-stor	1-dining
Required	75.0	5.0	31.7	37.86	2-kitchen	1-dining
Foot Candle Comparison	MAX	MIN	AVG	SDEV	MAX Room	MIN Room
Calc - Req.	26.0	-45.9	-5.1	36.91	1-dining	2-kitchen
Meas - Req.	0.9	-66.7	-23.6	37.46	3-stor	2-kitchen

Lighting System Survey Summary One Page for Each Defined System -----

ject: FT SAM HOUSTON EEAP
File: H:\JOB\911099\12F\ELECT\FLEX\OUT\2521\BLD2521A.LSR

Date: 10/16/1993

Power Density:

System Number: Descrip: 4 lamp, 2x4 lay-in

Rooms Served: 768 SqFt Floor Area: 1.044 Possible kW: Working kW: Capacity kW: 1.044 1175 Annual kWh Lighting: Heating: 168 Annual kWh 1641 Annual kWh Cooling: 1125 Annual Hrs Op Hours/Year: Relamp Method: Relamp Time : Spot 237.8 Months 1.359 Watts/SqFt

Ballasts Equipment **Fixtures** Lamps 9.0 Possible 9 36 9.0 Working 9 36 36 9.0 Capacity Disconnected Ò 0 0.0 Broken/Burned

Energy Maint. Cooling Heating Total Costs 2086 5080 PVLCC \$ 114 AVLCC \$ 8 374 153

System Number: 2 Descrip: 2 lmap 2x4 lay in w/acrylic

ms Served: 120 SqFt 0.126 loor Area: Possible kW: Working kW: Capacity kW: 0.126 0.126 Lighting: 141 Heating: 20

Annual kWh Annual kWh 197 Cooling: Annual k₩h Op Hours/Year: 1125 Annual Hrs Relamp Method:

Spot 237.8 1.047 Relamp Time : Months Power Density: Watts/SqFt

Ballasts **Fixtures** Equipment Lamps 4 2.0 Possible 2.0 Working 4 2.0 Capacity 0.0 Disconnected 0 0 Broken/Burned 0 0 0.0

Costs Energy Maint. Cooling Heating Total PVLCC \$ 15 293 AVLCC \$ 18

System Number:	3 ======	Descrip:	PL down lig	ht w/balck	baffle
Rooms Served:	1				
Floor Area:	216	SqFt			
Possible kW:	0.240				
orking kW:	0.240 0.240				
acity kW: Lighting:	270	Annual kWh			
Heating:	39				
Cooling:	377				
Op Hours/Year:	1125	Annual Hrs			
Relamp Method:	Spot	_			
Relamp Time :	107.0				
Power Density:	1.111	Watts/SqFt			
Equipment Fi	xtures	Lamps	Ballasts		
Possibl e	10	10	10.0		
Working	10	10	10.0		
Capacity	10	10	10.0		
Disconnected	0	0	0.0		
Broken/Burned	0	0	0.0		
Costs Energy	Main	t. Cooling	Keating	Total	
PVLCC \$ 480	3	38 559	-7	1588	
AVLCC \$ 35		25 41	-0	117	

Room-8y-Room Summary Report

Project: FT SAM HOUSTON EEAP File: H:\JOB\911099\12F\ELECT\FLEX\OUT\2521\8LD2521A.RRR Date: 10/16/1993

Watt Meas. Calc. Req. :ts sqft FootC FootC FootC 44 1.36 0.0 31.0 5.0 40 1.11 8.3 29.1 75.0 26 1.05 15.9 19.7 15.0
Watt Meas. Co sqft Footc F 1.36 0.0 1.15 15.9
Pot. Wa Watts sq 1044 1.
Work P. Watts W. 1044 240 126
Watt Work sqft Watts 1044 240 126
Pot.
Work Watts
Work Pot. Watt SYSTEM3 Work Pot. Watt Work Pot Watts Watts Watts Sqft Watts Wa
Pot. Watts a
Work Watts
SYSTEM2 Name
ot. Watt atts sqft 1044 1.36 240 1.11 126 1.05
Work Watts 2x 1044 1 240
Total SYSTEM1 Work Hork Area #Pr Name Watts 1-dining 1 * 768 20 4 lamp, 2x 1044 2-kitchen 1 216 3 PL down 1 240 3-stor 1 120 1 2 lmap 2x4 126
Total Area 768 216 120
* ' *
Floor
Total Room Name Floor # * Area #Pr 1-dining 1 1 * 768 20 2-kitchen 1 1 216 3 3-stor 1 1 120 1

446

1104 24 1.410 1.410

Total Rooms
Total Area SqFt
Total People
Total Working kW
Total Potential kW
Power Density W/sqft:

********************************* | Whole Building Summary Report |

Project: FT SAM HOUSTON EEAP
File: H:\JOB\911099\12F\ELECT\FLEX\OUT\2521\BLD2521B.WBR
ate: 10/16/1993

2835 kWh
2.520 kW
3961 kWh
405 kWh
1104 SqFt
110400 %
2.283 W/sqft Lighting Annual Lighting Capacity Lighting Capacity:
Annual Cooling Effect:
Annual Heating Effect:
Total Surveyed Floor Area:
Percent Survey Completed:
Lighting Power Density:

Costs	In	itial	Energy	Maint.	Cooling	Heating	Total
PVLCC	\$	0	5035	660	5870	-69	11496
AVI CC	•	n	371	40	432	-5	846

------Lighting System Survey Summary One Page for Each Defined System ------

lect: FT SAM HOUSTON EEAP
le: H:\JOB\911099\12F\ELECT\FLEX\OUT\2521\BLD2521B.LSR
Date: 10/16/1993

Descrip: 4 lamp, 2x4 lay-in System Number: 1 Rooms Served: 768 SqFt Floor Area: 1.728 1.728 1.728 Possible kW: Working kW: Capacity kW: Lighting: 1944 278 2716 Annual kWh Annual kWh Heating: Cooling: Annual kWh 1125 Annual Hrs Op Hours/Year: Relamp Time : Spot 237.8 Months 2.250 Watts/SqFt Power Density: Fixtures Lamps Ballasts Equipment 9.0 Possible 9.0 36 Working 36 9.0 Capacity 9 Disconnected 0.0 Broken/Burned Heating Maint. Cooling Total Energy Costs

7628 561 PVLCC \$ 3453 198 4025 15 296 254

Descrip: 2 lmap 2x4 lay in w/acrylic System Number: 2

s Served: 120 SqFt 0.192 oor Area: Possible kW: Working kW: Capacity kW: Lighting: 0.192 0.192 216 Annual kWh Annual kWh Heating: 31 302 Annual kWh Cooling: 1125 Op Hours/Year: Annual Hrs Spot 237.8 Months 1.600 Watts/SqFt Relamp Method: Relamp Time : Power Density:

Fixtures

Equipment

Possible Working Capacity Discommected Broken/Burned		2 2 2 0	2 4 2 4 2 4 0 0			
Costs	ı <i>,</i> b.	Energy	Maint.	Cooling	0.0 Heating	Total
PVLCC	\$	384 28	25 2	447 33	-5 -0	851 63

Lamps

Ballasts

System Number:	3	Descrip:	incand. dow	n light w∕	balck baffle
22222222222		*********		:=====================================	
Rooms Served:	1				
Floor Area:	216	SqFt			
Possible kW:		•			
rking kW:	0.480				
city kW:	0.600				
Lighting:	675	Annual kWh			
Heating:	96	Annual kWh			
Cooling:		Annual k₩h			
Op Hours/Year:	1125	Annual Hrs			
Relamo Method:	Spot				
Relamp Time :	10.7	Months			
Power Density:	2.222	Watts/SqFt			
Equipment Fi	xtures	Lamps	Ballasts		
Possible	10	10	0.0		
Working	10	8	0.0		
Capacity	10	8 10	0.0		
Disconnected	Ö	.0	0.0		
Broken/Burned	ŏ	0 2	0.0		
Di Okeriy Barrica	•	-	0.0		
Costs Energy	Main	t. Cooling	Heating	Total	
PVLCC \$ 1199	4	37 1398	-17	3017	
AVLCC \$ 88		32 103		222	
ATEC		JE 103	•		

LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)

LOCATION:	FOF	RT SAM HOUST	ON	_REGION NO		PROJECT NO.	91109912F
PROJECT TITLE:		FORT SAM HO	USTON DINING	G FACILITIES I	EAP LICH	FISCAL YEAR	
DISCRETE PORTIC						TING IMPROVEM S. P. C	
ANALYSIS DATE:	NOVEMBER	1, 1993 EC	ONOMIC LIFE	15	_PREPARER	3. P. U	_Ank
1. INVESTMENT	COSTS:					•	
A. CONSTRUCTION B. SIOH C. DESIGN COST D. TOTAL COST (1) E. SALVAGE VALUE	A+1B+1C) E OF EXISTIN		\$777 \$43 \$47 \$866	 \$0	: -		
F. PUBLIC UTILITY				\$0	 \$866		
G. TOTAL INVEST	MENI (ID-IE	– 117)			4000	· ·	
2. ENERGY SAVIIDATE OF NISTIR 8			DUNT FACTOR	15: <u>'N</u>	NOVEMBER 4,	1992	
ENERGY SOURCE	COST \$/MBTU(1)	SAVINGS MBTU/YR(2)	ANNUAL \$ SAVINGS(3)	DISCOUNT FACTOR(4)	DISCOUNTE SAVINGS(5)	D	
A. ELEC	\$10.55	4.26	\$45	11.77	\$529		
B. DIST			\$0	13.83	\$0		
C. RESID			\$0	16.15	\$0		
D. NG	\$3.31	0.00	\$0	15.34	\$0		
E. PPG	***		\$0	11.12	\$0		
F. COAL			\$0	12.82	\$0		
G. SOLAR			\$0	11.12	\$0		
H. GEOTH			\$0	11.12	\$0 \$0		
I. BIOMA			<u>\$0</u> \$0	11.12	\$0 \$0		
J. REFUS K. WIND			\$0	11.12	\$0 \$0		
L. COOLING	\$10.55	5.96	\$63	11.12	\$699		
M. DEMAND SAVIN		0.00	\$89	11.12	\$987		
N. TOTAL		10.22	\$197		\$2,216		
3. NON ENERGY	SAVINGS (+)	OR COST (-):				•	
			-				
A. ANNUAL RECUP		<u>\$15</u>	444				
1. DISCOUNT FAC			11.1	¢4.67			
2. DISCOUNTED S	200/CDPIII VAC	1 (3A A 3A1)		\$167			

LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)

B. NON RECURRING SAVINGS (+) OR COST(-)

ITI	EM SAVINGS(COST(-)(DISCOUNT FACTOR(3)	DISCOUNTED SAV- INGS(+)COST(-)(4)		
a. N/A	\$0	1	0.96	\$0		
b. N/A	\$0	2	0.92	\$0		
c. N/A	\$0	3 4	0.89	\$0		
d. N/A	\$0		0.85	\$0		
e. N/A	\$0	5	0.82	\$0		
f. N/A	\$0	6	0.79	\$0		
g. <u>N/A</u>	\$0	7	0.76	\$0		
h. N/A	\$0	8	0.73	\$0		
i. N/A	\$0	9	0.7	\$0		
: AL/A	\$0	10	0.68	\$0		
j. <u>N/A</u> k. N/A	\$0	11	0.65	\$0		
I. N/A	\$0	12	0.62	\$0		
m. N/A	\$0	13	0.6	\$0		
n. N/A	\$0	14	0.58	\$0		
o. N/A	\$0	15	0.56	\$0		
p. TOTA				\$0		
C. TOTAL	NON ENERGY DIS	COUNTED SAVIN	GS (3A2 + 3Bp4	\$167		
4. SIMPLE	PAYBACK 1G/(2N3-	+3A+(3Bp1/ECO	NOMIC LIFE)):	4.1 YEARS		
5. TOTAL NET DISCOUNTED SAVINGS (2N5+3C): \$2,382						
6. SAVING	S TO INVESTMENT	RATIO (SIR) 5/1G	<u>:</u>	2.75		
7. ADJUSTED INTERNAL RATE OF RETURN (AIRR): 11.3%						

ENERGY CONSERVATION ANALYSIS

BUILDING 2530 - CHILD CARE CENTER

Building 2530 is a single story stucco building which is utilized as an elementary education facility. This facility contains a small, 700 square feet kitchen and dining is in the individual classrooms.

The operating hours are 6:00 am to 6:00 pm, Monday thru Friday.

The lighting system is primarily fluorescent.

The mechanical system consists of water source heat pumps served by an evaporative condenser. Heating is provided by a gas fired boiler.

Hot water is provided to the kitchen by the domestic gas fired water heater. Dishwashing is accomplished using an automatic dishwasher with an electric hot water booster heater.

This facility was constructed in 1989 and the design included many energy efficient features. Therefore, the only recommended ECO's for this facility are to improve lighting efficiency (ie. VII. D and IX. B, C, D).

ENERGY CONSERVATION ANALYSIS

ENERGY CONSERVATION OPPORTUNITIES (ECO's) - BUILDING NO. 2530

ECO NO: VII D & IX B, C, D

ECO NAME: Improve lighting efficiency.

SUMMARY DATA (DEPENDENT):

KWH Savings: 5,444 KWH/yr

Demand Savings: 9.1 KW/yr

Gas Savings: n/a MCF/yr

Cost Savings: \$\frac{\$280}{}/yr

Implementation Cost: \$ 591

Simple Payback: 2.1 Years

Savings to Investment: 5.36

Ratio (SIR):

ECO DESCRIPTION:

Currently, low efficiency lighting systems are in use. This ECO will update the lighting systems to improve efficiency while maintaining or increasing the current light levels. The existing lighting system and proposed retrofit action are as follows:

QTY	FIXTURE TYPE	. ACTION
10	4-Lamp, 4' Fluor.	Retrofit w/T8 lamps and electronic ballasts.
1	Incand. Exit	Replace w/LED exit fixture

COST SAVINGS CALCULATIONS:

(Refer to following Flex Output)

Demand Savings = $(1.92 \,\text{KW} - 1.16 \,\text{KW})(4 \,\text{mo.x} \$7.50 /\text{KW} + 8 \,\text{mo.} \$6.25 /\text{KW})$ = \$60.80 /yr

IMPLEMENTATION COSTS:

(Refer to following Flex Output and Lighting Implementation Cost located in Appendix E)

LIFE CYCLE COST ANALYSIS:

(Refer to following ECIP Life Cycle Cost Summary)

	Annual Value Energy LCC \$	692
	Annual Value Maint LCC \$	28 51
	Present Value Energy LCC \$	9405 15566
	Present Value Maint LCC \$	374 691
)	Total Initial Cost	530
	Levelized Energy Cost cnts/kWh	
	Savings Invest. Ratio (SIR)	
	Annual Energy Savings KWh	2280
	Annual Value Total LCC \$	
	Present Value Total LCC \$	10308 16257
	Net Present Value	5949
)	Annual Energy KWh	3480 5760
	Project Name (*=Base)	8LD2530A *BLD2530B

Project Description: FT SAM HOUSTON EEAP

File Case
Names Description
BLD2530A POST RETROFIT CONDITIONS
BLD2530B EXISTING CONDITIONS

822222222222222222222222222222222 | Whole Building Summary Report |

Project: FT SAM HOUSTON EEAP
File: H:\JOB\911099\12F\ELECT\FLEX\OUT\2530\BLD2530A.WBR
ate: 10/16/1993

3480 kWh
1.160 kW
4827 kWh
497 kWh
696 SqFt
69600 %
1.667 W/sqft Lighting Annual
Lighting Capacity
Annual Cooling Effect:
Annual Heating Effect:
Total Surveyed Floor Area:
Percent Survey Completed:
Lighting Power Density:

Costs	ts Initial		Energy	*		Heating	Total
PVLCC		530 39	4014 295	374 28	5476 403	-85 -6	10308 759

| Lighting Level Comparison Report |

Project: FT SAM HOUSTON EEAP ile: H:\JOB\911099\12F\ELECT\FLEX\OUT\2530\BLD2530A.LLR ate: 10/16/1993

Room Foot Candles	MAX	MIN	AVG	SDEV	MAX Room	MIN Room
Calculated	79.8	32.0	55.9	33.84	1-kitchen	2-stor
Measured	38.3	15.7	27.0	15.98	1-kitchen	2-stor
Required	75.0	7.5	41.3	47.73	1-kitchen	2-stor
Foot Candle Comparison	MAX	MIN	AVG	SDEV	MAX Room	MIN Room
Calc - Req.	24.5	4.8	14.7	13.89	2-stor	1-kitchen
Meas - Req.	8.2	-36.7	-14.3	31.75	2-stor	1-kitchen

Lighting System Survey Summary One Page for Each Defined System

ject: FT SAM HOUSTON EEAP
file: H:\JOB\911099\12F\ELECT\FLEX\OUT\2530\BLD2530A.LSR
Date: 10/16/1993

System Number:	1	Descrip:	4 lamp, 2x4	lay-in	
Rooms Served:		0-54			
Floor Area:		SqFt			
Possible kW: Working kW:					
Capacity kW:					
Lighting:		Annual kWh			
Heating:		Annual kWh			
Cooling:		Annual kWh			
Op Hours/Year:		Annual Hrs			
Relamp Method:					
Relamp Time :		Months			
Power Density:		Watts/SqFt			
Equipment	Fixtures	Lamps	Ballasts		
Possible	10	40	10.0		
Working	10	40	10.0		
Capacity	10	40	10.0		
Disconnected	ŏ	Õ	0.0		
Broken/Burned	ŏ	Ŏ	0.0		
2	-				
Costs Ener	gy Main	t. Cooling	Heating	Total	
	4,	~~	-05	10700	
		74 5476 28 403	-85 -6	10308 759	
ATLCC P	,,,		•		

Room-By-Room Summary Report

Project: FT SAM HOUSTON EEAP File: H:\JOB\911099\12F\ELECT\FLEX\QUT\2530\BLD2530A.RRR Date: 10/16/1993

k Pot. Watt SYSTEM2 Work Pot. Watt SYSTEM3 Work Pot. Watt Work Pot. Watt Meas. Calc. Req. ts Watts sqft Name Watts sqft Name Watts Watts Sqft Watts Sqft FootC FootC FootC 44 1044 1.81 10
s EB
Vor Vat
Pot. Watt SYSTEM3 Watts sqft Name
Pot.
Work Watts
Pot. Watt SYSTEM2 Watts sqft Name 1044 1.81 116 0.97
Pot. Watt SYSTE Watts sqft Name 1044 1.81 116 0.97
Pot. Watts 1044
Work Watts 1044 116
% % % % % % % % % % % % % % % % % % %
Total Area 576 120
* * *
Floor
Total SYSTE Room Name Floor # * Area #Pr Name 1-kitchen 1 1 * 576 2 4 lan 2-stor 1 1 120 0 4 lan

Total Rooms
Total Area SqFt
Total People
Total Working kW
Total Potential kW

| Whole Building Summary Report |

Project: FT SAM HOUSTON EEAP
File: H:\JOB\911099\12F\ELECT\FLEX\OUT\2530\BLD2530B.WBR
ate: 10/16/1993

5760 kWh
1.920 kW
7990 kWh
823 kWh
696 SqFt
69600 %
2.759 W/sqft Lighting Annual
Lighting Capacity
Annual Cooling Effect:
Annual Heating Effect:
Total Surveyed Floor Area:
Percent Survey Completed:
Lighting Power Density:

Costs	 itial	Energy	Maint.	_	Heating	Total
D. // OO	 	6644	691	9063	-141	16257
PVLCC AVLCC	0	489	51	667	-10	1196

| Lighting System Survey Summary | One Page for Each Defined System

liect: FT SAM HOUSTON EEAP lile: H:\JOB\911099\12F\ELECT\FLEX\OUT\2530\BLD2530B.LSR pate: 10/16/1993

System Number:	1	Descrip:	4 lamp, 2x4	lay-in	
	::::::::			:========	
Rooms Served:	2				
Floor Area:	696	SqFt			
Possible kW:	1.920	•			
Working kW:	1.920				
Capacity kW:	1.920				
Lighting:	5760	Annual kWh			
Heating:	823	Annual kWh			
Cooling:	7990	Annual kWh			
Op Hours/Year:	3000	Annual Hrs			
Relamp Method:	Spot				
Relamp Time :		Months			
Power Density:	2.759	Watts/SqFt			
Equipment Fi	xtures	Lamps	Ballasts		
B261.	40	40	10.0		
Possible	10 10	40 40	10.0		
Working		40	10.0		
Capacity	10	0	0.0		
Disconnected	0	Ŏ	0.0		
Broken/Burned	U	U	0.0		
Costs Energy	Main	t. Cooling	Heating	Total	
			•••••		
PVLCC \$ 6644		91 9063	-141	16257	
AVLCC \$ 489	,	51 6 67	-10	1196	

LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)

LOCATION:	FOR	RT SAM HOUST	ON	REGION NO.	3	_PROJECT NO	91109912
PROJECT TITLE:		FORT SAM HO				FISCAL YEAR	
DISCRETE PORTI						HTING IMPROVE	
ANALYSIS DATE:	NOVEMBER	<u>1, 1993 </u>	ONOMIC LIFE	15	_PREPARER	S. P. C	LAHK
1. INVESTMENT	COSTS:						
A. CONSTRUCTION	ON COST		\$530				
B. SIOH			\$29	<u></u>	:		
C. DESIGN COST	44-45-40		\$32			•	
D. TOTAL COST (1 E. SALVAGE VALU		C EOI HOMENT	\$591	\$ 0			
F. PUBLIC UTILITY				\$0	-		
G. TOTAL INVEST				ΨΟ	_ \$591		
G. TOTAL HAVEST	MICIAI (ID-IL	11)					
2. ENERGY SAVI	NGS (+)/COS	<u>Γ(</u> –):					
		-		_			
DATE OF NISTIR 8	35-3273-X U	SED FOR DISCO	DUNT FACTOR	RS: <u>'N</u>	OVEMBER 4,	1992	
ENERGY	COST	SAVINGS	ANNUAL \$	DISCOUNT	DISCOUNTE	ח	
SOURCE	\$/MBTU(1)	MBTU/YR(2)	SAVINGS(3)	FACTOR(4)	SAVINGS(5)		
SOUNDE	φ/(δίο)	1410 : 0/ 111(2)	0/11/11/00(0)	17,01011(4)	O/(1)1100(0)		
A. ELEC	\$10.55	7.78	\$82	11.77	\$966		
B. DIST			\$0	13.83	\$0		
C. RESID			\$0	16.15	\$0		
D. NG	\$3.31	0.00	<u>\$0</u>	15.34	\$0		
E. PPG			\$0	11.12	\$0		
F. COAL			\$0	12.82	\$0		
G. SOLAR			\$0	11.12	\$0		
H. GEOTH			\$0	11.12	\$0		
I. BIOMA			<u>\$0</u>	11.12	\$0		
J. REFUS			\$0	11.12	\$0		
K. WIND	440.88		\$0	11.12	\$0		
L. COOLING	\$10.55	10.8	\$114	11.12	\$1,267		
M. DEMAND SAVIN	NGS		\$61	11.12	\$678	-	
N. TOTAL		18.58	\$257		\$2,911	-	
3. NON ENERGY	SAVINGS (+)	OR COST (-):					
			-				
A. ANNUAL RECU		<u>\$23</u>					
1. DISCOUNT FAC			11.1				
2. DISCOUNTED S	SAVINGS/COS	T (3A X 3A1)		\$255			

LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)

B. NON RECURRING SAVINGS (+) OR COST(-)

	ITEM	SAVINGS(+) COST(-)(1)	YEAR OF OCCUR.(2)	DISCOUNT FACTOR(3)	DISCOUNTED SAV- INGS(+)COST(-)(4)
a.	N/A	\$0	1	0.96	\$0
b.	N/A	\$0	2	0.92	\$0
C.	N/A	\$0	3	0.89	\$0
d.	N/A	\$0	4	0.85	\$0
e.	N/A	\$0	5	0.82	\$0
f.	N/A	\$0		0.79	\$0
g.	N/A	\$0	7	0.76	\$0
ĥ.	N/A	\$0	8	0.73	\$0
i.	N/A	\$0	9	0.7	\$0
j.	N/A	\$0	10	0.68	\$0
k.	N/A	\$0	11	0.65	\$0
I.	N/A	\$0	12	0.62	\$0
m.	N/A	\$0	13	0.6	\$0
n.	N/A	\$0	14	0.58	\$0
0.	N/A	\$0	15	0.56	\$0
p.	TOTAL	\$0			\$0
C.	TOTAL NON E	\$255			
<u>4. S</u>	2.1_YEARS				
5. TOTAL NET DISCOUNTED SAVINGS (2N5+3C):					\$3,167
6. S	AVINGS TO IN	5.36			
7. A	DJUSTED INT	<u>16.3%</u>			

ENERGY CONSERVATION ANALYSIS

BUILDING 2652 - DINNER THEATRE

Building 2652 is a two story brick facility consisting of 31,000 square feet. This facility contains a full service kitchen and a large dinner theatre which consists of 3,600 square feet.

The operating hours are from 10:00 am to 12:00 am, Wednesday thru Saturday.

The lighting system is primarily fluorescent in the kitchen area and incandescent with dimming in the theatre.

The mechanical system consist of fan coil units served by an air cooled chiller. Heating is provided by gas fired duct heaters located in the plenum space above the theatre.

Hot water is provided to the kitchen by a gas fired water heater. Dishwashing is accomplished using an automatic dishwasher with an electric hot water booster heater.

The following ECO's are recommended for Building 2652:

- 1. IV. C.1) Add stop/start function to HVAC equipment
- 2. VII. D Reduce indoor/outdoor lighting to AEI levels
- 3. IX. A Replace incandescent lamps with compact fluorescents
- 4. IX. B Replace incandescent exit fixtures with LED
- 5. IX. C Replace standard lamps with energy saving lamps
- 6. IX. D Replace standard ballast with energy saving ballast

ENERGY CONSERVATION ANALYSIS

ENERGY CONSERVATION OPPORTUNITIES (ECO's) - BUILDING NO. 2652

ECO NO: IV. C. 1)

ECO NAME: Add stop/start function to HVAC equipment.

SUMMARY DATA (DEPENDENT):

KWH Savings: 41,114 KWH/yr

Demand Savings: 0 KW/yr

Gas Savings: 39.0 MCF/yr

Cost Savings: \$ 1.613 /yr

Implementation Cost: \$ 2,292

Simple Payback: 1.4 Years

Savings to Investment: 8.49

Ratio (SIR):

ECO DESCRIPTION:

Presently, the mechanical systems are not controlled during unoccupied times. This ECO analyzes the addition of timeclocks and relays to shut down the HVAC systems during unoccupied hours.

COST SAVINGS CALCULATIONS:

(Refer to following SimpCalc Output)

IMPLEMENTATION COSTS:

(Refer to following Cost Estimate)

MAINTENANCE COSTS:

Maintenance costs of \$15/year for each timeclock included in the LCCA for adjustments and failures.

LIFE CYCLE COST ANALYSIS:

(Refer to following ECIP Life Cycle Cost Summary)

TEXAS LoanSTAR Program - ECRM Simplified Calculation Ver 2.0

11/0	08/93	SimpCalc 2.0 SUMMARY (y FORM)	- FORT	SAM HOUSTON			Pa	age 1
Form	Facility	ECRM Desc. Page		KW	MCF/yr	mmBtu/Yr	\$ /Yr	Imp.Cost	PayBack
c 5-01	BLDG 2652 DINNER THEATRE	Timer-A/C-Heat 0	41114	.00	39.0	180.5	1613	2292	1.4
		*** SUB-TOTAL ***	41114	.00	39.0	180.5	1613	2292	1.4
	** GRAND TOTAL **		41114	.00	39.0	180.5	1613	2292	1.4

TEXAS LoanSTAR Program - ECRM Simplified Calculation Ver 2.0

11/08/93 Consolid	lated ECRM Detail - FORT SAM HOUSTON Page 0
=======================================	***************************************
C5-001 Timeclock Cont	rol of Air Cond. / Heating - BLDG 2652 DINNER THEATRE (G)
Cost Source: means cos	t data
Description: Install t	ime clock to stop/start chiller and AHU's.
A)55.0 Tons	Cooling Unit Tonnage
B) 896 Hours/yr	Annual Cooling Operating Hours Unit will be Shut Off
C) <u>8.63</u> BTUH/Watt	= <u>7</u> Hrs/day x <u>128</u> Days/yr System EER
D) .60	Estimated Cooling Load/Duty Factor
E) <u>560</u> Hours/yr	Annual Heating Operating Hours Unit will be Shut Off = 7 Hrs/day x _80 Days/yr
F) 100000 BTUH	Heating Unit Output in BTUH
G) <u>.70</u>	Heating Efficiency
H)	Estimated Heating Load/Duty Factor
1) \$ <u>.0360</u> /KWH	Cost per KWH - Summer
J) \$ <u>3.4100</u> /MCF	MCF Cost
K) \$ <u>2292</u>	Implementation Cost
L) 41114 KWH/year	Annual Cooling Savings
M) <u>39</u> MCF/year	Annual Heating Savings
N) \$ <u>1613</u> /year	Annual Cost Savings
0) <u>1.4</u> years	Simple Payback

PROJECT NAME: FORT SAM	RTER & B				PROJECT NO				
PROJECT LOCATION: SAN					ESTIMATOR:	S.P. CLAI	RK		
SUBMITTAL:	35.0				DATE:		27-Oct-93		
ECO NO/ BUILDING: IV. C. 1					CHECKED BY	: DJY	· · · · · · · · · · · · · · · · · · ·		
TASK DESCRIPTION		NTITY	1	ŧ	ABOR		MATERI	AIS	TOTAL
IASK DESCRIF II		N UNIT	MHUN		UN PRICE	COST	UN PRICE	COST	COST
	NO/U	NUNII	MHIUN	HRS	UNPHICE	0.00	WON BRICE	0.00	
			i			0.00		0.00	
TIME CLOCK		2 EA	1	ŀ	44.00	88.00	50.00	100.00	18
RELAYS		8 EA 7 CLF			13.70 18	109.60 126.00	124.00 42.50	992.00 297.50	110 4 2
CONTROL WIRE		100			'0	0.00	42.50	0.00	72
		İ	ļ]	0.00		0.00	
		1	1			0.00		0.00	
						0.00 0.00		0.00 0.00	
		ı				0.00		0.00	(
		1				0.00		0.00	
						0.00		0.00	9
						0.00 0.00		0.00 0.00	(
						0.00		0.00	
						0.00		0.00	(
						0.00		0.00 0.00	!
	ŀ					0.00 0.00		0.00	
	ł	ļ				0.00		0.00	(
	l					0.00		0.00	
						0.00 0.00		0.00 0.00	
		1				0.00		0.00	Č
	1	ı				0.00		0.00	(
						0.00		0.00	
		1				0.00 0.00		0.00 0.00	(
	l	1				0.00		0.00	·
	i					0.00		0.00	(
						0.00		0.00	9
						0.00		0.00 0.00	(
	İ					0.00		0.00	č
		İ				0.00		0.00	
	- 1	ŀ				0.00		0.00	(
	1					0.00 0.00		0.00	(
	1					0.00		0.00	Č
						0.00		0.00	
						0.00		0.00	9
	l					0.00 0.00		0.00 0.00	(
						0.00		0.00	Ò
						0.00		0.00	
]					0.00		0.00	(
						0.00 0.00	j	0.00 0.00	C C
	1			i		0.00	ł	0.00	ò
				l	ļ !	0.00	[0.00	0
					ĺ	0.00	ļ	0.00	0
	I					0.00		0.00	0
				I	i	0.00	ı		0
						0.00		0.00	C
						0.00		0.00	

CONTENGENCY

OVERHEAD & PROFIT

SUBTOTAL

TOTAL

10.00%

10.00%

\$1,713

\$171

\$171

\$2,056

0.00 0.00 \$1,390

\$324

LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)

LOCATION:	FOI	RI SAM HOUS!		HEGION NO			91109912F
PROJECT TITLE:		FORT SAM HO				FISCAL YEAR	
DISCRETE PORT	ION NAME:					CTION TO HVAC	
ANALYSIS DATE:	NOVEMBER	1, 1993 EC	CONOMIC LIFE	15	PREPARER	S. P. C	LARK
1. INVESTMENT A. CONSTRUCTI	***		\$2,056				
B. SIOH			\$113	_	:		
C. DESIGN COST			\$123				
D. TOTAL COST (\$2,292				
E. SALVAGE VAL				\$0			
F. PUBLIC UTILIT	Y COMPANY R	EBATE		\$0			
G. TOTAL INVEST	MENT (1D-1E	-1F)			\$2,292		
		•				-	
2. ENERGY SAV			OUNT FACTOR	RS: <u>'</u> 1	NOVEMBER 4, 1	1992	
ENERGY	COST	SAVINGS	ANNUAL \$	DISCOUNT	DISCOUNTE	D.	
SOURCE	\$/MBTU(1)	MBTU/YR(2)	SAVINGS(3)	FACTOR(4)	SAVINGS(5)		
COOLICE	Ψ,14121 Ο(1)	1010/111(2)	OAT 11 400(0)	170.011(4)			
A. ELEC	\$10.55	140.32	\$1,480	11.77	\$17,424		
B. DIST	Ψ10.55	170.02	\$0	13.83	\$0		
C. RESID			\$0	16.15	\$0 \$0	,	
D. NG	\$3.31	40.21	\$133	15.34	\$2,042		
E. PPG	<u> </u>	40.21		11.12		,	
F. COAL			\$0 \$0	****	\$0 \$0	•	
G. SOLAR			\$0	12.82	\$0 \$0		
H. GEOTH				11.12		,	
I. BIOMA			<u>\$0</u>	11.12	\$0		
J. REFUS			\$0 \$0	11.12	\$0	,	
K. WIND			\$0	<u>11.12</u> 11.12	\$0	,	
L. OTHER					\$0		
M. DEMAND SAV	NGS		\$0	11.12	\$0		
N. TOTAL	INGS	100 F0	\$0	11.12	\$0		
N. TOTAL		180.53	<u>\$1,613</u>		\$19,466		
3. NON ENERGY A. ANNUAL RECU 1. DISCOUNT FA 2. DISCOUNTED	RRING (+/-) CTOR (TABLE /		11.1	(\$333)			

LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)

B. NON RECURRING SAVINGS (+) OR COST(-)

	ITEM	SAVINGS(+) COST(-)(1)	YEAR OF OCCUR.(2)	DISCOUNT FACTOR(3)	DISCOUNTED SAV- INGS(+)COST(-)(4)
a.	N/A	\$0	1	0.96	\$0_
b.	N/A	\$0	2	0.92	\$0
C.	N/A	\$0	3	0.89	\$0
d.	N/A	\$0	4	0.85	\$0
e.	N/A	\$0	5	0.82	\$0
f.	N/A	\$0	6	0.79	\$0
g.	N/A	\$0	7	0.76	\$0
ĥ.	N/A		8	0.73	\$0
i.	N/A	\$0	9	0.7	\$0
j.	N/A	\$0	10	0.68	\$0
k.	N/A		11	0.65	\$0
I.	N/A	\$0	12	0.62	\$0
m.	N/A		13	0.6	\$0
n.	N/A	\$0	14	0.58	\$0
Ο.	N/A	\$0	15	0.56	\$0
p.	TOTAL	\$0			\$0

C. TOTAL NON ENERGY DISCOUNTED SAVINGS (3A2 + 3Bp4)	(\$333)
4. SIMPLE PAYBACK 1G/(2N3+3A+(3Bp1/ECONOMIC LIFE)):	1.4_YEARS
5. TOTAL NET DISCOUNTED SAVINGS (2N5+3C):	\$19,133
6. SAVINGS TO INVESTMENT RATIO (SIR) 5/1G:	8.35
7. ADJUSTED INTERNAL RATE OF RETURN (AIRR):	19.8%

ENERGY CONSERVATION ANALYSIS

ENERGY CONSERVATION OPPORTUNITIES (ECO's) - BUILDING NO. 2652

ECO NO: VIII D & IX A, B, C, D

ECO NAME: Improve lighting efficiency.

SUMMARY DATA (DEPENDENT):

KWH Savings: 8.090 KWH/yr

Demand Savings: 11.7 KW/yr

Gas Savings: n/a MCF/yr

Cost Savings: <u>\$ 406</u> /yr

Implementation Cost: \$ 1,588

Simple Payback: 3.9 Years

Savings to Investment: 2.89

Ratio (SIR):

ECO DESCRIPTION:

Currently, low efficiency lighting systems are in use. This ECO will update the lighting systems to improve efficiency while maintaining or increasing the current light levels. The existing lighting system and proposed retrofit action are as follows:

QTY	FIXTURE TYPE	ACTION
2	2-Lamp, 4" Fluor.	Retrofit w/T8 lamps and electronic ballasts.
12	4-Lamp, 4' Fluor.	Retrofit w/T8 lamps and electronic ballasts.
7	HID Downlight	None.
51	Incandescent downlight	None (diming required).
2	Incandescent exit	Replace w/LED exit fixture

COST SAVINGS CALCULATIONS:

(Refer to following Flex Output)

Demand Savings = $(7.721 \, KW - 6.743 \, KW) (4 \, mo.x \$ 7.50 / KW + 8 \, mo.x \$ 6.25 / KW)$ = \$ 78.24 / yr

IMPLEMENTATION COSTS:

(Refer to following Flex Output)

LIFE CYCLE COST ANALYSIS:

(Refer to following ECIP Life Cycle Cost Summary)

	Annual	Value	Energy	\$ 227		4502	5152	
	Annual	Value	Maint	\$ 227		763	<u>%</u>	
	Present	Value	Energy	\$ 227		61187	70022	
	Present	Value	Maint	\$ 227	•	10368	10857	
)				ø,	٠			
	Levelized	Energy	Cost	cnts/kWh		2.007	0.00	
			_	(SIR)				
	Annual	Energy	Savings	作		3454	0	
	Annual	Value	Total	\$ 227		5370	5951	
	Present	Value	Total	\$ 227		72979	80880	
	Net	Present	Value	s,		7901	0	
)	Annual	Energy		뜻		23599	27024	
	Project	Name	(*=Base)			BLD2652A	*BLD2657B	

Project Description: FT SAM HOUSTON EEAP

File Case
Names Description
BLD2652A POST RETROFIT CONDITION
BLD2657B EXISTING CONDITIONS

| Whole Building Summary Report |

Project: FT SAM HOUSTON EEAP
File: H:\JOB\911099\12F\ELECT\FLEX\OUT\2652\BLD2652A.WBR
pate: 10/16/1993

23599 kWh
6.743 kW
32331 kWh
3371 kWh
2876 SqFt
287600 %
2.344 W/sqft Lighting Annual
Lighting Capacity
Annual Cooling Effect
Annual Heating Effect:
Total Surveyed Floor Area:
Percent Survey Completed:
Lighting Power Density:

Costs		Initial	Energy	Maint.	Cooling	Heating	Total
	_						
PVLCC	s	1424	25961	10368	35805	-579	72979
AVLCC	Š	105	1910	763	2635	-43	5370

| Lighting Level Comparison Report |

Project: FT SAM HOUSTON EEAP
File: H:\JOB\911099\12F\ELECT\FLEX\OUT\2652\BLD2652A.LLR
ste: 10/16/1993

Room Foot Candles	MAX	MIN	AVG	SDEV	MAX Room	MIN Room
Calculated	70.4	1.6	30.3	21.18	2-serving	7-corr/stor
Measured	40.1	1.0	18.7	15.70	2-serving	7-corr/stor
Required	50.0	5.0	22.1	19.76	3-kitchen	1-dining
Foot Candle Comparison	MAX	MIN	AVG	SDEV	MAX Room	MIN Room
Calc - Req.	50.4	-21.8	8.2	28.20	2-serving	3-kitchen
Meas - Req.	20.1	-29.6	-3.5	15.96	2-serving	3-kitchen

Lighting System Survey Summary One Page for Each Defined System ------

iect: FT SAM HOUSTON EEAP
ile: H:\JOB\911099\12F\ELECT\FLEX\OUT\2652\BLD2652A.LSR
Date: 10/16/1993

Descrip: incand. down light System Number: Rooms Served: 840 SqFt Floor Area: 3.750 3.750 3.750 Possible kW: Working kW: Capacity kW: Lighting: 13125 Annual kWh Heating: 1875 Annual kWh 17875 Annual kWh Cooling: Op Hours/Year: 3500 Annual Hrs Relamp Method: Relamp Time : Spot 2.6 Months Power Density: 4.464 Watts/SqFt **Fixtures Ballasts** Equipment Lamps 50 50 0.0 Possible 50 0.0 Working 50 0.0 50 50 Capacity Ò 0.0 Disconnected 0 0.0 Broken/Burned D Cooling Heating Total Costs Energy Maint. PVLCC \$ 14438 AVLCC \$ 1062 42827 8887 19747

System Number: 2 Descrip: 2x4 fluor. w/acrylic

1453

Ballasts

3151

654

ms Served: 560 SqFt loor Area: 0.116 Possible kW: Working kW: Capacity kW: Lighting: 0.116 0.116 406 Annual kWh Heating: 58 Annual kWh 553 Cooling: Annual kWh Op Hours/Year: 3500 Annual Hrs Spot 105.4 0.207 Relamp Method: Relamp Time : Months Power Density: Watts/SqFt

Fixtures

Equipment

Possib	le		1	4	1.0	
Workin	19		1	4	1.0	
Capaci	ty		1	4	1.0	
Discon	inec	ted	0	0	0.0	
Broken	/Bu	ırned	0	0	0.0	
Costs		Energy	Maint	. Cooli	ng Heating	Total
	-					
PVLCC	\$	447	4	46	11 -10	1144
AVLCC	\$	33		3 (45 -1	84

Lamps

System Number:	: 3		HID down li		
23222222222					
Rooms Served:	: 1				
Floor Area:		SqFt			
Possible kW:		•			
mrking kW:	1.435				
acity kW:	1.435				
Lighting:		Annual kWh			
Heating:		Annual kWh			
Cooling:		Annual kWh			
Op Hours/Year:	3500	Annual Hrs			
Relamp Method:					
Relamp Time :	34.6	Months			
Power Density:	2.563	Watts/SqFt			
Equipment	Fixtures	Lamps	Ballasts		
Equipment		caips			
Possible	7	7	7.0		
Working	7	7	7.0		
Capacity	7	7	7.0		
Disconnected	0	0	0.0		
Broken/Burned	0	0	0.0		
5 5	Maš	e Coolina		Total	
Costs Ener	gy Main	t. Cooling	Heating	Total	
PVLCC \$ 55	25 7	57 7849	-123	14634	
		56 578		1077	
ATLCC -		5.0	•		
System Number:	4		2x4 fluor.		
System Number:					
Rooms Served:	2	=========			
Rooms Served: Floor Area:	2 1136				
Rooms Served: Floor Area: Possible kW:	2 1136 1.276	=========			
Rooms Served: Floor Area: Possible kW: Working kW:	2 1136 1.276 1.276	=========			
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW:	2 1136 1.276 1.276 1.276	SqFt			
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting:	2 1136 1.276 1.276 1.276 1.276 4466	SqFt Annual kWh			
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating:	2 1136 1.276 1.276 1.276 4466 638	SqFt Annual kWh Annual kWh			
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling:	1136 1.276 1.276 1.276 4466 638 6082	Sqft Annual kWh Annual kWh Annual kWh			
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year:	2 1136 1.276 1.276 1.276 4466 638 6082 3500	SqFt Annual kWh Annual kWh			
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year:	2 1136 1.276 1.276 1.276 4466 638 6082 3500 Spot	Sqft Annual kWh Annual kWh Annual kWh			
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year:	2 1136 1.276 1.276 1.276 4466 638 6082 3500 Spot 105.4	SqFt Annual kWh Annual kWh Annual kWh Annual kWh			
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Polamp Method: Inp Time: T Density:	2 1136 1.276 1.276 1.276 4466 638 6082 3500 Spot 105.4 1.123	Sqft Annual kWh Annual kWh Annual kWh Annual Hrs Honths Watts/Sqft			
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Polamp Method: Try Time: Tensity:	2 1136 1.276 1.276 1.276 4466 638 6082 3500 Spot 105.4 1.123	SqFt Annual kWh Annual kWh Annual kWh Annual Hrs Months			
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Polamp Method: To Density: Equipment	2 1136 1.276 1.276 1.276 4466 638 6082 3500 Spot 105.4 1.123	SqFt Annual kWh Annual kWh Annual kWh Annual Hrs Months Watts/SqFt Lamps	Ballasts		
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Poly Time: To Density: Equipment Possible	2 1136 1.276 1.276 1.276 4466 638 6082 3500 Spot 105.4 1.123	SqFt Annual kWh Annual kWh Annual kWh Annual Hrs Months Watts/SqFt Lamps	Ballasts		
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Polamp Method: To Density: Equipment Possible Working	2 1136 1.276 1.276 1.276 4466 638 6082 3500 Spot 105.4 1.123 Fixtures	Sqft Annual kWh Annual kWh Annual kWh Annual Hrs Wonths Watts/Sqft Lamps	Ballasts 		
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Cooling: Op Hours/Year: Pelamp Method: Trp Time: Toensity: Equipment Possible Working Capacity	2 1136 1.276 1.276 1.276 4466 638 6082 3500 Spot 105.4 1.123 Fixtures	SqFt Annual kWh Annual kWh Annual kWh Annual Hrs Months Watts/SqFt Lamps	Ballasts 		
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Pelamp Method: Inp Time : T Density: Equipment Possible Working Capacity Disconnected	2 1136 1.276 1.276 1.276 4466 638 6082 3500 Spot 105.4 1.123 Fixtures	Sqft Annual kWh Annual kWh Annual kWh Annual Hrs Wonths Watts/Sqft Lamps	Ballasts 		
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Cooling: Op Hours/Year: Pelamp Method: Trp Time: Toensity: Equipment Possible Working Capacity	2 1136 1.276 1.276 1.276 4466 638 6082 3500 Spot 105.4 1.123 Fixtures	SqFt Annual kWh Annual kWh Annual Hrs Months Watts/SqFt Lamps	Ballasts 11.0 11.0 0.0		
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Pelamp Method: Inp Time : T Density: Equipment Possible Working Capacity Disconnected	2 1136 1.276 1.276 1.276 4466 638 6082 3500 Spot 105.4 1.123 Fixtures	SqFt Annual kWh Annual kWh Annual Hrs Months Watts/SqFt Lamps	Ballasts 11.0 11.0 0.0		
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Gooling: Op Hours/Year: Pelamp Method: To Time: Toensity: Equipment Possible Working Capacity Disconnected Broken/Burned Costs Ener	2 1136 1.276 1.276 1.276 4466 638 6082 3500 Spot 105.4 1.123 Fixtures	SqFt Annual kWh Annual kWh Annual Hrs Months Watts/SqFt Lamps	Ballasts 11.0 11.0 0.0 0.0 Heating	Total	
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Gooling: Op Hours/Year: Pelamp Method: To Time: Toensity: Equipment Possible Working Capacity Disconnected Broken/Burned Costs Energy	2 1136 1.276 1.276 1.276 4466 638 6082 3500 Spot 105.4 1.123 Fixtures 11 11 11 0 0	SqFt Annual kWh Annual kWh Annual Hrs Months Watts/SqFt Lamps 44 44 44 0	Ballasts 11.0 11.0 0.0 0.0		

System Number:	5		fluor. wrap) ::::::::::::::::::::::::::::::::::::	22==
Rooms Served: Floor Area: Possible kW: Prking kW:	2 300 0.126 0.126 0.126	SqFt			
acity kW: Lighting: Heating: Cooling: Op Hours/Year:	440 63 599				
Relamp Method: Relamp Time : Power Density:	Spot 105.4				
	tures	Lamps	Ballasts		
Possible Working Capacity Disconnected	2 2 2 0	. 4 . 4	2.0 2.0 2.0 0.0		
Broken/Burned	0	0	0.0	Tabal	
Costs Energy				Total	
PVLCC \$ 484 AVLCC \$ 36		59 661 4 49		1275 94	
System Number:	6		incand. dru	m ====================================	
Rooms Served: Floor Area: Possible kW:	1 40 0.040				
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating:	1 40 0.040 0.040 0.040 140 20	SqFt Annual kWh Annual kWh			****
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Palamp Method: mp Time :	1 40 0.040 0.040 0.040 140 20 196 3500 spot 3.4	SqFt Annual kWh Annual kWh Annual kWh Annual kWh Annual Hrs Months			
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Polamp Method: mp Time: r Density:	1 40 0.040 0.040 0.040 140 20 196 3500 Spot 3.4 1.000	SqFt Annual kWh Annual kWh Annual kWh Annual Hrs Months Watts/SqFt			
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Palamp Method: mp Time: r Density: Equipment Fix	1 40 0.040 0.040 0.040 140 20 196 3500 Spot 3.4 1.000 tures	SqFt Annual kWh Annual kWh Annual kWh Annual Hrs Honths Watts/SqFt Lamps	Ballasts		
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Palamp Method: mp Time: Possible Working	1 40 0.040 0.040 0.040 140 20 196 3500 Spot 3.4 1.000 tures	SqFt Annual kWh Annual kWh Annual kWh Annual Hrs Months Watts/SqFt Lamps 1 1	Ballasts 0.0 0.0		
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Palamp Method: mp Time : r Density: Equipment Fix	1 40 0.040 0.040 0.040 140 20 196 3500 Spot 3.4 1.000	SqFt Annual kWh Annual kWh Annual kWh Annual Hrs Months Watts/SqFt Lamps	Ballasts		
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Polamp Method: The : The Density: Equipment Fix Possible Working Capacity Disconnected	1 40 0.040 0.040 0.040 140 20 196 3500 Spot 3.4 1.000 tures	SqFt Annual kWh Annual kWh Annual Hrs Months Watts/SqFt Lamps	Ballasts 0.0 0.0 0.0 0.0		

Room-By-Room Summary Report

Project: FT SAM HOUSTON EEAP File: H:\JOB\911099\12F\ELECT\FLEX\OUT\2652\BLD2652A.RRR Date: 10/16/1993

	•	
Req. Footc	20.0 50.0 10.0 15.0	
Calc. R FootC F		
Meas. C. FootC F		
Watt Me Sqft Fc	•	4 4 4 4
Pot. W Watts s		
	3750 1551 1044 232 63 63	
Watt We sqft We		
Pot. W Watts s		
Work P. Watts W.		
		:::::
SYSTEM3 Name		
att qft	.21	
Pot. W Watts s	116 0	
Work Po Watts We	4.46 2.56 2x4 fluor. 116 116 0 1.08 1.38 0.39 1.00	
22	ċ	
SYSTEM2 Name	fluo	
t SYS	22 22 24 24	
. Watt ts sqft	3750 4.46 1435 2.56 1044 1.08 232 1.38 63 0.45 63 0.39 40 1.00	:
Work Watts	23,53,53,53,53,53,53,53,53,53,53,53,53,53	
EM1	fluor fluor fluor r. wre	
SYSTEM1 #Pr Name	100 incand. do 15 HID down L 6 2x4 fluor. 0 2x4 fluor. 1 fluor. Wra 0 fluor. Wra 0 incand. dr	
	00 8 8 0 0 0 0 1 4 0 1 0 0	
Total # * Area	840 560 968 140 140 160	
# (4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4	
Floor # *		
Room Name F	1-dining 2-serving 3-kitchen 4-scullery 5-dry stor 6-stor 7-corr/sto	
ž	Kit Kit G	•

Total Rooms: 7

Total Area Sqft: 2876

Total People: 122

Total Working kW: 6.743

Total Potential kW: 6.743

Power Density W/sqft: 2.344

| Whole Building Summary Report |

Project: FT SAM HOUSTON EEAP
File: H:\JOB\911099\12F\ELECT\FLEX\OUT\2652\BLD2657B.WBR
ate: 10/16/1993

27024 kWh 7.721 kW 36994 kWh 3861 kWh 2876 SqFt 287600 % 2.685 W/sqft Lighting Annual
Lighting Capacity
Annual Cooling Effect:
Annual Heating Effect:
Total Surveyed Floor Area:
Percent Survey Completed:
Lighting Power Density:

Costs	• • •	itial	Energy	Maint.	Cooling	Heating	Total
PVLCC	\$	0	29728 2187	10857 799	40957 3014	-662 -49	80880 5951

Lighting System Survey Summary One Page for Each Defined System ,____

Tect: FT SAM HOUSTON EEAP Tile: H:\JOB\911099\12F\ELECT\FLEX\OUT\2652\BLD2657B.LSR Date: 10/16/1993

System Number: Descrip: incand. down light Rooms Served: 840 SqFt 3,750 2,625 3,750 13125 Annual kWh Floor Area: Possible kW:
Working kW:
Capacity kW:
Lighting: 1875 Annual kWh 17875 Annual kWh 3500 Annual Hrs Heating: Cooling: Op Hours/Year: Relamp Method: Relamp Time Spot 2.6 Months 3.125 Watts/SqFt Power Density: Equipment **Fixtures** Lamps Ballasts 50 50 0.0 Possible Working 35 35 0.0

Discon Broken	mec		0 15	0	0.0 0.0	
Costs	_	Energy	Maint.	Cooling	Heating	Total
PVLCC	\$	14438 1062	8887 654	19747 1453	-322 -24	42750 3146

System Number: 2 Descrip: 2x4 fluor. w/acrylic

ns Served: loor Area: 560 SqFt Possible kW:
Working kW:
Capacity kW:
Lighting: 0.192 0.192 0.192 672 Annual kWh 96 Annual kWh 915 Annual kWh 3500 Annual Hrs Heating: Cooling: Op Hours/Year: Relamp Method: Relamp Time : Power Density: Spot 105.4 Months 0.343 Watts/SqFt

Equipment		ixtures	Lamps	s Ballasi		
Possible	• · · ·	1	4	1.0		
Working		1	4	1.0		
Capacity	y	1	4	1.0		
Disconn		Ó	Ó	0.0		
Broken/I	Burned	0	Ō	0.0		
Costs	Fnero	ny Mair	st. Cooli	na Heati		

Total Heating PVLCC \$
AVLCC \$ 739 54 1815 81 1011 -16 134

System Number:	3		HID down li		
		:::::::::::::::::::::::::::::::::::::::	*********	:===========	=======
Rooms Served:	1				
Floor Area:	560	SqFt			
Possible kW:	1.435	-			
rking kW:	1.230				
acity kW: Lighting:	1.435	Annual kUh			
Heating:	717	Annual kWh Annual kWh Annual kWh			
Cooling:	7026	Annual kWh			
Op Hours/Year: Relamp Method:	3500	Annual Hrs			
Relamp Method:	Spot	MAL-			
Relamp Time : Power Density:	2 106	Months Watts/SqFt			
Power Density:	2.170	watts/sqrt			
	ctures	Lamps	Ballasts		
Possible	7	7	7.0		
Working	7	6	6.0		
Capacity	7	6 7 0	7.0		
Disconnected	0	0	0.0		
Broken/Burned	0	1	1.0		
Costs Energy	Main	t. Cooling		Total	
PVLCC \$ 5525		57 7849		14007	
AVLCC \$ 407		56 578	-9	1031	
System Number:	4	Descrip:	2x4 fluor.	w/acrylic lens	
Rooms Served:	2				
Rooms Served: Floor Area:	1136	SqFt			
Rooms Served: Floor Area: Possible kW:					
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW:	1136 2.112 2.016 2.112	SqFt			
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting:	1136 2.112 2.016 2.112 7392	Sqft Annual kWh			
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Weating:	1136 2.112 2.016 2.112 7392 1056	SqFt Annual kWh Annual kWh			
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling:	1136 2.112 2.016 2.112 7392 1056 10067	SqFt Annual kWh Annual kWh Annual kWh			
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year:	1136 2.112 2.016 2.112 7392 1056 10067 3500	SqFt Annual kWh Annual kWh			
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling:	1136 2.112 2.016 2.112 7392 1056 10067 3500 Spot 105.4	SqFt Annual kWh Annual kWh Annual kWh Annual Hrs Months			
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Ralamp Method:	1136 2.112 2.016 2.112 7392 1056 10067 3500 Spot 105.4	SqFt Annual kWh Annual kWh Annual kWh Annual Hrs			
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Cooling: Op Hours/Year: Belamp Method: Time: Density: Equipment Fix	1136 2.112 2.016 2.112 7392 1056 10067 3500 Spot 105.4 1.775	Annual kWh Annual kWh Annual kWh Annual Hrs Months Watts/SqFt Lamps	Ballasts		
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Looling: Cooling: Op Hours/Year: Relamp Method: np Time: Density: Equipment Fix	1136 2.112 2.016 2.112 7392 1056 10067 3500 Spot 105.4 1.775	Annual kWh Annual kWh Annual kWh Annual Hrs Months Watts/SqFt Lamps	Ballasts		
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Relamp Method: Density: Equipment Fix	1136 2.112 2.016 2.112 7392 1056 10067 3500 Spot 105.4 1.775	Annual kWh Annual kWh Annual kWh Annual Hrs Months Watts/SqFt Lamps	Ballasts		
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Looling: Cooling: Op Hours/Year: Relamp Method: np Time: Density: Equipment Fix	1136 2.112 2.112 7392 1056 10067 3500 Spot 105.4 1.775	Annual kWh Annual kWh Annual kWh Annual Hrs Months Watts/SqFt Lamps	Ballasts		
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Ralamp Method: np Time: Density: Equipment Fix Possible Working Capacity Disconnected	1136 2.112 2.016 2.112 7392 1056 10067 3500 Spot 105.4 1.775 ttures 11 11	Annual kWh Annual kWh Annual kWh Annual Hrs Months Watts/SqFt Lamps 	Ballasts 11.0 10.0 11.0 0.0		
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Cooling: Cooling: Op Hours/Year: Relemp Method: Time: Density: Equipment Fix Possible Working Capacity Disconnected	1136 2.112 2.016 2.112 7392 1056 10067 3500 Spot 105.4 1.775 ctures	Annual kWh Annual kWh Annual kWh Annual Hrs Months Watts/SqFt Lamps	Ballasts 11.0 10.0 11.0		
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Relamp Nethod: Possible Working Capacity: Possible Working Capacity Disconnected Broken/Burned	1136 2.112 2.016 2.112 7392 1056 10067 3500 Spot 105.4 1.775 ttures 11 11 0	Annual kWh Annual kWh Annual kWh Annual Hrs Months Watts/SqFt Lamps 	Ballasts 11.0 10.0 11.0 0.0	Total	
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Ralamp Method: Density: Equipment Fix Possible Working Capacity Disconnected Broken/Burned Costs Energy	1136 2.112 2.016 2.112 7392 1056 10067 3500 Spot 105.4 1.775 tures 	Annual kWh Annual kWh Annual kWh Annual Hrs Months Watts/SqFt Lamps 	Ballasts 		

System Number:			fluor. wrap) ====================================	:======
Rooms Served: Floor Area: Possible kW:	2 300 Sqi 0.192 0.192				
acity kW: Lighting: Heating: Cooling: Op Hours/Year:	96 Ani 915 Ani 3500 Ani	nual kWh nual kWh nual kWh nual Hrs			
Relamp Method: Relamp Time : Power Density:	Spot 105.4 Mor 0.640 Wat	nths tts/SqFt			
Equipment Fix		.amps	Ballasts		
Possible Working Capacity Disconnected Broken/Burned	2 2 2 0 0	4 4 4 0 0	2.0 2.0 2.0 0.0 0.0		
Costs Energy	Maint.	Cooling	Heating	Total	
PVLCC \$ 739 AVLCC \$ 54	97 7	1011 74	-16 -1	1831 135	
System Number:	6 C	escrip: i	ncand. dru	m ====================================	======
Rooms Served: Floor Area: Possible kW: Working kW:	1 40 SqF 0.040 0.040	t			
Capacity kW: Lighting: Heating: Cooling: Op Hours/Year:	196 Ann 3500 Ann	nual kWh nual kWh nual kWh nual Hrs			
Relamp Method: mp Time : r Density:	Spot 3.4 Mor 1.000 Wat	iths :ts/SqFt			
Equipment Fix	tures L	amps	Ballasts		
Possible Working Capacity Disconnected Broken/Burned	1 1 1 0 0	1 1 1 0 0	0.0 0.0 0.0 0.0 0.0		
Costs Energy	Maine	Caalina	Heating	Total	
	Maint.	Cooling	neating	TOTAL	

LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)

LOCATION:	FOF	RT SAM HOUST	ON	_REGION NO		PROJECT NO. 91109912F
PROJECT TITLE:		FORT SAM HO	USTON DINING	G FACILITIES I	EEAP	FISCAL YEAR 1994
DISCRETE PORTIO					3., C., D. – LIGI	HTING IMPROVEMENTS
ANALYSIS DATE:	NOVEMBER	1, 1993 EC	ONOMIC LIFE	15	PREPARER	S. P. CLARK
1. INVESTMENT	COSTS:					
A. CONSTRUCTION B. SIOH C. DESIGN COST D. TOTAL COST (1) E. SALVAGE VALUE	A+1B+1C)	G EQUIPMENT	\$1,424 \$78 \$85 \$1,588		:	
F. PUBLIC UTILITY				\$0_		
G. TOTAL INVEST	MENT (1D-1E	-1F)			\$1,588	
2. ENERGY SAVII DATE OF NISTIR 8			DUNT FACTOR	:S: <u>'N</u>	NOVEMBER 4, 1	1992
ENERGY	COST	SAVINGS	ANNUAL \$	DISCOUNT	DISCOUNTE	D
SOURCE	\$/MBTU(1)	MBTU/YR(2)	SAVINGS(3)	FACTOR(4)	SAVINGS(5)	
			***		A. .=0	
A. ELEC	<u>\$10.55</u>	11.69	<u>\$123</u>	11.77	\$1,452 \$0	
B. DIST			\$0	13.83 16.15	\$0 \$0	
C. RESID D. NG	\$3.31	0.00	\$0	15.34	\$0	•
E. PPG	Ψ0.01	0.00	\$0	11.12	\$0	
F. COAL			\$0	12.82	\$0	,
G. SOLAR			\$0	11.12	\$0	
H. GEOTH			\$0	11.12	\$0	
I. BIOMA			\$0	11.12	\$0	
J. REFUS			<u>\$0</u>	11.12	\$0	
K. WIND	\$10 FF	15.00	\$0 \$168	11.12	\$0 \$1,868	
L. COOLING M. DEMAND SAVIN	\$10.55	15.92	\$78	11.12	\$870	
N. TOTAL	100	27.61	\$370	11.12	\$4,189	
					7.,,50	
3. NON ENERGY	SAVINGS (+)	OR COST (-):				
			-			
A. ANNUAL RECUR		\$36	44.4			
1. DISCOUNT FAC 2. DISCOUNTED S			11.1	\$400		
Z. DISCOUNTED S	SAVINGS/CUS	1 (3A A 3A1)		<u>\$400</u>		

LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)

B. NON RECURRING SAVINGS (+) OR COST(-)

	ITEM	SAVINGS(+)		DISCOUNT	DISCOUNTED SAV-
		COST(-)(1)	OCCUR.(2)	FACTOR(3)	INGS(+)COST(-)(4)
a.	N/A	\$0	1	0.96	\$0
b.	N/A	\$0	2	0.92	\$0
C.	N/A	\$0	3 4	0.89	\$0
d.	N/A	\$0	4	0.85	\$0
е.	N/A	\$0	5	0.82	\$0
f.	N/A	\$0	6	0.79	: \$0
g.	N/A	\$0	7	0.76	\$0
h.	N/A	\$0	8	0.73	\$0
i.	N/A	\$0	9	0.7	\$0
j.	N/A	\$0	10	0.68	\$0
k.	N/A	\$0	11	0.65	\$0
1.	N/A	\$0	12	0.62	\$0
m.	N/A	\$0	13	0.6	\$0
n.	N/A	\$0	14	0.58	\$0
Ο.	N/A	\$0	15	0.56	\$0
p.	TOTAL	\$0			\$0
C.	TOTAL NON I	ENERGY DISCO	UNTED SAVIN	IGS (3A2 + 3Bp4	4)\$400
<u>4. S</u>	IMPLE PAYBA	ACK 1G/(2N3+3/	A+(3Bp1/ECO	NOMIC LIFE)):	3.9 YEARS
5. T	OTAL NET DIS	SCOUNTED SAV	'INGS (2N5+3	BC):	\$4,589
6. S	AVINGS TO IN	NVESTMENT RA	TIO (SIR) 5/10	<u>ì:</u>	2.89
7. A	DJUSTED INT	ERNAL RATE O	F RETURN (AI	<u>IR</u> R):	11.6%

ENERGY CONSERVATION ANALYSIS

BUILDING 2841 - ACADEMY DINING

Building 2841 is four story facility consisting of 363,000 square feet. This facility contains a full service kitchen and a large dining area which consists of 8,300 square feet.

The operating hours are from 10:00 am to 1:00 pm, Monday thru Friday.

The lighting system is primarily fluorescent in the kitchen area and incandescent with dimming in the bar and dining areas.

The mechanical system consists of multi-zone air handling units served by water cooled centrifugal chillers. Heating is provided by gas fired boilers.

Hot water is provided to the kitchen by a gas fired boiler located in the basement. Dishwashing is accomplished using an automatic dishwasher with an electric hot water booster heater.

The following ECO's are recommended for Building 2841:

- 1. IV. A Night setback/setup thermostat
- 2. VII. C Remove unneeded lamps or fixtures
- 3. VII. D Reduce indoor/outdoor lighting to AEI levels
- 4. IX. A Replace incandescent lamps with compact fluorescents
- 5. IX. B Replace incandescent exit fixtures with LED
- 6. IX. C Replace standard lamps with energy saving lamps
- 7. IX. D Replace standard ballast with energy saving ballast
- 8. IX. E Replace existing fixture with high efficiency fixtures

ENERGY CONSERVATION ANALYSIS

ENERGY CONSERVATION OPPORTUNITIES (ECO's) - BUILDING NO. 2841

ECO NO: IV. A

ECO NAME: Night setback/setup thermostats

SUMMARY DATA (DEPENDENT):

KWH Savings: 2,000 KWH/yr

Demand Savings: 0 KW/yr

Gas Savings: 23.5 MCF/yr

Cost Savings: \$ 152 /yr

Implementation Cost: \$ 242

Simple Payback: 1.6 Years

Savings to Investment: 8.59

Ratio (SIR):

ECO DESCRIPTION:

Currently manual thermostats are used to control the existing multizone air handling unit which serves the dining, kitchen and bar areas. The multizone unit is in operation 24 hours per day.. This ECO analyzes the installation of a programmable night setback/setup thermostat to reduce energy consumption during unoccupied periods.

COST SAVINGS CALCULATIONS:

(Refer to following SimpCalc Output)

IMPLEMENTATION COSTS:

(Refer to following Cost Estimate)

MAINTENANCE COSTS:

Maintenance costs of \$5.00/year is included in the LCCA for programming, battery replacement and failures.

LIFE CYCLE COST ANALYSIS:

(Refer to following ECIP Life Cycle Cost Summary)

TEXAS LoanSTAR Program - ECRM Simplified Calculation Ver 2.0

11/08/93

SimpCalc 2.0 SUMMARY (by FORM) - FORT SAM HOUSTON

	:======================================				******	=======================================		:::::::::	
Form	Facility	ECRM Desc. Page	KWH/Yr	KW	MCF/yr	mmBtu/Yr	\$/Yr	Imp.Cost	PayBack
C7-01	BLDG 2841 ACADEMY DINNING	Prog Thermostat 1	2000	.00	23.5	31.0	152	242	1.6
		*** SUB-TOTAL ***	2000	.00	23.5	31.0	152	242	1.6
	** GRAND TOTAL **		2000	.00	23.5	31.0	152	242	1.6

Page 1

TEXAS LoanSTAR Program - ECRM Simplified Calculation Ver 2.0

11/08/93 Consolida	ated ECRM Detail - FORT SAM HOUSTON	Page	1
	ermostats - BLDG 2841 ACADEMY DINNING		 (G)
C/-001 Flogiammable is	ICHINOSERES BEDG EGAT NOMBERT PARITING		,
Cost Source: means cost	: data		
Description: Install ni	ght setback/setup thermostats.		
A)15 BTU/hr-ft-F	U-Value of Walls		
B) 2304 Sq.Ft.	Wall Area (includes windows and doors)		
C) BTU/hr-ft-F	U-Value of Roof		
D) <u>8224</u> Sq.Ft.	Roof Area		
	Heating Season Thermostat Setpoint		
F) <u>55</u> Degree/F	Heating Season Thermostat Setback Setpoint		
G) <u>1500</u> Hours/yr	Heating Season Setback Hours = <u>10</u> Hrs/day x <u>150</u> Days/yr	:	
H) <u>74</u> Degree/F	Cooling Season Thermostat Setpoint		
I) 90 Degree/F	Cooling Season Thermostat Setback Setpoint		
J) <u>2000</u> Hours/yr	Cooling Season Setback Hours		
	= <u>10</u> Hrs/day x <u>200</u> Days/yr		
K) <u>.7000</u>	Heating Equipment Efficiency (Table 2)		
L) \$ <u>3.41</u> /MCF	Cost per MCF		
M) <u>12.12</u> BTUH/Watt	EER of Air Conditioning Unit (Table 1)		
N) \$ <u>.0360</u> /KWH	Cost per KWH - Summer		
0) \$242	Installed Cost = 2 Thermostats x \$ 121/stat		
P) <u>757</u> BTU/hf-F	Total Envelope UA-Value		
Q) <u>17.0</u> mm8TU/yr	Heating Load Reduction		
R) \$ <u>80</u>	Heating Cost Reduction		
S) <u>24.2</u> mmBTU/yr	Cooling Load Reduction		
T) \$ 72 /year	Cooling Cost Reduction		
U) \$152 /year	Annual Cost Savings		
V) <u>1.6</u> years	Simple Payback		
 ·	•		

CARTER	& BU	RGE	SS CC	ST E	STIMATI	NG AI	NALYSIS		
PROJECT NAME: FORT SAM HOUSTON EEAP				PROJECT NO: 91109912F					
PROJECT LOCATION: SAN ANTONIO,					ESTIMATOR: S.P. CLARK				
SUBMITTAL:	SUBMITTAL: 35.0%			DATE:		27-Oct-93			
ECO NO/ BUILDING: IV. A. / BLDG 284	1				CHECKED BY	': DJY			
TASK DESCRIPTION	QUAN	ITITY		t	ABOR		MATERI	ALS	TOTAL
	NO/UN		MH UN	HRS	UN PRICE	совт	UN PRICE	COST	COST
						0.00		0.00	0
NICHT OFTRACK THERMOSTAT	١,	EA			26.50	0.00 53.00	64.00	0.00 128.00	0 181
NIGHT SETBACK THERMOSTAT	1	-^			20.50	0.00	04.00	0.00	0
						0.00		0.00	0
						0.00 0.00		0.00 0.00	0
						0.00		0.00	0
	1					0.00		0.00	0
		l				0.00 0.00		0.00 0.00	0
	İ					0.00		0.00	ő
						0.00		0.00	0 0 0
						0.00		0.00	0
						0.00 0.00		0.00 0.00	
						0.00		0.00	0 0 0
			1			0.00		0.00	0
						0.00		0.00 0.00	0
						0.00	÷	0.00	0
						0.00		0.00	0
						0.00 0.00		0.00 0.00	0 0 0
						0.00		0.00	ŏ
						0.00		0.00	0
						0.00 0.00		0.00	0 0 0
						0.00		0.00	Ö
						0.00		0.00	0
						0.00		0.00 0.00	0
						0.00 0.00		0.00	0 0 0 0 0
						0.00		0.00	0
						0.00		0.00	0
						0.00		0.00	
						0.00		0.00	0 0
						0.00		0.00	0
						0.00 0.00		0.00 0.00	0
						0.00		0.00	0 0 0
						0.00		0.00	0
						0.00 0.00		0.00	0 0 0
						0.00		0.00	0
						0.00		0.00	0
						0.00 0.00	ľ	0.00	0 0 0
				İ		0.00		0.00	0
						0.00	j	0.00	. 0
						0.00		0.00	0
						0.00		0.00	0 0 0
						0.00	Ì	0.00	ŏ
			**			0.00	ļ	0.00	0
						0.00		0.00	0
SUBTOTAL						\$53		\$128	\$181
CONTENGENCY	10.00%								\$18
OVERHEAD & PROFIT	10.00%								\$18
TOTAL									\$217

LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)

LOCATION:	FOR	RT SAM HOUST		_REGION NO		PROJECT NO	91109912
PROJECT TITLE:		FORT SAM HO				FISCAL YEAR	
DISCRETE PORTI	ON NAME:	BUILDI	NG 2841 - EC	0 IV. A NIG	HT SETBACK/S	SETUP THERMOS	STAT
ANALYSIS DATE:	NOVEMBER	1, 1993 EC	ONOMIC LIFE	15	PREPARER	S. P. C	LARK
1. INVESTMENT	COSTS:				_		
A. CONSTRUCTION B. SIOH C. DESIGN COST D. TOTAL COST (1) E. SALVAGE VALUE	IA+1B+1C) JE OF EXISTIN		\$217 \$12 \$13 \$242		:		
F. PUBLIC UTILITY				\$0	_		
G. TOTAL INVEST	MENT (1D-1E	–1F)			\$242		
2. ENERGY SAVI	35-3273-X US	SED FOR DISCO			IOVEMBER 4, 1	,	
ENERGY	COST	SAVINGS	ANNUAL \$	DISCOUNT	DISCOUNTED)	
SOURCE	\$/MBTU(1)	MBTU/YR(2)	SAVINGS(3)	FACTOR(4)	SAVINGS(5)		
A. ELEC B. DIST	\$10.55	6.83	<u>\$72</u> \$0	<u>11.77</u> 13.83	\$848 \$0		
C. RESID			\$0	16.15	\$0		
D. NG	\$3.31	24.23	\$80	15.34	\$1,230		
E. PPG			\$0	11.12	\$0		
F. COAL			\$0	12.82	\$0		
G. SOLAR			\$0	11.12	\$0		
H. GEOTH			\$0	11.12	\$0		
I. BIOMA			\$0	11.12	\$0		
J. REFUS			\$0	11.12	\$0		
K. WIND			\$0	11.12	\$0		
L. OTHER		-	\$0	11.12	\$0 \$0		
M. DEMAND SAVIN	1 <u>CC</u>				\$0 \$0		
N. TOTAL	103	21.06	\$0	11.12			
N. TOTAL		31.06	\$152		\$2,078		
3. NON ENERGY A. ANNUAL RECUR 1. DISCOUNT FACE 2. DISCOUNTED SECTION 1	RRING (+/-) CTOR (TABLE /		11.1	(\$111)			

LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)

B. NON RECURRING SAVINGS (+) OR COST(-)

	ITEM	SAVINGS(+) COST(-)(1)	YEAR OF OCCUR.(2)	DISCOUNT FACTOR(3)	DISCOUNTED SAV- INGS(+)COST(-)(4)
a.	N/A	\$0	1	0.96	· \$ 0
b.	N/A		2	0.92	\$0
C.	N/A	\$0	3	0.89	\$0
d.	N/A	\$0	4	0.85	\$0
e.	N/A	\$0	5	0.82	\$0
f.	N/A	\$0	6	0.79	: \$0
g.	N/A	\$0	7	0.76	\$0
ĥ.	N/A	\$0	8	0.73	\$0
i.	N/A	\$0	9	0.7	\$0
j.	N/A		10	0.68	\$0
k.	N/A	\$0	11	0.65	\$0
1.	N/A	\$0	12	0.62	\$0
m.	N/A		13	0.6	\$0
n.	N/A	\$0	14	0.58	\$0
Ο.	N/A	\$0	15	0.56	\$0
p.	TOTAL	\$0			\$0

C. TOTAL NON ENERGY DISCOUNTED SAVINGS (3A2 + 3Bp4)	<u>(\$111)</u>
4. SIMPLE PAYBACK 1G/(2N3+3A+(3Bp1/ECONOMIC LIFE)):	1.7_YEARS
5. TOTAL NET DISCOUNTED SAVINGS (2N5+3C):	\$1,967
6. SAVINGS TO INVESTMENT RATIO (SIR) 5/1G:	8.13
7. ADJUSTED INTERNAL RATE OF RETURN (AIRR):	19.6%

ENERGY CONSERVATION ANALYSIS

ENERGY CONSERVATION OPPORTUNITIES (ECO's) - BUILDING NO. 2841

ECO NO: VII C, D & IX A, B, C, D, E.

ECO NAME: Improve lighting efficiency.

SUMMARY DATA (DEPENDENT):

KWH Savings: 111,658 KWH/yr

Demand Savings: 185.9 KW/yr

Gas Savings: n/a MCF/yr

Cost Savings: \$ 6,903 /yr

Implementation Cost: \$ 4,343

Simple Payback: ______6 Years

Savings to Investment: 18.1

Ratio (SIR):

ECO DESCRIPTION:

Currently, low efficiency lighting systems are in use. This ECO will update the lighting systems to improve efficiency while maintaining or increasing the current light levels. The existing lighting system and proposed retrofit action are as follows:

QTY	FIXTURE TYPE	ACTION
16	2-Lamp, 4' Fluor. cove	Remove all.
241	Incandescent downlight	Remove 139 incandescent fixtures and replace w/52 2-Lamp, 4' Fluor.
12	Fan/Light	None
29	2-Lamp, 4' Fluor	Retrofit w/T8 lamps and electronic ballasts.
34	4-Lamp, 4' Fluor	Retrofit w/T8 lamps and electronic ballasts.
7	Incandescent hood	None.
4	Incandescent exit	Replace with LED exit fixture.

COST SAVINGS CALCULATIONS:

(Refer to following Flex Output)

Demand Savings = (31.26 KW - 15.77 KW)(4 mo.x\$7.50/KW + 8 mo.x\$6.25/KW)= \$1,239.20/yr

IMPLEMENTATION COSTS:

(Refer to following Flex Output and Lighting Implementation Cost located in Appendix E)

LIFE CYCLE COST ANALYSIS:

Refer to following ECIP Life Cycle Cost Summary)

	Annual Value Energy LCC \$	9598 19030
	Annual Value Maint LCC \$	1791
	Present Value Energy LCC \$	130440 258631
	Present Value Maint LCC \$	24335 47481
)	Total Initial Cost	3895
	Levelized Energy Cost cnts/kWh	
	Savings Invest. Ratio (SIR)	
	Annual Energy Savings kWh	0 0 0
	Annual Value Total LCC \$	11675 22524
	Present Value Total LCC \$	158670 306112
	Net Present Value	147442
)	Annual Energy kWh	47318 93789
	Project Name (*=Base)	8LD2841A *BLD2841B

Project Description: FT SAM HOUSTON EEAP

File Case
Names Description
BLD2841A POST RETROFIT CONDITION
BLD2841B EXISTING CONDITIONS

| Whole Building Summary Report |

Project: FT SAM HOUSTON EEAP
lie: H:\JOB\911099\12F\ELECT\FLEX\OUT\2841\BLD2841A.WBR
ate: 10/17/1993

47318 kWh
15.773 kW
66331 kWh
6760 kWh
8224 SqFt
822400 %
1.918 W/sqft Lighting Annual
Lighting Capacity
Annual Cooling Effect
Annual Heating Effect
Total Surveyed Floor Area:
Percent Survey Completed:
Lighting Power Density:

Costs	-	nitial	Energy	Maint.	Cooling	Heating	Total
PVLCC		3895 287	54579 4016	24335 1791	77021 5667	-1160 -85	158670 11675

| Lighting Level Comparison Report |

Project: FT SAM HOUSTON EEAP

ile: H:\JOB\911099\12F\ELECT\FLEX\OUT\2841\BLD2841A.LLR

ate: 10/17/1993

Room Foot Candles	MAX	MIN	AVG	SDEV	MAX Room	MIN Room
Calculated	28.9	11.5	22.5	7.61	1-bar	2-dining
Measured	37.7	0.0	19.0	17.74	4-kitchen	2-dining
Required	50.0	5.0	24.0	18.81	4-kitchen	2-dining
Foot Candle Comparison	MAX	MIN	AVG	SDEV	MAX Room	MIN Room
Calc - Req.	7.9	-26.0	-1.5	16.36	1-bar	4-kitchen
Meas - Req.	10.0	-12.7	-5.0	10.61	3-serving	1-bar

__________ Lighting System Survey Summary One Page for Each Defined System ______

ect: FT SAM HOUSTON EEAP | Le: H:\JOB\911099\12F\ELECT\FLEX\OUT\2841\BLD2841A.LSR

ate: 10/17/1993

Descrip: incand down light System Number: _______________________________ Rooms Served: 2304 SqFt Floor Area: 7.650 7.650 7.650 22950 3279 Possible kW: Working kW: Capacity kW: Lighting: Annual kWh Heating: Annual kWh 32192 Annual kWh Cooling: 3000 Annual Hrs Op Hours/Year: Relamp Method: Relamp Time Spot 3.0 Months Watts/SqFt 3.320 Power Density: Fixtures **Ballasts** Equipment Lamps 102 0.0 102 Possible. 102 102 0 102 0.0 Working 102 0.0 Capacity Đ 0.0 Disconnected ŏ Ŏ 0.0 Broken/Burned Heating Cooling Maint. Total Costs Energy 79004 PVLCC \$ 15539 37399 AVLCC \$ 1948 1143 5813

3 Descrip: fan light System Number:

s Served: 3456 SqFt oor Area: 1.920 1.920 Possible kW: Working kW: Capacity kW: Lighting: 1.920 5760 Annual kWh Annual kWh Annual kWh Heating: 823 Cooling: 8080 3000 Annual Hrs Op Hours/Year: Relamp Method: Spot 4.0 0.556 Relamp Time : Months Watts/SqFt Power Density:

Equipment	Fixture	es Lamps	Ballasts	
			• ••••••	
Possible	12	48	0.0	
Working	12	48	0.0	
Capacity	12	48	0.0	
Disconnecte	d Ö	Ō	0.0	
Broken/Burn	ed 0	0	0.0	
Costs E	nergy M	laint. Coo	ling Heating	Total
PVLCC \$	6644	5749	9386 -141	21725
AVLCC \$	489	423	691 -10	1599

System Number:	5	Descrip:	2x4 surface	e acrylic lens, 2L
Rooms Served: Floor Area: Possible kW: Fking kW: Lighting: Heating: Cooling: Op Hours/Year: Relamp Method: Relamp Time: Power Density:	3 5920 5.087 5.087 5.087 15260 2180 21406 3000 Spot 116.8	SqFt Annual kWh Annual kWh Annual kWh Annual Hrs Months Watts/SqFt		
Equipment Fix	tures	Lamps	Ballasts	
Possible Working Capacity Disconnected Broken/Burned	81 81 81 0	162 162 162 0 0	81.0 81.0 81.0 0.0	
Costs Energy				Total
PVLCC \$ 17602 AVLCC \$ 1295	200° 148	7 24868		47425 3490
System Number:	6	Descrip: 7	2x4 surface	acrylic lens, 4L
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Relamp Method:	0.696 0.696 0.696 2088 298 2929 3000 Spot	SqFt Annual kWh Annual kWh Annual kWh		
Density:		Months Watts/SqFt		
	tures	Lamps	Ballasts	
Possible Working Capacity Disconnected Broken/Burned	6 6 6 0	24 24 24 0 0	6.0 6.0 6.0 0.0	
Costs Energy		. Cooling	•	Total
PVLCC \$ 2408 AVLCC \$ 177	224 17	3403	-51 -4	6302 464

System Number:	7 =======	Descrip:	incand gask	eted and er	nclosed
Rooms Served:	1				
Floor Area:	1320	SqFt			
,		syrt			
Possible kW:	0.420				
rking kW:	0.420				
acity kW:	0.420	A 1 14.0h			
Lighting:	1260	Annual kWh			
Heating:	180	Annual kWh			
Cooling:	1724	Annual kWh			
Op Hours/Year:	3000	Annual Hrs			
Relamp Method:	Spot				
Relamp Time :	4.0	Months			
Power Density:	0.318	Watts/SqFt			
Equipment Fix	ktures	Lamps	Ballasts		
Possible	7	7 7 7	0.0		
Working	7	7	0.0		
Capacity	7	7	0.0		
Disconnected	0	0	0.0		
Broken/Burned	0	0	0.0		
Costs Energy	Main	t. Cooling	Heating	Total	
PVLCC \$ 1453	8	16 1964	-31	4214	
AVLCC \$ 107		50 145	-2	310	

Room-By-Room Summary Report

Project: FT SAM HOUSTON EEAP File: H:\JOB\911099\12F\ELECT\FLEX\OUT\2841\BLD2841A.RRR Date: 10/17/1993

Req. Foot	21.0		20.0	50.0	
Calc. FootC	280	11.5	25.6	24.0	
Meas. FootC	8		30.0	37.7	
Watt sqft	2	8	1.59	1.65	
Pot.	7728	3427	1821	2178	
Work	7728	3427	1821	2178	:
Watt s sqft					
Pot.					1 4 4 4 4
Work					
SYSTEM3 Name					
Watt	0.30	0.44		0.32	
Pot. Watts	969	1507		450	
Work Watts	969	1507		450	4 4 4 4 4
SYSTEM2 Name	2x4 surfac	2x4 surfac		incand gas	
Watt SYSTEM2 sqft Name	3.32 2x4 surfac	0.56 2x4 surfac	1.59	1.33 incand gas	
Pot. Watt SYSTEM2 Watts sqft Name	7650 3.32 2x4 surfac	1920 0.56 2x4 surfac	1821 1.59	1758 1.33 incand gas	
Work Pot. Watt SYSTEM2 Watts Watts sqft Name	7650 7650 3.32 2x4 surfac	1920 1920 0.56 2x4 surfac	1821 1821 1.59	1758 1758 1.33 incand gas	
SYSTEM1 Work Pot. Watt SYSTEM2 Name Watts Watts sqft Name	incand dow 7650 7650 3,32 2x4 surfac	fan light 1920 1920 0.56 2x4 surfac	2x4 surfac 1821 1821 1.59	2x4 surfac 1758 1758 1.33 incand gas	
SYSTEM1 Work Pot. Watt SYSTEM2 HPP Name Watts Watts sqft Name	14 100 incard dow 7650 7650 3.32 2x4 surfac	56 150 fan Light 1920 1920 0.56 2x4 surfac	4 10 2x4 surfac 1821 1821 1.59	:0 6 2x4 surfac 1758 1758 1.33 incand gas	
Total SYSTEM1 Work Pot. Watt SYSTEM2 Area #Pr Name Watts Watts sqft Name	2304 100 incard dow 7650 7650 3,32 2x4 surface	3456 150 fan light 1920 1920 0.56 2x4 surfac	1144 10 2x4 surfac 1821 1821 1.59	1320 6 2x4 surfac 1758 1758 1.33 incand gas	
Total SYSTEM1 Work Pot. Watt SYSTEM2 # * Area #Pr Name Watts Watts sqft Name	1 * 2304 100 incand dow 7650 7650 3.32 2x4 surfac	1 3456 150 fan light 1920 1920 0.56 2x4 surfac	1 1144 10 2x4 surfac 1821 1821 1.59	1 1320 6 2x4 surfac 1758 1758 1.33 incand gas	
Total SYSTEM1 Work Pot. Watt SYSTEM2 Work Pot. Watt SYSTEM3 Work Pot. Watt Work Pot. Watt Work Pot. Watt Meas, Calc, Req. Room Name Floor # * Area #Pr Name Watts Watts Sqft Name Watts Sqft Name Floor # * Area #Pr Name Watts Sqft Name Floor Foot Foot	1 1 * 2304 100 incand dow 7650 7650 3.32 2x4 surfac	1 1 3456 150 fan light 1920 1920 0.56 2x4 surfac	1 1 1144 10 2x4 surfac 1821 1821 1.59	1 1 1320 6 2x4 surfac 1758 1,33 incand gas	

Total Rooms
Total Area Sqft
Total People
Total Working KW
Total Potential KW
Total Potential KW
Total Potential KW
Total Potential KW
Total Potential KW

202223222222222222222222222222222 | Whole Building Summary Report |

Project: FT SAM HOUSTON EEAP

ile: H:\JOB\911099\12F\ELECT\FLEX\OUT\2841\BLD2841B.WBR

te: 10/16/1993

Lighting Annual
Lighting Capacity
Annual Cooling Effect:
Annual Heating Effect:
Total Surveyed Floor Area:
Percent Survey Completed:
Lighting Power Density: 93789 kWh 31.263 kW 131516 kWh 13398 kWh 8224 SqFt 822400 % 3.801 W/sqft

Costs	 nitial	Energy	Maint.	Cooling	Heating	Total
PVLCC	0	108180 7960	47481 3494	152749 11240	-2299 -169	306112 22524

Lighting System Survey Summary One Page for Each Defined System

ject: FT SAM HOUSTON EEAP
file: H:\JOB\911099\12F\ELECT\FLEX\OUT\2841\BLD2841B.LSR

Date: 10/16/1993

Relamp Method: Relamp Time :

System Number: Descrip: incand down light Rooms Served: 5760 SqFt Figor Area: 18.075 Possible kW: Working kW: Capacity kW: 18.075 18.075 54225 Annual kWh Lighting: 7746 Annual kWh 76062 Annual kWh 3000 Annual Hrs Heating: Cooling: Op Hours/Year: Spot 3.0

Power Density: 3.138 Watts/SqFt **Fixtures** Ballasts Equipment Lamps 241 241 0.0 Possible Working 241 241 0.0 0.0 241 241 Capacity

0.0 0 Disconnected Ŏ 0.0 Broken/Burned Cooling Heating Maint. Total Costs Energy

PVLCC \$
AVLCC \$ 62545 36716 88365 -1329 186297 4602 2702 6502 -98 13708

Months

3 Descrip: fan light System Number:

ms Served: loor Area: ossible kW: 3456 SqFt 1.920 1.920 1.920 Working kW: Capacity kW: Lighting:

5760 823 Annual kWh Heating: Annual kWh Annual kWh Cooling: 8080 3000 Annual Hrs Op Hours/Year:

Relamp Method: Relamp Time : Spot 4.0 Months 0.556 Watts/SqFt Power Density:

Fixtures Ballasts Equipment Lamps Possible 48 0.0 Working 12 48 0.0 12 48 0.0 Capacity Ō 0.0 Disconnected 0 Broken/Burned 0.0

Heating Energy Cooling Total Maint. Costs ----PVLCC \$
AVLCC \$ 6644 9386 21638 5749 1592 489 423 691 -10

System Number:	4		strip fluor	
2222222222222		*********	*******	*******************
Rooms Served:	1			
Floor Area:	•	Saft		
Possible kW:	1.536	-4. 0		
Morking kW:	1.536			
acity kW:	1.536			
Lighting:	4608	Annual kWh		÷
Heating:		Annual kWh		
Cooling:		Annual kWh		
Op Hours/Year:		Annual Hrs		
Relamp Method:	Spot	Manaha		
Relamp Time :		Months		
Power Density:	0.444	Watts/SqFt		
Equipment Fix	ctures	Lamps	Ballasts	
Possible	16	32	16.0	
Working	16	32	16.0	
Capacity	16	32	16.0	
Disconnected	0	0	0.0	
Broken/Burned	0	0	0.0	
Costs Energy	Maint	. Cooling	Heating	Total
PVLCC \$ 5315	65		-113	13370
AVLCC \$ 391	4	8 553	-8	984
System Number:	5	Descrip: 1	2x4 surface	acrylic lens
System Number:		Descrip: 7	2x4 surface	acrylic lens
2222222222222		Descrip: 7	2x4 surface	acrylic lens
Rooms Served:	1	22222222	2x4 surface	acrylic lens
Rooms Served: Floor Area:	1144	Descrip: :	2x4 surface	acrylic lens
Rooms Served: Floor Area: Possible kW:	1 1144 2.784	22222222	2x4 surface	acrylic lens
Rooms Served: Floor Area: Possible kW: Working kW:	1 1144 2.784 2.640	22222222	2x4 surface ========	acrylic lens
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW:	1 1144 2.784 2.640 2.784	======================================	2x4 surface	acrylic lens
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting:	1 1144 2.784 2.640 2.784 8352	sqft Annual kWh	2x4 surface	acrylic lens
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating:	1 1144 2.784 2.640 2.784 8352 1193	SqFt Annual kWh Annual kWh	2x4 surface	acrylic lens
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling:	1 1144 2.784 2.640 2.784 8352 1193 11715	SqFt Annual kWh Annual kWh Annual kWh	2x4 surface	acrylic lens
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating:	1 1144 : 2.784 2.640 2.784 8352 / 1193 / 11715 / 3000 /	SqFt Annual kWh Annual kWh	2x4 surface 	acrylic lens
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year:	1 1144 2.784 2.640 2.784 8352 1193 11715 3000 Spot	SqFt Annual kWh Annual kWh Annual kWh	2x4 surface	acrylic lens
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Relamp Method:	1 1144 2 2.784 2.640 2.784 8352 4 1193 11715 3000 Spot 116.8 1	SqFt Annual kWh Annual kWh Annual kWh Annual kWh	2x4 surface 	acrylic lens
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Relamp Method: mp Time: Pensity:	1 1144 2 2.784 2.640 2.784 8352 4 1193 11715 3000 Spot 116.8 1	SqFt Annual kWh Annual kWh Annual kWh Annual kWh Annual Hrs Honths	2x4 surface Ballasts	acrylic lens
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Relamp Method: mp Time: P Density: Equipment Fix	1 1144 2.784 2.640 2.784 8352 4 1193 11715 3000 Spot 116.8 1 2.308 1 1 116.8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SqFt Annual kWh Annual kWh Annual kWh Annual Hrs Months Matts/SqFt Lamps	Ballasts	acrylic lens
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Relamp Method: mp Time: Possible	1 1144 2.784 2.640 2.784 8352 1193 11715 3000 Spot 116.8 1 2.308 1 11715	SqFt Annual kWh Annual kWh Annual kWh Annual kWh Annual Hrs Months Watts/SqFt Lamps 58	Ballasts 29.0	acrylic lens
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Relamp Method: mp Time: Possible Working	1144 2.784 2.640 2.784 8352 1193 11715 3000 Spot 116.8 2.308 1 2.308	SqFt Annual kWh Annual kWh Annual kWh Annual Hrs Months Watts/SqFt Lamps 58	Ballasts 	acrylic lens
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Relamp Method: mp Time: Possible Working Capacity	1 1144 2.784 2.640 2.784 8352 1193 11715 3000 \$pot 116.8 1 2.308 1 stures	SqFt Annual kWh Annual kWh Annual kWh Annual Hrs Months Watts/SqFt Lamps 58 55 58	Ballasts 	acrylic lens
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Relamp Method: mp Time: Density: Equipment Fix Possible Working Capacity Disconnected	1144 2.784 2.640 2.784 8352 1193 11715 3000 Spot 116.8 2.308 1 2.308	SqFt Annual kWh Annual kWh Annual kWh Annual Hrs Months Watts/SqFt Lamps 58	Ballasts 	acrylic lens
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Relamp Method: mp Time: Possible Working Capacity	1 1144 2.784 2.640 2.784 8352 1193 11715 3000 Spot 116.8 1 2.308 1 2.308 1 2.308 1 2.308 1 2.308 1 2.308 1 2.308 1 3 2 2 9 2 9 2 9 0	SqFt Annual kWh Annual kWh Annual kWh Annual Hrs Months Watts/SqFt Lamps 58 55 58 0	Ballasts 	acrylic lens
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Relamp Method: mp Time: Density: Equipment Fix Possible Working Capacity Disconnected	1 1144 2.784 2.640 2.784 8352 1193 11715 3000 Spot 116.8 1 2.308 1 2.308 1 2.308 1 2.308 1 2.308 1 2.308 1 2.308 1 3 2 2 9 2 9 2 9 0	SqFt Annual kWh Annual kWh Annual kWh Annual Hrs Months Matts/SqFt Lamps 58 55 58 0 3	Ballasts 	acrylic lens
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Relamp Method: mp Time: Density: Equipment Fix Possible Working Capacity Disconnected Broken/Burned Costs Energy	1 1144 2.784 2.640 2.784 8352 1193 11715 3000 \$pot 116.8 1 2.308 1 116.8 1 2.308 1 116.8 1 2.308 1 116.8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SqFt Annual kWh Annual kWh Annual kWh Annual Hrs Months Watts/SqFt Lamps 58 55 58 0 3	Ballasts 29.0 27.0 29.0 0.0 1.0 Heating	, Total
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Relamp Method: mp Time: r Density: Equipment Fix Possible Working Capacity Disconnected Broken/Burned	1144 2.784 2.640 2.784 8352 11715 3000 Spot 116.8 2.308 3tures 29 29 0	SqFt Annual kWh Annual kWh Annual kWh Annual Hrs Months Watts/SqFt Lamps 58 55 58 0 3 . Cooling	Ballasts 	

System Number:	6	Descrip:	2x4 surface	acrylic lens	
***********	32 222 22	***********			*******
Rooms Served:	2				
Floor Area:	3624	SqFt			
Possible kW:	6.528				
rking kW: acity kW:	6.384				
acity kW:	6.528				
Lighting:	19584	Annual kWh			
Heating:	2798	Annual kWh			
Cooling:	27471	Annual kith			
Op Hours/Year:	3000	Annual Hrs			
Relamp Method:	Spot				
Relamp Time :	116.8	Months			
Power Density:	1.762	Watts/SqFt			
•		· ·			
Equipment Fi:	xtures	Lamps	Ballasts		
Possible	34	136	34.0		
Working	34	133	33.0		
Capacity	34	136	34.0		
Disconnected	Ö	Ö	0.0		
Broken/Burned	Ŏ	ž	0.0		
BI OKEIV BUILLED	•	•	•••		
Costs Energy	Main	t. Cooling	Heating	Total	
CUSES EINCLY					
PVLCC \$ 22589		49 31914	-480	56372	
AVLCC \$ 1662		73 2348		4148	
MATCC & 1005	•	15 2540		4140	
Suntan Numbers	7	Descript	incord assk	stad and anclos	ad
System Number:	7	Descrip:	incand gask	eted and enclose	ed
System Number:		Descrip:	incand gaske	eted and enclose	ed
**********		Descrip:	incand gasko	eted and enclose	ed ======
Rooms Served:	1		incand gaske	eted and enclos	ed =======
Rooms Served: Floor Area:	1 1320	Descrip: ====================================	incand gaske	eted and enclose	ed =======
Rooms Served: Floor Area: Possible kW:	1 1320 0.420		incand gasko	eted and enclose	ed ======
Rooms Served: Floor Area: Possible kW: Working kW:	1 1320 0.420 0.420		incand gaske	eted and enclose	ed =======
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW:	1 1320 0.420 0.420 0.420 0.420	SqFt	incand gaske	eted and enclose	ed =======
Rooms Served: Floor Area: Possible kW: Working kW:	1 1320 0.420 0.420 0.420 0.420	SqFt Annual kWh	incand gask	eted and enclos	ed =======
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating:	1 1320 0.420 0.420 0.420 0.420 1260 180	SqFt Annual kWh Annual kWh	incand gaske	eted and enclose	ed =======
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling:	1 1320 0.420 0.420 0.420 0.420 1260 180 1724	SqFt Annual kWh Annual kWh	incand gaske	eted and enclose	ed
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling:	1 1320 0.420 0.420 0.420 0.420 1260 180 1724	SqFt Annual kWh Annual kWh	incand gaske	eted and enclose	ed =======
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Palamp Method:	1 1320 0.420 0.420 0.420 0.420 1260 180 1724	SqFt Annual kWh	incand gaske	eted and enclose	ed =======
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Palamp Method:	1 1320 0.420 0.420 0.420 0.420 1260 180 1724	SqFt Annual kith Annual kith Annual kith Annual kith	incand gaske	eted and enclose	ed ======
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Palamp Method:	1 1320 0.420 0.420 0.420 1260 180 1724 3000 Spot 4.0	SqFt Annual kith Annual kith Annual kith Annual kith	incand gaske	eted and enclose	ed =======
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Palamp Method:	1 1320 0.420 0.420 0.420 1260 180 1724 3000 Spot 4.0	SqFt Annual kith Annual kith Annual kith Annual Hrs Months	incand gaske	eted and enclose	ed =======
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Palamp Method: To Density:	1 1320 0.420 0.420 0.420 1260 180 1724 3000 Spot 4.0	SqFt Annual kith Annual kith Annual kith Annual Hrs Months	incand gaske	eted and enclose	ed
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Palamp Method: To Density: Equipment Fix	1 1320 0.420 0.420 0.420 1260 180 1724 3000 Spot 4.0 0.318	SqFt Annual kWh Annual kWh Annual kWh Annual Hrs Months Watts/SqFt		eted and enclose	ed ======
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Palamp Method: To Density: Equipment Fix	1 1320 0.420 0.420 0.420 1260 180 1724 3000 Spot 4.0 0.318	SqFt Annual kWh Annual kWh Annual kWh Annual Hrs Wonths Watts/SqFt Lamps 7		eted and enclose	ed ======
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Palamp Method: np Time: r Density: Equipment Fix	1 1320 0.420 0.420 0.420 1260 180 1724 3000 Spot 4.0 0.318	SqFt Annual kWh Annual kWh Annual kWh Annual Hrs Wonths Watts/SqFt Lamps 7	Ballasts	eted and enclose	ed
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Palamp Method: Inp Time: Possible Working	1 1320 0.420 0.420 0.420 1260 180 1724 3000 Spot 4.0 0.318	SqFt Annual kWh Annual kWh Annual kWh Annual Hrs Wonths Watts/SqFt Lamps 7 7 7	Ballasts	eted and enclose	ed
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Palamp Method: The Time: Possible Working Capacity	1 1320 0.420 0.420 0.420 1260 180 1724 3000 Spot 4.0 0.318	SqFt Annual kWh Annual kWh Annual kWh Annual Hrs Months Watts/SqFt Lamps	Ballasts 0.0 0.0	eted and enclose	ed
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Polamp Method: To Density: Equipment Fix Possible Working Capacity Disconnected	1 1320 0.420 0.420 0.420 1260 180 1724 3000 Spot 4.0 0.318 xtures	SqFt Annual kWh Annual kWh Annual kWh Annual Hrs Wonths Watts/SqFt Lamps 7 7 7	Ballasts 0.0 0.0 0.0	eted and enclose	ed
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Palamp Method: The Time: Possible Working Capacity	1 1320 0.420 0.420 0.420 1260 180 1724 3000 Spot 4.0 0.318 xtures	SqFt Annual kWh Annual kWh Annual kWh Annual Hrs Wonths Watts/SqFt Lamps 7 7 7 7 0	Ballasts 0.0 0.0 0.0 0.0	eted and enclose	ed
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Polamp Method: The Time: The Density: Equipment Possible Working Capacity Disconnected Broken/Burned	1 1320 0.420 0.420 0.420 1260 180 1724 3000 Spot 4.0 0.318 xtures	SqFt Annual kWh Annual kWh Annual kWh Annual Hrs Wonths Watts/SqFt Lamps 7 7 7 0 0	0.0 0.0 0.0 0.0 0.0	eted and enclose	ed
Rooms Served: Floor Area: Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Polamp Method: To Density: Equipment Fix Possible Working Capacity Disconnected	1 1320 0.420 0.420 0.420 1260 180 1724 3000 Spot 4.0 0.318 xtures	SqFt Annual kWh Annual kWh Annual kWh Annual Hrs Months Watts/SqFt Lamps 7 7 7 0 0	0.0 0.0 0.0 0.0 0.0		ed

LOCATION:	FOF	RT SAM HOUST	ON	_REGION NO.		_PROJECT NO	91109912F
PROJECT TITLE:		FORT SAM HO	USTON DINING	G FACILITIES E	EAP	FISCAL YEAR	
DISCRETE PORTIC	ON NAME:				PREPARER	LIGHTING IMPRO S. P. C	
ANALYSIS DATE:	NOVEMBER	1, 1993 EC	ONOMIC LIFE	15	PREPARER	<u> </u>	DANK
1. INVESTMENT C	OSTS:						
A. CONSTRUCTION B. SIOH C. DESIGN COST D. TOTAL COST (1) E. SALVAGE VALU F. PUBLIC UTILITY G. TOTAL INVESTR	A+1B+1C) E OF EXISTING COMPANY RE	EBATE	\$3,895 \$214 \$234 \$4,343	 \$0		·	
2. ENERGY SAVIN		 -				1000	
DATE OF NISTIR 8	5–3273–X US	SED FOR DISCO	OUNT FACTOR	S: <u>'N</u>	IOVEMBER 4,	1992	
ENERGY SOURCE	COST \$/MBTU(1)	SAVINGS MBTU/YR(2)	ANNUAL \$ SAVINGS(3)	DISCOUNT FACTOR(4)	DISCOUNTE SAVINGS(5)	D	
A. ELEC	\$10.55	158.61	\$1,673	11.77	\$19,695		
B. DIST			\$0	13.83	\$0		
C. RESID		-	\$0	16.15	\$0		
D. NG	\$3.31	0.00	\$0	15.34	\$0		
E. PPG	-		\$0	11.12	\$0		
F. COAL			<u>\$0</u> \$0	12.82 11.12	\$0 \$0		
G. SOLAR H. GEOTH			\$0	11.12	\$0 \$0		
I. BIOMA			\$0	11.12	\$0		
J. REFUS			\$0	11.12	\$0		
K. WIND			\$0	11.12	\$0		
L. COOLING	\$10.55	222.48	\$2,347	11.12	\$26,100		
M. DEMAND SAVIN	IGS		\$1,239	11.12	\$13,780	•	
N. TOTAL		381.09	\$5,260		\$59,576	- -	
3. NON ENERGY:	RING (+/-)	\$1,703	-				
1. DISCOUNT FAC 2. DISCOUNTED S	TOR (TABLE A		11.1	\$18,903			

B. NON RECURRING SAVINGS (+) OR COST(-)

	ITEM	SAVINGS(+) COST(-)(1)	YEAR OF OCCUR. (2)	DISCOUNT FACTOR(3)	DISCOUNTED SAV- INGS(+)COST(-)(4)
a.	N/A	\$0	1	0.96	\$0
b.	N/A	\$0	2	0.92	\$0
C.	N/A	\$0	3	0.89	\$0
d.	N/A	\$0	4	0.85	\$0
e.	N/A	\$0	5	0.82	\$0
f.	N/A	\$0	6	0.79	: \$0
g.	N/A	\$0	7	0.76	\$0
ĥ.	N/A	\$0	8	0.73	\$0
i.	N/A	\$0	9	0.7	\$0
j.	N/A	\$0	10	0.68	\$0
k.	N/A	\$0	11	0.65	\$0
I.	N/A	\$0	12	0.62	\$0
m.	N/A	\$0	13	0.6	\$0
n.	N/A	\$0	14	0.58	\$0
Ο.	N/A	\$0	15	0.56	\$0
p.	TOTAL	\$0			\$0
C.	TOTAL NON E	ENERGY DISCO	UNTED SAVIN	IGS (3A2 + 3Bp	4) \$18,903

C. TOTAL NON ENERGY DISCOUNTED SAVINGS (3A2 + 3Bp4)	\$18,903
4. SIMPLE PAYBACK 1G/(2N3+3A+(3Bp1/ECONOMIC LIFE)):	0.6_YEARS
5. TOTAL NET DISCOUNTED SAVINGS (2N5+3C):	\$78,479
6. SAVINGS TO INVESTMENT RATIO (SIR) 5/1G:	18.07
7. ADJUSTED INTERNAL RATE OF RETURN (AIRR):	26.1%

ENERGY CONSTRUCTION ANALYSIS

BUILDING 5105 - DINING HALL

Building 5105 is a single story frame building consisting of 3,400 square feet. This facility consists of a full service kitchen and a large dining area.

The operating hours for this facility are very sporadic due to its use only during troop mobilization (approximately 1 day per month).

The lighting system is primarily fluorescent.

The mechanical system consists of evaporative coolers mounted to the exterior walls. Heating is provided by floor mounted gas furnaces.

Hot water is provided to the kitchen by a gas fired water heater. Dishwashing is accomplished using an automatic dishwasher with an electric hot water booster heater.

Because this facility has very low utilization as described above, there are no feasible ECO's for this facility.

BUILDING 5106 - OFFICE BUILDING

Building 5106 is a single story frame building consisting of 3,500 square feet. This facility is no longer utilized as a kitchen and dining facility, therefore it was not analyzed.

BUILDING 5107 - DINING HALL

Building 5107 is a single story frame building consisting of 3,400 square feet. This facility consists of a full service kitchen and a large dining area.

The operating hours for this facility are from 5:30 am to 6:30 pm, seven days per week.

The lighting system is primarily fluorescent.

The mechanical system consists of window air conditioners. Heating is provided by floor mounted gas furnaces.

Hot water is provided to the kitchen by a gas fired water heater. Dishwashing is accomplished using an automatic dishwasher with an electric hot water booster heater.

The following ECO's are recommended for Building 5107:

1.	IV. C. 1) -	Add stop/start function to HVAC equipment
2.	VII. D	Reduce indoor/outdoor lighting to AEI levels
3.	IX. A -	Replace incandescent lamps with compact fluorescents
4.	IX. B -	Replace incandescent exit fixtures with LED
5.	IX. C -	Replace standard lamps with energy saving lamps
6.	IX. D -	Replace standard ballast with energy saving ballast

ENERGY CONSERVATION OPPORTUNITIES (ECO's) - BUILDING NO. 5107

ECO NO: IV. C. 1

ECO NAME: Add stop/start function for HVAC equipment.

SUMMARY DATA (DEPENDENT):

KWH Savings: 22.613 KWH/yr

Demand Savings: _____0 KW/yr

Gas Savings: _____n/a MCF/yr

Cost Savings: \$\\ \\$14 \quad /yr

Implementation Cost: \$ 425

Simple Payback: ______ Years

Savings to Investment: 22.56

Ratio (SIR):

ECO DESCRIPTION:

Presently, the mechanical systems are not controlled during unoccupied times. This ECO analyzes the addition of timeclocks and relays to shut down the HVAC systems during unoccupied hours.

COST SAVINGS CALCULATIONS:

(Refer to following SimpCalc Output)

IMPLEMENTATION COSTS:

(Refer to following Cost Estimate)

MAINTENANCE COSTS:

Maintenance costs of \$15/year for each timeclock included in the LCCA for adjustments and failures.

LIFE CYCLE COST ANALYSIS:

(Refer to following ECIP Life Cycle Cost Summary)

TEXAS LoanSTAR Program - ECRM Simplified Calculation Ver 2.0

22613

** GRAND TOTAL **

.00

94.0 174.0 1135 425

TEXAS LoanSTAR Program - ECRM Simplified Calculation Ver 2.0

11/0	08/93 Consolic	lated ECRM Detail - FORT SAM HOUSTON Pag	ge 1
****			******
C5-0	001 Timeclock Cont	rol of Air Cond. / Heating - BLDG 5107 DINING	(G)
Cost	t Source: means cos	t data	
Desc	cription: Install t	immers for 7 window units.	
A)	14.0 Tons	Cooling Unit Tonnage	
B)	1512 Hours/yr	Annual Cooling Operating Hours Unit will be Shut Off = 8 Hrs/day x 189 Days/yr	
C)	6.74 BTUH/Watt	System EER	
D)	.60	Estimated Cooling Load/Duty Factor	
E)	840 Hours/yr	Annual Heating Operating Hours Unit will be Shut Off	
		= <u>8</u> Hrs/day x <u>105</u> Days/yr	
F)	150000 BTUH	Heating Unit Output in BTUH	:
G)	65	Heating Efficiency	
H)	50	Estimated Heating Load/Duty Factor	
1) \$	0360 /KWH	Cost per KWH - Summer	
J) \$	3.4100 /MCF	MCF Cost	
K) \$	425	Implementation Cost	
L)		Annual Cooling Savings	
M)	94 MCF/year	Annual Heating Savings	
N) S	<u>1135</u> /year	Annual Cost Savings	
0)	.4 years	Simple Payback	

CARTER	& BU	RGE	SS CC	ST E	STIMATI	NG AI	NALYSIS		
110020				PROJECT NO: 91109912F					
111000012001				ESTIMATOR: S.P. CLARK					
SUBMITTAL:	35.0%				DATE:		27-Oct-93		
ECO NO/ BUILDING: IV. C. 1) / BLDG 5			l communicación M		CHECKED BY	': DJY	Dec 1000 (100 100 100 100 100 100 100 100 1	00,600,600 Marconson	200
TASK DESCRIPTION	QUAN				ABOR		MATERI		TOTAL
	NO/UN	TINU	MHUN	HRS	UN PRICE	COST	UN PRICE	COST	COST
						0.00		0.00	0
TIME CLOCK	1				44.00	44.00	50.00	50.00	94
TRIPPERS	7 2	EA CLF			13.70 18	95.90 36.00	0.96 42.50	6.72 85.00	103 121
CONTROL WIRE	•	CL				0.00	42.00	0.00	0
						0.00		0.00	0
						0.00 0.00		0.00 0.00	0
İ						0.00		0.00	0 0 0
						0.00 0.00		0.00 0.00	0
į						0.00		0.00	0
						0.00		0.00 0.00	
					-	0.00 0.00		0.00	0
						0.00		0.00	0
						0.00 0.00		0.00 0.00	0:
						0.00		0.00	Ö
						0.00 0.00	-	0.00 0.00	0
						0.00		0.00	0
						0.00		0.00	0
						0.00 0.00	l	0.00	0
						0.00		0.00	Ō
						0.00		0.00 0.00	0
						0.00		0.00	Ŏ
						0.00 0.00		0.00 0.00	0
						0.00		0.00	0
						0.00		0.00	0
						0.00 0.00		0.00	0
						0.00		0.00	0
						0.00		0.00	0
						0.00		0.00	Ŏ
						0.00 0.00		0.00	0
						0.00		0.00	0000
						0.00		0.00	0
						0.00 0.00		0.00	0
						0.00		0.00	0
						0.00		0.00	0
	:					0.00	ļ	0.00	0
			ļ			0.00	ļ	0.00 0.00	0
						0.00		0.00	0
						0.00		0.00	0
						0.00	1	0.00	0
						0.00		0.00	0
SUBTOTAL						0.00 \$176		0.00 \$142	0 \$318
CONTENGENCY	10.00%		<u> </u>			\$170		\$142	\$318 \$32
OVERHEAD & PROFIT	10.00%								\$32
TOTAL									\$381

517

LOCATION:	FOF	T SAM HOUST	ON	_REGION NO		PROJECT NO.	91109912F
PROJECT TITLE:		FORT SAM HO	USTON DINING	G FACILITIES I	EAP	FISCAL YEAR CTION TO HVAC	
DISCRETE PORTICANALYSIS DATE:	NOVEMBER		ONOMIC LIFE		PREPARER	S. P. C	LARK
		1, 1993				0.1.0	DVIIX
1. INVESTMENT C	0515:						
A. CONSTRUCTION B. SIOH C. DESIGN COST D. TOTAL COST (1) E. SALVAGE VALU F. PUBLIC UTILITY	A+1B+1C) E OF EXISTING		\$381 \$21 \$23 \$425	 \$0	; -		
G. TOTAL INVEST					\$425		
2. ENERGY SAVINDATE OF NISTIR 8	5-3273-X US	ED FOR DISCO			IOVEMBER 4,		
ENERGY SOURCE	COST \$/MBTU(1)	SAVINGS MBTU/YR(2)	ANNUAL \$ SAVINGS(3)	DISCOUNT FACTOR(4)	DISCOUNTE SAVINGS(5)	D	
A. ELEC	\$10.55	77.18	<u>\$814</u>	11.77	\$9,584		
B. DIST			\$0	13.83	\$0		
C. RESID D. NG	\$3.31	0.00	\$0 \$0	16.15 15.34	\$0 \$0		
E. PPG	Ψ0.01		\$0	11.12	\$0		
F. COAL			\$0	12.82	\$0	_	
G. SOLAR			\$0	11.12	\$0		
H. GEOTH	-		\$0	11.12	\$0		
I. BIOMA J. REFUS	*********		\$0 \$0	11.12 11.12	\$0 \$0		
K. WIND			\$0	11.12	\$0	-	
L. OTHER	·		\$0	11.12	\$0		
M. DEMAND SAVIN	IGS		\$0	11.12	\$0	_	
N. TOTAL		77.18	\$814		\$9,584	•	
3. NON ENERGY: A. ANNUAL RECUP 1. DISCOUNT FAC	RRING (+/-) TOR (TABLE A		- 11.1_				
2. DISCOUNTED S	SAVINGS/COS	Γ (3A X 3A1)	-	\$167			

B. NON RECURRING SAVINGS (+) OR COST(-)

7. ADJUSTED INTERNAL RATE OF RETURN (AIRR):

	ITEM	SAVINGS(+) COST(-)(1)	YEAR OF OCCUR. (2)	DISCOUNT FACTOR(3)	DISCOUNTED SAV- INGS(+)COST(-)(4)		
a.	N/A	\$0	1	0.96	\$0 _		
b.	N/A	\$0	3	0.92	\$0_		
C.	N/A	\$0	3	0.89	\$0		
d.	N/A	\$0		0.85	\$0		
e.	N/A	\$0	<u>4</u> <u>5</u> 6	0.82	\$0		
f.	N/A	\$0		0.79	\$0		
g.	N/A	\$0	7	0.76	\$0		
ĥ.	N/A	\$0	8	0.73	\$0		
i.	N/A	\$0	9	0.7	\$0		
i.	N/A	\$0	10	0.68	\$0		
k.	N/A	\$0	11	0.65	\$0		
I.	N/A	<u>\$0</u>	12	0.62	\$0		
m.	N/A	\$0	13	0.6	\$0		
n.	N/A	\$0	14	0.58	\$0		
Ο.	N/A	\$0	15	0.56	\$0		
p.	TOTAL	\$0			\$0		
C. TOTAL NON ENERGY DISCOUNTED SAVINGS (3A2 + 3Bp4)\$167							
4. S	IMPLE PAYBAC	0.5 YEARS					
5. TOTAL NET DISCOUNTED SAVINGS (2N5+3C): \$9,417							
6. SAVINGS TO INVESTMENT RATIO (SIR) 5/1G: 22.17							

27.9%

ENERGY CONSERVATION OPPORTUNITIES (ECO's) - BUILDING NO. 5107

ECO NO: VII D & IX A, B, C, D

ECO NAME: Improve lighting efficiency.

SUMMARY DATA (DEPENDENT):

KWH Savings: 12,962 KWH/yr

Demand Savings: 18.23 KW/yr

Gas Savings: n/a MCF/yr

Cost Savings: \$ 654 /yr

Implementation Cost: \$ 2,119

Simple Payback: 3.2 Years

Savings to Investment: 3.49

Ratio (SIR):

ECO DESCRIPTION:

Currently, low efficiency lighting systems are in use. This ECO will update the lighting system to improve efficiency while maintaining or increasing lighting levels. The existing lighting system and proposed retrofit action are as follows:

QTY	FIXTURE TYPE	ACTION
46	2-Lamp, 4' Fluor.	Retrofit w/T8 lamps and electronic ballasts.
2	Bare incandescents.	None.
3	Incandescent exit	Replace w/LED exit fixture

COST SAVINGS CALCULATIONS:

(Refer to following Flex Output)

Demand Savings = $(4.976 \, KW - 3.457 \, KW) (4 \, mo.x \$7.50 / KW + 8 \, mo.x \$6.25 / KW)$ = \$121.52 / yr

IMPLEMENTATION COSTS:

(Refer to following Flex Output and Lighting Implementation Cost located in Appendix E)

LIFE CYCLE COST ANALYSIS:

(Refer to following ECIP Life Cycle Cost Summary)

	Annual	Value	Energy	\$ 227		2325	3346	
	Annual	Value	Maint	\$ 227		193	259	
	Present	Value	Energy	\$ 227		31594	42476	
	Present	Value	Maint	S CC		2622	3515	
)	Total	Initial	Cost	•		1900	0	
	Levelized	Energy	Cost	cnts/kWh		1.388	0000	
	Savings	Invest.	Ratio	(SIR)		6.776	0.00	
	Annual	Energy	Savings	ĸ		5341		
,	Annual	Value	Total	\$ 227		2658	3605	
	Present	Value	Total	\$ 227		36116	78665	
	Net	Present	Value	4		12875	0	
	Annual	Energy		줖	:	12146	17487	
	Project	Кате	(*=Base)			BLD5107A	*BLD5107B	

Project Description: FT SAM HOUSTON EEAP

Case	Description	A POST RETROFIT CONDITION	
File	Names	8LD5107A	RI 05107R

-----| Whole Building Summary Report |

Project: FT SAM HOUSTON EEAP
File: H:\JOB\911099\12F\ELECT\FLEX\OUT\5107\BLD5107A.WBR
ate: 10/16/1993

12146 kWh 3.457 kW 17339 kWh 1735 kWh 4440 SqFt 444000 % 0.778 W/sqft Lighting Annual
Lighting Capacity
Annual Cooling Effect
Annual Heating Effect
Total Surveyed Floor Area:
Percent Survey Completed:
Lighting Power Density:

Costs		Initial	Energy	Maint.	Cooling	Heating	Total
	-						
PVLCC	\$	1900	13346	2622	18545	-298	36116
AVI CC	\$	140	982	193	1365	-22	2658

****************************** | Lighting Level Comparison Report |

Project: FT SAM HOUSTON EEAP
File: H:\JOB\911099\12F\ELECT\FLEX\OUT\5107\BLD5107A.LLR
Date: 10/16/1993

Room Foot Candles	MAX	MIN	AVG	SDEV	MAX Room	MIN Room
Calculated	24.9	4.2	16.4	7.77	4-kitchen	3-dry stor
Measured	38.3	10.7	24.7	13.12	1-scullery	3-dry stor
Required	75.0	5.0	28.0	32.71	4-kitchen	2-dining
Foot Candle Comparison	MAX	MIN	AVG	SDEV	MAX Room	MIN Room
Calc - Req.	15.4	-50.1	-11.6	29.48	2-dining	4-kitchen
Meas - Req.	23.0	-39.6	-3.3	23.70	2-dining	4-kitchen

Lighting System Survey Summary One Page for Each Defined System

iect: FT SAM HOUSTON EEAP
file: H:\JOB\911099\12F\ELECT\FLEX\OUT\5107\BLD5107A.LSR
Date: 10/16/1993

System Number: Descrip: 4' flour wrap w/acrylic Rooms Served: 384 SqFt 0.314 0.314 Floor Area: Possible kW: Working kW: Capacity kW: 0.314 1103 Annual kWh Lighting: 158 Annual kWh Heating: 1585 Annual kWh Cooling: Op Hours/Year: 3514 Annual Hrs Relamp Method: Relamp Time: Spot 92.4 Months 0.818 Watts/SqFt Power Density: **Ballasts** Equipment **Fixtures** Lamps 10 5 5.0 Possible 5.0 Working 10 5.0 Capacity 10 0

0.0 Disconnected 0 Broken/Burned 0 0.0 Cooling Heating Total Costs Energy Maint. PVLCC \$
AVLCC \$ 3279 127 241

System Number: 2 Descrip: 2x4 rec fluor

ms Served: 3888 SqFt loor Area: 2.512 2.512 2.512 8827 Possible kW:
Working kW:
Capacity kW:
Lighting:

Annual kWh Annual kWh 1261 12586 Heating: Annual kWh Cooling: Annual Hrs Op Hours/Year: 3514 Spot 92.4 Relamp Method: Relamp Time : Months Power Density: 0.646 Watts/SqFt

Equipment **Fixtures** Lamps **Ballasts** Possible 40 80 40.0 Working 40 80 40.0 Capacity 0 0 Disconnected 0.0 Broken/Burned 0 0.0

Cooling Heating Costs Energy Maint. Total PVLCC \$ 9699 1244 -216 25778 AVLCC \$ 92 987 -16 1897

Rooms Served: 1 Floor Area: 2880 SqFt Possible kW: 0.070	
rking kW: 0.070 acity kW: 0.070	
acity kW: 0.070 Lighting: 248 Annual kWh	
Heating: 35 Annual kWh	
Cooling: 353 Annual kWh	
Op Hours/Year: 3514 Annual Hrs	
Relamp Method: Spot	
Relamp Time: 55.5 Months	
Power Density: 0.024 Watts/SqFt	
Equipment Fixtures Lamps Ballasts	
Possible 1 2 1.0	
Working 1 2 1.0 Capacity 1 2 1.0 Disconnected 0 0 0.0	
Capacity 1 2 1.0	
Disconnected 0 0 0.0 Broken/Burned 0 0 0.0	
bi okely bulliled 0 0 000	
Costs Energy Maint. Cooling Heating Total	
PVLCC \$ 272 40 376 -6 724 AVLCC \$ 20 3 28 -0 53	
System Number: 4 Descrip: bare incand	======
Rooms Served: 1	
Floor Area: 168 SqFt	
Possible kW: 0.200	
Working kW: 0.200 Capacity kW: 0.200	
Capacity kW: 0.200	
Lighting: 703 Annual kWh Heating: 100 Annual kWh	
Cooling: 1010 Annual kWh	
Op Hours/Year: 3514 Annual Hrs	
Polamp Method: Spot	
pp Time : 2.6 Months	
r Density: 1.190 Watts/SqFt	
Equipment Fixtures Lamps Ballasts	
Working 2 2 0.0 Capacity 2 2 0.0	
Possible 2 2 0.0 Working 2 2 0.0 Capacity 2 2 0.0 Disconnected 0 0 0.0	
Disconnected 0 0 0.0 Broken/Burned 0 0 0.0	
DI OKCII) DAI FIEM V V V V V V V V V V V V V V V V V V V	
Costs Energy Maint. Cooling Heating Total	
PVLCC \$ 772 364 1104 -17 2226 AVLCC \$ 57 27 81 -1 164	

System Number:	5	Descrip:	hood incand	l.	
25722522577255	:======				
Rooms Served:	1				
Floor Area:	768	SqFt			
Possible kW:	0.360				
working kW:	0.360				
acity kW:	0.360				
Lighting:	1265				
Heating:	181				
Cooling:		Annual kWh			
Op Hours/Year:	3514	Annual Hrs			
Relamp Method:	Spot				
Relamp Time :	3.4				
Power Density:	0.469	Watts/SqFt			
Equipment F	ixtures	Lamps	Ballasts		
Possible	6	6	0.0		
Working	6 6 0	6 6 0	0.0		
Capacity	6	6	0.0		
Disconnected	0	0	0.0		
Broken/Burned	Ō	0	0.0		
Costs Energ	y Main	t. Cooling	Heating	Total	
PVLCC \$ 139	0 8	19 1922	-31	4110	
AVLCC \$ 10		60 141	-2	302	
ATECO P 10	•		-		

Room-By-Room Summary Report

Project: FT SAM HOUSTON EEAP File: H:\JOB\911099\12F\ELECT\FLEX\OUT\5107\BLD5107A.RRR Date: 10/16/1993

Req. Footc		v.K.v. 0.0.0.
Calc. Foot	14.8	4.2 24.9 17.7
Meas. FootC	38.3	35.4
Watt sqft	0.82	0.73
Pot. Watts	314	925 188
Work Watts	314	222 188 188
Watt sqft		
Pot.		
Vork Watts		
Watt SYSTEM3 s sqft Name	71 0.02	360 0.47
		360
	7	360
Pot. Watt SYSTEM2 Watts sqft Name	314 0.82 1758 0.61 2x2 rec fl	555 0.74 hood incan 360 360 0.47 5.0 925 925 1.20 35.4 24.9 75.0 8 188 0.78 11.2 17.7 5.0
. 9	400	
Total SYSTEM1 Work	384 1 4' flour w 2880 200 2x4 rec fl 148 0 bere incom	4-kitchen 1 1 768 5 2x4 rec fl 5 5-stor 1 1 240 0 2x4 rec fl 11
Total Area	384 2880 168	240 240
# (# (*	
loor		
Room Name Floor #	1-scullery 2-dining	4-kitchen 5-stor

528

4440 206 3.457 3.457 0.778

Total Rooms
Total Area Sqft
Total People
Total Working kW
Total Potential kW
Power Density W/sqft:

22222222222222222222222222 Whole Building Summary Report

Project: FT SAM HOUSTON EEAP ile: H:\JOB\911099\12F\ELECT\FLEX\OUT\5107\BLD5107B.WBR ate: 10/16/1993

17487 kWh
4.976 kW
24961 kWh
2498 kWh
4440 SqFt
444000 %
1.121 W/sqft Lighting Annual
Lighting Capacity
Annual Cooling Effect:
Annual Heating Effect:
Total Surveyed Floor Area:
Percent Survey Completed:
Lighting Power Density:

Costs	Initial Er		itial Energy Maint.		Cooling	Heating	Total	
PVLCC	\$	0	19215	3515	26690	-429	48992	
AVICC	•	n	1414	259	1964	-32	3605	

Lighting System Survey Summary One Page for Each Defined System

iect: FT SAM HOUSTON EEAP
file: H:\JOB\911099\12F\ELECT\FLEX\OUT\5107\BLD5107B.LSR
Date: 10/16/1993

System Number: 1 Descrip: 4' flour wrap w/acrylic

Rooms Served: 384 SqFt Floor Area: Possible kW: 0.480 Working kW: Capacity kW: Lighting: 0.480

0.480 1687 Annual kWh 241 Annual kWh 2423 Annual kWh Heating: Cooling: 3514 Annual Hrs Op Hours/Year: Relamp Method:

Spot 92.4

Months Relamp Time : 1.250 Watts/SqFt Power Density:

Equipment	Fixtures	Lamps	Ballast
Possible	5	10	5.0
Working	5	10	5.0
Capacity	5	10	5.0
Disconnected	0	0	0.0
Broken/Burned	0	0	0.0

Costs Energy		Maint.	Cooling	Heating	Total	
PVLCC	\$	1853	251	2649	-41	4712
AVLCC	\$	136	18	195	-3	347

Descrip: 2x4 rec fluor System Number: 2

ms Served: loor Area: 3888 SqFt 3.840 3.552 ossible kW: Working kW: Capacity kW: Lighting: 3.840

13494 Annual kWh 1928 Annual kWh Heating: Cooling: 19240 Annual kith 3514 Annual Hrs Op Hours/Year:

Relamp Method: Relamp Time Spot 92.4 Months 0.914 Watts/SqFt Power Density:

Fixtures Ballasts Equipment Lamps 40.0 40 80 Possible 74 37.0 Working 40 80 Capacity 40 40.0 Disconnected 0 0 0.0 Broken/Burned 3.0 Energy Maint. Cooling Costs

Heating Total PVLCC \$ 14827 AVLCC \$ 1091 2007 20501 -331 37004 1508 1091 148 -24 2723

System Number:			2x2 rec flu	10F	
Rooms Served: Floor Area: Possible kW:	1 2880 0.097	SqFt			
rking kW: acity kW: Lighting: Heating: Cooling:	484	Annuat kith Annuat kith Annual kith			
Op Hours/Year: Relamp Method: Relamp Time : Power Density:	Spot 55.5	Annual Hrs Months Watts/SqFt			
Equipment	Fixtures	Lamps	Ballasts		
Possible Working Capacity Disconnected Broken/Burned	1 1 1 0	2 2 2 0 0	1.0 1.0 1.0 0.0		
Costs Energ	ny Main	t. Cooling	Heating	Total	
PVLCC \$ 3		74 515 5 38	-8	954 70	
System Number:	5 =========		bare incand		******
Rooms Served: Floor Area: Possible kW: Working kW:	1 168 0.200 0.200	SqFt			
Capacity kW: Lighting: Heating: Cooling:	0.200 703 100 1010	Annual kWh Annual kWh Annual kWh			
Op Hours/Year: Relamp Method: up Time : r Density:	3514 Spot 2.6 1.190	Annual Hrs Months Watts/SqFt			
Equipment	Fixtures	Lamps	Ballasts		
Possible Working Capacity	2 2 2 0	2 2 2 0	0.0 0.0 0.0		
Disconnected Broken/Burned	0	0	0.0 0.0		
	gy Main	t. Cooling	Heating	Total	
PVLCC \$ 7	72 3	64 1104 27 81	-17 -1	2222 164	

System Number:	6 ========	Descrip:	hood incand	====================================	=
Rooms Served: Floor Area: Possible kW:	1 768 Sc 0.360 0.360 0.360	ąFt			-
Lighting: Lighting: Heating: Cooling: Op Hours/Year: Relamp Method: Relamp Time: Power Density:	1265 Ar 181 Ar 1804 Ar 3514 Ar Spot 3.4 Mo	nnual kWh nnual kWh nnual kWh nnual Hrs onths atts/SqFt			
Equipment Fi	xtures	Lamps	Ballasts		
Possible Working Capacity Disconnected Broken/Burned	6 6 6 0	6 6 6 0	0.0 0.0 0.0 0.0 0.0		
Costs Energy PVLCC \$ 1390 AVLCC \$ 102	819	Cooling 1922 141		Total 4100 302	

LOCATION:		RT SAM HOUST		REGION NO		PROJECT NO. FISCAL YEAR	
PROJECT TITLE		FORT SAM HO				HTING IMPROVE	
DISCRETE PORT	_		ONOMIC LIFE		PREPARER	S. P. C	LARK
ANALTSIS DATE	INOVENIBLIY	1, 1990					
1. INVESTMENT	COSTS:						
A. CONSTRUCT	ION COST		\$1,900				
B. SIOH	~		\$105 \$114		:		
C. DESIGN COST			\$2,119	_			
E. SALVAGE VAL		G EQUIPMENT	<u> </u>	\$ 0			
F. PUBLIC UTILIT				\$0			
G. TOTAL INVES	TMENT (1D-1E	-1F)			\$2,119		
						i.	
2. ENERGY SAV	/INGS (+)/COS	<u>r(</u> –):					
DATE OF NISTIR	85-3273-X US	SED FOR DISCO	OUNT FACTOR	RS: <u>'N</u>	NOVEMBER 4,	1992	
ENERGY	COST	SAVINGS	ANNUAL \$	DISCOUNT	DISCOUNTE	D	
SOURCE	\$/MBTU(1)	MBTU/YR(2)	SAVINGS(3)	FACTOR(4)	SAVINGS(5)		
A. ELEC	\$10.55	18.23	<u>\$192</u>	11.77	\$2,264	-	
B. DIST			\$0 \$0	13.83 16.15	\$0 \$0	-	
C. RESID D. NG	\$3.31	0.00	\$0	15.34	\$0 \$0	-	
E. PPG	Ψο.στ		\$0	11.12	\$0	-	
F. COAL	-		\$0	12.82	\$0	-	
G. SOLAR			\$0	11.12	\$0	•	
H. GEOTH			\$0	11.12	\$0	-	
I. BIOMA			<u>\$0</u>	11.12	\$0 \$0	-	
J. REFUS K. WIND			<u>\$0</u> \$0	<u>11.12</u> 11.12	\$0 \$0	•	
L. COOLING	\$10.55	26.01	\$274	11.12	\$3,051	•	
M. DEMAND SAV			\$122	11.12	\$1,351	•	
N. TOTAL		44.24	\$588		\$6,666		
		_ 			_		
3. NON ENERGY SAVINGS (+) OR COST (-):							
			-				
A. ANNUAL RECU		\$66					
1. DISCOUNT FA			11.1	ሱ ፖርር			
2. DISCOUNTED	SAVINGS/CUS	I (SA X SAI)	-	<u>\$733</u>			

B. NON RECURRING SAVINGS (+) OR COST(-)

	ITEM	SAVINGS(+) COST(-)(1)	YEAR OF OCCUR.(2)	DISCOUNT FACTOR(3)	DISCOUNTED SAV- INGS(+)COST(-)(4)	
a.	N/A	\$0	1	0.96	\$0	
b.	N/A	\$0	2	0.92	\$0	
C.	N/A	\$0	3	0.89	\$0	
d.	N/A	\$0	3 4	0.85	\$0	
е.	N/A	\$0	5	0.82	\$0	
f.	N/A	\$0	5 6	0.79	: \$0	
g.	N/A	\$0	7	0.76	\$0	
h.	N/A	\$0	8	0.73	\$0	
i.	N/A	\$0	9	0.7	\$0	
i.	N/A	\$0	10	0.68	\$0	
k.	N/A	\$0	11	0.65	\$0	
i.	N/A	\$0	12	0.62	\$0	
m.	N/A	\$0	13	0.6	\$0	
n.	N/A	\$0	14	0.58	\$0	
ο.	N/A	\$0	15	0.56	\$0	
p.	TOTAL	\$0			\$0	
C.	TOTAL NON E	ENERGY DISCOL	JNTED SAVIN	IGS (3A2 + 3Bp4	\$733	
4. S	IMPLE PAYBA	NCK 1G/(2N3+3A	\+(3Bp1/ECO	NOMIC LIFE)):	3.2 Y	EARS
<u>5. T</u>	OTAL NET DIS	SCOUNTED SAV	INGS (2N5+3	c):	\$7,399	
6. SAVINGS TO INVESTMENT RATIO (SIR) 5/1G: 3.49						
7. A	DJUSTED INT	ERNAL RATE OF	RETURN (AI	RR):	13.0%	÷

BUILDING 5114 - DINING HALL

Building 5114 is a single story frame building consisting of 3,400 square feet. This facility consists of a full service kitchen and a large dining area.

The operating hours for this facility are very sporadic due to its use only during troop mobilization (approximately 1 day per month).

The lighting system is primarily fluorescent.

The mechanical system consists of evaporative coolers mounted to the exterior walls. Heating is provided by floor mounted gas furnaces.

Hot water is provided to the kitchen by a gas fired water heater. Dishwashing is accomplished using an automatic dishwasher with an electric hot water booster heater.

Because this facility has very low utilization as described above, there are no feasible ECO's for this facility.

BUILDING 5124 - DINING HALL

Building 5124 is a single story frame building consisting of 3,400 square feet. This facility consists of a full service kitchen and a large dining area.

The operating hours for this facility are very sporadic due to its use only during troop mobilization (approximately 1 day per month).

The lighting system is primarily fluorescent.

The mechanical system consists of evaporative coolers mounted to the exterior walls. Heating is provided by floor mounted gas furnaces.

Hot water is provided to the kitchen by a gas fired water heater. Dishwashing is accomplished using an automatic dishwasher with an electric hot water booster heater.

Because this facility has very low utilization as described above, there are no feasible ECO's for this facility.

A - UTILITY RATE SCHEDULES

City Public Service

of San Antonio,Texas

September 14, 1993

Mr. Scott Clark Carter And Burgess Engineering 3880 Hulen Ft. Worth, Texas 76107-7254

Dear Mr. Clark:

Per our telephone conversation on September 13, 1993, I have enclosed the rate schedules applicable to gas and electric service for Ft. Sam Houston.

Also I have included consumption histories for the primary gas and electric accounts.

I hope this information will serve your needs and if you have any further questions call me at (210) 978-4760.

Sincerely,

Charles E. Neumann

Senior Commercial Representative

Energy Survey Section

CEN: jal

Enclosures

Page 1 of 3

CITY PUBLIC SERVICE BOARD

OF SAN ANTONIO

RATE 41

LARGE LIGHTING AND POWER SERVICE

ELECTRIC RATE

l I P

APPLICATION

This rate is applicable to alternating current service to any Customer whose entire requirements on the promises are supplied at one point of delivery through one meter.

This rate is not applicable (a) when another source of electric energy is used by the Customer or (b) when another source of energy (other than electric) is used for the same purpose or an equivalent purpose as the electric energy furnished directly by City Public Service, except that such other source of energy as mentioned in (a) and (b) may be used during temporary failure of the City Public Service electric service.

This rate is not applicable to emergency, temporary, or shared service. It is also not applicable to resale service except that submetering will be permitted under this rate only for the purpose of allocating the monthly bill among the tenants served through a master mater in accordance with City Public Service and Regulations Applying to Electric Service.

TYPE OF SERVICE

The types of service available under this rate are described in City Public Service Electric Service Standards. When facilities of adequate capacity and suitable phase and voltage are not adjacent to the premises served or to be served. the required service may be provided pursuant to City Public Service Rules and Regulations Applying to Electric Service and the City Public Service Board Policy for Electric Line Extensions and Service Connections.

MONTHLY BILL

ъ.	•-
Rα	LE

\$ 130.00 Service Availability Charge

Demand Charge

Summer Billing (June - September)

7.50 Per KW for all KW of Billing Demand

Non-Summer Billing (October - May)

6,25 Per KV for all KV of Billing Demand

Energy Charge

0.0380 Per KWH for the first 200 KWH per KW of Billing Demand

0.0360 Per KWH for all additional KWH

Minimum Bill

The Minimum Bill shall be equal to the Service Availability Charge plus the Demand Charge (Summer Billing or Non-Summer Billing as the case may be) or such higher Minimum Bill as may be specified in the Customer's Application and Agreement for Electric Service. The Minimum Bill is not subject to reduction by credits allowed under the adjustments below.

<u>Adjustments</u>

Plus or minus an amount which reflects the difference in the unit fuel cost factor for the current month above or below a basic cost of \$0.0160 per KWH sold. The unit fuel cost factor for the current month is computed as the sum of:

Effective July 31, 1992 Page 2 of 2

a) the maximum billing demand (CCF/Day) as established during the previous winter period months of December through

- b) 600 CCF/Day
- c) such higher demand (CCF/Day) as may be specified in the Customer's Application and Agreement for Gas Service.

For new customers having no winter CCF usage history, the billing demand (CCF/Day) as defined above shall be equal to the greater of (b) or (c) as defined herein.

Minimum Bill

The Minimum Bill shall be equal to the Service Availability Charge plus the Demand Charge (Winter Billing or Non-Winter Billing as the case may be) or such higher Minimum Bill as may be specified in the Customer's Application and Agreement for Gas Service. The Minimum Bill is not subject to reduction by credits allowed under the adjustments below.

<u>Adjustments</u>

Plus or minus an amount which reflects the difference in the unit gas cost factor for the current month above or below a basic cost of \$0.220 per CCF sold. The unit gas cost factor for the current month is computed as the sum of:

- (a) The current month's estimated unit gas cost per CCF, which is computed based upon the current month's estimated CCF purchases, unit gas cost by supplier, any known changes in gas cost, and pipeline losses; plus
- (b) An adjustment, if indicated by the current status of the over and under recovery of gas costs for the recovery year in progress, to correct for the difference between the preceding month's estimated unit gas cost and the current computation for this value. This adjustment is computed by multiplying the difference between the preceding month's estimated unit gas cost (corrected for any gas supplier surcharge) and the current computation for this value times the CCF purchased during the preceding month and then dividing the result by the current month's estimated CCF sales; plus
- (c) An adjustment, if indicated by the current status of the over and under recovery of gas costs for the recovery year in progress, to correct for the difference between the preceding month's estimated value for the second preceding month's unit gas cost and actual unit gas cost for that month. This adjustment is computed by multiplying the difference between the preceding month's estimated value for the second preceding month's unit gas cost and the actual unit gas cost for that month (corrected for any gas supplier surcharge) times the CCF purchased during the preceding month and then dividing the result by the current month's estimated CCF sales; plus
- (d) An adjustment, as necessary, which may be derived and applied to the unit gas cost factors during the months preceding, including, and/or following August each year, depending on the dollar amount of adjustment necessary to balance the annual cumulative actual gas cost with the annual cumulative gas cost recovery through these rates; plus
- (e) An adjustment to reflect offsetting credits to or additions to gas costs resulting from judicial orders or settlements of legal proceedings affecting gas costs or components thereof, including taxes or transportation costs, or to reflect accounting and billing record corrections or other out-of-period adjustments to gas costs.

Plus or minus the proportionate part of the increase or decrease in taxes, required payments to governmental entities or for governmental or municipal purposes which may be hereafter assessed, imposed, or otherwise required and which are payable out of or are based upon revenues of the gas system.

LATE PAYMENT CHARGE

The Monthly Bill will be charged if payment is made within the period indicated on the bill. Bills not paid within this period will be charged an additional 2 percent times the Monthly Bill excluding the adjustment for gas costs, garbage fees and sales taxes.

TERM OF SERVICE

Service shall be supplied for an initial period of not less than one year and shall be continued from year to year unless a longer period is specified in the City Public Service Application and Agreement for Gas Service.

RULES AND REGULATIONS

Service is subject to City Public Service Rules and Regulations Applying to Gas Service which are incorporated herein by this reference.

CURTAILHENT

City Public Service shall have the right at any and all times to immediately adjust in whole or in part, the supply of gas to Customers, in order to adjust to gas supplies available for resale or to adjust to other factors affecting delivery capability.

CITY PUBLIC SERVICE BOARD

OF SAN ANTONIO

RATE 18

LARGE VOLUME

GAS RATE

LVG

APPLICATION

This rate is applicable to gas service supplied through one metering station for fuel used (a) for commercial services, (b) for industrial, manufacturing or processing purposes, or for steam generation for power purposes, including auxiliary apparatus used exclusively for manufacturing or processing purposes, or (c) for heating and/or cooling plants.

This rate is not applicable to gas supplied for:

- (1) standby service
- (2) resale
- (3) single family residential units.

TYPE OF SERVICE

Natural gas will be supplied at a nominal gauge pressure of four ounces per square inch. If natural gas is metered at a pressure higher than four ounces, measurements will be adjusted to the equivalent of four ounces. When mains of adequate apacity and suitable pressure are not adjacent to the premises served or to be served, the required service may be provided ursuant to City Public Service Rules and Regulations Applying to Gas Service and the City Public Service Board Policy for Gas Main Extensions and Service Connections.

MONTHLY BILL

Rate

\$325.00 Service Availability Charge

Demand Charge

Winter Billing (December-March)

\$ 0.80 Per CCF/Day of Billing Demand

Non-Winter Billing (April-November)

\$ 0.64 Per CCF/Day of Billing Demand

Energy Charge

\$ 0.265 Per CCF for all CCF

1 CCF equals 100 cubic feet

Billing Demand

For the winter period December through March, the Billing Demand (CCF/Day) shall be equal to the greatest of the following:

- a) the monthly metered consumption divided by days in the billing period
- b) 600 CCF/Day
- c) such higher demand (CCF/Day) as may be specified in the Customer's Application and Agreement for Gas Service.

For the non-winter period April through November, the Billing Demand (CCF/Day) shall be equal to the greatest of the following:

Company Comp		MER MASTER RECORD OST 19 EGUT OST 19 EGUT COST 19 EGUT
2.1 (2.10) (2.11		中国
1,01,000 1		\$\frac{1}{2} \\ \frac{1}{2} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1} \\
13470 1347		761867 71522 761867 000
1,217, 1,227, 1	4 /= 2	440496 038006400048 0 31 12549 3040 30 12709 000 30 12697 8333249 301 12954 735390 301 13202 793856 321 15110 000 116764 12954 12954 735390 301 13202 793856 321 15110 000
Carrier Carr	:>-uww	15437 040 291 13727 7939 9 29 13100 6551 25 14250 912349 331 15507 1024325 291 13390
Column	548	12122 13500 18265 291 11380 754377.
	-K420 -	330724 To 21510294035
HILL ODER ATTOMS OF MAIL ON'ELS TO THE CONTRACT OF THE CONTRAC		
No. 1971 H. V. 1971 C. DERATIONS OF FORT PRINCIPLE BY OF 12.		THE CONTROL OF THE CO
		THE COLOR OF THE C

		010201 025307000044 0	Section Sect		Control Cont	The control of the co
17 24s 550/1 	1 004220 5 1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1	295 5388 (10 20) 295 5388 (10 20) 200 201 200 4415 21(359 29)	100 100 100 100 100	2.629		

44> 000 73+008 1092789178000580000000 1021431178000580000000 091493109 : s ÷ 300000000 : Transfers. 11. 5.3 7.0 101 100 3 000 224657 BEFORE ÷ } 1 + heifelt, beifes irus DISTRIBUTION WAIN NUMBER - 7 3 28036 The state of the second section of the second section second section second sec 8. . ALE. . 43 000 180058 2526 2811 SAN ANTENEO TX PRESTAGOO TA LOCUSOR CONTRACTOR OF TAXABLE CONTRACT 41, 84,1 1111 * 1845 2211 291 291 249416 23 Mileson Beck MAY BUT STONE THE WAY BUT THE MISCELLANEC 5 ₹ ° 2 0 2 0 3 0 3 0 1001 Marie I area Pr. 2017 (2) 1591/41 2626 3105 HAND PAREN offe. SAMPLE CARE MAIL OVFL: DFAE-BLDG 1191 1(*) と BARRY STATE 7 96 1 16V 1949 (Dear) ស្ស 50136091586022093082458020000 50136091536022093082458020000 A. 000 241326 ER MASTER RECORD Last tal Bat aw E SH-TRNG ERAS <u>်ကို</u> CHRESTED BY OF IZ BASE AVE APT 14 2**56**3 2965 000 148491 TAM ALI 뷮 3.5 TATE OF BUT DES : i 1500 1848 ត្តីភ្ល ž 2 000 225718 H हा । 209351 12 Light of the sail of ្រុកស្តី -15914155 <u>င်္ဂ</u> 2700 2960 F 2**761** 3180 . terry distri Te garage to at 23 ٥ MAIL ADDES OTIL OFERALLOWS 3 C 930 (0380.) 1093. 3 225559 000 241742 : 215102930823 14 Fred 24 3677 2832 3188 16.9.57.1 3.0 3.0 0.0 П 15 7.35 L 1591741 i 3 otio odo 607 15.00 c. 10 3 ाना है। जा 1895 ""P.7" 901 Few 7-84 277E 2940 105**H99H**2072T 259 z.. . រា 95,6000 1:9651 į 291 123 400032-551

B - NON-RECOMMENDED ECO'S

GENERAL

I. ENVELOPE

A. Additional Insulation/Sealing

• Not recommended except as Maintenance and Operation (M&O) for Building 368. Existing insulation is adequate and additional insulation is not feasible.

B. Insulated Glass or Double Glazing

• Not recommended because of high cost and limited benefit as a result of too few windows, many of them with overhangs and internal shading.

C. Weather Striping and Caulking

• Not recommended due to good condition of existing weather striping and caulking. Should remain part of regular M&O procedures.

II. HOT WATER

A. Shutdown Energy to Water Heater

• Not recommended due to growth of legionella pneumophila. (See following ASHRAE HVAC Applications, 1991, page 44.7)

B. Addition of Booster Heaters

- Booster heaters currently exist on all rinse sinks and dishwashers.
- The existing sequence of control is for the water heater to provide 140°F, boosted to 180°F by electric boosters.

leat

lure

DΟ

iter

ific

esi-

ted

rgy

ent

ter

ter

let

he

nit

fi-

its

ed

er-

3T-

or

cs

đ

0

·S

y

1

Fig. 8 Lime Deposited Versus Temperature and Water Use (Purdue University Bulletin No. 74)

enhances electrochemical reactions such as rusting (Toaborek et al. 1972). A deposit of scale provides some protection from corrosion; however, this deposit also reduces the heat transfer rate, and it is not under the control of the system designer. Water heaters and hot water storage tanks constructed of stainless steel, copper, or other nonferrous alloys, provide corrosion protection. Some stainless steels, however, may be adversely affected by chlorides, while copper may be attacked by ammonia or carbon dioxide. Steel vessels can be protected to varying degrees by galvanizing or by lining them with copper, glass, cement, or other corrosionresistant material. Glass-lined vessels are almost always supplied with electrochemical protection. Typically, a rod of magnesium alloy (the anode) is installed in the vessel by the manufacturer. This electrochemically active material sacrifices itself to reduce or prevent corrosion of the tank (the cathode). Higher temperatures, softened waters, and high water usage may lead to rapid anode consumption. Manufacturers recommend periodic replacement to prolong the life of the vessel. Conversely, some waters have very little electrochemical activity. In this instance, a standard anode will show little or no activity, and the vessel will not be adequately protected. If this condition is suspected, consult the equipment manufacturer on the possible need of a high potential anode.

SAFETY DEVICES FOR HOT WATER SUPPLY SYSTEMS

Various regulatory agencies differ as to the selection of protective devices and methods of installation. As a result, it is essential to check and comply with the manufacturer's instructions and the applicable local codes. In the absence of such instructions and codes, the following recommendations may be used as a guide.

• Thermal expansion control devices limit the pressure that results when the water in the tank is heated and expands in a closed system. While the water-heating system is under service pressure, the pressure will rise rapidly if backflow cannot occur during heating. Backflow can be prevented by devices such as a check valve, pressure-reducing valve, or backflow preventer in the cold waterline or by temporarily shutting off the cold water.

In these cases, the pressure rise may rupture the tank or cause other damage. Such systems must be protected by a properly sized and located diaphragm-type expansion tank.

- Temperature limiting devices (energy cutoff/high limit) prevent water temperatures from exceeding 210 °F by stopping the flow of fuel or energy. These devices should be listed and labeled by Underwriter's Laboratories, the American Gas Association (AGA), or other recognized certifying agencies.
- Temperature and pressure relief valves open to prevent water temperature from exceeding 210°F or when the pressure exceeds the valve setting. Combination temperature and pressure relief valves should be AGA or National Board listed and labeled and have a water discharge capacity equal to or exceeding the heat input rating of the water heater. Combination temperature and pressure relief valves should be installed so that the temperature-sensitive element is located in the top 6 in. of the tank, i.e., where the water is hottest.
- Pressure relief valve opens when the pressure exceeds the valve setting. This valve should have a discharge capacity sufficient to relieve excess fluid pressure in the water heater. It should comply with current applicable American National Standards or the ASME Boiler and Pressure Vessel Code.

A pressure relief valve should be installed in any part of the system containing any heat input device that can be isolated by valves. The heat input device may be solar water-heating panels, desuperheater water heaters, heat recovery devices, or similar equipment.

SPECIAL CONCERNS

Legionella pneumophila (Legionnaire's Disease)

The bacteria causing Legionnaire's disease when inhaled has been discovered in the service water systems of various buildings in the United States and abroad. Infection has often been traced to Legionella pneumophila colonies in shower heads. Ciesielki et al. (1984) determined that the Legionella pneumophila can colonize in hot water systems maintained at 115°F or lower. Unrecirculated segments of the service water systems provide ideal breeding locations, e.g., shower heads, faucet aerators, and uncirculated sections of storage-type water heaters.

To limit the potential of Legionella pneumophila growth, service water temperatures in the 140°F range are recommended. This high temperature, however, increases the potential for scalding, so care must be taken. Supervised periodic flushing of fixture heads with 170°F water is recommended in hospitals and health care facilities, since already weakened patients are generally more susceptible to infection.

Temperature Requirements

Typical temperature requirements for some services are shown in Table 3. In some cases, slightly lower temperatures may be satisfactory. Temperatures below 140°F are usually obtained by blending hot and cold water at point of use.

Hot Water from Tanks and Storage Systems

With storage systems, 60 to 80% of the hot water in a tank is assumed to be usable before dilution by cold water lowers the temperature below an acceptable level. Thus, the hot water available from a self-contained storage heater is usually considered to be:

$$Q_t = R + MS_t/d (3)$$

where

 Q_t = available hot water, gph

R = recovery rate at the required temperature, gph

M = ratio of usable water to storage tank capacity

 S_i = storage capacity of the heater tank, gal

d = duration of peak hot water demand, h

Usable hot water from an unfired tank in gallons is calculated from:

$$Q_a = MS_a \tag{4}$$

- Changing electric booster heaters to gas not feasible for the following reasons;
 - 1. Electricity relatively inexpensive.
 - 2. Consumption low due to operating hours.
 - 3. Expensive to route gas to heater, install flue and provide combustion air make-up.

C. Addition of Instantaneous Water Heater

• Instantaneous heaters are best used for steady state, continuous supply. Most facilities have variable flow conditions which causes fluctuations in the supply temperature. These fluctuations could lead to a supply temperature considerably below 180°F, thereby jeopardizing the sanitation process. Also, instantaneous heaters are best when hot water source is far from use. Not recommended.

III. HEAT RECOVERY

A. Heat Recovery from Dishwashers

- Not recommended for following reasons:
 - 1. High fouling due to waste products in water.
 - 2. Economy of scale (not feasible).
 - 3. Only effective during winter and during operation of equipment.
 - 4. Cost of installation cannot be justified with savings and added maintenance problems.

B. Heat Reclaim from Kitchen Exhaust

- Not recommended for following reasons:
 - 1. Grease build-up on reclaim coil.
 - 2. Violates mechanical codes for kitchen hoods.
 - 3. Creates a fire hazard.

C. Waste Heat Recovery

- Not recommended for following reasons:
 - 1. No large sources of waste heat.
 - 2. Few air cooled chillers and refrigeration equipment.
 - 3. Would result in an increase in maintenance costs.
 - 4. Cost of installation cannot be justified with energy savings.

CHAPTER 44

AIR-TO-AIR ENERGY RECOVERY

APPLICATIONS 44.1	Rotary Air-to-Air Energy Exchangers 44.8
Economic Considerations	Coil Energy Recovery (Runaround) Loops 44.10
Technical Considerations	Heat Pipe Heat Exchangers 44.11
EQUIPMENT	Twin Tower Enthalpy Recovery Loops 44.12
Fixed Plate Exchangers	Thermosiphon Heat Exchangers 44.13

AIR-TO-AIR energy recovery systems may be categorized according to their application as (1) process-to-process, (2) process-to-comfort, and (3) comfort-to-comfort. Typical air-to-air energy recovery applications are listed in Table 1.

Table 1 Applications for Air-to-Air Energy Recovery

Method	Typical Application		
Process-to-process	Driers		
and	Ovens		
Process-to-comfort	Flue stacks		
	Burners		
	Furnaces		
	Incinerators		
	Paint exhaust		
Comfort-to-comfort	Welding		
	Swimming pools		
	Locker rooms		
	Residential		
	Smoking exhaust		
	Operating rooms		
	Nursing homes		
	Animal ventilation		
	Plant ventilation		
	General exhaust		

APPLICATIONS

Process-to-Process

In process-to-process applications, heat is captured from the process exhaust stream and transferred to the process supply air-stream. Equipment is available to handle process exhaust temperatures as high as 1600 °F.

Process-to-process recovery devices generally recover only sensible heat and do not transfer latent heat (humidity), as moisture transfer is usually detrimental to the process. Process-to-process applications usually recover the maximum amount of energy. In cases involving condensables, less recovery may be desired to prevent condensation and possible corrosion.

Process-to-Comfort

In process-to-comfort applications, waste heat captured from a process exhaust heats the building makeup air during winter. Typical applications include foundries, strip coating plants, can plants, plating operations, pulp and paper plants, and other processing areas with heated process exhaust and large makeup air volume requirements.

Although full recovery is desired in process-to-process applications, recovery for process-to-comfort applications must be modulated during warm weather to prevent overheating the makeup air. During summer, no recovery is required. Because energy is saved only in the winter and recovery is modulated during moderate weather, process-to-comfort applications save less energy over a year than do process-to-process applications.

Process-to-comfort recovery devices generally recover sensible heat only and do not transfer moisture between the airstreams.

Comfort-to-Comfort

In comfort-to-comfort applications, the heat recovery device lowers the enthalpy of the building supply air during warm weather and raises it during cold weather by transferring energy between the ventilation air supply and the exhaust airstreams.

In addition to commercial and industrial energy recovery equipment, small-scale packaged ventilators with built-in heat recovery components known as heat recovery ventilators (HRV) are available for residential and small-scale commercial applications.

Air-to-air energy recovery devices available for comfort-tocomfort applications may be sensible heat devices (i.e., transferring sensible energy only) or total heat devices (i.e., transferboth sensible energy and moisture). These devices are discussed further in the section Technical Considerations.

ECONOMIC CONSIDERATIONS

An analysis of energy recovery should consider the application over its lifetime. Neither the most efficient nor the least expensive energy recovery device may be the most economical. Many manufacturers and suppliers have computer programs to provide application-specific design and cost benefit information. Chapter 33 of the 1991 ASHRAE Handbook—HVAC Applications describes methods for making detailed cost/benefit analyses.

Energy costs. The absolute cost of energy and the relative costs of various energy forms are major economic factors. High energy costs favor high levels of energy recovery. In regions where electrical costs are high relative to fuel prices, heat recovery devices with low pressure drops are preferable.

Other conservation options. Energy recovery should be evaluated against other cost-saving opportunities, including reducing or eliminating the primary source of waste energy through process modification.

Amount of useable waste energy. Economies of scale favor large installations, although equipment is commercially available for air-to-air energy recovery applications from 50 cfm and more. Although using equipment with higher effectiveness results in more recovered energy, equipment costs and space requirements also increase with effectiveness.

Grade of waste energy. High-grade (i.e., high-temperature) waste energy is generally more economical to recover than low-grade energy. Large temperature differences between the waste energy source and destination are most economical.

The preparation of this chapter is assigned to TC 5.5, Air-to-Air Energy Recovery.

Coincidence and duration of waste heat supply and demand. Energy recovery is most economical when the supply is coincident with the demand and both are relatively constant throughout the year. Thermal storage may be used to store energy if supply and demand are not coincident, but this adds cost and complexity to the system.

Proximity of supply to demand. Applications with a large central energy source and a nearby waste energy use are more favorable than applications with several scattered waste energy sources and uses.

Operating environment. High operating temperatures or the presence of corrosives, condensables, and particulates in either airstream result in higher equipment and maintenance costs. Increased equipment costs result from the use of corrosion- or temperature-resistant materials, and maintenance costs are incurred by an increase in the frequency of equipment repair and washdown and additional air filtration requirements.

Effects on pollution control systems. Removing process heat may reduce the cost of pollution control systems by allowing less expensive filter bags to be used, by improving the efficiency of electronic precipitators, or by condensing out contaminant vapors. thus reducing the load on downstream pollution control systems. In some applications, recovered condensables may be returned to the process for reuse.

Effects on heating and cooling equipment. Heat recovery equipment may reduce the size requirements for primary utility equipment such as boilers, chillers, and burners, and the size of piping and electrical services to them. Larger fans and fan motors (and hence fan energy) are generally required to overcome increased static pressure losses caused by the energy recovery devices. Auxiliary heaters may be required for frost control.

Effects on humidifying or dehumidifying equipment. Selecting total energy recovery equipment results in the transfer of moisture from the airstream with the greater humidity ratio to the airstream with the lesser humidity ratio. In many situations this is desirable, since humidification costs are reduced in cold weather and dehumidification loads are reduced in warm weather (ASH-RAE 1988).

TECHNICAL CONSIDERATIONS

Performance Rating

ASHRAE Standard 84-91, Method of Testing Air-to-Air Heat Exchangers, establishes rating and testing proceedures for commercial air-to-air heat recovery equipment. CAN/CSA-439-88, Standard Methods of Test for Rating the Performance of Heat Recovery Ventilators (HRV), is used to rate small (under 200 L/s) packaged ventilators with heat recovery.

The effectiveness of air-to-air heat exchangers is commonly measured in terms of:

- Sensible energy transfer (dry-bulb temperature)
- Latent energy transfer (humidity ratio)
- Total energy transfer (enthalpy)

ASHRAE Standard 84 defines effectiveness as:

Actual transfer (of energy or moisture) Maximum possible transfer between airstreams

Referring to Figure 1,

$$\epsilon = \frac{W_{\epsilon}(X_1 - X_2)}{W_{min}(X_1 - X_3)} = \frac{W_{\epsilon}(X_4 - X_3)}{W_{min}(X_1 - X_3)} \tag{1}$$

where

- = sensible, latent, or total effectiveness
- X = dry-bulb temperature, humidity ratio, or enthalpy (at the location indicated in Figure 1), respectively, and

Fig. 1 Airstream Numbering Convention

 W_{min} = the smaller of W_s and W_e where,

For latent and total effectiveness:

 $W_s = \text{supply air mass flow}$ $W_e = \text{exhaust air mass flow}$

For sensible effectiveness:

 $W_s = \text{(specific heat)} \times \text{(supply air mass flow rate)}$ $W_e = \text{(specific heat)} \times \text{(exhaust air mass flow rate)}$

The leaving supply air condition is:

$$X_2 = X_1 - \epsilon (W_{min}/W_s)(X_1 - X_3)$$
 (2)

and the leaving exhaust air condition is:

$$X_4 = X_3 + \epsilon (W_{min}/W_e)(X_1 - X_3)$$
 (3)

Equations (1), (2), and (3) assume that no heat transfers between the heat exchanger and its surroundings, nor are there gains from cross leakage, fans, or frost control devices. This assumption is generally true for larger commercial applications but not for HRVs. The rating term used in CAN/CSA-439-88 for HRVs is defined as the energy recovery efficiency (i.e., the actual energy transfer efficiency) and the apparent sensible effectiveness (i.e., a measure of the temperature rise of the supply airstream, including that resulting from external gains).

A number of variables can affect these performance factors, whether the device is designed to transfer total energy or just sensible heat. These variables include (1) humidity ratio of the warmer airstream, (2) heat transfer area, (3) air velocities through the heat exchangers, (4) airflow arrangement, (5) supply and exhaust air mass flow rates, and (6) method of frost control. The effect of some of these are shown in Figures 2, 3, and 4. The impacts of frost control method on seasonal performance are discussed in Phillips et al. (1989a), and sensible versus latent heat recovery for residential comfort-to-comfort applications is addressed in Barringer and McGugan (1989b).

Fig. 2 Sensible Heat Recovery

Fig. 3 Sensible Rotary Heat Exchanger Recovering Latent Heat

Fig. 4 Total Heat Recovery

Sensible versus Total Recovery

Air-to-air energy recovery devices are available for sensible heat recovery and total heat recovery.

Since sensible heat devices do not transfer moisture, no latent heat is exchanged between supply and exhaust airstreams, except where the exhaust airstream is cooled below its dew point. When condensation occurs, some latent heat is transferred.

Total heat devices transfer both sensible heat and latent heat (humidity) between supply and exhaust airstreams. Unlike process-to-process and process-to-comfort applications, latent transfer is frequently desired in comfort-to-comfort applications.

A typical sensible heat recovery process between supply and exhaust airstreams is shown in Figure 2. Cold air is heated from 1 to 2, while hot air is cooled from 3 to 4. In this case, the cold air temperature is above the dew point of the hot air, and no condensation takes place.

Figure 3 illustrates a sensible heat recovery process in which condensation occurs in the hot airstream, along with evaporation in the cold one. Here latent heat transfer enhances overall effectiveness.

Figure 4 illustrates a total heat recovery process when mass flow rates and the latent and total heat effectiveness are equal. For this case, outlet states 2 and 4 lie on the straight line through cold-air inlet state 1 and hot-air inlet state 3.

Figure 5 shows a comfort-to-comfort application of a device with 70% effectiveness of sensible heat only; Figure 6 shows a device of 70% effectiveness of both sensible heat and latent heat operating under the same conditions. Under typical summer

Fig. 5 Comfort-to-Comfort Sensible Heat Device

Fig. 6 Comfort-to-Comfort Total Heat Device

design conditions, the total heat device transfers nearly three times as much energy as the sensible heat device. Under typical winter design conditions, the total heat device recovers more than 25% more energy than the sensible heat device. Figure 7 shows the processes and a comparison of the energy transfers for these example systems for both summer and winter conditions on a psychrometric chart.

Fouling

The term fouling refers to an accumulation of dust or condensates on heat exchanger surfaces. Increasing the resistance to airflow and generally decreasing heat transfer coefficients, fouling reduces heat exchanger performance. The increased resistance increases fan power requirements and may reduce airflows.

Pressure drop across the heat exchanger core can be used as an indication of fouling and, with experience, may be used to establish cleaning schedules. Heat exchanger surfaces must be kept clean if system performance is to be maximized.

Corrosion

Process exhaust frequently contains substances requiring corrosion-resistant construction materials. If it is not known which materials are most corrosion-resistant for an application, the user and/or designer should examine on-site ductwork, review literature, and contact equipment suppliers prior to selecting materials. A corrosion study of heat exchanger construction materials in the proposed operating environment may be warranted if the installation costs are high and the environment is corrosive. Experimental procedures for such studies are described in an ASHRAE symposium (1982). Often contaminants not directly related to the process are present in the exhaust airstream (e.g., welding fumes or paint carryover from adjacent processes).

Moderate corrosion generally occurs over time, roughening metal surfaces and increasing their heat transfer coefficients. Severe corrosion reduces overall heat transfer and can result in

Directionally oriented media consist of small (0.0625 in.) triangular air passages parallel with the direction of airflow. The triangular shape gives the largest exposed surface for air contact per unit of face area; it is also strong and is easily produced by interleaving layers of flat and corrugated material. Aluminum foil, inorganic sheet, treated organic sheet, and synthetic materials are used for low and medium temperatures. Stainless steel and ceramics are used for high temperatures and corrosive atmospheres.

Media surface areas exposed to airflow vary from 100 to 1000 ft²/ft³, depending on the type of medium and physical configuration. Media may also be classified according to their ability to recover only sensible heat or total heat. Media for sensible heat recovery are made of aluminum, copper, stainless steel, and monel. Media for total heat recovery are fabricated from any of a number of materials and treated with a desiccant, typically lithium chloride or alumina, to have specific moisture recovery characteristics.

Cross-Contamination

Cross-contamination, or mixing, of air between supply and exhaust airstreams occurs in all rotation energy exchangers by two mechanisms—carryover and leakage. Carryover occurs as air is entrained within the volume of the rotation medium and is carried into the other airstream. Leakage occurs because the differential static pressure across the two airstreams drives air from a higher to a lower static pressure region. Leakage can be reduced by placing the blowers so that they promote leakage of outside air to the exhaust airstream. Carryover occurs each time a portion of the matrix passes the seals dividing the supply and exhaust airstreams. Since carryover from exhaust to supply may be undesirable, a purge section can be installed on the heat exchanger to prevent cross-contamination.

In many applications, recirculating some air is not a concern. However, critical applications, such as hospital operating rooms, laboratories, and clean rooms, require stringent control of carryover. Carryover can be reduced to below 0.1% of the exhaust airflow with a purge section (ASHRAE 1974).

The theoretical carryover of a wheel without a purge is directly proportional to the speed of the wheel and the void volume of the media (75 to 95% void, depending on type and configuration). For example, a 10-ft diameter, 8-in. deep wheel, with a 90% void volume operating at 14 rpm, has a carryover volume of:

$$(10)^2(\pi/4)(8/12)(0.9)(14) = 660 \text{ cfm}$$

If the wheel is handling a 20,000 cfm balanced flow, the percentage carryover is:

$$(660/20,000)(100) = 3.3\%$$

The exhaust fan, which is usually located at the exit of the exchanger, should be sized to include leakage, purge, and carryover airflows.

Controls

Two control methods are commonly used to regulate wheel energy recovery. In the first, supply air bypass control, the amount of supply air allowed to pass through the wheel establishes the supply air temperature. An air bypass damper, controlled by a wheel supply air discharge temperature sensor, regulates the proportion of supply air permitted to bypass the exchanger.

Fig. 15 Typical Wheel Energy Recovery Capacity versus Rotational Speed

The second method regulates the energy recovery rate by varying wheel rotational speed (Figure 15). The most frequently used variable-speed drives are (1) a silicon controlled rectifier (SCR) with variable speed dc motor, (2) a constant speed ac motor with hysteresis coupling, and (3) an ac frequency inverter with an ac induction motor.

A dead band control, which stops or limits the exchanger, may be necessary when no recovery is desired (e.g., when outside air temperature is higher than the required supply air temperature but below the exhaust air temperature). When the outside air temperature is above the exhaust air temperature, the equipment operates at full capacity to cool the incoming air.

Maintenance

Energy exchanger wheels require little maintenance. The following maintenance procedures ensure best performance:

- Clean the medium when lint, dust, or other foreign materials build up, following the manufacturer's instructions for that medium type. Media treated with a liquid desiccant for total heat recovery must not be wetted.
- Maintain drive motor and train according to the manufacturer's recommendations. Speed control motors that have commutators and brushes require more frequent inspection and maintenance than do induction motors. Brushes should be replaced, and the commutator should be periodically turned and undercut.
- Inspect wheels regularly for proper belt or chain tension.
- Refer to the manufacturer's recommendations for spare and replacement parts.

COIL ENERGY RECOVERY (RUNAROUND) LOOPS

A typical coil energy recovery loop system (Figure 16) places extended surface, finned tube water coils in the supply and exhaust airstreams of a building or process. The coils are connected in a closed loop via counterflow piping through which an intermediate heat transfer fluid (typically water or a freeze-preventive solution) is pumped.

This system operates for sensible heat recovery only. In comfortto-comfort applications, energy transfer is seasonally reversible the supply air is preheated when the outdoor air is cooler than the exhaust air and precooled when the outdoor air is warmer.

Fig. 16 Coil Energy Recovery Loop

Freeze Protection

Moisture must not freeze in the exhaust coil air passage. A dual-purpose, three-way temperature control valve prevents the exhaust coil from freezing. The valve is controlled to maintain the entering solution temperature to the exhaust coil to not less than 30°F. This condition is maintained by bypassing some of the warmer solution around the supply air coil. The valve can also ensure that a prescribed air temperature from the supply air coil is not exceeded.

System Characteristics

Coil energy recovery loop systems are highly flexible and well-suited to renovation and industrial applications. The system accommodates remote supply and exhaust ducts and allows the simultaneous transfer of energy between multiple sources and uses. An expansion tank must be included to allow fluid expansion and contraction. A closed expansion tank minimizes oxidation when ethylene glycol is used.

Standard finned tube water coils may be used. Manufacturer's design curves and performance data should be used when selecting coils, face velocities, and pressure drops.

Effectiveness

The coil energy recovery loop cannot transfer moisture from one airstream to another. For the most cost-effective operation, with equal airflow rates and no condensation, typical effectiveness values range from 60 to 65%. Highest effectiveness does not necessarily give the greatest net cost savings.

The following example illustrates the capacity of a typical system:

Example 1. A waste heat recovery system heats 10,000 cfm of air from a 0°F design outdoor temperature to an exhaust dry-bulb temperature of 75°F and a wet-bulb temperature of 60°F. The air flows through identical eight-row coils at a 400 fpm face velocity. A 30% ethylene glycol solution flows through the coils at 26 gpm.

Figure 17 shows the effect of the outside air temperature on capacity, including the effects of the three-way temperature control valve. For this example, the capacity is constant for outside air temperatures below 18.5 °F. This constant output occurs because the valve has to control the temperature of the fluid entering the exhaust coil to prevent frosting. As the exhaust coil is the source of heat and has a constant airflow rate, entering air temperature, liquid flow rate, entering fluid temperature (as set by the valve), and fixed coil parameters, energy recovered must be fixed to prevent frosting. Equation (1) may be used to calculate the sensible heat effectiveness.

When the three-way control valve operates at outside air temperatures of 18.5 °F or lower, 414,000 Btu/h is recovered. At 18.5 °F, the sensible heat effectiveness is 67.2%. At the 0 °F design temperature sensible effectiveness is 51% (ϵ = 414,000/810,000), and the leaving air dry-bulb temperature of the supply coil is 38.3 °F. Above 75 °F outside air temperature, the system begins to cool the supply air.

Fig. 17 Energy Recovery Capacity versus Outside Air Temperature for Typical Loop

Typically, the sensible heat effectiveness of a coil energy recovery loop is independent of the outside air temperature. However, when the capacity is controlled (as in the preceding example) the sensible heat effectiveness decreases.

Construction Materials

Coil energy recovery loops incorporate coils constructed to suit the environment and operating conditions to which they are exposed. For typical comfort-to-comfort applications, standard coil construction usually suffices. In process-to-process and process-to-comfort applications, the effect of high temperature, condensables, corrosives, and contaminants on the coil(s) must be considered.

At temperatures, above 400°F, special construction may be required to ensure a permanent fin-to-tube bond. The effects of condensables and other adverse factors may require special coil construction and/or coatings. Chapters 21, and 24 discuss the construction and selection of coils in more detail.

Cross-Contamination

Complete separation of the airstreams eliminates cross-contamination between the supply and exhaust air.

Maintenance

Coil energy recovery loops require little maintenance. The only moving parts are the circulation pump and the three-way control valve. However, the following items must be maintained to ensure optimum operation: air filtration; cleaning of the coil surface; periodic maintenance of the pump and valve; and transfer fluid. Fluid manufacturers or their representatives should be contacted for specific recommendations.

Thermal Transfer Fluids

The thermal transfer fluid used in a closed-loop application depends on the application and temperatures of the two airstreams.

An inhibited ethylene glycol solution in water is commonly used when freeze protection is required. These solutions break down to an acidic sludge if temperatures exceed 275 °F. If freeze protection is needed and exhaust air temperatures exceed 275 °F, a nonaqueous synthetic heat transfer fluid should be used. Heat transfer fluid manufacturers and chemical suppliers should recommend appropriate fluids.

IV. HVAC

- B. Economizer Controls
 - ASHRAE recommends against this ECO due to high humidity (see following ASHRAE Standard 90A, paragraph 5.6 and Weather Data).

THIS PUBLICATION INCLUDES THE **FOLLOWING SECTIONS:**

- (1) ANSI/ASHRAE/IES 90A-1980 (SUPERSEDES SECTIONS 1-9 OF ASHRAE/IES STANDARD 90-75)
- (2) ASHRAE/IES 90B-1975 (SECTIONS 10 AND 11 OF ASHRAE/IES STANDARD 90-75)
- (3) ASHRAE 90C-1977 (SECTION 12 AS PUBLISHED **FEBRUARY 16, 1977)**

CLARIFICATION OF THE STATUS OF EACH SECTION IS INCLUDED IN THE FOREWORD.

ENERGY CONSERVATION IN NEW BUILDING DESIGN

ASHRAE Standards are updated on a five-year cycle; the date following the Standard number is the year of approval. The latest copies may be purchased from the ASHRAE Publication Sales Department, 1791 Tullie Circle, NE, Atlanta, GA 30329 York, N.Y. 10017.

© 1980

ISBN 0-910110-32-8

Cosponsored by

The American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc. and

Illuminating Engineering Society of North America 1791 Tullie Circle NE, Atlanta, GA 30329

- 5.4.4.2 Other Buildings and Occupancies. Each system shall be equipped with a readily accessible means of shutting off or reducing the energy used during periods of non-use or alternate uses of the building spaces or zones served by the system. The following are examples that meet this requirement:
 - a. Manually adjustable automatic timing devices
 - b. Manual devices for use by operating personnel
 - c. Automatic control systems

5.5 Simultaneous Heating and Cooling

The use of both heating and cooling simultaneously in order to achieve comfort conditions within a space is inefficient energy utilization. This use shall be limited to those situations where more efficient methods of heating and air conditioning cannot be effectively utilized to meet system objectives. Separate systems should be considered to serve areas of building with substantially different heating/cooling load characteristics (for example, the perimeter space as compared to the interior space). Simultaneous heating and cooling by reheating or recooling supply air or by concurrent operation of independent heating and cooling systems serving a common zone shall be restricted as delineated below.

- **5.5.1** Recovered energy in excess of the new energy expended in the recovery process may be used for control of temperature and humidity. New energy is defined as energy, other than recovered, utilized for the purpose of heating or cooling.
- 5.5.2 New energy may be used, when necessary, to prevent relative humidity from rising above 60 percent for comfort control or to prevent condensation on terminal units or outlets.
- 5.5.3 New energy may be used for control of temperature if minimized as delineated in 5.5.4 through 5.5.8.
- 5.5.4 Reheat Systems. Systems employing reheat and serving multiple zones, other than those employing variable air volume for temperature control, shall be provided with control that will automatically reset the system cold air supply to the highest temperature level that will satisfy the zone requiring the coolest air. Single zone reheat systems shall be controlled to sequence reheat and cooling.
- 5.5.5 Dual Duct and Multi-Zone Systems. These systems, other than those employing variable air volume for temperature control, shall be provided with control that will automatically reset (a) the cold deck air supply to the highest temperature that will satisfy the zone requiring the coolest air and (b) the hot deck air supply to the lowest temperature that will satisfy the zone requiring the warmest air.

- 5.5.6 Recooling Systems. Systems in which heated air is recooled, directly or indirectly, to maintain space temperature shall be provided with control that will automatically reset the temperature to which the supply air is heated to the lowest level that will satisfy the zone requiring the warmest air.
- 5.5.7 For systems with multiple zones, one or more zones may be chosen to represent a number of zones with similar heating/cooling characteristics. A multiple zone system which employs reheating or recooling for control of not more than 2.36 m³/s (5,000 ft³/min) or 20 percent of the total supply air of the system, whichever is less, shall be exempt from the supply air temperature reset requirement of 5.5.4 through 5.5.6.
- **5.5.8** Concurrent operation of independent heating and cooling systems serving common spaces and requiring the use of new energy for heating or cooling shall be minimized by one or both of the following:
- a. By providing sequential temperature control of both heating and cooling capacity in each zone.
- b. By limiting the heating energy input through automatic reset control of the heating medium temperature (or energy input rate) to only that necessary to offset heat loss due to transmission and infiltration and, where applicable, to heat the ventilation air supply to the space.

5.6 Cooling with Outdoor Air (Economizer Cycle)

Each fan system shall be designed to use up to and including 100 percent of the fan system capacity for cooling with outdoor air automatically. Activation of economizer cycle shall be controlled by sensing outdoor air enthalpy and dry-bulb temperature jointly or outdoor air dry-bulb temperature jointly or outdoor air dry-bulb temperature alone to accomplish the above.

Exceptions. Cooling with outdoor air is not required under any one or more of the following conditions:

- a. The fan system capacity is less than 2.36 m³/s (5,000 ft³/min) or total cooling capacity less than 39.3 kW (134,000 Btu/h).
- b. The quality of the outdoor air (as defined in Table 1 of ANSI/ASHRAE Standard 62-738) is so poor as to require extensive treatment of the air.
- c. The need for humidification and/or dehumidification requires the use of more energy than is conserved by outdoor air cooling on an annual basis.
- d. The use of outdoor air cooling may affect the operation of other systems (such as return or exhaust air fans or supermarket refrigeration) so as to increase the overall energy consumption of the building.
- e. When energy recovered from an internal/external zone heat recovery system exceeds the energy conserved by outdoor air cooling on an annual basis.
- f. The Annual Celsius Heating Degree Days are less than 670 (1,200 Fahrenheit Degree Days).
- g. Outdoor Wet Bulb Design Conditions of more than 22°C (72F) and Annual Celsius Heating Degree Days are less than 1110 (2000 Fahrenheit Degree Days).
- h. When space cooling is accomplished by a circulating liquid which transfers space heat directly or indirectly to a heat rejection device such as a cooling

tower without the use of a refrigeration system.

- i. When the use of 100 percent outside air will cause coil frosting, controls may be added to reduce the quantity of outside air. However, the intent of this exception is to use 100 percent air in lieu of mechanical cooling when less energy usage will result, and this exception applies only to direct expansion systems when the compressor(s) is running.
- j. When the fan system will regularly be operated for less than 30 hours per week.
- k. When the total design sensible cooling load is less than $21.6 \text{ W/m}^2(2\text{W/ft}^2)$ (6.8 Btu/h·ft²) of floor area.
- 1. For single family and multi-family residential buildings.

5.7 Mechanical Ventilation

Each mechanical ventilation system (supply and/or exhaust) shall be equipped with a readily accessible switch or other means for shutoff or volume reduction and shut off when ventilation is not required. Automatic or gravity dampers that close when the system is not operating shall be provided for outdoor air inakes and exhausts. There is no standard at this time for damper leakage. Automatic or manual dampers installed for the purpose of shutting off outside air intakes and exhausts for ventilation systems shall be designed with tight shutoff characteristics to minimize air leakage.

Exceptions.

- 1. Manual dampers for outdoor air intakes may be used in the following cases:
 - a. For single and multi-family residential buildings.
 - b. When the fan system capacity is less than 2.36 m³/s (5000 ft ³/min).
- 2. Dampers are not required when ventilation airflow is less than 0.047 m³/s (100 ft³/min).

5.8 Transport Energy

5.8.1 All Air Systems. The air transport factor for each all-air system shall not be less than 5.5. The factor shall be based on design system air flow for constant volume systems. The factor for variable air volume systems may be based on average conditions of operation. Energy for transfer of air through heat recovery devices shall not be included in determining the factor; however, such energy shall be included in the evaluation of the effectiveness of the heat recovery system.

Air Transport Factor =
$$\frac{\text{Space Sensible Heat Removal*}}{(\text{Supply} + \text{Return Fan(s) Power Input)*}}$$

*Both expressed in either watts or Btu/h

For purposes of these calculations, Space Sensible Heat Removal is equivalent to the maximum coincident design sensible cooling load of all spaces served for which the system provides cooling. Fan Power Input is the rate of energy delivered to the fan prime mover.

5.8.2 Other Systems. Air and water, all water and unitary systems employing chilled, hot, dual temperature or condensr water transport systems to space terminals shall not require greater transport energy (including central and terminal fan power and

pump power) than an equivalent all air system providing the same space sensible heat removal and having an air transport factor not less than 5.5.

5.9 Energy Recovery

It is recommended that consideration be given to the use of recovery systems which will conserve energy (provided the amount expended is less than the amount recovered) when the energy transfer potential and the operating hours are considered.

5.10 Piping Insulation

All piping installed to serve buildings and within buildings shall be thermally insulated in accordance with Table 5.1. (For service water heating systems see Section 7.)

Exceptions. Piping insulation is not required in any of the following cases:

- a. Piping installed within HVAC equipment
- b. Piping at fluid temperatures between 13°C and 49°C (55 to 120F)
- c. When the heat loss and/or heat gain of the piping, without insulation, does not increase the energy requirements of the building
- d. Where piping is installed in basements, cellars or unventilated crawl spaces having insulated walls in oneand two-family dwellings.
- 5.10.1 Other Insulation Thicknesses. Insulation thicknesses in Table 5.1 are based on insulation having thermal resistivity in the range of 0.028 to 0.032 m²·°C/W·mm (4.0 to 4.6 ft²·h·F/Btu·in) on a flat surface at a mean temperature of 24°C (75F). Minimum insulation thickness shall be increased for materials having R values less than 0.028 m²·°C/W·mm (4.0 ft²·h·F/Btu·in) or may be reduced for materials having R values greater than 0.032 m²·°C/W·mm (4.6 ft²·h·F/Btu·in).
- a. For materials with thermal resistivity greater than 0.032 m²·°C/W·mm (4.6 ft²·h·F/Btu·in) the minimum insulation thickness may be reduced as follows:

In SI Units:

$$\frac{0.032 \times \text{Table 5.1 Thickness}}{\text{Actual R}} = \text{New Minimum Thickness}$$

In Conventional units:

$$\frac{4.6 \times \text{Table 5.1 Thickness}}{\text{Actual R}} = \text{New Minimum Thickness}$$

b. For materials with thermal resistivity less than 0.028 m²·°C/W·mm (4.0 ft²·h·F/Btu·in), the minimum insulation thickness shall be increased as follows:

In SI Units:

$$\frac{0.028 \times \text{Table 5.1 Thickness}}{\text{Actual R}} = \text{New Minimum Thickness}$$

In Conventional units:

$$565 \frac{4.0 \times \text{Table 5.1 Thickness}}{\text{Actual R}} = \text{New Minimum Thickness}$$

Washingkement of the AIR FORCE MANUA DEPARTMENT OF THE NAVY WANDAL

(IN E788

UAL CONTROL OF THE CO

ENGINEER ING WEATHER DATA

DEPARTMENTS OF THESAIR FORCES THE RANY, AND THE NAVY

Abilene MAP
Aero Main
Amarillo
Austin/Robert Mueller MAP
Beaumont/Jefferson Co

SSE SSE SSE SSE

ZZZZZ

₹4444

N

IV. HVAC

- G. Shut-off range hood whenever possible
 - All of the hoods observed have manual switches which are controlled by the kitchen personnel. Based on observations and interviews, the hoods only operate when the kitchens are in use.

IV. HVAC

H. Thermal Storage

 City Public Service utility rate for Fort Sam Houston is the Large Lighting & Power rate. This rate does not have a demand "window".
 Demand is measured at 15 minute intervals 24 hrs/day. Also, they offer no rebate incentives for thermal storage. Due to the above, thermal storage is not feasible at Fort Sam Houston.

VI. POWER

A. Convert to Energy Efficient/Smaller Motors

See following SimpCalc output for energy savings calculations for 3, 5, 10, 25, 50 and 100 HP motors. Due to the combined payback of over 11 years, we recommend the use of high efficiency motors only for replacement of failed motors.

TEXAS LoanSTAR Program - ECRM Simplified Calculation Ver 2.0

Page 1

10/21/93

SimpCalc 2.0 SUMMARY (by FORM) - FORT SAM HOUSTON

Form	Facility	ECRM Desc.	Page	KWH/Yr	KW	MCF/yr	mmBtu/Yr	\$/Yr	Imp.Cost	PayBack
C1-01	GENERAL	High Eff Motor	1	400	.16	.0	1.4	28	298	10.6
C1-02		High Eff Motor	2	475	.19	.0	1.6	33	325	9.8
C1-03	GENERAL	High Eff Motor	3	825	.33	.0	2.8	57	520	9.1
C1-04	GENERAL	High Eff Motor	4	1140	.76	.0	3.9	104	1000	9.6
C1-05	GENERAL	High Eff Motor	5	1980	1.32	.0	6.8	180	1775	9.9
C1-06	GENERAL	High Eff Motor	6	2940	1.96	.0	10.0	268	3575	13.3
		*** SUB-TOTAL *	**	7760	4.72	.0	26.5	670	7493	11.2
	** GRAND TOTAL **			7760	4.72	.0	26.5	670	7493	11.2

TEXAS LoanSTAR Program - ECRM Simplified Calculation Ver 2.0

10/21/93 Consolid	ated ECRM Detail - FORT SAM HOUSTON P	age	1
82242222822228822228822		####!	125E
C1-001 Replace High E	fficiency Motor - GENERAL		(G)
Cost Source: means cos	t data		
Description: Install h	igh efficiency motors.		
A) 3.0 HP	Motor Nameplate Horsepower		
B) .75	Estimated Load Factor		
C) 1500 Hours	Summer Operating Hours 10 Hrs/day x 150 Days/yr		
D) 1000 Hours	Winter Operating Hours 10 Hrs/day x 100 Days/yr		
E) .8100	Efficiency of Old Motor (Nameplate/Table 9)		
F)8800	Efficiency of New Motor (Manufacturer/Table 9)		
G) \$0360 /KWH	Cost per KWH - Summer		
H) \$0360 /KWH	Cost per KWH - Winter		
I) \$ 7.50 /KW	Cost per KW - Summer		
J) \$ <u>6.25</u> /KW	Cost per KW - Winter		
K) \$ <u>298</u>	Installed Cost of New Motor		
L)16 KW/mo	Motor KW Reduction		
M) <u>400</u> KWH/year			
N) <u>1.92</u> KW/year			
0) \$ <u>28</u> /year	Annual Cost Savings		
P) <u>10.6</u> years	Simple Payback		

TEXAS LoanSTAR Program - ECRM Simplified Calculation Ver 2.0

10/21/93 Consolida	ated ECRM Detail - FORT SAM HOUSTON Pa	age	2
************************			==
C1-002 Replace High Ef	fficiency Motor - GENERAL	((G)
Cost Source: means cost	: data		
Description: Install hi	gh efficiency motors.		
A)5.0 HP	Motor Nameplate Horsepower		
B) .75	Estimated Load Factor		
C) 1500 Hours	Summer Operating Hours 10 Hrs/day x 150 Days/yr		
D) 1000 Hours	Winter Operating Hours 10 Hrs/day x 100 Days/yr		
E) .8300	Efficiency of Old Motor (Nameplate/Table 9)		
F) .8800	Efficiency of New Motor (Manufacturer/Table 9)		
G) \$0360 /KWH	Cost per KWH - Summer		
H) \$0360 /KWH	Cost per KWH - Winter	:	
I) \$ <u>7.50</u> /KW	Cost per KW - Summer		
J) \$ <u>6.25</u> /KW	Cost per KW - Winter		
K) \$ <u>325</u>	Installed Cost of New Motor		
L) <u>.19</u> KW/mo	Motor KW Reduction		
M) <u>475</u> KWH/year	Motor KWH Savings		
N) <u>2.28</u> KW/year			
0) \$ <u>33</u> /year	Annual Cost Savings		
P) <u>9.8</u> years	Simple Payback		

TEXAS LoanSTAR Program - ECRM Simplified Calculation Ver 2.0

10/21/93 Consolida	ated ECRM Detail - FORT SAM HOUSTON Pag	ge 3

C1-003 Replace High E1	ficiency Motor - GENERAL	(G)
Cost Source: means cost	data	
Description: Install hi	gh efficiency motors.	
A) 10.0 HP	Motor Nameplate Horsepower	
B) <u>.75</u>	Estimated Load Factor	
C) <u>1500</u> Hours	Summer Operating Hours 10 Hrs/day x 150 Days/yr	
D) 1000 Hours	Winter Operating Hours 10 Hrs/day x 100 Days/yr	
E)8550	Efficiency of Old Motor (Nameplate/Table 9)	
F) <u>.9000</u>	Efficiency of New Motor (Manufacturer/Table 9)	
G) \$ <u>.0360</u> /KWH	Cost per KWH - Summer	
H) \$ <u>.0360</u> /KWH	Cost per KWH - Winter	;
I) \$ <u>7.50</u> /KW	Cost per KW - Summer	
J) \$ <u>6.25</u> /KW	Cost per KW - Winter	
K) \$520	Installed Cost of New Motor	
L)33 KW/mo	Motor KW Reduction	
M) 825 KWH/year	•	
N) <u>3.96</u> KW/year		
0) \$ <u>57</u> /year		
P) <u>9.1</u> years	Simple Payback	

Page 4

Consolidated ECRM Detail - FORT SAM HOUSTON

10/21/93

=======================================		:===
C1-004 Replace High	Efficiency Motor - GENERAL	(G)
Cost Source: means co	st data	
Description: Install	high efficiency motors.	
A) <u>25.0</u> HP	Motor Nameplate Horsepower	
B) <u>.75</u>	Estimated Load Factor	
C) 1500 Hours	Summer Operating Hours 10 Hrs/day x 150 Days/yr	
D) 0 Hours	Winter Operating Hours 10 Hrs/day x 0 Days/yr	
E)8850	Efficiency of Old Motor (Nameplate/Table 9)	
F) <u>.9300</u>	Efficiency of New Motor (Manufacturer/Table 9)	
G) \$ <u>.0360</u> /KWH	Cost per KWH - Summer	
H) \$ <u>.0360</u> /KWH	Cost per KWH - Winter	
1) \$ <u>7.50</u> /KW	Cost per KW - Summer	
J) \$ <u>6.25</u> /KW	Cost per KW - Winter	
K) \$ <u>1000</u>	Installed Cost of New Motor	
L) KW/mo	Motor KW Reduction	
M) <u>1140</u> KWH/year		
N) <u>9.12</u> KW/year	Motor KW Savings	
0) \$ <u>104</u> /year	Annual Cost Savings	
P) <u>9.6</u> years	Simple Payback	

10/21/93 Consolida	ated ECRM Detail - FORT SAM HOUSTON	Page	5
=======================================	.======================================	====	====
C1-005 Replace High Ef	fficiency Motor - GENERAL		(G)
Cost Source: means cost	: data		
Description: Install hi	gh efficiency motors.		
A)50.0 HP	Motor Nameplate Horsepower		
B) <u>.75</u>	Estimated Load Factor		
C) <u>1500</u> Hours	Summer Operating Hours 10 Hrs/day x 150 Days/y	Γ	
D) 0 Hours	Winter Operating Hours 10 Hrs/day x 0 Days/y	r	
E)9000	Efficiency of Old Motor (Nameplate/Table 9)		
F) <u>.9400</u>	Efficiency of New Motor (Manufacturer/Table 9)		
G) \$ <u>.0360</u> /KWH	Cost per KWH - Summer		
H) \$ <u>.0360</u> /KWH	Cost per KWH - Winter		
I) \$ <u>7.50</u> /KW	Cost per KW - Summer		
J) \$ <u>6.25</u> /KW	Cost per KW - Winter		
K) \$ <u>1775</u>	Installed Cost of New Motor		
L)1.32 KW/mo	Motor KW Reduction		
M) <u>1980</u> KWH/year	Motor KWH Savings		
N) <u>15.84</u> KW/year	Motor KW Savings		
0) \$ <u>180</u> /year	Annual Cost Savings		
P) <u>9.9</u> years	Simple Payback		

10/21/93 Consolid	dated ECRM Detail - FORT SAM HOUSTON	Page	6
		====	====
C1-006 Replace High E	Efficiency Motor - GENERAL		(G)
Cost Source: means cos	t data		
Description: Install h	igh efficiency motors.		
A) 100.0 HP	Motor Nameplate Horsepower		
B)	Estimated Load Factor		
C) <u>1500</u> Hours	Summer Operating Hours 10 Hrs/day x 150 Days/y	r	
D)O Hours	Winter Operating Hours 10 Hrs/day x 0 Days/y	r	
E)9100	Efficiency of Old Motor (Nameplate/Table 9)		
F) <u>.9400</u>	Efficiency of New Motor (Manufacturer/Table 9)		
G) \$0360 /KWH	Cost per KWH - Summer		
H) \$0360 /KWH	Cost per KWH - Winter		:
I) \$ 7.50 /KW	Cost per KW - Summer		
J) \$ 6.25 /KW	Cost per KW - Winter		
K) \$ 3575	Installed Cost of New Motor		
L) <u>1.96</u> KW/mo	Motor KW Reduction		
M) <u>2940</u> KWH/year			
N) <u>23.52</u> KW/year			
0) \$ <u>268</u> /year			
P) <u>13.3</u> years	Simple Payback		

	ELECTRIC MOTOR DATA										
	Hiç Efficie		Stand Efficie		Heat Gain from Motors (BTUH)						
Нр	Full Load Efficiency	kW	Full Load Efficiency	kW	Motor and Driven Equip. in Airstream	Motor Out and Driven Equip. In Airstream	Motor in and Driven Equip. Out of Airstream				
1/20			35	.11	360	130	24				
1/12			35	.18	580	200	38				
1/8		<u> </u>	35	.27	900	320	59				
1/6			35	.36	1160	400	76				
1/4			54	.35	1180	640	54				
1/3			56	.44	1500	840	66				
1/2			60	.62	2120	1270	85				
3/4			72	.78	2650	1900	74				
1	84	.90	76	1.0	3390	2550	85				
1 1/2	84	1.33	78	1.45	4960	3820	114				
2	84	1.78	79	1.89	6440	5090	135				
3	88	2.57	81	2.76	9430	7640	179				
5	88	4.19	83	4.55	15500	12700	279				
7 1/2	90	6.22	84	6.66	22700	19100	364				
10	90	8.29	85	8.78	29900	24500	449				
15	91	12.43	87	13.01	44400	38200	621				
20	91	16.58	88	17.15	58500	50900	761				
25	93	20.49	88	21.19	72300	63600	868				
30	93	24.59	89	25.15	85700	76350	944				
40	93	32.43	89	33.53	114000	102000	1260				
50	94	40.54	90	41.91	143000	127000	1570				
60	94	48.65	90	50.29	172000	153000	1890				
75	94	60.82	91	62.17	212000	191000	2120				
100	94	81.09	91	82.89	283000	255000	2830				
125	94	101.36	91	103.61	353000	318000	3530				
150	94	120.32	91	122.97	420000	382000	3780				
200	94		91	163.96	559000	509000	5030				
250	94		91	204.95	699000	636000	6290				

VII. REDUCE/ENHANCE LIGHTING

A. Photocells for Lighting

- Not recommended for the following reasons:
 - 1. Very little exterior lighting.
 - 2. No lights were observed on during daylight hours.
 - 3. Most buildings already have photocells installed.

B. Timers for Lighting

- Not recommended for the following reasons:
 - 1. Personnel doing a good job of keeping lights off in unoccupied areas.
 - 2. Cost to install timers cannot be justified with potential savings.

E. Lower Light Fixtures

- Not recommended for the following reasons:
 - 1. All fixtures currently either surface mounted or lay-in with 9'10' ceilings.
 - 2. Result would not be aesthetically acceptable.
 - 3. Cost to lower fixtures cannot be justified by potential savings.
- F. Improve Reflection with Light Colored Ceiling and Walls.
 - Not recommended for the following reasons:
 - 1. Most reflectances are fairly high.
 - 2. Only candidate is Building 2841 bar area which has a special black ceiling installed for atmosphere.

VIII. IMPROVE LIGHTING CONTROLS

- A. Install Occupancy Sensors
 - 1. Only potential for savings is large dining halls.
 - 2. One sensor can cover 1,200 square feet.
 - 3. One sensor can control a maximum of 10 fixtures with the typical fixture layout.
 - 4. Estimated savings is 1.5 hours per day of burn time.

SAVINGS

Energy Savings =
$$\frac{10 \, Fixtures \, x \, 112 \, watts / Fixture \, x \, 1.5 \, Hr / Day \, x \, 250 \, Day / Yr}{1000 \, watts / KW}$$

Implementation Cost

Simple Payback

Simple Payback =
$$\frac{$299.00}{$15.12}$$
 = 19.8 Years

Based on the high payback this ECO is not recommended.

PROJECT NAME: FORT SAM HOUSTO	N EEAP				PROJECT NO	: 9110991	12F			
PROJECT LOCATION: SAN ANTONIO,					ESTIMATOR: S.P. CLARK					
SUBMITTAL:	35.0%				DATE:		27-Oct-93			
ECO NO/ BUILDING: VIII. A. / GEN				-	CHECKED BY	: DJY				
TASK DESCRIPTION	QUAN	VIITY		1	ABOR		MATERI	ALS	TOTAL	
	NO/UN	_	MH UN		UN PRICE	COST	UN PRICE	COST	COST	
	110,511					0.00		0.00		
						0.00		0.00		
ENSOR	!	EA	i		46.00 45.00	46.00 45.00	80.00 28.00	80.00 28.00		
OWER PACK ELAY		EA EA			45.00 17.4	17.40	28.00 21.35	21.35		
ELAT IRE	20				0.33	6.60	0.22	4.40		
		-				0.00		0.00		
		l				0.00		0.00		
						0.00		0.00		
						0.00		0.00 0.00		
		l				0.00		0.00		
						0.00		0.00		
						0.00		0.00		
						0.00		0.00		
						0.00 0.00		0.00 0.00		
						0.00		0.00		
						0.00		0.00		
			!			0.00		0.00		
			i I			0.00	•	0.00		
						0.00		0.00		
						0.00 0.00		0.00 0.00		
	·					0.00	l	0.00		
						0.00		0.00		
						0.00		0.00		
						0.00		0.00		
						0.00		0.00		
						0.00		0.00		
						0.00		0.00		
		•				0.00		0.00		
						0.00		0.00		
					ı	0.00	ĺ	0.00		
						0.00		0.00 0.00		
				j		0.00		0.00		
						0.00		0.00		
						0.00		0.00		
				i	İ	0.00	I	0.00		
				l		0.00	į	0.00		
				I		0.00		0.00		
					ĺ	0.00	ŀ	0.00		
						0.00	į	0.00		
				Į		0.00	į	0.00		
				l	ĺ	0.00	1	0.00		
						0.00	ľ	0.00 0.00		
				l	Ī	0.00	Į	0.00		
				ı	l	0.00	j	0.00		
				l	İ	0.00	- 1	0.00		
				1	ĺ	0.00]	0.00		
						0.00	j	0.00		
			**			0.00	i	0.00		
				1		0.00		0.00		
					-	U.UU.				

TOTAL

OVERHEAD & PROFIT

10.00%

\$25

\$299

The Benefits of Lighting Control

Lighting consumes about 40% of the electricity in a typical commercial building. Reducing this consumption will have an impact on the cost of running a building and on the environment.

The major source of wasted lighting energy is lights left on in unoccupied areas – a very common practice. Lighting control is needed to stop this waste.

Dark areas represent the times when offices are typically unoccupied – turning lights off in unoccupied areas saves energy and money.

Methods of Lighting Control

Some methods of lighting control, such as timeclocks and computerized controls, work by turning lights on in the morning and off after the custodians make their rounds in the evening.

However, these systems are inflexible. Varying work schedules often prompt overriding

of the controls or schedules in such a way as to eliminate large energy savings. Also, they do not turn lights off in vacant spaces during business hours.

Occupancy Sensor Advantages

The method of lighting control that has been proven to provide the greatest energy savings, flexibility, and convenience is occupancy sensors. These devices turn lighting on when a person enters a controlled area and off after the area is vacated.

Energy savings are greater with occupancy sensors because during business hours, lighting will only be on when an area is occupied. As people go to meetings or to lunch, or whenever an area is vacated, the lighting for the space will turn off.

Today, occupancy sensors are being used to control lighting and HVAC in all building applications.

Hours shown represent hours of lighting use saved with occupancy sensors and depend on energy waste patterns. Savings are based on \$0.08 Kwh rate.

Offices, conference rooms, restrooms, open office areas, warehouses, classrooms – almost every space within a building – can use occupancy sensors and save energy and money.

Perfecting Lighting Control

Choosing occupancy sensors is the first step in achieving lighting control success. Next comes the choice of the correct sensors that utilize the proper technologies and needed features. Each technology functions best in certain applications so combinations of sensors are needed to control lighting for an entire building.

The Watt Stopper manufactures the most comprehensive line of occupancy sensors using Passive Infrared and Ultrasonic technologies and our own innovative Dual Technology. In addition, our sensors are available with features and options that increase energy savings and user convenience. These include built-in light level sensing, bi-level lighting control, isolated relays for HVAC and EMS interface, user choice of coverage pattern, digital time-delay and sensitivity controls, and many others.

Furthermore, our engineers pay close attention to the market's changing needs and to all comments and suggestions thereby spending countless hours making improvements and developing new products. The Watt Stopego is striving toward our goal of perfecting lighting control – lighting control that is reliable and convenient and is the simplest to install, adjust and to maintain.

CI-200 360° Passive Infrared Occupancy Sensor

\$ 80 tas parkle pack

The CI-200 is a full-featured, PIR occupancy sensor which provides 360° coverage. The sensor has an extremely low profile appearance and protrudes less than .4 inches from the ceiling.

The CI-200 controls lighting through a Watt Stopper power pack and low voltage wiring. It turns lighting on when a person enters the controlled area and off when the area is vacated. It contains a built-in light level sensor which keeps lighting off when ambient light levels are adequate. The CI-200 also contains an isolated relay which allows the sensor to interface with HVAC or EMS systems. User-adjustable controls for unit sensitivity and time delay settings are made by a DIP switch located under the front housing.

CI-200 applications include open or partitioned office spaces, conference rooms, class-rooms, and warehouses. Also, areas with high ceilings or with two-level lighting can be controlled with this sensor.

Specifications

- Advanced PIR technology
- Integrated light level sensor 2.5 to 430 fc
- Dual-element pyroelectric sensor
- Single-pole, double-throw isolated relay
- Digital time-delay DIP switch 15 sec to 30 min
- LED indicator
- Adjustable unit sensitivity with DIP switch
- Up to 3 units per power pack
- 3.3" diameter x 2.2" total depth (85mm x 56mm)
- Extends approx .36" from ceiling
- UL & CSA listed; 5 Year Warranty

CI-200 Wiring Diagram & Controls

Coverage Pattern

Coverage Side View

**Coverage shown represents half-step, walking motion and can reach a maximum of 1200 sq ft. Coverage for typical, desk-top level of activity is 500 sq ft.

Mounting

1

Order Information

CATALOG #	VOLTAGE	CURRENT	COVERAGE**
CI-200	24 VDC	26 n 561	1200 sq ft
CI-2R7P	24 VDC halfwave	26 mA	1200 sq ft

All units are white, CI-200 uses Watt Stopper power packs

)

Watt Stopper Power and Slave Packs

Watt Stopper power packs provide 24VDC operating voltage to all Watt Stopper 24VDC sensors and are capable of switching up to 20 Amps of electrical load. Slave packs are identical to power packs but have no transformer power supply.

Power packs consist of a transformer and high-current relay combined in one small, powerful package. The transformer has a primary high voltage input and a secondary 24VDC, 100mA output. The secondary voltage provides operating power to Watt Stopper sensors. When the occupancy sensors detect motion, they electrically close an internal circuit which sends 24VDC back to the power or slave packs which control the lighting.

Power packs are available for 120, 220 to 240, 277 and 347 volt systems. They are housed in ABS, UL rated 94V-0 plastic enclosures. A 1/2 inch "snap-in" nipple on the power pack mounts to standard electrical enclosures with 1/2 inch knockouts.

Specifications

- Self-contained transformer relay system
- Easy snap-in installation
- Secondary voltage: 24 VDC
- Secondary output: 100mA
- Switches up to 20 Amps of electrical load
- Enclosure: UL rated 94V-0 plastic enclosure
- 1.75" x 2.75" x 1.5" (45mm x 70mm x 38mm)
- UL and CSA listed
- 5 year warranty

Ceiling Sensor Wiring Diagram

Low Voltage System Control

3-way Low Voltage Switching

Order Information

CATALOG #	DESC	VOLTAGE	BALLAST	INCAN	GNRL	MOTOR	OUTPUT VDC
A120-E	Power Pack	120	20	13	13	1 HP	24 VDC; 100ma
A277-E	Power Pack	277	20	-	13	1 HP	24 VDC; 100ma
A230-D	Power Pack	220-240	20	10	13	1 HP	24 VDC; 100ma
A347-D	Power Pack	347	15	-	13	1 HP	24 VDC; 100ma
S-120/277	Slave Pack	120/277	20	13	13	1 HP	-
/347-E		/347 58 5	2				

For plenum wire, add -PLENUM to Catalog #.

VIII. IMPROVE LIGHTING CONTROLS

- B. Separate Switches to Control Lighting
 - The existing switches are grouped logically and there is no justification for changing the existing control arrangements.

X. REFRIGERATION EQUIPMENT

- A. Improve Efficiency of Refrigeration Equipment
 - 1. All existing refrigeration equipment contain reciprocating compressors. There have been no dramatic improvements in efficiency in the last 50 years.
 - 2. Most compressors are R-11 or R-502, recommendation is to phase out due to CFC's, in lieu of energy savings.

nal line sizes and configuration should be carefully selected to smooth gas pulses, reflect waves, and eliminate conditions of resonance.

Chapter 52 in the 1987 HVAC Volume has further information.

Shock

In designing for shock, three types of dynamic loads are recognized:

- 1. Suddenly applied loads of short duration
- 2. Suddenly applied loads of long duration
- 3. Sustained periodic varying loads

Since the forces are primarily inertial, the basic approach is to maintain low equipment mass and make the strength of the carrying structure as great as possible. The degree to which this practice is followed is a function of the amount of shock loading.

Commercial Units. The major shock loading to these units occurs during shipment or when they operate on commercial carriers. Train service provides a severe test because of low forcing frequencies and high shock load. Shock loads as high as 10 g have been recorded; 5 g can be expected.

Trucking service results in higher forcing frequencies, but shock loads can be equal to, or greater than, those for rail transportation.

Aircraft service forcing frequencies generally fall in the range of 20 to 60 Hz with shocks to 3 g.

Military Units. The requirements are given in detail in specifications that exceed anything expected of commercial units. In severe applications, deformation of the supporting members and shock isolators may be tolerated, provided that the unit performs its function.

Basically, the compressor must be made of components rigid enough to avoid misalignment or deformation during shock loading. Therefore, structures with low natural frequencies should be avoided.

Testing

Testing for ratings must be in accordance with the ASHRAE Standard 23-78, Methods of Testing for Rating Positive Displacement Refrigerant Compressors. Compressor tests are of two types: the first determines capacity, efficiency, sound level, motor temperatures, etc.; the second determines the probable life of the machine. Life testing should be conducted under conditions simulating those under which the compressor must operate; it generally goes on for years. A minimum set of conditions should include maximum discharge, maximum suction pressure operation, a medium condition with wet return gas, minimum suction, and a high discharge pressure condition with maximum suction gas temperature. In addition, most manufacturers run field trials and special tests (excessive floodback, flooded startups, starts and stops, and reversals) to prove new designs.

Where good correlation with actual field experience and longterm life tests can be shown, accelerated life tests can shorten the required test time.

Standard Rating Conditions

To establish a uniform industry-wide basis for rating compressors, the Air-Conditioning and Refrigeration Institute (ARI) has established standard rating conditions.

PART II: RECIPROCATING COMPRESSORS

Most reciprocating compressors are single-acting, using pistons that are driven directly through a pin and connecting rod from the crankshaft. Double-acting compressors that use piston rods, crossheads, stuffing boxes, and oil injection are not used extensively and, therefore, are not covered here.

Single-Stage compressors can achieve saturated suction temperatures to -50°F (-46°C) at 95°F (35°C) saturated condensing temperature by using R-502. Chapters 3 and 4 of the 1986 REFRIGERATION Volume have additional information on other halocarbon and ammonia systems.

Booster compressors are typically used for low-temperature applications with R-22 or ammonia. Minus 85 °F (-65 °C) saturated suction can be achieved by using R-22, and -65 °F (-54 °C) saturated suction is possible by using ammonia.

The booster raises the refrigerant pressure to the level where further compression can be achieved with a high-stage compressor without exceeding the compression-ratio limitations of the respective machines.

Since superheat is generated as a result of compression in the booster, intercooling is normally required to reduce the refrigerant stream temperature to the practical level required at the inlet to the high-stage unit. Intercooling methods include controlled liquid injection into the intermediate stream, gas bubbling through a liquid reservoir, and use of a liquid-to-gas heat exchanger where no fluid mixing occurs.

Integral Two-Stage compressors achieve low temperature (-80°F [-62°C], using R-22 or ammonia) within the frame of a single compressor. The cylinders within the compressor are divided into respective groups so that the combination of volumetric flow and pressure ratios are balanced to achieve booster and high-stage performance effectively. Refrigerant connections between the high-pressure suction and low-pressure discharge stages allow an interstage gas cooling system to be connected to remove superheat between stages. This interconnection is similar to the methods used for individual high-stage and booster compressors.

Capacity reduction is typically achieved by cylinder unloading, as in the case of single-stage compressors. Special consideration must be given to maintaining the correct relationship between high-pressure and low-pressure stages.

The most widely used compressor is the halocarbon compressor, which is manufactured in three types of design: (1) open, (2) semihermetic or bolted hermetic, and (3) the welded-shell hermetic.

Ammonia compressors are manufactured only in the open design because of the incompatibility of the refrigerant and hermetic motor materials.

Open-Type compressors are those in which the shaft extends through a seal in the crankcase for an external drive.

Hermetic compressors are those in which the motor and compressor are contained within the same pressure vessel, with the motor shaft integral with the compressor crankshaft and the motor in contact with the refrigerant.

A semihermetic compressor (bolted, accessible, or serviceable) is a hermetic compressor of bolted construction amenable to field repair.

In welded-shell hermetic compressors (sealed) the motorcompressor is mounted inside a steel shell, which, in turn is sealed by welding. (Combinations of design features used are shown in Table 1. Typical performance values for halocarbon compressors are given in Table 2.)

Table 1 Typical Design Features of Reciprocating Compressors

liem		Halocarbo Compresso		Am- monia Com- pressor		liem		falocar Compre		Am- monia Com- presso
	Open	Semi- hermetic	Welded Hermetic	Open			Open h		Welded Hermetic	Open
1. Number of cylinders—				.,	11.	Capacity control,				
one to:	16	12	6	16	l	if provided				
2. Power range	0.167 hp	0.5 to 150 hp	0.167 to 25 hp	10 hp	l	-manual or automatic				
		37 to 112 kW)	(0.12 to 18.7 kW)		l	a. Suction valve lifting	x	x	x	x
	up			up		b. Bypass—cylinder				
3. Cylinder arrangement					1	heads to suction	x	x	x	x
 Vertical, V or W, radial 	х	x			1	c. Closing inlet	x	x		x
b. Radial, horizontal			x		İ	d. Adjustable clearance	x	x		x
opposed					١	e. Variable speed	x	x	x	x
c. Horizontal, vertical V				x	12.	Materials				
or W						Motor insulations and				
4. Drive						rubber materials				
a. Hermetic compressors,						must be compatible				
induction electric motor		x	x			with refrigerant and				
b. Open compressors—					ŀ	oil mixtures. Other-				
direct drive, V belt						wise, no restrictions	,	•	x x	
chain, gear, by electric						No copper or brass				x
motor or engine	x			x	13.	Oil return				
5. Lubrication—splash or						a. Crankcase separated				
force feed, flood	x	x	x	x		from suction mani-				
6. Suction and discharge valves						folds, oil return check				
—ring plate or ring or						valves, equalizers,		-		
reed flexing	x	x	x	x	l	spinners, foam breakers	x	x		x
7. Suction and discharge valve					İ	b. Crankcase common				
arrangement					١	with suction manifold			х х	
 a. Suction and discharge 						Synchronous speeds	250	1500	1500	250
valves in head	x	x	x	x		(50 and 60 Hz)	10	to	10	lo
b. Uniflow—suction valves					١		3600	3600	3600	3600
in top of piston, suction						Pistons				
gas entering through						a. Aluminum or cast iron	x	x	x	x
cylinder walls. Discharge						b. Ringless	x	x	X	x
valves in head	x			x		c. Compression and oil				
8. Cylinder cooling						control rings	x	x	x	x
 Suction gas cooled 	x	x	x	x		Connecting rod				
 b. Water jacket cylinder 						Split rod with removable				
wall, head, or cylinder						cap or solid eccentric				
wall and head	x			X		strap	x	x	x	x
c. Air cooled	x	x	x	X		Mounting				
d. Refrigerant cooled heads	x			x		Internal spring mount			X X	
9. Cylinder head						External spring mount			x x	
a. Spring loaded	x	x	X	X		Rigidly mounted on base	x	x		x
b. Bolted head	x	x	x	X						
O. Bearings										
a. sleeve, anti-friction	x	x	x	X						
b. tapered roller	x			X	1					

Table 2 Typical Performance Values

			Operating Condit	ions and Refrigerants		
(19 kW) Hermet Medium, 5 to 25 hp Open (4 to 19 kW)		Evap. Temp40°C (-40°C) Cond. Temp. 105°F (40.5°C) Suction Gas 65°F (18.3°C) Subcooling 0°F (0°C) R-12, 500, 502	Exap. Temp. 6°F (- 17.8°C) Cond. Temp. 110°F (43.3°C) Suction Gas 68°F (18.3°C) Subcoding 6°F (6°C) R-12, 500, 502	Evap. Temp. 40°F (4.4°C) Cond. Temp. 105°F (40.5°C) Suction (ias 55°F (12.8°C) Subcoding 0°F (8°C) R-12, 500, 502, 22	Evap. Temp. 45 °F (7.2 °C) Cond. Temp. 130 °F (54.4 °C) Suction Gas 65 °F (18.3 °C) Subcooling 0 °F (0 °C) R-12. 500, 502, 22	
Large, over 25 hp (19 kW)	Open Hermetic	0.21 tons/hp (0.99 W/W) 3.15 Btu/h per W	0.40 tons/hp (1.89 W/W) 6.00 Btu/h per W	0.91 tons/hp (4.29 W/W) 13.12 Btu/h per W	0.74 tons/hp (3.49 W/W) 9.90 Btu/h per W	
		(0.92 W/W)	(1.76 W/W)	(3.85 W/W)	(2.90 W/W)	
	Open	0.19 tons/hp (0.90 W/W)	0.37 tons/hp (1.74 W/W)	0.83 ton/hp (3.91 W/W)	0.65 tons/hp (3.06 W/W)	
	Hermetic	2.89 Btu/h per W (0.85 W/W)	5.60 Btu/h per W (1.64 W/W)	12.04 Btu/h per W (3.53 W/W)	9.15 Btu/h per W (2.68 W/W)	
Small, under 5 hp	Open	_	_	-	_	
4 kW)	Hermetic	-	3.80 Btu/h per W (1.11 W/W)	10.14 Btu/h per W (2.97 W/W)	7.76 Btu/h per W (2.27 W/W)	

Fig. 1 Capacity and Power-Input Curves for a Typical Hermetic Reciprocating Compressor

PRESENTATION OF PERFORMANCE DATA

Figure 1 presents a typical set of capacity and power curves for a four-cylinder semihermetic compressor, 2.38-in. (60.3-mm) bore, 1.75-in. (44.4-mm) stroke, 1720 rpm, operating with Refrigerant 22. Figure 2 shows the heat rejection curves for the same compressor. Compressor curves should be labeled with the following information:

- 1. Compressor identification
- Degrees subcooling or statement that data have been corrected to zero degrees subcooling
- 3. Compressor speed
- 4. Type refrigerant
- 5. Suction gas superheat
- 6. Compressor ambient
- 7. External cooling requirements (if any)
- 8. Maximum power or maximum operating conditions
- Minimum operating conditions at fully loaded and fully unloaded operation

Fig. 2 Heat-Rejection Curves for a Typical Hermetic Reciprocating Compressor

MOTOR PERFORMANCE

The motor efficiency is usually the result of a compromise between cost and size. Generally, the larger a motor is for a given rating, the more efficient it can be made. Accepted efficiencies range from approximately 80% for a 3 hp (2.25 kW) motor to 92% for a 100 hp (75 kW) motor. Uneven loading has a marked effect on motor efficiency. It is important that cylinders be spaced evenly. Also, the more cylinders there are, the smaller the impulses become. Greater moments of inertia of moving parts and higher speeds reduce the impulse effect. Small and evenly spaced impulses also help reduce noise and vibration.

Since many compressors start against load, it is desirable to estimate starting torque requirements. The following equation is for a single cylinder compressor. It neglects friction, the additional torque required to force discharge gas out of the cylinder, and the fact that the tangential force at the crankpin is not always equal to the normal force at the piston. This equation also assumes considerable gas leakage at the discharge valves but little or no leakage past the piston rings or suction valves. It yields a conservative estimate.

$$T_{s} = \frac{(P_{2} - P_{1})As}{2N_{2}/N_{1}} \tag{4}$$

where

 T_s = starting torque, lb in. (N • m)

 P_2 = discharge pressure, psi (Pa), absolute or gauge

P₁ = suction pressure, psi (Pa), absolute or gauge

 $A = \text{area of cylinder, in.}^2 (m^2)$

s = stroke of compressor, in. (m)

 N_2 = motor speed, rpm

 $N_1 = \text{compressor speed, rpm}$

Equation 4 shows that when pressures in the system are balanced or almost equal $(P_2 = P_1)$, torque requirements are considerably reduced. Thus, a pressure balancing device on an expansion valve or a capillary tube that equalizes pressures at shutdown allows the compressor to be started without excessive effort. For multicylinder compressors, an analysis must be made of both the number of cylinders that might be on a compression stroke and the position of the rods at start. Since the force needed to push the piston to the top dead center is a function of how far the rod is away from the cylinder centerline, the worst possible angles these might assume need to be graphically determined by torque-effort diagrams. The torques for some arrangements are shown below:

No. Cylinders	Arrangement of Cranks	Angle between Cylinders	Approx. Torque from Equation 4
1 2 2 3 3 4 6	Single Single 180° apart Single 120° apart 180°, 2 rods/crank 180°, 3 rods/crank	90° 0° or 180° 60° 120° 90° 60°	T _s 1.025T _s T _s 1.225T _s T _s 1.025T _s 1.23T _s

Pull-up torque is as important as starting torque. It is required to accelerate the compressor from rest, overcoming both inertia and gas forces to bring itself to operating speed. The greatest pull-up torque requirement comes when starting a compressor at a pressure ratio of about 2:1.

FEATURES

Crankcases

The crankcase, or in a welded hermetic compressor, the cylinder block, is usually of cast iron. Aluminum is also used, particularly in small open and welded hermetic compressors. Open and semihermetic crankcases enclose the running gear, oil sump and, in the latter case, the hermetic motor. Access openings with removable covers are provided for assembly and service purposes. Welded hermetic cylinder blocks are often just skeletons, consisting of the cylinders, the main bearings, and either a barrel into which the hermetic motor stator is inserted or a surface to which the stator can be bolted.

The cylinders can be integral with the crankcase or cylinder block, in which case a material that provides a good sealing surface and resists wear must be provided. In aluminum crankcases, cast-in liners of iron or steel are usual. In large compressors, premachined cylinder sleeves inserted in the crankcase are common. With halocarbon refrigerants, excessive cylinder wear or scoring is not much of a problem and the choice of integral cylinders or inserted sleeves is often based on manufacturing considerations.

Crankshafts

Crankshafts are made of either forged steel with hardened bearing surfaces finished to 8 microinches (0.203 μ m) or iron castings. Grade 25 to 40 (25,000 to 40,000 psi or 170 to 275 MPa) tensile gray iron can be used where the lower modulus of elasticity can be tolerated. Nodular iron shafts approach the stiffness, strength, and ductility of steel and should be polished in both directions of rotation to 16 microinches (0.406 μ m) maximum for best results. Crankshafts often include counterweights and should be dynamically and/or statically balanced.

While a safe maximum stress is important in shaft design, it is equally important to prevent excessive deflection that can edge-load bearings to failure. In hermetics, deflection can permit motor air gap to become eccentric, which affects starting, reduces efficiency, produces noise, and further increases bearing edge-loading.

Generally, the harder the bearing material used, the harder the shaft. With bronze bearings, a journal hardness of 350 Brinell is usual, while unhardened shafts at 200 Brinell in babbitt bearings are typical. Other combinations of materials and hardnesses have been used successfully.

Main Bearings

It is possible to overhang both the crank and drive means with the bearings between; however, usual practice is to place the cylinders between the main bearings and, in a hermetic, to overhang the motor. Main bearings are made of steel-backed babbitt, steel-backed or solid bronze, or aluminum. In an aluminum crankcase, the bearings are usually integral. By automotive standards, unit loadings are low; however, the oilrefrigerant mixture frequently provides only marginal lubrication and 8000 h/yr operation in commercial refrigeration service is quite possible. For conventional shaft diameters and speeds, 600 psi (4.1 MPa), main bearing loading based on projected area is not unusual. Running clearances average 0.001 in./in. (1 mm/m) of diameter with steel-backed babbitt bearings and a steel or iron shaft. Bearing oil grooves placed in the unloaded area are usual. Feeding oil to the bearing is only one requirement, another is the venting of evolved refrigerant gas and oil escape from the bearing to carry away heat.

In most compressors, crankshaft thrust surfaces (with or without thrust washers) must be provided in addition to main bearings. Thrust washers may be steel-backed babbitt, bronze, aluminum, hardened steel, or polymer and are usually stationary. Oil grooves are often included in the thrust face.

Connecting Rods and Eccentric Straps

Connecting rods have the large end split and a bolted cap for assembly. Unsplit eccentric straps require the crankshaft to be passed through the big bore at assembly. Rods or straps are of steel, aluminum, bronze, nodular iron, or gray iron. Steel or iron rods often require inserts of such bearing material as steel-backed babbit or bronze, while aluminum and bronze rods can bear directly on the crankpin and piston pin. Refrigerant compressor service limits unit loadings to 3000 psi (20 MPa) based on projected area with a bronze bushing in the rod small bore and a hardened steel piston pin. Aluminum rod loadings at the piston pin of 2000 psi (14 MPa) have been used. Large end unit loadings are usually under 1000 psi (7 MPa).

The Scotch yoke-type of piston-rod assembly has also been used. In small compressors, it has been fabricated by hydrogen

brazing steel components. Machined aluminum components have been used in large hermetic designs.

Piston, Piston Ring, and Piston Pin

Pistons are usually made of cast iron or aluminum. Cast-iron pistons with a running clearance of 0.0004 in./in. (400 μ m/m) of diameter in the cylinder will seal adequately without piston rings. With aluminum pistons, rings are required because a running clearance in the cylinder of 0.002 in./in. (2 mm/m) or more of diameter may be necessary, as determined by tests at extreme conditions. A second or third compression ring may add to power consumption with little increase in capacity; however, it may help oil control, particularly if drained. Oil scraping rings with vented grooves may also be used. Cylinder finishes are usually obtained by honing, and a 12 to 40 μ in. (0.3 to 1.0 μ m) range will give good ring seating. An effective oil scraper can often be obtained with a sharp corner on the piston skirt.

The minimum piston length is determined by the side thrust and is also a function of running clearance. Where clearance is large, pistons should be longer to prevent slap. An aluminum piston (with ring) having a length equal to 0.75 times the diameter, with a running clearance of 0.002 in./in. (2 mm/m) of diameter, and a rod length to crank arm ratio of 4.5, has been used successfully.

Piston pins are steel, case-hardened to Rockwell C 50 to 60 and ground to a 8 μ in. (0.2 μ m) finish or better. Pins can be restrained against rotation in either the piston bosses or the rod small end, be free in both, or be full-floating, which is usually the case with aluminum pistons and rods. Retaining rings prevent the pin from moving endwise and abrading the cylinder wall.

There is no well-defined limit to piston speed; average velocities of 1200 fpm (6 m/s), determined by multiplying twice the stroke in feet by the rpm (in metres by the r/s), have been used successfully.

Suction and Discharge Valves

The most important components in the reciprocating compressor are the suction and discharge valves. Successful designs provide long life and low pressure losses. The life of a properly made and correctly applied valve is determined by the motion and stress it undergoes in performing its function. Excessive pressure losses across the valve result from high gas velocities, poor mechanical action, or both.

For design purposes, gas velocity is defined as being equal to the bore area multiplied by the average piston speed and divided by the valve area. Permissible gas velocities through the restricted areas of the valve are left to the discretion of the designer and depend on the level of volumetric efficiency and performance desired. In general, designs with velocities up to 12,000 fpm (60 m/s) with ammonia and up to 9000 fpm (46 m/s) with Refrigerants 12 and 22 have been successful.

An ideal valve system would meet the following requirements:

- 1. Large flow areas with shortest possible path
- 2. Straight gas-flow path, no directional changes
- 3. Low valve mass combined with low lift for quick action
- 4. Symmetry of design with minimum pressure imbalance
- 5. No increase in clearance volume
- 6. Durability
- 7. Low cost
- 8. Tight sealing at ports
- 9. Minimum valve flutter

Most valves in use today fall in one of the following groups:

- A free-floating reed valve, with backing to limit movement, seats against a flat surface with circular or elongated ports. It is simple, and stresses can be readily determined, but it is limited to relatively small ports; therefore, multiples are often used. Totally backed with a curved stop, it is a valve that can stand considerable abuse.
- 2. A reed, clamped at one end, with full backstop support or a stop at the tip to limit movement, has a more complex motion than a free-floating reed; the resulting stresses are far greater than those calculated from the curvature of the stop. Considerable care must be taken in the design to ensure adequate life.
- 3. A ring valve usually has a spring return. A free-floating ring is seldom used because of its high-leakage losses. Improved performance is obtained by using spring return, in the form of coil springs or flexing backup springs, with each valve. Ring-type valves are particularly adaptable to compressors using cylinder sleeves.
- 4. A valve formed as a ring has part of the valve structure clamped. Generally, full rings are used with one or more sets of slots arranged in circles. By clamping the center, alignment is ensured and a force is obtained that closes the valve. To limit stresses, the valve proportions, valve stops, and supports are designed to control and limit valve motion.

Lubrication

Lubrication systems range from a simple splash system to the elaborate forced-feed systems with filters, vents, and equalizers. The type of lubrication required depends largely on bearing loads and application.

For low to medium bearing loads and factory assembled systems where cleanliness can be controlled, the splash system gives excellent service. Bearing clearances must be larger, however; otherwise, oil does not enter the bearing readily. Thus, the splashing effect of the dippers in the oil and the freer bearings cause the compressor to operate somewhat noisily. Furthermore, the splash at high speed encourages frothing and oil pumping; this is no problem in package-type equipment, but may be in remote systems where gas lines are long.

A flooded system includes disks, screws, grooves, oil-ring gears, or other devices that lift the oil to the shaft or bearing level. These devices flood the bearing and are not much better than splash systems, except that the oil is not agitated as violently, so that quieter operation results. Since little or no pressure is developed by this method, it is not considered forced-feed.

In forced-feed lubrication, a pump-gear, vane, or plunger develops pressure, which forces oil into the bearing. Smaller bearing clearances can be used because adequate pressure feeds oil in sufficient quantity for proper bearing cooling. As a result, the compressor may be quieter in operation.

Gear pumps are used to a large extent. Spur gears are simple but tend to promote flashing of the refrigerant dissolved in the oil because of the sudden opening of the tooth volume as two teeth disengage. This disadvantage is not apparent in internal-type eccentric gear or vane pumps where a gradual opening of the suction volume takes place. The eccentric gear pump, the vane pump, or the piston pump therefore give better performance than simple gear pumps when the pump is not submerged in the oil.

Oil pumps must be made with minimum clearances to pump a mixture of gas and oil. The discharge of the pump should have

ENERGY CONSERVATION ANALYSIS

ENERGY CONSERVATION OPPORTUNITIES (ECO's) **BUILDING NO. 44** ECO NO: IV. F. ECO NAME: Install make-up air supply for kitchen areas. **SUMMARY DATA (DEPENDENT):** 1.011 KWH/yr KWH Savings: Demand Savings: 0_____ KW/yr 10.81 MCF/yr Gas Savings: **\$** 73 Cost Savings: /yr \$ 3,914 Implementation Cost: 53.4 Simple Payback: Years Savings to Investment: .33 Ratio (SIR): **ECO DESCRIPTION:** Currently, the kitchen hoods in use do not contain supply air make-up. This ECO analyzes the addition of make-up air supply for the kitchen hoods. **COST SAVINGS CALCULATIONS:** (Refer to following spreadsheet) **IMPLEMENTATION COSTS:** (Refer to following Cost Estimate) LIFE CYCLE COST ANALYSIS:

(Refer to following ECIP Life Cycle Cost Summary)

MODIFIED BIN METHOD CALCULATIONS

REFER TO	ASHRAE	1993 FUND	AMENTALS
----------	--------	-----------	----------

BLDG. N	0.			44	368	407	1350	1387	1462	2399	2652
TIME OF				6:00A	6:00A	7A-10P	4:00A	10:00A	9A-8:30P	5:00A	
OPERAT	ION			1:30P	2:00P	7A-2P	8:30P	9:00P	9A-10:30P	7:30P	7:00P
DAYS/W	EEK			5	5	4,3	6	5	5,2	7	4
DB	MID	МС	HUMID	HRS	HRS	HRS	HRS	HRS	HRS	HRS	HRS
RANGE	PT.	WB	RATIO	/YR.	/YR.	/YR.	/YR.	/YR.	/YR.	/YR.	MR.
100/104	102	74	0.0116	6.4	7.0	14.6	14.5	10.1	15.8	16.1	7.1
95/99	97	74	0.0126	59.4	64.8	139.8	139.4	97.9	152.8	153.4	67.7
90/94	92	74	0.0139	135.0	147.3	309.0	307.1	213.4	334.4	339.8	149.6
85/89	87	73	0.0143	173.8	189.6	418.5	418.7	296.3	461.3	458.6	202.9
80/84	82	72	0.0146	213.2	231.4	530.6	557.5	382.4	589.7	595.6	253.5
				Ì							
75/79	77	70	0.0142	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70/74	72	66	0.0123	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
65/69	67	61	0.0101	196.1	208.4	418.7	527.9	283.1	433.6	535.7	183.2
60/64	62	56	0.0082	161.8	172.0	346.9	437.0	235.1	359.9	443.3	151.9
55/59	57	51	0.0066	132.3	140.5	288.0	363.6	196.9	300.7	367.8	126.2
50/54	52	47	0.0057	118.4	125.4	256.0	332.4	174.6	265.8	333.0	110.6
45/49	47	43	0.0050	92.0	96.8	190.1	260.7	127.1	192.8	257.6	79.5
40/44	42	38	0.0039	72.4	75.9	138.6	198.4	88.8	135.1	195.0	56.1
35/39	37	34	0.0034	44.4	46.1	75.5	120.8	44.9	68.1	116.1	28.1
30/34	32	29	0.0028	23.0	23.8	34.9	60.3	18.9	28.8	57.4	12.0
	1			ĺ		į					
25/29	27	25	0.0023	8.3	8.4	9.6	21.3	3.8	5.8	19.4	2.4
20/24	22	20	0.0016	2.4	2.5	3.6	6.1	2.0	3.0	5.9	1.3
15/19	17	15	0.0013	0.4	0.4	0.3	0.9	0.0	0.0	0.8	0.0
10/14	12	10	0.0009	0.2	0.2	0.1	0.4	0.0	0.0	0.4	0.0

ASSUMPTIONS

- 1) SUMMER ROOM DESIGN: 78FDB, 50%RH
- 2) WINTER ROOM DESIGN: 70FDB, 40%RH
- 3) HUMIDITY RATIOS FOR THE SPACE BASED ON SUMMER & WINTER ROOM DESIGN TEMP.

EQUIPMENT:

SMALL AIR COOLED CHILLER (3-25 TONS): 8.57 BTU/WATT-H LARGE AIR COOLED CHILLER (25-100 TONS): 8.63 BTU/WATT-H SMALL WATER COOLED CHILLER (25-100 TONS): 11.11 BTU/WATT-H LARGE WATER COOLED CHILLER (>100 TONS): 12.12 BTU/WATT-H

SYSTEM TYPES FOR ABOVE BUILDINGS

BUILDING	SYSTEM TYPE
NUMBER	
44	SMALL AIR COOLED
368	SMALL AIR COOLED
407	LARGE AIR COOLED
1350	LARGE WATER COOLED
1387	SMALL AIR COOLED
1462	LARGE AIR COOLED
2399	LARGE WATER COOLED
2652	LARGE AIR COOLED

	TOTAL		14877	410545	18055	04968	1174265	2020E	97249	54350	56435	605982	43695	69322	86600	15980	38158	6216	3390	3694	4750	431
	Ť	WEAR			. ~	_	213.2 11					92.0		4.4	_			4.0	0.2	Ha	.×	¥
		BTUH AF	_	6069			5507 21			3435 13			6895 7			14043				TOTAL COOLING KBTU FOR THE YEAR	KBTU FOR THE YEAR	COOLING KWH
	_	. —												•	•			_		15 FOR	U FOR	
9	SENS LATEN	HE	J	2497		4266				416				3 2914						NG KB	VG KBT	H-H
NOW 30% OF THE 720 CFM IS EXHAUSTED	SENS	BTCH	5573	4412	3251	2090	929	697	1854	3018	4180	5341	650	7663	8824	9985	11146	12307	13468	COOL	TOTAL HEATING	EQUIPMENT 8.57 BTU/WATT-HR
A IS EXP	3	HR RM	0.0102	0.0102	0.0102	0.0102	0.0102	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062	TOTAL	TOTAL	8.57
720 CFI	5	RM HR OA		0.0126	78 0.0139	78 0.0143	78 0.0146	70 0.0101 0.0062	0.0082	0.0066	0.0057	0.0050	0.0039	0.0034	0.0027	0.0023		0.0013	0.0009 0.0062	•	•	PMENT
OF THE	4				92 78	7 78	2 78	7 70	2 70	02 2	52 70	2	42 70	7 70	2 20	02 2	2	7 70	2 70			
W 30% (BUILDING 44	CFM DB	215 102			215 8	215 8	215 6	215 6	215 5		215 4	-	215 9	215 9	215 2	215 2	215 1	215 1			
Š Š Š		Ü																				
	TOTAL	E	150285	1374847	3211383	3700357	3932422	3122147	2134018	1521543	1863409	2029335	2155629	1571684	59776	38397	27783	20817	11352	12369	2006	1443
				_		-								•	_							I
		1 MEAR		3 59.4	135.0	3 173.8	213.2	196.1	_			7 92.0			••			9.0	0	1E YEAR	IE YEAR	AN UN
	TOTAL	BTUH	23541	23138	2378	21286	18444	15924	13190	11503	15739	22067	29788	35418	41746	47028	53006	58288	63570	KBTU FOR THE	FOR TH	COOLING
ACE:	ATENT	BTCH	4879	8364	12894	14288	15333	13591	6970	1394	1742	4182	8015	9757	12197	13591	15682	17076	18469	3 KBTU	KBTU	HH
ASSUME 80% FROM THE CONDITIONED SPACE	SENS. LATEN	BTCH	18662	14774	10886	8669	3110	2333	6221	10109	13997	17885	21773	25661	29549	33437	37325	41213	45101	TOTAL COOLING	TOTAL HEATING KBTU FOR THE	EQUIPMENT 8.57 BTU/WATT-HR
SONDITI X100FP		HR RM	0.0102	0.0102	0.0102	0.0102	0.0102	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062	OTAL	OTAL	8.57 BT
M THE C		RMHROA	78 0.0116	0.0126	0.0139	0.0143	0.0146	0.0101 0.0062	0.0082	0.0066	0.0057							0.0013	0.0009		-	MENT
% FRO	_				78		78	2										2	2			
ST FE BOY	BUILDING 44	8	102	- 97	8	87	82	67	_	_	_					27	22	17	5			
→ ≥?	۵	CFI	720	720	720	220	22	720	720	720	720	720	20	720	720	720	720	720	22			
ASS		O	-	-	-		•	·		•	•	•	•		-		-		•		_	91

C	ARTER & BURGESS	COST ESTIMATING	ANALYSIS
PROJECT NAME: FORT SA	M HOUSTON EEAP	PROJECT NO: 9110	9912F
PROJECT LOCATION: SAN	ANTONIO, TEXAS	ESTIMATOR: C.M. J	OHNSON
SUBMITTAL:	35.0%	DATE:	27-Oct-93
ECO NO/BUILDING:IV. F./E	3LDG 0044 HOOD 1	CHECKED BY: SPC	

ECO NO/BUILDING:IV. F./BLDG 0044 I					CHECKED BY	: SPC			
TASK DESCRIPTION	QUAN	ITITY		1	ABOR		MATERI	ALS	TOTAL
	NO/UN	דואט	MH UN	HRS	UN PRICE	COST	UN PRICE	COST	COST
						0.00		0.00	
	١.			Ī	44 50	0.00	950.00	0.00	
I.5'X 6' HOOD COMB. SUPPLY EXHAUST UNIT	6	LF MCFM			44.50 140.00		775.00	2100.00 697.50	236 82
COMB. SUPPLY EXHAUST UNIT	V.3				140.00	0.00	775.00	0.00	02
						0.00		0.00	
						0.00		0.00	
						0.00 0.00		0.00 0.00	
						0.00		0.00	
						0.00		0.00	
						0.00		0.00	
						0.00		0.00	
						0.00		0.00 0.00	
						0.00		0.00	
						0.00		0.00	
						0.00		0.00	
						0.00		0.00	
					ļ j	0.00 0.00	:	0.00 0.00	
						0.00		0.00	
						0.00		0.00	
		ı				0.00		0.00	
		J	1	l		0.00		0.00	
		l		1		0.00		0.00 0 .00	
,		1				0.00		0.00	
		i		ļ		0.00		0.00	4
		ı		1	I	0.00	1	0.00	9
				ľ		0.00		0.00	,
	l			1		0.00	i	0.00	
	ļ		- 1	ı	1	0.00	1	0.00	
i	i				:	0.00		0.00	
						0.00		0.00	
			1		i	0.00		0.00	,
				ı	ŀ	0.00		0.00	
	ı		I		l l	0.00	ŀ	0.00	(
	1	- 1	Ī		[0.00		0.00	(
			į		i	0.00	l	0.00	
	j	1		Ī		0.00		0.00	
					1	0.00	ſ	0.00	
	1	i	ĺ			0.00	1	0.00	(
	- 1				Í	0.00	į	0.00	
		ļ			1	0.00	į	0.00	(
	I	1	ł	1		0.00	1	0.00	(
	ļ			1	1	0.00	ļ	0.00	Č
	l				ļ	0.00	ŀ	0.00	(
	ŀ	1		ļ		0.00 0.00	ļ	0.00	(
		- 1		1	1	0.00		0.00	
		1			1	0.00	İ	0.00	
		1			1	0.00	1	0.00	
		1		1	1	0.00		0.00	
UBTOTAL	!					0.00 \$393		0.00 \$2,798	20.404
						U		27 70B	E 2 101
VERHEAD & PROFIT	10.00%					\$ 033		\$2,780	\$3,191 \$319

LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)

LOCATION:	FO	RT SAM HOUST		_REGION NO.		_PROJECT NO	91109912
PROJECT TITLE:		FORT SAM HO				FISCAL YEAR	
DISCRETE PORTIC						SUPPLY FOR KIT	
ANALYSIS DATE:	NOVEMBER	1, 1993 EC	CONOMIC LIFE	20	PREPARER	C. M. JO	HNSON
1. INVESTMENT C	OSTS:						
							
A. CONSTRUCTIO B. SIOH C. DESIGN COST			\$3,510 \$193 \$211	_ _ _	:		
D. TOTAL COST (1/			\$3,914				
E. SALVAGE VALUE				\$0			
F. PUBLIC UTILITY				\$0			
G. TOTAL INVESTM	TENT (ID-IE	:-117)			\$3,914	 :	
2. ENERGY SAVINDATE OF NISTIR 85		_ ·	DUNT FACTOR	IS: <u>'N</u>	OVEMBER 4,		
SOURCE	\$/MBTU(1)	MBTU/YR(2)	SAVINGS(3)	FACTOR(4)	SAVINGS(5)	U	
SOUNCE	AMD (C(1)	MID I O/ IT(2)	SAVII4GS(S)	FACTOR(4)	374114G3(3)		
A. ELEC	\$10.55	3.45	\$36	14.65	\$533		
B. DIST			\$0	17.70	\$0		
C. RESID			\$0	20.99	\$0		
D. NG	\$3.31	11.15	\$37	20.60	\$760	-	
E. PPG			\$0	13.59	\$0	-	
F. COAL			\$0	16.32	\$0	_	
G. SOLAR			\$0	13.59	\$0		
H. GEOTH			\$0	13.59	\$0		
I. BIOMA			\$0	13.59	\$0		
J. REFUS			\$0	13.59	\$0	•	
K. WIND			\$0	13.59	\$0	-	
L. OTHER			\$0	13.59	\$0		
M. DEMAND SAVIN	GS	440	\$0	13.59	\$0	•	
N. TOTAL		14.6	\$73		\$1,293		
3. NON ENERGY S A. ANNUAL RECURI 1. DISCOUNT FACT		OR COST (-):	-				

LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)

B. NON RECURRING SAVINGS (+) OR COST(-)

	ITEM	SAVINGS(+)	YEAR OF	DISCOUNT	DISCOUNTED SAV-
		COST(-)(1)	OCCUR.(2)	FACTOR(3)	INGS(+)COST(-)(4)
a.	N/A	\$0	1	0.96	\$0
b.	N/A	\$0	<u>2</u> 3	0.92	\$0
C.	N/A	\$0	3	0.89	\$0
d.	N/A	\$0	4	0.85	\$0
e.	N/A	\$0	5 6 7	0.82	\$0
f.	N/A	\$0	6	0.79	\$0
g.	N/A	\$0		0.76	\$0
h.	N/A	\$0	8	0.73	\$0
i.	N/A	\$0	9	0.7	\$0
j.	N/A	\$0	10	0.68	\$0
k.	N/A	\$0	11	0.65	\$0
l.	N/A	\$0	12	0.62	\$0
m.	N/A	\$0	13	0.6	\$0
n.	N/A	\$0	14	0.58	\$0
Ο.	N/A	\$0	15	0.56	\$0
p.	TOTAL	\$0		-	\$0
C.	TOTAL NON	ENERGY DISCOL	JNTED SAVIN	GS (3A2 + 3Bp4	\$0
4. S	MPLE PAYBA	ACK 1G/(2N3+3A	+(3Bp1/ECO	NOMIC LIFE)):	53.4 YEARS
5. T(OTAL NET DI	SCOUNTED SAV	NGS (2N5+3	©):	\$1,293
6. S/	AVINGS TO II	VESTMENT RAT	70 (SIR) 5/1G	<u>:</u>	0.33
7. A[DJUSTED INT	ERNAL RATE OF	RETURN (AII	RR):	-1.6%

ENERGY CONSERVATION ANALYSIS

ENERGY CONSERVATION OPPORTUNITIES (ECO's)

BUILDING NO. 368

ECO NO:

IV.D.2

ECO NAME: Replace RTU with higher efficiency unit.

SUMMARY DATA (DEPENDENT):

KWH Savings:

5.092

KWH/yr

Demand Savings:

52.0

KW/yr

Gas Savings:

0.

MCF/yr

Cost Savings:

\$ 378

/yr

Implementation Cost:

\$ 13,400

Simple Payback:

35.4

Years

ECO DESCRIPTION:

Currently, an inefficient RTU is in use. This ECO analyzes replacing the existing RTU with a higher efficiency unit.

COST SAVINGS CALCULATIONS:

(Refer to following SimpCalc Calculations)

IMPLEMENTATION COSTS:

(Refer to following Cost Estimate)

LIFE CYCLE COST ANALYSIS:

(Refer to following ECIP Life Cycle Cost Summary)

11/01/93	SimpCalc 2.0 SUMMARY (by	y FORM)	- FORT SA	M HOUSTON			Pa	age 1
Form Facility	ECRM Desc. Page		KV	MCF/yr	mmBtu/Yr	\$/Yr	imp.Cost	_
C2-01 BLDG 0368 CAFETERIA	Low Eff Cooling 11	5092	4.33	.0	17.4	378	13400	35.4
	*** SUB-TOTAL ***	5092	4.33	.0	17.4	378	13400	35.4
** GRAND TOTAL **		5092	4.33	.0	17.4	378	13400	35.4

10/21/93 Consolida	ated ECRM Detail - FORT SAM HOUSTON	Page	11
**********************	***************************************	*****	
C2-001 Replace Low Eff	ficiency Heating/Cooling Units - BLDG 0368 CAFETERIA		(G)
Cost Source: means cost	: data		
Description: Replace RI	U with high efficiency RTU.		
A) <u>15.0</u> Tons	Cooling Tonnage of Unit to be Replaced		
B) 400 MBTUH	Capacity of Existing Gas Furnace		
C) <u>1176</u> Hrs/yr	Cooling Equivalent Full Load Oper Hours (Table 15)		
D) <u>26</u> Hrs/yr	Heating Equivalent Full Load Oper Hours (Table 15)		
E) <u>6 Mos/yr</u>	Number of Cooling Months		
F) 7.60 BTUH/Watt	EER of Existing Unit		
G) <u>9.30</u> BTUH/Watt	EER of Replacement Unit		
H) <u>.7500</u>	Heating Efficiency - Existing Unit		:
I) <u>.7500</u>	Heating Efficiency - Replacement Unit		
J) \$ <u>.0360</u> /KWH	Cost per KWH - Summer		
K) \$ 7.500 /KW/mo.	Cost per KW - Summer		
L) \$ <u>3.41</u> /MCF	Cost per MCF		
M) \$ <u>13400</u>	Installed Cost of Replacement Units		
N) <u>4.33</u> KW	A.C. KW Reduction		
0) <u>5092</u> KWH/year	A.C. Annual Energy Savings		
P) <u>26</u> KWmo/year	A.C. Annual KW Savings		
<pre>Q) \$378 /year</pre>	Annual Cooling Savings		
R) <u> </u>	Heating Consumption Reduction		
S)O MCF/year	Annual Heating Savings		
T) \$0 /year	Heating Cost Savings		
U) \$ <u>378</u> /year	Annual Cost Savings		
V) <u>35.4</u> years	Simple Payback		

ENERGY CONSERVATION ANALYSIS

ENERGY CONSERVATION OPPORTUNITIES (ECO's)

BUILD	ING	NO.	368
-------	-----	-----	-----

ECO NO: IV.F (Hood 1)

ECO NAME: Install make-up air supply for kitchen areas

SUMMARY DATA (DEPENDENT):

KWH Savings: 2.291 KWH/yr

Demand Savings: 0 KW/yr

Gas Savings: 102.0 MCF/yr

Implementation Cost: \$ 14.795

Simple Payback: 34.4 Years

Savings to Investment: _____57___

Ratio (SIR):

ECO DESCRIPTION:

Currently, the kitchen hoods in use do not contain supply air make-up. This ECO analyzes the addition of make-up air supply for the kitchen hoods.

COST SAVINGS CALCULATIONS:

(Refer to following spreadsheet)

IMPLEMENTATION COSTS:

(Refer to following Cost Estimate)

LIFE CYCLE COST ANALYSIS:

(Refer to following ECIP Life Cycle Cost Summary)

MODIFIED BIN METHOD CALCULATIONS

REFER TO ASHRAE 1993 FUNDAMENTALS

						O ASTITIA					
BLDG. N				44	368	407	1350	1387	1462	2399	2652
TIME OF				6:00A	6:00A	7A-10P	4:00A	10:00A	9A-8:30P	5:00A	
OPERAT	ION			1:30P	2:00P	7A-2P	8:30P	9:00P	9A-10:30P	7:30P	7:00P
DAYS/W	EEK			5	5	4,3	6	5	5,2	7	4
DB	MID	MC	HUMID	HRS	HRS	HRS	HRS	HRS	HRS	HRS	HRS
RANGE	PT.	WB	RATIO	/YR.	/YR.	/YR.	/YR.	/YR.	/YR.	/YR.	/YR.
100/104	102	74	0.0116	6.4	7.0	14.6	14.5	10.1	15.8	16.1	7.1
95/99	97	74	0.0126	59.4	64.8	139.8	139.4	97.9	152.8	153.4	67.7
90/94	92	74	0.0139	135.0	147.3	309.0	307.1	213.4	334.4	339.8	149.6
85/89	87	73	0.0143	173.8	189.6	418.5	418.7	296.3	461.3	458.6	202.9
80/84	82	72	0.0146	213.2	231.4	530.6	557.5	382.4	589.7	595.6	253.5
75/79	77	70	0.0142	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70/74	72	66	0.0123	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
65/69	67	61	0.0101	196.1	208.4	418.7	527.9	: 283.1	433.6	535.7	183.2
60/64	62	56	0.0082	161.8	172.0	346.9	437.0	235.1	359.9	443.3	151.9
55/59	57	51	0.0066	132.3	140.5	288.0	363.6	196.9	300.7	367.8	126.2
	İ	•								ł	
50/54	52	47	0.0057	118.4	125.4	256.0	332.4	174.6	265.8	333.0	110.6
45/49	47	43	0.0050	92.0	96.8	190.1	260.7	127.1	192.8	257.6	79.5
40/44	42	38	0.0039	72.4	75.9	138.6	198.4	88.8	135.1	195.0	56.1
35/39	37	34	0.0034	44.4	46.1	75.5	120.8	44.9	68.1	116.1	28.1
30/34	32	29	0.0028	23.0	23.8	34.9	60.3	18.9	28.8	57.4	12.0
	ļ	Ì	ĺ					ļ	ļ		1
25/29	27	25	0.0023	8.3	8.4	9.6	21.3	3.8	5.8	19.4	2.4
20/24	22	20	0.0016	2.4	2.5	3.6	6.1	2.0	3.0	5.9	1.3
15/19	17	15	0.0013	0.4	0.4	0.3	0.9	0.0	0.0	0.8	0.0
10/14	12	10	0.0009	0.2	0.2	0.1	0.4	0.0	0.0	0.4	0.0

ASSUMPTIONS

- 1) SUMMER ROOM DESIGN: 78FDB, 50%RH
- 2) WINTER ROOM DESIGN: 70FDB, 40%RH
- 3) HUMIDITY RATIOS FOR THE SPACE BASED ON SUMMER & WINTER ROOM DESIGN TEMP.

EQUIPMENT:

SMALL AIR COOLED CHILLER (3-25 TONS): 8.57 BTU/WATT-H LARGE AIR COOLED CHILLER (25-100 TONS): 8.63 BTU/WATT-H SMALL WATER COOLED CHILLER (25-100 TONS): 11.11 BTU/WATT-H LARGE WATER COOLED CHILLER (>100 TONS): 12.12 BTU/WATT-H

SYSTEM TYPES FOR ABOVE BUILDINGS

BUILDING	SYSTEM TYPE
NUMBER	
44	SMALL AIR COOLED
368	SMALL AIR COOLED
407	LARGE AIR COOLED
1350	LARGE WATER COOLED
1387	SMALL AIR COOLED
1462	LARGE AIR COOLED
2399	LARGE WATER COOLED
2652	LARGE AIR COOLED

ASSUME 30% FROM CONDITIONED SPACE IN SUMMER AND 100% IN WINTER EXHAUST CFM=4970	NED SPACE IN SUMN	AER AND	NI %001	VINTER
BUILDING 368	SENS, LATENT	TOTAL	HRS	TOTAL

į	ξ	TOTAL			102407	93/396	2189579	2522071	2667723	2073087	1617874	11001	1010558	1234130	1334030	1412926	1019856	199619	246685	82823	13011	7005	67.0	0450	2472	;
	36.	E	NEAD O	{	2.6	64.8	147.3	189.6	231.4	208.4	1720	4 6 5	10.0	T 9	9 4 0 0	9.6	. o	S .	đ.	2,52	4.0	0	YEAD		KWH	• • • • • •
Section 14 December 14 Decembe		TOTAL		27.7	2 5	14461	14863	13304	11527	8050	8244	7180	08a7	19702	10101	2001	26130	- ROOM	78587	33129	36430	39731	FOR THE		COOLING KWH	
T 11377	ליובול,	ATENT	E			2220	8059	8930	9583	8494	4356	871	- 6 0	2814				200	40	9801	10672	11543	KRTI		•	
20% MAKEUP WITHIN HOOD 30% EBOM MITCHEN THEN 30% OF 1500 CH	2			11884	2 6	#CZ#	680	4374	1944	1458	3888	6318	R748	11178	1808	900	976		20080	23328	25758	28188	TOTAL COOLING	FOTAL HEATING KRT.	EQUIPMENT 8.57 BTU/WATT-HR	
יין אינייין ער	3		HR RM	00100	0.00	0.0102	0.0102	0.0102	0.0102	0.0062	0.0062	0.0062	0.0062	0.0062	0000	2000	2000	2000	0.0002	0.0062	0.0062	0.0062	TOTAL C	TOTAL	8.57 BT	
THIN HO	4970		RM HR OA	78 0 0118	0.010		0.0139	0.0143	_	0.0101		0.0068	0.0057	0.0050	0.000		0000		0.0053		0.0013	0.0009	•	•	JIPMENT	
M di	EXHAUST CFM=4970	898				: i	2 78	7 78	2 78	7 70	2 70	7 70	2 70	47 70	•	•			. ;	2	7 70	2			ğ	
AAKE	UST	SINGS	M DB	٠) (D	8	0	9	9	8	Q	_	_	_	9 9	9 6	9 9	2	0	0				
70% F	EXHA	BUILDING 368	CFIN	450	450	} ;	8	8	450	450	450	45	45	45	45	8.4	450	45	7	đ.	450	45				
ASSUME 30% FROM CONDITIONED SPACE IN SUMMER AND 100% IN WINTER	i	TOTAL	B 12	341556	3124652	100000	960967	8409902	8892411	22905818	15657417	11158637	13619327	14742454	15605001	11263738	6843814	2724494	044720	87/18	143697	78359	28067	115657	9275	
100%			Z		64.8		0.74	189.6	231.4	208.4	172.0	140.5	125.4	86.8	75.9	46.1	23.8	8.4	0		4.0		: YEAR		G KWH	
JER AND		TOTAL	BICH	49044	48204	40640	4904K	44346	38424	109917	91050	79401	108644	152321	205619	244484	288161	324621	365801	80000	402351	438811	FOR THE	OR THE	COOLING	
IN SUM		SENS. LATENT		10164	17424	00000	70007	29766	31944	93814	48110	9622	12027	28866	55326	67353	84192	93814	108247	100541	11/869	127490	KBTU	KBTUF	-HR (
D SPACE								14580	6480	16103	42941	69779	96617	123455	150293	177131	203969	230807	257645	20172	204463	311321	FOTAL COOLING KBTU FOR THE 	TOTAL HEATING KBTU FOR THE Y	EQUIPMENT 8.57 BTU/WATT-HR	
DITIONE			RMHROA HRRM	0.0102	0.0102	0 0400	0.0102	0.0102	0.0146 0.0102	70 0.0101 0.0062	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062	0.0023 0.0062	0.0017 0.0062	1900		0.0009 0.0062	TOTAL O	TOTAL !	8.57 BT	
S	0		¥0 €	0116	0126	04.20	5 5	0.0143	0146	0101	0082	9900	0057	0020	0.0039	0.0034	0.0027	0023	0017	. 6	2 9	9		•	AENT	
FROM	EXHAUST CFM=4970		Ĭ W	78 0.	78 0.	78.0		9	78 0.	70 0.	70 0.	70 0.	70 0.	70 0.								5			TAIN.	
30%	CFM			102	26	6			82	29	62	22		47	42	37	32	27	22	֖ׅׅ֭֭֚֝֝֝֜֜֜֝֜֝֜֜֜֜֝֜֜֜֜֝֜֜֜֜֜֜֜֜֜֜֜֝֜֜֜֜֜֜֝֡֡֡֜֝֜֜֜֜֝֡֡֡֜֜֝	· - (72			Щ	
111	_	_		•	1500												4970	4970		27.0						

	CARTER	& BU	RGE	SS C)ST E	STIMATI	NG A	NALYSIS						
PROJECT NAME: FOR				PROJECT NO: 91109912F										
PROJECT LOCATION:						ESTIMATOR: C.M. JOHNSON								
SUBMITTAL:	<u>OAIL AILLE OILIO,</u>	35.0%				DATE: 27-Oct-93								
ECO NO/BUILDING:IV.	F./BLDG 0368 i					CHECKED BY: SPC								
TASK DESCR		QUAN	TITY		1	LABOR MATERIALS TOTAL								
TAUR BEGON		NO/UN		MH UN	7	UN PRICE	COST	UN PRICE	COST	COST				
		NO/OR	Oldino	MITION	11110	0.000	0.00	**************************************	0.00					
				ŀ			0.00		0.00	'				
7'X 15' HOOD COMB. SUPPLY EXHAL	ICTLINIT	15	LF MCFM		Ī	44.50 119.00	667.50 595.00		7500.00 3300.00	816 389				
JUMB. SUFFEI EXITAL	731 OIIII	ľ				110.00	0.00	000.00	0.00	000				
			i i		i		0.00		0.00					
					Į i		0.00		0.00 0.00					
							0.00		0.00					
							0.00		0.00	(
							0.00 0.00		0.00 0.00					
							0.00		0.00	(
]					0.00		0.00	ĺ				
							0.00 0.00		0.00	(
							0.00		0.00	•				
							0.00		0.00	(
							0.00 0.00		0.00 0.00					
							0.00	:	0.00					
							0.00		0.00					
							0.00		0.00					
		i					0.00		0.00	+				
			ı				0.00	i	0.00	(
						1	0.00		0.00					
	j						0.00		0.00	(
					l		0.00	ı	0.00	(
]	0.00		0.00	(
						1	0.00		0.00					
						1	0.00		0.00	(
			ı				0.00		0.00	(
							0.00		0.00	(
			1			i	0.00		0.00	(
					I		0.00		0.00	(
					I]	0.00		0.00	(
		ĺ			I	i	0.00		0.00	(
			l		i	l	0.00	ļ	0.00	(
			- 1		i	ı	0.00	į	0.00					
	J	ĺ	l		ı	l	0.00		0.00					
	i	i	j	ĺ	ł	ŀ	0.00		0.00					
	ı	J	I	ĺ	J		0.00	j	0.00	•				
		ŀ	}	1	ļ	1	0.00	l	0.00	Ì				
		Į	1	1	j	1	0.00		0.00					
	l	į		ŀ	1	I	0.00		0.00					
	1	1			ı	[0.00		0.00	Č				
	į	l	1		1	i	0.00		0.00	C				
	į	I			1		0.00		0.00	(
	i		l	l			0.00		0.00	0				
IDTOTAL				l			0.00		0.00	0				
JBTOTAL VERHEAD & PROFIT	***************************************	10.00%		*****			\$1,263		10,800	\$12,063				
LITTLAU & FAUFII	WANTED TO THE REAL PROPERTY OF THE PERSON OF	10.00%								\$1,206				

LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)

LOCATION:	FO:	RT SAM HOUST	TON	REGION NO	. 3	PROJECT NO.	91109912F
PROJECT TITLE:		FORT SAM HO	USTON DININ	G FACILITIES	EEAP	FISCAL YEAR	1994
DISCRETE PORTI	ON NAME:	BUILDING 0368	3 - ECO IV. F.)	- INSTALL M	AKE-UP AIR S	SUPPLY FOR KITC	CHEN AREAS
ANALYSIS DATE:	NOVEMBER		CONOMIC LIFÉ		PREPARER	C. M. JOI	
1. INVESTMENT	COSTS:		-		_		
A. CONSTRUCTION B. SIOH C. DESIGN COST D. TOTAL COST (** E. SALVAGE VALUED F. PUBLIC UTILITY	1A+1B+1C) JE OF EXISTIN		\$13,269 \$730 \$796 \$14,795	\$0	: 		
G. TOTAL INVEST				\$ 0	\$14,795	· :	
2. ENERGY SAVI							
DATE OF NISTIR 8	35-3273-X U	SED FOR DISCO	DUNT FACTOR	15: <u>'N</u>	IOVEMBER 4,	1992	
ENERGY SOURCE	COST \$/MBTU(1)	SAVINGS MBTU/YR(2)	ANNUAL \$ SAVINGS(3)	DISCOUNT FACTOR(4)	DISCOUNTEI SAVINGS(5)	D	
A. ELEC	\$10.55	7.82	\$83	14.65	\$1,209		
B. DIST			\$0	17.70	\$0	•	
C. RESID			\$0	20.99	\$0	•	
D. NG	\$3.31	105.19	\$348	20.60	\$7,172	•	
E. PPG			\$0	13.59	\$0	, -	
F. COAL			\$0	16.32	\$0	•	
G. SOLAR			\$0	13.59	\$0	<u>-</u>	
H. GEOTH			\$0	13.59	\$0		
I. BIOMA J. REFUS			\$0	13.59	\$0		
K. WIND			\$0	13.59	\$0	•	
L. OTHER			<u>\$0</u>	13.59	\$0	•	
M. DEMAND SAVIN	100	···	<u>\$0</u>	13.59	\$0		
N. TOTAL	NG 5	112.01	\$0	13.59	\$0	,	
N. TOTAL		113.01	\$431		\$8,381		
3. NON ENERGY			-				
A. ANNUAL RECUP 1. DISCOUNT FAC 2. DISCOUNTED S	TOR (TABLE A	\$0 T (3A X 3A1)		\$0			
			•	Ψυ			

LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)

B. NON RECURRING SAVINGS (+) OR COST(-)

7. ADJUSTED INTERNAL RATE OF RETURN (AIRR):

	ITEM	SAVINGS(+) COST(-)(1)	YEAR OF OCCUR. (2)	DISCOUNT FACTOR(3)	DISCOUNTED SAV- INGS(+)COST(-)(4)
a.	N/A	\$0	1	0.96	\$0
b.	N/A	\$0	2	0.92	\$0
C.	N/A	\$0	2 3 4	0.89	\$0
d.	N/A	\$0		0.85	\$0
e.	N/A	\$0	5	0.82	\$0
f.	N/A	\$0	6	0.79	\$0
g.	N/A	\$0	7	0.76	\$0
ĥ.	N/A	\$0	8	0.73	\$0
i.	N/A	\$0	9	0.7	\$0
j.	N/A	\$0	10	0.68	\$0
k.	N/A	\$0	11	0.65	\$0
I.	N/A	\$0	12	0.62	\$0
m.	N/A	\$0	13	0.6	\$0
n.	N/A	\$0	14	0.58	\$0
Ο.	N/A	\$0	15	0.56	\$0
p.	TOTAL	\$0			\$0
C.	TOTAL NON E	ENERGY DISCO	UNTED SAVIN	IGS (3A2 + 3Bp4	\$0
<u>4. S</u>	IMPLE PAYBA	NCK 1G/(2N3+3A	\+(3Bp1/ECO	NOMIC LIFE)):	34.4 YEARS
5. T	OTAL NET DIS	SCOUNTED SAV	INGS (2N5+3	C):	<u>\$8,381</u>
6. S.	AVINGS TO IN	IVESTMENT RAT	110 (SIR) 5/1G	:	0.57

1.1%

ENERGY CONSERVATION ANALYSIS

ENERGY CONSERVATION OPPORTUNITIES (ECO's)

DT III	TIT	TO	NIC	. 2	~ 0
BUIL	IJИ	UI.	INC	J. DI	Dα

ECO NO: IV.F (Hood 2)

ECO NAME: Install make-up air supply for kitchen areas

SUMMARY DATA (DEPENDENT):

KWH Savings: 1.834 KWH/yr

Demand Savings: _____0 KW/yr

Gas Savings: 18.96 MCF/yr

Cost Savings: \$ 131 /yr

Implementation Cost: \$ 3.528

Simple Payback: 27.0 Years

Ratio (SIR):

ECO DESCRIPTION:

Currently, the kitchen hoods in use do not contain supply air make-up. This ECO analyzes the addition of make-up air supply for the kitchen hoods.

COST SAVINGS CALCULATIONS:

(Refer to following spreadsheet)

IMPLEMENTATION COSTS:

(Refer to following Cost Estimate)

LIFE CYCLE COST ANALYSIS:

(Refer to following ECIP Life Cycle Cost Summary)

MODIFIED BIN METHOD CALCULATIONS

REFER TO ASHRAE 1993 FUNDAMENTALS

BLDG. N	0.			44	368	407	1350	1387	1462	2399	2652
TIME OF				6:00A	6:00A	7A-10P	4:00A	10:00A	9A-8:30P	5:00A	
OPERAT				1:30P	2:00P	7A-2P	8:30P	9:00P	9A-10:30P	1	
DAYS/W	-			5	5	4,3	6	5	5,2	7	4
DB	MID	МС	HUMID	HRS	HRS	HRS	HRS	HRS	HRS	HRS	HRS
RANGE	PT.	WB	RATIO	/YR.	/YR.	/YR.	/YR.	/YR.	/YR.	/YR.	/YR.
100/104	102	74	0.0116	6.4	7.0	14.6	14.5	10.1	15.8	16.1	7.1
95/99	97	74	0.0126	59.4	64.8	139.8	139.4	97.9	152.8	153.4	67.7
90/94	92	74	0.0139	135.0	147.3	309.0	307.1	213.4	334.4	339.8	149.6
85/89	87	73	0.0143	173.8	189.6	418.5	418.7	296.3	461.3	458.6	202.9
80/84	82	72	0.0146	213.2	231.4	530.6	557.5	382.4	589.7	595.6	253.5
75/79	77	70	0.0142	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70/74	72	66	0.0123	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
65/69	67	61	0.0101	196.1	208.4	418.7	527.9	283.1	433.6	535.7	183.2
60/64	62		0.0082	161.8	172.0	346.9	437.0	235.1	359.9	443.3	151.9
55/59	57	51	0.0066	132.3	140.5	288.0	363.6	196.9	300.7	367.8	126.2
			ĺ	Į		ļ					
50/54	52	47	0.0057	118.4	125.4	256.0	332.4	174.6	265.8		110.6
45/49	47	43	0.0050	92.0	96.8	190.1	260.7	127.1	192.8		79.5
40/44	42		0.0039	72.4	75.9	138.6	198.4	88.8	135.1		56.1
35/39	37		0.0034	44.4	46.1	75.5	120.8	44.9		116.1	28.1
30/34	32	29	0.0028	23.0	23.8	34.9	60.3	18.9	28.8	57.4	12.0
						Ì	Ì				
25/29	27		0.0023	8.3	8.4	9.6	21.3	3.8	5.8	19.4	2.4
20/24	22		0.0016	2.4	2.5	3.6	6.1	2.0	3.0	5.9	1.3
15/19	17		0.0013	0.4	0.4	0.3	0.9	0.0	0.0	0.8	0.0
10/14	12	10	0.0009	0.2	0.2	0.1	0.4	0.0	0.0	0.4	0.0

ASSUMPTIONS

- 1) SUMMER ROOM DESIGN: 78FDB, 50%RH
- 2) WINTER ROOM DESIGN: 70FDB, 40%RH
- 3) HUMIDITY RATIOS FOR THE SPACE BASED ON SUMMER & WINTER ROOM DESIGN TEMP.

EQUIPMENT:

SMALL AIR COOLED CHILLER (3-25 TONS): 8.57 BTU/WATT-H LARGE AIR COOLED CHILLER (25-100 TONS): 8.63 BTU/WATT-H SMALL WATER COOLED CHILLER (25-100 TONS): 11.11 BTU/WATT-H LARGE WATER COOLED CHILLER (>100 TONS): 12.12 BTU/WATT-H

SYSTEM TYPES FOR ABOVE BUILDINGS

BUILDING	SYSTEM TYPE
NUMBER	
44	SMALL AIR COOLED
368	SMALL AIR COOLED
407	LARGE AIR COOLED
1350	LARGE WATER COOLED
1387	SMALL AIR COOLED
1462	LARGE AIR COOLED
2399	LARGE WATER COOLED
2652	LARGE AIR COOLED

			TOTAL	E	81974	749917	1751664	2018377	2134179	1850174	4494490	ACA274	DR6511	1067864	1130342	615884	495729	197348	66258	10409	557.8	A736	6376	786
)	1		HRS	MEAR	7.0	64.8	147.9	180.0	231.4	400	1720	140.5	125.4	96.8	75.9	46.1	23.8	8 .4	25.55	4.0		>	YEAR	LING KWH
	Ж							10843	9222	7062	850F	5751	7870	11033	14894	17709	20873	23514	26503	29144	31785	FOR THE	FOR THE YEAR	COOLING
	ED SPAC	_	ATENT	BTCH	2439	4182	6447	7144	7667	6795	3485	697	871	2091	4 00 8	4879	8098	6795	7841	8538	9235	KBTU	KBTU	
	NOTTION	1200CF	SENS. L	BTCH	9331	7387	5443	3499	1555	1166	3110	5054	8669	8942	10886	12830	14774	16718	18662	20606	22550	COOLING	EATING	UWATT
	NOW 30% EXHAUST CFM FROM CONDITIONED SPACE	EXHAUST CFM=4FTx3FTx100FPM=1200CFW		HR RW	0.0102	0.0102	0.0102	0.0102	0.0102	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062	TOTAL C	FOTAL HEATING	EQUIPMENT 8.57 BTU/WATT-HR
	ST CFM	FTX3FTX			0.0116	0.0126	0.0139	0.0143	0.0146	0.0101 0.0062	0.0082	0.0066		0.0050	0.0039	0.0034	0.0027	0.0023	0.0017	0.0013	0.0009 0.0062	•	•	IPMENT
	EXHAU	CFM=4	_		102 78	78	32 78	37 78	82 78	27 70	32 70	57 70	52 70	17 70	12 70	37 70	32 70	27 70	22	17 70	12 70			EQ
	W 30%	IAUST	¥	_	_	360	3 096	360 6	_	360	360	360	360	7 096	360	360	360	360	380	360	360			
	Q i	אַ מ	5	U																				
	ļ		OIAL	E	273245	2499722	5838879	6727922	7113929	5530580	3780463	2694238	3288369	3559546	3767807	2719615	1652430	657825	220860	34695	18920	22454	27925	2620
		-	DY I	MEAR	0.7	64.8	147.3	189.6	231.4	208.4	172.0	140.5	125.4	96.8	75.9	46.1	23.8	4. 0	2.5		0.2			KWH
	SPACE						39634 147.3	35477 189.6	30739 231.4									_		0 .4	0.2			(O
	MIONED SPACE	TONT TOTAL	200	нотв	39235	38563				26539	21984	19171	26232	36778	49646	28030	69576	6/89/	88344	97147 0.4	30782 105950 0.2		U FOR THE	COOLING
	OM CONDITIONED SPACE	TONT TOTAL	MIENI IOIAL	втон втон	8131 39235	13939 38563	39634	35477	30739	26539	21984	19171	2904 26232	6970 36778	13358 49646	16262 59030	20328 69576	22651 /83/9	26136 88344	28459 97147 0.4	30782 105950 0.2		U FOR THE	COOLING
	CFM FROM CONDITIONED SPACE	TONT TOTAL	SENS. LAIENI IOIAL	HERM BIUH BIUH BIUH	0.0102 31104 8131 39235	0.0102 24624 13939 38563	0.0102 18144 21490 39634	0.0102 11664 23813 35477	0.0102 5184 25555 30739	3888 22651 26539	10368 11616 21984	0.0062 16848 2323 19171	0.0062 23328 2904 26232	29808 6970 36778	36288 13358 49646	42768 16262 59030	0.0062 49248 20328 69576	0.0062 55/28 22651 /83/9	0.0002 02208 26136 88344	68688 28459 97147 0.4	75168 30782 105950 0.2		U FOR THE	COOLING
	EXHAUST CFM FROM CONDITIONED SPACE	TONT TOTAL	SENS. LAIENI IOIAL	HERM BIUH BIUH BIUH	0.0102 31104 8131 39235	0.0102 24624 13939 38563	0.0139 0.0102 18144 21490 39634	0.0143 0.0102 11664 23813 35477	0.0146 0.0102 5184 25555 30739	3888 22651 26539	0.0082 0.0062 10368 11616 21984	0.0066 0.0062 16848 2323 19171	0.0057 0.0062 23328 2904 26232	0.0050 0.0062 29808 6970 36778	0.0039 0.0062 36288 13358 49646	0.0034 0.0062 42768 16262 59030	0.0027 0.0062 49248 20328 69576	0.0023 0.0062 55/28 22651 /83/9	0.0017 0.0062 62208 26136 88344	0.0013 0.0062 68688 28459 97147 0.4	0.0009 0.0062 75168 30782 105950 0.2		U FOR THE	COOLING
	100% EXHAUST CFM FROM CONDITIONED SPACE	TONT TOTAL	SENS. LAIENI IOIAL	TO STORY OF THE BILDH BILDH BILDH	76 0.0116 0.0102 31104 8131 39235	0.0102 24624 13939 38563	0.0139 0.0102 18144 21490 39634	0.0143 0.0102 11664 23813 35477	0.0102 5184 25555 30739	22651 26539	0.0082 0.0062 10368 11616 21984	0.0066 0.0062 16848 2323 19171	0.0057 0.0062 23328 2904 26232	0.0050 0.0062 29808 6970 36778	0.0039 0.0062 36288 13358 49646	42768 16262 59030	0.0027 0.0062 49248 20328 69576	0.0062 55/28 22651 /83/9	0.0017 0.0062 62208 26136 88344	0.0013 0.0062 68688 28459 97147 0.4	75168 30782 105950 0.2		U FOR THE	(O
	ASSUME 100% EXHAUST CFM FROM CONDITIONED SPACE	TOTAL	SENS. LAIENI IOIAL	US HIM HH OA HR RIM BIUH BTUH BTUH	102 /8 0.0116 0.0102 31104 8131 39235	97 78 0.0126 0.0102 24624 13939 38563	92 78 0.0139 0.0102 18144 21490 39634	87 78 0.0143 0.0102 11664 23813 35477	78 0.0146 0.0102 5184 25555 30739	67 70 0.0101 0.0062 3888 22651 26539	62 70 0.0082 0.0062 10368 11616 21984	57 70 0.0066 0.0062 16848 2323 19171	52 70 0.0057 0.0062 23328 2904 26232	47 70 0.0050 0.0062 29808 6970 36778	42 70 0.0039 0.0062 36288 13358 49646	37 70 0.0034 0.0062 42768 16262 59030	0.0027 0.0062 49248 20328 69576	27 70 0.0023 0.0002 55728 22651 78379	22 /U U.UU1/ U.UUGZ 622UB 26136 88344	17 70 0.0013 0.0062 68688 28459 97147 0.4	0.0009 0.0062 75168 30782 105950 0.2		U FOR THE	COOLING

CARTER	& BU	RGE	SS CC	ST E	STIMATI	NG A	NALYSIS						
PROJECT NAME: FORT SAM HOUSTO	N EEAP		PROJECT NO	: 911099	12F								
PROJECT LOCATION: SAN ANTONIO.	TEXAS				ESTIMATOR: C.M. JOHNSON								
SUBMITTAL:	35.0%				DATE: 27-Oct-93								
ECO NO/BUILDING:IV. F./BLDG 0368 H	100D 2			-	CHECKED BY: SPC								
TASK DESCRIPTION	QUAN	TITY		1	ABOR		MATERI	ALS	TOTAL				
	NO/UN	UNIT	MH UN	HRS	UN PRICE	COST	UN PRICE	COST	COST				
						0.00		0.00	0				
3'X 4' HOOD	4	LF			44.50	0.00 178.00	400.00	0.00 1600.00	0 1778				
COMB. SUPPLY EXHAUST UNIT	1.2				140.00	168.00	775.00	930.00	1098				
						0.00 0.00		0.00 0.00	0				
						0.00		0.00	0				
						0.00		0.00	0				
		l				0.00 0.00		0.00 0.00	0 0				
·						0.00		0.00	Ö				
						0.00		0.00	0				
						0.00		0.00 0.00	0				
						0.00		0.00	ő				
						0.00 0.00		0.00	0				
						0.00		0.00 0.00	0				
						0.00		0.00	Ō				
						0.00	<u>.</u>	0.00 0.00	0				
						0.00		0.00	000000000000000000000000000000000000000				
i		J	ľ	- 1		0.00		0.00	0				
				ſ	ŀ	0.00		0.00	ol Ol				
		Í				0.00		0.00	0				
						0.00		0.00	0				
				ı		0.00		0.00	0				
						0.00		0.00	ŏ				
		ı	ŀ			0.00		0.00	0				
			1			0.00		0.00	ŏ				
			i		1	0.00		0.00	0				
	ļ	Ī	ı	ı		0.00	j	0.00	0				
	i		I			0.00		0.00	ŏ				
				ı		0.00		0.00	0				
	l					0.00		0.00					
İ		ı				0.00	1	0.00	0				
		I	į			0.00	l	0.00	0				
		I	l			0.00		0.00	0				
:	ı		ļ			0.00		0.00	0				
	1	1	ĺ	ł		0.00	ŀ	0.00	0				
Į	Ì					0.00		0.00	ő				
ĺ		İ	1			0.00		0.00	0				
1			ł	- 1		0.00		0.00					
ĺ	j	- 1	1		İ	0.00	į	0.00	ŏl				
i	I				ĺ	0.00		0.00	0				
1			- 1		ŀ	0.00		0.00	0				
Į.	1	ŀ			1	0.00		0.00	0				
ļ			1			0.00		0.00	0				
					I	0.00		0.00	0				
SUBTOTAL						\$346		\$2,530	\$2,876				
	10.00%				***************************************	***************************************			\$288				
TOTAL									\$3,164				

LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)

LOCATION:		RT SAM HOUST		REGION NO.		PROJECT NO	91109912F
PROJECT TITLE:		FORT SAM HO				FISCAL YEAF	
DISCRETE PORTI	ON NAME:	BUILDING 0368	- ECO IV. F.)	- INSTALL M	AKE-UP AIR S	UPPLY FOR KITC	CHEN AREAS
ANALYSIS DATE:	NOVEMBER	1, 1993 EC	CONOMIC LIFE	20	PREPARER	C. M. JO	HNSON
1. INVESTMENT	COSTS:						
A. CONSTRUCTION B. SIOH C. DESIGN COST D. TOTAL COST (1) E. SALVAGE VALL	IA+1B+1C) JE OF EXISTIN		\$3,164 \$174 \$190 \$3,528		<i>:</i>		
F. PUBLIC UTILITY				\$0	_		
G. TOTAL INVEST	MENT (1D-1E	–1F)			\$3,528		
2. ENERGY SAVI			DUNT FACTOR	1S: <u>'N</u>	IOVEMBER 4, 1	1992	
ENERGY SOURCE	COST \$/MBTU(1)	SAVINGS MBTU/YR(2)	ANNUAL \$ SAVINGS(3)	DISCOUNT FACTOR(4)	DISCOUNTEI SAVINGS(5)	D	
A. ELEC	\$10.55	6.26	\$ 66	14.65	\$968		
B. DIST			\$0	17.70	\$0	•	
C. RESID		····	\$0	20.99	\$0	•	
D. NG	\$3.31	19.55	\$65	20.60	\$1,333	•	
E. PPG			\$0	13.59	\$0		
F. COAL			\$0	16.32	\$0	•	
G. SOLAR		· · · · · · · · · · · · · · · · · · ·	\$0	13.59	\$0		
H. GEOTH			\$0	13.59	\$0		
I. BIOMA			\$0	13.59	\$0		
J. REFUS K. WIND			<u>\$0</u>	13.59	\$0		
L OTHER			<u>\$0</u>	13.59 13.59	\$0		
M. DEMAND SAVIN	<u> </u>		\$0	13.59	\$0 \$0	1	
N. TOTAL	100	25.81	\$131	13.39	\$2,301		
3. NON ENERGY	SAVINGS (+) (<u> </u>		
A. ANNUAL RECUR	BRING (+/-)	\$ 0					
1. DISCOUNT FAC		\$0					
2. DISCOUNTED S				\$0			

B. NON RECURRING SAVINGS (+) OR COST(-)

7. ADJUSTED INTERNAL RATE OF RETURN (AIRR):

			,	•	
	ITEM	SAVINGS(+)	YEAR OF	DISCOUNT	DISCOUNTED SAV-
		COST(-)(1)	OCCUR.(2)	FACTOR(3)	INGS(+)COST(-)(4)
		()(-)		``	() ** = = () ()
a.	N/A	\$0	1	0.96	\$0
b.	N/A	\$0	2	0.92	\$0
C.	N/A	\$0	3 4	0.89	\$0
d.	N/A	\$0	4	0.85	\$0
e.	N/A	\$0	5	0.82	\$0
f.	N/A	\$0	6	0.79	\$0
g.	N/A	\$0	7	0.76	\$0
h.	N/A	\$0	8	0.73	\$0
i.	N/A	\$0	9	0.7	\$0
j.	N/A	\$0	10	0.68	\$0
k.	N/A	\$0	11	0.65	\$0
I.	N/A	\$0	12	0.62	\$0
m.	N/A	\$0	13	0.6	\$0
n.	N/A	\$0	14	0.58	\$0
Ο.	N/A	\$0	15	0.56	\$0
p.	TOTAL	\$0			\$0
•				_	
C.	TOTAL NON EN	NERGY DISCOL	JNTED SAVIN	GS (3A2 + 3Bp4)	<u>\$0</u>
<u>4. S</u>	MPLE PAYBAC	K 1G/(2N3+3A	+(3Bp1/ECO	NOMIC LIFE)):	27.0 YEARS
5. T	OTAL NET DISC	COUNTED SAV	NGS (2N5+3	_ :	\$2,301
6. S	AVINGS TO INV	ESTMENT RAT	110 (SIR) 5/1G	<u>:</u>	0.65

1.8%

BUILDING NO. 407

ENERGY CO	ONSERVATION	<u>OPPORTUNITIES</u>	(ECO's)

ECO NO: IV.F (Hood 1)

ECO NAME: Install make-up air supply for kitchen areas

SUMMARY DATA (DEPENDENT):

KWH Savings: 27.217 KWH/yr

Demand Savings: 0 KW/yr

Gas Savings: 242.16 MCF/yr

Cost Savings: \$ 1.806 /yr

Implementation Cost: \$ 32.155

Simple Payback: 17.8 Years

Savings to Investment: .98

Ratio (SIR):

ECO DESCRIPTION:

Currently, the kitchen hoods in use do not contain supply air make-up. This ECO analyzes the addition of make-up air supply for the kitchen hoods.

COST SAVINGS CALCULATIONS:

(Refer to following spreadsheet)

IMPLEMENTATION COSTS:

(Refer to following Cost Estimate)

LIFE CYCLE COST ANALYSIS:

MODIFIED BIN METHOD CALCULATIONS

REFER TO ASHRAE 1993 FUNDAMENTALS

DI DO M	10					407	1350	1387	1462	2399	2652
BLDG. N				44	368						
TIME OF				6:00A	6:00A	7A-10P	4:00A	10:00A	9A-8:30P	5:00A	1
OPERAT				1:30P	2:00P	7A-2P	8:30P	9:00P	9A-10:30P		7:00P
DAYS/W	EEK			5	5	4,3	6	5	5,2	7	4
DB	MID	MC	HUMID	HRS	HRS	HRS	HRS	HRS	HRS	HRS	HRS
RANGE	PT.	WB	RATIO	/YR.	MR.	/YR.	/YR.	/YR.	/YR.	MR.	/YR.
100/104	102	74	0.0116	6.4	7.0	14.6	14.5	10.1	15.8	16.1	7.1
95/99	97	74	0.0126	59.4	64.8	139.8	139.4	97.9	152.8	153.4	67.7
90/94	92	74	0.0139	135.0	147.3	309.0	307.1	213.4	334.4	339.8	149.6
85/89	87	73	0.0143	173.8	189.6	418.5	418.7	296.3	461.3	458.6	202.9
80/84	82	72	0.0146	213.2	231.4	530.6	557.5	382.4	589.7	595.6	253.5
75/79	77	70	0.0142	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70/74	72	66	0.0123	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
65/69	67	61	0.0101	196.1	208.4	418.7	527.9	283.1	433.6	535.7	183.2
60/64	62	56	0.0082	161.8	172.0	346.9	437.0	235.1	359.9	443.3	151.9
55/59	57	51	0.0066	132.3	140.5	288.0	363.6	196.9	300.7	367.8	126.2
							İ				
50/54	52	47	0.0057	118.4	125.4	256.0	332.4	174.6	265.8	333.0	110.6
45/49	47	43	0.0050	92.0	96.8	190.1	260.7	127.1	192.8	257.6	79.5
40/44	42	38	0.0039	72.4	75.9	138.6	198.4	88.8	135.1	195.0	56.1
35/39	37	34	0.0034	44.4	46.1	75.5	120.8	44.9	68.1	116.1	28.1
30/34	32	29	0.0028	23.0	23.8	34.9	60.3	18.9	28.8	57.4	12.0
						İ		ĺ			
25/29	27	25	0.0023	8.3	8.4	9.6	21.3	3.8	5.8	19.4	2.4
20/24	22	20	0.0016	2.4	2.5	3.6	6.1	2.0	3.0	5.9	1.3
15/19	17	15	0.0013	0.4	0.4	0.3	0.9	0.0	0.0	0.8	0.0
10/14	12	10	0.0009	0.2	0.2	0.1	0.4	0.0	0.0	0.4	0.0

ASSUMPTIONS

- 1) SUMMER ROOM DESIGN: 78FDB, 50%RH
- 2) WINTER ROOM DESIGN: 70FDB, 40%RH
- 3) HUMIDITY RATIOS FOR THE SPACE BASED ON SUMMER & WINTER ROOM DESIGN TEMP.

EQUIPMENT:

SMALL AIR COOLED CHILLER (3-25 TONS): 8.57 BTU/WATT-H LARGE AIR COOLED CHILLER (25-100 TONS): 8.63 BTU/WATT-H SMALL WATER COOLED CHILLER (25-100 TONS): 11.11 BTU/WATT-H LARGE WATER COOLED CHILLER (>100 TONS): 12.12 BTU/WATT-H

SYSTEM TYPES FOR ABOVE BUILDINGS

BUILDING	SYSTEM TYPE
NUMBER	
44	SMALL AIR COOLED
368	SMALL AIR COOLED
407	LARGE AIR COOLED
1350	LARGE WATER COOLED
1387	SMALL AIR COOLED
1462	LARGE AIR COOLED
2399	LARGE WATER COOLED
2652	LARGE AIR COOLED

		TOTAL		1180558	100000	04706869	24/80000	33026416		77400460	41086777	15442043	11182030	19508772	77708001	14156161	13934725	9025010	4911072	1519157	651695	40181	26810	2000	10800	11664
)	!	HRS	MEAR	14.6	7 00	9 6	208.0 448.0	530.6	2	418 7		346.9	288.0	OFR O	3 5	3	138.6	75.5	34.9	9.6	8	6	0	YFAR	YFAR	HAY
		TOTAL	BTCH	79451	78000	8001	74844	62247	:	59749	77.75	44016	38822	53120	74475	0/11/	100534	119537	140891	158718	178897	196723	214550	FOTAL COOLING KBTU FOR THE	TOTAL HEATING KBTU FOR THE YEAR	COOI ING KWH
	CFM FM	AIENT	BTCH	16466	28227	43548	48224	51749	!	AFARO		77007	4704	5881	17149	7	27051	32931	41164	45869	52925	57630	62334	3 KBTU	KBTU	-HB
HAUSTE	= 27,000 - 27,000	OENG.	BTCH	62986	49R64	36749 43518	23620	10498		7873	1000	CRROX	34117	47239	A0381	999	/3463	86605	99727	112849	125971	139093	152215	COOLING	JEATING	LAWAT
FM IS EXI	M-100FX		IN NA	0.0102		0.0102	0.0102	0.0102		0.0062	6900	7000	0.0062	0.0062					0.0062	0.0062	0.0062	0.0062	0.0062	TOTAL C	TOTAL P	7 8.63 BT
NOW 30% OF THE 8100 CFM IS EXHAUSTED	EATAOS! OFM #8F (X30F (X100FFM #27,000CFM	1	RM HR OA	78 0.0116	78 0.0126	78 0.0139	78 0.0143	78 0.0146		70 0.0101	70 0 000	20000	70 0.0066	70 0.0057	70 0 0050	00000	9500.0 O	70 0.0034	70 0.0027	70 0.0023	70 0.0017	70 0.0013	70 0.0009			EQUIPMENT 8.69 BTU/WATT-HR
P. 1	֓֞֞֝֓֞֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓			102		_	87	85		. 19	23	3	27	52	47	. 5	7	37	35	27	25	17	12			Щ
NOW 30%						2430	2430	2430		2430	2430	7	2430	2430	2430	0070	200	2430	2430	2430	2430	2430	2430			
)	TOTAL	2	210	3868521	36377149	82656227	418.5 100217525	110088053		74998713	51473475		37273434	45322572	47193870	ARAKONRA	101111000	30083368	16370239	5063856	2172316	163936	89396	333207	356654	38881
		֓֞֟֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	1 A L	14.6	139.8	309.0	418.5	530.6		418.7	346.9		288.0	256.0	190.1	12A A		0.07	34.9	9.6	9.B	0.3		YEAR	_	X KWH
	TOTAL	-		264838	260302	267527	239468	207490		179140	148392	07.007	129406	177066	248249	335113	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	386455	469638	529060	596322	655744	715165	FOTAL COOLING KBTU FOR THE	TOTAL HEATING KBTU FOR THE	COOLING
STED	SENS LATENT			54886	94090	145055	160736	172498		152896	78408	000	15682	19602	47045	90169	7000		13/214	152896	176418	192100	207781	3 KBTU		
S EXHAU	SNER			208952	166212	122472	78732	34892		26244	69984	101011	113/24	157464	201204	244944	70000	400007	332424	3/6164	419904	463644	507384	SOOLIN	EATING	EQUIPMENT 8.63 BTU/WATT-HR
ED AIR I			ב כ כ	0.0102	0.0102	0.0102	0.0102	0.0102		0.0062	0.0062	0000	0.0062	0.0062	0.0062	0.0062		7000	0.000	0.0062	0.0062	0.0062	0.0062	TOTAL	TOTAL	8.63 B
NDITION FTx30FT		400		78 0.0116	78 0.0128	78 0.0139	78 0.0143	78 0.0146		70 0.0101 0.0062	70 0.0082	9000	2000	0.0057	0.0050	0.0039	7600			0.0023	0.0017	0.0013	0.0009 0.0062			PMENT
% CO % II						78	. 78			2	2	1			2	2			·			2	2			2
ASSUME 30% CONDITIONED AIR IS EXHAUSTED EXHAUST CEM=9FTx30FTx400FDM=27.000CFM	BUILDING 407			_	8100 97	8100 92	8100 87	8100 82		8100 67	8100 62	400	_		8100 47	100 42				_	8100 22	8100 17	8100 12			
AS.	3		- (S)	æ	₩	æ	6 0		₩	W)	a	0 (a)	₩	60	•	9 6	0 6	0 (.	Ø	6 0		•	312

	ARTER & BURGESS	COST ESTIMATING ANALYSIS	
PROJECT NAME: FORT S		PROJECT NO: 91109912F	
PROJECT LOCATION: SA		ESTIMATOR: C.M. JOHNSON	
SUBMITTAL:	35.0%	DATE: 27-Oct-93	
ECO NO/BUILDING:IV. F./	BLDG 0407 HOOD 1	CHECKED BY: SPC	
TASK DESCRIP	TION QUANTITY	LABOR MATERIALS TOTAL	AL

ECO NO/BUILDING:IV. F./BLDG 0407 F		ITITY			ABOR	1: 570	MATER	214	TOTAL
TASK DESCRIPTION	NO/UN		MHUN		UN PRICE	COST	UN PRICE	COST	COST
	NO/UN	UNIT	MHUN	ннѕ	UNPHICE	0.00	UN PHICE	0.00	CUSI
	l					0.00		0.00	
9'X 30' HOOD	30	LF			44.50	1335.00	500.00	15000.00	1633
COMB. SUPPLY EXHAUST UNIT	27				56.00	1512.00	310.00	8370.00	988
						0.00		0.00	
						0.00		0.00	
		l				0.00		0.00	
		i l				0.00		0.00	
						0.00 0.00		0.00 0.00	
		ŀ				0.00		0.00	
						0.00		0.00	
						0.00		0.00	
						0.00		0.00	
						0.00		0.00	1
	l					0.00		0.00	
						0.00		0.00	
						0.00		0.00	l
						0.00		0.00	
						0.00 0.00		0.00 0.00	
						0.00	**	0.00	
		-				0.00		0.00	
				ĺ		0.00		0.00	
				1	I	0.00		0.00	(
				ļ		0.00		0.00	•
					I	0.00		0.00	(
				ı		0.00		0.00	9
			ı	-		0.00	ľ	0.00	9
			i	!		0.00		0.00 0.00	,
						0.00		0.00	
						0.00		0.00	
		Ī	l l	ľ		0.00		0.00	
			1	I	I	0.00		0.00	(
		I	i	l	l l	0.00		0.00	
					I	0.00		0.00	
	1	ı			1	0.00		0.00	9
		l	ŀ	1	i	0.00		0.00	
		i		I	i	0.00		0.00	(
		ı	1	I		0.00		0.00	Č
		I				0.00	:	0.00	Ò
	Į.	1		- 1		0.00		0.00	
				ı	I	0.00		0.00	(
		J			1	0.00		0.00	(
		I	1	ł		0.00	Į	0.00	(
		ļ	j	ľ	ł	0.00	Į.	0.00	9
	1				•]	0.00	ı	0.00	0
	i	ŀ		ł	j	0.00	i	0.00	0
	1	1	I		[0.00	I	0.00	0
		1		Į	ĺ	0.00	i	0.00	0 0 0 0
	ŀ	1	i	ĺ	ł	0.00	j	0.00	Ō
i	ŀ	1		I		0.00	j	0.00	0
ł		1		1		0.00	1	0.00	0
		1		1	l	0.00		0.00	
!		1]	1	1	0.00		0.00	0
UBTOTAL	<u></u>					0.00		0.00	0
OVERHEAD & PROFIT	40.000					\$2,847		\$23,370	\$26,217
	In nnu.								A
OTAL	10.00%								\$2,622 \$28,839

LOCATION:	FO	RT SAM HOUST	ON	REGION NO). 3	PROJECT NO.	91109912F
PROJECT TITLE:		FORT SAM HO	USTON DININ			FISCAL YEAR	1994
DISCRETE PORTI	ON NAME:	BUILDING 0407	- ECO IV. F.)	- INSTALL M	AKE-UP AIR S	UPPLY FOR KITC	CHEN AREAS
ANALYSIS DATE:	NOVEMBER		ONOMIC LIFE		PREPARER	C. M. JOI	
1. INVESTMENT	COSTS:						
A. CONSTRUCTION B. SIOH C. DESIGN COST D. TOTAL COST (1) E. SALVAGE VALU F. PUBLIC UTILITY G. TOTAL INVESTION	IA+1B+1C) JE OF EXISTIN COMPANY R	EBATE	\$28,839 \$1,586 \$1,730 \$32,155	\$0 \$0	 \$32,155	- :	
2. ENERGY SAVII		•	OUNT FACTOR	RS: 'N	NOVEMBER 4, 1	1992	
ENERGY SOURCE	COST \$/MBTU(1)	SAVINGS MBTU/YR(2)	ANNUAL \$ SAVINGS(3)	DISCOUNT FACTOR(4)	DISCOUNTED SAVINGS(5)		
A. ELEC	\$10 EE	00.00	\$000	1465	\$1.4.0E7		
B. DIST	<u>\$10.55</u>	92.89	<u>\$980</u> \$0	14.65 17.70	\$14,357 \$0		
C. RESID			\$0	20.99	<u>\$0</u> \$0		
D. NG	\$3.31	249.67	\$826	20.60	\$17,024		
E. PPG	40.01	243.07	\$0	13.59	\$0		
F. COAL			\$0	16.32	\$0		
G. SOLAR			\$0	13.59	\$0		
H. GEOTH			\$0	13.59	\$0		
I. BIOMA			\$0	13.59	\$0		
J. REFUS			\$0	13.59	\$0		
K. WIND			\$0	13.59	\$0		
L. OTHER			\$0	13.59	\$0		
M. DEMAND SAVIN	NGS		\$0	13.59	\$ 0		
N. TOTAL		342.56	\$1,806		\$31,381		
3. NON ENERGY A. ANNUAL RECUP 1. DISCOUNT FAC 2. DISCOUNTED S	RRING (+/-) CTOR (TABLE /	\$0		\$0			
2. DISCOUNTED S	SAVINGS/COS	T (3A X 3A1)	-	\$0			

B. NON RECURRING SAVINGS (+) OR COST(-)

	ITEM	SAVINGS(+) COST(-)(1)	YEAR OF OCCUR.(2)	DISCOUNT FACTOR(3)	DISCOUNTED SAV- INGS(+)COST(-)(4)
a.	N/A	\$0	1	0.96	\$ 0
b.	N/A	\$0	2	0.92	\$0
C.	N/A	\$0	3 4	0.89	\$0
d.	N/A	\$0	4	0.85	\$0
e.	N/A	\$0	5	0.82	\$0
f.	N/A	\$0	5 6	0.79	\$0
g.	N/A	\$0	7	0.76	\$0
h.	N/A	\$0	8 9	0.73	\$0
i.	N/A	\$0		0.7	\$0
j.	N/A	\$0	10	0.68	\$0
k.	N/A	\$0	11	0.65	\$0
l.	N/A	\$0	12	0.62	\$0
m.	N/A	\$0	13	0.6	\$0
n.	N/A	\$0	14	0.58	\$0
Ο.	N/A	\$0	15	0.56	\$0
p.	TOTAL	\$0		-	\$0
C.	TOTAL NON E	NERGY DISCOL	JNTED SAVIN	GS (3A2 + 3Bp4	\$0
<u>4. S</u>	IMPLE PAYBA	CK 1G/(2N3+3A	x+(3Bp1/ECO	NOMIC LIFE)):	17.8 YEARS
5. T	OTAL NET DIS	COUNTED SAV	INGS (2N5+3	© :	\$31,381
6. S.	AVINGS TO IN	VESTMENT RAT	110 (SIR) 5/1G	Ŀ	0.98
7. A	DJUSTED INTE	RNAL RATE OF	RETURN (AIF	3R):	3.9%_

ENERGY CONSERVATION OPPORTUNITIES (ECO's)

BUILDING NO. 407			
ECO NO: IV.F (Hood	2)		
ECO NAME: Install mal	ke-up a	air supply for	kitchen areas
SUMMARY DATA (DE	PEND	ENT):	
KWH Savings:		3,217	KWH/yr
Demand Savings:		0	KW/yr
Gas Savings:		28.61	MCF/yr
Cost Savings:	<u>\$</u>	213	/yr
Implementation Cost:	<u>\$</u>	7,419	
Simple Payback:		34.8	Years
Savings to Investment: Ratio (SIR):		.50	
ECO DESCRIPTION:			
Currently, the kitchen hood the addition of make-up a			ain supply air make-up. This ECO analyzes then hoods.
COST SAVINGS CALCU	LATIC	ONS:	
(Refer to following spread	sheet)		

IMPLEMENTATION COSTS:

(Refer to following Cost Estimate)

LIFE CYCLE COST ANALYSIS:

MODIFIED BIN METHOD CALCULATIONS

REFER TO ASHRAE 1993 FUNDAMENTALS

						O ASITINA	_ 1000 1	SINDAINE	MINEO		
BLDG. N	0.			44	368	407	1350	1387	1462	2399	2652
TIME OF				6:00A	6:00A	7A-10P	4:00A	10:00A	9A-8:30P	5:00A	10:00A
OPERAT	ION			1:30P	2:00P	7A-2P	8:30P	9:00P	9A-10:30P	7:30P	7:00P
DAYS/W	EEK			5	5	4,3	6	5	5,2	7	4
DB	MID	МС	HUMID	HRS	HRS	HRS	HRS	HRS	HRS	HRS	HRS
RANGE	PT.	WB	RATIO	/YR.	/YR.	/YR.	/YR.	/YR.	/YR.	/YR.	/YR.
100/104	102	74	0.0116	6.4	7.0	14.6	14.5	10.1	15.8	16.1	7.1
95/99	97	74	0.0126	59.4	64.8	139.8	139.4	97.9	152.8	153.4	67.7
90/94	92	74	0.0139	135.0	147.3	309.0	307.1	213.4	334.4	339.8	149.6
85/89	87	73	0.0143	173.8	189.6	418.5	418.7	296.3	461.3	458.6	202.9
80/84	82	72	0.0146	213.2	231.4	530.6	557.5	382.4	589.7	595.6	253.5
75/79	77	70	0.0142	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70/74	72	66	0.0123	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
65/69	67	61	0.0101	196.1	208.4	418.7	527.9	283.1	433.6	535.7	183.2
60/64	62	56	0.0082	161.8	172.0	346.9	437.0	235.1	359.9	443.3	151.9
55/59	57	51	0.0066	132.3	140.5	288.0	363.6	196.9	300.7	367.8	126.2
50/54	52	47	0.0057	118.4	125.4	256.0	332.4	174.6	265.8	333.0	110.6
45/49	47	43	0.0050	92.0	96.8	190.1	260.7	127.1	192.8	257.6	79.5
40/44	42	38	0.0039	72.4	75.9	138.6	198.4	88.8	135.1	195.0	56.1
35/39	37	34	0.0034	44.4	46.1	75.5	120.8	44.9	68.1	116.1	28.1
30/34	32	29	0.0028	23.0	23.8	34.9	60.3	18.9	28.8	57.4	12.0
	l		i	ĺ		Í		ĺ		l	ł
25/29	27		0.0023	8.3	8.4	9.6	21.3	3.8	5.8	19.4	2.4
20/24	22		0.0016	2.4	2.5	3.6	6.1	2.0	3.0	5.9	1.3
15/19	17		0.0013	0.4	0.4	0.3	0.9	0.0	0.0	0.8	0.0
10/14	12	10	0.0009	0.2	0.2	0.1	0.4	0.0	0.0	0.4	0.0

ASSUMPTIONS

- 1) SUMMER ROOM DESIGN: 78FDB, 50%RH
- 2) WINTER ROOM DESIGN: 70FDB, 40%RH
- 3) HUMIDITY RATIOS FOR THE SPACE BASED ON SUMMER & WINTER ROOM DESIGN TEMP.

EQUIPMENT:

SMALL AIR COOLED CHILLER (3-25 TONS): 8.57 BTU/WATT-H LARGE AIR COOLED CHILLER (25-100 TONS): 8.63 BTU/WATT-H SMALL WATER COOLED CHILLER (25-100 TONS): 11.11 BTU/WATT-H LARGE WATER COOLED CHILLER (>100 TONS): 12.12 BTU/WATT-H

SYSTEM TYPES FOR ABOVE BUILDINGS

BUILDING	SYSTEM TYPE
NUMBER	
44	SMALL AIR COOLED
368	SMALL AIR COOLED
407	LARGE AIR COOLED
1350	LARGE WATER COOLED
1387	SMALL AIR COOLED
1462	LARGE AIR COOLED
2399	LARGE WATER COOLED
2652	LARGE AIR COOLED

		TOTAL	2	138503	1902302	202000	3588035	3941424	2685100	2000 108 40 400 108	19942010	1822680	1680857	1662002	1077059	586095	181200	7777	2880	9000	11030	12769	1392
		O D	YEAR PEAR	14.8	139.8	309.0	418.5	530.6	7 0 7	10.4	20.00	25.00	100.0	138.6	75.5	34.9	9) C	;	YEAR	YEAR	KWH
		TOTAL	E	9482	9319	9578	8574	7429	8414	1 0 1	4622	330	888	11998	14268	16814	18942	21350	23477	25.80F	FOR THE	FOR THE YEAR	COOLING KWH
	_	ATENT	: -				5755	6176	5474	2807		202	1684	3228	3830	4913	5474	6316	6878	7430	KBTU	KBTU	
	NOW 30% OF THE 960 CFM IS EXHAUSTED EXHAUST CFM=4FTx8FTx100FPM=3200CFM	SENS	HOLL	7517	5951	4385	2819	1253	040	25.05.0 8.05.0	4072	5638	7204	8770	10336	11902	13468	15034	16600	18166	COLING	FOTAL HEATING	EQUIPMENT 8.63 BTU/WATT-HR
	M IS EXH		HRRM	0.0102			0.0102	0.0102	0.0062	0.0062			0.0062	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062		TOTAL H	. 6.63 BT
	NOW 30% OF THE 960 CFM IS EXHAUSTED EXHAUST CFM=4FTx8FTx100FPM=3200CF		RM HR OA		0.0128		0.0143	0.0146	0.0101	0.00		0.0057	0.0050	0.0039	0.0034	0.0027	0.0023	0.0017 0.0062		0.000		•	JIPMENT
F	F. T.	201			7 78	2 78	7 78	2 78	7	2	202	2	7 70	٠	7 70	2 70	7 70	2 70	7 70	2 70			E E
300	UST	BUILDING 407	M DB		0	8	80	<u>س</u> 2	ω Θ	9	2	<u>ي</u> ري	δ 4	54	Θ	32	2	20	8	8			
	EXHA		CFIX	290	290	290	290	290	290	8	8	58	290	8	58	88	88	83	83	290			
		یہ	-	_	60	•	_	_	•	0	•	•	_			_		_	_				_
		TOTAL	FE SE	45849	4311366	9796294	11877633	13047473	8888736	6100560	4417592	5371564	5593348	5505077	3565436	1940176	600161	257460	19428	10595	39491	42270	4608
					•	309.0 979629	_	530.6 13047473	•		288.0 4417592		190.1 5593348							0.1	EAR	. AH	X.
		HRS	BTUH MEAR BT	14.6	139.8	309.0	418.5	530.6	418.7	346.9	•	256.0	190.1	138.6	75.5				0.3	0.1	EAR	. AH	X.
STED		TOTAL HRS	MEAR	31388 14.6	30851 139.8	31707 309.0	418.5	24591 530.6 1	21231 418.7	17587 346.9	15337 288.0	20986 256.0	190.1	39717 138.6	47224 75.5	55661 34.9	62703 9.6	70675 3.6	77718 0.3	0.1	EAR	U FOR THE YEAR	COOLING KWH
EXHAIISTED		LATENT TOTAL HRS	BTUH BTUH MEAR	6505 31388 14.6	11151 30851 139.8	17192 31707 309.0	19050 28381 418.5 1	24591 530.6 1	21231 418.7	17587 346.9	15337 288.0	20986 256.0	5576 29422 190.1	10687 39717 138.6	13010 47224 75.5	16262 55661 34.9	18121 62703 9.6	20909 70675 3.6	22767 77718 0.3	0.1	EAR	U FOR THE YEAR	COOLING KWH
ED AIB IS EXHALISTED		SENS. LATENT TOTAL HRS	BTUH BTUH BTUH MEAR	24883 6505 31388 14.6	0.0102 19699 11151 30851 139.8	0.0102 14515 17192 31707 309.0	0.0102 9331 19050 28381 418.5 1	0.0102 4147 20444 24591 530.6 1	3110 18121 21231 418.7	0.0062 8294 9293 17587 346.9 (0.0062 13478 1859 15337 288.0	2323 20986 256.0	23846 5576 29422 190.1	29030 10687 39717 138.6	34214 13010 47224 75.5	39398 16262 55661 34.9	44582 18121 62703 9.6	49766 20909 70675 3.6	54950 22767 77718 0.3	60134 24626 84760 0.1	EAR	U FOR THE YEAR	COOLING KWH
NOTIONED AIR IS EXHALISTED		SENS. LATENT TOTAL HRS	BTUH BTUH BTUH MEAR	0.0102 24883 6505 31388 14.6	0.0102 19699 11151 30851 139.8	14515 17192 31707 309.0	0.0102 9331 19050 28381 418.5 1	4147 20444 24591 530.6 1	0.0101 0.0062 3110 18121 21231 418.7	0.0082 0.0062 8294 9293 17587 346.9 (0.0066 0.0062 13478 1859 15337 288.0	0.0057 0.0062 18662 2323 20986 256.0 (0.0050 0.0062 23846 5576 29422 190.1	0.0039 0.0062 29030 10687 39717 138.6	0.0034 0.0062 34214 13010 47224 75.5	0.0027 0.0062 39398 16262 55661 34.9	0.0023 0.0062 44582 18121 62703 9.6	0.0017 0.0062 49766 20909 70675 3.6	0.0013 0.0062 54950 22767 77718 0.3	0.1	EAR	U FOR THE YEAR	COOLING KWH
CONDITIONED AIB IS EXHALISTED	M=4FTx8FTx100FPM=3200CFM	SENS. LATENT TOTAL HRS	RMHROA HRRM BTUH BTUH BTUH MEAR	78 0.0116 0.0102 24883 6505 31388 14.6	0.0102 19699 11151 30851 139.8	0.0102 14515 17192 31707 309.0	0.0102 9331 19050 28381 418.5 1	0.0102 4147 20444 24591 530.6 1	3110 18121 21231 418.7	70 0.0082 0.0062 8294 9293 17587 346.9	0.0066 0.0062 13478 1859 15337 288.0	70 0.0057 0.0062 18662 2323 20986 256.0	70 0.0050 0.0062 23846 5576 29422 190.1	0.0039 0.0062 29030 10687 39717 138.6	0.0034 0.0062 34214 13010 47224 75.5	0.0027 0.0062 39398 16262 55661 34.9	0.0023 0.0062 44582 18121 62703 9.6	0.0017 0.0062 49766 20909 70675 3.6	0.0062 54950 22767 77718 0.3	0.0062 60134 24626 84760 0.1	EAR	U FOR THE YEAR	X.
ASSIME 30% CONDITIONED AIR EXHALISTED	M=4FTx8FTx100FPM=3200CFM	VG 407 SENS. LATENT TOTAL HRS	DB RMHROA HRRM BTUH BTUH /YEAR	102 78 0.0116 0.0102 24883 6505 31388 14.6	97 78 0.0126 0.0102 19699 11151 30851 139.8	92 78 0.0139 0.0102 14515 17192 31707 309.0	87 78 0.0143 0.0102 9331 19050 28381 418.5 1	0.0102 4147 20444 24591 530.6 1	67 70 0.0101 0.0062 3110 18121 21231 418.7	0.0082 0.0062 8294 9293 17587 346.9 (57 70 0.0066 0.0062 13478 1859 15337 288.0	52 70 0.0057 0.0062 18662 2323 20986 256.0 (47 70 0.0050 0.0062 23846 5576 29422 190.1	42 70 0.0039 0.0062 29030 10687 39717 138.6	37 70 0.0034 0.0062 34214 13010 47224 75.5	32 70 0.0027 0.0062 39398 16262 55661 34.9	27 70 0.0023 0.0062 44582 18121 62703 9.6	22 70 0.0017 0.0062 49766 20909 70675 3.6	17 70 0.0013 0.0062 54950 22767 77718 0.3	0.0062 60134 24626 84760 0.1	EAR	U FOR THE YEAR	COOLING KWH

PROJECT NAME: FORT SAM HO	USTON EEAP				PROJECT NO	: 911099	12F		
PROJECT LOCATION: SAN ANTO	ONIO, TEXAS				ESTIMATOR:	C.M. JOH	INSON		
SUBMITTAL:	35.0%				DATE:		27-Oct-93		
CO NO/BUILDING:IV. F./BLDG	407 HOOD 2				CHECKED BY	: SPC			
TASK DESCRIPTION		TITY		1	ABOR		MATERI	ALS	TOTAL
	NO/UN		MH UN	HRS	UN PRICE	COST	UN PRICE	COST	COST
						0.00		0.00	
W AL LIGOD	Ι.	LF			44.50	0.00 356.00		0.00 3200.00	35!
I'X 8' HOOD COMB. SUPPLY EXHAUST UNIT		MCFM			119.00	380.80		2112.00	249
		Ì				0.00		0.00	
	l					0.00 0.00		0.00 0.00	
						0.00		0.00	
		1		i ,		0.00		0.00	
	l l		i .			0.00		0.00 0.00	
	l l					0.00		0.00	
	i					0.00		0.00	
						0.00		0.00	
						0.00		0.00 0.00	
						0.00		0.00	
						0.00		0.00	
	i i					0.00		0.00	
						0.00		0.00	
						0.00		0.00	
	i i					0.00		0.00 0.00	
						0.00		0.00	
	i l					0.60		0.00	
	1 1				ĺ	0.00	j	0.00	
	i i				Į.	0.00		0.00	
						0.00		0.00	
	1 1	Ī	i		ļ	0.00		0.00	
		1				0.00		0.00	
			1			0.00		0.00	
	İ			1	1	0.00		0.00	
	1 1	İ	ı			0.00		0.00	
	i	ļ	ł			0.00		0.00	
		1				0.00		0.00	
						0.00 0.00	ŀ	0.00 0.00	
			l			0.00		0.00	
	1 1	ı		l		0.00		0.00	
		ı		- 1		0.00		0.00	
	j j	I				0.00		0.00	
]]	ł	ı	ı	1	0.00	Ī	0.00	
		1		ł		0.00	i	0.00	
	į l		l	l	İ	0.00	i	0.00	
	1 1	j	ĺ	ļ	i	0.00	I	0.00	
]]			į	j	0.00	- 1	0.00	
			İ	. [Ī	0.00	I	0.00	
	l l			1	Į.	0.00	1	0.00	
	1 1	1			1	0.00		0.00	
	i I			1	li li	0.00	1	0.00	
		ı	J	3	1	0.00	[0.00	

OVERHEAD & PROFIT

SUBTOTAL

TOTAL

10.00%

0

\$6,049

\$6,654

\$605

0.00 0.00 0.00 0.00

\$5,312

0.00 0.00

\$737

LOCATION:		RT SAM HOUS	TON	REGION NO	. 3	PROJECT NO.	91109912F
PROJECT TITLE		FORT SAM HO				FISCAL YEAF	
DISCRETE PORT	TION NAME:	BUILDING 0407	- ECO IV. F.)	- INSTALL M	AKE-UP AIR S	SUPPLY FOR KITC	CHEN AREA
ANALYSIS DATE			CONOMIC LIFE		PREPARER	C. M. JO	
1. INVESTMENT	COSTS:						
A. CONSTRUCT	ION COST		\$6,654	_			
B. SIOH			<u>\$366</u>		: :		
C. DESIGN COST			\$399				
D. TOTAL COST	(1A+1B+1C)		\$7,419	_			
E. SALVAGE VAL				\$0	_		
F. PUBLIC UTILIT				\$ 0	<u> </u>		
G. TOTAL INVES	TMENT (1D-1E	-1F)			\$7,419		
2. ENERGY SAV	/INGS (+)/COS	<u> </u>					
DATE OF NISTIR	85-3273-X US	SED FOR DISCO	DUNT FACTOR	IS: 'N	IOVEMBER 4,	1992	
ENERGY	COST	SAVINGS	ANNUAL \$	DISCOUNT	DISCOUNTE	D	
SOURCE	\$/MBTU(1)	MBTU/YR(2)	SAVINGS(3)	FACTOR(4)	SAVINGS(5)		
A. ELEC	<u>\$10.55</u>	10.98	<u>\$116</u>	14.65	\$1,697		
B. DIST			\$0	17.70	\$0		
C. RESID			\$0	20.99	\$0		
D. NG	\$3.31	29.50	\$98	20.60	\$2,011		
E. PPG			<u>\$0</u>	13.59	\$0		
F. COAL			<u>\$0</u>	16.32	\$0		
G. SOLAR			\$0	13.59	\$0		
H. GEOTH			\$0	13.59	\$0	•	
I. BIOMA			\$0	13.59	\$0		
J. REFUS			<u>\$0</u>	13.59	\$0		
K. WIND			\$0	13.59	\$0		
L OTHER			\$0	13.59	\$0		
M. DEMAND SAVI	INGS		\$0	13.59	\$0		
N. TOTAL		40.48	\$213		\$3,709		
3. NON ENERGY	(SAVINGS (+)	OR COST (-):	_				
A AAMM ====			-				
A. ANNUAL RECL		\$0					
1. DISCOUNT FA							
2. DISCOUNTED	SAVINGS/COST	T (3A X 3A1)		\$0			·
		-					

B. NON RECURRING SAVINGS (+) OR COST(-)

	ITEM	SAVINGS(+)	YEAR OF	DISCOUNT	DISCOUNTED SAV-
		COST(-)(1)	OCCUR.(2)	FACTOR(3)	INGS(+)COST(-)(4)
a.	N/A	\$0	1	0.96	\$0
b.	N/A	\$0	3	0.92	\$0
Э.	N/A	\$0	3	0.89	\$0
d.	N/A	\$0	4	0.85	\$0
€.	N/A	\$0	5	0.82	\$0
	N/A	\$0	6	0.79	\$0
3 .	N/A	\$0	7	0.76	\$0
٦.	N/A	\$0	8	0.73	\$0
	N/A	\$0	9	0.7	\$0
	N/A	\$0	10	0.68	\$0
:.	N/A	\$0	11	0.65	\$0
	N/A		12	0.62	\$0
n.	N/A	\$0	13	0.6	\$0
١.	N/A	\$0	14	0.58	\$0
).	N/A	\$0	15	0.56	\$0
) .	TOTAL	\$0			\$0
	TOTAL NON	ENERGY DISCO	UNTED SAVIN	IGS (3A2 + 3Bp4	\$0
S	IMPLE PAYB	ACK 1G/(2N3+3A	\+(3Bp1/ECO	NOMIC LIFE)):	34.8 Y
Τ,	OTAL NET DI	ISCOLINITED SAV	1NOO (ONE : O	0 \.	\$ 2.700

C. TOTAL NON ENERGY DISCOUNTED SAVINGS (3A2 + 3Bp4)	\$0
4. SIMPLE PAYBACK 1G/(2N3+3A+(3Bp1/ECONOMIC LIFE)):	34.8 YEARS
5. TOTAL NET DISCOUNTED SAVINGS (2N5+3C):	\$3,709
6. SAVINGS TO INVESTMENT RATIO (SIR) 5/1G:	0.50
7. ADJUSTED INTERNAL RATE OF RETURN (AIRR):	0.5%

ENERGY CONSERVATION OPPORTUNITIES (ECO's)

	BUIL	DIN	g N	O. 4	407
--	------	-----	-----	------	-----

ECO NO: IV.F (Hood 3)

ECO NAME: Install make-up air supply for kitchen areas

SUMMARY DATA (DEPENDENT):

KWH Savings: 2.016 KWH/yr

Demand Savings: 0 KW/yr

Gas Savings: 17.9 MCF/yr

Cost Savings: \$ 134 /yr

Implementation Cost: \$ 3,577

Simple Payback: 26.7 Years

Savings to Investment: _____65

Ratio (SIR):

ECO DESCRIPTION:

Currently, the kitchen hoods in use do not contain supply air make-up. This ECO analyzes the addition of make-up air supply for the kitchen hoods.

COST SAVINGS CALCULATIONS:

(Refer to following spreadsheet)

IMPLEMENTATION COSTS:

(Refer to following Cost Estimate)

LIFE CYCLE COST ANALYSIS:

MODIFIED BIN METHOD CALCULATIONS

REFER TO ASHRAE 1993 FUNDAMENTALS

BLDG. N	10			44	368	407	1350	1387	1462	2399	2652
TIME OF				6:00A	6:00A	7A-10P	4:00A	10:00A	9A-8:30P	5:00A	
				1					1		
OPERAT				1:30P	2:00P	7A-2P	8:30P	9:00P	9A-10:30P	-	
DAYS/W		1	T	5	5	4,3	6	5	5,2	7	4
DB	MID	•	HUMID		HRS	HRS	HRS	HRS	HRS	HRS	HRS
RANGE		WB	RATIO	/YR.	/YR.	/YR.	/YR.	/YR.	/YR.	/YR.	/YR.
100/104		74	0.0116	6.4	7.0	14.6	14.5	10.1	15.8	16.1	7.1
95/99	97	74	0.0126	59.4	64.8	139.8	139.4	97.9	152.8	153.4	67.7
90/94	92	74	0.0139	135.0	147.3	309.0	307.1	213.4	334.4	339.8	149.6
85/89	87	73	0.0143	173.8	189.6	418.5	418.7	296.3	461.3	458.6	202.9
80/84	82	72	0.0146	213.2	231.4	530.6	557.5	382.4	589.7	595.6	253.5
75/79	77	70	0.0142	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70/74	72	66	0.0123	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
65/69	67	61	0.0101	196.1	208.4	418.7	527.9	283.1	433.6	535.7	183.2
60/64	62	56	0.0082	161.8	172.0	346.9	437.0	235.1	359.9	443.3	151.9
55/59	57	51	0.0066	132.3	140.5	288.0	363.6	196.9	300.7	367.8	126.2
				1		ı					
50/54	52	47	0.0057	118.4	125.4	256.0	332.4	174.6	265.8	333.0	110.6
45/49	47	43	0.0050	92.0	96.8	190.1	260.7	127.1		257.6	79.5
40/44	42	38	0.0039	72.4	75.9	138.6	198.4	88.8	135.1		56.1
35/39	37	34	0.0034	44.4	46.1	75.5	120.8	44.9	I I	116.1	28.1
30/34	32	29	0.0028	23.0	23.8	34.9	60.3	18.9	28.8	57.4	12.0
25/29	27	25	0.0023	8.3	8.4	9.6	21.3	3.8	5.8	19.4	2.4
20/24	22		0.0016	2.4	2.5	3.6	6.1	2.0	3.0	5.9	1.3
15/19	17		0.0013	0.4	0.4	0.3	0.9	0.0	0.0	0.8	0.0
10/14	12		0.0009	0.2	0.2	0.1	0.4	0.0	0.0	0.4	0.0
	L									₩.7	

ASSUMPTIONS

- 1) SUMMER ROOM DESIGN: 78FDB, 50%RH
- 2) WINTER ROOM DESIGN: 70FDB, 40%RH
- 3) HUMIDITY RATIOS FOR THE SPACE BASED ON SUMMER & WINTER ROOM DESIGN TEMP.

EQUIPMENT:

SMALL AIR COOLED CHILLER (3-25 TONS): 8.57 BTU/WATT-H LARGE AIR COOLED CHILLER (25-100 TONS): 8.63 BTU/WATT-H SMALL WATER COOLED CHILLER (25-100 TONS): 11.11 BTU/WATT-H LARGE WATER COOLED CHILLER (>100 TONS): 12.12 BTU/WATT-H

SYSTEM TYPES FOR ABOVE BUILDINGS

BUILDING	SYSTEM TYPE
NUMBER	
44	SMALL AIR COOLED
368	SMALL AIR COOLED
407	LARGE AIR COOLED
1350	LARGE WATER COOLED
1387	SMALL AIR COOLED
1462	LARGE AIR COOLED
2399	LARGE WATER COOLED
2652	LARGE AIR COOLED

		TOTAL		A50A7	70000	10000	1836805	2227056	2446401	00000	000000	1143855	828299	1007168	4048759	50,000	1032201	668519	363783	112530	48274	3643	100	7081	405	7926	400
		ğ	MEAR	148	0 0	0.00	0.00	418.5	530.6	7.07	10.	346.9	288.0	258.0			0.0	75.5	8 9	0 9	3.6	0.3	-		֡֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓		
		TOTAL	BTCH	5885	5784		04A0	5322	4611	400	080	3298	2876	3035	5517		4	6655	10438	11757	13252	14572	15803		קרו הסר קרו דר מסר	COOLING SAM	COOLING KWH
_		ATENT	BTCH	1220	2004		3223	3572	3833	9308	000	1742	348	436	1045	2 2	3	2438	3049	3388	3920	4269	4617	KRTII		- ·	
NOW 30% CONDITIONED AIR IS EXHAUSTED	600CFM	SENS. L		4666	3694	2222	27.77	7.20	778	583	3 1	1555	2527	3499	447	2773	2 1	0 1	1367	6328	9331	10303	11275	OTAL COOLING	TOTAL DEATING	FOLIPMENT & 69 RTHAWATT UP	
NR IS EXI	EXHAUST CFM=6FTx1FTx100FPM=600CFM		HR RM	0.0102	0.0102	0400	20100	2010.0	0.0102	0 0062	1000	0.002	0.0062	0.0062	0.0062	0.000	3 6 6 6	0.0002	2000.0	0.0002	0.0062	0.0062	0.0062	OTAL		A GO DI	3
TONED /	FTX1FTX		RM HR OA	0.0116	0.0126			0.0	0.0146	0.0101			0.0066	0.0057		00000	2000		75000		0.0017	0.0013	0.000			IPMENT	
LIQNO	FM=6	7			78	78	9 9	2	78	20	2	2	2	2	2	5	? \$	2 8	2 8	2 1	2	2	2)
% 0	STC	NG 4	80 -	102	26 (0		0	82	67	6	י פ	57	52	47	42	6		2 6	7	22	17	12				
NOW 3	EXHAU	BUILDING 407	CFIN	180	180	1 60	9 9	3	8	180		3	5	180	180	180		3 6	2 5	3 5	200	180	180				
		TOTAL	5	286557	2694604	6122683	7423530	750050	8154671	5555460	SRIDARD	000000	2760985	3357228	3495842	3440673	222R3QR	1212810	275400	2000	218001	12143	6622	24682	26419	2880]
		EES	MEAR	14.6	139.8	309.0	418.5		530.6	418.7	348 9		7,000	258.0	190.1	138.6	75.5	94.0	9 0	9 0	0.0	ල ල	<u>.</u>			KWH	
		TOTAL	BTCH	19618	19282	19817	17738	0	153/0	13270	10992		9908	13116	18389	24823	29515	347BB	30100	44473	7/14	48574	52975	OR THE	OR THE	COOLING	
STED	!	ATENT		4066	6970	10745	1908	40770	12//0	11326	5808	0977	2011	1452	3485	6299	8131	10164	11326	1906B	9000	14230	15391	KBTU F	KBTU F	-HR C	
ASSUME 100% CONDITIONED AIR IS EXHAUSTED	=600CFM	SENS. LATEN	85 E	15552	12312	9072	5832	000	7607	1944	5184	7070	94740	11664	14904	16144	21384	24624	27864	31104	5 5	34344	37584	TOTAL COOLING KBTU FOR THE Y	TOTAL HEATING KBTU FOR THE Y	EQUIPMENT 8.63 BTU/WATT-HR	
NED AIR	K100FPM:		HE HE	0.0102	0.0102	0.0102	0.0102			0.0101 0.0062	0.0062	0000	0.000	0.0062	0.0062	0.0062	0.0062	0.0062				0.002	0.0062	TOTAL C	TOTAL H	. 8.63 BT	
ONDITIO	EXHAUST CFM=6FTx1FTx100FPM=600CFW		RM HR OA			78 0.0139	78 0.0143			70 0.0101	70 0.0082		0.000	7500.0		70 0.0039 0.0062	70 0.0034	70 0.0027	70 0.0023		100.00	0.0013	0 0.0009 0.0062			JIPMENT	
% 00	Ë !				2 2	72 7	7 7	RO 7		7 7	2	7	• i	7 79	7 7	2	7 7	32 7	•	5	. i	≤ i	< N			OH OH	
	TSO S	ž			_	8 009	900			9 009	900	200		_	88	8	8	600	_	2	? ?	- ·	2				
ASSI	X X	ב ב ב	ਹ ⁽	©	Ó	Ő	Ø	2	•	Ø	Ø	ũ	5 è	Õ	Ø	ھ	ھ	ၓ	9	009	Ó	3 8	3		1	62	4

C	ARTER & BURGESS	COST ESTIMATIN	IG ANALYSIS
PROJECT NAME: FORT S	AM HOUSTON EEAP	PROJECT NO:	91109912F
PROJECT LOCATION: SAI	ANTONIO, TEXAS	ESTIMATOR: C.	.M. JOHNSON
SUBMITTAL:	35.0%	DATE:	27-Oct-93
ECO NO/BUILDING:IV. F./	SLDG 407 HOOD 3	CHECKED BY:	SPC
TASK DESCRIP	TION QUANTITY	LABOR	MATERIALS TOTAL

# FOOD COME. SUPPLY EXHAUST UNIT Company	ECO NO/BUILDING:IV. F./BLDG 407 H			CHECKED BY: SPC							
Table	TASK DESCRIPTION										
E LF (140.00)		NO/UN	UNIT	MH UN	HRS	UN PRICE		UN PRICE			
ELF 0.6 MCFM 144.50 267.00 350.00 2100.00 285.00 200.00 0.00 0.00 0.00 0.00 0.00 0.0			1								
SOMB. SUPPLY EXHAUST UNIT 0.6 MCFM 140.00 84.00 775.00 455.00 5.00 0.00 0.00 0.00 0.00 0.0	TIVE HOOD		l, e			44 50		350.00		236	
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0										54	
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0				ŀ			0.00		0.00		
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		Ì					1				
0.00											
0.00			İ								
0.00							0.00			(
0.00										(
0.00		Ì								(
0.00											
0.00											
0.00											
0.00										9	
0.00											
0.00											
0.00							0.00	·	0.00		
0.00										(
0.00										9	
0.00				1				1		č	
0.00 0.00					ı					č	
0.00 0.00				Ī						ō	
0.00 0.00			ı	ļ	ĺ			ı		0	
0.00 0.00			ı		- 1					0	
0.00 0.00			1							0	
0.00 0.00					ŀ					Ö	
0.00 0.00				ŀ		Ì		ŀ		C	
0.00 0.00		ŀ	ı		i					g	
0.00 0.00			I		1						
0.00 0.00	ĺ		ļ	Ī		i				0	
0.00 0.00			1		ı	1		Į.		Ğ	
0.00 0.00			ı					1		0	
0.00 0.00		1		- 1				1		0	
0.00		l		- 1				l		Ü	
0.00				1	1			- 1		0	
0.00 0.00		l l			- 1			i		Ö	
UBTOTAL VERHEAD & PROFIT 10.00% 0.00 0.00 0.00 0.00 0.00 0.00 0.0		1		- 1	ı I			1		0	
UBTOTAL VERHEAD & PROFIT 10.00% 0.00 0.00 0.00 0.00 0.00 0.00 0.0								ŀ		0	
UBTOTAL VERHEAD & PROFIT 10.00% 0.00 0.00 0.00 0.00 0.00 0.00 0.0		ľ		- 1				ı		0	
UBTOTAL VERHEAD & PROFIT 10.00% 0.00 0.00 0.00 0.00 0.00 0.00 0.0		1	Í		ł	I				0	
UBTOTAL VERHEAD & PROFIT 10.00% 0.00 0.00 0.00 0.00 0.00 0.00 0.0			- 1	i	l	1		1		ō	
UBTOTAL VERHEAD & PROFIT 10.00% 0.00 0.00 0.00 0.00 0.00 0.00 0.0		Ī		İ	ļ			İ		0	
UBTOTAL VERHEAD & PROFIT 10.00% 0.00 0.00 0.00 0.00 0.00 0.00 0.0		Į	i		J			1		0	
UBTOTAL VERHEAD & PROFIT 10.00% 0.00 0.00 0.00 0.00 0.00 0.00 0.		i	j	ļ	J	1		ļ			
UBTOTAL VERHEAD & PROFIT 10.00% 0.00 0.00 0.00 0.00 0.00 0.00 0.			1	l	- 1	1		İ			
UBTOTAL \$351 \$2,565 \$2,916 VERHEAD & PROFIT 10.00% \$292	1	İ	1	. [- 1	1	0.00			0	
UBTOTAL \$351 \$2,565 \$2,916 VERHEAD & PROFIT 10.00% \$292	1	1	1				0.00	1	0.00	ō	
UBTOTAL \$351 \$2,565 \$2,916 VERHEAD & PROFIT 10.00% \$292			1	ł	1	1		1		0	
VERHEAD & PROFIT 10.00% S292	SUBTOTAL			1						0	
OTAL		10.00%					1004		\$2,565		
	OTAL									\$292 \$3,208	

LOCATION:	FO	RT SAM HOUST	TON	_REGION NO	3	PROJECT NO	91109912F
PROJECT TITLE:		FORT SAM HO				FISCAL YEAR	
DISCRETE PORTI						UPPLY FOR KITO	CHEN AREAS
ANALYSIS DATE:	NOVEMBER	1, 1993 EC	CONOMIC LIFE	20	PREPARER	C. M. JO	HNSON
1. INVESTMENT	COSTS:						
A. CONSTRUCTIO	ON COST		\$3,208				
B. SIOH	DIN 0001		\$176	-	:		
C. DESIGN COST			\$192	_	•		
D. TOTAL COST (1	A+1B+1C)		\$3,577	_			
E. SALVAGE VALÙ		G EQUIPMENT		\$0			
F. PUBLIC UTILITY	COMPANY R	EBATE		\$0			
G. TOTAL INVEST	MENT (1D-1E	–1F)			\$3,577		
	·	•				- :	
2. ENERGY SAVII	NGS (+)/COS	<u>「(</u> –):					
DATE OF NISTIR 8	5-3273-X US	SED FOR DISCO	DUNT FACTOR	1S: <u>"N</u>	IOVEMBER 4, 1	992	
ENERGY SOURCE	COST \$/MBTU(1)	SAVINGS MBTU/YR(2)	ANNUAL \$ SAVINGS(3)	DISCOUNT FACTOR(4)	DISCOUNTED SAVINGS(5))	
A. ELEC	\$10.55	6.88	<u>\$73</u>	14.65	\$1,063		
B. DIST			\$0	17.70	\$0		
C. RESID			\$0	20.99	\$0		
D. NG E. PPG	\$3.31	18.49	\$61	20.60	\$1,261		
F. COAL			\$0	13.59	\$0		
G. SOLAR			\$0 \$0	16.32 13.59	\$0 \$0		
H. GEOTH			\$0	13.59	\$0		
I. BIOMA			\$0	13.59	\$0		
J. REFUS			\$0	13.59	\$0		
K. WIND			\$0	13.59	\$0		
L. OTHER			\$0	13.59	\$0		
M. DEMAND SAVIN	NGS		\$0	13.59	\$0		
N. TOTAL		25.37	\$134		\$2,324		
3. NON ENERGY			-				
1. DISCOUNT FAC	TOR (TABLE A			^			
2. DISCOUNTED S	PAVINGS/COS	I (3A X 3A1)	_	\$0			

B. NON RECURRING SAVINGS (+) OR COST(-)

	ITEM	SAVINGS(+)		DISCOUNT	DISCOUNTED SAV-				
		COST(-)(1)	OCCUR.(2)	FACTOR(3)	INGS(+)COST(-)(4)				
a.	N/A	\$0	1	0.96	\$0				
b.	N/A	\$0	2	0.92	\$0				
C.	N/A	\$0	3	0.89	\$0				
d.	N/A	\$0	4	0.85	\$0				
e.	N/A	\$0	5	0.82	\$0				
f.	N/A	\$0	6	0.79	\$0				
g.	N/A	\$0	7	0.76	\$0				
h.	N/A	\$0	8	0.73	\$0				
i.	N/A	\$0	9	0.7	\$0				
i.	N/A	\$0	10	0.68	\$0				
k.	N/A	\$0	11	0.65	\$0				
i.	N/A	\$0	12	0.62	\$0				
m.	N/A	\$0	13	0.6	\$0				
n.	N/A	\$0	14	0.58	\$0				
O.	N/A	\$0	15	0.56	\$0				
p.	TOTAL	\$0			\$0				
•				•					
C.	TOTAL NON E	NERGY DISCO	JNTED SAVIN	GS (3A2 + 3Bp4	<u> </u>				
4. S	IMPLE PAYBA	CK 1G/(2N3+3A	\+(3Bp1/ECO	NOMIC LIFE)):	26.7 YEARS				
<u>5. T</u>	OTAL NET DIS	COUNTED SAV	INGS (2N5+3	© :	\$2,324				
6. S	AVINGS TO IN	VESTMENT RAT	ПО (SIR) 5/1G	<u>:</u>	0.65				
<u>7. A</u>	7. ADJUSTED INTERNAL RATE OF RETURN (AIRR): 1.8%								

ENERGY CONSERVATION OPPORTUNITIES (ECO's)

BUILDING NO. 407								
ECO NO: XI.A.								
ECO NAME: Replace be	oilers v	vith 99% effic	ient boilers.					
SUMMARY DATA (DE	PENDI	ENT):						
KWH Savings:		0	KWH/yr					
Demand Savings:			KW/yr					
Gas Savings:		95.8	МСГ/уг					
Cost Savings:	<u>\$</u>	327	/уг					
Implementation Cost:	<u>\$</u>	34,280						
Simple Payback:		104.8	Years					
ECO DESCRIPTION:								
This ECO analyzes replacing the existing domestic hot water boilers with 99% efficient boilers.								
COST SAVINGS CALCU	LATIC	ONS:						

(Refer to following SimpCalc output)

IMPLEMENTATION COSTS:

(Refer to following Cost Estimate)

LIFE CYCLE COST ANALYSIS:

TEXAS LoanSTAR Program - ECRM Simplified Calculation Ver 2.0

Page 1

10/21/93

SimpCalc 2.0 SUMMARY (by FORM) - FORT SAM HOUSTON

Form	Facility	ECRM Desc. Page		KV ========	MCF/yr	mBtu/Yr		Imp.Cost	-
C9-01	BLDG 0407 OFFICERS CLUB	Low Eff Hot Wat 24	0	.00	95.8	98.7	327	34280	104.8
		*** SUB-TOTAL ***	0	.00	95.8	98.7	327	34280	104.8
	** GRAND TOTAL **	••••••	0	.00	95.8	98.7	327	34280	104.8

TEXAS LoanSTAR Program - ECRM Simplified Calculation Ver 2.0

	ated ECRM Detail - FORT SAM HOUSTON	Page	
	ficiency DHW Units - BLDG 0407 OFFICERS CLUB	-23825-	(G)
Cost Source: vender qu	ote		
Description: Install h	igh efficiency water heater.		
A) 2.40 Gal/person	Daily Hot Water Consumption per Capita (Table 10)		
B) 286 People	Number of People in Facility		
C) 365 Days	Days per Year of Occupancy		
	Hot Water Temperature		
E)7000	Heating Efficiency Existing		
F) <u>.9900</u>	Heating Efficiency Proposed		
G) 45.70 mmBTU/yr	Standby Loss for Gas Water Heater		
H)40	Reduction in Standby Loss		:
I) \$ 3.41 /MCF	Cost per MCF		
J) \$ 34280 /Unit	Installed Cost of Replacement Unit		
K) <u>146.1</u> mmBTU/yr	Annual BTU's for Hot Water		
L) 266.0 MCF/year	Existing Unit Consumption		
M) <u>170.2</u> MCF/year	Proposed Unit Consumption		
N) <u>95.8</u> MCF/year	Total Consumption Savings		
0) \$ <u>327</u> /year	Annual Cost Savings		
P) 104.8 years	Simple Payback		

ENERGY CONSERVATION OPPORTUNITIES (ECO's)

В	U	Π L	D	${f I}{f r}$	V	G	N	O),	13	15	0

ECO NO: IV.F (Hood 1)

ECO NAME: Install make-up air supply for kitchen areas

SUMMARY DATA (DEPENDENT):

KWH Savings: 5,115.7 KWH/yr

Demand Savings: 0 KW/yr

Gas Savings: 61.5 MCF/yr

Implementation Cost: \$ 4,410

Simple Payback: 11.2 Years

Savings to Investment: 1.59

Ratio (SIR):

ECO DESCRIPTION:

Currently, the kitchen hoods in use do not contain supply air make-up. This ECO analyzes the addition of make-up air supply for the kitchen hoods.

COST SAVINGS CALCULATIONS:

(Refer to following spreadsheet)

IMPLEMENTATION COSTS:

(Refer to following Cost Estimate)

LIFE CYCLE COST ANALYSIS:

MODIFIED BIN METHOD CALCULATIONS

REFER TO ASHRAE 1993 FUNDAMENTALS

BLDG. N	0.			44	368	407	1350	1387	1462	2399	2652
TIME OF				6:00A	6:00A	7A-10P	4:00A	10:00A	9A-8:30P	5:00A	10:00A
OPERAT	ION			1:30P	2:00P	7A-2P	8:30P	9:00P	9A-10:30P	7:30P	7:00P
DAYS/W	EEK			5	5	4,3	6	5	5,2	7	4
DB	MID	МС	HUMID	HRS	HRS	HRS	HRS	HRS	HRS	HRS	HRS
RANGE	PT.	WB	RATIO	/YR.	/YR.	/YR.	/YR.	/YR.	/YR.	/YR.	/YR.
100/104	102	74	0.0116	6.4	7.0	14.6	14.5	10.1	15.8	16.1	7.1
95/99	97	74	0.0126	59.4	64.8	139.8	139.4	97.9	152.8	153.4	67.7
90/94	92	74	0.0139	135.0	147.3	309.0	307.1	213.4	334.4	339.8	149.6
85/89	87	73	0.0143	173.8	189.6	418.5	418.7	296.3	461.3	458.6	202.9
80/84	82	72	0.0146	213.2	231.4	530.6	557.5	382.4	589.7	595.6	253.5
75/79	77	70	0.0142	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70/74	72	66	0.0123	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
65/69	67	61	0.0101	196.1	208.4	418.7	527.9	283.1	433.6	535.7	183.2
60/64	62	56	0.0082	161.8	172.0	346.9	437.0	235.1	359.9	443.3	151.9
55/59	57	51	0.0066	132.3	140.5	288.0	363.6	196.9	300.7	367.8	126.2
				-							
50/54	52	47	0.0057	118.4	125.4	256.0	332.4	174.6	265.8	333.0	110.6
45/49	47	43	0.0050	92.0	96.8	190.1	260.7	127.1	192.8	257.6	79.5
40/44	42	38	0.0039	72.4	75.9	138.6	198.4	88.8	135.1	195.0	56.1
35/39	37	34	0.0034	44.4	46.1	75.5	120.8	44.9	68.1	116.1	28.1
30/34	32	29	0.0028	23.0	23.8	34.9	60.3	18.9	28.8	57.4	12.0
			İ			į				l	
25/29	27	25	0.0023	8.3	8.4	9.6	21.3	3.8	5.8	19.4	2.4
20/24	22	20	0.0016	2.4	2.5	3.6	6.1	2.0	3.0	5.9	1.3
15/19	17	15	0.0013	0.4	0.4	0.3	0.9	0.0	0.0	0.8	0.0
10/14	12	10	0.0009	0.2	0.2	0.1	0.4	0.0	0.0	0.4	0.0

ASSUMPTIONS

- 1) SUMMER ROOM DESIGN: 78FDB, 50%RH
- 2) WINTER ROOM DESIGN: 70FDB, 40%RH
- 3) HUMIDITY RATIOS FOR THE SPACE BASED ON SUMMER & WINTER ROOM DESIGN TEMP.

EQUIPMENT:

SMALL AIR COOLED CHILLER (3-25 TONS): 8.57 BTU/WATT-H LARGE AIR COOLED CHILLER (25-100 TONS): 8.63 BTU/WATT-H SMALL WATER COOLED CHILLER (25-100 TONS): 11.11 BTU/WATT-H LARGE WATER COOLED CHILLER (>100 TONS): 12.12 BTU/WATT-H

SYSTEM TYPES FOR ABOVE BUILDINGS

BUILDING	SYSTEM TYPE
NUMBER	
44	SMALL AIR COOLED
368	SMALL AIR COOLED
407	LARGE AIR COOLED
1350	LARGE WATER COOLED
1387	SMALL AIR COOLED
1462	LARGE AIR COOLED
2399	LARGE WATER COOLED
2652	LARGE AIR COOLED

			213804	2015788	4569660	4000000	6426620		5254226	3602481	2613916	3269397	3595913	3694224	2674156	1573646	625109	202324	31226	17028	18790	97.154	2102
	9		14.5	430 4	1.00	748 4	557.5		527.9	437.0	363.6	332.4	260.7	198.4	120.6	60.3	21.3	8	0	7	: YEAR	YEAR	3 KWH
	TOTAL	2 E	14713	14461	14863	200	11527		8825	8244	7189	9837	13792	16617	22136	26091	29392	33129	36430	39731	KRTU EOB THE YEAB	OR THE	COOLING KWH
	ATENIT		3049	5227	8050	8080	9583		4040	4356	671	1089	2614	2008	8098	7623	8494	9801	10672	11543	KRTU	KRTIIF	
NOW 30% CONDITIONED AIR IS EXHAUSTED	EXTROST OF MEST IXPLIXIOUTEMETOXOCFM BUILDING 1950	E E E	11664	9234	6804	4374	1944	,	004	3888	6318	8748	11178	13608	16038	18468	20898	23328	25758	28188	COOLING	TOTAL HEATING KRTII FOR THE YEAR	EQUIPMENT 12.12 BTU/WATT-HR
IR IS EX		HBR	0.0102	0.0102	0.0102	0.0102	0.0102	900	2000	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062		OTAL H	12.12 B
ONED A	IXILIXI	RMHROAH	0116 0	78 0.0126 0	0.0139 0	0.0143 0					0.0066 0	0.0057 0	0.0050 0	0039 0	0.0034	0.0027 0	0.0023 0	0.0017	0.0013			· -	MENT
HONC		RMH			78.0	78.0	78 0	6	2 1	2	2	2	2	2	2	2	2	2	2	20			EQUIP
30% CC	BUILDING 1350	M	0 102	_	0 92	0 87	0 82	6	5 6	0 62	0 57	0 52	0 47	0 42	0 37	0 32	0 27	0 22	0 17	0 12			
NON		CFM	450	45	450	450	450	AEO	? =	4	₹ 4	₹	450	₹	₹	54	€	4	54	450			
	TOTAL	ETE	712014	6719293	15212933	18565928	21422066	17514005	4000000	12000208	8713054	10697991	11986378	12314060	8913854	5246155	2083697	674412	104086	56759	62632	90513	7306
						_		_														œ	KWH
	HAS	MEAR	14.5	139.4	307.1	418.7	557.5	527.0	497.0	5.75	363.6	332.4	260.7	198.4	120.8	60.3	21.3	6	6 .0			~	
	TOTAL HRS	-				44346 418.7							45972 260.7					110430 6.1				~	
JSTED	TENT TOTAL	-	49044			-	38424		037480	20402	23964	32790	45972	62058	73788	86970	97974	110430	121434			FOR THE	COOLING
IS EXHAUSTED	TENT TOTAL	нота нота	10164 49044	17424 48204	49542	44346	38424	33174	14500 07480	14320 27480	2904 23964	3630 32790	8712 45972	16698 62058	20328 73788	25410 86970	26314 97974	32670 110430	35574 121434			FOR THE	COOLING
JED AIR IS EXHAUSTED	TENT TOTAL	нота нота	38880 10164 49044	30780 17424 48204	22680 26862 49542	14580 29766 44346	6480 31944 38424	4860 28314 33174	12060 14520 27480	12900 14320 2/460	21060 2904 23964	29160 3630 32790	37260 8712 45972	45360 16698 62058	53460 20328 73788	61560 25410 86970	69660 28314 97974	77760 32670 110430	85860 35574 121434	93960 38478 132438		FOR THE	COOLING
IDITIONED AIR IS EXHAUSTED	TENT TOTAL	нота нота	0.0102 38880 10164 49044	0.0102 30780 17424 48204	0.0102 22680 26862 49542	0.0102 14580 29766 44346	0.0102 6480 31944 38424	4860 28314 33174	12060 14520 27480	0.0002 12900 14320 2/460	0.0062 21060 2904 23964	0.0062 29160 3630 32790	0.0062 37260 8712 45972	0.0062 45360 16698 62058	0.0062 53460 20328 73788	0.0062 61560 25410 86970	0.0062 69660 28314 97974	0.0062 77760 32670 110430	85860 35574 121434	93960 38478 132438		FOR THE	COOLING
% CONDITIONED AIR IS EXHAUSTED M=3FTx5FTx10xFPM=1500CFM	TENT TOTAL	няям втин втин втин	0.0116 0.0102 38880 10164 49044	0.0126 0.0102 30780 17424 48204	22680 26862 49542	0.0143 0.0102 14580 29766 44346	6480 31944 38424	28314 33174	0.0082 0.0082 12080 14520 27480	0.0002 12900 14320 2/460	0.0000 0.0002 21060 2904 23964	0.005/ 0.0062 29160 3630 32790	0.0050 0.0062 37260 8712 45972	0.0039 0.0062 45360 16698 62058	0.0034 0.0062 53460 20328 73788	0.0027 0.0062 61560 25410 86970	0.0062 69660 28314 97974	0.0017 0.0062 77760 32670 110430	85860 35574 121434			FOR THE	COOLING
E 100% CONDITIONED AIR IS EXHAUSTED ST CFM=3FTx5FTx100FDM=1500CFM	TENT TOTAL	DB RMHROA HRRM BTUH BTUH BTUH	78 0.0116 0.0102 38880 10164 49044	78 0.0126 0.0102 30780 17424 48204	0.0139 0.0102 22680 26862 49542	0.0143 0.0102 14580 29766 44346	0.0146 0.0102 6480 31944 38424	0.0101 0.0062 4860 28314 33174	0.0082 0.0082 12080 14520 27480	0.000£ 0.000£ 1£800 140£0 £/400	0.0000 0.0002 21060 2904 23964	70 0.0057 0.0062 29160 3630 32790	70 0.0050 0.0062 37260 8712 45972	0.0039 0.0062 45360 16698 62058	70 U.0034 U.0062 53460 20328 73788	0.0027 0.0062 61560 25410 86970	0.0023 0.0062 69660 28314 97974	0.0017 0.0062 77760 32670 110430	0.0013 0.0062 85860 35574 121434	93960 38478 132438		FOR THE	
ASSUME 100% CONDITIONED AIR IS EXHAUSTED EXHAUST CFM=3FTx5FTx100FDM=1500CFM	TENT TOTAL	DB RM HR OA HR RM BTUH BTUH BTUH	102 78 0.0116 0.0102 38880 10164 49044	97 78 0.0126 0.0102 30780 17424 48204	92 78 0.0139 0.0102 22680 26862 49542	78 0.0143 0.0102 14580 29766 44346	78 0.0146 0.0102 6480 31944 38424	0.0101 0.0062 4860 28314 33174	62 70 0 0082 0 0082 12080 14520 27480	57 70 0,000	0.0000 0.0002 21060 2904 23964	52 /0 0.005/ 0.0062 29160 3630 32790	47 70 0.0050 0.0062 37260 8712 45972	42 70 0.0039 0.0082 45360 16698 62058	3/ /U U.0034 U.0062 53460 20328 73788	32 /0 0.002/ 0.0062 61560 25410 86970	27 70 0.0023 0.0062 69660 28314 97974	22 /0 0.001/ 0.0062 77760 32670 110430	17 70 0.0013 0.0062 85860 35574 121434	93960 38478 132438		FOR THE	COOLING

PROJECT NAME: FORT SAM HOUST	ON EEAP			PROJECT NO	: 911099	12F				
PROJECT LOCATION: SAN ANTONIC				ESTIMATOR:						
SUBMITTAL:	35.0%			DATE: 27-Oct-93						
ECO NO/BUILDING:IV. F./BLDG 1350				CHECKED BY: SPC						
TASK DESCRIPTION		VTITY		LABOR		MATER	ALC	LS TOTAL		
TASK DESCRIPTION	NO/UN		MH UN HRS	- V .	COST	UN PRICE COST		COST		
	NO/UN	PUNITS	MESON	WOR!PRICE	0.00	ON PRICE	0.00	COSI		
		i	l i		0.00		0.00			
3'X 5' HOOD	5			44.50			2000.00	22		
COMB. SUPPLY EXHAUST UNIT	1.5	MCFM	l i	140.00	210.00	775.00	1162.50	15		
		l	l J		0.00 0.00		0.00 0.00			
	1				0.00		0.00			
			[]		0.00		0.00			
					0.00		0.00			
					0.00		0.00			
					0.00 0.00		0.00			
					0.00		0.00 0.00			
				1	0.00		0.00			
					0.00		0.00			
					0.00		0.00			
					0.00		0.00			
		i	1	[0.00		0.00			
				1	0.00		0.00 0.00			
	1				0.00		0.00			
	1			1	0.00		0.00			
	ł				0.00		0.00			
					0.00		0.00			
				1	0.00		0.00			
			ı	1	0.00		0.00			
				1	0.00		0.00			
					0.00		0.00			
	1 1				0.00		0.00			
	1 1		I	1	0.00		0.00			
		I			0.00		0.00			
					0.00		0.00			
	1 1			1	0.00		0.00			
				1	0.00		0.00			
			1		0.00		0.00			
	į į			1	0.00		0.00			
		ł		1	0.00	j	0.00			
		1		1	0.00	ı	0.00 0.00			
					0.00	•	0.00			
	1 1			1	0.00		0.00			
		ı		1	0.00		0.00			
	1 Ì		i	į į	0.00		0.00			
]]			į į	0.00		0.00			
	i i	j	i	1	0.00	I	0.00			
		İ	l	1	0.00	ĺ	0.00			
	j i	Ī		1	0.00	ŀ	0.00			
]			1	0.00		0.00			
	j i				0.00	t	0.00			
]] [0.00	j	0.00			
]	i		1 1	0.00	1	0.00			
	1		. 1	1 1	0.00	Į.	0.00			
		l		1 1	0.00	I	0.00			
]	0.00	j	0.00			
	1 1				0.00	•	0.00			

\$433

\$3,163

OVERHEAD & PROFIT

TOTAL

10.00%

\$3,595

\$3,955

\$360

LOCATION:	FO	RT SAM HOUST		_REGION NO		PROJECT NO.	91109912F
PROJECT TITLE:		FORT SAM HO				FISCAL YEAR	
DISCRETE PORTI					AKE-UP AIR S	SUPPLY FOR KITC	HEN AREAS
ANALYSIS DATE:	NOVEMBER	1, 1993 EC	CONOMIC LIFE	20	PREPARER	C. M. JOH	HOSON
1. INVESTMENT	COSTS:	,					
A. CONSTRUCTION B. SIOH C. DESIGN COST D. TOTAL COST (1) E. SALVAGE VALU F. PUBLIC UTILITY G. TOTAL INVEST	IA+1B+1C) JE OF EXISTIN COMPANY R	EBATE	\$3,955 \$218 \$237 \$4,410	\$0 \$0	 \$4,410		
2. ENERGY SAVIIDATE OF NISTIR 8		•	OUNT FACTOR	IS: 'N	IOVEMBER 4, 1	1992	
ENERGY SOURCE	COST \$/MBTU(1)	SAVINGS MBTU/YR(2)	ANNUAL \$ SAVINGS(3)	DISCOUNT FACTOR(4)	DISCOUNTEI SAVINGS(5)		
A. ELEC	\$10.55	17.46	\$184	14.65	\$2,699		
B. DIST			\$0	17.70	\$0		
C. RESID			\$0	20.99	\$0		
D. NG	\$3.31	63.36	\$210	20.60	\$4,320		
E. PPG			\$0	13.59	\$0		
F. COAL			\$0	16.32	\$0		
G. SOLAR			\$0	13.59	\$0		
H. GEOTH			\$0	13.59	\$0		
I. BIOMA J. REFUS			\$0	13.59	\$0		
K. WIND			\$0	13.59	\$0		
L. OTHER			\$0 \$0	13.59	\$0		
M. DEMAND SAVIN	IGS		\$0	13.59 13.59	\$0 \$0		
N. TOTAL		80.82	\$394	10.59	\$7,019		
3. NON ENERGY S A. ANNUAL RECUR 1. DISCOUNT FAC	RING (+/-)	OR COST (-):	•				
2. DISCOUNTED S			<u>.</u>	\$0			

B. NON RECURRING SAVINGS (+) OR COST(-)

	ITEM	SAVINGS(+) COST(-)(1)	YEAR OF OCCUR.(2)	DISCOUNT FACTOR(3)	DISCOUNTED SAV- INGS(+)COST(-)(4)					
a.	N/A	\$0	1	0.96	\$0					
b.	N/A	\$0	2	0.92	\$0					
C.	N/A	\$0	3	0.89	\$0					
d.	N/A	\$0	4	0.85	\$0					
e.	N/A	\$0	5	0.82	\$0					
f.	N/A	\$0	6	0.79	\$0					
g.	N/A	\$0	7	0.76	\$0					
h.	N/A	\$0	8	0.73	\$0					
i.	N/A	\$0	9	0.7	\$0					
j.	N/A	\$0	10	0.68	\$0					
k.	N/A	\$0	11	0.65	\$0					
I.	N/A	\$0	12	0.62	\$0					
m.	N/A	\$0	13	0.6	\$0					
n.	N/A	\$0	14	0.58	\$0					
Ο.	N/A	\$0	15	0.56	\$0					
p.	TOTAL	\$0		-	\$0					
C.	TOTAL NON E	NERGY DISCOU	JNTED SAVIN	GS (3A2 + 3Bp4	\$0					
<u>4. S</u>	4. SIMPLE PAYBACK 1G/(2N3+3A+(3Bp1/ECONOMIC LIFE)):									
<u>5.</u> T	5. TOTAL NET DISCOUNTED SAVINGS (2N5+3C): \$7,019									
<u>6. S</u>	AVINGS TO IN	VESTMENT RAT	10 (SIR) 5/1G	<u>:</u>	1.59					
7. A	7. ADJUSTED INTERNAL RATE OF RETURN (AIRR): 6.4%									

ENERGY CONSERVATION OPPORTUNITIES (ECO's)

BUILDING NO.	1350	
--------------	------	--

ECO NO: XI.A.

ECO NAME: Replace boilers with 99% efficient boiler.

SUMMARY DATA (DEPENDENT):

KWH Savings: 0 KWH/yr

Gas Savings: 271.8 MCF/yr

Cost Savings: \$ 927 /yr

Implementation Cost: \$ 34,280

Simple Payback: <u>37.0</u> Years

ECO DESCRIPTION:

This ECO analyzes replacing the existing domestic hot water boilers with 99% efficient boilers.

COST SAVINGS CALCULATIONS:

(Refer to following SimpCalc output)

IMPLEMENTATION COSTS:

(Refer to following Cost Estimate)

LIFE CYCLE COST ANALYSIS:

TEXAS LoanSTAR Program - ECRM Simplified Calculation Ver 2.0

10/	21/93	SimpCalc 2.0 SUMMARY (by	FORM)	- FORT SA	M HOUSTON			Pa	ige 1
Form	Facility	ECRM Desc. Page	======= KWH/Yr	KV	MCF/yr	mm8tu/Yr	\$/Yr	imp.Cost	PayBack
C9-01	BLDG 1350 DINING FACILITY	/ Low Eff Hot Wat 25	0	.00	271.8	280.0	927	34280	37.0
		*** SUB-TOTAL ***	0	.00	271.8	280.0	927	34280	37.0
	** GRAND TOTAL **		0	.00	271.8	280.0	927	34280	37.0

TEXAS LoanSTAR Program - ECRM Simplified Calculation Ver 2.0

10/21/93 Consolid	0/21/93 Consolidated ECRM Detail - FORT SAM HOUSTON							
*************		*******	3222					
C9-001 Replace Low Ef	ficiency DHW Units - BLDG 1350 DINING FACILITY	-	(G)					
Cost Source: vender qu	ote							
Description: Install h	igh efficiency hot water heaters.							
A)	Daily Hot Water Consumption per Capita (Table 10)							
B) 498 People	Number of People in Facility							
C) 365 Days	Days per Year of Occupancy							
D) 140 Degree/F	Hot Water Temperature							
E)7500	Heating Efficiency Existing							
F) <u>.9900</u>	Heating Efficiency Proposed							
G) 45.70 mmBTU/yr	Standby Loss for Gas Water Heater							
H)	Reduction in Standby Loss		:					
I) \$ 3.41 /MCF	Cost per MCF							
J) \$ 34280 /Unit	Installed Cost of Replacement Unit							
K) <u>763.1</u> mmBTU/yr	Annual BTU's for Hot Water							
L) <u>1047.0</u> MCF/year	Existing Unit Consumption							
M) <u>775.2</u> MCF/year	Proposed Unit Consumption							
N) <u>271.8</u> MCF/year	Total Consumption Savings							
0) \$ <u>927</u> /year	Annual Cost Savings							
P) 37.0 years	Simple Payback							

ENERGY CONSERVATION OPPORTUNITIES (ECO's)

BUILDING NO. 1387

ECO NO:

IV.F (Hood 1)

ECO NAME: Install make-up air supply for kitchen areas

SUMMARY DATA (DEPENDENT):

KWH Savings:

5,702

KWH/yr

Demand Savings:

____0

KW/yr

Gas Savings:

46.9

MCF/yr

Cost Savings:

\$ 365

/yr

Implementation Cost:

\$ 5,964

Simple Payback:

16.3

Years

Savings to Investment:

1.06

Ratio (SIR):

ECO DESCRIPTION:

Currently, the kitchen hoods in use do not contain supply air make-up. This ECO analyzes the addition of make-up air supply for the kitchen hoods.

COST SAVINGS CALCULATIONS:

(Refer to following spreadsheet)

IMPLEMENTATION COSTS:

(Refer to following Cost Estimate)

LIFE CYCLE COST ANALYSIS:

MODIFIED BIN METHOD CALCULATIONS

REFER TO ASHRAE 1993 FUNDAMENTALS

BLDG. N	10			44	368	407	1350	1387	1462	2399	2652
TIME OF				6:00A	6:00A	7A-10P	4:00A	10:00A	9A-8:30P	5:00A	10:00A
OPERAT			ı	1:30P	2:00P	7A-2P	8:30P	9:00P	9A-10:30P		7:00P
DAYS/W				5	5	4,3	6	5	5,2	7	4
DB	MID	МС	HUMID		HRS	HRS	HRS	HRS	HRS	HRS	HRS
RANGE		WB	RATIO	/YR.	/YR.	/YR.	/YR.	MR.	/YR.	MR.	/YR.
100/104	102	74	0.0116	6.4	7.0	14.6	14.5	10.1	15.8	16.1	7.1
95/99	97	74	0.0126	59.4	64.8	139.8	139.4	97.9	152.8	153.4	67.7
90/94	92	74	0.0139	135.0	147.3	309.0	307.1	213.4	334.4	339.8	149.6
85/89	87	73	0.0143	173.8	189.6	418.5	418.7	296.3	461.3	458.6	202.9
80/84	82	72	0.0146	213.2	231.4	530.6	557.5	382.4	589.7	595.6	253.5
75/79	77	70	0.0142	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70/74	72	66	0.0123	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
65/69	67	61	0.0101	196.1	208.4	418.7	527.9	283.1	433.6	535.7	183.2
60/64	62	56	0.0082	161.8	172.0	346.9	437.0	235.1	359.9	443.3	151.9
55/59	57	51	0.0066	132.3	140.5	288.0	363.6	196.9	300.7	367.8	126.2
		- 1	İ			1	-	,			
50/54	52	47	0.0057	118.4	125.4	256.0	332.4	174.6	265.8	333.0	110.6
45/49	47	43	0.0050	92.0	96.8	190.1	260.7	127.1	192.8	257.6	79.5
40/44	42	38	0.0039	72.4	75.9	138.6	198.4	88.8	135.1	195.0	56.1
35/39	37	34	0.0034	44.4	46.1	75.5	120.8	44.9	68.1	116.1	28.1
30/34	32	29	0.0028	23.0	23.8	34.9	60.3	18.9	28.8	57.4	12.0
ľ				İ		İ	İ			- 1	1
25/29	27	25	0.0023	8.3	8.4	9.6	21.3	3.8	5.8	19.4	2.4
20/24	22	20	0.0016	2.4	2.5	3.6	6.1	2.0	3.0	5.9	1.3
15/19	17		0.0013	0.4	0.4	0.3	0.9	0.0	0.0	0.8	0.0
10/14	12	10	0.0009	0.2	0.2	0.1	0.4	0.0	0.0	0.4	0.0

<u>ASSUMPTIONS</u>

- 1) SUMMER ROOM DESIGN: 78FDB, 50%RH
- 2) WINTER ROOM DESIGN: 70FDB, 40%RH
- 3) HUMIDITY RATIOS FOR THE SPACE BASED ON SUMMER & WINTER ROOM DESIGN TEMP.

EQUIPMENT:

SMALL AIR COOLED CHILLER (3-25 TONS): 8.57 BTU/WATT-H LARGE AIR COOLED CHILLER (25-100 TONS): 8.63 BTU/WATT-H SMALL WATER COOLED CHILLER (25-100 TONS): 11.11 BTU/WATT-H LARGE WATER COOLED CHILLER (>100 TONS): 12.12 BTU/WATT-H

SYSTEM TYPES FOR ABOVE BUILDINGS

BUILDING	SYSTEM TYPE
NUMBER	
44	SMALL AIR COOLED
368	SMALL AIR COOLED
407	LARGE AIR COOLED
1350	LARGE WATER COOLED
1387	SMALL AIR COOLED
1462	LARGE AIR COOLED
2399	LARGE WATER COOLED
2652	LARGE AIR COOLED

		OIAL.	2	237513	2284211	E074640	3074316	506/802		400004	3100922	22RASOR	2449400	AC/04/7	2803635	2643671	1590658	7001BE		160552	104120	0	C	20087		20/35	2443
)	2		YEAH	10.1			10.00	- '	7	•	••	-		-				9	9 6	0.0	2.0	0.0	0.0	YEAR		באבון פינוניייייייייייייייייייייייייייייייייי	K K K
			_		23138			18444									35418					58288	63570	FOR THE YEAR			COOLING KWH
	TENT							15333									9757				7990	17078	18469	KBTU	TOT	-	
AUSTED	A LONG			18662	14774	10886	8008	3110	0000	3	6221	10109	13007	1000	000/1	21773	25661						45101	DOLING	FOTAL MEATING KRTH	EQUIDMENT & \$7 DT. WATT UP	
NOW 30% CONDITIONED AIR IS EXHAUSTED EXHAUST CFM=4FTx6FTx100FPM=2400CEM		7007			0.0102	0.0102		0.0102	0 0060	3000	0.0062	0.0062	_			0.0062	0.0062	0.0062					0.0062	FOTAL COOLING	DTAI HE	1 57 DT	
ONED AI		BM HB OA L			0.0126 0	8 0.0139 0	0.0143 0		70 0.0101 0		70 0.0062 0	0.0066 0	0.0057			0.0039 0.	0.0034	0.0027 0	0.6000	07000		50.00	0.0000	ĭ	Ĭ	MENT	
ONDITI M=4F	. 267	Z		2	78	78	78.0		70		2	2	20	2	2 6		2	2	707		2 6	2	2				
0% C(NG 13	2		_	87	92	87	82	67	ç	20	27	52			4	37	32	27		_	= !	5				
NOW 3	BUILDING 1387	SFIX		720	720	720	720	720	720	7007	2	720	720	720	- 1	22	720	720	720	720	7.50	2	720				
	TOTAL	ETC	704740	2 5	369	5054	339	666	7822	200	3	980	463	721	900	000	195	949	840	347068		•	0	69790	69116	8144	•
				2 1	/54/369	16915054	21026339	23509999	15027822	10338408	3	7548660	9162463	9345451	00000	9	5302195	2633949	8	347	;						,
	HAS	MEAR	5	- 6	S. / S	213.4	296.3	382.4	283.1	235.4		196.9	174.8	127.1	9	9 (44.9	1 8.9	9. 8.	2.0) (YEAR	YEAR		
	TOTAL	BTCH	78470	1710	971//	79267	70954	61478	53078	4396B		38342	52464	73555	00000	99890	19091	139152	156758	176688	194294	700770	וטפווא	HI HO	OR THE	COOLING	
STED A	ATENT	BTUH	16262	27878	0/0/7	42979	47626	51110	45302	23232	10101	4646	5808	13939	26717		32323	40656	45302	52272	56918	10110	00010	KBIOL		Ī	
ASSUME 100% CONDITIONED AIR IS EXHAUSTED EXHAUST CFM=4FTx6FTx100FPM=2400CFM	SENS. LATENT	BTCH	62208	40248	01761	36288	23328	10368	7776	20736	9000	23055	46656	59616	72576	9655	9556	96496	111456	124416	137376	45000	130336	TOTAL COULING KBIU FOR THE	IOIAL HEATING KBTU FOR THE Y	EQUIPMENT 8.57 BTU/WATT-HR	
VED AIR		HR RM	0.0102	0.00	20102	0.0102	0.0102	0.0102	0.0062	0.0062	0000	0.002	0.0062	0.0062	0.0062	2900	2000	0.0002	0.0062	.0062	0.0062		7.000K	2	DIVIE OF THE	8.57 BT	
NDITION TX6FTX		RMHROA HREM	78 0.0116	0428	0710	0.0139		0.0146	0.0101	0.0082	9900			0.0050				0.002/	0.0023 (0.0017 0.0062	0.0013			- 1	-	MENT	
% CO M≡4F	97	E E	28	7.00	2 6	9	28	78		2			2		20				2	2	2	2				50.	
100 X	<u>G</u> 13	08	102	0	5 6	28	87	82	29	82	1	0	25	47	42	6	5 6	2	27	22	17	5	1			w	
SSUM	BUILDING 1387	S F	2400	2400		3	2400 2400	2400	2400	8 8	576	3	2400	2400	2400	240	3 6	3	2400	240 240 240 240 240	2400	240					
₹ Ш	Ш																								E	34	2

CARTER	& BU	RGE	SS CC	ST E	STIMATI	NG AI	NALYSIS						
PROJECT NAME: FORT SAM HOUSTO	N EEAP	PROJECT NO: 91109912F ESTIMATOR: C.M. JOHNSON											
PROJECT LOCATION: SAN ANTONIO,	TEXAS												
SUBMITTAL:	35.0%	DATE:		27-Oct-93									
ECO NO/BUILDING:IV. F./BLDG 1387	100D 1				CHECKED BY: SPC								
TASK DESCRIPTION	QUAN	TITY			LABOR		MATERI	ALS	TOTAL				
	NO/UN	UNIT	MH UN	HRS	UN PRICE	COST	UN PRICE	COST	COST				
						0.00		0.00	Ö				
4'X 6' HOOD	6	LF			44.50		400.00	0.00 2400.00	2667				
COMB. SUPPLY EXHAUST UNIT	2.4	MCFM			140.00		775.00	1860.00	2196				
						0.00 0.00		0.00 0.00					
						0.00		0.00	Ġ				
		i i				0.00		0.00	0				
		i				0.00 0.00		0.00 0.00	0				
						0.00		0.00	0				
						0.00		0.00	0				
						0.00		0.00	0				
						0.00		0.00	0				
						0.00		0.00	0				
			i			0.00 0.00		0.00	0				
						0.00		0.00	0				
						0.00	<i>:</i>	0.00	0				
						0.00	-	0.00 0.00	0				
						0.00	i	0.00	o				
	ı					0.00		0.00	0				
	l	İ	ı			0.00		0.00	0				
		İ	1			0.00		0.00	0				
·	l				1	0.00	i	0.00	O i				
	ļ		ł	Ī		0.00		0.00	0				
						0.00	1	0.00	0				
		1		l	1	0.00		0.00	0				
	1		Ī		l	0.00		0.00	0				
				ľ	i	0.00	1	0.00	0				
	ı	ı	- 1	1		0.00	1	0.00	0				
		i		l		0.00	l	0.00	0				
				1		0.00		0.00	ő				
	Ī	- 1	1	ı		0.00		0.00	ŏ				
	- 1		1			0.00		0.00 0.00	0				
		I				0.00		0.00					
	ļ	- 1	- 1	ı		0.00		0.00	ŏ				
	1	ļ	1		j	0.00		0.00	0				
	1	1			1	0.00	i	0.00					
1]]	1		0.00		0.00	ő				
l	İ	ł		j	j	0.00	1	0.00	0				
i	- 1			1	ļ	0.00		0.00	0				
ļ	ļ		- 1	[į.	0.00	İ	0.00	0				
ĺ					į	0.00	ł	0.00	0				
	j		- 1	ĺ		0.00	İ	0.00	0				
	1		.]			0.00		0.00	0				
i	- 1					0.00		0.00	0				
	- 1					0.00 0.00		0.00	0				
UBTOTAL				بالــــــــــــــــــــــــــــــــــــ	<u> </u>	\$603		0.00 \$4,260	9 \$4,863				
	10.00%							77,200	\$486				
rotal									\$5,349				

LOCATION:	FOF	RT SAM HOUST	ON	REGION NO.	3	PROJECT NO.	91109912
PROJECT TITLE:		FORT SAM HO	USTON DININ	G FACILITIES E	EAP	FISCAL YEAF	1994
DISCRETE PORTIC	ON NAME:	BUILDING 1387	- ECO IV. F.)	- INSTALL MA	KE-UP AIR S	UPPLY FOR KIT	CHEN ARE
ANALYSIS DATE:	NOVEMBER	1, 1993 EC	CONOMIC LIFE	20	PREPARER	C. M. JO	HNSON
					_		
1. INVESTMENT C	COSTS:						
A. CONSTRUCTIO	N COST		\$5,349				
B. SIOH			\$294		:		
C. DESIGN COST			\$321	_			
D. TOTAL COST (1			\$5,964	<u> </u>			
E. SALVAGE VALU				\$ 0			
F. PUBLIC UTILITY				\$0			
G. TOTAL INVESTI	MENT (1D-1E	(–1F)			\$5,964	· ·	
2. ENERGY SAVIN	NGS (+)/COST	<u>[(</u> —):					
DATE OF NISTIR 8	5-3273-X US	SED FOR DISCO	OUNT FACTOR	S: <u>'N</u>	OVEMBER 4, 1	992	
ENERGY	COST	SAVINGS	ANNUAL \$	DISCOUNT	DISCOUNTE	5	
SOURCE	\$/MBTU(1)	MBTU/YR(2)	SAVINGS(3)	FACTOR(4)	SAVINGS(5)	•	
A. ELEC	\$10.55	19.46	\$205	14.65	\$3,008		
B. DIST			\$0	17.70	\$0		
C. RESID			<u>\$0</u>	20.99	\$0	•	
D. NG	\$3.31	48.38	\$160	20.60	\$3,299		
E. PPG			\$0	13.59	\$0		
F. COAL G. SOLAR			\$0	16.32	\$0		
H. GEOTH			\$0	13.59	\$0		
I. BIOMA			<u>\$0</u>	13.59 13.59	\$0 \$0		
J. REFUS			\$0	13.59	\$0		
K. WIND			\$0	13.59	\$0		
L. OTHER			\$0	13.59	\$0		
M. DEMAND SAVIN	GS		\$0	13.59	\$0		
N. TOTAL		67.84	\$365	10.59	\$6,307		
			4000				
3. NON ENERGY	SAVINGS (+)	OR COST (-):	-				
A. ANNUAL RECUR		\$0					
 DISCOUNT FAC DISCOUNTED S 				\$0			
			**				

B. NON RECURRING SAVINGS (+) OR COST(-)

	ITEM	SAVINGS(+) COST(-)(1)	YEAR OF OCCUR. (2)	DISCOUNT FACTOR(3)	DISCOUNTED SAV- INGS(+)COST(-)(4)
a.	N/A	\$0	1	0.96	\$0
b.	N/A	\$0	2	0.92	\$0
C.	N/A	\$0	3	0.89	\$0
d.	N/A	\$0	4	0.85	\$0
e.	N/A	\$0	5	0.82	\$0
f.	N/A	\$0	6	0.79	\$0
g.	N/A	\$0	7	0.76	\$0
ĥ.	N/A	\$0	8	0.73	\$0
i.	N/A	\$0	9	0.7	\$0
j.	N/A	\$0	10	0.68	\$0
k.	N/A	\$0	11	0.65	\$0
l.	N/A	\$0	12	0.62	\$0
m.	N/A	\$0	13	0.6	\$0
n.	N/A	\$0	14	0.58	\$0
0.	N/A	\$0	15	0.56	\$0
p.	TOTAL	\$0			\$0
C.	TOTAL NON EI	NERGY DISCOL	JNTED SAVIN	GS (3A2 + 3Bp4	\$0
<u>4. S</u>	IMPLE PAYBAC	K 1G/(2N3+3A	x+(3Bp1/ECO	NOMIC LIFE)):	16.3 YEARS
5. T	OTAL NET DISC	COUNTED SAV	INGS (2N5+3) :	\$6,307
6. S	AVINGS TO INV	ESTMENT RAT	10 (SIR) 5/1G	<u>:</u>	1.06
7. A	DJUSTED INTE	RNAL RATE OF	RETURN (AIF	<u>R</u> R):	4.3%

ENERGY CONSERVATION OPPORTUNITIES (ECO's)

P	2T	Ш	ח	IN	G	N	\cap	1387	Ì
L	,	JIL	~	TT 4.	•	74,	J .	100	,

ECO NO: IV.F (Hood 2)

ECO NAME: Install make-up air supply for kitchen areas

SUMMARY DATA (DEPENDENT):

KWH Savings: 8.737 KWH/yr

Demand Savings: _____0 KW/yr

Gas Savings: 71.9 MCF/yr

Cost Savings: \$ 560 /yr

Implementation Cost: \$ 9,260

Simple Payback: 16.5 Years

Savings to Investment: 1.04

Ratio (SIR):

ECO DESCRIPTION:

Currently, the kitchen hoods in use do not contain supply air make-up. This ECO analyzes the addition of make-up air supply for the kitchen hoods.

COST SAVINGS CALCULATIONS:

(Refer to following spreadsheet)

IMPLEMENTATION COSTS:

(Refer to following Cost Estimate)

LIFE CYCLE COST ANALYSIS:

MODIFIED BIN METHOD CALCULATIONS

REFER TO ASHRAE 1993 FUNDAMENTALS

BLDG. NO.									1000	1 100	0000	0056
OPERATION 1:30P 2:00P 7A-2P 8:30P 9:00P 9A-10:30P 7:30P 7:00P DAYS/WEEK 5 5 5 4,3 6 5 5,2 7 4 DB MID MC HUMID HRS HR												
DAYS/WEEK	TIME OF	•					1 1			í	1	1
DB RANGE MID PT. WB RATIO HRS PT.	OPERAT	ION										
RANGE PT. WB RATIO \(rampsize{NR})	DAYS/W	EEK			5		4,3					
100/104 102 74 0.0116 6.4 7.0 14.6 14.5 10.1 15.8 16.1 7.1 95/99 97 74 0.0126 59.4 64.8 139.8 139.4 97.9 152.8 153.4 67.7 90/94 92 74 0.0139 135.0 147.3 309.0 307.1 213.4 334.4 339.8 149.6 85/89 87 73 0.0143 173.8 189.6 418.5 418.7 296.3 461.3 458.6 202.9 80/84 82 72 0.0146 213.2 231.4 530.6 557.5 382.4 589.7 595.6 253.5 75/79 77 70 0.0142 0.0	DB	MID	MC	HUMID	HRS	HRS	HRS	HRS	HRS			HRS
95/99 97 74 0.0126 59.4 64.8 139.8 139.4 97.9 152.8 153.4 67.7 90/94 92 74 0.0139 135.0 147.3 309.0 307.1 213.4 334.4 339.8 149.6 85/89 87 73 0.0143 173.8 189.6 418.5 418.7 296.3 461.3 458.6 202.9 80/84 82 72 0.0142 0.0 <td< td=""><td>RANGE</td><td>PT.</td><td>WB</td><td>RATIO</td><td>/YR.</td><td>/YR.</td><td>/YR.</td><td>/YR.</td><td>/YR.</td><td>/YR.</td><td>MR.</td><td>/YR.</td></td<>	RANGE	PT.	WB	RATIO	/YR.	/YR.	/YR.	/YR.	/YR.	/YR.	MR.	/YR.
90/94 92 74 0.0139 135.0 147.3 309.0 307.1 213.4 334.4 339.8 149.6 85/89 87 73 0.0143 173.8 189.6 418.5 418.7 296.3 461.3 458.6 202.9 80/84 82 72 0.0146 213.2 231.4 530.6 557.5 382.4 589.7 595.6 253.5 75/79 77 70 0.0142 0.0	100/104	102	74	0.0116	6.4	7.0	14.6	14.5	10.1	15.8	16.1	7.1
85/89 87 73 0.0143 173.8 189.6 418.5 418.7 296.3 461.3 458.6 202.9 80/84 82 72 0.0146 213.2 231.4 530.6 557.5 382.4 589.7 595.6 253.5 75/79 77 70 0.0142 0.0	95/99	97	74	0.0126	59.4			139.4				
80/84 82 72 0.0146 213.2 231.4 530.6 557.5 382.4 589.7 595.6 253.5 75/79 77 70 0.0142 0.0 <t< td=""><td>90/94</td><td>92</td><td>74</td><td>0.0139</td><td>135.0</td><td>147.3</td><td>309.0</td><td>307.1</td><td>213.4</td><td>334.4</td><td>339.8</td><td>149.6</td></t<>	90/94	92	74	0.0139	135.0	147.3	309.0	307.1	213.4	334.4	339.8	149.6
75/79 77 70 0.0142 0.0<	85/89	87	73	0.0143	173.8	189.6	418.5	418.7		461.3	458.6	202.9
70/74 72 66 0.0123 0.0<	80/84	82	72	0.0146	213.2	231.4	530.6	557.5	382.4	589.7	595.6	253.5
70/74 72 66 0.0123 0.0<												
65/69 67 61 0.0101 196.1 208.4 418.7 527.9 283.1 433.6 535.7 183.2 60/64 62 56 0.0082 161.8 172.0 346.9 437.0 235.1 359.9 443.3 151.9 55/59 57 51 0.0066 132.3 140.5 288.0 363.6 196.9 300.7 367.8 126.2 50/54 52 47 0.0057 118.4 125.4 256.0 332.4 174.6 265.8 333.0 110.6 45/49 47 43 0.0050 92.0 96.8 190.1 260.7 127.1 192.8 257.6 79.5 40/44 42 38 0.0039 72.4 75.9 138.6 198.4 88.8 135.1 195.0 56.1 35/39 37 34 0.0044 44.4 46.1 75.5 120.8 44.9 68.1 116.1 28.1 30/34<	75/79	77	70	0.0142	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
60/64 62 56 0.0082 161.8 172.0 346.9 437.0 235.1 359.9 443.3 151.9 55/59 57 51 0.0066 132.3 140.5 288.0 363.6 196.9 300.7 367.8 126.2 50/54 52 47 0.0057 118.4 125.4 256.0 332.4 174.6 265.8 333.0 110.6 45/49 47 43 0.0050 92.0 96.8 190.1 260.7 127.1 192.8 257.6 79.5 40/44 42 38 0.0039 72.4 75.9 138.6 198.4 88.8 135.1 195.0 56.1 35/39 37 34 0.0034 44.4 46.1 75.5 120.8 44.9 68.1 116.1 28.1 30/34 32 29 0.0028 23.0 23.8 34.9 60.3 18.9 28.8 57.4 12.0 25/29 27 25 0.0023 8.3 8.4 9.6 21.3 3.8 <td< td=""><td>70/74</td><td>72</td><td>66</td><td>0.0123</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td></td<>	70/74	72	66	0.0123	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
55/59 57 51 0.0066 132.3 140.5 288.0 363.6 196.9 300.7 367.8 126.2 50/54 52 47 0.0057 118.4 125.4 256.0 332.4 174.6 265.8 333.0 110.6 45/49 47 43 0.0050 92.0 96.8 190.1 260.7 127.1 192.8 257.6 79.5 40/44 42 38 0.0039 72.4 75.9 138.6 198.4 88.8 135.1 195.0 56.1 35/39 37 34 0.0034 44.4 46.1 75.5 120.8 44.9 68.1 116.1 28.1 30/34 32 29 0.0028 23.0 23.8 34.9 60.3 18.9 28.8 57.4 12.0 25/29 27 25 0.0023 8.3 8.4 9.6 21.3 3.8 5.8 19.4 2.4 20/24 22 <td>65/69</td> <td>67</td> <td>61</td> <td>0.0101</td> <td>196.1</td> <td>208.4</td> <td>418.7</td> <td>527.9</td> <td>283.1</td> <td>433.6</td> <td>535.7</td> <td>183.2</td>	65/69	67	61	0.0101	196.1	208.4	418.7	527.9	283.1	433.6	535.7	183.2
50/54 52 47 0.0057 118.4 125.4 256.0 332.4 174.6 265.8 333.0 110.6 45/49 47 43 0.0050 92.0 96.8 190.1 260.7 127.1 192.8 257.6 79.5 40/44 42 38 0.0039 72.4 75.9 138.6 198.4 88.8 135.1 195.0 56.1 35/39 37 34 0.0034 44.4 46.1 75.5 120.8 44.9 68.1 116.1 28.1 30/34 32 29 0.0028 23.0 23.8 34.9 60.3 18.9 28.8 57.4 12.0 25/29 27 25 0.0023 8.3 8.4 9.6 21.3 3.8 5.8 19.4 2.4 20/24 22 20 0.0016 2.4 2.5 3.6 6.1 2.0 3.0 5.9 1.3 15/19 17 1	60/64	62	56	0.0082	161.8	172.0	346.9	437.0	235.1	359.9	443.3	151.9
50/54 52 47 0.0057 118.4 125.4 256.0 332.4 174.6 265.8 333.0 110.6 45/49 47 43 0.0050 92.0 96.8 190.1 260.7 127.1 192.8 257.6 79.5 40/44 42 38 0.0039 72.4 75.9 138.6 198.4 88.8 135.1 195.0 56.1 35/39 37 34 0.0034 44.4 46.1 75.5 120.8 44.9 68.1 116.1 28.1 30/34 32 29 0.0028 23.0 23.8 34.9 60.3 18.9 28.8 57.4 12.0 25/29 27 25 0.0023 8.3 8.4 9.6 21.3 3.8 5.8 19.4 2.4 20/24 22 20 0.0016 2.4 2.5 3.6 6.1 2.0 3.0 5.9 1.3 15/19 17 1	55/59	57	51	0.0066	132.3	140.5	288.0	363.6	196.9	300.7	367.8	126.2
45/49 47 43 0.0050 92.0 96.8 190.1 260.7 127.1 192.8 257.6 79.5 40/44 42 38 0.0039 72.4 75.9 138.6 198.4 88.8 135.1 195.0 56.1 35/39 37 34 0.0034 44.4 46.1 75.5 120.8 44.9 68.1 116.1 28.1 30/34 32 29 0.0028 23.0 23.8 34.9 60.3 18.9 28.8 57.4 12.0 25/29 27 25 0.0023 8.3 8.4 9.6 21.3 3.8 5.8 19.4 2.4 20/24 22 20 0.0016 2.4 2.5 3.6 6.1 2.0 3.0 5.9 1.3 15/19 17 15 0.0013 0.4 0.4 0.3 0.9 0.0 0.0 0.8 0.0												
40/44 42 38 0.0039 72.4 75.9 138.6 198.4 88.8 135.1 195.0 56.1 35/39 37 34 0.0034 44.4 46.1 75.5 120.8 44.9 68.1 116.1 28.1 30/34 32 29 0.0028 23.0 23.8 34.9 60.3 18.9 28.8 57.4 12.0 25/29 27 25 0.0023 8.3 8.4 9.6 21.3 3.8 5.8 19.4 2.4 20/24 22 20 0.0016 2.4 2.5 3.6 6.1 2.0 3.0 5.9 1.3 15/19 17 15 0.0013 0.4 0.4 0.3 0.9 0.0 0.0 0.8 0.0	50/54	52	47	0.0057	118.4	125.4	256.0	332.4	174.6	265.8	333.0	110.6
35/39 37 34 0.0034 44.4 46.1 75.5 120.8 44.9 68.1 116.1 28.1 30/34 32 29 0.0028 23.0 23.8 34.9 60.3 18.9 28.8 57.4 12.0 25/29 27 25 0.0023 8.3 8.4 9.6 21.3 3.8 5.8 19.4 2.4 20/24 22 20 0.0016 2.4 2.5 3.6 6.1 2.0 3.0 5.9 1.3 15/19 17 15 0.0013 0.4 0.4 0.3 0.9 0.0 0.0 0.0 0.8 0.0	45/49	47	43	0.0050	92.0	96.8	190.1	260.7	127.1	192.8	257.6	79.5
30/34 32 29 0.0028 23.0 23.8 34.9 60.3 18.9 28.8 57.4 12.0 25/29 27 25 0.0023 8.3 8.4 9.6 21.3 3.8 5.8 19.4 2.4 20/24 22 20 0.0016 2.4 2.5 3.6 6.1 2.0 3.0 5.9 1.3 15/19 17 15 0.0013 0.4 0.4 0.3 0.9 0.0 0.0 0.8 0.0	40/44	42	38	0.0039	72.4	75.9	138.6	198.4	88.8	135.1	195.0	56.1
25/29 27 25 0.0023 8.3 8.4 9.6 21.3 3.8 5.8 19.4 2.4 20/24 22 20 0.0016 2.4 2.5 3.6 6.1 2.0 3.0 5.9 1.3 15/19 17 15 0.0013 0.4 0.4 0.3 0.9 0.0 0.0 0.0 0.8 0.0	35/39	37	34	0.0034	44.4	46.1	75.5	120.8	44.9	68.1	116.1	28.1
20/24 22 20 0.0016 2.4 2.5 3.6 6.1 2.0 3.0 5.9 1.3 15/19 17 15 0.0013 0.4 0.4 0.3 0.9 0.0 0.0 0.8 0.0	30/34	32	29	0.0028	23.0	23.8	34.9	60.3	18.9	28.8	57.4	12.0
20/24 22 20 0.0016 2.4 2.5 3.6 6.1 2.0 3.0 5.9 1.3 15/19 17 15 0.0013 0.4 0.4 0.3 0.9 0.0 0.0 0.8 0.0	İ				İ					ļ	1	
15/19 17 15 0.0013 0.4 0.4 0.3 0.9 0.0 0.0 0.8 0.0	25/29	27	25	0.0023	8.3	8.4	9.6	21.3	3.8	5.8	19.4	2.4
	20/24	22	20	0.0016	2.4	2.5	3.6	6.1	2.0	3.0	5.9	1.3
10/14 12 10 0.0009 0.2 0.2 0.1 0.4 0.0 0.0 0.4 0.0	15/19	17	15	0.0013	0.4	0.4	0.3	0.9	0.0	0.0	0.8	0.0
	10/14	12	10	0.0009	0.2	0.2	0.1	0.4	0.0	0.0	0.4	

ASSUMPTIONS

- 1) SUMMER ROOM DESIGN: 78FDB, 50%RH
- 2) WINTER ROOM DESIGN: 70FDB, 40%RH
- 3) HUMIDITY RATIOS FOR THE SPACE BASED ON SUMMER & WINTER ROOM DESIGN TEMP.

EQUIPMENT:

SMALL AIR COOLED CHILLER (3-25 TONS): 8.57 BTU/WATT-H LARGE AIR COOLED CHILLER (25-100 TONS): 8.63 BTU/WATT-H SMALL WATER COOLED CHILLER (25-100 TONS): 11.11 BTU/WATT-H LARGE WATER COOLED CHILLER (>100 TONS): 12.12 BTU/WATT-H

SYSTEM TYPES FOR ABOVE BUILDINGS

BUILDING	SYSTEM TYPE
NUMBER	
44	SMALL AIR COOLED
368	SMALL AIR COOLED
407	LARGE AIR COOLED
1350	LARGE WATER COOLED
1387	SMALL AIR COOLED
1462	LARGE AIR COOLED
2399	LARGE WATER COOLED
2652	LARGE AIR COOLED

	TOTAL	2	362867	2450244	7750400	1152733	2/0/504	10//5416	000	70//000	4737519	3459803	41004R2	408080	4500005	405084	2430173	1207226	275843	150072		•	2 1	21867	31679	9792
	HRS	MEAR	10.1	070	9 6	4. 0 5. 0 6. 0 7. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8	2000	362.4	6	200.	235.1	196.9	174 B	197	- 0	00.0	4 4.9	18.9	60	6) i c	9 6		TEAN	YEAR	HAYE
	TOTAL	BTCH	35966	35350	36234		02020	9/107	90000	24350	20152	17574	24048	99719	46.10	BOCCE	54111	63778	71848	80982	89052	07121	EOD TUE	בור היס זייייייייייייייייייייייייייייייייייי	TOH THE YEAR	COOLING KWH
SCFM	ATENT	BTCH	7454	12778	0000	34838	02012	2450	20784	1007	10648	2130	2662	6380	100AE	7,400	14907	18634	20764	23958	26088	2R217	Keti		5	
HAUSTEE PM=367	SENS, LATEN	BICH	28512	22572	16632	10601	4750	70/4	25.84	7000	400	15444	21384	27324	3328A	2000	39204	45144	51084	57024	62964	68904	TOTAL COOLING			U/WAIT
NOW 30% CONDITIONED AIR IS EXHAUSTED EXHAUST CFM=10.5FTx3.5FTx100FPM=3675CFM		HR RM	0.0102	0.0102	0.0102	0.010	0.0105	20100	0 0062	2000	7000	0.0062	0.0062	0.0062	0.0062	70000	0.0002	0.0062	0.0062	0.0062	0.0062	0.0062	COTALC	FOTAL SCOCING KBIO		EQUIPMENT 8.57 BIU/WATT-HR
IIONED /		RMHROA	78 0.0116						0.0101			0.0066	0.0057		0.0039	4600	40000		0.0023	0.0017		0.000				LAWEN
CONDI CFM=1	1387	_	102 78	78 78	32 78	78 78	787	2	37 70	207	2 :	27 70	52 70	10 20	12 70		2 1	22	27 70	22 70	17 70	12 70	!		Č	2
W 30% HAUST	¥	CFA C	<u> </u>	<u>2</u>	901	9	1100	}	100	2	3 3	8	8	8	100	2	3 5	3	8	8	8	8				
S S	20		_	-	_	•		-	_		- ,		_	_		•				•	•	•				
	TOTAL	E	1212306	11556909	25901177	32196582	35999686		23011352	15827821	170000	11228886	14030021	14310222	13493736	811BORR	400004	4022204	921568	531444	0	0	106867	105837	12470	1210
	HES	MEAR	1 <u>0</u> .	97.9	213.4	296.3	382.4	i	283.1	235.1		20.0	174.6	127.1	88.8	440	0 0	9 0	D	5 0.0	0.0		YEAR	YFAR		_
į	OIAL	BICH	120158	118100	121378	108648	94139	•	81276	67326	F0740	71/00	80336	112631	152042	180781	249077	219077	240036	270554	297513	324473	FOTAL COOLING KBTU FOR THE Y	TOTAL HEATING KBTU FOR THE Y	ON ICC	
JSTED 75CFM	A EN	E CH	24902	42689	65812	72927	78263		69269	35574	7446	0112	8883	21344	40910	49804	A225A	40000	80280	80042	87156	94271	KBTU F	KBTU F	H	
ASSUME 100% CONDITIONED AIR IS EXHAUSTED EXHAUST CFM=10.5FTx3.5FTx100FPM=3675CFM	SENS. LAIEN	HOIR	95256	75411	55566	35721	15876		11907	31752	E1507	18010	71442	91287	111132	130977	150822	170667	1000	190512	210357	230202	COLING	IEATING	EQUIPMENT 8.57 BTU/WATT-HR	
ED AIR			0.0102	0.0102	0.0102	0.0102	0.0102		0.0062	0.0062	0 0000	3000	0.0062	0.0062	0.0062	0.0062	0.0062	200	2000	0.0062	0.0062	.0062	OTALO	OTAL	8.57 BT	
VDITION SFTX3.5		AN HH WA			0.0139	0.0143 (0.0146		0.0101 0.0062	0.0082 0.0062	99000			0.0050	0.0039	0.0034			200	0.001/	0.0013	0.0009 0.0062	_	-	MENT	
% COI -M=10.		[\ \ \ \ \ \	20		78	78 0	78 0		20	2					2	0 02				ء ج	2	2			EOUIP	
AE 10C JST CF	200			28 6	92	1 87	82		19	95	7	5 6	25	47	42	37	33	6	3	N I	17	5				
ASSUN		Σ. (36/2	36/5	3675	3675	3675		3675	3675	3675	100	36/5	3675	3675	3675	3675	367E		36/2	3675	3675			64	48

PROJECT NAME: FORT SAM HOUST	ON EEAP				PROJECT N	O: 911099	912F		
PROJECT LOCATION: SAN ANTONIO	TEXAS				ESTIMATOR	: C.M. JO	HNSON		
SUBMITTAL:	35.0%				DATE:		27-Oct-93		
ECO NO/BUILDING:IV. F./BLDG 1387	HOOD 2				CHECKED B	Y: SPC			
TASK DESCRIPTION	QUAN	ITITY		L	ABOR		MATER	IALS	TOTAL
	NO/UN		MH UN	HRS	UN PRICE	COST	UN PRICE	COST	COST
	110,011					0.00		0.00	
		l				0.00	400.00	0.00	
B.5'X 10.5' HOOD COMB. SUPPLY EXHAUST UNIT	10.5	MCFM			44.50 119.00	467.25 440.30	400.00 660.00	4200.00 2442.00	46 28
COMB. SUPPLY EXHAUST UNIT	3.7	WICT W			1.10.00	0.00	000.00	0.00	
						0.00		0.00	
	!					0.00		0.00	
						0.00 0.00		0.00 0.00	
						0.00		0.00	
		1				0.00		0.00	
						0.00		0.00	
						0.00 0.00		0.00 0.00	
						0.00		0.00	
						0.00		0.00	
	1 1					0.00 0.00		0.00 0.00	
						0.00		0.00	
						0.00	ţ.	0.00	
						0.00		0.00	
	1 1		Į	İ		0.00		0.00 0.00	
]					0.00		0.00	
	l i		i			0.00		0.00	
			i			0.00	1	0.00	
		I	i	Į	ľ	0.00		0.00	
		Ì		l		0.00		0.00	
•		· ·		ı		0.00	ı	0.00	
		- 1				0.00	Ī	0.00	
						0.00	1	0.00 0.00	
						0.00		0.00	
		1	ŀ	f	Ī	0.00		0.00	
			ı			0.00		0.00	
				ļ		0.00		0.00	
				I	1	0.00	,	0.00	
	1				1	0.00		0.00	
	[Ì		0.00		0.00 0.00	
						0.00	i	0.00	
						0.00		0.00	
		I		ļ	I	0.00		0.00	
		1			Ī	0.00		0.00	
		I	ľ	Í		0.00		0.00	
		ı		i	1	0.00		0.00	
		l	į	ł	ſ	0.00		0.00 0.00	
	İ	ŀ	1	ı	- !	0.00	- 1	0.00	
	İ	1	j	- 1		0.00	[0.00	
i		1	1	- 1	į.	0.00		0.00	
1	1					0.00		0.00	
	1		·]	0.00		0.00	
	j		1		l	0.00		0.00	
BTOTAL		<u>.</u> l.				0.00		0.00	
ERHEAD & PROFIT	10.00%					\$908		\$6,642	\$7,55
OTAL	10.0076								\$75

LOCATION:	FO	RT SAM HOUST	ΓON	REGION NO	. 3	PROJECT NO.	91109912F
PROJECT TITLE:		FORT SAM HO				FISCAL YEAF	
DISCRETE PORT					AKE-UP AIR S	UPPLY FOR KITC	CHEN AREAS
ANALYSIS DATE:	NOVEMBER	1, 1993 E0	CONOMIC LIFE	20	PREPARER	C. M. JO	HNSON
1. INVESTMENT	COSTS:						
A. CONSTRUCTION B. SIOH C. DESIGN COST D. TOTAL COST (E. SALVAGE VALUE F. PUBLIC UTILITY G. TOTAL INVEST	1A+1B+1C) JE OF EXISTIN Y COMPANY RI	EBATE	\$8,305 \$457 \$498 \$9,260	\$0 \$0	 		
2. ENERGY SAVI	NGS (+)/COS	<u>Γ(</u> –):	DUNT FACTOR	rs: <u>'</u> '	\$5,200 NOVEMBER 4, 1	992	
ENERGY SOURCE	COST \$/MBTU(1)	SAVINGS MBTU/YR(2)	ANNUAL \$ SAVINGS(3)	DISCOUNT FACTOR(4)	DISCOUNTED SAVINGS(5)		
A. ELEC	\$10.55	29.82	\$315	14.65	\$4,609		
B. DIST			\$0	17.70	\$0		
C. RESID			\$0	20.99	\$0		
D. NG	\$3.31	74.16	\$245	20.60	\$5,057		
E. PPG			\$0	13.59	\$0		
F. COAL			\$0	16.32	\$0		
G. SOLAR			\$0	13.59	\$0		
H. GEOTH			\$0	13.59	\$0		
I. BIOMA			\$0	13.59	\$0		
J. REFUS			\$0	13.59	\$0		
K. WIND			\$0	13.59	\$0		
L OTHER			\$0	13.59	\$0		
M. DEMAND SAVI	NGS		\$0	13.59	\$0		
N. TOTAL		103.98	\$560		\$9,666		
3. NON ENERGY A. ANNUAL RECUI 1. DISCOUNT FAC 2. DISCOUNTED S	RRING (+/-) CTOR (TABLE A	\$0 \\		\$0			

B. NON RECURRING SAVINGS (+) OR COST(-)

7. ADJUSTED INTERNAL RATE OF RETURN (AIRR):

		•		•	
	ITEM	SAVINGS(+)	YEAR OF	DISCOUNT	DISCOUNTED SAV-
		COST(-)(1)	OCCUR.(2)	FACTOR(3)	INGS(+)COST(-)(4)
a.	N/A	\$0	1	0.96	\$0
b.	N/A	\$0	2	0.92	\$0
C.	N/A	\$0	3	0.89	\$0
d.	N/A	\$0	4	0.85	\$0
e.	N/A	\$0	5	0.82	\$0
f.	N/A	\$0	6	0.79	\$0
g.	N/A	\$0	7	0.76	\$0
ħ.	N/A	\$0	8	0.73	\$0
i.	N/A	\$0	9	0.7	\$0
j.	N/A	\$0	10	0.68	\$0
k.	N/A	\$0	11	0.65	\$0
I.	N/A	\$0	12	0.62	\$0
m.	N/A	\$0	13	0.6	\$0
n.	N/A	\$0	14	0.58	\$0
Ο.	N/A	\$0	15	0.56	\$0
p.	TOTAL	\$0			\$0
				-	
C.	TOTAL NON EN	NERGY DISCOL	JNTED SAVIN	GS (3A2 + 3Bp4)	\$0
4. S	MPLE PAYBAC	K 1G/(2N3+3A	+(3Bp1/ECO	NOMIC LIFE)):	16.5 YEARS
E T/	TAL NET DISC	OUNTED CAV	NICC (ONE : O	OL.	* 0.000
<u>5. IQ</u>	OTAL NET DISC	<u>\$9,666</u>			
6. S/	1.04_				
			-		

4.2%

ENERGY CONSERVATION OPPORTUNITIES (ECO's)

BUILDING NO. 2265								
ECO NO: XI.A.								
ECO NAME: Replace bo	oilers with 99% effici	ent boilers.						
SUMMARY DATA (DEI	PENDENT):							
KWH Savings:	0	KWH/yr						
Demand Savings:	0	KW/yr						
Gas Savings:	226.0	MCF/yr						
Cost Savings:	<u>\$ 771</u>	/yr						
Implementation Cost:	\$ 38,389							
Simple Payback:	49.8	Years						
ECO DESCRIPTION:								
This ECO analyzes replace boilers.	ing the existing dom	estic hot water boilers with 99% efficient						
COST SAVINGS CALCU	LATIONS:							
(Refer to following SimpC	alc output)							
IMPLEMENTATION CO	STS:							
(Refer to following Cost E	stimate)							
LIFE CYCLE COST ANALYSIS:								
(Refer to following ECIP I	Life Cycle Cost Sum	nary)						

TEXAS LoanSTAR Program - ECRM Simplified Calculation Ver 2.0

11/01/93

SimpCalc 2.0 SUMMARY (by FACILITY) - FORT SAM HOUSTON

Page 2

Form	Facility	ECRM Desc. Page	KWH/Yr	KW	MCF/yr	#mBtu/Yr	\$/Yr	Imp.Cost	PayBack
C9-01	BLDG 2265 MESS IN BARRACKS	Low Eff Hot Wat 26	0	.00	226.0	232.8	771	38389	49.8
		*** SUB-TOTAL ***	0	.00	226.0	232.8	771	38389	49.8
		*** SAVINGS % ***	.0 %		.0 :	\$	۵.	;	
•••••	** GRAND TOTAL **		0	.00	226.0	232.8	771	38389	49.8

TEXAS LoanSTAR Program - ECRM Simplified Calculation Ver 2.0

10/21/93 Consolida	ated ECRM Detail - FORT SAM HOUSTON	Page	26
***************************************		222222	E222
C9-001 Replace Low Eff	iciency DHW Units - BLDG 2265 MESS IN BARRACKS		(G)
Cost Source: vender quo	te		
Description: Install hi	gh efficiency water heater.		
A) 4.80 Gal/person	Daily Hot Water Consumption per Capita (Table 10)		
B) <u>486</u> People	Number of People in Facility		
C) 365 Days	Days per Year of Occupancy		
D) 140 Degree/F	Hot Water Temperature		
E)7000	Heating Efficiency Existing		
F)9900	Heating Efficiency Proposed		
G) 30.50 mmBTU/yr	Standby Loss for Gas Water Heater		
H)	Reduction in Standby Loss	-	
I) \$3.41 /MCF	Cost per MCF		
J) \$ 38389 /Unit	Installed Cost of Replacement Unit		
K) 496.5 mmBTU/yr	Annual BTU's for Hot Water		
L) <u>730.9</u> MCF/year	Existing Unit Consumption		
M) 504.9 MCF/year	Proposed Unit Consumption		
N) <u>226.0</u> MCF/year	Total Consumption Savings		
0) \$ <u>771</u> /year	Annual Cost Savings		
P) 49.8 years	Simple Payback		

ENERGY CONSERVATION OPPORTUNITIES (ECO's)

BUILDIN	١G	NO.	. 2399
---------	----	-----	--------

ECO NO: IV. F. (Hood 1)

ECO NAME: Install make-up air supply for kitchen areas.

SUMMARY DATA (DEPENDENT):

KWH Savings:

8,916

KWH/yr

Demand Savings:

0____

KW/yr

Gas Savings:

132.2

MCF/yr

Cost Savings:

\$ 772

Implementation Cost:

\$ 12,411

Simple Payback:

16.1

Years

/yr

Savings to Investment:

1.13

Ratio (SIR):

ECO DESCRIPTION:

Currently, the kitchen hoods in use do not contain supply air make-up. This ECO analyzes the addition of make-up air supply for the kitchen hoods.

COST SAVINGS CALCULATIONS:

(Refer to following spreadsheet)

IMPLEMENTATION COSTS:

(Refer to following Cost Estimate)

LIFE CYCLE COST ANALYSIS:

MODIFIED BIN METHOD CALCULATIONS

REFER TO ASHRAE 1993 FUNDAMENTALS

BLDG. N	iO.			44	368	407	1350	1387	1462	2399	2652
TIME OF				6:00A	6:00A	7A-10P	4:00A	10:00A	9A-8:30P	5:00A	
OPERAT				1:30P	2:00P	7A-2P	8:30P	9:00P	9A-10:30P		7:00P
DAYS/W				5	5	4,3	6	5	5,2	7	4
DB	MID	МС	HUMID	HRS	HRS	HRS	HRS	HRS	HRS	HRS	HRS
RANGE		WB	RATIO	/YR.	/YR.	/YR.	/YR.	/YR.	/YR.	/YR.	/YR.
100/104	102	74	0.0116	6.4	7.0	14.6	14.5	10.1	15.8	16.1	7.1
95/99	97	74	0.0126	59.4	64.8	139.8	139.4	97.9	152.8	153.4	67.7
90/94	92	74	0.0139	135.0	147.3	309.0	307.1	213.4	334.4	339.8	149.6
85/89	87	73	0.0143	173.8	189.6	418.5	418.7	296.3	461.3	458.6	202.9
80/84	82	72	0.0146	213.2	231.4	530.6	557.5	382.4	589.7	595.6	253.5
75/79	77	70	0.0142	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70/74	72	66	0.0123	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
65/69	67	61	0.0101	196.1	208.4	418.7	527.9	283.1	433.6	535.7	183.2
60/64	62	56	0.0082	161.8	172.0	346.9	437.0	235.1	359.9	443.3	151.9
55/59	57	51	0.0066	132.3	140.5	288.0	363.6	196.9	300.7	367.8	126.2
						i					
50/54	52	47	0.0057	118.4	125.4	256.0	332.4	174.6	265.8	333.0	110.6
45/49	47	43	0.0050	92.0	96.8	190.1	260.7	127.1	192.8	257.6	79.5
40/44	42	38	0.0039	72.4	75.9	138.6	198.4	88.8	135.1	195.0	56.1
35/39	37	34	0.0034	44.4	46.1	75.5	120.8	44.9	68.1	116.1	28.1
30/34	32	29	0.0028	23.0	23.8	34.9	60.3	18.9	28.8	57.4	12.0
]	l	ļ	ł	Į				
25/29	27	25	0.0023	8.3	8.4	9.6	21.3	3.8	5.8	19.4	2.4
20/24	22	20	0.0016	2.4	2.5	3.6	6.1	2.0	3.0	5.9	1.3
15/19	17	15	0.0013	0.4	0.4	0.3	0.9	0.0	0.0	0.8	0.0
10/14	12	10	0.0009	0.2	0.2	0.1	0.4	0.0	0.0	0.4	0.0

ASSUMPTIONS

- 1) SUMMER ROOM DESIGN: 78FDB, 50%RH
- 2) WINTER ROOM DESIGN: 70FDB, 40%RH
- 3) HUMIDITY RATIOS FOR THE SPACE BASED ON SUMMER & WINTER ROOM DESIGN TEMP.

EQUIPMENT:

SMALL AIR COOLED CHILLER (3-25 TONS): 8.57 BTU/WATT-H LARGE AIR COOLED CHILLER (25-100 TONS): 8.63 BTU/WATT-H SMALL WATER COOLED CHILLER (25-100 TONS): 11.11 BTU/WATT-H LARGE WATER COOLED CHILLER (>100 TONS): 12.12 BTU/WATT-H

SYSTEM TYPES FOR ABOVE BUILDINGS

BUILDING	SYSTEM TYPE
NUMBER	
44	SMALL AIR COOLED
368	SMALL AIR COOLED
407	LARGE AIR COOLED
1350	LARGE WATER COOLED
1387	SMALL AIR COOLED
1462	LARGE AIR COOLED
2399	LARGE WATER COOLED
2652	LARGE AIR COOLED

			TOTAL		978420	6210/5	3248//8	8078308	9760998	10984269	10000		5847469	4230844	578007E	7948464	1010101	1622101	/cconso	4645088	2698204	3041242	1132979	373475	32751	56415	3822
))		Z	VEAB	} ¥	- 4	4.00	339.8	458.6	595.6	7	200.	443.3	367.8	3330	957 B		0.00	- : : :	4.70	19.4	5.9	0.8	0.4	YEAR	YEAR	¥ K
								23780	21286	18444	15024	1780	13190	11503	15739	22067	20700	00/87	0110	41/40	47028	53006	58288	63570	COOLING KBTU FOR THE YEAR	FOTAL HEATING KBTU FOR THE YEAR	EQUIPMENT 12.12 BTU/WATT-HR COOLING KWH
		∑	ATENT	H	4879	790	5 6	12894	14288	15333	19501	2	6970	1394	1742	4182	4 4	5 6 6	2000	/8171	13591	15682	17076	18469	KBTU	KBTU F	T-HR (
	NOW 30% OF THE 2400 CFM IS EXHAUSTED	EXHAUST CFM=6FTx10FTx100FPM=6000CFM	SENS LATENT	BTUH	18662	14774	1111	10888	6998	3110	2333	3	6221	10109	13997	17AAS	24779	21112 25664	2000	BHCBZ	33437	37325	41213	45101	COLING	EATING	TUMAT
	MISEX	K100FPM		HR HM	0.0102	00100	0.00	2010.0	0.0102	0.0102			0.0062	0.0062	0.0062			200.0	2000	2000	7,0002	.0062	0.0062		TOTAL C	TOTAL H	12.12 B
	2400 CF	FTX10FT)		HROA	78 0.0116	0.0128	0.0120	0.0.0	0.0143	0.0146	0.0101		0.0082	0.0066	0.0057		0000	00000	0.000	0.0027	0.0023	0.0017	0.0013	0.000	_	_	PMENT
	王王	-M=6F	66					2	78	78	20	? i	2	2	2	20	2	?			2 1	2	2	2			
	2%	STCF	NG 23		102			78	87	85	67	; ;	62	57	52	47	42	76	8	3 6	7	22	17	12			
	NOW 3	EXHAL	BUILDING 2399	CFM	720	720	7.50	י בי	720	720	720		787	720	720	720	727	720	727	1 2	7	720	720	720			
)		TOTAL	EEC	1260431	11829262	28021021	20301001	32230000	36614230	28433435	1010101	19491564	14102814	19296915	24493882	25574102	23021856	16150329	8004019	01010707	1013/4/4	3776597	1244917	109172	194718	12739
			EES	MEAR	16.1	153.4	230	9 6	400.0	595.6	535.7	0 077	44 0.0	367.8	333.0	257.6	195.0	118.1	57.4	70	<u> </u>	D.	8 .0	7 .	YEAR	YEAR	X X
			TOTAL	BTCH	78470	77126	79267	1000	40807	61478	53078	10000	D0854	38342	52464	73555	99293	118061	139152	15675B	70000	9990/1		211901	OR THE	OR THE	
	STED	<u>.</u>	ATENT	BTCH	16262	27878	42979	47000	41020	51110	45302	00000	70707	4646	2808	13939	26717	32525	40656	45302	1000	2/226	56918	61565	KBTUF	KBIUF	T-HR O
	ASSUME 40% CONDITIONED AIR IS EXHAUSTED	EXHAUST CFM=6F1x10FTx100FPM=6000CFM	SENS. LATEN	BTCH H	62208	49248	36288	00000	62050	10368	7776	90700	50130	33696	46656	59616	72576	85536	98496	111456	40446	016471	13/3/6	150336	IOTAL COOLING KBTU FOR THE	IOIAL HEALING KBIU FOR THE	EQUIPMENT 12.12 BTU/WATT-HR COOLING KWH
	ED AIR I	X100FP		HR RM	0.0102	0.0102	0.0102			0.0102	0.0062	0000	2000.0	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062	2900	2000	0.002	0.0062	TOTAL		12.12 B
	NOLIGN	SFTX10F1			78 0.0116	0.0126	0.0139	0 0 0		0.0146	70 0.0101 0.0062	0.000	2000			0.0050	0.0039	0.0034	0.0027	0.0023 0.0062		200	0.00.0	0.0009 0.0062	•		PMEN
	2 2 3 3 3 3 3 3	J-KM	338			78	2 78	7		9	2	707	2 1	2	2	2	2	02 /	2 20	202		9 9	2 8	2		(
	ME 4	UST (BUILDING 2399	<u>¥</u>	20 102	8	0	ä	2	2	9	2	3 i	2	2	8	5	8	S S	0	i à	y ;	- ; 2 (۳ 2			
,	ASSL	EX		CFI	2400	2400	2400	24.0		2400	2400	OVC	Í	24 24	2 4	240	240	2400	240	240	270	7 0	240	2400		6	57

CARTER PROJECT NAME: FORT SAM HOUSTO			· · · · · · · · · · · · · · · · · · ·	<u> </u>	PROJECT N			***************************************	
PROJECT LOCATION: SAN ANTONIO,	TEXAS				ESTIMATOR	: C.M. JO	HNSON	···	
SUBMITTAL:	35.0%	-			DATE:		27-Oct-93		
ECO NO/BUILDING:IV. F./BLDG 2399 H	100D 1				CHECKED B	Y: SPC			
TASK DESCRIPTION	QUANT	TITY		L	ABOR		MATER	IALS	TOTAL
	NO/UN	TINU	MH UN	HRS	UN PRICE	COST	UN PRICE	COST	COST
						0.00		0.00	

TASK DESCRIPTION	QUAN	ITITY		L	ABOR		MATER	IALS	TOTAL
	NO/UN	UNIT	MHUN	HRS	UN PRICE	COST	UN PRICE	COST	COST
						0.00		0.00	
	۱		ĺ		44.50	0.00		0.00	
6'X 10' HOOD		LF	l i		44.50 119.00	445.00 714.00			544
COMB. SUPPLY EXHAUST UNIT	l °	MCFM	1		119.00	0.00	660.00		467
						0.00		0.00 0.00	
		:				0.00	Ì	0.00	
						0.00		0.00	
						0.00		0.00	
						0.00		0.00	
			l i			0.00	i	0.00	
						0.00		0.00	
						0.00 0.00	ı	0.00	
						0.00		0.00 0.00	
	!		· •			0.00		0.00	
						0.00	1	0.00	
			ĺ			0.00		0.00	
						0.00		0.00	
]	ł		į		0.00		0.00	
				1	1	0.00	•	0.00	
	i i		l	l	<u> </u>	0.00	1	0.00	
		i	ļ.		i	0.00	ļ	0.00	
	1	ł	1		i	0.00		0.00 0.00	
	i		ľ			0.00		0.00	
		Ī	1	I		0.00		0.00	
				Í		0.00	ŀ	0.00	
		I	.]	ı	I	0.00		0.00	
		1		Ī	ı	0.00		0.00	
			1		i	0.00		0.00	
	ŀ	1		İ		0.00		0.00	
						0.00		0.00	
		- 1		i		0.00	i	0.00 0.00	
			- 1	ŀ		0.00	l	0.00	
	ĺ		i		ľ	0.00	i	0.00	
	j			ı		0.00		0.00	
		1	ŀ		I	0.00	1	0.00	
			1		i	0.00		0.00	
	į		l	1		0.00		0.00	
	l	- 1	Ť		Ī	0.00	I	0.00	
		I		ŀ	1	0.00		0.00	
	i		l	I	l	0.00	[0.00	
	- 1		ł		i i	0.00	ļ	0.00	
		1	1		f	0.00		0.00	
ļ	1	I		ł	1	0.00	Į	0.00	
	ł			ł		0.00	ĺ	0.00	č
1	ļ	1	- 1		i	0.00	į	0.00	6
i	1]		1	ļ	0.00	1	0.00	(
i i	- 1		1		1	0.00		0.00	
1	1	1	1			0.00	I	0.00	(
Į.		1	[f	1	0.00		0.00	!
İ	1				ļ	0.00		0.00	
1	1			1	1	0.00		0.00	(
i	j	1			1	0.00	ļ	0.00	,
						0.00		0.00	
BTOTAL						\$1,159		\$8,960	\$10,119
	10.00%								\$1,012
DTAL	***************************************			***********		*****************		*****************	\$11,13

LOCATION:	FO	RT SAM HOUST		_REGION NO		PROJECT NO	91109912F
PROJECT TITLE:		FORT SAM HO	JUSTON DININ	G FACILITIES	EEAP	FISCAL YEAR	1994
DISCRETE PORTI	ON NAME:				AKE-UP AIR SU	JPPLY FOR KITC	HEN AREAS
ANALYSIS DATE:	NOVEMBER	1, 1993 EC	CONOMIC LIFE	20	PREPARER	C. M. JOH	HOSON
1. INVESTMENT	COSTS:						
A. CONSTRUCTION B. SIOH C. DESIGN COST D. TOTAL COST (1) E. SALVAGE VALUE	IA+1B+1C)	G FOI IIPMENT	\$11,131 \$612 \$668 \$12,411	 \$0	<i>‡</i>		
F. PUBLIC UTILITY				\$0			
G. TOTAL INVEST					\$12,411	 ;	
2. ENERGY SAVI	NGS (+)/COS	<u>Γ(</u>):					
DATE OF NISTIR 8	15-3273-X US	SED FOR DISCO	DUNT FACTOR	s: <u>'۱</u>	OVEMBER 4, 19	992	
ENERGY SOURCE	COST \$/MBTU(1)	SAVINGS MBTU/YR(2)	ANNUAL \$ SAVINGS(3)	DISCOUNT FACTOR(4)	DISCOUNTED SAVINGS(5)	i	
A. ELEC	\$10.55	30.43	\$321	14.65	\$4,703		
B. DIST			\$0	17.70	\$0		
C. RESID			\$0	20.99	\$0		
D. NG	\$3.31	136.30	\$451	20.60	\$9,294		
E. PPG			\$0	13.59	\$0		
F. COAL			\$0	16.32	\$0		
G. SOLAR			\$0	13.59	\$0		
H. GEOTH			<u>\$0</u>	13.59	\$0		
I. BIOMA			\$0	13.59	\$0		
J. REFUS			\$0	13.59	\$0		
K. WIND			\$0	13.59	\$0		
L OTHER .	100		\$0	13.59	\$0		
M. DEMAND SAVIN N. TOTAL	NGS	400 70	\$0	13.59	\$0		
N. TOTAL		166.73	\$772		\$13,997		
3. NON ENERGY A. ANNUAL RECUF		OR COST (-):	_				
1. DISCOUNT FAC 2. DISCOUNTED S	TOR (TABLE A	A)		\$0			
		•					

B. NON RECURRING SAVINGS (+) OR COST(-)

	ITEM	SAVINGS(+)	YEAR OF	DISCOUNT	DISCOUNTED SAV-
		COST(-)(1)		FACTOR(3)	INGS(+)COST(-)(4)
a.	N/A	\$0	1	0.96	\$0
b.	N/A	\$0	2	0.92	\$0
C.	N/A	\$0	3 4	0.89	\$0
d.	N/A	\$0	4	0.85	\$0
e.	N/A	\$0	5	0.82	\$0
f.	N/A	\$0	6	0.79	\$0
g.	N/A	\$0	7	0.76	\$0
ĥ.	N/A	\$0	8	0.73	\$0
i.	N/A	\$0	9	0.7	\$0
i.	N/A	\$0	10	0.68	\$0
k.	N/A	\$0	11	0.65	\$0
I.	N/A	\$0	12	0.62	\$0
m.	N/A	\$0	13	0.6	\$0
n.	N/A	\$0	14	0.58	\$0
Ο.	N/A	\$0	15	0.56	\$0
p.	TOTAL	\$0			\$0
C.	TOTAL NON EN	NERGY DISCOU	JNTED SAVIN	GS (3A2 + 3Bp4	\$0
<u>4. S</u>	IMPLE PAYBAC	K 1G/(2N3+3A	+ (3Bp1/ECO	NOMIC LIFE)):	16.1_YEARS
<u>5. T</u>	OTAL NET DISC	COUNTED SAV	INGS (2N5+3	<u>o</u> :	\$13,997
<u>6. S</u>	AVINGS TO INV	ESTMENT RAT	10 (SIR) 5/1G	<u>:</u>	1.13
7. A	DJUSTED INTE	RNAL RATE OF	RETURN (AIF	<u>R</u> R):	4.6%

ENERGY CONSERVATION OPPORTUNITIES (ECO's)

$\mathbf{B}\mathbf{I}$	Ш	DI	NC	3 N	IO.	23	99

ECO NO:

IV. F. (Hood 2)

ECO NAME: Install make-up air supply for kitchen areas.

SUMMARY DATA (DEPENDENT):

KWH Savings:

14.861 KWH/yr

Demand Savings:

_____ KW/yr

Gas Savings:

220.3 MCF/yr

Cost Savings:

\$ 1.287 /yr

Implementation Cost:

\$ 18,557

Simple Payback:

14.4 Years

Savings to Investment:

1.26

Ratio (SIR):

ECO DESCRIPTION:

Currently, the kitchen hoods in use do not contain supply air make-up. This ECO analyzes the addition of make-up air supply for the kitchen hoods.

COST SAVINGS CALCULATIONS:

(Refer to following spreadsheet)

IMPLEMENTATION COSTS:

(Refer to following Cost Estimate)

LIFE CYCLE COST ANALYSIS:

MODIFIED BIN METHOD CALCULATIONS

REFER TO ASHRAE 1993 FUNDAMENTALS

	_							ACCE		0000	0650
BLDG. N				44	368	407	1350	1387	1462	2399	2652
TIME OF				6:00A	6:00A	7A-10P	4:00A	10:00A	1	5:00A	
OPERAT				1:30P	2:00P	7A-2P	8:30P	9:00P	9A-10:30P		7:00P
DAYS/W	EEK			5	5	4,3	6	5	5,2	7	4
DB	MID	MC	HUMID	HRS	HRS	HRS	HRS	HRS	HRS	HRS	HRS
RANGE	PT.	WB	RATIO	/YR.	/YR.	/YR.	/YR.	/YR.	/YR.	/YR.	/YR.
100/104	102	74	0.0116	6.4	7.0	14.6	14.5	10.1	15.8	16.1	7.1
95/99	97	74	0.0126	59.4	64.8	139.8	139.4	97.9	152.8	153.4	67.7
90/94	92	74	0.0139	135.0	147.3	309.0	307.1	213.4	334.4	339.8	149.6
85/89	87	73	0.0143	173.8	189.6	418.5	418.7	296.3	461.3	458.6	202.9
80/84	82	72	0.0146	213.2	231.4	530.6	557.5	382.4	589.7	595.6	253.5
]]	Î										
75/79	77	70	0.0142	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70/74	72	66	0.0123	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
65/69	67	61	0.0101	196.1	208.4	418.7	527.9	283.1	433.6	535.7	183.2
60/64	62	56	0.0082	161.8	172.0	346.9	437.0	235.1	359.9	443.3	151.9
55/59	57	51	0.0066	132.3	140.5	288.0	363.6	196.9	300.7	367.8	126.2
	Í										
50/54	52	47	0.0057	118.4	125.4	256.0	332.4	174.6	265.8	333.0	110.6
45/49	47	43	0.0050	92.0	96.8	190.1	260.7	127.1		257.6	79.5
40/44	42	38	0.0039	72.4	75.9	138.6	198.4	88.8		195.0	56.1
35/39	37	34	0.0034	44.4	46.1	75.5	120.8	44.9		116.1	28.1
30/34	32	29	0.0028	23.0	23.8	34.9	60.3	18.9	28.8	57.4	12.0
'		İ			_						
25/29	27	25	0.0023	8.3	8.4	9.6	21.3	3.8	5.8	19.4	2.4
20/24	22	i i	0.0016	2.4	2.5	3.6	6.1	2.0	3.0	5.9	1.3
15/19	17		0.0013	0.4	0.4	0.3	0.9	0.0	0.0	0.8	0.0
10/14	12		0.0009	0.2	0.2	0.1	0.4	0.0	0.0	0.4	0.0

ASSUMPTIONS

- 1) SUMMER ROOM DESIGN: 78FDB, 50%RH
- 2) WINTER ROOM DESIGN: 70FDB, 40%RH
- 3) HUMIDITY RATIOS FOR THE SPACE BASED ON SUMMER & WINTER ROOM DESIGN TEMP.

EQUIPMENT:

SMALL AIR COOLED CHILLER (3-25 TONS): 8.57 BTU/WATT-H LARGE AIR COOLED CHILLER (25-100 TONS): 8.63 BTU/WATT-H SMALL WATER COOLED CHILLER (25-100 TONS): 11.11 BTU/WATT-H LARGE WATER COOLED CHILLER (>100 TONS): 12.12 BTU/WATT-H

SYSTEM TYPES FOR ABOVE BUILDINGS

BUILDING	SYSTEM TYPE
NUMBER	
44	SMALL AIR COOLED
368	SMALL AIR COOLED
407	LARGE AIR COOLED
1350	LARGE WATER COOLED
1387	SMALL AIR COOLED
1462	LARGE AIR COOLED
2399	LARGE WATER COOLED
2652	LARGE AIR COOLED

	TOTAL		630215	5014831	19485518	16268330	18307115	14018718	01/01751	2014318Z	9648457	12246941	12787051	11510928	8075165	4497007	5068737	1888299	622450	54586	97359	100	
)	I	YEAR	16.1	153.4	30.0	458.6	595.6	535 7	. 6	0. C. C. C. C. C. C. C. C. C. C. C. C. C.	0. 50	257.6	195.0	116.1	57.4	19.4	5.9	0.8	70	: YEAR	YFAR	E KWH	
	TOTAL	BTCH	39235	38583	30634	35477	30739	26530	24084	10171	28232	36778	49646	59030	69576	78379	88344	97147	105950	FOR THE YEAR	FOR THE YEAR	COOLING KWH	
M	ATENT	BTCH	8131	13939	21490	23813	25555	22651	11818	28.08	2002	6970	13358	16262	20328	22651	26138	28459	30782	_	. –	T-HB (
NOW 30% OF THE 400 CFM IS EXHAUSTED EXHAUST CFM=5FTx20FTx100FPM=10 000CFM	SENS. LATEN	BTCH	31104	24624	18144	11664	5184	3888	10368	16848	23328	29808	36288	42768	49248	55728	62208	68688	75168	COOLING KRTU	TOTAL HEATING KBTU	EQUIPMENT 12.12 BTU/WATT-HR	
NOW 30% OF THE 400 CFM IS EXHAUSTED EXHAUST CFM=5FTx20FTx100FPM=10 000		HR RM	0.0102	0.0102	0.0102	0.0102	0.0102	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062		TOTAL H	12.12 B	
400 CFN FTX20FT		RM HR OA	0.0116	0.0126				70 0.0101										0.0013	0.000	-	, —	IPMENT	
OF THE	2399	DB RM	102 78	97 78	92 78		82 78	02 71	2 70	57 70	52 70	•	42 70	• -		-	•	12 29	2			EQU	
N 30% (BUILDING 2399	CFM D	200 10	200	200	_	_	200	200	_	_			_	_	_	_	- 8	28				
S X		O	¥	¥	¥	¥	~	¥	÷	-	¥	¥	÷	=	;	;	-	ï	ï				
)	TOTAL	91 2	2100718	19715436	44885052	54227767	61023716	47389059	32485940	23504690	32161525	40823136	42623503	38369760	26917215	14990022	16895790	6294329	2074862	181953	324530	21231	
	HRS	YEAR	16.1	153.4	339.8	458.6	595.6	535.7	443.3	367.8	333.0	257.6	195.0	16.1	57.4	19.4	D. C	9. G	4.0	YEAR	EAR	K	
		<	_	=	Q	4	Ñ	ດິ	4	ĕ	ဗ	Ñ	-	_	•,	•				¥	Æ		
	TOTAL	_	_	128544 1	132112 3	118256 4	102464 5	88464 50	73280 4	63904 36	87440 33			_	_					OR THE YE	OR THE YE		
STED	 	HOTE /	130784	128544				88464		63904		122592	165488	196768	231920	261264	294480	323824		3 KBTU FOR THE YE	FOR THE	COOLING	
S EXHAUSTED 1=10,000CFM	LATENT	нота нота	27104 130784	128544	132112	79376 118256	102464	75504 88464	73280	63904	9680 87440	23232 122592	44528 165488	54208 196768	67760 231920	75504 261264	6/120 294480	84004 323824		COLING KBTU FOR THE YE	FOR THE	COOLING	
ED AIR IS EXHAUSTED x100FPM=10,000CFM	SENS. LATENT	втин втин втин /	103680 27104 130784	82080 46464 128544	60480 71632 132112	38880 79376 118256	17280 85184 102464	12960 75504 88464	34560 38720 73280	56160 7744 63904	77760 9680 87440	99360 23232 122592	120960 44528 165488	142560 54208 196768	164160 67760 231920	185/60 /5504 261264	20/360 6/120 294480	220900 94664 323824	250560 102608 353168	OTAL COOLING KBTU FOR THE YE	FOR THE	COOLING	
DITIONED AIR IS EXHAUSTED Tx20FTx100FPM=10,000CFM	SENS. LATENT	втин втин втин /	0.0102 103680 27104 130784	0.0102 82080 46464 128544	0.0102 60480 71632 132112	38880 79376 118256	17280 85184 102464	12960 75504 88464	34560 38720 73280	0.0062 56160 7744 63904	0.0062 77760 9680 87440	0.0062 99360 23232 122592	0.0062 120960 44528 165488	0.0062 142560 54208 196768	0.0062 164160 67760 231920	0.0062 185/60 /5504 261264 1	0.0062 20/360 6/120 294480	U.UUGZ ZZG90U 94664 3Z36Z4	0.0062 250560 102608 353168	TOTAL COOLING KBTU FOR THE YE	FOR THE	COOLING	
% CONDITIONED AIR IS EXHAUSTED -M=5FTx20FTx100FPM=10,000CFM	SENS. LATENT	RM HR OA HR RM BTUH BTUH /	78 0.0116 0.0102 103680 27104 130784	0.0126 0.0102 82080 46464 128544	0.0139 0.0102 60480 71632 132112	0.0143 0.0102 38880 79376 118256	85184 102464	0.0101 0.0062 12960 75504 88464	0.0082 0.0062 34560 38720 73280	0.0066 0.0062 56160 7744 63904	0.0057 0.0062 77760 9680 87440	0.0050 0.0062 99360 23232 122592	0.0039 0.0062 120960 44528 165488	0.0034 0.0062 142560 54208 196768	0.0062 164160 67760 231920	0.0023 0.0002 185/60 /5504 261264 1	0.0017 0.0062 207300 87120 284480	0.0013 U.0002 ZZGSOU 84604 3Z38Z4	250560 102608 353168	TOTAL COOLING KBTU FOR THE YE	FOR THE		
ME 40% CONDITIONED AIR IS EXHAUSTED UST CFM=5FTx20FTx100FPM=10,000CFM	SENS. LATENT	DB RMHROA HRRM BTUH BTUH BTUH /	102 78 0.0116 0.0102 103680 27104 130784	97 78 0.0126 0.0102 82080 46464 128544	92 78 0.0139 0.0102 60480 71632 132112	87 78 0.0143 0.0102 38880 79376 118256	82 78 0.0146 0.0102 17280 85184 102464	67 70 0.0101 0.0062 12960 75504 88464	62 70 0.0082 0.0062 34560 38720 73280	57 70 0.0066 0.0062 56160 7744 63904	52 70 0.0057 0.0062 77760 9680 87440	47 70 0.0050 0.0062 99360 23232 122592	42 70 0.0039 0.0062 120960 44528 165488	3/ /0 0.0034 0.0062 142560 54208 196768	32 /0 0.002/ 0.0062 164160 6/760 231920	27 70 0.0047 0.0062 185/60 75504 261264 1	47 70 0.0012 0.0062 20/360 6/120 284480	42967 344664 323824	12 /0 0.0009 0.0062 250560 102608 353168	TOTAL COOLING KBTU FOR THE YE	FOR THE	COOLING	
ASSUME 40% CONDITIONED AIR IS EXHAUSTED EXHAUST CFM=5FTx20FTx100FPM=10,000CFM	IG 2399 SENS. LATENT	DB RMHROA HRRM BTUH BTUH BTUH /	102 78 0.0116 0.0102 103680 27104 130784	97 78 0.0126 0.0102 82080 46464 128544	92 78 0.0139 0.0102 60480 71632 132112	87 78 0.0143 0.0102 38880 79376 118256	78 0.0146 0.0102 17280 85184 102464	67 70 0.0101 0.0062 12960 75504 88464	62 70 0.0082 0.0062 34560 38720 73280	57 70 0.0066 0.0062 56160 7744 63904	52 70 0.0057 0.0062 77760 9680 87440	47 70 0.0050 0.0062 99360 23232 122592	42 70 0.0039 0.0062 120960 44528 165488	37 70 0.0034 0.0062 142560 54208 196768	70 0,002 0,006 164160 67/60 231920	27 70 0.0047 0.0062 185/60 75504 261264 1	47 70 0.0012 0.0062 20/360 6/120 284480	42967 344664 323824	0.0062 250560 102608 353168	TOTAL COOLING KBTU FOR THE YE	TOTAL HEATING KBTU FOR THE N	COOLING	

CARTE	ER & BURGESS	COST ESTIMATIN	G ANALYSIS						
PROJECT NAME: FORT SAM HOU	STON EEAP	PROJECT NO: 9	1109912F						
PROJECT LOCATION: SAN ANTON	NO, TEXAS	ESTIMATOR: C.	M. JOHNSON						
SUBMITTAL:	35.0%	DATE:	27-Oct-93						
ECO NO/BUILDING:IV. F./BLDG 23	99 HOOD 2	CHECKED BY: S	CHECKED BY: SPC						
TASK DESCRIPTION	QUANTITY	LABOR	MATERIALS TOTAL						

TASK DESCRIPTION		ITITY		1	ABOR	1. 370	MATER	IALS	TOTAL
Hon Decim Hon	NO/UN		MH UN		UN PRICE	соѕт	UN PRICE	COST	COST
	1.0,0.0			11110		0.00		0.00	
	l	J i				0.00		0.00	
5'X 20' HOOD	20	LF		1	44.50	890.00			989
COMB. SUPPLY EXHAUST UNIT	10	MCFM			84.00	840.00 0.00	440.00	4400.00 0.00	524
	i	İ				0.00		0.00	
		l				0.00		0.00	
•		i l				0.00		0.00	
						0.00 0.00		0.00 0.00	
						0.00		0.00	
						0.00		0.00	
						0.00		0.00	
						0.00		0.00	
						0.00		0.00 0.00	
:						0.00		0.00	
						0.00		0.00	
						0.00		0.00	
						0.00	Ţ.	0.00	
						0.00	·	0.00	
						0.00		0.00	
		ľ	Į			0.00		0.00	
		I	İ			0.00		0.00	
						0.00		0.00 0.00	
					l l	0.00	l	0.00	
		ı			ı	0.00	ľ	0.00	
			I	1		0.00	I	0.00	
				ı		0.00		0.00	
	ł					0.00	į	0.00	
						0.00		0.00	
				1	ŀ	0.00	1	0.00	
	Į.		I			0.00	ŀ	0.00	
	1	- 1	İ		ĺ	0.00 0.00		0.00	
		1			ı	0.00		0.00 0.00	
İ		I		1	1	0.00	ľ	0.00	
			1	- 1		0.00		0.00	
				I	1	0.00	l	0.00	
						0.00	i	0.00	
		l	i			0.00		0.00 0.00	
	1	l	I			0.00		0.00	
	ĺ	I	j	l	ł	0.00	ļ	0.00	
	j	- 1	į	- 1		0.00	Į.	0.00	
	J	1		İ	Í	0.00	i	0.00	
i i		ł		ı]	0.00		0.00	
			- 1	ļ	l	0.00		0.00	
	į	- 1	j	i	l	0.00	1	0.00	
	i	1	J	ŀ	ł	0.00	i	0.00	
1	l		1	1		0.00	I	0.00	
!				1	l	0.00	ĺ	0.00	
	1	1	1	1	1	0.00	l	0.00	
						0.00		0.00	
JBTOTAL /ERHEAD & PROFIT	40.000					\$1,730		\$13,400	\$15,13
OTAL	10.00%			************		***************************************			\$1,51
/ I AL									\$16,64

LOCATION:	FO	RT SAM HOUS		REGION NO		PROJECT NO. 91109912	<u> 2F</u>
PROJECT TITLE:		FORT SAM HO	DUSTON DININ	G FACILITIES	EEAP	FISCAL YEAR 1994	Ī
DISCRETE PORTI	ON NAME:	BUILDING 2399	- ECO IV. F.)	- INSTALL M	IAKE-UP AIR SI	JPPLY FOR KITCHEN ARE	Ā
ANALYSIS DATE:	NOVEMBER		CONOMIC LIFE		PREPARER	C. M. JOHNSON	
1. INVESTMENT	COSTS.						
I. HAAFOIMEIAL	00313.						
A CONCEDUCTO	ON COCT		6 4.0.040				
A. CONSTRUCTION	JN COST		\$16,643				
B. SIOH			\$915		÷		
C. DESIGN COST			\$999				
D. TOTAL COST (1A+1B+1C)		\$18,557				
E. SALVAGE VALU	JE OF EXISTIN	IG EQUIPMENT		\$0			
F. PUBLIC UTILITY	COMPANY R	EBATE		\$0			
G. TOTAL INVEST	MENT (1D-1E	-1F)			\$18,557		
		,					
						•	
2 ENERGY SAVE	NGS (TYCOS.	T/\+					
2. ENERGY SAVI	NGS (+)/COS	<u>'''</u> -'):					
DATE OF NIOTID O	V.						
DATE OF NISTIR 8	5-32/3-X US	SED FOR DISCO	DUNI FACTOR	18: <u>1</u>	NOVEMBER 4, 1	992	
ENERGY	COST	SAVINGS	ANNUAL \$	DISCOUNT	DISCOUNTED)	
SOURCE	\$/MBTU(1)	MBTU/YR(2)	SAVINGS(3)	FACTOR(4)	SAVINGS(5)		
A. ELEC	\$10.55	50.72	\$535	14.65	\$7,839		
B. DIST			\$0	17.70	\$0		
C. RESID			\$0	20.99	\$0		
D. NG	\$3.31	227.17	\$752	20.60	\$15,490		
E. PPG			\$0	13.59	\$0		
F. COAL			\$0	16.32	\$0		
G. SOLAR							
H. GEOTH			<u>\$0</u>	13.59	\$0		
			\$0	13.59	\$0		
I. BIOMA	 		\$0	13.59	\$ 0		
J. REFUS			<u>\$0</u>	13.59	\$0		
K. WIND			\$0	13.59	\$0		
L. OTHER			\$0	13.59	\$0		
M. DEMAND SAVIN	NGS		\$0	13.59	\$0		
N. TOTAL		277.89	\$1,287		\$23,329		
			<u> </u>		420,020		
2 NON ENERGY	CAMBIOC ())	OD OOOT / '					
3. NON ENERGY	OMVINUS (+)	UR CUST (-):	-				
A ALILII IA							
A. ANNUAL RECUP	RRING (+/-)	\$0					
1. DISCOUNT FAC	TOR (TABLE A	N)					
A. ANNUAL RECUP 1. DISCOUNT FAC 2. DISCOUNTED S	TOR (TABLE A	N)		\$ 0			

B. NON RECURRING SAVINGS (+) OR COST(-)

7. ADJUSTED INTERNAL RATE OF RETURN (AIRR):

	ITEM	SAVINGS(+) COST(-)(1)	YEAR OF OCCUR. (2)	DISCOUNT FACTOR(3)	DISCOUNTED SAV- INGS(+)COST(-)(4)
a.	N/A	\$0	1	0.96	\$0
b.	N/A	\$0	2	0.92	\$0
C.	N/A	\$0	3 4	0.89	\$0
d.	N/A	\$0	4	0.85	\$0
e.	N/A	\$0	5	0.82	\$0
f.	N/A	\$0	6	0.79	\$0
g.	N/A	\$0	7	0.76	\$0
ĥ.	N/A	\$0	8	0.73	\$0
i.	N/A	\$0	9	0.7	\$0
j.	N/A	\$0	10	0.68	\$0
k.	N/A	\$0	11	0.65	\$0
l.	N/A	\$0	12	0.62	\$0
m.	N/A	\$0	13	0.6	\$0
n.	N/A	\$0	14	0.58	\$0
Ο.	N/A	\$0	15	0.56	\$0
p.	TOTAL	\$0			\$0
C.	TOTAL NON EI	NERGY DISCOL	JNTED SAVIN	 GS (3A2 + 3Bp4)	\$0
<u>4. S</u>	IMPLE PAYBAC	K 1G/(2N3+3A	+(3Bp1/ECO	NOMIC LIFE)):	14.4 YEARS
<u>5. T</u>	OTAL NET DISC	COUNTED SAV	INGS (2N5+3	<u>c</u>):	\$23,329
6. S	AVINGS TO INV	ESTMENT RAT	10 (SIR) 5/1G	<u>:</u>	1.26

5.2%

ENERGY CONSERVATION OPPORTUNITIES (ECO's)

Βl	ш	DI	NG	NC). 23	99
----	---	----	----	----	-------	----

ECO NO: IV. F. (Hood 3)

ECO NAME: Install make-up air supply for kitchen areas.

SUMMARY DATA (DEPENDENT):

KWH Savings:

2.681 KWH/yr

Demand Savings:

0____ KW/yr

Gas Savings:

39.7 MCF/yr

Cost Savings:

\$ 232 /yr

Implementation Cost:

\$ 5,291

Simple Payback:

22.8 **Years**

Savings to Investment:

.80

Ratio (SIR):

ECO DESCRIPTION:

Currently, the kitchen hoods in use do not contain supply air make-up. This ECO analyzes the addition of make-up air supply for the kitchen hoods.

COST SAVINGS CALCULATIONS:

(Refer to following spreadsheet)

IMPLEMENTATION COSTS:

(Refer to following Cost Estimate)

LIFE CYCLE COST ANALYSIS:

MODIFIED BIN METHOD CALCULATIONS

REFER TO ASHRAE 1993 FUNDAMENTALS

						O ASTINA					
BLDG. N		-		44	368	407	1350	1387	1462	2399	2652
TIME OF				6:00A	6:00A	7A-10P	4:00A	10:00A	9A-8:30P		10:00A
OPERAT	ION			1:30P	2:00P	7A-2P	8:30P	9:00P	9A-10:30P	7:30P	7:00P
DAYS/W	EEK			5	5	4,3	6	5	5,2	7	4
DB	MID	МС	HUMID	HRS	HRS	HRS	HRS	HRS	HRS	HRS	HRS
RANGE	PT.	WB	RATIO	/YR.	/YR.	/YR.	/YR.	/YR.	/YR.	/YR.	/YR.
100/104	102	74	0.0116	6.4	7.0	14.6	14.5	10.1	15.8	16.1	7.1
95/99	97	74	0.0126	59.4	64.8	139.8	139.4	97.9	152.8	153.4	67.7
90/94	92	74	0.0139	135.0	147.3	309.0	307.1	213.4	334.4	339.8	149.6
85/89	87	73	0.0143	173.8	189.6	418.5	418.7	296.3	461.3	458.6	202.9
80/84	82	72	0.0146	213.2	231.4	530.6	557.5	382.4	589.7	595.6	253.5
j											
75/79	77	70	0.0142	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70/74	72	66	0.0123	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
65/69	67	61	0.0101	196.1	208.4	418.7	527.9	283.1	433.6	535.7	183.2
60/64	62	56	0.0082	161.8	172.0	346.9	437.0	235.1	359.9	443.3	151.9
55/59	57	51	0.0066	132.3	140.5	288.0	363.6	196.9	300.7	367.8	126.2
	- 1	·					j				
50/54	52	47	0.0057	118.4	125.4	256.0	332.4	174.6	265.8	333.0	110.6
45/49	47	43	0.0050	92.0	96.8	190.1	260.7	127.1	192.8	257.6	79.5
40/44	42	38	0.0039	72.4	75.9	138.6	198.4	88.8	135.1	195.0	56.1
35/39	37	34	0.0034	44.4	46.1	75.5	120.8	44.9	68.1	116.1	28.1
30/34	32	29	0.0028	23.0	23.8	34.9	60.3	18.9	28.8	57.4	12.0
				ł						ŀ	
25/29	27	25	0.0023	8.3	8.4	9.6	21.3	3.8	5.8	19.4	2.4
20/24	22	20	0.0016	2.4	2.5	3.6	6.1	2.0	3.0	5.9	1.3
15/19	17	15	0.0013	0.4	0.4	0.3	0.9	0.0	0.0	0.8	0.0
10/14	12	10	0.0009	0.2	0.2	0.1	0.4	0.0	0.0	0.4	0.0

ASSUMPTIONS

- 1) SUMMER ROOM DESIGN: 78FDB, 50%RH
- 2) WINTER ROOM DESIGN: 70FDB, 40%RH
- 3) HUMIDITY RATIOS FOR THE SPACE BASED ON SUMMER & WINTER ROOM DESIGN TEMP.

EQUIPMENT:

SMALL AIR COOLED CHILLER (3-25 TONS): 8.57 BTU/WATT-H LARGE AIR COOLED CHILLER (25-100 TONS): 8.63 BTU/WATT-H SMALL WATER COOLED CHILLER (25-100 TONS): 11.11 BTU/WATT-H LARGE WATER COOLED CHILLER (>100 TONS): 12.12 BTU/WATT-H

SYSTEM TYPES FOR ABOVE BUILDINGS

BUILDING	SYSTEM TYPE
NUMBER	
44	SMALL AIR COOLED
368	SMALL AIR COOLED
407	LARGE AIR COOLED
1350	LARGE WATER COOLED
1387	SMALL AIR COOLED
1462	LARGE AIR COOLED
2399	LARGE WATER COOLED
2652	LARGE AIR COOLED

		₹ 2		#16211	50/8c01	2412572	2914742	3280025	0647490	2017402	1/46119	1263377	1/28682	2004040	2062375	1448800	BOE744	903/14	841008 00000	330320	111524	17449	141
	9	מביל ביל			4.50	53.00 10.00	458.6	595.6	F 26 7		20 to 0	80.708 0.008	96.0	40 F. O	118.1	57.4	107	r 0	, c	9 9	9 5	YEAR	KWH
						וסכ	6356	5507							10576				17408			TOTAL HEATING KBTU FOR THE YEAR	COOLING KWH
•	ATENIT	ζ	1457					4579	AOSB	3 6	- 44	2 6	1240	2303	2914	3642	405A	4683	2000	F 4 4 5		KBTUF	T-HR
NOW 30% OF THE 720 CFM IS EXHAUSTED EXHAUST CFM #3FTx6FTx100FDM # 1800CFM	L SENS		5573	4412	975	1000	2602	858	607	000	0 6	20.0	F. 24.	6502	7663	8824	2888	11146	12307	4976		EATING	EQUIPMENT 12.12 BTU/WATT-HR
NOW 30% OF THE 720 CFM IS EXHAUSTED EXHAUST CFM = 3FTx6FTx100FDM = 1800CF		Na an	0.0102	00100		2000		0.0102	0.0062	2800	0.000	0.000	0.000	0.0062	0.0062	0.0062	0.0062	0.0062	0.000	0000	TOTAL	TOTALH	. 12.12 B
720 CFI		RMHROA	0.0116	0.0128	78 0 0130		0.00	0.0146	0.0101	0.000	2000	0.0000	0.0050	0.0039	0.0034	0.0027	0.0023	0.0017	0.0013			•	PMENT
FINESE	300	BMI			_	2 6	2 1	8/	2	5	2 8	2 2	2		2		2	2	202	2	2		EQUI
30% C	BUILDING 2399	N DB					2 1	υ Ω	5	5	10 P	200	5 47	5 42	5 37	5 32	5 27	5 22	5 17	5	:		
NOW EXHA	BUIL	CFIN	215	215	215	i	7	612	2	ā	. 6	i &	Ä	. KI	215	24	24	7	2	215	i		
	TOTAL	BT0	378129	3546778	8079309	9760008	000000	10804208	8530031	5847469	4230844	5789075	7348164	7672231	6906557	4845099	2698204	3041242	1132979	373475	32751	58415	3622
	HRS	MEAR	16.1	153.4	339.8	458.6	200	0.000	535.7	443.3	367.8	333.0	257.6	195.0	116.1	57.4	19.4	5.0	0.8	4.0		YEAR	K K
	TOTAL	BTCH	23541	23138	23780	21286	18444	5	15924	13190	11503	15739	22067	29788	35418	41746	47028	53006	58288	63570	OR THE	OR THE	SOOLING
Ω	K	Ξ	Ø	_	_																ட		_
STE ĭš	M	ETCH HOTE	4879	8364	12894	14288	15999	2	13591	6970	1394	1742	4182	8015	9757	12197	13591	15682	17076	18469	XBTUF	KBTU	H-H
S EXHAUSTE =1800CFM	SENS. LATENI	BTUH BTI		14774 8364	10886 12894	6998 14288	•		2333 13591	6221 6970	10109 1394	13997 1742	17885 4182	21773 8015		_	•	37325 15682	41213 17076	45101 18469	COOLING KBTU F	JEATING KBTU	STU/WATT-HR
IED AIR IS EXHAUSTE (100FPM=1800CFM	-	HR RM BTUH	0.0102 18662	0.0102 14774	0.0102 10886 1	0.0102 6998	0.0102 3410	2	2333	6221	_	_		21773	25661	29549	33437	0.0062 37325	0.0062 41213	45101	FOTAL COOLING KBTU FOR THE	FOTAL HEATING KBTU	12.12 BTU/WATT-HR
NDITIONED AIR IS EXHAUSTE)FTx6FTx100FPM=1800CFM	-	HR RM BTUH	0.0102 18662	0.0102 14774	0.0102 10886 1	0.0143 0.0102 6998	0.0148 0.0102 3110	2000	2333	0.0082 0.0062 6221	0.0066 0.0062 10109	0.0057 0.0062 13997	0.0050 0.0062 17885	0.0039 0.0062 21773	0.0034 0.0062 25661	0.0027 0.0062 29549	0.0023 0.0062 33437	0.0017 0.0062 37325	0.0013 0.0062 41213	0.0009 0.0062 45101	TOTAL COOLING KBTU F	TOTAL HEATING KBTU FOR THE	IPMEN I 12.12 BTU/WATT-HR
)% CONDITIONED AIR IS EXHAUSTE)FM=3FTx6FTx100FPM=1800CFM		RMHROA HRRM BTUH	78 0.0116 0.0102 18662	78 0.0126 0.0102 14774	0.0102 10886 1	0.0102 6998	0.0102 3410	2000	0.0101 0.0062 2333	6221	0.0062 10109	70 0.0057 0.0062 13997	70 0.0050 0.0062 17885	0.0039 0.0062 21773	25661	0.0027 0.0062 29549	33437	0.0017 0.0062 37325	0.0062 41213	0.0009 0.0062 45101	TOTAL COOLING KBTU F	TOTAL HEATING KBTU	EQUIPMENT 12.12 BTU/WATT-HR COOLING
ASSUME 40% CONDITIONED AIR IS EXHAUSTED EXHAUST CFM=3FTx6FTx100FPM=1800CFM	-	HR RM BTUH	102 78 0.0116 0.0102 18662	97 78 0.0126 0.0102 14774	0.0102 10886 1	0.0143 0.0102 6998	82 78 0.0148 0.0102 3110		67 70 0.0101 0.0062 2333	62 70 0.0082 0.0062 6221	57 70 0.0066 0.0062 10109	52 70 0.0057 0.0062 13997	47 70 0.0050 0.0062 17885	42 70 0.0039 0.0062 21773	0.0034 0.0062 25661	32 70 0.0027 0.0062 29549	27 70 0.0023 0.0062 33437	22 70 0.0017 0.0062 37325	17 70 0.0013 0.0062 41213	12 70 0.0009 0.0062 45101	TOTAL COOLING KBTU F	TOTAL HEATING KBTU	EGUIPMEN 12.12 BTU/WATT-HR

	NECAR				PROJECT NO	9110991	2F		
PROJECT NAME: FORT SAM HOUSTO					ESTIMATOR:				
PROJECT LOCATION: SAN ANTONIO,					DATE:	O.M. 0011	27-Oct-93		
SUBMITTAL:	35.0%				CHECKED BY	· SPC	27 - 001-30		
ECO NO/BUILDING:IV. F./BLDG 2399 H	QUAN	TITY		4	ABOR	. 0. 0	MATERI	AIS	TOTAL
TASK DESCRIPTION			MH UN		UN PRICE	COST	UN PRICE	COST	COST
	NO/UN	UNII	MHUN	:: п п о	UNIFRICE	0.00	DNTRICE	0.00	
						0.00		0.00	
3'X 6' HOOD		LF MCFM			44.50 140.00	267.00 252.00		2400.00 1395.00	260 164
COMB. SUPPLY EXHAUST UNIT	1.0	14,07 .			, 10.55	0.00		0.00	
						0.00 0.00		0.00 0.00	
						0.00		0.00	
						0.00		0.00	
						0.00 0.00		0.00 0.00	
						0.00		0.00	
						0.00		0.00	
į						0.00 0.00		0.00 0.00	
						0.00		0.00	
						0.00 0.00		0.00 0.00	
						0.00		0.00	
						0.00	:	0.00	
						0.00 0.00	. ·	0.00 0.00	
						0.00		0.00	
						0.00 0.00		0.00 0.00	
						0.00		0.00	
						0.00		0.00	
						0.00 0.00		0.00 0.00	
						0.00		0.00	
						0.00		0.00	
						0.00		0.00	
	l					0.00		0.00	
						0.00		0.00 0.00	
						0.00		0.00	
		:				0.00		0.00	
						0.00		0.00	
						0.00		0.00	
						0.00		0.00	
						0.00		0.00	
						0.00		0.00	
						0.00		0.00 0.00	
	I					0.00		0.00	
				İ		0.00		0.00	
	ı					0.00		0.00 0.00	
	l					0.00		0.00	
	I					0.00		0.00	
	l		l			0.00		0.00	
			. 1			0.00		0.00	
l						0.00		0.00	
						0.00		0.00 0.00	

LOCATION:	FO	RT SAM HOUST	ON	REGION NO	3	PROJECT NO.	
PROJECT TITLE:		FORT SAM HO				FISCAL YEAR	
DISCRETE PORTIC						SUPPLY FOR KITC	
ANALYSIS DATE:	NOVEMBER	1, 1993 EC	CONOMIC LIFE	20	PREPARER	C. M. JOH	INSON
1. INVESTMENT C	COSTS:						
A. CONSTRUCTION B. SIOH C. DESIGN COST D. TOTAL COST (1) E. SALVAGE VALU F. PUBLIC UTILITY G. TOTAL INVEST	A+1B+1C) E OF EXISTIN COMPANY R	EBATE	\$4,745 \$261 \$285 \$5,291	\$0 \$0	 \$5,291	- ;	
2. ENERGY SAVIN		·		ie. ia		1000	
DATE OF NISTIN B	5-32/3-X US	SED FOR DISCO	DUNT FACTOR	15: <u>18</u>	OVEMBER 4,	1992	
ENERGY SOURCE	COST \$/MBTU(1)	SAVINGS MBTU/YR(2)	ANNUAL \$ SAVINGS(3)	DISCOUNT FACTOR(4)	DISCOUNTEI SAVINGS(5)	D	
A. ELEC	\$10.55	9.15	\$97	14.65	\$1,414		
B. DIST			\$0	17.70	\$0	•	
C. RESID			\$0	20.99	\$0	•	
D. NG	\$3.31	40.97	\$136	20.60	\$2,794		
E. PPG F. COAL			\$0	13.59	\$0	•	
G. SOLAR			\$0 \$0	16.32	\$0	•	
H. GEOTH			\$0	13.59 13.59	\$0 \$0	•	
I. BIOMA			\$0	13.59	\$0 \$0		
J. REFUS			\$0	13.59	\$0		
K. WIND			\$0	13.59	\$0		
L OTHER			\$0	13.59	\$0		
M. DEMAND SAVIN	IGS		\$0	13.59	\$0		
N. TOTAL		50.12	\$232		\$4,208		
3. NON ENERGY S A. ANNUAL RECUR 1. DISCOUNT FAC 2. DISCOUNTED S	RING (+/-) TOR (TABLE A	\$0	• 	<u>\$0</u>			

B. NON RECURRING SAVINGS (+) OR COST(-)

	ITEM	SAVINGS(+) COST(-)(1)	YEAR OF OCCUR.(2)	DISCOUNT FACTOR(3)	DISCOUNTED SAV- INGS(+)COST(-)(4)
a.	N/A	\$0	1_	0.96	\$0
b.	N/A	\$0	2 3 4	0.92	\$0
C.	N/A	\$0	3	0.89	\$0
d.	N/A	\$0		0.85	\$0
e.	N/A	\$0	5	0.82	\$0
f.	N/A	\$0	6	0.79	\$0
g.	N/A	\$0	7	0.76	\$0
h.	N/A	\$0	8	0.73	\$0
i.	N/A	\$0	9	0.7	\$0
j.	N/A	\$0	10	0.68	\$0
k.	N/A	\$0	11	0.65	\$0
I.	N/A	\$0	12	0.62	\$0
m.	N/A	\$0	13	0.6	\$0
n.	N/A	\$0	14	0.58	\$0
Ο.	N/A	\$0	15	0.56	\$0
p.	TOTAL	\$0			\$0
C.	TOTAL NON E	NERGY DISCOL	JNTED SAVIN	GS (3A2 + 3Bp4)	\$0
<u>4. S</u>	IMPLE PAYBAC	CK 1G/(2N3+3A	x+(3Bp1/ECOI	NOMIC LIFE)):	22.8 YEARS
5. T	OTAL NET DISC	COUNTED SAV	INGS (2N5+3	ු):	\$4,208
6. S	AVINGS TO IN	ESTMENT RAT	110 (SIR) 5/1G	<u>:</u>	0.80
7. A	DJUSTED INTE	RNAL RATE OF	RETURN (AIR	RR):	2.8%

ENERGY CONSERVATION OPPORTUNITIES (ECO's)

BUILDING NO. 2399			
ECO NO: XI.A			
ECO NAME: Replace be	oilers w	ith 99% effici	ent boilers.
SUMMARY DATA (DEI	PENDE	ENT):	
KWH Savings:		0	KWH/yr
Demand Savings:		0	KW/yr
Gas Savings:		322.7	MCF/yr
Cost Savings:	<u>\$</u>	1.100	/yr
Implementation Cost:	\$	38,389	
Simple Payback:	· · · · · · · · · · · · · · · · · · ·	34.9	Years
ECO DESCRIPTION:			
This ECO analyzes replace boilers.	ing the	existing dom	estic hot water boilers with 99% efficient
COST SAVINGS CALCU	LATIO	NS:	
(Refer to following SimpC	alc out	put)	
IMPLEMENTATION CO	STS:		
(Refer to following Cost E	stimate	·)	

LIFE CYCLE COST ANALYSIS:

TEXAS LoanSTAR Program - ECRM Simplified Calculation Ver 2.0

Page 1 SimpCate 2.0 SUMMARY (by FORM) - FORT SAM HOUSTON 11/01/93 ECRM Desc. Page KWH/Yr KW MCF/yr mmBtu/Yr \$/Yr Imp.Cost PayBack Facility C9-01 BLDG 2399 HOSPITAL DINING Low Eff Hot Wat 27 0 .00 322.7 332.4 1100 38389 34.9 38389 *** SUB-TOTAL *** 0 322.7 332.4 1100 34.9 .00 ** GRAND TOTAL ** 0 .00 322.7 332.4 1100 38389

TEXAS LoanSTAR Program - ECRM Simplified Calculation Ver 2.0

10/21/93 Consolid	lated ECRM Detail - FORT SAM HOUSTON	Page	27
*******************		********	****
C9-001 Replace Low Ef	ficiency DHW Units - BLDG 2399 HOSPITAL DINING		(G
Cost Source: vender qu	ote		
Description: Install h	igh efficiency water heater.		
A) <u>9.60</u> Gal/person	Daily Hot Water Consumption per Capita (Table 10))	
8) <u>275</u> People	Number of People in Facility		
C) <u>365</u> Days	Days per Year of Occupancy		
) 140 Degree/f	Hot Water Temperature		
.6500	Heating Efficiency Existing		
F) <u>.9900</u>	Heating Efficiency Proposed		
38.10 mmBTU/yr	Standby Loss for Gas Water Heater		
.40	Reduction in Standby Loss		:
() \$ 3.41 /MCF	Cost per MCF		
) \$ <u>38389</u> /Unit	Installed Cost of Replacement Unit		
() <u>561.9</u> mmBTU/yr	Annual BTU's for Hot Water		
.) <u>896.2</u> MCF/year	Existing Unit Consumption		
) <u>573.5</u> MCF/year	Proposed Unit Consumption		
1) <u>322.7</u> MCF/year	Total Consumption Savings		
o) \$ <u>1100</u> /year	Annual Cost Savings		

ENERGY CONSERVATION OPPORTUNITIES (ECO's)

BUILDING NO. 2652										
ECO NO: IV. F.										
ECO NAME: Install mak	e-up air supply for k	citchen areas.								
SUMMARY DATA (DEF	'ENDENT):									
KWH Savings:	9,704	KWH/yr								
Demand Savings:	0	KW/yr								
Gas Savings:	96.0	MCF/yr								
Cost Savings:	\$ 677	/yr								
Implementation Cost:	\$ 13,011									
Simple Payback:	19.2	Years								
Savings to Investment: Ratio (SIR):	91									
ECO DESCRIPTION:										
Currently, the kitchen hood the addition of make-up ai	ls in use do not contar supply for the kitcl	ain supply air make-up. This ECO analyzes then hoods.								
COST SAVINGS CALCULATIONS:										
(Refer to following spreads	sheet)									
IMPLEMENTATION COS	STS:									
(Refer to following Cost E	stimate)									
LIFE CYCLE COST ANA	LYSIS:									

MODIFIED BIN METHOD CALCULATIONS

REFER TO ASHRAE 1993 FUNDAMENTALS

						O ASI IIIA		DIADVINE			
BLDG. N				44	368	407	1350	1387	1462	2399	2652
TIME OF				6:00A	6:00A	7A-10P	4:00A	10:00A	9A-8:30P	5:00A	
	DPERATION 1:30P				2:00P	7A-2P	8:30P	9:00P	9A-10:30P	7:30P	7:00P
DAYS/W	EEK			5	5	4,3	6	5	5,2	7	4
DB	MID	MC	HUMID	HRS	HRS	HRS	HRS	HRS	HRS	HRS	HRS
RANGE	PT.	WB	RATIO	/YR.	/YR.	/YR.	/YR.	/YR.	/YR.	/YR.	/YR.
100/104	102	74	0.0116	6.4	7.0	14.6	14.5	10.1	15.8	16.1	7.1
95/99	97	74	0.0126	59.4	64.8	139.8	139.4	97.9	152.8	153.4	67.7
90/94	92	74	0.0139	135.0	147.3	309.0	307.1	213.4	334.4	339.8	149.6
85/89	87	73	0.0143	173.8	189.6	418.5	418.7	296.3	461.3	458.6	202.9
80/84	82	72	0.0146	213.2	231.4	530.6	557.5	382.4	589.7	595.6	253.5
75/79	77	70	0.0142	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70/74	72	66	0.0123	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
65/69	67	61	0.0101	196.1	208.4	418.7	527.9	283.1	433.6	535.7	183.2
60/64	62	56	0.0082	161.8	172.0	346.9	437.0	235.1	359.9	443.3	151.9
55/59	57	51	0.0066	132.3	140.5	288.0	363.6	196.9	300.7	367.8	126.2
				l						i	
50/54	52	47	0.0057	118.4	125.4	256.0	332.4	174.6	265.8	333.0	110.6
45/49	47	43	0.0050	92.0	96.8	190.1	260.7	127.1	192.8	257.6	79.5
40/44	42	38	0.0039	72.4	75.9	138.6	198.4	88.8	135.1	195.0	56.1
35/39	37	34	0.0034	44.4	46.1	75.5	120.8	44.9	68.1	116.1	28.1
30/34	32	29	0.0028	23.0	23.8	34.9	60.3	18.9	28.8	57.4	12.0
		1	·	ŀ			İ			1	
25/29	27		0.0023	8.3	8.4	9.6	21.3	3.8	5.8	19.4	2.4
20/24	22		0.0016	2.4	2.5	3.6	6.1	2.0	3.0	5.9	1.3
15/19	17		0.0013	0.4	0.4	0.3	0.9	0.0	0.0	0.8	0.0
10/14	12	10	0.0009	0.2	0.2	0.1	0.4	0.0	0.0	0.4	0.0

ASSUMPTIONS

- 1) SUMMER ROOM DESIGN: 78FDB, 50%RH
- 2) WINTER ROOM DESIGN: 70FDB, 40%RH
- 3) HUMIDITY RATIOS FOR THE SPACE BASED ON SUMMER & WINTER ROOM DESIGN TEMP.

EQUIPMENT:

SMALL AIR COOLED CHILLER (3-25 TONS): 8.57 BTU/WATT-H LARGE AIR COOLED CHILLER (25-100 TONS): 8.63 BTU/WATT-H SMALL WATER COOLED CHILLER (25-100 TONS): 11.11 BTU/WATT-H LARGE WATER COOLED CHILLER (>100 TONS): 12.12 BTU/WATT-H

SYSTEM TYPES FOR ABOVE BUILDINGS

BUILDING	SYSTEM TYPE
NUMBER	
44	SMALL AIR COOLED
368	SMALL AIR COOLED
407	LARGE AIR COOLED
1350	LARGE WATER COOLED
1387	SMALL AIR COOLED
1462	LARGE AIR COOLED
2399	LARGE WATER COOLED
2652	LARGE AIR COOLED

			TOTAL	BT2	416173	3918919	RR02083	1079885	11688581	7209541	E000007	3620510	40682B0	6099828	5920333	4971203	2929647	1410828	170378) :) C	95718	42402	4167
)	;		H	MEAR	7.1	67.7	149.6	202.9	253.5	183.0	1 0	108.0	10.6	79.5	56.1	28.1	12.0	2.4	· ·	9	0	۲	YEAR	3 KWH
			TOTAL	ETCH HOTE	58853	57845	59450	53215	46109	30800	3207R	28757	39348	55166	74470	88546	104364	117569	132516	145721	158926	FOR THE	FOR THE YEAR	COOLING KWH
	_	. .	ATENT	HOTB H	12197	20809	32234	35719	38333	33077	17424	3485	4356	10454	20038	24394	30492	33977	39204	42689	46174	CBTU	_	
	HAUSTE	=6000CF	SENS. LATEN	BTCH	46656	36936	27218	17496	9777	5832	15552	25272	34992	44712	54432	64152	73872	83592	93312	103032	112752	TOTAL COOLING	EATING	U/WATT
	NOW 30% CONDITIONED AIR IS EXHAUSTED	EXHAUST CFM=5FTx12FTx100FPM=6000CFM		HRAM	0.0102	0.0102	0.0102	0.0102	0.0102	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062			FOTAL C	FOTAL HEATING KBTU	EQUIPMENT 8.63 BTU/WATT-HR
	IONED A	TX12FT		RM HR OA	0.0116	0.0128			0.0146	0.0101			_				0.0027							PMENT
	TIONO	FM=5F	652		78	. 78	2 78	7 78	78	70	2	•	•	•	2 70	2	2	7 70	-	7 70	2 70			EQU
	7 30% 0	AUST C	BUILDING 2652	CFM DB	1800 102	1800 97	800	800 8	1800 82	900	1800 62	_	1800 52	Ī		000	1800 32	27	000 22	1800	900			
	Š	X		ប	₽	₽	18	6	5	₽	18	₽ ₽	9	8	₽	₽	8	₽	6	₽	9			
	•		TOTAL	F	1387245	13056398	29640271	35996282	38961936	24311803	16699989	12098397	16554266	20332759	19734444	16570677	9765489	4702752	567926	0	0	119042	141338	13891
			HRS	MEAR	7.1	67.7	149.6	202.9	253.5	183.2	151.9	126.2	110.6	79.5	56.1	28.1	12.0	2.4	د ن	0.0		: YEAR		KWH
			TOTAL	BTCH	196176	192816	198168	177384	153696	132696	109920	95856	131160	183888	248232	295152	347880	391896	441720	485736	529752	OR THE	OR THE	COOLING
	JSTED	Æ	ATENT	BTCH	40656	96969	107448	119064	127776	113256	58080	11616	14520	34848	66792	81312	101640	113256	130680	142296	153912	KBTU	KBTUF	
	ASSUME 100% CONDITIONED AIR IS EXHAUSTED	EXHAUST CFM=5FTx12FTx100FPM=6000CFM	SENS. LATEN	BICH	155520	123120	90720	58320	25920	19440	51840	84240	116640	149040	181440	213840	246240	278640	311040	343440	375840	<i>TOTAL COOLING KBTU FOR THE</i>	TOTAL HEATING KBTU FOR THE Y	EQUIPMENT 8.63 BTU/WATT-HR
	JED AIR	X100FPN		HR RM	0.0102	0.0102	0.0102	0.0102	0.0102	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062	OTAL O	OTAL	6.63 BT
	DELO	Tx12FT				0.0128	0.0139 0.0102	0.0143	0.0146	70 0.0101 0.0062	0.0082 0.0062	9900'0	0.0057		0.0039	0.0034	0.0027 0.0062	0.0023 0.0062	0.0017 0.0062	0.0013 0.0062	0.0009 0.0062	_		MENT
	% CQ	M=5F	25	Z Z	78	92	78 0		78	9	20	20							20		0 02			
	而 100	ST CF	NG 26!		•		85	87	85	29	62	22	25	47	4	37	32	27	22	17	4			_
	ASSUM	EXHAU	BUILDING 2652	S	9000	8	900	9009	0009	9009	000 000	9000	9000	9009	9000	000	9000	900	000	000	000			
																							6	78

CARTER	& BU	RGE	SS CO	STE	STIMAT	ING A	NALYSIS					
PROJECT NAME: FORT SAM HOUSTO	PROJECT NO: 91109912F											
PROJECT LOCATION: SAN ANTONIO.	TEXAS				ESTIMATOR: C.M. JOHNSON							
SUBMITTAL:	35.0%				DATE: 27-Oct-93							
ECO NO/BUILDING:IV. F./BLDG 2652 H	100D 1				CHECKED B	Y: SPC						
TASK DESCRIPTION	QUAN	ITITY		L	ABOR		MATER	IALS	TOTAL			
	NO/UN	UNIT	MH UN	HRS	UN PRICE	COST	UN PRICE	COST	COST			
						0.00 0.00		0.00 0.00				
5'X 12' HOOD	1 12	LF			44.50		450.00	5400.00	5934			
COMB. SUPPLY EXHAUST UNIT		МСЕМ			119.00		660.00	3960.00	4674			
		i				0.00 0.00		0.00 0.00	(
						0.00		0.00	C			
		l				0.00		0.00	(
		l				0.00 0.00		0.00 0.00				
						0.00		0.00				
		l				0.00		0.00				
						0.00		0.00 0.00	,			
						0.00		0.00	•			
						0.00		0.00	0			
					[0.00 0.00		0.00 0.00	C C			
			·			0.00		0.00	(
						0.00	,	0.00	(
			i			0.00 0.00		0.00 0.00				
						0.00		0.00				
						0.00		0.00	•			
			İ			0.00 0.00		0.00 0.00	0			
			1			0.00		0.00	Ó			
						0.00		0.00	0			
						0.00 0.00		0.00	0			
						0.00		0.00	0			
-			l			0.00		0.00	0			
						0.00 0.00		0.00	0			
						0.00		0.00	č			
						0.00		0.00	9			
						0.00 0.00		0.00	C C			
						0.00		0.00	Ö			
						0.00		0.00	0			
						0.00		0.00	0			
					j	0.00		0.00	ō			
					·	0.00		0.00	0			
						0.00 0.00		0.00 0.00	0			
						0.00	j	0.00	0			
						0.00	j	0.00	0 0 0 0 0 0 0 0			
			-			0.00		0.00	0			
	i					0.00		0.00	0			
						0.00		0.00	0			
			l			0.00 0.00		0.00	0			
						0.00		0.00	0			
						0.00		0.00	0			
						0.00		0.00	0			
						0.00		0.00	0			
SUBTOTAL						\$1,248	-	\$9,360	\$10,608			
OVERHEAD & PROFIT	10.00%	277777220	orional research						\$1,061			
TOTAL									\$11,669			

LOCATION:	FO	RT SAM HOUS	TON	_REGION NO	. <u> </u>	PROJECT NO. $_$	91109912F
PROJECT TITLE:		FORT SAM HO	USTON DININ	G FACILITIES	EEAP	FISCAL YEAR	1994
DISCRETE PORT	ION NAME:	BUILDING 2652	2 - ECO IV. F.)	- INSTALL M	AKE-UP AIR S	UPPLY FOR KITC	HEN AREAS
ANALYSIS DATE:	: NOVEMBER	1, 1993 EC	CONOMIC LIFE	20	PREPARER	C. M. JOI	HNSON
					_		
				•			
1. INVESTMENT	COSTS						
1. HAVEOTHIERT	00010.						
A. CONSTRUCTI	IONI COST		\$11,669				
B. SIOH	ON CO31			_			
	-		\$642				
C. DESIGN COST			\$700				
D. TOTAL COST			\$13,011	_			
E. SALVAGE VAL				\$0			
F. PUBLIC UTILIT	Y COMPANY R	EBATE		\$0			
G. TOTAL INVEST	TMENT (1D-1E	-1F)			<u>\$13,011</u>		
	•	•				:	
2. ENERGY SAV	INGS (+)/COS	T/_1·					
E. LIVETICE ON	114011/1000	7-7.					
DATE OF NISTIR	852272VII	SED EOD DISCO	OLINIT EACTOR	C. 1A	IOVENDED 4	1000	
DATE OF MISTIN	03-32/3-X U	SED FOR DISCO	JUNI PACTOR	15. <u>r</u>	IOVEMBER 4, 1	992	
ENEDOW	COST	0444400				_	
ENERGY	COST	SAVINGS	ANNUAL \$	DISCOUNT	DISCOUNTE)	
SOURCE	\$/MBTU(1)	MBTU/YR(2)	SAVINGS(3)	FACTOR(4)	SAVINGS(5)		
A. ELEC	\$10.55	33.12	\$349	14.65	\$5,119		
B. DIST			\$0	17.70	\$0		
C. RESID			\$0	20.99	\$0		
D. NG	\$3.31	98.94	\$327	20.60	\$6,746		
E. PPG	· · · · · · · · · · · · · · · · · · ·		\$0	13.59	\$0		
F. COAL			\$0	16.32	\$0		
G. SOLAR			\$0	13.59	\$0		
H. GEOTH			\$0	13.59	\$0		
I. BIOMA							
J. REFUS			\$0	13.59	\$0		
			<u>\$0</u>	13.59	\$0		
K. WIND			\$0	13.59	\$0		
L OTHER			\$0	13.59	\$0		
M. DEMAND SAVI	NGS		\$0	13.59	\$0		
N. TOTAL		132.06	\$677		\$11,865		
3. NON ENERGY	SAVINGS (+)	OR COST (-1)					
	J	<u> </u>	-				
A. ANNUAL RECU	BRING (+/-)	\$0					
1. DISCOUNT FAC		'/ 					
				**			
2. DISCOUNTED	344111G2/CO2	I (3A X 3A1)	•	\$0			

LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)

B. NON RECURRING SAVINGS (+) OR COST(-)

7. ADJUSTED INTERNAL RATE OF RETURN (AIRR):

	ITEM	SAVINGS(+) COST(-)(1)	YEAR OF OCCUR.(2)	DISCOUNT FACTOR(3)	DISCOUNTED SAV- INGS(+)COST(-)(4)		
		0001()(1)	0000(_)	.,,,,,			
a.	N/A	\$0	1	0.96	\$0		
b.	N/A	\$0	2	0.92	\$0		
C.	N/A	\$0	3	0.89	\$0		
d.	N/A	\$0	4	0.85	\$0		
е.	N/A	\$0	5	0.82	\$0		
f.	N/A	\$0	6	0.79	\$0		
g.	N/A	\$0	7	0.76	\$0		
ĥ.	N/A	\$0	8	0.73	\$0		
i.	N/A	\$0	9	0.7	\$0		
j.	N/A	\$0	10	0.68	\$0		
k.	N/A	\$0	11	0.65	\$0		
l.	N/A	\$0	12	0.62	\$0		
m.	N/A	\$0	13	0.6	\$0		
n.	N/A	\$0	14	0.58	\$0		
0.	N/A	\$0	15	0.56	\$0		
p.	TOTAL	\$0			\$0		
•				-			
C.	C. TOTAL NON ENERGY DISCOUNTED SAVINGS (3A2 + 3Bp4) \$0						
4. SIMPLE PAYBACK 1G/(2N3+3A+(3Bp1/ECONOMIC LIFE)): 19.2 YEARS							
5. TOTAL NET DISCOUNTED SAVINGS (2N5+3C): \$11,865							
6. S	6. SAVINGS TO INVESTMENT RATIO (SIR) 5/1G: 0.91						

3.5%

ENERGY CONSERVATION ANALYSIS

ENERGY CONSERVATION OPPORTUNITIES (ECO's)

BUILDING NO. 2841

ECO NO:

IX. A

ECO NAME: Replace boilers with 99% efficient boilers.

SUMMARY DATA (DEPENDENT):

KWH Savings:

5,092

KWH/yr

Demand Savings:

4.33

KW/yr

Gas Savings:

___0

MCF/yr

/yr

Cost Savings:

\$ 378

Implementation Cost:

\$ 13,400

Simple Payback:

35.4

Years

ECO DESCRIPTION:

This ECO analyzes replacing the existing domestic hot water boilers with 99% efficient boilers.

COST SAVINGS CALCULATIONS:

(Refer to following SimpCalc output)

IMPLEMENTATION COSTS:

(Refer to following Cost Estimate)

LIFE CYCLE COST ANALYSIS:

(Refer to following ECIP Life Cycle Cost Summary)

TEXAS LoanSTAR Program - ECRM Simplified Calculation Ver 2.0

11/01/93

SimpCalc 2.0 SUMMARY (by FACILITY) - FORT SAM HOUSTON

MCF/yr mmBtu/Yr \$/Yr lmp.Cost PayBack ECRM Desc. Page KWH/Yr KW Low Eff Cooling 11 5092 4.33 .0 17.4 378 13400 C2-01 BLDG 0368 CAFETERIA *** SUB-TOTAL *** 5092 4.33 .0 17.4 378 13400 35.4 *** SAVINGS % *** .0 % .0 % .0 X 4.33 17.4 5092 13400 ** GRAND TOTAL ** .0 378 35.4

TEXAS LoanSTAR Program - ECRN Simplified Calculation Ver 2.0

10,21,70	ated ECRM Detail - FORT SAM HOUSTON	Page	
	ficiency DHW Units - BLDG 2841 ACADEMY DINNING	*****	(G)
Cost Source: vender qu	ote		
Description: Install h	igh efficiency water heater.		
A)2.40 Gal/person	Daily Hot Water Consumption per Capita (Table 10)		
B) 250 People	Number of People in Facility		
C) 365 Days	Days per Year of Occupancy		
D) 140 Degree/F	Hot Water Temperature		
E) <u>.6500</u>	Heating Efficiency Existing		
F) <u>.9900</u>	Heating Efficiency Proposed		
G) <u>38.10</u> mmBTU/yr	Standby Loss for Gas Water Heater		
H)40	Reduction in Standby Loss	:	
I) \$ <u>3.41</u> /MCF	Cost per MCF		
J) \$ <u>38389</u> /Unit	Installed Cost of Replacement Unit		
() <u>127.7</u> mmBTU/yr	Annual BTU's for Hot Water		
L) <u>247.6</u> MCF/year	Existing Unit Consumption		
M) <u>147.7</u> MCF/year	Proposed Unit Consumption		
N) <u>99.9</u> MCF/year	Total Consumption Savings		
0) \$ <u>341</u> /year	Annual Cost Savings		
P) 112.6 years	Simple Payback		

C - MAINTENANCE AND OPERATIONAL RECOMMENDATIONS

I. ENVELOPE

A. Additional Insulation/Sealing

The ductwork for the rooftop unit serving the office area in Building 368 should be resealed.

IV. HVAC

E. Balance HVAC System

The make-up air kitchen hoods for Building 2265 have the make-up supply louvers closed. These supply louvers should be fully open in order for the hood to function properly.

V. BOILER/STEAM

A. Steam Trap Inspection

The steam traps for Building 2399 appear to be original to the building and should be replaced to prevent blow by of live steam.

X. REFRIGERATION EQUIPMENT

B. Add Plastic Air Curtains to Prevent Infiltration

The following buildings have walk-in freezers and refrigerators that do not have plastic air curtains or have torn curtains in need of replacement; Buildings 368, 407, 1387, 1395, 2399, 2841 and 5107. Addition or replacement of air curtains will reduce energy consumption due to infiltration and exfiltration.

XI. OTHER

B. Reduce Hot Water Temperature to 140°F

Currently, the domestic hot water temperature is set at 160°F for Building 368. This facility contains an automatic dishwasher with a booster heater for sanitization. The optimum temperature for the domestic hot water is 140°F. Reducing the temperature will result in a reduction in energy consumption.

C. Restore Operation of Ventilation Unit

Currently, a ventilation unit is disabled which is intended to serve the kitchen area for Building 5107. As a result, the kitchen hoods are exhausting conditioned air from the adjacent dining area. Restoring operation of this unit would reduce energy consumption related to the exhausted conditioned air.

D - CRITERIA AND REFERENCES

CRITERIA AND REFERENCES

- 1. OCE Architectural and Engineering Instruction Design Criteria November 20, 1990
- 2. Memorandum CEHSC-FU-M
 Energy Conservation Investment Program (ECIP)
 Guidance
 November 4, 1992
- 3. TM 5-802-1
 Economic Studies for Military Construction
 Design Applications
 December 1986
- 4. ASHRAE Fundamentals Handbook 1993
- 5. ASHRAE HVAC Applications Handbook 1991
- 6. Means Mechanical Cost Data 1993
- 7. Means Electrical Cost Data 1993

E - LIGHTING IMPLEMENTATION COSTS

LIGHTING IMPLEMENTATION COSTS

Below is a summary of the implementation costs (from Means and Defense General Supply)

	<u>LAMPS</u>	MATL	<u>LABOR</u>
F32T8SP35		\$1.98	3.0 min
F96T8SP35		\$6.00	3.0 min
18 Watt PL w/ref	lector	\$16.67	15.0 min
27 Watt PL w/ res	flector	\$21.00	15.0 min
Fluor. Exit Kit		\$15.00	15.0 min
BALLASTS		;	
1-Lamp, Electroni	c	\$18.00	30 min
2-Lamp, Electroni	c	\$21.00	30 min
3-Lamp, Electronic	c	\$26.00	30 min
4-Lamp, Electronic	c	\$27.00	30 min
2-Lamp, 8'F96, Ele	ectronic	\$32.00	30 min
FIXTURES			
2x4, 4-lamp w/T8	lamps, elect. ballasts	\$88.00	45 min
8', 2-lamp industria ballasts	al w/T8 lamps, electronic	\$61.00	60 min
LABOR RATES	RATE W/ O&P	COST INDEX	RATE
Electrician	40.10	.699	\$28.03
Technician	29.10	.699	\$20.34

Note: The values listed above are utilized by the Flex program to calculate the implementation cost for lighting retrofits. The costs listed include all costs involved with a typical lighting retrofit for construction and demolition including; material, labor and disposal. Quantities of fixtures/lamps are indicated on the Flex output forms.

F - SCOPE OF WORK

DETAILED SCOPE OF WORK CONTRACT NO. DCAC63-91-D-0048 DELIVERY ORDER NO. 000

1. The Architect-Engineer (A-E) shall furnish all services, material, supplies, plant, labor, equipment, investigations, studies, superintendence and travel as required in connection with the below identified project for design in accordance with the original basic contract and this Detailed Scope of Work.

Appendix "A" of the basic contract shall be followed for performance requirements for A-E services. Where this Detailed Scope of Work shall govern.

INSTALLATION

PROJECT TITLE

FORT SAM HOUSTON

(EEAP), DINING FACILITIES STUDY

2. The work and other related data and services required in this Delivery Order shall be accomplished within the time schedule required, in accordance with the subject stated above and scope of work described in paragraph 3 below. The schedule for delivery of data to the Contracting Officer is in calendar days as follows:

INDEFINITE	DELIVERY
DELIVERY	SCHEDULE
CONTRACT	

- a. Interim Submittal(s)and Related data for Studies
- 120 calendar days after Notice to Proceed

b. Pre-Final Submittal(s)

- 120 calendar days after approval of Interim submittal
- c. Final Submittal
 (original and All Data
 Developed under this Contract)
 Submittal
- 120 calendar days after approval of the Pre-Final

(See Annex "B" page B2 for Government Furnished Items)

- 3. The items of work included in this contract shall be in accordance with criteria furnished at the Scoping Conference held on April 22, 1993 at Fort Sam Houston. The services to be provided shall include, but not be limited to, the following Scope of Work.
- a. Items of Work: (See the enclosed General and Detailed Scope of Work)

- 1. BRIEF DESCRIPTION OF WORK: The Architect-Engineer (AE) shall:
 - 1.1 Perform a complete energy audit and analysis of the dining facilities.
- 1.2 Identify all Energy Conservation Opportunities (ECOs) including low cost/no cost ECOs and perform complete evaluations of each.
- 1.3 Provide complete programming or implementation documentation for all recommended ECOs.
 - 1.4 List and prioritize all recommended energy conservation opportunities.
- 1.5 Prepare a comprehensive report which will document the work accomplished, the results and the recommendations.

2. **GENERAL**

- 2.1 An energy study, including a detailed energy survey, shall be accomplished for the dining facilities listed in Annex B. The study shall integrate the results of and any available data from prior or ongoing energy conservation studies, projects, designs, or plans with work done under this contract. This Scope of Work is not intended to prescribe the details in which the studies are to be conducted or limit the AE in the exercise of his professional engineering expertise, good judgment or investigative ingenuity. However, the information and analysis outlined herein are considered to be minimum essentials for adequate performance of this study. The study shall include a comprehensive energy report documenting study methods and results.
- 2.2 All recommended ECOs, including maintenance, operational and low cost/no cost opportunities as well as ECIP projects shall be ranked in order of highest to lowest Savings to Investment Ratio (SIR).
- 2.3 Other studies performed under the Energy Engineering Analysis Program(EEAP) have been accomplished for the installation at which the dining facilities are located. The portions of the studies applicable to the dining facilities, if any, shall be incorporated into this study. This report shall list the recommended dining facility related ECOs from the previous studies. This list shall identify the previous studies, summarize the dining facility related ECOs and the anticipated energy savings, and identify the fiscal year for which the project was or is programmed. The backup calculations and project documentation from the previous studies shall be reproduced and included as an appendix to the report. Any dining facility related ECOs identified in previous studies but not recommended shall be reevaluated under this contract. Any dining facility related ECOs recommended from the previous studies but not implemented nor programmed for implementation shall be updated in accordance with the latest ECIP guidance.
- 2.4 The AE shall ensure that all methods of energy conservation pertaining to dining facilities, which will reduce the energy consumption of the installation in compliance with the

Energy Resources Management Plan, have been considered and documented. All methods of energy conservation which are reasonable and practical shall be considered, including improvements of operational methods and procedures as well as the physical facilities. All new and updated energy conservation opportunities which produce energy or dollar savings shall be documented in this report. Any energy conservation opportunities considered infeasible shall be documented in the report with reasons for elimination. A list of general energy conservation opportunities is included as Annex A to this scope.

- 2.5 The study shall consider the use of all energy sources. The energy sources may include electricity, natural gas, liquefied petroleum gas, bulk oil, other oil products, steam when procured, gasoline, coal, solar, etc.
- 2.6 The "Energy Conservation Investment Program (ECIP) Guidance," described in a letter from CEHSC-FU, dated 4 Nov 1992 and revised by letter from CEHSC-FU-P establishes criteria for ECIP projects and shall be used for performing the economic analyses of all ECOs and projects. Construction cost escalation for DD Form 1391 submission shall be calculated using the guidelines contained in AR 415-17 and the latest Tri-Service MCP index. The Tri-Service MCP Index, when updated, is contained in the latest applicable edition of the Engineer Improvement Recommendation System (EIRS) bulletin.
- 2.7 Computer Modeling will be used to determine the energy savings of ECOs which would replace or significantly change an existing heating, ventilating, and air-conditioning (HVAC) system. The requirement to use computer modeling applies only to heated and air-conditioned or air-conditioned-only buildings which exceed 8000 square feet or heated-only buildings in excess of 20,000 square feet. Modeling will be done using a professionally recognized and proven computer program or programs that integrate architectural features with air-conditioning, heating, lighting and other energy-producing or consuming systems. These programs will be capable of simulating the features, systems, and thermal loads of the building under study. The program will use established weather data files and may perform calculations on a true hour-by-hour basis or may condense the weather files and the number of calculations into several "typical" days per month. The Detailed Scope of Work, Annex B, will list programs that are acceptable to the Contracting Officer. If the AE desires to use a different program, it must be submitted for approval with a sample run, an explanation of all input and output data, and a summary of program methodology and energy evaluation capabilities.
- 2.8 Energy conservation opportunities determined to be technically and economically feasible shall be developed into projects acceptable to installation personnel. This may involve combining similar ECOs into larger packages which will qualify for ECIP or MCA funding, and determining, in coordination with installation personnel, the appropriate packaging and implementation approach for all feasible ECOs.
- 2.8.1 Projects which qualify for ECIP funding shall be identified, separately listed, and prioritized by the Savings to Investment Ratio (SIR).

- 2.8.2 All feasible non-ECIP projects shall be ranked in order of highest to lowest SIR.
- 2.8.3 At some installations, Energy Conservation and Management (ECAM) funding will be used instead of ECIP funding. The criteria for each program is the same. The Director of Engineering and Housing will indicate which program is used at this installation. This Scope of Work mentions only ECIP, however, ECAM is also meant.

3. PROJECT MANAGEMENT

- 3.1 Project Managers. The AE shall designate a project manager to serve as a point of contact and liaison for work required under this contract. Upon award of this contract, the individual shall be immediately designated in writing. The AE's designated project manager shall be approved by the Contracting Officer prior to commencement of work. This designated individual shall be responsible for coordination of work required under this contract. The Contracting Officer will designate a project manager to serve as the Government's point of contact and liaison for all work required under this contract. This individual will be the Government's representative.
- 3.2 <u>Installation Assistance</u>. The Commanding Officer at each installation will designate an individual who will serve as the point of contact for obtaining information and assisting in establishing contacts with the proper individuals and organizations as necessary in the accomplishment of the work required under this contract.
- 3.3 <u>Public Disclosures</u>. The AE shall make no public announcements or disclosures relative to information contained or developed in this contract, except as authorized by the Contracting Officer.
- 3.4 Meetings. Meetings will be scheduled whenever requested by the AE or the Contracting Officer for the resolution of questions or problems encountered in the performance of the work. The AE and/or the designated representative(s) shall be required to attend and participate in all meetings pertinent to the work required under this contract as directed by the Contracting Officer. These meetings, if necessary, are in addition to the presentation and review conferences.
- 3.5 <u>Site Visits, Inspections, and Investigations</u>. The AE shall visit and inspect/investigate the site of the project as necessary and required during the preparation and accomplishment of the work.

3.6 Records

3.6.1 The AE shall provide a record of all significant conferences, meetings, discussions, verbal directions, telephone conversations, etc., with Government representative(s) relative to this contract in which the AE and/or designated representative(s) thereof participated. These records shall be dated and shall identify the contract number, and modification number if

applicable, participating personnel, subject discussed and conclusions reached. The AE shall forward to the Contracting Officer within ten calendar days, a reproducible copy of the records.

- 3.6.2 The AE shall provide a record of requests for and/or receipt of Government-furnished material, data, documents, information, etc., which if not furnished in a timely manner, would significantly impair the normal progression of the work under this contract. The records shall be dated and shall identify the contract number and modification number, if applicable. The AE shall forward to the Contracting Officer within ten calendar days, a reproducible copy of the record of request or receipt of material.
- 3.7 <u>Interviews</u>. The AE and the Government's representative shall conduct entry and exit interviews with the Director of Engineering and Housing before starting work at the installation and after completion of the field work. The Government's representative shall schedule the interviews at least one week in advance.
- 3.7.1 Entry. The entry interview shall describe the intended procedures for the survey and shall be conducted prior to commencing work at the facility. As a minimum, the interview shall cover the following points:
 - a. Schedules.
 - b. Names of energy analysts who will be conducting the site survey.
 - c. Proposed working hours.
 - d. Support requirements from the Director of Engineering and Housing.
- 3.7.2 Exit. The exit interview shall briefly describe the items surveyed and probable areas of energy conservation. The interview shall also solicit input and advice from the Director of Engineering and Housing.
- 4. <u>SERVICES AND MATERIALS</u>. All services, materials (except those specifically enumerated to be furnished by the Government), labor, superintendence and travel necessary to perform the work and render the data required under this contract are included in the lump sum price of the contract.
- 5. <u>PROJECT DOCUMENTATION</u>. All energy conservation opportunities shall be included in one of the following categories and presented in the report as such:
- 5.1 ECIP Projects. To qualify as an ECIP project, an ECO, or several ECOs which have been combined, must have a construction cost estimate greater than \$300,000, a Savings to Investment Ratio greater than one and a simple payback period of less than ten years. The overall project, and each discrete part of the project, shall have a SIR greater than one. For all projects meeting the above criteria, complete programming documentation will be required.

Programming documentation shall consist of a DD Form 1391, life cycle cost analysis summary sheet(s) (with necessary backup data to verify the numbers presented), and a project development brochure (PDB). A life cycle cost analysis summary sheet shall be developed for each ECO and for the overall project when more than one ECO are combined. The energy savings for projects consisting of multiple ECOs must take into account the synergistic effects of the individual ECOs. For projects and ECOs reevaluated from previous studies, the backup data shall consist of copies of the original calculations and analysis, with new pages updating and revising the original calculations and analysis. In addition, the backup data shall include as much of the following as is available: the increment of work the project or ECO was developed under in the previous study, title(s) of the project(s), the energy to cost (E/C) ratio, the benefit to cost (B/C) ratio, the current working estimate (CWE), and the payback period. This information shall be included as part of the backup data. The purpose of this information is to provide a means to prevent duplication of projects in any future reports.

- 5.2 Non-ECIP Projects. Projects which do not meet ECIP criteria with regard to cost estimate or payback period, but which have an SIR greater than one shall be documented. Projects or ECOs in this category shall be provided with the following documentation: the life cycle cost analysis (LCCA) summary sheet completely filled out, a description of the work to be accomplished, backup data for the LCCA, i.e., energy savings calculations and cost estimate(s), and the simple payback period. The energy savings for projects consisting of multiple ECOs must take into account the synergistic effects of the individual ECOs. In addition these projects shall have the necessary documentation prepared, as required by the Government's representative, for one of the following categories:
- a. Quick Return on Investment Program (QRIP). This program is for projects which have a total cost greater than \$3000 but less than \$100,000 and a simple payback period of two years or less.
- b. Productivity Enhancing Capital Investment Program (PECIP). This program is for projects which have a total cost of greater than \$3000 but less than \$100,000 and a simple payback period of four years or less.
- c. OSD Productivity Investment Funding (OSD PIF). This program is for projects which have a total cost of more than \$100,000 and a simple payback period of four years or less.

The above programs and the required documentation forms are all described in detail in AR 5-4, Change No. 1.

- d. Regular Military Construction Army (MCA) Program. This program is for projects which have a total cost greater than \$300,000 and a simple payback period of four to twenty-five years. Documentation shall consist of DD form 1391 and a Project Development Brochure.
- e. Low Cost/No Cost Projects. These are projects which the Director of Engineering and Housing (DEH) can perform with his resources. Documentation shall be as required by the

DEH.

- 5.3 Nonfeasible ECOs. All ECOs which the AE has considered but which are not feasible, shall be documented in the report with reasons and justifications showing why they were rejected.
- 6. <u>DETAILED SCOPE Of WORK</u>. The general Scope of Work is intended to apply to contract efforts for all Army dining facilities included under this contract except as modified by the detailed Scope of Work for each individual installation. The detailed Scope of Work is contained in Annex B.

7. WORK TO BE ACCOMPLISHED

7.1 Audit and Analysis

- 7.1.1 Audit. The audit consists of gathering data and inspecting the dining facilities in the field. These activities shall be closely coordinated with the Government's representative and the Director of Engineering and Housing. The AE shall become familiar with each dining facility and undertake all necessary field trips to obtain required data. The AE shall document his field surveys on forms developed for the survey, or standard forms, and submit the completed forms as part of the report. Data sources shall be identified and assumptions clearly stated and justified. Data collected during the audit shall be in sufficient detail to identify all the major energy using equipment and processes. The AE shall measure and record the voltage and amperage of all motors one horsepower and larger. The information gathered shall be compared to the name plate data to determine whether the motor is being properly utilized. Data should be gathered when the motor is loaded. Air handling system supply, return and exhaust air quantities, temperatures, relative humidities, lighting levels, number and type of light fixtures, differential pressure readings, domestic hot water temperatures, and similar data required for the analysis shall be based on measurements made during the audit and not on "as-built" drawings. All test and/or measurement equipment shall be properly calibrated prior to its use. Operating sequences for equipment, control schedules, facility operating hours, methods of operation, and past performance records should also be obtained during the audit.
- 7.1.2 Analysis. The energy analysis is a comprehensive-study of the dining facilities energy usage. It includes a detailed investigation of the facilities operation, its environment and its equipment. The energy analysis shall provide the following types of information: (a) a baseline of energy usage of the existing dining facility, (b) peak heating and cooling loads, (c) energy usage by systems (lighting, heating, cooling, domestic hot water, etc.), (d) a basis for evaluating ECOs, and (e) a baseline of energy usage of the dining facility after incorporation of all recommended ECOs. The AE shall develop graphic presentations, i.e., graphs and charts, which depict a complete energy consumption picture for the dining facilities as they are now and after implementation of the recommended energy conservation opportunities and include these in the report.

- 7.2 Identify ECOs. All methods of energy conservation which are reasonable and practical shall be considered, including improvements of operational methods and procedures and maintenance practices as well as the physical facilities. A list of energy conservation opportunities is included as Annex A to this scope. This list is not intended to be restrictive but only to assure that at least these opportunities are considered, discussed and documented in the report. Those items on the list which are not practical, have been previously accomplished, are inappropriate or can be eliminated from detailed analysis based on preliminary analysis shall be listed in the report along with the reason for elimination from further analysis. All potential ECOs which are not eliminated by preliminary considerations shall be thoroughly documented and evaluated as to technical and economic feasibility. The AE shall provide all data and calculations needed to support the recommended ECO. All assumptions shall be clearly stated. Calculations shall be prepared showing how all numbers in the ECO were figured. Calculations shall be an orderly step-by-step progression from the first assumption to the final number. Descriptions of the products, manufacturers catalog cuts, pertinent drawings and sketches shall also be included. A life cycle cost analysis summary sheet shall be prepared for each ECO and included as part of the supporting data.
- 7.3 Provide Programming or Implementation Documentation
 During the Interim Review Conference, as outlined in pragraph 7.5.1, the AE will be advised of the DEH's preferred packaging of recommended ECOs into projects for implementation. These projects will be documented as outlined in paragraphs 5.1, 5.2, and 5.3. Programming documentation will be included in the Prefinal Submittal per par 7.5.2. Programming documents shall be bound similarly to the final report in a manner which will facilitate repeated disassembly and reassembly.

7.4 List and Prioritize All Projects.

- 7.4.1 The AE shall list and prioritize all energy conservation opportunities by savings to investment ratios.
- 7.4.2 The AE shall list and prioritize all projects by types of projects and savings to investment ratios.
- 7.5 <u>Submittals</u>, <u>Presentations and Reviews</u>. The work accomplished shall be fully documented by a comprehensive report. The report shall have a table of contents and be indexed. Tabs and dividers shall clearly and distinctly divide sections, subsections, and appendices. All pages shall be numbered. The AE shall give a formal presentation of all but the final submittal to installation, command, and other Government personnel. The AE shall prepare slides or view graphs showing the results of the study to date for his presentation. During the presentation, the personnel in attendance shall be given ample opportunity to ask questions and discuss any changes deemed necessary to the study. A review conference will be conducted the same day, following the presentation. Each comment presented at the review conference will be discussed and resolved or action items assigned. The AE shall provide the comments from all reviewers and written notification of the action taken on each comment to

all reviewing agencies within three weeks after the review meeting. It is anticipated that each presentation and review conference will require approximately one working day. The presentation and review conferences will be at the installation on the date(s) agreeable to the Director of Engineering and Housing, the AE and the Government's representative. The Contracting Officer may require a resubmittal of any document(s), if such document(s) are not approved because they are determined by the Contracting Officer to be inadequate for the intended purpose.

- 7.5.1 Interim Submittal. An interim report shall be submitted for review after the field survey has been completed and an analysis has been performed on all of the ECOs. The report shall indicate the work which has been accomplished to date, illustrate the methods and justifications of the approaches taken and contain a plan of the work remaining to complete the study. Calculations showing energy and dollar savings and SIRs of all the ECOs shall be included. The simple payback period of all ECOs shall be calculated and shown in the report. The AE shall submit the Scope of Work and any modifications to the Scope of Work as an appendix to the report. A narrative summary describing the work and results to date shall be a part of this submittal. During the review period, the Government's representative shall coordinate with the Director of Engineering and Housing and provide the AE with direction for packaging or combining ECOs for programming purposes and also indicate the fiscal year for which the programming or implementation documentation shall be prepared. implementation document (DA Form 5108-R, sketches and manufacturers data, life cycle cost analysis summary sheet and supporting data) for one project shall be submitted with this submittal for review and approval. The survey forms completed during this audit shall be submitted with this report. The survey forms only may be submitted in final form with this submittal. They should be clearly marked at the time of submission that they are to be retained. They shall be bound in a standard three-ring binder which will allow repeated disassembly and reassembly of the material contained within.
- 7.5.2 Prefinal Submittal. The AE shall prepare and submit the prefinal report when all work under this contract is complete. The AE shall submit the Scope of Work for the installation studied and any modifications to the Scope of Work as an appendix to the submittal. The report shall contain a narrative summary of conclusions and recommendations, together with all raw and supporting data, methods used, and sources of information. The report shall integrate all aspects of the study. The report shall include an order of priority by SIR in which the recommended ECOs should be accomplished. The synergistic effects of all of the ECOs on one another shall have been determined and the results of the original calculations adjusted accordingly. Completed programming and implementation documents for all recommended projects shall be included. The programming and implementation documents shall be ready for review and signature by the installation commander. The prefinal report, separately bound Executive Summary and all appendices shall be bound in standard three-ring binders which will allow repeated disassembly and reassembly. The prefinal submittal shall be arranged to include (a) a separately bound Executive Summary to give a brief overview of what was accomplished and the results of this study using graphs, tables and charts as much as possible (See Annex D for minimum requirements), (b) the narrative report containing a copy of the Executive

Summary at the beginning of the volume and describing in detail what was accomplished and the results of this study, (c) appendices to include the detailed calculations and all backup material and (d) the programming and implementation documentation. A list of all projects and ECOs developed during this study shall be included in the Executive Summary and shall include the following data from the life cycle cost analysis summary sheet: the cost (construction plus SIOH), the annual energy savings (type and amount), the annual dollar savings, the SIR, the simple payback period and the analysis date. For all programmed projects also include the year in which it is programmed and the programmed year cost.

7.5.3 Final Submittal. Any revisions or corrections resulting from comments made during the review of the prefinal report or during the presentation and review conference shall be incorporated into the final report. These revisions or corrections may be in the form of replacement pages, which may be inserted in the prefinal report, or complete new volumes. Pen and ink changes or errata sheets will not be acceptable. If replacement pages are to be issued, it shall be clearly stated with the prefinal submittal that the submitted documents will be changed only to comply with the comments made during the prefinal conference and that the volumes issued at the time of the prefinal submittal should be retained. Failure to do so will require resubmission of complete volumes. If new volumes are submitted, they shall be in standard three-ring binders and shall contain all the information presented in the prefinal report with any necessary changes made. Detailed instructions of what to do with the replacement pages should be securely attached to the replacement pages.

_	PART ATT	TENIET	AN MANUA FRANCISCO
			ON - DINING FACILITIES
1	BUILDING		
	44		SNACK BAR
	48	500	VIP GUEST HOUSE
	368	5,720	CAFETERIA
H	407	5,500	OFFICER CLUB
	1350	18,000	DINING FACILITY
1	1387	2,000	MINI-MALL
1		6,000	
	1462		SNACK BAR
1	1630		YOUTH CENTER
1	2265	1	MESS HALL IN BARRACKS
1 .	2399		ACADEMY (BLDG UNDER STUDY)
	2521		SNACK BAR
	2530	-	NEW CHILD CARE CENTER
	2652		DINNER THEATRE
	2841		ACADEMY CLASSROOM
ļ	2041		MP BULLIS
	5108		II DULLIU
	5105	, ,	
	5107		
	5107 5114		
	· ·	•	
	5124	3,600	•
	1520	25,800	
TOTAL		184 485	
TOTAL	21	161,400	

ANNEX A

GENERAL ENERGY CONSERVATION OPPORTUNITIES

ENVELOPE

- o Insulation (wall, roof, pipe, duct, etc.)
- o Insulated glass or double glazed windows
- o Weather stripping and caulking

HOT WATER

- o Shutdown energy to hot water heaters or modify controls
- o Booster heaters at major hot water users

o Instantaneous hot water heater

HEAT RECOVERY

- o Heat recovery from dishwasher hot water
- o Heat reclaim from kitchen exhaust
- o Waste heat recovery

HVAC

o Night setback/setup thermostats

- o Economizer cycles (dry bulb)
- o Upgrade HVAC controls
- o Make HVAC operations more efficient
- o Balance HVAC systems

- o Install make-up air supply for kitchen area
- o Shut off range hood exhaust whenever possible
- o Thermal storage

o Replace kitchen exhaust hoods with energy efficient models

BOILER/STEAM

- o Steam trap inspection
- o Insulate steam and condensate lines

POWER

o Convert to energy efficient/smaller motors

OPTIMAL OPERATION

REDUCE/ENHANCE LIGHTING

- o Photocells for lighting
- o Timers for lighting
- o Separate switches to control lighting arrangements
- o Remove unneeded lamps or fixtures
- o Reduce indoor or outdoor lighting where illumination exceeds AEI recommended levels
- o Lower light fixtures
- o Improve reflection and dispersion with light-colored ceilings and walls

IMPROVE LIGHTING CONTROLS

- o Install occupancy sensors to control lighting where applicable
- o Install additional switches to control lighting arrangements

IMPROVE LIGHTING EFFICIENCY

- o Replace incadescent lamps with compact fluorescent lamps
- o Replace incandescent exit sign fixtures with LED fixtures
- o Replace standard fluorescent lamps with energy-conserving lamps
- o Replace standard fluorescent ballasts with electronic ballasts
- o Replace existing fluorescent fixtures with new fixtures having efficient reflectors, electronic ballasts, and energy-conserving lamps

IMPROVE EFFICIENCY OF REFRIGERATION & FREEZER EQUIPMENT.

ANNEX B

GUIDE TO THE PREPARATION OF THE DETAILED SCOPE OF WORK

- 1. This annex will contain the detailed Scope of Work for the energy audit of the dining facilities at this installation. The information presented below is to be used as a guide in preparing the detailed Scope of Work. This statement and the statements below should not appear in the final contract documents. The generalized Scope of Work and the detailed scope of work must combine to form a clear and concise statement of the requirements for the study. They must be reviewed carefully and edited as necessary to eliminate mutual conflicts and to provide needed details.
- 2. If the general Scope of Work covers more than one installation under a contract, a separate detailed Scope of Work will be prepared for each installation.
- 3. The project manager will schedule a meeting at the installation with the Director of Engineering and Housing (DEH) and the Energy Officer. This meeting should be scheduled after these individuals have received the general Scope of Work and indicated that they are receptive to an energy survey of their dining facilities. Troop Support Agency (LOTA-EM-E), the Division and the MACOM should be invited to this meeting. The above offices should be notified a minimum of three weeks in advance of this meeting. The purpose of this meeting will be to inform the installation what this survey is to accomplish, to discuss the general Scope of Work, answer any questions pertaining to it and to develop the detailed Scope of Work. The following information is necessary when developing the detailed Scope of Work and the DEH should be prepared to provide it at this meeting:
 - a. Dining facilities that should be included in this energy study. Temporary buildings should be separately identified. Provide building names and numbers, type of building, size, whether building is typical of any others, etc.
 - b. Any specific energy conservation opportunities (ECOs) pertaining to the dining facilities that should be looked at in this study. —
 - c. The status of any recommended projects from any previous studies.
 - d. Which ECOs in Annex A are not applicable at this installation.

Sufficient time should be allowed to obtain the above information.

4. Each detailed Scope of Work will include, but not be limited to, the following:

- a. The schedule for completion of the study including milestone dates or time allowed, measured in calendar days from the notice to proceed, for each submittal.
- b. The requirements as to the number of copies of each submittal required and the complete mailing addresses of those who are to receive the submittals.
- c. An itemized list of Government furnished information to be provided to the AE. As a minimum, this list should include:
 - Final reports of previously completed studies performed under the Energy Engineering Analysis Program (EEAP). Only portions pertaining to dining facilities, if any, need to be made available.
 - X(2) Latest copies of other energy studies performed since the previous EEAP study. Only portions pertaining to dining facilities, if any, need to be made available.
 - (3) Energy Resources Management Plan.
 - (4) ETLs 1110-3-282, Energy Conservation and 1110-3-332, Economic Studies.
 - (5) Architectural and Engineering Instructions.
 - -> (6) Energy Conservation Investment Program (ECIP) Guidance, dated 4 November 1992.
 - (7) TM 5-785, Engineering Weather Data; TM 5-800-2, General Criteria Preparation of Cost Estimates; and TM 5-800-3, Project Development Brochure.
 - (8) AR 415-15, Military Construction Army (MCA) Program Development; AR 415-17, Cost Estimating for Military Programming; AR 415-20, Construction, Project Development and Design Approval; AR 415-28, Department of the Army Facility Classes and Construction Categories; AR 415-35, Construction, Minor Construction; AR 420-10, General Provisions, Organization, Functions, and Personnel; AR 11-27, Army Energy Program, and AR 5-4, Change No. 1, Department of the Army Productivity Improvement Program.
 - (9) The latest applicable Engineering Improvement Recommendation System (EIRS) bulletin.
 - (10) An example of a correctly completed implementation document for a project.

 (DA FORM 5108-R)

- .5. When developing the detailed Scope of Work, the Director of Engineering and Housing, the Energy Officer and the project manager shall go over the energy conservation opportunities (ECOs) listed in Annex A and indicate on that list the ECOs which are not applicable for this installation. This will let the AE know which ECOs are not applicable, so as to avoid duplication of work. Additionally, ECOs should be added to the list in Annex A if their feasibility appears likely.
- 6. The detailed Scope of Work will list those buildings or facilities which will be included in the study. If temporary building(s) are to be included in this energy study with the intent of developing an ECIP project incorporating them, a letter is required stating that there is a continuing need of the building for a ten year period after the retrofit or for the life of the retrofit. The continuing need must be based on the installation's annual real property utilization survey (AR 405-70). This letter must be signed by the base commander and be ready no later than the prenegotiation meeting or the temporary building(s) will be removed from the list of buildings to be included in the study. This letter is not required if temporary buildings are to be included in low cost/no cost or non-ECIP projects only.
- 7. The Director of Engineering and Housing should designate a coordinator to serve as the point of contact and liaison for all work required under this contract. This individual should be identified in the detailed Scope of Work.
- 8. If it is known that the buildings in this study will not be subject to the computer modeling requirements of paragraph 2.7 of the general scope of work, then paragraph 2.7 should be deleted. If it is possible that the buildings in this study will be subject to the computer modeling requirements of paragraph 2.7, then the simulation programs acceptable to the office doing the technical review should be listed in the detailed scope of work. Some acceptable simulation programs follow:
 - a. Building Loads and System Thermodynamics (BLAST) *
 - b. DOE 2.1B *
 - c. Carrier E20 or Hourly Analysis Program (HAP) **
 - d. Trane Air-conditioning Economics (TRACE) **
 - * Very accurate, but requires a lot of time for input; therefore it is rather expensive for straightforward projects.
 - ** Adequate for load determination, equipment selection, and energy performance for most projects.

This list may be expanded, contracted, or revised to include programs with which the reviewers are familiar provided such programs comply with Chapter 28, "Energy Estimating Methods" of

the ASHRAE Handbook of Fundamentals.

- 9. If the Director of Engineering and Housing has requirements for project documentation other than what is shown in paragraph 7.3 of the general Scope of Work, such as Work Order, DA Form 4283, these requirements should be clearly stated in this annex or the paragraphs modified as necessary.
- 10. If the installation has an Energy Monitoring and Control System (EMCS) that is outdated or if additional points need to be added to include the dining facilities, the appropriate guidance should be included in this annex.
- 11. The following is provided and should be included in the detailed Scope of Work for the AE's benefit: A computer program titled Life Cycle Costing in Design (LCCID) is available from the BLAST Support Office in Urbana, Illinois for a nominal fee. This computer program can be used for performing the economic calculations for ECIP and non-ECIP ECOs. The AE is encouraged to obtain and use this computer program. The BLAST Support Office can be contacted at 144 Mechanical Engineering Building, 1206 West Green Street, Urbana, Illinois 61801. The telephone number is (800) 842-5278.

- 12. Special Requirements Distribution of submittal documents
 - (1) Four copies of all documents shall be mailed

to:

Commander
U.S. Army Engineer District, Fort Worth
819 Taylor Street/P.O. Box 17300
ATTN: CESWF-ED-M/Richard Champagne
Fort Worth, TX 76102-0300

(2) Seven copies of all documents shall be mailed

to:

Commander
DA, HQ, Fort Sam Houston
ATTN: DEH-ESB (Mr. Kaya Cibildak)
Fort Sam Houston, TX 78234-5000

ANNEX C

REQUIRED DD FORM 1391 DATA

To facilitate ECIP project approval, the following supplemental data shall be provided:

- a. In title block, clearly identify projects as "ECIP."
- b. Complete description of each item of work to be accomplished including quantity, square footage, etc.
- c. A comprehensive listing of buildings, zones, or areas including building numbers, square foot floor areas, designated temporary or permanent, and usage.
- d. List references, assumptions and provide calculations to support dollar and energy savings, and indicate any added costs.
 - (1) If a specific building, zone, or area is used for sample calculations, identify building, zone or area, category, orientation, square footage floor area, window and wall area for each exposure.
 - (2) Identify weather data source.
 - (3) Identify infiltration assumptions before and after improvements.
 - (4) Include source of expertise and demonstrate savings claimed. Identify any special or critical environmental conditions such as pressure relationships, exhaust or outside air quantities, temperatures, humidity, etc.
- e. Claims for boiler efficiency improvements must identify data to support present properly adjusted boiler operation and future expected efficiency. If full replacement of boilers is indicated, explain rejection of alternatives such as replace burners, nonfunctioning controls, etc. Assessment of the complete existing installation is required to make accurate determinations of required retrofit actions.
- f. Lighting retrofit projects must identify number and type of fixtures, and wattage of each fixture being deleted and installed. New lighting shall be only of the level to meet current criteria. Lamp changes in existing fixtures is not considered an ECIP type project.
- g. An ECIP life cycle cost analysis summary sheet as shown in the ECIP Guidance shall be provided for the complete project and for each discrete part included in the project. The

SIR is applicable to all segments of the project. Supporting documentation consisting of basic engineering and economic calculations showing how savings were determined shall be included.

- h. The DD Form 1391 face sheet shall include, for the complete project, the annual dollar and MBTU savings, SIR, simple amortization period and a statement attesting that all buildings and retrofit actions will be in active use throughout the amortization period.
- i. The calendar year in which the cost was calculated shall be clearly shown on the DD Form 1391.
- j. For each temporary building included in the project, separate documentation is required showing (1) a minimum 10-year continuing need, based on the installation's annual real property utilization survey, for active building retention after retrofit, (2) the specific retrofit action applicable, and (3) an economic analysis supporting the specific retrofit.
- k. Nonappropriated funded facilities will not be included in an ECIP project without an accompanying statement certifying that utility costs are not reimbursable.
- 1. Any requirements required by ECIP guidance dated 4 November 1992 and revisions thereto. Note that unescalated costs/savings are to be used in the economic analyses.
- m. The five digit category code number for all ECIP projects developed under this scope of work is 80000.

ANNEX D

EXECUTIVE SUMMARY GUIDELINE

- 1. Introduction.
- 2. Building Data (types, similar facilities, sizes, etc.).
- 3. Present Energy Consumption.
 - o Total Annual Energy Used.
 - o Source Energy Consumption.

Electricity - KWH, Dollars, BTU
Fuel Oil - GALS, Dollars, BTU
Natural Gas - THERMS, Dollars, BTU
Propane - GALS, Dollars, BTU
Other - QTY, Dollars, BTU

- o Energy Consumption by Systems.
- 4. Historical Energy Consumption.
- 5. Energy Conservation Analysis.
 - o ECOs Investigated.
 - o ECOs Recommended.
 - o ECOs Rejected. (Provide economics or reasons)
 - o ECIP Projects Developed. (Provide list)*
 - o Non-ECIP Projects Developed. (Provide list)*
 - o Operational or Policy Change Recommendations.
 - * Include the following data from the life cycle cost analysis summary sheet: the cost (construction plus SIOH), the annual energy savings (type and amount), the annual dollar savings, the SIR and the analysis date. For all programmed projects also include the year in which it is programmed and the programmed year cost. Show the simple payback

period for all ECOs.

- 6. Energy and Cost Savings.
 - o Total Potential Energy and Cost Savings.
 - o Percentage of Energy Conserved.
 - o Energy Use and Cost Before and After the Energy Conservation Opportunities are Implemented.
- 7. Energy Plan.
 - o Project Breakouts with Total Cost and SIR.
 - o Schedule of Energy Conservation Project Implementation.

G - SYMBOLS, ABBREVIATIONS AND CONVERSION FACTORS

SYMBOLS AND ABBREVIATIONS

\$ - Dollar BLDG - Building

BTU - British Thermal Unit DX - Direct Expansion

EER - Energy Efficiency Ratio
EFL - Equivalent Full Load Hours

HP - Horse Power

HR - Hour

HVAC - Heating, Ventilation and Air Conditioning

HW - Hot Water

IES - Illuminating Engineering Society

KW - Kilo Watt

KWH - Kilo Watt Hour

MBH - 1000 British Thermal Units
MMBTU - 1,000,000 British Thermal Units

KCF - 1000 Cubic Feet
MCF - 1,000,000 Cubic Feet
RTU - Rooftop Unit

SF - Square Feet W - Watts YR Year

°F - Degree Fahrenheit

CONVERSION FACTORS

1 KWH = .003413 MBTU 1 KCF = 1.031 MBTU H - SAMPLE SOFTWARE CALCULATIONS AND OUTPUT DESCRIPTIONS

SIMPCALC OUTPUT

NOTES BY SYMBOL "O":

Annual KWH Electrical Savings
 Annual KW Demand Savings
 Annual MCF Gas Savings

TEXAS LoanSTAR Program - ECRM Simplified Calculation Ver 2.0

11/09/93	SimpCalc 2.0 SUMMARY (by	y FORM)	- FORT SAI	4 HOUSTON			Pa	ige 1
Form Facility	ECRM Desc. Page		KW	MCF/yr			Imp.Cost	
C7-01 BLDG 0044 SNACK BAR	Prog Thermostat 1	472	.00	3.5	5.2	29	122	4.2
	*** SUB-TOTAL ***	472	.00	3.5	5.2	29	122	4.2
** GRAND TOTAL **		472	.00	3.5	5.2	29	122	4.2
********************		(1)	(2)	(3)			********	2012277

TEXAS LoanSTAR Program - ECRM Simplified Calculation Ver 2.0

11/09/93 Consolid	ated ECRM Detail - FORT SAM HOUSTON	Page	1
x=====================================	***************************************	:=====:	
C7-001 Programmable T	hermostats - BLDG 0044 SNACK BAR		(G)
Cost Source: means cost	t estimating		
Description: Install n	ight setback/setup thermostat.		
A) .15 BTU/hr-ft-F	U-Value of Walls		
B) 0 Sq.Ft.	Wall Area (includes windows and doors)		
C)O5 BTU/hr-ft-F	U-Value of Roof		
D) <u>2074</u> Sq.Ft.	Roof Area		
	Heating Season Thermostat Setpoint		
F) <u>55</u> Degree/F	Heating Season Thermostat Setback Setpoint		
G) <u>1800</u> Hours/yr	Heating Season Setback Hours		
	= <u>12</u> Hrs/day x <u>150</u> Days/yr	:	
H) <u>74</u> Degree/F			
I) 90 Degree/F	Cooling Season Thermostat Setback Setpoint		
J) <u>2400</u> Hours/yr	Cooling Season Setback Hours		
	= <u>12</u> Hrs/day x <u>200</u> Days/yr		
K) <u>.7500</u>	Heating Equipment Efficiency (Table 2)		
L) \$ 3.41 /MCF	Cost per MCF		
M) <u>8.57</u> BTUH/Watt	EER of Air Conditioning Unit (Table 1)		
N) \$ <u>.0360</u> /KWH O) \$ 122	Cost per KWH - Summer Installed Cost = 1 Thermostats x \$ 122/stat		
U) \$ <u>122</u>	Instatted Cost Mermostats x 3122/stat		
P)104 BTU/hf-F	Total Envelope UA-Value		
Q) 2.8 mmBTU/yr	Heating Load Reduction		
R) \$12	Heating Cost Reduction		
s) 4.0 mmBTU/yr	Cooling Load Reduction		
T) \$ <u>17</u> /year	Cooling Cost Reduction		
U) \$ <u>29</u> /year	Annual Cost Savings		
V) <u>4.2</u> years	Simple Payback		

SIMPACALC CALCULATIONS

(See Attached)

SIMPLIFIED CALCULATION FORM High Efficiency HVAC Unit (electric/gas to electric/gas)

Descript	ion of ECRM					
(Data needed: use of space, age of units)						
		:				
Cost:						
Data nee	eded for calculation	S:				
A)	_Tons	Cooling Tonnage to be Replaced				
B)	_BTU/hr	Natural Gas Heating to be Replaced				
C)	_Hr/yr	Cooling Equivalent Full Load Operating Hours				
D)	_Hr/yr	Heating Equivalent Full Load Opeating Hours				
E)	_Molyr	Number of Cooling Months				
F)	_KW/ton	Cooling Performance of Existing Unit				
G)	_KW/ton	Cooling Performance of Proposed Unit				
H)	%	Heating Efficiency of Existing Furnace				

Data needed for calculations (con't):

I) _%

Heating Efficiency of New Furnace

J)\$__/KWH

Cost of Electricity, Summer

K)\$___/KW-Mo

Cost of Demand (KW), Summer

L)\$__/MCF

Cost of Natural Gas

M)\$____

Installed Cost of Unit(s)

Calculation:

$$= A() x (F() - G())$$

$$=$$
 O() x J() + P() x K()

R) Hourly Energy Reduction

S) Heating Fuel Saved

T) Heating Cost Savings

U) Simple Payback

SIMPLIFIED CALCULATION FORM Time Clock Control of HVAC (electric cool/gas heat)

Description of ECRM (Data needed: area served, condition/performance of unit)							
•							
		·					
Cost:							

Data needed for calculation	s:
A)Tons	Average Cooling Unit Tonnage
B)Hrs/yr	Annual Cooling Operating Hrs that Unit Will Be Shut Off (not full load equivalent hours)
C)KW/ton	System Performance
D)Hrs/yr	Annual Heating Operating Hrs that Unit Will Be Shut Off
E)MBTU/hr	Average Heating Unit Load
F)%	Heating Efficiency
G) <u>\$/<i>KWH</i></u>	Electricity Cost per KWH
H) <u>\$</u> /MCF	Natural Gas Cost per MCF
I) <u>\$</u>	Implementation Cost

Calculation:

SIMPLIFIED CALCULATION FORM High Efficiency DHW Heater (gas to gas)

(Data needed: area served, number of users, description of present unit)					
(Data fleeded. alea served,	number of users, description of process array				
Cost:					
•					
Data needed for calculation	s:				
A)Gallons/ person-day	Daily per capita Hot Water Consumption				
B)Persons	Number of Persons				
C)Days/yr	Occupancy Days per Year				
D)°F	Hot Water Temperature				
E)%	Efficiency of Present Unit				
F)%	Efficiency on Proposed Unit				
G)MMBTU/yr	Annual Standby Loss				
H)%	Reduction in Standby Loss with New Unit (Default = 50%)				

K) Water Heating Required	=	8.33 x A() x B() x C() x (D() - 70°F) / 1,000,000 BTU/MMBTU
	=	ММВТU/ут

L) Present Fuel Use =
$$(K() + G()) / (E()$$

 $\times 100 / 1.03 \text{ MMBTU/MCF})$

M) Equivalent Fuel in New Heater =
$$[K() + G() \times (1 - H()/100)]$$

/ (F() x 100 / 1.03 MMBTU/MCF)

FLEX OUTPUT

NOTES BY SYMBOL "O":

1)	Post Retrofit Annual KWH Lighting Consumption
(2)	Post Retrofit Lighting Demand
<u>(3.)</u>	Post Retrofit Annual KWH Cooling Consumption
<u>(4.)</u>	Existing Annual KWH Lighting Consumption
(S) (G) (7)	Existing Lighting Demand
<u>(6.)</u>	Existing Annual KWH Cooling Consumption
7	Annual Maintenance Savings
<u>(8)</u>	Fixture type
9	Fixture count
(1)	Lamp count
(11)	Ballast count

| Whole Building Summary Report |

Project: FT SAM HOUSTON EEAP
File: H:\JOB\911099\12F\ELECT\FLEX\OUT\0044\BLD0044A.WBR
Date: 10/16/1993

_			/ 4 \
Lighting Annual	:	6610	kith
Lighting Capacity	:	2.938	ky — (2)
Annual Cooling Effect :	:	9322	kWh 2
Annual Heating Effect	:	944	kWh (3)
Total Surveyed Floor Area:	:	2199	SaFt
Percent Survey Completed :		219900	*
Lighting Power Density		1.336	W/saft

Costs		Initial	Energy	Maint.	Cooling	Heating	Total
	-						
PVLCC	\$	2117	8447	945	11595	-162	22942
AVLCC	\$	156	622	70	853	-12	1688

______ | Whole Building Summary Report |

Project: FT SAM HOUSTON EEAP
File: H:\JOB\911099\12F\ELECT\FLEX\OUT\0044\BLD0044B.WBR
ate: 10/16/1993

Annual Heating Effect	:	10101 4.490 14240 1443 2199	kuh 4 5 kuh kuh Sqft
Total Surveyed Floor Area		2199	SqFt
Percent Survey Completed		220	%
Lighting Power Density		2.042	W/sqft

Costs	Initial	Energy	Maint.	Cooling	Heating	Total
PVLCC	\$ 0	12909	1395	17694	-248	31750
AVLCC	\$ 0	950	103	1302	-18	2336

	Annual Value Energy LCC \$
	Annual Value Maint LCC \$
	Present Value Energy LCC \$
	Present Value Maint LCC \$
ļ	Total Initial Cost \$
	Levelized Energy Cost cnts/kWh
	Savings Invest. Ratio (SIR)
	Annual Energy Savings KVh 3492
	Annual Value Total LCC \$
	Present Value Total LCC \$ 22942 31750
	Net Present Value \$
)	Annual Energy kuh 6610
	Project Name (*=Base) BLD0044A *BLD0044B

Project Description: FT SAM HOUSTON EEAP

File Case
Names Description
BLD0044A POST RETROFIT CONDITIONS
BLD0044B EXISTING CONDITIONS

********************** | Lighting Level Comparison Report |

Project: FT SAM HOUSTON EEAP
File: H:\J08\911099\12F\ELECT\FLEX\OUT\0044\BLD0044A.LLR
Date: 10/16/1993

Room Foot Candles	MAX	MIN	AVG	SDEV	MAX Room	MIN Room
Calculated	44.7	5.3	23.3	16.77	5-kitchen	1-storage
Measured	45.7	0.0	16.8	19.06	5-kitchen	2-Corr
Required	50.0	5.0	26.0	22.75	3-stor	1-storage
Foot Candle Comparison	MAX	MIN	AVG	SDEV	MAX Room	MIN Room
Calc - Req.	24.5	-20.2	-2.7	17.07	4-dining	3-stor
Meas - Req.	18.6	-50.0	-9.2	27.05	4-dining	3-stor

Lighting System Survey Summary One Page for Each Defined System

pject: FT SAM HOUSTON EEAP
Sile: H:\JOB\911099\12F\ELECT\FLEX\OUT\0044\BLD0044A.LSR

•	Date: 10/16/19		/ELECT /FLEX	/001 /00 44 /BI	.DUU44A.LSK	(8)
	System Number:	1	Descrip: s	uspended wra	ap	<u> </u>
	Rooms Served:	1				
	Floor Area:	272 Sc	qFt			
	Possible kW:	0.126	•			
	Working kW:	0.126				
	Capacity kW:	0.126				
	Lighting:	283 Ar	nnual kWh			
	Heating:	40 Ar	nnual kWh			
	Cooling:	401 Ar	nnual kWh			
	Op Hours/Year:	2250 Ar	nnual Hrs			
	Relamp Method:	Spot				
	Relamp Time :		onths			
	Power Density:		atts/SqF <u>t</u>			
			40		N	
	Equipment Fix	tures (3)	Lamps(U	Ballasts()	
		······				
	Possible	2	4	2.0		
	Working	2	4	2.0		
	Capacity	2 2 2 0	4	2.0		
	Disconnected		0	0.0		
	Broken/Burned	0	0	0.0		
	Costs Energy	Maint.	Cooling	Heating	Total	
	costs Energy	mailit.	cooting	nearing		
	PVLCC \$ 361	35	505	-7	976	
	AVLCC \$ 27	3	37	-1	72	
	MILLU F	•	3,	- 1	16	

System Number:	2	Descrip: 2	х4	lay-in

ns Served:
loor Area:
ossible kW:
Working kW:
Capacity kW:
Lighting:
Heating:
Cooling:
Op Hours/Year:
Relamp Method:
Relamp Time :
Power Density: 2 1556 SqFt 0.628 0.628 0.628 1413 Annua 202 Annua 2004 Annua 2250 Annua Spot Annual kWh Annual kWh Annual kWh Annual Hrs Spot 142.1 Months 0.404 Watts/SqFt

Equipment	Fixtures	Lamps	Ballasts	
Possible Working Capacity Disconnected Broken/Burned	10 10 10 0	20 20 20 0 0	10.0 10.0 10.0 0.0 0.0	
*****	806 17		-35	Total 4882 359

System Number:				
	3	Descrip:	2x4 recesse	d, acrylic
	=======	.=======		*******************
	_			
Rooms Served:	2			
Floor Area:	371	SqFt		
Possible kW:	0.928			
Orking kW:	0.899			
pacity kW:	0.928	America I databa		
Lighting:	2088			
Heating:	298	Annual kWh		
Cooling:	2910			÷ .
Op Hours/Year:	2250	Annual Hrs		
Relamp Method:	Spot	14 Alb		
Relamp Time :	142.1			
Power Density:	2.423	Watts/SqFt		
Equipment Fix	tures	Lamps	Ballasts	
Possible	8	3 2	8.0	
Working	8	31	7.0	
Capacity	8	32	8.0	
Disconnected	0	0	0.0	
Broken/Burned	0	1	0.0	
	_		_	
Costs Energy	Main	-	Heating	Total
PVLCC \$ 2668		21 3520		6782
AVLCC \$ 196		16 259		499
AVECC 4 170			•	4,,,
System Number:	4			al w/ 1/2'plastic
Rooms Served:	_			
	1			
Floor Area:	1 1360	SqFt		
Floor Area: Possible kW:	-	SqFt		
Possible kW: Working kW:	1360	SqFt		
Possible kW: Working kW:	1360 1.256 1.256	SqFt		
Possible kW: Working kW: Capacity kW:	1360 1.256	SqFt Annual kWh		
Possible kW: Working kW: Capacity kW: Lighting:	1360 1.256 1.256 1.256			
Possible kW: Working kW: Capacity kW: Lighting: Heating:	1360 1.256 1.256 1.256 2826	Annual kWh Annual kWh		
Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling:	1360 1.256 1.256 1.256 2826 404 4007	Annual kWh Annual kWh		
Possible kW: Working kW: Capacity kW: Lighting: Heating:	1360 1.256 1.256 1.256 2826 404 4007	Annual kWh Annual kWh Annual kWh		
Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Relamp Method:	1360 1.256 1.256 1.256 2826 404 4007 2250	Annual kWh Annual kWh Annual kWh Annual Hrs		
Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year:	1360 1.256 1.256 1.256 2826 404 4007 2250 Spot 142.1	Annual kWh Annual kWh Annual kWh Annual Hrs		
Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Relamp Method: mp Time: r Density: Equipment Fix	1360 1.256 1.256 1.256 2826 404 4007 2250 Spot 142.1 0.924 tures	Annual kWh Annual kWh Annual kWh Annual Hrs Months Watts/SqFt Lamps	Ballasts	
Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Relamp Method: Emp Time: T Density: Equipment Fix	1360 1.256 1.256 1.256 2826 404 4007 2250 Spot 142.1 0.924 tures	Annual kWh Annual kWh Annual kWh Annual Hrs Months Watts/SqFt Lamps		
Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Relamp Method: mp Time: r Density: Equipment Fix	1360 1.256 1.256 1.256 2826 404 4007 2250 5pot 142.1 0.924 tures	Annual kWh Annual kWh Annual kWh Annual Hrs Months Watts/SqFt Lamps	20.0	
Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Relamp Method: mp Time: r Density: Equipment fix Possible Working	1360 1.256 1.256 1.256 2826 404 4007 2250 Spot 142.1 0.924 tures	Annual kWh Annual kWh Annual kWh Annual Hrs Months Watts/SqFt Lamps 40	20.0 20.0	
Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Relamp Method: mp Time: r Density: Equipment Fix Possible Working Capacity	1360 1.256 1.256 1.256 2826 404 4007 2250 Spot 142.1 0.924 tures 20 20 20	Annual kWh Annual kWh Annual kWh Annual Hrs Months Watts/SqFt Lamps 40 40	20.0 20.0 20.0	
Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Relamp Method: Imp Time: r Density: Equipment Fix Possible Working Capacity Disconnected	1360 1.256 1.256 1.256 2826 2826 404 4007 2250 Spot 142.1 0.924 tures 20 20 20 0	Annual kWh Annual kWh Annual kWh Annual Hrs Months Watts/SqFt Lamps 40 40 40 0	20.0 20.0 20.0 20.0	
Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Relamp Method: mp Time: r Density: Equipment Fix Possible Working Capacity	1360 1.256 1.256 1.256 2826 404 4007 2250 Spot 142.1 0.924 tures 20 20 20	Annual kWh Annual kWh Annual kWh Annual Hrs Months Watts/SqFt Lamps 40 40	20.0 20.0 20.0	
Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Relamp Method: mp Time: r Density: Equipment Fix Possible Working Capacity Disconnected	1360 1.256 1.256 1.256 2826 2826 404 4007 2250 Spot 142.1 0.924 tures 20 20 20 0	Annual kWh Annual kWh Annual kWh Annual Hrs Months Watts/SqFt Lamps 	20.0 20.0 20.0 20.0	Total
Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Relamp Method: mp Time: r Density: Equipment Fix Possible Working Capacity Disconnected Broken/Burned Costs Energy	1360 1.256 1.256 1.256 2826 2826 404 4007 2250 Spot 142.1 0.924 tures 20 20 20 0 0	Annual kWh Annual kWh Annual kWh Annual Hrs Months Watts/SqFt Lamps 40 40 0 0 0 c. Cooling	20.0 20.0 20.0 0.0 0.0	
Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Relamp Method: mp Time: r Density: Equipment Fix Possible Working Capacity Disconnected Broken/Burned Costs Energy PVLCC \$ 3612	1360 1.256 1.256 1.256 2826 404 4007 2250 Spot 142.1 0.924 tures 20 20 0 0	Annual kWh Annual kWh Annual kWh Annual Hrs Months Watts/SqFt Lamps 40 40 0 0 0 c. Cooling	20.0 20.0 20.0 0.0 0.0 Heating	10302
Possible kW: Working kW: Capacity kW: Lighting: Heating: Cooling: Op Hours/Year: Relamp Method: mp Time: r Density: Equipment Fix Possible Working Capacity Disconnected Broken/Burned Costs Energy	1360 1.256 1.256 1.256 2826 404 4007 2250 Spot 142.1 0.924 tures 20 20 0 0	Annual kWh Annual kWh Annual kWh Annual Hrs Months Watts/SqFt Lamps 40 40 0 0 0 c. Cooling	20.0 20.0 20.0 0.0 0.0	

Room-By-Room Summary Report

Project: FT SAM HOUSTON EEAP File: H:\JOB\911099\12F\ELECT\FLEX\OUT\0044\BLD0044A.RRR Date: 10/16/1993

Wat sqf	126 126 0.46 14.5 5.3 126 126 0.64 0.0 7.1	319 348 2.37 0.0 29.8 50.0 1758 1758 1.29 23.6 29.5 5.0 580 580 2.59 45.7 44.7 50.0
Pot. 8 Watts		
Work Watts		
Pot. Watt SYSTEM3 Watts sqft Name		6 0.92
Pot.		1256
Work Watts		1256
Pot. Watt SYSTEM2 Watts sqft Name	97.00	548 2.57 580 2.59
Work Watts	126 126	282
Total SYSTEM1	1 suspended 2 2x4 lay-in	4-dining 1 1 1360 15 2x4 lay-in 50 5-kitchen 1 1 224 1 2x4 recess 58
otal Area	272 196 177	1360
# 1 # 1	*	
Floor		
Room Name FI	1-storage 2-Corr	4-dining 5-kitchen

Total Rooms : 2199
Total Area Sqft : 2199
Total People : 20
Total Working kW : 2.909
Total Potential kW : 2.938
Power Density W/sqft : 1.336

736

Room-By-Room Summary Report

Project: FT SAM HOUSTON EEAP File: H:\JOB\911099\12F\ELECT\FLEX\OUT\0044\BLD0044A.RRR Date: 10/16/1993

ပ	. 00000 .
Req.	14.5 5.3 5.0 0.0 7.1 20.0 0.0 29.8 50.0 23.6 29.5 5.0 45.7 44.7 50.0
Calc. FootC	29.5
eas. ootC	74.0 0.0 7.7 7.7
latt H	0.46 0.64 2.37 2.59
ot. 1 atts	126 126 0.46 126 126 0.64 319 348 2.37 1758 1758 1.29 580 580 2.59
ork P	126 126 319 1758 580
Watt Wasqft W	
Pot. W	
Work P.	
SYSTEM3 Name	
	8
	26 0.95
Pot. s Watts	1256 1256
Work	. 125
Watt SYSTEM2 sqft Name	8' industr
SYSTEM2 Name	è
	0.46 0.64 2.37 2.37 2.59
Pot. Watts	126 126 348 348 502 580
Work Watts	126 126 319 502 580
	1 suspended 2 2x4 lay-in 1 2x4 recess 15 2x4 lay-in 1 2x4 recess
SYSTEM1 Name	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
4 ·	-2-2-
Total com Name Floor # * Area #Pr	1-storage 1 1 * 272 1 suspended 126 2-Corr 1 1 196 2 2x4 lay-in 126 3-stor 1 1 147 1 2x4 recess 319 4-dining 1 1 1360 15 2x4 lay-in 502 5-kitchen 1 1 224 1 2x4 recess 580
	*
Floor #	
ا <u>ت</u> ا ا به	or re-
Room Name	1-storage 2-Corr 3-stor 4-dining 5-kitchen
800	÷ 5,

2199 20 20 2.909 2.938 1.336

Total Rooms
Total Area Sqft
Total People
Total Working KW
Total Potential KW
Power Density W/Sqft:

TRACE OUTPUT

NOTES BY SYMBOL "O:

(1)	Alternative 1 - Annual KWH Electrical Consumption
103456	Alternative 1 - Peak Demand
③	Alternative 1 - Annual Gas Consumption
(4)	Alternative 2 - Annual KWH Electrical Consumption
(3)	Alternative 2 - Peak Demand
<u>6</u>	Alternative 2 - Annual Gas Consumption

------ MONTHLY ENERGY CONSUMPTION ------

	ELEC	DEMAND	GAS		GAS DMND
	On Peak	On Peak	On Peak	WATER	On Peak
Month	(k\h)	(kW)	(Therm)	(1000 GL)	(Thrm/hr)
Jan	67,572	194	1,307	36	6
Feb	59,019	192	1,204	31	5
March	80,990	208	1,065	67	2
April	85,713	218	930	88	2
May	97,768	229	858	113	1
June	102,010	235	778	126	1
July	109,890	242	796	142	1
Aug	112,441	246	798	145	1
Sept	98,607	239	837	118	1
0ct	86,017	220	1,027	81	2
Nov	76,567	209	1,032	57	2
Dec	66,386	196	1,275	32	5
Total	(1)1,042,981	(2)246(3)11,908	1,036	6

Building Energy Consumption = 133,290 (Btu/Sq Ft/Year) Source Energy Consumption = 334,837 (Btu/Sq Ft/Year)

Floor Area = 35,640 (Sq Ft)

EQUIPMENT ENERGY CONSUMPTION - ALTERNATIVE 1

Ref	Equip					Mon	thly Con	sumption						
Num		Jan	Feb	Mar	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec	Total
0	LIGHTS													
	ELEC	31114	28120	32183	29938	31648	31007	30579	32183	29938	31648	29938	30579	368,874
	PK	89.1	89.1	89.1	89.1	89.1	89.1	89.1	89.1	89.1	89.1	89.1	89.1	89.1
1	MISC LD													
	ELEC	0	0	0	0	0	0	0	0	0	0	0	0	0
	PK	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	.0.0	0.0	0.0	0.0
2	MISC LD													
	GAS	0	0	0	0	0	0	0	0	0	0	0	0	0
	PK	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	MISC LD												-	
	OIL	0	0	0	0	0	0	0	0	0	0	0	0	0
	PK	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4	MISC LD													
	P STEAM	0	0	0	0	0	0	0	0	0	0	0	0	0
	PK	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	MISC LD													
	P HOTH20	0	0	0	0	0	0	0	0	0	0	0	0	0
	PK	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6	MISC LD													
	P CHILL	0	0	0	0	0	0	0	0	0	0	0	0	0
	PK	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	EQ1131L			-CLD CONE		-EVAP COA								
	ELEC	7917	6886	14472	19250	24873	27467	31221	31793	26010	17286	12426	7017	226,617
	PK	49.6	49.5	58.3	64.6	71.9	75.2	79.5	81.6	79.7	66.3	59.1	49.3	81.6
1	EQ5105			ING TOWE										
	ELEC	4204	2071	8173	9824	11605	12976	14491	14511	11933	9456	8760	4300	112,306
	PK	20.5	16.4	20.5	20.5	20.5	20.5	20.5	20.5	20.5	20.5	20.5	20.5	20.5
1	EQ5105			ING TOWE										
	WATER	34	29	65	85	111	123	139	142	115	78	54	30	1,006
	PK	0.3	0.3	0.3	0.3	0.4	0.4	0.4	0.4	0.4	0.3	0.3	0.3	0.4
1	EQ5302			ROLS										
	ELEC	29	25	46	48	57	63	71	71	58	46	43	26	583
	PK	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
2	EQ1100S			CLD RECI				••					•	
	ELEC	16615	15000	18039	18458	20788	21734	24143	24546	21847	19193	17573	16747	234,684
	PK	26.2	26.4	28.5	31.5	35.2	38.0	40.9	41.4	37.6	32.0	28.4	26.4	41.4
	E95200		COND	ENSER FA	NC									

Trane Air Conditioning Economics	V 600	
By: CARTER & BURGESS, INC.	PAGE	3

EQUIPMENT ENERGY CONSUMPTION - ALTERNATIVE 1

	ELEC	671	575	1054	1400	1776	1968	2363	2315	2026	1366	1034	696	17,243
	PK	1.5	1.4	2.7	3.1	3.3	3.5	4.9	4.9	3.6	3.2	2.6	1.6	4.9
2	EQ5001		CHI	LED WATE	R PUMP (:.v.								
	ELEC	2219	2004	2219	2148	2219	2148	2219	2219	2148	2219	2148	2219	26,129
	PK	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
2	EQ5303	CONTROLS												
	ELEC	223	202	223	216	223	216	223	223	216	223	216	223	2,628
	PK	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
1	EQ2002		GAS	FIRE TUB	E STEAM									
	GAS	1307	1204	1065	930	858	778	796	798	837	1027	1032	1275	11,908
	PK	6.3	5.3	2.0	1.6	1.4	1.4	1.4	1.4	1.3	∴1.8	1.9	4.5	6.3
1	EQ5020		HEAT	WATER C	IRC. PUM	P C.V.								
	ELEC	3699	3341	3699	3579	3699	3579	3699	3699	3579	3699	3579	3699	43,549
	PK	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
1	EQ5240	BOILER FORCED DRAFT FAN												
	ELEC	486	439	486	470	486	470	486	486	470	486	470	486	5,720
	PK	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7
1	EQ5307		BOIL	ER CONTR	OLS									
	ELEC	372	336	372	360	372	360	372	372	360	372	360	372	4,380
	PK	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	EQ5061		COND	ENSATE R	ETURN PU	MP								
	ELEC	23	21	23	22	23	22	23	23	22	23	22	23	269
	PK	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	EQ5406		MAKE	-UP WATE	R									
	WATER	3	2	3	2	3	2	3	3	2	3	2	3	30
	PK	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

UTILITY PEAK CHECKSUMS - ALTERNATIVE 1

TILITY PEAK CHECKSUMS-----

Httlity	ELECTRIC	DEMAND

Peak Value 246.0 (kW)
Yearly Time of Peak 16 (hr) 8 (mo)

Hour 16	Month 8			
Eqp. Ref. Num.	Equipment Code Name	Equipment Description	Utility Demand (kW)	Percnt Of Tot (%)
Cooling	Equipment			
1 2	EQ1131L EQ1100S	WTR-CLD COND COMP W-EVAP COND >30 TONS AIR-CLD RECIP 25-45 TONS	101.7 49.0	41.34 19.94
Sub Tota	at		150.7	61.28
Heating	Equipment			
1	EQ2002	GAS FIRE TUBE STEAM	6.2	2.50
Sub Tota	ıl		6.2	2.50
Sub Tota	it		0.0	0.00
o Tota	ıL		0.0	0.00
Miscella	neous			
Lights Base Ut Misc Eq Sub Tota	uipment		89.1 0.0 0.0 89.1	36.22 0.00 0.00 36.22
Grand To			246.0	100.00

MONTHLY ENERGY CONSUMPTION - ALTERNATIVE 2

	ELEC	DEMAND	GAS		GAS DMND
	On Peak	On Peak	On Peak	WATER	On Peak
Month	(kWh)	(kW)	(Therm)	(1000 GL)	(Thrm/hr)
Jan	58,679	194	769	35	6
Feb	50,416	192	692	30	5
March	69,034	208	542	64	2
April	71 <i>,7</i> 59	218	397	82	2
May	81,052	229	306	105	1
June	82,624	235	226	115	1
July	84,565	242	169	125	1
Aug	89,972	246	217	132	1
Sept	79,775	240	290	108	1
0ct	73,049	221	486	76	2
Nov	64,568	210	509	53	2
Dec	56,222	197	699	31	4
Total	4) 861,716	(5)246 (6)5,302	956	6

Building Energy Consumption =
Source Energy Consumption =

97,397 (Btu/Sq Ft/Year) 263,246 (Btu/Sq Ft/Year) Floor Area = 35,640 (Sq Ft)

----- EQUIPMENT ENERGY CONSUMPTION -----

	•	M	0-4	0		-	thly Con		A		P-L			Ref
To	Dec	Nov	0ct	Sep	Aug	July	June	May	Apr	Mar	Feb	Jan	Code	Num
													LIGHTS	0
368,8	30579	29938	31648	29938	32183	30579	31007	31648	29938	32183	28120	31114	ELEC	
89	89.1	89.1	89.1	89.1	89.1	89.1	89.1	89.1	89.1	89.1	89.1	89.1	PK	
													MISC LD	1
	0	0	0	0	0	0	0	0	0	0	0	0	ELEC	
C	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	PK	
													MISC LD	2
	0	0	0	0	0	0	0	0	0	0	0	0	GAS	
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	PK	
	:												MISC LD	3
	0	0	0	0	0	0	0	0	0	0	0	0	OIL	
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	PK	
													MISC LD	4
	0	0	0	0	0	0	0	0	0	0	0	0	P STEAM	
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	PK	
													MISC LD	ì
	0	0	0	0	0	0	· O	0	0	0	0	0	P HOTH20	
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	PK	
										_			MISC LD	6
	0	0	0	0	0	0	0	0	0	0	0	0	P CHILL	
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	PK	
													EQ1131L	1
206,3	6832	11930	16356	23323	28097	26442	24572	22738	17844	13908	6629	7657	ELEC	
85	49.3	59.0	66.3	81.5	85.9	85.5	82.6	76.5	64.6	58.3	49.5	49.6	PK	
										ING TOWE			EQ5105	1
84,28	4081	7737	8167	8187	8842	8351	8514	8678	8187	7104	2010	4430	ELEC	
20.	20.5	20.5	20.5	20.5	20.5	20.5	20.5	20.5	20.5	20.5	16.4	20.5	PK	
										ING TOWE			EQ5105	1
93	29	52	75	106	131	124	114	104	80	62	28	33	WATER	
0.	0.3	0.3	0.3	0.4	0.4	0.4	0.4	0.4	0.3	0.3	0.3	0.3	PK	
											CONT		EQ5302	1
44	27	38	40	40	43	41	42	42		41 .	23	28	ELEC	
0.	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	PK	
									P 25-45			a	E91100S	2
142,44	96 04	10472	11877	13447	15581	14429	13625	12897	11050	11021	8693	9750	ELEC	
41.	26.7	28.9	32.5	38.2	41.8	41.1	38.0	35.2	31.5	28.5	26.4	26.2	PK	

Trane Air Conditioning Economics	
By: CARTER & BURGESS, INC.	

V 600 PAGE 3

EQUIPMENT ENERGY CONSUMPTION - ALTERNATIVE 2

	ELEC	439	357	701	950	1157	1271	1458	1512	1299	960	679	429	11,212
	PK	1.5	1.4	2.7	3.1	3.3	3.5	4.9	4.9	3.7	3.2	2.7	1.6	4.9
2	EQ5001		CHIL	LED WATE	R PUMP (.v.								
	ELEC	1241	1122	1289	1193	1265	1241	1217	1289	1193	1265	1193	1217	14,723
	PK	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
2	EQ5303	CONTROLS												
	ELEC	125	113	130	120	127	125	122	130	120	127	120	122	1,481
	PK	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
1	EQ2002		GAS	FIRE TUB	E STEAM									
	GAS	769	692	542	397	306	226	169	217	290	486	509	699	5,302
	PK	6.3	5.4	2.1	1.5	1.4	1.2	1.1	1.2	1.3	: 1.8	2.0	4.3	6.3
1	EQ5020		HEAT	WATER C	IRC. PUM	P C.V.								
	ELEC	3147	2704	2148	1969	2018	1800	1556	1854	1800	2108	1989	2689	25,781
	PK	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
1	EQ5240	BOILER FORCED DRAFT FAN												
	ELEC	413	355	282	259	265	236	204	244	236	277	261	353	3,386
	PK	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7
1	EQ5307		BOIL	ER CONTR	OLS									
	ELEC	317	272	216	198	203	181	157	186	181	212	200	271	2,593
	PK	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	EQ5061		COND	ENSATE R	ETURN PU	MP								
	ELEC	19	17	13	12	12	11	10	11	11	13	12	17	159
	PK	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	EQ5406		MAKE	-UP WATE	R									
	WATER	2	2	1	1	1	1	1	1	1	1	1	2	18
	PK	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

UTILITY PEAK CHECKSUMS-----

Utility E	ECTRIC.	DEMAND
-----------	---------	--------

Peak Value 246.4 (kW)
Yearly Time of Peak 16 (hr) 8 (mo)

Hour 16 Month 8

nodi 10	HOITER O			
Eqp.			Utility	Percnt
Ref.	Equipment		Demand	Of Tot
Num.	Code Name	Equipment Description	(kW)	(%)
Cooling	Equipment			
1	EQ1131L	WTR-CLD COND COMP W-EVAP COND >30 TONS	101.7	41.29
2	EQ1100S	AIR-CLD RECIP 25-45 TONS	49.4	20.05
Sub Tota	al		151.1	61.33
Heating	Equipment			
1	EQ2002	GAS FIRE TUBE STEAM	6.2	2.50
Sub Tota	al		6.2	2.50
Sub Tota	al		0.0	0.00
o Tota	al		0.0	0.00
Miscella	aneous			
Lights			89.1	36.17
	tilities		0.0	0.00
	quipment		0.0	0.00
Sub Tota	al		89.1	36.17
Grand To	otal		246.4	100.00

LOTUS (BIN METHOD) OUTPUT

NOTES BY SYMBOL "O":

10345	Modified Bin Method Table
②	Assumptions
3	Equipment Efficiencies to Determine Electrical Usage
4.)	Existing Conditions With No Supply Air Make-Up to Hood
(5)	Post Retrofit Conditions with New Supply Air Make-Up Hood

MODIFIED BIN METHOD CALCULATIONS

REFER TO ASHRAE 1993 FUNDAMENTALS

					THE LITTO ACTIVAL TOOCT CITED WILLIAMS								
	BLDG. N	Ο.			44	368	407	1350	1387	1462	2399	2652	
	TIME OF				6:00A	6:00A	7A-10P	4:00A	10:00A	9A-8:30P	5:00A	10:00A	
	OPERAT	ION			1:30P	2:00P	7A-2P	8:30P	9:00P	9A-10:30P	7:30P	7:00P	
	DAYS/WI	EEK			5	5	4,3	6	5	5,2	7	4	
	DB	MID	MC	HUMID	HRS	HRS	HRS	HRS	HRS	HRS	HRS	HRS	
	RANGE	PT.	WB	RATIO	/YR.	/YR.	/YR.	/YR.	/YR.	/YR.	/YR.	/YR.	
	100/104	102	74	0.0116	6.4	7.0	14.6	14.5	10.1	15.8	16.1	7.1	
	95/99	97	74	0.0126	59.4	64.8	139.8	139.4	97.9	152.8	153.4	67.7	
	90/94	92	74	0.0139	135.0	147.3	309.0	307.1	213.4	334.4	339.8	149.6	
	85/89	87	73	0.0143	173.8	189.6	418.5	418.7	296.3	461.3	458.6	202.9	
	80/84	82	72	0.0146	213.2	231.4	530.6	557.5	382.4	589.7	595.6	253.5	
]	
	75/79	77	70	0.0142	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
_	70/74	72	66	0.0123	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
1	65/69	67	61	0.0101	196.1	208.4	418.7	527.9	283.1	433.6	535.7	183.2	
·	60/64	62	56	0.0082	161.8	172.0	346.9	437.0	235.1	359.9	443.3	151.9	
	55/59	57	51	0.0066	132.3	140.5	288.0	363.6	196.9	300.7	367.8	126.2	
	50/54	52	47		118.4	125.4	256.0	332.4	174.6	265.8	- 4	110.6	
	45/49	47	43	0.0050	92.0	96.8	190.1	260.7	127.1	192.8	257.6	79.5	
	40/44	42	38	0.0039	72.4	75.9	138.6	198.4	88.8	135.1	195.0	56.1	
	35/39	37	34	0.0034	44.4	46.1	75.5	120.8	44.9	68.1	116.1	28.1	
	30/34	32	29	0.0028	23.0	23.8	34.9	60.3	18.9	28.8	57.4	12.0	
												1	
	25/29	27		0.0023	8.3	8.4	9.6	21.3	3.8	5.8	19.4	2.4	
	20/24	22			2.4	2.5	3.6	6.1	2.0	3.0	5.9	1.3	
Ī	15/19	17		0.0013	0.4	0.4	0.3	0.9	0.0	0.0	0.8	0.0	
l	10/14	12	10	0.0009	0.2	0.2	0.1	0.4	0.0	0.0	0.4	0.0	

ASSUMPTIONS

- 1) SUMMER ROOM DESIGN: 78FDB, 50%RH
- (2) 2) WINTER ROOM DESIGN: 70FDB, 40%RH
 - 3) HUMIDITY RATIOS FOR THE SPACE BASED ON SUMMER & WINTER ROOM DESIGN TEMP.

EQUIPMENT: SMALL AIR COOLED CHILLER (3-25 TONS): 8.57 BTU/WATT-H LARGE AIR COOLED CHILLER (25-100 TONS): 8.63 BTU/WATT-H SMALL WATER COOLED CHILLER (25-100 TONS): 11.11 BTU/WATT-H LARGE WATER COOLED CHILLER (>100 TONS): 12.12 BTU/WATT-H

SYSTEM TYPES FOR ABOVE BUILDINGS

- · · · · · · · · · · · · · ·	- · - · · · · · · · · · · · · ·
BUILDING	SYSTEM TYPE
NUMBER	
44	SMALL AIR COOLED
368	SMALL AIR COOLED
407	LARGE AIR COOLED
1350	LARGE WATER COOLED
1387	SMALL AIR COOLED
1462	LARGE AIR COOLED
2399	LARGE WATER COOLED
2652	LARGE AIR COOLED

																				(1	n))
	TOTAL	RTI	1764603	16560966	37703444	45551324	51259921	20808	27288100	19743940	27015681	34291434	35803743	32230598	22610461	12591618	14192464	5287236	1742RA	152840	272605	17834
	HBS	WEAR	16.1	153.4	339.8	458.6	595.6	535 7	449.5	367.8	333.0	257.6	195.0	116.1	57.4	19.4	5.9	6	4	AB	AB	KWH
	TOTAL	BTUH	09859	72620	10974	99335	86070	74310	61555 61555	53679	73450	102977	39010	165285	194813	219462	247363	272012	296661	THEYE	THE YE	COOLING KWH
N.	<u></u>	_		_	•	92999	71555	63423	32525	6505	8131	•	•	•	٠	•				0	FOTAL HEATING KBTU FOR THE YEAR	ŏ
NOW 30% OF THE 11200 CFM IS EXHAUSTED EXHAUST CFM=10FTx28FTx100FPM=28.000CFM	SENS. LATENT	BTUH			50803		14515 7	10886			65318			19750 4	37894	56038 (174182 7			LINGKE	TING KB	VATT
S EXH, OFPM=	เ		_										•	_	_	•	•	٠		COO	LHEA	BTU/V
CFM I		HR RM		6 0.0102	9 0.0102	3 0.0102	6 0.0102	1 0.0062				0.0062		4 0.0062	7 0.0062	3 0.0062	7 0.0062	3 0.0062		TOTA	TOTA	T 12.12
E 11200		RM HR OA	78 0.0116	0.0126	0.0139	0.0143	0.0146	0.0101				0.0050	0.0039	0.0034	0.0027	0.0023	0.0017	0.0013				EQUIPMENT 12.12 BTU/WATT
OF THE	5399	DB RN	102 78	97 78	92 78	87 78	82 78	70 70	62 70	Ť	52 70	47 70	42 70	0/ /	32 70	27 70	22 70	7 70	12 70			EQC
V 30%	BUILDING 2399	CFM	3360 10	3360	3360	3360 E	3360 8	3360	_	-	3360 5	3360 4	3360 4	3360 3	3360 3	3360 2	3360 2	3360 1	3360 1			
NOV EXH	BUL	O	ဗ	ဗ	ဗ	ဗိ	ဗ	ဗိ	ဗ	ଖ	ဗ	ဗိ	ĸ	ဗ	ဗ	ଞ	ဗ	ဗ	ဗ		_	
	TOTAL	BTU	5882010	55203221	125678146	151837748	170866405	132689365	90960632	65813132	90052270	114304781	119345808	107435328	75368202	41972062	47308212	17624121	5809614	509468	908684	59448
	HRS	MEAR	16.1	153.4		458.6 1	595.6 1	535.7 1	443.3	367.8	333.0	257.6 1	195.0 1	116.1	57.4		5.9	0.8	4.0	Œ	Œ	KH
		BTUH /	366195			331117	286899	247699	205184	178931	244832 (343258 ;	463366	220920	649376	731539	824544	906707	988870	TOTAL COOLING KBTU FOR THE YEAR	TOTAL HEATING KBTU FOR THE YEAR	COOLING KWH
م ∑	⊢	BTCH	75891 36				238515 26		108416 20	21683 17	-				189728 64				287302 98	U FOR	J FOR 1	႘
AUSTEI ,000CF	\$							8 211411						•	•	8 211411		8 265619	8 287	GKBT	O KBT	F
ASSUME 40% CONDITIONED AIR IS EXHAUSTED EXHAUST CFM=10FTx28FTx100FPM=28,000CFM			290304	229824	169344	_	48384	36288	96768	157248	217728	278208	338688	399168	459648	520128	580608	641088	701568	COOLIN	HEATIN	EQUIPMENT 12.12 BTU/WATT
ED AIR Tx100F		RMHROA HRRM				0.0102	0.0102	0.0101 0.0062	0.0062	0.0062	0.0062			0.0062	0.0062	0.0062	0.0062	0.0062	0.0009 0.0062	TOTAL	TOTAL	12.12 B
DITION FTx28F	!	H OA	78 0.0116	0.0126	0.0139	0.0143	0.0146	0.0101	0.0082	0.0066	0.0057	0.0050	0.0039	0.0034	0.0027	0.0023	0.0017	0.0013	0.000	•		MENT
% CON FM=10	399			78	78	78	78	2	2	2					2	2	2	2	2			EQUIP
ME 405 UST CI	ž		***		0 92		0 82	0 67	0 62	0 57	0 52	0 47	0 42		0 32	0 27	0 22	0 17	0 12			
ASSU	BUILC	CFM	11200	11200	11200	11200	11200	11200	11200	11200	11200	11200	11200	11200	11200	11200	11200	11200	11200		. 7	749

LOTUS (BIN METHOD) CALCULATIONS

(See Attached)

のでは、これでは、10mmで

the monthly heating degree days for any location are well approx-

$$DD_h(t_{bal}) = \sigma_m N^{3/2} \left[\frac{\theta}{2} + \frac{\ln(e^{-a\theta} + e^{a\theta})}{2a} \right]$$
 (15)

where $a = 1.698 \sqrt{\frac{\text{day/mo}}{\text{mo}}}$.

For nine locations spanning most climatic zones of the United States, Erbs et al. (1983) verified that the annual heating degree days can be estimated with a maximum error of 315°F-days if this equation is used for each month. For cooling degree days, the largest error is 270°F-days. Such errors are quite acceptable, representing less than 5% of the total.

Example 1. Find the monthly heating degree-days for New York City, using the model of Erbs et al. (1983), given monthly averages of t_o as reproduced in column 2 of Table 1. Base the degree days on a balance temperature of 60°F.

The results are included in Table 1. Column 2 lists the given values of monthly average outdoor temperature, and N is the number of days in the month. Intermediate quantities are shown in columns 4 and 5, and $t_{\alpha, yr}$ and σ_{yy} are shown at the bottom. Column 6 shows the monthly and annual results.

Table 2 contains degree-day data for several sites and monthly averaged outdoor temperatures needed for the algorithm used in the example. More complete tabulations of the latter are contained in Cinquemani et al. (1978) and in local climatological data summaries available from the National Climatic Data Center, Asheville, NC. Monthly degree-day data to the bases of 50°F, 55°F, 60°F, 65°F, and 70°F, as well as other climatic infor-

Table 1 Degree-Day Calculation from Monthly Averaged Data

Month	<i>ī₀</i> , °F	N, day/mo.	σ _m , °F	σ, √mo./day	DD _k (t _{bel}), °F · day
	32.2	31	3.65	1.37	864
January	33.4	28	3.62	1.39	746
Feburary	41.1	31	3.40	1.00	592
March	52.1	30	3.08	0.47	265
April	62.3	31	2.79	-0.15	67
May June	71.6	30	2.52	-0.84	7
July	76.6	31	2.38	- 1.26	2
August	74.9	31	2.41	-1.11	3
September	68.4	30	2.61	-0.59	16
October	58.7	31	2.88	0.08	123
November	46.4	30	3.22	0.72	391
December	35.5	31	3.56	1.24	762
t _{o.yr}	54.4			Sum	3837
σ_{yr}	15.8				

Note: Use Equation (15) to calculate DD_h (t_{bal})

mation for 209 U.S. and 14 Canadian cities, may be found in Appendix 3 to Balcomb et al. (1982).

BIN METHOD

For many applications, the degree-day method should not be used, even with the variable base method, because the heat loss coefficient K_{int} , the efficiency η_h of the HVAC system, or the balance point temperature may not be sufficiently constant. The efficiency of a heat pump, for example, varies strongly with outdoor temperature; or the efficiency of the HVAC equipment may be affected indirectly by to when the efficiency varies with the load, a common situation for boilers and chillers. Furthermore, in most commercial buildings, the occupancy has a pronounced pattern, which affects heat gain, indoor temperature, and ventilation rate.

In such cases, a steady-state calculation can yield good results for the annual energy consumption, if different temperature intervals and time periods are evaluated separately. This approach is known as the bin method, because the consumption is calculated for several values of the outdoor temperature t_o and multiplied by the number of hours N_{bin} in the temperature interval (bin) centered around that temperature

$$Q_{bin} = N_{bin} \frac{K_{tol}}{\eta_h} [t_{bal} - t_o]^+$$
 (16)

The superscript plus sign indicates that only positive values are counted; no heating is needed when t_o is above t_{bal} . This equation is evaluated for each bin, and the total consumption is the sum of the Q_{bin} over all bins.

In the United States, the necessary data are widely available (ASHRAE 1984, USAF 1978). The bins are usually in 5°F increments and are often collected in three daily 8-h shifts. Mean coincident wet-bulb temperature data (for each dry-bulb bin) are used to calculate latent cooling loads from infiltration and ventilation. The bin method considers both occupied and unoccupied building conditions and gives credit for internal loads by adjusting the balance point. For example, a calculation could be performed for 42°F outdoors (representing all occurrences from 39.5 to 44.5°F) and with building operation during the midnight to 0800 shift. Since there are 23 5°F bins between -10 and 105°F and 3 8-h shifts, 69 separate operating points are calculated. For many applications, the number of calculations can be reduced. A residential heat pump (heating mode), for example, could be calculated for just the bins below 65 °F without the three-shift breakdown. The data included in Table 3 are samples of annual totals for a few sites, but ASHRAE (1984) and USAF (1978) include monthly data and data further separated into time intervals during the day.

Table 2 Degree-Day and Monthly Average Temperatures for Various Locations

			Degree-Da				ge re	Me	nthly	Averso	e Out	door T	empera	ture,	Fb		
	Variable l	Base H	eating Degr	ee-Day,	·F · days							Jul	Aug		Oct	Nov	Dec
Site	65	60	55	50	45	Jan	Feb	Mar			Jun						
		622	158	26	0	54.5	55.6	56.5	58.8	61.9	64.5	68.5	69.6	68.7	65.2	60.5	56.9
Los Angeles, CA	1245	522		2653	1852	29.9	32.8	37.0	47.5	57.0	66.0	73.0	71.6	62.8	52.0	39.4	32.6
Denver, CO	6016	4723	_		0		67.8	71.3	75.0	78.0	81.0	82.3	82.9	81.7	77.8	72.2	68.3
Miami, FL	206	54		0	•	•	-						73.7	65.9	55.4	40.4	28.5
Chicago, IL	6127	4952	3912	2998	2219	24.3							76.6			_	36.2
Albuquerque, NM	4292	3234	2330	1557	963	35.2									58.7		35.5
New York, NY	4909	3787	2806	1980	1311	32.2	33.4	41.1	-				74.9				15.6
Bismarck, ND	9044	7656	6425	5326	4374	8.2	13.5	25.1	43.0	54.4			69.2				
	3696	2758		1338	852	38.3	41.0	48.7	60.1	68.5	76.6	79.6	78.5	72.0			40.4
Nashville, TN		1544		526	250	45.4	49.4	55.8	66.4	73.8	81.6	85.7					48.2
Dallas/Ft. Worth, TX				1194	602	39.7	43.5	45.5	50.4	56.5	61.3	65.7	64.9	60.6	54.2	45.7	42.0
Seattle, WA	4727	3269	2091	1174	754					si at al	(1070)						

^aSource: NOAA (1973)

751

^bSource: Cinquemani et al. (1978)

The Department of Energy has adopted test procedures (10 CFR 430, Appendix M, USGPO) to determine the effect of dynamic operations. The bin method uses these results for a specific heat pump to adjust the integrated capacity for the effect of part-load operation. Figure 4 compares the adjusted heat pump capacity to the building heat loss. This type of curve must be developed for each model heat pump as applied to an individual profile. The heat pump cycles on and off above the balance point temperature to meet the house load. This cycling can reduce performance depending on the part-load factor at a given temperature. The cycling capacity adjustment factors (ANSI/ASHRAE Standard 116-1983) used in this example to account for cycling degradation can be calculated from the equation in footnote a of Table 4.

Frosting and the necessary defrost cycle can reduce performance over steady-state conditions that do not include frosting. The effects of frosting and defrosting are already integrated into many (but not all) manufacturers' performance data. The example problem assumes that the manufacturers' data already accounts for the frosting/defrosting losses (as indicated by the characteristic notch of the capacity curve in Figure 4) and shows how to adjust an integrated performance curve for cycling losses. For those cases where the manufacturers' data on heating capacities do not include the effect of defrost cycles in the temperature range where they occur, steady-state, instant system capacities at a given outdoor temperature should be multiplied by a factor X_{int} to obtain the integrated heating capacity to be used in the annual energy calculation. The factor X_{int} is given by

$$X_{int} = 1.0 \text{ for } t_o \ge 45 \text{ °F}$$

= 1.0 - (0.02) (45 - t_o) for 40 °F \leq $t_o < 45 \text{ °F}$
= 0.95 - 0.00125 t_o for $t_o < 40 \text{ °F}$

where t_o is the outdoor dry-bulb temperature (Didion and Kelly 1979).

The total annual heating energy consumption used by the heat pump in this example is computed in Table 4 using bin weather data. Column F contains the capacity adjustment factor used to account for losses due to cycling.

Degree-Day Data from Bin Data

To calculate degree days from hourly bin data such as those in ASHRAE (1984), the base or balance temperature t_{bol} must first be determined. When t_{bol} is known, the following summation can be used on any time scale, either monthly or annually, or for several periods of a day on either a monthly or annual basis.

$$DD_h(t_{bal}) = \frac{1}{24} \left(\sum_{bins} (t_{bal} - t_{bin})^+ N_{bin} \right)$$
 (17)

where

 t_{bin} = temperature at center of bin N_{bin} = number of hours in bin corresponding to t_{bin}

Cooling degree days are calculated analogously from

$$DD_c(t_{bal}) = \frac{1}{24} \left(\sum_{bins} (t_{bin} - t_{bal})^+ N_{bin} \right)$$
 (18)

This method generally produces degree-day values slightly higher than published values from NOAA or the NCDC. This small but systematic deviation can be suppressed by ignoring degree days during the swing seasons when totals are less than a minimum, e.g., 50 to 100°F-days per month. During such periods, thermal storage of daytime heat often makes nighttime heating unnecessary.

Modified Bin Method

Various refinements, such as the seasonal variation of solar gains, can be included in a bin calculation. If a separate calculation is done for each month, Q_{gain} could be based on the average solar heat gain of the month. The diurnal variation of solar gains can be accounted for by calculating the average solar gain for each of the hourly time periods of the bin method. If such a detailed calculation of solar gains is considered unnecessary, assume a linear correlation of monthly average solar heat gains with monthly average outdoor temperature t_o .

This procedure is illustrated in Figure 5(a) for the simplest case—a building with constant operating conditions every hour of the day and every day of the year (i.e., t_i , K_{tot} , and nonsolar heat gains $q_{non-sol}$ are all constant). In this case, it suffices to calculate the daily average heating load q_{heat} for the peak winter day and the daily average cooling load q_{cool} on the peak summer day

$$q_{heat} = K_{tot} (t_i - t_{peak, winter}) - q_{non-sol} - q_{sol, winter}$$
 (19)

and

$$q_{cool} = K_{tot} (t_i - t_{peak, summer}) - q_{non-sol} - q_{sol, summer}$$
 (20)

where $t_{peak, winter}$ and $t_{peak, summer}$ are the design winter and summer outdoor temperatures and $q_{sol, winter}$ and $q_{sol, summer}$ are the corresponding daily average solar gains. The solar gains in Equations (19) and (20) are totals for all orientations of windows, roofs, and walls. Solar gains are calculated for each building element for summer and winter days and then summed to form the building total for the summer and winter endpoints of the load line in Figure 5 [see Knebel (1983) for details]. In the northern hemisphere, the summer month is usually taken as July and the winter month as January.

Fig. 5 Load as Function of Outdoor Temperature T_o (Ventilative cooling not shown.)

Energy Estimating Methods

Example 2. Estimate the energy requirements for a residence in Washington, D.C., with a design heat loss of 40,000 Btu/h at 53°F temperature difference. Assume a 3-ton heat pump, with characteristics given in Figure 4 and Table 4.

Fig. 4 Heat Pump Capacity versus Building Load

Solution: The design heat loss is based on no internal heat generation. To compute the heat pump system energy input, compute the net heat requirement of the space, i.e., envelope loss minus internal heat generation. For this example, assume an average internal heat generation of 4280 Btu/h and a room temperature of 70°F. The net heat loss per degree and the heating/cooling balance temperature may be computed:

$$(HL/\Delta t) = (40,000/53) = 755 \text{ Btu/h} \cdot {}^{\circ}\text{F}$$

 $t_{balance} = 70 - (4280/755) = 64.3 {}^{\circ}\text{F}$

Table 4 is then computed resulting in 9578 kWh.

Figure 4 shows the relationship between heat loss and the integrated heat pump capacity. The balance point occurs at the temperature where the heat loss and steady-state capacity are equal. At lower temperatures, supplemental heat is required, and at higher temperatures the heat pump cycles on and off.

To properly predict the energy use of the heat pump system, actual dynamic performance data, including cycling losses, should be used. For the heat pump system, performance data should include the effects of cycling above the building balance temperature, frosting, defrosting, and the effect of auxiliaries. These losses may be significant, depending on the size of the heat pump compared to the building heat loss and the control methodology of the heat pump.

Table 3 Sample Annual Bin Data

								Tab	le 3	58	mple	Anı	IUAI.	DIII I	Data											
													Bir	١											201	35
	100/ 104	95/ 99	90/ 94	85/ 89	80/ 84	75/ 79	70/ 74	65/ 69	60/ 64	55/ 59	50/ 54	45/ 49	40/ 44	35/ 39	30/ 34	25/ 29	20/ 24	15/ 19	10/ 14	5/ 9	0/ 4	-5/ · 1	-10/ - 6	11		21
City Albuquerque Bismarck	1	54 11	191 68	348 173	511 252 362	617 320 512	789 450 805	785 590 667	816 625 615	550	637 583 585	720 506 577	678 624 636	676 539 720	560 626 957	406 596 511	180 424 354	101 399 243	31 391 125	3 306 66	364 58	144 6	131	43	42	3
Thicago Dallas/Ft. Worth Denver	27 8	210	97 351 118	222 527 235	302 804 348 53	1100	947 472	705 697	826 699	761		615 718 394	523 665 74	364 758 4	289 713	57 565	29 399	164	106	65	80	22				
os Angeles Miami Nashville New York City	8	7 5	45 137 26	864 407 170 16	1900 616 383	2561 756 664	1100 820	941	763	692 699	650	690		582 858 915	648	377	107 212 43	71 99 15	29 20 1	5						

Table 4 Calculation of Annual Heating Energy Consumption for Example 2

			Table 4	Calcula	liuli di Ali	IIUAI IICAN						Supplemen	tai
	Climate		House				eat Pum	· · · · · ·		K		M	N
A	В	С	D	E	F	<u> </u>	н			Seasonal		Supple-	Total
Temp. Bin, °F	Temp. Diff., t _{bal} - t _{bin}	Weather Data Bin, h	Heat Loss Rate, 1000 Btu/h	Heat Pump Integrated Heating Capacity, 1000 Btu/h	Cycling Capacity Adjustment Factor ^a	Adjusted Heat Pump Capacity, 1000 Btu/h ^b	Rated Electric Input, kW	Operating Time Fraction ^c	Heat Pump Supplied Heating, 10 ⁶ Btu ^d	Heat Pump Electric Consump- tion, kWh ^e		mental Heating Required, kWh ^E	Electric Energy Consump- tion ^h
		740	1.8	44.3	0.760	33.7	3.77	0.05	1.30	146 417	1.30 3.72	_	417
62	2.3 7.3	673	5.5	41.8	0.783	32.7	3.67	0.17	3.72	719	6.42	_	719
57 52	12.3	690	9.3	39.3	0.809	31.8	3.56	0.29	6.42 8.95	1002	8.95	_	1002
47	17.3	684	13.1	36.8	0.839	30.9	3.46	0.42	13.31	1614	13.31	_	1614
42	22.3	790	16.9	29.9	0.891	26.6	3.23	0.63 0.78	15.35	1833	15.35	_	1833
37	27.3	744	20.6	28.3	0.932	26.4	3.15	0.78	13.22	1559	13.22	_	1559
32	32.3	542	24.4	26.6	0.979	26.0	3.07	1.00	6.35	762	7.16	236	998
27	37.3	254	28.2	25.0	1.000	25.0	3.00 2.92	1.00	3.23	403	4.41	345	748
22	42.3	138	31.9	23.4	1.000	23.4	2.92	1.00	1.18	153	1.93	220	373
17	47.3	54	35.7	21.8	1.000	21.8	2.74	1.00	0.33	47	0.67	101	147
12	52.3	17	39.5	19.3	1.000	19.3	2.74	1.00	0.03	5	0.09	16	21
7	57.3	2	43.3	16.8	1.000	16.8	2.03	1.00	-	_	_	_	
2	62.3	0	47.0	14.3	1.000			TOTALS	: 73.39	8660	76.52	917	9578

^aCycling Capacity Adjustment Factor = $1 - C_d(1 - x)$ when C_d = degradation coefficient, default = 0.25, unless part load factor is known, and x = building heat loss/unit capacity at temperature bin. Cycling capacity = 1 at the balance point and below.

 $^{^{}b}$ Col. G = Col. E × Col. F c Operating Time Factor equals the smaller of 1 or Col. D/Col. G

 $^{^{}d}$ Col. J = (Col. I × Col. G × Col. C)/1000

^{*}Col. K = Col. I × Col. H × Col. C

Col. L = Col. C x Col. D/1000

 $^{^{8}}$ Col. M = Col. L - Col. J h Col. N = Col. K + Col. M

I - IMPLEMENTATION DOCUMENTATION

1.COMPONENT FY	19	-												N INVEST	MENT		IL 1994 S% EEAP
3. INSTALLATION AND LOCATION FORT SAM HOUSTON, S	AN	[A]	1TC	INC	:0,	1	E	ζA	S	ľ	4. PRO	JECT T		IP), DINI	NG FACI	LIT	ES
5. PROGRAM ELEMENT		6. C		GOR'					7. Pf	ROJ	ECT N	UMBER		8. PROJECT	COST (\$000)	88	
							9. C	os	T ES	TIM	ATES						
	ITE	м										UA	4	QUANTITY	UNIT COST		COST (\$000)
DINING FACILITIES . ENERGY RETROFIT	, ,		•	•	•	•	•	•	•	•	•	SI	,	76,110 -	12	2.60	958.6
SUBTOTAL	101	• •	07	VEI	CHE	EAI	:	(6	.0					- - - - -		11111	958.6 106.5 1,065.1 58.6 63.9 1,187.5 4 1,188

10. DESCRIPTION OF PROPOSED CONSTRUCTION:

The energy retrofit at Fort Sam Houston consists of work related to seventeen (17) Dining Facilities, which contain 76,110 square feet. The retrofit includes retrofit of lighting and HVAC systems. The retrofit systems results in a simple payback of 6.2 years and a Savings to Investment Ratio (SIR) of 2.43. The Adjusted Internal Rate of Return (AIRR) is 8.7%. This retrofit will improve efficiency, reduce maintenance cost and will reduce energy consumption.

COMPOSITE PROJECT SUMMARY

Listed in Table 2A is a compilation of all recommended ECO's. Tables 3A and 3B are compilations of all recommended ECO's studied as well as the analysis results for each ECO. Table 3A is sorted by building number and Table 3B is sorted by descending SIR. Also, shown in Table 2A are the ECO numbers and ECO descriptions analyzed for this report. A detailed summary of each ECO may be found with each building description and analysis.

SUMMARY OF PROJECT

(All recommended ECO's included - see Table 4 for ECIP summary calculations)

KWH Savings:		2,263,894	KWH/yr
Demand Savings:		7,241.9	KW
Gas Savings:		1,648.4	MCF/yr
Cost Savings:	\$	140,319.00	/Year
Implementation Cost:	<u>\$</u>	1,187,540.00	•
Simple Payback:		6.2	Years
Savings to Investment:		2.43	
Ratio (SIR)			

This report identified capital intensive projects which, if implemented, will result in the savings and costs summarized above. The savings for the recommended composite project listed above account for interdependence of savings of individual ECO's.

SPECIAL CONSIDERATIONS

UTILITY REBATES

City Public Service does not currently offer any utility rebate incentives for energy retrofit measures.

MAINTENANCE AND OPERATION OF RETROFITTED SYSTEMS.

The combination of ECO's identified in this report will result in an overall decrease in maintenance labor and cost. This is due primarily to the installation of new lighting systems with increased service lives and a reduction in operating hours for mechanical equipment with the addition of automatic stop/start functions. Addition of automatic stop/start functions will also extend the useful life of the equipment.

TABLE 2A. SUMMARY OF RECOMMENDED ECO'S AND M & O'S

	ECO/	Ц								l	100	BUILDING							l		I
ENERGY CONSERVATION OPPORTUNITIES	M & O	\$	48 34	368 407	1350	1350 1387		1395 1482 1520 1630	1520	1630	2265 2399 2521	2309		2530 2652	2652 2	2841 5105		5106 5107	57 5114	4 5124	4 GEN
A ADDITIONAL INSULATION/SEALING	2		<u> </u>		\downarrow	\prod			1		T	T	†	\dagger	+	+	+	+	-		
B. INSULATED GLASS OR GLAZING	5	Ţ	1	+	\downarrow					T	T	1		\dagger	\dagger	1	+	+	-	1	4
C. WEATHER STRIPING AND CAULKING			-		\downarrow				T	T	T	T	\dagger	\dagger	\dagger	+	+	+	+	+	4
II. HOT WATER			L	H	L			ľ					T		t	+	+	+	\downarrow	1	1
A. SHUTDOWN ENERGY TO WATER HEATER				H					Γ						T	-	+	ŀ	-	-	\downarrow
B. ADDITION OF BOOSTER HEATERS AT MAJOR HW USERS		\int	1	-					П	П		П						-	-	L	L
III LICAT DECANDOR	1	\prod	1	+	1			1						H				Н			
M. MENT RECOVERY EDOM DISCUMPSION AND THE TOP	\downarrow	\prod	1	+	\downarrow	\int		1	1				1	1		-	1				
B. HEAT RECLAIM FROM KITCHEN EXHAUST	-		\dagger	$\frac{1}{1}$	1				T			1	\dagger	\dagger	1	+	+	+	+		
C. WASTE HEAT RECOVERY	ļ		\mid	+	1				T		1	T		1	†	+	+	+	+	4	4
IV. HVAC	_		igg	\downarrow	1				T	Ţ	Ī	Ī	1	Ť	\dagger	+	+	+	$\frac{1}{1}$	4	4
A. NIGHT SETBACK/SETUP THERMOSTAT	8	×	f	×	ļ				T	Ī		,	,	t	\dagger	 ,	+	$\frac{1}{1}$	\downarrow	+	+
B. ECONOMIZER CYCLE(DRY BULB) 0				_						Ī		•	+	\dagger	\dagger	•	\dagger	+	+	\downarrow	1
C. UPGRADE HVACCONTROLS			L	L	L				Ī	Ī			T	t	╁	l	+	+	+	+	1
1) ADD STOP/START FUNCTION TO HVAC EQUIPMENT	8	Ц		×	Ц						Γ	T		T	×	t		×		+	\downarrow
D. IMPHOVE EFFICIENCY OF OPERATIONS	_	1		1	_	J										-	_				L
1) REPLACE CHILLER WITH MGHEN EFFORCEREE CHILLER	8			+	×	\int	×				×	×						L		L	L
T DEFLACE HIO WITH HIGHEN EFFICIENCY UNIT	_	-	1															L		_	L
E. BALANCE HVAC GYSTEM	₩	_		-	4						×					-		L		L	L
P. INSTALL MAKE - UP AN SUPPLY FOR KITCHEN AREAS	8			$\frac{1}{1}$	\downarrow							×				-			-	-	-
G. SHUI - OFF HANGE HOUD		1		-											-	l			L	L	-
H. THERMAL STOHAGE		\rfloor		\dashv	_								-		r			L	-	L	L
V. BOILER/ST	1			\dashv	_										-		-	L	F	-	L
A. SIEAM IRAP INSPECTION	Q & ∑			\dashv								×				-	-		\vdash	L	L
-														_	-		<u> </u>	<u> </u>	ŀ	H	ļ
W. POWER	- 1	_		\dashv	_									-			-		L	H	L
A. CONVENTIO ENERGY EFFICIENT/SMALLER MOTORS	¥ 8	0	1	+	4													-	-	-	×
VII. REJUCE/ENHANCE LIGHTING	1	1	1	+	\downarrow	\downarrow															_
A. PHOLOCELLO TON DEPTING	1	1	1	-																	L
C DEMONSTRING OF DIVINGE OF THE CONTROL OF C	18	_	1	,	1								1	1			-				Ц
STATE OF THE PROPERTY OF THE P	3 8	,	<u> </u>	+	:]			×			1	1	×	1		-	_	Ц
F I OWER IGHT FIXTHERS	3	V	1	<u>۲</u>	4	×	×	×	×	×	×	×	×	×	×	×	1	×		1	4
F. IMPROVE REFLECTION WITH LIGHT COLORED CEILINGSAWALLS	1	igg	\downarrow	Ŧ	\downarrow	\downarrow					1			1	1	+	+	+	1	+	+
WIII. IMPROVE LIGHTING CONTROLS			l	-	_				T		T		Ì	†	+	1		+	+	+	4
A. INSTALL OCCUPANCY SENSORS				-	L			Ī	Ī	Ī	T	Ī	T	T	t	\dagger	1	Ŧ	+	+	+
B. SEPERATE SWITCHES TO CONTROL LIGHTING	L			L	L				T		Ī	Ī	T	T	Ť	t	ł	+	+	\downarrow	+
IX. IMPROVE LIGHTING EFFICIENCY				L							Ī	T.	T	T	t	\dagger	+	\dagger	1	\downarrow	+
A. REPLACE INCANDESCENT LAMPS WITH COMPACT FLUCRESCENTS	SES		×	×	L	×	×		×	×		×	×	Ī	×	×	+	ĺ		+	+
B. REPLACE INCANDESCENT EXIT FIXTURES WITH LED	8	Ĺ		×	L			×	×		×	×		×	· >	(>	$\frac{1}{1}$		-	+	+
C. REPLACE STANDARD LAMPS WITH ENERGY SAVING LAMPS	8	┢	F	×	╀	×	×	×	×	×	×	(×	×	(×			\dagger	()		+	+
D. REPLACE STANDARD BALLAST WITH ENERGY SAVING BALLAST	8	×		×	×	×	×	×	×	×	×	×	\	(>	()	,	\dagger			+	+
E. REPLACE EXISTING FIXTURES WITH HIGH EFF, FIXTURES	8	┝		┝	┞				1	4		4	1	+	4	<>	+	+		+	+
X. REFRIGERATION EQUIPMENT				_		L					I		T	T	İ	+	t	+	+	+	╁
A. IMPROVE EFFICIENCY OF REFIGERATION EQUIPMENT				Н		L							T	T	\dagger	 	\dagger	$\frac{1}{1}$	+	+	Ŧ
B. ADD PLASTIC AIR CURTAINS TO PREVENT INFILTRATION	M & C	0		×	Ц	×	×					×				×	┝		×	╀	Ļ
A. OIMEN		_		+	1																Ļ
B DEDICE LIM TEMPERATION OF			f		1					1									Н		
C DESTON DESTON OF VENTI ATOM INIT	O (0 2 : 2 :		1	<u> </u>	\downarrow	\downarrow											1	-	-		Ц
C. NEGLONE OF EXPLICATION OF TEXT INC. TOTAL	Mar		1	$\left\{ \right.$	1]	\int	1	1	٦	1	1	1	1	1	\exists	×		\dashv	H

TABLE 3A. COMPOSITE ECO SUMMARY (BY BUILDING)

SAVING TO	INV. RATIO	19101	2.28	5.41	10	5.07	34.9	1.97	1.05	3.45	4.46	1.81	5.08	4.96	3.08	4.21	2.02	9.77	21.15	3.02	2.09	1.69	2	1.42	2.75	5.36	8.49	2.89	8.13	18.1		22.17	3.49			2.43
SIMPLE SA	¥ ,	51	4.6	1.7	2.4	8	0.3	4.5	11.8	8,8	2.5	8.2	2.2	2.3	3.7	2.7	7.7	1,2	9.0	5.1	8.7	9.6	5.7	9	4.1	2.1	1.4	3.9	1.7	9.0	A/A	0.5	3.2	A/N	A/X	6.20
SIA	₹ 8									L																					N/A			Y/N	Ϋ́	
IMPLEMENTATION	COST	\$122.00	\$2.117.00	\$89.00	\$363,00	\$2,244.00	\$2,233.00	\$4,557.00	\$231,987.00	\$9,130.00	\$2,592.00	\$159,262.00	\$4,850.00	\$1,037.00	\$2,447.00	\$357.00	\$338.516.00	\$2,723.00	\$363.00	\$365,824.00	\$31,268.00	00'926'6\$	00'368'8\$		\$866.00	\$591.00	\$2,292.00	\$1,588.00	\$242.00	\$4,343.00	N/A		\$2,119.00	N/A	Y/Z	\$1,187,540.00
COST	SAVINGS	\$29.00	\$460.00	\$54.00	\$164.00	\$1,116.00	\$8,781.00	\$1,012.00	\$8,084.00	\$2,783.00	\$1,022.00	\$12,302.00	\$2,179.00	\$455.00	\$664.00	\$133.00	\$26,888.00	\$2,349.00	\$575.00	\$54,626.00	\$3,604.00	\$414.00	\$1,574.00	\$17.00	\$212.00	\$280.00	\$1,613.00	\$406.00	\$152.00	\$6,903.00	N/A	\$814.00		N/A	N/A	\$140,319.00
MAINT.	SAVINGS	-\$5.00	\$33.00		-\$15.00	\$110.00	-\$45.00	\$214.00		\$289.00	\$127.00		\$286.00	\$37.00	\$52.00	\$10.00		\$242.00	-\$15.00				\$269.00	-\$5.00	\$15.00	\$23.00		\$36.00	-\$10.00	\$1,703.00	Y/X	-\$15.00	\$66.00	N/A	N/A	\$3,402.00
GAS	SAVINGS	3.5	ΑX	N/A	19.6	N/A	9.099	N/A	0.0	N/A	N/A	A/A	A/N	A/N	N/A	N/A	A/A	A/A	1.68	N/A	617.0	70.8	Y/N	2.1	N/A	A/N	39.0	₹X	23.5	V/V	N/A	₹ X	Y/N	N/A	N/A	1,525.2
DEMAND	SAVINGS		18.6	2.6	0.0	43.9			528.0	67.0	29.9	1,152.0			26.8	5.5	1,740.0	46.7	0.0	3,192.0	0.0	0.0	28.4	0.0	13.3	9.1	0.0	11.7	0.0	185.9	N/A	0.0	18.2	A/A	N/A	7,241.9
USAGE	SAVINGS (KWH/YR)	472	8,409	602	2,649	19,807	181,265	12,315	126,750	23,724	19,311	123,020	42,637	8,760	12,030	2,397	424,595	49,856	7,528	926,098	41,614	4,776	18,019	278	2,994	5,444	41,114	8,090	2,000	111,658	N/A	22,613	12,962	N/A	N/A	2,263,894
ECO	NUMBER	IV.A	VII.C,D & IX C, D	IX.A	IV.A	VII.C,D & IX A, C, D	K.C.1	VII.C, D & IX A, B, C, D				- 1					IV.D 1)	VII.C,D, & IX B,C,D	N.A	IV. D. 1)	IV. F. 1.	IV. F. 2.	VII.C,D & IX.A,B,C,D	IV A.	VII.C,D & IX.A,C,D	VII, C,D & IX.B,C,D	IV.C. 1)	VIII.C,D & IX,A,B,C,D	IV.A	VII.C,D, & IX.A,B,C,D,E	N/A	IV.C. 1)	,D, & IX.A,B,C,D		N/A	
BUILDING	NUMBER	BUILDING 44	BUILDING 44	BUILDING 48	BUILDING 368	BUILDING 368	BUILDING 407	BUILDING 407	BUILDING 1350	BUILDING 1350	BUILDING 1387	BUILDING 1395	BUILDING 1395	BUILDING 1462	BUILDING 1520		BUILDING 2265							_	BUILDING 2521	1		_	_	1	_	- 1		1	BUILDING 5124	TOTAL

TABLE 3B. COMPOSITE ECO SUMMARY (BY SIR)

BUILDING	ECO	USAGE	DEMAND	GAS	MAINT.	COST	IMPLEMENTATION	SIMPLE	SAVING TO
NUMBER	NUMBER	SAVINGS	SAVINGS	SAVINGS	SAVINGS	SAVINGS	COST	PAYBACK	INV. RATIO
		(KWH/YR)	(KW/YR)	(MCF/YR)	(\$/YR)	(\$/YR)	(\$)	(YEARS)	(SIR)
	IV.C.1	181,265		9.099	-\$45.00	\$8,781.00	\$2,233.00	0.3	34.9
	IV.C. 1)	22,618		N/A	-\$15.00	\$814.00	\$425.00	0.5	22.17
			0.0	89.1	-\$15.00	\$575.00	\$363.00	9.0	21.15
	VII.C,D, & IX.A,B,C,D,E	-	185.9	N/A	\$1,703.00	\$6,903.00	\$4,343.00	9.0	18.1
	VII.C,D, & IX B,C,D	49,856	46.7	N/A	\$242.00	\$2,349.00	\$2,723.00	1.2	9.77
	IV.C. 1)	41,114	0.0	39.0		\$1,613.00	\$2,292.00	1.4	8.49
	V.A	2,000		23.5		\$152.00	\$242.00	1.7	8.13
80	IV.A	2,649	0.0	19.6	-\$15.00	\$164.00	\$363.00	2.4	5.5
1	IX.A	709		N/A		\$54.00	\$89.00	1.7	5.41
- 1	VII, C,D & IX.B,C,D	5,444	9.1	Y/V	\$23.00	\$280.00	\$591.00	2.1	5.36
20	VII.C,D & IX.A,B,C,D	42,637	53.7	Ϋ́		\$2,179.00	\$4,850.00	2.2	5.08
	VII.C,D & IX A, C, D	19,807	43.9	K/X	6	\$1,116.00	\$2,244.00	2	5.07
	VII.C,D & IX.B,C,D	8,760	15.4	A/A		\$455.00	\$1,037.00	2.3	4.96
	VII C,D, & IX.A,B,C,D	19,311	29.9	K/X	5	\$1,022.00	\$2,592.00	2.5	4.46
	VII.C,D & IX.A,C,D	2,397	5.5	A/N		\$133.00	\$357.00	2.7	4.21
	VII.C,D, & IX.A,B,C,D	12,962	18.2	N/A	\$66.00	\$654.00	\$2,119.00	3.2	
	VII.C,D, & IX B,C,D.	23,724		N/A	8	\$2,783.00	\$9,130.00	3.3	
- 1	VII C, D, & IX.A,B,C,D	12,030	26.8	A/N	\$52.00	\$664.00	\$2,447.00	3.7	
	IV. D. 1)	956,098	3,1	N/A		\$54,626.00	\$365,824.00	5.1	3.02
	VIII.C,D & IX,A,B,C,D	8,090		N/A		\$406.00	\$1,588.00	3.9	2.89
뒶	VII.C,D & IX.A,C,D	2,994	13.3	A/A		\$212.00	\$866.00	4.1	2.75
+	V.A	472	0	3.5		\$29.00	\$122.00	5.1	2.7
	VII.C,D & IX C, D	8,409	18.6	N/A	\$33.00	\$460.00	\$2,117.00	4.6	8
_	IV. F. 1.	41,614	0.0	617.0		\$3,604.00	\$31,268.00	8.7	
_	IV.D 1)	424,595	7.	A/N		\$26,888.00	\$338,516.00	7.7	2.02
6	뎻			N/A		\$1,574.00	\$8,895.00	5.7	2
- 1	VII.C, D & IX A, B, C, D		"	A/A	\$214.00	\$1,012.00	\$4,557.00	4.5	1.97
	IV. F. 2.	4,776		70.8		\$414.00		9.6	1.89
_	IV.D. 1)	123,020	1,152.0	N/N		\$12,302.00	\$159,262.00	8.2	1.81
1	\ \ \	278	0.0	2.1	-\$5.00	\$17.00	\$122.00	10	1.42
- 1	IV.D.1)	126,750	528.0		_	\$8,084.00	\$231,987.00	11.8	1.05
	N/A	N/A	N/A	A/A	N/A	N/A	N/A	V/V	N/A
	N/A	N/A	N/A	V/A	Y)	N/A	N/A	N/A	N/A
BUILDING 5124	N/A	N/A	N/A	N/A	V/N	N/A	N/A	N/A	N/A
TOTAL		2 263 RO4	7 241 0	1 525 2	£2 409 00	£140 210 00	61 107 510 00	000	
1111		£15001001		1,020.5	_	4140,018.00	91,167,340.00	6.20	2.43

TABLE 4. ECIP SUMMARY

LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)

LOCATION:	FO	RT SAM HOUST	ron .	REGION NO	. з	PROJECT NO.	91109912F
PROJECT TITLE:		FORT SAM HO	USTON DINING	FACILITIES E	EAP	FISCAL YEAR	1994
DISCRETE PORT			C	OMPOSITE EC	O SUMMARY		
ANALYSIS DATE:	NOVEMBER	I, 1993 EC	CONOMIC LIFE	20	PREPARER	S. P. Cl	.ARK
				-	_		*******
1. INVESTMENT	COSTS:						
A. CONSTRUCTI	ON COST		\$1,065,058				
B. SIOH	011 0001		\$58,578	_	•		
C. DESIGN COST	-		\$63,903				
D. TOTAL COST (\$1,187,540	_			
E. SALVAGE VAL		FOUIPMENT	Ψ1,101,040	\$ 0			
F. PUBLIC UTILIT				\$0	_		
G. TOTAL INVEST					\$1,187,540		
G. 10 1/12 11/120		,					
2. ENERGY SAV	INGS (+)/COST	<u>(-</u>):					
		_					
DATE OF NISTIR	85-3273-X US	ED FOR DISCO	UNT FACTORS:	<u>,,</u>	OVEMBER 4,	1992	
ENERGY	COST	SAVINGS	ANNUAL \$	DISCOUNT	DISCOUNTE	n	
SOURCE	\$/MBTU(1)	MBTU/YR(2)	SAVINGS(3)	FACTOR(4)	SAVINGS(5)		
0001102	4 ,11.2.3(1)	11.510,111(2)	G, (11.11.G.G)	17101011(4)	G/11.11.10.0(0)		
A. ELEC	\$10.55	7726.67	\$81,516	14.65	\$1,194,215	_	
B. DIST			\$0	17.70	\$0	_	
C. RESID			\$0	20.99	\$0	_	
D. NG	\$3.31	1699.50	\$5,625	20.60	\$115,882	_	
E. PPG			<u> </u>	13.59	\$ 0	_	
F. COAL			<u> </u>	16.32	\$0	-	
G. SOLAR	 		\$0	13.59	\$0	<u>-</u>	
H. GEOTH			\$0	13.59	\$0	_	
I. BIOMA			\$0_	13.59	\$0	-	
J. REFUS			\$ 0	13.59	\$0	_	
K. WIND			\$ 0	13.59	\$0	_	
L. OTHER			\$0	13.59	\$0		
M. DEMAND SAVI	NGS		<u>\$48,279</u>	13.59	\$656,109	_	
N. TOTAL		9426.17	<u>\$135,421</u>		\$1,966,206		
3. NON ENERGY	SAVINGS (±) C	DR COST (_)					
J. NON ENERGI	CATINGO (T) C	711 0001 (-).	-				
A. ANNUAL RECU	IRRING (+/-)	\$3,402					
1. DISCOUNT FA	• • •		13.59				
2. DISCOUNTED			10.03	\$46,233			
2. DIGGGGIATED	5/17/11430/0001	(OU V OU!)	-	Ψ- υ,233			

B. NON RECURRING SAVINGS (+) OR COST(-)

7. ADJUSTED INTERNAL RATE OF RETURN (AIRR):

	ITEM	SAVINGS(+)	YEAR OF	DISCOUNT	DISCOUNTED SAV-
		COST(-)(1)	OCCUR.(2)	FACTOR(3)	INGS(+)COST(-)(4)
a.	N/A	\$429,288	1	0.96	\$412,116
b.	N/A	\$0	2	0.92	\$0
C.	N/A	\$338,516	3	0.89	\$301,279
d.	N/A	\$0	4	0.85	\$0
e.	N/A	\$0	5	0.82	\$0
f.	N/A	\$0	6	0.79	\$0
g.	N/A	\$0	7	0.76	\$0
ĥ.	N/A	\$0	8	0.73	\$0
i.	N/A	\$0	9	0.7	\$0
j.	N/A	\$0	10	0.68	\$0
k.	N/A	\$0	11	0.65	\$0
I.	N/A	\$0	12	0.62	\$0
m.	N/A	\$51,000	13	0.6	\$30,600
n.	N/A	\$0	14	0.58	\$0
Ο.	Chiller	\$231,987	15	0.56	\$129,913
p.	TOTAL	\$1,050,791		-	\$873,908
C.	TOTAL NON E	ENERGY DISCOL	INTED SAVING	iS (3A2 + 3Bp4)	\$920,142
4 5	IMDI E DAVRA	CK 1G/(2N3+3A	±/3Bn1/ECON	OMIC LIEEN:	6.2 YEARS
7. 0	INI ELIATOA	OR TO/(ENOTOR	1 (ODD I/LOCK	Olvilo Cii C//.	
5. T	OTAL NET DIS	SCOUNTED SAVI	NGS (2N5+3C	<u>):</u>	\$2,886,347
6. S	AVINGS TO IN	IVESTMENT RAT	10 (SIR) 5/1G:	-	2.43

8.7%

CONCLUSIONS

The results of this analysis indicate that the ECO's recommended result in a project which is eligible of ECIP funding. The approximate implementation cost for the project is \$1,187,540.00 with a simple payback of 6.2 years and an SIR of 2.43. The adjusted internal rate of return is 8.7%.

MAINTENANCE AND OPERATIONAL RECOMMENDATIONS

I. ENVELOPE

A. Additional Insulation/Sealing

The ductwork for the rooftop unit serving the office area in Building 368 should be resealed.

IV. HVAC

E. Balance HVAC System

The make-up air kitchen hoods for Building 2265 have the make-up supply louvers closed. These supply louvers should be fully open in order for the hood to function properly.

V. BOILER/STEAM

A. Steam Trap Inspection

The steam traps for Building 2399 appear to be original to the building and should be replaced to prevent blow by of live steam.

X. REFRIGERATION EQUIPMENT

B. Add Plastic Air Curtains to Prevent Infiltration

The following buildings have walk-in freezers and refrigerators that do not have plastic air curtains or have torn curtains in need of replacement; Buildings 368, 407, 1387, 1395, 2399, 2841 and 5107. Addition or replacement of air curtains will reduce energy consumption due to infiltration and exfiltration.

XI. OTHER

B. Reduce Hot Water Temperature to 140°F

Currently, the domestic hot water temperature is set at 160°F for Building 368. This facility contains an automatic dishwasher with a booster heater for sanitization. The optimum temperature for the domestic hot water is 140°F. Reducing the temperature will result in a reduction in energy consumption.

C. Restore Operation of Ventilation Unit

Currently, a ventilation unit is disabled which is intended to serve the kitchen area for Building 5107. As a result, the kitchen hoods are exhausting conditioned air from the adjacent dining area. Restoring operation of this unit would reduce energy consumption related to the exhausted conditioned air.

BUILDING 44 - SNACK BAR

Building 44 is primarily a one story building with a total of 95,000 square feet. The snack bar is contained within this facility and consists of approximately 2,000 square feet.

The operating hours are from 6:00 am to 2:00 pm, 5 days per week.

The lighting system is primarily fluorescent.

The mechanical system consists of a 3 ton packaged DX rooftop unit with gas heating and a kitchen exhaust hood.

Hot water is supplied by the central building, gas fired, domestic hot water boiler. There is no dishwashing equipment and all dishes and utensils are disposable.

The following ECO's are recommended for Building 44:

- 1. IV. A Night setback/setup thermostat
- 2. VII. D Reduce indoor/outdoor lighting to AEI levels
- 3. IX. C Replace standard lamps with energy saving lamps
- 4. IX. D Replace standard ballast with energy saving ballast

ENERGY CONSERVATION OPPORTUNITIES (ECO's) - BUILDING NO. 44

ECO NO: IV.A.

ECO NAME: Night setback/setup thermostat.

SUMMARY DATA (DEPENDENT):

KWH Savings: 472 KWH/yr

Demand Savings: 0 KW/yr

Gas Savings: 3.5 MCF/yr

Cost Savings: \$ 29.00 /yr

Implementation Cost: \$ 122.00

Simple Payback: 4.2 Years

Savings to Investment: 3.15

Ratio (SIR):

ECO DESCRIPTION:

Currently, a manual thermostat is used to control the packaged DX rooftop unit which serves the snack bar. This ECO analyzes the installation of a programmable night setback/setup thermostat to reduce energy consumption during unoccupied periods.

COST SAVINGS CALCULATIONS:

(Refer to following SimpCalc Calculations)

IMPLEMENTATION COSTS:

(Refer to following Cost Estimate)

MAINTENANCE COSTS:

Maintenance costs of \$5.00/year is included in the LCCA for programming, battery replacement and failures.

LIFE CYCLE COST ANALYSIS:

(Refer to following ECIP Life Cycle Cost Summary)

LOCATION:		RT SAM HOUST		_REGION NO.		_PROJECT NO	91109912F
PROJECT TITLE:		FORT SAM HO	USTON DININ	G FACILITIES I	EAP	FISCAL YEAR	
DISCRETE PORTIC	ON NAME:	BUILDI	NG 0044 - EC	0 IV. A NIG		SETUP THERMO	
ANALYSIS DATE:	NOVEMBER	1, 1993 EC	ONOMIC LIFE	15	PREPARER	S. P. C	LARK
1. INVESTMENT C	COSTS:						
A. CONSTRUCTION B. SIOH C. DESIGN COST D. TOTAL COST (1) E. SALVAGE VALU F. PUBLIC UTILITY G. TOTAL INVESTI	A+1B+1C) E OF EXISTING COMPANY RE	EBATE	\$109 \$6 \$7 \$122	\$0 \$0		 :	
2. ENERGY SAVII				io. In	OVENDED 4	1000	
DATE OF NISTIR 8	5-3273-X US	SED FOR DISCO	DUNI FACTOR	is: <u>T</u>	IOVEMBER 4,	1992	
ENERGY SOURCE	COST \$/MBTU(1)	SAVINGS MBTU/YR(2)	ANNUAL \$ SAVINGS(3)	DISCOUNT FACTOR(4)	DISCOUNTEI SAVINGS(5)	D	
A. ELEC	\$10.55	1.61	\$17	11.77	\$200		
B. DIST			\$0	13.83	\$0		
C. RESID			\$0	16.15	\$0	_	
D. NG	\$3.31	3.61	\$12	15.34	\$183		
E. PPG			\$0	11.12	\$0	_	
F. COAL			\$0	12.82	\$0	-	
G. SOLAR			\$0	11.12	\$0	_	
H. GEOTH			\$0	11.12	\$0	-	
I. BIOMA			\$0	11.12	\$0	-	
J. REFUS			\$0	11.12	\$0		
K. WIND			\$0	11.12	\$0		
L OTHER			\$0	11.12	\$0		
M. DEMAND SAVIN	NGS	F 00	<u>\$0</u>	11.12	\$0	•	
N. TOTAL		5.22	\$29		\$383		
3. NON ENERGY	SAVINGS (+)	OR COST (-):	-				
A. ANNUAL RECUP 1. DISCOUNT FAC 2. DISCOUNTED S	TOR (TABLE A		11.1	- \$56			
		. (2, 1, 1, 0, 1, 1)					

B. NON RECURRING SAVINGS (+) OR COST(-)

	ITEM	SAVINGS(+) COST(-)(1)	YEAR OF OCCUR.(2)	DISCOUNT FACTOR(3)	DISCOUNTED SAV- INGS(+)COST(-)(4)
a.	N/A	\$0	1	0.96	\$0_
b.	N/A	\$0	2	0.92	\$0
C.	N/A	\$0	3 4	0.89	\$0
d.	N/A	\$0	4	0.85	\$0_
e.	N/A	\$0	5	0.82	\$0
f.	N/A	\$0	6	0.79	: \$0
g.	N/A	\$0	7	0.76	\$0
h.	N/A	\$0	8	0.73	\$0
i.	N/A	\$0	9	0.7	\$0
j.	N/A	\$0	10	0.68	\$0
ķ.	N/A	\$0	11	0.65	\$0
i.	N/A	\$0	12	0.62	\$0
m.	N/A	\$0	13	0.6	\$0
n.	N/A	\$0	14	0.58	\$0
0.	N/A	\$0	15	0.56	\$0
p.	TOTAL	\$0			\$0
C.	TOTAL NON EI	NERGY DISCOL	JNTED SAVIN	GS (3A2 + 3Bp4	
4. S	IMPLE PAYBAC	CK 1G/(2N3+3A	+ (3Bp1/ECO	NOMIC LIFE)):_	5.1_YEARS
<u>5. T</u>	OTAL NET DISC	COUNTED SAV	INGS (2N5+3	C):	<u>\$328</u>
6. S	AVINGS TO IN	ESTMENT RAT	TIO (SIR) 5/1G	<u>:</u>	2.70
<u>7. A</u>	DJUSTED INTE	RNAL RATE OF	RETURN (All	RR):	11.1%

ENERGY CONSERVATION OPPORTUNITIES (ECO's) - BUILDING NO. 44

ECO NO: VII. D. & IX C.,D.

ECO NAME: Improve lighting efficiency

SUMMARY DATA (DEPENDENT):

KWH Savings: 8,409 KWH/yr

Demand Savings: 18.6 KW/yr

Gas Savings: N/A MCF/yr

Cost Savings: \$ 460.00 /yr

Implementation Cost: \$ 2,117.00

Simple Payback: 4.6 Years

Savings to Investment: 2,28

Ratio (SIR):

ECO DESCRIPTION:

Currently, low efficiency lighting systems are in use. This ECO will update the lighting system to improve efficiency while maintaining or increasing lighting levels. The existing lighting system and proposed retrofit action are as follows:

QTY	FIXTURE TYPE	ACTION
12	2-Lamp, 4' Fluor.	Retrofit w/T8 lamps and electronic ballasts.
8	4-Lamp, 4' Fluor.	Retrofit w/T8 lamps and electronic ballasts.
20	2-Lamp, 8' Fluor.	Retrofit w/T8 lamps and electronic ballasts.

COST SAVINGS CALCULATIONS:

(Refer to following Flex Output)

Demand Savings = $[(4.49 \, KW - 2.94 \, KW) \times 4 \, mo.x \$7.50 / KW + (4.49 \, KW - 2.94 \, KW) \times 8 \, mo.x \$6.25 / KW]$ = \$124.00 / yr

IMPLEMENTATION COSTS:

(Refer to following Flex Output and Lighting Implementation Cost located in Appendix E)

LIFE CYCLE COST ANALYSIS:

(Refer to following ECIP Life Cycle Cost Summary)

LOCATION:	FOF	RT SAM HOUST	ON	_REGION NO		_PROJECT NO	91109912F
PROJECT TITLE:		FORT SAM HO	USTON DININ	G FACILITIES	EEAP	FISCAL YEAR	
DISCRETE PORTI						ING IMPROVEME	
ANALYSIS DATE:	NOVEMBER	<u>1, 1993 </u>	ONOMIC LIFE	15	PREPARER	S. P. C	LARK
1. INVESTMENT	COSTS:						
A. CONSTRUCTION B. SIOH C. DESIGN COST D. TOTAL COST (1) E. SALVAGE VALUE	A+1B+1C)	G EQUIPMENT	\$1,899 \$104 \$114 \$2,117	 	:		
F. PUBLIC UTILITY G. TOTAL INVEST	COMPANY RE	EBATE		\$0	\$2,117		
2. ENERGY SAVII	NGS (+)/COST	<u>(</u> _):					
DATE OF NISTIR 8	5-3273-X US	SED FOR DISCO	OUNT FACTOR	rs: <u>'n</u>	OVEMBER 4,	1992	
ENERGY SOURCE	COST \$/MBTU(1)	SAVINGS MBTU/YR(2)	ANNUAL \$ SAVINGS(3)	DISCOUNT FACTOR(4)	DISCOUNTE SAVINGS(5)	D	
A. ELEC	\$10.55	11.91	\$126	11.77	\$1,479		
B. DIST			\$0	13.83	\$0	•	
C. RESID			\$0	16.15	\$0	•	
D. NG			\$0	15.34	\$0	_	
E. PPG			\$0	11.12	\$0	•	
F. COAL			\$0	12.82	\$0		
G. SOLAR			\$0	11.12	\$0	•	
H. GEOTH I. BIOMA			\$0	11.12 11.12	\$0 \$0	•	
J. REFUS			\$0	11.12	\$0	•	
K. WIND			\$0	11.12	\$0	•	
L COOLING	\$10.55	16.79	\$177	11.12	\$1,970	•	
M. DEMAND SAVIN			\$124	11.12	\$1,379		
N. TOTAL		28.7	\$427		\$4,828		
3. NON ENERGY		OR COST (-):	_				
A. ANNUAL RECUP 1. DISCOUNT FAC 2. DISCOUNTED S	TOR (TABLE A		11.1	\$366			

B. NON RECURRING SAVINGS (+) OR COST(-)

	ITEM	SAVINGS(+) COST(-)(1)	YEAR OF OCCUR.(2)	DISCOUNT FACTOR(3)	DISCOUNTED SAV- INGS(+)COST(-)(4)	
a.	N/A	\$0	1	0.96	\$0	
b.	N/A	\$0	2	0.92	\$0	
C.	N/A	\$0	2 3 4	0.89	\$0	
d.	N/A	\$0		0.85	\$0	
е.	N/A	\$0	5	0.82	\$0	
f.	N/A	\$0	6	0.79	: \$0	
g.	N/A	\$0	7	0.76	\$0	
h.	N/A	\$0	8	0.73	\$0	
i.	N/A	\$0	9	0.7	\$0	
i.	N/A	\$0	10	0.68	\$0	
k.	N/A	\$0	11	0.65	\$0	
į.	N/A	\$0	12	0.62	\$0	
m.	N/A	\$0	13	0.6	\$0	
n.	N/A	\$0	14	0.58	\$0	
0.	N/A	\$0	15	0.56	\$0	
p.	TOTAL	\$0			\$0	
C.	TOTAL NON E	NERGY DISCO	JNTED SAVIN	GS (3A2 + 3Bp4)	\$366	
4. SIMPLE PAYBACK 1G/(2N3+3A+(3Bp1/ECONOMIC LIFE)): 4.6 YEARS						
5. TOTAL NET DISCOUNTED SAVINGS (2N5+3C): \$5,194						
6. SAVINGS TO INVESTMENT RATIO (SIR) 5/1G: 2.45						
7. ADJUSTED INTERNAL RATE OF RETURN (AIRR): 10.4%						

BUILDING 48 - VIP GUEST HOUSE DINING

Building 48 is a historic two story, wood frame building with a total of 8,600 square feet. The dining and kitchen facilities are located on the first floor and consist of approximately 500 square feet.

The operating hours are from 5:30 am to 11:00 am, 5 days per week.

The lighting system is primarily incandescent with chandeliers in the dining room and recessed incandescent fixtures in the kitchen.

The mechanical system consists of a wall mounted fan coil unit which is provided with chilled water by an air cooled chiller. Heating is provided by a gas fired boiler located in the basement.

Hot water is supplied by a gas fired water heater located in the basement. All dishes are washed by hand.

The following ECO's are recommended for Building 48:

- 1. IV. A Night setback/setup thermostat
- 2. IX. A Replace incandescent lamps with compact fluorescents

ENERGY CONSERVATION OPPORTUNITIES (ECO's) - BUILDING NO. 48

ECO NO: IX.A.

ECO NAME: Replace incandescent lamps with compact fluorescents

SUMMARY DATA (DEPENDENT):

KWH Savings:

______ KWH/yr

Demand Savings:

2.59 KW/yr

Gas Savings:

N/A

MCF/yr

Cost Savings:

\$ 54.00 /yr

Implementation Cost:

\$ 89.00

Simple Payback:

1.7____

Years

Savings to Investment:

5.41

Ratio (SIR):

ECO DESCRIPTION:

Currently, recessed incandescent fixtures are utilized in the kitchen area. This ECO replaces the incandescent lamps with 27W compact fluorescent lamps. The existing lighting system and proposed retrofit action are as follows:

QTY	FIXTURE TYPE	ACTION
1	Fan/Chandelier	None.
3	Incandescent downlight	Replace with compact fluor.

COST SAVINGS CALCULATIONS:

(Refer to following Flex Output)

Demand Savings = $(.34 \text{ KW} - 1.24 \text{ KW}) \times 4 \text{ mo.} \times \$7.50/\text{KW} + (.34 \text{ KW} - .124 \text{ KW}) \times 8 \text{ mo.} \times \$6.25/\text{KW}$ = \$17.28/yr

IMPLEMENTATION COSTS:

(Refer to following Flex Output and Lighting Implementation Cost located in Appendix E)

LIFE CYCLE COST ANALYSIS:

(Refer to following ECIP Life Cycle Cost Summary)

LOCATION:		RT SAM HOUST		_REGION NO		PROJECT NO	91109912F
PROJECT TITLE:		FORT SAM HO	USTON DINING	G FACILITIES	EEAP	FISCAL YEAR	
DISCRETE PORTI	ON NAME: BI	LDG 0048 - EC	OIX A REP	LACE INCAND	ESCENT LAMP	'S W/COMPACT	FLUOR.
ANALYSIS DATE:	NOVEMBER		ONOMIC LIFE		PREPARER	S. P. C	
1. INVESTMENT							
A. CONSTRUCTION B. SIOH C. DESIGN COST D. TOTAL COST (1) E. SALVAGE VALU F. PUBLIC UTILITY G. TOTAL INVESTI	IA+1B+1C) JE OF EXISTIN COMPANY RE	EBATE	\$80 \$4 \$5 \$89	\$0 \$0	 \$89		
2. ENERGY SAVIIDATE OF NISTIR 8			DUNT FACTOR	:S: <u>'N</u>	NOVEMBER 4, 1	992	
ENERGY SOURCE	COST \$/MBTU(1)	SAVINGS MBTU/YR(2)	ANNUAL \$ SAVINGS(3)	DISCOUNT FACTOR(4)	DISCOUNTED SAVINGS(5))	
A. ELEC B. DIST C. RESID D. NG E. PPG F. COAL G. SOLAR H. GEOTH I. BIOMA J. REFUS K. WIND L. COOLING M. DEMAND SAVIN N. TOTAL	\$10.55 	1.41	\$11 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$15 \$17 \$43	11.77 13.83 16.15 15.34 11.12 12.82 11.12 11.12 11.12 11.12 11.12 11.12 11.11	\$125 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$165 \$192 \$483		
3. NON ENERGY A. ANNUAL RECUF 1. DISCOUNT FAC 2. DISCOUNTED S	RRING (+/-) CTOR (TABLE A	\$11 A)	11.1	<u>\$122</u>			

B. NON RECURRING SAVINGS (+) OR COST(-)

	ITEM	SAVINGS(+) COST(-)(1)	YEAR OF OCCUR.(2)	DISCOUNT FACTOR(3)	DISCOUNTED SAV- INGS(+)COST(-)(4)			
a. b. c.	N/A N/A N/A	\$0 \$0 \$0	1 2 3 4	0.96 0.92 0.89	\$0 \$0 \$0			
d. e. f.	N/A N/A N/A	\$0 \$0 \$0	<u>4</u> 5 6	0.85 0.82 0.79	\$0 \$0 \$0			
g. h. i	N/A N/A N/A	\$0 \$0 \$0	7 8 9	0.76 0.73 0.7	\$0 \$0 \$0			
j. k. l.	N/A N/A N/A	\$0 \$0 \$0	10 11 12	0.68 0.65 0.62	\$0 \$0 \$0			
n. n. o.	N/A N/A N/A	\$0 \$0 \$0	13 14 15	0.6 0.58 0.56	\$0 \$0 \$0			
p.	TOTAL	\$0			\$0			
C. TOTAL NON ENERGY DISCOUNTED SAVINGS (3A2 + 3Bp4) \$122 4. SIMPLE PAYBACK 1G/(2N3+3A+(3Bp1/ECONOMIC LIFE)): 1.7 YEAF								
5. TOTAL NET DISCOUNTED SAVINGS (2N5+3C): \$605								
6. S	6. SAVINGS TO INVESTMENT RATIO (SIR) 5/1G: 6.78							
7. A	7. ADJUSTED INTERNAL RATE OF RETURN (AIRR): 18.2%							

BUILDING 368 - CAFETERIA

Building 368 is a one story stucco building consisting of 5,700 square feet. This facility consists of full service kitchen and a large dining area.

The operating hours are from 6:00 am to 2:0 pm, 5 days per week.

The lighting system is primarily fluorescent with some decorative incandescent fixtures.

The mechanical system consists of 3 DX packaged rooftop units. Heating is provided by gas furnaces in the rooftop units.

Hot water is provided by a gas fired water heater. Dishwashing is accomplished using an automatic dishwasher with an electric hot water booster heater.

The following ECO's are recommended for Building 368:

- 1. IV. A Night setback/setup thermostat
- 2. VII. D Reduce indoor/outdoor lighting to AEI levels
- 3. IX. A Replace incandescent lamps with compact fluorescents
- 4. IX. C Replace standard lamps with energy saving lamps
- 5. IX. D Replace standard ballast with energy saving ballast

ENERGY CONSERVATION OPPORTUNITIES (ECO's) - BUILDING 368

ECO NO: IV.A.

ECO NAME: Night setback/setup thermostat

SUMMARY DATA (DEPENDENT):

KWH Savings: 2.649 KWH/yr

Demand Savings: 0 KW/yr

Gas Savings: 19.6 MCF/yr

Cost Savings: <u>\$ 164</u> /yr

Implementation Cost: \$\\ 363.00

Simple Payback: 2.2 Years

Savings to Investment: 5.96

Ratio (SIR):

ECO DESCRIPTION:

Currently, three manual thermostats are used to control the three packaged rooftop units that serve the cafeteria and office areas. This ECO analyzes the installation of programmable night setback/setup thermostats to reduce energy consumption during unoccupied periods.

COST SAVINGS CALCULATIONS:

(Refer to following SimpCalc Calculations)

IMPLEMENTATION COSTS:

(Refer to following Cost Estimate)

MAINTENANCE COSTS:

Maintenance costs of \$5.00/year is included in the LCCA for programming, battery replacement and failures.

LIFE CYCLE COST ANALYSIS:

(Refer to following ECIP Life Cycle Cost Summary)

LOCATION: PROJECT TITLE:	FORT SAM HOUS	TON DUSTON DININ	REGION NO		PROJECT NO. FISCAL YEAR	
DISCRETE PORTION NAME	: BUILDI	NG 0368 – EC	O IV. A NIG	HT SETBACK/S	ETUP THERMOS	
ANALYSIS DATE: NOVEM	BER 1, 1993 E	CONOMIC LIFE	15	PREPARER	S. P. C	LARK
1. INVESTMENT COSTS: A. CONSTRUCTION COST B. SIOH C. DESIGN COST D. TOTAL COST (1A+1B+1 E. SALVAGE VALUE OF EXI F. PUBLIC UTILITY COMPAI G. TOTAL INVESTMENT (1D	STING EQUIPMENT NY REBATE	\$326 \$18 \$20 \$363		 \$363		
2. ENERGY SAVINGS (+)/0 DATE OF NISTIR 85-3273-		OUNT FACTOR	35: <u>'N</u>	NOVEMBER 4, 1	992	
ENERGY COST SOURCE \$/MBTU	SAVINGS (1) MBTU/YR(2)	ANNUAL \$ SAVINGS(3)	DISCOUNT FACTOR(4)	DISCOUNTED SAVINGS(5))	
A. ELEC \$10.5	9.19	\$97	11.77	\$1,141		
B. DIST		\$0	13.83	\$0		
C. RESID D. NG \$3.3	20.21	\$0 \$67	16.15 15.34	\$0 \$1,026		
E. PPG		\$0	11.12	\$0		
F. COAL		\$0	12.82	\$0		
G. SOLAR H. GEOTH		<u>\$0</u>	11.12	\$0		
I. BIOMA		\$0 \$0	<u>11.12</u> 11.12	\$0 \$0		
J. REFUS		\$0	11.12	\$0		
K. WIND		\$0	11.12	\$0		
L. OTHER M. DEMAND SAVINGS		\$0 \$0	11.12 11.12	\$0 \$0		
N. TOTAL	29.4	\$164	11.12	\$2,167		
3. NON ENERGY SAVINGS (+) OR COST (-): A. ANNUAL RECURRING (+/-) (\$15) 1. DISCOUNT FACTOR (TABLE A) 11.1 2. DISCOUNTED SAVINGS/COST (3A X 3A1) (\$167)						

B. NON RECURRING SAVINGS (+) OR COST(-)

	ITEM	SAVINGS(+) COST(-)(1)	YEAR OF OCCUR. (2)	DISCOUNT FACTOR(3)	DISCOUNTED SAV- INGS(+)COST(-)(4)
a.	N/A	\$0	1	0.96	\$0
b.	N/A	\$0	2	0.92	\$0
C.	N/A	\$0	3	0.89	\$0
d.	N/A	\$0	4	0.85	\$0
e.	N/A	\$0	5	0.82	\$0
f.	N/A	\$0	6	0.79	\$0
g.	N/A	\$0	7	0.76	\$0
h.	N/A		8	0.73	\$0
i.	N/A	\$0	9	0.7	\$0
j.	N/A	<u>\$0</u>	10	0.68	\$0
k.	N/A	\$0	11	0.65	\$0
I.	N/A	\$0	12	0.62	\$0
m.	N/A	\$0	13	0.6	\$0
n.	N/A	\$0	14	0.58	\$0
Ο.	N/A	\$0	15	0.56	\$0
p.	TOTAL	\$0			\$0

C. TOTAL NON ENERGY DISCOUNTED SAVINGS (3A2 + 3Bp4)	(\$167)
4. SIMPLE PAYBACK 1G/(2N3+3A+(3Bp1/ECONOMIC LIFE)):	2.4 YEARS
5. TOTAL NET DISCOUNTED SAVINGS (2N5+3C):	\$2,001
6. SAVINGS TO INVESTMENT RATIO (SIR) 5/1G:	5.50
7. ADJUSTED INTERNAL RATE OF RETURN (AIRR):	16.5%

ENERGY CONSERVATION OPPORTUNITIES (ECO's) - BUILDING NO. 368

ECO NO: VII. D

VII. D & IX A, C, D

ECO NAME: Improve lighting efficiency.

SUMMARY DATA (DEPENDENT):

KWH Savings:

19,807

KWH/yr

Demand Savings:

43.9

KW/yr

Gas Savings:

N/A

MCF/yr

Cost Savings:

\$ 1.116

/yr

Implementation Cost:

\$ 2,244

Simple Payback:

2.0

Years

Savings to Investment:

5.07

Ratio (SIR):

ECO DESCRIPTION:

Currently, low efficiency lighting systems are in use. This ECO will update the lighting systems to improve efficiency while maintaining or increasing current lighting levels. The existing lighting system and proposed retrofit action are as follows:

QTY	FIXTURE TYPE	ACTION
21	Decorative incandescents	Retrofit with compact fluor. lamps.
11	2-Lamp, 2' Fluor.	Retrofit with T8 lamps and elect. ballasts.
32	2-Lamp, 4' Fluor.	Retrofit with T8 lamps and elect. ballasts.

COST SAVINGS CALCULATIONS:

(Refer to following Flex Output)

IMPLEMENTATION COSTS:

(Refer to following Flex Output and Lighting Implementation Cost located in Appendix E)

LIFE CYCLE COST ANALYSIS:

(Refer to following ECIP Life Cycle Cost Summary)

LOCATION:		RT SAM HOUST		_REGION NO		PROJECT NO.	91109912F
PROJECT TITLE:		FORT SAM HO				FISCAL YEAR	
DISCRETE PORTIO						NG IMPROVEME	
ANALYSIS DATE:	NOVEMBER	1, 1993 EC	CONOMIC LIFE	15	_PREPARER	S. P. C	LAHK
1. INVESTMENT C	COSTS:						
A. CONSTRUCTION B. SIOH C. DESIGN COST D. TOTAL COST (1) E. SALVAGE VALU F. PUBLIC UTILITY G. TOTAL INVESTI	A+1B+1C) IE OF EXISTING COMPANY RE	BATE	\$2,013 \$111 \$121 \$2,244	\$0 \$0		 :	
2. ENERGY SAVIII		 ·	OLINIT EACTOR	10· 14	IOVEMBER 4, 1	1002	
DATE OF NISTIN 6	5-32/3-X US	ED FUN DISCO	JUNI FACTOR	15. <u>1</u>	IOVEIVIDEN 4, I	992	
ENERGY SOURCE	COST \$/MBTU(1)	SAVINGS MBTU/YR(2)	ANNUAL \$ SAVINGS(3)	DISCOUNT FACTOR(4)	DISCOUNTED SAVINGS(5)	כ	
A. ELEC	\$10.55	28.13	\$297	11.77	\$3,493		
B. DIST			\$0	13.83	\$0	•	
C. RESID			\$0	16.15	\$0		
D. NG			\$0	15.34	\$0	•	
E. PPG			\$0	11.12	\$0		
F. COAL G. SOLAR			\$0 \$0	12.82 11.12	\$0 \$0	,	
H. GEOTH			\$0 \$0	11.12	\$0 \$0		
I. BIOMA			\$0	11.12	\$0 \$0		
J. REFUS			\$0	11.12	\$0	•	
K. WIND			\$0	11.12	\$0		
L. COOLING	\$10.55	39.47	\$416	11.12	\$4,630		
M. DEMAND SAVIN		******	\$293	11.12	\$3,256		
N. TOTAL		67.6	\$1,006		\$11,379		
3. NON ENERGY SAVINGS (+) OR COST (-): A. ANNUAL RECURRING (+/-) \$110							
1. DISCOUNT FAC 2. DISCOUNTED S			11.1	\$1,221			

B. NON RECURRING SAVINGS (+) OR COST(-)

	ITEM	SAVINGS(+) COST(-)(1)	YEAR OF OCCUR.(2)	DISCOUNT FACTOR(3)	DISCOUNTED SAV- INGS(+)COST(-)(4)			
a.	N/A	\$0	1	0.96	\$0			
b.	N/A	\$0	2	0.92	\$0			
C.	N/A	\$0	3	0.89	\$0			
d.	N/A	\$0	4	0.85	\$0			
e.	N/A	\$0	5	0.82	\$0			
f.	N/A	\$0	6	0.79	\$0			
g.	N/A	\$0	7	0.76	\$0			
h.	N/A	\$0	8	0.73	\$0			
i.	N/A	\$0	9	0.7	\$0			
j.	N/A	\$0	10	0.68	\$0			
k.	N/A	\$0	11	0.65	\$0			
I.	N/A	\$0	12	0.62	\$0			
m.	N/A	\$0	13	0.6	\$0			
n.	N/A	\$0	14	0.58	\$0			
Ο.	N/A	\$0	15	0.56	\$0			
p.	TOTAL	\$0		-	\$0			
C.	TOTAL NON E	ENERGY DISCO	JNTED SAVIN	IGS (3A2 + 3Bp4	\$1,221			
4. SIMPLE PAYBACK 1G/(2N3+3A+(3Bp1/ECONOMIC LIFE)): 2.0 YEARS								
5. TOTAL NET DISCOUNTED SAVINGS (2N5+3C): \$12,600								
6. SAVINGS TO INVESTMENT RATIO (SIR) 5/1G: 5.61								
7. A	7. ADJUSTED INTERNAL RATE OF RETURN (AIRR): 16.7%							

BUILDING 407 - OFFICERS CLUB DINING

Building 407 is a two story stucco building consisting of 41,000 square feet. This facility contains a full service kitchen and a large dining area which consists of 7,800 square feet.

The operating hours are from 6:00 am to 10:00 pm Wednesday thru Saturday and 6:00 am to 3:00 pm Sunday thru Tuesday.

The lighting system is a combination of incandescent and fluorescent fixtures. The dining areas use incandescent downlights and chandeliers. The kitchen uses fluorescent fixtures.

The mechanical system consists of a rooftop multizone air handling unit for the main dining and kitchen areas served by an air cooled chiller. The auxiliary dining rooms and the remainder of the building are served by Direct Expansion (DX) fan coil units with water cooled reciprocating compressors.

Hot water is provided to the kitchen via a steam to hot water converter located in the basement. Steam is provided by a gas fire boiler. Dishwashing is accomplished using an automatic dishwasher with an electric hot water booster heater.

The following ECO's are recommended for Building 407:

1.	IV. C. 1) -	Add stop//start function to HVAC equipment
2.	VII. C -	Remove unneeded lamps or fixtures
3.	VII. D -	Remove unneeded indoor/outdoor lighting to AEI levels
4	IX. A -	Replace incandescent lamps with compact fluorescents
5.	IX. B -	Replace incandescent exit fixtures with LED
6.	IX. C -	Replace standard lamps with energy savings lamps
3.	IX. D -	Replace standard ballast with energy saving ballast

ENERGY CONSERVATION OPPORTUNITIES (ECO's)- BUILDING NO. 407

ECO NO: IV.C.1		
ECO NAME: Add stop/start function for HVAC systems.		
SUMMARY DATA (DEPENDENT):		
KWH Savings:	181,265	KWH/yr
Demand Savings	0	KW/vr

Gas Savings: 660.6 MCF/yr

Cost Savings: <u>\$ 8,761</u> /yr

Implementation Cost: \$ 2,233

Simple Payback: _____3 Years

Savings to Investment: 49.88

Ratio (SIR):

ECO DESCRIPTION:

Presently, the mechanical systems are not controlled by the existing basewide EMCS system. This ECO analyzes the addition of time clocks and relays to shut-down the HVAC systems during unoccupied hours.

COST SAVINGS CALCULATIONS:

(Refer to following Trace Output)

IMPLEMENTATION COSTS:

(Refer to following Cost Estimate)

MAINTENANCE COSTS:

Maintenance costs of \$15/year for each timeclock included in the LCCA for adjustments and failures.

LIFE CYCLE COST ANALYSIS:

LOCATION:	FO	RT SAM HOUST		REGION NO.		PROJECT NO. 91109912
PROJECT TITLE:		FORT SAM HO				FISCAL YEAR 1994
DISCRETE PORT						CTION TO HVAC EQUIPME
ANALYSIS DATE:	NOVEMBER	1, 1993 EC	CONOMIC LIFE	15	_PREPARER	S. P. CLARK
1. INVESTMENT	COSTS:					
A. CONSTRUCTION B. SIOH C. DESIGN COST D. TOTAL COST (E. SALVAGE VALUE)	1A+1B+1C)	IC EOI IIDMENIT	\$2,003 \$110 \$120 \$2,233	 \$0	÷	
F. PUBLIC UTILIT G. TOTAL INVEST	Y COMPANY R	EBATE		\$0	\$2,233	 :
2. ENERGY SAV	INGS (+)/COS	<u>T(</u> –):				
DATE OF NISTIR	85-3273-X U	SED FOR DISCO	DUNT FACTOR	RS: <u>'N</u>	OVEMBER 4,	1992
ENERGY SOURCE	COST \$/MBTU(1)	SAVINGS MBTU/YR(2)	ANNUAL \$ SAVINGS(3)	DISCOUNT FACTOR(4)	DISCOUNTE SAVINGS(5)	D
A. ELEC	\$10.55	618.66	\$6,527	11.77	\$76,821	
B. DIST			\$0	13.83	\$0	
C. RESID	<u> </u>	601.00	\$0	16.15	\$0	-
D. NG E. PPG	\$3.31	<u>681.08</u>	<u>\$2,254</u> \$0	<u>15.34</u> 11.12	<u>\$34,582</u> \$0	
F. COAL			\$0	12.82	\$0	
G. SOLAR			\$0	11.12	\$0	
H. GEOTH			\$0	11.12	\$0	
I. BIOMA			\$0	11.12	\$0	
J. REFUS			<u>\$0</u>	11.12	\$0	
K. WIND			\$0	11.12	\$0	
L. OTHER M. DEMAND SAVI	NGS		<u>\$0</u>	11.12	\$0	
N. TOTAL	NGS	1299.74	\$0 \$8,781	11.12	\$0 \$111,403	
		1233.74	Ψο,,,οι		Ψ111,400	
3. NON ENERGY	SAVINGS (+)	OR COST (-):	_			
A. ANNUAL RECU 1. DISCOUNT FACE 2. DISCOUNTED	CTOR (TABLE !		11.1	(\$500)		
		•	-"			

B. NON RECURRING SAVINGS (+) OR COST(-)

7. ADJUSTED INTERNAL RATE OF RETURN (AIRR):

	ITEM	SAVINGS(+) COST(-)(1)	YEAR OF OCCUR.(2)	DISCOUNT FACTOR(3)	DISCOUNTED SAV- INGS(+)COST(-)(4)
a.	N/A	\$0	1	0.96	\$0
b.	N/A	\$0	2	0.92	\$0
C.	N/A	\$0	3	0.89	\$0
d.	N/A	\$0	4	0.85	\$0
e.	N/A	\$0	5	0.82	\$0
f.	N/A	\$0	6	0.79	\$0
g.	N/A	<u>\$0</u>	7	0.76	\$0
ĥ.	N/A	\$0	8	0.73	\$0
i.	N/A	\$0	9	0.7	\$0
j.	N/A	\$0	10	0.68	\$0
k.	N/A	\$0	11	0.65	\$0
l.	N/A	\$0	12	0.62	\$0
m.	N/A	\$0	13	0.6	\$0
n.	N/A	\$0	14	0.58	\$0
Ο.	N/A	\$0	15	0.56	\$0
p.	TOTAL	\$0			\$0

C. TOTAL NON ENERGY DISCOUNTED SAVINGS (3A2 + 3Bp4)	(\$500)
4. SIMPLE PAYBACK 1G/(2N3+3A+(3Bp1/ECONOMIC LIFE)):	0.3 YEARS
5. TOTAL NET DISCOUNTED SAVINGS (2N5+3C):	<u>\$110,904</u>
6. SAVINGS TO INVESTMENT RATIO (SIR) 5/1G:	49.66

34.9%

ENERGY CONSERVATION OPPORTUNITIES (ECO's) - BUILDING NO. 407

ECO NO: VII. C, D & IX A, B, C, D

ECO NAME: Improve lighting efficiency.

SUMMARY DATA (DEPENDENT):

KWH Savings: 12,315 KWH/yr

Demand Savings: 53.2 KW/yr

Gas Savings: N/A MCF/yr

Cost Savings: \$ 1.012 /yr

Implementation Cost: \$ 4,557.00

Simple Payback: 4.5 Years

Savings to Investment: 1.97

Ratio (SIR):

ECO DESCRIPTION:

Currently, low efficiency lighting systems are in use. This ECO will update the lighting systems to improve efficiency while maintaining or increasing the current lighting levels. The existing lighting system and proposed retrofit action are as follows:

QTY	FIXTURE TYPE	ACTION
15	Decorative chandelier	None.
16	Decorative wall sconce	None.
26	Incandescent downlights	Retrofit with compact fluor. lamps.
90	2-Lamp, 4' Fluor.	Remove 5 fixtures and retrofit remaining with T8 lamps and electronic ballasts.
3	Incand. Exit Light	Replace with LED exit fixture.

COST SAVINGS CALCULATIONS:

(Refer to following Flex Output)

Demand Savings = $(15.64 \ KW - 11.21 \ KW)x4 \ mo.x$7.50/KW + <math>(15.64 \ KW - 11.21 \ KW)x8mo.x$6.25/KW$ = \$354.40/yr

IMPLEMENTATION COSTS:

(Refer to following Flex Output and Lighting Implementation Cost located in Appendix E)

LIFE CYCLE COST ANALYSIS:

LOCATION:	FOF	RT SAM HOUST		_REGION NO			91109912F
PROJECT TITLE:		FORT SAM HO	USTON DININ	G FACILITIES I	EEAP	FISCAL YEAR	
DISCRETE PORTI	ON NAME: BI	UILDING 0407 -	- ECO VII. C.,[). & IX A., B.,C.	., D. — LIGHTIN	IG IMPROVEMEN	ITS
ANALYSIS DATE:	NOVEMBER		ONOMIC LIFE		PREPARER	S. P. CL	_ARK
1. INVESTMENT O					_		
A. CONSTRUCTION B. SIOH C. DESIGN COST D. TOTAL COST (1) E. SALVAGE VALUE F. PUBLIC UTILITY	A+1B+1C) IE OF EXISTIN		\$4,087 \$225 \$245 \$4,557	 \$0	: _		
G. TOTAL INVEST				ΨΟ	 \$4,557		
G. TOTAL INVEST	MEMI (10-15	- 1 <i>F)</i>			\$4,557	 :	
2. ENERGY SAVIIDATE OF NISTIR 8		_	OUNT FACTOR	:S: <u>'N</u>	IOVEMBER 4,	1992	
ENERGY SOURCE	COST \$/MBTU(1)	SAVINGS MBTU/YR(2)	ANNUAL \$ SAVINGS(3)	DISCOUNT FACTOR(4)	DISCOUNTED SAVINGS(5)	D	
0001102	4,		· · · · · · · · · · · · · · · · · · ·				
A. ELEC	\$10.55	17.25	\$182	11.77	\$2,142		
B. DIST			\$0	13.83	\$0	•	
C. RESID			\$0	16.15	\$0	•	
D. NG			\$0	15.34	\$0		
E. PPG			\$0	11.12	\$0	•	
F. COAL			\$0	12.82	\$0		
G. SOLAR			\$0	11.12	\$0		
H. GEOTH			\$0	11.12	\$0	•	
I. BIOMA			\$0	11.12	\$0		
J. REFUS				11.12	\$0		
K. WIND				11.12	\$0		
L. COOLING	\$10.55	24.78	\$261	11.12	\$2,907		
M. DEMAND SAVIN	NGS		\$354	11.12	\$3,941		
N. TOTAL		42.03	\$798		\$8,990		
3. NON ENERGY	SAVINGS (+)	OR COST (-):	_				
			_				
A. ANNUAL RECUP 1. DISCOUNT FAC 2. DISCOUNTED S	TOR (TABLE A		11.1	\$2,375			

B. NON RECURRING SAVINGS (+) OR COST(-)

	ITEM	SAVINGS(+) COST(-)(1)	YEAR OF OCCUR.(2)	DISCOUNT FACTOR(3)	DISCOUNTED SAV- INGS(+)COST(-)(4)
a.	N/A	\$0	1_	0.96	\$0
b.	N/A	\$0	2	0.92	\$0
C.	N/A		3	0.89	\$0
d.	N/A	\$0	4	0.85	. \$0
e.	N/A	\$0	5	0.82	\$0
f.	N/A	\$0	6	0.79	: \$0
g.	N/A	\$0	7	0.76	\$0
ĥ.	N/A	\$0	8	0.73	\$0
i.	N/A	\$0	9	0.7	\$0
i.	N/A	\$0	10	0.68	\$0
k.	N/A	\$0	11	0.65	\$0
I.	N/A	\$0	12	0.62	\$0
m.	N/A	\$0	13	0.6	\$0
n.	N/A	\$0	14	0.58	\$0
Ο.	N/A	\$0	15	0.56	\$0
p.	TOTAL	\$0			\$0
•					

C. TOTAL NON ENERGY DISCOUNTED SAVINGS (3A2 + 3Bp4)	\$2,375
4. SIMPLE PAYBACK 1G/(2N3+3A+(3Bp1/ECONOMIC LIFE)):	4.5 YEARS
5. TOTAL NET DISCOUNTED SAVINGS (2N5+3C):	\$11,365
6. SAVINGS TO INVESTMENT RATIO (SIR) 5/1G:	2.49
7. ADJUSTED INTERNAL RATE OF RETURN (AIRR):	10.5%

BUILDING 1350 - ACADEMY DINING

Building 1350 is a three story building consisting of approximately 180,000 square feet. This facility contains a full service kitchen and a large dining area which consists of 8,430 square feet.

The operating hours are from 4:30 am to 9:00 pm, 5 days per week.

The lighting system is primarily fluorescent.

The mechanical system consists of multizone air handling units served by a water cooled centrifugal chiller. Heating is provided to the units by two gas fire boilers. The chiller and boilers are located in a remote central mechanical room.

Hot water for the kitchen is provided by two gas fired boilers located in a nearby mechanical room. Dishwashing is accomplished by utilizing an automatic dishwasher with an electric hot water booster heater.

The following ECO's are recommended for Building 1350:

1.	IV. D. 1) -	Replace chiller with higher EF/CFC free chiller
2.	VII. D -	Reduce indoor/outdoor lighting to AEI levels
3.	IX. C -	Replace standard lamps with energy saving lamps
4.	IX. D -	Replace standard ballast with energy saving ballast

ENERGY CONSERVATION OPPORTUNITIES (ECO's) - BUILDING 1350

l)	
	l)

ECO NAME: Replace chiller with higher efficiency, CFC free chiller.

SUMMARY DATA (DEPENDENT):

KWH Savings:	126,750	KWH/yr
Demand Savings:	528	KW/yr
Gas Savings:	0	MCF/yr
Cost Savings:	\$ 8,084	/yr
Implementation Cost:	\$ 231,987.00	
Simple Payback:	11.8	Years
Savings to Investment:	1.05	

ECO DESCRIPTION:

Ratio (SIR):

Currently, a 438 ton centrifugal chiller is utilized for Building 1350. This chiller was installed in 1986 and operates at an efficiency of .715 KW/ton. Also, this chiller contains refrigerant R-11. This ECO analyzes replacement of the existing chiller with a CFC free chiller with an operating efficiency of .534 KW/ton. This ECO accounts for the interdependencies related to the operating controls and the proposed lighting retrofit.

COST SAVINGS CALCULATIONS:

(Refer to following Trace Output)

 $KWH \ Savings = (2,940,848 \ KWH/yr - 2,814,098 \ KWH)x$.036/KWH = $4,563/yr$

Demand Savings = $(569-525 \text{ KW}) \times 4 \text{ mo.} \times 57.50 / \text{KW} + (569 \text{ KW} - 525 \text{ KW}) \times 8 \text{ mo.} \times 56.25 / \text{KW}$

= \$3,520/yr

Total Savings = \$8,084/yr

IMPLEMENTATION COSTS:

(Refer to following Cost Estimate)

LIFE CYCLE COST ANALYSIS:

LOCATION:		T SAM HOUST		REGION NO		PHOSECT NO. 91109912F
PROJECT TITLE:		FORT SAM HO				FISCAL YEAR 1994
DISCRETE PORT					PREPARER	IGHER EFF/CFC FREE CHILL S. P. CLARK
ANALYSIS DATE:	NOVEMBER 1	i, 1993 EC	CONOMIC LIFE	20		S. P. CLARK
1. INVESTMENT A. CONSTRUCTI B. SIOH C. DESIGN COST D. TOTAL COST (E. SALVAGE VALUE) F. PUBLIC UTILIT	ON COST (1A+1B+1C) UE OF EXISTING		\$208,060 \$11,443 \$12,484 \$231,987	 \$0	·	
G. TOTAL INVEST					\$231,987	
						<u>.</u>
2. ENERGY SAV			UNT FACTORS	: <u>'</u>	NOVEMBER 4,	1992
ENERGY	COST	SAVINGS	ANNUAL \$	DISCOUNT	DISCOUNTE	D
SOURCE	\$/MBTU(1)	MBTU/YR(2)	SAVINGS(3)	FACTOR(4)	SAVINGS(5)	
000,102	Ψ/10131 Θ(1)	11.5 : 0, : : (2)	o, iv (ao (o)	.,,		
A. ELEC	\$10.55	432.6	\$4,564	14.65	\$66,862	
B. DIST			\$0	17.70	\$0	-
C. RESID			\$0	20.99	\$0	-
D. NG	\$3.31	0.00	\$0	20.60	\$0	
E. PPG			\$0	13.59	\$0	
F. COAL			\$0	16.32	\$0	
G. SOLAR H. GEOTH			<u>\$0</u>	13.59 13.59	\$0 \$0	
I. BIOMA			<u>\$0</u>	13.59	\$0 \$0	
J. REFUS			\$0	13.59	\$0	-
K. WIND			\$0	13.59	\$0	-
L. OTHER			\$0	13.59	\$0	
M. DEMAND SAVI	NGS		\$3,520	13.59	\$47,837	
N. TOTAL		432.6	\$8,084		\$114,698	-
3. NON ENERGY A. ANNUAL RECU 1. DISCOUNT FAI 2. DISCOUNTED	RRING (+/-) CTOR (TABLE A)	\$0	_	\$0		
		*				

B. NON RECURRING SAVINGS (+) OR COST(-)

	ITEM	SAVINGS(+) COST(-)(1)	YEAR OF OCCUR.(2)	DISCOUNT FACTOR(3)	DISCOUNTED SAV- INGS(+)COST(-)(4)
a.	N/A	\$0	1	0.96	\$0_
b.	N/A	\$0	2	0.92	\$0
C.	N/A	\$0	3	0.89	\$0
d.	N/A		4	0.85	\$0
e.	N/A	\$0	5	0.82	\$0
f.	N/A	\$0	6	0.79	: \$0
g.	N/A	\$0	7	0.76	\$0
h.	N/A	\$0	8	0.73	\$0
i.	N/A	\$0	9	0.7	\$0
j.	N/A	\$0	10	0.68	\$0
k.	N/A	\$0	11	0.65	\$0
l.	N/A	\$0	12	0.62	\$0
m.	N/A	\$0	13	0.6	\$0
n.	N/A	\$0	14	0.58	\$0
Ο.	Chiller	\$231,987	15	0.56	\$129,913
p.	TOTAL	\$231,987			\$129,913

C. TOTAL NON ENERGY DISCOUNTED SAVINGS (3A2 + 3BP4)	<u>\$129,913</u>
4. SIMPLE PAYBACK 1G/(2N3+3A+(3Bp1/ECONOMIC LIFE)):	11.8 YEARS
5. TOTAL NET DISCOUNTED SAVINGS (2N5+3C):	\$244,611
6. SAVINGS TO INVESTMENT RATIO (SIR) 5/1G:	1.05
7 ADJUSTED INTERNAL BATE OF BETURN (AIRB):	4.3%

ENERGY CONSERVATION OPPORTUNITIES (ECO's) - BUILDING NO. 1350

ECO NO: VII D. & IX C. D.

ECO NAME: Improve lighting efficiency.

SUMMARY DATA (DEPENDENT):

KWH Savings: 23,724 KWH/yr

Demand Savings: 66.98 KW/yr

Gas Savings: n/a MCF/yr

Cost Savings: <u>\$ 2,783</u> /yr

Implementation Cost: \$ 9,130

Simple Payback: 3.3 Years

Savings to Investment: 3,45

Ratio (SIR):

ECO DESCRIPTION:

Currently, low efficiency lighting systems are in use. This ECO will update the lighting system to improve efficiency while maintaining or increasing lighting levels. The existing lighting system and proposed retrofit action are as follows:

QTY	FIXTURE TYPE	ACTION
191	1-Lamp, 4' Fluor.	Retrofit with T8 lamps and elect. ballasts.
4	2-Lamp, 4' Fluor.	Retrofit with T8 lamps and elect. ballasts.
24	4-Lamp, 4' Fluor.	Retrofit with T8 lamps and elect. ballasts.

COST SAVINGS CALCULATIONS:

(Refer to following Flex Output)

Demand Savings =
$$66.98 \, \text{KWx}(\frac{4}{12}) \times \$7.50 / \text{KW} + 66.98 \, \text{KWx}(\frac{8}{12}) \times \$6.25 / \text{KW}$$

= $\$446.53 / \text{yr}$

IMPLEMENTATION COSTS:

(Refer to following Cost Estimate and Lighting Implementation Cost located in Appendix E)

LIFE CYCLE COST ANALYSIS:

LOCATION:	FOI	RT SAM HOUST		REGION NO		_PROJECT NO	91109912F
PROJECT TITLE:		FORT SAM HO				FISCAL YEAR	
DISCRETE PORTI						NG IMPROVEME	
ANALYSIS DATE:	NOVEMBER	1, 1993 EC	CONOMIC LIFE	15	PREPARER	S. P. C	LARK
1. INVESTMENT C	COSTS:						
A. CONSTRUCTION B. SIOH C. DESIGN COST D. TOTAL COST (1 E. SALVAGE VALUE)	A+1B+1C) E OF EXISTIN		\$8,188 \$450 \$491 \$9,130		: 		
F. PUBLIC UTILITY				\$0			
G. TOTAL INVEST	MENT (1D-1E	(–1F)			\$9,130		
2. ENERGY SAVIII DATE OF NISTIR 8	5-3273-X US	SED FOR DISCO		•	NOVEMBER 4, 1	······································	
ENERGY SOURCE	COST \$/MBTU(1)	SAVINGS MBTU/YR(2)	ANNUAL \$ SAVINGS(3)	DISCOUNT FACTOR(4)	DISCOUNTEI SAVINGS(5)	U	
A. ELEC	\$10.55	80.97	\$854	11.77	\$10,054		
B. DIST			\$0	13.83	\$0		
C. RESID			\$0	16.15	\$0	•	
D. NG	\$3.31	0.00	\$0	15.34	\$0		
E. PPG			\$0	11.12	\$0		
F. COAL G. SOLAR			\$0 \$0	12.82	\$0 \$0		
H. GEOTH			\$0	11.12 11.12	\$0 \$0	•	
I. BIOMA			\$0	11.12	\$0	•	
J. REFUS			\$0	11.12	\$0	•	
K. WIND			\$0	11.12	\$0	•	
L. COOLING	\$10.55	113.1	\$1,193	11.12	\$13,268	•	
M. DEMAND SAVIN	IGS		\$447	11.12	\$4,965		
N. TOTAL		194.07	\$2,494		\$28,288		
3. NON ENERGY			-				
A. ANNUAL RECUP 1. DISCOUNT FAC 2. DISCOUNTED S	TOR (TABLE A		11.1	\$3,208			

B. NON RECURRING SAVINGS (+) OR COST(-)

7. ADJUSTED INTERNAL RATE OF RETURN (AIRR):

	ITEM	SAVINGS(+) COST(-)(1)	YEAR OF OCCUR.(2)	DISCOUNT FACTOR(3)	DISCOUNTED SAV- INGS(+)COST(-)(4)	
a.	N/A	\$0	1	0.96	\$0	
b.	N/A	\$0	2 3	0.92	\$0	
C.	N/A	\$0	3	0.89	\$0	
d.	N/A	\$0	4	0.85	\$0	
e.	N/A	\$0	5	0.82	\$0	
f.	N/A	\$0	5 6 7	0.79	\$0	
g.	N/A	\$0	7	0.76	\$0	
h.	N/A	\$0	8	0.73	\$0	
i.	N/A	\$0	9	0.7	\$0	
j.	N/A	\$0	10	0.68	\$0	
k.	N/A	\$0	11	0.65	\$0	
ĺ.	N/A	\$0	12	0.62	\$0	
m.	N/A	\$0	13	0.6	\$0	
n.	N/A	\$0	14	0.58	\$0	
0.	N/A	\$0	15	0.56	\$0	
p.	TOTAL	\$0			\$0	
C.	TOTAL NON E	NERGY DISCO	UNTED SAVIN	IGS (3A2 + 3Bp4	4) \$3,208	
4. SIMPLE PAYBACK 1G/(2N3+3A+(3Bp1/ECONOMIC LIFE)): 3.3 YEARS						
5. T	OTAL NET DIS	COUNTED SAV	INGS (2N5+3	C):	\$31,496	
6. S	AVINGS TO IN	VESTMENT RA	TIO (SIR) 5/1G	<u>:</u>	3.45	

13.0%

BUILDING 1387 - MINI-MALL

Building 1387 is a one story brick facility consisting of several retail shops. This facility contains a small kitchen and dining area which consists of 3,700 square feet.

The operating hours for this facility are from 10:00 am to 9:00 pm, seven days per week.

The lighting system is primarily fluorescent.

The mechanical system consists of DX split systems with gas heating.

Hot water is provided to the kitchen by a gas fired heater. Dishwashing is done by hand using a rinse sink with an electric hot water booster heater.

The following ECO's are recommended for Building 1387:

- 1. VII. D Reduce indoor/outdoor lighting to AEI levels
- 2. IX. A Replace incandescent lamps with compact fluorescents
- 3. IX. C Replace standard lamps with energy saving lamps
- 4. IX. D Replace standard ballast with energy saving ballast

ENERGY CONSERVATION OPPORTUNITIES (ECO's) - BUILDING NO. 1387

ECO NO: VII D. & IX A. C. D.

ECO NAME: Improve lighting efficiency.

SUMMARY DATA (DEPENDENT):

KWH Savings: 19,311 KWH/yr

Demand Savings: 29.9 KW/yr

Gas Savings: n/a MCF/yr

Cost Savings: \$ 1,022 /yr

Implementation Cost: \$ 2,592

Simple Payback: 2.5 Years

Savings to Investment: 4.46

Ratio (SIR):

ECO DESCRIPTION:

Currently, low efficiency lighting systems are in use. This ECO will update the lighting systems to improve efficiency while maintaining or increasing the current light levels. The existing lighting system and proposed retrofit action are as follows:

QTY	FIXTURE TYPE	ACTION
2	1-Lamp, 4' Fluor.	Retrofit with T8 lamps and elect. ballasts.
20	2-Lamp, 4' Fluor.	Retrofit with T8 lamps and elect. ballasts.
20	4-Lamp, 4' Fluor.	Retrofit with T8 lamps and elect. ballasts.
14	Incandescent downlights	Retrofit with compact fluor. lamps.

COST SAVINGS CALCULATIONS:

(Refer to following Flex Output)

Demand Savings = $(6.544 \, KWH - 4.052 \, KWH) \times 4 \, mo. \times \$7.50 + (6.544 - 4.052) \times 8 \, mo. \times \6.25 = \$199.36/yr

IMPLEMENTATION COSTS:

(Refer to following Flex Output and Lighting Implementation Cost located in Appendix E)

LIFE CYCLE COST ANALYSIS:

LOCATION: PROJECT TITLE:		RT SAM HOUST	USTON DININ		EEAP	PROJECT NO. 91109912F FISCAL YEAR 1994
DISCRETE PORT ANALYSIS DATE:			CONOMIC LIFE		PREPARER	TING IMPROVEMENTS S. P. CLARK
1. INVESTMENT	COSTS:					
A. CONSTRUCTI B. SIOH C. DESIGN COST D. TOTAL COST E. SALVAGE VAL	r (1A+1B+1C)	G FOUIPMENT	\$2,324 \$128 \$139 \$2,591		÷	
F. PUBLIC UTILIT G. TOTAL INVES	Y COMPANY R	EBATE		\$0	 \$2,591	
*** ** ** ** ** ** ** ** ** ** ** ** **	•	•	÷			<u></u>
2. ENERGY SAV	INGS (+)/COS	<u>「(</u> –):				
DATE OF NISTIR	85-3273-X US	SED FOR DISCO	DUNT FACTOR	RS: <u>'N</u>	NOVEMBER 4, 1	1992
ENERGY SOURCE	COST \$/MBTU(1)	SAVINGS MBTU/YR(2)	ANNUAL \$ SAVINGS(3)	DISCOUNT FACTOR(4)	DISCOUNTEI SAVINGS(5)	0
A. ELEC B. DIST	\$10.55	27.64	<u>\$292</u> \$0	<u>11.77</u> 13.83	\$3,432 \$0	
C. RESID D. NG	\$3.31	0.00	\$0 \$0	16.15 15.34	\$0 \$0	
E. PPG F. COAL			\$0 \$0	11.12 12.82	\$0 \$0	
G. SOLAR H. GEOTH			\$0 \$0	11.12	\$0 \$0	
I. BIOMA J. REFUS			\$0 \$0	11.12	\$0 \$0	
K. WIND L. COOLING	\$10.55	38.27	\$0 \$404	11.12	\$0 \$4,490	
M. DEMAND SAVI		65.91	\$199 \$895	11.12	\$2,217 \$10,139	
			Ψ030		Ψ10,109	
3. NON ENERGY	'SAVINGS (+)	OR COST (-):	_			
A. ANNUAL RECU 1. DISCOUNT FA 2. DISCOUNTED	CTOR (TABLÉ A		11.1	\$1,410		

B. NON RECURRING SAVINGS (+) OR COST(-)

	ITEM	SAVINGS(+)	YEAR OF	DISCOUNT	DISCOUNTED SAV-	
		COST(-)(1)	OCCUR. (2)	FACTOR(3)	INGS(+)COST(-)(4)	
a.	N/A	\$0	1	0.96	\$0_	
b.	N/A	\$0	2	0.92	\$0	
C.	N/A	\$0	3	0.89	\$0	
d.	N/A	\$0	4	0.85	\$0	
e.	N/A	\$0	5	0.82	\$0	
f.	N/A	\$0	6	0.79	: \$0	
g.	N/A	\$0	7	0.76	\$0	
ĥ.	N/A		8	0.73	\$0	
i.	N/A	\$0	9	0.7	\$0	
j.	N/A	\$0	10	0.68	\$0	
k.	N/A	\$0	11	0.65	\$0	
I.	N/A	\$0	12	0.62	\$0	
m.	N/A	\$0	13	0.6	\$0	
n.	N/A	\$0	14	0.58	\$0	
Ο.	N/A	\$0	15	0.56	\$0	
p.	TOTAL	\$0		-	\$0	
C.	TOTAL NON E	NERGY DISCO	UNTED SAVIN	IGS (3A2 + 3Bp4	\$1,410	
4. S	IMPLE PAYBA	CK 1G/(2N3+3A	A+(3Bp1/ECO	NOMIC LIFE)):	2.5 YEAR	3
<u>5. T</u>	OTAL NET DIS	COUNTED SAV	INGS (2N5+3	<u>C</u>):	<u>\$11,548</u>	
<u>6. S</u>	AVINGS TO IN	VESTMENT RAT	TIO (SIR) 5/1G	<u>ì:</u>	4.46	
<u>7. A</u>	DJUSTED INTE	RNAL RATE OF	RETURN (AI	<u>R</u> R):	14.9%	

BUILDING 1395 - NCE CLUB

Building 1395 is a one story rock building consisting of 26,000 square feet. This facility contains a full service kitchen and a large ballroom/dining area which consists of 6,000 square feet.

The operating hours are from 10:00 am to 10:00 pm Monday thru Friday and 10:00 am to 12:00 midnight on Saturday.

The lighting systems in the dining/ballroom are primarily incandescents with dimmers. The kitchen area lighting system is primarily fluorescent.

The mechanical system consists of multizone air handling units served by one air cooled reciprocating chiller and one water cooled centrifugal chiller. Heating is supplied by a gas fired boiler in the main mechanical room.

Hot water is provided by a gas fired water heater located in the main mechanical room. Dishwashing is accomplished using an automatic dishwasher with an electric hot water booster heater.

The following ECO's are recommended for Building 1395:

- 1. IV.D. 1) Replace chiller with higher EFF/CFC free chiller
- 2. VII. D Reduce indoor/outdoor lighting to AEI levels
- 3. IX A. Replace incandescent lamps with compact fluorescents
- 4. IX C. Replace standard lamps with energy saving lamps
- 5. IX D. Replace standard ballast with energy saving ballast

ENERGY CONSERVATION OPPORTUNITIES (ECO's) - BUILDING NO. 1395

ECO NO: IV.D 1)

ECO NAME: Replace chiller with higher efficiency, CFC free chiller.

SUMMARY DATA (DEPENDENT):

KWH Savings: 123,020 KWH/yr

Demand Savings: 1,152 KW/yr

Gas Savings: _____n/a MCF/yr

Cost Savings: <u>\$ 12,302</u> /yr

Implementation Cost: \$ 159,262

Simple Payback: 8.2 Years

Savings to Investment: 1.81

Ratio (SIR):

ECO DESCRIPTION:

Currently, two chillers serve Building 1395. One is an 80 ton air cooled chiller with an efficiency of 1.33 KW/ton which was installed in 1986. The other chiller is a 160 ton water cooled centrifugal chiller with an efficiency of 1.04 KW/ton which was installed in 1968. The air cooled chiller utilizes R-22 refrigerant and the water cooled chiller utilizes R-11 refrigerant. This ECO analyzes replacing these two chillers with one 234 ton, CFC free, high efficiency, water cooled chiller with an efficiency of .632 KW/ton.

The new chiller should be specified with part-load operation down to 10% of the maximum chiller output to provide adequate turndown. Currently, there is not redundance or back-up capacity due to the fact that the existing chillers serve separate areas. This ECO accounts for the interdependencies related to the UMCS system and the proposed lighting retrofit.

COST SAVINGS CALCULATIONS:

(Refer to following Trace Output)

Demand Savings = $(495 \, KW - 396 \, KW) \times 4 \, mo. \times 57.50 / KW + (495 \, KW - 396 \, KW) \times 8 \, mo. \times 6.50 / KW$ = \$8,118 / yr

IMPLEMENTATION COSTS:

(Refer to following Cost Estimate)

LIFE CYCLE COST ANALYSIS:

LOCATION:	FO	RT SAM HOUST		_REGION NO		PROJECT NO	
PROJECT TITLE:		FORT SAM HO				FISCAL YEAR	
DISCRETE PORTI							
ANALYSIS DATE:	NOVEMBER	1, 1993 EC	CONOMIC LIFE	20	_PREPARER	S. P. C	LAHK
1. INVESTMENT	COSTS:						
A. CONSTRUCTION	ON COST		\$142,836				
B. SIOH			\$7,856	_	:		
C. DESIGN COST			\$8,570	_			
D. TOTAL COST (\$159,262				
E. SALVAGE VALUE				<u>\$0</u>	_		
F. PUBLIC UTILITY G. TOTAL INVEST				\$0			
G. TOTAL INVEST	MENI (ID-IE	: - 117)			<u>\$159,262</u>	:	
2. ENERGY SAVI	NGS (+)/COS	<u> </u>					
DATE OF NISTIR 8	35-3273-X U	SED FOR DISC	OUNT FACTOR	RS: 'N	IOVEMBER 4,	1992	
ENERGY	COST	SAVINGS	ANNUAL \$	DISCOUNT	DISCOUNTE	D	
SOURCE	\$/MBTU(1)	MBTU/YR(2)	SAVINGS(3)	FACTOR(4)	SAVINGS(5)		
A. ELEC	\$10.55	419.87	\$4,430	14.65	\$64,894		
B. DIST			\$0	17.70	\$0		
C. RESID			\$0	20.99	\$0		
D. NG E. PPG	\$3.31	0.00	\$0	20.60	\$0		
F. COAL			\$0 \$0	13.59 16.32	\$0 \$0		
G. SOLAR			\$0	13.59	\$0		
H. GEOTH			\$0	13.59	\$0		
I. BIOMA			\$0	13.59	\$0		
J. REFUS			\$0	13.59	\$0		
K. WIND			\$0	13.59	\$0		
L. OTHER			\$0	13.59	\$0		
M. DEMAND SAVII	NGS		\$7,872	13.59	\$106,980		
N. TOTAL		419.87	\$12,302		\$171,875	-	
3. NON ENERGY	SAVINGS (+)	OR COST (-):	_				
A. ANNUAL RECU	BRING (+/-)	\$0					
1. DISCOUNT FAC							
2. DISCOUNTED				\$0			
		,					

B. NON RECURRING SAVINGS (+) OR COST(-)

	ITEM	SAVINGS(+) COST(-)(1)	YEAR OF OCCUR.(2)	DISCOUNT FACTOR(3)	DISCOUNTED SAV- INGS(+)COST(-)(4)
a.	WC Chiller	\$90,080	1	0.96	\$86,477
b.	N/A	\$0	2	0.92	\$0
C.	N/A	\$0	3	0.89	\$0
d.	N/A	\$0	4	0.85	\$0
e.	N/A	\$0	5	0.82	\$0
f.	N/A	<u>\$0</u>	6	0.79	\$0
g.	N/A	\$0	7	0.76	\$0
h.	N/A	\$0	8	0.73	\$0
i.	N/A	\$0	9	0.7	\$0
j.	N/A	\$0	10	0.68	\$0
k.	N/A	\$0	11	0.65	\$0
i.	N/A	\$0	12	0.62	\$0
m.	AC Chiller	\$51,000	13	0.6	\$30,600
n.	N/A	\$0	14	0.58	\$0
Ο.	N/A	\$0	15	0.56	\$0
p.	TOTAL	\$141,080			\$117,077

C. TOTAL NON ENERGY DISCOUNTED SAVINGS (3A2 + 3Bp4)	\$117,077
4. SIMPLE PAYBACK 1G/(2N3+3A+(3Bp1/ECONOMIC LIFE)):	8.2 YEARS
5. TOTAL NET DISCOUNTED SAVINGS (2N5+3C):	\$288,951
6. SAVINGS TO INVESTMENT RATIO (SIR) 5/1G:	1.81
7. ADJUSTED INTERNAL RATE OF RETURN (AIRR):	7.1%

ENERGY CONSERVATION OPPORTUNITIES (ECO's) - BUILDING NO. 1395

ECO NO: VII D & IX A, C, D

ECO NAME: Improve lighting efficiency.

SUMMARY DATA (DEPENDENT):

KWH Savings: 42.637.0 KWH/yr

Demand Savings: 53.7 KW/yr

Gas Savings: _____ MCF/yr

Cost Savings: \$ 2,179 /yr

Implementation Cost: \$ 4,850

Simple Payback: 2.2 Years

Savings to Investment: 5.08

Ratio (SIR):

ECO DESCRIPTION:

Currently, low efficiency lighting systems are in use. This ECO will update the lighting systems to improve efficiency while maintaining or increasing the current light levels. The existing lighting system and proposed retrofit action are as follows:

QTY	FIXTURE TYPE	ACTION
80	2-Lamp, 4' Fluor.	Retrofit w/T8 lamps and elect. ballasts.
9	Incandescent chandelier	None.
45	Incandescent chandelier	Retrofit w/compact fluor. lamps.
14	Misc. incandescent	None.

COST SAVINGS CALCULATIONS:

(Refer to following Flex Output)

Demand Savings = $(14.053 \, KW - 9.578 \, KW) \times 4 \, mo. \times 57.50 / KW + (14.053 \, KW - 9.578 \, KW) \times 8 \, mo. \times 6.25 / KW = $358 / yr$

IMPLEMENTATION COSTS:

(Refer to following Flex Output and Lighting Implementation Cost located in Appendix E)

LIFE CYCLE COST ANALYSIS:

LOCATION: PROJECT TITLE:	FOF	RT SAM HOUST		REGION NO		_PROJECT NO. FISCAL YEAR	
DISCRETE PORTI	ON NAME:					TING IMPROVEN	
ANALYSIS DATE:	NOVEMBER		ONOMIC LIFE		PREPARER	S. P. C	
1. INVESTMENT		.,					
A. CONSTRUCTION B. SIOH C. DESIGN COST D. TOTAL COST (1) E. SALVAGE VALU F. PUBLIC UTILITY G. TOTAL INVESTI	ON COST (A+1B+1C) (JE OF EXISTIN) (COMPANY RE	BATE	\$4,350 \$239 \$261 \$4,850	\$0 \$0	\$4,850	<u>. </u>	
2. ENERGY SAVII			OLINIT EACTOR	۱ <u>۹</u> ۰ ،	IOVEMBER 4,	1002	
DATE OF MISTIN O	3-32/3-X US	SED FOR DISCO	DON' FACTOR		IOVEIVIDEN 4,	1992	
ENERGY SOURCE	COST \$/MBTU(1)	SAVINGS MBTU/YR(2)	ANNUAL \$ SAVINGS(3)	DISCOUNT FACTOR(4)	DISCOUNTE SAVINGS(5)	D	
A. ELEC	\$10.55	61.55	\$649	11.77	\$7,643		
B. DIST			\$0	13.83	\$0		
C. RESID			\$0	16.15	\$0		-
D. NG	\$3.31	0.00	\$0_	15.34	\$0		
E. PPG			\$0	11.12	\$0		
F. COAL G. SOLAR			\$0 \$0	12.82 11.12	\$0 \$0		
H. GEOTH			\$0	11.12	\$0		
I. BIOMA			\$0	11.12	\$0		
J. REFUS			\$0	11.12	\$0		
K. WIND			\$0	11.12	\$0	-	
L COOLING	\$10.55	83.97	\$886	11.12	\$9,851	- -	
M. DEMAND SAVIN	NGS	4.45.50	\$358	11.12	\$3,981		
N. TOTAL		145.52	\$1,893		\$21,475	-	
3. NON ENERGY			-				,
A. ANNUAL RECUP 1. DISCOUNT FAC		\$286	444				
2. DISCOUNTED S			11.1	<u>\$3,175</u>			

B. NON RECURRING SAVINGS (+) OR COST(-)

	ITEM	SAVINGS(+)	YEAR OF	DISCOUNT	DISCOUNTED SAV-
		COST(-)(1)	OCCUR.(2)	FACTOR (3)	INGS(+)COST(-)(4)
a.	N/A	\$0	1	0.96	\$0
b.	N/A	<u>\$0</u>	2	0.92	\$0
C.	N/A	\$0	3	0.89	\$0
d.	N/A	\$0	4	0.85	\$0
e.	N/A	\$0	5	0.82	\$0
f.	N/A	\$0	6	0.79	: \$0
g.	N/A	\$0	7	0.76	\$0
ĥ.	N/A	\$0	8	0.73	\$0
i.	N/A	\$0	9	0.7	\$0
j.	N/A	\$0	10	0.68	\$0
k.	N/A	\$0	11	0.65	\$0
I.	N/A	\$0	12	0.62	\$0
m.	N/A	\$0	13	0.6	\$0
n.	N/A	\$0	14	0.58	\$0
Ο.	N/A	\$0	15	0.56	\$0
p.	TOTAL	\$0			\$0
C.	TOTAL NON	ENERGY DISCOL	JNTED SAVIN	GS (3A2 + 3Bp4	4) \$3,175
4. S	IMPLE PAYE	3ACK 1G/(2N3+3A	+(3Bp1/ECO	NOMIC LIFE)):	2.2 YE

	· · · · · · · · · · · · · · · · · · ·
C. TOTAL NON ENERGY DISCOUNTED SAVINGS (3A2 + 3Bp4)	\$3,175
4. SIMPLE PAYBACK 1G/(2N3+3A+(3Bp1/ECONOMIC LIFE)):	2.2 YEARS
5. TOTAL NET DISCOUNTED SAVINGS (2N5+3C):	\$24,649
6. SAVINGS TO INVESTMENT RATIO (SIR) 5/1G:	5.08
7. ADJUSTED INTERNAL RATE OF RETURN (AIRR):	15.9%

BUILDING 1462 - SNACK BAR

Building 1462 is a two story block wall facility consisting of 16,000 square feet. This facility contains a 1,300 square feet snack bar area.

The operating hours for this facility are from 9:00 am to 8:30 pm, Sunday thru Thursday and 9:00 am to 10:30 pm, Friday and Saturday.

The lighting system is primarily fluorescent.

The mechanical system consists of an single zone air handling unit served by an air cooled chiller. Heating is provided by a gas fired boiler.

Hot water is provided to the kitchen by a gas fired water heater. Dishwashing is done by hand using a rinse sink with an electric hot water booster heater.

The following ECO's are recommended for Building 1462:

- 1. VII. D Reduce indoor/outdoor lighting to AEI levels
- 2. IX. B Replace incandescent exit fixtures with LED
- 3. IX. C Replace standard lamps with energy saving lamps
- 4. IX. D Replace standard ballast with energy saving ballast

ENERGY CONSERVATION OPPORTUNITIES (ECO's) - BUILDING NO. 1462

ECO NO: VII D & IX B, C, D

ECO NAME: Improve lighting efficiency

SUMMARY DATA (DEPENDENT):

KWH Savings: 8,760 KWH/yr

Demand Savings: 15.38 KW/yr

Gas Savings: n/a MCF/yr

Implementation Cost: \$ 1.037

Simple Payback: 2.3 Years

Savings to Investment: 4.96

Ratio (SIR):

ECO DESCRIPTION:

Currently, low efficiency lighting systems are in use. This ECO will update the lighting systems to improve efficiency while maintaining or increasing the current light levels. The existing lighting system and proposed retrofit action are as follows:

QTY	FIXTURE TYPE	ACTION
2	2-Lamp, 4' Fluor.	Retrofit w/T8 lamps and electronic ballasts.
16	4-Lamp, 4" Fluor.	Retrofit w/T8 lamps and electronic ballasts.
2	Incand. Exit	Replace w/LED exit fixture.

COST SAVINGS CALCULATIONS:

(Refer to following Flex Output)

IMPLEMENTATION COSTS:

(Refer to following Flex Output and Lighting Implementation Cost located in Appendix E)

LIFE CYCLE COST ANALYSIS:

LOCATION:				REGION NO		_PROJECT NO	91109912F
PROJECT TITLE: FORT SAM HOUSTON DINII					FISCAL YEAR		
DISCRETE PORTI						TING IMPROVEM	
ANALYSIS DATE:	NOVEMBER	1, 1993 EC	CONOMIC LIFE	15	PREPARER	S. P. C	LARK
1. INVESTMENT	COSTS:						
A. CONSTRUCTION COST B. SIOH C. DESIGN COST D. TOTAL COST (1A+1B+1C) E. SALVAGE VALUE OF EXISTING EQUIPME F. PUBLIC UTILITY COMPANY REBATE G. TOTAL INVESTMENT (1D-1E-1F)			\$930 \$51 \$56 \$1,037	\$0 \$0		 ,	
2. ENERGY SAVI			DUNT FACTOR	18: <u>"1</u>	NOVEMBER 4, 1	1992	
ENERGY SOURCE	COST \$/MBTU(1)	SAVINGS MBTU/YR(2)	ANNUAL \$ SAVINGS(3)	DISCOUNT FACTOR(4)	DISCOUNTED SAVINGS(5))	
A. ELEC	\$10.55	12.58	\$133	11.77	\$1,562		
B. DIST	<u> </u>	12.00	\$0	13.83	\$0	,	
C. RESID			\$0	16.15	\$0		
D. NG	\$3.31	0.00	\$0	15.34	\$0		
E. PPG			\$0	11.12	\$0		
F. COAL			\$0	12.82	\$0		
G. SOLAR			\$0	11.12	\$0		
H. GEOTH		<u></u>	\$0	11.12	\$0		
I. BIOMA			\$0	11.12	\$0		
J. REFUS			<u>\$0</u>	11:12	\$0		
K. WIND L. COOLING	\$10.55	17.32	<u>\$0</u> \$183	11.12 11.12	\$0 \$2,032		
M. DEMAND SAVIN		17.02	\$103	11.12	\$1,140		
N. TOTAL	100	29.9	\$418	11.16	\$4,734		
3. NON ENERGY A. ANNUAL RECUR 1. DISCOUNT FACT 2. DISCOUNTED S	RRING (+/-) CTOR (TABLE A	\$37_ \)		0 -414			
Z. DIGOCONTED		((OA A OA I)		\$411			

B. NON RECURRING SAVINGS (+) OR COST(-)

	ITEM	SAVINGS(+) COST(-)(1)		DISCOUNT FACTOR(3)	DISCOUNTED SAV- INGS(+)COST(-)(4)
a.	N/A	\$0	1	0.96	\$0
b.	N/A	\$0	2	0.92	\$0
C.	N/A	\$0	3	0.89	\$0
d.	N/A	\$0	4	0.85	\$0
e.	N/A	\$0	5	0.82	\$0
f.	N/A	\$0	6	0.79	: \$0
g.	N/A	\$0	7	0.76	\$0
ĥ.	N/A	\$0	8	0.73	\$0
i.	N/A	\$0	9	0.7	\$0
j.	N/A	\$0	10	0.68	\$0
k.	N/A	\$0	11	0.65	\$0
l.	N/A	\$0	12	0.62	\$0
m.	N/A	\$0	13	0.6	\$0
n.	N/A	\$0	14	0.58	\$0
Ο.	N/A	\$0	15	0.56	\$0
p.	TOTAL	\$0			\$0
C.	TOTAL NON EI	\$411			
<u>4. S</u>	IMPLE PAYBAC	2.3 YEARS			
<u>5. T</u>	OTAL NET DISC	<u>\$5,145</u>			
6. S.	4.96				
7. A	DJUSTED INTE	15.7%_			

BUILDING 1520 - RESERVE CENTER

Building 1520 is a two story brick facility consisting of reserve unit offices. This facility contains a full service kitchen and large dining area which consists of 4,300 square feet.

The operating hours for the dining and kitchen facility are very sporadic due to the fact that it is used only for mobilization. However, the dining area is used as a break room and from 8:00 am to 4:00 pm the lights are on.

The lighting system is primarily fluorescent.

The mechanical system consists of a packaged DX rooftop air handling unit with gas heating.

Hot water is provided to the kitchen by a gas fired water heater.

Due to the operating conditions for this facility are as follows:

- 1. VII.D Reduce indoor/outdoor lighting to AEI levels.
- 2. IX.A Replace incandescent lamps with compact fluorescents.
- 3. IX.B. Replace incandescent exit fixtures with LED.
- 4. IX.C. Replace standard lamps with energy saving lamps.
- 5. IX.D. Replace standard ballast with energy saving ballast.

ENERGY CONSERVATION OPPORTUNITIES (ECO's) - BUILDING NO. 1520

ECO NO: VII D & IX A, B, C, D

ECO NAME: Improve lighting efficiency.

SUMMARY DATA (DEPENDENT):

KWH Savings: 12,030 KWH/yr

Demand Savings: 26.76 KW/yr

Gas Savings: n/a MCF/yr

Cost Savings: <u>\$ 664</u> /yr

Implementation Cost: \$ 2,447

Simple Payback: <u>3.7</u> Years

Savings to Investment: 3.06

Ratio (SIR):

ECO DESCRIPTION:

Currently, low efficiency lighting systems are in use. This ECO will update the lighting systems to improve efficiency while maintaining or increasing the current light levels. The existing lighting system and proposed retrofit action are as follows:

QTY	FIXTURE TYPE	ACTION
15	2-Lamp, 4' Fluor.	Retrofit w/T8 lamps and electronic ballasts.
30	3-Lamp, 4' Fluor.	Retrofit w/T8 lamps and electronic ballasts.
4	Incand. Exit	Replace w/LED exit fixture.

COST SAVINGS CALCULATIONS:

(Refer to following Flex Output)

Demand Savings = $(5.91 \, \text{KW} - 3.68 \, \text{KW}) \times 4 \, \text{mo.} \times 57.50 / \text{KW} + (5.91 \, \text{KW} - 3.68 \, \text{KW}) \times 8 \, \text{mo.} \times 6.25 / \text{KW}$ = \$178.40 / yr

IMPLEMENTATION COSTS:

(Refer to following Flex Output and Lighting Implementation Cost located in Appendix E)

LIFE CYCLE COST ANALYSIS:

LOCATION:	FO	RT SAM HOUST		_REGION NO		_PROJECT NO	
PROJECT TITLE:		FORT SAM HO				FISCAL YEAR	
DISCRETE PORTI	ON NAME:					HTING IMPROVE	
ANALYSIS DATE:	NOVEMBER	11, 1993 EC	CONOMIC LIFE	15	PREPARER	S. P. C	LARK
1. INVESTMENT	COSTS:						
A. CONSTRUCTION B. SIOH C. DESIGN COST D. TOTAL COST (E. SALVAGE VALUE	1A+1B+1C) JE OF EXISTIN		\$2,195 \$121 \$132 \$2,447	 \$0	: 		
F. PUBLIC UTILITY G. TOTAL INVEST				\$0	\$2,447		
2. ENERGY SAVI	NGS (+)/COS	<u>T(</u> –):	DUNT FACTOR	18: <u>'1</u>	NOVEMBER 4,	:	
ENERGY SOURCE	COST \$/MBTU(1)	SAVINGS MBTU/YR(2)	ANNUAL \$ SAVINGS(3)	DISCOUNT FACTOR (4)	DISCOUNTE SAVINGS(5)	D	
A. ELEC	\$10.55	17.14	\$181	11.77	\$2,128		
B. DIST			\$0	13.83	\$0		
C. RESID			\$0	16.15	\$0		
D. NG	\$3.31	0.00	\$0	15.34	\$0	•	
E. PPG			\$0	11.12	\$0	•	
F. COAL			\$0	12.82	\$0		
G. SOLAR			\$0	11.12	\$0	•	
H. GEOTH			\$0	11.12	\$0	•	
I. BIOMA			\$0	11.12	\$0	•	
J. REFUS			\$0	11.12	\$0	•	
K. WIND			\$0	11.12	\$0	•	
L. COOLING	\$10.55	23.92	\$252	11.12	\$2,806	•	
M. DEMAND SAVIN			\$178	11.12	\$1,984		
N. TOTAL		41.06	\$612		\$6,918	,	
3. NON ENERGY A. ANNUAL RECUI 1. DISCOUNT FAC	RRING (+/-) CTOR (TABLE /	\$52 A)					
2. DISCOUNTED S	SAVINGS/COS	1 (3A X 3A1)		\$577			

B. NON RECURRING SAVINGS (+) OR COST(-)

	ITEM	SAVINGS(+) COST(-)(1)	YEAR OF OCCUR.(2)	DISCOUNT FACTOR(3)	DISCOUNTED SAV- INGS(+)COST(-)(4)
a.	N/A	\$0	1	0.96	\$0
).	N/A	\$0	2	0.92	\$0
).	N/A	<u>\$0</u>	3	0.89	\$0
i.	N/A	\$0	4	0.85	\$0
) .	N/A	\$0	5	0.82	\$0
,	N/A	\$0	6	0.79	: \$0
J.	N/A	\$0	7	0.76	\$0
). 1.	N/A	\$0	8	0.73	\$0
	N/A	\$0	9	0.7	\$0
	N/A	\$0	10	0.68	\$0
	N/A	\$0	11	0.65	\$0
-	N/A	\$0	12	0.62	\$0
n.	N/A	\$0	13	0.6	\$0
١.	N/A	\$0	14	0.58	\$0
).	N/A	\$0	15	0.56	\$0
	TOTAL	\$0			\$0
	TOTAL NON	ENERGY DISCO	JNTED SAVIN	GS (3A2 + 3Bp4	\$577

C. TOTAL NON ENERGY DISCOUNTED SAVINGS (3A2 + 3Bp4)	<u>\$577</u>
4. SIMPLE PAYBACK 1G/(2N3+3A+(3Bp1/ECONOMIC LIFE)):	3.7_YEARS
5. TOTAL NET DISCOUNTED SAVINGS (2N5+3C):	\$7,496
6. SAVINGS TO INVESTMENT RATIO (SIR) 5/1G:	3.06
7. ADJUSTED INTERNAL RATE OF RETURN (AIRR):	12.1%

BUILDING 1630 - YOUTH CENTER

Building 1630 is a one story stucco recreational facility. This facility contains a small snack bar which consists of 480 square feet.

The operating hours for this facility are from 4:00 pm to 10:00 pm, Monday thru Friday and 7:00 am to 10:00 pm on Saturdays.

The lighting system is primarily fluorescent.

The mechanical system consists of multizone air handling units with DX cooling coils and an air cooled condensing units. Heating is provided by gas fired boiler.

Hot water is provided to the kitchen by a gas fired water heater.

The only recommended ECO's for this facility are as follows;

- 1. VII.D Reduce Indoor/Outdoor Lighting to AEI Levels
- 2. IX.A Replace Incandescent Lamps with Compact Fluorescents
- 3. IX.C Replace Standard Lamps with Energy Saving Lamps
- 4. IX.D Replace Standard Ballast with Energy Saving Ballast

ENERGY CONSERVATION OPPORTUNITIES (ECO's) - BUILDING NO 1630

ECO NO: VII D & IX A, C, D

ECO NAME: Improve lighting efficiency.

SUMMARY DATA (DEPENDENT):

KWH Savings: 2.396.7 KWH/yr

Demand Savings: 5.47 KW/yr

Gas Savings: n/a MCF/yr

Cost Savings: \$ 133 /yr

Implementation Cost: \$ 357

Simple Payback: 2.7 Years

Savings to Investment: 4.21

Ratio (SIR):

ECO DESCRIPTION:

Currently, low efficiency lighting systems are in use. This ECO will update the lighting systems to improve efficiency while maintaining or increasing the current lighting levels. The existing lighting system and proposed retrofit action are as follows:

QTY	FIXTURE TYPE	ACTION
6	4-Lamp, 4' Fluor.	Retrofit w/T8 lamps and electronic ballasts.
1	Bare incandescent	None.

COST SAVINGS CALCULATIONS:

(Refer to following Flex Output)

Demand Savings = $(1.252 \, \text{KW} - .796 \, \text{KW}) \times 4 \, \text{mo.} \times \$7.50 / \text{KW} + (1.252 \, \text{KW} - .796 \, \text{KW}) \times 8 \, \text{mo.} \times \$6.25 / \text{KW}$ = \$36.48 / yr

IMPLEMENTATION COSTS:

(Refer to following Flex Output and Lighting Implementation Cost located in Appendix E)

LIFE CYCLE COST ANALYSIS:

LOCATION: PROJECT TITLE:	FOR	RT SAM HOUST		REGION NO		PROJECT NO.	
DISCRETE PORTI	ON NAME:					TING IMPROVEN	
ANALYSIS DATE:	NOVEMBER		CONOMIC LIFE		PREPARER	S. P. C	
		., 1000					
1. INVESTMENT	20313.						
A. CONSTRUCTION	ON COST		\$320				
B. SIOH			\$18		:		
C. DESIGN COST	44.45.40		\$19	_			
D. TOTAL COST (* E. SALVAGE VALU		C EOI IIDMENT	\$357	 \$0			
F. PUBLIC UTILITY				\$0			
G. TOTAL INVEST					 \$357	•	
	•	•					
2. ENERGY SAVI	NGS (+)/COS	<u> </u>					
DATE OF NISTIR 8	35-3273-X US	SED FOR DISCO	OUNT FACTOR	ns: <u>'n</u>	NOVEMBER 4,	1992	
ENERGY SOURCE	COST \$/MBTU(1)	SAVINGS MBTU/YR(2)	ANNUAL \$ SAVINGS(3)	DISCOUNT FACTOR(4)	DISCOUNTE SAVINGS(5)	D	
A. ELEC	\$10.55	3.55	\$37	11.77	\$441		
B. DIST			\$0	13.83	\$0		
C. RESID			\$0	16.15	\$0		
D. NG	\$3.31	0.00	<u>\$0</u>	15.34	\$0		
E. PPG F. COAL			\$0	11.12 12.82	\$0 \$0		
G. SOLAR	-		\$0	11.12	\$0		
H. GEOTH			\$0	11.12	\$0		
I. BIOMA			\$0	11.12	\$0		
J. REFUS	 		\$0	11.12	\$0		
K. WIND L. COOLING	\$10 FF	4.63	\$0	11.12	\$0	-	
M. DEMAND SAVI	\$10.55	4.03	<u>\$49</u> \$36	11.12 11.12	\$543 \$406	-	
N. TOTAL	100	8.18	\$123		\$1,390		
					<u> </u>	-	
3. NON ENERGY	SAVINGS (+)	OR COST (-):					
			-				
A. ANNUAL RECUI		\$10					
1. DISCOUNT FAC 2. DISCOUNTED S			11.1	red d d			
2. DISCOUNTED	3AVIING3/603	1 (SA A SAI)		\$111			

B. NON RECURRING SAVINGS (+) OR COST(-)

	ITEM	SAVINGS(+) COST(-)(1)		DISCOUNT FACTOR(3)	DISCOUNTED SAV- INGS(+)COST(-)(4)
a.	N/A	\$0	1_	0.96	\$0
b.	N/A	\$0	<u>2</u> 3	0.92	\$0
C.	N/A	\$0	3	0.89	\$0
d.	N/A	\$0	4	0.85	\$0
e.	N/A	\$0	<u>5</u>	0.82	\$0
f.	N/A	\$0		0.79	: \$0
g.	N/A	\$0	7	0.76	\$0
ĥ.	N/A	\$0	8	0.73	\$0
i.	Ñ/A	\$0	9	0.7	\$0
j.	N/A	\$0	10	0.68	\$0
k.	N/A	\$0	11	0.65	\$0
ł.	N/A	\$0	12	0.62	\$0
m.	N/A	\$0	13	0.6	\$0
n.	N/A	\$0	14	0.58	\$0
Ο.	N/A	\$0	15	0.56	\$0
p.	TOTAL	\$0		-	\$0
C.	TOTAL NON E	ENERGY DISCOL	JNTED SAVIN	GS (3A2 + 3Bp4	\$111
4. S	IMPLE PAYBA	CK 1G/(2N3+3A	\+(3Bp1/ECO	NOMIC LIFE)):	2.7 YEARS
5. T(OTAL NET DIS	SCOUNTED SAV	INGS (2N5+3	C):	\$1,501
6. S	AVINGS TO IN	4.21			
7. Ai	DJUSTED INT	ERNAL RATE OF	RETURN (AII	3B):	14.5%

BUILDING 2265 - MESS HALL IN BARRACKS

Building 2265 is a three story barracks consisting of 106,000 square feet. This facility contains a large full service kitchen and dining area which consists of 4,100 square feet.

The operating hours for this facility are from 5:00 am to 8:00 pm, Monday to Friday and 7:00 am to 8:00 pm Saturday and Sunday.

The lighting system is primarily fluorescent.

The mechanical system consists of single zone air handling units served by a water cooled centrifugal chiller located in the basement. Heating is provided by gas fired boilers.

Hot water is provided to the kitchen by a gas fired water heater. Dishwashing is accomplished using an automatic dishwasher with an electric hot water booster heater.

The following ECO's are recommended for Building 2265:

- 1. IV. D.1) Replace chiller with higher EFF/CFC free chiller
- 2. VII. C. Remove unneeded lamps or fixtures
- 3. VII. D. Reduce indoor/outdoor lighting to AEI levels
- 4. IX. B. Replace incandescent exit fixtures with LED
- 5. IX. C. Replace standard lamps with energy saving lamps
- 6. IX. D. Replace standard ballast with energy saving ballast

ENERGY CONSERVATION OPPORTUNITIES (ECO's) - BUILDING NO. 2265

ECO NO: IV. D 1)

ECO NAME: Replace chiller with higher efficiency CFC free chiller.

SUMMARY DATA (DEPENDENT):

KWH Savings: 424,595 KWH/yr

Demand Savings: 1,740 KW/yr

Gas Savings: n/a MCF/yr

Cost Savings: \$ 26,888 /yr

Implementation Cost: \$ 338,516

Simple Payback: 7.7 Years

Savings to Investment: 2.02

Ratio (SIR):

ECO DESCRIPTION:

Currently, a 657 ton water cooled centrifugal chiller is in use. This chiller was installed in 1973 and operates at an efficiency of approximately .871 KW/ton. This ECO analyzes replacing this unit with a new high efficiency, CFC free chiller. The new chillers will operate with an efficiency of approximately .540 KW/ton (see following selection). This ECO analysis accounts for the interdependencies related to operating hours and the proposed lighting retrofit.

COST SAVINGS CALCULATIONS:

(Refer to following Trace Output)

Demand Savings = $(907 \, KW - 792 \, KW) \times 4 \, mo. \times 87.50 / KW + (907 \, KW - 792 \, KW) \times 8 \, mo. \times 86.25 / KW = \$9,200 / yr$

IMPLEMENTATION COSTS:

(Refer to following Cost Estimate)

LIFE CYCLE COST ANALYSIS:

LOCATION:	FOR	TI SAM HOUS		_HEGION NO		PROJECT NO.	91109912F
PROJECT TITLE:	_ ***	FORT SAM HO	USTON DININ	G FACILITIES	EEAP	FISCAL YEAR	
DISCRETE PORTIC							
ANALYSIS DATE:	NOVEMBER	1, 1993 EC	CONOMIC LIFE	20	PREPARER	S. P. Cl	_ARK
1. INVESTMENT OF A. CONSTRUCTION B. SIOH C. DESIGN COST D. TOTAL COST (1 E. SALVAGE VALUE). PUBLIC UTILITY	ON COST A+1B+1C) E OF EXISTIN		\$536,040 \$29,482 \$32,162 \$597,685		<i>:</i>		
				\$0			
G. TOTAL INVEST	MENI (ID-1E	.—1F)			\$597,685		
2. ENERGY SAVIIDATE OF NISTIR 8			DUNT FACTOR	S: <u>'N</u> DISCOUNT	NOVEMBER 4, 1		
SOURCE	\$/MBTU(1)	MBTU/YR(2)	SAVINGS(3)	FACTOR(4)	SAVINGS(5)	•	
A. ELEC B. DIST C. RESID D. NG E. PPG F. COAL G. SOLAR H. GEOTH I. BIOMA J. REFUS K. WIND L. OTHER M. DEMAND SAVIN N. TOTAL	\$10.55 \$3.31	1449.1	\$15,288 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$26,888	14.65 17.70 20.99 20.60 13.59 16.32 13.59 13.59 13.59 13.59 13.59 13.59	\$223,969 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$157,644 \$381,613		
NON ENERGY: A. ANNUAL RECUF DISCOUNT FACE DISCOUNTED SECTION	RRING (+/-)	\$0 A)		\$0_			

B. NON RECURRING SAVINGS (+) OR COST(-)

	ITEM SAVINGS(+) COST(-)(1)		YEAR OF DISCOUNT OCCUR.(2) FACTOR(3)		DISCOUNTED SAV- INGS(+)COST(-)(4)	
		0031(=)(1)	OCCOH.(2)	FACTON(8)	1143(+)0031(-)(4)	
a.	N/A	\$0	1	0.96	\$0	
b.	N/A	\$0	2	0.92	\$0	
C.	Chiller	\$338,516	3	0.89	\$301,279	
d.	N/A	\$0	4	0.85	\$0	
e.	N/A	\$0	5	0.82	\$0	
f.	N/A	\$0	6	0.79	\$0	
g.	N/A	\$0	7	0.76	\$0	
h.	N/A	\$0	8	0.73	\$0	
i.	N/A	\$0	9	0.7	\$0	
j.	N/A	\$0	10	0.68	\$0	
k.	N/A	\$0	11	0.65	\$0	
i.	N/A	\$ 0	12	0.62	\$0	
m.	N/A	\$0	13	0.6	\$0	
n.	N/A	\$0	14	0.58	\$0	
Ο.	N/A	\$0	15	0.56	\$0	
p.	TOTAL	\$338,516			\$301,279	

C. TOTAL NON ENERGY DISCOUNTED SAVINGS (3A2 + 3Bp4)	\$301,279
4. SIMPLE PAYBACK 1G/(2N3+3A+(3Bp1/ECONOMIC LIFE)):	13.6 YEARS
5. TOTAL NET DISCOUNTED SAVINGS (2N5+3C):	\$682,893
6. SAVINGS TO INVESTMENT RATIO (SIR) 5/1G:	1.14
7. ADJUSTED INTERNAL RATE OF RETURN (AIRR):	4.7%

ENERGY CONSERVATION OPPORTUNITIES (ECO's) - BUILDING NO. 2265

ECO NO: VII C, D & IX B, C, D

ECO NAME: Improve lighting efficiency.

SUMMARY DATA (DEPENDENT):

KWH Savings: 49,856.4 KWH/yr

Demand Savings: 46.7 KW/yr

Gas Savings: n/a MCF/yr

Cost Savings: \$ 2,349 /yr

Implementation Cost: \$ 2,723

Simple Payback: 1.2 Years

Savings to Investment: 9.77

Ratio (SIR):

ECO DESCRIPTION:

Currently, low efficiency lighting systems are in use. This ECO will update the lighting systems to improve efficiency while maintaining or increasing the current light levels. The existing lighting system and proposed retrofit action are as follows:

QTY	FIXTURE TYPE	ACTION
2	2-Lamp, 2' Fluor.	Retrofit w/T8 lamps and electronic ballasts.
58	2-Lamp, 4' Fluor.	Remove 16 fixtures along window area and retrofit remaining with T8 lamps and electronic ballasts.
12	4-Lamp, 4' Fluor.	Retrofit w/T8 lamps and electronic ballasts.
4	Incand. Exit	Replace /LED exit fixtures.

COST SAVINGS CALCULATIONS:

(Refer to following Flex Output)

Demand Savings = $(8.065 \, KW - 4.171 \, KW) (4 \, mo. x \$17.50 / KW + 8 \, mo. \$6.25 / KW)$ = \$311.52 / yr

IMPLEMENTATION COSTS:

(Refer to following Flex Output and Lighting Implementation Cost located in Appendix E)

LIFE CYCLE COST ANALYSIS:

LOCATION: PROJECT TITLE: DISCRETE PORT ANALYSIS DATE:	ION NAME: _		USTON DININ	I C., D. & IX A.,	EAP	PROJECT NO. FISCAL YEAR GHTING IMPROV S. P. C	1994 EMENTS
1. INVESTMENT A. CONSTRUCTI B. SIOH C. DESIGN COST D. TOTAL COST (E. SALVAGE VALI F. PUBLIC UTILIT	ON COST (1A+1B+1C) UE OF EXISTIN Y COMPANY RI	EBATE	\$2,442 \$134 \$147 \$2,723	\$0 \$0	:		
2. ENERGY SAV DATE OF NISTIR ENERGY SOURCE	INGS (+)/COS	<u>「(</u> –):	OUNT FACTOR ANNUAL \$ SAVINGS(3)	S: <u>'N</u> DISCOUNT FACTOR(4)	\$2,723	1992	
A. ELEC B. DIST C. RESID D. NG E. PPG F. COAL G. SOLAR H. GEOTH	\$10.55 	0.00	\$752 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	11.77 13.83 16.15 15.34 11.12 12.82 11.12	\$8,846 \$0 \$0 \$0 \$0 \$0 \$0 \$0	·	
I. BIOMA J. REFUS K. WIND L. COOLING M. DEMAND SAVI N. TOTAL	\$10.55 NGS	98.92	\$0 \$0 \$0 \$1,044 \$312 \$2,107	11.12 11.12 11.12 11.12 11.12	\$0 \$0 \$0 \$11,605 \$3,469 \$23,920		
3. NON ENERGY A. ANNUAL RECU 1. DISCOUNT FAI 2. DISCOUNTED	RRING (+/-) CTOR (TABLE /		11.1	\$2,686			

B. NON RECURRING SAVINGS (+) OR COST(-)

7. ADJUSTED INTERNAL RATE OF RETURN (AIRR):

	*							
ITEM	SAVINGS(+) COST(-)(1)	YEAR OF OCCUR.(2)	DISCOUNT FACTOR(3)	DISCOUNTED SAV- INGS(+)COST(-)(4)				
a. N/A b. N/A c. N/A d. N/A e. N/A f. N/A g. N/A h. N/A	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	1 2 3 4 5 6 7 8	0.96 0.92 0.89 0.85 0.82 0.79 0.76 0.73	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0				
i. N/A j. N/A k. N/A l. N/A m. N/A n. N/A o. N/A p. TOTAL	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	10 11 12 13 14 15	0.7 0.68 0.65 0.62 0.6 0.58	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0				
C. TOTAL NON ENERGY DISCOUNTED SAVINGS (3A2 + 3Bp4) \$2,686 4. SIMPLE PAYBACK 1G/(2N3+3A+(3Bp1/ECONOMIC LIFE)): 1.2 YEARS 5. TOTAL NET DISCOUNTED SAVINGS (2N5+3C): \$26,607 6. SAVINGS TO INVESTMENT RATIO (SIR) 5/1G: 9.77								
p. TOTAL C. TOTAL NON EI 4. SIMPLE PAYBAC 5. TOTAL NET DISC	\$0 NERGY DISCOL CK 1G/(2N3+3A COUNTED SAVI	JNTED SAVIN .+(3Bp1/ECO	GS (3A2 + 3Bp4) NOMIC LIFE)): C):	\$0 \$2,686 1.2 YE	ARS			

21.1%

BUILDING 2399 - HOSPITAL MESS HALL

Building 2399 is a single story stucco building consisting of a total area of 26,000 square feet. This facility contains a full service kitchen and a large dining area which consists of 14,700 square feet.

The operating hours are from 5:00 am to 8:00 pm, seven days per week.

The lighting system is primarily fluorescent.

The mechanical system consists of fan coil units above the ceiling served by the central hospital water cooled chillers. Heating is provided by three central gas fired, steam boilers.

Hot water is provided to the kitchen by a steam to hot water heat exchanger and a 300 gallon storage tank. Dishwashing is accomplished using an automatic dishwasher with an electric hot water booster heater.

The following ECO's are recommended for Building 2399:

- 1. IV. A. Night setback/setup thermostat
- 2. IV. D.1) Replace chiller with higher EFF/CFC free chiller
- 3. IV. F. Install make-up air supply for kitchen areas
- 4. VII. D. Reduce indoor/outdoor lighting to AEI levels
- 5. IX. A. Replace incandescent lamps with compact fluorescents
- 6. IX. B. Replace incandescent exit fixtures with LED
- 7. IX. C. Replace standard lamps with energy saving lamps
- 8. IX. D. Replace standard ballast with energy saving ballast

ENERGY CONSERVATION OPPORTUNITIES (ECO's) - BUILDING NO. 2399

ECO NO: IV. A.

ECO NAME: Night setback/setup thermostat.

SUMMARY DATA (DEPENDENT):

KWH Savings: 7.528 KWH/yr

Demand Savings: _____0 KW/yr

Gas Savings: 89.1 MCF/yr

Cost Savings: <u>\$ 575</u> /yr

Implementation Cost: \$ 363

Simple Payback: ______6 Years

Savings to Investment: 21.61

Ratio (SIR):

ECO DESCRIPTION:

Currently, manual thermostats are used to control the existing fan coil units that serve the dining and office areas. Each fan coil unit is controlled by a separate thermostat. This ECO analyzes the installation of a programmable night setback/setup thermostats to reduce energy consumption during unoccupied periods.

COST SAVINGS CALCULATIONS:

(Refer to following SimpCalc)

IMPLEMENTATION COSTS:

(Refer to following Cost Estimate)

MAINTENANCE COSTS:

Maintenance costs of \$5.00/year is included in the LCCA for programming, battery replacement and failures.

LIFE CYCLE COST ANALYSIS:

LOCATION: PROJECT TITLE: DISCRETE PORTION		RT SAM HOUST FORT SAM HO BUILDII	USTON DININ		EEAP	PROJECT NO. FISCAL YEAR SETUP THERMOS	1994
ANALYSIS DATE:	NOVEMBER		CONOMIC LIFE		PREPARER	S. P. C	
1. INVESTMENT (COSTS:						
A. CONSTRUCTION B. SIOH C. DESIGN COST D. TOTAL COST (1)	A+1B+1C)		\$326 \$18 \$20 \$363		:		
E. SALVAGE VALU F. PUBLIC UTILITY G. TOTAL INVESTI	COMPANY RI	EBATE		\$0 \$0		 :	
2. ENERGY SAVII	NGS (+)/COST	<u>Γ(</u> –):					
DATE OF NISTIR 8	5-3273-X US	SED FOR DISCO	OUNT FACTOR	15: <u>'N</u>	IOVEMBER 4, 1	992	
ENERGY SOURCE	COST \$/MBTU(1)	SAVINGS MBTU/YR(2)	ANNUAL \$ SAVINGS(3)	DISCOUNT FACTOR(4)	DISCOUNTED SAVINGS(5)		
A. ELEC B. DIST	\$10.55	25.69	\$271	11.77	\$3,190 \$0		
C. RESID			\$0	13.83 16.15	<u>\$0</u>		
D. NG	\$3.31	91.86	\$304	15.34	\$4,664		
E. PPG			<u>\$0</u>	11.12	\$0		
F. COAL G. SOLAR		-	\$0 \$0	12.82 11.12	\$0 \$0		
H. GEOTH		-	\$0	11.12	\$0		
I. BIOMA			\$0	11.12	\$0		
J. REFUS			\$0	11.12	\$0		
K. WIND			\$0	11.12	\$0		
L. OTHER M. DEMAND SAVIN	IGS		\$0 \$0	11.12	\$0 \$0		
N. TOTAL		117.55	\$575	11.12	\$7,854		
3. NON ENERGY	SAVINGS (+)	OR COST (-):	•				
A. ANNUAL RECUP 1. DISCOUNT FAC 2. DISCOUNTED S	TOR (TABLÉ A		11.1	(\$167)			

B. NON RECURRING SAVINGS (+) OR COST(-)

6. SAVINGS TO INVESTMENT RATIO (SIR) 5/1G:

7. ADJUSTED INTERNAL RATE OF RETURN (AIRR):

	ITEM	SAVINGS(+) COST(-)(1)	YEAR OF OCCUR.(2)	DISCOUNT FACTOR(3)	DISCOUNTED SAV- INGS(+)COST(-)(4)
a.	N/A	\$0	1	0.96	\$ 0
b.	N/A	\$0	2	0.92	\$0
C.	N/A	\$0	3	0.89	\$0
d.	N/A	\$0	4	0.85	\$0
e.	N/A	\$0	<u>5</u>	0.82	\$0
f.	N/A	\$0	6	0.79	\$0
g.	N/A	\$0	7	0.76	\$0
h.	N/A	\$0	8	0.73	\$0
i.	N/A	\$0	9	0.7	\$0
j.	N/A	\$0	10	0.68	\$0
k.	N/A	\$0	11	0.65	\$0
l.	N/A	\$0	12	0.62	\$0
m.	N/A	\$0	13	0.6	\$0
n.	N/A	\$0	14	0.58	\$0
Ο.	N/A	\$0	15	0.56	\$0
p.	TOTAL	\$0			\$0
C.	TOTAL NON E	NERGY DISCOL	JNTED SAVIN	GS (3A2 + 3Bp4	(\$167)
4. S	MPLE PAYBAC	K 1G/(2N3+3A	x+(3Bp1/ECO	NOMIC LIFE)):	0.6 YEARS
5. T	OTAL NET DISC	COUNTED SAV	INGS (2N5+3	<u>c</u>):	\$7,688

21.15

27.5%

ENERGY CONSERVATION OPPORTUNITIES (ECO's)- BUILDING 2399

ECO NO: IV.D.1)

ECO NAME: Replace chiller with higher efficiency, CFC free chiller.

SUMMARY DATA (DEPENDENT):

KWH Savings: 926.098 KWH/yr

Demand Savings: 3,192 KW/yr

Gas Savings: n/a MCF/yr

Cost Savings: \$ 54,626 /yr

Implementation Cost: \$ 365,824

Simple Payback: 5.1 Years

Savings to Investment: 3.02

Ratio (SIR):

ECO DESCRIPTION:

Currently, two 436 ton water cooled centrifugal chillers are in use. These chillers serve Building 2399 and 2376 (hospital) and were installed in 1968. These chillers operate at an efficiency of 1.084 KW/ton and have 80% demand limiting setpoints. This ECO analyzes replacement of the two, 436 ton chillers with one 710 ton high efficiency, CFC free chiller. This would allow one of the 436 ton chillers to remain as back-up and the refrigerant from the demolition chiller could be recovered for future use. The new chiller will operate at an efficiency of approximately .539 KW/ton. This ECO analysis accounts for the operating hours and for the proposed lighting retrofit.

COST SAVINGS CALCULATIONS:

(Refer to following Flex Output)

Demand Savings = $(1,939 \, KW - 1,842 \, KW) (4 \, mo.x \$7.50 / KW + 8 \, mo.x \$6.25 / KW)$ = \$7,760 / yr

IMPLEMENTATION COSTS:

(Refer to following Cost Estimate)

LIFE CYCLE COST ANALYSIS:

LOCATION:	FOR	RT SAM HOUST		_REGION NO		PROJECT NO	91109912F
PROJECT TITLE:		FORT SAM HO				FISCAL YEAR	
DISCRETE PORTIC							
ANALYSIS DATE:	NOVEMBER	<u>1, 1993</u> EC	CONOMIC LIFE	20	PREPARER	S. P. C	LARK
1. INVESTMENT C			\$202.00 2				
B. SIOH C. DESIGN COST D. TOTAL COST (1 E. SALVAGE VALUE	A+1B+1C) E OF EXISTIN		\$328,093 \$18,045 \$19,686 \$365,824		:		
F. PUBLIC UTILITY				\$0	<u></u>		
G. TOTAL INVEST	MENT (1D-1E	-1F)			\$365,824		
2. ENERGY SAVIII DATE OF NISTIR 8	5-3273-X US	SED FOR DISCO			NOVEMBER 4, 1		
ENERGY SOURCE	COST \$/MBTU(1)	SAVINGS MBTU/YR(2)	ANNUAL \$ SAVINGS(3)	DISCOUNT FACTOR(4)	DISCOUNTEI SAVINGS(5))	
A. ELEC	\$10.55	3160.8	\$33,346	14.65	\$488,525		
B. DIST			\$0	17.70	\$0		
C. RESID			\$0	20.99	\$0	•	
D. NG	\$3.31	0.00	<u>\$0</u>	20.60	\$0		
E. PPG F. COAL			\$0	13.59	\$0		
G. SOLAR			\$0 \$0	16.32	\$0 \$0		
H. GEOTH			\$0 \$0	13.59 13.59	\$0 \$0		
I. BIOMA			\$0	13.59	\$0		
J. REFUS			\$0	13.59	\$0	. •	
K. WIND			\$0	13.59	\$0		
L. OTHER			\$0	13.59	\$0		
M. DEMAND SAVIN	IGS		\$21,280	13.59	\$289,195		
N. TOTAL		3160.8	<u>\$54,626</u>		\$777,721		
3. NON ENERGY	SAVINGS (+)	OR COST (-):	-				
A. ANNUAL RECUP 1. DISCOUNT FAC	TOR (TABLE						
2. DISCOUNTED S	SAVINGS/COS	T (3A X 3A1)		\$0			

B. NON RECURRING SAVINGS (+) OR COST(-)

	ITEM	SAVINGS(+) COST(-)(1)	YEAR OF OCCUR.(2)	DISCOUNT FACTOR (3)	DISCOUNTED SAV- INGS(+)COST(-)(4)
a.	Chillers	\$339,208	1_	0.96	\$325,640
b.	N/A	\$0	2	0.92	\$0
C.	N/A	\$0	3	0.89	\$0
d.	N/A	\$0	4	0.85	\$0
e.	N/A	\$0	5	0.82	\$0
f.	N/A	\$0	6	0.79	: \$0
g.	N/A	\$0	7	0.76	\$0
ĥ.	N/A		8	0.73	\$0
i.	N/A	\$0	9	0.7	\$0
j.	N/A	<u>\$0</u>	10	0.68	\$0
k.	N/A		11	0.65	\$0
I.	N/A	\$0	12	0.62	\$0
m.	N/A	\$0	13	0.6	\$0
n.	N/A	\$0	14	0.58	\$0
Ο.	N/A	\$0	15	0.56	\$0
p.	TOTAL	\$339,208			\$325,640

C. TOTAL NON ENERGY DISCOUNTED SAVINGS (3A2 + 3Bp4)	\$325,640
4. SIMPLE PAYBACK 1G/(2N3+3A+(3Bp1/ECONOMIC LIFE)):	5.1_YEARS
5. TOTAL NET DISCOUNTED SAVINGS (2N5+3C):	\$1,103,360
6. SAVINGS TO INVESTMENT RATIO (SIR) 5/1G:	3.02
7. ADJUSTED INTERNAL RATE OF RETURN (AIRR):	9.9%

ENERGY CONSERVATION OPPORTUNITIES (ECO's) - BUILDING NO. 2399

ECO NO: IV.F.1

ECO NAME: Install make-up air supply for kitchen areas.

SUMMARY DATA (DEPENDENT):

KWH Savings: 41.614 KWH/yr

Demand Savings: 0 KW/yr

Gas Savings: 617.0 MCF/yr

Cost Savings: \$ 3,604 /yr

Implementation Cost: \$ 31,268

Simple Payback: 8.7 Years

Savings to Investment: 2.09

Ratio (SIR):

ECO DESCRIPTION:

Currently, a 10' x 28' kitchen hood is in use which does not include make-up air supply. As a result, approximately 40% of the exhaust during cooling months is drawn from the adjacent conditioned dining room. The kitchen and dining areas are both heated during heating months and 100% of the make-up air for the hood is brought in from outside. This ECO analyzes installing a make-up air hood with 70% supply air make-up.

COST SAVINGS CALCULATIONS:

(Refer to following spreadsheet)

IMPLEMENTATION COSTS:

(Refer to following Cost Estimate)

LIFE CYCLE COST ANALYSIS:

DISCRETE PORTION NAME: BUILDING 2399 — ECO IV. F.) — INSTALL MAKE—UP AIR SUPPLY FOR KITCHEN ARE ANALYSIS DATE: NOVEMBER 1, 1993 — ECONOMIC LIFE — 20 — PREPARER — C. M. JOHNSON — S. SICH	DISCRETE PORTION NAME: BUILDING 2399 — ECO IV.F.) — INSTALL MAKE—UP AIR SUPPLY FOR KITCHEN AREAS ANALYSIS DATE: NOVEMBER 1, 1993 — ECONOMIC LIFE — 20 PREPARER — C. M. JOHNSON — PREPAR	LOCATION:	FO	RT SAM HOUST		_REGION NO		_PROJECT NO	91109912F
ANALYSIS DATE: NOVEMBER 1, 1993 ECONOMIC LIFE 20 PREPARER C. M. JOHNSON 1. INVESTMENT COSTS: A. CONSTRUCTION COST \$1,542 \$1,542 \$1,542 \$1,542 \$1,542 \$1,542 \$1,542 \$1,542 \$1,542 \$1,542 \$1,542 \$1,543 \$1,268 \$1,542 \$1,543 \$1,268 \$1,542 \$1,543 \$1,268 \$1,542 \$1,543 \$1,268 \$1,543 \$1,268 \$1,543 \$1,268 \$1,543 \$1,268 \$1,543 \$1,268 \$1,543 \$1,268 \$1,543 \$1,268 \$1,543 \$1,268 \$1,543 \$1,268 \$1,543 \$1,268 \$	ANALYSIS DATE: NOVEMBER 1, 1993 ECONOMIC LIFE 20 PREPARER C. M. JOHNSON 1. INVESTMENT COSTS: A. CONSTRUCTION COST \$1.542	PROJECT TITLE:						FISCAL YEAR	
1. INVESTMENT COSTS: A. CONSTRUCTION COST \$1,542 C. DESIGN COST \$1,683 D. TOTAL COST (1A+1B+1C) E. SALVAGE VALUE OF EXISTING EQUIPMENT F. PUBLIC UTILITY COMPANY REBATE G. TOTAL INVESTMENT (1D-1E-1F) DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS: ENERGY SAVINGS (+)/COST(-): DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS: ENERGY COST SAVINGS ANNUAL \$ DISCOUNT DISCOUNT SOURCE \$/MBTU(1) MBTU/YR(2) SAVINGS(3) FACTOR(4) SAVINGS(5) A. ELEC \$10.55 142.03 \$1,498 14.65 \$21,952 B. DIST \$0 17.70 \$0 C. RESID \$0 20.99 \$0 D. NG \$3.31 636.08 \$2,105 20.60 \$43,372 E. PPG \$0 13.59 \$0 D. NG \$3.31 636.08 \$2,105 20.60 \$43,372 E. PPG \$0 13.59 \$0 G. SOLAR \$0 13.59 \$0 H. GEOTI+ \$0 13.59 \$0 H. GEOTI+ \$0 13.59 \$0 H. GEOTI+ \$0 13.59 \$0 J. REFUS \$	1. INVESTMENT COSTS: A. CONSTRUCTION COST \$28,043 B. SIOH \$1,542 C. DESIGN COST \$1,683 D. TOTAL COST (1A+1B+1C) \$31,683 D. TOTAL COST (1A+1B+1C) \$31,268 E. SALVAGE VALUE OF EXISTING EQUIPMENT F. PUBLIC UTILITY COMPANY REBATE \$0 G. TOTAL INVESTMENT (1D-1E-1F) \$31,268 2. ENERGY SAVINGS (+)/COST(-): DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS: 'NOVEMBER 4, 1992 ENERGY COST SAVINGS ANNUAL DISCOUNT DISCOUNTED SAVINGS(3) FACTOR(4) SAVINGS(5) A. ELEC \$10.55 142.03 \$1,498 14.65 \$21,952 B. DIST \$0 20.99 \$0 D. NG \$3.31 636.08 \$2,105 20.60 \$43,372 E. PPG \$0 13.59 \$0 D. NG \$0 13.59 \$0 G. SOLAR \$0 13.59 \$0 G. SOLAR \$0 13.59 \$0 H. GEOTH \$0 13.59 \$0 J. REFUS \$0 13.59 \$0 J. REF	DISCRETE PORTI	ON NAME:	BUILDING 2399	- ECO IV. F.)	- INSTALL M	AKE-UP AIR S	UPPLY FOR KITO	CHEN AREAS
A. CONSTRUCTION COST B. SIOH S1,542 C. DESIGN COST S1,683 S31,268 D. TOTAL COST (1A+1B+1C) E. SALVAGE VALUE OF EXISTING EQUIPMENT F. PUBLIC UTILITY COMPANY REBATE G. TOTAL INVESTMENT (1D-1E-1F) S2. ENERGY SAVINGS (+)/COST(-): DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS: POWEMBER 4, 1992 ENERGY COST SAVINGS ANNUAL \$ DISCOUNT SAVINGS(5) A. ELEC S10.55 142.03 S1,498 S1,498 S2,105 S0 C. RESID D. NG S3.331 S36.08 S2,105 S0 C. RESID D. NG S3.331 S36.08 S2,105 S0 C. RESID S0 C. RESID S0 S0 C. RESID S0 S0 C. RESID S0 S0 S0 S43,372 E. PPG S0 S0 S0 S1,59 S0 F. COAL S0 S0 S1,59 S0 F. COAL S0 S0 S1,59 S0 F. COAL S0 F. COAL S	A. CONSTRUCTION COST B. SIOH SIGH SIGH SIGH SIGH SIGH SIGH SIGH SIG	ANALYSIS DATE:	NOVEMBER	1, 1993 EC	ONOMIC LIFE	20	PREPARER	C. M. JO	HNSON
B. SIOH C. DESIGN COST D. TOTAL COST (1A+1B+1C) E. SALVAGE VALUE OF EXISTING EQUIPMENT F. PUBLIC UTILITY COMPANY REBATE G. TOTAL INVESTMENT (1D-1E-1F) DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS: DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS: DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS: ENERGY COST SAVINGS SAVINGS ANNUAL \$ DISCOUNT DISCOUNTED SAVINGS(5) A ELEC \$10.55 142.03 \$1,498 14.65 \$21,952 B. DIST SAVINGS(6) FACTOR(4) B. DISCOUNT DISCOUNTED SAVINGS(5) A ELEC \$10.55 142.03 \$1,498 14.65 \$21,952 B. DIST SAVINGS(7) FACTOR(4) SAVINGS(5) A ELEC B. DIST SAVINGS (17.70 SO C. RESID SO 17.70 SO C. RESID SO 17.70 SO C. RESID SO 13.59 SO H. GEOTH SO H	B. SIOH C. DESIGN COST D. TOTAL COST (1A+1B+1C) E. SALVAGE VALUE OF EXISTING EQUIPMENT F. PUBLIC UTILITY COMPANY REBATE G. TOTAL INVESTMENT (1D-1E-1F) DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS: DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS: DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS: NOVEMBER 4, 1992 ENERGY COST SAVINGS ANNUAL \$ DISCOUNT SAVINGS(5) A ELEC \$10.55 142.03 \$1.498 14.65 \$21,952 B. DIST C. RESID D. NG \$3.31 636.08 \$2,105 20.60 \$43,372 E. P.P.G F. COAL SO 13.59 \$0 F. COAL SO 15.59 \$0 F. COAL FIFUS SO 15.59 \$0 F. COAL SO 15.50 \$0 F. COAL SO 15.50 \$0 F. COAL SO 15.50 \$0 F. COAL SO 15.50 \$0 F. COAL SO 15	1. INVESTMENT	COSTS:						
F. PUBLIC UTILITY COMPANY REBATE G. TOTAL INVESTMENT (1D-1E-1F) 2. ENERGY SAVINGS (+)/COST(-): DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS: ENERGY COST SAVINGS ANNUAL\$ DISCOUNT DISCOUNTED SOURCE \$/MBTU(1) MBTU/YR(2) SAVINGS(3) FACTOR(4) SAVINGS(5) A ELEC \$10.55 142.03 \$1,498 14.65 \$21,952 8.0 I7.70 \$0 C. RESID \$0 17.70 \$0 C. RESID \$0 20.99 \$0 D. NG \$3.31 636.08 \$2,105 20.60 \$43,372 E. PPG \$0 13.59 \$0 F. COAL \$0 16.32 \$0 G. SOLAR \$0 13.59 \$0 F. COAL \$0	F. PUBLIC UTILITY COMPANY REBATE G. TOTAL INVESTMENT (1D-1E-1F) 2. ENERGY SAVINGS (+)/COST(-): DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS: ENERGY COST SAVINGS ANNUAL \$ DISCOUNT DISCOUNTED SOURCE \$/MBTU(1) MBTU/YR(2) SAVINGS(3) FACTOR(4) SAVINGS(5) A ELEC \$10.55 142.03 \$1,498 14.65 \$21,952 B. DIST \$0 17.70 \$0 C. RESID \$0 20.99 \$0 D. NG \$3.31 636.08 \$2,105 20.60 \$43,372 E. PPG \$0 13.59 \$0 F. COAL \$0 16.32 \$0 F. COAL \$0 16.32 \$0 F. COAL \$0 16.32 \$0 F. COAL \$0 16.359 \$0 F. COAL \$0 13.59 \$0 F.	B. SIOH C. DESIGN COST D. TOTAL COST (IA+1B+1C)	IG EQUIPMENT	\$1,542 \$1,683	 \$0	:		
G. TOTAL INVESTMENT (1D-1E-1F) 2. ENERGY SAVINGS (+)/COST(-): DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS: ENERGY COST SAVINGS ANNUAL\$ DISCOUNTED SOURCE \$/MBTU(1) MBTU/YR(2) SAVINGS(3) FACTOR(4) SAVINGS(5) A ELEC \$10.55 142.03 \$1,498 14.65 \$21,952 8. DIST \$0 17.70 \$0 C. RESID \$0 20.99 \$0 D. NG \$3.31 636.08 \$2,105 20.60 \$43,372 E. PPG \$0 13.59 \$0 F. COAL \$0 16.32 \$0 F. COAL \$0 16.32 \$0 F. COAL \$0 16.35 \$0 F. COAL \$0 F. COA	G. TOTAL INVESTMENT (1D-1E-1F) 2. ENERGY SAVINGS (+)/COST(-): DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS: ENERGY COST SAVINGS ANNUAL DISCOUNT DISCOUNTED SOURCE \$/MBTU(1) MBTU/YR(2) SAVINGS(3) FACTOR(4) SAVINGS(5) A ELEC \$10.55 142.03 \$1,498 14.65 \$21,952 B. DIST \$0 20.99 \$0 C. RESID \$0 17.70 \$0 C. RESID \$0 20.99 \$0 D. NG \$3.31 636.08 \$2,105 20.60 \$43,372 E. PPG \$0 13.59 \$0 C. PRODUCT SOURCE \$0 13.59 \$0 C. PRODUCT SOURCE \$0 13.59 \$0 C. PRODUCT SOURCE \$0 13.59 \$0 C. PRODUCT SOURCE \$0 13.59 \$0 C. PRODUCT SOURCE \$0 C. PR	F. PUBLIC UTILITY	COMPANY R	EBATE					
2. ENERGY SAVINGS (+)/COST(-): DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS: 'NOVEMBER 4, 1992 ENERGY COST SAVINGS ANNUAL \$ DISCOUNT DISCOUNTED SAVINGS(5) A. ELEC \$10.55 142.03 \$1,498 14.65 \$21,952 B. DIST \$0 17.70 \$0 C. RESID \$0 20.99 \$0 D. NG \$3.31 636.08 \$2,105 20.60 \$43,372 E. PPG \$0 13.59 \$0 F. COAL \$0 13.59 \$0 G. SOLAR \$0 13.59 \$0 H. GEOTH \$0 13.59 \$0 J. REFUS \$0 13.59 \$0 K. WIND \$	2. ENERGY SAVINGS (+)/COST(-): DATE OF NISTIR 85–3273–X USED FOR DISCOUNT FACTORS: ENERGY COST SAVINGS ANNUAL \$ DISCOUNT DISCOUNTED SOURCE \$/MBTU(1) MBTU/YR(2) SAVINGS(3) FACTOR(4) SAVINGS(5) A ELEC \$10.55					***************************************	\$31,268		
DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS: November 4, 1992	DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS: NOVEMBER 4, 1992 ENERGY COST SAVINGS ANNUAL \$ DISCOUNT DISCOUNTED SOURCE \$/MBTU(1) MBTU/YR(2) SAVINGS(3) FACTOR(4) SAVINGS(5) A ELEC \$10.55		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,				 :	
SOURCE \$/MBTU(1) MBTU/YR(2) SAVINGS(3) FACTOR(4) SAVINGS(5) A. ELEC \$10.55	SOURCE \$/MBTU(1) MBTU/YR(2) SAVINGS(3) FACTOR(4) SAVINGS(5) A. ELEC \$10.55		•		DUNT FACTOR	S: <u>'N</u>	IOVEMBER 4, 1	992	
SOURCE \$/MBTU(1) MBTU/YR(2) SAVINGS(3) FACTOR(4) SAVINGS(5) A. ELEC \$10.55	SOURCE \$/MBTU(1) MBTU/YR(2) SAVINGS(3) FACTOR(4) SAVINGS(5) A. ELEC \$10.55	ENERGY	COST	SAVINGS	ANNUAL \$	DISCOUNT	DISCOUNTED	1	
A ELEC \$10.55 142.03 \$1,498 14.65 \$21,952 B. DIST \$0 17.70 \$0 C. RESID \$0 20.99 \$0 D. NG \$3.31 636.08 \$2,105 20.60 \$43,372 E. PPG \$0 13.59 \$0 F. COAL \$0 13.59 \$0 G. SOLAR \$0 13.59 \$0 H. GEOTH \$0 13.59 \$0 I. BIOMA \$0 13.59 \$0 J. REFUS \$0 13.59 \$0 K. WIND \$0 13.59 \$0 K. WIND \$0 13.59 \$0 L. OTHER \$0 13.59 \$0 M. DEMAND SAVINGS \$0 13.59 \$0 N. TOTAL \$78.11 \$3,604 3. NON ENERGY SAVINGS (+) OR COST (-): A. ANNUAL RECURRING (+/-) \$0 I. DISCOUNT FACTOR (TABLE A)	A ELEC \$10.55 142.03 \$1,498 14.65 \$21,952 B. DIST \$0 17.70 \$0 C. RESID \$0 20.99 \$0 D. NG \$3.31 636.08 \$2,105 20.60 \$43,372 E. PPG \$0 13.59 \$0 F. COAL \$0 16.32 \$0 G. SOLAR \$0 13.59 \$0 H. GEOTH \$0 13.59 \$0 I. BIOMA \$0 13.59 \$0 J. REFUS \$0 13.59 \$0 K. WIND \$0 13.59 \$0 L. OTHER \$0 13.59 \$0 M. DEMAND SAVINGS \$0 13.59 \$0 N. TOTAL \$78.11 \$3,604 3. NON ENERGY SAVINGS (+) OR COST (-): A. ANNUAL RECURRING (+/-) \$0 I. DISCOUNT FACTOR (TABLE A)				· •			•	
B. DIST C. RESID D. NG \$0 20.99 \$0 D. NG \$3.31 636.08 \$2,105 20.60 \$43,372 E. PPG F. COAL S0 13.59 S0 F. COAL S0 13.59 S0 H. GEOTH S0 13.59 S0 H. GEOTH S0 13.59 S0 J. REFUS S0 13.59 \$0 L. OTHER S0 13.59 S0 M. DEMAND SAVINGS N. TOTAL S0 13.59 S0 T78.11 \$3,604 S0 13.59 \$0 13.59 \$0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0	B. DIST	0001102	Ψηινιστο(τ)	141010/111(2)	OAT 1140(0)	1701011(4)	0A41140(0)		
B. DIST C. RESID D. NG \$0 20.99 \$0 D. NG \$3.31 636.08 \$2,105 20.60 \$43,372 E. PPG F. COAL S0 13.59 S0 F. COAL S0 13.59 S0 H. GEOTH S0 13.59 S0 H. GEOTH S0 13.59 S0 J. REFUS S0 13.59 \$0 L. OTHER S0 13.59 S0 M. DEMAND SAVINGS N. TOTAL S0 13.59 S0 T78.11 \$3,604 S0 13.59 \$0 13.59 \$0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0	B. DIST	A FLFC	\$10.55	142 03	\$1.498	14.65	\$21 052		
C. RESID D. NG \$3.31 636.08 \$2,105 20.60 \$43,372 E. PPG \$0 13.59 \$0 F. COAL \$0 16.32 \$0 G. SOLAR \$0 13.59 \$0 H. GEOTH \$0 13.59 \$0 I. BIOMA \$0 13.59 \$0 K. WIND \$0 13.59 \$0 L. OTHER \$0 13.59 \$0 M. DEMAND SAVINGS \$0 13.59 \$0 N. TOTAL \$778.11 \$3,604 \$0 \$65,324	C. RESID D. NG \$3.31 636.08 \$2,105 20.60 \$43,372 E. PPG \$0 13.59 \$0 F. COAL \$0 16.32 \$0 G. SOLAR \$0 13.59 \$0 H. GEOTH \$0 13.59 \$0 J. REFUS \$0 13.59 \$0 K. WIND \$0 13.59 \$0 L. OTHER \$0 13.59 \$0 M. DEMAND SAVINGS \$0 13.59 \$0 N. TOTAL \$778.11 \$3,604 SO 13.59 \$0 13.59			142.00					
D. NG \$3.31 636.08 \$2,105 20.60 \$43,372 E. PPG \$0 13.59 \$0 F. COAL \$0 16.32 \$0 G. SOLAR \$0 13.59 \$0 H. GEOTH \$0 13.59 \$0 I. BIOMA \$0 13.59 \$0 J. REFUS \$0 13.59 \$0 K. WIND \$0 13.59 \$0 L. OTHER \$0 13.59 \$0 M. DEMAND SAVINGS \$0 13.59 \$0 N. TOTAL \$78.11 \$3,604 \$65,324	D. NG \$3.31 636.08 \$2,105 20.60 \$43,372 E. PPG \$0 13.59 \$0 F. COAL \$0 16.32 \$0 G. SOLAR \$0 13.59 \$0 H. GEOTH \$0 13.59 \$0 I. BIOMA \$0 13.59 \$0 J. REFUS \$0 13.59 \$0 K. WIND \$0 13.59 \$0 L. OTHER \$0 13.59 \$0 M. DEMAND SAVINGS \$0 13.59 \$0 N. TOTAL \$78.11 \$3,604 \$65,324								
E. PPG \$0 13.59 \$0 F. COAL \$0 16.32 \$0 G. SOLAR \$0 13.59 \$0 H. GEOTH \$0 13.59 \$0 I. BIOMA \$0 13.59 \$0 J. REFUS \$0 13.59 \$0 K. WIND \$0 13.59 \$0 L. OTHER \$0 13.59 \$0 M. DEMAND SAVINGS \$0 13.59 \$0 N. TOTAL \$778.11 \$3,604 \$65,324	E. PPG \$0 13.59 \$0 F. COAL \$0 16.32 \$0 G. SOLAR \$0 13.59 \$0 H. GEOTH \$0 13.59 \$0 I. BIOMA \$0 13.59 \$0 J. REFUS \$0 13.59 \$0 K. WIND \$0 13.59 \$0 L. OTHER \$0 13.59 \$0 M. DEMAND SAVINGS \$0 13.59 \$0 N. TOTAL 778.11 \$3,604 \$65,324		\$3.31	636.08					
F. COAL \$0 16.32 \$0 G. SOLAR \$0 13.59 \$0 H. GEOTH \$0 13.59 \$0 I. BIOMA \$0 13.59 \$0 J. REFUS \$0 13.59 \$0 K. WIND \$0 13.59 \$0 L. OTHER \$0 13.59 \$0 M. DEMAND SAVINGS \$0 13.59 \$0 N. TOTAL \$778.11 \$3,604 \$65,324	F. COAL \$0 16.32 \$0 G. SOLAR \$0 13.59 \$0 H. GEOTH \$0 13.59 \$0 I. BIOMA \$0 13.59 \$0 J. REFUS \$0 13.59 \$0 K. WIND \$0 13.59 \$0 L. OTHER \$0 13.59 \$0 M. DEMAND SAVINGS \$0 13.59 \$0 N. TOTAL \$778.11 \$3,604 \$65,324								
H. GEOTH \$0 13.59 \$0 I. BIOMA \$0 13.59 \$0 J. REFUS \$0 13.59 \$0 K. WIND \$0 13.59 \$0 L. OTHER \$0 13.59 \$0 M. DEMAND SAVINGS \$0 13.59 \$0 N. TOTAL 778.11 \$3,604 \$65,324	H. GEOTH \$0 13.59 \$0 I. BIOMA \$0 13.59 \$0 J. REFUS \$0 13.59 \$0 K. WIND \$0 13.59 \$0 L. OTHER \$0 13.59 \$0 M. DEMAND SAVINGS \$0 13.59 \$0 N. TOTAL 778.11 \$3,604 \$65,324	F. COAL							
I. BIOMA \$0 13.59 \$0 J. REFUS \$0 13.59 \$0 K. WIND \$0 13.59 \$0 L. OTHER \$0 13.59 \$0 M. DEMAND SAVINGS \$0 13.59 \$0 N. TOTAL 778.11 \$3,604 \$65,324	I. BIOMA \$0 13.59 \$0 J. REFUS \$0 13.59 \$0 K. WIND \$0 13.59 \$0 L. OTHER \$0 13.59 \$0 M. DEMAND SAVINGS \$0 13.59 \$0 N. TOTAL 778.11 \$3,604 \$65,324 3. NON ENERGY SAVINGS (+) OR COST (-): A. ANNUAL RECURRING (+/-) \$0 1. DISCOUNT FACTOR (TABLE A)	G. SOLAR			\$0	13.59	\$0		
J. REFUS \$0 13.59 \$0 K. WIND \$0 13.59 \$0 L. OTHER \$0 13.59 \$0 M. DEMAND SAVINGS \$0 13.59 \$0 N. TOTAL 778.11 \$3,604 \$65,324 3. NON ENERGY SAVINGS (+) OR COST (-): A. ANNUAL RECURRING (+/-) \$0 1. DISCOUNT FACTOR (TABLE A)	J. REFUS \$0 13.59 \$0 K. WIND \$0 13.59 \$0 L. OTHER \$0 13.59 \$0 M. DEMAND SAVINGS \$0 13.59 \$0 N. TOTAL 778.11 \$3,604 \$65,324 3. NON ENERGY SAVINGS (+) OR COST (-): A. ANNUAL RECURRING (+/-) \$0 1. DISCOUNT FACTOR (TABLE A)				\$0	13.59	\$0		
K. WIND L. OTHER S0 13.59 \$0 M. DEMAND SAVINGS N. TOTAL 778.11 \$3,604 3. NON ENERGY SAVINGS (+) OR COST (-): A. ANNUAL RECURRING (+/-) \$0 1. DISCOUNT FACTOR (TABLE A)	K. WIND L. OTHER S0 13.59 \$0 M. DEMAND SAVINGS N. TOTAL 778.11 \$3,604 3. NON ENERGY SAVINGS (+) OR COST (-): A. ANNUAL RECURRING (+/-) \$0 1. DISCOUNT FACTOR (TABLE A)				\$0	13.59	\$0		
L OTHER \$0 13.59 \$0 M. DEMAND SAVINGS \$0 13.59 \$0 N. TOTAL 778.11 \$3,604 \$65,324 3. NON ENERGY SAVINGS (+) OR COST (-): A. ANNUAL RECURRING (+/-) \$0 1. DISCOUNT FACTOR (TABLE A)	L OTHER \$0 13.59 \$0 M. DEMAND SAVINGS \$0 13.59 \$0 N. TOTAL 778.11 \$3,604 \$65,324 3. NON ENERGY SAVINGS (+) OR COST (-): A. ANNUAL RECURRING (+/-) \$0 1. DISCOUNT FACTOR (TABLE A)								
M. DEMAND SAVINGS \$0 13.59 \$0 N. TOTAL 778.11 \$3,604 \$65,324 3. NON ENERGY SAVINGS (+) OR COST (-): A. ANNUAL RECURRING (+/-) \$0 1. DISCOUNT FACTOR (TABLE A)	M. DEMAND SAVINGS \$0 13.59 \$0 N. TOTAL 778.11 \$3,604 \$65,324 3. NON ENERGY SAVINGS (+) OR COST (-): A. ANNUAL RECURRING (+/-) \$0 1. DISCOUNT FACTOR (TABLE A)								
N. TOTAL 778.11 \$3,604 \$65,324 3. NON ENERGY SAVINGS (+) OR COST (-): A. ANNUAL RECURRING (+/-) \$0 1. DISCOUNT FACTOR (TABLE A)	N. TOTAL 778.11 \$3,604 \$65,324 3. NON ENERGY SAVINGS (+) OR COST (-): A. ANNUAL RECURRING (+/-) \$0 1. DISCOUNT FACTOR (TABLE A)								
3. NON ENERGY SAVINGS (+) OR COST (-): A. ANNUAL RECURRING (+/-) \$0 1. DISCOUNT FACTOR (TABLE A)	3. NON ENERGY SAVINGS (+) OR COST (-): A. ANNUAL RECURRING (+/-) \$0 1. DISCOUNT FACTOR (TABLE A)		VGS			13.59			
A. ANNUAL RECURRING (+/-) \$0 1. DISCOUNT FACTOR (TABLE A)	A. ANNUAL RECURRING (+/-) \$0 1. DISCOUNT FACTOR (TABLE A)	N. TOTAL		778.11	\$3,604		\$65,324		
		A. ANNUAL RECUR	RRING (+/-) CTOR (TABLE /	\$0 A)		<u>\$0</u>			

B. NON RECURRING SAVINGS (+) OR COST(-)

		`	,	•	
	ITEM	SAVINGS(+)	YEAR OF	DISCOUNT	DISCOUNTED SAV-
		COST(-)(1)	OCCUR.(2)	FACTOR(3)	INGS(+)COST(-)(4)
a.	N/A	<u> </u>	1	<u> </u>	<u>\$0</u>
b.	N/A	\$0	2	0.92	\$0
C.	N/A	\$0	3	0.89	\$0
d.	N/A	\$0	4	0.85	\$0
e.	N/A	\$0	<u> 5</u>	0.82	\$0
f.	N/A	\$0	6	0.79	\$0
g.	N/A	\$0	7	0.76	\$0
h.	N/A		8	0.73	\$0
i.	N/A	\$0	9	0.7	\$0
j.	N/A	\$0	10	0.68	\$0
k.	N/A	\$0	11	0.65	\$0
1.	N/A		12	0.62	\$0
m.	N/A	\$0	13	0.6	\$0
n.	N/A	\$0	14	0.58	\$0
Ο.	N/A	\$0	15	0.56	\$0
p.	TOTAL	\$0			\$0
C.	TOTAL NON I	ENERGY DISCO	UNTED SAVIN	IGS (3A2 + 3Bp4	\$0
<u>4. S</u>	IMPLE PAYBA	ACK 1G/(2N3+3A	\+(3Bp1/ECO	NOMIC LIFE)):	8.7 YEARS
<u>5. T</u>	OTAL NET DIS	SCOUNTED SAV	INGS (2N5+3	<u>C</u>):	\$65,324
6. S	AVINGS TO IN	NVESTMENT RA	TIO (SIR) 5/1G	<u>i:</u>	2.09
7. A	DJUSTED INT	ERNAL RATE OI	FRETURN (AI	RR):	7.9%

ENERGY CONSERVATION OPPORTUNITIES (ECO's) - BUILDING NO. 2399

ECO NO: IV.F.2

ECO NAME: Install make-up air supply for kitchen areas.

SUMMARY DATA (DEPENDENT):

KWH Savings: 4,776 KWH/yr

Demand Savings: _____ 0 KW/yr

Gas Savings: 70.8 MCF/yr

Cost Savings: \$ 414 /yr

Implementation Cost: \$ 3.976

Simple Payback: 9.6 Years

Savings to Investment: 1.89

Ratio (SIR):

ECO DESCRIPTION:

Currently, a 4' x 4' kitchen hood is in use which does not include make-up air supply. As a result, approximately 40% of the exhaust during cooling months is drawn from the adjacent conditioned dining room. The kitchen and dining areas are both heated during heating months and 100% of the make-up air for the hood is brought in from outside. This ECO analyzes installing a make-up air hood with 70% supply air make-up.

COST SAVINGS CALCULATIONS:

(Refer to following spreadsheet)

IMPLEMENTATION COSTS:

(Refer to following Cost Estimate)

LIFE CYCLE COST ANALYSIS:

LOCATION:	FOI	RT SAM HOUST	ON	_REGION NO	. <u>3</u>	$_$ PROJECT NO. $_$	9110991
PROJECT TITLE:		FORT SAM HO				FISCAL YEAF	
DISCRETE PORTI	ON NAME:	BUILDING 2399	- ECO IV. F.)	- INSTALL M	AKE-UP AIR S	SUPPLY FOR KITC	CHEN ARE
ANALYSIS DATE:	NOVEMBER	1, 1993 EC	CONOMIC LIFE	20	PREPARER	C. M. JO	HNSON
		-			·····		
4 INDECTMENT	DOCTO.						
1. INVESTMENT	20515:						
A. CONSTRUCTIO	ON COST		\$3,566				
B. SIOH	J. 1 0 0 0 1		\$196		:		
C. DESIGN COST			\$214				
D. TOTAL COST (1	A+1B+1C)		\$3,976				
E. SALVAGE VALL		IG EQUIPMENT		\$0			
F. PUBLIC UTILITY				\$0			
G. TOTAL INVEST	MENT (1D-1E	-1F)				<u>i</u>	
2. ENERGY SAVI	NGS (+)/COS	<u>「(</u> —):					
DATE OF NISTIR 8	E 2072 VIII	SED EOD DISCO	NUMBER OF OR)C: 'A	IOVENDED 4	1000	
DATE OF NISTIN O	3-32/3-X U	SED FOR DISCO	JUNI FACTOR	15.	OVEMBER 4,	1992	
ENERGY	COST	SAVINGS	ANNUAL \$	DISCOUNT	DISCOUNTE	D	
SOURCE	\$/MBTU(1)	MBTU/YR(2)	SAVINGS(3)	FACTOR(4)	SAVINGS(5)		
	4,		· · · · · · · · · · · · · · · · · · ·	.,	G/ 11 11 12 C(G/		
A. ELEC	\$10.55	16.3	\$172	14.65	\$2,519		
B. DIST			\$0	17.70	\$0	-	
C. RESID			\$0	20.99	\$0		
D. NG	\$3.31	73.02	\$242	20.60	\$4,979		
E. PPG			\$0	13.59	\$0		
F. COAL			\$0	16.32	\$0		
G. SOLAR			\$0	13.59	\$0		
H. GEOTH			\$0	13.59	\$0		
I. BIOMA	· · · · · · · · · · · · · · · · · · ·		\$0	13.59	\$0		
J. REFUS			\$0	13.59	\$0		
K. WIND			\$0	13.59	\$0		
L. OTHER			\$0	13.59	\$0	_	
M. DEMAND SAVIN	NGS		\$0	13.59	\$0	_	
N. TOTAL		89.32	\$414		\$7,498	<u>-</u>	
3 NON ENERGY	CAVINGE (+)	OB COST ():					
3. NON ENERGY	SAVINGS (+)	Un CUST (-):	-				
A. ANNUAL RECUF	RRING (+/-)	\$0					
1. DISCOUNT FAC							
2. DISCOUNTED S				\$0			
		I (ON A ON I)		Ψ0			

B. NON RECURRING SAVINGS (+) OR COST(-)

	ITEM	SAVINGS(+) COST(-)(1)	YEAR OF OCCUR.(2)	DISCOUNT FACTOR (3)	DISCOUNTED SAV- INGS(+)COST(-)(4)		
a.	N/A	\$0	1	0.96	\$0		
b.	N/A	 \$0	2	0.92	\$0		
C.	N/A	\$0	3 4	0.89	\$0		
d.	N/A	\$0	4	0.85	\$0		
e.	N/A	\$0	5	0.82	\$0		
f.	N/A	\$0	6	0.79	\$0		
g.	N/A	\$0	7	0.76	\$0		
h.	N/A	\$0	8	0.73	\$0		
i.	N/A	\$0	9	0.7	\$0		
j.	N/A	\$0	10	0.68	\$0		
k.	N/A	\$0	11	0.65	\$0		
1.	N/A	\$0	12	0.62	\$0		
m.	N/A	\$0	13	0.6	\$0		
n.	N/A	\$0	14	0.58	\$0		
Ο.	N/A	\$0	15	0.56	\$0		
p.	TOTAL	\$0			\$0		
C.	TOTAL NON E	NERGY DISCO	UNTED SAVIN	GS (3A2 + 3Bp4	\$0		
<u>4. S</u>	IMPLE PAYBAC	CK 1G/(2N3+3A	\+(3Bp1/ECO	NOMIC LIFE)):	9.6 YEARS		
5. TOTAL NET DISCOUNTED SAVINGS (2N5+3C): \$7,498							
6. S	AVINGS TO IN	ESTMENT RA	TIO (SIR) 5/1G	· -	1.89		
<u>7. A</u>	DJUSTED INTE	RNAL RATE OF	RETURN (AI	RR):	7.4%		

ENERGY CONSERVATION OPPORTUNITIES (ECO's) - BUILDING NO. 2399

ECO NO: VII D & IX A, B, C, D

ECO NAME: Improve lighting efficiency.

SUMMARY DATA (DEPENDENT):

KWH Savings: <u>18.019</u> KWH/yr

Demand Savings: 28.42 KW/yr

Gas Savings: n/a MCF/yr

Cost Savings: \$ 1,574.00 /yr

Implementation Cost: \$ 8.895

Simple Payback: 5.7 Years

Savings to Investment: 2.00

Ratio (SIR):

ECO DESCRIPTION:

Currently, low efficiency lighting systems are in use. This ECO will update the lighting systems to improve efficiency while maintaining or increasing the current light levels. The existing lighting system and proposed retrofit action are as follows:

QTY	FIXTURE TYPE	ACTION
6	2-Lamp, 2' Fluor.	Retrofit w/T8 lamps and electronic ballasts.
158	2-Lamp, 4' Fluor.	Retrofit w/T8 lamps and electronic ballasts.
10	4-Lamp, 4' Fluor.	Retrofit w/T8 lamps and electronic ballasts.
2	Incandescent track	Retrofit with compact fluor. lamps.
10	Incandescent hood	None.
2	Incandescent exit	Replace w/LED exit fixture.

COST SAVINGS CALCULATIONS:

(Refer to following Flex Output)

Demand Savings = $(18.392 \, KW - 16.024 \, KW)(4 \, mo.x \$7.50 / KW + 8 \, mo.x \$6.25 / KW)$ = \$189.44 / yr

IMPLEMENTATION COSTS:

(Refer to following Flex Output and Lighting Implementation Cost located in Appendix E)

LIFE CYCLE COST ANALYSIS:

LOCATION:	FOI	RT SAM HOUST	ON	_REGION NO		_PROJECT NO	91109912F
PROJECT TITLE:		FORT SAM HO	USTON DININ	G FACILITIES	EEAP	FISCAL YEAR	
DISCRETE PORTIO	ON NAME:					HITNG IMPROVE	MENTS
ANALYSIS DATE:	NOVEMBER	1, 1993 EC	ONOMIC LIFE	15	PREPARER	S. P. C	LARK
1. INVESTMENT O	COSTS:						
A. CONSTRUCTION B. SIOH C. DESIGN COST D. TOTAL COST (1 E. SALVAGE VALUE	A+1B+1C)	IG EQUIPMENT	\$7,978 \$439 \$479 \$8,895	 	:		
F. PUBLIC UTILITY				\$0	_		
G. TOTAL INVESTI					\$8,895		
2. ENERGY SAVII DATE OF NISTIR 8		<u> </u>			IOVEMBER 4, 1		
ENERGY	COST	SAVINGS	ANNUAL \$	DISCOUNT	DISCOUNTE)	
SOURCE	\$/MBTU(1)	MBTU/YR(2)	SAVINGS(3)	FACTOR(4)	SAVINGS(5)		
A. ELEC B. DIST C. RESID D. NG E. PPG F. COAL G. SOLAR H. GEOTH I. BIOMA J. REFUS K. WIND L. COOLING M. DEMAND SAVIN N. TOTAL	\$10.55 \$3.31 	0.00 61.5	\$467 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$189 \$1,305	11.77 13.83 16.15 15.34 11.12 12.82 11.12 11.12 11.12 11.12 11.12 11.12 11.12	\$5,495 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0		
3. NON ENERGY: A. ANNUAL RECUP 1. DISCOUNT FAC 2. DISCOUNTED S	RRING (+/-) TOR (TABLE /	\$269 A)	11.1	\$2,986			

B. NON RECURRING SAVINGS (+) OR COST(-)

	ITEM	SAVINGS(+) COST(-)(1)	YEAR OF OCCUR.(2)	DISCOUNT FACTOR(3)	DISCOUNTED SAV- INGS(+)COST(-)(4)			
a.	N/A	\$0	1	0.96	\$0_			
b.	N/A	\$0	2	0.92	\$0			
C.	N/A	\$0	3	0.89	\$0			
d.	N/A	\$0	4	0.85	\$0			
e.	N/A	\$0	5	0.82	\$0			
f.	N/A	\$0	6	0.79	: \$0			
g.	N/A	\$0	7	0.76	\$0			
ĥ.	N/A	\$0	8	0.73	\$0			
i.	N/A	\$0	9	0.7	\$0			
j.	N/A	\$0	10	0.68	\$0			
k.	N/A	\$0	11	0.65	\$0			
1.	N/A	\$0	12	0.62	\$0			
m.	N/A	\$0	13	0.6	\$0			
n.	N/A	\$0	14	0.58	\$0			
Ο.	N/A	\$0	15	0.56	\$0			
p.	TOTAL	\$0			\$0			
C. TOTAL NON ENERGY DISCOUNTED SAVINGS (3A2 + 3Bp4) \$2,986								
4. SIMPLE PAYBACK 1G/(2N3+3A+(3Bp1/ECONOMIC LIFE)): 5.3								
5. T	OTAL NET DISC	\$17,802						

6. SAVINGS TO INVESTMENT RATIO (SIR) 5/1G: 2.00 7. ADJUSTED INTERNAL RATE OF RETURN (AIRR): 8.9%

BUILDING 2521 - BOWLING CENTER

Building 2521 is a single story brick facility consisting of 21,000 square feet. This facility contains a small snack bar area which consists of 1,100 square feet.

The operating hours are from 7:00 am to 12:00 am, seven days per week.

The lighting system is primarily fluorescent.

The mechanical system consists of packaged DX rooftop air handling units with gas furnaces.

Hot water is provided to the kitchen by a gas fired water heater. No automatic dishwashing equipment is utilized.

The following ECO's are recommended for Building 2521:

- 1. IV. A Night setback/setup thermostat
- 2. VII. D Reduce indoor/outdoor lighting to AEI levels
- 3. IX. A Replace incandescent lamps with compact fluorescents
- 4. IX. C Replace standard lamps with energy saving lamps
- 5. IX. D Replace standard ballast with energy saving ballast

ENERGY CONSERVATION OPPORTUNITIES (ECO's) - BUILDING NO. 2521

ECO NO: IV. A.		
ECO NAME: Night set	back/setup thermos	tat.
SUMMARY DATA (D	EPENDENT):	
KWH Savings:	278	KWH/yı
Demand Savings:	0	KW/yr
Gas Savings:	2.1	MCF/yr
Cost Savings:	\$ 17	/yr
Implementation Cost:	<u>\$ 122 </u>	
Simple Payback:	7,1	Years
Savings to Investment:	1.88	

ECO DESCRIPTION:

Ratio (SIR):

Currently, a manual thermostat is used to control the existing air handling unit which serves the snack bar area. This ECO analyzes the installation of a programmable night setback/setup thermostat to reduce energy consumption during unoccupied periods.

COST SAVINGS CALCULATIONS:

(Refer to following SimpCalc)

IMPLEMENTATION COSTS:

(Refer to following Cost Estimate)

MAINTENANCE COSTS:

Maintenance costs of \$5.00/year is included in the LCCA for programming, battery replacement and failures.

LIFE CYCLE COST ANALYSIS:

(Refer to following ECIP Life Cycle Cost Summary)

LOCATION:	FO	RT SAM HOUST	ON	REGION NO	. 3	PROJECT NO.	91109912F
PROJECT TITLE:		FORT SAM HO	USTON DININ	G FACILITIES I	EAP	FISCAL YEAR	1994
DISCRETE PORTIO	ON NAME:	BUILDIN	NG 2521 - EC	0 IV. A NIG	HT SETBACK/S	SETUP THERMOS	STAT
ANALYSIS DATE:	NOVEMBER	1, 1993 EC	ONOMIC LIFE	15	PREPARER	S. P. Cl	LARK
1. INVESTMENT C	COSTS:						
A. CONSTRUCTION B. SIOH C. DESIGN COST D. TOTAL COST (1) E. SALVAGE VALU F. PUBLIC UTILITY G. TOTAL INVESTR	A+1B+1C) E OF EXISTIN COMPANY R	EBATE	\$109 \$6 \$7 \$122	\$0 \$0		 :	
2. ENERGY SAVIN	NGS (+)/COS	<u>T(</u> –):					
DATE OF NISTIR 8	5-3273-X U	SED FOR DISCO	OUNT FACTOR	IS: <u>'N</u>	OVEMBER 4, 1	1992	
ENERGY SOURCE	COST \$/MBTU(1)	SAVINGS MBTU/YR(2)	ANNUAL \$ SAVINGS(3)	DISCOUNT FACTOR(4)	DISCOUNTEI SAVINGS(5))	
A. ELEC	\$10.55	0.949	\$10	11.77	\$118		
B. DIST			\$0	13.83	\$0		
C. RESID			\$0	16.15	\$0	•	
D. NG	\$3.31	2.17	\$7	15.34	\$110	•	
E. PPG			\$0	11.12	\$0	•	
F. COAL			\$0	12.82	\$0	2	
G. SOLAR			\$0	11.12	\$0		
H. GEOTH			\$0	11.12	\$0		
I. BIOMA			\$0	11.12	\$0	_	
J. REFUS			\$0	11.12	\$0	-	
K. WIND			\$0	11.12	\$0	_	
L. OTHER			<u>\$0</u>	11.12	\$0		
M. DEMAND SAVIN	IGS		\$0	11.12	\$0		
N. TOTAL		3.119	\$17		\$228		
3. NON ENERGY	SAVINGS (+)	OR COST (-):					
A. ANNUAL RECUR		(\$5)					
1. DISCOUNT FAC		A)	11.1				
2. DISCOUNTED S	AVINGS/COS	T (3A X 3A1)		(\$56)			

B. NON RECURRING SAVINGS (+) OR COST(-)

	ITEM	SAVINGS(+) COST(-)(1)	YEAR OF OCCUR.(2)	DISCOUNT FACTOR(3)	DISCOUNTED SAV- INGS(+)COST(-)(4)
a.	N/A	-\$0_	1	0.96	\$0
b.	N/A	\$0	2	0.92	\$0
C.	N/A	\$0	3	0.89	\$0
d.	N/A	\$0	4	0.85	\$0
e.	N/A		5	0.82	\$0
f.	N/A		6	0.79	\$0
g.	N/A	\$0	7	0.76	\$0
ĥ.	N/A	\$0	8	0.73	\$0
i.	N/A	\$0	9	0.7	\$0
j.	N/A	\$0	10	0.68	\$0
k.	N/A	\$0	11	0.65	\$0
I.	N/A	\$0	12	0.62	\$0
m.	N/A	\$0	13	0.6	\$0
n.	N/A	\$0	14	0.58	\$0
Ο.	N/A		15	0.56	\$0
p.	TOTAL	\$0			\$0

C. TOTAL NON ENERGY DISCOUNTED SAVINGS (3A2 + 3Bp4)	(\$56)
4. SIMPLE PAYBACK 1G/(2N3+3A+(3Bp1/ECONOMIC LIFE)):	10.0 YEARS
5. TOTAL NET DISCOUNTED SAVINGS (2N5+3C):	<u>\$173</u>
6. SAVINGS TO INVESTMENT RATIO (SIR) 5/1G:	1.42
7. ADJUSTED INTERNAL RATE OF RETURN (AIRR):	6.5%

ENERGY CONSERVATION OPPORTUNITIES (ECO's) - BUILDING NO. 2521

ECO NO: VII D & IX A, C, D

ECO NAME: Improve lighting efficiency.

SUMMARY DATA (DEPENDENT):

KWH Savings: 2994 KWH/yr

Demand Savings: 13.3 KW/yr

Gas Savings: n/a MCF/yr

Cost Savings: \$\frac{\$212}{} /yr

Implementation Cost: \$ 866

Simple Payback: 4.1 Years

Savings to Investment: 2.75

Ratio (SIR):

ECO DESCRIPTION:

Currently, low efficiency lighting systems are in use. This ECO will update the lighting systems to improve efficiency while maintaining or increasing the current light levels. The existing lighting system and proposed retrofit action are as follows:

QTY	FIXTURE TYPE	ACTION
2	2-Lamp, 4' Fluor	Retrofit w/T8 lamps and electronic ballasts.
9	4-Lamp, 4' Fluor.	Retrofit w/T8 lamps and electronic ballasts.
10	Incand. downlight	Retrofit with compact fluor. lamps

COST SAVINGS CALCULATIONS:

(Refer to following Flex Output and Lighting Implementation Cost located in Appendix E)

Demand Savings = $(2.52 \, KW - 1.41 \, KW) (4 \, mo.x \$7.50 / KW + 8 \, mo.x \$6.25 / KW)$ = \$88.8 / yr

IMPLEMENTATION COSTS:

(Refer to following Flex Output)

LIFE CYCLE COST ANALYSIS:

(Refer to following ECIP Life Cycle Cost Summary)

PROJECT TITLE: FORT SAM HOUSTON DINING FACILITIES EEAP FISCAL YEAR 1994 DISCRETE PORTION NAME: BUILDING 2521 – ECO VII D. & IX A., C., D. – LIGHTING IMPROVEMENTS ANALYSIS DATE: NOVEMBER 1, 1993 ECONOMIC LIFE 15 PREPARER S. P. CLARK 1. INVESTMENT COSTS: A. CONSTRUCTION COST \$777 B. SIOH \$43 C. DESIGN COST \$47 C. DESIGN COST \$47 C. DESIGN COST \$47 C. DESIGN COST \$48 C. DESIGN COST \$48 C. SALVAGE VALUE OF EXISTING EQUIPMENT \$0 C. TOTAL COST (1A+1B+1C) \$866 C. SALVAGE VALUE OF EXISTING EQUIPMENT \$0 C. TOTAL INVESTMENT (1D-1E-1F) \$866 2. ENERGY SAVINGS (+)/COST(-): DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS: 'NOVEMBER 4, 1992 ENERGY COST SAVINGS ANNUAL\$ DISCOUNT DISCOUNTED	2F
ANALYSIS DATE: NOVEMBER 1, 1993 ECONOMIC LIFE 15 PREPARER S. P. CLARK 1. INVESTMENT COSTS: A. CONSTRUCTION COST \$777 B. SIOH \$43 C. DESIGN COST \$47 D. TOTAL COST (1A+1B+1C) \$866 E. SALVAGE VALUE OF EXISTING EQUIPMENT \$0 F. PUBLIC UTILITY COMPANY REBATE \$0 G. TOTAL INVESTMENT (1D-1E-1F) \$866 2. ENERGY SAVINGS (+)/COST(-): DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS: 'NOVEMBER 4, 1992 ENERGY COST SAVINGS ANNUAL \$ DISCOUNT DISCOUNTED	4
1. INVESTMENT COSTS: A. CONSTRUCTION COST	
A. CONSTRUCTION COST B. SIOH C. DESIGN COST D. TOTAL COST (1A+1B+1C) E. SALVAGE VALUE OF EXISTING EQUIPMENT F. PUBLIC UTILITY COMPANY REBATE G. TOTAL INVESTMENT (1D-1E-1F) S866 2. ENERGY SAVINGS (+)/COST(-): DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS: 'NOVEMBER 4, 1992 ENERGY ENERGY COST SAVINGS ANNUAL \$ DISCOUNT DISCOUNTED	
A. CONSTRUCTION COST B. SIOH C. DESIGN COST D. TOTAL COST (1A+1B+1C) E. SALVAGE VALUE OF EXISTING EQUIPMENT F. PUBLIC UTILITY COMPANY REBATE G. TOTAL INVESTMENT (1D-1E-1F) S866 2. ENERGY SAVINGS (+)/COST(-): DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS: 'NOVEMBER 4, 1992 ENERGY ENERGY COST SAVINGS ANNUAL \$ DISCOUNT DISCOUNTED	
B. SIOH C. DESIGN COST D. TOTAL COST (1A+1B+1C) E. SALVAGE VALUE OF EXISTING EQUIPMENT F. PUBLIC UTILITY COMPANY REBATE G. TOTAL INVESTMENT (1D-1E-1F) DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS: NOVEMBER 4, 1992 ENERGY C. DESIGN COST SAVINGS S866 \$0 \$866 \$1 \$0 \$866 \$1 \$1 \$1 \$1 \$1 \$1 \$1 \$1 \$1 \$1 \$1 \$1 \$1	
F. PUBLIC UTILITY COMPANY REBATE G. TOTAL INVESTMENT (1D-1E-1F) 2. ENERGY SAVINGS (+)/COST(-): DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS: 'NOVEMBER 4, 1992 ENERGY COST SAVINGS ANNUAL DISCOUNT DISCOUNTED	
G. TOTAL INVESTMENT (1D-1E-1F) \$866 2. ENERGY SAVINGS (+)/COST(-): DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS: 'NOVEMBER 4, 1992 ENERGY COST SAVINGS ANNUAL \$ DISCOUNT DISCOUNTED	
2. ENERGY SAVINGS (+)/COST(-): DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS: 'NOVEMBER 4, 1992 ENERGY COST SAVINGS ANNUAL \$ DISCOUNT DISCOUNTED	
DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS: 'NOVEMBER 4, 1992 ENERGY COST SAVINGS ANNUAL \$ DISCOUNT DISCOUNTED	
SOURCE \$/MBTU(1) MBTU/YR(2) SAVINGS(3) FACTOR(4) SAVINGS(5)	
A. ELEC \$10.55 4.26 \$45 11.77 \$529	
B. DIST \$0 13.83 \$0	
C. RESID \$0 16.15 \$0	
D. NG \$3.31 0.00 \$0 15.34 \$0	
E. PPG \$0 11.12 \$0	
F. COAL \$0 12.82 \$0 G. SOLAR \$0 11.12 \$0	
H. GEOTH \$0 11.12 \$0	
I. BIOMA \$0 11.12 \$0	
J. REFUS \$0 11.12 \$0	
K. WIND \$0 11.12 \$0	
L COOLING \$10.55 5.96 \$63 11.12 \$699	
M. DEMAND SAVINGS \$89 11.12 \$987	
N. TOTAL 10.22 \$197 \$2,216	
3. NON ENERGY SAVINGS (+) OR COST (-): A. ANNUAL RECURRING (+/-) \$15 1. DISCOUNT FACTOR (TABLE A) 11.1	
2. DISCOUNTED SAVINGS/COST (3A X 3A1) \$167	

B. NON RECURRING SAVINGS (+) OR COST(-)

	ITEM	SAVINGS(+) COST(-)(1)	YEAR OF OCCUR. (2)	DISCOUNT FACTOR(3)	DISCOUNTED SAV- INGS(+)COST(-)(4)			
a.	N/A	\$0	1	0.96	\$0			
b.	N/A	\$0	2	0.92	\$0			
C.	N/A	\$0	3 4	0.89	\$0			
d.	N/A		4	0.85	\$0			
e.	N/A		5	0.82	\$0			
f.	N/A	\$0	5 6	0.79	: \$0			
g.	N/A	\$0	7 8	0.76	\$0			
h.	N/A	\$0	8	0.73	\$0			
i.	N/A	\$0	9	0.7	\$0			
i.	N/A	\$0	10	0.68	\$0			
k.	N/A	\$0	11	0.65	\$0			
i.	N/A	\$0	12	0.62	\$0			
m.	N/A	\$0	13	0.6	\$0			
n.	N/A	\$0	14	0.58	\$0			
0.	N/A	\$0	15	0.56	\$0			
p.	TOTAL	\$0		-	\$0			
C. TOTAL NON ENERGY DISCOUNTED SAVINGS (3A2 + 3Bp4) \$167								
4. S	IMPLE PAYBAC	4.1_YEARS						
5. T	OTAL NET DISC	\$2,382						
6. S	AVINGS TO IN\	2.75						
7. A	DJUSTED INTE	RNAL RATE OF	RETURN (AII	RR):	11.3%			

BUILDING 2530 - CHILD CARE CENTER

Building 2530 is a single story stucco building which is utilized as an elementary education facility. This facility contains a small, 700 square feet kitchen and dining is in the individual classrooms.

The operating hours are 6:00 am to 6:00 pm, Monday thru Friday.

The lighting system is primarily fluorescent.

The mechanical system consists of water source heat pumps served by an evaporative condenser. Heating is provided by a gas fired boiler.

Hot water is provided to the kitchen by the domestic gas fired water heater. Dishwashing is accomplished using an automatic dishwasher with an electric hot water booster heater.

This facility was constructed in 1989 and the design included many energy efficient features. Therefore, the only recommended ECO's for this facility are to improve lighting efficiency (ie. VII. D and IX. B, C, D).

ENERGY CONSERVATION OPPORTUNITIES (ECO's) - BUILDING NO. 2530

ECO NO:

VII D & IX B, C, D

ECO NAME: Improve lighting efficiency.

SUMMARY DATA (DEPENDENT):

KWH Savings:

5,444 KWH/yr

Demand Savings:

9.1 KW/yr

Gas Savings:

n/a

MCF/yr

Cost Savings:

\$ 280 /yr

Implementation Cost:

\$ 591

Simple Payback:

2.1

Years

Savings to Investment:

5.36

Ratio (SIR):

ECO DESCRIPTION:

Currently, low efficiency lighting systems are in use. This ECO will update the lighting systems to improve efficiency while maintaining or increasing the current light levels. The existing lighting system and proposed retrofit action are as follows:

QTY	FIXTURE TYPE	. ACTION
10	4-Lamp, 4' Fluor.	Retrofit w/T8 lamps and electronic ballasts.
1	Incand. Exit	Replace w/LED exit fixture

COST SAVINGS CALCULATIONS:

(Refer to following Flex Output)

Demand Savings = $(1.92 \, \text{KW} - 1.16 \, \text{KW})(4 \, \text{mo.} \times \$7.50) \, \text{KW} + 8 \, \text{mo.} \$6.25 \, \text{KW})$ = \$60.80/yr

IMPLEMENTATION COSTS:

(Refer to following Flex Output and Lighting Implementation Cost located in Appendix E)

LIFE CYCLE COST ANALYSIS:

(Refer to following ECIP Life Cycle Cost Summary)

LOCATION:	FOF	RT SAM HOUST	ON	_REGION NO		PROJECT NO.	91109912F
PROJECT TITLE:	-	FORT SAM HO	USTON DININ	G FACILITIES I	EEAP	FISCAL YEAR	
DISCRETE PORTIO						TTING IMPROVE	MENIS
ANALYSIS DATE:	NOVEMBER	<u>1, 1993</u> EC	ONOMIC LIFE	15	PREPARER	S. P. CI	LAHK
1. INVESTMENT	COSTS:						
A. CONSTRUCTION B. SIOH C. DESIGN COST D. TOTAL COST (1) E. SALVAGE VALU	A+1B+1C)	G EQUIPMENT	\$530 \$29 \$32 \$591	 	:		
F. PUBLIC UTILITY G. TOTAL INVEST				\$0	\$591	-	
2. ENERGY SAVII	NGS (+)/COS	<u> </u>					
DATE OF NISTIR 8	5- 3273-X US	SED FOR DISCO	OUNT FACTOR	RS: <u>'N</u>	NOVEMBER 4, 1	992	
ENERGY SOURCE	COST \$/MBTU(1)	SAVINGS MBTU/YR(2)	ANNUAL \$ SAVINGS(3)	DISCOUNT FACTOR(4)	DISCOUNTED SAVINGS(5)	ס	
A. ELEC	\$10.55	7.78	\$82	11.77	\$966		
B. DIST			\$0	13.83	\$0		
C. RESID	\$3.31	0.00	\$0 \$0	16.15 15.34	\$0 \$0		
D. NG E. PPG	<u> </u>	0.00	\$0	11.12	\$0	•	
F. COAL			\$0	12.82	\$0		
G. SOLAR			\$0	11.12	\$0		
H. GEOTH			\$0	11.12	\$0		
I. BIOMA			\$0	11.12	\$0		
J. REFUS			\$0 \$0	11.12 11.12	\$0 \$0		
K. WIND L. COOLING	\$10.55	10.8	\$114	11.12	\$1,267		
M. DEMAND SAVIN		10.0	\$61	11.12	\$678		
N. TOTAL		18.58	\$257		\$2,911		
· · · · · · · · · · · · · · · · · · ·							
3. NON ENERGY	SAVINGS (+)	OR COST (-):	-				
A. ANNUAL RECUP 1. DISCOUNT FAC 2. DISCOUNTED S	TOR (TABLE		11.1	\$255			

B. NON RECURRING SAVINGS (+) OR COST(-)

6. SAVINGS TO INVESTMENT RATIO (SIR) 5/1G:

7. ADJUSTED INTERNAL RATE OF RETURN (AIRR):

	ITEM	SAVINGS(+) COST(-)(1)	YEAR OF OCCUR. (2)	DISCOUNT FACTOR(3)	DISCOUNTED SAV- INGS(+)COST(-)(4)		
a.	N/A	\$0	1	0.96	\$0		
b.	N/A	\$0	2	0.92	\$0		
C.	N/A	\$0	2 3 4	0.89	\$0		
d.	N/A	\$0	4	0.85	\$0		
е.	N/A	\$0	5	0.82	\$0		
f.	N/A	\$0	6	0.79	: \$0		
g.	N/A	\$0	7	0.76	\$0		
h.	N/A	\$0	8	0.73	\$0		
i.	N/A	\$0	9	0.7	\$0		
i.	N/A	\$0	10	0.68	\$0		
ķ.	N/A	\$ 0	11	0.65	\$0		
i.	N/A	\$0	12	0.62	\$0		
m.	N/A	\$0	13	0.6	\$0		
n.	N/A	\$0	14	0.58	\$0		
0.	N/A	\$0	15	0.56	\$0		
p.	TOTAL	\$0			\$0		
C. TOTAL NON ENERGY DISCOUNTED SAVINGS (3A2 + 3Bp4) \$255							
<u>4. S</u>	2.1_YEARS						
5. T	\$3,167						

5.36

16.3%

BUILDING 2652 - DINNER THEATRE

Building 2652 is a two story brick facility consisting of 31,000 square feet. This facility contains a full service kitchen and a large dinner theatre which consists of 3,600 square feet.

The operating hours are from 10:00 am to 12:00 am, Wednesday thru Saturday.

The lighting system is primarily fluorescent in the kitchen area and incandescent with dimming in the theatre.

The mechanical system consist of fan coil units served by an air cooled chiller. Heating is provided by gas fired duct heaters located in the plenum space above the theatre.

Hot water is provided to the kitchen by a gas fired water heater. Dishwashing is accomplished using an automatic dishwasher with an electric hot water booster heater.

The following ECO's are recommended for Building 2652:

- 1. IV. C.1) Add stop/start function to HVAC equipment
- 2. VII. D Reduce indoor/outdoor lighting to AEI levels
- 3. IX. A Replace incandescent lamps with compact fluorescents
- 4. IX. B Replace incandescent exit fixtures with LED
- 5. IX. C Replace standard lamps with energy saving lamps
- 6. IX. D Replace standard ballast with energy saving ballast

ENERGY CONSERVATION OPPORTUNITIES (ECO's) - BUILDING NO. 2652

ECO NO: IV. C. 1)

ECO NAME: Add stop/start function to HVAC equipment.

SUMMARY DATA (DEPENDENT):

KWH Savings: 41,114 KWH/yr

Demand Savings: 0 KW/yr

Gas Savings: 39.0 MCF/yr

Cost Savings: \$ 1,613 /yr

Implementation Cost: \$ 2,292

Simple Payback: 1.4 Years

Savings to Investment: 8.49

Ratio (SIR):

ECO DESCRIPTION:

Presently, the mechanical systems are not controlled during unoccupied times. This ECO analyzes the addition of timeclocks and relays to shut down the HVAC systems during unoccupied hours.

COST SAVINGS CALCULATIONS:

(Refer to following SimpCalc Output)

IMPLEMENTATION COSTS:

(Refer to following Cost Estimate)

MAINTENANCE COSTS:

Maintenance costs of \$15/year for each timeclock included in the LCCA for adjustments and failures.

LIFE CYCLE COST ANALYSIS:

(Refer to following ECIP Life Cycle Cost Summary)

LOCATION:	FOF	RT SAM HOUS		_REGION NO.		PROJECT NO. 91109912F
PROJECT TITLE:		FORT SAM HO				FISCAL YEAR1994
DISCRETE PORTI						CTION TO HVAC EQUIPMENT
ANALYSIS DATE:	NOVEMBER	1, 1993 EC	CONOMIC LIFE	15	PREPARER	S. P. CLARK
1. INVESTMENT	COSTS:					
A. CONSTRUCTION B. SIOH C. DESIGN COST D. TOTAL COST (*) E. SALVAGE VALUE. P. PUBLIC UTILITY	IA+1B+1C) JE OF EXISTIN COMPANY RI	EBATE	\$2,056 \$113 \$123 \$2,292	\$0 \$0	: 	
G. TOTAL INVEST	MENT (1D-1E	-1F)			\$2,292	
2. ENERGY SAVI		•	OUNT FACTOR	s: <u>'N</u> DISCOUNT	OVEMBER 4, 1	
SOURCE	\$/MBTU(1)	MBTU/YR(2)	SAVINGS(3)	FACTOR(4)	SAVINGS(5)	
A. ELEC	\$10.55	140.32	\$1,480	11.77	\$17,424	
B. DIST	<u> </u>	140.02	\$0	13.83	\$0	
C. RESID			\$0	16.15	\$0	
D. NG	\$3.31	40.21	\$133	15.34	\$2,042	
E. PPG		*****	\$0	11.12	\$0	
F. COAL			\$0	12.82	\$0	
G. SOLAR			\$0	11.12	\$0	
H. GEOTH			\$0	11.12	\$0	
I. BIOMA			\$0	11.12	\$0	
J. REFUS			\$0	11.12	\$0	
K. WIND			\$0	11.12	\$0	
L. OTHER M. DEMAND SAVIN	100		\$0	11.12	\$0	
N. TOTAL	103	180.53	\$0 \$1,613	11.12	\$0	
H. IOIAL		160.55	Φ1,013		\$19,466	
3. NON ENERGY	SAVINGS (+)	OR COST (-):	-			
A. ANNUAL RECUR		(\$30)				
1. DISCOUNT FAC 2. DISCOUNTED S			11.1	(\$333)		

B. NON RECURRING SAVINGS (+) OR COST(-)

	ITEM	SAVINGS(+) COST(-)(1)	YEAR OF OCCUR.(2)	DISCOUNT FACTOR (3)	DISCOUNTED SAV- INGS(+)COST(-)(4)
a.	N/A	\$0	1	0.96	\$0
b.	N/A	\$0	2	0.92	\$0
C.	N/A	\$0	3	0.89	\$0
d.	N/A	\$0	4	0.85	\$0
e.	N/A	\$0	5	0.82	\$0
f.	N/A		6	0.79	\$0
g.	N/A	\$0	7	0.76	\$0
h.	N/A		8	0.73	\$0
i.	N/A		9	0.7	\$0
j.	N/A	\$0	10	0.68	\$0
k.	N/A	\$0	11	0.65	\$0
I.	N/A	\$0	12	0.62	\$0
m.	N/A	\$0	13	0.6	\$0
n.	N/A	\$0	14	0.58	\$0
Ο.	N/A	\$0	15	0.56	\$0
p.	TOTAL	\$0		-	\$0
				•	

C. TOTAL NON ENERGY DISCOUNTED SAVINGS (3A2 + 3Bp4)	(\$333)
4. SIMPLE PAYBACK 1G/(2N3+3A+(3Bp1/ECONOMIC LIFE)):	1.4 YEARS
5. TOTAL NET DISCOUNTED SAVINGS (2N5+3C):	\$19,133
6. SAVINGS TO INVESTMENT RATIO (SIR) 5/1G:	8.35
7. ADJUSTED INTERNAL RATE OF RETURN (AIRR):	19.8%

ENERGY CONSERVATION OPPORTUNITIES (ECO's) - BUILDING NO. 2652

ECO NO: VIII D & IX A, B, C, D

ECO NAME: Improve lighting efficiency.

SUMMARY DATA (DEPENDENT):

KWH Savings: 8.090 KWH/yr

Demand Savings: 11.7 KW/yr

Gas Savings: n/a MCF/yr

Implementation Cost: \$ 1,588

Simple Payback: 3.9 Years

Savings to Investment: 2.89

Ratio (SIR):

ECO DESCRIPTION:

Currently, low efficiency lighting systems are in use. This ECO will update the lighting systems to improve efficiency while maintaining or increasing the current light levels. The existing lighting system and proposed retrofit action are as follows:

QTY	FIXTURE TYPE	ACTION
2	2-Lamp, 4" Fluor.	Retrofit w/T8 lamps and electronic ballasts.
12	4-Lamp, 4' Fluor.	Retrofit w/T8 lamps and electronic ballasts.
7	HID Downlight	None.
51	Incandescent downlight	None (diming required).
2	Incandescent exit	Replace w/LED exit fixture

COST SAVINGS CALCULATIONS:

(Refer to following Flex Output)

Demand Savings = $(7.721 \, KW - 6.743 \, KW) (4 \, mo.x \$7.50 / KW + 8 \, mo.x \$6.25 / KW)$ = \$78.24 / yr

IMPLEMENTATION COSTS:

(Refer to following Flex Output)

LIFE CYCLE COST ANALYSIS:

(Refer to following ECIP Life Cycle Cost Summary)

LOCATION:	FOF	RT SAM HOUST	ON	_REGION NO		PROJECT NO. 9110991
PROJECT TITLE:		FORT SAM HO	USTON DININ	G FACILITIES I	EEAP	FISCAL YEAR 199
DISCRETE PORTIC						TING IMPROVEMENTS
ANALYSIS DATE:	NOVEMBER	<u>1, 1993</u> EC	CONOMIC LIFE	15	_PREPARER	S. P. CLARK
1. INVESTMENT COSTS:						
A. CONSTRUCTION B. SIOH C. DESIGN COST D. TOTAL COST (1) E. SALVAGE VALUE	A+1B+1C)	G EQUIPMENT	\$1,424 \$78 \$85 \$1,588		:	
F. PUBLIC UTILITY	COMPANY RI	EBATE		\$0		
G. TOTAL INVEST	MENT (1D-1E	–1F)			\$1,588	<u></u>
2. ENERGY SAVIIIDATE OF NISTIR 8		•	DUNT FACTOR	ıs: <u>'N</u>	IOVEMBER 4, 1	992
ENERGY SOURCE	COST \$/MBTU(1)	SAVINGS MBTU/YR(2)	ANNUAL \$ SAVINGS(3)	DISCOUNT FACTOR(4)	DISCOUNTED SAVINGS(5)	
A. ELEC B. DIST C. RESID D. NG E. PPG F. COAL G. SOLAR H. GEOTH I. BIOMA J. REFUS K. WIND L. COOLING M. DEMAND SAVIN N. TOTAL	\$10.55 \$3.31 	11.69 0.00 15.92 27.61	\$123 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$168 \$78	11.77 13.83 16.15 15.34 11.12 12.82 11.12 11.12 11.12 11.12 11.12 11.12 11.12	\$1,452 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$1,868 \$870 \$4,189	
3. NON ENERGY A. ANNUAL RECUP 1. DISCOUNT FAC 2. DISCOUNTED S	RRING (+/-) CTOR (TABLE /	\$36 A)	11.1	\$400		

B. NON RECURRING SAVINGS (+) OR COST(-)

7. ADJUSTED INTERNAL RATE OF RETURN (AIRR):

٥		(,	•	
	ITEM	SAVINGS(+)	YEAR OF	DISCOUNT	DISCOUNTED SAV-
		COST(-)(1)	OCCUR.(2)	FACTOR(3)	INGS(+)COST(-)(4)
				• • •	
a.	N/A	\$0	1	0.96	<u>\$0</u>
b.	N/A	\$0	2	0.92	\$0
C.	N/A	\$0	3	0.89	\$0
d.	N/A	\$0	4	0.85	\$0
e.	N/A	\$0	5	0.82	\$0
f.	N/A	\$0	6	0.79	: \$0
g.	N/A	\$0	7	0.76	\$0
h.	N/A	\$0	8	0.73	\$0
i.	N/A	\$0	9	0.7	\$0
j.	N/A	\$0	10	0.68	\$0
k.	N/A	\$0	11	0.65	\$0
I.	N/A	\$0	12	0.62	\$0
m.	N/A	\$0	13	0.6	\$0
n.	N/A	\$0	14	0.58	\$0
Ο.	N/A	\$0	15	0.56	\$0
p.	TOTAL	\$0			\$0
C. TOTAL NON ENERGY DISCOUNTED SAVINGS (3A2 + 3Bp4) \$400					
4. SIMPLE PAYBACK 1G/(2N3+3A+(3Bp1/ECONOMIC LIFE)): 3.9 YEARS					
5. TOTAL NET DISCOUNTED SAVINGS (2N5+3C): \$4,589					
6. SAVINGS TO INVESTMENT RATIO (SIR) 5/1G: 2.89					

11.6%

BUILDING 2841 - ACADEMY DINING

Building 2841 is four story facility consisting of 363,000 square feet. This facility contains a full service kitchen and a large dining area which consists of 8,300 square feet.

The operating hours are from 10:00 am to 1:00 pm, Monday thru Friday.

The lighting system is primarily fluorescent in the kitchen area and incandescent with dimming in the bar and dining areas.

The mechanical system consists of multi-zone air handling units served by water cooled centrifugal chillers. Heating is provided by gas fired boilers.

Hot water is provided to the kitchen by a gas fired boiler located in the basement. Dishwashing is accomplished using an automatic dishwasher with an electric hot water booster heater.

The following ECO's are recommended for Building 2841:

- 1. IV. A Night setback/setup thermostat
- 2. VII. C Remove unneeded lamps or fixtures
- 3. VII. D Reduce indoor/outdoor lighting to AEI levels
- 4. IX. A Replace incandescent lamps with compact fluorescents
- 5. IX. B Replace incandescent exit fixtures with LED
- 6. IX. C Replace standard lamps with energy saving lamps
- 7. IX. D Replace standard ballast with energy saving ballast
- 8. IX. E Replace existing fixture with high efficiency fixtures

ENERGY CONSERVATION OPPORTUNITIES (ECO's) - BUILDING NO. 2841

ECO NO: IV. A

ECO NAME: Night setback/setup thermostats

SUMMARY DATA (DEPENDENT):

KWH Savings: 2,000 KWH/yr

Demand Savings: 0 KW/yr

Gas Savings: 23.5 MCF/yr

Cost Savings: \$ 152 /yr

Implementation Cost: \$ 242

Simple Payback: 1.6 Years

Savings to Investment: 8.59

Ratio (SIR):

ECO DESCRIPTION:

Currently manual thermostats are used to control the existing multizone air handling unit which serves the dining, kitchen and bar areas. The multizone unit is in operation 24 hours per day.. This ECO analyzes the installation of a programmable night setback/setup thermostat to reduce energy consumption during unoccupied periods.

COST SAVINGS CALCULATIONS:

(Refer to following SimpCalc Output)

IMPLEMENTATION COSTS:

(Refer to following Cost Estimate)

MAINTENANCE COSTS:

Maintenance costs of \$5.00/year is included in the LCCA for programming, battery replacement and failures.

LIFE CYCLE COST ANALYSIS:

(Refer to following ECIP Life Cycle Cost Summary)

LOCATION:		RT SAM HOUST		_REGION NO		PROJECT NO		
PROJECT TITLE: FORT SAM HOUSTON DINING FACILITIES EEAP FISCAL YEAR 1994 DISCRETE PORTION NAME: BUILDING 2841 - ECO IV. A NIGHT SETBACK/SETUP THERMOSTAT								
DISCRETE POR			ONOMIC LIFE		PREPARER	S. P. Cl		
ANALYSIS DATE	E: NOVEMBER	1, 1993 EC	ONOMIC LIFE	15		3. F. Cl	-A/1/K	
1. INVESTMEN	1. INVESTMENT COSTS:							
A. CONSTRUC' B. SIOH C. DESIGN COS D. TOTAL COST E. SALVAGE VA F. PUBLIC UTILI	\$217 \$12 \$13 \$242		: 					
	STMENT (1D-1E				 \$242			
	2. ENERGY SAVINGS (+)/COST(-): DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS: 'NOVEMBER 4, 1992							
ENERGY SOURCE	COST \$/MBTU(1)	SAVINGS MBTU/YR(2)	ANNUAL \$ SAVINGS(3)	DISCOUNT FACTOR(4)	DISCOUNTED SAVINGS(5))		
A. ELEC	\$10.55	6.83	\$72	11.77	\$848			
B. DIST			\$0	13.83	\$0			
C. RESID			\$0	16.15	\$0			
D. NG E. PPG	\$3.31	24.23	\$80	15.34	\$1,230			
F. COAL			<u>\$0</u> \$0	11.12 12.82	\$0 \$0			
G. SOLAR			\$0	11.12	\$0			
H. GEOTH			\$0	11.12	\$0			
I. BIOMA			\$0	11.12	\$0			
J. REFUS			\$0	11.12	\$0			
K. WIND			\$0	11.12	\$0			
L. OTHER	(INICC	•	\$0	11.12	\$0			
M. DEMAND SAY	VINGS	31.06	<u>\$0</u> \$152	11.12	\$0			
H. IOIAL		31.00	Ψ132		\$2,078			
3. NON ENERGY SAVINGS (+) OR COST (-): A. ANNUAL RECURRING (+/-) (\$10) 1. DISCOUNT FACTOR (TABLE A) 11.1								
2. DISCOUNTED SAVINGS/COST (3A X 3A1) (\$111)								

B. NON RECURRING SAVINGS (+) OR COST(-)

	ITEM	SAVINGS(+) COST(-)(1)	YEAR OF OCCUR. (2)	DISCOUNT FACTOR(3)	DISCOUNTED SAV- INGS(+)COST(-)(4)	
a.	N/A	\$0	1	0.96	\$0_	
b.	N/A	\$0	2	0.92	\$0	
C.	N/A	\$0	3 4	0.89	\$0	
d.	N/A		4	0.85	\$0	
e.	N/A	\$0	5	0.82	\$0	
f.	N/A	\$0	5	0.79	\$0	
g.	N/A	\$0	7	0.76	\$0	
ĥ.	N/A	\$0	8	0.73	\$0	
i.	N/A	\$0	9	0.7	\$0	
j.	N/A	\$0	10	0.68	\$0	
k.	N/A	\$0	11	0.65	\$0	
1.	N/A	\$0	12	0.62	\$0	
m.	N/A	\$0	13	0.6	\$0	
n.	N/A	\$0	14	0.58	\$0	
Ο.	N/A	\$0	15	0.56	\$0	
p.	TOTAL	\$0			\$0	
C.	C. TOTAL NON ENERGY DISCOUNTED SAVINGS (3A2 + 3Bp4) (\$111)					
4. SIMPLE PAYBACK 1G/(2N3+3A+(3Bp1/ECONOMIC LIFE)): 1.7 YEARS						
5. TOTAL NET DISCOUNTED SAVINGS (2N5+3C): \$1,967						
6. S	6. SAVINGS TO INVESTMENT RATIO (SIR) 5/1G: 8.13					
7. A	7. ADJUSTED INTERNAL RATE OF RETURN (AIRR): 19.6%					

ENERGY CONSERVATION OPPORTUNITIES (ECO's) - BUILDING NO. 2841

ECO NO: VII C, D & IX A, B, C, D, E.

ECO NAME: Improve lighting efficiency.

SUMMARY DATA (DEPENDENT):

KWH Savings: 111,658 KWH/yr

Demand Savings: 185.9 KW/yr

Gas Savings: n/a MCF/yr

Cost Savings: \$ 6,903 /yr

Implementation Cost: \$ 4,343

Simple Payback: ______6 Years

Savings to Investment: 18.1

Ratio (SIR):

ECO DESCRIPTION:

Currently, low efficiency lighting systems are in use. This ECO will update the lighting systems to improve efficiency while maintaining or increasing the current light levels. The existing lighting system and proposed retrofit action are as follows:

QTY	FIXTURE TYPE	ACTION
16	2-Lamp, 4' Fluor. cove	Remove all.
241	Incandescent downlight	Remove 139 incandescent fixtures and replace w/52 2-Lamp, 4' Fluor.
12	Fan/Light	None
29	2-Lamp, 4' Fluor	Retrofit w/T8 lamps and electronic ballasts.
34	4-Lamp, 4' Fluor	Retrofit w/T8 lamps and electronic ballasts.
7	Incandescent hood	None.
4	Incandescent exit	Replace with LED exit fixture.

COST SAVINGS CALCULATIONS:

(Refer to following Flex Output)

Demand Savings = $(31.26 \, \text{KW} - 15.77 \, \text{KW}) (4 \, \text{mo.} x \$7.50 / \text{KW} + 8 \, \text{mo.} x \$6.25 / \text{KW})$ = \$1,239.20 / yr

IMPLEMENTATION COSTS:

(Refer to following Flex Output and Lighting Implementation Cost located in Appendix E)

LIFE CYCLE COST ANALYSIS:

Refer to following ECIP Life Cycle Cost Summary)

LOCATION:	FOR	RT SAM HOUST	ON	_REGION NO.		_PROJECT NO	91109912F
PROJECT TITLE:		FORT SAM HO	USTON DINING	G FACILITIES E	EAP	FISCAL YEAR	
DISCRETE PORTIO						LIGHTING IMPRO	
ANALYSIS DATE:	NOVEMBER	<u>1, 1993 </u>	ONOMIC LIFE	15	PREPARER	S. P. CI	_ARK
1. INVESTMENT COSTS:							
I. INVESTIGITATION	0010.						
A. CONSTRUCTION B. SIOH C. DESIGN COST D. TOTAL COST (1			\$3,895 \$214 \$234 \$4,343	- - -	:		
E. SALVAGE VALU		IG EQUIPMENT		- \$0			
F. PUBLIC UTILITY				\$0			
G. TOTAL INVESTI	MENT (1D-1E	-1F)			\$4,343	<u> </u>	
		•				·.	
2. ENERGY SAVII		<u> </u>	OUNT FACTOR	S: <u>'N</u>	OVEMBER 4,	1992	
	0007	041/11/00	A	DIOCOL INIT	DICCOL NITE	.	
ENERGY SOURCE	COST \$/MBTU(1)	SAVINGS MBTU/YR(2)	ANNUAL \$ SAVINGS(3)	DISCOUNT FACTOR(4)	DISCOUNTE SAVINGS(5)	U	
A. ELEC	\$10.55	158.61	\$1,673	11.77	\$19,695	-	
B. DIST			\$0	13.83	\$0		
C. RESID			<u>\$0</u>	16.15	\$0		
D. NG	\$3.31	0.00	<u>\$0</u>	15.34	\$0		
E. PPG			\$0	11.12	\$0		
F. COAL			\$0	12.82	\$0		
G. SOLAR			\$0	11.12	\$0		
H. GEOTH			\$0_	11.12	\$0		
I. BIOMA			\$0	11.12	\$0		
J. REFUS		***************************************	\$0_	11.12	\$0		
K. WIND			\$0_	11.12	\$0		
L. COOLING	\$10.55	222.48	\$2,347	11.12	\$26,100		
M. DEMAND SAVIN	NGS		<u>\$1,239</u>	11.12	\$13,780		
N. TOTAL		381.09_	\$5,260		\$59,576	-	
3. NON ENERGY SAVINGS (+) OR COST (-): A. ANNUAL RECURRING (+/-) \$1,703 1. DISCOUNT FACTOR (TABLE A) 11.1 2. DISCOUNTED SAVINGS/COST (3A X 3A1) \$18,903							
		•					

B. NON RECURRING SAVINGS (+) OR COST(-)

	ITEM	SAVINGS(+) COST(-)(1)	YEAR OF OCCUR.(2)	DISCOUNT FACTOR(3)	DISCOUNTED SAV- INGS(+)COST(-)(4)
a.	N/A	\$0	<u>1</u>	0.96	\$0
b.	N/A	\$0	2	0.92	\$0
C.	N/A	\$0	3	0.89	\$0
d.	N/A	\$0	4	0.85	\$0
e.	N/A	\$0	5	0.82	\$0
f.	N/A	\$0	6	0.79	: \$0
g.	N/A	\$0	7	0.76	\$0
ĥ.	N/A	\$0	8	0.73	\$0
i.	N/A	\$0	9	0.7	\$0
i.	N/A	\$0	10	0.68	\$0
k.	N/A	\$0	11	0.65	\$0
1.	N/A	\$0	12	0.62	\$0
m.	N/A	\$0	13	0.6	\$0
n.	N/A	\$0	14	0.58	\$0
Ο.	N/A	\$0	15	0.56	\$0
p.	TOTAL	\$0			\$0

C. TOTAL NON ENERGY DISCOUNTED SAVINGS (3A2 + 3Bp4)	<u>\$18,903</u>
4. SIMPLE PAYBACK 1G/(2N3+3A+(3Bp1/ECONOMIC LIFE)):	0.6 YEARS
5. TOTAL NET DISCOUNTED SAVINGS (2N5+3C):	<u>\$78,479</u>
6. SAVINGS TO INVESTMENT RATIO (SIR) 5/1G:	18.07
7. ADJUSTED INTERNAL RATE OF RETURN (AIRR):	26.1%

BUILDING 5107 - DINING HALL

Building 5107 is a single story frame building consisting of 3,400 square feet. This facility consists of a full service kitchen and a large dining area.

The operating hours for this facility are from 5:30 am to 6:30 pm, seven days per week.

The lighting system is primarily fluorescent.

The mechanical system consists of window air conditioners. Heating is provided by floor mounted gas furnaces.

Hot water is provided to the kitchen by a gas fired water heater. Dishwashing is accomplished using an automatic dishwasher with an electric hot water booster heater.

The following ECO's are recommended for Building 5107:

1.	IV. C. 1) -	Add stop/start function to HVAC equipment
2.	VII. D	Reduce indoor/outdoor lighting to AEI levels
3.	IX. A -	Replace incandescent lamps with compact fluorescents
4.	IX. B -	Replace incandescent exit fixtures with LED
5.	IX. C -	Replace standard lamps with energy saving lamps
6.	IX. D -	Replace standard ballast with energy saving ballast

ENERGY CONSERVATION OPPORTUNITIES (ECO's) - BUILDING NO. 5107

ECO NO: IV. C. 1

ECO NAME: Add stop/start function for HVAC equipment.

SUMMARY DATA (DEPENDENT):

KWH Savings: 22,613 KWH/yr

Demand Savings: 0 KW/yr

Gas Savings: n/a MCF/yr

Cost Savings: \$\\ \\$14 \quad /yr

Implementation Cost: \$ 425

Simple Payback: ______5 Years

Savings to Investment: 22.56

Ratio (SIR):

ECO DESCRIPTION:

Presently, the mechanical systems are not controlled during unoccupied times. This ECO analyzes the addition of timeclocks and relays to shut down the HVAC systems during unoccupied hours.

COST SAVINGS CALCULATIONS:

(Refer to following SimpCalc Output)

IMPLEMENTATION COSTS:

(Refer to following Cost Estimate)

MAINTENANCE COSTS:

Maintenance costs of \$15/year for each timeclock included in the LCCA for adjustments and failures.

LIFE CYCLE COST ANALYSIS:

(Refer to following ECIP Life Cycle Cost Summary)

LOCATION:		RT SAM HOUST		_REGION NO		PROJECT NO	
PROJECT TITLE:		FORT SAM HO	USTON DININ	G FACILITIES	EEAP	FISCAL YEAR	
DISCRETE PORTIC						CTION TO HVAC	
ANALYSIS DATE:	NOVEMBER	1, 1993 EC	CONOMIC LIFE	15	PREPARER	S. P. C	_AHK
1. INVESTMENT C	COSTS:						
A. CONSTRUCTION B. SIOH C. DESIGN COST D. TOTAL COST (1) E. SALVAGE VALU F. PUBLIC UTILITY G. TOTAL INVESTME	A+1B+1C) E OF EXISTIN COMPANY RI	EBATE	\$381 \$21 \$23 \$425	\$0 \$0	 \$425		
2. ENERGY SAVIN			OUNT FACTOR	IS: 'N	IOVEMBER 4, 1	992	
ENERGY SOURCE	COST \$/MBTU(1)	SAVINGS MBTU/YR(2)	ANNUAL \$ SAVINGS(3)	DISCOUNT FACTOR(4)	DISCOUNTED SAVINGS(5))	
A. ELEC	\$10.55	77.18	\$814	11.77	\$9,584		
B. DIST			\$0	13.83	\$0		
C. RESID			\$0	16.15	\$0		
D. NG	\$3.31	0.00	\$0	15.34	\$0		
E. PPG			\$0	11.12	\$0		
F. COAL			\$0	12.82	\$0		
G. SOLAR			\$0	11.12	\$0		
H. GEOTH			\$0	11.12	\$0		
I. BIOMA			\$0 \$0	11.12 11.12	\$0 \$0		
J. REFUS K. WIND			\$0	11.12	\$0 \$0		
L. OTHER			\$0	11.12	\$0		
M. DEMAND SAVIN	ıgs		\$0	11.12	\$0		
N. TOTAL		77.18	\$814	11.121	\$9,584		-
3. NON ENERGY S		OR COST (-):					
A. ANNUAL RECUR 1. DISCOUNT FAC 2. DISCOUNTED S	TOR (TABLE A		11.1	\$167_			

B. NON RECURRING SAVINGS (+) OR COST(-)

	17514	0.43/15/00/+3	VEAD OF	DISCOLINIT	DISCOUNTED SAV-
	ITEM	SAVINGS(+)		DISCOUNT FACTOR(3)	INGS(+)COST(-)(4)
		COST(-)(1)	OCCUR.(2)	PACTON(3)	1143(+)0031(-)(4)
a.	N/A	\$0	1	0.96	\$0
b.	N/A	\$0	2	0.92	\$0
C.	N/A	\$0	3 4	0.89	· \$0
d.	N/A	\$0	4	0.85	\$0
e.	N/A	\$0	<u>5</u>	0.82	\$0
f.	N/A	\$0	6	0.79	: \$0
g.	N/A	\$0	7	0.76	\$0
ĥ.	N/A	\$0	8	0.73	\$0
i.	N/A	\$0	9	0.7	\$0
j.	N/A	\$0	10	0.68	\$0
k.	N/A	\$0	11	0.65	\$0
I.	N/A	\$0	12	0.62	\$0
m.	N/A	\$0	13	0.6	\$0
n.	N/A	\$0	14	0.58	\$0
Ο.	N/A	\$0	15	0.56	\$0
p.	TOTAL	\$0			\$0
C.	TOTAL NON E	4)			
4. S	IMPLE PAYBA	0.5 YEARS			
5. TOTAL NET DISCOUNTED SAVINGS (2N5+3C):					\$9,417
6. S	AVINGS TO IN	22.17			
7. A	DJUSTED INTI	27.9%			

ENERGY CONSERVATION OPPORTUNITIES (ECO's) - BUILDING NO. 5107

ECO NO: VII D & IX A, B, C, D

ECO NAME: Improve lighting efficiency.

SUMMARY DATA (DEPENDENT):

KWH Savings: 12,962 KWH/yr

Demand Savings: 18.23 KW/yr

Gas Savings: n/a MCF/yr

Cost Savings: \$ 654 /yr

Implementation Cost: \$ 2,119

Simple Payback: <u>3.2</u> Years

Savings to Investment: 3.49

Ratio (SIR):

ECO DESCRIPTION:

Currently, low efficiency lighting systems are in use. This ECO will update the lighting system to improve efficiency while maintaining or increasing lighting levels. The existing lighting system and proposed retrofit action are as follows:

QTY	FIXTURE TYPE	ACTION
46	2-Lamp, 4' Fluor.	Retrofit w/T8 lamps and electronic ballasts.
2	Bare incandescents.	None.
3	Incandescent exit	Replace w/LED exit fixture

COST SAVINGS CALCULATIONS:

(Refer to following Flex Output)

Demand Savings = (4.976 KW - 3.457 KW)(4 mo.x\$7.50/KW + 8 mo.x\$6.25/KW)= \$121.52/yr

IMPLEMENTATION COSTS:

(Refer to following Flex Output and Lighting Implementation Cost located in Appendix E)

LIFE CYCLE COST ANALYSIS:

(Refer to following ECIP Life Cycle Cost Summary)

LOCATION: PROJECT TI DISCRETE P ANALYSIS D	TLE: PORTION NAME:		USTON DININ	VII D. & IX A., E	EAP	PROJECT NO. FISCAL YEAR HTING IMPROVE S. P. C	1994 MENTS
A. CONSTRI B. SIOH C. DESIGN C D. TOTAL CO E. SALVAGE F. PUBLIC U	ENT COSTS: UCTION COST COST OST (1A+1B+1C) VALUE OF EXISTIN TILITY COMPANY RI VESTMENT (1D-1E	EBATE	\$1,900 \$105 \$114 \$2,119	\$0 \$0	 \$2,119	·	
	SAVINGS (+)/COST STIR 85-3273-X US COST \$/MBTU(1)		DUNT FACTOF ANNUAL \$ SAVINGS(3)	RS: <u>'N</u> DISCOUNT FACTOR(4)	DISCOUNTERSAVINGS(5)		
A. ELEC B. DIST C. RESID D. NG E. PPG	\$10.55	0.00	\$192 \$0 \$0 \$0 \$0	11.77 13.83 16.15 15.34 11.12	\$2,264 \$0 \$0 \$0 \$0 \$0 \$0		
F. COAL G. SOLAR H. GEOTH I. BIOMA J. REFUS K. WIND L. COOLING M. DEMAND		26.01	\$0 \$0 \$0 \$0 \$0 \$0 \$274 \$122	12.82 11.12 11.12 11.12 11.12 11.12 11.12 11.12	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$3,051 \$1,351		
A. ANNUAL F	ERGY SAVINGS (+) RECURRING (+/-) IT FACTOR (TABLE / ITED SAVINGS/COS	\$66 \\	\$588 	\$733	<u>\$6,666</u>		·

B. NON RECURRING SAVINGS (+) OR COST(-)

7. ADJUSTED INTERNAL RATE OF RETURN (AIRR):

B. Hold in East in India of the India						
ITEM	SAVINGS(+) COST(-)(1)	YEAR OF OCCUR.(2)	DISCOUNT FACTOR(3)	DISCOUNTED SAV- INGS(+)COST()(4)		
a. N/A	\$0	. 1	0.96	\$0		
b. N/A	\$0	2	0.92	\$0		
c. N/A	\$0	3	0.89	\$0		
d. N/A	\$0	4	0.85	\$0		
e. N/A	\$0	5	0.82	\$0		
f. N/A	\$0	6	0.79	: \$0		
g. N/A	\$0	7	0.76	\$0		
h. N/A	\$0	8	0.73	\$0		
i. N/A	\$0	9	0.7	\$0		
j. N/A	\$0	10	0.68	\$0		
k. N/A	\$0	11	0.65	\$0		
I. N/A	\$0	12	0.62	\$0		
m. N/A	\$0	13	0.6	\$0		
n. N/A	\$0	14	0.58	\$0		
o. N/A	\$0	15	0.56	\$0		
p. TOTAL	\$0			\$0		
C. TOTAL NO	\$733					
A. SIMPLE PAY	3.2 YEARS					
5. TOTAL NET I	\$7,399					
6. SAVINGS TO INVESTMENT RATIO (SIR) 5/1G: 3.4						

13.0%