

Hierarchical Task Allocation and Planning for Multi-Robots under Hierarchical Temporal Logic Specifications

Xusheng Luo¹, Shaojun Xu², Ruixuan Liu¹ and Changliu Liu¹
¹Carnegie Mellon University, ²Zhejiang University

Introduction

Motivation:

• Linear temporal logic (LTL) is expressive for long-term tasks but struggles with computational scalability.

Task: Pick up five keys in order to pass through corresponding doors before eventually reaching a goal.

Conversion from LTL to automaton required 32 minutes (Intel i7 CPU and 32-GB RAM)

Hierarchical sc-LTL Luo et al. Arxiv 2024

- Hierarchical syntactically co-safe LTL (sc-LTL) improves computational efficiency by structuring the specifications in a hierarchical manner.
- There are currently no planning algorithms for hierarchical sc-LTL that explicitly account for inter-robot interactions.

Contribution: To the best of knowledge, our work is **the first one** that can tackle multi-robot collaboration under hierarchical LTL specifications.

Problem Formulation

Hierarchical sc-LTL for multi-robot pickup and delivery:

Figure 1: Topological map of the supermarket.

- A type 1 robot gathers items from the health, grocery, electronics and pet sections in any order;
- Either a type 2 robot or a type 3 robot gathers items from the outdoor section;
- After the items are delivered to the packing area, all robots eventually return to the dock.

Hierarchical sc-LTL:

Problem formulation: Given domain of multi-robot navigation or manipulation and a task represented by hierarchical sc-LTL specifications, the goal is to generate a satisfying plan.

Decomposition-based Planning

Overview:

Task allocation

What robot to do which subtask at what time step (e.g., robot 1 of type 1 reaches pet section at time 10)

Mixed Integer Linear Programming (MILP)

Motion planning

How to carry out the subtask while abiding by the temporal relations.

Task decomposition:

- Extract the temporal relations between sub-tasks for each specification;
- Deduce the temporal relations between sub-tasks across different specifications to construct the task network;

Figure 2: Sub-tasks along with temporal relations in specification $\phi(2,2)$.

Task network:

• Sub-tasks inherit the temporal relations of their respective composite propositions at the upper level.

Figure 3: Task network consisting of all sub-tasks at the lowest level.

Simulation Results

Navigation:

task	l_{std}	$l_{ m hier}$	$\mathcal{A}_{ ext{std}}$	$\mathcal{A}_{ ext{hier}}$	$t_{ m std}$	$t_{ m hier}$	$c_{ m std}$	$C_{ m hier}$
1	51	35	(387, 13862)	(33, 45)	126.1 ± 2.7	18.4±0.8	289.3±3.0	237.5±3.3
2	45	19	(12, 63)	(20, 28)	30.8 ± 0.5	24.8±0.4	115.6±1.9	114.8±1.6
3	35	27	(113, 1891)	(35, 101)	25.8 ± 1.8	21.4±0.5	148.1 ± 2.1	147.7±2.1

Table 1: Comparative results. l_{std} , l_{hier} : length of standard and hierarchical sc-LTL formulas, \mathcal{A} : size of automata (nodes, edges), t: runtimes (seconds), c: plan horizons.

Manipulation:

Figure 4: Collaborative construction of LEGO models. Time: (a) 4.9s (b) 4.8s