

CIA	-
Bookmarks	Week 3 > Week 3 Quiz > Week 3 Quiz Week 3 Quiz
 Machine Learning Course: Getting Started 	Multiple Choice 1/1 point (graded) Assume that $y\sim N(Xw,\sigma^2I)$ is the likelihood model for the problem we
▶ Week 1	are considering. Then the MAP solution $w_{MAP} = rg \max_w \ln p(w y,X)$ is: (1) always the same, and (2) unbiased, for any prior $p(w)$.
▶ Week 2	(1) TRUE, (2) FALSE
▼ Week 3	(1) TRUE, (2) TRUE
Lecture 5 Bayesian Linear Regression	(1) FALSE, (2) TRUE
Lecture 6 Sparse Linear Regression	(1) FALSE, (2) FALSE ✓
Week 3 Quiz Quiz due Apr 11, 2017 07:30 MYT	
Week 3 Project: Linear Regression Project due Apr 11, 2017 07:30 MYT	Submit You have used 1 of 1 attempt
Week 3 Discussion Questions	Checkboxes 1/1 point (graded) Which of the following are MAP solutions of a model with likelihood
▶ Week 4	p(y w,X) and prior $p(w)$?
▶ Week 5	$ ightharpoonup rg \max_w \ln p(y,w X)$
▶ Week 6	$ extstyle ext{arg max}_w \ln[p(y w,X)p(w)]$
	$lacksquare \ rg \max_w \ln p(w X)$
	$lacksquare rg \max_w \ln p(y w,X)$
	$ extbf{ extit{@}} rg \max_w \ln p(w X,y)$
	✓

Numerical Input

2.0/2.0 points (graded)

Let the vector $w\in\mathbb{R}^3$ have a Gaussian distribution $w\sim N(\mu,\Sigma)$ where $\mu=[1,~2,~3]^T$ and $\Sigma=\mathrm{diag}(1,~1,~2)$.

1. The mean of $w_1 + 2w_2 + 3w_3 = ext{enter below}$

2. The variance of $w_1 + 2w_3 = {
m enter \ below}$

This question tests a fundamental property of the Gaussian distribution that could be considered a probability prerequisite. The information is not directly from the slides, but is very easily found online.

Submit

You have used 1 of 1 attempt

Multiple Choice

1/1 point (graded)

For a model with likelihood p(y|w,X) and prior p(w), given the training pairs (y,X) we test a new observation (y_0,x_0) by predicting y_0 given x_0 . To compute this predictive distribution we need to calculate $p(y_0|w,x_0,y,X)$.

Submit

You have used 1 of 1 attempt

(y,x)	learning for linear regression can be treated as a clever way to ntially enlarge the training data by measuring new observation pairs . Which of the following are NOT active learning strategies?
✓ F	Pick $m{x}$ uniformly at random from the choices and measure $m{y}$
	Pick $m{x}$ to significantly reduce uncertainty according to some measure
✓ F	Pick $m{x}$ by asking someone (e.g., an expert) for advice and measure $m{y}$
✓ P	Pick $oldsymbol{x}$ for which we were the most incorrect in the prediction of $oldsymbol{y}$
~	
Sub	You have used 1 of 1 attempt
0/1 poi For $oldsymbol{X}$ the lin	kboxes Int (graded) Int $n imes d$ matrix and y an n -dimensional vector, it is possible that ear system $y = Xw$ may have multiple solutions when
· r	. 1
	n < d
	$n < d$ $n \ge d$
ОТ	$n \geq d$
ОТ	$n \geq d$ The null space of $oldsymbol{X}$ is empty
	$n \geq d$ The null space of X is empty XX^T is invertible
Sub	$n \geq d$ The null space of $oldsymbol{X}$ is empty $oldsymbol{X} oldsymbol{X}^T$ is invertible

ypprox Xw has the smallest ℓ_2 norm among all solutions. True False You have used 1 of 1 attempt Submit Checkboxes 1/1 point (graded) Which of the following will likely give a sparse solution for w? $extbf{ extit{ iny arg min}}_w \|y - Xw\|_2^2 + \lambda \|w\|_{1/2}$ $lacksquare rg \min_{w} \|y - Xw\|_2^2 + \lambda \|w\|_3^3$ $extit{ } extit{ } ext{arg min}_{w} \, \|y - Xw\|_{1} + \lambda \|w\|_{3/4}$ Submit You have used 1 of 1 attempt **Multiple Choice** 1/1 point (graded) For an optimization problem of the form $rg \min_{w} \|y - Xw\|^2 + \lambda \|w\|_p$ the values of \boldsymbol{p} for which we can NOT guarantee an optimal solution are: p>2 p < 1
✓</p> 0 1

Submit

You have used 1 of 1 attempt

© All Rights Reserved

© 2012-2017 edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

