Name	Period	
	 	_

FACTORING POLYNOMIALS: CLASSWORK/PRACTICE PACKET

Lesson 1:	Using the Greatest Common Factor and the Distributive	pg. 3
	Property to Factor Polynomials	
Lesson 2:	Solving Literal Equations by Factoring	pg. 5
Lesson 3:	Finding Factors, Sums, and Differences	pg. 6
Lesson 4:	Factoring Trinomials of the Form $x^2 + bx + c$	pg. 7
Lesson 5:	Factoring Binomials that are the Difference of Two Perfect Squares	pg. 9
Review:	WHAT AM I? HOW DO I FACTOR?	pg. 10
	More Review	pg. 11
Lesson 6:	Prime Polynomials	pg. 13
Lesson 7:	Factoring Expressions Completely	pg. 14
	Factoring Expressions with Higher Powers	
Lesson 8:	Factoring Trinomials of the form $ax^2 + bx + c$, where $a \ne 1$	pg. 15
Review	More Practice	pg. 16-30
	Factoring with Pizzazz worksheets	

Lesson 1: Factoring using the Greatest Common Factor

Factor each expression by factoring out the GCF.

$$1.) xy - xz$$

2.)
$$9x^2 - 3x$$
 3.) $21b - 15a$

3.)
$$21b - 15a$$

4.)
$$27y^3 + 18y^2$$

4.)
$$27y^3 + 18y^2$$
 5.) $12x^2 - 16x$ **6.)** $28x^5 - 7x^2$

6.)
$$28x^5 - 7x^2$$

7.)
$$2x^2y - 2xy$$

8.)
$$8m^3 + 16m^2n$$

7.)
$$2x^2y - 2xy$$
 8.) $8m^3 + 16m^2n$ **9.)** $4b^3 + 2b^2 + 8b$

Factor each expression by factoring out the GCF.

10.)
$$x(x+2) + 7(x+2)$$

11.)
$$2x(x+4) - 3(x+4)$$

12.)
$$4x(x-3y)-2(x-3y)$$

13.)
$$5a(2a-3b)+6(2a-3b)$$

14.)
$$(3n+1)(4n+1) + (n+2)(4n+1)$$
 15.) $(2x+5)(x-4) - (x-4)(5x+2)$

15.)
$$(2x+5)(x-4)-(x-4)(5x+2)$$

Solving Literal Equations Lesson 2:

Solve each equation for the given variable.

- 1.)
 - Solve for a: ax + z = aw y 2.) Solve for c: S = 2ab + 2bc + 2ac

- **3.)** Solve for π : $V = 2\pi r^2 + 2\pi rh$ **4.)** Solve for t: A = p + prt

- 5.)
- If 9x + 2a = ac bx, then x equals **6.)** If x + y = nx + z, then x is equal to

Lesson 3: Finding Factors, Sums, and Differences
Find two factors whose product and sum is as indicated:

Product	Sum	Factors
-6	1	
36	-13	
-16	-6	
-4	0	
-33	8	
20	9	
6	-7	
81	-18	
-12	-1	
55	-56	
48	14	
100	25	
-49	0	
7	8	
3	-4	
-28	3	
21	10	
56	15	
-22	9	

Product	Sum	Factors
-56	1	
35	12	
-32	-3	
-24	5	
-42	-1	
6	-5	
14	- 9	
1	2	
-6	5	
-121	0	
-32	14	
25	-24	
-40	6	
-52	- 9	
-6	-5	
1	-2	
54	-15	
16	10	
-27	6	

Lesson 4: Factoring Trinomials of the form $x^2 + bx + c$

Factor each trinomial.

1.)
$$x^2 - 6x - 16$$

1.)
$$x^2 - 6x - 16$$
 2.) $x^2 + 14x + 24$ **3.**) $x^2 - 8x + 7$

3.)
$$x^2 - 8x + 7$$

4.)
$$x^2 - 8x - 9$$

5.)
$$x^2 + 4x - 5$$

4.)
$$x^2 - 8x - 9$$
 5.) $x^2 + 4x - 5$ **6.)** $x^2 + 5x - 36$

7.)
$$n^2 - 15n + 44$$
 8.) $y^2 + y - 110$ 9.) $x^2 - 16x + 55$

8.)
$$y^2 + y - 110$$

9.)
$$x^2 - 16x + 55$$

10.)
$$x^2 - 13x + 12$$
 11.) $x^2 - 10x + 21$ **12.)** $k^2 - 9k + 14$

11.)
$$x^2 - 10x + 21$$

12.)
$$k^2 - 9k + 14$$

13.)
$$v^2 - 12v + 11$$

14.)
$$x^2 - 7x + 12$$

13.)
$$y^2 - 12y + 11$$
 14.) $x^2 - 7x + 12$ **15.)** $x^2 - 22x + 21$

16.)
$$x^2 + 10xy + 24y^2$$

17.)
$$a^2 - 13ab + 42b^2$$

16.)
$$x^2 + 10xy + 24y^2$$
 17.) $a^2 - 13ab + 42b^2$ **18.)** $m^2 + 23mn + 42n^2$

Lesson 5: Factoring Binomials that are the Difference of Two Perfect Squares

State whether each polynomial is a difference of two squares. If it is, factor the expression.

1.)
$$n^2 - 81$$

2.)
$$a^2 - 121$$

3.)
$$n^2 + 16$$

4.)
$$9x^2 - 144$$

5.)
$$2x^2 - 9$$

6.)
$$4w^2 - 9$$

7.)
$$4n^2 - 1$$

8.)
$$1-16x^2$$

9.)
$$x^4 - y^2$$

10.)
$$9-c^2$$

11.)
$$n^3 - 25$$

12.)
$$16x^2 - 6y^2$$

13.)
$$49 - 4a^2$$

14.)
$$a^2b^2-c^4$$

15.)
$$4x^2y^2 - 9z^2$$

Review Activity: WHAT AM I? HOW DO I FACTOR?

$$7x - 14$$
 $b^2 - 4b - 45$
 $d^2 - d - 6$
 $m^2 - m$
 $16 - 81y^2$
 $j^2 + 11j + 10$
 $2x^3 + 6x^2$
 $c^2 + c - 20$
 $25a^2 - 256$
 $9x^2 - 4$
 $y^2 + 13y - 48$
 $j^2 - p^2$
 $4x^2 - 8x$
 $100 - k^2$
 $x^2 - 8x + 16$
 $c^2 - 1$
 $3x^5y + 4x^4y - 5x^2y$
 $3x(2x - 1) + 4(2x - 1)$

Write the polynomial in the shaded cells in the column that best describes the method of factoring that should be used. Then factor the polynomial.

	Greatest Common Factor	Difference of Perfect Squares	Trinomials (no GCF)
Polynomial			
Factored Form			
Polynomial			
Factored Form			
Polynomial			
Factored Form			
Polynomial			
Factored Form			
Polynomial			
Factored Form			
Polynomial			
Factored Form			

Review:

Factor each expression completely.

1.)
$$w^2 + 9w - 22$$

1.)
$$w^2 + 9w - 22$$
 2.) $4xy^2 + 24x^2y^6$ **3.)** $x^2 - 19x + 84$

3.)
$$x^2 - 19x + 84$$

4.)
$$-4x(x+3) + 3x^2(x+3)$$
 5.) $6y^2 + 18$ **6.)** $n^2 - 19n + 90$

5.)
$$6y^2 + 18$$

6.)
$$n^2 - 19n + 90$$

7.)
$$k^2 - 13k + 42$$
 18.) $144 - w^2$

18.)
$$144 - w^2$$

9.)
$$m^2 - 6m + 5$$

10.)
$$x^2 - x - 30$$

11.)
$$14c^2d + 2cd^2$$

10.)
$$x^2 - x - 30$$
 11.) $14c^2d + 2cd^2$ **10.)** $z^2 + 8z + 7$

13.)
$$24x + 48y$$

13.)
$$24x + 48y$$
 14.) $4(2x + 7) + 5(2x + 7)$ **15.)** $a^2 - b^2$

Factor each expression completely.

16.)
$$14c^3 - 42c^5 - 49c^4$$
 17.) $15x^5 - 12x^3 + 10x^2$ **18.)** $x^8 - y^4$

17.)
$$15x^5 - 12x^3 + 10x^2$$

18.)
$$x^8 - y^4$$

19.)
$$2x(x-5) + 3(x-5) + (x-5)$$

19.)
$$2x(x-5) + 3(x-5) + (x-5)$$
 20.) $(x-2)(6-4x) + (5x+4)(x-2)$

21.)
$$81 - 100c^2$$

21.)
$$81 - 100c^2$$
 22.) $6x^2y^3 + 9xy^4 + 18y^5$ **23.**) $3k^2 + 14k - 80$

23.)
$$3k^2 + 14k - 80$$

24.)
$$w^2 + 5w - 6$$

24.)
$$w^2 + 5w - 6$$
 25.) $6p^2 - 29p + 28$ **26.**) $d^8 - d^2$

26.)
$$d^8 - d^2$$

27.)
$$2x^2 - 13x - 24$$

28.)
$$3x^3 - 75x$$

27.)
$$2x^2 - 13x - 24$$
 28.) $3x^3 - 75x$ **29.)** $x^2 + 17x + 70$

Lesson 6: Prime Polynomials

Factor. If the expression is not able to be factored, write "prime".

1.)
$$n^2 - 6n + 5$$

1.)
$$n^2 - 6n + 5$$
 2.) $x^2 - 13x + 22$ **3.)** $x^2 + 2x + 3$

3.)
$$x^2 + 2x + 3$$

4.)
$$x^2 - 3x - 4$$

5.)
$$n^2 - 10n - 9$$

4.)
$$x^2 - 3x - 4$$
 5.) $n^2 - 10n - 9$ **6.)** $g^2 + 7g - 60$

7.)
$$k^2 - 7k + 6$$

7.)
$$k^2 - 7k + 6$$
 8.) $d^2 - 19d + 90$ **9.)** $a^2 + 3a + 4$

9.)
$$a^2 + 3a + 4$$

10.)
$$z^2 - 17z + 72$$
 11.) $x^2 + 7x + 11$ **12.)** $c^2 + 9c - 10$

11.)
$$x^2 + 7x + 11$$

12.)
$$c^2 + 9c - 10$$

13.)
$$p^2 + 29p + 30$$
 14.) $x^2 - 2x - 3$ **15.**) $a^2 - 8a - 20$

14.)
$$x^2 - 2x - 3$$

15.)
$$a^2 - 8a - 20$$

Lesson 7: Factoring Expressions Completely Factoring Expressions with Higher Powers

Factor completely.

1.)
$$x^3 + 3x^2 + 2x$$

2.)
$$2b^2 - 2$$

3.)
$$a^3 - 9a^2 + 14a$$

4.)
$$n^4 - 2n^3 - 3n^2$$

5.)
$$-7x^2 + 21x - 14$$

6.)
$$-x^3 + 4x$$

7.)
$$36x^2y - 64y$$

8.)
$$3cd^2 + 12cd + 12c$$

9.)
$$3b^2 + 12b - 63$$

10.)
$$2x^3 - 6x^2 + 4x$$

11.)
$$-3k^4 + 18k^3 - 24k^2$$

12.)
$$-8y^2z - 40yz + 48z$$

Factoring Trinomials of the form $ax^2 + bx + c$, Lesson 8: where $a \neq 1$

Factor each trinomial.

1.)
$$3n^2 + 7n - 20$$

1.)
$$3n^2 + 7n - 20$$
 2.) $7a^2 + 48a + 36$ **3.)** $5v^2 - 41v - 36$

3.)
$$5v^2 - 41v - 36$$

4.)
$$3b^2 + 22b - 16$$
 5.) $5n^2 - 49n + 72$ **6.)** $6x^2 - x - 12$

5.)
$$5n^2 - 49n + 72$$

6.)
$$6x^2 - x - 12$$

7.)
$$4y^2 + 29y + 30$$
 8.) $4a^2 - 16a - 15$ 9.) $7n^2 + 15n - 18$

8.)
$$4a^2 - 16a - 15$$

9.)
$$7n^2 + 15n - 18$$

Factor completely.

10.)
$$20a^4b - 20a^3b + 5a^2b$$
 11.) $16r^3 + 80r^2 + 100r$

11.)
$$16r^3 + 80r^2 + 100r$$

12.)
$$2x^3y + 6x^2y^2 + 4xy^3$$

13.)
$$3a^3b + 15a^2b^2 + 18ab^3$$

Factoring Practice - Algebra with Pizzazz

OUBLE CROSS

1. What do you get when you cross a chicken with a centipede?

11 14 12 14 10 13

2. What do you get when you cross a mink with an octopus?

12 10 13 12 12

Factor each polynomial below as the product of its greatest monomial factor and another polynomial. Find your answer and notice the letter next to it. Each time the exercise number appears in the code, write this letter above it. Keep working and you will find out what you get from these "double crosses."

- $6x^2 + 9x + 27$
- $5x^3 + 30x^2 15x$
- $14x^3 7x^2 35x$
- $25x^3 40x^2 + 10x$
- $4x^4 + 20x^3 + 12x^2$
- $3x^4 + 12x^2 33$
- $49x^4 14x^3 28x$

Answers:

- $4x^{2}(x^{2} + 5x + 3)$
- $3(x^4 + 6x^2 + 11)$
- $7x(2x^2 x 5)$
- $3(2x^2 + 3x + 9)$
- $7x(7x^3 2x^2 4)$
- $5x(5x^2 8x + 2)$
- $7x(7x^3 + 2x^2 3)$
- $5x(x^2 + 6x 3)$
- $3(x^4 + 4x^2 11)$

- $2a^2 + 12ab + 6b^2$
- $6a^3 18ab$
- $3a^2b^2 + 15ab^3$
- $8a^4b^4 28a^3b^3 + 4a^2b^2$
- $6a^4b 10a^3b^2 6a^2b^3$
- 7ab5 56ab
- $24ab^4 + 12ab^3 18ab^2$

Answers:

- $6ab^2(4b^2-3b-2)$
- $2(a^2 + 6ab + 3b^2)$
- $7ab(b^4 8)$
- $3ab^{2}(a + 5b)$
- $6ab^2(4b^2 + 2b 3)$
- $4a^2b^2(2a^2b^2-9ab+2)$
- $2a^2b(3a^2-5ab-3b^2)$
- $6a(a^2 3b)$
- $4a^2b^2(2a^2b^2-7ab+1)$

24

23

Why Didn't Klutz Do Any Homework on Saturday?

84

Either multiply or factor, as directed, and find your answer in the adjacent answer column. Write the letter of that exercise in the box that contains the number of the answer.

(9x + 10y)(9x - 10y)

(m

Multiply:

$$(a+5)(a-5)$$

$$0 (2 + 3a)(2 - 3a)$$

$$(7a-1)(7a+1)$$

)
$$(a^2 - 6)(a^2 + 6)$$

) $(4a + b)(4a - b)$

$$\bigcirc$$
 $(2a^2 - 5b)(2a^2 + 5b)$

4)
$$16a^2 - b^2$$

Factor:

S

$$7) 4a^4 - 25b^2$$

 $81x^2 - 100y^2$

 $36x^2 - 121y^2$

Ш

(15)
$$4 - 9a^2$$

(12) $4a^4 - 36$

$$49a^2 - 1$$
 $a^2 - 25$
 $4a^4 - 25b^2$

(12)
$$4a^4 - 36$$

(24) $a^4 - 36$

0

(5)
$$(\mathbf{x} + \mathbf{y})(\mathbf{x} - \mathbf{y})$$

(7) $(\mathbf{x}^2 + 20)(\mathbf{x}^2 - 20)$
(1) $(6\mathbf{x} + 11\mathbf{y})(6\mathbf{x} - 11\mathbf{y})$
(6) $(3\mathbf{x} + 7\mathbf{y})(3\mathbf{x} - 7\mathbf{y})$
(22) $(2\mathbf{x} + 7\mathbf{y})(2\mathbf{x} - 7\mathbf{y})$

$$\stackrel{\triangle}{\text{E}} \quad n^2 - 49$$

$$\stackrel{\triangle}{\text{A}} \quad n^2 - 1$$

$$N 81 - n^2$$

$$\bigoplus_{i \in \mathcal{I}} 4n^2 - 9$$

(2)
$$(n+7)(n-7)$$

(18) $(9+n)(9-n)$

$$(3 + 11)(3 - 11)$$

$$(3) (7n + 4)(7n - 4)$$

(19)
$$(4 + a^2b^3)(4 - a^2b^3)$$

(3x + 8y)(3x - 8y)

- 400

Z

(14)
$$(2\mathbf{a}^8 + 15)(2\mathbf{a}^8 - 15)$$

(21) $(\mathbf{a}^3 + \mathbf{b}^2)(\mathbf{a}^3 - \mathbf{b}^2)$

 $25a^8 - 9b^4$

ပ

 $a^6 - b^4$

(12 + 5n)(12 - 5n)

(2n + 3)(2n - 3)

Factor:

(12)
$$(ab^2 + c^4)(ab^2 - c^4)$$

$$(9 - qa)(9 + qa)(6)$$

 $16 - a^4b^6$

 $a^2b^2 - 36$

€

(2n+3)(2n-3)

5

(n+1)(n-1)

8

(16)
$$(5a^4 + 3b^2)(5a^4 - 3b^2)$$

$$(10)$$
 $(4 + ab^4)(4 - ab^4)$

-		ı
	22	
	20 21	
	19	
	18	
	17	
	16 17	
	15	
	14	
	13	
	12	
ĺ		
	10 11	
	6	
	8	
	7	
	9	
	5	
	4	
	က	
	7	
	-	

Circle the appropriate number-letter pairs in each column. Write the letter in the matching numbered box at the bottom of the page. (Hint: You should circle 11 number-letter pairs in each column.)

Circle the number-letter of each TRUE STATEMENT:

8-S
$$(x+2)^2 = x^2 + 4x + 4$$

13-E
$$(a-5)^2 = a^2 - 10a + 25$$

10-A
$$(u + 8)^2 = u^2 + 16u + 64$$

2-H
$$(m-4)^2 = m^2 - 16m + 16$$

18-G
$$(3x + 1)^2 = 9x^2 + 6x + 1$$

14-D
$$(5t-2)^2 = 25t^2 - 20t + 4$$

4-P
$$(2b+3)^2 = 4b^2 + 12b + 6$$

20-A
$$(2n + 7)^2 = 4n^2 + 28n + 49$$

2-E
$$(10\mathbf{d} - 4)^2 = 100\mathbf{d}^2 - 80\mathbf{d} + 16$$

5-K
$$(8x-1)^2 = 16x^2 - 16x + 1$$

7-R
$$(4w + 5)^2 = 16w^2 + 20w + 25$$

4-L
$$(\mathbf{x}^2 - 3)^2 = \mathbf{x}^4 - 6\mathbf{x}^2 + 9$$

11-T
$$(k^2 + 9)^2 = k^4 - 18k^2 + 81$$

5-W
$$(2a + b)^2 = 4a^2 + 4ab + b^2$$

15-A
$$(3u - 2v)^2 = 9u^2 - 12uv + 4v^2$$

6-E
$$(8\mathbf{a} + \mathbf{b})^2 = 64\mathbf{a}^2 + 8\mathbf{a}\mathbf{b} + \mathbf{b}^2$$

1-H
$$(c^2 - 6d^2)^2 = c^4 - 12c^2d^2 + 36d^4$$

21-1
$$(2xy - 5)^2 = 4x^2y^2 - 20xy + 10$$

Circle the number-letter of each TRINOMIAL SQUARE:

6-A
$$n^2 + 6n + 9$$

11-N
$$x^2 - 14x + 49$$

3-R
$$a^2 + 2a + 4$$

12-B
$$k^2 - 5k + 25$$

21-C
$$x^2 - 12x + 36$$

3-A
$$4t^2 + 12t + 9$$

$$12-T 81x^2 - 18x + 1$$

$$17-L$$
 $4m^2 + 8m + 16$

16-B
$$9w^2 - 24w + 16$$

9-F
$$25t^2 - 45t + 9$$

22-D
$$4x^4 + 8x^2 + 1$$

9-W
$$a^2 + 2ab + b^2$$

22-K
$$4m^2 + 20mn + 25n^2$$

19-L
$$9a^2 - 27ab + 9b^2$$

17-1
$$100u^2 - 60uv + 9v^2$$

8-E
$$100a^2 + 20ab + 4b^2$$

19-M
$$9x^4 + 6x^2y^2 + y^4$$

What Happens If the Jolly Green Giant Steps on Your House?

For exercises in the first column, express each square as a trinomial. For the remaining exercises, factor each trinomial as the square of a binomial, if possible. (If this is not possible, the correct answer is "not possible.") Find your answer below. Write the letter of the exercise in the box containing the number of its answer.

Express as a trinomial:

- (E) $(u + 3)^2$
- \bigcirc $(u-8)^2$
- (S) $(2u + 5)^2$
- (L) $(1 4u)^2$
- (T) $(u + 2v)^2$
- (U) $(7u 3v)^2$
- \bigcirc $(uv + 6)^2$

Answers:

- (13) $4u^2 + 20u + 25$
- (3) $4u^2 + 16u + 25$
- (9) $u^2 + 6u + 9$
- (10) $u^2 + 4uv + 4v^2$
- (14) $49u^2 31uv + 9v^2$
- (6) 1 8u + 16 u^2
- (2) $u^2 16u + 64$
- (18) $u^2v^2 + 12uv + 36$
- (5) $u^2 + 7uv + 4v^2$
- $(12) 49u^2 42uv + 9v^2$

Factor:

- (E) $t^2 + 4t + 4$
- (U) $t^2 12t + 36$
- (L) $t^2 18t + 81$
- (Y) 25 + 10t + t^2
- (W) $4t^2 + 20t + 25$
- (S) $9t^2 12t + 4$
- 1) $t^2 + 10t + 20$

Answers:

- (5) not possible
- $(7) (t-9)^2$
- (19) $(t 12)^2$
- $(4) (2t + 5)^2$
- (15) $(t+2)^2$
- (21) $(3t-2)^2$
- $(16) (2t 9)^2$
- $(3) (t-6)^2$
- $(1) (5+t)^2$
- (8) $(3t-5)^2$

Factor:

- (D) $49a^2 + 14a + 1$
- \bigcirc 16 $a^2 24a + 9$
- (G) $a^2 8a + 64$
- (M) $a^2 + 2ab + b^2$
- (H) $a^2 + 10ab + 25b^2$
- (R) $4a^2 12ab + 9b^2$
- (M) $100a^2 20ab + b^2$

Answers:

- 8 not possible
- (11) $(10a 3b)^2$
- $(16) (7a + 1)^2$
- (11) $(10a b)^2$
- (20) $(a + b)^2$
- $(17) (2a 3b)^2$
- (19) $(4a 3)^2$
- (20) $(a + 3b)^2$
- $(14) (a + 5b)^2$
- (19) $(4a 8)^2$

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21

ω

-2)

Why Does Gyro Never, Never, Ever Bet an Even Nambers?

Factor completely each polynomial below. Find your answer and notice the two letters next to it. Write these letters in the two boxes at the bottom of the page that contain the number of that exercise.

(SF) $5(x + 3)^2$ (NT) $2(x - 6)^2$ (CH) $3(x + 2)(x - 2)$ (ST) $x(x + 7)(x - 7)$	(HE) $2k(k + 2)(k - 2)$ (LS) $6(3k + 1)(3k - 1)$ (OR) $3(2k - 3)^2$ (TE) $5k(k + 8)^2$	$ \begin{array}{ccc} (AT) & 2b^{2}(2a+4)^{2} \\ (AV) & 4ab(a-5b)^{2} \\ (MA) & a^{2}b(ab+2)(ab-1) \\ (IN) & 2b^{2}(4a+1)^{2} \end{array} $	2 2 11 11 8
	2)	$7ab(a + 2b)^{2}$ (4ab(a - 3b) ² (5ab + 1)(2ab - 1) (7ab(a + b)(a - b) (1ab)	10 10 7 7
$5(x - 4)^{2}$ $2(x - 12)^{2}$ $3(x + 5)(x - 5)$ $x(x + 8)(x - 8)$	$5\mathbf{k}(\mathbf{k} + 10)^2$ $3(\mathbf{k} - 2)^2$ $2\mathbf{k}(\mathbf{k} + 4)(\mathbf{k} - 4)$ $6(3\mathbf{k} + 2)(3\mathbf{k} - 2)$	$7ab(a + 2b)^{2}$ $4ab(a - 3b)^{2}$ $a^{2}b(2ab + 1)(2ab)$ 7ab(a + b)(a - b)	6 10
$5(x - 4)^{2}$ $2(x - 12)^{2}$ $3(x + 5)(x)$ $x(x + 8)(x)$	$5\mathbf{k}(\mathbf{k} + 10)^2$ $3(\mathbf{k} - 2)^2$ $2\mathbf{k}(\mathbf{k} + 4)(\mathbf{k}$ $6(3\mathbf{k} + 2)(3\mathbf{k})$	$7ab(a + 2b)^{2}$ $4ab(a - 3b)^{2}$ $a^{2}b(2ab + 1)$ 7ab(a + b)(a	9
			12
			12
			-
			3
) ²)ab ³	8
	500 k 7	$7a^3b - 7ab^3$ $32a^2b^2 + 16ab^2 + 2b^2$ $4a^3b - 40a^2b^2 + 100ab^3$ $4a^4b^3 - a^2b$	4
+ 45	$2k^3 - 8k$ $54k^2 - 24$ $5k^3 + 100k^2 + 500k$ $12k^2 - 36k + 27$	b³ 16ab' a²b². ²b	4
$3x^2 - 75$ $5x^2 + 30x + 45$ $x^3 - 49x$ $2x^2 - 24x + 72$	- 24 - 24 - 100/	$7a^3b - 7ab^3$ $32a^2b^2 + 16$ $4a^3b - 40a^2$ $4a^4b^3 - a^2b$	6
$3x^2 - 75$ $5x^2 + 30$; $x^3 - 49x$ $2x^2 - 24$	$2k^3 - 8k$ $54k^2 - 24$ $5k^3 + 100$ $12k^2 - 36$	7 a³b – 32 a²b² 4 a³b – 4 a³b –	6
<u>-</u> 0000€	@@\D@	@@=@	5
			2
factor completely a polyno e of squares or a trinomia		ALGEBRA WITH PIZZA	AZZ! 8

A DRASTIC WAY TO DIET

AN EXTREME BUT EFFECTIVE WAY TO DIET IS HIDDEN IN THE LETTERS BELOW TO FIND IT:

Factor each trinomial below. Find the factored form in the set of answers under the exercise and cross out the letter above it. When you finish, the diet will remain. You might call it the "Algebra diet."

F	-	$(\mathbf{x} - 26\mathbf{y})(\mathbf{x} - \mathbf{y})$
-	7	(x - 2y)(x - x)
2 2 2 2 2	z	$(\sqrt{8} - x)(\sqrt{8} - x)$
4y ² + 32 + 40 + 40 + 26 + 26 + 60	₹	$(\mathbf{x} + 20\mathbf{y})(\mathbf{x} + 3\mathbf{y})$
$5xy + 4y^{2}$ $18xy + 32y^{2}$ $13xy + 40y^{2}$ $7xy + 12y^{2}$ $27xy + 26y^{2}$ $19xy + 60y^{2}$	-[$(\mathbf{v} \in \mathbf{x})(\mathbf{v} + \mathbf{x})$
$x^{2} + 5xy + 4y^{2}$ $x^{2} - 18xy + 32y^{2}$ $x^{2} - 13xy + 40y^{2}$ $x^{2} + 7xy + 12y^{2}$ $x^{2} - 27xy + 26y^{2}$ $x^{2} + 19xy + 60y^{2}$ $x^{2} + 19xy + 60y^{2}$	5	$(\mathbf{v} + \mathbf{x})(\mathbf{v} + \mathbf{x})$
+ + + + x x x x x x x x x x x x x x x x	4	$(\mathbf{x} + 2\mathbf{y})(\mathbf{x} + 4\mathbf{y})$
@@@@@@	ב	$(\chi + 4y)(\chi + 15y)$
	7	$(\mathbf{x} - \mathbf{16y})(\mathbf{x} - 2\mathbf{y})$
-	-[$(\mathbf{E} + \mathbf{b})(\mathbf{d} + \mathbf{b})$
<	₹	(6 - p)(t - p)
2	Σ	(b - b)(b - b)
15 20 36 36 38 18	2	$(\mathbf{a} 1 - \mathbf{b})(\mathbf{a} - \mathbf{b})$
$a^{2} - 8d + 15$ $a^{2} - 12d + 20$ $a^{2} + 14d + 13$ $a^{2} - 13d + 36$ $a^{2} + 17d + 30$ $a^{2} + 9d + 18$	u	$(\mathbf{d} - 10)(\mathbf{d} - 2)$
- + + + + + + + + + + + + + + + + + + +	4	(6 - 5)(3 - b)
88888	2	$(\mathbf{d} + \mathbf{b})(\mathbf{S} + \mathbf{b})$
N	z	$(\mathbf{d} + \mathbf{b})(\mathbf{S} + \mathbf{b})$
	-	$(\mathbf{c} + \mathbf{b})(\mathbf{l} + \mathbf{b})$
>	-[$(8 - \mathbf{m})(S - \mathbf{m})$
C	>	$(\varepsilon + \mathbf{m})(8 + \mathbf{m})$
_ F	-	$(\mathbf{E} + \mathbf{m})(\mathbf{S} + \mathbf{m})$
7 6 + 9 + 2 + 2 + 2 + 2	2	(h + m)(E + m)
8m + 7 5m + 6 10m + 9 6m + 8 8m + 12 11m + 2	n	$(1 + \mathbf{m})(7 + \mathbf{m})$
$m^2 + 8m + 7$ $m^2 + 5m + 6$ $m^2 + 10m + 9$ $m^2 - 6m + 8$ $m^2 - 8m + 12$ $m^2 + 11m + 2$	1 1 + 4 (9-	(a − m)(s − m)
		(1 + m)(8 + m)
-000000	_	(t + m)(6 + m)
	5	$(\mathbf{m} - \mathbf{n})(\mathbf{n} - \mathbf{n})$

A B C		(x - 18)(x + 1)
	О	WANTED
		$(\mathbf{x} + 9\mathbf{y})(\mathbf{x} - 4\mathbf{y})$
		KIT
	I	$(\mathbf{x} - 18\mathbf{y})(\mathbf{x} + 2\mathbf{y})$
		BAND
	٦	$(\mathbf{x} - 12\mathbf{y})(\mathbf{x} + 3\mathbf{y})$
		AID
		$(\mathbf{x} + 5\mathbf{y})(\mathbf{x} - 3\mathbf{y})$
	۵.	A
	~	(x + 8)(x - 3)
	n in the answer column pearest	ТО
	this word in the box containing	(x+6)(x-4)
	MIII IIEAI ADOUI A MIIIY CAI.	HELP
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$x^2 + 3x - 18$	(x + 6)(x - 3)
	$x^2 - 17x - 18$	П
	$x^2 + 5x - 24$	$(\mathbf{x} - 25\mathbf{y})(\mathbf{x} + 2\mathbf{y})$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$x^2 - 10x - 24$	LION
	$x^2 + 2xy - 15y^2$	(x - 12)(x + 2)
@ 	$x^2 - 5xy - 50y^2$	BE
r8t-20	$x^2 - 9xy - 36y^2$	(x - 10y)(x + 5y)
THE \bigoplus $t^2 - t - 72$ \bigoplus $\mathbf{x}^2 + 5\mathbf{x}\mathbf{y}$	$x^2 + 5xy - 36y^2$	FIRST

When Is a Wrestler "King of the Ring"?

Factor each trinomial below. Find your answer and notice the letter next to it. Write this letter in the box containing the number of that exercise. Keep working and you will get the gripping answer to the title question.

- (1) $n^2 + 6n + 5$
- (2) $n^2 + 7n + 10$
- (3) $n^2 7n + 12$
- $\binom{4}{n^2} 11n + 28$
- (5) $n^2 + 2n 15$
- (6) $n^2 5n 24$
- $(7) n^2 + n 56$

Answers:

- (L) (n+2)(n+6)
- (H) (n+5)(n-3)
- (W) (n+5)(n+1)
- (E) (n-3)(n-4)
- (B) (n-1)(n+15)
- (S) (n+8)(n-7)
- (H) (n+2)(n+5)
- (E) (n-8)(n+3)
- (R) (n-12)(n-2)
- (N) (n-7)(n-4)

- (8) $t^2 + 10t + 16$
- (9) $t^2 15t + 50$
- (10) $t^2 + 8t 9$
- (11) $t^2 7t 30$
- (12) $t^2 t 30$
- (13) $t^2 + 14t + 48$
- (14) $t^2 + 8t 48$

Answers:

- (N) (t-6)(t+5)
- (V) (t-25)(t+2)
- (T) (t-5)(t-10)
- (T) (t+6)(t+8)
- \bigcirc (t-10)(t+3)
- (B) (t+15)(t-2)
- (1) (t+8)(t+2)
- (H) (t-4)(t+12)
- (S) (t+9)(t-1)
- (A) (t-24)(t+2)

- (15) $a^2 + 5ab + 6b^2$
- (16) $a^2 4ab 21b^2$
- (17) $a^2 + 6ab 7b^2$
- (18) $a^2 14ab 32b^2$
- (19) $a^2 29ab + 100b^2$
- (20) $a^2 + 7ab 18b^2$
- (21) $a^2 + 2ab + b^2$

Answers:

- (K) (a 8b)(a + 4b)
- (H) (a+7b)(a-b)
- $(\mathbf{A}) \ (\mathbf{a} 20\mathbf{b})(\mathbf{a} + 5\mathbf{b})$
- (E) (a + 2b)(a + 3b)
- (W) (a + 9b)(a 2b)
- (T) (a-7b)(a+3b)
- \bigcirc (a 25b)(a 4b)
- (S) (a + 6b)(a + 3b)
- (N) (a+b)(a+b)
- (R) (a 16b)(a + 2b)

What Happened When the Boarding House Blew Up?

Factor each trinomial below. Find one of the factors in **each** column of binomials. Notice the letter next to one factor and the number next to the other. Write the letter in the box at the bottom of the page that contains the matching number.

- (1) $3x^2 + 7x + 2$
- (2) $2x^2 + 5x + 3$
- $3x^2 16x + 5$
- (4) $7x^2 9x + 2$
- (5) 6 $u^2 + 5u + 1$
- 6) 8 $u^2 9u + 1$
- (7) $10u^2 + 17u + 3$
- (8) $9u^2 9u + 2$
- (9) $5u^2 + 11u + 6$

- (5) (5**u** + 3)
- (3u-2)
- (3) (x-1)
- (E) (x-5)
- (3x + 1)
- (G) (8u 1)
- (14) (3**u** 1)
- $\bigcirc (7x-2)$
- (6) (2**u** + 3)
- (8) (5u + 1)
- (15) (**x** + 1)
- (W) (x + 2)
- 9 (5**u**+ 6)
- (L) (7x + 2)
- (7) (2**u**+ 1)
- (1) (2x + 3)
- (11) (3**x -** 1)
- (E) (u+1)
- (**17**) (**u** 1)
- (S) (3u + 1)

- (10) 3**n**2 + 2**n** 1
- (11) $5n^2 4n 1$
- (12) $2n^2 + 5n 3$
- (13) $7n^2 13n 2$
- (14) 3 t^2 + 14t 5
- (15) $4t^2 11t + 7$
- (16) $6t^2 + 5t 1$
- (17) $3t^2 20t 7$

- (12) (3t 1)
- (N) (n+3)
- (5) (n-1)
- (R) (t-1)
- (3t+1)
- (P) (2t + 1)
- (10) (**n** 2)
- \bigcirc (n+1)
- (13) (t+1)
- (F) (t+5)
- (2) (3**n** 1)
- (E) (5n+1)
- (2**n** 1)
- (M) (t-7)
- (3t-7)
- \bigcirc (7n+1)
- (1) (4t 7)
- (L) (6t 1)

YTAL DE YEU, UJNG OAY YTON YE, UJNG OAE TO SAU QONQ NOUNTAIN OUNDING IN LIFE INTERVAY

cross out each box containing a factor. You will cross out two boxes for each exercise. When you finish, print the letters from the remaining boxes in the Factor each trinomial below. Find both factors in the rectangle below and squares at the bottom of the page.

(1)
$$6x^2 + 19x + 3$$

$$5x^2 - 9x - 2$$

(N

3)
$$9x^2 + 15x +$$

4)
$$7x^2 + x - 8$$

(5)
$$2x^2 - 21x + 40$$

(6)
$$15m^2 + 19m + 6$$

(7) $8m^2 - 5m - 3$

(8)
$$4m^2 - 17m + 18$$

9
$$14m^2 + 17m - 22$$

(10)
$$3m^2 - m - 30$$

UR	(5x + 1)	F	(9x + 2)	GH	(x - 1)	
F			_	L		
ç	(2m - 3)	ΜA	(3m + 2)	₹	(m - 1)	
Ş	(3m-10) $(14m-11)$ $(2m-3)$	æ	(x - 2)	NO	(x - 8)	
×	(3m - 10)	DA	(5m + 3)	ET	(7m + 2)	
NE	(2x - 5)	AN	(x + 4)	ΑJ	(m + 3)	
00	(m - 3)	PL	(m + 2)	ER	(8m + 3)	
PA	(m - 2)	Z	(x + 3)	18	(7x + 2)	
AT	(3x + 1)	Μn	(6x + 1) $(15m + 1)$	9	(3x + 4)	
Ŧ	(4m - 9)	В	(6x + 1)	8	(7x + 8)	

92

How Can Fishermen Save Gas?

Factor each polynomial below. Find one of the factors in **each** column of binomials. Notice the letter next to one factor and the number next to the other. Write the letter in the box at the bottom of the page that contains the matching number.

- $1 \cdot 4n^2 49$
- (2) $n^2 + 8n + 12$
- (3) $n^2 9n + 20$
- (4) $n^2 + 16n + 64$
- (5) $n^2 + 2n 15$
- (6) $3n^2 8n + 5$

- (3) (n+1)
- (0) (n-3)
- (11) (n+2)
- **G** (2**n** 7)
- (n + 8)
- (P) (**n** 5)
- 9 (2**n** + 7)
- (S) (3**n** 5)
- (n+5)
- (Y) (n + 8)
- 18 (**n** 1)
- (K) (3n-1)
- (14) (n-4)
- (A) (n+6)

- $(7) a^2 + 4a 21$
- (8) 5 $a^2 + 9a 2$
- 9) 2 $a^2 + 11a + 15$
- (10) 1 9a4
- (11) $a^2 11a + 30$
- (12) $10a^2 3a 1$

- (1) (a 5)
- (G) (2a + 1)
- (13) (a + 7)
- (B) (a 6)
- (5) (5**a** + 1)
- (P) (a-3)
- (7) (a + 2)
- (a + 3)
- (15) (**a** 1)
- (1) (5a 1)
- $(8) (1 3a^2)$
- (R) (2a 1)
- (16) (2**a** + 5)
- (N) (1 + 3 a^2)

- (13) 8 u^2 + 19u + 6
- (14) 25 $u^2 20u + 4$
- (15) 3 $u^2 11u 14$
- (16) $u^2 4u 21$
- (17) $6u^2 + 17u 10$
- (18) 2 $u^2 + 5u 18$

- (10) (u + 3)
 - 2) (2**u** + 9)
- (2) (2)
- (17) (u-3)
- (3) (5**u** 2)
- (6) (3u 14)
- (15) (**u** + 2)
- (17) (3u + 10)

M (u+1)

- (B) (2u + 1)
- \bigcirc (8u + 3)
- (2**u** 1)
- \bigcirc (u-7)
- \bigcirc (u-2)
- (5u 2)
- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

What Do You Call a Sore on a Police Officer's Foot?

Factor completely each polynomial below. Find your answer and notice the letter next to it. Write this letter in the box containing the number of that exercise.

(1)
$$3x^2 - 15x + 18$$

$$(2)$$
 $x^3 + 11x^2 + 10x$

$$3 8x^3 - 18x$$

$$(4)$$
 5 $x^3 - 40x^2 + 60x$

$$(5)$$
 $4x^2 + 8x - 60$

(6)
$$2x^3 - 20x^2 - 48x$$

Answers:

$$1$$
 5x(x + 3)(x - 4)

$$(N)$$
 2x(2x + 3)(2x - 3)

(L)
$$2x(x+6)(x-4)$$

$$\bigcirc$$
 3(**x** - 2)(**x** - 3)

(C)
$$4(x+5)(x-3)$$

(A)
$$x(x + 5)(x + 3)$$

(S)
$$4(x+5)(x-1)$$

(E)
$$x(x + 10)(x + 1)$$

(H)
$$2x(x-12)(x+2)$$

$$\bigcirc$$
 5x(x - 2)(x - 6)

(R)
$$2x(4x + 9)(x + 1)$$

$$(7)$$
 4 m^2 – 18 m + 14

$$(8)$$
 15 m^3 + 24 m^2 + 9 m

$$9) 15m^2 - 10m - 25$$

$$(10)$$
 50 $m^3 - 2m$

(11)
$$3m^2 - 10m + 8$$

$$(12)$$
 $60m^3 + 54m^2 - 6m$

Answers:

(O)
$$3m(5m + 3)(m + 1)$$

(S)
$$5(3m + 1)(m - 5)$$

(R)
$$(3m-4)(m-2)$$

(F)
$$2(2m+1)(m+7)$$

(T)
$$5(3m-5)(m+1)$$

$$(M)$$
 6 $m(5m-1)(2m-1)$

(H)
$$3m(5m + 2)(m - 1)$$

$$(N)$$
 2(2 $m - 7$)($m - 1$)

(P)
$$2m(5m + 1)(5m - 1)$$

(C)
$$6m(10m - 1)(m + 1)$$

(L)
$$(3m-2)(m+4)$$

Old Lawyers Never Die, They Just

33 10

13

JUST REDUCE TO LOWEST TERMS. TO FIND OUT WHAT HAPPENS TO OLD LAWYERS AND SKIERS, FOLLOW THESE DIRECTIONS: THEY YOU MAY HAVE HEARD THAT OLD MATH TEACHERS NEVER DIE.

4

4

10

=

9

12

3

12

8

Factor completely each polynomial below. Find your answer in the appropriate answer column and notice the letter next to it. Each time the exercise number appears in the code, write this letter above it.

Answers for 1-7:

$$\bigcirc$$
 (3x + 5)(x - 2)

$$\int 5x(2x-7)(x+1)$$

$$\begin{pmatrix}
\mathbf{T} & 2(\mathbf{x} + 2)(\mathbf{x} + 9) \\
\mathbf{Y} & \mathbf{a}(\mathbf{x} + 6)(\mathbf{x} + 2)
\end{pmatrix}$$

$$(3) x^{2}(x+10)(x-2)$$

$$(3) x^{2}(x+10)(x-2)$$

(S)
$$x^2(x + 10)(x - 2)$$

(D) $2x(3x + 7)(3x - 7)$

$$\bigcirc 2x(3x + 4)$$

$$\bigcirc x^2(x + 4)$$

$$(M) x^2(x+4)(x-5)$$

(M)
$$x^{-}(x+4)(x-5)$$

(B) $2(x+3)(x+6)$

$$\begin{array}{ccc}
(x + 3)(x + 3) \\
(x + 2)(x + 2)
\end{array}$$

$$2x^2 + 22x + 36$$

$$5x^3 - 10x^2 - 40x$$

$$18x^3 - 98x$$

3

4)
$$ax^2 - 7ax + 12a$$

$$\begin{array}{c} 5 \quad \mathbf{x}^4 + 8\mathbf{x}^3 - 20\mathbf{x}^2 \\ 6 \quad 3\mathbf{x}^2 + 13\mathbf{x} + 10 \end{array}$$

7)
$$10x^3 - 25x^2 - 35x$$

$$\begin{array}{ccc} \text{(8)} & 12\mathbf{u}^2 - 28\mathbf{u} - 24 \\ \text{(9)} & \mathbf{u}^4 - 3\mathbf{u}^2 - 4 \end{array}$$

$$15u^4 + 2u^3 - u^2$$

11)
$$2u^2v - 18uv + 28v$$

(12)
$$12u^3 + 36u^2 + 27u$$

$$(13)$$
 $40u^2 + 15u - 55$

$$u^4 - 10u^2 + 9$$

$$\bigoplus$$
 $u^2(5u-1)(3u+1)$

3u(4u + 3)(u + 3)

$$(L) (u+1)(u-1)(u+3)(u-3)$$

$$(N) \frac{(u+1)(u-1)(u-1)}{(N-1)(u-2)}$$

(K)
$$4(3u + 6)(u - 1)$$

(B) $(u^2 + 9)(u + 1)(u - 2)$

(G)
$$4(3u + 2)(u - 3)$$

(M)
$$u^2(15u + 1)(u - 1)$$

(P) $5(8u + 11)(u - 1)$

(B)
$$2v(u + 14)(u + 1)$$

(R) $(u^2 + 1)(u + 2)(u - 2)$

$$(E)$$
 5(4 u + 11)(2 u + 1)

(F)
$$5(4u + 11)(2)$$

(O) $3u(2u + 3)^2$

Did You Hear About...

Α	В	С	D	E
F	G	Н	1	J
K	L	М	N	???

Answers for A-G:

Factor each expression below. Find your answer in the appropriate answer column and notice the word beneath it. Write this word in the box containing the letter of that exercise. Keep working and you'll hear what's "bruin."

(A)
$$x(x-2) + 3(x-2)$$

(B)
$$a(2a+5)+2(2a+5)$$

$$\bigcirc$$
 $n(3n-1)-5(3n-1)$

①
$$2b(r+4) - 3(r+4)$$

$$(\mathbf{x}^2 + 1)\mathbf{k} + (\mathbf{x}^2 + 1)4$$

$$(F)$$
 $(5c - d)(2c) + (5c - d)(4d)$

G
$$k^2(x+3) - 7(x+3)$$

$$(H)$$
 $\mathbf{w}^2(3\mathbf{w} - 1) + (3\mathbf{w} - 1)$

(J)
$$5t^2(t+7) - (t+7)$$

$$\bigcirc$$
 3 $u^2(u^2 + v^2) - v^2(u^2 + v^2)$

(N)
$$(y^2 + 3)y^2 + 3(y^2 + 3)$$

Answers for H-N:

$(6-h)(x^3-4)$
MISS
$(5t^2-1)(t+7)$
MADE
$(6h-1)(x^3-4)$
ON
(a - 2b)(5a + 3b)
BEAR
$(2d+1)(5-n^2)$
RANGER
(a - 2b)(3a - 5b)
PUT
$(w^2 + 1)(3w - 1)$
FOREST
$(2\mathbf{d} - 5)(5 - \mathbf{n}^2)$
SHOOT
$(3u^2 - v^2)(u^2 + v^2)$
HIM
$(y^2 + 3)^2$
CLOTHES
$(u^2 + 3v^2)(u^2 + v^2)$
A