Feedforward Neural Networks

Carlos Valle

Departamento de Informática Universidad Técnica Federico Santa María

cvalle@inf utfsm cl

October 19, 2018

Overview

- Introduction
- Neural Network Architecture
- Activation Functions
- Perceptron Algorithm
- Back-propagation Algorithm

Artificial Neural Networks

- ANN were inspired by scientists who attempt to answer questions such as:
 - What makes the human brain such a formidable machine in processing cognitive thought?
 - What is the nature of this thing called intelligence?
 - And, how do humans solve problems?
- There are many different theories and models for how the mind and brain work.

Connectionism

- One such theory, called connectionism, uses analogues of neurons and their connections together with the concepts of activation functions, and the ability to modify those connections to create learning algorithms.
- Now, ANNs are treated more abstractly, as a network of highly interconnected nonlinear computing elements.
- Problems of speech recognition, handwritten character recognition, face recognition, and robotics are important applications of ANNs.

Why neural networks?

 Essential motivation: automatic extraction of characteristics relevant to solve a learning task.

Figure: Logistic Regression Model

Why neural networks? (2)

ullet Note that using the logistic regresion model, $f(\mathbf{x})$ is given by

$$f(\mathbf{x}) = \sigma(w^T \mathbf{x} + b) = \sigma\left(\sum_{i=1}^{I} w^{(i)} x^{(i)} + b\right)$$

- \bullet Thus, we would state that $f(\mathbf{x})$ depends on $\mathbf{x}^{(1)},\dots,\mathbf{x}^{(I)}.$
- In practice, we do not know what the relevant attributes are for solve the problem by linear methods.

6/61

Carlos Valle (UTFSM) FFNN October 19, 2018

Why neural networks? (3)

• Idea: The determination of each attribute (representation) is itself same a learning problem.

Neural Network Architecture

• The resulting model is given by

$$f(\mathbf{x}) = \sigma \left(\sum_{s=1}^{S} w_{out,s} \sigma \left(\mathbf{w}_{s}^{T} \mathbf{x} + b_{s} \right) + b_{out} \right)$$

Equivalently,

$$f(\mathbf{x}) = \sigma \left(w_{out}^T a + b_{out} \right),\,$$

- where $a = (a_1, \ldots, a_S)^T$
- And $a_s = \sigma(w_s^T \mathbf{x} + b_s)$
- Thus, this model has (N+1)(I+1) free parameters.

Neurons and Layers

- Neurons: Each of the computation units used in the model (to learn an attribute) will be called neuron.
- Input Neurons: Each original feature feeds an specialized unit (neuron) called input neuron.
- The unit that produces the final output is called the output neuron.
- Hidden neurons are located between the input and output. They learn the underlying representation.

Neurons and Layers (2)

Neurons and Layers (3)

• Extending this idea, we may need to add a level additional processing aimed at learning the necessary attributes for learning the attributes necessary to learn the output.

Neurons and Layers (4)

• And so on.

Neurons and Layers (5)

- We thus obtain the input layer (1), the output layer (4) and the hidden (2,3) layers.
- The traditional numbering is incremental, counting the input number as 1.

Layers = transformations

- Mathematically, each level computes a transformation of the representation obtained in the previous level.
- $a^{(1)} = \mathbf{x}$

Layers = transformations (2)

- Mathematically, each level computes a transformation of the representation obtained in the previous level.
- $a^{(2)} = H^{(1)}(a^{(1)})$

Layers = transformations (3)

- Mathematically, each level computes a transformation of the representation obtained in the previous level.
- $a^{(3)} = H^{(2)}(a^{(2)})$

Layers = transformations (4)

- Mathematically, each level computes a transformation of the representation obtained in the previous level.
- $a^{(4)} = H^{(3)}(a^{(3)})$

Layers = transformations (4)

•
$$a^{(\ell)} = (a_1^{(\ell)}, a_2^{(\ell)}, \dots, a_{s_\ell}^{(\ell)})^T \in \mathbb{R}^{s_\ell}$$

• Now we have $H(0) \circ H(1) \circ \cdots \circ H(L-1)$

Carlos Valle (UTFSM) FFNN October 19, 2018 18/61

Transformations: Linear combinations + non-linear functions

- Each neuron linearly combines the attributes generated in the previous level and then transforms the total signal calculated using a non-linear function.
- $a^{(\ell+1)} = H^{(\ell)}(a^{(\ell)})$
- $w^{(\ell)} = (w_1^{(\ell)}, w_2^{(\ell)}, \dots, w_{s+1}^{(\ell)})^T \in \mathbb{R}^{s_{t-1} \times s_t}$
- $w_0^{(\ell)} = (w_{10}^{(\ell)}, w_{20}^{(\ell)}, \dots, w_{s+10}^{(\ell)})^T \in \mathbb{R}^{\ell+1}$
- $\bullet \ a^{(\ell+1)} = H^{(\ell)}(a^{(\ell)}) = \sigma(W^{(\ell)}a^{(\ell)} + w_0^{(\ell)})$

Transformations: Linear combinations + non-linear functions

• The transformation made by each neuron is determined by parameters that are interpreted as connection weights between the units.

Transformations: Linear combinations + non-linear functions

In matrix form ...

$$a^{(\ell+1)} = H^{(\ell)}(a^{(\ell)})$$

$$W^{(\ell)} = (w_1^{(\ell)}, w_2^{(\ell)}, \dots, w_{S_{\ell+1}}^{(\ell)})^{\mathsf{T}} \in \mathbb{R}^{S_{\ell+1} \times S_{\ell}}$$

$$w_0^{(\ell)} = (w_1^{(\ell)}, w_2^{(\ell)}, \dots, w_{S_{\ell+1}}^{(\ell)})^{\mathsf{T}} \in \mathbb{R}^{S_{\ell+1} \times S_{\ell}}$$

$$w_0^{(\ell)} = (w_1^{(\ell)}, w_2^{(\ell)}, \dots, w_{S_{\ell+1}}^{(\ell)})^{\mathsf{T}} \in \mathbb{R}^{S_{\ell+1} \times S_{\ell}}$$

$$w_0^{(\ell)} = (w_1^{(\ell)}, w_2^{(\ell)}, \dots, w_{S_{\ell+1}}^{(\ell)})^{\mathsf{T}} \in \mathbb{R}^{S_{\ell+1} \times S_{\ell}}$$

$$a_2^{(\ell+1)} = H^{(\ell)}(a^{(\ell)}) = \sigma(W^{(\ell)}a^{(\ell)} + w_0^{(\ell)})$$

Composition of transformations (forward pass)

Algorithm 1 Batch gradient descent algorithm

Require: x

Ensure: $f_{ANN}(\mathbf{x})$

- 1: $a^{(1)} = \mathbf{x}$
- 2: for l=1 to L-1 do
- 3: $a^{(\ell+1)} = \sigma(W^{(\ell)}a^{(\ell)} + w_0^{(\ell)})$
- 4: end for

Extending for multi-class settings

- We might need that the number of neurons in the output layer be < 1.
- For example, in multi-class classification we would like to compute the probability of each class.

Extending for multi-class settings

- This solution could produce inconsistent results.
- Later, we will define special layers to solve this problem.

Hypothesis space of a Neural Network

Definition

Given a learning task, $f: \mathcal{X} \to \mathcal{Y}, \mathcal{X} \subset \mathbb{R}^I, \mathcal{Y} \subset \mathbb{R}^K$, a feed forward neural network (FFN) is a learning function in the hypothesis space $\mathcal{H}_{S_2}^{S_1} \circ \mathcal{H}_{S_3}^{S_2} \circ \cdots \circ \mathcal{H}_{S_{L-1}}^{S_L}$ with $S_1 = I$, $S_L = K$ and

$$\mathcal{H}_S^T = \{ H : \mathbb{R}^S \to \mathbb{R}^T : H(a) = \sigma(Wa + w_0), W \in \mathbb{R}^{T \times S}, \mathbf{w}_0 \in \mathbb{R}^T \}.$$

L is called the number of layers or depth of the network. S_ℓ it is called the number of neurons in the layer ℓ .

How many neurons and layers?

Theorem (Universal approximation theorem, Cybenko (1989))

For any learning task $f: \mathcal{X} \to \mathcal{Y}, \mathcal{X} \subset [0,1]^I, \mathcal{Y} \subset \mathbb{R}$, where f is a continuous function. There exist a feed forward neural network with 3 layers such as $\forall \varepsilon > 0$:

$$|f(\mathbf{x}) - f_{ANN}(\mathbf{x})| \le \varepsilon$$

- In real scenarios, optimal values are highly dependent on the problem.
- Specifically depends on the feature and the size of the dataset.
- We will return to this problem later.

Parameters versus hyperparameters

- Parameters of the model: Its value is determined by training the model, that is, from the observed error on the training examples.
- Examples:
 - w_{sr}^{ℓ} : weight from neuron r in layer ℓ to neuron s in layer $\ell+1$.
 - w_{s0}^{ℓ} : bias of the neuron r in layer ℓ .
 - w_s^ℓ : weight vector of neuron s in layer ℓ .
 - W^{ℓ} : matrix weights of layer ℓ .

Parameters versus hyperparameters

- Hyper-parameters of the model: In general, its value can not be determined from of the training data. An estimate of the future error (test) is needed.
- Examples:
 - L: weight from neuron r in layer ℓ to neuron s in layer $\ell+1$.
 - S_{ℓ} : number of neurons of the layer ℓ .

Deep versus Shallow

- Before 2006 the preferred model had 1 hidden layer.
- Nowadays, recycling of attributes is the most popular idea.
 - Each neuron of a level can use all the attributes obtained in the previous level to work.
 - Each attribute generated by a neuron in a The layer can be used by all neurons in the next layer.
 - The deeper the network, the greater the recycling of attributes possible, i.e. it is possible to obtain more compact representations.
 - Layers as levels of abstraction to solve a problem: A greater number of layers of processing allows to build attributes of greater complexity from simpler attributes.

Activation functions

- Each neuron in the network learns a transformation (linear combination + non-linearity)
- $a = \sigma \left(\sum_{i=1}^{I} w_i x_i b \right)$
- It is possible to model / choose the latter with different criteria

Activation Linear

•
$$a = \sigma \left(\sum_{i=1}^{I} w_i x_i - b \right)$$

•
$$\sigma(\xi) = \xi$$

Figure: Linear function

Activation sigmoidal

•
$$a = \sigma \left(\sum_{i=1}^{I} w_i x_i - b \right)$$

•
$$\sigma(\xi) = \frac{1}{1+e-\xi}$$

Figure: Sigmoid function

Activation tanh

•
$$a = \sigma \left(\sum_{i=1}^{I} w_i x_i - b \right)$$

•
$$\sigma(\xi) = \frac{2}{1 + e^{-2\xi}} - 1$$

Figure: Tanh function

Activation ReLu (Rectifier Linear)

•
$$a = \sigma \left(\sum_{i=1}^{I} w_i x_i - b \right)$$

$$\sigma(\xi) = \begin{cases} \xi & \xi \ge 0 \\ 0 & \xi < 0 \end{cases}$$

Figure: ReLu function

Activation ReLu (Rectifier Linear)

- When an instance x is processed, a subset of the network units is activated. And the response is linear in the subset (path) of active neurons.
- We can view this as a classification tree with a exponentially large number of leaves and linear predictors on them.

Figure: Linear function

Activation Softplus

• This approximation for the ReLu is differentiable (everywhere).

Figure: Softplus function

Activation Functions

- Universal Approximation Theorem (Hornik, 1991)
- Let Σ be the family of functions $\sigma: \mathbb{R} \longrightarrow \mathbb{R}$ such that
 - σ is not constant.
 - σ is bounded.
 - σ is continuous.
- Kurt Hornik. Approximation Capabilities of Multilayer Feedforward Networks. Neural Networks, Vol. 4, pp. 251-257. 1991

Universal Approximation Theorem (Hornik, 1991)

Theorem (Universal approximation theorem. Hornik, 1991))

For any learning task $f: \mathcal{X} \to \mathcal{Y}, \mathcal{X} \subset \mathbb{R}^I, \mathcal{Y} \subset \mathbb{R}$, where f is a continuous function. There exist a feed forward neural network with 3 layers with $\sigma \in \Sigma$, such as $\forall \varepsilon > 0$:

$$|f(\mathbf{x}) - f_{ANN}(\mathbf{x})| \le \varepsilon$$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

38 / 61

Activation Functions

- Recent research: It is possible to use certain unbounded functions and still maintain the universal approximation property?
- S. Sonuda, N. Murata. Neural network with unbounded activation functions is universal approximator. 2015.
- In particular, the property is maintained for the 2 most popular transfer functions: ReLu and Softplus.
- In practice, the activation function can differ from layer to layer.

Activation Functions for the output layer

- Last layer (output) must use activation functions appropriate for the learning task that you want to solve.
- For example, in regression problems, where the output is continuous (position, speed, price, temperature, etc), an output to the range [0,1] may be too restrictive.
- The choice of the transfer function for the output layer is very related to the choice of an error function and with the interpretation / use we make of the network's response.
- In regression settings the linear activation function is the most used.

Activation Functions for the output layer

- In binary classification problems, the output layer is commonly compounded of 1 unit with sigmoid function.
- Thus, it models

$$p(y = c_1 | \mathbf{x}) = f(\mathbf{x})$$

And subsequently

$$p(y = c_2 | \mathbf{x}) = 1 - f(\mathbf{x})$$

Activation Functions for the output layer

• In multi-class problems (K > 2), the choice of sigmoidal functions for each unit of the output layer might lead to inconsistent results.

From neurons to layers

ullet Using K logistic functions, the output layer would be obtained as:

$$\begin{aligned} & \boldsymbol{a}^{L} = \sigma(\boldsymbol{W}^{(L-1)^{T}} \boldsymbol{a}^{(L-1)} + \boldsymbol{w}^{(L)}_{0}) \\ & \boldsymbol{a}^{L}_{1} = \sigma(\boldsymbol{w}^{(L-1)^{T}}_{1} \boldsymbol{a}^{(L-1)} + \boldsymbol{w}^{(L)}_{10}) = \frac{1}{1 + e^{-(\boldsymbol{w}^{(L-1)^{T}}_{1} \boldsymbol{a}^{(L-1)} + \boldsymbol{w}^{(L)}_{10})}} \\ & \boldsymbol{a}^{L}_{2} = \sigma(\boldsymbol{w}^{(L-1)^{T}}_{2} \boldsymbol{a}^{(L-1)} + \boldsymbol{w}^{(L)}_{20}) = \frac{1}{1 + e^{-(\boldsymbol{w}^{(L-1)^{T}}_{2} \boldsymbol{a}^{(L-1)} + \boldsymbol{w}^{(L)}_{20})}} \\ & \vdots \\ & \boldsymbol{a}^{L}_{S_{L}} = \sigma(\boldsymbol{w}^{(L-1)^{T}}_{S_{L}} \boldsymbol{a}^{(L-1)} + \boldsymbol{w}^{(L)}_{S_{L}}) = \frac{1}{1 + e^{-(\boldsymbol{w}^{(L-1)^{T}}_{2} \boldsymbol{a}^{(L-1)} + \boldsymbol{w}^{(L)}_{S_{L}})} \end{aligned}$$

The softmax layer

• In classification problems with multiple categories (K¿ 2) the default choice is called softmax layer.

$$oldsymbol{a}^L = g_{ ext{ iny softmax}}(oldsymbol{W}^{(L-1) op}oldsymbol{a}^{(L-1)} + oldsymbol{w}_0^{(L)})$$

Layer transformation

$$a_{s}^{(L)} = \underbrace{\frac{exp\left(\mathbf{w}_{s}^{(L-1)^{\mathsf{T}}}\mathbf{a}^{(L-1)} + \mathbf{w}_{s0}^{(L-1)}\right)}{\sum_{t} exp\left(\mathbf{w}_{t}^{(L-1)^{\mathsf{T}}}\mathbf{a}^{(L-1)} + \mathbf{w}_{t0}^{(L-1)}\right)}}$$

$$\sum\nolimits_{s}a_{\rm s}^{(L)}=1 \qquad \mbox{ This normalization of the outputs ensures} \\ \mbox{that the probabilities always sum 1}.$$

The maxout layer

- Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A. C., and Bengio, Y. (2013). Maxout Networks. ICML (3), 28, 1319-1327.
- This layer is commonly used as a hidden layer.
- The maxout layer is given by
- $\bullet \ a^{(\ell+1)} = \sigma_{maxout} \left(\boldsymbol{W}^{\ell^T} a^{(\ell)} + \boldsymbol{w}_0^{(\ell)} \right),$
- where $\sigma_{maxout}\left(\mathbf{p}\right) = \max_{k} p_{k}$

The maxout layer

- Each neuron in the layer learns a linear combination of its input signal.
- A maxout layer can be seen as a linear model by parts, which learns the shape of the activation function needed.

The maxout layer

• Each neuron in the layer learns a linear combination of its input signal.

Primal Perceptron algorithm

Algorithm 2 Primal perceptron algorithm

```
1: Given a training set S
 2: w_0 \leftarrow 0; b_0 \leftarrow 0; p \leftarrow 0
 3: repeat
 4:
          for m=1 to M do
               if y_m(\mathbf{w}^T\mathbf{x}_m + b_p) < 0 then
 5:
 6:
                    w_{p+1} \leftarrow w_p + \eta y_m x_m
 7:
                   b_{n+1} \leftarrow b_n + \eta y_m
                   p \leftarrow p + 1
               end if
10:
          end for
11: until No mistakes are made within the loop
12: Output: (\mathbf{w}_p, b_p)
```

What does the weight update is doing?

How to adjust the weights?

 Revisiting out DNN (Deep Neural Network) architecture, we need an optimization method that determines the best values for the network weights.

$$\min_{W} R_{emp}(f_W) = \min_{W} \frac{1}{M} \sum_{m=1}^{M} \ell(f_{ANN}(\mathbf{x}_m), y_m)$$

 Recall that if we have a binary classification problem and we use a sigmoidal output, the output of the network is directly interpretable as:

$$f(\mathbf{x}) = p(y = c_1|x) = p(y = 1|x)$$

• The log-likelihood of the probabilistic model is:

$$\mathcal{L}(S) = \ln \prod_{m} p(y_m | x_m) = \sum_{m} \ln p(y_m | x_m)$$

$$= \sum_{m:y_m=1} \ln f(\mathbf{x}_m) + \sum_{m:y_m=0} \ln(1 - f(\mathbf{x}_m))$$

$$= \sum_{m} y_m \ln f(\mathbf{x}_m) + (1 - y_m) \ln(1 - f(\mathbf{x}_m))$$

• Maximizing $\mathcal{L}(S)$ is equivalent to:

$$\max \mathcal{L}(S) = \max \sum_{m} y_m \ln f(\mathbf{x}_m) + (1 - y_m) \ln(1 - f(\mathbf{x}_m))$$
$$= \min \sum_{m} \ell(f(\mathbf{x}_m), y_m)$$

- where $\ell(f(\mathbf{x}_m), y_m) = -y_m \ln f(\mathbf{x}_m) + (1 y_m) \ln (1 f(\mathbf{x}_m))$
- ullet ℓ is called the cross-entropy loss

- ullet We can extend the cross-entropy loss to multi-class problem with K classes
- Using $T(y) = ((T(y))_1, \dots, (T(y))_K)^T$, where $(T(y))_k = 1$ If y = k, 0 otherwise.
- Thus, $(T(y))^{(k)} = I(y=k)$ and $(T(y))^{(K)} = 1 \sum_{k=1}^{K-1} (T(y))^{(k)}$,
- where $I(\cdot)$ is the indicator function.
- Here, $f(\mathbf{x}_m) = (f(\mathbf{x}_m)^{(1)}, \dots, f(\mathbf{x}_m)^{(K)})$ is a vector of size K.
- Here, $\ell(f(\mathbf{x}_m), T(y_m) = -\sum_k \left[T(y_m)^{(k)} \ln f(\mathbf{x}_m)^{(k)} + (1 T(y_m)^{(k)}) \ln (1 f(\mathbf{x}_m)^{(k)}) \right]$

- For regression settings we model $f(\mathbf{x}) = E(y|x)$
- If we assume that E(y|x) is normally distributed

$$\mathcal{L}(S) = \ln \prod_{m} p(y_{m}|x_{m}) = \sum_{m} \ln p(y_{m}|x_{m})$$

$$= \sum_{m} \ln \left(\operatorname{const} \cdot \exp \left(-\frac{y_{m} - f(\mathbf{x}_{m})}{2} \right) \right)$$

$$= \sum_{m} -(y_{m} - f(\mathbf{x}_{m}))^{2} + \operatorname{const}$$

□ → < □ → < □ → < □ →
 □ → < □ →

• Maximizing $\mathcal{L}(S)$ is equivalent to:

$$\max \mathcal{L}(S) = \max -(y_m - f(\mathbf{x}_m))^2 + \text{const}$$

$$= \min \sum_m (y_m - f(\mathbf{x}_m))^2$$

$$= \sum_m \ell(f(\mathbf{x}_m), y_m)$$

• where $\ell(f(\mathbf{x}_m), y_m) = (y_m - f(\mathbf{x}_m))^2$

Back-propagation algorithm

Algorithm 3 Back-propagation algorithm

- 1: Initialize the network weights 2: while stop criteria not met do 3: for each example (x_m, y_m) do 4: Compute forward pass (x_m, y_m) 5: Compute the error $E = E(\mathbf{x}_m, y_m)$ 6: Compute backward pass(E)
- 7: end for
- 8: end while

Forward pass

Forward Pass

```
\begin{array}{ll} \mathbf{1} & \mathbf{a}^{(1)} = \mathbf{x}; \\ \mathbf{2} & \mathbf{for} \ \ell = 1, \dots, L-1 \ \mathbf{do} \\ \mathbf{3} & \Big| \quad \mathbf{a}^{(\ell+1)} = \sigma(\mathbf{W}^{(\ell)^{\intercal}} \mathbf{a}^{(\ell)} + \mathbf{w}_0^{(\ell)}) \ ; \\ \mathbf{4} & \mathbf{end} \\ \mathbf{5} & \mathrm{return} \ \mathbf{a}^{(L)} \end{array}
```


Forward Pass

= Predict

Computing the error for the output layer

For regression settings:

$$E = E(\mathbf{x}_m, y_m) = \frac{1}{2} \sum_{k=1}^{K} (a_k^{(L)} - y_k)^2$$
$$= E(\mathbf{x}_m, y_m) = \frac{1}{2} \sum_{k=1}^{K} (f_{ANN}(\mathbf{x})_k - y_k)^2$$

Thus,

$$\frac{\partial E}{\partial a_S^{(L)}} = (a_S^{(L)} - y_S) = (f_{ANN}(\mathbf{x})_S - y_S)$$

Computing the error for the output layer

• For classification settings:

$$E(\mathbf{x}_m, y_m) = \frac{1}{2} \sum_{k=1}^{K} (y_k \ln a_k^{(L)} + (1 - y_k) \ln(1 - a_k^{(L)}))$$

• Thus,

$$\frac{\partial E}{\partial a_S^{(L)}} = \frac{(y_s - a_s^{(L)})}{a_s^{(L)}(1 - a_s^{(L)})}$$

How to implement the backward pass?

- We will use gradient descent + chain rule
 - 1: for t = 1, ..., T do
 - 2: $W^{(t)} \leftarrow W^{(t-1)} \eta \frac{\partial E}{\partial W}$
 - 3: end for
- $\bullet \ W^{(t)} \xrightarrow[t \longrightarrow \infty]{} W^*$
- So, we need the partial derivatives with respect to each weight:
- For each layer ℓ ,
- $w_s^{(\ell)} \longleftarrow w_s^{(\ell)} \eta \frac{\partial E}{\partial w_s^{(\ell)}}$
- $\bullet \ w_{s0}^{(\ell)} \longleftarrow w_{s0}^{(\ell)} \eta \frac{\partial E}{\partial w_{s0}^{(\ell)}}$

Any questions?

