multiclass retinal fluid segmentation and detection in OCT images using a fully convolutional neural network Under Guidance of Prof Jeny Rajan

Presented by: Mohammad Rahil Quazi

Objective

- To propose a CNN model for multiclass fluid segmentation and detection in the retinal OCT images.
- Basically we are trying to detect 3 types of fluid: intraretinal fluid (IRF), subretinal fluid (SRF), and Pigment epithelial detachment (PED)
- Firstly we need to segment the fluid in OCT images, after segmenting the fluid we need to identify it belongs to which category.
- Input provided to us is OCT volumes, each volume consist of several
 B-scans, in each B-scans we need to identify the fluid location if present.

IRF(intraretinal fluid)

- IRF is a hyporeflective space predominantly located in the inner and outer nuclear layers that increases the overall retinal thickness
- It consists of contiguous fluid-filled spaces containing columns of tissue as the arrangement of such spaces is determined by the Müller fibres, which are vertical.
- IRF represents one of the most important variables associated with vision loss.

Subretinal Fluid (SRF)

- SRF is a hyporeflective space between the neurosensory retina and retinal pigment epithelium (RPE)
- It corresponds to the accumulation of a clear or lipid-rich exudate in the subretinal space,i.e., between the neurosensory retina and the underlying retinal pigment epithelium (RPE) that nourishes photoreceptors.
- SRF is associated with a possibly favorable visual prognosis in AMD
- AMD(age-related macular degeneration) :AMD is the leading cause of blindness in developed countries affecting older patients.

Pigment Epithelial Detachment(PED)

- It represents detachment of the RPE along with the overlying retina from the remaining Bruch's membrane (BM) due to the accumulation of fluid or material in sub-RPE space.
- The IRF and SRF fluid regions usually show obvious lower intensity compared to nearby retinal tissue, while PED can have similar or even higher intensity.
- PED is composed of three clinical subtypes: serous, fibrovascular, and drusenoid.

Example of IRF,SRF and PED

Red:IRF Green:SRF Blue:PED

3 Different types of OCT Scanner vendor

Teams with best results in Retouch competition

Team	Network	Data aug.	Layer seg.	Post- process	2D/3D
Helios	U-net	-	-	morphologic	2D
MABIC	U-net	X	-	U-net	2D
NJUST	Faster R-CNN	-	X	3D smooth	2.5D
RetinAI	U-net	X	x	-	2D
RMIT	U-net + adversarial	x	-	median filt.	3D
SFU	U-net	X	X	rand. forest	2D
UCF	ED-ResNet	x	-	graph-cut	2.5D
UMN	CNN	-	X	morphologic	2D

^{&#}x27;x' denotes the use of data augmentation or retinal layer segmentation

SFU model

- Preprocessing: (Noise Removal) reduce the effect of speckle, motion-corrected intensity B-scans in each volume were smoothed by 3D Bounded variation (BV). Then, 3D graph-cut based algorithm was applied to segment the internal limiting membrane (ILM) and the Bruch's membrane (BM)(layer segmentation).
- Multi-class fluid pixel segmentation: U-net is used to segment each pixel into background, IRF, SRF and PED.
- relative distance map was concatenated to the intensity of each, B-scan as the second channel of input image.
- Softmax cross entropy as loss function.
- Data Augmentation: flip, rotation and zooming is used for data augmentation.
- Post-processing: Random forest classifier is used.

Retina Al

- a Branch Residual U-Net (BRUNet) is used for image segmentation.
- Preprocessing: in this model for preprocessing more focus is given to layer segmentation.
- Data-Augmentation: horizontal flip, shear, rotation, shift and Gaussian noise is performed.

Retinal AI

UCF

- Preprocessing:OCT volume is smoothed with a three-dimensional Gaussian kernel in order to remove speckle. Intensity of each bscan is then rescaled.
- bicubic downsampling is used to resize the images.
- Cropping is done in order to minimize the background area.
- Data Augmentation: myopic warping
- CNN network:ResNet
- Post-Processing:graph-cut algorithm is used

Retouch Competition results(detection leaderboard)

TABLE V
DETECTION TASK LEADERBOARD WITH AUC VALUES FOR EACH FLUID TYPE.

Rank Sum	Team	IRF	SRF	PED
3	SFU	1.00	1.00	1.00
6	UCF	0.94	0.92	1.00
8	Helios	0.93	1.00	0.97
10	MABIC	0.86	1.00	0.97
10	RMIT	0.71	0.92	1.00
11	RetinAI	0.99	0.78	0.82
11	UMN	0.91	0.92	0.95
13	NJUST	0.70	0.83	0.98
	Majority Vote	1.00	1.00	1.00

Retouch Competition results(segmentation leaderboard)

Rank Sum	Team	IRF		SRF		PED	
		DSC	AVD	DSC	AVD	DSC	AVD
39	SFU	0.82 (0.19)	0.030 (0.036)	0.75 (0.30)	0.041 (0.089)	0.74 (0.24)	0.140 (0.154)
59	UMN	0.70 (0.20)	0.088 (0.131)	0.71 (0.33)	0.032 (0.058)	0.77 (0.23)	0.119 (0.207)
64	MABIC	0.78 (0.22)	0.027 (0.032)	0.66 (0.32)	0.064 (0.123)	0.70 (0.29)	0.167 (0.169)
73	RMIT	0.73 (0.20)	0.078 (0.079)	0.70 (0.31)	0.046 (0.094)	0.69 (0.25)	0.245 (0.290)
74	RetinAI	0.74 (0.19)	0.039 (0.054)	0.67 (0.33)	0.079 (0.147)	0.71 (0.29)	0.189 (0.416)
88	Helios	0.63 (0.19)	0.048 (0.064)	0.68 (0.30)	0.059 (0.103)	0.66 (0.26)	0.297 (0.503)
120	NJUST	0.57 (0.21)	0.107 (0.124)	0.53 (0.34)	0.103 (0.169)	0.63 (0.27)	0.253 (0.380)
130	UCF	0.49 (0.20)	0.276 (0.319)	0.54 (0.33)	0.112 (0.140)	0.63 (0.24)	0.280 (0.285)
	Majority Vote	0.83 (0.17)	0.027 (0.036)	0.79 (0.31)	0.027 (0.048)	0.80 (0.24)	0.095 (0.110)

Teams methodology in Retouch

Team	Network	Data aug.	Layer seg.	Post- process	2D/3D
Helios	U-net	-	-	morphologic	2D
MABIC	U-net	X	-	U-net	2D
NJUST	Faster R-CNN	-	X	3D smooth	2.5D
RetinAI	U-net	x	x	-	2D
RMIT	U-net + adversarial	x	-	median filt.	3D
SFU	U-net	X	X	rand. forest	2D
UCF	ED-ResNet	x	-	graph-cut	2.5D
UMN	CNN	-	X	morphologic	2D

^{&#}x27;x' denotes the use of data augmentation or retinal layer segmentation

Fluid segmentation in Neutrosophic domain(Dec 2019)

- Only fluid segmentation is done, no detection is performed.
- Uses neutrosophic C-means which comes under Neutrosophic domain.
- No use of Deep learning model.
- Tested on OPTIMA Cyst Segmentation Challenge.
- Compared and outperformed all other existing neutrosophic domain methods.
- Dice coefficient of model is 82.23 while of SFU(leader of retouch compitition) is nearly 77.

Fully Convolutional Networks for Fluid Segmentation in Retina Images (19 feb 2020)

- Only fluid segmentation is done, no detection is performed.
- First region of interest (ROI) segmentation is done in preprocessing
- ROI is done using graph shortest path layer segmentation
- FCN model is used to perform segmentation of fluid on images after performing ROI
- For training and testing 600 OCT scans of 24 subjects collected from University of Minnesota is used.
- model is compared with neutrosophic graph cut (NSGC), graph cut(GC) and kernel graph cut (KGC) methods.
- It showed the avg dice coefficient of 86.00.

Deep learning architectures analysis for age-related macular degeneration segmentation on OCT scans(may 2019)

- Both fluid segmentation and detection is performed on all three liquids.
- They showed how a patch-based approach could push the performance for each method of Retouch.
- In preprocessing Denoising (BM3D) and resizing is done
- Models trained on patch-based approach are UNET, FCN, Segnet and Deeplab.
- In post processing median filter and morphological operations is being used.
- All models trained on Retouch dataset and tested on Optimus challenge dataset
- Out of all patched UNET and Deeplab architecture appeared to be best and have dice coefficient of 0.85.

Pathological Retinal Region Segmentation From OCT Images Using Geometric Relation Based Augmentation(March 2020)

- Image segmentation is performed, no fluid detection is performed.
- In preprocessing new kind of data augmentation technique is performed known as Geometry-Aware Shape Generative Adversarial Network (GeoGAN).
- First image and its mask is fed to Spatial transformer network (STN), which works on idea of GeoGAN and produces new augmented images.
- Then Unet and other versions of unet architecture is used for fluid segmentation.
- It is trained and tested on Retouch dataset.
- GeoGAN have DSC of 0.906(only on Spectralis dataset) and average DSC value of The average DSC value of 0.893

Results comparison

Models	DSC value
GeoGAN	0.893
Patched Unet	0.85
Graph shortest path+FCN	0.86
Neutrosophic domain	0.82
SFU	0.77
UMN	0.72