

Python102

Python for Data Science Bootcamp

(6.2) Machine Learning Basics with Python Part 2

AIAT Academy

Machine Learning Basics

- Machine Learning Basic Part 1
 - Machine Learning with Python using Scikit Learn
 - Linear Regression
 - Logistic Regression
- Machine Learning Basic Part 2
 - Support Vector Machine (SVM)
 - K means Clustering
- Machine Learning Basic Part 3
 - Natural Language Processing (NLP)
 - Neural Network and Deep Learning

- Support Vector Machine (SVMs)
 - Supervised learning with associated learning algorithms
 - Analyse data and recognize pattern, used for classification and regression analysis

- Support Vector Machine (SVMs)
 - Supervised learning with associated learning algorithms
 - Analyse data and recognize pattern, used for classification and regression analysis
- An SVM model is a representation of the example of points space
 - The examples of the separate categories are divided by a clear gap that is as wide as possible

- Support Vector Machine (SVMs)
 - Supervised learning with associated learning algorithms
 - Analyse data and recognize pattern, used for classification and regression analysis
- An SVM model is a representation of the example of points space
 - The examples of the separate categories are divided by a clear gap that is as wide as possible

• Imagine the labelled training data below

• We can draw a separating "hyperplane" between the classes

• We can draw a separating "hyperplane" between the classes

• But we have many options of hyperplanes that separate

perfectly

• We would like to choose a hyperplane that maximizes the margin between classes

academy.aiat.or.th

• The vector points that the margin lines touch are knows as Support Vectors

Support Vector Machine with Python *Colab*

K Means

- Unsupervised learning that will attempt to group similar clusters together in your data
- Typical clustering problems
 - Cluster similar documents
 - Cluster customers based on Features
 - Market segmentation
 - Identify similar physical groups

• The goal is to divide data into distinct groups such that observations within each group are similar

K means Clustering (Algorithm)

- Choose a number of Cluster "K"
- Randomly assign each point to a cluster
- Until clusters stop changing, repeat the following:
 - For each cluster, compute the cluster centroid by taking the mean vector of points in the cluster
 - Assign each data point to the cluster for which the centroid is the closet

K means Clustering (Choosing K Value)

- There is no easy answer for choosing a "best K value"
- There is a way called "elbow method"
 - Compute sum of squared error (SSE) for some value of k (e.g. 2, 4, 6, 8, etc.)
 - The SSE is defined as the sum if the squared distance between each member of the cluster and its centroid

K means Clustering (Choosing K Value)

- The results will look like"elbow"
- In this case six or seven
 cluster may give us a better
 result of clusterinf

K means Clustering with Python *Colab*