Formulario Sistemas de Audio

Tema 1

Presión incremental / acústica (Pa)

$$p = P - P_0$$

 $P_0 \rightarrow {
m Presi\'on}$ equilibrio / atmosférica $\equiv 10^5 \; Pa$

 $P \longrightarrow \text{Presión instantánea}$

Velocidad de propagación (c)

En el aire $\rightarrow c = 344 \ m/s$

<u>Velocidad de partícula (u)</u>

La partícula oscila en base a su perturbación.

 $u \rightarrow \text{Velocidad de partícula (m/s)}$

 $z \rightarrow$ Impedancia específica del medio $(Pa \cdot S / m)$

 $z = \frac{p}{u} = p_c \rightarrow$ Densidad en ese medio, en el aire a

 $20^{\circ}C$ es $1.2 \, kg \, / \, m^3$

 $z_0 \rightarrow 414 \ Pa.s/m$

Características de las ondas:

- Periodo (T) [s]: Cuanto tiempo tarda la onda en completar un ciclo.
- Frecuencia (f) [Hz]: Inversa del periodo f = 1/T
- Longitud de onda (λ) [m]: Longitud que recorre la onda en el tiempo de un periodo $\lambda = cT = c/f$

Intensidad sonora

Para una onda plana: $I = p \cdot u = \frac{P^2}{\rho_0 c} = \frac{P^2}{z_0}$

$$I = \frac{P}{4\pi r^2}$$

Intensidad media

$$I_m = \frac{P_{ef}^2}{z_0}$$

A la raíz cuadrada de P_{ef}^2 se le conoce como **presión** eficaz o rms.

Nivel de presión sonora (SPL)[dB]:

$$SPL = 20 \log_{10} \left(\frac{p_{ef}}{p_{ref}} \right)$$

$$SPL = 10 \log_{10} \left(\frac{p_{ef}^2}{p_{ref}^2} \right)$$

$$P_{ref} \xrightarrow{Presi6n \ eficaz \ de \ referencia} = 20 \cdot 10^{-6} \ Pa.$$

Presión mínima $\rightarrow 20 \ \mu Pa \ (0 \ dB) \rightarrow p_{ref}$

Presión máxima $\rightarrow 63~Pa~(120dB)$

Intensidad mínima $\to 10^{-12}~W/m^2~(0~dB) \to I_0$ Intensidad máxima $\to 25~W/m^2~(120~dB)$

Relación Presión-Intensidad:

$$SPL = 10 \log_{10} \left(\frac{I}{I_0} \right) = L_I \qquad I_0 = 10^{-12} \ W/m^2$$

Fuentes esféricas

$$p_{ef} = \frac{r_0}{r} p_{ef}(r_0)$$

Válido únicamente para fuentes esféricas puras en espacio libre.

$$SPL(r) = 10 \log_{10} \left(\frac{I(r)}{I_0} \right) = 10 \log_{10} \left(\frac{p}{4\pi r^2} \cdot \frac{1}{I_0} \right)$$

Tema 3

$$P_{acustica} = P_{electrica} \cdot Eficiencia$$

Ley de Ohm:

$$V = I \cdot R$$

$$P = V \cdot I \rightarrow P = V^2 / R$$

Resistencia de un cable

 $R = \rho \frac{L}{S}$. Donde R es la resistencia Ω , L la longitud m y y S la sección del cable m^2 . La constante ρ depende del material utilizado.

Niveles de señal

dBm: Relación de potencias, en mW, respecto a 1mW.

dBu: Relación de tensiones, en voltios V, respecto a 0.775 V, que es la tensión que genera en una resistencia de 600 ohmions una potencia de 1mW.

 $dBm = 10\log_{10}\frac{W(mW)}{1(mW)}$

 $dBu = 20\log_{10}\frac{V(V)}{0.775(V)}$

 $\mathbf{dBV}:$ Relación de tensiones, en voltios V, respecto a 1V.

$$dBV = 20 \log_{10} \frac{V(V)}{1(V)}$$
 (1)

Relación Señal-Ruido

$$SNR = Nivel de referencia de línea - Nivel de ruido $SNR_{logaritmico} = 10 \cdot log(SNR_{lineal}) (dB)$$$

Tabla Conversión Pico-RMS-Promedio

Valores dados	Para encontrar los valores		
www.unierom.eom	Máximo (pico)	RMS	Promedio
Máximo (pico)		0.707 x Valor Pico	0.636 xValor Pico
RMS	1.41 × V _{RMS}		0.9 x V _{RMS}
Promedio	1.57 x Promedio	1.11 x Promedio	Electri
		•	

$$x = \log_b(y) \rightarrow b^x = y$$

$$\cos^2 \alpha + \sin^2 \alpha = 1$$
$$\sec^2 \alpha = 1 + \tan^2 \alpha$$

<u>Pitágoras</u>

$$a^2 = b^2 + c^2$$

<u>Importante para Petardos y</u>

<u>mascletàs</u>

velocidad = espacio / tiempo

Donde $v = 344 \, m/s$

Sensibilidad

$$S = \frac{Voltaje}{Presi\acute{o}n} \xrightarrow{puede} S = \frac{V_{rms}}{P_{ef}}$$

Sensisibildad =
$$20 \log_{10} \left(\frac{p_{ef}}{p_{ref}} \right)$$

 $p_{ref} = 20 \cdot 10^{-6}$

Ruido de entrada equivalente (EIN)

$$EIN = 20 \cdot \log \left(\frac{P_{ef}}{P_{ref}} \right)$$

$$EIN = SPL - SNR$$

$$Ganancia = 20 \cdot \log \left(\frac{V_{out}}{V_{in}} \right)$$

$$Ganancia = 10 \cdot \log \left(\frac{P_{out}}{P_{in}} \right)$$

$$P_{ef_T}^2 = P_{ef_1}^2 + P_{ef_2}^2$$

 $SPL_{1m}[dB] = 10 \cdot \log(W) + S \rightarrow \text{Ayuda con el calculo del SPL máximo de un altavoz}$ Si luego quieres sacar ese SPL a x metros $\rightarrow SPL_{Xm} = SPL_{maximo} - 20 \cdot \log (distancia)$

$$THD = 100 \cdot \sqrt{\frac{P_{distorsion}}{P_{util}}} \ (\%)$$

Margen dinamico = Nivel de saturacion – nivel de ruido SNR = Nivel de operación – nivel de ruido Margen sobrecarga(Headroom) = Nivel de saturacion – Nivel de operacion