

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS (Universidad del Perú, DECANA DE AMÉRICA)

FACULTAD DE INGENIERIA DE SISTEMAS E INFORMATICA ESCUELA PROFESIONAL DE INGENIERÍA DE SISTEMAS

I. INFORMACIÓN GENERAL

1.1.	Nombre y código de la asignatura	: MÉTODOS NUMÉRICOS – 2010504
1.2.	Número de créditos	03
1.3.	Número de horas semanales	: Teoría: 02 horas, Laboratorio: 02 horas
1.4.	Ciclo de estudio	:V
1.5.	Periodo Académico	: 2020 – II
1.6.	Prerrequisitos	: 2010404, Series y Ecuaciones Diferenciales
	•	2010304, Probabilidades y Estadísticas
1.7.	Profesores;Correo	: Santiago E contreras Aranda
		santicontreras@live.con
		Scontrerasa@unmsm.edu.pe
		Rolando Peña Flores
		rpenaf@unmsm.edu.pe
		Luna Valdez Juan
		jlunav@unmsm.edu.pe
		Jhon Trujillo Trejo:
		itrujillot@unmsm.edu.pe

II. SUMILLA

Es una asignatura que corresponde al área de formación básica, es de naturaleza teórico y práctico, tiene el propósito que el alumno comprenda y aplique los principios, métodos y técnicas de resolución numérica de modelos matemáticos que buscan comprender y resolver situaciones prácticas en las áreas de ciencia e ingeniería. Los contenidos principales son: Teoría de Errores, Resolución numérica de una ecuación no lineal. Resolución numérica de un sistema de ecuaciones lineales. Aproximación de funciones. Derivación e integración numérica. Resolución numérica de ecuaciones diferenciales ordinarias.

III.COMPETENCIA GENERAL

Conocer, analizar, deducir y aplicar diversos métodos numéricos que den solución a diferentes problemas de ingeniería y de ciencias básicas (las cuáles usualmente no pueden ser resueltas analíticamente o esta no resulta ser práctica), usando algoritmos y su implementación en

programas de cómputo con lenguajes de programación adecuados.

COMPETENCIAS ESPECÍFICAS

- 3.1. Efectúa la implementación computacional de los algoritmos desarrollados en clase.
- 3.2. Conoce y desarrolla e implementa algoritmos con algún lenguaje de propósito general.
- 3.3. Planifica y desarrolla e implementa, proyectos que le permitan usar los métodos numéricos estudiados para solucionar diversos modelos del mundo real e inteligible.

IV. **PROGRAMACIÓ**

N: UNIDAD

N.º 1:

TEORÍA DE ERRORES, ECUACIONES DE SEGUNDO ORDEN

Al término de esta unidad, el estudiante:

- Comprende la generación y acumulación de errores asociados a un procedimiento computacional.
- Aproxima la solución de una ecuación no lineal.

• Es capaz de diseñar e implementar una aplicación computacional de uso específico.

Semana	Contenidos	Estrategias	Actividades	Evaluación
		Didácticas		
1°	Introducción y teoría de	Deductivo,	Laboratorio:	, Ejercicios,
	errores:	lógico, y	Introducción al	Practica
11-17-	1. Introducción a la	Expositiva y	Matlab, comandos	Calificada, Prueba
octubre	teoría de errores.	participativa	básicos, manejo de	Objetiva
2021	2. Errores por truncamiento y		arrays.	
	por redondeo.			
	3. Presentación de las			
	herramientas			
	computacionales:			
	Octave, Python, Matlab.			
2°	Resolución de una ecuación	Deductivo,	Laboratorio:	Ejercicios,
18-23	no lineal:	lógico, y	Funciones	Practica
octubre	1. Método de la Bisección.	activo.	MATLAB	Calificada, Prueba
2021	2. Método del punto fijo.	Expositiva y		Objetiva
	3. Método de Newton Raphson.	participativa		
	4. Método de la			
	Secante.			

UNIDAD N.º 2:

SISTEMA DE ECUACIONES LINEALES -NO LINESLES

Al término de esta unidad, el alumno:

• Comprende y plantea un sistema algebraico como alternativa de solución.

- Es capaz de elegir el método apropiado de resolución numérica.
- Implementa, resuelve e interpreta la solución numérica de un sistema algebraico de ecuaciones.

Semana	Contenidos	Estrategias	Actividades	Evaluación
		Didácticas		
3° 25-31 octubre 2021	Resolución de sistemas de ecuaciones lineales con métodos directos: 1. Propiedades del álgebra lineal. 2. Métodos de Sustitución. 3. Método de Eliminación Gaussiana. Método de descomposición LU: Cholesky y Doolitle.	Deductivo, lógico, Expositiva y participativa	Laboratorio: Implementación de los algoritmos de ecuaciones lineales con métodos directos	Ejercicios, Practica Calificada, Prueba Objetiva
4°	Resolución de sistemas de	Deductivo,	Laboratorio:	Ejercicios,
01-07	ecuaciones lineales con métodos	lógico,	Implementación de	Practica Calificada,
noviembre 2021	 iterativos: Método de Jacobi. Métodos de Gauss Seidel. Sistemas de Ecuaciones no lineales Implementación computacional y resolución de casos prácticos. 	Expositiva	los algoritmos de ecuaciones lineales con métodos iterativos.	Prueba Objetiva

UNIDAD Nº 3:

APROXIMACIÓN POLINOMIAL e INTERPOLACIÓN

Al término de esta unidad, el alumno:

- Reconstruye la función generatriz de un conjunto discreto de datos.
- Es capaz de elegir el polinomio de aproximación según los datos.

• Implementa el polinomio interpolante elegido.

Semana	Contenidos	Estrategias	Actividades	Evaluación
		Didácticas		
5°	Aproximación polinomial e	Deductivo,	Laboratorio:	Ejercicios,
	interpolación:	lógico, y	Implementación	Practica Calificada,
08-14	1. Interpolación y extrapolación,	activo.	de los algoritmos	Prueba Objetiva
noviembre	objetivos y diferencias.	Expositiva	de interpolación:	
2021	2. Polinomios de aproximación		Lagrange,	
	de Lagrange.	yparticipativa	Diferencias	
	Diferencias divididas.		divididas.	
6°	Aproximación polinomial e	Deductivo,	Laboratorio:	Ejercicios,
	interpolación:	lógico, y	Implementación	Practica Calificada,
15-21	 Interpolación y 	activo.	de los algoritmos	Prueba Objetiva
noviembre	extrapolación, objetivos y	Expositiva	de interpolación:	
2021	diferencias.		Lagrange,	A MAL
	2. Polinomios de aproximación	yparticipativa	Diferencias	Sona de Signa Oct
	de Lagrange.		divididas.	1/2/3 35 35 35 35
	Diferencias divididas.			WAR CANADA STAR
7°	Aproximación polinomial e	Deductivo,	Laboratorio:	Examen
22-28	1. Polinomios de aproximación	lógico, y	Implementación	Parcial,
noviembre	de Newton con diferencias	activo.	de los	WORK E.
2021	divididas.	Expositiva y		

	de Newton finitas.	computacional y	participativa		
	Aproximación	polinomial e	Deductivo,	Laboratorio:	Ejercicios,
8°	interpolación co	ntinuación):	lógico, y activo.	Implementación	Practica
	1.	Polinomios de	Expositiva y	del algoritmo	Calificada,
29-	Chebychev.		participativa		Prueba
noviembre	2.	Interpolación			Objetiva
- 05 de	de Hermite.				
Diciembre	3.	Interpolación b			
2021	Splines ((uso de una			
	herramienta com	putacional).			
	4.Implementación	n computacional			
	y resolución de ca	sos prácticos.			
	Examen Parcial				

UNIDAD N.º 4:

DIFERENCIACIÓN E INTEGRACIÓN

Al término de esta unidad, el alumno:

- Aproxima la derivada de una función.
- Aproxima la integral definida de una función.
- Discierne la técnica apropiada para aproximar la solución de un problema de cuadratura.

• Implementa el algoritmo y resuelve numéricamente un determinado problema.

Semana	Contenidos	Estrategias	Actividades	Evaluación
		Didácticas		
	Diferenciación numérica:	Deductivo,	Laboratorio:	Ejercicios,
9°	 Aproximación de la derivada. 	lógico, y	Implementación	Practica
	2. Generación de fórmulas de	activo.	de algoritmos	Calificada, Prueba
	Diferenciación numérica basada en	Expositiva y		Objetiva
06-12	polinomios con diferencias finitas.	participativa		
	4. Fórmulas			
Diciembre	basadas en el			
	desarrollo de Taylor.			
2021	5.Extrapolación de Richardson.			
	Resolución de casos prácticos.			
	Integración numérica (1):	Deductivo,	Laboratorio:	Examen
10°	1. Generador de las fórmulas de	lógico,	Implementación	Parcial,
	Newton Cotes.	activo.	de algoritmos	Ejercicios,
13-19	2. Regla del Trapecio. y de	Expositiva	de Newton	Practica
	Simpson.	participativa	Cotes, regla del	Calificada
Diciembre	3. Reglas compuestas del		trapecio y	, Prueba O
	Trapecio y de Simpson.		Simpson con	100000000000000000000000000000000000000
2021			Matlab.	COTOR E.A.
	Integración numérica (2):	Deductivo,	Laboratorio:	Examen
11°	1. Reglas recursivas de	lógico,	Implementación	Parcial,

	integración numérica.	activo.	de algoritmos	Ejercicios,
03-09-	Integración de Romberg.	Expositiva	de Romberg,	Practica
Enero	3. Cuadratura abierta: Gauss	participativa	Gauss egendre.	Calificada
2022	Legendre.			, Prueba
	4. Aproximación de integrales			Objetiva
	Impropias.			
	Resolución de casos prácticos			
12°	Integración numérica (2):	Deductivo,	Laboratorio:	Examen
	 Reglas recursivas de 	lógico,	Implementación	Parcial,
10-16-	integración numérica.	activo.	de algoritmos	Ejercicios,
Enero	2. Integración de Romberg.	Expositiva	de Romberg,	Practica
2022	3. Cuadratura abierta:	participativa	Gauss Legendre	Calificada
	Gauss Legendre.			, Prueba
	4. Aproximación de integrales			Objetiva
	Impropias.			
	Resolución de casos prácticos			

UNIDAD Nº 5:

SOLUCIÓN DE ECUACIONES DIFERENCIALES

Al término de esta unidad, el alumno:

- Plantea un algoritmo de resolución numérica para un problema de valor inicial.
- Es capaz de utilizar un software de resolución numérica para un sistema de ecuaciones diferenciales con valores iniciales.
- Interpreta la solución grafica asociada a un PVI.

Semana	Contenidos	Estrategias Didácticas	Actividades	Evaluación
13°	Ecuaciones diferenciales	Deductivo,	Laboratorio:	Examen
	ordinarias:	lógico, y	Solución de	Parcial,
17-23-	 Formulación de un 	activo.	Ecuaciones	Ejercicios,
Enero	problema de valor inicial.	Expositiva	diferenciales	Practica
2022	2. Método de Euler.		ordinarias con	Calificada, Prueba
	Método de Euler modificado.	yparticipativa	Matlab.	Objetiva
14°	Ecuaciones diferenciales	Deductivo,	Laboratorio:	Examen
	ordinarias:	lógico, y activo.	Solución de	Parcial,
24-30-	4. Método de Taylor.	Expositiva y	Ecuaciones	Ejercicios,
Enero	5. Método de Runge Kutta.	participativa	diferenciales	Practica
2022			Ordinarias con	Calificada, Prueba
			Matlab.	Objetiva
15°	Examen Final	Deductivo,	Examen parcial de los	Examen
31-	Laboratorio: Tercera	lógico yactivo.	temas hechos en el	Parcial,
Enero	Practica	Expositiva y	aula.	Ejercicios,
06	Calificada	participativa		Practica MAYON
febrero				Calificada, Prueba
2022				Objetiva
16°	Revisión de los Trabajos	Deductivo,	Revisión de los	Examen Parcial,
07-13-	hechos en	lógico,	trabajos	Ejercicios, CTOR E.
febreo	clase o en su domicilio.			TON E.
2022		У		

V.ESTRATEGIA DIDÁCTICA

Exposición de los fundamentos teóricos de los métodos numéricos, se expondrá todos los fundamentos, conceptos básicos y procedimientos de cálculo, dándose énfasis en todo sentido a la deducción y el análisis de los algoritmos.

Se realizarán prácticas dirigidas y seminarios, se evaluará continuamente al estudiante mediante prácticas calificadas en el aula, tres exámenes parciales, complementándose con una serie de trabajos escalonados bajo el asesoramiento continuo de parte del profesor.

- Facilitar espacios y herramientas cognitivo afectivas que permitan la expresión de la creatividad de sujeto y de grupo de colectividad.
- Propiciar un espíritu de sujeto que manifieste un ser que se hace a si mismo permitiendo el desarrollo del otro.
- Jornadas donde se construye un estilo de interacción tanto con los estudiantes, como de ellos entre si y, sobre todo, de los estudiantes con el conocimiento.
- Interacción/participación constante entre profesor y alumnos por medio de talleres.
- Realización de preguntas y ejercicios portema.
- Incentivar la puntualidad.
- Promover el trabajo en equipo

VI. EVALUACIÓN DEL APRENDIZAJE

La evaluación será como se indica a continuación:

$$Nota \ Final = \frac{2 \ EP1 + 2 \ EP2 + 6PT}{10}$$

Donde la EP, Examen Parcia. EF exámenes Final; PT es el promedio de calificaciones de los trabajos realizados en clase o domiciliarias, practicas calificadas de laboratorio y otras que el docente consideré necesario. Los exámenes parcial y final son cancelatorios. Ninguna evaluación se elimina ni se sustituye.

En la evaluación se considerará los siguientes parámetros:

- Para la asistencia en las clases teóricas y de laboratorio la tolerancia de ingreso es de 15 minutos
- En las fechas de evaluaciones de laboratorio y exámenes de teoría, la tolerancia máxima es de 15 minutos.
- En caso de dolo en los exámenes parcial o final esta se sancionará con la nota OA, el cuál no se sustituye por ningún tipo de evaluación.

VII. REFERENCIAS BIBLIOGRÁFICAS

- 7.1. Burden R. L. & Douglas J. F. Métodos Numéricos. Internacional Thompson Editores. 2013
- 7.2. Chapra S. C. & Canale R. P. **Métodos Numéricos para Ingenieros**. 1999
- 7.3. Mathews J. H. & Fink K. D. **Métodos Numéricos con MatLab**. Prentice Hall Iberia S.R.L. 1999.
- 7.4. Moler C. B. **Numerical Computing with MatLab**. Society for Industrial and Applied Mathematics SIAM. 2004.

- 7.5. Nakamura S. **Métodos Numéricos aplicados con Software**. Prentice Hall Hispanoamericana S.A. 1992.
- 7.6. Nakamura S. **Análisis Numérico y Visualización grafica con MatLab**. Prentice Hall Hispanoamericana S.A. 1997.
- 7.7. Nieve Hurtado A. & Sanchez Domínguez F. **Métodos Numéricos aplicados a la Ingeniería**. Compañía Editorial Continental S.A. CECSA 1996.
- 7.8. Santiago E Contreras Aranda. Métodos Numéricos Con Matlab: notas de aula 2019.

