exercise 1:

Let a_n be a sequence which converges to a positive number A. We showed in class that there is an N in \mathbb{N} such that for all n > N in \mathbb{N} , $|a_n| > \frac{A}{2}$. From there, show that $\frac{1}{a_n}$ converges to $\frac{1}{A}$.

exercise 2:

Optional 2.6.G from Davidson - Donsig.

exercise 3:

Prove or disprove:

Let a_n be a sequence of real numbers. If $\lim_{n\to\infty} (a_{n+1}-a_n)=0$, then a_n is convergent.

exercise 4:

Let q be a fixed positive number. Show that the sequence $a_n = \frac{q^n}{n!}$ is eventually decreasing.

exercise 5:

2.6.B from Davidson - Donsig. **Hint**: set $f(x) = \sqrt{5+2x}$. Solve f(x) = x and the inequality $x \le f(x)$. Prove by induction that $0 \le a_n \le a_{n+1} \le 1 + \sqrt{6}$.

$\underline{\text{exercise } 6}$:

2.7.A

exercise 7:

2.7.G. **Hint**: any integer p can written as 3n - 1, 3n, or 3n + 1.