Algorithms

Chapter 7.1, 7.2, 7.3

ROAD MAP

- Space-for-time tradeoffs
 - Sorting by Counting
 - Input Enhancement in String Matching
 - Hashing

Two varieties of space-for-time algorithms:

- <u>input enhancement</u> preprocess the input (or its part) to store some info to be used later in solving the problem
 - counting sorts
 - string searching algorithms
- <u>prestructuring</u> preprocess the input to make accessing its elements easier
 - hashing
 - indexing schemes (e.g., B-trees)

ROAD MAP

- Space-for-time tradeoffs
 - Sorting by Counting
 - Input Enhancement in String Matching
 - Hashing

Sorting by Counting


```
ALGORITHM
                  ComparisonCountingSort(A[0..n-1])
    //Sorts an array by comparison counting
    //Input: An array A[0..n-1] of orderable elements
    //Output: Array S[0..n-1] of A's elements sorted in nondecreasing order
    for i \leftarrow 0 to n-1 do Count[i] \leftarrow 0
    for i \leftarrow 0 to n-2 do
         for j \leftarrow i + 1 to n - 1 do
             if A[i] < A[j]
                  Count[j] \leftarrow Count[j] + 1
              else Count[i] \leftarrow Count[i] + 1
    for i \leftarrow 0 to n-1 do S[Count[i]] \leftarrow A[i]
    return S
```


Array A[05]		62	31	84	96	19	47
Initially	Count []	0	0	0	0	0	0
After pass $i = 0$	Count []	3	0	1	1	0	0
After pass $i = 1$	Count []		1	2	2	0	1
After pass $i = 2$	Count []			4	3	0	1
After pass $i = 3$	Count []				5	0	1
After pass $i = 4$	Count []					0	2
Final state	Count []	3	1	4	5	0	2
Array S[05]		19	31	47	62	84	96

FIGURE 7.1 Example of sorting by comparison counting.

ROAD MAP

- Space-for-time tradeoffs
 - Sorting by Counting
 - Input Enhancement in String Matching
 - Hashing

Review: String searching by brute force

pattern: a string of m characters to search for text: a (long) string of n characters to search in

Brute force algorithm

- Step 1 Align pattern at beginning of text
- Step 2 Moving from left to right, compare each character of pattern to the corresponding character in text until either all characters are found to match (successful search) or a mismatch is detected
- Step 3 While a mismatch is detected and the text is not yet exhausted, realign pattern one position to the right and repeat Step 2

String searching by preprocessing

Several string searching algorithms are based on the input

enhancement idea of preprocessing the pattern

- Boyer -Moore algorithm preprocesses pattern right to left and store information into two tables
- Horspool's algorithm simplifies the Boyer-Moore algorithm by using just one table

A simplified version of Boyer-Moore algorithm:

- preprocesses pattern to generate a shift table that determines how much to shift the pattern when a mismatch occurs
- always makes a shift based on the text's character c aligned with the <u>last</u> character in the pattern according to the shift table's entry for c

Horspool's Algorithm

$$s_0$$
 ... s_{n-1}

BARBER

BARBER

Case 1

Case 2

$$s_0 \ldots \qquad \qquad M \in \mathbb{R} \qquad \qquad \ldots \qquad s_{n-1}$$

$$\parallel \parallel \qquad \qquad \qquad \qquad \mathsf{L} \in \mathsf{A} , \mathsf{D} \in \mathbb{R}$$

LEADER

Case 3

$$s_0$$
 ... s_{n-1} \parallel \parallel REORDER

Case 4

Shift table

Shift sizes can be precomputed by the formula

$$t(c) = \begin{cases} \text{the pattern's length } m, \\ \text{if } c \text{ is not among the first } m-1 \text{ characters of the pattern;} \\ \text{the distance from the rightmost } c \text{ among the first } m-1 \text{ characters of the pattern to its last character, otherwise.} \end{cases}$$

by scanning pattern before search begins and stored in a table called *shift table*

Shift table is indexed by text and pattern alphabet
 Eg, for BARBER:

character c	Α	В	С	D	E	F		R		Z	1
shift t(c)	4	2	6	6	1	6	6	3	6	6	6

Example of Horspool's alg. application

character c	Α	В	C	D	Ε	F		R		Z	_
shift t(c)	4	2	6	6	1	6	6	3	6	6	6

Based on same two ideas:

- comparing pattern characters to text from right to left
- precomputing shift sizes in two tables
 - bad-symbol table indicates how much to shift based on text's character causing a mismatch
 - good-suffix table indicates how much to shift based on matched part (suffix) of the pattern

Bad-symbol shift in Boyer-Moore algorithm

- If the rightmost character of the pattern doesn't match, BM algorithm acts as Horspool's
- If the rightmost character of the pattern does match, BM compares preceding characters right to left until either all pattern's characters match or a mismatch on text's character c is encountered after k > 0 matches

$$s_0$$
 ... c s_{i-k+1} ... s_i ... s_{n-1} text $\| p_0$... p_{m-k-1} p_{m-k} ... p_{m-1} pattern

bad-symbol shift $d_1 = \max\{t_1(c) - k, 1\}$

Good-suffix shift in Boyer-Moore algorithm

- Good-suffix shift d₂ is applied after 0 < k < m last characters were matched
- $d_2(k)$ = the distance between matched suffix of size k and its rightmost occurrence in the pattern that is not preceded by the same character as the suffix

Example: CABABA $d_2(1) = 4$

If there is no such occurrence, match the longest part of the k-character suffix with corresponding prefix;
 if there are no such suffix-prefix matches, d₂ (k) = m

Example: WOWWOW $d_2(2) = 5$, $d_2(3) = 3$, $d_2(4) = 3$, $d_2(5) = 3$

Good-suffix shift in the Boyer-Moore alg. (cont.)

After matching successfully 0 < k < m characters, the algorithm shifts the pattern right by

$$d = \max \{d_1, d_2\}$$

where $d_1 = \max\{t_1(c) - k, 1\}$ is bad-symbol shift $d_2(k)$ is good-suffix shift

Boyer-Moore Algorithm (cont.)

- Step 1 Fill in the bad-symbol shift table
- Step 2 Fill in the good-suffix shift table
- Step 3 Align the pattern against the beginning of the text
- Step 4 Repeat until a matching substring is found or text ends:

Compare the corresponding characters right to left.

If no characters match, retrieve entry $t_1(c)$ from the bad-symbol table for the text's character c causing the mismatch and shift the pattern to the right by $t_1(c)$. If 0 < k < m characters are matched, retrieve entry $t_1(c)$ from the bad-symbol table for the text's character c causing the mismatch and entry $d_2(k)$ from the goodsuffix table and shift the pattern to the right by

$$d = \max \{d_1, d_2\}$$

where $d_1 = \max\{t_1(c) - k, 1\}$.

Example of Boyer-Moore alg. application

С	Α	В	С	D		0		Z	_
<i>t</i> ₁ (<i>c</i>)	1	2	6	6	6	3	6	6	6

$$d_1 = t_1(K) - 0 = 6$$

BAOBAB

BAOBAB

			$d_1 = t_1() - 2 = 4$	В	Α	0	В	Α	В
k	pattern	d_2	$d_2 = 5$	d_1	$= t_1($		- 1 =	= 5	
1	BAOBA <u>B</u>	2	$d = \max\{4, 5\} = 5$	_	= 2 = ma	v15	21 -	- 5	
2	BAOB <u>AB</u>	5		<i>u</i> -	– ma	Λ[J,	2) -	- 3	D
3	<u>R</u> Δ∩RΔR	5							В

ROAD MAP

- Space-for-time tradeoffs
 - Sorting by Counting
 - Input Enhancement in String Matching
 - Hashing

Hashing

- A very efficient method for implementing a dictionary, i.e., a set with the operations:
 - find
 - insert
 - delete
- Based on representation-change and space-fortime tradeoff ideas
- Important applications:
 - symbol tables
 - databases (extendible hashing)

Hash tables and hash functions

The idea of *hashing* is to map keys of a given file of size *n* into a table of size *m*, called the *hash table*, by using a predefined function, called the *hash function*,

 $h: K \rightarrow \text{location (cell) in the hash table}$

Example: student records, key = SSN. Hash function: $h(K) = K \mod m$ where m is some integer (typically, prime) If m = 1000, where is record with SSN= 314159265 stored?

Generally, a hash function should:

- be easy to compute
- distribute keys about evenly throughout the hash table

Collisions

If $h(K_1) = h(K_2)$, there is a collision

- Good hash functions result in fewer collisions but some collisions should be expected (birthday paradox)
- Two principal hashing schemes handle collisions differently:
 - Open hashing
 - each cell is a header of linked list of all keys hashed to it
 - Closed hashing
 - one key per cell
 - in case of collision, finds another cell by
 - linear probing: use next free bucket
 - double hashing: use second hash function to compute increment

Open hashing (Separate chaining)

Keys are stored in linked lists <u>outside</u> a hash table whose elements serve as the lists' headers.

Example: A, FOOL, AND, HIS, MONEY, ARE, SOON, PARTED

h(K) = sum of K 's letters' positions in the alphabet MOD 13

Key	A	FOOL	AND	HIS	MONEY	ARE	SOON	PARTED
h(K)	1	9	6	10	7	11	11	12

- If hash function distributes keys uniformly, average length of linked list will be $\alpha = n/m$. This ratio is called *load factor*.
- Average number of probes in successful, S, and unsuccessful searches, U:

$$S \approx 1 + \alpha/2$$
, $U = \alpha$

- Load α is typically kept small (ideally, about 1)
- Open hashing still works if n > m

Closed hashing (Open addressing) Keys are stored inside a hash table.

Key	A	FOOL	AND	HIS	MONEY	ARE	SOON	PARTED
h(K)	1	9	6	10	7	11	11	12

0	1	2	3	4	5	6	7	8	9	10	11	12
	A											
	A								FOOL			
	A					AND			FOOL			
	A					AND			FOOL	HIS		
	A					AND	MONEY		FOOL	HIS		
	A					AND	MONEY		FOOL	HIS	ARE	
	A					AND	MONEY		FOOL	HIS	ARE	SOON
PARTED	A					AND	MONEY		FOOL	HIS	ARE	SQON

Closed hashing (cont.)

- Does not work if n > m
- Avoids pointers
- Deletions are not straightforward
- Number of probes to find/insert/delete a key depends on load factor $\alpha = n/m$ (hash table density) and collision resolution strategy. For linear probing:

$$S = (\frac{1}{2}) (1 + \frac{1}{(1 - \alpha)})$$
 and $U = (\frac{1}{2}) (1 + \frac{1}{(1 - \alpha)^2})$

 As the table gets filled (α approaches 1), number of probes in linear probing increases dramatically:

α	$\frac{1}{2}(1+\frac{1}{1-\alpha})$	$\frac{1}{2}(1+\frac{1}{(1-\alpha)^2})$
50%	1.5	2.5
75%	2.5	8.5
90%	5.5	50.5

