EE2 Mathematics – Probability & Statistics

Exercise 3

- 1. During the first Gulf War, the Pentagon claimed that the Patriot anti-aircraft system had "successfully engaged over 80 percent" of the SCUD missiles Iraq had launched at Saudi Arabia. In televised footage of Patriot-SCUD engagements, there were thirteen misses and one hit. Assuming that the engagements were independent and the probability of a successful engagement is p=0.8, compute the probability of thirteen misses and comment on the Pentagons claim.
- 2. In chess, a knight can move two squares in one direction and one square in a perpendicular direction. So, for example, a knight placed on the square marked 'K1' can move to any of the squares marked 1, while a knight placed on the square 'K2' can move to any of the squares marked 2.

	K2						
			2				
2		2					
				1		1	
			1				1
					K1		
			1				1
				1		1	

Find the expected value and the variance of the number of moves that can be made by a knight placed at random on an empty 8×8 chessboard.

3. (a) For any random variable X, show that

$$Var(X) = E[X(X \pm 1)] - E(X)[E(X) \pm 1].$$

- (b) Use this formula to compute the variance of $X \sim \text{Bin}(n, p)$. Hint: Start with E[X(X-1)] and follow the approach we used to compute the expectation of X.
- 4. (a) Consider the infinite series

$$H(q) = \sum_{k=1}^{\infty} kq^{k-1} = 1 + 2q + 3q^2 + \dots$$

Find another infinite series G(q) such that $H(q) = \frac{d}{dq}G(q)$, and use this expression to evaluate H(q).

(b) Consider the infinite series

$$I(q) = \sum_{k=1}^{\infty} k(k-1)q^{k-2} = 2 + 6q + 12q^2 + \dots$$

Show that $I(q) = \frac{d}{dq}H(q)$, where H(q) is defined as in the previous part. Evaluate I(q).

(c) Using the results from the first two parts, find the expectation and variance of the geometric distribution.

Hint: For the variance, it is easier to start with E[X(X+1)].