Linear regression

Supervised learning example

Supervised learning

$$x_i$$
 — example

$$y_i$$
 — target value

$$x_i = (x_{i1}, \dots, x_{id})$$
 — features

$$X = ((x_1, y_1), (x_2, y_2), ..., (x_\ell, y_\ell))$$
 — training set

$$a(x)$$
 — model, hypothesis

$$x \longrightarrow a(x) \longrightarrow y^{pred}$$

Regression and classification

 $y_i \in \mathbb{R}$ — regression task

- Salary prediction
- Movie rating prediction

Regression and classification

 $y_i \in \mathbb{R}$ — regression task

- Salary prediction
- Movie rating prediction

 y_i belongs to a finite set — classification task

- Object recognition
- Topic classification

Linear model for regression example

Linear model for regression example

Linear model for regression

$$a(x) = b + w_1 x_1 + w_2 x_2 + \dots + w_d x_d$$

- $w_1, ..., w_d$ coefficients (weights)
- *b* bias
- d + 1 parameters
- To make it simple: there's always a constant feature

Linear model for regression

Vector notation:

$$a(x) = w^T x$$

For a sample *X*:

$$a(X) = Xw$$

$$X = \begin{pmatrix} x_{11} & \dots & x_{1d} \\ \vdots & \ddots & \vdots \\ x_{\ell 1} & \dots & x_{\ell d} \end{pmatrix}$$

Loss function

How to measure model quality?

Mean squared error:

$$L(w) = \frac{1}{\ell} \sum_{i=1}^{\ell} (w^T x_i - y_i)^2$$
$$= \frac{1}{\ell} ||Xw - y||^2$$

Training a model

Fitting a model to training data:

$$L(w) = \frac{1}{\ell} ||Xw - y||^2 \to \min_{w}$$

Training a model

Fitting a model to training data:

$$L(w) = \frac{1}{\ell} ||Xw - y||^2 \to \min_{w,}$$

Exact solution:

$$w = (X^T X)^{-1} X^T y$$

But inverting a matrix is hard for high-dimensional data!

Summary

- Linear models are very simple
- MSE can be used as a loss function
- There is an analytical solution, but we need more generic and scalable learning method

Linear model for classification

Binary classification $(y \in \{-1, 1\})$:

$$a(x) = sign(w^T x)$$

Number of parameters: $d(w \in \mathbb{R}^d)$

Linear model for classification example

Linear model for classification

Multi-class classification $(y \in \{1, ..., K\})$:

$$a(x) = \arg \max_{k \in \{1, \dots, K\}} (w_k^T x)$$

Number of parameters: K^*d ($w_k \in \mathbb{R}^d$)

Example:

$$z = (7, -7.5, 10)$$
 — scores

$$a(x) = 3$$

Classification loss

Classification accuracy:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) = y_i]$$

- Not differentiable
- Doesn't assess model confidence

[P] — Iverson bracket:

$$[P] = \begin{cases} 1, & P \text{ is true} \\ 0, & P \text{ is false} \end{cases}$$

Classification loss

Consider an example x_i such that $y_i = 1$

Squared loss:

$$(w^T x_i - 1)^2$$

Classification loss

Class probabilities

Class scores (**logits**) from a linear model:

$$z = (w_1^T x, ..., w_K^T x)$$

$$\downarrow \qquad \qquad (e^{z_1}, ..., e^{z_K})$$

$$\downarrow \qquad \qquad \downarrow$$

$$\sigma(z) = \left(\frac{e^{z_1}}{\sum_{k=1}^K e^{z_k}}, ..., \frac{e^{z_K}}{\sum_{k=1}^K e^{z_k}}\right)$$
(softmax transform)

Softmax

$$\sigma(z) = \left(\frac{e^{z_1}}{\sum_{k=1}^{K} e^{z_k}}, \dots, \frac{e^{z_K}}{\sum_{k=1}^{K} e^{z_k}}\right)$$

Example:

$$z = (7, -7.5, 10)$$

$$\sigma(z) \approx (0.05, 0, 0.95)$$

Loss function

Predicted class probabilities (model output):

$$\sigma(z) = \left(\frac{e^{z_1}}{\sum_{k=1}^K e^{z_k}}, \dots, \frac{e^{z_K}}{\sum_{k=1}^K e^{z_k}}\right)$$

Target values for class probabilities:

$$p = ([y = 1], ..., [y = K])$$

Similarity between z and p can be measured by the crossentropy:

$$-\sum_{k=1}^{K} [y=k] \log \frac{e^{z_k}}{\sum_{j=1}^{K} e^{z_j}} = -\log \frac{e^{z_y}}{\sum_{j=1}^{K} e^{z_j}}$$

Cross-entropy examples

Suppose K = 3 and y = 1:

•
$$-1 * \log 1 - 0 * \log 0 - 0 * \log 0 = 0$$

•
$$-1 * \log 0.5 - 0 * \log 0.25 - 0 * \log 0.25 \approx 0.693$$

•
$$-1 * \log 0 - 0 * \log 1 - 0 * \log 0 = +\infty$$

Cross-entropy for classification

Cross-entropy is differentiable and can be used as a loss function:

$$L(w,b) = -\sum_{i=1}^{\ell} \sum_{k=1}^{K} [y_i = k] \log \frac{e^{w_k^T x_i}}{\sum_{j=1}^{K} e^{w_j^T x_i}}$$
$$= -\sum_{i=1}^{\ell} \log \frac{e^{w_{y_i}^T x_i}}{\sum_{j=1}^{K} e^{w_j^T x_i}} \to \min_{w}$$

Summary

- Linear models can be easily generalized for classification tasks
- There are lots of loss functions for classification
- Cross-entropy is one of the most popular

Loss functions

Linear regression and MSE:

$$L(w) = \frac{1}{\ell} ||Xw - y||^2$$

Linear classification and cross-entropy:

$$L(w) = -\sum_{i=1}^{\ell} \sum_{k=1}^{K} [y_i = k] \log \frac{e^{w_k^T x_i}}{\sum_{j=1}^{K} e^{w_j^T x_i}}$$

Optimization problem: $L(w) \rightarrow \min_{w}$

Suppose we have some approximation w^0 — how to refine it?

Optimization problem:
$$L(w) \rightarrow \min_{w}$$

 w^0 — initialization

$$\nabla L(w^0) = \left(\frac{\partial L(w^0)}{\partial w_1}, \dots, \frac{\partial L(w^0)}{\partial w_n}\right)$$
 — gradient vector

- Points in the direction of the steepest slope at w^0
- The function has fastest decrease rate in the direction of negative gradient

Optimization problem:
$$L(w) \rightarrow \min_{w}$$

 w^0 — initialization

$$\nabla L(w^0) = \left(\frac{\partial L(w^0)}{\partial w_1}, \dots, \frac{\partial L(w^0)}{\partial w_n}\right)$$
 — gradient vector

$$w^1 = w^0 - \eta_1 \nabla L(w^0)$$
 — gradient step

Optimization problem:
$$L(w) \rightarrow \min_{w}$$

 w^0 — initialization

while True:

$$w^t = w^{t-1} - \eta_t \nabla L(w^{t-1})$$

if $||w^t - w^{t-1}|| < \epsilon$ then break

Lots of heuristics:

- How to initialize w^0
- How to select step size η_t
- When to stop
- How to approximate gradient $\nabla L(w^{t-1})$

Gradient descent for MSE

Linear regression and MSE:

$$L(w) = \frac{1}{\ell} \|Xw - y\|^2$$

Derivatives:

$$\nabla L_w(w) = \frac{2}{\ell} X^T (Xw - y)$$

Gradient descent vs analytical solution

Analytical solution for MSE: $w = (X^T X)^{-1} X^T y$

Gradient descent:

- Easy to implement
- Very general, can be applied to any differentiable loss function
- Requires less memory and computations (for stochastic methods)

Summary

- Gradient descent provides a general learning framework
- Can be used both for classification and regression tasks
- Advanced methods in next lessons

Generalization

- Consider a model with accuracy 80% on training set
- How it will perform on the new data?
- Does the model generalize well?

Underfitting and overfitting example

Training set: $X \subset \mathbb{R}$

Model: $a(x) = b + w_1 x$

Underfitting and overfitting example

Training set: $X \subset \mathbb{R}$

Model: $a(x) = b + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4$

Underfitting and overfitting example

Training set: $X \subset \mathbb{R}$

Model: $a(x) = b + w_1 x + w_2 x^2 + \dots + w_{15} x^{15}$

Overfitting example 2

Training set: $\{0.2, 0.4, ..., 1.6\}, y = \sin(x) + \epsilon$

Model: $a(x) = b + w_1 x + w_2 x^2 + \dots + w_8 x^8$

Parameters: (130.0, -525.8, ..., 102.6)

Model just incorporates target into parameters!

Holdout set

Training set

Holdout set

Small holdout set:

- Training set is representative
- Holdout quality has high variance

Large holdout set:

- Holdout quality has low variance
- Holdout quality has high bias

Holdout set

Training set 1

Holdout set 1

Holdout set 2

Holdout set 2

Training set K

Holdout set K

No guarantees that each object will be in holdout part at least once

Cross-validation

Cross-validation

- Requires to train models K times for K-fold CV
- Useful for small samples
- In deep learning holdout samples are usually preferred

Summary

- Models can easily overfit with high number of parameters
- Overfitted model just remembers target values for training set and doesn't generalize
- Holdout set or cross-validation can be used to estimate model performance on new data

Overfitting example

Training set: $\{0.2, 0.4, ..., 1.6\}, y = \sin(x) + \epsilon$

Model: $a(x) = b + w_1 x + w_2 x^2 + \dots + w_8 x^8$

Parameters: (130.0, -525.8, ..., 102.6)

Model just incorporates target into parameters!

Overfitting example

Training set: $\{0.2, 0.4, ..., 1.6\}, y = \sin(x) + \epsilon$

Model: $a(x) = b + w_1x + w_2x^2 + w_3x^3$

Parameters: (0.634, 0.918, -0.626)

Regularization

Good model weights: (0.634, 0.918, -0.626)

Overfitted model weights: (130.0, -525.8, ..., 102.6)

Weight penalty

$$L_{reg}(w) = L(w) + \lambda R(w) \rightarrow \min_{w}$$

- L(w) loss function (MSE, log-loss, etc.)
- R(w) regularizer (e.g. penalizes large weights)
- λ regularization strength

L2 penalty

$$L_{reg}(w) = L(w) + \lambda ||w||^2 \to \min_{w}$$

- $||w||^2 = \sum_{j=1}^d w_j^2$
- Drives all weights **closer** to zero
- Can be optimized with gradient methods

L2 penalty

$$L_{reg}(w) = L(w) + \lambda ||w||^2 \to \min_{w}$$

The optimization problem is equivalent to

$$\begin{cases} L(w) \to \min_{w} \\ \text{s.t. } ||w||^2 \le C \end{cases}$$

L2 penalty

$$L_{reg}(w) = L(w) + \lambda ||w||^2 \to \min_{w}$$

Training set: $\{0.2, 0.4, ..., 1.6\}, y = \sin(x) + \epsilon$

Model: $a(x) = b + w_1 x + w_2 x^2 + \dots + w_8 x^8$

Parameters: (0.166, 0.168, 0.13, 0.075, 0.014, -0.04, -0.05, 0.018)

L1 penalty

$$L_{reg}(w) = L(w) + \lambda ||w||_1 \to \min_w$$

- $||w||_1 = \sum_{j=1}^d |w_j|$
- Drives some weights exactly to zero
- Learns sparse models
- Cannot be optimized with simple gradient methods

L1 penalty

$$L_{reg}(w) = L(w) + \lambda ||w||_1 \to \min_w$$

The optimization problem is equivalent to

$$\begin{cases} L(w) \to \min_{w} \\ \text{s.t. } ||w||_{1} \le C \end{cases}$$

L1 penalty

$$L_{reg}(w) = L(w) + \lambda ||w||_1 \to \min_{w}$$

Training set: $\{0.2, 0.4, ..., 1.6\}, y = \sin(x) + \epsilon$

Model: $a(x) = b + w_1 x + w_2 x^2 + \dots + w_8 x^8$

Parameters: (for $\lambda = 0.01$): (0.78, 0.03, **0**, **0**, **0**, **0**, -0.016, -0.01, **0**)

Other regularization techniques

- Dimensionality reduction
- Data augmentation
- Dropout
- Early stopping
- Collect more data

Summary

- One should restrict model complexity to prevent overfitting
- Common approach: penalize large weights
- Other approaches: next modules

Gradient descent

Optimization problem:

$$L(w) = \sum_{i=1}^{\ell} L(w; x_i, y_i) \to \min_{w}$$

 w^0 — initialization

while True:

$$w^t = w^{t-1} - \eta_t \nabla L(w^{t-1})$$
 if $||w^t - w^{t-1}|| < \epsilon$ then break

Gradient descent

Mean squared error:

$$\nabla L(w) = \frac{1}{\ell} \sum_{i=1}^{\ell} \nabla (w^T x_i - y_i)^2$$

- ℓ gradients should be computed on each step
- If the dataset doesn't fit in memory, it should be read from the disk on every GD step

Stochastic gradient descent

Optimization problem:

$$L(w) = \sum_{i=1}^{\ell} L(w; x_i, y_i) \to \min_{w}$$

 w^0 — initialization

while True:

 $i = \text{random index between 1 and } \ell$

$$w^{t} = w^{t-1} - \eta_{t} \nabla L(w^{t-1}; x_{i}; y_{i})$$

if $||w^t - w^{t-1}|| < \epsilon$ then break

Stochastic gradient descent

Joe pharos, https://en.wikipedia.org/wiki/Stochastic_gradient_descent

Stochastic gradient descent

- Noisy updates lead to fluctuations
- Needs only one example on each step
- Can be used in online setting
- Learning rate η_t should be chosen very carefully

Mini-batch gradient descent

Optimization problem:

$$L(w) = \sum_{i=1}^{\ell} L(w; x_i, y_i) \to \min_{w}$$

 w^0 — initialization

while True:

$$i_1, \dots, i_m$$
 = random indices between 1 and ℓ
$$w^t = w^{t-1} - \eta_t \frac{1}{m} \sum_{j=1}^m \nabla L\left(w^{t-1}; x_{i_j}; y_{i_j}\right)$$
 if $\|w^t - w^{t-1}\| < \epsilon$ then break

Mini-batch gradient descent

- Still can be used in online setting
- Reduces the variance of gradient approximations
- Learning rate η_t should be chosen very carefully

Difficult function

Summary

- Gradient descent is infeasible for large training sets
- Stochastic and mini-batch descents use gradient approximations speed up computations
- Learning rate is quite hard to select
- Methods can be optimized for difficult functions

Difficult function

Mini-batch gradient descent

 w^0 — initialization

while True:

$$i_1, \dots, i_m$$
 = random indices between 1 and ℓ

$$g_t = \frac{1}{m} \sum_{j=1}^{m} \nabla L\left(w^{t-1}; x_{i_j}; y_{i_j}\right)$$

$$w^t = w^{t-1} - \eta_t g_t$$

if $||w^t - w^{t-1}|| < \epsilon$ then break

Momentum

$$h_t = \alpha h_{t-1} + \eta_t g_t$$
$$w^t = w^{t-1} - h_t$$

- Tends to move in the same direction as on previous steps
- h_t accumulates values along dimensions where gradients have the same sign
- Usually: $\alpha = 0.9$

Momentum

Nesterov momentum

Nesterov momentum

$$h_{t} = \alpha h_{t-1} + \eta_{t} \nabla L(w^{t-1} - \alpha h_{t-1})$$

$$w^{t} = w^{t-1} - h_{t}$$

$$h_{t}$$

$$g_{t}$$

$$h_{t}$$

AdaGrad

$$G_j^t = G_j^{t-1} + g_{tj}^2$$

$$w_j^t = w_j^{t-1} - \frac{\eta_t}{\sqrt{G_j^t + \epsilon}} g_{tj}$$

- g_{tj} gradient with respect to j-th parameter
- Separate learning rates for each dimension
- Suits for sparse data
- Learning rate can be fixed: $\eta_t = 0.01$
- G_i^t always increases, leads to early stops

RMSprop

$$G_j^t = \alpha G_j^{t-1} + (1 - \alpha) g_{tj}^2$$

$$w_j^t = w_j^{t-1} - \frac{\eta_t}{\sqrt{G_j^t + \epsilon}} g_{tj}$$

- α is about 0.9
- Learning rate adapts to latest gradient steps

Adam

$$v_{j}^{t} = \frac{\beta_{2}v_{j}^{t-1} + (1 - \beta_{2})g_{tj}^{2}}{1 - \beta_{2}^{t}}$$

$$w_{j}^{t} = w_{j}^{t-1} - \frac{\eta_{t}}{\sqrt{v_{j}^{t} + \epsilon}} g_{tj}$$

Adam

$$m_{j}^{t} = \frac{\beta_{1} m_{j}^{t-1} + (1 - \beta_{1}) g_{tj}}{1 - \beta_{1}^{t}}$$

$$v_{j}^{t} = \frac{\beta_{2} v_{j}^{t-1} + (1 - \beta_{2}) g_{tj}^{2}}{1 - \beta_{2}^{t}}$$

$$w_{j}^{t} = w_{j}^{t-1} - \frac{\eta_{t}}{\sqrt{v_{j}^{t} + \epsilon}} m_{j}^{t}$$

Combines momentum and individual learning rates

Summary

- Momentum methods smooth gradients and speed up convergence
- Adaptive methods eliminate sensitive learning rate
- Adam combines both approaches