Lösungen der Nachklausur Mathematische Grundlagen (1141) WS 07/08

Nachklausur am 29.03.2008:

Lösungsvorschläge zu den Aufgaben

zu Aufgabe 1

Wir überführen die erweiterte Koeffizientenmatrix $\begin{pmatrix} 0 & 1 & 2 & 1 & 0 & | & 2 \\ 0 & 0 & 0 & 1 & -1 & | & 1 \\ 0 & 0 & 0 & 0 & 1 & | & 3 \end{pmatrix}$ in

Treppennormalform. Dazu subtrahieren wir die zweite Zeile von der ersten und

erhalten $\begin{pmatrix} 0 & 1 & 2 & 0 & 1 & | & 1 \\ 0 & 0 & 0 & 1 & -1 & | & 1 \\ 0 & 0 & 0 & 0 & 1 & | & 3 \end{pmatrix}$. Jetzt subtrahieren wir die dritte Zeile von der

ersten und addieren sie zur zweiten. Wir erhalten

$$\begin{pmatrix} 0 & 1 & 2 & 0 & 0 & | & -2 \\ 0 & 0 & 0 & 1 & 0 & | & 4 \\ 0 & 0 & 0 & 0 & 1 & | & 3 \end{pmatrix}.$$

Diese Matrix ist in Treppennormalform. Wir fügen Nullzeilen so ein, dass die Matrix links des Strichs quadratisch wird und die Pivot-Positionen auf der Diagonalen stehen.

$$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & | & 0 \\ 0 & 1 & 2 & 0 & 0 & | & -2 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 1 & 0 & | & 4 \\ 0 & 0 & 0 & 0 & 1 & | & 3 \end{pmatrix}$$

Rechts des Strichs steht eine spezielle Lösung $\lambda_0 = \begin{pmatrix} 0 \\ -2 \\ 0 \\ 4 \\ 3 \end{pmatrix}$.

Wir fügen -1 dort auf der Diagonalen ein, wo 0 steht und erhalten

$$\begin{pmatrix}
-1 & 0 & 0 & 0 & 0 & | & 0 \\
0 & 1 & 2 & 0 & 0 & | & -2 \\
0 & 0 & -1 & 0 & 0 & | & 0 \\
0 & 0 & 0 & 1 & 0 & | & 4 \\
0 & 0 & 0 & 0 & 1 & | & 3
\end{pmatrix}.$$

Jetzt können wir \mathcal{L} ablesen. Es ist

$$\mathcal{L} = \begin{pmatrix} 0 \\ -2 \\ 0 \\ 4 \\ 3 \end{pmatrix} + \left\{ a \begin{pmatrix} -1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} + b \begin{pmatrix} 0 \\ 2 \\ -1 \\ 0 \\ 0 \end{pmatrix} \mid a, b \in \mathbb{R} \right\}.$$

zu Aufgabe 2

Es sind

$$f(v_1) = 0 \cdot v_1 + 1 \cdot v_2 + 1 \cdot v_3$$

$$f(v_2) = 0 \cdot v_1 + 0 \cdot v_2 + 1 \cdot v_3$$

$$f(v_3) = 1 \cdot v_1 - 1 \cdot v_2 + 0 \cdot v_3.$$

Es folgt

$$_{\mathcal{B}}M_{\mathcal{B}}(f) = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & -1 \\ 1 & 1 & 0 \end{pmatrix}.$$

Es ist $\dim(\text{Bild}(f)) = \text{Rg}(_{\mathcal{B}}M_{\mathcal{B}}(f))$. Zur Rang-Bestimmung beginnen wir, die Matrix $\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & -1 \\ 1 & 1 & 0 \end{pmatrix}$ in Treppennormal form zu überführen. Wir vertauschen die erste und

die dritte Zeile und erhalten $\begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & 0 & 1 \end{pmatrix}$. Jetzt subtrahieren wir die erste Zeile von der zweiten und erhalten $\begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$. Jetzt können wir aber schon aufhören,

denn es ist klar, dass diese Matrix den Rang 3 hat. Somit folgt $\dim(\text{Bild}(f)) = 3$.

1. Wir benutzen zum Beweis das Unterraumkriterium. Mit a=b=0 liegt das Nullpolynom in U. Seien $a, a', b, b', s \in \mathbb{R}$. Dann gilt

$$(a+bT+aT^2+(a+b)T^3)+(a'+b'T+a'T^2+(a'+b')T^3)$$
= $(a+a')+(b+b')T+(a+a')T^2+(a+a'+b+b')T^3 \in U$

und

$$s(a + bT + aT^2 + (a + b)T^3) = sa + sbT + saT^2 + (sa + sb)T^3 \in U.$$

Mit dem Unterraumkriterium folgt, dass U ein Unterraum von V ist.

2. Mit a=1 und b=0 gilt $1+T^2+T^3\in U$, und mit a=0 und b=1 gilt $T+T^3\in U$. Diese Polynome sind linear unabhängig, denn sie sind keine Vielfachen voneinander. Wir zeigen nun, dass sie auch ein Erzeugendensystem von U bilden. Dazu sei $a+bT+aT^2+(a+b)T^3\in U$. Dann gilt $a+bT+aT^2+(a+b)T^3=a(1+T^2+T^3)+b(T+T^3)$, somit ist jedes Polynom in U eine Linearkombination der Polynome $1+T^2+T^3$ und $T+T^3$. Es folgt, dass $1+T^2+T^3, T+T^3$ eine Basis von U ist.

zu Aufgabe 4

1. Sei $m = \dim(\text{Bild}(f)) = \dim(\text{Kern}(f))$. Mit dem Rangsatz gilt

$$\dim(V) = \dim(\operatorname{Bild}(f)) + \dim(\operatorname{Kern}(f)) = 2m,$$

somit ist $\dim(V)$ gerade.

2. Sei $V = \mathbb{R}^2$, und sei e_1, e_2 die Standardbasis von \mathbb{R}^2 . Sei $f : \mathbb{R}^2 \to \mathbb{R}^2$ die lineare Abbildung, die durch $f(e_1) = e_2$ und $f(e_2) = 0$ definiert wird. Dann ist $e_2, 0$ ein Erzeugendensystem von $\operatorname{Bild}(f)$, das heißt, e_2 ist eine Basis von $\operatorname{Bild}(f)$. Mit dem Rangsatz ist $\dim(\operatorname{Kern}(f)) = 1$, und $e_2 \in \operatorname{Kern}(f)$. Es folgt $\operatorname{Kern}(f) = \{ae_2 \mid a \in \mathbb{R}\} = \operatorname{Bild}(f)$.

Für n=1 gilt $\sum_{k=1}^{1} 2 \cdot 3^{k-1} = 2 \cdot 3^0 = 2$ und $3^1-1=2$. Es gilt somit der Induktionsanfang.

Im Induktionsschritt nehmen wir an, dass $\sum_{k=1}^{n} 2 \cdot 3^{k-1} = 3^n - 1$ für ein $n \ge 1$ gilt. Dann folgt

$$\sum_{k=1}^{n+1} 2 \cdot 3^{k-1} = \sum_{k=1}^{n} 2 \cdot 3^{k-1} + 2 \cdot 3^{n}$$

$$= 3^{n} - 1 + 2 \cdot 3^{n}$$

$$= 3^{n}(1+2) - 1$$

$$= 3^{n+1} - 1.$$

Mit dem Prinzip der vollständigen Induktion folgt die Behauptung.

zu Aufgabe 6

1. Behauptung: Die Potenzreihe $\sum_{n=0}^{\infty} \frac{n}{10^n} x^n$ ist für alle x mit |x| < 10 konvergent.

Beweis: Es gilt

$$\sqrt[n]{\left|\frac{n}{10^n}\right|} = \sqrt[n]{\frac{n}{10^n}} = \frac{1}{10}\sqrt[n]{n}.$$

Es ist $\lim_{n\to\infty} \sqrt[n]{n} = 1$, und es folgt

$$\lim_{n\to\infty}\sqrt[n]{\left|\frac{n}{10^n}\right|}=\frac{1}{10}\lim_{n\to\infty}\sqrt[n]{n}=\frac{1}{10}=\limsup\sqrt[n]{\left|\frac{n}{10^n}\right|}.$$

Mit dem Satz von Cauchy-Hadamard folgt, dass der Konvergenzradius der Potenzreihe 10 ist. Somit konvergiert die Reihe für alle $x \in \mathbb{R}$ mit |x| < 10.

2. Behauptung: Die Reihe $\sum_{n=1}^{\infty} \frac{n3^n}{(n+1)!}$ ist konvergent.

Beweis: Wir verwenden zum Beweis das Quotientenkriterium. Es gilt

$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{(n+1)3^{n+1}}{(n+2)!} \cdot \frac{(n+1)!}{n3^n} = \frac{n+1}{n(n+2)} \cdot 3.$$

Es ist $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\lim_{n\to\infty}\frac{n+1}{n+2}\lim_{n\to\infty}\frac{3}{n}=0$. Somit gibt es ein q<1 mit $\left|\frac{a_{n+1}}{a_n}\right|< q$ für fast alle n, und mit dem Quotientenkriterium folgt, dass die Reihe konvergent ist.

Sei $f: \mathbb{R} \to \mathbb{R}$ definiert durch $x \mapsto x - \exp(-x)$.

- 1. Als Differenzierbarer Funktionen ist f differenzierbar, und es gilt $f'(x) = 1 + \exp(-x)$ für alle $x \in \mathbb{R}$. Da $\exp(y) > 0$ für alle $y \in \mathbb{R}$, folgt, dass f'(x) > 0 für alle $x \in \mathbb{R}$ ist. Somit ist f streng monoton wachsend, und somit injektiv.
- 2. Es gilt $x = e^{-x}$ genau dann, wenn $f(x) = x \exp(-x) = 0$ ist. Es sind f(0) = -1 und $f(1) = 1 \frac{1}{e} > 0$. Da f als differenzierbare Funktion stetig ist, folgt mit dem Zwischenwertsatz, dass es ein $x_0 \in [0,1]$ mit $f(x_0) = 0$ gibt. Für dieses x_0 gilt $x_0 = e^{-x_0}$. Da f injektiv ist, gibt es genau ein $x_0 \in \mathbb{R}$ mit $f(x_0) = 0$, also genau ein $x_0 \in \mathbb{R}$, das die Gleichung $x = e^{-x}$ erfüllt.

zu Aufgabe 8

Mögliche Extremwerte liegen vor, sofern f'(x) = 0 ist. Es ist

$$f'(x) = -\sin(x) - (-\sin(x)2\cos(x)) = -\sin(x) + \sin(x)2\cos(x)$$

= \sin(x)(2\cos(x) - 1).

Genau dann ist f'(x) = 0, wenn $\sin(x) = 0$ oder $2\cos(x) - 1 = 0$. Die einzigen Nullstellen von sin in $[0, \pi]$ sind 0 und π .

Genau dann ist $2\cos(x) - 1 = 0$, wenn $\cos(x) = \frac{1}{2}$. Es ist $\cos(\frac{\pi}{3}) = \frac{1}{2}$, und da cos auf $[0, \pi]$ streng monoton fallend ist, folgt, dass $\frac{\pi}{3}$ die einzige Nullstelle von $2\cos(x) - 1$ in $[0, \pi]$ ist. Somit gilt

$$f'(x) = 0 \Leftrightarrow x \in \{0, \frac{\pi}{3}, \pi\}.$$

Es ist

$$f''(x) = -2\sin^2(x) + 2\cos^2(x) - \cos(x)$$

= $2(\cos^2(x) - \sin^2(x)) - \cos(x)$.

Einsetzen der Nullstellen von f' liefert

$$\begin{array}{lll} f''(0) & = & 2(1-0)-1=1>0 & \Rightarrow & 0 \text{ ist lokales Minimum} \\ f''(\frac{\pi}{3}) & = & 2(\frac{1}{4}-\frac{3}{4})-\frac{1}{2}=-\frac{3}{2}<0 & \Rightarrow & \frac{\pi}{3} \text{ ist lokales Maximum} \\ f''(\pi) & = & 2(1-0)+1=3>0 & \Rightarrow & \pi \text{ ist lokales Minimum}. \end{array}$$

Es gilt

Dann ist $(\neg A \land \neg B) \lor (C \land \neg D)$ eine Negationsnormalform der Formel $\neg ((A \lor B) \land (\neg C \lor D))$.