IKERKETA OPERATIBOA

Talde lana - 7. Ariketa

Camilo Agudelo Adei Arias Martin Amezola Jon Barbero

Ebatzi Beharreko Problema

$$Max z = -2x_1 - 4x_2 - 2x_3$$

$$3x_1 + x_2 + 2x_3 \ge 8$$

$$x_1 + 3x_2 + 4x_3 \ge 12$$

$$x_1, x_2, x_3 \ge 0$$

Ebatzi Beharreko Problema

$$Max z = -2x_1 - 4x_2 - 2x_3$$

$$3x_1 + x_2 + 2x_3 \ge 8$$

$$x_1 + 3x_2 + 4x_3 \ge 12$$

$$x_1, x_2, x_3 \ge 0$$

Zerotik gertuen dagoen zenbaki negatiboa!

Erabiliko Diren Ebazpideak

- 1. Simplex Dual Metodoa
- 2. Bi Fase Metodoa
- 3. Dualtasuna Ebazpen Grafikoa Osagarrizko Lasaitasuna

Simplex Dual Metodoa

Simplex Dual Metodoa

- 1. Murrizketak '-1 '-ekin biderkatu, 'B' matrizea 'I' identitatea izateko.
- 2. Forma estandarrera pasatu (lasaiera aldagaiak sartu)

 $\leq \rightarrow$ lasaiera aldagaiak batzen

$$\begin{array}{rcl} Max & z = -2x_1 - 4x_2 - 2x_3 \\ -3x_1 & -x_2 - 2x_3 + x_4 = -8 \\ -x_1 & -3x_2 - 4x_3 + x_5 = -12 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{array}$$

Simplex Dual Metodoa

Hasierako oinarrizko soluzioa lortzen: $B \cdot x_B = b$

$$A = \begin{pmatrix} -3 & -1 & -2 & 1 & 0 \\ -1 & -3 & -4 & 0 & 1 \\ x_1 & x_2 & x_3 & x_4 & x_5 \end{pmatrix}$$

$$B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$B = \begin{pmatrix} -8 \\ -12 \end{pmatrix}$$

$$B \cdot x_B = b \rightarrow B^{-1} \cdot B \cdot x_B = B^{-1} \cdot b \rightarrow \{B = I = B^{-1}\}$$

$$x_B = \begin{pmatrix} x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} -8 \\ -12 \end{pmatrix}$$

 $I \cdot x_B = I \cdot b \rightarrow x_B = b$

Simplex Dual: 1. Iterazioa

	Δ.	D-1 * L	-2	-4	-2	0	0
C _{oin}	A _{oin}	B ⁻¹ * b	x ₁	X ₂	X ₃	x ₄	x ₅
0	X ₄	-8	-3	-1	-2	1	0
0	X ₅	-12	-1	-3	-4	0	1
Z = 0		z _j	0	0	0	0	0
		$\mathbf{w}_{j} = \mathbf{z}_{j} - \mathbf{c}_{j}$	2	4	2	0	0

 $\exists K: x_{DK} < 0 \rightarrow Jarraitu$

Simplex Dual: 1. Iterazioa

	Δ	B ⁻¹ * b	-2	-4	-2	0	0
C _{oin}	A _{oin}	P D	X ₁	X ₂	x ₃	X ₄	x ₅
0	X ₄	-8	-3	-1	-2	1	0
0	X ₅	-12	-1	-3	-4	0	1
7 0		z j	0	0	0	0	0
Z = 0		$\mathbf{w}_{j} = \mathbf{z}_{j} - \mathbf{c}_{j}$	2	4	2	0	0

Irtetze-irizpidea:

$$\max_{k} \{ |X_{DK}| / X_{DK} < 0 \} = \{ |-8|, |-12| \} = 12 \rightarrow x_5 \text{ irten}$$

Sartze-irizpidea:

$$\min_{k,a_{ik}<0} \left\{ \frac{|z_k - c_k|}{|a_{ik}|} \right\} = \left\{ \frac{|2|}{|-1|}, \frac{|4|}{|-3|}, \frac{|2|}{|-4|} \right\} = \left\{ 2, \frac{4}{3}, \frac{1}{2} \right\} = \frac{1}{2} \to x_3 \text{ sartu}$$

Simplex Dual: 1. Iterazioa

	Δ.	B ⁻¹ * b	-2	-4	-2	0	0
C _{oin}	A _{oin}	B D	X ₁	X ₂	х ₃	X ₄	X ₅
0	X ₄	-8	-3	-1	-2	1	0
0	X ₅	-12	-1	-3	-4	0	1
7.	7 0		0	0	0	0	0
Z = 0		$\mathbf{w}_{j} = \mathbf{z}_{j} - \mathbf{c}_{j}$	2	4	2	0	0

$$e_{2B} \leftarrow \frac{e_2}{-4}$$

$$e_{1B} \leftarrow e_1 + 2 e_{2B}$$

	Δ	B ⁻¹ * b	-2	-4	-2	0	0
C _{oin}	C _{oin} A _{oin}		x ₁	X ₂	x ₃	X ₄	x ₅
0	X_4	-2	-5/2	1/2	0	1	-1/2
-2	X ₃	3	1/4	3/4	1	0	-1/4
7_	Z = -6		-1/2	-3/2	-2	0	1/2
Ζ=			3/2	5/2	0	0	1/2

Simplex Dual: 2. Iterazioa

		D-1 * L	-2	-4	-2	0	0
C _{oin}	A _{oin}	B ⁻¹ * b	x ₁	X ₂	x ₃	x ₄	x ₅
0	X ₄	-2	-5/2	1/2	0	1	-1/2
-2	X ₃	3	1/4	3/4	1	0	-1/4
7 -			-1/2	-3/2	-2	0	1/2
Z = -6		$\mathbf{w}_{j} = \mathbf{z}_{j} - \mathbf{c}_{j}$	3/2	5/2	0	0	1/2

 $\exists K: x_{DK} < 0 \rightarrow Jarraitu$

Simplex Dual: 2. Iterazioa

	Coin Aoin		-2	-4	-2	0	0
C _{oin}	A _{oin}	B ⁻¹ * b	x ₁	x ₂	х ₃	X ₄	X ₅
0	X ₄	-2	-5/2	1/2	0	1	-1/2
-2	Х ₃	3	1/4	3/4	1	0	-1/4
Z = -6		z _j	-1/2	-3/2	-2	0	1/2
		$w_j = z_j - c_j$	3/2	5/2	0	0	1/2

Irtetze-irizpidea:

$$\max_{k} \{ |X_{DK}| / X_{DK} < 0 \} = \{ |-2| \} = 2 \rightarrow x_4 \text{ irten}$$

Sartze-irizpidea:

$$\min_{k,a_{ik}<0} \left\{ \frac{|z_k - c_k|}{|a_{ik}|} \right\} = \left\{ \frac{\left|\frac{3}{2}\right|}{\left|\frac{-5}{2}\right|}, \frac{\left|\frac{1}{2}\right|}{\left|\frac{-1}{2}\right|} \right\} = \left\{ \frac{3}{5}, 1 \right\} = \frac{3}{5} \to x_1$$

sartu

Simplex Dual: 2. Iterazioa

	Δ.	B-1 * b	-2	-4	-2	0	0
C _{oin}	A _{oin}		X ₁	X ₂	X ₃	X ₄	X ₅
0	X ₄	-2	-5/2	1/2	0	1	-1/2
-2	X ₃	3	1/4	3/4	1	0	-1/4
7 -	7 6		-1/2	-3/2	-2	0	1/2
$Z = -6$ w_j		$\mathbf{w}_{j} = \mathbf{z}_{j} - \mathbf{c}_{j}$	3/2	5/2	0	0	1/2

C	Δ	B ⁻¹ * b	-2	-4	-2	0	0
C _{oin}	C _{oin} A _{oin}		x ₁	X ₂	x ₃	X ₄	x ₅
-2	X_1	4/5	1	-1/5	0	-2/5	1/5
-2 X ₃		14/5	0	4/5	1	1/10	-3/10
		z j	-2	-6/5	-2	3/5	1/5
Z = -	- 36 5	$\mathbf{w}_{j} = \mathbf{z}_{j} - \mathbf{c}_{j}$	0	14/5	0	3/5	1/2

Simplex Dual: 3. Iterazioa

6		B ⁻¹ * b	-2	-4	-2	0	0
C _{oin}	A _{oin}	P D	x ₁	x ₂	х ₃	X ₄	X ₅
-2	X ₁	4/5	1	-1/5	0	-2/5	1/5
-2	Х ₃	14/5	0	4/5	1	1/10	-3/10
			-2	-6/5	-2	3/5	1/5
$z = -\frac{36}{5}$		$w_j = z_j - c_j$	0	14/5	0	3/5	1/2

 $\forall K: x_{DK} \geq 0 \rightarrow Gelditu$

Simplex Dual: Soluzioa

Optimoa lortu dugu eta soluzio bakarra da, ez oinarrizko kostu murriztuak zeroren desberdinak direlako:

$$x_1^* = \frac{4}{5}$$
; $x_2^* = 0$; $x_3^* = \frac{14}{5}$; $x_4^* = 0$; $x_5^* = 0$; $Z^* = -\frac{36}{5}$

Bi Fase Metodoa

Bi Fase Metodoa

 Minimizaziora pasatu → Helburu funtzioa '-1'-ekin biderkatu.

Min
$$z = 2x_1 + 4x_2 + 2x_3$$

 $3x_1 + x_2 + 2x_3 \ge 8$
 $x_1 + 3x_2 + 4x_3 \ge 12$
 $x_1, x_2, x_3 \ge 0$

Bi Fase Metodoa

- 2. Forma estandarrera pasatu (lasaiera aldagaiak sartu)
- 3. Aldagai artifizialak gehitu

$$Min \ z = 2x_1 + 4x_2 + 2x_3$$

$$3x_1 + x_2 + 2x_3 - x_4 + q_1 = 8$$

$$x_1 + 3x_2 + 4x_3 - x_5 + q_2 = 12$$

$$x_1, x_2, x_3, x_4, x_5, q_1, q_2 \ge 0$$

Bi Fase Metodoa: 1.Fasea

Ebatziko den problema:

$$Min z = q_1 + q_2$$

$$3x_1 + x_2 + 2x_3 - x_4 + q_1 = 8$$

$$x_1 + 3x_2 + 4x_3 - x_5 + q_2 = 12$$

$$x_1, x_2, x_3, x_4, x_5, q_1, q_2 \ge 0$$

- Helburu funtzioa aldagai artifizialen batukaria izango da.
- Bigarren faseko lehenengo oinarrizko soluzio bideragarria bilatuko da.

Bi Fase Metodoa: 1.Fasea

Taularako matrizeak:

$$A = \begin{pmatrix} 3 & 1 & 2 & -1 & 0 & 1 & 0 \\ 1 & 3 & 4 & 0 & -1 & 0 & 1 \end{pmatrix}$$

$$b = \begin{pmatrix} 8 \\ 12 \end{pmatrix}; B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}; x_B = \begin{pmatrix} q_1 \\ q_2 \end{pmatrix}; x_n = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix}$$

$$x_B = \begin{pmatrix} q_1 \\ q_2 \end{pmatrix} = \begin{pmatrix} 8 \\ 12 \end{pmatrix}$$

Bi Fase Metodoa: 1.Fasea, 1. Taula

	^	B ⁻¹ * b	0	0	0	0	0	1	1
C _{oin}	A _{oin}	B - · Ø	x ₁	X ₂	х ₃	x ₄	x ₅	q ₁	q ₂
1	q_1	8	3	1	2	-1	0	1	0
1	q ₂	12	1	3	4	0	-1	0	1
7 -	20	z _j	4	4	6	-1	-1	1	1
Z =	Z = 20		4	4	6	-1	-1	0	0

$$\exists w_j > 0 \rightarrow Jarraitu$$

Bi Fase Metodoa: 1.Fasea, 1. Taula

		B ⁻¹ * b	0	0	0	0	0	1	1
C _{oin}	A _{oin}	5 5	x ₁	x ₂	х ₃	X ₄	X ₅	q ₁	q ₂
1	q_1	8	3	1	2	-1	0	1	0
1	q_2	12	1	3	4	0	-1	0	1
7 -	20	z _j	4	4	6	-1	-1	1	1
Z =	Z = 20		4	4	6	-1	-1	0	0

Sartze-irizpidea:

$$\max\{z_j - c_j\} = \{4, 4, 6\} = 6 \rightarrow x_3 \text{ sartu}$$

Irtetze-irizpidea:

$$\min\left\{\frac{x_{Bk}}{y_{kj}} / y_{kj} > 0\right\} = \left\{\frac{8}{2}, \frac{12}{4}\right\} = \{4, 3\} = 3 \rightarrow q_2 \text{ irten}$$

Bi Fase Metodoa: 1.Fasea, 2. Taula

	Λ	B ⁻¹ * b	0	0	0	0	0	1	1
C _{oin}	A _{oin}	Β β	X ₁	X ₂	Х3	X ₄	X ₅	q ₁	q ₂
1	$q_{\scriptscriptstyle 1}$	8	3	1	2	-1	0	1	0
1	q_2	12	1	3	4	0	-1	0	1
		z j	4	4	6	-1	-1	1	1
Z =	Z = 20		4	4	6	-1	-1	0	0

$$e_{2B} \leftarrow \frac{e_2}{4}$$

$$e_{1B} \leftarrow e_1 - 2 e_{2B}$$

	•	A _{oin} B ⁻¹ * b	0	0	0	0	0	1	1	
	C _{oin}	A _{oin}	Б	X ₁	X ₂	X ₃	X ₄	X ₅	$q_{\scriptscriptstyle 1}$	q ₂
	1	q_1	2	5/2	-1/2	0	-1	1/2	1	-1/2
I	0	X ₃	3	1/4	3/4	1	0	-1/4	0	1/4
	Z = 2		z j	5/2	-1/2	0	-1	1/2	1	-1/2
			$\mathbf{w}_{j} = \mathbf{z}_{j} - \mathbf{c}_{j}$	5/2	-1/2	0	-1	1/2	0	-3/2

Bi Fase Metodoa: 1.Fasea, 2. Taula

	•			0	0	0	0	0	1	1
	C _{oin}	A _{oin}	B ⁻¹ * b	x ₁	x ₂	х ₃	x ₄	x ₅	q ₁	q ₂
	1	q_1	2	5/2	-1/2	0	-1	1/2	1	-1/2
	0	X ₃	3	1/4	3/4	1	0	-1/4	0	1/4
Ī	Z = 2		z _j	5/2	-1/2	0	-1	1/2	1	-1/2
			$\mathbf{w}_{j} = \mathbf{z}_{j} - \mathbf{c}_{j}$	5/2	-1/2	0	-1	1/2	0	-3/2

 $\exists w_i > 0 \rightarrow Jarraitu$

Bi Fase Metodoa: 1.Fasea, 2. Taula

		p-1 * L	0	0	0	0	0	1	1
C _{oin}	A _{oin}	B ⁻¹ * b	X ₁	x ₂	X ₃	x ₄	x ₅	q ₁	q ₂
1	q_1	2	5/2	-1/2	0	-1	1/2	1	-1/2
0	X ₃	3	1/4	3/4	1	0	-1/4	0	1/4
Z = 2		z _j	5/2	-1/2	0	-1	1/2	1	-1/2
		$\mathbf{w}_{j} = \mathbf{z}_{j} - \mathbf{c}_{j}$	5/2	-1/2	0	-1	1/2	0	-3/2

Sartze-irizpidea:

$$\max\{z_j - c_j\} = \left\{\frac{5}{2}, \frac{1}{2}\right\} = \frac{5}{2} \to x_1 \text{ sartu}$$

Irtetze-irizpidea:

$$\min\left\{\frac{x_{Bk}}{y_{kj}} / y_{kj} > 0\right\} = \left\{\frac{2}{\frac{5}{2}}, \frac{3}{\frac{1}{4}}\right\} = \left\{\frac{4}{5}, 12\right\} = \frac{4}{5} \to q_1 \text{ irten}$$

Bi Fase Metodoa: 1.Fasea, 3. Taula

	Λ	B-1 * b	0	0	0	0	0	1	1
Coin	A _{oin}	D - D	X ₁	X ₂	X ₃	X ₄	X ₅	$q_{\scriptscriptstyle 1}$	q_2
1	q_1	2	5/2	-1/2	0	-1	1/2	1	-1/2
0	X ₃	3	1/4	3/4	1	0	-1/4	0	1/4
Z = 2		z j	5/2	-1/2	0	-1	1/2	1	-1/2
		$\mathbf{w}_{j} = \mathbf{z}_{j} - \mathbf{c}_{j}$	5/2	-1/2	0	-1	1/2	0	-3/2

$$e_{1B} \leftarrow \frac{2}{5}e_1$$
 $e_{2B} \leftarrow e_2 - \frac{1}{4}e_{1B}$

		Δ	B ⁻¹ * b	0	0	0	0	0	1	1
	C _{oin}	A _{oin}	ББ	x ₁	X ₂	Х ₃	X ₄	x ₅	q ₁	q ₂
	0	x_1	4/5	1	-1/5	0	-2/5	1/5	2/5	-1/5
	0	X ₃ 14/5		0	4/5	1	1/10	-3/10	-1/10	3/10
	Z = 0		z j	0	0	0	0	0	0	0
			$\mathbf{w}_{j} = \mathbf{z}_{j} - \mathbf{c}_{j}$	0	0	0	0	0	-1	-1

Bi Fase Metodoa: 1.Fasea, 3. Taula

		B ⁻¹ * b	0	0	0	0	0	1	1
C _{oin}	A _{oin}	В	x ₁	x ₂	х ₃	x ₄	x ₅	q ₁	q ₂
0	x ₁	4/5	1	-1/5	0	-2/5	1/5	2/5	-1/5
0	X ₃	14/5	0	4/5	1	1/10	-3/10	-1/10	3/10
Z = 0		z _j	0	0	0	0	0	0	0
		$\mathbf{w}_{j} = \mathbf{z}_{j} - \mathbf{c}_{j}$	0	0	0	0	0	-1	-1

$$\forall w_i \leq 0 \rightarrow \text{Gelditu}$$

Bi Fase Metodoa: 1.Faseko Soluzioa

Z = 0 da, eta aldagai artifizialak oinarritik kanpo daudenez, bigarren faseko oinarrizko soluzio bideragarria lortu da:

$$x_1 = \frac{4}{5}$$
; $x_2 = 0$; $x_3 = \frac{14}{5}$; $x_4 = 0$; $x_5 = 0$; $x_5 = 0$; $x_5 = 0$; $x_6 = 0$; $x_7 = 0$

Lehenengo fasea bukatuta

Bi Fase Metodoa: 2.Fasea

	A D-1 * L		2	4	2	0	0
C _{oin}	A _{oin}	B ⁻¹ * b	x ₁	x ₂	х ₃	x ₄	x ₅
2	x ₁	4/5	1	-1/5	0	-2/5	1/5
2	X ₃	14/5	0	4/5	1	1/10	-3/10
Z = 36/5		z _j	2	6/5	2	-3/5	-1/5
		$\mathbf{w}_{j} = \mathbf{z}_{j} - \mathbf{c}_{j}$	0	-14/5	0	-3/5	-1/5

Bigarren fase honetan lortutako taula optimotik abiatuko da, hasierako helburu funtzioa erabiliz. Gainera, q1 eta q2 desagertuko dira.

$$\forall w_j \leq 0 \rightarrow \text{Gelditu}$$

Bi Fase Metodoa: 2.Faseko Soluzioa

Optimoa lortu da. Oinarrizkoak ez diren aldagaien kostu murriztuak zeroren desberdinak direrenez, soluzioa bakarra da:

$$x_1^* = \frac{4}{5}$$
; $x_2^* = 0$; $x_3^* = \frac{14}{5}$; $x_4^* = 0$; $x_5^* = 0$; $Z^* = \frac{36}{5}$

Optimoa lortu da. Oinarrizkoak ez diren aldagaien kostu murriztuak zeroren desberdinak direnez, soluzioa bakarra da:

$$Z_{emaitza} = -\frac{36}{5}$$

Dualtasuna – Osagarrizko Lasaitasuna

Dualtasuna eta Osagarrizko lasaitasuna

Lehenik murrizketen zeinua aldatuko dugu prozedura errazteko.

$$A = \begin{pmatrix} -3 & -1 & -2 \\ -1 & -3 & -4 \end{pmatrix} \qquad A^{t} = \begin{pmatrix} -3 & -1 \\ -1 & -3 \\ -2 & -4 \end{pmatrix}$$

$$C^{t} = \begin{pmatrix} -2 & -4 & -2 \end{pmatrix} \qquad C = \begin{pmatrix} -2 \\ -4 \\ -2 \end{pmatrix}$$

$$B = \begin{pmatrix} -8 \\ -12 \end{pmatrix} \qquad B^{t} = \begin{pmatrix} -8 & -12 \end{pmatrix}$$

Dualtasuna eta Osagarrizko lasaitasuna: Primal-Dual erlazioa

Dualtasuna eta Osagarrizko lasaitasuna

Taula hau aplikatuz, problema duala lortzen dugu.

Dualtasuna eta Osagarrizko lasaitasuna: Ebazpen Grafikoa

Problema dualaren soluzioa grafikoki ebatzi dezakegu geogebra erabiliz:

Zuzenak:

$$r \rightarrow -3x-y \ge -2$$

$$s \rightarrow -x-3y \ge -4$$

$$t \rightarrow -2x - 4y \ge -2$$

$$f \rightarrow x \ge 0$$

$$g \rightarrow y \ge 0$$

Gradientea
$$\rightarrow (\frac{\partial Z}{\partial x}, \frac{\partial Z}{\partial y}) = (-8, -12)$$

Dualtasuna eta Osagarrizko lasaitasuna: Ebazpen Grafikoa

Helburu Funtzioa gradientearen kontrako bidean mugitzen badugu optimoa ukisten dugu r eta t -ren arteko ebakidura puntua dela

Sistema bakanduz...

Soluzio Optimoa

$$Z^* = -36/5$$
, $u_1^* = 3/5$, $u_2^* = 1/5$

Dualtasuna eta Osagarrizko lasaitasuna: Problema dualaren optimoa

$$-3\left(\frac{3}{5}\right) - u_2 = -2 \qquad \qquad -\frac{9}{5} - u_2 = -2 \rightarrow u_2 = \frac{10-9}{5} \rightarrow u_2 = \frac{1}{5}$$

Problema dualaren optimoa lortu da:

$$u_1^* = \frac{3}{5}; \quad u_2^* = \frac{1}{5}; \quad Z^* = -\frac{36}{5}$$

Dualtasuna eta Osagarrizko lasaitasuna: Osagarrizko lasaitasuna

Problema primalaren soluzioa kalkulatzeko, osagarrizko lasaitasuna aplikatuko dugu.

$$Max z = -2x_1 - 4x_2 - 2x_3$$

(1)
$$-3x_1 - x_2 - 2x_3 + x_4 = -8$$

(2) $-x_1 - 3x_2 - 4x_3 + x_5 = -12$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

$$min z = 8u_1 + 12u_2$$

$$(3) -3u_1 - u_2 - u_3 = -2$$

$$(4) -u_1 - 3u_2 - u_4 = -4$$

$$(5) - 2u_1 - 4u_2 - u_5 = -2$$

$$u_1, u_2, u_3, u_4, u_5 \ge 0$$

$$X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}; X^h = \begin{pmatrix} x_4 \\ x_5 \end{pmatrix}; \quad U = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}; \quad U^h = \begin{pmatrix} u_3 \\ u_4 \\ u_5 \end{pmatrix}$$

(6)
$$x_1 \cdot u_3 = 0$$

$$(7) x_2 \cdot u_4 = 0$$

$$(8) x_3 \cdot u_5 = 0$$

$$(9) u_1 \cdot x_4 = 0$$

$$(10) u_2 \cdot x_5 = 0$$

Dualtasuna eta Osagarrizko lasaitasuna: Ekuazio sistema askatzen

–(3) ekuazioa erabiliz:

$$-3\left(\frac{3}{5}\right) - \left(\frac{1}{5}\right) - u_3 = -2 \rightarrow u_3 = 2 - \frac{9}{5} - \frac{1}{5} = \frac{10 - 10}{5} = 0 \rightarrow u_3 = 0$$

• -(4) ekuazioa erabiliz:

$$-\left(\frac{3}{5}\right) - 3\left(\frac{1}{5}\right) - u_4 = -4 \rightarrow u_4 = 4 - \frac{3}{5} - \frac{3}{5} = \frac{20 - 6}{5} = \frac{14}{5} \rightarrow u_4 = \frac{14}{5}$$

• -(5) ekuazioa erabiliz:

$$-2\left(\frac{3}{5}\right) - 4\left(\frac{1}{5}\right) - u_5 = -2 \rightarrow u_5 = 2 - \frac{6}{5} - \frac{4}{5} = \frac{10 - 10}{5} = 0 \rightarrow u_5 = 0$$

Dualtasuna eta Osagarrizko lasaitasuna: Problema primalaren soluzioa

-(7) ekuazioa erabiliz:

$$x_2 \cdot u_4 = 0 \rightarrow x_2 \cdot \frac{14}{5} = 0 \rightarrow x_2 = 0$$

-(9) ekuazioa erabiliz:

$$u_1 \cdot x_4 = 0 \to \frac{3}{5} \cdot x_4 = 0 \to x_4 = 0$$

-(10) ekuazioa erabiliz:

$$u_2 \cdot x_5 = 0 \to \frac{1}{5} \cdot x_5 = 0 \to x_5 = 0$$

-(1) eta (2) ekuazioa erabiliz:

$$-3x_{1} - (0) - 2x_{3} + (0) = -8$$

$$-x_{1} - 3(0) - 4x_{3} + (0) = -12$$

$$-3x_{1} - 2x_{3} = -8$$

$$-3x_{1} - 2x_{3} = -8$$

$$-x_{1} - 4x_{3} = -12$$

$$-x_{1} - 4x_{3} = -12$$

$$-(\frac{4}{5}) - 4x_{3} = -12 \rightarrow -\frac{1}{5} - x_{3} = -3 \rightarrow x_{3} = 3 - \frac{1}{5} = \frac{15 - 1}{5} = \frac{14}{5} \rightarrow x_{3} = \frac{14}{5}$$

Dualtasuna eta Osagarrizko lasaitasuna: Primalaren soluzioa

Problema primalaren soluzio osoa hurrengoa da:

$$x_1^* = \frac{4}{5};$$
 $x_2^* = 0;$ $x_3^* = \frac{14}{5};$ $x_4^* = 0;$ $x_5^* = 0;$ $Z^* = -\frac{36}{5}$

Soluzioa konprobatuko da:

$$-2x_1 - 4x_2 - 2x_3 = -\frac{36}{5} \rightarrow -2\left(\frac{4}{5}\right) - 4(0) - 2\left(\frac{14}{5}\right) = -\frac{36}{5} \rightarrow -\frac{8}{5} - \frac{28}{5} = -\frac{36}{5}$$

$$-\frac{36}{5} = -\frac{36}{5}$$

PHPSimplex Proba

PHPSimplex Proba

PHPSimplex

Método Simplex

Operaciones intermedias (mostrar/ocultar detalles)

Ayuda

Tabla 1			-2	-4	-2	0	0
Base	Сь	Po	Pı	P2	Рз	P4	P5
Pı	-2	4/5	1	-1/5	0	-2/5	1/5
Рз	-2	14 / 5	0	4/5	1	1 / 10	-3 / 10
Z		-36/5	0	14 / 5	0	3/5	1/5

Mostrar resultados como fracciones.

La solución óptima es Z = -36 / 5

 $X_1 = 4/5$

 $X_2 = 0$

 $X_3 = 14 / 5$

La solución óptima es Z = -36 / 5

$$X_1 = 4/5$$

$$X_2 = 0$$

$$X_3 = 14/5$$

Eskerrik asko, Segi Ondo!