Departamento de Eletrónica, Telecomunicações e Informática

Universidade de Aveiro

Sistemas Multimédia

2022/2023

Guião 06

I. Filtragem de sinais de Som

1. Carregue para o workspace do MATLAB as variáveis contidas no ficheiro **Guitar03.mat** que se encontra disponível no Moodle. Este ficheiro contém a variável \mathbf{x} (vetor com as amostras do sinal captado diretamente de uma guitarra elétrica, sem qualquer processamento) e a variável f_a , com o valor da frequência de amostragem (em Hz) considerada no processo de captura do sinal guardado em \mathbf{x} . Usando os auriculares, ouça o som produzido por este sinal executando a função:

\gg sound(x, f_a);

Esta função considera que a amplitude do sinal a reproduzir situa-se entre -1 e 1, pelo que, no decurso deste grupo, tenha cuidado para manter os valores dos sinais em valores baixos, na ordem de -0.1 a 0.1.

- 2. Usando a função *Espetro* (criada anteriormente), observe o espetro do sinal carregado na pergunta anterior, e analise as notas musicais consideradas neste sinal.
- 3. Com base no que observou na alínea anterior, desenvolva um filtro a ser aplicado sobre o espetro (i.e., um filtro que opera no domínio da frequência) que remova o conteúdo espetral desse sinal que se situe abaixo da frequência 100 Hz e acima da frequência 400Hz. Reconstrua o sinal filtrado, w, e ouça o respetivo som. Repita o teste agora para reter o conteúdo do sinal na gama de frequências de 400 Hz a 600 Hz. E, depois, para a gama de 600 kHz a 1.2 kHz.

II. Filtragem de sinais com ruído

1. Considere o seguinte sinal, composto por uma componente determinística (sinusoide de 1 Hz) e uma outra estocástica (r(t)):

$$x(t) = \sin(2\pi t) + r(t)$$

O sinal de ruído r(t) é gerado pela seguinte expressão:

$$r(t) = 0.5 \sin(20\pi t + 10\phi_1(t)) + 0.5 \sin(24\pi t + 10\phi_2(t))$$

onde $\phi_k(t)$, k=1,2, é o resultado da integração (ao longo do tempo) de uma variável aleatória de distribuição normal, de média nula e desvio padrão igual a π .

Crie a função $[\mathbf{x},\mathbf{t}] = \textbf{GeraSinal}(N,T_a)$ que gera a sequência de N amostras do sinal definido anteriormente, considerando o período de amostragem T_a (devolvendo no vetor \mathbf{x} os valores das amostras, e no vetor \mathbf{t} os respetivos instantes de tempo).

2022/2023 1/2

- 2. Usando a função *Espetro* (criada anteriormente), observe o espetro do sinal gerado na pergunta anterior. Observe como varia o espetro de diferentes realizações desse sinal, e conclua sobre a localização na frequência das componentes (determinística e ruído) desse sinal.
- 3. Com base no que observou na alínea anterior, desenvolva um filtro a ser aplicado sobre o espetro (i.e., um filtro que opera no domínio da frequência) que permita filtrar (i.e., reduzir ou eliminar) a componente de ruído associada ao sinal gerado na questão 1. Aplique esse filtro e, usando a função *Reconstroi* (também desenvolvida anteriormente), obtenha o sinal filtrado no domínio do tempo e visualize-o (sobrepondo-o ao sinal original).

2022/2023 2/2