

Department of Marine Technology

Examination paper for: TMR4243 MARINE CONTROL SYSTEMS II

Academic contact during examination: Roger Skjetne

Phone: 73550446 / 92813672

Examination date: June 1, 2015

Examination time (from-to): 09:00 - 13:00

Permitted examination support material: A – All printed and handwritten material

allowed. All approved calculators allowed.

Other information:

The solutions to the 5 problems are given a maximum of 100 points. The exam counts 60% on the final grade.

Work fast; your answers should be short, clear, and concise. All statements should be explained; all mathematical answers should be derived.

Make qualified assumptions if:

- · you cannot find an intermediate answer that is needed in further calculations, or
- there are missing (or obvious wrong) information in the problem text.

Language: English **Number of pages:** 7

Number of pages enclosed:

Checked by
Signature

TMR4243 - MARINE CONTROL SYSTEMS II

Exam

Spring 2015

Notation: Throughout this exam |x| means the vector 2-norm, i.e. $|x| = \sqrt{x^{\top}x}$.

1 Solutions to nonlinear ODEs (22 pts)

1. Consider the nonlinear ordinary differential equation (ODE):

$$\dot{x} = f(x), \qquad x_0 = x(0)$$

where $x \in \mathbb{R}^n$ and $f : \mathbb{R}^n \to \mathbb{R}^n$.

- (a) What does it mean that a solution is **forward complete**?
- (b) What does it mean that this system is locally Lipschitz?
- (c) What can you say about the solutions if it is locally Lipschitz?
- (d) What does it mean that this system is globally Lipschitz?
- (e) What can you say about the solutions if it is globally Lipschitz?
- 2. For the scalar system

$$\dot{x} = x^{\frac{1}{3}}, \qquad x_0 = 0$$

we propose the following solutions for $t \geq 0$:

$$x(t) = 0 \qquad \& \qquad x(t) = \left(\frac{2t}{3}\right)^{\frac{3}{2}}$$

- (a) Show that the proposed solutions are indeed solutions to the ODE.
- (b) What is the Lipschitz property of this ODE?
- (c) What is the stability property of this ODE?
- 3. For the scalar system

$$\dot{x} = kx$$
, $x_0 = -1$, $k = \text{const.}$

we propose the solution for $t \geq 0$:

$$x(t) = -e^{kt}$$

- (a) Show that the proposed solution is indeed a solution to this ODE.
- (b) What is the Lipschitz property of this ODE?
- (c) What is the stability property of this ODE for k > 0?

2 Stability of nonlinear systems (18 pts)

1. Consider the nonlinear time-varying system:

$$\dot{x} = f(t, x), \qquad x_0 = x(t_0), \quad t_0 \ge 0$$

where $x \in \mathbb{R}^n$ and $f : \mathbb{R}_{\geq 0} \times \mathbb{R}^n \to \mathbb{R}^n$, and assume $f(t,0) = 0, \forall t \geq 0$.

- (a) Define UGS and UGAS for the system solutions with respect to x = 0 based on class- \mathcal{K} and class- \mathcal{KL} functions.
- (b) What meaning does *Uniform* have?
- (c) What meaning does Global have?
- (d) What meaning does Asymptotic have?
- 2. In terms of equilibrium points you can have three types: *single point*, *multiple isolated points*, and a *continuum of points*. Explain each of these and wether they are possible for linear vs. nonlinear systems.
- 3. Consider the linear time-varying system:

$$\dot{x} = Q\left(x - x_d(t)\right) + \dot{x}_d(t)$$

where $Q = Q^{\top}$, and $(x_d(t), \dot{x}_d(t))$ are bounded reference signals. Let

$$V(t,x) = \frac{1}{2} (x - x_d(t))^{\top} (x - x_d(t))$$

be a Lyapunov function candidate.

- (a) Show how to differentiate V(t, x).
- (b) What is your stability conclusion if Q < 0?
- (c) What is your stability conclusion if $Q \ge 0$?

3 Lyapunov stability (22 pts)

Consider the system

$$\dot{x}_1 = x_2
 \dot{x}_2 = -x_1 - x_2 + \frac{k}{\sqrt{5}}x_2^2$$

1. Assume k = 0. Differentiate the Lyapunov function

$$V_1(x) = \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2$$

and discuss stability of the origin by Lyapunov's method and the Krasovskii-LaSalle theorem.

2. Assume k = 0. Differentiate the Lyapunov function

$$V_2(x) = \frac{3}{2}x_1^2 + x_1x_2 + x_2^2$$

and discuss stability of the origin by Lyapunov's method.

3. Show that the system can be written in vector form with state vector $x = col(x_1, x_2)$, as

$$\dot{x} = Ax + kbx_2^2$$

by appropriate definitions of A and b.

- (a) Show that $|x_2^2| \le |x|^2$.
- (b) Show that the Lyapunov function $V_2(x)$ above can be written

$$V_2(x) = x^{\top} P x$$

where P is symmetric positive definite.

- (c) Show that (P, A) satisfies the Lyapunov equation with Q = I.
- (d) Assume k=1. Show that $|Pb|=\frac{1}{2}$ and that

$$\dot{V}_2 \le -|x|^2 + |x|^3 =: Y_2(|x|)$$

For what state values $x \in \mathbb{R}^2$ is $Y_2(|x|)$ negative definite?

(e) For k = 1, what stability of x = 0 can you conclude for the nonlinear system based on $V_2(x)$?

4. The figure below shows three ellipsoidal level curves of $V_2(x)$, i.e. the curves $\{x \in \mathbb{R}^2 : V(x) = c\}$ for $c = \{0.69, 1.81, 3.66\}$, and the level curve $\{x \in \mathbb{R}^2 \setminus \{0\} : Y_2(|x|) = 0\}$.

Which of the 4 ellipses can be used as an estimate of the Region of Convergence (ROC)? Justify your answer.

4 Nonlinear feedback control (22 pts)

Consider a marine system

$$\dot{\eta} = R(\eta)\nu$$
 $M\dot{\nu} = \tau + \rho(\eta, \nu) + d(t)$

where $\eta \in \mathbb{R}^n$ is a position/orientation vector, $\nu \in \mathbb{R}^n$ is a velocity vector, $\tau \in \mathbb{R}^n$ is the control input, $\rho(\eta, \nu) \in \mathbb{R}^n$ is a locally Lipschitz vector function, d(t) is a bounded bias, $M = M^\top > 0$, and $R(\eta)$ is a rotation matrix with the properties $R(\eta)^\top R(\eta) = R(\eta)R(\eta)^\top = I$ and $\dot{R} = R(\eta)S(\nu)$ where $S(\nu) = -S(\nu)^\top$.

1. Choosing $x_1 = \eta$, $x_2 = R(\eta)\nu$, and $x = col(x_1, x_2)$, show that you can transform the system into the controller form:

$$\dot{x} = Ax + B\Gamma(\eta, \nu) \left[\tau + \varphi(\eta, \nu) + d(t)\right]$$

where Γ is nonsingular. Show that (A, B) is a controllable pair.

- 2. Assume all states and the model is fully known, and d(t) = 0. Design a static state feedback control law $\tau = \alpha(\eta, \nu)$, using feedback linearization, that renders the closed-loop system linear and x = 0 UGES.
- 3. For d(t) a bounded unknown bias, show that your static feedback control law renders the system Input-to-State-Stable (ISS) from d(t) as input.
- 4. Suppose d(t)=d =constant and unknown, and that the static control law $\tau=\alpha(\eta,\nu)+\tau_0$ renders the closed-loop system into

$$\dot{x} = A_0 x + B\Gamma(\eta, \nu) \left[\tau_0 + d\right]$$

where A_0 is Hurwitz. Augmenting the control law with integral action τ_0 , let

$$\dot{\xi} = \gamma$$

$$\tau_0 = -K_i \xi, \qquad K_i = K_i^{\top} > 0$$

where the function γ shall be designed. Define $\tilde{\xi} = \xi - K_i^{-1}d$, let $P = P^{\top} > 0$ satisfy $PA_0 + A_0^{\top}P = -I$, and define the CLF

$$V(x,\tilde{\xi}) = x^{\top} P x + \frac{1}{2} \tilde{\xi}^{\top} K_i \tilde{\xi}$$

- (a) Write down the state equations for $(\tilde{\xi}, x)$.
- (b) Differentiate $V(x, \tilde{\xi})$ and design γ so that \dot{V} becomes

$$\dot{V} = -x^{\top}x$$

(c) What stability properties can you conclude for $(\tilde{\xi}, x) = (0, 0)$ (Hint: Use the LaSalle-Yoshizawa theorem).

5 Backstepping (16 pts)

Consider the system

$$\dot{x}_1 = g(x_1)x_2 - \sin(x_1)$$

 $\dot{x}_2 = u - |x_2|x_2 + b$

where $1 \leq g(x_1) \leq 10$ for all $x_1 \in \mathbb{R}$, $u \in \mathbb{R}$ is the control input, and b is a constant bias.

- 1. Suppose b = 0, and let the control objective be to stabilize $(x_1, x_2) = (0, 0)$. Use *backstepping* to design a feedback control law for u that solves the regulation control objective.
- 2. Suppose $b \neq 0$, let \hat{b} be an estimate of b, and define the estimation error $\tilde{b} = b \hat{b}$. Augment the Step 2 CLF V_2 with a term $\frac{1}{2\gamma}\tilde{b}^2$, and design an adaptive update law for $\dot{\hat{b}}$ that renders $(z_1, z_2, \tilde{b}) = 0$ UGS and ensures the convergence $(x_1(t), x_2(t)) \to 0$.