

Instructor Materials
Chapter 3
Communicating on a
Local Network

Networking Essentials

Networking Essentials

- 3.1 Principles of Communications
 - Explain the importance of standards and protocols in network communications.
- 3.2 Talking the Language of Networking
 - Explain how protocol model layers represent network functionality.
- 3.3 How do Ethernet Networks Work?
 - Explain how communication occurs on Ethernet networks.
- 3.4 How are Networks Built?
 - Explain why routers and switches are important in a network.
- 3.5 Routing Across Networks
 - Configure devices on a LAN.

Principles of Communications Establishing the Rules

- The Three Elements
 - The source, the destination, and the transmission medium.
- Communication Protocols
 - Before beginning to communicate with each other, we establish rules or agreements to govern the conversation.

- Why Protocols Matter
 - Networking protocols define the rules of communication over the local network.

Principles of Communications So Who Makes the Rules

- The Internet and Standards
 - A standard is a set of rules that determines how something must be done.
 - Networking protocols and Internet standards make it possible for different types of devices to communicate over the Internet.
- Network Standards Organizations
 - Standards are developed, published, and maintained by a variety of organizations.

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 12

Visualizing How Protocols Work

Stacking Them Up

- Successful communication requires interaction between protocols.
- A protocol stack is used to help separate the function of each protocol.
- This enables each layer in the stack to operate independently of others.

Using a Layered Model

 Layered models help us visualize how the various protocols work together to enable network communications

ntation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Visualizing How Protocols Work

Different types of Network Models

Protocol Model		Reference Model		
TCP/IP Model		Open Systems Interconnection (OSI) Model		
TCP/IP Model		7. Application		
Application		6. Presentation 5. Session		
Transport		4. Transport 3. Network		
		2. Data Link		
Network Access		1. Physical		

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 14

- Dividing the Tasks
 - The OSI model divides communication into multiple processes.
 - Each process is a small part of the larger task.

Group	#	Layer Name	Common Network Components Associated with this Layer	
Upper Layers	7	Application	Network aware applications, Email, Web Browsers and Servers, File Transfer, Name Resolution	
	6	Presentation		
	5	Session	Transfer, Ivanie Nesolution	
Lower Layers	4	Transport	Video and Voice streaming mechanisms firewall filtering lists	
	3	Network	IP Addressing, Routing	
	2	Data Link	Network Interface cards and Drivers, Network Switching, WAN connectivity	
	1	Physical	Physical Medium (copper twisted pair, fiber optic cable, wireless transmitters), Hubs and Repeaters	

sentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Talking the Language of Networking Working with the OSI Model

Comparing the OSI and TCP/IP Models

Both models are commonly used; therefore, it is wise to become very familiar with them.

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 17

Talking the Language of Networking Protocols for Wired Networks

- Why Ethernet?
 - Ethernet has become the de facto standard
 - This means it is used by almost all wired local area networks

sentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Ethernet is Constantly Evolving

- The Institute of Electrical and Electronic Engineers (IEEE) maintains Ethernet and wireless standards.
- They are responsible for maintaining the standards and for approving new enhancements.

Ethernet Addressing

- Each host connected to an Ethernet network is assigned a unique physical address which identifies it on the network.
- The physical address is known as the Media Access Control (MAC) address and is assigned to a NIC it when it is manufactured.

entation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 19

Preparing Data for Transmission

Encapsulation

- The process of placing one message inside another message format is called encapsulation.
 - De-encapsulation occurs when the process is reversed.
- Before a network message is sent over the network, it is encapsulated in a frame that identifies the destination and source MAC addresses.

Framing the Message

IEEE 802.3 Ethernet Frame

7 bytes	1	6	6	2	46 to 1500	4
Preamble	Start of Frame Delimiter	Destination MAC Address	Source MAC Address	Type / Length	802.2 Header and Data	Frame Check Sequence

esentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

How do Ethernet Networks Work?

The Building Blocks of Ethernet Networks

- Why Networks Need Hierarchical Design
 - A MAC address identities a specific host on a local network, but it cannot be used to reach remote hosts networks.
 - A hierarchical design is required.

- The Benefits of Hierarchical Design
 - Enterprise networks are most often designed in hierarchical manner using an access layer, distribution layer, and core layer.
 - Hierarchical networks require a logical addressing scheme such as Internet Protocol version 4 (IPv4) or Internet Protocol version 6 (IPv6) to reach remote hosts.

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 2

- Physical and Logical Addresses
 - A MAC address is physically assigned to a NIC and never changes.
 - The physical MAC address remains the same regardless of network.
 - An IP address (network address) is logically assigned to a host NIC.
 - The logical IP addresses contain two parts:
 - Network portion: The left-hand portion of an IP address identifies the network portion of the address. It is the same for all hosts connected to the local network.
 - Host address: The right-hand portion of an IP address that uniquely identifies the individual host on the network.

 Both the physical MAC and logical IP addresses are required for a computer to communicate on a hierarchical network.

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Starting with a Good Design

Cisco Confidential 2

Starting with a Good Design

Access Layer Devices

- Provides the first line of networking devices that connect hosts to the wired Ethernet network.
- Typically connected using Layer 2 switches.

Ethernet Hubs

- Legacy access layer device that broadcast frames to all ports.
- Created excessive collision domains.
- Hubs have been superseded by Layer 2 switches.

ntial 2

Building a Better Access Layer

Ethernet Switches

- A switch accepts and decodes the frames to read the physical (MAC) address portion of the message.
- The switch checks a table on the switch, called a MAC address table, that contains a list of all of the active ports and the host MAC addresses that are attached to them.
- The switch creates a circuit that connects those two ports, enabling the switch to support multiple conversations between different pairs of ports.

entation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 27

Building a Better Access Layer

MAC Address Tables

esentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Containing Broadcasts

- What are Broadcasts Anyway?
 - A broadcast message is simultaneously sent by a host to all other hosts.
 - A broadcast MAC address in hexadecimal notation is FFFF.FFFF.FFFF

Broadcast Domains

- A local area network, a network with one or more Ethernet switches, is also referred to as a broadcast domain.
- When a broadcast message is sent, all switches forward the message to every connected host within the same local network.

entation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Containing Broadcasts

- Communicating at the Access Layer
 - To send a message, a host needs the IP address and MAC address of the destination host.
 - The destination IP address is typically known; therefore, how does the sending host determine the destination MAC address?
 - The sending host can use an IPv4 protocol called address resolution protocol (ARP) to discover the MAC address of any host on the same local network.
 - IPv6 uses a similar method known as Neighbor Discovery.

esentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Containing Broadcasts

How ARP Works

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Distributing Messages to Other Devices

- Dividing the Local Network
 - As networks evolve, it is necessary to divide one access layer network into multiple access layer networks.
 - There are many ways to divide networks based on different criteria.

- Now We Need Routing
 - Routers and routing is required to reach remote hosts.
 - Routing is the process of identifying the best path to a destination.

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Selecting a Path

- Every router creates a routing table containing all locally-connected and remote networks and the interfaces that connect to them.
- Routers use their routing tables and forward packets to either a directly connected network containing the actual destination host, or to another router on the path to reach the destination host.

Building the Tables

 Router build their routing tables by first adding their locally connected networks, and then learning about other networks using routing protocols.

esentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

How Routers Use Tables

 The router has added its two directly connected networks to the routing table.

Туре	Network	Outgoing Port		
С	10.1.21.0/24	FastEthernet 0/0		
С	172.16.1.0/24	FastEthernet 0/1		

Sending to Remote Networks

- If H1 sent a packet to H7, the router would examine its routing table and determine that to reach network 172.16.1.0/24, it must forward the packet out of its Fa0/1 interface.
- Because the outgoing network is a directly connected Ethernet network, the router may also have to ARP the IP address.

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Local Area Networks

- Local Area Network (LAN) refers to a local network, or a group of interconnected local networks that are under the same administrative control.
- The term Intranet refers to a private LAN that belongs to an organization, and is accessible only by the organization's members, employees, or others with authorization.

esentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Routing Across Networks Creating a LAN

Assigning Hosts to a LAN

Placing All Hosts in One Local Network Segment

Advantages:

- Appropriate for simpler networks
- · Less complexity and lower network cost
- · Allows devices to be "seen" by other devices
- · Faster data transfer more direct communication
- · Ease of device access

Disadvantages:

 All hosts are in one broadcast domain which causes more traffic on the segment and may slow network performance

192.168.1.0 H1 H6 H7 H3 Switch 1 Switch 2 H9

Placing Hosts in Remote Network Segments

Advantages:

- · More appropriate for larger, more complex networks
- · Splits up broadcast domains and decreases traffic
- · Can improve performance on each segment
- · Makes the machines invisible to those on other local network segments
- · Can provide increased security
- · Can improve network organization

Disadvantages:

Requires the use of routing (distribution layer)

Cisco | Networking Academy® | Mind Wide Open™

entation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 38

esentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 39