557_Project_2BS

Ben Straub, Hillary Koch, Jiawei Huang, Arif Masrur 3/15/2017

Boring Stuff on the dataset

Names of Variables

[1]	"seismic"	"seismoacoustic"	"shift"	"genergy"
[5]	"gpuls"	"gdenergy"	"gdpuls"	"ghazard"
[9]	"nbumps"	"nbumps2"	"nbumps3"	"nbumps4"
[13]	"nbumps5"	"nbumps6"	"nbumps7"	"nbumps89"
[17]	"energy"	"maxenergy"	"class"	

Summary Statistics

seismic seismoa	acoustic shift	genergy	У	gpuls
a:1682 a:1580	N: 921	$\mathtt{Min.}$:	100	Min. : 2.0
b: 902 b: 956	W:1663	1st Qu.:	11660	1st Qu.: 190.0
c: 48		Median :	25485	Median : 379.0
		Mean :	90242	Mean : 538.6
		3rd Qu.:	52832	3rd Qu.: 669.0
		Max. :25	595650	Max. :4518.0
gdenergy	gdpuls	ghazar	d nb	umps
Min. : -96.00	Min. :-96.00			
1st Qu.: -37.00	1st Qu.:-36.00	00 b: 212		
Median : -6.00	Median : -6.00	00 c: 30	Median	:0.0000
Mean : 12.38	Mean : 4.50)9	Mean	:0.8595
3rd Qu.: 38.00	3rd Qu.: 30.29	50	3rd Qu	.:1.0000
Max. :1245.00	Max. :838.00	00	Max.	:9.0000
nbumps2	nbumps3	nbump	s 4	nbumps5
Min. :0.0000	Min. :0.0000	Min. :	0.00000	Min. :0.000000
1st Qu.:0.0000	1st Qu.:0.0000	1st Qu.:	0.00000	1st Qu.:0.000000
Median :0.0000	Median :0.0000	Median :	0.00000	Median :0.000000
Mean :0.3936	Mean :0.3928		0.06772	Mean :0.004644
3rd Qu.:1.0000	3rd Qu.:1.0000	3rd Qu.:	0.00000	3rd Qu.:0.000000
Max. :8.0000	Max. :7.0000	Max. :	3.00000	Max. :1.000000
nbumps6 n	nbumps7 nbump	ps89 ene	ergy	maxenergy
Min. :0 Min.	:0 Min.	:0 Min.	: 0	$\mathtt{Min.}$: 0
1st Qu.:0 1st	Qu.:0 1st Qu.:	:0 1st Qu	.: 0	1st Qu.: 0
Median :0 Medi	lan :0 Median	:0 Median	: 0	Median: 0
Mean :0 Mean	n :0 Mean	:0 Mean	: 4975	Mean : 4279
3rd Qu.:0 3rd	Qu.:0 3rd Qu.:	:0 3rd Qu	.: 2600	3rd Qu.: 2000
Max. :0 Max.	:0 Max.	:0 Max.	:402000	Max. :400000
class				
Min. :0.00000				
1st Qu.:0.00000				
Median :0.00000				
Mean :0.06579				

3rd Qu.:0.00000 Max. :1.00000

Dimensions of Data Matrix

[1] 2584 19

Check for Normality of Data

Seismic Distribution

a b

Seismoacoustic Distribution

Ghazard Distribution

Number of Obs

density.default(x = seismic\$genergy)

N = 2584 Bandwidth = 5745

```
plot(density(seismic$gdenergy));plot(density(seismic$gdpuls))
plot(density(seismic$maxenergy));plot(density(seismic$nbumps))
```

density.default(x = seismic\$gpuls)

0.0012 Density 0.000.0 0 1000 3000

density.default(x = seismic\$gdenergy

N = 2584 Bandwidth = 10.47

density.default(x = seismic\$gdpuls)

N = 2584 Bandwidth = 66.84

density.default(x = seismic\$maxenergy

N = 2584 Bandwidth = 279.1

plot(density(seismic\$nbumps2));plot(density(seismic\$nbumps3)) plot(density(seismic\$nbumps4));plot(density(seismic\$nbumps5))

density.default(x = seismic\$nbumps)

density.default(x = seismic\$nbumps2

density.default(x = seismic\$nbumps3

density.default(x = seismic\$nbumps4

N = 2584 Bandwidth = 0.1395

N = 2584 Bandwidth = 0.05218

plot(density(seismic\$nbumps6));plot(density(seismic\$nbumps7)) plot(density(seismic\$nbumps89));plot(density(seismic\$energy))

density.default(x = seismic\$nbumps5

density.default(x = seismic\$nbumps6

density.default(x = seismic\$nbumps7

density.default(x = seismic\$nbumps8\$

N = 2584 Bandwidth = 0.187

```
## Plot using a qqplot
qqnorm(seismic$genergy);qqline(seismic$genergy, col = 2)
qqnorm(seismic$gdpuls);qqline(seismic$gdpuls, col = 2)
qqnorm(seismic$gdenergy);qqline(seismic$gdenergy, col = 2)
```

density.default(x = seismic\$energy)

Oe+00 1e+05 2e+05 3e+05 4e+05

N = 2584 Bandwidth = 362.8

Normal Q-Q Plot

Theoretical Quantiles

Normal Q-Q Plot

Theoretical Quantiles

Normal Q-Q Plot

Theoretical Quantiles

```
qqnorm(seismic$maxenergy);qqline(seismic$maxenergy, col = 2)
qqnorm(seismic$nbumps);qqline(seismic$nbumps, col = 2)
qqnorm(seismic$nbumps2);qqline(seismic$nbumps2, col = 2)
qqnorm(seismic$nbumps3);qqline(seismic$nbumps3, col = 2)
```



```
qqnorm(seismic$nbumps4);qqline(seismic$nbumps4, col = 2)
qqnorm(seismic$nbumps5);qqline(seismic$nbumps5, col = 2)
qqnorm(seismic$nbumps6);qqline(seismic$nbumps6, col = 2)
qqnorm(seismic$nbumps7);qqline(seismic$nbumps7, col = 2)
```


Correlation of the Variables

\$r				
	row	column	cor	p
1	genergy	gpuls	0.7500	0.0e+00
2	genergy	nbumps4	0.1500	1.4e-14
3	gpuls	nbumps4	0.2600	0.0e+00
4	genergy	nbumps3	0.1900	0.0e+00
5	gpuls	nbumps3	0.2300	0.0e+00
6	nbumps4	nbumps3	0.1800	0.0e+00
7	genergy	nbumps	0.2200	0.0e+00
8	gpuls	nbumps	0.3000	0.0e+00
9	nbumps4	nbumps	0.4000	0.0e+00
10	nbumps3	nbumps	0.8000	0.0e+00
11	genergy	nbumps2	0.1400	2.2e-13
12	gpuls	nbumps2	0.2100	0.0e+00
13	nbumps4	nbumps2	0.1600	0.0e+00
14	nbumps3	nbumps2	0.3500	0.0e+00
15	nbumps	nbumps2	0.8000	0.0e+00
16	genergy	gdenergy	0.0490	1.4e-02
17	gpuls	gdenergy	0.2900	0.0e+00
18	nbumps4	gdenergy	0.0370	6.1e-02
19	nbumps3	gdenergy	-0.0120	5.4e-01
20	nbumps	gdenergy	0.0300	1.3e-01
21	nbumps2	gdenergy	0.0410	3.6e-02
22	genergy	gdpuls	0.0720	2.7e-04

```
gdpuls 0.3800 0.0e+00
23
     gpuls
   nbumps4
24
              gdpuls 0.0660 7.6e-04
25
   nbumps3
              gdpuls 0.0150 4.5e-01
    nbumps
              gdpuls 0.0580 3.2e-03
26
   nbumps2
              gdpuls 0.0510 9.4e-03
28 gdenergy
              gdpuls 0.8100 0.0e+00
   genergy
             nbumps5 -0.0099 6.2e-01
             nbumps5 0.0490 1.2e-02
30
     gpuls
31
   nbumps4
             nbumps5 -0.0170 4.0e-01
             nbumps5 0.0460 1.8e-02
32
   nbumps3
33
    nbumps
             nbumps5 0.0700 4.0e-04
             nbumps5 -0.0053 7.9e-01
34
   nbumps2
             nbumps5
                     0.1200 3.3e-10
35 gdenergy
36
             nbumps5
                     0.1400 5.9e-13
    gdpuls
              energy 0.0810 3.9e-05
37
   genergy
38
     gpuls
              energy 0.1900 0.0e+00
39
   nbumps4
              energy 0.4900 0.0e+00
   nbumps3
40
              energy 0.2400 0.0e+00
41
    nbumps
              energy 0.3500 0.0e+00
              energy 0.1200 2.0e-10
42
   nbumps2
43 gdenergy
              energy 0.1100 6.7e-08
    gdpuls
              energy 0.1400 2.5e-13
              energy 0.7700 0.0e+00
45
   nbumps5
46
   genergy maxenergy 0.0640 1.1e-03
47
     gpuls maxenergy 0.1600 0.0e+00
  nbumps4 maxenergy 0.4200 0.0e+00
49
   nbumps3 maxenergy 0.1800 0.0e+00
50
    nbumps maxenergy
                      0.2700 0.0e+00
   nbumps2 maxenergy 0.0850 1.5e-05
51
52 gdenergy maxenergy 0.1100 3.2e-08
    gdpuls maxenergy 0.1400 2.2e-13
53
54
   nbumps5 maxenergy
                      0.8100 0.0e+00
55
     energy maxenergy 0.9900 0.0e+00
```

\$p NULL

\$sym NULL

\$r				
	row	column	cor	p
1	genergy	gpuls	0.7500	0.0e+00
2	genergy	nbumps4	0.1500	1.4e-14
3	gpuls	nbumps4	0.2600	0.0e+00
4	genergy	nbumps3	0.1900	0.0e+00
5	gpuls	nbumps3	0.2300	0.0e+00
6	nbumps4	nbumps3	0.1800	0.0e+00
7	genergy	nbumps	0.2200	0.0e+00
8	gpuls	nbumps	0.3000	0.0e+00
9	nbumps4	nbumps	0.4000	0.0e+00
10	nbumps3	nbumps	0.8000	0.0e+00
11	genergy	nbumps2	0.1400	2.2e-13
12	gpuls	nbumps2	0.2100	0.0e+00
13	nbumps4	nbumps2	0.1600	0.0e+00
14	nbumps3	nbumps2	0.3500	0.0e+00
15	nbumps	nbumps2	0.8000	0.0e+00
16	genergy	gdenergy	0.0490	1.4e-02
17	gpuls	gdenergy	0.2900	0.0e+00
18	nbumps4	gdenergy	0.0370	6.1e-02
19	nbumps3	gdenergy	-0.0120	5.4e-01
20	nbumps	gdenergy	0.0300	1.3e-01
21	nbumps2	gdenergy	0.0410	3.6e-02
22	genergy	gdpuls	0.0720	2.7e-04
23	gpuls	gdpuls	0.3800	0.0e+00
24	nbumps4	gdpuls	0.0660	7.6e-04
25	nbumps3	gdpuls	0.0150	4.5e-01
26	nbumps	gdpuls	0.0580	3.2e-03

```
27 nbumps2
              gdpuls 0.0510 9.4e-03
              gdpuls 0.8100 0.0e+00
28 gdenergy
   genergy
             nbumps5 -0.0099 6.2e-01
             nbumps5 0.0490 1.2e-02
30
     gpuls
31 nbumps4
             nbumps5 -0.0170 4.0e-01
32 nbumps3
             nbumps5 0.0460 1.8e-02
    nbumps
             nbumps5 0.0700 4.0e-04
34 nbumps2
             nbumps5 -0.0053 7.9e-01
35 gdenergy
             nbumps5 0.1200 3.3e-10
36
    gdpuls
             nbumps5 0.1400 5.9e-13
37
   genergy
              energy 0.0810 3.9e-05
              energy 0.1900 0.0e+00
38
     gpuls
39
  nbumps4
              energy 0.4900 0.0e+00
   nbumps3
              energy 0.2400 0.0e+00
40
              energy 0.3500 0.0e+00
    nbumps
41
   nbumps2
              energy 0.1200 2.0e-10
43 gdenergy
              energy 0.1100 6.7e-08
    gdpuls
              energy 0.1400 2.5e-13
45 nbumps5
              energy 0.7700 0.0e+00
   genergy maxenergy 0.0640 1.1e-03
47
     gpuls maxenergy 0.1600 0.0e+00
48 nbumps4 maxenergy 0.4200 0.0e+00
49 nbumps3 maxenergy 0.1800 0.0e+00
    nbumps maxenergy 0.2700 0.0e+00
50
  nbumps2 maxenergy 0.0850 1.5e-05
51
52 gdenergy maxenergy 0.1100 3.2e-08
53
    gdpuls maxenergy 0.1400 2.2e-13
54 nbumps5 maxenergy 0.8100 0.0e+00
    energy maxenergy 0.9900 0.0e+00
55
$p
NULL
$sym
NULL
```

Logistic Regression on the Training and Test Sets

```
Call:
glm(formula = y.train ~ ., family = binomial, data = seismic.train)
Deviance Residuals:
   Min
             1Q
                  Median
                               3Q
                                       Max
-3.6758 -0.8347 -0.5605
                           0.9798
                                    3.0316
Coefficients: (3 not defined because of singularities)
             Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.982e+00 1.147e-01 -17.278 < 2e-16 ***
shiftW
            7.341e-01 1.369e-01
                                  5.363 8.19e-08 ***
           -4.212e-06 5.599e-07 -7.522 5.39e-14 ***
genergy
           1.864e-03 2.329e-04
                                   8.002 1.22e-15 ***
gpuls
           2.632e-03 1.141e-03
                                   2.307 0.02106 *
gdenergy
```

```
gdpuls
            -4.068e-03
                        1.578e-03 -2.578
                                            0.00995 **
                                     4.093 4.25e-05 ***
ghazardb
             7.853e-01
                        1.918e-01
ghazardc
            -1.245e+00
                        6.014e-01
                                    -2.070
                                            0.03844 *
nbumps
            -1.119e+01
                        3.247e+02
                                    -0.034
                                            0.97250
nbumps2
             1.105e+01
                        3.247e+02
                                     0.034
                                            0.97287
nbumps3
             1.112e+01
                        3.247e+02
                                     0.034
                                            0.97269
nbumps4
             1.279e+01
                         3.247e+02
                                     0.039
                                            0.96857
nbumps5
             8.235e+00
                         3.248e+02
                                     0.025
                                            0.97977
nbumps6
                    NA
                                NA
                                        NA
                                                  NA
nbumps7
                    NA
                                NA
                                        NA
                                                  NA
nbumps89
                    NA
                                NA
                                        NA
                                                  NA
             1.396e-05
                         5.053e-05
                                     0.276
energy
                                            0.78233
            -9.175e-07
                         5.006e-05
                                    -0.018
                                            0.98538
maxenergy
                                     2.062
                                            0.03918 *
class
             4.398e-01
                         2.133e-01
               0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 2480.8
                           on 1937
                                     degrees of freedom
Residual deviance: 2080.5
                            on 1922
                                     degrees of freedom
AIC: 2112.5
```

Number of Fisher Scoring iterations: 11

The predictors that are significant in our logistic model are genergy, gpuls and ghazardb and a couple more. The predictors nbumps6, nbumps7 and nbumps89 are not defined due to singularities, which may indicated collinearity.

```
y.train
glm.pred a b
a 1161 416
b 121 240
```

[1] 0.7229102

The diagonal elements of the confusion matrix indicate correct predictions, while the off-diagonals represent incorrect predictions. Hence our model on the training data set correctly predicted that the seismic activity would be of no harzard on 1176 observations and that it would be a low hazard on 230 observations, for a total of 1176 + 230 = 1406 correct predictions. The mean() function can be used to compute the fraction of seismic activity for which the prediction was correct. In this case, logistic regression correctly predicted the movement of the market 73 percent of the time.

```
## y.test
## glm.pred a b
## a 345 130
## b 55 116
```

[1] 0.7136223

The diagonal elements of the confusion matrix indicate correct predictions, while the off-diagonals represent incorrect predictions. Hence our model on the testing data set correctly predicted that the seismic activity

would be of no harzard on 352 observations and that it would be a low hazard on 110 days, for a total of 352 + 110 = 462 correct predictions. The mean() function can be used to compute the fraction of seismic activity for which the prediction was correct. In this case, logistic regression correctly predicted the movement of the market 71.5 percent of the time.

Recall that the logistic regression model had only 7ish predictors that were significant from an available 17. Perhaps by removing the variables that appear not to be helpful in predicting seismic hazard, we can obtain a more effective model. After all, using predictors that have no relationship with the response tends to cause a deterioration in the test error rate (since such predictors cause an increase in variance without a corresponding decrease in bias), and so removing such predictors may in turn yield an improvement [straight from the book]