

Outline

- Measurment Functions
- Stationarity
- (Partial) Autocorrelation Function ((P)ACF):
- Random walks
- White Noise
- Time Series Decompositions and Smoothing
- Regression and Correlation
- Cross Correlation Analysis
- Multivariate Time Series Analysis
- PCA Analysis

Measurement Functions

Mean function

The mean function is defined as

$$\mu_t = \mu_{Xt} = E[X_t] = \int_{-\infty}^{\infty} x f_t(x) dx,$$

provided it exists, where E denotes the usual expected value operator.

- Clearly for white noise series, $\mu_{w_t} = E[w_t] = 0$ for all t.
- For random walk with drift $(\delta \neq 0)$,

$$\mu_{X_t} = E[X_t] = \delta t + \sum_{i=1}^t E[w_i] = \delta t$$

Autocovariance for Time Series

• Lack of independence between adjacent values in time series X_s and X_t can be numerically assessed.

Autocovariance Function

- Assuming the variance of X_t is finite, the autocovariance function is defined as the second moment product

$$\gamma(s,t) = \gamma_X(s,t) = cov(X_s, X_t) = E[(X_s - \mu_s)(X_t - \mu_t)],$$

for all s and t.

- Note that $\gamma(s,t) = \gamma(t,s)$ for all time points s and t.
- The autocovariance measures the linear dependence between two points on the same series observed at different times.
 - Very smooth series exhibit autocovariance functions that stay large even when the t and s are far apart, whereas choppy series tend to have autocovariance functions that are nearly zero for large separations.

Autocorrelation for Time Series

Autocorrelation Function (ACF)

The autocorrelation function is defined as

$$\rho(s,t) = \frac{\gamma(s,t)}{\sqrt{\gamma(s,s)\gamma(t,t)}}$$

According to Cauchy-Schwarz inequality

$$|\gamma(s,t)|^2 \leq \gamma(s,s)\gamma(t,t),$$

it's easy to show that $-1 \le \rho(s, t) \le 1$.

- ACF measures the linear predictability of X_t using only X_s .
 - If we can predict X_t perfectly from X_s through a linear relationship, then ACF will be either +1 or -1.

Stationarity of Stochastic Process

- Forecasting is difficult as time series is non-deterministic in nature, i.e. we cannot predict with certainty what will occur in the future.
- But the problem could be a little bit easier if the time series is stationary: you simply predict its statistical properties will be the same in the future as they have been in the past!
 - A stationary time series is one whose statistical properties such as mean, variance, autocorrelation, etc. are all constant over time.
- Most statistical forecasting methods are based on the assumption that the time series can be rendered approximately stationary after mathematical transformations.

Which of these are stationary?

Strict Stationarity

 There are two types of stationarity, i.e. strictly stationary and weakly stationary.

Strict Stationarity

- The time series $\{X_t, t \in \mathbb{Z}\}$ is said to be strictly stationary if the joint distribution of $(X_{t_1}, X_{t_2}, \dots, X_{t_k})$ is the same as that of $(X_{t_1+h}, X_{t_2+h}, \dots, X_{t_k+h})$.
- In other words, strict stationarity means that the joint distribution only depends on the "difference" h, not the time (t_1, t_2, \ldots, t_k) .
- However in most applications this stationary condition is too strong.

Weak Stationarity

Weak Stationarity

- The time series $\{X_t, t \in \mathbb{Z}\}$ is said to be weakly stationary if

 - $2 E[X_t] = \mu, \quad \forall t \in \mathbb{Z};$
- In other words, a weakly stationary time series $\{X_t\}$ must have three features: finite variation, constant first moment, and that the second moment $\gamma_X(s,t)$ only depends on |t-s| and not depends on s or t.
- Usually the term stationary means weakly stationary, and when people want to emphasize a process is stationary in the strict sense, they will use strictly stationary.

Remarks on Stationarity

- Strict stationarity does not assume finite variance thus strictly stationary does NOT necessarily imply weakly stationary.
 - Processes like i.i.d Cauchy is strictly stationary but not weakly stationary.
- A nonlinear function of a strictly stationary time series is still strictly stationary, but this is not true for weakly stationary.
- Weak stationarity usually does not imply strict stationarity as higher moments of the process may depend on time t.
- If time series {X_t} is Gaussian (i.e. the distribution functions of {X_t} are all multivariate Gaussian), then weakly stationary also implies strictly stationary. This is because a multivariate Gaussian distribution is fully characterized by its first two moments.

Autocorrelation for Stationary Time Series

• Recall that the autocovariance $\gamma_X(s,t)$ of stationary time series depends on s and t only through |s-t|, thus we can rewrite notation s=t+h, where h represents the time shift.

$$\gamma_X(t+h,t) = cov(X_{t+h},X_t) = cov(X_h,X_0) = \gamma(h,0) = \gamma(h)$$

Autocovariance Function of Stationary Time Series

$$\gamma(h) = cov(X_{t+h}, X_t) = E[(X_{t+h} - \mu)(X_t - \mu)]$$

Autocorrelation Function of Stationary Time Series

$$\rho(h) = \frac{\gamma(t+h,t)}{\sqrt{\gamma(t+h,t+h)\gamma(t,t)}} = \frac{\gamma(h)}{\gamma(0)}$$

Partial Autocorrelation

- Another important measure is called partial autocorrelation, which is the correlation between X_s and X_t with the linear effect of "everything in the middle" removed.
- Partial Autocorrelation Function (PACF)
 - For a stationary process X_t , the PACF (denoted as ϕ_{hh}), for h = 1, 2, ... is defined as

$$\phi_{11} = \text{corr}(X_{t+1}, X_t) = \rho_1$$
 $\phi_{hh} = \text{corr}(X_{t+h} - \hat{X}_{t+h}, X_t - \hat{X}_t), \quad h \ge 2$

where \hat{X}_{t+h} and \hat{X}_t is defined as:

$$\hat{X}_{t+h} = \beta_1 X_{t+h-1} + \beta_2 X_{t+h-2} + \dots + \beta_{h-1} X_{t+1}$$
$$\hat{X}_t = \beta_1 X_{t+1} + \beta_2 X_{t+2} + \dots + \beta_{h-1} X_{t+h-1}$$

– If X_t is Gaussian, then ϕ_{hh} is actually conditional correlation

$$\phi_{hh} = \operatorname{corr}(X_t, X_{t+h} | X_{t+1}, X_{t+2}, \dots, X_{t+h-1})$$

White Noise

- What is white noise
- Different aspects of white noise
- Types, features, and advantages of white noise
- why it is important in time series analysis

Types

- Gaussian white noise
- Uniform white noise

Features

- Mean of Zero
- Constant Variance
- Independence
- Randomness

Advantages

- Simplicity
- Modeling Power
- Stationarity

White Noise Test (Box-Pierce and Ljung-Box Tests)

• Box-Pierce Test (1970):

$$Q_{BP}(m) = n \sum_{k=1}^{m} r_k^2$$

$$H_0: \rho_1 = \cdots = \rho_m = 0$$

 $H_0: \rho_1 = \cdots = \rho_m = 0$ $H_1: \rho_i \neq 0 \text{ for some } i \in \{1: m\}$

where $1 \le m < T$ is any given integer and T is the sample size.

Under the null hypothesis that $\{X_t\}$ is a white noise $(H_0 \text{ is true})$, $Q_{BP}(m)$ asymptotically follows a chi-squared distribution $\chi^2(m)$ with m degrees of freedom.

• Ljung-Box Test (1978):
$$Q_{LB}(m) = n(n+2) \sum_{k=1}^{m} \frac{r_k^2}{n-k}$$

which still asymptotically and better follows the chi-squared distribution $\chi^2(m)$

• P-value Interpretation: Note that under the null hypothesis, for every integer $1 \le m < T$, the p-value for $Q_{LB}(m)$ should be greater than 0.05 (the level of significance).

Statistical Definition of Random Walk

Definition A time series $\{X_t\}$ is called a random walk if it satisfies the following equation

$$X_t = X_{t-1} + W_t$$

where $\{W_t\}$ is a white noise and, for all t, W_t and X_{t-1} are uncorrelated.

we can easily obtain

$$X_t = X_{t-1} + W_t = X_{t-2} + W_{t-1} + W_t = \dots = X_0 + W_1 + W_2 + \dots + W_{t-1} + W_t$$

Therefore, for all t, $E(X_t) = E(X_0)$ is a constant. That is, the random walk is mean stationary.

On the other hand,

$$Var(X_t) = Var(X_{t-1}) + \sigma_w^2 > Var(X_{t-1})$$

Thus it can be seen that the random walk is not variance stationary.

Additive vs. Multiplicative Time Series Models

Time Series Decomposition

Correlation and Regression

G2.com

Correlation

Measures the **relationship** between two numeric variables.

Regression

Measures how two numeric variables **affect** each other.

What is Linear Correlation Coefficient?

- A measure of the strength and the direction of a linear relationship between two variables.
- r represents the <u>sample</u> correlation coefficient.
- ρ (rho) represents the <u>population</u> correlation coefficient

$$r = \frac{n\sum xy - (\sum x)(\sum y)}{\sqrt{n\sum x^2 - (\sum x)^2}\sqrt{n\sum y^2 - (\sum y)^2}}$$

n is the number of data pairs

• The range of the correlation coefficient is -1 to 1.

If r = -1 there is a perfect negative correlation

If *r* is close to 0 there is no linear correlation

If r = 1 there is a perfect positive correlation

Visualizing Linear Correlation with Scatter Plots

Introduction to Regression Line

- After verifying that the linear correlation between two variables is significant, next we determine the equation of the line that best models the data (regression line).
- Can be used to predict the value of y for a given value of x.

Formulas for b_0 and b_1

$$b_{1} = \frac{n \sum x_{i} y_{i} - \sum x_{i} \sum y_{i}}{n \sum x_{i}^{2} - \left(\sum x_{i}\right)^{2}}$$

$$b_{0} = \overline{y} - b_{1} \overline{x}$$

Simple Linear Regression Model

What is Cross-Correlation?

• **Definition:** Cross-correlation measures the similarity between two time series as a function of the lag of one relative to the other.

- Purpose: Identifies how one time series is correlated with another over different time lags.
- Applications in Environmental Science:
- ➤ Temperature and CO₂ levels: Analyze how temperature changes are related to CO₂ concentration over time.
- Rainfall and River Flow: Measure how rainfall patterns influence river flow at different time lags.

Multivariate Time Series

Definition: A multivariate time series consists of multiple time-dependent variables observed simultaneously over time.

Purpose: Unlike univariate time series, which looks at a single variable, multivariate time series allows us to analyze the interactions between multiple variables over time.

Examples:

- Environmental Science: Studying how temperature, humidity, and wind speed change over time to predict weather conditions.
- **Economics**: Tracking GDP, inflation, and unemployment rates over time to understand economic trends.

Applications and Benefits of Multivariate Time Series

Key Benefits:

- 1) Capture Interdependencies: Analyze relationships between multiple variables (e.g., temperature affecting humidity).
- 2) Improved Forecasting: More accurate predictions due to the inclusion of multiple factors.
- **Advanced Models**: Uses models like Vector Autoregression (VAR), which account for interactions between variables.

Example: Predicting energy consumption using temperature, time of day, and population data together.

Uses of Multivariate Analysis

- Large data sets
 - simplify
 - summarize
 - find patterns
- Analyze groupings of units
- Find groupings of units
- Examine relationships between variables

What is Principal Component Analysis (PCA)?

- 1) A statistical technique used for dimensionality reduction.
- 2) Transforms original features into a new set of uncorrelated variables called principal components.
- 3) Aims to capture the maximum variance in the data with the fewest number of components.

How PCA Works

- 1) Standardization: Scale the data to have a mean of zero and a standard deviation of one.
- 2) Covariance Matrix: Calculate the covariance matrix to understand how features vary together.
- 3) Eigenvalues and Eigenvectors: Compute the eigenvalues and eigenvectors of the covariance matrix.
- 4) Principal Components: Select the top k eigenvectors (principal components) based on the highest eigenvalues.

Principal Component Analysis (PCA) Transformation

Benefits of PCA

- 1) Dimensionality Reduction: Reduces the number of features, simplifying models and improving performance.
- 2) Noise Reduction: Helps to filter out noise from the data.
- 3) Data Visualization: Enables visualization of high-dimensional data in 2D or 3D plots.
- 4) Improved Model Performance: Can lead to faster training times and better generalization.

