

American International University- Bangladesh (AIUB) Faculty of Engineering

Course Name :	Electronic Devices	Course Code:	EEE 2103
Semester:	Spring 2020-21	Section:	J
Faculty:	Dr. Md. Rifat Hazari		

Assignment No: 1
Assignment Name: CO2 (POI: P.a.3.C3)

Student Name: NAFINUR LEO Student ID: 20-42195-1

Marking Rubrics (to be filled by Faculty):

Marking Rubrics (to be fined by Faculty):									
Problems	Excellent	Proficient	Good	Acceptable	Unacceptable	No Response	Secured		
	[5]	[4]	[3]	[2]	[1]	[0]	Marks		
Problem 01	Detailed unique response explaining the concept properly and answer is correct with all works clearly shown.	Response with no apparent errors and the answer is correct, but explanation is not adequate/unique.	Response shows understanding of the problem, but the final answer may not be correct.	Partial problem is solved; response indicates part of the problem was not understood clearly.	Unable to clarify the understanding of the problem and method of the problem solving was not correct.	No Response			
Problem 02	Detailed unique response explaining the concept properly and answer is correct with all works clearly shown.	Response with no apparent errors and the answer is correct, but explanation is not adequate/unique.	Response shows understanding of the problem, but the final answer may not be correct	Partial problem is solved; response indicates part of the problem was not understood clearly.	Unable to clarify the understanding of the problem and method of the problem solving was not correct	No Response			
Comments						Total marks (10)			

<u>INSTRUCTIONS:</u> When a question mentions "ID" as a value, you have to use the <u>last two digits of your ID</u> before the hyphen. For example, for 12-34567-8 it would be <u>67</u>. If the last 2 digits of your ID form a number less than 10, then add 10 with the number before using it to solve the problems. If the last 2 digits of your ID form a number greater than or equal to 10, you can use it as it is.

Note: Copied/identical submissions will be graded as 0 for all parties concerned.

Problem 1

Consider that the input shown in the below figure (here $V_x = \underline{ID} V$).

[5]

[5]

Fig. 1

Apply the knowledge gained from diode theories to **construct a circuit** which satisfies the following conditions and **sketch the output voltage** of the constructed circuit. Please explain how your circuit works and state your reasoning for your choice of circuit.

Design Criteria:

- 1) Only regular diodes (choose between Ge, Si, GaAs) and resistors can be used to construct the network.
- 2) During positive half cycle, output $V_0 = (V_i 1.2 \text{ V})$
- 3) During negative half cycle, output $V_0 = 0 \text{ V}$
- 4) Diode Peak inverse voltage = V_x

Problem 2

Consider that the input shown in the below figure (here $V_x = \underline{ID} V$).

Fig. 2

Apply the knowledge gained from diode theories, **determine** V_o curve and explain the operating principle of the circuit shown in Fig. 2.

Problem 1:
Hene, $\forall x = 95 \lor$ $\forall x = 45 \lor$

2. Here for positive half cycle, output V = V; -1.2 V

In this sigure, we see that diode is 'on'.
For this reason, this diode is replaced

by a short circuit equivalent voltage

So, the output voltage.

$$V = V; -1.2V$$

$$= (95-1.2)V$$

$$= 93.8V$$

3. The second state of the R

In thi sigure, for negative half cycle, we see that the diode is open circuit Besides. Current of diode ID=OA.

So, the out put voltage.

$$V = I_{R} \times R$$

$$= \frac{1}{2} I_{0} \times R$$

$$= 0 \times R$$

$$= 0 \vee$$

4) Here

Diode peak inverse voltage = 1x

$$= \forall x + ov \quad \forall x = x$$

Problem 2:-

During positive half eycle,

we see that the diade is

forwarded bias and here

Frenmanium is used as a

diade. So, we get 0.3 V for

germanium and voltage source has 3v

So, $V_0 = V_0 + V$ = 0.3 + 3= 3.3V During negative
half cycle, we see that +
the diode is an open

circuit and 1=0

So, the output voltage.

$$-V_{1}-V_{0}=0$$

 $= -V_{1}$
 $= -95V$