Profile-based System for Nutritional Information Management

Rui Costa, <u>Catarina Silva</u>, Luis Marcelino Polytechnic Institute of Leiria, Portugal catarina@ipleiria.pt

October 2013

Introduction

- ▶ Lifestyle in modern societies
 - Stressful work life
 - Lack of time to exercise
 - Inadequate diet

Introduction

- Profileration of medical conditions requiring strict dietary restrictions
 - Diabetes, hypertension, allergies...

WHO alerts for the increase of high blood pressure, diabetes and obesity.

Newspaper headline

Objectives

- Make use of information technologies to improve the general population lifestyle
- Propose a solution allowing people to obtain informed food choices falling in their profile
 - Dietary restrictions
 - Dietary options

State of the Art: Nutritional control

 Works that address the nutritional control topic by recording the food consumed by people

State of the Art: Shopping assistants

Intelligent/automated shopping assistants

State of the Art

Nutricional

- Records of meals food diary, definition of a goal to achieve
- ▶ The main concern is the amount of calories ingested

Shopping assistants

- Mainly focused in comercial purposes: Price comparison, Locate products inside the store, Shopping lists management
- Just manage user's shopping lists
- The area of nutritional recommendation and food counseling is not properly explored yet

State of the Art

- There is room for the development of a solution combining both areas:
 - Nutritional control
 - Shopping assistants
- "Smart shopping list assistant"
 - Definition of users' individual nutritional profile
 - ▶ Food recommendations based on that profile

Proposed solution

High level overview

Profile-based System for Nutritional Information Management

Proposed solution: Key concepts (1/2)

- Item: product stored in the database and can be contained in one or more categories. i.e. "Cheese brand X 50 grams" or "Soya Milk brand Y IL"
- Category: class where an item fits; can be organized in an hierarchical structure
- Property: one of the characteristics which identify an item. Each item has a set of properties, i.e. the percentage of DRI (Dietary Reference Intake) of proteins or salt, the product price, etc.

Proposed solution: Key concepts (2/2)

- Unit: a property has an associated unit. i.e. given the previous example, the unit "Euros" for the product price, and the unit "Percentage" to represent the DRI of proteins and salt
- Profile: set of properties and their respective values that characterize the profile. The values of each property can be exact values or ranges of values, and represent a rule mapped in the profile.

Proposed solution

Mobile client functionalities

- Nutritional profile definition/import existing templates
- Manage shopping lists
- Navigation through existing products database
- Food filtering based on the rules defined in the profile

Server

- Communication with mobile client
- Data management through a web backoffice

Experimental Setup: Tests

- Focused on determine if the concepts introduced by the application were clear for the users
- 8 people all smartphone users aged between 21 and
 29 years old were invited to test the application
- An environment was setup simulating a real use of the application (containing real products, properties, units and profiles)

Experimental Setup: Tasks

- Import and a configure a profile called "Light products" from the server;
- 2. Create a new shopping list based on a previous shopping list kept in the historic;
- 3. Add a specific product the shopping list which fits in the "Light Products" profile;
- 4. Add a product through barcode scanning;
- 5. Add a specific product not fitting in the "Light Products" profile;
- Assuming that not all products were available in the supermarket, register that information in the shopping list and archive it in the historic.

Results

Distribution of times (in seconds) to complete each task

Results

- In general, all testers felt comfortable and curious to explore the application interface
- In some cases, users insisted in repeating some of the tasks more than once
- Users had no problem to complete the shopping related tasks using different strategies (filtered list, barcode scanning and unfiltered product list)
- Some confusion while performing administrative tasks such as importing profiles form the server or archiving a shopping list

Conclusions

- The area of nutritional advice and counseling hasn't been properly explored
 - Room for a solution combining both areas of shopping assistants and nutritional control
- The preliminary tests suggest that applying profiles through simple filters could be improved
- Users were enthusiastic to test regular shopping features and curious about the profiling mechanism

Future work

- Integration of the existing product database with a real retail chain supplier
 - Large database of products and characteristics
 - Up to date information
- Explore more transparent profiling mechanisms
- Provide statistics adapted to the specific profile in use

Profile-based System for Nutritional Information Management

Rui Costa, <u>Catarina Silva</u>, Luis Marcelino Polytechnic Institute of Leiria, Portugal

October 2013