Guía de estudio: Tema2: Transformaciones lineals

Prof. Maria-Angeles Zurro

19 de febrero de 2024

Índice

1.	Transformaciones lineales. Ecuación matricial	1
2.	Autovalores y autovectores	2
	Diagonalización de matrices 3.1. Matrices simétricas y su diagonalización	3

1. Transformaciones lineales. Ecuación matricial

En esta sección consideraremos dos espacio vectoriales reales V_1 y V_2 y una aplicación entre ellos, $f: V_1 \to V_2$. Diremos que f es una aplicación lineal si verifiva las siguientes propiedades:

- 1. $f(\vec{u} + \vec{v}) = (\vec{u}) + f(\vec{v})$.
- $2. \ f(\lambda \vec{u}) = \lambda f \vec{u}).$

para \vec{u}, \vec{v} en V_1 y toda constante real λ .

Fijado un espacio vectorial V de dimensión d, podemos considerar sólamente las aplicaciones lineales de V en V. Fijaremos para estas aplicaciones lineales $f:V\to V$ una base $B=\{\vec{v_1},\ldots,\vec{v_d}\}$ en V para estudiarlas. Entonces, si conocemos las imágenes de los vectores de la base, es decir

$$f(\vec{v_i}) = a_{i1}\vec{v_1} + \dots + a_{id}\vec{v_d} , i = 1, \dots, d,$$
 (1)

La ecuación matricial de f está dada por

$$\begin{pmatrix} y_1 \\ \vdots \\ y_d \end{pmatrix} = \begin{pmatrix} a_{11} & \dots & a_{1d} \\ \vdots & \dots & \vdots \\ a_{d1} & \dots & a_{dd} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix}, \quad \text{o también } \vec{y} = A\vec{x} . \tag{2}$$

El n'ucleo de f, denotado por Nuc(f), es el espacio de soluciones del sistema homogéneo $A\vec{x} = \vec{0}$, la $imagen\ de\ f$, denotada por Im(f), es el espacio vectorial generado por las columnas de la matriz A. Ilustraremos este concepto con ejemplos.

Ejemplo 1. 1. La aplicación $f: \mathbb{R}^2 \to \mathbb{R}^2$ defida por

$$f(x,y) = (2x + y, x - y) = (x', y'),$$

es una aplicación lineal en \mathbb{R}^2 . Tiene por ecuación matricial:

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

Esta transformación tiene núcleo $Nuc(f) = \{\vec{0}\}\ e$ imagen $Im(f) = \mathbb{R}^2$.

2. El giro de $\pi/4$ en \mathbb{R}^2 viene dado por

$$f(x,y) = \left(\frac{1}{\sqrt{2}}x - \frac{1}{\sqrt{2}}y, \frac{1}{\sqrt{2}}x + \frac{1}{\sqrt{2}}y\right) = (x', y').$$

Tiene por ecuación matricial:

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

Los ejemplos anteriores sugieren que la ecuación matricial de una transformación $f: \mathbb{R}^n \to \mathbb{R}^n$ podrÃa depender de la base B elegida. Esto es cierto, y la fórmula que relaciona la escritura matricial en la base B con otra en otra base B' es la siguiente:

$$M = P^{-1}MP, (3)$$

donde P es la matriz de cambio de la base B a la base B'. Verificaremos esfa fórmula sobre un ejemplo.

Ejemplo 2. Consideremos la base canónica de \mathbb{R}^2 , $B = \{\vec{e_1} = (1,0), \vec{e_2} = (0,1)\}$, y la base $B' = \{\vec{u_1} = \vec{e_1} + \vec{e_2}, \vec{u_2} = \vec{e_1} - \vec{e_2}\}$. Entonces, fijado un vector \vec{w} en R^2 , se tiene:

$$\vec{w} = \lambda_1 \vec{e_1} + \lambda_2 \vec{e_2} = \lambda_1' \vec{u_1} + \lambda_2' \vec{u_2}.$$

En consecuencia, obtenemos la siguiente fórmula de cambio de base de B a B':

$$\begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} \lambda'_1 \\ \lambda'_2 \end{pmatrix}, \quad P := \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.$$

Luego, la tranformación f del ejemple 1, tiene por ecuación en la base B':

$$\begin{pmatrix} \tilde{\lambda}_1' \\ \tilde{\lambda}_2' \end{pmatrix} = P^{-1} \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix} P \begin{pmatrix} \lambda_1' \\ \lambda_2' \end{pmatrix} = \begin{pmatrix} 3/2 & 1/2 \\ 3/2 & -3/2 \end{pmatrix} \begin{pmatrix} \lambda_1' \\ \lambda_2' \end{pmatrix}.$$

En consecuencia en la base B' f tiene la fórmula:

$$f(\lambda_1', \lambda_2') = \left(\frac{3}{2}\lambda_1' + \frac{1}{2}\lambda_2', \frac{3}{2}\lambda_1' - \frac{3}{2}\lambda_2'\right).$$

2. Autovalores y autovectores

to:

Fijemos en este apartado una transformación lineal $f: \mathbb{R}^n \to \mathbb{R}^n$ y trataremos de estudiar aquellas direcciones para las cuales la transformación se comporta como una dilatación en dicha dirección. Fijemos una base inicial B en la que f tiene por matriz M.

Un vector \vec{v} de \mathbb{R}^n de dice autovector o también vector propio de f si para un cierto escalar λ se tiene que $f(\vec{v}) = \lambda \vec{v}$. Al correspondiente escalar se le llama autovalor o valor propio de f. Para calcular los posibles autovalores y autovectores de f utilizaremos el siguiente procedimien-

- 1. Construimos la matriz $M \lambda I_n$.
- 2. Calculamos las raíces reales del polinomio $p_f(\lambda) := \det(M \lambda I_n), \lambda_1, \dots, \lambda_r$, y sus multiplicidales algebraicas m_1, \dots, m_r .
- 3. Para cada i = 1, ..., r, se define el subespacio vectorial

$$E(\lambda_i) := \{ \vec{v} \mid (M - \lambda I_n) \vec{v} \}, \tag{4}$$

llamado el autoespacio asociado al autovalor λ_i , ò también el espacio propio asociado al autovalor λ_i .

4. Para cada i = 1, ..., r, se calcula una base B_i de $E(\lambda_i)$, y se define $d_i := \dim E(\lambda_i)$. Todos los elementos de $\cup_i E(\lambda_i)$ son autovectores de f.

El polinomio $p_f(\lambda)$ se llama polinomio característico de f. Cada λ_i encontrado mediante el proceso anterior es un autovalor de f.

Aplicando el proceso a los ejemplos anteriores, se observa que en el ejemplo 1.1 los autovalores son

$$\lambda_1 = \frac{1}{2} + \frac{1}{2}\sqrt{13} \; , \quad \lambda_2 = \frac{1}{2} - \frac{1}{2}\sqrt{13} \; ,$$

cuyos correspondientes autoespacios son las rectas

$$E(\lambda_1) = (-2, 3 - \sqrt{13})\mathbb{R}$$
, $E(\lambda_2) = (-2, 3 + \sqrt{13})\mathbb{R}$.

Por otro lado, el ejemplo 1.2 no tiene autovalores, y por tanto tampoco autoespacios asociados.

3. Diagonalización de matrices

Una transformación lineal $f: \mathbb{R}^n \to \mathbb{R}^n$ y diremos que es diagonalizable si existe una base B en la la transformación se comporta como una dilatación en cada dirección correspondiente a cada vector de esta base. Es decir los enunciados siguientes son equivalentes:

- 1. f es diagonalizable
- 2. \mathbb{R}^n tiene una base formada por autovectores de f.

El siguiente resultado lo usaremos para garantizar la posibilidad de diagonalizar f. Con las notaciones de la sección 2, enunciamos el criterio.

Teorema 1. Fijada la transformación $f: \mathbb{R}^n \to \mathbb{R}^n$, si aplicado el procedimiento cálculo de autovalores y autovectores de la sección 2, se tiene que $m_i = d_i$, para $i = 1, \ldots, r$, entonces f es diagonalizable. Además la matriz de f en la base $B := \bigcup_i B_i$ es una matriz diagonal.

Observación 2. Observa que, en particular, si f tiene n autovalores distintos, entonces f es diagonalizable.

Es de señalar que el ejemplo 1.1 da una transformación lineal giagonalizable, y que la transformación del ejemplo 1.2 no es diagonalizable.

3.1. Matrices simétricas y su diagonalización

En esta sección comprobaremos sobre ejemplos el siguiente resultado general.

Teorema 3. Toda matriz cuadrada simétrica es diagonalizable.

Caso de matrices 2×2 . Consideremos una aplicación $f: \mathbb{R}^2 \to \mathbb{R}^2$ dada por una matriz simétrica

 $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$

Su polinomio característica es

$$p_f(\lambda) = \det(A - \lambda I_2) = \det\begin{pmatrix} a_{11} - \lambda & a_{12} \\ a_{12} & a_{22} - \lambda \end{pmatrix} = \lambda^2 - (a_{11} + a_{22})\lambda + \det(A).$$

Este polinomio de grado 2 en λ siempre tiene sus raíces reales ya que su discriminante es positivo, como muestra el siguiente cálculo:

$$\Delta := (a_{11} + a_{22})^2 - 4 \cdot 1 \det(A) = a_{11}^2 + a_{22}^2 + 2a_{11}a_{22} - 4(a_{11}a_{22} - a_{12}^2) = (a_{11} - a_{22})^2 + 4a_{12}^2.$$

Ilustraremos el teorema 3 para el caso de matrice 3×3 con el siguiente ejemplo.

Ejemplo 3. La siguiente matriz:

$$A := \left(\begin{array}{rrr} 2 & -2 & 0 \\ -2 & 3 & 0 \\ 0 & 0 & 1 \end{array} \right)$$

tiene por polinomio característico $p_A(\lambda) = \lambda^3 - 6 \lambda^2 + 7 \lambda - 2$ cuyas raíce son

$$1, \ \frac{5}{2} - \frac{1}{2}\sqrt{17}, \ \frac{5}{2} + \frac{1}{2}\sqrt{17}.$$

Luego, por la nota 2, es diagonalizable.