We claim:

1. A compound of formula (I)

$$R^{1}$$
 N
 $(CR^{3}R^{3})_{p}$
 $(R^{5})_{z}$
 $NR^{6}R^{7}$
 $(R^{4})_{y}$
 $(R^{4})_{y}$
 $(R^{5})_{z}$
 $(R^{5})_{z}$

p is 0, 1, or 2;

y is 0, 1, or 2; and z is 0, 1, or 2;

X₁ is CH₂, CH, or N; to form a indolinyl, indolyl, or benzimidazole ring respectively and including applicable double bonds and/or hydrogen atoms;

X₂ is CH or N;

 R^1 and R^2 are independently selected from hydrogen, C_1 - C_8 alkyl, C_2 - C_8 alkenyl, C_2 - C_8 alkynyl, phenyl, C₁-C₁₀ alkylaryl, SO₂R⁸, (CH₂)_nC(O)NR⁸R⁸, SO₂C₁-C₁₀ alkylaryl, SO_2C_1 - C_8 alkylheterocyclic, C_4 - C_{10} alkylcycloalkyl, $(CH_2)_nC(O)OR^8$, and $(CH_2)_nC(O)R^8$; wherein each of the alkyl, alkenyl, and aryl groups are optionally substituted with one to two groups independently selected from C₁-C₈ alkyl, C₂-C₈ alkenyl, phenyl, C₃-C₈ cycloalkyl, C₁-C₈ alkylaryl, and C(O)C₁-C₈ alkyl; and wherein R¹ and R² may optionally combine with each other to form a 4, 5, 6, or 7-membered nitrogen-containing heterocycle which nitrogen -containing heterocycle may further have substituents selected from the group consisting of oxo, amino, C₁-C₈ alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, phenyl, C_1 - C_3 alkylaryl, $C(O)C_1$ - C_8 alkyl, $CO(O)C_1$ - C_8 alkyl, halo, C_1 - C_3 haloalkyl; R³ and R³ are each independently selected from hydrogen, C₁-C₈ alkyl, C₂-C₈ alkenyl, C_2 - C_8 alkynyl, phenyl, aryl, C_1 - C_8 alkylcycloalkyl, and C_1 - C_8 alkylaryl; R⁴ and R⁵ are each independently selected from hydrogen, C₁-C₈ alkyl, C₂-C₈ alkenyl, C₂- C_8 alkynyl, C_1 - C_8 alkoxy, halo, C_1 - C_8 haloalkyl, phenyl, aryl, C_1 - C_8 alkylaryl, (CH₂)_mNSO₂C₁-C₈ alkyl, (CH₂)_mNSO₂phenyl, (CH₂)_mNSO₂aryl, -C(O)C₁-C₈ alkyl, and -C(O)OC₁-C₈ alkyl; wherein each R⁴ and R⁵ is attached to its respective ring only at carbon atoms; wherein m is 1 or 2;

 R^6 and R^7 are each independently selected from hydrogen, C_1 - C_8 alkyl, C_2 - C_8 alkenyl, C_2 - C_8 alkynyl, $C(O)C_1$ - C_8 alkyl, SO_2C_1 - C_8 alkyl, SO_2C_1 - C_8 alkylaryl, SO_2C_1 - C_8 alkylaryl, SO_2C_1 - C_8 alkylaryl, SO_2C_1 - S_8 alkylaryl, and SO_2C_1 - S_8 alkylaryl, SO_2C_1 - S_1 - S_2 alkylaryl, SO_2C_1 - S_1 - S_2 -S

 R^8 is independently selected from hydrogen, C_1 - C_8 alkyl, C_2 - C_8 alkenyl, phenyl, benzyl, and C_5 - C_8 alkylaryl; or a pharmaceutically acceptable salt, solvate, prodrug, enantiomer, racemate, diastereomer, or mixture of diastereomers thereof.

2. A compound of formula II

$$(CR^3R^3)_p$$
 $(R^5)_z$
 $(R^4)_y$
 $(R^4)_y$
 $(R^4)_y$

wherein p is 0, 1, or 2;

y is 0, 1, or 2; and z is 0, 1, or 2;

X₁ is CH₂, CH, or N; to form a indolinyl, indolyl, or benzimidazole ring respectively and including applicable double bonds and/or hydrogen atoms;

X₂ is CH or N;

 R^1 and R^2 are independently selected from hydrogen, C_1 - C_8 alkyl, C_2 - C_8 alkenyl, C_2 - C_8 alkynyl, phenyl, C_1 - C_{10} alkylaryl, SO_2R^8 , $(CH_2)_nC(O)NR^8R^8$, SO_2C_1 - C_{10} alkylaryl,

WO 2005/090303 PCT/US2005/007702

 $SO_2C_1-C_8$ alkylheterocyclic, C_4-C_{10} alkylcycloalkyl, $(CH_2)_nC(O)OR^8$, and $(CH_2)_nC(O)R^8$; wherein each of the alkyl, alkenyl, and aryl groups are optionally substituted with one to two groups independently selected from C_1 - C_8 alkyl, C_2 - C_8 alkenyl, phenyl, C_3 - C_8 cycloalkyl, C_1 - C_8 alkylaryl, and $C(O)C_1$ - C_8 alkyl; and wherein R^1 and R^2 may optionally combine with each other to form a 4, 5, 6, or 7-membered nitrogen-containing heterocycle which nitrogen -containing heterocycle may further have substituents selected from the group consisting of oxo, amino, C₁-C₈ alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, phenyl, C_1 - C_3 alkylaryl, $C(O)C_1$ - C_8 alkyl, $CO(O)C_1$ - C_8 alkyl, halo, C_1 - C_3 haloalkyl; R^3 and $R^{3'}$ are each independently selected from hydrogen, C_1 - C_8 alkyl, C_2 - C_8 alkenyl, C_2 - C_8 alkynyl, phenyl, aryl, C_1 - C_8 alkylcycloalkyl, and C_1 - C_8 alkylaryl; R⁴ and R⁵ are each independently selected from hydrogen, C₁-C₈ alkyl, C₂-C₈ alkenyl, C₂- C_8 alkynyl, C_1 - C_8 alkoxy, halo, C_1 - C_8 haloalkyl, phenyl, aryl, C_1 - C_8 alkylaryl, (CH₂)_mNSO₂C₁-C₈ alkyl, (CH₂)_mNSO₂phenyl, (CH₂)_mNSO₂aryl, -C(O)C₁-C₈ alkyl, and -C(O)OC₁-C₈ alkyl; wherein each R⁴ and R⁵ is attached to its respective ring only at carbon atoms; wherein m is 1 or 2; and n is 1, 2, or 3; R⁶ and R⁷ are each independently selected from hydrogen, C₁-C₈ alkyl, C₂-C₈ alkenyl, C₂- C_8 alkynyl, $C(O)C_1-C_8$ alkyl, $SO_2C_1-C_8$ alkyl, $SO_2C_1-C_8$ alkylaryl, SO_2C_1 - C_8 alkylheterocyclic, C_1 - C_8 alkylaryl, C_3 - C_7 cycloalkyl, C_1 - C_6 alkylcycloalkyl, aryl, $(CH_2)_mC(O)OR^8$, $(CH_2)_mC(O)R^8$, $(CH_2)_mC(O)NR^8R^8$, and $(CH_2)_mNSO_2R^8$; wherein each of the alkyl, alkenyl, and aryl groups are optionally substituted with one to two groups independently selected from C₁-C₈ alkyl, C₂-C₈ alkenyl, phenyl, and C₁-C₈ alkylaryl; and wherein R⁶ and R⁷ may independently combine with each other, and with the nitrogen atom to which they are attached to form a 4, 5, 6, or 7-membered nitrogen containing heterocycle which nitrogen containing heterocycle may optionally have substituents selected from the group consisting of oxo, amino, C₁-C₈ alkyl, C₂-C₈ alkenyl, C_2 - C_8 alkynyl, phenyl, and C_1 - C_8 alkylaryl; \mathbb{R}^8 is independently selected from hydrogen, \mathbb{C}_1 - \mathbb{C}_8 alkyl, \mathbb{C}_2 - \mathbb{C}_8 alkenyl, phenyl, benzyl, and C₅-C₈ alkylaryl; or a pharmaceutically acceptable salt, solvate, prodrug, enantiomer, racemate, diastereomer, or mixture of diastereomers thereof.

3. A compound according to Claim 1 wherein X_1 is CH and X_2 is selected CH.

WO 2005/090303

- 4. A compound according to Claim 1 wherein X_1 is CH and X_2 is selected N.
- 5. A compound according to Claim 1 wherein X_1 is N, and X_2 is CH.
- 6. A compound according to Claim 1 wherein X_1 is N, and X_2 is N.
- 7. A compound according to Claim 1 wherein y is 0 or 1, and R⁴ is independently selected from the group consisting of fluoro, chloro, bromo, methoxy, ethoxy, methyl, ethyl, isopropyl, trifluoromethyl, phenyl, benzyl and ethoxy.
- 8. A compound according to Claim 1 wherein z is 0 or 1, and R⁵ is independently selected from the group consisting of fluoro, chloro, bromo, methoxy, ethoxy, methyl, ethyl, isopropyl, trifluoromethyl, phenyl, and benzyl.
- 9. A compound according to Claim 2 wherein X_1 is CH and X_2 is selected CH.
 - 10. A compound according to Claim 2 wherein X_1 is CH and X_2 is selected N.
 - 11. A compound according to Claim 2 wherein X_1 is N, and X_2 is CH.
 - 12. A compound according to Claim 2 wherein X_1 is N, and X_2 is N.
- 13. A compound according to Claim 2 wherein y is 0 or 1, and R⁴ is independently selected from the group consisting of fluoro, chloro, bromo, methoxy, ethoxy, methyl, ethyl, isopropyl, trifluoromethyl, phenyl, benzyl and ethoxy.
- 14. A compound according to Claim 2 wherein z is 0 or 1, and R⁵ is independently selected from the group consisting of fluoro, chloro, bromo, methoxy, ethoxy, methyl, ethyl, isopropyl, trifluoromethyl, phenyl, and benzyl.

15. A compound according to Claim 1 or 2 wherein R¹ and R² are each independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, isopropyl, 2-methylpentyl, t-butyl, cyclopropyl, phenyl,

$$(CH_{2})_{n}$$

$$(CH_$$

16. The compound according to Claim 1 or 2 wherein R⁶ and R⁷ are each independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, isopropyl, and phenyl.

17. A compound selected from the group consisting of:

- 4-{5-[(3-Methyl-butylamino)-methyl]-indol-1-ylmethyl}-benzamide,
- 4-{5-[(2-Thiophen-2-yl-ethylamino)-methyl]-indol-1-ylmethyl}-benzamide,
- 4-{5-[(3,3-Dimethyl-butylamino)-methyl]-indol-1-ylmethyl}-benzamide,
- 4-{5-[(2-Thiophen-2-yl-ethylamino)-methyl]-2,3-dihydro-indol-1-ylmethyl}-benzamide,
- 4-{5-[(3-Methyl-butylamino)-methyl]-2,3-dihydro-indol-1-ylmethyl}-benzamide,
- 4-{5-[(3,3-Dimethyl-butylamino)-methyl]-2,3-dihydro-indol-1-ylmethyl}-benzamide,
- 4-(5-Hexylaminomethyl-indol-1-ylmethyl)-benzamide,
- 4-{5-[(3-Phenyl-propylamino)-methyl]-indol-1-ylmethyl}-benzamide,
- 4-(5-{[2-(2-Fluoro-phenyl)-ethylamino]-methyl}-indol-1-ylmethyl)-benzamide,
- 4-{5-[(2-Hydroxy-ethylamino)-methyl]-indol-1-ylmethyl}-benzamide,
- 4-(5-{[2-(4-Methoxy-phenyl)-ethylamino]-methyl}-indol-1-ylmethyl)-benzamide,
- 4-{5-[(2-Chloro-6-fluoro-benzylamino)-methyl]-indol-1-ylmethyl}-benzamide,

- 4-{5-[(2-Pyridin-3-yl-ethylamino)-methyl]-indol-1-ylmethyl}-benzamide,
- 4-(5-{[2-(2-Ethoxy-phenyl)-ethylamino]-methyl}-indol-1-ylmethyl)-benzamide,
- 4-(5-{[2-(Tetrahydro-pyran-4-yl)-ethylamino]-methyl}-indol-1-ylmethyl)-benzamide,
- 4-{5-[(2-Cyclohex-1-enyl-ethylamino)-methyl]-indol-1-ylmethyl}-benzamide,
- 4-(5-{[2-(3-Fluoro-phenyl)-ethylamino]-methyl}-indol-1-ylmethyl)-benzamide,
- 4-{5-[(2-Ethyl-butylamino)-methyl]-indol-1-ylmethyl}-benzamide,
- 1-{4-[(3-Methyl-butylamino)-methyl]-benzyl}-2,3-dihydro-1H-indole-5-carboxylic acid amide or a pharmaceutically acceptable salt, solvate, enantiomer, diastereomer and diastereomeric mixture thereof.
- 18. A pharmaceutical composition comprising a therapeutically effective amount of a compound of formula I or II or a pharmaceutically acceptable salt, solvate, enantiomer, diastereomer or diastereomeric mixture thereof in association with a carrier, diluent and/or excipient.
- 18. A method for blocking a mu, kappa, delta or receptor combination (heterodimer) thereof in mammals comprising administering to a mammal requiring blocking of a mu, kappa, delta or receptor combination (heterodimer) thereof, a receptor blocking dose of a compound of formula I or II or a pharmaceutically acceptable salt, solvate, enantiomer, diastereomer or diastereomeric mixture thereof.
- 19. A method of treating or preventing obesity and Related Diseases comprising administering a therapeutically effective amount of a compound of formula I or II.
- 20. A method according to Claim 19 wherein the Related Diseases is selected from the group consisting of diabetes, diabetic complications, diabetic retinopathy, atherosclerosis, hyperlipidemia, hypertriglycemia, hyperglycemia, and hyperlipoproteinemia.
- 21. A method of treating and/or preventing diseases related to obesity including irritable bowel syndrome, nausea, vomiting, depression, smoking and alcohol

WO 2005/090303 PCT/US2005/007702

45

addiction, sexual dysfunction, substance abuse, drug overdose, addictive behavior disorders, compulsive behaviors, and stroke comprising administering a therapeutically effective amount of a compound of formula I or II.

- 22. A method of suppressing appetite in a patient in need thereof, comprising administering a therapeutically effective amount of a compound of formula I or II.
- 23. Use of a compound of formula I or II in the manufacture of a medicament for the treatment and/or amelioration of the symptoms associated with obesity and Related Diseases comprising administering a therapeutically effective amount of a compound of formula I or II to a patient in need thereof.