SYNTHESIS OF TIN DISELENIDE (SnSe₂) NANOPARTICLES FOR PHOTODETECTOR APPLICATIONS

FINAL REVIEW OF THE MINOR PROJECT

Ms. J. Kalaivani,

Reg. No.: RA2011023010003,

B.Tech, Nanotechnology,

Department of Physics and Nanotechnology,

SRM IST, Kattankulathur.

Under the guidance of

Dr. E. Senthil Kumar,

Research Associate Professor,

Nanotechnology Research Center, SRM-IST, Kattankulathur.

CRYSTAL STRUCTURE

- Tin diselenide is a Group-IV dichalcogenide
- SnSe₂ is trigonal omega structured and crystallizes in the trigonal P3m1 space group.
- SnSe₂ has hexagonal symmetry with repeating Se–Sn–Se units, and the two interacting layers are interconnected together via van der Waals forces, forming a stable "three-layer" structure These layers are weakly coupled along the c axis by van der Waals forces.
- This property enables the formation of 10 polytypes by lattice relaxations for the repetition unit along the stacking axis.

PROPERTIES

- SnSe₂ crystals have a high carrier mobility of 8.6 cm² V^{-1} s ⁻¹ at room temperature.
- SnSe₂ is a n-type conductivity material.
- SnSe₂ is an indirect band gap (1.0 eV) semiconductor with
- \triangleright Absorption coefficient of 1.3 \times 10⁴ cm⁻¹
- > Carrier mobility of 233 cm² V⁻¹ s⁻¹
- ➤ Carrier concentration varies from 10¹⁷–10¹⁹ cm⁻³

EXPERIMENTAL METHOD

Add 1.05 gm of SnCl₄.5H₂O dissolve it in a 30 ml of DI water in a clean 100 ml beaker and make it as two separate solutions A and B.

Add 0.473 gm of Selenium metal powder and dissolve it in a 30 ml of DI water in a clean 100 ml beaker and make it as two separate solutions C and D.

We have taken as 1:2 and 1:3 ratios of SnCl₄.5H₂O and Selenium metal powder.

Place these 4 beakers on the hotplate stirrer & stirring takes place at a 500°C for 15 mins.

EXPERIMENTAL METHOD

For beaker C add 5 ml of N_2H_4 . H_2O (Hydrazine hydrate) as a drop wise solution into the Selenium metal powder solution for 15 mins & it turned out into black color solution.

Now, add the black color solution as drop wise into the SnCl₄.5H₂O which is Beaker A.

For Beaker D add 2gm of NaOH as reducing agent to the Selenium metal powder solution for 15 mins.

Then, add 5 ml of N_2H_4 . H_2O as a dropwise solution into the Beaker D for 15 mins & it turned into brown color.

Now, beaker D Selenium metal powder solution as drop wise into the beaker B.

Then, transfer these mixtures to a 100ml Teflon lined two different stainless autoclave.

EXPERIMENTAL METHOD

The two sealed autoclave was heated at 180°C for 24 and 48 hours in a furnace and cooled naturally.

Autoclave with NaOH + N₂H₄.H₂O – it had the reddish color solution with black precipitate

Autoclave with N₂H₄.H₂O – it had the black color solution & precipitate

Centrifuge at 3000 rpm for 10 minutes each with 4 times DI water rinse & 1 time ethanol rinse.

Disperse the centrifuge tubes before loading it into the Centrifuge Machine

These products tubes were covered in aluminum foil kept in a beaker & dried at 80 °C for 24 hours in hot air over.

Black ppt with reddish solution

Black ppt with clear solution

BALANCED EQUATION:

 $SnCl_4.5H_2O + 2Se + 2NaOH + N_2H_4.H_2O$

 $SnSe_2 + 4NaCl + 5H_2O + N_2\uparrow$

X-Ray Diffraction SnSe₂

(c) Growth hour – 48 hours, Ratio 1:3

(b) Growth hour – 48 hours, Ratio 1:2

(a) Growth hour – 24 hours, Ratio 1:2

SEM CHARACTERIZATION

SnSe₂ with NaOH & Hydrazine hydrate, Growth hour – 24 hours

EDS SPECTRUM

EDS MAPPING

Element	SnSe ₂				
	Net Counts	Weight %	Atom %	Atom % err	Chemical
					Formula
Se K	13901	53.67	63.52	1.60	Se
Sn L	71942	46.33	36.48	0.22	Sn
		100.00	100.00		

SnSe₂ with Hydrazine hydrate, Growth hour – 48 hours

SnSe₂ with Hydrazine hydrate, Growth hour – 48 hours

SnSe₂ with Hydrazine hydrate, Growth hour – 48 hours

EDS SPECTRUM

EDS MAPPING

Element	Extracted	Extracted	Extracted	Extracted	Extracted
	Spectrum	Spectrum	Spectrum	Spectrum	Spectrum
	Net Counts	Weight %	Atom %	Atom % err	Chemical Formula
Se K	63650	51.44	61.42	0.71	Se
Sn L	361558	48.56	38.58	0.15	Sn
		100.00	100.00		

UV ABSORPTION SPECTRUM

UV ABSORPTION SPECTRUM

(b) Growth hour – 48 hours, Ratio 1:2

Band gap (E_g) 1.15 eV approximately

UV ABSORPTION SPECTRUM

hank you!