SPECTROSCOPE A MANUFACTURE OF DICHROIC NOR ARRAY OF SPECTROSCOPE

Patent number:

JP10078353

Publication date:

1998-03-24

Inventor:

TAMURA TETSUJI; TANAAMI TAKEO

Applicant:

YOKOGAWA ELECTRIC CORP

Classification:

- international:

G01J3/12

- european:

Application number:

JP19960231972 19960902

Priority number(s):

JP19960231972 19960902

Report a data error here

Abstract of JP10078353

PROBLEM TO BE SOLVED: To simplify the structure and improve the light utilizing efficiency by arranging a plurality of dichoric mirrors mutually differed in building up wavelength of reflectance in the optical axial direction in order from the larger wavelength. SOLUTION: A dichroric mirror array 10 is formed of a plurality of dichroic mirrors M1 M2, M3. The mirrors M1-M3 are arranged in series in the incident optical axial direction, and the incident surface of each mirror M1 -M3 is inclined 45 deg. to the incident optical axis. When the building up wavelength of reflectance of each mirror is &lambda 1 &lambda 2, &lambda 3, a relation of &lambda 1 <&lambda 2 <&lambda 3 is established. When the incident light is incident on the mirror M1, the wavelength component of &lambda 1 or less is reflected and incident on the light receiving element PD1 of a light detector 20, and the wavelength component more than &lambda 1 is transmitted and incident on the next mirror M2. Since the wavelengthselectively reflected light is thus received, and the transmitted light is incident on the next stage, all the incident lights can be utilized with a simple structure.

Data supplied from the esp@cenet database - Worldwide

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-78353

(43)公開日 平成10年(1998) 3月24日

(51) Int.Cl.6

識別記号 庁内整理番号 FΙ

技術表示簡所

G01J 3/12

G01J 3/12

審査請求 未請求 請求項の数7 OL (全 5 頁)

(21)出願番号

(22)出顧日

特顯平8-231972

平成8年(1996) 9月2日

(71) 出願人 000006507

横河電機株式会社

東京都武蔵野市中町2丁目9番32号

(72)発明者 田村 哲司

東京都武蔵野市中町2丁目9番32号 横河

電機株式会社内

(72)発明者 田名網 健雄

東京都武蔵野市中町2丁目9番32号 横河

重機株式会社内

(74)代理人 弁理士 渡辺 正康

(54) [発明の名称] 分光装置および分光装置のダイクロイックミラーアレイの製造方法

(57)【要約】

【課題】簡単な構造にして光利用効率の高い分光装置を 実現する。

【解決手段】反射率の立ち上がり波長が互いに異なる複 数のダイクロイックミラーを、前記波長が大小順に並ぶ ようにして光軸方向に直列に配置すると共に、各ダイク ロイックミラーの入射面が光軸に対して斜めになるよう に配置してなるダイクロイックミラーアレイと、入射光 を平行光とし前記ダイクロイックミラーアレイの光軸方 向に入射させる平行光入射手段と、前記各ダイクロイッ クミラーからの反射光を個別に受光する複数の受光素子 からなる光検出器を備える。

PD1 PDz 就第3 就第3 受尤系子 **尤模士兵**

 $\lambda(\lambda)$ $\lambda(\lambda)(\lambda)$ $\lambda(\lambda)(\lambda)$

1

【特許請求の範囲】

【請求項1】反射率の立ち上がり波長が互いに異なる複数のダイクロイックミラーを、前記波長が大小順に並ぶようにして光軸方向に直列に配置すると共に、各ダイクロイックミラーの入射面が光軸に対して斜めになるように配置してなるダイクロイックミラーアレイと、

入射光を平行光とし前記ダイクロイックミラーアレイの 光軸方向に入射させる平行光入射手段と、

前記各ダイクロイックミラーからの反射光を個別に受光 する複数の受光素子からなる光検出器を具備した分光装 10 置。

【請求項2】前記平行光入射手段と前記ダイクロイック ミラーアレイを同一の基板上に形成したことを特徴とす る請求項1記載の分光装置。

【請求項3】前記光検出器は、マイクロレンズを用いた 光学系を介して前記ダイクロイックミラーからの出射光 を受光するように構成されたことを特徴とする請求項1 記載の分光装置。

【請求項4】前記ダイクロイックミラーからの出射光を 別々の分光器により更に分光し、その後に光検出器で受 20 光するように構成したことを特徴とする請求項1記載の 分光装置。

【請求項5】前記平行光入射手段は、測定対象またはその実像面に置かれたスリットからの出射光を平行にするように構成されたことを特徴とする請求項4記載の分光 装置。

【請求項6】前記各ダイクロイックミラーの後段に置かれた各分光器の入射スリットが測定対象の実像面に位置していることを特徴とする請求項4記載の分光装置。

【請求項7】反射率の立ち上がり波長が互いに異なる複 30 数のダイクロイックミラーを、前記波長が大小順に並ぶようにして光軸方向に直列に配置すると共に、各ダイクロイックミラーの入射面が光軸に対して斜めになるように配置してなるダイクロイックミラーアレイと、

入射光を前記ダイクロイックミラーアレイの光軸方向に 入射させる平行光入射手段と、

前記各ダイクロイックミラーからの反射光を個別に受光 する複数の受光素子からなる光検出器を備えた分光装置 において、前記ダイクロイックミラーアレイは、

反射率の立ち上がり波長の異なる複数のダイクロイック ミラー面をその波長の大小順に積層し、その後斜めに板 状に切り出すことにより製作されるようにしたことを特 徴とする分光装置のダイクロイックミラーアレイの製造 方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、比較的簡単な構造 で分光することのできる分光装置に関し、特に光利用効 率の改善に関するものである。

[0002]

2

【従来の技術】簡単な構造で分光する分光方式に、リニアバリアブルフィルタ(分光フィルタアレイ)をリニアイメージセンサ上に配置し、上方から平行光を照射する方式がある。この種の方式の一例として、図7に示すような市販のフィルタ付きイメージセンサがある。入射光(平行光)1はリニアバリアブルフィルタ2によりその波長分割数だけ位置的に分割され、リニアイメージセンサ(例えば256チャネル)3で受光される。同図(b)はリニアイメージセンサ3の出力例である。

【0003】図8に示すものは分光センサ(ミノルタ製)の例である。受光部は短波長側(400~500 nm)用と長波長側(500~700 nm)用の2列になっており、上部から入射光(測定光)1が入射するが、短波長側の列にはバンドパスフィルタIとバンドパスフィルタIIを通して400~500 nmの波長の光が入射し、長波長側の列にはバンドパスフィルタIとIIIを通して500~700 nmの波長の光が入射する。

【0004】バンドパスフィルタ4を通過した光は遮光板5の2列の窓を通して分光フィルタアレイ6に入る。 分光フィルタアレイ6によって各波長に分割された光は分割受光素子アレイ7の各受光部に入射する。受光素子アレイ7では光・電変換が行われ、光強度に対応した電流が出力される。なお、これらの各素子は堆積しセラミックパッケージ等に搭載される。

[0005]

【発明が解決しようとする課題】しかしながら、このような分光素子においては次のような問題がある。全入射光はまずリニアパリアブルフィルタ2の液長分割数分あるいは分割受光素子アレイ7の素子数分だけ位置的に分割される。受光素子の1素子で受光されるのは、全入射光のうち位置的に分割された光のうちの特定の波長範囲の光のみであり、残りの大部分の波長範囲の光はフィルタによって吸収されてしまい、光利用効率は著しく悪くなってしまうという問題があった。

【0006】本発明の目的は、このような点に鑑み、ダイクロイックミラーを用い、簡単な構造にして光利用効率の高い分光装置を実現しようとするものである。本発明の他の目的は、反射率の立ち上がり波長の異なる複数のダイクロイックミラーからなるダイクロイックミラーアレイの製造方法を提供することにある。

[0007]

【課題を解決するための手段】このような目的を達成するために本発明の分光装置は、反射率の立ち上がり波長が互いに異なる複数のダイクロイックミラーを、前記波長が大小順に並ぶようにして光軸方向に直列に配置すると共に、各ダイクロイックミラーの入射面が光軸に対して斜めになるように配置してなるダイクロイックミラーアレイと、入射光を平行光とし前記ダイクロイックミラーアレイの光軸方向に入射させる平行光入射手段と、前

3

記各ダイクロイックミラーからの反射光を個別に受光す る複数の受光素子からなる光検出器を具備したことを特 徴とする。

[0008]

【作用】反射率の立ち上がり波長を少しずつずらし、入射面の傾いた複数のダイクロイックミラーを光軸方向に直列に配列する。このダイクロイックミラーに入射光を入射すると、前記反射率の立ち上がり波長を境にして波長分解された波長域の光がダイクロイックミラーから反射される。ダイクロイックミラーを透過した光は次段のダイクロイックミラーに入射される。各ダイクロイックミラーでの反射光は光検出器の複数の受光素子で個別に受光される。このようにして分光装置が実現できる。この場合ダイクロイックミラーを透過した光はすべて次段のダイクロイックミラーに入射されるようにして入射光をすべて利用しているため、従来のものに比べて格段に光利用効率の高い分光装置を実現することができる。

[0009]

【発明の実施の形態】以下図面を用いて本発明を詳しく 説明する。図1は本発明に係る分光装置の一実施例を示 20 す構成図である。図において、10はダイクロイックミ ラーアレイ、20は光検出器である。

【0010】ダイクロイックミラーアレイ10は、複数のダイクロイックミラーM、M、M、(それぞれ第1、第2、第3のダイクロイックミラーという)から構成される。ダイクロイックミラーM、M、M、は入射光軸方向に直列的に配列されているが、各ダイクロイックミラーの入射面は入射光軸に対して45度傾いている。なお、入射光を平行光にすると共にダイクロイックミラーアレイ10の光軸方向に適切に入射するための平30行光入射手段は図示を省略してある。

【0011】各ダイクロイックミラーの反射率特性は図 2に示すように互いに異なっている。第1のダイクロイックミラーM₄の反射率の立ち下がり波長を λ_1 、第2と 第3のダイクロイックミラーM₄とM₄の反射率の立ち下がり波長をそれぞれ λ_2 、 λ_1 とすると、 λ_1 < λ_2 < λ_3 の関係にある。

【0012】光検出器20は複数の受光素子PD₁, PD₂, PD₃を配列したもので、各受光素子はそれぞれダイクロイックミラーからの反射光を受光する。

【0013】このような構成における動作を次に説明する。コリメートされた入射光を第1のダイクロイックミラーM、の入射面に入射する。ここで、1、以下の波長成分が反射され光検出器20の受光素子PD、に入射する。1、以上の波長成分は透過し、第2のダイクロイックミラーM、の入射面に入射する。

【0014】第2のダイクロイックミラーM、によりえ、 以下の波長成分は反射され、え、以上の波長成分は透過 する。反射した波長成分の光は受光素子PD、に入射さ れ、透過した波長成分の光は第3のダイクロイックミラ 50

ーM, に入射する。以下同様にして、各ダイクロイックミラー面から波長選択され出射された光は光検出器20の受光素子で受光され、透過した光は次段のダイクロイックミラーへ入射される。

【0015】このようにして、簡単な構成により入射光を各ダイクロイックミラーにより分光することができ、 更に入射光はすべて利用される構造となっているため光 利用効率の高い分光装置を実現することができる。

【0016】なお、本発明は上記実施例に限定されるものではなく、各種の変更や変形をなし得るものである。例えば、ダイクロイックミラーアレイ10が図2に示すものとは長波長側と短波長側で反射率が反対の特性となる構造であってもよい。ただし、その場合は、ダイクロイックミラーの配列順序を図1のものとは逆にする必要がある。

【0017】また、平行光入射手段(図示せず)とダイクロイックミラーアレイ10を同一の基板(透明な基板であり、例えばガラス基板等が利用される)上に形成するようにしてもよい。また、各ダイクロイックミラーからの出射光を集光光学系を介して光検出器20で受光するようにしてもよい。

【0018】なお、ダイクロイックミラーアレイ10の 製造方法の一例を示せば次の通りである。図3に示すよ うに、反射率の立ち上がり波長の異なる複数のダイクロ イックミラー面を波長の大小順に積層し、これを斜め (例えば45度)に板状に切り出す。この板状に切り出 したアレイを横にすれば図1に示すダイクロイックミラ ーアレイとなる。

【0019】図4は本発明の他の実施例図である。図1と異なるところは各ダイクロイックミラーアレイの後段にそれぞれ分光器301、301、305を挿入した点である。各分光器の出力は受光器201、201、201で個別に受光する。このような構成により、より広い波長範囲を高分解能で同時に同じ入射光から分解することができる。

【0020】図5は図4の原理に基づいた一実施例を示す構成図である。測定対象51からの光をレンズ52により平行光にしてダイクロイックミラーアレイ10に入射する。まず第1のダイクロイックミラーM、で反射した波長 λ ($<\lambda_1$)の光が分光器30、に入る。

【0021】分光器30,は、第1のレンズ31、入射スリット32、第2のレンズ33、回折格子34、第3のレンズ35から構成されている。第1のレンズ31はダイクロイックミラーM、からの平行光を絞る。結像位置(測定対象の実像面)にはスリット32が置かれている。スリット32は測定対象と共役の位置にある。スリット32上の像は再び第2のレンズ33により平行光となり回折格子34に入射し、ここで回折した光は第3のレンズ35で絞られ受光器20,上に集束する。

【0022】受光器20、は複数の受光素子を2次元状

4

5

に配列したものである。前記スリット32を測定対象と 共役の位置に置いているため、この2次元状配列の受光 器20,を用いることにより1次元画像分光が可能とな る。例えば測定対象の横方向(空間軸)A-Bは受光器 20,の縦方向A'-B'となり、2次元状配列の横方 向に波長のスペクトル分解が得られる。なお、他のダイ クロイックミラーについても同様の分光器および受光器 がそれぞれ設けられる。

【0023】図6は更に他の実施例図である。測定対象 51からの光はレンズ52により平行光となった後再び 10 レンズ53で絞られ、スリット54上に結像する。スリット54上の測定対象の実像は次のレンズ55により平行光となってダイクロイックミラーM。に入射する。

【0024】ダイクロイックミラーM、からの反射光は、回折格子34とレンズ35より構成された分光器301に入る。回折格子34で回折した光は図5の場合と同様にレンズ35を通って受光器201上に集束する。このような構成においては、スリット54の幅は1種類しか選べないが、図5の実施例と同様に1次元画像分光が可能である。なお、他のダイクロイックミラーについ 20 ても同様の個別に分光器が用いられる。

[0025]

【発明の効果】以上説明したように本発明によれば、位置的に波長分解を達成するものの入射光を素子数で分割してはおらず、そのためほぼ総ての入射光が波長分解された上で受光され、飛躍的に明るい分光アレイ素子が実現でき、光利用効率の高い分光装置を容易に得ることが*

*できる。また、各ダイクロイックミラーの後段に個別に 分光器を置くことにより、より広い波長範囲を容易に高 分解能で分解することができる。また、本発明のダイク ロイックミラーアレイ製造方法によれば、簡単な方法で ダイクロイックミラーアレイを製作することができ、実 用に供してその効果は大きい。

【図面の簡単な説明】

【図1】本発明に係る分光装置の一実施例を示す構成図

【図2】ダイクロイックミラーの反射率特性を示す図

【図3】ダイクロイックミラーアレイの製造方法を説明 するための図

【図4】本発明の他の実施例を示す構成図

【図5】図4の原理に基づく一実施例構成図

【図6】図4の原理に基づく他の実施例構成図

【図7】従来のリニア分光素子の一例を示す図

【図8】従来の分光センサの一例を示す図である。

【符号の説明】

10 ダイクロイックミラーアレイ

20 光検出器

20. 受光器

301, 302, 301, 3011 分光器

31, 33, 35, 52, 53, 55 レンズ

32, 54 スリット

34 回折格子

51 測定対象

 $M_{\scriptscriptstyle 4}$, $M_{\scriptscriptstyle 2}$, $M_{\scriptscriptstyle 3}$ ${\it F}$ ${\it T}$ ${\it T}$ ${\it T}$

PD₁, PD₂, PD₃, 受光素子

図1】

【図2】

【図3】

【図4】

【図5】

【図6】

[図8]

【図7】

