MAT1830 - Discrete Mathematics for Computer Science Assignment #1 Solutions

- 1. (a) True (because $4 \times 4 = 16$). [1]
 - (b) False (because 6 does not divide 13 24 = -11). [1]
 - (c) False (because there is no integer k such that 12k = 3). [1]
 - (d) False (for example gcd(13, 26) = 13). [1]
 - (e) False (for example $3 \times 5 \equiv 6 \pmod{9}$ but $5 \not\equiv 2 \pmod{9}$). Note: We can say definitely that $x \equiv 2 \pmod{3}$, however. [2]
 - (f) False. Suppose such integers x, y, z existed and let $n = 2^x \times 3^y \times 5^z$. Then $n = 14q = 2 \times 7 \times q$ for some integer q. This would mean there were two ways of writing n as a product of primes: one that uses just 2s, 3s and 5s $(2^x \times 3^y \times 5^z)$, and one that uses a 7. The fundamental theorem of arithmetic says this can't happen.
- 2. Because $68 \equiv 4 \pmod{8}$ and $x \equiv 5 \pmod{8}$, we have $68x \equiv 4 \times 5 \equiv 4 \pmod{8}$. [1] Because $y \equiv 3 \pmod{8}$ we have $y^2 \equiv 3 \times 3 \equiv 1 \pmod{8}$ and so $2y^2 \equiv 2 \times 1 \equiv 2 \pmod{8}$.

Using these facts,

$$68x + 2y^2 \equiv 4 + 2 \equiv 6 \pmod{8}.$$
 [2]

[2]

[2]

[3]

So
$$z = 6$$
. [1]

3. Using the Euclidean algorithm,

So gcd(545, 127) = 1. Then using the extended Euclidean algorithm,

So $-24 \times 545 + 103 \times 127 = 1$ or, equivalently, $103 \times 127 - 1 = 24 \times 545$. So $127 \times 103 \equiv 1 \pmod{545}$ and x = 103 is a solution.