

INTESPACE Reference

E6668-RTCM

CHAPTER 17

121.5 MHz AUXILLARY RADIO-LOCATING DEVICE TRANSMITTER TEST

INTESPACE Reference

E6668-RTCM

17.1 - ELECTRICAL AND FUNCTIONAL TEST OF 121,5 MHZ AT CONSTANT TEMPERATURE

INTESPACE Reference

E6668-RTCM

17.1.1 TEST SPECIFICATIONS AND PROGRAMME

Following

- Section A17.0 of RTCM Recommended Standards for 406 MHz Satellite EPIRBs (Version 2.1 June 20, 2002)
- Section 10.3 of ETSI EN 300 066 V1.3.1(2006-01):
- Perform following measurements.
- Carrier frequency
- Modulation frequency
- Transmitter duty cycle
- Sweep repetition rate
- Modulation duty cycle
- Modulation factor

Note: These tests are performed during the COSPAS-SARSAT Type Approval tests (chapter 13)

17.1.2 EQUIPMENT UNDER TEST

Beacon Unit : UUT 3, UUT4 & UUT7

Name : Martec

Type : KANNAD Auto/Auto GPS/Manual/Manual GPS/Manual+/Manual+ GPS

Number : 54143 (3), 59374 (4) & 38169(7)

Class : II

17.1.3 TEST SITE

Toulouse Space Center (CST) - INTESPACE Laboratory.

17.1.4 TEST EQUIPMENT

- Climatic chamber: CLIMATS F.C.H. Type: Austral 137H60/1,5E S/N: S4880.
- Argos Cospas/Sarsat Test Bench

INTESPACE Reference E6668-RTCM

17.1.5. RESULTS OF HOMING TRANSMITTER TESTS

Beacon Unit : UUT 3 Name : Martec

Type : KANNAD Auto/Auto GPS/Manual/Manual GPS/Manual+/Manual+ GPS

Number : 54143 (3)

Class : II

		T min. - 20° C	T amb. 22° C	T max + 55° C
1 - OPERATING LIFETIME AT MINIMUM TEMPERATURE	48H	76 h		
2 - CARRIER FREQUENCY *	121500 kHz± 5 kHz	121.5042	121.5023	121.5019
3 - PEAK ENVELOPE OUTPUT POWER ** (into 50 Ohms load)	14 dBm + 6/- 2 dBm	19.5 dBm	19.3 dBm	18.9 dBm
4 - TRANSMITTER DUTY CYCLE	continuous	Cont.	Cont.	Cont.
5 - MODULATION FREQUENCY	300 to 1 600 Hz	490 to 1310	480 to 1320	490 to 1320
6 - MODULATION DUTY CYCLE	33 % - 55 %	50 %	50 %	50 %
7 - MODULATION FACTOR	> 0.85	. > 0.85	> 0.85	> 0.85
8 - SWEEP REPETITION RATE	2 Hz - 4 Hz	3.11 Hz	3.1 Hz	3.06 Hz
9 - HOMING TRANSMISSION CODING *	Bit 112 = 1	1	1	1

^{*} See data and graphs of results on chapter 13 "Cospas-Sarsat Type Approval Tests Report"

17.1.6. SPECTRUM MEASUREMENT RESULTS

INTESPACE Reference

E6668-RTCM

MARTEC KANNAD MANUAL+ GPS 38169(UUT7) Certification nominale 121,5 MHz -20 °C

INTESPACE Reference E6668-RTCM

MARTEC KANNAD MANUAL+ GPS 38169(UUT7) Certification nominale 121,5 MHz 22 °C

INTESPACE Reference E6668-RTCM

MARTEC KANNAD MANUAL+ GPS 38169(UUT7) Certification nominale 121,5 MHz 55 °C

INTESPACE Reference E6668-RTCM

17.2- HOMING RADIATED OUTPUT POWER ON UUT 2/2

INTESPACE Reference

E6668-RTCM

17.2.1 - ADMINISTRATION

17.2.1.1 WORK ORDER: Reference: E6668-ETS/IEC

17.2.1.2 TEST TEAM : Maël FERRET - Yahia AZZAOUI)

17.2.1.3 SCHEDULE: December 12th, and 13th, 2005

17.2.2 - PURPOSE

The radiation tests of the dedicated radio beacon are performed in INTESPACE EMC Laboratory in compliance with the test methods described in :

- Section 10.3.5 of ETS 300-066 Standard ETSI EN 300 066 V1.3.1(2006-01);
- Annex D, § D4.2 of IEC 61097-2 (Second edition -2002-09) and
- Section A17.0 of RTCM Recommended Standards for 406 MHz Satellite EPIRBs (Version 2.0 Feb 5th, 1997) and

Frequency tested: 121.5 MHz.

17.2.3 - RADIO BEACON IDENTIFICATIONS

Beacon Units : UUT 4 Name : Martec

Type : KANNAD Auto/Auto GPS/Manual/Manual GPS/Manual+/Manual+ GPS

Number : 59374 (4)

Antenna : Martec Antenna

17.2.4 - TEST SITE DESCRIPTION

Tests are performed in an anechoic chamber (size $16 \text{ m} \times 10 \text{ m} \times 11 \text{ m}$). Walls, ceilling and doors are lined with EMERSON CUMING foams VHP 36 and VHP 26 type. The EPIRB is placed as shown on figures n° 1 and n° 2 next pages .

INTESPACE Reference

E6668-RTCM

INTESPACE Reference E6668-RTCM

FIGURE 2: Equipment Test Set Up For BEACON Antenna Test (For BEACON designed for normal operation in water, ex: EPIRB)

INTESPACE Reference

E6668-RTCM

17.2.5 - TEST METHOD

- 1/ The elevation angle between 5° and 20° which produces a maximum gain is determined with the EUT at an arbitrary azimuth .
- 2/ The PEP is measured and the elevation angle is noted (between 5° to 20°) and is remain fixed for the remainder of the test .
- 3/ The remaining 12 measurements of PEIRP is obtained by rotating the EUT in increments of $30^{\circ} \pm 3^{\circ}$. For each measurements the EUT PEIRP is computed using the following equation :

PEIRP =
$$LOG^{-1}[(P_{REC} - G_{REC} + L_C + L_P)/10]$$
 (Equation A)

Where:

 P_{rec} = Measured Power level from spectrum analyzer (dBm)

 G_{rec} = Antenna gain of search antenna (dB)

 L_c = Receive system attenuator and cable loss (dB)

 L_p = Free space propagation loss (dB)

4/ The median value of PEIRP is compared to the specified PEIRP to be in the range 25 mW to 100 mW (14 dBm to 20 dBm)

17.2.6 - TEST MEASUREMENT EQUIPMENTS

Search Antenna

• 121.5 MHz test: EMCO Dipole - 3121 C - DB2 - S/N 763 Calibration validity: dec 2005

SPECTRUM ANALYSER

HP 8566
 Calibration validity : oct-06

CABLES

• 10 m cable SUCOFLEX type 100 - cable loss at 121.5 MHz: 1.6 dB

INTESPACE Reference

E6668-RTCM

17.2.7 - EPIRB MECHANICAL SET UP

A conductive aluminium paper is used to assure a good conductivits between beacon float level and the ground plane.

Antenna is the centre of rotation of azimuth angle.

0° azimuth turn table direction is identified with the Beacon swicht

Fig 3: BEACON POSITION 0° azimuth 180° Swicht 0° Antenna base Alu. Ground Plane 90° 270° **Strobe Light** Beacon 180°

INTESPACE Reference E6668-RTCM

18.2.8 MEASUREMENT RESULTS

Following the Equation (A), 12 value of EUT PEIRP are computed at 5 ° of elevation angle

Azimut Angle	PEIRP		
	(dBm)		
0	14,45		
30	14,45		
60	14,45		
90	14,65		
120	14,65		
150	14,65		
180	14,65		
210	14,55		
240	14,55		
270	14,55		
300	14,45		
330	30 14,45		
Mean value	14,54 dBm		

The PEIRP measured and computed are in conformance with specification required:

14 dBm ≤ PEIRP ≤ 20 dBm and PEIRP Azimuth Variation < 3 dB