Sparse Gaussian

January 3, 2017

1 mathematical notations

We first give brief description of mathematical notations will be used through out the project.

The original data set will be denoted as \mathcal{D} which consists of N d-dimensional vectors $\mathbf{X} = \{\mathbf{x}^{(i)} = (x_1, \dots, x_d) \mid i = 1, \dots, N\}$. Let the new input data be $\mathbf{x}^* = (x_1^*, \dots, x_d^*)$. The pseudo input data set is denoted as $\bar{\mathcal{D}}$ consists of $\bar{\mathbf{X}} = \{\bar{\mathbf{x}}^{(i)} = (x_1, \dots, x_d) \mid i = 1, \dots, M\}$. \mathbf{X} is paired with target $\mathbf{Y} = (y^{(1)}, \dots, y^{(N)})$, notice that $y^{(i)}$ are scalars. \mathbf{x}^* is paired with new target y^* . The underlining latent function is denoted as $\mathbf{f}(\mathbf{x}) = \mathbf{y}$ and the pseudo one is $\bar{\mathbf{f}}$. A Gaussian distribution is denoted as $\mathcal{N}(\mathbf{f}|\mathbf{m},\mathbf{V})$ with mean \mathbf{m} and variance \mathbf{V} .

2 sparse Gaussian process

We first give a zero mean Gaussian prior over the underlining latent function: $p(f|X) = \mathcal{N}(f|0, K_N)$ where K_N is our kernel matrix with elements given by, $[K_N]_{ij} \equiv K_{\boldsymbol{x}^{(i)}\boldsymbol{x}^{(j)}} = K(\boldsymbol{x}^{(i)}, \boldsymbol{x}^{(j)})$: Notice that this is the case that we have same number of $\boldsymbol{x}^{(i)}, \boldsymbol{x}^{(j)}$. In case of different sizes, we use K_{NM} , i.e. N rows for the first input matrix, M rows for the second input matrix.

$$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = c \exp[-\frac{1}{2} \sum_{k=1}^{D} b_k (x_k^{(i)} - x_k^{(j)})^2], \quad \boldsymbol{\theta} \equiv \{c, \boldsymbol{b}\},$$
 (1)

where $\boldsymbol{\theta}$ is the hyperparameters. We provide noises to \boldsymbol{f} such that $p(\boldsymbol{y}|\boldsymbol{f}) = \mathcal{N}(\boldsymbol{y}|\boldsymbol{f}, \sigma^2 \boldsymbol{I})$. By integrating out the latent function we have the marginal likelihood

$$p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta}) = \mathcal{N}(\mathbf{y}|\mathbf{0}, \mathbf{K}_N + \sigma^2 \mathbf{I})$$
 (2)

For prediction, the new input x^* conditioning on the observed data and hyperparameters. Let write the joint probability first

$$p(y^*, \boldsymbol{y}|\boldsymbol{x}^*, \mathcal{D}, \boldsymbol{\theta}) = \mathcal{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} K_{\boldsymbol{x}^*\boldsymbol{x}^*} + \sigma^2 & \boldsymbol{K}_{\boldsymbol{x}^*N} \\ \boldsymbol{K}_{\boldsymbol{x}^*N}^T & \boldsymbol{K}_N + \sigma^2 \boldsymbol{I} \end{pmatrix}\right), \tag{3}$$

where $\boldsymbol{K}_{\boldsymbol{x}^*N} = (K(\boldsymbol{x}^*, \boldsymbol{x}^{(1)}), \dots, K(\boldsymbol{x}^*, \boldsymbol{x}^{(N)}))$, i.e. $[\boldsymbol{K}_{\boldsymbol{x}^*N}]_i = K(\boldsymbol{x}^*, \boldsymbol{x}^{(i)})$, and $K_{\boldsymbol{x}^*\boldsymbol{x}^*} = K(\boldsymbol{x}^*, \boldsymbol{x}^*)$. Now we can condition on \boldsymbol{y} and get

$$p(y^*|y, x^*, \mathcal{D}, \boldsymbol{\theta}) = \mathcal{N}(y^*|K_{x^*N}^T (K_N + \sigma^2 I)^{-1} y, K_{x^*x^*} + \sigma^2 - K_{x^*N}^T (K_N + \sigma^2 I)^{-1} K_{x^*N}).$$
(4)

For detailed proof, check Theorem 4.3.1 in Murphy's machine learning a probabilistic perspective.

Now we consider pseudo input \bar{X} . Everything still holds except that there are no noises in it. The new input and target pair (x^*, y^*) is replaced by one of the actually data set and targets pairs $(x^{(i)}, y_i)$. We therefore just use \bar{f} represents the pseudo outputs and $\bar{\theta}$, and the single point likelihood is given by

$$p(y|\mathbf{x}, \bar{\mathbf{f}}, \bar{\mathbf{X}}) = \mathcal{N}(y|\mathbf{K}_{xM}^T \mathbf{K}_M^{-1} \bar{\mathbf{f}}, K_{xx} + \sigma^2 - \mathbf{K}_{xM}^T \mathbf{K}_M^{-1} \mathbf{K}_{xM}),$$
 (5)

where $K_{xM} = (K(x, \bar{x}^{(1)}), \dots, K(x, \bar{x}^{(M)}))$, i.e. $[K_{xM}]_i = K(x, \bar{x}^{(i)})$. As the target data are i.i.d given the inputs, the complete data likelihood is given by

$$p(\boldsymbol{y}|\boldsymbol{X}, \bar{\boldsymbol{f}}, \bar{\boldsymbol{X}}) = \prod_{i=1}^{N} p(y_i|\boldsymbol{x}^{(i)}, \bar{\boldsymbol{f}}, \bar{\boldsymbol{X}}) = \mathcal{N}(\boldsymbol{y}|\boldsymbol{K}_{NM}\boldsymbol{K}_{M}^{-1}\bar{\boldsymbol{f}}, \boldsymbol{\Lambda} + \sigma^2 \boldsymbol{I}),$$
(6)

where $\mathbf{\Lambda} = \operatorname{diag}(\boldsymbol{\lambda}), \lambda_i = K_{\boldsymbol{x}^{(i)}\boldsymbol{x}^{(i)}} - K_{\boldsymbol{x}^{(i)}M}^T K_{\boldsymbol{x}^{(i)}M}^{-1} K_{\boldsymbol{x}^{(i)}M}$, is a $N \times N$ diagonal matrix, and $[\boldsymbol{K}_{NM}]_{ij} = K(\boldsymbol{x}^{(i)}, \boldsymbol{x}^{(j)})$. Together with a Gaussian prior, $p(\bar{\boldsymbol{f}}|\bar{\boldsymbol{X}}) = \mathcal{N}(\bar{\boldsymbol{f}}|\boldsymbol{0}, K_M)$, integrate over Eq.6 we have the SPGP marginal likelihood over pseudo inputs

$$p(\mathbf{y}|\mathbf{X}, \bar{\mathbf{X}}) = \int p(\mathbf{y}|\mathbf{X}, \bar{\mathbf{f}}, \bar{\mathbf{X}}) p(\bar{\mathbf{f}}|\bar{\mathbf{X}}) \,\mathrm{d}\bar{\mathbf{f}}$$
$$= \mathcal{N}(\mathbf{y}|\mathbf{0}, \mathbf{K}_{NM}\mathbf{K}_{M}^{-1}\mathbf{K}_{MN} + \mathbf{\Lambda} + \sigma^{2}\mathbf{I}). \tag{7}$$

Same as we have done from Eq.3 to Eq.4, we first write the joint probability of y^*, \mathbf{y}

$$p(y^*, \boldsymbol{y}|\boldsymbol{x}^*, \boldsymbol{X}, \bar{\boldsymbol{X}})$$

$$= \mathcal{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} K_{\boldsymbol{x}^*\boldsymbol{x}^*} + \sigma^2 & K_{\boldsymbol{x}^*M}K_M^{-1}K_{\boldsymbol{x}^*N} \\ (K_{\boldsymbol{x}^*M}K_M^{-1}K_{\boldsymbol{x}^*N})^T & K_{NM}K_M^{-1}K_{MN} + \boldsymbol{\Lambda} + \sigma^2 \boldsymbol{I} \end{pmatrix}\right),$$
(8)

where $K_{x^*M} = (K(x^*, \bar{x}^{(1)}), \dots, K(x^*, \bar{x}^{(M)}))$, i.e. $[K_{x^*M}]_i = K(x^*, \bar{x}^{(i)})$. From now on we let

$$Q_{X,X'} \equiv Q(X,X') = K_{XM}K_M^{-1}K_{MX'}$$
(9)

$$\mathbf{Q}_N = \mathbf{K}_{NM} \mathbf{K}_M^{-1} \mathbf{K}_{MN}, \tag{10}$$

Also, remember that here N and M represents input and pseudo input data set, matrices, as input matrices of K, respectively. And after conditioning on y, we have the SPGP predictive distribution

$$p(y^*|\boldsymbol{y}, \boldsymbol{x}^*, \boldsymbol{X}, \bar{\boldsymbol{X}}) = \mathcal{N}(\mu^*, \sigma^{*2})$$
(11)

$$\mu^* = \mathbf{Q}_{\mathbf{x}^*N}(\mathbf{Q}_N + \mathbf{\Lambda} + \sigma^2 \mathbf{I})^{-1} \mathbf{y}$$

$$\sigma^{*2} = K_{\mathbf{x}^*\mathbf{x}^*} - \mathbf{Q}_{\mathbf{x}^*N}(\mathbf{Q}_N + \mathbf{\Lambda} + \sigma^2 \mathbf{I})^{-1} \mathbf{Q}_{N\mathbf{x}^*} + \sigma^2$$
(12)