Leros: A Tiny Microcontroller for FPGAs

by Schoeberl Martin, 2011

BEATRICE SEGALINI, DELFINA IRIARTE

Università degli Studi di Padova

Table of contents

- Related Work
- Leros vs. PicoBlaze
- Leros vs. SpartanMC & Nios II
- **2** Leros Design Decisions
- Optimal Logic Size
- Architecture & Instruction set
- 3 Leros Implementation
- The Pipeline
- I/O Interface, Extensions, Software Tools
- 4 Evaluation
- 5 Conclusion

Introduction

Leros is a *minimalistic* 16-bit processor intended for utility functions in an FPGA based *System on Chip* (SoC) design.

Aims:

- Consume less than 500 logic cells
- Use 1 2 on-chip memories

Main aims

Good balance!

- Reasonable performance
- High maximum clock frequency

Difficulties

Bottlenecks!

Pipelined accumulator architecture

- Directly addressable registers in an on-chip memory for local variables
- On-chip: registers and general data
- · Additional on-chip memory for the instructions

Only 2 memory blocks!

Related Work Leros vs. PicoBlaze

PicoBlaze is a tiny microcontroller from which **Leros** takes inspiration. They have several similar features:

Leros

- 16-bit microcontroller
- Low resources
- Fewer restrictions on program and datasize
- More logic cells
- 1-2 on-chip memories
- Altera and Xilinx devices
- Truly open source

PicoBlaze

- 8-bit microcontroller
- Low resources
- More restrictions on program and datasize
- 96 logic cells (Spartan3)
- 1 on-chip memory
- Xilinx devices only
- Not portable

Related work Leros vs. SpartanMC & Nios II

SpartanMC: small, optimized for FPGAs, 18 bits data-instruction width.

Leros

- Fewer resources
- Simplifies the access to registers
- · Avoids unusual clocking

SpartanMC

- 2 phase-shifted clocks
- More complex design
- Splits instruction fetch and write-back

Nios II: 32-bit, Altera FPGAs, \approx 700 logic cells.

Leros

- · Accumulator-based architecture
- 1 clock cycle per instruction

Nios II

- Sequential implementation
- 6 clock cycles per instruction

Leros Design Decisions Optimal Logic Size

Find optimal relation between number of logic cells and on-chip memory consumption

Figure 1 - Number of logic cells per on-chip memory block of low-cost FPGAs from Xilinx and Altera.

Leros design decisions Architecture & Instruction set

Architectural decisions

- The on-chip memories are used only for the instruction memory and the data memory in order to reduce consumption.
- Accumulator design: only a single dedicated register (the accumulator) is connected to the ALU output and provides one input to the ALU.

Instruction Set

- 16 bit data and instructions.
- Accumulator holds one of the operands: called 1 address machines.
- · 8 bit immediate values in the instruction.
- I/O ports are accessed with dedicated instructions and an 8 bit address.
- Data memory can be accessed via indirect loads and store.

Leros Implementation

Figure 2 – Pipeline of Leros with the fetch/decode and the read/execute/memory stages.

- two-staged pipeline
- Program Counter (PC)
- Data Memory (DM)
- Instruction Memory (IM)
- Accumulator register (A)

2 pipeline stages:

- · fetch-decode instruction from IM;
- reads from DM and execute.

Addresses:

- IM-PC \rightarrow PC+1, instruction+constant, A.
- $\bullet \ \ \mathsf{DM} \ \mathsf{read\text{-}write} \to \mathsf{constant} \ \mathsf{(on\text{-}chip\ registers)}, \ \mathsf{DM} + \mathsf{offset} \ \mathsf{(loads\text{-}stores)}.$
- $\bullet~$ DM write data \to A (store instructions), PC (save PC in register).

Memory load and store: requires based register and offset. 2 instructions:

- 1. register address \rightarrow DM
- 2. $DM \rightarrow DM + offset$

Result is then loaded in A.

On chip memories: independent read-write ports \rightarrow concurrent wire, from same address and same cycle?

- 1. read new value
- 2. read old value \implies depend on the FPGA family
- 3. undefined

Leros Implementation I/O Interface, Extensions, Software Tools

I/O Interface

- 8-bit I/O address
- ullet read-write signal \Longrightarrow simplicity
- 16—bit input-output data signals

Extensions

- deadline instruction (= programmable timer)
- memory controller and arbiter attached to I/O interface, for dynamical change of content of the instruction and data memories
- additional ports

Software Tools

• Java compiler: Muvium

Evaluation

FPGA	Logic (LC)	Memory (blocks)	Fmax (MHz)	BRAM Fmax (MHz)
Cyclon	195	1	132	256
Cyclon II	190	1	146	235
Cyclon III	188	1	150	315
Cyclon IV	189	1	160	315
Spartan-3E	188	1	129	297
Spartan-6	112	1	182	320

Table 1 - Synthesis results of Leros for different FPGAs

Processor	Logic (LC)	Memory (blocks)	Fmax (MHz)
Leros	188	1	115
PicoBlaze	177	1	117
SpartanMC	1271	3	50

Table 2 – Comparison of Leros with PicoBlaze and SpartanMC on a Spartan XC3S500E-4

Conclusion

The Leros design is:

- open source and available from https://github.com/schoeberl/leros;
- versatile and portable VHDL code;
- optimised to balance the resource consumption between logic cells and on-chip memory;
- ideal for utility functions (e.g. intelligent I/O interfaces);
- small sized: many-core architectures in medium sized FPGAs.

References I

[1] M. Schoeberl.

Leros: A tiny microcontroller for fpgas.

In 2011 21st International Conference on Field Programmable Logic and Applications, pages 10–14, 2011.