Q1 Ford Fulkerson

15 Points

In addition to identifying the maximum-flow of a graph, Ford-Fulkerson also identifies the

minimum-cut of a graph, the smallest total weight of the edges which if removed would

disconnect the source from the sink. In fact, the maximum-flow of a graph is equal to the

sum of the final residual capacity of the edges in the minimum cut

Q1.1

10 Points

Determine the maximum flow and residual graph of the flow network above

▼ Quiz7.pdf	≛ Download

2 / 2	- +	

Q1.2

5 Points

Using your residual graph, determine the edges that make up the minimum $s \rightarrow t$

cut

The max-flow min-cut theorem states that in a flow network, the amount of maximum flow is equal to capacity of the minimum cut.

min cut $s \rightarrow t$ is: $\{s, 2, 5, 6\}$

Please also refer to the min cut graph for my attached file in Q1.1.

Quiz 7 - NF GRADED

STUDENT

Kejian Tong

TOTAL POINTS

10 / 15 pts

QUESTION 1

Ford Fulkerson **10** / 15 pts 1.1

10 / 10 pts (no title)

(no title) **R 0** / 5 pts 1.2