

Membre de UNIVERSITÉ CÔTE D'AZUR

Condtions et fonctions

Algo & Prog avec R

A. Malapert, B. Martin, M. Pelleau, et J.-P. Roy 18 avril 2019

Université Côte d'Azur, CNRS, I3S, France firstname.lastname@univ-cotedazur.fr

Conditionnelle : la prise de décisions if

L'instruction conditionnelle if permet de prendre une décision.

Dans l'éditeur

```
a <- -2
if (a > 0) {
  paste(a,'est_positif')
} else {
  paste(a,'est_negatif_ou_nul')
}
```

RUN →-2 est négatif ou nul

Au toplevel

C'est moins agréable, il faut faire attention au(x) saut(s) de ligne.

```
> a <- -2
> if(a>0) {paste(a,'est_positif') }
> else {paste(a,'est_negatif_ou_nul')}
```

```
\xrightarrow{\text{RUN}} \text{Erreur} : \text{'else'} inattendu(e) in "else"
```

Bloc et indentation

Indentation

La bonne distance à la marge d'une ligne permet de structurer et de comprendre un programme.

```
a <- -2
if (a > 0) {
    |paste(a,'est_positif')
} else {
    |paste(a,'est_negatif_ou_nul')
}
```

Bloc d'instructions

Un bloc d'instructions est une suite d'instructions alignées à la verticale.

Il est nécessaire d'ouvrir et fermer les paires d'accolades : {...}.

```
a <- -2
if (a > 0) {
  paste(a,'est_positif')
else {
  paste(a,'est_negatif_ou_nul')
}
```

```
RUN → Erreur : 'else' inattendu(e) in "else"
```

Opérateurs logiques : ET (&&) et OU (||)

Table de vérité : ces opérateurs ressemblent à ceux de la Logique.

р	TRUE	TRUE	FALSE	FALSE
q	TRUE	FALSE	TRUE	FALSE
p && q	TRUE	FALSE	FALSE	FALSE
p II q	TRUE	TRUE	TRUE	FALSE

Mais, ils sont court-circuités

```
> a <- -2
> x == 3
Erreur : objet 'x' introuvable
> (a > 0) && (x==3)
[1] FALSE
```

L'expression x == 3 n'a pas été évaluée car FALSE && ? == FALSE

La priorité de && étant plus faible que celle des opérations arithmétiques, on aurait pu écrire : a > 0 and x == 3 .

3/13

Liens avec l'électronique numérique

L'opérateur || est aussi court-circuité

```
> a <- -2
> x == 3
Erreur : objet 'x'
    introuvable
> (a < 0) || (x==3)
[1] TRUE</pre>
car TRUE || ? == TRUE
```

Portes logiques en électronique

L'opérateur ! inverse les valeurs TRUE et FALSE. C'est l'inverseur . . . Les constructeurs d'ordinateurs utilisent beaucoup la porte nand.

Les fonctions prédéfinies de R

Tous les langages de programmation fournissent un large ensemble de fonctions prêtes à être utilisées.

Exemples dans les entiers

```
> abs(-5) # la fonction "valeur absolue"
5
> '+'(4,9) # les opérateurs sont des fonctions cachées
13
```

Certaines fonctions résident dans des modules/packages spécialisés, comme TurtleGraphics ou shiny ...

Comment définir une nouvelle fonction?

Syntaxte pour la définition d'une fonction

```
nomFonction <- function(listeDeParamètres) {
  blocInstructions
  return(résultatFonction)
}</pre>
```

Le mot return signifie "le résultat est ... ".

Définir la fonction $f(n) \rightarrow 2n + 1$

```
> f <- function(n) {return( 2*n - 1)}
> f(5)
[1] 9
```

Paramètres non typés : n n'est pas forcément un entier.

```
> f(5.2) # avec des réels approchés
9.4
> f(complex(real = 1, imaginary = 1)) # avec des complexes
[1] 1+2i
```

Les choix multiples avec if ... else if ... else ...

```
f <- function(x) {
  if( x < -1) return(-1)
  else if( x > 1) return(1)
  else return(x)
}
```

ou de manière équivalente

```
f <- function(x) {
  if( x < -1) return(-1)
  else {
    if( x > 1) return(1)
    else return(x)
}
```


Exemples

Comment (re)définir la valeur absolue?

```
Abs <- function(n) {
    if(n>0) {
        return(n)
    } else {
        return (-n)
}
```

```
> paste('|-5|uvaut', Abs(-5))
[1] "|-5|uvautu5"
```

Comment (re)définir le maximum?

```
Max <- function(n, m)
     {
    if(n > m) {
      return(n)
    } else {
      return (m)
    }
```

```
> paste('max(-10,__-5)__vaut', Max(-10,__5))
[1] "max(-10,__-5)__vaut__5"
```

Notions élémentaires sur les nombres premiers

Nombre premier

Un nombre premier ne peut être divisé que par lui-même et par 1.

Plus grand commun diviseur (PGCD)

Le PGCD de deux nombres entièrs non nuls est le plus grand entier qui les divise simultanément.

Premiers entre eux

on dit que deux entiers sont premiers entre eux si leur plus grand commun diviseur est égal à 1.

Supposons que la fonction gcd(p, q) existe et renvoie le plus grand diviseur commun des entiers p et q (nous la programmerons en TP).

Composition de fonctions I

Créons une fonction premiersEntreEux(p,q) basée sur la fonction gcd.

```
premiersEntreEux <- function(p,q) {
  if (gcd(p,q) == 1) {
    return(TRUE)
  } else {
    return(FALSE)
  }
}</pre>
```

ou encore

```
premiersEntreEux <- function (p,q) {
  if (gcd(p,q) == 1) {
    return(TRUE)
  }
  return(FALSE)
}</pre>
```

Le mot clé return provoque un échappement. Le reste du texte de la fonction est abandonné!

Composition de fonctions II

Une version qui renvoie directement le résultat de l'évaluation de l'expression.

```
premiersEntreEux <- function(p,q) {
  return(gcd(p,q) == 1)
}</pre>
```

Une version encore plus courte qui omet les accolades et return.

```
premiersEntreEux <- function(p,q) gcd(p,q) == 1

> premiersEntreEux(21,6)
[1] FALSE
> premiersEntreEux(21,8)
[1] TRUE
```

Vous voyez qu'il existe différentes manières de coder une fonction. Elles se distinguent par leur efficacité, mais aussi leur élégance.

Documenter une fonction

Pour l'instant

Ajouter simplement des commentaires au début de la fonction.

```
premiersEntreEux <- function(p,q) {</pre>
  # Détermine si deux entiers p et q sont premiers entre eux
      par calcul du PGCD.
  #
  # Arguments:
   p un entier
   q un entier
  # Returns: TRUE si p et q sont premiers entre eux, et
     FALSE sinon.
```

En effet, il suffit de taper le nom d'une fonction pour voir son code.

Consulter la documentation de R

```
> ?paste # consulter la documentation d'une fonction
Concatenate Strings
Description:
     Concatenate vectors after converting to character.
Usage:
    paste (..., sep = "", collapse = NULL)
     paste0(..., collapse = NULL)
Arguments:
> ??paste # rechercher dans la documentation
```

Questions?

Retrouvez ce cours sur le site web

www.i3s.unice.fr/~malapert/R