Modelo de regresión lineal simple

Joel Alejandro Zavala Prieto

Contents

Informacion de contacto	
Modelo de regresión linal simple	3
Valor auditado	4
Funcion ajustada	7
Valores ajustados y residuales	8
Predicciones	8
Residuales	9

Informacion de contacto

mail: alejandro.zavala 1001@gmail.com

 ${\it Facebook:}\ https://www.facebook.com/AlejandroZavala 1001$

Modelo de regresión linal simple

El modelo

$$y = \beta_0 + \beta_1 x + \epsilon$$

Es un modelo de regresión lineal simple si s cumple

$$E[\epsilon] = 0$$

Denotemos el estimador

$$\hat{y} = \hat{\beta_0} + \hat{\beta_1} x$$

Para cada obervación

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

 $\hat{y_i} = \hat{\beta_0} + \hat{\beta_1} x_i$
 $i = 1, 2, 3, ..., n$

Se busca ademas

$$\min SEC = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

De esta forma obtenemos

$$\hat{\beta}_0 = \frac{\bar{y} \sum_{i=1}^n x_i^2 - \bar{x} \sum_{i=1}^n x_i y_i}{\sum_{i=1}^n x_i^2 - n\bar{x}}$$

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n x_i y_i - n\bar{x}\bar{y}}{\sum_{i=1}^n x_i^2 - n\bar{x}}$$

Valor auditado

Es frecuente que a los auditores se les exija comparar el valor auditado (o de lista) de un artículo de inventario contra el valor en libros. Si una empresa está llevando su inventario y libros actualizados, debería haber una fuerte relación lineal entre los valores auditados y en libros. Una empresa muestreó diez artículos de inventario y obtuvo los valores auditado y en libros que se dan en la tabla siguiente. Ajuste al modelo de regresión lineal simple

Item	Valor_auditado	Valor_en_libros
1	9	10
2	14	12
3	7	9
4	29	27
5	45	47
6	109	112
7	40	36
8	238	241
9	60	59
10	170	167

Cuyo grafico de dispersión es:

Valor auditado

Denotemos como:

 $x_i =$ Valor en libros en el articulo i-ésimo $y_i =$ Valor auditado del articulo i-ésimo i = 1, 2, ..., 10

Ahora:

n = 10

n <- length(data_auditor\$Valor_auditado)</pre>

n

[1] 10

$$\bar{x} = \frac{\sum_{i=1}^{10} x_i}{10}$$

x_prom <- mean(data_auditor\$Valor_en_libros)
x_prom</pre>

[1] 72

$$\bar{y} = \frac{\sum_{i=1}^{10} y_i}{10}$$

y_prom <- mean(data_auditor\$Valor_auditado)
y_prom</pre>

[1] 72.1

$$\sum_{i=1}^{10} x_i y_i$$

xy_i <- sum(data_auditor\$Valor_auditado*data_auditor\$Valor_en_libros)
xy_i</pre>

[1] 106155

$$\sum_{i=1}^{10} x_i^2$$

x_i_2 <- sum(data_auditor\$Valor_en_libros^2)
x_i_2</pre>

[1] 106554

Calculando se obtiene

```
beta_0 <- ((y_prom * x_i_2) - x_prom * xy_i)/(x_i_2 - (n*(x_prom^2)))
beta_1 <- (xy_i - (n * x_prom * y_prom))/(x_i_2 - (n*(x_prom^2)))
beta_0</pre>
```

[1] 0.7198048

beta_1

[1] 0.9913916

$$\hat{\beta}_0 = 0.719804$$

$$\hat{\beta}_1 = 0.991391$$

Funcion ajustada

Que por linea de comando en R

```
mco_libros <- lm(Valor_auditado ~ Valor_en_libros,data = data_auditor)
mco_libros</pre>
```

```
##
## Call:
## lm(formula = Valor_auditado ~ Valor_en_libros, data = data_auditor)
##
## Coefficients:
## (Intercept) Valor_en_libros
## 0.7198 0.9914
```

De esta forma

 $y_i = 0.719804 + 0.991391x_i$

Valor auditado

Valores ajustados y residuales

Comparando los valores:

$$y_i = Reales$$

 $\hat{y_i} = Ajustados$
 $y_i - \hat{y_i} = Residuales$

Reales	Ajustados	Residules
9	10.633714	-1.633714
14	12.616496	1.383504
7	9.642323	-2.642323
29	27.487361	1.512639
45	47.315181	-2.315181
109	111.755596	-2.755596
40	36.409880	3.590120
238	239.645035	-1.645035
60	59.211873	0.788127
170	166.282101	3.717899

Predicciones

```
libros_to_predict <- data.frame(Valor_en_libros=c(100, 150, 200))
valor_predict <- predict(mco_libros, newdata = libros_to_predict)
valor_predict</pre>
```

```
## 1 2 3
## 99.85896 149.42854 198.99812
```

Residuales

Anaalizando la distribución de los residuales tenemos:

Distribucion de residuos del modelo lineal simple

