BỘ MÔN HỆ THỐNG THÔNG TIN KHOA CÔNG NGHỆ THỐNG TIN – ĐẠI HỌC KHOA HỌC TỰ NHIỀN TP HCM

CƠ SỞ DỮ LIỆU NÂNG CAO Chương 07: BIỂU DIỄN ĐỒ THỊ CHO CSDL QUAN HỆ

Giảng viên: TS. Nguyễn Trần Minh Thư

Mục tiêu chương

- Các khái niệm về đồ thị
- Đồ thị con đường truy xuất
- Đồ thị quan hệ
- Chuyển đổi từ ĐTQH sang ĐTCĐTX & ngược lại
- Chuỗi kết được cài đặt trên ĐTCĐTX
- Thuật toán biểu diễn ĐTQH

Mục tiêu chương

- Các khái niệm về đồ thị
- Đồ thị con đường truy xuất
- Đồ thị quan hệ
- Chuyển đổi từ ĐTQH sang ĐTCĐTX & ngược lại
- Chuỗi kết được cài đặt trên ĐTCĐTX
- Thuật toán biểu diễn ĐTQH

- Đồ thị G(N,C) được định nghĩa trên một tập nút N={n₁,n₂,...n_n} và một tập cung C={c₁, c₂,...c_m}
 - G là đồ thị có hướng nếu tồn tại một cung có hướng khi đó các nút trong đồ thị gọi là nút đi hoặc nút đến.
 - Ngược lại, G là đồ thị vô hướng khi đó các nút gọi là nút xuất phát.
- Cung kề cận: hai cung (c₁, c₂) được gọi là kề cận nhau khi:
 - Đối với đồ thị vô hướng: chúng có chung một nút xuất phát.
 - Đối với đồ thị có hướng: nút đến của c₁ = nút đi của c₂

- Khuyên: cung c là một khuyên nếu hai nút đi/đến (hoặc xuất phát) của c là một.
- Đường đi (đối với đồ thị vô hướng): là một chuỗi cung (c₁, c₂,...c_p) s.c:
 - c_i và c_{i+1} có chung một nút xuất phát.
 - Nếu c_i không phải là khuyên hoặc cung đầu hoặc cung cuối thì c_i có chung 1 nút xuất phát với c_{i-1} và nút xuất phát còn lại cũng là nút xuất phát của c_{i+1}

Ví dụ 5.2:

- (c₁, c₂, c₃, c₄) không phải là một đường đi
- •(c₁, c₃, c₄) là một đường đi

- Mạch đi (đối với đồ thị có hướng): là một chuỗi cung (c₁, c₂,...c_p) s.c: nút đến của cung c_{i-1} là nút đi của cung c_i với i≤p.
 - Nút đi của c₁ được gọi là nút đầu của mạch đi, nút đến của c_p gọi là nút cuối của mạch đi.
- Dòng có gốc n₁ là một tập cung D = (c₁, c₂, ..., c_p) s.c:
 - Một cung trong tập D có nút xuất phát (hoặc nút đi) là n₁
 - ∀n_i là nút xuất phát (hoặc nút đi/ đến) của c_i ∈ D, tồn tại một đường đi hoặc mạch đi từ gốc n₁ đến n_i qua các cung của D.

 (c_1, c_2) là một dòng có gốc n_1 (c_1, c_2) không là một dòng có gốc n_2 (c_1, c_2) là một mạch đi

 (c_1, c_2) là một dòng có gốc n_2 (c_1, c_2) không là một mạch đi

(c₁, c₂) không là dòng của gốc nào cả

 (c_1, c_2) là dòng của gốc n_1, n_2 hoặc n_3

Mục tiêu chương

- Các khái niệm về đồ thị
- Đồ thị con đường truy xuất
- Đồ thị quan hệ
- Chuyển đổi từ ĐTQH sang ĐTCĐTX & ngược lại
- Chuỗi kết được cài đặt trên ĐTCĐTX
- Thuật toán biểu diễn ĐTQH

- Định nghĩa:
 - Đồ thị con đường truy xuất là một đồ thị có hướng với:
 - N: Tập các nút của đồ thị
 - C ⊆ (N x N): Tập các cung (có hướng)
 - Q: tập các quan hệ Q_i.
 - Cđ: Tập các con đường truy xuất

• Định nghĩa (tt)

- Mỗi cung trên đồ thị tương ứng với một con đường truy xuất đến 1 hoặc n bộ của quan hệ nút đến.
- Một quan hệ Q_i ∈ Q có thể là quan hệ nút (nếu nó tương ứng với một nút trên đồ thị) hoặc quan hệ cung (nếu nó ứng với một cung trên đồ thị).
- Mỗi quan hệ cung có thể tương ứng với tối đa hai cung ngược chiều nhau trên đồ thị CĐTX, nút đến của cung này là nút đi của cung kia và ngược lại.

Cơ sở dữ liệu nâng cao

- Định nghĩa (tt)
 - N_i C_{ij} → N_j:Từ một quan hệ nút Q_{Ni} có thể truy xuất từ 1 đến n bộ của quan hệ nút Q_{Nj} thông qua con đường truy xuất tương ứng với c_{ij}.
 - N_i → N_j:Từ một quan hệ nút Q_{Ni} có thể truy xuất đến 1 bộ của quan hệ nút Q_{Nj} thông qua con đường truy xuất tương ứng với c_{ij}
 - Trên mỗi con đường truy xuất có gắn một bản số (x₁, x₂, x₃) thể hiện số bộ tối thiểu, trung bình và tối đa có thể được truy xuất

Cơ sở dữ liệu nâng cao

Đồ thị CĐTX thô: là đồ thị con đường truy xuất đặc biệt, trong đó, nếu giữa hai nút của đồ thị có một cung thì bao giờ cũng tồn tại một cung theo chiều ngược lại và tất cả các nút đều là nút vào.

Mục tiêu chương

- Các khái niệm về đồ thị
- Đồ thị con đường truy xuất
- Đồ thị quan hệ
- Chuyển đổi từ ĐTQH sang ĐTCĐTX & ngược lại
- Chuỗi kết được cài đặt trên ĐTCĐTX
- Thuật toán biểu diễn ĐTQH

- Khái niệm:
 - Đồ thị quan hệ là một dạng đồ thị con đường truy xuất được đơn giản hoá
 - Giúp người thiết kế dễ dàng hơn trong việc đánh giá chất lượng của việc biểu diễn cấu trúc CSDL bằng đồ thị.
 - Đồ thị quan hệ là một đổ thị có hướng, với:
 - N_O: Tập nút
 - $C_Q \in N_Q x N_Q$: tập cung có hướng hoặc vô hướng
 - Q : tập quần hệ Qi
 - Khi xác định dạng biểu diễn đồ thị của một cấu trúc quan niệm:
 - Khía cạnh quan niệm trước tiên, công cụ phân tích là đồ thị quan hê.
 - Khía cạnh phương diện truy xuất dữ liệu: công cụ là đồ thị CĐTX

- Diễn giải:
 - $N_i \xrightarrow{C_{ij}} N_i$:
 - \bullet $Q_{i},\,Q_{j},\,Q_{ij}$ Íà các quan hệ lần lượt ứng với hai nút N_{i} và N_{i} và cung C_{ii}
 - Có một phụ thuộc hàm $K_{Q_i} \to K_{Q_j}$, với K_{Q_i} và K_{Q_j} lần lượt là một khóa của Q_i và Q_j
 - Quan hệ cung Q_{ij} được hình thành từ tất cả các thuộc tính khóa của Q_i, Q_j: Q_{ji}+ = KQ_i+ ∪ KQ_j+

- Diễn giải(tt)
 - $N_i \stackrel{Q_{ij}}{\longrightarrow} N_i$:
 - Không có phụ thuộc hàm giữa KQi và KQj
 - $Q_{i}^+ = KQ_i^+ \cup KQ_i^+$
 - Có thể được biểu diễn lại theo dạng:

Quan hệ cung Q_{iji} , Q_{ijj} và Q_{ij} đều được hình thành từ tập các thuộc tính khóa $KQ_i^+ \cup KQ_i^+$

Mục tiêu chương

- Các khái niệm về đồ thị
- Đồ thị con đường truy xuất
- Đồ thị quan hệ
- Chuyển đổi từ ĐTQH sang ĐTCĐTX & ngược lại
- Chuỗi kết được cài đặt trên ĐTCĐTX
- Thuật toán biểu diễn ĐTQH

Chuyển đổi từ ĐTCĐTX sang ĐTQH

- $N_O = N$
- $Q_0 = Q$
- \forall c,c' \in C có chiều ngược nhau và cùng ứng với một quan hệ cung Q_c , $\exists c_Q \in C_Q$ sao cho c_Q cũng ứng với quan hệ Q_c trong Q_Q .
 - Cung c_Q là cung vô hướng nếu bản số của c và c' đều có giá trị tối đa (max(c), max(c')) lớn hơn 1
 - Ngược lại c_Q là cung có hướng

Chuyển đổi từ ĐTCĐTX sang ĐTQH

Đồ thị CĐTX

Đồ thị quan hệ

Chuyển đổi từ ĐTQH sang ĐTCĐTX

- $\bullet N = N_{O}$
- $\cdot Q = Q_O$
- $\forall c_Q$ =(n_1 , n_2) $\in C_Q$, (c_Q ứng với một quan hệ $Q_c \in Q_Q$),

 \exists c,c' \in C có chiều ngược nhau và cùng ứng với một quan hệ cung $Q_c \in Q$.

- Nếu c_Q là cung vô hướng: max(c) >1 và max(c')>1
- Ngược lại max(c) =<1 hoặc max(c') <= 1
- Các nút trong N đều là nút vào.

4.0 Chuyển đổi từ ĐTQH sang ĐTCĐTX

Đồ thị quan hệ

Đồ thị CĐTX thô

Mục tiêu chương

- Các khái niệm về đồ thị
- Đồ thị con đường truy xuất
- Đồ thị quan hệ
- Chuyển đổi từ ĐTQH sang ĐTCĐTX & ngược lại
- Chuỗi kết được cài đặt trên ĐTCĐTX
- Thuật toán biểu diễn ĐTQH

Chuỗi kết được cài đặt trên đô thị

Khái niệm chuỗi kết được cài đặt trên đồ thị quan hệ là cơ sở để đánh giá tính hiệu quả của cấu trúc logic khi thực hiện phép kết.

Chuỗi kết được cài đặt trên đồ thị

- Định nghĩa đối với đồ thị con đường truy xuất:
 - Một chuỗi kết p = Q₁ Q₂...Q_m được cài đặt trên đồ thị con đường truy xuất (N,C,Q,Cđ) nếu và chỉ nếu:
 - $\forall Q_i$, i=1..m, $Q_i \in Q$
 - \exists một dòng D = $(c_1, c_2, ..., c_p)$ trên đồ thị con đường truy xuất sao cho :
 - ∀ cung c_i của D, c_i ứng với một quan hệ Q_j
 trong chuỗi kết
 - ∀ Q_i trong chuỗi kết :
 - Hoặc ∃ một cung c của D ứng với Q_i
 - Hoặc ∃ một nút n trên D ứng với Q_i

Chuỗi kết được cài đặt trên đô thị

Chuỗi kết (AX) (AB) (BY) (BC) (CZ) được cài đặt trên (a), (b), (d) nhưng không được cài đặt trên (c)

Chuỗi kết được cài đặt trên đồ thị

- Nếu chuỗi kết p được cài đặt trên đồ thị (đồ thị CĐTX/ĐTQH), tồn tại một dòng D có gốc là n_α
 - Từ quan hệ Q_g ứng với n_g ta có thể truy xuất <u>nhanh</u> đến những bộ của Q_i trong p thông qua các đường đi hoặc mạch đi xuất phát từ n_g

Chuỗi kết được cài đặt trên đồ thị

(a):
$$n_g = ?$$
, (b) $n_g = ?$, (c) $n_g = ?$ (d) $n_g = ?$

Chuỗi kết được cài đặt trên đô thị

- Trong (a): $n_g = 1$, mạch đi: $\{(1,2),(2,3)\}$
- Trong (b): n_g = 2, mạch đi: {(2,1),(2,3)}
 Trọng (c): chỉ có thể xuất phát từ 1 hoặc 3, tuy nhiêň:
 - Từ 1 thì chỉ đến được 2, không đến được 3
 - Từ 3 chỉ đến được 2, không đến được 1
 - Hoặc với gốc là 1, dùng mạch đi (1,2) sau đó đọc tuần tự tất cả các bộ của CZ và đối sánh kết quả với mach di.
 - Hoặc với gốc là 3, dùng mạch đi (3,2) sau đó đọc tuần tự tất cả các bộ của AX và đổi sánh kết quả với mach di.
- Trong (d): có 2 dòng có gốc là 1 và 3 có thể thực hiện chuối kết p

Mục tiêu chương

- Các khái niệm về đồ thị
- Đồ thị con đường truy xuất
- Đồ thị quan hệ
- Chuyển đổi từ ĐTQH sang ĐTCĐTX & ngược lại
- Chuỗi kết được cài đặt trên ĐTCĐTX
- Thuật toán biểu diễn ĐTQH

- Vào: Cấu trúc CSDL mức quan niệm:
 p = {<Q_i>}, mỗi Q_i có tập khóa {K_i}
- Ra: Đồ thị quan hệ tương ứng với cấu trúc CSDL
- 1. ĐĐH (Số ĐĐH, Ngày_ĐH, TrịGiá)
- Mặt Hàng (<u>Mã MH</u>, Tên_MH, Đơn Giá)
- 3. ChiTiếtĐĐH (<u>Mã MH, Số ĐĐH</u>, SL_ĐH)
- 4. Giao hàng (<u>Số_GH</u>, Ngày_GH, Số_ĐĐH)
- ChiTiếtGH (<u>Số GH, Mã MH</u>, SL_GH, Số_ĐĐH)

- Bước 1 : Biến p thành một phân rã đồng nhất:
 - **1.1.** Với mọi cặp quan hệ con Q_i , Q_j , nếu $K_i \leftrightarrow K_j$, với K_i và K_j lần lượt là một khóa của Q_i và Q_j , thì gộp Q_i , Q_j lại thành một quan hệ.
 - **1.2.** Với mỗi (Q_i, Q_j) , nếu Q_i^+ có chứa một khóa K_j của Q_j thì Q_i^+ phải chứa tất cả các khoá của Q_j (khi đó Q_i có thể có thêm khoá)
- Bước 2: Tạo nút và quan hệ nút Với mỗi quan hệ Q_i , tạo một nút N_i với $Q_{Ni} = Q_i$

- Bước 3: Tạo nút bản lề và quan hệ nút bản lề:
 - Mục đích: làm nổi bật các thuộc tính chung của mỗi cặp quan hệ nút.

3.1.
$$\forall Q_i, Q_j, Q_{ij}^+ = Q_i^+ \cap Q_j^+$$

- **3.2.** Trong khi $Q_{ii} \neq \emptyset$
 - Xác định tất cả các khóa của Q[Q_{ij}+], ký hiệu KQ_{ij}+ là tập thuộc tính khóa của Q[Q_{ii}+]
 - Nếu $\neg\exists$ $Q_h \in p$ sao cho một khóa của Q_h là một khoá của $Q[Q_{ii}^+]$ thì

Tạo nút bản lề N_{bl} với quan hệ tương ứng $Q_{bl} = Q[KQ_{ij}^+]$ Cuối nếu

- $Q_{ij}^+ := Q_{ij}^+ KQ_{ij}^+$
 - Cuối Trong khi

- Bước 4: Tạo cung (chỉ tạo số cung tối thiểu từ một nút)
 - **4.1**. $\forall N_i$ với Q_i tương ứng, xác định:
 - PTH(N_i) = { N_i với Q_i tương ứng sao cho $KQ_i^+ \subset Q_i^+$ }
 - PTH_Thừa(N_i) = { $N_j \in PTH(N_i)$ sao cho: $\exists N_h \in PTH(N_i)$ sao cho $KQ_j^+ \subset KQ_h^+$ }
 - Lồng_Khoá(N_i) = {N_i với Q_i tương ứng sao cho KQ_i+⊂ KQ_i+}
 - Lồng_Khoá_Thừa (N_i) = {N_j ∈ Lồng_Khoá(N_i) sao cho:

```
\exists N_h \in L \hat{o}_{m} \underline{K}_{h}  sao cho KQ_j^+ \subset KQ_h^+
```

- Cung (N_i) = (PTH(N_i) PTH_Thừa(N_i))
 (Lồng_Khoá(N_i) Lồng_Khoá_Thừa(N_i))
 - vối V

- Bước 4(tiếp)
 - **4.2.** $\forall N_j \in Cung(N_i)$:
 - Tạo một cung có hướng từ $N_i \rightarrow N_j$, ký hiệu C_{ij} $Cuối <math>\forall$
 - **4.3.** $Q_{ij} = Q_i[KQ_i^+ \cup KQ_j^+]$

• Bước 5: Hủy những nút bản lề thừa

∀N_k thỏa các điều kiện: ∠

- Q_k có một khóa duy nhất K_k
- Không có thuộc tính nào khác ngoài khóa
- Chỉ có một cung vào N_k, xuất phát từ nút N_i

Thì : (Vai trò bản lề của N_k không còn cần thiết nữa)

- Nhập N_k vào N_i (nhập Q_k+ vào Q_i+)
- Hủy cung c_{ik}

Cuối ∀

- Bước 6: Mịn hóa các quan hệ nút
 - ∀ N_i với Q_i tương ứng thì:

```
\forall \ N_j \in Cung(N_i) \ với \ Q_j \ tương ứng thì:
Hủy khỏi \ Q_i^+ những thuộc tính khóa của
Q_i^- mà không phải là thuộc tính khóa của \ Q_i^-
```

Cuối ∀

Cuối ∀

Bước 7: Tạo cung vô hướng:

\forall N_k thỏa:

- Q_k không có thuộc tính không khóa $(Q_k^+ = KQ_k^+)$
- Chỉ có hai cung ra khỏi N_k (không có cung vào) đến N_i và
 N_i với Q_i và Q_i sao cho KQ_k⁺ = KQ_i⁺ ∪ KQ_i⁺

Thì

- Tạo một cung vô hướng nối N_i , N_i với $Q_{ii} = Q_k$
- Hủy nút N_k
- Hủy hai cung c_{ki} và c_{kj}

Ví dụ: Cho cấu trúc quan niệm sau:

- 1. ĐĐH (Số ĐĐH, Ngày_ĐH, TrịGiá)
- 2. MặtHàng (Mã_MH, Tên_MH, ĐơnGiá)
- 3. ChiTiếtĐĐH (Mã MH, Số ĐĐH, SL_ĐH)
- 4. Giao hàng (Số GH, Ngày GH, Số ĐĐH)
- 5. ChiTiếtGH (Số GH, Mã MH, SL_GH, Số_ĐĐH)

• Bước 1: không có khóa tương đương giữa các quan hệ

Bước 2: Tạo nút

So_ĐĐH //Ngay_ĐH. TriGia

4. GiaoHàng

So_GH //Ngay_GH, So_ĐĐH 2. MặtHàng Ma_MH //Tên_MH, ĐơnGia

So_GH, Ma_MH // SL_GH, So_ĐĐH

5. ChiTietGH

Ma_MH, So_ĐĐH // SL_ĐĐH

3. ChiTietĐĐH

Bước 3:

Các tập thuộc tính chung khác rỗng của các cặp quan hệ:

- 1 và 3: So_ĐĐH, khoá của 1
- 1 và 4: So_ĐĐH, khoá của 1
- 1 và 5: So_ĐĐH, khoá của 1
- 2 và 3: Ma MH, khoá của 2
- 2 và 5: Ma_MH, khoá của 2
- 3 và 4: Số ĐĐH, khóa của 1
- 3 và 5: Ma_MH, So_ĐĐH, khoá của tập này là (Ma_MH, So_ĐĐH) = khóa của 3
- 4 và 5: So_GH, So_ĐĐH, khóa của tập này là (So_GH) = Khoá của 4; loại bỏ So_GH, khóa của tập còn lại là (So_ĐĐH) = khóa của 1

Kết luận: Không tạo nút bản lề nào cả

Tập các Qj được (chứa khóa Là các Qj được nút khác trong PTH(Qi) chứa khóa

Là các Qj có là con của Là các Qj có được nút khác trong LK(Qi) chứa khóa

Bước 4

	PTH(Q _i)	PTH_ Thừa(Q _i)	Lồng_ Khoá(Q _i)	LK_Thừa (Q _i)	Cung(Q _i)
1. ĐĐH	Ø	- 6	-	-	Ø
2.MặtHàng	Ø	- /	-	-	Ø
3. ChiTiếtĐĐH	1,2	Ø	1,2	Ø	1,2
4. GiaoHàng	1	Ø	Ø	-	1
5.ChiTiếtGH	1,2,3,4	1,2	2,4	Ø	2,3,4

Các quan hệ cung:

- Cung 31: CTĐĐH ĐĐH (Ma MH, So ĐĐH)
- Cung 32: CTĐĐH MH(Ma MH, So ĐĐH)
- Cung 41: GH_ĐĐH(So_GH, So_ĐĐH)
- Cung 52: CTGH_MH (So_GH, Ma_MH)
- Cung 53: CTGH_CTĐĐH (So_GH, Ma_H, So_ĐĐH)
- Cung 54: CTGH_GH (So_GH, Ma_MH)

Kết quả của bước 1-4

- Bước 5: Không thực hiện, vì không tạo nút bản lễ nào
- Bước 6:
 - Trong quan hệ nút Giao Hàng, loại bỏ thuộc tính Số_ĐĐH
 - Trong quan hệ nút ChiTiếtGH, loại bỏ thuộc tính Số_ĐĐH
- Bước 7: không tạo được cung vô hướng nào cả.

Biểu diễn ĐTQH sang lược đồ QH

- Mục đích: kiểm chứng xem cấu trúc quan hệ biểu diễn dưới dạng đồ thị quan hệ có hoàn toàn tương đương với cấu trúc ban đầu hay không.
- Thuật toán:
 - Gọi p⁻¹ là tập quan hệ con có được sau khi biến đổi từ đồ thị quan hệ về cấu trúc CSDL quan hệ:
 p⁻¹ = {Q_i} ∪{Q_{ij}}, với Q_i là quan hệ nút và Q_{ij} là quan hệ cung
 - Gộp các quan hệ có cùng khóa trong p⁻¹ lại thành một.

