Deep Double Descent

когда бо́льшие модели и больше данных не улучают качество работы

Настя Городилова

БПМИ191 Факультет Компьютерных Наук НИУ ВПГЭ

7 февраля 2022 г.

Гипотеза двойного спуска

Effective model complexity (EMC)

```
Пусть: \mathcal{T} - процедура обучения S = \{(x_1, y_1), \cdots, (x_n, y_n)\} - набор данных \mathcal{T}(S) - классификатор
```

 \mathcal{D} - распределение данных

 $\varepsilon > 0$

Тогда:

$$EMC_{\mathcal{D},\varepsilon}(\mathcal{T}) := max\{n|\mathbb{E}_{S\sim\mathcal{D}^n}[Error_S(\mathcal{T}(S))] \leq \varepsilon\}$$

Гипотеза двойного спуска

Гипотеза: $\forall \ \mathcal{D}, \mathcal{T}, \varepsilon > 0$

Если задача: классификация n объектов из $\mathcal D$ Тогда:

- Недопараметризованный режим
 - $EMC_{\mathcal{D},\varepsilon}(\mathcal{T}) < n \Rightarrow \forall$ возмущение $\mathcal{T}: EMC \uparrow \quad Error(\mathit{Test}) \downarrow$
- Перепараметризованный режим $EMC_{\mathcal{D},\varepsilon}(\mathcal{T}) > n \Rightarrow \forall$ возмущение $\mathcal{T}: EMC \uparrow Error(Test) \downarrow$
- **Критический режим** $EMC_{\mathcal{D},\varepsilon}(\mathcal{T}) \sim n \Rightarrow \forall$ возмущение $\mathcal{T}: EMC \uparrow Error(Test) \uparrow \downarrow$

Эвристически $\varepsilon=0.1$

Двойной спуск, зависящий от ширины модели

Двойной спуск, зависящий от числа эпох

Двойной спуск, зависящий от числа трейна

 $\underline{\text{Раньше:}}\ n$ - фиксировано, EMC - меняется $\underline{\text{Сейчас:}}\ EMC$ - фиксировано, n - меняется

Двойной спуск, зависящий от числа трейна

Ссылки на источники

 $\blacksquare \ https://arxiv.org/pdf/1912.02292.pdf$