

Peak Performance

Remote Memory Revisited

Hannes Mühleisen, Romulo Goncalves and Martin Kersten

Database Scalability

Why more memory?

- Memory is a critical resource, especially in OLAP use cases
 - Hash tables, intermediate results, ...
 - OS overcommits, leads to thrashing

Remote memory then

- Hack Kernel to page out to remote machines? [Tell et al. 2013]
- Store swapfile to remote file system?
- But DBs like to avoid swap anyway, so...
 - Store DB temporary files on remote system!

New Toys

The way it was

Many-Copy

RDMA

Zero-Copy

Experimental Setup

- 14 Linux COTS Boxes
 - 16 GB RAM
 - InfiniBand QDR
- 182 GB Memory total (and usable!)

Throughput

Latency

OLAP DB (TPC-H)

- TPC-H: benchmark for relational databases focused on analytics (OLAP)
- Queries tend to have large intermediate results (SF=100):

Query	Read (GB)	Write (GB)
1	14	50
18	5	28
21	7	9
3	6	6
13	2	7

Example: Query 18

TPC-H Experiment

- Single node runs MonetDB with TPC-H database (SF=100)
 - Gets remote memory from the 14 memory providers
- DB temporary partition resides either on disk or in remote memory
- Hot runs, 5 repetitions per query and setup

TPC-H 100 Results

Summary

- Remote Memory is interesting (...)
 - Lightweight technique
- RDMA allows for remote memory to make sense from a technical perspective
- OLAP database scenarios can benefit from this
- Open issue: Hardware pricing/TCO

Thank You!

Questions?

http://is.gd/remotemem