Package 'RvtkStatismo'

June 25, 2014

Rvtk	Statismo-package	Integrates s	statismo d	and	Rι	ısin	g th	he 1	vtk\$	Stai	nda	rdl	Mes	shF	Rep	rese	ent	e	
Index																			14
	StatismoModelMen																		
	statismoGPmodel .																		
	rigidAlign statismoBuildMode	1																	10

Description

Integrates statismo and R using the vtkStandardMeshRepresenter. Statismo shape models will be stored as objects of class "pPCA". (this is work in progress).

Details

Package: RvtkStatismo
Type: Package
Version: 0.2.140625
Date: 2014-06-25
License: GPL
LazyLoad: yes

Author(s)

Stefan Schlager

Maintainer: Stefan Schlager <zarquon42@gmail.com>

References

To be announced

 ${\tt ComputeConstrainedModel}$

Constrains a model of class pPCA by a subset of coordinates

Description

Constrains a model of class pPCA by a subset of coordinates

getCoordVar 3

Usage

```
ComputeConstrainedModel(x, model, align = FALSE, use.lm, deselect = FALSE,
  origSpace = FALSE)
```

Arguments

X	a k x 3 matrix containing the coordinates of the reduces model
model	an object of class pPCA
align	logical: if TRUE, x will be aligned to the models mean
use.lm	integer vector, specifying which coordinates from the full model are to be used/missing (see note)
deselect	logical: if TRUE, use.lm specifies the missing coordinates instead of those present.
origSpace	logical: if align=TRUE and origSpace=TRUE, the representer of the returned model will contain the estimated full shape in the original coordinate system of x

Value

an object of class pPCA constrained to x

Note

if deselect = F, the order of the entries in use. lm is important: the i-th entry in use. lm specifies the index of the meanshapes coordinate belonging to the i-th coordinate of x.

Examples

```
## create a model superimposed with missing landmarks 3 and 4
newmod <- pPCA(boneLM[,,-1],sigma=0,scale=TRUE,use.lm = 3:4,deselect=TRUE)
## predict the left out shape from the constrained model
boneLM1 <- ComputeConstrainedModel(boneLM[-c(3:4),,1],newmod,align=TRUE,use.lm=3:4,deselect=T,origSpace=TRUE)
## the coordinates of the estimated complete config are now stored in the representer's vertices
## Not run:
##visualize prediction error
deformGrid3d(vert2points(boneLM1$representer),boneLM[,,1],ngrid=0)
## End(Not run)</pre>
```

getCoordVar get per coordinate variance from a statistical model

Description

get per coordinate variance from a statistical model

4 getDataLikelihood

Usage

```
getCoordVar(model)
```

Arguments

mode1

object of class pPCA

Note

calculates the per-coordinate variance as described in Luethi(2009)

References

Lüthi M, Albrecht T, Vetter T. 2009. Probabilistic modeling and visualization of the flexibility in morphable models. In: Mathematics of Surfaces XIII. Springer. p 251-264

getDataLikelihood

calculate probability/coefficients for a matrix/mesh given a statistical model

Description

calculate probability for a matrix/mesh given a statistical model

Usage

```
getDataLikelihood(x, model, align = FALSE, use.lm)
## S3 method for class 'matrix'
getDataLikelihood(x, model, align = FALSE, use.lm = NULL)
## S3 method for class 'mesh3d'
getDataLikelihood(x, model, align = FALSE, use.lm = NULL)
getCoefficients(x, model, align = TRUE, use.lm = NULL)
```

Arguments

X	matrix or mesh3d
model	a model of class pPCA
align	logical: if TRUE the data will be aligned to the model's mean
use.lm	integer vector specifying row indices of the coordinates to use for rigid registration on the model's meanshape.

mesh2vtp 5

Details

getDataLikelihood estimates the likelihood of a dataset for belonging to the model by exploiting the χ^2 -distribution of the (squared) Mahalanobisdistance, which, in turn, is simply the squared norm of the sample's coefficients in the latent space.

Value

getProb returns a probability, while getCoefficients returns the (scaled) scores in the pPCA space.

mesh2vtp

exports a triangular mesh of class mesh3d to a vtp file

Description

exports a triangular mesh of class mesh3d to a vtp file

Usage

```
mesh2vtp(mesh, filename = dataname)
```

Arguments

mesh mesh of class mesh3d

filename character

meshalign

align meshes stored in a list by their vertices

Description

align meshes stored in a list by their vertices

Usage

```
meshalign(meshlist, scale = TRUE, use.lm = NULL, deselect = FALSE,
    array = FALSE)
```

Arguments

meshlist	list containing triangular meshes of class "mesh3d"
scale	logical: request scaling during alignment
deselect	logical: if TRUE, missingIndex references the existing coordinates instead of the missing ones.
use.lm	integer vector: specifies the indices of the points that are to be used in the constrained model
array	logical: if TRUE the superimposed vertices will be returned as 3D array.

pPCA

Value

returns a list of aligned meshes or an array of dimensions k x 3 x n, where k=number of vertices and n=sample size.

meshlist2array

convert meshes to array consisting of vertex coordinates

Description

convert meshes to array consisting of vertex coordinates

Usage

```
meshlist2array(meshlist)
```

Arguments

meshlist

list containing triangular meshes of class "mesh3d"

Value

returns an array with k x 3 x n dimensions where k=number of vertices, and n=sample size.

pPCA

calculate or modify a probablistic PCA based on 3D-coordinates

Description

calculate or modify a probablistic PCA based on 3D-coordinates

Usage

```
pPCA(array, align = TRUE, use.lm = NULL, deselect = FALSE, sigma = NULL,
    exVar = 1, scale = TRUE, representer = NULL)

setMod(procMod, sigma, exVar)

## S3 method for class 'pPCA'
setMod(model, sigma = NULL, exVar = 1)
```

pPCA 7

Arguments

array	array of dimensions $k \times 3 \times n$, where k =number of coordinates and n =sample size.
align	logical: if TRUE, the data will be aligned first
use.lm	integer vector: specifies the indices of the points that are to be used in the constrained model
deselect	logical: if TRUE, use.1m references the missing coordinates instead of the present ones.
sigma	estimate of error variance (sensible is a value estimating coordinate error in terms of observer error)
exVar	numeric value with $0 < exVar <= 1$ specifying the PCs to be included by their cumulative explained Variance
scale	logical: allow scaling in Procrustes fitting
fullfit	logical: if FALSE only the non-missing points will be used for registration.
representer	a triangular mesh, where the vertices correspond to the coordinates in array, leave NULL for pointclouds.
model	object of class pPCA

Value

returns a probabilistic PCA model of class "pPCA". setMod is used to modify existing models by changing sigma and exVar.

The class "pPCA" is a list containing the follwing items (still not yet set in stone)

PCA a list containing
sdev: the square roots of the covariance matrix' eigenvalues
rotation: matrix containing the orthonormal PCBasis vectos
x: the scores within the latent space(scaled by 1/sdev)
center: a vector of the mean shape in with coordinates ordered (x1,y1,z1, x2, y2,z2, ..., xn,yn,zn)
scale
logical: indicating if the data was aligned including scaling

representer an object of class mesh3d or a list with entry vb being a matrix with the columns

containing coordinates and it a 0x0 matrix

sigma the noise estimation of the data

Variance a data frame containing the Variance, cumulative Variance and Variance ex-

plained by each Principal component

rawdata optional data: a matrix with rows containing the mean centred coordinates in

order (x1, y1, z1, x2, y2, z2, ..., xn, yn, zn)

References

Lüthi M, Albrecht T, Vetter T. 2009. Probabilistic modeling and visualization of the flexibility in morphable models. In: Mathematics of Surfaces XIII. Springer. p 251-264

8 predictpPCA

Examples

```
require(Morpho)
data(boneData)
model <- pPCA(boneLM[,,])
## change parameters without recomputing Procrustes fit
model1 <- setMod(model, sigma=1, exVar=0.8)</pre>
```

predictpPCA

predict or restrict a mesh or matrix based on a statistical model

Description

predict or restrict a mesh or matrix based on a statistical model

Usage

```
predictpPCA(x, model, representer = TRUE, ...)

## S3 method for class 'matrix'
predictpPCA(x, model, representer = TRUE, origSpace = TRUE,
    use.lm = NULL, deselect = FALSE, sdmax, mahaprob = c("none", "chisq",
    "dist"), align = TRUE, ...)

## S3 method for class 'mesh3d'
predictpPCA(x, model, representer = TRUE, origSpace = TRUE,
    use.lm = NULL, deselect = FALSE, sdmax, mahaprob = c("none", "chisq",
    "dist"), align = TRUE, ...)

## S3 method for class 'numeric'
predictpPCA(x, model, representer = TRUE, ...)
```

Arguments

X	a matrix, a mesh3d or a vector (for pPCA models) containing standardized vari-
	ables within the PC-space

model model of class pPCA

representer if TRUE and the model contains a representer mesh, a surface mesh will be

returned, coordinate matrix otherwise.

origSpace logical: rotate the estimation back into the original coordinate system.

pPCA logical: if TRUE, a constrained pPCA model is returned. "chisq" uses the Chi-

Square distribution of the squared Mahalanobisdistance, while "dist" restricts the values to be within a multi-dimensional sphere of radius sdmax. If FALSE

the probability will be determined per PC separately.

use.1m optional: integer vector specifying row indices of the coordinates to use for rigid

registration on the model's meanshape.

read.vtk 9

sdmax maximum allowed standard deviation (per Principal axis) within the model space.

Defines the probabilistic boundaries.

mahaprob character: if != "none", use mahalanobis-distance to determine overall probabil-

ity (of the shape projected into the model space.

Value

predictpPCA returns a matrix/mesh3d restricted to the boundaries given by the modelspace.

read.vtk

imports vtk and vtp files

Description

imports vtk and vtp files

Usage

read.vtk(filename)

Arguments

filename

character string

Value

list of class mesh3d

representer2sample

get the representer from a model of class "pPCA"

Description

get the representer from a model of class "pPCA"

Usage

representer2sample(model)

Arguments

model

object of class pPCA

Value

an object of class mesh3d or matrix, depending whether a point cloud or a triangular mesh is the model's representer.

10 statismoBuildModel

Description

Fast Procrustes align of coordinates

Usage

```
rigidAlign(array, scale = TRUE, use.lm = NULL, deselect = FALSE)
```

Arguments

array array of coordinates

scale logical: request scaling during alignment

use.lm integer vector: specifies the indices of the points that are to be used in the con-

strained model

deselect logical: if TRUE, use.lm references the missing coordinates instead of the

present ones.

Value

a list containing

rotated array containing registered coordinates

mshape matrix containing meanshape

statismoBuildModel generate a statistical model using an array of superimposed land-

marks or a list of meshes

Description

generate a statistical model using an array of superimposed landmarks

Usage

```
statismoBuildModel(x, representer, sigma = 0, scale = TRUE)
```

Arguments

x array of aligned 3D-coordinates or a list of aligned registered meshes.

representer matrix or triangular mesh of class "mesh3d" with vertices corresponding to rows

in the array.

sigma noise in the data

scale logical: set to TRUE, if scaling was involved in the registration.

statismoGPmodel 11

Value

```
an object of class pPCA
```

See Also

```
pPCA, rigidAlign, meshalign
```

Examples

```
require(Morpho)
data(boneData)
align <- rigidAlign(boneLM)$rotated
mymod <- statismoBuildModel(align,representer=align[,,1],sigma=2,scale=TRUE)
## save it
statismoSaveModel(mymod,"mymod.h5")</pre>
```

statismoGPmodel

expands a models variability by adding a Gaussian kernel function

Description

expands a models variability by adding a Gaussian kernel function to the empiric covariance matrix and builds a low-rank approximation of the resulting PCA

Usage

```
statismoGPmodel(model, useEmpiric = TRUE, kernel = list(c(100, 70)), ncomp = 10, nystroem = 500)
```

Arguments

model shape model of class pPCA

useEmpiric logical: if TRUE, the empiric covariance kernel will be added to the Gaussian

ones.

kernel a list containing two valued vectors containing with the first entry specifiying

the bandwidth and the second the scaling of the Gaussian kernels.

ncomp integer: number of PCs to approximate

nystroem number of samples to compute Nystroem approximation of eigenvectors

Value

returns a shape model of class pPCA

See Also

pPCA

Examples

```
### this is a silly example with only 10 landmarks
require(Morpho)
data(boneData)
align <- rigidAlign(boneLM)$rotated
mod <- statismoBuildModel(align)
GPmod <- statismoGPmodel(mod,kernel=list(c(10,1),c(1,1)))##extend flexibility using two Gaussian kernels
GPmodNoEmp <- statismoGPmodel(mod,kernel=list(c(10,1),c(1,1)),useEmpiric = FALSE)##extend flexibility using two
PClorig <- predictpPCA(2,mod)# get shape in 2sd of first PC of originial model
PC1 <- predictpPCA(2,GPmod)# get shape in 2sd of first PC of the extended model
PC1NoEmp <- predictpPCA(2,GPmodNoEmp)# get shape in 2sd of first PC
##visualize the differences from the mean (green spheres)
deformGrid3d(PC1,GPmod$mshape,ngrid=0,col1=4,add=TRUE)##only deviates in 5 landmarks from the mean (dark bl
deformGrid3d(PC1orig,GPmod$mshape,ngrid=0,col1=5,add=TRUE)</pre>
```

statismoLoadModel/statismoSaveModel

save and load a statistical model of class pPCA to statismo hdf5 format

Description

save and load a statistical model of class pPCA to statismo hdf5 format

Usage

```
statismoSaveModel(model, modelname = dataname)
statismoLoadModel(modelname, scale = TRUE)
```

Arguments

model object of class pPCA modelname filename to read/save

Value

statismoLoadModel returns an object of class pPCA while statismoSaveModel saves an object of class pPCA to disk in the statismo file format.

See Also

pPCA

StatismoModelMembers 13

Description

Implementation/Emulation of the statsimo StatisticalModel class.

Usage

```
GetPCABasisMatrix(model)
GetOrthonormalPCABasisMatrix(model)
GetNoiseVariance(model)
GetMeanVector(model)
GetPCAVarianceVector(model)
ComputeLogProbabilityOfDataset(model, dataset)
ComputeProbabilityOfDataset(model, dataset)
DrawMean(model)
DrawSample(model, coefficients = NULL, addNoise = FALSE)
ComputeCoefficientsForDataset(model, dataset)
```

Arguments

model object of class pPCA

dataset an (already aligned) mesh or k x 3 matrix containing the datasets coordinates.

coefficients specify coefficients in the latent space to draw a sample

addNoise logical: if TRUE noise as specified in the model will be added to the returned

sample

Details

see http://statismo.github.io/statismo/classdoc/html/classstatismo_1_1StatisticalModel. html for details.

Value

functions return matrices, (log)-probabilties, coefficients or sample (mesh3d or matrix) for specific dataset

Index

*Topic StatisticalModel <representer></representer>
statismoBuildModel, 10
statismoGPmodel, 11
statismoLoadModel/statismoSaveModel
12
StatismoModelMembers, 13
*Topic package
RvtkStatismo-package, 2
ComputeCoefficientsForDataset
(StatismoModelMembers), 13
ComputeConstrainedModel, 2
ComputeLogProbabilityOfDataset
(StatismoModelMembers), 13
ComputeProbabilityOfDataset
(StatismoModelMembers), 13
DrawMean (StatismoModelMembers), 13
DrawSample (StatismoModelMembers), 13
<pre>getCoefficients(getDataLikelihood), 4</pre>
<pre>getCoordVar, 3</pre>
<pre>getDataLikelihood, 4</pre>
GetMeanVector (StatismoModelMembers), 13
GetNoiseVariance
(StatismoModelMembers), 13
GetOrthonormalPCABasisMatrix
(StatismoModelMembers), 13
GetPCABasisMatrix
(StatismoModelMembers), 13
GetPCAVarianceVector
(StatismoModelMembers), 13
mesh2vtp, 5
meshalign, 5, 11
meshlist2array,6
pPCA, 3, 6, 9, 11–13
predictpPCA, 8
read.vtk, 9