Volumetric and morphometric imaging

Quantitative and Functional Imaging
BME 4420/7450
Fall 2022

These images were acquired 3 years apart. What changed?

Fuerst, Ann. Neurol (2003)

Outline

- Overview of brain anatomy
- Why measure tissue volume?
- Methods of measuring volume from images
- Why measure structure shape?
- Methods of characterizing shape
- Examples

Overview of brain anatomy

- Total volume ~1400cc
- Two hemispheres
- Surrounded by fluid (cerebral spinal fluid)
- Cell types
 - Neurons
 - Glia

Neurons

- ~100 billion in brain
- Input from dendrites
- Output along axon
- Axon carries action potential to dendrites of other neurons

Glia

- Supporting cells
- Outnumber neurons10:1
- Types
 - Oligodendrocytes make myelin
 - Astrocytes buffer and support neurons

Gray matter

- Neuronal cell bodies
- Glial cell bodies
- Neuropil (cell processes)
 - Dendrites
 - Proximal (mostly unmyelinated) axons

- Frontal lobe
 - Reasoning
 - Problem solving
 - Movement
 - Emotions
- Occipital lobe
 - Vision

- Parietal lobe
 - Spatial reasoning
 - Touch
 - Temperature & pressure
 - Pain
- Temporal lobe
 - Auditory processing
 - Memory

White matter

- Many myelinated axons
- Long range connections between neurons
 - Between hemispheres
 - Between cortical and subcortical
 - Within hemisphere cortical to cortical

Why measure tissue volume?

- Volume is related to function
- Blood volume
 - Vessel resistance depends on diameter (R ~ 1/d⁴)
 - Cardiac output = left ventricle volume change
- Tissue volume changes as
 - Cells grow in size
 - Cells divide (i.e., grow in number)
 - Cells die
 - Cell populations change
 - Extracellular fluid expands (edema)
- Tissue volume reflects cell composition
 - Cell composition influences tissue function

Volumetry from images

- Calculate tissue volume
 - Find number of voxels in tissue, multiply by voxel volume
 - Find area on each slice, then multiply total area by slice thickness

- Assume a particular shape and measure parameters of the shape
 - e.g., an ellipsoid (measure major & minor axes)
- Accuracy is limited by
 - Resolution
 - Image distortions
 - Ability to determine location of tissue boundaries

Interpreting associations found with imaging

- Association does not imply causation
- If A and B are associated conditions, any of the following is possible
 - A causes B
 - B causes A
 - C causes A and B
- How can the cause be determined?

Interpreting associations found with imaging

- Association does not imply causation
- If A and B are associated conditions, any of the following is possible
 - A causes B
 - B causes A
 - C causes A and B
- How can the cause be determined?
 - Find which condition comes first
 - Find the mechanism
 - Controlled experiments can help

An example: risk factors for Post-Traumatic Stress Disorder (PTSD)

- Symptoms:
 - Flashbacks to traumatic event(s)
 - Sleep problems/nightmares
 - Emotional numbness or outbursts
 - Inappropriate startle reflex
 - Memory and concentration deficits
- PTSD is associated with atrophy of the hippocampus (memory)
 - Combat trauma
 - Prolonged childhood abuse
 - Is atrophied hippocampus cause or effect?
 - · How could we determine this?
- Stress hormones (e.g., cortisol) may be the link

What is the causal relation between hippocampal volume and PTSD?

- Monozygotic (genetically identical) twins
 - Differences are due to environment
- In each pair
 - One twin is a (Vietnam) combat veteran (Ex)
 - PTSD positive (P+) or negative (P-)
 - One twin is not a veteran (Ux)
 - Exposed twin is PTSD positive (P+) or negative (P-)

Measure hippocampal volume in both twins

Gilbertson, Nature Neurosci (2002)

Correlation between hippocampal volume and PTSD severity

Gilbertson, Nature Neurosci (2002)

Correlation between hippocampal volume and PTSD severity

Gilbertson, Nature Neurosci (2002)

Summary of PTSD study

- Smaller hippocampus is associated with higher risk for PTSD
 - Stress is bad for the hippocampus
 - Larger hippocampus -> greater 'reserve'
- Studying twins distinguishes two cases:
 - PTSD increases risk of smaller hippocampus
 - Small hippocampus increases risk of PTSD
- Controlled experiments can reveal causal links

Why measure shape?

- Shape can reflect function
 - Relationship between a tissue and its input/output (e.g., vessel lumen)
 - Biomechanics (e.g., muscle insertion angles)
- Changes in shape reflect
 - Strain (cardiac muscle)
 - Uniform/non-uniform growth (bone growth)
 - Cell death
 - Tissue injury

Morphometry

- Measurement of tissue shape
- Shape descriptions:
 - Curvature (line, surface model)
 - Eccentricity (ellipsoids)
 - Branching structure (vascular, respiratory systems)
 - Folding patterns (cortex of brain)
- Relies on fitting pixel data to a geometric model
- Limited by
 - Resolution
 - Image distortions
 - Ability to determine tissue boundary locations

In-class exercise: Choose an application

Coronary artery disease	Cardiac function
Cause of seizures	Loading of the spine
Tumor growth	Airway resistance

Define

- Quantity of interest
 - Volume or shape?
- Imaging method
- How to analyze images
- Likely limitations of measurements

Evaluation of coronary artery disease using intravascular ultrasound

- Ultrasound contrast between
 - Plaque
 - Healthy vessel wall
 - Blood
- Where is stenosis most severe?
 - Guide for stent placement
- Classify pixels (plaque, blood, etc)
- Measure sizes, volumes
- Plot vessel lumen diameter and plaque thickness along vessel

Measuring cardiac ejection fraction with MRI

- Cardiac function is related to volume of blood pumped per sec
- Maximum change in volume of left ventricle (LV)
- Model LV as ellipsoid
- Volume is determined by length and area

Bankman (2000)

Temporal lobe epilepsy

- Hippocampal formation is sensitive to damage
- Neurons die, glia proliferate
- Hippocampus becomes hyperexcitable
 - Positive feedback loop increases seizure frequency
- Volume loss is correlated with seizure frequency
- Volumetrics for diagnosis and surgical planning

Volume loss over 3 years

Fuerst, Ann. Neurol (2003)

Summary

- Volume and shape of structures reflect their composition and function
- Imaging provides the starting point for analysis
- Measurements depend on
 - Image contrast-to-noise ratio
 - Resolution
 - Spatial distortion
 - Artifacts

Sources

- Bankman I, Handbook of Medical Imaging: Processing and Analysis (Academic Press; 2000).
- Fuerst D, et al, Hippocampal sclerosis is a progressive disorder: a longitudinal volumetric MRI study. Annals of Neurology (2003).
- Gilbertson MW, et al., "Smaller hippocampal volume predicts pathological vulnerability to psychological trauma." Nature Neuroscience (2002).
- Robb RA, Biomedical Imaging, Visualization, and Analysis (Wiley-Liss; 1999).
- Sherwood L, Systems Physiology: from Cells to Systems (Brooks Cole; 2006).
- http://faculty.washington.edu/chudler/ehc.html
- http://www.ptd.neu.edu/Neuroanatomy/Cyberclass/Histology/frameNeurohistology.htm
- http://views.vcu.edu/ana/OB/NERVOU~1/sld027.htm