1. 교과목 수강인원

■공학

수업년도	수업학기	계열구분	수강인원	이수인원
2015	1	공학	30	30
2016	1	공학	40	40
2018	1	공학	15	15
2019	1	공학	28	28

2. 평균 수강인원

수업년도	수업학기	캠퍼스	공통교과목	학과교과목	해당교과목	내교과목
2018	1	39.54	61.09	35.36	15	
2017	2	37.26	63.09	32.32		
2017	1	38.26	65.82	33.5		
2016	2	37.24	72.07	31.53		
2016	1	37.88	73.25	32.17	40	

3. 성적부여현황(평점)

4. 성적부여현황(등급)

수업년도	수업학기	등급	인원	비율
2015	1	Α+	8	26.67
2015	1	Α0	20	66.67
2015	1	B+	2	6.67
2016	1	Α+	9	22.5
2016	1	Α0	6	15
2016	1	B+	10	25
2016	1	ВО	7	17.5
2016	1	C+	8	20
2018	1	Α+	3	20
2018	1	Α0	4	26.67
2018	1	B+	5	33.33
2018	1	ВО	3	20
2019	1	Α+	4	14.29
2019	1	Α0	7	25
2019	1	B+	4	14.29
2019	1	ВО	5	17.86
2019	1	C+	3	10.71
2019	1	C0	5	17.86

5. 강의평가점수

 수업년도	수업학기	캠퍼스	공통교과목	학과교과목	해당교과목	내교과목
2019	1	89.75	90.43	89.64	95	
2018	1	89.55	90.19	89.44	92	
2018	2	89.75	90.05	89.7		
2017	2	90.46	90.27	90.49		
2017	1	89.91	90.14	89.87		

6. 강의평가 문항별 현황

		본인평 균 (가중 치적용)	H OLTH		점수별 인원분포				
번호	평가문항		소속학과,대학평균과의 차이 (+초과,-:미달)		매우 그렇 치않 다	그렇 치않 다	보통 이다	그렇 다	매우 그렇 다
	교강사:		학과	대학	- 1점	2점	3점	4점	디
			차이 평균	차이 평균	- 1점		5심	4점	5점

No data have been found.

7. 개설학과 현황

학과	2019/1	2018/1	2016/1	2015/1	
기계공학부	1강좌(3학점)	1강좌(2학점)	1강좌(2학점)	1강좌(2학점)	0강좌(0학점)

8. 강좌유형별 현황

강좌유형		2015/1	2016/1	2018/1	2019/1
일반	0강좌(0)	1강좌(30)	1강좌(40)	1강좌(15)	1강좌(28)

9. 교과목개요

교육과정	관장학과	국문개요	영문개요	수업목표
학부 2016 - 2019 교육과 정	서울 공과대학 기계공학부	기술의 발전으로 다분야의 통합 및 융합이 강조 되고 있는 시대에 발 맞춰 기계 시스템이 필수적 인 여러 분야에 대한 이론 지식과 컴퓨터 설계 실습을 병행한다. - MEMS 시스템 설계 및 응용 - 반도체 시스템 설계 및 응용 - 전기화학 발전 시스템 설계 및 응용 - Electrical and Magnetic 시스템 설계 및 응 용	The course provides basic principles and design program skills of multidisciplinary mechanical systems. - MEMS system design and application - Semiconductor system design and application - Electrochemical energy system design and application - Electrical and magnetic system design and application	기계공학 학부 과정에서 쉽게 접하기 힘들지만 기계 시스템들이 많이 사용되는실제 분야들에 대한이론 지식을 습득하고 실습을 통해 실제업무 분야에서 준비된 인재를 양성하는것을 목표로 한다.
학부 2013 - 2015 교육과 정	서울 공과대학 기계공학부	기술의 발전으로 다분야의 통합 및 융합이 강조되고 있는 시대에 발 맞춰 기계 시스템이 필수적인 여러 분야에 대한 이론 지식과 컴퓨터 설계실습을 병행한다 MEMS 시스템 설계 및 응용- 반도체 시스템 설계 및 응용- 전기화학 발전 시스템 설계 및 응용	The course provides basic principles and design program skills of multidisciplinary mechanical systems. - MEMS system design and application - Semiconductor system design and application - Electrochemical energy system design	기계공학 학부 과정에서 쉽게 접하기 힘들지만 기계 시스템들이 많이 사용되는실제 분야들에 대한이론 지식을 습득하고 실습을 통해 실제

교육과정	관장학과	국문개요	영문개요	수업목표
		- Electrical and Magnetic 시스템 설계 및 응 용	and application - Electrical and magnetic system design and application	업무 분야에서 준비 된 인재를 양성하는 것을 목표로 한다.
학부 2009 - 2012 교육과 정	서울 공과대학 기계공학부	기술의 발전으로 다분야의 통합 및 융합이 강조 되고 있는 시대에 발 맞춰 기계 시스템이 필수적 인 여러 분야에 대한 이론 지식과 컴퓨터 설계 실습을 병행한다. - MEMS 시스템 설계 및 응용 - 반도체 시스템 설계 및 응용 - 전기화학 발전 시스템 설계 및 응용 - Electrical and Magnetic 시스템 설계 및 응 용	The course provides basic principles and design program skills of multidisciplinary mechanical systems. - MEMS system design and application - Semiconductor system design and application - Electrochemical energy system design and application - Electrical and magnetic system design and application	기계공학 학부 과정에서 쉽게 접하기 힘들지만 기계 시스템들이 많이 사용되는실제 분야들에 대한이론 지식을 습득하고 실습을 통해 실제업무 분야에서 준비된 인재를 양성하는 것을 목표로 한다.

10. CQI 등록내역 No data have been found.