

Exercício Programa I

MAP3121 - Métodos Numéricos e Aplicações - 1º Semestre 2020

Nome NUsp

Isabella Bologna Salomão 9267161

Renato de Oliveira Freitas 9837708

São Paulo, 22 de Maio de 2020

Primeira tarefa

a) Diferenças Finitas

Dados:

Fonte de calor: $f(t,x) = 10 \cos(10t)x^2(1-x)^2 - (1+\sin(10t))(12x^2-12x+2)$

Solução exata: $u(t,x) = (1 + sin(10t)) x^2 (1 - x^2)$

Condição inicial: $u0(x) = x^2 (1-x)^2$

Condição de fronteira: g1(tk) = 0 g2(tk) = 0

T = 1

Integrações:

N = 10, 20, 40, 80, 160 e 320

 $\lambda = 0.5 \ e \ \lambda = 0.25$

Solução item A, N = 20, M = 800, Lambda = 0.5

Solução item A, N = 80, M = 12800, Lambda = 0.5

Solução item A, N = 320, M = 204800, Lambda = 0.5

Solução item A, N = 10, M = 400, Lambda = 0.25

Solução item A, N = 160, M = 102400, Lambda = 0.25

Solução item A, N = 320, M = 409600, Lambda = 0.25

$\bullet \quad \lambda = 0.51$

Usando $\lambda = 0.51$ a condição de convergência usada nesse método, dada pela equação (27), é violada, de forma que o método fica instável.

Equação (27)
$$\lambda = \frac{\Delta t}{\Delta x^2} \leq \frac{1}{2}$$

Solução item A, N = 100, M = 19608, Lambda = 0.51

• Número de Passos

O número de passos necessários para o cálculo será $M \geq \frac{T.N^2}{\lambda}$, $M \in Z$

N	λ = 0.5	λ = 0.25
640	819200	1638400
1280	3276800	6553600

b) Determine quem deve ser u0(x), g1(t), g2(t) ef(t, x) de forma que a solução exata seja dada por $u(t, x) = e^{t-x} cos(5tx)$

$$u_0(x) = u(0,x) = e^{0-x} \cos(5.0.x) = e^{-x}$$

$$u_t(t,x) = u_{xx}(t,x) + f(t,x) \rightarrow f(t,x) = u_t(t,x) - u_{xx}(t,x)$$

$$u_t(t,x) = e^{t-x} \left[\cos(5tx) - 5x \sin(5tx)\right]$$

Solução item B, N = 20, M = 800, Lambda = 0.5

Solução item B, N = 320, M = 409600, Lambda = 0.25

Erro máximo em T=1

Comparação do erro para cada N e λ nos dois itens utilizando diferenças finitas

	Item A		Item B	
N	λ = 0.5	λ = 0.25	λ = 0.5	λ = 0.25
10	3.16E-03	3.05E-03	5.05E-02	5.00E-02
20	7.84E-04	7.58E-04	1.26E-02	1.25E-02
40	1.96E-04	1.89E-04	3.15E-03	3.13E-03
80	4.89E-05	4.73E-05	7.88E-04	7.82E-04
160	1.22E-05	1.18E-05	1.97E-04	1.95E-04
320	3.05E-06	2.96E-06	4.93E-05	4.89E-05

Ao dobrarmos o N, vemos que o erro, em ambos os casos diminui em 4 vezes. Isto é, o erro diminui em uma relação de segunda ordem.

c) Dados:

T = 1

Condição Inicial: 0

fonte pontual: $r(t) = 10000 (1 - 2 t^2)$

gh(x) = 1/h, se $p - h/2 \le x \le p + h/2$, e gh(x) = 0 caso contrário

fonte em p = 0.25

Condição de fronteira: g1(t) = g2(t) = 0

Solução item C, N = 80, M = 12800, Lambda = 0.5

Segunda tarefa

a) Procedimento para calcular a solução x de $Ax = LDL^{t}x = b$

```
def LDL decomposition(A, B):
   '''LDLT decomposition of a matrix represented by two arrays
   Args:
    ____
      A: diagonal of the original matrix
       B: subdiagonal of the original matrix
   Returns:
       LDL decomposition represented as two arrays (L, D)
    1.1.1
   L = np.array([0] * len(A), dtype=float)
   D = np.array([0] * len(A), dtype=float)
   D[0] = A[0]
   L[0] = 0
    # Calculo dos valores 'Di' e 'Li' de cada matriz
   for i in range(1, len(A)):
       L[i] = B[i] / D[i - 1]
       D[i] = A[i] - (L[i]**2 * D[i - 1])
   return L, D
```

```
# Loop principal da solução do sistema "[L][D][Lt] [x] = [b]" para cada tk,
k=1...M

for k in range(1, Item.M + 1):
    b = calc_b(k) # calcula o vetor correspondente ao lado direito do sistema

# Primeiro, resolvemos [L][D] [y] = [b]

y[0] = b[0] / D[0]

for i in range(1, Item.N-1):
    y[i] = ((b[i] - L[i] * (y[i-1] * D[i-1])) / D[i])

# Por ultimo, [Lt] [x] = [y] para achar a solução x

Item.u[k][Item.N-1] = y[-1]

for i in range(Item.N-2, 0, -1):
    Item.u[k][i] = y[i-1] - (L[i] * Item.u[k][i+1])
```

b) Método de Euler implícito, utilizando $\Delta t = \Delta x$.

Item A

Solução item A, N = 20, M = 20, Lambda = 20

Solução item A, N = 320, M = 320, Lambda = 320

Item B

Solução item B, N = 20, M = 20, Lambda = 20

Solução item B, N = 320, M = 320, Lambda = 320

Item C

Solução item C, N = 20, M = 20, Lambda = 20

Solução item C, N = 640, M = 640, Lambda = 640

• Erro máximo em T=1

N	Item A	Item B
10	2.08E-03	4.50E-02
20	1.50E-03	9.37E-03
40	8.79E-04	6.28E-03
80	4.74E-04	3.61E-03
160	2.46E-04	1.93E-03
320	1.25E-04	9.97E-04

Vemos para esse método que o erro cai, com o aumento do N, com ordem 1

c) Método de Crank-Nicolson.

Solução item A, N = 20, M = 20, Lambda = 20

Solução item A, N = 320, M = 320, Lambda = 320

Solução item B, N = 40, M = 40, Lambda = 40

Solução item B, N = 640, M = 640, Lambda = 640

Solução item C, N = 10, M = 10, Lambda = 10

