WBLE-SL ▶ UECM245	-202301-EZZ ▶ Quizzes ▶ 202301UECM24530E4b ▶ Review of preview	Update this Quiz		
	Info Results Preview Edit			
IIIU RESULS FIEVIEW LUIL				
202301UECM24530E4b				
Start again				
Review of preview				
Started on Sunday, 16 April 2023, 04:18 PM				
	Sunday, 16 April 2023, 04:18 PM			
Time taken 10 secs				
Grade	0 out of a maximum of 10 (0%)			
1 ☑ Marks: 1	You are given the following information for zero-coupon bonds: Bond Maturity (T in years) 1			
	Calculate the price of an interest rate caplet that provides an 11.0% (effective annual rate) cap on 1-year borrowing of 100 3 years from now.			
	Answer:			
	Make comment or override grade Incorrect Correct answer: 5.6499 Marks for this submission: 0/1.			
2 Marks: 1	Let P(r,t,T) be the time-t price of a zero-coupon bond that matures at time T, when the time-t short rate is r. You are given: • The stochastic process of P is given by where Z(t) is a standard Brownian motion. • The Sharpe ratio of the interest rate risk is of the form φ(r,t) = kr, where k is a constant. • α(0.15,2,5) = 0.65 • q(0.15,2,5) = 2.38 and q(0.24,3,7) = 3.87 Determine α(0.24,3,7)			
	Make comment or override grade Incorrect Correct answer: 1.54088 Marks for this submission: 0/1.			
25	Vou pro divers			
Marks: 1	 You are given: The stochastic process of the short rate is dr(t) = a(r)dt + σ(r)dZ(t), where σ(r)>0 and Z(t) is a standard Brownian motion. Let P(r,t,T) be the time-t price of a zero-coupon bond that matures at time T, when the time-t short rate is r. Then P(r,t,T) satisfies the equation ∂ P/ ∂t + (0.43 - 0.22r) ∂P/ ∂r + 0.058r ∂²P /∂ r² = rP 			

• The Sharpe ratio is $\varphi(r,t) = 0.1\sqrt{r}$.

Determine a(0.07)				
Answer:		x		
Make comment or ov Incorrect Correct answer: 0.41 Marks for this				
4 👺	For $t \le T$, let $P(r, t,T)$ be the price a	t time t of a zero-coupon bond that pays \$1 at time T, if the short-rate at time t is r. You are given:		
Marks: 1	 P(r, t,T)= A(t,T)e^{-B(t,T)r} for so B(0,8)= 3.0667. 			
	Based on P(0.043, 0, 8), you use th	e delta-gamma approximation to estimate P(r, 0, 8), and denote the value as P _{Est} (r, 0, 8). If 1000(P _{Est} (r, 0, 8)/P(0.043, 0, 8)-1)= -15.2463 and r < 0.1. Calculate r.		
	Answer:			
	Make comment or override grade Incorrect Correct answer: 0.048 Marks for this submissio	n: 0/1.		
5 👺	Let r(t) be the time-t short rate. You	u re given that		
Marks: 1	The stochatic process of r(t) is given by dr(t) = 2σ[0.19-r(t)]dt + σ dZ(t) where σ is a positive constant and Z(t) is a standard Brownian motion. The Sharpe ratio of interest risk is 0.1. Let P(r,t,T) be the time-t price of a zero-coupon bond that matures at time T, when the time-t short rate is r.			
	Find $\lim_{T\to\infty}$ In P(0.03,0,T)/T	-		
	Answer:	x		
	Make comment or override grade			
	Incorrect Correct answer: -0.115 Marks for this submissio	n: 0/1.		
6 ፟	Let P(r,t,T) denote the price at time	t of \$1 to be paid with certainty at time T, $t \le T$, if the short rate at time \$t\$ is equal to r. for a Vasicek model you are given:		
Marks: 1		P(0.08, 4, 9) = 0.6707 P(0.1,8, 13) = 0.492693 P(r*, 5,10) = 0.643752		
	. Calculate r*			
	Answer:	x		
	Make comment or override grade			
	Incorrect Correct answer: 0.082659 Marks for this submissio	n: 0/1.		
7 🕏	You are given that r(t), the short te	rm interest rate at time t, satisfies the follwoing equation:		
Marks: 1	where Z(s) is a Brownian motion.	$r(t) = r(0) e^{-0.032t} + 0.06(1 - e^{-0.032t}) + 0.08 \int_0^t e^{0.032(s-t)} dZ(s)$ ued at time t and expiring at time T when the short term interest rate is r is denoted by $P(r,t,T)$.		
	Answer:	x		
	Make comment or override grade Incorrect Correct answer: -4.5352			

Marks for this submission: 0/1. 8 🐷 _ in a Cox-Ingersoll-Ross model follows dr(t) = [0.009 - 0.09r(t)]dt + 0.1√r(t) dZ(t), where {Z(t)} is a standard Brownian motion under the true probability measure. For t ≤ T , let P(r,t,T) denote the price at time t of a zero-coupon bond that pays 1 at time T, if the short-rate at time t is r. You are given: Marks: 1 • The Sharpe ratio takes the form $\phi(r,t) = c\sqrt{r}$. • $\lim_{T\to\infty} 1/T \ln[P(r,0,T)] = -0.08253$ for each r>0. Find the constant c. {#0.267000:0.013350} Answer: Make comment or override grade Correct answer: r(t) Marks for this submission: 0/1. 9 👺 In a Cox-Ingersoll-Ross model for the short rate, q(0.032, 2, 6) = 0.928. Determine q(0.055, 4, 8). Marks: 1 Answer: Make comment or override grade Incorrect Correct answer: 1.2166 Marks for this submission: 0/1. 10 🐷 Let r(t) be the short rate at time t. You are given: Marks: 1 • The stochastic process of r(t) is $dr(t) = [0.3-0.5r(t)]dt + 0.15\sqrt{r(t)}dZ(t)$, where Z(t) is a standard Brownian motion under the true probability measure. The Sharpe ratio of Z is of the form φ(r,t) = c√r. • Let P(r,t,T) be the price at time t of a zero coupon bond paying 1 at time T, when the short rate at time t is r. Then P(0.03,0,4) = 0.0183 and P(0.11,0,4) = 0.0137. • The stochastic process for the bond price process is dP(r(t),t,T)/P(r(t),t,T) = a(r(t),t,T)dt - q(r(t),t,T)dZ(t). Find a(0.06,0,4). _____

(i) Moodle Docs for this page

Answer:

Incorrect

Make comment or override grade

Marks for this submission: 0/1.

Correct answer: 0.1352

You are logged in as Yong Chin Khian (Logout)

UECM2453-202301-EZZ