```
In [101... import os
          import random
          import numpy as np
          import pandas as pd
          import matplotlib.pyplot as plt
          import seaborn as sns
         from scipy import stats
          from sklearn.metrics import classification_report, confusion_matrix
         from sklearn import datasets
         from sklearn.model_selection import train_test_split
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.datasets import make_classification
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.preprocessing import StandardScaler
         from sklearn.preprocessing import PowerTransformer
         from sklearn.cluster import KMeans
         fixed_random_state = random.seed(42)
          import umap
          from sklearn.datasets import load digits
         %matplotlib inline
```

In [100... pip install umap-learn

```
Collecting umap-learn
           Downloading umap-learn-0.5.3.tar.gz (88 kB)
         Requirement already satisfied: numpy>=1.17 in c:\users\tural\anaconda3\lib\site-packa
         ges (from umap-learn) (1.21.5)
         Requirement already satisfied: scikit-learn>=0.22 in c:\users\tural\anaconda3\lib\sit
         e-packages (from umap-learn) (1.0.2)
         Requirement already satisfied: scipy>=1.0 in c:\users\tural\anaconda3\lib\site-packag
         es (from umap-learn) (1.7.3)
         Requirement already satisfied: numba>=0.49 in c:\users\tural\anaconda3\lib\site-packa
         ges (from umap-learn) (0.55.1)
         Collecting pynndescent>=0.5
           Downloading pynndescent-0.5.7.tar.gz (1.1 MB)
         Requirement already satisfied: tqdm in c:\users\tural\anaconda3\lib\site-packages (fr
         om umap-learn) (4.64.0)
         Requirement already satisfied: setuptools in c:\users\tural\anaconda3\lib\site-packag
         es (from numba>=0.49->umap-learn) (61.2.0)
         Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in c:\users\tural\anaconda3
         \lib\site-packages (from numba>=0.49->umap-learn) (0.38.0)
         Requirement already satisfied: joblib>=0.11 in c:\users\tural\anaconda3\lib\site-pack
         ages (from pynndescent>=0.5->umap-learn) (1.1.0)
         Requirement already satisfied: threadpoolctl>=2.0.0 in c:\users\tural\anaconda3\lib\s
         ite-packages (from scikit-learn>=0.22->umap-learn) (2.2.0)
         Requirement already satisfied: colorama in c:\users\tural\anaconda3\lib\site-packages
         (from tqdm->umap-learn) (0.4.4)
         Building wheels for collected packages: umap-learn, pynndescent
           Building wheel for umap-learn (setup.py): started
           Building wheel for umap-learn (setup.py): finished with status 'done'
           Created wheel for umap-learn: filename=umap learn-0.5.3-py3-none-any.whl size=82829
         sha256=f1cb7042a75a252027dc41f08db5b896e400732ec06c7e9d78f04765ba50c869
           Stored in directory: c:\users\tural\appdata\local\pip\cache\wheels\f4\3e\1c\596d0a4
         63d17475af648688443fa4846fef624d1390339e7e9
           Building wheel for pynndescent (setup.py): started
           Building wheel for pynndescent (setup.py): finished with status 'done'
           Created wheel for pynndescent: filename=pynndescent-0.5.7-py3-none-any.whl size=542
         86 sha256=ecc517ff2d0531e781b63bc7e02c9b2ca9265e3e4dd085f783c27382848531dd
           Stored in directory: c:\users\tural\appdata\local\pip\cache\wheels\5b\f5\6e\aac11d6
         9fe2115d9ac871d6c148b361f0d3f8a35ed7354fa03
         Successfully built umap-learn pynndescent
         Installing collected packages: pynndescent, umap-learn
         Successfully installed pynndescent-0.5.7 umap-learn-0.5.3
         Note: you may need to restart the kernel to use updated packages.
         os.getcwd()
In [3]:
          'C:\\Users\\tural'
         os.chdir('C:\\Users\\tural\\OneDrive\\Desktop\\Study Materials\\Datasets')
In [64]:
         df= pd.read_csv('wine-clustering.csv')
         df.head()
In [66]:
```

Out[3]:

In [37]:

Out[66]:		Alcohol	Malic_Acid	Ash	Ash_Alcanity	Magnesium	Total_Phenols	Flavanoids	Nonflavanoid_Phe
	0	14.23	1.71	2.43	15.6	127	2.80	3.06	
	1	13.20	1.78	2.14	11.2	100	2.65	2.76	
	2	13.16	2.36	2.67	18.6	101	2.80	3.24	
	3	14.37	1.95	2.50	16.8	113	3.85	3.49	
	4	13.24	2.59	2.87	21.0	118	2.80	2.69	

df.isna().sum() In [68]: Alcohol 0 Out[68]: 0 Malic Acid Ash 0 Ash_Alcanity 0 Magnesium 0 Total_Phenols 0 Flavanoids 0 Nonflavanoid_Phenols 0 Proanthocyanins 0 Color_Intensity 0 Hue 0 OD280 0 Proline 0 dtype: int64

```
In [78]: for col in df.columns:
    fig, axs = plt.subplots(figsize = (4,4))
    sns.histplot(data=df, x=col, kde=True, ax=axs)
    plt.show()
```



```
In [80]: X = df.copy()
X = StandardScaler().fit_transform(df)
X = PowerTransformer(standardize = False).fit_transform(X)
```

```
In [81]: X = pd.DataFrame(X, columns = df.columns)
   X.head()
```

Out[81]:		Alcohol	Malic_Acid	Ash	Ash_Alcanity	Magnesium	Total_Phenols	Flavanoids	Nonflavanoi
	0	1.552972	-0.702436	0.233769	-1.224710	1.378174	0.796708	1.043661	
	1	0.247472	-0.610198	-0.809540	-2.696922	0.018056	0.562211	0.738364	
	2	0.197645	0.021031	1.141607	-0.272253	0.086325	0.796708	1.227314	
	3	1.732995	-0.400457	0.495037	-0.837478	0.767296	2.405004	1.482916	
	4	0.297382	0.207225	1.919073	0.442690	1.001563	0.796708	0.667285	

In [82]: for col in X.columns:
 fig, axs = plt.subplots(figsize = (4,4))
 sns.histplot(data=X, x=col, kde=True, ax=axs)
 plt.show()


```
In [90]: distortions = []
K = range(1,10)
for k in K:
     kmeanModel = KMeans(n_clusters=k)
     kmeanModel.fit(X)
     distortions.append(kmeanModel.inertia_)
```

C:\Users\tural\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:1036: UserWarni ng: KMeans is known to have a memory leak on Windows with MKL, when there are less ch unks than available threads. You can avoid it by setting the environment variable OMP _NUM_THREADS=1.

warnings.warn(

```
In [91]: plt.figure(figsize=(16,8))
   plt.plot(K, distortions, 'bx-')
   plt.xlabel('k')
   plt.ylabel('Distortion')
   plt.title('The Elbow Method showing the optimal k')
   plt.show()
```



```
In [92]: labels = KMeans(n_clusters=3, random_state=fixed_random_state).fit_predict(X)
```

In [104... reducer = umap.UMAP(n_components=2, n_neighbors=15, n_jobs=-1, random_state=fixed_rand
embedding = reducer.fit_transform(X)

In [109... plt.figure(figsize = (17,10))
 sns.scatterplot(x=embedding[:, 0], y=embedding[:, 1], hue=labels, palette=['black', 'r
 plt.legend(title="cluster ID")
 plt.show()

