Tarefas de Mineração de Dados

Prof. Me. Ricardo Ávila ricardo.avila@outlook.com.br

Tarefas de DCBD (KDD)

- Classificação [Preditivo]
- Clustering [Descritivo]
- Regras de associação [Descritivo]
- Padrões seqüenciais [Descritivo]
- Outliers [Preditivo]

Exemplos de Tarefas de Classificação

- Predizer se um tumor é benigno ou maligno
- Classificar transações de cartões de crédito como legítimas ou fraudulentas

- Classificar estruturas secundárias de proteínas como alpha-helix, beta-sheet, or random coil
- Categorizar textos como da área de finanças, previsão de tempo, esportes, cultura, etc.

Classificação: Aplicação 1

- Marketing direto
 - Objetivo: Reduzir o custo de postagem na oferta para um conjunto alvo de consumidores mais prováveis de comprar um novo produto.
 - Abordagem:
 - Usar os dados de um produto similar oferecido anteriormente.
 - Sabemos quais consumidores compraram e quais não compraram. Esta decisão {compra, não compra} forma o atributo classe.
 - Coletar várias informações demográficas, de estilo de vida e de interações com a empresa de todos estes clientes.
 - Tipo de atividade, local da moradia, rendimentos, estado civil, etc.
 - Usar esta informação como atributos de entrada para gerar um modelo de classificação.

Classificação: Aplicação 2

- Detecção de fraudes
 - Objetivo: identificar casos de fraude em transações com cartão de crédito.
 - Abordagem:
 - Usar as transações do cartão de crédito e as informações do proprietário como atributos.
 - Quando um consumidor compra, o que ele compra, onde ele compra, compra a vista ou a prazo, etc
 - Rotular as transações passadas como fraude ou não. Isto forma o atributo classe.
 - Gerar um modelo de classificação para as transações.
 - Usar este modelo para detectar fraudes observando as novas transações.

Classificação: Aplicação 3

- Conservação de clientes:
 - Objetivo: prever se é provável que um cliente de uma empresa de telefone celular passe para um concorrente.
 - Abordagem:
 - Usar um registro detalhado das transações de cada cliente antigo e atual para obter os atributos.
 - Com que frequência o cliente faz ligações, para quem ele liga, a que horas ele liga mais freqüentemente, sua renda, estado civil, etc.
 - Rotular os clientes como fiéis ou infiéis a empresa.
 - Gerar um modelo.

Processo de Classificação

Ilustrando a Tarefa de Classificação

Test Set

Classificação: definição

- Dada uma coleção de registros (conjunto de treinamento)
 - Cada registro contém um conjunto de atributos, e um dos atributos é a classe.
- Encontre um modelo para o atributo classe como uma função dos valores dos outros atributos
- Objetivo: definir a classe para novos registros tão acuradamente quanto possível.
 - Um conjunto de teste é usado para determinar a acurácia do modelo. Normalmente, o conjunto de dados é dividido em conjunto de treinamento e conjunto de teste, com o conjunto de treinamento usado para a construção do modelo e o conjunto de teste para validação.

Exemplo...

Classe: compra produto Eletrônico

Nome	Idade	Renda	Profissão	Classe
Daniel	≤ 3 0	Média	Estudante	Sim
João	3150	Média-Alta	Professor	Sim
Carlos	3150	Média-Alta	Engenheiro	Sim
Maria	3150	Baixa	Vendedora	Não
Paulo	≤ 3 0	Baixa	Porteiro	Não
Otavio	> 60	Média-Alta	Aposentado	Não

SE. Idade ≤ 30 E Renda = Média ENTÃO Compra-Produto-Eletrônico = SIM.

Exemplo de Árvore de Decisão

Se Idade ≤ 30 e Renda= Baixa então Não compra Eletrônico

Se Idade = 31-50 e Profissão=Médico então compra Eletrônico

Clustering

Clustering (formação de agrupamentos)

- Dado um conjunto de dados, cada um com um conjunto de atributos, e uma medida de similaridade entre eles, encontre clusters (grupos) tais que:
 - Dados de um grupo são mais similares entre si que com dados de outros grupos
 - Dados de grupos diferentes são menos similares entre si.
- Medidas de similaridade:
 - Distância Euclidiana, para atributos contínuos
 - Outras medidas específicas do problema.

Clustering: exemplo

☑ Clustering em espaço 3-D baseado em distância euclidiana.

Distâncias intracluster são minimizadas

Distâncias intercluster são maximizadas

Clustering: Aplicação 1

- Segmentação de mercado:
 - Objetivo: subdividir um mercado em diferentes subconjuntos de clientes onde cada subconjunto possa ser selecionado como objetivo específico de marketing a ser alcançado.
 - Abordagem:
 - Obter diferentes atributos de clientes baseado em informações geográficas e de estilo de vida dos clientes
 - Encontrar grupos (clusters) de clientes similares.
 - Medir a qualidade dos clusters observando padrões de compra entre clientes do mesmo cluster versus entre clientes de outros clusters

Clustering: Aplicação 2

- Clustering de documentos:
 - Objetivo: encontrar grupos de documentos que são similares entre si baseado em termos importantes que aparecem nos documentos.
 - Abordagem: identificar termos que ocorrem frequentemente em cada documento. Criar uma medida de similaridade baseada na frequência dos diferentes termos. Usar esta medida para a formação dos grupos.
 - Ganho: os clusters podem ser usados em Recuperação de Informações para relacionar um novo documento ou termo de pesquisa a clusters de documentos.

Exemplo de clustering de documentos

- Dados utilizados: 3204 artigos do jornal Los Angeles Times.
- Medida de similaridade: quantas palavras são comuns nestes documentos (após a filtragem de algumas palavras).

Category	Total Articles	Correctly Placed
Financial	555	364
Foreign	341	260
National	273	36
Metro	943	746
Sports	738	573
Entertainment	354	278

Clustering de ações da bolsa

- **X** Observe os movimentos das ações a cada dia.
- ★ Dados: ação-{UP/DOWN}
- # Medida de similaridade: Duas ações são similares se os eventos descritos por elas frequentemente acontecem juntos no mesmo dia.
 - # Foram usadas regras de associação para quantificar a medida de similaridade.

	Discovered Clusters	Industry Group
1	Applied-Matl-DOW N, Bay-Network-Down, 3-COM-DOW N, Cabletron-Sys-DOWN, CISCO-DOWN, HP-DOW N, DSC-Comm-DOW N, INTEL-DOWN, LSI-Logic-DOW N, Micron-Tech-DOW N, Texas-Inst-Down, Tellabs-Inc-Down, Natl-Semiconduct-DOW N, Oracl-DOW N, SGI-DOW N, Sun-DOW N	Technology1-DOWN
2	Apple-Comp-DOW N, Autodesk-DOWN, DEC-DOWN, ADV-Micro-Device-DOWN, Andrew-Corp-DOWN, Computer-Assoc-DOWN, Circuit-City-DOWN, Compaq-DOWN, EMC-Corp-DOWN, Gen-Inst-DOWN, Motorola-DOWN, Microsoft-DOWN, Scientific-Atl-DOWN	Technology2-DOWN
3	Fannie-Mae-DOWN,Fed-Home-Loan-DOWN, MBNA-Corp-DOWN,Morgan-Stanley-DOWN	Financial-DOWN
4	Baker-Hughes-UP, Dresser-Inds-UP, Halliburton-HLD-UP, Louisiana-Land-UP, Phillips-Petro-UP, Unocal-UP, Schlumberger-UP	Oil-UP

Regras de Associação

Regras de associação: Definição

- Dado um conjunto de registros, cada um com um conjunto de itens de uma certa coleção;
 - Produza regras de dependência que vão predizer a ocorrência de um item baseado na ocorrência de outros.

TID	Items
1	guaraná, leite, pão
2	cerveja, pão
3	cerveja, fralda, guaraná, leite
4	cerveja, fralda, leite, pão
5	fralda, guaraná, leite

```
Regras descobertas:
{leite} --> {guaraná}
{fralda, leite} --> {cerveja}
```

Regras de associação: Aplicação 1

- Marketing e promoção de vendas:
 - Considere a seguinte regra descoberta
 {Paçoquinha, ... } → {Batata Frita}
 - Batata Frita como consequente: Pode ser usada para determinar o que deve ser feito para incrementar a sua venda.
 - Paçoquinha no antecedente: Pode ser usado para ver que produtos podem ser afetados se a loja deixar de vender Paçoquinha.
 - Paçoquinha no antecedente e Batata Frita no consequente: Pode ser usado para ver que produtos poderiam ser vendidos com Paçoquinha para promover a venda de Batata Frita!

Regras de associação: Aplicação 2

- Gerenciamento de prateleiras de supermercado.
 - Objetivo: identificar itens que são comprados juntos por um grande número de clientes.
 - Abordagem: processar os dados das transações de compra obtidos com os códigos de barras para encontrar dependências entre itens.
 - Uma regra clássica---
 - Se um cliente compra fralda e leite ele tem uma boa probabilidade de comprar também cerveja.
 - Portanto, não fique surpreso de encontrar pacotes de cerveja próximo das fraldas!

Regras de associação: Aplicação 3

- Gerência de inventário:
 - Objetivo: uma empresa de consertos de eletrodomésticos quer antecipar a natureza dos consertos nos aparelhos dos seus clientes de forma a ter em seus veículos de serviço peças de reposição, de modo a poder realizar o conserto na hora, sem precisar voltar à casa dos clientes
 - Abordagem: Analisar os dados de consertos anteriores em termos de ferramentas e peças necessárias para descobrir padrões de co-ocorrência.

Padrões sequenciais: Definição

 Dado um conjunto de objetos, com cada objeto associado com a sua linha de eventos, encontre regras com forte dependência sequencial entre diferentes eventos.

$$(A B) (C) \longrightarrow (D E)$$

Padrões sequenciais: exemplos

- Em transações de vendas
 - Livraria de informática:

Loja de artigos esportivos:

```
(tenis) (raquete, bolas) → (moleton)
```

Detecção de desvios

 Determinar desvios significativos do comportamento normal

- Aplicações:
 - Detecção de fraudes em cartões de crédito
 - Detecção de invasão em redes
 de computadores

Typical network traffic at University level may reach over 100 million connections per day

Desafios para Data Mining

- Escalabilidade
- Dimensionalidade
- Dados complexos e heterogêneos
- Qualidade dos dados
- Propriedade e distribuição dos dados
- Preservação da privacidade
- Dados em fluxo contínuo