Example paper: Black-Box Optimization Benchmarking Template for Noiseless Function Testbed

Draft version *

BBOBies

ABSTRACT

Categories and Subject Descriptors

G.1.6 [Numerical Analysis]: Optimization—global optimization, unconstrained optimization; F.2.1 [Analysis of Algorithms and Problem Complexity]: Numerical Algorithms and Problems

General Terms

Algorithms

Keywords

Benchmarking, Black-box optimization

1. RESULTS

Results of NEWUOA from experiments according to [?] on the benchmark functions given in [?, ?] are presented in Figures 1, 2 and 3 and in Tables 1 and 2.

Table 2: ERT loss ratio compared to the respective best result from BBOB-2009 for budgets given in the first column (see also Figure 3). The last row $\mathrm{RL_{US}}/\mathrm{D}$ gives the number of function evaluations in unsuccessful runs divided by dimension. Shown are the smallest, 10%-ile, 25%-ile, 50%-ile, 75%-ile and 90%-ile value (smaller values are better). The ERT Loss ratio equals to one for the respective best algorithm from BBOB-2009. Typical median values are between ten and hundred.

C DCtwcci	f_1-f_{24} in 5-D, maxFE/D=102505										
	f_1	<i>−f</i> 24 i	E/D=10	2505							
#FEs/D	best	10%	25%	\mathbf{med}	75%	90%					
2	1.4	1.6	2.1	3.2	5.3	10					
10	1.2	1.3	1.9	3.4	8.0	50					
100	1.0	2.2	3.6	9.4	24	72					
1e3	1.0	1.2	3.1	11	40	88					
1e4	1.0	1.2	3.1	9.1	52	1.6e2					
1e5	1.0	1.2	3.1	8.8	2.7e2	4.2e2					
$\mathrm{RL}_{\mathrm{US}}/\mathrm{D}$	1e5	1e5	1e5	1e5	1e5	1e5					
	f_1 - f_{24} in 20-D, maxFE/D=17757										
#FEs/D	best	10%	25%	\mathbf{med}	75%	90%					
2	1.0	5.4	12	33	40	40					
10	1.0	1.8	2.6	3.9	8.2	2.0e2					
100	2.4	2.7	3.9	12	40	1.2e3					
1e3	3.0	4.7	11	27	88	2.3e2					
1e4	4.3	8.6	21	72	3.5e2	1.0e3					
1e4 1e5	$4.3 \\ 5.7$	$8.6 \\ 9.1$	21 16	$72 \\ 3.1e2$	$3.5e2 \\ 1.5e3$	1.0e3 6.7e3					

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

GECCO'12, July 7–11, 2012, Philadelphia, USA. Copyright 2012 ACM 978-1-4503-0073-5/10/07 ...\$10.00.

^{*}Submission deadline: March 28th.

Figure 1: Expected number of f-evaluations (ERT, with lines, see legend) to reach $f_{\rm opt}+\Delta f$, median number of f-evaluations to reach the most difficult target that was reached at least once (+) and maximum number of f-evaluations in any trial (×), all divided by dimension and plotted as \log_{10} values versus dimension. Shown are $\Delta f = 10^{\{1,0,-1,-2,-3,-5,-8\}}$. Numbers above ERT-symbols indicate the number of successful trials. The light thick line with diamonds indicates the respective best result from BBOB-2009 for $\Delta f = 10^{-8}$. Horizontal lines mean linear scaling, slanted grid lines depict quadratic scaling.

Figure 2: Empirical cumulative distribution functions (ECDFs), plotting the fraction of trials with an outcome not larger than the respective value on the x-axis. Left subplots: ECDF of number of function evaluations (FEvals) divided by search space dimension D, to fall below $f_{\rm opt} + \Delta f$ with $\Delta f = 10^k$, where k is the first value in the legend. Right subplots: ECDF of the best achieved Δf divided by 10^{-8} for running times of $D, 10\,D, 100\,D, \ldots$ function evaluations (from right to left cycling black-cyan-magenta). The thick red line represents the most difficult target value $f_{\rm opt} + 10^{-8}$. Legends indicate the number of functions that were solved in at least one trial. Light brown lines in the background show ECDFs for $\Delta f = 10^{-8}$ of all algorithms benchmarked during BBOB-2009.

					5-D					2	0-D				
Δf	1e+1	1e+0	1e-1	1e-3	1e-5	1e-7	#succ	Δf	1e+1	1e+0	1e-1	1e-3	1e-5	1e-7	#succ
f ₁	11	12	12	12	12	12	15/15	f ₁	43	43	43	43	43	43	15/15
-	1.5(0.9)	3.3(2)	5.4(1)	9.2(2)	13(1)	17(2)	15/15	- 1	5.2(2)	12(5)	19(8)	32(8)	40(6)	49(9)	15/15
$\mathbf{f_2}$	83	87	88	90	92	94	15/15	f ₂	385	386	387	390	391	393	15/15
	5.0(3)	6.8(2)	7.4(2)	7.9(2)	8.3(2)	8.6(2)	15/15		7.0(0.8)	7.8(1)	8.6(1)	10(1)	11(0.9)	12(1)	15/15
f_3	716	1622	1637	1646	1650	1654	15/15	f ₃	5066	7626	7635	7643	7646	7651	15/15
	5.4(7)		1464(1498) 1				3/15		∞	∞	∞	∞	∞	$\infty 2.0e5$	0/15
f_4	809	1633	1688	1817	1886	1903	15/15	f ₄	4722	7628	7666	7700	7758	1.4e5	9/15
_	26(23)	∞	∞	∞	∞	$\infty 5.0e5$	0/15		∞	∞	∞	∞	∞	$\infty 2.0e5$	0/15
f_5	10	10	10	10	10	10	15/15	f ₅	41	41	41	41	41	41	15/15
_	2.5(1)	4.1(4) 214	4.2(5) 281	4.2(5) 580	4.2(5) 1038	4.2(5) 1332	15/15		7.4(1) 1296	8.8(2) 2343	9.2(2)	9.2(2) 5220	9.2(2)	9.2(2)	15/15
f_6	114	1.9(2)	2.8(3)	2.3(1)	2.0(0.9)		15/15 15/15	f ₆	$\frac{1296}{2.7(1)}$	2343	2.3(0.9)			8409) 5.4(4)	15/15 14/15
_	1(0.5)	324	1171	1572	1572	2.6(1) 1597	15/15	-	1351	4274	9503	16524	16524	16969	15/15
f ₇	$\frac{24}{27(46)}$	33(36)	56(57)	307(352)	307(338)	302(333)	9/15	f ₇	2160(2304)	4274 ∞	9503	16524	∞	0.0969 0.065	0/15
f ₈	73	273	336	391	410	422	15/15	f ₈	2039	3871	4040	4219	4371	4484	15/15
-8	1.6(1)	3.7(4)	3.3(4)	3.1(3)	3.1(3)	3.2(3)	15/15	*8	3.3(1)	3.8(3)	4.1(3)	4.9(3)	5.3(3)	5.6(3)	15/15
fo	35	127	214	300	335	369	15/15	f _O	1716	3102	3277	3455	3594	3727	15/15
-9	3.1(4)	13(24)	8.2(14)	6.2(10)	5.8(9)	5.4(8)	15/15	-9	3.6(1)	6.6(6)	7.2(6)	8.4(5)	8.8(5)	8.9(4)	15/15
$\overline{f_{10}}$	349	500	574	626	829	880	15/15	f ₁₀	7413	8661	10735	14920	17073	17476	15/15
10	1.4(0.9)	1.3(0.7)	1.4(0.7)	1.5(0.7)	1.2(0.7)	1.2(0.6)		10	390(447)	∞	∞	~	∞	$\infty 2.0e5$	0/15
f ₁₁	143	202	763	1177	1467	1673	15/15	f ₁₁	1002	2228	6278	9762	12285	14831	15/15
	3.2(3)	5.0(3)	1.7(0.5)	1.5(0.7)	1.5(0.7)	1.6(0.7)	15/15		41(48)	292(328)	∞	∞	∞	$\infty 2.1e5$	0/15
f ₁₂	108	268	371	461	1303	1494	15/15	f ₁₂	1042	1938	2740	4140	12407	13827	15/15
	2.3(1)	2.2(2)	2.2(1)	2.3(1)	1(0.6)	1(0.6)	15/15		19(27)	26(25)	57(59)	338(360)	∞	$\infty 2.0e5$	0/15
f_{13}	132	195	250	1310	1752	2255	15/15	f ₁₃	652	2021	2751	18749	24455	30201	15/15
	2.0(3)	3.8(4)	5.3(3)	1.3(0.6)	1.2(0.7)	1.3(0.9)			11(14)	29(33)	60(66)	77(86)	∞	$\infty 2.0e5$	0/15
f ₁₄	10	41	58	139	251	476	15/15	f ₁₄	75	239	304	932	1648	15661	15/15
	1.1(1)	1.2(0.6)	1.5(0.5)	1.4(0.3)	1.3(0.3)	1(0.1)	15/15		2.3(1)	3.0(2)	3.9(1)	2.9(0.6)		$\infty 2.1e5$	0/15
f_{15}	511	9310	19369	20073	20769	21359	14/15	f ₁₅	30378	1.5e5	3.1e5	3.2e5	4.5e5	4.6e5	15/15
c	20(24)	43(56) 612	83(86) 2662	80(91)	77(86)	75(82) 12095	4/15		∞	07005	∞	∞ 10.5	∞	∞2.0e5	0/15
f ₁₆	120 4.4(9)	28(45)	23(22)	10449 95(98)	11644 302(342)	597(641)	15/15 1/15	f ₁₆	1384 17(21)	27265 ∞	77015	1.9e5	2.0e5 ∞	$2.2e5 \\ \infty 2.0e5$	15/15 0/15
-	5.2	28(45)	899	3669	6351	7934	15/15		63	1030	$\frac{\infty}{4005}$	$\frac{\infty}{30677}$	56288	80472	15/15
f ₁₇	5.2 55(190)	170(159)	295(278)	∞	∞	0.065	0/15	f ₁ 7	237(585)	∞	∞	∞	∞	∞2.0e5	0/15
$\overline{\mathbf{f_{18}}}$	103	378	3968	9280	10905	12469	15/15	f ₁₈	621	3972	19561	67569	1.3e5	1.5e5	15/15
,18	45(43)	228(303)	321(332)	∞	∞	$\infty 5.0e5$	0/15	118	∞	∞	∞	∞	∞	$\infty 2.0e5$	0/15
$\overline{f_{19}}$	1	1	242	1.2e5	1.2e5	1.2e5	15/15	f ₁₉	1	1	3.4e5	6.2e6	6.7e6	6.7e6	15/15
-19	12(6)	2885(5138)	590(575)	∞	∞	$\infty 5.0e5$	0/15	-19	165(149)	1.4e6(2e6)	∞	∞	∞	$\infty 2.0e5$	0/15
f ₂₀	16	851	38111	54470	54861	55313	14/15	f ₂₀	82	46150	3.1e6	5.5e6	5.6e6	5.6e6	14/15
20	1.5(1)	25(28)	∞	∞	∞	$\infty 5.0e5$	0/15		3.5(2)	∞	∞	∞	∞	$\infty 2.0e5$	0/15
f ₂₁	41	1157	1674	1705	1729	1757	14/15	f ₂₁	561	6541	14103	14643	15567	17589	15/15
	12(27)	8.4(8)	10(18)	10(17)	10(17)	10(17)	15/15		7.7(12)	20(18)	24(25)	23(24)	22(22)	20(20)	7/15
f_{22}	71	386	938	1008	1040	1068	14/15	f ₂₂	467	5580	23491	24948	26847	1.3e5	12/15
	19(33)	13(25)	13(10)	13(10)	12(9)	12(9)	15/15		17(35)	18(19)	61(59)	58(60)	54(55)	11(12)	2/15
f_{23}	3.0	518	14249	31654	33030	34256	15/15	f ₂₃	3.2	1614	67457	4.9e5	8.1e5	8.4e5	15/15
	2.9(3)	3.5(6)	2.7(3)	4.0(4)	4.6(4)	5.6(5)	14/15		2.1(4)	3.3(5)	43(50)	∞	∞	$\infty 2.0e5$	0/15
f_{24}	1622	2.2e5	6.4e6	9.6e6	1.3e7	1.3e7	3/15	f ₂₄	1.3e6	7.5e6	5.2e7	5.2e7	5.2e7	5.2e7	3/15
	11(11)	5.6(7)	∞	∞	∞	$\infty 5.0e5$	0/15		∞	∞	∞	∞	∞	$\infty 2.0e5$	0/15

Table 1: Expected running time (ERT in number of function evaluations) divided by the best ERT measured during BBOB-2009 (given in the respective first row) for different Δf values for functions f_1-f_{24} . The median number of conducted function evaluations is additionally given in *italics*, if $\text{ERT}(10^{-7}) = \infty$. #succ is the number of trials that reached the final target $f_{\text{opt}} + 10^{-8}$.

Figure 3: ERT loss ratio vs. a given budget FEvals. Each cross (+) represents a single function. The target value $f_{\rm t}$ used for a given FEvals is the smallest (best) recorded function value such that ${\rm ERT}(f_{\rm t}) \leq$ FEvals for the presented algorithm. Shown is FEvals divided by the respective best ${\rm ERT}(f_{\rm t})$ from BBOB-2009 for functions f_1-f_{24} in 5-D and 20-D. Line: geometric mean. Box-Whisker error bar: 25-75%-ile with median (box), 10-90%-ile (caps), and minimum and maximum ERT loss ratio (points). The vertical line gives the maximal number of function evaluations in a single trial in this function subset.