Математический анализ

Храбров Александр Игоревич

11 сентября 2022 г.

Содержание

1.	Teop	рия меры	1
	1.1	Система множеств	2
	1.2	Объем и мера	6

1. Теория меры

1.1. Система множеств

Полезные оьозначения: $A \sqcup B$ - объединение A и B, такие что $A \cap B = \emptyset$

Определение 1.1. Набор мн-в дизъюнктный, если мн-ва попарно не пересекаются: $\bigsqcup_{\alpha \in I} A_{\alpha}$

Определение 1.2. E – мн-во; если $E = \bigsqcup_{\alpha \in I} E_{\alpha}$ – разбиение мн-ва E.

Напоминание:

$$X \setminus \bigcup_{\alpha \in I} A_{\alpha} = \bigcap X \setminus A_{\alpha}$$

$$X\setminus\bigcap_{\alpha\in I}A_\alpha=\bigcup X\setminus A_\alpha$$

Определение 1.3. – система подмн-в $X: A \subset 2^X$

- 1. (δ_0) если $\forall A, B \in \mathcal{A} \implies A \cap B \in \mathcal{A}$
- 2. (σ_0) если $\forall A, B \in \mathcal{A} \implies A \cup B \in \mathcal{A}$
- 3. (δ) если $A_n \in \mathcal{A}, \ \forall n \implies \bigcap_{n=1}^{\infty} A_n \in \mathcal{A}$
- 4. (σ) если $A_n \in \mathcal{A}, \ \forall n \implies \bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$

Определение 1.4. \mathcal{A} – симметрическая система мн-в, если $\forall A \in \mathcal{A} \implies X \setminus A \in \mathcal{A}$.

Утверждение 1.1. Если \mathcal{A} – симм., то $(\delta_0) \Leftrightarrow (\sigma_0)$ и $(\delta) \Leftrightarrow (\sigma)$.

Доказательство.
$$A_{\alpha \in I} \mathcal{A} \Leftrightarrow X \setminus A_{\alpha} \in \mathcal{A} \implies \bigcup_{\alpha \in I} A_{\alpha} = \bigcap_{\alpha \in I} X \setminus A_{\alpha} \in \mathcal{A}$$

Определение 1.5. \mathcal{A} – алгебра мн-в, если \mathcal{A} – симметр., $\emptyset \in \mathcal{A}$ и $\forall A, B \in \mathcal{A} : A \cup B \in \mathcal{A}$ (по утв. 1.1 $(\delta_0) \Leftrightarrow (\sigma_0)$; смотри опр. алгебры).

Свойства. алгебры мн-в:

- 1. $\varnothing, X \in \mathcal{A}$
- 2. Если $A_1, \ldots, A_n \in \mathcal{A}$, то $\bigcup_{k=1}^n A_k \in \mathcal{A} \wedge \bigcap_{k=1}^n A_k \in \mathcal{A}$
- 3. Если $A,B\in\mathcal{A},$ то $A\cap(X\setminus B)=A\setminus B\in\mathcal{A}$

Определение 1.6. \mathcal{A} - σ -алгебра мн-в, если \mathcal{A} - симм., $\emptyset \in \mathcal{A}$ и свойство (σ) выполнено (т.е. есть замкнутость по объединению любого числа множетсв; в силу симметричности по утв. 1.1 получаем (σ) \Leftrightarrow (δ)).

Замечание. σ -алгебра \Longrightarrow алгебра.

Пример. 1. 2^X - σ -алгебра.

- 2. $X = \mathbb{R}^2$, \mathcal{A} всевозможные огр. подмн-ва. \mathbb{R}^2 и их дополнения. (\mathcal{A} алгебра, но не σ -алгебра). **Rem**: огр. множество в метрич. пр-ве это множетсво ограниченного диаметра (d(x, y) := ||x y||), т.е. $\sup\{d(x, y) | x, y \in X\}$ ограничен.
- 3. \mathcal{A} алгебра (σ -алгебра) подмн-в X и $Y \subset X$. $\mathcal{A}_Y := \{A \cap Y : A \in \mathcal{A}\}$ индуцированная алгебра (σ -алгебра).

- 4. Пусть \mathcal{A}_{α} алгебры (σ -алгебры), тогда $\bigcap_{\alpha \in I} \mathcal{A}_{\alpha}$ алгебра (σ -алгебра).
- 5. $A,B\subset X$ что есть в адгебра, содержащей A,B: $\varnothing,X,A,B,A\cup B,A\cap B,A\setminus B,B\setminus A,X\setminus A,X\setminus B,X\setminus (A\cup B),X\setminus (A\cap B),A\bigtriangleup B,X\setminus (A\bigtriangleup B),X\setminus (A\setminus B),X\setminus (B\setminus A).$

Теорема 1.2. Пусть ϵ – семейство подмн-в в X, тогда существует наименьшая по включению σ -алгебра (алгебра) \mathcal{A} , такая что $\epsilon \subset \mathcal{A}$.

Доказательство. \mathcal{A}_{α} – всевозможные σ -алгебры $\supset \epsilon$. Такие есть, так как 2^X подходит.

 $\mathcal{A}:=\bigcap_{\alpha\in I}\mathcal{A}_{\alpha}\supset\epsilon$. Теперь проверим, что \mathcal{A} – наим. по вкл. $\mathcal{A}\subset A_{\alpha}\ \forall \alpha\in I$.

Определение 1.7. 1. Такая σ -алгебра – борелевская оболка ϵ – ($\mathcal{B}(\epsilon)$).

2. $X = \mathbb{R}^n$; такая σ -алгебра, натянутая на все открытые мн-ва – борелевская σ -алгебра (\mathcal{B}^n).

Замечание. континуальное – $\mathcal{B}^n \neq 2^{\mathbb{R}^n}$ – больше.

Определение 1.8. R – кольцо, если $\forall A, B \in R \implies A \cup B, A \cap B, A \setminus B \in R$.

Замечание. Кольцо $+ (X \in R) \implies$ алгебра.

Определение 1.9. *P* – полукольцо, если

- 1. $\varnothing \in P$
- $2. \ \forall A, B \in P \implies A \cap B \in P$
- 3. $\forall A, B \in P \implies \exists Q_1, Q_2, \dots, Q_n \in P$, такие что $A \setminus B = \bigsqcup_{k=1}^n Q_k$.

Пример. $X = \mathbb{R}, P = \{(a, b] : a, b \in X\}$ – полукольцо.

Clorcolo 2;

$$\frac{A \cap B}{\left(\frac{A}{A}\right)} \Rightarrow A \cap B \in S$$

$$\left(\frac{A}{A}\right) = \frac{A}{A}$$

Chosorlo 3:

Лемма. $\bigcup_{n=1}^N A_n = \bigsqcup_{n=1}^N A_n \setminus \underbrace{\left(\bigcup_{k=1}^{n-1} A_k\right)}_{B_n}$.

Доказательство. \supset : Дизъюнктивность $B_n \subset A_n$ и при m > n $B_m \cap A_n = \emptyset \implies B_n \cap B_m = \emptyset$. \subset : Пусть $x \in \bigcup_{n=1}^N A_n$. Возьмем наим. m, такой что $x \in A_m \implies x \in B_m \implies x \in \bigcup_{n=1}^N B_n$. \square

Теорема 1.3. $P, P_1, P_2, \dots P$. Тогда

1. $P \setminus \bigcup_{k=1}^n P_k = \bigsqcup_{j=1}^m Q_j$, где $Q_j \in \mathcal{P}$ – полукольцо.

2.
$$\bigcup_{k=1}^n P_k = \bigcup_{k=1}^n \bigcup_{j=1}^{m_k} Q_{kj}$$
, где $Q_{kj} \in \mathcal{P}$ и $Q_{kj} \subset P_k$.

Доказательство. 1. индукция по n. База – опр. полукольца. Переход $(n \to n+1)$: $P \setminus$

$$\bigcup_{k=1}^{n+1} P_k = (P \setminus \bigcup_{k=1}^n P_k) \setminus P_{k+1} = \bigsqcup_{j=1}^m \left(\underbrace{Q_j \setminus P_{n+1}}_{\bigcup_{i=1}^{l_j} Q_{ji}} \right)$$

2.
$$\bigcup_{k=1}^{n} P_k = \bigsqcup_{k=1}^{n} \left(\underbrace{P_k \setminus \bigcup_{j=1}^{k-1} P_j}_{\bigcup_{j=1}^{m_k} Q_{kj}} \right)$$

Замечание. В (2) можно писать $n=\infty$.

Определение 1.10. \mathcal{P} – полукольцо подмн-ва X.

 \mathcal{Q} – полукольцо подмн-ва Y.

 $\mathcal{P} \times \mathcal{Q} := \{P \times Q : P \in \mathcal{P}, Q \in \mathcal{Q}\}$ – декартово произведение полуколец.

Теорема 1.4. Декартово произведение полуколец – полукольцо.

Доказательство.

$$(P \times Q) \cap (P' \times Q') = (P \cap P') \times (Q \cap Q')$$

$$(P\times Q)\setminus (P'\times Q')=(P\setminus P')\times Q\sqcup (P\cap P')\times (Q\setminus Q')$$

Замечание. Остальные структуры не сохр. при декартовом произведении: $2^X \times 2^Y$ — полукольцо.

Определение 1.11. Замкнутый параллелепипед $a, b \in \mathbb{R}^m$.

$$[a,b] = [a_1,b_1] \times [a_2,b_2] \times \cdots \times [a_m,b_m]$$

Открытый параллелепипед:

$$(a,b) = (a_1, b_1) \times (a_2, b_2) \times \cdots \times (a_m, b_m)$$

Ячейка:

$$(a,b] = (a_1,b_1] \times (a_2,b_2] \times \cdots \times (a_m,b_m]$$

Теорема 1.5. Непустая ячейка – перечисление убыв. посл. открытых паралл. / объединение возраст. послед. замкн.

Доказательство. $P_n := (a_1, b_1 + \frac{1}{n}) \times \cdots \times (a_m, b_m + \frac{1}{n})$

$$P_n \supset P_{n+1}$$
 и $\bigcap_{n=1}^{\infty} P_n = (a, b]$

$$Q_n := \left[a_1 + \frac{1}{n}, b_1\right] \times \cdots \times \left[a_m + \frac{1}{n}, b_m\right]$$

$$Q_n \subset Q_{n+1}$$
 и $\bigcup_{n=1}^{\infty} Q_n = (a, b]$

Обозначения: \mathcal{P}^m – сем-во ячеек из \mathbb{R}^m .

 \mathcal{P}_Q^m – сем-во ячеек из \mathbb{R}^m с рациональными координатами вершин.

Теорема 1.6. $\mathcal{P}^m, \mathcal{P}_Q^m$ – полукольца.

Доказательство. $\mathcal{P}^m = \mathcal{P}^{m-1} \times \mathcal{P}^1$

$$\mathcal{P}_Q^m = \mathcal{P}_Q^{m-1} \times \mathcal{P}_Q^1$$

Теорема 1.7. $G \neq \emptyset$ – открытое множество в \mathbb{R}^m . Тогда его можно представить как не более чем счетное дизъюнктивное объединение ячеек, замыкание каждой из которых содержится в G (можно считать, что ячейки с рациональными координатными вершинами).

Доказательство. R_x – ячейка, $\underbrace{Cl(R_x)}_{\text{замыкание ячейки}} \subset G, x \in R_x$, получаем, что $G = \bigcup_{x \in G} R_x$.

Выкинем повторы: $G = \bigcup_{n=1}^{\infty} R_{x_n} = \bigsqcup_{n=1}^{\infty} \bigsqcup_{j=1}^{m_n} Q_{nj}$

Credemeue. $\mathcal{B}(\mathcal{P}_Q^m)=\mathcal{B}^m.$

Доказательство. 1. $\mathcal{P}^m\supset\mathcal{P}_Q^m\implies\mathcal{B}(\mathcal{P}^m)\supset\mathcal{B}(\mathcal{P}_Q^m)$

$$(a,b] \in \mathcal{B}^m \implies \mathcal{P}^m \subset \mathcal{B}^m \implies \mathcal{B}(\mathcal{P}^m) \subset \mathcal{B}^m$$

$$G$$
 – открытое $\implies G \in \mathcal{B}(\mathcal{P}_Q^m) \implies \mathcal{B}(\mathcal{P}_Q^m) \supset \mathcal{B}^m$

1.2. Объем и мера

Определение **1.12.** \mathcal{P} – полукольцо. μ : \mathcal{P} → $[0, +\infty]$. μ – объем, если

1. $\mu(\emptyset) = 0$

2. Если
$$P_1, P_2, \dots, P_n \in \mathcal{P}$$
 и $\bigsqcup_{k=1}^n P_k \in \mathcal{P}$, то $\mu(\bigsqcup_{k=1}^n P_k) = \sum_{k=1}^n \mu P_k$

Определение 1.13. μ – мера, если

1. $\mu(\emptyset) = 0$

2. Если
$$P_1, P_2, \dots \in \mathcal{P}$$
 и $\bigsqcup_{k=1}^{\infty} P_k \in \mathcal{P}$, то μ $\left(\bigsqcup_{k=1}^{\infty} P_k\right) = \sum_{k=1}^{\infty} \mu P_k$

Упражнение. μ – мера. Если $\mu \not\equiv +\infty$, то условия $\mu\varnothing = 0$ выполнено автоматически.

Пример. 1. \mathcal{P}^1 , $\mu(a,b] := b - a$ – длина (упр. доказать, что объем).

2. $g: \mathcal{R} \to \mathcal{R}$ – нестрого монотонная

(a)
$$(a,b] := g(b) - g(a)$$
 (упр. доказать, что объем).

3.
$$\mathcal{P}^m$$
, $\mu(a,b] := (b_1 - a_1)(b_2 - a_2) \dots (b_m - a_m)$ – классический объем.

4.
$$\mathcal{P}=2^X, \quad x_0\in X, \quad a\geq 0$$
 $\mu A:=a$ – при $x_0\in A,$ иначе 0 (блин, как выглядит сранный тех символ)

5. \mathcal{P} – огр. мн-во и их дополнения $\mu A := a$ – при $x_0 \in A$, иначе 0 (это объем, но не мера)

Теорема 1.8. μ -объем на полукольце \mathcal{P}

1. монотонность: $\mathcal{P} \ni P \subset \tilde{P} \in \mathcal{P} \implies \mu P \leq \mu \tilde{P}$

2. (a) усиленная монотонность: $P_1, P_2, \dots P_n, P \in \mathcal{P}$. $\bigsqcup_{k=1}^n P_k \subset P \implies \sum_{k=1}^n \mu P_k \leq \mu P$

(b) пункты (a), но $n = \infty$

3. полуаддитивность: $P, P_1, P_2, \dots P_n \in \mathcal{P}$ и $P \subset \bigcup_{k=1}^n P_k$, тогда $\mu P \leq \sum_{k=1}^n \mu P_k$

Доказательство. 1. Очев типо.

2. (a)
$$P \setminus \bigsqcup_{k=1}^{n} \mu P_k = \bigsqcup_{j=1}^{m} Q_j \implies P = \bigsqcup_{k=1}^{n} P_k \sqcup \bigsqcup_{j=1}^{m} Q_j \implies \mu P = \sum_{k=1}^{n} \mu P_k + \sum_{j=1}^{m} \mu Q_j \geq \sum_{k=1}^{n} \mu P_k$$

(b)
$$\bigsqcup_{k=1}^{\infty} P_k \subset P \implies \bigsqcup_{k=1}^{n} P_k \subset P \implies \sum_{k=1}^{n} \mu P_k \to \sum_{k=1}^{\infty} \mu P_k \leq \mu P$$

3.
$$P''_k = P \cap P_k \in \mathcal{P}, \quad P = \bigcup_{k=1}^n P'_k = \bigsqcup_{k=1}^n \bigcup_{k=1}^{m_k} Q_{kj} \implies \mu P = \sum_{k=1}^n \sum_{j=1}^{m_k} \mu Q_{kj} \le \sum_{k=1}^n \mu P_k$$

Замечание. 1. Если \mathcal{P} – кольцо и $A, B \ (B \subset A) \in \mathcal{P}$, то $A \setminus B \in \mathcal{P}$

$$\mu(A \subset B) + \mu B = \mu A$$

Если
$$\mu B \neq +\infty$$
, то $\mu(A \setminus B) = \mu A - \mu B$

Теорема 1.9. \mathcal{P} – полукольцо подмн-в X, μ – объем на \mathcal{P}

 $\mathcal Q$ – полукольцо подмн-в Y, ν – объем на $\mathcal Q$

$$\lambda(P \times Q) := \mu P \cdot \nu Q$$
, где $0 \cdot +\infty = +\infty \cdot 0 = 0$

Тогда λ – объем на $P \times Q$.

Следствие. Классический объем на ячейках – действительно объем.

Доказательство. Простой случай. $P = \bigsqcup_{k=1}^{n} P_k, Q = \bigsqcup_{j=1}^{m} Q_j$

$$P \times Q = \bigsqcup_{k=1}^n \bigsqcup_{j=1}^m P_k \times Q_j$$
, докажем, что
$$\underbrace{\lambda(P \times Q)}_{\sum_{k=1}^n \mu P_k \cdot \sum_{j=1}^m \nu Q_j = \mu P \cdot \nu Q} = \sum_{k=1}^n \sum_{j=1}^m \underbrace{\lambda(P_k \times Q_j)}_{\mu P_k \cdot \nu Q_j}$$

Общий случай. Тут картинка, ага очень удобно

$$P \times Q = \bigsqcup_{k=1}^{n} P_k \times Q_k$$

$$P = \bigcup_{k=1}^{n} P_k = \bigsqcup_{k=1}^{N} P'_k$$

$$Q = \bigcup_{j=1}^{m} Q_j = \bigsqcup_{j=1}^{M} Q_j'$$

Пример. 1. Классический объем на ячейках λ_m – мера

- 2. $g: \mathbb{R} \to \mathbb{R}$ нестрого монотонная возрастающая и нерперывна слева во всех точках. $\nu_a(a,b] := g(b) g(a)$ мера.
- 3. Считающаяся мера: $\mu A := \# A$ кол-во элементов.
- 4. $T = \{t_1, t_2, \dots\}$ не более чем счетное множетсво, $w_1, w_2, \dots \ge 0$, $\mu A := \sum_{k: t_k \in A} w_k$ мера.

Доказательство. 4. $A = \bigsqcup_{n=1}^{\infty} A_n \implies \mu A = \sum_{n=1}^{\infty} \mu A_n$

 $\sum_{k:t_k\in A} w_k = \sum_{n=1}^{\infty} \sum_{k:t_k\in A_n} w_k$ (тут был какой-то кукарек про ' \leq ' и ' \geq ' и получаем равенство, нужно рассматривать слагаемые по отдельности)