

STATISTICAL COMPUTATION

WEEK 13 - LINEAR REGRESSION (2/2)

Annisa Auliya I Melda Puspita

GET TO KNOW US

ANNISA AULIYA R.

082334174749

I MELDA PUSPITA L.

085257113961

https://intip.in/KomstatC2023

MATERIALS

Multiple Linear Regression

- Parameter Estimation
- Significance Test (Simultan & Partial

Praktikum Komputasi Statistik C 2022/2023

ESTIMATION

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

Observation, i	Response, y	Regressors			
		$\overline{x_1}$	x_2		x_k
1	y_1	x_{11}	x_{12}		x_{1k}
2	y_2	x_{21}	x_{22}		x_{2k}
:	:	÷	÷		÷
n	y_n	x_{n1}	x_{n2}		x_{nk}

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k + \varepsilon$$

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1k} \\ 1 & x_{21} & x_{22} & \cdots & x_{2k} \\ \vdots & \vdots & & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{nk} \end{bmatrix}$$

$$oldsymbol{eta} = egin{bmatrix} oldsymbol{eta}_0 \ oldsymbol{eta}_1 \ dots \ oldsymbol{eta}_k \end{bmatrix}, \quad oldsymbol{arepsilon} = egin{bmatrix} arepsilon_1 \ arepsilon_2 \ dots \ arepsilon_n \end{bmatrix}$$

ESTIMATION

We wish to find the vector of least-squares estimators, β , that minimizes

$$S(\boldsymbol{\beta}) = \sum_{i=1}^{n} \varepsilon_i^2 = \boldsymbol{\varepsilon}' \boldsymbol{\varepsilon} = (\mathbf{y} - \mathbf{X} \boldsymbol{\beta})' (\mathbf{y} - \mathbf{X} \boldsymbol{\beta})$$

Note that $S(\beta)$ may be expressed as

$$S(\beta) = \mathbf{y}'\mathbf{y} - \beta'\mathbf{X}'\mathbf{y} - \mathbf{y}'\mathbf{X}\beta + \beta'\mathbf{X}'\mathbf{X}\beta$$
$$= \mathbf{y}'\mathbf{y} - 2\beta'\mathbf{X}'\mathbf{y} + \beta'\mathbf{X}'\mathbf{X}\beta$$

since $\beta' X'y$ is a 1×1 matrix, or a scalar, and its transpose $(\beta' X'y)' = y'X\beta$ is the same scalar. The least-squares estimators must satisfy

ESTIMATION

since $\beta' X'y$ is a 1×1 matrix, or a scalar, and its transpose $(\beta' X'y)' = y'X\beta$ is the same scalar. The least-squares estimators must satisfy

$$\left. \frac{\partial S}{\partial \boldsymbol{\beta}} \right|_{\hat{\boldsymbol{\beta}}} = -2\mathbf{X}'\mathbf{y} + 2\mathbf{X}'\mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{0}$$

which simplifies to

$$\mathbf{X}'\mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}'\mathbf{y} \tag{3.12}$$

To solve the normal equations, multiply both sides of (3.12) by the inverse of $\mathbf{X'X}$. Thus, the **least-squares estimator** of $\boldsymbol{\beta}$ is

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y} \tag{3.13}$$

• • •

SIMULTAN

$$H_0: \beta_1 = \beta_1 = \dots = \beta_k = 0$$

 $H_1: \beta_i \neq 0$ for at least one j

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F_0
Regression Residual Total	$egin{array}{c} SS_{ m R} \ SS_{ m Res} \ SS_{ m T} \end{array}$	k $n - k - 1$ $n - 1$	$MS_{ m R} \ MS_{ m Res}$	$MS_{ m R}/MS_{ m Res}$

$$SS_{R} = \hat{\boldsymbol{\beta}}' \mathbf{X}' \mathbf{y} - \frac{\left(\sum_{i=1}^{n} y_{i}\right)^{2}}{n}$$

 $SS_{\rm T} = SS_{\rm R} + SS_{\rm Res}$

$$\hat{\sigma}^2 = MS_{\text{Res}}$$

$$SS_{R} = \hat{\boldsymbol{\beta}}' \mathbf{X}' \mathbf{y} - \frac{\left(\sum_{i=1}^{n} y_{i}\right)^{2}}{n}$$

$$SS_{Res} = \mathbf{y}' \mathbf{y} - \frac{\left(\sum_{i=1}^{n} y_{i}\right)^{2}}{n} - \left|\hat{\boldsymbol{\beta}}' \mathbf{X}' \mathbf{y} - \frac{\left(\sum_{i=1}^{n} y_{i}\right)^{2}}{n}\right|$$

$$SS_{T} = \sum_{i=1}^{n} y_{i}^{2} - \frac{\left(\sum_{i=1}^{n} y_{i}\right)^{2}}{n} = \mathbf{y}' \mathbf{y} - \frac{\left(\sum_{i=1}^{n} y_{i}\right)^{2}}{n}$$

$$S_{
m Res}$$

Therefore, to test the hypothesis
$$H_0$$
: $\beta_1 = \beta_2 = \ldots = \beta_k = 0$, compute the test statistic F_0 and reject H_0 if $F_0 > F_{\alpha,k,n-k-1}$

PARTIAL

The hypotheses for testing the significance of any individual regression coefficient, such as β_i , are

$$H_0: \beta_j = 0, \quad H_1: \beta_j \neq 0$$
 (3.28)

If H_0 : $\beta_j = 0$ is not rejected, then this indicates that the regressor x_j can be deleted from the model. The **test statistic** for this hypothesis is

$$t_0 = \frac{\hat{\beta}_j}{\sqrt{\hat{\sigma}^2 C_{jj}}} = \frac{\hat{\beta}_j}{\operatorname{se}(\hat{\beta}_j)}$$
(3.29)

where C_{jj} is the diagonal element of $(\mathbf{X}'\mathbf{X})^{-1}$ corresponding to $\hat{\boldsymbol{\beta}}_j$. The null hypothesis H_0 : $\beta_j = 0$ is rejected if $|t_0| > t_{\alpha/2,n-k-1}$. Note that this is really a **partial** or **marginal test** because the regression coefficient $\hat{\boldsymbol{\beta}}_j$ depends on all of the other regressor variables $x_i(i \neq j)$ that are in the model. Thus, this is a test of the **contribution** of x_j **given the other regressors in the model**.

THANKS

https://intip.in/KomstatC2023