The Impact Analysis of Multiple Miners and Propagation Delay on Selfish Mining

Qing Xia, Wensheng Dou, Tong Xi, Jing Zeng, Fengjun Zhang, Jun Wei, Geng Liang

Institute of Software, Chinese Academy of Sciences

Blockchain has been widely adopted

Nakamoto Consensus

 One of the most widely-used consensus protocols proposed by Nakamoto Satoshi

Selfish Mining

The game between 1 honest pool (Alice) and 1 selfish pool (Bob)

Bob wastes its power on orphan blocks!

Selfish Mining

• The game between 1 honest pool (Alice) and 1 selfish pool (Bob)

Selfish Mining

- When γ = 0, Alice with ≥ 33% mining power can gain more profit
- With half of the mining power, no matter what γ is, Alice can gain almost all profit

Limitation 1

Previous work: Fork can only happen between the honest pool and selfish pool

Real-world scenario: Fork can happen inside the honest pool or the selfish pool

Limitation 2

Previous work: A fixed fraction of honest power always works after the selfish branch

Real-world scenario: γ is dynamically-changing and unknown due to varied delay

Practical Selfish Mining Strategy

Block generation with Proof-of-Work (PoW)

Big miner can generate blocks faster

A lower difficulty can make block generation faster

 r_i : the fraction of mining power owned by miner i

$$P_i = \frac{r_i}{G}$$

G: block generation interval of the system

Block propagation in the Peer-to-Peer (P2P) network

- Propagation delay in Bitcoin fits the exponential curve with meantime of 12.6s [1]
- The meantime becomes larger with a larger block size

Delay = Geometric (meantime)

Research Questions

- RQ1:How can multiple mining pools affect selfish mining?
- RQ2:How can propagation delay affect selfish mining?
- RQ3:How can orphan rate affect selfish mining?

Experiment Settings

The number of multiple miners

TOP 5 pools: 69%

TOP 10 pools: 98%

TOP 5 pools: 88%

TOP 10 pools: 96%

- Three cases
 - General case: 10 pools
 - More centralized case: 5 pools
 - More decentralized case: 20, 100 pools
- Alice has 1% ~ 50% mining power, rest pools equally share the rest mining power

Experiment Settings

- Relative propagation delay (RPD)
 - The ratio of propagation delay to block interval
 - Measures the blockchain system's synchronization speed

	Bitcoin	Other systems	
Propagation delay	12.6s	15s	6s
Block interval	600s	300s	60s
Relative propagation delay (RPD)	1/48	1/20	1/10

Increase the block size and decrease the block interval

We focus on the system with a larger relative propagation delay

RQ1: Multiple Miners

• A miner with sufficient mining power has an *inherent advantage* in the honest mode, especially in a more decentralized system.

RQ1: Multiple Miners

- Selfish mining performs better in the more decentralized system with more honest miners.
 - E.g., Alice's *profit threshold* is 31% and 29% with 5 and 100 miners

RQ1: Multiple Miners

• With multiple selfish miners, the large selfish miner can benefit from selfish mining, while other smaller miners cannot.

Comparison Analysis

- Selfish mining results in more consecutive blocks generated by the selfish miner
 - selfish miner is more likely to succeed with a longer private chain

Implication

Alleviate selfish mining

 $\begin{cases} blockReward (Conti = 1, ..., 4) \\ \frac{blockReward}{Conti - 2} (Conti \ge 5) \end{cases}$

• Even if Alice has nearly 50% of mining power, it cannot benefit from selfish mining

Revise the reward

RQ2: Relative Propagation Delay (RPD)

• A miner with sufficient mining power has an inherent advantage in honest mining, especially in the system with a larger delay.

RQ3: Orphan Rate

- The system has a higher orphan rate with more miners and a larger delay.
- Profit threshold of selfish mining decreases when the orphan rate increases.

Implication

Selfish mining has a great impact on the orphan rates

Conclusion

- We propose *a new selfish mining strategy* to handle blockchain scenarios with multiple miners and propagation delay.
- We propose *a simulation approach* to simulate the real-world blockchain scenarios.
- We evaluate the performance of the selfish mining strategy on the simulation system and obtain many interesting findings from the empirical study.

Q&A THANKYOU!