Prinzipien der digitalen Signalverarbeitung am Beispiel AUDIO

Einfache Signalverarbeitungs-Beispiele im Zeitbereich:

Beispiel: digitale Verstärkung (hier: Amplituden-Verdoppelung)

Beispiel: digitaler Mix (Summenbildung)

⇒ Signalverarbeitung = getaktete (Bit-) Rechenoperationen

Repetitorium:

Mathematische Beschreibung:

$$r(t) = |r| \sin \left[\left(\frac{2\pi}{T} \right) t + \varphi_0 \right]$$

=
$$\mathbf{1} \mathbf{V} \cdot \sin \left[(2\pi f) t + \boldsymbol{\varphi}_0 \right] = 1 \mathbf{V} \cdot \sin \left[(2\pi \cdot 6 Hz) t + \mathbf{0}^{\circ} \right]$$

Mathematische Beschreibung:

$$r(t) = |r| \sin \left[\left(\frac{2\pi}{T} \right) t + \varphi_0 \right]$$

Amplitude

=
$$\mathbf{1} \mathbf{V} \cdot \sin [(2\pi f) t + \boldsymbol{\varphi}_0] = 1 \mathbf{V} \cdot \sin [(2\pi \cdot 6 Hz) t + \mathbf{0}^\circ]$$

Mathematische Beschreibung:

$$r(t) = |r| \sin \left[\left(\frac{2\pi}{T} \right) t + \varphi_0 \right]$$

=
$$\mathbf{1} \mathbf{V} \cdot \sin \left[(2\pi f) t + \boldsymbol{\varphi}_0 \right] = 1 \mathbf{V} \cdot \sin \left[(2\pi \cdot 6 Hz) t + \mathbf{0}^{\circ} \right]$$

Abk. "Kreisfrequenz"

Mathematische Beschreibung:

$$r(t) = |r| \sin \left[\left(\frac{2\pi}{T} \right) t + \varphi_0 \right]$$

(Start-)Phase = Winkel zum Zeitpunkt t = 0

=
$$\mathbf{1} \mathbf{V} \cdot \sin \left[(2\pi f) t + \boldsymbol{\varphi}_0 \right] = 1 \mathbf{V} \cdot \sin \left[(2\pi \cdot 6 Hz) t + \mathbf{0}^{\circ} \right]$$

Abstraktion:

Jede Grundschwingung ist eindeutig Charakterisiert durch ...

- ihre Amplitude X
- > ihre Frequenz (f) bzw. Kreisfrequenz ($\omega = 2\pi$ f)
- ihre Phasenlage φ

Die geniale Entdeckung von J-B. J. Fourier (1768-1830)

Der französische Mathematiker und Physiker *Jean-Baptiste Joseph Fourier* behauptete 1807, daß...

<u>jeder*</u> periodische Vorgang f(t) mit der Periode T [* also auch extrem nicht-harmonische] als Summe von harmonischen Schwingungen interpretiert werden kann!

<u>Anm.:</u>

Fourier formulierte 1807 seine Behauptung verbal. Im Jahre 1913 stellte der russische Mathematiker *Nikolai Lusin* die entsprechende mathematische Formulierung auf. Erst 1966 gelang dem schwedischen Mathematiker *Lennart Carleson* die vollständige Induktion zur Fourier-Behauptung und damit der Beweis, daß sie allgemeingültig ist (wofür er 2006 den mit 755.000,00 € dotierten Abel-Preis erhielt).

Die geniale Entdeckung von J-B. J. Fourier (1768-1830)

Mathematische Formel (Reihenentwicklung):

$$f(t) = \frac{a_0}{2} + \sum_{i=1}^{\infty} \left(\frac{a_i \cos \frac{i2\pi t}{T} + b_i \sin \frac{i2\pi t}{T} \right)$$

Mit der komplexen Umformung:

$$\cos(i2\pi t/T) + i\sin(i2\pi t/T) = e^{i(i2\pi t/T)}$$

Erhält man:

$$f(t) = c_0 + \sum_{i=-\infty}^{\infty} c_i \cdot e^{-j(i2\pi t/T)}$$

Die Koeffizienten (a_i , b_i) bzw. die zusammengefasste, komplexe Koeffizienten c_i werden dabei als die Schwingungs- oder FREQUENZKOEFFIZIENTEN bezeichnet.

Die geniale Entdeckung von J-B. J. Fourier (1768-1830)

Die Ermittlung der Stärke (Amplitude) der einzelnen harmonischen Anteile in f(t) erfolgt durch die sogenannte Fourier-Analyse (\rightarrow Mathematik Grundstudium):

$$c_{i} = \frac{1}{T} \int_{-T/2}^{T/2} f(t) \cdot e^{-j(i2\pi t/T)} dt$$
mit i = 0, ±1, ±2, ±3, ±4, ...

Die Fourier-Analyse ist eine vollständig reversible Operation.

Sprich: für bekannte Frequenzkoeffizienten c_i kann jederzeit und ohne Verlust die zugrunde liegende Zeitfunktion f(t) wieder rekonstruiert werden!

Fourier-Analyse und Fourier-Synthese

<u>Visuelle Verdeutlichung Fourier-Analyse ← Fourier-Synthese</u>

Verständnistest (typische Klausuraufgabe):

Gegeben ist folgende FT-Analyse eines Audiosignals:

Beschreiben Sie das analysierte Audio-Signal im Zeitbereich (durch "Ablesen" des Spektrums) mit Worten!

Verständnistest (typische Klausuraufgabe):

Gegeben ist folgende FT-Analyse eines Audiosignals:

Beschreiben Sie das analysierte Audio-Signal im Zeitbereich (durch "Ablesen" des Spektrums) mit Worten!

Ergebnis:

