

COMP9033 **DATA ANALYTICS**

8/12

DECISION TREES

DR. DONAGH HORGAN

DEPARTMENT OF COMPUTER SCIENCE CORK INSTITUTE OF TECHNOLOGY

2017.03.22

0.1 / LAST WEEK

1. *k* nearest neighbours:

- The *k* nearest neighbours algorithm.
- · Weighted observations.
- Choosing the number of neighbours.
- · Choosing a distance measure.
- Choosing a weighting scheme.
- Advantages and disadvantages.

2. Recommender systems:

- The long tail phenomenon.
- · Content-based recommenders.
- · User-based collaborative filters.
- · Item-based collaborative filters.
- · Advantages and disadvantages.
- · The Netflix Prize.

0.2 / THIS WEEK

- 1. Measuring classifier error:
 - · Confusion matrices.
 - · Accuracy.
 - Misclassification rate.
 - Precision.
 - · Recall.
- 2. Decision tree classification:
 - · Tree structures.
 - · Classification trees.
 - Iris data set example.
 - The CART algorithm.
 - · Impurity measures.
 - · Stopping criteria.

- 3. Decision tree regression:
 - · Regression trees.
 - · Impurity measures.
- 4. Advanced techniques:
 - Decision tree pruning.
 - · Random forests.

1.1 / CONFUSION MATRICES

- Classifiers produce categoric predictions, not numeric predictions.
- This means that we can't use quantitative measures (e.g. mean absolute error, root mean square error) to measure how accurate a classifier is.
- Instead, we must use alternative measurements of accuracy.

1.2 / CONFUSION MATRICES

- One commonly used technique is the confusion matrix, shown opposite.
- In a confusion matrix, the rows represent the true classes of the data, while the columns represent the predicted classes.
- By examining a particular entry, we can check how many correct classifications were made, e.g.
 - · Three cats were correctly identified.
 - One dog was mistaken for a pig.
 - · Two pigs were mistaken for cats.

		predicted \longrightarrow		
		Cat	Dog	Pig
true	Cat	3	0	1
\downarrow	Dog	0	6	1
	Pig	2	2	5

1.3 / CONFUSION MATRICES

- We can condense the data in the confusion matrix to get a better picture about the accuracy of our classifier on a single category.
- For instance, if we focus on cats, then we can create the new confusion matrix on the bottom right.

	Cat	Dog	Pig
Cat	3	0	1
Dog	0	6	1
Pig	2	2	5

1.4 / CONFUSION MATRICES

- The top left entry represents the number of true positives (TP), e.g. the number of correctly identified cats.
- The top right entry represents the number of *false negatives* (FN), *e.g.* the number of cats identified as other animals.
- The bottom left entry represents the number of false positives (FP), e.g. the number of other animals identified as cats.
- The bottom right entry represents the number of true negatives (TN), e.g. the number of other animals identified as other animals.

	ı	
	Cat	Not a cat
Cat	3	1
Not a cat	2	14

	Cat	Not a cat
Cat	TP	FN
Not a cat	FP	TN

1.5 / CONFUSION MATRICES

- Ideally, we'd like the number of false
 negatives and the number of false positives
 to be zero, i.e. only the diagonal elements of
 the matrix would be non-zero.
- This is also true for uncondensed confusion matrices: for zero error, the only non-zero elements should lie on the diagonal running from the top left to the bottom right.

	Cat	Not a cat
Cat	3	1
Not a cat	2	14

	Cat	Not a cat
Cat	TP	FN
Not a cat	FP	TN

1.6 / ACCURACY

 The accuracy of a classifier is defined as the ratio of correct predictions to total predictions, i.e.

Accuracy =
$$\frac{\text{Correct predictions}}{\text{Total predictions}}$$

= $\frac{TP + TN}{TP + FN + FP + TN}$. (8.1)

• By definition, accuracy lies in the range [0, 1].

	Cat	Not a cat
Cat	TP	FN
Not a cat	FP	TN

1.7 / ACCURACY

- Accuracy is a useful measure of the overall performance of a classifier:
 - As the proportion of our correct predictions grows larger, accuracy grows larger.
 - As the proportion of our correct predictions grows smaller, accuracy grows smaller.

	Cat	Not a cat
Cat	TP	FN
Not a cat	FP	TN

1.8 / MISCLASSIFICATION RATE

 The misclassification rate (MR) of a classifier is defined as the ratio of incorrect predictions to total predictions, i.e.

$$MR = \frac{Incorrect predictions}{Total predictions}$$
$$= \frac{FN + FP}{TP + FN + FP + TN}.$$
 (8.2)

- By definition, the misclassification rate lies in the range [0, 1].
- Using Equation 8.1, it can be shown that MR = 1 – Accuracy.

	Cat	Not a cat
Cat	TP	FN
Not a cat	FP	TN

1.9 / PRECISION

• The *precision* of a classifier is the ratio of true positives to the total positives, *i.e.*

Precision =
$$\frac{\text{True positive predictions}}{\text{Total positive predictions}}$$

= $\frac{TP}{TP + FP}$. (8.3)

- By definition, precision lies in the range [0, 1].
- In our earlier example, precision would measure the proportion of animals labelled as cats that were actually cats.

1.10 / PRECISION

- Precision is useful because it gives us finer detail than accuracy about how our classifier behaves on the positive class:
 - As the number of true positive predictions increases, precision grows larger.
 - As the number of true positive predictions decreases, precision grows smaller.
 - As the number of false positive predictions increases, precision grows smaller.
 - As the number of false positive predictions decreases, precision grows larger.

	Cat	Not a cat
Cat	TP	FN
Not a cat	FP	TN

1.11 / RECALL

 The recall of a classifier is the ratio of the number of true positive classifications to the total number of elements in the target class:

Recall =
$$\frac{\text{True positive predictions}}{\text{Target class}}$$

= $\frac{TP}{TP + FN}$. (8.4)

- \cdot By definition, recall lies in the range [0, 1].
- In our earlier example, recall would measure the proportion of true cats that were labelled as cats.

	Cat	Not a cat
Cat	TP	FN
Not a cat	FP	TN

1.12 / PRECISION

- Recall is useful because it gives us finer detail than accuracy about how our classifier behaves on the target class:
 - As the number of true positive predictions increases, recall grows larger.
 - As the number of true positive predictions decreases, recall grows smaller.
 - As the number of false negative predictions increases, recall grows smaller.
 - As the number of false negative predictions decreases, recall grows larger.
- Recall is sometimes referred to as sensitivity.

	Cat	Not a cat
Cat	TP	FN
Not a cat	FP	TN

1.13 / EXAMPLE: MEASURING CLASSIFICATION ERROR

- **Q.** Compute accuracy, precision and recall using confusion matrix opposite.
- **A.** We can compute the accuracy using Equation 8.1 as

Accuracy =
$$\frac{TP + TN}{TP + FN + FP + TN}$$
$$= \frac{3 + 14}{3 + 1 + 2 + 14}$$
$$= 0.85.$$

	Cat	Not a cat
Cat	3	1
Not a cat	2	14

1.14 / EXAMPLE: MEASURING CLASSIFICATION ERROR

 We can compute the precision using Equation 8.3 as

$$Precision = \frac{TP}{TP + FP} = \frac{3}{3+2} = 0.6.$$

 Finally, we can compute the recall using Equation 8.4 as

Recall =
$$\frac{TP}{TP + FN} = \frac{3}{3+1} = 0.75$$
.

	Cat	Not a cat
Cat	3	1
Not a cat	2	14

1.15 / EXAMPLE: MEASURING CLASSIFICATION ERROR

- The precision and recall are lower than the accuracy!
 - Our accuracy is high because we're relatively good at correctly labelling cats and non-cats.
 - Our precision and recall are lower because, relative to the total number of cats, the number of mistakes we make is higher.

	Cat	Not a cat
Cat	3	1
Not a cat	2	14

Decision tree classification

2.1 / DECISION TREES

- Decision trees are a class of supervised machine learning algorithms, i.e. they learn from data using statistics and heuristics.
- They are based on nested if-else clauses and so can be represented using a hierarchical flow chart, which makes them easy to interpret.
- The tree to the right illustrates a (very) simple animal classification model.

2.2 / DECISION TREES

- A number of algorithms exist for creating decision trees, *e.g.*
 - · ID3: classification only.
 - · C4.5: classification only.
 - · CART: classification and regression.
- For a more complete list, see bit.ly/2n417Sj.
- For the remainder of this lecture, we'll focus on CART, which stands for *Classification And Regression Trees*.
- The decision tree subpackage in scikit-learn uses a variant of CART to build its trees.

2.3 / DECISION TREES

- A decision tree is essentially a graph structure, consisting of nodes and edges:
 - · Nodes represent states.
 - Edges represent connections between states.
- In binary decision trees, nodes either have two edges (representing a true/false condition) or none.

2.4 / DECISION TREES

- Depending on their position within the tree, nodes have different meanings:
 - The uppermost node in the tree is known as the root node and is the starting state of any prediction attempt.
 - The end nodes (i.e. those with no edges)
 are known as leaf nodes and represent a
 final outcome (e.g. spam or ham) or set of
 outcomes
 - All other nodes are called internal nodes and represent some intermediate state between the root and one of the leaves.

2.5 / DECISION TREE CLASSIFICATION

- Once a tree has been created, we can use it to predict the category of an unlabelled sample as follows:
 - 1. Start at the root node.
 - Check which edge matches our criteria (one always will) and then follow it to the next node.
 - 3. Repeat Step 2 until we reach a leaf node.

2.6 / DECISION TREE CLASSIFICATION

- In decision tree classification, leaf nodes represent a category or set of categories, depending on how the decisions in the tree have split the training data:
 - If a leaf node represents a single outcome, then that outcome is predicted.
 - If a leaf node represents more than one outcome, then we select the most likely outcome (*i.e.* the weighted mode) as the prediction.

2.7 / DECISION TREE CLASSIFICATION

- · For instance, in the tree to the right:
 - If an animal is furry, then we would predict that it is a dog.
 - If an animal is not furry, but is scaly, then we would predict that it is a fish.
 - If an animal is not furry and is not scaly, then we would predict that it is a cow.

2.8 / EXAMPLE: IRIS DATA SET

Iris setosa

Iris virginica

Iris versicolor

- · Let's use decision trees to analyse the Iris data set:
 - The data set consists of 150 evenly distributed categoric samples, *i.e.* each category has the same number of samples.
 - There are three categories: Iris setosa, Iris virginica, Iris versicolor.
 - There are four explanatory variables: sepal length, sepal width, petal length and petal width.

2.9 / EXAMPLE: IRIS DATA SET

- Iris setosa (red) is easily distinguished as its characteristics are very different to the other two species.
- Iris versicolor (yellow) and Iris virginica (green) are more difficult to separate, as their properties are more similar.

2.10 / EXAMPLE: IRIS DATA SET

2.11 / THE CART ALGORITHM

- The CART algorithm works as follows:
 - 1. Select an explanatory variable to split on.
 - 2. Choose one of the explanatory variable values to be the threshold value.
 - 3. Using an *impurity measure*, calculate the reduction in impurity that results from the splitting the data according to the chosen threshold.
 - 4. Repeat Steps 2-3 for various threshold values and select the threshold that results in the best impurity reduction.
 - 5. Repeat Steps 1-4 for each explanatory variable and select the variable that gives the best reduction in impurity.
 - 6. Split the data in two, according to the selected variable threshold.
 - 7. Repeat Steps 5 and 6 until some stopping criterion is met.
- CART can be run as a brute force algorithm (*i.e.* all possible threshold values are evaluated for each explanatory variable) or using heuristics to narrow the number of evaluations.

2.12 / HYPERPARAMETERS: IMPURITY MEASURES

- An *impurity measure* is a mathematical function that quantifies how good a candidate split is.
- If we split a parent node (P) into a left child (L) and a right child (R), then the reduction in impurity is given by

Impurity reduction =
$$I_P - \left(\frac{N_L}{N_P}I_L + \frac{N_R}{N_P}I_R\right)$$
, (8.5)

where I_X represents the impurity of node X and N_X represents the number of samples at node X.

• There are many ways to measure the impurity at a node, but two common measures are Gini impurity and entropy.

2.13 / HYPERPARAMETERS: IMPURITY MEASURES

 For a classification problem with k classes, the Gini impurity at node X is defined as

$$I_X = \sum_{i=1}^k p_i (1 - p_i),$$
 (8.6)

where p_i is the proportion of samples at node X belonging to class i.

• The chart opposite shows the Gini impurity for a problem with k = 2 (i.e. $p_1 = 1 - p_2$).

2.14 / HYPERPARAMETERS: IMPURITY MEASURES

 For a classification problem with k classes, the entropy impurity at node X is defined as

$$I_X = -\sum_{i=1}^k p_i \log(p_i),$$
 (8.7)

where p_i is the proportion of samples at node X belonging to class i.

• The chart opposite shows the entropy impurity for a problem with k = 2 (i.e. $p_1 = 1 - p_2$).

2.15 / HYPERPARAMETERS: IMPURITY MEASURES

- Entropy tends to select splits on attributes with large numbers of values.
- This isn't ideal in some cases, can lead to overfitting.
- Gini impurity tends to select splits based on the largest class.
- · Again, this isn't ideal in some cases.
- Can use model selection to determine the best measure in a given situation.

2.16 / HYPERPARAMETERS: IMPURITY MEASURES

- Generally, impurity measures are based on the proportion of samples at a node.
- Consequently, splits are typically unaffected by the presence of outlying data.

2.17 / HYPERPARAMETERS: STOPPING CRITERIA

- · A stopping criterion is a condition that, when met, halts tree building.
- If we don't specify a stopping criterion, then the input data will be split until we reach a state where each leaf node represents just one outcome.
- This can lead to large and complex trees, *i.e.* overfitted models.
- On the other hand, if specify a harsh stopping criterion, we may stop splitting too soon and produce an underfitted model.
- · Again, we can use model selection to choose the best model.
- Stopping criteria can be used individually or in combination.

2.18 / HYPERPARAMETERS: STOPPING CRITERIA

- Minimum samples for a split:
 - If the number of samples available at a node does not reach some threshold value, then do not split it any further.
- · Minimum samples to be a leaf:
 - If the number of samples available at a node is larger than some threshold value, then split it; otherwise, make the node a leaf.
 - · Guarantees a minimum number of samples in each leaf.
- · Impurity reduction threshold:
 - · Only split when the impurity reduction is greater than some threshold value.
 - Can lead us to halt at a weak split, when the following split would have added significant value.
- · Maximum depth:
 - · Only split while the number of levels in the tree is less than some threshold value.
 - · Can lead us to miss valuable splits beyond the maximum depth.

3.1 / DECISION TREE REGRESSION

- Decision trees can also be used for regression:
 - If a leaf node represents a single quantity value, then that value is predicted.
 - More generally, leaf nodes represent many different quantity values, in which case a weighted average value is predicted.
- In the case where a weighted average is used, the outcomes are weighted according to the proportions of samples at the leaf node.

3.2 / DECISION TREE REGRESSION

- For instance, the tree to the right illustrates a model that predicts the number of hours of sleep a person gets every night:
 - If it's a weekday, then we would predict 6.5 hours of sleep.
 - If it's not a weekday, and the person didn't exercise, then we would predict 7 hours of sleep.
 - If it's not a weekday, and the person did exercise, then we would predict
 0.75 × 8 + 0.25 × 9 = 8.25 hours of sleep.

3.3 / HYPERPARAMETERS: IMPURITY MEASURES

- CART builds regression trees in the same way as classification trees, but uses quantitative impurity measures as the target variable is not categoric.
- Typically, the mean absolute error (MAE) and the root mean square error (RMSE) are used to measure the impurity of nodes and Equation 8.5 is used to
- Splits can be influenced by outliers, depending on the measure used.

Advanced techniques

4.1 / DECISION TREE PRUNING

- Decision tree pruning is an alternative to using stopping criteria.
- · Weak splits are eliminated after the *full* tree is built:
 - 1. Starting at the tree leaves, each pair of splits in a branch is analysed.
 - 2. If the splits do not reduce the impurity of their parent by more than some pre-defined threshold, then they are eliminated and their parent is made a leaf node.
 - 3. The process continues until all leaf nodes are those which reduce the impurity of their parent by more than the threshold amount.
- The idea is similar to using an impurity reduction threshold as a stopping criterion, but ensures that we never miss a valuable split because its parent was weak (i.e. it is a bottom up rather than a top down approach).
- · Pruning is currently unsupported in scikit-learn!

4.2 / EXAMPLE: PRUNING THE IRIS DATA SET

- Earlier, we built a decision tree for the Iris flower data set that was limited to a maximum depth of three levels.
- Instead of stopping early like this, let's build the full tree and prune it.
- Normally, we would prune nodes that don't meet a certain impurity reduction threshold but for simplicity let's prune nodes that have fewer than three samples.

4.3 / EXAMPLE: PRUNING THE IRIS DATA SET

4.4 / EXAMPLE: PRUNING THE IRIS DATA SET

4.5 / EXAMPLE: PRUNING THE IRIS DATA SET

4.6 / RANDOM FORESTS

- Decision trees rely on threshold-based comparisons:
 - This makes them easy to understand and visualise.
 - However, it can make their predictions unstable.
- For instance, in the chart to the right, if we encounter a set of flowers whose petal widths are all close to 0.8, we will classify some as setosa and others as virginica, even if they are all the same species.

4.7 / RANDOM FORESTS

- One solution to this problem is the use of random forests:
 - The key idea is to train multiple decision tree models on random subsets of the input data.
 - The probability of each tree outputting a certain class can be measured.
 - When new data is evaluated, each tree is used to make a decision about the data and these decisions are combined using a weighted mode/average with the class probabilities of the trees as weights.
 - Weighting the outcomes of each tree can avoid overfitting and generally gives better results.
- Random forests are an example of an *ensemble method*, *i.e.* the combination of one or more weaker models to create a stronger overall model.

X.1 / SUMMARY

· Decision trees:

- Used for classification and regression.
- · Flow chart representation, easy to understand.
- · Hyperparameters: impurity measure and stopping criteria.
- Pruning: alternative to using stopping criteria, ensures that no valuable splits are missed.
- · Random forests: combine trees to reduce sensitivity around boundaries.

· Lab work:

- Build a decision tree/random forest classification model for SMS spam data.
- Build a decision tree/random forest regression model for server load data.
- · Next week: unsupervised learning and clustering algorithms!

X.2 / REFERENCES

- 1. Hastie et al. *The Elements of Statistical Learning: Data mining, Inference and Prediction.* 2nd edition, February 2009. (stanford.io/1dLkiAv)
- 2. Rokach and Maimon. *The Data Mining and Knowledge Discovery Handbook*. Springer, 2010. (bit.ly/2n417Sj)
- 3. Stamm-Wilbrandt, Hermann. GraphvizFiddle. (bit.ly/2nKd8JL)