Modelowanie horyzontów zdarzeń czarnych dziur przy użyciu metryki Schwarzschilda: Rozwiązania analityczne i numeryczne

Aleksandra Niedziela

Weronika Jakimowicz

02.04.2005

Spis treści

Wstęp		3
1.1	Rozmaitość Riemannowska i tensor metryczny	3
1.2	Czarne dziury Schwarzschild'a	4

1 Wstęp

1.1 Rozmaitość Riemannowska i tensor metryczny

Czasoprzestrzeń w ogólnej teorii względności jest 4 wymiarową rozmaitością, której trzy współrzędne oznaczają położenie w przestrzeni, a czwarta współrzędna informuje nas o czasie. Z matematycznego punktu widzenia, rozmaitość to dowolna przestrzeń topologiczna M taka, że dla każdego punktu $p \in M$ możemy znaleźć otwarty zbiór $p \in U_p \subseteq M$ który jest homeomorficzny z pewnym podzbiorem \mathbb{R}^n . To znaczy, że rozmaitości są lokalnie Euklidesowe. Taka definicja czasoprzestrzeni jest jednak bardzo ogólna, więc wiele modeli sięga po nieco bardziej restrykcyjną definicję rozmaitości.

Definicja 1.1.

Rozmaitość różniczkowalna wymiaru \mathbb{R}^n to para (M, \mathcal{A}), gdzie M jest rozmaitością, a \mathcal{A} jest maksymalnym atlasem gładkim. To znaczy, \mathcal{A} jest największą, co do zawierania, rodziną map (U $_{\alpha}$, φ_{α}) taką, że

- riangleq dla każdego lpha odwzorowanie $arphi_lpha$: U o $\overline{U}\subseteq\mathbb{R}^n$ jest homeomorfizmem, a liczba n jest jedyna dla M,
- - ich dziedziny nie pokrywają się, $U_{\alpha} \cap U_{\beta} = \emptyset$, lub
 - jeśli $U_{\alpha} \cap U_{\beta} \neq \emptyset$ to mapy przejścia, $\varphi_{\alpha}\varphi_{\beta}^{-1}$ i $\varphi_{\beta}\varphi_{\alpha}^{-1}$, są gładkimi odwzorowaniami pomiędzy podzbiorami \mathbb{R}^n .

Często wybierając dowolny punkt $p \in M$ chcemy rozważyć jedną z map $(U_{\alpha}, \varphi_{\alpha})$ taką, że $p \in U_{\alpha}$. Taką dowolną mapę zawierającą $p \in M$ będziemy oznaczać jako (U_p, φ_p) . Dodatkowo, możemy wymagać od takiego zbioru U_p , by jego obraz przez φ_p był kulą wokół środka układu współrzędnych, tzn.

$$\varphi_p(\mathsf{U}_p) = \overline{\mathsf{U}_p}\{(\mathsf{x}_1,...,\mathsf{x}_n) \ : \ \|(\mathsf{x}_1,...,\mathsf{x}_n)\| < r\} = \mathsf{B}_r(\mathsf{0}) \subseteq \mathbb{R}^n \,.$$

Wówczas $\varphi_{\mathbf{p}}(\mathbf{p})$ = (0, ..., 0) $\in \overline{\mathbf{U}_{\mathbf{p}}} \subseteq \mathbb{R}^{\mathbf{n}}$ [2].

Warto zauważyć, że przestrzenie \mathbb{R}^k spełniają definicję rozmaitości różniczkowalnych, np. z atlasami:

$$\label{eq:Adamped} \begin{split} \mathcal{A} &= \{(\mathbb{R}^k, \mathsf{Id}_{\mathbb{R}^k})\} \\ \\ \mathcal{A}' &= \{(\mathsf{B}_1(\mathsf{x}), \mathsf{Id}_{\mathsf{B}_1(\mathsf{x})}) \ : \ \mathsf{x} \in \mathbb{R}^k\} \end{split}$$

Definicja 1.2.

Niech (M,\mathcal{A}) i (N,\mathcal{B}) będą rozmaitościami gładkimi. Funkcja $f:M\to N$ taka, że dla dowolnych punktów $p\in M$ i $f(p)=q\in N$ istnieją mapy (U_p,φ_p) wokół p oraz (V_q,ψ_q) wokół q takie, że reprezentacja f

$$\psi_{\mathsf{q}} \circ \mathsf{f} \circ \varphi_{\mathsf{p}}^{-1} : \varphi_{\mathsf{p}}(\mathsf{U}_{\mathsf{p}}) \to \psi_{\mathsf{q}}(\mathsf{V}_{\mathsf{q}})$$

w tych mapach jest funkcją gładką między $\varphi_{p}(U_{p})$ i $\psi_{q}(V_{q})$:

Do dowolnej gładkiej rozmaitości M wymiaru n możemy dołączyć wiązkę styczną TM = $\bigsqcup_{p \in M} T_p M$, gdzie $T_p M$ jest przestrzenią styczną do M w punkcie p. Ważną własnością przestrzeni stycznych jest ich liniowość.

Istnieje więc w matematyce sposób na rozważanie abstrakcyjnych przestrzeni przez pryzmat dobrze zbadanych \mathbb{R}^n oraz dopisanie do nich struktury przestrzeni liniowej dzięki przestrzeniom stycznym. Idąc dalej, możemy zastanowić się jakie inne właściwości przestrzeni euklidesowych możemy uogólnić na abstrakcyjne przestrzenie T_pM .

Rozmaitość Riemanna to gładka, rzeczywista rozmaitość M z rodziną dwuliniowych funkcji

$$g_p: T_pM \times T_pM \to \mathbb{R}$$

zdefiniowanych w każdym punkcie $p \in M$. Każda taka funkcja g_p jest dodatnio określonym iloczynem wewnętrznym na T_pM , a więc pociąga za sobą normę

$$\|\mathbf{v}\|_{p} = \sqrt{\mathbf{g}_{p}(\mathbf{v},\mathbf{v})}.$$

W ten sposób możemy na TM określić funkcję g, która dowolnym dwóm wektorom X_p, Y_p zaczepionym w tym samym punkcie $p \in M$ przypisuje ich odpowiednik iloczynu skalarnego $g_p(X_p, Y_p)$. Tak określony funkcjonał nazywamy tensorem metrycznym, lub w skrócie metryką, na rozmaitości M.

Dowolna mapa (U, φ) na n-wymiarowej Riemannowskiej rozmaitości M zawierająca punkt $p \in M$ pociąga za sobą bazę przestrzeni T_pM

$$\left\{\frac{\partial}{\partial \varphi_1}, ..., \frac{\partial}{\partial \varphi_n}\right\}$$

w takim razie funkcjonał g_p zapisuje się macierzą o wymiarze n \times n. Wyrazami takiej macierzy są wartości g_p na kolejnych parach wektorów bazowych.

Mając bazę dualną do $\{\frac{\partial}{\partial \varphi_{\mathbf{i}}}\}$ możemy zapisać tensor metryczny za pomocą prawdziwego tensora

$$g = \sum_{i,j \le n} g_{i,j} d\varphi^i \otimes d\varphi^j$$

gdzie $\mathbf{g}_{\mathbf{i},\mathbf{j}}$ to wyrazy macierzy wspomnianej wyżej, a d $\varphi^{\mathbf{i}}$ to elementy bazy dualnej do $\frac{\partial}{\partial \varphi_{\mathbf{i}}}$

1.2 Czarne dziury Schwarzschild'a

Jednym z najprostszych, a przez to najczęściej używanych, sposobów opisu przestrzeni wokół czarnej dziury jest modelowanie tej osobliwości jako sferycznie symetrycznego obiektu o pewnej masie, pozbawionego ładunku elektrycznego i przyśpieszenia kątowego. Tak zdefiniowane czarne dziury nazywamy czarnymi dziurami Schwarzschild'a, na pamiątkę niemieckiego fizyka który jako pierwszy znalazł dokładne rozwiązanie równania Einsteina. W języku matematyki, czarna dziura którą zajmiemy się w tej pracy jest modelowana przez rozmaitość

$$\mathbb{R} \times (0, +\infty) \times S^2$$

czyli w tym przypadku współrzędne będą oznaczać kolejno czas, odległość od środka masy i położenie na S² zapisywane przy pomocy dwóch kątów.

Wspomniane rozwiązanie nazywa się metryką Schwarzschild'a i zapisuje się je jako

$$g = -c^2 d\tau^2 = -\left(1 - \frac{r_s}{r}\right)c^2 dt^2 + \left(1 - \frac{r_s}{r}\right)^{-1} dr^2 + r^2 (d\theta^2 + \sin^2(\theta)d\varphi^2)$$

lub w formie macierzy

$$\mathbf{g}_{\mu\nu} = \begin{bmatrix} -\left[1 - \frac{r_{s}}{r}\right] & 0 & 0 & 0 \\ 0 & \left[1 - \frac{r_{s}}{r}\right]^{-1} & 0 & 0 \\ 0 & 0 & r^{2} & 0 \\ 0 & 0 & 0 & r^{2}\sin^{2}(\theta) \end{bmatrix},$$

gdzie τ to czas własny (mierzony przez zegar poruszający się razem z cząsteczką testową), t to współrzędna czasu (mierzona przez zegar położony nieskończenie daleko od czarnej dziury), a r, θ , φ to współrzędne sferyczne wokół środka czarnej dziury (θ to kąt między wektorem opisującym położenie a północnym biegunem przestrzeni) [1].

W każdym punkcie (t, r, θ , φ) rozmaitości opisującej czasoprzestrzeń wokół badanej czarnej dziury możemy rozważać przestrzeń do niej styczną. Bazą takiej przestrzeni będą wówczas wektory $\frac{\partial}{\partial t}$, $\frac{\partial}{\partial r}$, $\frac{\partial}{\partial \theta}$ i $\frac{\partial}{\partial \varphi}$ których długości to

$$\left\| \frac{\partial}{\partial \mu} \right\|_{\mathbf{g}} = \sqrt{\mathbf{g}_{\mu\mu}}$$

czyli pierwiastki odpowiednich wyrazów macierzy ${\sf g}_{\mu\nu}$. Zauważmy, że długość żadnego z wektorów nie jest zależna od czasu t ani od szerokości geograficznej.

CHYBA NAJWIĘCEJ SENSU MA PATRZENIE NA PRZEKRÓJ PO RÓWNIKU I WZDŁUŻ OSI PÓŁNOC-POŁUDNIE? PRZYNAJMNIEJ NA POCZĄTKU

References

- [1] Jim Branson. The schwarzschild metric, 2012. Użyte: 12.11.2023.
- [2] John M. Lee. *Introduction to Smooth Manifolds*. Springer New York, NY, 2 edition, 2013.