Which of the following instructions is not possible on the following data path?

^{○ A.} Add Acc, Acc, SP

^{⊙ B.} Add R2, R1, R3

^{O c.} Add Acc, Acc, R3

O D. Add PC, Acc, PC PC ←Acc + PC

○ ^{E.} None of them

 $Acc \leftarrow Acc + SP$

R2 R1 + R3

 $Acc \leftarrow Acc + R3$

B is correct

○ A. SUB Acc, Acc, SP Acc ← Acc - SP

○ B. SUB R2, Acc, PC R2 ← Acc - PC

 $^{\odot}$ C. ADD Acc, PC, R3 Acc \leftarrow PC + R3

^{O D.} Add PC, Acc, PC

^{○ E.} None of them

 $PC \leftarrow Acc + PC$

C is correct

How many bits of the control word is cleared on the following data path?

- A. 12 bits
- **B.** 15 bits
- C. 14 bits
- D. 9 bits
- E. None of them

SELA (3) + SELB (3) + SELD(3) + OPR(5) = 14 bits

	Symbolic Designation				
Microoperation	SELA	SELB	SELD	OPR	Control Word
R1 ← R2 − R3	R2	R3	R1	SUB	010 011 001 00101
$R4 \leftarrow R4 \lor R5$	R4	R5	R4	OR	100 101 100 01010
R6←R6+1	R6	_	R6	INCA	110 000 110 00001
R7←R1	R1	_	R7	TSFA	001 000 111 00000
Output ← R2	R2	_	None	TSFA	010 000 000 00000
Output ←Input	Input	_	None	TSFA	000 000 000 00000
R4 ← sh1 R4	R4	_	R4	SHLA	100 000 100 11000
R5←0	R5	R5	R5	XOR	101 101 101 01100

What is the mode of addressing for the following instruction?

CMP R1 : R1'-> R1

A. Register Indirect Mode

B. Register Mode

C. Implied Mode

D. Relative Mode

E. None of them

What is the mode of addressing for the following instruction?

INC R1: R1'-> R1

- A. Register Indirect Mode
- **B.** Register Mode
- C. Implied Mode
- D. Relative Addressing Mode
- E. None of them

What is the mode of addressing for the following instruction?

LD R2, R4: R4→ R2

- A Register Mode
- **B. Direct Address Mode**
- **C Index Addressing Mode**
- D. Relative Addressing Mode
- E. None of them

What is the mode of addressing for the following instruction?

LD A, (40H) : $M(40H) \rightarrow A$

- A Immediate Mode
- **B. Direct Address Mode**
- C. Implied Mode
- D. Relative Addressing Mode

What is the mode of addressing for the following instruction?

JR 40H : PC+40H→ PC

A Register Indirect Mode

B: Register Mode

C Implied Mode

D. Relative Addressing Mode

What is the mode of addressing for the following instruction?

LD A, 40H : 40H→ A

A Immediate Mode

- **B. Direct Address Mode**
- **C Implied Mode**
- D. Relative Addressing Mode

What is the mode of addressing for the following instruction?

LD A, (IX+40H)

: M(IX+40H)→ A

- ^{○ A.} Immediate Mode
- Direct Address Mode
- C. Index Addressing Mode
- O D. Relative Addressing Mode
- ^{○ E.} None of them

Which of the following components can not be in an MCU?

- A. A/D converter
- B. D/A converter
- C. serial I/O controller
- D. Timer
- E. None of them

Explanation of the options:

- A. A/D converter (Analog-to-Digital converter): Often included in MCUs for converting analog signals into digital values.
- **B. D/A converter (Digital-to-Analog converter)**: Not typically found in many MCUs; if needed, it may be added as an external component.
- C. Serial I/O controller: Commonly integrated in MCUs for handling serial communication (e.g., UART, SPI, I2C).
- D. Timer: A standard feature in MCUs for timing operations and generating delays or managing events.

What is The difference between SOC & NOC?

- A. SOC has CPU but NOC doesn't have CPU
- B. SOC has internal memory but NOC doesn't have internal memory
- C. NOC may contain multi SOC cores
- D. SOC may contain multi NOC cores
- E. NOC contains I/O but SOC doesn't
- System on Chip (SoC) is a complete integrated circuit that includes a CPU, memory, I/O ports, and other components, all on a single chip. It is designed to handle a wide range of processing tasks and is typically used in smartphones, tablets, and other embedded systems.
- **Network on Chip (NoC)** is a communication subsystem within a system on a chip (SoC) that enables communication between different cores or components of the SoC. It provides a scalable and efficient way to interconnect various processing elements within a multi-core SoC.

Explanation of the options:

- A. Incorrect. Both SoC and NoC may contain CPUs.
- B. Incorrect. SoCs often have internal memory, and NoCs are part of SoCs, which can have memory.
- C. Correct. A NoC can interconnect multiple SoC cores, serving as the communication framework within a multi-core SoC.
- D. Incorrect. An SoC contains a NoC, not the other way around.
 - **E.** Incorrect. Both SoC and NoC can contain I/O components.

Which of the following components can not be in an MCU?

- A. RAM memory
- **B. PROM memory**
- C. I/O block
- D. CPU
- E. All of them could be in an MCU

ARM processors are designated for?

- A. low-power operation
- B. mobile devices
- C. Longer battery life
- D. simple design as possible
- E. All of them

E. All of them

ARM processors are designed with several goals in mind, including:

- A. Low-power operation: ARM processors are known for their energy efficiency, making them ideal for battery-operated devices.
- **B. Mobile devices**: ARM processors are widely used in mobile devices such as smartphones and tablets due to their power efficiency and performance.
- **C. Longer battery life**: The power-efficient design of ARM processors contributes to longer battery life in portable devices.
- **D. Simple design as possible**: ARM processors are designed with a relatively simple and efficient instruction set, which helps in reducing power consumption and improving performance.

ARM processors address all of these aspects, making them a popular choice for various applications where power efficiency and performance are critical.

Which of the following items are not drive the wearable market? O A. Fitness
O B. Healthcare
○ C. Longer battery life
O D. Fashion
● E. All of them
How many multiplexers are used on the following data path with an 8bit data size? O A. 32 MUX O B. 16 MUX O C. 8 MUX O D. 64 MUX O E. None of them

In CISC processors PC register has?

- A. address of memory for access to a new address
- B. address of memory for access to a data
- C. address of memory for access to an instruction
- D. address of memory for both data and instruction simultaneously
- E. A, B and C items are correct

PC=Program Counter
DR=Data Register
AC=Accumulator
IR=Instruction Register

What is the instruction for following RTL?

PC[10H]	⇒	AR
PC+1	⇨	PC
M(10H)	⇨	DR
DR	⇨	IR&ID
PC[11H]	⇒ AR	
PC+1	⇒ PC	
M(11H)	⇒ DR[40]	0H]
DR[40H]	⇒ AR	
AC	⇒ DR	
DR)
0	⇒ sc	-

LD (40H), A

What is the instruction for following RTL?

PC[10H]	⇨	AR
PC+1	\Rightarrow	PC
M(10H)	\Rightarrow	DR
DR	\Rightarrow	IR&ID
PC[11H]	⇨	AR
PC+1	➾	PC
M(11H)	⇨	DR[40H]
DR[40H]	\Rightarrow	AR
M(40H)	➾	DR[50H]
DR[50H]	\Rightarrow	AC
0	\Rightarrow	SC

LD A,(40H) M(40H) => A

\sim	^		Α.	. 40H
()	\boldsymbol{A}	11)	Δ	401

 $40H \Rightarrow A$

B. LD A, (40H)

 $M(40H) \Rightarrow A$

O C. LD 40H, A

 $A \Rightarrow M(40H)$

O D.LD A, R1

 $R1 \Rightarrow A$

What is the instruction for following RTL?

PC[10H] PC+1

M(10H)

DR

R1

M(R1)

DR

0

AR PC

DR IR&ID

AR

 \Rightarrow

DR

AC

SC

LD A, (R1) M(R1)=>A

O A. LD A , 40H

 $40H \Rightarrow A$

B. LD A, (R1)

 $M(R1) \Rightarrow A$

O C. LD 40H, A

 $A \Rightarrow M(40H)$

O D.LD A, R1

 $R1 \Rightarrow A$

O E. Non of them

PC[10H] PC+1	⇨	AR PC
M(10H) DR	⇒	DR IR&ID
PC[11H]	⇒ AR	
PC+1	⇒ PC	
M(11H)	⇒ DR[4	ЮH]
ADD A, DR[4	0H] ⇔ A	
0	⇒ sc	

ADD A, (40H) A+M(40H) -> A

$$^{\circ}$$
 ADD A, (40H) A+M(40H) \rightarrow A

$$^{\circ}$$
 ADD A, R1 A+R1 \rightarrow A

What is the instruction for following RTL?

PC[10H]	\Rightarrow	AR
PC+1	⇨	PC
M(10H)	⇒	DR
DR	⇒	IR&ID
R1	⇨	AC
0	\Rightarrow	SC
Δ R1 R1=	:>Δ	

LD A, R1 R1=>A

O A.LD A,40H	40H ⇒ A
O B. LD A , (40H)	M(40H) ⇒ A
O C. LD 40H, A	A⇒ M(40H)
⊙ DID Δ P1	D1 → Δ

PC[10H] PC+1	⇔	AR PC
M(10H) DR	⇔	DR IR&ID
PC[11H]	\Rightarrow	AR
PC+1	\Rightarrow	PC
M(11H)	⇨	DR[40H]
DR[40H]	⇨	AC
0	⇨	SC

Immediate LD A, 40H PC[10H] PC+1 AR PC M(10H) DR DR **IR&ID** Fetch Cycle PC[11H] \Rightarrow **AR** PC+1 PC M(11H) **DR[40H]** \Rightarrow **DR[40H]** AC \Rightarrow SC 0 \Rightarrow

AR

PC[10H]

O C. LD (R3), A

D. Push R3

PC+1	\Rightarrow	PC
M(10H)	\Rightarrow	DR
DR	\Rightarrow	IR&ID
SP	\Rightarrow	AR
R3	\Rightarrow	DR
DR	\Rightarrow	M(AR)
SP - 1	\Rightarrow	Sp
0	\Rightarrow	SC
A. POP R3		M(SP) ⇒ R3
) B. LD A , (R3)		M(R3) ⇒ A

The operation SP - 1 \rightarrow SP is typically associated with a PUSH operation.

 $A \Rightarrow M(R3)$

 $R3 \Rightarrow M(SP)$

PC[10H] PC+1	⇒ ⇒	AR PC
M(10H) DR	⇒	DR IR&ID
SP +1	\Rightarrow	SP
SP	\Rightarrow	AR
M(AR)	\Rightarrow	DR
DR	\Rightarrow	R3
0	\Rightarrow	SC

The operation SP + 1 \rightarrow SP is typically associated with a Pop operation.

What is the instruction for following RTL?

M(11H) ⇒ DR[40H]

```
    O A. JP (40H)
    O B. LD A , PC
    PC → A
```

$$^{\circ}$$
 Push R3 R3 \rightarrow M(SP)

Pniversi 461 - as Dallas

PC[10H]	\Rightarrow	AR
PC+1	\Rightarrow	PC
M(10H)	\Rightarrow	DR
DR	➾	IR&ID
PC[11H]	⇒ A	\ R
PC+1	⇒ PC	
M(11H)	⇒ DR[40H]	
DR[40H]	⇒ PC	
0	⇒ 5	SC

PC[10H]	⇨	AR
PC+1	⇨	PC
M(10H)	⇨	DR
DR	⇨	IR&ID
R1+1	⇒ R1	
0	⇒ SC	

A.

INC A

^{○ B.}INC PC

^{○ C.}LD (40H), A

^{⊙ D.}INC R1

^{○ E.} None of them

A+1 → A

PC+1→ Pc

A → M(40H)

R1 + 1 → R1

In stack structure with post-increment, top full, and 16bit as word size,

- ^{○ A.} with each POP, SP-1→ SP
- ^{○ B.} with each POP, SP-4→ SP
- ^{⊙ C.} with each POP, SP-2→ SP
- ^{○ D.} with each PUSH, SP+1→ SP
- E. none of them

In a stack structure with **post-increment**, **top full**, and a **16-bit word size**, the correct behavior for a POP operation is:

After popping a value from the stack, the stack pointer (SP) is incremented by the word size, which is 2 bytes (16 bits).

Given this, the correct answer is:

C. with each POP, SP-2 \rightarrow SP

In stack structure with post-increment, top full, and 16bit as word size,

- ^{○ A.} with each PUSH, SP+1→ SP
- ^{○ B.} with each PUSH, SP+4→ SP
- ^{⊙ C.} with each PUSH, SP+2→ SP
- ^{○ D.} with each POP, SP+1→ SP

In stack structure with post-increment, top full, and 8bit as word size, which of the following items is correct?

A.with each PUSH, first, there is a write-on memory then SP+1-> SP

B.with each PUSH, first, there is a write-on memory then SP+2-> SP

C.with each PUSH, first, there is SP+1-> SP, then write on memory

D.with each PUSH, first, there is SP+2-> SP, then write on memoryE.none of themC is correct

In stack structure with post-increment, top full, and 8bit as word size,

^o A. with each POP, first, there is a read from memory then SP-1→ SP

^o B. with each POP, first, there is a read from memory then SP-2 → SP

^o C. with each POP, first, there is SP-1→ SP, then read from memory

^o D. with each POP, first, there is SP-2→ SP, then read from memory