

数学与应用数学专业前沿课 结课论文

题目: 卷积神经网络与图像识别算法

字	沅:	XX 字院
班	级:	10XXXXXX
学	号:	10XXXXXXXX
姓	名:	XXX
导	师:	XXX
成	绩:	
时	间:	2020年10月9日

目 录

1	引音	1		
2	指标选择及描述	1		
3	3 模型建立			
	3.1 时序数据平滑化	1		
	3.2 指数预测模型	1		
	3.3 ARIMA 模型	1		
4	模型求解			
	4.1 指数模型	2		
	4.2 ARIMA 模型	2		
5	结果分析			
6	总结与体会 。			
	6.1 论文总结	2		
	6.2 心得体会	2		
7	附录	3		
	7.1 源代码	3		
	7.2 数据包	3		

引言

摘要:本文从。

关键词:时

1 引言

图 1: 浦发银行 (sh600000)2020 年 K 线图及指标图

2 指标选择及描述

由于在此也不作进一步分析。

3 模型建立

3.1 时序数据平滑化

处

虽然从图上看,随着 k 的增大,图像变得越来越平滑,但也因此失去了一部分的信息,所以此时选取 k=7 进行平滑处理即可。

3.2 指数预测模型

指、

3.3 ARIMA 模型

ARIMA 模溯的观测值的数量。

模型求解 2

4 模型求解

根据上面的模型建立过程,直接调用 R 中的函数求解如下:

4.1 指数模型

使用 forecast 包中的 forecast() 函数进行预测,可得到上述结果中,浅灰和深灰的部分分别代表预测结果的 80% 和 95% 置信区间。

4.2 ARIMA 模型

针对 ARIMA 模型,需要先进行模型的评价,这里绘制正态 Q-Q 图,如果数据满足正态分布,则数据中的点会落在图中的线上,由下图可知,数据拟合效果较好。

5 结果分析

断。

6 总结与体会

6.1 论文总结

本文

6.2 心得体会

在高。

参考文献

- [1] R. I.Kabacoff. R 语言实战 (第 2 版). 人民邮电出版社, 2016.
- [2] 范剑青, 姚琦伟著, 陈敏译. 非线性时间序列一建模、预报及应用. 北京: 高等教育出版社, 2005.
- [3] 陈小玲. 基于 ARIMA 模型与神经网络模型的股价预测. 经济数学, 2017, 34(4).

附录 3

7 附录

7.1 源代码

i

7.2 数据包

日线