第 10 周作业解答

练习 1. 求向量组
$$\alpha_1 = \begin{pmatrix} -2\\1\\3\\-1\\2 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} -1\\3\\5\\-3\\-1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 0\\5\\7\\-5\\-4 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 1\\2\\2\\-2\\-3 \end{pmatrix}$ 的一组极大无关组,并将其余向

量表示成极大无关组的线性组合。

解

可见

- $r(\alpha_1\alpha_2\alpha_3\alpha_4) = 2$, 说明极大无关组应含 2 个向量;
- 从最后简化的阶梯型矩阵容易看出: α_1, α_2 线性无关, 所以 α_1, α_2 构成一极大无关组;
- 也是从最后简化的阶梯型矩阵看出:

练习 2. 用基础解系表示齐次线性方程组
$$\begin{cases} x_1 + & x_2 + & x_3 + & 4x_4 - & 3x_5 = 0 \\ 2x_1 + & x_2 + & 3x_3 + & 5x_4 - & 5x_5 = 0 \\ x_1 - & x_2 + & 3x_3 - & 2x_4 - & x_5 = 0 \\ 3x_1 + & x_2 + & 5x_3 + & 6x_4 - & 7x_5 = 0 \end{cases}$$
的通解

解

1. 从最后简化的阶梯型矩阵看出,原方程组同解于:

$$\begin{cases} x_1 & +2x_3 + & x_4 - & 2x_5 = 0 \\ & x_2 & -x_3 + & 3x_4 - & x_5 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = -2x_3 - x_4 + 2x_5 \\ x_2 = x_3 - 3x_4 + x_5 \end{cases}$$

- 2. 自由变量: x_3, x_4, x_5
- 3. 基础解系:

$$\xi_1 = \begin{pmatrix} -2\\1\\0\\0\\0 \end{pmatrix}, \ \xi_2 = \begin{pmatrix} -1\\-3\\0\\1\\0 \end{pmatrix}, \ \xi_3 = \begin{pmatrix} 2\\1\\0\\0\\1 \end{pmatrix}$$

4. 通解:

$$x = c_1 \xi_1 + c_2 \xi_2 + c_3 \xi_3$$

其中 c_1 , c_2 , c_3 为任意常数。

练习 3. 用"特解 + 基础解系的线性组合"的形式,表示线性方程组 $\begin{cases} x_1 + 2x_2 + x_3 + x_4 - x_5 = 1 \\ x_2 + x_3 + x_4 = 1 \\ 2x_1 + 3x_2 + x_3 + 2x_4 - x_5 = 3 \end{cases}$ 的通解。

解

$$\left(\begin{array}{c} A \mid b \end{array}\right) = \left(\begin{array}{ccc|c} 1 & 2 & 1 & 1 & -1 & 1 \\ 0 & 1 & 1 & 1 & 0 & 1 \\ 2 & 3 & 1 & 2 & -1 & 3 \end{array}\right) \xrightarrow{r_3 - 2r_1} \left(\begin{array}{ccc|c} 1 & 2 & 1 & 1 & -1 & 1 \\ 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & -1 & -1 & 0 & 1 & 1 \end{array}\right)$$

$$\xrightarrow{r_3 + r_2} \left(\begin{array}{ccc|c} 1 & 2 & 1 & 1 & -1 & 1 \\ 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 2 \end{array}\right) \xrightarrow{r_2 - r_3} \left(\begin{array}{ccc|c} 1 & 2 & 1 & 0 & -2 & -1 \\ 0 & 1 & 1 & 0 & -1 & -1 \\ 0 & 0 & 0 & 1 & 1 & 2 \end{array}\right)$$

$$\xrightarrow{r_1 - 2r_2} \left(\begin{array}{ccc|c} 1 & 0 & -1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & -1 & -1 \\ 0 & 0 & 0 & 1 & 1 & 2 \end{array}\right)$$

1. 从最后简化的阶梯型矩阵看出,原方程组同解于:

$$\begin{cases} x_1 & -x_3 & = 1 \\ x_2 & +x_3 & -x_5 & = -1 \\ x_4 & +x_5 & = 2 \end{cases} \Rightarrow \begin{cases} x_1 = 1 + x_3 \\ x_2 = -1 - x_3 + x_5 \\ x_4 = 2 - x_5 \end{cases}$$

2. 自由变量: x₃, x₅

3. 原方程组特解: 取自由变量
$$\begin{pmatrix} x_3 \\ x_5 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
,得特解 $\eta = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 2 \\ 0 \end{pmatrix}$ 。

4. 导出组 Ax = 0 同解于

$$\begin{cases} x_1 = x_3 \\ x_2 = -x_3 + x_5 \\ x_4 = -x_5 \end{cases}.$$

分别取 $\begin{pmatrix} x_3 \\ x_5 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ 和 $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$, 得基础解系

$$\xi_1 = \begin{pmatrix} 1 \\ -1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \ \xi_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ -1 \\ 1 \end{pmatrix}.$$

5. 通解:

$$x = \eta + c_1 \xi_1 + c_2 \xi_2 = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 2 \\ 0 \end{pmatrix} + c_1 \begin{pmatrix} 1 \\ -1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} 0 \\ -1 \\ 0 \\ -1 \\ 1 \end{pmatrix}$$

其中 c_1 , c_2 为任意常数。

练习 4. 设 A, B 均为 $m \times n$ 矩阵, 证明: $r(A+B) \le r(A) + r(B)$.

解 1. 准备工作(引入向量的语言)

- 设矩阵 A 的 n 列依次为: $\alpha_1, \alpha_2, \ldots, \alpha_n$;矩阵 B 的 n 列依次为: $\beta_1, \beta_2, \ldots, \beta_n$,则矩阵 A+B 的 n 列依次为: $\alpha_1 + \beta_1, \alpha_1 + \beta_2, \ldots, \alpha_1 + \beta_n$ 。
- 设 $r_1 = r(\alpha_1, \alpha_2, ..., \alpha_n) = r(A)$,则列向量组 $\alpha_1, \alpha_2, ..., \alpha_n$ 的极大无关组应包含 r_1 个向量,设 $\alpha_{i_1}, \alpha_{i_2}, ..., \alpha_{i_{r_1}}$ 是其中一个极大无关组。同样,设 $r_2 = r(\beta_1, \beta_2, ..., \beta_n) = r(B)$,并假设 $\beta_{j_1}, \beta_{j_2}, ..., \beta_{j_{r_2}}$ 是列向量组 $\beta_1, \beta_2, ..., \beta_n$ 的一个极大无关组。
- 2. 显然列向量组

$$\alpha_1 + \beta_1, \alpha_1 + \beta_2, \ldots, \alpha_1 + \beta_n$$

能由向量组

$$\alpha_1, \alpha_2, \ldots, \alpha_n, \beta_1, \beta_2, \ldots, \beta_n$$

线性表示,继而也能由向量组

$$\alpha_{i_1}, \, \alpha_{i_2}, \, \dots, \, \alpha_{i_{r_1}}, \, \beta_{j_1}, \, \beta_{j_2}, \, \dots, \, \beta_{j_{r_2}}$$

线性表示。所以

$$r(\alpha_1 + \beta_1, \alpha_1 + \beta_2, \dots, \alpha_1 + \beta_n) \le r(\alpha_{i_1}, \alpha_{i_2}, \dots, \alpha_{i_{r_1}}, \beta_{j_1}, \beta_{j_2}, \dots, \beta_{j_{r_2}}),$$

进而

$$r(A+B) = r(\alpha_1 + \beta_1, \ \alpha_1 + \beta_2, \ \dots, \ \alpha_1 + \beta_n) \le r(\alpha_{i_1}, \ \alpha_{i_2}, \ \dots, \ \alpha_{i_{r_1}}, \ \beta_{j_1}, \ \beta_{j_2}, \ \dots, \ \beta_{j_{r_2}}) \le r_1 + r_2 = r(A) + r(B).$$

练习 5. 设 $A = (a_{ij})_{m \times n}, B = (b_{ij})_{n \times s},$ 假设 $AB = O_{m \times s}$ 。证明: $r(A) + r(B) \le n$ 。

解 1. 准备工作(引入向量的语言)

矩阵 B 的 s 列依次为: β₁, β₂, ..., β_s, 则向量组 β₁, β₂, ..., β_s 的秩等于 B 的秩, 即:

$$r(\beta_1, \beta_2, \ldots, \beta_s) = r(B).$$

• 齐次线性方程组 Ax=0 的基础解系应包含 n-r(A) 个向量。假设

$$\xi_1,\,\xi_2,\,\ldots,\,\xi_t$$

是 Ax = 0 的一组基础解, 其中 t = n - r(A)。

2. 证明

由于 AB = O, 所以

$$O = AB = A(\beta_1, \beta_2, \dots, \beta_s) = (A\beta_1, A\beta_2, \dots, A\beta_s) \Rightarrow A\beta_i = 0 \ \forall i = 1, 2, \dots, s$$

说明矩阵 B 的每一列 β_i 都是 Ax=0 的解。所以 β_i 是基础解系 ξ_1,ξ_2,\ldots,ξ_t 的线性组合。上述说明向量组 $\beta_1,\beta_2,\ldots,\beta_s$ 能由向量组 ξ_1,ξ_2,\ldots,ξ_t 线性表示,所以

$$r(\beta_1, \beta_2, \ldots, \beta_s) \le r(\xi_1, \xi_2, \ldots, \xi_t) = t = n - r(A),$$

进而

$$r(B) \le n - r(A)$$
.