Bases de Datos 1

Alejandra Lliteras alejandra.lliteras@lifia.info.unlp.edu.ar

¿Cómo podemos organizar esquemáticamente las etapas para llegar a tener una base de datos relacional implementada en un dbms particular?

Etapas

Figura extraída de:

Garcia-Molina, H. (2008). Database systems: the complete book. Pearson Education India.

Etapas

¿Que beneficio detectan al separar por etapas dicho proceso?

Modelo Relacional (Repaso)

- Modelo Relacional
 - Tablas bidimensionales (relación)
 - Atributos
 - Esquema
 - ejemplo PERSONA(<u>dni</u>,nombre,apellido)
 - Tupla
 - Dominio
 - Clave

Relación cumple que:

- No hay tuplas repetidas (filas)
- El orden de las filas no es significativo
- El orden de las columnas no es significativo
- Todos los valores de la tabla son atómicos

- Operaciones sobre los datos
 - Álgebra Relacional
 - Lenguaje de consulta, procedimental
 - Operaciones fundamentales
 - Operaciones adicionales
 - Lenguaje de manipulación de datos
 - Operaciones de manipulación

- Álgebra Relacional -Lenguaje de Consulta
 - Operaciones fundamentales: son suficientes para expresar cualquier consulta en álgebra relacional
 - Selección (σ)
 - Proyección (Π)
 - Producto Cartesiano (X)
 - Renombre (ρ)
 - Unión (∪)
 - Diferencia ()

Selección (σ)

- -Operación unaria ($\sigma_{condición} R$)
- Requiere una condición booleana
 - Operaciones: and, or y not
- El resultado es una relación con un subconjunto "horizontal" de la relación dada

Ingenieros

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25

E#	Nombre	Edad
320	José	34
322	Rosa	37

- Proyección (Π)
 - ullet Operación unaria ($\Pi_{ ext{lista_de_atributos}}$ ${f R}$)
 - Dada una lista de atributos produce un corte "vertical" de la relación
 - Los atributos de la lista se toman de izquierda a derecha.

Ingenieros

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25

 $\prod_{\text{nombre, edad}}$ (Ingenieros)

Nombre	Edad
José	34
Rosa	37
María	25

- Producto Cartesiano (X)
 - Operación binaria (A X B)
 - El resultado es una relación que incluye todas las tuplas posibles que se obtienen concatenando cada tupla de A con cada una de las tuplas de B
 - La concatenación de una tupla a=(a1, ..., am) y una tupla b=(bm+1, ..., bm+n), es una tupla t=(a1,..., am, bm+1, ..., bm+n)

Producto Cartesiano (X)

Ingenieros

E#	Nombre	D#
320	José	D1
322	Rosa	D3

Proyectos

Proyecto	Tiempo
RX338A	21
PY254Z	32

Ingenieros X Proyectos

E#	Nombre	D#	Proyecto	Tiempo
320	José	D1	RX338A	21
320	José	D1	PY254Z	32
322	Rosa	D3	RX338A	21
322	Rosa	D3	PY254Z	32

Producto Cartesiano (X)

Ingenieros

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25

Jefes

E#	Nombre	Edad
320	José	34
421	Jorge	48

Ingenieros X Jefes

Ingenieros. E#	Ingenieros. Nombre	Ingenieros. Edad	Jefes E #	Jefes.Nombre	Jefes.Edad
320	José	34	320	José	34
320	José	34	421	Jorge	48
322	Rosa	37	320	José	34
322	Rosa	37	421	Jorge	48
323	María	25	320	José	34
323	María	25	421	Jorge	48

- Renombre de una relación (ρ)
 - Operación unaria ($\mathbf{p}_{x}\mathbf{R}$)
 - El resultado es la relación R con nombre X

Ingenieros

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25

PROFESIONALES

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25

- Renombre de atributos de una relación (p)
 - Operación unaria ($\mathbf{p}_{x \text{ (lista_de_atributos)}} \mathbf{R}$)
 - El resultado es la relación R con nombre X y atributos nombrados como se expresa en lista de atributos Ingenieros

E# Nombre Edad 320 José 34 37 322 Rosa 323 María

PROFESIONALES(E#, NombreProfesional, Edad) Ingenieros

PROFESIONALES

E#	NombreProfesional	Edad
320	José	34
322	Rosa	37
323	María	25

- Unión (∪)
 - Operación binaria (A U B)
 - El resultado es una relación en la que se agrega a la relación A los elementos (no repetidos) de la relación B
 - Es necesario que las relaciones A y B sean de «unión compatible»
 - Relaciones con igual aridad (igual número de atributos)
 - El dominio del i-ésimo atributo de ambas relaciones debe ser el mismo (∀ i)

Unión (∪)

Ingenieros

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25

Jefes

E#	Nombre	Edad
320	José	34
421	Jorge	48

Ingenieros U Jefes

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25
421	Jorge	48

- Diferencia ()
 - Operación binaria (A B)
 - El resultado es una relación donde están los elementos que pertenecen a A y no pertenecen a B
 - Es necesario que las relaciones A y B sean de «unión compatible»
 - Relaciones con igual aridad (igual número de atributos)
 - El dominio del i-ésimo atributo de ambas relaciones debe ser el mismo (∀ i)

Diferencia (–)

Ingenieros

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25

Jefes

E#	Nombre	Edad
320	José	34
421	Jorge	48

Ingenieros – Jefes

E#	Nombre	Edad
322	Rosa	37
323	María	25

- Álgebra Relacional -Lenguaje de Consulta
 - Operaciones adicionales:
 - No agregan potencia al álgebra, simplifican consultas.
 - Son reescribibles en término de operaciones fundamentales
 - Intersección (∩)
 - Producto Theta (|X|_θ)
 - Producto Natural (|X|)
 - División (%)
 - Operación especial de Asignación (←)

- Intersección (∩)
 - Operación binaria (A B)
 - El resultado es una relación con aquellas tuplas que pertenecen a ambas relaciones (al mismo tiempo)
 - Es necesario que las relaciones A y B sean de «unión compatible»
 - \circ R \cap S es equivalente a R -(R S)

Intersección (∩)

Ingenieros

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25

Jefes

E#	Nombre	Edad
320	José	34
421	Jorge	48

Ingenieros ∩ **Jefes**

E#	Nombre	Edad
320	José	34

- Producto Theta(|X|_θ)
 - Operación binaria (R |X|_θ S)
 - $^{\circ}$ Genera una nueva relación con las tuplas resultantes de aplicar una operación de selección con la condición indicada por $oldsymbol{\theta}$ sobre el resultado de un producto cartesiano
 - La condición (θ) se indica como una expresión booleana de términos (se pueden usar conectores lógicos entre las condiciones)

• $R |X|_{\theta} S$ es equivalente a $\sigma_{\theta}(R X S)$

Producto Theta(|X|_θ)

Ingenieros

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25

Jefes

E#	Nombre	Edad
320	José	34
421	Jorge	48

Ingenieros |X| Ingenieros.edad = Jefes.edad Jefes

Ingenieros.E#	Ingenieros.Nombre	Ingenieros.Edad	Jefes E #	Jefes.Nombre	Jefes.Edad
320	José	34	320	José	34

Producto Theta(|X|_θ)

Ingenieros

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25

Jefes

E#	Nombre	Edad
320	José	34
421	Jorge	48

Ingenieros |X| _{Ingenieros.edad} ≤ Jefes.edad Jefes

Ingenieros.E#	Ingenieros.Nombre	Ingenieros.Edad	Jefes E #	Jefes.Nombre	Jefes.Edad
320	José	34	320	José	34
320	José	34	421	Jorge	48
322	Rosa	37	421	Jorge	48
323	María	25	320	José	34
323	María	25	421	Jorge	48

Producto Theta(|X|_θ)

Ingenieros

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25

Jefes

E#	Nombre	Edad
320	José	34
421	Jorge	48

Ingenieros |X| _{Ingenieros.edad} ≤ Jefes.edad and Ingenieros.E# ≠ Jefes. E# Jefes

Ingenieros.E#	Ingenieros. Nombre	Ingenieros. Edad	Jefes E #	Jefes.Nombre	Jefes.Edad
320	José	34	421	Jorge	48
322	Rosa	37	421	Jorge	48
323	María	25	320	José	34
323	María	25	421	Jorge	48

- Producto Natural (|X|)
 - Operación binaria (R | X | S)
 - Genera una nueva relación con las tuplas resultantes de aplicar una operación de selección con la condición indicada sobre el resultado de un producto cartesiano
 - La condición se indica como una expresión booleana de términos (se pueden usar conectores lógicos entre las condiciones)

• R |X| S es equivalente a $\prod_{i=1}^{n} (\sigma_{condición}(RXS))$

Donde:

condición implica a todos los atributos de R que están en S y son iguales

lista elimina columnas repetidas (dejando una sola en el conjunto) y los atributos que no tienen en común R y S

Producto Natural (|X|)

Postulantes

Nombre	Edad	DNI
Paula	19	29235142
Martina	22	35215415
Joaquín	28	28152478

Administrativos

Nombre	Edad	Domicilio	DNI
Martina	22	1 y 50	35215415
Paula	19	8 y 49	29899632
Pablo	32	26 y 50	20125789

Postulantes | X | Administrativos

Nombre	Edad	DNI	Domicilio
Martina	22	35215415	1 y 50

- División (%)
 - Operación binaria (R%S)
 R dividendo

 - S divisor
 - Los atributos del divisor S deben ser un subconjunto de los atributos de la relación R con igual dominio
 - La relación resultante de la división, llamémosla T, posee tuplas t tal que:
 - Los valores de t deben aparecer en R en combinación con todas las tuplas de S
 - R%S es equivalente a:

$$\Pi_{\text{att}(R)-\text{ att}(S)} R - \Pi_{\text{att}(R)-\text{ att}(S)} ((\Pi_{\text{att}(R)-\text{ att}(S)} (R) \times S) - R)$$

donde att(R)- att(S) significan los atributos de la relación R menos los atributos de la relación S

División (%)

R1

E#	Proyecto
320	RX338A
320	PY254Z
323	RX338A
323	PY254Z
323	NC168T
324	NC168T
324	KT556B

R2

Proyecto
RX338A
PY254Z

R1 % R2

E#	
320	
323	

División (%)

Lugar_Trabajo

Nombre	Sucursal
Juan	Sucursal1
Pedro	Sucursal1
Juan	Sucursal2
María	Sucursal 1
Juan	Sucursal3

Sucursales_Vip

Sucursal	
Sucursal1	
Sucursal2	

Lugar_Trabajo % Sucursales_Vip

Nombre Juan

División (%)

Lugar_Trabajo

Nombre	Sucursal	Color
Juan	Sucursal1	Rojo
Pedro	Sucursal1	Verde
Juan	Sucursal2	Azul
María	Sucursal 1	Rojo
Juan	Sucursal3	Violeta
Pedro	Sucursal1	Rojo
Pedro	Sucursal2	Azul
Juan	Sucursal1	Verde

Sucursales_Vip

Sucursal	Color
Sucursal1	Rojo
Sucursal2	Azul
Sucursal1	Verde

Lugar_Trabajo % Sucursales_Vip

Nombre	
Juan	
Pedro	

- Asignación (←)
 - Es una forma conveniente de expresar operaciones complejas
 - Modularidad
 - El resultado de una operación se *asigna* temporalmente a una *variable*
 - La variable a la cual se asigna el resultado de una operación se puede usar en otras operaciones

- Asignación (←)
 - Ejemplo

Lugar_Trabajo

Nombre	Sucursal
Juan	Sucursal1
Pedro	Sucursal1
Juan	Sucursal2
María	Sucursal 1
Juan	Sucursal3

Sucursales_Vip

Sucursal
Sucursal1
Sucursal2

Empleado

Nombre	Domicilio
Juan	1 y 50
Pedro	120 y 43
María	150 y 62

Empleados_Vip ← Lugar_Trabajo % Sucursales_Vip

Empleados_Vip |X| Empleado

Nombre	Domicilio
Juan	1 y 50

Nombre

Juan

- Combinación de operaciones para formar consultas
 - Las operaciones se pueden usar
 - Aisladas o
 - Combinadas (expresiones)
 - Permiten resolver consultas complejas
 - Se usan paréntesis cuando es necesario agrupar operaciones
 - Notación lineal

- Operaciones sobre los datos
 - Álgebra Relacional
 - Lenguaje de consulta, procedimental
 - Operaciones fundamentales
 - Operaciones adicionales
 - Lenguaje de manipulación de datos
 - Operaciones de manipulación

Modelo Relacional

- Lenguaje de manipulación de datos
 - Operaciones de manipulación: se expresan usando la operación de asignación
 - Modifican la cantidad o los los valores de las tuplas de una relación

- Inserción (U)
- Eliminación ()
- Actualización (δ)

- Inserción (∪)
 - La o las tuplas a insertar deben ser compatibles con la relación
 - R ← R ∪ E
 - Donde R es la relación donde se insertarán los resultados de la expresión E

- Inserción (∪)
 - Ejemplo

Empleado

Nombre	Domicilio	
Juan	1 y 50	
Pedro	120 y 43	
María	150 y 62	

Empleado ← Empleado ∪ {("Joaquín", "4 y 497")}

Nombre	Domicilio
Juan	1 y 50
Pedro	120 y 43
María	150 y 62
Joaquín	4 y 497

- Inserción (∪)
 - Ejemplo

Empleado

Nombre	Domicilio	
Juan	1 y 50	
Pedro	120 y 43	
María	150 y 62	

Empleado ← Empleado ∪ {("Joaquín", "4 y 497"), ("Martina", "1 y 32")}

Nombre	Domicilio
Juan	1 y 50
Pedro	120 y 43
María	150 y 62
Joaquín	4 y 497
Martina	1 y 32

- Inserción (∪)
 - Ejemplo

Empleado

Nombre	Domicilio	
Juan	1 y 50	
Pedro	120 y 43	
María	150 y 62	

Asistentes

Nombre	Domicilio	DNI
Joaquín	4 y 497	1234536
Martina	1 y 32	2541258

Empleado ← Empleado ∪

($\Pi_{\text{nombre, domicilio}}$ Asistentes)

Nombre	Domicilio
Juan	1 y 50
Pedro	120 y 43
María	150 y 62
Joaquín	4 y 497
Martina	1 y 32

- Eliminación ()
 - La o las tuplas a eliminar deben ser compatibles con la relación
 - R ← R E
 - Donde R es la relación donde se insertarán los resultados de la expresión E

- Eliminación ()
 - Ejemplo

Empleado

Nombre	Domicilio
Juan	1 y 50
Pedro	120 y 43
María	150 y 62
Joaquín	4 y 497
Martina	1 y 32

Empleado ← **Empleado** – {("Joaquín", "4 y 497"), ("Martina", "1 y 32")}

Nombre	Domicilio	
Juan	1 y 50	
Pedro	120 y 43	
María	150 y 62	

- Eliminación ()
 - Ejemplo

Empleado

Nombre	Domicilio	
Juan	1 y 50	
Pedro	120 y 43	
María	150 y 62	
Joaquín	4 y 497	
Martina	1 y 32	

Algunos_empleados ←

Onombre="Martina" o nombre = "Joaquín" (Empleado)

Empleado ← Empleado - Algunos_empleados

Nombre	Domicilio	
Juan	1 y 50	
Pedro	120 y 43	
María	150 y 62	

- Actualización (δ)
 - Permite actualizar un valor particular de una tupla
 - $\delta_{att(R) \leftarrow E}$ (R)
 - Donde R es la relación a la que se le modificará el atributo mencionado en att(R), como resultado de la expresión E

- Actualización (δ)
 - Ejemplo

Empleado

Nombre	Domicilio	Salario
Juan	1 y 50	10200
Pedro	120 y 43	15000
María	150 y 62	22000

 $\delta_{\text{salario} \leftarrow \text{salario} * 1.2}$ (Empleado)

Nombre	Domicilio	Salario
Juan	1 y 50	12240
Pedro	120 y 43	18000
María	150 y 62	26400

- Actualización (δ)
 - Ejemplo

Empleado

Nombre	Domicilio	Salario
Juan	1 y 50	10200
Pedro	120 y 43	15000
María	150 y 62	22000

$$\delta_{\text{salario} \leftarrow \text{salario} * 1.2} (\sigma_{\text{nombre}="Juan"} (\text{ Empleado}))$$

Nombre	Domicilio	Salario
Juan	1 y 50	12240
Pedro	120 y 43	15000
María	150 y 62	22000

Dadas las siguientes tablas

- Mundial (año, pais)
- Cancha (nombre_cancha, ciudad, capacidad, año)
- Partido (fecha, año, eq1, eq2, cancha, goles_eq1, goles_eq2)

Resolver la siguiente consulta en AR:

a) ¿Qué equipos jugaron en el mundial 90 en todas las canchas habilitadas para ese mundial?

Modelo Relacional

- Operaciones fundamentales:
 - Selección (σ)
 - Proyección (Π)
 - Producto Cartesiano (X)
 - Renombre (ρ)
 - Unión (∪)
 - Diferencia ()
- Operaciones adicionales:
 - ■Intersección ()
 - •Producto Theta $(|X|_{\theta})$
 - •Producto Natural (|X|)
 - División (%)
 - Operación especial de Asignación (←)

Mundial (año, pais)
Cancha (nombre_cancha, ciudad,
capacidad, año)
Partido (fecha, año, eq1, eq2, cancha,
goles_eq1, goles_eq2)

Resolver las siguientes consultas en AR:

a) ¿Qué equipos jugaron en el mundial 90 en todas las canchas habilitadas para ese mundial?

Operaciones fundamentales:

- Selección (σ)
- Proyección (Π)
- Producto Cartesiano (X)
- Renombre (ρ)
- Unión (∪)
- Diferencia ()

Operaciones adicionales:

- Intersección ()
- •Producto Theta ($|X|_{\theta}$)
- Producto Natural (|X|)
- División (%)
- Operación especial de Asignación (←)

Mundial (año, pais)
Cancha (nombre_cancha, ciudad, capacidad, año)
Partido (fecha, año, eq1, eq2, cancha, goles_eq1, goles_eq2)

a) ¿Qué equipos jugaron en el mundial 90 en todas las canchas habilitadas para ese mundial?

Obtengo todos los equipos que jugaron partidos con la cancha en la que jugaron y el año

A
$$\leftarrow$$
 ($\Pi_{\text{eq1,cancha}}$ ($\sigma_{\text{año}=90}$ (Partido)) \cup $\Pi_{\text{eq2,cancha}}$ ($\sigma_{\text{año}=90}$ (Partido)))

Obtengo todas las canchas correspondientes al mundial del año 90

$$B \leftarrow \Pi_{\text{nombre cancha}}$$
 ($\sigma_{\tilde{a}\tilde{n}o=90}$ (Cancha)

Equipos que jugaron en el mundial 90 en todas las canchas habilitadas para ese mundial

```
 A \leftarrow (\Pi_{\text{eq1,cancha}} (\sigma_{\text{a\~no}=90} (\text{Partido})) \cup \Pi_{\text{eq2,cancha}} (\sigma_{\text{a\~no}=90} (\text{Partido}))) \\ B \leftarrow \Pi_{\text{nombre\_cancha}} (\sigma_{\text{a\~no}=90} (\text{Cancha}))
```

A

eq1	cancha
E1	C1
E2	C2
E2	C1
E2	C3
E2	C4
E1	C2

B

cancha
C1
C2
C3
C4

A % B

eq1	
E2	

INMUEBLE (<u>idInmueble</u>, nroCatastro, localidad, metrosCuadrados, tasacionFiscal, idPropietario)

PROPIETARIO(<u>idPropietario</u>, apellido, nombre, localidad, domicilio, dni) **MULTA**(idInmueble, <u>idMulta</u>, añoMulta, montoMulta, descripcionMulta)

Nota:

- No todos los inmuebles tienen multa
- Cada inmueble posee un único propietario
- a) Hallar aquellos propietarios que solamente poseen propiedades en la localidad de "San Carlos de Bariloche".
 Listar su nombre, apellido, localidad donde vive y el dni.

INMUEBLE(<u>idInmueble</u>, nroCatastro,localidad,metrosCuadrados,tasacionFiscal,idPropietario) PROPIETARIO(<u>idPropietario</u>, apellido, nombre, localidad, domicilio, dni) MULTA(idInmueble, <u>idMulta</u>, añoMulta, montoMulta, descripcionMulta)

Hallar aquellos propietarios que solamente poseen propiedades en la localidad de "San Carlos de Bariloche". Listar su nombre, apellido, localidad donde vive y el dni.

Hallar propietarios que poseen propiedades en otro lugar que no sea la localidad de "San Carlos de Bariloche"

Propietarios No Bariloche $\leftarrow \Pi_{\text{idPropietario}}$ ($\sigma_{\text{localidad} \neq \text{"San Carlos de Bariloche"}}$ (INMUEBLE))

Hallar propietarios que poseen propiedades en la localidad de "San Carlos de Bariloche"

Propietarios Bariloche $\leftarrow \Pi_{\text{idPropietario}}$ ($\sigma_{\text{localidad = "San Carlos de Bariloche"}}$ (INMUEBLE))

Hallar propietarios que poseen propiedades en la localidad de "San Carlos de Bariloche" y no tiene propiedades en otro lugar

PropietariosSOLOBariloche ← (PropietariosBariloche – PropietariosNoBariloche)

De los propietarios solo de propiedades de San Carlos de Bariloche, hallo nombre, apellido, localidad donde vive y el dni

 $\Pi_{\text{nombre,apellido,localidad,dni}}$ (Propietarios SOLO Bariloche |X| PROPIETARIO)

Referencias del tema

- Codd, E. F. (1970). A relational model of data for large shared data banks. Communications of the ACM, 13(6), 377–387.
- Codd, E. F. (1979). Extending the database relational model to capture more meaning. ACM Transactions on Database Systems (TODS), 4(4), 397-434.
- Garcia-Molina, H. (2008). Database systems: the complete book. Pearson Education India.
- Korth, H. F., & Silberschatz, A. (1993). Fundamentos de Base de Datos. Segunda Edición en español.