Metals for biomedical devices

Edited by Mitsuo Niinomi

CRC Press Boca Raton Boston New York Washington, DC

WOODHEAD PUBLISHING LIMITED Oxford Cambridge New Delhi

Contents

Contri	butor contact details	xi
Introd	uction	xv
Part I	General introduction	
1	Overview of metals and applications T. Hanawa, Tokyo Medical and Dental University, Japan	3
1.1	Introduction	3
1.2	General properties required for metals in medical devices	4
1.3	Stainless steels	8
1.4	Cobalt-chromium-based alloys	12
1.5	Titanium-based alloys	13
1.6	Shape memory and superelastic alloys	18
1.7	Noble metals and alloys	20
1.8	Other metals	21
1.9	References	22
2	Material selection Y. Okazaki, National Institute of Advanced Industrial Science and Technology, Japan	25
2.1	Introduction	25
2.2	Standardised implantable metals	25
2.3	Biocompatibility of various metals	28
2.4	Highly biocompatible $\alpha+\beta$ -type Ti alloy	29
2.5	Stability of passive film formed on metals	37
2.6	Metal ion release	40
2.7	Evaluation of biological properties	46
2.8	Fatigue assessment	51
2.9	Orthopaedic implant device failure: Analysis of adverse	
	clinical cases	53

vi	Contents	
2.10 2.11	Performance evaluation for orthopaedic devices Future trends	55 60 62
2.12	References	62
Part II	Mechanical behaviour, degradation and testing of metals for biomedical devices	
3	Mechanical properties of metallic biomaterials T. Nakano, Osaka University, Japan	71
3.1	Introduction	71
3.2	Requirements for mechanical functions in vivo	72
3.3	Methods for strengthening metallic biomaterials	85
3.4	Phase rule and phase diagram	87
3.5	Deformation and recovery, recrystallisation, and grain	
	ripening	91
3.6	Microstructure and related mechanical properties in	
	typical metallic biomaterials	91
3.7	Development of metallic biomaterials based on biological	0.2
2.0	bone tissues	93
3.8	Summary	96 96
3.9	References	90
4	Corrosion of metallic biomaterials	99
	S. HIROMOTO, National Institute for Materials Science, Japan	
4.1	Importance of corrosion	99
4.2	Principles of corrosion	100
4.3	Corrosion morphology	105
4.4	Evaluation methods of corrosion behaviour	108
4.5	Biological environments	115
4.6	References	119
5	Fatigue failure of metallic biomaterials	122
	М. Nilnomi, Tohoku University, Japan	
5.1	Introduction	122
5.2	Fatigue strength	123
5.3	Fatigue crack propagation	141
5.4	Fretting fatigue strength in air and in vitro	147
5.5	Fatigue strength of wire	150
5.6	Summary	153
5.7	References	153

	Contents	vii
6	Mechanical testing of metallic biomaterials N. Maruyama, National Institute for Materials Science, Japan	157
6.1	Fracture of metal implants and test methods	157
6.2	Living body environment	159
6.3	Tensile strength of metallic materials	160
6.4	Fatigue and fretting fatigue of metallic materials	161
6.5	Effect of corrosion on fatigue and fretting fatigue	166
6.6	Corrosion fatigue and fretting corrosion fatigue tests in a simulated body environment	166
6.7	Results of fatigue and fretting fatigue tests on metallic	
	biomaterials	170
6.8	New fatigue tests for metallic biomaterials	175
6.9	Acknowledgements	176
6.10	References	177
7	Tribology and tribo-corrosion testing and analysis of metallic biomaterials Y. YAN, University of Leeds, UK	178
7.1	Introduction to tribology-related testing	178
7.2	General testing methods for tribological properties	179
7.3	Tribo-corrosion testing	184
7.4	Surface analysis for tribology and tribo-corrosion properties	192
7.5	Future trends	198
7.6	References	199
8	Biocompatibility and fabrication of <i>in situ</i> bioceramic coating/titanium alloy biocomposites C. Cui, Hebei University of Technology, China	202
8.1	Introduction	202
8.2	Titanium and its alloys	203
8.3	Biomedical applications and development of Ti and its alloys	204
8.4	Biocompatibility and fabrication of <i>in situ</i> synthesized	
0. 1	bioceramic coatings on Ti alloys	211
8.5	Acknowledgements	230
8.6	References	230
Part III	Processing metals for biomedical applications	
i art iii	Trocessing metals for biomedical applications	
9	Forging of metals and alloys for biomedical applications M. Charles and Pie specified International Pte Ltd. Singapore	235
0.1	M. CHANDRASEKARAN, Bio-scaffold International Pte Ltd, Singapore	225
9.1	Introduction	235

viii	Contents	
9.2	Fundamentals of forging and typical forging process applied to metals and alloys for biomedical applications	236
9.3	Properties for forgeability	239
9.4	Microstructural development and its consequences on	
	properties	240
9.5	Forging of metals and alloys for biomedical applications	241
9.6	Die materials and die design for forging	246
9.7	Powder metallurgy forging of metals and alloys for	
	biomedical applications	247
9.8	Summary	248
9.9	Sources of further information and advice	248
10	Surface treatment	251
	R. Thull, University of Wuerzburg, Germany	
10.1	Introduction	251
10.2	Surface structuring	252
10.3	Physical modifications	254
10.4	Strength of modifications	256
10.5	Interface modulation and biocompatibility	257
10.6	Future developments and optimizations	257
10.7	Summary	258
10.8	Sources of further information and advice	258
10.9	References	259
11	Coatings for metallic biomaterials	260
	T. Kasuga, Nagoya Institute of Technology, Japan	
11.1	Introduction	260
11.2	Calcium phosphate ceramic coatings	261
11.3	Calcium phosphate glass-ceramic coatings	267
11.4	Bioactive surface prepared by chemical treatments	272
11.5	Summary	278
11.6	References	279
12	Biocompatible polymer assembly on metal surfaces K. Ishihara and J. Choi, The University of Tokyo, Japan	283
12.1	Introduction	283
12.2	Phospholipid polymers providing biocompatible surfaces	
	on metals	284
12.3	Surface grafting of 2-methacryloyloxyethyl	
	phosphorylcholine (MPC) polymer on titanium alloy	288
12.4	MPC polymer assembly on Ti alloy	291
12.5	Future trends	298

	C	ontents	IX
12.6	Summary		299
12.7	Acknowledgement		300
12.8	References		300
			000
13	Sterilisation and cleaning of metallic biomater S. Lerouge, Ecole de Technologie Supérieure, Canada	ials	303
13.1	Introduction		303
13.2	Concepts and definitions		304
13.3	Principal sterilisation methods for biomaterials;		
	advantages and limitations		307
13.4	Alternative sterilisation methods		316
13.5	New challenges for sterilisation		319
13.6	Cleaning		321
13.7	Standards and other sources of further information		322
13.8	Summary		322
13.9	References		323
Part I	V Specific applications of metals for biomedi- devices	cal	
14	Orthopaedic applications of metallic biomateri T. Matsushita, Chubu University, Japan	als	329
14.1	Introduction		329
14.2	Total hip replacement		331
14.3	Total knee replacement		341
14.4	Miscellaneous joint replacement		345
14.5	Implants for bone fractures		347
14.6	Failure of orthopaedic implants		349
14.7	Summary		351
14.8	References		351
15	New-generation metallic biomaterials Т. Narushima, Tohoku University, Japan		355
15.1	Introduction		355
15.2	Brief overview of traditional metallic biomaterials		356
15.3	Newer alloys as metallic biomaterials		361
15.4	Novel processing technologies for metallic biomate	erials	366
15.5	Other metallic biomaterials		371
15.6	Future trends		372
15.7	Sources of further information and advice		374
15.8	References		374

X	Contents	
16	Degradable metallic biomaterials for cardiovascular applications H. Hermawan, D. Dubé and D. Mantovani, Laval University, Canada	379
16.1	Introduction	379
16.2	Clinical needs for using degradable metallic biomaterials	381
16.3	Studies on degradable metallic biomaterials for	
	cardiovascular applications	382
16.4	Lessons from the first ten years of investigation in	
	degradable metallic biomaterials	395
16.5	References	400
	Index	405