Abgabe - Übungsblatt [4]

Einführung in die Computergraphik und Visualisierung

14. Mai 2018

[Till Sebastian] [Felix Grefe] [Marius Rometsch]

Clipping-Algorithmen

1

1.1 n-dimensionaler Liang-Barsky-Algorithmus

• Im n-dimensionalen Raum werden Halbräume durch (n-1)-dimensionale Objekte definiert

1.2 Sutherland-Hodgman-Algorithmus

Daten: Liste p $[P_1:P_n]$, Viewport v Ergebnis: In Viewport geclipptes Polygon aus der Punktliste pErg Liste pErg; für Jeden Eckpunkt E des Viewports v: index i tue $P_{(j+1)modn}$ zu pErg hinzufügen; sonst wenn $\overrightarrow{P_j}$ auf der sichtbaren Seite von $\overrightarrow{E_iE_{(i+1)mod4}}$ und $\overrightarrow{P_{(j+1)modn}}$ nicht dann Schnittpunkt I von $\overrightarrow{P_jP_{(j+1)modn}}$ mit $\overrightarrow{E_iE_{(i+1)mod4}}$ zu pErg sonst wenn $\overrightarrow{P_jP_{(j+1)modn}}$ auf der nicht sichtbaren Seite von $\overrightarrow{E_iE_{(i+1)mod4}}$ dann Schnittpunkt I von $\overrightarrow{P_jP_{(j+1)modn}}$ mit $\overrightarrow{E_iE_{(i+1)mod4}}$ zu pErg hinzufügen; sonstSchnittpunkt I von $\overrightarrow{P_jP_{(j+1)modn}}$ mit $\overrightarrow{E_iE_{(i+1)mod4}}$ und $\overrightarrow{P_{(j+1)modn}}$ zu pErg hinzufügen; Ende Ende Ersetze p durch pErg; Ende Gebe pErg zurück;

Algorithmus 1: Sutherland-Hodgman-Algorithmus

Baryzentrische Koordinaten und Farbinterpo- $\mathbf{2}$ lation

Baryzentrische Koordinaten

$$v_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix} v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} v_3 = \begin{pmatrix} 0, 5 \\ 1 \end{pmatrix}$$

Es muss gelten:

•
$$x = \alpha * v1 + \beta * v2 + \gamma * v3$$

•
$$1 = \alpha + \beta + \gamma$$

Aus diesen Bedingungen ergibt sich ein LGS mit den baryzentrischen Koordinaten von x als Loesungen:

$$\implies x = \begin{pmatrix} 0, 2 \\ 0, 4 \\ 0, 4 \end{pmatrix}$$

2.2 Farbinterpolation

Es gilt
$$x_1 * c(v_1) + x_2 * c(v_2) + x_3 * c(v_3) = farbe$$

Es gilt
$$x_1 * c(v_1) + x_2 * c(v_2) + x_3 * c(v_3) = farbe$$

$$f_1 = \begin{pmatrix} 0 \\ 0, 1 \\ 0 \end{pmatrix} f_2 = \begin{pmatrix} 0 \\ 0, 4 \\ 0, 2 \end{pmatrix} f_3 = \begin{pmatrix} 0, 4 \\ 0, 2 \\ 0 \end{pmatrix}$$

$$farbe = \begin{pmatrix} 0, 4 \\ 0, 7 \\ 0, 2 \end{pmatrix}$$