CC1004 - Modelos de Computação Prática 3

Ana Paula Tomás

DCC FCUP

Março 2021

1a)

1b) As palavras que terminam em **b** pertencem à linguagem porque são da forma wb, com $w \in \{a, b\}^*$. O AFND pode consumir w mantendo-se em s_1 e depois usa o **b** para passar a s_3 , aceitando a palavra wb.

Palavra ba é aceite: usamos b para passar de s_1 a s_3 e depois consumimos a em s_3 . Palavra a não é aceite: depois de consumir a, o AFND só pode estar em s_2 ou s_1 , e nenhum desses estados é final.

1c)

1d) Linguagem das palavras de alfabeto $\{a,b\}$ que têm algum b.

Folha 3 - Problemas 2) e 3)

2a) Linguagem das palavras de alfabeto $\{a,b\}$. 3a)

2b) A linguagem pode ser descrita pela expressão regular b*a*b* e é constituída pelas palavras de alfabeto {a, b} que ou não têm a's ou os a's ocorrem juntos. 3b)

Folha 3 - Problemas 2) e 3)

2c) A linguagem das palavras de alfabeto {a, b} que terminam em aba.3c)

2d) A linguagem das palavras de alfabeto {a,b} que começam em aba.

- 6b) x = ba é aceite porque se tem, por exemplo, $s_0 \to^{\varepsilon} s_2 \to^{\varepsilon} s_4 \to^b s_3 \to^a s_5$. y = b não é aceite porque o conjunto de estados em que A pode estar depois de consumir b é $\{s_0, s_1, s_2, s_4, s_3\}$ e não contém o estado final s_5 .
- 6c) Estado inicial $Fecho_{\varepsilon}(s_0) = \{s_0.s_2, s_4, s_3\}$

			() a
	a	Ъ	$\rightarrow q_0$ $\stackrel{\text{a}}{\rightarrow} q_1$
$q_0 \rightarrow \{s_0, s_2, s_4, s_3\}$	$\{s_5.s_2, s_0, s_3, s_4\}$	$\{s_0, s_1, s_2, s_4, s_3\}$	b Ma
$q_1 * \{s_5.s_2, s_0, s_3, s_4\}$		$\{s_0, s_1, s_2, s_4, s_3\}$	b (q ₂)
$q_2 \{s_0, s_1, s_2, s_4, s_3\}$	$\{s_5.s_2, s_0, s_3, s_4\}$	$\{s_0, s_1, s_2, s_4, s_3\}$) b

Para facilitar o desenho do diagrama, alterámos as designações dos estados.

6d)

As designações dadas aos estados do AFD representam o conjunto de estados em que o AFND- ε pode estar em circunstâncias idênticas (i.e., o estado em que o AFD está após consumir x representa o conjunto de estados em que o AFND- ε pode estar depois de consumir x).

Se se definir o conjunto de estados do AFD como 2^{S} , sendo S o conjunto de estados do AFND- ε , então o AFD teria $2^{6}=64$ estados, em vez de 3.

Os restantes 61 estados não são relevantes pois nenhuma palavra x leva o AFD do estado inicial a esses estados, que também não são uma possibilidade para AFND- ε . Portanto, não são estados de aceitação nem de rejeição para $\mathcal{L}(A)$.