International Trade I Monopolistic Competition

Monika Mrázová

Spring 2025

Outline of the Lecture

- Introduction
- 2 Monopolistic competition
- Monopolistic competition with heterogeneous firms: Melitz (2003)
- Monopolistic competition with variable elasticity demands

Outline of the Lecture

- 1 Introduction
- 2 Monopolistic competition
- Monopolistic competition with heterogeneous firms: Melitz (2003)
- 4 Monopolistic competition with variable elasticity demands

Motivation

- Problem 1: previous models explain why different countries trade, but a large proportion of world trade is between similar countries
- So far, all models have assumed:
 - Perfect competition
 - Constant returns to scale
- In reality, many industries exhibit some degree of imperfect competition and increasing returns to scale
- This introduces many new features:
 - New reasons and gains from trade:
 - Trade increases market size and so allows the exploitation of economies of scale
 - ★ Trade increases the variety of products available
 - ★ Trade increases competition
 - The pattern of trade may not be efficient

Motivation

- Problem 2: Nineties have seen a boom in the availability of micro-level data. Previous theories are at odds with (or cannot account for) many micro-level facts:
 - Within a given industry, there is firm-level heterogeneity
 - Fixed costs matter in export related decisions
 - Within a given industry, more productive firms are more likely to export
 - Trade liberalization leads to intra-industry reallocation across firms
 - These reallocations are correlated with productivity and export status
- Melitz (2003) will develop a model featuring facts 1 and 2 that can explain facts 3, 4, and 5
 - ► This is the most influential trade paper in the last 20 years

Today's plan

- Monopolistic competition
 - Krugman (1979)
 - An important special case: CES utility
- Heterogenous firms: Melitz (2003)
 - Krugman (1980) meets Hopenhayn (1992)
 - Selection into exports and the impact of trade
- Monopolistic competition with heterogeneous firms and variable elasticity demands

Spring 2025

6 / 59

Demand Manifold: Mrázová and Neary (2017)

Reading

- *F pp. 137-141 and 163-169
- *Krugman, P. (1979), "Increasing Returns Monopolistic Competition, and International Trade," Journal of International Economics, 9, 469-479.
- *Melitz, M. (2003), "The Impact of Trade on Intra-Industry Reallocations and Aggregate Industry Productivity", Econometrica, 71:6, 1695-1725.
- Krugman, P. (1980), "Scale economies, product differentiation, and the pattern of trade," American Economic Review, 70, 950-959
- Melitz, M. J., and S. J. Redding (2015), "Heterogeneous Firms and Trade." Handbook of International Economics, 4th ed, 4: 1-54. Elsevier, 4, 1-54,
- Introductory level: KOM chs. 7 and 8, and FT ch. 6
- Paul Krugman, Nobel Prize Lecture (2008): The Increasing Returns Revolution in Trade and Geography, available at: http://www.nobelprize.org/nobel_prizes/

Spring 2025

Outline of the Lecture

- Introduction
- Monopolistic competition
 - Monopolistic pricing: recap
 - Krugman (1979)
 - An important special case: CES utility
- Monopolistic competition with heterogeneous firms: Melitz (2003)
- 4 Monopolistic competition with variable elasticity demands

Spring 2025

8 / 59

Basic idea

- Monopoly pricing: Each firm faces a downward-sloping demand curve
 - ▶ Profit maximization $\Rightarrow MR = MC$
- No strategic interaction:
 - Each demand curve depends on the prices charged by other firms
 - But since the number of firms is large, each firm ignores its impact on the demand faced by other firms
- Free entry: Firms enter the industry until profits are driven to zero for all firms
 - Free entry $\Rightarrow p = AR = AC$

Graphical analysis

Monika Mrázová International Trade Spring 2025 10 / 59

Endowments, preferences and technology

- Endowments: All agents are endowed with 1 unit of labor
- Preferences: All agents have the same utility function given by

$$U = \int_0^n u(c_i)di$$

where

- u(0) = 0, u' > 0, and u'' < 0 (love of variety)
- ▶ Elasticity of demand: $\sigma(c) \equiv -\frac{u'}{cu''} > 0$ is such that $\sigma' \leq 0$ (why?)
- IRS Technology: Labor used in the production of each "variety" is

$$l_i = f + q_i/\varphi$$

where $\varphi \equiv common$ productivity parameter

Monika Mrázová International Trade Spring 2025 11 / 59

Equilibrium conditions

Consumer maximization:

$$p_i = \lambda^{-1} u'(c_i)$$

• Profit maximization (MR = MC):

$$p_i = \left[\frac{\sigma(c_i)}{\sigma(c_i) - 1}\right] \cdot \left(\frac{w}{\varphi}\right)$$

• Free entry (P = AC):

$$\left(p_i - \frac{w}{\varphi}\right)q_i = wf$$

Good and labor market clearing:

$$q_i = Lc_i$$

$$L = nf + \int_0^n \frac{q_i}{\varphi} di$$

Equilibrium conditions rearraged

- Symmetry $\Rightarrow p_i = p, q_i = q$, and $c_i = c$ for all $i \in [0, n]$
- ullet c and p/w are simultaneously characterized by

$$(PP): \quad \frac{p}{w} = \left[\frac{\sigma(c)}{\sigma(c) - 1}\right] \frac{1}{\varphi}$$

$$(ZZ): \quad \frac{p}{w} = \frac{f}{q} + \frac{1}{\varphi} = \frac{f}{Lc} + \frac{1}{\varphi}$$

• *n* can then be computed using market clearing conditions

$$n = \frac{1}{f/L + c/\varphi}$$

Monika Mrázová International Trade Spring 2025 13 / 59

Graphical analysis

Monika Mrázová International Trade Spring 2025 14 / 59

Gains from trade revisited

- Suppose that two identical countries open up to trade
 - ► This is equivalent to a doubling of country size (which would have no effect in a neoclassical trade model)
- Because of IRS, opening up to trade now leads to:
 - ▶ Increased product variety: $c_1 < c_0 \Rightarrow \frac{1}{f/2L + c_1/\varphi} > \frac{1}{f/L + c_0/\varphi}$ ▶ Pro-competitive/efficiency effects: $(p/w)_1 < (p/w)_0 \Rightarrow q_1 > q_0$

Monika Mrázová International Trade Spring 2025 15 / 59

Trade economists' most preferred demand system

 Constant Elasticity of Substitution (CES) utility corresponds to the case where:

$$U = \int_0^n (c_i)^{\frac{\sigma - 1}{\sigma}} di$$

where $\sigma > 1$ is the elasticity of substitution between pair of varieties

- This is the case considered in Krugman (1980)
- What is there to like about CES utility?
 - ► Homotheticity $(u(c) \equiv (c)^{\frac{\sigma-1}{\sigma}}$ is actually the *only* functional form such that U is homothetic)
 - ► Can be derived from discrete choice model with i.i.d extreme value shocks (see Feenstra Appendix B)
- Is it empirically reasonable?

Special properties of the equilibrium

■ Because of monopoly pricing, CES ⇒ constant markups:

$$\frac{p}{w} = \left[\frac{\sigma}{\sigma - 1}\right] \frac{1}{\varphi}$$

 Because of zero profit, constant markups ⇒ constant output per firm:

$$\frac{p}{w} = \frac{f}{q} + \frac{1}{\varphi}$$

 Because of market clearing, constant output per firm ⇒ constant number of varieties per country:

$$n = \frac{L}{f + q/\varphi}$$

- So gains from trade only come from access to Foreign varieties
 - ▶ IRS provide an intuitive reason why Foreign varieties are different
 - But consequences of trade would now be the same if we had maintained CRS with different countries producing different goods

Special properties of the equilibrium

- Decentralized equilibrium is efficient
- Decentralized equilibrium solves:

$$\max_{q_i,n} \int_0^n p_i(q_i) q_i di \quad \text{s.t.} \quad nf + \int_0^n \frac{q_i}{\varphi} di \le L$$

A central planner would solve:

$$\max_{q_i,n} \int_0^n (q_i)^{\frac{\sigma-1}{\sigma}} di \quad \text{ s.t. } \quad nf + \int_0^n \frac{q_i}{\varphi} di \leq L$$

- Under CES, $p_i(q_i)q_i \propto (q_i)^{\frac{\sigma-1}{\sigma}} \Rightarrow$ two solutions coincide
 - ► This is unique to CES (in general, entry is distorted)
 - ► This implies that many properties of perfectly competitive models carry over to this environment

Monika Mrázová International Trade Spring 2025 18 / 59

Outline of the Lecture

- 1 Introduction
- 2 Monopolistic competition
- Monopolistic competition with heterogeneous firms: Melitz (2003)
 - The model
 - Selection into exports and the impact of trade
- 4 Monopolistic competition with variable elasticity demands

Introduction

- Two building blocs:
 - Krugman (1980): CES, IRS technology, monopolistic competition
 - Propension (1992): equilibrium model of entry and exit
- CES preferences allow a clever comparison with Krugman (1980): existence of a representative firm
- We study here a simplified (static) version of Melitz (2003) with Pareto distribution of productivities

Demand

 Like in Krugman (1980), representative agent has CES preferences:

$$U = \left(\int_{\omega \in \Omega} q(\omega)^{\frac{\sigma - 1}{\sigma}} d\omega \right)^{\frac{\sigma}{\sigma - 1}}$$

where $\sigma > 1$ is the elasticity of substitution

• Consumption and expenditures for each variety are given by

$$q(\omega) = Q \left[\frac{p(\omega)}{P} \right]^{-\sigma} \equiv Ap(\omega)^{-\sigma}$$
 (1)

$$r(\omega) = R \left[\frac{p(\omega)}{P} \right]^{1-\sigma}$$
 (2)

where $P \equiv \left[\int_{\omega \in \Omega} p(\omega)^{1-\sigma} d\omega\right]^{\frac{1}{1-\sigma}}$, $R \equiv \int_{\omega \in \Omega} r(\omega) d\omega$, and $Q \equiv R/P$

Monika Mrázová International Trade Spring 2025 21 / 59

Production: assumptions

- Like in Krugman (1980), labor is the only factor of production
 - $L \equiv \text{total endowment}, w = 1 \equiv \text{wage}$
- ullet Firms differ in their productivity φ
- Like in Krugman (1980), there are IRS in production

$$l(\varphi) = f + q/\varphi \tag{3}$$

Production: implications

 Like in Krugman (1980), monopolistic competition implies that prices are a constant mark-up over marginal cost

$$\frac{p(\varphi)}{w} = \left[\frac{\sigma}{\sigma - 1}\right] \frac{1}{\varphi} \tag{4}$$

CES preferences with monopoly pricing, (2) and (4), imply

$$r(\varphi) = R \left[P \frac{\sigma - 1}{\sigma} \varphi \right]^{\sigma - 1} \tag{5}$$

 The two assumptions, (3) and (4), further imply that profits are a constant fraction of revenue minus the fixed production cost

$$\pi(\varphi) \equiv r(\varphi) - l(\varphi) = \frac{r(\varphi)}{\sigma} - wf$$

where $r(\varphi) = p(\varphi)q(\varphi)$

Monika Mrázová International Trade Spring 2025 23 / 59

Production: comments

• Higher productivity φ in the model implies higher *measured* productivity

$$\frac{r(\varphi)}{l(\varphi)} = w \frac{\sigma}{\sigma - 1} \left[1 - \frac{f}{l(\varphi)} \right]$$

More productive firms produce more and earn higher revenues

$$\frac{q(\varphi_1)}{q(\varphi_2)} = \left(\frac{\varphi_1}{\varphi_2}\right)^{\sigma} \quad \text{amd} \quad \frac{r(\varphi_1)}{r(\varphi_2)} = \left(\frac{\varphi_1}{\varphi_2}\right)^{\sigma-1}$$

ullet can also be interpreted in terms of quality. This is isomorphic to a change in units of account, which would affect prices, but nothing else

Aggregation

By definition, the CES price index is given by

$$P = \left[\int_{\omega \in \Omega} p(\omega)^{1-\sigma} d\omega \right]^{\frac{1}{1-\sigma}}$$

• Since all firms with productivity φ charge the same price $p(\varphi)$, we can rearrange CES price index as

$$P = \left[\int_0^{+\infty} p(\varphi)^{1-\sigma} M\mu(\varphi) d\varphi \right]^{\frac{1}{1-\sigma}}$$

where

- $ightharpoonup M \equiv$ mass of (surviving) firms in equilibrium
- $\mu(\varphi) \equiv$ (conditional) pdf of firm-productivity levels in equilibrium

Monika Mrázová International Trade Spring 2025 25 / 59

Aggregation

Combining the previous expression with monopoly pricing (4), we get

$$P = M^{\frac{1}{1-\sigma}} w \left[\frac{\sigma}{\sigma - 1} \right] \frac{1}{\tilde{\varphi}} = M^{\frac{1}{1-\sigma}} p(\tilde{\varphi})$$

where

$$\tilde{\varphi} \equiv \left[\int_0^{+\infty} \varphi^{\sigma - 1} \mu(\varphi) d\varphi \right]^{\frac{1}{\sigma - 1}}$$

One can do the same for all aggregate variables

$$R = Mr(\tilde{\varphi}), \quad \Pi = M\pi(\tilde{\varphi}), \quad Q = M^{\frac{\sigma}{\sigma-1}}q(\tilde{\varphi})$$

Comments:

- ▶ These are the same aggregate variables we would get in a Krugman (1980) model with a mass M of identical firms with productivity $\tilde{\varphi}$
- ▶ But productivity $\tilde{\varphi}$ now is an endogenous variable which may respond to changes in trade cost, leading to aggregate productivity changes

Entry and exit

- In order to determine how $\mu(\varphi)$ and $\tilde{\varphi}$ get determined in equilibrium, one needs to specify the entry and exit of firms
- Timing is similar to Hopenhayn (1992):
 - There is a large pool of identical potential entrants deciding whether to become active or not
 - ② Firms deciding to become active pay a (sunk) fixed cost of entry $f_E>0$ and get a productivity draw φ from a cdf G (with density $g(\varphi)$)
 - ★ To decide, they compute their expected profits $\mathbb{E}[\pi]$
 - After observing their productivity draws, firms decide whether to remain active or not
 - ★ Firms are deciding whether to pay or not a fixed cost f in order to start producing
 - ★ To do this, they check whether $\pi(\varphi) \leq 0$

Timing and entry

Source: Greenaway Kneller (2007)

Closed economy

- Solve backwards
- A firm φ produces if it is productive enough i.e.

$$\pi(\varphi) \ge 0$$

- There is a cutoff firm φ^* such that $\pi(\varphi^*) = 0$
- Among firms who have paid the sunk cost, those with a productivity lower than φ^* choose not to produce (and therefore do not pay f)

Closed economy: sorting

Source: Melitz & Redding (2012). $B = \frac{(\sigma-1)^{\sigma-1}}{\sigma^{\sigma}} A$

Monika Mrázová International Trade Spring 2025 30 / 59

Aggregate productivity

• Once we know φ^* , we can compute the pdf of firm-productivity levels

$$\mu(\varphi) = \begin{cases} \frac{g(\varphi)}{1 - G(\varphi^*)} & \quad \text{if} \quad \varphi \geq \varphi^* \\ 0 & \quad \text{if} \quad \varphi < \varphi^* \end{cases}$$

Accordingly, the measure of aggregate productivity is given by

$$\tilde{\varphi}(\varphi^*) = \left[\frac{1}{1 - G(\varphi^*)} \int_{\varphi^*}^{+\infty} \varphi^{\sigma - 1} g(\varphi) d\varphi\right]^{\frac{1}{\sigma - 1}}$$

Monika Mrázová International Trade Spring 2025 31 / 59

Free entry condition

- ullet Let $ar{\pi}\equiv\Pi/M$ denote average profits per period for surviving firms
- Free entry requires the total expected value of profits to be equal to the fixed cost of entry

$$\mathbb{E}[\pi] = \int_0^\infty \pi(\varphi) g(\varphi) d\varphi$$
$$= 0 \times G(\varphi^*) + \bar{\pi} \times [1 - G(\varphi^*)] = f_E w$$

• Free Entry Condition (FE):

$$\bar{\pi} = \frac{f_E w}{1 - G(\varphi^*)} \tag{6}$$

 Holding constant the fixed costs of entry, if firms are less likely to survive, they need to be compensated by higher average profits

Zero cutoff profit condition

- Definition of φ^* can be rearranged to obtain a second relationship between φ^* and $\bar{\pi}$
- By definition of $\bar{\pi}$, we know that

$$\bar{\pi} = \Pi/M = \pi[\tilde{\varphi}(\varphi^*)] \Leftrightarrow \bar{\pi} = fw \left[\frac{r[\tilde{\varphi}(\varphi^*)]}{\sigma fw} - 1 \right]$$

• By definition of φ^* , we know that

$$\pi(\varphi^*) = 0 \Leftrightarrow r(\varphi^*) = \sigma f w$$

Two previous expressions imply ZCP condition:

$$\bar{\pi} = fw \left[\frac{r[\tilde{\varphi}(\varphi^*)]}{r(\varphi^*)} - 1 \right] = fw \left[\left(\frac{\tilde{\varphi}(\varphi^*)}{\varphi^*} \right)^{\sigma - 1} - 1 \right]$$
 (7)

Monika Mrázová International Trade Spring 2025 33 / 59

Closed economy equilibrium

- FE and ZCP, (6) and (7), determine a unique $(\bar{\pi}, \varphi^*)$, and therefore $\tilde{\varphi}$, independently of country size L
 - the only variable left to compute is M, which can be done using free entry and labor market clearing as in Krugman (1980)

Source: Melitz (2003)

Closed-form using a Pareto

- Why Pareto?
 - Pareto distribution of productivities + CES preferences = Pareto size distribution of firms
 - ► Found (more or less) in the data (Axtell, 2011) but left tail looks more log-normal...
 - Pareto has good properties: a truncated Pareto is Pareto
- Two-parameter distribution (φ_{\min}, k) : $G(\varphi) = 1 \left(\frac{\varphi_{\min}}{\varphi}\right)^k$
- Then the cutoff is simply

$$(\varphi^*)^k = \frac{\sigma - 1}{k - (\sigma - 1)} \varphi_{\min}^k \frac{f}{f_E}$$

Remark

$$\varphi^* = \varphi_{\min} \left(\frac{\sigma - 1}{k - (\sigma - 1)} \frac{f}{f_E} \right)^{\frac{1}{k}}$$

- φ^* does not depend on market size L
- An increase in market size does not change the cutoff
 - Will be restored when moving away from CES preferences.
- Growth in country size and costless trade will therefore have the same impact as in Krugman (1980):
 - ▶ welfare ↑ because of ↑ in total number of varieties in each country

Monika Mrázová International Trade Spring 2025 36 / 59

Open-economy model

- In the absence of trade costs, we have seen trade integration does not lead to any intra-industry reallocation
- In order to move away from such (counterfactual) predictions,
 Melitz (2003) introduces two types of trade costs:
 - Iceberg trade costs: in order to sell 1 unit abroad, firms need to ship $\tau > 1$ units
 - **2 Fixed exporting costs:** in order to export abroad, firms must incur an additional fixed cost f_X (information, distribution, or regulation costs) after learning their productivity φ
- In addition, Melitz (2003) assumes that $c=1,\ldots,n$ countries are symmetric so that $w_c=1$ in all countries

Production

Monopoly pricing now implies

$$p_D(\varphi) = \frac{1}{\rho \varphi}$$
 and $p_X(\varphi) = \frac{\tau}{\rho \varphi}$

where $\rho = (\sigma - 1)/\sigma$

Revenues in the domestic and export markets are

$$r_D(\varphi) = R_D[P_D\rho\varphi]^{\sigma-1}$$
 and $r_X(\varphi) = \tau^{1-\sigma}R_X[P_X\rho\varphi]^{\sigma-1}$

- Note that by symmetry, we must have $P_D = P_X = P$ and $R_D = R_X = R$
- Profits in the domestic and export markets are

$$\pi_D(\varphi) = rac{r_d(\varphi)}{\sigma} - fw$$
 and $\pi_X(\varphi) = rac{r_X(\varphi)}{\sigma} - f_X w$

Monika Mrázová International Trade Spring 2025 38 / 59

Productivity cutoffs

- Like in the closed economy, we let φ^* be the cutoff to enter the domestic market
- In addition, let φ_X^* be the export cutoff
- In order to have both exporters and non-exporters in equilibrium, $\varphi_X^* > \varphi^*$, we assume that $\tau^{\sigma-1} f_X > f$

Monika Mrázová International Trade Spring 2025 39 / 59

Selection into exports

Image by MIT OpenCourseWare.

Monika Mrázová International Trade Spring 2025 40 / 59

Profits and productivity in the open economy

Image by MIT OpenCourseWare.

Monika Mrázová International Trade Spring 2025 41 / 59

The impact of trade

Image by MIT OpenCourseWare.

Monika Mrázová International Trade Spring 2025 42 / 59

The impact of trade

• In line with empirical evidence, exposure to trade forces the least productive firms to exit: $\varphi^*>\varphi^*_a$

Intuition:

- For exporters: Profits ↑ due to export opportunities, but ↓ due to the entry of foreign firms in the domestic market (P ↓)
- ► For non-exporters: only the negative second effect is active

Other comparative static exercises

- Starting from autarky and moving to trade is theoretically standard, but not empirically appealing
- Melitz (2003) also considers:
 - ▶ Increase in the number of trading partners *n*
 - Decrease in iceberg trade costs τ
 - ▶ Decrease in fixed exporting costs f_X
- Same qualitative insights in all scenarios:
 - Exit of least efficient firms
 - Reallocation of market shares from less from more productive firms
 - Welfare gains

Outline of the Lecture

- Introduction
- 2 Monopolistic competition
- Monopolistic competition with heterogeneous firms: Melitz (2003)
- 4 Monopolistic competition with variable elasticity demands

Question

Workhorse model in int. economics: Melitz (2003)

- Proliferation of alternatives to CES with variable elasticity:
 - Quadratic preferences: Melitz-Ottaviano (2008)
 - Stone-Geary LES: Simonovska (2010)
 - Translog: Feenstra-Weinstein (2010)
 - ► CARA: Behrens-Murata (2007)
 - ► Bulow-Pfleiderer: Atkin-Donaldson (2012)
- How do assumptions about demand affect comparative statics questions?
 - → The Demand Manifold: representation of perceived demand in elasticity-curvature space

Introducing the Demand manifold: A Core Model

- Monopoly firm facing an inverse demand function p(x), p' < 0
- Consistent with monopolistic competition
 - ► Firm's-Eye View of Demand
 - Firm takes the demand function as given: "perceived"
 - In general/industry equilibrium, the demand function has extra arguments ... see later
- Fixed marginal cost c

Profit maximisation

First-order condition:

$$p(x) + xp'(x) = c$$

Second-order condition:

$$2p'(x) + xp''(x) < 0$$

which can be re-written as

$$\frac{p(x)}{c} = \frac{\varepsilon(x)}{\varepsilon(x) - 1}$$

$$\rho(x) < 2$$

where

- $\varepsilon(x) \equiv -\frac{p(x)}{xp'(x)}$ is the demand elasticity/slope
- $\bullet \ \rho(x) \equiv -\frac{xp''(x)}{p'(x)}$ is the demand convexity/curvature

Two key demand parameters

1 Elasticity ε :

$$p(x) + xp'(x) = c \ge 0$$

 $\Rightarrow \boxed{\varepsilon(x) \ge 1}$

2 Convexity ρ :

$$2p'(x) + xp''(x) < 0$$

$$\Rightarrow \boxed{\rho(x) < 2}$$

The Demand Manifold

= visualisation of the demand function p(x) in the (ε, ρ) space

• In general, both ε and ρ vary with sales \rightarrow a curve

• Exception: CES/iso-elastic case: $p(x) = \beta x^{-1/\sigma}$

$$\Rightarrow \quad \varepsilon = \sigma, \ \ \rho = \frac{\sigma + 1}{\sigma}$$

 \Rightarrow Point manifold:

$$\rho = \frac{\varepsilon + 1}{\varepsilon}$$

Subconvexity

- p(x) is subconvex at x^0 IFF:
 - p(x) is less convex than a CES demand function with the same elasticity: $\rho < \frac{\varepsilon+1}{\varepsilon}$
 - ▶ $\log p(x)$ is concave in $\log x$
 - $\begin{array}{c} \varepsilon \text{ is decreasing in sales:} \\ \varepsilon_x = \frac{\varepsilon}{x} \left[\rho \frac{\varepsilon + 1}{\varepsilon} \right] < 0 \end{array}$
- Subconvexity = "Marshall's 2^{nd} Law of Demand"
 - confirmed empirically
 - theoretically plausible (Dixit-Stiglitz, Krugman, etc.)

Manifold: Definition and Existence

Given a demand function $p = p_0(x)$ defined over a range $X(p_0) \subseteq R_{\geq 0}$:

$$\Omega(p_0) \equiv \left[(\varepsilon, \rho) : \varepsilon = -\frac{p_0(x)}{x p_0'(x)}, \ \rho = -\frac{x p_0''(x)}{p_0'(x)}, \ \forall x \in X(p_0) \right]$$

Proposition

For every continuous, three-times differentiable, strictly-decreasing demand function, $p_0(x)$, other than the CES, the set $\Omega(p_0)$ corresponds to a smooth curve in $\{\varepsilon, \rho\}$ space.

Exception: CES manifold is a point

Manifold Invariance

• When is the demand manifold invariant to shocks?

▶ Graph

- ► Linear: p(x) = a bx► CARA: $x(p) = a + b \log p$ ► LES: $x(p) = a + bp^{-1}$ ► Translog: $x(p) = (a + b \log p)/p$ Manifold is invariant to a and b
 - ► CES: $p(x) = \beta x^{-1/\sigma}$ → Manifold is invariant to β , not to σ

Proposition

Assume that ρ_x is non-zero. Then, the demand manifold is invariant with respect to a vector parameter ϕ if and only if both ε and ρ depend on x and ϕ through a common sub-function of either (a) x and ϕ ; or (b) p and ϕ ; i.e.:

$$\varepsilon(x,\phi)=\tilde{\varepsilon}[F(x,\phi)] \quad \text{and} \quad \rho(x,\phi)=\tilde{\rho}[F(x,\phi)]; \quad \text{or} \qquad \qquad \textbf{(8)}$$

$$\varepsilon(p,\phi) = \tilde{\varepsilon}[G(p,\phi)]$$
 and $\rho(p,\phi) = \tilde{\rho}[G(p,\phi)]$ (9)

Monika Mrázová International Trade Spring 2025 53 / 59

Competition Effects of a Globalization Shock: Setup

- Krugman (1979) → Melitz (2003) and beyond
- L identical consumers in a given country, k identical countries
- Globalization: increase in k
- ullet Firms sell in many markets, they sell x to an individual consumer, total output: y=kLx
- Additive separability \Rightarrow demand function for a typical good $u'(x) = \lambda p$
- Ex-post profits of a typical firm:

$$\pi(\underbrace{c}_{-},\underbrace{\lambda}_{+},\underbrace{k}_{+}) \equiv \max_{y} \Big(p(y,\lambda,k) - c\Big)y$$

where $p(y, \lambda, k) = \lambda^{-1} u'(y/kL)$

Free-entry Condition

• Expected value of firm profits $\bar{v}(\lambda, k) = \text{sunk entry cost } f_e$:

$$\bar{v}(\underline{\lambda}, \underline{k}) \equiv \int_{\underline{c}}^{\overline{c}} v(c, \lambda, k) g(c) dc = f_e$$

with

$$v(c, \lambda, k) \equiv \max(0, \pi(c, \lambda, k) - f)$$

where g(c) is the distribution of firm marginal costs

Effects of a Globalization on Profits

Effects of globalization on every firm's profits:

$$\frac{d \log \pi(c, \lambda, k)}{d \log k} = \underbrace{\frac{\partial \log \pi(c, \lambda, k)}{\partial \log k}}_{(M)} + \underbrace{\frac{\partial \log \pi(c, \lambda, k)}{\partial \log \lambda}}_{(C)} \underbrace{\frac{d \log \lambda}{d \log k}}_{(C)}$$

where the change in the level of competition is determined in turn by:

$$\frac{d \log \lambda}{d \log k} = -\frac{\partial \log \bar{v}(\lambda, k)}{\partial \log k} / \frac{\partial \log \bar{v}(\lambda, k)}{\partial \log \lambda}$$

Globalization as a Two-Edged Sword

Effects of globalization on every firm's profits:

- Direct effect: Market Expansion
 - Raises its profits
- Indirect effect: Competition
 - ► Raises all firms' profits ⇒ Encourages entry
 - ⇒ Increases competition
 - ⇒ Reduces each firm's profits
- Net effect ambiguous in general...

Globalization as a Two-Edged Sword

With additive separability:

$$\frac{d\log\pi(c,\lambda,k)}{d\log k} = \underbrace{1}_{(M)} - \underbrace{\frac{\varepsilon(c,\lambda,k)}{\bar{\varepsilon}(\lambda,k)}}_{(C)}$$

where $\bar{\varepsilon}(\lambda,k)\equiv\int_{\underline{c}}^{\overline{c}} \frac{v(c,\lambda,k)}{\bar{v}(\lambda,k)} \varepsilon(c,\lambda,k) g(c)\,\mathrm{d}c$ is the firm-value-weighted average elasticity of demand across all firms

⇒ Globalization raises profits of larger firms and reduces those of smaller firms IFF demands are subconvex. ("Mathew Effect")

The Matthew Effect of Globalization

With subconvex demand:

- Large firms expand, small firms contract, some exit
- On average, exporters become more productive