Feedback Linearizable Discretizations of Mechanical Systems using Retraction Maps BTP Stage I Presentation

Shreyas N B

Guide: Prof. Ravi Banavar Co-Guide: Prof. Krishnendu Haldar

B. Tech, Department of Aerospace Engineering IDDDP, Center for Systems and Control

November 28, 2024

Outline

- 1 Introduction
 - Feedback Linearization
 - Retraction and Discretization Maps
- 2 Feedback Linearizable Discretizations
 - Discretization of Vector Fields
 - Lift of Discretization Maps
- 3 Second-Order Systems
 - Second-Order Differential Equations
 - Mechanical Systems
- 4 Results
 - Inertia Wheel Pendulum
 - TORA System

Outline

- 1 Introduction
 - Feedback Linearization
 - Retraction and Discretization Maps
- 2 Feedback Linearizable Discretizations
 - Discretization of Vector Fields
 - Lift of Discretization Maps
- 3 Second-Order Systems
 - Second-Order Differential Equations
 - Mechanical Systems
- 4 Results
 - Inertia Wheel Pendulum
 - TORA System

Motivation

Consider a continous-time nonlinear system of the form:

$$\dot{x}(t) = f(x(t), u(t))$$

Assuming the following:

1 There exists a coordinate transformation $z := \varphi(x)$ and an auxiliary control $v := \psi(x, u)$ such that $\dot{z}(t) = Az(t) + Bv(t)$ where A, B are constant matrices.

Motivation

Consider a continous-time nonlinear system of the form:

$$\dot{x}(t) = f(x(t), u(t))$$

Assuming the following:

- **1** There exists a coordinate transformation $z := \varphi(x)$ and an auxiliary control $v := \psi(x, u)$ such that $\dot{z}(t) = Az(t) + Bv(t)$ where A, B are constant matrices.
- The discretization scheme is arbitrary.

Motivating Example

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} (1 + 2u(t))x_2(t) \\ u(t) \end{pmatrix} \tag{2.1}$$

Taking $\tilde{x}_1 = x_1 - x_2^2$ and $\tilde{x}_2 = x_2$, we get the transformation $\varphi(x_1, x_2) = (x_1 - x_2^2, x_2)$, we get the feedback linearized system:

$$\begin{pmatrix} \dot{z}_1(t) \\ \dot{z}_2(t) \end{pmatrix} = \begin{pmatrix} z_2(t) \\ u(t) \end{pmatrix} \tag{2.2}$$

Definitions

Continuous Feedback Linearization

A continous-time nonlinear system $\dot{x}(t) = f(x(t), u(t))$ is said to be feedback linearizable if there exists a coordinate transformation $z = \varphi(x)$ and a feedback control law $v = \psi(x, u)$ such that the transformed system is linear $\dot{z}(t) = Az(t) + Bv(t)$.

Definitions

Continuous Feedback Linearization

A continous-time nonlinear system $\dot{x}(t) = f(x(t), u(t))$ is said to be feedback linearizable if there exists a coordinate transformation $z = \varphi(x)$ and a feedback control law $v = \psi(x, u)$ such that the transformed system is linear $\dot{z}(t) = Az(t) + Bv(t)$.

Discrete Feedback Linearization

A discrete-time nonlinear system $x_{k+1} = F(x_k, u_k)$ is said to be feedback linearizable if there exists a coordinate transformation $z_k = \varphi(x_k)$ and a feedback control law $v_k = \psi(x_k, u_k)$ such that the transformed system is linear $z_{k+1} = Az_k + Bv_k$, where $x_k = x(t_k)$.

Motivating Example

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} (1+2u(t))x_2(t) \\ u(t) \end{pmatrix} \tag{2.3}$$

Taking $\tilde{x}_1 = x_1 - x_2^2$ and $\tilde{x}_2 = x_2$, we get the diffeomorphism $\varphi(x_1, x_2) = (x_1 - x_2^2, x_2)$, we get the feedback linearized system:

$$\begin{pmatrix} \dot{z}_1(t) \\ \dot{z}_2(t) \end{pmatrix} = \begin{pmatrix} z_2(t) \\ u(t) \end{pmatrix} \tag{2.4}$$

Type 1 Discretization

First, we consider the forward Euler discretization scheme. This gives a discrete-time system:

Taking the same diffeomorphism φ as before, we get:

Thus, we see that it is NOT feedback linearizable.

Type 2 Discretization

Now, let's consider an alternate discretization which yields the discrete system:

$$\begin{pmatrix} x_{1,k+1} \\ x_{2,k+1} \end{pmatrix} = \begin{pmatrix} x_{1,k} \\ x_{2,k} \end{pmatrix} + h \begin{pmatrix} (1+2u_k)x_{2,k} \\ u_k \end{pmatrix} + h^2 \begin{pmatrix} u_k^2 \\ 0 \end{pmatrix}$$
 (2.7)

Again taking the same diffeomorphism φ , we get:

which is indeed feedback linearizable.

Introduction

⁰00000000

Motivation

Question 1

Can we construct a discretization scheme such that the discrete system can also be linearized using $\varphi(x)$ and $\psi(x, u)$ similarly?

Motivation

Question 1

Can we construct a discretization scheme such that the discrete system can also be linearized using $\varphi(x)$ and $\psi(x, u)$ similarly?

Question 2

Can we extend this scheme (geometrically) to second-order nonlinear mechanical systems?

Motivation

Figure: Feedback Linearizable Discretization?

Shreyas N B IIT Bombay

Observations

Problem

Feedback linearizability of discrete-time systems depends on the choice of the discretization scheme.

Observations

Problem

Feedback linearizability of discrete-time systems depends on the choice of the discretization scheme.

Objective

Given a (locally) feedback linearizable continuous-time nonlinear system, construct a discretization scheme such that the discrete-time system is also (locally) feedback linearizable.

Observations

Problem

Feedback linearizability of discrete-time systems depends on the choice of the discretization scheme.

Objective

Given a (locally) feedback linearizable continuous-time nonlinear system, construct a discretization scheme such that the discrete-time system is also (locally) feedback linearizable.

Strategy

We utilize the concept of **retraction maps** to construct such a discretization scheme.

Shreyas N B

IIT Bombay

Definition

We define a **retraction map** on a manifold M as a smooth map $\mathcal{R}: TM \to M$, such that if \mathcal{R}_{\times} be the restriction of \mathcal{R} to $T_{\times}M$, then the following properties are satisfied:

1 $\mathcal{R}_{x}(0_{x}) = x$ where 0_{x} is the zero element of $\mathcal{T}_{x}M$.

Definition

We define a **retraction map** on a manifold M as a smooth map $\mathcal{R}: TM \to M$, such that if \mathcal{R}_{\times} be the restriction of \mathcal{R} to $T_{\times}M$, then the following properties are satisfied:

- 1 $\mathcal{R}_{x}(0_{x}) = x$ where 0_{x} is the zero element of $\mathcal{T}_{x}M$.
- 2 $D\mathcal{R}_{x}(0_{x}) = T_{0_{x}}\mathcal{R}_{x} = \mathbb{I}_{T_{x}M}$, where $\mathbb{I}_{T_{x}M}$ is the identity mapping on $T_{x}M$.

Introduction

Retraction Map

Figure: A visualization

Shreyas N B IIT Bombay

Retraction and Discretization Maps

Introduction

Discretization Map

A map $\mathcal{D}: U \subset TM \longrightarrow M \times M$ given by

$$\mathcal{D}(x, v) \equiv \mathcal{D}_{x}(v) = \left(R_{x}^{1}(v), R_{x}^{2}(v)\right)$$

where U is the open neighborhood of the zero section $0_x \in TM$, is called a **discretization map** on M, if the following properties are satisfied:

Discretization Map

A map $\mathcal{D}: U \subset TM \longrightarrow M \times M$ given by

$$\mathcal{D}(x, v) \equiv \mathcal{D}_{x}(v) = \left(R_{x}^{1}(v), R_{x}^{2}(v)\right)$$

where U is the open neighborhood of the zero section $0_x \in TM$, is called a **discretization map** on M, if the following properties are satisfied:

- 2 $T_{0_x}R_x^2 T_{0_x}R_x^1 = \mathbb{I}_{T_xM}$, which is the identity map on T_xM for any $x \in M$.

Discretization Map

Some examples of discretization maps on \mathbb{R}^n for $\dot{x}(t) = X(x(t))$:

Discretization map ${\cal D}$	Scheme	Order
$\mathcal{D}(x, v) = (x, x + v)$	Forward Euler $x_{k+1} = x_k + hX(x_k)$	$\mathcal{O}(h)$
$\mathcal{D}(x, v) = (x - v, x)$	Backward Euler $x_k = x_{k+1} - hX(x_{k+1})$	$\mathcal{O}(h)$
$\mathcal{D}(x, v) = \left(x - \frac{v}{2}, x + \frac{v}{2}\right)$	Symmetric Euler $x_{k+1} = x_k + hX\left(\frac{x_k + x_{k+1}}{2}\right)$	$O(h^2)$

1 Introduction

- Introduction
 - Feedback Linearization
 - Retraction and Discretization Maps
- 2 Feedback Linearizable Discretizations
 - Discretization of Vector Fields
 - Lift of Discretization Maps
- 3 Second-Order Systems
 - Second-Order Differential Equations
 - Mechanical Systems
- 4 Results
 - Inertia Wheel Pendulum
 - TORA System

 \blacksquare $\mathfrak{X}(M)$: set of all vector fields on M.

- \blacksquare $\mathfrak{X}(M)$: set of all vector fields on M.
- $\dot{x}(t) = X(x(t))$: dynamical system defined by $X \in \mathfrak{X}(M)$.

- \blacksquare $\mathfrak{X}(M)$: set of all vector fields on M.
- $\dot{x}(t) = X(x(t))$: dynamical system defined by $X \in \mathfrak{X}(M)$.
- $\tau_M : TM \longrightarrow M$: canonical projection M s.t. $\tau_M(x, v) = x$.

- \blacksquare $\mathfrak{X}(M)$: set of all vector fields on M.
- $\dot{x}(t) = X(x(t))$: dynamical system defined by $X \in \mathfrak{X}(M)$.
- $\tau_M : TM \longrightarrow M :$ canonical projection M s.t. $\tau_M(x, v) = x$.
- $h = t_{k+1} t_k$: time step of discretization.

- \blacksquare $\mathfrak{X}(M)$: set of all vector fields on M.
- $\dot{x}(t) = X(x(t))$: dynamical system defined by $X \in \mathfrak{X}(M)$.
- $\tau_M : TM \longrightarrow M :$ canonical projection M s.t. $\tau_M(x, v) = x$.
- $h = t_{k+1} t_k$: time step of discretization.
- lacksquare \mathcal{D}^{TM} is a discretization map on M.

Discretization of Vector Fields

Proposition

Let $X(\cdot, u_k) \in \mathfrak{X}(M)$ be a controlled vector field on M. Then, for a given discretization scheme \mathcal{D} ,

$$\mathcal{D}^{-1}(x_k, x_{k+1}) = hX(\tau_M(\mathcal{D}^{-1}(x_k, x_{k+1})), u_k)$$

is an implicit numerical discretization of $\dot{x}(t) = X(x(t), u(t))$.

Discretization of Vector Fields

Discretization of Vector Fields

Proposition

Let $X(\cdot, u_k) \in \mathfrak{X}(M)$ be a controlled vector field on M. Then, for a given discretization scheme \mathcal{D} ,

$$\mathcal{D}^{-1}(x_k, x_{k+1}) = hX(\tau_M(\mathcal{D}^{-1}(x_k, x_{k+1})), u_k)$$

is an implicit numerical discretization of $\dot{x}(t) = X(x(t), u(t))$.

Example

The forward Euler discretization scheme $\mathcal{D}(x, v) = (x, x + v)$ yields the explicit Euler form $x_{k+1} = x_k + hX(x_k, u_k)$.

Lift of Discretization Maps

Tangent Lift

Proposition

Let $\varphi: M \longrightarrow N$ be a smooth map (diffeomorphism). For a given discretization map $\mathcal{D}^{TM}: TM \longrightarrow M \times M$ on M, the map $\mathcal{D}^{TN}:=(\varphi\times\varphi)\circ\mathcal{D}^{TM}\circ T\varphi^{-1}$ is a discretization map on N i.e., $\mathcal{D}^{TN}:TN\longrightarrow N\times N$.

$$TM \xrightarrow{T\varphi} TN$$

$$D^{TM} \downarrow \qquad \qquad \downarrow D^{TN}$$

$$M \times M \xrightarrow{\varphi \times \varphi} N \times N$$

Feedback Linearizable Discretization

Proposition

Let φ be the linearizing coordinate transformation and ψ be the linearizing feedback. Let \mathcal{D}^{TN} be a discretization map that discretizes the continuous-time linear system to a discrete-time linear system. Then,

$$\mathcal{D}^{\mathit{TM}} = (\varphi \times \varphi)^{-1} \circ \mathcal{D}^{\mathit{TN}} \circ \mathit{T} \varphi$$

is a discretization on M which discretizes the continuous-time system to a discrete-time nonlinear system such that the discrete-time system is feedback linearizable using $z_k := \varphi(x_k)$ and $v_k := \psi(x_k, u_k).$

Outline

- 1 Introduction
 - Feedback Linearization
 - Retraction and Discretization Maps
- 2 Feedback Linearizable Discretizations
 - Discretization of Vector Fields
 - Lift of Discretization Maps
- 3 Second-Order Systems
 - Second-Order Differential Equations
 - Mechanical Systems
- 4 Results
 - Inertia Wheel Pendulum
 - TORA System

Second-Order Differential Equations

Motivation

Mechanical systems are usually described by nonlinear second-order differential equations (SODEs).

Motivation

- Mechanical systems are usually described by nonlinear second-order differential equations (SODEs).
- These systems also have underlying mechanical structures (symmetry, conservation laws, etc.) which needs to be preserved while linearizing and discretizing.

Motivation

- Mechanical systems are usually described by nonlinear second-order differential equations (SODEs).
- These systems also have underlying mechanical structures (symmetry, conservation laws, etc.) which needs to be preserved while linearizing and discretizing.
- Since the notion of mechanical feedback linearization has been well-studied, it is natural to extend this to the discrete-time setting.

A second-order differential equation (SODE) is a vector field X such that locally,

$$X = \dot{x}^{i} \frac{\partial}{\partial x^{i}} + X^{i}(x^{i}, \dot{x}^{i}) \frac{\partial}{\partial \dot{x}^{i}}$$
 (4.1)

To find the integral curves of X is equivalent to solving the SODE:

$$\frac{d^2}{dt^2}x(t) = X\left(x(t), \frac{d}{dt}x(t)\right) \tag{4.2}$$

Discretization of SODEs

Now, we wish to discretize this using the notion of the discretization map on TM. We would like to tangently lift a discretization on M to obtain $\mathcal{D}^{TTM}: TTM \longrightarrow TM \times TM$. This yields the following numerical scheme:

$$\left(\mathcal{D}^{TTM} \right)^{-1} (x_k, y_k; x_{k+1}, y_{k+1})$$

$$= hX \left(\tau_{TM} \left(\left(\mathcal{D}^{TTM} \right)^{-1} (x_k, y_k; x_{k+1}, y_{k+1}) \right) \right)$$
(4.3)

What is different here?

The double tangent bundle *TTM* admits two different vector bundle structures:

I The canonical vector bundle with projection $\tau_{TM}: TTM \longrightarrow TM$.

What is different here?

The double tangent bundle *TTM* admits two different vector bundle structures:

- I The canonical vector bundle with projection $\tau_{TM}: TTM \longrightarrow TM$.
- 2 The vector bundle given by the projection of the tangent map $T\tau_M: TTM \longrightarrow TM$.

What is different here?

The double tangent bundle *TTM* admits two different vector bundle structures:

- I The canonical vector bundle with projection $\tau_{TM}: TTM \longrightarrow TM$.
- 2 The vector bundle given by the projection of the tangent map $T\tau_M: TTM \longrightarrow TM$.

Outline

What is different here?

The double tangent bundle TTM admits two different vector bundle structures:

- 1 The canonical vector bundle with projection $\tau_{TM}: TTM \longrightarrow TM$.
- The vector bundle given by the projection of the tangent map $T\tau_M:TTM\longrightarrow TM$.

Denote the canonical involution map $\kappa_M: TTM \longrightarrow TTM$ which is a vector bundle isomorphism, over the identity of TM.

$$\kappa_{M}(x, \mathbf{v}, \dot{\mathbf{x}}, \dot{\mathbf{v}}) = (x, \dot{x}, \mathbf{v}, \dot{\mathbf{v}})$$

Shrevas N B IIT Bombay

4 D > 4 A > 4 B > 4 B >

Outline

Why is this important?

The tangent lift of a vector field X on M does not define a vector field on TM. It is necessary to consider the composition $\kappa_M \circ TX$ to obtain a vector field on TM, and this is called the complete lift X^c of the vector field X. Hence, a similar technique must be used to lift a discretization map from TM to TTM.

Proposition

If $\mathcal{D}^{TM}: TM \longrightarrow M \times M$ is a discretization map on M, then $\mathcal{D}^{TTM} = T\mathcal{D}^{TM} \circ \kappa_M$ is a discretization map on TM.

Shrevas N B

Tangent Lift of Discretization Map

Figure: Commutation of maps around TTM

Outline

The whole (slightly intimidating) picture

Figure: The Commutator

Shrevas N B IIT Bombay

More Notation

■ Γ_{ik}^i : Christoffel symbols (connection coefficients) on M.

- Γ_{ik}^i : Christoffel symbols (connection coefficients) on M.
- lacktriangledown ∇ : symmetric affine connection on M.

- Γ_{ik}^i : Christoffel symbols (connection coefficients) on M.
- \blacksquare ∇ : symmetric affine connection on M.
- $\mathbf{x} = (x^1, \dots, x^i, \dots x^n)$: local coordinates on M.

- Γ^{i}_{ik} : Christoffel symbols (connection coefficients) on M.
- $lue{\nabla}$: symmetric affine connection on M.
- $\mathbf{x} = (x^1, \dots, x^i, \dots x^n)$: local coordinates on M.
- $lack g = \{g_1, \dots, g^r, \dots, g_m\}$: control vector fields.

Outline

- Γ_{ik}^i : Christoffel symbols (connection coefficients) on M.
- \blacksquare ∇ : symmetric affine connection on M.
- $\mathbf{x} = (x^1, \dots, x^i, \dots x^n)$: local coordinates on M.
- $\blacksquare \mathfrak{q} = \{g_1, \dots, g^r, \dots, g_m\}$: control vector fields.
- e: uncontrolled vector field.

Definition

Mechanical Systems

A mechanical control system $(\mathcal{MS})_{(n,m)}$ is defined by a 4-tuple $(M,\nabla,\mathfrak{g},e)$ where:

$$m\nabla_{\dot{x}}\dot{x} = e(x) + \sum_{r=1}^{m} g_r(x)u_r$$
 (4.4)

Or equivalently in local coordinates $x = (x^1, \dots, x^n)$ on M,

$$m\ddot{x}^{i} = -\Gamma^{i}_{jk}(x)\dot{x}^{j}\dot{x}^{k} + e^{i}(x) + \sum_{r=1}^{m} g_{r}^{i}(x)u_{r}$$
 (4.5)

Definition

We can write this as two first-order differential equations:

$$\dot{x}^{i} = y^{i};$$

$$\dot{y}^{i} = -\Gamma^{i}_{jk}(x)y^{j}y^{k} + e^{i}(x) + \sum_{r=1}^{m} g_{r}^{i}(x)u_{r}$$
(MS)

Conclusion

Given a mechanical control system $(\mathcal{MS})_{(n,m)}$, we wish to construct a discretization scheme such that the discrete-time system is mechanical feedback linearizable.

Outline

- 1 Introduction
 - Feedback Linearization
 - Retraction and Discretization Maps
- 2 Feedback Linearizable Discretizations
 - Discretization of Vector Fields
 - Lift of Discretization Maps
- 3 Second-Order Systems
 - Second-Order Differential Equations
 - Mechanical Systems
- 4 Results
 - Inertia Wheel Pendulum
 - TORA System

Inertia Wheel Pendulum

Inertia Wheel Pendulum

Figure: Mechanism

IIT Bombay

Shreyas N B

Inertia Wheel Pendulum - The Dynamical Equations

The equations of motion $(M = S^1 \times S^1)$ are given by:

$$(m_d + J_2)\ddot{\theta}^1 + J\ddot{\theta}^2 - m_0 \sin \theta^1 = 0$$

$$J\ddot{\theta}^1 + J\ddot{\theta}^2 = u$$
 (5.1)

where

$$m_d = L_1^2(m_1 + 4m_2) + J_1, \ m_0 = aL_1(m_1 + 2m_2)$$

 m_1 - mass of the pendulum, m_2 - mass of the wheel, J - moment of inertia of the wheel

Inertia Wheel Pendulum - General form

Taking $(\theta^1, \theta^2) = (x_1, x_2)$ and correspondingly $(\dot{\theta}^1, \dot{\theta}^2) = (y_1, y_2)$, we get the following equations:

$$\dot{x}_1 = y_1, \ \dot{x}_2 = y_2$$

 $\dot{y}_1 = e_1 + g_1 u, \ \dot{y}_2 = e_2 + g_2 u$
(5.2)

where

$$e_1 = \frac{m_0}{m_d} \sin x_1, \ g_1 = -\frac{1}{m_d}$$
 $e_2 = -\frac{m_0}{m_d} \sin x_1, \ g_2 = \frac{m_d + J_2}{m_d J_2}$

Note that this system has all the Christoffel symbols $\Gamma^i_{jk}=0$

Outline

Inertia Wheel Pendulum - Feedback Linearization

Choosing $\Phi(x, y) = (\varphi(x), D\varphi(x)y)$, which is given by (where $\tilde{x} = \varphi(x)$:

$$\tilde{x}_{1} = \frac{m_{d} + J_{2}}{J_{2}} x_{1} + x_{2}, \quad \tilde{x}_{2} = \frac{m_{0}}{J_{2}} \sin x_{1}$$

$$\tilde{y}_{1} = \frac{m_{d} + J_{2}}{J_{2}} y_{1} + y_{2}, \quad \tilde{y}_{2} = \frac{m_{0}}{J_{2}} \cos x_{1} y_{1}$$
(5.3)

Taking $\tilde{\mathbf{x}} = \begin{pmatrix} \tilde{x}_1 & \tilde{x}_2 & \tilde{y}_1 & \tilde{y}_2 \end{pmatrix}^T$, such that the linearized equations become $\frac{d}{dt}\tilde{\mathbf{x}} = A\tilde{\mathbf{x}} + B\tilde{u}$

Inertia Wheel Pendulum

Inertia Wheel Pendulum - Feedback Linearization

Here, the matrices
$$A = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$ and

 $\tilde{u} = \psi(x, y, u)$ is the auxiliary control, such that:

$$\tilde{u} = -\frac{m_0}{J_2} \sin x_1 y_1^2 + \frac{m_0^2}{2m_d J_2} \sin 2x_1 - \frac{m_0}{m_d J_2} \cos x_1 u \tag{5.4}$$

Taking $\tilde{u} = -K\tilde{\mathbf{x}}$, such that the closed-loop system is stable, we get $\dot{\tilde{\mathbf{x}}} = F\tilde{\mathbf{x}}$.

Inertia Wheel Pendulum - Discretization

Let h denote a (fixed) sampling time and $h' = \frac{h}{2}$. We utilize the symmetric discretization:

$$F(x_k; h/2) = F(x_{k+1}; -h/2)$$

$$x_k + h'(A - BK)x_k = x_{k+1} - h'(A - BK)x_{k+1}$$

$$\therefore x_{k+1} = (I - h'(A - BK))^{-1}(I + h'(A - BK))x_k$$
 (5.5)

Inertia Wheel Pendulum

Results

Shreyas N B IIT Bombay

Inertia Wheel Pendulum

Figure 4.2: Magnitude of error norm for θ_1 and $\dot{\theta}_1$

Figure 4.3: Magnitude of error norm for θ_2 and $\dot{\theta}_2$

TORA System

Figure: Translational Oscillator with Rotational Actuator

TORA System - The Dynamical Equations

The equations of motion $(M = S^1 \times \mathbb{R})$ are given by:

$$(m_1 + m_2)\ddot{x} + m_2L_2\cos\theta\ddot{\theta} - m_2L_2\sin\theta\dot{\theta}^2 + k_1x = 0$$

$$m_2L_2\cos\theta\ddot{x} + (m_2L_2^2 + J_2)\ddot{\theta} + m_2L_2a\sin\theta = u$$
(5.6)

Outline

TORA System - General form

Taking $(x, \theta) = (x_1, x_2)$ and correspondingly $(\dot{x}, \dot{\theta}) = (y_1, y_2)$, we get the following equations:

$$\dot{x}_1 = y_1
\dot{x}_2 = y_2
\dot{y}_1 = -\Gamma_{22}^1 y_2 y_2 + e_1 + g_1 u
\dot{y}_2 = -\Gamma_{22}^2 y^2 y^2 + e_2 + g_2 u$$
(5.7)

Here, the Christoffel symbols are non-zero:

$$\Gamma_{22}^{1} = \frac{-m_2 L_2 (m_2 L_2^2 + J_2) \sin x_2}{(m_1 + m_2) (m_2 L_2^2 + J_2) - m_2^2 L_2^2 \cos^2 x_2}$$

$$\Gamma_{22}^{2} = \frac{m_2^2 L_2^2 \sin x_2 \cos x_2}{(m_1 + m_2) (m_2 L_2^2 + J_2) - m_2^2 L_2^2 \cos^2 x_2}$$

Outline

TORA System - General form

$$e_1 = \frac{m_2^2 L_2^2 a \sin x_2 \cos x_2 - k_1 (m_2 L_2^2 + J_2) x_1}{(m_1 + m_2) (m_2 L_2^2 + J_2) - m_2^2 L_2^2 \cos^2 x_2}$$

$$e_2 = \frac{-m_2 L_2 (m_1 + m_2) a \sin x_2 + k_1 m_2 L_2 x_1 \cos x_2}{(m_1 + m_2) (m_2 L_2^2 + J_2) - m_2^2 L_2^2 \cos^2 x_2}$$

$$g_1 = \frac{-m_2 L_2 \cos x_2}{(m_1 + m_2) (m_2 L_2^2 + J_2) - m_2^2 L_2^2 \cos^2 x_2}$$

$$g_2 = \frac{m_1 + m_2}{(m_1 + m_2) (m_2 L_2^2 + J_2) - m_2^2 L_2^2 \cos^2 x_2}$$

Outline

TORA System - Feedback Linearization

Choosing $\Phi(x,y) = (\varphi(x), D\varphi(x)y)$, which is given by:

$$\tilde{x}_1 = m_{11}x_1 + m_{12}\sin x_2, \ \tilde{x}_2 = -k_1x_1$$

 $\tilde{y}_1 = m_{11}y_1 + m_{12}\cos x_2y_2, \ \tilde{y}_2 = -k_1y_1$

Again taking $\tilde{\mathbf{x}} = \begin{pmatrix} \tilde{x}_1 & \tilde{x}_2 & \tilde{y}_1 & \tilde{y}_2 \end{pmatrix}^T$, such that the linearized equations become $\frac{d}{dt}\tilde{\mathbf{x}} = A\tilde{\mathbf{x}} + B\tilde{\mathbf{u}}$

TORA System

Note that $\tilde{u} = \psi(x, y, u)$ is the auxiliary control, such that:

$$\tilde{u} = -k_1(-\Gamma_{22}^1 y_2^2 + e_1 + g_1 u) \tag{5.8}$$

Taking $\tilde{u} = -K\tilde{\mathbf{x}}$, such that the closed-loop system is stable, we get $\dot{\tilde{\mathbf{x}}} = F\tilde{\mathbf{x}}$.

We again utilize the symmetric discretization scheme to obtain the discrete-time system.

Figure 4.4: System states x_k for symmetric discretization plotted against exact discretization (ODE45) $x(t_k)$ for $t_k \in [0, 10]$

Figure 4.5: Magnitude of error norm for x and \dot{x}

Thank You!

