Wheeled Mobile Robots

Assignment 7

1.	A robot is not only a mechanical architecture, but is also slaved by that impacts its performance.		
	() a sensor		
	○ a controller		
	○ a planner		
	on actuator		
	○ a navigator		
	○ a supporter		
	Correct answer is a controller		
2.	Seamless integration of inaccurate models and limited sensing capabilities is known as		
	○ Classical robotics		
	O Probabilistic robotics		
	○ Modern robotics		
	○ Hybrid robotics		
	○ Soft robotics		
	○ Field robotics		
	Correct answer is Probabilistic robotics		
3.	The inverse differential kinematics or inverse dynamics is equal to		
	○ a feed-back or closed-loop control		
	○ a feed-forward or open-loop control		
	a motion-based control		
	a robust control		
	○ an adaptive control		
	○ an optimal control		
	Correct answer is a feed-forward or open-loop control		
4.	Robust control aims at controlling, with a small error, a class of robot manipulators (model is not accurately known) with the same controller.		
	○ True		
	○ False		
	Correct answer is True		
5.	Asymptotically (exponentially) stable means		
	when time tends to infinity, the tracking errors tend to infinity.		
	O when time tends to infinity, the tracking errors tend to be bounded.		
	when time tends to infinity, the tracking errors tend to zero.		
	when time tends to zero, the tracking errors tend to infinity.		
	• when time tends to zero, the tracking errors tend to zero.		
	O when time tends to zero, the tracking errors tend to be bounded.		
	Correct answer is when time tends to infinity, the tracking errors tend to zero.		

Confect answer is when time tends to minity, the tracking errors tend to zero.

6. In a set-point or regulatory position control, the desired position vectors and velocity vectors are continuous.

ct	ans
ec	ond

TrueFalse

Correct answer is False

7. The second order error dynamics is stable as per the following condition:

$$\bigcirc \ddot{\tilde{\boldsymbol{\eta}}} + \Lambda_1 \dot{\tilde{\boldsymbol{\eta}}} + \Lambda_2 \tilde{\boldsymbol{\eta}} = 0, \Lambda_1 < 0, \Lambda_2 < 0$$

$$\bigcirc \ddot{\tilde{\boldsymbol{\eta}}} + \Lambda_1 \dot{\tilde{\boldsymbol{\eta}}} + \Lambda_2 \tilde{\boldsymbol{\eta}} = 0, \Lambda_1 < 0, \Lambda_2 > 0$$

$$\bigcirc \ddot{\tilde{\boldsymbol{\eta}}} + \Lambda_1 \dot{\tilde{\boldsymbol{\eta}}} + \Lambda_2 \tilde{\boldsymbol{\eta}} = 0, \Lambda_1 > 0, \Lambda_2 > 0$$

$$() \ddot{\tilde{\boldsymbol{\eta}}} + \Lambda_1 \dot{\tilde{\boldsymbol{\eta}}} + \Lambda_2 \tilde{\boldsymbol{\eta}} = 0, \Lambda_1 > 0, \Lambda_2 < 0$$

$$\bigcirc \ddot{\tilde{\boldsymbol{\eta}}} + \Lambda_1 \dot{\tilde{\boldsymbol{\eta}}} - \Lambda_2 \tilde{\boldsymbol{\eta}} = 0, \Lambda_1 > 0, \Lambda_2 > 0$$

$$\bigcirc \ddot{\tilde{\boldsymbol{\eta}}} - \Lambda_1 \dot{\tilde{\boldsymbol{\eta}}} + \Lambda_2 \tilde{\boldsymbol{\eta}} = 0, \Lambda_1 > 0, \Lambda_2 > 0$$

Correct answer is $\ddot{\tilde{\eta}} + \Lambda_1 \dot{\tilde{\eta}} + \Lambda_2 \tilde{\eta} = 0, \Lambda_1 > 0, \Lambda_2 > 0$

8. The vector of input commands or control inputs of a computed velocity control is given as $(\lambda > 0)$:

$$\bigcirc \zeta = \left[\dot{\boldsymbol{\eta}}_d(t) + \lambda \tilde{\boldsymbol{\eta}}(t)\right]$$

$$\bigcirc \zeta = \left[\dot{\boldsymbol{\eta}}_d\left(t\right) - \lambda \tilde{\boldsymbol{\eta}}\left(t\right)\right]$$

$$\bigcirc \zeta = \mathbf{J}^{-1}(\boldsymbol{\eta}) \left[\dot{\boldsymbol{\eta}}_d(t) - \lambda \tilde{\boldsymbol{\eta}}(t) \right]$$

$$\bigcirc \zeta = \mathbf{J}^{-1}(\boldsymbol{\eta}) \left[\dot{\boldsymbol{\eta}}_d(t) + \lambda \tilde{\boldsymbol{\eta}}(t) \right]$$

$$\bigcirc \zeta = -\mathbf{J}^{-1}(\boldsymbol{\eta}) \left[\dot{\boldsymbol{\eta}}_d(t) - \lambda \tilde{\boldsymbol{\eta}}(t) \right]$$

$$\bigcirc \zeta = -\mathbf{J}^{-1}(\boldsymbol{\eta}) \left[\dot{\boldsymbol{\eta}}_{d}(t) + \lambda \tilde{\boldsymbol{\eta}}(t) \right]$$

Correct answer is $\boldsymbol{\zeta} = \mathbf{J}^{-1}(\boldsymbol{\eta}) \left[\dot{\boldsymbol{\eta}}_{d}(t) + \lambda \tilde{\boldsymbol{\eta}}(t) \right]$

9. The computed input control law of a land-based mobile robot can be given as:

$$\bigcirc \boldsymbol{\tau} = \mathbf{D} \left[\left(\boldsymbol{\ddot{\eta}}_d - \dot{\mathbf{J}} \left(\boldsymbol{\eta}_d \right) \mathbf{J}^{-1} \left(\boldsymbol{\eta}_d \right) \dot{\boldsymbol{\eta}}_d \right) + \mathbf{J}^{-1} \left(\boldsymbol{\eta} \right) \left(\mathbf{K}_P \boldsymbol{\tilde{\eta}} + \mathbf{K}_D \dot{\boldsymbol{\tilde{\eta}}} \right) \right] + \mathbf{n} \left(\boldsymbol{\zeta}_d \right), \mathbf{K}_P > 0, \mathbf{K}_D > 0$$

$$\bigcirc \boldsymbol{\tau} = \left[\mathbf{J}^{-1} \left(\boldsymbol{\eta}_{d} \right) \left(\ddot{\boldsymbol{\eta}}_{d} - \dot{\mathbf{J}} \left(\boldsymbol{\eta}_{d} \right) \mathbf{J}^{-1} \left(\boldsymbol{\eta}_{d} \right) \dot{\boldsymbol{\eta}}_{d} \right) + \mathbf{J}^{-1} \left(\boldsymbol{\eta} \right) \left(\mathbf{K}_{P} \tilde{\boldsymbol{\eta}} + \mathbf{K}_{D} \dot{\tilde{\boldsymbol{\eta}}} \right) \right] + \mathbf{n} \left(\boldsymbol{\zeta}_{d} \right), \mathbf{K}_{P} > 0, \mathbf{K}_{D} > 0$$

$$\bigcirc \boldsymbol{\tau} = \mathbf{D} \left[\mathbf{J}^{-1} \left(\boldsymbol{\eta}_{d} \right) \left(\ddot{\boldsymbol{\eta}}_{d} - \dot{\mathbf{J}} \left(\boldsymbol{\eta}_{d} \right) \mathbf{J}^{-1} \left(\boldsymbol{\eta}_{d} \right) \dot{\boldsymbol{\eta}}_{d} \right) + \mathbf{J}^{-1} \left(\boldsymbol{\eta} \right) \left(\mathbf{K}_{P} \tilde{\boldsymbol{\eta}} + \mathbf{K}_{D} \dot{\tilde{\boldsymbol{\eta}}} \right) \right]$$

$$+ \mathbf{n} \left(\boldsymbol{\zeta}_{d} \right), \mathbf{K}_{P} > 0, \mathbf{K}_{D} > 0$$

$$\bigcirc \boldsymbol{\tau} = \mathbf{D} \left[\mathbf{J}^{-1} \left(\boldsymbol{\eta}_{d} \right) \left(\ddot{\boldsymbol{\eta}}_{d} - \dot{\mathbf{J}} \left(\boldsymbol{\eta}_{d} \right) \mathbf{J}^{-1} \left(\boldsymbol{\eta}_{d} \right) \dot{\boldsymbol{\eta}}_{d} \right) + \mathbf{J}^{-1} \left(\boldsymbol{\eta} \right) \left(\mathbf{K}_{P} \tilde{\boldsymbol{\eta}} + \mathbf{K}_{D} \dot{\tilde{\boldsymbol{\eta}}} \right) \right]$$

$$, \mathbf{K}_{P} > 0, \mathbf{K}_{D} > 0$$

$$\bigcirc \boldsymbol{\tau} = \mathbf{D} \left[\mathbf{J}^{-1} \left(\boldsymbol{\eta}_{d} \right) \left(\ddot{\boldsymbol{\eta}}_{d} - \dot{\mathbf{J}} \left(\boldsymbol{\eta}_{d} \right) \mathbf{J}^{-1} \left(\boldsymbol{\eta}_{d} \right) \dot{\boldsymbol{\eta}}_{d} \right) + \mathbf{J}^{-1} \left(\boldsymbol{\eta} \right) \left(\mathbf{K}_{P} \tilde{\boldsymbol{\eta}} + \mathbf{K}_{D} \dot{\tilde{\boldsymbol{\eta}}} \right) \right] + \mathbf{n} \left(\boldsymbol{\zeta}_{d} \right), \mathbf{K}_{P} < 0, \mathbf{K}_{D} < 0$$

$$\bigcirc \boldsymbol{\tau} = \left[\mathbf{J}^{-1} \left(\boldsymbol{\eta}_{d} \right) \left(\ddot{\boldsymbol{\eta}}_{d} - \dot{\mathbf{J}} \left(\boldsymbol{\eta}_{d} \right) \mathbf{J}^{-1} \left(\boldsymbol{\eta}_{d} \right) \dot{\boldsymbol{\eta}}_{d} \right) + \mathbf{J}^{-1} \left(\boldsymbol{\eta} \right) \left(\mathbf{K}_{P} \tilde{\boldsymbol{\eta}} + \mathbf{K}_{D} \dot{\tilde{\boldsymbol{\eta}}} \right) \right] + \mathbf{n} \left(\boldsymbol{\zeta}_{d} \right), \mathbf{K}_{P} < 0, \mathbf{K}_{D} < 0$$

Correct answer is

$$\boldsymbol{\tau} = \mathbf{D}\left[\mathbf{J}^{-1}\left(\boldsymbol{\eta_d}\right)\left(\ddot{\boldsymbol{\eta}}_d - \dot{\mathbf{J}}\left(\boldsymbol{\eta}_d\right)\mathbf{J}^{-1}\left(\boldsymbol{\eta}_d\right)\dot{\boldsymbol{\eta}}_d\right) + \mathbf{J}^{-1}\left(\boldsymbol{\eta}\right)\left(\mathbf{K}_P\tilde{\boldsymbol{\eta}} + \mathbf{K}_D\dot{\tilde{\boldsymbol{\eta}}}\right)\right] + \mathbf{n}\left(\boldsymbol{\zeta}_d\right), \mathbf{K}_P > 0, \mathbf{K}_D > 0$$

10. Motion control is a sub-field of ,_____ encompassing the systems or sub-systems involved in moving parts of machines in a controlled manner.

machines

11. What is the primary or important control objective? \bigcirc tracking performance. \bigcirc resource optimization. ○ time optimization O stability. \bigcirc error minimization. O regulation. Correct answer is **stability**. __ is the change of state at any instant in time of a body (or bodies). ______ is the state of a body or bodies over a period of time. ______ is the position of a body or bodies over a period of time without worrying about velocity or higher order terms. \bigcirc Motion, Trajectory, Path. O Path, Motion, Trajectory. O Motion, Path, Trajectory. O Path, Trajectory, Motion. O Trajectory, Motion, Path. O Trajectory, Path, Motion.

Correct answer is automation

Correct answer is Motion, Trajectory, Path.