## **Context-Free Grammars**

# Using grammars in parsers

Jaruloj Chongstitvatana

Department of Mathametics and Computer Science
Chulalongkorn University

## **Outline**

- Parsing Process
- Grammars
  - Context-free grammar
  - Backus-Naur Form (BNF)
- Parse Tree and Abstract Syntax Tree
- Ambiguous Grammar
- Extended Backus-Naur Form (EBNF)

# **Parsing Process**

- Call the scanner to get tokens
- Build a parse tree from the stream of tokens
  - A parse tree shows the syntactic structure of the source program.
- Add information about identifiers in the symbol table
- Report error, when found, and recover from thee error

## Grammar

- a quintuple (V, T, P, S) where
  - V is a finite set of nonterminals, containing S,
  - T is a finite set of terminals,
  - P is a set of production rules in the form of  $\alpha \rightarrow \beta$  where  $\alpha$  and  $\beta$  are strings over VUT, and
  - S is the start symbol.
- Example

G= ({S, A, B, C}, {a, b, c}, P, S)  
P= { S
$$\rightarrow$$
SABC, BA  $\rightarrow$  AB, CB  $\rightarrow$  BC, CA  $\rightarrow$  AC,  
SA  $\rightarrow$  a, aA  $\rightarrow$  aa, aB  $\rightarrow$  ab, bB  $\rightarrow$  bb,  
bC  $\rightarrow$  bc, cC  $\rightarrow$  cc}

## **Context-Free Grammar**

- a quintuple (V, T, P, S) where
  - V is a finite set of nonterminals, containing S,
  - T is a finite set of terminals,
  - P is a set of production rules in the form of  $\alpha \rightarrow \beta$  where  $\alpha$  is in V and  $\beta$  is in  $(V \cup T)^*$ , and
  - S is the start symbol.

Any string in (V U T)\* is called a sentential form.

# Examples

$$E \rightarrow E O E$$

$$E \rightarrow (E)$$

$$E \rightarrow id$$

$$0 \rightarrow +$$

$$0 \rightarrow -$$

$$0 \rightarrow *$$

$$0 \rightarrow /$$

$$S \rightarrow SS$$

$$S \rightarrow (S)S$$

$$S \rightarrow \lambda$$

# Backus-Naur Form (BNF)

- Nonterminals are in < >.
- Terminals are any other symbols.
- $\blacksquare$  ::= means  $\rightarrow$ .
- means or.
- Examples:

$$\langle S \rangle ::= \langle S \rangle \langle S \rangle | (\langle S \rangle) \langle S \rangle | () | \lambda$$

## Derivation

A sequence of replacement of a substring in a sentential form.

### **Definition**

Let G=(V, T, P, S) be a CFG,  $\alpha$ ,  $\beta$ ,  $\gamma$  be strings in  $(V \cup T)^*$  and A is in V.

$$\alpha A\beta \Rightarrow_{\mathbf{G}} \alpha \gamma \beta$$
 if  $A \rightarrow \gamma$  is in  $P$ .

 $\Rightarrow^*_{\mathbf{G}}$  denotes a derivation in zero step or more.

# **Examples**

$$S \rightarrow SS \mid (S)S \mid () \mid \lambda$$

$$\Rightarrow$$
 (S)S

$$\Rightarrow$$
 (S)S(())S

$$\Rightarrow$$
 ((S)S)S(())S

$$\Rightarrow$$
 (( ${\color{red} {
m S}}$ )())S(())S

$$\Rightarrow$$
 ((())()) $S$ (())S

$$\Rightarrow$$
 ((())()) (())S

$$\Rightarrow$$
 ((())())(())

$$E \rightarrow E O E \mid (E) \mid id$$

$$0 \to + | - | * | /$$

$$\Rightarrow$$
 E O E

$$\Rightarrow$$
 (E) O E

$$\Rightarrow$$
 (E O E) O E

$$\Rightarrow^*$$
 ((E O E)) O E) O E

$$\Rightarrow$$
 ((id  $\bigcirc$  E)) O E) O E

$$\Rightarrow$$
 ((id + E)) O E) O E

$$\Rightarrow$$
 ((id + id)) O E) O E

$$\Rightarrow$$
 \* ((id + id)) \* id) + id

## Leftmost Derivation Rightmost Derivation

- Each step of the derivation is a replacement of the leftmost nonterminals in a sentential form.
- Each step of the derivation is a replacement of the rightmost nonterminals in a sentential form.

```
E

⇒ E O E

⇒ (E) O E

⇒ (E O E) O E

⇒ (id O E) O E

⇒ (id + E) O E

⇒ (id + id) O E

⇒ (id + id) * E

⇒ (id + id) * id
```

```
E

⇒ E O E

⇒ E O id

⇒ E * id

⇒ (E) * id

⇒ (E O E) * id

⇒ (E O id) * id

⇒ (E + id) * id

⇒ (id + id) * id
```

# Language Derived from Grammar

- Let G = (V, T, P, S) be a CFG.
- A string w in  $T^*$  is derived from G if  $S^* \Rightarrow_{\mathbf{G}} \mathbf{w}$ .
- A language generated by G, denoted by L(G), is a set of strings derived from G.
  - $L(G) = \{ w | S^* \Rightarrow_{\mathbf{G}} w \}.$

# Right/Left Recursive

- A grammar is a *left* recursive if its production rules can generate a derivation of the form A ⇒\* A X.
- Examples:
  - $\blacksquare$  E  $\rightarrow$  E O id | (E) | id
  - $\blacksquare$  E  $\rightarrow$  F + id | (E) | id

$$F \rightarrow E * id \mid id$$

$$E ⇒ F + id$$

$$⇒ E * id + id$$

- A grammar is a right recursive if its production rules can generate a derivation of the form A ⇒\* X A.
- Examples:
  - $\blacksquare$  E  $\rightarrow$  id O E | (E) | id
  - $\blacksquare$  E  $\rightarrow$  id + F | (E) | id

$$F \rightarrow id * E \mid id$$

## Parse Tree

- A labeled tree in which
  - the interior nodes are labeled by nonterminals
  - leaf nodes are labeled by terminals
  - the children of an interior node represent a replacement of the associated nonterminal in a derivation
  - corresponding to a derivation



### Parse Trees and Derivations



Preorder numbering



Reverse of postorder numbering

$$\mathsf{E} \Rightarrow \mathsf{E} + \mathsf{E} \tag{1}$$

$$\Rightarrow$$
 id + E (2)

$$\Rightarrow$$
 id + E \* E (3)

$$\Rightarrow$$
 id + id \* E (4)

$$\Rightarrow$$
 id + id \* id (5)

$$\mathsf{E} \Rightarrow \mathsf{E} + \mathsf{E} \tag{1}$$

$$\Rightarrow$$
 E + E \* E (2)

$$\Rightarrow$$
 E + E \* id (3)

$$\Rightarrow$$
 E + id \* id (4)

$$\Rightarrow$$
 id + id \* id (5)

# Grammar: Example

## List of parameters in:

- Function definition
  - function sub(a,b,c)
- Function call
  - sub(a,1,2)

```
<argList>
⇒ id, <arglist>
→ id id <arglist>
<argList>
⇒ <arglist>, id
⇒ <arglist>, id, id
⇒ ... ⇒ id (, id)*
```

```
<Fdef> → function id ( <argList> )
\langle argList \rangle \rightarrow id, \langle arglist \rangle \mid id
<Fcall> \rightarrow id (<parList> )
<parList> \rightarrow <par> ,<parlist> | <par> 
<par> \rightarrow id \mid const
<Fdef> \rightarrow function id (<argList>)
<argList> \rightarrow <arglist> , id | id
<Fcall> \rightarrow id (<parList> )
<parList> \rightarrow <parlist> ,<par> | <par> |
```

<par $> \rightarrow id \mid const$ 

# Grammar: Example

## List of parameters

If zero parameter is allowed, then ?

#### Work?

NO!
Generate
id, id, id,

```
<Fdef> → function id ( <argList> )|
    function id ()
<argList> → id , <arglist> | id
<Fcall> → id ( <parList> ) | id ()
<parList> → <par> ,<parlist>| <par> <par> → id | const
```

```
<Fdef> \rightarrow function id ( <argList> ) 
 <argList> \rightarrow id , <arglist> | id | \lambda 
 <Fcall> \rightarrow id ( <parList> ) 
 <parList> \rightarrow <par> ,<parlist>| <par> <par> \rightarrow id | const
```

# Grammar: Example

#### List of statements:

- No statement
- One statement:
  - S;
- More than one statement:
  - S; S; S;
- A statement can be a block of statements.
  - {s; s; s;}

Is the following correct?

```
{ {s; {s; s;} s; {}} s; }
```

```
<St> ::= \lambda | s; | s; <St> | { <St> } <St>
<St>
\Rightarrow { <St> } <St>
\Rightarrow { \leq St> }
\Rightarrow { { \leq St> } \leq St>}
\Rightarrow { { \leq St> } s; \leq St>}
\Rightarrow { { <St> } s; }
\Rightarrow { { s; <St> } s;}
\Rightarrow { { s; { <St> } <St> } s;}
\Rightarrow { { s; { <St> } s; <St> } s;}
\Rightarrow { { s; { <St> } s; { <St> } s;}
\Rightarrow { { s; { <St> } s; { <St> } } s;}
\Rightarrow { { s; { <St> } s; {} } s;}
\Rightarrow { { s; { s; <St> } s; {} } s;}
\Rightarrow \{ \{ s; \{ s; s; \} s; \{ \} \} s; \}
```

# Abstract Syntax Tree

- Representation of actual source tokens
- Interior nodes represent operators.
- Leaf nodes represent operands.

## Abstract Syntax Tree for Expression





## Abstract Syntax Tree for If Statement





# **Ambiguous Grammar**

- A grammar is ambiguous if it can generate two different parse trees for one string.
- Ambiguous grammars can cause inconsistency in parsing.

# Example: Ambiguous Grammar



$$E \rightarrow E - E$$

$$E \rightarrow E * E$$

$$E \rightarrow E / E$$

$$E \rightarrow id$$







# Ambiguity in Expressions

- Which operation is to be done first?
  - solved by precedence
    - An operator with higher precedence is done before one with lower precedence.
    - An operator with higher precedence is placed in a rule (logically) further from the start symbol.
  - solved by associativity
    - If an operator is right-associative (or left-associative), an operand in between 2 operators is associated to the operator to the right (left).
    - Right-associated : W + (X + (Y + Z))
    - Left-associated : ((W + X) + Y) + Z

## Precedence







# Precedence (cont'd)

$$E \rightarrow E + E \mid E - E \mid F$$
  
 $F \rightarrow F * F \mid F / F \mid X$   
 $X \rightarrow (E) \mid id$ 

$$(id1 + id2) * id3 * id4$$





# Associativity

Left-associative operators

$$E \rightarrow E + F \mid E - F \mid F$$
  
 $F \rightarrow F * X \mid F / X \mid X$   
 $X \rightarrow (E) \mid id$ 

$$(id1 + id2) * id3 / id4$$
  
=  $(((id1 + id2) * id3) / id4)$ 



# Ambiguity in Dangling Else

```
St \rightarrow IfSt \mid ...
IfSt \rightarrow if (E) St | if (E) St else St
                                                                 { if (0)
E \rightarrow 0 \mid 1 \mid \dots
                                                                     { if (1) St }
                                                                     else St }
                  { if (0)
                       { if (1) St else St } }
                                                                IfSt
             IfSt
                                                                       else St
                                                                IfSt
                            IfSt
                                                                               St
                                   else St
                               Chapter 3 Context-free Grammar
2301373
```

# Disambiguating Rules for Dangling Else

```
St \rightarrow
 MatchedSt | UnmatchedSt
UnmatchedSt →
 if (E) St
 if (E) MatchedSt else UnmatchedSt
MatchedSt →
                                     UnmatchedSt
  if (E) MatchedSt else MatchedSt
\mathsf{E} \to
                                           MatchedSt
if (0) if (1) St else St
= if (0)
                                   E ) MatchedSt else MatchedSt
    if (1) St else St
```

# Extended Backus-Naur Form (EBNF)

- Kleene's Star/ Kleene's Closure
  - Seq ::= St {; St}
  - Seq ::= {St ;} St
- Optional Part
  - IfSt ::= if ( E ) St [else St]
  - E ::= F [+ E] | F [- E]

# **Syntax Diagrams**

- Graphical representation of EBNF rules
  - nonterminals:
  - terminals: (id)
  - sequences and choices:
- Examples
  - X ::= (E) | id
  - Seq ::= {St ;} St
  - E ::= F[+ E]



# Reading Assignment

- Louden, Compiler construction
  - Chapter 3