Estimating a Model of Assortative Matching with Large Firms

With German and Spanish data

Part I: The Model & Estimation Strategy

Model

- The economy consists of workers with different skill x, and firms with different managerial skill y. Both are characterised by cumulative density functions $H_w(x)$, $H_f(y)$.
- They both match and produce output according to a production technology $F(x, y, l_x, r_x)$
- Which depends on their skills, the l_x number of workers of type x the firm type y employs, and the managerial resources r_x (time the manager can spend supervising her workers of skill x). $\int r_x dx = 1$ (resources of the firm are normalized to one)
- ► Total output of the firm is the sum of output across worker types:

$$\int F(x,y,l_x,r_x) \ dx$$

Model

► The optimization problem of the firm is therefore

$$\max_{l_x,r_x} \int [F(x,y,l_x,r_x) - w(x)] dx$$

- ▶ Dividing by r_x and denoting $\theta = l_x/r_x$, the problem becomes $\max_{x,\theta} f(x,y,\theta) \theta w(x)$
- ► Where $f(x, y, \theta) = F(x, y, l_x/r_x, 1)$ is the production function in intensive form.

This means that optimally firms only hire one type of worker, and they have to decide which type and how many to hire.

Assortative Matching

- ► An equilibrium is therefore a feasible allocation $R(x, y, \theta)$ and a strictly positive wage w(x) that solves the firms problem.
- \blacktriangleright We focus on assortative matching, that is, monotonic allocations that are monotonic in x, y. That is:
 - Positive Assortative Matching (PAM): High x matches with high y.
 - Negative Assortative Matching (NAM): High x matches with low y.
- ► Here is when the complementarities of the different inputs become important

Input Complementarities

Denote F_{ij} the cross partial derivate w.r.t inputs I and j:

- $ightharpoonup F_{xy}$ is type complementarity good firms do better with good workers.
- $ightharpoonup F_{lr}$ is *quantities complementarity* always positive with constant returns to scale.
- $ightharpoonup F_{yl}$ is span of control complementarity good firms do better with more workers.
- $ightharpoonup F_{xr}$ is managerial resource complementarity if positive (and large) more time spent with good workers is more productive than time spent with *bad* workers

Input Complementarities

Why are the cross-derivatives important?

► A necessary condition for PAM is:

$$F_{xy}F_{lr} \geq F_{yl}F_{xr}$$

- ► The opposite inequality is necessary and sufficient condition for NAM.
- The interpretation of the input complementarities relates to questions of skill-bias technological change vs quantity-bias technological change (or increases in $F_{\chi \chi}$ vs increases in $F_{\chi l}$).

Solving the Model

The solution to the model is given by solving a system of two differential equations:

► Under PAM:
$$\theta'(x) = \frac{H(x)F_{yl} - F_{xr}}{F_{lr}}; \mu'(x) = \frac{H(x)}{\theta(x)};$$

► Under NAM:
$$\theta'(x) = \frac{H(x)F_{yl} + F_{xr}}{F_{lr}}; \mu'(x) = -\frac{H(x)}{\theta(x)};$$

Where $\mu(x)$ is the map $y^*(x)$.

► This system can be solved using numerical methods.

Choice of Function

A very nice special case arises when the production function F is multiplicative separable. In particular, the function we use is:

$$F(x, y, l, r) = A(x, y) * B(l, r)$$

Where:

$$A(x,y) = \left(\omega_A * x \frac{(\sigma-1)}{\sigma} + (1 - \omega_A) * y \frac{(\sigma-1)}{\sigma}\right)^{\frac{\sigma}{(\sigma-1)}}$$
$$B(l,r) = l^{\omega_B} * r^{(1-\omega_B)}$$

▶ Our goal is to estimate ω_B , ω_B and σ using real world data.

Targets for estimation

- ➤ That means that we have 3 unknown parameters. What can we target to get them?
- ▶ The solver takes as inputs the distributions of $H_w(x)$ and $H_f(y)$.
- The solver delivers matched vectors of $(x, \mu(x), \theta(x, \mu(x), w(x)))$, which in turn can be used to calculate moments of the distributions of θ and w.

Estimation Strategy

- ► The idea is to estimate a distribution of worker skill and firm skill from the data, and get a distribution of firm size, wages and profits.
- The solver takes as inputs $\widehat{H}_w(x)$ and $\widehat{H}_f(y)$, calculates the moments and the distributions of $\widehat{\theta}$ and $\widehat{w}(x)$, and then calculates the distance between the actual firm size and wage distribution and the one implied by the model.
- ➤ An optimization routine does this over and over until it finds the parameter combo that produces the result that best fits the data.

Estimation Strategy

Some pending questions:

- Should it be best to target distribution moments of firm size and wages, or distance between distributions? → if using distance, we would need the distribution of profits as well: 3 parameters to estimate need 3 equations to solve.
- What is the best proxy for firm and worker skill? → This depends on the data...

Solving a Model of Assortative Matching with Large Firms

Cristina Lafuente
Julia Faltermeier
David Pugh

thon

- ➤ Some very useful libraries currently expanding, like <u>quantecon</u> see the GitHub page of the project for more info! – make the code intuitive and easy to program.
- ► Much of the credit of the following goes to <u>David Pugh</u>, who started this project and now keeps updating it with quantecon functions.

The Setup

- ► There are 3 basic classes of objects we use:
 - ► Input class: like workers or firms, it needs a distribution, boundaries, and name. It contains functions for symbolic and numeric pdf and cdf distributions.
 - Model class: Needs two inputs, a production function (symbolic), a set of parameters for the production function and a type of assortativity (it will be check while solving). It contains all cross-derivatives, expressions for the wages and profits, numeric and symbolic. It uses them and the cdfs from inputs to build the system of differential equations.
 - ➤ Solver class: Which branches out into Shooting or Collocation. It contains the code to carry out the integration of the system and store the results.

A Shooting Solver

- ► Intuitively, the way the solver works is the following:
- ▶ We know from the solution that if PAM holds, the highest type worker matches with the highest type firm. The only bit we need to guess is the size of this top firm: $\bar{x} \bar{y} \theta^{guess}$
- Once we have those three, we can integrate one step the system of differential equations:

$$\theta'(x) = \frac{H(x)F_{yl} - F_{xr}}{F_{lr}}; \mu'(x, \theta(x)) = \frac{H(x)}{\theta(x)}$$

- ▶ Which will give us the next combination of $x \mu(x, \theta(x)) \theta(x)$
 - We do not need to integrate for the wages, as when we have both other two variables (θ and y) it can be calculated as F_l .

A Shooting Solver

- ► We keep doing this until one of three things happen:
 - We run out of workers! feasibility condition failed → update guess and start again
 - We run out of firms! market clearing failed (-wage) → update guess and start again
 - Last firm matches with last worker. All firms and workers matched with positive wages → success!

A Shooting Solver

- ➤ A faster way of solving this problem is to approximate the two set of differential equations with polynomials orthogonal collocation.
- ➤ This method is faster because we can use simple, ready implemented functions to search for the best coefficients that satisfy the optimality, feasibility and market clearing conditions.
- The initial guess in this case would be the solution from the shooting solver of $\mu^*(x)$, $\theta^*(x)$
- ▶ Work in progress to be done this week ask David for details.

Generating distributions

- ▶ The shooting solver delivers matched vectors of $x \mu(x) \theta(x) w(x)$
- ▶ We don't know a priori the distribution of $\theta(x)$ or w(x), but from the distribution of x we can do a simple change of variables to get the distribution of θ and w.
- ▶ Unfortunately, this requires to invert these functions (so we can calculate $H_w(x(\theta))$ for example), something that is complicated if the function $x(\theta)$ is non-monotonic.
- ▶ A possible solution to this is just calculate the moments of the distribution of θ and w, which do not requite to evaluate the pdf.

Objective function

- ➤ In the end, the idea is to get an objective function that contains three (or more) equations that measure the distance between what the model gives and what we observe in the data.
- ► For example, we can have $[mean(\theta), std(\theta), mean(w), std(w)]$, or $[distance of \theta distributions, distance of w distributions, distance of <math>\pi$ distributions].
- ➤ Once we have that, apply a simple(x) minimization routine to iterate in search for the best parameters.
- ➤ When collocation is ready to use, we only need to use shooting the first time round, and use the previous parameters results as new initial guesses.

Contents

German data

Number of observations

Years of schooling

Profit

Firm size

Wage

Correlations

J. Faltermeier, C. Lafuente

Number of observations

Number of workers		Number of firms		
1996	2,472,655	8,292		
2005	2,397,092	14,870		
2010	1,629,542	14,359		

- parallel employments possible, same person can appear several times in the dataset
- nearly 7 times as many firms in the dataset, but IAB survey (needed for profit) only available for small subset

Worker type - Education

	Number of obs	Avg. daily wage	Years
Only general school leaving certificate	392,302	60.138	9
General school leaving certificate + Apprenticeship	1,404,520	90.867	12
Abitur w/o Apprenticeship. Abitur with Apprenticeship Uni. of applied science University degree Missing	71,124 130,793 117,834 220,259 231,878	45.739 104.170 130.408 128.936 42.104	13 15 16 18

- Need to assume years of schooling to make education variable numerical
- Ranking? Is an apprenticeship less than Abitur?
- We don't know if worker completed school
- No info about apprenticeship before/ after uni degree
- Alternatively: use difference between date of birth and year of first employment (but data is left-censored before 1975 west, 1990-1992 east)

Schooling - 2005

Schooling distribution

Firm type - Profit (previous year)

	Number of firms	Mean	s.d.	Min	Max
Revenue	13266	1.55e+08	4.06e+09	1000	3.40e+11
Profit per worker	9854	59153.99	158495	-88800	1.24e+07
Total profit	9854	1.22e+07	9.76e+07	-5720000	4.79e+09

Profit

9

- need to consider weights in estimation
- variables comes from IAB survey, does not differentiate part-time, full-time
- ▶ alternatively use number of employees in the sample, but not necessarily the same

10

- need to consider weights in estimation
- variables comes from IAB survey, does not differentiate part-time, full-time

12

Firm size

Firm size distribution - weighted

- need to consider weights in estimation
- variables comes from IAB survey, does not differentiate part-time, full-time
- ▶ alternatively use number of employees in the sample, but not necessarily the same

Descriptive statistics

	No. of observations	mean	sd	min	max
daily wage	2517835	85.62	47.01	0	170.96
Log tentgelt	2503258	4.18	0.94	-4.605	5.141

- wage=0 means intermittance of employment (illness, sabbaticals, maternity leave), legally counted as employed
- Wage and employment benefit saved in same variable
- Right-censored: censoring at the annual Social Security earnings maximum
- Before 1999 left-censored: only includes wages above marginal earnings threshold

14

Daily wage distribution if > 0

Average wage over firm and bin of 20 ordered by average wage

15

Alternative wage - for 2005

- lacktriangleright Know total wage bill for month of June ightarrow self-reported, but not censored
- doesn't account for hours (part-time employment, on-leave)

Difference in average wage by estimation method

Comparing alternatives

17

Firm size and wage - 2005

18

Firm size and wage - 2005

19

Firm size and education - 2005

Firm size and profit - 2005

21

Profit and wage - 2005

Profit and education - 2005

Wage and Education - 2005

Preliminary regression

-	Source Model Residual Total	SS 2305.31577 4718.73228 7024.04805	df 29 7683 7712	.614	MS 936471 178353 794612		Number of obs F(29, 7683) Prob > F R-squared Adj R-squared Root MSE	= = =	7713 129.43 0.0000 0.3282 0.3257 .7837
	log_profit	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
	m01ges05 avg_wage sd_wage avg_yos sd_yos 2.wo2005	0000221 .0165564 .0092325 0088463 .0220476 .1590555	9.42e .0004 .0009 .009 .0113	173 971 057 109	-2.34 39.67 9.26 -0.98 1.95 2.28	0.019 0.000 0.000 0.329 0.051 0.023	0000405 .0157383 .0072779 0266004 0001249 .0221767		.60e-06 0173744 0111871 0089079 0442201 2959343

25

Part III: Spain

Data Source

- Data comes from the Muestra Contínua de Vidas Laborales elaborated by the Spanish Social Security.
- ► It is an administrative dataset that comprises a panel of a representative sample of the Spanish workforce.
- ▶ It also includes matched records form Income Tax declarations of workers – so we can observe their wages and profits.
- ➤ Currently it covers the years 2005-2013.

Data Source

- ▶ This is not an employer-employee matched data set by construction.
- ➤ But the unique identifiers for firms and workers allow us to build it that way and add information about firm size, age, location, sector.
- ➤ This means that, unfortunately, we have to drop unmatched workers and firms.
- Good news is that the data set is already very big, so even when dropping unmatched data, it is still a big sample.

Descriptive statistics – by worker

	Mean	Standard Deviation	Min	Max	Median	90th percentile	Obs
Education	2.166434	1.017146	0	6	2	3	552,364
Av wage	15,519.59	16,691.64	.01	1,733,613	12,988.59	30,602.05	374,717
Av wage (daily)	58.06863	249.641	0.00003	68,373.84	43.39396	91.57422	319,919
Av profit	7,187.25	27,099.97	.01	3,005,061	1,829.724	17,724.17	27,225

Descriptive statistics – by firm

	Mean	Standard Deviation	Min	Max	Median	90th percentile	Obs
Number of workers	19.10815	255.9593	0	96,402	5	37	376,891
Firm age	9.262611	9.61008	0	105.737	6.00274	21.51233	353,072
Av profit	3,601.598	16,809.16	.01	3,005,061	761.25	8,235.29	64,817
Av wage	8,865.947	10,613.06	.01	733,636.4	6,552.8	18,487.82	255,872
Av wage (daily)	41.5741	92.41269	.0001111	26,461.27	35.97185	63.53	250,344
Av worker education	1.987123	.87669	0	6	2	3	342,023
Number of	firms with so	ome income i	nformation	403,372			

Choice of variables

Model variable	Data variable	Alternatives
Worker Skill	Education level (0 to 6) (illiterate to PhD)	Log Wages + experience Wage regression residual
Manager Skill	Log Average Reported Profits (assumes same distribution as profits)	Profit regression residual Profit per worker
Firm Size	Firm size (in workers)	
Wages (return to worker skill)	Average Daily Wages	
Profits (return to manager skill)	Average Reported Profits	Average Reported Profits per worker

Average Daily Wage distribution by firm

Firm Size Distribution

Firm Size Distribution (all)

Profit distribution

Matched data

➤ For the estimation, we can only take in observations that have everything:

Firm size – av. Wage – av.profit – av education

► This leaves us with around 20,000 observations:

. reg profit av firm nwrks educ av firm wage av firm if firmID[n]!=firmID[n+1 Source SS df Number of obs = 21925 F(3, 21921) =40.79 3.6716e+10 3 1.2239e+10 Prob > F Model = 0.00006.5770e+12 21921 R-squared Residual 300034139 = 0.0056Adj R-squared = 0.0054 6.6138e+12 21924 301667757 Root MSE = 17321 Total

profit_av_~m	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nwrks	.7055322	.3788993	1.86	0.063	0371378	1.448202
educ_av_firm	355.0792	136.6959	2.60	0.009	87.14528	623.013
wage_av_firm	.0856381	.0093068	9.20	0.000	.0673961	.1038801
_cons	2976.042	329.3207	9.04	0.000	2330.549	3621.534

Fitted distributions: Average Wage by firm

Fitted distributions: Firm Size

Fitted distributions: Profits

Fitted distributions: Average Worker Education by firm

Fitted distributions: Average Worker Education by firm

Appendix: More Graphs

Number of observations per firm (>1)

Education Coding

0	Illiterate
1	Primary Education Completed
2	Secondary Education Completed
3	Pre-university Education (Bachillerato and equivalent) Completed
4	Short University Diploma (Diplomatura and Technical School equivalent)
5	Graduate (Licenciado)
6	Postgraduate