Exercice 1

Considérons la suite numérique (u_n) définie par :

$$\begin{cases} u_0 = 0 \\ u_{n+1} = \frac{1}{2 - u_n} & ; \ n \in \mathbb{N} \end{cases}$$

- 1) Calculer u_1 et u_2
- 2) Montrer par récurrence que $(\forall n \in \mathbb{N})$ $u_n < 1$
- 3) a- Montrer que $(\forall n \in \mathbb{N})$ $u_{n+1} u_n = \frac{(u_n 1)^2}{2 u_n}$
 - b- Déduire la monotonie de (u_n) , puis montrer qu'elle est convergente.
- 4) Posons $v_n = \frac{u_n 2}{u_n 1}$, pour tout $n \in \mathbb{N}$
 - a- Calculer v_0 , et montrer que (v_n) est une suite arithmétique de raison r = 1.
 - b- Montrer que $(\forall n \in \mathbb{N})$ $u_n = \frac{v_n 2}{v 1}$
 - c- Calculer v_n en fonction de n, et déduire que

$$\frac{\left(\forall n \in \mathbb{N}\right) u_n = \frac{n}{n+1} \text{ . Calculer } \lim_{x \to +\infty} u_n}{\text{Exercice 2}}$$

Soit (u_n) la suite définie par : $\begin{cases} u_0 = 1 \\ u_{n+1} = \frac{u_n - 4}{u_n - 3} ; n \in \mathbb{N} \end{cases}$

- 1- Calculer u_1 et u_2
- 2- a) Démontrer que $(\forall n \in \mathbb{N})$ $u_{n+1} 2 = \frac{u_n 2}{3 u}$
 - b) démontrer par récurrence que $(\forall n \in \mathbb{N}) u_n < 2$
 - c) démontrer que $(\forall n \in \mathbb{N})$ $u_{n+1} u_n = \frac{(u_n 2)^2}{3 u}$
 - d) déduire que la suite (u_n) est croissante et qu'elle est convergente.
- 3- posant $v_n = \frac{1}{2-u}$; $\forall n \in \mathbb{N}$
 - a) calculer $v_{n+1} v_n$ puis déduire que la suite (v_n) est arithmétique de raison r = 1
 - b) Calculer v_0 puis calculer v_n en fonction de n
 - c) Déduire que $u_n = 2 \frac{1}{v}$; $\forall n \in \mathbb{N}$ puis déduire

que
$$u_n = \frac{2n+1}{n+1}$$
; $\forall n \in \mathbb{N}$. Calculer $\lim_{n \to +\infty} u_n$

ക്കെ Prof. Mohamed SELLAH ക്കെ

Exercice 3

Soit (u_n) la suite définie par : $\begin{cases} u_0 = 8 \\ u_{n+1} = \frac{1}{4}u_n + 3 \end{cases}$

- 1. Calculer u_1 et u_2
- 2. démontrer par récurrence que $u_n > 4$; $\forall n \in \mathbb{N}$
- 3. a) démontrer que $u_{n+1} u_n = \frac{-3}{4}(u_n 4); \forall n \in \mathbb{N}$
- b) déduire que la suite (u_n) est décroissante et qu'elle est convergente
 - 4. Posant $v_n = u_n 4$; $\forall n \in \mathbb{N}$
- b) Démontrer que la suite (v_n) est géométrique de raison

$$q = \frac{1}{4}$$

c) Calculer v_n en fonction de n puis déduire que

$$u_n = 4\left(\frac{1}{4}\right)^n + 4$$
; $\forall n \in \mathbb{N}$. calcular $\lim_{n \to +\infty} u_n$
Exercise 4

soit $(u_n)_{IN}$ la suite définie par : $\begin{cases} u_0 = 0 \\ u_{n+1} = \frac{u_n - 1}{u_n + 3}; n \in N \end{cases}$

- 1 Calculer u_1 et u_2
- 2 a) Démontrer que $(\forall n \in \mathbb{N}) u_{n+1} + 1 = \frac{2(u_n + 1)}{3 + u}$
 - b) démontrer par récurrence que $(\forall n \in \mathbb{N}) u_n > -1$
 - c) vérifier que $(\forall n \in \mathbb{N}) u_{n+1} u_n = -\frac{(u_n + 1)^2}{3 + u}$
- b) déduire que la suite (u_n) est décroissante et qu'elle est convergente.
- 3 posant $v_n = \frac{u_n + 2}{u_n + 1}$; $\forall n \in \mathbb{N}$
- a) calculer v_0
- b) calculer $v_{n+1} = \frac{3u_n + 5}{2(u_n + 1)}$
- c) démontrer que la suite (v_n) est arithmétique de raison $\frac{1}{2}$
- d) calculer v_n en fonction de n
- 4 a) vérifier que $(\forall n \in \mathbb{N}) u_n = \frac{-v_n + 2}{v_n 1}$ puis

déduire que $(\forall n \in \mathbb{N}) u_n = \frac{-n}{n+2}$

b) Calculer $\lim_{n \to \infty} u_n$

Exercice 5

Considérons la suite numérique $\left(U_{\scriptscriptstyle n}\right)$ définie par : $u_{\scriptscriptstyle 0}=6$ et $u_{\scriptscriptstyle n+1}=\frac{1}{5}u_{\scriptscriptstyle n}+\frac{2}{5}$ pour tout $n\in\mathbb{N}$

- 1) Calculer u_1 et u_2
- 2) Montrer par récurrence que $(\forall n \in \mathbb{N})$ $u_n > \frac{1}{2}$
- 3) a- Montrer que $(\forall n \in \mathbb{N})$ $u_{n+1} u_n = -\frac{4}{5} \left(u_n \frac{1}{2} \right)$

b- Déduire la monotonie de (u_n) , puis montrer qu'elle est convergente.

- c-Montrer que $(\forall n \in \mathbb{N})$ $u_n \le 1$, et déduire que $(\forall n \in \mathbb{N})$ $\frac{1}{2} < u_n \le 1$
- 4) Posons $v_n = u_n \frac{1}{2}$, pour tout $n \in \mathbb{N}$
 - a- Calculer v_0 , et montrer que $\left(v_n\right)$ est une suite géométrique de raison $q=\frac{1}{5}$.
 - b- Calculer v_n en fonction de n, et déduire que $\left(\forall n\in\mathbb{N}\right)u_n=\frac{1}{2}\bigg[11\bigg(\frac{1}{5}\bigg)^n+1\bigg]$
 - c- Calculer $\lim_{x\to +\infty} u_n$
 - 5) Posons $S_{n} = u_{0} + u_{1} + u_{2} + \dots + u_{n-1} \text{ montrer que}$ $S_{n} = \frac{55}{8} \left[1 \left(\frac{1}{5} \right)^{n} \right] + \frac{n}{2}$

Exercice 6

Considérons la suite numérique (u_n) définie par :

$$\begin{cases} u_0 = 1 \\ u_{n+1} = \frac{1}{2}u_n + \frac{1}{4} & ; \ n \in \mathbb{N} \end{cases}$$

- 1) Calculer u_1 et u_2
- 2) Montrer par récurrence que $(\forall n \in \mathbb{N})$ $u_n > \frac{1}{2}$
- 3) a- Montrer que $\left(\forall n\in\mathbb{N}\right)$ $u_{n+1}-u_n=-\frac{1}{2}\left(u_n-\frac{1}{2}\right)$
 - b- Déduire la monotonie de (u_n) , puis montrer qu'elle est convergente.
 - c- Montrer que $(\forall n \in \mathbb{N})$ $u_n \le 1$, et déduire que $(\forall n \in \mathbb{N})$ $\frac{1}{2} < u_n \le 1$
- 4) Posons $v_n = u_n \frac{1}{2}$, pour tout $n \in \mathbb{N}$

- a- Calculer v_0 , et montrer que (v_n) est une suite géométrique de raison $q=\frac{1}{2}$.
- b- Calculer v_n en fonction de n, et déduire que $\left(\forall n\in\mathbb{N}\right)u_n=\frac{1}{2}\bigg[1+\bigg(\frac{1}{2}\bigg)^n\bigg]$
- c- Calculer $\lim_{n\to+\infty} u_n$

Exercice 7

Soit (u_n) la suite définie par : $\begin{cases} u_0 = 2 \\ u_{n+1} = \frac{5}{6}u_n + \frac{1}{6} \end{cases}$

- 1. démontrer par récurrence que $(\forall n \in N) u_n > 1$
- 2. démontrer que la suite (u_n) est décroissante puis déduire que' elle est convergente.
- 1. posant : $v_n = u_n 1$
 - a) démontrer que la suite (v_n) est géométrique à déterminer sa raison
 - b) Calculer v_n en fonction de n
 - c) Calculer u_n en fonction de n
 - d) Calculer $\lim_{n\to +\infty} u_n$

Exercice 8

Considérons la suite suivante : $\begin{cases} u_0 = 2 \\ u_{n+1} = 2 - \frac{1}{u_n} \end{cases}$

- 1- Calculer u_1 et u_2
- 2- Montrer que $(\forall n \in \mathbb{N})$: $u_n > 1$
- 3- a- Montrer que $(\forall n \in \mathbb{N}): u_{n+1} u_n = \frac{-(u_n 1)^2}{u_n}$
 - b- Étudier la monotonie de (u_n) et déduire que $(\forall n \in \mathbb{N})$: $u_n \leq 2$
 - c-Déduire que $(\forall n \in \mathbb{N})$: $1 < u_n \le 2$
- 4- Considérons la suite (v_n) tel que $v_n = \frac{u_n 2}{u_n 1}; n \in \mathbb{N}$
 - a- Calculer v_0 et v_1
 - b- Montrer que (v_n) est arithmétique de raison r = -1 et déterminer v_n en fonction de n.
 - c- Montrer que $(\forall n \in \mathbb{N})$: $u_n = \frac{v_n 2}{v_n 1}$ et déduire u_n en fonction de n. Calculer $\lim_{x \to +\infty} u_n$
 - d- Calculer $S_{\scriptscriptstyle n} = v_{\scriptscriptstyle 0} + v_{\scriptscriptstyle 1} + \ldots + v_{\scriptscriptstyle n}$