

دانشکدهی مهندسی برق

حسگری فشرده

مدرس: دکتر امینی تمرین سری سوم

سوال اول

فرض کنید $\vec{v} \in \mathbb{R}^m$ باشد که در آن $\vec{x} \in \mathbb{R}^n$ سیگنال $\vec{v} \in \mathbb{R}^{m imes n}$ ماتریس اندازه گیری و $\vec{v} \in \mathbb{R}^m$ نمایش گر فرض کنید $\vec{v} = \Phi \vec{x} + \vec{v}$ باشد که در آن $\vec{v} \in \mathbb{R}^n$ سیگنال $\vec{v} \in \mathbb{R}^m$ بوده و ماتریس $\vec{v} \in \mathbb{R}^m$ شرط $\vec{v} \in \mathbb{R}^n$ را نویز است. همچنین فرض کنید $\Omega = \{1,2,\ldots,n\}$ و $\Omega = \{1,2,\ldots,n\}$ بوده و ماتریس فرض کنید.

الف) اگر $ec{\phi}_i$ نمایش گر ستونی با اندیس i از ماتریس $ec{\phi}_i$ باشد، ثابت کنید

$$\max_{i \in \Omega} \left| \langle \vec{\phi}_i, \vec{y} \rangle \right| \ge \frac{1}{\sqrt{k}} \left((1 - \delta_{k+1}) \|\vec{x}\|_2 - \sqrt{1 + \delta_{k+1}} \|\vec{v}\|_2 \right)$$

ب) اگر اندیس t^1 عضو Γ نباشد، آنگاه ثابت کنید

$$|\langle \vec{\phi}_{t^1}, \vec{y} \rangle| \le \delta_{k+1} ||\vec{x}||_2 + \sqrt{1 + \delta_{k+1}} ||\vec{v}||_2$$

ج) فرض کنید $SNR = \frac{\|\Phi \vec{x}\|_2^2}{\|\vec{v}\|_2^2}$. ثابت کنید در صورت برقراری رابطهی

$$\sqrt{\text{SNR}} > \frac{(\sqrt{k}+1)(1+\delta_{k+1})}{1-(\sqrt{k}+1)\delta_{k+1}}$$

در اولین گام Γ از بازسازی به روش OMP ، اندیس به دست آمده حتما عضو Γ خواهد بود.

سوال دوم

برای مساله بهینه سازی زیر حکمهای زیر را ثابت کنید:

$$z_{opt} = \underset{z_{n \times 1}}{\arg\min} \|y_{m \times 1} - A_{m \times n} z_{n \times 1}\|_{2}^{2} + \lambda \|z_{n \times 1}\|_{1}$$

الف) نشان دهید کوچک ترین λ که درایههای z_{opt} همگی صفر شوند، برابر است با

$$\lambda_{max} = \max_{j} \left| \langle z_j, y \rangle \right|$$

 $A\hat{z}_1=A\hat{z}_2$ مساله بهینه سازی بالا منجر به دو جواب \hat{z}_1,\hat{z}_2 شود. نشان دهید باید $\lambda\geq 0$ مساله بهینه سازی بالا منجر به دو جواب

 $\|\hat{z}_1\|_1 = \|\hat{z}_2\|_1$ با توجه به مفروضات قسمت ب، اگر $\lambda > 0$ نشان دهید به مفروضات عسمت ب

سوال سوم

برای یک ماتریس $A\in\mathbb{C}^{m imes n}$ با ستونهای نرمال توسط متر a_1,\cdots,a_n و برای $s\in[n-1]$ تعریف کنید:

$$\mu_1(s) := \max_{i \in [n]} \max \left\{ \sum_{j \in S} \left| \langle a_i, a_j \rangle \right|, S \subseteq [n], |S| = s, i \notin S \right\}$$

orthogonal matching توسط الگریتم y=Ax ، از بردار $x\in\mathbb{C}^n$ نگاه هر بردار $u_1(s)+\mu_1(s-1)<1$ توسط الگریتم الف) اگر $u_1(s)+\mu_1(s-1)<1$ بعد از حداکثر $u_1(s)$ مرحله، به صورت دقیق بازیابی می شود.

به صورت دقیق پ اگر $x\in\mathbb{C}^n$ توسط الگریتم basis pursuit به صورت دقیق باگریتم $x\in\mathbb{C}^n$ به صورت دقیق بازیابی می شود.

سوال چهارم

مساله بهینه سازی زیر را برای $\gamma > 1$ حل نمایید.

$$\min_{\beta \in \mathbb{R}} \left\{ \frac{1}{2} (\beta - \hat{\beta}) + \lambda \int_{0}^{|\beta|} \left(1 - \frac{x}{\lambda \gamma} \right)_{+} dx \right\}$$

که $(t)_{+} := \max\{t,0\}$ است.

سوال پنجم

اگر ابعاد ماتریس حسگری (m,n) باشد و همبستگی ستون های آن به ترتیب بزرگی عبارت باشند از:

$$\mu_1 \geq \mu_2 \geq \mu_3 \geq \cdots \geq \mu_{n(n-1)/2}$$

، با این ماتریس، بردارهای حداکثر چند-تنک را میتوان بازسازی نمود؟

سوال ششم

فرض کنید ماتریس $\Phi_{m imes N}$ دارای RIP از مرتبه 2K و ثابت δ_{2K} است. فرض کنید Λ_0 یک زیرمجموعه دلخواه از $\Phi_{m imes N}$ است که $K \in \mathbb{R}^N$ در نظر می گیریم. که $K \in \mathbb{R}^N$ و Λ_0 یک بردار دلخواه است. Λ_1 را به عنوان مجموعه اندیسهای مربوط به K بزرگترین درایهی Λ_0 در نظر می گیریم. فرض کنید $\Lambda = \Lambda_0 \cup \Lambda_1$ آنگاه ثابت کنید

$$\|h_{\Lambda}\|_2 \leq lpha rac{\|h_{\Lambda_0^c}\|_2}{\sqrt{K}} + eta rac{\left|\langle \Phi h_{\Lambda}, \Phi h
angle
ight|}{\|h_{\Lambda}\|_2}$$

که $eta=rac{1}{1-\delta_{2K}}$ و $lpha=rac{\sqrt{2}\delta_{2K}}{1-\delta_{2K}}$ هستند.

سوال هفتم

. فرض کنید $arepsilon_{m imes 1}+arepsilon_{m imes 1}$ یک بردار نویز است. فرض کنید $y_{m imes 1}=A_{m imes n}x_{n imes 1}^*+arepsilon_{m imes 1}$ یک بردار نویز است.

الف) اگر $N(0,\sigma^2)$ ها دارای توزیع گوسی و i.i.d باشند. نشان دهید تخمینگر ML بردار x^* برابر با جواب مساله کمینه سازی زیر است.

$$x_{ml} = \min_{x} \|y - Ax\|_2^2$$

ب اگر ϵ_i ها دارای توزیع لاپلاس به عبارت دیگر $p_{\epsilon_i}(z)=rac{1}{2a}e^{-rac{|z|}{a}}$ برابر با جواب x^* برابر با جواب مساله کمینه سازی زیر است.

$$x_{ml} = \min_{x} \|y - Ax\|_1$$

 $\|y - Ax\|_{\infty} \leq a$ ج) اگر x^* ها دارای توزیع یکنواخت روی [-a,a] و [-a,a] باشند. نشان دهید تخمینگر ML بردار x^* برابر با هر x که در x^* مدت کند.

د) با توجه به قسمت ج اگر مقدار a را ندانیم آنگاه نمی توانیم تخمینگر M بردار x^* را بیابیم. نشان دهید تخمین گرهای M هر دوی x^* و a با حل کردن مساله بهینه سازی زیر پیدا می شود.

$$\min_{x} \|y - Ax\|_{\infty}$$