UNIVERSITE MOULAY ISMAIL

ECOLE NATIONALE SUPERIEURE D'ARTS ET METIERS-MEKNES

Concours d'entrée en Première année de l'ENSAM de Meknès Filières : Sciences Expérimentales, et Techniques

Meknès, le 09 Aout 2011

Epreuve de Physique Durée : 2h 30

L'épreuve contient 6 pages

- Répondre dans la feuille : « Fiche de réponses »

Toute application numérique manquant l'unité ne sera pas comptée

Les pages 5/6 et 6/6 sont des fiches des réponses à rendre.

Exercice 1.

On considère un corps solide, de masse m, qui glisse horizontalement sur le sol suivant l'axe (Ox) du repère galiléen R(Oxyz), Fig. 1. On lui donne une vitesse initiale v_v (sens positif de Ox), soit d la distance parcourue avant de s'arrêter à cause du frottement entre le corps mobile et la surface de glissement. On rappelle qu'en présence du frottement, la force \bar{R} du sol sur le solide est telle que $\bar{R} = N \, \bar{y} + T \, \bar{x}$ avec $|T| = \mu N$ (fig.2), μ est une constante positive, appelée coefficient de frottement; le sens de la composante T est de sens contraire du mouvement du corps par rapport au sol.

- 1. En utilisant la deuxième loi de Newton, exprimer l'accélération γ du corps en fonction de μ et g. En déduire la nature de son mouvement.
- 2. Exprimer le coefficient de frottement μ en fonction de $\nu_{\rm o}$, g et d. Calculer μ pour $\nu_{\rm o}=10\,m/s$, $g=10\,m/s^2$ et $d=50\,m$.
- 3. Déterminer l'équation horaire x(t); A l'instant initial (t=0), on prend l'abscisse de m: x=0.
- 4. Exprimer le temps t_1 mis pour parcourir la distance d, en fonction de v_0 et d. Calculer t_1 .
- 5. On réalise un autre essai dans les mêmes conditions, mais cette fois-ci, le plan est incliné d'un angle α par rapport à l'horizontale, le corps se déplace vers le haut suivant la droite de plus grande pente. En appliquant le théorème de l'énergie cinétique, exprimer le coefficient de frottement μ en fonction de v₆, g, d et α.

Exercice 2.

Soit le système composé de deux masses m_1 et m_2 et d'une poulie de rayon R et de moment d'inertie J_{Λ} par rapport à son axe (fixe). Le câble liant les deux masses et passant par la poulie est inextensible et ne glisse pas sur la poulie. A l'aide d'un moteur, la masse m_1 est tirée par une force de grandeur F dont

la droite d'action fait un angle α par rapport à l'horizontale (Fig.3). Le coefficient de frottement entre m_1 et la surface de glissement est μ . On note par γ l'accélération des deux masses.

- 6. En appliquant la relation fondamentale de la dynamique à la masse m_I , exprimer la force T_i , appliquée par le câble sur m_I , en fonction de F, α , μ , m_D , g et γ .
- 7. En appliquant la même loi à la masse m_Z , exprimer la force T_2 , appliquée par le câble sur m_Z , en fonction de m_Z , g et γ .
- 8. Exprimer l'accélération γ , en fonction de F, α , μ , m_1 , m_2 , g , J_x et R.
- 9. Le moteur qui tire la masse m_1 permet de régler la valeur de F, pour quelle valeur de F, l'accélération γ sera nulle.
- 10. Le moteur cesse d'appliquer la force F (c'est-à-dire : F=0), exprimer l'accélération γ des masses m_1 et m_2 , en fonction de m_1 , m_2 , g, J_{Λ} et R. On néglige les frottements dans cette question.

Exercice 3.

On considère le système composé d'une masse ponctuelle m et deux ressorts R_1 et R_2 de raideurs respectives k_1 et k_2 (Fig.4). Les frottements sont négligés. Le déplacement de la masse m est horizontal et sa position est repérée par l'abscisse x(t), comptée à partir de la position où les deux ressorts sont en état de repos (ni allongement ni raccourcissement). On écarte la masse de sa position d'équilibre (x=0) puis on la lâche.

- 11. Exprimer les énergies potentielles \tilde{E}_{p1} et E_{p2} des deux ressorts en fonction de k_1 , k_2 et x(t).
- 12. Exprimer l'énergie cinétique E_c de la masse m en fonction de m et la vitesse $\dot{x}(t)$.
- 13. Par application du théorème de conservation de l'énergie mécanique, établir l'équation différentielle du mouvement de la masse m. En déduire la période du mouvement du système en fonction de m, k, et k_2 .

Dans ce qui suit, on prend $k = k_1 = k_2$.

- 14. Par un chronomètre, on mesure la durée de 100 périodes et on trouve $\Delta i = 50 \, s$, exprimer puis calculer la raideur k sachant que la masse $m = 0.1 \, Kg$.
- 15. Donner l'équation horaire x(t) (avec application numérique) sachant qu'à l'instant t=0: $x(0)=4\ cm$ et $\dot{x}(0)=1\ m/s$.

Exercice 4.

Le montage ci-contre comporte un générateur idéal de force électromotrice constante E =24V, deux condensateurs de capacités respectives : C_1 = 10 μF et C_2 = 150 μF et une bobine d'inductance L.

L'interrupteur k est en position (1).

- 16. Donner l'expression de la capacité équivalente C des deux capacités C₁ et C₂.
- 17. Calculer sa valeur numérique.
- 18. Donner l'expression de la tension aux bornes de la capacité C₂ lorsque les deux condensateurs sont complètement chargés.
- 19. Calculer sa valeur numérique.
- 20. Donner l'expression de la charge électrique Q2 du condensateur C2.

Fig.4

L'interrupteur k est en position (2).

La figure (5) illustre la tension aux bornes de la bobine L.

Fig.5

- 21. Donner l'équation différentielle vérifiée par cette tension qu'on note u_L(t).
- 22.Donner l'expression de la tension u_L(t).
- 23. Donner l'expression de la période propre T₀ des oscillations en fonction de L et C₂.
- 24. Calculer sa valeur numérique.
- 25. Déduire la valeur de l'inductance L

Exercice 5.

Le montage ci-contre comporte un générateur idéal de force électromotrice constante E =15V, deux résistances R_1 et R_2 , un condensateur de capacité C = $42~\mu F$ et une bobine d'inductance L.

La figure (7) montre l'évolution de la tension $u_r(t)$ aux bornes du condensateur.

Fig. 7.

A l'instant to, l'interrupteur K est en position (1).

- 26. La constante du temps du circuit RC étant égale à 0.9 ms. Quelle est la valeur de la résistance R1?
- 27. Une fois le condensateur est complètement chargé, calculer l'énergie qui y est emmagasinée.

A l'instant t1, l'interrupteur K bascule à la position (2).

- 28. Déterminer la valeur de la pseudo-période d'oscillation.
- 29. Donner l'expression de la période d'oscillation propre d'un circuit LC.
- 30. Sachant que la pseudo-pulsation peut être approximée par la pulsation propre d'un circuit LC, déterminer la valeur de l'inductance L.

Exercice 6.

Répondre par vrai ou faux.

- Quand la fréquence du courant augmente, l'impédance d'un condensateur augmente.
- Quand la fréquence du courant augmente, l'impédance d'une bobine augmente.
- La valeur efficace d'une tension sinusoïdale de valeur maximale 5V est égale à 3.53V.
- La valeur maximale du déphasage entre deux tensions sinusoïdales est égale à π rad.
- La capacité équivalente de deux condensateurs en série est toujours de valeur plus faible que la plus faible des deux capacités.
- La résistance équivalente de deux résistances en parallèle est toujours de valeur plus faible que la plus faible des deux résistances.
- La capacité d'un condensateur augment d'autant plus que l'épaisseur de son diélectrique est faible.
- En régime continu, le courant traversant un condensateur est toujours nul.
- La période propre d'un circuit LC est inversement proportionnelle à la capacité.
- La puissance active consommée par un dipôle est toujours supérieure à la puissance apparente.

Cette feuille ne doit porter **aucun signe indicatif ni signature** Filières : Sc. Exp., et Tech

FICHE DES REPONSES : Exercices 1, 2 et 3				
1. Accélération de la mass	$em: y = -\frac{\mu N}{m}$	Nature mouvement: rectilique uniformément retardée		
2. Coefficient de frottemer	$nt: \mu = \frac{1}{2} \frac{\sqrt{3^2}}{3}$	A.N. $\mu = 0, 1$		
3. Equation horaire : $x(t)$	=- 1 7t2 + Vot			
4. Temps mis: $l_i = -\frac{1}{2}$		A.N. $t_1 = 10$ S		
5. Coefficient de frottemer	$ht: \mu = \frac{\frac{1}{2}V_0^2 - gd}{gd\cos\theta}$	Sind_		
6. Force du câble sur m_1 :	Ti = Fcosa + lin	ng+m8		
7. Force du câble sur m_2 :	$T_2 = m_2 g + m \chi$			
3. Accélération de la masso	$em: y = \frac{FR\cos\alpha}{m_gR}$	+ 1 m 1 g R - m2 g R m1 R + (J&R)		
). Force F pour laquelle γ	$=0: F = \frac{M_2 g R - \Lambda}{R \cos R}$	(i ms g k		
0. Accélération des masse	25: γ = <u>limigR</u> mo R - m	- M, GR 1R+(JNR)		
1. Energies octentielles :	$E_{\rho l} = \frac{1}{2} \left(\mathbf{k}_{4} - \mathbf{k}_{2} \right)$	$\mathcal{H}^{2} \qquad E_{p_{2}} = \frac{1}{2} \left(K_{2} - K_{1} \right) \chi^{2}$		
2. Energie cinétique : E_e =	1 m x2			
3. Equation différentielle	$: X + \frac{k_{1+} k_{2}}{m} X = 0$	Période: $T = 2\pi \sqrt{\frac{m}{k_1 + k_2}}$		
4. Raideur des ressorts : /	1= K1+ K2	A.N. k = 6,8 x 102 N/m		
5. Equation horaire : $x(t)$	= 4 cos (12,56t)		

Cette feuille ne doit porter **aucun signe indicatif ni signature** Filières : Sc. Exp., et Tech

profession (S)	Partie 1	olème et Exercice 4 Réponse		Note		
16.	La valeur limite de la tension $u_c(t)$: $u_c(t \to +\infty) =$					
17.	L'amplitude de la tension E:	E=				
18. L'équation différentielle qui lie la tension u _c (t) à la tension E:				1		
19. L'expression de la constante du temps du dipôle : τ =		τ=				
20.	La valeur numérique de la constante de temps :	τ=	3 - 3 - 5 (S) (S) -			
21.	. La valeur de la capacité C :		de calle la			
22.	L'énergie emmagasinée dans la capacité une fois complètement chargée :	E _c =				
23.	L'équation différentielle vérifiée par la tension ue(t) :					
24.	L'expression exacte de la tension :	$u_c(t) =$		134		
25.	La valeur de la constante de temps ?	τ=	e al Talantinia.			
26.	La valeur de la résistance R2 :	R ₂ =				
Partie 2 Réponse			Note			
27.	La valeur efficace de la tension E :	E _{eff} =				
28. La valeur de la fréquence f :		f=				
29.	29. Le déphasage entre les deux tensions : φ =					
30.	La valeur de la capacité C :	C =				
	Réponse (V/F)	Note (+1/-1)				
Quai augr	F					
Quar	V					
La v 3.53	V					
La valeur maximale du déphasage entre deux tensions sinusoïdales est égale à π rad.				# 7		
La capacité équivalente de deux condensateurs en série est toujours de valeur plus faible que la plus faible des deux capacités.						
La re plus	V					
	La capacité d'un condensateur augment d'autant plus que l'épaisseur de son diélectrique est faible.					
La c	culture est laible.	En régime continu, le courant traversant un condensateur est toujours nul.				
La c diéle		est toujours nul.	F			
La c diéle En re La pe		tionnelle à la capacité.	F			