#### Circuitos Elétricos III

Prof. Danilo Melges

Depto. de Eng. Elétrica

Universidade Federal de Minas Gerais

# Séries de Fourier

## Série de Fourier

 Qualquer função periódica f(t) pode ser representada por uma soma infinita de senos e cossenos:

$$f(t) = a_v + \sum_{n=1}^{\infty} a_n \cos n\omega_0 t + b_n \sin n\omega_0 t,$$

- a<sub>v</sub>, a<sub>n</sub>, b<sub>n</sub> são os coeficientes de Fourier
- ω<sub>o</sub>=2\*pi/T é a freqüência fundamental da função.
- 2ω<sub>o</sub> é o segundo harmônico, 3ω<sub>o</sub> é o terceiro, etc...
- O período de qualquer termo da série é um múltiplo inteiro de T.

## Condições de Dirichlet

Condições que f(t) deve satisfazer para que possa ser expressa por meio da série de Fourier:

- f(t) deve ser unívoca (p/ cada elemento do domínio corresponde um único elemento do contra-domínio);
- Deve ter número de descontinuidades finito no intervalo T;
- Deve ter número de máximos e mínimos finito no intervalo T;
- A integral  $\int_{t_o}^{t_o+T} |f(t)| dt$  deve existing

## Condições de Dirichlet

 Funções periódicas geradas por fontes fisicamente realizáveis satisfazem estas condições.

 Estas condições são suficientes, mas não necessárias: mesmo que uma função não as satisfaça, ainda pode ser possível expressá-la por Série de Fourier.

 Aplicação a circuitos → calcula-se a resposta a cada sinal senoidal e soma-se as respostas (superposição).

Podemos calcular os coeficientes da Série de Fourier por:

$$a_{v} = \frac{1}{T} \int_{t_{0}}^{t_{0}+T} f(t) dt,$$

$$a_{k} = \frac{2}{T} \int_{t_{0}}^{t_{0}+T} f(t) \cos k\omega_{0}t dt,$$

$$b_{k} = \frac{2}{T} \int_{t_{0}}^{t_{0}+T} f(t) \sin k\omega_{0}t dt.$$

a<sub>v</sub> corresponde ao valor médio de f(t):

$$a_v = \frac{1}{T} \int_{t_0}^{t_0+T} f(t) dt,$$

$$\int_{t_0}^{t_0+T} f(t)dt = \int_{t_0}^{t_0+T} \left( a_v + \sum_{n=1}^{\infty} a_n \cos n\omega_0 t + b_n \sin n\omega_0 t \right) dt$$

$$= \int_{t_0}^{t_0+T} a_v dt + \sum_{n=1}^{\infty} \int_{t_0}^{t_0+T} (a_n \cos n\omega_0 t + b_n \sin n\omega_0 t) dt$$

$$= a_v T + 0.$$

• Demonstração: 
$$a_k = \frac{2}{T} \int_{t_0}^{t_0+T} f(t) \cos k\omega_0 t \, dt$$
,

$$\int_{t_0}^{t_0+T} f(t) \cos k\omega_0 t \, dt = \int_{t_0}^{t_0+T} a_v \cos k\omega_0 t \, dt$$

$$+ \sum_{n=1}^{\infty} \int_{t_0}^{t_0+T} (a_n \cos n\omega_0 t \cos k\omega_0 t + b_n \sin n\omega_0 t \cos k\omega_0 t) \, dt$$

$$\int_{t_0}^{t_0+T} \cos m\omega_0 t \, dt = 0, \text{ para todo } m,$$

• Demonstração: 
$$a_k = \frac{2}{T} \int_{t_0}^{t_0+T} f(t) \cos k\omega_0 t \ dt$$
,

$$\int_{t_0}^{t_0+T} f(t) \cos k\omega_0 t \, dt = \int_{t_0}^{t_0+T} a_v \cos k\omega_0 t \, dt$$

$$+ \sum_{n=1}^{\infty} \int_{t_0}^{t_0+T} (a_n \cos n\omega_0 t \cos k\omega_0 t + b_n \sin n\omega_0 t \cos k\omega_0 t) \, dt$$

$$\int_{t_0}^{t_0+T} \cos m\omega_0 t \cos n\omega_0 t \, dt = 0, \quad \text{para todo } m \neq n,$$
$$= \frac{T}{2}, \quad \text{para } m = n.$$

$$\int_{t_o}^{t_o+T} cosm \, \omega_o t \cos n \, \omega_o t \, dt = \int_{t_o}^{t_o+T} \frac{1}{2} [\cos(m+n) \omega_o t + \cos(m-n) \omega_o t] \, dt = 0$$

• Demonstração: 
$$a_k = \frac{2}{T} \int_{t_0}^{t_0+T} f(t) \cos k\omega_0 t \ dt$$
,

$$\int_{t_0}^{t_0+T} f(t) \cos k\omega_0 t \, dt = \int_{t_0}^{t_0+T} a_v \cos k\omega_0 t \, dt$$

$$+ \sum_{n=1}^{\infty} \int_{t_0}^{t_0+T} (a_n \cos n\omega_0 t \cos k\omega_0 t + b_n \sin n\omega_0 t \cos k\omega_0 t) \, dt$$

$$\int_{t_0}^{t_0+T} \cos m\omega_0 t \cos n\omega_0 t dt = 0, \quad \text{para todo } m \neq n,$$
$$= \frac{T}{2}, \quad \text{para } m = n.$$

$$\int_{t_o}^{t_o+T} \cos^2 m \, \omega_o t \, dt = \int_{t_o}^{t_o+T} \frac{(1+\cos 2m \, \omega_o t)}{2} \, dt = \frac{1}{2} (t_o+T-t_o)$$

• Demonstração:  $a_k = \frac{2}{T} \int_{t_0}^{t_0+T} f(t) \cos k\omega_0 t \, dt$ ,

$$\int_{t_0}^{t_0+T} f(t) \cos k\omega_0 t \, dt = \int_{t_0}^{t_0+T} a_v \cos k\omega_0 t \, dt$$

$$+ \sum_{n=1}^{\infty} \int_{t_0}^{t_0+T} (a_n \cos n\omega_0 t \cos k\omega_0 t + b_n \sin n\omega_0 t \cos k\omega_0 t) \, dt$$

$$\int_{t_0}^{t_0+T} \cos m\omega_0 t \sin n\omega_0 t \, dt = 0, \text{ para todo } m \in n,$$

$$\int_{t_o}^{t_o+T} cosm \, \omega_o t \, senn \, \omega_o t \, dt = \int_{t_o}^{t_o+T} \frac{1}{2} \left[ sen(m+n)\omega_o t - sen(m-n)\omega_o t \right] dt = 0$$

• Demonstração: 
$$a_k = \frac{2}{T} \int_{t_0}^{t_0+T} f(t) \cos k\omega_0 t \, dt$$
,

$$\int_{t_0}^{t_0+T} f(t) \cos k\omega_0 t \, dt = \int_{t_0}^{t_0+T} a_v \cos k\omega_0 t \, dt + \sum_{n=1}^{\infty} \int_{t_0}^{t_0+T} (a_n \cos n\omega_0 t \cos k\omega_0 t + b_n \sin n\omega_0 t \cos k\omega_0 t) \, dt$$

$$=0+a_k\!\!\left(\frac{T}{2}\right)+0.$$

• Demonstração:  $b_k = \frac{2}{T} \int_{t_0}^{t_0+T} f(t) \sin k\omega_0 t \ dt$ .

$$\int_{t_o}^{t_o+T} f(t) \operatorname{sen} k \, \omega_o t \, dt = \int_{t_o}^{t_o+T} a_v \operatorname{sen} k \, \omega_o t \, dt +$$

$$\sum_{n=1}^{\infty} \int_{t_o}^{t_o+T} \left( a_n \cos n \omega_o t \sin k \omega_o t + b_n \sin n \omega_o t \sin k \omega_o t \right) dt$$

$$\int_{t_0}^{t_0+T} \operatorname{sen} m\omega_0 t \, dt = 0, \text{ para todo } m,$$

• Demonstração:  $b_k = \frac{2}{T} \int_{t_0}^{t_0+T} f(t) \operatorname{sen} k\omega_0 t \, dt$ .

$$\int_{t_o}^{t_o+T} f(t) \operatorname{sen} k \, \omega_o t \, dt = \int_{t_o}^{t_o+T} a_v \operatorname{sen} k \, \omega_o t \, dt +$$

$$\sum_{n=1}^{\infty} \int_{t_o}^{t_o+T} \left( a_n cosn \omega_o t sen k \omega_o t + b_n sen n \omega_o t sen k \omega_o t \right) dt$$

$$\int_{t_0}^{t_0+T} \cos m\omega_0 t \sin n\omega_0 t \, dt = 0, \text{ para todo } m \in n,$$

$$\int_{t_o}^{t_o+T} cosm \, \omega_o t \, senn \, \omega_o t \, dt = \int_{t_o}^{t_o+T} \frac{1}{2} \left[ sen(m+n)\omega_o t - sen(m-n)\omega_o t \right] dt = 0$$

• Demonstração:  $b_k = \frac{2}{T} \int_{t_0}^{t_0+T} f(t) \operatorname{sen} k\omega_0 t \, dt$ .

$$\int_{t_o}^{t_o+T} f(t) \operatorname{sen} k \, \omega_o t \, dt = \int_{t_o}^{t_o+T} a_v \operatorname{sen} k \, \omega_o t \, dt +$$

$$\sum_{n=1}^{\infty} \int_{t_o}^{t_o+T} \left( a_n \cos n \omega_o t \sin k \omega_o t + b_n \sin n \omega_o t \sin k \omega_o t \right) dt$$

$$\int_{t_0}^{t_0+T} \operatorname{sen} m\omega_0 t \operatorname{sen} n\omega_0 t dt = 0, \quad \operatorname{para todo} m \neq n,$$
$$= \frac{T}{2}, \quad \operatorname{para} m = n,$$

$$\int_{t_o}^{t_o+T} sen^2 m \, \omega_o t \, dt = \int_{t_o}^{t_o+T} \frac{(1-cos2m \, \omega_o \, t)}{2} dt = \frac{1}{2} (t_o+T-t_o)$$

### Simplificação dos cálculos dos Coeficientes de Fourier

- O cálculo dos coeficientes de Fourier (CF) pode ser simplificado pelas seguintes simetria:
- Simetria das funções pares;
- Simetria das funções ímpares;
- Simetria de meia-onda;
- Simetria de quarto de onda;

Definição de função par: f(t) = f(-t).

$$f(t) = f(-t).$$



Para funções pares, as equações para os CF reduz-se a:

$$a_v = \frac{2}{T} \int_0^{T/2} f(t) dt,$$

$$a_k = \frac{4}{T} \int_0^{T/2} f(t) \cos k\omega_0 t \, dt,$$

$$b_k = 0$$
 para todo  $k$ .

Série de Fourier p/ f(t) qualquer:

$$a_v = \frac{1}{T} \int_{t_0}^{t_0 + T} f(t) dt,$$

$$a_k = \frac{2}{T} \int_{t_0}^{t_0 + T} f(t) \cos k\omega_0 t dt,$$

$$2 \int_{t_0 + T}^{t_0 + T} f(t) \sin k\omega_0 t dt,$$

$$b_k = \frac{2}{T} \int_{t_0}^{t_0+T} f(t) \operatorname{sen} k\omega_0 t \, dt.$$

Demonstração:

$$a_v = \frac{1}{T} \int_{-T/2}^{T/2} f(t) dt$$
$$= \frac{1}{T} \int_{-T/2}^{0} f(t) dt + \frac{1}{T} \int_{0}^{T/2} f(t) dt.$$

$$f(t)$$

$$T$$

$$t$$

• Mas: 
$$\int_{-T/2}^{0} f(t) dt = \int_{T/2}^{0} f(x)(-dx) = \int_{0}^{T/2} f(x) dx,$$

$$a_v = \frac{2}{T} \int_0^{T/2} f(t) \, dt,$$

• Demonstração:  $a_k = \frac{2}{T} \int_{-T/2}^0 f(t) \cos k\omega_0 t \ dt$  $+ \frac{2}{T} \int_0^{T/2} f(t) \cos k\omega_0 t \ dt,$ 

• Mas: 
$$\int_{-T/2}^{0} f(t) \cos k\omega_0 t \, dt = \int_{T/2}^{0} f(x) \cos (-k\omega_0 x)(-dx)$$
$$= \int_{0}^{T/2} f(x) \cos k\omega_0 x \, dx.$$

$$a_k = \frac{4}{T} \int_0^{T/2} f(t) \cos k\omega_0 t \, dt,$$



Demonstração:

$$b_k = \frac{2}{T} \int_{-T/2}^{0} f(t) \operatorname{sen} k \, \omega_o t \, dt + \frac{2}{T} \int_{0}^{T/2} f(t) \operatorname{sen} k \, \omega_o t \, dt$$

• Mas:  $\int_{-T/2}^{0} f(t) \sin k\omega_0 t \, dt = \int_{T/2}^{0} f(x) \sin(-k\omega_0 x)(-dx)$  $= -\int_{0}^{T/2} f(x) \sin k\omega_0 x \, dx.$ 

$$b_k = 0$$
 para todo  $k$ .



Demonstração:

$$f(t) = -f(-t).$$



Para funções ímpares, as equações para os CF reduz-se a:

$$a_v = 0;$$

$$a_k = 0$$
, para todo  $k$ ;

$$b_k = \frac{4}{T} \int_0^{T/2} f(t) \operatorname{sen} k \omega_0 t \, dt.$$

 Pode-se aplicar um deslocamento para obter simetria par ou ímpar:







 Definição: uma função periódica possui simetria de meia onda se

$$f(t) = -f(t - T/2).$$







 Definição: uma função periódica possui simetria de meia onda se:

$$f(t) = -f(t - T/2).$$

Com simetria de meia-onda

Sem simetria de meia-onda







$$f(t) = -f(t - T/2).$$

Para funções com simetria de meia-onda, os CF podem ser dados por:

$$a_v = 0$$
,

$$a_k = 0$$
, para  $k$  par;



$$a_k = \frac{4}{T} \int_0^{T/2} f(t) \cos k\omega_0 t \, dt$$
, para k impar;

$$b_k = 0$$
, para  $k$  par;

$$b_k = \frac{4}{T} \int_0^{T/2} f(t) \operatorname{sen}k\omega_0 t \, dt$$
, para k impar.

Demonstração:

$$a_k = 0$$
, para  $k$  par; 
$$a_k = \frac{4}{T} \int_0^{T/2} f(t) \cos k\omega_0 t \, dt$$
, para  $k$  impar;

$$a_{k} = \frac{2}{T} \int_{t_{0}}^{t_{0}+T} f(t) \cos k\omega_{0}t \, dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos k\omega_{0}t \, dt$$

$$= \frac{2}{T} \int_{-T/2}^{0} f(t) \cos k\omega_{0}t \, dt + \frac{2}{T} \int_{0}^{T/2} f(t) \cos k\omega_{0}t \, dt$$
(1)

• Mas:  $\int_{-T/2}^{0} f(t) \cos k\omega_0 t \, dt = \int_{0}^{T/2} f(x - T/2) \cos k\omega_0 (x - T/2) \, dx.$ 

Demonstração:

$$a_k = 0$$
, para  $k$  par; 
$$a_k = \frac{4}{T} \int_0^{T/2} f(t) \cos k\omega_0 t \ dt$$
, para  $k$  impar;

$$a_{k} = \frac{2}{T} \int_{t_{0}}^{t_{0}+T} f(t) \cos k\omega_{0}t \, dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos k\omega_{0}t \, dt$$

$$= \frac{2}{T} \int_{-T/2}^{0} f(t) \cos k\omega_{0}t \, dt + \frac{2}{T} \int_{0}^{T/2} f(t) \cos k\omega_{0}t \, dt$$
(1)

• Mas:  $\int_{-T/2}^{0} f(t) \cos k\omega_0 t \, dt = \int_{0}^{T/2} f(x - T/2) \cos k\omega_0 (x - T/2) \, dx.$ 

$$\cos k \,\omega_o(x - T/2) = \cos(k \,\omega_o x - k \,\pi) = \cos k \,\pi \cos k \,\omega_o x - \operatorname{senk} \pi \operatorname{senk} \omega_o$$

$$\int_{-T/2}^{0} f(t) \cos k\omega_0 t \, dt = \int_{0}^{T/2} [-f(x)] \cos k\pi \cos k\omega_0 x \, dx. \tag{2}$$

Demonstração:

$$a_k = 0$$
, para  $k$  par; 
$$a_k = \frac{4}{T} \int_0^{T/2} f(t) \cos k\omega_0 t \, dt$$
, para  $k$  impar;

$$a_{k} = \frac{2}{T} \int_{t_{0}}^{t_{0}+T} f(t) \cos k\omega_{0}t \, dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos k\omega_{0}t \, dt$$

$$= \frac{2}{T} \int_{-T/2}^{0} f(t) \cos k\omega_{0}t \, dt + \frac{2}{T} \int_{0}^{T/2} f(t) \cos k\omega_{0}t \, dt$$
(1)

$$\int_{-T/2}^{0} f(t) \cos k\omega_0 t \, dt = \int_{0}^{T/2} [-f(x)] \cos k\pi \cos k\omega_0 x \, dx. \tag{2}$$

• Substituindo (2) em (1):  $a_k = \frac{2}{T}(1 - \cos k\pi) \int_0^{T/2} f(t) \cos k\omega_0 t \, dt$ .

Demonstração:

$$a_k = 0$$
, para  $k$  par; 
$$a_k = \frac{4}{T} \int_0^{T/2} f(t) \cos k \omega_0 t \ dt$$
, para  $k$  impar;

$$a_k = \frac{2}{T}(1 - \cos k\pi) \int_0^{T/2} f(t) \cos k\omega_0 t \, dt.$$

Mas  $cosk\pi=1$ , para k par  $cosk\pi=-1$ , para k impar

 Simetria de quarto de onda: funções com simetria de meia onda e também simetria em relação aos pontos médios dos semi-ciclos positivos e negativos:



Com simetria de quarto de onda



Simetria de meia onda, sem simetria de quarto de onda

Funções com simetria de quarto de onda podem ser transformadas em par ou ímpar.



#### Se a função for transformada em par:

 $a_v = 0$ , por causa da simetria de meia-onda;

 $a_k = 0$ , para k par, por causa da simetria de meia-onda;

$$a_k = \frac{8}{T} \int_0^{T/4} f(t) \cos k\omega_0 t \, dt, \text{ para } k \text{ impar;}$$

 $b_k = 0$ , para todo k, porque a função é par.



#### Se a função for transformada em ímpar:

 $a_v = 0$ , porque a função é ímpar;

 $a_k = 0$ , para todo k, porque a função é ímpar;

 $b_k = 0$ , para k par, por causa da simetria de meia-onda;

$$b_k = \frac{8}{T} \int_0^{T/4} f(t) \operatorname{sen} k \omega_0 t \, dt, \qquad \text{para } k \text{ impar.}$$



### Forma trigonométrica da série de Fourier

$$f(t) = a_v + \sum_{n=1}^{\infty} a_n \cos n\omega_0 t + b_n \sin n\omega_0 t,$$

A Série de Fourier pode ser representada alternativamente por:

$$f(t) = a_v + \sum_{n=1}^{\infty} a_n \cos n\omega_0 t + b_n \cos(n\omega_0 t - 90^\circ).$$

Usando fasores, temos:

$$\mathcal{P}\{a_n\cos n\omega_0 t\} = a_n \underline{/0^\circ}$$

$$\mathcal{P}\{b_n\cos(n\omega_0t - 90^\circ)\} = b_n \angle -90^\circ = -jb_n.$$

$$\mathcal{P}\{a_n\cos(n\omega_0t + b_n\cos(n\omega_0t - 90^\circ)\} = a_n - jb_{n'} = \sqrt{a_n^2 + b_n^2} / -\theta_n = A_n / -\theta_n$$

$$a_n \cos n\omega_0 t + b_n \cos(n\omega_0 t - 90^\circ) = \mathcal{P}^{-1}\{A_n / -\theta_n\} = A_n \cos(n\omega_0 t - \theta_n)$$

### Forma trigonométrica da série de Fourier

$$f(t) = a_v + \sum_{n=1}^{\infty} a_n \cos n\omega_0 t + b_n \sin n\omega_0 t,$$

A Série de Fourier pode ser representada alternativamente por:

$$f(t) = a_v + \sum_{n=1}^{\infty} A_n \cos(n\omega_0 t - \theta_n),$$

Onde  $A_n$  e  $\theta_n$  são dados por:

$$a_n - jb_n = \sqrt{a_n^2 + b_n^2} / -\theta_n = A_n / -\theta_n$$

### Aplicação

Determinar a resposta de regime permanente do circuito RC:





V<sub>g</sub> possui simetria ímpar, de meia onda e de quarto de onda, logo:

$$b_k = \frac{8}{T} \int_0^{T/4} f(t) \operatorname{sen} k \omega_0 t \, dt, \qquad \text{para } k \text{ impar.}$$

$$b_k = \frac{8}{T} \int_0^{T/4} V_m \operatorname{sen} k\omega_0 t \, dt$$
$$= \frac{4V_m}{\pi k} \quad (k \text{ \'e impar}).$$



$$v_g = \frac{4V_m}{\pi} \sum_{n=1,3,5,\dots}^{\infty} \frac{1}{n} \operatorname{sen} n\omega_0 t.$$

Determinar a resposta de regime permanente do circuito RC:





Expandindo a série:

$$v_g = \frac{4V_m}{\pi} \sum_{n=1,3,5,\dots}^{\infty} \frac{1}{n} \operatorname{sen} n\omega_0 t.$$

$$v_g = \frac{4V_m}{\pi} \operatorname{sen} \omega_0 t + \frac{4V_m}{3\pi} \operatorname{sen} 3\omega_0 t + \frac{4V_m}{5\pi} \operatorname{sen} 5\omega_0 t + \frac{4V_m}{7\pi} \operatorname{sen} 7\omega_0 t + \cdots$$

Vg equivale a uma infinidade de fontes em série com amplitudes e frequências distintas.

Determinar a resposta de regime permanente do circuito RC:





Expandindo a série: 
$$v_g = \frac{4V_m}{\pi} \mathrm{sen} \omega_0 t + \frac{4V_m}{3\pi} \mathrm{sen} 3\omega_0 t + \frac{4V_m}{5\pi} \mathrm{sen} 5\omega_0 t + \frac{4V_m}{7\pi} \mathrm{sen} 7\omega_0 t + \cdots$$

Para cada componente de entrada, a tensão de saída pode ser dada pela seguinte expressão fasorial:

$$\mathbf{V}_o = \frac{\mathbf{V}_g}{1 + j\omega RC}$$

Determinar a resposta de regime permanente do circuito RC:





$$\mathbf{V}_o = \frac{\mathbf{V}_g}{1 + j\omega RC}$$

Tensão de saída em função da fundamental:

$$v_g = \frac{4V_m}{\pi} \sum_{n=1,3,5,...}^{\infty} \frac{1}{n} \operatorname{sen} n\omega_0 t.$$
  $V_{o1} = \frac{(4V_m/\pi)/0^{\circ}}{1 + j\omega_0 RC}$ 



$$\mathbf{V}_{o1} = \frac{(4V_m/\pi)\underline{/0^o}}{1 + j\omega_0 RC}$$

Determinar a resposta de regime permanente do circuito RC:





$$\mathbf{V}_o = \frac{\mathbf{V}_g}{1 + j\omega RC}$$

Ou, na forma polar:

$$\mathbf{V}_{o1} = \frac{(4V_m/\pi)\underline{/0^{\mathrm{o}}}}{1 + j\omega_0 RC}.$$



$$\mathbf{V}_{o1} = \frac{(4V_m)/-\beta_1}{\pi\sqrt{1+\omega_0^2R^2C^2}},$$

onde 
$$\beta_1 = \operatorname{tg}^{-1} \omega_0 RC$$
.

Determinar a resposta de regime permanente do circuito RC:





No domínio do tempo, temos:

$$\mathbf{V}_{o1} = \frac{(4V_m)/-\beta_1}{\pi \sqrt{1 + \omega_0^2 R^2 C^2}},$$
$$\beta_1 = \mathsf{tg}^{-1} \omega_0 RC.$$



$$v_{o1} = \frac{4V_m}{\pi \sqrt{1 + \omega_0^2 R^2 C^2}} \operatorname{sen}(\omega_0 t - \beta_1).$$

Determinar a resposta de regime permanente do circuito RC:

$$v_g = \frac{4V_m}{\pi} \sum_{n=1,3,5,\dots}^{\infty} \frac{1}{n} \operatorname{sen} n\omega_0 t.$$



Para a componente do 3o harmônico, temos:

$$\mathbf{V}_{o3} = \frac{(4V_m/3\pi) \underline{/0^{\circ}}}{1 + j3\omega_0 RC}$$

$$= \frac{4V_m}{3\pi \sqrt{1 + 9\omega_0^2 R^2 C^2}} \underline{/-\beta_3},$$

onde 
$$\beta_3 = tg^{-1}3\omega_0 RC$$
.

Cuja expressão no tempo é:

$$v_{o3} = \frac{4V_m}{3\pi\sqrt{1 + 9\omega_0^2 R^2 C^2}} \text{sen}(3\omega_0 t - \beta_3)$$

Determinar a resposta de regime permanente do circuito RC:





Então, a expressão para o k-ésimo harmônico pode ser dada por:

$$v_{ok} = \frac{4V_m}{k\pi\sqrt{1 + k^2\omega_0^2R^2C^2}}\operatorname{sen}(k\omega_0 t - \beta_k) \ (k \text{ \'e impar})$$

onde 
$$\beta_k = \text{tg}^{-1} k \omega_0 RC$$
. ( $k \notin \text{impar}$ ).

Determinar a resposta de regime permanente do circuito RC:





Por superposição, a expressão da tensão de saída pode ser dada por:

$$v_o(t) = \frac{4V_m}{\pi} \sum_{n=1,3,5,...}^{\infty} \frac{\text{sen}(n\omega_0 t - \beta_n)}{n\sqrt{1 + (n\omega_0 RC)^2}}$$

Determinar a resposta de regime permanente do circuito RC:





Para valores elevados de C:

$$v_o(t) = \frac{4V_m}{\pi} \sum_{n=1,3,5,...}^{\infty} \frac{\text{sen}(n\omega_0 t - \beta_n)}{n\sqrt{1 + (n\omega_0 RC)^2}}$$



$$v_o \approx \frac{4V_m}{\pi\omega_0 RC} \sum_{n=1,3,5,\dots}^{\infty} \frac{1}{n^2} \operatorname{sen}(n\omega_0 t - 90^{\circ})$$
  

$$\approx \frac{-4V_m}{\pi\omega_0 RC} \sum_{n=1,3,5}^{\infty} \frac{1}{n^2} \cos n\omega_0 t.$$

Determinar a resposta de regime permanente do circuito RC:





A amplitude dos harmônicos decresce com um fator de 1/n<sup>2</sup>:

$$v_o \approx \frac{4V_m}{\pi\omega_0 RC} \sum_{n=1,3,5,\dots}^{\infty} \frac{1}{n^2} \operatorname{sen}(n\omega_0 t - 90^{\circ})$$
  

$$\approx \frac{-4V_m}{\pi\omega_0 RC} \sum_{n=1,3,5,\dots}^{\infty} \frac{1}{n^2} \cos n\omega_0 t.$$

Determinar a resposta de regime permanente do circuito RC:





Quando C tem valor muito elevado, a tensão de saída pode ser aproximada por somente alguns harmônicos:

$$v_o \approx \frac{4V_m}{\pi\omega_0 RC} \sum_{n=1,3,5,\dots}^{\infty} \frac{1}{n^2} \operatorname{sen}(n\omega_0 t - 90^{\circ})$$

$$\approx \frac{-4V_m}{\pi\omega_0 RC} \sum_{n=1,3,5}^{\infty} \frac{1}{n^2} \cos n\omega_0 t.$$



$$v_o(t) \approx \frac{-4V_m}{\pi\omega_0 RC}\cos\omega_0 t$$

Determinar a resposta de regime permanente do circuito RC:





Quando  $C \rightarrow 0$ :

$$v_o(t) = \frac{4V_m}{\pi} \sum_{n=1,3,5,...}^{\infty} \frac{\text{sen}(n\omega_0 t - \beta_n)}{n\sqrt{1 + (n\omega_0 RC)^2}}$$

$$v_o = \frac{4V_m}{\pi} \sum_{n=1,3,5,...}^{\infty} \frac{1}{n} \operatorname{sen} n\omega_0 t.$$

## Cálculo de potência média de funções periódicas

Pode-se expressar a potência média de um circuito em função das tensões e correntes harmônicas:

$$v = V_{cc} + \sum_{n=1}^{\infty} V_n \cos(n\omega_0 t - \theta_{vn}),$$

$$i = I_{cc} + \sum_{n=1}^{\infty} I_n \cos(n\omega_0 t - \theta_{in}).$$

$$P = \frac{1}{T} \int_{t_0}^{t_0+T} p \, dt = \frac{1}{T} \int_{t_0}^{t_0+T} vi \, dt.$$

$$P = \frac{1}{T} V_{cc} I_{cc} t \Big|_{t_0}^{t_0+T} + \sum_{n=1}^{\infty} \frac{1}{T} \int_{t_0}^{t_0+T} V_n I_n \cos(n\omega_0 t - \theta_{vn}) \times \cos(n\omega_0 t - \theta_{in}) dt.$$

Para o produto de cossenos, os únicos termos que são não nulos, correspondem a produtos de tensão e corrente de mesma frequencia.

$$\sum_{n=1}^{\infty} V_n \cos(n\omega_0 t - \theta_{vn}) \sum_{n=1}^{\infty} I_n \cos(n\omega_0 t - \theta_{in}).$$

pois: 
$$\int_{t_0}^{t_0+T} \cos m\omega_0 t \cos n\omega_0 t \, dt = 0, \quad \text{para todo } m \neq n,$$
$$= \frac{T}{2}, \quad \text{para } m = n.$$

### Cálculo de potência média de funções periódicas

Usando a identidade trigonométrica:

$$\cos\alpha\cos\beta = \frac{1}{2}\cos(\alpha - \beta) + \frac{1}{2}\cos(\alpha + \beta)$$

temos:

$$P = \frac{1}{T} V_{cc} I_{cc} t \Big|_{t_0}^{t_0+T} + \sum_{n=1}^{\infty} \frac{1}{T} \int_{t_0}^{t_0+T} V_n I_n \cos(n\omega_0 t - \theta_{vn}) \times \cos(n\omega_0 t - \theta_{in}) dt.$$

$$P = V_{cc}I_{cc} + \frac{1}{T}\sum_{n=1}^{\infty} \frac{V_nI_n}{2} \int_{t_0}^{t_0+T} [\cos(\theta_{vn} - \theta_{in}) + \cos(2n\omega_0t - \theta_{vn} - \theta_{in})]dt,$$

# Cálculo de potência média de funções periódicas

$$P = V_{cc}I_{cc} + \frac{1}{T}\sum_{n=1}^{\infty} \frac{V_{n}I_{n}}{2} \int_{t_{0}}^{t_{0}+T} [\cos(\theta_{vn} - \theta_{in}) + \cos(2n\omega_{0}t - \theta_{vn} - \theta_{in})]dt,$$

$$P = V_{cc}I_{cc} + \sum_{n=1}^{\infty} \frac{V_nI_n}{2}\cos(\theta_{vn} - \theta_{in}).$$

A potência média total é a soma das potências médias de cada harmônico separadamente (mais a potência devido aos offsets).

### Valor eficaz de uma função periódica

O valor eficaz de uma função periódica pode ser dado em função dos coeficientes de Fourier:

$$F_{\text{ef}} = \sqrt{\frac{1}{T} \int_{t_0}^{t_0 + T} f(t)^2 dt}.$$

$$F_{\text{ef}} = \sqrt{\frac{1}{T}} \int_{t_0}^{t_0+T} \left[ a_v + \sum_{n=1}^{\infty} A_n \cos(n\omega_0 t - \theta_n) \right]^2 dt.$$

# Valor eficaz de uma função periódica

Lembrando que:

$$\int_{t_0}^{t_0+T} \cos m\omega_0 t \cos n\omega_0 t \, dt = 0, \quad \text{para todo } m \neq n,$$
$$= \frac{T}{2}, \quad \text{para } m = n.$$

Temos: 
$$F_{\text{ef}} = \sqrt{\frac{1}{T}} \int_{t_0}^{t_0+T} \left[ a_v + \sum_{n=1}^{\infty} A_n \cos(n\omega_0 t - \theta_n) \right]^2 dt.$$

$$F_{\text{ef}} = \sqrt{\frac{1}{T} \left( a_v^2 T + \sum_{n=1}^{\infty} \frac{T}{2} A_n^2 \right)}$$
$$= \sqrt{a_v^2 + \sum_{n=1}^{\infty} \frac{A_n^2}{2}}$$
$$= \sqrt{a_v^2 + \sum_{n=1}^{\infty} \left( \frac{A_n}{\sqrt{2}} \right)^2}.$$

### Valor eficaz de uma função periódica

O valor eficaz de uma função periódica é a raiz quadrada da soma do quadrado do valor eficaz de cada harmônico e do quadrado do valor DC:

$$F_{\text{ef}} = \sqrt{\frac{1}{T} \left( a_v^2 T + \sum_{n=1}^{\infty} \frac{T}{2} A_n^2 \right)}$$
$$= \sqrt{a_v^2 + \sum_{n=1}^{\infty} \frac{A_n^2}{2}}$$
$$= \sqrt{a_v^2 + \sum_{n=1}^{\infty} \left( \frac{A_n}{\sqrt{2}} \right)^2}.$$

Partindo da Série de Fourier:

$$f(t) = a_v + \sum_{n=1}^{\infty} a_n \cos n\omega_0 t + b_n \sin n\omega_0 t$$

E substituindo:

$$\cos n\omega_0 t = \frac{e^{jn\omega_0 t} + e^{-jn\omega_0 t}}{2}$$

$$\operatorname{sen} n\omega_0 t = \frac{e^{jn\omega_0 t} - e^{-jn\omega_0 t}}{2j}$$

Obtemos:  $f(t) = a_v + \sum_{i=1}^{\infty} \frac{a_n}{2} (e^{jn\omega_0 t} + e^{-jn\omega_0 t}) + \frac{b_n}{2i} (e^{jn\omega_0 t} - e^{-jn\omega_0 t})$ 

$$f(t) = a_v + \sum_{n=1}^{\infty} \frac{a_n}{2} (e^{jn\omega_0 t}] + e^{-jn\omega_0 t}) + \frac{b_n}{2j} (e^{jn\omega_0 t}] - e^{-jn\omega_0 t})$$

$$= a_v + \sum_{n=1}^{\infty} \left( \frac{a_n - jb_n}{2} \right) e^{jn\omega_0 t} + \left( \frac{a_n + jb_n}{2} \right) e^{-jn\omega_0 t}.$$

Definindo: 
$$C_n = \frac{1}{2}(a_n - jb_n) = \frac{A_n}{2} / -\theta_n, \quad n = 1, 2, 3, \dots$$

Definindo: 
$$C_n = \frac{1}{2}(a_n - jb_n) = \frac{A_n}{2} / -\theta_n, \quad n = 1, 2, 3, \dots$$

E sabendo que:

$$a_{k} = \frac{2}{T} \int_{t_{0}}^{t_{0}+T} f(t) \cos k\omega_{0} t \, dt,$$

$$b_{k} = \frac{2}{T} \int_{t_{0}}^{t_{0}+T} f(t) \sin k\omega_{0} t \, dt.$$

Pela definição: 
$$C_n = \frac{1}{2} \left[ \frac{2}{T} \int_{t_0}^{t_0+T} f(t) \cos n\omega_0 t \, dt - j \frac{2}{T} \int_{t_0}^{t_0+T} f(t) \sin n\omega_0 t \, dt \right]$$

$$= \frac{1}{T} \int_{t_0}^{t_0+T} f(t) (\cos n\omega_0 t - j \sin n\omega_0 t) \, dt$$

$$= \frac{1}{T} \int_{t_0}^{t_0+T} f(t) e^{-jn\omega_0 t} \, dt,$$

$$C_n = \frac{1}{T} \int_{t_0}^{t_0+T} f(t)e^{-jn\omega_0 t} dt.$$

$$C_0 = \frac{1}{T} \int_{t_0}^{t_0+T} f(t) dt = a_v.$$

$$C_{-n} = \frac{1}{T} \int_{t_0}^{t_0+T} f(t)e^{jn\omega_0 t} dt = C_n^* = \frac{1}{2}(a_n + jb_n).$$

Substituindo:

$$C_n = \frac{1}{2}(a_n - jb_n) = \frac{A_n}{2} / -\theta_n, \quad n = 1, 2, 3, \dots$$

$$C_0 = \frac{1}{T} \int_{t_0}^{t_0+T} f(t) dt = a_v.$$

$$C_{-n} = \frac{1}{T} \int_{t_0}^{t_0+T} f(t)e^{jn\omega_0 t} dt = C_n^* = \frac{1}{2}(a_n + jb_n).$$

Em:

$$f(t) = a_v + \sum_{n=1}^{\infty} \frac{a_n}{2} (e^{jn\omega_0 t} + e^{-jn\omega_0 t}) + \frac{b_n}{2j} (e^{jn\omega_0 t} - e^{-jn\omega_0 t})$$
$$= a_v + \sum_{n=1}^{\infty} \left( \frac{a_n - jb_n}{2} \right) e^{jn\omega_0 t} + \left( \frac{a_n + jb_n}{2} \right) e^{-jn\omega_0 t}.$$

Temos:

$$f(t) = C_0 + \sum_{n=1}^{\infty} (C_n e^{jn\omega_0 t} + C_n^* e^{-jn\omega_0 t})$$
$$= \sum_{n=0}^{\infty} C_n e^{jn\omega_0 t} + \sum_{n=1}^{\infty} C_n^* e^{-jn\omega_0 t}.$$

$$f(t) = C_0 + \sum_{n=1}^{\infty} (C_n e^{jn\omega_0 t} + C_n^* e^{-jn\omega_0 t})$$
$$= \sum_{n=0}^{\infty} C_n e^{jn\omega_0 t} + \sum_{n=1}^{\infty} C_n^* e^{-jn\omega_0 t}.$$

Mas:

$$\sum_{n=1}^{\infty} C_n^* e^{-jn\omega_0 t} = \sum_{n=-1}^{-\infty} C_n e^{jn\omega_0 t}.$$

$$f(t) = \sum_{n=0}^{\infty} C_n e^{jn\omega_0 t} + \sum_{-\infty}^{-1} C_n e^{jn\omega_0 t}$$
$$= \sum_{-\infty}^{\infty} C_n e^{jn\omega_0 t},$$

Trata-se de uma representação alternativa e mais concisa:

$$f(t) = \sum_{n=-\infty}^{\infty} C_n e^{jn\omega_0 t},$$

onde 
$$C_n = \frac{1}{T} \int_{t_0}^{t_0+T} f(t)e^{-jn\omega_0 t} dt$$
.

Pode-se expressar o valor eficaz em função dos coeficientes complexos de Fourier:

$$F_{\rm ef} = \sqrt{a_v^2 + \sum_{n=1}^{\infty} \left(\frac{A_n}{\sqrt{2}}\right)^2}.$$

$$F_{\text{ef}} = \sqrt{a_v^2 + \sum_{n=1}^{\infty} \frac{a_n^2 + b_n^2}{2}},$$

Mas:

$$C_n = \frac{1}{2}(a_n - jb_n) = \frac{A_n}{2} / -\theta_n, \quad n = 1, 2, 3, \cdots$$

$$|C_n|=\frac{\sqrt{a_n^2+b_n^2}}{2},$$

$$C_0^2 = a_v^2.$$

Logo:

$$F_{\text{ef}} = \sqrt{C_0^2 + 2\sum_{n=1}^{\infty} |C_n|^2}.$$