
NASA-GLENN CHEMICAL EQUILIBRIUM PROGRAM CEA2, MAY 21, 2004
BY BONNIE MCBRIDE AND SANFORD GORDON
REFS: NASA RP-1311, PART I, 1994 AND NASA RP-1311, PART II, 1996

problem

hp p,bar=30,45,70, t,k=3800

react

fuel=AL(cr) wt=18 t, k=300
oxid=NH4CLO4(I) wt=68 t, k=300
fuel=HTPB wt=14 t, k=300

h,kj/mol=-58 H 10.65 C 7.075 O 0.223 N 0.063

output massf short transport

end

WARNING!! MAXIMUM ALLOWED NO. OF SPECIES 40 WAS USED IN TRANSPORT PROPERTY CALCULATIONS FOR POINT 1(TRANIN))

WARNING!! MAXIMUM ALLOWED NO. OF SPECIES 40 WAS USED IN TRANSPORT PROPERTY CALCULATIONS FOR POINT 2(TRANIN))

WARNING!! MAXIMUM ALLOWED NO. OF SPECIES 40 WAS USED IN TRANSPORT PROPERTY CALCULATIONS FOR POINT 3(TRANIN))

THERMODYNAMIC EQUILIBRIUM COMBUSTION PROPERTIES AT ASSIGNED

PRESSURES

CASE =

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
FUEL	AL(cr)	0.5625000	44.802	300.000
OXIDANT	NH4CLO4(I)	1.000000	-295529.716	300.000
FUEL	HTPB	0.4375000	-58000.000	300.000

O/F= 2.12500 %FUEL= 32.000000 R,EQ.RATIO= 1.851663 PHI,EQ.RATIO= 2.551340

THERMODYNAMIC PROPERTIES

Ρ,	BAR	30.000	45.000	70.000
Т,	K	3333.74	3368.27	3404.10
RHO	O, KG/CU M	2.9979 0	4.4685 0	6.9066 0
Η,	KJ/KG	-1791.23	-1791.23	-1791.23
U,	KJ/KG	-2791.92	-2798.29	-2804.75
G,	KJ/KG	-34280.6	-34208.1	-34104.1
S,	KJ/(KG)(K)	9.7456	9.6242	9.4923

Fit on this pressure the data

M, $(1/n)$	27.699			
MW, MOL WT	25.574	25.663	25.758	Use this molar mass
(dLV/dLP) t	-1.01930	-1.01761	-1.01590	
(dLV/dLT)p	1.3593	1.3228	1.2853	
Cp, $KJ/(KG)(K)$	4.1331	3.9026	3.6712	This Cp is wrong and the Gammas is not the specific heat ratio
GAMMAs	1.1298	1,1318	1,1339	This op is wrong and the Gammas is not the specific heat ratio
SON VEL, M/SEC	1063.3	1067.6	1072.0	

TRANSPORT PROPERTIES (GASES ONLY)

CONDUCTIVITY IN UNITS OF MILLIWATTS/(CM)(K)

VISC,MILLIPOISE 0.97395 0.98099 0.98830

PRANDTL NUMBER 0.4865 0.4873 0.4881

WITH EQUILIBRIUM REACTIONS				Do not use parameters from this section		
	Cp, KJ/(KG)(K)	4.0461	3.8175	3.5969		
	CONDUCTIVITY	12.7040	11.7546	10.8120		
	PRANDTL NUMBER	0.3102	0.3186	0.3288		

$W \perp T \perp T \perp T$	EDO 7 EM	REACTIONS
NN + T + T + T	FIVOTEIN	LEWCTIONS

Use parameters from this section

Cp, KJ/(KG)(K)	2.0456	2.0486	2.0519	Use Cp for gamma computation via Mayer relation
	4.0952			

MASS FRACTIONS

*AL	0.00021	0.00018	0.00015
ALCL	0.01975	0.01872	0.01746
ALCL2	0.00194	0.00219	0.00248
ALCL3	0.00077	0.00099	0.00128
ALH	0.00005	0.00005	0.00005
ALHCL	0.00006	0.00008	0.00009
ALHCL2	0.00015	0.00020	0.00027
ALH2CL	0.00000	0.00000	0.00001
*ALO	0.00039	0.00033	0.00027
ALOCL	0.00139	0.00132	0.00123
ALOCL2	0.00001	0.00001	0.00001
ALOH	0.00947	0.00900	0.00841
ALOHCL	0.00192	0.00217	0.00247
ALOHCL2	0.00281	0.00359	0.00468
AL(OH)2	0.00036	0.00041	0.00047
AL(OH)2CL	0.00066	0.00084	0.00111
AL(OH)3	0.00013	0.00017	0.00022
AL20	0.00030	0.00026	0.00023
AL202	0.00009	0.00008	0.00007
*CO	0.26679	0.26689	0.26699
*CO2	0.01599	0.01581	0.01562
*CL	0.01459	0.01298	0.01133
CLO	0.00001	0.00001	0.00001
CL2	0.00004	0.00004	0.00005
*H	0.00152	0.00135	0.00118
HALO	0.00001	0.00001	0.00001
HALO2	0.00003	0.00003	0.00003
HCN	0.00001	0.00001	0.00002
HCO	0.00002	0.00003	0.00003

FileEditor:MMH.out

HCL	0.17864	0.17984	0.18086
HOCL	0.00001	0.00001	0.00001
*H2	0.02402	0.02416	0.02430
H2O	0.06565	0.06574	0.06577
NH2	0.00000	0.00000	0.00001
NH3	0.00001	0.00001	0.00001
*NO	0.00036	0.00033	0.00030
*N2	0.08212	0.08212	0.08213
*0	0.00023	0.00018	0.00014
*OH	0.00352	0.00319	0.00283
*02	0.00005	0.00004	0.00003
AL203(L)	0.30592	0.30661	0.30736

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS