Gradient Descent Tips

Tip Two: Stochastic and Mini-Batch Gradient Descent

Make the Training Faster

Stochastic Gradient Descent

$$L = \sum_{n} \left(\hat{y}^{n} - \left(b + \sum_{i} w_{i} x_{i}^{n} \right) \right)^{2}$$
 Loss is the summation over all training examples.

- $igoplus Gradient Descent \ \ heta^i = heta^{i-1} \eta
 abla L(heta^{i-1})$
- Stochastic Gradient Descent

Faster!

Pick an example xⁿ

$$L^{n} = \left(\hat{y}^{n} - \left(b + \sum w_{i} x_{i}^{n}\right)\right)^{2} \quad \theta^{i} = \theta^{i-1} - \eta \nabla L^{n} \left(\theta^{i-1}\right)$$
Loss for only one example

Stochastic Gradient Descent, Continued

Gradient Descent

Update after seeing all examples

Stochastic Gradient Descent

Update for each example
If there are 20 examples, 20 times
faster.

Mini-Batch Gradient Descent

Optimizing W, b

Batch

$$W_i \leftarrow W_i - \eta \sum_{j=1}^N rac{\partial l(x_j,y_j)}{\partial W_i}$$

Online/Stochastic

$$W_i \leftarrow W_i - \eta rac{\partial l(x_j, y_j)}{\partial W_i}$$

Minibatch

$$W_i \leftarrow W_i - \eta \sum_{j=k}^{k+m} rac{\partial l(x_j,y_j)}{\partial W_i}$$

We do not really minimize total loss!

Mini-Batch

 $\begin{array}{c|c}
 & & & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & \\
\hline
 & & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 &$

- Randomly initialize network parameters
- Pick the 1st batch $L' = l^1 + l^{31} + \cdots$ Update parameters once
- Pick the $2^{\rm nd}$ batch $L^{\prime\prime}=l^2+l^{16}+\cdots$ Update parameters once
- Until all mini-batches have been picked

one epoch

Repeat the above process

Mini-Batch, Continued

Batch size influences both *speed* and *performance*. You have to tune it.

model.fit(x_train, y_train, batch size=100, nb epoch=20)

100 examples in a mini-batch

Stochastic gradient descent

- Pick the 1st batch $L' = l^1 + l^{31} + \cdots$ Update parameters once
- Pick the $2^{\rm nd}$ batch $L'' = l^2 + l^{16} + \cdots$ Update parameters once :
- Until all mini-batches have been picked

Repeat 20 times

one epoch

Speed

Very large batch size can yield worse performance.

Smaller batch size means more updates in one epoch

- o E.g. 50000 examples
- o batch size = 1, 50000 updates in one epoch

166s 1 epoch o batch size = 10, 5000 updates in one epoch 10 epoch 17s

Speed - Matrix Operation

Why mini-batch is faster than stochastic gradient descent?

Stochastic Gradient Descent

GPU Support

TensorFlow Image Classification Training Performance

Dual CPU System: Dual Intel E5-2699 v4 @ 3.6 GHz | GPU-Accelerated System: Single Intel E5-2699 v4 @ 3.6 GHz, NVIDIA® Tesla® K80/M40/P100 (PCIe) | Google's Inception v3 image classification network, 500 steps; 64 Batch Size; cuDNN v5.1

TensorFlow Inception v3 Training Scalable Performance on Multi-GPU Node

GPU-Accelerated System: Single Intel E5-2699 v4 @ 3.6 GHz, NVIDIA® Tesla® K80/M40/P100 [PCle] | Google's Inception v3 image classification network, 500 steps; 64 Batch Size; cuDNN v5.1

Comparison

