Assignment#1 Solution

Q1)

Cutting Speed: $V_c = 165 \frac{mm}{s}$

Feed Speed: $Feed = 0.25 \frac{mm}{rev}$

Depth of cut: d = 5 mm

Efficiency: e = 0.85

Specific Cutting Energy: $SCE = 1.6 \frac{J}{mm^3}$

 $MRR = V_c. Feed. d = 206.25 \frac{mm^3}{s}$

$$P = \frac{MRR.SCE}{e} = 388.24 W$$

Q2)

 $\alpha = 10^{\circ}$ Rake angle

 $t_0 = 0.5mm$ Chip thickness before the cut (depth of cut)

 $t_c = 1.25mm$ Chip thickness

$$SCE = 0.7 \frac{J}{mm^3}$$

$$V_c = 120 \frac{m}{min}$$

$$F_c=1550\,N$$

$$r = \frac{t_0}{t_c} = 0.4$$

Shear angle $\emptyset = tan^{-1} \left(\frac{rcos(\alpha)}{1 - rsin(\alpha)} \right) = 22.94^{\circ}$

$$\emptyset = \frac{\pi}{4} - \frac{\beta}{2} + \frac{\alpha}{2}$$
, $22.94 = 45 - \frac{\beta}{2} + 5$, $\beta = 54.12^{\circ}$

$$\mu = \tan \beta = 1.382$$

$$P = F_c$$
. $V_c = 1550 \times \frac{120}{60} = 3100 W$

 $MRR = V_c. (Feed). (depth of cut)$

$$r = \frac{D-d}{2L}x + \frac{d}{2}$$
 (the red dash-line)

 $Feed = \frac{V_a}{N}$, V_a is the axial tool speed (dis/sec)

$$V_c = 2\pi.r.N$$

depth of $cut = \frac{D}{2} - r$

$$MRR = 2\pi. r. N. \frac{V_a}{N} \cdot \left(\frac{D}{2} - r\right) = 2\pi V_a \left(\frac{D-d}{2L}x + \frac{d}{2}\right) \left(\frac{D}{2} - \frac{D-d}{2L}x - \frac{d}{2}\right) = 2\pi V_a \left(\frac{D-d}{2L}x + \frac{d}{2}\right) \left(\frac{D-d}{2L}x - \frac{d}{2L}x\right) = 2\pi V_a \left(\frac{D-d}{2L}x + \frac{d}{2L}x\right) \left(\frac{D-d}{2L}x - \frac{d}{2L}x\right)$$

P = SCE.MRR

At x=0,
$$P = SCE.MRR = SCE.2\pi \frac{d}{2}.V_a.(\frac{D-d}{2})$$

At
$$x=L$$
, $P=0$