Передача информации. Помехи. Помехозащитное кодирование

Александра Игоревна Кононова

ТЕИМ

14 декабря 2020 г. — актуальную версию можно найти на https://gitlab.com/illinc/otik

— совокупность устройств, объединённых линиями связи, предназначенных для передачи информации от источника информации (начального устройства канала) до её приёмника (конечного устройства канала).

- достоверность передачи информации;
- надёжность работы устройств;
- скорость передачи информации (пропускная способность, ёмкость);
- задержка сигнала во времени (латентность).

X, Y — источники сообщений: по каналу передаются сообщения из X. Из-за помех приёмником воспринимается Y.

Пропускная способность (ёмкость) C канала

$$C = \lim_{T \to \infty} \frac{\max\limits_X \left(I(X,Y) \right)}{T} \quad \left[\frac{\mathsf{бит}}{\mathsf{c}} \right] \quad \mathsf{бод-} \text{по одним источникам то же,} \\ \quad \mathsf{по другим} - \mathsf{бод} = \frac{\mathsf{тактов}}{\mathsf{c}}$$

— максимальное количество информации, передаваемое в единицу времени.

Для канала без шума:
$$C=\lim_{T\to\infty}\frac{\max\limits_X\left(I(X)\right)}{T}=\lim_{T\to\infty}\frac{\log_2N(T)}{T},$$
 где $N(T)$ — число всех возможных сигналов (сообщений) за время T .

Первая теорема Шеннона (для канала без помех)

- ① При любой производительности источника сообщений, меньшей пропускной способности канала: $\frac{I(X)}{T} < C$, существует способ кодирования, позволяющий передавать по каналу все сообщения, вырабатываемые источником.

При любой производительности источника сообщений, меньшей пропускной способности канала:

$$\frac{I(X)}{T} < C$$

существует способ кодирования, позволяющий обеспечить передачу всей информации со сколь угодно малой вероятностью ошибки.

 Не существует способа кодирования, обеспечивающего передачу информации со сколь угодно малой вероятностью ошибки, если

$$\frac{I(X)}{T} > C$$

 $oldsymbol{0}$ источник X сообщений на входе, Y — на выходе;

2 условные вероятности — статистические свойства шумов (помех):

$$p(y_j|x_i)=rac{p(x_i,y_j)}{p(x_i)}$$
 — вероятность того, что отправив x_i — получим y_j $p(x_i|y_j)=rac{p(x_i,y_j)}{p(y_j)}$ — после получения y_j , что было отправлено именно x_i

$$H(X)=I(X)$$
— энтропия X (средняя информация в X) $H(Y)=I(Y)$ — энтропия Y (средняя информация в Y) $I(X,Y)=I(Y,X)$ — относительная информация X и Y $H(X,Y)=H(Y,X)$ — энтропия объединения X и Y

$$H(Y|X)$$
 — условная энтропия Y относительно X (шум) $H(X|Y)$ — условная энтропия X относительно Y (инф. потери) Канал без шумов: $X=Y$, $p(y|x)=\left\{egin{array}{ll} 1, & \text{при } y=x \\ 0, & \text{при } y\neq x \end{array}\right.$ $I(X,Y)=I(X)$

Информационные потери Код Хэмминга (концепция)

Код Рида-Соломона над GF(5)

Код Хэмминга (концепция) Практическое использование кода Хэмминга Полиномиальные коды Матмодель канала

Ззаимные информация и энтропи: Шум и потери Пвоичный симметричный канал

$$I(X,Y) = \sum_{i} \sum_{j} p(x_i, y_j) \log_2 \frac{p(x_i, y_j)}{p(x_i) \cdot p(y_j)}$$

$$H(X|Y) = M[-\log_2 p(X|Y)] = -\sum_i \sum_j p(x_i, y_j) \cdot \log_2 p(x_i|y_j) = -\sum_i \sum_j p(x_i|y_j) \cdot \log_2 p(x_i|y_j) = -\sum_i p(x_i|y_i) \cdot \log_2 p(x_i|y_j) = -\sum_i p(x_i|y_i) \cdot \log_2 p(x_i|y_i) = -\sum_i p(x_i|y_i) = -\sum$$

$$|p(x_i|y_j) = \frac{p(x_i, y_j)}{p(y_j)} | = -\sum_{j} p(y_j) \sum_{i} p(x_i|y_j) \cdot \log_2 p(x_i|y_j)$$

$$H(X,Y) = M[-\log_2 p(X,Y)] = -\sum_{i} \sum_{j} p(x_i, y_j) \cdot \log_2 p(x_i, y_j)$$

- lacksquare $I(X,Y)\geqslant 0$, $I(X,Y)=0\Leftrightarrow X$ и Y независимы;
- $I(X) = 0 \quad I(X) = 0 \quad \Leftrightarrow \quad X$ константа;
- I(X,Y) = I(Y,X);
- I(X,Y) = I(X) + I(Y) H(X,Y) = I(X) H(X|Y) = I(Y) H(Y|X)
- **5** $I(X,Y) \leq I(X,X) = I(X) = H(X)$. Если I(X,Y) = I(X), то X — функция от Y (разные y при разных x, передача без потерь).

Информационные потери Код Хэмминга (концепция)

Практическое использование кода Хэмминга

Взаимные информация и энтропия

Полиномиальные коды Код Рида-Соломона над GF(5)

$$I(X) = 1, I(Y) = \frac{3}{2}$$

$$I(X) = 1, I(Y) = \frac{3}{2}$$

$$H(X|Y) = 0$$

$$H(Y|X) = -\sum_{i} \sum_{j} p(x_{i}, y_{j}) \log_{2} p(x_{i}|y_{j}) =$$

$$= p(a, a) \cdot 0 + p(b, b) \cdot 1 + p(b, c) \cdot 1 =$$

$$= p(a,a) \cdot 0 + p(b,b) \cdot 1 + p(b,c) \cdot 1 = p(x=b) = \frac{1}{2}$$

$$I(X,Y) = 1 = I(X)$$

Есть шумы, нет потерь

$$I(X) = \log_2 3, \qquad I(Y) = \log_2 3 - \frac{2}{3}$$

$$H(Y|X) = 0$$

$$H(X|Y) = -\sum_{i} \sum_{j} p(x_i, y_j) \log_2 p(y_j|x_i) =$$

$$= p(a,a) \cdot 0 + p(b,b) \cdot 1 + p(c,b) \cdot 1 =$$

= $p(y=b) = \frac{2}{3}$

$$I(X,Y) = \log_2 3 - \frac{2}{3} = I(Y)$$

Есть потери, нет шума

Информационные потери Код Хэмминга (концепция) Практическое использование кода Хэмминга

е использование кода дэмминга Полиномиальные коды Код Рида-Соломона над GF(5) Взаимные информация и энтропи. Шум и потери

Помехозашитное кодирование

Двоичный симметричный канал

От X к Y передаются символы 0 и 1 (k символов в единицу времени).

Каждый символ, независимо от других, с вероятностью α инвертируется. Есть как шум, так и потери.

Пусть X производит $x_1=0$ и $x_2=1$ с вероятностями q и 1-q, на выходе $Y-y_1=0$ и $y_2=1$ с вероятностями $r=(1-\alpha)q+\alpha(1-q)$ и 1-r.

$$H(Y|X) = -\sum_{i} p(x_i) \sum_{j} p(y_j|x_i) \cdot \log_2 p(y_j|x_i) = q \cdot H(Y|x=0) + (1-q) \cdot H(Y|x=1)$$

$$H(Y|x=0) = -\sum_{j=1}^{2} p(y_j|x=0) \cdot \log_2 p(y_j|x=0) = -(1-\alpha) \log_2 (1-\alpha) - \alpha \log_2 \alpha$$

$$H(Y|x=1) = -\sum_{j=1}^{2} p(y_j|x=1) \cdot \log_2 p(y_j|x=1) = -\alpha \log_2 \alpha - (1-\alpha) \log_2 (1-\alpha) = H(Y|x=0)$$

$$H(Y|X) = \Big(q + (1-q)\Big) \cdot H(Y|x=0) = H(Y|x=0) = -\alpha \cdot \log_2 \alpha - (1-\alpha) \cdot \log_2 (1-\alpha)$$

4□ > 4回 > 4 = > 4 = > = 90

Информационные потери

Код Хэмминга (концепция) Практическое использование кода Хэмминга Двоичный симметричный канал

 $I(Y) = -r \cdot \log_2 r - (1 - r) \cdot \log_2 (1 - r)$

Передаваемая информация на символ
$$I(X,Y) = I(Y) - H(Y|X) = \left(-r \cdot \log_2 r - (1-r) \cdot \log_2 (1-r)\right) - \left(-\alpha \cdot \log_2 \alpha - (1-\alpha) \cdot \log_2 (1-\alpha)\right)$$

Обозначим $\eta(x) = -x \cdot \log_2 x$: $I(X,Y) = (\eta(r) + \eta(1-r)) - (\eta(\alpha) + \eta(1-\alpha))$

Макс. передаваемая информация на символ $\max_{\mathbf{v}} \left(I(X,Y) \right) = \max_{\mathbf{v}} \left(\left(\eta(r) + \eta(1-r) \right) - \left(\eta(\alpha) + \eta(1-\alpha) \right) \right) =$

 $= \max_{\alpha} \left(\eta(r) + \eta(1-r) \right) - \left(\eta(\alpha) + \eta(1-\alpha) \right) = 1 - \left(\eta(\alpha) + \eta(1-\alpha) \right)$ Пропускная способность:

$$C = k \cdot \max_{X} \left(I(X,Y) \right) = k \cdot \left(1 - \left(\eta(\alpha) + \eta(1-\alpha) \right) \right)$$

При $\alpha=0$ или единице C=k; при $\alpha=0.5$ получим C=0.

Вероятность бессбойной передачи m битов: $p(m,0) = (1-\alpha)^m$ одиночной инверсии в блоке из m битов: $p(m,1) = m \cdot \alpha (1-\alpha)^{m-1}$

двойной инверсии: $p(m,2) = C_m^2 \cdot \alpha^2 (1-\alpha)^{m-2} = \frac{m(m-1)}{2} \alpha^2 (1-\alpha)^{m-2}$

При $m = 8 \cdot 16$ и $\alpha = 10^{-5}$: $p(m,0) \approx 0.9987;$ $p(m,1) \approx 0.0013;$ $p(m,2) \approx 8.1 \cdot 10^{-7}$ $p(8m,1) \approx 0.01;$ $p(8m,2) \approx 5.2 \cdot 10^{-5}$ $p(8m,0) \approx 0.99;$

Файл разрезается на блоки по N байт (последний блок, если неполный, дополняется до N), каждый из которых дополняется избыточными (контрольными) данными до M байт.

Размер блока $(N \ \mathsf{u} \ M)$ выбирается исходя из:

- особенностей алгоритма (удобства реализации);
- свойств канала (информационных потерь);

и ни в коем случае не зависит от размера файла n.

Совместно: вначале применяются все алгоритмы сжатия, затем — защита от помех.

После декодирования необходимо восстановить исходную длину файла n!

Синдром S блока — величина, равная нулю при успешной передаче (для непротиворечивого блока) и указывающая на место ошибки при $S \neq 0$.

Простейшие помехозащитные коды

- Обнаруживающий одиночную ошибку (здесь и далее инверсию) в одном бите — двойное повторение каждого бита.
- Обнаруживающий одиночную ошибку в блоке из ν бит контроль **чётности** (добавление к каждому блоку $\nu+1$ -го бита так, чтобы дополнить количество единиц до заранее выбранного для кода чётного (even) или нечетного (odd) значения). Двойная ошибка в блоке не будет обнаружена.
- Исправляющий одиночную ошибку в одном бите тройное повторение каждого бита.
- Исправляющий одиночную ошибку в блоке из μ бит код Хэмминга. Двойная ошибка в блоке будет принята за одиночную не в том месте.
- Исправляющий одиночную ошибку и обнаруживающий двойную в блоке из $\mu+1$ бит — код Хэмминга с дополнительным битом чётности.

- Информация передаётся блоками.
- $oldsymbol{2}$ В блоке (μ битов) никогда не встретится более чем одна ошибка.
- Ошибка инверсия бита.

Биты блока разделяются на • информационные (независимые)

• и проверочные (значение рассчитывается по информационным).

Общий размер блока после кодирования

$$\mu = (\nu$$
 информационных) $+ (\kappa$ проверочных)

$$-$$
 ошибки нет; $-$ ошибка в i -й позиции.

$$\mu+1$$
 указаний $2^{\kappa}\geqslant \mu+1$

κ	1	2	3	4	5	6	7	8	9	10	11
$\sup(\mu) = 2^{\kappa} - 1$	1	3	7	15	31	63	127	255	511	1023	2047
$\sup(\nu) = \sup(\mu) - \kappa$	0	1	4	11	26	57	120	247	502	1013	2036

Бит чётности и группы

Бит чётности позволяет обнаружить одиночную ошибку в группе:

$$c=igoplus_{i\in G}b_i$$
 , соответственно, $igoplus_{b_i\in \{c\}\cup G}b_i=c\oplus igoplus_{b_i\in G}b_i=0$

при одиночной ошибке в $\{c\} \cup G$ получим $\bigoplus_{b_i \in \{c\} \cup G} b_i = 1$.

- Несколько пересекающихся контрольных групп позволяют уточнить положение ошибки.
- Набор групп должен быть различным для каждого бита (для локализации ошибки до конкретного бита).
- Контрольный бит не должен входить более чем в одну группу (для упрощения расчёта).
- Каждый информационный бит должен входить как минимум в две группы (из 🚳 и 🐠).

Несистематический (наивный) код Хэмминга

Набор контрольных групп — единицы натурального двоичного кода номера бита (с.1. чтобы каждый входил хотя бы в одну группу).

 Tomepa curta (c 1, Troobi Karkabiu Broadini Activi cbi b odiny 1991my).														
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
×		×		×		×		×		×		×		×
	×	×			×	×			×	×			×	×
			×	×	×	×					×	×	×	×
							×	×	×	×	×	×	×	×

• Биты $1, 2, 4, ... 2^s$ — контрольные (входят только в одну группу): $b_1 = b_3 \oplus b_5 \oplus b_7 \oplus b_9 \oplus b_{11} \oplus b_{13} \oplus b_{15} \dots$ $b_2 = b_3 \oplus b_6 \oplus b_7 \oplus b_{10} \oplus b_{11} \oplus b_{14} \oplus b_{15} \dots$

$$b_2 = b_3 \oplus b_6 \oplus b_7 \oplus b_{10} \oplus b_{11} \oplus b_{14} \oplus b_{15} ...$$

 При наличии ошибки несошедшиеся контрольные суммы образуют натуральный двоичный код инвертированного бита \rightarrow исправление.

Перестановка столбцов кода Хэмминга образует другой код Хэмминга

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
×		×		×		×		×		×		×		×
	×	×			×	×			×	×			×	×
			×	×	×	×					×	×	×	×
							×	×	×	×	×	×	×	×

Систематический код Хэмминга (простейший):

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	2	4	8	3	5	6	7	9	10	11	12	13	14	15
×				×	×		×	×		×		×		×
	×			×		×	×		×	×			×	×
		×			×	×	×				×	×	×	×
			×					×	×	×	×	×	X	X

Систематический код Хэмминга

Перестановка столбцов кода Хэмминга образует другой код Хэмминга

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
×		×		×		×		×		×		×		×
	×	×			×	×			×	×			×	×
			×	×	×	×					×	×	×	×
							×	×	×	×	×	×	×	×

Систематический код Хэмминга (Л. Бриллюэн):

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
15	7	11	13	14	3	5	9	6	10	12	1	2	4	8
×	×	×	×		×	×	×				×			
×	×	×		×	×			×	×			×		
×	×		×	×		×		×		×			×	
×		×	×	×			×		×	×				×

Коды, исправляющие одиночную ошибку и обнаруживающие двойную $\mu+1=2^{\kappa}$

Длина блока Хэмминга $\mu=2^\kappa-1$ бит o один бит не используется.

$$b_0 = igoplus_{i=1}^{n-1} b_i$$
 — дополнительный бит чётности $\left(igoplus_{i=0}^{n-1} b_i = 0
ight)$

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	×		×		×		×		×		×		×		×
		×	×			×	×			×	×			×	×
				×	×	×	×					×	×	×	×
								×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×

Количество единиц в контрольных группах	Общее количество единиц	Вывод
Чётное во всех	Чётное	Данные верны
Чётное во всех	Нечётное	Ошибка в дополнительном контрольном разряде b_0
Нечётное в некоторых	Нечётное	Однократная ошибка в коде X эмминга $b_1\dots b_n$
Нечётное в некоторых	Чётное	Двойная ошибка

Информационные потери Код Хэмминга (концепция) Практическое использование кода Хэмминга Полиномиальные коды

Систематический код Хэмминга

Коды, исправляющие одиночную ошибку и обнаруживак

Систематический код Хэмминга с контролем двойной инверсии

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
15	7	11	13	14	3	5	9	6	10	12	1	2	4	8	0
×	×	×	×		×	×	×				×				
×	×	×		×	×			×	×			×			
×	×		×	×		×		×		×			×		
×		×	×	×			×		×	×				×	
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×

Биты 1-11 — информационные, 12-16 — контрольные:

$$b_{12} = k_1 = b_1 \oplus b_2 \oplus b_3 \oplus b_4 \oplus b_6 \oplus b_7 \oplus b_8$$

$$b_{13} = k_2 = b_1 \oplus b_2 \oplus b_3 \oplus b_5 \oplus b_6 \oplus b_9 \oplus b_{10}$$

$$b_{14} = k_4 = b_1 \oplus b_2 \oplus b_4 \oplus b_5 \oplus b_7 \oplus b_9 \oplus b_{11}$$

$$b_{15} = k_8 = b_1 \oplus b_3 \oplus b_4 \oplus b_5 \oplus b_8 \oplus b_{10} \oplus b_{11}$$

$$b_{16} = k_0 =$$

 $b_1 \oplus b_2 \oplus b_3 \oplus b_4 \oplus b_5 \oplus b_6 \oplus b_7 \oplus b_8 \oplus b_9 \oplus b_{10} \oplus b_{11} \oplus b_{12} \oplus b_{13} \oplus b_{14} \oplus b_{15}$ Расчёт контрольных битов — битовая маска + подсчёт единиц в числе.

Расчёт позиции по синдрому — таблица.

Информационные потери Код Хэмминга (концепция) Практическое использование кода Хэмминга Полиномиальные коды

Систематический код Хэмминга

Систематический код Хэмминга с контролем двойной ин

Размер блока $N \to M$ (октетов)

Длина максимального блока Хэмминга $\mu = 2^{\kappa} - 1$ + бит общей чётности при любом $\kappa \geqslant 3$ дают размер $\mu + 1$, кратный октету: $\mu + 1 = 2^{\kappa} = 8M$.

K контрольных октетов: $\kappa + 1 = 8K$:

 $left{1} K=1$, тогда $\kappa=7$, $\sup(M)=rac{2^{\kappa}}{8}=2^{\kappa-3}=16$ и $\sup(N)=15$ (октетов) При K=1 ($\kappa=7$) допустимы: $8 \le N \le 15$, тогда M=N+1.

Допустимые, но неоптимальные варианты:

- **1** $4 \le N \le 7 \Rightarrow \kappa = 6 1$ лишний бит: в контрольный октет включаем две копии бита общей чётности k_0 , M=N+1.
- 2 N=1, M=N+1=2 первый (информационный) октет делим на две тетрады, второй — две контрольные тетрады (то есть один блок алгоритма включает два блока Хэмминга с контр. дв. ош.).
- $3 \quad 2 \leqslant N \leqslant 3 \Rightarrow \kappa = 5$ две новые контрольные группы, либо две копии существующих $(k_0 \times 2, k_0 \cup k_1, k_1 \cup k_2 \text{ и т. п.}).$
- $oldsymbol{4} N=2, M=3$ без контроля двойной ошибки: 2 блока Хэмминга $8 + 8 \Rightarrow \kappa = 4$ — контрольный октет — две контрольные тетрады.
- K=2: $\kappa=15$, $\sup(M)=4096$, $\sup(N)=4094$ (октета).

Информационные потери Код Хэмминга (концепция) Практическое использование кода Хэмминга Полиномиальные коды Код Рида-Соломона над GF(5)

Минимальная единица передачи — символ (элемент некоторого поля).

Каждый символ может быть искажён при передаче независимо от других (заменой $a \to \widetilde{a}$, но без перестановок, выпадений и вставок).

Информационный полином (ν символов) степени $\nu-1$ $a(x)=a_0+a_1x+a_2x^2+...+a_{\nu-1}x^{\nu-1}.$

Порождающий полином g(x) степени κ ($\kappa+1$ символов, обычно $g_{\kappa}=1$).

Кодовое слово C ($\mu=\nu+\kappa$ символов) степени $\mu-1$ делится на g(x):

- lacktriangle несистематический код $C(x) = a(x) \cdot g(x)$;
- систематический код (ν информационных и κ проверочных символов): $C(x) = a(x) \cdot x^{\kappa} r(x)$, где $r(x) = a(x) \cdot x^{\kappa} \mod g(x)$, $\deg(r) < \deg(g) = \kappa$ r(x) рассчитывается без деления, по табличным $x^i \mod g(x)$, $\kappa \leqslant i < \mu$

Полученное слово $C(x)+err(x)=\widetilde{C}(x)=g(x)\cdot p(x)+r(x),$ $r(x)=err(x) \bmod g(x)$ — синдром, $r(x)\neq 0$ — сбой (но для Рида—Соломона синдромом называется другой многочлен).

◆ロ > ◆回 > ◆ 三 > ◆ 三 > り へ ②

Информационные потери Код Хэмминга (концепция) Практическое использование кода Хэмминга Полиномиальные коды Код Рида-Соломона над GF(5)

Полиномиальный код Хэмминга

Полиномиальный код Рида-Соломона

— циклическая перестановка символов в кодовом слове дает другое допустимое слово того же кода.

$$C_1 = (c_0, c_1, \dots c_{\mu-1})$$

$$C_2 = (c_{u-1}, c_0, c_1, \dots c_{u-2})$$

Таким образом, $C_2 = x \cdot C_1 - c_{\mu-1} \cdot (x^{\mu} - 1)$.

Полиномиальный код циклический $\Leftrightarrow x^{\mu} - 1$ делится на g(x).

Проверочный многочлен $h(x)=rac{x^{\mu}-1}{g(x)}$ используется для извлечения информации из несистематического кода:

$$C(x)h(x) = a(x)g(x)h(x) = a(x) \cdot (x^{\mu} - 1) = a(x) \cdot x^{\mu} - a(x)$$

 $\mu=
u+\kappa>\deg(a)=
u-1$ — две разнесённых копии коэф-тов +a и -a.

Над GF(2), g(x) — делитель $x^{\mu}-1$ (код циклический) степени κ (причём $\mu=2^{\kappa}-1$), не имеет корней в GF(2) и делителей.

В $\mathrm{GF}(2)$ (то есть \mathbb{Z}_2) верно (-1)=1, то есть сложение = вычитанию.

$$\kappa=1, \mu=1$$
: мн-н x^1-1 , то есть $x+1=1\cdot(x+1)\Rightarrow g(x)=1$

$$\kappa=2, \mu=3$$
: $x^3+1=(x+1)(x^2+x+1)\Rightarrow g(x)=x^2+x+1, \ a(x)=a_0$ сист-й и несист-й коды совпадают: $C(x)=a_0x^2+a_0x+a_0\sim (a_0,a_0,a_0)$

a_0	k_2	k_1
×	×	
×		×

синдром: $\left(k_2(\widetilde{a}), k_1(\widetilde{a})\right) \oplus \left(\widetilde{k_2}, \widetilde{k_1}\right)$

$$\kappa=3, \mu=7: x^7+1=(x+1)(x^3+x+1)(x^3+x^2+1) \Rightarrow \begin{bmatrix} g(x)=x^3+x+1\\ g(x)=x^3+x^2+1 \end{bmatrix}$$

$$a(x)=a_3x^3+a_2x^2+a_1x+a_0, \qquad \text{пусть } g(x)=x^2+x+1, \text{ тогда сист-й код:}$$

$$C(x)=a_3x^6+a_2x^5+a_1x^4+a_0x^3+(a_1+a_2+a_3)x^2+(a_0+a_1+a_2)x+(a_0+a_2+a_3)$$

4 D > 4 B > 4 B > B 9 Q Q

Информационные потери Код Хэмминга (концепция) Практическое использование кода Хэмминга Полиномиальные коды

Полиномиальный код Хэмминга
Полиномиальный код Рила-Соломона

Корни g(x) Рида—Соломона лежат в том же поле, над каким и строится код Пусть β — элемент поля $\mathrm{GF}(q)$ порядка μ (обычно — примитивный элемент). Тогда порождающий полином кода Рида—Соломона:

$$g(x)=(x-eta^{l_0})(x-eta^{l_0+1})\dots(x-eta^{l_0+\kappa-1}),$$
 $\deg(g)=\kappa.$ где l_0 — некоторое целое число. Обычно $l_0=1.$

Длина полученного кода μ , минимальное расстояние δ , проверочных символов $\kappa=\delta-1=\deg(g)$, информационных символов $\nu=\mu-\kappa=\mu-\delta+1$.

Если β — примитивный элемент $\mathrm{GF}(q)$, то $\mu=q-1$. Количество проверочных κ однозначно определяет g(x). Исправляется до $\kappa/2$ ошибок.

- Остаток $e(x) = C(x) \mod g(x)$ можно не вычислять.
- Синдром $S(x): s_i = e(\beta^{i+1}) = C(\beta^{i+1}).$
- lacktriangle Локатор ошибки $X_i = \beta^\ell$ для x^ℓ . Многочлен локаторов $L(x) = (1 - xX_1)(1 - xX_2)\dots(1 - xX_n)$
- lacktriangle Многочлен ошибок W(x) степень не превышает u-1, где u — количество ошибок ($u \leq \kappa/2$), причём $L(x) \cdot S(x) = W(x) \mod x^{\kappa}$.
- ullet Значения ошибок $Y_i=rac{W(X_i^{-1})}{L'(X_i^{-1})}$ (коррекция: $C(c)=\widetilde{C}(x)+\sum Y_i\cdot x^{\ell_i}$).

Код Рида-Соломона над GF(5)

Символы: $GF(5) = \mathbb{Z}_5$ — вычеты по модулю 5, $(-1) = 4 \neq 1$, поэтому формулы частично отличаются от $GF(2^s)$, где всегда (-1) = 1.

Максимальная длина кода $\mu = 4$ (количество ненулевых элементов поля), $\beta = 2$ — примитивный: $\beta^2 = 4$, $\beta^3 = 3$, $\beta^4 = 1$ (все ненулевые элементы).

Возможны многочлены:
$$g(x)=(x-2)$$
 ($\kappa=1$, исправляет $\left\lfloor\frac{\kappa}{2}\right\rfloor=0$ ошибок), $g(x)=(x-2)(x-4)$ ($\kappa=2$, исправляет $\left\lfloor\frac{\kappa}{2}\right\rfloor=1$ ошибку), $g(x)=(x-2)(x-4)(x-3)$ ($\kappa=3$, исправляет $\left\lfloor\frac{\kappa}{2}\right\rfloor=1$ ошибку).

 $u \leqslant 1$: м-н локаторов одной ошибки $L(x) = 1 - xX_1 = 1 - x\gamma$ (производная $L'(x) = -\gamma$), м-н ошибок W(x) = c нулевой степени (то есть $Y_i = \frac{c}{-\gamma}$).

При $\mu = 4$ код циклический: $\beta^{\mu} = 1 \Rightarrow (\beta^{\ell})^{\mu} = 1 \Rightarrow$ все корни g(x) также являются корнями $x^{\mu} - 1$: $x^{\mu} - 1 = x^4 - 1 = x^4 + 4 = q(x)(x^2 + x + 3)$.

Выбираем $g(x) = (x-2)(x-4) = x^2 + 4x + 3$, $\kappa = 2$ контрольных символа, $\nu = \mu - \kappa = 2$ информационных символа.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 豆 釣魚@

Информационные потери Код Хэмминга (концепция) Практическое использование кода Хэмминга Полиномиальные коды Код Рида-Соломона над GF(5)

Систематический код Рида-Соломона (3. 1) ДПФ Рида-Соломона Сообщение (2. 1)

Систематический код Рида-Соломона (3, 1)

Сообщение: $(3,1) \sim a(x) = 3x + 1$, — коэффициенты записываем наоборот, чтобы в систематическом коде информ-е символы располагались в начале. $q(x) = (x-2)(x-4) = x^2 + 4x + 3$

Систематический код:

$$C(x) = a(x) \cdot x^{\kappa} - r(x)$$

Вычисление остатка: $r(x) = a(x) \cdot x^{\kappa} \mod g(x) = 3x^3 + x^2 \mod g(x) =$ $x=3\cdot \left(x^3 mod g(x)
ight)+1\cdot \left(x^2 mod g(x)
ight)$, где $x^{\kappa+i} mod g(x)$ — табличные.

Здесь:
$$x^{\kappa+0}=x^2=(x^2+4x+3)+x+2\equiv x+2,$$
 $x^{\kappa+1}=x^3=x\cdot x^2\equiv x(x+2)=x^2+2x\equiv 3x+2.$

To есть
$$r(x) = 3(3x + 2) + (x + 2) = (4x + 1) + (x + 2) = 3$$
.

$$C(x) = 3x^3 + x^2 - 3 = 3x^3 + x^2 + 2 = g(x) \cdot (3x + 4)$$

Код: $C(x) \sim (\underbrace{3,1},\underbrace{0,2})$ — первые (старшие) ν символов информационные.

$$C(x)$$
 делится на $g(x) \Leftrightarrow C(2) = C(4) = 0 \Leftrightarrow$ синдром $S(x) = 0$.

Систематический код Рида-Соломона (3, 1)

Информационные потери Код Хэмминга (концепция) Практическое использование кода Хэмминга Полиномиальные коды Код Рида-Соломона над GF(5)

ДПФ Рида-Соломона Сообщение (2. 1)

Коррекция ошибок

Ошибка:
$$(3,1,0,\mathbf{2}) o (3,1,0,\mathbf{0})$$
 $\widetilde{C}(x) = 3x^3 + x^2 = 2^3 \cdot x^3 + x^2$

Приняли
$$\widetilde{C}(x) = C(x) + e(x)$$
. Ошибка $e(x)$ неизвестна $e(x) = -2 = 3$

Найдём коэффициенты синдрома (степень $\kappa - 1 = 1$):

$$s_0 = \tilde{C}(2) = 3 \cdot 2^3 + 2^2 = 4 + 4 = 3$$

 $s_1 = \tilde{C}(4) = 3 \cdot 4^3 + 4^2 = 2 + 1 = 3$

Синдром
$$S(x)=3x+3\neq 0$$
 — ошибка есть, то есть $\widetilde{C}(x)\neq C(x)$.

Найдём параметры мн-в локаторов
$$L(x)=1-\gamma x$$
 и ошибок $W(x)=c$: $(3x+3)(1-\gamma x)=c \mod x^2$

получаем систему уравнений:
$$\begin{cases} 3-3\gamma=0 & \text{коэффициенты при } x \\ 3=c & \text{свободные члены} \end{cases}$$

откуда
$$\gamma=1=2^0$$
 и $c=3$. Решение системы — самая сложная часть

Место ошибки:
$$x^0$$
 (так как $\gamma=2^0$) — испорчен контрольный символ, коррекция $Y_1=\frac{3}{-1}=-3=2$: $C(x)=\widetilde{C}(x)+2\cdot x^0=3x^3+x^2+2$.

Информационные потери Код Хэмминга (концепция) Практическое использование кода Хэмминга Полиномиальные коды Код Рида-Соломона над GF(5)

Систематический код Рида-Соломона (3, 1) Коррекция ошибок Несистематический код Рида-Соломона ДПФ Рида-Соломона Сообщение (2, 1) Тот же порождающий многочлен $g(x)=(x-2)(x-4)=x^2+4x+3$, то же сообщение $(3,1)\sim a(x)=3x+1.$

Несистематический код:

$$C(x) = a(x)g(x) = 3x^3 + 3x^2 + 3x + 3 \sim (3,3,3,3)$$
 тоже $\mu = 4$ символа, но нельзя отделить инф-е от контрольных.

Восстановление сообщения: $C(x)h(x)=a(x)g(x)h(x)=a(x)(x^\mu-1)$, где h(x) — проверочный многочлен $h(x)=\frac{x^\mu-1}{g(x)}=x^2+x+3$.

$$a(x)(x^{\mu}-1)=(ax+b)(x^4-1)=ax^5+bx^4-ax-b\sim (a,b,0,0,-a,-b)$$
 $\nu+\mu-1=\nu+(\nu+\kappa)-1$ степени; $2\nu+\kappa$ символов, из них κ нулей.

$$C(x)h(x) = (3x^3 + 3x^2 + 3x + 3)(x^2 + x + 3) = 3x^5 + x^4 + 2x + 4$$

 $\sim (3, 1, 0, 0, 2, 4) = (3, 1, 0, 0, -3, -1)$

Синдром и коррекция — аналогично систематическому коду.

ДПФ Рида-Соломона

То же сообщение $(3,1) \sim a(x) = 3x + 1$ (коэффициенты записываем в обратном порядке, как и ранее, но здесь это неудобно).

$$\beta^{-4}=1, \beta^{-3}=2, \beta^{-2}=4, \beta^{-1}=3, \ \beta^0=1, \beta^1=2, \beta^2=4, \beta^3=3, \beta^4=1$$
 Кодирование:
$$c_0=a(\beta^0)=a(1)=3\cdot 1+1 \\ c_1=a(\beta^1)=a(2)=3\cdot 2+1=1+1=2 \\ c_2=a(\beta^2)=a(4)=3\cdot 4+1=2+1=3 \\ c_3=a(\beta^3)=a(3)=3\cdot 3+1=4+1=0$$

$$(0,3,2,4) \sim C(x) = 3x^2 + 2x + 4$$

$$a_0 = \frac{C(\beta^0)}{\mu} = \frac{3 \cdot 2^0 + 2 \cdot 2^0 + 4}{4} = \frac{3 + 2 + 4}{4} = \frac{4}{4} = 1$$

$$a_1 = \frac{C(\beta^{-1})}{\mu} = \frac{3 \cdot 2^{-2} + 2 \cdot 2^{-1} + 4}{4} = \frac{2 + 1 + 4}{4} = \frac{2}{4} = 3$$

$$a_2 = \frac{C(\beta^{-2})}{\mu} = \frac{3 \cdot 2^{-4} + 2 \cdot 2^{-2} + 4}{4} = \frac{3 + 3 + 4}{4} = \frac{0}{4} = 0$$

Восстановление:

$$a_{3} = \frac{\mu}{\mu} = \frac{4}{4} = \frac{4}{4} = 0$$

$$a_{3} = \frac{C(\beta^{-3})}{\mu} = \frac{3 \cdot 2^{-6} + 2 \cdot 2^{-3} + 4}{4} = \frac{2 + 4 + 4}{4} = \frac{0}{4} = 0$$

Информационные потери Код Хэмминга (концепция) Практическое использование кода Хэмминга Полиномиальные коды Код Рида-Соломона над GF(5)

ДПФ Рида-Соломона Сообщение (2. 1)

Сообщение:
$$(2,1) \sim a(x) = 2x+1$$
, $g(x) = (x-2)(x-4) = x^2+4x+3$ $r(x) = 2(3x+2) + (x+2) = (x+4) + (x+2) = 2x+1$. $C(x) = 2x^3 + x^2 - (2x+1) = 2x^3 + x^2 + 3x + 4 = g(x)(2x+3) \sim (2,1,3,4)$

Ошибка №1:
$$(2,1,3,4) \to (2,1,0,4)$$
 $\widetilde{C}(x) = 2x^3 + x^2 + 4$ Синдром: $s_0 = \widetilde{C}(2) = 4$, $s_1 = \widetilde{C}(4) = 3$: $S(x) = 3x + 4 \neq 0$ Из $(3x+4)(1-\gamma x) = c \mod x^2$ находим: $\gamma = \frac{3}{4} = 2$ и $4=c$. Место ошибки: x^1 (так как $\gamma = 2^1$) — испорчен контрольный символ, коррекция $Y_1 = \frac{4}{-2} = -2 = 3$: $C(x) = \widetilde{C}(x) + 3x = 2x^3 + x^2 + 3x + 4$.

Ошибка №2:
$$(2,1,3,4) o (4,1,3,4)$$
 $\widetilde{C}(x) = 4x^3 + x^2 + 3x + 4$ Синдром: $s_0 = \widetilde{C}(2) = 1$, $s_1 = \widetilde{C}(4) = 3$: $S(x) = 3x + 1 \neq 0$ — ошибка. Из $(3x+1)(1-\gamma x) = c \mod x^2$ находим: $\gamma = 3 = 2^3$, $c = 1$, коррекция $Y_1 = \frac{1}{-3} = -2 = 3$: $C(x) = \widetilde{C}(x) + 3x^3 = 2x^3 + x^2 + 3x + 4$.

Информационные потери Код Хэмминга (концепция) Практическое использование кода Хэмминга Полиномиальные коды Код Рида-Соломона над GF(5)

Систематический код Рида-Соломона (3. 1) ДПФ Рида-Соломона Сообщение (2, 1)

Тот же порождающий многочлен то же сообщение

$$g(x) = (x-2)(x-4) = x^2 + 4x + 3,$$

(2,1) \sim a(x) = 2x + 1.

$$\beta^{-4}=1, \beta^{-3}=2, \beta^{-2}=4, \beta^{-1}=3, \ \beta^{0}=1, \beta^{1}=2, \beta^{2}=4, \beta^{3}=3, \beta^{4}=1$$

Несистематический код:
$$C(x)=a(x)g(x)=2x^3+4x^2+3\sim(2,4,0,3)$$

$$C(x)h(x)=(2x^3+4x^2+3)(x^2+x+3)=2x^5+x^4+3x+4$$

$$\sim(2,1,0,0,3,4)=(2,1,0,0,-2,-1)$$

ДПФ Рида—Соломона:
$$(2,4,0,3)\sim C(x)=2x^3+4x^2+3$$
 совп. случайно $c_0=a(1)=2\cdot 1+1$ $=3$ $a_0=\frac{2\cdot 2^0+4\cdot 2^0+3}{4}=\frac{2+4+3}{4}=\frac{4}{4}=1$ $c_1=a(2)=2\cdot 2+1=4+1=0$ $a_1=\frac{2\cdot 2^{-3}+4\cdot 2^{-2}+3}{4}=\frac{4+1+3}{4}=\frac{3}{4}=2$ $c_2=a(4)=2\cdot 4+1=3+1=4$ $a_2=\frac{2\cdot 2^{-3}+4\cdot 2^{-2}+3}{4}=\frac{3+4+3}{4}=\frac{0}{4}=0$ $c_3=a(3)=2\cdot 3+1=1+1=2$ $a_3=\frac{2\cdot 2^{-9}+4\cdot 2^{-6}+3}{4}=\frac{1+1+3}{4}=\frac{0}{4}=0$

Информационные потери Код Хэмминга (концепция) Практическое использование кода Хэмминга Полиномиальные коды Код Рида-Соломона над GF(5)

MNЭT http://miet.ru/

Александра Игоревна Кононова illinc@mail.ru

