

HÁP THU

Bài 1.
Hãy biểu diễn thành phần hỗn hợp lỏng gồm các cấu từ sau theo phần khối lượng,
phần mol, phần thể tích.

#	Cấu từ	M _i (kg/kmol)	$\rho_i(kg/m^3)$	M _i (kg)
1	Metanol	32	792	160
2	Propanol	60	804	225
3	Butanol	74	810	400
4	Octanol	130	130	70

Bài giải

				-		
#	Cấu từ	M _i (kg/kmol)	ρ _i (kg/m ³)	M _i (kg)	$n_i = \frac{m_i}{M_i} (kmol)$	$V_i = \frac{m_i}{\rho_i} (m^3)$
1	Metanol	32	792	160	5,000	0,202
2	Propanol	60	804	225	3,750	0,280
3	Butanol	74	810	400	5,405	0,494
4	Octanol	130	130	70	0,538	0,538

Hỗn hợp có:

$$G_X = \sum m_i = 160 + 225 + 400 + 70 = 855 \text{ kg}$$

$$n_X = \sum n_i = 5+3,750+5,405+0,538=14,693 \text{ kmol}$$

$$V_x = \sum V_i = 0,202+0,280+0,494+0,538=1,514 \text{ m}^3$$

Thành phần khối lượng của hỗn hợp:

$$\bar{x}_1 = \frac{m_1}{G_X} = \frac{160}{855} = 0,187 \,\text{kg/kg}$$

$$\bar{x}_2 = \frac{m_2}{G_X} = \frac{225}{855} = 0,263 \,\text{kg/kg}$$

$$\bar{x}_3 = \frac{m_3}{G_X} = \frac{400}{855} = 0.468 \text{ kg/kg}$$

$$\bar{x}_4 = \frac{m_4}{G_X} = \frac{70}{855} = 0.082 \text{ kg/kg}$$

Thành phần mol của hỗn hợp:

$$\begin{aligned} x_1 &= \frac{n_1}{n_X} = \frac{5}{14.693} = 0,340 \text{ kmol/kmol} \\ x_2 &= \frac{n_2}{n_X} = \frac{53,75}{14,693} = 0,255 \text{kmol/kmol} \\ x_3 &= \frac{n_3}{n_X} = \frac{5.405}{14.693} = 0,368 \text{kmol/kmol} \\ x_4 &= \frac{n_4}{n_X} = \frac{0,538}{14,693} = 0,037 \text{kmol/kmol} \end{aligned}$$

Thành phần thể tích của hỗn hợp:

$$\begin{split} v_1 &= \frac{V_1}{V_X} = \frac{0,202}{1,514} = 0,133 \text{ m}^3/\text{m}^3 \\ v_2 &= \frac{V_2}{V_X} = \frac{0,280}{1,514} = 0,185 \text{ m}^3/\text{m}^3 \\ v_3 &= \frac{V_3}{V_X} = \frac{0,494}{1,514} = 0,326 \text{ m}^3/\text{m}^3 \\ v_4 &= \frac{V_4}{V_X} = \frac{0,538}{1,514} = 0,355 \text{ m}^3/\text{m}^3 \end{split}$$

Bài 2. Một hỗn hợp khí có thành phần như sau:

#	Cấu tử	M _i (kg/kmol)	y _i (% mol)
1	Metan	16	30
2	Etan	30	47
3	Pentan	72	23

Xác định phần khối lượng của hỗn hợp khí trên, thể tích của từng cấu từ trong 100 kmol hỗn hợp khí ở điều kiện chuẩn và ở điều kiện p = 10 at, t = 80°C.

Bài giải

#	Cấu từ	M_i	y _i (% mol)	$n_i' = y_i . n_Y (kmol)$	$m_i' = n_i' \cdot M_i(kg)$
		(kg/kmol)			
1	Metan	16	30	30	480
2	Etan	30	47	47	1410
3	Pentan	72	23	23	1656

Ta có:

$$n_v = \sum n_i = 100 \text{ kmol}$$

$$m_Y = \sum m_i = 480 + 1410 + 1656 = 3546 \text{ kg}$$

$$V^{\circ} = 100.22.4 = 2240 \text{ m}^{3}$$

$$V = \frac{n_Y RT}{p} = \frac{100.0,082.353}{1} = 2894,6 \text{ m}^3$$

Phần khối lượng của hỗn hợp khí:

$$\bar{y}_1 = \frac{m_1'}{m_V} = \frac{480}{3546} = 0.135 \,\mathrm{kg/kg}$$

$$\bar{y}_2 = \frac{m_2}{m_V} = \frac{1410}{3546} = 0.398 \text{ kg/kg}$$

$$\bar{y}_3 = 1 - (\bar{y}_1 + \bar{y}_2) = 1 - (0.135 + 0.398) = 0.467 \text{kg/kg}$$

Thể tích của từng cấu từ ở điều kiện chuẩn:

$$V_1^o = y_1 V^o = 0.3.2240 = 672 \text{ m}^3$$

$$V_2^o = y_2 V^o = 0.47.2240 = 1052.8 \text{ m}^3$$

$$V_3^0 = y_3 V^0 = 0.23.2240 = 515.2 \text{ m}^3$$

Thể tích của từng cấu từ ở điều kiện p = 1 at, t=80°C:

$$V_1 = y_1 V = 0.3.2894.6 = 868.38 \text{ m}^3$$

$$V_2 = y_2 V = 0.47.2894.6 = 1360.462 \text{ m}^3$$

$$V_3 = y_3 V = 0.23.2894.6 = 665.758 \,\mathrm{m}^3$$

Rài 3

Hãy xác định hệ số khuếch tán của SO_2 , H_2S , CO_2 trong môi trường không khí và nước ở điều kiện p=1 at, t=40 °C.

Bài giải

a.

Hệ số khuếch tán của SO₂, H₂S, CO₂ trong không khí được tính theo công thức sau:

$$D_{A} = \frac{0,0043.10^{-4}.\,T^{\frac{3}{2}}}{p\left(v_{A}^{\frac{1}{3}} + v_{kk}^{\frac{1}{3}}\right)}(\frac{1}{M_{A}} + \frac{1}{M_{kk}})^{\frac{1}{2}},m^{2}/s$$

Trong đó:

 $A \equiv SO_2, H_2S \text{ hoặc } CO_2;$

MA, Mkk - khối lượng mol của A và không khí, kg/kmol;

v_A, v_{kk} - thể tích mol của A và không khí, cm³/mol;

A	M _A , kg/kmol	v _A , cm ³ /mol	$M_{kk} = 29.9 \text{ kg/kmol}$
SO ₂	64	44,8	$v_{\rm kk} = 29.9 \rm cm^3/mol$
H ₂ S	34	32,9	
CO ₂	44	34	

T = 313K;

p = 1 at.

Ta được:

$$\begin{split} &D_{SO_2} = \frac{0,0043.\,10^{-4}.\,313^{\frac{3}{2}}}{1.\left(44,8^{\frac{1}{3}}+29,9^{\frac{1}{3}}\right)}(\frac{1}{64} + \frac{1}{29})^{\frac{1}{2}} = 1,2.\,10^{-5}\,\text{m}^2/\text{s} \\ &D_{H_2S} = \frac{0,0043.\,10^{-4}.\,313^{\frac{3}{2}}}{1.\left(32,9^{\frac{1}{3}}+29,9^{\frac{1}{3}}\right)}(\frac{1}{34} + \frac{1}{29})^{\frac{1}{2}} = 1,5126.\,10^{-5}\,\text{m}^2/\text{s} \\ &D_{SO_2} = \frac{0,0043.\,10^{-4}.\,313^{\frac{3}{2}}}{1.\left(34^{\frac{1}{3}}+29,9^{\frac{1}{3}}\right)}(\frac{1}{44} + \frac{1}{29})^{\frac{1}{2}} = 1,4154.\,10^{-5}\,\text{m}^2/\text{s} \end{split}$$

h

Hệ số khuếch tấn của SO_2 , H_2S , CO_2 trong nước ở $20^{\circ}C$ được tính theo công thức sau:

$$D_{A,H_{2}O}^{o} = \frac{10^{-6}(\frac{1}{M_{A}} + \frac{1}{M_{H_{2}O}})^{\frac{1}{2}}}{ab\mu_{H_{2}O,2O}^{\frac{1}{2}}(v_{A}^{\frac{1}{3}} + v_{H_{2}O}^{\frac{1}{3}})^{2}}, m^{2}/s$$

Trong đó:

 $A \equiv SO_2, H_2S \text{ hoặc } CO_2;$

a là hệ số hiệu chính của A;

b là hệ số hiệu chỉnh của H₂O;

MA, MH2O - khối lượng mol của A và H2O, kg/kmol;

v_A, v_{H₂O} - thể tích mol của A và H₂O, cm³/mol;

 $\mu_{H_2O,20}$ – độ nhớt động lực học của H_2O ở 20 °C, cP;

A	M _A , kg/kmol	v _A , cm ³ /mol	a = 1, b = 4,7
SO ₂	64	44,8	$M_{\rm H_2O} = 18 kg/kmol$
H ₂ S	34	32,9	$v_{\rm H_2O} = 18,9 \rm cm3/mol$
CO ₂	44	34	$\mu_{\text{H}_2\text{O},20} = 1,005\text{cP}$

Ta được:

$$D^{0}_{SO_{2},H_{2}0} = \frac{10^{-6}(\frac{1}{64} + \frac{1}{18})^{\frac{1}{2}}}{1.4,7.1,005^{\frac{1}{2}}.(44,8^{\frac{1}{2}} + 18,9^{\frac{1}{2}})^{2}} = 1,4658.10^{-9} \text{ m}^{2}/\text{s}$$

$$D_{H_2S,H_2O}^0 = \frac{10^{-6} (\frac{1}{34} + \frac{1}{18})^{\frac{1}{2}}}{1.4.7.1.005^{\frac{1}{2}}.(32.9^{\frac{1}{2}} + 18.9^{\frac{1}{2}})^2} = 1,7967.10^{-9} \text{ m}^2/\text{s}$$

$$D^{o}_{\text{CO}_2,\text{H}_2\text{O}} = \frac{10^{-6} (\frac{1}{44} + \frac{1}{18})^{\frac{1}{2}}}{1.4,7.1,005^{\frac{1}{2}}.(34^{\frac{1}{2}} + 18,9^{\frac{1}{2}})^2} = 1,7040.10^{-9} \text{ m}^2/\text{s}$$

Hệ số khuếch tán của SO_2 , H_2S , CO_2 trong nước ở 40° C được tính theo công thức sau:

$$D_{A,H_2O} = D_{A,H_2O}^o[1 + \beta(t-20)], m^2/s$$

với:

$$\beta = \frac{0.2\mu_{\text{H}_2\text{O},20}^{\frac{7}{2}}}{\rho_{\text{H}_2\text{O},20}^{\frac{3}{2}}} = \frac{0.2.1,005^{\frac{1}{2}}}{9983} = 0.02$$

 $ρ_{H_2O,20} = 998$ kg/m³ – khối lượng riêng của H_2O ở 20°C

Do đó:

$$\begin{split} &D_{SO_2,H_2O} = 1,\!4658.\,10^{-9}.[1+0,\!02(40-20)] = 2,\!0521.\,10^{-9}\,m^2/s\\ &D_{H_2S,H_2O} = 1,\!7967.10^{-9}.[1+0,\!02(40-20)] = 2,\!5154.\,10^{-9}\,m^2/s \end{split}$$

$$D_{CO_2,H_2O} = 1,7040.10^{-9}.[1 + 0,02(40 - 20)] = 2,3856.10^{-9} \text{ m}^2/\text{s}$$

Bài 4.

Tính hệ số chuyển khối của quá trình hấp thụ CO2 từ hỗn hợp khói thải. Biết:

Quá trình được tiến hành trong tháp đệm có tổng bề mặt tiếp xúc pha F = 4500 m²;

Hỗn hợp khí đi vào tháp có lưu lượng $G_v = 5000 \text{N m}^3/\text{h}$;

Dung môi được sử dụng là nước $G_x = 650 \text{ m}^3/\text{h}$;

Nồng độ CO_2 trong khói thải đi vào tháp $y_d = 28,4\%$ thể tích;

Hiệu suất của quá trình hấp thụ ζ=98%;

Tháp làm việc ở điều kiện p = 16,5 at, t = 15°C.

Bài giải

Lưu lượng hỗn hợp khí:

$$G_y = \frac{5000}{22,4} = 223,21 \text{ kmol/h}$$

Lưu lượng nước:

$$G_x = \frac{650.1000}{18} = 36111,11 \text{ kmol/h}$$

Nồng độ đầu của CO2 trong pha khí:

 $y_d = 0.284 \text{ kmol } CO_2/\text{kmol pha khi}$

Nồng độ cuối của CO2 trong pha khí:

$$\begin{split} y_c &= \frac{G_{\text{CO}_2\text{tho}\,\text{st}\,\text{ra}}}{G_{\text{CO}_2\text{tho}\,\text{st}\,\text{ra}} + G_{\text{tr}\sigma}} = \frac{G_y y_d (1 - \zeta)}{G_y y_d (1 - \zeta) + G_y (1 - y_d)} \\ &= \frac{y_d (1 - \zeta)}{1 - y_d \zeta} = \frac{0.284 (1 - 0.98)}{1 - 0.284.0.98} = 0.008 \text{ kmol CO}_2/\text{kmol pha khi} \end{split}$$

Lượng CO_2 được hấp thụ: $G=G_yy_d\zeta=223,21.0,284.0,98=62,12$ kmol CO_2/h Nồng độ đầu của CO_2 trong pha lỏng:

$$x_d = 0$$

Nồng độ cuối của CO2 trong pha lỏng:

$$x_c = \frac{G}{G + G_x} = \frac{62,12}{62,12 + 36111,11} = 0,0017 \text{ kmol CO}_2/\text{kmol pha long}$$

Phương trình đường cân bằng:

$$y^* = mx = \frac{\psi}{p}x$$

 $\dot{\sigma} 15^{\circ}\text{C có} \,\psi = 0.93. \, 10^{6} \,\text{torr}, \, p=16.5 \,\text{at} = 12540 \,\text{torr}$

$$\Rightarrow m = \frac{0,93.10^6}{12540} = 74,16$$

$$\Rightarrow$$
 y* = 74,16x

Ta được:

$$y_d^* = 74,16x_d = 74,16.0 = 0$$

Đồ thị biểu diễn động lực của quá trình chuyển khối

 $y_c^* = 74,16.0,0017 = 0,1261 \text{ kmol CO}_2/\text{kmol pha khí}$

Động lực chuyển khối ở đình tháp đệm:

$$\Delta y_1 = y_c - y_d^* = 0,008 - 0 = 0,008 \text{ kmol CO}_2/\text{kmol pha khí}$$

Động lực chuyển khối ở đáy tháp đệm:

$$\Delta y_2 = y_d - y_c^* = 0,284 - 0,1261 = 0,1579 \, \, \mathrm{kmol} \, \mathrm{CO}_2/\mathrm{kmol} \, \mathrm{pha} \, \mathrm{khi}$$

Động lực trung bình của quá trình chuyển khối:

$$\Delta y_{tb} = \frac{\Delta y_2 - \Delta y_1}{\ln \frac{\Delta y_2}{\Delta y_1}} = \frac{0.1579 - 0.008}{\ln \frac{0.1579}{0.008}} = 0.0503 \text{ kmolCO}_2/\text{kmol pha khí}$$

Hệ số chuyển khối:

$$k_y = \frac{G}{F.\Delta y_{tb}} = \frac{62,12}{4500.0,0503} = 0,2744 \,\text{kmolCO}_2/\text{m}^2.\,\text{h}.\Delta y_{tb} = 1$$

Bài 5.

Xác định số đơn vị chuyển khối m_y của quá trình hấp thụ NH_3 bằng nước ở điều kiện p=1 at, $t=25^{\circ}C$ với

 $Y_d = 0.03$ kmol NH₃/kmol khí tro, $Y_c = 0.003$ kmol NH₃/kmol khí tro

 $X_d = 0$ kmol NH₃/ kmol H₂O, $X_c = 0.02$ kmol NH₃/kmol H₂O

X, kmol NH ₃ / kmol H ₂ O	0	0,005	0,010	0,0125	0,015	0,020	0,023
Y*, kmol NH ₃ / kmol	0	0,0045	0,0102	0,0138	0,0183	0,0273	0,0327
khí trơ							

Bài giải

Phương trình đường làm việc:

$$Y = AX + B$$

Ta có:

$$\begin{cases} Y_d = AX_c + B \\ Y_c = AX_d + B \end{cases} \Longleftrightarrow \begin{cases} 0.03 = A.0.02 + B \\ 0.003 = A.0 + B \end{cases} \Longleftrightarrow \begin{cases} A = 1.35 \\ B = 0.003 \end{cases}$$

$$\Rightarrow$$
 Y = 1.35X + 0.003

Số đơn vị chuyển khối được tính theo công thức:

$$m_y = \int_{V}^{Y_d} \frac{1}{Y - Y^*} dY$$

Ta tính số đơn vị chuyển khối theo đồ thị tích phân.

Bảng số liệu cho đồ thị tích phân

X	0.0000	0.0050	0.0100	0.0125	0.0150	0.0200
Y*	0.0000	0.0045	0.0102	0.0138	0.0183	0.0273
Y	0.0030	0.0098	0.0165	0.0199	0.0233	0.0300
$\frac{1}{Y - Y^*}$	333.3333	190.4762	158.7302	164.6091	202.0202	370.3704

Đổ thị tích phân

Số đơn vị chuyển khối = diện tích hình thang cong = S = 5.8134

TRÍCH LY

Bài 1. Hệ 3 cấu từ nước (A) – Axeton (B) – Tricloetan(C) có số liệu đường cân bằng như sau (tính theo % khối lương):

Lớp	nước ($\overline{x})$	Lớp '	Tricloet	an (y)	Lớp	nước (\overline{x}	Lớp T	an (\overline{y})	
A	В	S	A	В	S	A	В	S	A	В	S
93,52	5,86	0,52	0,31	8,75	90,93	62,65	35,75	1,60	4,26	48,21	47,53
85,35	13,97	0,68	0,90	20,78	78,32	50,20	46,05	3,75	8,90	57,40	33,70
80,16	19,03	0,79	1,33	27,66	71,01	41,70	51,78	6,52	13,40	60,34	26,26
73,00	26,00	1,00	2,09	37,06	60,85		N				

M=100 kg, B=40 kg

a. Xây dựng đường liên hợp khi thành phần pha Raphinat: $\bar{x}_{A,R}=63,95\%$, $\bar{x}_{B,R}=29,54\%$, $\bar{x}_{S,R}=1,11\%$.

b. R,E?

Bài giải

Thành phần pha trích: $\bar{y}_{A,E} = 2,66\%$, $\bar{y}_{B,E} = 41,11\%$, $\bar{y}_{S,E} = 56,23\%$.

Các phương trình cân bằng vật liệu:

$$M = R + E = 100$$

$$B = R\overline{x}_{B,R} + E\overline{y}_{B,E} = 0,2954R + 0.4111E = 40$$

$$\Longrightarrow \begin{cases} R = 90,41 \text{ kg} \\ E = 9,59 \text{ kg} \end{cases}$$

Bài 2.

Dùng CS₂ trích ly I₂trong nước thải.

Hàm lượng I2 trong nước là 1 g/l

Hệ số phân bố của I2trong CS2 và nước k=588,24

Coi CS2 và nước không tan lẫn vào nhau

F=1000 l, hàm lượng I_2 trong nước thải = 1g/l

a. Trích ly 1 bậc đơn giản

b. Trích ly 5 bậc chéo dòng với $S_1=S_2=...=S_5=S=10 l$

Tính lượng I2 tách được trong các trường hợp và nhận xét?

Bài giải

a. Phương trình cân bằng vật liệu viết cho I₂:

$$A\overline{X}_{o} = S\overline{Y} + A\overline{X}$$

Quan hệ cân bằng : $\overline{Y} = k\overline{X}$

$$\Rightarrow \overline{X} = \frac{X_0}{1 + k\frac{S}{A}} = \frac{1}{1 + 588,24.\frac{50}{1000}} = 0,033 \text{ g/l}$$

Lượng I_2 tách ra: $m_{I_2} = 1000(1 - 0.033) = 967g$

b.

Các phương trình cân bằng vâtl liệu viết cho I2:

$$\begin{split} &A\overline{X}_{o}=S_{1}\overline{Y}_{1}+A\overline{X}_{1}\Longrightarrow\overline{X}_{1}=\frac{\overline{X}_{o}}{1+k\frac{S}{A}}\\ &A\overline{X}_{1}=S_{2}\overline{Y}_{2}+A\overline{X}_{2}\Longrightarrow\overline{X}_{2}=\frac{\overline{X}_{o}}{(1+k\frac{S}{A})^{2}} \end{split}$$

...

$$A\overline{X}_{4} = S_{5}\overline{Y}_{5} + A\overline{X}_{5} \Longrightarrow \overline{X}_{5} = \frac{\overline{X}_{0}}{(1 + k\frac{S}{A})^{5}}$$

$$\Longrightarrow \overline{X}_{5} = \frac{1}{(1 + 588,24.\frac{10}{1000})^{5}} = 6,476.10^{-5} \text{ g/l}$$

Lượng I_2 tách ra: $m_{I_2} = 1000(1 - 6,476.10^{-5}) = 999,935g$

Nhận xét:

Với cùng một lượng dung môi thứ, phương pháp trích ly nhiều bậc hiệu quà hơn phương pháp trích ly một bắc đơn giản.

Bài 3.

Dùng MIK(Metylizoketon) trích ly 1 bâc đơn giản Axeton trong nước thải.

F = 100 kg, 75% khối lượng nước và 25% khối lượng Axeton

S = 100 kg

Số liệu cân bằng của hệ 3 cấu từ Nước (A) – Axton (B) – MIK (S) (tính theo % khối lương):

1	Lớp nước (\overline{x}))		Lớp MIK (y)	
A	В	S	A	В	S
97,5	0	2,5	3,3	0	96,7
75	20	5	5	30	65
65	30	5	14	46	40

a. Smax, Smin?

b. R.E?

Bài giải

a. Lượng MIK tối thiểu ứng với điểm N":

$$S_{min} = F. \frac{\overline{FN''}}{\overline{SN''}} = 100. \frac{4,4}{85.7} = 5,13 \text{ kg}$$

Lượng MIK tối đa ứng với điểm N':

$$S_{\text{max}} = F \cdot \frac{\overline{FN'}}{\overline{SN'}} = 100 \cdot \frac{86,2}{4,0} = 2155 \text{ kg}$$

b. Điểm N là hỗn hợp giữa nước thải và MIK được xác định là trung điểm của SF ($\frac{S}{F} = \frac{100}{100} = 1$), tương ứng với đường liên hợp RE.

Thành phần pha Raphinat: $\bar{x}_{A,R} = 85,6\%$, $\bar{x}_{B,R} = 10,1\%$, $\bar{x}_{S,R} = 4,3\%$.

Thành phần pha trích: $\bar{y}_{A,E}=3,4\%, \, \bar{y}_{B,E}=14,2\%, \, \bar{y}_{S,E}=82,4\%.$

Ta có các phương trình:

$$F + S = N = R + E = 100 + 100 = 200$$

$$\frac{R}{E} = \frac{\overline{NE}}{\overline{NR}} = \frac{33,3}{47,1}$$

$$\Rightarrow \begin{cases} R = 82,84 \text{ kg} \\ E = 117,16 \text{ kg} \end{cases}$$

Độ trích ly:

$$\phi = \frac{E.\,\bar{y}_{B,E}}{B} = \frac{117,16.0,142}{25} = 66,55\%$$

Bài 4.

Dùng Tricloetan trích ly nhiều bậc ngược chiều Axeton trong nước thải.

F=100 kg/h, 50% khối lương Axeton và 50% khối lương nước.

S=30kg/h, t=25°C

 $\bar{x}_{B,R}=10\%$ khối lượng

Tính số bậc trích ly?

Bài giải

Điểm F ứng với nước thải là trung điểm của đoạn AB

Điểm N ứng với hỗn hợp của nước thải với Tricloetan nằm trên SF và xác định bởi:

$$\frac{\overline{NF}}{\overline{NS}} = \frac{S}{F} = \frac{30}{100} = \frac{3}{10}$$

N=S+F=R_n+E₁⇒E₁là giao điểm của R_nN với đường cân bằng

Điểm cực P là giao điểm của E₁F và SR_n.

Vẽ các đường liên hợp, mỗi đường liên hợp ứng với một bậc trích ly ngược chiều.

Số bậc trích ly = số đường liên hợp = 5.

CHUNG LUYEN

Bài 1.

Chưng luyên liên tục hỗn hợp metanol - nước

p=1 at

 $x_F = 31,5\%$ mol, $x_P = 97,5\%$ mol, $x_W = 1,1\%$ mol.

 $R = 1,77R_{min}$

Hỗn hợp F ở nhiệt độ sôi

Tính: Số bậc thay đổi nồng độ?

Bài giải

Bảng số liệu cân bằng lỏng hơi metanol – nước:

X % khối lượng	Y % khối lượng	x % mol	y* % mol
1	7.3	0.0056	0.0424
4	23.5	0.0229	0.1473
6	31.5	0.0347	0.2055
10	43.4	0.0588	0.3013
20	61	0.1233	0.4680
30	70.5	0.1942	0.5734
40	76.7	0.2727	0.6493
50	81.2	0.3600	0.7084
60	84.8	0.4576	0.7583
70	88.3	0.5676	0.8093
80	92.1	0.6923	0.8677
90	96	0.8351	0.9310

Nội suy từ bàng số liệu cân bằng lòng hơi metanol – nước ta có $y_F^* = 0,6804$.

Chi số hồi lưu tối thiểu:

$$R_{min} = \frac{x_P - y_F^*}{y_F^* - x_F} = \frac{0.975 - 0.6804}{0.6804 - 0.315} = 0.8062$$

Chỉ số hồi lưu thực tế:

$$R = 1,77R_{min} = 1,77.0,8062 = 1,4270$$

Phương trình đường làm việc đoạn luyện:

$$y = \frac{R}{R+1}x + \frac{x_P}{R+1}$$

$$= \frac{1,4270}{1,4270+1}x + \frac{0,975}{1,4270+1}$$
$$= 0,5880x + 0,4017$$

Từ đây ta vẽ được đổ thị y - x để xác định số bậc thay đổi nồng độ

Số bậc thay đổi nồng độ = 11

Bài 2.

Chưng luyện liên tục hỗn hợp Benzen - Xylen

Áp suất làm việc p = 2 at

 $F = 5000 \text{ kg/h}, x_F = 45 \% \text{ mol}, x_P = 98 \% \text{ mol}, x_W = 1,5 \% \text{ mol}$

Hỗn hợp F ở nhiệt độ sôi

Tính: Chỉ số hồi lưu thích hợp Ropt và số đĩa lý thuyết Nit tương ứng?

Lượng sản phẩm đinh P và lượng sản phẩm đáy W?

Bài giải

Bảng số liệu cân bằng lỏng hơi Benzen - Xylen:

x (% mol) 0 0.03 0.05 0.10 0.20 0.30 0.45 0.60 0.90 1	x (% mol)	0	0.03	0.05	0.10	0.20	0.30	0.45	0.60	0.90	1
---	-----------	---	------	------	------	------	------	------	------	------	---

y (% mol)	0	0.103	0.159	0.272	0.447	0.572	0.727	0.838	0.972	1	Ī

Chỉ số hồi lưu tối thiểu:

$$R_{min} = \frac{x_P - y_F^*}{y_F^* - x_F} = \frac{0.98 - 0.727}{0.727 - 0.45} = 0.9134$$

Ta xác định R_{opt} theo điều kiện tháp chưng luyện có kích thước bé nhất nhưng có chế độ làm việc tốt nhất. Điểm cực tiểu của đồ thị quan hệ $N_h(R+1)=f(R)$ cho ta R_{opt}

Ta lần lượt cho $R=\beta R_{min}$ ($\beta=1,1;\ 1,2;...$) rồi vẽ đồ thị y-x xác định N_{lt} tương ứng, sau đó, vẽ và tìm điểm cực tiểu của đồ thị quan hệ $N_{lt}(R+1)=f(R)$.

Bảng kết quả tính toán:

#	β	R	N _k	$N_h(R+1)$
1	1	$R_{min} = 0.9134$	00	00
2	1,1	1.0047	17	34.0799
3	1,2	1.0961	15	31.4415
4	1,3	1.1874	14	30.6236
5	1,4	1.2788	13	29.6244
6	1,5	1.3701	12	28.4412
7	1,6	1.4614	12	29.5368
8	00	∞	$N_{lt min} = 7$	- 00

$$R_{opt} = 1.5245R_{min} = 1,3925$$

$$N_{lt} = \frac{23,3708}{R_{out} + 1} = \frac{23,3708}{1.3925 + 1} = 9,7684 \cong 10$$

Lượng hỗn hợp đầu:

$$F = 5000 \text{ kg/h}, x_F = 45 \% \text{ mol}$$

$$\Rightarrow F = \frac{0,45.5000}{78} + \frac{(1 - 0,45).5000}{106} = 54,7896 \text{ kmol/h}$$

Lượng sản phẩm đình:

$$P = F \frac{x_F - x_W}{x_P - x_W} = 54,7896 \frac{0,45 - 0,015}{0,98 - 0,015} = 24,6979 \text{ kmol Benzen/h}$$

Lượng sản phẩm đáy:

$$W = F - P = 54,7896 - 24,6979 = 30,0917 \text{ kmol Xylen/h}$$

Bài 3.

Chưng đơn giản (gián đoạn) hỗn hợp rượu etylic – nước

 $F = 1000 \text{ kg}, x_F = 60 \% \text{ khối lượng}, x_W = 5 \% \text{ khối lượng}$

Tính: Lượng sản phẩm đáy và lượng sản phẩm đinh?

Bài giải

Hỗn hợp đầu:

$$F = 1000 \text{ kg}, x_F = 60 \% \text{ khối lượng}$$

$$\Rightarrow$$
 F = $\frac{600}{46} + \frac{400}{18} = 35,2657 \text{ kmol}$

Bảng số liệu cân bằng lỏng hơi rượu etylic – nước:

X (% khối lượng)	Y* (% khối lượng)	X (% mol)	y* (% mol)	1/(y*-x*)
2.5	25	0.0099	0.1154	9.483092
5	36	0.0202	0.1804	6.2414
10	51.6	0.0417	0.2944	3.9572
15	60	0.0646	0.3699	3.2758
20	65.5	0.0891	0.4262	2.9661
25	69	0.1154	0.4655	2.8561
30	71	0.1436	0.4893	2.8930
35	72.8	0.1740	0.5116	2.9628
40	74	0.2069	0.5269	3.1250
45	75.4	0.2425	0.5453	3.3024
50	76.7	0.2813	0.5630	3.5498
55	77.8	0.3235	0.5783	3.9252
60	78.9	0.3699	0.5940	4.4610
65	80	0.4209	0.6102	5.282448
70	81	0.4773	0.6252	6.75942
75	83.5	0.5400	0.6645	8.034953
80	85.5	0.6102	0.6976	11.43206

Lượng sản phẩm đáy:

$$ln\frac{F}{W} = \int_{x_W}^{x_F} \frac{dx}{y - x} = S$$

$$\Rightarrow ln\frac{35,2657}{W} = 1,2071$$

$$N = \frac{35,2657}{e^{1,2071}} = 10,5467 \text{ kmol nuớc}$$

Lượng sản phẩm định:

$$P = F - W = 35,2657 - 10,5467 = 24,7190 \text{ kmol ruou etylic}$$