,	Name:	Ostfalia Hochschule für angewandte Wissenschaften
	atrikelnr.:	Fakultät für Fahrzeugtechnik Konz
Un	terschrift:	
•••••	Übungsklausur 02 <i>Digitaltechnik</i> BachelorSS 20	
Zugel •	assene Hilfsmittel: Keine	
Zeit:	90 Minuten	
Wicht • •	ig: Schreiben Sie nur auf den Klausurblättern/Rückseiten. Extraz Ergebnisse sind doppelt zu unterstreichen. Das Auseinanderheften dieses Dokumentes ist nicht gestattet	

AUFGABE	1	2	3	4	5	SUMME
max. Punktzahl						
erreichte Punkte						

Note:		
Note:		

- Stellen Sie zu den gegebenen Schaltungen jeweils die Gleichung auf.
- Vereinfachen Sie jeweils die Gleichung mittels Boolscher Algebra auf eine minimale Gatteranzahl (erlaubte Verknüpfungen: AND, OR, NAND, NOR, NOT, XOR; die Anzahl der Eingänge ist beliebig; ein negierter Eingang ist eine NOT-Verknüpfung)
- Zeichnen Sie jeweils die vereinfachte Schaltung

a)

b)

c)

a)	Zeichnen	Sie den	Schaltplan	ı für e	ein SR	-Latch	und stellen	Sie die	Wahrheitstabelle	dazu a	uf.
α,		ore acri	ocmanipian	ııuı (Laten	und stenen	oic aic	v v alli licitota d'elic	,	. uazu a

b) Zeichnen Sie den Schaltplan für einen Halbaddierer.

Analysieren Sie untenstehende Schaltung:

Aufgabe 3 (Fortsetzung)

a) Vervollständigen Sie die Wahrheitstabelle zur Schaltung.

Index	a	b	C	d	Z
0	0	0	0	0	
1	0	0	0	1	
2	0	0	1	0	
3	0	0	1	1	
4	0	1	0	0	
5	0	1	0	1	
6	0	1	1	0	
7	0	1	1	1	
8	1	0	0	0	
9	1	0	0	1	
10	1	0	1	0	
11	1	0	1	1	
12	1	1	0	0	
13	1	1	0	1	
14	1	1	1	0	
15	1	1	1	1	

b) Entwickeln Sie die Konjunktive Normalform (Maxterme).

Aufgabe 3 (Fortsetzung)

c) Vereinfachen Sie die Schaltung mittels Karnaugh-Diagramm (Gleichung).

			<u>l</u>		
	0	1	5	4	
c	2	3	7	6	
	10	11	15	14	a
	8	9	13	12	
					-

d) Realisieren Sie die Schaltung ausschließlich mit NAND-Gattern (Funktionsgeleichung und Schaltplan).

Entwerfen Sie eine digitale Schaltung, die im Binärcode von 0 bis 5 zählt und dann wieder bei 0 beginnt. Verwenden Sie dazu JK-FlipFlops, die synchron angesteuert werden.

- a) Erstellen Sie zunächst ein Zustandsdiagramm für die Funktion (Zustände der FlipFlops und Übergangsbedingungen).
- b) Stellen Sie die Wahrheitstabelle für die Schaltung auf.
- c) Entwickeln Sie die Funktionsgleichungen der FlipFlops mittels Karnaugh-Diagrammen.