In [2]: 1 delivery=pd.read_csv('delivery_time.csv')
2 delivery

Out[2]:

	Delivery Time	Sorting Time
0	21.00	10
1	13.50	4
2	19.75	6
3	24.00	9
4	29.00	10
5	15.35	6
6	19.00	7
7	9.50	3
8	17.90	10
9	18.75	9
10	19.83	8
11	10.75	4
12	16.68	7
13	11.50	3
14	12.03	3
15	14.88	4
16	13.75	6
17	18.11	7
18	8.00	2
19	17.83	7
20	21.50	5

```
1 delivery.shape
In [3]:
Out[3]: (21, 2)
         1 delivery.isnull().sum()
In [4]:
Out[4]: Delivery Time
                         0
        Sorting Time
                         0
        dtype: int64
In [5]:
         1 delivery.dtypes
Out[5]: Delivery Time
                         float64
        Sorting Time
                           int64
        dtype: object
```

Out[6]:

	delivery_time	sorting_time
0	21.00	10
1	13.50	4
2	19.75	6
3	24.00	9
4	29.00	10
5	15.35	6
6	19.00	7
7	9.50	3
8	17.90	10
9	18.75	9
10	19.83	8
11	10.75	4
12	16.68	7
13	11.50	3
14	12.03	3
15	14.88	4
16	13.75	6
17	18.11	7
18	8.00	2
19	17.83	7
20	21.50	5

ASSUMPTION CHECK

1.Linear check

NameError: name 'sorting_time_vs_delivery_time' is not defined

NameError: name 'sorting_time_vs_delivery_time' is not defined

by this we can say linearity test failed

2. Distribution check

```
In [9]: 1 sns.distplot(a=delivery['sorting_time'],hist=True)
2 plt.show()
```


AttributeError: module 'seaborn' has no attribute 'show'


```
In [11]:
             1 delivery.skew()
Out[11]: delivery_time
                               0.352390
           sorting_time
                               0.047115
           dtype: float64
In [12]:
             1 delivery.kurtosis()
Out[12]: delivery_time
                               0.317960
           sorting time
                              -1.148455
           dtype: float64
In [13]:
             1 delivery.corr()
Out[13]:
                          delivery_time sorting_time
            delivery_time
                              1.000000
                                           0.825997
            sorting_time
                              0.825997
                                           1.000000
In [14]:
             1 sns.heatmap(delivery.corr(),annot=True)
             2 plt.show()
                                                             -1.00
                                                             - 0.98
            delivery_time
                                                             - 0.96
                         1
                                            0.83
                                                             - 0.94
                                                             - 0.92
                                                             - 0.90
            sorting_time
                                                             - 0.88
                        0.83
                                                             - 0.86
                                                              0.84
                    delivery_time
                                         sorting_time
```

model building || model training

```
1 model 1=smf.ols(formula='delivery_time~sorting_time', data=delivery).fit()
In [15]:
          2 model 1
Out[15]: <statsmodels.regression.linear model.RegressionResultsWrapper at 0x2044a1ec9d0>
          1 model_1.params
In [16]:
Out[16]: Intercept
                         6.582734
         sorting time
                         1.649020
         dtype: float64
In [17]:
          1 model_1.pvalues
Out[17]: Intercept
                         0.001147
         sorting time
                         0.000004
         dtype: float64
         model testing
```

```
In [21]:
           1 | data_pred=pd.DataFrame(data,columns=['sorting_time'])
            data pred
Out[21]:
             sorting_time
                     3
          0
          1
                     5
In [22]:
           1 model_pred=model_1.predict(data_pred)
           2 model pred
Out[22]: 0
              11.529794
              14.827833
         dtype: float64
In [23]:
           1 model 1=smf.ols(formula='delivery time~sorting time',data=delivery).fit()
           2 print('R-square
                                                        : ',round(model 1.rsquared,4))
           3 print('Adjusted R-square
                                                        : ',round(model 1.rsquared adj,4))
           4 print('Akaike information criterion (AIC) : ',round(model_1.aic,4))
           5 print('Bayesian information criterion(BIC): ',round(model_1.bic,4))
         R-square
                                             : 0.6823
         Adjusted R-square
                                             : 0.6655
         Akaike information criterion (AIC): 106.714
         Bayesian information criterion(BIC): 108.803
```

1. Log Transformations

Out[24]:

	delivery_time	sorting_time	logsorting_time
0	21.00	10	2.302585
1	13.50	4	1.386294
2	19.75	6	1.791759
3	24.00	9	2.197225
4	29.00	10	2.302585
5	15.35	6	1.791759
6	19.00	7	1.945910
7	9.50	3	1.098612
8	17.90	10	2.302585
9	18.75	9	2.197225
10	19.83	8	2.079442
11	10.75	4	1.386294
12	16.68	7	1.945910
13	11.50	3	1.098612
14	12.03	3	1.098612
15	14.88	4	1.386294
16	13.75	6	1.791759
17	18.11	7	1.945910
18	8.00	2	0.693147
19	17.83	7	1.945910
20	21.50	5	1.609438

Out[26]: <statsmodels.regression.linear_model.RegressionResultsWrapper at 0x2044a2dacd0>

```
1 Log_model.summary()
In [27]:
Out[27]:
           OLS Regression Results
                Dep. Variable:
                                 delivery_time
                                                                   0.695
                                                    R-squared:
                                                Adj. R-squared:
                       Model:
                                         OLS
                                                                   0.679
                      Method:
                                Least Squares
                                                     F-statistic:
                                                                   43.39
                        Date: Fri, 01 Jul 2022
                                              Prob (F-statistic): 2.64e-06
                                                Log-Likelihood:
                        Time:
                                     11:49:16
                                                                 -50.912
             No. Observations:
                                          21
                                                          AIC:
                                                                   105.8
                                                          BIC:
                 Df Residuals:
                                          19
                                                                   107.9
                    Df Model:
             Covariance Type:
                                    nonrobust
                               coef std err
                                                          [0.025 0.975]
                   Intercept 1.1597
                                      2.455 0.472 0.642 -3.978
                                                                   6.297
In [28]:
             1 Log_model.rsquared
```

Out[28]: 0.6954434611324223

2. SQRT Model

In [29]: 1 delivery['sqrt_sorting_time']=np.sqrt(delivery['sorting_time'])
2 delivery

Out[29]:

	delivery_time	sorting_time	logsorting_time	sqrt_sorting_time
0	21.00	10	2.302585	3.162278
1	13.50	4	1.386294	2.000000
2	19.75	6	1.791759	2.449490
3	24.00	9	2.197225	3.000000
4	29.00	10	2.302585	3.162278
5	15.35	6	1.791759	2.449490
6	19.00	7	1.945910	2.645751
7	9.50	3	1.098612	1.732051
8	17.90	10	2.302585	3.162278
9	18.75	9	2.197225	3.000000
10	19.83	8	2.079442	2.828427
11	10.75	4	1.386294	2.000000
12	16.68	7	1.945910	2.645751
13	11.50	3	1.098612	1.732051
14	12.03	3	1.098612	1.732051
15	14.88	4	1.386294	2.000000
16	13.75	6	1.791759	2.449490
17	18.11	7	1.945910	2.645751
18	8.00	2	0.693147	1.414214
19	17.83	7	1.945910	2.645751
20	21.50	5	1.609438	2.236068


```
In [31]:
                sqrt_model=smf.ols(formula='delivery_time~sqrt_sorting_time', data=delivery).fit()
                sqrt model.summary()
Out[31]:
           OLS Regression Results
                Dep. Variable:
                                 delivery_time
                                                   R-squared:
                                                                  0.696
                       Model:
                                        OLS
                                               Adj. R-squared:
                                                                  0.680
                     Method:
                               Least Squares
                                                    F-statistic:
                                                                  43.46
                        Date: Fri, 01 Jul 2022 Prob (F-statistic): 2.61e-06
                        Time:
                                    11:49:19
                                               Log-Likelihood:
                                                                 -50.900
            No. Observations:
                                          21
                                                          AIC:
                                                                  105.8
                                                          BIC:
                Df Residuals:
                                          19
                                                                  107.9
                    Df Model:
                                           1
             Covariance Type:
                                   nonrobust
                                 coef std err
                                                             [0.025 0.975]
                    Intercept -2.5188
                                        2.995 -0.841
                                                      0.411
                                                             -8.788
                                                                     3.751
            sqrt sorting time 7.9366
                                        1.204
                                               6.592 0.000
                                                              5.417 10.456
                  Omnibus: 4.658
                                     Durbin-Watson: 1.318
            Prob(Omnibus):
                             0.097
                                    Jarque-Bera (JB): 2.824
                     Skew: 0.865
                                           Prob(JB): 0.244
                  Kurtosis: 3.483
                                           Cond. No.
                                                       13.7
```

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

3.Reciprocal

```
In [33]: 1 delivery['rec_proc_delivery']=1/delivery['delivery_time']
2 delivery.head()
```

Out[33]:

	delivery_time	sorting_time	logsorting_time	sqrt_sorting_time	rec_proc_delivery
0	21.00	10	2.302585	3.162278	0.047619
1	13.50	4	1.386294	2.000000	0.074074
2	19.75	6	1.791759	2.449490	0.050633
3	24.00	9	2.197225	3.000000	0.041667
4	29.00	10	2.302585	3.162278	0.034483


```
In [35]:
                rec_proc_model=smf.ols(formula='rec_proc_delivery~sorting_time', data=delivery).fit()
               rec_proc_model.summary()
Out[35]:
           OLS Regression Results
                Dep. Variable: rec_proc_delivery
                                                     R-squared:
                                                                    0.682
                      Model:
                                          OLS
                                                 Adj. R-squared:
                                                                    0.665
                     Method:
                                 Least Squares
                                                      F-statistic:
                                                                    40.68
                        Date:
                                 Fri, 01 Jul 2022 Prob (F-statistic): 4.06e-06
                        Time:
                                      11:49:21
                                                 Log-Likelihood:
                                                                   62.471
            No. Observations:
                                           21
                                                                   -120.9
                                                           AIC:
                Df Residuals:
                                           19
                                                           BIC:
                                                                   -118.9
                    Df Model:
                                            1
             Covariance Type:
                                     nonrobust
                            coef std err
                                                        [0.025 0.975]
                                                  P>|t|
                                   0.008 14.526
               Intercept
                          0.1107
                                                  0.000
                                                         0.095
                                                                0.127
            sorting time -0.0073
                                   0.001
                                          -6.378 0.000 -0.010 -0.005
                  Omnibus: 1.096
                                     Durbin-Watson: 1.555
            Prob(Omnibus): 0.578
                                   Jarque-Bera (JB): 0.224
                     Skew: 0.199
                                           Prob(JB): 0.894
                  Kurtosis: 3.313
                                          Cond. No.
                                                      18.3
```

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [36]: 1 rec_proc_model.rsquared
```

Out[36]: 0.6816508639250471

=> By comparing the rsquare values of all 3 model and raw model we can say SQRT_model gives better rsquare value. so we will select Sqrt_model and do futhur calculation

The end!!!

In []: 1