Algorithmen und	Theoretische					l
Datenstrukturen 1	Klausur	25.06.2019	Mnr.:	Name:	1	l
(ADS VU)	NiduSui					l

	13		11		32		15		18		23		39		34
+		+		+		+		+		+		+		+	
	z_1	2	\mathbf{z}_2	2	\mathbf{z}_3		z_4		z ₅		z ₆		Z ₇		z ₈

Aufgabe 1 [2]

Fügen Sie in obiger Tabelle in den leeren Kästchen, vor denen das Pluszeichen steht, die Ziffern Ihrer Matrikelnummer ein. Führen Sie die Additionen durch und ermitteln Sie die Zahlen $\mathbf{z_1}$ bis $\mathbf{z_8}$.

Aufgabe 2 [18]

Gegeben sind folgende Funktionen:

```
void g(int i, int n) {
   if (i>0) {
     for (int j=n+10; j>0; j-=5)
       g(i-2, n);
   }
}

void f(int n) {
   if (!n) return;
   f(n/(z4%10+2));
   g(z6%5+1, n);
   for (int i=0; i<z7%10; i=i+2)
     f(n/(z4%10+2));
   g(z6%5+1, n);
}</pre>
```

Berechnen Sie die Laufzeit der Funktion f in Θ -Notation abhängig von f. Setzen Sie dazu für f f und f die in Aufgabe 1 ermittelten Werte ein. (Hinweis: Erstellen Sie Rekurrenzgleichungen für die Laufzeiten von f bzw. f und lösen Sie diese mittels fortgesetztem Einsetzen bzw. Master Theorem.)

Aufgabe 3 [20]

Die Werte z_1 bis z_8 (aus Aufgabe 1) jeweils modulo 10 (zB z_1 %10, z_2 %10, usf.) seien in dieser Reihenfolge von links nach rechts in einem Array gespeichert. Sortieren Sie die Werte aufsteigend mit

- a. [8] Quicksort
- b. [4] Selectionsort
- c. [8] Heapsort

Geben Sie alle notwendigen Schritte so genau an, dass die Arbeitsweise des Algorithmus klar ersichtlich wird.

Algorithmen und Datenstrukturen 1 (ADS VU)	Theoretische Klausur	25.06.2019	Mnr.:	Name:	2
--	-------------------------	------------	-------	-------	---

Aufgabe 4 [20]

a. [9] Fügen Sie die Werte z_2 bis z_8 aus Aufgabe 1 (in dieser Reihenfolge) in eine zu Beginn leere Hashtabelle der Länge 7 ein. Verwenden Sie als Hashfunktion h(k)=k%7 und double hashing zur Kollisionsbehandlung. Die zweite Hashfunktion ist g(k)=k%5+1.

Skizzieren Sie den Zustand der Hashtabelle nach jedem Einfügeschritt.

- b. [1] Löschen Sie den Wert $\mathbf{z_5}$ aus der Tabelle und skizzieren Sie den Zustand der Hashtabelle.
- c. [5] Geben Sie den Kollisionspfad (besuchte Indexpositionen) bei einer Suche nach dem Wert \mathbf{z}_2 an.
- d. [5] Geben Sie den Kollisionspfad (besuchte Indexpositionen) bei einer Suche nach dem Wert 50 an.

Aufgabe 5 [20]

- a. [4] Fügen Sie die Werte Z₁ bis Z₈ aus Aufgabe 1 (in dieser Reihenfolge) in einen zu Beginn leeren binären Suchbaum ein.
 (Werte können im Baum eventuell mehrfach gespeichert sein.) Skizzieren Sie den Zustand des Baums nach jedem Einfügeschritt.
- b. [4] Geben Sie in C++ ähnlicher Notation die Definition einer Datenstruktur für einen binären Suchbaum an.
- [8] Geben Sie in C++ ähnlicher Notation eine Definition einer Funktion oder Methode an, die die Höhe des binären Suchbaums ermittelt.
- d. [4] Bestimmen Sie die Laufzeitkomplexität Ihrer Funktion abhängig von der Anzahl n der im Suchbaum gespeicherten Werte in O-Notation. Begründen Sie Ihr Ergebnis kurz.

Aufgabe 6 [20]

Gegeben ist der folgende gerichtete Graph (die Werte $\mathbf{Z_1}$ bis $\mathbf{Z_6}$ sind aus Aufgabe 1 zu übernehmen):

- a. [3] Geben Sie die Adjazenzmatrix des Graphen an.
- b. [3] Skizzieren Sie die Adjazenzliste des Graphen.
- a. [10] Bestimmen Sie mit dem Algorithmus von Dijkstra die jeweils kürzesten Wege vom Knoten 1 zu allen anderen Knoten des Graphen. Wählen Sie eine Notation, aus der die Arbeitsweise des Algorithmus klar ersichtlich wird.
- b. [4] Ist für den Dijkstra-Algorithmus eher die Verwendung einer Adjazenzmatrix oder einer Adjazenzliste vorteilhaft? Begründen Sie Ihre Aussage.