

ADA106306

JOHNSON COUNTY DAM A-26

JOHNSON COUNTY, MISSOURI

MO 20073

PHASE 1 INSPECTION REPORT NATIONAL DAM SAFETY PROGRAM

Louis District

This document has be

81 10 26 102

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
TEPERY HUNGER	3. RECIPIENT'S CATALOG HUMBER
	4
TITLE (and British	S. TYPE OF REPORT & PERIOD COVERE
Phase I Dam Inspection Report	
National Dam Safety Program Johnson Co. #A-26 Dam (MO 20073)	Final epot
Johnson County, Missouri	6. PERFORMING ORG. REPORT NUMBER
AUVIOLY)	S. CONTRACT OR GRANT NUMBER(-)
Black & Veatch, Consulting Engineers	
1 :	5
PERFORMING ORGANIZATION NAME AND ADDRESS	DACH43-89-C-9974
U.S. Army Engineer District, St. Louis	AREA & WORK UNIT HUMBERS
Dam Inventory and Inspection Section, LMSED-PD	[2) 78 /
210 Tucker Blvd., North, St. Louis, Mo. 63101	
CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
U.S. Army Engineer District, St. Louis	June-1980
Dam Inventory and Inspection Section, LMSED-PD **210 Tucker Blvd., North, St. Louis, Mo. 63101	Approximately 60
ELO TUCKET BIVE, NOTCH, St. LOUIS, NO. 03101	
	1
Paul R. /Zaman Edwin R. /Burton	UNCLASSIFIED
Harry L. /Gallahan	15. DECLASSIFICATION DOWNGRADING
Approved for release; distribution unlimited.	hum Report)
Approved for release; distribution unlimited. 7. BISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different to the second in Block 20, if different to	Program. Johnson County Missouri - Kansas City
Approved for release; distribution unlimited. DESTRIBUTION STATEMENT (of the abstract entered in Block 20, if different to the second in Block 20, if different to th	Program. Johnson County Missouri - Kansas City y, Missouri. Phase I
Approved for release; distribution unlimited. 7. INSTRIBUTION STATEMENT (of the abstract entered in Bleck 20, if different in Black 20, if differen	Program. Johnson County Missouri - Kansas City y, Missouri. Phase I
Approved for release; distribution unlimited. D. DISTRIBUTION STATEMENT (of the abstract entered in Bleek 20, if different in Bleek 20, if different in Black 20, if differen	Program. Johnson County Missouri - Kansas City y, Missouri. Phase I port.
Approved for release; distribution unlimited. DESTRIBUTION STATEMENT (of the abstract entered in Bleck 20, if different in Black 20, if different i	Program. Johnson County Missouri - Kansas City y, Missouri. Phase I port.
Approved for release; distribution unlimited. 7. BISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different in Block 20, if differen	Program. Johnson County Missouri - Kansas City y, Missouri. Phase I port.
Approved for release; distribution unlimited. 7. BISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different in Block 20, if differen	Program. Johnson County Missouri - Kansas City y, Missouri. Phase I port.
Approved for release; distribution unlimited. 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different in Black 20, if differen	Program. Johnson County Missouri - Kansas City y, Missouri. Phase I port.
Approved for release; distribution unlimited. Described to select the abstract entered in Block 20, if different in Block	Program. Johnson County Missouri - Kansas City y, Missouri. Phase I port. w) am of Inspection of al condition of the dam with visual inspection, to
Approved for release; distribution unlimited. Described to the elease and the electron of the	Program. Johnson County Missouri - Kansas City y, Missouri. Phase I port. w) am of Inspection of al condition of the dam with visual inspection, to
Approved for release; distribution unlimited. 7. BISTRIBUTION STATEMENT (of the abstract entered in Block 29, if different in Block 29, if differen	Program. Johnson County Missouri - Kansas City y, Missouri. Phase I port. w) am of Inspection of al condition of the dam with visual inspection, to
Approved for release; distribution unlimited. 7. BISTRIBUTION STATEMENT (of the abstract entered in Block 29, if different in Block 29, if differen	Program. Johnson County Missouri - Kansas City y, Missouri. Phase I port. w) am of Inspection of al condition of the dam with visual inspection, to

SECURITY CLASSIFICATION OF THIS PASE(When &	Date Britone()	
		ŀ
		ı
		I
		ł
		1
		ı
		1
		Ī
		- 1
		Ī
		ı
		ſ
		ł
		ŀ
		- [
		1
		-
		I
		ı
		1
1		Ī
		1

MISSOURI-KANSAS CITY BASIN

JOHNSON COUNTY DAM A-26 JOHNSON COUNTY, MISSOURI MO 20073

PHASE 1 INSPECTION REPORT NATIONAL DAM SAFETY PROGRAM

St. Louis District

PREPARED BY: U.S. ARMY ENGINEER DISTRICT. ST. LOUIS

FOR: STATE OF MISSOURI

JUNE 1980

DEPARTMENT OF THE ARMY

ST. LOUIS DISTRICT, CORPS OF ENGINEERS
210 TUCKER BOULEVARD, NORTH
ST. LOUIS, MISSOURI 63101

SUBJECT: Johnson County Dam A-26 Mo. ID No. 20073

Phase I Inspection Report

This report presents the results of field inspection and evaluation of the Johnson County Dam A-26.

It was prepared under the National Program of Inspection of Non-Federal Dams.

This dam has been classified as unsafe, non-emergency by the St. Louis

District as a result of the application of the following criteria:

- a. Spillway will not pass 50 percent of the Probable Maximum Flood without overtopping the dam.
- b. Overtopping of the dam could result in failure of the dam.
- c. Dam failure significantly increases the hazard to loss of life downstream.

SUBMITTED BY:	:	2 9 SEP 1980	
		Chief, Engineering Division	Date
APPROVED BY :	:	30 SEP 1900	
		Colonel, CE, District Engineer	Date

JOHNSON COUNTY A-26 DAM
JOHNSON COUNTY, MISSOURI

MISSOURI INVENTORY NO. 20073

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

PREPARED BY:

BLACK & VEATCH CONSULTING ENGINEERS KANSAS CITY, MISSOURI

UNDER DIRECTION OF

ST. LOUIS DISTRICT CORPS OF ENGINEERS

FOR

GOVERNOR OF MISSOURI

JUNE 1980

PHASE I REPORT

NATIONAL DAM SAFETY PROGRAM

Name of Dam State Located County Located Stream

Missouri
Johnson County
Tributary to South Fork Blackwater
River

Johnson County Dam A-26

Date of Inspection

26 June 1980

Johnson County Dam A-26 was inspected by a team of engineers from Black & Veatch, Consulting Engineers for the St. Louis District, Corps of Engineers. The purpose of the inspection was to make an assessment of the general condition of the dam with respect to safety, based upon available data and visual inspection, in order to determine if the dam poses hazards to human life or property.

The guidelines used in the assessment were furnished by the Department of the Army, Office of the Chief of Engineers and developed with the help of several Federal and state agencies, professional engineering organizations, and private engineers. Based on these guidelines, this dam is classified as a small size dam with a high downstream hazard potential. According to the St. Louis District, Corps of Engineers, failure would threaten lives and property. The estimated damage zone extends approximately one mile downstream of the dam. Within the estimated damage zone are two residences, a county highway, and a 380 acre water supply reservoir. Contents of the estimated damage zone were verified by the inspection team.

Our inspection and evaluation indicates the spillways do not meet the criteria set forth in the guidelines for a dam having the above size and hazard potential. The spillways will not pass the probable maximum flood without overtopping but will pass 20 percent of the probable maximum flood. The spillway will also pass the one percent probability flood (100-year). The spillway design flood recommended by the guidelines is 50 to 100 percent of the probable maximum flood. Considering the small volume of water impounded behind the dam, the valley below the dam and the hazard zone, the spillway design flood should be 50 percent of the probable maximum flood. The probable maximum flood is defined as the flood discharge which may be expected from the most severe combination of critical meteorologic and hydrologic conditions which are reasonably possible in the region.

Based on visual observations, this dam appears to be in satisfactory condition. Deficiencies visually observed by the inspection team were severe erosion and sloughing on upstream face due to wave action, embankment erosion at the inlet and outlet ends of the principal spillway, a few animal burrows evident in the embankment and a few small trees growing on the embankment. Seepage and stability analyses required by the guidelines were not available.

There were no observed deficiencies or conditions existing at the time of the inspection which indicated an immediate safety hazard. Future corrective action and regular maintenance will be required to correct or control the described deficiencies. In addition, detailed seepage and stability analyses of the existing dam, as required by the guidelines, should be performed. A detailed report discussing each of these deficiencies is attached.

Paul R. Zaman, PE Illinois 62-29261

Edwin R. Burton, PE Missouri E-10137

Harry L. Callahan, Partner

Black & Veatch

OVERVIEW OF DAM

PHASE I INSPECTION REPORT NATIONAL DAM SAFETY PROGRAM JOHNSON COUNTY DAM A-26

TABLE OF CONTENTS

Paragraph No.	Title	Page No
	SECTION 1 - PROJECT INFORMATION	
1.1	General	1
1.2	Description of Project	1
1.3	Pertinent Data	2
	SECTION 2 - ENGINEERING DATA	
2.1	Design	6
2.2	Construction	6
2.3	Operation	6 6
2.4	Geology	
2.5	Evaluation	7
•	SECTION 3 - VISUAL INSPECTION	
3.1	Findings	8
3.2	Evaluation	10
	SECTION 4 - OPERATIONAL PROCEDURES	
4.1	Procedures	11
4.2	Maintenance of Dam	11
4.3	Maintenance of Operating Facilities	11
4.4	Description of Any Warning System in Effect	11
4.5	Evaluation	11
	SECTION 5 - HYDRAULIC/HYDROLOGIC	
5.1	Evaluation of Features	12
	SECTION 6 - STRUCTURAL STABILITY	
6.1	Evaluation of Structural Stability	14

TABLE OF CONTENTS (Cont'd)

Paragraph No.	<u>Title</u>	Page No.
	SECTION 7 - ASSESSMENT/REMEDIAL MEASURES	
7.1	Dam Assessment	15
7.2	Remedial Measures	16
	LIST OF PLATES	
Plate No.	<u>Title</u>	
1	Location Map	
2	Vicinity Topography	
3	Plan	
4	Principal Spillway and Dam Cross Section	
5 .	Dam Cross Section	
6	Dam Profile	
7	Emergency Spillway Cross Section	
8	Photo Index	
	LIST OF PHOTOGRAPHS	
Photo No.	Title	
1	Upstream Face of Dam Looking West	
2	Upstream Face of Dam Looking East	
3	Crest of Dam Looking West	
4	Crest of Dam Looking East	
5	Downstream Slope of Dam Looking West	
6	Downstream Slope of Dam Looking East	

TABLE OF CONTENTS (Cont'd)

Photo No.	<u>Title</u>
7	Principal Spillway Drop Inlet
8	Principal Spillway Outlet Pipe
9	Principal Spillway Plunge Pool and Downstream Channel
10	Emergency Spillway Looking Upstream
11	Emergency Spillway Looking Downstream
12	Erosion Along Upstream Face of Dam
13	Erosion on Upstream Face of Dam
14	Animal Burrow on Upstream Face of Dam

APPENDICES

Appendix A - Hydrologic and Hydraulic Analyses

Appendix B - Geologic Investigation and Design Memorandum

Appendix C - Hydrologic - Hydraulic Design data

SECTION 1 - PROJECT INFORMATION

1.1 GENERAL

- a. Authority. The National Dam Inspection Act, Public Law 92-367, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a program of safety inspection of dams throughout the United States. Pursuant to the above, the District Engineer of the St. Louis District, Corps of Engineers, directed that a safety inspection of the Johnson County Dam A-26 be made.
- b. <u>Purpose of Inspection</u>. The purpose of the inspection was to make an assessment of the general condition of the dam with respect to safety, based upon available data and visual inspection, in order to determine if the dam poses hazards to human life or property.
- c. Evaluation Criteria. Criteria used to evaluate the dam were furnished by the Department of the Army, Office of the Chief of Engineers, in "Recommended Guidelines for Safety Inspection of Dams." These guidelines were developed with the help of several Federal agencies and many state agencies, professional engineering organizations, and private engineers.

1.2 DESCRIPTION OF PROJECT

a. Description of Dam and Appurtenances.

- (1) The dam is an earth structure located in the valley of a tributary to South Fork Blackwater River (Plate 1). The watershed is an area of low hills containing timber, grassland, terraced cropland and small farm ponds (Plate 2). The dam is approximately 1,200 feet long along the crest and 25 feet high. The dam crest is 12 feet wide. The downstream face of the dam slopes from the crest to the valley floor below.
- (2) The principal spillway from the lake is an uncontrolled 24-inch corrugated metal pipe with a 30-inch corrugated metal pipe drop inlet installed in the embankment. The drop inlet is 11 feet deep and is protected by a trash rack and antivortex baffle plate. Flow through the pipe discharges freely into a plunge pool and the natural stream channel below. The emergency spillway consists of a 40-feet wide trapezoidal cut with 3H to 1V side slopes in the natural overburden around the right end of the embankment. The emergency spillway channel below the dam is confined between two dikes. Discharge through the emergency spillway overflows to the natural stream below the dam.

- (3) Pertinent physical data are given in paragraph 1.3.
- b. <u>Location</u>. The dam is located in West-central Johnson County, Missouri, as indicated on Plate 1. The lake formed by the dam is in an area shown on the United States Geological Survey 7.5 minute series quadrangle map for Elm, Missouri in Section 36 of T46N, R29W.
- c. <u>Size Classification</u>. Criteria for determining the size classification of dams and impoundments are presented in the guidelines referenced in paragraph 1.1c above. Based on these criteria, the dam and impoundment are in the small size category.
- d. <u>Hazard Classification</u>. The hazard classification assigned by the Corps of Engineers for this dam is as follows: The Johnson County A-26 Dam has a high hazard potential, meaning that the dam is located where failure may cause loss of life, and serious damage to homes, agricultural, industrial and commercial incilities, and to important public utilities, main highways, or railroads. For the Johnson County Dam A-26 the estimated flood damage zone extends approximately one mile downstream of the dam. Within the estimated damage zone are two residences, a county highway, and a 380 acre water supply reservoir. The inspection team verified the contents of the downstream hazard zone.
- e. Ownership. The dam is owned by Mr. Chester Spiwak, Box 152, Kingsville, Missouri, 64061, Telephone 816-597-3427.
- f. <u>Purpose of Dam</u>. The dam forms a 18.6 acre lake used for flood control and soil conservation.
- g. Design and Construction History. The dam was designed by the Johnson County Soil Conservation Service. The dam was constructed in 1966 by Clark and Farmer Construction Co., Inc.
- h. <u>Normal Operating Procedure</u>. Normal rainfall, runoff, transpiration, evaporation, and overflow through the uncontrolled outlet pipe all combine to maintain a relatively stable water surface elevation.

1.3 PERTINENT DATA

- a. Drainage Area 425 acres
- b. Discharge at Damsite.
- (1) Normal discharge at the damsite is through an uncontrolled 24-inch outlet pipe.

- (2) Estimated experienced maximum flood at damaite Unknown.
- (3) Estimated ungated spillway capacity at maximum pool elevation 590 cfs (50 Percent Probable Haximum Flood Pool El.900.5).
 - c. Elevation (Feet above m.s.l.).
 - (1) Top of dem 899.6 (see Plate 3)
 - (2) Emergency spillway crest 897.3
 - (3) Principal spillway drop inlet crest 894.0
 - (4) Streambed at toe of dam 875.0
 - (5) Maximum tailwater Unknown.
 - d. Reservoir.
- (1) Length of maximum pool 2,300 feet + (Probable maximum flood pool level)
- (2) Length of normal pool 1,600 feet * (Principal spillway drop inlet crest)
 - e. Storage (Acre-feet).
 - (1) Top of dam 248
 - (2) Emergency spillway crest 174
 - (3) Principal spillway drop inlet crest 98
 - (4) Design surcharge 241 (E1. 899.4, from SCS "As-Builts")
 - f. Reservoir Surface (Acres).
 - (1) Top of dam 36.0
 - (2) Emergency spillway crest 28.2
 - (3) Principal spillway drop inlet crest 18.6

- g. Dam.
- (1) Type Earth embankment
- (2) Length 1,200 feet
- (3) Height 25 feet +
- (4) Top width 12 feet
- (5) Side slopes upstream face 1.0 V on 2.5 H, downstream face between 1.0 V on 1.9 H and 1.0 V on 3.0 H (see Plates 4 and 5)
 - (6) Zoning Unknown.
 - (7) Impervious core None.
 - (8) Cutoff Core Trench (see Plate 4).
 - (9) Grout curtain None.
 - h. Diversion and Regulating Tunnel None.
 - i. Principal Spillway.
- (1) Type 24-inch corrugated metal pipe with a 30-inch corrugated metal pipe drop inlet.
 - (2) Drop inlet crest elevation 894.0 feet m.s.l.
 - (3) Inlet invert elevation 883.0 feet m.s.l.
 - (4) Outlet invert elevation 877.0 feet m.s.l.
 - (5) Gates None.
 - (6) Upstream channel Not applicable.
 - (7) Downstream channel Plunge pool to natural open channel.
 - j. Emergency Spillway.
 - (1) Type Grass open channel.

- (2) Width of channel 40 feet.
- (3) Emergency spillway crest 897.3.
- (4) Gates None.
- (5) Upstream channel Grass lined channel upstream of crest.
- (6) Downstream channel Natural stream channel below the dam.
- k. Regulating Outlets None.

SECTION 2 - ENGINEERING DATA

2.1 DESIGN

Design data in the form of a detailed geologic site investigation report, a design memorandum from a SCS engineer with design recommendations, "As-Built" drawings, construction records, design file, and hydrologic/hydraulic calculations were made available by the State Convervationist of the USDA Soil Conservation Service. The geologic report, design memorandum, and Hydrologic data are included in Appendix B and C.

2.2 CONSTRUCTION

Construction records in the form of construction logs and "As-Built" drawings were made available for review by the Soil Conservation Service. The dam was constructed in 1966 by Clark and Farmer Construction Co., Inc. There were no major or unusual construction problems recorded in the construction log. Pertinent information from the "As-Built" drawings is shown on Plates 3, 4, and 6.

2.3 OPERATION

Documentation of operation, maintenance or past floods was not available.

2.4 GEOLOGY

The site of the dam and reservoir is located in a broad shallow valley. The dam impounds an intermittent tributary of the South Fork Blackwater River.

The soils in the area of the dam and reservoir consist of the Haig, Deepwater, Sampsel, and Zook soil series. The Haig soils are located on uplands and are formed in loess. They are classified for engineering purposes as low to high-plastic clay (CL or CH). The Deepwater and Sampsel soils are located on hill sides and are formed in residuum from shale. They are classified for engineering purposes as low-plastic silt (ML) or low-plastic clay (CL). The Zook soils are located along the floodplain of the stream and are formed in alluvium. They are classified for engineering purposes as low-plastic silt (ML) and low-plastic clay (CL).

The bedrock in the area of the dam and reservoir consists of shale of the Marmaton Group of the Des Moinesian Series, the Pennsylvanian System. According to design memoranda and "As-Built" construction drawings, the bedrock underlying the dam is a yellowish brown and gray

shale. The shale is covered by 6 to 7 feet of residual or alluvial soils. The core trench was cut through weathered shale into fresh shale.

2.5 EVALUATION

- a. Availability. Engineering data were obtained from the Soil Conservation Service as noted in Section 2.1.
- b. Adequacy. Engineering data were available from which to make an assessment of the design, construction, and operation. Seepage and stability analyses comparable to the requirements of the "Recommended Guidelines for Safety Inspection of Dams" were not available, which is considered a deficiency. These seepage and stability analyses should be performed for appropriate loading conditions (including earthquake loads) and made a matter of record.
- c. <u>Validity</u>. The available engineering data on the design, construction, and operation were determined to be valid.

SECTION 3 - VISUAL INSPECTION

3.1 FINDINGS

- a. General. A visual inspection of Johnson County Dam A-26 was made on 26 June 1980. The inspection team included professional engineers with experience in dam design and construction, hydrology, hydraulic engineering, and geotechnical engineering. The inspection team consisted of Edwin Burton, team leader; Robert Pinker, geologist; Gary Van Riessen, geotechnical engineer; Andrew Dywan, civil engineer; Thomas Rutherford, hydrologist; and Bill Fish, surveyor. Specific observations are discussed below. No observations were made of the condition of the upstream face of the dam below the pool elevation at the time of the inspection.
- b. Dam. The inspection team observed the following conditions at the dam. Severe erosion and sloughing were observed on the upstream slope of the embankment. In places the under cutting of the silty clay material had progressed to within 15 feet of the crest, and vertical faces measuring about 2-1/2 feet were observed. The downstream slope was in satisfactory condition. No cracks were observed in the crest, upstream or downstream slopes of the embankment. No instruments to measure the performance of the dam were located.

There was no evidence of seepage in the embankment, foundation or abutments. No toe drains or relief wells were observed.

The embankment slopes and crest have a protective grass cover. The downstream slope was noted to be very dense. However, vehicles have worn tracks through the grass cover on the crest. A few small trees up to 1-inch diameter are growing on the dam. No evidence was found to indicate that the embankment had ever been overtopped.

Evidence that a maintenance program was in effect included the good condition of the grass cover and presence of only a few small animal burrows on the upstream and downstream slopes. The upstream drainage area to the lake contains timber, grassland, terraced cropland and some small farm ponds in an area of low hills. The lake contains a minor amount of siltation as determined by the growth of water lilies at each end of the dam.

c. Appurtenant Structures. The inspection team observed the following items pertaining to appurtenant structures. The principal spillway consists of an uncontrolled 24-inch asphalt coated corrugated metal pipe with a 30-inch corrugated metal pipe drop inlet installed in

the embankment. The drop inlet is protected by an SCS standard trashrack and antivortex baffle plate. About 20 feet of the spillway pipe outlet was exposed and the pipe exterior was found to be in good condition. The 24-inch pipe was inspected from the downstream end and found to have no noticeable misalignment. The interior of the 30-inch drop inlet pipe was also found to be in satisfactory condition. No evidence of leakage was noted into, out of or around the spillway pipe. The pipe joints themselves could not be observed and the majority of the spillway pipe was considered unobservable. Some erosion was observed at both the inlet and outlet of the spillway pipe.

The emergency spillway consists of a 40 feet wide cut in the natural overburden around the right end of the dam. The spillway channel has a good unmowed grass protective cover and no evidence of erosion was observed. There was also no evidence of erosion upstream or downstream of the spillway. It should be noted that an abnormally large spillway disharge would probably not damage the embankment because it is protected by a training dike.

There was no development in the emergency spillway area which could suffer damage due to flow through the spillway.

d. Geology. The soils in the area of the dam and reservoir were formed in loess, residum from shale and alluvium. The soils formed in loess are located along the upland above the right abutment. The soils formed in residuum are located along the hill slopes around the reservoir. The soils formed in alluvium are located along the downstream channel below the dam.

No outcrops were observed in the area of the dam and reservoir. The bedrock in the foundations and the abutments is anticipated to be shale as shown on the "As-Built" construction drawings.

Samples of the embankment were taken near the center of the down-stream crest. The material in the embankment consists of silty clay (CL). Based on these samples, the design memoranda and visual observations, it is anticipated the embankment consists of silty clay of low plasticity (CL).

- e. Reservoir Area. No slumping or slides of the reservoir banks were observed.
- f. <u>Downstream Channel</u>. No slumping or slides were observed in the downstream channel. The principal spillway pipe discharges to a plunge pool which flows into the natural stream channel. The channel downstream of the plunge pool is tree and brush lined.

3.2 EVALUATION

The various deficiencies observed at the time of the inspection are not believed to represent an immediate safety hazard. They do, however, warrant monitoring and control. The absence of riprap on the face of the dam has resulted in serious wave action erosion of the embankment. If not corrected, wave action will continue to erode the embankment and could lead to slope stability problems. The growth of small trees and brush and the uncut grass is not presently a serious problem; however, if allowed to go unchecked it could cause deterioration of the embankment. The roots of trees can loosen the embankment material and also can leave voids through which water can pass. Brush on the dam prevents inspection of the embankment and kills the smaller grasses whose roots are more effective in protecting the surface soil of the slope from erosion. The brush and tall uncut grass provides habitat for burrowing animals which can damage the embankment. The material eroded at the inlet and outlet ends of the primary spillway pipe should be replaced with suiable compacted backfill. Burrowing animals will continue to damage the embankment if no program is undertaken to eliminate them. Piping failure of the embankment has resulted in similar small earth dams due to burrowing animal damage.

SECTION 4 - OPERATIONAL PROCEDURES

4.1 PROCEDURES

The pool is primarily controlled by rainfall, runoff, evaporation, transpiration, and capacity of the uncontrolled principal spillway outlet pipe.

4.2 MAINTENANCE OF DAM

The existing maintenance program which is the responsibility of the Watershed District is evidenced only by the good condition of the grass cover on the embankment. No mowing has been done.

4.3 MAINTENANCE OF OPERATING FACILITIES

No operating facilities exist.

4.4 DESCRIPTION OF ANY WARNING SYSTEM IN EFFECT

For this dam, there is no existing warning system or preplanned scheme for alerting downstream residents.

4.5 EVALUATION

The maintenance program should be expanded to include mowing the grass cover on the embankment in order to discourage animal burrowing. The brush and trees on the embankment should be removed more frequently. Measures to correct the erosion on the upstream slope include placing of suitable bedding material then riprap. Also suitable backfill material should be placed at the inlet and outlet of the spillway pipe. A program should be undertaken to eliminate the burrowing animals.

SECTION 5 - HYDRAULIC/HYDROLOGIC

5.1 EVALUATION OF FEATURES

- a. <u>Design Data</u>. Design data pertaining to hydrology and hydraulics in the form of "As-Built" drawings and hydrologic/hydraulic calculations were provided by the Soil Conservation Service.
- b. Experience Data. The drainage area and lake surface area are taken from design data supplied by the SCS and from the U.S.G.S. Elm Quadrangle Map. The spillway and dam layout is from "As-Built" drawings. Elevations observed by field survey during the inspection are noted on Plates 3 through 6.

c. Visual Observations.

- (1) The principal spillway appears to be in good condition. The lake level at the time of the inspection was below the drop inlet level and there was no flow through the pipe. Only the inlet and outlet ends were observable. The spillway pipe discharges with a free outfall into a natural channel. There were no obstructions to flow in the downstream channel.
- (2) The emergency spillway channel is in good condition with no evidence of erosion at the time of the inspection.
 - (3) Spillway discharges do not endanger the integrity of the dam.
- d. Overtopping Potential. The spillways will not pass the probable maximum flood without overtopping the dam. The probable maximum flood is defined as the flood discharge that may be expected from the most severe combination of critical meteorologic and hydrologic conditions that are reasonably possible in the region. The spillways will pass 20 percent of the probable maximum flood without overtopping the dam and will also pass the one percent probability flood which is estimated to have a peak outflow of 104 cfs developed by a 24-hour, one percent probability rainfall. According to the recommended guidelines from the Department of the Army, Office of the Chief of Engineers, a high hazard dam of small size should pass 50 to 100 percent of the probable maximum flood. Considering the volume of water impounded by the dam and the downstream hazard, the appropriate spillway design flood should be 50 percent of the probable maximum flood. The portion of the estimated peak discharge of the probable maximum flood overtopping the dam would be 4,770 cfs of the total discharge from the reservoir of 5,520 cfs. The estimated duration of overtopping is 6.4 hours with a maximum height of 1.4 feet. The portion of the estimated peak discharge of 50 percent of the probable maximum flood overtopping the dam would be

2,100 cfs of the total discharge from the reservoir of 2,690 cfs. The estimated duration of overtopping is 4.2 hours with a maximum height of 0.9 feet. Overtopping for these periods of time could jeopardize the embankment.

According to the St. Louis District, Corps of Engineers, the effect from rupture of the dam could extend approximately one mile downstream of the dam. Within the estimated damage zone are two residences, a county highway, and a 380 acre water supply reservoir. Contents of the estimated damage zone were verified by the inspection team.

There does not appear to be any flood plain regulations or other constraints in force to limit future downstream development. Contents of the downstream hazard zone were verified by the inspection team.

SECTION 6 - STRUCTURAL STABILITY

6.1 EVALUATION OF STRUCTURAL STABILITY

- a. <u>Visual Observations</u>. Visual observations of conditions which affect the structural stability of this dam are discussed in Section 3, paragraph 3.1b.
- b. <u>Design and Construction Data</u>. Available design data included recommendations for design from a SCS engineer, a summary report of the geologic investigation, and soil classification tests.

Available construction data included "As-Built" construction drawings and construction logs.

Seepage and stability analyses comparable to the requirements of the "Recommended Guidelines for Safety Inspection of Dams" were not available, which is considered a deficiency. These seepage and stability analyses should be performed for appropriate loading conditions and made a matter of record.

Based upon material classification and soil boring data, it is anticipated that the stability of the dam exceeds the suggested factors of safety as given in Table 4 of the Guidelines. The slopes of the dam are consistent with recommended slopes for small homogeneous earthfill dams on stable foundations as given in the USBR "Design of Small Dams."

- c. Operating Records. No operational records exist.
- d. Post Construction Changes. No changes have been made since completion of the dam.
- e. Seismic Stability. The dam is located in Seismic Zone l which is a zone of minor seismic risk. A properly designed and constructed earth dam using sound engineering principles and conservatism should pose no serious stability problems during earthquakes in this zone. The seismic stability of an earth dam is dependent upon a number of factors: embankment and foundation material classifications and shear strengths; abutment materials, conditions, and strengths; embankment zoning; and embankment geometry.

Adequate descriptions of embankment design parameters, foundation and abutment conditions, or static stability analyses to assess the seismic stability of this embankment were not available and therefore no inferences will be made regarding the seismic stability. An assessment of the seismic stability should be included as part of the stability analysis required by the guidelines.

SECTION 7 - ASSESSMENT/REMEDIAL MEASURES

7.1 DAM ASSESSMENT

- a. Safety. Several conditions observed during the visual inspection by the inspection team should be monitored and/or controlled. These are erosion of the front face of the embankment at normal lake level, erosion of the embankment at the inlet and outlet ends of the principal spillway, the growth of a few small trees on the embankment, and animal burrows in the embankment. The spillway capacity is inadequate to pass the recommended spillway design flood. Seepage and stability analyses comparable to the requirements of the "Recommended Guidelines for Safety Inspection of Dams" were not available, which is considered a deficiency.
- b. Adequacy of Information. The conclusions in this report are based on performance history, visual conditions, and the available engineering design data. The inspection team considers that these data are sufficient to support the conclusions herein. Seepage and stability analyses comparable to the requirements of the "Recommended Guidelines for Safety Inspection of Dams" were not available, which is considered a deficiency.
- c. <u>Urgency</u>. It is the opinion of the inspection team that a program should be developed as soon as possible to implement remedial measures recommended in paragraph 7.2b. If the safety deficiencies listed in paragraph 7.1a are not corrected, they will continue to deteriorate and lead to a serious potential of failure. The alternatives recommended in paragraph 7.2a should be pursued on a high priority basis.
- d. Necessity for Phase II. The Phase I investigation does not raise any serious questions relating to the safety of the dam nor does it identify any serious dangers which would require a Phase II investigation. However, the additional analyses noted in paragraph 2.5.b. are necessary for compliance with the guidelines.
- e. Seismic Stability. This dam is located in Seismic Zone 1. Adequate description of embankment design parameters, foundation and abutment conditions, or static stability analyses to assess the seismic stability of this embankment was not available and therefore no inferences will be made regarding the seismic stability. An assessment of the seismic stability should be included as part of the recommended stability analysis.

7.2 REMEDIAL MEASURES

- a. Alternatives. The emergency spillway size and/or height of the dam would need to be increased or the lake level would need to be lowered to increase available flood storage in order to pass the spillway design flood.
- b. Operation and Maintenance Procedures. The following operation and maintenance procedures are recommended and should be carried out under the direction of an engineer experienced in the design, construction, and inspection of earth dams:
- (1) Suitable bedding material then riprap should be placed on the upstream face of the dam at the normal lake level to prevent erosion of the embankment material.
- (2) Suitable backfill material and riprap should be placed at the inlet and outlet of the spillway pipe.
- (3) The animal burrows in the embankment should be corrected since they can lead to piping. The embankment slope should be monitored during this repair. Control measures should be implemented subsequent to repair.
- (4) An improved maintenance program to remove and control the growth of brush and trees on the embankment should be developed. Grass cover on the embankments should be cut periodically.
 - (5) Seepage and stability analysis should be performed.
- (6) A detailed inspection of the dam should be made periodically. More frequent inspections may be required if additional deficiencies are observed or the severity of the reported deficiencies increase.

PLATE I

PLATE 2

PLATE 4

PLATE 6

SECTION JOHNSON COUNTY DAM A-26 EMERGENCY SPILLWAY CROSS

IT+SI ATE

EL. 900.3

EL 897.5

ÆL. 897.3

EL. 897.5

ÆL. 899.8

<u>ō</u>

PLATE 8

PHOTO 1: UPSTREAM FACE OF DAM LOOKING WEST

PHOTO 2: UPSTREAM FACE OF DAM LOOKING EAST

PHOTO 3: CREST OF DAM LOOKING WEST

PHOTO 4: CREST OF DAM LOOKING EAST

PHOTO 5: DOWNSTREAM SLOPE OF DAM LOOKING WEST

PHOTO 6: DOWNSTREAM SLOPE OF DAM LOOKING EAST

PHOTO 7: PRINCIPAL SPILLWAY DROP INLET

PHOTO 8: PRINCIPAL SPILLWAY OUTLET PIPE

PHOTO 9: PRINCIPAL SPILLWAY PLUNGE POOL AND DOWNSTREAM CHANNEL

PHOTO 10: EMERGENCY SPILLWAY LOOKING UPSTREAM

PHOTO 11: EMERGENCY SPILLWAY LOOKING DOWNSTREAM

PHOTO 12: EROSION ALONG UPSTREAM FACE OF DAM

PHOTO 13: EROSION ON UPSTREAM FACE OF DAM

PHOTO 14: ANIMAL BURROW ON UPSTREAM FACE OF DAM

APPENDIX A

HYDROLOGIC AND HYDRAULIC ANALYSES

HYDROLOGIC AND HYDRAULIC ANALYSES

To determine the overtopping potential, flood routings were performed by applying the Probable Maximum Precipitation (PMP) to a synthetic unit hydrograph to develop the inflow hydrograph. The inflow hydrograph was then routed through the reservoir and spillways. The overtopping analysis was determined using the computer program HEC-1 (Dam Safety Version) (1).

The PMP was determined from regional charts prepared by the National Weather Service in "Hydrometeorological Report No. 33" (HMR-33). Reduction factors were not applied. The rainfall distribution for the 24-hour PMP storm was determined according to the procedures outlined in HMR-33 and EM 1110-2-1411. The Kansas City, Missouri rainfall distribution (5 min. interval - 24 hours duration), as provided by the St. Louis District, Corp of Engineers, was used when the one percent chance probability flood was routed through the reservoir and spillways.

The synthetic unit hydrograph for the watershed was developed by the computer program using the Soil Conversation Service (SCS) method. The parameters for the unit hydrograph are shown in Table 1.

The SCS curve number (CN) method was used in computing the infiltration losses for rainfall-runoff relationship. The CN values used, and the result from the computer output, are shown in Table 2.

The reservoir routing was performed using the Modified Puls Method. The initial reservoir pool elevation for the routing of each storm was determined to be equivalent to the pipe invert elevation of the principal spillway at elevation 894.0 feet m.s.l. in accordance with antecedent storm conditions preceding the one percent probability and probable maximum storms outlined by the U.S. Army Corps of Engineers, St. Louis District (2). The hydraulic capacity of the spillway and the storage capacity of the reservoir were defined by the elevation, surface area, storage, and discharge relationships shown in Table 3.

The rating curve for the spillways is shown in Table 4. The flow over the crest of the dam was determined using the nonlevel dam crest option (\$L and \$V cards) of the HEC-l program. The program assumes critical flow over a broad-crested weir. The flow through the principal spillway was determined from weir and pipe flow equations. It was assumed that the inlet is kept free of debris. The flow through the emergency spillway was based on SCS E&WP Unit Design Memo #7.

The result of the routing analyses indicates that 20 percent of the PMF will not overtop the dam.

A summary of the routing analysis for different ratios of the PMF is shown in Table 5.

The computer input data and a summary of the output data are presented at the back of this appendix.

'As-Built' drawings and Hydrologic-Hydraulic design data were made available by the SCS, Columbia, Missouri.

TABLE 1

SYNTHETIC UNIT HYDROGRAPH

Parameters:

Drainage Area (A)	425 acres
Lag Time (L _g)	0.32 hours (AMC II and AMC III)
Time of concentration (T _c)	32 minutes 0.54 hours (AMC II and AMC III)
Duration (D)	4 min. (AMC II and AMC III) (use 5 minutes in each case)
Time (Min.) * Disc	harge (cfs) *
0	0
5	112
, 10	359
15	710
· 20	874
25	844
30	699
35	482
40	321
45	223
50	155
55	106
60	72
65	49
70	34
75	24

80

85 90 16

11

^{*} From HEC-1 computer output

TABLE 1 (Continued)

FORMULAS USED:

 $\mathbf{T}_{\underline{\mathbf{C}}}$ was obtained from SCS 'As-Built' watershed data.

 $L_{g} = 0.6 T_{c}$ $D = 0.133 T_{c}$

TABLE 2

RAINFALL-RUNOFF VALUES

Selected Storm Event	Storm Duration (Hours)	Rainfall (Inches)	Runoff (Inches)	Loss (Inches)
PMP	24	32.24	30.94	1.30

Additional Data:

- 1) SCS Runoff Curve CN = 90 (AMC III) for the PMF (3).
- 2) SCS Runoff Curve CN = 78 (AMC II) for the one percent probability flood (From SCS 'As-Built' data).

TABLE 3

ELEVATION, SURFACE AREA, STORAGE, AND DISCHARGE RELATIONSHIPS

Elevation (feet-MSL)	Lake Surface Area (acres)	Lake Storage (acre-ft)	Spillway Discharge (cfs)
*894.0	18.6	98	0
**897.3	28.2	174	42
***899.6	36.0	248	316

*Principal spillway inlet crest elevation
**Emergency spillway crest elevation
***Top of dam elevation

The relationships in Table 3 were developed from the SCS 'As-Built' data and the field measurements.

TABLE 4
SPILLWAY RATING CURVE

Reservoir Elevation (ft-msl)	Principal Spillway Discharge (cfs)	Emergency Spillway Discharge (cfs)	Total Spillway Discharges (cfs)
894.0	0	•	0
895.0	29	-	29
896.0	41	-	41
*897.3	42	0	42
898.3	43	40	83
**899.6	46	270	316

*Emergency Spillway Crest Elevation
**Top of Dam Elevation

METHOD USED:

Principal spillway release rates were determined from SCS 'As-Built' data which utilized the weir flow and pipe flow equations.

Emergency spillway releases were determined from the SCS 'As-Built' data which utilized SCS E & WP Unit Design Memo #7. Extrapolation of the SCS data was used to determine the discharge at elevations above 899.5 feet m.s.1.

TABLE 5

RESULTS OF FLOOD ROUTINGS

Ratio of PMF	Peak Inflow (CFS)	Peak Lake Elevation (ftMSL)	Total Storage (ACFT.)	Peak Outflow (CFS)	Depth (ft.) Over Top of Dam
-	0	*894.0	90	0	-
0.20	1,161	899.3	237	227	0
0.50	2,902	900.5	283	2,690	0.9
1.00	5,803	901.0	303	5,519	1.4

^{*} Principal spillway inlet crest elevation

BIBLIOGRAPHY

- U.S. Army Corps of Engineers, Hydrologic Engineering Center, Flood Hydrograph Package (HEC-1), Dam Safety Version, July 1978, Davis, California.
- (2) U.S. Army Corps of Engineers, St. Louis District, Hydraulic Standards, Phase I Safety Inspection of Non-Federal Dams, 12 December 1979.
- (3) U.S. Department of Agriculture, Soil Conservation Service, National Engineer Handbook, Section 4, Hydrology, August 1972.
- (4) U.S. Department of Agriculture, Soil Conservation Service, Soil Survey Interpretations and Field Maps, 1980.
- (5) Mary H. McCracken, Missouri Division of Geological Survey, Geologic Map of Missouri, 1961.

_	0	0	•	. 0	0	0	0	0	0	•	9	•	O				O	. :	(2)
			•]			ĺ	;	!	!				-	:				, · · · · · · · · · · · · · · · · · · ·
				┨		1		i	! !	: :	r •				i I			•	i
İ	!		i	1				•		ì		ı			ť			;	: t
i			Ì) 				į			İ	•
			!							İ		:	!	;	!	1			
			1		ļ				1		i	: :		. !		:			1
			;			İ						! !		:					!
!						i		!	1						1				İ
ĺ			! 			!			ļ			! !				,			1
			ì					905-	i i							!			
ĺ			n					1		İ		i 				!			ĺ
								9 02.			!								
							'	-										ł I	ļ
İ	İ				100			285.		İ	1	; ;		ì]				
			!			•	1	İ				!							
2			:		1			-894. 899.2 204.	i		! !				İ	;			
1			}		•			· • ~						İ					!
								124.	\$, 1			Ì				
25			1		NYDROGRAPHS_ABOVE_LAKE.		-			i 	<u>.</u>	!	i		j ,				
2			İ	0.	130.	!	MAG	3.	902.					i		1			1
Ž.		1850UNI DAN INSPECTIONS ONNSON COUNTY DAN A.26 NO BOLLY SEC.			ž -		UTE HYBROGRAPHS THROUGH BAN	-		!			. 37						
		7	1	0.5	120.		2	42.		1220.	<u> </u>	i	COUNT:		İ				1
2		MS P	,			ļ	SHAV				į Į	 							
-211LR,9100-M21/33/4BUTERFO,3574BUTERFO,67		FAU		m	20.66 101.		100	41.		1220.		<u> </u>	133 SEC. 1HAGE						1
		SSOURT DAM NMSON COUN		~ ~	~		¥ 2	80 49	-	22	 -					ļ			
	0-20/	SSE		25 # £		25.	UTE	5		55.	:		133			į			
5	1	E 7 4	. . .		~	, o	- 2	_ & % ?				: [•		i				i !
DRAWAGE .	BPR06	-~-	1	19.2	_			4894. 500-	7 6	21.0 2.0 3.0 3.0 3.0			TIME:	NOB	į	!			
	ā •	1	: • • • :			- 3 × s	¥ ¥ > } 	1		គេជិ :		< < a		20	İ	!			
 		999	; 29:	2:	900	999		9000	 	! 200	: -000		NONE	CONT					
			,					000		999			••	*		,			1
į		4 ! !							ļ I	!		•	ERRORS						: !
									; • • •	: • • • •			•	ENOR				1 1 !) i
-^	, m			25.00	24.5	~ • •	222	22.2		SSS	NM 4	× **		_	1			! !	
;		!	•			•	١.	!		i			2	0 0 Z U		:			(
ļ					!		1		•										

	FLOOD HIBBOGRAPH PACKAGE - MEC-1		PROGRAM H21/02-0U TIME 13:29:28	:28 CASE
MASSON COUNTY AND ASSOCIATIONS MASSON COUNTY AND ASSOCIATION ASSO	FLOOD WERGERAPH PACKAGE (MEC- DAN SAFGT VERSION JULY 5 LAST MODIFICATION OD FED BC		·	
NUTI		RI DAM F COCK UTINGS		•
NULTI-PLAN AMATYEE TO BE PERFORMED NULTI-PLAN AMATYEE TO BE PERFORMED NULTI-PLAN AMATYEE TO BE PERFORMED NULTI-PLAN AMATYEE TO 1.00	2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	JOS SPECIFICATION NAIN 18AV 14A 1411 METRC 1PLT 1PRT S Q Q Q Q Q Q Q S JOPER NUT LROPT TRACE S Q C C C	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 .
SET TAKEN BATTOS WYDROGRAPHS ABOVE LAKE 151046 TOOP 1 ECON 170PE JPL7 JPR7 INAME 157AGE 1AUTO 15 1046 TAKEN SAMP TREAT TREAT AND 170 OF 00 00 00 00 00 00 00 00 00 00 00 00 00	. 0118	NULTI-PLAN ANALYSES TO BE NPLAN 1 NRTIO= 5 LRT .20 .25 .20 1.00		
SIME-AREA RUNOFF COMPUTATION PRE AND RAILOS WYDROGRAPHS ABOVE LAKE 15140 1COMP 1ECON 11APE JPLT JPRT 11AARE 15TAGE 1AUTO HEAD 15140 1COMP 1ECON 11APE JPLT JPRT 11AARE 15TAGE 1AUTO 15 1UMC 1AARA SHAP 1850A ATTA ATTA 1800 15AO 10O 0 100 24.80 101.00 170.00 130.00 .00 .00 .00 END 1.00 1.00 170.00 130.00 .100 -1.00 -00.00 END 1.00 1.00 1.00 170.00 170.00 11.00 -1.00 -00.00 END 1.00 WETHER 110 ENAIT STEEL OF PATA ATTA ATTA ATTA ATTA ATTA ATTA ATT		******	# • • • • • • • • • • • • • • • • • • •	
SPFE PMS ABOVE LAKE 151A0 1COMP 1ECOM 11APE JPLT JPRT 1MANE 1STACE 1AUTO MEAD 1 2 .66 .00		SUB-AREA RUNOFF COMPUTATION		
151A0 11COMP 1ECOM 11APE JPRT 1NAME 151AGE 1AUTO HEAD	1111	8A110\$	i :	1
SPEE PRS RA FREE PATA 100 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	:	SCORP SECON STAPE JPLT JPRT INAME O 0 0 0 0 0		
SPEE PMS R6 412 1826 R26 R27 R96	34106	MYPROGRAPH DATA TAREA SHAP TRSSA TRSPC RATIO ISHOU 2 .66 .00 .66 1.00 .000 0	0 1007	
STRKR BLTKR RIJOL ERAIN STRKS RTIOK STRTL CHSTL ALSMX RTIMP -00 -00 1:00 -1:00 -00 -00 -00 E NO = -90.00 WETMESS = -1.00 EFFECT CM = 90.00 TC= .00 LAG= .32 RECESSION DATA STRTG= .00 GRCSN= .00 RTION= 1.00 STRTG= .00 GRCSN= .00 STRTG= .00 GRCSN= .00 STRTG= .00 GRCSN= .00 STRTG= .00 GRCSN		PRECIP DATA R48 R72 24.80 101.00 120.00 130.00 .00		
TC= .00 LAG= .32 RECESSION DATA STRTG= .00 GRCSN= .00 RTION= 1.00 359, 710, 874, 844, 699, 482, 321, 223, 155, 72. 49. 34. 24. 16. 11. 8. 6. 5	•	LOSS DATA DETAR RIDE ERAIN STRKS RTIOK STRTE CHSTE .00 1.00 .00 .00 1.00 -1.00 -90.00		1
STRTG* .00 ORCSN* .00 RTIOR* 1.00 100 ORCSN* .00 ORCSN* .00 ORCSN* .100 100 ORCSN* .100 100 ORCSN* .1		UMIT HUBROGRAPH BATA TC# .00 LAG# .32		
159. 710. 874. 844. 669. 669. 121. 32 VOL- 1.00 359. 710. 874. 844. 11. 81. 623. 155. 72. 49. 34. 24. 16. 11. 8. 6. 5. 5. 5. 6. 5. 7. 6. 11. 8. 6.		RECESSION DATA	i	!
FROJECT 9166. BATE 16 JUL 80 - MEC-1	112. 359. 106. 72.	1 21 END OF PERIOD ORDINATES, TC . 60 HOURS, LAGE 710. 874. 842. 321. 49. 34. 24. 16. 11. 8.	YOL. 1.00 223. 6.	
FROIECT 9166. BATE 16 JUL 80			:	
A C K & V E A T C N				
- 160-1 - 160-	OLACK G VEATOR		9166. DATE 16 JUL	:
	.OOD HYDROGRAPH PACKAGE - HE		2-00 TIME	

D NTOROGI	SRAPH PAC	- 39VX	#E C-1			ı			<u> </u>	ROGRAM M	H21/02-0	00 TIRE	13:29:28	CASE
0	4.30	\$	5	6.	6	35.	1.01	16.30	198	.29	.29	8	017	
5:	4.35	\$3	5.	5	5	35.	1.01	16.35	199	۶.	62.	0.	1850.	
Э с	•	2 5	5 5	5 6	5 5		5	0 7 . 0 .	200		٠,٠	0 0	25	
• 0		3	5	ā	5	37.		16.50	202			200	1608.	
0	*	2	.00		5	28.	1.01	16.55	203	50	2	00.	1572.	
0	•	9		5	5	38.	•		204	٠2	٥2.	00.	1547.	
0	٠,	19	-0.	.00	.0.	39.	0	7.0	202	.23	.23	00.	1522.	****
•	5:5	≈ ∶	ē	5	<u>:</u>	6	1.01	17.10	902	25	۶.	÷:	1485.	
0	•	3 ;	ē	5	5 3		0	Ξ,	202	≅;	53		.6251	
3 C	,,	•		5	5		> <	17.60	9 0	Ç.	?:	96	1500	;
• •	. ~	3	=	-	5	; ;	, 0	17.30	210		23	•	1267.	
0	7	6	Ę	5	5	.21	. 0	17.35	112	ξ.	.23	2	1236.	
0	٠.	80	.0	5	<u>:</u>	42.	0	17.40	212	٠2	.23	00.	1216.	
5.6	2.45	•	<u>.</u>	5:	: :	ŗ.	•	~;	213	ξ:	2	ē.	1202.	
90	•			5 6	2		> <	: :	* * * * * * * * * * * * * * * * * * * *	;;	?		1106	!
	: :	~	5	5	8	;	•	18.00	216	.23	.2	8	1181.	
0	٠.	73	10.	ě	20.		1.01	8	217	-02	-05	00-	1154.	:
1.01	•	∠ }	6.5	ž:	7	5		2	218	20.	~:	2	1077.	
•	•	2 2	6.3	6	20.				219	~;	20.	5	928.	
, c	٠,	2.2	5	•					022	70.	20.	96	•	
•	. "	78	2	9	??	2,00		9 40	222	. 6	200	9	421.	
	~	79	20.	.03	• 05	199.	1.01	3	223	70	20.	9	320.	
1.01	۲.	80	20.	÷.	=	215.	1.01	4.8	722	. 02	20.	00.	253.	
9	٠.		.07	S:	5	227.	1.01	¥.	558	~ •	~	00.	207.	
0	•	20	20.	ě	<u>:</u> :	237.	1.01		226	20.	٥:	0.0		
, a	•	9 49	9	5	5 5	252		֝֜֞֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	, 2, 2 2, 2 2, 2 3, 2 4, 2 4, 2 4, 2 4, 2 4, 2 4, 2 4, 2 4	36	20.	9 6	137.	
. 0		8	٥.	.0.	5	258.	1:0:		522	20	~	8	127.	
0	٠.	89	.07	•05	٠.	263.	0	19.10	230	70.	-05	.00	120.	
0	٠, ۱	20	?:	ş	5:	267.	0	19.15	231	۶:	~:	8 :	115.	
90	Ÿ	10 C	9 6	9 5	5 5	274	5.5	19.40	252	200	200			
	7	2	6	8	5	277.		19.30	ž	~	~	9	108	
o	٣.	10	.07	•0•	-0	280.	0		235	-05	-0-	00.	106.	
•	•	6	.07	8	ē:	283.	0	7.	236	~	٠٥٠	00.	106.	
0	٠,٠	, .	20.	\$	<u>.</u>	285.	- 0.	7.	237	~;	~;	0.	105.	
5 0	•	* 0		9.5	5 5			•	2 2 8		70.	9 6		
o	•	9		3		261	э с	^ c	242	2	20			
0	•	4		80.	5	293.		:	241	~	~	00.	105.	
0	٠.	98		٥.	<u>.</u>	295.	0	:	242	٠٥.	~0•	00.	105.	
•	٠.'	6		90.	5	296.	0	-	543	-05	~:	00	105.	
٥ د	٠,	6		6.5	5 3	. B. C.	-0.	2.0	272	20:	20.	9		
90	•	102		9	5 5	300.		•	\$? \$?	20	200	9 9	105	
0	~	103		90.	5	305.	1.0.1	3	24.7	20.	~	8	105.	
0	*	104		90.	5	303.	1.01	;	8 7 2	-05	~0•	9	105.	
90	•	60.		9.5	5	• • • • • • • • • • • • • • • • • • •	1.01	•	6 × ÷	~ :	~;	9		
	: "	107	6		2	306.			222	? ?	~	200	. 501	
1:01	9.00	108	.07	8		307.	1.0	21.00	252	70.	~0.	0	105.	
0	٠.	100		8.	9	308	1.01	:	253	70.	٠٥٠	2	105.	•
₹ ;) }	x (•	-	66.	DATE	9 JUL	Ž
HTDRO	49 M94	- 39Y	ME C-1						•	04.4	1/02-0	7286	13:29:28	CASE
•														
	,	•		į		!				:	• :	•		•

	• •					i	:			•		-	ļ		į	ļ			1		1		1
CASE			•	<u> </u>	:	905.00	2650.00			:	: !		:		:	!			:	•	•	!	!
PROGRAM N21/02-00 TIME 13:20:28 CASE					1	907.00	1050.00			1		I	:		1				:		I	:	•
TIME 13:29				!	1	•	105		;	•	!	ļ				!		: 66≠	: ::::::::::::::::::::::::::::::::::::			~ ~ ~	
2-00 1			1AUT0 0	:	;	899.50	285.00		:		!				:	i		1	1	,	1		
PROGRAM W21/02-0U				LSTR 0	27	•				:	!		i		!	į			÷ %,	÷.	5.5		
PROGRAM M21/0			NE ISTAGE	ند :	14 15PRAT	499.20	204.00		:	EXPL .0	•	ı	1				::		- ~;		275	: 2:	
			T INAME	: :	x STORA 0 -694.	.70			!	CAREA .0			:	-	LTES	'					• • •		
			=	1	188	898.70	124.00	.005	905.	1000	DANKID 0.			. AATIO 1	H ORBINATES	,	;	00-	<i>←</i> ~ ·	Ÿ	5 7 7	22.	ing:
	911		111	1001	× 0.	898.30	83.00		i		DATA EXPO			BAM, PLAN 1.	ROGRAPI	,	::		- ~,	;;	- 5.5	25.5	
	PM ROU		ON STAPE	1SANE	AMSKK .000			345.	902.	. ELEVL	4 0 0 0 ·		:	. 44	10b HT6	OUTFLOW	••			•	! 	1	• • •
	NYDROGRAPH ROLTING	E V	1ECON 0	1865	176	897.00	42.00	262.	.006	20. X	TOPEL 899.6	1220.	905.0	STATION	END-OF-PERIOD HUBBOGRAPH	3		;		750		225	18 8 4
	-	DROGRAPHS THROUGH DAM	1001	A 60	NSTDE 0		9	•		C004		1220.	0.004	2	E K		::		<u>-</u> -,			22.5	
		RAPHS		\$ 00 00 00 00	1	896.00	41.00	193.	898	8 MID			8			į	::	•	≟÷,	;;	* <u>~</u> •	•	
		NY DROG	1STA9 DAM	SS CLOSS	NSTPS	895.00	29.00	146.	896.	CAEL 894.0	•	455.	899.8							,	· • •	- 14 6	* PT PT 4
PLOOD NIDEGERAL PACKAGE - NEC-1		ROUTE NY		eLoss	; !	868	2	.06	894.	:	:	•	899.6				ė ė		##,	::	• ÷ ÷	23.	26.00
FOR HARRISH SERVICE STORES						394.00	8	~	=							!			; ; ; ;	;;			
ROSRAFI					:	•		CAPACITY	EL EVAT 10H=			T LENGT	ELEVATION			:		1	:			:	
000 XTB			:		!	STAGE	11.0V	2	ELEV	!	!	CRES	ELEV		:	!		1	i		1	!	
			;				İ	•	! 	;			1		•			•	;		1		

•,	; .	ر. با <u>ح</u> طر				:	· · ·	•		.,•	.•	•	. : :	ø	3	0	Ú	0	0	
			:		1	,		!	•	1		•	1	1			1 !		≂:	
SVJ				i i	: !		:	ı	:				:			1	!		PAGE	CASE
9 2 : (1		!	!		!		i	:		i i		'		; ;			
13:29:28								:		į	1	•							3:1	13:29:28
7.1%				1	:	•			:				! :		t				DATE	TINE
70-20/	TATION			•				:		:			:		:		!			, 05-0n
PROGRAM N21/02-0U	74800				!	i !									;		!		PROJECT 9166.	PROGRAM H21/02-00
# 90 # 4	ONO NIC	.00.	5803. 164.33)(5519.	!	i		•	!	:		:	!						PROJEC	PR 0 CR
	730 EC	1004S 1 4A110				•			ì !	:	t	!			:					
	E (EMB OF PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS Flows in Cubic Feet Per Second (Cubic Meters Per Second) Area in Square Miles (Square Kilometers)		. 2902.	2690.	1	•					*		1	•	:					
	IPLE P BIC ME E KILO	APPLI 30 RA		i	i	Į.		:	;											
	R FULT ND CCU CSGUAR	RATIOS APPLIED TO RATIO 3 RATIO .5	1741.	1016.				· ·		:	1									
:	ARY FO A SECO Alles	1~ ≈	1451.	428. 12.12) (1	1					:						
	SCH PE	PAT		ļ				1						!						
	OF PERIOD M CUBIC F AREA IN S	BATIO 1	1161.	227.				:	1	: :	 			:						
	ND OF S IN C	1								:		i !								
		PLAN	!			!		• • •		1		!								_ :
- 466-	. STOR	ABEA	1.7.1	1.7.1			} !	:		1			i						=	- 386
CKAGE	PEAK FLOW AND STORAG	*	av .	5		!!!		<u> </u> 		; ! ;	!	4 1 1	!						A 7 C H	KAGE .
۲ • = ۲	PEAK P	STAT 10K	MEAD					!		<u>!</u>				\$ \$					V E A	12 20
49044A		2	PH AT	2						:		!		! !						9 N O G H
floob wybrograph package - nec-1		0PERATION	HYBROGRAPH AT	ROUTED_TO		:		!							 					FLOOD NYDROGRAPH PACKAGE - MEC-1
:	i	6	2	1		;					<u>{</u>		ĺ							=

MAXIMUM MAXIMIM MAXIMUM MAXIMUM MAXIMUM MAXIMUM MAXIMUM MAXIMUM MAXIMUM MAXIMI	SICRATION SICRATION CONTROL CO
STORAGE OUTFLOW DURATION THE OF TIME OF STORAGE OUTFLOW OVER TOP MAN OUTFLOW FAILURE AC-FT CFS NOURS NOURS NOURS NOURS NOURS 15.07 16.67 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	
237. 428. 200. 16.07. 1	
	. 1
	i

Ì

APPENDIX B

GEOLOGIC INVESTIGATION AND DESIGN MEMORANDUM

UNITED STATES DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE

DETAILED GEOLOGIC INVESTIGATION OF DAM SITES

GENEDAL

	•	GENERAL		
Missouri	Johnson Johnson	SW . NW 36 be	South Fork of N a 294 Westerness Blackwater	
State Seturatorshed			group Structure class	
Investigates by Enel F	'. Eamonds (FF 2, WP)	ment west Mobile 3-40 3	Dete 12/15/65	
(signature and title) b		ne, medel, etc.)	
		SITE DATA		
Droinage area 3120 66	34 m. 125 soms Typ	e of structureD.I.	Purpose Stabilization	
Direction of valley trend (does	restreem, E	Maximum height of fill 24.5	feet. Length of fill 1010	feet.
Estimated volume of compac	ted fill required 22,819			
		STORAGE ALLOCATION		
	Volume (ac. 11.)	Surface Area (acres)	Depth at Dem (feet)	
Sediment	32.5	18.6	18.0	
Floodwater	146.5	35.5	21.6	
				
General prology of site		material and alluvium	a. The underlying bedrock	foot
- T			ton Group of the lover	
Pennsylvanian Sy		A LONG THE CO CHE MAN	Can trois of the large	
<u> </u>		·····		
		······································		
			,	
				
				

.

DETAILED GEOLOGIC INVESTIGATION OF DAM SITES

FEATUR	Principal Continue of Dam.	<u>Spillua</u> Principal Spill	OFF COM	Area Spilosy	the Street	Channel,	Investigations 1	or Drawage	of Structure	Barrow Area	Reserver Basin	, etc.)
					DRILLIN	IG PRO	GRAM					
								Me	mber of Som	Ples Taken		

Equipment Vand	Number of Holes	Undicturbes	Disturbed
	Exploration Sampling	totale type;	Large Small
8-40			
			
			
			
Tetal	_2		

SUMMARY OF FINDINGS finclude only factual data:

Shale was encountered in all test holes at depth of 6 to 7 feet. The shale was
hardened and dry but the sugar was advanced into the shale in each test hole from 2 to
feet. All holes bottomed without refusal. There is sufficient borrow symilable
below the creet elevation of the principal spillway with 500 feet of the centerline
of fill. Shale outcrops on the left of the channel at the centerline of fill.

USDA-SCE

DETAILED GEOLOGIC INVESTIGATION OF DAM SITES

State Missouri County Johnson	South Fork of Blackwater Webstahod Submetershed	
Site number A-26 Site group III Structure class	a investigated by N. F. Edmonds	tie) Det: 12/15/64

INTERPRETATIONS AND CONCLUSIONS

The gently sloping abutments are residual soil and in cultivation. The alluvium of the foundation is 6 feet or less in thickness. No evidence of stratification or coarse permeable material was found in Test Holes 301 and 102. The channel has cut to shale and carries only a small amount of bed load except in the inside of meanders where coarse sandy clay occurred to a depth of 5 feet in test hole 302. The shale and/or silt stone on the left of the channel was dry and prittle. The core trench should be extended through the weathered some of this material or until the shale can be cut without shattering. No other unfavorable foundation conditions were noted.

Borrow Available	Sample Mo.	Topsoil	Cu.Yds.
Area			Fill
1		1,250	
_	1	•	12,500
2	1	_	7,500
3	No.	1,875	18,750

Borrow area 3 was inaccessible and could not be sampled at time of drilling. Estimated to be similar to Area 1

Engineers Recommendations:

- 1. 90% Standard Compaction
- Standard Embankment Design 2011 side slopes, 10 ft. berm at normal pool elevation and 12 ft. crown.
- 3. An overfill allowance of 0.5 of a foot for residual settlement within the fill and foundation.
- b. A minimum depth core trench (3-5 feet). The core trench across the stream channel should cut through the weathered shale material as recommended in the geologic report.
- All materials from required excavations and borrow are classed as CL and are suitable for use in any portion of the structure.

BCB - \$357 REV. 2 - 64 1 FROM TO CSE. RESA REC. TYPE TT. FT. IS DAME IS SHEET OF SHEETS Kissour! ATE NO. 1-26 P.L.8 SAMPLES Š ~ ¥ 1 9 CL FA > * * * z 3. PERCENT SAMPLE RECOVERY LOCATION OF HOLES SUB-WATERSHED LOG OF TEST HOLES MOJECTE OWNER No water level Clay, yellowish brown, stiff, moist DESCRIPTION OF MATERIALS Shale, yellowish brown, dry, hard DAR 12/15/64 2. COARSE MATERIAL REMOVED Total Depth 9' t. E. separation of Assessiving.
sec. constructor serves
withhele South Fork of Blackster Top sodl EMILING COMPANIES :- 40

FOR STA BETT OF TO BE T 1. DISTURBED - UNDISTURBED - ROCK COME. Losert By 690.3 0 1.5 'n 101

BCS-8897 REV. 2 - 64 FROM TO CRE. REM REG. Missourt OF SHEETS 1-26 P.L.8 7 _ SHEET - 1 _ 77.80 ġ 1 1 1 5 M. TA 3 # U # 13 7.00.00 Alt, clayer, dark graytsh brown, moist, medium, alluvium LOCATION OF HOLES SUB - WATERSHED No water level E.O.D. LOG OF TEST HOLES MOJECT: Contracta DESCRIPTION OF MATERIALS 12/12/64 Shale, yellowish brown, dry hard Clay, silty, graylsh, brown 2. COARSE MATERIAL REMOVED Total Depth 7' TOTATION South Fork of Blachater 1. DISTURBED UNDISTURBED ROCK CORE Phol P. Ednonds tosate ev Johnson County U. S. DEPARTMENT OF ASSISTANCE SOIL CONSCIENTION SERVICE WATERSHED KOLE STA & PROM TO 1 ૭ ~ v × 0 9 ELEVATION 885.4 102 Š

1

3. PERCENT SAMPLE RECOVERY

BC8-8837 REV. 2-64 TYPE TT. FT. % DAME Missouri A-26 SAMPLES P.L.48 BITE NO. 79.00 9 CSEO. CL FA > ... 9F111 7-15 1- 80 W z 3. PERCENT SAMPLE RECOVERY Clay, silty, dark grayish and yellowish brown, slightly moist, stiff, alluvial soil NP-67 No water level E.O.D. LOS OF TEST HOLES PROJECT: OWNER DESCRIPTION OF MATERIALS Shale, yellowish brown, dry hard. PANE 12/15/68 is a department of Admiciation sold sold sold sold sold fork of Blackwater River Materehed Ideasion 2. COARSE MATERIAL REMOVED Total Depth 8.5' 1. DISTURBED UNDISTURBED ROCK CORE Muel F. Edmonds Johnson County Mobile 11-10 ×. P Out TO 9 0 • BIA.4 BURFACE ELEVATION 882.1 201 ğ ğ

SHEET

;

BC8-8377 REV. 2-64 TYPE FT. TY. & DIAM W Missouri SHEET OF SHEETS DITE NO. A-26 P.L. 48 10.03 ġ LOCATION OF HOLES Q. EX11 7415 751 Bt. 776 ٤ Z 3 > # U # 보 z 3. PERCENT SAMPLE RECOVERY Clay, gravelly, wet, medium 30% coarse sand and fine gravel channel fill Silt, clayer, dark brown, moist, soft, alluvium SUB WATERBHED Water level 2.5' E.O.D. LOG OF TEST HOLES PROJECT: OWNER DESCRIPTION OF MATERIALS Shale, yellowish brown, dry, hard. DATE 12/15/64 2. COARSE MATFRIAL REMOVED Total Depth 9' u. a. department of Agricultume son, conservation service watership South Fork of Blackhator 100/arion 1. DISTURBED-UNDISTURBED-ROCK CORE LOGATON Johnson County
LOGGE FT Muc! F. Edmonds
Describe FOUNTIES PAID
MOUL STAA FROM TO
HOLE SUFFACE FROM TO ť ~ Ŋ 0 0 W STA. A BURFACE ELEVATION 875.8 HOLE 8 ģ

United states government

Memorandum

TO :Gerald K. McElhiney, Project Engineer, SCS, Warrensburg, Missouri

DATE: January 20, 1965

FROM :William S. Culpepper, State Conservation Engineer. SCS, Columbia, Missouri

SCS, Columbia, Missouri

**SUBJECT: ENGINEERING - Recommendations for the Design of Structures A-26 Blackwater and A-26 Tabo

Since samples were not submitted to the Soil Mechanics Laboratory for these structures, the following recommendations are based on test results for similar site conditions and should be used in preparing the designs.

A-26 - Blackwater

1. 90% Standard Compaction

 Standard Embankment Design - 22:1 side slopes, 10 ft. berm at normal pool elevation and 12 ft. crown.

An overfill allowance of 0.5 of a foot for residual settlement within the fill and foundation.

4. A minimum depth core trench (3-5 feet). The core trench across the stream channel should cut through the weathered shale material as recommended in the geologic report.

All materials from required excavations and borrow are classed as CL and are suitable for use in any portion of the structure.

1-26 - Tabo

1. 90% Standard Compaction

 Standard empaniment design - 2:1 side slopes, 10 ft. berm at normal pool elevation and lingt, crown.

 An overfill allowance of 1.0 foot-for residual settlement within the fill and foundation.

4. A minimum depth core trench (3-5 feet). Core trench across the stream channel should extend approximately 2 feet below the alluvium deposit in the channel.

 Materials from required excavations and borrow are suitable for use in any portion of the structure.

cc: Neil Randall Arthur Ison

UNITED STATES DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE SOIL MECHANICS LABORATORY

WORK SHEET FOR COMPACTION AND PENETRATION RESISTANCE DATA

:01	PACTION DATA	(Record	Laborat Weights	ory Samp	le No.:_ ds)	1.5	<u> </u>
1	wt. of Cy1. + Spi1	£ 12	1 40	850	555) >>	8.57
2	Wt. of Cylinder	743	4.43	4.43	4.43	4.43	443
3	wt. of Soil=1-2	3 77	297		12 1 2	11:	. 1.16
-	Wt. per Cu. ft. (Wet) = ③ + vol. of Cyl.	ż				ي ≨ ⊊ د	5/
5	wt. per Cu. Ft. $(Dry) = \frac{4}{100 + 9} \times 100$	327	•			775	
6	Proctor weedle Readings			}	\		
7	Size Meedle (Sq.in.)						
8	Penetration (Los./sq. in.) Resistance = (6) + (7)						
HO!	STURE DETERMINATION DATA	(Record	Weights i	in Grams)		
,	Percent Moisture* (3)	18. 3	15.1	⟨.			
10	Can Humber	/	2	.3	1	5	(
11	Wet Wt Can + Soil	149.4	144.3	131.6	15.17	171, 3	177.7
12	Dry Wt can + Soil	133.1	123 "	116.7	146. 2	146.1	15% -
و1	Moisture Weight≈ ① - ①	14.3	14 2	100	225	250	20.5
14	Weight of Can	27.3	27.	272	27.5	27 5	271
15	Dry Weight of Soil = 12 - 13	1-75	121 5	195	115.9	1186	124.3
Vol	. of Cy1cu. ft.			PROCEDU	RE DATA:		
Vol	of Cylcu. ft.				RE DATA:	. 5	ounds
Vol	Standard Proctor Modified AASHO				nner <u> </u>	<u>.5</u> •	
Vol	Standard Proctor			wt. of Mar	nner <u> </u>	2 '	
	Standard Proctor Modified AASHO	<u>1-5-63</u>	<u> </u>	wt. of Mar	mer <u>5</u>	2 '	
Comp	Standard Proctor Modified AASHO Other			Wt. of Her Drop No. of Lif	mer <u>5</u>	2 '	nches
Comp	Standard Proctor Modified AASHO Other Date:	·	- [Wt. of Her Drop No. of Lif	tts ?	2 '	nches

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE SOIL MECHANICS LABORATORY

Date _	<u>٠</u>			_		· Freid		2	REPORT			
Project	<u> </u>	ي ۳ ج	<u> </u>	<u>. :: : : : : : : : : : : : : : : : : : </u>		Local	ion	Δ-	<u> </u>			
Sample	Location and	1 Depth										
	2500								T		-	7
											-	
	2000											-
5										1		
PENETRATION RESISTANCE IN POUNDS PER SOUARE INCH										 	 	1
PENETRATION RESISTANCE N POUNDS PER SOUARE IN	1500				-							
200	F	1										-
£ 5					1				7	-	T	
<u> </u>	1000									1		
RAT										<u> </u>		+
E 5	500			ļ.,	ļ			<u> </u>		 	 	
윤규	300											
-												1
	0			<u> </u>	<u> </u>					1		
	100											
	125				1							+
												\mp
							 			 		
								-				+
	164										-	
									7			
= 5				-						<u> </u>		
9 E	1,23	-			}			 		-		+
<u> </u>									7	£/-		
₹ 5										4.5		
WEIGHT OF COMPACTED SOIL IN POUNDS PER CUBIC FOOT	100			·						T		
<u> </u>	+							 	+	 \	 	+
- H											-	1
<u>≅</u> ₹	101				!					 		\Rightarrow
¥ =						 					 	
	 				<u> </u>					<u> </u>	 	
	1/21	==			-			1				=
										1		+
	97				<u> </u>							
•	4			 	-	-				+		+
								-				
	· · · · · · · · · · · · · · · · · · ·	=			1	<u> </u>					ــــــــــــــــــــــــــــــــــــــ	
	<u> </u>		<u> </u>	*	TURE CON	7 /	S DEBCERT	OF DOY			; ;	
	THE OF TEST		_	7015		ROCECURE		J. DRT	Classifi	cation		
	Standard Pro]	iant of	Hammer			,	Material		ed repri	esents
				pn. στ			inc	•		percent	of the s	
_	Modified AAS		יייט	- P	· <u> </u>		1110	1162	and pass	ed		
	Other		l Li	Lifts3 voi. of Cylinder3:Cu.Ft.					and passed stove			

UNITED STATES DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE SOIL MECHANICS LABORATORY

WORK SHEET FOR COMPACTION AND PENETRATION RESISTANCE DATA

	WORK CREE! I'M GOM NO!!	Lab										
COI	PACTION DATA	(Record	Weights	in Poun	ds)							
1	wt. of Cyl Soil	8.20	8.40	<u>ب</u> ک	ي بري	2,55	C 50					
2	Wt. of Cylinder	4.43	4.43	4.43	4 4	4.43	4,71:					
3	wt. of Soil=1-2	رو (2 0 7	7 7	4	472	4.12					
4	Wt. per Cu. Ft. (Wet) ≠ ③ + Vol. of Cyl.	115.1	// 2.	122 :	154.5	128.5	124/					
5	Wt. per Cu. Ft. (Dry) = $\frac{(4) \times 100}{100 + (9)}$	90,0	سی.ق	154.7	154.7	101.5	12					
6	Proctor Heedle Readings											
7	Size Needle (Sq.in.)											
8	Penetration (LDS./sq. in.) Resistance = (6) + (7)											
HOI	STURE DETERMINATION DATA	(Record 1	Veights i	n Grams)							
,	Percent Moisture = 0	13.3	ا بحر	13.3	/ 5 . u	21.3	21. 2					
10	Can Number	1		Ω.	<i>4</i> ′	\$	_					
11	Wet Wt Can + Soil	1494	122, 3	خ.باءا	ا دو د	17/.9	1775					
12	Dry Wt Can + Soil	135.1	128.9	112.7	141,5	1-4.1	151.4					
13	Moisture Weight = 110 ~ 12	14.3	15.4	14.9	ی نے مے	ج. يح	26.4					
14	Weight of Can	27.3	£7./	-17.3	Er s	27.5	5 7					
15	Dry Weight of Soil = 12 - 14	107.5	101.8	سی به بی	118.0	118.6	124.3					
Vol	. of Cy1. <u>160</u> cu. ft.	,		PROCEDU	RE DATA:							
X	Standard Proctor			Wt. of Har	mer <u>5</u>	<u>. ح</u>	ounds					
	Modified AASNO			Drop		ی ا	nches					
L	0ther			No. of Lif	حی ده							
Comp	Nated by: <u>C & C</u> Date: <u>/</u>	-5-6	<u>-</u>									
Comp	outed by: Date:		- [Densi ty		5					
Chec	ked by: In CH Date: 1	-7-65	_ [Wet	0	гу	H ₂ 0					
Reco	orded by: Date:		_		10	ر بی	17.8					
Proj	WEL BLACKWATER PH	158	\$	ite A	-26							

594-8:

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE SOIL MECHANICS LABORATORY

SCS-352 Rev. (10/58) COMPACTION AND PENETRATION RESISTANCE REPORT 1-6-65 Date __ Project BEACH WATER BIVER __ Location ___ Sample Location and Depth . 2500 2000 PENETRATION RESISTANCE IN POUNDS PER SOUARE INCH 1500-1000-500-106 104 COMPACTED SOIL 103 102 WEIGHT OF IN POUNDS 100 99 MOISTURE CONTENT IN PERCENT OF DRY WEIGHT TYPE OF TEST TEST PROCEDURE Classification Standard Proctor weight of Hammer_ Material compacted represents _ LO S. ____percent of the sample Modified AASHO and passed_ Inches _sieve Other __ (So. (r.) ar 2.98 voi. of Cylinder 130

UNITED STATES DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE SOIL MECHANICS LABORATORY

WORK SMEET FOR COMPACTION AND PENETRATION RESISTANCE DATA

COI	MPACTION DATA	(Record	Laborat Weights	ory Samp	le No.: ds)	101					
1	wt. of Cyl. + Soil	8.70	€.53	9. 22	وي. ه						
2	Wt. of Cylinder			4.43	1						
3	we. of Soila (1)-(2)	. o . √7	4.10	11.10	4.15						
4	Wt. per Cu. Ft. (Wet) = ③ + vol. of Cyl.	42.1	13.5	100	3.4 E						
5	Wt. per Cu. Ft. (Dry) = $\frac{(4) \times 100}{100 + (9)}$	٥٨(٥)	^=	1/3/2	11.7						
6	Proctor Needle Readings										
7	Size Needle (Sq.in.)										
.8	Penetration (LDs_/sq. in.) Resistance = (6) + (7)										
MOISTURE DETERMINATION DATA (Record Weights in Grams)											
9	Percent Moisture= (3)	$P_{\bullet\bullet}f$	9	0	¹ ≥ 4						
10	Can Number	7	1,	9	15						
11	Wet Wt Can + Soil	139.7	143.6	1-110,0	11.5.1						
12	Dry Wt Can + Soil	12.11	1-17.2	.202	124,0						
13	Moisture Weight = 11) - 13	15,6	ر در در	13 4	25.7						
14	Weight of Can	9 to 9	972	97./	% PT . 3						
15	Dry weight of Soil = (2) - (14)	3,,8	115.1	59.1	109.6						
											
Vol	. of Cy1cu. ft.			PROCEDU	RE DATA:						
	Standard Proctor			Wt. of Har	mer <u>5.5</u>	Pounds					
	Modified AASHO			Drop	16	Inches					
	Other			No. of Lif	ts <u>3</u>	_					
Comp	oleted by: CCP Date: /	-7-65									
Comp	uted by: Date:		_ r		Density	T					
Chec	ked by: Oate:		_	Wet	Ory	н ₂ 0					
teco	rded by: Date:		_		103.8	20.6					
	AL REACKLIATER PINER		_	A	- 26						

101

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE SOIL MECHANICS LABORATORY

ï

		ACTION AND PENETRATION				
Date _	1-7-65	Sample No.: Fre	<u> /د/</u>	Lab		
		€IVE12 Loc	ation			
Sample	Location and Depth					
	2500-			نيت ويسون ليوني والمواد		
	2000					
_	2000					
妝호						
PERFIRATION RESISTANCE IN POURDS PER SOUARE INCM	1500					
1 S						
<u> </u>						
8 2	1000					
2 S						
<u>.</u> .	500					
=						
			d====			
(i					
ſ			T			
ſ	104					
L	1871 11 11					
			+			
ſ	102					
	T					
5 E .						
2 2	100					
¥ .			+			
₹ 5 • ~ [
WEIGHT OF COMPACTED SOIL IN POUNTS PEN CUBIC FOOT	18					
ĕξ						
t a	95					
בר בר			1			
> -		*				
ſ	74					
	T					
-	<u> </u>					
- 1						
r						
L		17 18 19	2 2	22 23 24		
		MOISTURE CONTENT I				
TY	PE OF TEST	TEST PROCEDUI		Classification		
₩ s	tandard Prector	weight of Hammer	LD S.	Material compacted represents		
□ •	odified AASHO	0rop		percent of the sample		
	ther	Lifts 3		and passedsieve		
	IDP	r Litis _ 5	(Sp. Gr.) Gs= 7 7 2			

UNITED STATES DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE SOIL MECHANICS LABORATORY

WORK SHEET FOR COMPACTION AND PENETRATION RESISTANCE DATA

PMPACTION DATA	(Record	(Record Weights in Pounds)								
Wt. of Cyl. + Soil	8.76	2 23	162	7						
wt. of Cylinder		4.43	4.43	4.43						
#t. of Sc()=(1-2)	3 (7	416	419	., , '						
wt. per Cu. ft. (web) = 3 + vol. of Cyl.	17.5	2 %	1.5	1975						
Wt. per Cu. Ft. (Dry) = $\frac{(a) \times 100}{100 + (a)}$		111	1 - 1							
Proctor heedle Readings										
Size Heedle (Sq.in.)										
Penetration (LDS./SQ. in.) Resistance= 6 + 7										
ISTURE DETERMINATION DATA	(Record 1	Veights	n Grams)						
Percent Moisture = 0	10.	, , .	\$1,5	1 x 2						
Can Number	7	<u>,</u>	g	10						
Wet wt Can + Soil	1897	1636	146.6	113.6						
Dry Wt Can + Soil	1241	142.3	1200	1365						
Moisture Weight = (1) - (1)	156	2/3	15.5	25.7						
Weight of Can	273	27. 2	27.1	27 3						
Dry weight of Soil = (2) - (3)	16.5	1151	93/	107.6						
										
ol. of Cyl. <u>//3.</u> cu. ft.			PROCEDU	RE DATA:						
Standard Proctor			ML. Of HE	mer <u>5)</u>	Pounds					
Modifien AASHO			Drop	_/2_	Inches					
Otner			No. of Lif	118 3						
pleted by: Date:	1-7-6-5	<u>.</u>								
Mouted by: Date:		ſ		Dens i ty	1 1					
sched by: Date:		_	Wet	Dry	н ₂ 0					
		i		i	e 20.0					

U. S. DEPARTMENT OF AGRICULTURE SOIL COMSERVATION SERVICE SOIL MECHANICS LABORATORY

SCS-352 Rev. (10/56)

COMPACTION AND PENETRATION RESISTANCE REPORT Date _____:*. Location A- 10 Project Financial Control Sample Location and Depth 2000-PERETRATION NESISTANCE IN POUNDS PER SOUARE INCH 1500-1000 COMPACTED SOIL IGHT OF ¥ = 91 MOISTURE CONTEST IN DERCENT OF DRI MEIGHT TYPE OF TEST TEST PROCEDURE Classification weight of hamner______Lbs. LDS. Material compacted represents Standard Proctor percent of the sample - Wod fred AASHG and passed___ nerer . ب ن ایان دون rol of Sylinder_____

APPENDIX C HYDROLOGIC-HYDRAULIC DESIGN DATA

IRE DATA	Reinfall B 29 in. Renctures Runcillo	7 2	Reservoir Casacity				4012	949		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Total Storage - Ac.Ft.	Supplementary Data and CTBUCTIBE A.24	Special Design Features: Eluxumer Australiant Pt. 565	U.S. PETATOHISTORY AND CLIVINE SOLUCION SALVINE		
STRUCTURE	Class of Structure 9 Grade SISHIBZATION Brainage Area (total) 425 Ac. 0.654 84.NI, (uncontrolled) 425 Ac. 0.654 84.NI,	1able 22.5 Ac. ft. beloe E	tetal Sediment Capacity Available 97.5 Ac.Ft.	ftetarding Capacity Provided 93.1 Ac.ft, Capacity Equivalents (Vol.) 2.36 In,	Natur Supply Provided Mond Ac.ftidentify Wees Principal Soillany:	Harinum Capacity (Los otage) 43 c.f.s,	Hearings Copecify thigh stage!	Carrent Spillusy: Percent Chance Hee 4 Storm Duration & Mon.C.	Typevicactate Lacin "a" Value Used O. O. O.4. Sergency Spillusy Hydrograph for Class O. Streetures	Rainfall 5.75 to.	Peak Inflow S/B c.f.s. Hazimym DE c.f.s.	Maximum Mater Surface Elev. 898.2	Pe s i	Energency Spilling Crest Elev : 397.6 Energency Spilling Botton Width = 40'	Settled Top of Dam Elev. : 841.6. 11x5 = 22 x 151.2. , 3,706	

.

