STAT 3690 Lecture Note

Week Two (Jan 16, 18, & 20, 2023)

Zhiyang Zhou (zhiyang.zhou@umanitoba.ca, zhiyanggeezhou.github.io)

2023/Jan/19 22:12:53

Matrix basics (con'd)

Block/partitioned matrix

• A partition of matrix: Suppose \mathbf{A}_{11} is of $p \times r$, \mathbf{A}_{12} is of $p \times s$, \mathbf{A}_{21} is of $q \times r$ and \mathbf{A}_{22} is of $q \times s$. Make a new $(p+q) \times (r+s)$ -matrix by organizing \mathbf{A}_{ij} 's in a 2 by 2 way:

$$\mathbf{A} = \left[egin{array}{c|c} \mathbf{A}_{11} & \mathbf{A}_{12} \ \hline \mathbf{A}_{21} & \overline{\mathbf{A}}_{22} \end{array}
ight.$$

e.g.,

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

if

$$\mathbf{A}_{11} = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right], \quad \mathbf{A}_{12} = \left[\begin{array}{c} 2 \\ 3 \end{array} \right], \quad \mathbf{A}_{21} = \left[\begin{array}{cc} 4 & 5 \end{array} \right], \quad \text{and} \quad \mathbf{A}_{22} = \left[\begin{array}{cc} 6 \end{array} \right].$$

- Operations with block matrices
 - Working with partitioned matrices just like ordinary matrices
 - Matrix addition: if dimensions of \mathbf{A}_{ij} and \mathbf{B}_{ij} are quite the same, then

$$\mathbf{A} + \mathbf{B} = \left[egin{array}{ccc} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{array}
ight] + \left[egin{array}{ccc} \mathbf{B}_{11} & \mathbf{B}_{12} \\ \mathbf{B}_{21} & \mathbf{B}_{22} \end{array}
ight] = \left[egin{array}{ccc} \mathbf{A}_{11} + \mathbf{B}_{11} & \mathbf{A}_{12} + \mathbf{B}_{12} \\ \mathbf{A}_{21} + \mathbf{B}_{21} & \mathbf{A}_{22} + \mathbf{B}_{22} \end{array}
ight]$$

- Matrix multiplication: if $\mathbf{A}_{ij}\mathbf{B}_{jk}$ makes sense for each i, j, k, then

$$\mathbf{AB} = \left[\begin{array}{ccc} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{array} \right] \left[\begin{array}{ccc} \mathbf{B}_{11} & \mathbf{B}_{12} \\ \mathbf{B}_{21} & \mathbf{B}_{22} \end{array} \right] = \left[\begin{array}{ccc} \mathbf{A}_{11} \mathbf{B}_{11} + \mathbf{A}_{12} \mathbf{B}_{21} & \mathbf{A}_{11} \mathbf{B}_{12} + \mathbf{A}_{12} \mathbf{B}_{22} \\ \mathbf{A}_{21} \mathbf{B}_{11} + \mathbf{A}_{22} \mathbf{B}_{21} & \mathbf{A}_{21} \mathbf{B}_{12} + \mathbf{A}_{22} \mathbf{B}_{22} \end{array} \right]$$

- Inverse: if \mathbf{A} , \mathbf{A}_{11} and \mathbf{A}_{22} are all invertible, then

$$\mathbf{A}^{-1} = \left[\begin{array}{ccc} \mathbf{A}_{11.2}^{-1} & -\mathbf{A}_{11.2}^{-1} \mathbf{A}_{12} \mathbf{A}_{22}^{-1} \\ -\mathbf{A}_{22}^{-1} \mathbf{A}_{21} \mathbf{A}_{11.2}^{-1} & \mathbf{A}_{22.1}^{-1} \end{array} \right]$$

$$\begin{array}{l} * \ \mathbf{A}_{11.2} = \mathbf{A}_{11} - \mathbf{A}_{12} \mathbf{A}_{22}^{-1} \mathbf{A}_{21} \\ * \ \mathbf{A}_{22.1} = \mathbf{A}_{22} - \mathbf{A}_{21} \mathbf{A}_{11}^{-1} \mathbf{A}_{12} \end{array}$$

$$* \mathbf{A}_{22.1} = \mathbf{A}_{22} - \mathbf{A}_{21} \mathbf{A}_{11}^{-1} \mathbf{A}_{12}$$

```
options(digits = 4)
set.seed(1)
## Generate an (almost surely) invertible matrix
(A = matrix(runif(9), nrow = 3, ncol = 3)) #
# Verify the inverse of partition matrix
## Method 1: following the above formula
(A11 = A[1:2, 1:2])
(A12 = matrix(A[1:2, 3], nrow = 2, ncol = 1))
(A21 = matrix(A[3, 1:2], nrow = 1, ncol = 2))
(A22 = matrix(A[3, 3], nrow = 1, ncol = 1))
(A11.2 = A11 - A12 \% *\% solve(A22) \% *\% A21)
(A22.1 = A22 - A21 \% *\% solve(A11) \% *\% A12)
(Ainv1 = rbind(
  cbind(solve(A11.2), -solve(A11.2) %*% A12 %*% solve(A22)),
  cbind(-solve(A22) %*% A21 %*% solve(A11.2), solve(A22.1))
## Method 2: solve()
Ainv2 = solve(A)
## Comparison
Ainv2 - Ainv1
```

An example utilizing matrix basics: rephrasing the ridge estimator

"All models are wrong, but some are useful."

— G. E. P. Box. (1976). Journal of the American Statistical Association, 71:791–799

Statistical modelling

What is a statistical model?

- The (joint) distribution of the random variable(s) of interest
 - E.g., reformulate linear regression and logit regression models in terms of distributions

Recall the characterization of univariate distributions

- A random variable (RV), say X, is a real-valued function (defined on a sample space).
- The cumulative distribution function (cdf) of X, say $F_X(x) = \Pr(X \le x)$, $x \in \mathbb{R}$, if (right continuous) $\lim_{t \to x_0^+} F_X(x) = F_X(x_0)$, (non-decreasing) $F_X(x_0) \le F_X(x_1)$ for $x_0 < x_1$, and (ranging from 0 to 1) $F_X(-\infty) = 0$ and $F_X(\infty) = 1$.
 - Reversely, any function satisfying the three properties must be a cdf for certain RV.
- Discrete RV
 - RV X takes countable different values
 - Probability mass function (pmf): $p_X(x) = Pr(X = x)$
- Continuous RV
 - RV X is continuous iff its cdf F_X is (absolutely) continuous, i.e., there exists f_X , s.t.

$$F_X(x) = \int_{-\infty}^x f_X(u) du, \quad \forall x \in \mathbb{R}.$$

- Probability density function (pdf): $f_X(x) = F'_X(x)$.
- Moment-generating function (mgf) $M_X(t) = \mathbb{E}\{\exp(tX)\}\$ if $\mathbb{E}\{\exp(tX)\}\$ $<\infty$ for t in a neighbourhood of 0
 - If the mgf exists, then $E(X^k) = M_X^{(k)}(t) \mid_{t=0}$.

Support of RV

- Support of X, say supp(X), is $\{x \in \mathbb{R} : p_X(x) \text{ (or } f_X(x)) > 0\}$
 - e.g., support of Binom(n,p) is $\{0,\ldots,n\}$; support of $\mathcal{N}(0,1)$ is \mathbb{R} .

Indicator function

• Given a set A, the indicator function of A is

$$\mathbf{1}_{A}(x) = \begin{cases} 1, & x \in A, \\ 0, & \text{otherwise.} \end{cases}$$

- Hence, e.g., if $X \sim Binom(n,p)$, then $p_X(x) = \binom{x}{n} p^x (1-p)^{1-x}$, $x \in \{0,\ldots,n\}$, $p \in (0,1)$, or equivalently, $p_X(x) = \binom{x}{n} p^x (1-p)^{1-x} \mathbf{1}_{\{0,\ldots,n\}}(x) \mathbf{1}_{\{0,1\}}(p)$

Characterization of joint/multivariate distributions

• Random (column) vector/vector-valued RV

$$- \boldsymbol{X} = [X_1, \dots, X_p]^{\top}$$

- Joint cdf: $F_{\mathbf{X}}(x_1, ..., x_p) = \Pr(X_1 \le x_1, ..., X_p \le x_p)$
- Joint distribution of continuous RVs
 - Joint pdf:

$$f_{\mathbf{X}}(x_1,\ldots,x_p) = \frac{\partial^p}{\partial x_1 \cdots \partial x_p} F_{\mathbf{X}}(x_1,\ldots,x_p)$$

- E.g., multivariate normal (MVN) distribution
- Joint distribution of discrete RVs
 - Joint pmf:

$$p_{\mathbf{X}}(x_1,\ldots,x_p) = \Pr(X_1 = x_1,\ldots,X_p = x_p)$$

- E.g., categorical distribution & multinomial distribution
- Exercise: Suppose that we independently observe an experiment that has m possible outcomes O_1, \ldots, O_m for n times; e.g., sample n balls with replacement from a pool of balls of m colors. Let p_1, \ldots, p_m denote probabilities of O_1, \ldots, O_m in each experiment respectively. Let X_i denote the number of times that outcome O_i occurs in the n repetitions.
 - What is the distribution of X_i ?
 - What is the joint pmf of $\boldsymbol{X} = [X_1, \dots, X_m]^\top$?
- Moment-generating function (mgf) $M_{\boldsymbol{X}}(\boldsymbol{t}) = \mathbb{E}\{\exp(\boldsymbol{t}^{\top}\boldsymbol{X})\}\$ if there exists $\delta > 0$ s.t. $\mathbb{E}\{\exp(\boldsymbol{t}^{\top}\boldsymbol{X})\} < \infty$ for all $\boldsymbol{t} \in \{\boldsymbol{t}: \boldsymbol{t}^{\top}\boldsymbol{t} < \delta\}$
 - If the mgf of X exists and X_i are independent of each other, then $M_X(t) = \prod_{i=1}^p M_{X_i}(t_i)$.

Marginalization

- $X = [X_1, \dots, X_m]^{\top},$
- $\boldsymbol{Y} = [X_1, \dots, X_q]^{\top}, p > q$, as part of \boldsymbol{X}
- Marginal cdf of \boldsymbol{Y}

$$F_{\mathbf{Y}}(x_1,\ldots,x_q) = \lim_{x_{q+1},\ldots,x_m \to \infty} F_{\mathbf{X}}(x_1,\ldots,x_m)$$

• Marginal pdf of Y (when X_1, \ldots, X_m are all continous)

$$f_{\mathbf{Y}}(x_1,\ldots,x_q) = \int_{\mathbb{R}^{m-q}} f_{\mathbf{X}}(x_1,\ldots,x_m) dx_{q+1} \cdots x_m$$

• Marginal pmf of Y (when X_1, \ldots, X_m are all discrete)

$$p_{\mathbf{Y}}(x_1,\ldots,x_q) = \sum_{x_{q+1},\ldots,x_m} p_{\mathbf{X}}(x_1,\ldots,x_m)$$

Conditioning

- $X = [X_1, ..., X_m]^{\top}$ and $Y = [Y_1, ..., Y_q]^{\top}$
- Conditional pdf of \boldsymbol{Y} given \boldsymbol{X}

$$f_{\boldsymbol{Y}|\boldsymbol{X}}(y_1,\ldots,y_q\mid x_1,\ldots,x_m) = \frac{f_{\boldsymbol{X},\boldsymbol{Y}}(x_1,\ldots,x_m,y_1,\ldots,y_q)}{f_{\boldsymbol{X}}(x_1,\ldots,x_m)}$$

• Conditional pmf of \boldsymbol{Y} given \boldsymbol{X}

$$p_{\boldsymbol{Y}|\boldsymbol{X}}(y_1,\ldots,y_q\mid x_1,\ldots,x_m) = \frac{p_{\boldsymbol{X},\boldsymbol{Y}}(x_1,\ldots,x_m,y_1,\ldots,y_q)}{p_{\boldsymbol{X}}(x_1,\ldots,x_m)}$$

Transformation of random vectors

- ullet Derive the pdf of continuous Y=g(X) from the pdf of continuous X
- Prerequisite
 - $-\boldsymbol{X} = [X_1, \dots, X_p]^{\top}$ and $\boldsymbol{Y} = [Y_1, \dots, Y_p]^{\top}$ $-\boldsymbol{g} = (g_1, \dots, g_p) \colon \mathbb{R}^p \to \mathbb{R}^p$ is a continuous one-to-one map with inverse $\boldsymbol{g}^{-1} = (h_1, \dots, h_p)$, i.e., $Y_i = g_i(\boldsymbol{X})$ and $X_i = h_i(\boldsymbol{Y})$
- Elaborate supp $(Y) = \{ [y_1, \dots, y_p]^\top : [h_1(y_1, \dots, y_p), \dots, h_p(y_1, \dots, y_p)]^\top \in \text{supp}(X) \}$
- Jacobian matrix of \mathbf{g}^{-1} is $\mathbf{J}_{\mathbf{g}^{-1}} = [\partial x_i/\partial y_j]_{p\times p} = [\partial h_i(y_1,\dots,y_p)/\partial y_j]_{p\times p}$ - Also, $|\det(\mathbf{J}_{\mathbf{g}^{-1}})| = |\det([\partial y_i/\partial x_j]_{p\times p})|^{-1} = |\det([\partial g_i(x_1,\dots,x_p)/\partial x_j]_{p\times p})|^{-1}$
- Then

$$f_{\mathbf{Y}}(y_1,\ldots,y_p) = f_{\mathbf{X}}(h_1(y_1,\ldots,y_p),\ldots,h_p(y_1,\ldots,y_p))|\det(\mathbf{J}_{\mathbf{g}^{-1}})|\mathbf{1}_{\mathrm{supp}(\mathbf{Y})}(y_1,\ldots,y_p)$$

• Exercise: Let $\boldsymbol{X} = [X_1, X_2]^{\top}$ follow the standard bivariate normal, i.e., its pdf is

$$f_{\boldsymbol{X}}(x_1,x_2) = (2\pi)^{-1} \exp\{-(x_1^2 + x_2^2)/2\} \mathbf{1}_{\mathbb{R}^2}(x_1,x_2).$$

Find out the joint pdf of $\mathbf{Y} = [Y_1, Y_2]^{\top}$, where $Y_1 = \sqrt{X_1^2 + X_2^2}$ and $0 \le Y_2 < 2\pi$ is the angle from the positive x-axis to the ray from the origin to the point (X_1, X_2) , that is, Y is X in the polar coordinate.

Expectation of random matrix

- $E(\boldsymbol{X}) = [E(X_{ij})]_{n \times p}$, where
 - Random $n \times p$ matrix $\mathbf{X} = [X_{ij}]_{n \times p}$
- (Linearity) $E(\mathbf{A}X + \mathbf{B}Y) = \mathbf{A}E(X) + \mathbf{B}E(Y)$, where
 - Fixed $\mathbf{A} \in \mathbb{R}^{\ell \times n}$ and $\mathbf{B} \in \mathbb{R}^{\ell \times m}$
 - Random matrices $\mathbf{X} = [X_{ij}]_{n \times p}$ and $\mathbf{Y} = [Y_{ij}]_{m \times p}$

Covariance matrix

- Random p-vector $\boldsymbol{X} = [X_1, \dots, X_p]^{\top}$ and random q-vector $\boldsymbol{Y} = [Y_1, \dots, Y_q]^{\top}$
- Covariance matrix (defined via expectation) $\Sigma_{XY} = \text{cov}(X, Y) = \text{E}[\{X \text{E}(X)\}\{Y \text{E}(Y)\}^{\top}]$

```
\begin{array}{l} - \text{ Also, } \boldsymbol{\Sigma_{XY}} = \mathrm{E}(\boldsymbol{XY}^\top) - \mathrm{E}(\boldsymbol{X})\mathrm{E}(\boldsymbol{Y}^\top) \\ - \text{ The } (i,j)\text{-entry of } \boldsymbol{\Sigma_{XY}} \text{ is } \mathrm{cov}(X_i,Y_j) \end{array}
```

- $\Sigma_{\mathbf{A}X+a,\mathbf{B}Y+b} = \mathbf{A}\Sigma_{XY}\mathbf{B}^{\top}$ for fixed $\mathbf{A} \in \mathbb{R}^{m \times p}$, $a \in \mathbb{R}^{m}$, $\mathbf{B} \in \mathbb{R}^{\ell \times q}$ and $b \in \mathbb{R}^{\ell}$
- $\Sigma_{X} \ge 0$, where $\Sigma_{X} = \text{cov}(X)$ is short for $\Sigma_{XX} = \text{cov}(X, X)$