Contents

Competition and Selection	1
Accounting for behavioral measurement uncertainty	1
Correlations between selection gradients and competition	2
Aggression and Competition	3
Activity and Competition	3
Docility and Competition	4
Effect of competition on linear selection (glmms) $\dots \dots \dots \dots \dots \dots \dots$	4
Interaction between competition and linear selection results	7
Competition and nonlinear selection (glmms)	7
Nonlinear results	9
Ignoring behavioural uncertainty	10
Correlations between selection gradients and competition	10
Aggression and Competition	10
Activity and Competition	11
Docility and Competition	11
Effect of competition on linear selection	12
Interaction between competition and linear selection results	14
Competition and nonlinear selection	14
Format results of nonlinear selection for table	15
Nonlinear results	16
ARS	16
OWS	16
Fecundity	17
Plot of quadratic interaction	18
Tile plot of interaction	19

Competition and Selection

Accounting for behavioral measurement uncertainty

```
library(MASS) # MASS clashes with dplyr... so always load first
library(pander) # pander clashes with dplyr... so always load first
library(ggplot2)
library(grid)
library(dplyr)
set.alignment('right', row.names = 'left')
```

```
load("data/analyses_data/sel_grads_mcmc.RData")
fitness <- read.table(file = "data/fitness+competition.csv", sep = ',',
   header = TRUE, stringsAsFactors = FALSE)
load("data/analyses_data/fit_raneff_data.RData")</pre>
```

We will examine the effect of competition on selection in two general steps.

- 1. Is there an interaction between competition and behavior on fitness?
- 2. Are there nonlinear effects of behavior on fitness?

Correlations between selection gradients and competition

First a plot of the relationship between selection gradients and competition. The two study areas were pooled to calculate selection gradients for each year. Therefore we need to calculate competition for the combined study areas. Competition is the number of offspring produced during the year divided by the number of offspring that survived to spring (i.e. recruited into the population).

```
competition_year <- fitness %>%
  filter(grid_year != "SU2008") %>%
  select(Year, competition) %>%
  unique() %>%
  group by (Year, add = FALSE) %>%
  summarise(mean_competition = mean(competition))
n_year <- filter(fit_raneff_data, type == "blup") %>%
  group_by(Year, add = FALSE) %>% summarise(n = n())
competition_year <- left_join(competition_year, n_year, by = "Year")</pre>
competition_year$Year <- as.character(competition_year$Year)</pre>
load("data/analyses_data/sel_grads_mcmc.RData")
sel_grads_mcmc_comp <- left_join(</pre>
  filter(sel_grads_mcmc, standardization == "SD"), competition_year,
  by = "Year")
save(sel_grads_mcmc_comp, competition_year,
  file = "data/analyses_data/sel_grads_mcmc_comp.RData")
load("data/analyses_data/sel_grads_mcmc_comp.RData")
cor_sgrad_comp <- function(x){</pre>
  v <- x$variable[1]</pre>
  ct <- cor.test(x$post_mode, x$mean_competition)</pre>
  data.frame(variable = v, est = ct$estimate, lower = ct$conf.int[1],
    upper = ct$conf.int[2], stringsAsFactors = FALSE)
mcmc_cor <- sel_grads_mcmc_comp %>%
  group_by(variable, add = FALSE) %>%
  do(cor_sgrad_comp(.))
mcmc_cor[ ,2:4] <- round(mcmc_cor[ ,2:4], digits = 2)
mcmc_cor$print <- paste(mcmc_cor$est,</pre>
  " (", mcmc_cor$lower, ", ", mcmc_cor$upper, ")", sep = "")
```

Aggression and Competition

```
p <- ggplot(data = filter(sel_grads_mcmc_comp, variable == "Aggression"),</pre>
  aes(x = mean_competition, y = post_mode))
p <- p + geom_errorbar(aes(ymin = lower, ymax = upper), width = 0.2, size = 0.2)
p <- p + geom_point()</pre>
p \leftarrow p + theme_bw(base_size = 10)
p \leftarrow p + scale_x_continuous(breaks = c(3,4,5,6,7,8,9))
p <- p + ylab("Selection Gradient")</pre>
p <- p + ggtitle("Aggression")</pre>
p <- p + xlab("Juvenile Competition")</pre>
p <- p + theme(panel.grid.major = element_blank(),</pre>
  panel.grid.minor = element_blank(), panel.background = element_blank(),
  strip.background = element_blank(), strip.text = element_text(size = 10),
  panel.border = element_rect(linetype = "solid", colour = "black"),
  plot.title = element_text(size = 10))
p <- p + geom_text(data = filter(mcmc_cor, variable == "Aggression"),</pre>
  aes(x = 6.5, y = 1.1, label = paste("Correlation = ", print, sep = '')),
  size = 2.5)
p + theme(plot.margin = unit(c(0.1, 0.1, 0.1, 0.1), "cm"))
```


Activity and Competition

```
p <- ggplot(data = filter(sel_grads_mcmc_comp, variable == "Activity"),
    aes(x = mean_competition, y = post_mode))
p <- p + geom_errorbar(aes(ymin = lower, ymax = upper), width = 0.2, size = 0.2)
p <- p + geom_point()
p <- p + theme_bw(base_size = 10)
p <- p + scale_x_continuous(breaks = c(3,4,5,6,7,8,9))
p <- p + ylab("Selection Gradient")
p <- p + ggtitle("Activity")
p <- p + xlab("Juvenile Competition")
p <- p + theme(panel.grid.major = element_blank(),
    panel.grid.minor = element_blank(), panel.background = element_blank(),
    strip.background = element_blank(), strip.text = element_text(size = 10),</pre>
```

```
panel.border = element_rect(linetype = "solid", colour = "black"),
  plot.title = element_text(size = 10))
p <- p + ylim(c(-1, 1.5))
p <- p + geom_text(data = filter(mcmc_cor, variable == "Activity"),
  aes(x = 6.1, y = 1.5, label = paste("Correlation = ", print, sep = '')),
  size = 2.5)
p + theme(plot.margin = unit(c(0.1, 0.1, 0.1, 0.1), "cm"))</pre>
```


Docility and Competition

```
p <- ggplot(data = filter(sel_grads_mcmc_comp, variable == "Docility"),</pre>
  aes(x = mean\_competition, y = post\_mode))
p <- p + geom_errorbar(aes(ymin = lower, ymax = upper), width = 0.2, size = 0.2)
p <- p + geom_point()</pre>
p <- p + theme_bw(base_size = 10)</pre>
p \leftarrow p + scale_x_continuous(breaks = c(3,4,5,6,7,8,9))
p <- p + ylab("Selection Gradient")</pre>
p <- p + ggtitle("Docility")</pre>
p <- p + xlab("Juvenile Competition")</pre>
p <- p + theme(panel.grid.major = element_blank(),</pre>
  panel.grid.minor = element_blank(), panel.background = element_blank(),
  strip.background = element_blank(), strip.text = element_text(size = 10),
  panel.border = element_rect(linetype = "solid", colour = "black"),
  plot.title = element_text(size = 10))
p <- p + geom_text(data = filter(mcmc_cor, variable == "Docility"),</pre>
  aes(x = 6.1, y = 0.65, label = paste("Correlation = ", print, sep = '')),
  size = 2.5)
p + theme(plot.margin = unit(c(0.1, 0.1, 0.1, 0.1), "cm"))
```

Effect of competition on linear selection (glmms)

```
load("data/analyses_data/fit_raneff_data.RData")
library(dplyr)
fit_raneff_data <- tbl_df(fit_raneff_data)</pre>
```


library(lme4)

```
# Model with interactions between competition and the behavioral traits.
# grid_year and ID are random effects.
arsLinearCompetition <- function(dat){</pre>
  ars_linear_comp <- glmer(</pre>
    ars_all ~
    competition_s +
    aggression_s +
    competition_s:aggression_s +
    activity_s +
    competition_s:activity_s +
    docility_s +
    competition_s:docility_s +
    (1|Grid) + (1|ID),
    data = dat, family = poisson, control=glmerControl(optimizer="bobyqa")
  random_effect_variances <- VarCorr(ars_linear_comp)</pre>
  data.frame(t(summary(ars_linear_comp)$coefficients[ ,"Estimate"]),
  ID = random_effect_variances$ID[1], Grid = random_effect_variances$Grid[1])
library(foreach)
## foreach: simple, scalable parallel programming from Revolution Analytics
## Use Revolution R for scalability, fault tolerance and more.
## http://www.revolutionanalytics.com
library(doMC)
## Loading required package: iterators
## Loading required package: parallel
ncores = 12
registerDoMC(cores = ncores)
```

```
batches <- data.frame(start = seq(1, 1000, round(1000/ncores))[1:ncores])</pre>
batches$stop <- c(batches$start[2:length(batches$start)] - 1, 1000)</pre>
start_time <- Sys.time()</pre>
ars_linear_comp_posterior <- foreach(i = 1:ncores, .combine = rbind) %dopar% {</pre>
  results <- fit_raneff_data %>%
    filter(type == "raneff", itt %in% batches$start[i]:batches$stop[i]) %>%
    group_by(itt, add = FALSE) %>%
    do(arsLinearCompetition(.))
}
run_time <- Sys.time() - start_time</pre>
print(run_time)
## Time difference of 2.539 mins
save(ars_linear_comp_posterior,
  file = "data/analyses_data/ars_linear_comp_posterior.RData")
load("data/analyses_data/ars_linear_comp_posterior.RData")
library(MCMCglmm)
library(lme4)
library(data.table)
## data.table 1.9.2 For help type: help("data.table")
## Attaching package: 'data.table'
## The following objects are masked from 'package:dplyr':
##
##
       between, last
getPosteriorParams <- function(x){</pre>
  require(MCMCglmm)
  dat_mcmc <- mcmc(x)</pre>
  pm <- posterior.mode(dat_mcmc)</pre>
  hpd <- HPDinterval(dat_mcmc, prob = 0.9)</pre>
  pm_table <- format(round(pm , digits = 2), digits = 1, nsmall = 2,</pre>
    scientific = FALSE)
  hpd_table <- format(round(hpd, digits = 2), digits = 1, nsmall = 2,
    scientific = FALSE)
  pm_hpd_table <- data.frame(cbind(pm_table, hpd_table))</pre>
  pm_hpd_table$pm_hpd <- paste(</pre>
    pm_table, " (", hpd_table[ ,1], ", ", hpd_table[ ,2], ")", sep = ''
  pm_hpd_table$sig[sign(hpd[ ,1]) == sign(hpd[ ,2])] <- "*"</pre>
  pm_hpd_table$sig[sign(hpd[ ,1]) != sign(hpd[ ,2])] <- " "</pre>
  pm_hpd_table$space[sign(hpd[ ,1]) == sign(hpd[ ,2])] <- "*"</pre>
  pm_hpd_table$space[sign(hpd[ ,1]) != sign(hpd[ ,2])] <- "&nbsp;"</pre>
  pm_hpd_table$pm_hpd <- paste(pm_hpd_table$pm_hpd, pm_hpd_table$sig, sep = "")</pre>
```

```
return(pm_hpd_table)
}
linear_hpd_ars <- getPosteriorParams(ars_linear_comp_posterior %>%
  ungroup() %>%
select(Intercept = X.Intercept., Competition = competition_s,
  Aggression = aggression_s, Activity = activity_s, docility = docility_s,
  "Competition x Aggression" = competition_s.aggression_s,
  "Competition x Activity" = competition_s.activity_s,
  "Competition x Docility" = competition_s.docility_s)
)
```

Interaction between competition and linear selection results The effect of competition on linear selection on female behavioral traits for annual reproductive success. Posterior modes are given with highest posterior density intervals in parentheses.

pandoc.table(linear_hpd_ars %>% select(pm_hpd), justify="right")

	pm_hpd
Intercept	-1.01 (-1.11, -0.93)*
Competition	-3.27 (-3.65, -3.09)*
Aggression	0.36 (0.13, 0.63)*
Activity	-0.12 (-0.37, 0.15)
$\operatorname{docility}$	-0.18 (-0.38, -0.06)*
Competition x Aggression	1.30 (0.50, 1.99)*
Competition x Activity	$-0.45 \ (-1.26, \ 0.32)$
Competition x Docility	-0.54 (-1.13, -0.09)*

Competition and nonlinear selection (glmms)

```
load("data/analyses_data/fit_raneff_data.RData")
library(lme4)

arsNonlinearResults <- function(dat){
    ars_model <- glmer(ars_all ~ aggression_s*competition_s +
        activity_s*competition_s + docility_s*competition_s +
        aggression_s*activity_s*competition_s + I(aggression_s^2)*competition_s +
        I(activity_s^2)*competition_s + I(docility_s^2)*competition_s +
        (1 | grid_year) + (1|ID), data = dat, family = poisson,
        control=glmerControl(optimizer="bobyqa"))
kpd_model <- glmer(kprod ~ aggression_s*competition_s +
        activity_s*competition_s + docility_s*competition_s +
        aggression_s*activity_s*competition_s + I(aggression_s^2)*competition_s +
        I(activity_s^2)*competition_s + I(docility_s^2)*competition_s +</pre>
```

```
(1 | grid_year) + (1|ID), data = dat, family = poisson,
    control=glmerControl(optimizer="bobyqa"))
  ows_model <- glmer(prop ~ aggression_s*competition_s +</pre>
    activity_s*competition_s + docility_s*competition_s +
    aggression_s*activity_s*competition_s + I(aggression_s^2)*competition_s +
    I(activity_s^2)*competition_s + I(docility_s^2)*competition_s +
    (1 | grid_year) + (1|ID), data = dat, weights = kprod, family = binomial,
    control=glmerControl(optimizer="bobyqa"))
  ars_vc <- VarCorr(ars_model)</pre>
  ars_t <- data.table(fitness = "ars",</pre>
    t(summary(ars_model)$coefficients[,"Estimate"]), ID = ars_vc$ID[1],
    grid_year = ars_vc$grid_year[1])
  kpd_vc <- VarCorr(kpd_model)</pre>
  kpd_t <- data.table(fitness = "kpd",</pre>
    t(summary(kpd_model)$coefficients[,"Estimate"]), ID = kpd_vc$ID[1],
    grid_year = kpd_vc$grid_year[1])
  ows_vc <- VarCorr(ows_model)</pre>
  ows_t <- data.table(fitness = "ows",</pre>
    t(summary(ows_model)$coefficients[ ,"Estimate"]), ID = ows_vc$ID[1],
    grid_year = ows_vc$grid_year[1])
  rbind(rbind(ars_t, kpd_t), ows_t)
}
library(foreach)
library(doMC)
ncores = 12
registerDoMC(cores = ncores)
batches <- data.frame(start = seq(1, 1000, round(1000/ncores))[1:ncores])</pre>
batches$stop <- c(batches$start[2:length(batches$start)] - 1, 1000)</pre>
start_time <- Sys.time()</pre>
nonlinear_mcmc <- foreach(i = 1:ncores, .combine = rbind) %dopar% {</pre>
  results <- fit_raneff_data %>%
    filter(type == "raneff", itt %in% batches$start[i]:batches$stop[i]) %>%
    group_by(itt, add = FALSE) %>%
    do(arsNonlinearResults(.))
}
run_time <- Sys.time() - start_time</pre>
print(run_time)
## Time difference of 20.4 mins
save(nonlinear_mcmc, file = "data/analyses_data/nonlinear_mcmc_models.RData")
load("data/analyses_data/nonlinear_mcmc_models.RData")
pm_hpd_ars <- getPosteriorParams(</pre>
  nonlinear_mcmc[nonlinear_mcmc$fitness =="ars", 3:18])
```

```
pm_hpd_ows <- getPosteriorParams(
    nonlinear_mcmc[nonlinear_mcmc$fitness =="ows", 3:18])
pm_hpd_kpd <- getPosteriorParams(
    nonlinear_mcmc[nonlinear_mcmc$fitness =="kpd", 3:18])

nonlinear_results_mcmc <- data.frame(ARS = pm_hpd_ars$pm_hpd,
    OWS = pm_hpd_ows$pm_hpd, Fecundity = pm_hpd_kpd$pm_hpd)

row.names(nonlinear_results_mcmc) <- c("Intercept", "Aggression",
    "Competition", "Activity", "Docility", "Aggression^2", "Activity^2",
    "Docility^2", "Aggression x Competition", "Activity x Competition",
    "Docility x Competition", "Aggression x Activity",
    "Aggression^2 x Competition", "Activity^2 x Competition",
    "Docility^2 x Competition", "Agg. x Act. x Competition"
)</pre>
```

Nonlinear results

The effect of competition on linear and nonlinear selection on female behavioral traits for annual reproductive success. Posterior modes are given with highest posterior density intervals in parentheses.

```
pandoc.table(nonlinear_results_mcmc[c(1,3,2,4:16), ],
    split.tables = 160)
```

	ARS	OWS	Fecundity
Intercept	-0.76 (-1.18, -0.42)*	-1.84 (-2.35, -1.42)*	1.34 (1.28, 1.41)*
Competition	-2.58 (-3.98, -1.72)*	-2.41 (-4.21, -1.27)*	-0.06 (-0.19, 0.09)
Aggression	0.45 (0.08, 0.82)*	0.59 (0.17, 1.13)*	-0.04 (-0.09, 0.02)
Activity	-0.17 (-0.53, 0.17)	-0.06 (-0.68, 0.24)	$0.03 \ (-0.05, \ 0.06)$
Docility	-0.29 (-0.55, -0.13)*	-0.29 (-0.54, -0.03)*	0.04 (0.00, 0.07)*
Aggression ²	-0.12 (-0.51, 0.15)	-0.28 (-0.70, 0.16)	$0.02 \ (-0.05, \ 0.05)$
Activity ²	0.00 (-0.36, 0.23)	-0.07 (-0.42, 0.31)	-0.02 (-0.07, 0.02)
Docility^2	-0.15 (-0.33, 0.04)	-0.20 (-0.41, 0.05)	$0.01 \ (-0.03, \ 0.04)$
Aggression x Competition	1.71 (0.48, 2.66)*	2.16 (0.55, 3.53)*	-0.03 (-0.16, 0.09)
Activity x Competition	-0.72 (-1.77, 0.35)	-0.24 (-1.70, 1.10)	-0.03 (-0.15, 0.08)
Docility x Competition	-0.70 (-1.55, -0.26)*	-0.45 (-1.13, 0.49)	-0.04 (-0.14, 0.02)
Aggression x Activity	$0.14 \ (-0.22, \ 0.67)$	0.21 (-0.29, 0.84)	0.02 (-0.06, 0.08)
Aggression ² x Competition	-0.27 (-1.36, 0.56)	-0.35 (-1.98, 0.70)	0.03 (-0.11, 0.14)
Activity ² x Competition	-0.06 (-1.07, 0.68)	-0.11 (-1.32, 1.00)	0.00 (-0.11, 0.11)
Docility ² x Competition	-0.51 (-1.05, 0.15)	-0.34 (-1.29, 0.19)	-0.02 (-0.11, 0.05)
Agg. x Act. x Competition	$0.44 \ (-0.75, \ 1.92)$	$0.52 \ (-1.08, \ 2.57)$	0.01 (-0.20, 0.16)

Ignoring behavioural uncertainty

```
load("data/analyses_data/sel_grads_blup.RData")
load("data/analyses_data/fit_raneff_data.RData")
```

Correlations between selection gradients and competition

```
competition_year <- fitness %>%
 filter(grid_year != "SU2008") %>%
 select(Year, competition) %>%
 unique() %>%
  group_by(Year, add = FALSE) %>%
  summarise(mean_competition = mean(competition))
n_year <- filter(fit_raneff_data, type == "blup") %>%
 group_by(Year, add = FALSE) %>%
 summarise(n = n())
competition_year <- left_join(competition_year, n_year, by = "Year")</pre>
competition_year$Year <- as.character(competition_year$Year)</pre>
load("data/analyses_data/sel_grads_blup.RData")
sel_grads_blup_competition <- left_join(</pre>
 filter(sel_grads_blup, standardization == "SD"), competition_year,
 by = "Year")
save(sel_grads_blup_competition, competition_year,
 file = "data/analyses_data/sel_grads_blup_competition.RData")
load("data/analyses_data/sel_grads_blup_competition.RData")
cor_sgrad_comp <- function(x){</pre>
 v <- x$variable[1]</pre>
 ct <- cor.test(x$coefficients, x$mean_competition)</pre>
 data.frame(variable = v, est = ct$estimate, lower = ct$conf.int[1],
    upper = ct$conf.int[2], stringsAsFactors = FALSE)
}
sg.comp <- sel_grads_blup_competition %>%
 group_by(variable, add = FALSE) %>%
 do(cor_sgrad_comp(x=.))
sg.comp[,2:4] \leftarrow round(sg.comp[,2:4], digits = 2)
sg.comp$print <- paste(sg.comp$est, " (", sg.comp$lower, ", ",</pre>
 sg.comp$upper, ")", sep = "")
Aggression and Competition
p <- ggplot(data = filter(sel_grads_blup_competition,</pre>
 variable == "Aggression"), aes(x = mean\_competition, y = coefficients))
p <- p + geom_errorbar(aes(ymin = lower, ymax = upper), width = 0.2, size = 0.2)
p <- p + geom_point()</pre>
p <- p + theme_bw(base_size = 10)</pre>
```

```
p <- p + scale_x_continuous(breaks = c(3,4,5,6,7,8,9))
p <- p + ylab("Selection Gradient")
p <- p + ggtitle("Aggression")
p <- p + xlab("Juvenile Competition")
p <- p + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), panel.backgro
p <- p + geom_text(data = filter(sg.comp, variable == "Aggression"),
    aes(x = 6, y = 1.5, label = paste("r = ", print, sep = '')), size = 2.5)
p + theme(plot.margin = unit(c(0.1, 0.1, 0.1, 0.1), "cm"))</pre>
```


Activity and Competition

```
p <- ggplot(data = filter(sel_grads_blup_competition, variable == "Activity"),</pre>
  aes(x = mean\_competition, y = coefficients))
p <- p + geom_errorbar(aes(ymin = lower, ymax = upper), width = 0.2, size = 0.2)
p <- p + geom_point()</pre>
p <- p + theme_bw(base_size = 10)</pre>
p \leftarrow p + scale_x_continuous(breaks = c(3,4,5,6,7,8,9))
p <- p + ylab("Selection Gradient")</pre>
p <- p + ggtitle("Activity")</pre>
p <- p + xlab("Juvenile Competition")</pre>
p <- p + theme(panel.grid.major = element_blank(),</pre>
  panel.grid.minor = element_blank(), panel.background = element_blank(),
  strip.background = element_blank(), strip.text = element_text(size = 10),
  panel.border = element_rect(linetype = "solid", colour = "black"),
  plot.title = element text(size = 10))
p <- p + geom_text(data = filter(sg.comp, variable == "Activity"),</pre>
  aes(x = 6, y = 2.2, label = paste("r = ", print, sep = '')), size = 2.5)
  pdf(file = "test.pdf", width = 2.17, height = 2.03)
p + theme(plot.margin = unit(c(0.1, 0.1, 0.1, 0.1), "cm"))
```

Docility and Competition

```
p <- ggplot(data = filter(sel_grads_blup_competition, variable == "Docility"),
   aes(x = mean_competition, y = coefficients))</pre>
```

```
p <- p + geom_errorbar(aes(ymin = lower, ymax = upper), width = 0.2, size = 0.2)
p <- p + geom_point()
p <- p + theme_bw(base_size = 10)
p <- p + scale_x_continuous(breaks = c(3,4,5,6,7,8,9))
p <- p + ylab("Selection Gradient")
p <- p + ggtitle("Docility")
p <- p + xlab("Juvenile Competition")
p <- p + theme(panel.grid.major = element_blank(),
    panel.grid.minor = element_blank(), panel.background = element_blank(),
    strip.background = element_blank(), strip.text = element_text(size = 10),
    panel.border = element_rect(linetype = "solid", colour = "black"),
    plot.title = element_text(size = 10))
p <- p + geom_text(data = filter(sg.comp, variable == "Docility"),
    aes(x = 6, y = 1, label = paste("r = ", print, sep = '')), size = 2.5)
p + theme(plot.margin = unit(c(0.1, 0.1, 0.1, 0.1), "cm"))</pre>
```


Effect of competition on linear selection

```
load("data/analyses_data/fit_raneff_data.RData")
library(dplyr)
fit_raneff_data <- tbl_df(fit_raneff_data)</pre>
library(lme4)
fit_raneff_data$oID <- 1:nrow(fit_raneff_data)</pre>
ars_linear_model <- glmer(ars_all ~ aggression_s*competition_s +
 activity_s*competition_s + docility_s*competition_s + (1 | grid_year) +
  (1|ID) + (1|oID), data = filter(fit_raneff_data, type == "blup"),
 family = poisson, control=glmerControl(optimizer="bobyqa"))
kpd_linear_model <- glmer(kprod ~ aggression_s*competition_s +</pre>
  activity_s*competition_s + docility_s*competition_s + (1 | grid_year) +
  (1|ID) + (1|oID), data = filter(fit_raneff_data, type == "blup"),
 family = poisson, control=glmerControl(optimizer="bobyqa"))
ows_linear_model <- glmer(prop ~ aggression_s*competition_s +</pre>
  activity_s*competition_s + docility_s*competition_s + (1 | grid_year) +
  (1|ID) + (1|oID), data = filter(fit_raneff_data, type == "blup"),
```

```
weights = kprod, family = binomial, control=glmerControl(optimizer="bobyqa"))
save(ars_linear_model, kpd_linear_model, ows_linear_model,
 file = "data/analyses_data/ars_linear_blup_models.RData")
Models with observation level random effect.
load("data/analyses_data/fit_raneff_data.RData")
library(dplyr)
fit_raneff_data <- tbl_df(fit_raneff_data)</pre>
library(lme4)
fit_raneff_data$oID <- 1:nrow(fit_raneff_data)</pre>
ars_linear_model_ <- glmer(ars_all ~ aggression_s*competition_s +
 activity_s*competition_s + docility_s*competition_s + (1 | oID) +
  (1 | grid_year) + (1|ID), data = filter(fit_raneff_data, type == "blup"),
 family = poisson, control=glmerControl(optimizer="bobyqa"))
kpd_linear_model_ <- glmer(kprod ~ aggression_s*competition_s +</pre>
 activity_s*competition_s + docility_s*competition_s + (1 | oID) +
  (1 | grid_year) + (1|ID), data = filter(fit_raneff_data, type == "blup"),
 family = poisson, control=glmerControl(optimizer="bobyqa"))
ows_linear_model_ <- glmer(prop</pre>
                                    ~ aggression_s*competition_s +
 activity_s*competition_s + docility_s*competition_s + (1 | oID) +
  (1 | grid_year) + (1|ID), data = filter(fit_raneff_data, type == "blup"),
 weights = kprod, family = binomial, control=glmerControl(optimizer="bobyqa"))
save(ars_linear_model, kpd_linear_model, ows_linear_model,
 file = "data/analyses_data/ars_linear_blup_models.RData")
load("data/analyses_data/ars_linear_blup_models.RData")
library(lme4)
getLmerParams <- function(x){</pre>
  coefs <- summary(x)$coefficients</pre>
  coef.table <- data.frame(format(coefs[ ,1:3], digits = 1, nsmall = 2,</pre>
    scientific = FALSE))
  coef.table$pval[coefs[,4] > 0.001] \leftarrow format(coefs[coefs[,4] > 0.001, 4],
    digits = 1, nsmall = 2)
  coef.table$pval[coefs[ ,4] < 0.001] <- "< 0.001"
  coef.table$coefs <- paste(coef.table$Estimate, " ±", coef.table$Std..Error,</pre>
    sep = '')
 return(coef.table)
}
ars_linear_blup_results <- getLmerParams(ars_linear_model)</pre>
row.names(ars_linear_blup_results) <- c("Intercept", "Aggression",</pre>
  "Competition", "Activity", "Docility", "Aggression x Competition",
  "Activity x Competition", "Docility x Competition")
names(ars_linear_blup_results) <- c("Estimate", "SE", "Z", "P", "Est ± se")</pre>
```

Interaction between competition and linear selection results

```
pandoc.table(ars_linear_blup_results[c(1,3,2,4:8), c(5,4,3)],
  justify = "right", split.tables = 160)
```

	Est \pm se	P	Z
Intercept	-1.10 ± 0.22	< 0.001	-5.09
Competition	-3.62 ± 0.64	< 0.001	-5.64
Aggression	0.74 ± 0.21	< 0.001	3.49
Activity	-0.32 ± 0.20	0.11	-1.61
Docility	-0.27 ± 0.16	0.10	-1.67
Aggression x Competition	2.62 ± 0.64	< 0.001	4.07
Activity x Competition	-1.36 ± 0.61	0.03	-2.21
Docility x Competition	-0.77 ± 0.49	0.11	-1.58

Competition and nonlinear selection

```
load("data/analyses_data/fit_raneff_data.RData")
library(lme4)
fit_blups_data <- filter(fit_raneff_data, type == "blup")</pre>
fit_blups_data$oID <- 1:nrow(fit_blups_data)</pre>
ars_nl_model <- glmer(ars_all ~ aggression_s*competition_s +</pre>
 activity_s*competition_s + docility_s*competition_s +
 aggression_s*activity_s*competition_s + I(aggression_s^2)*competition_s +
 I(activity_s^2)*competition_s + I(docility_s^2)*competition_s +
  (1 | grid_year) + (1|ID) + (1|oID),
 data = fit_blups_data, family = poisson,
 control=glmerControl(optimizer="bobyqa"))
ars_nl_model <- glmer(ars_all ~ aggression_s*competition_s +</pre>
 activity_s*competition_s + docility_s*competition_s +
 aggression_s*activity_s*competition_s + I(aggression_s^2)*competition_s +
 I(activity_s^2)*competition_s + I(docility_s^2)*competition_s +
  (1 | grid_year) + (1|ID),
 data = fit_blups_data, family = poisson,
 control=glmerControl(optimizer="bobyqa"))
kpd nl model <- glmer(kprod ~ aggression s*competition s +</pre>
 activity s*competition s + docility s*competition s +
 aggression_s*activity_s*competition_s + I(aggression_s^2)*competition_s +
  I(activity_s^2)*competition_s + I(docility_s^2)*competition_s +
  (1 | grid_year) + (1|ID) + (1|oID),
  data = fit_blups_data, family = poisson,
  control=glmerControl(optimizer="bobyqa"))
```

```
ows_nl_model <- glmer(prop ~ aggression_s*competition_s +</pre>
 activity_s*competition_s + docility_s*competition_s +
  aggression_s*activity_s*competition_s + I(aggression_s^2)*competition_s +
 I(activity_s^2)*competition_s + I(docility_s^2)*competition_s +
  (1 | grid_year) + (1|ID) + (1|oID),
 data = fit_blups_data, weights = kprod,
 family = binomial,
 control=glmerControl(optimizer="bobyqa"))
save(ars_nl_model,kpd_nl_model, ows_nl_model,
 file = "data/analyses_data/nl.blup_models.RData")
fit_raneff_data %>%
 ungroup() %>%
  summarise(
    mean_ars = mean(ars_all, na.rm = TRUE),
    var_ars = var(ars_all, na.rm = TRUE),
    mean_kpd = mean(kprod, na.rm = TRUE),
    var_kpd = var(kprod, na.rm = TRUE)
## Source: local data frame [1 x 4]
##
##
   mean_ars var_ars mean_kpd var_kpd
      0.8784 1.255 3.902 4.372
Format results of nonlinear selection for table
load("data/analyses_data/nl.blup_models.RData")
coef_p_ars <- getLmerParams(ars_nl_model)</pre>
coef_p_ows <- getLmerParams(ows_nl_model)</pre>
coef_p_kpd <- getLmerParams(kpd_nl_model)</pre>
term_names <- c("Intercept", "Aggression",</pre>
 "Competition", "Activity", "Docility", "Aggression^2", "Activity^2",
 "Docility^2", "Aggression x Competition", "Activity x Competition",
 "Docility x Competition", "Aggression x Activity",
 "Aggression^2 x Competition", "Activity^2 x Competition",
 "Docility^2 x Competition", "Agg. x Act. x Competition"
row.names(coef_p_ars) <- term_names</pre>
row.names(coef_p_ows) <- term_names</pre>
row.names(coef_p_kpd) <- term_names</pre>
names(coef_p_ars) <- c("Estimate", "SE", "Z", "P", "Est ± se")</pre>
names(coef_p_ows) <- c("Estimate", "SE", "Z", "P", "Est ± se")</pre>
names(coef_p_kpd) <- c("Estimate", "SE", "Z", "P", "Est ± se")</pre>
```

Nonlinear results

The effect of competition on linear and nonlinear selection on female behavioral traits for annual reproductive success. Posterior modes are given with highest posterior density intervals in parentheses.

 \mathbf{ARS}

```
pandoc.table(coef_p_ars[c(1,3,2,4:16), c(5,3,4)],
    split.tables = 160)
```

	Est \pm se	Z	Р
Intercept	-0.68 ± 0.31	-2.23	0.025
Competition	-2.24 ± 0.91	-2.46	0.014
Aggression	0.96 ± 0.31	3.06	0.002
Activity	-0.66 ± 0.28	-2.35	0.019
Docility	-0.51 ± 0.23	-2.18	0.029
${f Aggression ^2}$	-0.65 ± 0.32	-2.07	0.039
Activity ²	-0.30 ± 0.26	-1.16	0.247
Docility^2	-0.18 ± 0.12	-1.48	0.139
Aggression x Competition	3.40 ± 0.92	3.68	< 0.001
Activity x Competition	-2.45 ± 0.84	-2.90	0.004
Docility x Competition	-1.41 ± 0.69	-2.04	0.041
Aggression x Activity	1.01 ± 0.43	2.35	0.019
Aggression ² x Competition	-1.86 ± 0.96	-1.93	0.053
Activity ² x Competition	-0.81 ± 0.77	-1.05	0.295
Docility ² x Competition	-0.63 ± 0.39	-1.61	0.107
Agg. x Act. x Competition	2.62 ± 1.32	1.99	0.046

ows

```
pandoc.table(coef_p_ows[c(1,3,2,4:16), c(5,3,4)],
    split.tables = 160)
```

	Est \pm se	\mathbf{Z}	P
Intercept	-1.92 ± 0.39	-4.87	< 0.001
Competition	-2.48 ± 1.18	-2.11	0.035
Aggression	1.33 ± 0.42	3.17	0.001
Activity	-0.82 ± 0.38	-2.14	0.032

	Est \pm se	Z	Р
Docility	-0.49 ± 0.29	-1.70	0.088
${\bf Aggression \hat{2}}$	-1.02 ± 0.43	-2.36	0.018
Activity ²	-0.37 ± 0.36	-1.03	0.304
Docility^2	-0.18 ± 0.15	-1.17	0.242
Aggression x Competition	4.75 ± 1.28	3.70	< 0.001
Activity x Competition	-2.89 ± 1.20	-2.40	0.016
Docility x Competition	-0.78 ± 0.90	-0.86	0.388
Aggression x Activity	1.40 ± 0.60	2.35	0.019
Aggression ² x Competition	-3.11 ± 1.36	-2.29	0.022
Activity ² x Competition	-1.17 ± 1.10	-1.06	0.291
Docility ² x Competition	-0.50 ± 0.50	-0.98	0.325
Agg. x Act. x Competition	3.95 ± 1.86	2.13	0.034

Fecundity

```
pandoc.table(coef_p_kpd[c(1,3,2,4:16), c(5,3,4)],
    split.tables = 160)
```

	Est \pm se	Z	P
Intercept	1.362 ± 0.091	14.937	< 0.001
Competition	-0.017 ± 0.161	-0.106	0.92
Aggression	-0.058 ± 0.049	-1.176	0.24
Activity	0.030 ± 0.050	0.594	0.55
Docility	0.030 ± 0.041	0.724	0.47
${\bf Aggression \hat{2}}$	0.036 ± 0.053	0.672	0.50
Activity ²	-0.064 ± 0.051	-1.248	0.21
Docility ²	0.005 ± 0.026	0.209	0.83
Aggression x Competition	-0.067 ± 0.117	-0.579	0.56
Activity x Competition	0.008 ± 0.088	0.086	0.93
Docility x Competition	-0.116 ± 0.087	-1.325	0.19
Aggression x Activity	0.024 ± 0.075	0.319	0.75
Aggression ² x Competition	0.153 ± 0.149	1.029	0.30
Activity ² x Competition	0.079 ± 0.145	0.545	0.59
Docility ² x Competition	-0.067 ± 0.055	-1.218	0.22
Agg. x Act. x Competition	-0.252 ± 0.240	-1.051	0.29

Plot of quadratic interaction

```
library(effects)
## Loading required package: colorspace
## Attaching package: 'effects'
## The following object is masked from 'package:car':
##
       Prestige
library(ggplot2)
g.ows <- glm(prop ~ aggression_s * competition_s + activity_s *</pre>
    competition_s + docility_s * competition_s + aggression_s:activity_s *
    competition s + I(aggression s^2) * competition s, data = filter(fit raneff data,
    type == "blup"), weights = kprod, family = binomial)
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
e.ows <- effect(term = "aggression s:competition s:activity s",</pre>
    mod = g.ows)
e <- Effect(c("aggression_s", "activity_s", "competition_s"),</pre>
    g.ows, xlevels = list(aggression_s = 100, activity_s = 2,
        competition_s = 2))
s <- summary(e, type = "link")
se <- s$effect
su <- s$upper
sl <- s$lower
d <- as.data.frame(se)</pre>
du <- as.data.frame(su)
dl <- as.data.frame(sl)</pre>
names(d) <- c("la.lc", "ha.lc", "la.hc", "ha.hc")</pre>
names(du) <- c("la.lc", "ha.lc", "la.hc", "ha.hc")
names(dl) <- c("la.lc", "ha.lc", "la.hc", "ha.hc")</pre>
plot_d <- data.frame(Aggression = as.numeric(rep(row.names(s$effect),</pre>
    12)), OWS = c(d$1a.1c, d$ha.1c, d$1a.hc, d$ha.hc, du$1a.1c,
    du$ha.lc, du$la.hc, du$ha.hc, dl$la.lc, dl$ha.lc, dl$la.hc,
    dl$ha.hc), Competition = rep(rep(c("Low\nCompetition", "High\nCompetition"),
    each = 200), 3), Activity = rep(rep(c("Low", "High"), each = 100),
    6), type = rep(c("main", "upper", "lower"), each = 400))
plot_d$env <- paste(plot_d$Competition, plot_d$Activity, sep = ".")</pre>
quad_plot <- ggplot(plot_d, aes(x = Aggression, y = OWS)) + geom_line(aes(alpha = Activity,
    linetype = type, size = type)) + facet_wrap(~Competition) +
    scale_alpha_discrete(range = c(1, 0.3)) + scale_linetype_manual(values = c(2,
```

```
1, 2)) + scale_size_manual(values = c(0.3, 1, 0.3)) + ylab("Offspring\nOverwinter Survival") +
    xlab("Aggression") + theme_bw(base_size = 10) + theme(panel.grid.major = element_blank(),
   panel.grid.minor = element_blank(), panel.background = element_blank(),
   panel.border = element_rect(linetype = "solid", colour = "black"),
    axis.ticks = element_blank(), axis.text = element_text(size = 10),
    legend.key = element_blank(), strip.background = element_blank()) +
    guides(linetype = FALSE, size = FALSE, alpha = guide_legend(override.aes = list(size = 1))) +
    theme(legend.position = c(0.75, 0.25), legend.background = element_blank(),
        legend.key.size = unit(0.4, "cm")) + theme(plot.margin = unit(c(0.1,
    0.1, 0.1, 0.1), "cm")) + theme(axis.text.x = element_blank(),
    axis.text.y = element_blank())
pdf("figure/05_quad_print.pdf", width = 3.14, height = 2)
quad_plot
dev.off()
## pdf
##
quad_plot
```


Tile plot of interaction

```
out <- paste(a, b, sep = ".")
    return(out)
}
d_hc <- data.frame(Aggression = rep(row.names(de_hc), n), Activity = rep(fix.names(de_hc),</pre>
    each = n), OWS = as.vector(as.matrix(de_hc)))
d_hc$Aggression <- as.numeric(as.character(d_hc$Aggression))</pre>
d_hc$Activity <- as.numeric(as.character(d_hc$Activity))</pre>
d_lc <- data.frame(Aggression = rep(row.names(de_lc), n), Activity = rep(fix.names(de_lc),</pre>
    each = n), OWS = as.vector(as.matrix(de_lc)))
d_lc$Aggression <- as.numeric(as.character(d_lc$Aggression))</pre>
d_lc$Activity <- as.numeric(as.character(d_lc$Activity))</pre>
tile_plot <- ggplot(d_lc, aes(x = Aggression, y = Activity, z = OWS)) +
    geom_tile(aes(alpha = OWS), fill = "black", size = 0) + scale_alpha_continuous(range = c(1,
    0)) + ylab("Activity") + xlab("Aggression") + theme_bw(base_size = 10) +
    theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
        panel.background = element_blank(), panel.border = element_rect(linetype = "solid",
            colour = "black"), axis.ticks = element_blank(),
        legend.key = element_blank(), strip.background = element_blank()) +
    guides(linetype = FALSE, size = FALSE, alpha = FALSE) + theme(plot.margin = unit(c(0.1,
    0.1, 0.1, 0.1), "cm"))
pdf("figure/05_tile_print.pdf", width = 3.14, height = 3.14)
tile_plot
dev.off()
## pdf
## 2
tile_plot
```

