

Plate-forme logicielle pour l'OBDA ADT Quasar

2015

Clément Sipieter GraphIK team

Ontology-mediated Query Answering

Knowledge base

Ontology-mediated Query Answering

Forward Chaining

Forwardchaining

Knowledge base

Forward Chaining

Forward Chaining

Backward Chaining

Backwardchaining

Knowledge base

Backward Chaining

Backward Chaining

An extension of positive Datalog :

An extension of positive Datalog:

Existentially quantified variables in rule heads $\forall x \; (human(x) \rightarrow \exists y \exists z \; parents(x, y, z))$

An extension of positive Datalog :

- Existentially quantified variables in rule heads $\forall x \; (human(x) \rightarrow \exists y \exists z \; parents(x, y, z))$
- ► Negative constraints $\forall x \; (man(x) \land woman(x) \rightarrow \bot)$

An extension of positive Datalog:

- Existentially quantified variables in rule heads $\forall x \; (human(x) \rightarrow \exists y \exists z \; parents(x, y, z))$
- ► Negative constraints $\forall x \; (man(x) \land woman(x) \rightarrow \bot)$
- ► Equality rules $\forall x \forall y \forall z \ (mother Of(y, x) \land mother Of(z, x) \rightarrow y = z)$

Objectifs

INTERNE

EXTERNE

Développement unifié

Équipes de recherche

Bibliothèque d'algorithmes

Développements externe

Benchmarks

Tableau d'avancement

Tâche	$t_0 + 4$	$t_0 + 6$	$t_0 + 12$	$t_0 + 18$		o + 24
T1 : Fonctionnalités de base	T1.1 : Spécifications				1	
		T1.2 : Implémentation (v0)			1	
T2 : Définition des formats et traductions		T2.1 : DLP étendu				
		T2.2 : Traductions RDFS				
				T2.3 Traductions OWL2		
T3: Fonctionnalités avancées				T3.1 Implémenta- tion de T2.1 et T2.2 (v1)		
						T3.2 Implémenta- ion de T2.3 (v2)
				T3.3 : Tests de V0 sur bench- marks et optimisations		
T4 : Site web et diffusion			Site web + V0			
				V1	Ī	
					١	/2

Graal - General architecture

Présentation de Graal à la conférence RuleML

- Présentation de Graal à la conférence RuleML
- Finalisation de l'intégration de Pure (publication IJCAI)

- Présentation de Graal à la conférence RuleML
- ► Finalisation de l'intégration de Pure (publication IJCAI)
- Traducteurs OWL2 et RuleML
 (9th International Rule Challenge Award RuleML)

- Présentation de Graal à la conférence RuleML
- ► Finalisation de l'intégration de Pure (publication IJCAI)
- Traducteurs OWL2 et RuleML
 (9th International Rule Challenge Award RuleML)
- Systèmes NoSQL

- Présentation de Graal à la conférence RuleML
- ► Finalisation de l'intégration de Pure (publication IJCAI)
- Traducteurs OWL2 et RuleML
 (9th International Rule Challenge Award RuleML)
- Systèmes NoSQL
- Finalisation de l'intégration de Kiabora

- Présentation de Graal à la conférence RuleML
- ► Finalisation de l'intégration de Pure (publication IJCAI)
- Traducteurs OWL2 et RuleML
 (9th International Rule Challenge Award RuleML)
- Systèmes NoSQL
- Finalisation de l'intégration de Kiabora
- ► Site web


```
Dlgp v1
```

```
% Facts
fatherOf(bob, alice).
fatherOf(X, alice), parents(X, dan, carol).
% Rules
fatherOf(Y,X), motherOf(Z,X):- parents(X,Y,Z).
parents(Y,U,V), parents(Z,R,S) := parents(X,Y,Z).
% Constraint
! :- fatherOf(X,Y), motherOf(X,Z).
% Equality Rule
Y = Z :- motherOf(Y,X), motherOf(Z,X).
```

Dlgp v2

```
@prefix gen: <http://genealogy.com/>
@prefix p: <http://people.com/>
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>
% Facts
gen:fatherOf(p:bob, <http://people.com/alice>).
% Literals
p:age(p:alice, "13"^^xsd:integer).
p:age(p:alice, 13).
```

translations

EquivClass expressions						
Class						
C	C	C(x)				
Intersection of Class Expressions	'					
ObjectIntersectionOf (C_1,\ldots,C_n)	C_k $C_1 \sqcap \ldots \sqcap$	$C_k \Phi_{C_1}(x) \wedge \ldots \wedge \Phi_{C_k}(x)$				
Existential Quantification						
ObjectSomeValuesFrom (p,C)	$\exists p \cdot C$	$\exists y (\Phi_p(x,y) \land \Phi_C(y))$				
Individual Value Restriction	•					
ObjectHasValue (p,i)	$\exists p \cdot \{i\}$	$\Phi_p(x,i)$				
Self-Restriction						
ObjectHasSelf (p)	$\exists p \cdot \text{Self}$	$\Phi_p(x,x)$				
Minimum Cardinality - Restricted to n	= 0 or 1					
ObjectMinCardinality $(0, p, C)$	$\geq 0pC$	Thing(x)				
ObjectMinCardinality $(1, p, C)$	$\geq 1pC$	$\exists y (\Phi_p(x, y) \land \Phi_C(y))$				
Enumeration of Individuals - Restricted						
ObjectOneOf(i)	{i}	x = i				

Démo

https://graphik-team.github.io/graal/

Graal Homepage

Home Documentation Publications Experiments Downloads Sources

Graal is a Java toolkit dedicated to querying knowledge bases within the framework of existential rules, aka Datalog+/-. It is an open source library published under CeCILL v2.1 license (GPL compatible).

The main features of Graal are the following:

- a basic layer that provides generic interfaces to store and query various kinds of data without considering the rules;
- saturation algorithms, which apply rules on the data in a forward chaining manner;
- query rewriting algorithms, which reformulate a conjunctive query into a set (or 'union') of conjunctive queries;
 - a format called Dlap (for 'datalog+') and its parser:
 - a tool called Kiabora, which performs a structural analysis of an existential rule set to determine its
 decidability properties; it also allows to decompose rules;
 - . a translator from OWL 2 to Digp;

· utility tools:

· a translator from Digp to RuleML.

Existential rule framework

Existential rules allow to assert the existence of not-yet-known individuals. The existential rule framework is also known as an extension to Datalog, called Datalog+/-.

It is particularly relevant to **ontology-mediated query answering**. In this framework, a knowledge base is composed of facts (or data) and of ontological knowledge expressed by existential rules (including rules with

Fonctionnalités

- ▶ inf-homomorphisme
- ► SPARQL Rules
- ▶ key-value store

- Fonctionnalités
 - ▶ inf-homomorphisme
 - ► SPARQL Rules
 - ▶ key-value store
- ► Optimisations homomorphisme
 - ▶ back-jump
 - forward-checking
 - cache

- Fonctionnalités
 - ▶ inf-homomorphisme
 - ► SPARQL Rules
 - ▶ key-value store
- ► Optimisations homomorphisme
 - back-jump
 - forward-checking
 - ► cache
- Benchmarks "grande échelle"

- Fonctionnalités
 - ▶ inf-homomorphisme
 - ► SPARQL Rules
 - ▶ key-value store
- ► Optimisations homomorphisme
 - back-jump
 - forward-checking
 - ► cache
- Benchmarks "grande échelle"
- Distribution Tutoriels