COMPUTER SCIENCE 20, SPRING 2015 Module #2 (Proof)

Last modified: January 27, 2015

Author: Steve

Executive Summary

- 1. Some proof strategies (this list will grow as the course progresses)
 - Contraposition: to prove " $P \Rightarrow Q$ ", prove "not $Q \Rightarrow \text{not } P$."
 - ullet Contradiction: to prove that P is true, assume that P is false and show that the assumption leads to a contradiction.
 - If and only if: to prove that $P \Leftrightarrow Q$, prove $P \Rightarrow Q$ and $Q \Rightarrow P$.
 - Alternative: to prove that $P \Leftrightarrow Q$, prove $P \Rightarrow Q$ and not $P \Rightarrow \text{not } Q$.
- 2. Some rookie mistakes (or veteran techniques for bogus proofs)
 - Canceling a factor that might be zero from both sides of an equation ("division by zero").
 - Multiplying both sides of an inequality by a number that might be negative.
 - Assuming that $(a^2 = b^2) \Rightarrow (a = b)$. Correct is $(a^2 = b^2) \Rightarrow (|a| = |b|)$.
 - Ignoring a special case; e.g. proving P(n) by considering only n > 0 and n < 0.

Check-in questions

- 1. Which of the following statements is equivalent to "if A, then B"
 - (a) if not B then not A
 - (b) A if B
 - (c) if not A then not B
 - (d) if not B then A

In-class problems

- 1. Each of the following two claims and corresponding proofs is incorrect. For each one, explain why each proof is incorrect.
 - (i) Claim: 1c = \$1

$$1c = \$0.01 = (\$0.1)^2 = (10c)^2 = 100c = \$1$$

(ii) Claim: If a = b then a = 0

$$a = b$$

$$a^{2} = ab$$

$$a^{2} - b^{2} = ab - b^{2}$$

$$(a - b)(a + b) = (a - b)b$$

$$a + b = b$$

$$a = 0$$

- 2. Prove that in any group of six people, at least two of them know the same number of people. Note that you don't know yourself, and that if A knows B then B knows A (thus "knows" is a symmetric relation).
- 3. Prove by contradiction that $\sqrt[3]{4}$ is irrational.