- Avoiding small pivots: partial pivoting; complete pivoting.
- Gaussian elimination of tridiagonal matrices.
- LU-factorization of tridiagonal matrices.
- Symmetric positive definite matrices (SPD matrices).
- Cholesky factorization (Theorem 8.10).
- Criteria for a symmetric matrix to be positive definite; Sylvester's criterion.
- Reduced row echelon form.
- Reduction of a rectangular matrix to its row echelon form.
- Using the reduction to row echelon form to decide whether a system Ax = b is solvable, and to find its solutions, using a *special* solution and a basis of the *homogeneous system* Ax = 0.
- Magic squares.
- Transvections and dilatations.

8.17 Problems

Problem 8.1. Solve the following linear systems by Gaussian elimination:

$$\begin{pmatrix} 2 & 3 & 1 \\ 1 & 2 & -1 \\ -3 & -5 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 6 \\ 2 \\ -7 \end{pmatrix}, \quad \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 6 \\ 9 \\ 14 \end{pmatrix}.$$

Problem 8.2. Solve the following linear system by Gaussian elimination:

$$\begin{pmatrix} 1 & 2 & 1 & 1 \\ 2 & 3 & 2 & 3 \\ -1 & 0 & 1 & -1 \\ -2 & -1 & 4 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 7 \\ 14 \\ -1 \\ 2 \end{pmatrix}.$$

Problem 8.3. Consider the matrix

$$A = \begin{pmatrix} 1 & c & 0 \\ 2 & 4 & 1 \\ 3 & 5 & 1 \end{pmatrix}.$$

When applying Gaussian elimination, which value of c yields zero in the second pivot position? Which value of c yields zero in the third pivot position? In this case, what can you say about the matrix A?