TEE CHEMISTRY

Semester 1 Examination 2004 SOLUTIONS

Part 1

1. c	6. a	11. c	16. a
2. c	7. b	12. b	17. c
3. d	8. c	13. c	18. a
4. a	9. b	14. b	19. c
5. a	10. a	15. b	20. a

Part 2

(a)

Equation OH $^{-}$ (aq) + H $^{+}$ (aq) \rightarrow H $_{2}$ O (t)

Observation Test tube feels warm

(b) Equation $Cu^{+2}(aq) + 2OH^{-}(aq) \rightarrow Cu(OH)_2$ (s)

Observation When the colourless solution is added to the pale blue solution a pale blue ppt forms

Observation Small colourless bubbles appear on the surface of the black solid

2.

Methanamine, CH ₃ NH ₂	Polar of Non Polar?
H C N H	POLAR
Carbonate ion, CO $\frac{2-}{3}$	Polar or Non Polar?
-2 C	NON POLAR

3.

	Electrical conductivity			Solubilit	Colour	
Substance	Solid Liquid Water y in water solution	of solid	Name of substance			
A	nil	conducts	conducts	soluble	white	Sodium Chloride
В	nil	nil	nil	soluble	white	Sucrose
С	conducts	conducts		insoluble	pink	Copper
D	nil	conducts		insoluble	white	Aluminium Carbonate

4. (a)
$$HC\ell O_4 \rightarrow H^+ + C\ell O_4^-$$

$$[H^+] = 0.05m$$

$$pH = -log_{10}0.05$$

$$= 1.30$$
(b) $Ba(OH)_2 \rightarrow Ba^{+2} + 2OH^-$

$$\therefore [H^+] = 2 \times 0.05 = 0.1$$

$$[H^{+}] = \frac{10^{-14}}{10^{-1}} = 1 \times 10^{-13}$$

$$pH = -log_{10} [H^{+}] = -log_{10} \ 1 \times 10^{-13}$$

5.

SUBSTANCE	STRONG	WEAK	DILUTE	CONCENTRATE
	ACID	ACID	ACID	D ACID
0.05 mol L ⁻¹ H ₂ CO ₃		√	✓	
10 mol L ⁻¹ HC	√			√
10 mol L ⁻¹ CH₃COOH		√		√
1.0 mol L ⁻¹ H ₂ SO ₄	√		√	

3

6. (a) The amount of CO(g) is **more**

Explanation Rate of reverse reaction decreases (lower concentration of H₂Og) But rate of forward reaction decreases more resulting in less collisions

since both H₂ and CO(g) have lower concentration.

(b) The amount of CO(g) is more

Explanation Both reaction rates will decrease but the forward endothermic

reaction decreases more.

(c) The amount of CO(g) is the same as before

Explanation The increased surface changes rates forward and back to the same

extent. There are no changes in concentration

PART 3

(a)
$$m(ppt) = \frac{m}{M} = \frac{0.2920}{146.116} = 0.001998 \text{ moL}$$

 $n(Ca^{++}) = n(Ca) = n(ppt) = 0.001998 \text{ moL}$
 $\therefore m(Ca) \text{ in } 0.4367g \text{ sample} = \text{n x M}$

(b) Total m(ppt) = m(calcium precipitate) + m(other)

This would give % Ca too high

2. (a)
$$n(CO_2) = \frac{V}{22.41} = \frac{0.8032}{22.41} = 0.03584 \text{ moL} = n(C)$$

$$\therefore \%C = \frac{\text{mass}(C)}{3.55} \times \frac{100}{1} = \frac{0.03584 \times 12.01}{3.55} \times \frac{100}{1} = 12.125\%$$

$$n(AgC\ell) = \frac{m}{M} = \frac{12.34}{143.35} = 0.08608 \text{ moL} = n(C\ell)$$

M AgC*ℓ* Ag 107.9 C*ℓ* 35.45 143.35

$$\therefore$$
 % (O) in samples = 100 - (12.125) + 71.63)

= 16.245%

(b) Density =
$$\frac{m}{v}$$
 = 4.42gL⁻¹ (STP)

Molar Volume is 22.41 L (STP) so molar

5

mass is
$$M = density \times 22.41$$

= 99.05 g moL⁻¹

E.F Molar Mass

C = 12.01

$$C\ell_2$$
 = 35.45
= 35.45
O = 16.00
98.91 g moL⁻¹

Which is close to true molar mass (99.05 g moL ⁻¹)

$$\therefore$$
 EF = True Formulae = C C ℓ_2 O

3.
$$OH^{-} + H^{+} \rightarrow H_{2}O$$

$$Ba (OH)_{2} + H_{2}C_{2}O_{4} \rightarrow 2H_{2}O + BaC_{2}O_{4}$$

1moL 1moL

(a)
$$n(H_2C_2O_4) = n(Ba(OH)_2) = CxV$$

 $(20m\ell) = 0.103 \times 14.3 \times 10^{-3}$
 $= 1.4729 \times 10^{-3} \text{ moL}$

∴ n(H₂C₂O₄)=
$$\frac{1000}{20}$$
 x $\frac{1.4729 \times 10^{-3}}{1}$ = $\underline{0.07365}$ moL

1000ml and 100ml (original)

So
$$C(H_2C_2O_4) = \frac{n}{v}$$

(original)
$$= \frac{0.07365}{10^{-1}} = \underline{0.736M}$$

(b)
$$n(H_2C_2O_4)$$
 per litre = 0.73645 moL original

4.

$$(a)Pb^{+2}_{(aq)} + 2C\ell_{(aq)} \rightarrow Pb C\ell_{2}(s)$$

(b)
$$n(Pb^{+2}) = n Pb(NO_3)_2 = CxV = 150 \times 10^{-3} \times 0.2$$

= 30 x 10⁻³ moL
 $n(C\ell^-) = n(KC\ell) = CxV = 350 \times 10^{-3} \times 0.5$
= 175 x 10⁻³ moL

From Equn
$$\frac{n(Cl^{-})}{n(Pb^{+2})} = \frac{2}{1}$$

From Data
$$\frac{n(Cl^{-})}{n(Pb^{+2})} = \frac{175}{30} = \frac{5.8}{1}$$
 so we have

excess
$$C\ell^-$$
 and Pb^{+2} is L.R

From Equn n (PbC
$$t_2$$
) = n(Pb⁺²) = 30 x 10⁻³ moL

So mass (PbC
$$\ell_2$$
) = n x M = 30 x 10⁻³ x 278.1
= 8.34 g

(c)The K^+ and NO_3^- remain in soln and the excess $C\ell^-$ also Total volume is 500 ml

So
$$[K^+] = \frac{n(K^+)}{500x10^{-3}} = \frac{175x10^{-3}}{500x10^{-3}} = \underline{0.350 \text{ mol}}L^{-1}$$

[NO₃⁻] =
$$\frac{n(NO_3^-)}{500x10^{-3}} = \frac{60x10^{-3}}{500x10^{-3}} = 0.120 \text{ molL}^{-1}$$

$$n(C\ell^{-}) = n(C\ell^{-}) - n(C\ell^{-})$$

Excess Original Used
 $nC\ell^{-} = 2n(Pb^{+2}) = 60 \times 10^{-3} \text{ moL}$
(used) (used)
 $\therefore n(C\ell^{-}) = 175 \times 10^{-3} - 60 \times 10^{-3}$
Excess = 115 x 10⁻³ moLs
 $\therefore [C\ell^{-}] = \frac{n(excess)}{500x10^{-3}} = \frac{115x10^{-3}}{500x10^{-3}} = 0.230 \text{ molL}^{-1}$

For answers to the Part 4 please see the section containing Extended Answer Questions