PH-105 QM Sheet 2

Vipul Singh

23.10.2012

- 71. A beam of particles of energy E and de-Broglie wavelength λ , travelling along the positive x-axis in potential free region, encounters a one-dimensional potential barrier of height V_0 =E and width L.
 - (a) Obtain an expression for the transmission coefficient.
 - (b) For what value of L (in terms of λ), will the reflection coefficient be half?

Solution:

Let $k^2 = \frac{2mV_0}{\hbar^2}$. Then, the wave-functions in the three regions are given by: $\phi_I(x) = Ae^{ikx} + Be^{-ikx}$ $\phi_{II}(x) = Cx + D$

$$\phi_I(x) = Ae^{n} + Be^{-ikx}$$

$$\phi_{II}(x) = Cx + D$$

$$\phi_{III}(x) = Fe^{ikx}$$

At x=0, we have A+B=D and ik(A-B)=C. At x=L, we have $CL+D=Fe^{ikL}$ and $C=ikFe^{ikL}$. On solving, we get $\frac{F}{A}=\frac{2e^{-ikL}}{2-ikL}$. Transmission coefficient, $T=|\frac{F}{A}|^2=\frac{4}{4+(kL)^2}$.

For T=0.5, we get kL=2 and hence $L=\frac{2}{k}=\frac{\lambda}{\pi}$.