Aplicativo para reconhecimento de curvas de nível e geração de relevo 3D

Aluno(a): Rafael Lopes Escobar

Orientador: Dalton Solano dos Reis

Roteiro

- Introdução
- Objetivos
- Fundamentação Teórica
- Trabalhos Correlatos
- Requisitos
- Especificação
- Implementação
- Resultados e Discussões
- Conclusões e Sugestões
- Demonstração

Introdução

- Evolução tecnológica
- Crianças e jovens: aptidão em uso de ferramentas tecnológicas
- Softwares: facilita compreensão de objetos do mundo real

Educação: softwares podem auxiliar o ensino

Objetivo

 Desenvolver um aplicativo para reconhecimento de curvas de nível desenhado em uma folha de papel em branco

Objetivos Específicos

- Fazer reconhecimento de uma imagem feito a mão pelo usuário
- Transformar a imagem 2D em uma renderização de relevo 3D
- Exportar relevo 3D em um arquivo que pode ser lido em softwares CAD

Fundamentação Teórica

Recursos Tecnológicos no Ensino

 Introduzir tecnologias nos processos de aprendizagem

 Integração de profissionais pedagógicos e especialistas da área computacional

Fundamentação Teórica

Curvas de nível

- representação aérea: inclinações e altitudes do relevo.
- Maior inclinação: linhas próximas
- Menor inclinação: linhas afastadas
- As curvas de nível não devem se cruzar

Trabalhos Correlatos

PROPOSTA DE UTILIZAÇÃO DE TECNOLOGIAS DE IMPRESSÃO 3D PARA O ENSINO DE CARTOGRAFIA E GEOMORFOLOGIA

Correlato 1	ESTUDO DE
	TECNOLOGIAS
Características	(2017)
plataforma	Windows
desenho manual	Não
editar altitude	Sim
visualização 3D	Não
impressão 3D	Sim
realidade aumentada	Não

Trabalhos Correlatos

LANDSCAPAR

Correlato 2 Características	LANDSCAPAR (2011)
plataforma	Android
desenho manual	Sim
editaraltitude	Não
visualização 3D	Sim
impressão 3D	Não
realidade aumentada	Sim

Trabalhos Correlatos

EDIFICIUS

Correlato 3 Características	EDIFICIUS (2017)
plataforma	Windows
desenho manual	Não
editaraltitude	Sim
visualização 3D	Sim
impressão 3D	Sim
realidade aumentada	Não

Requisitos Funcionais

- identificar curvas de nível feitas por um usuário em um desenho de papel
- permitir ao usuário ajustar a identificação dos contornos
- permitir ao usuário visualização do relevo em 3D
- permitir ao usuário visualizar terreno em cores conforme nível do relevo em um mapa de altimetria
- permitir ao usuário simular efeito de água aplicada sobre o terreno gerado
- permitir ao usuário exportar arquivo OBJ

Requisitos Não Funcionais

- utilizar ferramenta Unity para desenvolvimento da interface da aplicação
- utilizar linguagem C# na implementação dos scripts
- utilizar OpenCv para realizar processamento de imagem
- aplicativo deve executar na plataforma móvel Android

Especificação: Unity

Especificação: OpenCV

Implementação

(a) cvtColor(BGR2GRAY)

(b) threshold

(d) drawContours

(e) blur + gaussianBlur

Implementação

```
// Seta altura do terreno (cria relevos)
float[,] heights = new float[width, height];
for (int i = 0; i < height; i++) {
    for (int j = 0; j < width; j++) {
        heights[i, j] = 1 - Util.TEXTURA_RELEVO.GetPixel(j, i).g;
    }
}</pre>
TerrainMain.terrainData.SetHeights(0, 0, heights);
```


Operacionalidade da Implementação

Operacionalidade da Implementação

Análise dos Resultados

- Visualização 3D corresponde a forma que o relevo deve ter no mundo real
- É possível imprimir relevo gerado em uma impressora 3D
- Abrange características dos correlatos interessantes para o ensino
- Usuária de teste executou e compreendeu todas as funcionalidades sem grandes problemas

Conclusões e Sugestões

- Objetivos e requisitos cumpridos
- É possível utilizar o aplicativo em um ambiente como uma sala de aula
- Aplicativo pode ter evoluir e abranger ensino superior
- Possível extensões:
 - criar marcador na folha de papel e exibir relevo em Realidade Aumentada (RA);
 - adicionar configuração para definir nível de altura entre as curvas de nível;
 - adicionar paleta de cores para usuário editar como preferir;
 - adicionar simulação de terreno ao comparar duas imagens diferentes.
 - exportar o arquivo para outros formatos comuns em softwares CAD como o formato DXF;
 - identificar depressão do relevo;

DEMONSTRAÇÃO

