Mensch Computer Interaktion

1. Designprozesse:

a. User Centered Design (UCD):

> iterativer Prozess der den Benutzer in den Mittelpunkt stellt

• Phasen:

- Kontextanalyse: Primäre Nutzer sowie deren Nutzungsgrund, Anforderungen und Anwendungsumgebung
 - Aufgabenanalyse (bspw. Hierarch. Aufgabenzerlegung)
- Benutzeranalyse: Grundlegende Anforderungen des Produkts, wichtige Ziele
 - **Personas:** Persönlichkeit Beschreibung von möglichen Benutzern (Identität, Präferenzen, Kontext)
 - Szenarien: Verhalten Lineare Schritt für Schritt Anleitung
 - o Mentales Modell: Denkweise Subjektive Vorstellung der Benutzer
 - Konzepte:
 - basierend auf Aktivitäten: Befehle geben, Konversationen, Navigation, Erkundung
 - basierend auf Prozessen: von einem/mehreren Benutzern
- Designphase: Prototypen (LoFi: Mockups, HiFi: interaktiv, Wizard of Oz)
- **Evaluation:** Analyse der Gebrauchstauglichkeit *(empirisch: mit Nutzern, analytisch: mit Experten)*

Ziele:

Gebrauchstauglichkeit - Effektivität: Genauigkeit & Vollständigkeit - Effizienz: fürs Ziel eingesetzte Ressourcen - Zufriedenstellung Bewertung des Käuferverhalten → Wahrgenommene Nutzung → Nutzung mittels TAM:

b. Participatory Design:

- > Teilnehmer arbeiten u.a. mit Designer & Entwickler zusammen
- Diese nehmen an der Untersuchung zur Definition und Lösungsfindung des Problems teil & bewerten vorgeschlagene Lösungen

2. Dialoge nach ISO:

Aufgabenan - gemessenh eit	Abschließen einer Aufgabe ohne unnötige Interaktionen	Robustheit gegen Benutzungsf ehler	trotz Fehlern Ziel evtl. mit kleinen Änderungen erreichbar
Selbstbesch reib- ungsfähigk eit	Benutzer erkennt in welchem Dialog er sich befindet und was er wie erreicht	Erlernbarkei t	 Entdeckung (zum Aufbau eines mentalen Modells) Exploration (ohne negative Konsequenzen) Retention

			(Rückmeldung zu den Folgen des Handelns)
Erwartungs - konformität	Dialog ist im Kontext und entsprechend den Konventionen ausführbar	Benutzerbin dung	Motivierend, Einladend
Steuerbark eit	Unterbrechung, Individualisierung		

3. Evaluation:

Kontrolliertes Experiment:

- Within-group: eine Testgruppe löst mehrere Aufgaben
- **Between-group:** Aufgabenaufteilung auf mehrere Testgruppen

GOMS:

- Handlungen/Benutzerinteraktionen werden in elementare Aktionen zerlegt
- > **Ziel:** Effizienz zu verbessern

Goals	Zu erreichende Ziele	Operators	Handlungen (bspw. Taste drücken)
Metho	Ketten von	Selection	Regeln, wann welche
ds	Operatoren	Rules	Methoden

Durch qualitative Methoden:

Standardisierter Fragebogen:

➤ **Bsp. TLX:** Teilnehmer bewerten Nutzung des Systems nach Frustration, Aufwand, Performanz, zeitliche- (Stress), physische- und psychische Belastung

Lautes Denken:

Teilnehmer führen Aufgabe aus und denken dabei laut, sollte dieser aufhören, stellt man Fragen darüber, was der Teilnehmer, in dem Moment, denkt

Kognitiver Durchgang:

- Ausgehend festgel. Aufgaben versetzen sich Teilnehmer in mögliche Benutzer und beschreiben dabei, aus dessen Sicht, ihr Verhalten und die Wahrnehmung des UI
- > Im Umfang eines Tutorials
- ➤ Leitfragen Werden die Benutzer...: versuchen den gewünschten Effekt zu erzielen, erkennen dass die korrekte Handlung ausgeführt werden kann und zum gewünschten Effekt führen wird, den Fortschritt erkennen wenn sie die korrekte Handlung ausgeführt haben

Heuristisch:

- > Expertenanalyse, nach Usability-Probleme, auf Grundlage von Richtlinien
- Bspw. Symbol für Playbutton

Von Zeigehandlungen - Performanztest:

Fitts'sch Law:

Zeit zum erreichen des Ziels ist abhängig von der Entfernung & Größe dessen

Anwendungen

Toolkits

Graphik-Engine

- Empirisch; $MT := a + b \left(lo g_2 \left(\frac{2A}{W} + c \right) \right)$ mit a,b Konstanten
- o Optimierung:
 - **Distanz zum Ziel verringern:** bspw. Menu beginnt an Cursorposition
 - **Zielbreite/Genauigkeit erhöhen:** bspw. durch Einbeziehung Cursorbreite
 - **Beides:** abhängig vom Inhalt der Widgets; Überlistung des Gesetzes

Steering Law:

Beschreibt die Zeit für die Navigation entlang eines geraden Tunnels

4. Fenstersysteme:

- **Kriterien GUIs:** Parallele Verarbeitung, Anpassbarkeit (*Sprache*), Erweiterbarkeit (*Quellcode*)
- Komponenten GUIs:
 - Toolkits:
 - Sammlung von elementaren Dialogtechniken bzw. Objekten, bspw.
 - Realisierung der Dialoge durch Fenster

O User-Interface Toolkits:

➤ Bereitstellung von UI-Komponenten samt graphischen & logischen Attributen & anwendbaren Interaktionstechniken

O Abstract Window Toolkit (Java only):

- Für Erzeugung und Darstellung plattformunabhängiger GUIs
- > Verwendung nativer GUI-Komponenten des Betriebssystems

o Standard Widget Toolkit:

- ➤ Bereitstellung von generischen GUI-Komponenten, durch Implementierung plattformspezifischer Bibliotheken
- Windowmanager: Verantwortlich für Fokus und Verdeckung der Windows
- Resourcenmanager: De-/Allokiert Resourcen
- Graphik-Engine:
 - Grundlegendes Objekt: Canvas

(leerer Bereich, in dem Eingaben gezeichnet bzw. abgefangen werden können)

- Resultierende Objekte: Font, Pen, Background, Icon

5.Formale Modelle:

Übergangsdiagramme bspw. für GUI:

Zustandswechsel nur eingeschränkt (modal, Kennzeichnung +)

Kontrollfluss in GUIs:

- > Beschreibung durch Interpreter, der alle Übergangsdiagramme kennt und dem aktiven Diagramm Eingabeereignisse zuordnet
- Unterbrechung: Interpreter bestimmt neues, aktives Übergangsdiagramm

 Wechsel in anderes Diagramm: Zustand wird fortgeführt, bei dem zuletzt aufgehört wurde

6. Formale Zeit:

- Phasen: Eingabe-, Antwort-, Ausgabe- und Denkzeit
- **Bewertung von Ereignissen**: mittels geometrischen Mittels der Intervalle

Temporale Modelle:

- > Zur Bewertung der Interaktionsschritte
- ➤ Beschreiben zeitl. Strategie des Benutzers, Bedingungen für zeitl. Beschränkungen und Parallelität während der Interaktion

7. Adaptierung:

- Adaptierbarkeit = Programmveränderung durch Anpassung der Einstellungen möglich
 - Bsp: Spracheinstellungen
- ➤ Adaptivität = Automatische Anpassung des Systems an Ein-/Ausgaben
 - Bsp: Alternativsuchbegriffe ("Infomatik" -> "Informatik") bei einer Google-Suche

Adaptive Systeme:

> Systeme, die Eigenschaften von Benutzern in ein Benutzermodell aufnehmen und durch Anwendung dessen ihre sichtbaren Inhaltsobjekte benutzerspezifisch anpassen

Methodik:

- **Afferenz:** Beobachtung & Sammlung von Nutzerinformationen
- **Inferenz:** Auswertung der gesammelten Daten
- **Efferenz:** Anpassung des Systems

Adaptive Hypermedien:

➤ Adaptive Navigation: direkte Lenkung, Link-Sortierung/Verwaltung/Erzeugung, etc.

> Adaptive Präsentation:

- Information Retrieval:
 - **Adaptive Führung:** bspw. Highlighting aller relevanten Verweise (bspw. Suchbegriffe) in den Ergebnissen einer Suche
 - **Adaptive Annotation:** Generieren von Hinweisen für Verweise (bspw. Beschreibung eines Suchergebnisses)
 - Adaptive Empfehlung: Darstellung relevanter Verweise

Bewertungsproblem:

- ➤ Ermitteln der Bewertung für Objekte, die der Benutzer nicht kennt
- Ansätze:

o Inhaltsbasiert:

- Objekte mit ähnlichen Eigenschaften werden ähnlich bewertet
- > Beschreibung des Objektes mit Schlüsselwörtern

o Kollaborativ:

➤ Bewertungen schätzen auf Basis der Bewertungen ähnlicher Benutzer (mit ähnlichen Bewertungen) und anschließend clustern

	=	Inhaltsbasiert	Kollaborativ
Vorteile		Empfehlung unbewenteter Objekte möglich Unabhängig von der Benutzerzahl Außergewöhnliche Präferenzen werden berücksichtigt	Unabhangg von den Objekten für die Empfehlung Unabhängg von früheren Empfehlungen
Nachteile		Objektbeschreibung ist notwenräg Mindestall von Gewertung von einem reuen Nutzer ist notwendig keine subjektven Kittorien keine Berückschrigung der Erkenntnisse andere Berückschrigung der Erkenntnisse	Kaltstart (neues Benutzer, neues Objekt unsicher Bei schwach besetzter Marix -> niedfige Empfehlungsqualität Popularitätsausrichtung

8. Designpattern:

•	Doppelte Liste	Globale Navigation	Beispiele:
•	2 Listen: Options- &Auswahlliste	Teil der Darstellungsfläche wird immer für globale Navigation reserviert	

Eigenschaften: Wiederholbar, Bewährt, Abstrakt

9.

	GPS	GLONA SS	GALIL EO
Genauigkei t (m)	15-25	10-15	4-15

Navigationssysteme:

- Systeme:
- Kognitive/Mentale Karte: Externe Darstellung anhand Skizzen
- Multicriteria Decision Making (MCDM):
 - Lösungsverfahren von Entscheidungsproblemen mit mehreren Zielen
 - Für Routenberechnung im annotierten Wegenetz
 - Unterteilung: Multi (Attribute/Objective) Decision Making
 - Einbezug von Benutzerpräferenzen:
 - \succ Benutzer geben Wichtigkeit der Attribute mittels Skala an \Longrightarrow Gewichtung
 - Entscheidungsregeln:
 - Einfache additive Gewichtung:
 - > Berücksichtigung relevanter Attributinformationen
 - Normierung der Werte der Attributvektoren
- Outdoor Lokalisierung bspw. GPS: durch Triangulation der Satelitensignale
- Indoor Lokalisierung bspw. Indoor WPS:
 - 1. Signalstärke wird mit bereits ermittelten Fingerprints (Fixe Positionen, von denen aus die Signalstärke aller Netzwerke ermittelt wurde) verglichen
 - 2. Aus den vergleichbaren Signalstärken wird, ausgehend vom Sender, durch Trilateration, der Standort ermittelt