Advanced Plotting with ggplot2

Business Analytics Stefan Feuerriegel

Today's Lecture

Objectives

- Distinguishing different types of plots and their purpose
- 2 Learning the grammar of graphics
- 3 Create high-quality plots with ggplot2

ggplot2 2

Outline

- 1 Introduction
- 2 Plot Types (Geometries)
- 3 Plot Appearance
- 4 Advanced Usage
- 5 Wrap-Up

ggplot2

Outline

- 1 Introduction
- 2 Plot Types (Geometries)
- 3 Plot Appearance
- 4 Advanced Usage
- 5 Wrap-Up

Motivation

Why plotting?

- Visualizations makes it easier to understand and explore data
- Common types of plots: bar chart, histogram, line plot, scatter plot, box plot, pirate plot, . . .

Plotting with ggplot2 in R

- Built-in routines cover most types, yet the have no consistent interface and limited flexibility
- Package ggplot2 is a powerful alternative
 - Abstract language that is flexible, simple and user-friendly
 - Nice aesthetics by default
 - ► Themes for common look-and-feel
- "gg" stands for "grammar of graphics"
- ► Limited to 2D plots (3D plots not supported)
- ► Commonly used by New York Times, Economics, ...

Example with ggplot2

Load package

```
library(ggplot2)
```

Create sample data

```
line_data <- data.frame(year=1900:2000, price=1:101)</pre>
```

Visualize data frame as line plot

```
ggplot(line_data, aes(x=year, y=price)) +
  geom_line()
```


Calls to ggplot2

General format

```
ggplot(data, aes(x=variable_x, y=variable_y)) +
  geom_*() +
  additional_modifications()
```

- ggplot () expects a data frame (not: matrix) as a first input, followed by the aesthetics that map variables by name onto axes
- ► Building blocks are concatenated via +
- * is any of the supported plot types
- ► The geom_* () can overwrite previous aesthetics

```
ggplot (data) +
   geom_line(aes(x=variable_x, y=variable_y1)) +
   geom_line(aes(x=variable_x, y=variable_y2))
```

```
    ggplot(data, aes(x=variable_x)) +
        geom_line(aes(y=variable_y1)) +
        geom_line(aes(y=variable_y2))
```

Terminology

- Data: underlying information to be visualized
- ► Aesthetics: controls the color/shape/... of observations and which variables go on the x- and y-axis
- ► **Geometry**: geometric objects in the plot; e.g. points, lines, bars, polygons, . . .
- ► Layers: individual plots, i. e. calls to geom_* ()
- ► Facets: creates panels of sub-plots
- Scales: sets look-and-feel of axes
- ► Themes: overall color palette and layout of plot
- Statistics: transformations of the data before display
- Legends: appearance and position of legend
 - Each layer consists of data and aesthetics, plus additional customizations

► A plot can have a one or an arbitrary number of layers

Aesthetics

- ▶ Aesthetics aes (...) set "what you see"
 - Variables which go on x- and y-axis
 - Color of outer border
 - Fill color of inside area
 - Shape of points
 - Line type
 - Size of points and lines
 - Grouping of values
- Expect a column name representing the variable
- ▶ Short form by aes (x, y) where identifiers x = and y = are omitted

Wide vs. Long Data

Data format

- Wide data: multiple measurements for the same subject, each in a different column
- ► Long data: subjects have multiple rows, each with one measurement

Example

		•		
W	IMC	∆t∩	rm	at
v v	IUC	, 10		ıαι

Company	Sales Drinks	Sales Food
Α	300	400
В	200	100
С	50	0

Long format

Company	Category	Sales
Α	Drinks	300
Α	Food	400
В	Drinks	200
В	Food	100
С	Drinks	50
С	Food	0

Note: ggplot2 requires data in long format

Conversion Between Long and Wide Data

Prepare sample data

► Load necessary package reshape2

```
library (reshape2)
```

► Call function melt (data_wide, id.vars=v) to convert wide data into a long format where v identifies the subject

Outline

- 1 Introduction
- 2 Plot Types (Geometries)
- 3 Plot Appearance
- 4 Advanced Usage
- 5 Wrap-Up

Plot Types

- ► ggplot2 ships the following geometric objects (geoms) amongst others
- ► Function names start with geom_* ()

Two variables

► Scatter plot (also named point plot) geom_point ()

► Line plot geom_line()

~~

► Area chart geom_area()

► Smoothing geom_smooth()

Plot Types

One variable (discrete)

► Bar chart geom_bar()

One variable (continuous)

- ► **Histogram** geom_histogram()
- ► Boxplot geom_boxplot()

► Density plot geom_density()

Scatter Plot

- A scatter plot displays each observation as a geometric point
- ▶ Optional arguments: alpha (transparency), size, color, shape

```
points <- data.frame(x=rnorm(20), y=rnorm(20))</pre>
p1 <- ggplot (points, aes(x, y)) +
  geom_point()
p2 <- ggplot (points, aes(x, y)) +
  geom point (alpha=0.4, color="darkblue")
```

р1

p2

Point Shapes

Argument shape accepts different values

► Shapes 21–24 distinguish two colors:

► A border color (argument: color)

► A fill color (argument: fill)

Scatter Plot

Aesthetics can also change size, shape or color based on variables

```
ggplot (mpg, aes (x=displ, y=hwy)) +
  geom_point(aes(size=cyl, fill=drv), shape=21)
   40 -
   30 -
                                                 cyl
   20 -
                        displ
```

Line Plot

Line plot displays points as a connected line

```
x <- seq(0, 2*pi, by=0.01)
data_sin_cos <- data.frame(x=x, sin=sin(x), cos=cos(x))

ggplot(data_sin_cos, aes(x)) +
   geom_line(aes(y=sin)) +
   geom_line(aes(y=cos), color="darkred")</pre>
```


▶ Optional arguments: color, linetype, size, group

Line Types

► Argument linetype picks a line type based the following identifiers

twodash
longdash
dotdash
dotted
dashed
solid

Line Plot

- Long data allows for efficient grouping and simpler plots
- Argument group denotes the variable with the group membership
- ► Alternative is to use color for different colors

Line Plot

- Grouping can occur through all aesthetics
- ► Common is to use color for different colors

Area Chart

- Similar to a line plot, but the area is filled in color
- ► Individual areas are mapped via group and colored via fill
- ▶ position="stack" stacks the areas on top of each other

Area Chart

Argument position="fill" shows relative values for each group out of 100%

```
ggplot (data_lines2) +
  geom_area(aes(x=x, y=y, fill=var, group=var),
               position="fill")
    1.00 -
    0.75 -
                                                      var
                                                          y1
 \rightarrow 0.50 -
    0.25 -
    0.00 -
                2.5
                          5.0
                                    7.5
                                              10.0
                             Х
```

Bar Chart

- ► Bar chart compares values, counts and statistics among categories
- ► The x-axis usually displays the discrete categories
- ► The y-axis depicts the given value (stat="identity") or also transformed statistics

► Categories are sorted alphabetically by default

Bar Chart

▶ stat="count" automatically counts the frequency of observations

Stacked Bar Chart

► Group membership controlled by fill color

```
ggplot (diamonds) +
  geom_bar(aes(x=color, fill=cut), stat="count")
                                                cut
   9000 -
                                                   Fair
                                                   Good
 count
   6000 -
                                                   Very Good
                                                   Premium
   3000 -
                                                   Ideal
                         Ġ
                        color
```

Grouped Bar Chart

▶ Bars are displayed next to each other via position="dodge"

```
ggplot (diamonds) +
  geom_bar(aes(x=color, fill=cut), stat="count",
             position="dodge")
   5000 -
                                                cut
   4000 -
                                                   Fair
   3000 -
 count
                                                   Good
                                                   Very Good
   2000 -
                                                   Premium
   1000 -
                                                   Ideal
               Ė
                         Ġ
                        color
```

Histogram

- Histogram shows frequency of continuous data by dividing the range of values into bins
- ► Each bar then denotes the frequency of data falling into that bin
- Illustrates the distribution of the data

```
ggplot(points) +
  geom_histogram(aes(x))

## 'stat_bin()' using 'bins = 30'. Pick better value with
'binwidth'.
```


Histogram

- Optional arguments: border color (color), fill color (fill), width of the bins (binwidth)
- ggplot automatically defines new variables (..count.. and ..density..) that can be used in the aesthetics
- ▶ y=..density.. displays density on y-axis instead of frequency

Box Plot

Box plots visualize distribution by highlighting median and quartiles

Density Plot

- Estimates the density as a mean to approximate the distribution
- ► Smooth alternative of a histogram
- ► Optional argument: alpha allows colors to be transparent

```
ggplot (height) +
  geom_density(aes(x=height, fill=gender),
                  stat="density", alpha=0.6)
    0.4 -
    0.3 -
                                                          gender
 density
    0.2 -
                                                               m
    0.0 -
                  172
                              174
                                           176
                            height
```

Outline

- 1 Introduction
- 2 Plot Types (Geometries)
- 3 Plot Appearance
- 4 Advanced Usage
- 5 Wrap-Up

ggplot2: Appearance

Outline

3 Plot Appearance

- Layers
- Facets
- Scales
- Themes
- Legends

ggplot2: Appearance

Multiple Layers

- Concatenation allows for combining several layers
- Each layer has it own aesthetics

```
df <- data.frame(px=rnorm(20), py=rnorm(20),</pre>
                  lx=seq(-1, +1, length.out=20))
dflv <- dflx^2
ggplot (df) +
  geom point(aes(px, py)) +
  geom_line(aes(lx, ly))
```


Smoothing Layers

- Smoothing layer geom_smooth implements trend curves
 - ► Linear trend (method="lm")
 - ► Local polynomial regression (method="loess") with smoothing parameter span
 - ► Generalized additive model (method="gam")
- ► Variable choice is also controlled by aesthetics aes (x, y)
- ► Gray shade highlights the 95 % confidence interval

ggplot2: Appearance

Smoothing Layers

method="loess", span=0.75

ggplot2: Appearance 36

Outline

- 3 Plot Appearance
 - Layers
 - Facets
 - Scales
 - Themes
 - Legends

Facets

- ► Facets display a grid of plots stemming from the same data
- ► Command: facet grid (y ~ x) specifies grouping variables
- ▶ By default, the same axis resolution is used on adjacent plots

Example with 1 group on x-axis

```
ggplot (mpg, aes (displ, hwy)) +
  geom_point(alpha = 0.3) +
  facet grid(. ~ vear)
```


38

Facets

Example with 2 groups on x- and y-axis

```
ggplot(mpg, aes(displ, hwy)) +
  geom_point(alpha = 0.3) +
  facet_grid(cyl ~ year)
```


Outline

3 Plot Appearance

- Layers
- Facets
- Scales
- Themes
- Legends

Scales

Scales control the look of axes, especially for continuous and discrete data

► scale_<axis>_log10() uses log-scale on axis

Scales

 coord_equal() enforces an equidistant scaling on both axes

```
ggplot(df, aes(x, y)) +
  geom_point() +
  coord_equal()
```


Geometry Layout

- Changes to geometry layout links to the use of aesthetics
- ► Additional function call to scale_<aestetics>_<type>(...)
 - 1 Aesthetic to change, e.g. color, fill, linetype, ...
 - 2 Variable type controls appearance, e.g. gradient (continuous scale), hue (discrete values), manual (manual breaks), ...

scale_color_gradient

- Color gradient stems from a range between two colors
 - → Arguments: low, high
- Useful for visualizing continuous values

```
points_continuous <- cbind(points, z=runif(20))
p <- ggplot(points_continuous) +
  geom_point(aes(x=x, y=y, color=z))</pre>
```


ggpiote. Appearance

scale color hue

- Uses disjunct buckets of colors for visualizing discrete values
- Requires source variable to be a factor

```
points_discrete <- cbind (points,
                            z=as.factor(sample(5, 20, replace=TRUE)))
p <- ggplot (points_discrete) +
  geom_point(aes(x=x, y=y, color=z))
 p + scale color hue()
                                            + scale color hue(h=c(180, 270))
       1.0 -
                                               1.0 -
      0.5 -
                                               0.5 -
   > 0.0 -
                                               0.0 -
      -0.5 -
                                              -0.5 -
      -1.0 -
                                              -1.0 -
                     Х
                                                             Х
```

scale_color_manual

- Specifies colors for different groups manually
- ► Argument values specifies a vector of new color names

```
ggplot (data_lines2) +
  geom_line(aes(x=x, y=y, color=var)) +
  scale_color_manual(values=c("darkred", "darkblue"))
```


Color Palettes

- Built-in color palettes change color scheme
- Distinguished by discrete and continuous source variables
 - 1 Discrete values and colors via scale_color_brewer()
 - 2 Continuous values and colors via scale_color_distiller()
- Further customizations
 - Overview of color palettes:

```
http:
```

//www.cookbook-r.com/Graphs/Colors_(ggplot2)

Package ggtheme has several built-in schemes: https://cran.r-project.org/web/packages/ ggthemes/vignettes/ggthemes.html

► Color picker:

http://www.colorbrewer2.org/

Discrete Color Palettes

 scale_color_brewer accesses built-in color palettes for discrete values

```
pd <- ggplot(points_discrete) +
  labs(x="", y="") +
  geom_point(aes(x, y, color=z))</pre>
```

Default

Intense colors

Continuous Color Palettes

 scale_color_distiller accesses built-in color palettes for continuous values

```
pc <- ggplot(points_continuous) +
  labs(x="", y="") +
  geom_point(aes(x, y, color=z))</pre>
```

Default

Spectral colors

Gray-Scale Coloring

- ▶ No unique identifier for gray-scale coloring
 - 1 scale_color_gray() colors discrete values in gray-scale
 → Attention: "grey" as used in British English
 - 2 scale_color_gradient() refers to a continuous spectrum

Discrete values

Continuous values

Ranges

► Crop plot to ranges via xlim(range) or ylim(range)

```
ggplot(df, aes(x, y)) +
  geom_point() +
  xlim(c(1, 2)) +
  ylim(c(-1, +1))
```


Outline

3 Plot Appearance

- Layers
- Facets
- Scales
- Themes
- Legends

Themes

- ► Themes further customize the appearance of plots
- Printer-friendly theme theme_bw() for replacing the gray background

```
ggplot(df, aes(x, y)) +
  geom_point()
    3 -
              Х
```

ggplot(df, aes(x, y)) +
 geom_point() +
 theme_bw()

Themes

Package ggthemes provides further styles

```
library(ggthemes)
```

Example with the style from *The Economist*

```
ggplot(mpg, aes(displ, hwy)) +
  geom_point() +
  theme_economist()
```


Labels

► Change labels via labs (...)

```
ggplot(df, aes(x, y)) +
   geom_point() +
   labs(x = "x-axis", y = "y-axis")
```


Recommendation: don't use titles in plots

→ Instead of titles, better place details in the caption of scientific papers

Outline

3 Plot Appearance

- Layers
- Facets
- Scales
- Themes
- Legends

- Legends are placed automatically for each aesthetic in used
- ► Examples: group, color, ...

- ► Frequent changes include
 - 1 Data is in long format and should be renamed
 - 2 Data is in long format and should be customized
 - 3 Data is in wide format and each geom_* should be customized

Case 1: Data is in long format and should be renamed

- ► scale_<aesthetics>_discrete(...) changes matchings
- Argument labels specifies new labels (mapped to original names in alphabetical order)

```
ggplot(data_lines2) +
  geom_line(aes(x=x, y=y, color=var)) +
  scale_color_discrete(labels=c("One", "Two"))
```


Case 2: Data is in long format and should be customized

- ► Add scale_<aesthetics>_manual to change appearance
- ► Argument values specifies new attributes (e.g. color)

```
ggplot(data_lines2) +
  geom_line(aes(x=x, y=y, color=var)) +
  scale_color_manual(values=c("darkred", "darkblue"))
```


Case 3: Data is in wide format and each geom_* should be customized

- Add additional aesthetics with string identifier
- ► Change appearance with scale_<aesthetics>_manual()

► **Recommendation:** better convert to long format with melt (...)!

Legend Position

- Default position of legend is outside of plot
- ▶ theme (legend.position="none") hides the legend
- ► theme (legend.position=c(x, y)) moves it inside the grid
- ▶ $x, y \in [0, 1]$ are relative positions starting from the bottom-left corner

```
ggplot(data_lines2) +
  geom_line(aes(x=x, y=y, color=var)) +
  theme(legend.position=c(0.2, 0.6))
```


Legend Title

5 -

5.0

Х

- ► Legend title is set inside scale_<aesthetics>_<type>(...)
- Passed as the first argument or argument name
- ► Displays maths via expression (...)

7.5 10.0

5.0

Х

7.5 10.0

Outline

- 1 Introduction
- 2 Plot Types (Geometries)
- 3 Plot Appearance
- 4 Advanced Usage
- 5 Wrap-Up

qplot

► qplot(x, y) is a wrapper similar to plot(...)

Date and Time

Values of type date or time are formatted automatically

Date

Time

Maps

Package ggmap allows to plot geometries on a map

```
library (ggmap)
```

► Download map with get_map(...)

```
map <- get_map("Germany", zoom=5, color="bw")</pre>
```

Coordinates are given as longitude/latitude

d: Advanced Usage Ion 66

Exporting Plots

- Workflow is greatly accelerated when exporting plots automatically
- PDF output is preferred in LATEX, PNG for Word
- ▶ ggsave (filename) exports the last plot to the disk
 - 1 Export as PNG

```
ggsave("plot.png")
```

2 Export as PDF

```
ggsave("plot.pdf")
```

- File extension specifies format implicitly
- Alternative arguments specify filename and size (i. e. resolution)

Outline

- 1 Introduction
- 2 Plot Types (Geometries)
- 3 Plot Appearance
- 4 Advanced Usage
- 5 Wrap-Up

ggplot2: Wrap-Up

Further Reading

Online resources

► Official ggplot2 documentation

```
http://docs.ggplot2.org/current/
```

- → Collection of reference materials and examples how parameters affect the layout
- Cookbook for R Graphs

```
http://www.cookbook-r.com/Graphs/
```

- ightarrow Collection of problem-solution pairs by plot type with different layout customizations
- ► Introduction to R Graphics with ggplot2

```
http://en.slideshare.net/izahn/rgraphics-12040991
```

- → Introductory presentation with many examples
- ▶ ggplot2 Essentials

```
http://www.sthda.com/english/wiki/ggplot2-essentials
```

→ Overview of different plots and available options for customization

Books

▶ Wickham (2016). "ggplot2: Elegant Graphics for Data Analysis", 2nd ed., Springer.

ggplot2: Wrap-Up