Discriminant

1. Introduction

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

The Discriminant:

$$b^2 - 4ac$$

Type of roots		Graph
1 Real roots and distinct roots Curve cuts line at 2 points	$b^2 - 4ac > 0$	
2 Real roots and equal roots Curve is at tangent at line	$b^2 - 4ac = 0$	
3 No Real roots Curve is does not meet line Equation is always positive	$b^2 - 4ac < 0$	
4 Real roots Lines meets curve	$b^2 - 4ac \ge 0$	

2. Exercise – Discriminant and Nature of Roots

1	Find the value of p for which $px^2 = 2x - p$ has real and equal roots
	px^2-2x+p
	$2^2 - 4pp = 0$
	$4 = 4p^2$
	$\pm 1 = p$
	p=-1, $p=1$
2	$x^2 + 2kx + (k-1)(k-3) = 0$ has real roots. Find the range of values of k
	$x^2 + 2kx + k^2 - 4k + 3 = 0$
	$4k^2 - 4(1)(k^2 - 4k + 3) \ge 0$
	$4k^2 - 4k^2 + 16k - 12 \ge 0$
	3
	$16k - 12 \ge 0 \to k \ge \frac{3}{4}$
3	Find range of m for $2x^2 - mx + 2 = 0$ has real and distinct roots
	$m^2 - 4(2)(2) > 0$
	$m^2 > 16 \rightarrow m > \pm 4$
	$m < -4, \qquad m > 4$
4	Find range of p for $3x^2 - px + 2p = 0$ has no real roots
	$(-p)^2 - 4(3)(2p) < 0$
	$p^2 - 24p < 0$
	p(p-24) < 0
	0

3. Exercise – Discriminant and Nature of Intersection between line and curves

F	T	
1	Find the value of k for which the line $y + kx = 12$	
	is a tangent to the curve $x^2 + xy = 12$	
	$y + kx = 12 \rightarrow y = 12 - kx$	
	$x^2 + x(12 - kx) = 12$	
	$x^2 + 12x - kx^2 - 12 = 0$	
	$(1-k)x^2 + 12x - 12 = 0$	
	$(1 \text{ it})^{N} + 12^{N} = 0$	
	$12^2 - 4(1 - k)(-12) = 0$	
	12 - 4(1 - k)(-12) = 0 $144 + 48 - 48k = 0$	
	k=4	
2	Find range of m for line $y = mx + 1$ meets curve $y^2 = 8x$	
	$(mx+1)^2 - 8x = 0$	
	$m^2x^2 + 2mx + 1 - 8x = 0$	
	$m^2x^2 + (2m - 8)x + 1 = 0$	
	$(2m-8)^2 - 4m^2 \ge 0$	
	$4m^2 - 32m + 64 - 4m^2 \ge 0$	
	$2 \ge m$	
3	Find range of c for line $y = c - 3x$ does not intersect curve $xy = 3$	
	x(c-3x)=3	
	$3x^2 - cx + 3 = 0$	
	$c^2 - 4(3)(3) < 0$	
	$c < \pm 6$	
_	-6 < c < 6	
4	Find range of m for line $y = mx - 5$ intersect curve $y = x^2 - 1$ with 2 distinct points	
	$mx - 5 = x^2 - 1$	
	$x^2 - mx + 4 = 0$	
	$m^2 - 4(1)(4) > 0$	
	$m > \pm 4$	
	m < -4, $m > 4$	
5	$x^2 + 2x + k = 3k - 1$ has no real roots, what can be deduced about the curve $y = (x + 1)^2$	
	and the line $y = 3x - 1$	
	$(x+1)^2 = 3x - 1$	
	$x^2 + 2x + 1 = 3x - 1$	
	$x^{2} + 2x + k = 3k - 1 \rightarrow x^{2} + 2x + k = 3kx - 1$	
	$x^2 + 2x + k = 3kx - 1$	
	$x^2 + (2 - 3k)x + k + 1 = 0$	
	$b^2 - 4ac < 0$	
	$(2-3k)^2 - 4(1)(k+1) < 0$	
	$4 - 12k + 9k^2 - 4k - 4 < 0$	
	$9k^2 - 16k < 0$	
	k(9k-16) < 0	
	$0 < k < \frac{16}{9}$	
	9	

4. Exercise – Show the Nature of roots or y > 0

1	Show that $x^2 + (1-p)x - p = 0$ are real for all real valus of p
	$(1-p)^2 - 4(1)(-p) =$
	$1 - 2p + p^2 + 4p =$
	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$
	· ·
	$(p+1)^2 \ge 0 \text{ (shown)}$
2	Show that $x^2 - 2x - p + 2 = 0$ are real and distinct if $p > 1$
	4-4(1)(-p+2)>0
	4 + 4p - 8 > 0
	p > 4 (shown)
3	Find the range of c for which $3x^2 + 5x + c$ is always positive
	$3x^2 + 5x + c > 0 \rightarrow :: b^2 - 4ac < 0$
	$5^2 - 4(3)(c) < 0$
	25 - 12c < 0
	$c > \frac{25}{12} (shown)$
	$c > \frac{1}{12} (snown)$
4	Given that $y = tx^2 + 8x + 10 - t$
	find the range of values of t for which y is always positive
	$y = tx^2 + 8x + 10 - t > 0 \rightarrow : b^2 - 4ac < 0$
	$8^2 - 4(t)(10 - t) < 0$
	$64 - 40t + 4t^2 < 0$
	$4t^2 - 40t + 64 < 0$
	$t^2 - 10t + 16 < 0$
	(t-2)(t-8) < 0
	(t-2)(t-3) < 0 $2 < t < 8$
	2 < 1 < 0

5. Exercise – Show the Nature of roots or y > 0

1	Show that $x^2 + (1-p)x - p = 0$ are real for all real valus of p
	$(1-p)^2 - 4(1)(-p) =$
	$1 - 2p + p^2 + 4p =$
	$p^2 + 2p + 1 \ge 0 =$
	$(p+1)^2 \ge 0 \ (shown)$
2	Show that $x^2 - 2x - p + 2 = 0$ are real and distinct if $p > 1$
	4 - 4(1)(-p + 2) > 0
	4 + 4p - 8 > 0
	$p > 4 \ (shown)$
3	Find the range of c for which $3x^2 + 5x + c$ is always positive
	$3x^2 + 5x + c > 0 \rightarrow :: b^2 - 4ac < 0$
	$5^2 - 4(3)(c) < 0$
	25 - 12c < 0
	$c > \frac{25}{12} $ (shown)
	$12^{(3howh)}$
4	Given that $y = tx^2 + 8x + 10 - t$
	find the range of values of t for which y is always positive
	$y = tx^2 + 8x + 10 - t > 0 \rightarrow :: b^2 - 4ac < 0$
	$8^2 - 4(t)(10 - t) < 0$
	$64 - 40t + 4t^2 < 0$
	$4t^2 - 40t + 64 < 0$
	$t^2 - 10t + 16 < 0$
	(t-2)(t-8) < 0
	2 < t < 8
5	Find the range of values of k for which the graph of $y = x^2 + (k-4)x + 1$
	Lies entirely above the $x-axis$
	$b^2 - 4ac < 0$
	$(k-4)^2 - 4(1)(1) < 0$
	$k^2 - 8k + 16 - 4 < 0$
	$k^2 - 8k + 12 < 0$
	(k-2)(k-6) < 0
	∴ 2 < <i>k</i> < 6