

Outline

I. Why do we want to used deep learning?

- II. Brief history of deep learning
- III. Short introduction on neural network (NN)
- IV. Convolutional neural network (CNN) for image classification
- V. Van-Valen network for cell segmentation
- VI. Results
- VII. Conclusion & perspectives

Tracking Myxococcus xanthus cells on an agar pad

3x3 ROI for a total of ~600x600µm Stack of 7 images ~40-50s to complete a cycle

Myxococcus xanthus gliding assay on a 1,5% agar pad. We need a reliable method to segment the cells and track them over time:

- predation behavior
- cell division
- etc.

Segmentation of Myxococcus xanthus cells using super-segger

Even on a good quality phase-contrast image, >5% of the cells are not properly segmented using SuperSegger.

Deep-Learning applications for microscopy

Weigert et al. 2017. BioRxiv - Ouyang et al. 2018. Nat. Biotech.

Van Valen et al. 2016. PLOS Computational Biol.

Deep learning is a type of machine learning that has been applied to microscopy in order to:

- Improve super-resolution PALM/STORM image reconstruction
- Segment cells
- Perform filtering on low-signal images
- etc.

Outline

I. Why do we want to used deep learning?

II. Brief history of deep learning

- III. Short introduction on neural network (NN)
- IV. Convolutional neural network (CNN) for image classification
- V. Van-Valen network for cell segmentation
- VI. Results
- VII. Conclusion & perspectives

Image classification using Deep Learning

Since 2012, several deep learning algorithms based on CNN have been designed for image classification (AlexNet, GoogleNet, VGGNet, etc.) and features extraction.

http://image-net.org/index

Deep Learning vs. Machine Learning

For image classification, objects recognition and localization, most algorithms use a Convolutional Neural Network (CNN).

Convolutional Neural Network

- **1943** First description of Artificial Neural Network
- 1985 Description of the back-propagation algorithm for training multi-layers NN
- 1988 First description of the Convolutional NN
- 1998 Application of CNN for digit recognition on ZIP codes
- **2012** CNN AlexNet wins the 2012 ImageNet contest

Outline

- I. Why do we want to used deep learning?
- II. Brief history of deep learning

III. Short introduction on neural network (NN)

- IV. Convolutional neural network (CNN) for image classification
- V. Van-Valen network for cell segmentation
- VI. Results
- VII. Conclusion & perspectives

Definition of a neuron

$$v = w_1 * x_1 + w_2 * x_2 + w_3 * x_3$$

 $y = \varphi(v)$

The simplest neural network: 1 layer

Training of the shallow neural network

Training of the shallow neural network

Deep neural network

Quick introduction on how neural network works?

Deep Learning vs. Machine Learning

For image classification, objects recognition and localization, most algorithms use a Convolutional Neural Network (CNN).

Outline

- I. Why do we want to used deep learning?
- II. Brief history of deep learning
- III. Short introduction on neural network (NN)

IV. Convolutional neural network (CNN) for image classification

- V. Van-Valen network for cell segmentation
- VI. Results
- VII. Conclusion & perspectives

Convolutional neural network

Convolutional neural network

Convolutional neural network

http://cs231n.github.io/convolutional-networks/

Convolutional neural network applied to cell segmentation

Van-Valen semantic CNN with Matlab

MATLAB*

How do we train this supervised deep learning network?

Step 1: Manual labelling

100 images from 3 different experiments
On each image the four classes are observed

Step 2 : Training & Testing sets

Training/testing set of 31x31 images, with the same number of images for each class.

- Training set : ~50,000 images/class
- Testing set : ~10,000

Step 3: Training (2,5h)

After defining the training rules, the training start with the following parameters:

- Stochastic gradient descent method
- Minibatch = 2500
- Epoc = 21

Segmentation of Myxococcus xanthus cells

Image normalization

Time-lapse - ∆PilA AglZ-YFP 1000x1000 Phase contrast image

Computation time with 15 cores parallel computing : 4,5min

Accuracy for the testing set :

- global accuracy: 93.8 %

- accuracy for « background »: 94.1 %

- accuracy for « dirt »: 99.1 %

- accuracy for « cell inside » : 91 %

- accuracy for « cell contour »:91 %

A glimpse of what is going on « inside »

Limitations of the method

Class 1 : Background
Class 2 : Cell outline

Class 3 : Cell body

Class 4 : Dirt / Dead cells

For certain images, the classes got mixed up (particularly between classes 1 & 4). The classification might be sensitive to variation in the experimental conditions (intensity, ...) \rightarrow the experimental conditions needs to be well controlled.

Segmentation of *B. subtilis*: Brightfield + Fluorescence

Segmentation of *B. subtilis*: Brightfield + Fluorescence

Conclusion and perspectives

- So far, deep learning look like a promising tool for segmentation :
 - ✓ Myxococcus xanthus cells on phase contrast images
 - ✓ Bacillus subtilis cells taking into account brightfield and fluorescence images
- The accuracy of segmentation is <u>substancially better</u> as compared to previous results obtained with SuperSegger

- Improve the computation time for a 2000x2000 images it takes >15min
 - → Fully convolutional network
- How to make the network less susceptible to experimental conditions?

Fully convolutional network

Fully convolutional network

Fully convolutional network

Badrinarayanan et al. 2016. ArXiv

First test with the built-in network on Matlab (SegNet)

Acknowledgement

Thanks!

Sara Rombouts
Hernan Bonomi
Marcelo Nöllmann
Antoine Le Gall
Baptiste Guilhas
Julian Gurgo
Sergio Espinola
Markus Götz
Andrès Cardozzo
Christophe Houbron
Diego Cattoni
Fanny Berard

Standford Lectures on neural network and deep Learning

https://www.youtube.com/playlist?list=PLC1qU-LWwrF64f4QKQT-Vg5Wr4qEE1Zxk