Osnovi izvor: Distribuirano i računanje u oblaku

K. Hwang, G. Fox i J. Dongarra

Postavka 7: Sveprisutni oblaci

i Internet stvari

Iz kursa SE 765, 2014 god, od Prof. F.T. Marchese

Internet stvari, IoT (Internet of Things)

- Pojam Internet stvari (IoT) se odnosi na objekte sa jedinstvenom identifikacijom (stvari) i njihove virtuelne predstave u odgovarajućoj strukturi
- Ovaj pojam prvi je koristion Kevin Ashton 1999 god.

Arhitektura IoT

Podrška oblaka za IoT i socijalne mreže

- Pametne i prožimajuće aplikacije oblaka za individue, kuće, zajednice, preduzeća, vlade, itd.
- 2. Kordiniran kalendar, maršruta, rukovanje poslovima, događajima, i usluge rukovanja slogovima potrošača (consumer record management, CRM)
- 3. Kordinirana obrada teksta, žive prezentacije, web-zasnovani radni stolovi, deljenje dokumenata, skupovi podataka, slike, video, baze podataka, distribucija sadržaja, itd.
- 4. Raspored standardnog klastera, grid, P2P, aplikacije socijanih mreža u okruženjima u oblaku, sve one imaju bolju isplativost
- 5. Aplikacije zemaljske kugle koje zahtevaju elastičnost i paralelizam da bi se izbeglo veliko premeštanje podataka i smanjili troškovi skladišta

RFID (Radio Frequency IDentification) tehnologija

- RFID se odnosi na male elektronske uređaje, koji se sastoje od malih čipova i antene
- Čip obično može da nosi do 2,000 bajta podataka

RFID čip pored zrna pirinča. Ovaj mali tip uređaja se ugrađuje u potrošačke proizvode, i čak kao implantati u kućne ljubimce, radi njihove identifikacije

RFID tag koji se koristi za elektronsku naplatu putarine

Bar kodovi spram RFID

 Oznaka, podržana sistemom za obradu podataka Oznaka, podržana masivnim sistemom za obradu podataka

- Linija-vidljivosti
- Nepromenljiva info
- Mala cena (...)

- Bez linije-vidljivosti
- Reprogramiranje
- Malo veća cena (ciljna cena: 10 centi)
- Dinamičnije praćenje

Pasivan RFID sistem

Figure D-1 Components of a Passive RFID System

Aktivan RFID sistem

Figure D-2 Components of an Active RFID System

Senzorske mreže: omogućavajuće tehnologije

Mrežni uređaji Ugrađuju se mnogi distribuirani koordiniraju i izvršavaju uređaji za nadzor i interakciju zadatke višeg nivoa sa fizičkim svetom Umreženi Ugrađeni Eksploatacija Kontrolni sistem sa kolaborativnih čvorovima koji mogu senzora, akcije kom. i sa čvorovima u drugim uređajima Senzori Čvrsto povezani sa fizičkim svetom

Ekspolatacija prostorno/vremenski gustih senzora/aktuatora, na lokaciji/udaljeno

Šta je bežična mreža senzora (WSN)?

- Samoorganizujuća mreža koju formiraju autonomni čvorovi sa senzorima
 - Svaki čvor poseduje sopstveno napajanje, jedinicu za obradu podataka, radio i senzore
 - Uobičajena je P2P komunikcaija (nema centralnog servera)
 - Mnogo (100 do 10.000) senzorskih čvorova po mreži

 Razne aplikacije: automatizacija u industriji, kontrola zgrada, zdravstvena zaštita, vojska, poljoprivreda, kontrola saobraćaja, automatizacija kuće, ...

• Vizije: "Pametna prašina", "Ambijentalna inteligencija", ...

Koji su zahtevi za WSN?

- Mora biti jeftina pošto su potrebne velike količine čvorova
- Mora biti robusna da se može rasporediti u grubim okruženjima

- Da se može rasporediti u udaljenim oblastima bez bilo kakve infrastrukture
- Da može da radi nekoliko godina bez punjenja baterija
- Osnovne funkcionalnosti:
 - Senzor
 - Prenos podataka do bazne stanice radi njihove obrade

FhG IIS S3-TAG

Porcupine v2.5

Crossbow Telos

Our own (-:

WSN (Wireless Sensor Networks)

Jedinstvene karakteristike WSN su:

- Ograničena energija koju mogu da prikupe ili uskladište
- Sposobnost izdržavanja grubih uslova okruženja
- Sposobnost da se nose sa otkazima čvorova
- Mobilnost čvorova
- Dinamička mrežna topologija
- Otkazi komunikacije
- Heterogenost čvorova
- Raspored velike skale
- Rad bez prisustva operatera

Wireless Sensor Networks

Šta je čestica (eng. mote)?

Imote2 06 sa kamerom

mote

nešto, kao malo prašine, što je toliko malo da se jedva vidi ----Cambridge Advanced Learner's Dictionary http://dictionary.cambridge.org/define.asp?key=52014&dict=CALD

Senzorski čvor

Evolucija senzorske HW platforme (Berkeley), [Alec Woo 2004]

Čestice i TinyOS

- Čestice (Mica2, Mica2dot, MicaZ)
 - ATMega128L mikrokontroler
 - 128KB prog. fleša; 512KB fleša za podatke; 4KB EEPROM
 - Standardna platforma sa ugrađenim radiom chicon1000 (433MHz, 916MHz, 2.4GHz) 38.4kb; 256kbps za MicaZ IEEE 802.15.4. domet (1000ft, 500ft; 90/300ft)
 - AA baterija
 - TinyOS
 - Podesne za dodavanje senzora

TinyOS

 TinyOS je OS sa BSD-licenciranim kodom, projektovan za bežične uređaje male potrošnje, kao oni koji se koriste u senzorskim mrežama, svudaprisutnom računanju, mrežama personalne oblasti, pametnim zgradama, i pametnim meračima

Wireless Sensor Network

Stargate

- 802.11a/b
- Ethernet
- Mica2
- PCMCIA
- Compact flash
- USB
- JTAG
- RS232

Tipična aplikaciona mustra za WSN

- Periodičnost
 - Skupljanje podataka
 - Održavanje mreže
 - To su dominantne operacija
- Pobuđeni događaji
 - Detekcija/obaveštenje
 - Dešavaju se sa malom frekvenc.
 - Ali... mora se raportirati brzo i pouzdano
- Dug životni vek
 - Meseci i godine bez punjenja baterija
 - Rukovanje napajanjem je ključ
 WSN uspeha

Zašto baš ZigBee?

- Svudaprisutna Ad-hoc samo-organizujuća mreža
- Konfigurabilan radio opseg: zavisno od zahteva usluge, od bezkontaktnih (~cm) do metara i čak kolometara, korišćenjem više-skokova
- Visok nivo zaštite (šifrovanje i autentifikacija u svim slojevima protokola, koncept centra poverenja, bez kolizije)
- Jednostavna integracija sa uređajima/terminalima u minijaturizovanim periferijama sa integrisanim antenama

ZigBee arhitektura

Zigbee uređaji

- Potpuno funkcionalni uređaji (FFD's)- ZigBee Koordinator, ZigBee Usmerivač
- Uređaj sa redukovanim funkcijama (RFD's)- ZigBee Krajni uređaj
- ZigBee Koordinator (ZC)
 - Samo jedan je potreban za svaku ZB mrežu, inicijalizuje mrežu
 - Radi kao 802.15.4 2003 PAN koordinator (FFD)
 - Može da radi kao usmerivač nakon što je mreža formirana
- ZigBee Usmerivač (ZR): Opcinona komponenta, može biti pridružena ZC,
 radi kao 802.15.4 2003 koordinator (FFD). Usmeravanje poruka sa više skokova.
- ZigBee Krajnji uređaj (ZED): Opciona mrežna komponenta, ne dozvoljava pridruživanje, ne učestvuje u usmeravanju.

Osnove karakteristike mreže

65,536 mrežnih (klijent) čvorova

• 27 kanala nad 2 opsega (bands)

Brzina prenosa podataka 250Kbps

 Optimizovana za vremenski kritične aplikacije i rukovanje napajanjem

 Puna podrška potpunom umrežavanju

ZigBee tipovi uređaja

- ZigBee Koordinator (ZC)
 - -Potreban jedan za svaku ZB mrežu
 - -Inicira formiranje mreže
- ZigBee Usmerivač (ZR)
 - –Učestvuje u usmeravanju poruka u više skokova
- ZigBee Krajnji uređaj (ZED)
 - -Ne dozvoljava pridruživanje ili usmeravanje
 - -Omogućava vrlo jeftina rešenja

Neki aplikativni profili

- Automatizacija kuće [HA]
 - Definiše skup uređaja korišćenih u automatizaciji kuće
 - Prekidači za svetlo
 - Termostati
 - Osenčavanje prozora
 - Jedinica za grejanje
 - itd.

- Nadzor indust. postrojenja
 - Sadrži def. uređaja za senzore korišćene u indust. kontroli
 - Temperatura
 - Senzori pritiska
 - Infrared
 - itd.

Šta je Z-SIM?

ZigBee čvor potpuno integrisan u SIM karticu (Antena + RF + Obrada)

korisnički orijentisan pristup

SIM ima svu korisničku info u smislu profila, personalizacije usluge, kredita SIM je ključni element zaštite, poverljivo okruženje (korisnička autentifikacija, zaštita sadržaja)

Kapija (Gateway) u SIM garantuje stalnu vezu između Centra usluge i ad-hok mreže za pribavljanje info i rekonfiguraciju

SIM je upotrebljiv u svim mobilnim terminalima

 Nezavistnost mobilnih terminala (nisu potrebne izmene u mobilnom terminalu, kao za BT, NFC)

Z-SIM je nezavistan od nivoa terminala

Nije invazivna tehnologija: transparentna za korisnika

Omogućava niz inovativnih usluga

- Interakcija sa objektima (Internet of Things)
- M-trgovina: plaćanja i ulaznice
- Ubrzava konvergenciju fiksnih i mobilnih

Princip rada GPS

FIGURE 9.20

The Ground GPS Receiver, Which Calculates Its 3D Location from Four or More Satellites with Help from a Few Ground Reference Stations and a Master Station.

Triangulation method to calculate delayed location signals from 4 satellites.

Primer:

Servisno orijentisana arhitektura za Geografske informacione sisteme koji podržavaju Gridove za prenos pod u realnom vremenu Galip Aydin Departman za računarske nauke, Indiana University

- Geografski informacioni sistem je sistem za stvaranje, skladištenje, deljenje, analizu, manipulisanje i prikazivanje prostornih podataka i njima pridruženih atributa
- Moderan GIS zahteva:
 - Distribuiran pristup podacima u prostornoj bazi podataka
 - Korišćenje alata za udaljenu analizu, simulaciju, ili vizualizaciju

Zahtevi za GIS / Grid senzora

- Zahtevi sposobnosti orkestracije usluga
 - Složeni problemi zahtevaju saradnju GIS aplikacija
- Povezivanje izvora podataka sa naučnim aplikacijama
- Zahtevi transporta podataka
- Proliferacija senzora
 - Sposobnost analize podataka u letu, podrška za kontinualne tokove, skalabilni sistemi za dodavanje novih senzora
- Visoka performansa i slanje poruka visokom učestanošću
 - Pristup pod u realnom vremenu, brz odziv sistema, rukovanje kriznim situacijama, itd.
- Iz perspektive Grida motivacija je:
 - Primeniti opšte principe Grida / Distribuiranog računanja na GIS
 - Istražiti kako ga integrisati sa geofizičkim i drugim naučnim aplikacijama sa izvorima podataka

PBO i CRTN GPS stanice

PBO (Plate Boundary Observatory) GPS stanice u severnoj Americi

CRTN (California Real-Time GPS Network).

Aspekti istraživanja (1/2)

Primena principa web usluga na usluge GIS podataka

 Orkestracija usluga unutar radnog procesa; potrebne su usluge pogodne za velike skupove podataka i brz odgovor

Visoka performansa GIS usluga

 Problem performanse mora biti rešavan unutra potpunog i opšteg okruženja koje podržava različite zahteve za podacima

Interoperabilnost

- Sistem treba da povezuje zajednice GIS i Web usluga adaptiranjem standarda iz obe zajednice
- Druge GIS aplikacije bi trebale da mogu da koriste podatke bez skupih konverzija formata podataka

Aspekti istraživanja (2/2)

Skalabilnost

- Sistem bi trebao da može da rukuje velikim volumenom i velikim brzinama prenosa i obrade podataka
- Uticanje novih senzora, izvora podataka ili geo aplikacija ne bi trebalo da degradira ukupnu performansu sistema

Fleksibilnost i proširivost

- Usluge u realnom vremenu za obradu podataka iz senzora već u toku njihovog prenosa (eng. "on the fly", srp. "u letu")
- Mogućnost dodavanja novih filtara bez sistemskih otkaza

Pitanja kvaliteta posluživanja (QoS)

 Da li je kašnjenje koje unosi usluga prilikom obrade podataka sa senzora u realnom vremenu prihvatljivo?

SOA za GIS – Grid geofizičkih podataka

- Radi pravljenja arhitekture Grida GIS podataka (Geofizički Grid) koriste se:
 - Web usluge radi realizacije SOA (Service Oriented Architecture)
 - OGC formati podataka i aplikacione sprege radi ostvarenja interoperabilnosti na nivoima podataka i usluge
- Osobine geofizičkog grida:
 - Zavisno od izvora, geoprostorni podaci mogu biti arhivski ili iz realnog vremena
 - Podržava alternativne šeme transporta i predstavljanja
 - Koristi infrastrukturu zasnovanu na temama za razmenu podataka i poruka
 - Usluge sa tokovima i bez tokova za pristup arhiviranim podacima
 - Usluge filtriranja u realnom vremenu i blisko realnom vrmenu za pristup meta podacima o senzorima i odbircima očitanim sa senzora

Arhitektura Grida senzora

- Glavne komponenet:
 - Filteri u realnom vremenu
 - Sistem objava-pretplate (Publish-Subscribe)
 - Usluga davanja informacija
- Filteri se mogu izvršavati kao Web usluge radi formiranja radnog procesa.
- Mogu se rasporediti lanci filtera za izvođenje složenih obrada
- Tok poruka obezbeđuje opcije prenosa visoke performanse

Slučaj korišćenja - GPS senzori

- GPS se koristi za identifikovanje dugoročnih tektonskih deformacija i statičkih premeštanja
 - GPS mreža SCIGN ima 250 GPS stanica u realnom vremenu
- GPS mreža SOPAC:
 - 8 mreža za 80 stanica koje proizvode visoku rezoluciju podataka od 1Hz
 - Filtri obezbeđuju pristup toku u realnom vremenu
- Arhitektura
 - Koristi objave-pretplate zasnovane na NaradaBrokering za rukovanje GPS tokovima u realnom vrmenu
 - Koristi teme za hijerarhijsku organizaciju senzora
 - Raspored uzastopnih filtera podataka u rasponu od prevodilaca formata do programa za analizu podataka
 - Moguće je izvršenje RDAHMM klonova radi nadzora promena stanja u celoj GPS mreži

Integracija aplikacije sa filtrima u realnom vremenu

SOPAC Real Time GPS Networks

Click on a station symbol for more information.

Filtar nadzora stanice
zapisuje pozicije u
realnom vremenu u
toku 10 min i računa
promene pozicija
Crtač grafika
Aplikacija koja pravi
vizuelne predstave

More information about California Real Time Network (CRTN) is available at SOPAC Web Page

Sajber-fizički sistemi (CPS)

Figure 9.29 Three major components working together interactively and intelligently in a cyber-physical system (CPS)

IoT aplikacije u telemedicini:

Podaci o pacijentu se prenose putem WSN

(Courtesy of Inftech, 2007)

SaaS (Sensors as a Service)

(Courtesy of Geoffrey Fox, 2012)

Pozadina

Mreža senzora u polju

- Mali i jeftini senzori
- Platforma bežičnog polja
- Mobilni Internet

Podaci polja u realnom-vremenu

Životna sredina, katastrofa, poljoprivreda

Velika ulaganja za razvoj sistema

- Komunikcija
- Arhiviranje
- Objavljivanje

Osobine i korist

- Usluge oblaka (bez postavljanja servera)
- Senzori tipa utakni i koristi (Plug & Play)
- Neposredna vizuelizacija
- Neposredno objavljivanje na webu
- API za razvoj aplikacije je standardan i prirodan
- Smanjena cena i vreme razvoja
 - Veza senzora
 - Postavljanje usluge i održavanje
 - Razvoj aplikacije

SSG, GIS i sprega vizuelizacije

- SSG obezbeđuje razumljivu spregu vizuelizacije GIS-a
- Lokacije udaljenog čvora na web mapama
- Vizuelizacija pod. iz raznih vrsta senzora i vremenskih stanica na lako razumljivim graficima i biračima

Senzori tipa utakni i koristi (Plug and Play) Lako se dodaje novi senzor u SOS stanici

- Izaberi model senzora i edituj
- Konfiguriši postavke senzora, čak udaljeno
- Sistem automatski počinje arhiviranje, menjajući spregu
- Nije potrebno programiranje -> Smanjuje se trošak (cena)