We're updating the default styles for Matplotlib 2.0

Learn what to expect in the new updates

home | examples | gallery | pyplot | docs » User's Guide »

previous | next | modules | index

Beginner's Guide »

Pyplot tutorial

matplotlib.pyplot is a collection of command style functions that make matplotlib work like MATLAB. Each pyplot function makes some change to a figure: e.g., creates a figure, creates a plotting area in a figure, plots some lines in a plotting area, decorates the plot with labels, etc. In matplotlib.pyplot various states are preserved across function calls, so that it keeps track of things like the current figure and plotting area, and the plotting functions are directed to the current axes (please note that "axes" here and in most places in the documentation refers to the axes part of a figure and not the strict mathematical term for more than one axis).

```
import matplotlib.pyplot as plt
plt.plot([1,2,3,4])
plt.ylabel('some numbers')
plt.show()
```

(Source code, png, hires.png, pdf)

You may be wondering why the x-axis ranges from 0-3 and the y-axis from 1-4. If you provide a single list or array to the plot() command, matplotlib assumes it is a sequence of y values, and automatically generates the x values for you. Since python ranges start with 0, the default x vector has the same length as y but starts with 0. Hence the x data are [0,1,2,3].

plot() is a versatile command, and will take an arbitrary number of arguments. For example, to plot x versus y, you can issue the command:

```
plt.plot([1, 2, 3, 4], [1, 4, 9, 16])
```

For every x, y pair of arguments, there is an optional third argument which is the format string that indicates the color and line type of the plot. The letters and

Depsy 100th percentile

Travis-CI: build passing

Table Of Contents

Pyplot tutorial

- Controlling line properties
- Working with multiple figures and axes
- Working with text
 - Using mathematical expressions in text
- Annotating text
- Logarithmic and other nonlinear axis

Related Topics

Documentation overview

- User's Guide
 - Beginner's Guide
 - Previous: Beginner's Guide
 - Next: Customizing plots with style sheets

This Page

Show Source

Quick search

Go

symbols of the format string are from MATLAB, and you concatenate a color string with a line style string. The default format string is 'b-', which is a solid blue line. For example, to plot the above with red circles, you would issue

```
import matplotlib.pyplot as plt
plt.plot([1,2,3,4], [1,4,9,16], 'ro')
plt.axis([0, 6, 0, 20])
plt.show()
```

(Source code, png, hires.png, pdf)

See the plot() documentation for a complete list of line styles and format strings. The axis() command in the example above takes a list of [xmin, xmax, ymin, ymax] and specifies the viewport of the axes.

If matplotlib were limited to working with lists, it would be fairly useless for numeric processing. Generally, you will use numpy arrays. In fact, all sequences are converted to numpy arrays internally. The example below illustrates a plotting several lines with different format styles in one command using arrays.

```
import numpy as np
import matplotlib.pyplot as plt

# evenly sampled time at 200ms intervals
t = np.arange(0., 5., 0.2)

# red dashes, blue squares and green triangles
plt.plot(t, t, 'r--', t, t**2, 'bs', t, t**3, 'g^')
plt.show()
```

(Source code, png, hires.png, pdf)

Controlling line properties

Lines have many attributes that you can set: linewidth, dash style, antialiased, etc; see matplotlib.lines.Line2D. There are several ways to set line properties

• Use keyword args:

```
plt.plot(x, y, linewidth=2.0)
```

• Use the setter methods of a Line2D instance. plot returns a list of Line2D objects; e.g., line1, line2 = plot(x1, y1, x2, y2). In the code below we will suppose that we have only one line so that the list returned is of length 1. We use tuple unpacking with line, to get the first element of that list:

```
line, = plt.plot(x, y, '-')
line.set_antialiased(False) # turn off antialising
```

 Use the setp() command. The example below uses a MATLAB-style command to set multiple properties on a list of lines. setp works transparently with a list of objects or a single object. You can either use python keyword arguments or MATLAB-style string/value pairs:

```
lines = plt.plot(x1, y1, x2, y2)
# use keyword args
plt.setp(lines, color='r', linewidth=2.0)
# or MATLAB style string value pairs
plt.setp(lines, 'color', 'r', 'linewidth', 2.0)
```

Here are the available Line2D properties.

Property	Value Type
alpha	float
animated	[True False]
antialiased or aa	[True False]
clip_box	a matplotlib.transform.Bbox instance
clip_on	[True False]
clip_path	a Path instance and a Transform instance, a Patch
color or c	any matplotlib color
contains	the hit testing function
dash_capstyle	['butt' 'round' 'projecting']
dash_joinstyle	['miter' 'round' 'bevel']
	·

Property	Value Type
dashes	sequence of on/off ink in points
data	(np.array xdata, np.array ydata)
figure	a matplotlib.figure.Figure instance
label	any string
linestyle or ls	['-' '' '' ':' 'steps']
linewidth or lw	float value in points
lod	[True False]
marker	['+' ',' '.' '1' '2' '3' '4']
markeredgecolor or mec	any matplotlib color
markeredgewidth or mew	float value in points
markerfacecolor or mfc	any matplotlib color
markersize or ms	float
markevery	[None integer (startind, stride)]
picker	used in interactive line selection
pickradius	the line pick selection radius
solid_capstyle	['butt' 'round' 'projecting']
solid_joinstyle	['miter' 'round' 'bevel']
transform	a matplotlib.transforms.Transform instance
visible	[True False]
xdata	np.array
ydata	np.array
zorder	any number

To get a list of settable line properties, call the setp() function with a line or lines as argument

```
In [69]: lines = plt.plot([1, 2, 3])
In [70]: plt.setp(lines)
  alpha: float
  animated: [True | False]
  antialiased or aa: [True | False]
  ...snip
```

Working with multiple figures and axes

MATLAB, and <code>pyplot</code>, have the concept of the current figure and the current axes. All plotting commands apply to the current axes. The function <code>gca()</code> returns the current axes (a <code>matplotlib.axes.Axes</code> instance), and <code>gcf()</code> returns the current figure (<code>matplotlib.figure.Figure</code> instance). Normally, you don't have to worry about this, because it is all taken care of behind the scenes. Below is a script to create two subplots.

```
import numpy as np
import matplotlib.pyplot as plt

def f(t):
    return np.exp(-t) * np.cos(2*np.pi*t)

t1 = np.arange(0.0, 5.0, 0.1)
t2 = np.arange(0.0, 5.0, 0.02)

plt.figure(1)
```

```
plt.subplot(211)
plt.plot(t1, f(t1), 'bo', t2, f(t2), 'k')

plt.subplot(212)
plt.plot(t2, np.cos(2*np.pi*t2), 'r--')
plt.show()
```

(Source code, png, hires.png, pdf)

The figure() command here is optional because figure(1) will be created by default, just as a subplot(111) will be created by default if you don't manually specify any axes. The subplot() command specifies numrows, numcols, fignum where fignum ranges from 1 to numrows*numcols. The commas in the subplot command are optional if numrows*numcols<10. So subplot(211) is identical to subplot(2, 1, 1). You can create an arbitrary number of subplots and axes. If you want to place an axes manually, i.e., not on a rectangular grid, use the axes() command, which allows you to specify the location as axes([left, bottom, width, height]) where all values are in fractional (0 to 1) coordinates. See pylab_examples example code: axes_demo.py for an example of placing axes manually and pylab_examples example code: subplots_demo.py for an example with lots of subplots.

You can create multiple figures by using multiple figure() calls with an increasing figure number. Of course, each figure can contain as many axes and subplots as your heart desires:

```
import matplotlib.pyplot as plt
plt.figure(1)
                            # the first figure
plt.subplot(211)
                             # the first subplot in the first figure
plt.plot([1, 2, 3])
plt.subplot(212)
                            # the second subplot in the first figure
plt.plot([4, 5, 6])
plt.figure(2)
                             # a second figure
plt.plot([4, 5, 6])
                             # creates a subplot(111) by default
                            # figure 1 current; subplot(212) still current
plt.figure(1)
plt.subplot(211)
                            # make subplot(211) in figure1 current
plt.title('Easy as 1, 2, 3') # subplot 211 title
```

You can clear the current figure with clf() and the current axes with cla(). If you find it annoying that states (specifically the current image, figure and axes) are being maintained for you behind the scenes, don't despair: this is just a thin stateful wrapper around an object oriented API, which you can use instead (see Artist tutorial)

If you are making lots of figures, you need to be aware of one more thing: the

memory required for a figure is not completely released until the figure is explicitly closed with close(). Deleting all references to the figure, and/or using the window manager to kill the window in which the figure appears on the screen, is not enough, because pyplot maintains internal references until close() is called.

Working with text

The text() command can be used to add text in an arbitrary location, and the xlabel(), ylabel() and title() are used to add text in the indicated locations (see Text introduction for a more detailed example)

```
import numpy as np
import matplotlib.pyplot as plt

mu, sigma = 100, 15
x = mu + sigma * np.random.randn(10000)

# the histogram of the data
n, bins, patches = plt.hist(x, 50, normed=1, facecolor='g', alpha=0.75)

plt.xlabel('Smarts')
plt.ylabel('Probability')
plt.title('Histogram of IQ')
plt.text(60, .025, r'$\mu=100,\\sigma=15$')
plt.axis([40, 160, 0, 0.03])
plt.grid(True)
plt.show()
```

(Source code, png, hires.png, pdf)

All of the text() commands return an matplotlib.text.Text instance. Just as with with lines above, you can customize the properties by passing keyword arguments into the text functions or using setp():

```
t = plt.xlabel('my data', fontsize=14, color='red')
```

These properties are covered in more detail in Text properties and layout.

Using mathematical expressions in text

matplotlib accepts TeX equation expressions in any text expression. For example to write the expression $\sigma_i=15$ in the title, you can write a TeX expression surrounded by dollar signs:

```
plt.title(r'$\sigma_i=15$')
```

The r preceding the title string is important – it signifies that the string is a raw

string and not to treat backslashes as python escapes. matplotlib has a built-in TeX expression parser and layout engine, and ships its own math fonts – for details see Writing mathematical expressions. Thus you can use mathematical text across platforms without requiring a TeX installation. For those who have LaTeX and dvipng installed, you can also use LaTeX to format your text and incorporate the output directly into your display figures or saved postscript – see Text rendering With LaTeX.

Annotating text

The uses of the basic text() command above place text at an arbitrary position on the Axes. A common use for text is to annotate some feature of the plot, and the annotate() method provides helper functionality to make annotations easy. In an annotation, there are two points to consider: the location being annotated represented by the argument xy and the location of the text xytext. Both of these arguments are (x,y) tuples.

(Source code, png, hires.png, pdf)

In this basic example, both the xy (arrow tip) and xytext locations (text location) are in data coordinates. There are a variety of other coordinate systems one can choose – see Annotating text and Annotating Axes for details. More examples can be found in pylab_examples example code: annotation_demo.py.

Logarithmic and other nonlinear axis

matplotlib.pyplot supports not only linear axis scales, but also logarithmic and logit scales. This is commonly used if data spans many orders of magnitude. Changing the scale of an axis is easy:

```
plt.xscale('log')
```

An example of four plots with the same data and different scales for the y axis is shown below.

```
import numpy as np
  import matplotlib.pyplot as plt
  # make up some data in the interval ]0, 1[
  y = np.random.normal(loc=0.5, scale=0.4, size=1000)
  y = y[(y > 0) & (y < 1)]
  y.sort()
  x = np.arange(len(y))
  # plot with various axes scales
  plt.figure(1)
  # linear
  plt.subplot(221)
  plt.plot(x, y)
  plt.yscale('linear')
  plt.title('linear')
  plt.grid(True)
  # log
  plt.subplot(222)
 plt.plot(x, y)
plt.yscale('log')
  plt.title('log')
  plt.grid(True)
  # symmetric log
  plt.subplot(223)
 plt.plot(x, y - y.mean())
plt.yscale('symlog', linthreshy=0.05)
  plt.title('symlog')
  plt.grid(True)
  # logit
  plt.subplot(224)
  plt.plot(x, y)
  plt.yscale('logit')
  plt.title('logit')
  plt.grid(True)
  plt.show()
(Source code, png, hires.png, pdf)
                 linear
                                               log
                                 10<sup>0</sup>
    1.0
    0.8
                                 10
    0.6
                                 10<sup>-2</sup>
    0.2
        010203040505050000800
    10<sup>0</sup>
   10<sup>-1</sup>
   10 g
   -10
   -10<sup>6</sup>
       0102030405060070800 0102030405060000800
It is also possible to add your own scale, see Adding new scales and
projections to matplotlib for details.
  © Copyright 2002 - 2012 John Hunter, Darren Dale, Eric Firing, Michael Droettboom and the matplotlib development team; 2012 - 2014 The matplotlib
                                                      development team. Last updated on Sep 20, 2016. Created using Sphinx 1.4.6.
```