Анализ временных рядов и прогнозирование

Динамические регрессионные модели

Анализ временных рядов и прогнозирование

Определение

- Временной ряд (ВР) это последовательность значений, описывающих протекающий во времени процесс, измеренных в последовательные моменты времени, обычно через равные промежутки.
- Данные типа временных рядов широко распространены в самых разных областях человеческой деятельности. В экономике это ежедневные цены на акции, курсы валют, еженедельные и месячные объемы продаж, годовые объемы производства и т.п.

Графики временных рядов

- на 1-ом графике виден явный линейный тренд,
- на 2-ом случайные колебания с кластерами волатильности
- на 3-ем сложный цикл

В рамках нашего курса мы рассмотрим:

- методы подбора математической модели для описания ВР;
- методы выявления периодической и других составляющих ВР;
- прогнозирование поведения ВР;
- способы изучения взаимозависимостей ВР

При анализе BP принято выделять 4 компоненты

- тренд (Т)
- циклическая компонента (С)
- сезонная компонента (S)
- случайная компонента (e) остается после полного вычленения закономерных компонент.

Тренд

 тренд (Т) – плавно изменяющаяся компонента, описывающая чистое влияние долговременных факторов (рост население, изменение структуры возрастного состава и т.д.)

Циклическая компонента

- циклическая компонента (С) плавно изменяющаяся компонента, описывающая длительные периоды относительного подъема и спада,
- состоит из циклов, меняющихся по амплитуде и протяженности
- в экономике бывает связана со взаимодействием спроса и предложения, ростом и истощением ресурсов, изменением в финансовой и налоговой политике и т.п.

Сезонная компонента

- сезонная компонента (S) состоит из последовательности почти повторяющихся циклов
- объем продаж накануне Нового Года, объем перевозок пассажиров городским транспортом

Случайная компонента

- случайная компонента (e) остается после полного вычленения закономерных компонент
- иногда содержит часть, поддающуюся моделированию и прогнозированию

ВР представляется

• либо суммой этих компонент

в аддитивной модели,

• либо произведением

в мультипликативной модели.

Второй вариант более распространен в экономических приложениях и сводится к первому логарифмированием

Трендовая составляющая выделяется методом наименьших квадратов

Наиболее распространены следующие модели трендов:

- линейная $T_{t} = \beta_{0} + \beta_{1}t$
- ullet полиномиальная $T_t = eta_0 + eta_1 t + eta_2 t^2 + ... + eta_k t^k$
- экспоненциальная $T_t = \exp(\beta_0 + \beta_1 t)$ Представление о характере тренда можно получить из графика ВР

Учет сезонности

- В аддитивной модели учесть сезонность можно с помощью фиктивных переменных
- Например, уравнение для учета тренда и квартальной сезонности может быть таким:

$$Y_{t} = \beta_{0} + \beta_{1}t + \alpha_{1}D_{1t} + \alpha_{2}D_{2t} + \alpha_{3}D_{3t} + \varepsilon_{t}$$

Построение прогноза для ВР

- Прогнозирование в бизнесе играет очень большую роль, поскольку является рациональной основой для принятия решений.
- Например, предсказание ежемесячных объемов продаж товара – это основа политики контролирования запасов, предсказание будущих доходов корпорации – основа для принятия решений в инвестиционной политике.
- Задача прогнозирования состоит в том, чтобы по имеющимся наблюдениям ВР предсказать его неизвестные будущие значения

Подход Бокса-Дженкинса ARIMA

Методы ARIMA предназначены для моделирования и прогнозирования

- либо стационарных ВР,
- либо BP, которые могут быть преобразованы к стационарным

Понятие стационарности ВР

- Например, если ВР У содержит линейный тренд и квартальную сезонность,
- то остатки регрессионной модели

$$Y_{t}=eta_{0}+eta_{1}t+lpha_{1}D_{1t}+lpha_{2}D_{2t}+lpha_{3}D_{3t}+arepsilon_{t}$$
 будут стационарным ВР

Понятие стационарности ВР

- Ряд является стационарным, если он совершает колебания вокруг своего математического ожидания, которое является константой.
- Амплитуда колебаний при этом примерно постоянна.
- Сами значения ряда не являются, как правило, независимыми, но корреляция между членами ряда \mathcal{E}_t и \mathcal{E}_{t-s} зависит только от расстояния \mathbf{S} между ними.

Понятие строгой стационарности

• Ряд \mathcal{E}_t называется строго стационарным или стационарным в узком смысле, если совместное распределение

$$F(\varepsilon_1, \varepsilon_2, ..., \varepsilon_T)$$

не зависит от сдвига по времени,

т.е. совпадает с распределением

$$F(arepsilon_{1+s}, arepsilon_{2+s}, ..., arepsilon_{T+s})$$

для любых T и s

Понятие слабой стационарности

• Ряд \mathcal{E}_t называется слабо стационарным или стационарным в широком смысле, если

$$E(\varepsilon_{t}) = \mu = const$$

$$V(\varepsilon_{t}) = \sigma^{2} = const$$

$$cov(\varepsilon_{t}, \varepsilon_{t-s}) = \rho(s)$$

- Если нарушается хотя бы одно из этих условий, то ряд называется нестационарным
- Строгая стационарность подразумевает слабую стационарность

TS ряды

- Временной ряд Y_t называется стационарным относительно детерминированного тренда f(t), если ряд $Y_t f(t)$ стационарный.
- Тогда говорят, что этот ряд является TS рядом (TS –trend stationary).

Подход Бокса-Дженкинса ARIMA

- Предположение о том, что существует связь между соседними значениями ВР и составляет основу методов ARIMA
- Именно эта гипотеза позволяет предсказать значения \mathcal{E}_{t+1} , \mathcal{E}_{t+2} , ... на основании известных значений $\mathcal{E}_1, \mathcal{E}_2, ..., \mathcal{E}_t$
- затем по регрессионной модели $Y_{t} = \beta_{0} + \beta_{1}t + \alpha_{1}D_{1t} + \alpha_{2}D_{2t} + \alpha_{3}D_{3t} + \varepsilon_{t}$
- ullet строятся будущие значения $Y_{t+1}, Y_{t+2}, ...$

ARIMA(p,d,q), подбор параметра d

- Ряд \mathcal{E}_t считается реализацией случайного процесса ARIMA(p,d,q), и в зависимости от типа этого процесса строится прогноз.
- Параметр d называется порядком интегрированности ряда
- Если исходный ряд стационарен, то d=0
- Тогда $\varepsilon_t \sim ARIMA(p,0,q) = ARMA(p,q)$
- На следующем шаге подбираются параметры р и q для процессов AR и MA.

ARIMA(p,d,q), подбор параметра d

- Если исходный ряд не является стационарным, то иногда его можно преобразовать к стационарному виду
- Тогда возможны 2 случая:
 - ряд стационарен в первых разностях

$$\Delta \mathcal{E}_t = \mathcal{E}_t - \mathcal{E}_{t-1} \sim ARMA(p,q)$$
 тогда d=1 и $\mathcal{E}_t \sim ARIMA(p,1,q)$

• ряд стационарен во вторых разностях

$$\Delta^2 \mathcal{E}_t = \Delta \mathcal{E}_t - \Delta \mathcal{E}_{t-1} = \mathcal{E}_t - 2\mathcal{E}_{t-1} + \mathcal{E}_{t-2} \sim ARMA(p,q)$$
 тогда d= 2 и $\mathcal{E}_t \sim ARIMA(p,2,q)$

ARIMA(p,d,q), подбор параметра d

- Ряд $\mathcal{E}_t \sim ARIMA(p,1,q)$ называется интегрированным 1-го порядка I(1)
- Ряд $\mathcal{E}_t \sim ARIMA(p,2,q)$ называется интегрированным 2-го порядка I(2)
- Ряды класса TS не относят к интегрированным
- $\mathcal{E}_t \sim I(0)$ соответствует стационарному ряду, который не является результатом дифференцирования TS ряда

Прогноз процесса AR(p)

Если
$$\mathcal{E}_t$$
 ~AR(p), то
$$\mathcal{E}_t = a_0 + a_1 \mathcal{E}_{t-1} + ... + a_p \mathcal{E}_{t-p} + u_t$$
 $u_t \sim N(0, \sigma^2)$

Тогда прогнозное значение

$$\widehat{\varepsilon}_{t+1} = \widehat{a}_0 + \widehat{a}_1 \varepsilon_t + \dots + \widehat{a}_p \varepsilon_{t-p+1}$$

Прогноз процесса МА(q)

Если ε_t ~MA(q), то

$$\varepsilon_t = a_0 + b_1 u_{t-1} + \dots + b_q u_{t-q} + u_t$$
$$u_t \sim N(0, \sigma^2)$$

и прогноз

$$\widehat{\varepsilon}_{t+1} = \widehat{a}_0 + \widehat{b}_1 u_t + \dots + \widehat{b}_q u_{t-q+1}$$

Прогноз процесса ARMA(1,1)

• Если ε_t ~ARMA(1,1), то

$$\begin{split} \varepsilon_t &= a_0 + a_1 \varepsilon_{t-1} + b_1 u_{t-1} + u_t \\ u_t &\sim N \Big(0, \sigma^2 \Big) \end{split}$$

• и прогнозное значение

$$\widehat{\varepsilon}_{t+1} = \widehat{a}_0 + \widehat{a}_1 \varepsilon_t + \widehat{b}_1 u_t$$

Алгоритм подбора модели ВР

- 1. Тестирование на стационарность (тест Unit Root). Если результат положительный, то пункт 3.
- 2. Приведение к стационарному виду взятием 1-ой или 2-ой разности и снова пункт 1.
- 3. Идентификация параметров р и q процесса ARMA(p,q) по коррелограммам AC и PAC.
- 4. Оценивание параметров методом максимального правдоподобия и выбор наилучшей модели (критерии Акаике, Шварца).
- 5. Диагностическая проверка (анализ коррелограмм АС и РАС).

Тестирование стационарности

Тестирование стационарности ВР (тест Дики-Фуллера)

• Для одной из моделей (какой именно, можно выбрать, используя опции)

$$\mathcal{E}_{t} = \rho \, \mathcal{E}_{t-1} + u_{1t}$$

$$\mathcal{E}_{t} = \alpha + \rho \, \mathcal{E}_{t-1} + u_{2t}$$

$$\mathcal{E}_{t} = \alpha + \rho \mathcal{E}_{t-1} + ct + u_{3t}$$

- Оценивается уравнение $\Delta \mathcal{E}_{t} = \gamma \, \mathcal{E}_{t-1} + u_{t}, \quad \gamma = \rho 1$
- Проверяется гипотеза H_0 : $\gamma = 0$
- Если она не отвергается, это говорит о наличии единичного корня $\rho = 1$, т.е. о нестационарности ВР
- ullet В этом случае $egin{aligned} \mathcal{E}_t = \mathcal{E}_{t-1} + u_t \end{aligned}$ и $\widehat{\mathcal{E}}_{t+1} = \mathcal{E}_t$

Тестирование стационарности ВР (тест Дики-Фуллера с константой и трендом)

```
dfuller je, trend regress lags(0)
                          Number of obs = 139
Dickey-Fuller test for unit root
                ----- Interpolated Dickey-Fuller -----
      Test 1% Critical 5% Critical 10% Critical
   Statistic Value Value
                                             Value
Z(t) -1.040 -4.027 -3.445
MacKinnon approximate p-value for Z(t) = 0.9384
D.je | Coef. Std. Err. t P>|t| [95% Conf. Interval]
   je l
  L1. | -.0053434 .0051367 -1.04 0.300 -.0155015 .0048147
trend | .0001407 .000036 3.90 0.000 .0000694 .000212
 cons | -.0011287 .0011835 -0.95 0.342 -.003469 .0012117
```

• Тестовая статистика z(t)= - 1.04, это значение не попадает в критическую область при любом разумном уровне значимости, гипотеза о наличии единичного корня не отвергается, исследуемый ряд нестационарен

Тестирование стационарности ВР (тест Дики-Фуллера)

- Статистика теста (DF-статистика) это обычная t-статистика для проверки значимости коэффициентов линейной регрессии. Однако, распределение данной статистики отличается от классического распределения.
- Распределение DF-статистики выражается через винеровский процесс и называется распределением Дики Фуллера.

Тест Дики-Фуллера

- Для каждой из трёх тестовых регрессий существуют свои критические значения DF-статистики, которые берутся из специальной таблицы Дики — Фуллера (МакКиннона).
- Если значение статистики лежит левее критического значения (критические значения — отрицательные) при данном уровне значимости, то нулевая гипотеза о единичном корне отклоняется и процесс признается стационарным (в смысле данного теста). В противном случае гипотеза не отвергается и процесс может содержать единичные корни, то есть быть нестационарным (интегрированным) временным рядом. Эконометрика 2018 Ратникова Т.А.

Критические значения статистики Дики — Фуллера при 1%-ном уровне значимости. Для сравнения: критическое значение распределения Стьюдента для всех моделей на больших объёмах выборки — 2,33, на малых выборках — 2,5. МакКинноном выведены приблизительные формулы для оценки критических значений.

Размер выборки	AR-модель	AR-модель с константой	AR-модель с константой и трендом
25	-2,66	-3,75	-4,38
50	-2,62	-3,58	-4 , 15
100	-2,60	-3 , 51	-4,04
∞	-2,58	-3,43	-3,96

Теоретически обоснованным является тестирование в первую очередь вторых разностей ряда. Если гипотеза единичного корня для этого ряда отвергается, то тогда тестируется единичный корень в первых разностях. Если на этом этапе гипотеза не отвергается, то исходный ряд имеет два единичных корня. Если отвергается, то проверяется единичный корень в самом временном ряде.

Проблемы теста DF

- Низкая мощность: часто не отвергается исходная (нулевая) гипотеза, когда она в действительности не выполняется
- Невыполнение теоретических предпосылок для вспомогательных моделей в тестах: смещена статистика теста.
- Может даже отвергаться нулевая гипотеза, когда в действительности она верна
- Рассмотренный DF тест рекомендовано использовать при условии гомоскедастичности и некоррелированности случайных отклонений тестируемой модели

Альтернативные тесты

• Расширенный тест DF- ADF для учета автокорреляции

$$\Delta \varepsilon_{t} = \gamma \varepsilon_{t-1} + \sum_{k=1}^{K} \alpha_{k} \Delta \varepsilon_{t-k} + u_{1t}$$

$$\Delta \varepsilon_{t} = \alpha + \gamma \varepsilon_{t-1} + \sum_{k=1}^{K} \alpha_{k} \Delta \varepsilon_{t-k} + u_{2t}$$

$$\Delta \varepsilon_{t} = \alpha + \gamma \varepsilon_{t-1} + ct + \sum_{k=1}^{K} \alpha_{k} \Delta \varepsilon_{t-k} + u_{3t}$$

• самое простое правило подбора К - включать 2 лага при объеме выборки меньше 81 наблюдения, 3 лага при объеме выборки от 81 до 256 наблюдений и т.д. [Канторович]

Альтернативные тесты

- PP-тест (тест Филлипса-Перрона):
 Используется при нарушении гипотезы о некоррелированности, гомоскедастичности и нормальности отклонений в тестируемой модели.
- PP-тест рекомендуется также к использованию в случаях наличия ярко выраженной сезонности и структурных сдвигов (скачков).

Подбор параметров модели ARMA

Автокорреляционная функция

Пусть X – некоторый временной ряд,

тогда его теоретическая АКФ (АС) имеет вид:

$$\rho(\tau) = \frac{1}{Var(X_t)} E\{(X_t - \mu)(X_{t-\tau} - \mu)\}$$

Рис. 1. Значения автокорреляционной функции процесса AR(1) при значении коэффициента равном 0,8

Рис. 2. Значения автокорреляционной функции процесса AR(1) при значении коэффициента равном -0,8

Частная автокорреляционная функция

Частная АКФ (РАС) определяется из системы линейных уравнений Юла-Уокера, связывающей значения АКФ и частной АКФ

$$\begin{cases} \rho_1 = \varphi_{k1} \cdot 1 + \varphi_{k2} \rho_1 + \varphi_{k3} \rho_2 + ... + \varphi_{kk} \rho_{k-1} \\ \rho_2 = \varphi_{k1} \rho_1 + \varphi_{k2} \cdot 1 + \varphi_{k3} \rho_1 + ... + \varphi_{kk} \rho_{k-2} \\ \\ \rho_k = \varphi_{k1} \rho_{k-1} + \varphi_{k2} \rho_{k-2} + \varphi_{k3} \cdot \rho_{k-3} + ... + \varphi_{kk} \cdot 1. \end{cases}$$

Вид коррелограмм АС и РАС для р>о

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
1 2	1 1	1	0.539	0.539	116.40	0.000
1	1 1	2	0.319	0.041	157.37	0.000
1	1 1	3	0.190	0.004	171.91	0.000
1	11/1	4	0.092	-0.029	175.35	0.000
.11	1 1	5	0.014	-0.044	175.43	0.000
a∫ı	1	6	0.012	0.033	175.50	0.000
ula	181	7	-0.013	-0.026	175.56	0.000
11	1	8	0.025	0.059	175.81	0.000
ı E i	1 1/1	9	0.042	0.018	176.52	0.000
1 🖥	1 1	10	0.069	0.042	178.47	0.000
ıfı:	1 1	11	0.027	-0.051	178.78	0.000
ı İs	1 1	12	0.036	0.028	179.32	0.000

AR(1).
$$Y_t = 0.5Y_{t-1} + \varepsilon_t$$

Вид коррелограмм АС и РАС для р>о

Autocorrelation	Partial Correlation		AC.	PAC	Q-Stat	Prob
1	1	1	-0.500	-0.500	100.19	0.000
I DE	1	2	0.281	0.041	131.88	0.000
E l C] դի	3	-0.125	0.041	138.15	0.000
; a	1 1	4	0.104	0.063	142.49	0.000
. 1	ļ iķi	5	-0.106	-0.049	147.01	0.000
1	1 1	6	0.090	0.009	150.33	0.000
i	ı	7	-0.096	-0.043	154.11	0.000
⊦ j a	1 11	8	0.080	0.011	156.70	0.000
e l	10	9	-0.068	-0.010	158.57	0.000
ı İs	1 1	10	0.103	0.074	162.91	0.000
d i	ı ı lı	11	-0.081	0.009	165.60	0.000
1 9)	1 1	12	0.063	-0.002	167.23	0.000
AR(1)). $Y_t = -6$	3.0	$5Y_{t-}$.1 +	ε_t	

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
·	1 1	1	0.700	0.700	196.54	0.00
1 200	1	2	0.403	-0.171	261.80	0.00
H 100	10	3	0.203	-0.016	278.34	0.00
1 9	10	4	0.072	-0.037	280.46	0.00
ıfı .		5	-0.006	-0.023	280.47	0.00
uje -	i ju	6	-0.021	0.035	280.64	0.00
do	} i(i :	7	-0.022	-0.016	280.84	0.00
rlo-	1 4	8	0.017	0.071	280.95	0.00
r Mer	1 1/1	9	0.049	0.008	281.93	0.00
ı İb	100	10	0.071	0.025	283.99	0.00
- in	18 1	11	0.051	-0.043	285.05	0.00
dio	100	12	0.048	0.045	286.00	0.00

Эконометрика 2018 Ратникова Т.А.

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
COMMUNE :	-	1	-0.670	-0.670	179.75	0.000
		2	0.353	-0.173	229.82 238.48	0.000
75		3	-0.147 0.087	0.028	241.55	0.000
a i	16	5	-0.088	-0.032	244.67	0.000
1	1	6	0.090	0.009	247.99	0.000
4.	9!	7 8	-0.097 0.088	-0.042 0.007	251.78 254.96	0.000
7.	1 16	9	-0.086	-0.030	257.98	0.000
7	1	10	0.106	0.062	262.57	0.000
· •	1 19	11	-0.092	0.029	266.04	0.000
1)	i ili	12	0.071	0.010	268.12	0.000

AR(2).
$$Y_t = -0.8Y_{t-1} - 0.2Y_{t-2} + \varepsilon_t$$

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	-0.593	-0.593	140.88	0.000
1 🎏		2	0.124	-0.351	147.01	0.000
1 1	■ 1	3	0.004	-0.185	147.02	0.000
131	1 151	4	0.026	-0.034	147.29	0.000
4 1 .	4 :	5	-0.069	-0.068	149.21	0.000
	131	6	0.076	0.003	151.55	0.000
₹'	4	7	-0.074	-0.050	153.79	0.000
9	1 11	8	0.056	-0.014	155.06	0.000
11(1	¶'	9	-0.055	-0.058	156.32	0.000
'_	1 1	10	0.088	0.050	159.47	0.000
9.	10	11	-0.077	0.024	161.89	0.000
ı j ı	. 1	12	0.035	0.010	162.40	0.000
MA(2).	$Y_t = \varepsilon_t - 0$.9	€t-1	+ 0.	$2\varepsilon_{t-1}$	2.

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
Adiocomeration		1 2 3 4 5 6 7 8	0.449 0.389 0.320 0.246 0.162 0.161	0.449 0.234 0.108 0.025 -0.037 0.040 -0.021 0.053 0.019	80.885 141.60 182.89 207.30 217.92 228.44 232.54 238.50 242.73	0.000 0.000 0.000 0.000 0.000 0.000 0.000
		10 11 12	0.123 0.057 0.067	0.052 -0.053 0.002	248.91 250.23 252.10	0.000 0.000 0.000

ARMA(1,1).
$$Y_t = 0.8Y_{t-1} + \varepsilon_t - 0.5\varepsilon_{t-1}$$

Метод максимального правдоподобия ММП

Метод максимального правдоподобия для КЛРМ

 Рассмотрим, как этот метод работает для классической регрессионной модели

$$Y_i = X_i'\beta + \varepsilon_i \qquad \varepsilon \sim N(0, \sigma_\varepsilon^2 I)$$

• Функция плотности Y_i при данных X_i имеет вид:

$$f(Y_i \mid \beta, \sigma_{\varepsilon}^2) = \frac{1}{\sqrt{2\pi\sigma_{\varepsilon}^2}} \exp\left\{-\frac{1}{2} \frac{(Y_i - X_i'\beta)^2}{\sigma_{\varepsilon}^2}\right\}$$

Оценка ММП для классической линейной регрессии

 Соответствующая логарифмическая функция правдоподобия будет иметь вид:

$$\ln L(\beta, \sigma_{\varepsilon}^{2}) = \sum_{i=1}^{n} \ln L_{i}(\beta, \sigma_{\varepsilon}^{2}) = \sum_{i=1}^{n} \ln f(Y_{i} | \beta, \sigma_{\varepsilon}^{2}) =$$

$$= -\frac{n}{2} \ln(2\pi) - \frac{n}{2} \ln \sigma_{\varepsilon}^{2} - \frac{1}{2\sigma_{\varepsilon}^{2}} \sum_{i=1}^{n} (Y_{i} - X_{i}'\beta)^{2}$$

 Далее находятся оценки параметров, обеспечивающие максимум этой функции

Оценка ММП для классической линейной регрессии

• Условия первого порядка

$$\frac{\partial \ln L(\beta, \sigma_{\varepsilon}^{2})}{\partial \beta} = 0 \qquad \frac{\partial \ln L(\beta, \sigma_{\varepsilon}^{2})}{\partial \sigma_{\varepsilon}^{2}} = 0$$

• приводят к уравнениям

$$\frac{1}{\sigma_{\varepsilon}^{2}} \frac{\partial}{\partial \beta} \sum_{i=1}^{n} X_{i} (Y_{i} - X_{i}' \beta) = 0$$

$$-\frac{n}{2\sigma_{\varepsilon}^{2}} + \frac{1}{2\sigma_{\varepsilon}^{4}} \sum_{i=1}^{n} (Y_{i} - X_{i}'\beta)^{2} = 0$$

Оценка ММП моделей ARMA

Пусть y_t подчиняется процессу ARMA(1,1) Введем обозначения:

$$y_1^* = y_1, \quad y_2^* = y_2 + \theta_1 y_1, \quad \dots \quad y_t^* = y_t + \theta_1 y_{t-1} + \dots + \theta_1^{t-1} y_1$$

И будем оценивать модель вида

$$y_t^* = \delta^* + \phi_1 y_{t-1}^* + \varepsilon_t$$

 $\varepsilon_t \sim iidN(0, \sigma^2)$

Оценка ММП моделей ARMA

Логарифм функции правдоподобия для ARMA(1,1) будет иметь вид:

$$l(\delta, \phi_1, \theta_1, \sigma^2) =$$

$$= \operatorname{const} - \frac{n}{2} \ln \sigma^2 + \frac{1}{2} \ln(1 - \phi_1^2) - \frac{1 - \phi_1^2}{2\sigma^2} \left(y_1^* - \frac{\delta^*}{1 - \phi_1} \right)^2$$

$$-\frac{1}{2\sigma^2}\sum_{t=2}^n(y_t^*-\delta^*-\phi_1y_{t-1}^*)^2.$$

Критерии качества подгонки

Информационный критерий Акаике (AIC)

$$AIC = -2\frac{l}{T} + 2\frac{k}{T}$$

Информационный критерий Шварца (ВІС)

$$BIC = SC = -2\frac{l}{T} + \frac{k \log T}{T}$$

I – логарифм функции правдоподобия,к – число оцениваемых параметров.Чем ниже значения критериев, тем лучше результат

ARIMA (1,0,1) regression

Sample: 1 - 66

Log likelihood = 81.4261

Coef. sp500

Std. Err.

7.135755 .1141207 62.53

6.912083 7.359427

Prob > chi2

Number of obs

Wald chi2(2)

0.0000

215.46

= 66

Z

[95% Conf.Interval]

ARMA

cons

L1.ar .9018984 L1.ma .3435668

.0822384 .1170013 10.97 2.94

0.000 0.003

P>z

0.000

.7407141 .1142484

1.063083 .5728852

.0692228 .0065627 /sigma

10.55 0.000

.05636 .0820855

GARCH модели ВР

Из эмпирических наблюдений над поведением ВР процентных ставок, валютных курсов и т.п. было замечено, что наблюдения с большими отклонениями от среднего и с малыми отклонениями склонны к образованию кластеров

Однодневные приращения индекса РТС

Эконометрика 2018 Ратникова Т.А.

GARCH модели ВР

 Это явление оказалось удобно моделировать зависимостью дисперсии ошибок от предыстории

$$\sigma_t^2 = \alpha_0 + \alpha_1 u_{t-1}^2 + \dots + \alpha_p u_{t-p}^2$$

• Простейшая модель этого класса ARCH(1) запишется в виде:

$$y_t = x_t' \beta + u_t.$$

$$u_t = \varepsilon_t \left(\alpha_0 + \alpha_1 u_{t-1}^2\right)^{1/2}, \quad \varepsilon_t \sim iidN(0, 1).$$

GARCH модели ВР

 Если сформулировать зависимость дисперсии от предыстории в более общем виде

$$\sigma_t^2 = \alpha_0 + \alpha_1 u_{t-1}^2 + \dots + \alpha_p u_{t-p}^2 + \gamma_1 \sigma_{t-1}^2 + \dots + \gamma_q \sigma_{t-q}^2$$

- то это приведет к моделям GARCH(p,q).
- Простейшую модель этого вида GARCH(1,1) можно записать так:

$$y_{t} = x_{t}'\beta + u_{t}$$

$$u_{t} = \varepsilon_{t} \left(\alpha_{0} + \alpha_{1}u_{t-1}^{2} + \gamma_{1}\sigma_{t-1}^{2}\right)^{1/2},$$

$$\varepsilon_{t} \sim iidN(0,1)$$

ARCH family regression

```
Sample: 1 - 66
                      Number of obs = 66
Distribution: Gaussian
                       Wald chi2(.) = ...
Log likelihood = 33.74703
                  Prob > chi2 =
  sp500 | Coef. Std. Err. z P>|z| [95% Conf. Interval]
  _cons | 7.071681 .0140875 501.98 0.000 7.04407 7.099292
ARCH
 L1. garch | -.0887646 .2598499 -0.34 0.733 -.5980609 .4205318
```

Метод оценивания моделей GARCH

- Модели GARCH оцениваются методом максимального квазиправдоподобия, что означает следующее:
 - используется гипотеза о нормальности, даже если ошибка ненормальна,
 - делается специальная корректировка при вычислении стандартных ошибок

Условия состоятельности оценок

• 1. Условие верной идентификации первых моментов

$$E(\varepsilon_t \mid z_{t-1}) = 0, \quad E(\varepsilon_t^2 \mid z_{t-1}) = 1$$

• 2. Условие стационарности

$$E\left\{\ln\left(\alpha_{1}\varepsilon_{t}^{2}\right)|z_{t-1}\right\}<0 \quad \alpha_{1}>0$$

• 3. Условие асимптотической нормальности

$$E(\varepsilon_t^4 \mid z_{t-1})$$
-ограничено

Достоинства моделей GARCH

• Метод позволяет оценивать регрессии

$$y_t = x_t' \beta + u_t$$

- с не гауссовскими (не нормальными) распределениями ошибок при наличии тяжелых хвостов,
- успешно справляется с сериальной корреляцией квадратов ошибок
- несложно приспосабливаются для моделирования финансовых ВР

Динамические регрессионные модели

Построение зависимостей между различными ВР

• Для ВР появляется возможность строить более сложные и реалистичные модели явлений, учитывающие запаздывание реакции зависимой переменной на изменения независимых переменных, а также память в самой зависимой переменной например:

$$Y_{t} = a_{0} + b_{0}X_{t} + b_{1}X_{t-1} + \gamma Y_{t-1} + \varepsilon_{t}$$

Построение зависимостей между различными ВР

- Если ряды Xt и Yt не являются стационарными, зависимость между ними может оказаться ложной.
- Надо обязательно выделять тренд и сезонность.
- Признаками ложной регрессии являются высокий R^2 при низкой статистике Дарбина-Уотсона DW.

Например

$$y_t = -\frac{2.79}{(-5.77)} - \frac{0.52}{(-21.5)} x_t; \quad R^2 = 0.607, \quad DW = 0.057$$

- Тест Дарбина-Уотсона используется для проверки гипотезы об отсутствии автокорреляции первого порядка в остатках регрессионной модели.
- Пусть (e_1 ,..., e_n) это вектор остатков линейной регрессии по k независимым переменным.
- Предполагая, что остатки образуют процесс AR(1) $e_t = \rho e_{t-1} + v_t$,

где υ_t — последовательность независимых нормальных случайных величин.

 Тест основан на проверке гипотезы об отсутствии автокорреляции

$$H_o$$
: ρ = 0,

 критерием служит статистика Дарбина-Уотсона, которая рассчитывается по следующей формуле:

$$DW = \sum_{t=2} (e_t - e_{t-1})^2 / \sum_{t=2} e_t^2$$

$$DW \approx 2(1 - \rho)$$

- Поскольку $DW \approx 2(1 \rho)$, где ρ коэффициент корреляции между e_i и e_{i-1} , значения DW находятся в промежутке от о до 4.
- При ρ = 0 *DW* близка к 2.
- Близость *DW* к нулю говорит о положительной автокорреляции, к 4 об отрицательной.
- На практике проверка гипотезы H_o об отсутствии автокорреляции остатков осуществляется с помощью сравнения статистики DW с теоретическими значениями d_l и d_u для заданного числа наблюдений n_l числа независимых переменных модели k и уровня значимости α

- о < DW < d_l гипотеза H_o отвергается, есть положительная автокорреляция;
- $d_l < DW < d_u$ зона неопределённости;
- $d_{v} < DW < 4 d_{v}$ гипотеза H_{o} не отвергается, автокорреляции нет;
- 4 d_u < DW < 4 d_l зона неопределённости;
- 4 d_l < DW < 4 гипотеза H_o отвергается, есть отрицательная автокорреляция.

Проблемы моделирования зависимостей между ВР

- Временные ряды Xt и Yt имеют различный тип нестационарности.
- Например, ряд Yt является нестационарным и интегрированным порядка k, a Xt является TS-рядом.
- В таких случаях может иметь место ложная регрессионная зависимость, а операции исключения тренда или перехода к разностям не гарантируют принадлежности случайных отклонений классу «гауссов белый шум»

Проблемы моделирования зависимостей между ВР

- Временные ряды Xt и Yt имеют различный порядок интегрирования, т.е. Xt ~ I(k), Yt~ I(l) t, k не равно I
- при этом ряд остатков модели содержит стохастический тренд.
- В таком случае может иметь место ложная регрессионная зависимость
- Целесообразно строить модель на основе временных рядов разностей соответствующих порядков

Коинтеграция ВР

- Не ложная регрессия между нестационарными ВР возможна, если ВР являются коинтегрированными.
- Это означает либо стационарность ошибки для некоторой линейной комбинации

$$\alpha y_t + x_t' \beta = u_t$$

 Либо в более общем случае, линейная комбинация рядов с порядком интегрирования d имеет более низкий порядок интегрирования d-1

Построение зависимостей между различными ВР

- Серьезной проблемой регрессионных зависимостей для ВР является автокорреляция ошибок.
- Иногда выбор удачной динамической спецификации, формы тренда или учет сезонности позволяют ее избежать.
- Отдельный сложный вопрос направление причинно-следственной связи.

Причинность по Грэнджеру

- Способ выяснить статистическую причинность предлагает тест Грэнджера
- Оцениваются две регрессии:

$$y_{t} = \alpha_{0} + \alpha_{1}y_{t-1} + \dots + \alpha_{p}y_{t-p} + \beta_{1}x_{t-1} + \dots + \beta_{p}x_{t-p} + \varepsilon_{t}$$

$$x_{t} = \alpha_{0} + \alpha_{1}x_{t-1} + \dots + \alpha_{p}x_{t-p} + \beta_{1}y_{t-1} + \dots + \beta_{p}y_{t-p} + u_{t}$$

• И для каждой проверяется гипотеза

$$\beta_1 = \dots = \beta_p = 0$$

Популярные спецификации регрессионных моделей для ВР

- Модель частичного приспособления
- Модель адаптивных ожиданий
- Модель коррекции ошибок
- Модель векторной авторегрессии (VAR)

Модель частичного приспособления

Пример. Рассмотрим зависимость между оптимальным (ненаблюдаемым) потреблением бензина и ценами на нефть:

$$Y_t^* = a + bX_t + \varepsilon_t$$

Реальное потребление постепенно приближается к оптимальному по правилу

$$Y_{t} - Y_{t-1} = (1 - \lambda)(Y_{t}^{*} - Y_{t-1})$$

Итоговая модель

$$Y_{t} = (1 - \lambda)\alpha + (1 - \lambda)\beta X_{t} + \lambda Y_{t-1} + u_{t}, u \sim N(0, \sigma^{2}I)$$

Модель адаптивных ожиданий

Пример. Рассмотрим зависимость между выпуском и оптимальным (ненаблюдаемым) объемом продаж

$$Y_{t} = a + bX_{t}^{*} + \varepsilon_{t}$$

Реальные продажи постепенно приближаются к оптимальным по правилу

$$X_{t}^{*} - X_{t-1}^{*} = (1 - \lambda)(X_{t-1} - X_{t-1}^{*})$$

Итоговая модель

$$Y_{t} = (1 - \lambda)\alpha + (1 - \lambda)\beta X_{t} + \lambda Y_{t-1} + u_{t}, u \sim MA(1)$$

Модель коррекции ошибок

<u>Пример.</u> Рассмотрим зависимость между продажами (Y) и затратами на рекламу (X)

$$Y_{t} = a_{0} + b_{0}X_{t} + b_{1}X_{t-1} + \gamma Y_{t-1} + \varepsilon_{t}$$

Это уравнение часто переписывают в виде

$$\Delta Y_{t} = b_{1} \Delta X_{t} - (1 - \gamma)(Y_{t-1} - a - bX_{t-1}) + \varepsilon_{t}$$

где
$$a = a_0 / (1 - \gamma), b = (b_0 + b_1) / (1 - \gamma)$$

Выражение в скобках $Y_{t-1} - a - bX_{t-1} = u_t$ представляет собой «остаток равновесия», $(1-\gamma)$ – скорость коррекции

Векторная авторегрессия (VAR)

 VAR это система одновременных уравнений, которая состоит из одномерных моделей ARMA

$$Y_{t} = a_{1} + b_{11}Y_{t-1} + b_{12}X_{t-1} + \varepsilon_{1t}$$

$$X_{t} = a_{2} + b_{21}Y_{t-1} + b_{22}X_{t-1} + \varepsilon_{2t}$$

• $\mathcal{E}_1, \mathcal{E}_2$ - белые шумы, которые могут быть коррелированы

Преимущества VAR

- Модель может быть более экономной, включая меньше лагов
- Прогноз может быть точнее
- В модели не нужно уметь различать зависимые и независимые переменные
- Модель может быть оценена обычным МНК и оценки будут состоятельными, поскольку белый шум предполагается независимым от истории

Замечания о качестве эконометрических прогнозов

- При неизменных внешних условиях, когда эконометрическая модель и механизм порождения данных соответствуют друг другу прогноз, вычисленный как условное ожидание, будет оптимальным, т.е. несмещенным и эффективным.
- Различия прогноза и дальнейшей реализации процесса будут обусловлены только ошибкой, которую невозможно точно предсказать.
- Однако неизменность внешних условий в экономике обеспечить затруднительно, и в этом причина частой несостоятельности прогнозов.

Замечания и качестве эконометрических прогнозов

- Теория прогнозирования, основанная на предположениях о стационарности процессов и постоянстве параметров моделей является неадекватной.
- С этими предположениями связана и гипотеза о нормальности, поскольку в нормальном законе распределения вероятностей дисперсия и математическое ожидание предполагаются неизменными.
- Однако использование моделей типа GARCH или стохастической волатильности позволяет отказаться от нереалистичных предположений и улучшить качество прогноза.

Спасибо за внимание!