Elementary hypothesis testing

 \leftarrow Back to Chapters

Exercise 4.1

Given

$$P(D_1...D_m|H_iX) = \prod_j P(D_j|H_iX)$$

and

$$P(D_1...D_m|\overline{H}_iX) = \prod_j P(D_j|\overline{H}_iX)$$

for $1 \le i \le n$ and n > 2 show that for any fixed i at most one of

$$\frac{P(D_j|H_iX)}{P(D_i|\overline{H}_iX)}$$

is not equal to 1.

Proof:

Firstly, we claim that the case of 2 pieces of data implies the general result.

Indeed, independence assumptions of all D_j together imply analogous pairwise independence for any pair D_k and D_l , and so, assuming the case with two data pieces is solved, for a fixed i and for any pair of k, l $\frac{P(D_k|H_lX)}{P(D_k|\overline{H}_lX)}$, $\frac{P(D_l|H_lX)}{P(D_l|\overline{H}_lX)}$ at most one is not equal to 1, so of the whole set of $\frac{P(D_j|H_lX)}{P(D_j|\overline{H}_lX)}$ at most one is not equal to 1.

So we focus on the case of only two data sets, D_1 and D_2 .

We will denote probability density/mass function of D_1 under hypothesis H_iX by V_i and that of D_2 by U_i . We will also denote probability density/mass function of D_1 under hypothesis \overline{H}_iX by V_i^c and that of D_2 by U_i^c , though we will not use these until the very end.

Remark 1: The proof actually works for arbitrary (not necessarily discrete or continuous) real-valued random variables, one just has to say that Vs and Us are CDFs instead of PMFs/PDFs.

We will denote value of V_i at some $D_1 = x_1$ by v_{i1} (and at $D_1 = x_2$ by v_{i2}). Similarly the values of U at $D_2 = y_1$ will be denoted by u_{i1} .

We will use independence of D_1 and D_2 conditional on various hypotheses to prove independence under other hypotheses. Independence always means

 $P(D_1 = x, D_2 = y|H) = P(D_1 = x|H)P(D_2 = y|H)$ and can be checked by checking for specific values.

With this in mind, we pick any pair of possible value pairs $D_1 = x_1, D_2 = y_1$ and $D_1 = x_2, D_2 = y_2$, fixed from now on, and form vectors $v_i = \begin{bmatrix} v_{i1} \\ v_{i2} \end{bmatrix}$ and $u_i = \begin{bmatrix} u_{i1} \\ u_{i2} \end{bmatrix}$

Then independence of D_1 and D_2 (conditional on H_iX) says that the joint distribution of $P(D_1 = x, D_2 = y | H_iX)$ is a product of distributions of D_1 and D_2 and is given (at $x = x_1, x_2$ and $y = y_1, y_2$) by the matrix

$$M_{i} = v_{i}u_{i}^{T} = \begin{bmatrix} v_{i1} \\ v_{i2} \end{bmatrix} \begin{bmatrix} u_{i1} & u_{i2} \end{bmatrix} =$$

$$= \begin{bmatrix} v_{i1}u_{i1} & v_{i1}u_{i2} \\ v_{i2}u_{i1} & v_{i2}u_{i2} \end{bmatrix}$$

It follows from this that the (joint) probability matrix of D_1D_2 (again, at $x=x_1,x_2$ and $y=y_1,y_2$) conditional on $\overline{H_i}X$ is obtained by taking all the matrices of H_j with $j\neq i$ weighing them by (prior) probabilities h_j of H_j and adding them (and then dividing by the sum of the weights, but this is an overall normalizing factor which will not be important for us). That is, the matrix is proportional to

$$\sum_{j \neq i} h_j M_i = \sum_{j \neq i} h_j v_j u_j^T =$$

$$\begin{bmatrix} \sum_{j\neq i} h_j v_{i1} u_{i1} & \sum_{j\neq i} h_j v_{i1} u_{i2} \\ \sum_{j\neq i} h_j v_{i2} u_{i1} & \sum_{j\neq i} h_j v_{i2} u_{i2} \end{bmatrix}$$

Now the assumption that D_1 and D_2 are independent conditional on \overline{H}_i means this matrix is also a product of "marginal" matrices of $D_1|\overline{H}_iX$ and $D_2|\overline{H}_iX$, i.e. is of rank 1. This means that it has determine 0.

Three hypothesis. Let's start with the case of only 3 hypothesis H_1, H_2, H_3 . Start with i = 3.

#####Lemma: A sum M of two rank 1 matrices $M = h_1 v_1 u_1^T + h_2 v_2 u_2^T$ can only be rank 1 if either v_1 and v_2 are linearly dependent or u_1 and u_2 are linearly dependent.

A "conceptual" proof is as follows: Consider the image of M. Vectors $M(u_1)$ and $M(u_2)$ are both linear combinations of h_1v_1 and h_2v_2 , so, to get that the image of M is the span of v_1 and v_2 , it is enough that the matrix of coefficients

 $G = \begin{pmatrix} u_1^T u_1 & u_1^T u_2 \\ u_2^T u_1 & u_2^T u_2 \end{pmatrix}$ is invertible. But G is the Grammian of u_1, u_2 and is invertible precisely when u_1 and u_2 are linearly independent (its determinant is the square of the area of the parallelogram spanned by u_1 and u_2 , as you can easily verify). In that case (of independent us), the rank of M is the dimension of the span of v_1, v_2 and if v_1, v_2 were independent, it would be 2. So if rank of M is below 2, then either us or vs are dependent, as wanted.

Remark 2: Those familiar with tensors may realize that we use metric in which u_1 and u_2 are orthonormal (that's the inverse of G) to "raise and index" and go from a bilinear form encoded by M to a linear map, whose range is then the span of vs.

Remark 3: Alternatively, for those who don't like linear algebra, a computational proof of Lemma 1 is as follows: A (non-zero) 2 by 2 matrix has rank one when its determinant is zero. Writing this out in our case we get:

$$[h_1v_{11}u_{11} + h_2v_{21}u_{21}][h_1v_{12}u_{12} + h_2v_{22}u_{22}] =$$

$$[h_1v_{11}u_{12} + h_2v_{21}u_{22}][h_1v_{12}u_{11} + h_2v_{22}u_{21}]$$

Additively canceling $h_1^2v_{11}v_{12}u_{11}u_{12}$ and $h_2^2v_{21}v_{22}u_{21}u_{22}$ and then dividing by h_1h_2 we have

$$v_{11}u_{11}v_{22}u_{22} + v_{21}u_{21}v_{12}u_{12} =$$

$$v_{11}u_{12}v_{22}u_{21} + v_{21}u_{22}v_{12}u_{11}$$

or

$$(v_{11}v_{22} - v_{12}v_{21})(u_{11}u_{22} - u_{12}u_{21}) = 0,$$

so either v_1 and v_2 are linearly dependent, or u_1 and u_2 are.

Continuing with the case of three hypothesis, recall v_i and u_i were likeliehood/probability vectors of D_1 taking values x_1, x_2 and D_2 taking values y_1, y_2 (under hypothesis H_iX).

Observe that a pair of non-zero functions V_1 and V_2 such that $(V_1(x_1), V_1(x_2))$ is always proportional to $(V_2(x_1), V_2(x_2))$ are "globally" proportional meaning $V_1 = kV_2$ (take any x with $V_2(x) \neq 0$ and make $k = V_1(x)/V_2(x)$).

If distributions of D_1 under H_1X and H_2X are different, then they are also not proportional. By the previous paragraph, this implies that there will be two values x_1 and x_2 giving unproportional v_1 and v_2 . Then for arbitrary pair of values y_1, y_2 of D_2 the corresponding vectors u_1 and u_2 are proportional, so,

again, by the previous paragraph, the whole probability mass/density functions U_1 and U_2 of D_2 under H_1X and H_2X are proportional, ergo equal.

So either $V_1 = V_2$ or $U_1 = U_2$.

Now from i=1 and i=2 we get that (either $V_2=V_3$ or $U_2=U_3$) and (either $V_1=V_3$ or $U_1=U_3$). Since we have 3 equalities and only two types of deistributions (U and V), either the Vs are equal twice, and $V_1=V_2=V_3$, or the Us are (and $U_1=U_2=U_3$). Correspondingly either D_1 has same distribution under all 3 hypothesis, and then $\frac{P(D_1|H_iX)}{P(D_1|\overline{H_i}X)}$ are all equal to 1, or D_2 does (and then all $\frac{P(D_2|H_iX)}{P(D_2|\overline{H_i}X)}$ are equal to 1). In either case, we get what we want.

This completes the case of 3 hypothesis.

The general case. To get the extension to more than 3 hypothesis we use the following approach. As we mentioned before, a 2 by 2 matrix is or rank at most 1 if its determinant is zero. So we need some an efficient way of telling when the deterimnant of 2 by 2 matrix is zero.

Remark 4: More generally, a matrix is of rank at most 1 if all 2 by 2 minors have determinant zero i.e. all $M_{(i,j),(k,l)}^{\wedge 2} = M_{ik}M_{jl} - M_{il}M_{jk}$ are zero. In tensor analysis, these are the entries of the second exterior power $M^{\wedge 2}$ of M. When dimension is 2 there is only one minor, and the $M^{\wedge 2}$ is a scalar, equal to det M. So in dimensions above 2, we can formulate everything that follows in terms of determinants.

We will use the following property of 2D determinants. If M and N are 2 by 2 matrices then

$$D(M,N) := \frac{1}{2}(\det(M+N) - \det M - \det N)$$

is symmetric and bilinear in M, N. This means

$$D(M, N) = D(N, M)$$

and

$$D(M_1 + M_2, N) = D(M_1, N) + D(M_1, N)$$

(and hence the same for second variable). Indeed, one computes

$$D(M,N) = M_{11}N_{22} + M_{22}N_{11} - M_{12}N_{21} - M_{21}N_{12}$$

and the resulting formula is linear in M and in N, i.e. bilinear.

Observe that $D(M, M) = \det M$. We then have, by induction on the number of summands,

$$\det(\sum M_i) = D(\sum M_i, \sum M_j) = \sum_{i,j} D(M_i, M_j)$$

Remark 5: We also have $D(\lambda M, N) = \lambda D(M, N)$, as usual in bilinearity, but we don't need this.

Remark 6: In higher dimensions, and using tensor language, we are saying that taking second exterior power, which is quadratic in the input, is a restriction of a symmetric bilinear operation (on two inputs).

Now we can apply this to our problem. Let $M_i = h_i v_i u_i^T$ and $N_i = \sum_{i \neq j} M_i$, and $M = M_i + N_i = \sum_i M_i$.

Our assumptions are that all M_i and N_j are rank 1 (i.e. have zero determinant). We now show that M has rank 1 (i.e. has zero determinant).

To that end we write

$$\det M = \sum_{j,k} D(M_j, M_k)$$

We want to see that this is zero. We know

$$0 = \det(N_i) = \sum_{j \neq i, k \neq i} D(M_j, M_k)$$

Summing over i we get (taking note that each $D(M_l, M_l)$ will appear n-1 times, while those $D(M_i, M_k)$ with $j \neq k$ will appear only n-2 times):

$$\sum_{l} D(M_{l}, M_{l}) + (n-2) \sum_{j,k} D(M_{j}, M_{k}) = 0$$

So, since $D(M_l, M_l) = 0$, as long as $n \neq 2$ we have what we want.

This gives $M = vu^T$. Going back to $M = M_i + N_i$ we again see two rank one matrices add up to a rank one matrix. We conclude, just as in the case of 3 hypothesis, that for each specific i, either $V_i^c = V_i$ and hence $\frac{P(D_1|H_iX)}{P(D_1|\overline{H_iX})} = 1$

OR

 $U_i^c = U_i$ and hence $\frac{P(D_2|H_iX)}{P(D_2|\overline{H}_iX)} = 1$. This is exactly what we wanted to prove.