Unit: Curves sketching

Algorithm for Curve Sketching

1. Domain	2. Intercepts
a. denominator $\neq 0$ (rational functions)	a. $f(x) = 0$ (x-int or zeroes)
b. radicand ≥ 0 (even roots)	b. numerator = 0 (for rational functions)
c. logarithmic argument > 0 (logarithmic functions)	c. $y - int = f(0)$ (if exists)
	, , , , , , ,
3. Symmetry	4. Asymptotes
a.f(-x) = f(x) (even functions are symmetric	a. compute $\lim_{x \to \pm \infty} f(x)$ (horizontal asymptote)
about the y-axis)	$x \to \pm \infty$
b. $f(-x) = -f(x)$ (odd functions are symmetric	b. compute $\lim_{x \to a^{-}} f(x)$, $\lim_{x \to a^{+}} f(x)$ (vertical
about the origin)	$x \rightarrow a^{-}$ $x \rightarrow a^{+}$ asymptote where a is a zero of the denominator
c. $f(x + T) = f(x)$ (periodic functions have cycles)	but not of the numerator)
e. I (ii + I) I (ii) (periodic functions have eyeles)	out not of the numerator)
	c. compute long division (to find the oblique
	asymptotes for rational functions)
5. First Derivative	6. Second Derivative
a. compute f '(x)	a. compute $f'(x)$ find points where $f'(x) = 0$ or
	f''(x) DNE
b. find critical points ($f'(x) = 0$ or $f'(x)$ DNE)	1 4 6 6 6 7 7
c. create the sign chart for f '(x)	b. create the sign chart for f "(x)
c. create the sign chart for i (x)	c. find points of inflection
d. find intervals of increase/decrease	c. This points of infrection
	d. find intervals of concavity upward/downward
e. find the local extrema (using first derivative	
test) and global extrema (if function is defined on	e. check the local extrema using the second
a closed interval)	derivative test (if necessary)
7. Curve Sketching	
a. use broken lines to draw the asymptotes	
h plot v. and v. intercents systems and	
b. plot x- and y- intercepts, extrema, and inflection points	
mirection points	
c. draw the curve near the asymptotes	
d. sketch the curve	

Ex 1. Sketch the graph for the following functions:

a)
$$y = x^3 - 6x^2 + 9x + 1$$

b) $y = \frac{4x}{x^2 + 1}$

b)
$$y = \frac{4x}{x^2 + 1}$$

Link between a function and its derivative

Consider a double differentiable function y = f(x) (f'(x) and f''(x) exist). Then:

- 1. f'(x) is the slope of the tangent at P(x, f(x)).
- 2. If f'(x) = 0, then P(x, f(x)) is a local extrema and tangent is horizontal.
- 3. If f'(x) > 0, then the function y = f(x) is increasing.
- 4. If f'(x) < 0, then the function y = f(x) is decreasing.
- 5. If f''(x) = 0, then f'(x) has a local extrema and y = f(x) has an inflection point.
- 6. If f''(x) > 0, then f'(x) is increasing and y = f(x) is concave upward.
- 7. If f''(x) < 0, then f'(x) is decreasing and y = f(x) is concave downward.

Ex 2. In the next figure is given the graph of the derivative f'(x) of a function f(x).

a) Find intervals where the function f(x) is increasing or decreasing.

b) Find intervals where the graph of f (x) is concave upward or downward.