(will be inserted by the editor)

HERAFitter

Open Source QCD Fit Project

Version 0.8 (svn 1413)

```
HERAFitter developers team,
S. Alekhin<sup>16,17</sup>, O. Behnke<sup>1</sup>, P. Belov<sup>1,12</sup>, M. Botje<sup>18</sup>, D. Britzger<sup>1</sup>, S. Camarda<sup>1</sup>,
A.M. Cooper-Sarkar<sup>2</sup>, K. Daum<sup>31,32</sup>, C. Diaconu<sup>3</sup>, J. Feltesse<sup>19</sup>, A. Gizhko<sup>1</sup>,
A. Glazov<sup>1</sup>, A. Guffanti<sup>20</sup>, M. Guzzi<sup>1</sup>, F. Hautmann<sup>13,14,15</sup>, H. Jung<sup>1</sup>, V. Kolesnikov<sup>4</sup>,
H. Kowalski<sup>1</sup>, O. Kuprash<sup>1</sup>, A. Kusina<sup>21</sup>, S. Levonian<sup>1</sup>, K. Lipka<sup>1</sup>, B. Lobodzinski<sup>30</sup>,
K. Lohwasser<sup>16</sup>, A. Luszczak<sup>5</sup>, B. Malaescu<sup>26</sup>, R. McNulty<sup>29</sup>, V. Myronenko<sup>1</sup>,
S. Naumann-Emme<sup>1</sup>, K. Nowak<sup>1,24</sup>, F. Olness<sup>21</sup>, E. Perez<sup>23</sup>, H. Pirumov<sup>1</sup>, R. Plačakytė<sup>1</sup>,
K. Rabbertz<sup>6</sup>, V. Radescu<sup>1</sup>, R. Sadykov<sup>25</sup>, G. Salam<sup>27,28</sup>, A. Sapronov<sup>4</sup>, A. Schöning<sup>10</sup>, T. Schörner-Sadenius<sup>1</sup>, S. Shushkevich<sup>1</sup>, W. Slominski<sup>7</sup>, H. Spiesberger<sup>22</sup>,
P. Starovoitov<sup>1</sup>, M. Sutton<sup>8</sup>, J. Tomaszewska<sup>9</sup>, O. Turkot<sup>1</sup>, A. Vargas<sup>1</sup>, G. Watt<sup>11</sup>,
K. Wichmann<sup>1</sup>
<sup>1</sup>Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
<sup>2</sup> Department of Physics, University of Oxford, Oxford, United Kingdom
<sup>3</sup> CPPM, IN2P3-CNRS, Univ. Mediterranee, Marseille, France
<sup>4</sup> Joint Institute for Nuclear Research (JINR), Joliot-Curie 6, 141980, Dubna, Moscow Region, Russia
<sup>5</sup> T. Kosciuszko Cracow University of Technology
<sup>6</sup> Institut für Experimentelle Kernphysik, Karlsruhe, Germany
<sup>7</sup> Jagiellonian University, Institute of Physics, Ul. Reymonta 4, PL-30-059 Cracow, Poland
University of Sussex, Department of Physics and Astronomy, Sussex House, Brighton BN1 9RH, United Kingdom
<sup>9</sup> Warsaw University of Technology, Faculty of Physics, Koszykowa 75, 00-662 Warsaw, Poland
<sup>10</sup> Physikalisches Institut, Universität Heidelberg, Heidelberg, Germany
<sup>11</sup> Institute for Particle Physics Phenomenology, Durham University, Durham, DH1 3LE, United Kingdom
<sup>12</sup> Current address: Department of Physics, St. Petersburg State University, Ulyanovskaya 1, 198504 St. Petersburg, Russia
<sup>13</sup> Dept. of Physics and Astronomy, University of Sussex, Brighton BN1 9QH, United Kingdom
<sup>14</sup> Rutherford Appleton Laboratory, Chilton OX11 0QX, United Kingdom
<sup>15</sup> Dept. of Theoretical Physics, University of Oxford, Oxford OX1 3NP, United Kingdom
<sup>16</sup> Deutsches Elektronen-Synchrotron (DESY), Platanenallee 6, D15738 Zeuthen, Germany
<sup>17</sup> Institute for High Energy Physics,142281 Protvino, Moscow region, Russia
<sup>18</sup> Nikhef, Science Park, Amsterdam, the Netherlands
<sup>19</sup> CEA, DSM/Irfu, CE-Saclay, Gif-sur-Yvette, France
<sup>20</sup> Niels Bohr Institute, University of Copenhagen, Denmark
<sup>21</sup> Southern Methodist University, Dallas, Texas
<sup>22</sup> WA ThEP, Johannes-Gutenberg-Universität Mainz, D-55099 Mainz, Germany
<sup>23</sup> CERN, European Organization for Nuclear Research, Geneva, Switzerland
<sup>25</sup> Joint Institute for Nuclear Research, Joliot-Curie str. 6, Dubna, 141980, Russia
<sup>26</sup> Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université, Paris-Diderot and CNRS/IN2P3, Paris, France
<sup>27</sup> CERN, PH-TH, CH-1211 Geneva 23, Switzerland
<sup>28</sup> LPTHE; CNRS UMR 7589; UPMC Univ. Paris 6; Paris 75252, France
<sup>29</sup> University College Dublin, Dublin 4, Ireland
<sup>30</sup> Max Planck Institut Für Physik, Werner Heisenberg Institut, Föhringer Ring 6, Muenchen
<sup>31</sup> Fachbereich C, Universität Wuppertal, Wuppertal, Germany
32 Rechenzentrum, Universität Wuppertal, Wuppertal, Germany
```

Received: date / Accepted: date

```
Abstract The paper presents the HERAFitter project which provides a framework for Quantum Chromodynamics (QCD) analyses related to the proton structure. The main processes sensitive to the Parton Distribution Functions (PDFs) of the are included into HERAFitter and can be used for PDF de-
```

terfaces to external software packages which are described 56 constrain them [4, 5]. here.

Keywords PDFs · QCD · Fit

Contents

19	1	Introduction				
20	2	Theoretical Input				
21		2.1 Deep Inelastic Scattering Formalism and Schemes 4				
22		2.2 Drell Yan processes in pp or $p\bar{p}$ collisions 5				
23		2.3 Jet production in ep and pp or $p\bar{p}$ collisions 6				
24		2.4 Top-quark production in pp and $p\bar{p}$ collisions 6				
25	3	Computational Techniques				
26	4	Fit Methodology				
27		4.1 Functional Forms for PDF parametrisation 8				
28		4.2 χ^2 representation				
29		4.3 Treatment of the Experimental Uncertainties 10				
30		4.4 Treatment of the Theoretical Input Parameters 11				
31		4.5 Bayesian Reweighting Techniques				
32		4.6 Performance Optimisation				
33	5	Alternative to DGLAP formalisms				
34		5.1 DIPOLE models				
35		5.2 Transverse Momentum Dependent PDFs with CCFM . 12				
36		5.3 Diffractive PDFs				
37	6	Application of HERAFitter				
38	7	Summary				

1 Introduction

for signals of new physics at the LHC impose conditions on the precision of the Standard Model (SM) predictions for hard scattering processes in hadron-hadron collisions. The most common approach to calculate the SM cross sections for such reactions is to use collinear factorisation in perturbative QCD (pQCD) [3]:

$$\sigma(\alpha_{s}, \mu_{R}, \mu_{F}) = \sum_{\substack{a,b \ 0 \\ \times \hat{\sigma}^{ab}}} \int_{ab}^{1} dx_{1} dx_{2} f_{a}(x_{1}, \alpha_{s}, \mu_{F}) f_{b}(x_{2}, \alpha_{s}, \mu_{F})
\times \hat{\sigma}^{ab}(x_{1}, x_{2}; \alpha_{s}, \mu_{R}, \mu_{F}).$$
(1)

Here the cross section σ for any hard-scattering inclusive process $ab \rightarrow X + all$ is expressed as a convolution of Parton Distribution Functions (PDFs) f_a and f_b with the partonic cross section $\hat{\sigma}^{ab}$. The PDFs represent the probability of finding a specific parton a(b) in the first (second) proton carrying a fraction x_1 (x_2) of its momentum. The sum 98 over indices a and b in Eq. 1 indicates the various kinds of partons, i.e. gluons, quarks and antiquarks of different 100 flavours, that are considered as the constituents of the pro- 101 49 ton. Both the PDFs and the partonic cross section depend on 102

 $_{9}$ termination based on the concept of the factorisable nature $_{50}$ the strong coupling α_{s} , and the factorisation and renormalof the cross sections of hard scattering measurements into $_{51}$ isation scales, $\mu_{\rm F}$ and $\mu_{\rm R}$, respectively. The partonic cross process dependent partonic scattering and universal PDFs. 52 sections are calculable in pQCD whereas PDFs cannot be HERAFitter provides a comprehensive choice of options in 53 computed analytically in QCD, they must rather be deterthe treatment of the experimental data uncertainties, a large 54 mined from measurement. PDFs are assumed to be univernumber of theoretical and methodological options via in- 55 sal such that different scattering reactions can be used to

Measurements of the inclusive Neutral Current (NC) and Charged Current (CC) Deep-Inelastic-Scattering (DIS) at the ep collider HERA provide crucial information for determin-60 ing the PDFs. For instance, the gluon density relevant for calculating the dominant gluon-gluon fusion contribution to Higgs production at the LHC can be accurately determined at low and medium x solely from the HERA data. Many processes in pp and $p\bar{p}$ collisions at LHC and Tevatron, re-65 spectively, probe PDFs in the kinematic ranges, inaccessible ₆₆ by DIS measurements. Therefore inclusion of the LHC and 67 Tevatron data in the QCD analysis of the proton structure 68 provide additional constraints on the PDFs, improving ei-69 ther their precision, or providing important information of 70 the correlations of PDF with the fundamental QCD param-71 eters like strong coupling or quark masses. In this context, 72 the processes of interest at hadron colliders are Drell Yan 73 (DY) production, W asymmetries, associated production of ⁷⁴ W or Z bosons and heavy quarks, top quark, jet and prompt 75 photon production.

The open-source QCD platform HERAFitter encloses the set of tools necessary for a comprehensive global QCD analysis of hadron-induced processes even on the early stage of the experimental measurement. It has been developed for determination of PDFs and extraction of fundamental QCD parameters like heavy quark masses or the strong coupling 82 constant. This tool provides also the basis for comparisons The discovery of the Higgs boson [1, 2] and extensive searches of different theoretical approaches and can be used for di-84 rect tests of the impact of new experimental data in the QCD analyses. The processes that are currently included in HERAFitter 86 framework are listed in Tab. 1. The functionality of HERAFitter 87 is schematically illustrated in Fig. 1 and can be represented 88 by the four main blocks:

> Input data: All relevant cross section measurements from the various processes are stored internally in HERAFitter with the full information on their uncorrelated and correlated uncertainties. HERA I data sets are the basis of any proton PDF extraction, and they are used by all global PDF groups [6–10]. Additional measurements provide constraints to the sea flavour decomposition (such as the new results from the LHC), as well as constraints to PDFs in the kinematic phase-space regions where HERA data is not measured precisely, such as the high x region for the gluon and valence quark distributions.

Theory predictions: Predictions for cross section of different processes are obtained using the factorisation approach (Eq. 1). PDFs are parametrised at a starting scale

Data	Process	Reaction	Theory 113 calculations, schemes
HERA	DIS NC	$ep \rightarrow eX$	TR', ACOT
	DIS CC	$ep \rightarrow v_e X$	ACOT, ZM (QCDNUM) FFN (OPENQCDRAD) 119
	DIS jets	$ep \rightarrow e$ jets	NLOJet++ (fastNLO) 120
	DIS heavy quarks	$ep \rightarrow ec\bar{c}X, \\ ep \rightarrow eb\bar{b}X$	ZM (QCDNUM), 121 TR', ACOT, FFN (OPENQCDRAD, 122 QCDNUM) 123
Fixed Target	DIS NC	$ep \rightarrow eX$	ZM (QCDNUM), TR', ACOT
Tevatron, LHC	Drell Yan	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	MCFM (APPLGRID) 126
	top pair	$pp(\bar{p}) \rightarrow t\bar{t}X$	MCFM (APPLGRID), 127 HATHOR 128
	single top	$ \begin{array}{c} pp(\bar{p}) \rightarrow tlvX, \\ pp(\bar{p}) \rightarrow tX, \\ pp(\bar{p}) \rightarrow tWX \end{array} $	MCFM (APPLGRID) 129 130
	jets	$pp(\bar{p}) \rightarrow \mathrm{jets}X$	NLOJet++ (APPLGRID) ₁₃₁ NLOJet++ (fastNLO)
LHC	DY+heavy quarks	$pp \rightarrow VhX$	MCFM (APPLGRID)

Table 1 The list of processes available in the HERAFitter package. The references for the individual calculations and their implementations are given in the text.

 $\textbf{Fig. 1} \ \ \textbf{Schematic structure of the HERAFitter program}.$

106

108

109

110

 Q_0^2 by a chosen functional form with a set of free parameters $\bf p$. These PDFs are then evolved from Q_0^2 to the scale of the measurement using the Dokshitzer-Gribov-lipatov-Altarelli-Parisi (DGLAP) [11–15] evolution equals tions (as implemented in QCDNUM [16]), CCFM [17–20] or dipole models [21–23] and then convoluted with the hard parton cross sections calculated using a relevant theory program (as listed in Tab. 1).

PDF fit: PDFs are extracted from a least square fit by con- 141 structing a χ^2 from the input data and the theory pre- 142

diction. The χ^2 is minimized iteratively with respect to the PDF parameters using the MINUIT [24] program. Various choices of accounting for the experimental uncertainties are employed in HERAFitter, either using a nuisance parameter method for the correlated systematic uncertainties, or a covariance matrix method (see details in section 4.2). In addition, HERAFitter allows to study different statistics assumptions for the distributions of the systematic uncertainties (i.e. Gauss or lognormal) [25]. In the χ^2 minimization, The parameters $\bf p$ of the parametrised PDFs and their uncertainties are extracted from the minimization fit.

Results: The resulting PDFs are provided in a format ready to be used by the LHAPDF library [26, 27] or by TMDlib [28]. HERAFitter drawing tools can be used to display the PDFs with the uncertainty at a chosen scale. A first set of PDFs extracted by HERAFitter is HERAPDF1.0 [29] (Fig. 2) which is based on HERA I data. Since then several other PDF sets were produced within the HERA and LHC collaborations. In addition to PDF display, the figures comparing the data used in the fit and the relevant theory predictions are produced. In Fig. 3, a comparison

Fig. 2 Summary plots of valence, total sea (scaled) and gluon densities (scaled) with their experimental, model and parametrisation uncertainties at the scale of $Q^2 = 10 \text{ GeV}^2$ for the HERAPDF1.0 PDF set at NLO [29].

of inclusive NC data from the HERA I running period with predictions based on HERAPDF1.0. It also illustrates the comparison to the theory predictions which are adjusted by the systematic uncertainty shifts when using the nuisance parameter method that accounts for correlated systematic uncertainties. As an additional consistency check between data and the theory predictions, pull information, defined as the difference between data

144

151

given data bin.

Fig. 3 An illustration of the HERAFitter drawing tools comparing the measurements (in the case of HERA I) to the predictions of the fit. In addition, ratio plots are also provided together with the pull distribution (right panel).

The HERAFitter project provides a versatile environment for benchmarking studies and a flexible platform for the QCD interpretation of analyses within the LHC experiments, as already demonstrated by several publicly available results using the HERAFitter framework [30–36].

The outline of this paper is as follows. Section 2 discusses the various processes and corresponding theoretical calculations performed in the DGLAP [11-15] formalism that are available in HERAFitter. Section 3 presents various techniques employed by the theory calculations used in HERAFitter. Section 4 elucidates the methodology of determining PDFs through fits based on various χ^2 definitions 198 Beyond LO, the QCD predictions for the DIS structure funcused in the minimisation procedure. Alternative approaches to the DGLAP formalism are presented in section 5. Specific applications of the package are given in section 6.

2 Theoretical Input

In this section the theoretical formalism for various processes available in HERAFitter is described.

2.1 Deep Inelastic Scattering Formalism and Schemes

Deep Inelastic Scattering (DIS) data provide the backbone of any PDF fit. The formalism that relates the DIS measure- 212 ments to pQCD and the PDFs has been described in detail 213 in many extensive reviews (see e.g. [37]) and will only be 214 briefly summarised here. DIS describes the process where a 215 lepton scattering off the constituents of the proton by a vir- 216 tual exchange of a NC or CC vector boson and, as a result, 217 a scattered lepton and a multihadronic final state are pro- 218 duced. The DIS kinematic variables are the negative squared 219

and prediction divided by the uncorrelated uncertaintly 174 four-momentum of the exchange boson, Q^2 , the Bjorken x, of the data, is displayed in units of sigma shifts for each 175 and the inelasticity y, where $y = Q^2/sx$ and s is the squared centre-of-mass energy.

> The NC cross section can be expressed in terms of generalised structure functions:

$$\frac{d^2 \sigma_{NC}^{e^{\pm} p}}{dx dO^2} = \frac{2\pi \alpha^2}{x O^4} \left[Y_+ \tilde{F}_2^{\pm} \mp Y_- x \tilde{F}_3^{\pm} - y^2 \tilde{F}_L^{\pm} \right],\tag{2}$$

where $Y_{\pm} = 1 \pm (1 - y)^2$. The generalised structure functions $\tilde{F}_{2,3}$ can be written as linear combinations of the proton structure functions $F_2, F_{2,3}^{\gamma Z}$ and $F_{2,3}^{Z}$ associated to pure photon exchange terms, photon-Z interference terms and pure Z exchange terms respectively. Structure function \tilde{F}_2 is the dominant contribution to the cross section, $x\tilde{F}_3$ becomes important at high Q^2 and \tilde{F}_L is sizable only at high y. In the framework of pQCD the structure functions are directly related to the PDFs, i.e. in leading order (LO) F_2 is the weighted momentum sum of quark and anti-quark distributions, $F_2 \approx$ 189 $x \sum e_q^2(q+\overline{q}), xF_3$ is related to their difference, $xF_3 \approx x \sum 2e_q a_q (q-\overline{q})$ q (where a_q is the axial-vector quark coupling and e_q the quark electric charge) and F_L vanishes. At higher orders, terms related to the gluon density distribution $(\alpha_s g)$ appear, in particular F_L is strongly related to the low-x gluon. The inclusive CC ep cross section can be expressed in terms of another set of structure functions and in LO the e^+p and e^-p cross sections are sensitive to different quark flavour densities:

$$e^{+}: \ \sigma_{CC}^{e^{+}p} \approx x[\overline{u} + \overline{c}] + (1 - y)^{2}x[d + s]$$

$$e^{-}: \ \sigma_{CC}^{e^{-}p} \approx x[u + c] + (1 - y)^{2}x[\overline{d} + \overline{s}].$$
(3)

tions are obtained by convoluting the PDFs with the respective coefficient functions (hard process matrix elements). The treatment of heavy charm and beauty quark production is a crucial point in these calculations and several schemes exist:

In the Fixed Flavour Number (FFN) scheme [38–40] only the gluon and the light quarks are considered as partons within the proton and massive quarks (with mass m_h) are produced perturbatively in the final state. The lowest order process is the fusion of a gluon in the proton with a boson from the lepton to produce a heavy quark and an antiquark. The modern series of PDFs that use this scheme as default are ABM and JR PDF groups.

207

208

209

210

In the Zero-Mass Variable Flavour Number (ZM-VFN) scheme [41] the heavy quark densities are included in the proton for Q^2 values above a threshold $\sim m_h^2$ and are treated as massless in both the initial and final states. The lowest order process is the scattering of a heavy quark in the proton with the lepton via (electroweak) boson exchange. This scheme is expected to be reliable only in the region $Q^2 \gg m_h^2$. This is the scheme that had been used in the past by PDF groups.

In the General-Mass Variable-Flavour Number (GM-VFN)22 scheme [42] heavy quark production is treated for $Q^2 \le 273$ m_h^2 in the FFN scheme and for $Q^2 \gg m_h^2$ in a fully massive scheme. The modern series of PDF groups that use 275 this scheme are MSTW, CT(CTEQ), NNPDF, and HER- 276 APDF.

22

222

223

229

230

232

234

236

230

240

241

243

244

245

248

250

252

253

257

259

261

264

266

268

269

270

271

All three schemes are available in HERAFitter. In the following the implemented variants are briefly discussed.

FFN scheme: In HERAFitter this scheme can be accessed via the QCDNUM implementation or through the interface to the open-source code OPENQCDRAD (as implemented by the ABM group) [43]. The latter implementation also includes the running mass definition of the heavy quark mass [44]. The running mass scheme has the advantage of reducing the sensitivity of the DIS cross sections to higher order corrections, and improving the theoretical precision of the mass definition. In QCDNUM, the calculation of the heavy quark contributions to DIS structure functions are available at Next-to-Leading-Order (NLO) and only electromagnetic exchange contributions are taken into account. In the ABM implementation the heavy quark² contributions to CC structure functions are available and, for the NC case, the QCD corrections to the massive are provided at the best currently known approximation [45].

ZM-VFN scheme: The scheme is available for the DIS structure function calculation via interface to the QCDNUM package.

GM-VFN Thorne-Roberts scheme: The Thorne-Roberts (TR) scheme [46] was designed to provide a smooth transition from the massive FFN scheme at low scales $Q^2 < m_h^2$ to the massless ZM-VFNS scheme at high scales $^{\tiny 300}$ $Q^2 \gg m_h^2$. However, the original version was technically difficult to implement beyond NLO, and was updated to the TR' scheme [47] which is simpler (and closer to the ACOT-scheme, see below). There are two different variants of the TR' schemes: TR' standard (as used in MSTW PDF sets [6, 47]) and TR' optimal [48], with a smoother transition across the heavy quark threshold region. Both of these variants are accessible within the HERAFitter package at LO, NLO and NNLO.

GM-VFN ACOT scheme: The Aivazis-Collins-Olness-Tung scheme belongs to the group of VFN factorisation schemes that use the renormalization method of Collins-Wilczek-Zee (CWZ) [49]. This scheme unifies the low scale Q^2 < m_h^2 and high scale $Q^2 > m_h^2$ regions; thus, it provides a smooth interpolation across the full energy regime. It is built upon the massive factorization theorem by Collins [49] to incorporate the heavy quark masses for $Q^2 > m_h^2$; hence, it can be consistently applied order by order in the perturbation theory. Within the ACOT package, different variants of the ACOT scheme are available: ACOT-Full,

S-ACOT- χ , ACOT-ZM, $\overline{\rm MS}$ at LO and NLO. For the longitudinal structure function higher order calculations are also available. The ACOT-Full implementation takes into account the quark masses and it reduces to ZM MS scheme in the limit of masses going to zero, but it has the disadvantage that it is computationally intensive (addressed in section 3).

Calculations of higher-order electroweak corrections to 280 DIS scattering at HERA are available in HERAFitter, performed in the on-shell scheme where the gauge bosons masses M_W and M_Z are treated symmetrically as basic parameters together with the top, Higgs and fermion masses. These electroweak corrections are based on the EPRC package [50]. The code provides the running of α using the most recent parametrisation of the hadronic contribution to Δ_{α} [51], as well as an older version from Burkhard [52].

288 2.2 Drell Yan processes in pp or $p\bar{p}$ collisions

The Drell Yan (DY) process provides further valuable information about PDFs. In pp and $p\bar{p}$ scattering, the Z/γ and 291 W production probe bi-linear combinations of quarks. Com-Wilson coefficients at Next-to-Next-to Leading Order (NNLO) lementary information on the different quark densities can be obtained from the W asymmetry (d, u) and their ratio, the ratio of the W and Z cross sections (sensitive to the flavor 295 composition of the quark sea, in particular to the s density), and associated W and Z production with heavy quarks (sensitive to s and c quark densities).

> Presently, the predictions for Drell-Yan and W and Z production are known to NNLO and W, Z in association with heavy flavour quarks are known to NLO. There are several possibilities for obtaining the theoretical predictions for 302 DY production in HERAFitter. At LO an analytic calculation is available within the package and described below:

The LO DY triple differential cross section in invariant mass M, boson rapidity v and Centre-of-Mass lepton Scattering (CMS) angle $\cos \theta$, for NC, can be written as [53, 54]:

$$\frac{d^3\sigma}{dMdyd\cos\theta} = \frac{\pi\alpha^2}{3MS} \sum_q P_q \left[f_q(x_1, Q^2) f_{\bar{q}}(x_2, Q^2) + (q \leftrightarrow \bar{q}) \right], \tag{4}$$

where *S* is the squared CMS beam energy, $x_{1,2} = \frac{M}{\sqrt{S}} \exp(\pm y)$, $f_q(x_1, Q^2)$ is the parton number density, and P_q is a partonic

The expression for CC scattering has a simpler form:

$$\frac{d^{3}\sigma}{dMdyd\cos\theta} = \frac{\pi\alpha^{2}}{48S\sin^{4}\theta_{W}} \frac{M^{3}(1-\cos\theta)^{2}}{(M^{2}-M_{W}^{2}) + \Gamma_{W}^{2}M_{W}^{2}}$$

$$\sum_{q_{1},q_{2}} V_{q_{1}q_{2}}^{2} f_{q_{1}}(x_{1},Q^{2}) f_{q_{2}}(x_{2},Q^{2}), \tag{5}$$

where $V_{q_1q_2}$ is the CKM quark mixing matrix and M_W and 349 3 Computational Techniques Γ_W are the W boson mass and decay width.

ically.

in terms of the computing power and time, and k-factor or 358 demanding higher-order calculations into iterative fits therefast grid techniques must be employed (see section 3 for de- 359 fore is not possible. Relying on the fact that a full repetition tails), interfaced to programs such as MCFM [55-57], avail- 360 of the perturbative calculation for arbitrary changes in inable for NLO calculations, or FEWZ [58] and DYNNLO $^{\rm 361}$ [59] for NLO and NNLO.

2.3 Jet production in ep and pp or $p\bar{p}$ collisions

Jet production at high transverse momentum is sensitive to the high-x gluon PDF (see e.g. [6]) and can thus increase the 368 precision of the gluon PDF determination, which is partic- 369 ularly important for the Higgs production and searches for 370 new physics. Jet production cross sections are only currently 371 known to NLO, although NNLO calculations are now quite 372 advanced [60-62]. Within HERAFitter programs such MCFM 373 and NLOJet++ [63, 64] may be used for the calculation of 374 jet production. Similarly to the DY case, the calculation is 375 very demanding in terms of computing power. Therefore, to 376 allow the possibility to include ep, pp or $p\bar{p}$ jet cross section 377 measurements in QCD fits to extract PDFs and α_s fast grid 378 techniques are used (see section 3).

2.4 Top-quark production in pp and $p\bar{p}$ collisions

Top-quark pairs $(t\bar{t})$ are produced at hadron colliders dominantly via gg fusion and $q\bar{q}$ annihilation. Measured $t\bar{t}$ cross 386 sections provide additional constraints in particular on the 387 gluon density at medium to high values of x, on $\alpha_{\rm s}$ and on $_{\rm 388}$ the top-quark mass, m_t . Single top quarks are produced via 389 electroweak interactions and single-top cross sections can 390 be used, for example, to probe the ratio of the u and d densities in the proton as well as the b-quark PDF. Precise pre- 392 dictions for the total $t\bar{t}$ cross section have become available to full NNLO recently [65]. They can be used within 394 HERAFitter via an interface to the program HATHOR [66]. 395 Differential $t\bar{t}$ cross sections and predictions for single-top 396 production can be used with HERAFitter at NLO accuracy 397 from MCFM [57, 67–70] in combination with fast grid techniques.

The simple form of these expressions allows the calcu- 350 More precise measurements require theoretical predictions lation of integrated cross sections without the use of Monte- 351 with equally improved accuracy in order to maximize their Carlo (MC) techniques which often introduce statistical fluc- 352 impact in PDF fits. Perturbative calculations, however, get tuations. In both NC and CC expressions PDFs factorise as 353 more and more involved with increasing number of Feynfunctions dependent only on boson rapidity y and invariant 354 man diagrams at the each higher order. Nowadays even the mass M, while the integral in $\cos \theta$ can be computed analyt- 355 most advanced perturbative techniques in combination with recent computing hardware do not lead to sufficiently small The NLO and NNLO calculations are highly demanding 357 turn-around times. The direct inclusion of computationally put parameters is not necessary at each iteration step, two methods have been developed to resolve this problem: the techniques of k-factors and fast grids. Both are available in HERAFitter and described in the following.

k-factor technique:

381

382

383

k-factors are defined as the ratio of the prediction of a higher-order (slow) pQCD calculation to a lower-order (fast) calculation. Because the k-factors depend on the phase space probed by the measurement they have to be stored into a table in dependence of the relevant kinematic variables. Before the start of a fitting procedure the table of k-factors has to be computed once for a given PDF with the time consuming higher-order code. In subsequent iteration steps the theory prediction is derived from the fast lower-order calculation multiplied by the pre-tabulated k-factors.

However, this procedure neglects the fact that the k-factors are process dependent and, as a consequence, they have to be re-evaluated for the newly determined PDF at the end of the fit in order to check for any changes. Usually, the fit is repeated until input and output k-factors have converged. In summary, this technique avoids to iterate the higher-order calculation at each step, but still requires a couple of repetitions depending on the analy-

- In DIS, the special case occurs of accurate but computationally slow calculations of the heavy flavour schemes. For this purpose, "FAST" heavy flavour schemes are implemented in HERAFitter with kfactors defined as the ratio of calculations at the same perturbative order but for massive vs. massless quarks, e.g. NLO (massive)/NLO (massless). In the HERAFitter implementation, these k-factors are calculated only for the starting PDF and hence, the "FAST" heavy flavour schemes should only be used for quick checks, i.e. full heavy flavour schemes are recommended (with an exception of ACOT case where, due to long computation time, the k-factors are used in the default settings).

This "FAST" method was employed in the QCD fits 429 to the HERA data shown in Fig. 4. In this case, the 430 ACOT scheme was used as a cross check of the cen- 431 tral results [29].

432

433

434

435

437

438

439

442

443

444

446

447

448

449

455

456

Fig. 4 Overview showing the u- and d-valence, the total sea (scaled), and gluon (scaled) PDFs of the NLO HERAPDF1.0 set with their total uncertainty at the scale of $Q^2=10~{\rm GeV}^2$ obtained using the TR' ⁴⁵² scheme and compared to the PDFs obtained with the ACOT scheme 453 using the k-factor technique (red).

Fast grid technique:

405

407

408

409

410 411

412

413

414

416

417

418

419

421

422

423

426 427

428

400

401

402

403

Fast grid techniques exploit the fact that iterative PDF 458 fitting procedures do not impose completely arbitrary 459 changes to the types and shapes of the parameterised 460 functions that represent each PDF. Instead, it can be as- 461 sumed that a generic PDF can be approximated by a 462 set of interpolating functions with a sufficient number 463 of strategically well-chosen support points. The quality, 464 i.e. the accuracy of this approximation, can be tested and 465 optimised by a number of means, the simplest one be- 466 ing an increase in the number of support points. Ensur- 467 ing an approximation bias that is negligibly small for all 468 practical purposes this method can be used to perform 469 the time consuming higher-order calculation (see Eq. 1) 470 only once for the set of interpolating functions. The rep- 471 etition of a cross section evaluation for a particular PDF 472 set then is very fast and implies only sums over the set 473 of interpolators multiplied by factors depending on the 474 respective PDF. The described approach applies equally 475 to processes involving one or two hadrons in the initial 476 state as well as to the renormalisation and factorisation 477 scale dependence in the convolution of the PDFs with 478 the partonic cross section. This technique was pioneered in the fastNLO project [71] 480

to facilitate the inclusion of notoriously time consuming 481

jet cross sections at NLO into PDF fits. The APPLGRID [72] package extended first a similar methodology to DY production. While differing in their interpolation and optimisation strategies, both packages construct tables with grids for each bin of an observable in two steps: In the first step the accessible phase space in the parton momentum fractions x and the renormalisation and factorisation scales μ_R and μ_F is explored in order to optimize the table size. The second step consists of the actual grid construction and filling for the requested observables. Higher-order cross sections can then be restored very efficiently from the preproduced grids while varying externally provided PDF sets, μ_R and μ_F , or the strong coupling $\alpha_s(Q)$. The approach can in principal be extended to arbitrary processes, but requires to establish an interface between the higher-order theory programs and the fast interpolation frameworks. Work in that direction is ongoing for both packages. They are described in some more detail in the following:

- The fastNLO project [71] has been interfaced to the NLOJet++ program [63] for the calculation of jet production in DIS [73] as well as 2- and 3-jet production in hadron-hadron collisions at NLO [64, 74]. To demonstrate the applicability to higher-orders, threshold corrections at 2-loop order, which approximate the NNLO for the inclusive jet cross section, have been included into the framework as well [75] following Ref. [76].

The latest version of fastNLO [77] allows creation of tables where renormalisation and factorisation scales can be chosen freely as a function of two pre-defined observables, e.g. jet transverse momentum p_{\perp} and Qfor DIS. fastNLO can be obtained from [78], where numerous precalculated grid tables for jet cross sections can be downloaded as well.

Dedicated fastNLO libraries and tables required for comparison to particular datasets are included in the HERAFitter package. In this case, the evaluation of the strong coupling constant is taken consistently with the PDF evolution from the QCDNUM code. The interface to the fastNLO tables from within HERAFitter was used in a recent CMS analysis, where the impact on the extraction of the PDFs from the inclusive jet cross section is investigated [34]. The influence on the gluon density by the CMS inclusive jet data is illustrated in Fig. 5.

The APPLGRID package [72], which is also available from [79], in addition to the jet cross sections from NLOJet++ in $pp(\bar{p})$ and DIS processes, implements the calculations of DY production. The lookup tables (also called grids) can be generated with modified versions of the MCFM parton level generator for DY [55–57]. Alternative values of the strong

Fig. 5 The gluon density as a function of x as derived from HERA inclusive DIS data alone (cyan) and in combination with CMS inclusive jet data from 2011 (blue hatched), where bands represent the total uncertainty of the PDFs. The PDFs are shown at the starting scale $Q^2 = 1.9 \text{ GeV}^2$.

coupling constant as well as a posteriori variation of the renormalisation and factorisation scales can be freely chosen in the calculation of the theory predictions with the APPLGRID tables. For NNLO predictions in HERAFitter *k*-factors can be applied.

The HERAFitter interface to APPLGRID was used by the ATLAS collaboration to extract the strange quark density of the proton from *W* and *Z* cross sections [30]. An illustration of ATLAS PDFs extracted using the *k*-factors is shown in Fig. 6 together with the comparison to global PDF sets CT10 [7] and NNPDF2.1 [8].

4 Fit Methodology

485

491

493

506

There is a considerable number of choices available when performing a QCD fit analysis (i.e. functional parametrisation form, heavy quarks masses, alternative theoretical calculations, method of minimisation, interpretation of uncertaintes etc.). It is desirable to be able to discriminate or quantify the effect of the chosen ansatz, ideally within a common framework, and HERAFitter is optimally designed for such sets. The methodology employed by HERAFitter relies on a flexible and modular framework that allows for independent integration of the state-of-the-art techniques, either related to the inclusion of a new theoretical calculation, or to new approaches to treat uncertainties.

In this section we briefly describe the available options 528 in HERAFitter ranging from the functional form used to 529 parametrise PDFs and the choice of the form of the χ^2 function, to different methods to assess the experimental uncertainties on extracted PDFs. 532

Fig. 6 The strange anti-quark density versus x for the ATLAS epWZ free sbar NNLO fit (magenta band) compared to predictions from NNPDF2.1 (blue hatched) and CT10 (green hatched) at $Q^2 = 1.9 \text{ GeV}^2$.

freely chosen in the calculation of the theory predic- 512 In addition, as an alternative approach to a complete QCD tions with the APPLGRID tables. For NNLO predic- 513 fit, the Bayesian reweighting method, which is also available tions in HERAFitter *k*-factors can be applied. 514 in the HERAFitter, is described in this section.

515 4.1 Functional Forms for PDF parametrisation

using the k-factors is shown in Fig. 6 together with $_{516}$ The PDFs are parametrised at a starting scale which is chothe comparison to global PDF sets CT10 [7] and $_{517}$ sen by the user. Various functional forms can be tested using NNPDF2.1 [8].

Standard Polynomials: The term refers to using a simple polynominal to interpolate between the low and high *x* regions:

$$xf(x) = Ax^{B}(1-x)^{C}P_{i}(x),$$
 (6)

The standard polynominal form is most commonly used by PDF groups. The parametrised PDFs at HERA are the valence distributions xu_{ν} and xd_{ν} , the gluon distribution xg, and the u-type and d-type sea $x\bar{U}$, $x\bar{D}$, where $x\bar{U}=x\bar{u}$, $x\bar{D}=x\bar{d}+x\bar{s}$ at the starting scale chosen below the charm mass threshold. The $P_i(x)$ for the HERAPDF [29] style takes the simple Regge-inspired form $(1+\varepsilon\sqrt{x}+Dx+Ex^2)$ with additional constraints relating to the flavour decomposition of the light sea. For the CTEQ style, $P_i(x)$ takes the form $e^{a_3x}(1+e^{a_4}x+e^{a_5}x^2)$. QCD number and momentum sum-rules are used to determine the normalisations A for the valence and gluon distributions. The sum-rules can be evaluated analytically.

Log-Normal Distributions: A bi-log-normal distribution to parametrise the x dependence of the PDFs is also available in HERAFitter. This parametrisation is motivated by multiparticle statistics [25]. The following functional form can be used:

$$xf(x) = x^{p-b\log(x)}(1-x)^{q-\log(1-x)}.$$
 (7)

This function can be regarded as a generalisation of the standard functional form described above. In order to satisfy the QCD sum rules this parametric form requires numerical integration.

Chebyshev Polynomials:

533

534

535

536

538

540

541

543

545

547

548

549

551

552

554

556

557

558

561

562

563

566

568

A flexible Chebyshev polynomial based parametrisation can be used for the gluon and sea densities. The polynomials use $\log x$ as an argument to emphasize the low x behavior. The parametrisation is valid for $x > x_{\min} =$ 1.7×10^{-5} . The PDFs are multiplied by a (1-x) term to ensure that they vanish as $x \to 1$. The resulting parametric form is

$$xg(x) = A_g (1-x) \sum_{i=0}^{N_g-1} A_{g_i} T_i \left(-\frac{2\log x - \log x_{\min}}{\log x_{\min}} \right), (8)$$

$$xS(x) = (1-x)\sum_{i=0}^{N_S-1} A_{S_i} T_i \left(-\frac{2\log x - \log x_{\min}}{\log x_{\min}} \right). \quad (9)$$

Here the sum runs over *i* up to $N_{g,S} = 15$ order Chebyshev polynomials of the first type T_i for the gluon, g, and sea-quark, S, density, respectively. The normalisation A_g is given by the momentum sum rule. The advantages of this parametrisation are that the momentum sum rule can be evaluated analytically and that for N > 5 the fit quality is already similar to the standard Regge-inspired parametrisation with a similar number of parameters.

Such study of the parametrisation uncertainty at low Bjorken χ^2 representation $x \le 0.1$ for PDFs was presented in [80]. Figure 7 shows that the accuracy of the HERA data allows the gluon density to be determined in the kinematic range of $0.0005 \stackrel{571}{\lesssim}$ $x \le 0.05$ with a reduced parametrisation uncertainty. An additional regularisation prior leads to a significantly reduced uncertainty for $x \le 0.0005$.

External PDFs: provides the possibility to access external PDF sets, which can be used to construct theoretical predictions for the various processes implemented in HERAFitter. This is possible via an interface to LHAPDF [26, 27] which provides access to the global PDF sets avail- 579 able at LO, NLO or NNLO evolved either locally through 580 the HERAFitter or taken as provided by the LHAPDF 581 grids. Figure 8 is produced with the drawing tools available in HERAFitter and illustrates the PDFs accessed 583 from LHAPDF.

Fig. 7 Gluon PDF at the scale of $Q^2 = 1.9 \text{ GeV}^2$ for various values of the length-prior weight α [80] using the Chebyshev parametrisation expanded to the 15th order.

Fig. 8 Gluon density as extracted by various PDF groups at the scale of $Q^2 = 2$ GeV², plotted using the drawing tools from HERAFitter.

The PDF parameters are extracted from a χ^2 minimization process. For experimental uncertainties there are various forms to represent the χ^2 function, e.g. using a covariance ma-574 trix or representing them by nuisance parameters. In addi-575 tion, there are various methods to deal with correlated sys-576 tematic (or statistical) uncertainties (e.g. different scaling options, etc.). Here we summarise the options available in HERAFitter.

Covariance Matrix Representation: For a data point μ_i with a corresponding theory prediction m_i , the χ^2 function for the case when experimental uncertainties are given as a covariance matrix $C_{i,j}$ over data bins i and *j*, can be expressed in the following form:

$$\chi^{2}(m) = \sum_{i,j} (m_{i} - \mu_{i}) C_{ij}^{-1}(m_{j} - \mu_{j}).$$
 (10)

594

600

603

607

612

614

621

623

625

626

627

628

The covariance matrix can be decomposed into statis- 629 tical, uncorrelated and correlated systematic contribu- 630 tions:

$$C_{ij} = C_{ij}^{stat} + C_{ij}^{uncor} + C_{ij}^{sys}. (11)$$

This representation can not single out the effect of a particular source of systematic uncertainty.

Nuisance Parameters Representation:

$$\chi^{2}(m,b) = \sum_{i} \frac{\left[\mu_{i} - m_{i} \left(1 - \sum_{j} \gamma_{j}^{i} b_{j}\right)\right]^{2}}{\delta_{i,\text{unc}}^{2} m_{i}^{2} + \delta_{i,\text{stat}}^{2} \mu_{i} m_{i} \left(1 - \sum_{j} \gamma_{j}^{i} b_{j}\right)} + \sum_{j} b_{j}^{2}. \quad (12)$$

Here μ_i is the measured central value at a point i with relative statistical $\delta_{i,\mathrm{stat}}$ and relative uncorrelated systematic uncertainty $\delta_{i,\mathrm{unc}}$. Further, γ^i_j quantifies the sensitivity of the measurement μ_i at the point i to the correlated systematic source j. The function χ^2 depends in addition on the set of systematic nuisance parameters b_j . This definition of the χ^2 function assumes that systematic uncertainties are proportional to the central prediction values (multiplicative errors), whereas the statistical uncertainties scale with the square root of the expected number of events. The systematic shift nuisance parameters b_j as well as the PDF parameters are free parameters of the fit. The fit determines the best PDF parameters to the data taking into account correlated systematic shifts of the data.

Mixed Form: It can happen that various parts of the systematic and statistical uncertainties are stored in different forms. A situation can be envisaged when the correlated systematic experimental uncertainties are provided as nuisance parameters, but the statistical bin-to-bin correlations are given in the form of a covariance matrix. HERAFitter offers the possibility to include such information, when provided, as well as any other mixed form of treating statistical, uncorrelated and correlated systematic uncertainties.

4.3 Treatment of the Experimental Uncertainties

Three distinct methods for propagating experimental uncertainties to PDFs are implemented in HERAFitter and reviewed here: the Hessian, Offset, and Monte Carlo method.

667

Hessian method: The technique developed by [81] presents an estimate of PDF uncertainties reflecting the experimental precision of data used in the QCD fit by examining the behaviour of χ^2 in the neighborhood of the minimum. This is known as the Hessian or error matrix method. The Hessian matrix is built by the second derivatives of χ^2 at the minimum. The Hessian matrix is diagonalised through an iterative procedure and its PDF eigenvectors are obtained, which correspond to the orthogonal sources of uncertainties on the obtained PDF.

Offset method:

Another method to propagate the correlated systematic experimental uncertainties from the measurements to PDFs [82] is Offset method. It uses also the χ^2 function for the central fit for which only uncorrelated uncertainties are taken into account to get the best PDF parameters. The goodness of fit can no longer be judged from the χ^2 since correlated uncertainties are ignored. The correlated systematic uncertainties of the data are then used to estimate the errors on the PDF parameters as follows. The cross section is varied by one sigma shift from the central value for each systematic source and the fit is performed. This is done for both positive and negative one sigma shifts. After this has been done for all sources the resulting deviations of each of these fits from the central PDF parameters are added in quadrature.

In most cases, the uncertainties estimated through the offset method are larger than those from the Hessian method, as the offset method does not use the information on correlated systematic uncertainties optimally.

Monte Carlo method: The PDF uncertainties can be estimated using a Monte Carlo technique [83, 84]. The method consists in preparing replicas of data sets by allowing the central values of the cross sections to fluctuate within their systematic and statistical uncertainties taking into account all point-to-point correlations. The preparation of the data is repeated for large N > 100 times) and for each of these replicas a QCD fit is performed to extract the PDF set. The PDF central values and uncertainties are estimated using the mean values and standard deviations over the replicas.

The MC method was checked against the standard error estimation of the PDF uncertainties as used by the Hessian method. A good agreement was found between the methods when employing for the MC approach the assumption that uncertainties (statistical and systematic) follow Gaussian distribution [25]. This comparison is illustrated in Fig. 9. Similar findings were observed also in the MSTW global analysis [85].

Usage of the nuisance parameters for the experimental uncertainty treatment in QCD fits is quite common and has an advantage of the flexible assessment of such uncertainties on PDFs. Generally, the experimental uncertainties are symmetrised when QCD fits are performed, however often the provided uncertainties are rather asymmetric. HERAFitter provides the possibility to use asymmetric systematic uncertainties. The technical implementation relies on the assumption that asymmetric uncertainties can be described by a parabolic function, as given below:

$$f_i(b_j) = \omega_j^i b_j^2 + \gamma_j^i b_j, \tag{13}$$

Fig. 9 Comparison between the standard error calculations as employed by the Hessian approach (black lines) and the MC approach assuming Gaussian distribution for uncertainty distributions, shown here for each replica (green lines) together with the evaluated standard deviation (red lines).

where the coefficients ω_i^i , γ_i^i are defined as up and down shifts of the cross sections to a nuisance parameter, S_{ii}^{\pm} ,

$$\omega_{j}^{i} = \frac{1}{2} \left(S_{ij}^{-} + S_{ij}^{+} \right), \qquad \gamma_{j}^{i} = \frac{1}{2} \left(S_{ij}^{-} + S_{ij}^{+} \right)$$
 (14)

ties, such that the expected cross section is adjusted to be 706 ical prediction obtained with the k-th PDF replica:

$$m_i(1-\sum_j \gamma^i_j b_j) \rightarrow m_i \left(1-\sum_j b_j(\omega^i_j b_j + \gamma^i_j)\right).$$
 (15)

The minimisation is performed using fixed number of iterations (typically ten), with rapid convergence.

4.4 Treatment of the Theoretical Input Parameters

The results of a QCD fit depend not only on the input data but also on the input theoretical ansatz, which is also uncer-713 The above mentioned features make HERAFitter a powertain. Nowadays, modern PDF sets try to address the impact 714 ful project that encapsulates state of the art developments on of the choices of theoretical parameters by providing alter- 715 reaching the ultimate experimental precision. native PDFs with different choices of the mass of the charm 716 quarks m_c , mass of the bottom quarks m_b and the value of 717 formed by iterative χ^2 minimisation, is performance in terms $\alpha_s(M_Z)$, etc. Another important input is the choice of the 718 of how long a calculation takes for each given data point. functional form for the PDFs at the starting scale and indeed 719 The performance of the HERAFitter code is greatly imthe value of the starting scale itself. HERAFitter provides a 720 proved with several special built-in options including the kplatform in which such choices can readily be varied within 721 factor techniques (see section 3) and the grid techniques for a common framework.

⁶⁸² 4.5 Bayesian Reweighting Techniques

683 As an alternative to a complete QCD fit, the reweighting method (Bayesian Reweighting) is available in HERAFitter. Because no fit is performed, the method provides a fast estimate of the impact of new data. The original suggestion [83] was developed by the NNPDF collaboration [86, 87] and later extended [85] to work not only on the NNPDF replicas, but also on the eigenvectors provided by most PDF groups.

The Bayesian Reweighting technique uses the PDF probability distributions which are modified with weights to account for the difference between theory predictions and new data. In the NNPDF method the PDFs are constructed as ensembles of N_{rep} parton distribution functions and observables $\mathcal{O}(PDF)$ are conventionally calculated from the average of the predictions obtained from the ensemble $\langle \mathcal{O}(PDF) \rangle =$ $\frac{1}{N_{\text{rep}}}\sum_{k=1}^{N_{\text{rep}}}\mathscr{O}(\text{PDF}_k)$. In the case of PDF uncertainties provided by standard Hessian eigenvector error sets, this can be achieved by creating the k-th random replica by introducing random fluctuations around the central PDF set.

As a next step, the initial PDF probability distributions are updated by applying weights w_k , calculated as:

$$w_k = \frac{(\chi_k^2)^{\frac{1}{2}(N_{\text{data}} - 1)} e^{-\frac{1}{2}\chi_k^2}}{\frac{1}{N_{\text{rep}}} \sum_{k=1}^{N_{\text{rep}}} (\chi_k^2)^{\frac{1}{2}(N_{\text{data}} - 1)} e^{-\frac{1}{2}\chi_k^2}},$$
(16)

where N_{data} is the number of new data points, k denotes For this case the definition of the χ^2 from Eq. 12 is extended ₇₀₄ the specific replica for which the weight is calculated and χ^2_k with the parabolic approximation for asymmetric uncertain- $_{705}$ is a difference between a given data point y_i and its theoret-

$$\chi^{2}(y, PDF_{k}) = \sum_{i,j=1}^{N_{\text{data}}} (y_{i} - y_{i}(PDF_{k})) \sigma_{ij}^{-1}(y_{j} - y_{j}(PDF_{k}))$$
(17)

The new, reweighted PDFs commonly are chosen to be 709 based upon a smaller number of PDF sets compared to the input because replicas that are incompatible with the data are discarded in order to create a more stream-lined PDF set.

712 4.6 Performance Optimisation

An important factor for a feasible QCD fit which is per-722 the fast calculation of cross sections of particular processes

for arbitrary sets of PDFs. There are also cache options, fast evolution kernels, and usage of the OpenMP (Open Multi-Processing) interface which allows parallel applications of some of the heavy flavour scheme theory predictions in DIS.

5 Alternative to DGLAP formalisms

Different approaches that are alternatives to the DGLAP formalism can be used to analyse DIS data in HERAFitter. These include several different dipole models and the use of transverse momentum dependent, or unintegrated PDFs, uPDFs. These approaches are discussed below.

5.1 DIPOLE models

742

752

753

754

756

757

759

761

762

The dipole picture provides an alternative approach to vir- 774 tual photon-proton scattering at low x which allows the de- 775 scription of both inclusive and diffractive processes. In this 776 approach, the virtual photon fluctuates into a $q\bar{q}$ (or $q\bar{q}g$) dipole which interacts with the proton [88]. The dipoles can be viewed as quasi-stable quantum mechanical states, which have very long life time $\propto 1/m_p x$ and a size which is not changed by scattering. The dynamics of the interaction are embedded in the dipole scattering amplitude.

Several dipole models which assume different behavior of the dipole-proton cross sections are implemented in uration model [21], the colour glass condensate approach to the high parton density regime called the Iancu-Itakura-Munier (IIM) dipole model [22] and a modified GBW model which takes into account the effects of DGLAP evolution called the Bartels-Golec-Kowalski (BGK) dipole model [23].

GBW model: In the GBW model the dipole-proton cross section $\sigma_{\rm dip}$ is given by

$$\sigma_{\text{dip}}(x, r^2) = \sigma_0 \left(1 - \exp\left[-\frac{r^2}{4R_0^2(x)} \right] \right), \tag{18}$$

where r corresponds to the transverse separation between the quark and the antiquark, and R_0^2 is an x-dependent scale parameter which represents the spacing of the gluons in the proton. $R_0^2(x) = (x/x_0)^{\lambda}$ is called the saturation radius. The fitted parameters are the cross-section normalisation σ_0 and x_0 and λ . This model gives exact Bjorken scaling when the dipole size r is small.

IIM model: The IIM model assumes an improved expression for the dipole cross section which is based on the Balitsky-Kovchegov equation [89]. The explicit formula for $\sigma_{\rm dip}$ can be found in [22]. The fitted parameters are an alternative scale parameter \tilde{R} , x_0 and λ .

BGK model: The BGK model modifies the GBW model by taking into account the DGLAP evolution of the gluon density. The dipole cross section is given by

$$\sigma_{\rm dip}(x, r^2) = \sigma_0 \left(1 - \exp\left[-\frac{\pi^2 r^2 \alpha_{\rm s}(\mu^2) x g(x, \mu^2)}{3\sigma_0} \right] \right). \quad (19)$$

The factorization scale μ^2 has the form $\mu^2 = C_{bgk}/r^2 +$ μ_0^2 . This model relates to the GBW model using the idea that the spacing R_0 is inverse to the gluon density. The gluon density parametrized at some starting scale Q_0^2 by Eq. 6 is evolved to larger scales using DGLAP evolution. The fitted parameters for this model are σ_0 , μ_0^2 and three parameters for the gluon density: A_g , λ_g , C_g . The parameter C_{bgk} is fixed: $C_{bgk} = 4.0$.

BGK model with valence quarks:

771

773

The dipole models are valid in the low-x region only, where the valence quark contribution is small. The new HERA F_2 data have a precision which is better than 2%. Therefore, in HERAFitter the contribution of the valence quarks can be taken from the PDF fits and added to the original BGK model [90, 91], this is uniquely possible within the HERAFitter framework.

5.2 Transverse Momentum Dependent PDFs with CCFM

780 QCD calculations of multiple-scale processes and complex final-states require in general transverse-momentum dependent (TMD) [92], or unintegrated, parton density and par-HERAFitter: the Golec-Biernat-Wüsthoff (GBW) dipole sat₇₈₃ ton decay functions [93–101]. TMD factorization has been 784 proven recently [92] for inclusive DIS. For special processes in hadron-hadron scattering, like heavy flavor or vector boson (including Higgs) production, TMD factorization has also been proven in the high-energy limit (small x) [102– 1041

> In the framework of high-energy factorization [102, 105, 106] the DIS cross section can be written as a convolution in both longitudinal and transverse momenta of the TMD parton density function $\mathcal{A}(x, k_t, \mu)$ with off-shell partonic matrix elements, as follows

$$\sigma_{j}(x,Q^{2}) = \int_{x}^{1} dz \int d^{2}k_{t} \ \hat{\sigma}_{j}(x,Q^{2},z,k_{t}) \ \mathscr{A}(z,k_{t},\mu)$$
 (20)

with the DIS cross sections σ_j , (j = 2, L) related to the structure functions F_2 and F_L . The hard-scattering kernels $\hat{\sigma}_j$ of Eq. (20), are k_t -dependent and the evolution of the transverse momentum dependent gluon density \mathscr{A} is obtained by 793 combining the resummation of small-x logarithmic contributions [107–109] with medium-x and large-x contributions to parton splitting [11, 14, 15] according to the CCFM evolution equation [19, 110, 111].

The factorization formula (20) allows resummation of logarithmically enhanced $x \rightarrow 0$ contributions to all orders in 799 perturbation theory, both in the hard scattering coefficients

and in the parton evolution, taking fully into account the dependence on the factorization scale μ and on the factorization scheme [112, 113].

The cross section σ_i , (j = 2, L) is calculated in a FFN 842 scheme, where only the boson-gluon fusion process ($\gamma^* g^* \rightarrow {}_{843}$ $q\bar{q}$) is included. The masses of the quarks are explicitly included with the light and heavy quark masses being free parameters. In addition to $\gamma^* g^* \to q \bar{q}$, the contribution from 846 valence quarks is included via $\gamma^* q \to q$ as described later by using a CCFM evolution of valence quarks [114, 115].

CCFM Grid Techniques:

811

812

813

814

815

816

817

818

819

820

821

823

824

826

828

829

830

831

832

833

834

836

837

838

839

840

841

$$x\mathscr{A}(x,k_t,p) = x \int dx' \int dx'' \mathscr{A}_0(x') \widetilde{\mathscr{A}}(x'',k_t,p) \, \delta(x'x''-x)$$
$$= \int dx' \mathscr{A}_0(x') \cdot \frac{x}{x'} \, \widetilde{\mathscr{A}}\left(\frac{x}{x'},k_t,p\right) \tag{21}$$

with k_t being the transverse momentum of the propaga- 861 tor gluon and p being the evolution variable.

The kernel $\tilde{\mathscr{A}}$ incorporates all of the dynamics of the 863 evolution. It is determined on a grid of $50 \otimes 50 \otimes 50$ bins 864 above 0.1 are used.

The calculation of the cross section according to Eq. (20) involves a multidimensional Monte Carlo integration which the struck parton, $x = \beta x_{IP}$. is time consuming and suffers from numerical fluctuations. This cannot be employed directly in a fit procedure involving the calculation of numerical derivatives in the search for the minimum. Instead the following procedure is applied:

$$\sigma(x,Q^2) = \int_x^1 dx_g \mathcal{A}(x_g, k_t, p) \hat{\sigma}(x, x_g, Q^2)$$
$$= \int_x^1 dx' \mathcal{A}_0(x') \cdot \tilde{\sigma}(x/x', Q^2)$$
(22)

Here, first $\tilde{\sigma}(x',Q^2)$ is calculated numerically with a Monte. With $x=x_{IP}\beta$ we can relate this to the standard DIS forstandard fit procedures.

Functional Forms for TMD parameterisation:

the following form is used:

$$x\mathcal{A}_0(x,k_t) = Nx^{-B} \cdot (1-x)^C \left(1 - Dx + E\sqrt{x}\right) \exp[-k_t^2/\sigma^2]$$
, (23)

with $\sigma^2 = Q_0^2/2$ and the free parameters N, B, C, D, E. Valence quarks are treated using the method of [114] as described in [115] with a starting distribution taken from any collinear PDF. At every scale p the flavor sum rule is fulfilled.

847 5.3 Diffractive PDFs

The CCFM evolution cannot easily be written in an ana- 848 Similarly to standard DIS, diffractive parton distributions lytic closed form. For this reason a Monte Carlo method 849 (DPDFs) can be derived from QCD fits to diffractive cross is employed, which is however time-consuming, and can-850 sections. At HERA about 10% of deep inelastic interactions not be used in a straightforward manner in a fit program. 851 are diffractive leading to events in which the interacting pro-Following the convolution method introduced in [115, 852 ton stays intact $(ep \to eXp)$. In the diffractive process the 116], the kernel $\vec{\mathcal{A}}(x'', k_l, p)$ is determined from the Montes proton appears well separated from the rest of the hadronic Carlo solution of the CCFM evolution equation, and then 854 final state by a large rapidity gap and this is interpreted as the folded with the non-perturbative starting distribution $\mathcal{A}_0(x)$ diffractive dissociation of the exchanged virtual photon to 856 produce a hadronic system X with mass much smaller than W and the same net quantum numbers as the exchanged pho-858 ton. For such processes, the proton vertex factorisation ap-(21) 859 proach is assumed where diffractive DIS is mediated by the 860 exchange of a hard Pomeron or a secondary Reggeon. The factorisable pomeron picture has proved remarkably successful in the description of most of these data.

In addition to the usual variables x, Q^2 , one must consider the squared four-momentum transfer t (the undetected in x, k_t, p . The binning in the grid is logarithmic, except 865 momentum transfer to the proton system) and the mass M_X for the longitudinal variable x where 40 bins in loga- 866 of the diffractively produced final state. In practice, the vari-rithmic spacing below 0.1, and 10 bins in linear spacing 867 able M_X is often replaced by $\beta = \frac{Q^2}{M_X^2 + Q^2 - t}$. In models based on a factorisable Pomeron, β may be viewed as the fraction 869 of the pomeron longitudinal momentum which is carried by

For the inclusive case, the diffractive cross-section can

$$\frac{d\sigma}{d\beta \, dQ^2 dx_{IP} \, dt} = \frac{2\pi\alpha^2}{\beta \, Q^4} \, \left(1 + (1 - y)^2 \right) \, \overline{\sigma}^{D(4)}(\beta, Q^2, x_{IP}, t) \quad (24)$$

where the "reduced cross-section", $\overline{\sigma}$, is defined as

$$\overline{\sigma}^{D(4)} = F_2^{D(4)} - \frac{y^2}{1 + (1 - y)^2} F_L^{D(4)} = F_T^{D(4)} + \frac{2(1 - y)}{1 + (1 - y)^2} F_L^{D(4)}.$$
(25)

Carlo integration on a grid in x for the values of Q^2 used ₈₇₂ mula. The diffractive structure functions can be expressed in the fit. Then the last step in Eq.(22) is performed with 873 as convolutions of the calculable coefficient functions with a fast numerical gauss integration, which can be used in 874 diffractive quark and gluon distribution functions, which in general depend on all of x_{IP} , Q^2 , β , t.

876 The diffractive PDFs in HERAFitter are implemented fol-For the starting distribution \mathcal{A}_0 , at the starting scale Q_0 , 877 lowing the prescription of ZEUS publication [118] and can be used to reproduce the main results.

910

912

879 6 Application of HERAFitter

The HERAFitter project has successfully introduced into a wide variety of tools to facilitate investigations of the HEP experimental data and theoretical calculations. It provides tive asssessment of the fit quality with fully detailed information on experimental and theoretical uncertainties. The results are also output to PDF LHAPDF grids that can be used to study predictions for SM or beyond SM processes, as well as for the study of the impact of future collider measurements (using pseudo-data).

So far the HERAFitter platform has been used to produce grids from the QCD analyses performed at HERA ([29]), and and at the LHC, using measurements from ATLAS [30, 31] (the first ever ATLAS PDF sets [119]).

New results that have been based on the HERAFitter platform include the following SM processes studied at the LHC: inclusive Drell-Yan and Wand Z production [30, 32, 33]; inclusive jets [31, 34] production. At HERA, the results of QCD analyses using HERAFitter are published for inclusive H1 measurements [35] and the recent combination of charm production measurements in DIS [36]. The HERAFitter framework also provides an unique possibility to make impact studies for future colliders as illustrated by the QCD studies that have been performed to explore the potential of the LHeC data [120].

A determination of the transverse momentum dependent gluon density using precision HERA data obtained with HERA #51 tter has been reported in [121].

In addition, a recent study based on a set of parton distribution functions determined with the HERAFitter program using HERA data was performed [122]. It addresses the issue of correlations between uncertainties for the LO, NLO and NNLO sets. These sets are then propagated to study uncertainties for ratios of cross sections calculated at different orders in QCD and a reduction of overall theoretical uncertainty is observed.

7 Summary

The HERAFitter project is a unique platform for QCD analyses to study the structure of the proton. It incorporates not 972 only the crucial data on Deep Inelastic Scattering from HERA973 but also data from the hadron colliders which are sensitive 974 to Parton Distribution Functions. A variety of up-to-date the- 975 ory calculations are available for each process at LO, NLO 976 and NNLO when possible. HERAFitter has flexible mod- 977 ular structure and contains many different useful tools for 978

929 PDF interpretation. HERAFitter is the first open source plat-930 form which is optimal for benchmarking studies.

931 Acknowledgements HERAFitter developers team acknowledges the 932 kind hospitality of DESY and funding by the Helmholtz Alliance "Physics a versatile interface for understanding and interpreting new 933 at the Terascale" of the Helmholtz Association. We are grateful to the data and the derived PDFs. The HERAFitter platform not 934 DESY IT department for their support of the HERAFitter developonly allows the extraction of PDFs but also of theory param-936 program, Heisenberg-Landau program and RFBR grant 12-02-91526eters such as the strong coupling and heavy quark masses. GERN a. We aslo acknowledge Nathan Hartland with Luigi Del Deb-The parameters and distributions are output with a quantita- 938 bio for contributing to the implementation of the Bayesian Reweighting 939 technique and would like to thank R. Thorne for fruitful discussions.

940 References

968

969

- 1. G. Aad et al. [ATLAS Collaboration], Phys.Lett. **B716**, 1 (2012), [1207.7214].
- S. Chatrchyan et al. [CMS Collaboration], Phys.Lett. **B716**, 30 (2012), [1207.7235].
- 3. J. C. Collins et al. (1989), Factorization of Hard Processes (in QCD in Perturbative Quantum Chromodinamics), ISBN: 9971-50-564-9, 9971-50-565-7.
- 4. E. Perez and E. Rizvi, Rep. Prog. Phys. 76, 046201 (2013), [1208.1178].
- 5. S. Forte and G. Watt, Ann.Rev.Nucl.Part.Sci. 63, 291 (2013), [1301.6754].
- 6. A. Martin, W. Stirling, R. Thorne, and G. Watt, Eur. Phys. J. C 63, 189 (2009), [arXiv:0901.0002], URL http://mstwpdf.hepforge.org/.
- 7. J. Gao, M. Guzzi, J. Huston, H.-L. Lai, Z. Li, et al., Phys.Rev. D89, 033009 (2014), [1302.6246], URL http://hep.pa.msu.edu/cteg/public/.
- D. Ball, V. Bertone, S. Carrazza, C. S. Del Debbio, et al., **B867**, 244 (2013), [1207.1303], URL https: //nnpdf.hepforge.org/.
- 9. S. Alekhin, J. Bluemlein, and S. Moch (2013), [1310.3059].
- 10. P. Jimenez-Delgado and E. Reva, D80, 114011 (2009),[0909.1711],URL http://www.het.physik.tu-dortmund.de/ pdfserver/index.html.
- 11. V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972).
- 12. V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys. 15, 675 (1972).
- 13. L. N. Lipatov, Sov. J. Nucl. Phys. 20, 94 (1975).
- 14. Y. L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977).
- 15. G. Altarelli and G. Parisi, Nucl. Phys. B 126, 298
- 16. M. Botje (2010), http://www.nikef.nl/h24/qcdnum/index.html, [arXiv:1005.1481].
- 17. M. Ciafaloni, Nucl. Phys. B 296, 49 (1988).

- 18. S. Catani, F. Fiorani, and G. Marchesini, Phys. Lett. B 1031 **234**, 339 (1990).
- 19. S. Catani, F. Fiorani, and G. Marchesini, Nucl. Phys. 1033 B **336**, 18 (1990).
- 20. G. Marchesini, Nucl. Phys. B 445, 49 (1995).

988

992

997

1001

1002

1003

1006

1010

1011

1012

1015

1017

1019

1020

1021

1022

1024

1026

1030

- 21. K. Golec-Biernat and M. Wüsthoff, Phys. Rev. D **59**, 1036 014017 (1999), [hep-ph/9807513].
- 22. E. Iancu, K. Itakura, and S. Munier, Phys. Lett. **B590**, 1038 199 (2004), [hep-ph/0310338].
- 23. J. Bartels, K. Golec-Biernat, and H. Kowalski, Phys. 1040 Rev. D **66**, 014001 (2002), [hep-ph/0203258].
- 24. F. James and M. Roos, Comput. Phys. Commun. **10**, 1042 343 (1975).
- 25. M. Dittmar, S. Forte, A. Glazov, and S. Moch 1044 (2009), Altarelli, G. and others (contributing authors), 1045 [arXiv:0901.2504].
- 26. M. R. Whalley, D. Bourilkov, and R. Group (2005), 1047 [hep-ph/0508110].
- 27. LHAPDF, URL http://lhapdf.hepforge.org.
- 28. TMD Collaboration, to be published.
- 29. F. Aaron *et al.* [H1 and ZEUS Collaborations], JHEP 1051 **1001**, 109 (2010), [arXiv:0911.0884].
- 30. G. Aad *et al.* [ATLAS Collaboration], Phys. Rev. Lett. 1053 **109**, 012001 (2012), [arXiv:1203.4051].
- 31. G. Aad *et al.* [ATLAS Collaboration], Eur.Phys.J. **73**, 1055 2509 (2013), [arXiv:1304:4739].
- 32. G. Aad *et al.* [ATLAS Collaboration], Phys. Lett. 1057 **B725**, 223 (2013), [arXiv::1305.4192].
- 33. S. Chatrchyan *et al.* [CMS Collaboration], submitted 1059 to Phys. Rev. **D** (2014), [arXiv:1312.6283].
- 34. S. Chatrchyan *et al.* [CMS Collaboration], CMS PAS 1061 SMP-12-028 (2014).
- 35. F. Aaron *et al.* [H1 Collaboration], JHEP **1209**, 061 1063 (2012), [arXiv:1206.7007].
- 36. H. Abramowicz *et al.* [H1 and ZEUS Collaborations], 1065 Eur. Phys. J. **C73**, 2311 (2013), [arXiv:1211.1182]. 1066
- 37. R. Devenish and A. Cooper-Sarkar 1067 (2011), *Deep Inelastic Scattering*, ISBN: 1068 0199602255,9780199602254.
- 38. E. Laenen *et al.*, Phys. Lett. **B291**, 325 (1992).
- 39. E. Laenen *et al.*, Nucl. Phys. **B392**, 162, 229 (1993).
- 40. S. Riemersma, J. Smith, and van Neerven. W.L., Phys. 1072 Lett. **B347**, 143 (1995), [hep-ph/9411431].
- 41. J. C. Collins and W.-K. Tung, Nucl. Phys. B **278**, 934 1074 (1986).
- 42. R. Demina, S. Keller, M. Kramer, S. Kretzer, R. Mar-1076 tin, *et al.* (1999), [hep-ph/0005112].
- 43. S. Alekhin, *OPENQCDRAD*, a program descrip-1078 tion and the code are available via: http://www-1079 zeuthen.desy.de/~alekhin/OPENQCDRAD.
- 44. S. Alekhin and S. Moch, Phys. Lett. **B699**, 345 (2011), 1081 [arXiv:1011.5790].

- 45. H. Kawamura, N. Lo Presti, S. Moch, and A. Vogt, Nucl. Phys. **B864**, 399 (2012).
- 46. R. S. Thorne and R. G. Roberts, Phys. Rev. D **57**, 6871 (1998), [hep-ph/9709442].
- 47. R. S. Thorne, Phys. Rev. **D73**, 054019 (2006), [hep-ph/0601245].
- 48. R. S. Thorne, Phys. Rev. D **86**, 074017 (2012), [arXiv:1201.6180].
- J. C. Collins, Phys.Rev. **D58**, 094002 (1998), [hep-ph/9806259].
- 50. H. Spiesberger, Private communication.

1035

1049

1071

1083

- 51. F. Jegerlehner, Proceedings, LC10 Workshop **DESY** 11-117 (2011).
- H. Burkhard, F. Jegerlehner, G. Penso, and C. Verzegnassi, in CERN Yellow Report on "Polarization at LEP" 1988.
- 53. S. D. Drell and T.-M. Yan, Phys. Rev. Lett. **25**, 316 (1970).
- 54. M. Yamada and M. Hayashi, Nuovo Cim. **A70**, 273 (1982).
- 55. J. M. Campbell and R. K. Ellis, Phys. Rev. **D60**, 113006 (1999), [arXiv:9905386].
- 56. J. M. Campbell and R. K. Ellis, Phys. Rev. **D62**, 114012 (2000), [arXiv:0006304].
- 57. J. M. Campbell and R. K. Ellis, Nucl. Phys. Proc. Suppl. **205-206**, 10 (2010), [arXiv:1007.3492].
- 58. Y. Li and F. Petriello, Phys.Rev. **D86**, 094034 (2012), [arXiv:1208.5967].
- 59. G. Bozzi, J. Rojo, and A. Vicini, Phys.Rev. **D83**, 113008 (2011), [arXiv:1104.2056].
- A. Gehrmann-De Ridder, T. Gehrmann, E. Glover, and J. Pires, Phys. Rev. Lett. 110, 162003 (2013), [arXiv:1301.7310].
- 61. E. Glover and J. Pires, JHEP **1006**, 096 (2010), [arXiv:1003.2824].
- J. Currie, A. Gehrmann-De Ridder, E. Glover, and J. Pires, JHEP 1401, 110 (2014), [1310.3993].
- 63. Z. Nagy and Z. Trocsanyi, Phys.Rev. **D59**, 014020 (1999), [hep-ph/9806317].
- 64. Z. Nagy, Phys.Rev.Lett. **88**, 122003 (2002), [hep-ph/0110315].
- 65. M. Czakon, P. Fiedler, and A. Mitov, Phys. Rev. Lett. **110**, 252004 (2013), [1303.6254].
- M. Aliev, H. Lacker, U. Langenfeld, S. Moch, P. Uwer, et al., Comput.Phys.Commun. 182, 1034 (2011), [arXiv:1007.1327].
- J. M. Campbell, R. Frederix, F. Maltoni, and F. Tramontano, Phys.Rev.Lett. **102**, 182003 (2009), [0903.0005].
- J. M. Campbell and F. Tramontano, Nucl. Phys. B726, 109 (2005), [hep-ph/0506289].
- 69. J. M. Campbell, R. K. Ellis, and F. Tramontano, Phys.Rev. **D70**, 094012 (2004), [hep-ph/0408158].

108

1088

1090

1092

1093

1094

1097

1090

1104

1106

1108

1111

1116

1117

1120

1122

1124

1125

1126

1129

1134

1135

- 70. J. M. Campbell and R. K. Ellis (2012), report 1137 FERMILAB-PUB-12-078-T, [1204.1513].
- 71. T. Kluge, K. Rabbertz, and M. Wobisch, pp. 483–486 1139 (2006), [hep-ph/0609285].
- 72. T. Carli *et al.*, Eur. Phys. J. **C66**, 503 (2010), 1141 [arXiv:0911.2985].
- 73. Z. Nagy and Z. Trocsanyi, Phys.Rev.Lett. **87**, 082001 1143 (2001), [hep-ph/0104315]. 1144
- 74. Z. Nagy, Phys.Rev. **D68**, 094002 (2003), [hep-1145 ph/0307268].
- 75. M. Wobisch, D. Britzger, T. Kluge, K. Rab-1147 bertz, and F. Stober [fastNLO Collaboration] (2011), 1148 [arXiv:1109.1310].
- 76. N. Kidonakis and J. Owens, Phys.Rev. **D63**, 054019 1150 (2001), [hep-ph/0007268].
- 77. D. Britzger, K. Rabbertz, F. Stober, and M. Wobisch 1152 [fastNLO Collaboration] (2012), [arXiv:1208.3641]. 1153
- 78. http://fastnlo.hepforge.org, URL http://fastnlo.1154 hepforge.org.
- 79. http://applgrid.hepforge.org, URL http://applgrid.hepforge.org. URL http://applgrid.hepforge.org.
- 80. A. Glazov, S. Moch, and V. Radescu, Phys. Lett. B 1158 **695**, 238 (2011), [arXiv:1009.6170].
- 81. J. Pumplin, D. Stump, R. Brock, D. Casey, J. Hus-1160 ton, *et al.*, Phys.Rev. **D65**, 014013 (2001), [hep-1161 ph/0101032].
- 82. M. Botje, J.Phys. G28, 779 (2002), [hep-ph/0110123]. 1163
- 83. W. T. Giele and S. Keller, Phys.Rev. **D58**, 094023 1164 (1998), [hep-ph/9803393].
- 84. W. T. Giele, S. Keller, and D. Kosower (2001), [hep-1166 ph/0104052].
- 85. G. Watt and R. Thorne, JHEP **1208**, 052 (2012), 1168 [arXiv:1205.4024].
- 86. R. D. Ball, V. Bertone, F. Cerutti, L. Del Deb-1170 bio, S. Forte, *et al.*, Nucl.Phys. **B855**, 608 (2012), 1171 [arXiv:1108.1758].
- 87. R. D. Ball *et al.* [NNPDF Collaboration], Nucl.Phys. 1173 **B849**, 112 (2011), [arXiv:1012.0836].
- 88. N. N. Nikolaev and B. Zakharov, Z.Phys. **C49**, 607 1175 (1991).
- 89. I. Balitsky, Nucl. Phys. B **463**, 99 (1996), [hep-1177 ph/9509348].
- 90. P. Belov, Doctoral thesis, Universität Hamburg (2013), 1179 [DESY-THESIS-2013-017].
- 91. A. Luszczak and H. Kowalski (2013), [1312.4060].
- 92. J. Collins, *Foundations of perturbative QCD*, vol. 32 1182 **B831**, 1 (Cambridge monographs on particle physics, nuclear 1183 119. *ATLAS* physics and cosmology., 2011). 1184 http://ll
- 93. S. M. Aybat and T. C. Rogers, Phys.Rev. **D83**, 114042 1185 (2011), [1101.5057].
- 94. M. Buffing, P. Mulders, and A. Mukherjee, 1187 Int.J.Mod.Phys.Conf.Ser. **25**, 1460003 (2014), 1188 [1309.2472].

- M. Buffing, A. Mukherjee, and P. Mulders, Phys.Rev. D88, 054027 (2013), [1306.5897].
- M. Buffing, A. Mukherjee, and P. Mulders, Phys.Rev. D86, 074030 (2012), [1207.3221].
- 97. P. Mulders, Pramana **72**, 83 (2009), [0806.1134].
- 98. S. Jadach and M. Skrzypek, Acta Phys.Polon. **B40**, 2071 (2009), [0905.1399].
- 99. F. Hautmann, Acta Phys.Polon. **B40**, 2139 (2009).
- F. Hautmann, M. Hentschinski, and H. Jung (2012), [1205.6358].
- F. Hautmann and H. Jung, Nucl. Phys. Proc. Suppl. 184, 64 (2008), [0712.0568].
- S. Catani, M. Ciafaloni, and F. Hautmann, Phys. Lett. B 242, 97 (1990).
- 103. J. C. Collins and R. K. Ellis, Nucl. Phys. B **360**, 3 (1991).
- F. Hautmann, H. Jung, and V. Pandis, AIP Conf. Proc. 1350, 263 (2011), [1011.6157].
- S. Catani, M. Ciafaloni, and F. Hautmann, Nucl. Phys. B 366, 135 (1991).
- S. Catani, M. Ciafaloni, and F. Hautmann, Phys. Lett. B 307, 147 (1993).
- L. Lipatov, Phys.Rept. 286, 131 (1997), [hep-ph/9610276].
- 108. V. S. Fadin, E. Kuraev, and L. Lipatov, Phys.Lett. **B60**, 50 (1975).
- 109. I. I. Balitsky and L. N. Lipatov, Sov. J. Nucl. Phys. 28, 822 (1978).
- 110. M. Ciafaloni, Nucl. Phys. **B296**, 49 (1988).
- G. Marchesini, Nucl. Phys. B 445, 49 (1995), [hep-ph/9412327].
- S. Catani and F. Hautmann, Nucl. Phys. B 427, 475 (1994), [hep-ph/9405388].
- 113. S. Catani and F. Hautmann, Phys.Lett. **B315**, 157 (1993).
- 114. M. Deak, F. Hautmann, H. Jung, and K. Kutak, Forward-Central Jet Correlations at the Large Hadron Collider (2010), [arXiv:1012.6037].
- 115. F. Hautmann and H. Jung, Nuclear Physics B **883**, 1 (2014), [1312.7875].
- 116. H. Jung and F. Hautmann (2012), [arXiv:1206.1796].
- 117. H. Jung, S. Baranov, M. Deak, A. Grebenyuk, F. Hautmann, *et al.*, Eur.Phys.J. **C70**, 1237 (2010), [arXiv:1008.0152].
- 118. S. Chekanov *et al.* [ZEUS Collaboration], Nucl. Phys. **B831**, 1 (2010), [hep-ex/09114119].
- 119. ATLAS NNLO epWZ12, available via: http://lhapdf.hepforge.org/pdfsets.
- 120. J. L. Abelleira Fernandez *et al.* [LHeC Study Group], Journal of Phys. **G**, 075001 (2012), [arXiv:1206.2913].
- (2014), 1188 121. F. Hautmann and H. Jung (2013), [1312.7875].

1189 122. H. Pirumov, M. Lisovyi, A. Glazov, and HERAFitter (2014), [arXiv:1404.XXXX].