What is claimed is:

- 1. A carrier for developing latent electrostatic images, comprising:
 - a magnetic particle; and
- a coating layer covering the magnetic particle,
 wherein the coating layer comprises a condensation
 product of a composition comprising:
 - (i) an alkoxyalkylated polyamide, and
- (ii) a silicone resin that is reactive with the alkoxyalkylated polyamide.
- 2. A carrier according to Claim 1, wherein the coating layer has a wear rate of 50% or less as determined after reproducing 100,000 copies of a character image with an image areal ratio of 12% using a developer comprising 93 parts by weight of the carrier and 7 parts by weight of a toner with a copying machine.
- 3. A carrier according to Claim 1, wherein the composition further comprises (iii) a silicone compound having at least one of a hydrolyzable group and a group capable of crosslinking upon polycondensation.
 - 4. A carrier according to Claim 3, wherein the

silicone compound (iii) is at least one selected from the group consisting of an aminosilane coupling agent, and a monofunctional or bifunctional silane compound having at least one of a terminal group represented by formula: C_nH_{2n+1} ,

wherein "n" is an integer of 1 to 4, and a terminal phenyl group.

- 5. A carrier according to Claim 4, wherein the monofunctional or bifunctional silane compound has at least one of a hydroxyl group, a methoxy group, and an ethoxy group.
- 6. A carrier according to Claim 4, wherein the aminosilane coupling agent has an amino equivalent of 170 to 230.
- 7. A carrier according to Claim 1, wherein the alkoxyalkylated polyamide is at least one N-alkoxyalkylated polyamide having a repeating unit represented by following Formula I:

wherein "n" is an integer of 0 to 5.

- 8. A carrier according to Claim 7, wherein "n" in Formula I is an integer of 1 to 5.
- 9. A carrier according to Claim 8, wherein the N-alkoxyalkylated polyamide is an N-butoxymethylated polyamide.
- 10. A carrier according to Claim 1, wherein the alkoxyalkylated polyamide is an N-alkoxyalkylated polyamide having an alkoxylation ratio of 20% by mole to 70% by mole.
- 11. A carrier according to Claim 1, wherein the silicone resin is a resin containing a silicone at least having a silanol group and/or a hydrolyzable group.
- 12. A carrier according to Claim 1, wherein the condensation product is a product of a condensation reaction between the alkoxyalkylated polyamide and the silicone resin, and a self-condensation reaction of the silicone resin.
- 13. A carrier according to Claim 1, wherein the carrier contains a positively chargeable site that is

positively chargeable when the carrier is mixed with a toner.

- 14. A carrier according to Claim 13, wherein the positively chargeable site is an amide bonding site in the condensation product.
- 15. A carrier according to Claim 1, wherein the composition further comprises an organic solid acid having a boiling point of 100°C or higher as a catalyst.
- 16. A carrier according to Claim 1, wherein the composition further comprises a methylol melamine.
- 17. A carrier according to Claim 1, wherein the composition further comprises a methylol benzoguanamine.
- 18. A carrier according to Claim 1, wherein the composition further comprises a phenol resin.
- 19. A carrier according to Claim 1, wherein the carrier has an electric resistivity in terms of log R of 14 or more at an applied electric field of 50 V/mm and an electric resistivity in terms of log R of 16 or less at an

applied electric field of 250 V/mm.

- 20. A carrier according to Claim 1, wherein the coating layer further comprises a low-resistance substance having an electric resistivity of 10^{-4} to $10^8 \ \Omega \cdot \text{cm}$.
- 21. A carrier according to Claim 20, wherein the low-resistance substance is electrically conductive carbon.
- 22. A carrier according to Claim 1, wherein the coating layer comprises hard fine particles.
- 23. A carrier according to Claim 22, wherein the hard fine particles are metal oxide particles, and wherein the metal oxide particles comprise at least one of silicon oxide, titanium oxide and aluminum oxide.
- 24. A carrier according to Claim 23, wherein the content of the metal oxide particles in the coating layer is from 5% by weight to 70% by weight of the coating layer.
- 25. A carrier according to Claim 1, wherein the carrier has a weight-average particle diameter Dw in a range of 25 μm to 45 μm, wherein the carrier comprises component particles

having a diameter of less than 44 μm in an amount of 70% by weight or more, and component particles having a diameter of less than 22 μm in an amount of 7% by weight or less, based on the total amount of the carrier, and

wherein the ratio Dw/Dp of the weight-average particle diameter Dw of the carrier to a number-average particle diameter Dp of the carrier is in a range of 1.00 to 1.30.

26. A developer for latent electrostatic images, comprising:

a toner; and

a carrier,

the carrier which comprises:

a magnetic particle; and

a coating layer covering the magnetic particle,
wherein the coating layer comprises a
condensation product of a composition comprising an
alkoxyalkylated polyamide and a silicone resin that is

27. A process cartridge comprising:

reactive with the alkoxyalkylated polyamide.

a development unit configured to develop a latent electrostatic image formed on a surface of a latent electrostatic image bearing member; and at least one of a latent electrostatic image bearing member, a charging unit configured to uniformly charge the latent electrostatic image bearing member, and a blade configured to wipe off a developer remained on a surface of the latent electrostatic image bearing member,

the process cartridge being integrated with and detachable with an image forming apparatus,

wherein the development unit houses:

a toner; and

a carrier,

the carrier which comprises:

a magnetic particle; and

a coating layer covering the magnetic particle, wherein the coating layer comprises a

condensation product of a composition comprising an alkoxyalkylated polyamide and a silicone resin that is reactive with the alkoxyalkylated polyamide.

28. An image forming apparatus comprising:

a latent electrostatic image bearing member;

a charging unit configured to uniformly charge the latent electrostatic image bearing member;

an espousing unit configured to applying the latent electrostatic image bearing member with light imagewise to form a latent image; a development unit containing a developer, configured to develop the latent image using the developer to form a toner image; and

a transferring unit configured to transfer the toner image from the latent electrostatic image bearing member to a recording medium,

wherein the developer comprises:

a toner; and

a carrier,

the carrier which comprises:

a magnetic particle; and

a coating layer covering the magnetic particle,

wherein the coating layer comprises a condensation product of a composition comprising an alkoxyalkylated polyamide and a silicone resin that is reactive with the alkoxyalkylated polyamide.

29. An image forming process comprising the steps of:

charging a latent electrostatic image bearing member;

exposing the charged latent electrostatic image bearing member to light imagewise to form a latent electrostatic image;

developing the latent electrostatic image by

supplying a developer thereto to thereby form a visible toner image; and

transferring the formed toner image to a transfer member,

wherein the developer comprises:

a toner for developing latent electrostatic images; and

a carrier for developing latent electrostatic images, the carrier which comprises:

a magnetic particle; and

a coating layer covering the magnetic particle, wherein the coating layer comprises a condensation product of a composition comprising an alkoxyalkylated polyamide and a silicone resin that is reactive with the alkoxyalkylated polyamide.