电脑变示波器 新一代虚拟测试系统(1)

◎王洪伟

乎每台电脑或掌上电脑都有一个 内置声卡。声卡通常被用来作 为音频输入、输出设备, 用于记录、 合成和回放语言、音乐和歌曲。然 而,声卡其实可以做得更多。从测控 的角度来看, 声卡是一个具有双诵道 模数转换 (ADC) 和双通道数模转换 (DAC) 的信号采集和输出设备。它 在音频范围内具有平滑的频率响应, 采样频率通常为44.1kHz和48kHz. 最 大可达192kHz, 采样位数通常为16比 特,最大可达24比特。由于声卡内部 都带有增益控制 (例如: 话筒音量控 制、话筒提升控制、线路输入音量控 制),即使在不外加信号放大或衰减 电路的情况下,它也可以测量从1微伏 到1伏左右的信号。声卡支持以连续数 据流模式工作, 因此可完全利用电脑 自身的内存(从数百MB到数GB)或 电脑的硬盘 (从数十GB到数百GB) 来 进行数据的不间断存储。与普通的独 立式数字存储示波器相比,基于电脑 声卡的测试系统的存储深度极大。今 天个人电脑的运算速度和存储能力已 远非20年前的286中央处理器、1MB内 存、10MB硬盘空间可比,可实时进行 包括频谱分析所需要的快速傅里叶变 换(FFT)等在内的复杂运算,这使得 以前需要采用极其昂贵的独立式传统 仪器才能实现的功能, 可通过电脑虚 拟仪器软件以极低的成本来实现,而 且维护方便,可不断升级。

测量精度由声卡的质量决定。 通常是外置声卡最好,其次是内置独 立声卡,最后是板载声卡。专业级声卡优于消费级声卡。一块专业级声卡的总谐波失真+噪声(Total Harmonic Distortion plus Noise, THD+N)可小于0.001%(-100dB), 信噪比(Signal—to-Noise Ratio, SNR)可大于110dB,带宽可达1Hz~96kHz,因此能几乎完美地测量音频甚至略微超过音频范围的信号。从价格上讲,即使是专业级声卡,其价格也远低于同类的专业ADC或DAC卡。声卡的时基精度通常为0.00x%,即,几十ppm。例如,一个时基精度为0.002%的声卡,在采样频率为48kHz时,其误差仅为0.96Hz。

基于声卡的测试系统的基本架构

附图为基于声卡的测试系统的基本架构图,可分为4层。最底层为传感器和执行器层,其上为数据采集和

数据输出硬件层,再上面为驱动程序 层,最上面为虚拟仪器软件层。

1. 传感器和执行器层

任何在音频范围内甚至略微招 过音频范围的物理信号, 都可以通过 相应的传感器转变为电信号, 然后通 过声卡的话筒输入或线路输入送到声 卡内, 进行测试和分析。根据传感器 输出信号的强弱、输出阻抗的高低以 及声卡的增益和输入阻抗的高低来决 定是否需要在传感器与声卡之间插入 前置放大器。与普通数据采集卡不同 的是, 声卡自身已带有前置放大器, 能直接接受比较微弱的信号, 例如来 自话筒的信号。有些声卡还能为需要 +15~+48V幻象电源的专业话筒提供电 源。执行器用于将声卡线路输出口或 扬声器输出口送出的电信号,直接或 在经过驱动器后转变为物理量,例如 扬声器、耳机等。传感器和执行器层 也可以是直接对电信号进行输入、输 出的示波器探头或测试导线。

2. 数据采集和数据输出硬件层

此层由声卡构成。输入声卡的模拟信号先经过输入混音器、然后进行模数转换(ADC)变为数字量后上传电脑。输入混音器可通过Windows的录音控制面板来控制,以选择录音音源(例如:话筒输出、线路输入、CD唱机、波形输出混音等)并可独立调节各音源的增益。当声卡用作信号采集器时,通常采用线路或话筒输入。

话筒输入通常还带有一些高级控件,例如:话筒提升 (Microphone Boost)等。若选择"话筒提升"可额外提高话筒增益10倍,即20dB。注意:在将声卡用于测量时,应禁止使用各种音调控制和自动增益控制 (AGC),以保持信号的真实性。

电脑输出的数字信号先经过数模转换(DAC)变为模拟信号后,输入到输出混音器,最后从线路或扬声器输出。输出混音器可通过Windows的音量控制面板来控制,以选择放音音源(例如:波形、软件合成器、话筒输入、线路输入、CD唱机等)并可独立调节各音源的增益。当声卡用作信号发生器时,应选用"波形"作为放音

音源, 而将其他音源静音。

注意: Windows Vista与以前的 Windows版本相比,在声卡的输入输出混音器的操作方式和界面上有所不同,但都能实现相同功能。

3. 驱动程序层

此层由声卡硬件驱动程序、内核模式混音器驱动程序(KMixer)、MME(Microsoft Multimedia Extension)驱动程序或ASIO(Audio Stream Input / Output)驱动程序等构成。声卡硬件驱动程序是最底层的直接与声卡硬件打交道的驱动程序。内核模式混音器驱动程序是Windows XP及以前的几个版本所采用的一个部件,其功能是将不同

源头的数据流混合, 若有必要的话, 自 动进行采样频率、采样位数和格式的转 变,从而减轻声卡硬件的负担。内核模 式混音器的使用通常会给信号的传递 带来20~30ms的延迟, 这在对实时传 送要求很高的场合, 例如实况广播、专 业录音等,会造成问题。但若仅从信号 测试的角度来说,这点延迟在绝大多数 情况下是可接受的。更应当引起注意的 是采样频率的自动转换问题。很多声卡 其实只支持48kHz和其整数倍的采样频 率,但当通过应用软件选择其他采样物 率时, 声卡仍然能按所要求的任意采样 频率采集或输出信号, 这是由于内核模 式混音器能自动转换采样频率的缘故。 从信号测试的角度来说, 此功能有利也 有弊。例如在分析低频信号时, 有时需 通过降低采样频率而不是增大FFT点数 来提高频谱分析的频率分辨率, 这时就 可以利用内核模式混音器的自动转换采 样频率功能来实现。采样频率的转换有 可能造成信号的失真, 这在对测量精度 要求很高的场合,例如在对设备做失真 分析时,要尽量避免,方法是只采用声 卡硬件直接支持的采样频率。

MME驱动程序是Windows下的声 卡的标准驱动程序之一,适用于任何 与Windows兼容的声卡。MME驱动程序 必须经过内核模式混音器与声卡硬件 驱动程序连接。

ASIO是由德国Steinberg Media Technologies GmbH公司推出声卡驱动接口协议,它直接同声卡硬件驱动程序连接,因而避免了由内核模式混音器造成的延迟问题,同时它不支持采样频率的转换,保证了信号的真实性。ASIO驱动程序只有部分声卡支持,主要在专业音频领域用得很多。对于不支持ASIO驱动程序的声卡,也可以采用一些通用的ASIO驱动程序来实现ASIO功能,最常见的是ASIO4ALL免费软件,可到www.asio4all.com下载。

ADS1000系列产品具有更丰富的触

发功能、边沿、视频、交替、延迟等

多种触发方式, 更大范围地满足了用

户的需求。其中交替触发方式可用干

同时观察两路不相关信号, 可为两个

通道选择不同的触发类型,是一种模

拟示波器的功能在数字示波器中的重

现,更体现了ADS1000系列产品研发

安泰信ADS1000CE系列 数字示波器

分割为垂直方向为8格,如同全屏幕模式下同时观察两个波形,这种方式使用户观察波形更清晰、方便,同时也体现了ADS1000系列产品更人性

化的一面。

弹出式菜单模式

ADS1000系列产品采用弹出式菜单显示模式,菜单可随时隐藏起来使波形12格全屏显示,与其他同档次的数字示波器相比,这种模式更灵活,用户操作更方便、更能清晰地观察波形。

光标测量功能

ADS1000系列光标测量功能有3种模式: 手动模式、追踪模式、自动模式。用户可根据自己的需要灵活选择测量模式,从而更轻松地在屏幕右上角读取测量结果或体验全自动的智能

设计模式。

Pass/Fail功能

用户可使用ADS1000系列提供的 Pass/Fall功能进行产品测试,通过一系 列设置自动输出测试结果,大大提高 了产品的生产效率。

强大的EasyScope3.0测控软件

EasyScope3.0测控软件适用于ADS1000系列产品的性能强大的软件系统,此软件能够兼容RS-232和USB Device,实现计算机与示波器间的通信,进而实现远程控制。同时此软件能够自动实时刷新波形数据,提供波形、测量数据、采样数据的计取、保存及打印功能,示波器屏幕图片的完全真实传送,此外还具有配置上传下载功能,最快基于毫秒级的PC与ADS1000系列之间的交互,使用户更容易分析、研究波形与数据。(资料室)

FFT波形分屏显示功能 通道波形与FFT波形分屏同时显示、分屏模式下屏幕上下部分被重新

团队在技术领域的强大。

丰富的触发功能

注意: Windows Vista与以前的 Windows版本相比,在驱动程序层的结构上有很大改变,但仍然支持MME驱动程序,也能运行ASIO驱动程序。

4. 虚拟仪器软件层

此层由虚拟仪器应用软件构成,可对声卡采集到的原始信号进行实时处理、分析和显示,同时也能将软件产生的数据通过声卡输出,可实现示波器、频谱分析仪、频谱瀑布图、声谱图、数据记录仪、振动计、网络分析仪、频率计、声压计、LCR表(即:电感电容电阻表)、相关分析仪、失真分析仪、信号发生器等功能。不同的虚拟仪器软件的性能和功能不尽相同。

5. 输出输入回路

声卡能同时进行模拟输出和输 入。可利用这一特点,在以上不同的 层级处建立回路,实现不同的功能。

第一级回路可建立在声卡硬件的外侧(见附图中箭头1),将信号发生器软件从扬声器输出口或线路输出口或线路输出的信号送入被测系统,然后从话筒输入口或线路输入口采集从被测系统返回来的响应信号,再由虚拟仪路软件进行分析,最后得到被测系统可以是放大器、转征参数。被测系统、厅堂、甚至电阻、电容、电感等。若仅用一根短可对声卡自身的性能参数进行测量。

第二级回路可建立在声卡的混音器级(见图1中箭头2),将信号发生器软件从DAC输出的信号返回到ADC的输入端,再由虚拟仪器软件进行采集分析。可通过Windows的录音控制面板来建立此回路,只需要在录音控制面板中选择"波形输出混音"或类似名

称的录音音源即可。这种工作模式很适合于教学,只需要一台电脑,无需其他任何外部设备,即可用信号发生器软件产生各种信号,然后用示波器和频谱分析仪软件进行分析。由于信号通过了声卡中的一些硬件,不是完全的理想信号,因此有真实感。

第三级回路可建立在虚拟仪器软件级(见图1中箭头3),直接将信号发生器软件生成的数字信号送入示波器和频谱分析仪等虚拟仪器软件进行分析,其特点是信号是完全理想的,非常适合用于教学。◎

下期将介绍几款在国际上比较流行的支持声卡的多功能虚拟仪器软件,包括Multi-Instrument、DSSF3、SpectraPLUS、Soundcard Oscilloscope、VisualAnalyzer等。

电脑变示波器 新一代虚拟测试系统(2)

〇王洪伟

一期讲解了基于声卡测试系统的 -基本架构, 本期为大家介绍几款 可免费下载试用的测试软件。

支持声卡的虚拟仪器软件按界面 形式可分为两类,一类采用的是与传 统仪器面板相似的软件界面, 其优点 是界面简单,熟悉传统仪器面板的用 户比较容易上手,但缺点是软件功能 不易扩展,由于传统仪器面板占用了 宝贵的屏幕资源, 留给数据显示的空 间较小, 图形窗口不易缩放, 因而用 户不易看清楚所显示数据的细节,这类 界面通常不支持多窗口同时显示 (例 如同时显示示波器和频谱分析仪)。 另一类采用的是Windows的标准控件和 窗口, 屏幕资源利用率高, 支持多窗 口同时显示, 图形窗口缩放容易, 用 户可看清楚所显示数据的细节。这类 软件通常功能强大, 但初级用户可能 会感觉不如前一类界面直观。

下面介绍几款国际流行的支持声卡 的虚拟仪器软件,入选的必要条件是:

- 1. 必须在具有独立域名的网站上 提供免费下载。
- 2. 软件可以是免费的, 也可以是 付费的, 但在试用期内, 可无限制地 使用全部或绝大部分功能。
- 3. 软件必须是多功能的, 最少必 须具备示波器、频谱分析仪和信号发 生器的基本功能, 而且这些基本功能 不需要编程实现。
- 4. 至少支持英文、最好支持中文。 虽然以下介绍的软件都是基于 Windows, 但也可在其他操作系统中通

过相应的Windows仿真软件运行,例如 在Linux下可采用WINE, 在Mac OS下可 采用Vmware Fusion等。

Multi-Instrument(万用仪)3.1

Multi-Instrument是由虚仪科技 (Virtins Technology) 研发的一款基于 电脑的多功能虚拟仪器软件。它支持 多种硬件,从几乎所有电脑都配备了 的声卡到专用的ADC和DAC硬件,例 如:与美国国家仪器公司NI DAQmx兼 容的各种ADC和DAC卡、虚仪科技的 VT DSO-2810F等, 支持声卡MME和 ASIO驱动程序, 采样位数可为8、16、 24bit。它包括下列仪器和功能:

1. 示波器

支持双踪波形、波形相加、波形 相减、波形相乘、李莎育图、电压表、 瞬态信号捕捉、长时间信号录制。支持 长波形文件的逐帧读入。支持各种数字 滤波: 低通、高通、带通、带阻、任 意,滤波器种类包括,FFT、FIR、IIR。 支持多种触发功能,包括自动触发、正 常触发、单次触发、触发延迟等,并支 持"卷动"显示方式。可输入传感器的 灵敏度, 以将电量转变为工程物理量显 示。可根据被测信号的特点自动选择采 样频率、扫描时间和输入增益。

2. 频谱分析仪

支持幅度谱、倍频程分析(1/1、 1/3, 1/6, 1/12, 1/24, 1/48, 1/96)、参数测量(峰值频率、

THD、THD+N、信噪比SNR、信号 与噪声加失真之比SINAD、噪声电平 NL、互调失真IMD (SMPTE、DIN、 CCIF)、带宽、串扰、谐波、多峰检 测、用户自定义频带中的能量等)、 相位谱、自相关函数测量、互相关函 数测量、相干函数测量、传递函数 (即频率响应,包括幅频响应和相频 响应)测量、冲激响应测量。帧内处 理支持频率补偿、频率加权、除去直 流、移动平均平滑。帧间处理支持峰 值保持、线性平均和指数平均。支持 55种窗函数和窗重叠。FFT点数可达 4194304。峰值频率的检测精度高干 由FFT所决定的频率分辨率,即:[采 样频率]/[FFT点数]。

3. 信号发生器

包括函数发生器、任意波形发生器、白噪声发生器、粉红噪声发生器、粉红噪声发生器、MLS (Maximum Length Sequence,最大长度序列)发生器、音阶发生器、DTMF (Dual-Tone Multi-Frequency,双音多频)发生器、扫频/扫幅发生器(线性和对数)、猝发信号发生器等。支持信号发生器与示波器同步运作及输出信号的渐入与渐出。

4. 万用表

包括电压有效值显示、dBV显示、dBu显示、声压dBSPL显示、声压dBA (A加权)显示、声压dBB (B加权)显示、声压dBC (C加权)显示、频率计、计数器、转速计、占空比计、频率/电压变换显示、周期有效值显示、周期平均值显示、振动计。

5. 频谱3D图

频谱3D图用于跟踪频谱随时间的变化,包括瀑布图和声谱图。配有各种调色板,频谱截面可多达200个。

6. 数据记录仪

支持多达129种导出参数 (例如: 信号的有效值、峰值频率、声压值 等)的长时间记录和显示。

7. LCR表

可测量电感、电容、电阻以及由 它们组成的网络的阻抗。用户可自行 配置一个或多个测试步骤,并为每个 测试步骤选定不同的测试信号频率, 以测量被测器件(例如扬声器)在不 同频率下的阻抗。

8. 设备测试计划

可配置并运行用户自定义的设备测试步骤。它利用了声卡能同时进行输入、输出的特点,来向被测设备(DUT)输出一个激励信号,同时采集从被测设备返回的响应信号并进行分析。支持生成不同的激励信号,可发明或证报告,并对测试结果会图。可用于对被测设备的合格与不合格检验、测量THD随频率或幅度的变化、用步进扫频信号测量被测系统的频率响应等。

Multi-Instrument中的各种仪器可同时工作。该软件采用可任意缩放的图形窗口,窗口内显示的图形可自由缩放,可用光标读取每个数据点的数值,可配置多条参考曲线,可用Windows的剪贴板复制窗口内的文本数据或图像,可保存所配置的参数以便将来调用。该软件支持多种语言包括简体中文,可到www.virtins.com (英文)或www.virtins.com/cn (中文)下载,可无限制地免费试用全部功能21天。Multi-Instrument的软件使用许可证分为6个级别和5个附加模块,售价为24.95~499.95美元。

Multi-Instrument还有一个掌上电脑 版本: Pocket Multi-Instrument 1.0, 支

图2 Pocket Multi-Instrument

持Windows Mobile 2003或以上的掌上电脑操作系统,包括示波器、频谱分析仪和信号发生器,但功能比电脑版少。掌上电脑一般都带有内置话筒,因此可用此软件直接采集和分析声音信号。有的掌上电脑还支持外接话筒,可用其话筒输入来测试外部电信号。此软件提供免费全功能试用,分3个级别,售价为24.95~49.95美元。

DSSF3(Diagnostic System for Sound Field 声场诊断系统) 5.1

DSSF3是由Yoshimasa Electronic Inc.研发的一款基于电脑声卡的多功能虚拟仪器软件,主要用于声场和音频测试。它支持声卡MME和ASIO驱动程序,采样位数为16bit。整套软件包括3个独立可执行文件:实时频谱分析仪(Real Time Analyzer)、噪声测量系统(Noise Measurement System)、声音分析系统(Sound Analyzing System)。

1. 实时频谱分析仪

包括信号发生器、FFT分析仪、示波器、幅频响应、THD分析仪、冲激响应、相关函数3D图、录音机8个相对独立的模块。其中示波器具有自动触

发和单次触发功能,支持双踪波形、波形相加、波形相减和李沙育图,并提供了高通滤波和低通滤波选项。录音机模块可进行长时间录音和放音。FFT分析仪包含功率谱、1/1~1/24倍频程、瀑布图、相关图(包括自相关和互相关)、相位谱、声谱图、互功率谱、相干图、倒谱图等模式。FFT最大点数为65536,支持5种常见的窗函数、频率加权(A、B、C加权)、峰值频率检测、峰值保持、平滑和移动平均,支持对话筒幅频响应的校准。

与前述的Multi-Instrument不同的 是,在DSSF3中,幅频响应、THD分 析仪、冲激响应是单独的模块、每个 模块包含有自己的独立的信号发生器 功能和信号分析功能。幅频响应模块 支持3种测量系统幅频响应的方法:正 弦连续扫频、正弦步进扫频、粉红噪 声。THD分析仪能够测量用户指定频 率处的THD、用正弦步进扫频方式测 量THD~频率曲线、用正弦步进扫幅方 式测量THD~幅度曲线。冲激响应模块 支持两种测量系统冲激响应的方法: 最大长度序列MLS和时间拉伸脉冲TSP (Time Stretched Pulse) , 其测量结果 可保存并调入DSSF3中的声音分析系统 软件进行进一步的声学参数分析。冲激 响应和频率响应描述的都是一个线性时 不变系统的固有特征, 冲激响应是从时

域来描述的,而频率响应是从频域来描述的,它们正好是一对傅里叶变换,因 此可相互转换。冲激响应测量一般在室 内声学测量中用得较多。

相关函数3D图是DSSF3中的一个比较独特的模块,能够测量自相关函数随时间的变化,类似于频谱瀑布图,只不过每个截面不是频谱而是相关函数而已。测量结果可保存并调入DSSF3中的声音分析系统软件,进行进一步声学参数分析。

信号发生器模块包括:函数发生器、噪声发生器(包括白噪声、粉红噪声、褐色噪声)、扫频/扫幅发生器、脉冲发生器、多音合成发生器、音阶发生器、任意波形发生器。

2. 噪声测量系统

噪声测量系统主要用于环境噪声 的记录和噪声的参数测量 (例如最大 噪声声压等)。支持手动触发噪声录 音、电平触发噪声录音、定时触发噪 声录音。

3. 声音分析系统

声音分析系统可导入3种类型的数据进行声学参数分析:由实时频谱分析仪输出的冲激响应数据、相关函数3D图数据和由噪声测量系统记录的噪声数据。它主要用于室内声学参数分

析,可根据所导入的冲激响应数据推导出音乐厅声学的安藤参数、ISO3382标准的室内声学参数(例如混响时间等)、语音清晰度(包括语音传输指数STI和调制传递函数MTF)、系统的频率响应等,可根据所导入的相关函数3D图数据推出声音的时间和空间的各种属性(例如声强、音调、混响、声源位置、声源宽度等)。可将所导入的噪声数据进行相关分析后推导其时间和空间的各种属性。

DSSF3中的有些模块可同时工 作、例如示波器、FFT分析仪、信号发 生器等。有些可能起冲突的模块则不 能, 例如信号发生器和THD分析仪等. 这是由于THD分析仪中已含有专用的 信号发生器的缘故。该软件的参数调 节控件和图形显示在同一面板上, 优 点是调节比较方便, 但同时也局限了 用于图形显示的屏幕幅面。它支持屏 幕图形复制和按文本方式输出分析结 果。DSSF3在建筑物声学分析方面的功 能较强, 其开发者与在音乐厅声学研 究方面造诣颇深的日本神户大学安藤 实验室有一定渊源。该软件目前有英 文版和日文版,可到www.ymec.com下 载,可无限制地免费试用全部功能30 天。DSSF3的软件使用许可证分为4个 级别,售价为83~990美元。

SpectraPLUS 5.0

SpectraPLUS是由Pioneer Hill Software研发的一款基于声卡的多功能音频分析仪软件,目前只支持声卡MME驱动程序,采样位数可为8、16、24bit。它包括时间序列(即示波器)、频谱、瀑布图、声谱图、相位谱等几个独立的主窗口,还有信号发生器、峰值频率、峰值频率幅度、总能量、THD、THD+N、THD+N~频率曲线、IMD、SNR、SINAD、噪声系数NF、左右通道的延迟检测器、立体声相位图(其实就是李莎育图)、混响时间(RT-60)、

图4 SpectraPLUS

宏命令处理器、等效噪声级(LEQ)、 数据记录仪等工具窗口。

其中示波器支持电平触发、边 沿触发、延迟触发和超前触发, 允许 采用不同的工程单位来显示所采集的 数据。例如, 若所测得的信号为加速 度,则可采用加速度的单位来显示。 该示波器还提供了一些的数据编辑功 能,可选取某段数据来进行数字滤波 处理,可选择低通、高通、带通、带 阳或任意滤波器, 也可将所选取的数 据段全部置零或调节其增益。频谱分 析中的FFT点数最大可达1048576,支 持8种常见的窗函数并允许窗重叠,支 持多种频谱平均方法包括线性平均、 指数平均、向量平均、并可按与普通 声压计的快、中、慢3挡相同的平均方 式工作, 还可对频谱进行峰值保持、 频谱的平滑等操作。该频谱分析仪还 支持互功率谱、相干函数、传递函 数、倒谱、功率谱密度PSD、频率加权 (A、B、C)、话筒幅频响应补偿、 倍频程分析 (1/1、1/3、1/6、1/12、 1/24、1/48、1/96) 等功能。与DSSF3 类似, SpectraPLUS也提供了一个独立 的测试THD+N~频率曲线的窗口,测 试信号为正弦步进扫频信号, 而这在 Multi-Instrument中需要通过调入该软件 的预先定义好的设备检测计划或自行 配置设备检测计划来实现。

分辨率,对于Multi-Instrument或DSSF3 等软件来说,可直接利用Windows的 内核模式混音器的采样频率自动转换 功能来实现,其缺点是降低采样频率 后数据的质量由Windows的内核模式 混音器决定,无法从外部进行控制。 而SpectraPLUS提供了一个降低采样频率的选项,称为Decimation,降频比在 1~50之间可调,并可选择是否在降低 采样频率之前对原始数据施加低通数 字滤波,以滤除奈奎斯特频率(即: 1/2采样频率)以上的高频信号在采样 频率降低后对数据的影响,避免所谓 的频率混叠现象发生。

信号发生器可输出以下信号:白噪声、粉红噪声、猝发白噪声或猝发粉红噪声、1kHz正弦测试信号、多音合成信号、猝发正弦信号、IMD测试信号、线性/对数连续扫频信号、线性/倍频程步进扫频信号、对数连续扫幅信号、锯齿波、三角波、脉冲、矩形波、DMTF、WAV波形文件。

SpectraPLUS支持宏命令编程,这与Multi-Instrument的设备检测计划类似,用户可通过级连多个简单的指令来配置并运行自定义的测试步骤,实现整套测试方案的自动化执行。SpectraPLUS也具有数据记录仪功能,能长时间连续地记录十几种参数,包括。峰值频率、THD、THD+N

等。SpectraPLUS还支持动态数据交换 (DDE, Dynamic Data Exchange), 可与支持DDE的第三方软件(例如 Excel)连接或供第三方软件进行二次 开发。

SpectraPLUS有3种工作模式: 实时模式、后处理模式和录音模式, 软件的有些功能只能在某些模式下使 用。在录音模式下,可连续不断地利 用硬盘进行长时间录音,同时屏幕上 的示波器和频谱分析将维持刷新。为 了确保不间断地录制, 优先权将给予 录制过程而不是数据分析和显示过 程。各种仪器可同时工作。该软件采 用可任意缩放的图形窗口, 窗口内显 示的图形可自由缩放, 可用光标读取 每个数据点的数值,可配置多条参考 曲线(在该软件中称为Overlay),可 用Windows的剪贴板复制窗口内的文本 数据、图像或WAV波形数据。很多待测 参数,如THD等,都有独立的可缩放的 窗口显示。可以保存参数配置,以供 将来调用。

由于历史原因,SpectraPLUS有几个变种,包括SpectraRTA、SpectraPRO和SpectraLAB,但自从其原开发者从Sound Technology分离出来后,就只维护SpectraPLUS了。SpectraPLUS只支持英文,可到www.spectraplus.com下载,免费试用30天。SpectraPLUS的软件使用许可证分为多个级别,售价为295~1295美元。

Soundcard Oscilloscope是由 Christian Zeitnitz个人采用NI Labview开 发的一款基于电脑声卡的多功能虚拟 仪器软件,只支持声卡MME驱动程 序。它包括示波器、X-Y图(即李莎 育图)、频谱分析仪、信号发生器和 录音机功能。它的软件界面部分地模 拟了传统仪器的面板,便于初学者操 作。其缺点是不能同时显示以上各仪

器,只能分页显示。示波器支持自动 触发、正常触发和单次触发, 采样时 间长度的选择范围为1ms~10s,可根 据被测信号自动选择采样时间长度和 触发电平,可显示信号的峰-峰值、有 效值和峰值频率。在X-Y图中, 采样长 度在10ms到1s内可选。在频谱分析仪 中, 横坐标和纵坐标皆可按线性或对 数比例显示,并可设置一个十阶贝塞 尔数字滤波器,可将其设置为高通、 低通或带通滤波器,并可从示波器中 观察滤波后的效果。信号发生器可输 出正弦波、三角波、锯齿波、白噪声 和扫频信号。该软件只支持44100Hz的 采样频率和16bit的采样位数。在显示 频谱分析仪时, 采样时间长度被强制 固定在100ms上,这是一个明显的局 限。

Soundcard Oscilloscope目前支持 几种语言,其中包括英文,但不支持 中文。软件对于个人或用于非商业用 途的教学机构是免费的,可到www. zeitnitz.de下载。

VisualAnalyzer 2009

VisualAnalyzer 2009是由Alfredo Accattatis个人开发的一款基于电脑声卡 的多功能虚拟仪器软件,只支持声卡 MME驱动程序,采样位数可为8、16和 24bit。它由示波器、频谱、相位谱、 信号发生器、频率计、电压表、数字 滤块波发且的能节交(显形加减波构器功两触独, 替LT,双波波李等。持,通参立实触。踪形形莎模示触而道数调现发可波相相育

图5 Soundcard Oscilloscope

图以及通过频谱分析后得到的倒谱。 频谱分析仪支持7种常见的窗函数. FFT点数可达65536点。支持多帧频谱 平均、峰值保持、频率补偿、倍频程 分析 (1/1、1/3、1/6、1/9、1/12、 1/24)。信号发生器可输出正弦、方 波、三角波/锯齿波(角度可调)、 白噪声、粉红噪声、正弦连续扫频。 脉冲等信号。它还包含一个多音合成 发生器, 允许多个不同频率、不同振 幅、不同初始相位的正弦波, 先各自 通过一个常数、正弦、方波或三角波 进行调幅后, 再叠加在一起。数字 滤波器支持FIR低通、FIR高通、FIR带 通、FIR带阻、IIR陷波器、IIR倒置陷波 器、半波整流。该软件还能测量THD和 THD+N等参数。

直线连接起来形成波形图的, 有的数 字示波器也支持用曲线拟合的方式将 数据点连接起来,为了在示波器中比 较真实地反映原信号的波形, 一般要 求示波器的采样频率大于被测信号的 5~10倍,也就是说一个信号周期中最 少要求采集5~10个数据点。而根据奈 奎斯特采样定理,采样频率只需要大 于被测信号中最高频率的2倍即可准确 地测量出被测信号的频谱, 并重构原 模拟信号, 该软件正是利用这个原理 来实现模拟信号的重构的。例如,当 采用44100Hz的采样频率来采集一个 20kHz的正弦信号时,每个信号周期只 采集了2.205点,直接利用采集点绘制 出来的图形将完全不是正弦波形。但 是在频谱分析仪中却能准确地得到该 信号的频谱,通过一定的算法,即可 重构原模拟信号,在示波器中得到一 个完美的正弦波。

在VisualAnalyzer中,各种仪器可同时工作,图形窗口可任意缩放,窗口内显示的图形也支持缩放功能。当程序退出时,能自动保存当前的参数设置。不过笔者在测试中发现,该软件屏幕图形的刷新有较明显的闪烁感。该软件只支持英文,到目前为止仍然是免费软件,可到www.sillanumsoft.org下载。

电脑变示波器 新一代虚拟测试系统(3)

◎王洪伟

一期我们介绍了几款具体的虚拟 一测试软件,本期再为大家讲解一下这些软件的具体应用和操作。

输入及输出连接

对基于声卡的系统,被测信号应 连接到声卡的话筒输入口或线路输入 口。生成的信号可从扬声器输出口或 线路输出口输出。

通常,声卡话筒输入口的输入阻抗 在 600Ω ~ $50k\Omega$ 之间(取决于声卡),它的模/数转换满程电压在 $\pm 1mV$ ~ $\pm 500mV$ 之间(取决于声卡),可通过 Windows 控制面板中的录音控制进行调节。若声卡带有外部硬件增益调节旋钮,也可由该旋钮进行调节。话筒输入口通常只允许单通道输入。

声卡线路输入口的输入阻抗通常

在1~50kΩ之间(取决于声卡),它的模/数转换满程电压在±500mV~±2V之间(取决于声卡),可通过Windows控制面板中的录音控制进行调节。若声卡带有外部硬件增益调节旋钮,也可由该旋钮进行调节。在可能的情况下应尽量使用声卡的线路输入来检测信号,因为它的信噪比(SNR)和带宽都比话筒输入口好。

声卡线路输出口的输出阻抗在 20~500Ω之间(取决于声卡),能输 出大约2V的信号。它比扬声器输出口 的信噪比(SNR)高。

声卡扬声器输出口的输出阻抗在 $4\sim8\Omega$ 之间(取决于声卡),能输出 大约2W的功率。声卡的耳机输出口的 输出阻抗在 $4\sim100\Omega$ 之间(取决于声卡),能输出约100mW的功率。

为了避免过大的电 压意外地进入声卡,可 采用图2所示的限压电 路。两个串联的硅二极管将输入电压 钳制在2×0.65=1.3(M)左右。如果声卡 的模/数转换满程范围因此受到限幅影 响,则可多串联一个硅二极管以将输 入声卡的电压钳制在3×0.65=1.95(V) 左右。当被测信号幅度超过声卡模/数 转换满程电压时,应将它衰减后再连 入声卡。最简单的衰减方法就是在信 号与声卡之间添加一个串联电阻,由 此电阻与声卡的输入阻抗构成一个分 压电路, 电阻的阻值越大, 衰减比越 大, 此测量电路的输入阻抗就越高。 为保证测量的准确性,被测电路在被 测点处的输出阻抗应小干声卡测量电 路的输入阻抗、否则被测信号将不能 正常地传递给声卡。

声卡的输出连接如图3所示。若不小心将输出短路,串联的电阻可起保护作用。如果你非常小心,则该电阻可以省掉。由于声卡的输出阻抗很小,当连接到外部电路时通常将不会遇到任何阻抗匹配的问题。

应当强调的是,许多声卡(例如台式机的内置声卡和内置交流电源适配器的笔记本电脑的内置声卡)的输入、输出地线通常与交流电源地线相连,当被测电路是浮地(即与电源地线隔离)时,并不会有什么问题。否则,您必须确保声卡的地线与被测电路的连接点处于同样的地电位。

自被測 左声道 至声卡的话筒 输入或线路输入 电路输出 右声道 图1 最简单的输入连接方式 100Ω~10MΩ ★ ¥ 本文 * 4 右声道 白被测 至声卡的话筒 输入或线路输入 图2 具有简单过压保护的输入连接方式 100Ω (线路输出) 20Ω(扬声器输出) 左声道 至被测 扬声器输 出或线路 右声道 输入 100Ω (线路输出) 20Ω(扬声器输出) 图3 具有简单短路保护的输出连接方式

声卡选择及自测方法

如前所述,基于声卡的测试系统 的测量精度取决于声卡硬件,因此应

根据对测量精度的要求来选择适当的 声卡。一般只要求看看波形和频谱分 布,则电脑自带的声卡应基本够用. 这是由于目前的声卡至少是16位的, 比一般数字示波器的8位或12位的采样 位数高。但若要用声卡来测试其他设 备的性能参数,例如THD、THD+N、 SNR、IMD等,则建议所用声卡的参数 应比被测设备的相同参数高几倍。例 如, 若声卡的THD为0.0003%(即. -110.5dB),则它可用于测量THD小于 或等于0.001% (即: -100dB) 的设 备。选择声卡时,可参考声卡制造商 提供的性能参数。若用于测量, 应选 择低噪音、低失真、频带宽、输入阻 抗高的声卡。

对于所用声卡的性能也可以进行自测,方法是将声卡的输出端与输入 端通过一条立体声电缆连接起来,即 左声道输出连接到左声道输入,形成一 直输出连接到右声道输入,形成一 回路,然后选择一款多功能声卡 回路,然后选择一款多步生器输出 仪器软件,利用其后号发生器输引外 位未采集并分析返回的信号。下面对 们以来前面介绍过的Multi-Instrument为 例,来介绍过的操作方法。以 下测试皆属相对测量,无需对声卡 行绝对幅度的标定。

1. THD、THD+N、SINAD、 SNR、NL测量

通常采用1kHz左右的正弦信号来测试这些参数,测试电平适宜控制在-1dBFS(即ADC满程范围的89%)左右,这样既保证在测试过程中有足够的信噪比,又不至于造成输入通道出现饱和失真。具体测试步骤如下:(1)运行该软件后,选择主菜单上的[设置]、[模数转换设备]、展幕上收端

的[设置]>[模数转换设备], 屏幕上将弹出一个对话框, 在该框中的"设备型号"栏选择"Sound Card MME"驱动程序, 然后在"设备号"栏选择所要

测按"等上话的性态"。 (2)选择上话的性态。 (2)选择,是是一个。 (2)选择,是是一个。 (2)选择,是是一个。 (2)选择,是是一个。 (2)选择,是是一个。 (3)选择,是是一个。 (4)选择,是是一个。 (5)选择,是是一个。 (6)选择,是是一个。 (6)选择,是一个。 (6)选样,是一个。 (6)还是一个。 (6)还是

最后按"确认"键。(3)选择主菜 单上的[设置]>[加载面板设置], 屏幕 上将弹出一个文件选择对话框, 在该 软件的安装目录下的psf子目录下选择 一个以THD开头的面板设置文件名, 例如: "THD_FFT16384_SR48000. psf"。调入该面板设置文件后,软 件的各参数将自动被设置到可测量 以上THD等参数的状态: FFT点数为 16384、采样频率为48kHz,测试频率 为999.0234375Hz, 采样位数为16位, 采样时间为1s, 窗函数为矩形窗, 窗 重叠率为0%。若声卡支持24位采样, 宜将输入输出的采样位数改为24位, 其他的参数则不宜改动, 否则可能会 严重影响测量结果。(4)分别按动信 号发生器和示波器的启动按钮。则示 波器和频谱分析仪将显示所采集到的 数据及其频谱。(5)通过点击该软 件工具条上的话筒和扬声器按钮,或 通过Windows的控制面板,分别调出 该声卡的录音控制面板和音量控制面 板, 然后调节有关的输出和输入增益 滑块, 使该软件右上方的输入电平峰 值指示器显示在-1dBFS左右。这时, 频谱分析仪上部显示的THD、THD+N、 SINAD、SNR、NL数值即为所测得的结 果。注意,声卡的输出和输入增益需 要进行组合调节,不能将输出增益设 得过大,而输入增益设得过小,或者

图4 声卡自身的THD、THD+N、SINAD、SNR、NL测量

反之,以使所测得的参数最佳。图4是一台普通的USB声卡的扬声器输出和 线路输入的测量结果: THD=0.0056% (-85.1dB), THD+N=0.0104% (-79.6dB), SINAD=79.6dB, SNR=81.1dB, NL=-81.08dBr

2. IMD测量

互调现象是指两个或两个以上的 不同频率的信号源混合后产生出一些 新的频率成分,这些新的频率不是任 何一个信号源的谐波。互调失真IMD就 是用来衡量这类失真的严重程度的。 互调失真IMD的测量有多种标准。其中 SMPTE/DIN IMD是最常见的。SMPTE RP120-1983标准和DIN 45403标准 相似。两者都规定采用双正弦测试信 号,由一个幅度较大的低频信号和一 个幅度为前者的1/4的高频信号线性混 合。SMPTE定义的是60Hz和7kHz按4:1 混合, 而DIN定义了多种双频率组合, 其中最常见的是250Hz和8kHz。此类 IMD定义为边带功率与高频信号功率之 比的开方,以百分比或dB表示。计算 中所采用的边带为: $f_1 - f_1$ 、 $f_1 + f_1$ 、 f_1 2f1、f1+2f1, 其中f1和f.分别为测试信号 中的高频信号和低频信号。CCIF IMD 是另外一种常见的IMD测量, 它采用 两个频率相近的等幅信号线性混合来 作为测试信号。此类IMD定义为互调失

图5 声卡自身的IMD测量

的功率比,以dB表示。没有测试信号通道的输入端必须接信号地,以避免引入噪声。测试信号是单频的,所测得的串扰是对于该频率的串扰。具体测试步骤与前述的THD等参数的测试步骤类似,只是需要调用不同的面板均量,是对于该频率的串扰。具体测试步骤与前述的THD等参数的测试步骤与前述的THD等参数的测试步骤与前述的THD等参数的测试步骤类似,只是需要调用不同的面板边置文件。图6是同一台USB声

真部分的功率与两个信号源功率之比 的开方,以百分比或dB表示。它可进 一步细分为两类, CCIF2 IMD和CCIF3 IMD。对于CCIF2 IMD,通常采用的双 频组合为19kHz和20kHz, 互调失真部 分的功率只考虑 $f_{i}-f_{i}$, 即,只用到了 低频的二阶分量。对于COIF3 IMD、通 常采用的双频组合为13kHz和14kHz、 14kHz和15kHz、15kHz和16kHz。互 调失真部分的功率只考虑f1-f1、2f1 $f_{\rm H}$ 、 $2f_{\rm H}-f_{\rm L}$,即,用到了二阶和三阶 分量。具体测试步骤与前述的THD等 参数的测试步骤类似,只是需要调用 不同的面板设置文件。图5是同一台 USB声卡的SMPTE IMD的测量结果. IMD=-73.8dB。测试中调用了一个 名为 "IMD_SMPTE_60Hz(4)_7kHz(1)_ FFT16384.psf"的面板设置文件, FFT 点数为16384, 采样频率取为48kHz. 采样位数为16比特,采样时间为1秒, 测试频率为60Hz和7kHz,幅度比为 4:1, 窗函数为Kaiser6窗, 窗重率比为 0%。若声卡支持24位采样, 宜将输 入、输出的采样位数改为24位, 其他 的参数则不宜改动。

3. 串扰测量

串扰是指信号从一个通道泄漏 到另一个通道,一般定义为有信号的 通道与没信号的通道中测试信号基波

号通道的输入端必须接信号地, 以避 免引入噪声。测试信号是单频的, 所 测得的串扰是对于该频率的串扰。具 体测试步骤与前述的THD等参数的测 试步骤类似,只是需要调用不同的 面板设置文件。图6是同一台USB声 卡从A通道到B通道的串扰的测量结 果. -79.7dB。测试中调用了一个名 为 "CrosstalkAB_FFT16384_SR48000. psf"的面板设置文件, FFT点数为 16384、采样频率为48kHz、采样位数 为16位,采样时间为1s,测试频率为 999.0234375Hz, 窗函数为矩形窗, 窗 重叠率为0%。若声卡支持24位采样、 宜将输入、输出的采样位数改为24 位, 其他的参数则不宜改动。

4. 幅频响应测量

名 为 "MagnitudeFrequencyResponse_

WhiteNoise(InterframeAverage).psf"的面

板设置文件,FFT点数为 16384, 采样

频率取为 48kHz, 采样位数为 16 位,

采样时间为 200ms. 测试信号为白噪

声, 窗函数为矩形窗, 窗重叠率为 0%,

设置了帧间线性平均,以使所测得的曲

线更光滑。若声卡支持24位采样,宜

将输入、输出的采样位数改为24位。

图7 声卡自身的幅频响应测量

则可选择更高的采样频率。看在更高的 采样频率下,声卡的带宽上限是否会更 高,有的声卡在 192kHz 下,带宽上限 可达 96kHz ,其他的参数则不宜改动。

Multi – Instrument 还预先配置了一个自动测量声卡各种参数的设备检测计划,运行该计划的方法是:按前面介绍的方法选择好待测声卡,然后选择[仪器]之[设备检测计划对话框。点击对话框上部的文件打开按钮,屏幕上将弹出一个文件选择对话框,在该软件的安装目录下的dtp子目录下选择"AudioParameter_SR48000_AB.dtp",然后点击设备检测计划对话框右上角的运行按钮,即可在一分钟左右生成一份完整的测试报告并显示在屏幕上。

三 应用举例

下面介绍几个常见的应用。

1. 实时频谱分析仪

电脑声卡配上相应的虚拟仪器软 件和测量话筒,即可构成一台实时频 谱分析仪 (RTA) 。测量话筒一般在音 频范围内有很平坦的幅频响应, 必要 时,还可利用虚拟仪器软件的频率补 偿功能对声卡和话筒的幅频响应进行 补偿。实时频谱分析仪可用来调节音 响系统的频率均衡器、以使整个系统 包括放音设备、放大器、音箱在内的 幅频响应是平坦的。这类调节通常采 用粉红噪音+倍频程分析。测试信号可 从放音设备的输入口注入, 或将测试 信号刻录到CD上,制作成测试CD,再 由放音设备播放。可用前面介绍的虚 拟仪器软件的信号发生器来生成WAV波 形文件格式的测试信号, 再用互联网 上的一些免费的音频格式转换软件将 WAV波形文件转换为与放音设备兼容 的文件。这套测量系统若经过声压标 定 (例如可采用一个参考声压计来标 定),则还可用来测量绝对声压。

2. 音频分析仪

3. 频率响应测试

频率响应测试与前面介绍的幅 频响应测试所用的方法有所不同,因 为频率响应测试既包括了幅频响应测 试, 也包括了相频响应测试, 而且这 里所说的幅频响应不是相对概念的幅 频响应, 而是绝对概念的增益~频率 曲线。频率响应测试也可称为传递函 数测试、增益与相移测试、波德图 (Bode Plot) 测试等。频率响应测试应 采用图8的连接方式,测试信号由声卡 的输出通道A输出,输出后分为两路: 一路送入被测系统的输入端, 经过被 测系统后, 由被测系统的输出端送回 声卡的输入通道A、另一路则直接通过 导线送入声卡的输入通道B。测试信号 通常采用白噪声或正弦扫频信号。频 率响应测试要求所用的声卡的两个输 入通道的频率响应必须完全相同,这 对于声卡来说并不是大问题, 可采用 同样的频率响应测试方法进行自测. 只需要将图8中的被测试系统用一条导 线取代即可。当两个输入通道的频率 响应完全相同时, 所测得的增益~频 率曲线应为一条位于OdB的水平线、而

图8 频率响应测试连线图

所测得的相移~频率曲线应为一条位于0°的水平线。

以Multi-Instrument为例,测试频 率响应的具体步骤为。(1) 启动软件 后,按前述方法选择声卡。(2)将示 波器的扫描时间设为1s, 示波器和信 号发生器采样频率设为48kHz、采样位 数设为16比特或24比特(若声卡支持 的话)。FFT点数设为16384, 窗函数 设为矩形窗、窗重叠率设为0%。在屏 幕下端的频谱分析仪的工具条上选择 "传递函数"模式。(3) 若希望得到 更光滑的曲线, 可右击频谱分析仪的 窗口, 然后选择[频谱分析仪处理], 在 随后弹出的窗口中选择[帧间处理]>[线 性平均]。(4)在信号发生器面板上 选择白噪声。 (5) 最后分别按动信 号发生器和示波器的启动按钮, 约一 秒后, 频谱分析仪将显示所测得的增 益~频率曲线和相移~频率曲线,左, 边纵轴为以dB为单位的增益,右边纵 轴为以°为单位的相移。

图 9 为一个一阶RC 低通滤波器,电阻为200 Ω,电容为2.2μF,可计算出其理论截止频率为 1 / (2 π RC)=362Hz。图10为用以上方法实测的该低通滤波器的频率响应,从图中可见,在截止频率以下的低频端,增益是一条略微小于0dB的水平直线。增益略微小于0dB是因为

吉时利推出灵活、高性能的50MHz 任意波形/函数发生器

国吉时利(Keithley)仪器公司日前推出了3390型50MHz任意波形/函数发生器。该发生器在市场同类产品中具有出色的波形分辨率和性价比,是一款功能灵活、简洁易用的可编程信号发生器,能够提供高品质的输出信号。

业界领先的采样速度和存储深度

吉时利的3390型50MHz任意波形/函数发生器在同类波形发生器中具有最快的重复频率——至少比同类产品快2倍。除了具有较高的正弦波频率之外,速度提升后的3390还具有多率应用优势,例如具有更高的方波、三角波、斜波和任意波形重复频率,具有更快的脉冲和点到点任意波形跳率,具有更逼真的噪声仿真能力。相比其他同类产品,3390的存储容量提高了4倍,达到了256000点,而类似的波形

发生器存储容量只有8000点或者64000点。更多的点数将会得到更平滑的波形,或者在同样分辨率下波形长度可以提高4倍。

集多种功能于一体的灵活性

3390在一套设备中实现了6种不同的主要功能,包括函数生成、脉冲生成、波形生成、码型生成、噪声生成和调制,大大节省了宝贵的机架空间,用户无需再购买单独的仪器。3390提供了10MHz的标准外部基准时钟,使用户能够轻松实现多台3390或者其他设备的同步,大大简化了设备到设备的同步。

无与伦比的易用性

3390提供了多种内置的标准波形,也允许用户创建并保存他们自定义的波形。3390还为用户提供了吉时利的KIWAVE软件,它是一个波形创建工

具,能够创建自定义的任意波形并管理 波形存储器。用户通过KIWAVE能够查 看真实设备中的波形,并编辑波形。

3390具有很多实用的功能,包括:最高50MHz的正弦波频率,支持25MHz脉冲频率,最小10ns的脉宽。具有256k点、14位分辨率的任意波形发生器,内建函数发生器,支持正弦波、方波、三角波、噪声、直流等波形;支持具有快速上升/下降时间的精确脉冲与方波,内建10MHz外部时基,支持多单元同步,内建4M、FM、FM、FSK、PWM等调试方式,支持频率扫描与猝发功能。※ (资料室)

图10 一阶RC低通滤波器频率响应测量

200 Ω 的电阻与声卡的输入阻抗(该 声卡的输入阻抗为16kΩ)构成的分 压电路对信号造成了一点衰减。在截 止频率以上的高频端,增益每倍频程 下中约6dB。 按约6dB。 按约截止频6dB。 按测数。 360Hz。 460Hz。 460Hz 460Hz 460Hz 460Hz 460Hz 460Hz 460Hz 460Hz 460Hz 460H

于1, 否则放大器将是不稳定的。

四 总结

利用电脑及声卡,配上适当的多

功能虚拟仪器软件,即可将电脑变为一 台在音频甚至略超音频的范围内工作的 多功能测试仪器。它可集多个独立昂贵 仪器的功能于一身,且成本低廉。测试 的精度跟声卡硬件和虚拟仪器软件的质 量有关,可根据具体的测试目的和对测 试精度的要求来选择虚拟仪器软件和声 卡硬件。当然基于声卡的测试系统也有 其局限性, 主要是通常不能测量和输出 直流信号, 而且用于绝对幅度的测量时 要先标定。其实大多数情况下的波形观 察、频谱分析、音频参数测量 (THD、 THD+N、SNR、IMD等)都是相对测 量,并不要求对声卡先进行幅度标定。 即便是真的需要标定, 也只需以一台普 通万用表来测量声卡ADC和DAC的满程 电压即可。