p-adic Locally Analytic Representations

February 26, 2025

1 Reductive Groups over Fields

2 Locally Analytic Representations

Let L be a p-adic field, and K/L an extension with valuation extended.

2.1 Definition

2.1.1 The groups

An L-locally analytic group (of dimension d?) is a topological group G such that:

- it is a locally L-analytic manifold admitting an atlas consists of charts $G \supset U \to K^d$ where the transition maps given by locally analytic functions (i.e. locally given by power series over L); and
- the multiplication is locally analytic.

2.1.2 The vector space

A semi-norm on a vector space is a "norm" that is not separated. A vector space V over a topological field K is called **locally convex**, if its topology is given by a family of seminorms $\{q_i\}_{i\in I}$, i.e. V is equipped with the weakest topology, such that

- every semi-norm $q_i:V\to\mathbb{R}$ is continuous,
- for every $v \in V$, the translation map $v + (-) : V \to V$ is continuous.

(Well let's just say this is a kind of good space to make the function space more "complete". Normed spaces are locally convex).

Let

$$V' := \operatorname{Hom}_K^{\operatorname{cont}}(V, K)$$

be the continuous dual of V, on which we have the

• strong topology,

If M is a locally L-analytic manifold, we let $C^{\mathrm{an}}(G,V)$ be the set of locally analytic maps $G \to V$. It has the topology what?

2.1.3 Locally analytic representations

Let G be a L-analytic group, V be a locally convex Hausdorff vector space over K.

For a representation $\rho: G \to \operatorname{GL}(V)$, we say that $v \in V$ is a **locally analytic vector**, if

$$g \mapsto \rho(g)v : G \to V$$

is locally analytic. We collect locally analytic vectors in V by $V^{\rm an}$, which is a subrepresentation of G.

Example 2.1. If $G = \mathbb{G}(K)$ for some algebraic group \mathbb{G} , then any algebraic representation is locally analytic. This is the case we will look at.

2.2 The distribution algebras

We assume that $L/\mathbb{Q}_p < \infty$, and K is spherically complete.

For a locally L-analytic manifold M, we define the space of distributions on M to be

$$D(M,K) := C^{\mathrm{an}}(M,K)'$$

the dual of locally analytic functions from M to K.

3 The BGG category with P-action

Let $\mathbb{T} \subset \mathbb{B} \subset \mathbb{G}$ be over L. For each standard parabolic \mathbb{P} , let $\mathbb{L}_{\mathbb{P}}$ be the Levi containing \mathbb{T} .

We write $G = \mathbb{G}(L)$. For a Lie algebra \mathfrak{a} over L, we denote by $U(\mathfrak{a})$ the universal enveloping of \mathfrak{a} after base change to K.

¹Being standard means that $\mathbb{P} \supset \mathbb{B}$.