Mecanică Generală

III. Cinematica punctului material - 1

Liviu Marin^{1,†}

¹Facultatea de Matematică și Informatică. Universitatea din București. România †E-mail: marin.liviu@gmail.com

22 octombrie 2013

<ロ > ← □

III. Cinematica punctului material - 1

- I. Punct material/Sistem de puncte materiale
- Punctul $P \in \mathcal{E}$ căruia i se asociază o masă, m > 0, se numeste punct material si se notează cu P(m).
- Fie sistemul de puncte materiale $\left\{ \mathbf{P}_i(m_i) \right\}_{i \in I} \subset \mathcal{E}, \ m_i > 0, \ i \in I.$

Masa sistemului de puncte materiale $\left\{ \mathbf{P}_{i}(m_{i})\right\} _{i\in I}$ este dată de:

$$M = \sum_{i=1}^{l} m_i \tag{1}$$

• Fie $\mathbf{0} \in \mathcal{E}$ fixat. Pentru orice $i \in I$, notăm cu $\vec{\mathbf{r}}_i = \overrightarrow{\mathbf{0P}}_i \in \mathcal{V}_{\mathbf{0}}$. Definim vectorul

$$|\vec{\rho} = \frac{1}{M} \sum_{i=1}^{I} m_i \vec{\mathbf{r}}_i \in \mathcal{V}_{\mathbf{0}}|$$
 (2)

Se numește centrul de masă al sistemului de puncte materiale $\left\{ \mathbf{P}_i(m_i)
ight\}_{i \in I}$ unicul punct $\mathbf{G} \in \mathcal{E}$ a.i. $ec{oldsymbol{
ho}} = \overrightarrow{\mathbf{OG}}$.

(ロ) (部) (注) (注) 注 り(())

In Mecanică, se concep și varietăți ideale:

I. Punctul material: un corp ale cărui dimensiuni sunt mici în raport cu dimensiunile ce intervin în problema considerată.

Exemple:

- o planetă în raport cu dimensiunile cosmice;
- un corp a cărui miscare de rotatie nu prezintă interes:
- miscarea electronilor în atom.
- II. Curba materială (mediu continuu unidimensional): un corp care are două dimensiuni neglijabile în raport cu cea de-a treia.

Exemplu:

- un fir subtire.
- III. Suprafata materială (mediu continuu bidimensional): un corp care are una dintre dimensiuni neglijabilă în raport cu celelalte două.

Exemplu:

• o placă subtire a cărei grosime este nu este esentială.

III. Cinematica punctului material - 1

Mecanică Generală

II. Curbă materială

• Fie curba materială $k(\mathcal{C}) = \{ \mathbf{x}(\lambda) \in \mathcal{E} \mid \lambda \in I \}.$ Atunci masa curbei materiale $k(\mathcal{C})$ este dată de:

$$M = \int_{k(\mathcal{C})} \rho(\mathbf{x}) ds(\mathbf{x})$$
 (3)

• Fie $\mathbf{0} \in \mathcal{E}$ fixat. Pentru orice $\mathbf{x} \in k(\mathcal{C})$, notăm cu $\vec{\mathbf{r}}(\mathbf{x}) = \overrightarrow{\mathbf{0}} \mathbf{x} \in \mathcal{V}_{\mathbf{0}}$. Definim vectorul

$$\vec{\rho} = \frac{1}{M} \int_{k(C)} \rho(\mathbf{x}) \, \vec{\mathbf{r}}(\mathbf{x}) \, ds(\mathbf{x})$$

$$= \frac{1}{M} \int_{I} \rho(\mathbf{x}(\lambda)) \, \vec{\mathbf{r}}(\mathbf{x}(\lambda)) \, \frac{ds(\lambda)}{d\lambda} \, d\lambda \in \mathcal{V}_{\mathbf{0}}$$
(4)

Se numește centrul de masă al curbei materiale $k(\mathcal{C})$ unicul punct $\mathbf{G} \in \mathcal{E}$ a.i. $\vec{\rho} = \overrightarrow{\mathbf{OG}}$

III. Suprafață materială

• Fie suprafața materială $k(\Sigma) = \{ \mathbf{x}(u, v) \in \mathcal{E} \mid (u, v) \in I \times J \}$. Atunci masa suprafeței materiale $k(\Sigma)$ este dată de:

$$M = \int_{k(\Sigma)} \rho(\mathbf{x}) d\sigma(\mathbf{x})$$
 (5)

• Fie $\mathbf{O} \in \mathcal{E}$ fixat. Pentru orice $\mathbf{x} \in k(\Sigma)$, notăm cu $\vec{\mathbf{r}}(\mathbf{x}) = \overrightarrow{\mathbf{Ox}} \in \mathcal{V}_{\mathbf{O}}$. $d\vec{\mathbf{r}}/du \left[d\vec{\mathbf{r}}/dv \right]$ – vectorul tangent la curba $v = \mathrm{const} \left[u = \mathrm{const} \right]$. $(d\vec{\mathbf{r}}/du) \times (d\vec{\mathbf{r}}/dv)$ – vectorul normalei la suprafața Σ .

$$\vec{\rho} = \frac{1}{M} \int_{k(\Sigma)} \rho(\mathbf{x}) \, \vec{\mathbf{r}}(\mathbf{x}) \, d\sigma(\mathbf{x}) = \frac{1}{M} \int_{I \times J} \rho(\mathbf{x}(u, v)) \, \vec{\mathbf{r}}(\mathbf{x}(u, v))$$

$$\sqrt{(d\vec{\mathbf{r}}/du)^2 (d\vec{\mathbf{r}}/dv)^2 - [(d\vec{\mathbf{r}}/du) \cdot (d\vec{\mathbf{r}}/dv)]^2} \, du \, dv \in \mathcal{V}_{\mathbf{0}}$$
(6)

Se numește centrul de masă al suprafeței materiale $k(\Sigma)$ unicul punct $\mathbf{G} \in \mathcal{E}$ a.i. $\vec{\rho} = \overrightarrow{\mathbf{OG}}$.

III. Cinematica punctului material - 1

Mecanică Generală

Exercitii

- 1. Să se arate că poziția centrului de masă al unui corp $\mathcal{B}_k = k(\mathcal{B})$ nu depinde de sistemul de referință.
- 2. Să se arate că centrul de masă al corpului $\mathcal{B}_k = k(\mathcal{B})$ se află în interiorul oricărei suprafețe convexe care conține corpul respectiv (în interiorul corpului).
 - **Indicație:** Considerați un sistem de referință arbitrar și arătați că semnul proiecției lui $\vec{\rho}$ pe una dintre direcțiile de coordonate este constant.
- 3. Dacă punctele unui sistem material, $\mathcal{S} = \left\{ \mathbf{P}_i(m_i) \right\}_{i \in I}$, se află pe o dreaptă sau într-un plan, atunci centrul de masă al sistemului \mathcal{S} se află pe acea dreaptă, respectiv în acel plan.
- 4. Fie sectorul circular, $S(r,\alpha)$, subîntins de un arc de cerc de rază r și deschidere α . Presupunând că $\rho(\mathbf{x}) = \rho_0$, $\mathbf{x} \in S(r,\alpha)$, determinați poziția centrului de masă, \mathbf{G} , al sectorului circular $S(r,\alpha)$.

◆ロト ◆部 ▶ ◆ 重 ト ◆ 重 ・ 夕 ○ ○

IV. Corp

Fie corpul k(B) ⊂ E.
 Atunci masa corpului k(B) este dată de:

$$M = \int_{k(\mathcal{B})} \rho(\mathbf{x}) dV(\mathbf{x})$$
 (7)

• Fie $\mathbf{0} \in \mathcal{E}$ fixat. Pentru orice $\mathbf{x} \in k(\mathcal{B})$, notăm cu $\vec{\mathbf{r}}(\mathbf{x}) = \overrightarrow{\mathbf{0}} \mathbf{x} \in \mathcal{V}_{\mathbf{0}}$. Definim vectorul

$$\vec{\rho} = \frac{1}{M} \int_{k(\mathcal{B})} \rho(\mathbf{x}) \, \vec{\mathbf{r}}(\mathbf{x}) \, dV(\mathbf{x}) \in \mathcal{V}_{\mathbf{0}}$$
 (8)

Se numește centrul de masă al corpului $k(\mathcal{B})$ unicul punct $\mathbf{G} \in \mathcal{E}$ a.i. $\vec{\rho} = \overrightarrow{\mathbf{OG}}$.

III. Cinematica punctului material - 1

Mecanică General

Spaţiu

In Mecanica Clasică, spațiul este:

 (S_1) tridimensional:

Trei indicații sunt necesare și suficiente pentru a repera un loc in spațiu (din experiență) \Longrightarrow

Spațiul are proprietatea pe care i-o imprimă corpurile materiale ce sunt caracterizate prin lungime, lățime și înălțime (3 dimensiuni)

(S₂) absolut:

Consensul observatorilor asupra identificării locurilor în spațiu

(S₃) independent de materie: Spațiul este același pentru orice corp material considerat

- (S₄) nelimitat
- (S₅) continuu:

Dacă două puncte aparțin spațiului, atunci dreapta determinată de acestea aparține spațiului

Spatiul – cadrul la care se raportează miscarea materiei:

- (i) Locurile sunt reprezentate de puncte
- (ii) Punctele sunt reprezentate de trei numere, i.e. coordonatele punctelor față de un sistem de referință (reper), $(\mathbf{0}, \{\vec{\mathbf{e}}_i\}_{1 < i < 3})$, ales în mod convenabil
- (iii) (S₃), i.e. spatiul este independent de materie \Longrightarrow Spatiul nu are structură (omogen & izotrop) ⇒ Spatiul euclidian punctual tridimensional $\mathcal{E} = \mathbb{R}^3$
- (iv) Proprietatea fundamentală a lui $\mathcal{E} = \mathbb{R}^3$:

$$\forall \mathbf{X}(x_1, x_2, x_3) \in \mathcal{E}, \quad \left(\vec{\mathbf{x}} = \overrightarrow{\mathbf{OX}} = x_1 \vec{\mathbf{e}}_1 + x_2 \vec{\mathbf{e}}_2 + x_3 \vec{\mathbf{e}}_3\right),$$

$$\forall \mathbf{Y}(y_1, y_2, y_3) \in \mathcal{E}, \quad \left(\vec{\mathbf{y}} = \overrightarrow{\mathbf{OY}} = y_1 \vec{\mathbf{e}}_1 + y_2 \vec{\mathbf{e}}_2 + y_3 \vec{\mathbf{e}}_3\right):$$

$$d(\mathbf{X}, \mathbf{Y}) = \sqrt{(\vec{\mathbf{x}} - \vec{\mathbf{y}}) \cdot (\vec{\mathbf{x}} - \vec{\mathbf{y}})}$$

(v) (S_2) , i.e. spatiul este absolut \Longrightarrow Distantele sunt absolute

Unitatea de măsură a distanțelor (lungimilor): metrul (m) 1m = 1/40.000.000 din lungimea meridianului ce trece prin Paris

III. Cinematica punctului material - 1 Mecanică Generală

Observatii:

- (i) (T_4) , i.e. multimea evenimentelor objective este ordonată \Longrightarrow Se poate stabili o corespondentă bijectivă între multimea evenimentelor și ${\mathbb R}$
- (ii) Această corespondentă bijectivă dintre multimea evenimentelor si $\mathbb R$ este independentă de evenimente, cf. (T₁), si independentă de sistemul de referintă (reperul) considerat, cf. (T₃)
- (iii) Corespondenta bijectivă mentionată la (i) nu constituie încă o măsură a timpului, i.e. nu ne dă determinările cantitative necesare în Mecanică

Problema: Cum obtinem o măsură a timpului universal?

◆ロ → ◆部 → ◆ き → ◆ き → り へ ○

In Mecanica Clasică, se consideră că timpul este:

(T_1) universal:

Se presupune o sincronizare a scărilor temporale

(T_2) absolut:

Sincronizarea scărilor temporale depinde de modul de transmisie a semnalelor; se presupune a fi automată & instantanee ⇒ Timpul este absolut

(T_3) omogen:

Timpul este independent de sistemul de referintă (reperul) $considerat \Longrightarrow$

Timpul este lipsit de structură, i.e. omogen (se scurge uniform)

(T_4) unidimensional:

Mulțimea evenimentelor obiective este o mulțime ordonată

(T₅) ireversibil

◆□▶ ◆□▶ ◆□▶ ◆□▶ ■ 900

III. Cinematica punctului material - 1

Solutia: Raportăm scara timpului universal la o miscare periodică pe care o postulăm a fi uniformă

- Fixăm originea de la care vrem să măsurăm timpul
- Considerăm perioada mișcării de referință, ω
- Evenimentele sunt ordonate, cf. $(T_4) \Longrightarrow$ Unui eveniment îi corespunde un $t\omega \in \mathbb{R}$, unde $t\in \mathbb{R}$
- Numărul $t \in \mathbb{R}$, care exprimă raportul dintre timpul la care se petrece evenimentul considerat și perioada mișcării de referintă, ω , ne dă măsura timpului acelui eveniment

Definirea timpului universal, prin care reperăm desfăsurarea evenimentelor, se face raportând cursul evenimentelor la o miscare standard

Obținerea timpului universal:

- Ziua solară: durata de timp între două treceri consecutive ale Soarelui la meridianul unui punct dat la suprafața Pământului (meridianul Greenwich)
- T_0 = valoarea medie a zilei solare
- Se definește secunda (s) ca unitate de măsură a timpului:

$$1s = (1/86.400)T_0$$

• Având precizată durata unei secunde, se construiesc mecanisme (ceasornice; orologii) în care se realizează o mișcare uniformă a unor arătătoare în fața unui cadran circular, secunda corespunzând intervalului de timp necesar ca arătătorul să parcurgă un anumit arc de cerc

Orologii atomice – atomii emit unde de frecvență constante

- $T_0 = durata unui ciclu de oscilație a atomului de cesiu în vid$
- Se definește secunda (s) ca unitate de măsură a timpului:

$$1s = 9.126.631.770 T_0$$

III. Cinematica punctului material - 1 Mecanică Generală

