ECE113: Basic Electronics Mid Semester Exam-2023

Date: 15/04/2023 Duration: 1Hours Total Points: 40 Points

Q1: The **V-I** characteristic of two elements is shown in Fig. 1. Comments about Active/Passive, Linear/Nonlinear & Unilateral/Bilateral parameters in both cases. **(2*1 Points)**

Figure 1

Q2: In Fig. 2, switch (S_1) was initially closed for sufficient time. At time $\mathbf{t} = \mathbf{t_0}$ sec, the switch (S_1) is opened & after time $\mathbf{t} = (\mathbf{t_0} + \Delta \mathbf{t_0})$ sec, the switch (S_2) is closed. What will happen in the circuit at time $\mathbf{t} = (\mathbf{t_0} + \Delta \mathbf{t_0})$ sec?

(2 Points)

Figure 2

Q3: In Fig. 3, for C=2F, R=4 Ω & L=2H, the current I=1A. When C=1F, R=2 Ω & L=1H, the current "I" would be(3 Points)

Figure 3

 $\underline{\textbf{Q4}}$: How many 5 μF , 100V capacitors are needed to make a capacitor of 50 μF , 500V? Explain with connection diagram as well. (3 Points)

Q5: Find V_{AB} in the circuit in Fig. 4 with a proper circuit diagram having all useful notation. (6 Points)

Q6: In the given following circuit, find out the value of current 'I' and voltage across points 'a' & 'b' (V_{ab}) using mesh analysis, with a proper circuit diagram. (6 Points)

 $\underline{\mathbf{Q7}}$: In the given following circuit, find out the value of voltage (v) across 2 Ω resistance by using super node analysis, with a proper circuit diagram. (6 Points)

Q8: Develop a dual network of the network shown in Fig. 7, with proper explanation.

(6 Points)

Q9: Find out the value of current across the inductor at t=5 sec, in the given following circuit in Fig. 8.

(6 Points)

