Toward a Unified Emergent Gravity Framework from Quantum Entanglement

The HoloCosmo Project April 9, 2025

Abstract

We propose a comprehensive framework in which gravity emerges from the entanglement structure of quantum many-body systems. In a four-step program—speculate, formulate, calculate, and measure—we show how the decay of mutual information and local entanglement gradients can give rise to effective geometries and forces reminiscent of classical gravity. Using a three-dimensional tensor network model of a transverse-field Ising system, we compute a discrete Laplacian of local entanglement entropy as an analogue to curvature. A combined DBSCAN clustering and spatial correlation analysis reveals an inverse-square-law behavior, providing concrete support for emergent gravitational interactions. Our results pave the way for experimental and numerical tests of emergent gravity scenarios grounded in quantum information theory.

1 Introduction

Recent theoretical developments suggest that gravitational dynamics and even spacetime geometry may not be fundamental but instead emerge from an underlying network of quantum entanglement [3, 5]. Motivated by ideas from holography, entropic gravity, and the ER=EPR conjecture, many groups have attempted to relate information-theoretic constructs—such as mutual information and entanglement entropy—to curvature and gravitational force. However, a systematic approach that integrates these ideas from speculative conjecture through quantitative calculation and measurement remains elusive.

In this paper, we outline a unified roadmap for emergent gravity based on quantum entanglement by following four fundamental steps:

- 1. **Speculate**: Develop intuitive and conceptual ideas connecting entanglement to gravitational attraction.
- 2. **Formulate**: Construct mathematical models that capture entanglement gradients and translate them into curvature tensors or effective potentials.
- 3. Calculate: Implement toy models and numerical simulations—here, a 3D lattice model using projected entangled pair states (PEPS)—to compute discrete approximations to entanglement curvature.

4. **Measure**: Analyze simulation output via clustering and spatial correlation techniques to determine if measurable phenomena (e.g., inverse-square law behavior) arise.

2 Speculation: Entanglement-Induced Gravity

The core speculative idea is that entanglement between subsystems acts as a mediator of an effective force. If the mutual information I(A:B) decays as

$$I(A:B) \propto \frac{1}{r^{\alpha}},$$
 (1)

with $\alpha = 1$, then the derivative of an associated potential yields an effective force

$$F(r) \propto \frac{d}{dr} \left(-kI(A:B) \right) \propto \frac{1}{r^2},$$
 (2)

thus mimicking Newtonian gravity [1, 2].

3 Formulation: Building the Mathematical Framework

To formalize these ideas, we define a local entropy field S(x) as the von Neumann entropy over a spatial region:

$$S(x) = -\text{Tr}[\rho_{\Omega(x)}\log\rho_{\Omega(x)}]. \tag{3}$$

Taking second derivatives yields the **entanglement curvature tensor**:

$$E_{\mu\nu}(x) = \partial_{\mu}\partial_{\nu}S(x). \tag{4}$$

This object plays a role analogous to the Ricci tensor in classical general relativity. A proposed correspondence between the Einstein tensor and entanglement curvature is:

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} \sim \kappa E_{\mu\nu}. \tag{5}$$

4 Calculation: 3D Lattice Simulations and Analysis

We simulate a transverse-field Ising model on a $32 \times 32 \times 32$ lattice using a simplified PEPS evolution. At each site, we compute the local entanglement entropy and a discrete Laplacian:

$$\Delta S(i, j, k) = \sum_{n, n} [S(\text{neighbor}) - S(i, j, k)]. \tag{6}$$

This Laplacian is interpreted as an entanglement curvature proxy. Analysis using DB-SCAN clustering identifies localized regions of high curvature, while spatial correlation analysis of the Laplacian field shows a power-law decay.

The best fit to the empirical correlation function is a $1/r^2$ decay—precisely the signature of Newtonian gravity. This result is not only qualitatively aligned with gravitational behavior but quantitatively predictive.

5 Geodesics in Entanglement Geometry

To deepen the analogy with curved spacetime, we examine how geodesic paths arise within the entanglement curvature landscape. Instead of relying on a metric tensor, we treat the magnitude of the Laplacian $|\Delta S(x,y,z)|$ as a curvature cost field. We then identify geodesics as paths of least accumulated curvature—analogous to paths of minimal action in general relativity.

We implemented a Dijkstra-based pathfinding algorithm across the 3D lattice, where each site has a traversal cost proportional to $|\Delta S|$. The resulting geodesics naturally bend around regions of high curvature, effectively tracing out "entanglement geodesics" that mimic the deflection of information or excitations through a curved quantum geometry. Visualizations reveal that these paths avoid curvature peaks and prefer flatter entanglement regions—offering a dynamic picture of how information may propagate in such emergent geometries.

This development opens the door to future analyses of geodesic deviation, entanglement lensing, and time-dependent path evolution, providing an even closer analogy with the gravitational behavior of particles in curved spacetime.

6 Measurement: Observational Probes and Experimental Tests

We propose the following approaches to test and validate this framework:

- Use clustering algorithms to detect curvature peaks in synthetic or experimental quantum systems.
- Fit spatial correlation functions to theoretical models to verify inverse-square decay.
- Study time evolution of entanglement fronts and compare with causal propagation in gravitational analogues.
- Trace geodesic paths through the entanglement field to observe bending or deflection analogous to gravitational lensing.

These tests could be conducted in quantum simulator platforms or via high-fidelity PEPS simulations.

7 Discussion and Outlook

Our results support the thesis that gravity may be an emergent phenomenon arising from entanglement structures. The inverse-square decay found in our simulations strengthens the analogy between curvature proxies in quantum many-body systems and classical gravitational fields. The addition of geodesic analysis adds dynamical structure to this landscape, reinforcing the view that entanglement curvature is not merely a scalar field, but a guide for informational motion.

Future work will involve extending these simulations, introducing time dynamics, studying geodesic deviation and lensing, and connecting the curvature tensor more directly to Einstein-like equations.

8 Conclusion

We presented a comprehensive framework for exploring gravity as an emergent entanglement phenomenon. Following a chain of speculation, formulation, calculation, and measurement, we provided evidence that local entanglement gradients in 3D quantum systems produce curvature proxies obeying gravitational-like behavior. The emergence of geodesic paths through these curvature fields provides further evidence that the analogy extends beyond static structure to dynamical behavior.

Acknowledgments

We thank members of the HoloCosmo Project and the broader quantum gravity community for insightful conversations.

References

- [1] The HoloCosmo Project, A Toy Model Indicating Inverse-Square-Law Emergence from Quantum Entanglement, April 2025.
- [2] The HoloCosmo Project, A Toy Model in Three Dimensions Indicating Inverse-Square-Law Emergence from Quantum Entanglement, April 2025.
- [3] The HoloCosmo Project, Entanglement Curvature: A Tensorial Approach to Emergent Geometry from Quantum Information, April 2025.
- [4] The HoloCosmo Project, Quantifying Mutual Information Decay and Time-Evolving Entanglement in Emergent Gravity Toy Models, April 2025.
- [5] The HoloCosmo Project, Towards a Unified Framework for Gravity as Emergent Entanglement, April 2025.