

DECLARATION

I, Katsumi SUGIURA of 3-3-7-602, Hara, Inzai-shi, Chiba, Japan, do hereby certify that I am conversant with the English and Japanese languages and am a competent translator thereof. I further certify that to the best of my knowledge and belief the attached English translation is a true and correct translation made by me of Japanese Patent Application No. 2002-333899 filed on November 18, 2002.

I further declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

Signed this 14th day of June, 2007

Katsumi SUGIURA

[DOCUMENT NAME]

Application for Patent

[REFERENCE NUMBER]

SA914

[FILING DATE]

November 18, 2002

[ADDRESSEE]

Commissioner of the Patent Office, Esquire

[INTERNATIONAL PATENT CLASSIFICATION]

B29C 45/26

[INVENTOR]

[Address or Residence]

c/o Seikoh Giken Co., Ltd.

286-23, Matsuhidai, Matsudo-shi, Chiba

[Name]

Yasuyoshi SAKAMOTO

[INVENTOR]

[Address or Residence]

c/o Sumitomo Heavy Industries, Ltd.

Chiba Works, 731-1, Naganumahara-cho, Inage-ku, Chiba-shi, Chiba

[Name]

Yuichi INADA

[APPLICANT FOR PATENT]

[Identification Number]

000147350

[Name or Title]

Seikoh Giken Co., Ltd.

[APPLICANT FOR PATENT]

[Identification Number]

000002107

[Name or Title]

Sumitomo Heavy Industries, Ltd.

[ATTORNEY]

[Identification Number]

100096426

[Patent Attorney]

[Name or Title]

Makoto KAWAI

[ATTORNEY]

[Identification Number]

100089635

[Patent Attorney]

[Name or Title]

Mamoru SHIMIZU

[ATTORNEY]

[Identification Number] 100116207 [Patent Attorney] [Name or Title] Toshiaki AOKI [OFFICIAL FEE] [Payment Registered Number] 012184 [Amount of Payment] 21000 [LIST OF SUBMITTED DOCUMENTS] [Document Name] Specification [Document Name] Drawings [Document Name] Abstract [General Power of Attorney Number] 9503785 [General Power of Attorney Number] 9503786 [General Power of Attorney Number] 0012524 [General Power of Attorney Number] 9100516 [General Power of Attorney Number] 9100515 [General Power of Attorney Number] 0008356

Needed

[NEED OR NOT OF PROOF]

[DOCUMENT NAME] Specification

[TITLE OF THE INVENTION] MOLD FOR MOLDING

[CLAIMS]

[Claim 1] A mold for molding, characterized by comprising:

- (a) a mirror-surface plate;
- (b) a stamper having a hole formed at its center, and attached to a front end surface of said mirror-surface plate; and
- (c) an inner holder for holding said stamper by means of press fit into said hole, wherein
- (d) in the course of said press fit, at least either said stamper or said inner holder is plastically deformed.

[Claim 2] A mold for molding according to claim 1, wherein said press fit is performed by means of plastically deforming said stamper.

[Claim 3] A mold for molding according to claim 1, wherein after said press fit is performed, a front end surface of said inner holder and a front end surface of said stamper are brought onto the same plane.

[Claim 4] A mold for molding according to claim 1, wherein said press fit is performed in a press-fit deformation region established at each of at least two positions in a circumferential direction of said stamper and said inner holder.

[Claim 5] A mold for molding according to claim 4, wherein in said press-fit deformation regions, an outer

circumferential surface of said inner holder comprises a plurality of surfaces.

[Claim 6] A mold for molding according to claim 4, wherein as measured in said press-fit deformation regions, a diameter of a front end of said inner holder is greater than a diameter of a rear end of said inner holder.

[Claim 7] A mold for molding according to claim 1, wherein the front end surface of said inner holder projects from the front end surface of said stamper.

[Claim 8] A mold for molding, characterized by comprising:

- (a) a first mold assembly;
- (b) a second mold assembly disposed in such a manner as to be able to advance toward and retreat from said first mold assembly;
- (c) an insert disposed in at least either said first or second mold assembly; and
 - (d) an inner holder for disposing said insert, wherein
- (e) in the course of press fit, at least either said insert or said inner holder is plastically deformed.

[DETAILED DESCRIPTION OF THE INVENTION]

[0001]

[Technical Field to which the Invention Pertains]

The present invention relates to a mold for molding.

[0002]

[Conventional Art]

Conventionally, in an injection molding machine for

molding disc substrates, resin melted within a heating cylinder is charged into a cavity formed in a disc-molding mold, which serves as a mold for molding (mold apparatus).

[0003]

FIG. 2 is a sectional view of a conventional disc-molding mold, and FIG. 3 is a sectional view showing essential portions of the conventional disc-molding mold.

[0004]

drawings, reference numeral 12 denotes a stationary-side mold assembly attached to an unillustrated stationary platen by use of unillustrated bolts, reference numeral 32 denotes a movable-side mold assembly attached to an unillustrated movable platen by The mold assemblies 12 unillustrated bolts. 32 An unillustrated mold constitute a disc-molding mold. clamping mechanism is disposed behind the movable platen. Operation of the mold clamping mechanism causes the movable platen to advance and retreat, whereby the mold assembly 32 advances and retreats (moves rightward and leftward in FIG. 2) to contact and move away from the mold assembly 12. this manner, the disc-molding mold undergoes mold closing, mold clamping, and mold opening. When mold closing and mold clamping are performed, a cavity C is formed between the mold assembly 12 and the mold assembly 32.

[0005]

The mold assembly 12 includes a base plate 15; a mirror-surface plate 16 attached to the base plate 15 by use

of bolts 17; an annular guide ring 18 disposed radially outward of the mirror-surface plate 16 and attached to the base plate 15 by use of bolts 19; a locating ring 23 disposed in the base plate 15 in such a manner as to face the stationary platen and adapted to position the base plate 15 with respect to the stationary platen; and a sprue bush 24 disposed adjacent to the locating ring 23 and extending frontward (leftward in FIG. 2) through the base plate 15 and the mirror-surface plate 16.

[0006]

A sprue 26 is formed along the axis of the sprue bush 24 in order to allow passage of resin injected from the injection nozzle of an unillustrated injection unit. The front end (the left end in FIG. 2) of the sprue bush 24 faces the cavity C, and a die 28 having a recess is formed at the front end of the sprue bush 24.

[0007]

Meanwhile, when resin is fed into the cavity C and allowed to set therein, a prototype substrate, which is a prototype for a disc substrate, is formed. At this time, fine pits are formed on one side of the disc substrate, thereby forming an information side. In order to form the fine pits, a stamper 29 is attached to the front end surface (the left end surface in FIG. 2) of the mirror-surface plate 16. The stamper 29 has fine pits formed on its front end surface and is pressed against the mirror-surface plate 16 by means of an unillustrated outer holder acting on its outer

circumferential edge and an inner holder 30 acting on its inner circumferential edge. An unillustrated stationary-side air blow bush and the like are also disposed on the mold assembly 12.

[8000]

The mold assembly 32 includes a base plate 35; an intermediate plate 40 attached to the base plate 35 by use of bolts 37; a mirror-surface plate 36 attached to the intermediate plate 40 by use of bolts 42; an annular guide ring 38 disposed radially outward of the mirror-surface plate 36 and attached to the intermediate plate 40 by use of bolts 39; a guide member 44 disposed in the base plate 35 in such a manner as to face the movable platen and attached to the intermediate plate 40 by use of bolts 45; and a cut punch 48 disposed in opposition to the sprue bush 24 and in such a manner as to be able to advance and retreat. The front end (the right end in FIG. 2) of the cut punch 48 has a shape corresponding to the die 28.

[0009]

An annular cavity ring 33 is disposed on the front end surface (the right end surface in FIG. 2) of the mirror-surface plate 36 along the outer circumferential edge of the mirror-surface plate 36 in such a manner as to project toward the mirror-surface plate 16 by a dimension corresponding to the thickness of a disc substrate to be molded. In FIG. 2, the cavity ring 33 is depicted as being integral with the mirror-surface plate 36. However, in actuality, the cavity

ring 33 is a separate element and fixed to the mirror-surface plate 36 by use of unillustrated bolts.

[0010]

The cavity ring 33 defines a depression located radially inward thereof. When mold closing and mold clamping are performed, the depression forms the cavity C.

[0011]

A flange 51 formed integrally with the cut punch 48 is disposed within the guide member 44 such that it can advance and retract. An unillustrated drive cylinder is disposed rearward (leftward in FIG. 2) of the flange 51 and, when operated, causes the flange 51 to move frontward (rightward in FIG. 2). A cut-punch return spring 52 is disposed between the flange 51 and the intermediate plate 40 located frontward of the flange 51. The cut-punch return spring 52 urges the flange 51 rearward.

[0012]

An ejector bush, an ejector pin, a movable-side air blow bush, and other unillustrated members are also disposed in the mold assembly 32.

[0013]

In the thus-configured disc-molding mold, when the movable platen is advanced through operation of the mold clamping mechanism to thereby advance (move rightward in FIG. 2) the mold assembly 32, mold closing is performed, and the guide rings 18 and 38 are joined by means of rabbets, thereby aligning the cavity ring 33 with the mirror-surface plate 16

and the stamper 29. Operation of the mold clamping mechanism is caused to further proceed so as to perform mold clamping. In the mold-clamped condition, molten resin is charged into the cavity C through the sprue 26. The charged resin is cooled and becomes a prototype substrate. In order to join the guide rings 18 and 38 by means of rabbets, an annular rabbet 18a is formed on the guide ring 18 to be located on the radially inner side thereof, and an annular rabbet 38a is formed on the guide ring 38 to be located on the radially outer side thereof. In order to cool the resin within the cavity C, a temperature control medium passage 55 is formed in the mirror-surface plate 16, and a temperature control medium passage 56 is formed in the mirror-surface plate 36.

[0014]

Subsequently, the drive cylinder is operated so as to advance the flange 51, thereby advancing the cut punch 48. The front end of the cut punch 48 enters the die 28, thereby punching a hole in the prototype substrate within the cavity C. The punched prototype substrate is further cooled and becomes a disc substrate.

[0015]

Next, the mold clamping mechanism is operated so as to retreat the movable platen, thereby retreating (moving leftward in FIG. 2) the mold assembly 32 for performing mold opening. Through mold opening, the disc substrate is released from the stamper 29. Subsequently, the ejector pin is advanced, thereby separating the disc substrate from the

mold assembly 32. In this manner, the disc substrate can be taken out.

[0016]

The inner holder 30 has a function of mechanically holding the inner circumferential edge of the stamper 29. In order to prevent the stamper 29 from separating from the mirror-surface plate 16 and dropping off when the disc substrate is released from the stamper 29 in the course of mold opening, an annular holding portion 58 is formed at the outer circumferential edge of the front end of the inner holder 30 in such a manner as to project frontward (leftward in FIG. 3) and radially outward (see, for example, Patent Document 1).

[0017]

[Patent Document 1]

Japanese Patent Application Laid-Open (kokai) No. 2002-46157

[0018]

[Problems to be Solved by the Invention]

However, in the conventional disc-molding mold, since the holding portion 58 is formed at the outer circumferential edge of the front end of the inner holder 30, a groove corresponding to the holding portion 58 is formed on the disc substrate. Thus, a print region on the disc substrate is narrowed accordingly.

[0019]

Since the holding portion 58 projects into the cavity C,

resin charged into the cavity C passes through a portion of the cavity C that is narrowed by the holding portion 58, thus impairing fluidity of the resin. This causes, for example, formation of flow lines on the surface of the disc substrate or warpage of the disc substrate, thereby impairing quality of the disc substrate.

[0020]

In order to cope with manufacturing tolerance for the stamper 29 and the inner holder 30 and to facilitate attachment of the stamper 29 and the inner holder 30, a clearance CL1 is formed between the front end surface of the mirror-surface plate 16 and the rear end surface (the right end surface in FIG. 3) of the holding portion 58, and a clearance CL2 is formed between the inner circumferential surface of the stamper 29 and the outer circumferential surface of the inner holder 30. If the clearance CL1 is large, resin may enter the clearance CL1, resulting in generation of burrs on the disc substrate.

[0021]

If the clearance CL2 is large, the mirror-surface plate 16 may radially go off center. This causes a failure to establish concentricity between an information region and the disc substrate, thereby impairing quality of the disc substrate.

[0022]

An object of the present invention is to solve the above-mentioned problems in the conventional disc-molding

mold and to provide a mold for molding in which generation of burrs on a disc substrate can be prevented to thereby enhance quality of the disc substrate.

[0023]

[Means to Solve the Problems]

To achieve the above object, a mold for molding of the present invention comprises a mirror-surface plate; a stamper having a hole formed at its center, and attached to the front end surface of the mirror-surface plate; and an inner holder for holding the stamper by means of press fit into the hole.

[0024]

In the course of the press fit, at least either the stamper or the inner holder is plastically deformed.

[0025]

In another mold for molding of the present invention, said press fit is performed by means of plastically deforming the stamper.

[0026]

In another mold for molding of the present invention, after said press fit is performed, a front end surface of said inner holder and a front end surface of said stamper are brought onto the same plane.

[0027]

In another mold for molding of the present invention, said press fit is performed in a press-fit deformation region established at each of at least two positions in a circumferential direction of said stamper and said inner

holder.

[0028]

In another mold for molding of the present invention, in said press-fit deformation regions, an outer circumferential surface of said inner holder comprises a plurality of surfaces.

[0029]

In another mold for molding of the present invention, as measured in said press-fit deformation regions, a diameter of a front end of said inner holder is greater than a diameter of a rear end of said inner holder.

[0030]

In another mold for molding of the present invention, the front end surface of said inner holder projects from the front end surface of said stamper.

[0031]

Another mold for molding of the present invention comprises a first mold assembly; a second mold assembly disposed in such a manner as to be able to advance toward and retreat from said first mold assembly; an insert disposed in at least either said first or second mold assembly; and an inner holder for disposing said insert.

[0032]

In the course of press fit, at least either said insert or said inner holder is plastically deformed.

[0033]

[Embodiments of the Invention]

The embodiments of the present invention will next be described in detail with reference to the drawings. In this case, a disc-molding mold will be described as a mold for molding (mold apparatus).

[0034]

FIG. 1 is a sectional view showing essential portions of a disc-molding mold according to a first embodiment of the present invention; FIG. 4 is a sectional view of the disc-molding mold according to the first embodiment of the present invention; and FIG. 5 is an enlarged view of a press-fit deformation region in the first embodiment of the present invention.

[0035]

In these drawings, reference numeral 12 denotes a stationary-side mold assembly, which serves as a first mold assembly, attached to an unillustrated stationary platen by use of unillustrated bolts, and reference numeral 32 denotes a movable-side mold assembly, which serves as a second mold assembly, attached to an unillustrated movable platen by use The mold assemblies 12 and of unillustrated bolts. An unillustrated mold constitute a disc-molding mold. clamping mechanism is disposed behind the movable platen. Operation of the mold clamping mechanism causes the movable platen to advance and retreat, whereby the mold assembly 32 advances and retreats (moves rightward and leftward in FIG. 4) to contact and move away from the mold assembly 12. In this manner, the disc-molding mold undergoes mold closing,

mold clamping, and mold opening. When mold closing and mold clamping are performed, a cavity C is formed between the mold assembly 12 and the mold assembly 32. The stationary platen, the movable platen, the mold clamping mechanism, and the like constitute a mold clamping apparatus.

[0036]

The mold assembly 12 includes a base plate 15; a mirror-surface plate 16 attached to the base plate 15 by use of bolts 17; an annular guide ring 18 disposed radially outward of the mirror-surface plate 16 and attached to the base plate 15 by use of bolts 19; a locating ring 23 disposed in the base plate 15 in such a manner as to face the stationary platen and adapted to position the base plate 15 with respect to the stationary platen; and a sprue bush 24 disposed adjacent to the locating ring 23 and extending frontward (leftward in FIG. 4) through the base plate 15 and the mirror-surface plate 16.

[0037]

A sprue 26 is formed along the axis of the sprue bush 24 in order to allow passage of resin, which serves as a molding material, injected from the injection nozzle of an unillustrated injection unit. The front end (the left end in FIG. 4) of the sprue bush 24 faces the cavity C, and a die 28 having a recess is formed at the front end of the sprue bush 24.

[0038]

Meanwhile, when resin is fed into the cavity C and

allowed to set therein, a prototype substrate, which is a prototype for a disc substrate, is formed. At this time, fine pits are formed on one side of the disc substrate, thereby forming an information side. In order to form the fine pits, a disc-like stamper 29, which has a hole formed therein at its center and a fine pattern formed on the surface thereof, and serves as an insert, is attached to the front end surface (the left end surface in FIG. 4) of the mirror-surface plate 16. Fine pits are formed on the front end surface of the stamper 29. The stamper 29 is pressed mirror-surface plate 16 by means the holder acting on its unillustrated outer circumferential edge and an inner holder 60 acting on its inner circumferential edge. An unillustrated stationary-side air blow bush and the like are also disposed on the mold assembly 12.

[0039]

The mold assembly 32 includes a base plate 35; an intermediate plate 40 attached to the base plate 35 by use of bolts 37; a mirror-surface plate 36 attached to the intermediate plate 40 by use of bolts 42; an annular guide ring 38 disposed radially outward of the mirror-surface plate 36 and attached to the intermediate plate 40 by use of bolts 39; a guide member 44 disposed in the base plate 35 in such a manner as to face the movable platen and attached to the intermediate plate 40 by use of bolts 45; and a cut punch 48 disposed in the guide member 44, in opposition to the sprue

bush 24, and in such a manner as to be able to advance and retreat. The front end (the right end in FIG. 4) of the cut punch 48 has a shape corresponding to the die 28.

[0040]

An annular cavity ring 33 is disposed on the surface of the mirror-surface plate 36 that faces the mirror-surface plate 16, along the outer circumferential edge of the mirror-surface plate 36 in such a manner as to project toward the mirror-surface plate 16 by a dimension corresponding to the thickness of a disc substrate to be molded. In FIG. 4, the cavity ring 33 is depicted as being integral with the mirror-surface plate 36. However, in actuality, the cavity ring 33 is a separate element and fixed to the mirror-surface plate 36 by use of unillustrated bolts.

[0041]

The cavity ring 33 defines a depression located radially inward thereof. When mold closing and mold clamping are performed, the depression forms the cavity C.

[0042]

A flange 51 formed integrally with the cut punch 48 is disposed within the guide member 44 such that it can advance and retract. An unillustrated drive cylinder is disposed rearward (leftward in FIG. 4) of the flange 51 and, when operated, causes the flange 51 to move frontward (rightward in FIG. 4). A cut-punch return spring 52 is disposed between the flange 51 and the intermediate plate 40 located frontward of the flange 51. The cut-punch return spring 52 urges the

flange 51 rearward.

[0043]

An ejector bush, an ejector pin, a movable-side air blow bush, and other unillustrated members are also disposed in the mold assembly 32.

[0044]

the thus-configured disc-molding mold, when movable platen is advanced through operation of the mold clamping mechanism to thereby advance (move rightward in FIG. 4) the mold assembly 32, mold closing is performed, and the guide rings 18 and 38 are joined by means of rabbets, thereby aligning the cavity ring 33 with the mirror-surface plate 16 and the stamper 29. Operation of the mold clamping mechanism is caused to further proceed so as to perform mold clamping. In the mold-clamped condition, molten resin is charged into the cavity C through the sprue 26. The charged resin is cooled and becomes a prototype substrate. In order to join the guide rings 18 and 38 by means of rabbets, an annular rabbet 18a is formed on the guide ring 18 to be located on the radially inner side thereof, and an annular rabbet 38a is formed on the guide ring 38 to be located on the radially outer side thereof. In order to cool the resin within the cavity C, a temperature control medium passage 55 is formed in the mirror-surface plate 16, and a temperature control medium passage 56 is formed in the mirror-surface plate 36.

[0045]

Subsequently, the drive cylinder is operated so as to

advance the flange 51, thereby advancing the cut punch 48. The front end of the cut punch 48 enters the die 28, thereby punching a hole in the prototype substrate within the cavity C. The punched prototype substrate is further cooled and becomes a disc substrate.

[0046]

Next, the mold clamping mechanism is operated so as to retreat the movable platen, thereby retreating (moving leftward in FIG. 4) the mold assembly 32 for performing mold opening. Through mold opening, the disc substrate is released from the stamper 29. Subsequently, the ejector pin is advanced, thereby separating the disc substrate from the mold assembly 32. In this manner, the disc substrate can be taken out.

[0047]

The inner holder 60 has a function of mechanically holding the inner circumferential edge of the stamper 29. In order to prevent the stamper 29 from separating from the mirror-surface plate 16 and dropping off when the disc substrate is released from the stamper 29 in the course of mold opening, the inner holder 60 is attached to the mold assembly 12 as follows: in the course of attachment of the inner holder 60 to the mold assembly 12, the inner holder 60 is press-fitted into the hole of the stamper 29, thereby pressing the stamper 29 against the mirror-surface plate 16 and thus holding the stamper 29 in place.

[0048]

this case, a press-fit deformation region ·In a portion of the outer established at at least circumferential surface of a front end portion (the left end portion in FIG. inner holder 60 and at a 4) of the corresponding portion of the inner circumferential surface of the stamper 29; in the present embodiment, over the entire outer circumferential surface of the front end portion of the inner holder 60 and over the entire inner circumferential surface of the stamper 29. Press fit is performed in the press-fit deformation region. In the course of press fit, at least either the inner holder 60 or the stamper 29; in the present embodiment, the stamper 29 is plastically deformed.

[0049]

For such plastic deformation, the stamper 29 is formed from a first material suited for plastic deformation; for example, pure nickel, whereas the inner holder 60 is formed from a second material having higher hardness than pure nickel; for example, stainless steel.

[0050]

The press-fit deformation region may be established at each of at least two positions in the circumferential direction of the stamper 29 and the inner holder 60 and at at least one position in the axial direction of the stamper 29 and the inner holder 60.

[0051]

In order to plastically deform the stamper 29, as measured in the press-fit deformation regions, the outside

diameter of the inner holder 60 is rendered greater than the inside diameter of the stamper 29. Also, as measured in the press-fit deformation regions, the diameter of the front end of the inner holder 60 is rendered greater than the diameter of the rear end (the right end in FIG. 4) of the inner holder 60. For example, in FIGS. 1 and 5, at the boundary between the inner holder 60 and the stamper 29, reference symbol S1 denotes the inner circumferential surface of the stamper 29 The inner circumferential before press fit is performed. surface S1 consists of a cylindrical surface a and a curved surface b. The cylindrical surface a extends frontward from the rear end of the stamper 29. The curved surface b is curved frontward from the front end of the surface a such that its diameter increases gradually. Reference symbol S2 denotes the outer circumferential surface of the inner holder press-fit deformation region. The 60 the circumferential surface S2 consists of a plurality of surfaces axially adjacent to each other. In the present embodiment, the outer circumferential surface S2 assumes the same profile before and after press fit is performed, and consists of a cylindrical surface c and a conical surface d. The cylindrical surface c extends frontward from the rear end of the stamper 29. The conical surface d extends frontward from the front end of the surface c in an oblique manner such that its diameter increases gradually.

[0052]

The surface c is rendered slightly greater in diameter

than the surface a. The diameter of the conical surface d is rendered greater than that of the curved surface b by an amount (for example, 30 µm as measured at a maximum-diameter portion) sufficient for press fit. Accordingly, in the course of press fit, the inner circumferential surface S1 is plastically deformed in the radially outward direction, thereby assuming a profile along the outer circumferential surface S2. As a result, the inner circumferential surface S1 and the outer circumferential surface S2 are brought into tight contact, whereby the inner holder 60 holds the stamper 29 in a sufficiently reliable manner and presses the stamper 29 against the mirror-surface plate 16.

[0053]

In order to cause the inner holder 60 to retreat (move rightward in FIG. 4), an unillustrated engaging mechanism is disposed within the base plate 15. The engaging mechanism includes an operation rod, which rotatably extends from the outside of the disc-molding mold to the vicinity of the outer circumferential surface of the inner holder 60, and an engaging portion, which is formed at an end of the operation rod and has a predetermined shape. By means of rotating the operation rod, the engaging portion is engaged with a predetermined portion of the rear end of the inner holder 60, thereby causing the inner holder 60 to retreat.

[0054]

In this case, the distance of retreat of the inner holder 60 is determined such that, after press fit is

performed, the front end surface of the inner holder 60 and the front end surface of the stamper 29 are present on the same plane.

[0055]

While the stamper 29 is pressed against the mirror-surface plate 16, the inner holder 60 is inserted into the respective holes formed in the stamper 29 and the mirror-surface plate 16, and the rear end of the inner holder 60 is engaged with the engaging portion of the operation rod. When the engaging mechanism is operated, the inner holder 60 is retreated; accordingly, the front end of the inner holder 60 is fitted into the hole of the stamper 29, whereby the inner holder 60 is press-fitted into the hole of the stamper 29 and the mirror-surface plate 16.

[0056]

Since the stamper 29 is held by the inner holder 60 by means of the above-mentioned press fit, there arises no need to form a holding portion at the outer circumferential edge of the front end of the inner holder 60. Accordingly, an associated groove is not formed on the disc substrate. Thus, a print region on the disc substrate can be expanded.

[0057]

Since the holding portion is not formed, the cavity C is not narrowed. Accordingly, a molding material charged into the cavity C exhibits good fluidity, thereby preventing formation of flow lines on the surface of the disc substrate or warpage of the disc substrate. As a result, quality of

the disc substrate can be enhanced.

[0058]

Since no clearance is formed between the stamper 29 and the inner holder 60, generation of burrs on the disc substrate can be prevented. Since the mirror-surface plate 16 does not radially go off center, the information region and the disc substrate are concentric, thereby enhancing quality of the disc substrate.

[0059]

In the present embodiment, in the course of press fit, the stamper 29 is plastically deformed. The plastic deformation arises when stress that is generated in the stamper 29 by an externally imposed force exceeds a yield point, which is the limit of elastic deformation of the stamper 29. In the elastic deformation, when stress becomes zero (0), strain becomes zero. By contrast, in the plastic deformation, even after stress becomes zero, strain remains and the original shape of the stamper 29 is not restored.

[0060]

Accordingly, once the inner holder 60 is attached to thereby be press-fitted into the stamper 29, stress does not remain in the stamper 29, whereby the mounted condition of the mirror-surface plate 16 can be stabilized. As a result, quality of the disc substrate can be enhanced.

[0061]

The inner holder 60 may be plastically deformed during press fit into the stamper 29 without plastic deformation of

the stamper 29. In this case, the inner holder 60 is configured such that its surface portion that contacts the stamper 29 and is plastically deformed is removably disposed on its base portion. Accordingly, when the stamper 29 cannot be smoothly press-fitted to the inner holder 60, smooth press fit can be achieved by replacing only the inexpensive surface portion of the inner holder 60, without need to replace the expensive stamper 29. Furthermore, both the stamper 29 and the inner holder 60 may be plastically deformed for press fit.

[0062]

Next, other examples of a press-fit deformation region will be described.

[0063]

an enlarged view showing another, FIG. 6 is first example of the press-fit deformation region in the first embodiment of the present invention; FIG. 7 is an enlarged view showing another, second example of the press-fit deformation region in the first embodiment of the present invention; FIG. 8 is an enlarged view showing another, third example of the press-fit deformation region in the first embodiment of the present invention; FIG. 9 is an enlarged showing another, fourth example of the press-fit deformation region in the first embodiment of the present invention; FIG. 10 is an enlarged view showing another, fifth example of the press-fit deformation region in the first embodiment of the present invention; FIG. 11 is an enlarged showing another, sixth example of the view

deformation region in the first embodiment of the present invention; FIG. 12 is an enlarged view showing another, seventh example of the press-fit deformation region in the first embodiment of the present invention; and FIG. 13 is an enlarged view showing another, eighth example of the press-fit deformation region in the first embodiment of the present invention.

[0064]

In FIGS. 6 to 13, reference numeral 16 denotes the mirror-surface plate; reference numeral 29 denotes the stamper; reference numeral 60 denotes the inner holder; and reference symbol S2 denotes the outer circumferential surface of the inner holder 60 in the press-fit deformation region.

[0065]

In the first example, as shown in FIG. 6, the outer circumferential surface S2 has a conical surface e, which extends frontward (leftward in FIG. 6) from the rear end (the right end in FIG. 6) of the stamper 29 in an oblique manner such that its diameter increases gradually. In the second example, as shown in FIG. 7, the outer circumferential surface S2 has a cylindrical surface f, which extends frontward from the rear end of the stamper 29. In the third example, as shown in FIG. 8, the outer circumferential surface S2 consists of a cylindrical surface g, which extends frontward from the rear end of the stamper 29; a conical surface h, which extends frontward from the front end of the surface g in an oblique manner such that its diameter

increases gradually; and a cylindrical surface i, which extends frontward from the front end of the conical surface h. In the fourth example, as shown in FIG. 9, the outer circumferential surface S2 consists of a cylindrical surface j, which extends frontward from the rear end of the stamper 29; a conical surface k, which extends frontward from the front end of the surface g in an oblique manner with a first angle $\theta 1$ such that its diameter increases gradually; and a conical surface m, which extends frontward from the front end of the conical surface k in an oblique manner with a second angle $\theta 2$ (< $\theta 1$) such that its diameter increases gradually.

[0066]

In the fifth example, as shown in FIG. 10, the outer circumferential surface S2 has a curved surface n, which is curved frontward from the rear end of the stamper 29 such that its diameter increases gradually while its angle increases gradually. In the sixth example, as shown in FIG. 11, the outer circumferential surface S2 has a curved surface o, which is curved frontward from the rear end of the stamper 29 such that its diameter increases gradually while its angle decreases gradually. In the seventh example, as shown in FIG. 12, the outer circumferential surface S2 consists of a cylindrical surface p, which extends frontward from the rear end of the stamper 29, and a curved surface q, which is curved frontward such that its diameter increases gradually while its angle increases gradually. In the eighth example, as shown in FIG. 13, the outer circumferential surface S2

consists of a cylindrical surface r, which extends frontward from the rear end of the stamper 29, and a curved surface s, which is curved frontward such that its diameter increases gradually while its angle decreases gradually.

[0067]

Next, a second embodiment of the present invention will be described.

[0068]

FIG. 14 is an enlarged view showing a press-fit deformation region in the second embodiment of the present invention.

[0069]

In FIG. 14, reference numeral 29 denotes the stamper, and reference numeral 60 denotes the inner holder. In this case, the inner holder 60 is formed in such a manner that its front end surface (the left end surface in FIG. 14) projects from the front end surface of the stamper 29 to such a slight extent as not to narrow the cavity C (FIG. 4).

[0070]

The above embodiments are described while mentioning a disc-molding mold. However, the present invention can be applied to a mold for molding, for example, a light guide disc having a fine pattern formed thereon.

[0071]

The present invention is not limited to the abovedescribed embodiments. Numeral modifications and variations of the present invention are possible in light of the spirit of the present invention, and they are not excluded from the scope of the present invention.

[0072]

[Effect of the Invention]

As described in detail above, a mold for molding of the present invention comprises a mirror-surface plate; a stamper having a hole formed at its center, and attached to the front end surface of the mirror-surface plate; and an inner holder for holding the stamper by means of press fit into the hole.

[0073]

In the course of the press fit, at least either the stamper or the inner holder is plastically deformed.

[0074]

In this case, the inner holder is press-fitted into the hole of the stamper to thereby hold the stamper, thereby eliminating need to form a holding portion at the outer circumferential edge of the front end of the inner holder. Accordingly, an associated groove is not formed on the disc substrate. Thus, a print region on the disc substrate can be increased in area.

[0075]

Since the holding portion is not formed, the cavity is not narrowed. Accordingly, a molding material charged into the cavity exhibits good fluidity, thereby preventing formation of flow lines on the surface of the disc substrate or warpage of the disc substrate. As a result, quality of the disc substrate can be enhanced.

[0076]

Since no clearance is formed between the stamper and the inner holder, generation of burns on the disc substrate can be prevented. Since the stamper does not radially go off center, the information region and the disc substrate become concentric, thereby enhancing quality of the disc substrate.

[0077]

In another mold for molding of the present invention, said press fit is performed by means of plastically deforming the stamper.

[0078]

In this case, once the inner holder is attached to thereby be press-fitted into the stamper, stress does not remain in the stamper, whereby the mounted condition of the stamper can be stabilized. As a result, quality of the disc substrate can be enhanced.

[BRIEF DESCRIPTION OF THE DRAWINGS]

[FIG. 1]

Sectional view showing essential portions of the conventional disc-molding mold according to a first embodiment of the present invention.

[FIG. 2]

Sectional view of a conventional disc-molding mold.

[FIG. 3]

Sectional view showing essential portions of the conventional disc-molding mold.

[FIG. 4]

Sectional view of a disc-molding mold according to a first embodiment of the present invention.

[FIG. 5]

Enlarged view of a press-fit deformation region in the first embodiment of the present invention.

[FIG. 6]

Enlarged view showing another, first example of the press-fit deformation region in the first embodiment of the present invention.

[FIG. 7]

Enlarged view showing another, second example of the press-fit deformation region in the first embodiment of the present invention.

[FIG. 8]

Enlarged view showing another third example of the press-fit deformation region in the first embodiment of the present invention.

[FIG. 9]

Enlarged view showing another, fourth example of the press-fit deformation region in the first embodiment of the present invention.

[FIG. 10]

Enlarged view showing another, fifth example of the press-fit deformation region in the first embodiment of the present invention.

[FIG. 11]

Enlarged view showing another, sixth example of the

press-fit deformation region in the first embodiment of the present invention.

[FIG. 12]

Enlarged view showing another, seventh example of the press-fit deformation region in the first embodiment of the present invention.

[FIG. 13]

Enlarged view showing another, eighth example of the press-fit deformation region in the first embodiment of the present invention.

[FIG. 14]

Enlarged view showing a press-fit deformation region in a second embodiment of the present invention.

[Description of Symbols]

12, 32: mold assembly

16: mirror-surface plate

29: stamper

60: inner holder

S2: outer circumferential surface

c, f, g, i, j, p, r: surface

d, e, h, k, m: conical surface

n, o, q, s: curved surface

```
[DOCUMENT NAME] Drawings
```

[Fig. 1]

16: mirror-surface plate

29: stamper

60: inner holder

surface c

conical surface d

S2: outer circumferential surface

[Fig. 2]

[Fig. 3]

[Fig. 4]

[Fig. 5]

[Fig. 6]

[Fig. 7]

[Fig. 8]

[Fig. 9]

[Fig. 10]

[Fig. 11]

[Fig. 12]

[Fig. 13]

[Fig. 14]

JUL 1 0 2007 BY

提出日 平成14年11月18日 頁: 1/ 6

【書類名】

図面

[図1]

[図2]

【図3】

[図4]

【図5】

[図6]

【図7】

【図8】

【図9】

【図10】

【図11】

[図12]

【図13】

【図14】

[DOCUMENT NAME] Abstract
[ABSTRACT]

[Objective] To prevent generation of burrs on a disc substrate to thereby enhance quality of the disc substrate.

[Means for Solution] The mold for molding includes a mirror-surface plate 16; a stamper 29 having a hole formed at its center, and attached to the front end surface of the mirror-surface plate 16; and an inner holder 60 for holding the stamper 29 by means of press fit into the hole. In the course of the press fit, at least either the stamper 29 or the inner holder 60 is plastically deformed. In this case, the inner holder 60 is press-fitted into the hole of the stamper 29 to thereby hold the stamper 29, thereby eliminating need to form a holding portion at the outer circumferential edge of the front end of the inner holder 60. Since a cavity C is not narrowed, quality of disc substrates can be enhanced.

[SELECTED DRAWING] Fig. 1