Homework 4 + Lab 2

Graded

Student

周洛君

Total Points

82 / 90 pts

Question 1

Question 1 24 / 24 pts

ullet + 24 pts Correct $D_C=CA+BA', T_C=C'A'+B'A', S_B=C', R_B=CA, J_A=C, K_A=C'B+CB'$

- + 22 pts One minor mistake
- + 20 pts One major mistake OR two minor mistakes
- + 18 pts One major mistake and one minor mistake OR three minor mistakes
- + 16 pts More mistakes with a correct direction
- + 8 pts Some reasonable efforts
- + 2 pts Truth table only
- + 0 pts Wrong or empty

Question 2

Question 2 12 / 12 pts

- - + 10 pts One minor mistake
 - + 8 pts One major mistake OR two minor mistakes
 - + 6 pts One major mistake and one minor mistake OR three minor mistakes
 - + 4 pts More mistakes with some reasonable efforts
 - + 0 pts Wrong or empty

Question 3 4 / 12 pts

- + 12 pts Correct
- + 10 pts One minor mistake
- + 8 pts One major mistake OR two minor mistakes
- + 6 pts One major mistake and one minor mistake OR three minor mistakes
- - + 0 pts Wrong or empty

Question 4

Question 4 30 / 30 pts

4.1

- **→ + 12 pts** 4.1. Seem to work
 - + 6 pts 4.1. Some reasonable efforts
 - + 0 pts 4.1. Empty

4.2

- **✓ + 12 pts** 4.2. Correct
 - + 8 pts 4.2. Mistake
 - + 4 pts 4.2. Some reasonable efforts
 - + 0 pts 4.2. Empty

4.3

- → + 6 pts 4.3. Correct (relaxing the scoring criteria: 20 can get this point)
 - **+ 4 pts** 4.3. A minor mistake (15, 18, 21, 29, 31, or 39... gets this point)
 - + 2 pts 4.3. Some reasonable efforts
 - **+ 0 pts** 4.3 Empty
 - + 0 pts Empty or seem not to work

5.1

- **→ +6 pts** 5.1. Correct
 - **+ 4 pts** 5.1. Mistake
 - + 2 pts 5.1. Some reasonable efforts
 - **+ 0 pts** 5.1. Empty

5.2

- **✓ +6 pts** 5.2. Correct
 - + 4 pts 5.2. Mistake
 - + 2 pts 5.2. Some reasonable efforts
 - **+ 0 pts** 5.2. Empty
 - + 0 pts Wrong or empty

Digital System Design and Lab: HW4

Lo Chun, Chou R13922136

 $May\ 18,\ 2025$

1

(1)

Pre	esent	State	Next State			
C	B	A	C^+	B^+	A^+	
0	0	1	0	1	1	
0	1	1	0	1	0	
0	1	0	1	1	0	
1	1	0	1	1	1	
1	1	1	1	0	1	
1	0	1	1	0	0	
1	0	0	0	0	1	

		(C .		C					C	
		0	1			0	1			0	1
	00	X	0		00	X	0	BA	00	X	1
D.4	01	0	1	BA	01	1	0		01	1	0
BA	11	0	1	DA	11	1	0	DA	11	0	1
	10	1	1		10	1	1		10	0	1.

(a) C^+ (b) B^+ (c) A^+

Figure 1: K-maps

(2)

The K-maps for D flip-flop are the same as the K-maps for C^+ , B^+ , and A^+ in (1), since we assign the values of D_C , D_B , and D_A to be C^+ , B^+ , and A^+ respectively.

Thus, the following D_C is the same as C^+ :

		C				
		0	1			
	00	X	0			
BA	01	0	1			
	11	0	1			
	10	1	1			

Figure 2: D flip-flop (D_C)

The minimum SOP expression for $\mathcal{D}_{\mathcal{C}}$ is:

$$D_C = AC + A'B$$

(3)

Since C is toggled for $CBA = \{010, 100\}$, we can derive the following K-map for T_C :

Figure 3: T flip-flop (T_C)

The minimum SOP expression for T_C is:

$$T_C = A'B' + A'C'$$

(4)

From the truth table is subproblem (1), we have:

$$\{B, B^+\} = \begin{cases} \{0, 0\} & \text{for } CBA = \{101, 100\} \to \{S, R\} = \{0, X\} \\ \{0, 1\} & \text{for } CBA = \{001\} \to \{S, R\} = \{1, 0\} \\ \{1, 0\} & \text{for } CBA = \{111\} \to \{S, R\} = \{0, 1\} \\ \{1, 1\} & \text{for } CBA = \{011, 010, 110\} \to \{S, R\} = \{X, 0\} \end{cases}$$

The minimum SOP expression for S_B, R_B are:

$$S_B = C'$$

$$R_B = AC$$

(5)

From the truth table is subproblem (1), we have:

$$\{A, A^{+}\} = \begin{cases} \{0, 0\} & \text{for } CBA = \{010\} \to \{J, K\} = \{0, X\} \\ \{0, 1\} & \text{for } CBA = \{110, 100\} \to \{J, K\} = \{1, X\} \\ \{1, 0\} & \text{for } CBA = \{011, 101\} \to \{J, K\} = \{X, 1\} \\ \{1, 1\} & \text{for } CBA = \{001, 111\} \to \{J, K\} = \{X, 0\} \end{cases}$$

The minimum SOP expression for J_A, K_A are:

$$J_A = C$$
$$K_A = BC' + B'C$$

 $\mathbf{2}$

(1)

Following the steps to construct the state table at lecture slides 13, p. 15, we first determine the flip-flop and output equations:

$$J_{1} = X,$$

$$K_{1} = X \overline{\wedge} Q'_{2} = (XQ'_{2})' = X' + Q_{2},$$

$$J_{2} = X,$$

$$K_{2} = Q_{1} \overline{\wedge} X = (Q_{1}X)' = Q'_{1} + X',$$

$$Z = Q'_{2} \oplus X = Q'_{2}X' + Q_{2}X$$

Then, using the next state equation for JK flip-flop, which is:

$$Q^+ = JQ' + K'Q$$

we have:

$$Q_1^+ = J_1 Q_1' + K_1' Q_1 = X Q_1' + (X' + Q_2)' Q_1 = \underbrace{X Q_1' + X Q_1 Q_2'}_{Q_2' + Q_2' + K_2' Q_2 = X Q_2' + (Q_1' + X')' Q_2 = \underbrace{X Q_2' + X Q_1 Q_2}_{X Q_2' + X Q_2 X}$$

$$Z = \underbrace{Q_2' X' + Q_2 X}_{Q_2' + Q_2' X}$$

We then plot the next state map for each flip-flop:

- (a) Q_1^+
- (b) Q_2^+
- (c) Z

We can then use the K-maps to form the state table:

Q_1Q_2	Q_1^+	Q_2^+	Z		
Q1Q2	X = 0	X = 1	X = 0	X = 1	
00	00	11	1	0	
01	00	10	0	1	
11	00	01	0	1	
10	00	11	1	0	

(2)

We first replace part of the resulting state table in subproblem (1) with the following symbols:

$$S_0 = 00, \quad S_1 = 01, \quad S_2 = 11, \quad S_3 = 10$$

Then we'll have:

Q_1Q_2	Q_1^+	Q_2^+	Z		
Q1Q2	X = 0	X = 1	X = 0	X = 1	
S_0	S_0	S_2	1	0	
S_1	S_0	S_3	0	1	
S_2	S_0	S_1	0	1	
S_3	S_0	S_2	1	0	

Using this table, we can construct the state diagram:

3

(1)

From the following image, we can check that for all possible situations 0000 to 1111, what the next state should be after the input $X = \{0, 1\}$ is applied.

	Decimal digit		BCD			Next input			
De	cimai digit	8	4	2	1	X=	X=0	(valid)	
	0	0	0	0	0	000	0 00 0	Green: output Z=1 Red: output Z=1	
	1	0	0	0	1	000	0000	(invalid)	
	2	0	0	1	0	1001	000		
	3	0	0	1	1	001	0001		
	4	0	1	0	0	010	0 > >		
	5	0	1	0	1	1010	00 0		
	6	0	1	1	0	[01]	0-(1		
	7	0	1	1	1	1011	0011		
	8	1	0	0	0	1100	0102		
	9	1	0	0	1	(102	0100		
whid	10	l	0 1	0		1101	0[0]		
	11	١	0	1		1101	0101		
	12	ı	1 0	0		1110	0112		
	13	(1 4	0		1110	٥١١٥		
	14	ı	1	0		1111	0 1 ()		
	15	(l	1		11.11	0111		

Let S_0 be the initial state, which assumes all previous inputs were 0 as given in the problem. We then add two states S_1 and S_2 to represent the cases when the current input along with the previous 3 inputs is valid and invalid respectively.

This also means that the green states in the above image would go to S_1 and the red states would go to S_2 .

Thus, we can form the state table as follows:

Current State	Inp	out	Z		
Current State	X = 0	X = 1	X = 0	X = 1	
S_0	S_0	S_1	0	0	
S_1	S_1	S_{1}, S_{2}	0	0	
S_2	S_1, S_2	S_1, S_2	1	1	

(2)

We shall use the following four states, with each of them containing the previous 4 inputs as follows:

```
\begin{split} S_0 &= \{0000,0001,0010,0011\} \\ S_1 &= \{0100,0101,0110,0111\} \\ S_2 &= \{1000,1001\} \\ S_3 &= \{1010,1011,1100,1101,1110,1111\} \end{split}
```

For S_0 , this state contains all the cases when no matter we receive any input (X = 0 or 1), it would still be valid.

For S_1 , this state contains the cases when it receives 0 as input, it would go to S_0 , and would be invalid (go to S_3) if it receives 1.

For S_2 , this state contains the cases when it receives 0 as input, it would go to S_1 , and would be invalid (go to S_3) if it receives 1. (The distinction between S_1, S_2 is that it is possible for S_1 to enter the next state S_0 , which would be valid no matter what next input is.)

For S_3 , this state contains all the invalid cases.

We can then form the state table as follows:

Current State	Inp	out	Z		
Current State	X = 0	X = 1	X = 0	X = 1	
S_0	S_0	S_0	0	0	
S_1	S_0	S_3	0	1	
S_2	S_1	S_3	0	1	
S_3	S_1	S_3	0	1	

4

(1)

The following screenshot is the module mult_fast

And also not required, the following figure shows how the indices are decided:

(2)

(3)

We can find the latency by the above waveform, for example, if we look at the input at 1750, we have inputs A=1010 and B=1110, which corresponds to 10 and 14 respectively.

Questions assigned to the following page: $\underline{4}$ and $\underline{5}$

Thus, the output P at 1750 is $10\times14=140$, which can be represented as 10001100 in binary, and this correct product appears at 1770.

Therfore, the latency is 1770 - 1750 = 20 ticks.

$\mathbf{5}$

(1)

The minimum clock cycle is 8 ticks

(2)

The waveform is as follows:

