Package 'brentlabRnaSeqTools'

June 29, 2021

```
Title A collection of functions to interact with the brentlab RNASeq database
Version 0.0.0.9000
Description
      Process genomics data from brentlab databases, and other assorted brentlab RNASeq functions.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
Roxygen list(markdown = TRUE)
RoxygenNote 7.1.1
biocViews
Imports rlang (>= 0.4.11),
      scales (>= 1.1.1),
      devtools (>= 1.2.1),
     sva(>= 3.34.0),
     jsonlite (>= 1.7.2),
     httr (>= 1.4.2),
      readx1 (>= 1.3.1),
      matrixStats (>= 0.58.0),
      tidyverse (>= 1.3.0),
```

dplyr (>= 1.0.5), tidyr (>= 1.1.3), ggplot2 (>= 3.3.3), readr (>= 1.4.0), stringr (>= 1.4.0), ggbio (>= 1.34.0),

GenomicRanges (>= 1.38.0), GenomicFeatures (>= 1.38.2),

RPostgres (>= 1.3.2), RSQLite (>= 2.2.7), glue (>= 1.4.2), Rsamtools (>= 2.2.3), DESeq2 (>= 1.26.0), magrittr (>= 2.0.1),

```
RColorBrewer (>= 1.1-2),
ggExtra(>= 0.9)

URL https://github.com/cmatKhan/brentlabRnaSeqTools

Suggests testthat (>= 3.0.0),
knitr,
rmarkdown,
covr

VignetteBuilder knitr

Depends R (>= 3.6.3),
tibble (>= 2.1.3)

Config/testthat/edition 3
```

R topics documented:

archiveDatabase
calculateCoverage
calculateGeneWiseMedians
calculateRLE
connectToDatabase
countReadsInRanges
createBamPath 7
createEnvPertSet
createInductionSetTally
createNinetyMinInductionModelMatrix
createNinetyMinuteInductionSet
createNinetyMinuteInductionWithDoubles
createQCdatabase
database_info
deseqObjectWithProtocolSpecificSizeFactors
determineLibraryStrandedness
examineSingleGroupWithLibDateSizeFactors
featureGRanges
fltrLowReplicateParams
getBamIndexPath
getCoverageOverRegion
getMetadata
getRawCounts
getRunNumberLeadingZero
getUserAuthToken
grant_df
graphYeastTimeCourse
isNumeric
listTables
locusLog2Cpm
patchTable
plotCoverageOverLocus

archiveDatabase 3

archi	pull entire database (not counts) and save to output_dir for archival purposes	
Index		34
	testBamPath	33
	strandedScanBamParam	
	selectQaColumns	32
	run_numbers_with_leading_zero	31
	runSVA	31
	rleSummary	3 C
	rlePlot_helper	30
	rlePlotCompareEffectRemoved	29
	rlePlot	28
	rleByReplicateGroup	28
	removeParameterEffects	27
	removeOneRedoIqr	27
	readInData	26
	quality Assessment Filter	
	qcGenotypeAndMarkerCoverage	
	proteinCodingCount	24
	postQcSheet	24
	postFastqSheet	
	postCounts	22

Description

saves both the individual tables, including counts, and the combined_df

Usage

```
archiveDatabase(
  database_host,
  database_name,
  database_user,
  database_password,
  output_dir,
  archive_counts_flag = TRUE
)
```

Arguments

database_host if connecting to a database hosted on AWS, it might be something like ec2-54-83-201-96.compute-1.amazonaws.com

database_name name of the database, eg for cryptococcus kn99, the database might be named kn99_database. Check with the documentation, whoever set up the database, or get into the server and check directly

4 calculateCoverage

database_user a user of the actual database, with some level of permissions. You'll need to

check with the database maintainer for this. It is suggested that you use a .Renviron file in your local project (make sure it is completely ignored by git, R, etc)

to store this info

database_password

password to the database user. You'll need to check with the database maintainer for this. It is suggested that you use a .Renviron file in your local project (make

sure it is completely ignored by git, R, etc) to store this info

output_dir where to deposit a subdirectory, named by todays date in this format: 20210407,

with the tables and combined_df inside. eg a mounted local directory /mnt/htcf_lts/crypto_database_archi

-> /lts/mblab/Crypto/rnaseq_data/crypto_database_archive

archive_counts_flag

boolean indicating whether or not to save the counts. default is TRUE

Value

None, writes a directory called <today's date> with tables and combined_df as .csv to output_dir

calculateCoverage calculate coverage over a given locus

Description

calculate coverage over a given locus

Usage

```
calculateCoverage(bamfile_path, annote_db, gene_id, strandedness, ...)
```

Arguments

bamfile_path path to a bam file @seealso brentlabRnaSeqTools::createBamPath()

annote_db a GenomicFeatures TxDb object. Maybe one made from a gtf, eg txdb = makeTxDbFromGFF("data/liftof

format = "gtf")

gene_id a gene_id of interest – must be in the gene names of the annote_db object

strandedness one of c("unstranded", "reverse") indicating the strandedness of the library. note:

forward not currently supported

... additional arguments to getCoverageOverRegion()

Value

percent coverage of feature with reads above a given quality threshold and coverage depth threshold (see getCoverageOverRegion())

calculateGeneWiseMedians 5

calculateGeneWiseMedians

calculate medians across rows of dataframe

Description

calculate medians across rows of dataframe

Usage

```
calculateGeneWiseMedians(count_df)
```

Arguments

count_df

could be any numeric dataframe, but in this context it will typically be a count (raw or log2) df

Value

```
a vector of row-wise medians (length == nrow of input df)
```

calculateRLE

calculate RLE of a numeric dataframe

Description

calculate RLE of a numeric dataframe

Usage

```
calculateRLE(counts_df, log2_transformed_flag = FALSE)
```

Arguments

counts_df gene by samples dataframe of raw counts or logged counts (see paramter logged) log2_transformed_flag

Default FALSE set to true if log2 transformed counts are passed

Value

rle dataframe with genes x samples. Values are the logged differences from the gene-wise medians

6 connectToDatabase

connectToDatabase

Connect to a remote postgresql database

Description

Use the RPostgres package to connect to a remote postgresql database

Usage

```
connectToDatabase(
  database_host,
  database_name,
  database_user,
  database_password
)
```

Arguments

database_host if connecting to a database hosted on AWS, it might be something like ec2-54-

83-201-96.compute-1.amazonaws.com

database_name name of the database, eg for cryptococcus kn99, the database might be named

kn99_database. Check with the documentation, whoever set up the database, or

get into the server and check directly

database_user a user of the actual database, with some level of permissions. You'll need to

check with the database maintainer for this. It is suggested that you use a .Renviron file in your local project (make sure it is completely ignored by git, R, etc)

to store this info

database_password

password to the database user. You'll need to check with the database maintainer for this. It is suggested that you use a .Renviron file in your local project (make

sure it is completely ignored by git, R, etc) to store this info

Value

A DBI connection to the remote database

Note

Source

```
https://rpostgres.r-dbi.org/
```

countReadsInRanges 7

countReadsInRanges given a bam file path, GRanges object, and strandedness of library, return total counts

Description

given a bam file path, GRanges object, and strandedness of library, return total counts

Usage

```
countReadsInRanges(bamfile_path, granges_of_interest, strandedness)
```

Arguments

createBamPath

create a bam path

Description

a helper function to creat a bampath from some metadata information. Also checks if index exists

Usage

```
createBamPath(
  run_number,
  fastq_filename,
  lts_align_expr_prefix,
  bam_suffix = "_sorted_aligned_reads_with_annote.bam",
  test = FALSE
)
```

Arguments

run_number the run_number (mind the leading zeros for old runs) of the run

fastq_filename the fastq filename, preferrably without the extension or any leading path info.

However, an effort has been made to deal with full paths and extensions

lts_align_expr_prefix

the location of the run directories. Eg, if you are mounted and on your local computer, it might be something like "/mnt/htcf_lts/lts_align_expr"

bam_suffix the common bam suffix for all bam files stored in /lts. Eg, it might be something like "_sorted_aligned_reads_with_annote.bam"

test boolean, default FALSE. Set to TRUE if testing this function

Value

a verified filepath to the bam file

createEnvPertSet

filter combined_df for environmental perturbation sample set

Description

filter combined_df for environmental perturbation sample set

Usage

```
createEnvPertSet(combined_df)
```

Arguments

combined_df

the combined tables of the database, returned directly from getMetadata() (meaning, the df hasn't been augmented after pulling from the database)

Value

environmental pertubation set

```
createInductionSetTally
```

create 90 minute induction set tally

Description

create 90 minute induction set tally

Usage

```
createInductionSetTally(
  induction_meta_qual,
  sorted_passing_induction_meta_qual,
  iqr_fltr_rle_summary,
  grant_df
)
```

Arguments

induction_meta_qual

the metadata of the entire set, unfiltered

sorted_passing_induction_meta_qual

metadata (with quality columns) filtered for manual/auto status

iqr_fltr_rle_summary

sorted_passing_meta_qual filtered for IQR

grant_df

the definition of the 90minuteInduction set. This object is available in the brent-

labRnaSeqTools package

createNinetyMinInductionModelMatrix

Create the libraryProtocol + libraryDate model matrix with the earliest date of each library protocol dropped

Description

Create the libraryProtocol + libraryDate model matrix with the earliest date of each library protocol dropped

Usage

createNinetyMinInductionModelMatrix(metadata_df)

Arguments

metadata_df

the joined tables of the database (biosample to quality assess)

Value

a model matrix constructed as specified in the description

 ${\tt createNinetyMinuteInductionSet}$

The current definition of the 90 minute induction dataset, according to the 2016 grant summary (loaded into environment, see head(grant_df)) – single KO only

Description

The current definition of the 90 minute induction dataset, according to the 2016 grant summary (loaded into environment, see head(grant_df)) – single KO only

Usage

```
createNinetyMinuteInductionSet(metadata, grant_df)
```

Arguments

metadata is the combined tables of the metadata database

grant_df is the 2016 grant summary TODO: put this in DATA

Value

the set metadata - single KO only

 ${\tt createNinetyMinuteInductionWithDoubles}$

The current definition of the 90 minute induction dataset, according to the 2016 grant summary (loaded into environment, see

head(grant_df)) - single and double KO

Description

The current definition of the 90 minute induction dataset, according to the 2016 grant summary (loaded into environment, see head(grant_df)) – single and double KO

Usage

createNinetyMinuteInductionWithDoubles(metadata, grant_df)

Arguments

metadata is the combined tables of the metadata database

grant_df is the 2016 grant summary TODO: put this in DATA

Value

the set metadata

createQCdatabase 11

createQCdatabase

create a sqlite database to hold the 'custom' qc data

Description

create a sqlite database to hold the 'custom' qc data

Usage

```
createQCdatabase(database_dirpath)
```

Arguments

database_dirpath

path to containing directory of new qc database

Value

database path

database_info

URLS to active databases

Description

A list containing the urls to active databases. Named by organism (eg 'kn99' or 's288cr64')

Usage

database_info

Format

A list with named slots

kn99_host host of the database server, eg ec2-18-224-181-136.us-east-2.compute.amazonaws.com

kn99_db_name cryptococcus database name. probably something like kn99_database

kn99_urls urls to all tables in kn99 database

s288cr64_host host address of the yeast s288cr64 database, eg ec2-3-131-85-10.us-east-2.compute.amazonaws.com

s288cr64_db_name yeast database name. probably something like yeast_database

s288cr64_urls urls to all tables in s288cr64 database ...

Source

https://rnaseq-databases-documentation.readthedocs.io/en/latest/

 ${\tt deseqObjectWithProtocolSpecificSizeFactors}$

create deseq object with protocol specific size factors

Description

create deseq object with protocol specific size factors

Usage

deseqObjectWithProtocolSpecificSizeFactors(passing_qc1_meta_qual, raw_counts)

Arguments

passing_qc1_meta_qual

can be any metadata df, but if you're going to run deseq you may want to filter

it for passing samples first

raw_counts a dataframe of raw counts with genes in the rows and samples in the columns.

sample names must be the same as the fastqFileName column in passing_qc1_meta_qual.

Value

a deseq data object with size factors calculated within the library protocol groups

determineLibraryStrandedness

from the metadata libraryProtocol column, determine the library strandedness.

Description

Currently set up for cryptococcus. E7420L returns reverse, SolexaPrep returns unstranded. default return is unstranded

Usage

determineLibraryStrandedness(library_protocol)

Arguments

library_protocol

the library protocol of the sample (determines strandedness of the library)

Value

the strandedness of the library based on the value in the libraryProtocol column, or 'unstranded' by default

Note

: default is unstranded

```
examineSingleGroupWithLibDateSizeFactors

temporary function to examine only PBS samples, eg
```

Description

gets all samples in qc_passing_metadata with size_factor_subset_param same as samples in row_filter

Usage

```
examineSingleGroupWithLibDateSizeFactors(
  qc1_passing_metadata,
  raw_counts,
  row_filter,
  size_factor_subset_param
)
```

Arguments

Value

```
a list with slots metadata, raw_counts, size_factors
```

```
featureGRanges Given a GenomicFeatures annotation_db and a gene_id, extract an GRanges object of the cds
```

Description

Given a GenomicFeatures annotation_db and a gene_id, extract an GRanges object of the cds

Usage

```
featureGRanges(annotation_db, gene_id, feature)
```

Arguments

annotation_db a GenomicFeatures db. You can either get this from the bioconductor resources,

or create your own with a gtf

gene_id the ID of a gene in the db. Eg, for cryptococcus CKF44_05222

feature one of c("cds", "exon"), determins which feature to extract from the annotations

Value

an IRanges object of the given gene's exons

References

GenomicRanges::GRanges, GenomicFeatures

fltrLowReplicateParams

filter low replicate parameters from metadata

Description

given a model formula, remove samples with less than a specified number of replicates from the metadata

Usage

fltrLowReplicateParams(metadata_df, design_formula, replicate_threshold = 2)

Arguments

metadata_df a data frame that contains at least the model paramters of interest

 $\label{eq:design_formula} \mbox{ an } R \mbox{ formula, eg \sim library Date+treatment, of parameters contained in the meta-data_df}$

replicate_threshold

the number of replicates below which samples will be removed. Default is $\boldsymbol{2}$

Value

the input metadata with samples in replicate groups with less than the specified thershold filtered out

getBamIndexPath 15

getBamIndexPath helper function to add .bai to bam path

Description

helper function to add .bai to bam path

Usage

```
getBamIndexPath(bamfile_path)
```

Arguments

```
bamfile_path path to bamfile
```

getCoverageOverRegion create a dataframe of coverage by nucleotide over a given locus

Description

create a dataframe of coverage by nucleotide over a given locus

Usage

```
getCoverageOverRegion(
  bamfile_path,
  annote_db,
  gene_id,
  strandedness,
  quality_threshold = 20L,
  coverage_threshold = 0,
  lts_align_expr_prefix = Sys.getenv("LTS_ALIGN_EXPR_PREFIX"),
  bamfile_suffix = Sys.getenv("BAM_SUFFIX")
)
```

Arguments

bamfile_path path to a bam file @seealso brentlabRnaSeqTools::createBamPath()

annote_db a GenomicFeatures TxDb object. Maybe one made from a gtf, eg txdb = makeTxDbFromGFF("data/liftof

format = "gtf")

gene_id a gene_id of interest – must be in the gene names of the annote_db object

strandedness one of c("reverse", "unstranded"). NOTE: forward only strand NOT currently

configured

16 getMetadata

quality_threshold

quality threshold above which reads will be considered. 20l is default, which is chosen b/c it is the default for HTSeq

coverage_threshold

minimum read count above which to consider reads. Default is 0

lts_align_expr_prefix

= path to the directory which stores the run_12345_samples run directories. For example, /lts/mblab/Crypto/rnaseq_data/lts_align_expr. By default, this looks in your .Renviron for a key LTS_ALIGN_EXPR_PREFIX

bamfile_suffix = whatever is appended after the fastqFileName (no extension). Currently, this is "_sorted_aligned_reads_with_annote.bam". By default, this looks in your .Renviron for a key BAM_SUFFIX

References

GenomicRanges, Rsamtools

getMetadata

Get the combined metadata as a tibble from a remote database

Description

Join the biosample, rnasample, s1sample, s2sample, library, fastqFiles and qualityAssessment tables (in that order, left joins) and return the result as a tibble

Use the RPostgres package to connect to a remote postgresql database, do the table joining, and return the joined metadata as a tibble. The database connection is closed

Usage

getMetadata(database_host, database_name, database_user, database_password)

Arguments

if connecting to a database hosted on AWS, it might be something like ec2-54database_host

83-201-96.compute-1.amazonaws.com

name of the database, eg for cryptococcus kn99, the database might be named database_name

kn99_database. Check with the documentation, whoever set up the database, or

get into the server and check directly

a user of the actual database, with some level of permissions. You'll need to database_user

> check with the database maintainer for this. It is suggested that you use a .Renviron file in your local project (make sure it is completely ignored by git, R, etc)

to store this info

database_password

password to the database user. You'll need to check with the database maintainer for this. It is suggested that you use a .Renviron file in your local project (make sure it is completely ignored by git, R, etc) to store this info

getRawCounts 17

Value

A DBI connection to the remote database

Note

for information on using R environmental files, see https://support.rstudio.com/hc/en-us/ articles/360047157094-Managing-R-with-Rprofile-Renviron-Rprofile-site-Renviron-site-rsession-conf-

Source

```
https://rpostgres.r-dbi.org/
```

getRawCounts

Get combined raw counts

Description

Get combined raw counts

Usage

getRawCounts(database_host, database_name, database_user, database_password)

Arguments

database_host if connecting to a database hosted on AWS, it might be something like ec2-54-

83-201-96.compute-1.amazonaws.com

database_name name of the database, eg for cryptococcus kn99, the database might be named

kn99_database. Check with the documentation, whoever set up the database, or

get into the server and check directly

database_user a user of the actual database, with some level of permissions. You'll need to

check with the database maintainer for this. It is suggested that you use a .Renviron file in your local project (make sure it is completely ignored by git, R, etc)

to store this info

database_password

password to the database user. You'll need to check with the database maintainer

for this. It is suggested that you use a .Renviron file in your local project (make

sure it is completely ignored by git, R, etc) to store this info

Value

a gene by samples dataframe of all counts

18 getUserAuthToken

getRunNumberLeadingZero

correct run number to add leading zero where approprirate

Description

correct run number to add leading zero where approprirate

Usage

```
getRunNumberLeadingZero(run_number)
```

Arguments

run_number a run number, most likely from the metadata runNumber field

getUserAuthToken get (via a http POST request) your user authentication token from the

database

Description

get (via a http POST request) your user authentication token from the database

Usage

```
getUserAuthToken(url, username, password)
```

Arguments

url check the database_info variable. for configured organisms, you can find this

under database_info\$organism\$token_auth

username a valid username for the database. If you don't have one, then you'll need to ask

for one to be created

password password associated with your username

Value

the auth token associated with the username and password

Note

do not save your auth token in a public repository. For example, you might put it in your .Renviron and then make sure that your .Renviron is in your .gitignore. Otherwise, save it outside of a github tracked directory or otherwise ensure that it will not be pushed up to github

grant_df 19

αı	rar	۱÷	df
21	aı	ı L	uı

the 2016 grant summary represented as a dataframe

Description

also check the google sheet

Usage

grant_df

Format

An object of class spec_tbl_df (inherits from tbl_df, tbl, data.frame) with 164 rows and 3 columns.

graphYeastTimeCourse

Plot time vs normalized counts of a given gene over n samples, faceted by librarydate and run

Description

```
graph_output = graphTimeCourse(cst6_sample_metadata, 'CST6', 'YIL036W', cst6_norm_counts)
```

Usage

```
graphYeastTimeCourse(metadata_df, genotype_1, gene_id, norm_counts)
```

Arguments

metadata_df	where metadata\$fastqFileName is equal in format to colnames(raw_counts)
genotype_1	is the entry in the metadata genotype1 column which you would like to examine
gene_id	is the gene id (the systematic name as opposed to the 'common name') most likely corresponding to genotype_1. This is how the correct row is extracted from the count data
norm_counts	MUST have rownames assigned to the gene_ids includes at least all samples in metadata

Value

a ggplot graph of the gene_id in question, faceted on run and library date

Note

see the vignette called yeast_timecourse_qc.Rmd. There is also sample data that comes with this package, so you can run the vignette verbatim to see how it works. The vignette includes code that

20 listTables

isNumeric

test if argument is numeric

Description

copied directly from the limma codebase

Usage

```
isNumeric(x)
```

Arguments

Х

any R object

Details

copied from the limma docs: This function is used to check the validity of arguments for numeric functions. It is an attempt to emulate the behavior of internal generic math functions. IsNumeric differs from is.numeric in that data.frames with all columns numeric are accepted as numeric.

listTables

list tables in databse

Description

list tables in databse

Usage

```
listTables(db)
```

Arguments

db

a connection to the database

Value

all tables in database

See Also

https://www.postgresqltutorial.com/postgresql-show-tables/

locusLog2Cpm 21

|--|--|

Description

calculate log2cpm for a given locus

Usage

```
locusLog2Cpm(bam_path, strandedness, locus_granges, lib_size)
```

Arguments

bam_path path to bam file. Note: the index with extension .bai also must exist

strandedness the strandedness of the library

locus_granges a granges object specifying the locus over which to count

lib_size the number of reads in the library

Value

either 0, if there are no counts, or the log2cpm of the counts over the locus. counting is done via the same method as default HTSeq

patchTable	PATCH entries in database table	
------------	---------------------------------	--

Description

using the package httr, update entries in certain fields in given rows of a table

Usage

```
patchTable(database_table_url, auth_token, update_df, id_col)
```

Arguments

database_table_url

NO TRAILING '/'. eg "http://18.224.181.136/api/v1/QualityAssess"

 $auth_token \qquad \quad see \ brentlabRnaSeqTools::getUserAuthToken()$

update_df a dataframe, preferrably a tibble, already read in, subsetted. Columns must be

correct data type for db table

id_col name of the id column of the table. this number will be appended to the url to

create the uri for the record

Value

```
a list of httr::response() objects
```

22 postCounts

plotCoverageOverLocus plot coverage over locus

Description

ggbio plot with transcripts track and coverage track

Usage

```
plotCoverageOverLocus(
  bamfile_path,
  annote_db,
  gene_id,
  strandedness,
  quality_threshold = 20L
)
```

Arguments

postCounts

post counts to database

Description

using the package httr, post the raw count .csv, which is the compiled counts for a given run, to the database

Usage

```
postCounts(
  database_counts_url,
  run_number,
  auth_token,
  new_counts_path,
  fastq_table,
  count_file_suffix = "_read_count.tsv"
)
```

postFastqSheet 23

Arguments

database_counts_url

eg database_info\$kn99_urls\$Counts database_info is a saved data object in this

package

run_number the run number of this counts sheet – this is important b/c fastqFileNames aren't

necessarily unique outside of their runs

auth_token see brentlabRnaSeqTools::getUserAuthToken()

new_counts_path

path to the new counts csv

fastq_table a recent pull of the database fastq table

count_file_suffix

the suffix appended to the fastqFileName in the count file column headings.

default is "_read_count.tsv"

Value

a list of httr::response() objects

postFastqSheet

post new fastq sheet to database

Description

post new fastq sheet to database

Usage

```
postFastqSheet(database_fastq_url, auth_token, new_fastq_path)
```

Arguments

database_fastq_url

eg database_info\$kn99_urls\$FastqFiles database_info is a saved data object in

this package

auth_token see brentlabRnaSeqTools::getUserAuthToken()

new_fastq_path path to new fastq sheet

24 proteinCodingCount

|--|

Description

using the package httr, post the new qc sheet to the database

Usage

```
postQcSheet(database_qc_url, auth_token, run_number, new_qc_path, fastq_table)
```

Arguments

database_qc_url

eg database_info\$kn99_urls\$QualityAssess. database_info is a saved data ob-

ject in this package

auth_token see brentlabRnaSeqTools::getUserAuthToken

run_number the run number of this qc sheet – this is important b/c fastqFileNames aren't

necessarily unique outside of their runs

new_qc_path path to the new counts csv

fastq_table a recent pull of the database fastq table

Value

```
a list of httr::response() objects
```

Note

there can be problems with dependencies and the rename function. this is working for now, but see here for more info https://statisticsglobe.com/r-error-cant-rename-columns-that-dont-exist

proteinCodingCount get total protein coding count from count dataframe

Description

given a count dataframe with gene_ids as rownames and quantification in a column called raw_counts, return sum of protein coding genes

Usage

```
proteinCodingCount(counts, protein_coding_gene_ids)
```

Arguments

counts a dataframe with gene_ids in the rownames and (at minimum) a quantification

column called raw_counts

protein_coding_gene_ids

a list of gene ids considered protein coding (must correspond with counts row-

names)

qcGenotypeAndMarkerCoverage

calcluate genotype and marker coverages for a given metadata df

Description

this produces a sheet that can be used to fill the 'custom' qc table for the brentlab kn99 and yeast databases

Usage

qcGenotypeAndMarkerCoverage(metadata_df, annote_db, bam_prefix, bam_suffix)

Arguments

metadata_df a metadata sheet with at least the columns fastqFileName, genotype1, geno-

type2, runNumber, libraryProtocol

 $annote_db \qquad \quad a \ connection \ to \ a \ local \ database - see \ createQCdatabase()$

bam_prefix the directory that contains the sequencing runs,, eg if locally mounted maybe

"/mnt/htcf_lts/lts_align_expr"

bam_suffix the stuff appended to the end of the fastqFileName (minus the .fastq.gz). This

might just be ".bam", but could be something like "_sorted_aligned_reads_with_annote.bam"

Value

a sample sheet with the following columns: fastqFileName, fastqFileNumber, runNumber, column_param, locus, coverage

Note

together, the bam_prefix/run_runNumber_samples/align/fastqFileName_bam_suffix form the path to the bamfile

26 readInData

```
{\it quality} {\it AssessmentFilter}
```

filter for manual passes (overrides auto fail) and automatic passes (unless auto failed)

Description

filter for manual passes (overrides auto fail) and automatic passes (unless auto failed)

Usage

```
qualityAssessmentFilter(metadata)
```

Arguments

metadata

dataframe from the database

Value

a metadata dataframe with column names cast to upper

readInData

read in columnar data

Description

given a csv, tsv or excel sheet, use the right function to read in the data

Usage

```
readInData(path)
```

Arguments

path

path to a csv, tsv or xlsx

removeOneRedoIqr 27

removeOneRedoIqr

progressively remove max IQR sample and recalculate

Description

progressively remove max IQR sample and recalculate

Usage

```
removeOneRedoIqr(sample_set, logged_norm_counts)
```

Arguments

removeParameterEffects

remove some effects from the counts

Description

subtract effect from norm counts of a single factor from coef x design. coef is in normalized log space. dds must have been created with model.matrix

Usage

```
removeParameterEffects(deseq_object, col_indicies)
```

Arguments

deseq_object a deseq data object REQUIRED: the object must have been created with a

model.matrix rather than a formula for the design argument

col_indicies a numeric vector corresponding to the column indicies of the batch parameters

you'd like to remove

Value

a log2 scale gene by samples matrix with desired effects removed

Note

works for both formula and model.matrix designs in the dds object

28 rlePlot

Description

calculate RLE by replicate groups

Usage

```
rleByReplicateGroup(replicates_vector, gene_quants, log2_transformed_flag)
```

Arguments

replicates_vector

a list of lists where each sublist represents a replicate group. Entries must be a metadata parameter, such as fastqFileName, that corresponds to the columns of the counts. Suggestion: use something like these dplyr functions to create the list of lists group_by() %>% group_split %>% pull(fastqFileName)

gene_quants

a gene x sample dataframe with values as some sort of gene quantification (eg normed counts, or log2(norm_counts) with some effect removed), possibly already logged (@see already_logged_flag)

log2_transformed_flag

a boolean where TRUE means the counts are already in log2 space

Value

a list of dataframes for each replicate group in replicateS_sample_list, each with dimensions gene x sample. values are RLE of the gene in a given sample

References

 $rlePlotCompareEffectRemoved() \ to \ plot \ the \ norm \ counts \ and \ removedEffect \ 'counts' \ on \ the \ same \ plot$

rlePlot	plot RLE for a given column filter (eg, metadatametadata\$MEDIUM == 'PBS'\$FASTQFILENAME would give a list of fastqFileNames to
	filter)

Description

plot RLE for a given column filter (eg, metadatametadata\$MEDIUM == 'PBS'\$FASTQFILENAME would give a list of fastqFileNames to filter)

Usage

```
rlePlot(deseq_object, model_matrix, column_filter, title)
```

Arguments

```
deseq_object a deseq object with results from the DESeq() call

model_matrix the deseq_object model matrix

column_filter a vector of fastqFileNames (or whatever the columns – samples – are called)

title of the plots
```

Value

list with slots norm_count_rle and effect_removed_rle

```
rlePlotCompareEffectRemoved 
 plots output of rleSummaryByReplicateGroup
```

Description

plots output of rleSummaryByReplicateGroup

Usage

```
rlePlotCompareEffectRemoved(
  norm_counts_rle,
  removed_effect_rle,
  metadata_df,
  title
)
```

Arguments

Value

a ggplot with both the norm counts (more transparent) and removedEffect 'counts' on the same plot

30 rleSummary

rlePlot_helper

the actual plotting function for rlePlot

Description

the actual plotting function for rlePlot

Usage

```
rlePlot_helper(count_df, log2_transformed_flag, title)
```

Arguments

count_df counts in gene x sample
log2_transformed_flag

boolean where TRUE indicates the counts are in log2 space

title title of the output plot

Value

a ggplot

rleSummary

rleSummary calculates summary statistics of rleFullTable

Description

rleSummary calculates summary statistics of rleFullTable

Usage

```
rleSummary(rle_table_full)
```

Arguments

```
rle_table_full the output of rleFullTable
```

Value

a dataframe sample by rle summary statistics

runSVA 31

runSVA

run SVA

Description

run SVA

Usage

```
runSVA(raw_counts, null_model_matrix, full_model_matrix)
```

Arguments

 ${\tt raw_counts}$

raw gene counts in the shape gene x samples where nools matches nrow of metadata (samples == samples)

null_model_matrix

a model matrix respresenting only the batch effects. Could possibly be intercept

full_model_matrix

the full model describing the experiment. Critically, this includes the parameter of interest

run_numbers_with_leading_zero

A named list containing a run number without a leading zero, eg 647, with the value being the same runnumber with a leading 0, eg 0647.

Description

this is best remedied in the database itself by forcing the column to be a string and adding the 0s

Usage

```
run_numbers_with_leading_zero
```

Format

An object of class list of length 13.

32 strandedScanBamParam

selectQaColumns	select fastqFileName, fastqFileNumber, and a pre-determined set of QC columns from a metadata df

Description

select fastqFileName, fastqFileNumber, and a pre-determined set of QC columns from a metadata df

Usage

```
selectQaColumns(metadata)
```

Arguments

metadata

a metadata df with at least the columns listed in the select statement (see source code – notably, must include interquartile range). Column names will be cast to uppper and returned as uppers

Note

the column names for the metadata will be cast to upper and returned in upper must include Interquartile range. Think about removing this – user could merge with IQR df after selecting these cols

strandedScanBamParam create coverage scanbamparam object

Description

helper function to create ScanBamParam object with appropriate strandedness information

Usage

```
strandedScanBamParam(locus_granges, strandedness, quality_threshold = 20L)
```

Arguments

locus_granges a granges object for a given gene (or some other feature on only one strand)
strandedness one of c("reverse", "unstranded"). NOTE: forward only strand NOT currently configured

quality_threshold

quality threshold above which reads will be considered. 20l is default, which is chosen b/c it is the default for HTSeq

testBamPath 33

Description

test bam path

Usage

testBamPath(metadata_df)

Index

*Topic datasets	isNumeric, 20
database_info, 11	
grant_df, 19	listTables, 20
run_numbers_with_leading_zero,31	locusLog2Cpm, 21
archiveDatabase,3	<pre>metadata\$MEDIUM == 'PBS', 28</pre>
calculateCoverage, 4	<pre>patchTable, 21 plotCoverageOverLocus, 22</pre>
calculateGeneWiseMedians, 5	postCounts, 22
calculateRLE, 5	postFastqSheet, 23
connectToDatabase, 6	postQcSheet, 24
countReadsInRanges, 7	proteinCodingCount, 24
createBamPath, 7	,
createEnvPertSet, 8	qcGenotypeAndMarkerCoverage, 25
createInductionSetTally, 8	qualityAssessmentFilter, 26
createNinetyMinInductionModelMatrix, 9	
createNinetyMinuteInductionSet, 9	readInData, 26
createNinetyMinuteInductionWithDoubles,	removeOneRedoIqr, 27
	removeParameterEffects, 27
createQCdatabase, 11	rleByReplicateGroup, 28
database_info, 11	rlePlot, 28
deseqObjectWithProtocolSpecificSizeFactors,	rlePlot_helper, 30
12	rlePlotCompareEffectRemoved, 29
determineLibraryStrandedness, 12	rleSummary, 30
determineers ary 5th and edites, 12	run_numbers_with_leading_zero, 31
examineSingleGroupWithLibDateSizeFactors,	runSVA, 31
13	selectQaColumns, 32
	strandedScanBamParam, 32
featureGRanges, 13	
fltrLowReplicateParams, 14	testBamPath, 33
getBamIndexPath, 15	
<pre>getCoverageOverRegion, 15</pre>	
getMetadata, 16	
getRawCounts, 17	
getRunNumberLeadingZero, 18	
getUserAuthToken, 18	
grant_df, 19	
<pre>graphYeastTimeCourse, 19</pre>	