Solutions to Homework 5

Problem 2.51 Determine the impulse response of the system described by y(n) = x(n) + ax(n-k).

Solution: Replace x by δ to obtain the impulse response: $h(n) = \delta(n) + a\delta(n-k)$.

Problem 2.53 Determine the homogeneous solutions for the systems described by the following differential equations:

(a)
$$5\frac{d}{dt}y(t) + 10y(t) = 2x(t)$$

Solution: The homogeneous counterpart to the equation above is:

$$5\frac{d}{dt}y(t) + 10y(t) = 0.$$

To find the homogeneous solution, let's suppose that $y_h(t) = ae^{bt}$, where a and b are constants. Then, if we plug the proposed solution in the equation above, we will get:

$$5abe^{bt} + 10ae^{bt} = 0,$$

what means that 5ab = -10a, or b = -2. Therefore, the set of all homogeneous solutions to the equation is given by $\{ae^{-2t}, a \in \mathbb{R}\}$.

(d)
$$\frac{d^2}{dt^2}y(t) + 2\frac{d}{dt}y(t) + 2y(t) = x(t)$$

Solution: The homogeneous counterpart to the equation above is:

$$\frac{d^2}{dt^2}y(t) + 2\frac{d}{dt}y(t) + 2y(t) = 0.$$

Now, if we again suppose that $y_h(t) = ae^{bt}$. Then, if we plug the proposed solution in the equation above, we will get:

$$ab^2e^{bt} + 2abe^{bt} + 2ae^{bt} = 0,$$

what means that,

$$b^2 + 2b + 2 = 0.$$

This second-degree equation has two possible solutions, either b = -1 + j, or b = -1 - j (j corresponds to the complex number $\sqrt{-1}$). So, the set of all possible homogeneous solutions to the equation above is $\{a_1e^{(-1-j)t} + a_2e^{(-1+j)t}, a_1, a_2 \in \mathbb{R}\}$.

Problem 2.54

(a)
$$y[n] - \alpha y[n-1] = 2x[n]$$

Propose $y_{0x}[n] = C\rho^n$, plug it in the homogeneous equation, and obtain the characteristic equation $\rho - \alpha = 0$. Thus, $y_{0x}[n] = C\alpha^n$. To find C, we need to know y[-1] (which is not given in the problem). Set $C\alpha^{-1} = y[-1]$ to obtain $C = \alpha y[-1]$.

(b)
$$y[n] - 1/4y[n-1] - 1/8y[n-2] = x[n] + x[n-1]$$

Propose $y_{0x}[n] = C\rho^n$, plug it in the homogeneous equation and obtain the characteristic equation $\rho^2 - 1/4\rho - 1/8 = 0$. The valid values for ρ are $\rho = 1/2$ or $\rho = -1/4$. Thus, $y_{0x}[n] = C_1(1/2)^n + C_2(-1/4)^n$. To find C, we need to know y[-1] and y[-2] (which is not given in the problem).

Problem 2.55 Determine a particular solution for the systems described by the following differential equations, for the given inputs:

(a)
$$5\frac{d}{dt}y(t) + 10y(t) = 2x(t)$$

(i) $x(t) = 2$
(ii) $x(t) = e^{-t}$
(iii) $x(t) = \cos(3t)$

Solution:

(i) Since x(t) is a constant function, and, as we know, derivatives of constants are also constants, let's suppose that y(t) = A (const). Thus, plugging it into the equation, we get:

$$10A = 4 \Rightarrow A = 0.4.$$

(ii) Now, we suppose that $y(t) = Ae^{-t}$. Then, plugging it into the equation, we get:

$$-5Ae^{-t} + 10Ae^{-t} = 2e^{-t} \Rightarrow$$
$$-5A + 10A = 2 \Rightarrow$$
$$A = 0.4.$$

Thus, $y(t) = 0.4e^{-t}$.

(iii) Now, let's suppose that $y(t) = A\cos(3t) + B\sin(3t)$. Then:

$$-5A\sin(3t) + 5B\cos(3t) + 10A\cos(3t) + 10B\sin(3t) = 2\cos(3t) \Rightarrow$$

$$\begin{cases}
-5A + 10B &= 0 \\
10A + 5B &= 2
\end{cases} \Rightarrow$$

$$\begin{cases}
A &= 0.16 \\
B &= 0.08
\end{cases}$$

Thus, $y(t) = 0.16\cos(3t) + 0.08\sin(3t)$.

(b)
$$\frac{d^2}{dt^2}y(t) + 4y(t) = 3\frac{d}{dt}x(t)$$

(i) $x(t) = t$
(ii) $x(t) = e^{-t}$
(iii) $x(t) = (\cos(t) + \sin(t))$

Solution

(i) We suppose $y(t) = c_1t + c_2$. Plugging it into the equation, we get $4c_1t + 4c_2 = 3$. Hence, $c_1 = 0$ and $c_2 = 3/4$, and we obtain y(t) = 3/4.

(ii) Propose $y(t) = Ae^{-t}$ and plug it into the equation to obtain $Ae^{-t} + 4Ae^{-t} = 3e^{-t}$, or A = 3/5. Thus, $y(t) = 3/5e^{-t}$.

(iii) Propose $y(t) = A\cos(t) + B\sin(t)$. Then:

$$-A\cos(t) - B\sin(t) + 4A\cos(t) + 4B\sin(t) = -3\sin(t) + 3\cos(t)$$

$$\begin{cases}
-A + 4A = 3 \\
-B + 4B = -3
\end{cases}$$

$$\operatorname{or} \begin{cases}
A = 1 \\
B = -1
\end{cases}$$

Thus, $y(t) = \cos(t) - \sin(t)$.

Problem 2.61

Solution: Let i_1, i_2, i_3 be the downward currents in the resistor, inductor and capacitor, respectively. KCL implies $x(t) = i_1(t) + i_2(t) + i_3(t)$. It follows that $x'(t) = i'_1(t) + i'_2(t) + i'_3(t)$. However, $y(t) = Ri_1(t)$ (or $i'_1(t) = (1/R)y'(t)$), $y(t) = Li'_2(t)$, and $i_3(t) = Cy'(t)$ (or $i'_3(t) = Cy''(t)$). Combining, we obtain

$$x'(t) = Cy''(t) + (1/R)y'(t) + (1/L)y(t).$$

To find the step response, we replace x(t) by u(t), which results in the equation $Cy''(t) + (1/R)y'(t) + (1/L)y(t) = \delta(t)$.

When actual R-L-C values are substituted, we obtain y''(t) + 5y'(t) + $20y(t) = 5\delta(t)$. The solution to this equation is 5 times the solution to the equation $y''(t) + 5y'(t) + 20y(t) = \delta(t)$ (why?), and the solution to the latter is simply the impulse response of the system represented by y''(t) + 5y'(t) +20y(t) = x(t). From class notes we know that the impulse response for the latter system is $h(t) = (1/(r_1 - r_2))e^{r_1 t} - (1/(r_1 - r_2))e^{r_2 t}$, $t \ge 0$, where r_1 and r_2 are the roots of the equation $r^2 + 5r + 20$. They are $r_1 = -5/2 + j\sqrt{55}/2$

and
$$r_2 = -5/2 - j\sqrt{55}/2 = -2.5 - j3.7081$$
.
Hence, $h(t) = -j0.1348e^{-2.5t + j3.7081} + j0.1348e^{-2.5t - j3.7081}$, or $h(t) = 0.1348e^{-2.5t + j3.7081t - j\pi/2} + 0.1348e^{2.5t - j3.7081 + j\pi/2}$, or $h(t) = 0.1348e^{-2.5t} \left(e^{j(3.7081t - \pi/2)} + e^{-j(3.7081t - \pi/2)} \right)$, or $h(t) = 0.2696e^{-2.5t} \cos(3.7081t - \pi/2)$.

Finally, the step response of the RLC circuit is obtained by multiplying h by 5:

$$y_{step}(t) = 1.348e^{-2.5t}\sin(3.7081t), t \ge 0,$$

Problem 2.62 The difference equation to be considered is $y(n) = 1.01y(n-1) - 1,200u(n-1), n \ge 1$, with y(0) = 100,000.

The zero-input (or natural) response is of the form $y_{0i}(n) = c(1.01)^n$, $n \geq 0$. By applying the initial condition $y_{0i}(0) = 100,000$, we obtain $y_{0i}(n) = 100,000(1.01)^n, n \ge 0.$

The forced response can be computed by convolving the impulse response of the system y(n) - 1.01y(n-1) = x(n) by the input x(n) = -1, 200u(n-1). Let us find the impulse response first. To do so, write the difference equation $h(n) - 1.01h(n-1) = \delta(n), n \ge 0$. Now consider $n \ge 1$ to obtain the homogeneous equation h(n) - 1.01h(n-1) = 0 (whose solution is of the form

 $h(n) = h(0)1.01^n u(n)$), for which we need to find the derived initial condition h(0). But from the difference equation for h, $h(0) = 1.01h(-1) + \delta(0)$; hence, h(0) = 1 since h(-1) = 0. (Recall that when calculating the impulse response we assume no initial conditions prior to the application of the input.) Hence, $h(n) = 1.01^n u(n)$.

The forced response is then $y_f(n) = h(n) * (-1,200u(n-1))$ $= \sum_{k=-\infty}^{\infty} 1.01^k u(k)(-1,200u(n-1-k))$ $= \sum_{k=0}^{n-1} 1.01^k (-1,200)$ $= -120000(1.01^n - 1), n \ge 0.$

The total response is the sum of the zero-input response and the forced response:

$$y(n) = 100,000(1.01)^n - 120000(1.01^n - 1), n \ge 0.$$

Note that y(181) = -1115.2 while y(180) = 83.96; thus, the loan is paid off after the 181th payment (n=181). [Useful Matlab command: to find the index for which y drops below zero for the first time consider the command "min(find(y<0))"; read about the command "find"]

Problem 2.65 Find the difference equation for the three systems depicted in Fig. P2.65 (in the textbook).

(a)

Solution: Let's call the signal coming out of the first adder (Σ) f[n]. We can see that

$$f[n] = x[n] - 2y[n].$$

Hence the signal coming out of the second adder is

$$y[n] = 2f[n] + f[n-1]$$

$$= 2x[n] - 4y[n] + x[n-1] - 2y[n-1]$$

$$\therefore y[n] = \frac{2}{5}x[n] + \frac{1}{5}x[n-1] - \frac{2}{5}y[n-1].$$

(b)

Solution: The signal coming out of the first adder is

$$f[n] = \frac{1}{4}y[n] + x[n-1]$$

Hence,

$$y[n] = f[n-1]$$

= $\frac{1}{4}y[n-1] + x[n-2].$

(c)

Solution: The output of the first adder is

$$f[n] = x[n] - \frac{1}{8}y[n].$$

Hence, the output of the second adder is

$$\begin{array}{rcl} y[n] & = & \frac{1}{2}x[n-1] + f[n-2] \\ & = & \frac{1}{2}x[n-1] + x[n-2] - \frac{1}{8}y[n-2]. \end{array}$$

Problem 2.66 Draw direct form I (only) implementation for the following difference equations:

(a) $y[n] - \frac{1}{4}y[n-1] = 6x[n]$ Solution:

(b) $y[n] + \frac{1}{2}y[n-1] - \frac{1}{8}y[n-2] = x[n] + 2x[n-1]$ *Solution:*

