

HO CHI MINH CITY UNIVERSITY OF TECHNOLOGY FACULTY OF TRANSPORTATION ENGINEERING

DESIGN OF MITSUBISHI XPANDER ACCELERATOR PEDAL POSITION SIGNAL SIMULATOR

HCMUT

Student's name: Âu Dương Huê - 1752220

Instructor: Ph.D Tran Dang Long

I. INTRODUCTION

- > Project on The Mitsubishi Xpander Accelerator Pedal Position Signal.
- The aim of the project is to create 2 signals APS1 and APS2 (accelerator pedal signal 1 and accelerator pedal signal 2).
- The requirement of the project that the output signals closely resembles the accelerator pedal signals of Mitsubishi Xpander.

1. General information

- > The pedal opening based on Hall effect principle will create the voltage of the 2 signal pins (Signal) sensor.
- > Two pedal sensor signals are requirements for safety and reliability of information.

Figure 1.1: Pictorial diagram showing the principle of the Mitsubishi Xpander accelerator pedal signal.

2. Measuring method

II. GENERAL LAYOUT DESIGN

Figure 2.1: Structure diagram of accelerator pedal simulator

Figure 2.3: Electrical scheme

Calculate and update duty cycles of PWM 1 and PWM 2. Figure 3.1: Timing diagram of the program

Start TIMER1 INTERUPT SERVICE ROUTINE Setup Timer/Counter 1, GPIO **FALSE** _flag_update_ = 1 ISR(TIMER1_OVF_VEC) TRUE ++_count_ flag update = 0TRUE Read A0 chanel _count_ = 50 Calculate pedal position FALSE TRUE Calculate APS1 and APS2 desired count = 0flag_update = 1 Calculate duty cycle Update duty cycle Return 1>0 FALSE End

Figure 3.2: Algorithms diagram of the program

IV. SIMULATION AND RESULTS

Figure 4.1: Electrical diagram in Proteus

1. Simulation:

The simulation will depend on the electrical scheme to check the result: 1) Create a input signal change continuously from

- 0-100% like the pedal opening at pin A0.
- The two actual signals APS1 and APS2 will display on screen through port A and C.
- 3) The two desired signals APS1 and APS2 will
- display on screen through port B and D. 4)) Pin RXD and TXD on Arduino are connected
- to pin TXD and RXD on Virtual Terminal to display voltage value of two signals APS1 and APS2.

Figure 4.1: The result disple

APS2 at 100% pedal opening

	.22 APS2:	2.14			√
	Position AC DC GND OFF Invert 10 5 20 20 20 20 20 20 20 20 20 20 20 20 20	osition AC T DC E GND OFF Invert DA	~PB1/OC1A PB0/ICP1/CLKO PD7/AIN1 ~PD8/AIN0 ~ PD5/T1 PD4/T0/XCK ~PD3/INT1 PD2/INT0 TX PD1/TXD RX PD0/RXD		Un ✓
lay on the screen					

Satisfied:

2. Discussion: ✓ Calculate the voltage value and display the PWM with low

error. Generate voltage values nearly the same with the reality value of Mitsubishi Xpander.

nsatisfied:

- The voltage values are rounded up which cause some errors.
- Potentiometer can't give signal like pedal so the pulse signal cannot look like the reality.

0.1%

Accelerator pedal signal	Actual	Desired	ERROR
APS1 at 0% pedal opening	1	1.004	0.4%
APS2 at 0% pedal opening	0.51	0.508	0.2%
APS1 at 50% pedal opening	2.68	2.677	0.3%
APS2 at 50% pedal opening	1.36	1.3585	0.15%
APS1 at 100% pedal opening	4.35	4.35	0%

2.209

2.21

Table 4.1: Result of testing