CHALMERS, GÖTEBORGS UNIVERSITET

EXAM for ARTIFICIAL NEURAL NETWORKS

COURSE CODES: FFR 135, FIM 720 GU, PhD

Time: October 28, 2019, at $08^{30} - 12^{30}$

Place: Lindholmen-salar

Teachers: Bernhard Mehlig, 073-420 0988 (mobile)

Marina Rafajlovic, 076-580 4288 (mobile)

Allowed material: Mathematics Handbook for Science and Engineering

Not allowed: Any other written material, calculator

Maximum score on this exam: 12 points.

Maximum score for homework problems: 12 points.

To pass the course it is necessary to score at least 5 points on this written exam.

CTH >14 passed; >17.5 grade 4; >22 grade 5,

GU \geq 14 grade G; \geq 20 grade VG.

1. Energy function in a neural network.

(a) Fig. 1 shows a neural network with two neurons with asymmetric weights, $w_{12} = 2$, and $w_{21} = -1$. The states of the neurons, denoted by S_1 and S_2 , are either +1 or -1. Show that the energy function

$$H = -\frac{w_{12} + w_{21}}{2} S_1 S_2 \tag{1}$$

can increase under the asynchronous deterministic McCulloch-Pitts rule for updating the second neuron $S'_2 = \operatorname{sgn}(w_{21}S_1)$, but not under the deterministic McCulloch-Pitts rule for updating the first neuron $S'_1 = \operatorname{sgn}(w_{12}S_2)$. (0.5p).

- (b) For the network shown in Fig. 1, show that the energy (1) cannot stay constant after a single step of synchronous update rule $S'_i = \operatorname{sgn}(w_{ij}S_j)$, for i = 1, 2. (0.5p).
- (c) Now consider a neural network with N neurons. The states of the neurons, denoted by n_i (i = 1, ..., N) are either 0 or 1. The weights w_{ij} are symmetric $w_{ij} = w_{ji}$ for $i \neq j$, and $w_{ii} > 0$ for i = 1, ..., N. Show that the energy function

$$H = -\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} w_{ij} n_i n_j + \sum_{i=1}^{N} \mu_i n_i$$
 (2)

Figure 1: Question 1. Neural network with two neurons and asymmetric weights.

cannot increase under the asynchronous update rule

$$n'_{m} = \theta_{H}(b_{m}), \text{ with } b_{m} = \sum_{j=1}^{N} w_{mj} n_{j} - \mu_{m} .$$
 (3)

Here

$$\theta_{H}(b_{m}) = \begin{cases} 1, & \text{for } b_{m} > 0, \\ 0, & \text{otherwise} \end{cases}$$
 (4)

is the Heaviside step function. (1p).

Figure 2: Question 2. Each of the five patterns consists of 35 bits $x_i^{(\mu)}$. A black pixel i in pattern μ corresponds to $x_i^{(\mu)} = 1$, a white one to $x_i^{(\mu)} = -1$.

2. Recognising digits with a Hopfield network. Fig. 2 shows five patterns, each with N=35 bits. Store the patterns $\boldsymbol{x}^{(1)}$ and $\boldsymbol{x}^{(2)}$ in a Hopfield network using Hebb's rule $w_{ij}=\frac{1}{N}\sum_{\mu=1}^2 x_i^{(\mu)}x_j^{(\mu)}$ with $i,j=1,\ldots,N$. Use the update rule

$$S_i \leftarrow \operatorname{sgn}\left(\sum_{j=1}^N w_{ij} S_j\right). \tag{5}$$

Feed the patterns into the network. To determine their fate, follow the steps outlined below.

- (a) Compute $\sum_{j=1}^{N} x_j^{(\mu)} x_j^{(\nu)}$, for $\mu = 1, \nu = 1, ..., 5$, and also for $\mu = 2$, $\nu = 1, ..., 5$. *Hint*: the result can be read off from the Hamming distances between the patterns shown in Figure 2. (**0.5**p).
- (b) Consider the quantity $b_i^{(\nu)} = \sum_{j=1}^N w_{ij} x_j^{(\nu)}$, where w_{ij} are the weights obtained by storing patterns $\boldsymbol{x}^{(1)}$ and $\boldsymbol{x}^{(2)}$. Compute $b_i^{(\nu)}$ for $\nu = 1, \ldots, 5$. Express your result as linear combinations of $x_i^{(1)}$ and $x_i^{(2)}$. Hint: use your answer to the first part of this question. (1p).
- (c) Feed the patterns in Figure 2 to the network. Which of the patterns remain the same after one synchronous update according to (5)? (0.5p).

- 3. Linearly inseparable problem. A classification problem is specified in Fig. 3, where a grey triangle in input space is shown. The aim is to map input patterns $x^{(\mu)}$ to outputs $O^{(\mu)}$ as follows: if a point $x^{(\mu)}$ lies inside the triangle it is mapped to $O^{(\mu)} = +1$, but if $x^{(\mu)}$ is outside the triangle it is mapped to $O^{(\mu)} = -1$. How patterns on the boundary of the triangle are classified is not important.
- (a) Show that this problem is not linearly separable by constructing a counter-example using four input patterns. (0.5p).
- (b) The problem can be solved by a perceptron with one hidden layer with three neurons (j = 1, 2, 3)

$$V_j^{(\mu)} = \text{sgn}\left(-\theta_j + \sum_{k=1}^2 w_{jk} x_k^{(\mu)}\right)$$
 (6)

and output

$$O^{(\mu)} = \operatorname{sgn}\left(-\Theta + \sum_{j=1}^{3} W_j V_j^{(\mu)}\right) . \tag{7}$$

Here w_{jk} and W_j are weights and θ_j and Θ are thresholds. In Fig. 3, the orientation of weight vectors $\boldsymbol{w}_j = (w_{j1}, w_{j2})^\mathsf{T}$ corresponding to hidden nodes j = 1, 2, 3 is indicated. Using this, find values of w_{jk} and θ_j and that solve the classification problem. (1p).

(c) Based on your result in (b), illustrate the problem in the hidden space encoding the outputs, draw a decision boundary that solves the problem, and compute W_j and Θ corresponding to the decision boundary you drew. (0.5p).

Figure 3: Question 3. Classification problem. Input space is the $x_1 - x_2$ -plane. Depicted are the orientations of the weight vectors \boldsymbol{w}_j (j = 1, 2, 3) corresponding to the hidden neurons.

$\overline{\mu}$	$x_1^{(\mu)}$	$x_2^{(\mu)}$	$x_3^{(\mu)}$	$t^{(\mu)}$
1	0	1	0	-1
2	1	0	1	-1
3	0	0	0	+1
4	1	0	0	-1
5	1	1	0	-1
6	0	0	1	-1
7	0	1	1	-1
8	1	1	1	+1

Table 1: Question 4. Inputs and target values for the problem specified in question 4.

- **4. Decision boundary**. Consider the problem in Table 1.
- a) Illustrate the problem graphically. Explain whether or not it can be solved by a simple perceptron with three input units, and one output unit $O^{(\mu)} = \operatorname{sgn}(\sum_{i=1}^{3} w_i x_i^{(\mu)} \theta)$, where w_i is the weight from unit i to the output with threshold θ . (0.5p)
- b) Show that this problem can be solved following the three steps below.
 - 1. Transform the inputs $(x_1, x_2, x_3)^{\mathsf{T}}$ to two-dimensional coordinates $(g_1, g_2)^{\mathsf{T}}$ using the following functions:

$$g_1(\boldsymbol{x}^{(\mu)}) = \exp(-|\boldsymbol{x}^{(\mu)} - \boldsymbol{w}_1|^2), \text{ with } \boldsymbol{w}_1 = (0, 0, 0)^\mathsf{T},$$
 (8)

$$g_2(\boldsymbol{x}^{(\mu)}) = \exp(-|\boldsymbol{x}^{(\mu)} - \boldsymbol{w}_2|^2), \text{ with } \boldsymbol{w}_2 = (1, 1, 1)^{\mathsf{T}}.$$
 (9)

Here $\boldsymbol{x}^{(\mu)} = (x_1^{(\mu)}, x_2^{(\mu)}, x_3^{(\mu)})^\mathsf{T}$, and $|\cdots|$ denotes the norm of a vector. Plot the positions of the eight input patterns in the transformed space $(g_1, g_2)^\mathsf{T}$, encoding the different target outputs. (*To compute* $g_i(\boldsymbol{x}^{(\mu)})$ use the following approximations: $\exp(-1) \approx 0.37$, $\exp(-2) \approx 0.14$, $\exp(-3) \approx 0.05$.) (**0.5**p)

- 2. Use the transformed input data as inputs to a simple perceptron with $sgn(\cdots)$ activation function. In the plot you drew in the previous step, draw also a decision boundary that solves the problem when a simple perception is applied to the transformed data. (0.5p)
- 3. Compute the weight vector and the threshold for the simple perceptron corresponding to the decision boundary you drew in the previous step. (0.5p)
- 5. Training a multi-layer perceptron by gradient descent. To train a multi-layer perceptron by gradient descent one needs update formulae for weights and thresholds. Derive these update formulae for sequential training

Figure 4: Question 5. Multi-layer perceptron with three input terminals, one hidden layer, and one output.

using backpropagation for the network shown in Fig. 4. The weights for the hidden layer are denoted by w_{jk} , and those for the output layer by W_{1j} . The corresponding thresholds are denoted by θ_j and Θ_1 , and the activation function by $g(\cdots)$. The target value for input pattern $\boldsymbol{x}^{(\mu)}$ is $t_1^{(\mu)}$, and the pattern index μ ranges from 1 to p. The energy function is $H = \frac{1}{2} \sum_{\mu=1}^{p} (t_1^{(\mu)} - O_1^{(\mu)})^2$. (2p).

6. Number of parameters of a convolutional net. A convolutional net has the following layout (Fig. 5): an input layer of size $31 \times 31 \times 3$, a convolutional layer with ReLU activations with 10 kernels with local receptive fields of size 3×3 , stride (2,2), and padding = (0,0,0,0), a max-pooling layer with local receptive field of size 5×5 , stride = (5,5), padding = (0,0,0,0), a fully connected layer with 10 neurons with sigmoid activations, and a fully connected output layer with 5 neurons. In one or two sentences, explain the function of each of the layers. Specify the values of the parameters $x1, y1, z1, x2, \ldots, y5$ depicted in Fig. 5 and determine the number of trainable parameters (weights and thresholds) for the connections into each layer of the network. (2p)

Figure 5: Question 6. Layout of convolutional net in Question 6.