The Block Proximal Gradient Method

Instructor: Jin Zhang

Department of Mathematics Southern University of Science and Technology

Fall 2023

Contents

- Model and Assumptions
- 2 The Toolbox
- 3 The Cyclic Block Proximal Gradient (CBPG) Method
- 4 The Randomized Block Proximal Gradient (RBPG) Method

1. Model and Assumptions

Model

$$\min_{x_1 \in \mathbb{R}^{n_1}, \dots, x_p \in \mathbb{R}^{n_p}} \left\{ F(x_1, \dots, x_p) = f(x_1, \dots, x_p) + \sum_{j=1}^p g_j(x_j) \right\}, \quad (2)$$

where $f: \prod_{j=1}^p \mathbb{R}^{n_j} \to \overline{\mathbb{R}}, \ g_j: \mathbb{R}^{n_j} \to \overline{\mathbb{R}} \ \text{for} \ j=1,\cdots,p.$

Notations

• A vector $x \in \Pi_{i=1}^p \mathbb{R}^{n_i}$ can be written as $x=(x_1,\cdots,x_p)=(x_i)_{i=1}^p$. and define

$$||x|| = ||(x_1, \dots, x_p)|| = \sqrt{\sum_{i=1}^p ||x_i||^2}$$

- The function $g: \Pi_{i=1}^p \mathbb{R}^{n_i} \to \overline{\mathbb{R}}$ is defined by $g(x) = \sum_{i=1}^p g_i(x_i)$.
- The gradient of f with respect to the ith block $(i=1,\cdots,p)$ is denoted by $\nabla_i f$ and it holds that

$$\nabla f(x) = (\nabla_1 f(x), \cdots, \nabla_p f(x)) = (\nabla_i f(x))_{i=1}^p.$$

• For any $i=1,\cdots,p$ we define $\mathcal{U}_i:\mathbb{R}^{n_i}\to\Pi_{i=1}^p\mathbb{R}^{n_i}$ to be the linear transformation given by

$$\mathcal{U}_i(d) = (0, \cdots, 0, \underbrace{d}_{i \text{th block}}, 0, \cdots, 0), \text{ for all } d \in \mathbb{R}^{n_i}.$$

Assumption 1:

- (A). $g_i: \mathbb{R}^{n_i} \to \overline{\mathbb{R}}$ is proper closed and convex for any $i = 1, \dots, p$.
- (B). $f: \Pi_{i=1}^p \mathbb{R}^{n_i} \to \overline{\mathbb{R}}$ is proper and closed, dom f is convex, dom $g \subseteq \operatorname{int}(\operatorname{dom} f)$, and f is differentiable over $\operatorname{int}(\operatorname{dom} f)$.
- (C). f is L_f -smooth over $int(dom f)(L_f > 0)$.
- (D). There exist $L_1, \dots, L_p > 0$ such that for any $i = 1, \dots, p$ it holds that

$$\|\nabla_i f(x) - \nabla_i f(x + \mathcal{U}_i(d))\| \le L_i \|d\|$$

for all $x \in \text{int}(\text{dom} f)$ and $d \in \mathbb{R}^{n_i}$ for which $x + \mathcal{U}_i(d) \in \text{int}(\text{dom} f)$.

(E). The optimal set of problem (2) is nonempty and denoted by X^* . The optimal value of the problem is denoted by $F_{\rm opt}$.

 L_f : global Lipschitz constant

 L_1, L_2, \cdots, L_p : block Lipschitz constants.

2. The Toolbox

2.1 The Partial Gradient Mappings

Definition (partial prox-grad mapping and partial gradient mapping)

Suppose that f and g_1, \dots, g_p satisfy properties (A) and (B) of Assumption 1, L > 0, and let $i = 1, \dots, p$. Then

• the ith partial prox-grad mapping is the operator $T_L^{f,g_i}: \mathrm{int}(\mathrm{dom} f) \to \mathbb{R}^{n_i}$ defined by

$$T_L^{f,g_i}(x) = \operatorname{prox}_{\frac{1}{L}g_i}\left(x_i - \frac{1}{L}\nabla_i f(x)\right) \text{ for any } x \in \operatorname{int}(\operatorname{dom} f).$$

ullet the ith partial gradient mapping is the operator $G_L^{f,g_i}: \operatorname{int}(\operatorname{dom} f) o \mathbb{R}^{n_i}$ defined by

$$G_L^{f,g_i}(x) = L\left(x_i - T_L^{f,g_i}(x)\right) \text{ for any } x \in \operatorname{int}(\operatorname{dom} f).$$

We set $T_L^i\equiv T_L^{f,g_i}$ and $G_L^i\equiv G_L^{f,g_i}$ when there's no ambiguity.

Let f and g_1,\cdots,g_p satisfy properties (A) and (B) of Assumption 1, L>0. If $g_i\equiv 0$ for some $i=1,\cdots,p$, then

$$G_L^{f,g_i}(x) = \nabla_i f(x)$$
 for any $x \in \operatorname{int}(\operatorname{dom} f)$.

Lemma

Suppose that f and g_1, \dots, g_p satisfy properties (A) and (B) of Assumption 1, L>0, and let $i=1,\dots,p$. Then for any $x\in \mathrm{int}(\mathrm{dom} f)$,

$$T_L(x) = \left(T_L^1(x), \cdots, T_L^p(x)\right)$$
$$G_L(x) = \left(G_L^1(x), \cdots, G_L^p(x)\right)$$

Theorem (stationary condition)

Let f and g_1, \dots, g_p satisfy properties (A) and (B) of Assumption 1. Then

(a). $x^* \in dom(g)$ is a stationary point of problem (2) if and only if

$$-\nabla_i f(x^*) \in \partial g_i(x_i^*), \quad i = 1, \cdots, p;$$

(b). for any p positive numbers $M_1, \dots, M_p > 0$, $x^* \in dom(g)$ is a stationary point of problem (2) if and only if

$$G_{M_i}^i(x^*) = 0, \quad i = 1, \dots, p.$$

Theorem (monotonicity of the partial gradient mapping)

Suppose that f and g_1, \dots, g_p satisfy properties (A) and (B) of Assumption 1, and let $i=1,\dots,p$. Suppose that $L_1\geq L_2>0$. Then

$$\left\|G_{L_1}^i(x)\right\| \geq \left\|G_{L_2}^i(x)\right\|$$

and

$$\frac{\left\|G_{L_1}^i(x)\right\|}{L_1} \le \frac{\left\|G_{L_2}^i(x)\right\|}{L_2}$$

for any $x \in int(dom f)$.

2. The Toolbox

2.2 The Block Descent Lemma

Lemma: block descent lemma

Let $f:\Pi_{i=1}^p\mathbb{R}^{n_i}\to\overline{\mathbb{R}}$ be proper with $\mathrm{dom}(f)$ is convex. Assume that f is differentiable over $\mathrm{int}(\mathrm{dom}(f))$. Let $i=1,\cdots,p$. Suppose that there exists $L_i>0$ for which

$$\|\nabla_i f(y) - \nabla_i f(y + \mathcal{U}_i(d))\| \le L_i \|d\|$$

for any $y \in \text{int}(\text{dom} f)$ and $d \in \mathbb{R}^{n_i}$ for which $y + \mathcal{U}_i(d) \in \text{int}(\text{dom} f)$. Then

$$f(x + \mathcal{U}_i(d)) \le f(x) + \langle \nabla_i f(x), d \rangle + \frac{L_i}{2} \|d\|^2$$

for any $x \in \operatorname{int}(\operatorname{dom} f)$ and $d \in \mathbb{R}^{n_i}$ for which $x + \mathcal{U}_i(d) \in \operatorname{int}(\operatorname{dom} f)$.

◆ロト ◆部ト ◆差ト ◆差ト を めらぐ

2. The Toolbox

2.3 Sufficient Decrease

Lemma: (block sufficient decrease lemma).

Suppose that f and g_1,\cdots,g_p satisfy properties (A) and (B) of Assumption 1, and Let $i=1,\cdots,p$. Suppose that there exists $L_i>0$ for which

$$\|\nabla_i f(y) - \nabla_i f(y + \mathcal{U}_i(d))\| \le L_i \|d\|$$

for all $y \in \operatorname{int}(\operatorname{dom} f)$ and $d \in \mathbb{R}^{n_i}$ for which $y + \mathcal{U}_i(d) \in \operatorname{int}(\operatorname{dom} f)$. Then the following inequality holds:

$$F(x) - F(x + \mathcal{U}_i(T_{L_i}^i(x) - x_i)) \ge \frac{1}{2L_i} \|G_{L_i}^i(x)\|^2$$

for all $x \in \operatorname{int}(\operatorname{dom} f)$.

3. The Cyclic Block Proximal Gradient Method

Notations

The kth iteration $x^k = (x_1^k, \cdots, x_p^k)$.

The kth iteration involves p subiterations, which generate the following auxiliary subsequences:

$$x^{k} = x^{k,0} = (x_{1}^{k}, x_{2}^{k}, x_{3}^{k}, \cdots, x_{p}^{k}),$$

$$x^{k,1} = (x_{1}^{k+1}, x_{2}^{k}, x_{3}^{k}, \cdots, x_{p}^{k}),$$

$$x^{k,2} = (x_{1}^{k+1}, x_{2}^{k+1}, x_{3}^{k}, \cdots, x_{p}^{k}),$$

$$\vdots$$

$$x^{k+1} = x^{k,p} = (x_{1}^{k+1}, x_{2}^{k+1}, x_{3}^{k+1}, \cdots, x_{p}^{k+1}).$$

That is to say, the kth member of the ith auxiliary sequence is

$$x^{k,i} = \sum_{j=1}^{i} \mathcal{U}_j(x_j^{k+1}) + \sum_{j=i+1}^{p} \mathcal{U}_j(x_j^{k}).$$

The CBPG Method

Initialization: pick $x^0 = (x_1^0, \dots, x_p^0) \in \operatorname{int}(\operatorname{dom} f)$.

General Step: for any $k = 0, 1, 2, \cdots$ execute the following steps:

- set $x^{k,0} = x^k$;
- for $i = 1, 2, \cdots, p$, compute

$$x^{k,i} = x^{k,i-1} + \mathcal{U}_i \left(T_{L_i}^i(x^{k,i-1}) - x_i^{k,i-1} \right);$$

• set $x^{k+1} = x^{k,p}$.

3. The CBPG Method

3.1 Convergence Analysis of the CBPG Method-The Nonconvex Case

Lemma: sufficient decrease of the CBPG method-version I

Suppose that Assumption 1 holds, and let $\{x^k\}_{k\geq 0}$ be the sequence generated by the CBPG method for solving problem (2). Then

(a). for all $k \geq 0$ and $j = 0, 1, \cdots, p-1$ it holds that

$$F(x^{k,j}) - F(x^{k,j+1}) \ge \frac{1}{2L_{j+1}} \left\| G_{L_{j+1}}^{j+1}(x^{k,j}) \right\|^2 = \frac{L_{j+1}}{2} \left\| x^{k,j} - x^{k,j+1} \right\|^2;$$

(b). for all $k \geq 0$,

$$F(x^k) - F(x^{k+1}) \ge \frac{L_{\min}}{2} \|x^k - x^{k+1}\|^2$$
,

where $L_{\min} = \min_{i=1,2,\cdots,p} L_i$.

Corollary (monotocicity of the sequence generated by the CBPG method).

Suppose that Assumption 1 holds, and let $\{x^k\}_{k\geq 0}$ be the sequence generated by the CBPG method for solving problem (2). Then for any k>0,

$$F(x^{k+1}) \le F(x^k),$$

and the equality holds if and only if $x^k = x^{k+1}$.

Lemma: sufficient decrease of the CBPG method-version II.

Suppose that Assumption 1 holds and let $\{x^k\}_{k\geq 0}$ be the sequence generated by the CBPG method for solving problem (2). Then for any $k \geq 0$.

$$F(x^k) - F(x^{k+1}) \ge \frac{C}{p} \|G_{L_{\min}}(x^k)\|^2$$
,

where

$$C = \frac{L_{\min}}{2\left(L_f + 2L_{\max} + \sqrt{L_{\min}L_{\max}}\right)^2}$$

and

$$L_{\min} = \min_{i=1,2,\cdots,p} L_i, \quad L_{\max} = \max_{i=1,2,\cdots,p} L_i.$$

Theorem (convergence of the CBPG method-nonconvex case)

Suppose that Assumption 1 holds, and let $\{x^k\}_{k\geq 0}$ be the sequence generated by the CBPG method for solving problem (2). Denote

$$L_{\min} = \min_{i=1,2,\cdots,p} L_i, \quad L_{\max} = \max_{i=1,2,\cdots,p} L_i,$$

and

$$C = \frac{L_{\min}}{2\left(L_f + 2L_{\max} + \sqrt{L_{\min}L_{\max}}\right)^2}.$$

Then

- (a). $G_{L_{min}}(x^k) \to 0$ as $k \to \infty$;
- (b). $\min_{n=0,1,\cdots,k} \|G_{L_{\min}}(x^n)\| \le \frac{\sqrt{p(F(x^0) F_{opt})}}{\sqrt{C(k+1)}};$
- (c). all limit points of the sequence $\{x^k\}_{k\geq 0}$ are stationary points of problem (2).

4 D > 4 A > 4 E > 4 E > B 900

3. The CBPG Method

3.2 Convergence Analysis of the CBPG Method-The Convex Case

Assumption 2

- (A). f is convex.
- (B). For any $\alpha > 0$, there exists $R_{\alpha} > 0$ such that

$$\max_{x,x^*} \{ \|x - x^*\| : F(x) \le \alpha, x^* \in X^* \} \le R_{\alpha}.$$

Lemma

Suppose that Assumption 1 and Assumption 2 hold, and let $\{x^k\}_{k\geq 0}$ be the sequence generated by the CBPG method for solving problem (2). Then for any $k\geq 0$,

$$F(x^k) - F(x^{k+1}) \geq \frac{L_{\min}}{2p\left(L_f + L_{\max}\right)^2 R^2} \left(F(x^{k+1}) - F_{\mathrm{opt}}\right)^2,$$

where
$$R=R_{F(x^0)}$$
, $L_{\max}=\max_{j=1,2,\cdots,p}L_j$, and $L_{\min}=\min_{j=1,2,\cdots,p}L_j$.

Lemma

Let $\{\alpha_k\}_{k\geq 0}$ be a nonnegative sequence of real numbers satisfying

$$\alpha_k - \alpha_{k+1} \ge \frac{1}{\gamma} \alpha_{k+1}^2, \quad k = 0, 1, \cdots,$$

for some $\gamma > 0$. Then for any $n \geq 2$,

$$\alpha_n \le \max \left\{ \left(\frac{1}{2}\right)^{(n-1)/2} \alpha_0, \frac{4\gamma}{n-1} \right\}.$$

In addition, for any $\epsilon > 0$, if $n \ge 2$ satisfies

$$n \ge \max \left\{ \frac{2}{\log 2} \left(\log \alpha_0 + \log \frac{1}{\epsilon} \right), \frac{4\gamma}{\epsilon} \right\} + 1,$$

then $\alpha_n < \epsilon$.

Theorem: $(O(\frac{1}{k}))$ rate of convergence of CBPG).

Suppose that Assumption 1 and Assumption 2 hold. Let $\{x^k\}_{k\geq 0}$ be the sequence generated by the CBPG method for solving problem (2). For any $k\geq 2$,

$$F(x^k) - F_{\mathsf{opt}} \leq \max \left\{ \left(\frac{1}{2}\right)^{(k-1)/2} \left(F(x^0) - F_{\mathsf{opt}}\right), \frac{8p \left(L_f + L_{\mathsf{max}}\right)^2 R^2}{L_{\mathsf{min}}(k-1)} \right\},$$

where $R=R_{F(x^0)}$, $L_{\max}=\max_{i=1,2,\cdots,p}L_i$, and $L_{\min}=\min_{i=1,2,\cdots,p}L_i$. In addition, if $n\geq 2$ satisfies

$$n \ge \max\left\{\frac{2}{\log 2}\left(\log\left(F(x^0) - F_{\mathsf{opt}}\right) + \log\frac{1}{\epsilon}\right), \frac{8p\left(L_f + L_{\mathsf{max}}\right)^2R^2}{L_{\mathsf{min}}\epsilon}\right\} + 1,$$

then $F(x^n) - F_{\text{opt}} \le \epsilon$.

4□ > 4□ > 4≡ > 4≡ > 900

Finally, the following theorem shows that block Lipschitz continuity (Assumption 1(D)) implies that the function is L-smooth (Assumption 1(C)) if in addition f is differentiable over the entire space.

Theorem

Let $\phi:\Pi_{i=1}^p\mathbb{R}^{n_i}\to\mathbb{R}$ be real-valued convex satisfying the following assumptions:

- (a). ϕ is differentiable over $\prod_{i=1}^p \mathbb{R}^{n_i}$;
- (b). there exist $L_1, \dots, L_p > 0$ such that for any $i = 1, \dots, p$ it holds that

$$\|\nabla_i \phi(x) - \nabla_i \phi(x + \mathcal{U}_i(d))\| \le L_i \|d\|$$

for all $x \in \Pi_{i-1}^p \mathbb{R}^{n_i}$ and $d \in \mathbb{R}^{n_i}$.

Then ϕ is L-smooth with $L = \sum_{i=1}^{p} L_i$.

4. The RBPG Method

Assumption 3

- (A). $g_i: \mathbb{R}^n \to \overline{\mathbb{R}}$ is proper closed and convex for $i=1,\cdots,p$.
- (B). $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ is proper closed and convex, $\operatorname{dom} g \subseteq \operatorname{int}(\operatorname{dom} f)$, and f is differentiable over $\operatorname{int}(\operatorname{dom} f)$.
- (C). There exist $L_1, \cdots, L_p > 0$ such that for any $i = 1, \cdots, p$ it holds that

$$\|\nabla_i f(x) - \nabla_i f(x + \mathcal{U}_i(d))\| \le L_i \|d\|$$

for all $x \in \text{int}(\text{dom} f)$ and $d \in \mathbb{R}^{n_i}$ for which $x + \mathcal{U}_i(d) \in \text{int}(\text{dom} f)$.

(D). The optimal set of problem (2) is nonempty and denoted by X^* . The optimal value is denoted by $F_{\rm opt}$.

The RBPG Method

Initialization: $x^0 = (x_1^0, \dots, x_p^0) \in \operatorname{int}(\operatorname{dom} f)$.

General Step: for any $k = 0, 1, 2, \cdots$ execute the following steps:

- pick $i_k \in \{1, 2, \dots, p\}$ randomly via a uniform distribution;
- $x^{k+1} = x^k + \mathcal{U}_{i_k} \left(T_{L_{i_k}}^{i_k}(x^k) x_{i_k}^k \right) = x^k \frac{1}{L_{i_k}} \mathcal{U}_{i_k} \left(G_{L_{i_k}}^{i_k}(x^k) \right).$

Theorem (sufficient decrease of the RBPG method.)

Suppose that Assumption 3 holds, and let $\{x^k\}_{k\geq 0}$ be the sequence generated by the RBPG method. Then for any $k\geq 0$,

$$F(x^k) - F(x^{k+1}) \ge \frac{1}{2L_{i,k}} \left\| G_{L_{i_k}}^{i_k}(x^k) \right\|^2.$$

Notations:

- $\xi_{k-1}=\{i_0,i_1,\cdots,i_{k-1}\}$ is a multivariate random variable for any $k=1,2,\cdots$.
- We write $x \in \Pi_{i=1}^p \mathbb{R}^{n_i}$ as $x = (x_1, \cdots, x_p)$. Define the following weighted norm:

$$||x||_{L} = \sqrt{\sum_{i=1}^{p} L_{i} ||x_{i}||^{2}}$$

and its dual norm

$$||x||_{L,*} = \sqrt{\sum_{i=1}^{p} \frac{1}{L_i} ||x_i||^2}.$$

• We define $\tilde{G}(x)=\Big(G^1_{L_1}(x),\cdots,G^p_{L_p}(x)\Big)$. Obviously, if $L_1=\cdots=L_p=L$, then $\tilde{G}(x)=G_L(x)$.

Theorem $(O(\frac{1}{k}))$ rate of convergence of the RBPG method).

Suppose that Assumption 3 holds. Let $\{x^k\}_{k\geq 0}$ be the sequence generated by the RBPG method for solving problem (2). Let $x^*\in X^*$. Then for any $k\geq 0$,

$$E_{\xi_k}\left(F(x^{k+1})\right) - F_{\mathsf{opt}} \le \frac{p}{p+k+1}\left(\frac{1}{2} \|x^0 - x^*\|_L^2 + F(x^0) - F_{\mathsf{opt}}\right).$$