Algoritmos Genéticos

Estéfane G. M. de Lacerda DCA/UFRN Outubro/2008

Introdução

Algoritmos Genéticos

- São técnicas de busca e otimização.
- É a metáfora da teoria da evolução das espécies iniciada pelo Fisiologista e Naturalista inglês Charles Darwin.
- Desenvolvido por John Holland (1975) e seus alunos.
- Popularizado por David Goldberg (1989).

Teoria da Evolução

1859 - Charles Darwin publica o livro "A Origem das Espécies":

Charles Darwin

"As espécies evoluem pelo principio da seleção natural e sobrevivência do mais apto."

Teoria da Evolução

Gregor Mendel

- 1865- Gregor Mendel apresenta experimentos do cruzamento genético de ervilhas.
 - Pai da genética.
- A Teoria da Evolução começou a partir da conceituação integrada da seleção natural com a Genética.

Otimização

- É a busca da melhor solução para um dado problema.
 - Consiste em tentar vários soluções e usar a informação obtida para conseguir soluções cada vez melhores.
- Exemplo de otimização:
 - Telespectador através de ajuste na antena da televisão otimiza a imagem buscando várias soluções até alcançar uma boa imagem.

Otimização

- As técnicas de otimização, geralmente, apresentam:
 - Espaço de busca: onde estão todas as possíveis soluções do problema;
 - Função objetivo: utilizada para avaliar as soluções produzidas, associando a cada uma delas uma nota.

Características dos Algoritmos Genéticos

- É um algoritmo estocástico (não é determinístico).
- Trabalha com uma população de soluções simultaneamente.
- Utiliza apenas informações de custo e recompensa. Não requer nenhuma outra informação auxiliar (como por exemplo o gradiente).

Características dos Algoritmos Genéticos (II)

- São fáceis de serem implementados em computadores.
- Adaptam-se bem a computadores paralelos.
- São facilmente hibridizados com outras técnicas.
- Funcionam com parâmetros contínuos ou discretos.

Algoritmos Genéticos (Conceitos Básicos)

- AG manipula uma população de indivíduos.
- Individuos são possíveis soluções do problema.
- Os indivíduos são combinados (crossover) uns com os outros, produzindo filhos que podem sofrer ou não mutação.
- As populações evoluem através de sucessivas gerações até encontrar a solução ótima.

Aplicações

- Em problemas díficeis de otimização, quando não existe nenhuma outra técnica especifica para resolver o problema.
 - Otimização de funções numéricas em geral
 - Otimização combinatória
 - Problema do caixeiro viajante
 - Problema de transporte, alocação
 - Problemas de conexão (árvore, emparelhamento, caminhos).
 - Otimização multiobjetivo

O Algoritmo Genético Binário

Algoritmo Genético Tradicional

- 1. Gerar a população inicial.
- 2. Avaliar cada indivíduo da população.
- 3. Enquanto critério de parada não for satisfeito faça
 - 3.1 Selecionar os indivíduos mais aptos.
 - 3.2 Criar novos indivíduos aplicando os operadores crossover e mutação.
 - 3.3 Armazenar os novos indivíduos em uma nova população.
 - 3.4 Avaliar cada indivíduo da nova população.

Problema 1

Problema: Use um AG para encontrar o ponto máximo da função:

$$f(x) = x^2$$

com f(x) sujeita as seguintes restrições:

$$0 \le x \le 31$$

x é inteiro

Algoritmos Genéticos

Indivíduo

Cromossomo

- Estrutura de dados que representa uma possível solução para o problema.
- Os parâmetros do problema de otimização são representados por cadeias de valores.
- Exemplos:
 - Vetores de reais, (2.345, 4.3454, 5.1, 3.4)
 - Cadeias de bits, (111011011)
 - Vetores de inteiros, (1,4,2,5,2,8)
 - ou outra estrutura de dados.

Individuo (II)

Aptidão

 Nota associada ao indíviduo que avalia quão boa é a solução por ele representada.

Aptidão pode ser:

- Igual a função objetivo.
- Resultado do **escalonamento** da função objetivo.
- Baseado no ranking do indíviduo da população.

Cromossomo do Problema 1

- Cromossomos binários com 5 bits:
 - \bullet 0 = 00000
 - **◆** 31 = 11111
- Aptidão
 - Por simplicidade, a aptidão será a própria função objetivo.
 - Exemplo:

aptidão
$$(00011) = f(3) = 9$$

Seleção

Seleção

- Imitação da seleção natural.
- Os melhores indivíduos (maior aptidão) são selecionados para gerar filhos através de crossover e mutação.
- Dirige o AG para as melhores regiões do espaço de busca.

Tipos mais comuns de seleção

- Seleção proporcional a aptidão.
- Seleção por torneio.

População Inicial do Problema 1

É aleatória (mas quando possível, o conhecimento da aplicação pode ser utilizado para definir população inicial)

Pop. inicial

cromossomos	X	f(x) P	rob. de seleção
$A_1 = 1 1 0 0 1$	25	625	54,5%
$A_2 = 0 1 1 1 1$	15	225	19,6%
$A_3 = 0 1 1 1 0$	14	196	17,1%
$A_4 = 0 1 0 1 0$	10	100	8,7%

Probabilidade de seleção proporcional a aptidão

$$p_i = \frac{f(x_i)}{\sum_{k=1}^{N} f(x_k)}$$

Seleção proporcional a aptidão (Roleta)

Seleção por Torneio

Escolhe-se n (tipicamente 2) indivíduos aleatoriamente da população e o melhor é selecionado.

Seleção por Torneio

Indivíduos	Aptidão
A1	625
A2	225
A3	196
A4	100

Os individuos são selecionados para os torneios com igual probabilidade.

	Forneio	S
A4	X	A1
A3	X	A2
A2	X	A4
A3	Х	A3

pais selecionados
A1
A2
A2
A3

Crossover e Mutação

- Combinam pais selecionados para produção de filhos.
- Principais mecanismos de busca do AG.
- Permite explorar áreas desconhecidas do espaço de busca.

Crossover de 1 ponto

O crossover é aplicado com uma dada probabilidade denominada taxa de crossover (60% a 90%)

Se o crossover é aplicado os pais trocam suas caldas gerando dois filhos, caso contrário os dois filhos serão cópias exatas dos pais.

Mutação

Mutação inverte os valores dos bits.

A mutação é aplicada com dada probabilidade, denominada *taxa de mutação* (~1%), em cada um dos bits do cromossomo.

Antes da mutação 0 1 1 0 1

Depois 0 0 1 0 1

Aqui, apenas o 2o.bit passou no teste de probabilidade

A taxa de mutação não deve ser nem alta nem baixa, mas o suficiente para assegurar a diversidade de cromossomos na população.

A primeira geração do Problema 1

A primeira geração do Problema 1 (II)

cror	nossomos	V	f(x)	prob. de
CIUI	11055011105	A	/ (X)	seleção
1	11011	27	729	29,1%
2	11001	25	625	24,9%
3	11001	25	625	24,9%
4	10111	23	529	21,1%

As demais gerações do Problema 1

			X	f(x)
Segunda	1	11011	27	729
Segunda Geração	2	11000	24	576
Geração	3	10111	23	529
	4	10101	21	441
			X	f(x)
Terceira	1	11011		f(x) 729
Terceira Geração	1 2	11011 10111		
	•		27	729

As demais gerações do Problema 1 (II)

Qua	rta
Gera	ıção

		X	I(X)
1	11111	31	961
2	11011	27	729
3	10111	23	529
4	10111	23	529

f/v/

Quinta Geração

		X	f(x)
1	11111	31	961
2	11111	31	961
3	11111	31	961
4	10111	23	529

Outros Crossover's

Crossover de 2-pontos

Considerado melhor que o crossover de 1 ponto.

Crossover de n-Pontos

Crossover de 4-pontos

Crossover Uniforme

O filho1 possui 50% de chance de levar um bit do pai1 e 50% de chance de levar um bit de pai2

O filho2 leva o que sobra de pai1 e pai2

Problema 2

Achar o máximo da função utilizando um Algoritmo Genético:

$$f(x) = x \text{ seno}(10\pi x) + 1,0$$

Restrita ao intervalo:

$$-1,0 \le x \le 2,0$$

Problema 2 (II)

Máximo global:

$$x = 1,85055$$

 $f(x) = 2,85027$

Algoritmos Genéticos

Problema 2 (III)

- Função multimodal com vários pontos de máximo.
- É um problema de otimização global (encontrar o máximo global)
- Não pode ser resolvido pela grande maioria dos métodos de otimização convencional.
- Há muitos métodos de otimização local, mas para otimização global são poucos.

O Cromossomo Problema 2

- Representar o único parâmetro deste problema (a variável x) na forma de um cromossomo:
 - Quantos bits deverá ter o cromossomo?
 - Quanto mais bits melhor precisão numérica.
 - Longos cromossomos são difíceis de manipular.
 - Para cada decimal é necessário cerca de 3,3 bits
 - Exemplo de cromossomo com 22 bits

1000101110110101000111

O Cromossomo Problema 2 (II)

Decodificação

- cromossomo = 1000101110110101000111
- $b_{10} = (10001011101101101000111)_2 = 2288967$
- Valor de *x* precisa estar no intervalo [-1,0; 2,0]

$$x = \min + (\max - \min) \frac{b_{10}}{2^l - 1}$$

$$x = -1 + (2+1)\frac{2.288.967}{2^{22} - 1} = 0,637197$$

As Gerações do Problema 2

População gerada aleatóriamente

As Gerações do Problema 2 (II)

As Gerações do Problema 2 (III)

A maioria dos indivíduos encontraram o máximo global

As Gerações do Problema 2 (IV)

Na geração 15 o AG já encontrou o ponto máximo

Elitismo

- O crossover ou mutação podem destruir a melhor indivíduo.
- Por que perder a melhor solução encontrada?
- Elitismo transfere a cópia do melhor indíviduo para a geração seguinte.

Elitismo no Problema 2

Algoritmos Genéticos

Critérios de Parada

- Número de gerações.
- Encontrou a solução (quando esta é conhecida).
- Perda de diversidade.
- Convergência
 - nas últimas k gerações não houve melhora na aptidão
 - Média
 - Máxima

Terminologia

- Indivíduo (simples membro da população).
- Cromossomo e Genoma:
 - Coleção de genes
 - Estrutura de dados que codifica a solução de uma problema.
- Genótipo
 - Na biologia, representa a composição genética do organismo. Nos AGs, representa a informação contida no cromossomo.

Terminologia

Fenótipo:

- Objeto ou estrutura construída a partir das informações do genótipo.
- É o cromossomo decodificado.
 - Exemplo: se o cromossomo codifica as dimensões de um edificio, então o fenótipo é o edificio construído.

Gene:

Codifica um simples parâmetro do problema

Terminologia

Alelos:

- Valores que o gene pode assumir.
 - Ex.: um gene representando a cor de um objeto pode ter alelos como azul, preto, verde etc...

Epistasia:

- Biologia: interação entre genes do cromossomo cujo efeito é desativar o outro gene.
- Um gene é epistático quando sua presença desativa um gene em outra posição no cromossomo.
- No AG significa não linearidade.

Exercício

Minimize a função:

$$f(x)=x^2-3x+4$$

- Assumir que $x \in [-10, +10]$
- Codificar x como vetor binário
- Criar uma população inicial com 4 indivíduos
- Aplicar Mutação com taxa de 1%
- Aplicar Crossover com taxa de 60%
- Usar seleção por torneio.
- Usar 5 gerações.