Fakultet elektrotehnike i računarstva Zavod za elektroniku, mikroelektroniku, računalne i inteligentne sustave

Elektronika 1

Ž. Butković, J. Divković Pukšec, A. Barić

10. Sklopovi s operacijskim pojačalima

Operacijsko pojačalo

- pojačalo s 2 ulaza i najčešće s 1 izlazom
- ima veliko naponsko pojačanje
- □ naziv rezultat prve primjene u analognim računalima obavljanje matematičkih operacija s analognim signalima (zbrajanje, oduzimanje, integriranje, deriviranje, ...)
- izvedbe
 - nekad diskretni sklopovi (s elektronskim cijevima, s tranzistorima)
 - danas integrirani sklopovi
- najčešće primjenjivan analogni integrirani sklop razna pojačala, aktivni fitri, stabilizatori, komparatori, digitalno-analogni i analogno-digitalni pretvornici, generatori signala, ...

Električki simbol

2 komplementarna napona napajanja →

$$U_{CC}$$
 i – U_{EE} \rightarrow U_{CC} = U_{EE}

U linearnim radu:

$$u_{iz} = A_{VOP} u_d = A_{VOP} (u_+ - u_-)$$

 $A_{VOP} \rightarrow$ naponsko pojačanje operacijskog pojačala

Za
$$u_{-} = 0 \rightarrow u_{iz} = A_{VOP} u_{+}$$

Za
$$u_+ = 0 \rightarrow u_{iz} = -A_{VOP} u_-$$

Ulaz označen s "+" \rightarrow neinvertirajući ulaz Ulaz označen s "-" \rightarrow invertirajući ulaz

Svojstva operacijskog pojačala

Svojstvo	Idealno pojačalo	Realno pojačalo
Naponsko pojačanje	∞	$10^4 - 10^6$
Ulazni otpor	∞	1 MΩ i više
Izlazni otpor	0	100 Ω i manje
Gornja granična frekvencija	∞	10 Hz i više

Prijenosna karakteristika

Izlazni napon operacijskog pojačala ograničen je naponima napajanja

ulazni napon $\rightarrow u_D = u_+ - u_-$ predznak napona u_{IZ} odgovara predznaku napona u_D između točaka A i B operacijsko pojačalo radi linearno $u_{iz} = A_{VOP} u_D \rightarrow$ primjena: pojačalo za veće iznose napona u_D napon u_{IZ} je u zasićenju $U_{IZ\max}$ ili $-U_{IZ\min} \rightarrow$ primjena: komparator

Invertirajuće pojačalo (1)

Otporom R_2 izlaz je spojen s ulazom \rightarrow povratna veza

$$i_1 = \frac{u_{ul} - u_-}{R_1}$$
 $i_2 = \frac{u_- - u_{iz}}{R_2}$

Zbog velikog ulaznog otpora $\rightarrow i_1 = i_2$

$$\frac{u_{ul} - u_{-}}{R_1} = \frac{u_{-} - u_{iz}}{R_2} \qquad u_{-} = -\frac{u_{iz}}{A_{VOP}}$$

$$A_{V} = \frac{u_{iz}}{u_{ul}} = -\frac{R_{2}}{R_{1}} \frac{1}{1 + \frac{1}{A_{VOP}} \left(1 + \frac{R_{2}}{R_{1}}\right)}$$

Napon u_{nl} spojen je na "-" ulaz \rightarrow pojačanje je negativno

Invertirajuće pojačalo (2)

Uz
$$A_{VOP} >> 1 + R_2/R_1 \rightarrow A_V = \frac{u_{iz}}{u_{ul}} = -\frac{R_2}{R_1}$$

 $|A_V| \ll A_{VOP} \rightarrow$ negativna povratna veza

Zbog velikog pojačanja $A_{VOP} \rightarrow u_+ = u_- \rightarrow \text{prividni kratki spoj}$

Pojednostavljena analiza sklopova s operacijskim pojačalom:

- zbog beskonačno velikog ulaznog otpora ulazne struje operacijskog pojačala jednake su nuli
- zbog beskonačno velikog pojačanja ulazni priključci operacijskog pojačala na istom su potencijalu

Ulazni otpor invertirajućeg pojačala
$$\rightarrow R_{ul} = \frac{u_{ul}}{i_1} = \frac{u_{ul}}{u_{ul}/R_1} = R_1$$

U invertirajućem pojačalu sa slike otpori otpornika su $R_1 = 1 \text{ k}\Omega \text{ i } R_2 = 100 \text{ k}\Omega.$ Odrediti naponsko pojačanje invertirajućeg pojačala A_V uz pojačanja operacijskog pojačala $A_{VOP} = 10^3$, 10^4 i 10^5 . Za svako pojačanje A_{VOP} odrediti relativnu pogrešku stvarnog pojačanja A_V u odnosu na pojačanje $A_{Vi} = -R_2/R_1$ uz idealno operacijsko pojačalo, te amplitudu napona U_{-m} invertirajućeg ulaza operacijskog pojačala, ako je amplituda ulaznog sinusnog napona pojačala $U_{ulm} = 0.1 \text{ V}.$

Odrediti otpore R_1 i R_2 invertirajućeg pojačala sa slike tako da ulazni otpor pojačala bude $R_{ul}=2~{\rm k}\Omega$, a naponsko pojačanje $A_V=-200$. Operacijsko pojačalo je idealno.

Neinvertirajuće pojačalo

Zbog velikog ulaznog otpora $\rightarrow i_1 = i_2$

$$\frac{u_{-}}{R_{1}} = \frac{u_{iz} - u_{-}}{R_{2}}$$

$$u_{+} - u_{-} = u_{ul} - u_{-} = \frac{u_{iz}}{A_{VOP}}$$

$$A_{V} = \frac{u_{iz}}{u_{ul}} = \left(1 + \frac{R_{2}}{R_{1}}\right) \frac{1}{1 + \frac{1}{A_{VOP}}} \left(1 + \frac{R_{2}}{R_{1}}\right)$$

Napon u_{ul} spojen je na "+" ulaz \rightarrow pojačanje je pozitivno

Uz
$$A_{VOP} >> 1 + R_2/R_1 \rightarrow A_V = \frac{u_{iz}}{u_{ul}} = 1 + \frac{R_2}{R_1}$$

Ulazni otpor jednak je ulaznom otporu neinvertirajućeg ulaza → vrlo je velik

U neinvertirajućem pojačalu sa slike otpori otpornika su $R_1=3~\mathrm{k}\Omega$ i $R_2=50~\mathrm{k}\Omega$. Odrediti naponsko pojačanje neinvertirajućeg pojačala A_V , amplitude napona U_{-m} invertirajućeg ulaza i U_{izm} operacijskog pojačala, te amplitude struja I_{1m} i I_{2m} ako je amplituda ulaznog sinusnog napona pojačala $U_{ulm}=0,1~\mathrm{V}$. Operacijsko pojačalo je idealno.

Naponsko sljedilo

Specijalni slučaj neinvertirajućeg pojačala uz $R_2 = 0$ i $R_1 = \infty$

$$A_V = \frac{u_{iz}}{u_{ul}} = 1$$

Ima jako veliki ulazni i jako mali izlazni otpor → koristi se kao odjelni stupanj ili transformator impedancije → slično kao emitersko ili uvodsko sljedilo.

Diferencijsko pojačalo

Dva ulazna napona u_{ul1} i u_{ul2}

Zbog velikog ulaznog otpora $\rightarrow i_1 = i_2$

$$\frac{u_{ul1} - u_{-}}{R_{1}} = \frac{u_{-} - u_{iz}}{R_{2}}$$

$$u_{iz} = \left(1 + \frac{R_{2}}{R_{1}}\right)u_{-} - \frac{R_{2}}{R_{1}}u_{ul1}$$

Uz
$$i_3 = i_4 \rightarrow u_+ = \frac{R_4}{R_3 + R_4} u_{ul2}$$

Uz veliki
$$A_{VOP} \rightarrow u_{-} = u_{+} = u \rightarrow u_{iz} = \frac{R_{1} + R_{2}}{R_{1}} \frac{R_{4}}{R_{3} + R_{4}} u_{ul2} - \frac{R_{2}}{R_{1}} u_{ul1}$$

$$\text{Uz } R_3 = R_1 \text{ i } R_4 = R_2 \rightarrow \quad u_{iz} = \frac{R_2}{R_1} \big(u_{ul2} - u_{ul1} \big) = \frac{R_2}{R_1} u_{uld} \qquad A_{Vd} = \frac{u_{iz}}{u_{ul2} - u_{ul1}} = \frac{u_{iz}}{u_{uld}} = \frac{R_2}{u_{uld}} = \frac{R_2}{R_1} u_{uld} = \frac{R_2}{R_$$

Instrumentacijsko pojačalo

Pretpostavka → idealna operacijska pojačala

$$i = \frac{u_{iz2} - u_{iz1}}{2R_1 + 2R_2} = \frac{u_{ul2} - u_{ul1}}{2R_1}$$

$$u_{iz2} - u_{iz1} = \left(1 + \frac{R_2}{R_1}\right) (u_{ul2} - u_{ul1})$$

 u_{iz1} i $u_{iz2} \rightarrow$ ulazni naponi diferencijskog pojačala

$$u_{iz} = \frac{R_4}{R_3} (u_{iz2} - u_{iz1})$$

$$u_{iz} = \frac{R_4}{R_3} \left(1 + \frac{R_2}{R_1} \right) \left(u_{ul2} - u_{ul1} \right) = \frac{R_4}{R_3} \left(1 + \frac{R_2}{R_1} \right) u_{uld} \qquad A_{Vd} = \frac{u_{iz}}{u_{ul2} - u_{ul1}} = \frac{u_{iz}}{u_{uld}} = \frac{R_4}{R_3} \left(1 + \frac{R_2}{R_1} \right) u_{uld}$$

$$A_{Vd} = \frac{u_{iz}}{u_{ul2} - u_{ul1}} = \frac{u_{iz}}{u_{uld}} = \frac{R_4}{R_3} \left(1 + \frac{R_2}{R_1} \right)$$

U instrumentacijskom pojačalu sa slike otpori otpornika su $R_1 = 15 \text{ k}\Omega, R_2 = 150 \text{ k}\Omega,$ $R_3 = 15 \text{ k}\Omega \text{ i } R_4 = 30 \text{ k}\Omega. \text{ Uz}$ pretpostavku da su na neinvertirajuće ulaze operacijskih pojačala A_1 i A_2 priključeni istosmjerni naponi $U_{III.1} = 2.5 \text{ V i } U_{III.2} = 2.25 \text{ V}$ odrediti izlazne napone operacijskih pojačala U_{IZ1} , U_{IZ} i U_{IZ} .

Sklop za zbrajanje

Uz idealno operacijsko pojačalo →

$$u_{-} = u_{+} = 0 i i_{1} + i_{2} + i_{3} = i_{N}$$

$$\frac{u_{UL1}}{R_1} + \frac{u_{UL2}}{R_2} + \frac{u_{UL3}}{R_3} = -\frac{u_{IZ}}{R_N}$$

$$u_{IZ} = -\left(\frac{R_N}{R_1}u_{UL1} + \frac{R_N}{R_2}u_{UL2} + \frac{R_N}{R_3}u_{UL3}\right) \quad u_{UL3} \circ \xrightarrow{I_3} \quad u_{UL3} \circ$$

$$Uz R_1 = R_2 = R_3 \rightarrow$$

$$u_{IZ} = -\frac{R_N}{R_1} (u_{UL1} + u_{UL2} + u_{UL3})$$

Uz
$$R_1 = R_2 = R_3 = R_N \rightarrow u_{IZ} = -(u_{UL1} + u_{UL2} + u_{UL3})$$

Sklop za zbrajanje i oduzimanje (1)

Idealno operacijsko pojačalo →

$$u_{-} = u_{+} = u$$

$$i_3 + i_4 = i_P \rightarrow$$

$$\frac{u_{UL3} - u}{R_3} + \frac{u_{UL4} - u}{R_4} = \frac{u}{R_P}$$

$$u\left(1 + \frac{R_P}{R_3} + \frac{R_P}{R_4}\right) = \frac{R_P}{R_3}u_{UL3} + \frac{R_P}{R_4}u_{UL4}$$

Sklop za zbrajanje i oduzimanje (2)

Idealno operacijsko pojačalo →

$$i_1 + i_2 = i_N \rightarrow$$

$$\frac{u_{UL1} - u}{R_1} + \frac{u_{UL2} - u}{R_2} = \frac{u - u_{IZ}}{R_N}$$

$$u_{IZ} = u \left(1 + \frac{R_N}{R_1} + \frac{R_N}{R_2} \right) - \frac{R_N}{R_1} u_{UL1} - \frac{R_N}{R_2} u_{UL2}$$

 $u_{UL1} \circ \xrightarrow{i_1} \xrightarrow{}$

 u_{UL2O}

$$u_{IZ} = -\frac{R_N}{R_1}u_{UL1} - \frac{R_N}{R_2}u_{UL2} + \frac{1 + \frac{R_N}{R_1} + \frac{R_N}{R_2}}{1 + \frac{R_P}{R_3} + \frac{R_P}{R_4}} \left(\frac{R_P}{R_3}u_{UL3} + \frac{R_P}{R_4}u_{UL4}\right)$$

Uz
$$R_1 = R_2 = R_3 = R_4$$
 i $R_N = R_P \rightarrow u_{IZ} = \frac{R_N}{R_1} (-u_{UL1} - u_{UL2} + u_{UL3} + u_{UL4})$

Integrator

Idealno operacijsko pojačalo →

$$u_- = u_+ = 0$$

$$i(t) = \frac{u_{UL}(t)}{R}$$

$$u_C(t) = \frac{1}{C} \int_0^t i(t) dt + U_{C0} = \frac{1}{RC} \int_0^t u_{UL}(t) dt + U_{C0}$$

$$u_{IZ}(t) = -u_C(t) = -\frac{1}{RC} \int_0^t u_{UL}(t) dt - U_{C0}$$

Odrediti izlazni napon $u_{IZ}(t)$ integratora sa slike ako je ulazni napon $u_{UL}(t)$ impuls amplitude $U_{UL1}=1~{\rm V}$ i trajanja $T_P=1~{\rm ms}$. Otpor otpornika $R=10~{\rm k}\Omega$, a kapacitet kondenzatora $C=10~{\rm nF}$. Prije dolaska impulsa napon na kondenzatoru bio je jednak nuli, tj. $U_{C0}=0~{\rm V}$.

Derivator

Idealno operacijsko pojačalo →

$$u_- = u_+ = 0$$

$$i(t) = C \frac{\mathrm{d} u_{UL}(t)}{\mathrm{d} t}$$

$$u_{IZ}(t) = -R i(t) = -R C \frac{du_{UL}(t)}{dt}$$

Multivibratori

Multivibratori → impulsni sklopovi čiji izlazni napon poprima jedno od dva moguća stanja – stanje niske ili stanje visoke razine.

Stanje može biti:

- stabilno stanje u kojem multivibrator ostaje trajno
- kvazistabilno stanje u kojem multivibrator ostaje ograničeno vrijeme, određeno karakteristikama sklopa.

Tri vrste multivibratora:

- □ bistabilni multivibrator ili bistabil → oba stanja su stabilna,
- monostabilni multivibrator ili monostabil → jedno stanje je stabilno, a drugo kvazistabilno,
- astabilni multivibrator ili astabil → oba stanja su kvazistabilna.

Operacijsko pojačalo s pozitivnom povratnom vezom

U multivibratorima operacijska pojačala rade s pozitivnom povratnom vezom

Izlazni napon uvijek je u zasićenju

Pretpostavka: na "+ " ulazu smetnja (mali pozitivni napon u_+)

- \rightarrow na izlazu $u_{IZ} = A_{VOP} u_+$
- \rightarrow na "+" ulazu $u_+ = \beta u_{IZ}$
- ightarrow uz $eta A_{VOP} > 1$ izlazni napon je sve veći i na kraju postaje napon zasićenja $U_{IZ\max}$

Uz negativnu smetnju na "+ " ulazu \rightarrow izlazni napon zasićenja $U_{IZ\min} = -U_{IZ\max}$

Komparator (1)

Komparator → sklop koji uspoređuje (komparira) dva ulazna napona

Pozitivna povratna veza → izlazni napon je u zasićenju

$$u_{+} = \frac{R_{1}}{R_{1} + R_{2}} u_{IZ} = \beta u_{IZ}$$

Za
$$u_{UL} = u_- < u_+ \rightarrow u_{IZ} = U_{IZ\max}$$
 i $u_+ = \beta U_{IZ\max} = U_{PV} \rightarrow$ pri porastu u_{UL} promjena izlaza uz $u_{UL} = U_{PV} \rightarrow$ napon u_{IZ} mijenja se s $U_{IZ\max}$ na $-U_{IZ\max}$

Za
$$u_{U\!L}=u_->u_+ \to u_{I\!Z}=-~U_{I\!Z\!\max}$$
 i $u_+=-\beta~U_{I\!Z\!\max}=U_{P\!N} \to {\rm pri}$ smanjenju $u_{U\!L}$ promjena izlaza uz $u_{U\!L}=U_{P\!N} \to {\rm napon}~u_{I\!Z}$ mijenja se s $-~U_{I\!Z\!\max}$ na $U_{I\!Z\!\max}$

Komparator (2)

Napon $u_{I\!Z}$ mijenja stanja pri različitim ulaznim naponima \rightarrow prijenosna karakteristika ima svojstvo histereze širina histereze $\rightarrow U_H = U_{PV} - U_{PN} = 2\,\beta\,U_{I\!Z\!\max}$

Odziv komparatora na sinusnu pobudu

Ograničenje izlaznog napona

s dvije Zenerove diode

$$U_{IZ} = \pm (U_Z + U_D)$$

s četiri diode u mosnom spoju i s jednom Zenerovom diodom

$$U_{IZ} = \pm (U_Z + 2 U_D)$$

Komparator s pomaknutom prijenosnom karakteristikom

$$u_{+} = \frac{R_{2}}{R_{1} + R_{2}} U_{R} + \frac{R_{1}}{R_{1} + R_{2}} u_{IZ}$$

$$Uz \ u_{IZ} = + U_{IZ} = + U_{Z} + U_{D} \rightarrow u_{+} = U_{PV} = \frac{R_{2}}{R_{1} + R_{2}} U_{R} + \frac{R_{1}}{R_{1} + R_{2}} U_{IZ}$$

Uz
$$u_{IZ} = -U_{IZ} = -(U_Z + U_D) \rightarrow$$

$$u_+ = U_{PN} = \frac{R_2}{R_1 + R_2} U_R - \frac{R_1}{R_1 + R_2} U_{IZ}$$

U komparatoru na slici zadano je $R_1=1.5~\mathrm{k}\Omega,~U_Z=4.3~\mathrm{V}$ i $U_D=0.7~\mathrm{V}.$ Odrediti otpor otpornika R_2 i napon U_R tako da prijenosna karakteristika bude simetrična oko ulaznog napona od 1 V i da je širina histereze $U_H=100~\mathrm{mV}.$

Astabil

 R_1 i R_2 spojeni na $u_+ \rightarrow$ komparator $C = \frac{R_1}{R_1 + R_2} u_{IZ} = \beta u_{IZ}$

$$u_{+} = \frac{R_{1}}{R_{1} + R_{2}} u_{IZ} = \beta u_{IZ}$$

$$u_{IZ} = \pm U_{IZ} = \pm (U_Z + U_D)$$

Promjenu stanja komparatora osigurava RC-mreža $\rightarrow u_{-} = u_{C}$

Nabijanjem i izbijanjem kapaciteta C mijenja se polaritet napona $u_{\scriptscriptstyle +} - u_{\scriptscriptstyle -}$ a time i napona u_{IZ}

Astabil – opis rada (1)

U
$$t=0
ightarrow \mathrm{promjena} \ u_{IZ} \, \mathrm{s} - U_{IZ} \, \mathrm{na} + U_{IZ}$$

u $t=0_-
ightarrow u_+ = -\beta \, U_{IZ} = U_{PN} = u_- = u_C$
u $t=0_+
ightarrow u_{IZ} = + \, U_{IZ}
ightarrow C \, \mathrm{se} \, \mathrm{nabija}$

$$u_C(t) = U_{PN} + \left(U_{IZ} - U_{PN}\right) \left[1 - \exp\left(-\frac{t}{\tau}\right)\right]$$

za $u_{IZ} = + \, U_{IZ}
ightarrow u_+ = + \beta \, U_{IZ} = U_{PV}$

$$U t = T_1 \rightarrow u_C = U_{PV}$$

$$u_C(T_1) = U_{PV} = U_{PN} + (U_{IZ} - U_{PN}) \left[1 - \exp\left(-\frac{T_1}{\tau}\right) \right]$$

$$T_1 = \tau \ln \left(\frac{U_{IZ} - U_{PN}}{U_{IZ} - U_{PV}} \right) = \tau \ln \left(\frac{1 + \beta}{1 - \beta} \right) = \tau \ln \left(1 + 2 \frac{R_1}{R_2} \right)$$

$$\tau = RC$$

Astabil – opis rada (2)

U
$$t=T_1 o$$
 promjena u_{IZ} s $+U_{IZ}$ na $-U_{IZ}$ u $t=T_{1-} o u_+ = +\beta U_{IZ} = U_{PV} = u_- = u_C$ u $t=T_{1+} o u_{IZ} = -U_{IZ} o C$ se izbija
$$u_C(t) = U_{PV} + \left(-U_{IZ} - U_{PV}\right) \left[1 - \exp\left(-\frac{t-T_1}{\tau}\right)\right]$$
 za $u_{IZ} = -U_{IZ} o u_+ = -\beta U_{IZ} = U_{PN}$

$$U t = T_1 + T_2 \rightarrow u_C = U_{PN}$$

$$u_C(T_1 + T_2) = U_{PN} = U_{PV} + \left(-U_{IZ} - U_{PV}\right) \left[1 - \exp\left(-\frac{T_2}{\tau}\right)\right]$$

$$T_2 = \tau \ln \left(\frac{U_{IZ} + U_{PV}}{U_{IZ} + U_{PN}} \right) = \tau \ln \left(\frac{1 + \beta}{1 - \beta} \right) = T_1$$

$$T = T_1 + T_2 \qquad f = 1/T$$

U astabilu sa slike zadano je $R = 10 \text{ k}\Omega$ i C = 1 nF. Odrediti omjer otpora R_1/R_2 uz koje će frekvencija izlaznog pravokutnog napona biti 20 kHz.

Monostabil

Razlike u odnosu na astabil:

- dodana dioda D_1 koja osigurava stabilno stanje
- dodana mreža za okidanje (C_1 , R_4 i D_2) za prelazak kvazistabilno stanje

Monostabil – opis rada (1)

Stabilno stanje

$$u_{IZ}$$
 = + U_{IZ} \rightarrow C je nabijen do u_{-} = u_{C} = U_{D1} \approx 0,7 V \rightarrow u_{+} = + β U_{IZ} > u_{-}

Kvazistabilno stanje

u
$$t = t_1 \rightarrow$$
 okidni impuls $\rightarrow u_+ < u_- \rightarrow$ $u_{IZ} = -U_{IZ} \rightarrow$ C se nabija prema $-U_{IZ}$

$$u_C(t) = U_{D1} + \left(-U_{IZ} - U_{D1}\right) \left[1 - \exp\left(-\frac{t - t_1}{\tau}\right)\right]$$
 za $u_{IZ} = -U_{IZ} \rightarrow u_+ = -\beta U_{IZ} = U_{PN}$

$$u t = t_1 + T \rightarrow u_C = U_{PN}$$

$$u_C(t_1 + T) = U_{PN} = U_{D1} + \left(-U_{IZ} - U_{D1}\right) \left[1 - \exp\left(-\frac{T}{\tau}\right)\right]$$

$$T = \tau \ln \left(\frac{U_{IZ} + U_{D1}}{U_{IZ} + U_{PN}} \right) = \tau \ln \left(\frac{1 + U_{D1}/U_{IZ}}{1 - \beta} \right)$$

$$\tau = RC$$

 $T \rightarrow$ trajanje kvazistabilnog stanja

Monostabil – opis rada (2)

 $U t = t_1 + T \rightarrow \text{promjena } u_{IZ} \text{ s} - U_{IZ} \text{ na} + U_{IZ} \rightarrow$ stabilno stanje

u
$$t = (t_1 + T)_- \rightarrow u_+ = -\beta U_{IZ} = U_{PN} = u_- = u_C$$

u $t = (t_1 + T)_+ \rightarrow u_{IZ} = + U_{IZ} \rightarrow C$ se nabija
prema $+ U_{IZ}$

$$u_C(t) = U_{PN} + (U_{IZ} - U_{PN}) \left[1 - \exp\left(-\frac{t - t_1 - T}{\tau}\right) \right]$$

U
$$t = t_1 + T + T_r \rightarrow u_C = U_{D1} \rightarrow$$
 prestaje nabijanje

$$u_C(t_1 + T + T_r) = U_{D1} = U_{PN} + (U_{IZ} - U_{PN}) \left[1 - \exp\left(-\frac{T_r}{\tau}\right) \right]$$

$$T_r = \tau \ln \left(\frac{U_{IZ} - U_{PN}}{U_{IZ} - U_{D1}} \right) = \tau \ln \left(\frac{1 + \beta}{1 - U_{D1} / U_{IZ}} \right)$$
 $T_r \rightarrow \text{vrijeme oporavka monostabila}$

U monostabilu prema slici zadano je $U_{IZ}=5$ V, $U_{D1}=0.7$ V, $R_1=22$ k Ω , $R_2=18$ k Ω , R=11 k Ω i C=2 nF. Odrediti trajanje kvazistabilnog stanja i minimalno vrijeme između okidnih impulsa.

Generator trokutnog napona

$$u_1 = \pm U_1 = \pm (U_Z + U_D)$$

$$u_{+} = \frac{R_2}{R_1 + R_2} u_{IZ} + \frac{R_1}{R_1 + R_2} u_1$$

Generator trokutnog napona – opis rada (1)

$$Za u_1 = -U_1$$

$$u_{+} = \frac{R_2}{R_1 + R_2} u_{IZ} - \frac{R_1}{R_1 + R_2} U_1$$

$$i = -I = -U_1/R \rightarrow u_{IZ} i u_+ se$$

povećavaju

$$\mathsf{za}\ u_+ = u_- = U_R \longrightarrow u_{IZ} = U_{IZ\max}$$

$$u_{+} = U_{R} = \frac{R_{2}}{R_{1} + R_{2}} U_{IZ \max} - \frac{R_{1}}{R_{1} + R_{2}} U_{1}$$

$$U_{IZ\max} = \frac{R_1 + R_2}{R_2} U_R + \frac{R_1}{R_2} U_1$$

Generator trokutnog napona – opis rada (2)

Za
$$u_1 = + U_1$$

$$u_+ = \frac{R_2}{R_1 + R_2} u_{IZ} + \frac{R_1}{R_1 + R_2} U_1$$

$$i = + I = + U_1/R \rightarrow u_{IZ} \text{ i } u_+ \text{ se}$$

$$i=+I=+U_1/R \rightarrow u_{IZ}$$
 i u_+ se smanjuju

$$\mathsf{za}\ u_+ = u_- = U_R \longrightarrow u_{IZ} = U_{IZ\mathrm{min}}$$

$$u_{+} = U_{R} = \frac{R_{2}}{R_{1} + R_{2}} U_{IZ \min} + \frac{R_{1}}{R_{1} + R_{2}} U_{1}$$

$$U_{IZ\,\text{min}} = \frac{R_1 + R_2}{R_2} U_R - \frac{R_1}{R_2} U_1$$

Generator trokutnog napona opis rada (3)

$$U_{IZ\max} - U_{IZ\min} = 2\frac{R_1}{R_2}U_1$$

srednja vrijednost

$$U_{IZ} = \frac{R_1 + R_2}{R_2} U_R$$

izlazni napon integratora

$$u_{IZ}(t) = -u_{C}(t) = -\frac{1}{C} \int_{0}^{t} i(t) dt - U_{C0}$$

$$za \ 0 < t < T_{1} \rightarrow i = -I = -U_{1}/R$$

$$u_{IZ}(t) = \frac{U_{1}}{RC} \int_{0}^{t} dt + U_{IZ \min} = \frac{U_{1}}{RC} t + U_{IZ \min}$$

$$u \ t = T_{1} \rightarrow u_{IZ} = U_{IZ \max} \rightarrow u_{IZ} = U_{IZ \max} = \frac{U_{1}}{RC} T_{1} + U_{IZ \min}$$

$$T_1 = (U_{IZ \max} - U_{IZ \min}) \frac{RC}{U_1} = 2RC \frac{R_1}{R_2}$$
 $T = T_1 + T_2 = 2T_1 = 4RC \frac{R_1}{R_2}$

$$T = T_1 + T_2 = 2T_1 = 4RC\frac{R_1}{R_2}$$

U generatoru trokutnog napona prema slici zadano je U_1 = 5 V i R = 10 k Ω . Odrediti omjer otpora R_1/R_2 , kapacitet kondenzatora C i napon U_R da se dobije trokutni napon kojemu je frekvencija $10~\rm kHz$, napon od vrha do vrha $5~\rm V$ i srednja vrijednost $1~\rm V$.

