Świąteczna symulacja o reniferach

Słowem przypomnienia

Próba i populacja

- *Populacja* to ogół osób, do których odnosi się dana teoria (np. populacja wszystkich ludzi, populacja kobiet, populacja niemowląt).
- Próba to ta część populacji, którą objęliśmy badaniem

WAŻNE! Hipoteza zerowa i populacja

- Nie mamy możliwości zbadania całej populacji badamy próbę....
- …ale chcemy wnioskować na temat całej populacji.
- To właśnie populacji dotyczy nasza hipoteza zerowa!!!
- I chcemy uzyskać wynik istotny statystycznie, czyli taki, który pozwala odrzucić hipotezę zerową.

ALE UWAGA: nawet jeżeli między jakimiś dwoma grupami nie ma żadnych różnic, wylosujemy próbę poprawnie, bez żadnego obciążenia, to możemy w badaniu zaobserwować różnicę między próbami wylosowanymi z tych grup.

Bardzo prosty przykład na to, że nawet jeżeli w populacji nie ma różnic między grupami, możemy w badaniu taką różnicę znaleźć

Nasza populacja

Wyobraźcie sobie, że mamy populację 100 reniferów Świętego Mikołaja, w której jest 50 **miziołków** i 50 **buziołków**. Średni czas, w jakim renifery mogą dostarczyć worek prezentów z Rovaniemi i Gdańska jest taki sam, niezależnie od odmiany (miziołki / buziołki).

UWAGA: w miejsce miziołków i buziołków możesz wstawić dowolne insteresujące Cię grupy:) w miejsce czasu dostarczenia prezentu możesz wstawić dowolną cechę.

Miziołek

Autor: Are G Nilsen, Licencja: CC BY-SA 3.0, ściągnięte z wikipedii

Buziołek

Autor: Ludovic Rivallain, Licencja: CC BY-SA 3.0, ściągnięte z wikipedii

Rozkład wyników - miziołki

Histogram of miziolki\$extra

Rozkład wyników - buziolki

Histogram of buziolki\$extra

Podstawowe statystyki w obydwu grupach

• Średnia: 15.42

• Odchylenie standardowe: 4.1849585

Minimum: 6Maximum: 27

Na ile sposobów możemy wybrać 3 z 50 miziołków / buziołków?

19 600

Jaka będzie średnia dla 3 z 50 miziołków / buziołków?

Histogram of three_miziolki_means

Średia i odchylenie standardowe tych średnich

• Średnia: 15.42

• Odchylenie standardowe: 2.3426399

Na ile sposobów możemy wybrać 5 z 50 miziołków / buziołków?

- Na 2 118 760 sposobów

Jaka będzie średnia dla 5 z 50 miziołków / buziołków?

Histogram of five_miziolki_means

Średia i odchylenie standardowe tych średnich

• Średnia: 15.42

• Odchylenie standardowe: 1.7755279

Na ile sposobów możemy wybrać 7 z 50 miziołków / buziołków?

• Na 99 884 400 sposobów

Jaka będzie średnia dla 7 z 50 miziołków / buziołków?

Stworzenie 99 884 400 7 elementowych zbiorów wybranych z 50 elementowego zbioru miziołków i policzenie średniej dla każdego trwało tak długo, że nie chciało

 $mi\ się\ czeka\acute{c}...$

Skupmy się na badaniu, w którym losujemy 3 miziołki i 3 buziołki

Histogram of three_miziolki_means

Jakie jest prawdopodobieństwo, że w naszym badaniu, gdzie n=3 wystąpi średnia mniejsza od 10 albo większa od 20?

Średnia mniejsza od 10: 0.0063265Średnia większa od 20: 0.0261735

A jakie jest prawdopodobieństwo takiego scenariusza?

 Wylosowaliśmy trzy miziołki i uzyskaliśmy dla nich średnią mniejszą od 10.

• Wylosowaliśmy trzy buziołki i uzyskaliśmy dla nich średnią większą od 20.

 Pamiętamy, że grupy tak naprawdę się nie różnią i dla obydwu średnia jest równa około 15!!!!

0.00016558726

A jakie jest prawdopodobieństwo takiego scenariusza?

- Wylosowaliśmy trzy miziołki i uzyskaliśmy dla nich średnią mniejszą od 13.
- Wylosowaliśmy trzy buziołki i uzyskaliśmy dla nich średnią większą od 17.

mean < 13 & mean > 17

- Średnia mniejsza od 13: 0.13
- Średnia większa od 17: 0.2222449
- Prawdopodobieństwo, że dla miziołków średnia < 13, a dla buziołków > 17: 0.0288918

A jakie jest prawdopodobieństwo takiego scenariusza?

- Wylosowaliśmy trzy miziołki i uzyskaliśmy dla nich średnią mniejszą od 13 5
- Wylosowaliśmy trzy buziołki i uzyskaliśmy dla nich średnią większą od 16,5.

mean < 13.5 & mean > 16.5

- Średnia mniejsza od 13,5: 0.2038265
- Średnia większa od 16,5: 0.3122959
- Prawdopodobieństwo, że dla miziołków średnia < 13,5, a dla buziołków > 16,5: 0.0636542

Ok, a co jeżeli zbadaliśmy więcej reniferów? Np. 5?

W naszym przykładzie w rzeczywistości nie ma różnic między miziołkami i buziołkami. Czy prawdopodobieństwo, że zaobserwujemy różnicę na poziomie 3 punktów będzie większe czy mniejsze, kiedy zbadamy więcej reniferów (5 zamiast 3)?

[•] Średnia mniejsza od 13,5: 0.139121

[•] Średnia większa od 16,5: 0.2681139

 ⁻ Prawdopodobieństwo, że dla miziołków średnia < 13,5, a dla buziołków > 16,5: 0.0373003

3 vs 5 reniferów w grupie

Średnie w grupach	3 renifery	5 reniferów
10 i 20 13 i 17	$\begin{array}{c} 0.00016558726 \\ 0.0288918 \end{array}$	$0.000002023237 \\ 0.0130105$
13,5 i 16,5	0.0636542	0.0373003

Wnioski z tej prostej symulacji

- Nawet jeżeli dwie grupy się nie różnią, możemy w badaniu uzyskać jakąś różnicę między wylosowanymi z nich próbami.
- Jesteśmy w stanie oszacować prawdopodobieństwo wystąpienia różnicy o
 określonej wielkości przy założeniu, że dwie grupy się nie różnią (choć w
 praktyce jest to nieco bardziej skomplikowane niż w podanym przykładzie).
- Im mniejsza różnica (słabsza zależność), tym większe prawdopodobieństwo, że ją uzyskamy w badaniu w sytuacji, w której w populacji nie ma różnic między grupami.
- Im więcej osób w naszej próbie, tym mniejsze prawdopodobieństwo, że zaobserwujemy różnicę określonej wielkości w sytuacji, w której w populacji nie ma różnic między grupami.

Wartość p

Co to takiego

Wartość p (p value), z którą stykacie się analizując wyniki badań, oznacza
prawdopodbieństwo z jakim obserwowany w badaniu wynik mógł pojawić
się w sytuacji, w której dana zależność w populacji nie występuje (czyli w
podobnej do przedstawionej w przykładzie z reniferami).

Czego nam NIE mówi wartość p?

- Jakie jest prawdopodobieństwo, że H0 jest prawdziwa.
- Jakie jest prawdopodobieństwo, że zaobserwowana różnica odzwierciedla "prawdziwą" różnicę dla populacji.
- Że wynik jest ważny / znaczący z praktycznego lub klinicznego punktu widzenia.
- Czy replikacja badania również dostarczy istotnych wyników i jakie jest prawdopobieństwo takiego scenariusza.

10

Wartość p nie mówi, jak silna jest badana zależność! Większe p nie oznacza silniejszego związku!

Nieistotny wynik nie oznacza, że zależność, którą badamy nie występuje w populacji!

Mogliśmy zrobić badanie o niewystarczającej mocy, zbadać zbyt mało osób.

Przebieg rozumowania statystycznego

Podsumowanie

Ważny wniosek

- Jeżeli w interesującej nas populacji nie ma żadnej różnicy między dwoma grupami, możemy zaobserwować taką różnicę nawet w doskonale zaprojektowanym badaniu.
- Dzieje się tak dlatego, że nie badamy całej populacji, a jedynie jej niewielką
 część (próbę) i może wystąpić sytuacja, w której nawet gdy dana różnica w
 populacji nie występuje, do naszej próby trafią badani, którzy się różnią...
 bo tak wyszło.
- To, jak duże jest prawdopodobieństwo, że obserwowana przez nas różnica między grupami mogła pojawić się w sytuacji, w której w populacji nie ma różnic, określa wartość p.

Praktyczne pytania, które odbiorca badania powinien sobie zadać

 Jaki jest poziom istotności statystycznej uzyskanych wyników? Czy dla Ciebie, jako odbiorcy badania jest satysfakcjonujący?

11