VNU-HCMUS FACULTY OF INFORMATION TECHNOLOGY

Chapter 4A Thread

Instructor: Vu Thi My Hang, Ph.D. TA/Lab Instructor: Le Quoc Hoa, M.Sc.

C S C 1 0 0 0 7 - O P E R A T I N G S Y S T E M

- Thread Concepts
- Thread Models
- Thread Management

- Thread Concept
- Thread Models
- Thread Management

Thread Concept

What is a Thread? (Tiểu trình, Luồng)

Thread: an execution line within a process (i.e., a lightweight process)

- A process is divided into different parts (threads)
- Threads belonging to a process can execute concurrently

Single-threaded process

Multi-threaded process

Thread Concept

Purpose

- Process perform various tasks (threads of execution) simultaneously
 - ✓ Especially efficient on multiprocessor or multicore systems

OPERATING SYSTEM

Thread Concept

Benefits

- Responsiveness (Tính phản hồi nhanh)
 - ✓ If a thread of a process is blocked or time-consuming, other parts of the process still can continue their jobs
- Resources sharing (Chia se tài nguyên)
 - ✓ Threads belonging to the same process share the same address space
- Economy (Giảm chi phí)
 - ✓ Less cost of thread creation and management
- Scalability (Khả năng mở rộng)
 - ✓ Threads can be executed on different cores/processors

- Thread Concept
- Thread Models
- Thread Management

Thread-level Implementation

User-level Threads

- Implemented by user thread libraries (i.e., APIs supported by programming languages) in user space with no kernel support
- Be efficient
 - ✓ Thread management, context switching, and synchronization done without any OS intervention
- O Do not need system support
- The kernel knows nothing about user threads
 - ✓ Entire process will be blocked if one of its threads is blocked
 - ✓ Timesharing system: giving the same amount of time to each process for execution → Fairness when P1 having 10 threads and P2 having 1000 threads?

Kernel-level Threads

- Supported directly by OS and implemented in kernel space
- © OS manages thread
 - ✓ When a thread of a process is blocked, other parts of the process can continue to execute independently
- Slower and less efficient
 - ✓ Thread management, context switching, and synchronization require OS intervention

Kernel-level and User-level Thread Mapping

- Thread Concept
- Thread Models
- Thread Management

Thread Management

User-level vs. Kernel-level Management

User-level thread Management

Kernel-level thread Management

Thread Management

Thread Scheduling

Possible: A1, A2, A3, A1, A2, A3 Not possible: A1, B1, A2, B2, A3, B3

User-level thread Scheduling

Possible: A1, A2, A3, A1, A2, A3 Also possible: A1, B1, A2, B2, A3, B3

Kernel-level thread Scheduling

Thread Management

Thread Libraries

- Provide APIs for thread creation and management
 - ✓ POSIX thread (Pthread): support both user and kernel thread libraries
 - ✓ Windows thread: support kernel threads managed directly by Windows
 - ✓ Java thread: support Java thread programming

Thread call	Description
Pthread_create	Create a new thread
Pthread_exit	Terminate the calling thread
Pthread_join	Wait for a specific thread to exit
Pthread_yield	Release the CPU to let another thread run
Pthread_attr_init	Create and initialize a thread's attribute structure
Pthread_attr_destroy	Remove a thread's attribute structure

Some of Pthread functions

