

Design Principles of Programming Languages 编程语言的设计原理

Haiyan Zhao, Di Wang 赵海燕,王迪

Peking University, Spring Term 2025

Substructural Types 亚结构类型

Motivation

Example (Abstract Type file and Its Interface)

type file

```
val open : string \rightarrow file option val read : file \rightarrow string * file val append : file * string \rightarrow file val write : file * string \rightarrow file val close : file \rightarrow unit
```

The type abstraction encapsulates the **internal representation** of a file and its **invariants**.

Question

Can the type system prevent a file from being read after it has been closed, closed twice, or forgotten to close?

Structural Typing

Observation

The type systems we have seen so far in this course are all **structural**.

Principle (Structural Properties)

Recall that typing contexts can be defined by $\Gamma := \varnothing \mid \Gamma, \chi : T$.

Instead of treating Γ as a **function** from variables to types, we literally view Γ as a **list** $x_1:T_1,\ldots,x_n:T_n$.

Exchange If $\Gamma_1, x_1 : T_1, x_2 : T_2, \Gamma_2 \vdash t : T$, then $\Gamma_1, x_2 : T_2, x_1 : T_1, \Gamma_2 \vdash t : T$.

Weakening If Γ_1 , $\Gamma_2 \vdash t : T$, then Γ_1 , $x_1 : T_1$, $\Gamma_2 \vdash t : T$.

 $\textbf{Contraction} \ \ \text{If} \ \Gamma_1, x_2: T_1, x_3: T_1, \Gamma_2 \vdash t: T, \text{then} \ \Gamma_1, x_1: T_1, \Gamma_2 \vdash [x_2 \mapsto x_1][x_3 \mapsto x_1]t: T.$

Remark

A structural type system enjoys all three above properties, i.e., typing contexts behave as functions.

Structural Typing

Principle (Structural Properties)

```
Exchange If \Gamma_1, x_1 : T_1, x_2 : T_2, \Gamma_2 \vdash t : T, then \Gamma_1, x_2 : T_2, x_1 : T_1, \Gamma_2 \vdash t : T.
```

Weakening If Γ_1 , $\Gamma_2 \vdash t : T$, then Γ_1 , $\chi_1 : T_1$, $\Gamma_2 \vdash t : T$.

Contraction If $\Gamma_1, x_2 : T_1, x_3 : T_1, \Gamma_2 \vdash t : T$, then $\Gamma_1, x_1 : T_1, \Gamma_2 \vdash [x_2 \mapsto x_1][x_3 \mapsto x_1]t : T$.

Observation

A structural type system **cannot** limit the **number** or **order** of uses of a data structure or operation.

Definition (Substructural Type Systems)

A **substructural type system** is a type system where one or more of the structural properties do **not** hold.

Substructural Typing

Definition (Substructural Type Systems)

A **substructural type system** is a type system where one or more of the structural properties do **not** hold. That is, a substructural type system allows **fine-grained control of variable use**.

Type System	Intuition	Exchange	Weakening	Contraction
structural	no restriction on variable use	✓	✓	✓
affine	variables are used at most once			X
relevant	variables are used at least once	✓	×	✓
linear	variables are used exactly once	✓	×	X
ordered	variables are used exactly once and in their introduction order	×	×	X

Question

Can you think of possible scenarios for other combintations, e.g., only weakening or only contraction?

Substructural Typing

Example (Abstract Type file and Its Interface)

Question

What would be the consequences if we treat the type file as a linear type?

Principle

Substructural types are useful for **constraining resource use**, such as files, locks, and memory.

Linear Types

Remark

A linear type system allows **Exchange** but forbids **Weakening** and **Contraction**.

Syntax

Question

How to formulate the typing relation to enforce linearity, i.e., "variables are used exactly once"?

Linear Types

Principle

The typing relation maintains the invariant that variables are used exactly once along every control-flow path.

$\Gamma \vdash^{\ell} t : T$: "term t has type T in context Γ with linear typing"

Let us implicitly assume **Exchange** by treating Γ as an unordered list.

Linear Types

$\Gamma \vdash^{\ell} t : T$: "term t has type T in context Γ with linear typing"

$$\frac{\Gamma, x: T_1 \vdash^{\ell} t_2: T_2}{\Gamma \vdash^{\ell} \lambda x: T_1. t_2: T_1 \rightarrow T_2} \text{ T-Abs}$$

$$\frac{\Gamma_{1} \vdash^{\ell} t_{1}: T_{11} \to T_{12} \qquad \Gamma_{2} \vdash^{\ell} t_{2}: T_{11}}{\Gamma_{1}, \Gamma_{2} \vdash^{\ell} t_{1} t_{2}: T_{12}} \text{ T-App}$$

Example

Question

Let Γ be $f: \mathsf{Nat} \to \mathsf{Nat} \to \mathsf{T}, x : \mathsf{Nat}, y : \mathsf{Nat}$. Can we derive $\Gamma \vdash^{\ell} (fx) 0 : \mathsf{T}, \Gamma \vdash^{\ell} (fx) x : \mathsf{T}$?

Operational Semantics

Question

How to justify if the typing relation maintains **linearity**?

Remark

We need an operational semantics that can keep track of how variables are used.

Recall that for references, we introduced **stores** to keep track of how **locations** are used.

$$\frac{\mathsf{l} \not\in dom(\mu)}{\mathsf{ref}\, \nu \mid \mu \longrightarrow \mathsf{l} \mid (\mu, \mathsf{l} \mapsto \nu)} \; \mathsf{E}\text{-RefV}$$

$$\frac{\mu(l) = \nu}{!l \mid \mu \longrightarrow \nu \mid \mu}$$
 E-DerefLoc

Fine-Grained Operational Semantics

Let us introduce **value stores** by $V := \emptyset \mid V, x \mapsto v$ and evaluation relations as $t \mid V \longrightarrow t' \mid V'$.

$$\frac{V(x) = v}{x \mid V \longrightarrow v \mid (V \setminus x)} \text{ E-Var}$$

$$\frac{y \not\in dom(V)}{(\lambda x : T_{11} \cdot t_{12}) v_2 \mid V \longrightarrow [x \mapsto y] t_{12} \mid (V, y \mapsto v_2)} \text{ E-AppAbs}$$

Operational Semantics

 $t \mid V \longrightarrow t' \mid V'$: "term t with value store V one-step evaluates to term t' with value store V'"

$$\frac{t_1 \mid V \longrightarrow t_1' \mid V'}{t_1 \mid t_2 \mid V \longrightarrow t_1' \mid t_2 \mid V'} \text{ E-App1} \qquad \frac{t_2 \mid V \longrightarrow t_2' \mid V'}{v_1 \mid t_2 \mid V \longrightarrow v_1 \mid t_2' \mid V'} \text{ E-App2}$$

$$\frac{t_1 \mid V \longrightarrow t_1' \mid V'}{\text{if } t_1 \text{ then } t_2 \text{ else } t_3 \mid V \longrightarrow \text{if } t_1' \text{ then } t_2 \text{ else } t_3 \mid V'} \text{ E-IfF}$$

$$\frac{t_1 \mid V \longrightarrow t_1' \mid V'}{\text{succ } t_1 \mid V \longrightarrow \text{succ } t_1' \mid V'} \text{ E-Succ} \qquad \frac{t_1 \mid V \longrightarrow t_1' \mid V'}{\text{iszero } t_1 \mid V \longrightarrow \text{iszero } t_1' \mid V'} \text{ E-Iszero}$$

$$\frac{t_1 \mid V \longrightarrow t_1' \mid V'}{\text{succ } t_1 \mid V \longrightarrow \text{succ } t_1' \mid V'} \text{ E-Iszero Succ}$$

$$\frac{t_1 \mid V \longrightarrow \text{true} \mid V}{\text{iszero } \text{succ } v_1 \mid V \longrightarrow \text{false} \mid V} \text{ E-IszeroSucc}$$

Operational Semantics

Example

$$(\lambda f. f 5) (\underbrace{(\lambda x. \lambda y. x + y) 2}) \mid \emptyset \longrightarrow \underbrace{(\lambda f. f 5) (\lambda y. z_1 + y)} \mid (z_1 \mapsto 2)$$

$$\longrightarrow \underline{z_2} 5 \mid (z_1 \mapsto 2, z_2 \mapsto \lambda y. z_1 + y)$$

$$\longrightarrow \underbrace{(\lambda y. z_1 + y) 5} \mid (z_1 \mapsto 2)$$

$$\longrightarrow \underline{z_1} + z_3 \mid (z_1 \mapsto 2, z_3 \mapsto 5)$$

$$\longrightarrow 2 + \underline{z_3} \mid (z_3 \mapsto 5)$$

$$\longrightarrow \underline{2 + 5} \mid \emptyset \longrightarrow 7 \mid \emptyset$$

Example

$$\frac{(\lambda x. x + x) 2 \mid \varnothing \longrightarrow \underline{z_1} + z_1 \mid (z_1 \mapsto 2)}{\longrightarrow 2 + z_1 \mid \varnothing \not\longrightarrow}$$

Soundness

$V: \Gamma$: "value store V confroms with typing context Γ "

$$\frac{V:(\Gamma_1,\Gamma_2)}{\varnothing:\varnothing} \text{ T-Empty} \qquad \qquad \frac{V:(\Gamma_1,\Gamma_2)}{(V,x\mapsto \nu):(\Gamma_2,x:T)} \text{ T-Extend}$$

For example, we can have $(z_1 \mapsto 2, z_2 \mapsto \lambda y. z_1 + y) : (z_2 : \mathsf{Nat} \to \mathsf{Nat}).$

Theorem (Soundness)

Progress If $V : \Gamma$ and $\Gamma \vdash^{\ell} t : T$, then $t \mid V \longrightarrow t' \mid V'$ or t is a value.

Preservation If $V: \Gamma, \Gamma \vdash^{\ell} t: T$, and $t \mid V \longrightarrow t' \mid V'$, then $V': \Gamma'$ and $\Gamma' \vdash^{\ell} t': T$.

Corollary (Linearity)

If
$$\varnothing \vdash^{\ell} t : T, T = \text{Bool or } T = \text{Nat}$$
, and $t \mid \varnothing \longrightarrow^{*} \nu \mid V'$, then $V' = \varnothing$.

Proof of Preservation (Sketch)

Proof: Induction on the Derivation of t $\mid V \longrightarrow t' \mid V'$

```
E-Var Have x \mid V \longrightarrow V(x) \mid (V \setminus x), x : T \vdash^{\ell} x : T, and V : (x : T).
                    Inversion on V: (x : T). Have (V \setminus x) : \Gamma_1 and \Gamma_1 \vdash^{\ell} V(x) : T.
                    Conclude by setting \Gamma' \stackrel{\text{def}}{=} \Gamma_1.
E-AppAbs Have (\lambda x: T_{11}, t_{12}) v_2 \mid V \longrightarrow [x \mapsto y]t_{12} \mid (V, y \mapsto v_2), \Gamma \vdash^{\ell} (\lambda x: T_{11}, t_{12}) v_2 : T_{12}, \text{ and } V : \Gamma
                    Inversion on \Gamma \vdash^{\ell} (\lambda x; T_{11}, t_{12}) v_2 : T_{12}. Have \Gamma = \Gamma_1, \Gamma_2 such that
                    \Gamma_1 \vdash^{\ell} \lambda x : T_{11} \cdot t_{12} : T_{11} \to T_{12} \text{ and } \Gamma_2 \vdash^{\ell} \nu_2 : T_{11}.
                    Inversion on \Gamma_1 \vdash^{\ell} \lambda x : T_{11} \cdot t_{12} : T_{11} \rightarrow T_{12}. Have \Gamma_1, x : T_{11} \vdash^{\ell} t_{12} : T_{12}.
                    Apply substitution. Have \Gamma_1, y: T_{11} \vdash^{\ell} [x \mapsto y]t_{12}: T_{12}.
                    Apply T-Extend to V: (\Gamma_1, \Gamma_2). Have (V, y \mapsto v_2): (\Gamma_1, y : T_{11}).
                    Conclude by setting \Gamma' \stackrel{\text{def}}{=} (\Gamma_1, \mu : T_{1,1}).
```

Lemma (Substitution)

If $\Gamma_1, x : T \vdash^{\ell} t_1 : T_1$ and $\Gamma_2 \vdash^{\ell} y : T$, then $\Gamma_1, \Gamma_2 \vdash^{\ell} [x \mapsto y]t_1 : T_1$.

Algorithmic Typing

 $\Gamma \vdash^{\ell} t : T$: "term t has type T in context Γ with linear typing"

$$\frac{\Gamma, x: T_1 \vdash^{\ell} t_2: T_2}{\Gamma \vdash^{\ell} \lambda x: T_1 \cdot t_2: T_1 \to T_2} \text{ T-Abs}$$

$$\frac{\Gamma_{1} \vdash^{\ell} t_{1}: T_{11} \to T_{12} \qquad \Gamma_{2} \vdash^{\ell} t_{2}: T_{11}}{\Gamma_{1}, \Gamma_{2} \vdash^{\ell} t_{1} t_{2}: T_{12}} \text{ T-App}$$

Observation

Although all rules are syntax-directed, some of them (e.g., T-App) require "guessing" how to split a context.

Principle

Rather than trying to split the context, the algorithmic typing can pass the entire context as an input and return the unused portion as the **remainder context**, i.e., the algorithmic typing relation takes the form $\Gamma_{in} \vdash^{\ell} t : T; \Gamma_{out}$.

Algorithmic Typing

 $\Gamma_{in} \vdash^{\ell} t : T$; Γ_{out} : "given context Γ_{in} , term t has type T with remainder context Γ_{out} "

$$\frac{\Gamma_{1} \vdash^{\ell} t_{1} : \mathsf{Nat}; \Gamma_{2}}{\Gamma_{1} \vdash^{\ell} t_{1} : \mathsf{Nat}; \Gamma_{2}} \land \mathsf{A-Succ}$$

$$\frac{\Gamma_{1} \vdash^{\ell} t_{1} : \mathsf{Nat}; \Gamma_{2}}{\Gamma_{1} \vdash^{\ell} t_{1} : \mathsf{Bool}; \Gamma_{2}} \land^{\mathsf{A-Succ}}$$

$$\frac{\Gamma_{1} \vdash^{\ell} t_{1} : \mathsf{Bool}; \Gamma_{2} \qquad \Gamma_{2} \vdash^{\ell} t_{2} : \mathsf{T}; \Gamma_{3} \qquad \Gamma_{2} \vdash^{\ell} t_{3} : \mathsf{T}; \Gamma_{3}}{\Gamma_{1} \vdash^{\ell} \mathsf{if} t_{1} \mathsf{then} t_{2} \mathsf{else} t_{3} : \mathsf{T}; \Gamma_{3}} \land^{\mathsf{A-If}}$$

$$\frac{\Gamma_{1} , \mathsf{x} : \mathsf{T}_{1} \vdash^{\ell} t_{2} : \mathsf{T}_{2}; \Gamma_{2} \qquad \mathsf{x} \not\in \mathsf{dom}(\Gamma_{2})}{\mathsf{A-Abs}} \land^{\mathsf{A-Abs}}$$

$$\frac{\Gamma_{1} \vdash^{\ell} t_{1} : \mathsf{T}_{11} \to \mathsf{T}_{12}; \Gamma_{2}}{\mathsf{A-App}} \land^{\mathsf{A-App}} \land^{\mathsf{A-App}}$$

Theorem (Correctness)

```
Soundness If \Gamma \vdash^{\ell} t : T; \varnothing, then \Gamma \vdash^{\ell} t : T.
Completeness If \Gamma \vdash^{\ell} t : T, then \Gamma \vdash^{\ell} t : T; \varnothing.
```

Affine Types

Remark

An affine type system allows Exchange and Weakening but forbids Contraction.

That is, it allows variables to be used at most once.

$\Gamma \vdash^{\alpha} t : T$: "term t has type T in context Γ with affine typing"

(all rules for linear types)

$$\frac{\Gamma \vdash^{\alpha} t : T}{\Gamma, x_{1} : T_{1} \vdash^{\alpha} t : T} T\text{-Weak}$$

Example

Question

The structural rule (T-Weak) is **not** syntax-directed, which may complicate soundness proof.

Observation

One can always "push" uses of the weakening rule down to the leaves of the derivation tree. Thus, we can update the **axiom-like** rules to allow immediate weakening.

Syntax-Directed Affine Typing

 $\frac{}{\Gamma, x : T \vdash^{\alpha} x : T} \text{ T-Var} \qquad \frac{}{\Gamma \vdash^{\alpha} \text{ true} \cdot \text{Bool}} \text{ T-True}$

 $\Gamma \vdash^{\alpha} \mathsf{false} : \mathsf{Bool}$ T-False

 $\Gamma \vdash^{\alpha} 0 \cdot \text{Nat}$ T-Zero

Relevant Types

Remark

A relevant type system allows **Exchange** and **Contraction** but forbids **Weakening**. That is, it allows variables to be used at least once.

 $\Gamma \vdash^{r} t : T$: "term t has type T in context Γ with relevant typing"

(all rules for linear types)

$$\frac{\Gamma, x_2: T_1, x_3: T_1 \vdash^r t: T}{\Gamma, x_1: T_1 \vdash^r [x_2 \mapsto x_1][x_3 \mapsto x_1]t: T} \text{T-Contract}$$

Example

$$\begin{tabular}{lll} \hline f: Nat \rightarrow Nat \rightarrow T \vdash^r f: Nat \rightarrow Nat \rightarrow T & \hline y: Nat \vdash^r y: Nat \\ \hline \hline f: Nat \rightarrow Nat \rightarrow T, y: Nat \vdash^r fy: Nat \rightarrow T & \hline z: Nat \vdash^r z: Nat \\ \hline \hline f: Nat \rightarrow Nat \rightarrow T, y: Nat, z: Nat \vdash^r (fy)z: T \\ \hline f: Nat \rightarrow Nat \rightarrow T, x: Nat \vdash^r (fx)x: T & T-Contract \\ \hline \end{tabular}$$

Observation

The structural rule (T-Contract) is **not** syntax-directed, which may complicate soundness proof.

We can avoid the explicit substitution by "duplicate" variables in the cases that need to split the context. That is, when splitting Γ into Γ_1 , Γ_2 , we allow them to **overlap**.

 $\Gamma \setminus (\Gamma_1; \Gamma_2)$: "context Γ can be split into Γ_1 and Γ_2 with overlapping allowed"

$$\overline{\varnothing \chi (\varnothing; \varnothing)}$$

$$\frac{\Gamma \swarrow (\Gamma_1; \Gamma_2)}{\Gamma, x : T \swarrow (\Gamma_1, x : T; \Gamma_2)}$$

$$\frac{\Gamma \bigvee (\Gamma_1; \Gamma_2)}{\Gamma, x : T \bigvee (\Gamma_1; \Gamma_2, x : T)} \qquad \frac{\Gamma, \Gamma}{\Gamma, \Gamma}$$

$$\frac{\Gamma \swarrow (\Gamma_{1};\Gamma_{2})}{\varnothing \curlyvee (\varnothing;\varnothing)} \qquad \frac{\Gamma \swarrow (\Gamma_{1};\Gamma_{2})}{\Gamma,x:T \curlyvee (\Gamma_{1},x:T;\Gamma_{2})} \qquad \frac{\Gamma \curlyvee (\Gamma_{1};\Gamma_{2})}{\Gamma,x:T \curlyvee (\Gamma_{1};\Gamma_{2},x:T)} \qquad \frac{\Gamma \curlyvee (\Gamma_{1};\Gamma_{2})}{\Gamma,x:T \curlyvee (\Gamma_{1},x:T;\Gamma_{2},x:T)}$$

Syntax-Directed Relevant Typing

$$\label{eq:continuous_problem} \begin{split} \frac{\Gamma \biguplus (\Gamma_1; \Gamma_2) & \Gamma_1 \vdash^r t_1 : \mathsf{Bool} & \Gamma_2 \vdash^r t_2 : \mathsf{T} & \Gamma_2 \vdash^r t_3 : \mathsf{T} \\ \hline \Gamma \vdash^r \mathsf{if} t_1 \mathsf{then} \ t_2 \ \mathsf{else} \ t_3 : \mathsf{T} \\ \\ \frac{\Gamma \biguplus (\Gamma_1; \Gamma_2) & \Gamma_1 \vdash^r t_1 : \mathsf{T}_{11} \to \mathsf{T}_{12} & \Gamma_2 \vdash^r t_2 : \mathsf{T}_{11} \\ \hline \Gamma \vdash^r t_1 \ t_2 : \mathsf{T}_{12} \end{split} \ \mathsf{T-App} \end{split}$$

Example

Let $\Gamma \stackrel{\text{def}}{=} (f : \text{Nat} \to \text{Nat} \to \text{T}, \chi : \text{Nat})$, $\Gamma_1 \stackrel{\text{def}}{=} (f : \text{Nat} \to \text{Nat} \to \text{T}, \chi : \text{Nat})$, $\Gamma_{11} \stackrel{\text{def}}{=} (f : \text{Nat} \to \text{Nat} \to \text{T})$, $\Gamma_{12} \stackrel{\text{def}}{=} (\chi : \text{Nat})$, and $\Gamma_2 \stackrel{\text{def}}{=} (\chi : \text{Nat})$.

	$\Gamma_1 \downarrow (\Gamma_{11}; \Gamma_{12})$	$\overline{ \Gamma_{\!11} \vdash^r f : Nat \to Nat \to T }$	$\Gamma_{12} \vdash^{\mathbf{r}} x : Nat$	
$\Gamma \downarrow (\Gamma_1; \Gamma_2)$	$\Gamma_1 \vdash^{\mathbf{r}} f x : Nat \to T$		$\Gamma_2 \vdash^{\mathbf{r}} x : Nat$	
		$\Gamma \vdash^{\mathbf{r}} (f x) x : T$		

Another Approach for Syntax-Directed Relevant Typing

We can also augment the language with a new term to explicitly "duplicate" a program variable.

$$t := \dots \mid \mathsf{share}\ \mathsf{t}_1 \ \mathsf{as}\ \mathsf{x}_1, \mathsf{x}_2 \ \mathsf{in}\ \mathsf{t}_2$$

$$\frac{\Gamma_1 \vdash^\mathsf{r} \mathsf{t}_1 : \mathsf{T}_1 \qquad \Gamma_2, \mathsf{x}_1 : \mathsf{T}_1, \mathsf{x}_2 : \mathsf{T}_1 \vdash^\mathsf{r} \mathsf{t}_2 : \mathsf{T}_2}{\Gamma_1, \Gamma_2 \vdash^\mathsf{r} \mathsf{share}\ \mathsf{t}_1 \ \mathsf{as}\ \mathsf{x}_1, \mathsf{x}_2 \ \mathsf{in}\ \mathsf{t}_2 : \mathsf{T}_2} \ \mathsf{T}\text{-Share}$$

$$\frac{\mathsf{y}_1, \mathsf{y}_2 \not\in \mathit{dom}(\mathsf{V})}{\mathsf{share}\ \mathsf{v}_1 \ \mathsf{as}\ \mathsf{x}_1, \mathsf{x}_2 \ \mathsf{in}\ \mathsf{t}_2 \mid \mathsf{V} \longrightarrow [\mathsf{x}_1 \mapsto \mathsf{y}_1][\mathsf{x}_2 \mapsto \mathsf{y}_2]\mathsf{t}_2 \mid (\mathsf{V}, \mathsf{y}_1 \mapsto \mathsf{v}_1, \mathsf{y}_2 \mapsto \mathsf{v}_1)} \ \mathsf{E}\text{-ShareV}$$

Example

LFPL: A Linearly-Typed Functional Programming Language

Let us augment the linearly-typed lambda calculus with useful extensions such as pairs and lists.

Syntax

```
\begin{split} t &\coloneqq x \mid \lambda x : T_1 . \ t_2 \mid t_1 \ t_2 \mid \text{true} \mid \text{false} \mid \text{if} \ t_1 \ \text{then} \ t_2 \ \text{else} \ t_3 \mid \{t_1, t_2\} \mid \text{let} \ \{x_1, x_2\} = t_1 \ \text{in} \ t_2 \\ &\mid \ \text{nil}[T_1] \mid \text{cons}[T_1] \ t_1 \ t_2 \mid \text{iter}_L \ t_1 \ \text{with} \ \text{nil} \ \Rightarrow t_2 \mid \text{cons}(x,\_) \ \text{of} \ y \ \Rightarrow t_3 \\ T &\coloneqq T_1 \to T_2 \mid \text{Bool} \mid T_1 \times T_2 \mid \text{List} \ T_1 \end{split}
```

Linear Typing for Pairs

$$\frac{\Gamma_1 \vdash t_1 : T_1}{\Gamma_1, \Gamma_2 \vdash \{t_1, t_2\} : T_1 \times T_2} \text{ T-Pair } \frac{\Gamma_1 \vdash t_1 : T_{11} \times T_{12}}{\Gamma_1, \Gamma_2 \vdash \text{let}}$$

$$\frac{\Gamma_1 \vdash t_1 : T_{11} \times T_{12}}{\Gamma_1, \Gamma_2 \vdash \text{let} \{x_1, x_2\} = t_1 \text{ in } t_2 : T_2} \text{ T-LetP}$$

Question

Instead of letp, can we use fst and snd as elimination forms?

LFPL: A Linearly-Typed Functional Programming Language

Linear Typing for Lists

$$\label{eq:constraints} \begin{split} \frac{\Gamma_1 \vdash t_1 : T_1 \qquad \Gamma_2 \vdash t_2 : \mathsf{List} \ T_1}{\varphi \vdash \mathsf{nil}[T_1] : \mathsf{List} \ T_1} \ & \frac{\Gamma_1 \vdash t_1 : T_1 \qquad \Gamma_2 \vdash t_2 : \mathsf{List} \ T_1}{\Gamma_1, \Gamma_2 \vdash \mathsf{cons}[T_1] \ t_1 \ t_2 : \mathsf{List} \ T_1} \ \mathsf{T\text{-}Cons} \\ \\ \frac{\Gamma_1 \vdash t_1 : \mathsf{List} \ T_{11} \qquad \Gamma_2 \vdash t_2 : \mathsf{S} \qquad x : T_{11}, y : \mathsf{S} \vdash t_3 : \mathsf{S}}{\Gamma_1, \Gamma_2 \vdash \mathsf{iter}_L \ t_1 \ \mathsf{with} \ \mathsf{nil} \Rightarrow t_2 \mid \mathsf{cons}(x,_) \ \mathsf{of} \ y \Rightarrow t_3 : \mathsf{S}} \ \mathsf{T\text{-}lter} \mathsf{L} \end{split}$$

Question

Why does the third premise of (T-lterL) allow **only** x **and** y in the context?

Observation

Recall that substructural typing constrains **resource use**.

The third premise stands for the **iteration** case, which can be executed for **multiple times**.

LFPL: A <u>L</u>inearly-Typed <u>F</u>unctional <u>P</u>rogramming <u>L</u>anguage

Example

```
append: List T \rightarrow List T \rightarrow List T
            append \equiv \lambda l_1 : List T. \lambda l_2 : List T.
                             iter, l_1 with nil \Rightarrow l_2
                                                  | cons(x, \_) of u \Rightarrow cons[T] x u
reverse: list T \rightarrow list T
reverse = \lambda 1 \cdot 1 ist T.
                 (iter, l with nil \Rightarrow (\lambda \alpha:List T. \alpha)
                                     | cons(x, \_) of y \Rightarrow (\lambda a: List T.y (cons[T] x a)))
                 nil[T]
```

LFPL: A Linearly-Typed Functional Programming Language

Structural Rules

It is reasonable to allow **Weakening**; as well as **Contraction** for "copyable" types.

$$\frac{\Gamma \vdash t : T}{\Gamma, x_1 : T_1 \vdash t : T} \text{ T-Weak} \qquad \frac{\Gamma, x_2 : T_1, x_3 : T_1 \vdash t : T}{\Gamma, x_1 : T_1 \vdash [x_2 \mapsto x_1][x_3 \mapsto x_1]t : T} \text{ T-Contract}$$

$$\frac{T_1 \text{ copyable}}{Bool \text{ copyable}} \qquad \frac{T_1 \text{ copyable}}{(T_1 \times T_2) \text{ copyable}}$$

Example

```
\begin{split} \textit{append2} : \texttt{List Bool} &\to \texttt{List Bool} \to \texttt{List Bool} \\ \textit{append2} &\equiv \lambda l_1 : \texttt{List Bool}. \ \lambda l_2 : \texttt{List Bool}. \\ &\quad \mathsf{iter_L} \ l_1 \ \mathsf{with \, nil} \Rightarrow l_2 \\ &\quad | \ \mathsf{cons}(\mathbf{x},\_) \ \mathsf{of} \ y \Rightarrow \mathsf{cons}[\mathsf{Bool}] \ \mathbf{x} \ (\mathsf{cons}[\mathsf{Bool}] \ \mathbf{x} \ y) \end{split}
```


Question

Let us become more **expicit** about "resource," such as memory. In LFPL, the only data structure that consumes memory is $cons[T_1] t_1 t_2$. Can we extend the type system to **explicitly** account for such memory consumption?

The Diamond Type

Let us introduce a type \Diamond (called **diamond**), whose inhabitants are **memory cells** that hold **cons**-constructors.

$$t \coloneqq \dots \mid \mathsf{nil}[\mathsf{T}] \mid \mathsf{cons}[\mathsf{T}_1] \ \mathsf{t_d} \ \mathsf{t_1} \ \mathsf{t_2} \mid \mathsf{iter_L} \ \mathsf{t_1} \ \mathsf{with} \ \mathsf{nil} \Rightarrow \mathsf{t_2} \mid \mathsf{cons}(\mathsf{x_d}, \mathsf{x}, _) \ \mathsf{of} \ \mathsf{y} \Rightarrow \mathsf{t_3}$$

$$\frac{\Gamma_{\mathbf{d}} \vdash \mathbf{t_d} : \lozenge \qquad \Gamma_1 \vdash \mathbf{t_1} : T_1 \qquad \Gamma_2 \vdash \mathbf{t_2} : \mathsf{List} \ T_1}{\Gamma_{\mathbf{d}}, \Gamma_1, \Gamma_2 \vdash \mathsf{cons}[T_1] \ \mathbf{t_d} \ \mathbf{t_1} \ \mathbf{t_2} : \mathsf{List} \ T_1} \ \mathsf{T-Cons}$$

$$\frac{\Gamma_1 \vdash t_1 : \mathsf{List} \; \mathsf{T}_{11}}{\Gamma_1, \; \Gamma_2 \vdash \mathsf{iter}_1 \; t_1 \; \mathsf{with} \; \mathsf{nil} \Rightarrow t_2 \mid \mathsf{cons}(\mathbf{x_d}, \mathsf{x}, \mathsf{-}) \; \mathsf{of} \; \mathsf{y} \Rightarrow t_3 : \mathsf{S}} \; \mathsf{T\text{-lterL}}$$

append: List $T \rightarrow List T \rightarrow List T$

Example

```
append \equiv \lambda l_1 : \text{List T. } \lambda l_2 : \text{List T.} \text{iter}_{L} \ l_1 \ \text{with nil} \Rightarrow l_2 | \ \text{cons}(\mathbf{x_d}, \mathbf{x}, \_) \ \text{of } \mathbf{y} \Rightarrow \mathbf{cons}[T] \ \mathbf{x_d} \ \mathbf{x} \ \mathbf{y} failed\text{-append2} : \text{List Bool} \rightarrow \text{List Bool} \rightarrow \text{List Bool} failed\text{-append2} \equiv \lambda l_1 : \text{List Bool.} \ \lambda l_2 : \text{List Bool.} \text{iter}_{L} \ l_1 \ \text{with nil} \Rightarrow l_2 | \ \text{cons}(\mathbf{x_d}, \mathbf{x}, \_) \ \text{of } \mathbf{y} \Rightarrow \text{cons}[\text{Bool}] \ \mathbf{x_d} \ \mathbf{x} \ (\text{cons}[\text{Bool}] \ \mathbf{x_d} \ \mathbf{x} \ \mathbf{y})
```

Question

The diamond type \Diamond is **not** copyable. Any workaround?

Example

```
\begin{split} \textit{append2} : \text{List } (\text{Bool} \times \lozenge) \to \text{List Bool} \to \text{List Bool} \\ \textit{append2} &\equiv \lambda l_1 : \text{List } (\text{Bool} \times \lozenge). \ \lambda l_2 : \text{List Bool}. \\ &\quad \text{iter_L } l_1 \text{ with nil} \Rightarrow l_2 \\ &\quad | \text{cons}(\mathbf{x_{d,1}}, \mathbf{x_{,-}}) \text{ of } \mathbf{y} \Rightarrow \\ &\quad \text{letp } \{z, \mathbf{x_{d,2}}\} = \mathbf{x} \text{ in} \\ &\quad \text{cons}[\text{Bool}] \ \mathbf{x_{d,1}} \ z \text{ (cons}[\text{Bool}] \ \mathbf{x_{d,2}} \ z \ \mathbf{y}) \end{split}
```

Question

Implement a function triple : List Bool \rightarrow List Bool that essentially concatenates three copies of its input. You will need to update the type to insert \Diamond accordingly.

Observation

LFPL with the diamond type \Diamond captures **non-size-increasing** computation, where an instance of \Diamond has **size one**. For append : List T \rightarrow List T, we have |append $l_1 \ l_2 | \leq |l_1| + |l_2|$.

For append2: List (Bool \times \diamondsuit) \rightarrow List Bool \rightarrow List Bool, we also have $|append2 \, l_1 \, l_2| \leqslant |l_1| + |l_2|$.

Definition

Let us define an **interpretation** [T] of types and then the **size function** $s_T(v)$. Let us introduce a distinguished value Φ fro the diamond type \Diamond .

A function $f \in [\![T_1 \to T_2]\!]$ is said to be non-size-increasing if $s_{T_1 \to T_2}(f) = 0$.

Theorem

If $\varnothing \vdash v : T$, then $s_T(\llbracket v \rrbracket) = 0$, where $\llbracket v \rrbracket$ encodes a denotational interpretation of v.

We can define binary numbers using lists of Booleans:

$$\widehat{\mathfrak{d}} = \mathtt{nil}[\mathsf{Bool}] \hspace{1cm} \widehat{2n+1} = \mathsf{cons}[\mathsf{Bool}] \blacklozenge \mathsf{false} \; \widehat{\mathfrak{n}} \hspace{1cm} \widehat{2(n+1)} = \mathsf{cons}[\mathsf{Bool}] \blacklozenge \mathsf{true} \; \widehat{\mathfrak{n}}$$

Theorem

We say that a function $h: \mathbb{N}^k \to \mathbb{N}$ is **definable** in LFPL if there exists a term $t: \mathtt{List}\ \mathsf{Bool} \to \ldots \to \mathtt{List}\ \mathsf{Bool}$ such that $t \widehat{n_1} \ldots \widehat{n_k} \longrightarrow^* h(\widehat{n_1, \ldots, n_k})$ for all n_1, \ldots, n_k .

A function $h: \mathbb{N}^k \to \mathbb{N}$ is definable in LFPL if and only if h is in FP and $|h(n_1, \dots, n_k)| \leq \sum_{i=1}^k |n_i|$.

Remark

Ref: M. Hofmann. 1999. Linear types and non-size-increasing polynomial time computation. In Logic in Computer Science (LICS'99), 464–473, doi: 10.1109/LICS.1999.782641.

Other Extensions: References

Question

Suppose that we store a linear resource in a reference. Can we perform arbitrary dereferences or assignments?

Syntax and Typing

$$t := \dots \mid \mathsf{ref}\ t_1 \mid !t_1 \mid \mathsf{swap}\ t_1\ t_2$$

$$\mathsf{T} \coloneqq \ldots \mid \mathsf{Ref} \; \mathsf{T}_1$$

$$\Gamma \vdash \Gamma$$
 T-Ref Γ

$$\frac{\Gamma \vdash t_1 : T_1}{\Gamma \vdash \mathsf{ref}\ t_1 : \mathsf{Ref}\ T_1} \ \mathsf{T-Ref} \qquad \frac{\Gamma \vdash t_1 : \mathsf{Ref}\ T_{11}}{\Gamma \vdash !t_1 : T_{11}} \ \mathsf{T-Deref}$$

$$\frac{\Gamma_1 \vdash t_1 : \mathsf{Ref} \ \mathsf{T}_{11}}{\Gamma_1, \Gamma_2 \vdash \mathsf{swap} \ t_1 \ t_2 : \mathsf{Ref} \ \mathsf{T}_{11} \times \mathsf{T}_{11}} \ \mathsf{T\text{-}\mathsf{Swap}}$$

Operational Semantics

Let us allow value stores V to support both variables and locations.

$$\frac{\ell \not\in \textit{dom}(V)}{\textit{ref}\, \nu \mid V \longrightarrow \ell \mid (V, \ell \mapsto \nu)} \qquad \frac{V(\ell) = \nu}{!\ell \mid V \longrightarrow \nu \mid (V \setminus \ell)}$$

$$\frac{V(\ell) = \nu}{!\ell \mid V \longrightarrow \nu \mid (V \setminus \ell)}$$

$$\frac{V(\ell) = \nu_1}{\text{swap } \ell \: \nu_2 \mid V \longrightarrow \{\ell, \nu_1\} \mid (V \setminus \ell, \ell \mapsto \nu_2)}$$

Other Extensions: Arrays

Question

Can you follow the approach for supporting references to arrays?

Syntax and Typing

$$\begin{array}{lll} t := \ldots \mid \operatorname{array}(t_1,\ldots,t_n) \mid \operatorname{free}\ t_1 \ \operatorname{with}\ x.\ t_2 \mid \operatorname{swap}\ t_1[t_2]\ t_3 & T := \ldots \mid \operatorname{Array}\ T_1 \\ & \frac{\Gamma_i \vdash t_i : T_1 \quad (\operatorname{for}\ 1 \leqslant i \leqslant n)}{\Gamma_1,\ldots,\Gamma_n \vdash \operatorname{array}(t_1,\ldots,t_n) : \operatorname{Array}\ T_1} \ & \frac{\Gamma \vdash t_1 : \operatorname{Array}\ T_{11} \quad \quad x : T_{11} \vdash t_2 : \operatorname{Unit}}{\Gamma \vdash \operatorname{free}\ t_1 \ \operatorname{with}\ x.\ t_2 : \operatorname{Unit}} \ & \frac{\Gamma_1 \vdash t_1 : \operatorname{Array}\ T_{11} \quad \quad \Gamma_2 \vdash t_2 : \operatorname{Nat} \quad \quad \Gamma_3 \vdash t_3 : T_{11}}{\Gamma_1,\Gamma_2,\Gamma_3 \vdash \operatorname{swap}\ t_1[t_2]\ t_3 : \operatorname{Array}\ T_{11} \times T_{11}} \ \text{T-ArraySwap} \end{array}$$

Question (Exercise)

Formulate the operational semantics for arrays.

Other Extensions: Reference Counting

Question

In LFPL, data structures only have two modes: (i) **copyable**, or (ii) **linear**.

Can you think of mechanisms to support some modes between the two ends of the spectrum?

Principle

Reference counting is a **dynamic** technique that allows any number of pointers to an object and keeps track of that number dynamically. When the reference count gets zero, the object is deallocated automatically.

Syntax

$$t := \dots | ref t_1 | inc t_1 | dec t_1 with x. t_2 | swap t_1 t_2$$

$$T := \dots \mid Rc T_1$$

R.C. increment inc t evaluates t to a pointer, increments the ref count, and returns **two copies** of the pointer.

R.C. decrement dec t_1 with x. t_2 evaluates t_1 to a pointer, decrements the ref count, and apply λx . t_2 to the object if ref count gets zero.

Other Extensions: Reference Counting

Operational Semantics

$$\frac{\ell \not\in dom(V)}{\mathsf{ref}\, \nu_1 \mid V \longrightarrow \ell \mid (V,\ell \mapsto (\nu,1))} \, \mathsf{E-RefV} \qquad \frac{V(\ell) = (\nu,k)}{\mathsf{inc}\, \ell \mid V \longrightarrow \{\ell,\ell\} \mid (V \setminus \ell,\ell \mapsto (\nu,k+1))} \, \mathsf{E-IncLoc}$$

$$\frac{V(\ell) = (\nu,k) \qquad k > 1}{\mathsf{dec}\, \ell \, \mathsf{with}\, \mathsf{x.}\, \mathsf{t}_2 \mid V \longrightarrow \mathsf{unit} \mid (V \setminus \ell,\ell \mapsto (\nu,k-1))} \, \mathsf{E-DecNonZero}$$

$$\frac{V(\ell) = (\nu,1) \qquad \mathsf{y} \not\in \mathit{dom}(V)}{\mathsf{dec}\, \ell \, \mathsf{with}\, \mathsf{x.}\, \mathsf{t}_2 \mid V \longrightarrow [\mathsf{x} \mapsto \mathsf{y}] \mathsf{t}_2 \mid (V \setminus \ell,\mathsf{y} \mapsto \nu)} \, \mathsf{E-DecZero}$$

$$\frac{V(\ell) = (\nu_1,k)}{\mathsf{swap}\, \ell \, \nu_2 \mid V \longrightarrow \{\ell,\nu_1\} \mid (V \setminus \ell,\ell \mapsto (\nu_2,k))} \, \mathsf{E-Swap}$$

Other Extensions: Reference Counting

Typing

$$\frac{\Gamma \vdash t_1 : T_1}{\Gamma \vdash \mathsf{ref}\ t_1 : \mathsf{Rc}\ T_1} \mathsf{T-Ref}$$

$$\frac{\Gamma \vdash t_1 : Rc \ T_{11} \qquad x : T_{11} \vdash t_2 : Unit}{\Gamma \vdash dec \ t_1 \ with \ x. \ t_2 : Unit} \ \text{T-Dec}$$

$$\frac{\Gamma \vdash t_1 : Rc \ T_{11}}{\Gamma \vdash inc \ t_1 : Rc \ T_1 \times Rc \ T_{11}} \ T\text{-Inc}$$

$$\frac{\Gamma_1 \vdash t_1 : Rc \ T_{11}}{\Gamma_1, \Gamma_2 \vdash swap \ t_1 \ t_2 : Rc \ T_{11} \times T_{11}} \ \text{T-Swap}$$

Question

Are any of Ref, Array, or Rc types copyable?

Question (Exercise)

Try to prove the soundness of LFPL with reference counting. What **invariants** should the operational semantics maintain?

Resource Bounds with LFPL

Remark

Recall that LFPL with the diamond type \Diamond captures **non-size-increasing** computation.

```
\begin{split} \textit{double} : & \mathsf{List}\; (\mathsf{Bool} \times \lozenge) \to \mathsf{List}\; \mathsf{Bool} \\ \textit{double} & \equiv \lambda \mathsf{l} : \mathsf{List}\; (\mathsf{Bool} \times \lozenge). \\ & \mathsf{iter}_\mathsf{L}\; \mathsf{l}\; \mathsf{with}\; \mathsf{nil} \Rightarrow \mathsf{nil}[\mathsf{Bool}] \\ & | \; \mathsf{cons}(\mathbf{x_{d,1}}, \mathbf{x}, \_) \; \mathsf{of} \; \mathsf{y} \Rightarrow \\ & \; \mathsf{letp}\; \{z, \mathbf{x_{d,2}}\} = x \; \mathsf{in}\; \mathsf{cons}[\mathsf{Bool}] \; \mathbf{x_{d,1}} \; z \; (\mathsf{cons}[\mathsf{Bool}] \; \mathbf{x_{d,2}} \; z \; \mathsf{y}) \end{split}
```

Observation

The diamonds in the input (i.e., the size of the input) are an **upper bound** on the number of **cons**-operations. Can we adapt the type system to derive **upper bounds** on **other kinds of resource**?

Principle

We can separate diamonds from lists and add a **new term tick** that consumes one diamond.

Resource Bounds with LFPL

Principle

A tick then stands for one units of resource use!

$$\begin{split} \frac{\Gamma_1 \vdash t_1 : \lozenge \quad \Gamma_2 \vdash t_2 : T_2}{\Gamma_1, \Gamma_2 \vdash \mathsf{tick}(t_1); t_2 : T_2} \; \mathsf{T-Tick} & \frac{\Gamma_1 \vdash t_1 : T_1 \quad \Gamma_2 \vdash t_2 : \mathsf{List} \; T_1}{\Gamma_1, \Gamma_2 \vdash \mathsf{cons}[T_1] \; t_1 \; t_2 : \mathsf{List} \; T_1} \; \mathsf{T-Cons} \\ & \frac{\Gamma_1 \vdash t_1 : \mathsf{List} \; T_{11} \quad \Gamma_2 \vdash t_2 : S \quad x : T_{11}, y : S \vdash t_3 : S}{\Gamma_1, \Gamma_2 \vdash \mathsf{iter}_L \; t_1 \; \mathsf{with} \; \mathsf{nil} \Rightarrow t_2 \mid \mathsf{cons}(x,_) \; \mathsf{of} \; y \Rightarrow t_3 : S} \; \mathsf{T-IterL} \end{split}$$

Example

Let us derive a bound on the number of constructors used by an inefficient identity function.

```
id: List (\diamondsuit \times \mathsf{Bool}) \to \diamondsuit \to \mathsf{List} Bool id \equiv \lambda \mathsf{l}: List (\diamondsuit \times \mathsf{Bool}). \lambda \mathsf{d_1} : \diamondsuit. iter \mathsf{l} with \mathsf{nil} \Rightarrow \mathsf{tick}(\mathsf{d_1}); \mathsf{nil}[\mathsf{Bool}] = \mathsf{lons}(x, \_) of y \Rightarrow \mathsf{letp} \{\mathsf{d_2}, z\} = x in \mathsf{tick}(\mathsf{d_2}); \mathsf{cons}[\mathsf{Bool}] \neq y
```

Resource Bounds with LFPL

Question

The type id: List $(\lozenge \times \mathsf{Bool}) \to \lozenge \to \mathsf{List}$ Bool indicates a resource bound of $id(\ell)$ to be $|\ell| + 1$. However, there are a few restrictions that make LFPL **inconvenient** to use:

- The linear nature prevents using some variables multiple times (even with contraction for copyable types).
- The diamonds "pollute" the code and we have to manage which diamond to pay for a tick.

Any workaround?

Principle (Type-Level Resource-Bound Analysis)

We can remove diamonds from terms and only keep track of them in the types.

Ref: M. Hofmann and S. Jost. 2003. Static Prediction of Heap Space Usage for First-Order Functional Programs. In *Princ. of Prog. Lang.* (POPL'03), 185–197. doi: 10.1145/604131.604148.

Ref: J. Hoffmann and S. Jost. 2022. Two Decades of Automatic Amortized Resource Analysis. *Math. Struct. Comp. Sci.*, 32, 729–759, 6. doi: 10.1017/S0960129521000487.

Type-Level Linear-Resource-Bound Analysis

Remark

The "linear" in "linear-resource-bound" means the bounds are analytically linear functions of the input sizes.

Syntax

```
\begin{split} t &\coloneqq x \mid \mathsf{fun} \; \mathsf{f} \; x. \; t_2 \mid t_1 \; t_2 \mid \mathsf{unit} \mid \{t_1, t_2\} \mid \mathsf{let} \; \{x_1, x_2\} = t_1 \; \mathsf{in} \; t_2 \\ &\mid \; \mathsf{nil} \mid \mathsf{cons} \; t_1 \; t_2 \mid \mathsf{case}_{\mathsf{L}} \; t_1 \; \mathsf{of} \; \mathsf{nil} \; \Rightarrow \; t_2 \mid \mathsf{cons}(x_1, x_2) \; \Rightarrow \; t_3 \mid \mathsf{let} \; x = t_1 \; \mathsf{in} \; t_2 \\ &\mid \; \mathsf{tick} \; \mathsf{q} \quad \mathsf{(q} \in \mathsf{Q)} \; \mid \; \mathsf{share} \; t_1 \; \mathsf{as} \; x_1, x_2 \; \mathsf{in} \; t_2 \end{split}
```

Resource-Aware Types

We define **types** and **resource-aware types** as follows:

$$T := A \rightarrow B \mid \mathsf{Unit} \mid \mathsf{T}_1 \times \mathsf{T}_2 \mid \mathsf{List} \; A$$
$$A, B := \mathsf{T}^q \quad (q \in \mathbb{Q}_{\geqslant 0})$$

Resource-Aware Types and Potentials

Principle (The Potential Method for Amortized Complexity Analysis)

Consider a transition system $\langle S, \to, s_0 \rangle$, where $s_0 \in S$ is the initial state and $\to \subseteq S \times S \times \mathbb{Q}$ is the **resource-aware** transition relation.

The map $\Phi:S \to \mathbb{Q}_{\geqslant 0}$ is said to be a **potential function** if for any $s \stackrel{q}{\to} s'$, it holds that $\Phi(s)\geqslant q+\Phi(s')$.

Then for any $p_0 \geqslant \Phi(s_0)$ and transition sequence $s_0 \xrightarrow{q_1} s_1 \xrightarrow{q_2} \cdots \xrightarrow{q_n} s_n$, it holds that

 $p_0 - \sum_{i=1}^n q_i \geqslant \Phi(s_n)$, i.e., $\Phi(s_0)$ is an **upper bound** on the resource use of the transition system.

Type-Defined Potential Functions: $\Phi_T: [\![T]\!] \to \mathbb{Q}_{\geqslant 0}$

Resource-Aware Types and Potentials

Example

```
 \begin{split} \textit{id} : (\texttt{List Unit}^2)^1 &\to (\texttt{List Unit}^0)^0 \\ \textit{id} &\equiv \mathsf{fun} \; \mathsf{fl.} \; \mathsf{case}_L \; \mathsf{l} \; \mathsf{with} \; \mathsf{nil} \; \Rightarrow \; \mathsf{let} \; \_ = \; \mathsf{tick} \; 1 \; \mathsf{in} \; \mathsf{nil} \\ &\mid \mathsf{cons}(\mathsf{h},\mathsf{t}) \; \Rightarrow \; \mathsf{let} \; \_ = \; \mathsf{tick} \; 2 \; \mathsf{in} \; \mathsf{cons} \; \mathsf{h} \; (\mathsf{ft}) \end{split}
```

```
The potential function \Phi_{\mathsf{List}\;\mathsf{T}^q}([\nu_1,\ldots,\nu_n]) = \sum_{i=1}^n \Phi_{\mathsf{T}^q}(\nu_i) = q \cdot n + \sum_{i=1}^n \Phi_{\mathsf{T}}(\nu_i). Thus, \Phi_{(\mathsf{List}\;\mathsf{Unit}^2)^1}(\ell) = \Phi_{\mathsf{List}\;\mathsf{Unit}^2}(\ell) + 1 = 2 \cdot |\ell| + \sum_{i=1}^{|\ell|} \Phi_{\mathsf{Unit}}(\ldots) + 1 = 2 \cdot |\ell| + 1. That is 2 \ell \in \mathbb{R}^d.
```

That is, $2 \cdot |\ell| + 1$ is **an upper bound on the amount of ticks** of executing $id(\ell)$.

Example

A function can have **more than one** resource-aware types. Such a property is useful when **composing** functions.

$$id: (\text{List Unit}^2)^1 \rightarrow (\text{List Unit}^0)^0$$

 $id: (\text{List Unit}^4)^6 \rightarrow (\text{List Unit}^2)^5$
 $id: (\text{List Unit}^4)^6 \rightarrow (\text{List Unit}^0)^0$

Γ ; $q \vdash t : A$: "term t has resource-aware type A under context Γ and potential q ($q \in \mathbb{Q}_{\geqslant 0}$)"

The typing context Γ is defined as $\Gamma := \emptyset \mid \Gamma$, x : T.

$$\begin{array}{c} \overline{x:T; q \vdash x:T^q} \text{ T-Var} & \overline{\varnothing; q \vdash \text{unit}: \text{Unit}^q} \text{ T-Unit} & \overline{p = q + r} \\ \hline \Gamma_1; q_0 \vdash t_1: T_1^{q_1} & \Gamma_1; q_0 \vdash t_1: (T_{11} \times T_{12})^{q_1} \\ \hline \Gamma_2; q_1 \vdash t_2: T_2^{q_2} & \overline{\Gamma_1; q_0 \vdash t_1: (T_{11} \times T_{12})^{q_1}} \\ \hline \Gamma_1; q_0 \vdash \{t_1, t_2\}: (T_1 \times T_2)^{q_2} & \overline{\Gamma_1; q_0 \vdash t_1: T_{11}, x_2: T_{12}; q_1 \vdash t_2: A} \\ \hline \hline \Gamma_1; q_0 \vdash t_1: T_1^{q_1} & \overline{\Gamma_2; x: T_1; q_1 \vdash t_2: A} \\ \hline \hline \Gamma_1; q_0 \vdash t_1: T_1^{q_1} & \overline{\Gamma_2; x: T_1; q_1 \vdash t_2: A} \\ \hline \hline \Gamma_1; q_0 \vdash t_1: T_1^{q_1} & \overline{\Gamma_2; x: T_1; q_1 \vdash t_2: A} \\ \hline \hline \Gamma_1; q_0 \vdash t_1: T_1^{q_1} & \overline{\Gamma_2; x: T_1; q_1 \vdash t_2: A} \\ \hline \hline \end{array}$$

Γ ; $q \vdash t : A$: "term t has resource-aware type A under context Γ and potential $q \ (q \in \mathbb{Q}_{\geqslant 0})$ "

How to handle lists?

$$\begin{split} \Phi_{\text{List TP}}(\text{nil}) &= 0 \\ \Phi_{\text{List TP}}(\text{cons } \nu_1 \; \nu_2) &= \Phi_{\text{TP}}(\nu_1) + \Phi_{\text{List TP}}(\nu_2) \\ &= p + \Phi_{\text{T}}(\nu_1) + \Phi_{\text{List TP}}(\nu_2) \end{split}$$

$$\frac{ \Gamma_1; \mathbf{q_0} \vdash \mathbf{t_1} : \mathsf{T_1^{q_1}} \qquad \Gamma_2; \mathbf{q_1} \vdash \mathbf{t_2} : (\mathsf{List} \ \mathsf{T_1^p})^{\mathbf{q_2} + \mathbf{p}} }{ \Gamma_1, \Gamma_2; \mathbf{q_0} \vdash \mathsf{cons} \ \mathsf{t_1} \ \mathsf{t_2} : (\mathsf{List} \ \mathsf{T_1^p})^{\mathbf{q_2}} } \ \mathsf{T-Cons}$$

$$\frac{ \Gamma_1; \mathbf{q_0} \vdash \mathbf{t_1} : (\mathsf{List} \ \mathsf{T_{11}^p})^{\mathbf{q_1}} \qquad \Gamma_2; \mathbf{q_1} \vdash \mathbf{t_2} : \mathsf{A} \qquad \Gamma_2, x_1 : \mathsf{T_{11}}, x_2 : \mathsf{List} \ \mathsf{T_{11}^p}; \mathbf{q_1} + \mathsf{p} \vdash \mathsf{t_3} : \mathsf{A} }{ \Gamma_1, \Gamma_2; \mathbf{q_0} \vdash \mathsf{case_L} \ \mathsf{t_1} \ \mathsf{of} \ \mathsf{nil} \Rightarrow \mathsf{t_2} \mid \mathsf{cons}(x_1, x_2) \Rightarrow \mathsf{t_3} : \mathsf{A} } \ \mathsf{T-CaseL}$$

 Γ ; $q \vdash t : A$: "term t has resource-aware type A under context Γ and potential q ($q \in \mathbb{Q}_{\geqslant 0}$)"

How to handle functions?

$$\begin{split} \frac{\Gamma,f:T_1^{\textbf{q}_1} \to T_2^{\textbf{q}_2},x:T_1;\textbf{q}_1 \vdash \textbf{t}_2:T_2^{\textbf{q}_2}}{\Gamma;\textbf{p} \vdash \text{fun }fx.\ \textbf{t}_2:(T_1^{\textbf{q}_1} \to T_2^{\textbf{q}_2})^p} \text{ T-Fun?} \\ \frac{\Gamma_1;\textbf{q}_0 \vdash \textbf{t}_1:(T_{11}^{\textbf{q}_{11}} \to T_{12}^{\textbf{q}_{12}})^{\textbf{q}_1} \qquad \Gamma_2;\textbf{q}_1 \vdash \textbf{t}_2:T_{11}^{\textbf{q}_{11}+r}}{\Gamma_1,\Gamma_2;\textbf{q}_0 \vdash \textbf{t}_1\ \textbf{t}_2:T_{12}^{\textbf{q}_{12}+r}} \end{split} \text{ T-App} \end{split}$$

Question

Is the rule (T-Fun?) sound?

let z = cons unit (cons unit nil) in $z : \text{List Unit}^2; 2$ let f = fun f x. (case_x of nil \Rightarrow unit $| \text{cons}(_, t) \Rightarrow \text{let} _ = id(z) \text{ in } f \text{: (List Unit}^1)^0 \rightarrow (\text{List Unit}^0)^0; 2$ f (cons unit (cons unit nil))

Observation

Because fun f x. t_2 defines a **recursive** function, the rule below might use the resources in Γ for **multiple times**.

$$\frac{\Gamma,f:T_1^{\textbf{q}_1}\rightarrow T_2^{\textbf{q}_2},x:T_1;\textbf{q}_1\vdash \textbf{t}_2:T_2^{\textbf{q}_2}}{\Gamma;\textbf{p}\vdash \textbf{fun}\;f\;x.\;\textbf{t}_2:(T_1^{\textbf{q}_1}\rightarrow T_2^{\textbf{q}_2})^p}\;\text{T-Fun-Unsound}$$

How about the rule below?

$$\frac{f:T_1^{\mathbf{q}_1}\to T_2^{\mathbf{q}_2}, x:T_1; \mathbf{q}_1\vdash \mathbf{t}_2:T_2^{\mathbf{q}_2}}{\varnothing; \mathbf{p}\vdash \text{fun } f \ x. \ \mathbf{t}_2:(T_1^{\mathbf{q}_1}\to T_2^{\mathbf{q}_2})^p} \ \text{T-Fun-Attempt}$$

It is sound, but might be too restrictive as it requires every function to be a **closed term**.

One Workaround

We can require Γ to carry zero units of potential in (T-Fun), i.e., $\Gamma = |\Gamma|$.

$$|A \rightarrow B| = A \rightarrow B$$

$$|\text{Unit}| = \text{Unit} \qquad |T_1 \times T_2| = |T_1| \times |T_2|$$

$$|List T^p| = List |T|^0$$

Γ ; $q \vdash t : A$: "term t has resource-aware type A under context Γ and potential $q (q \in \mathbb{Q}_{\geq 0})$ "

How to handle contraction via the share terms?

$$\frac{\Gamma_1;\, \textbf{q}_0 \vdash t_1 : T_1^{\textbf{q}_1} \qquad \Gamma_2,\, x_1 : T_1,\, x_2 : T_1;\, \textbf{q}_1 \vdash t_2 : A}{\Gamma_1,\, \Gamma_2;\, \textbf{q}_0 \vdash \text{share } t_1 \text{ as } x_1,\, x_2 \text{ in } t_2 : A} \text{ T-Share?}$$

Question

Is the rule (T-Share?) sound?

```
let z = \text{cons unit (cons unit nil) in} z : \text{List Unit}^2; 2

share z as x_1, x_2 in x_1 : \text{List Unit}^2, x_2 : \text{List Unit}^2; 2

\{id(x_1), id(x_2)\}
```


Observation

Because T_1 can **carry non-zero units of potential**, the contraction in the rule below is unsound.

$$\frac{\Gamma_1;\, \textbf{q}_0 \vdash t_1 : T_1^{\textbf{q}_1} \qquad \Gamma_2, x_1 : T_1, x_2 : T_1;\, \textbf{q}_1 \vdash t_2 : A}{\Gamma_1,\, \Gamma_2;\, \textbf{q}_0 \vdash \text{share } t_1 \text{ as } x_1, x_2 \text{ in } t_2 : A} \text{ T-Share-Unsound}$$

To make the rule sound, we need a notion of splitting up the potential in a type.

 $T \downarrow (T_1, T_2)$: "T can be split into T_1 and T_2 and T's potential is the sum of T_1 's and T_2 's"

That is, if T
$$\Upsilon$$
 (T₁, T₂), then $\Phi_T(\nu) = \Phi_{T_1}(\nu) + \Phi_{T_2}(\nu)$.

$$\frac{T_1 \swarrow (T_{11}, T_{12}) \qquad T_2 \swarrow (T_{21}, T_{22})}{T_1 \times T_2 \bigvee (T_{11} \times T_{21}, T_{12} \times T_{22})}$$

$$T \swarrow (T_1, T_2) \qquad q = q_1 + q_2$$

List $T^q \ \ \ \ \ \ (List \ T_1^{q_1}, List \ T_2^{q_2})$

 Γ ; $q \vdash t : A$: "term t has resource-aware type A under context Γ and potential q ($q \in \mathbb{Q}_{\geqslant 0}$)"

$$\frac{\Gamma_1;\,q_0\vdash t_1:T_1^{q_1}}{\Gamma_1,\,\Gamma_2;\,q_0\vdash \text{share }t_1\text{ as }x_1,x_2\text{ in }t_2:A} \; \text{ T-Share } \\$$

Example

```
let z = \text{cons unit (cons unit nil) in}

share z as x_1, x_2 in

\{id(x_1), id(x_2)\}
```

```
z: List Unit^4; 2
```

 $x_1 : List Unit^2, x_2 : List Unit^2; 2$

Question (Exercise)

Extend \bigvee to context-level, i.e., $\Gamma \bigvee (\Gamma_1, \Gamma_2)$. Use \bigvee to reformulate the relation $\Gamma = |\Gamma|$.

 Γ ; $q \vdash t : A$: "term t has resource-aware type A under context Γ and potential q ($q \in \mathbb{Q}_{\geqslant 0}$)"

How about weakening?

$$\frac{\Gamma;\, \mathbf{q} \vdash \mathbf{t} : A}{\Gamma,\, \mathbf{x_1} : \mathsf{T_1};\, \mathbf{q} + \mathbf{r} \vdash \mathbf{t} : A} \; \mathsf{T\text{-Weak}}$$

Question

Any more structural rules?

Observation

Because a value can have multiple types, e.g., Unit¹ and Unit² for a unit, we need to some form of subtyping.

Question

Which direction is sound for resource-bound analysis? $Unit^1 <: Unit^2 \text{ or } Unit^2 <: Unit^1$?

 $T_1 <: T_2$: " T_1 is a subtype of T_2 in the sense that T_1 's potential is not less than T_2 's"

$$\frac{A_2 <: A_1 \qquad B_1 <: B_2}{A_1 \to B_1 <: A_2 \to B_2}$$

$$\frac{T_{11} <: T_{21} \qquad T_{12} <: T_{22}}{T_{11} \times T_{12} <: T_{21} \times T_{22}} \qquad \frac{A_1 <: A_2}{\text{List } A_1 <: \text{List } A_2}$$

$$\frac{A_1 <: A_2}{\text{List } A_1 <: \text{List } A_2}$$

$$\frac{T_1 <: T_2 \qquad q_1 \geqslant q_2}{T_1^{q_1} <: T_2^{q_2}}$$

 Γ ; $q \vdash t : A$: "term t has resource-aware type A under context Γ and potential q ($q \in \mathbb{Q}_{\geqslant 0}$)"

$$\frac{\Gamma; q \vdash t : A \qquad A <: B}{\Gamma; q \vdash t : B} \text{ T-Sub}$$

Example

Because $Unit^2 <: Unit^1$, we obtain the following derivation.

Design Principles of Programming Languages

编程语言的设计原理

Key Takeaways

Principle

- The uses of type systems go far beyond their role in detecting errors.
- Type systems offer crucial support for programming: abstraction, safety, efficiency, ...
- Language design shall go hand-in-hand with type-system design.

