Nome	Soluções		Númer	o
				LEI MIEI
Exame C	Completo (Partes 1A e 2A)	Teste 1 (Partes 1A e 1B	Teste 2	(Partes 2A e 2B)

Parte 1A

- 1. [4 val] Considere a função definida por $f(x,y)=\left\{\begin{array}{ll} \dfrac{2x^2y}{3x^2+y^2} & \text{se} \quad (x,y)\neq (0,0)\\ 0 & \text{se} \quad (x,y)=(0,0) \end{array}\right.$
 - (a) Estude a continuidade de f.

A função f é contínua em \mathbb{R}^2 .

(b) Calcule $\frac{\partial f}{\partial v}(0,0)$, segundo qualquer vector $v \in \mathbb{R}^2 \setminus \{(0,0)\}$.

$$\frac{\partial f}{\partial v}(0,0) = \lim_{h \to 0} \frac{2h^3v_1^2v_2}{h(3h^2v_1^2 + h^2v_2^2)} = \dots = \frac{2v_1^2v_2}{3v_1^2 + v_2^2}$$

(c) Calcule $\frac{\partial f}{\partial x}(0,0)$ e $\frac{\partial f}{\partial y}(0,0)$.

$$\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial u}(0,0), \text{ com } u = (1,0) \qquad \text{ e} \qquad \frac{\partial f}{\partial y}(0,0) = \frac{\partial f}{\partial w}(0,0), \text{ com } w = (0,1)$$

Então

$$\frac{\partial f}{\partial x}(0,0) = 0$$
 e $\frac{\partial f}{\partial y}(0,0) = 0$

(d) Estude a diferenciabilidade de f em todos os pontos $(x, y) \in \mathbb{R}^2$.

A função f é diferenciável em $\mathbb{R}^2 \setminus \{(0,0)\}$, porque é aí uma função racional. Não é diferenciável em (0,0), porque, considerando v=(1,1), das alíneas (b) e (c) vem

$$\underbrace{\frac{\partial f}{\partial v}(0,0)}_{1/2} \neq v_1 \underbrace{\frac{\partial f}{\partial x}(0,0)}_{0} + v_2 \underbrace{\frac{\partial f}{\partial y}(0,0)}_{0}$$

2. [2 val] Considere a função definida por $f(x,y) = 2x^2 - 3y^2$, $(x,y) \in \mathbb{R}^2$. Estude a existência de extremos locais de f, bem como a sua natureza.

A função f possui um único candidato a extremante (local), que é o ponto crítico, (0,0). Pelo teste do Hessiano, conclui-se que este ponto não é extremante. Logo, f não possui extremos locais.

3. Sem justificar, indique com as letras V ou F o valor lógico das seguintes proposições.

Resposta correcta: 1 Resposta em branco: 0 Resposta errada: -0,5

- (a) Dados $f: \mathbb{R}^2 \to \mathbb{R}$, $\alpha, \beta \in \mathbb{R}$, se $\alpha \neq \beta$, a intersecção dos conjuntos de nível α e β é vazia.
- (b) Dada $f: \mathbb{R}^2 \to \mathbb{R}$, se $\frac{\partial f}{\partial x}$ é descontínua em (a,b), então f não é diferenciável em (a,b).

4. Sem justificar, assinale a opção correcta em cada uma das alíneas seguintes.

Resposta correcta: 1

Resposta em branco: 0

Resposta errada: -0,25

(a) Seja $f: \mathbb{R}^2 \to \mathbb{R}$ tal que $\frac{\partial f}{\partial x}(0,y) = e^y$, $\frac{\partial f}{\partial y}(0,y) = 7y^2$ e seja $h: \mathbb{R} \to \mathbb{R}$ tal que $h(t) = f(t^2, e^{-t})$. Então h'(0) é igual a

★ -7

 \bigcirc -1

 \bigcirc 1

O 7

(b) Seja $f\colon \mathbb{R}^2 \to \mathbb{R}$ uma função tal que $\lim_{(x,y)\to (0,1)} f(x,y) = 2.$ Então:

 $\bigcap \lim_{x \to 0} f(x, x) = 2$

 $\bigstar \lim_{x \to 0} f(x, 3x + 1) = 2$

 $\bigcap_{x\to 0} \lim_{x\to 0} f(x,2x) = 2$

 $\bigcap \lim_{(x,y)\to(0,1)} f(x^2, y^2) = 4$

Parte 2A

1. [2 val] Considere o integral $\mathcal{I} = \int_0^3 \int_{y^2}^9 y \cos(x^2) \, dx \, dy$.

Esboce o domínio de integração, e calcule $\mathcal I$ invertendo a ordem de integração.

$$\mathcal{I} = \int_0^9 \int_0^{\sqrt{x}} y \cos(x^2) \, dy \, dx = \dots = \frac{\sin(81)}{4}$$

2. [4 val] Considere o sólido $\mathcal S$ que é interior, simultaneamente, às superfícies esféricas

$$x^{2} + y^{2} + z^{2} = 1$$
 e $x^{2} + y^{2} + (z - 1)^{2} = 1$.

Faça um esboço de S, e estabeleça um integral, ou uma soma de integrais, que lhe permita calcular o volume de S, usando:

(a) coordenadas cilíndricas;

(b) coordenadas esféricas.

(a)
$$\operatorname{vol}(S) = \int_0^{2\pi} \int_0^{\sqrt{3}/2} \int_{1-\sqrt{1-\rho^2}}^{\sqrt{1-\rho^2}} \rho \, dz \, d\rho \, d\theta$$

(b)
$$\operatorname{vol}(S) = \int_0^{2\pi} \int_0^{\pi/3} \int_0^1 r^2 \sin \phi \, dr \, d\phi \, d\theta + \int_0^{2\pi} \int_{\pi/3}^{\pi/2} \int_0^{2\cos \phi} r^2 \sin \phi \, dr \, d\phi \, d\theta$$

3. Sem justificar, indique com as letras V ou F o valor lógico das seguintes proposições.

Resposta correcta: 1

Resposta em branco: 0

Resposta errada: -0,5

(a) As coordenadas polares do ponto de coordenadas cartesians $(\pi, 0)$ são $(\pi, 0)$.

(b) Se $\mathscr C$ é o círculo de centro na origem e raio 1, então $\iint_{\mathscr L} x\,d(x,y)=0.$

4. Sem justificar, assinale a opção correcta em cada uma das alíneas seguintes.

Resposta correcta: 1

Resposta em branco: 0

Resposta errada: -0,25

(a) Sejam $\mathcal{B} = [0,2]^3$ e $\iiint_{\mathcal{B}} xy \ d(x,y,z) = k$. Então:

$$\bigcirc k = 2$$

$$(\star)$$
 $k = 8$

$$\bigcirc k = 4$$

- nenhum dos anteriores.
- (b) Sejam $f: [0,1] \to \mathbb{R}$ contínua e \mathcal{R} o domínio triangular de vértices (0,0), (1,0) e (0,1). Usando a mudança de variáveis $x+y=u, \ y=v, \$ o integral $\iint_{\mathcal{R}} f(x+y) \, d(x,y)$ é dado por

$$\bigstar \int_0^1 u f(u) \, du$$

$$\bigcap \frac{1}{2} \int_0^1 \int_0^u f(u) \, dv \, du$$

$$\bigcap 2 \int_0^1 \int_0^u f(u) dv du$$

Parte 1B

- 5. [4 val] Determine, se existirem, os seguintes limites
 - (a) $\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^4}$ (b) $\lim_{(x,y)\to(0,0)} \frac{x^4-y^4}{x^2+y^2}$
 - (a) Não existe, porque, por exemplo,

$$\lim_{\substack{(x,y)\to(0,0)\\y=0}} \frac{xy^2}{x^2+y^4} = 0 \qquad \text{e} \qquad \lim_{\substack{(x,y)\to(0,0)\\x=y^2}} \frac{xy^2}{x^2+y^4} = \frac{1}{2}$$

- (b) $\lim_{(x,y)\to(0,0)} \frac{x^4 y^4}{x^2 + y^2} = \lim_{(x,y)\to(0,0)} \frac{(x^2 y^2)(x^2 + y^2)}{x^2 + y^2} = 0$
- 6. [1,5 val] Considere a função definida por $f(x,y)=2x^2-3y^2, \ (x,y)\in\mathbb{R}^2$. Estude a existência e a natureza de extremos da função f restrita ao conjunto $\mathscr{C} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 5\}.$

f possui um máximo condicionado de valor 10, que é atingido nos pontos $(\sqrt{5},0)$ e $(-\sqrt{5},0)$, e possui um mínimo condicionado de valor -15, que é atingido nos pontos $(0, \sqrt{5})$ e $(0, -\sqrt{5})$.

7. Sem justificar, indique com as letras V ou F o valor lógico das seguintes proposições.

Resposta correcta: 1

Resposta em branco: 0

Resposta errada: -0,5

(a) O conjunto $A = \left\{ (1, \frac{1}{n}) : n \in \mathbb{N} \right\}$ não é aberto nem limitado.

F

(b) O conjunto dos pontos de continuidade da função $g(x,y) = \begin{cases} 4x + 2y & \text{se } y \ge 0 \\ x^3 - y^2 & \text{se } y < 0 \end{cases}$

$$\acute{\mathbf{e}} \ \mathbb{R}^2 \setminus \{(x,y) \in \mathbb{R}^2 : y = 0\}.$$

F

8. Sem justificar, assinale a opção correcta em cada uma das alíneas seguintes.

Resposta correcta: 1

Resposta em branco: 0

Resposta errada: -0,25

- (a) Seja $f:\mathbb{R}^2 \to \mathbb{R}$ uma função cujas curvas de nível $k \geq 0$ são circunferências de centro na origem e raio k^2 . Então
 - $f(x,y) = \sqrt{x^2 + y^2}$
- $\bigcap f(x,y) = x^2 + y^2 1$
- $f(x,y) = \sqrt[4]{x^2 + y^2}$
- $f(x,y) = 1 (x^2 + y^2)$
- (b) Seja $f: \mathbb{R}^2 \to \mathbb{R}$ a função definida por f(x,y) = xy + y x. O plano tangente ao gráfico de fno ponto (-1, -1, f(-1, -1))
 - \bigcirc intersecta o eixo dos zz no ponto de cota 1;
- \bigstar intersecta o eixo dos xx no ponto de abcissa -1/2;
- intersecta o eixo dos yy no ponto de ordenada 1/2;
- () contém a origem.

Para os alunos que fazem apenas a parte relativa ao Teste 1, a cotação das questões 1. e 2. da Parte 1A passa a ser

Questão 1. 5 val

Questão 2. 1,5 val

Parte 2B

5. [3,5 val] Considere o integral $\mathcal{J} = \int_{-2}^{2} \int_{-\sqrt{4-y^2}}^{0} e^{-(x^2+y^2)} dx dy$.

Esboce a região de integração e calcule $\mathcal J$ usando coordenadas polares.

$$\mathcal{J} = \int_0^2 \int_{\pi/2}^{3\pi/2} \rho \, e^{-\rho^2} \, d\theta \, d\rho = \dots = \frac{\pi(1 - e^{-4})}{2}$$

6. [1,5 val] Considere o sólido $\mathcal S$ da questão 2 da Parte 2A.

Calcule o volume de S, usando coordenadas cilíndricas ou coordenadas esféricas. $5\pi/12$

7. Sem justificar, indique com as letras V ou F o valor lógico das seguintes proposições.

Resposta correcta: 1

Resposta em branco: 0

Resposta errada: -0,5

(a) Se $f: \mathbb{R} \to \mathbb{R}$ é uma função integrável em qualquer intervalo limitado então $\int_{2}^{5} \int_{0}^{2} f(x) \, dx dy = 2 \int_{0}^{2} f(x) \, dx.$

(b) A equação, em coordenadas cilíndricas, da superfície esférica de centro (0,0,0) e raio 1 é $\rho=1.$

8. Sem justificar, assinale a opção correcta em cada uma das alíneas seguintes.

Resposta correcta: 1

Resposta em branco: 0

Resposta errada: -0,25

(a) Se $\mathcal{I} = \int_0^1 \int_0^x x^2 y \, dy dx$, então:

$$\mathcal{I} = \int_0^1 \int_y^0 x^2 y \, dx dy$$

$$\bigstar \mathcal{I} = \int_0^1 \int_0^1 x^2 y \, dx dy$$

(b) Em coordenadas esféricas, a equação da superfície $x^2 + y^2 = x$ é dada por

 $\bigcap r = \cos\theta \sin\phi$

 $\bigcirc \ r^2 = r\cos\phi$

 $\bigcap r \operatorname{sen} \phi = \cos \phi \operatorname{sen}^2 \phi$

Para os alunos que fazem apenas a parte relativa ao Teste 2, a cotação das questões 1. e 2. da **Parte 2A** passa a ser

Questão 1. 3,5 val

Questão 2. 3,5 val