XC6220 Series

ETR0341-007

1A LDO Voltage Regulator with "GreenOperation"

☆GreenOperation-Compatible

■GENERAL DESCRIPTION

The XC6220 series is a highly accurate, low noise, high speed, low dropout, and large current CMOS voltage regulator with GreenOperation function. The series consists of a voltage reference, an error amplifier, a current limiter, an inrush current prevention circuit and a phase compensation circuit plus a driver transistor.

With a 0.2Ω on-resistance driver transistor integrated and with output currents up to 1A, the ultra low dropout voltage performance greatly extends battery life as does the GreenOperation function which can switch between high speed and power save modes automatically. Low ESR ceramic capacitors can be used for the output stabilization capacitor (C_L).

Output voltage is selectable in 0.05V increments within the range of 0.8V~5.0V, using laser trimming technologies.

An over current protection circuit and a thermal shutdown circuit are built in. The over current protection circuit will operate when the output current reaches its limit current. The thermal shutdown circuit will operate when the junction temperature reaches its limit temperature. The inrush protection circuit works by controlling the inrush current which is charged to C_L when the IC starts up. In this way, any fluctuations to V_{IN} caused by inrush current during system start up can be minimized.

The CE function enables the output to be turned off and the IC becomes a stand-by mode resulting in greatly reduced power consumption.

■APPLICATIONS

- ●CD-ROM, CD-R/RW drives
- ●DVD drives
- HDD drives
- MIDs, UMPCs
- Digital still cameras, Video cameras
- Portable AV equipment

■FEATURES

Maximum Output Current : 1000mA (TYP.:1200mA limit)

 $(1.2V \le V_{OUT} \le 5.0V)$

Dropout Voltage : 20mV @ 100mA (V_{OUT}=3.0V)

: 60mV@ 300mA (V_{OUT}=3.0V)

Operating Voltage Range : 1.6V ~ 6.0V

Output Voltage Range : 0.8V ~ 5.0V (0.05V increments)

Accuracy : $\pm 1\%$ (V_{OUT} ≥ 2.0 V)

 $\pm 20 \text{mV} (V_{OUT} < 2.0 \text{V})$

Low Power Consumption : 8μ A (TYP.) in PS mode

: 50 μ A (TYP.) in HS mode

Operating Temperature : - 40°C~ +85°C

Thermal Shutdown : Detect 150°C, Release 135°C(TYP.)

Inrush Current Protection: 700mA (MAX.)CL Auto Discharge: XC6220B/D SeriesCE Pull-Down Resistor: XC6220C/D Series

Output Capacitor : Ceramic Capacitor Compatible Packages : USP-6C, SOT-25, SOT-89-5 Environmentally Friendly : EU RoHS Compliant, Pb Free

■TYPICAL APPLICATION CIRCUIT

VIN VIN CIN-10 µF (Geramic) VSS CE VOUT Cl-10 µF (Geramic) VSS TTT TTT

■TYPICAL PERFORMANCE CHARACTERISTICS

■PIN CONFIGURATION

 * The No.5 and 6 V_{IN} pins should be connected. The No.1 and 2 pins V_{OUT} pins should be connected. The dissipation pad for the USP-6C package should be solder-plated in recommended mount pattern and metal masking so as to enhance mounting strength and heat release. If the pad needs to be connected to other pins, it should be connected to the V_{SS} (No. 4)

■PIN ASSIGNMENT

	PIN NUMBER		PIN NAME	FUNCTIONS
SOT-25	SOT-89-5	USP-6C	FIN NAIVIE	FUNCTIONS
3	1	3	CE	ON/OFF Control
1	4	6 & 5	V _{IN}	Power Input
2	2	4	V_{SS}	Ground
5	5	1 & 2	V_{OUT}	Output
4	3	-	NC	No connection

■PRODUCT CLASSIFICATION

Selection Guide

Please see the optional setting for C_L discharge and internal CE pull-down.

PRODUCT NAME	CONDITIONS
XC6220A	without CE Pull-down resistor, without C _L auto discharge (Semi-custom)
XC6220B	without CE Pull-down resistor, with C _L auto discharge (Standard)
XC6220C	with CE Pull-down resistor, without C _L auto discharge (Semi-custom)
XC6220D	with CE Pull-down resistor, with C _L auto discharge (Semi-custom)

Ordering Information

XC6220 ①23456-7(*1)

DESIGNATOR	DESCRIPTION	SYMBOL	DESCRIPTION
		Α	without CE Pull-down resistor, without C _L discharge (Semi-custom)
(1)	Type of CE	В	without CE Pull-down resistor, with C _L discharge (Standard)
	Type of GL	С	with CE Pull-down resistor, without C _L discharge (Semi-custom)
		D	with CE Pull-down resistor, with C _L discharge (Semi-custom)
2 3	Output Voltage	08~50	e.g. 3.0V → ①=3, ②=0
			Output voltage {O.O0v} (the 2 nd decimal place is "0")
			:HS Mode
		1	Accuracy $\pm 1\%$ ($V_{OUT(T)} \ge 2.1V$), within 0.02V ($V_{OUT(T)} \le 2.0V$)
	Output Voltage Accuracy		:PS Mode
4			Accuracy $\pm 2\%$ ($V_{OUT(T)} \ge 2.1V$), within 0.04V ($V_{OUT(T)} \le 2.0V$)
•			Output voltage {O.O5v} (the 2 nd decimal place is "5")
			:HS Mode
		В	Accuracy $\pm 1\%$ ($V_{OUT(T)} \ge 2.05V$), within 0.02V ($V_{OUT(T)} \le 1.95V$)
			:PS Mode
			Accuracy $\pm 2\%$ ($V_{OUT(T)} \ge 2.05V$), within 0.04V ($V_{OUT(T)} \le 1.95V$)
		MR	SOT-25
		MR-G	SOT-25 (Halogen & Antimony free)
56-7	Packages	PR	SOT-89-5
30-7	Taping Type (*2)	PR-G	SOT-89-5 (Halogen & Antimony free)
		ER	USP-6C
		ER-G	USP-6C (Halogen & Antimony free)

^(*1) The "-G" suffix indicates that the products are Halogen and Antimony free as well as being fully RoHS compliant.

The device orientation is fixed in its embossed tape pocket. For reverse orientation, please contact your local Torex sales office or representative. (Standard orientation: ⑤R-⑦, Reverse orientation: ⑤L-⑦)

■BLOCK DIAGRAMS

^{*} Diodes inside the circuits are ESD protection diodes and parasitic diodes.

■ ABSOLUTE MAXIMUM RATINGS

Ta=25°C

PARAME	PARAMETER		AMETER SYMBOL RATINGS		RATINGS	UNITS
Input Volt	age	V_{IN}	6.5	V		
Output Curr	ent (*1)	I _{OUT}	1400	mA		
Output Vo	ltage	V _{OUT}	V _{SS} -0.3 ~ V _{IN} +0.3	V		
CE Input Vo	CE Input Voltage		V _{SS} -0.3 ~ 6.5	V		
	SOT-25		250 600 (PCB mounted) ^(*2)			
Power Dissipation	SOT-89-5	Pd	500 1300 (PCB mounted) ^(*2)	mW		
	USP-6C		120 1000 (PCB mounted) ^(*2)			
Operating Temper	Operating Temperature Range		- 40 ~ + 85	°C		
Storage Temperature Range		Tstg	- 55 ~ + 125	°C		

^{*1} Please use within the range of I_{OUT} =Pd / $(V_{\text{IN}} - V_{\text{OUT}})$

^{*2:} The power dissipation figure shown is PCB mounted. Please refer to pages 15 \sim 17 for details.

■ ELECTRICAL CHARACTERISTICS

●XC6220A/B/C/D Series

Ta=25°C

●XC6220A/B/C/L							Ta=25°C
PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
		High Speed Mode (HS) 2.0V≦V _{OUT(T)} ≦5.0V V _{CE} =V _{IN} , I _{OUT} =30mA	×0.99		×1.01		
Outrout Valte as	V _{OUT(E)}	High Speed Mode (HS) 0.8V≦V _{OUT(T)} ≦1.95V V _{CE} =V _{IN} , I _{OUT} =30mA	-0.02	V _{OUT(T)}	+0.02		4
Output Voltage	(*2)`	Power Save Mode (PS) 2.0V≦V _{OUT(T)} ≦5.0V V _{CE} =V _{IN} , I _{OUT} =0.1mA	×0.98	(*3)` ′	×1.02	V	1
		Power Save Mode (PS) $0.8V \le V_{OUT(T)} \le 1.95V$ $V_{CE}=V_{IN}, I_{OUT}=0.1mA$	-0.04		+0.04		
Output Current	lau m uu.	High Speed Mode(HS), $V_{CE}=V_{IN}$ $V_{IN}=V_{OUT(T)}+1.0V$ $0.8V \le V_{OUT(T)} \le 1.15V$	700	1200	-	mA.	1)
Output Guitent	Іоитмах	High Speed Mode(HS), $V_{CE}=V_{IN}$ $V_{IN}=V_{OUT(T)}+1.0V$ $1.2V \le V_{OUT(T)} \le 5.0V$	1000	1200	-	IIIA	
Load Regulation	ΔV_{OUT}	High Speed Mode (HS), V _{CE} =V _{IN} 10mA≦I _{OUT} ≦300mA	-	10	45	mV	1
Dropout Voltage1 (*4)	Vdif	High Speed Mode (HS) I _{OUT} =300mA, V _{CE} =V _{IN}			mV	1	
Dropout Voltage2 (*4)	Vdif	High Speed Mode(HS) I _{OUT} =1000mA, V _{CE} =V _{IN}	see the Voltage Chart		mV	1	
Supply Current 1	l	High Speed Mode(HS) V _{IN} =V _{CE} =V _{OUT(T)} +1.0V I _{OUT} =10mA (A/B Series)	-	50	108	μΑ	2
Зирріу Сипені 1	I _{SS1}	High Speed Mode(HS) V _{IN} =V _{CE} =V _{OUT(T)} +1.0V I _{OUT} =10mA (C/D Series)	-	50	see the Voltage Chart	μΑ	2
		Power Save Mode(PS) V _{IN} =V _{CE} =V _{OUT(T)} +1.0V	-	8	18		
Supply Current 2	I _{SS2}	$\begin{tabular}{ll} I_{OUT}=0.1mA \\ Power Save Mode(PS) \\ V_{IN}=V_{CE}=$V_{OUT(T)}$+1.0V \\ I_{OUT}=0.1mA \\ \end{tabular}$	-	8	see the Voltage Chart	μΑ	2
Stand-by Current	I _{STBY}	V _{IN} =6.0V, V _{CE} =V _{SS}	-0.1	0.01	0.1	μΑ	2
Line Regulation	ΔV _{OUT} / (ΔV _{IN} •V _{OUT})	$\begin{split} &V_{\text{OUT(T)}}\text{+}0.5\text{V} \leqq \text{V}_{\text{IN}} \leqq 6.0\text{V} \\ : 1.1\text{V} \leqq \text{V}_{\text{OUT(T)}} \leqq 5.0\text{V} \\ &\text{High Speed Mode (HS), V}_{\text{CE}}\text{=V}_{\text{IN}} \\ &I_{\text{OUT}}\text{=}100\text{mA} \\ &1.6\text{V} \leqq \text{V}_{\text{IN}} \leqq 6.0\text{V} \\ : 0.8\text{V} \leqq \text{V}_{\text{OUT(T)}} \leqq 1.05\text{V} \\ &\text{High Speed Mode (HS), V}_{\text{CE}}\text{=V}_{\text{IN}} \\ &I_{\text{OUT}}\text{=}100\text{mA} \end{split}$	-	0.01	0.20	%/V	1
Input Voltage	V _{IN}		1.6	-	6.0	V	
Output Voltage Temperature Characteristics	ΔV _{OUT} / (ΔΤα•V _{OUT})	High Speed Mode (HS), V _{CE} =V _{IN} I _{OUT} =30mA -40°C≦Ta≦85°C	-	±100	-	ppm/°C	1

■ ELECTRICAL CHARACTERISTICS (Continued)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
		$\begin{array}{l} V_{\text{IN}}\text{=}5.75V_{\text{DC}}\text{+}0.5Vp\text{-pAC} \\ :4.75V \leqq V_{\text{OUT(T)}} \leqq 5.0V \\ \text{High Speed Mode (HS), } V_{\text{CE}}\text{=}V_{\text{IN}} \\ I_{\text{OUT}}\text{=}30\text{mA, } f\text{=}1\text{kHz} \end{array}$					
Ripple Rejection Rate	PSRR	$V_{IN}=\{V_{OUT(T)}+1.0\}$ $V_{DC}+0.5Vp-pAC$ $:0.85V \le V_{OUT(T)} \le 4.7V$ High Speed Mode (HS), $V_{CE}=V_{IN}$ $I_{OUT}=30mA$, $f=1kHz$	-	50	-	dB	3
		V_{IN} =1.85 V_{DC} +0.5 V_{P} -pAC : $V_{OUT(T)}$ =0.8 V High Speed Mode (HS), V_{CE} = V_{IN} I_{OUT} =30mA, f=1kHz					
		$V_{CE}=V_{IN}=V_{OUT(T)}+1.0V$ $0.8V \le V_{OUT(T)} \le 1.15V$	705	1200	-		
Limit Current	I _{LIM}	$V_{CE}=V_{IN}$ $V_{IN}=V_{OUT(T)}+1.0V$ $1.2V \le V_{OUT(T)} \le 5.0V$	1005	1200	-	mA	1
Short Current	I _{SHORT}	V _{CE} =V _{IN} Short V _{OUT} to V _{SS} level	-	180	-	mA	1
PS Switching Current	I _{GOR}	$\begin{array}{c} :1.45 V \leqq V_{OUT(T)} \leqq 5.0 V \\ V_{IN} = V_{OUT(T)} + 1.0 V, V_{CE} = "H" Level \\ :0.8 V \leqq V_{OUT(T)} \leqq 1.4 V \\ V_{IN} = 1.6 V, V_{CE} = "H" Level \\ I_{OUT} = heavy to light load \end{array}$	1.0	2.0	-	mA	5
HS Switching Current	I _{GO}	$\begin{array}{l} : 1.45V \leqq V_{OUT(T)} \leqq 5.0V \\ V_{IN} = V_{OUT(T)} + 1.0V, \ V_{CE} = "H "Level \\ : 0.8V \leqq V_{OUT(T)} \leqq 1.4V \\ V_{IN} = 1.6V, \ V_{CE} = "H "Level \\ I_{OUT} = light to heavy load \end{array}$	-	5.0	10	mA	(5)
Switch Current Hysteresis Range	I _{GOhys}	I _{GOhys} =I _{GO} -I _{GOR}	-	3.0	-	mA	(5)
PS Switching Delay Time	t _{DPS}	V _{CE} =V _{IN} =V _{OUT(T)} +1.0V, (HS/PS Auto-Switching) Time until HS mode is changed-over to PS mode by I _{GOR} .	see th	e Voltage	Chart	μs	(5)
CE High Level Voltage	V_{CEH}	V _{CE} =V _{IN}	1.2	-	6.0	V	4
CE Low Level Voltage	V _{CEL}	V _{CE} =V _{SS}	-	-	0.3	V	4
CE High Level Current	I _{CEH}	V _{CE} =V _{IN} (A/B series)	-0.1	-	0.1	μΑ	4
_		V _{CE} =V _{IN} =6.0V (C/D series)	-	9	15	μΑ	
CE Low Level Current	I _{CEL}	V _{CE} =V _{SS}	-0.1	-	0.1	μΑ	4
CL Discharge Resistance (*7)	R _{DCHG}	V_{IN} =6.0V, V_{OUT} =5.0V, V_{CE} = V_{SS}	-	460	-	Ω	1
Thermal Shutdown Detect Temperature	T_{TSD}	Junction Temperature	-	150	-	°C	
Thermal Shutdown Release Temperature	T _{TSR}	Junction Temperature	ı	135	-	°C	
Inrush Current	I _{RUSH}	$V_{IN}=V_{OUT(T)}+1.0V$, $C_L=22 \mu$ F $V_{CE}=0V \rightarrow V_{OUT(T)}+1.0V$ (Only when rising and within 1ms)	-	-	700	mA	6

^{*1:} Unless otherwise stated, V_{IN}=V_{OUT (T)} +1.0V.

^{*2:} V_{OUT (E)}= Effective output voltage (see the voltage chart) (ie. The output voltage when " V_{OUT} (T)+1.0V" is provided at the V_{IN} pin while maintaining a certain I_{OUT} value.

^{*3:} V_{OUT (T)}: Nominal output voltage
*4: Vdif={V_{IN1}^(*6) - V_{OUT1}^(*5)}
*5: V_{OUT1}=A voltage equal to 98% of the V_{OUT(T)} when an amply stabilized I_{OUT} {V_{OUT(T)}+1.0V} is input in the HS mode.

 $^{^{\}star}$ 6: V_{IN1} =The input voltage when V_{OUT1} appears as input voltage is gradually decreased.

^{*7:} For the XC6220B/D series only. The XC6220A/C series (semi-custom) discharges by resistors R1 and R2 only as shown in the block

^{*8:} For the XC6220A/C series, output voltage rises when the IC is in the high temperature stand-by mode.

■ELECTRICAL CHARACTERISTICS (Continued)

●Voltage Chart 1

										PS
NOMINAL		PUT	OUT	PUT	DROF	POUT	DROPOUT	SUPPLY	SUPPLY	SWITCH
OUTPUT		AGE 1	_	AGE 2	VOLTA		VOLTAGE 2	CURRENT 1	CURRENT 2	DELAY
VOLTAGE	(HS N			Mode)	Vdif 1	` ′	Vdif 2 (mV)	(XC6220C/D)	(XC6220C/D)	TIME
(V)	(\	V)	(V)	I _{OUT} =3	00mA	I _{OUT} =1000mA	(μ A)	(μA)	(μs)
	Vo	DUT	Vo	DUT	Vo	dif	Vdif	I _{SS1}	I _{SS2}	t _{DPS}
V _{OUT(T)}	MIN.	MAX.	MIN.	MAX.	TYP.	MAX.	MAX.	MAX.	MAX.	MAX.
0.80	0.7800	0.8200	0.7600	0.8400				112.500	22.500	
0.85	0.8300	0.8700	0.8100	0.8900	400			112.625	22.625	
0.90	0.8800	0.9200	0.8600	0.9400	400	575		112.750	22.750	
0.95	0.9300	0.9700	0.9100	0.9900				112.875	22.875	
1.00	0.9800	1.0200	0.9600	1.0400			_	113.000	23.000	
1.05	1.0300	1.0700	1.0100	1.0900	240	405		113.125	23.125	
1.10	1.0800	1.1200	1.0600	1.1400				113.250	23.250	
1.15	1.1300	1.1700	1.1100	1.1900	180	305		113.375	23.375	050
1.20	1.1800	1.2200	1.1600	1.2400				113.500	23.500	650
1.25	1.2300	1.2700	1.2100	1.2900				113.625	23.625	
1.30	1.2800	1.3200	1.2600	1.3400	450	0.45	400	113.750	23.750	
1.35	1.3300	1.3700	1.3100	1.3900	150	215	460	113.875	23.875	
1.40	1.3800	1.4200	1.3600	1.4400				114.000	24.000	
1.45	1.4300	1.4700	1.4200	1.4800				114.125	24.125	
1.50	1.4800	1.5200	1.4700	1.5300				114.250	24.250	
1.55	1.5300	1.5700	1.5100	1.5900				114.375	24.375	
1.60	1.5800	1.6200	1.5600	1.6400				114.500	24.500	
1.65	1.6300	1.6700	1.6100	1.6900	100	150		114.625	24.625	
1.70	1.6800	1.7200	1.6600	1.7400				114.750	24.750	
1.75	1.7300	1.7700	1.7100	1.7900				114.875	24.875	
1.80	1.7800	1.8200	1.7600	1.8400				115.000	25.000	
1.85	1.8300	1.8700	1.8100	1.8900				115.125	25.125	
1.90	1.8800	1.9200	1.8600	1.9400				115.250	25.250	
1.95	1.9300	1.9700	1.9100	1.9900				115.375	25.375	
2.00	1.9800	2.0200	1.9600	2.0400				115.500	25.500	
2.05	2.0295	2.0705	2.0090	2.0910				115.625	25.625	850
2.10	2.0790	2.1210	2.0580	2.1420	0.5	400		115.750	25.750	650
2.15	2.1285	2.1715	2.1070	2.1930	85	130		115.875	25.875	
2.20	2.1780	2.2220	2.1560	2.2440			055	116.000	26.000	
2.25	2.2275	2.2725	2.2050	2.2950			655	116.125	26.125	
2.30	2.2770	2.3230	2.2540	2.3460				116.250	26.250	
2.35	2.3265	2.3735	2.3030	2.3970				116.375	26.375	
2.40	2.3760	2.4240	2.3520	2.4480				116.500	26.500	
2.45	2.4255	2.4745	2.4010	2.4990				116.625	26.625	
2.50	2.4750	2.5250	2.4500	2.5500				116.750	26.750	
2.55	2.5245	2.5755	2.4990	2.6010				116.875	26.875	
2.60	2.5740	2.6260	2.5480	2.6520				117.000	27.000	
2.65	2.6235	2.6765	2.5970	2.7030				117.125	27.125	
2.70	2.6730	2.7270	2.6460	2.7540	0.5	440		117.250	27.250	
2.75	2.7225	2.7775	2.6950	2.8050	65	110		117.375	27.375	1000
2.80	2.7720	2.8280	2.7440	2.8560				117.500	27.500	1200
2.85	2.8215	2.8785	2.7930	2.9070				117.625	27.625	
2.90	2.8710	2.9290	2.8420	2.9580				117.750	27.750	
2.95	2.9205	2.9795	2.8910	3.0090				117.875	27.875	

■ ELECTRICAL CHARACTERISTICS (Continued)

●Voltage Chart 2

NOMINAL OUTPUT VOLTAGE (V)	VOLT	PUT ΓAGE Mode) V)	VOLT	PUT FAGE Mode) V)	DROF VOLTA Vdif 1 I _{OUT} =3	AGE 1 (mV)	DROPOUT VOLTAGE 2 Vdif 2 (mV) I _{OUT} =1000mA	SUPPLY CURRENT 1 (XC6220C/D) (µA)	SUPPLY CURRENT 2 (XC6220C/D) (μ A)	PS SWITCH DELAY TIME (µs)
	Vo	DUT	Vo	DUT	Vo	dif	Vdif	I _{SS1}	I _{SS2}	t _{DPS}
$V_{OUT(T)}$	MIN.	MAX.	MIN.	MAX.	TYP.	MAX.	MAX.	MAX.	MAX.	MAX.
3.00	2.9700	3.0300	2.9400	3.0600				118.000	28.000	
3.05	3.0195	3.0805	2.9890	3.1110				118.125	28.125	
3.10	3.0690	3.1310	3.0380	3.1620				118.250	28.250	
3.15	3.1185	3.1815	3.0870	3.2130				118.375	28.375	
3.20	3.1680	3.2320	3.1360	3.2640				118.500	28.500	
3.25	3.2175	3.2825	3.1850	3.3150				118.625	28.625	
3.30	3.2670	3.3330	3.2340	3.3660				118.750	28.750	
3.35	3.3165	3.3835	3.2830	3.4170				118.875	28.875	
3.40	3.3660	3.4340	3.3320	3.4680				119.000	29.000	
3.45	3.4155	3.4845	3.3810	3.5190				119.125	29.125	
3.50	3.4650	3.5350	3.4300	3.5700	60	95		119.250	29.250	1200
3.55	3.5145	3.5855	3.4790	3.6210				119.375	29.375	
3.60	3.5640	3.6360	3.5280	3.6720				119.500	29.500	
3.65	3.6135	3.6865	3.5770	3.7230				119.625	29.625	
3.70	3.6630	3.7370	3.6260	3.7740				119.750	29.750	
3.75	3.7125	3.7875	3.6750	3.8250				119.875	29.875	
3.80	3.7620	3.8380	3.7240	3.8760				120.000	30.000	
3.85	3.8115	3.8885	3.7730	3.9270				120.125	30.125	
3.90	3.8610	3.9390	3.8220	3.9780				120.250	30.250	
3.95	3.9105	3.9895	3.8710	4.0290				120.375	30.375	
4.00	3.9600	4.0400	3.9200	4.0800			655	120.500	30.500	
4.05	4.0095	4.0905	3.9690	4.1310				120.625	30.625	
4.10	4.0590	4.1410	4.0180	4.1820				120.750	30.750	
4.15	4.1085	4.1915	4.0670	4.2330				120.875	30.875	
4.20	4.1580	4.2420	4.1160	4.2840				121.000	31.000	
4.25	4.2075	4.2925	4.1650	4.3350				121.125	31.125	
4.30	4.2570	4.3430	4.2140	4.3860				121.250	31.250	
4.35	4.3065	4.3935	4.2630	4.4370				121.375	31.375	
4.40	4.3560	4.4440	4.3120	4.4880				121.500	31.500	
4.45	4.4055	4.4945	4.3610	4.5390				121.625	31.625	
4.50	4.4550	4.5450	4.4100	4.5900	53	85		121.750	31.750	1450
4.55	4.5045	4.5955	4.4590	4.6410				121.875	31.875	1-00
4.60	4.5540	4.6460	4.5080	4.6920				122.000	32.000	
4.65	4.6035	4.6965	4.5570	4.7430				122.125	32.125	
4.70	4.6530	4.7470	4.6060	4.7940				122.250	32.250	
4.75	4.7025	4.7975	4.6550	4.8450				122.375	32.375	
4.80	4.7520	4.8480	4.7040	4.8960				122.500	32.500	
4.85	4.8015	4.8985	4.7530	4.9470				122.625	32.625	
4.90	4.8510	4.9490	4.8020	4.9980				122.750	32.750	
4.95	4.9005	4.9995	4.8510	5.0490				122.875	32.875	
5.00	4.9500	5.0500	4.9000	5.1000				123.000	33.000	

■OPERATIONAL EXPLANATION

The voltage divided by resistors R1 & R2 is compared with the internal reference voltage by the error amplifier. The P-channel MOSFET which is connected to the V_{OUT} pin is then driven by the subsequent output signal. The output voltage at the V_{OUT} pin is controlled & stabilized by a system of negative feedback. The current limit circuit and short protect circuit operate in relation to the level of output current. The GO function monitors the output current and switches the IC between two operating modes according to the level of output current. Further, the IC's internal circuitry can be shutdown via the CE pin's signal.

<GreenOperation>

The XC6220 series always operates in a green operation (GO) mode. The GO mode enables the IC to switch automatically between the high speed (HS) mode or the power save (PS) mode according to the level of output current. The switching point of the HS mode and the PS mode is fixed inside the IC. When the output current becomes $I_{\rm GOR} = 1.0 \text{mA}$ (MIN.) or below, the mode changes automatically to the PS mode after a delay time of hundreds of microseconds. Supply current in light load is greatly reduced. Also when the output current becomes $I_{\rm GO}$ 10mA (MAX.) or more, the mode changes automatically to the HS mode and the IC returns to high speed operation.

<Low ESR capacitor>

The XC6220 series has a built-in phase compensation circuit which means that a stable output voltage is achieved even if the IC is used with low ESR capacitors. In order to ensure stable phase compensation it is recommended that a C_L capacitor is connected as close as possible to the V_{OUT} pin and V_{SS} pin. For a stable power supply, please connect an input capacitor (C_{IN}) between the V_{IN} pin and the V_{SS} pin.

Values required for the phase compensation are shown in the chart below. If a loss of the capacitance happens, the stable phase compensation may not be obtained. Please ensure to use a capacitor which does not depend on bias or temperature too much.

Recommended output capacitor (C_L) Values corresponding to input capacitor (C_{IN})

OUTPUT VOLTAGE (V)	INPUT CAPACITOR VALUE				
OUTFUT VOLIAGE (V)	4.7 μ F	10 μ F	22 μ F		
0.80V~0.95V	×	×	22 μ F		
1.00V~1.45V	47 μ F	47 μ F	22 μ F		
1.50V~1.75V	47 μ F	22 μ F	10 μ F		
1.80V~2.95V	47 μ F	6.8 <i>μ</i> F	6.8 <i>μ</i> F		
3.00V~3.50V	47 μ F	4.7 μ F	4.7 μ F		
3.55V~5.00V	47 μ F	10 μ F	6.8 μ F		

[×] No option

<Current Limiter. Short-Circuit Protection>

The XC6220 series includes a fold-back circuit, which aids the operation of the current limiter and circuit protection. When the load current reaches the current limit level, the fold-back circuit operates and output voltage drops. As a result of this drop in output voltage, output current also decreases. When the output pin is shorted, a current of about 180mA flows.

<CE Pin>

The IC's internal circuitry can be shutdown via the signal from the CE pin with the XC6220 series. With the XC6220B/D series, output at the V_{OUT} pin will be pulled down to the V_{SS} level. However, with XC6220A/B series, the C_L auto-discharge resistor is connected in parallel to R1 and R2 while the power supply is applied to the V_{IN} pin. Therefore, the time until the V_{OUT} pin reaches the V_{SS} level is shortened. The output voltage becomes unstable, when the CE pin is open. If this IC is used with the correct output voltage for the CE pin, the logic is fixed and the IC will operate normally. However, with the XC6220C/D series, supply current may increase as a result of through current in the IC's internal circuitry when medium voltage is input.

■ OPERATIONAL EXPLANATION (Continued)

<CL High Speed Auto-Discharge Function>

The XC6220B/D series can quickly discharge the electric charge at the output capacitor (C_L), when a low signal to the CE pin, which enables the whole IC circuit put into an OFF state, is inputted to the CE pin via the N-channel transistor located between the Vout pin and the Vss pin (cf. BLOCK DIAGRAM). The C_L auto-discharge resistance value is fixed to 460 Ω (VIN=6.0V, Vout=5.0V at TYP.). The discharge time of the output capacitor (C_L) is set by the C_L auto-discharge resistance (R_{DCHG}) and the output capacitor (C_L). By setting a time constant of the C_L auto-discharge resistance value (R_{DCHG}) and an output capacitor value (R_{DCHG}), the output voltage after discharge via the N channel transistor is calculated by the following formulas.

$$V = V_{OUT} x e^{-t/\tau}$$
, or $t = \tau \ln(V_{OUT(E)} / V)$

where

V : Output voltage after discharge

V_{OUT(E)}: Output voltage t: Discharge time

 τ : C_L auto-discharge resistance $R_{DCHG} \times Output$ capacitor (C_L) value C)

For the XC6220A/C series, output voltage may rises when in the high stand-by mode. Please note that in that case, the typical characteristics may worse. When the XC6220A/C series is used, please be noted the characteristics shown below.

XC6220A501xx

Output Voltage vs. Input Voltage

<Thermal Shutdown>

When the junction temperature of the built-in driver transistor reaches the temperature limit level (150°C TYP.), the thermal shutdown circuit operates and the driver transistor will be turned OFF. The IC resumes its operation when the thermal shutdown function is released and the IC's operation is automatically restored because the junction temperature drops to the level of the thermal shutdown release voltage.

<Inrush Current Protection>

The XC6220 series includes an inrush current protection circuit.

The inrush current protection circuit suppresses inrush current charged to C_L when the IC starts up to 700 mA (MAX.) for approximately 1 ms.

* Please note that the device can not provide the output current beyond 700 mA for a period of approximately 1 ms after the CE pin goes high.

■NOTES ON USE

- 1. Please use this IC within the stated absolute maximum ratings. The IC is liable to malfunction should the ratings be exceeded.
- 2. Where wiring impedance is high, operations may become unstable due to noise and/or phase lag depending on output current. Please strengthen VIN and Vss wiring in particular.
- 3. Please wire the input capacitor (CIN) and the output capacitor (CL) as close to the IC as possible.

■TEST CIRCUITS

Circuit 1: Output Voltage, Output Current, Dropout Voltage, Input/Operating Voltage, Line Regulation, Load Regulation, Current Limit, Short Current, CL Discharge Resistance

Circuit 2: Supply Current, Stand-by Current

■TEST CIRCUITS (Continued)

Circuit 4: CE "H" "L" Level Voltage, CE "H" "L" Level Current

Circuit 5: HS Switching Current, PS Switching Current, Switch Current Hysteresis Range, PS Switching Delay Time

■TYPICAL PERFORMANCE CHARACTERISTICS

(1) Output Voltage vs. Output Current

(2) Output Voltage vs. Input Voltage

XC6220x301

XC6220x501

(3) Dropout Voltage vs. Output Current

XC6220x121

(3) Dropout Voltage vs. Output Current

XC6220x501

(4) Output Voltage vs. Ambient Temperature

XC6220x121

XC6220x301

(5) Supply Current vs. Input Voltage

XC6220x301

XC6220x301

XC6220x501

(6) PS Switching Delay Time vs. Ambient Temperature

XC6220x501 V_{IN} =CE=6.0V, I_{OUT} =10mA \rightarrow 0.1mA $C_{IN}=C_L=10 \mu F (ceramic)$ 1600 1400 1200 TDPS (µs) 1000 800 600 400 200 -50 -25 25 50 75 100 Ambient Temperature: Tpor (°C)

(7) CL Discharge Resistance vs. Ambient Temperature (8) PS/HS Switch Current vs. Ambient Temperature

XC6220x301 V_{IN} =CE=4.0V, C_{IN} =10 μ F, C_L =4.7 μ F (ceramic) 10 9 **HS Switching Current** 8 - PS Switching Current Input Current: Iou⊤ (mA) 7 6 5 4 3 2 0 -50 100 -25 25 50 75 Ambient Temperature: Tpor (°C)

(9) Load Transient Response

CH1:100mV/div CH2:100mA/div

XC6220x301

CH1:100mV/div CH2:100mA/div

XC6220x501

 $200 \, \mu \, \text{s/div}$ CH1:100mV/div CH2:100mA/div

XC6220x121

CH1:100mV/div CH2:100mA/div

XC6220x301

CH1:100mV/div CH2:100mA/div

XC6220x501

 $200~\mu~\text{s/div}$ CH1:100mV/div CH2:100mA/div

(10) Line Transient Response

XC6220x121 CE=V_R, Tr=Tf=5 μ s, I_{OUT}=100mA Topr=25°C, C_R=C_L=22 μ F (ceramic) 3.2V CH1 2.2V Input Voltage CH2

 $100 \, \mu \, \text{s/div}$ CH1:1V/div CH2:20mV/div

CE=V_№ Tr=Tf=5 μ s, I_{out}=100mA Topr=25°C, C_N=10 μ F, C_t=4.7 μ F (ceramic) 5.0V Input Voltage CH1 Output Voltage 100 μ s/div CH1:1V/div CH2:20mV/div

XC6220x301

XC6220x501

 $100~\mu~s/div$ CH1:500mV/div CH2:20mV/div

(11) Input Rise Characteristics

CH1:1V/div CH2:500mV/div

(11) Input Rise Characteristics

 $200 \, \mu \, \text{s/div}$ CH1:2V/div CH2:2V/div

XC6220x501

CH1:2V/div CH2:2V/div

(12) CE Rise Characteristics

CH1:500mV/div CH2:500mV/div

XC6220x301

 $200~\mu~\text{s/div}$ CH1:2V/div CH2:2V/div

XC6220x501

CH1:2V/div CH2:2V/div

XC6220x121

CH1:500mV/div CH2:500mV/div

(12) CE Rise Characteristics

XC6220x301

 $100 \,\mu$ s/div CH1:500mV/div CH2:1V/div

............

CH1:500mV/div CH2:2V/div

(13) Inrush Current

XC6220x121

 $100~\mu~s/div$ CH1: 500 mV/div~CH2:1V/div~CH3:100 mA/div

XC6220x301

 $100~\mu~\text{s/div}$ CH1: 500mV/div CH2: 1V/div

XC6220x501

CH1:500mV/div CH2:2V/div

XC6220x301

CH1:500mV/div CH2:1V/div CH3:100mA/div

(13) Inrush Current

CH1:500mV/div CH2:1V/div CH3:100mA/div

(14) CL Discharge Time

XC6220x301 (B/D)

CH1:500mV/div CH2:2V/div

XC6220x301 (A/C)

 $CH1:500 mV/div \ CH2:2V/div$

(15) Ripple Rejection Rate

XC6220x121 (HighSpeed mode)

$\label{eq:lower_pac} \textit{V}_{\textrm{IN}}\!\!=\!\!\textrm{CE}\!=\!\!2.2\textrm{VDC}\!\!+\!\!0.5\textrm{Vp-pAC},~I_{\textrm{OUT}}\!\!=\!\!30\textrm{mA}$ Topr=25°C, C_{IN}=0.1 μ F, C_L=22 μ F (ceramic) 80 70 Ripple Rejection Ratio: RR (dB) 60 50 40 30 20 10 0 0.01 0.1 10 100 1000 Ripple Frequency: f (kHz)

XC6220x121 (PowerSave mode)

(15) Ripple Rejection Rate

XC6220x301 (HighSpeed mode)

XC6220x301 (PowerSave mode)

XC6220x501 (HighSpeed mode)

XC6220x501 (PowerSave mode)

XC6220 Series

■PACKAGING INFORMATION

●USP-6C

●SOT-25

●SOT-89-5

●USP-6C Reference Pattern Layout

2.4

●USP-6C Reference Metal Mask Design

SOT-25 Power Dissipation

Power dissipation data for the SOT-25 is shown in this page.

The value of power dissipation varies with the mount board conditions.

Please use this data as one of reference data taken in the described condition.

1. Measurement Condition (Reference data)

Condition: Mount on a board
Ambient: Natural convection
Soldering: Lead (Pb) free

Board: Dimensions 40 x 40 mm (1600 mm² in one side)

Copper (Cu) traces occupy 50% of the board area

In top and back faces

Package heat-sink is tied to the copper traces

(Board of SOT-26 is used.)

Material: Glass Epoxy (FR-4)

Thickness: 1.6 mm

Through-hole: 4 x 0.8 Diameter

Evaluation Board (Unit: mm)

2. Power Dissipation vs. Operating temperature

Board Mount (Tj max = 125°C)

Ambient Temperature (°C)	Power Dissipation Pd(mW)	Thermal Resistance (°C/W)	
25	600	166.67	
85	240	100.07	

● SOT-89-5 Power Dissipation

Power dissipation data for the SOT-89-5 is shown in this page.

The value of power dissipation varies with the mount board conditions.

Please use this data as one of reference data taken in the described condition.

2. Measurement Condition (Reference data)

Condition: Mount on a board Ambient: Natural convection Soldering: Lead (Pb) free

Board: Dimensions 40 x 40 mm (1600 mm² in one side)

Copper (Cu) traces occupy 50% of the board area

In top and back faces

Package heat-sink is tied to the copper traces

Material: Glass Epoxy (FR-4)

Thickness: 1.6 mm

Through-hole: 5 x 0.8 Diameter

Evaluation Board (Unit: mm)

Poord Mount (Ti may = 125°C)

2. Power Dissipation vs. Operating temperature

Board Mount (1) max = 125 C)				
Ambient Temperature(°C)	Power Dissipation Pd(mW)	Thermal Resistance (°C/W)		
25	1300	76.92		
85	520	70.92		

USP-6C Power Dissipation

Power dissipation data for the USP-6C is shown in this page.

The value of power dissipation varies with the mount board conditions.

Please use this data as one of reference data taken in the described condition.

3. Measurement Condition (Reference data)

Condition: Mount on a board
Ambient: Natural convection
Soldering: Lead (Pb) free

Board: Dimensions 40 x 40 mm (1600 mm² in one side)

Copper (Cu) traces occupy 50% of the board area

In top and back faces

Package heat-sink is tied to the copper traces

Material: Glass Epoxy (FR-4)

Thickness: 1.6 mm

Through-hole: 4 x 0.8 Diameter

2. Power Dissipation vs. Operating temperature

Evaluation Board (Unit: mm)

Board Mount (Tj max = 125°C)

Ambient Temperature (°C)	Power Dissipation Pd(mW)	Thermal Resistance (°C/W)	
25	1000	100.00	
85	400	100.00	

■ MARKING RULE

●SOT-25, SOT-89-5

SOT25

SOT89-5

USP6C

① represents product series

MARK	PRODUCT SERIES			
Н	XC6220*****			

2 represents type of CE, voltage range, and accuracy

MARK	CE	OUTPUT VOLTAGE RANGE	OUTPUT VOLTAGE ACCURACY	PRODUCT SERIES	
0	Α	0.8~2.9	1	XC6220A081** ~ XC6220A291**	
1	Α	0.8~2.9	В	XC6220A08B** ∼ XC6220A29B**	
2	Α	3.0~5.0	1	XC6220A301** ~ XC6220A501**	
3	Α	3.0~4.9	В	XC6220A30B** ~ XC6220A49B**	
4	В	0.8~2.9	1	XC6220B081** ~ XC6220B291**	
5	В	0.8~2.9	В	XC6220B08B** ∼ XC6220B29B**	
6	В	3.0~5.0	1	XC6220B301** ~ XC6220B501**	
7	В	3.0~4.9	В	XC6220B30B** ~ XC6220B49B**	
8	С	0.8~2.9	1	XC6220C081** ~ XC6220C291**	
9	С	0.8~2.9	В	XC6220C08B** ~ XC6220C29B**	
Α	С	3.0~5.0	1	XC6220C301** ~ XC6220C501**	
В	С	3.0~4.9	В	XC6220C30B** ~ XC6220C49B**	
С	D	0.8~2.9	1	XC6220D081** ~ XC6220D291**	
D	D	0.8~2.9	В	XC6220D08B** ~ XC6220D29B**	
Е	D	3.0~5.0	1	XC6220D301** ~ XC6220D501**	
F	D	3.0~4.9	В	XC6220D30B** ~ XC6220D49B**	

^{*} Accuracy "1" \cdots 0.1V increments, Accuracy "B" \cdots 0.05V increments

3 represents output voltage

MARK	OUTPUT VOLTAGE (V)		MARK	OUTPUT VOLTAGE (V)		MARK	OUTPUT VOLTAGE (V)	
0	_	3.0x	Α	1.0x	4.0x	N	2.0x	5.0x
1	_	3.1x	В	1.1x	4.1x	Р	2.1x	_
2	_	3.2x	С	1.2x	4.2x	R	2.2x	_
3	_	3.3x	D	1.3x	4.3x	S	2.3x	_
4	_	3.4x	Е	1.4x	4.4x	T	2.4x	_
5	_	3.5x	F	1.5x	4.5x	U	2.5x	_
6	_	3.6x	Н	1.6x	4.6x	V	2.6x	-
7	_	3.7x	K	1.7x	4.7x	Χ	2.7x	1
8	0.8x	3.8x	L	1.8x	4.8x	Υ	2.8x	_
9	0.9x	3.9x	M	1.9x	4.9x	Z	2.9x	_

④,⑤ represents production lot number 01~09、0A~0Z、11···9Z、A1~A9、AA···Z9、ZA~ZZ repeated (G, I, J, O, Q, W excluded)

*No character inversion used.

- 1. The products and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date.
- 2. We assume no responsibility for any infringement of patents, patent rights, or other rights arising from the use of any information and circuitry in this datasheet.
- 3. Please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this datasheet.
- 4. The products in this datasheet are not developed, designed, or approved for use with such equipment whose failure of malfunction can be reasonably expected to directly endanger the life of, or cause significant injury to, the user.
 - (e.g. Atomic energy; aerospace; transport; combustion and associated safety equipment thereof.)
- Please use the products listed in this datasheet within the specified ranges.
 Should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives.
- 6. We assume no responsibility for damage or loss due to abnormal use.
- 7. All rights reserved. No part of this datasheet may be copied or reproduced without the prior permission of TOREX SEMICONDUCTOR LTD.

TOREX SEMICONDUCTOR LTD.