FUNCTION

- สิ่งที่แสดงถึงความสัมพันธ์ระหว่างตัวแปร 2 ตัวแปร
- ช่วยแสดงถึงพฤติกรรมของตัวแปรหนึ่งที่มีผลกับอีกตัวแปรทำให้เรา สามารถทำนายค่าของตัวแปรในฟังก์ชันได้

ซึ่งฟังก์ชั้นสามารถูกแบ่งออกไปได้หลายชนิด ตามพฤติกรรมและชนิดของความสัมพันธ์ของตัวแปร

Polynomial Function

Polynomial Function หรือ ฟังก์ชันพหุนาม คือฟังก์ชันที่สร้างจากสมการที่มี ตัวแปรอย่างน้อย 1 ตัวแปร และประกอบด้วยตัวดำเนินการแค่ + , - , x

รูปแบบสมการทั่วไป:
$$f(t)=a_0+a_1t+a_2t^2+...+a_nt^n$$

สมการในรูปของผลรวม:
$$f(t) = a_0 + \sum_i^n a_i t^i$$

เขียนในรูปของเมทริกซ์:
$$f(t) = [a_0 \quad a_1 \quad ... \quad a_n] \begin{bmatrix} t \\ \vdots \\ t^n \end{bmatrix}$$

Polynomial Function in real life

การออกแบบสะพาน

คำนวณปริมาณความเข้มข้นของยา ในระบบไหลเวียนโลหิต

น้ำหนักของผู้ป่วยหลังจากป่วย เทียบกับเวลาที่เริ่มป่วย

จากตัวอย่างที่กล่าวมาเราสามารถประยุกต์ใช้ Polynomial Function ในการออกแบบและจัดการ ซึ่งจะเห็นได้ว่าฟังก์ชันนี้อยู่ในชีวิตประจำวันรอบตัวเรามากมาย

Exponential Function

Exponential Function หรือ ฟังก์ชันเลขชี้กำลัง คือ ฟังก์ชัน ที่มีรูปแบบในรูปของเลขยกกำลัง โดยมีเลขฐานมากกว่า 1

รูปแบบสมการทั่วไป: $f(t)=e^{lpha t}:lpha>0$

ยิ่ง lpha มีค่ามากกราฟจะยิ่งชันมาก

เราสามารถอธิบายในรูปอนุกรมกำลังได้

$$e^{t} = \sum_{n=0}^{\infty} \frac{t^{n}}{n!} = 1 + t + \frac{t^{2}}{2!} + \frac{t^{3}}{3!} + \dots$$

อธิบายในรูปแบบของลิมิต:
$$e^t = \lim_{n \to \infty} \left(1 + \frac{t}{n}\right)^n$$

Exponential Function in real life

คำนวณอัตราดอกเบี้ยทบต้นด้วยสูตร

เงินทั้งหมด = เงินต้น(1+ อัตราดอกเบี้ยต่อปี $)^{1}$

ตัวอย่างเช่น เงินต้น 10 บาท อัตราดอกเบี้ย 5% ต่อปี

เราจะสามารถวิเคราะห์เงินทั้งหมดได้จากกราฟข้างต้น

ซึ่งอยู่ในรูปแบบของ Exponential Function

Periodic Function

Periodic Function หรือฟังก์ชั้นคาบ คือฟังก์ชั้นที่มีค่าซ้ำกันในช่วงเวลา ที่มีระยะห่างเท่ากัน ซึ่งเรียกว่าคาบ

$$f(t) = f(t+T)$$

พังก์ชันนี้จะมีพฤติกรรมซ้ำ ๆ เป็นช่วง ๆ

จากตัวอย่างข้างต้นเราจะพบว่า Square Wave มีคาบ(T) = 2 จะได้ว่า

$$f(t) = f(t+2)$$

ดังนั้น เมื่อ t = 1 จะเท่ากับ t =3 และ t = 5

$$f(1) = f(3) = f(5)$$

Periodic Function in real life

นาฬิกาก็มีการทำงานซ้ำ ๆ เช่น

- เข็มวินาที่ในแต่ละนาที่
- เข็มนาที่ในแต่ละชั่วโมง
- การทำงานในแต่ละวัน

การสร้างสัญญาณ

Pulse width modulation

มีหลักการทำงานซ้ำ ๆ วนลูป

สามารถใช้ Periodic Function

ในการวิเคราะห์สัญญาณ

Gaussian Function

รูปแบบสมการทั่วไป: $g(t) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(t-\mu^2)}{2\sigma^2}}$

 $\stackrel{-}{\mathrm{gi}}$ ง σ มีค่าเข้าใกล้ $\mathsf{0}$ มากกราฟจะยิ่งชั้นมาก

ี้ถ้า μ = 0 เราจะได้ความสัมพันธ์หนึ่งคือ

$$\int_{-\infty}^{\infty} g_{\mu=0}(t)dt = 1$$

Error Function: $erf(z) = \int_0^z e^{-t^2} dt$

เมื่อพิจารณาที่ $\sigma ightarrow 0$

เมื่อเราทำการอินทิเกรต Gaussian function จะได้ฟังก์ชัน e(t)

$$\int g_{\mu=0}(t)dt = e(t) = \frac{1}{2} \left(\operatorname{erf} \left(\frac{t}{\sqrt{2\sigma^2}} \right) + 1 \right)$$

Dirac Impulse Function

Heaviside Step Function

Gaussian Function in real life

การทอยลูกเต๋า 2 ลูก สามารถวิเคราะห์โอกาสของผลรวมลูกเต๋า โดยใช้ Gaussian Function ในการวิเคราะห์ได้

Sinusoidal Function

Sinusoidal Function คือสัญญาณที่เป็นคาบที่มีค่า Amplitude เปลี่ยนแปลงตามเวลา เป็นแบบฟังก์ชัน Sine หรือ Cosine

รูปแบบสมการทั่วไป: $f(t) = Asin(2\pi ft + \phi)$

ในชีวิตประจำวันเราจะพบ sin waveได้ในสัญญาณของมวลสปริง

สัญญาณที่ได้จากระบบทางกายภาพนี้จะมีรูปแบบเป็น Sin wave ซึ่งเราสามารถนำรูปแบบสมการ Sinusoidal Function ไปใช้วิเคราะห์สัญญาณ หรือปรับแต่งได้

Signal Conditioning

Sensor

Signal Conditioning

เราสามารถนำค่าที่วัดได้จาก Sensor มาทำการปรับแต่งให้อยู่
ในช่วงที่ต้องการก่อนนำไปใช้งาน เช่นการเปลี่ยนระดับ
สัญญาณ การแปลงกระแสแรงดัน การกระตุ้น การขยาย
สัญญาณ การกรองสัญญาณ เป็นต้น ทั้งนี้วิธีการปรับแต่ง
สัญญาณก็ขึ้นอยู่กับการนำไปใช้
และเซนเซอร์ที่ใช้

Amplification

11

สัญญาณที่อ่านได้จาก Sensor บางครั้งมีขนาดมากหรือน้อยเกินช่วงที่เราจะ

สามารถนำไปใช้งานให้เกิดประสิทธิภาพได้

ก่อนที่จะนำไปใช้เราสามารถนำสัญญาณนั้นไปทำการขยายหรือลดทอนสัญญาณ

ได้ด้วยวงจรทางไฟฟ้าด้วย Op-amp

$$V_{out} = [(Sig +) - (Sig -)][rac{R_4}{R_2}]$$
โดยที่ $R_1 = R_2$ และ $R_3 = R_4$

Conversion(แปลงรูปแบบสัญญาณ)

ระบบทางกายภาพจะมีรูปแบบเป็นสัญญาณ Analog เราสามารถ แปลงสัญญาณ Analog ให้เป็น Digital ก่อนที่จะนำไปใช้งานได้

Filtering(กรองสัญญาณ)

สัญญาณที่อ่านได้จริงมักจะพบสัญญาณรบกวนเสมอ เราสามารถ ทำการกรองสัญญาณได้ด้วยวงจรไฟฟ้าเช่น RC Filter

เมื่อสัญญาณถูกกรองด้วยวงจร RC Filter
Amplitude และ Phase ของสัญญาณจะถูกลดทอนลง
ซึ่งเราสามารถใช้ Transfer Function ในการวิเคราะห์ระบบเพื่อ
หาอัตราส่วนสัญญาณเข้าเปรียบเทียบกับสัญญาณออกได้

THANKS!

Does anyone have any questions?

addyouremail@freepik.com +91 620 421 838 yourcompany.com

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**

Please keep this slide as attribution

