Introduction to Spark in the context of a Distributed Pipeline

Maria Dominguez, Xavier Tordoir

Scala.io 2019

JVM development

Devops

ML & Big Data

play

96

Employees

26

Nationalities

Lots

Open source

Outline: covered concepts

Spark

DataFrames & Datasets

Spark notebooks

ML concepts

Streaming

Outline: The pipeline

Questions of the World

Hand-on set-up

VirtualBox installed

Download appliance: https://xtordoirtmp.s3-eu-west-1.amazonaws.com/sparkintro.ova

Import Appliance in virtualBox:

- Menu "File" -> "Import Appliance"

Start VM "sparkintro"

Open http://localhost:9000 in browser

Troubleshooting: Memory limits, network adapter 2 disconnect, use local ip

Notebooks, how? why?

Data Science implies:

- **knowledge** of the data, including its corner cases
- Exploration of how to guide the modelling, choosing the right methods for the data
- Trials and errors, no possibility to implement functional specs, only model validation
- => Need for interactive programming
- => Notebooks

Notebooks are good **educational** tools as well

Notebooks, how? why?

https://jupyter.org/

- Python environment
- Kernels to support different languages:

https://almond.sh/

Zeppelin

https://zeppelin.apache.org/

Spark-notebook

http://spark-notebook.io/

Scala notebooks

Notebooks: Take control of the environment

Understand the environment:

- Open the Reset notebook
- Look for markup cells, code cells
- Run cell with imports (ctrl-enter or shift-enter), close the tab
- Re-open the notebook, add a cell, check if imported calls work
- How can that be?
- Save, shutdown kernel
- Restart Kernel, what happens to imported calls?

Start with a little bit of Scala: Collection API

Spark history

2006

Batch processing

Trivial operations are difficult (filter, join)

Writing to disk

Batch and stream processing

Trivial operations are easy (filter, join)

In memory computation

Spark components & architecture

Apache Spark Components

Spark: Partitions

Spark: Jobs, Stages, Tasks

spark.sparkContext

```
.textFile( path = "README.md")
.flatMap(line => line.split( regex = " "))
.map(word => (word, 1))
.reduceByKey(_ + _)
```


Spark: Actions & Transformations

Spark: Persistance

Cache vs Persist

useful when data is accessed repeatedly avoid re-evaluation

```
ds.cache [ds.persist(StorageLevel.MEMORY_ONLY)]
ds.persist(StorageLevel)
ds.unpersist()
```

Checkpointing

allows a driver to be restarted on failure with previously computed state of a distributed computation

```
SparkContext.setCheckpointDir(directory)
ds.checkpoint(eager or lazy)
```

StorageLevel. W MEMORY_ONLY DISK_ONLY_2 W MEMORY_AND_DISK MEMORY_AND_DISK_2 MEMORY_AND_DISK_SER MEMORY_AND_DISK_SER_2 MEMORY_ONLY_2 MEMORY_ONLY_2 MEMORY_ONLY_SER_2 NONE OFF_HEAP

Spark: From RDD to Dataset

History of Spark APIs

Functional Operators (map, filter, etc.)

Expression-based operations and UDEs:

Logical plans and optimizer

Fast/efficient internal representations

Almost the "Best of both worlds": type safe + fast

But slower than DF Not as good for interactive analysis, especially Python.

Spark processing

Batch processing	Real time processing
Large group of data processed in a single run	Instantaneously data (events) processing
Entire data pre-selected and fed to the application	Stringent constrains in response time
Eg: Training data model	Eg: Prediction making

Spark SQL

Structured data processing

Extra optimisation by Spark: tungsten (memory management) + catalyst (query optimiser)

- SQL API
- Dataset API

Starting point: **SparkSession** (Already available in the notebooks/spark-shell as: spark)

```
import org.apache.spark.sql.SparkSession

val spark = SparkSession
   .builder()
   .appName( name = "Word count")
   .config("spark.some.config.option", "some-value")
   .getOrCreate()

// For implicit conversions like converting RDDs to DataFrames
import spark.implicits._
```

Spark Datasets

Distributed collection of data

Strongly typed

A Dataset can be constructed from JVM objects and then manipulated using functional transformations (map, flatMap, filter)

Encoders

API in Scala/Java

Spark Datasets

Spark DataFrames / SQL

```
DataFrame == Dataset[Row]

val df = spark.read.json("people.json")
df.printSchema()

// DataFrame API
df.select($"name").show()

// SQL API
df.createOrReplaceTempView("people")
spark.sql("SELECT name FROM people").show()
```

Spark DataFrame

Infer/Programatically define the Schema

Untyped (Dataset[Row])

	←		\longrightarrow
	SQL	DataFrames	Datasets
Syntax Errors	Runtime	Compile Time	Compile Time
Analysis Errors	Runtime	Runtime	Compile Time

Phew...let's recap with a hands-on

→ Completed Jobs (2)

Job Id (Job Group) ~	Description	Submitted	Duration	Stages: Succeeded/Total	Tasks (for all stages): Succeeded/Total
1 (cell+ CB69CDF2AB68442FA74A85CE7383B979)	run-1572275036185: homesDS.coumt() count at <consolec: 08<="" td=""><td>2019/10/28 15:03:58</td><td>0.2 s</td><td>2/2</td><td>3/3</td></consolec:>	2019/10/28 15:03:58	0.2 s	2/2	3/3
0 (cel- F04F4B46EE0C4DEE8FBC000E16F8AA89)	run-1572275025413; val allHomes = spark.sql("SELECT GOUNT(") FROM homes "jallHomes.s show at -oconsoles: 68	2019/10/28 15:03:47	15	2/2	3/3

- Completed Stages (2)

Stage Id +	Description	Submitted	Duration	Tasks: Succeeded/Total	Input	Output	Shuffle Read	Shuffle Write
3	run-1579275038185: homesDS.cocurt() count at <pre><pre><pre></pre></pre></pre>	2019/10/28 15:00:58	37 ms.	1/1			118.0B	
2	run-1579275038165; homesDS.count() count at <console> 59 +details</console>	2019/10/28 15:03:56	42 ms.	2/2				116.0 B

Stages for All Jobs

Completed Stages: 4

- Completed Stages (4)

Stage Id	Description	Submitted	Duration	Tasks: Succeeded/Total	Input	Output	Shuffle Read	Shuffle Write
3	run-1572275038185: homesD8.count() count at <console>:69 +details</console>	2019/10/28 15:08:58	37 ms	1/1			118.0 B	
2	run-1572275038185: homesDS.count() count at <console>:69 +details</console>	2019/10/26 15:03:56	42 ms	2/2				118.0 B
1	run=1572275025413; val allHomes = spark.sql("SELECT COUNT(") FROM homes")allHomes.s show at <console>:88 +details</console>	2019/10/26 15:03:48	0.1 s	1/1			118.0 B	
0	run-1572275025413; val allHomes = spark.sql("SELECT COUNT(") FROM homes")allHomes.s show at <console>:68 +details</console>	2019/10/28 15:08:47	0.6 s	2/2				118.0 B

Outline: The pipeline

Questions of the World

Spark notebooks

Interactive Spark shell in a browser using http://spark-notebook.io/

00_read_raw_history: Read historical data, do analysis, preprocessing and save results

01_train_model: Train linear model using preprocessed data

02_publish_stream: Generate a stream of data flowing in Kafka

03_serve_model_stream: Read data from Kafka and make predictions using our model

Data as a flat table

```
type Feature = Double
type Label = Double

val dataSet: Seq[ (Vector[Feature], Label) ]
```

Surface	Land	Beds	Sidings
110	896	2	4
120	435	3	2
150	210	4	3
170	718	4	4
80	231	4	4
90	238	3	4
130	118	2	3
146	695	4	4
155	644	4	4

Price	
	160
	189
	250
	240
	179
	135
	175
	169
	189

A model is function a representing a facet of the data

val model: Vector[Feature] => Label

Surface	Land	Beds	Sidings
110	896	2	4

Learning a Model from Data

val train: Seq[(Vector[Feature], Label)] => Vector[Feature] => Label

Surface	Land	Beds	Sidings
110	896	2	4
120	435	3	2
150	210	4	3
170	718	4	4
80	231	4	4
90	238	3	4
180	118	2	3
146	695	4	4
155	644	4	4

Price	
	160
	189
	250
	240
	179
	135
	175
	169
	189

Surface	Land	Beds	Sidings
110	896	2	4

Training by Minimizing Errors (Loss), e.g. sum of squared errors:

```
val loss = dataSet.map{
   case (x, y) => y - model(x)
   }
.map(Math.pow(_, 2))
.reduce( _ + _ )
```

Surface	Land	Beds	Sidings
110	896	2	4
120	435	3	2
150	210	4	3
170	713	4	4
80	231	4	4
90	238	3	4
130	118	2	3
146	695	4	4
155	644	4	4

Price	Price
160	160
189	189
250	250
240	240
179	179
135	135
175	175
169	169
189	189

Missing pieces yet: How a model is built? What is 'minimizing?

Models as a vector of parameters

A model is a function, with some parameters, optimisation is finding the best parameters...

Example: A **Linear model** is a linear combination of features:

Optimisation algorithms

Gradient based methods: How loss varies with each parameters ~ gradient ()

$$\Delta Loss \sim \Delta \omega_i$$

$$\omega_i^* = \omega - \gamma \frac{\Delta Loss}{\Delta \omega_i}$$

Loss and gradient are estimated on a subset of data (a batch) = stochastic gradient based methods

Iterations in batches and epochs (a full dataset pass)

Metrics

After training: model evaluation

E.g.

Root Mean Squared Error in regression

Accuracy in classification (% correct binary prediction)

Metrics are used for model validation on test data not used in training

Surface	Land	Beds	Sidings	Price
110	896	2	4	160
120	435	3	2	189
150	210	4	3	250
170	718	4	4	240
80	231	4	4	179
90	238	3	4	135
130	118	2	3	175
146	695	4	4	169
155	644	4	4	189

Data is multidimensional **Arrays** of **Floating** point values

Models are represented as Arrays of Floating point values and operators

Training, Evaluating and Inference on models are operations on these arrays

Spark ML concepts

Pipeline (Sequence of PipelineStages):

- **Transformers**: Read a DataFrame, select a column, map it into a new column. Output is a new DataFrame with the mapped column appended.
- Estimators: Produce a Model from a given DataFrame (Transformer)

Linear Regression

In linear regression, the observations (red) are assumed to be the result of random deviations (green) from an underlying relationship (blue)

between a dependent variable (y)

and an independent variable (x).

Spark notebooks

Interactive Spark shell in a browser using http://spark-notebook.io/

00_read_raw_history: Read historical data, do analysis, preprocessing and save results

01_train_model: Train linear model using preprocessed data

02_publish_stream: Generate a stream of data flowing in Kafka

03_serve_model_stream: Read data from Kafka and make predictions using our model

Structured Streaming Model treat data streams as unbounded tables

Programming Model for Structured Streaming


```
val df = spark.readStream
    .format( source = "kafka")
    .option("kafka.bootstrap.servers", "localhost:9092")
    .option("subscribe", "topic1")
    .load()

val processedDF: DataFrame = ???

processedDF.writeStream
    .queryName( queryName = "predictions")
    .outputMode( outputMode = "append")
    .format( source = "memory")
    .start()
```

Event time vs reception time

Analyse the event based on when it was generated (instead of when it arrived to the system). Extra column with the event time.

Window-based aggregations => grouping and aggregation on the event-time column

Windowed Grouped Aggregation with 10 min windows, sliding every 5 mins

counts incremented for wind 12:05 - 12:15 and 12:10 - 12

Late data arrival - Watermarking

Processing is based on event time.

Spark allows processing events arriving late.

Set a limit with the watermark

```
val windowedCounts = words
.withWatermark("timestamp", "10 minutes")
.groupBy(
    window($"timestamp", "10 minutes", "5 minutes"),
    $"word")
.count()
```


window 12:00 - 12:10

Late data handling in Windowed Grouped Aggregation

Spark notebooks

Interactive Spark shell in a browser using http://spark-notebook.io/

00_read_raw_history: Read historical data, do analysis, preprocessing and save results

01_train_model: Train linear model using preprocessed data

02_publish_stream: Generate a stream of data flowing in Kafka

03_serve_model_stream: Read data from Kafka and make predictions using our model

Spark notebooks

Interactive Spark shell in a browser using http://spark-notebook.io/

00_read_raw_history: Read historical data, do analysis, preprocessing and save results

01_train_model: Train linear model using preprocessed data

02_publish_stream: Generate a stream of data flowing in Kafka

03_serve_model_stream: Read data from Kafka and make predictions using our model

Merci!

xavier.tordoir@lunatech.nl twitter.com/xtordoir

maria.dominguez@lunatech.nl

www.lunatech.com

