Computational Science on Many-Core Architectures

360.252

Josef Weinbub Karl Rupp

Institute for Microelectronics, TU Wien
http://www.iue.tuwien.ac.at/

Zoom Channel 621 2711 2607 Wednesday, November 22, 2023

Performance Modeling

Latency

- Bottleneck in strong scaling limit
- Ultimate limit for time stepping

Latency - Sources

- Network latency (Ethernet $\sim 20\mu$ s, Infiniband $\sim 5\mu$ s)
- PCI-Express latency (Kernel launches, $\sim 10 \mu s$)
- Thread synchronization (barriers, locks, $\sim 1-10\mu$ s)
- Memory latency ($\sim 100 \mathrm{ns}$)

Performance Modeling

Load Imbalance

- Total execution time determined by slowest thread
- · Focus on making the slowest thread fast
- Easy for static data structures (e.g. dense matrices)
- Hard for dynamic data structures (e.g. sparse matrices)

Amdahl's Law

- Total execution time T_{total} given by time spent in serial and parallel parts
- $T_{\text{total}} = T_{\text{serial}} + T_{\text{parallel}} / \# \text{processors}$
- Speed-up limited by serial portion of an algorithm

- x = y + z with N elements each
- 1 FLOP per 24 byte in double precision
- Limited by memory bandwidth $\Rightarrow T_2(N) \stackrel{?}{\approx} 3 \times 8 \times N/\text{Bandwidth} + \text{Latency}$ Execution Time for x = y + z in Double Precision

- x = y + z with N elements each
- 1 FLOP per 24 byte in double precision
- Limited by memory bandwidth $\Rightarrow T_2(N) \stackrel{?}{\approx} 3 \times 8 \times N/\text{Bandwidth} + \text{Latency}$ Execution Time for x = y + z in Double Precision

- x = y + z with N elements each
- 1 FLOP per 24 byte in double precision
- Limited by memory bandwidth $\Rightarrow T_2(N) \stackrel{?}{\approx} 3 \times 8 \times N/\text{Bandwidth} + \text{Latency}$ Execution Time for x = y + z in Double Precision

- x = y + z with N elements each
- 1 FLOP per 24 byte in double precision
- Limited by memory bandwidth $\Rightarrow T_2(N) \stackrel{?}{\approx} 3 \times 8 \times N/\text{Bandwidth} + \text{Latency}$ Memory Bandwidth for x = y + z in Double Precision

