PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ

FACULTAD DE CIENCIAS E INGENIERÍA

1MAT33 ANÁLISIS FUNCIONAL

Tercera práctica (tipo a) Primer semestre 2024

Indicaciones generales:

- Duración: 110 minutos.
- Materiales o equipos a utilizar: sin apuntes de clase.
- No está permitido el uso de ningún material de consulta o equipo electrónico.
- La presentación, la ortografía y la gramática de los trabajos influirán en la calificación.

Puntaje total: 20 puntos.

Cuestionario:

Pregunta 1 (5 puntos)

a) Verifique, considerando $\mathbb{K} = \mathbb{C}$, que las funciones $f_n(x) = \frac{1}{\sqrt{2\pi}}e^{inx}$, $n \in \mathbb{Z}$ forman un sistema ortonormal en $L_2[-\pi, \pi]$.

a) Notar que $\langle f_n, f_m \rangle = 1$ si m = n y 0 si $m \neq n$. Para esto, notar que

$$\langle f, g \rangle = \int_{-\pi}^{\pi} f(x) \overline{g}(x) dx$$

 $y \overline{e^{inx}} = e^{-inx}$.

b) ¿Es cierto que el sistema ortonormal formado por las funciones $f_n(x) = \frac{1}{\sqrt{2\pi}}e^{inx}, n \in \mathbb{Z}$ es completo? Justifique.

Usar la representación por series de Fourier y densidad (S. Weierstrass).

Pregunta 2 (5 puntos)

2.1) Sea H un espacio de Hilbert y $T: H \to H$ un operador lineal tal que $\langle T(x), y \rangle = \langle x, T(y) \rangle$, para todo $x, y \in H$. Pruebe que T es continuo. Sugerencia: use el Teorema del Gráfico Cerrado.

Usamos el Teorema del Gráfico Cerrado. Si probamos que el gráfico de T es cerrado, al ser H de Banach, T es automáticamente continuo. Tenemos entonces $(x_n, Tx_n) \to (x, y)$. Queremos probar que Tx = y. Esto es lo mismo que probar que $\langle z, Tx \rangle = \langle z, y \rangle$ para cualquier z. Veamos

$$\langle z, y \rangle = \lim_{n} \langle z, Tx_n \rangle$$

$$= \lim_{n} \langle Tz, x_n \rangle$$

$$= \langle Tz, x \rangle$$

$$= \langle z, Tx \rangle.$$

Así pues, concluimos lo solicitado.

2.2) Sea E un espacio vectorial con producto interno y $T: E \to E$. Pruebe, considerando $\mathbb{K} = \mathbb{C}$, que si $\langle T(x), x \rangle = 0$ para todo $x \in E$, entonces T = 0.

1

Tenemos

$$\langle T(ax+by), ax+by \rangle = |a|^2 \langle Tx, x \rangle + a\overline{b} \langle Tx, y \rangle + \overline{a}b \langle Ty, x \rangle + |b|^2 \langle Ty, y \rangle$$
$$= a\overline{b} \langle Tx, y \rangle + \overline{a}b \langle Ty, x \rangle = 0.$$

Usando a=1,b=i y luego a=i,b=1, se concluye. El asunto no vale en el caso real, basta considerar la rotación por $\theta=\pi/2$ grados.

Pregunta 3 (4 puntos)

Sea $M \subset E$ cerrado. Pruebe que $M \subset (M^{\perp})^{\perp}$, y que si E es reflexivo, $M = (M^{\perp})^{\perp}$.

Tenemos las siguientes definiciones:

$$M^{\perp} = \{ \varphi \in E' : \ \varphi(x) = 0, \ \forall \ x \in M \}$$
$$(M^{\perp})^{\perp} = \{ \psi \in E'' : \ \psi(\varphi) = 0, \ \forall \ \varphi \in M^{\perp} \}.$$

Entonces, si $x \in M$, tomando $J_E(x) = \psi$, $\psi(\varphi) = \varphi(x) = 0$ para todo $\varphi \in M^{\perp}$. Si E es reflexivo, para todo $\psi \in E''$, existe x tal que $J_E(x) = \psi$, con $\psi(\varphi) = \varphi(x) = 0$.

Pregunta 4 (6 puntos)

4.1) Sea E un espacio con producto interno. Sean $S_1 = \{x_n : n \in \mathbb{N}\}$ y $S_2 = \{y_n : n \in \mathbb{N}\}$ conjuntos ortonormales en E tales que $[x_1, \dots, x_n] = [y_1, \dots, y_n]$ para cada $n \in \mathbb{N}$. Muestre que existe una sucesión (a_n) de escalares con módulo 1 tales que $y_n = a_n x_n$.

Procedemos por inducción. Primero, si $[x_1] = [y_1]$, $x_1 = ay_1$. Luego, como $||x_1|| = ||y_1|| = 1$, |a| = 1. Ahora, supongamos el resultado válido para n = k: $[x_1, \dots, x_k] = [y_1, \dots, y_k]$ y $x_n = a_n y_n$ con $|a_n| = 1$. Entonces, si $[x_1, \dots, x_{k+1}] = [y_1, \dots, y_{k+1}]$

$$y_{k+1} = \sum_{j=1}^{k+1} \lambda_i x_i.$$

Como los vectores son ortogonales entre sí,

$$0 = \langle y_{k+1}, y_j \rangle = \left\langle \sum_{i=1}^{k+1} \lambda_i x_i, a_j x_j \right\rangle = \lambda_j \overline{a}_j.$$

Como $\overline{a}_j \neq 0$, $\lambda_j = 0$ para j = 1, ..., k. Por ende, $y_{k+1} = \lambda_{k+1} x_{k+1}$ y $|\lambda_{k+1}| = 1$.

4.2) Analice si el cerrado $E = \{ f \in C[0,1] : f(0) = 0 \} \subset C[0,1]$ es o no reflexivo. Considere la norma $||\cdot||_{\infty}$.

Usar que en un espacio reflexivo, todo funcional lineal alcanza su norma.

4.3) Sea E un espacio normado. Pruebe que, dados $\varphi_1, \varphi_2 \in E', \varphi_1 \neq \varphi_2$, existe $f \in J_E(E)$ tal que $f(\varphi_1) \neq f(\varphi_2)$.

Tenemos

$$J_E: E \to E''$$

 $x \to J_E(x): \varphi \to \varphi(x).$

Entonces, como $\varphi_1 \neq \varphi_2$, existe $x \in E$ tal que $\varphi_1(x) \neq \varphi_2(x)$, tomando $f \in J_E(E)$, $f = J_E(x)$, concluimos lo solicitado.

Profesor del curso: Percy Fernández.

San Miguel, 14 de junio del 2024.