Event Extent Estimation

Marcin Bienkowski Leszek Gasieniec Marek Klonowski Miroslaw Korzeniowski Stefan Schmid

SIROCCO 2010

June 8th, 2010

Problem description

- ▶ Given a set of nodes *V* connected into a graph *G*,
- perform some precomputations.
- An adversary chooses a set of active nodes V' ⊆ V which wake up
- ► Goal: at least one active node has to learn V'
- Constraints:
 - works in rounds
 - a message from u to v costs 1 unit of energy
 - goal: minimize time and the total used energy (not maximum)
 - synchronized and time of wake-up known
 - no interferences

Problem on a picture

Problem on a picture

Distributed Disaster Disclosure

- ▶ B. Mans, S. Schmid, and R. Wattenhofer, "Disributed Disaster Disclosure", SWAT 2008
 - difference in model: non-active nodes (from $V \setminus V'$) can help
 - solution: clustering, leaders of clusters made responsible for their clusters
 - ▶ not possible in our setting any node may be *inactive*

Graphs Deterministic upper bounds Randomized upper bounds

Graphs

- Complete graphs
- ▶ General graphs
- ▶ Planar graphs

Deterministic upper bounds

- ▶ Algorithm GROUP, example for base k = 2
- ▶ assume log₂ n is an integer
- partition V recursively (into halves on each level)
- two clusters, an active leader in each one, each leader pings the whole other cluster
- sequentially: the 1st leader has an opportunity to ping the other cluster, then the 2nd leader
- ▶ in parallel: they do it at once

Randomized upper bounds

- ► Cardinality guessing, algorithm RAND
- if s = |V'| known, ping all nodes with probability $\frac{1}{s}$
- $\Pr[\text{failure}] = (1 \frac{1}{s})^s \approx \frac{1}{e}$
- ▶ approximate 1/s: start from 1/n and double in each round until success or 1
- expected time: $O(\log n/s)$
- ightharpoonup expected communication cost: O(n) messages

Overview

Graphs

- ► Complete graphs
- General graphs
- ▶ Planar graphs

Arboricity

- treeishness
- ▶ the minimal number of trees needed to cover *G*
- or the minimal number of forests constituting a partitioning of
- useful for active neighborhood discovery in our model:
 - 1st round: ping your parents in all trees
 - 2nd round: answer all your active children
 - ▶ total cost: $O(\alpha \cdot s)$, where *alpha* is the arboricity
- arboricity is constant for planar graphs

Graphs
Arboricity
Searches
Algorithm MINID
Overview

Searches

- ▶ DFS (Depth First Search)
- ▶ BFS (Breadth First Search)
- parallelized versions

Algorithm MINID

- neighborhood discovery
- assume s known
- starting from 1-node clusters:
 - spread your number in your cluster
 - learn neighboring numbers in neighboring clusters
 - choose minimum and propose to join it
 - ▶ if no other cluster smaller, annex recursively all smaller clusters
 - in two rounds a cluster annexes or gets annexed
- ▶ for unknown *s* approximate from 1 and double
- result: $O(s \log s)$ rounds and $O(\alpha \cdot s \log s)$ messages

Overview

Graphs

- ► Complete graphs
- ▶ General graphs
- **▶** Planar graphs

Separation Theorem

Theorem (Lipton and Tarjan separation theorem)

For a planar graph G = (V, E), where |V| = n, it is possible to find A, B, U such that

- $\triangleright A \uplus B \uplus U = V$
- ▶ A and B are not connected to each other
- $|A|, |B| \leq \frac{2}{3} \cdot n$
- ▶ $|U| \in O(\sqrt{n})$

Algorithm k-SEP

- precomputing phase: hierarchical decomposition
- start from neighborhood discovery (constant arboricity)
- level sizes form a geometric sequence
- ▶ on a level of size n, $O(\sqrt{n})$ nodes start a search
- different levels of parallelism possible

Overview

Thank you

Thank You for Your Attention!