Machine Learning

Détection d'Anomalies

Détection d'Anomalies

Détection:

- de Fraude
- d'Intrusion/Fuite (physique ou électronique)
- Santé (biologique, geologique, machine, ...)

Définition

- une anomalie diffère de la norme par ses features
- les anomalies sont rares comparées aux instances normales

Modes de détection d'anomalie

Détection d'Anomalies : Supervisé

Problème de classification normal.

Réseaux de neurones et SVM très performants.

Détection d'Anomalies : Semi-Supervisé

Détection de nouveauté.

Pas traité ici.

One-class SVM très utilisé.

Détection d'Anomalies : Non-Supervisé

De nombreuses méthodes :

- K-Nearest-Neighbor (KNN)
- Local Outlier Factor (LOF)
- Unweighted Cluster-Based Outlier Factor
- Isolation Forest
- Autoencoder
- ...

Détection d'Anomalies

K-Nearest Neighbor

Détection d'Anomalies : KNN

Local Outlier Factor

Local Outlier Factor

- anomalies locales
- basé sur les k voisins du point
- définit une « atteignabilité » par les distances de ces voisins
- calcule un ratio moyen d'atteignabilité du point et de ses voisins

 \rightarrow Anomalie si le ratio moyen d'atteignabilité est beaucoup plus faible que celui de ses plus proches voisins

Local Outlier Factor

Désavantages

- lent (quadratique)
- a des à priori sur la distribution des données

Isolation forest

Isolation tree

- arbre aléatoire (comme random forest mais le split est aléatoire, ExtraTree)
- but : isoler une anomalie plus vite qu'un exemple normal
- petit chemin pour arriver à une feuille : anomalie
- \rightarrow Se sert du fait que les features des anomalies ne sont pas distribuées comme les autres.

Isolation forest

- forêt d'isolation trees
- construits sur des sous-échantillons sans replacement des données
- sous-échantillons plus petits que dans random forest typiquement, pour mieux isoler les anomalies
- converge souvent vite: 100 arbres souvent suffisants

Isolation forest

Auto-encodeurs

Rappel

CHOOGCI

Auto-encodeur « standard »

- apprend parce que z est plus petit que X : compression
- dur à entrainer : éviter la mémorisation
- très faisable cependant avec un recherche d'hyperparamètres

Auto-encodeur débruiteur

Auto-encodeur débruiteur

- apprend parce que X est bruité
- (apprend parce que z est plus petit que X : compression)
- plus facile à entrainer : la mémorisation devient compliquée pour le réseau, en fonction du type de bruit

Auto-encodeur variationnel

