Российская академия наук Физико-технический институт им. А. Ф. Иоффе РАН

HAУЧНАЯ АППАРАТУРА КОНУС-РФ Инструкция по оценке параметров TM-Информации Редакция 2

КРФ.431000.001 ИО

2007

Подп. и дата		
Инв. № дубл.	От 1083 ПЗ А. Ю. Фетисов ""	Зам. зав. лабораторией ФТИ им. Иоффе Р. Л. Аптекарь ""
Взам. инв. №		
Подп. и дата		

СОДЕРЖАНИЕ

 1 Введение
 3

 2 Общие сведения
 3

 3 Структура информации в режиме ФОН
 5

 4 Структура информации в режиме ВСПЛЕСК
 10

 5 Анализ полученной цифровой информации
 18

 Приложение А Примеры отображения информации
 19

Подп. и дата										
Инв. № дубл.										
Взам. инв. №										
Подп. и дата										
П	l 1	Изм	Лист	№ докум.	Подп.	Дата	КРФ.431000.00	1 <i>MC</i>)	
Инв. № подл.		Разр Про	раб. в.	Уланов Ильинский			Научная аппаратура Конус-РФ Инструкция по оценке параметров ТМ-Информации	Лит. 	Лист 2 ИМ. 1	₂₅ Лоффе
M_{HB} .		H. к Утв.	онтр.	Аптекарь			Редакция 2		PAH	

1 ВВЕДЕНИЕ

- 1.1 Настоящая инструкция определяет методику оценки параметров ТМ-информации научной аппаратуры «Конус-РФ» при испытаниях в составе КНА «ФОТОН» КА «КОРОНАС-ФОТОН».
- 1.2 В инструкцию могут быть внесены изменения и дополнения по результатам отдельных этапов отработки аппаратуры.
 - 1.3 Условные обозначения:
 - НА научная аппаратура;
 - ТМ телеметрия;

Подп. и дата

Инв. № дубл.

Взам. инв.

Подп. и дата

 Λ нв. $N^{\underline{o}}$ подл.

- ССРНИ система сбора и регистрации научной информации;
- КБВ код бортового времени;
- БЭ блок электроники Конус-РФ-БЭ;
- ДС блок детектора Конус-РФ-Д1, Конус-РФ-Д2.
- 1.4 В настоящей инструкции числа в 16-ричной системе счисления обозначены префиксом "0х" перед числом. Например 0х0100 — число 256 в 16-ричной системе счисления.
- 1.5 При работе с аппаратурой дополнительно можно пользоваться руководством по эксплуатации научной аппаратуры «Конус-РФ» КРФ.431000.001 РЭ и техническим описанием аппаратуры КРФ.431000.001 ТО.

2 ОБЩИЕ СВЕДЕНИЯ

- 2.1 Аппаратура «Конус-РФ» состоит из двух независимых полукомплектов. Телеметрическая информация от каждого полукомплекта оценивается по отдельности.
- 2.2 Аппаратура «Конус-РФ» работает в двух режимах: измерения фона (ФОН) и измерения всплесков космического гамма-излучения (режим ВСПЛЕСК).

Изм Лист № докум. Подп. Дата

КРФ.431000.001 ИО

2.3 При работе аппаратуры «Конус-РФ» вся научная информация передаётся в цифровом виде в ССРНИ или его аналог в испытательном пульте ИП-КРФ и ПЭВМ. информация передаётся блоками по мере накопления. Каждый блок информации, снабжается заголовком блока БЭ длиной 60 16-битных слов. Структура заголовка блока БЭ приведена в таблице 1.

Содержание

Таблица 1 – Структура заголовка блока БЭ

Формат

Смещение Длина

Смещение		тормат	Оодоришни	
0	1	OxBEBE	Маркер	
1	1	OxNNNN	Номер версии программного обеспечения блока	
			электроники	
2	23		Текст в кодировке ASCII:	
			"KONUS-RF TRNUM: xxxx	
			TIMECODE:dd-hh:mm:ss:iii", где	
			хххх — порядковый номер блока информации;	
			dd, hh, mm, ss, iii — дни, часы, минуты, секунды,	
			миллисекунды КБВ	
25	1	OxEBEB	Маркер	
26	1	OxXXXX	Порядковый номер блока информации	
27	2	OxXXXX,	Старшее и младшее слова КБВ	
		OxXXXX		
29	2	OxXXXX,	Количество слов данных, предназначенных к пере-	
		OxXXXX	даче	
31	2	OxXXXX,	Время от включения аппаратуры (uptime), милли-	
		OxXXXX	секунды	
33	2	OxXXXX,	Время от включения аппаратуры (uptime), секун-	
		OxXXXX	ды	
35	1	OxXXXX	Счётчик перезагрузок	

Изм Лист № докум. Подп. Дата

Взам. инв. №

Подп. и дата

Hнв. $\mathcal{N}^{\underline{o}}$ подл.

Таблица 1 – Продолжение

Смещение	Длина	Формат	Содержание
36	1	OxNNNN	Метка типа данных. Может принимать значения:
			0x0000 — передача данных;
			0х0001 — заголовок БЭ без последующих данных;
			0х0022— тестовый вывод данных БЭ (22 фрейма);
			0xDEAD — сигнал сбоя (посылается перед переза-
			грузкой БЭ).
37	1	OxOONN	Номер блока флеш-памяти, из которого произведе-
			на загрузка программы БЭ
38	1	0x0000	Маркер
39	18		История команд: шесть записей по три слова каж-
			дая. Формат записи: Старшее и младшее слово
			КБВ, слово УКС.
57	1	0x55AA	Маркер
58	1	OxNNNN	Количество слов данных принятых из блока ДС за
			последний сеанс связи с ДС
59	1	OxAAEx	Маркер. Младший полубайт содержит флаг при-
			нудительного включения режима ФОН

Длина заголовка блока БЭ-60~16-разрядных слов (один фрейм ССРНИ).

3 СТРУКТУРА ИНФОРМАЦИИ В РЕЖИМЕ ФОН

- 3.1 В режиме ФОН производится измерение:
- интенсивности космического гамма-излучения в 12-ти энергетических каналах первого диапазона. Длительность одного измерения равна одной секунде.

Изм	Лист	№ докум.	Подп.	Дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

КРФ.431000.001 ИО

- интенсивности космического гамма-излучения в 10-ти энергетических каналах второго диапазона. Длительность одного измерения равна четырём секундам.
- энергетического (амплитудного) спектра излучения в двух энергетических диапазонах 10 кэВ...750 кэВ и 300 кэВ...10 МэВ. Длительность измерения одного спектра (одновременно в каждом диапазоне) равна 60 секундам.
- 3.2 Полный цикл измерений в режиме ФОН длится восемь минут (480 секунд), после чего производится перезапись накопленной информации из оперативной памяти прибора в память ССРНИ.
- 3.3 Информация прибора в режиме ФОН состоит из 12-ти каналов временной истории первого диапазона, объёмом 480 слов каждый, 10-ти каналов временной истории второго диапазона, объёмом 120 слов каждый, восьми амплитудных спектров первого диапазона (по 112 слов) и восьми амплитудных спектров второго диапазона (по 154 слова).

Таблица 2 – Структура кадра информации НА в режиме ФОН

Смещение	Длина элемента	Количество элементов	Содержание
0	22	1	первый заголовок кадра ФОН блока ДС
22	484	12	временные профили первого диапазона
5830	124	10	временные профили второго диапазона
7070	116	8	спектры первого диапазона
7998	158	8	спектры второго диапазона
9262	22	1	второй заголовок кадра ФОН блока ДС

Длина кадра Φ OH — 9284 16-разрядных слова (156 фреймов по 60 слов).

Изм	Лист	№ докум.	Подп.	Дата

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

 Λ нв. $N^{\underline{o}}$ подл.

Таблица 3 — Структура первого заголовка кадра ΦOH блока ДС

Смещение	Длина	Формат	Содержание
0	1	0x1234	Маркер
1	1	OxSNNN	S — идентификатор детектора, N — номер вывода
2	2	OxXXXX,	Старшее и младшее слово кода бортового времени
		OxXXXX	
4	8	OxXXXX	Статус команд блока ДС
12	8	OxXXXX	Служебная информация блока ДС
20	1	0x1111	Маркер
21	1	0x5678	Маркер

Длина заголовка — 22 16-разрядных слова.

Таблица 4 — Структура второго заголовка кадра ΦOH блока ДС

Смещение	Длина	Формат	Содержание
0	1	0x1234	Маркер
1	1	OxSNNN	S — идентификатор детектора, N — номер вывода
2	2	OxXXXX,	Старшее и младшее слово кода бортового времени
		OxXXXX	
4	8	OxXXXX	Статус команд блока ДС
12	8	OxXXXX	Служебная информация блока ДС
20	1	0xNN22	NN — Номер блока флеш-памяти, из которого про-
			изведена загрузка программы ДС
21	1	0x5678	Маркер

Длина заголовка — 22 16-разрядных слова.

Изм	Лист	№ докум.	Подп.	Дата

Взам. инв. №

Таблица 5 – Структура временно́го профиля первого диапазона

Смещение	Длина	Формат	Содержание
0	2	0x4247,	Маркер ("BGTH")
		0x5448	
2	1	0x0P11	Р — номер профиля (09)
3	1	OxSNNN	S — идентификатор детектора, N — номер вывода
4	480	OxXXXX	Данные временного профиля

Таблица 6 – Структура временно́го профиля второго диапазона

Смещение	Длина	Формат	Содержание
0	2	0x4247,	Маркер ("BGTH")
		0x5448	
2	1	0x0P22	Р — номер профиля (011)
3	1	OxSNNN	S — идентификатор детектора, N — номер вывода
4	120	OxXXXX	Данные временного профиля

Инв. № подл. Подп. и дата Взам. инв. № Инв. № дубл. Подп. и да

Изм	Лист	№ докум.	Подп.	Дата

Таблица 7 — Структура спектра первого диапазона

Смещение	Длина	Формат	Содержание
0	2	0x4247,	Маркер ("ВСРН")
		0x5048	
2	1	0x0P11	Р — номер спектра (07)
3	1	OxSNNN	S — идентификатор детектора, N — номер вывода
4	112	OxXXXX	Данные спектра

Таблица 8 — Структура спектра второго диапазона

Смещение	Длина	Формат	Содержание
0	2	0x4247,	Маркер ("ВСРН")
		0x5048	
2	1	0x0P22	Р — номер спектра (07)
3	1	OxSNNN	S — идентификатор детектора, N — номер вывода
4	154	OxXXXX	Данные спектра

Инв. № подл. Подп. и дата Взам. инв. № Инв. № дубл. Подп. и д

Изм	Лист	№ локум.	Полп.	Лата

4 СТРУКТУРА ИНФОРМАЦИИ В РЕЖИМЕ ВСПЛЕСК

4.1 В режиме ВСПЛЕСК производится измерение интенсивности космического гамма-излучения в 12-ти энергетических каналах первого диапазона и 10-ти энергетических каналах второго диапазона по программе, приведённой в таблице 9.

Таблица 9 – Временная история, временное разрешение и длительности.

Начало, с	Длительность, с	Разрешение	Примечание
-2	2	2 мс	предыстория
0	1	2 мс	история
1	16	8 мс	история
17	32	32 мс	история
49	64	64 мс	история

4.2 Также в режиме ВСПЛЕСК регистрируются спектры космического гамма-излучения с высоким временным разрешением по программе, приведённой в таблице 10. Спектры записываются в двух энергетических диапазонах 10 кэВ...750 кэВ и 300 кэВ...10 МэВ, так же, как и спектры фона.

Таблица 10 – Многоканальные спектры, интервалы и количество.

Начало, с	Длительность, с	Разрешение	Примечание
-2	2	100 мс	предыстория
0	1	100 мс	история
1	64	500 мс	история
65	48	2 c	история

4.3~ Всего за время измерения в режиме ВСПЛЕСК измеряется 182 спектра.

Τ.Τ	π	No	П	77
VI3M.	Лист	№ докум.	Подп.	Дата

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

Инв. № подл.

КРФ.431000.001 ИО

4.4 Полный цикл измерений в режиме ВСПЛЕСК длится 115 секунд, из них 2 секунды предыстории, и 113 секунд истории.

Таблица 11 – Структура информации НА в режиме ВСПЛЕСК

Смещение	Длина	Содержание
0	27678	Первая порция данных
27678	22198	Вторая порция данных
49876	30966	Третья порция данных
80842	8768	Четвёртая порция данных
89610	30966	Пятая порция данных
120576	8768	Шестая порция данных
129344	13850	Седьмая порция данных
143194	28796	Восьмая порция данных

Суммарное количество данных в режиме ВСПЛЕСК составляет 171990 16-разрядных слов или 2868 фреймов ССРНИ, включая заголовок блока БЭ.

Подп. и дата		
Инв. № дубл.		
Взам. инв. №		
Подп. и дата		
$\mathit{И}_{\mathit{HB}}.\ \mathit{N}^{\varrho}$ подл.		Лист 11 Формат А4

Таблица 12 – Структура первой порции данных в режиме ВСПЛЕСК

Смещение	Длина элемента	Количество элементов	Содержание
0	22	1	Заголовок 1 кадра ВСПЛЕСК блока ДС
22	504	12	Временные профили с разрешением 2 мс
			Блок 1 $(-10 c)$, первый диапазон
6070	504	10	Временные профили с разрешением 2 мс
			Блок 1 $(-10 c)$, второй диапазон
11110	504	12	Временные профили с разрешением 2 мс
			Блок 2 (01 с), первый диапазон
17158	504	10	Временные профили с разрешением 2 мс
			Блок 2 (01 с), второй диапазон
22198	274	20	Спектры 1130 с разрешением 100 мс
			(-11 с от срабатывания триггера)

Длина первой порции данных — 27678~16-разрядных слов.

Таблица 13 – Структура второй порции данных в режиме ВСПЛЕСК

		T	
Смещение	Длина	Количество	Содержание
СМОЩОППО	элемента	элементов	Содоржание
0	22	1	Заголовок 2 кадра ВСПЛЕСК блока ДС
22	504	12	Временные профили с разрешением 8 мс
			Блок 3 (15 с), первый диапазон
6070	504	10	Временные профили с разрешением 8 мс
			Блок 3 (15 с), второй диапазон
11110	504	12	Временные профили с разрешением 8 мс
			Блок 4 (59 с), первый диапазон
17158	504	10	Временные профили с разрешением 8 мс
			Блок 4 (59 с), второй диапазон

Длина второй порции данных — 22198 16-разрядных слов.

Изм	Лист	№ докум.	Подп.	Дата

Взам. инв. №

Подп. и дата

Инв. № подл.

КРФ.431000.001 ИО

Таблица 14 – Структура третьей порции данных в режиме ВСПЛЕСК

Смещение	Длина элемента	Количество элементов	Содержание
0	22	1	Заголовок 3 кадра ВСПЛЕСК блока ДС
22	504	12	Временные профили с разрешением 8 мс
			Блок 5 (913 с), первый диапазон
6070	504	10	Временные профили с разрешением 8 мс
			Блок 5 (913 с), второй диапазон
11110	504	12	Временные профили с разрешением 8 мс
			Блок 6 (1317 с), первый диапазон
17158	504	10	Временные профили с разрешением 8 мс
			Блок 6 (1317 с), второй диапазон
22198	274	32	Спектры 3162 с разрешением 500 мс
			(117 с от срабатывания триггера)

Длина третьей порции данных — 30966 16-разрядных слов.

Таблица 15 — Структура четвёртой порции данных в режиме ВСПЛЕСК

Смещение	Длина элемента	Количество элементов	Содержание
0	274	32	Спектры 6394 с разрешением 500 мс (1733 с от срабатывания триггера)

Длина четвёртой порции данных — $8768\ 16$ -разрядных слов.

Изм	Лист	№ докум.	Подп.	Дата

Взам. инв. №

Hнв. $\mathcal{N}^{\underline{o}}$ подл.

КРФ.431000.001 ИО

Таблица 16 – Структура пятой порции данных в режиме ВСПЛЕСК

Смещение	Длина элемента	Количество элементов	Содержание
0	22	1	Заголовок 4 кадра ВСПЛЕСК блока ДС
22	504	12	Временные профили с разрешением 32 мс
			Блок 7 (1733 с), первый диапазон
6070	504	10	Временные профили с разрешением 32 мс
			Блок 7 (1733 с), второй диапазон
11110	504	12	Временные профили с разрешением 32 мс
			Блок 8 (3349 с), первый диапазон
16150	504	10	Временные профили с разрешением 32 мс
			Блок 8 (3349 с), второй диапазон
21190	274	32	Спектры 95126 с разрешением 500 мс
			(3349 с от срабатывания триггера)

Длина пятой порции данных — 30966 16-разрядных слов.

Таблица 17 – Структура шестой порции данных в режиме ВСПЛЕСК

Смещение	Длина элемента	Количество элементов	Содержание
0	274	32	Спектры 127158 с разрешением 500 мс (4965 с от срабатывания триггера)

Длина шестой порции данных — $8768\ 16$ -разрядных слов.

Изм	Лист	№ докум.	Подп.	Дата

Взам. инв. №

Hнв. $\mathcal{N}^{\underline{o}}$ подл.

КРФ.431000.001 ИО

Таблица 18 – Структура седьмой порции данных в режиме ВСПЛЕСК

Смещение	Длина элемента	Количество элементов	Содержание
0	22	1	Заголовок 5 кадра ВСПЛЕСК блока ДС
22	504	12	Временные профили с разрешением 2 мс
			Блок $0 (-21 c)$, первый диапазон
6070	504	10	Временные профили с разрешением 2 мс
			Блок $0 (-21 c)$, второй диапазон
11110	274	10	Спектры 110 с разрешением 100 мс
			(-21 с от срабатывания триггера)

Длина седьмой порции данных — 13850 16-разрядных слов.

Таблица 19 – Структура восьмой порции данных в режиме ВСПЛЕСК

Смещение	Длина элемента	Количество элементов	Содержание
0	22	1	Заголовок 6 кадра ВСПЛЕСК блока ДС
22	504	12	Временные профили с разрешением 64 мс
			Блок 9 (4981 с), первый диапазон
6070	504	10	Временные профили с разрешением 64 мс
			Блок 9 (4981 с), второй диапазон
11110	504	12	Временные профили с разрешением 64 мс
			Блок 10 (81113 с), первый диапазон
17158	504	10	Временные профили с разрешением 64 мс
			Блок 10 (81113 с), второй диапазон
17158	274	24	Спектры 159182 с разрешением 2000 мс
			(65113 с от срабатывания триггера)
28774	22	1	Заголовок 7 кадра ВСПЛЕСК блока ДС

Длина восьмой порции данных — 28796 16-разрядных слов.

Изм	Лист	№ докум.	Подп.	Дата

Взам. инв. №

Подп. и дата

КРФ.431000.001 ИО

Таблица 20 – Заголовок кадра ВСПЛЕСК блока ДС

Маркер

Формат

0x1234

OxSNNN

OxXXXX,

XXXXx0

Длина

1

1

2

Смещение

0

1

2

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

Hнв. $N^{\underline{o}}$ подл.

4	8	0xXXXX	Статус команд блока ДС
12	2	OxXXXX,	Старшее и младшее слово кода времени срабаты-
		OxXXXX	вания триггера
14	2	OxXXXX,	Количество отсчётов в триггерном окне в течение
		0xXXXX	12 с до срабатывания триггера.
16	2	OxXXXX,	Количество отсчётов в триггерном окне в течение
		0xXXXX	1000 мс до срабатывания триггера.
18	1	0xXXXX	Количество отсчётов в триггерном окне в течение
			100 мс до срабатывания триггера.
19	1	0xXXXX	Флаги срабатывания триггера:
			0х0101 — выполнен критерий 100 мс
			0x0202— выполнен критерий 1 с
			0х0404 — выполнено условие имитации
			0x0808— выполнено условие запрета по Z-окну
			0х0010 — всплеск по команде
20	1	0xNP00	Р — номер заголовка (06),
			N — номер блока флеш-памяти, из которого про-
			изведена загрузка программы ДС
21	1	0x5678	Маркер

Лист № докум. Подп. Дата

КРФ.431000.001 ИО

Содержание

S — идентификатор детектора, N — номер триггера

Старшее и младшее слово кода бортового времени

Таблица 21 – Структура временного профиля в режиме всплеск

Смещение	Длина	Формат	Содержание
0	2	0x4253,	Маркер ("BSTH")
		0x5448	
2	1	0x0PQR	Р — номер профиля (011), Q — номер диапазо-
			на (1 или 2), R— номер блока временной истории
			(010)
3	1	OxSNNN	S — идентификатор детектора, N — номер триггера
4	500	OxXXXX	Данные временного профиля

Таблица 22 – Структура спектра в режиме всплеск

Смещение	Длина	Формат	Содержание
0	2	0x4253,	Маркер ("ВЅРН")
		0x5048	
2	1	OxNN11	N — номер спектра (0181)
3	1	OxSNNN	S — идентификатор детектора, N — номер триггера
4	112	OxXXXX	Данные спектра
116	2	0x4253,	Маркер ("ВЅРН")
		0x5048	
118	1	0xNN22	N — номер спектра (0181)
119	1	OxSNNN	S — идентификатор детектора, N — номер триггера
120	154	0xXXXX	Данные спектра

Подп. и дата Взам. инв. № Инв. № дубл. Под	
Подп. и дал	
. $\mathcal{N}^{\underline{\varrho}}$ подл.	

Изм	Лист	№ докум.	Подп.	Дата

- 5.1 Анализ полученной при испытаниях информации проводится представителем ФТИ РАН.
- 5.2 Для анализа полученной цифровой информации разработана специальная программа "kview.exe". Эта программа работает с файлами данных, имеющими расширение "dat", т.е. [имя файла].dat. Анализ информации производится независимо для первого и второго полукомплектов НА.
- 5.3 Для того чтобы запустить программу kview.exe, на клавиатуре ПЭВМ необходимо набрать название программы kview.exe и нажать клавишу Enter. На экране дисплея появится меню файлов данных с расширением .dat. С помощью мыши следует выбрать нужный файл и исследовать содержащуюся в нем информацию. Пользуясь меню и появившимися в верхней части экрана клавишами и мышью можно просмотреть информацию как фона, так и всплесков.

В каждом файле информации контролируется содержание заголовков, зарегистрированных в нем всплесков и фонов. Эти заголовки выводятся в виде таблиц. Затем просматривается информация от детекторов, представленная в графическом виде. При необходимости и эта информация может быть представлена в цифровом виде на экране дисплея или распечатана в виде таблиц.

- 5.4 При анализе результатов автономных испытаний контролируется соответствие временных профилей и спектров интенсивности излучения циклограмме.
- 5.5 Примеры отображения информации программой kview.exe приведены в приложении A.

Инв. № подл. Подп. и дата Взам. инв. № Инв. № дубл. Подп. и дата

Изм Лист № докум. Подп. Дата

Приложение A (справочное)

Примеры отображения информации

Рисунок А.1 – Пример графического отображения информации временных профилей в режиме ФОН. Изменение скорости счёта вызвано командами изменения высокого напряжения и усиления.

Изм Лист № докум. Подп. Дата

Подп. и дата

Инв. № дубл.

Взам. инв.

Подп. и дата

Инв. № подл.

КРФ.431000.001 ИО

Подп. и дата

Инв. № дубл.

Взам. инв.

Подп. и дата

Инв. № подл.

бл. Подп. и дата		Background: 0, detector: 1 Background: 1, detector: 1 Burst: 1, detector: 1, chunk: Background: 2, detector: 1 Background: 3, detector: 1	2 3 4 5 6 Head: Background #1, detector #1 [id=6]	
Взам. инв. № Инв. № дубл.	Рисуно	к А.6 – Пример о	<u>р</u> имр НК <u>Б</u> 3 <u>ОК</u> <u>Сапсе</u> отображения информации, содержащейся в заголовк кадра блока ДС.	e
Подп. и дата Вз				
Инв. № подл.	Изм Лист №	² докум. Подп. Д	KPФ.431000.001 ИО	Лис ²

				Лис	т регистрации и	зменений			
	Номера листов (страниц)				Ваого инатор		Входящий №		
Изм.	изме- ненных	заме- ненных	новых	аннули- рован- ных	(страниц) в докум.	№ докум.	сопроводитель- ного докум. и дата	Подп.	Дата
1									
1									
1									
-									