

National University

of Computer & Emerging Sciences

Course Outline of BS (Computer Science) Degree Program Spring-2019

Course Title	Digital Logic Design (DLD)	Course Code	EE227
Pre-requisite(s)	None	Credit Hrs.	3 + 1
Instructor	Khalid Iqbal Soomro		
Office	Faculty Room No.16 (Cubicle-A) opposite HOD CS office		
Email Khalid.iqbal@nu.edu.pk Phone Ext 2		288	

Text Book (1)	Title	Digital Fundamentals	
	Author	Thomas L. Floyd	
	Publisher	Pearson Education, 10 th or 11 th Edition	
Text Book (2)	Title	Digital Design	
	Author	M. Morris Mano, Michael Ciletti	
	Publisher	Pearson Education, 4th Edition	
Ref. Book (1)	Title	Digital Principles and Applications	
	Author	Donald P Leach, Albert Paul Malvino, Goutam Saha	
	Publisher	McGraw Hill Companies, 6 th Edition	
Ref. Book (2)	Title	Digital Systems Principles and Applications	
	Author	Ronald J. Tocci, Neal S. Widmer, Gregory L. Moss	
	Publisher	Pearson Education, 10 th Edition	

Objective:	The objective of this course is to introduce concept & tools for the design of
	digital electronics circuits using sequential and combinational logic

Week	Course Contents/Topics	Chapter	
01	Introduction. Digital Electronics. Digital Principles. Analog Vs. Digital. Basic Logic operations.		
UI			
02	Number Systems. Binary to Decimal. Decimal to Binary conversion.	2	
	Hexadecimal Number system. BCD code. The Byte, Nibble and Word.		
03	Logic Gates, AND OR & NOT Gates, NOR NAND XOR Gates.	3	
0.4	Boolean Algebra and logic simplification. DeMorgan's Theorems. Boolean	4	
04	analysis of Logic circuits. Truth Tables. The Karnaugh Map.		
05	Basic Combinational circuits. Implementing Combinational Logic. Using	5	
05	NAND and NOR Gates.	5	
06	Mid Term 1		
07	Pagio Addarg Parallal Pinary Addarg Pinnla y/g Look Ahaad garry addarg		
&	Basic Adders. Parallel Binary Adders. Ripple v/s Look-Ahead carry adders.	6	
08	Comparators. Decoders. Encoders. Multiplexers. Demultiplexers.		
09	Latches. Edge-Triggered Flip-Flops. Flip-Flop Operating Characteristics.		
&	Flip-Flop applications.	7	
10	rnp-riop applications.		
11	Asynchronous Counters. Synchronous Counters. Cascaded Counters. Counter		
11	Decoding.	8	
12	Mid Term 2		

13	Basic Shift Register Operations. Serial In/Serial Out Shift Registers. Serial	
&	In/Parallel Out and Parallel In/Parallel Out Shift Registers. Bidirectional Shift	9
14	Registers.	
15	Memory Basics, the Random-Access Memory. The Read-only Memory.	
&	Programmable ROM. The Flash Memory. Memory Expansion. Special Types	10
16	of Memories. Magnetic & Optical Storage.	

Grading Policy:

Midterm	30%	15+15
Class Quizzes	10%	05+05
Assignments/Project/Viva	10%	05+05
Final Exam	50%	
Total	100%	

Official Excuses: Only excuses obtained officially are accepted. Personal excuses are not accepted. No make-up tests/quizzes/exams will be provided. If an official excuse exists, the student will be given the average of his grades, or as advised by the academic committee.

Chapter	Recommended Problems	
Announce	Announced as course proceeds. Mostly from text and self-designed problems.	