Electromagnetic Fields and Waves

$$ec{E}_B = ec{v}_{BA} imes ec{B}_A$$

Speed of light:
$$v_{em} = c = rac{1}{\sqrt{\epsilon_0 \mu_0}}$$

Field Transformations

Fields measured in frame A to be $ec{E}_A$ and $ec{B}_A$ are found in frame B to be

$$ec{E}_B = ec{E}_A + ec{v}_{BA} imes ec{B}_A$$

$$ec{B}=ec{B}_A-rac{1}{c^2}ec{v}_{BA} imesec{E}_A$$

Maxwell's Equations

$$\int_{surface} \vec{E} \cdot d\vec{A} = \frac{Q_{in}}{\epsilon_0} \; \; \text{Gauss's law}$$

$$\int_{surface} \vec{B} \cdot d\vec{A} = 0 \; \; \text{Gauss's law for magnetism}$$

$$\int_{surface} \vec{E} \cdot d\vec{s} = -\frac{d\Phi_m}{dt} \; \; \text{Faraday's law}$$

$$\int_{surface} \vec{B} \cdot d\vec{s} = \mu_0 I_{through} + \epsilon_0 \mu_0 \frac{d\Phi_e}{dt} \; \; \text{Ampère-Maxwell law}$$

Other Equations

Lorentz force law: $ec{F} = q(ec{E} + ec{v} imes ec{B})$

Wave equation: $rac{\partial^2 E_y}{\partial t^2}=rac{1}{\epsilon_0\mu_0}rac{\partial^2 E_y}{\partial x^2}$

Poynting vector: $ec{S} = rac{1}{\mu_0} ec{E} imes ec{B}$

Wave intensity: $I=rac{c\epsilon_0}{2}E_0^2$

Classical intensity spread: $E=rac{P_{source}}{4\pi r^2}$

Radiation Pressure $\, \Delta p = rac{ ext{energy absorbed}}{c} = rac{I}{c} \,$

Single Slit

Intensity as a function of y:

$$I=I_0rac{\sin^2(rac{\pi ay}{\lambda D})}{(rac{\pi ay}{\lambda D})^2}$$

$$I_{slit} = I_0 (rac{\sin(\pi a \sin(heta/\lambda))}{\pi a \sin(heta/\lambda)})^2$$

Dark fringes: $heta_p=prac{\lambda}{a} \;\; p=1,2,3,\ldots$

Positions of dark fringes: $y_p = rac{p\lambda L}{a} \;\; p = 1, 2, 3, \ldots$

Width of central maximum: $w=rac{2\lambda L}{a}$

Ray Optics

 $Angle \ of \ incidence = Angle \ of \ reflection$

Pinhole Camera Relationship

$$\frac{h_i}{h_0} = \frac{d_i}{d_0}$$

Where i is image or box dimensions.

Snell's law of refraction

$$n_1\sin(heta_1)=n_2sin(heta_2)$$

Where heta is angle from normal and $n=rac{c}{v_{medium}}.$

Critical angle for total internal reflection: $heta_c = \sin^{-1}(rac{n_2}{n_1})$

Incident light polarized: $I_{transmitted} = I_0 \cos^2(\theta)$

Unpolarized light transmitted: $I_{transmitted} = \frac{1}{2}I_0\cos^2(\theta)$

Constants

Elementary Charge: $e = 1.602 \times 10^{-19} C$

Mass of Electron: $m=9.109 imes 10^{-31} kg$

Mass of Proton: $m=1.672 imes 10^{-27}$

Vacuum Permittivity: $\epsilon_0 = 8.854 \times 10^{-12}$

Coulomb Constant $k=9.0 imes 10^9 rac{Nm^2}{C^2}$

Vacuum Permittivity Magnetism: $\mu_0 = 4\pi imes 10^{-7}$

Thin Lens

 $\frac{1}{s} + \frac{1}{s'} = \frac{1}{f}$

s is the

Focal length equation

 $\frac{1}{f} = (n-1)(\frac{1}{R_1} - \frac{1}{R_2})$

Magnification

 $m=-\frac{s'}{s}$

(m is + for upright)

Interference

Double Slit

Angles of bright fringes: $heta_m = m rac{\lambda}{d} \ \ m = 0, 1, 2, 3, \ldots$

Position of fringes: $y_m = rac{m \lambda L}{d} \;\; m = 0, 1, 2, 3, \ldots$

Ideal double slit pattern: $I_{double} = 4I_1 \cos^2(\frac{\pi d}{\lambda L}y)$

Complete intensity: $I_{double}=I_0(rac{\sin(\pi ay/\lambda L)}{\pi ay/\lambda L})^2\cos^2(\pi dy/\lambda L)$

Diffraction Grating

Bright and narrow fringes are at:

 $d\sin(\theta)_m = m\lambda$

 $y_m = L \tan(\theta)_m$