

HM: Hybrid Masking for Few-Shot Segmentation

Each channel $i, f_i^{IM} \in F^{IM}$ and $f_i^{FM} \in F^{FM}$

Find an inactive pixel, $p \in f_i^{HM}$

for Entire pixels $\in f_i^{HM}$ do

if $p \leq 0$ then

Output: HM feature maps F^{HM}

Seonghyeon Moon¹, Samuel S. Sohn, Honglu Zhou, Sejong Yoon, Vladimir Pavlovic, Muhammad Haris Khan, and Mubbasir Kapadia 1: sm2062@cs.rutgers.edu

Problem

 The goal of few-shot segmentation is to train a model that can identify the target object in a query image with only few annotated samples (Support set).

Contribution

- Propose a simple, effective, and efficient way to enhance the prevalent feature masking technique(FM[1]) with input masking(IM [2]).
- HM with HSNet delivers up to 5.3% gain in mloU and speeds up its training convergence by around 11x times on average on COCO-20i.

Motivation

 Feature Masking (FM [1]) was widely adopted to remove background from features.

Image from CyCTR [4]

 FM loses useful information through its masking and progressively worsens with deeper layers.

Proposed Method

Algorithm: Hybrid Masking

. FM and IM features are computed according to the existing methods. The inactivated values in the Replace the pixel, p, with corresponding pixel $\in f_i^{IM}$ FM features are then replaced with IM features.

Analysis

Comparison on three masking techniques on COCO-20i

- FM [1] fails to precisely recover target details, such as target boundaries.
- IM [2] struggles in distinguishing objects from the background.
- HM clearly distinguishes between the target objects and the background and recovers precise details such as, target boundaries.

Results

Performance comparison on PASCAL-5i

Backbone	Mathada	1-shot							5-shot					
feature	Methods	5^0	5^1	5^2	5^3	mIoU	FB-IoU	5^{0}	5^1	5^2	5^3	mIoU	FB-IoU	
	RePRI [1]	59.8	68.3	62.1	48.5	59.7	-	64.6	71.4	71.1	59.3	66.6	-	
	CyCTR 41	67.8	72.8	58.0	58.0	64.2	-	71.1	73.2	60.5	57.5	65.6	-	
	HSNet [24]	64.3	70.7	60.3	60.5	64.0	76.7	70.3	73.2	67.4	67.1	69.5	80.6	
ResNet50 [8]	HSNet^*	63.5	70.9	61.2	60.6	64.3	78.2	70.9	73.1	68.4	65.9	69.6	80.6	
	VAT [9]	67.6	71.2	62.3	60.1	65.3	77.4	72.4	73.6	<u>68.6</u>	65.7	70.0	80.9	
	$\mathrm{HSNet}^*\text{-}\mathrm{HM}$	69.0	70.9	59.3	<u>61.0</u>	65.0	76.5	69.9	72.0	63.4	63.3	67.1	77.7	
	VAT-HM	<u>68.9</u>	70.7	61.0	62.5	65.8	77.1	71.1	72.5	62.6	66.5	68.2	78.5	
	RePRI [1]	59.6	68.6	62.2	47.2	59.4	-	66.2	71.4	67.0	57.7	65.6	-	
	CyCTR 41	69.3	72.7	56.5	58.6	64.3	72.9	73.5	74.0	58.6	60.2	66.6	75.0	
ResNet101 <mark>8</mark>]	HSNet [24]	67.3	72.3	62.0	63.1	66.2	77.6	71.8	74.4	67.0	68.3	70.4	80.6	
	HSNet^*	67.5	72.7	63.5	63.2	66.7	77.7	71.7	74.8	68.2	68.7	70.8	80.9	
	VAT [9]	68.4	72.5	64.8	64.2	67.5	<u>78.8</u>	73.3	75.2	<u>68.4</u>	69.5	71.6	82.0	
	$\mathrm{HSNet}^*\text{-}\mathrm{HM}$	69.8	72.1	60.4	64.3	66.7	77.8	72.2	73.3	64.0	67.9	69.3	79.7	
	VAT-HM					67.8	79.4	74.0	75.5	65.4	68.6	<u>70.9</u>	81.5	

Performance comparison on FSS-1000

Backbone feature	Methods	$rac{mIoU}{1 ext{-shot}}$		Backbone feature	Methods	$rac{mIoU}{1 ext{-shot}}$	5-shot
ResNet50 [8]	FSOT [18] HSNet [24] VAT [9]		87.8	ResNet101 [8]	DAN [35] HSNet [24] VAT [9]	85.2 86.5 90.0	88.1 88.5 90.6
	HSNet-HM VAT-HM	87.1 <u>89.4</u>	88.0 <u>89.9</u>		HSNet-HM VAT-HM	87.8 90.2	88.5 <u>90.5</u>

Performance comparison on COCO-20i

Backbone	Methods	1-shot							5-shot					
feature	Methods	20^{0}	20^{1}	20^{2}	20^{3}	mIoU	FB-IoU	20^{0}	20^1	20^{2}	20^{3}	mIoU	FB-IoU	
	RePRI [1]	32.0	38.7	32.7	33.1	34.1	-	39.3	45.4	39.7	41.8	41.6	-	
	HSNet [24]	36.3	43.1	38.7	38.7	39.2	68.2	43.3	51.3	48.2	45.0	46.9	70.7	
	CyCTR 41	38.9	43.0	39.6	39.8	40.3	-	41.1	48.9	45.2	47.0	45.6	-	
ResNet50 8	VAT [9]	39.0	43.8	42.6	39.7	41.3	68.8	44.1	51.1	50.2	46.1	47.9	72.4	
Resnetou [d]	ASNet [11]	41.5	44.1	42.8	40.6	42.2	69.4	48.0	$\underline{52.1}$	49.7	<u>48.2</u>	49.5	72.7	
	HSNet-HM	41.0	45.7	46.9	43.7	44.3	70.8	45.3	53.1	$\bf 52.1$	47.0	49.4	72.2	
	$VAT ext{-}HM$	42.2	43.3	45.0	42.2	43.2	70.0	45.2	51.0	50.7	46.4	48.3	71.8	
	ASNet-HM	42.8	46.0	44.8	45.0	44.7	70.4	46.3	50.2	48.4	48.6	48.4	72.2	
	FWB [25]	17.0	18.0	21.0	28.9	21.2	-	19.1	21.5	23.9	30.1	23.7	-	
	DAN [35]	_	-	-	-	24.4	62.3	_	-	-	-	29.6	63.9	
_	PFENet 33	36.8	41.8	38.7	36.7	38.5	63.0	40.4	46.8	43.2	40.5	42.7	65.8	
ResNet101 [8]	HSNet [24]	37.2	44.1	42.4	41.3	41.2	69.1	45.9	$\underline{53.0}$	51.8	47.1	49.5	72.4	
	ASNet [11]	<u>41.8</u>	45.4	43.2	41.9	43.1	69.4	48.0	52.1	49.7	48.2	49.5	72.7	
	HSNet-HM	41.2	50.0	48.8	45.9	46.5	71.5	46.5	55.2	51.8	48.9	50.6	72.9	
	ASNet-HM	43.5	46.4	47.2	46.4	45.9	71.1	47.7	51.6	52.1	50.8	50.6	73.3	

Number of best epochs to reach the best model

Backbone feature	Masking methods	20^0	20^{1}	20^2	$5^i 1 20^3$	-shot mEpoch	20^{0}	$\frac{\text{CO}}{20^1}$	$\frac{\text{CO-2}}{20^2}$	$0^{i} \ 1-20^{3}$	$_{ m mEpoch}$	$FSS-1000^i$ 1-shot $Epoch$
ResNet50 [2]	HSNet [5]	345	433	204	244	306.5	262	249	160	295	241.5	530
	$\operatorname{HSNet-HM}$	188	117	45	56	101.5	41	32	32.8	23	35	177
ResNet101 [2]	$HSNet \begin{bmatrix} 5 \end{bmatrix}$	177	185	136	199	174.3	235	251	345	355	296.5	886
	${ m HSNet ext{-}HM}$	73	95	30	72	67.5	52	27	14	14	26.8	298

Visual Comparison with HSNet [3]

Conclusion

- We proposed a new effective masking approach, termed as hybrid masking. It aims to enhance the feature masking (FM [1]) technique, that is commonly used in existing SOTA methods.
- We instantiate HM in strong baselines and the results reveal that utilizing HM surpasses HSNet [3] by visible margins in mIoU (on average 0.4% on PASCAL and 5% on COCO) and reduces training time by a factor of 11x on average.

Reference

- [1] Zhang, X., Wei, Y., Yang, Y., Huang, T.: Sg-one: Similarity guidance network for one-shot semantic segmentation. IEEE Transactions on Cybernetics 50, 3855–3865 (2020)
- [2] Shaban, A., Bansal, S., Liu, Z., Essa, I., Boots, B.: One-shot learning for semantic segmentation. Proceedings of the British Machine Vision Conference (BMVC 2018).
- [3] Min, J., Kang, D., Cho, M.: Hypercorrelation squeeze for few-shot segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). pp. 6941–6952 (October 2021)
- [4] Zhang, G., Kang, G., Yang, Y., Wei, Y.: Few-shot segmentation via cycleconsistent transformer (NIPS 2021)

