Machine Learning Lab Assignment 3

Sonu Kumar Mahanty Roll - 001811001038 Semester - 7th B.E. I.T. 4th Year

ENTIRE ASSIGNMENT LINK (GOOGLE COLLAB + COMPARISON TABLE): https://drive.google.com/folderview?id=16CmJS0N2cjgD3-vtxowXJziNXKQ2lKpm

PART 1

1) Wine Dataset

1.1) GaussianHMM Without Tuning

1.2) GaussianHMM With Tuning

1.3) GMMHMM Without Tuning

1.4) GMMHMM With Tuning

1.5) MultinomialHMM Without Tuning

1.6) MultinomialHMM Without Tuning

The maximum accuracy was achieved when the Train-Test split ratio was 70:30, which was achieved by using the Gaussian Model. The maximum range of accuracies was achieved by the Gaussian Model, followed by the GMMHMM model, which is followed by the MultinomialHMM model.

2) Ionosphere Dataset

2.1) GaussianHMM Without Tuning

2.2) GaussianHMM With Tuning

2.3) GMMHMM Without Tuning

2.4) GMMHMM With Tuning

2.5) MultinomialHMM Without Tuning

2.6) MultinomialHMM Without Tuning

The maximum accuracy was achieved when the Train-Test split ratio was 70:30, which was achieved by using the Gaussian Model. The maximum range of accuracies was achieved by the Gaussian Model, followed by the GMMHMM model, which is followed by the MultinomialHMM model.

3) Breast Cancer Dataset

3.1) GaussianHMM Without Tuning

3.2) GaussianHMM With Tuning

3.3) GMMHMM Without Tuning

3.4) GMMHMM With Tuning

3.5) MultinomialHMM Without Tuning

3.6) MultinomialHMM Without Tuning

The maximum accuracy was achieved when the Train-Test split ratio was 70:30, which was achieved by using the Gaussian Model. The maximum range of accuracies was achieved by the Gaussian Model, followed by the GMMHMM model, which is followed by the MultinomialHMM model.

PART 2

1) CIFAR-10

Model: "sequential_2"		
Layer (type)	Output Shape	Param #
conv2d 6 (Conv2D)	(None, 30, 30, 32)	896
max_pooling2d_4 (Max1Pooling2	(None, 15, 15, 32)	0
conv2d 7 (Conv2D)	(None, 13, 13, 64)	18496
max_pooling2d_5 (MaxPooling2	(None, 6, 6, 64)	0
conv2d 8 (Conv2D)	(None, 4, 4, 64)	36928
flatten (Flatten)	(None, 1024)	0
dense (Dense)	(None, 64)	65600
dense 1 (Dense)	(None, 10)	650
Total params: 122,500 Trainable params: 122,570 Non-trainable params: 0		

anoan				
cpocn # /L 1563/1563 [</td <td>] 69s 44ms/step</td> <td>loss: 0.1561 - accuracy: 0.9437</td> <td>val loss: 1.8716</td> <td>val_accuracy: 0.6910</td>] 69s 44ms/step	loss: 0.1561 - accuracy: 0.9437	val loss: 1.8716	val_accuracy: 0.6910
Epoch 12/20 1563/1563 [1 600 44mg/ston	1 0.1400	val loss: 1.9775	
Epoch 13/20		loss: 0.1498 - accuracy: 0.9463	Val 1055; 1. 9775	val_accuracy: 0.6986
1563/1563 [] 69s 44ms/step	loss: 0.1524 - accuracy: 0.9466	val loss: 2.0503	val_accuracy: 0.6936
Epoch 14/20 1563/1563 [loss: 0.1490 - accuracy: 0.9477	val loss: 2.0715	
Epoch 15/20		1055: 0.1490 - accuracy: 0.9477	Val 1055: 2.0713	val_accuracy: 0.6861
1563/1563 []69s 44ms/step	loss: 0.1429 - accuracy: 0.9497	val loss: 2.1616	val_accuracy: 0.6852
Epoch 16/20 1563/1563 [loss: 0.1356 - accuracy: 0.9520	val loss: 2.2363	val accuracy: 0.6877
Epoch 17/20		1055. 0.1550 accaracy. 0.5520	var 1000. 2.2000	var_accaracy. 0.0077
1563/1563 [] 6-9s 44ms/step	loss: 0.1327 · accuracy: 0.9537	val loss: 2.2239	val_accuracy: 0.6806
Epoch 18/20 1563/1563 []69s 44ms/step	loss: 0.1348 - accuracy: 0.9538	val loss: 2.2102	val accuracy: 0.6943
Epoch 19/20		-		
1563/1563 [] 69 s 44ms/step	loss: 0.1250 · accuracy: 0.9571	val loss: 2.3900	val_accuracy: 0.6802
1563/1563 []6-9s 44ms/step	loss: 0.1245 - accuracy: 0.9565	val loss: 2.3173	val_accuracy: 0.6842

2) MNIST

Layer (type)	Output	Shape	Param #
conv2d_18 (Conv2D)	(None,	26, 26, 32)	320
max_pooling2d_10 (MaxPooling	(None,	13, 13, 32)	0
conv2d_19 (Conv2D)	(None,	11, 11, 64)	18496
max_pooling2d_11 (MaxPooling	(None,	5, 5, 64)	0
conv2d_20 (Conv2D)	(None,	3, 3, 64)	36928
flatten_3 (Flatten)	(None,	576)	0
dense_6 (Dense)	(None,	64)	36928
dense_7 (Dense)	(None,	10)	650
Total params: 93,322 Trainable params: 93,322 Non-trainable params: 0	=====		

1875/1875 [loss: 0.0079 accuracy:	0.9973 · val_loss: 0.0319	val_accuracy: 0.9913
Epoch 12/20 1875/1875 [_)57s 31ms/step	loss: 0.0084 · accuracy:	: 0.9973 · val loss: 0.0329	val_accuracy: 0.9921
Epoch 13/20 1875/1875 [_)57s 31ms/step	loss: 0.0067 - accuracy:	0.9980 - val loss: 0.0343	val_accuracy: 0.9918
Epoch 14/20 1875/1875 [_)58s 31ms/step	loss: 0.0078 - accur acy:	0.9973 - val loss: 0.0390	val_a cc uracy: 0.9908
Epoch 15/20 1875/1875 [-)58s 31ms/step	loss: 0.0048 - accur acy:	: 0.9985 - val_loss: 0.0374	val_acc uracy: 0 .9930
Epoch 16/20 1875/1875 [-)58s 31ms/step	loss: 0.0069 accuracy:	0.9980 · val_loss: 0.0336	val accuracy: 0.9923
Epoch 17/20 1875/1875 [157s 31ms/step	loss: 0.0049 accuracy:	0.9985 · val_loss: 0.0430	val accuracy: 0.9916
Epoch 18/20 1875/1875 [-)57s 31ms/step	loss: 0.0053 accur acy:	0.998 2 · val loss: 0.0397	val accuracy: 0.9915
Epoch 19/20 1875/1875 [_	loss: 0 0048 - acquracy:	0.9986 - val loss: 0.0540	val accuracy: 0.9903
Epoch 20/20	-	•		
1875/1875 [_, Jos 31MS/Step	TOSS: 0.0043 - accuracy:	: 0.998/ - Vai loss: 0.0419	val_ac c uracy: 0.9919

3) SAVEE

Layer (type)	Output Shape	Param #
conv2d_9 (Conv2D)	(None, 155, 318, 32)	320
max_pooling2d_6 (MaxPooling2	(None, 77, 159, 32)	0
conv2d_10 (Conv2D)	(None, 75, 157, 64)	18496
max_pooling2d_7 (MaxPooling2	(None, 37, 78, 64)	0
conv2d_11 (Conv2D)	(None, 35, 76, 64)	36928
flatten_3 (Flatten)	(None, 170240)	0
dense_6 (Dense)	(None, 64)	10895424
dense 7 (Dense)	(None, 10)	650

Total params: 10,951,818

Trainable params: 10,951,818

Non-trainable params: 0

4) EmoDB

Layer (type)	Output	Shape	Param #
conv2d_12 (Conv2D)	(None,	155, 318, 32)	320
max_pooling2d_8 (MaxPooling2	(None,	77, 159, 32)	0
conv2d_13 (Conv2D)	(None,	75, 157, 64)	18496
max_pooling2d_9 (MaxPooling2	(None,	37, 78, 64)	0
conv2d_14 (Conv2D)	(None,	35, 76, 64)	36928
flatten_4 (Flatten)	(None,	170240)	0
dense_8 (Dense)	(None,	64)	10895424
dense_9 (Dense)	(None,	10)	650
Total params: 10,951,818 Trainable params: 10,951,818 Non-trainable params: 0			

```
Epoch 14/20
                         ========] - 30s 2s/step - loss: 0.0012 - accuracy: 1.0000 - val loss: 3.9037 - val accuracy: 0.5155
12/12 [=====
Epoch 15/20
12/12 [====
                                       - 30s 2s/step - loss: 7.0827e-04 - accuracy: 1.0000 - val_loss: 4.0446 - val_accuracy: 0.4969
Epoch 16/20
12/12 [=====
                                   ==] - 30s 2s/step - loss: 4.9740e-04 - accuracy: 1.0000 - val_loss: 4.1150 - val_accuracy: 0.5093
Epoch 17/20
                                       - 30s 3s/step - loss: 3.8747e-04 - accuracy: 1.0000 - val_loss: 4.1542 - val_accuracy: 0.5031
12/12 [=====
Epoch 18/20
12/12 [=====
                                       - 30s 2s/step - loss: 3.0542e-04 - accuracy: 1.0000 - val_loss: 4.2023 - val_accuracy: 0.5031
Epoch 19/20
                                       - 31s 3s/step - loss: 2.5256e-04 - accuracy: 1.0000 - val_loss: 4.2239 - val_accuracy: 0.5031
12/12 [=====
Epoch 20/20
                                       - 30s 2s/step - loss: 2.1154e-04 - accuracy: 1.0000 - val_loss: 4.2753 - val_accuracy: 0.5093
12/12 [=====
```


It was observed that the more layers we add the higher accuracy we can achieve. At the same time, if we keep on adding more layers, the final accuracy will saturate. Also, the number of convolution and the pooling layers play an important role in training the model.

PART 3 1) VGG-16 1.1) CIFAR-10

1.2) MNIST

1.3) SAVEE

```
8/8 [======================== ] - 6s 708ms/step - loss: nan - accuracy: 0.1208
Epoch 45/50
Epoch 46/50
Epoch 47/50
Epoch 48/50
8/8 [========================= ] - 6s 709ms/step - loss: nan - accuracy: 0.1208
Epoch 49/50
Epoch 50/50
model.evaluate(X test resized, y test)
[nan, 0.12916666269302368]
```

1.4) EmoDB

```
=====| - 68 /11MS/Step - 1088; nan - accuracy: 0.224/
9/9 [====
Epoch 14/20
Epoch 15/20
Epoch 16/20
Epoch 17/20
Epoch 18/20
Epoch 19/20
Epoch 20/20
model.evaluate(X test_resized, y test)
[nan, 0.25]
```

The entire model can be broken down into 5 blocks, where each block contains 3 convolution and 1 max-pooling layers.

Looking at the complexity of the model and the limitations of google colab, I have reduced the input size for the model,i.e., i have taken 2000 training data points and 2000 testing data points.

2) ResNet-50

2.1) CIFAR-10

2.2) MNIST

2.3) SAVEE

```
8/8 [============ - - 5s 669ms/step - loss: 1.0197 - accuracy: 0.6833
Epoch 5/10
Epoch 6/10
8/8 [============ - - 5s 669ms/step - loss: 0.2390 - accuracy: 0.9833
Epoch 7/10
8/8 [============ ] - 5s 671ms/step - loss: 0.0966 - accuracy: 1.0000
Epoch 8/10
8/8 [============ - - 5s 668ms/step - loss: 0.0691 - accuracy: 1.0000
Epoch 9/10
8/8 [=========== - - 5s 669ms/step - loss: 0.0550 - accuracy: 1.0000
Epoch 10/10
8/8 [============== - - 5s 666ms/step - loss: 0.0281 - accuracy: 1.0000
model.evaluate(X test resized, y test)
[8.759380340576172, 0.0]
```

2.4) **EmoDB**

```
Epoch 3/10
9/9 [========== ] - 6s 663ms/step - loss: 1.1062 - accuracy: 0.6367
Epoch 4/10
9/9 [========== ] - 6s 661ms/step - loss: 0.6534 - accuracy: 0.7678
Epoch 5/10
9/9 [=========== ] - 6s 662ms/step - loss: 0.3835 - accuracy: 0.8914
Epoch 6/10
9/9 [=========== - 6s 662ms/step - loss: 0.3716 - accuracy: 0.8689
Epoch 7/10
Epoch 8/10
9/9 [========== ] - 6s 661ms/step - loss: 0.1096 - accuracy: 0.9775
Epoch 9/10
9/9 [========== ] - 6s 664ms/step - loss: 0.1170 - accuracy: 0.9850
9/9 [========== ] - 6s 659ms/step - loss: 0.2414 - accuracy: 0.9251
model.evaluate(X test resized, y test)
9/9 [========== ] - 4s 304ms/step - loss: 7.2902 - accuracy: 0.0000e+00
[7.290168285369873, 0.0]
```

Looking at the complexity of the model and the limitations of google colab, I have reduced the input size for the model,i.e., I have taken 2000 training data points and 2000 testing data points.

3) Recurrent Neural Networks (RNN)

3.1) CIFAR-10

```
Epoch 3/10
200/200 [================= ] - 111s 557ms/step - loss: 2.0085 - accuracy: 0.2645
Epoch 4/10
200/200 [============== ] - 112s 558ms/step - loss: 1.9649 - accuracy: 0.2771
Epoch 5/10
200/200 [================= ] - 111s 557ms/step - loss: 1.9583 - accuracy: 0.2816
Epoch 6/10
200/200 [============== ] - 111s 557ms/step - loss: 1.9388 - accuracy: 0.2896
Epoch 7/10
200/200 [============== ] - 111s 557ms/step - loss: 1.9371 - accuracy: 0.2899
Epoch 8/10
200/200 [============= ] - 111s 556ms/step - loss: 1.9254 - accuracy: 0.2989
Epoch 9/10
200/200 [================= ] - 111s 557ms/step - loss: 1.9188 - accuracy: 0.2966
Epoch 10/10
200/200 [================= ] - 111s 556ms/step - loss: 1.9341 - accuracy: 0.2930
model.evaluate(test_images, test_labels)
[1.9600898027420044, 0.29120001196861267]
```

3.2) MNIST

```
print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))
Test Accuracy of the model on the 10000 test images: 97.77 %
```

3.3) SAVEE

3.4) EmoDB

Looking at the complexity of the model and the limitations of google colab, I have reduced the input size for the model,i.e., I have taken 2000 training data points and 2000 testing data points.

4) AlexNet

4.1) CIFAR-10

4.2) MNIST

4.3) SAVEE

```
8/8 [============ - - 56s 7s/step - loss: 2.4215 - accuracy: 0.1583
Epoch 5/10
Epoch 6/10
8/8 [============= - 57s 7s/step - loss: 2.2080 - accuracy: 0.2042
Epoch 7/10
Epoch 8/10
8/8 [============ - 57s 7s/step - loss: 2.1120 - accuracy: 0.2542
Epoch 9/10
Epoch 10/10
8/8 [============== - - 57s 7s/step - loss: 2.1150 - accuracy: 0.2417
model.evaluate(X test resized, y test)
[2.275780200958252, 0.23749999701976776]
```

4.4) EmoDB

Looking at the complexity of the model and the limitations of google colab, I have reduced the input size for the model,i.e., I have taken 2000 training data points and 2000 testing data points.

5) GoogLeNet

5.1) CIFAR-10

```
output_2_loss: 2.0650 - val_output_accuracy: 0.2305 - val_auxilliary_output_1_accuracy: 0.2400 - val_auxilliary_output_2_accuracy: 0.2240

output_2_loss: 2.0244 - val_output_accuracy: 0.2470 - val_auxilliary_output_1_accuracy: 0.2630 - val_auxilliary_output_2_accuracy: 0.2585

output_2_loss: 2.0076 - val_output_accuracy: 0.2355 - val_auxilliary_output_1_accuracy: 0.2735 - val_auxilliary_output_2_accuracy: 0.2660
```

5.2) MNIST

5.3) SAVEE

5.4) **EmoDB**

Looking at the complexity of the model and the limitations of google colab, I have reduced the input size for the model,i.e., I have taken 2000 training data points and 2000 testing data points.