Identify Drinking from body signals

By: Quoc-Trung Nguyen

Introduction

Data source:

https://www.kaggle.com/datasets/sooyoungher/smoking-drinking-dataset

The data is general health checkup results from National Health Insurance Service in Korea.

Dimensions:

- 991346 rows
- 24 columns

Motivations:

- Learn more about medical terms
- Choose the best classifier model to predict drinking

Patient medical profile (after cleaning)

Sex	Male, Female							
Age (rounded)	20 - 85 (years)							
Height (rounded)	130 - 190 (cm)							
Weight (rounded)	25 - 140 (kg)							
Waistline	27 - 149 .1 (cm)							
Eye sight (L,R)	0 - 2.5							
Hearing (L,R)	normal, abnormal							
Smoking	no, yes, used to							

Data Quality Control - Type casting

	Data	columns (total 24	columns):	
	#	Column	Non-Null Count	Dtype
	0	sex	991346 non-null	object
٦	1	age	991346 non-null	int64
	2	height	991346 non-null	int64
	3	weight	991346 non-null	int64
	4	waistline	991346 non-null	float64
	5	sight_left	991346 non-null	float64
	6	sight_right	991346 non-null	float64
	7	hear_left	991346 non-null	float64
	8	hear_right	991346 non-null	float64
	9	SBP	991346 non-null	float64
	10	DBP	991346 non-null	float64
	11	BLDS	991346 non-null	float64
	12	tot_chole	991346 non-null	float64
	13	HDL_chole	991346 non-null	float64
	14	LDL_chole	991346 non-null	float64
	15	triglyceride	991346 non-null	float64
	16	hemoglobin	991346 non-null	float64
	17	urine_protein	991346 non-null	float64
	18	serum_creatinine	991346 non-null	float64
	19	SGOT_AST	991346 non-null	float64
	20	SGOT_ALT	991346 non-null	float64
	21	gamma_GTP	991346 non-null	float64
	22	SMK_stat_type_cd	991346 non-null	float64
	23	DRK_YN	991346 non-null	object

Comments:

- No null value in the dataset
- Columns sex and DRK_YN need to be encoded:
 - → sex_dict = {'Male': 1, 'Female': 0}
 - \rightarrow drink_dict = {'Y: 1, 'N': 0}

Data Quality Control - Check value

Comments:

- In sight_left and sight_right columns, value 9.9 means blind.
- This is not good for the model because the higher the score, the better vision
 - change value 9.9 to 0

Data Quality Control - Outliers

		count	mean	std	min	25%	50%	75%	max
	age	991346.0	47.614	14.181	20.0	35.0	45.0	60.0	85.0
	height	991346.0	162.241	9.283	130.0	155.0	160.0	170.0	190.0
	weight	991346.0	63.284	12.514	25.0	55.0	60.0	70.0	140.0
	waistline	991346.0	81.233	11.850	8.0	74.1	81.0	87.8	999.0
	sight_left	991346.0	0.981	0.606	0.1	0.7	1.0	1.2	9.9
	sight_right	991346.0	0.978	0.605	0.1	0.7	1.0	1.2	9.9
	hear_left	991346.0	1.031	0.175	1.0	1.0	1.0	1.0	2.0
	hear_right	991346.0	1.030	0.172	1.0	1.0	1.0	1.0	2.0
	SBP	991346.0	122.432	14.543	67.0	112.0	120.0	131.0	273.0
	DBP	991346.0	76.053	9.889	32.0	70.0	76.0	82.0	185.0
	BLDS	991346.0	100.424	24.180	25.0	88.0	96.0	105.0	852.0
	tot_chole	991346.0	195.557	38.660	30.0	169.0	193.0	219.0	2344.0
	HDL_chole	991346.0	56.937	17.238	1.0	46.0	55.0	66.0	8110.0
	LDL_chole	991346.0	113.038	35.843	1.0	89.0	111.0	135.0	5119.0
	triglyceride	991346.0	132.142	102.197	1.0	73.0	106.0	159.0	9490.0
	hemoglobin	991346.0	14.230	1.585	1.0	13.2	14.3	15.4	25.0
	urine_protein	991346.0	1.094	0.438	1.0	1.0	1.0	1.0	6.0
	serum_creatinine	991346.0	0.860	0.481	0.1	0.7	0.8	1.0	98.0
	SGOT_AST	991346.0	25.989	23.493	1.0	19.0	23.0	28.0	9999.0
	SGOT_ALT	991346.0	25.755	26.309	1.0	15.0	20.0	29.0	7210.0
U	gamma_GTP	991346.0	37.136	50.424	1.0	16.0	23.0	39.0	999.0
	SMK_stat_type_cd	991346.0	1.608	0.819	1.0	1.0	1.0	2.0	3.0

Comments:

 There are 10 columns with high different between quantile 75% and max value

Data Quality Control - Outliers

waistline: There are 57 records of value= 999.0 and 1 record of value=8. This is unrealistic -> remove these records

BLDS: There has been record on glucose in blood at > 1000, -> keep these values as rare cases

serum_creatinine: values that is higher than 5.0 are very critical and considered kidney damage. This can be the result of wrong input without fraction -> remove values > 30

SGOT_AST: The normal amount is between 20-40 IU/L. This can be a result of wrong inputs between U/L and IU/L -> remove records higher than 2000

SGOT_ALT: Same as SGOT_AST -> remove records higher than 2000

Data Quality Control - Outliers

These 4 features are bounded by the formula:

HDL + LDL + 20% triglycerides = total_chole

Let sum_chole = HDL + LDL + 20% triglycerides, there are: 39702 rows with: sum_chole > total_chole + 1* and 20905 rows with: sum_chole < total_chole - 1* *: <u>+1</u> is for rounding value control

So we need to do 2 things here:

- Remove rows with wrong calculation
- Remove outliers that > 1000 mg/dL in tot_chole

gamma_GTP: Keeping them because it does not seem to be outliers

Data Quality Control - Target distribution

The number of people **Drinking** vs **Not Drinking** after cleaning is nearly equal.

Choose X, y

Check multicollinearity:

- We can solve the correlation of **SBP** and **DBP** by introduction new value to replace those 2:

MAP = (2*DBP + SBP)/3

- LDL_chole is included in tot_chole, so we will drop tot_chole for better mordel performance
- Choose weight over waistline due to waistline have been observed to have outlier

- 0.75

- 0.50

- 0.25

-0.00

- -0.25

- -0.50

- -0.75

Choose X, y

Check correlation with target:

- Only choose feature with high correlation to target
- -> Choose feature with abs(corr) > 0.15

age gamma_GTP height hemoglobin sex sight_left sight_right smoke_1

smoke_2

smoke_3

weight

-> Normalize these data before training

Logistic Regression

	precision	recall	f1-score	support
0	0.72	0.72	0.72	142156
1	0.71	0.70	0.71	137033
accuracy			0.71	279189
macro avg	0.71	0.71	0.71	279189
weighted avg	0.71	0.71	0.71	279189

Gaussian Naive Bayes

support	f1-score	recall	precision	
142156	0.71	0.73	0.69	0
137033	0.69	0.67	0.71	1
279189	0.70			accuracy
279189	0.70	0.70	0.70	macro avg
279189	0.70	0.70	0.70	weighted avg

Decision Tree (max_depth=8)

	precision	recall	f1-score	support
0	0.74	0.70	0.72	142156
1	0.70	0.74	0.72	137033
accuracy			0.72	279189
macro avg	0.72	0.72	0.72	279189
weighted avg	0.72	0.72	0.72	279189

Random Forest (n_estimators=100)

	precision	recall	f1-score	support
0	0.71	0.69	0.70	142156
1	0.69	0.70	0.70	137033
accuracy			0.70	279189
macro avg	0.70	0.70	0.70	279189
veighted avg	0.70	0.70	0.70	279189

K Nearest Neighbor (n_neighbors=10)

		precision	recall	f1-score	support
	0	0.68	0.74	0.71	142156
	1	0.70	0.64	0.67	137033
accur	racy			0.69	279189
macro	avg	0.69	0.69	0.69	279189
weighted	avg	0.69	0.69	0.69	279189

Compare Results

Comments:

- Logistic Regression has best Precision
- While **Decision Tree** is having the best overall performance
- => But why **Decision Tree** is having better scores than **Random Forest** here?
- => Result of Decision Tree model might be overfitted

For this dataset, it is recommended to use **Logistic Regression** for overall second best performance.

	Model	Params	TP	FN	TN	FP	Precision	Recall	F1_Score	Accuracy Score	AUC Score
0	Logistic Regression		102757	39399	40882	96151	0.7093	0.7017	0.7055	0.7124	0.7848
1	Gaussian Naive Bayes		104124	38032	45700	91333	0.7060	0.6665	0.6857	0.7001	0.7657
2	Decision Tree	max_depth = 8	99115	43041	35613	101420	0.7021	0.7401	0.7206	0.7183	0.7937
3	Random Forest	n_estimators = 100	98251	43905	40509	96524	0.6874	0.7044	0.6958	0.6976	0.7676
4	K Nearest Neighbors	n_neighbors = 10	104645	37511	48951	88082	0.7013	0.6428	0.6708	0.6903	0.7558

Compare Results

