Вариации ETS

• Идея дампированного тренда.

- Идея дампированного тренда.
- Новый коэффициент в модели.

- Идея дампированного тренда.
- Новый коэффициент в модели.
- Формулы для прогнозов.

Проблема тренда в ETS(AAN)

В ETS(AAN) модели скорость роста тренда ℓ_t определена формулой

$$b_t = b_{t-1} + \beta u_t$$
, стартовое b_0 .

Проблема тренда в ETS(AAN)

В ETS(AAN) модели скорость роста тренда ℓ_t определена формулой

$$b_t = b_{t-1} + \beta u_t$$
, стартовое b_0 .

Следовательно,

$$\mathbb{E}(b_t) = \mathbb{E}(b_{t-1}), \quad \mathbb{E}(b_{T+h} \mid b_T) = b_T.$$

Проблема тренда в ETS(AAN)

В ETS(AAN) модели скорость роста тренда ℓ_t определена формулой

$$b_t = b_{t-1} + \beta u_t$$
, стартовое b_0 .

Следовательно,

$$\mathbb{E}(b_t) = \mathbb{E}(b_{t-1}), \quad \mathbb{E}(b_{T+h} \mid b_T) = b_T.$$

Долгосрочный прогноз положительного показателя при $b_T < 0$ станет отрицательным.

Противоречие

Краткосрочные ожидания изменения показателя.

Хотим тренд в модели.

Противоречие

Краткосрочные ожидания изменения показателя.

Хотим тренд в модели.

Долгосрочная невозможность отрицательных значений.

Не хотим тренд в модели.

Противоречие

Краткосрочные ожидания изменения показателя.

Хотим тренд в модели.

Долгосрочная невозможность отрицательных значений.

Не хотим тренд в модели.

Решение: дампированный или затухающий тренд.

Лишние параметры — дорого!

Хотим более богатую динамику тренда — нужны дополнительные параметры.

Лишние параметры — дорого!

Хотим более богатую динамику тренда — нужны дополнительные параметры.

Дополнительные параметры — риск переподгонки модели, более широкие доверительные интервалы для оставшихся параметров.

Лишние параметры — дорого!

Хотим более богатую динамику тренда — нужны дополнительные параметры.

Дополнительные параметры — риск переподгонки модели, более широкие доверительные интервалы для оставшихся параметров.

Обойдёмся всего одним новым параметром!

Дампированный тренд

Вводим параметр затухания тренда $\phi \in (0;1)$ в уравнение наклона:

$$b_t = \phi b_{t-1} + \beta u_t$$
, стартовое b_0 .

Дампированный тренд

Вводим параметр затухания тренда $\phi \in (0;1)$ в уравнение наклона:

$$b_t = \phi b_{t-1} + \beta u_t$$
, стартовое b_0 .

И в остальные уравнения:

$$\begin{cases} y_t = \ell_{t-1} + \phi b_{t-1} + u_t; \\ \ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha u_t, \text{ стартовое } \ell_0; \end{cases}$$

Общий вид ETS(AAdN)

$$\begin{cases} y_t = \ell_{t-1} + \phi b_{t-1} + u_t; \\ \ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha u_t, \text{ стартовое } \ell_0; \\ b_t = \phi b_{t-1} + \beta u_t, \text{ стартовое } b_0; \\ u_t \sim \mathcal{N}(0; \sigma^2) \text{ и независимы.} \end{cases}$$

Общий вид ETS(AAdN)

$$\begin{cases} y_t = \ell_{t-1} + \phi b_{t-1} + u_t; \\ \ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha u_t, \text{ стартовое } \ell_0; \\ b_t = \phi b_{t-1} + \beta u_t, \text{ стартовое } b_0; \\ u_t \sim \mathcal{N}(0; \sigma^2) \text{ и независимы.} \end{cases}$$

Параметры (6 штук): α , σ^2 , ℓ_0 , b_0 , β , ϕ .

Прогнозируем

картинка с прогнозами AAdN модели

Прогноз на 1 шаг вперёд

$$\begin{cases} y_t = \ell_{t-1} + \phi b_{t-1} + u_t; \\ \ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha u_t, \text{ стартовое } \ell_0; \\ b_t = \phi b_{t-1} + \beta u_t, \text{ стартовое } b_0; \\ u_t \sim \mathcal{N}(0; \sigma^2) \text{ и независимы.} \end{cases}$$

Прогноз на 1 шаг вперёд

$$\begin{cases} y_t = \ell_{t-1} + \phi b_{t-1} + u_t; \\ \ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha u_t, \text{ стартовое } \ell_0; \\ b_t = \phi b_{t-1} + \beta u_t, \text{ стартовое } b_0; \\ u_t \sim \mathcal{N}(0; \sigma^2) \text{ и независимы.} \end{cases}$$

 $y_{T+1} = \ell_T + \phi b_T + u_{T+1}$

Прогноз на 1 шаг вперёд

$$\begin{cases} y_t = \ell_{t-1} + \phi b_{t-1} + u_t; \\ \ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha u_t, \text{ стартовое } \ell_0; \\ b_t = \phi b_{t-1} + \beta u_t, \text{ стартовое } b_0; \\ u_t \sim \mathcal{N}(0; \sigma^2) \text{ и независимы.} \end{cases}$$

$$y_{T+1} = \ell_T + \phi b_T + u_{T+1}$$

$$(y_{T+1} \mid \mathcal{F}_T) \sim \mathcal{N}(\ell_T + \phi b_T; \sigma^2)$$

Прогноз на 2 шага вперёд

$$\begin{cases} y_t = \ell_{t-1} + \phi b_{t-1} + u_t; \\ \ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha u_t, \text{ стартовое } \ell_0; \\ b_t = \phi b_{t-1} + \beta u_t, \text{ стартовое } b_0; \\ u_t \sim \mathcal{N}(0; \sigma^2) \text{ и независимы.} \end{cases}$$

Прогноз на 2 шага вперёд

$$\begin{cases} y_t = \ell_{t-1} + \phi b_{t-1} + u_t; \\ \ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha u_t, \text{ стартовое } \ell_0; \\ b_t = \phi b_{t-1} + \beta u_t, \text{ стартовое } b_0; \\ u_t \sim \mathcal{N}(0; \sigma^2) \text{ и независимы.} \end{cases}$$

$$y_{T+2} = \ell_{T+1} + \phi b_{T+1} + u_{T+2} = (\ell_T + \phi b_T + \alpha u_{T+1}) + \phi(\phi b_T + \beta u_{T+1}) + u_{T+2}$$

Прогноз на 2 шага вперёд

$$\begin{cases} y_t = \ell_{t-1} + \phi b_{t-1} + u_t; \\ \ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha u_t, \text{ стартовое } \ell_0; \\ b_t = \phi b_{t-1} + \beta u_t, \text{ стартовое } b_0; \\ u_t \sim \mathcal{N}(0; \sigma^2) \text{ и независимы.} \end{cases}$$

$$y_{T+2} = \ell_{T+1} + \phi b_{T+1} + u_{T+2} = (\ell_T + \phi b_T + \alpha u_{T+1}) + \phi(\phi b_T + \beta u_{T+1}) + u_{T+2}$$

$$(y_{T+2} \mid \mathcal{F}_T) \sim \mathcal{N}(\ell_T + (\phi + \phi^2)b_T; \sigma^2((\alpha + \phi\beta)^2 + 1))$$

• На малом горизонте прогнозирования тренд есть.

- На малом горизонте прогнозирования тренд есть.
- На большом горизонте прогнозирования тренда нет.

- На малом горизонте прогнозирования тренд есть.
- На большом горизонте прогнозирования тренда нет.
- Один дополнительный параметр.

- На малом горизонте прогнозирования тренд есть.
- На большом горизонте прогнозирования тренда нет.
- Один дополнительный параметр.
- Можно получить ETS(AAdA) модель с сезонностью.

ETS: мультипликативные компоненты

ETS: мультипликативные компоненты

• Мультипликативные составляющие.

ETS: мультипликативные компоненты

- Мультипликативные составляющие.
- Формулы для прогнозов.

Картинка с сезонным графиком

Возможные решения:

• Переход к логарифмам, $y_t \to \ln y_t$.

Возможные решения:

- Переход к логарифмам, $y_t \to \ln y_t$.
- Преобразование Бокса-Кокса, $y_t \to bc(y_t, \lambda)$.

Возможные решения:

- Переход к логарифмам, $y_t \to \ln y_t$.
- Преобразование Бокса-Кокса, $y_t o bc(y_t,\lambda)$.
- Мультипликативные компоненты.

ETS(MNM) для месячных данных:

$$\begin{cases} y_t = \ell_{t-1} \cdot s_{t-12} \cdot (1+u_t); \\ \ell_t = \ell_{t-1} \cdot (1+\alpha u_t), \text{ стартовое } \ell_0; \\ s_t = s_{t-12} \cdot (1+\gamma u_t), \text{ стартовые } s_0, \dots, s_{-11}; \\ u_t \sim \mathcal{N}(0; \sigma^2) \text{ и независимы.} \end{cases}$$

ETS(MNM) для месячных данных:

$$\begin{cases} y_t = \ell_{t-1} \cdot s_{t-12} \cdot (1+u_t); \\ \ell_t = \ell_{t-1} \cdot (1+\alpha u_t), \text{ стартовое } \ell_0; \\ s_t = s_{t-12} \cdot (1+\gamma u_t), \text{ стартовые } s_0, \dots, s_{-11}; \\ u_t \sim \mathcal{N}(0; \sigma^2) \text{ и независимы.} \end{cases}$$

ETS(ANA):

$$\begin{cases} y_t = \ell_{t-1} + s_{t-12} + u_t; \\ \ell_t = \ell_{t-1} + \alpha u_t, \text{ стартовое } \ell_0; \\ s_t = s_{t-12} + \gamma u_t, \text{ стартовые } s_0, \dots, s_{-11}; \end{cases}$$

ETS(MNM) для месячных данных:

$$\begin{cases} y_t = \ell_{t-1} \cdot s_{t-12} \cdot (1+u_t); \\ \ell_t = \ell_{t-1} \cdot (1+\alpha u_t), \text{ стартовое } \ell_0; \\ s_t = s_{t-12} \cdot (1+\gamma u_t), \text{ стартовые } s_0, \dots, s_{-11}; \\ u_t \sim \mathcal{N}(0; \sigma^2) \text{ и независимы.} \end{cases}$$

ETS(MNM) для месячных данных:

$$\begin{cases} y_t = \ell_{t-1} \cdot s_{t-12} \cdot (1+u_t); \\ \ell_t = \ell_{t-1} \cdot (1+\alpha u_t), \text{ стартовое } \ell_0; \\ s_t = s_{t-12} \cdot (1+\gamma u_t), \text{ стартовые } s_0, \dots, s_{-11}; \\ u_t \sim \mathcal{N}(0; \sigma^2) \text{ и независимы.} \end{cases}$$

Несезонные параметры: α , σ^2 , ℓ_0 .

ETS(MNM) для месячных данных:

$$\begin{cases} y_t = \ell_{t-1} \cdot s_{t-12} \cdot (1+u_t); \\ \ell_t = \ell_{t-1} \cdot (1+\alpha u_t), \text{ стартовое } \ell_0; \\ s_t = s_{t-12} \cdot (1+\gamma u_t), \text{ стартовые } s_0, \dots, s_{-11}; \\ u_t \sim \mathcal{N}(0; \sigma^2) \text{ и независимы.} \end{cases}$$

Несезонные параметры: α , σ^2 , ℓ_0 .

Сезонные параметры: γ , s_0 , s_{-1} , ..., s_{-11} .

ETS(MNM) для месячных данных:

$$\begin{cases} y_t = \ell_{t-1} \cdot s_{t-12} \cdot (1+u_t); \\ \ell_t = \ell_{t-1} \cdot (1+\alpha u_t), \text{ стартовое } \ell_0; \\ s_t = s_{t-12} \cdot (1+\gamma u_t), \text{ стартовые } s_0, \dots, s_{-11}; \\ u_t \sim \mathcal{N}(0; \sigma^2) \text{ и независимы.} \end{cases}$$

Несезонные параметры: α , σ^2 , ℓ_0 .

Сезонные параметры: γ , s_0 , s_{-1} , ..., s_{-11} .

Ограничение: $s_0 \cdot s_{-1} \cdot \ldots \cdot s_{-11} = 1$.

ETS(MNM) для месячных данных:

$$\begin{cases} y_t = \ell_{t-1} \cdot s_{t-12} \cdot (1+u_t); \\ \ell_t = \ell_{t-1} \cdot (1+\alpha u_t), \text{ стартовое } \ell_0; \\ s_t = s_{t-12} \cdot (1+\gamma u_t), \text{ стартовые } s_0, \dots, s_{-11}; \\ u_t \sim \mathcal{N}(0; \sigma^2) \text{ и независимы.} \end{cases}$$

Несезонные параметры: α , σ^2 , ℓ_0 .

Сезонные параметры: γ , s_0 , s_{-1} , ..., s_{-11} .

Ограничение: $s_0 \cdot s_{-1} \cdot \ldots \cdot s_{-11} = 1$.

Всего: 15 параметров.

Единицы измерения

Ряды y_t , ℓ_t — исходные единицы измерения.

Единицы измерения

Ряды y_t , ℓ_t — исходные единицы измерения.

Ряды s_t , u_t — доли.

Единицы измерения

Ряды y_t , ℓ_t — исходные единицы измерения.

Ряды s_t , u_t — доли.

Ряд s_t измеряется относительно единицы, например, $s_t = 0.9$ — ниже тренда на 10%.

Ряд u_t измеряется относительно нуля, например, $u_t = -0.1$ — падение на 10%.

Картинка с прогнозами на 12 шагов вперед

$$\begin{cases} y_t = \ell_{t-1} \cdot s_{t-12} \cdot (1+u_t); \\ \ell_t = \ell_{t-1} \cdot (1+\alpha u_t), \text{ стартовое } \ell_0; \\ s_t = s_{t-12} \cdot (1+\gamma u_t), \text{ стартовые } s_0, \dots, s_{-11}; \\ u_t \sim \mathcal{N}(0; \sigma^2) \text{ и независимы.} \end{cases}$$

$$\begin{cases} y_t = \ell_{t-1} \cdot s_{t-12} \cdot (1+u_t); \\ \ell_t = \ell_{t-1} \cdot (1+\alpha u_t), \text{ стартовое } \ell_0; \\ s_t = s_{t-12} \cdot (1+\gamma u_t), \text{ стартовые } s_0, \dots, s_{-11}; \\ u_t \sim \mathcal{N}(0; \sigma^2) \text{ и независимы.} \end{cases}$$

$$y_{T+1} = \ell_T \cdot s_{T-11} \cdot (1 + u_{T+1})$$

$$\begin{cases} y_t = \ell_{t-1} \cdot s_{t-12} \cdot (1+u_t); \\ \ell_t = \ell_{t-1} \cdot (1+\alpha u_t), \text{ стартовое } \ell_0; \\ s_t = s_{t-12} \cdot (1+\gamma u_t), \text{ стартовые } s_0, \dots, s_{-11}; \\ u_t \sim \mathcal{N}(0; \sigma^2) \text{ и независимы.} \end{cases}$$

$$y_{T+1} = \ell_T \cdot s_{T-11} \cdot (1 + u_{T+1})$$

$$(y_{T+1} \mid \mathcal{F}_T) \sim \mathcal{N}(\ell_T \cdot s_{T-11}; (\ell_T \cdot s_{T-11})^2 \sigma^2)$$

```
\begin{cases} y_t = \ell_{t-1} \cdot s_{t-12} \cdot (1+u_t); \\ \ell_t = \ell_{t-1} \cdot (1+\alpha u_t), \text{ стартовое } \ell_0; \\ s_t = s_{t-12} \cdot (1+\gamma u_t), \text{ стартовые } s_0, \dots, s_{-11}; \\ u_t \sim \mathcal{N}(0; \sigma^2) \text{ и независимы.} \end{cases}
```

$$\begin{cases} y_t = \ell_{t-1} \cdot s_{t-12} \cdot (1+u_t); \\ \ell_t = \ell_{t-1} \cdot (1+\alpha u_t), \text{ стартовое } \ell_0; \\ s_t = s_{t-12} \cdot (1+\gamma u_t), \text{ стартовые } s_0, \dots, s_{-11}; \\ u_t \sim \mathcal{N}(0; \sigma^2) \text{ и независимы.} \end{cases}$$

$$y_{T+2} = \ell_{T+1} \cdot s_{T-10} \cdot (1 + u_{T+2}) =$$

$$= \ell_T (1 + \alpha u_{T+1}) \cdot s_{T-10} \cdot (1 + u_{T+2})$$

$$\begin{cases} y_t = \ell_{t-1} \cdot s_{t-12} \cdot (1+u_t); \\ \ell_t = \ell_{t-1} \cdot (1+\alpha u_t), \text{ стартовое } \ell_0; \\ s_t = s_{t-12} \cdot (1+\gamma u_t), \text{ стартовые } s_0, \dots, s_{-11}; \\ u_t \sim \mathcal{N}(0; \sigma^2) \text{ и независимы.} \end{cases}$$

$$y_{T+2} = \ell_{T+1} \cdot s_{T-10} \cdot (1 + u_{T+2}) =$$

$$= \ell_T (1 + \alpha u_{T+1}) \cdot s_{T-10} \cdot (1 + u_{T+2})$$

$$(y_{T+2} \mid \mathcal{F}_T) \stackrel{\cdot}{\sim} \mathcal{N}(\ell_T \cdot s_{T-10}; \ldots)$$

Мультипликативная ETS: итоги

• Моделирует разную амплитуду колебаний.

Мультипликативная ETS: итоги

- Моделирует разную амплитуду колебаний.
- Для положительных рядов.

Мультипликативная ETS: итоги

- Моделирует разную амплитуду колебаний.
- Для положительных рядов.
- Простор для новых комбинаций.

Собери свой ETS!

Собери свой ETS: план

• Собираем ETS(MAdM) модель.

Собери свой ETS: план

- Собираем ETS(MAdM) модель.
- Прогнозы.

Разная амплитуда колебаний

Картинка с сезонным графиком

Хочу разные компоненты

Сезонность похожа на мультипликативную.

Хочу разные компоненты

Сезонность похожа на мультипликативную.

Мультипликативный тренд означал бы экспоненциальный рост.

Хочу разные компоненты

Сезонность похожа на мультипликативную.

Мультипликативный тренд означал бы экспоненциальный рост.

Хочу аддитивный затухающий тренд.

ETS(MNM) для месячных данных:

$$\begin{cases} y_t = \ell_{t-1} \cdot s_{t-12} \cdot (1+u_t); \\ \ell_t = \ell_{t-1} \cdot (1+\alpha u_t), \text{ стартовое } \ell_0; \\ s_t = s_{t-12} \cdot (1+\gamma u_t), \text{ стартовые } s_0, \dots, s_{-11}; \\ u_t \sim \mathcal{N}(0; \sigma^2) \text{ и независимы.} \end{cases}$$

ETS(MNM) для месячных данных:

$$\begin{cases} y_t = \ell_{t-1} \cdot s_{t-12} \cdot (1+u_t); \\ \ell_t = \ell_{t-1} \cdot (1+\alpha u_t), \text{ стартовое } \ell_0; \\ s_t = s_{t-12} \cdot (1+\gamma u_t), \text{ стартовые } s_0, \dots, s_{-11}; \\ u_t \sim \mathcal{N}(0; \sigma^2) \text{ и независимы.} \end{cases}$$

Как сюда добавить аддитивный тренд?

$$b_t = \phi b_{t-1} + \beta u_t$$
, стартовое b_0 .

ETS(MAdM) для месячных данных:

$$\begin{cases} y_t = (\ell_{t-1} + \phi b_{t-1}) \cdot s_{t-12} \cdot (1 + u_t); \\ \ell_t = (\ell_{t-1} + \phi b_{t-1}) \cdot (1 + \alpha u_t), \text{ стартовое } \ell_0; \\ b_t = \phi b_{t-1} + \beta (\ell_{t-1} + \phi b_{t-1}) u_t, \text{ стартовое } b_0; \\ s_t = s_{t-12} \cdot (1 + \gamma u_t), \text{ стартовые } s_0, \dots, s_{-11}; \\ u_t \sim \mathcal{N}(0; \sigma^2) \text{ и независимы.} \end{cases}$$

ETS(MAdM) для месячных данных:

$$\begin{cases} y_t = (\ell_{t-1} + \phi b_{t-1}) \cdot s_{t-12} \cdot (1 + u_t); \\ \ell_t = (\ell_{t-1} + \phi b_{t-1}) \cdot (1 + \alpha u_t), \text{ стартовое } \ell_0; \\ b_t = \phi b_{t-1} + \beta (\ell_{t-1} + \phi b_{t-1}) u_t, \text{ стартовое } b_0; \\ s_t = s_{t-12} \cdot (1 + \gamma u_t), \text{ стартовые } s_0, \dots, s_{-11}; \\ u_t \sim \mathcal{N}(0; \sigma^2) \text{ и независимы.} \end{cases}$$

Параметры — 18 штук.

ETS(MAdM): прогнозируем

Картинка с прогнозами на 12 шагов вперед

```
\begin{cases} y_t = (\ell_{t-1} + \phi b_{t-1}) \cdot s_{t-12} \cdot (1 + u_t); \\ \ell_t = (\ell_{t-1} + \phi b_{t-1}) \cdot (1 + \alpha u_t), \text{ стартовое } \ell_0; \\ b_t = \phi b_{t-1} + \beta (\ell_{t-1} + \phi b_{t-1}) u_t, \text{ стартовое } b_0; \\ s_t = s_{t-12} \cdot (1 + \gamma u_t), \text{ стартовые } s_0, \dots, s_{-11}; \\ u_t \sim \mathcal{N}(0; \sigma^2) \text{ и независимы.} \end{cases}
```

$$\begin{cases} y_t = (\ell_{t-1} + \phi b_{t-1}) \cdot s_{t-12} \cdot (1 + u_t); \\ \ell_t = (\ell_{t-1} + \phi b_{t-1}) \cdot (1 + \alpha u_t), \text{ стартовое } \ell_0; \\ b_t = \phi b_{t-1} + \beta (\ell_{t-1} + \phi b_{t-1}) u_t, \text{ стартовое } b_0; \\ s_t = s_{t-12} \cdot (1 + \gamma u_t), \text{ стартовые } s_0, \dots, s_{-11}; \\ u_t \sim \mathcal{N}(0; \sigma^2) \text{ и независимы.} \end{cases}$$

$$y_{T+1} = (\ell_T + \phi b_T) \cdot s_{T-11} \cdot (1 + u_{T+1})$$

$$\begin{cases} y_t = (\ell_{t-1} + \phi b_{t-1}) \cdot s_{t-12} \cdot (1 + u_t); \\ \ell_t = (\ell_{t-1} + \phi b_{t-1}) \cdot (1 + \alpha u_t), \text{ стартовое } \ell_0; \\ b_t = \phi b_{t-1} + \beta (\ell_{t-1} + \phi b_{t-1}) u_t, \text{ стартовое } b_0; \\ s_t = s_{t-12} \cdot (1 + \gamma u_t), \text{ стартовые } s_0, \dots, s_{-11}; \\ u_t \sim \mathcal{N}(0; \sigma^2) \text{ и независимы.} \end{cases}$$

$$y_{T+1} = (\ell_T + \phi b_T) \cdot s_{T-11} \cdot (1 + u_{T+1})$$

$$(y_{T+1} \mid \mathcal{F}_T) \sim \mathcal{N}((\ell_T + \phi b_T) \cdot s_{T-11}; (\ell_T + \phi b_T)^2 \cdot s_{T-11}^2 \sigma^2)$$

Сколько всего ETS моделей?

Ошибка: А, М.

Тренд: N, A, Ad, M, Md.

Сезонность: N, A, M.

Сколько всего ETS моделей?

Ошибка: А, М.

Тренд: N, A, Ad, M, Md.

Сезонность: N, A, M.

А — аддитивная составляющая.

М — мультипликативная составляющая.

N — нет составляющей.

d — дампирование для тренда.

Сколько всего ETS моделей?

Ошибка: А, М.

Тренд: N, A, Ad, M, Md.

Сезонность: N, A, M.

А — аддитивная составляющая.

М — мультипликативная составляющая.

N — нет составляющей.

d — дампирование для тренда.

Формально: 30 вариантов.

Исторические названия

ETS(ANN) — простое экспоненциальное сглаживание.

ETS(AAA) — аддитивный метод Хольта-Винтерса.

ETS(AAM) — мультипликативный метод Хольта-Винтерса.

ETS(AAdM) — метод Хольта-Винтерса с затухающим трендом.

Какой вариант выбрать?

Разная амплитуда колебаний: признак мультипликативных моделей.

Какой вариант выбрать?

Разная амплитуда колебаний: признак мультипликативных моделей.

Работает автоматический выбор по критерию АІС.

Какой вариант выбрать?

Разная амплитуда колебаний: признак мультипликативных моделей.

Работает автоматический выбор по критерию АІС.

Часть мультпликативных моделей может быть численно неустойчива или не реализованы в софте.

• Можно смешивать разные компоненты.

- Можно смешивать разные компоненты.
- Ошибка: А, М.

- Можно смешивать разные компоненты.
- Ошибка: А, М.
- Тренд: N, A, Ad, M, Md.

- Можно смешивать разные компоненты.
- Ошибка: А, М.
- Тренд: N, A, Ad, M, Md.
- **Сезонность**: N, A, M.

- Можно смешивать разные компоненты.
- Ошибка: А, М.
- Тренд: N, A, Ad, M, Md.
- **Сезонность**: N, A, M.
- Некоторые комбинации могут быть неустойчивы.

Тета-метод: план

• Неожиданный лидер.

Тета-метод: план

- Неожиданный лидер.
- Авторская версия.

Тета-метод: план

- Неожиданный лидер.
- Авторская версия.
- Частный случай ETS.

Появился в 2000 году и стал сенсацией на соревнованиях М3 по прогнозированию рядов.

Появился в 2000 году и стал сенсацией на соревнованиях М3 по прогнозированию рядов.

Работает для несезонных рядов.

Появился в 2000 году и стал сенсацией на соревнованиях М3 по прогнозированию рядов.

Работает для несезонных рядов.

Изначально без статистической модели.

1. Раскладываем ряд на две тета-линии ($\theta=0$, $\theta=2$).

- 1. Раскладываем ряд на две тета-линии ($\theta = 0$, $\theta = 2$).
- 2. Прогнозируем нулевую линию с помощью линейной регрессии.

- 1. Раскладываем ряд на две тета-линии ($\theta = 0$, $\theta = 2$).
- 2. Прогнозируем нулевую линию с помощью линейной регрессии.
- 3. Прогнозируем вторую линию с помощью ETS(ANN).

- 1. Раскладываем ряд на две тета-линии ($\theta = 0$, $\theta = 2$).
- 2. Прогнозируем нулевую линию с помощью линейной регрессии.
- 3. Прогнозируем вторую линию с помощью ETS(ANN).
- 4. Усредняем прогнозы.

- 1. Раскладываем ряд на две тета-линии ($\theta = 0$, $\theta = 2$).
- 2. Прогнозируем нулевую линию с помощью линейной регрессии.
- 3. Прогнозируем вторую линию с помощью ETS(ANN).
- 4. Усредняем прогнозы.

- 1. Раскладываем ряд на две тета-линии ($\theta = 0$, $\theta = 2$).
- 2. Прогнозируем нулевую линию с помощью линейной регрессии.
- 3. Прогнозируем вторую линию с помощью ETS(ANN).
- 4. Усредняем прогнозы.

Можно предварительно удалить сезонность и в конце вернуть обратно.

Что такое тета-линия?

Нулевая тета-линия — регрессия ряда на время:

$$\hat{y}_t = \hat{\beta}_1 + \hat{\beta}_2 t.$$

Что такое тета-линия?

Нулевая тета-линия — регрессия ряда на время:

$$\hat{y}_t = \hat{\beta}_1 + \hat{\beta}_2 t.$$

Тета линия для произвольного тета:

$$\Delta^2 y_t^{new} = \theta \Delta^2 y_t.$$

Интуиция

• Нулевая тета-линия ловит долгосрочную тенденцию ряда.

Интуиция

- Нулевая тета-линия ловит долгосрочную тенденцию ряда.
- Тета-линия ($\theta = 2$) ловит краткосрочную тенденцию. Ускорение тета-линии в θ раза сильнее ускорения исходного ряда.

Интуиция

- Нулевая тета-линия ловит долгосрочную тенденцию ряда.
- Тета-линия ($\theta = 2$) ловит краткосрочную тенденцию. Ускорение тета-линии в θ раза сильнее ускорения исходного ряда.
- Усреднение снижает дисперсию прогнозов.

Берём
$$\theta=2$$
:

$$\Delta^2 y_t^{new} = 2\Delta^2 y_t.$$

Берём $\theta=2$:

$$\Delta^2 y_t^{new} = 2\Delta^2 y_t.$$

Или

$$y_t^{new} - 2y_{t-1}^{new} + y_{t-2}^{new} = 2(y_t - 2y_{t-1} + y_{t-2}).$$

Берём $\theta=2$:

$$\Delta^2 y_t^{new} = 2\Delta^2 y_t.$$

Или

$$y_t^{new} - 2y_{t-1}^{new} + y_{t-2}^{new} = 2(y_t - 2y_{t-1} + y_{t-2}).$$

Новый ряд y_t^{new} полностью определяется y_1^{new} , y_2^{new} .

Берём $\theta=2$:

$$\Delta^2 y_t^{new} = 2\Delta^2 y_t.$$

Или

$$y_t^{new} - 2y_{t-1}^{new} + y_{t-2}^{new} = 2(y_t - 2y_{t-1} + y_{t-2}).$$

Новый ряд y_t^{new} полностью определяется y_1^{new} , y_2^{new} .

Решаем оптимизационную задачу:

$$\sum_{t=1}^{T} (y_t - y_t^{new})^2 \to \min.$$

Статистическая модель

Уже в 2003 году появилась модель:

$$\begin{cases} y_t = \ell_t + b + u_t; \\ \ell_t = \ell_{t-1} + b + \alpha u_t; \\ \ell_1 = y_1. \end{cases}$$

Статистическая модель

Уже в 2003 году появилась модель:

$$\begin{cases} y_t = \ell_t + b + u_t; \\ \ell_t = \ell_{t-1} + b + \alpha u_t; \\ \ell_1 = y_1. \end{cases}$$

Или:

$$\Delta y_t = b + (\alpha - 1)u_{t-1} + u_t.$$

Тета-метод — вариант ETS

Ochoва — ETS(AAN):

$$\begin{cases} y_t = \ell_{t-1} + b_{t-1} + u_t; \\ \ell_t = \ell_{t-1} + b_{t-1} + \alpha u_t, \text{ стартовое } \ell_1; \\ b_t = b_{t-1} + \beta u_t, \text{ стартовое } b_0; \\ u_t \sim \mathcal{N}(0; \sigma^2) \text{ и независимы.} \end{cases}$$

Тета-метод — вариант ETS

Ochoва — ETS(AAN):

$$\begin{cases} y_t = \ell_{t-1} + b_{t-1} + u_t; \\ \ell_t = \ell_{t-1} + b_{t-1} + \alpha u_t, \text{ стартовое } \ell_1; \\ b_t = b_{t-1} + \beta u_t, \text{ стартовое } b_0; \\ u_t \sim \mathcal{N}(0; \sigma^2) \text{ и независимы.} \end{cases}$$

Убираем стохастичность тренда $\beta=0$.

Тета-метод — вариант ETS

Ochoва — ETS(AAN):

$$\begin{cases} y_t = \ell_{t-1} + b_{t-1} + u_t; \\ \ell_t = \ell_{t-1} + b_{t-1} + \alpha u_t, \text{ стартовое } \ell_1; \\ b_t = b_{t-1} + \beta u_t, \text{ стартовое } b_0; \\ u_t \sim \mathcal{N}(0; \sigma^2) \text{ и независимы.} \end{cases}$$

Убираем стохастичность тренда $\beta=0$.

Возможны нюансы инициализации.

Тета-метод: итоги

• Хорошо работает для несезонных данных.

Тета-метод: итоги

- Хорошо работает для несезонных данных.
- Особая вариация ETS модели.