Ein Van-der-Monde-artiges Theorem

Hans-Gert Gräbe, Leipzig

30. September 2025

Zusammenfassung

Ziel der vorliegenden Arbeit ist die Berechnung einer Determinante, die der van-der-Mondeschen ähnelt. Zwei Anwendungen auf Gausszahlen und Binomialkoeffizienten werden diskutiert. Der Text setzt Bekanntheit mit dem Determinantenbegriff voraus.

Die Arbeit entstand wohl Ende der 1980er Jahre und fand sich 2025 in einer englischen Version beim Aufräumen wieder. Ich habe den Text nun digital erfasst und ins Deutsche übertragen.

1 Der Satz von van der Monde und eine Verallgemeinerung

 $a_i, i = 1, 2, ..., n$, seien n Unbestimmte und $a_{ij} = a_i^{i-1}, i, j = 1, 2, ..., n$.

Satz 1 (Satz von van der Monde) Für die Matrix $A_n = (a_{ij})$, also

$$A_n = \begin{pmatrix} 1 & 1 & \dots & 1 \\ a_1 & a_2 & \dots & a_n \\ \dots & \dots & \dots & \dots \\ a_1^{n-1} & a_2^{n-1} & \dots & a_n^{n-1} \end{pmatrix}$$

gilt

$$\det (A_n) = \prod_{1 \le i \le j \le n} (a_j - a_i).$$

Beweis: $\det(A_n)$ ist ein Polynom in a_1, a_2, \ldots, a_n . Für $a_i = a_j$ stimmen die Spalten i und j von A_n überein und $\det(A_n)$ verschwindet in diesem Fall. Also ist $\det(A_n)$ durch $a_j - a_i$ teilbar für alle $1 \le i < j \le n$. Da diese Faktoren (als lineare Faktoren) paarweise teilerfremd sind, ergibt sich

$$\det(A_n) = \prod_{1 \le i < j \le n} (a_j - a_i) \cdot P_n \tag{1}$$

für ein Polynom $P_n = P_n(a_1, a_2, \ldots, a_n)$. Vergleich der a_i -Grade auf den beiden Seiten von (1) zeigen, dass P_n ein konstantes Polynom ist. Der Koeffizient vor a_n^{n-1} auf der linken Seite ist det (A_{n-1}) , der auf der rechten Seite $\prod_{1 \leq i < j \leq n-1} (a_j - a_i) \cdot P_n$. Also ist $P_n = P_{n-1}$. Wegen $P_1 = 1$ zeigt dies, dass $P_n = 1$ ist. \square

For the KoSemNet project see http://www.lsgm.de/KoSemNet.

This material belongs to the Public Domain KoSemNet data base. It can be freely used, distributed and modified, if properly attributed. Details are regulated by the *Creative Commons Attribution License*, see http://creativecommons.org/licenses/by/3.0.

1.1 Eine Verallgemeinerung des Satzes von van der Monde

Seien nun $a_i, b_k, i, k = 1, 2, \dots, n, 2n$ Unbestimmte und

$$a_{ij} := \prod_{k=1}^{i-1} (a_j - b_k), \quad i, j = 1, 2, \dots, n.$$

Das leere Produkt setzen wir dabei wie gewöhnlich per Definition gleich 1.

Satz 2 Für die Matrix $A_n = (a_{ij})$, also

$$A_n = \begin{pmatrix} 1 & 1 & \dots & 1 \\ a_1 - b_1 & a_2 - b_1 & \dots & a_n - b_1 \\ (a_1 - b_1)(a_1 - b_2) & (a_2 - b_1)(a_2 - b_2) & \dots & (a_n - b_1)(a_n - b_2) \\ \dots & \dots & \dots & \dots \end{pmatrix}$$

gilt

$$\det (A_n) = \prod_{1 \le i < j \le n} (a_j - a_i).$$

Der Satz von van der Monde ergibt sich hieraus sofort für $b_1 = b_2 = \cdots = b_n = 0$.

Erster Beweis: Wir argumentieren wie oben. det (A_n) ist nun ein Polynom in a_1, a_2, \ldots, a_n und b_1, b_2, \ldots, b_n . Für $a_i = a_j$ stimmen die Spalten i und j von A_n wieder überein und wir schließen wie oben, dass det (A_n) für alle $1 \le i < j \le n$ durch $a_j - a_i$ teilbar ist. Wie oben ergibt sich

$$\det(A_n) = \prod_{1 \le i < j \le n} (a_j - a_i) \cdot P_n \tag{2}$$

für ein gewisses Polynom $P_n = P_n(a_1, \ldots, a_n, b_1, \ldots, b_n)$. Ein Vergleich der a_i -Grade der beiden Seiten von (1) für $i = 1, \ldots, n$ zeigt wieder, dass alle a_i -Grade von P_n gleich null sind. Also ist diesmal P_n zwar nicht konstant, sondern ein Polynom nur in b_1, \ldots, b_n . Der Vergleich der Koeffizienten von a_n^{n-1} auf der linken und der rechten Seite von (1) ergibt wieder

$$P_n \cdot \prod_{1 \le i < j \le n-1} (a_j - a_i) = \det(A_{n-1}),$$

damit $P_n = P_{n-1}$ und weiter $P_n = 1$ für $n \ge 1$, da offensichtlich $P_1 = P_2 = 1$ gilt. Das komplettiert den Beweis. \square

Zweiter Beweis: Addiere b_i Mal die Zeile i von $(a_{i,j})$ zur Zeile (i+1), $i=n-1,n-2,\ldots,1$. Als Zeile (i+1) der neuen Matrix ergibt sich

$$a_{i+1,j}^{(1)} = a_{i+1,j} + b_i \cdot a_{ij} = \prod_{k=1}^{i} (a_j - b_k) + b_i \cdot \prod_{k=1}^{i-1} (a_j - b_k) = a_j \cdot \prod_{k=1}^{i-1} (a_j - b_k) = a_j \cdot a_{ij}.$$

Addiere nun b_{i-1} Mal die Zeile i der Matrix $\left(a_{i,j}^{(1)}\right)$ zur Zeile (i+1) $(i=n-1,n-2,\ldots,2)$. Als Zeile (i+1) der neuen Matrix ergibt sich

$$a_{i+1,j}^{(2)} = a_{i+1,j}^{(1)} + b_i \cdot a_{ij}^{(1)} = a_j \cdot (a_{ij} + b_{i-1} \cdot a_{i-1,j}) = a_j \cdot a_{ij}^{(1)} = a_j^2 \cdot a_{i-1,j} \quad (i \ge 2).$$

Wiederholt man dasselbe Argument (n-1) Mal, so wird die Matrix $(a_{i,j})$ in die van-der-Mondesche Matrix transformiert, ohne dass sich der Wert der Determinante ändert. Damit folgt die Behauptung aber aus dem originalen Satz von van der Monde.

2 Anwendungen

Es seien $a \in \mathbb{R}$, $n \in \mathbb{N}$ und x eine Variable. Definiere die Gauss-Zahlen wie üblich als

$$\left[\frac{a}{n}\right] = \prod_{i=1}^{n} \frac{x^{a+1-i} - 1}{x^{i} - 1} = \frac{(x^{a} - 1)(x^{a-1} - 1) \cdot \dots \cdot (x^{a-n+1} - 1)}{(x - 1)(x^{2} - 1)(x^{n} - 1)}.$$

Folgerung 1 Ist $a_{ij} = \left\lceil \frac{m_j}{i-1} \right\rceil$ für $m_1, \ldots, m_n \in \mathbb{N}$, $i, j = 1, \ldots, n$, so ist

$$\det(a_{ij}) = x^{-\binom{n}{3}} \prod_{k=1}^{n} \frac{1}{(x^k - 1)^{n-k}} \prod_{1 \le i < j \le n} (x^{m_j} - x^{m_i}).$$

Beweis: Es ist

$$a_{ij} = \prod_{k=1}^{i-1} \frac{x^{m_j+1-k}-1}{x^k-1} = \prod_{k=1}^{i-1} \frac{x^{m_j}-x^{k-1}}{(x^k-1)x^{k-1}}.$$

Da die Nenner bei allen Elementen einer Zeile gleich sind, können wir diese als Faktor aus der Determinante herausziehen. Damit erhalten wir

$$\det(a_{ij}) = \left(\prod_{i=1}^{n} \prod_{k=1}^{i-1} \frac{1}{(x^k - 1) x^{k-1}}\right) \cdot \det(b_{ij}) \text{ mit } b_{ij} = \prod_{k=1}^{i-1} \left(x^{m_j} - x^{k-1}\right).$$

Es ist

$$\prod_{i=1}^{n} \prod_{k=1}^{i-1} x^{k-1} = x^{\sum_{i=1}^{n} \frac{(i-1)(i-2)}{2}} = x^{\frac{n^3 - 3n^2 + 2n}{6}} = x^{\binom{n}{3}}.$$

Wir wenden Satz 2 auf die Berechnung von det (b_{ij}) mit $a_j = x^{m_j}$ und $b_k = x^{k-1}$ an:

$$\det(b_{ij}) = \prod_{1 \le i < j \le n} (x^{m_j} - x^{m_i}).$$

Damit ist der geforderte Nachweis erbracht. \square Sei nun $\binom{a}{n}$ der (gewöhnliche) Binomialkoeffizient.

Folgerung 2 Ist $a_{ij} = {m_j \choose {i-1}}$ für $m_1, \ldots, m_n \in \mathbb{N}$, $i, j = 1, \ldots, n$, so ist

$$\det(a_{ij}) = \prod_{k=1}^{n-1} \frac{1}{k!} \prod_{1 \le i < j \le n} (m_j - m_i).$$

Beweis: Es ist

$$a_{ij} = {m_j \choose i-1} = \frac{1}{(i-1)!} \prod_{k=1}^{i-1} m_j + 1 - k.$$

Auf dieselbe Weise wie oben ergibt sich für

$$b_{ij} = \prod_{k=1}^{i-1} m_j + 1 - k$$

aus Satz 2

$$\det(b_{ij}) = \prod_{1 \le i < j \le n} (m_j - m_i)$$

und damit

$$\det(a_{ij}) = \frac{1}{1! \cdot 2! \cdot \ldots \cdot (n-1)!} \prod_{1 \le i < j \le n} (m_j - m_i).$$

Folgerung 2 ergibt sich auch direkt aus Folgerung 1 durch Anwendung der Regel von l'Hospital und der Beziehung $\binom{a}{n} = \lim_{x \to 1} \left[\frac{a}{n} \right]$.