

R08944052 斯晓等

ML Foundations HWZ.

z. Let "O"=+1, "x"=-1

② X · O ③ X X X O X

X O

" "Positive rectangle" hypothesis set all shatter 4 1 inputs (24=16)

i, VC-Dimension of the hypothesis set ≥4

证 dvc (H) = ∞ 将 dx 看作变数.

 $4k+1 \le dx \le 4k+3$ 此时 $y=-1 \Rightarrow$ $4k-1 \le dx \le 4k+1$ 此时 $y=1 \Rightarrow$ 由上式我们可以构造 -1 人 。 4k=-1 时 4k=-1 的 4k=

 $A = \sum_{i=1, y_i=-1}^{h} A^{-i}$ $(i \ge 1)$.

 $0 \le \sum_{j=1, \, i > j}^{h} 4^{j-i} < \sum_{i=1}^{+\infty} 4^{-i} < \frac{1}{1-4^{-1}} - 1 = \frac{1}{3}$

:, 4K < dx; < 4K+3

 $y_i = 1$ when $4k \le dx_i \le 4k+1$

', ha $(x_{j})=1$ when $y_{j}=1$.

当打=一将在下一交讨论.

接续 problem 3

当 第二一时:

$$dX_{j} = 4^{j} \cdot \sum_{j=1}^{n} 4^{-j}$$

$$= \sum_{j=1}^{n} 4^{j-1} + 1 + \sum_{j=1}^{n} 4^{j-1}$$

$$= 4^{j-1} \cdot \sum_{j=1}^{n} 4^{j-1}$$

$$= 4^{j-1} \cdot \sum_{j=1}^{n} 4^{j-1}$$

$$= 4^{j-1} \cdot \sum_{j=1}^{n} 4^{j-1}$$

 $\therefore 4k+1 \leq dX_j < 4k+\frac{4}{3}$

 $\forall i = -1 \quad \text{when } 4k+1 \leq dX_i \leq 4k+2$

: hd $(x_j) = -1$ when $y_j = -1$

综上所述 y=1或 y=-1 时, 都能找到--个hd shatter 所有 X -17 dvc (H)=∞ 4. 设S1={dichotomies of H, 9, S2={dichotomies of H23. 综中元素数量为 1S,1, 1S21.

 $|S_1 \cap S_2| \leq |S_1|$

 $m_{H_1 \cap H_2}(N) = |S_1 \cap S_2|$, $m_{H_1}(N) = |S_1|$ 如果 $N = d_{VC}(H_1)$

 $m_{H_1} \cap H_2(N) \leq m_{H_1}(N) = 2^N$

· 等号(=)成立, MHINH2(N)有可能 Shatter 数量为 dvc(HI)的 inputs. 如果 N= dvc(HI)+1

 $m_{H_1 \cap H_2}(N) \leq m_{H_1}(N) < 2^N$

17. MHINH2 (N)不能 shatter 数量为 dvc (HI)+1 的inputs, 小子号(<)成立.

:, dvc(H, 1 H2) \ dvc(H1).

法2. 反证法。

假设 dvc (HINH2) > dvc (HI)

- ·, dvc (HI NHZ) 无论 shatter 多子 1HI / in puts.
- 2, dvc (H, NH2) > dvc (H,) 不成立
- i, duc (H, nHz) & duc (H1).

5. $m_{H_1}(N) = m_{H_2}(N) = N-1$

完当HUH在N-1个区间内时会产生2种不同的 dichotomies 另外在2端会产生全对"或全为"x"

 $m_{H_1UH_2}(N) = 2(N-1)+2 = 2N$

当 N=1时 $M_{H_1UH_2}=2N=2=2^N$ 可以 shatter 1 input

当N=2时 MHIUHz=ZN=4=ZN 可以Shatter Z1 inputs

当N=3时 MHIVH2=2N=6<2N=8 不可以Shatter 31 inputs

i, clvc (H1 UH2) = 2.

 $P(y|x) = \begin{cases} 0.8, & \dot{y} = f(x) \\ 0.2, & y \neq f(x) \end{cases}$ $f(x) = \tilde{s}(x) + noise \text{ where } \tilde{s}(x) = sign(x)$ $-1 \le x \le 0 \int_{0.2}^{0.8} y = -1 \quad 0 < x \le 1 \int_{0.2}^{0.8} y = 1$ $\int_{0.2}^{0.2} y = 1$ 1 X East $(hs, 0) = \int_{1}^{1} P(x) \cdot E_{y} - P(y|x) [hs, 0(x) \neq y] dx$ = $\frac{1}{2}$ [$\int_{-1}^{\infty} E_{y} \sim p(y|x) [h_{s,\theta}(x) \neq y] dx + \int_{0}^{\infty} E_{y} \sim p(y|x) [h_{s,\theta}(x) \neq y] dx$] $= \frac{1}{2} \left[\int_{-1}^{0} 0.8[h_{5,\theta}(x) \neq -1] + 0.2[h_{5,\theta}(x) \neq 1] dx + \frac{1}{2} \left[\int_{-1}^{0} 0.8[h_{5,\theta}(x) \neq -1] + 0.2[h_{5,\theta}(x) \neq 1] dx + \frac{1}{2} \left[\int_{-1}^{0} 0.8[h_{5,\theta}(x) \neq -1] + 0.2[h_{5,\theta}(x) \neq 1] dx + \frac{1}{2} \left[\int_{-1}^{0} 0.8[h_{5,\theta}(x) \neq -1] + 0.2[h_{5,\theta}(x) \neq 1] dx + \frac{1}{2} \left[\int_{-1}^{0} 0.8[h_{5,\theta}(x) \neq -1] + 0.2[h_{5,\theta}(x) \neq -1] dx + \frac{1}{2} \left[\int_{-1}^{0} 0.8[h_{5,\theta}(x) \neq -1] + 0.2[h_{5,\theta}(x) \neq -1] dx + \frac{1}{2} \left[\int_{-1}^{0} 0.8[h_{5,\theta}(x) \neq -1] + 0.2[h_{5,\theta}(x) \neq -1] dx + \frac{1}{2} \left[\int_{-1}^{0} 0.8[h_{5,\theta}(x) \neq -1] + 0.2[h_{5,\theta}(x) \neq -1] dx + \frac{1}{2} \left[\int_{-1}^{0} 0.8[h_{5,\theta}(x) \neq -1] + 0.2[h_{5,\theta}(x) \neq -1] dx + \frac{1}{2} \left[\int_{-1}^{0} 0.8[h_{5,\theta}(x) \neq -1] + 0.2[h_{5,\theta}(x) \neq -1] dx + \frac{1}{2} \left[\int_{-1}^{0} 0.8[h_{5,\theta}(x) \neq -1] + 0.2[h_{5,\theta}(x) \neq -1] dx + \frac{1}{2} \left[\int_{-1}^{0} 0.8[h_{5,\theta}(x) \neq -1] + 0.2[h_{5,\theta}(x) \neq -1] dx + \frac{1}{2} \left[\int_{-1}^{0} 0.8[h_{5,\theta}(x) \neq -1] + 0.2[h_{5,\theta}(x) \neq -1] dx + \frac{1}{2} \left[\int_{-1}^{0} 0.8[h_{5,\theta}(x) \neq -1] + 0.2[h_{5,\theta}(x) \neq -1] dx + \frac{1}{2} \left[\int_{-1}^{0} 0.8[h_{5,\theta}(x) \neq -1] + 0.2[h_{5,\theta}(x) \neq -1] dx + \frac{1}{2} \left[\int_{-1}^{0} 0.8[h_{5,\theta}(x) \neq -1] dx + \frac{1}{2} \left[\int_{-1}^{0} 0.8[h_{5,\theta}(x) \neq -1] + 0.2[h_{5,\theta}(x) \neq -1] dx + \frac{1}{2} \left[\int_{-1}^{0} 0.8[h_{5,\theta}(x) \neq -1] dx$ $\int_0^1 a_1 g[h_{s,\theta}(x) \neq 1] + a_2 [h_{s,\theta}(x) \neq -1] dx$ 假设 S=+| hs,o(x)=Sign(x-0) East $(hs,0) = \frac{1}{2} \left[\int_{-1}^{0} 0.2 \, dx + \int_{0}^{0} 0.8 \, dx + \int_{0}^{1} 0.2 \, dx \right]$ $= \frac{1}{2} \left[a_2(\theta - (-1)) + a_8(0 - \theta) + a_2(1 - \theta) \right]$ $= \frac{1}{2} [0.20 + 0.2 - 0.80 + 0.2]$ = -030+012 $\theta \ge 0$: Fout $(hs, \theta) = \frac{1}{2} \left[\int_{-1}^{0} \alpha_1 2 \, dx + \int_{0}^{0} \theta_1 8 \, dx + \int_{0}^{1} \theta_1 2 \, dx \right]$ $= \frac{1}{2} \left[0.2(0-(-1)) + 0.8(0-0) + 0.2(1-0) \right]$ $=\frac{1}{2}[0.2+0.80+0.2-0.20]$ = 0.30 + 0.2 假没 5=-1 hs.o(x) = - sign(x-0)Eout (hs,0) = $\frac{1}{2} \left[\int_{-1}^{\theta} 0.8 \, dx + \int_{0}^{0} 0.2 \, dx + \int_{0}^{1} 0.8 \, dx \right]$ 0<0: = 1 [0,8 (0-(-1)) + 0,2 (0-0) + 0,8 (1-0)] = 1 [0.80 + 0.8 - 0.20 to.8] = 0.30+0.8. 下一页

$$S = -1 \quad h_{S,\theta}(x) = -Sign(x-\theta)$$

$$\theta \ge 0 \quad Eout(h_{S,\theta}) = \frac{1}{2} \left[\int_{-1}^{0} o_{1}8 \, dx + \int_{0}^{\theta} o_{1}2 \, dx + \int_{0}^{1} o_{1}8 \, dx \right]$$

$$= \frac{1}{2} \left[o_{1}8 \left(o_{1}(-1) \right) + o_{1}2 \left(o_{1}-o_{1} \right) + o_{1}8 \left(1-\theta_{1} \right) \right]$$

$$= \frac{1}{2} \left[o_{1}8 + o_{2}\theta + o_{1}8 - o_{1}8\theta_{1} \right]$$

$$= -o_{1}3\theta + o_{2}8$$

方法二.

由Coursera第1题引知 Eout=入M+(1-入)(1-M), where \=0.8, 从为没有 noise 的错误率

$$S = +1 \qquad y = 1$$

$$h(x) = -1 \qquad +$$

$$err$$

$$-1 \qquad 0 \qquad 0 \qquad 1$$

$$y = -1$$

$$h(x) = +1$$

$$M_{S=+1} = \frac{10}{2}$$

$$S = -1$$

$$y = -1 \ h(x) = +1$$

$$-1 \qquad 0 \qquad 0 \qquad 1$$

$$y = -1 \ h(x) = -1$$

$$ery$$

$$-1 \qquad 0 \qquad 0 \qquad 1$$

$$ery$$

$$-1 \qquad 0 \qquad 0 \qquad 1$$

$$y = +1 \ h(x) = -1$$

$$y = +1 \ h(x) = -1$$

$$M_{S=-1} = 1 - \frac{101}{2}$$

$$M_{S,\theta} = \alpha 5(S+1) \times \alpha 5|\theta| - \alpha 5(S-1)(1-\alpha 5|\theta|)$$

= $\alpha 5S|\theta| - \alpha 5S + \alpha 5$.

$$E_{out}(h_{s,o}) = \lambda M_{s,o} + (1-\lambda)(1-M_{s,o})$$

= 0.5 + 0.3.5(.101-1)

7.

通週觀察直方圖, E_{in} - E_{out} 近似高斯分佈,其數值基本位於區間[-0.2, 0.1]之間。當 training data 為 20 的時候, E_{in} - E_{out} 的差值多為負值,說明 E_{in} 通常小於 E_{out} 。我們知道在 20% noise 的情況下,真實的 avg E_{in} 和 E_{out} 都約為 0.2,而當前結果顯示 E_{in} 最小的 hypothesis 不一定能保證 E_{out} 最小,且 E_{in} 和 E_{out} 仍不夠接近。

Average_E_in = 0.165900 Average_E_out = 0.254686 Ein-Eout= -0.08878643295061384

在 training data 擴增到 2000 的情況下,我們可以很明顯觀察到 E_{in} - E_{out} 呈現高斯分佈,其差值基本位於[-0.01, 0.01]之間。在訓練資料增加的情況下,VC bound 限制了 E_{in} 與 E_{out} 的差距,同時 avg E_{in} 與 E_{out} 在此情況下更接近真實值。滿足了機器可以學習的條件,即 E_{in} \approx E_{out} .

Average_E_in = 0.199878 Average_E_out = 0.200634 Ein-Eout= -0.0007558015278006092

假设在二维空间中d=2, S⊆{[0,0]^T, [0,1]^T, [1,0]^T, [1,1]^T9

 $t=[t_1,t_2]^T$ 把二维平面划分为4个区域 对任意点 $X[X_1,X_2]^T$ 根据 X_1,X_2 与 t_1 , t_2 的 t_3 和 t_4 和 t_4 和 t_5 和 t_4 和 t_5 和 t_5 和 t_6 和

i, 对于 d=2 (二维率面), H可以Shatter 最多 4 (2^d, where d=2) 个点, 或许可以借此推论, Hon R^d可以Shatter 最多 2^d 不点,