Dioptra y espejo (planos)

- 13. Un tanque tiene por fondo a un espejo plano. Contiene agua y su profundidad es 24 cm. Un pez se mantiene a 9 cm debajo de la superficie.
- a) ¿Cuál es la profundidad aparente del pez cuando se lo mira directamente desde arriba?
- b) ¿Cuál es la profundidad aparente de la imagen del pez, en un espejo cuando se la mira directamente desde arriba?

Esquema de la situación

a) Posición de la imagen del pez cuando pasa por dioptra

•
$$x_o = 0.09m$$
 ; $n_1 = 1.33$; $n_2 = 1$; $R \rightarrow \infty$

• Expresión general:
$$\frac{n_1}{x_o} - \frac{n_2}{x_i} = \frac{n_1 - n_2}{R}$$

• En este caso en particular

•
$$\frac{1,33}{0,09cm} - \frac{1}{x_i} = \frac{0,33}{-\infty} = 0 \rightarrow x_i = 0,07cm$$

• Aumento $A = \frac{n_1 \cdot x_i}{n_2 \cdot x_0} = 1$

Imagen virtual, directa del mismo tamaño.

b) Posición de la imagen del pez cuando se refleja y su reflejo pasa por dioptra

- Primero analizo la imagen del pez cuando se refleja en el espejo
- $x_{01} = 0.15m$; $R \to \infty$
- Expresión general: $\frac{1}{x_o} + \frac{1}{x_i} = \frac{2}{R}$
- En este caso en particular

•
$$\frac{1}{0.15cm} + \frac{1}{x_{i1}} = \frac{2}{-\infty} = 0 \rightarrow x_{i1} = -0.15cm$$

Imagen virtual, directa del mismo tamaño.

b) Posición de la imagen del pez cuando se refleja y su reflejo pasa por dioptra

 Por último analizo la imagen del reflejo del pez (nuevo objeto) cuando pasa por la diontra

dioptra

•
$$x_{o2}=0.39m$$
 ; $n_1=1.33$; $n_2=1$; $R\to\infty$

- Expresión general: $\frac{n_1}{x_0} \frac{n_2}{x_i} = \frac{n_1 n_2}{R}$
- En este caso en particular

•
$$\frac{1,33}{0,39cm} - \frac{1}{x_{i2}} = \frac{2}{-\infty} = 0 \rightarrow x_{i2} = 0,29cm$$

• Aumento
$$A = \frac{n_1 \cdot x_i}{n_2 \cdot x_0} = 1$$

Imagen virtual, directa del mismo tamaño.

