

44

1

SEQUENCE LISTING

<110> MORAN, MAGDALENE M.
CHONG, JAYHONG A.
RAMSEY, IAN SCOTT
CLAPHAM, DAVID E.

<120> SPERM-SPECIFIC CATION CHANNEL, CATSPER-4, AND USES THEREOF

<130> 110313.139US2

<140> 10/523,475
<141> 2005-02-04

<150> PCT/US03/024359
<151> 2003-08-04

<150> 60/402,115
<151> 2002-08-07

<160> 7

<170> PatentIn Ver. 3.3

<210> 1
<211> 1197
<212> DNA
<213> Homo sapiens

<400> 1
atgtctcaac accgtcacca gcgccactcg agagtcattt ctagttcacc agttgacact 60
acatcggtgg gattttgcccc aacattcaag aaatttaaga ggaacgatga tgaatgtcg 120
gcatttgtga agagagtcat aatgagccgt ttctttaaga taatttatgt tagcactgtc 180
acatcgaatg cgttttttat ggccttgcgtt accagttatgc acataaggta ccgcttgcgt 240
agacttcttg agttctcgga gatcttctt gtgtccatct gcacatctga gttgtccatg 300
aaggctctatg tggaccccat caactactgg aagaacggct acaacctgtc ggtatgtgatc 360
attatcateg ttatgtttt accctatgcc ctccgcgc tcatggcaa acagttcact 420
tacctgtata tcgcgtatgg catgoagtcc ctgcgcattcc tcaagcttat cggctatagc 480
caggcatcc ggacgctgtat caccgcgtg gggcagacag tctacaccgt ggcctctgtg 540
ctcctcctgc ttttcctctt catgtacatc ttgcgtatct tgggcttctg cctgtttgg 600
tctccagaca atggtgacca tgataactgg gggaaacctgg ctgcagctt tttcaccctc 660
ttcagcttgg ccacgggttga tggctggaca gacctgcaga agcagttgga caatcgaa 720
tttgcatttga gcccggcatt caccatcatc ttcatcttgc tcgcctctt catcttcctc 780
aacatgttcg tgggtgtgtat gatcatgcac acagaggact ccatcagaaa gtttgagcga 840
gagctgtatgt tggagcagca ggagatgttc atgggagaga agcaggtgtat tctgcagcgg 900
cagcaggagg agatcagcag gctgtatgcac atacagaaaa atgctgactg cacaagtttc 960
agttagctgg tggagaactt taagaagacc ttgagccaca ctgacccaaat ggtcttggat 1020
gattttggca ctatgttacc ctcatcgat atctactttt ccactctggaa ctaccaggac 1080
acaactgtcc acaagcttca agagctgtac tatgagatcg tgcgtgtgtc gagcctaattg 1140
ctgaaagact tggcccccaggaa gaagccccaggaa tcccttggaaa aggtggatga gaagtag 1197

<210> 2
<211> 398
<212> PRT
<213> Homo sapiens

<400> 2
 Met Ser Gln His Arg His Gln Arg His Ser Arg Val Ile Ser Ser Ser
 1 5 10 15
 Pro Val Asp Thr Thr Ser Val Gly Phe Cys Pro Thr Phe Lys Lys Phe
 20 25 30
 Lys Arg Asn Asp Asp Glu Cys Arg Ala Phe Val Lys Arg Val Ile Met
 35 40 45
 Ser Arg Phe Phe Lys Ile Ile Met Ile Ser Thr Val Thr Ser Asn Ala
 50 55 60
 Phe Phe Met Ala Leu Trp Thr Ser Tyr Asp Ile Arg Tyr Arg Leu Phe
 65 70 75 80
 Arg Leu Leu Glu Phe Ser Glu Ile Phe Phe Val Ser Ile Cys Thr Ser
 85 90 95
 Glu Leu Ser Met Lys Val Tyr Val Asp Pro Ile Asn Tyr Trp Lys Asn
 100 105 110
 Gly Tyr Asn Leu Leu Asp Val Ile Ile Ile Ile Val Met Phe Leu Pro
 115 120 125
 Tyr Ala Leu Arg Gln Leu Met Gly Lys Gln Phe Thr Tyr Leu Tyr Ile
 130 135 140
 Ala Asp Gly Met Gln Ser Leu Arg Ile Leu Lys Leu Ile Gly Tyr Ser
 145 150 155 160
 Gln Gly Ile Arg Thr Leu Ile Thr Ala Val Gly Gln Thr Val Tyr Thr
 165 170 175
 Val Ala Ser Val Leu Leu Leu Phe Leu Leu Met Tyr Ile Phe Ala
 180 185 190
 Ile Leu Gly Phe Cys Leu Phe Gly Ser Pro Asp Asn Gly Asp His Asp
 195 200 205
 Asn Trp Gly Asn Leu Ala Ala Phe Phe Thr Leu Phe Ser Leu Ala
 210 215 220
 Thr Val Asp Gly Trp Thr Asp Leu Gln Lys Gln Leu Asp Asn Arg Glu
 225 230 235 240
 Phe Ala Leu Ser Arg Ala Phe Thr Ile Ile Phe Ile Leu Leu Ala Ser
 245 250 255
 Phe Ile Phe Leu Asn Met Phe Val Gly Val Met Ile Met His Thr Glu
 260 265 270
 Asp Ser Ile Arg Lys Phe Glu Arg Glu Leu Met Leu Glu Gln Gln Glu
 275 280 285
 Met Leu Met Gly Glu Lys Gln Val Ile Leu Gln Arg Gln Gln Glu Glu
 290 295 300

Ile Ser Arg Leu Met His Ile Gln Lys Asn Ala Asp Cys Thr Ser Phe			
305	310	315	320
Ser Glu Leu Val Glu Asn Phe Lys Lys Thr Leu Ser His Thr Asp Pro			
325	330	335	
Met Val Leu Asp Asp Phe Gly Thr Ser Leu Pro Phe Ile Asp Ile Tyr			
340	345	350	
Phe Ser Thr Leu Asp Tyr Gln Asp Thr Thr Val His Lys Leu Gln Glu			
355	360	365	
Leu Tyr Tyr Glu Ile Val His Val Leu Ser Leu Met Leu Glu Asp Leu			
370	375	380	
Pro Gln Glu Lys Pro Gln Ser Leu Glu Lys Val Asp Glu Lys			
385	390	395	

<210> 3
 <211> 1188
 <212> DNA
 <213> Mus musculus

<400> 3
 atgtcccaac atttcacca caaccctgta cgagtcaagt cgggctcaact gtttgcata 60
 gcatcggaaag cattgcaggc aagactgagc aagattaaga ggaaggataaa ggagtgccag 120
 gcttacttca ggaaggttat taagagcact ttcttccaga ttgtgtatgat caccacggtc 180
 accaccaact ccttttact ggtctgggg actaattatg acatacaatt cgagtttttc 240
 agaacctttg aggtctcaga gctttcttt gtatctgtct atgtctgcga gtccctcatg 300
 aaggctatg tggaccccat tacatactgg aaggatggc ataacatact ggatgtgatc 360
 attctcatca ttctcaccat accctatctc ctccgcaaaa tcaaggggaa tcattctgca 420
 tacctccact ttgctgtatgg catccagtct ctacgaatcc tcaagcttat ctccctacagt 480
 aggggcatca gacactcat catcgtgtg ggggagacgg tctacactgt ggcctcggtg 540
 ctgacgctgc tcttcctcct catgttggg ttcgcgtatcc tgggattctg cttatggc 600
 gtgacggaca gaggcgaccc ggagaactgg gggAACCTGG cttcagcttt ctttactctc 660
 ttcagttgg ccacgggttga tggctggact gacctgcagg aagagctgga caagaggaag 720
 ttactgtga gccggggcgtt tactatcctc ttcatcttgc ttgcattcctt catcttcctc 780
 aacatgtttg tgggtgtat gatcatgcac acggaggatt ccataaaaaa gtttgagcgg 840
 gatctgacgt tggagaggaa ctttgcgtt atggaggaga agcaataat cctgaaacgc 900
 cagaagagg aggtcaacag gctgtatgaa acacagaaaa ctggtagcat gaacttcatt 960
 gatatggtgg agggcttcaa gaagaccctg cggcacacag accccatgt tctggatgac 1020
 ttcagcacta gtctctcctt cattgatatc tacttggtca cactggacaa ccaagatgtt 1080
 attgtcagca agcttcagga gctctactgt gagattgtga acgtgtcgg cctgtatgtt 1140
 gaagacatgc ccaaggagag ctcgtccagc ctctcgggac taagttaa 1188

<210> 4
 <211> 395
 <212> PRT
 <213> Mus musculus

<400> 4
 Met Ser Gln His Phe His His Asn Pro Val Arg Val Lys Ser Gly Ser
 1 5 10 15
 Leu Phe Ala Thr Ala Ser Glu Ala Leu Gln Ala Arg Leu Ser Lys Ile
 20 25 30

Lys Arg Lys Asp Lys Glu Cys Gln Ala Tyr Phe Arg Lys Val Ile Lys
 35 40 45

Ser Thr Phe Phe Gln Ile Val Met Ile Thr Thr Val Thr Thr Asn Ser
 50 55 60

Phe Leu Leu Val Leu Gly Thr Asn Tyr Asp Ile Gln Phe Glu Phe Phe
 65 70 75 80

Arg Thr Phe Glu Phe Val Ser Glu Leu Phe Phe Val Ser Val Tyr Val
 85 90 95

Cys Glu Leu Met Lys Val Tyr Val Asp Pro Ile Thr Tyr Trp Lys Asp
 100 105 110

Gly Tyr Asn Ile Leu Asp Val Ile Ile Leu Ile Ile Leu Thr Ile Pro
 115 120 125

Tyr Leu Leu Arg Lys Ile Lys Gly Asn His Ser Ala Tyr Leu His Phe
 130 135 140

Ala Asp Gly Ile Gln Ser Leu Arg Ile Leu Lys Leu Ile Ser Tyr Ser
 145 150 155 160

Arg Gly Ile Arg Thr Leu Ile Ile Ala Val Gly Glu Thr Val Tyr Thr
 165 170 175

Val Ala Ser Val Leu Thr Leu Leu Phe Leu Leu Met Phe Val Phe Ala
 180 185 190

Ile Leu Gly Phe Cys Leu Phe Gly Val Thr Asp Arg Gly Asp Leu Glu
 195 200 205

Asn Trp Gly Asn Leu Ala Ser Ala Phe Phe Thr Leu Phe Ser Leu Ala
 210 215 220

Thr Val Asp Gly Trp Thr Asp Leu Gln Glu Glu Leu Asp Lys Arg Lys
 225 230 235 240

Phe Thr Val Ser Arg Ala Phe Thr Ile Leu Phe Ile Leu Leu Ala Ser
 245 250 255

Phe Ile Phe Leu Asn Met Phe Val Gly Val Met Ile Met His Thr Glu
 260 265 270

Asp Ser Met Lys Lys Phe Glu Arg Asp Leu Thr Leu Glu Arg Asn Leu
 275 280 285

Ala Ile Met Glu Glu Lys Gln Ile Ile Leu Lys Arg Gln Gln Glu Glu
 290 295 300

Val Asn Arg Leu Met Asn Thr Gln Lys Thr Gly Ser Met Asn Phe Ile
 305 310 315 320

Asp Met Val Glu Gly Phe Lys Lys Thr Leu Arg His Thr Asp Pro Met
 325 330 335

Val Leu Asp Asp Phe Ser Thr Ser Leu Ser Phe Ile Asp Ile Tyr Leu
 340 345 350

Val Thr Leu Asp Asn Gln Asp Val Ile Val Ser Lys Leu Gln Glu Leu
 355 360 365

Tyr Cys Glu Ile Val Asn Val Leu Ser Leu Met Leu Glu Asp Met Pro
 370 375 380

Lys Glu Ser Ser Ser Ser Leu Ser Gly Leu Ser
 385 390 395

<210> 5

<211> 6358

<212> DNA

<213> Homo sapiens

<400> 5

acaggcatga gccaccgcgc ttggccagaa gtggcattct taaattcaag aaattggat 60
 ggggaggatt cacacattt ataaccaga aattcaagca attctggta ctacaaatgc 120
 attgtttgg agaatagttg taaggtggaa aaagaattag gaactcgaca gatagtgagt 180
 ttaactta aataacaatt cttctttgt tttgtttgt ttgagacggg gtctcgctct 240
 gctgcccagg ctggagtgca gtggcaggat cacggttat tgcagcctta acctcctggg 300
 ctcaagcagt tctccctcct cagcctccag agtagctggg actataggca agtgcacca 360
 cgcctgacta atttttaat ttttgtaga gatggggctc cccatcttc ccaggctggc 420
 cttgaactct tgggctcaag caagccccc acctctgcct cccaaagtcc aaggattaca 480
 ggtgtgagcc attgccccca gccagtataa cagtttgtgt gtgtgtgtgt gtgtgtgtgt 540
 gtgtgtgtgt gtttgcacag gggtctcatt ctgttgccta ggcagtagtg tagtggtgcg 600
 accatggctc actgttagtct tgacttctca ggctcaagtg atcctctcac ctcagcctcc 660
 tgagtagcag cgtttacagg catgcatcac cacacctggc ttattttaa aactttttt 720
 tggagacagg gtcttactat gttgcacatgg ctggtctaga acttctggc tcgagtaatc 780
 ctccctgcctt ggctctcaa aatgttggga ttacaggtgt gagccactgt gtcataacaa 840
 ttattttaaa atttttattt attttttttt aataattata caagatggag ttcactatgt 900
 ttgcccaggc tggctctgaa tgcctggct caaatgatct tcctgcctt accccccaaa 960
 gtgctggat tacaggcgtg agccactgcg cctggcctat aacaattctt atgaagctaa 1020
 agttgatgg gattttagt gccgttacta ctatataat taatagatt aaacaagtca 1080
 caaaaattgg atgagatatac ttggtgtgtt ttcttactt ttctcttc acagagagtt 1140
 gaaggagagg acaaagtgtct tgcgtgtgc ttccaggaat gtgtgcata ataagattt 1200
 ctgttacagc agccaactca ccaagtctt atttgactta ctgagttaa gaggaactaa 1260
 gggtcatttt ccccccattca tttgcatttt ttgactcctg aactgagggt ctacggccac 1320
 tgaagctaga agctagaagg gtgttaatca gttagtgact ctacttactc catgtgtcac 1380
 tgacagatgt aaaaaggaat atcaagtaat ctattattta aaaattgtaa taagagtgtt 1440
 ttttgaagga attcaggaat gtactactaa cgagattatg atgcaggtat atccatccat 1500
 gaagcattt ttgcatttgcattt gaagcatcat ggtgtggaa ttacatgg atcatcttt 1560
 taaaccacc tctctttagg ggccagagaa atcactgttt gttacaacaa gcaaaccctt 1620
 ccctctccat gtcacccttgc ccccaaacct gagaacata tggaaacatg gcacagaggc 1680
 tgagctctct gaagccagtt cctggctgtt ttgtgtggcc agggagaggc aggtgtggc 1740
 agttgcccgtg tgacatgtg gtgtgcagg agagaagagg gaaaagagcc actcaggctc 1800
 tctggctgcc agggatcca gactcttagc actagaactt ctgtttctta gaattctcc 1860
 caagaaaaag acaaaaactgt gttttataa gctgggttcc tatagtgttag atttggact 1920
 ttatataattt ttattacaa atatttttag ttaagtgtctt caattttcaa cattaattct 1980
 taaaattttt ctttgagaa tcatcacatg gatttacatg aatttttaa gcatgaaaaa 2040
 atttaaacat atccaaaagt acatgaatag tacattgaag ccttataatc atatcacccaa 2100
 gatataaaaa ttaccaagat ttgtcccag ttgcttcattt ttccctgttt cttctttgc 2160
 taaagtattt aaaagcaaat cccagatagc ttatcatcc acccctatc cttcagtaa 2220
 gtttctatgg aaaatatggc cattttcttgc tataaaccac agtacatctg tttttttttt 2280
 ttgagataga gtctcacact gtcgcccagg ctggagtgca atggcgtgat cttggctcac 2340

tgcaacctct gcctcccagg ttcaggcgat tctcctgcct cagcccccg ggtagctggg 2400
attacagggtg tgcgccacca tgcccaacta atttttttt gatatctcg tagagatggg 2460
gtttcaccat gtggccagg ctggctcga gctcctgacc tcgtgatcgc ccgcttaggc 2520
ctcccaaagt gctgggattta taggcataag ccacagcgcc cggcccacag taccattttt 2580
atacctaaca aagtgattcc ttggtaacta taatacctag gcaaaatcaa attgtcctga 2640
aggtcatgaa tgccttggc cagtaatctg gttctaattcg aggatctata tgaagccac 2700
caatcgcatc tggttgttgc gtctcttag tctgtcagtc tggagcaagc tcccctccct 2760
tcctcagttc cccatgttat ttatttttgc taaaaactgg gtcagttgtg ctgtagaata 2820
ttctcgttcc tggtttgtt tggttttcc tggtgttca tttaacttgc ttactatatac 2880
cctaaacgga accctttcc tctgtttca gcagaagtc gagaggctaa acttgatggc 2940
tgtgttaaca tatgtcacgt gtagcacagt ggagaaagca ggatatggct cataatgaca 3000
gtggtaaga cctgcgaatg aagttgttag ttatcaccta cattagggtt tgacatagg 3060
ctatgtatg ggtcgctgca tctgctggaa ctcacagact ttactataga gaatcaaaga 3120
tcccgtatcc gaagtctatg gaaatgtca ttgggtttaaa ttccaaacaga atgaaacacc 3180
aaactgctt aaagtaactc acgtttcaat ttgaaagaga tattgtcaaa attggaggcc 3240
cccaggttcc tgcctgttcc aaatcttgc atgatgacag tgggttctct gatgtggtaa 3300
gctttggctt tcttctgtt tctttctaaa agatcactgg agtagagagg agttaaacag 3360
acatgaccc tgcctcttgc catgaccccttcc acagatagca aaccggccg acacatggtt 3420
gacgatgttcc ttttctacaa tgaagttaat gaaatgtctg aaaatagtga ttactttctg 3480
acatggatag gatttagaa acctctggat aaatagctta agcatggctg ttatgtttt 3540
tgctatagac aaaaagcaggc agcatgtaca ttgtatttgg acacaagct gcctcggtta 3600
atatttggaa ctattggacc actagggtta gttagggagcg gtctgtacac ttctgtattc 3660
agcattcaga aacattctag gtggactctg tagcttcaat ttttgtaaag ttatcagaaa 3720
aacatcgaaa gggtttggcc atcatatgt agctttgtt ttcaatgcca gttactcagg 3780
attagtaat taatgactgt ccagaggact tcagggtcac caagctgctg cacctgccc 3840
tggctgactc tccccggcta tctgtggctg agatgggtct gcttaggtca cgcagagcat 3900
gagctgctgc tgaaagggca caggagatgg cccttgggct tctcatccca ggtatgcctgc 3960
cctgcccacc aatccatgag aagatatgt tgatttcagt aggccctggc tcagcttgc 4020
acctctgggtt tccctgttgc ttccactca ctcagctggc gtttcatc cagactaaag 4080
tcttcatcat tggcttcaga aacagattc atctgtggct gtgtctgtt agtacaccaa 4140
gaacaactgg gctttctct gtcacttca gtgggttacc ttcccttcacc tctccaagca 4200
gcatgaaaga attctttaca ttttaatct tttttttgtt ttccctgaa agtatgtttt 4260
ggtgcttaaa gagagaagtc aaaaaagtttactactgat ttcctggaga tgaaatcctg 4320
ttgtcccttag ctatgtgaat ggcacaggat atccctgtat ccattttt gatatattcat 4380
acggcacaca cttaactgg gcctctgtg tgcccttaggg gattgagcac agtgcataat 4440
caggccaggat agaaacagat ggagagctga tgccggctgt cttagagcag ctgccccagg 4500
aggccctgtt ggttggatgt tggcaggag ccctgagaaatgatggcat ataaactaaag 4560
gacatagcag gagttatagg aggagctgtat ccctgaggaa aacaatgaaac acggagaaga 4620
tggggcttaaa gtttgaatttggggacatt aatcacagtg attcttaaaa ctttgctgtt 4680
gatgattttta aatggagaaa atgagatcgt aagatgtttat ttcccacttc agtataattgg 4740
ttgcccacaa agtattttcc taccatgaat ggtcatatatac ttgttgcataatgg 4800
gacagcagag atgggtgggtt agttacttcc ttttcttaca gcccagaac ttgggtgtcc 4860
aggagattga ccaatttgc cactgagcat ttaatacacaac acagggtcac ccagatccca 4920
ctgtcctgtat ttgccttgc agccaaagga gttaggagaa ggtgagttgg gagaatataat 4980
taatcctgag agttgaacag agcaaaaatc ctttacttgc ttgtacttaa aacatctctg 5040
ccacatgtgc tcaacttta tattctgttt aggtggttta tatgtgcaca tcccattcc 5100
tgcctgcagt tagccaaactc agggtttata ttgccttcc tcttttttcc tttttttttt 5160
tttttttaag agatggggtc tcatttctatc atgcagactg gagtgcagtg gtgtgatcac 5220
agctcattgtt aacctccaaac gcctggacta aagtgtatcc ctttacttgc ctttctgtt 5280
agctgggactt acagggtgcac gcccaccac ccacacttta tttttttttt tttttttttt 5340
tagagacagt ctcaactatc tgctcaggat agtcctgtac tccctggctc aagttatctt 5400
gctgcctcag cttccatgg gtaattttta ttcccttgc tttttttttt gggatggag 5460
tttgccttgc tgcggccagg ctgggtgc atggcagat cttggctcac tgcagtcctcc 5520
accttctggg ttcaagtgtat tttccatcc ttttgc ttttgc ttttgc ttttgc ttttgc 5580
actgcccacca tgcggccatc atttatgtat tttttttttttaaagatgg gtttccacca 5640
tggggccatc actgtctta aactcctgac ctcacggcact cttggctcac tggcttccca 5700
aagtgttggg attacaggca tgaggccatc tgccttgc ttttgc ttttgc ttttgc ttttgc 5760
ttttttttaga gatgggggtc tcaactatgtt gtcaggctg atctcaactt cttggccatc 5820

agtgatcctc ccaccttagc ctcccaagtt gctgggatta taagtgtgag ccactatccc 5880
tacctcacta ttaccttctt tgcttcctt gtttctttt gttctaagtc aaacccatca 5940
caatctttc ttgtccttcc aggtgtttc cagtgcgtg ccctggatgt gctctttc 6000
tcttagagcc cagagaacctt gctttcccc cttatataatg acccttaact tttcttaaca 6060
cattattaag ggcctgtgtc tatcagctgg gggcacttct tgaagggagg gcctttgtgt 6120
ggctgttttc tagtgacttc cagcttaac ccagagcctc atgattgctg ggtgcccata 6180
gccttttgc tgaatggagg cactcagtct cttgggaag agagaatcca tgatagaccc 6240
acttgggagc tcccccacttc aggggcctac acactggtaa tgcaacagaa tgcccaagag 6300
tgacctcata aagcaaggat tcccttcgtg gccccttctc tgctgcctct cagaatcc 6358

<210> 6
<211> 78
<212> DNA
<213> Homo sapiens

<400> 6
agacgctaag gaaaatccct aagcagagat tttctgttgg atgctaaaag caaggaataa 60
aagttgaaaa ttggaaa 78

<210> 7
<211> 72
<212> DNA
<213> Homo sapiens

<400> 7
ctgggcatgg ggcacccatg tgccgagagc cttgcagacc atgacaggtc cctattaaac 60
acaggcttcc tg 72