AutoML: Practical Considerations

Practical and Open Problems

Bernd Bischl Frank Hutter Lars Kotthoff Marius Lindauer <u>Janek Thomas</u> Joaquin Vanschoren

Choice of Learning Algorithms

- A plethora of learners exists, for different data sets different models are likely needed.
- Studies and experience show:

One these is often good – on tabular data:

- ▶ Penalized regression, e.g. elastic net
- Support vector machines
- Gradient boosting
- Random forests
- Neural networks
- Example: Auto-Sklearn 2.0 [Feurer et al. 2020] uses:
 - Extra trees
 - Gradient boosting
 - Passive aggressive
 - Random forest
 - Linear regression with SGD
 - Multi-layer perceptron

Choice of Search Space for a Learning Algorithms

Algorithm	Hyperparameter	Type	Lower	Upper	Trafe
glmnet					
(Elastic net)	alpha	numeric	0	1	
	lambda	numeric	-10	10	2^x
rpart					
(Decision tree)	cp	numeric	0	1	
	maxdepth	integer	1	30	
	minbucket	integer	1	60	
	minsplit	integer	1	60	
kknn					
(k-nearest neighbor)	k	integer	1	30	
svm					
(Support vector machine)	kernel	discrete	-	-	
	cost	numeric	-10	10	21
	gamma	numeric	-10	10	2
	degree	integer	2	5	
ranger					
Random forest)	num.trees	integer	1	2000	
	replace	logical			
	sample.fraction	numeric	0.1	1	
	mtry	numeric	0	1	$x \cdot y$
	respect.unordered.factors	logical			
	min.node.size	numeric	0	1	n^{i}
xgboost					
(Gradient boosting)	nrounds	integer	1	5000	
	eta	numeric	-10	0	2
	subsample	numeric	0.1	1	
	booster	discrete	-	-	
	max_depth	integer	1	15	
	min_child_weight	numeric	0	7	21
	colsample bytree	numeric	0	1	
	colsample_bylevel	numeric	0	1	
	lambda	numeric	-10	10	23
	alpha	numeric	-10	10	21

Source: [Probst et al. 2019].

Ranges often selected based on experience

- See other AutoML frameworks: e.g. Auto-Sklearn 2.0 [Feurer et al. 2020]
- Sensitivity analysis often does not exist for ML algorithms
- Check literature on specific ML algorithm

Options for automation:

- Use huge search space to cover all possibilities (combine with meta-learning for good initial design for Bayesian optimization)
 - Use results of meta-experiments to obtain smaller search space that is estimated to work well.
- Start with a small space and increase bit by bit

Choice of Search Space for a Learning Algorithms

	D 470	0.00	on n	m 0		
Parameter	Def.P	Def.O	Tun.P	Tun.O	90.05	$q_{0.95}$
glmnet			0.069	0.024		
alpha	1	0.403	0.038	0.006	0.009	0.981
lambda	0	0.004	0.034	0.021	0.001	0.147
rpart			0.038	0.012		
ep	0.01	0	0.025	0.002	- 0	0.008
maxdepth	30	21	0.004	0.002	12.1	27
minbucket	7	12	0.005	0.006	3.85	41.6
minsplit	20	24	0.004	0.004	5	49.15
kknn			0.031	0.006		
k	7	30	0.031	0.006	9.95	30
svm			0.056	0.042		
kernel	radial	radial	0.030	0.024		
cost	1	682.478	0.016	0.006	0.002	920.582
gamma	1/p	0.005	0.030	0.022	0.003	18.195
degree	3	3	0.008	0.014	2	4
ranger			0.010	0.006		
num.trees	500	983	0.001	0.001	206.35	1740.15
replace	TRUE	FALSE	0.002	0.001		
sample.fraction	1	0.703	0.004	0.002	0.323	0.974
mtry	\sqrt{p}	$p \cdot 0.257$	0.006	0.003	0.035	0.692
respect.unordered.factors	TRUE	FALSE	0.000	0.000		
min.node.size	1	1	0.001	0.001	0.007	0.513
xgboost			0.043	0.014		
nrounds	500	4168	0.004	0.002	920.7	4550.95
eta	0.3	0.018	0.006	0.005	0.002	0.355
subsample	1	0.839	0.004	0.002	0.545	0.958
booster	gbtree	gbtree	0.015	0.008		
max_depth	6	13	0.001	0.001	5.6	14
min_child_weight	1	2.06	0.008	0.002	1.295	6.984
colsample_bytree	1	0.752	0.006	0.001	0.419	0.864
colsample_bylevel	1	0.585	0.008	0.001	0.335	0.886
lambda	1	0.982	0.003	0.002	0.008	29.755
alpha	1	1.113	0.003	0.002	0.002	6.105

Table 3: Defaults (package defaults (Def.P) and optimal defaults (Def.O)), tunability of the hyperparameters with the package defaults (Tun.P) and our optimal defaults (Tun.O) as reference and tuning space quantiles (q_{0.05} and q_{0.95}) for different parameters of the algorithms.

Source: [Probst et al. 2019].

Ranges often selected based on experience

- See other AutoML frameworks: e.g. Auto-Sklearn 2.0 [Feurer et al. 2020]
- Sensitivity analysis often does not exist for ML algorithms
- Check literature on specific ML algorithm

Options for automation:

- Use huge search space to cover all possibilities (combine with meta-learning for good initial design for Bayesian optimization)
 - Use results of meta-experiments to obtain smaller search space that is estimated to work well.
- Start with a small space and increase bit by bit

Choice of Resampling Strategy

For computation of generalization error / cost:

$$c(\pmb{\lambda}) = rac{1}{k} \sum_{i=1}^k \widehat{GE}_{\mathcal{D}_{\mathsf{val}}^i} \left(\mathcal{I}(\mathcal{D}_{\mathsf{train}}^i, \pmb{\lambda})
ight)$$

Rules of thumb:

- Default: 10-fold CV (k = 10)
- Huge datasets: holdout
- Tiny datasets: 10×10 repeated CV
- Stratification for imbalanced classes

Watch out for this:

- Small sample size because of imbalances
- Repeated mesurements (leave-one-object out)
- Time dependencies
- A good AutoML system should let you customize resampling
- Meta-learn good resampling strategy [Feurer et al. 2020]

Choice of Optimization Algorithm

Choose optimization algorithm based on ...

- complexity of search space / budget
- time-costs of evaluations

Complex search space

→ BO with RF surrogate, EA with exploratory character, TPE

Numerical (lower-dim) search space and tight budget

 \rightarrow BO with GP surrogate¹

Expensive evaluations

→ Hyperband, BOHB, DEHB

Deep learning

- → common practice: Parameterize architectures, then HPO better do it jointly!
- → one-shot models and gradient-based optimization

¹Still has its own hyperparameters [Lindauer et al. 2019]

Practical Problems: When to stop?

We need to specify a budget, e.g.

- walltime,
- function evaluations,
- performance threshold, or
- stagnation for a certain time.

Problems:

- Overtuning [Makarova et al. 2021]
- Missed opportunity
- Wasted computational resources

Ways out:

- Early stopping for BO [Makarova et al. 2021].
- Rules of thumb, maybe $50 \times l$ to $100 \times l$ (be careful and think for yourself!).
- Expert knowledge.

Practical Problems: Stability

AutoML system should:

- Never fail to return a result.
- Terminate within a given time.
- Save intermediate results and allow to continue.

Failure points:

- Optimizer can crash.
- Pipeline training can crash.
- Training of a pipeline can run "forever".

Ways out:

- Encapsulate train/predict in separate process from HPO.
- Ressource limit time and memory of that process.
- If pipeline crashes, run robust fallback (e.g., constant predictor).
- Use random configuration if optimizer crashes.

Practical Problems: Parallelization

Parallelization should allow:

- Multiple CPUs/GPUs on a single machine.
- Multiple machines / nodes.

Possible parallelization levels:

- Training of pipeline.
- Resampling.
- Evaluation of configurations (batch proposals or asynchronous).

Possible problems:

- Sequential nature of HPO algorithms (e.g. BO).
- Heterogeneous training times of pipelines can cause idling.
- Main memory or CPU-cache becomes bottleneck
- Communication between machine / nodes.

Way out: Use a robust framework for parallelization.

Practical Problems: What to return?

What is the output of a an AutoML system, e.g.

- Pipeline with best validation error.
- Stacking, e.g. averaging, of top-k pipelines.
- Pareto set for multi-objective optimization.
- "One-standard-error rule": Use the simplest model within one standard error of the performance of the best model [Hastie et al. 2009].

Ensure that simple but efficient pipelines have been tried out

- Baseline (Classification: Majority vote; Regression: Mean prediction).
- Linear Model.
- (untuned) Random Forest.
- ...

Open Problems

- Most efficient HPO approach? Good benchmarks often missing.
- How to integrate human a-priori knowledge?
- Human-in-the-loop approaches for AutoML.
- How can we best (computationally) transfer "experience" into AutoML?
- Warmstarts, learned search spaces, etc.
- Multi-Objective goals, including model intepretability and fairness.
- AutoML as a process is too much of a black-box, hurts adoption.
- Incorporate Uncertainty quantification into AutoML.
- AutoML beyond supervised learning.
- ...
- → Lots of open research questions, feel free to approach us for if you are interested.