

Description

These N-Channel enhancement mode power field effect transistors are using trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and with stand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.

Features

- $20V,4A,R_{DS(ON).max}=27m\Omega@V_{GS}=4.5V$
- Improved dv/dt capability
- ♦ Fast switching
- Green device available

Applications

- Battery protection
- Load switch
- Power management

Product Summary

 $\begin{array}{ll} V_{DSS} & 20V \\ R_{DS(on).max} @\ V_{GS} \text{=} 4.5V & 27m\Omega \\ I_D & 4A \end{array}$

Pin Configuration

SOT-23-6

Schematic

Absolute Maximum Ratings TA = 25°C unless otherwise noted

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	20	V
Continuous drain current (T _A = 25°C)		4	A
Continuous drain current (T _A = 100°C)	I _D	2.5	A
Pulsed drain current ¹⁾	I _{DM}	16	А
Gate-Source voltage	V _{GSS}	±12	V
Power Dissipation (T _A = 25°C)	P _D	1.25	W
Storage Temperature Range	T _{STG}	-55 to +150	°C
Operating Junction Temperature Range	TJ	-55 to +150	°C

Thermal Characteristics

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Ambient	Reja	100	°C/W

Shenzhen VSEEI Semiconductor Co., Ltd

Package Marking and Ordering Information

Device	Device Package	Marking	
VSMLNSD8205-S6	SOT-23-6	VSMLNSD8205-S6	

Electrical Characteristics T_J = 25°C unless otherwise noted

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Static characteristics						
Drain-source breakdown voltage	BV _{DSS}	V _{GS} =0 V, I _D =250uA	20			V
Gate threshold voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _D =250uA	0.5	0.75	1.0	V
Drain-source leakage current		V _{DS} =20 V, V _{GS} =0 V, T _J = 25°C			1	μА
	loss	V _{DS} =16 V, V _{GS} =0 V, T _J = 125°C			10	μA
Gate leakage current, Forward	Igssf	V _{GS} =12 V, V _{DS} =0 V			100	nA
Gate leakage current, Reverse	I _{GSSR}	V _{GS} =-12 V, V _{DS} =0 V			-100	nA
Drain course en etate registance	В	V _{GS} =4.5 V, I _D =4 A		19	27	mΩ
Drain-source on-state resistance	R _{DS(on)}	V _{GS} =2.5 V, I _D =3 A		23	37	mΩ
Forward transconductance	g _{fs}	V _{DS} =5 V , I _D =4A		11		S
Dynamic characteristics						
Input capacitance	Ciss			373		pF
Output capacitance	Coss	V _{DS} = 8 V, V _{GS} = 0 V, F = 1MHz		70.4		
Reverse transfer capacitance	C _{rss}			57		
Turn-on delay time	t _{d(on)}			17.8		ns
Rise time	tr	V _{DD} = 10V,V _{GS} =4.5V, I _D =4 A		27.6		
Turn-off delay time	t _{d(off)}	- VDD - 10V,VGS-4.0V, ID -4 A		44		
Fall time	t _f			28.6		
Gate resistance	R _g	V _{GS} =0V,V _{DS} =0V,f=1MHz		9		Ω
Gate charge characteristics						
Gate to source charge	Q _{gs}			2.3		
Gate to drain charge	Q_{gd}	V _{DS} =10V, I _D =4A, V _{GS} = 4.5V		1.4		nC
Gate charge total	Qg			11.7		
Drain-Source diode characteris	tics and Maxir	num Ratings			•	
Continuous Source Current	Is				4	А
Pulsed Source Current ²⁾	I _{SM}				16	А
Diode Forward Voltage	V _{SD}	V _{GS} =0V, I _S =4A, T _J =25℃			1.2	V

Notes:

^{1:} Repetitive Rating: Pulse width limited by maximum junction temperature.

^{2:} Pulse Test: Pulse Width $\leq 300~\mu$ s, Duty Cycle $\leq 2\%$.

Electrical Characteristics Diagrams

Figure 1. Typ. Output Characteristics

Figure 2. Transfer Characteristics

Figure 3. Capacitance Characteristics

Figure 4. Gate Charge Waveform

Figure 5. Body-Diode Characteristics

Figure 6. Rdson-Drain Current

Figure 7. Rdson-Junction Temperature(°C)

Figure 8. Maximum Safe Operating Area

Figure 9. Normalized Maximum Transient Thermal Impedance (RthJA)

Test Circuit & Waveform

Figure 8. Gate Charge Test Circuit & Waveform

Figure 9. Resistive Switching Test Circuit & Waveforms

Figure 10. Unclamped Inductive Switching (UIS) Test Circuit & Waveform

Figure 11. Diode Recovery Circuit & Waveform

