INFO251 - Applied Machine Learning

Lab 3 Suraj R. Nair

Announcements

Problem Set 2 due Feb 6!

Today

- Wrap up pending material from Lab 2
- Vectorized computation + Matrix handling
- Today's programming tool: numpy

Review: Linear Probability Model

Suppose we run a regression of the form (where Y is binary)

$$Y_i = \alpha + \beta x_i + u_i$$

- β expresses the change in P(Y = 1) for a unit change in x
- Concerns:
 - Heteroskedasticity
 - Predicted values can lie outside [0, 1]

Review: Dummy Variables / Interactions

- Suppose we have two cities (New York, San Francisco), and data on the quantity and price of bagels from various bagel shops (indexed by i) in each city.
- Compare the following regressions:
 - $Quantity_i = \alpha + \beta_1 Price_i + e_i$ (separate regression for each city)
 - $Quantity_i = \alpha + \beta_2 Price_i + \gamma SF_i + u_i$ (single regression, SF is a dummy)
 - $Quantity_i = \alpha + \beta_3 Price_i * SF_i + \delta_1 Price_i + \delta_2 SF_i + v_i$ (add an interaction term)

Vectorized Computation

- Efficient vectorized computation
- Creating and manipulating matrices in Python
- Matrix operations: Addition, multiplication, dot product

Today's programming tool: numpy

How to make a program run fast

Programming language

• Fast: C, C++, Java, Lisp/OCaml

Slow: Python

Very slow: R

- Writing efficient code
 - For loops vs. vectorized computation
- Hardware and parallelization
 - Run parts of a program in parallel on separate cores -- on a single machine or in a distributed system
 - Software packages for parallelizing data analysis in python: pyspark, dask
 - For more: CS267

How to make a program run fast

Programming language

• Fast: C, C++, Java, Lisp/OCaml

Slow: Python

Very slow: R

Writing efficient code

For loops vs. vectorized computation

- Hardware and parallelization
 - Run parts of a program in parallel on separate cores -- on a single machine or in a distributed system
 - Software packages for parallelizing data analysis in python: pyspark, pandaral.lel, dask
 - For more: CS267

Pandas Optimization

- Avoid for loops / .iterrows()
- If looping is a must, use apply.
- Pandas series vectorization
- Vector operations on NumPy arrays are more efficient than on native Pandas series

No More Sad Pandas: Optimizing Pandas
Code for Speed and Efficiency

Sofia Heisler

<u>Video</u>