- **1.5.iv:** Show that a full and faithful functor $F: C \to D$ both reflects and creates isomorphisms. That is, show:
- (i) If f is a morphism in C so that Ff is an isomorphism in D, then f is an isomorphism.
- (ii) If x and y are objects in C so that Fx and Fy are isomorphic in D, then x and y are isomorphic in C.

Solution:

(i) Assume $f: c \to c'$, so $Ff: F(c) \to F(c')$.

Since Ff is an isomorphism in D there exists a morphism $g \colon F(c') \to F(c)$ in D such that $Ff \circ g = \mathbb{1}_{F(c')}$ and $g \circ Ff = \mathbb{1}_{F(c)}$.

Now, F is full, so since $g \in \text{Hom}(F(c'), F(c))$ implies that there exists a morphism $g' \in \text{Hom}(c', c)$ such that F(g') = g.

Now by functoriality, $F(f \circ g') = Ff \circ Fg' = Ff \circ g = \mathbbm{1}_{F(c')}$ and $F(g' \circ f) = Fg' \circ Ff = g \circ Ff = \mathbbm{1}_{F(c)}$. So by faithfulness, $f \circ g' = \mathbbm{1}_{c'}$ and $g' \circ f = \mathbbm{1}_c$ since by functoriality, F takes $\mathbbm{1}_{c'}$ and $\mathbbm{1}_c$ to $\mathbbm{1}_{F(c')}$ and $\mathbbm{1}_{F(c)}$, respectively. Thus f is by definition an isomorphism with inverse g'.

(ii) Assume Fx and Fy are isomorphic in D.

Let $f \colon Fx \to Fy$ and $g \colon Fy \to Fx$ such that $fg = \mathbbm{1}_{Fy}$ and $gf = \mathbbm{1}_{Fx}$.

Again by fullness, there exist $f': x \to y$ and $g': y \to x$ such that Ff' = f and Fg' = g.

Now $F(f'g') = Ff'Fg' = fg = \mathbb{1}_{Fy}$ and $F(g'f') = Fg'Ff' = gf = \mathbb{1}_{Fx}$.

Again by faithfulness, $f'g' = \mathbb{1}_y$ and $g'f' = \mathbb{1}_x$ since by functoriality, $F\mathbb{1}_x = \mathbb{1}_{Fx}$ and $F\mathbb{1}_y = \mathbb{1}_{Fy}$. Hence x and y are isomorphic.

1.6.i: Show that any map from a terminal object in a category to an initial one is an isomorphism. An object that is both initial and terminal is called a **zero object**.

Solution: Let C be an arbitrary category and let $c, d \in C$ with c initial and d terminal.

Assume that $f : d \to c$ is a morphism.

Since c is initial, for every $a \in C$ there exists a unique morphism $c \to a$, so in particular, for a = c, there exists only the unique morphism $\mathbbm{1}_c \colon c \to c$ in $\operatorname{Hom}(c,c)$. Similarly, since d is terminal, for every $a \in C$ there exists a unique morphism $a \to d$. Hence for a = d, there exists only the unique morphism $\mathbbm{1}_d \colon d \to d$ in $\operatorname{Hom}(d,d)$. I.e. $|\operatorname{Hom}(c,c)| = 1 = |\operatorname{Hom}(d,d)|$.

Now, in particular, choosing a=d in the initial condition for c, we have that there exists a unique map $g\colon c\to d$. Since C is a category, there exists a composition $gf\colon c\to c\in \mathrm{Hom}(c,c)=\{\mathbb{1}_c\}$, so $gf=\mathbb{1}_c$, and there exists a composition $fg\colon d\to d\in \mathrm{Hom}(d,d)=\{\mathbb{1}_d\}$, so $fg=\mathbb{1}_d$. Thus f is an isomorphism with inverse g.

1.6.ii: Show that any two terminal objects in a category are connected by a unique isomorphism.

Solution: Let C be an arbitrary category, and let $d, d' \in C$ be two terminal object.

By definition, since d and d' are terminal, for every $c \in C$ there exists a unique morphism $c \to d$ and a unique morphism $c \to d'$. I.e. |Hom(c,d)| = 1 = |Hom(c,d')| for all $c \in C$. Choosing c = d, we thus find that there exists a unique morphism $f \colon d \to d'$ and the unique identity morphism $\mathbb{1}_d \colon d \to d$, and choosing c = d', we find that there exists a unique morphism $g \colon d' \to d$ and the unique morphism $\mathbb{1}_{d'} \colon d' \to d'$.

Explicitly,

$$\operatorname{Hom}(d, d') = \{f\}$$
$$\operatorname{Hom}(d', d) = \{g\}$$

$$\operatorname{Hom}(d,d) = \{1_d\}$$

$$\text{Hom}(d', d') = \{ \mathbb{1}_{d'} \}.$$

Now, by the axioms of C being a category, there exists a composition map $gf: d \to d \in \operatorname{Hom}(d,d) = \{\mathbbm{1}_d\}$, so $gf = \mathbbm{1}_d$, and there exists a composition map $fg: d' \to d' \in \operatorname{Hom}(d',d') = \{\mathbbm{1}_{d'}\}$, so $fg = \mathbbm{1}_{d'}$. Therefore f is an isomorphism $d \to d'$ and g is an isomorphism $d' \to d$, and since these are the unique maps in the hom-sets $\operatorname{Hom}(d,d')$ and $\operatorname{Hom}(d',d)$, respectively, these isomorphisms connecting the objects are unique.