Question 10

Teng Long

February 10, 2017

Let $A_n = [0, 1/n]$, obviously $[0, 1/(n+1)] \in [0, 1/n]$, therefore $A_{n+1} \subset A_n$

proposition: for $A_n = [0, 1/n], \bigcap_1^{\infty} A_n = 0$

proof: prove by contradiction.

- 1. For any n we have $0 \in A_n$ therefore 0 belongs to intersection (up to infinite sets).
- 2.
same analysis as Q9, for all x $\stackrel{.}{,}$ 0 does not belong to the intersection set.
- 3.we proved $\bigcap_{1}^{\infty} A_n = 0$

conclusion: we proved $\bigcap_{1}^{\infty} A_n = \emptyset$ by contradiction