CPE301 – SPRING 2019

Design Assignment DA4B

Student Name: Jett Guerrero Student #: 5002377713

Student Email: guerrj1@unlv.nevada.edu

Primary Github address: https://github.com/guerrj1/Submission_DA.git
Directory: DA4B - https://github.com/guerrj1/Submission_DA/tree/master/DA4B

Submit the following for all Labs:

- 1. In the document, for each task submit the modified or included code (only) with highlights and justifications of the modifications. Also, include the comments.
- 2. Use the previously create a Github repository with a random name (no CPE/301, Lastname, Firstname). Place all labs under the root folder ESD301/DA, sub-folder named LABXX, with one document and one video link file for each lab, place modified asm/c files named as LabXX-TYY.asm/c.
- 3. If multiple asm/c files or other libraries are used, create a folder LabXX-TYY and place these files inside the folder.
- 4. The folder should have a) Word document (see template), b) source code file(s) and other include files, c) text file with youtube video links (see template).

1. COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS

- -ATMega328p
- -Arduino Shield
- -Male to male wires
- -Male to female wires
- -ULN2003A Driver
- -Stepper motor
- -Servo motor

Atmega328P using PB0, PB1, PB2, PB3 as output and PC0 for potentiometer

2. DEVELOPED CODE OF TASK 1 C CODE

```
//DA4BT1
#define F_CPU 1600000UL
#include <avr/io.h>
#include <util/delay.h>
volatile unsigned int ADCVal;
                                            //variable that the ADC value is stored in
void adc_init(void);
int main(void)
       DDRB = 0x0F;
                                                                   //PB0-PB3 as output
       DDRC = 0;
                                                                          //set portc as input
       PORTB = 0;
                                                                          //turns off portb
       //Timer
       TCCR1B = (1 << WGM12) | (1 << CS11); //set prescalar to 8
       adc_init();
       while(1)
              ADCSRA |= (1 << ADSC);
                                                           //start adc conversion
              while((ADCSRA&(1<<ADIF))==0);//wait for conversion to finish</pre>
              ADCVal = ADC & 0x03FF;
                                                           //read ADCH and ADCL
              OCR1A = 10*ADCVal;
                                                           //duty cycle for PWM
              PORTB = 0x09;
              while(!(TIFR1 & (1<<OCF1A))); //delay</pre>
```

```
TIFR1 |= (1 << OCF1A);
                                               //reset flag
               PORTB = 0x03;
               while(!(TIFR1 & (1<<OCF1A))); //delay</pre>
               TIFR1 |= (1 << OCF1A);
                                                //reset flag
               PORTB = 0x06;
               while(!(TIFR1 & (1<<OCF1A)));</pre>
                                                //delay
               TIFR1 |= (1 << OCF1A);
                                                //reset flag
               PORTB = 0x0C;
               while(!(TIFR1 & (1<<OCF1A)));</pre>
                                                //delay
               TIFR1 |= (1 << OCF1A);
                                                //reset flag
       }
}
void adc_init (void)
       DIDR0 = 0x1;
                                                                    //digital input disable
       ADMUX = (1 << REFS0);
                                                                    //reference selection; AVcc
                                                //enable ADC
       ADCSRA |= (1<<ADEN) |
                 (1<<ADPS2)
                                                 //prescalar 128
                 (1<<ADPS1)
                       (1<<ADPS0);
       ADCSRB = 0x0;
                                                                    //adc control and status
register free running mode
```

3. DEVELOPED CODE OF TASK 2 C CODE

```
//DA2BT2
#define F_CPU 16000000UL
#include <avr/io.h>
#include <util/delay.h>
void adc_init(void);
int main(void)
{
       while(1)
       {
              //Timer1
              TCCR1A = (1 << COM1A1) | (1 << COM1B1) | (1 << WGM11);
              TCCR1B = (1 << WGM13) | (1 << WGM12) | (1 << CS11) | (1 << CS10);
                                                                               //set
prescalar to 64
              adc_init();
              ICR1=4999;
                                       //50Hz
              DDRB |= (1<<PB1);
                                           //output pin to the servo motor
              OCR1A = ADC;
                                       //for potentiometer
              _delay_ms(50);
                                       //delay between pot input and output of servo motor
       }
}
```

4. SCHEMATICS

Stepper motor Connection Schematic. IN1-IN4 connected to PBO-PB3.

Servo motor connection schematic. Control wire connected to PB1.

5. SCREENSHOTS OF EACH TASK OUTPUT (ATMEL STUDIO OUTPUT)

N/A

6. SCREENSHOT OF EACH DEMO (BOARD SETUP)

Stepper motor board set up with Atmega328p

Servo motor board set up with Atmega328p

7. VIDEO LINKS OF EACH DEMO

Task 1: Stepper Motor

https://youtu.be/HDzUFmH0Z0A

Task 2: Servo Motor

https://youtu.be/miwpquWKJE8

8. GITHUB LINK OF THIS DA

https://github.com/guerrj1/Submission DA/tree/master/DA4B

Student Academic Misconduct Policy

http://studentconduct.unlv.edu/misconduct/policy.html

"This assignment submission is my own, original work".

Jett Guerrero