Departamento de Ciência de Computadores Modelos de Computação (CC218)

FCUP 2013/14

Exame (26.06.2014)

duração: 3h

Uma resolução

Cotação: 2+2+1+2+1+1.5, 1+2+2, 1.5+2.5+1.5

1. Seja $A=(\{s_0,s_1,s_2,s_3\},\{0,1\},\delta,s_0,\{s_1,s_3\})$ um autómato finito não determinístico com transições por ε , em que a função δ é assim definida:

$$\begin{array}{lll} \delta(s_0,0) = \{s_1,s_2\} & \delta(s_1,0) = \{s_1\} & \delta(s_2,0) = \{s_2\} & \delta(s_3,0) = \{\} \\ \delta(s_0,1) = \{\} & \delta(s_1,1) = \{\} & \delta(s_2,1) = \{s_3\} & \delta(s_3,1) = \{\} \\ \delta(s_0,\varepsilon) = \{\} & \delta(s_1,\varepsilon) = \{s_2\} & \delta(s_2,\varepsilon) = \{s_0\} & \delta(s_3,\varepsilon) = \{s_0\} \end{array}$$

a) Represente o diagrama de transição do autómato A e apresente a gramática linear à direita que se obtém de A pelo algoritmo de conversão dado. Prove que essa gramática é ambígua.

Resposta:

A gramática obtida é $G=(\{V_{s_0},V_{s_1},V_{s_2},V_{s_3}\},\{{\tt 0,1}\},P,V_{s_0}),$ em que P é constituído por:

Esta gramática é ambígua porque, por exemplo, a palavra 01 admite duas derivações pela esquerda:

$$\begin{array}{c} V_{s_0} \Rightarrow \mathtt{O} V_{s_1} \Rightarrow \mathtt{O} V_{s_2} \Rightarrow \mathtt{O} \mathtt{1} V_{s_3} \Rightarrow \mathtt{O} \mathtt{1} \\ V_{s_0} \Rightarrow \mathtt{O} V_{s_2} \Rightarrow \mathtt{O} \mathtt{1} V_{s_3} \Rightarrow \mathtt{O} \mathtt{1} \end{array}$$

b) Por aplicação do algoritmo de eliminação de estados, determine uma expressão regular que descreva a linguagem $\mathcal{L}(A)$. Deverá apresentar os passos intermédios.

Resposta:

Introduzem-se dois novos estados i (inicial) e f (final), que serão os únicos que não serão eliminados.

Por eliminação de s_1 e substituição de $0 + 00^*$ por 00^* no arco (s_0, s_2) resultante, obtém-se:

(Continua, v.p.f.)

Resposta 1b) (cont.):

Por eliminação de s_3 , obtém-se:

Por eliminação de s_2 e simplificação de 0^*0^* em 0^* , obtém-se

$$\underbrace{i} \xrightarrow{\varepsilon} \underbrace{s_0} \xrightarrow{00^{\star} + 00^{\star} 1} \underbrace{0}$$

Por eliminação de s_0 , obtém-se

$$\longrightarrow \underbrace{i}_{(00^*(\varepsilon+1))^*(00^*+00^*1)}$$

A linguagem $\mathcal{L}(A)$ pode ser descrita pela expressão regular $(00^*(\varepsilon+1))^*(00^*+00^*1)$.

Notar que esta expressão é equivalente a
$$(0+01)^*(0+01)$$
 porque $(00^*(\varepsilon+1))^* \equiv (00^*+00^*1)^* \equiv (0+01)^*$ e $(0+01)^*(00^*+00^*1) \equiv (0+01)^*(0^*0+0^*01) \equiv (0+01)^*(0+01) \equiv (0+01)^*(0+01)$.

 ${f c}$) Apresente o diagrama de transição do autómato finito determinístico que se obtém de A por aplicação do algoritmo de conversão dado. Nesse diagrama mantenha apenas os estados acessíveis do estado inicial.

Resposta:

NB: Os estados do AFD obtido pelo método de conversão correspondem a subconjuntos do conjunto de estados do AFND- ε de que se partiu. As designações assim o indicam!

- d) Justifique a veracidade ou falsidade de cada uma das afirmações seguintes:
 - (i) A palavra 00100 pode ser reconhecida pelo autómato A e também pode não ser reconhecida.
 - (ii) Qualquer autómato finito determinístico que reconhece $\mathcal{L}(A)$ tem dois ou mais estados finais.

Resposta:

(i) Falsa. Por definição, uma palavra é reconhecida por um autómato finito se e só se o puder levar do estado inicial a algum estado final, sendo totalmente processada. Assim, cada palavra de Σ^* ou é reconhecida ou não é reconhecida por um autómato (ie., ou pertence à linguagem reconhecida pelo autómato ou pertence ao seu complementar).

(De facto, 00100 $\in \mathcal{L}(A)$, pois pode levar A de s_0 a s_1 , mas tal seria irrelevante para a resposta.)

(ii) Verdadeira. Se um AFD A' que aceitasse $\mathcal{L}(A)$ só tivesse um estado final, as palavras 0 e 01 levariam A' a esse estado final. Assim, as palavras 01 e 011 também levariam A' a um mesmo estado, pois A' é determinístico. Mas tal é absurdo porque 01 $\in \mathcal{L}(A)$ e 011 $\notin \mathcal{L}(A)$. Portanto, A' tem de estar em estados (finais) distintos depois de consumir 0 e 01. Logo, tem pelo menos dois estados finais.

e) Defina informalmente a linguagem $\mathcal{L}(A)$.

Resposta:

A linguagem reconhecida pelo autómato A é o conjunto das sequências finitas de 0's e 1's que começam por 0 e não têm 1's consecutivos.

f) Determine uma gramática independente de contexto que gere $\mathcal{L}(A)$, não seja ambígua e não tenha variáveis desnecessárias (i.e., variáveis que não produzem sequências de terminais ou não entram em derivações a partir do símbolo inicial). Justifique sucintamente os passos principais da resolução.

Resposta:

É conhecido que a gramática linear à direita que se obtém por conversão de um AFD é não ambígua (cada derivação pela esquerda corresponde a um percurso no AFD, que é único por o AFD ser determinístico).

Assim, por conversão do AFD determinado em 1c), obtém-se uma gramática não ambígua. Essa gramática tem um símbolo desnecessário, pois a variável C (correspondente ao estado designado por $\{\}$, em 1c)) não produz sequências de terminais. Por remoção dessa variável, obtém-se a gramática apresentada à direita.

NB: A expressão regular simplificada, (0 + 01)* (0 + 01), sugere uma gramática mais simples ainda: $X \to 0 \mid 01 \mid 0X \mid 01X$.

- **2.** Seja \mathcal{M} o autómato finito determinístico **mínimo** que reconhece a linguagem L de alfabeto $\{0,1\}$ descrita pela expressão regular $0^*1^* + 0^*11^*0(0+1)^*1$.
- a) Defina **informalmente** a linguagem L. Explique sucintamente.

Resposta:

A linguagem L é o conjunto das sequências finitas de 0's e 1's que se tiverem algum 0 depois de um 1 então terminam em 1. Explicação: A expressão 0^*1^* descreve as sequências que não têm 0's depois de 1's. As palavras descritas por $0^*11^*0(0+1)^*1$ são as que têm algum 0 depois de algum 1 mas que terminam em 1, pois são da forma xy com $x \in \mathcal{L}(0^*11^*0)$ e $y \in \mathcal{L}((0+1)^*1)$.

b) Por aplicação do teorema de Myhill-Nerode, determine o diagrama de transição de \mathcal{M} . Justifique.

Resposta:

$$\begin{array}{lll} \delta([\varepsilon],1) & \stackrel{\mathrm{def}}{=} & [1] & [1] \neq [\varepsilon] \text{ porque } 10 \notin L \text{ e } \varepsilon 0 \in L \\ \delta([\varepsilon],0) & \stackrel{\mathrm{def}}{=} & [0] = [\varepsilon] & (0,\varepsilon) \in R_L \text{ porque } 0z \in L \text{ se e s\'o se } z \in L \\ \delta([1],0) & \stackrel{\mathrm{def}}{=} & [10] & (10,\varepsilon) \notin R_L \text{ e } (10,1) \notin R_L \text{ porque } 10 \notin L,\varepsilon \in L \text{ e } 1 \in L \\ \delta([1],1) & \stackrel{\mathrm{def}}{=} & [11] = [1] & (1,11) \in R_L \text{ pois } 1z \in L \Leftrightarrow z \in \mathcal{L}(1^*+1^*0(0+1)^*1) \Leftrightarrow 11z \in L \\ \delta([10],0) & \stackrel{\mathrm{def}}{=} & [100] = [10] & (100,10) \in R_L \text{ pois } 100z \in L \Leftrightarrow z \in \mathcal{L}((0+1)^*1) \Leftrightarrow 10z \in L \\ \delta([10],1) & \stackrel{\mathrm{def}}{=} & [101] = [1] & (101,1) \in R_L \text{ porque } 101z \in L \Leftrightarrow z \in \mathcal{L}(1^*+1^*0(0+1)^*) \end{array}$$

c) Minimize o autómato finito determinístico representado abaixo e diga se é equivalente a \mathcal{M} . Deverá apresentar os passos intermédios relevantes.

Resposta:

Aplica-se o algoritmo de Moore para efetuar a minimização. Como nenhum estado final é equivalente a um estado não final, a tabela inicial é a que se encontra à esquerda. A tabela final encontra-se à direita.

q_0	=						
q_1	X	=					
q_2	X	X	=				
q_3	X	<i>]</i> ? =	X	=			
q_4	X	$(q_1, q_3) =$	X	$(q_2, q_5) =$	=		
q_5	X	X	<i>?</i> ! =	X	X	=	
q_6		X	X	X	X	X	
	q_0	\overline{q}_1	q_2	q_3	q_4	q_5	q_6

Justificação (sequência de passos que conduziram à tabela representada à da direita):

 $(q_0, q_1): q_0 \not\equiv q_1 \text{ porque } \delta(q_0, 0) = q_6 \not\equiv q_2 = \delta(q_1, 0).$

 $(q_0, q_3): q_0 \not\equiv q_3 \text{ porque } \delta(q_0, 0) = q_6 \not\equiv q_2 = \delta(q_3, 0).$

 $(q_0, q_4): q_0 \not\equiv q_4 \text{ porque } \delta(q_0, 0) = q_6 \not\equiv q_2 = \delta(q_4, 0).$

 $(q_0,q_6): \quad q_0 \equiv q_6 \text{ pois são indistinguíveis já que } \\ \delta(q_0,1) = \delta(q_6,1) \text{ e } \delta(q_0,0) = q_6 \text{ e } \delta(q_6,0) = q_0.$

 (q_1, q_3) : $q_1 \equiv q_3$ se e só se $q_1 \equiv q_4$ pois $\delta(q_1, 0) = \delta(q_3, 0)$ e $\delta(q_1, 1) = q_1$ e $\delta(q_3, 1) = q_4$. Assinalou-se (q_1, q_3) na entrada de (q_1, q_4) para recordar que a decisão estava pendente.

Postantou se (q_1, q_3) na characta de (q_1, q_4) para recordar que a decisac estava pendente. (q_1, q_4) : $q_1 \equiv q_4$ pois são indistinguíveis já que $\delta(q_1, 0) = \delta(q_4, 0)$ e $\delta(q_4, 1) = q_4$ e $\delta(q_1, 1) = q_1$. Portanto, também $q_1 \equiv q_3$.

 $(q_1, q_6): q_1 \not\equiv q_6 \text{ pois } \delta(q_1, 0) = q_2 \not\equiv q_0 = \delta(q_6, 0),$

 $(q_2,q_5): q_2 \equiv q_5$ se e só se $q_3 \equiv q_4$ pois $\delta(q_2,0) = \delta(q_5,0)$ e $\delta(q_2,1) = q_3$ e $\delta(q_5,1) = q_4$. Assinalou-se (q_2,q_5) na entrada de (q_3,q_4) para recordar que a decisão estava pendente.

 $(q_3,q_4): \quad q_3\equiv q_4$ pois são indistinguíveis já que $\delta(q_3,0)=\delta(q_4,0)$ e $\delta(q_3,1)=\delta(q_4,1).$ Portanto, também $q_2\equiv q_5.$

 $(q_3, q_6): q_3 \not\equiv q_6$ pois já que $\delta(q_3, 0) = q_2 \not\equiv q_0 = \delta(q_6, 0).$

 $(q_4, q_6): q_4 \not\equiv q_6 \text{ porque } \delta(q_4, 0) = q_2 \not\equiv q_0 = \delta(q_6, 0).$

Concluiu-se que $q_0 \equiv q_6$, $q_1 \equiv q_3 \equiv q_4$ e $q_2 \equiv q_5$ e, consequentemente, o AFD mínimo equivalente ao AFD representado é:

É evidente que, se substituir os nomes dos estados, este autómato é exatamente o que se obteve em 2b). Portanto, o AFD dado em 2c) é equivalente a \mathcal{M} .

3. Sejam L e M as linguagens de alfabeto $\{a, b, c\}$ assim definidas.

$$\begin{array}{lll} L &=& \{ \mathtt{c} x \mathtt{c} y \ | \ x,y \in \{\mathtt{a},\mathtt{b}\}^{\star} \ \mathtt{e} \ 1 \leq |x| \leq 2|y| \} \\ M &=& \{ \mathtt{c} x \mathtt{c} y \mathtt{c} z \ | \ x,y \in \{\mathtt{b}\}\{\mathtt{b}\}^{\star}, z \in \{\mathtt{a}\}^{\star}, |y| = |x| \ \mathtt{e} \ |z| = |x| + |y| \} \end{array}$$

Resolva apenas uma das duas alíneas seguintes:

- a) Por aplicação do lema da repetição para linguagens regulares, mostre que L não é regular.
- **b**) Por aplicação do teorema de Myhill-Nerode, mostre que M não é regular.

Resposta 3a):

Seja $n \ge 1$ qualquer (notação do Lema). Tome-se $x = \mathsf{cb}^{2n} \mathsf{cb}^n \in L$. Tem-se $|x| = 3n + 2 \ge n$. Seja a decomposição de x denotada por uvw, como no enunciado do Lema, com $|uv| \le n$ e $v \ne \varepsilon$. Tal prefixo uv termina sempre antes do segundo c de x. Assim, existem duas possibilidades para uv:

- $u = \varepsilon$ e v começa por c. Neste caso, se se tomar i = 0 (i.e., cortar v), tem-se $uv^iw \notin L$ porque perderia tal c.
- $u \neq \varepsilon$ e v é da forma b^k , para algum k tal que $1 \leq k < n$. Neste caso, se se repetir v, i.e., tomar i = 2, então $uv^iw \notin L$, pois o número de símbolos entre os dois c's seria 2n + k. Assim, como $k \geq 1$, excederia o dobro do número de símbolos que uv^iw teria à direita do segundo c (que continuaria a ser n pois sendo $|uv| \leq n$, o sufixo w terminaria sempre em $b^{n+1}cb^n$).

Conclui-se que L não satisfaz a condição do lema da repetição e, consequentemente, não é regular.

NB: na prova de que uma linguagem não verifica a condição do lema, a palavra x escolhida terá de depender de n e nem o valor de n nem a decomposição uv de x podem ser concretizados.

Resposta 3b):

Pelo teorema de Myhill-Nerode, M é regular se e só se o conjunto das classes de equivalência de R_M é finito. Mas, se n e m forem inteiros positivos distintos então $(\mathtt{cb}^n,\mathtt{cb}^m) \notin R_M$, pois $\mathtt{cb}^n\mathtt{cb}^n\mathtt{ca}^{2n} \in M$ e $\mathtt{cb}^m\mathtt{cb}^n\mathtt{ca}^{2n} \notin M$ (o que quer dizer que existe $z \in \Sigma^*$ tal que $\mathtt{cb}^nz \in M$ e $\mathtt{cb}^mz \notin M$). Assim, cada palavra da forma \mathtt{cb}^n , com $n \geq 1$, pertence a uma classe distinta. Logo, o conjunto das classes de R_M é infinito e, consequentemente, M não é regular.

Resolva apenas uma das duas alíneas seguintes:

 \mathbf{c}) Determine uma gramática independente de contexto que gere L. A gramática pode ser ambígua. Justifique sucintamente a correção dessa gramática e apresente uma árvore de derivação para cabcbba.

(NB: pode ser útil resolver a alínea c) para responder a e))

d) Determine um autómato de pilha que reconheça L por pilha vazia. Explique sucintamente o significado dos estados e de que modo garantem a correção do autómato. Usando a relação \vdash (de mudança de configuração), mostre que obbbob não é aceite por esse autómato mas obob é aceite.

Resposta 3c):

Ideia: As palavras são da forma cxcy com $1 \le |x| \le 2|y|$, pelo que, qualquer símbolo de y pode dar origem a dois símbolos de x no máximo. Comece-se por esgotar x, emparelhando cada dois símbolos de x com um de y, processando x da esquerda para a direita e y da direita para a esquerda. No fim, poderá sobrar um símbolo de x se |x| for ímpar. Esse símbolo terá de ser ainda emparelhado com um símbolo de y. Finalmente, só restará uma subpalavra cy', com $y' \in \{a, b\}^*$.

(Continua, v.p.f.)

Resposta 3c) (cont.):

Tal ideia conduz à gramática $G_1 = (\{S, A, B, X\}, \{a, b, c\}, P_1, S)$, com P_1 dado por:

As regras para S garantem que a palavra começa por c e que $|x| \ge 1$, além do que se disse acima sobre o emparelhamento de símbolos. A primeira regra para A procede ao esgotamento dos símbolos de x, podendo sobrar ainda um símbolo (que será tratado pela segunda regra) ou nenhum (terceira regra). A variável B produzirá cy'. Pode-se concluir que G_1 não é ambígua (embora não fosse pedido).

A árvore de derivação da palavra cabcbba é:

Resposta 3d):

Ideia: Coloca um símbolo Y na pilha por cada par de símbolos de x e, se |x| for ímpar, coloca ainda mais um Y. Depois de detetar o segundo c, retira um Y por cada símbolo de y. Quando volta a ter apenas o símbolo inicial Z na pilha, continua a processar símbolos de y, se existirem, ou retira Z (para aceitar a palavra se y chegar ao fim). Inicialmente, está no estado s_0 e tem Z na pilha.

```
\begin{array}{lll} \delta(s_0,\mathsf{c},\mathsf{Z}) &=& \{(s_1,\mathsf{Z})\} & \text{\% garante c inicial} \\ \delta(s_1,\mathsf{a},\mathsf{Z}) &=& \{(s_2,\mathsf{YZ})\} &=& \delta(s_1,\mathsf{b},\mathsf{Z}) & \text{\% em } s_1, \operatorname{est\'{a}} \operatorname{a carregar a pilha e } |x| \operatorname{\acute{e}} \operatorname{par} \\ \delta(s_2,\mathsf{a},\mathsf{Y}) &=& \{(s_1,\mathsf{Y})\} &=& \delta(s_2,\mathsf{b},\mathsf{Y}) & \text{\% em } s_2, \operatorname{est\'{a}} \operatorname{a carregar a pilha e } |x| \operatorname{\acute{e}} \operatorname{impar} \\ \delta(s_2,\mathsf{c},\mathsf{Y}) &=& \{(s_3,\mathsf{Y})\} & \text{\% encontra segundo c (por ter Y garante } |x| \geq 1) \\ \delta(s_1,\mathsf{c},\mathsf{Y}) &=& \{(s_3,\mathsf{Y})\} & \text{\% encontra segundo c (por ter Y garante } |x| \geq 1) \\ \delta(s_3,\mathsf{a},\mathsf{Y}) &=& \{(s_3,\varepsilon)\} &=& \delta(s_3,\mathsf{b},\mathsf{Y}) & \text{\% em } s_3, \operatorname{est\'{a}} \operatorname{a descarregar a pilha} \\ \delta(s_3,\mathsf{a},\mathsf{Z}) &=& \{(s_3,\mathsf{Z})\} &=& \delta(s_3,\mathsf{b},\mathsf{Z}) & \text{\% Y's esgotados, mas aceita o resto de } y \\ \delta(s_3,\varepsilon,\mathsf{Z}) &=& \{(s_3,\varepsilon)\} & \text{\% pilha vazia para poder aceitar a palavra} \end{array}
```

A palavra cbcb é reconhecida porque $(s_0, \text{cbcb}, \mathbf{Z}) \vdash^{\star} (s_3, \varepsilon, \varepsilon)$ pois:

$$(s_0, \mathtt{cbcb}, \mathtt{Z}) \vdash (s_1, \mathtt{bcb}, \mathtt{Z}) \vdash (s_2, \mathtt{cb}, \mathtt{YZ}) \vdash (s_3, \mathtt{b}, \mathtt{YZ}) \vdash (s_3, \varepsilon, \mathtt{Z}) \vdash (s_3, \varepsilon, \varepsilon)$$

A palavra cbbbcb não é reconhecida porque a pilha não fica vazia quando o autómato termina o seu processamento, já que se tem necessariamente o seguinte:

$$(s_0, \mathtt{cbbbcb}, \mathtt{Z}) \vdash (s_1, \mathtt{bbbcb}, \mathtt{Z}) \vdash (s_2, \mathtt{bbcb}, \mathtt{YZ}) \vdash (s_1, \mathtt{bcb}, \mathtt{YZ}) \vdash (s_2, \mathtt{cb}, \mathtt{YYZ}) \vdash (s_3, \mathtt{b}, \mathtt{YYZ}) \vdash (s_3, \mathtt{c}, \mathtt{YZ})$$

Resolva apenas uma das três alíneas seguintes:

- e) Defina uma gramática G que gere L e que esteja na forma normal de Chomsky. Explique sucintamente. Aplique o algoritmo CYK para mostrar que cabcbba $\in \mathcal{L}(G)$.
- f) Apresente uma máquina de Turing que reconheça M. A máquina $\underline{\mathbf{não deve}}$ repor o estado inicial da fita. Indique o significado dos estados.
- g) Mostre que M não é independente de contexto.

Resposta 3e):

NB: Pode-se obter uma gramática por conversão do autómato de pilha (pelo método dado no curso), mas seria demasiado trabalhoso. Por isso, assumir-se-á como ponto de partida a gramática obtida em 3c).

Em 3c), obteve-se a gramática $G_1 = (\{S, A, B, X\}, \{a, b, c\}, P_1, S)$ com

Para reduzir G_1 à forma normal de Chomsky, introduz-se uma nova variável C para não ter terminais no lado direito de regras que não são da forma $V \to t$, com $t \in \Sigma$. Remove-se também a produção unitária $A \to B$, criando duas regras novas para A (que resultam da substituição de B em $A \to B$ pelo lado direito das produções de B).

Para obter uma gramática equivalente mas na forma normal de Chomsky, basta agora transformar todas as regras do tipo $V \to \gamma$ com $|\gamma| \ge 3$, usando variáveis auxiliares.

A tabela que resulta da análise da palavra cabcbba pelo algoritmo CYK encontra-se abaixo. Sendo cabcbba = $x_1x_2x_3x_4x_5x_6x_7$, a célula na linha i e coluna j contém o conjunto das possíveis categorias da subpalavra $x_j \dots x_{j+i-1}$. Conclui-se que cabcbba $\in \mathcal{L}(G)$ pois S está no topo da tabela (i.e., na célula (7,1), que caracteriza $x_1 \dots x_7$).

#7	S						
#6	S	A, R_1, R_2, R_3					
#5	S	A, R_1, R_2, R_3	A, R_2, R_3, W_1				
#4	Ø	A, R_1	A, R_2, R_3, W_1	R_3, A, B, W_2			
#3	R_3, A, B, W_2	Ø	R_2, W_1, A	R_3, A, B, W_2	Ø		
#2	R_3, A, B, W_2	Ø	Ø	R_3, A, B, W_2	Ø	Ø	
#1	A, B, C	X	X	A, B, C	X	X	X
	С	a	b	С	b	b	a

Resposta 3f):

Ideia: Para reconhecer as palavras da forma cxcycz com $x,y\in\{b\}\{b\}^*, z\in\{a\}^*, |y|=|x|$ e |z|=|x|+|y|=2|x|, a máquina vai "cortar" um símbolo de y e dois símbolos de z por cada símbolo de x. Para facilitar a localização do último símbolo de x que foi cortado, usa X para cortar símbolos de x e Y para cortar símbolos de y e de z. O estado inicial é s_0 e \bullet é o símbolo branco. O estado designado por "aceita" será o único estado final.

```
(s_0, c, cortaX, c, d)
                                 % garante c inicial
(cortaX, b, procY, X, d)
                                 % garante |x| \ge 1 (corta um símbolo de x e vai procurar y)
(procY, b, procY, b, d)
                                 % passa restantes b's de x se existirem
(procY, c, cortaY, c, d)
                                 % encontra zona de y e vai tentar cortar um símbolo
(cortaY, Y, cortaY, Y, d)
                                 % pode passar por símbolos já foram cortados
(cortaY, b, procZ, Y, d)
                                 % corta um símbolo de y e vai procurar z
(procZ, b, procZ, b, d)
                                 % passa restantes b's de y se existirem
(procZ, c, cortaZ, c, d)
                                 % encontra zona de z e vai tentar cortar dois símbolos
(cortaZ, Y, cortaZ, Y, d)
                                 % pode passar por símbolos já foram cortados
(cortaZ, a, corta2Z, Y, d)
                                 % corta um e vai tentar cortar outro
(corta2Z, a, maisX, Y, e)
                                 % após corte, vai para a esquerda ver se x ainda tem símbolos
(maisX, Y, maisX, Y, e)
(\text{maisX}, c, \text{maisX}, c, e)
(\text{mais}X, b, \text{mais}X, b, e)
(mais X, X, proc X, X, d)
                                 % encontra novamente zona de x
(procX, b, procY, X, d)
                                 \% x ainda não terminou (corta mais um símbolo e vai procurar y)
                                 \% x acabou; há que verificar que y e z contêm apenas Y's
(procX, c, fimX, X, d)
(\text{fimX}, Y, \text{fimX}, Y, d)
(\text{fimX}, c, \text{fimX}, c, d)
(\text{fimX}, \bullet, \text{aceita}, \bullet, e)
                                 % nada restava em y e z; pára em estado final (aceita a palavra)
```

NB: A máquina descrita acima é determinística e pára sempre. As palavras que a fazem encravar (isto é, parar) num dos estados não finais não são reconhecidas.

Resposta 3g):

Seja $n \geq 1$ qualquer. Tome-se a palavra $z = \operatorname{cb}^{2n} \operatorname{cb}^{2n} \operatorname{ca}^{4n} \in M$. Claramente, $|z| = 8n + 3 \geq n$. Em qualquer decomposição de z tal que z = uvwxy com $|vwx| \leq n$ e $vx \neq \varepsilon$, a palavra vwx interseta no máximo dois dos três blocos que constituem z (assume-se que cada c inicia um bloco). Assim, se se cortar v e x, isto é, se i=0, obtém-se uma palavra que perde algum c ou que não satisfaz a condição que define a relação entre o comprimento desses três blocos, pois um dos blocos permanece inalterado e pelo menos um dos restantes perde elementos. De acordo com a definição de M, os dois primeiros teriam de ter o mesmo comprimento e o terceiro teria o dobro menos uma unidade. Consequentemente, para i=0, a palavra uv^iwx^iy não pertencerá a M, qualquer que seja a decomposição uvwxy de z, tal que $|vwx| \leq n$ e $vx \neq \varepsilon$. Portanto, a linguagem M não é independente de contexto pois não satisfaz a condição do lema da repetição para linguagens independentes de contexto.

NB: na prova de que uma linguagem não verifica a condição do lema, a palavra z escolhida terá de depender de n e nem o valor de n nem a decomposição uvwxy de z podem ser concretizados.