0.1 惯性定理

0.1.1 实二次型

定理 0.1 (实二次型的规范标准型)

设实二次型

$$f(x_1, x_2, \dots, x_n) = d_1 x_1^2 + d_2 x_2^2 + \dots + d_n x_n^2$$

这个实二次型对应的系数矩阵为 A 是 n 阶实对称阵, 则 A 一定合同于下列对角阵:

$$diag\{1, \dots, 1; -1, \dots, -1; 0, \dots, 0\},\tag{1}$$

其中有p个1,q个-1,n-r个零. 进而,f一定可作变量替换得到

$$y_1^2 + \dots + y_p^2 - y_{p+1}^2 - \dots - y_r^2$$
. (2)

我们将(2)式中的二次型称为 f 的规范标准型.

证明 由定理??, 任意一个实对称阵 A 必合同于一个对角阵:

$$C'AC = \text{diag}\{d_1, d_2, \cdots, d_r, 0, \cdots, 0\},\$$

其中 $d_i \neq 0$ ($i = 1, \dots, r$). 注意到 C 是可逆阵, 故 r = r(C'AC) = r(A), 即秩 r 是矩阵合同关系下的一个不变量. 于是我们不妨设实对称阵已具有下列对角阵的形状:

$$A = \text{diag}\{d_1, d_2, \cdots, d_r, 0, \cdots, 0\}.$$

由初等合同变换不难知道,任意调换 A 的主对角线上的元素得到的矩阵仍与 A 合同.因此我们可把零放在一起,把正项与负项放在一起,即可设 $d_1>0,\cdots,d_p>0;d_{p+1}<0,\cdots,d_r<0.$ A 所代表的二次型为

$$f(x_1, x_2, \dots, x_n) = d_1 x_1^2 + d_2 x_2^2 + \dots + d_r x_r^2.$$
 (3)

再对上述二次型作变量替换.令

$$\begin{cases} y_1 = \sqrt{d_1} x_1, \cdots, y_p = \sqrt{d_p} x_p; \\ y_{p+1} = \sqrt{-d_{p+1}} x_{p+1}, \cdots, y_r = \sqrt{-d_r} x_r; \\ y_j = x_j (j = r+1, \cdots, n), \end{cases}$$

则 (3) 式变为

$$f = y_1^2 + \dots + y_p^2 - y_{p+1}^2 - \dots - y_r^2$$
.

这一事实等价于说 A 合同于下列对角阵:

$$diag\{1, \dots, 1; -1, \dots, -1; 0, \dots, 0\}.$$

其中有p个1,q个-1,n-r个零.

定义 0.1

设 $f(x_1,x_2,\cdots,x_n)$ 是一个实二次型, 若它能化为形如 (2)式的形状, 则称 r 是该二次型的秩, p 是它的**正惯性指数**, q=r-p 是它的**负惯性指数**, s=p-q 称为 f 的**符号差**.

注 显然, 若已知秩 r 与符号差 s, 则 $p = \frac{1}{2}(r+s)$, $q = \frac{1}{2}(r-s)$. 事实上, 在 p, q, r, s 中只需知道其中两个数, 其余两个数也就知道了. 由于实对称阵与实二次型之间的等价关系, 我们将实二次型的秩、惯性指数及符号差也称为相应的实对称阵的秩、惯性指数及符号差.

定理 0.2 (惯性定理)

证明(2)式中的数 p 及 q=r-p 是两个合同不变量. 这等价于证明下面的结论.

设 $f(x_1, x_2, \dots, x_n)$ 是一个 n 元实二次型, 且 f 可化为两个标准型:

$$c_1 y_1^2 + \dots + c_p y_p^2 - c_{p+1} y_{p+1}^2 - \dots - c_r y_r^2,$$

 $d_1 z_1^2 + \dots + d_k z_k^2 - d_{k+1} z_{k+1}^2 - \dots - d_r z_r^2,$

其中 $c_i > 0$, $d_i > 0$, 则必有 p = k.

证明 用反证法,设p > k. 由前面的说明不妨设 c_i 及 d_i 均为1,因此

$$y_1^2 + \dots + y_p^2 - y_{p+1}^2 - \dots - y_r^2 = z_1^2 + \dots + z_k^2 - z_{k+1}^2 - \dots - z_r^2.$$
 (4)

又设

$$x = By, x = Cz,$$

其中

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \ \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \ \mathbf{z} = \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{pmatrix}$$

于是 $z = C^{-1}By$. 令

$$C^{-1}B = \begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{pmatrix},$$

则

$$\begin{cases} z_1 = c_{11}y_1 + c_{12}y_2 + \dots + c_{1n}y_n, \\ z_2 = c_{21}y_1 + c_{22}y_2 + \dots + c_{2n}y_n, \\ \dots \\ z_n = c_{n1}y_1 + c_{n2}y_2 + \dots + c_{nn}y_n. \end{cases}$$

因为p > k,故齐次线性方程组

$$\begin{cases} c_{11}y_1 + c_{12}y_2 + \dots + c_{1n}y_n = 0, \\ \dots \\ c_{k1}y_1 + c_{k2}y_2 + \dots + c_{kn}y_n = 0, \\ y_{p+1} = 0, \\ \dots \\ y_n = 0 \end{cases}$$

必有非零解 $(n \land + x \Rightarrow x, n - (p - k) \land x \Rightarrow x \Rightarrow y_1 = a_1, \dots, y_p = a_p, y_{p+1} = 0, \dots, y_n = 0,$ 把 这组解代入 (4) 式左边得到

$$a_1^2 + \dots + a_p^2 > 0.$$

但这时 $z_1 = \cdots = z_k = 0$, 故 (4) 式右边将小于等于零, 引出了矛盾. 同理可证 p < k 也不可能.

定理 0.3

秩与符号差(或正负惯性指数)是实对称阵在合同关系下的全系不变量.

证明 由惯性定理知道, 秩 r 与符号差 s 是实对称阵合同关系的不变量. 反之, 若 n 阶实对称阵 A, B 的秩都为 r, 符号差都是 s, 则它们都合同于

$$diag\{1, \dots, 1; -1, \dots, -1; 0, \dots, 0\},\$$

其中有 $p = \frac{1}{2}(r+s)$ 个 $1,q = \frac{1}{2}(r-s)$ 个 -1 及 n-r 个零, 因此 A 与 B 合同. 对正负惯性指数的结论也同样成立.

0.1.2 复二次型

定理 0.4 (复二次型的规范标准型)

设复二次型

$$f(x_1, x_2, \dots, x_n) = d_1 x_1^2 + d_2 x_2^2 + \dots + d_r x_r^2,$$

这个复二次型对应的系数矩阵为A是n阶复对称阵,则A一定合同于下列对角阵:

$$diag\{1, \dots, 1; 0, \dots, 0\},$$
 (5)

其中有r个1,并且r=r(A). 进而,f一定可作变量替换得到

$$z_1^2 + z_2^2 + \dots + z_r^2. ag{6}$$

我们将(6)式中的二次型称为f的规范标准型.

证明 因为复二次型

$$f(x_1, x_2, \dots, x_n) = d_1 x_1^2 + d_2 x_2^2 + \dots + d_r x_r^2$$

必可化为

$$z_1^2 + z_2^2 + \dots + z_r^2$$
,

其中 $z_i = \sqrt{d_i x_i} (i=1,2,\cdots,r), z_j = x_j (j=r+1,\cdots,n)$. 所以结论得证. 故复对称阵的合同关系只有一个全系不变量, 那就是秩 r.