[LeetCode] Count Primes - 素数系列问题

Eastmount

版权

分类专栏: LeetCode 文章标签: leetcode 素数处理 埃氏筛法

Python+TensorFlow人工智能

¥9.90

订阅博主

该专栏为人工智能入门专栏,采用Python3和TensorFlow实 现人工智能相关算法。前期介绍安装流程、基础语法、神...

Eastmount

题目概述:

Description:

Count the number of prime numbers less than a non-negative number, n.

解题方法:

题意是给出n中所有素数的个数。

首先你需要知道判断一个数是不是素数的方法: (最笨方法但有效)

```
bool IsPrime(int n)
{
   if (n<2) { //小于2的数即不是合数也不是素数
       return false:
   }
   //和比它小的所有的数相除,如果都除不尽则证明素数
   for(int i=2; i<n; i++) {
       if (n%i==0) {
          return false; //除尽则是合数
       }
   }
   return true;
}
```

更多数学方面关于素数判断问题,参考博客:算法总结:判断一个数是否为素数 最初想法是通过两层循环依次判断n个数里素数个数,但代码显然会TLE。当n=499979 时就Time Limit Exceeded,超时代码如下:

```
int countPrimes(int n) {
    int count=0;
    int i,j;
    int number;
```

后来找到一种方法,只能说是Perfect。它叫做Sieve of Eratosthenes(埃拉托色尼筛法,简称埃氏筛法),参考维基百科: Sieve of Eratosthenes

	2	3	4	5	6	7	8	9	10	Prime numbers
11	12	13	14	15	16	17	18	19	20	
21	22	23	24	25	26	27	28	29	30	
31	32	33	34	35	36	37	38	39	40	
41	42	43	44	45	46	47	48	49	50	
51	52	53	54	55	56	57	58	59	60	
61	62	63	64	65	66	67	68	69	70	
71	72	73	74	75	76	77	78	79	80	
81	82	83	84	85	86	87	88	89	90	
91	92	93	94	95	96	97	98	99	100	
101	102	103	104	105	106	107	108	109	110	
111	112	113	114	115	116	117	118	119	120	

它的思想是通过建立一个bool型数组,从2开始计数,其倍数的数字都赋值为true,显然不是素数。最后统计false的个数即为素数个数。

我的代码:

```
/**
 * 题意: 计算n中的素数个数
 * <span style="font-family: Arial, Helvetica, sans-serif;">第二种方法 Sieve of Eratosthenes 埃拉托色尼筛法,简称埃氏筛法</span>
 * By: Eastmount 2015-9-21 */
int countPrimes(int n) {
```

```
int count;
              int i,j;
bool *nums;
if(n<=1) return 0;
//动态数组nums记录是否为素数
nums = (bool*)malloc(sizeof(bool)*n);
for(i=2; i<n; i++) {
    //i的倍数均非素数
    if(!nums[i]) {
        for(j=2; j*i<n; j++) {
            nums[j*i] = true;
        }
    }
}
//计算素数个数
count = 0;
for(i=2; i<n; i++) {
    if(nums[i]==false) {
        count++;
    }
}
free(nums);
return count;
```

类似题目:

}

Ugly Number

Ugly numbers are positive numbers whose prime factors only include 2, 3, 5. For example, 6, 8 are ugly while 14 is not ugly since it includes another prime factor 7.

Note that 1 is typically treated as an ugly number.

题意:就是子数由2、3、5组成的数字即为Ugly数字,6=2*3、8=2*2*2。

```
bool isUgly(int num) {
    //丑数具有如下特征: 1是丑数,丑数可以表示为有限个2、3、5的乘积
    int result=0;
    if(num<=0) //防止Last executed input:0 超过时间限制
        return false;
    while(num!=1) {
        if(num%2==0) {
            num=num/2;
```

该方法真的好友技巧啊!只能说算法真是博大精深,同时最近360的笔试题目也考到了一个数字由两个素数组成并打印成5*3的图形题目。所以还是挺重要的知识。

(By:Eastmount 2015-9-21 凌晨3点半 http://blog.csdn.net/eastmount/)