M1103 Chapter 4

Vector Spaces

Definition

A <u>vector space</u> over the field \mathbb{K} is a set E with two operations:

 $egin{array}{ll} +: E imes E \longrightarrow E \ (x,y) \longmapsto x+y \end{array}$

 $\mathbb{K} imes E \longrightarrow E \ (lpha,x) \longmapsto lpha x$

Satisfying the following axioms:

A1: $(x + y) + z = x + (y + z), \ \forall x, y, z \in E$

A2: There is an element $0_E \in E$ such that $x + 0_E = 0_E + x = x, \ \, \forall x \in E$

A3: $\forall x \in E,$ there is an element $-x \in E$ such that $x + (-x) = (-x) + x = 0_E$

A4: x + y = y + x, $\forall x, y \in E$

A5: $\alpha(x+y) = \alpha x + \alpha y, \forall \alpha \in \mathbb{K}, \forall x, y \in E$

A6: $(\alpha + \beta)x = \alpha x + \beta x, \forall \alpha, \beta \in \mathbb{K}, \forall x \in E$

A7: $\alpha(\beta x) = (\alpha \beta) x, \forall \alpha, \beta \in \mathbb{K}, \forall x \in E$

A8: $1x = x, \forall x \in E$

The elements of a vector space E are called vectors. The element $\mathbf{0}_E$ is called the zero-vector.

Examples

1. Consider a singleton $\{0\}$.

$$\begin{cases} 0 \} \times \{0\} \longrightarrow \{0\} \\ (0,0) \longmapsto 0$$

$$0+0:=0$$

$$\mathbb{K} imes\{0\} \longrightarrow \{0\} \ (lpha,0) \longmapsto 0$$
 $lpha 0 = 0$

The 8 axioms are clearly satisfied

 \therefore {0} is a vector space over \mathbb{K}

called a zero-vector space.

2.
$$\mathbb{K}^n = \mathbb{K} \times \cdots \times \mathbb{K}$$

$$(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n) \ lpha(x_1,\ldots,x_n)=(lpha x_1,\ldots,lpha x_n)$$

 \mathbb{K}^n becomes a vector space for these operations.

Zero-vector in $\mathbb{K}^n:(0,\ldots,0)$

Exercise:

Check that the 8 axioms are satisfied for the above example:

Consider a vector space \mathbb{K}^n .

Let us take $x=(x_1,\ldots,x_n)$, $y=(y_1,\ldots,y_n),\ z=(z_1,\ldots,z_n),\ \forall x,y,z\in\mathbb{K}^n.$ Let α,β scalars in $\mathbb{K}.$

A1: Associativity of addition -

$$(x+y)+z=((x_1+y_1)+z_1,\ldots)=(x_1+(y_1+z_1),\ldots)=x_1+(y_1+z_1)$$

: Associativity holds.

A2: Existence of an element 0 -

$$x + 0 = (x_1 + 0, \dots, x_n + 0) = x$$

 $Where, 0 = (0, \dots, 0)$

A3: Existence of an additive inverse -

Take
$$-x=(-x_1,\ldots,-x_n)\in\mathbb{K}^n$$

$$x+(-x)=(x_1-x_1,\dots,x_n-x_n)=(0,\dots,0)=0$$

Which holds, since $0 = (0, ..., 0) \in \mathbb{K}^n$

A4: Commutativity of additions -

$$x+y=(x_1+y_1,\ldots,x_n+y_n)=(y_1+x_1,\ldots,y_n+x_n)=y+x_n$$

A5: Scalar distributivity over addition -

$$lpha(x+y)=lpha(x_1+y_1,\ldots,x_n+y_n)=(lpha x_1+lpha y_1,\ldots,lpha x_n+lpha y_n)=lpha x+lpha y$$

A6: Scalar addition over scalar multiplication -

$$(lpha+eta)x=((lpha+eta)x_1,\ldots,(lpha+eta)x_n)=(lpha x_1+eta x_1,\ldots,lpha x_n+eta x_n)=lpha x+eta x_n$$

A7: Compatibility of Scalar multiplication -

$$\alpha(\beta x) = \alpha(\beta x_1, \dots, \beta x_n) = (\alpha \beta x_1, \dots, \alpha \beta x_n) = (\alpha \beta)x$$

A8: Identity element in scalar multiplication -

$$1 \cdot x = (1 \cdot x_1, \dots, 1 \cdot x_n) = x \quad \Box.$$

Example 2

Consider $\mathbb{K}^{\mathbb{N}}$. It is the set of all maps

$$\{f: \mathbb{N} \longrightarrow \mathbb{K}\}\ n \mapsto f(n)$$

So, $\mathbb{K}^{\mathbb{N}}$ is the set of all sequences of elements in \mathbb{K} .

$$(a_n)_{n\in\mathbb{N}}+(b_n)_{n\in\mathbb{N}}=(a_n+b_n)_{n\in\mathbb{N}}$$

$$\lambda(a_n)_{n\in\mathbb{N}}=(\lambda a_n)_{n\in\mathbb{N}}$$

Conclusion:

The set of sequences becomes a vector space for these operations.

 $Zero-vector = (0, \dots, 0)$

opposite: $(-a_n)_{n\in\mathbb{N}}$

Exercise

Check that the 8 axioms hold for the previous example

Let $\mathbb{K}^{\mathbb{N}} = \{f : \mathbb{N} \to \mathbb{K}\}$. We denote a sequence by $(a_n)_{n \in \mathbb{N}} \in \mathbb{K}^{\mathbb{N}}$.

We denote
$$u=(u_n), v=(v_n), w=(w_n)\in\mathbb{K}^{\mathbb{N}}$$
. Let $\alpha,\beta\in\mathbb{K}$

A1: Associativity of addition -

$$(u+v)+w=((u_n+v_n)+w_n)=(u_n+(v_n+w_n))=u+(v+w), \ \ \forall n\in\mathbb{K}$$

A2: Existence of an element 0 -

$$u + 0 = (u_n + 0) = (u_n) = u$$

Where,
$$0 = (0, 0, 0, \dots, 0)$$

A3: Existence of an additive inverse -

Let $-u = (-u_n)$:

$$u + (-u) = (u_n - u_n) = 0$$

A4: Commutativity of additions -

$$u+v=(u_n+v_n)=(v_n+u_n)=v+u$$

Because addition in \mathbb{K} is commutative.

A5: Scalar distributivity over addition -

$$\alpha(u+v) = \alpha(u_n+v_n) = \alpha u_n + \alpha v_n = \alpha u + \alpha v$$

A6: Scalar addition over scalar multiplication -

$$(\alpha+eta)u=((lpha+eta)u_n)(lpha u_n+eta u_n)=lpha u+eta u$$

A7: Compatibility of scalar multiplication -

$$\alpha(\beta u) = \alpha(\beta u_n) = (\alpha \beta u_n) = (\alpha \beta) u$$

A8: Identity element for scalar multiplication -

$$1 \cdot u = 1 \cdot u_n = u_n = u$$

Example 4

Consider $(M_{m,n}(\mathbb{K}), +, scalar \ multiplication)$

This is a vector space over \mathbb{K} .

Example 5

Consider X a non-empty set. $F(X,\mathbb{K})=\{f:X\longrightarrow \mathbb{K}\ function\}=\mathbb{K}^X$

1. Given $f,g\in F(X,\mathbb{K})$, and given $\alpha\in\mathbb{K}$,

$$f+g:X \longrightarrow \mathbb{K} \ x \longmapsto (f+g)(x) = f(x) + g(x)$$
 $lpha f:X \longrightarrow \mathbb{K} \ x \longmapsto (lpha f)(x) = lpha f(x)$

Thus, $f+g\in F(X,\mathbb{K})$, and $\alpha f\in F(X,\mathbb{K})$

$$egin{aligned} 0: X & \longrightarrow \mathbb{K} \ x & \longmapsto 0(x) = 0 \end{aligned}$$

$$-f: X \longrightarrow \mathbb{K}$$
$$x \longmapsto (-f)(x) = -f(x)$$

Then $F(X, \mathbb{K})$ is a vector space over \mathbb{K} .

Exercise

Show that the 8 axioms hold

at home

Example 6

Consider $\mathbb{K}[X]$ the set of polynomials with coefficients in \mathbb{K} .

Given $P,Q \in \mathbb{K}[X]$,

$$P+Q:=\sum_{n\in\mathbb{N}}(a_n+b_n)X^n\in\mathbb{K}X$$

Given $\lambda \in \mathbb{K}$

$$\lambda P := \sum_{n \in \mathbb{N}} (\lambda a_n) X^n \in \mathbb{K}[X]$$

Thus, $\mathbb{K}X$ is a vector space over \mathbb{K}

Example 7

Suppose E_1, E_2 vector spaces over \mathbb{K} ,

$$E_1 imes E_2=\{(x_1,x_2); x_1\in E_1, x_2\in E_2\}$$

Given $(x_1,x_2),(y_1,y_2)\in E_1 imes E_2$, given $lpha\in\mathbb{K}$

M1103 Chapter 4
$$(x_1,x_2)+(y_1+y_2):=(x_1+y_1,x_2+y_2)$$
 $lpha(x_1,x_2):=(lpha x_1,lpha x_2)$

Thus, $E_1 \times E_2$ is also a vector space over \mathbb{K} .

$$0_{E_1 imes E_2}=(0_{E_1},0_{E_2})$$

Theorem

E vector space over \mathbb{K} , $x,y\in E$, $\alpha,\beta\in\mathbb{K}$.

Then,

1.
$$\alpha(x-y) = \alpha x - \alpha y$$

2.
$$(\alpha - \beta)x = \alpha x - \beta x$$

3.
$$0x = 0_E$$

4.
$$\alpha 0_E = 0_E$$

5.
$$(-1)x = -x$$

6.
$$\alpha x = 0_E \implies (\alpha = 0 \text{ or } x = 0_E)$$

Proof

1.
$$\alpha(x-y) = \alpha x - \alpha y$$

By A5:

$$= \alpha[x - y + y]$$

By A3:

$$= \alpha(x + 0_E)$$

By A2:

$$= \alpha x$$

Now,

$$lpha(x-y) + lpha y = lpha x \ \Longrightarrow \ lpha(x-y) + lpha y + (-lpha y) = lpha x + (-lpha y) \ By \ A3 : \Longrightarrow lpha x - lpha y$$

2. Similar to 1 do as exercise at home

3.
$$0x = (0-0)x = 0x - 0x = 0_E$$

4.
$$\alpha 0_E = \alpha (0_E - 0_E) = \alpha 0_E - \alpha 0_E = 0_E$$

5.
$$x + (-1)x = 1x + (-1)x = [1 + (-1)]x = 0x = 0_E$$

6. Suppose ax=0 and $lpha \neq 0$ then $lpha^{-1} lpha x = lpha^{-1} 0_E \implies (lpha^{-1} lpha) x = 0_E \implies 1 x = 0_E \implies x = 0_E$

§ 4.2

Definition

E vector space over \mathbb{K} .

A linear sub-space of E is a subset F of E closed under addition and scalar multiplication such that F is itself a vector space over \mathbb{K} for the operations induced on F.

Theorem

E vector space over \mathbb{K} , $F \subset E$

$$F ext{ linear subspace of } E \iff egin{cases} 1. & 0_E \in F. \ \\ 2. & orall x, y \in F, (x+y) \in F. \ \\ 3. & orall lpha \in \mathbb{K}, orall x \in F, lpha x \in F. \end{cases}$$

Proof

2 and 3 are trivial.

PROOF OF 1:

1. Let 0_F be the zero-vector of F. we have

$$orall x \in E, x+0_E=x$$

In particular,

$$0_F + 0_E = 0_F$$

On the other hand,

$$\forall y \in F, y + 0_F = y$$

In particular,

$$0_F + 0_F = 0_F$$

From the previous two statements, combining them together yields us:

$$\Longrightarrow 0_F + 0_E = 0_F + 0_F$$
 $\Longrightarrow 0_E = 0_F$

But 0_F belongs to F

$$\therefore 0_E \in F$$

2. Let us now prove the converse.

F is closed under addition and scalar multiplication.

$$orall x,y\in F, \underbrace{(-y)}_{-1y}\in F$$

so $x-y\in F$. Thus, since $F\neq\emptyset$, F is an additive subgroup of E, so (F,+) is an abelian group

Then, it is easy to check that A5 to A8 are satisfied. \square

Example 1

Let E be a vector space over \mathbb{K}

Consider the singleton $\{0_E\} \subset E$

- 1. $0_E \in \{0_E\}$
- 2. $0_E + 0_E = 0_E \in \{0_E\}$
- 3. $\forall \lambda \in \mathbb{K}, \lambda 0_E = 0_E \in \{0_E\}$

So, $\{0_E\}$ is a linear subspace of E.

Also, $E \subset E$ and E is a linear subspace of E.

Example 2

Consider the vector space \mathbb{K}^n .

Let $a \in \mathbb{K}^n - \{0\}$

$$\mathbb{K}a := \{\lambda a, \lambda \in \mathbb{K}\}.$$

- 1.~0=0a, so $0\in\mathbb{K}a$
- 2. Let $x,y\in\mathbb{K}a$. Thus, $x=\lambda a,y=\lambda' a, \forall \lambda\in\mathbb{K}$ then, $x+y=\lambda a+\lambda' a=a(\lambda+\lambda')\in\mathbb{K}a$
- 3. Let $x \in \mathbb{K}a, \alpha \in \mathbb{K}$, then $x = \lambda a$, for some $\lambda \in \mathbb{K}$. Then $\alpha x = \alpha(\lambda a) = (\alpha \lambda)a = (\lambda \alpha)a \in \mathbb{K}a$

.

Thus $\mathbb{K}a$ is a linear subspace of \mathbb{K}^n .

Example 3

Consider the vector space \mathbb{K}^n , take $a \in \mathbb{K}^n$ and $b \in \mathbb{K}^n$ such that $b \notin \mathbb{K}a$

$$F:=\{\lambda a+\mu b,\lambda,\mu\in\mathbb{K}\}$$

$$x \in F \iff x = \lambda a + \mu b$$

- 1. $0 = 0a + 0b \in F$
- 2. Let $x,y\in F$, $x=\lambda a+\mu b$, $y=\lambda' a+\mu' b$. $x+y=\lambda a+\mu b+\lambda' a+\mu' b=a(\lambda+\lambda')+b(\mu+\mu')\in F$
- 3. $\forall \alpha \in \mathbb{K}, \forall x \in F, \ x = \lambda a + \mu b, \ \mathsf{SO} \ \alpha x = \alpha \lambda a + \alpha \mu b = (\alpha \lambda) a + (\alpha \mu) b \in F.$

Thus F is a linear subspace of \mathbb{K}^n .

Example 4

let \mathbb{R}^2 linear subspace

$$F := \{(x_1, x_2) \in \mathbb{R}^2, x_1, x_2 > 0\}$$

F is NOT a linear subspace of \mathbb{R}^2

Example 5

Consider the vector space $\mathbb{K}^{\mathbb{N}}$, let $F=\{(a_n)_{n\in\mathbb{N}}\in\mathbb{K}^{\mathbb{N}}\ such\ that\ a_n\ converges\}$

Then, F is a linear subspace of $\mathbb{K}^{\mathbb{N}}$.

Consider the vector space $\mathbb{K}^{\mathbb{N}}$, let $G=\{(a_n)_{n\in\mathbb{N}}\in\mathbb{K}^{\mathbb{N}}\ such\ that\ a_n\ is\ bounded\}$

Then, G is a linear subspace of $\mathbb{K}^{\mathbb{N}}$

Example 6

Consider the vector space $M_n(\mathbb{K})$. Let

 $F = \{A \in M_n(\mathbb{K}) : F \ is \ upper/lower \ triangular/diagonal \}$

Thus, F is a linear subspace of $M_n(\mathbb{K})$

Example 7

In $M_n(\mathbb{K})$, each of $MS_n(\mathbb{K})$ and $MA_n(\mathbb{K})$ is a linear subspace of $M_n(\mathbb{K})$.

Example 8

In $M_n(\mathbb{K})$, $GL_n(\mathbb{K})$ is not a linear subspace of $M_n(\mathbb{K})$ because a 0 matrix does not belong to $GL_n(\mathbb{K})$

Example 9

Suppose I an interval of \mathbb{R} . In $F(I, \mathbb{K}) (= \mathbb{K}^I)$, consider $C(I, \mathbb{K}) = \{I \mapsto \mathbb{K} : f \text{ is } continuous\}$ Then $C(I, \mathbb{K})$ is a linear subspace of $F(I, \mathbb{K})$.

Example 10

In $\mathbb{K}[X]$, let $\mathbb{K}_n[X] = \{P \in \mathbb{K}[X] : \deg P \leq n\}$

- $\deg 0 = -\infty \le n$
- closed under addition
- closed under scalar multiplication

So $\mathbb{K}_n[X]$ is a linear subspace of $\mathbb{K}[X]$.

Theorem

Suppose E is a vector space over \mathbb{K} , suppose F_1, \ldots, F_n are linear subspaces of E. Then,

$$F_1 \cap \cdots \cap F_n$$

is a linear subspace of E.

Proof

• $0_E \in F_i, \forall i \implies 0_E \in F_1 \cap \cdots \cap F_n$.

Let $x, y \in F_1 \cap \cdots \cap F_n$

 $orall i, x,y \in F_i \implies x+y \in F_i$ Therefore, $x+y \in F_1 \cap \cdots \cap F_n$

Let $\alpha \in \mathbb{K}, x \in F_1 \cap \cdots \cap F_n$

• $\forall i, \alpha \in \mathbb{K}, x \in F_i \implies \alpha x \in F_i$ Therefore, $\alpha x \in F_1 \cap \cdots \cap F_n$. \square

Remark

Still true for an arbitrary family $(F_i)_{i\in I}$ linear subspace of E. (Then $\bigcap F_i$ is also a linear subspace).

Remark

In general, the union of two linear sub-spaces is not a linear sub-space.

Definition

E vector space over $\mathbb{K}.\ S\subset E$

The $\underline{\text{linear subspace spanned}}$ by S is the smallest linear subspace of E that contains S. It is denoted by

$$\mathrm{span}(S)$$
.

Definition

let E vector space over \mathbb{K} . F,G linear subspace of E

The sum of F and G is the linear subspace $F + G = \operatorname{span}(F \cup G)$.

Example 11

In \mathbb{R}^3 , let $F = \mathbb{R}(1,0,0)$ and $G = \mathbb{R}(0,1,0)$

Then, $F + G = \{\lambda(1,0,0) + \mu(0,1,0), \forall \lambda, \mu \in \mathbb{R}\} = \{(\lambda,\mu,0), \lambda, \mu \in \mathbb{R}\}.$

Theorem

E vector space over \mathbb{K} . *F*, *G* linear subspaces of *E*.

Then, $F + G = \{x + y; x \in F \text{ and } y \in G\}.$

Proof

Let us denote $H = \{x + y; x \in F \ and \ y \in G\}.$

- $F \subset H \ (\forall x \in F, x = x + 0_E, so \ x \in H).$
- $ullet G\subset H\ (orall y\in G, y=0_E+y, so\ y\in G).$

Thus, $(F U G) \in H$. \square

- 1. $0_E = 0_E + 0_E$, so $0_E \in H$
- 2. Let $z, z' \in H$

Then, z = x + y for some $x \in F$ and $y \in G$

Also, z'=x'+y' for some $x'\in F$ and $y'\in G$

Then,

$$z + z' = (x + y) + (x' + y')$$

So, $z,z'\in H$

3. Let $lpha \in \mathbb{K}, z \in H$

Then, z = x + y for some $x \in F, y \in G$

Thus,

$$\alpha z = \alpha(x+y) = \alpha x + \alpha y$$

Ergo, H is a linear subspace of E.

Let H' be a linear subspace of E that contains F U G.

Let $z \in H$. Then z = x + y; $x \in F, y \in G$.

So $x \in H'$, also $y \in H'$.

Therefore, $x + y \in H'$ (since H' is a linear subspace)

Then $z \in H'$.

We conclude that $H \subset H'$. \square .

Definition

E vector space over \mathbb{K} , *F*, *G* linear subspaces of *E*.

We say that F and G are in direct sum if $F \cap G = \{0_E\}$. In this case, we write

$$F \oplus G$$

Example 12

In \mathbb{R}^3 , let $F = \mathbb{R}(1,0,0)$ and $G = \mathbb{R}(0,1,0)$

Then $F \cap G = \{(0,0,0)\}$ thus F and G are in direct sum.

Then $F + G = \{(\lambda, \mu, 0); \lambda, \mu \in \mathbb{R}\}$

Example 13

In \mathbb{R}^3 , let $F = \mathbb{R}(1,0,0) \oplus \mathbb{R}(0,1,0)$, and $G = \mathbb{R}(1,0,0) \oplus \mathbb{R}(0,0,1)$

Then $F \cap G = \mathbb{R}(1,0,0) \neq \{(0,0,0)\}$

Thus, F and G are NOT in direct sum.

In fact, $F + G = \mathbb{R}^3$.

Indeed, $\forall x,y,z\in\mathbb{R}^3$,

$$(x,y,z) = (49x,y,0) + (-48x,0,z) \ {}_{\in F}$$

Definition

E vector space over \mathbb{K} . *F*, *G* linear subspace of *E*.

We say that F and G are <u>complementary</u> in E if

$$E = F \oplus G$$

Example 14

In \mathbb{R}^3 , let $F = \mathbb{R}(1,0,0) \oplus \mathbb{R}(0,1,0)$, and $G = \mathbb{R}(0,0,1)$. Then $F \cap G = \{(0,0,0)\}$

Also, we have $F + G = \mathbb{R}^3$.

Indeed. $\forall x,y,z\in\mathbb{R}^3$, we can write

$$(x,y,z) = \underbrace{(x,y,0)}_{\in F} + \underbrace{(0,0,z)}_{\in G}$$

Thus, we conclude that $\mathbb{R}^3 = F \oplus G$

In other words, F and G are complimentary in \mathbb{R}^3 .

Theorem

E vector space over \mathbb{K} . F and G linear subspaces over E.

Then the following statements are equivalent

- 1. F and G are complimentary in E
- 2. $\forall z \in E, \exists !(x,y) \in F \times G; z = x + y$

Proof

• $1 \implies 2$:

We have existence since E = F + G.

Let $z \in E$, suppose $\exists x, y \in F \times G; z = x + y$. $\exists z = x' + y'$

Indeed,

$$x + y = x' + y'$$

So,
$$\underbrace{x-x'}_{\in F} = \underbrace{y'-y}_{\in G}$$
.

Thus, $x - x' \in F \cap G = \{0_E\}.$

Then, x = x', and so y = y'.

• $2 \implies 1$:

Existence gives us E = F + G

Indeed, let $z \in F \cap G$. We can write $z = \underbrace{z}_{\in F} + \underbrace{0_E}_{\in G}$ z=\underbrace{0{E}}}{\limin{E}}

Thus, $F \cap G = \{0_E\}$. \square

Remark

$$F_1+\cdots+F_n=\operatorname{span}(F_1\cup\cdots\cup F_n)=\{x_1+\ldots x_n;x_i\in F_i,\forall i\}.$$

$$F_1 + \ldots F_n$$
 is direct $\iff F_i \cap (F_1 + \cdots + F_{i-1}) = \{0_E\}, \ \forall i$

Then we write $F_1 \oplus \cdots \oplus F_n$

§ 4.3

Definition

An almost-zero family of scalars is a family $(\lambda_i)_{i\in I}$ of elements of $\mathbb K$ such that

$$\{i\in I: \lambda_i
eq 0\}$$
 is finite

the set of almost-zero families of scalars is denoted by \mathbb{K}^{I}

Definition

Let E be a vector space over \mathbb{K}

 $(a_i)_{i\in I}$ be a family of vectors in $E, x\in E$

We say that x is a linear combination of $(a_i)_{i \in I}$ if

$$\exists (\lambda_i)_{i \in I} \in \mathbb{K}^I : x = \sum_{i \in I} \lambda_i a_i$$

Example

Show that x=(9,2,7) is a linear combination of a=(1,2,-1) and b=(6,4,2)

We need to show that $x = \lambda a + \mu b$ for some $\lambda, \mu \in \mathbb{R}$

M1103 Chapter 4
$$(9,2,7)=\lambda(1,2,-1)+\mu(6,4,2)=(\lambda+6\mu,2\lambda+4\mu.-\lambda+2\mu)$$

$$\implies egin{cases} \lambda + 6\mu = 9 \ 2\lambda + 4\mu = 2 \ -\lambda + 2\mu = 7 \end{cases}$$

Solving this linear system yields $\lambda=-3$ and $\mu=-2$

So
$$x = -3a + 2b$$

Theorem

Let E be a vector space over \mathbb{K} .

 $(a_i)_{i\in I}$ be a family of vectors in E

the set of all linear combinations of $(a_i)_{i\in I}$ is $\operatorname{span}\{a_i, i\in I\}$

Proof

Let F be the set of all linear combinations of $(a_i)_{i\in I}$

•
$$\forall k \in I, a_k \in F$$
 ?

we need to show that $a_k = \sum_{i \in I} \lambda_i a_i$ for some $(\lambda_i)_{i \in I} \in \mathbb{K}^I$

it suffices to take

$$\lambda_i = egin{cases} 1 & if \ i=k \ 0 & if \ i
eq k \end{cases}$$

Then,
$$\sum_{i \in K} \lambda_i a_i + \lambda_k a_k = a_k$$

So,
$$a_k \in F, orall k \in I$$

Definition

Let E be a vector space over \mathbb{K} $(a_i)_{i\in I}$ be a family of vectors of E

We say that $(a_i)_{i\in I}$ is a generating family for E if

$$\operatorname{span}\{a_i, i \in I\} = E$$

$$\iff orall x \in E, x = \sum_{i \in I} \lambda_i a_i ext{ for some } (\lambda_i)_{i \in I} \in \mathbb{K}^I$$

Example

In \mathbb{R}^3 let A = (1, 1, 2), B = (1, 0, 1), C = (2, 1, 3) is (a, b, c) a generating family of \mathbb{R}^3 ?

Let
$$x=(x_1,x_2,x_3)\in\mathbb{R}^3$$

We need to show that $x=\lambda_1a+\lambda_2b+\lambda_3c$ for some $\lambda_1,\lambda_2,\lambda_3$

Then,
$$(x_1, x_2, x_3) = (\lambda_1 + \lambda_2 + 2\lambda_3, \ldots)$$

$$\Longrightarrow egin{cases} \lambda_1 + \lambda_2 + 2\lambda_3 = x_1 \ \lambda_1 + \lambda_3 = x_2 \ 2\lambda_1 + \lambda_2 + 3\lambda_3 = x_3 \end{cases}$$

Example 3

Find span $\{a, b, c\}$

$$egin{cases} lpha+eta+2\gamma=x_1\ lpha+\gamma=x_2\ 2lpha+eta+3\gamma=x_3 \end{cases} \ A=egin{pmatrix} 1 & 1 & 2\ 1 & 0 & 1\ 2 & 1 & 3 \end{pmatrix} \implies \det(A)=0$$

Since its non consistent.

Augmented matrix is:

$$egin{pmatrix} 1 & 1 & 2 & | & x_1 \ 1 & 0 & 1 & | & x_2 \ 2 & 1 & 3 & | & x_3 \end{pmatrix}$$

By gaussian elimination,

$$egin{pmatrix} 1 & 1 & 2 & | & x_1 \ 0 & 1 & 1 & | & x_1 - x_2 \ 0 & 0 & 0 & | & x_3 - x_1 - x_2 \end{pmatrix}$$

The system is consistent $\iff x_3 - x_1 - x_2 = 0$

Thus, the span $\{x_1, x_2, x_3\}$ that satisfies this is span $\{x_3 - x_1 - x_2 = 0\}$

Example 4

Determine whether the polynomials

$$Q_1=X+X^2, \quad Q_2=X-X^2, \quad Q_3=1+X, \quad Q_4=1-X$$
 Generate $\mathbb{R}_2[X].$

We need to see if $\forall P=a_0+a_1X+a_2X^2\in\mathbb{R}_2[X]$, we have $P=\alpha Q_1+\beta Q_2+\gamma Q_3+\delta Q_4$

i.e.
$$a_0 + a_1 x + a_2 x^2 = (\alpha + \beta + \gamma - \delta)X + (\alpha - \beta)X^2$$

i.e.

$$egin{cases} \gamma + \delta = a_0 \ lpha + eta + \gamma - \delta = a_1 \ lpha - eta = a_2 \end{cases} \ egin{cases} 0 & 0 & 1 & 1 & \mid & a_0 \ 1 & 1 & 1 & -1 & \mid & a_1 \ 1 & -1 & 0 & 0 & \mid & a_2 \end{pmatrix}$$

By gaussian elimination, we get

$$\begin{pmatrix} 1 & 0 & 0 & -1 & | & -\frac{a_0 + a_1 + a_2}{2} \\ 0 & 1 & 0 & -1 & | & -\frac{a_0 + a_1 - a_2}{2} \\ 0 & 0 & 1 & 1 & | & a_0 \end{pmatrix}$$

nb of variables: 4 rank=3 (leading variables)

This system is consistent $\forall a_0, a_1, a_2 \in \mathbb{R}$

i.e. $\{Q_1,Q_2,Q_3,Q_4\}$ is a generating family for $\mathbb{R}_2[X]$

§ 4.4

Definition

Let E vector space over \mathbb{K} $(a_i)_{i\in I}$ family in E

We say that $(a_i)_{i\in I}$ is a free family or linearly independant family in E. $\forall (\lambda_i)_{i\in I} \in \mathbb{K}^{(I)}$

Otherwise, we say that $(a_i)_{i\in I}$ is linearly dependant

Remark

Suppose that for some $K \in I$, we have $a_k = 0_E$

Then $(a_i)_{i \in I}$ is linearly dependant

$$(12)a_k+\sum 0_{a_i}=0_E$$

Example 1

Let $a \in E - \{0_E\}$ then (a) is free

Indeed, $orall \lambda \in \mathbb{K}$

\begin{align}

ak=\sum \lambda{i}a{i} \

Then, \

 $\sum_{i}a_{i}+(-1)ak=0_{E}$

\end{align}

So, $(a_{i})_{i \in I}$ is linearly dependent. ___ ##### Theorem \$E\$ vector space over $\$ mathbb{K}\$. \$(a_{i})_{i \in I}

\begin{align}

\text{span}{a{i}; \ i \in I}=\text{span}{a{i}; i \in I -{k}}

\end{align}

In particular, if $(a_{i})_{i \in I}$ generates \$E\$, then $(a_{i})_{i \in I}$ generates \$E\$. 2. Suppose \$

\begin{align}

 $x=\sum_{i=1}^{n} \lim_{i \to \infty} 1_i \lim_{i \to \infty} 1_i$

\end{align}

$$Then, since \$a_n = \sum_{i
eq k} \mu_i a_i \$for some \$(\mu_i), i \in I - \{k\} \in \mathbb{K}\$, We get:$$

 $x=\sum_{i \in \mathbb{N}} \frac{1}{neq k} \lambda_{i}a_{i}+\lambda_{i}heq k} \leq x+\sum_{i \in \mathbb{N}} \frac{1}{neq k} \frac{1}{neq k}$

$$So,\$x\in \mathrm{span}\{a_{i,i\in I-\{k\}}\}\$.\ 2.Let\$(\lambda_i)_{i\in I}\in \mathbb{K}^{(i)}\$ and\$\lambda\in \mathbb{K}\$ be such that:$$

\begin{align}

 $\sum_{i=0}^{l} \lim_{i \to \infty} 1} \lambda_i = 0$

\end{align}

```
If we have \$\lambda 
eq 0\$, then \$b = \sum_{i \in I} \left(rac{-\lambda_i}{\lambda}
ight) a_i \$Which contradicts the fact that \$b 
otin 	ext{span}\{a_i; i \in I\}\$Con.
\begin{align}
\sum{i \in I} \lambda{i}a {i}=0
\end{align}
Since, (a_{i})_{i \in I} is free, we get \lambda_{i}=0, \forall i \in I$ \square$. ___ # \textsection 4.6$
\begin{align}
dim E=dim F + dim G
\end{align}
###### Proof: If F=\{0_{E}\}\ or F=E, then the result is true since E=\{0_{E}\}\ \oplus E$. Suppose n
\text{text}\{\text{then, }\}x=x\{F\}+x\{G\}, \ \text{text}\{\text{with}\}
\begin{cases}
x{F} \in F \setminus
x{G} \in G
\end{cases}
\text{text}\{\text{then, }\}x=x\{F \mid G\}+x\{F\{1\}\}, \mid \text{text}\{\text{with}\}\}
\begin{cases}
x\{F\{1\}\}\ \text{in } F\{1\}
\end{cases}
                                                     Thus,
\begin{align}
x\&=x\{F \setminus G\}+x\{F\{1\}\}+x\{G\} \setminus X
&=\underbrace\{x\{F\{1\}\}\}\{\ F\{1\}\}+\\underbrace\{x\{F\ Cap\ G\}+x\{G\}\}\ \{\ G\}
\end{align}
            We deduce that \$F+G=F_1+G\$ and the claim is established.\ Consequently,
\begin{align}
\dim(F+G)&=\dim(F\{1\} \setminus G) \setminus
&=\dim F{1}+ \dim G \
&=\dim F - \dim(F \cap G)+ \dim G \quad \square.
\end{align}
##### Corollary $E$ finite-dimensional vector space over $\mathbb{K}$. $F,G$ linear subspace of $E
\begin{align}
L(E,F) \subset F(E,F)
```

\end{align}

\$\$
$$(0: E \longrightarrow E \text{ is a linear map, so } 0 \in L(E, F))$$

Also, by the above theorem:

$$u,v\in L(E,F) \implies egin{cases} u+v\in L(E,F) \ \lambda u\in L(E,F) \end{cases}$$

Thus, L(E, F) is a linear subspace of F(E, F)

Remark

When E = F, we write

L(E) instead of L(E, E).

Theorem

E, F, G vector spaces over \mathbb{K} .

 $u: E \longrightarrow F. \ v: F \longrightarrow G$ linear maps.

Then, $v \circ u : E \longrightarrow G$

 $x \mapsto (v \circ u)(x) = v(u(x))$ is a linear map.

Proof

Let $x_1, x_2 \in E$, and let $\lambda \in \mathbb{K}$. Then:

$$egin{aligned} (v\circ u)(x_1+\lambda x_2)&=v(u(x_1+\lambda x_2))\ &=v(u(x_1)+\lambda u(x_2))\quad ext{(since u is linear)}\ &=v(u(x_1)+\lambda v(u(x_2)))\quad ext{(since v is linear)}\ &=(v\circ u)(x_1)+\lambda (v\circ u)(x_2) \end{aligned}$$

Since $(v\circ u)(x_1+\lambda x_2)=(v\circ u)(x_1)+\lambda(v\circ u)(x_2)$, then $v\circ u$ is a linear map

$$\boxed{v\circ u\in\mathscr{L}(E,G)}$$

Theorem

E, F, G, H vector spaces over \mathbb{K} .

Then,

- 1. $\forall u \in L(E,F), \forall v \in L(F,G), \forall w \in L(G,H)$ $w \circ (v \circ u) = (w \circ v) \circ u$
- 2. $orall u \in L(E,F)$ $u \circ Id_E = u = Id_F \circ u.$
- 3. $\forall u_1, u_2 \in \mathscr{L}(E,F), \forall v \in \mathscr{L}(F,G)$ $v \circ (u_1 + u_2) = v \circ u_1 + v \circ u_2$
- 4. $\forall u \in \mathscr{L}(E,F). \ \forall v_1,v_2 \in \mathscr{L}(F,G)$ $(v_1+v_2)\circ u = v_1\circ u + v_2\circ u$
- 5. $\forall u \in \mathscr{L}(E,F), \forall v \in \mathscr{L}(F,G), \forall \lambda \in \mathbb{K}$ $v \circ (\lambda u) = (\lambda v) \circ u = \lambda (v \circ u)$

Proof

- 1. Associativity of ∘ in general
- 2. Done.

Remark

Suppose $u: E \longrightarrow F$ is an isomorphism.

 $u^{-1}: F \longrightarrow E$ isomorphism.

$$u^{-1}\circ u=Id_{E}.$$

$$u \circ u^{-1} = Id_F$$
.

Theorem

 $(\mathscr{L}(E),+,\circ)$ is a ring, with the zero element:

$$0:E\longrightarrow E$$

$$x\mapsto 0_E$$

and the unit element:

$$Id_E: E \longrightarrow E$$

$$x \mapsto x$$

Proof

Now, E = F = G, so \circ becomes an internal operation, and we apply the previous theorem. \square

•

Consequences

- In general, the ring $\mathcal{L}(E)$ is not commutative. (just like the ring of matrices).
- We have,

$$(u+v)^n = \sum_{k=0}^n C_n^k u^{n-k} \circ v^k$$
 provided $u \circ v = v \circ u$

- u invertible \Leftrightarrow $\exists v \in \mathscr{L}(E); u \circ v := v \circ u = Id_E \Leftrightarrow u$ is an automorphism of E and $v = u^{-1}: E \longrightarrow E$
- The automorphisms of E form a group (the group of invertible elements of the ring $\mathcal{L}(E)$.) called the general linear group of E, denoted by GL(E).
- $ullet (u\circ v)^{-1}=v^{-1}\circ u^{-1}, orall u,v\in GL(E)$

§ 5.2

Definition

E vector space of dimension n over $\mathbb K$

 a_1, \ldots, a_p vectors of E. $(e_i)_{1 \le i \le n}$ basis of E

$$orall j \in \{1,\ldots,p\}, a_j = \sum_{i=1}^n lpha_{ij} e_i$$

Then the matrix $A=(\alpha_{ij})\in M_{n,p}(\mathbb{K})$ is called the <u>representative matrix</u> of the family $a_1\dots a_p$ in the basis $(e_i)_{1\leq i\leq n}$, denoted by $A=M[(a_i,\dots,a_p);(e_i)]$

$$A = egin{pmatrix} lpha_{11} & \ldots & lpha_{1p} \ dots & & dots \ lpha_{n1} & \ldots & lpha_{np} \end{pmatrix}$$

Remark

If
$$p=1$$
,

given a vector $x = \sum_{i=1}^{n} x_i$, we write $X = M[x_i; (e_i)]$

$$X = egin{pmatrix} x_1 \ dots \ x_i \end{pmatrix} \in M_n(\mathbb{K})$$

Definition

Suppose E vector space of dimension n over \mathbb{K} .

F vector space of dimension m over \mathbb{K} .

$$u \in \mathscr{L}(E,F)$$

 $(e_j)_{1 \leq j \leq n}$ basis of E.

 $(e_i')_{1 \leq i \leq m}$ basis of F.

$$orall j \in \{1,\ldots,n\}, \ u(e_j) = \sum_{i=1}^m lpha_{ij} e_i'$$

Then the matrix $A=(\alpha_{ij})\in M_{m,n}(\mathbb{K})$ is called the representative matrix of the linear map u in the two basis $(e_j)_{1\leq j\leq n}$ of E and $(e_i')_{1\leq i\leq m}$ of F, and is denoted by: $A=M[u;(e_j),(e_i')]$.

$$A = egin{pmatrix} lpha_{11} & \ldots & lpha_{1n} \ dots & & dots \ lpha_{m_1} & \ldots & lpha_{mn} \end{pmatrix}$$

Consequence

Matrix interpretation of a linear map:

Let,

$$x=\sum_{j=1}^n x_j e_j \in E$$
, $X=M[x;(e_j)]=egin{pmatrix} x_1\ dots\ x_n \end{pmatrix}$

$$u(x) = \sum_{i=1}^m y_i e_i' \in F$$
, $Y = M[u(x); (e_i')] = egin{pmatrix} y_1 \ dots \ y_m \end{pmatrix}$

We have

$$egin{aligned} \sum_{i=1}^m y_i e_i' &= u(x) = u\left(\sum_{j=1}^n x_j e_j
ight) = \sum_{j=1}^n x_j u(e_j) = \sum_{j=1}^n x_j \sum_{i=1}^m lpha_{ij} e_i' \ &= \sum_{j=1}^l m]_{i=1} \left(\sum_{j=1}^n lpha_{ij} x_j
ight) e_i' \end{aligned}$$

$$So, \ y = \sum_{j=1}^n lpha_{ij} x_j.$$

We get:

$$egin{pmatrix} y_1 \ dots \ y_m \end{pmatrix} = egin{pmatrix} lpha_{11} & \dots & lpha_m \ dots & & dots \ lpha_{m_1} & \dots & lpha_{mn} \end{pmatrix} egin{pmatrix} x_1 \ dots \ x_n \end{pmatrix}$$

So,

$$Y = AX$$

$$u:\mathbb{R}^n\longrightarrow\mathbb{R}^m$$

$$(x_1,\ldots,x_n)\mapsto u(x_1,\ldots,x_n)=(y_1,\ldots,y_m)$$

$$u(x_1,\ldots,x_n) = \sum_{j=1}^n lpha_{nj} x_j,\ldots,\sum_{j=1}^n lpha_{mj} x_j$$

special case

$$u:\mathbb{R}\longrightarrow\mathbb{R}$$

$$x\mapsto u(x)=ax$$

Example

Let

$$egin{aligned} u:\mathbb{R}^2 &\longrightarrow \mathbb{R}^3 \ (x_1,x_2) &\mapsto u(x_1,x_2) = (x_1+x_2,2x_1-x_2,-5x_1) \end{aligned}$$

u is a linear map since each component function is a homogeneous polynomial of degree 1 in all variables.

The matrix of u:

$$u(e_1)=u(1,0)=(1,2,-5)$$

$$u(e'_i) = u(0,1) = (1,-1,0)$$

$$A = M[u,(e_j),(e_i')] = egin{pmatrix} 1 & 1 \ 2 & -1 \ -5 & 0 \end{pmatrix} \in M_{3,2}(\mathbb{R})$$

$$X=inom{x_1}{x_2}=M[x;(e_j),(e_i')]$$

$$Y = egin{pmatrix} y_1 \ y_2 \ y_3 \end{pmatrix} = M[u(x);(e_1,e_2,e_3)] \ \Leftrightarrow Y = AX$$

$$egin{pmatrix} y_1 \ y_2 \ y_3 \end{pmatrix} = egin{pmatrix} 1 & 1 \ 2 & -1 \ -5 & 0 \end{pmatrix} egin{pmatrix} x_1 \ x_2 \end{pmatrix} = egin{pmatrix} x_1 + x_2 \ 2x_1 - x_2 \ -5x_1 \end{pmatrix}$$

Theorem

E vector space of dimension n in \mathbb{K} . F vector space of dimension m in \mathbb{K}

take the basis $(e_j)_{1 \le j \le n}$ basis of E take the basis $(e_{i})_{1 \le i \le m}$ basis of F

Then, the map

$$egin{aligned} \phi:\mathscr{L}(E,F) &\longrightarrow M_{m,n}(\mathbb{K})\ u &\mapsto \phi(u) = M[u;(e_i),(e_i')] \end{aligned}$$

is an isomorphism from $\mathcal{L}(E,F)$ to $M_{m,n}(\mathbb{K})$.

Proof:

Let
$$u,v\in\mathcal{L}(E,F)$$
,
Let $A=\phi(u)=M[u;(e_j),(e_i')]=(a_{ij})$
Let $B=\phi(v)=M[v;(e_j),(e_i')]=(\beta_{ij})$

$$\phi(u+v)=M[u+v;(e_j),(e_i')]$$

$$(u+v)(e_j)=u(e_j)+v(e_j)=\sum_{i=1}^m\alpha_{ij}e_i'+\sum_{j=1}^n\beta_{ij}e_i'$$

$$=\sum_{i=1}^n(\alpha_{ij}+\beta_{ij})e_i'$$

So,
$$\phi(u+v)=(lpha_{ij}+eta_{ij})=A+B=\phi(u)+\phi(v).$$

Exercise:

Show that $\phi(\lambda(u)) = \lambda \phi(u), \lambda \in \mathbb{K}$.

Injectivity:

Let $u \in \ker \phi$, so that $\phi(u) = 0$.

This means: $M[u;(e_i),(e'_i)]=0$

Then, $u(e_i) = 0, \forall j \in \{1, \dots, n\}$

And so, $u(x)=0, \forall x\in E$

That is, u = 0

Thus, the $\ker \phi = 0$, and so ϕ is injective.

surjectivity:

Let
$$A=M_{m,n}(\mathbb{K}).$$
 Then $A=(lpha_{ij})$

For each
$$j \in \{1, \dots, n\}$$
, $c_j = \sum_{i=1}^n \alpha_{ij} e_i'$.

let

$$u: E \longrightarrow F$$
 $x \mapsto u(x) = \sum_{j=1}^n x_j c_j$

$$e_k = \sum_{j=1}^n \delta_{jk} e_j$$

Then
$$u \in \mathscr{L}(E,F)$$
 and $u(e_k) = \sum_{k=1}^n \delta_{jk} c_j = c_k$

It follows that
$$\phi(u) = M[u; (e_i), (e'_i)] = A \square$$
.

Theorem

E vector space of dimension p over \mathbb{K} F vector space of dimension n over \mathbb{K} G vector space of dimension m over \mathbb{K}

$$u\in\mathscr{L}(E,F)$$

$$v\in \mathscr{L}(F,G)$$

Let $(e_k)_{1 \leq k \leq p}$ basis of E

Let $(e_j')_{1 \leq j \leq n}$ basis of F

Let $(e_i'')_{1 \leq i \leq m}$ basis of G

$$B=(\beta_{ij})=M[v;(e_j'),(e_i'')]\in M_{m,n}(\mathbb{K})$$

$$A=(lpha_{jk})=M[u;(e_k),(e_j')]=M_{n,p}(\mathbb{K})$$

$$C=(\gamma_{ik})=M[v\circ u;(e_k),(e_i'')]=M_{m,p}(\mathbb{K})$$

Then,
$$C = BA$$

Proof

$$\sum_{i=1}^{m} \gamma_{ik} e_i' = (v \circ u)(e_k) = v(u(e_k)) = v\left(\sum_{k=1}^{n} \alpha_{jk} e_j'\right) = \sum_{k=1}^{n} \alpha_{jk} v(e_j') = \sum_{k=1}^{n} \alpha_{jk} \sum_{i=1}^{m} \beta_{ij} e_i''$$

$$= \sum_{i=1}^{n} \left(\sum_{j=1}^{n} \beta_{ij} \alpha_{jk}\right) e_i''$$

$$\Longrightarrow \gamma_{ik} = \sum_{j=1}^{n} \beta_{ij} \alpha_{jk} \quad \Box.$$

Notation:

E vector space of dimension n over \mathbb{K} .

$$u\in\mathscr{L}(E)$$

$$(e_i)_{1 \leq i \leq n}$$
 basis of E

Then,
$$M[u;(e_i),(e_i)]=M[u;(e_i)]\in M_n(\mathbb{K})$$

Example

$$\lambda \in \mathbb{K}$$

$$u=\lambda Id_E$$

$$egin{aligned} u: E &\longrightarrow E \ x &\mapsto u(x) = (\lambda Id_E)(x) = (\lambda x) \end{aligned}$$

let (e_i) basis of E