9/18/19
Announcements: Hw 1 are how
Last Time: Angle sum of a triangle = TT.
- Parattelograms Lopposite sides are paratter) Rinombus Rinombus Object each
- (all side lengths equal)
a):opposite sides are paralles (rnombus Aparallesogram)
b) diagonals meet at night angles
Today: Areas Pythagoras' Theorem Similar triangles (Thates' theorem)
Area
We will assume (following Euclid) that focary polygon P in the plane we can assign an area :A(P) ta positive real number)
() A(rectangle) = base x height
@ IF P is subdivided into P, & P2
$P_1 P_2 $ P A(P) = A(P1) + A(P2)
31FT, & T2 are congricult triangles, then A(T1) = A(T2)
Then A(12)

÷

٠.,

٠

.a.

9	
9	Remark: Gives coordinate geometry & calculus, we y have A(P) = II axdy
<u> </u>	but we will use the axiomatic approach.
A A A A	L. Area of a parallelogram P = A(P)=?
	Claim: DADE = ABCE Proof IAD = 1BC Since ABCD is a parallelogram. <aed (ad="" =="" by="" characteristics="" construc<="" construction="" crossing)="" lbfc="" th="" =""></aed>
	$\angle DAE = \angle CBF$ by (AD: & BC are parallel) alternating ongles ASA \Rightarrow AAS because $B = TT - T/2 - \alpha$ / $= T/2 - \alpha$
4	Area (EFCD) = EF · IFC Area (P) = Area (EFCD) + Area (DADE) - Area (DBCF) (Precisely in terms of axion 2)
	? Area(P) + Area(BBCF) = Area(ABCD) + Area(EFCD) = Area(AFCD)
<u> </u>	> Area (P) = : Area (EFCD) becouse DAED = DACE
	i.e. Theorem Area of parallelogram = base x perpendicular height
	Still Warks
3	A. B.

