Федеральное государственное автономное образовательное учреждение высшего образования «Московский физико-технический институт (национальный исследовательский университет)»

Отчёт по лабораторной работы 4.4.1 (5.1) ИЗУЧЕНИЕ ЦЕНТРИРОВАННЫХ ОПТИЧЕСКИХ СИСТЕМ

Выполнил студент:

Сериков Алексей Романович

группа: Б03-103

Аннотация

Цель работы:

Определить фокусные расстояния тонких собирающих и рассеивающих линз, рассчитать их светосилу и оптическую силу, также определить фокусное расстояние и положения главных плоскостей сложной оптической системы, состоящей из двух тонких линз.

В работе используются:

Оптическая скамья с набором рейтеров, положительные и отрицательные линзы, экран, осветитель с ирисовой диафрагмой и стрелкой, зрительная труба, кольцевые диафрагмы, линейка.

Теоретические сведения:

Оптическая система называется положительной или собирающей, если падающие лучи после линзы собираются. Если лучи после линзы расходятся от главной оси, то линза - отрицательная. На рис.1 F_1 и F_2 - фокусы, а a_1 , a_2 расстояния от предмета и от изображения до главных плоскостей H_1 и H_2 соответственно.

Рис. 1: Построение изображения в толстой линзе

Между a_1, a_2 и f - фокусным расстоянием системы можно установить соотношение:

$$\frac{1}{a_1} + \frac{1}{a_2} = \frac{1}{f}. (1)$$

В формуле (1) a_1 и a_2 берутся со знаком " + ", если предмет и изображение реальные, а f, если линза положительная. Линза считается тонкой, если главные плоскости P_1 и P_2 почти совпадают и их можно считать в центре линзы.

І Определение фокусных расстояний тонких линз с помощью экрана:

Чтобы определить фокусные расстояния тонких положительных линз при помощи экрана можно использовать метод Аббе: надо закрепить собирающую линзу между осветителем и экраном. Перемещая осветитель вдоль скамьи, получить на экране резкое изображение предмета при двух различных положениях осветителя и соответственно экрана (рис. 2)

Рис. 2: Измерение фокусного расстояния методом Аббе

Получить фокусное расстояние можно по формуле (2):

$$f = \frac{\Delta x}{1/\beta_1 - 1/\beta_2} \tag{2}$$

Где Δx - расстояние между предметами, а $\beta_1 = y_1'/y$ и $\beta_2 = y_2/y$ - линейные увеличения.

Чтобы определить фокусное расстояние отрицательной линзы сначала с помощью одной собирающей линзы нужно получите на экране увеличенное изображение предмета и измерьте расстояние от центра линзы до экрана a_0 . Затем между собирающей линзой и экраном разместить рассеивающую линзу и, отодвигая экран от линзы, найти действительное изображение предмета, образованное системой линз. Тогда зная расстояния a_1 и a_2 (рис. 3), по формуле (1) найдем f.

Рис. 3: Измерение фокусного расстояния отрицательной линзы

II Определение фокусных расстояний тонких линз с помощью зрительной трубы:

Труба должна быть настроена на бесконечность. Если поместив линзу между предметом и трубой, в трубе будет четкое изображение, то предмет находится в фокусе. Для отрицательной линзы нужно использовать схему на рис.3

III Определение фокусного расстояния и положения главных и фокальных плоскостей сложной оптической системы:

Для создания сложной оптической системы надо установить близко друг другу две положительные линзы. Для определения фокусного расстояния нужно использовать метод Аббе, и перемещая осветитель, добиться четкого изображения на экране. Поменяв положение предмета, надо получить второй раз четкое изображение. Тогда можно рассчитать фокусное расстояние по формуле (3) и (4):

$$f = \frac{\Delta x}{y/y_1' - y/y_2'} = -\frac{\Delta x'}{y_1'/y - y_2'/y} \tag{3}$$

$$-\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{|l_1 2|}{f_1 f_2}. (4)$$

Чтобы найти главные фокусы системы, нужно убрать экран, поставить зрительную трубу, настроенную на бесконечность. После того как получилось четкое изображение в трубе, измерить расстояние x_1 от первой линзы со стороны предмета - это положение переднего фокуса, аналогично можно получить значение заднего фокуса системы, если перевернуть линзы.

Ход работы и обработка результатов.

Погрешности измерений:

Линейка: $\sigma = \pm 2$ мм

Формула погрешности произведения и частного:

$$\frac{\sigma_u}{u} = \sqrt{\left(\frac{\sigma_x}{x}\right)^2 + \left(\frac{\sigma_y}{y}\right)^2} \tag{5}$$

Формула погрешности разности и суммы:

$$\sigma_u = \sqrt{\sigma_x^2 + \sigma_y^2} \tag{6}$$

І Определение фокусных расстояний тонких линз с помощью экрана:

Сначала производится центрировка элементов оптической системы

1. Применяем опыт Аббе для положительной линзы, результаты занесем в табл.1:

Линза №	Δx , MM	$\Delta x'$, mm	у, мм	y_1 , MM	y_2 , MM
1	111	128	20	62	14

Таблица 1: Таблица с данными для расчета фокусного расстояния методом Аббе.

По формуле (2) и (5) подсчитаем величину фокусного расстояния: $f_1=100\pm3$ мм

2. С помощью положительной линзы определяем фокусного расстояние отрицательной, результаты измерений занесем в табл.2:

Линза №	a_0 , MM	a_2 , MM	1, мм	а, мм
4	482	113	445	37

Таблица 2: Таблица с данными для расчета фокусного расстояния рассеивающей линзы.

По формуле (1) и (5) подсчитаем величину фокусного расстояния: $f_4 = 55 \pm 2$ мм

II Определение фокусных расстояний тонких линз с помощью зрительной трубы:

1. Исследуем две положительные и одну отрицательную линзы. Для каждой из линз определяем фокусное расстояние с двух сторон $(f_1$ и f_2), чтобы понять, можно ли считать данные линзы тонкими.

Линза №	f_1 , MM	f_2 , mm
1	92	93
3	110	105

Таблица 3: Таблица с данными фокусного расстояния положительных линз.

Тогда по формуле (6) получим: $f_1 = 93 \pm 3$ мм и $f_3 = 108 \pm 3$ мм

2. Для отрицательной линзы используем положительную линзу как на рис.3, где $f=l-a_0$ подученные результаты заносим в табл.4:

Линза №	a_0 , MM	1, мм	f, mm
4	345	285	60
4	345	280	65

Таблица 4: Таблица с данными для расчета фокусного расстояния рассеивающей линзы.

Тогда усредним и по формуле (6) получим: $f_4 = 63 \pm 3$ мм

III Определение фокусного расстояния и положения главных и фокальных плоскостей сложной оптической системы:

1. Проведем два измерения для метода Аббе и результаты занесем в табл.5:

Линза №	Δx , MM	$\Delta x'$, mm	у, мм	y_1 , MM	y_2 , MM
1 и 3	47	106	20	50	21

Таблица 5: Таблица с данными для расчета фокусного расстояния сложной системы.

По формулам (3), (4) и (5) получим значения фокусного расстояния: $f=85\pm 6\,$ мм и $f'=75\pm 5\,$ мм

2. Для определения положения главных фокусов поставим зрительную трубу вместо экрана и, когда в ней будет четкое изображение предмета, значит предмет в переднем фокусе системы $F_{1\Sigma}$. Затем, поменяв линзы местами можем найти положение главного фокуса системы $F_{2\Sigma}$:

Линза №	$F_{1\Sigma}$, mm	$F_{2\Sigma}$, mm
1 и 3	54	57

Таблица 6: Таблица с данными главных фокусов сложной системы.

Обсуждение результатов и выводы:

Разместим полученные и усредненные результаты в одну таблицу (табл.7):

Линза №	f, mm	ε , %	D, дптр
1	95	5	1
3	108	5	1
4	59	6	1.7
1 и 3	80	8	1.25

Таблица 7: Таблица с данными фокусных расстояний линз.

Таким образом можно увидеть, что фокусные расстояния определяются с видимой погрешностью. Основной вклад в ошибку приносит измерение линейкой, так как при некоторых положениях установки проблематично точно провести измерения, так же как и найти центр линзы.