Ore's Theorem CS 111 Presentation

Youssef Adam Thomas Kang Youssef Koreatam Michael Wong Gabriel Serrano

Department of Computer Science, University of California, Riverside

March 19, 2024

Introduction: Questions

Below are three questions that you may be able to answer by the end of this presentation.

- What are the two criteria a graph must meet in order to satisfy Ore's theorem and therefore be a Hamiltonian graph?
- If a graph G does not meet both criteria to satisfy Ore's theorem, is G Hamiltonian?
- What is one example of a real-world application of Hamiltonian cycles, and how does this tie in with Ore's theorem?

To understand **Ore's theorem**, we must briefly recapitulate what it means for a graph to be **Hamiltonian**.

To understand **Ore's theorem**, we must briefly recapitulate what it means for a graph to be **Hamiltonian**.

Let G(V, E) be an undirected graph with $|V| \geq 3$ vertices.

To understand **Ore's theorem**, we must briefly recapitulate what it means for a graph to be **Hamiltonian**.

Let G(V, E) be an undirected graph with $|V| \ge 3$ vertices. If we are able to create a cycle T that meets each and every vertex strictly once, then G is considered **Hamiltonian**.

To understand **Ore's theorem**, we must briefly recapitulate what it means for a graph to be **Hamiltonian**.

Let G(V, E) be an undirected graph with $|V| \ge 3$ vertices. If we are able to create a cycle T that meets each and every vertex strictly once, then G is considered **Hamiltonian**.

Example:

To understand **Ore's theorem**, we must briefly recapitulate what it means for a graph to be **Hamiltonian**.

Let G(V, E) be an undirected graph with $|V| \ge 3$ vertices. If we are able to create a cycle T that meets each and every vertex strictly once, then G is considered **Hamiltonian**.

Example:

Let:

• G(V, E) be a complete undirected graph,

Let:

- G(V, E) be a complete undirected graph,
- Ω be a condition (Ore's theorem) with two subconditions such that:

Let:

- G(V, E) be a complete undirected graph,
- Ω be a condition (Ore's theorem) with two subconditions such that:
 - Ω_1 : $|V| \geq 3$,

Let:

- G(V, E) be a complete undirected graph,
- Ω be a condition (Ore's theorem) with two subconditions such that:
 - Ω_1 : $|V| \geq 3$,
 - Ω_2 : the sum of the degrees of all nonadjacent pairs $\geq |V|$.

Let:

- G(V, E) be a complete undirected graph,
- Ω be a condition (Ore's theorem) with two subconditions such that:
 - Ω_1 : $|V| \geq 3$,
 - Ω_2 : the sum of the degrees of all nonadjacent pairs $\geq |V|$.

If G satisfies Ω , then we may conclude that G is a Hamiltonian graph (i.e., G has a Hamiltonian cycle T).

First Case

First Case

 $G_1(V, E)$ satisfies Ore's theorem Ω and has a Hamiltonian cycle T.

This graph satisfies Ω and has a Hamiltonian cycle $T = \{d, a, b, e, f, c, d\}$.

First Case

 $G_1(V, E)$ satisfies Ore's theorem Ω and has a Hamiltonian cycle T.

This graph satisfies Ω and has a Hamiltonian cycle $T = \{d, a, b, e, f, c, d\}$.

Second Case

Second Case

$$n \coloneqq |V| = 5 \ge 3 \quad \vdash \quad \Omega_1$$

Second Case

$$\frac{\mathbf{n}}{\mathbf{n}} := |V| = 5 \ge 3 \quad \vdash \quad \Omega_1
 \deg(a) + \deg(c) = 4$$

Second Case

$$n := |V| = 5 \ge 3 \quad \vdash \quad \Omega_1$$

 $\deg(a) + \deg(c) = 4 \not\ge n$

Second Case

Second Case

Second Case

 $G_2(V, E)$ does not satisfy Ω and does not have a Hamiltonian cycle T.

$$n \coloneqq |V| = 5 \ge 3 \quad \vdash \quad \Omega_1$$

$$\deg(a) + \deg(c) = 4 \not\ge n$$

$$\deg(a) + \deg(e) = 4 \not\ge n$$

$$\deg(b) + \deg(d) = 6 \ge n$$

$$\deg(c) + \deg(e) = 4 \not\ge n$$

$$\not\vdash \Omega_2$$

This graph does not satisfy Ω and does not have a Hamiltonian cycle.

Third Case

Third Case

$$n := |V| = 7 \ge 3 \quad \vdash \quad \Omega_1$$

Third Case

$$n := |V| = 7 \ge 3 \quad \vdash \quad \Omega_1$$

$$\deg(a) + \deg(d) = 6 \ngeq n \qquad \deg(a) + \deg(e) = 8 \ge n \qquad \deg(a) + \deg(f) = 8 \ge n$$

Third Case

$$n := |V| = 7 \ge 3 \quad \vdash \quad \Omega_1$$

$$\begin{aligned} \deg(a) + \deg(d) &= 6 \ngeq n & \deg(a) + \deg(e) &= 8 \ge n & \deg(a) + \deg(f) &= 8 \ge n \\ \deg(a) + \deg(g) &= 4 \ngeq n & \deg(b) + \deg(f) &= 8 \ge n & \deg(b) + \deg(g) &= 8 \ge n \\ \deg(c) + \deg(e) &= 8 \ge n & \deg(c) + \deg(g) &= 8 \ge n & \deg(d) + \deg(g) &= 6 \ngeq n \\ & \biguplus \Omega_2 \end{aligned}$$

Third Case

 $G_3(V, E)$ does not satisfy Ω and has a Hamiltonian cycle T.

$$n := |V| = 7 \ge 3 \quad \vdash \quad \Omega_1$$

This graph does not satisfy Ω but still has a Hamiltonian cycle $T = \{a, b, d, e, g, f, c, a\}$.

Third Case

 $G_3(V, E)$ does not satisfy Ω and has a Hamiltonian cycle T.

$$n := |V| = 7 \ge 3 \quad \vdash \quad \Omega_1$$

$$\begin{array}{ll} \deg(a) + \deg(d) = 6 \ngeq n & \deg(a) + \deg(e) = 8 \ge n & \deg(a) + \deg(f) = 8 \ge n \\ \deg(a) + \deg(g) = 4 \ngeq n & \deg(b) + \deg(f) = 8 \ge n & \deg(b) + \deg(g) = 8 \ge n \\ \deg(c) + \deg(e) = 8 \ge n & \deg(c) + \deg(g) = 8 \ge n & \deg(d) + \deg(g) = 6 \ngeq n \\ \swarrow \Omega_{2} & \swarrow \Omega_{3} & \swarrow \Omega_{4} & \bowtie \Omega_{4} &$$

This graph does not satisfy Ω but still has a Hamiltonian cycle $T = \{a, b, d, e, g, f, c, a\}$.

Applications

Hamiltonian cycles have a variety of real-world applications.

Network routing:

- finding the most effective and efficient round-trip path between points A to B
- improving network traffic by reducing delays from client to server
- optimizing network runtime

Picture a data packet moving through a network of routers to reach a server, aiming to find a path that visits each router exactly once, and thereby optimizing data transmission efficiency.

Applications

Hamiltonian cycles have a variety of real-world applications.

Navigation systems:

- finding a path that travelers can take to both reach every destination and reduce estimated time of arrival
- development of algorithms to prevent travelers from revisiting destinations and inefficient paths

In some navigation systems, the primary goal is to find an efficient *round-trip* cycle that visits each destination once, ensuring smooth transport without revisiting locations.

Conclusion: Summary

Ore's theorem has many practical, mathematical applications. This theorem can be applied to anything that deals with systems that can be represented by vertices and graph, such as:

- transportation systems
- neural networks
- sewage pipes

- electrical lines
- social networks

Any individual can apply this theorem to solve problems involving such matters. Ore's theorem is a revolutionary theorem that has enabled humanity to progress expeditiously in the field of mathematics and technological innovations.

Conclusion: Questions

Below are the questions displayed at the beginning of the presentation.

- What are the two criteria a graph must meet in order to satisfy Ore's theorem and therefore be a Hamiltonian graph?
- If a graph G does not meet both criteria to satisfy Ore's theorem, is G Hamiltonian?
- What is one example of a real-world application of Hamiltonian cycles, and how does this tie in with Ore's theorem?