Unit 1: Derivatives

What is a derivative?

Rate of Change

```
220 - 50
170
```

170 / 2 85

Average vs. Instantaneous

 $\frac{\text{Delta } f}{\text{Delta } t}$ $\frac{1}{1/60}$ 60

Instantaneous approximation continued

Derivative at a point

The Derivative of f(x) at x = a f'(a) = $\lim_{b\to a} \frac{f(b)-f(a)}{b-a}$

A negative derivative?

Geometric interpretation of the derivative

Tangent lines

$$y-f(a)=m(x-a)$$

Equation of a tangent line

```
j[x_{-}] := 2x^{2} + 3x
Plot[j[x], {x, -5, 5}, AspectRatio \rightarrow Full]
j[1]
```


5

7

5

Simplify
$$[y - j[1] == j'[1] * (x - 1)]$$

$$7 x = 2 + y$$

Review questions

$$f[x_{]} := -2x + 1$$

 $f[3]$

- 5

Calculating derivatives

Linearity

$$\begin{aligned} & h \, [\, x_-] \, := \, 1 \, \big/ \, x^2 \\ & h \, [\, x_-] \, := \, \lim_{\triangle x \to \, 0} \, \frac{1 \, \big/ \, \big(x^2 + \triangle x \big) \, - 1 \, \big/ \, x^2}{\triangle x} \\ & h \, [\, x_-] \, := \, \lim_{\triangle x \to \, 0} \, - \, 2 \, \big/ \, x^3 \\ & h \, [\, x_-] \, := \, 1 \, \big/ \, x^2 \\ & h \, [\, s\,] \\ & - \, \frac{2}{-} \end{aligned}$$

Relationship between derivatives

$$f[x_{-}] := \frac{-3}{x}$$

$$f'[x]$$

$$\frac{3}{x^{2}}$$

Calculation

$$f[x_{-}] := 4 \sqrt{x} - \frac{3}{x^{2}}$$

 $f'[x]$
 $\frac{6}{x^{3}} + \frac{2}{\sqrt{x}}$

Leibniz notation

$$\frac{dy}{dx}$$
 or $\frac{df}{dx}$

Area of a circle

A2[c_] :=
$$\pi$$
 * (c - 2 * π)^2
A2'[c]
A2'[6 π]
2 (c - 2 π) π
8 π ²

exercise

D[g³ + 2g², g] /. g
$$\rightarrow$$
 2
f[x_] := x³ + 2x²
f'[2]
3 * 2² + 4 * 2
20
20

Second derivatives and higher