嵌入式系统 Embedded System

毛维杰

杭州 • 浙江大学 • 2021

第四章 组合逻辑电路

4.1 概述

数字逻辑电路

组合逻辑电路

时序逻辑电路

组合电路特点

功能上:输出仅与该时刻的输入有关。

结构上:由门电路组成,不含记忆

(存储)元件。

主要内容

1. 组合电路的分析、设计方法。

2. 常用集成组合逻辑电路。

由小规模集成电路组成

由中规模集成电路组成

二、逻辑功能的描述

$$y_{1} = f_{1}(a_{1}a_{2} \cdots a_{n})$$

$$y_{2} = f_{2}(a_{1}a_{2} \cdots a_{n})$$

$$\vdots$$

$$Y = F(A)$$

$$y_{m} = f_{m}(a_{1}a_{2} \cdots a_{n})$$

4.2 组合逻辑电路的设计方法

- 一、逻辑抽象
- · 分析因果关系,确定输入/输出变量
- · 定义逻辑状态的含意(赋值)
- · 列出真值表
- 二、写出函数式
- 三、选定器件类型
- 四、根据所选器件:对逻辑式化简(用门)

变换(用MSI)

或进行相应的描述(PLD)

五、画出逻辑电路图,或下载到PLD

元、正岩设计

设计举例:

• 设计一个监视交通信号灯状态的逻辑电路

设计举例:

- 1. 抽象
- ・ 输入变量:

- 輸出变量:故障信号(Z)
- 2. 写出逻辑表达式

$$Z = R'A'G' + R'AG + RAG' + RAG' + RAG$$

÷	-		-		•••	-	-	-	-	-		-	-	-	-	-	-	-	H	-	-		-		-	ŀ
	1	; H	2	Z		1	Ï		-	,	À	•		E		3					ł	7	Δ	V		L
-	_	Ħ	3	Н		J	Α	_	1	4		,	-	E	E	3	-				4	E	<u></u>	Н		ŀ
		11	J	IJ	•			•														ı	J,	J		L
-																					1	-	ŀ	п		ŀ
																					i			۱		L
-																					Ł	Н	۲	ł		ŀ
	-				F		-		-			F	-	-												L
	ſ							A				ŀ		1	•				-	-	7	7				ŀ
	ŀ	?				-	F	4				Ŀ	Н	6	7					1						ŀ
	•							-				Ŀ	ď							•		•				t
-	-		-	-		-	-	-	-	-	-	t	-	-	-	-	-		-	-	-		-			ŀ
	1	7				1		١				L	7		١					•	L					L
-	Ł		-			1		J				ŀ	Н		J						E					ŀ
												L								Ī						L
-				-	-				-	-	-	ŀ														ŀ
	1					1		١				Ľ	•	1						1		1				L
-	Ł	J	-			١	Ŀ	J				ŀ		£	-					l		-				ŀ
												L														L
-				-						-		ŀ	-													ŀ
	ſ					•	1					Ŀ	-1		١					1		1				L
	ţ	J				,	L					ŀ	-	C	J				-	1	J	-				ŀ
												Ŀ														ŀ
												Ŀ														t
	ſ		-			•	1					ŀ	. 1	1						1	E					ŀ
	1	J				,	L					L		1						J	L					L
												Ŀ														 ŀ
												L														L
-	1	H				1		1				ŀ	1		1					ſ		ŀ				ŀ
	J					1	_	,				L		C	Į					1	J	,				L
-	-		-			-	-	-	-	-		Ŀ	-	-	-	-	-		-	-	-	-	-			ŀ
	_						_	į.				Ŀ		_						_	ı					ŀ
	1				-	1		1				ŀ		1					-							ŀ
	d					٦	L	•				Ŀ		H						٦	L					ŀ
Ė					Ė							Ŀ														t
-	d			-			4					ŀ	-	_												ŀ
	1						1					L)											L
-	d	١.		-			٠					ŀ	-	-	•			-		4	•					ŀ
Ė					H							F														ľ
-	4			-			4					ŀ	٠,	4				-		4	r					ŀ
	1						1					Ĺ		1												L
-	-					•	r					ŀ	-	ı	-			-		•	•					ŀ
												1														

设计举例:

- 3. 选用小规模SSI器件
- 4. 化简

$$Z = R'A'G'+RA+RG+AG$$

5. 画出逻辑图

4.3 若干常用组合逻辑电路

4.3.1 编码器

· 编码:将输入的每个高/低电平信号变成一个对应的二进制代码

- ・普通编码器
- ・优先编码器

一、普通编码器

- ・ 特点:任何时刻 只允许输入一个 编码信号。
- · 例:3位二进制 普通编码器

		车	俞		λ			4	俞 占	
\mathbf{I}_0	1	\mathbf{I}_2	\mathbf{I}_3	I ₄	\mathbf{I}_{5}	\mathbf{I}_6	17	Y ₂	Y ₁	Yo
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

$$Y_{2} = I_{7}^{'}I_{6}^{'}I_{5}^{'}I_{4}^{'}I_{3}^{'}I_{2}^{'}I_{1}^{'}I_{0}^{'} + I_{7}^{'}I_{6}^{'}I_{5}^{'}I_{4}^{'}I_{3}^{'}I_{2}^{'}I_{1}^{'}I_{0}^{'}$$
$$+ I_{7}^{'}I_{6}^{'}I_{5}^{'}I_{4}^{'}I_{3}^{'}I_{2}^{'}I_{1}^{'}I_{0}^{'} + I_{7}^{'}I_{6}^{'}I_{5}^{'}I_{4}^{'}I_{3}^{'}I_{2}^{'}I_{1}^{'}I_{0}^{'}$$

利用无关项化简,得:

$$Y_2 = I_4 + I_5 + I_6 + I_7$$
 $Y_1 = I_2 + I_3 + I_6 + I_7$
 $Y_0 = I_1 + I_3 + I_5 + I_7$

二、优先编码器

· 特点:允许同时 输入两个以上的 编码信号,但只 对其中优先权最 高的一个进行编 码。

- · 例:8线-3线优先 编码器
- · (设I₇优先权最 高...I₀优先权最低)

		4	前		λ				输出	
I_0	I	I_2	I_3	I_4	I ₅	I 6	I_7	У2	У ₁	Yo
X	X	X	X	X	X	X	1	1	4	1
X	X	X	X	X	X	1	0	1	1	0
X	X	X	X	X	1	0	0	1	0	1
X	X	Х	X	1	0	0	0	1	0	0
X	X	X	1	0	0	0	0	0	1	1
X	X	1	0	0	0	0	0	0	1	0
X	1	0	0	0	0	0	0	O	0	1
1	0	0	0	0	0	0	0	0	0	0

$$Y_2 = I_7 + I_7 I_6 + I_7 I_6 I_5 + I_7 I_6 I_5 I_4$$

$$A + A'B = A + B$$

$$Y_2 = I_7 + I_6 + I_5 + I_4$$

《数字电子技 为0时,电路工作 无编码输入 $Y_{S} = (I_{7}I_{6}I_{5}I_{4}I_{3}I_{2}I_{1}I_{0}S)$ $Y_{EX}' = [(I_7'I_6'I_5'I_4'I_3'I_2'I_1'I_0'S)' S]'$ $[(I_7 + I_6 + I_5 + I_4 + I_3 + I_2 + I_1 + I_0)S]$ 为0时,电路工作 有编码输入

			输		λ						输上		
S	$ \boldsymbol{I}_0 $	I_1	$oldsymbol{I}_2$	I_3	<i>I</i> 4	I 5	I_6	$oldsymbol{I}_7$	$ \boldsymbol{Y} _2$	$m{Y}_1$	$oldsymbol{Y}_0$	Y_{S}	Y_{EX}
1	×	×	×	×	×	×	X	X	1	1	1	1	1
0	1	1	1	1	1	1	1	1	1	1	1	0	1
0	×	×	X	X	×	×	X	0	o	0	0	1	0
0	X	×	×	X	X	X	0	1	0	0	1	1	0
0	X	X	X	X	X	0	1	1	0	1	0	1	0
0	X	×	×	X	0	1	1	1	0	1	1	1	0
0	X	X	X	0	1	1	1	1	1	0	0	1	0
0	×	×	0	1	1	1	1	1	1	0	1	1	0
0	×	0	1	1	1	1	1	1	1	1	0	1	0
0	0	1	1	1	1	1	1	1	1	1	1	1	0

附加输出信号的状态及含意

T7 T7	. 1 14
Y_S Y_{EX}	状态
S EX	1八心
<u> </u>	T //-
11	工作
	
O 1 1 T-4	作,但无
	F . 1H 71,
+4	
	Λ
	,, <u>, , , , , , , , , , , , , , , , , ,</u>
	年 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	作,且有一
	X
1034	· · ·
0 0 1/~1	可能出现

控制端扩展功能举例:

• 例: 用两片8线-3线优先编码器

16线-4线优先编码器

其中, A_{15} 的优先权最高 \cdots

				状态		
	1	1		不工作		
	0	1		工作,但无输入		
	1	0		工作,且有输入		
	0	0		不可能出现		
$\overset{1}{Z_3}$			Z_2	Z_1	$\overset{1}{Z_0}$	_

4.3.2 译码器

· 译码:将每个输入的二进制代码译成对应的输出高、低电平信号。

• 常用的有:二进制译码器,二-十进制译码器,显示译码

器等

一、二进制译码器

例:3线-8线译码器

A_2	먑	Y_0
A_1	-8线译码	$\begin{array}{c} \longrightarrow Y_2 \\ \longrightarrow Y_3 \\ \longrightarrow Y_4 \end{array}$
A_0 ———	3 线-	Y_5 Y_6 Y_7

输	j	入	输出出											
A_2	A_1	A_0	Y ₇	y ₆	y ₅	y ₄	y ₃	У ₂	Y ₁	y _o				
0	0	0	0	0	0	0	0	0	0	1				
0	0	1	0	0	0	0	0	0	1	0				
0	1	0	0	0	0	0	0	1	0	0				
0	1	1	0	0	0	0	1	0	0	0				
1	0	0	0	0	0	1	0	0	0	0				
1	0	1	0	0	1	0	0	0	0	0				
1	1	0	0	1	0	0	0	0	0	0				
1	1	1	1	0	0	0	0	0	0	0				

集成译码器实例:74HC138

74HC138的功能表:

	输		λ				输			H		
S_1	$S_2' + S_3'$	A ₂	A_1	A_0	Y_7	Y_6	Y_5	$oldsymbol{Y}_{4}^{'}$	\boldsymbol{Y}_3	Y_2	Y_1	Y_0
0	×	X	X	X	1	1	1	1	1	1	1	1
×	1	×	X	×	1	1	1	1	1	1	1	1
1	0	0	0	0	1	1	1	1	1	1	1	0
1	0	0	0	1	1	1	1	1	1	1	0	1
1	0	0	1	0	1	1	1	1	1	0	1	1
1	0	0	1	1	1	1	1	1	0	1	1	1
1	0	1	0	0	1	1	1	0	1	1	1	1
1	0	1	0	1	1	1	0	1	1	1	1	1
1	0	1	1	0	1	0	1	1	1	1	1	1
1	0	1	1	1	0	1	1	1	1	1	1	1

• 利用附加控制端进行扩展

例: 用74HC138(3线-8线译码器)

 $Z_i = m_i$

二、二一十进制译码器

· 将输入BCD码的10个代码译成10个高、低电平的输出信号 BCD码以外的伪码,输出均无低电平信号产生

· 例:74HC42

$$Y_{i}' = m_{i}' \quad (i = 0 \sim 9)$$

三、显示译码器

• 1. 七段字符显示器

2. BCD七段字符显示译码器

《数字电子技术基础》 (代码转换器)7448

输				λ			输					
数字	A ₃	A ₂	A_1	A ₀	Ya	Уь	Ус	У _d	Ye	\mathbf{y}_{f}	\mathbf{y}_{g}	字形
0	o	0	0	0	1	1	1	1	1	1	0	
1	o	0	0	1	0	1	1	0	0	0	0	
2	o	0	1	0	1	1	0	1	1	0	1	
3	О	0	1	1	1	1	1	1	0	0	1	$\int \int g \int b$
4	0	1	0	0	0	1	1	0	0	1	1	len nc
5	0	1	0	1	1	0	1	1	0	1	1	
6	o	1	1	0	0	0	1	1	1	1	1	
7	О	1	1	1	1	1	1	0	0	0	0	D. P
8	1	0	0	0	1	1	1	1	1	1	1	
9	1	0	0	1	1	1	1	0	0	1	1	
10	1	0	1	0	0	0	0	1	1	0	1	
11	1	0	1	1	0	0	1	1	0	0	1	
12	1	1	0	0	0	1	0	0	0	1	1	
13	1	1	0	1	1	0	0	1	0	1	1	
14	1	1	1	0	0	0	0	1	1	1	1	
15	1	1	1	1	0	0	0	0	0	0	0	

真值表

卡诺图

(a)

A_1	A_2			
A_3A_2	00	01	11	10
00	1	1	1	0
01	1	1	1	1
11	0	0	0	0
10	1	1	1	0

(c)

A_1	4 ₂ - 1 - 1			
A_3A_2	00	01	11	10
00	1	0	1	1
01	0	1	0	1
11	0	1	0	1
10	1	0	1	1

A_1A_2							
A_3A_2	00	01	11	10			
00	1	0	0	1			
01	0	0	0	1			
11	0	0	0	1			
10	1	0	0	1			

A_1	A_z			
A_3A_2	00	01	11	10
00	1	0	(0
01	1	1	0	1
11	1	1	0	1
10	1	1	0	0

A_1A_2							
A_3A_2	00	01	11	10			
00	0	0	1	1			
01	1	1	0	1			
11	1	1	0	1			
10	1	1	1	1			

(f)

(*d*)

(g)

(e)

7448的附加控制信号: (1)

・ 灯测试输入 LT

当*LT* = 0时, Ya ~ Yg全部置为1

7448的附加控制信号: (2)

· 灭零输入 RBI

当 $A_3A_2A_1A_0=0000$ 时,RBI'=0时,则灭灯

7448的附加控制信号:(3)

· 灭灯输入/灭零输出 BI /RBO

输入信号,称灭灯输入控制端: BI'=0 无论输入状态是什么,数码管熄灭

输出信号,称灭零输出端:

只有当输入 $A_3A_2A_1A_0=0$,且灭零输入信号 RBI'=0 时,RBO'才给出低电平

因此 RBO' = 0 表示译码器<u>将本来应该显示的零熄灭了</u>

例:利用 RBI 和 RBO 的配合,实现多位显示系统的灭零控制

- · 整数部分:最高位是0,而且灭掉以后,输出 RBO 作为次高位的输入信号 RBI
- · 小数部分:最低位是O,而且灭掉以后,输出 RBO 作为次低位的输入信号 RBI

4.3.3 数据选择器

一、工作原理

例:用两个"四选一"接成"八选一"

- · "四选一"只有2位地址输入,从四个输入中选中一个
- · "八选一"的八个数据需要3位地址代码指定其中任何一个

$$Y = (A_{2}'A_{1}'A_{0}')D_{0} + (A_{2}'A_{1}'A_{0})D_{1} + (A_{2}'A_{1}A_{0}')D_{2} + (A_{2}'A_{1}A_{0})D_{3}$$
$$+ (A_{2}'A_{1}'A_{0}')D_{4} + (A_{2}'A_{1}'A_{0})D_{5} + (A_{2}'A_{1}A_{0}')D_{6} + (A_{2}'A_{1}A_{0})D_{7}$$

4.3.4 加法器

- 一、1位加法器
- 1. 半加器,不考虑来自低位的进位,将两个1位的二进制数相加

输	入	输					
Α	В	S	CO	$S = A \oplus B$			
0	0	0	0	CO = AB			
0	1	1	0	UU-AB			
1	0	1	0	$A \longrightarrow A \longrightarrow S$	A	Σ	c
1	1	О	1	$B \longrightarrow H \longrightarrow S$	21		5
					В	со	——со
					l		
				(a)		(b)	

2. 全加器:将两个1位二进制数及来自低位的进位相加

Z	俞	λ	输		$S = (A'B'CI' + A'B \cdot CI + AB'CI + ABCI')'$
A	В	CI	S	CO.	
0	0	0	0	0	CO = (A'B' + B'CI' + A'CI')'
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	c_{I} c_{O}
1	0	1	0	1	
1	1	0	0	1	$B \longrightarrow \sum_{S}$
1	1	1	1	1	
					A CI CI CO CO
					$\begin{array}{cccccccccccccccccccccccccccccccccccc$
					74HC183

二、多位加法器

1. 串行进位加法器

优点:简单

缺点:慢

$$(CI)_i = (CO)_{i-1}$$

$$S_i = A_i \oplus B_i \oplus (CI)_i$$

$$(CO)_i = A_iB_i + (A_i + B_i)(CI)_i$$

2. 超前进位加法器

基本原理:加到第i位的进位输入信号是两个加数第i位以前各位(0~j-1)的函数,可在相加前由A,B两数确定。

优点:快,每1位的和 及最后的进位基本同时产生。

缺点:电路复杂。

$$i = 0 : (CI)_0 = 0$$

$$S_0 = A_0 \oplus B_0 \oplus (CI)_0$$

$$(CO)_0 = A_0B_0 + (A_0 + B_0)(CI)_0$$

$$i = 1$$
: $(CI)_1 = (CO)_0$

$$S_1 = A_1 \oplus B_1 \oplus (CO)_0$$

$$= \boldsymbol{A}_1 \oplus \boldsymbol{B}_1 \oplus (\boldsymbol{A}_0 \boldsymbol{B}_0 + (\boldsymbol{A}_0 + \boldsymbol{B}_0)(\boldsymbol{C}\boldsymbol{I})_0)$$

$$(CO)_1 = A_1B_1 + (A_1 + B_1)(CO)_0$$

$$= A_1B_1 + (A_1 + B_1)(A_0B_0 + (A_0 + B_0)(CI)_0)$$

$$i = 2$$
: $(CI)_2 = (CO)_1$

$$= A_1 B_1 + (A_1 + B_1)(A_0 B_0 + (A_0 + B_0)(CI)_0)$$

$$(CO)_2 = A_2B_2 + (A_2 + B_2)(CI)_2$$

$$= A_2 B_2 + (A_2 + B_2)(A_1 B_1 + (A_1 + B_1)(A_0 B_0 + (A_0 + B_0)(CI)_0))$$

$$S_2 = A_2 \oplus B_2 \oplus (CI)_2$$

$$= A_2 \oplus B_2 \oplus (A_1B_1 + (A_1 + B_1)(A_0B_0 + (A_0 + B_0)(CI)_0))$$

E、用加法器设计组合电路

基本原理:

若能生成函数可变换成输入变量与输入变量相加若能生成函数可变换成输入变量与常量相加

例:将BCD的8421码转换为余3码

$$Y_3Y_2Y_1Y_0 = DCBA + 0011$$

	输)			输		
D	С	В	A	y ₃	У2	y ₁	Уo
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0

思考:已知X是3位二进制数(其值小于等于5),试实现Y=3X并用7段数码管进行显示?

4.3.5 数值比较器

- · 用来比较两个二进制数的数值大小
- 一、1位数值比较器

A,B比较有三种可能结果

- * A > B(A = 1, B = 0)则 $AB' = 1, : Y_{(A>B)} = AB'$
- * $A < B(A = 0, B = 1) \square A'B = 1, \therefore Y_{(A < B)} = A'B$
- * $A = B(A, B 同为0或1), \therefore Y_{(A=B)} = (A \oplus B)$

- 二、多位数值比较器
 - 1. 原理:从高位比起,只有高位相等,才比较下一位。

例如:

比较 $A_3A_2A_1A_0$ 和 $B_3B_2B_1B_0$

$$Y_{(A < B)} = A_3' B_3 + (A_3 \oplus B_3)' A_2' B_2 + (A_3 \oplus B_3)' (A_2 \oplus B_2)' A_1' B_1$$
$$+ (A_3 \oplus B_3)' (A_2 \oplus B_2)' (A_1 \oplus B_1)' A_0' B_0$$

$$\mathbf{Y}_{(A=B)} = (\mathbf{A}_3 \oplus \mathbf{B}_3)'(\mathbf{A}_2 \oplus \mathbf{B}_2)'(\mathbf{A}_1 \oplus \mathbf{B}_1)'(\mathbf{A}_0 \oplus \mathbf{B}_0)'$$

$$Y_{(A>B)} = (Y_{(A$$

2. 集成电路CC14585 实现4位二进制数的比较

 $I_{(A < B)}$, $I_{(A = B)}$ 和 $I_{(A > B)}$ 为附加端,用于扩展

 $I_{(A < B)}$,来自低位的比较结果

 $I_{(A=B)}$,来自低位的比较结果

 $I_{(A>B)}$,A>B输出允许信号

3. 比较两个8位二进制数的大小

4.4 组合逻辑电路中的竞争-冒险现象

竞争-冒险现象及成因

一、什么是"竞争"

两个输入"同时向相反的逻辑电平变化",称存在"竞争"

二、因"竞争"而可能在输出产生尖峰脉冲的现象,称为"竞争-冒险"。

消除竞争-冒险现象的方法

- 一、接入滤波电容 尖峰脉冲很窄,用很小的电容就可将尖峰削弱到 V₁₁₁ 以下。
- 二、引入选通脉冲

取选通脉冲作用时间,在电路达到稳定之后,P的高电平期的输出信号不会出现尖峰。

三、修改逻辑设计。

4.5 层次化和模块化的设计方法

- ·由较少的位组合成较多的位
- · 由简单模块组合实现复杂功能
- · 层次化和模块化意味着可以低成本复制, 快速提高性能
- · 自顶向下 (top-down)和自底向上 (buttom-up)

4.6 用multisim分析组合逻辑电路

例:用mulitisim分析逻辑电路.找出电路的逻辑函数式和逻辑真值表。

