Algoritmi e Strutture Dati

Analisi di algoritmi Funzioni di costo, notazione asintotica

Alberto Montresor and Davide Rossi

Università di Bologna

21 ottobre 2024

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

Notazioni $O,\,\Omega,\,\Theta$

Definizione – Notazione O

Sia g(n) una funzione di costo; indichiamo con O(g(n)) l'insieme delle funzioni f(n) tali per cui:

$$\exists c > 0, \exists m \ge 0 : f(n) \le cg(n), \forall n \ge m$$

- \bullet Come si legge: f(n)è "O grande" (big-O) di g(n)
- Come si scrive: f(n) = O(g(n))
- g(n) è un limite asintotico superiore per f(n)
- f(n) cresce al più come g(n)

Notazioni $O,\,\Omega,\,\Theta$

Definizione – Notazione Ω

Sia g(n) una funzione di costo; indichiamo con $\Omega(g(n))$ l'insieme delle funzioni f(n) tali per cui:

$$\exists c > 0, \exists m \ge 0 : f(n) \ge cg(n), \forall n \ge m$$

- \bullet Come si legge: f(n) è "Omega grande" di g(n)
- Come si scrive: $f(n) = \Omega(g(n))$
- g(n) è un limite asintotico inferiore per f(n)
- f(n) cresce almeno quanto g(n)

Notazioni $O,\,\Omega,\,\Theta$

Definizione – Notazione Θ

Sia g(n) una funzione di costo; indichiamo con $\Theta(g(n))$ l'insieme delle funzioni f(n) tali per cui:

$$\exists c_1 > 0, \exists c_2 > 0, \exists m \ge 0 : c_1 g(n) \le f(n) \le c_2 g(n), \forall n \ge m$$

- Come si legge: f(n) è "Theta" di g(n)
- Come si scrive: $f(n) = \Theta(g(n))$
- f(n) cresce esattamente come g(n)
- $f(n) = \Theta(g(n))$ se e solo se f(n) = O(g(n)) e $f(n) = \Omega(g(n))$

Graficamente

Algoritmi e Strutture Dati

Analisi di algoritmi Proprietà della notazione asintotica

Alberto Montresor and Davide Rossi

Università di Bologna

21 ottobre 2024

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Sommario

- Notazione asintotica
 - Definizioni
- 2 Proprietà della notazione asintotica
 - Funzioni di costo particolari
 - Proprietà delle notazioni
 - Classificazione delle funzioni
- Ricorrenze
 - Introduzione
 - Albero di ricorsione, o per livelli
 - Metodo dell'esperto
- 4 Back to algorithms!
 - Ruolo dei fattori molitplicativi

Regola generale

Espressioni polinomiali

$$f(n) = a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0, a_k > 0 \Rightarrow f(n) = \Theta(n^k)$$

Limite superiore: $\exists c > 0, \exists m \ge 0 : f(n) \le cn^k, \forall n \ge m$

$$f(n) = a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0$$

$$\leq a_k n^k + |a_{k-1}| n^{k-1} + \dots + |a_1| n + |a_0|$$

$$\leq a_k n^k + |a_{k-1}| n^k + \dots + |a_1| n^k + |a_0| n^k \qquad \forall n \geq 1$$

$$= (a_k + |a_{k-1}| + \dots + |a_1| + |a_0|) n^k$$

$$\stackrel{?}{\leq} c n^k$$

che è vera per $c \ge (a_k + |a_{k-1}| + \ldots + |a_1| + |a_0|) > 0$ e per m = 1.

Regola generale

Espressioni polinomiali

$$f(n) = a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0, a_k > 0 \Rightarrow f(n) = \Theta(n^k)$$

Limite inferiore: $\exists d > 0, \exists m \geq 0 : f(n) \geq dn^k, \forall n \geq m$

$$f(n) = a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0$$

$$\geq a_k n^k - |a_{k-1}| n^{k-1} - \dots - |a_1| n - |a_0|$$

$$\geq a_k n^k - |a_{k-1}| n^{k-1} - \dots - |a_1| n^{k-1} - |a_0| n^{k-1} \qquad \forall n \geq 1$$

$$\stackrel{?}{\geq} dn^k$$

L'ultima equazione è vera se:

$$d \le a_k - \frac{|a_{k-1}|}{n} - \frac{|a_{k-2}|}{n} - \dots - \frac{|a_1|}{n} - \frac{|a_0|}{n} > 0 \Leftrightarrow n > \frac{|a_{k-1}| + \dots + |a_0|}{a_k}$$

Dualità
$$N^2 = O(N^3) = N^3 = \Omega(N^2)$$

$$f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n))$$

Dimostrazione:

$$\begin{split} f(n) &= O(g(n)) \Leftrightarrow f(n) \leq cg(n), \forall n \geq m \\ &\Leftrightarrow g(n) \geq \frac{1}{c}f(n), \forall n \geq m \\ &\Leftrightarrow g(n) \geq c'f(n), \forall n \geq m, c' = \frac{1}{c} \\ &\Leftrightarrow g(n) = \Omega(f(n)) \end{split}$$

Eliminazione delle costanti

$$f(n) = O(g(n)) \Leftrightarrow af(n) = O(g(n)), \forall a > 0$$

$$f(n) = \Omega(g(n)) \Leftrightarrow af(n) = \Omega(g(n)), \forall a > 0$$

Dimostrazione:

$$f(n) = O(g(n)) \Leftrightarrow f(n) \le cg(n), \forall n \ge m$$

$$\Leftrightarrow af(n) \le acg(n), \forall n \ge m, \forall a \ge 0$$

$$\Leftrightarrow af(n) \le c'g(n), \forall n \ge m, c' = ac > 0$$

$$\Leftrightarrow af(n) = O(g(n))$$

Sommatoria (sequenza di algoritmi)

Dimostrazione (Lato O)

$$f_{1}(n) = O(g_{1}(n)) \land f_{2}(n) = O(g_{2}(n)) \Rightarrow f_{1}(n) \le c_{1}g_{1}(n) \land f_{2}(n) \le c_{2}g_{2}(n) \Rightarrow f_{1}(n) + f_{2}(n) \le c_{1}g_{1}(n) + c_{2}g_{2}(n) \Rightarrow f_{1}(n) + f_{2}(n) \le \max\{c_{1}, c_{2}\}(2 \cdot \max(g_{1}(n), g_{2}(n))) \Rightarrow f_{1}(n) + f_{2}(n) = O(\max(g_{1}(n), g_{2}(n)))$$

Prodotto (Cicli annidati)

$$l$$
 (come so si creasse in $nucoo g(n) = g_1(n) \cdot g(n)$

$$f_1(n) = O(g_1(n)), f_2(n) = O(g_2(n)) \Rightarrow f_1(n) \cdot f_2(n) = O(g_1(n) \cdot g_2(n))$$

$$f_1(n) = \Omega(g_1(n)), f_2(n) = \Omega(g_2(n)) \Rightarrow f_1(n) \cdot f_2(n) = \Omega(g_1(n) \cdot g_2(n))$$

Dimostrazione

$$f_1(n) = O(g_1(n)) \land f_2(n) = O(g_2(n)) \Rightarrow$$

 $f_1(n) \le c_1 g_1(n) \land f_2(n) \le c_2 g_2(n) \Rightarrow$
 $f_1(n) \cdot f_2(n) \le c_1 c_2 g_1(n) g_2(n)$

Simmetria

$$f(n) = \Theta(g(n)) \Leftrightarrow g(n) = \Theta(f(n))$$

Dimostrazione

Grazie alla proprietà di dualità:

$$f(n) = \Theta(g(n)) \Rightarrow f(n) = O(g(n)) \Rightarrow g(n) = \Omega(f(n))$$

$$f(n) = \Theta(g(n)) \quad \Rightarrow \quad f(n) = \Omega(g(n)) \Rightarrow g(n) = O(f(n))$$

Dimostrazione

$$f(n) = O(g(n)) \land g(n) = O(h(n)) \Rightarrow$$

$$f(n) \le c_1 g(n) \land g(n) \le c_2 h(n) \Rightarrow$$

$$f(n) \le c_1 c_2 h(n) \Rightarrow$$

$$f(n) = O(h(n))$$

Notazioni o, ω

Definizione – Notazioni o, ω

Sia g(n) una funzione di costo; indichiamo con o(g(n)) l'insieme delle funzioni f(n) tali per cui:

$$\forall c, \exists m : f(n) < cg(n), \forall n \ge m.$$

Sia g(n) una funzione di costo; indichiamo con $\omega(g(n))$ l'insieme delle funzioni f(n) tali per cui:

$$\forall c, \exists m : f(n) > cg(n), \forall n \ge m.$$

- \bullet Come si leggono: f(n) è "o piccolo", "omega piccolo" di g(n)
- Come si scrivono: f(n) = o(g(n)) oppure $f(n) = \omega(g(n))$

Notazioni o, ω

Utilizzando il concetto di limite, date due funzioni f(n) e g(n) si possono fare le seguenti affermazioni:

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \Rightarrow f(n) = o(g(n))$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c \neq 0 \Rightarrow f(n) = \Theta(g(n))$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = +\infty \Rightarrow f(n) = \omega(g(n))$$

Si noti che:

$$f(n) = o(g(n)) \Rightarrow f(n) = O(g(n))$$

 $f(n) = \omega(g(n)) \Rightarrow f(n) = \Omega(g(n))$

Classificazione delle funzioni

E' possibile trarre un'ordinamento delle principali espressioni, estendendo le relazioni che abbiamo dimostrato fino ad ora

Per ogni r < s, h < k, a < b:

$$O(1) \subset O(\log^r n) \subset O(\log^s n) \subset O(n^h) \subset O(n^h \log^r n) \subset O(n^h \log^s n) \subset O(n^k) \subset O(n^h) \subset O(n^h)$$

Algoritmi e Strutture Dati

Analisi di algoritmi Ricorrenze, metodo dell'albero di ricorsione

Alberto Montresor and Davide Rossi

Università di Bologna

21 ottobre 2024

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Sommario

- Notazione asintotica
 - Definizioni
- 2 Proprietà della notazione asintotica
 - Funzioni di costo particolari
 - Proprietà delle notazioni
 - Classificazione delle funzioni
- Ricorrenze
 - Introduzione
 - Albero di ricorsione, o per livelli
 - Metodo dell'esperto
- 4 Back to algorithms!
 - Ruolo dei fattori molitplicativi

Introduzione

Equazioni di ricorrenza

Quando si calcola la complessità di un algoritmo ricorsivo, questa viene espressa tramite un'equazione di ricorrenza, ovvero una formula matematica definita in maniera... ricorsiva!

MergeSort

$$T(n) = \begin{cases} T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + \Theta(n) & n > 1 \\ \Theta(1) & n \le 1 \end{cases}$$

Introduzione

Forma chiusa

Il nostro obiettivo è ottenere, quando possibile, una formula chiusa che rappresenti la classe di complessità della funzione.

MergeSort

$$T(n) = \begin{cases} T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + \Theta(n) & n > 1 \\ \Theta(1) & n \le 1 \end{cases}$$

Introduzione

Forma chiusa

Il nostro obiettivo è ottenere, quando possibile, una formula chiusa che rappresenti la classe di complessità della funzione.

MergeSort

$$T(n) = \Theta(n \log n)$$

Metodo dell'albero di ricorsione, o per livelli

Metodi per risolvere ricorrenze

- Analisi per livelli
- Analisi per tentativi, o per sostituzione (vedi libro di testo)
- Metodo dell'esperto, o delle ricorrenze comuni

Metodo dell'albero di ricorsione, o per livelli

"Srotoliamo" la ricorrenza in un albero i cui nodi rappresentano i costi ai vari livelli della ricorsione

Primo esempio

$$T(n) = \begin{cases} T(n/2) + b & n > 1\\ c & n \le 1 \end{cases}$$

È possibile risolvere questa ricorrenza nel modo seguente:

$$T(n) = b + T(n/2)$$

$$= b + b + T(n/4)$$

$$= b + b + b + T(n/8)$$

$$= \dots$$

$$= \underbrace{b + b + \dots + b}_{\log n} + T(1)$$

Assumiamo per semplicità: $n = 2^k$, ovvero $k = \log n$

Primo esempio

$$T(n) = \begin{cases} T(n/2) + b & n > 1\\ c & n \le 1 \end{cases}$$

È possibile risolvere questa ricorrenza nel modo seguente:

$$T(n) = b + T(n/2)$$

$$= b + b + T(n/4)$$

$$= b + b + b + T(n/8)$$

$$= \dots$$

$$= \underbrace{b + b + \dots + b}_{\log n} + T(1)$$

Assumiamo per semplicità: $n = 2^k$, ovvero $k = \log n$

$$T(n) = b \log n + c = \Theta(\log n)$$

$$T(n) = \begin{cases} 4T(n/2) + n^3 & n > 1\\ 1 & n \le 1 \end{cases}$$

Proviamo a visualizzare l'albero delle chiamate, per i primi tre livelli:

$$\frac{\left(\frac{n}{2}\right)^3}{\left(\frac{n}{4}\right)^3 \left(\frac{n}{4}\right)^3 \left(\frac{n}{4}\right$$

$$T(n) = \begin{cases} 4T(n/2) + n^3 & n > 1\\ 1 & n \le 1 \end{cases}$$

Livello	Dim.	Costo chiam.	N. chiamate	Costo livello
0	n	n^3	1	n^3
1	n/2	$(n/2)^3$	4	$4(n/2)^3$
2	n/4	$(n/4)^3$	16	$16(n/4)^3$
• • •	• • •	• • •	•••	
i	$n/2^i$	$(n/2^i)^3$	4^i	$4^i(n/2^i)^3$
		• • •	• • •	• • •
$\ell-1$	$n/2^{\ell-1}$	$(n/2^{\ell-1})^3$	$4^{\ell-1}$	$4^{\ell-1}(n/2^{\ell-1})^3$
$\ell = \log n$	1	T(1)	$4^{\log n}$	$4^{\log n}$

$$T(n) = \begin{cases} 4T(n/2) + n^3 & n > 1\\ 1 & n \le 1 \end{cases}$$

La sommatoria dà origine a:

$$T(n) = \sum_{i=0}^{\log n - 1} 4^{i} \cdot n^{3} / 2^{3i} + 4^{\log n}$$

$$= n^{3} \sum_{i=0}^{\log n - 1} \frac{2^{2i}}{2^{3i}} + 4^{\log n}$$

$$= n^{3} \sum_{i=0}^{\log n - 1} \left(\frac{1}{2}\right)^{i} + 4^{\log n}$$

Passaggi algebrici

Passaggi algebrici

$$T(n) = \begin{cases} 4T(n/2) + n^3 & n > 1\\ 1 & n \le 1 \end{cases}$$

La sommatoria dà origine a:

$$T(n) = n^{3} \sum_{i=0}^{\log n - 1} \left(\frac{1}{2}\right)^{i} + 4^{\log n}$$

$$= n^{3} \sum_{i=0}^{\log n - 1} \left(\frac{1}{2}\right)^{i} + n^{2}$$

$$\leq n^{3} \sum_{i=0}^{\infty} \left(\frac{1}{2}\right)^{i} + n^{2}$$

Cambiamento di base

Estensione della sommatoria

$$T(n) = \begin{cases} 4T(n/2) + n^3 & n > 1\\ 1 & n \le 1 \end{cases}$$

La sommatoria dà origine a:

$$T(n) \le n^3 \sum_{i=0}^{\infty} \left(\frac{1}{2}\right)^i + n^2$$
$$= n^3 \cdot \frac{1}{1 - \frac{1}{2}} + n^2$$
$$= 2n^3 + n^2$$

Serie geometrica infinita decrescente:

$$\forall x, |x| < 1 : \sum_{i=0}^{\infty} x^i = \frac{1}{1-x}$$

$$T(n) = \begin{cases} 4T(n/2) + n^3 & n > 1\\ 1 & n \le 1 \end{cases}$$

Abbiamo dimostrato che:

$$T(n) \le 2n^3 + n^2$$

- Possiamo affermare che $T(n) = O(n^3)$
- La dimostrazione precedente non afferma che $T(n) = \Theta(n^3)$, perché ad un certo punto siamo passati a \leq
- Però è possibile notare che $T(n) \ge n^3$, quindi è possibile affermare che $T(n) = \Omega(n^3)$ e quindi $T(n) = \Theta(n^3)$

Terzo esempio

$$T(n) = \begin{cases} 4T(n/2) + n^2 & n > 1\\ 1 & n \le 1 \end{cases}$$

Livello	Dimensione	Costo chiamata	N. chiamate	Costo livello
0	n	n^2	1	n^2
1	n/2	$(n/2)^2$	4	$4(n/2)^2$
2	n/4	$(n/4)^2$	16	$16(n/4)^2$
i	$n/2^i$	$(n/2^i)^2$	4^i	$4^i (n/2^i)^2$
			• • •	• • •
$\ell-1$	$n/2^{\ell-1}$	$(n/2^{\ell-1})^2$	$4^{\ell-1}$	$4^{\ell-1}(n/2^{\ell-1})^2$
$\ell = \log n$	1	T(1)	$4^{\log n}$	$4^{\log n}$

Terzo esempio

$$T(n) = \begin{cases} 4T(n/2) + n^2 & n > 1\\ 1 & n \le 1 \end{cases}$$

$$\begin{split} T(n) &= \sum_{i=0}^{\log n - 1} n^2 / 2^{2i} \cdot 4^i + 4^{\log n} \\ &= n^2 \sum_{i=0}^{\log n - 1} \frac{2^{2i}}{2^{2i}} + n^2 \\ &= n^2 \sum_{i=0}^{\log n - 1} 1 + n^2 \\ &= n^2 \log n + n^2 = \Theta(n^2 \log n) \end{split}$$

Algoritmi e Strutture Dati

Analisi di algoritmi Ricorrenze comuni

Alberto Montresor and Davide Rossi

Università di Bologna

21 ottobre 2024

Metodo dell'esperto

Metodi per risolvere ricorrenze

- Metodo dell'albero di ricorsione, o per livelli
- Metodo di sostituzione, o per tentativi (vedi libro di testo)
- Metodo dell'esperto, o delle ricorrenze comuni

Ricorrenze comuni

Esiste un'ampia classe di ricorrenze che possono essere risolte facilmente facendo ricorso ad alcuni teoremi, ognuno dei quali si occupa di una classe particolare di equazioni di ricorrenza.

Teorema

Siano a e b costanti intere tali che $a \ge 1$ e $b \ge 2$, e c, β costanti reali tali che c > 0 e $\beta \ge 0$. Sia T(n) data dalla relazione di ricorrenza:

$$T(n) = \begin{cases} aT(n/b) + cn^{\beta} & n > 1\\ d & n \le 1 \end{cases}$$

Posto $\alpha = \log a / \log b = \log_b a$, allora:

$$T(n) = \begin{cases} aT(n/b) + cn^{\beta} & n > 1 \\ d & n \leq 1 \end{cases}$$
 if legaritue considerate of the point of the

Assunzioni

Assumiamo che n sia una potenza intera di b: $n = b^k, k = \log_b n$

Perchè ci serve?

Semplifica tutti i calcoli successivi

Influisce sul risultato?

- Supponiamo che l'input abbia dimensione $b^k + 1$
- Estendiamo l'input fino ad una dimensione b^{k+1} (padding)
- \bullet L'input è stato esteso al massimo di un fattore costante b
- Ininfluente al fine della complessità computazionale

$$T(n) = aT(n/b) + cn^{\beta}$$
 $T(1) = d$

Liv.	Dim.	Costo chiam.	N. chiamate	Costo livello
0	b^k	$cb^{k\beta}$	1	$cb^{k\beta}$
1	b^{k-1}	$cb^{(k-1)\beta}$	a	$acb^{(k-1)\beta}$
2	b^{k-2}	$cb^{(k-2)\beta}$	a^2	$a^2cb^{(k-2)\beta}$
			• • •	
i	b^{k-i}	$cb^{(k-i)\beta}$	a^i	$a^i c b^{(k-i)\beta}$
• • •	• • •			
k-1	b	cb^{β}	a^{k-1}	$a^{k-1}cb^{\beta}$
k	1	d	a^k	da^k

Liv.	Dim.	Costo chiam.	N. chiamate			
i	b^{k-i}	$cb^{(k-i)\beta}$	a^i	$a^i c b^{(k-i)\beta}$		
k	1	d	a^k	da^k		

Sommando i costi totali di tutti i livelli, si ottiene:

$$T(n) = da^k + cb^{k\beta} \sum_{i=0}^{k-1} \frac{a^i}{b^{i\beta}} = da^k + cb^{k\beta} \sum_{i=0}^{k-1} \left(\frac{a}{b^{\beta}}\right)^i$$

$$T(n) = da^k + cb^{k\beta} \sum_{i=0}^{k-1} \frac{a^i}{b^{i\beta}} = da^k + cb^{k\beta} \sum_{i=0}^{k-1} \left(\frac{a}{b^\beta}\right)^i$$

Osservazioni

- $a^k = \underline{a^{\log_b n}} = a^{\log n/\log b} = 2^{\log a \log n/\log b} = n^{\log a/\log b} = \underline{n^{\alpha}}$
- $\alpha = \log a / \log b \Rightarrow \alpha \log b = \log a \Rightarrow \log b^{\alpha} = \log a \Rightarrow a = b^{\alpha}$
- Poniamo $\underline{q} = \frac{a}{b^{\beta}} = \frac{b^{\alpha}}{b^{\beta}} = \frac{b^{\alpha-\beta}}{b^{\beta}}$

Caso 1: $\alpha > \beta$

Ne segue che: $q = b^{\alpha - \beta} > 1$:

$$T(n) = dn^{\alpha} + cb^{k\beta} \sum_{i=0}^{k-1} q^{i}$$

$$= n^{\alpha}d + cb^{k\beta} [(q^{k} - 1)/(q - 1)] \qquad \text{Serie geometrica finita}$$

$$\leq n^{\alpha}d + cb^{k\beta}q^{k}/(q - 1) \qquad \text{Disequazione}$$

$$= n^{\alpha}d + \frac{cb^{k\beta}a^{k}}{b^{k\beta}}/(q - 1) \qquad \text{Sostituzione } q$$

$$= n^{\alpha}d + ca^{k}/(q - 1) \qquad \text{Passi algebrici}$$

$$= n^{\alpha}[d + c/(q - 1)] \qquad a^{k} = n^{\alpha}, \text{raccolta termini}$$

- Quindi T(n) è $O(n^{\alpha})$.
- Per via della componente dn^{α} , T(n) è anche $\Omega(n^{\alpha})$, e quindi $T(n) = \Theta(n^{\alpha})$.

Caso 2:
$$\alpha = \beta$$

Ne segue che: $q = b^{\alpha - \beta} = 1$:

$$T(n) = dn^{\alpha} + cb^{k\beta} \sum_{i=0}^{k-1} q^{i}$$

$$= n^{\alpha}d + cn^{\beta}k \qquad q^{i} = 1^{i} = 1$$

$$= n^{\alpha}d + cn^{\alpha}k \qquad \alpha = \beta$$

$$= n^{\alpha}(d + ck) \qquad \text{Raccolta termini}$$

$$= n^{\alpha}[d + c\log n/\log b] \qquad k = \log_{b} n$$

e quindi T(n) è $\Theta(n^{\alpha} \log n)$;

Caso 3: $\alpha < \beta$

Ne segue che: $q = b^{\alpha - \beta} < 1$:

$$T(n) = dn^{\alpha} + cb^{k\beta} \sum_{i=0}^{k-1} q^{i}$$

$$= n^{\alpha}d + cb^{k\beta} [(q^{k} - 1)/(q - 1)] \qquad \text{Serie geometrica finita}$$

$$= n^{\alpha}d + cb^{k\beta} [(1 - q^{k})/(1 - q)] \qquad \text{Inversione}$$

$$\leq n^{\alpha}d + cb^{k\beta} [1/(1 - q)] \qquad \text{Disequazione}$$

$$= n^{\alpha}d + cn^{\beta}/(1 - q) \qquad b^{k} = n$$

- Quindi T(n) è $O(n^{\beta})$.
- Poichè $T(n) = \Omega(n^{\beta})$ per il termine non ricorsivo, si ha che $T(n) = \Theta(n^{\beta})$.

Tecnecua Master

Teorema

Sia $a \ge 1, b > 1, f(n)$ asintoticamente positiva, e sia

$$T(n) = \begin{cases} aT(n/b) + f(n) & n > 1\\ d & n \le 1 \end{cases}$$

Sono dati tre casi:

$$(1) \quad \exists \epsilon > 0 : f(n) = O(n^{\log_b a - \epsilon}) \qquad \Rightarrow \quad T(n) = \Theta(n^{\log_b a})$$

$$(2) \quad f(n) = \Theta(n^{\log_b a}) \qquad \Rightarrow \quad T(n) = \Theta(f(n) \log n)$$

$$(3) \quad \exists \epsilon > 0 : f(n) = \Omega(n^{\log_b a + \epsilon}) \land$$

$$(3) \quad \exists c : 0 < c < 1, \exists m \ge 0 : \qquad \Rightarrow \quad T(n) = \Theta(f(n))$$

$$af(n/b) \le cf(n), \forall n \ge m$$

Ricorrenza	a	b	log_ba	Caso	Funzione
$T(n) = 9T(n/3) + n\log n$					

Ricorrenza	a	b	log_ba	Caso	Funzione
$T(n) = 9T(n/3) + n\log n$	9	3	2	(1)	$T(n) = \Theta(n^2)$

$$f(n) = n \log n = O(n^{\log_b a - \epsilon}) = O(n^{2 - \epsilon}), \text{ con } \epsilon < 1$$

Ricorrenza	a	b	log_ba	Caso	Funzione
T(n) = T(2n/3) + 1					

Ricorrenza	a	b	log_ba	Caso	Funzione
T(n) = T(2n/3) + 1	1	$\frac{3}{2}$	0	(2)	$T(n) = \Theta(\log n)$

$$f(n) = n^0 = \Theta(n^{\log_b a}) = \Theta(n^0)$$

Ricorrenza	a	b	log_ba	Caso	Funzione
$T(n) = 3T(n/4) + n\log n$					

Ricorrenza	a	b	$\log_{\mathrm{b}}\!\mathrm{a}$	Caso	Funzione
$T(n) = 3T(n/4) + n\log n$	3	4	≈ 0.79	(3)	$T(n) = \Theta(n \log n)$

$$f(n) = n \log n = \Omega(n^{\log_4 3 + \epsilon}), \text{ con } \epsilon < 1 - \log_4 3 \approx 0.208$$

Dobbiamo dimostrare che:

$$\exists c \leq 1, \exists m \geq 0: af(n/b) \leq cf(n), \forall n \geq m$$

$$af(n/b) = 3(n/4 \log n/4)$$

$$= 3/4n(\log n - \log 4)$$

$$\leq 3/4n \log n$$

$$\stackrel{?}{\leq} cn \log n$$

L'ultima disequazione è soddisfatta da c = 3/4 e qualsiasi m.

Ricorrenza	a	b	log_ba	Caso	Funzione
$T(n) = 2T(n/2) + n\log n$					

Ricorrenza	a	b	log_ba	Caso	Funzione
$T(n) = 2T(n/2) + n\log n$	2	2	1	_	Non applicabile

$$f(n) = n \log n \neq O(n^{1-\epsilon}), \text{ con } \epsilon > 0$$

$$f(n) = n \log n \neq \Theta(n)$$

$$f(n) = n \log n \neq \Omega(n^{1+\epsilon}), \text{ con } \epsilon > 0$$

Nessuno dei tre casi è applicabile e bisogna utilizzare altri metodi.

Interi inferiori/superiori

4,2 -> intero superwore -> 5 -> intero ingercione -> 4

• I teoremi appena visti non considerano equazioni di ricorrenza con interi inferiori/superiori

$$T(n) = 2T(n/2) + n$$

In realtà, le equazioni di ricorrenza dovrebbero sempre essere espresse tramite interi inferiori/superiori, perché operano su dimensioni dell'input

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + n$$

• I risultati dei teoremi valgono anche quando le funzioni sono espresse tramite interi inferiori/superiori

Ricorrenze lineari di ordine costante

Teorema

Siano a_1, a_2, \ldots, a_h costanti intere non negative, con h costante positiva, c e β costanti reali tali che c > 0 e $\beta > 0$, e sia T(n)definita dalla relazione di ricorrenza:

$$T(n) = \begin{cases} \sum_{1 \le i \le h} a_i T(n-i) + cn^{\beta} & n > m \\ \Theta(1) & n \le m \le h \end{cases}$$

Posto $a = \sum_{i=1}^{n} a_i$, allora: $1 \le i \le h$

- $T(n) \in \Theta(n^{\beta+1})$, se a=1,
- $T(n) \in \Theta(a^n n^\beta)$, se $a \ge 2$.

	Ricorrenza	a	β	Caso	Funzione
(A)	$T(n) = T(n-10) + n^2$				
(B)	T(n) = T(n-2) + T(n-1) + 1				

Ricorrenza Lineare di ordine costante Sono relazioni di ricorrevenza in cui un tercuine della successione e' deginito come combinazione linearce di un numero 8:550 (costante) di tercuini precedenti, più eventualmente una sunzione non omogenea.

	Ricorrenza	a	β	Caso	Funzione
(A)	$T(n) = T(n-10) + n^2$	1	2	(1)	$T(n) = \Theta(n^3)$
(B)	T(n) = T(n-2) + T(n-1) + 1	2	0	(2)	$T(n) = 2^n$

- (A) Poiché a = 1, il costo è polinomiale.
- (B) Poiché a=2, il costo è esponenziale.

$$\alpha = 1$$

$$\Theta(N^{B+1}) \Rightarrow \Theta(N^{Z+1}) = \Theta(N^{3})$$

$$\alpha = Z$$

$$\Theta(\alpha^{n} N^{B}) \Rightarrow \Theta(2^{n} N^{0}) \Rightarrow \Theta(2^{n})$$

Esercizio

Siano

- $T(n) = 7T(n/2) + n^2$ una funzione di costo di un algoritmo A, e
- $T'(n) = aT'(n/4) + n^2$ una funzione di costo di un algoritmo A'.

Qual è il massimo valore intero di a che rende A' asintoticamente più veloce di A?

Use it teorems Hoster non del Gistere

$$a = 7$$
 $b = 2$
 $g(n) = O(n^{\log_2 a} - E) = O(n^{\log_2 2} - E)$

deve ruspe Hare $a g(w_b) = c g(n)$
 $g(n^{\log_2 a}) = g(n^{\log_2 2})$
 $g(n^{\log_2 a}) = g(n^{\log_2 2})$
 $g(n^{\log_2 2}) = g($

Esercizio – Soluzione

Poichè $\log_2 7$ è ≈ 2.81 , il Master Theorem dice che $T(n) = \Theta(n^{\log_2 7})$.

Utilizzando alcune trasformazioni algebriche, si ottiene che:

$$\log_2 7 = \frac{\log_4 7}{\log_4 2} = \frac{\log_4 7}{1/2}$$
$$= 2\log_4 7 = \log_4 49$$

•
$$a < 16 \Rightarrow \alpha = \log_4 a < 2 \Rightarrow T'(n) = \Theta(n^2) = O(T(n))$$

•
$$a = 16 \Rightarrow \alpha = \log_4 a = 2 \Rightarrow T'(n) = \Theta(n^2 \log n) = O(T(n))$$

•
$$16 < a \le 49 \Rightarrow \alpha = \log_4 a > 2 \Rightarrow T'(n) = \Theta(n^{\alpha}) = O(T(n))$$

•
$$a < 49 \Rightarrow \alpha = \log_4 a > 2 \Rightarrow T'(n) = \Theta(n^{\alpha}) = \Omega(T(n))$$

Algoritmi e strutture dati

Analisi di funzioni Back to algorithms!

Alberto Montresor and Davide Rossi

Università di Bologna

21 ottobre 2024

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Sommario

- Notazione asintotica
 - Definizioni
- 2 Proprietà della notazione asintotica
 - Funzioni di costo particolari
 - Proprietà delle notazioni
 - Classificazione delle funzioni
- Ricorrenze
 - Introduzione
 - Albero di ricorsione, o per livelli
 - Metodo dell'esperto
- Back to algorithms!
 - Ruolo dei fattori molitplicativi

```
La complessità dell'algoritmo
int maxsum1(int[] A, int n) {
                                        può essere approssimata come
  int maxSoFar = 0;
                                        segue (contando il numero di
  for (int i=0; i < n; i++) {</pre>
                                        esecuzioni della riga più interna)
    for (int j=i; j < n; j++) {</pre>
                                                    n - 1 n - 1
      int sum = 0;
      for (int k=i; k <= j; k++) {</pre>
        sum = sum + A[k];
    maxSoFar = max(maxSoFar, sum);
  return maxSoFar;
```

Complessità della Versione 1 - $O(n^3)$

Vogliamo provare che $T(n) = O(n^3)$, i.e.

$$T(n) = \sum_{i=0}^{n-1} \sum_{j=i+1}^{n-1} j-i+1$$

$$\exists c_2 > 0, \exists m \ge 0 : T(n) \le c_2 n^3, \forall n \ge m$$

S. QUC Secuplizicane Can N

$$T(n) = \sum_{i=0}^{n-1} \sum_{j=i}^{n-1} (j-i+1)$$

$$\leq \sum_{i=0}^{n-1} \sum_{j=i}^{n-1} n \leq \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} n$$

$$= \sum_{i=0}^{n-1} n^2 = n^3 \leq c_2 n^3$$

Questa disequazione è vera per $n \ge m = 0$ and $c_2 \ge 1$.

Complessità della Versione 1 - $\Omega(n^3)$

Vogliamo provare che $T(n) = \Omega(n^3)$, i.e.

$$\exists c_1 > 0, \exists m \ge 0 : T(n) \ge c_1 n^3, \forall n \ge m$$

$$T(n) = \sum_{i=0}^{n-1} \sum_{j=i}^{n-1} (j-i+1)$$

$$\geq \sum_{i=0}^{n/2} \sum_{j=i}^{i+n/2-1} (j-i+1)$$

$$= \sum_{i=0}^{n/2} \sum_{j=i}^{i+n/2-1} n/2$$

$$= \sum_{i=0}^{n/2} n^2/4 \geq n^3/8 \geq c_1 n^3$$

L'ultima disequazione è vera per $n \ge m = 0$ and $c_1 \le 8$.

La complessità di questo algoritmo può essere approssimata come segue (stiamo contando il numero di passi nel ciclo più interno)

$$T(n) = \sum_{i=0}^{n-1} n - i$$

Complessità della versione 2 - $\theta(n^2)$

acle for (i=0; i<n; i++) rws=rus·n

Vogliamo provare che $T(n) = \theta(n^2)$.

$$\begin{array}{c} \text{Coi (a)} = \sum_{i=1}^{n} i \\ \text{vecte coule} \\ \text{Solution dei} \\ \text{Problem in litteria} \\ \text{positivi at contrains} = \frac{n(n+1)}{2} = \Theta(n^2) \\ \text{a richiede ulteriori dimostrazioni} \\ \end{array}$$

$$N^2 \frac{(n-1)^N}{2} =$$

Quest∮ non richiede ulteriori dimostrazioni

$$=\frac{N+n}{2}$$

$$=\frac{N(n+1)}{2}$$

$$\int_{\lambda=0}^{N-1} (N-i) = N+N-2+...+ \frac{1}{2} = \int_{\lambda=1}^{N-N-1} \lambda = \frac{N(N+i)}{2}$$

```
int maxsum_rec(int[] A, int i, int j) {
                                          Per questo, definiamo la equazione di
  if (i==j)
                                          ricorrenza:
   return max(0, A[i]);
  int m = (i+j) / 2;
  int maxs = maxsum_rec(A, i, m);
  int maxd = maxsum_rec(A, m+1, j);
  int maxss = 0;
                                           T(n)=2T(n/z)+n
  int sum = 0;
 for (int k=m; k>=i; k--) { (\nu/2)
   sum = sum + A[k];
                                              a=2
                                                        8(h)= (h basa)
   maxss = max(maxss, sum);
                                              b=2
                                                            = O(n3)
                                              &(n)=n
  int maxdd = 0;
 sum = 0;
                                                   secondo Tipo!
                                   T(11/2)
 for (int k=m+1; k<=j; k++) {</pre>
   sum = sum + A[k];
                                                  T(n)= 6 (n 36 logn)=
   maxdd = max(maxdd, sum);
                                                      = 6 (n2 Bgn)
 return max(max(maxs,maxd),maxss+maxdd);
```

```
int maxsum_rec(int[] A, int i, int j) {
  if (i==j)
   return max(0, A[i]);
  int m = (i+j) / 2;
  int maxs = maxsum_rec(A, i, m);
  int maxd = maxsum_rec(A, m+1, j);
  int maxss = 0;
  int sum = 0;
 for (int k=m; k>=i; k--) {
    sum = sum + A[k];
    maxss = max(maxss, sum);
  int maxdd = 0;
  sum = 0;
 for (int k=m+1; k<=j; k++) {</pre>
    sum = sum + A[k];
    maxdd = max(maxdd, sum);
 return max(max(maxs,maxd),maxss+maxdd);
```

Per questo, definiamo la equazione di ricorrenza:

$$T(n) = 2T(n/2) + n$$

Utilizzando il teorema, possiamo vedere che $\alpha = \log_2 2 = 1$ e $\beta = 1$, quindi $T(n) = \Theta(n \log n)$.

```
int maxsum4(int A[], int n) {
  int maxSoFar = 0;
  int maxHere = 0;
  for (int i=0; i < n; i++) {
    maxHere = max(maxHere+A[i],0);
    maxSoFar = max(maxSoFar,maxHere);
  }
  return maxSoFar;
}</pre>
```

E' facile vedere che la complessità di questa versione è $\theta(n)$.

Fattori moltiplicativi

A volte, i fattori moltiplicativi di una funzione di complessità sono talmente alti che se ne sconsiglia l'uso per piccoli valori di n

GNU Multiple Precision Arithmetic Library

- Utilizzata da Mathematica, Maple, etc.
- Le moltiplicazioni vengono realizzate utilizzando algoritmi diversi, mano a mano che n cresce.
- https://gmplib.org/manual/Multiplication-Algorithms.html

15.1 Multiplication

NxN limb multiplications and squares are done using one of seven algorithms, as the size N increases.

```
Algorithm Threshold
Basecase (none)
Karatsuba MUL_TOOM22_THRESHOLD
Toom-3 MUL_TOOM33_THRESHOLD
Toom-4 MUL_TOOM44_THRESHOLD
Toom-6.5 MUL_TOOM6H_THRESHOLD
TOOM-8.5 MUL_TOOM8H_THRESHOLD
FFT MUL_FFT_THRESHOLD
```

GNU Multiple Precision Arithmetic Library

- Utilizzata da Mathematica, Maple, etc.
- I limiti (threshold) dipendono dall'architettura

host type	abi	host name	meas thres	conf thres	cfg file
z10-ibm-linux-gnu	64	lgentoo4.s390.gentoo.wh0rd.org-stat	173	28 1728	s390_64/z10/gmp-mparam.h
atom-unknown-linux-gnu	64	gege.gmplib.org-stat	22	10 2240	x86_64/atom/gmp-mparam.h
z10esa-ibm-linux-gnu	32	lgentoo3.s390.gentoo.wh0rd.org-stat	22	10 2240	s390_32/esame/gmp-mparam.h
power7-unknown-linux-gnu	mode32	gcc1-power7.osuosl.org-stat	26	38 2688	powerpc64/mode32/p4/gmp-mparam.h
bulldozer-unknown-freebsd8.3	64	oshell.gmplib.org-stat	35	20 3712	x86_64/bd1/gmp-mparam.h
piledriver-unknown-netbsd6.1.3	64	pilenbsd64v61.gmplib.org-stat	37	12 3712	x86_64/bd2/gmp-mparam.h
powerpc7447-unknown-linux-gnu	32	spigg.gmplib.org-stat	37	12 3712	powerpc32/gmp-mparam.h
coreihwl-unknown-netbsd6.1.2	64	hannahnbsd64v61.gmplib.org-stat	42	24 4224	x86_64/coreihwl/gmp-mparam.h
coreinhm-unknown-netbsd6.1.3	64	hikonhsd64v61.gmplih.org-stat	42	24 4032	x86_64/coreinhm/gmp-mparam.h
power7-ibm-aix7.1.0.0	mode64	power-aix.fsffrance.org-stat	42	38 4288	powerpc64/mode64/p7/gmp-mparam.h
atom-unknown-linux-gnu	32	gege.gmplib.org-stat	45	14 4544	x86/atom/gmp-mparam.h
core2-unknown-netbsd6.1.4	64	repentiumnbsd64v61.gmplib.org-stat	47.	36 4736	x86_64/core2/gmp-mparam.h
coreisbr-apple-darwin12.5.0	64	poire.loria.fr-stat	47	36 4736	x86_64/coreisbr/gmp-mparam.h
coreiwsm-unknown-linux-gnu	64	gcc20.fsffrance.org-stat	47	36 4032	x86_64/coreinhm/gmp-mparam.h
power7-unknown-linux-gnu	mode64	gcc1-power7.osuosl.org-stat	47	36 4288	powerpc64/mode64/p7/gmp-mparam.h
powerpc970-apple-darwin8.11.0	mode32	g5.gmplib.org-stat	47	36 2688	powerpc64/mode32/p4/gmp-mparam.h
power7-ibm-aix7.1.0.0	32	power-aix fsffrance.org-stat	53	12 5312	powerpc32/p7/gmp-mparam.h
bobcat-unknown-netbsd6.1.3	64	bobcat.gmplib.org-stat	550	04 5504	x86_64/bobcat/gmp-mparam.h
alphaev6-unknown-linux-gnu	standard	agnesi.math.su.se-stat	570	50 5760	alpha/ev6/gmp-mparam.h
armcortexa15neon-unknown-linux-	standard	parma.gmplib.org-stat	570	50 5760	arm/v7a/cora15/gmp-mparam.h
power7-unknown-linux-gnu	32	gcc1-power7.osuosl.org-stat	570	50 5312	powerpc32/p7/gmp-mparam.h
core2-unknown-netbsdelf6.1.4	32	repentiumnbsd32v61.gmplib.org-stat	678	34 6784	x86/core2/gmp-mparam.h
coreinhm-unknown-netbsdelf6.1.3	32	bikonbsd32v61.gmplib.org-stat	678	34 6784	x86/coreinhm/gmp-mparam.h