Aprendizado de Máquina

Aula 7: Algoritmos baseados em probabilidade (parte 1)

André C. P. L. F de Carvalho ICMC/USP andre@icmc.usp.br

Tópicos abordados

- Algoritmos baseados em probabilidade
- Algoritmos que induzem modelos discriminativos
- Algoritmos que induzem modelos generativos
- Algoritmos para tarefas de regressão
- Algoritmos para tarefas de classificação

Tópicos abordados

- Algoritmos baseados em probabilidade
- Algoritmos que induzem modelos discriminativos
- Algoritmos que induzem modelos generativos
- Algoritmos para tarefas de regressão
- Algoritmos para tarefas de classificação

Tarefas de aprendizado

Modelos preditivos

- Algoritmos de AM podem gerar modelos preditivos
 - Discriminativos
 - Modelam relação condicional entre atributos preditivos e atributo alvo
 - Podem ser usados tanto para classificação quanto regressão
 - Ex.: k-NN, redes neurais, regressão linear, regressão logística, SVMs, ADs, RFs
 - Generativos
 - Modelam o quão diferentes são os exemplos, usando ou não seus rótulos
 - Podem ser induzidos por algoritmos de aprendizado supervisionado e de aprendizado não supervisionado (quando usa exemplos não rotulados)
 - Ex.: Redes bayesianas, naive Bayes, modelos ocultos de markov

Algoritmos probabilísticos

- Em várias aplicações, dados os valores dos atributos preditivos, é preciso ...
 - o Estimar um dado valor para o atributo alvo
 - $-\infty \le f(x) \le +\infty$
 - Tarefas de regressão
 - o Estimar a probabilidade de um exemplo pertencer a uma dada classe
 - $O \le f(x) \le 1$
 - Que podem ser usados para retornar um rótulo qualitativo (classe)
 - Tarefas de classificação

Modelos discriminativos e generativos

- Nenhum deles precisa retornar um valor de probabilidade
 - o Mas similaridades e diferenças ficam mais claras se usarmos probabilidades

Modelos Discriminativos

Definem se é provável que um objeto x tenha o rótulo y

Estimam a probabilidade condicional P(Y/X) Usando dados de treinamento Melhor desempenho em aprendizado supervisionado

Em tarefas de classificação, definem fronteiras de decisão, nas de regressão, aproximação da função

Modelos Generativos

Definem se é provável que exista um objeto (x,y)

Estimam a probabilidade conjunta P(X,Y) (ou P(X) para dados sem rótulo) Usando dados de treinamento

Podem ser usados em aprendizado não supervisionado

Podem gerar novos objetos, pois conhecem a distribuição de cada classe

Modelos discriminativos e generativos

Modelos discriminativos e generativos

Observações

- Modelos descritivos
- Modelos híbridos
 - Parcialmente discriminativos
 - Parcialmente generativos
 - o Combinando naive Bayes com regressão logística
 - Criando um novo algoritmo

Continua no próximo vídeo e conjunto de slídes

