Lab on BFS

STEP 1: Use the program written in the last class and find all Basic feasible solutions for these linear programming problems.

STEP 2: Find optimal from these BFSs. But list the objective function values at all BFSs.

- 1. Maximize $Z=2x_1+5x_2$, Subject to $x_1+4x_2\leq 24$, $3x_1+x_2\leq 21$, $x_1+x_2\leq 9$, $x_1,x_2\geq 0$.
- 2. Maximize $Z = 4x_1 + 3x_2 + 6x_3$, Subject to $2x_1 + 3x_2 + 2x_3 \le 440$, $4x_1 + 3x_3 \le 470$, $2x_1 + 5x_2 \le 430$, $x_1, x_2, x_3 \ge 0$.
- 3. Maximize $Z = 12x_1 + 15x_2 + 14x_3$, Subject to $-x_1 + x_2 \le 0$, $-x_2 + 2x_3 \le 0$, $x_1 + x_2 \le 0$, $x_1 + x_3 \le 0$.
- 4. Minimize $Z = x_1 3x_2 + 3x_3$, Subject to $3x_1 x_2 + 2x_3 \le 7$, $2x_2 4x_2 \le 12$, $-4x_1 + 3x_2 + 8x_3 \le 10$, $x_1, x_2, x_3 \ge 0$.
- 5. Maximize $Z = 3x_1 + 2x_2 + 2x_3$, Subject to $5x_1 + 7x_2 + 4x_3 \le 7$, $4x_1 7x_2 5x_3 \le 2$, $3x_1 + 4x_2 6x_3 \ge 3$, $x_1, x_2, x_3 \ge 0$.