Problem 4.1.2

Describe the following sets in set-builder notation (look for a pattern).

- (a) $\{\ldots, -3, 0, 3, 6, 9, \ldots\}$
- (b) $\{-3, 1, 5, 9, 13, \ldots\}$
- (c) $\{1, \frac{1}{3}, \frac{1}{7}, \frac{1}{15}, \frac{1}{31}, \ldots\}$

Solution

- (a) $\{3n : n \in \mathbb{Z}\}$
- (b) $\{4n+1: n \in \mathbb{Z}\}$
- (c) $\left\{\frac{1}{4n-1}: n \in \mathbb{Z}\right\}$

Problem 4.1.5

Compare the sets $A = \{3x \in \mathbb{Z} : x \in 2\mathbb{Z}\}$ and $B = \{x \in \mathbb{Z} : x \equiv 12 \pmod{6}\}$. Are they equal?

Solution

Set B can be rewritten as $\{x \in \mathbb{Z} : x \equiv 0 \pmod{6}\}$. Additionally, set A can be rewritten as $\{6x : x \in \mathbb{Z}\}$. Set A is all the integer multiples of B. This is equivalent to saying the set of all integers that reduce to B (mod B), meaning B = B (mod B) = B. Therefore both set A and B have the same elements and are therefore equal.

Problem 4.1.7

Let $A = \{1, 2, 3, 4\}$, and let B be the set $B = \{\{x, y\} : x, y \in A\}$.

- (a) Describe B in roster notation.
- (b) Now compute the cardinality of the sets

$$C = \left\{ \left\{ x, \left\{ y \right\} \right\} : x, y \in A \right\}.$$

and

$$D = \left\{ \left\{ \left\{ x, \left\{ y \right\} \right\} : x, y \in A \right\} \right\}.$$

Compare them to B.

Solution

Part A

$$B = \{\{1,1\}, \{2,2\}, \{3,3\}, \{4,4\}, \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}\}.$$

Part B

Set D will have a cardinality of 1 since it contains a single element within it, the set C. Set C will have the same cardinality as B since the number of unique elements is still the same, even though in C, one of elements of the inner sets is itself a set.

Problem 4.2.2

Let $A = \{x \in \mathbb{R} : x^3 + x^2 - x - 1 = 0\}$ and $B = \{x \in \mathbb{R} : x^4 - 5x^2 + 4 = 0\}$. Are either of the relations $A \subseteq B$ or $B \subseteq A$ true? Explain.

Solution

The roots for the polynomial x^4-5x^2+4 are the square root of the roots of the polynomial $y^2-5y+4 \implies y=\{1,4\} \implies x=\{-4,-1,1,4\}$. Similarly, the roots for the polynomial x^3+x^2-x-1 are x=-1,1. Therefore $A=\{-1,1\}$ and $B=\{-4,-1,1,4\}$. Therefore the only relation that is true is $A\subseteq B$ since all the elements of A are within B. $B\subseteq A$ is not true since the element -4 is not within A.

Problem 4.2.4

Given $A \subseteq Z$ and $x \in \mathbb{Z}$, we say that x is A-mirrored if and only if $-x \in A$. We also define:

$$M_A := \{x \in \mathbb{Z} : x \text{ is A-mirrored}\}.$$

- (a) What is the negation of x is A-mirrored.
- (b) Find M_B for $B = \{0, 1, -6, -7, 7, 100\}$.
- (c) Assume that $A \subseteq \mathbb{Z}$ is closed under addition (i.e., for all $x, y \in A$, we have $x + y \in A$). Show that M_A is closed under addition.
- (d) In your own words, under which conditions is $A = M_A$?

Solution

Part A

The negation of x is A-mirrored is x is not A-mirrored, which in symbols means that x is not A-mirrored $\iff -x \notin A$.

Part B

$$M_B = \{0, -7, 7\}$$

Part C

Proof. Let $A \subseteq \mathbb{Z}$ and assume that A is closed under addition. Consider the set M_A . Let $x, y \in M_A$. The construction of M_A then implies that $x, y \in A$ and $-x, -y \in A$. Since A is closed under addition, then $(-x) + (-y) = -x - y \in A$. Therefore it follows that $x + y \in M_A$.

Part D

In order for A and M_A to be equal, then every element in A must have its negative present.

Problem 4.2.5

Define the set [1] by: [1] = $\{x \in \mathbb{Z} : x \equiv 1 \pmod{5}\}$.

- (a) Describe the set [1] in roster notation.
- (b) Compute the set $M_{[1]}$, as defined in Exercise 4.2.4
- (c) Are the sets [1] and $M_{[1]}$ equal? Prove/Disprove.
- (d) Now consider the set $[10] = \{x \in \mathbb{Z} : x \equiv 10 \pmod{5}\}$. Are the sets [10] and $M_{[10]}$ equal? Prove/Disprove.

Solution

Part A

$$[1] = {\ldots, -14, -9, -4, 1, 6, 11, 16, \ldots}.$$

Part B

$$M_{[1]} = \emptyset$$
.

Part C

Proof by contradiction that the sets [1] and $M_{[1]}$ are not equal.

Proof. Let $[1] = \{x \in \mathbb{Z} : x \equiv 1 \pmod{5}\}$. Assume that $[1] = M_{[1]}$. Let x = 1. It follows that $x \in [1]$ since $1 \equiv 1 \pmod{5}$. However, $-1 \notin [1]$ since $-1 \equiv 4 \pmod{5}$, $1 \notin M_{[1]}$. Therefore, $[1] \neq M_{[1]}$; a contradiction.

Part D

Problem 4.3.2

Let $A = \{1, 3, 5, 7, 9, 11\}$ and $B = \{1, 4, 7, 10, 13\}$. What are the following sets?

- (a) $A \cap B$
- (b) $A \cup B$
- (c) $A \setminus B$
- (d) $(A \cup B) \setminus (A \cap B)$

Solution

- (a) $A \cap B = \{1, 7\}$
- (b) $A \cup B = \{1, 3, 4, 5, 7, 9, 10, 11, 13\}$
- (c) $A \setminus B = \{3, 5, 9, 11\}$
- (d) $(A \cup B) \setminus (A \cap B) = \{3, 4, 5, 9, 10, 11, 13\}$

Problem 4.3.5

Prove that $B \setminus A = B \iff A \cap B = \emptyset$.

Solution

Proof. Let A and B be sets.

- (⇒) Assume that $B \setminus A = B$. Let $x \in B$. It follows that $x \in B \setminus A$. $B \setminus A$ is equivalent to $B \cap A^{\complement}$. Therefore $x \in B \cap A^{\complement}$. By definition of the intersection, $x \in A^{\complement}$ and therefore $x \notin A$. Therefore since x was an arbitrary element in B and it is not in A, $A \cap B$ will have no elements and therefore be equal to \emptyset .
- (\Leftarrow) Proof by contrapositive. Assume that $B \setminus A \neq B$. This can be rewritten as $B \cap A^{\complement} \neq B$. Let $x \in B$. It follows that $x \notin A^{\complement} \implies x \in A$. Since x is both in A and B, their interesection is non-empty. Alternatively, $A \cap B \neq \emptyset$.

Problem 4.3.7

Write out a formal proof of the set identity

$$A = (A \setminus B) \cup (A \cap B).$$

by showing that each side is a subset of the other. Now repeat your argument using only results from set algebra (Theorems 4.9 and 4.10).

Solution

Proof by showing that each side is a subset of the other.

Proof. Let A and B be sets. Let $x \in A$. Consider the case where $x \notin B$. It follows that $x \in B^{\mathbb{C}}$. It follows that for the set $A \setminus B$, or equivalently $A \cap B^{\mathbb{C}}$ that $x \in A \cap B^{\mathbb{C}}$ since x is in both A and $B^{\mathbb{C}}$. Therefore the set $(A \setminus B) \cup (A \cap B)$ will contain the element x. Consider the case where $x \in B$. It follows that $x \in A \cap B$ since x is in both A and B. Since $x \in A \cap B$, it follows that $x \in (A \setminus B) \cup (A \cap B)$. Since x is an arbitrary element of A and is always an element of $(A \setminus B) \cup (A \cap B)$, it follows that $A \subseteq (A \setminus B) \cup (A \cap B)$.

Problem 4.4.1

For each of the following functions $f:A\to B$ determine whether f is injective, surjective or bijective. Prove your assertions.

- (a) $f:[0,3] \to \mathbb{R}$ where f(x) = 2x.
- (b) $f: [3, 12) \to [0, 3)$ where $f(x) = \sqrt{x-3}$.
- (c) $f: (-4,1] \to (-5,-3]$ where $f(x) = -\sqrt{x^2+9}$.

Solution

Part A

f is injective but not surjective.

Proof. Let $f:[0,3] \to \mathbb{R}$ where f(x) = 2x. Let $a,b \in [0,3]$. Then

$$f(a) = f(b)$$
$$2a = 2b$$
$$a = b$$

It follows that f is injective. Now assume that f is surjective. Therefore for all $c \in \mathbb{R}$, there is $d \in [0,3]$ such that f(d) = c. Consider the case where c = 1000. It

follows

$$f(d) = c$$

$$f(d) = 1000$$

$$2d = 1000$$

$$d = 500.$$

However, it was assumed that $d \in [0,3]$, hence a contradiction.

Part B

f is bijective.

Proof. Let $f:[3,13) \to [0,3)$ where $f(x) = \sqrt{x-3}$. Let $a,b \in [3,13)$. Then

$$f(a) = f(b)$$

$$\sqrt{a-3} = \sqrt{b-3}$$

$$a-3 = b-3$$

$$a = b.$$

Therefore f is injective. Consider now an aribitary element $y \in [0, 3)$. Let $x = y^2 + 3$, then $x \in [3, 12)$

$$0 \le y < 3$$

 $0 \le y^2 < 9$
 $3 \le y^2 + 3 < 12$.

It also follows that

$$f(x) = \sqrt{x-3}$$
$$= \sqrt{(y^2+3)-3}$$
$$= \sqrt{y^2}$$
$$= \pm y.$$

Since f(x) > 0 for all input, then f(x) = y. Therefore f is surjective, meaning f is bijective.

Part C

f is surjective but not injective.

Problem 4.4.5

You may assume that $g:[2,\infty)\to\mathbb{R}:x\to\sqrt{x^3-8}$ is an injective function. Find a function $f:\mathbb{R}\to\mathbb{R}$ which is not injective, but for which the composition $f\circ g:[2,\infty)\to\mathbb{R}$ is injective. Justify your answer.

Solution

Let $f(x) = x^2$. f(x) is not injective from $\mathbb{R} \to \mathbb{R}$. Let $a, b \in \mathbb{R}$ such that b = -a. Then $f(a) = a^2 = b^2 = (-b)^2 = f(b)$. However, $f \circ g : [2, \infty) \to \mathbb{R}$ is injective. Consider $x_1, x_2 \in [2, \infty)$. Let $h(x) = g(f(x)) = x^3 - 8$. Assume $h(x_1) = h(x_2)$. Then

$$h(x_1) = h(x_2)$$

$$x_1^3 - 8 = x_2^3 - 8$$

$$x_1^3 = x_2^3$$

$$x_1 = x_2.$$

Therefore establishing an injection.

Problem 4.4.10

Suppose that $g \circ f$ is injective. Prove that f is injective.

Solution

Proof. Let X,Y and Z be sets. Let $f:X\to Y$ and $g:Y\to Z$. Assume towards contradiction that $g\circ f$ is injective and f is not injective. Since f is not injective, then there exists $a,b\in X$ such that f(a)=f(b). However, this implies that g(f(a))=g(f(b)), meaning $g\circ f$ is not injective. Hence a contradiction.