CSE-233 : Section A Summer 2020

Conversion from/to Regular Expression

Say that R is a **regular expression** if R is

- 1. a for some a in the alphabet Σ ,
- 2. ε ,
- 3. Ø,
- **4.** $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
- **5.** $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or
- **6.** (R_1^*) , where R_1 is a regular expression.

1. R=a for some a in Σ . Then $L(R)=\{a\}$, and the following NFA recognizes L(R).

2. $R = \varepsilon$. Then $L(R) = {\varepsilon}$, and the following NFA recognizes L(R).

Formally, $N = (\{q_1\}, \Sigma, \delta, q_1, \{q_1\})$, where $\delta(r, b) = \emptyset$ for any r and b.

3. $R = \emptyset$. Then $L(R) = \emptyset$, and the following NFA recognizes L(R).

4.
$$R = R_1 \cup R_2$$
.

5. $R = R_1 \circ R_2$.

6. $R = R_1^*$.

1. R = a for some a in Σ . Then $L(R) = \{a\}$, and the following NFA recognizes L(R).

Notice how the final state has changed

Notice how the final state has changed in ab

Task

Convert the following RE to NFA

Show the following steps-

- 1. a
- 2. b
- 3. c
- 4. c*
- 5. bc*d
- 6. a+bc*d

$$(0+1)^*1(0+1)$$

$$(0+1)^*1(0+1)$$

Solution: Step 1-

$$(0+1)^*1(0+1)$$

Solution: Step 2-

$$(0+1)^*1(0+1)$$

Solution: Step 3-

Practice

Exercise 3.2.4: Convert the following regular expressions to NFA's with ϵ -transitions.

- * a) **01***.
 - b) (0+1)01.
 - c) $00(0+1)^*$.

DFA to Regular Expression

- 1. Convert DFA to GNFA*
- 2. Convert GNFA to Regular Expression

*GNFA = Generalized NFA (Where transition arrows can have RE)

Property of GNFA

- 1. The start state has transition arrows going to every state but no arrows coming in from any other state.
- 2. There is only a single accept state, and it has arrows coming in from every other state (including itself, ie self-loop) but no arrow going to any other state. This state is not the same as start state.
- 3. Other than these two, all states have arrows between them.

Example of GNFA

Step 1: DFA to GNFA

- 1. Add a new start state with epsilon arrow to old start state.
- 2. Add a new final state with epsilon arrow from old final states.
- 3. Other than these two, all states having-
 - multiple symbols can be written as union
 - no symbol can be written as Ø

DFA to GNFA Example

DFA GDFA (Empty arrow from 2 to 1 is ignored)

Step 2: GNFA to RE

Step 2: GNFA to RE

Take a middle state, remove it and repair the rest of the states

This is called **State Elimination Technique**

Step 2: GNFA to RE

Another Example

Step 2: GNFA to RE

Final Regular Expression

 $r = (ae^*d)^*ae^*b(ce^*b + ce^*d(ae^*d)^*ae^*b)^*$.

Complete Example: DFA to RE

DFA to RE : Example 2

$$(0+1)^*1(0+1) + (0+1)^*1(0+1)(0+1)$$

 $\begin{array}{c} Task \\ \text{Convert the following DFA to RE} \end{array}$

Conversion from the following DFA to RE

Conversion from the following DFA to RE

Eliminate state 1

Conversion from the following DFA to RE

Eliminate state 2

Conversion from the following DFA to RE

 $(a(aa \cup b)^*ab \cup b)((ba \cup a)(aa \cup b)^*ab \cup bb)^*((ba \cup a)(aa \cup b)^* \cup \epsilon) \cup a(aa \cup b)^*$

Eliminate state 3

Practice

Exercise 3.2.3: Convert the following DFA to a regular expression, using the state-elimination technique of Section 3.2.2.

	0	1
$\rightarrow *p$	s	\overline{p}
q	p	s
r	r	\boldsymbol{q}
s	q	r