Introduction to Artificial Intelligence

Daniel Deng

1 Search Problems

Definition 1.1 (Reflex Agent). A reflex agent chooses actions based on its current perception of the world.

Definition 1.2 (Planning Agent). A planning agent chooses actions based on hypothesized consequences of actions.

Definition 1.3 (Search Problem). A search problem consists of a state space, a successor function, a start state, and a goal test.

2 Search Algorithms

2.1 Heuristics

Definition 2.1 (Heuristic). A heuristic h(n) is a function that estimates the distance from state n to the goal state for a particular search problem. It is often solutions of relaxed problems.

Definition 2.2 (Admissibility). A heuristic is admissible, or optimistic, if $0 \le h(n) \le h^*(n)$ where h^* is the true cost to goal state.

Definition 2.3 (Consistency). A heuristic is consistent if $h(n) - h(n+1) \le c(n, n+1)$ where c is the cost between states n and n+1.

Remark. Consistency necessarily implies admissibility.

Table 1: Search algorithms.

	Fringe	Complete	Optimal	Time	Space
Depth-First Search	Stack	iff no cycle	No	$O(b^m)$	O(bm)
Breadth-First Search	Queue	Yes	iff uniform cost	$O(b^s)^1$	$O(b^s)^1$
Uniform Cost Search	$PQ(g(n))^2$	iff positive cost	Yes	$O(b^{c^*/\epsilon})^3$	$O(b^{c^*/\epsilon})^3$
Greedy Search	PQ(h(n))	-	No	-	-
A^* Tree Search	PQ (h(n) + g(n))	-	iff $h(n)$ admissible	-	-
A^* Graph Search ⁴	PQ(h(n) + g(n))	-	iff $h(n)$ consistent	-	-

Remark. Implementation of search algorithms differ only in fringe strategies.

 $^{^1}$ s = depth of solution. 2 g(n) = cumulative path cost. 3 c*/\epsilon = effective solution depth (c* = cost of the cheapest solution; \epsilon = minimum cost of cost-contour arcs). 4 Compared to tree search, graph search keeps a closed set of expanded states to check against to prevent duplicate expansions.

3 Constrained Satisfaction Problems

Definition 3.1 (Constrained Satisfaction Problems). Constrained Satisfaction Problems (CSPs) are a type of **identification problem** defined by variable X_0, \ldots, X_n with values from a domain D that satisfies a set of constrains.

```
Algorithm 1: Backtracking search.
   Input: A constraint satisfaction problem P.
   Output: A complete assignment A.
 1 Function BS(P):
   return EXPLORE (P, \{\})
 3 Function EXPLORE (P, A):
       if A is complete then
 4
          return A
 \mathbf{5}
       unassigned \leftarrow \text{an unassigned VARIABLES}(P)
 6
       foreach value \in DOMAIN(unassigned) do
 7
           if value is consistent with all CONSTRAINTS(P) then
 8
               add \{unassigned \leftarrow value\} to A
 9
               attempt \leftarrow \texttt{EXPLORE}(P, A)
10
               if attemp failed then
11
                | \quad \text{remove } \{unassigned \leftarrow value\} \text{ from } A
12
               else
13
                  return attempt
14
       {\bf return}\ failed
15
```

3.1 Filtering

```
Definition 3.2 (Arc Consistency). Arc X \to Y is consistent \Leftrightarrow
```

 $(\forall x \in D_x)(\exists y \in D_y)(y \text{ can be assigned to } Y \text{ without violating a constraint.})$

```
Algorithm 2: Arc consistency filtering.
   Input: A constraint satisfaction problem P.
1 Function AC-3(P):
\mathbf{2}
       Q \leftarrow \text{empty Queue}
       enqueue all arcs \in P
       while Q is not empty do
4
           (X_i, X_i) \leftarrow \text{dequeue from } Q
 5
           if FILTER(X_i, X_j) is successful then
 6
               foreach X_k \in \texttt{NEIGHBORS}(X_i) do
 7
                  enqueue (X_k, X_i)
 8
9 Function FILTER (tail, head):
       result \leftarrow false
10
11
       foreach value \in DOMAIN(tail) do
           if value violates some constraint with all values in DOMAIN(head) then
12
               delete value from DOMAIN(tail)
13
               result \leftarrow true
14
       return reuslt
15
```

3.2 Ordering

Definition 3.3 (Minimum Remaining Values). The MRV policy chooses an unassigned variable that has the fewest valid remaining values in order to induce backtracking earlier and reduce potential node expansions.

Definition 3.4 (Least Constraining Value). The LCV policy chooses a value assignment that violates the least amount of constraints, which requires additional computation such as running arc consistency test on each value.

3.3 Structure

Given a tree-structured CSP, represent it as a directed acyclic graph. Enforcing arc consistency in reverse topological order then assigning in topological order ensures a runtime

of $O(nd^2)$ (as opposed to $O(d^n)$ in the general case). TODO: nearly tree-like CSPs and tree decomposition.

4 Local Search

Improve a single option until no further improvements can be made.

Remark. Generally, local search is faster and more memory efficient at the expense of completeness and optimality.

4.1 Iterative Algorithm for CSP/Hill Climbing

Starting with a "complete" state, randomly select any conflicted variables and reassign values using min-conflicts heuristics.

Remark. Efficiency of the algorithm depends on $R = \frac{\text{number of constraints}}{\text{number of variables}}$; computation time is approximately constant time except when R approaches the *critical ratio*.

4.2 Simulated Annealing

```
Algorithm 3: Simulated annealing.
   Input: A problem \overline{P} and a schedule/mapping from time to "temperature" T.
   Output: A solution state.
   /* Escape local maxima by allowing downhill movement based on a
       "temperature"-dependent probabilistic function.
                                                                                               */
1 current \leftarrow initial state of P
2 for t \leftarrow 1 to \infty do
       temp \leftarrow T[t]
       if temp = 0 then
4
           return current
5
       else
6
           next \leftarrow a randomly selected successor of current
 7
           \Delta \leftarrow \text{Value}[next] - \text{Value}[current]
8
           if \Delta > 0 then
9
              current \leftarrow next
10
           else
11
               currnet \leftarrow next with probability e^{\frac{\Delta}{temp}}
12
```

5 Genetic Algorithms

Keep best N hypotheses at each step (selection) based on a fitness function and have pairwise crossover operations (and, optionally, mutation operations) to generate a new set of hypotheses.

6 Games

```
Algorithm 4: Minimax with alpha-beta pruning.
    Input: A game state S
    Output: The root minimax value.
    /* initialize \alpha \leftarrow -\infty and \beta \leftarrow \infty
                                                                                                            */
 1 Function VALUE(S, \alpha, \beta):
        if S is a terminal state then
 3
            return knwon temrinal value
        if the agent is maximizing then
 4
            return MAX-VALUE(S, \alpha, \beta)
 5
        if the agent is minimizing then
 6
            return MIN-VALUE (S, \alpha, \beta)
 8 Function MAX-VALUE(S, \alpha, \beta):
 9
        v \leftarrow -\infty
        foreach successor S' of S do
10
             v \leftarrow \texttt{MAX}(v, \texttt{VALUE}(S'))
11
             if v \geq \beta then
12
                 return v
            \alpha \leftarrow \texttt{MAX}(\alpha, v)
14
        \mathbf{return}\ v
15
16 Function MIN-VALUE(S, \alpha, \beta):
        v \leftarrow \infty
17
        foreach successor S' of S do
18
             v \leftarrow \texttt{MIN}(v, \texttt{VALUE}(S'))
19
             if v \leq \alpha then
20
                 return v
            \beta \leftarrow \texttt{MIN}(\beta, v)
\mathbf{22}
        return v
23
```

Algorithm 5: Expectimax.

```
Input: A game state S
   Output: The root minimax value.
1 Function VALUE(S):
       if S is a terminal state then
           return knwon temrinal value
3
       if the agent is maximizing then
4
           return MAX-VALUE(S)
 5
       if the agent is randomizing then
6
           return EXP-VALUE(S)
 7
8 Function MAX-VALUE(S):
       v \leftarrow -\infty
       foreach successor S' of S do
10
           v \leftarrow \texttt{MAX}(v, \texttt{VALUE}(S'))
11
       return v
12
13 Function EXP-VALUE(S):
       v \leftarrow 0
       foreach successor S' of S do
15
          v \leftarrow \mathbb{E}\left[ \mathtt{VALUE}(S') \right] \ / / \ \mathtt{expected} \ \mathtt{value}
16
       return v
17
```

Remark. Typically, performing Minimax and Expectimax to terminal states are too costly, which can be solved by terminating early and estimating the state utility with evaluation functions.

7 Markov Decision Processes

Remark. Finite horizons (finite timestep before an agent terminates) and/or discount factors (γ) ensure an agent terminates in MDP.

Definition 7.1 (Transition Function). $T(s, a, s') = P(s' \mid s, a)$

Definition 7.2 (Value Iteration). Initialize $V_0(s) \leftarrow 0$ for all $s \in S$. Compute $\forall s \in S$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V_k(s')]$$
 (value iteration)

until $V_i(s)$ converges for all $s \in S$ (yields V^*). Then, compute $\forall s \in S$

$$\pi^*(s) \leftarrow \underset{a}{\operatorname{argmax}} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V_k(s')]$$
 (policy extraction)

Definition 7.3 (Policy Iteration). Define an initial policy π_0 (can be arbitrary, but ideality close to the optimal policy). Then, iteratively solve $\forall s \in S$

$$V^{\pi_i}(s) = \sum_{s'} T(s, \pi_i(s), s') [R(s, \pi_i(s), s') + \gamma V^{\pi_i}(s')]$$
 (policy evaluation)

$$\pi_{i+1}(s) \leftarrow \underset{a}{\operatorname{argmax}} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{\pi_i}(s')]$$
 (policy improvement)

until $\pi(s)$ converges for all $s \in S$ (yields pi^* .

Remark. Policy evaluation solves a system of |S| liear equations.

Remark. Policy iteration converges faster than value iteration.