

# Energy Survey of Army Dining Facilities at Fort Lewis, Wa.

Contract No. DACA 67-85-C-0085

- ~~Final Report~~ -

*Volume IV*

July 31, 1986

*Revised  
February 1987*



Prepared for

U.S. Army Corps of Engineers  
Seattle District  
Seattle, Washington

DTIC QUALITY INSPECTED 8

by

United Industries Corporation  
12835 Bell-Red Road  
Bellevue, Washington 98005  
Tel: (206) 453-8995

19971021 318





DEPARTMENT OF THE ARMY  
CONSTRUCTION ENGINEERING RESEARCH LABORATORIES, CORPS OF ENGINEERS  
P.O. BOX 9005  
CHAMPAIGN, ILLINOIS 61826-9005

REPLY TO  
ATTENTION OF: TR-I Library

17 Sep 1997

Based on SOW, these Energy Studies are unclassified/unlimited.  
Distribution A. Approved for public release.



Marie Wakefield,  
Librarian Engineering

## 1.0 EXECUTIVE SUMMARY

This report is the result of the energy audit and analysis of thirty-eight dining facilities at Fort Lewis, Washington by United Industries Corporation (UIC), according to the scope of work for Contract No. DCAC 67-85-C-0085. The work includes the identification and evaluation of Energy Conservation Opportunities (ECO's) including low cost/no cost ECO's. Program documentation was prepared for selected ECO's with savings investment ratios greater than one (SIR > 1), following Life Cycle Cost Analysis procedures.

The results of six programs are presented herein, including the program documentation for one Energy Conservation Investment Program (ECIP), three Quick Return on Investment Programs (QRIP's), one OSD Productivity Investment Funding (OSD-PIF) and one Productivity Enhancing Capital Investment Program (PECIP). Figure 1-1 is the summary recommended ECO's for these six investment programs.

The QRIP-2 project, insulate piping, includes a total of seventeen dining facilities. This QRIP project will save 1,712 MBTU's per year in fossil fuels. The construction cost of the QRIP-2 project will be \$3,822 and will save \$9,656 per year with a savings investment ratio (SIR) of 47.0 and with a simple payback of 0.4 years. The simple payback period is defined as the ratio of the construction cost to the annual dollar savings.

The QRIP-1 project, night setback thermostats, includes a total of seven dining facilities. This QRIP project will save 1,821 MBTU's per year in fossil fuels. The project will cost \$6,068 and will save \$10,694 per year with a savings investment ratio (SIR) of 20.8 and with a simple payback of 0.6 years.

The OSD-PIF project, makeup air for exhaust hoods, includes a total of twenty-four dining facilities. This OSD-PIF project will save 22,079 MBTU's per year in fossil fuels. The project will cost \$145,335 and will save \$123,384 per year with a savings investment ratio (SIR) of 15.9 and with a simple payback of 1.2 years.

The QRIP-3 project, upgrade HVAC controls, includes a total of six dining facilities. This QRIP-3 project will save 1,550 MBTU's per year in fossil fuels. The project will cost \$14,658 and will save \$8,507 per year with a savings investment ratio (SIR) of 7.3 and with a simple payback of 1.8 years.

The PECIP project, insulate floors, includes a total of eleven dining facilities. This PECIP project will save 779 MBTU's per year in fossil fuels. The project will cost \$13,838 and will save \$4,439 per year with a savings investment ratio (SIR) of 5.9 and with a simple payback of 3.1 years. Figure 1-5 shows the existing and proposed energy consumption for the five non-ECIP programs.

FIGURE 1-1

## SUMMARY OF RECOMMENDED ECO'S FOR INVESTMENT PROGRAMS

| ITEM NO.     | PROGRAM DESCRIPTION:                          | CONSTRUCTION COST (\$) | CONSTRUCTION COST PLUS SITEH (%\$) | PROGRAM YEAR COST (\$) | ENERGY SAVINGS: (3) TYPE (\$) | ANNUAL PAYBACK DOLLAR SAVINGS: (5) (\$) | SIR (6) (YRS)      |
|--------------|-----------------------------------------------|------------------------|------------------------------------|------------------------|-------------------------------|-----------------------------------------|--------------------|
|              |                                               |                        |                                    |                        |                               |                                         |                    |
| 1.           | QRIP-2: ECO-17, Insulate Piping               | \$3,822                | \$4,032                            | \$5,596                | 0/G                           | 1712                                    | \$9,656 0.4 47.0   |
| 2.           | QRIP-1: ECO-13, Nite Setback Tstat            | \$6,068                | \$6,402                            | \$8,884                | 0/G                           | 1821                                    | \$10,694 0.6 20.8  |
| 3.           | USD-PIF: ECO-26, Makeup Air For Exhaust Hoods | \$145,335              | \$153,328                          | \$212,785              | 0/G                           | 22079                                   | \$123,384 1.2 15.9 |
| 4.           | QRIP-3: ECO-21, Upgrade HVAC Controls         | \$14,658               | \$15,464                           | \$21,461               | 0/G/E                         | 1550                                    | \$8,507 1.7 7.3    |
| 5.           | PECIP: ECO-1B, Insulate Floors                | \$13,838               | \$14,599                           | \$20,260               | 0/G                           | 779                                     | \$4,439 3.1 5.9    |
| (SUBTOTALS:) |                                               | \$183,721              | \$193,826                          | \$268,986              | 0/G/E                         | 27941                                   | \$156,680 1.2 NA   |
| 6.           | ECIP:                                         |                        |                                    |                        |                               |                                         |                    |
|              | ECO-1A, Insulate Walls                        | \$14,448               | \$15,243                           | \$22,317               | 0                             | 494                                     | \$2,816 5.1 3.6    |
|              | ECO-3, Weatherstrip & Caulk                   | \$3,722                | \$3,927                            | \$5,749                | 0/G/E                         | 133                                     | \$730 5.1 3.5      |
|              | ECO-22A, Heat Pump Space Heating              | \$812,796              | \$857,500                          | \$1,255,465            | 0/G/E                         | -4145                                   | \$94,571 8.6 1.5   |
|              | ECO-23, Opt. Facility Operation               | \$18,200               | \$19,201                           | \$28,112               | 0/E                           | 2708                                    | \$8,760 2.1 8.3    |
|              | ECO-28, Hot Water Heat Pump                   | \$90,405               | \$95,377                           | \$139,642              | 0/G/E                         | -1545                                   | \$17,675 5.1 2.5   |
|              | ECO-30, Microwave Ovens                       | \$29,900               | \$31,545                           | \$46,184               | G/E                           | 2464                                    | \$4,024 7.4 2.0    |
| (SUBTOTALS:) |                                               | \$969,471              | \$1,022,792                        | \$1,497,470            | 0/G/E                         | 109                                     | \$128,576 7.5 2.5  |
| (TOTALS:)    |                                               | \$1,153,192            | \$1,216,618                        | \$1,766,456            | 0/G/E                         | 28051                                   | \$285,256 4.0 NA   |

## NOTES:

- (1) Construction Cost Based on March, 1986 Cost.
- (2) Program Year Cost = Const Cost x 1.4641 (Escalated to Midpoint of Construction: Apr-FY90 @ 10% Per Year).
- (3) FUEL TYPE: 0 = FUEL OIL, E = ELECTRICITY, G = NATURAL GAS
- (4) MBTU = MILLION BTU'S.
- (5) ELECTRICITY: 1.0 MWH (SITE) = 11.6 MBTU'S (SOURCE).
- (6) Payback = Construction Cost / Annual Dollar Savings.
- (7) SIR is defined on the Life Cycle Cost Analysis Summary Sheets (LCCASS).

A total of twenty-three dining facilities and six ECO's are included in one ECIP project. This ECIP project will save 31,199 MBTU's per year in fossil fuels (12,178 MBTU's per year of fuel oil; 19,021 MBTU's per year of natural gas) and will consume an additional 31,091 MBTU's per year of electrical energy. The project will cost \$969,471 and will save \$128,576 per year with a savings investment ratio (SIR) of 2.5, and with a simple payback of 7.5 years.

The total cost of all six programs is \$1,153,192 with annual energy savings of 28,051 MBTU's and annual dollar savings of \$285,256 and will have a simple payback of 4.0 years (see Figure 1-1).

Savings to investment ratios (SIR's) were calculated for all technically feasible ECO's for each individual building. These SIR's are listed in Figure 1-2. A summary of ECO's with SIR's greater than one (SIR > 1), is listed in Figure 1-3. This figure shows the summation of each ECO for all buildings. Listed are the construction costs, annual energy savings in MBTU's, annual dollar savings, and payback period.

## 1.1 Summary and Conclusions

### 1.1.1 Introduction

United Industries Corporation (UIC) conducted an energy analysis survey at thirty-eight dining facilities at Fort Lewis Army Base, Tacoma, Washington. The purpose of the analysis was to identify energy conservation opportunities (ECO's) and to calculate the cost-effectiveness of the ECO's. This report presents the results of this study in four (4) volumes as follows:

1. Volume I - Report Sections: 1 (incl. Executive Summary) thru 6.
2. Volume II - Appendices: A thru L
3. Program Documents Volume
4. Executive Summary Volume

### 1.1.2 Scope of Work

The original contract called for the survey of forty buildings; however, three buildings were closed or were no longer used as dining facilities (3220, 3221, 3475). One new building (3279) was added to the original list of buildings to be analyzed (see Appendix L, page L-12).

A total of over thirty-one (31) ECO's were analyzed for each building (see Appendix A, pages L-10 and L-11).

FIGURE 1-2  
Summary of Life Cycle Cost Analysis - SIR  
(Group A Dining Facilities)

| ECO NO. | TITLE:                     | 4436  | 4A16 | 6A8  | 6A38 | 8A27 | 5B10 | 6B10 | 9C28 | 10C8 | 4E1  | 8E23 |
|---------|----------------------------|-------|------|------|------|------|------|------|------|------|------|------|
| 1A      | INSULATE WALLS             | 3.6   | 3.7  | 3.6  | 3.6  | 3.6  | 3.6  | 3.6  | 3.6  | 3.6  | 3.6  | 3.6  |
| 1B      | INSULATE FLOORS            | 5.9   | 5.9  | 5.9  | 5.9  | 5.9  | 5.9  | 5.9  | 5.9  | 5.9  | 5.9  | 5.9  |
| 1C      | INSULATE CEILINGS          | 2.4   | 2.4  | 3.7  | 0.2  | 2.4  | 2.4  | 2.4  | 2.4  | 2.4  | 2.4  | 2.4  |
| 2       | STORM WINDOWS OR DBL. GLZ. | 0.7   | 0.7  | 0.7  | 0.7  | 0.7  | 0.7  | 0.7  | 0.7  | 0.7  | 0.7  | 0.7  |
| 3       | WEATHERSTRIP AND CAULK     | 0.6   | 0.6  | 0.6  | 0.6  | 0.6  | 0.6  | 0.6  | 0.6  | 0.6  | 0.6  | 0.6  |
| 4       | INSULATE PANELS            |       |      |      |      |      |      |      |      |      |      |      |
| 5       | SOLAR FILM                 |       |      |      |      |      |      |      |      |      |      |      |
| 6       | VESTIBULES                 | 0.2   | 0.2  | 0.2  | 0.2  | 0.2  | 0.2  | 0.2  | 0.2  | 0.2  | 0.2  | 0.2  |
| 7       | REDUCTION OF GLASS AREA    | 1.4   | 1.4  | 1.4  | 1.4  | 1.4  | 1.4  | 1.4  | 1.4  | 1.4  | 1.4  | 1.4  |
| 8       | SHUTDOWN DHW AT NIGHT      | 1.3   | 0.7  | 1.0  | 1.0  | 0.8  | 1.1  | 1.1  | 1.4  | 0.7  | 1.4  | 1.0  |
| 9       | ENERGY CONS. FLUOR. LIGHT  |       |      |      |      |      |      |      |      |      |      |      |
| 10      | REDUCE LIGHTING LEVELS     |       |      |      |      |      |      |      |      |      |      |      |
| 11      | REPLACE INCAND. LIGHTS     | 1.7   | 1.7  | 2.3  | 2.3  | 2.5  | 1.8  | 1.8  | 2.3  | 1.7  | 1.7  | 2.3  |
| 12      | USE MORE EFF. LIGHTS       |       |      |      |      |      |      |      |      |      |      |      |
| 13      | NIGHT SETBACK THERMOSTAT   |       |      |      |      |      |      |      |      |      |      |      |
| 14      | INFRARED HEATERS           |       |      |      |      |      |      |      |      |      |      |      |
| 15      | ECONOMIZER CYCLE           |       |      |      |      |      |      |      |      |      |      |      |
| 16      | HEAT RECLAIM FROM EXHAUST  | 1.9   | 1.2  | 0.7  | 1.2  | 1.2  | 1.2  | 1.2  | 1.2  | 1.2  | 1.2  | 1.2  |
| 17      | INSULATE PIPING            | 37.0  | 37.0 | 4.9  | 13.5 | 70.6 | 11.7 | 14.6 | 16.6 | 26.7 | 90.3 | 17.1 |
| 18      | DISHWASHER HEAT RECOVERY   | 1.4   | 1.4  | 0.7  | 1.2  | 2.5  | 1.4  | 1.4  | 2.1  | 0.7  | 2.0  | 2.0  |
| 19      | BOOSTER HATERS             |       |      |      |      |      |      |      |      |      |      |      |
| 20      | LOWER DHW TEMPERATURE      |       |      |      |      |      |      |      |      |      |      |      |
| 21      | UPGRADE HVAC CONTROLS      |       |      |      |      |      |      |      |      |      |      |      |
| 22A     | HEAT PUMP                  | 1.8   | 1.8  | 1.8  | 1.8  | 1.8  | 1.8  | 1.8  | 1.8  | 1.8  | 1.8  | 1.8  |
| 22B     | ELECTRIC RESISTANCE        | 3.4   | 10.6 | 9.3  | 3.4  | 3.4  | 10.6 | 10.6 | 10.6 | 9.3  | 3.4  | 3.4  |
| 23      | OPTIMIZE FACILITY OPER.    | 100.0 | 10.1 |      |      |      | 8.3  | 8.3  |      |      |      |      |
| 24      | BALANCE HVAC SYSTEM        |       |      |      |      |      |      |      |      |      |      |      |
| 25      | AIR CURTAINS               |       |      |      |      |      |      |      |      |      |      |      |
| 26      | MAKE-UP FOR EXHAUST HOODS  | 6.2   | 6.2  | 3.0  | 6.2  | 6.2  | 6.2  | 6.2  | 6.2  | 6.2  | 6.2  | 6.2  |
| 27      | SHUT OFF EXHAUST HOODS     | 19.9  | 19.9 | 10.6 | 19.9 | 19.9 | 19.9 | 19.9 | 19.9 | 19.9 | 19.9 | 19.9 |
| 28      | USE HEAT PUMPS FOR DHW     | 1.9   | 1.9  | 0.6  | 1.9  | 3.3  | 3.3  | 3.5  | 0.9  | 2.7  | 2.7  | 2.7  |
| 29      | REFRIG. WASTE HEAT RECOV.  | 2.4   | 2.4  | 3.5  | 1.9  | 1.7  | 1.2  | 1.9  | 1.7  | 1.8  | 2.1  | 2.1  |
| 30      | USE MICROWAVE OVENS        | 2.3   | 2.3  | 1.2  | 2.3  | 2.3  | 2.3  | 2.3  | 2.3  | 2.3  | 2.3  | 2.3  |
| 31      | ISOLATION OF KITCHEN       |       |      |      |      |      |      |      |      |      |      |      |

FIGURE 1-2 (Cont'd)  
 Summary of Life Cycle Cost Analysis - SIR  
 (Groups C, D & E Dining Facilities)

| ECO NO. | TITLE:                    | 3470 | 3654 | 3655 | 3657 | 1450 | 1452 | 2015 | 2020 | 2027 | 2400 | 3757 | 8085  | 8989 | 9980  |
|---------|---------------------------|------|------|------|------|------|------|------|------|------|------|------|-------|------|-------|
| 1A      | INSULATE WALLS            |      |      |      |      |      |      | 0.3  | 0.3  | 0.2  | 0.6  | 0.3  |       |      |       |
| 1B      | INSULATE FLOORS           |      |      |      |      |      |      |      |      |      |      |      |       |      | 0.4   |
| 1C      | INSULATE CEILINGS         |      |      |      |      |      |      |      |      |      |      |      |       |      | 1.8   |
| 2       | STORM WINDOWS OR DBL. GLZ | 0.2  | 0.3  | 0.3  | 0.3  |      |      |      |      |      |      |      |       |      |       |
| 3       | WEATHERSTRIP AND CAULK    | 0.3  | 0.3  | 0.3  | 0.3  |      |      |      |      |      |      |      |       |      |       |
| 4       | INSULATE PANELS           | 0.0  | 0.0  | 0.0  | 0.0  |      |      |      |      |      |      |      |       |      |       |
| 5       | SOLAR FILM                | 0.0  | 0.0  | 0.0  | 0.0  |      |      |      |      |      |      |      |       |      | 9.0   |
| 6       | VESTIBULES                |      |      |      |      |      |      |      |      |      |      |      |       |      |       |
| 7       | REDUCTION OF GLASS AREA   | 0.4  | 0.4  | 0.4  | 0.4  |      |      |      |      |      |      |      |       |      |       |
| 8       | SHUTDOWN DHW AT NIGHT     |      |      |      |      |      |      |      |      |      |      |      |       |      |       |
| 9       | ENERGY CONS. FLUOR. LIGHT |      |      |      |      |      |      |      |      |      |      |      |       |      |       |
| 10      | REDUCE LIGHTING LEVELS    |      |      |      |      |      |      |      |      |      |      |      |       |      |       |
| 11      | REPLACE INCAN. LIGHTS     | 3.5  | 3.5  | 3.5  | 4.9  |      |      | 2.3  |      |      |      |      |       |      |       |
| 12      | USE MORE EFF. LIGHTS      |      |      |      |      |      |      |      |      |      |      |      |       |      |       |
| 13      | NIGHT SETBACK THERMOSTAT  |      |      |      |      |      |      |      |      |      |      |      |       |      |       |
| 14      | INFRARED HEATERS          |      |      |      |      |      |      |      |      |      |      |      |       |      |       |
| 15      | ECONOMIZER CYCLE          |      |      |      |      |      |      |      |      |      |      |      |       |      |       |
| 16      | HEAT RECLAIM FROM EXHAUST | 3.1  | 3.1  | 3.1  | 3.1  |      |      | 5.6  |      |      |      |      |       |      |       |
| 17      | INSULATE PIPING           | 51.8 | 51.8 | 51.8 | 56.6 | 71.2 |      |      |      |      |      |      |       |      |       |
| 18      | DISHWASHER HEAT RECOVERY  | 1.4  | 1.3  | 2.1  | 2.1  | 3.8  | 2.0  | 1.3  | 1.4  | 2.3  | 2.3  | 3.4  | 1.5   | 3.5  |       |
| 19      | BOOSTER HATTERS           | 2.3  |      |      |      |      |      |      |      |      |      |      |       |      |       |
| 20      | LOWER DHW TEMPERATURE     |      |      |      |      |      |      |      |      |      |      |      |       |      |       |
| 21      | UPGRADE HVAC CONTROLS     | 27.9 | 27.9 | 27.9 | 45.9 |      |      | 32.3 | 2.3  |      |      |      |       |      | 363.3 |
| 22A     | HEAT PUMP                 | 1.1  | 1.1  | 1.1  | 1.4  | 1.8  |      | 1.3  | 1.7  | 1.0  | 1.0  | 1.7  | 3.9   | 1.0  |       |
| 22B     | ELECTRIC RESISTANCE       | 1.9  | 1.9  | 1.9  | 2.8  | 3.5  | 3.7  | 4.9  | 4.9  | 3.9  | 3.4  | 2.7  | 5.2   | 2.1  |       |
| 23      | OPTIMIZE FACILITY OPER.   |      |      |      |      |      |      |      |      |      |      |      |       |      |       |
| 24      | BALANCE HVAC SYSTEM       |      |      |      |      |      |      |      |      |      |      |      |       |      |       |
| 25      | AIR CURTAINS              |      |      |      |      |      |      |      |      |      |      |      |       |      |       |
| 26      | MAKE-UP FOR EXHAUST HOODS | 16.1 | 16.1 | 16.1 | 23.8 | 25.7 | 16.4 | 16.4 | 16.4 | 13.0 | 18.8 | 62.8 | 14.5  | 15.2 |       |
| 27      | SHUT OFF EXHAUST HOODS    | 42.6 | 42.6 | 42.6 | 53.9 | 42.6 | 24.8 | 24.8 | 24.8 | 24.8 | 21.7 | 79.3 | 222.0 | 5.7  |       |
| 28      | USE HEAT PUMP FOR DHW     | 1.9  | 1.7  | 1.2  | 3.3  | 3.5  | 2.0  | 1.3  | 2.3  | 2.3  | 2.8  | 4.1  | 2.9   | 3.1  |       |
| 29      | REFRIG. WASTE HEAT RECOV. | 2.0  | 1.6  | 2.4  | 4.2  | 1.4  | 2.5  | 1.6  | 2.2  | 2.2  | 1.1  | 3.6  | 0.7   | 3.7  |       |
| 30      | USE MICROWAVE OVENS       | 0.8  | 0.8  | 0.8  | 0.8  | 0.8  | 0.8  | 0.8  | 0.8  | 0.8  | 0.8  | 1.1  | 1.1   | 2.6  |       |
| 31      | ISOLATION OF KITCHEN      |      |      |      |      |      |      |      |      |      |      |      |       | 0.8  |       |
| 32      | AUTOMATIC LIGHT SWITCHES  |      |      |      |      |      |      |      |      |      |      |      |       | -1.2 |       |

FIGURE 1-2 (Cont'd)  
 Summary of Life Cycle Cost Analysis - SIR  
 (Group B Dining Facilities)

| ECO NO. | TITLE:                    | 3114 | 3119 | 3157 | 3165 | 3213 | 3224 | 3279 | 3281 | 3416 | 3417 | 3421 |
|---------|---------------------------|------|------|------|------|------|------|------|------|------|------|------|
| 1A      | INSULATE WALLS            |      |      |      |      |      |      |      |      |      |      |      |
| 1B      | INSULATE FLOORS           |      |      |      |      |      |      |      |      |      |      |      |
| 1C      | INSULATE CEILINGS         |      |      |      |      |      |      |      |      |      |      |      |
| 2       | STORM WINDOW OR DBL. GLZ. |      |      |      |      |      |      |      |      |      |      |      |
| 3       | WEATHERSTRIP AND CAULK    |      |      |      |      |      |      |      |      |      |      |      |
| 4       | INSULATE PANELS           |      |      |      |      |      |      |      |      |      |      |      |
| 5       | SOLAR FILM                |      |      |      |      |      |      |      |      |      |      |      |
| 6       | VESTIBULES                |      |      |      |      |      |      |      |      |      |      |      |
| 7       | REDUCTION OF GLASS AREA   |      |      |      |      |      |      |      |      |      |      |      |
| 8       | SHUTDOWN DHW AT NIGHT     |      |      |      |      |      |      |      |      |      |      |      |
| 9       | ENERGY CONS. FLUOR. LIGHT |      |      |      |      |      |      |      |      |      |      |      |
| 10      | REDUCE LIGHTING LEVELS    |      |      |      |      |      |      |      |      |      |      |      |
| 11      | REPLACE INCAND. LIGHTS    |      |      |      |      |      |      |      |      |      |      |      |
| 12      | USE MORE EFF. LIGHTS      |      |      |      |      |      |      |      |      |      |      |      |
| 13      | NIGHT SETBACK THERMOSTAT  |      |      |      |      |      |      |      |      |      |      |      |
| 14      | INFRARED HEATERS          |      |      |      |      |      |      |      |      |      |      |      |
| 15      | ECONOMIZER CYCLE          |      |      |      |      |      |      |      |      |      |      |      |
| 16      | HEAT RECLAIM FROM EXHAUST |      |      |      |      |      |      |      |      |      |      |      |
| 17      | INSULATE PIPING           |      |      |      |      |      |      |      |      |      |      |      |
| 18      | DISHWASHER HEAT RECOVERY  |      |      |      |      |      |      |      |      |      |      |      |
| 19      | BOOSTER HATTERS           |      |      |      |      |      |      |      |      |      |      |      |
| 20      | LOWER DHW TEMPERATURE     |      |      |      |      |      |      |      |      |      |      |      |
| 21      | UPGRADE HVAC CONTROLS     |      |      |      |      |      |      |      |      |      |      |      |
| 22A     | HEAT PUMP                 |      |      |      |      |      |      |      |      |      |      |      |
| 22B     | ELECTRIC RESISTANCE       |      |      |      |      |      |      |      |      |      |      |      |
| 23      | OPTIMIZE FACILITY OPER.   |      |      |      |      |      |      |      |      |      |      |      |
| 24      | BALANCE HVAC SYSTEM       |      |      |      |      |      |      |      |      |      |      |      |
| 25      | AIR CURTAINS              |      |      |      |      |      |      |      |      |      |      |      |
| 26      | MAKE-UP FOR EXHAUST HOODS |      |      |      |      |      |      |      |      |      |      |      |
| 27      | SHUT OFF EXHAUST HOODS    |      |      |      |      |      |      |      |      |      |      |      |
| 28      | USE HEAT PUMP FOR DHW     |      |      |      |      |      |      |      |      |      |      |      |
| 29      | REFRIG. WASTE HEAT RECOV. |      |      |      |      |      |      |      |      |      |      |      |
| 30      | USE MICROWAVE OVENS       |      |      |      |      |      |      |      |      |      |      |      |
| 31      | ISOLATION OF KITCHEN      |      |      |      |      |      |      |      |      |      |      |      |
|         |                           | 0.8  | 0.8  | 0.8  | 0.8  | 0.8  | 0.8  | 0.8  | 0.8  | 0.8  | 0.8  | 0.8  |

17

FIGURE 1-3  
SUMMARY OF ENERGY ANALYSIS  
(Totals For ECO'S With SIR > 1)

| ECO<br>NO. | TITLE                        | CONSTRUCTION<br>COST<br>(\$) | ANNUAL ENERGY<br>SAVINGS |        | PAYBACK<br>(YRS) |
|------------|------------------------------|------------------------------|--------------------------|--------|------------------|
|            |                              |                              | (MBTU)                   | (\$)   |                  |
| 1A         | INSULATE WALLS               | 14448                        | 493.6                    | 2816   | 5.1              |
| 1B         | INSULATE FLOORS              | 13838                        | 778.8                    | 4439   | 3.1              |
| 1C         | INSULATE CEILINGS            | 20070                        | 486.6                    | 2772   | 7.2              |
| 2          | STORM WINDOWS OR DOUBLE GLZ  | 9795                         | 97.0                     | 534    | 18.3             |
| 3          | WEATHERSTRIP AND CAULK       | 3722                         | 133.3                    | 730    | 5.1              |
| 4          | INSULATE PANELS              |                              |                          |        |                  |
| 5          | SOLAR FILM                   |                              |                          |        |                  |
| 6          | VESTIBULES                   | 8232                         | 142.3                    | 752    | 11.0             |
| 7          | REDUCTION OF GLASS AREA      | 7026                         | 141.8                    | 782    | 9.0              |
| 8          | SHUTDOWN ENERGY TO HOT       | 595                          | 17.5                     | 63     | 9.4              |
| 9          | ENERGY CONSERV. FLUOR. LITES |                              |                          |        |                  |
| 10         | REDUCE LIGHTING LEVELS       |                              |                          |        |                  |
| 11         | REPLACE INCANDESCENT         | 11981                        | 953.3                    | 1393   | 8.6              |
| 12         | USE MORE EFFICIENT LIGHTS    |                              |                          |        |                  |
| 13         | NIGHT SETBACK THERMOSTAT     | 6068                         | 1821.4                   | 10694  | 0.6              |
| 14         | INFRARED HEATERS             |                              |                          |        |                  |
| 15         | ECONOMIZER CYCLE             |                              |                          |        |                  |
| 16         | KITCHEN EXHAUST HEAT RECLAIM | 456231                       | 16666.7                  | 92604  | 4.9              |
| 17         | INSULATE PIPING              | 3822                         | 1711.6                   | 9656   | 0.4              |
| 18         | DISHWASHER HEAT RECOVERY     | 89705                        | 1826.6                   | 10207  | 8.8              |
| 19         | BOOSTER HEATERS              |                              |                          |        |                  |
| 20         | LOWER DOMESTIC HOT WATER     | 131                          | 171.1                    | 945    | 0.1              |
| 21         | UPGRADE HVAC CONTROLS        | 14658                        | 1550.3                   | 8507   | 1.7              |
| 22A        | HEAT PUMP                    | 812796                       | -4145.2                  | 94571  | 8.6              |
| 22B        | REDUCE BOILER CAPACITY       | 300                          | 39.2                     | 224    | 1.3              |
| 22B        | INTERMIT. IGN. ON FURNACES   | 2976                         | 276.5                    | 1575   | 1.9              |
| 22B        | DESTRATIFICATION FANS        | 6241                         | 322.2                    | 1722   | 3.6              |
| 22B/C      | ELECTRIC RESISTANCE          | 345540                       | -39332.4                 | 67998  | 5.1              |
| 22D        | CONVERT TO VAV               | 25400                        | 122.2                    | 279    | 91.0             |
| 23         | OPTIMIZE FACILITY OPERATION  | 18200                        | 2707.9                   | 8760   | 2.1              |
| 24         | BALANCE HVAC SYSTEM          |                              |                          |        |                  |
| 25         | AIR CURTAINS                 |                              |                          |        |                  |
| 26         | MAKE-UP FOR EXHAUST HOODS    | 145335                       | 22078.5                  | 123384 | 1.2              |
| 27         | SHUT OFF RANGE HOODS         | 2251                         | 1112.4                   | 6181   | 0.4              |
| 28         | USE HEAT PUMP TO HEAT        | 90405                        | -1544.7                  | 17675  | 4.7              |
| 29         | REFRIGERATION WASTE HEAT     | 189834                       | 4347.0                   | 23999  | 7.9              |
| 30         | USE OF MICROWAVE OVENS       | 29900                        | 2463.4                   | 4024   | 7.4              |
| 31         | ISOLATION OF KITCHEN         |                              |                          |        |                  |
| 32         | AUTOMATIC LIGHT SWITCHES     | 772                          | 327.3                    | 77     | 10.0             |

Cost effectiveness of each technically feasible ECO has been analyzed utilizing methods as prescribed on the Life Cycle Cost Analysis Summary Sheet (LCCASS). Program documentation for six (6) projects are presented in Volume III.

#### 1.1.3 Methodology

Field surveys were conducted at each building and relevant information on existing equipment and operating conditions were recorded. The thirty-eight dining facilities were divided into five groups according to similarities in construction materials, occupancy patterns, and equipment inventories as listed below:

| <u>Group A</u><br><u>(11 Bldgs.)</u> | <u>Group B</u><br><u>(12 Bldgs.)</u> | <u>Group C</u><br><u>(6 Bldgs.)</u> | <u>Group D</u><br><u>(4 Bldgs.)</u> | <u>Group E</u><br><u>(5 Bldgs.)</u> |
|--------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| 4436                                 | 6B10                                 | 3114                                | 3224                                | 3470                                |
| 4A16                                 | 9C28                                 | 3119                                | 3281                                | 3654                                |
| 6A8                                  | 10C8                                 | 3157                                | 3416                                | 3655                                |
| 6A38                                 | 4E1                                  | 3165                                | 3417                                | 3657                                |
| 8A27                                 | 8E23                                 | 3213                                | 3421                                | 1450                                |
| 5B10                                 |                                      | 3218                                | 3279                                | 1452                                |

A computer model was developed for at least one building in each group utilizing the "Elite" computer program (see Appendix K). The model was used to predict baseline energy usage of the existing facilities and the energy usage of the dining facilities after incorporation of an ECO. The computer program calculates peak energy usage and energy usage by systems. The results are presented in the Appendices in Volume II. The savings for some ECO's were hand calculated. Cost estimates were developed based on supplier quotes and cost estimating handbooks. Life cycle costs were also performed using Army Corps supplied information on energy costs and discount factors.

Analysis results were applied to other buildings within a group when conditions between the buildings were similar. ECO's were reanalyzed in subsequent buildings if conditions between the buildings were dissimilar.

#### 1.1.4 Results of Analyses

A summary of recommended ECO's for various funding programs is listed in Figure 1-1 in descending order of their savings to investment ratio (SIR).

A summary of analysis results is presented in Figures 1-2 and 1-3. The savings-to-investment ratio (SIR) for the technically feasible ECO's are listed by building in Figure 1-2. Additionally, Figure

1-3 lists the total cost, energy savings and dollar savings that would result if individual ECO's were implemented in every building. It is important to remember when reviewing the results that each ECO was first analyzed independently. Many ECO's affect the same energy system and, thus, some savings estimates have been decreased due to interactive effects between ECO's. When multiple ECO's were analyzed in one building, the interactive effects were considered in preparing the Energy Conservation Investment Program (ECIP) documents.

Important results and findings of the energy analysis, in addition to the economic information in Figures 1-2 and 1-3, include:

- Energy use and costs can be roughly divided into end-use categories as follows: heating - 55%; kitchen equipment - 21%; domestic hot water - 16%; lights - 8% (see Figure 1-4).
- About 80% of the space heating load is due to heating outside make-up air for exhaust hoods.
- Largest energy savings will result from ducting unheated outside air directly to exhaust hoods.
- Most buildings practice night setback of temperature.
- Exhaust hoods, range tops, ovens and other kitchen equipment are occasionally left on when not in use even though "energy awareness" stickers are typically posted. Explanations given by operators were that they didn't know the equipment was on (exhaust hoods) or the thermal lag time for ranges and ovens makes it inconvenient to turn them off between use. Educating operators as to the benefits of turning hoods off (in the winter) and the actual lag times for appliances may be a solution.
- Electricity costs less than natural gas or oil at Ft. Lewis. Therefore, lighting measures, such as reducing light levels or replacing incandescent lamps, are not cost-effective because the increased space heating costs are greater than the electric dollar savings.
- Electric resistance heaters are typically more cost-effective than heat pumps because of their low installed cost even though heat pumps save more total energy.
- Few buildings have wall or ceiling insulation.
- Few buildings have double pane windows, however installing storm windows is typically not cost-effective.

- Most pipes and tanks are well insulated. It is very cost-effective to insulate those few that are uninsulated.
- Booster heaters for dishwashers are in 95% of kitchens.
- Domestic hot water set temperatures range from 135°F to 190°F and average about 155°F. More than half of the food service sergeants reported at least occasional hot water shortages. This is the reason that most set points are above 140°F.
- Three sources of waste heat are available for heating hot water: dishwasher waste water, refrigeration condenser heat, and ambient kitchen heat for a heat pump water heater. All three options typically payback in about eight years and have SIR's of about 2.5. Since all three ECO's deal with water heating, only one will be cost effective.
- Food service sergeants were very cooperative with survey team and are willing to conserve energy as long as it doesn't interfere with their food service activities.
- Majority of food service sergeants did not want micro-wave ovens. They have small capacities which require more operator attention and the operators would have to be trained to operate them. It is also unclear if other appliances would be turned off as a result of the micro-wave ovens.

Figure 1-4

*ENERGY USE BY CATEGORY*  
*Dining Facilities - Ft. Lewis, Washington*

END-USE:

Heating

Kit. Equip

Dom. H. W.

Lights



FIGURE 1-5



**SUMMARY OF COST ESTIMATES FOR  
ECO # 1A - INSULATE WALLS**

| ITEM<br>NO.    | BUILDING MATERIAL<br>NO. | MATERIAL<br>COST<br>(\$) | LABOR<br>COST<br>(\$) | SUBTOTAL<br>(\$) | OVERHEAD<br>& PROFIT<br>(\$) | CONSTRUCTION<br>COST<br>(\$) |
|----------------|--------------------------|--------------------------|-----------------------|------------------|------------------------------|------------------------------|
| 1.             | T4436                    | 182                      | 1134                  | 1316             | 490                          | 1806                         |
| 2.             | T4A16                    | 182                      | 1134                  | 1316             | 490                          | 1806                         |
| 3.             | T6A38                    | 182                      | 1134                  | 1316             | 490                          | 1806                         |
| 4.             | T8A27                    | 182                      | 1134                  | 1316             | 490                          | 1806                         |
| 5.             | T9C28                    | 182                      | 1134                  | 1316             | 490                          | 1806                         |
| 6.             | T10C8                    | 182                      | 1134                  | 1316             | 490                          | 1806                         |
| 7.             | T4E1                     | 182                      | 1134                  | 1316             | 490                          | 1806                         |
| 8.             | T8E23                    | 182                      | 1134                  | 1316             | 490                          | 1806                         |
| <b>TOTALS:</b> |                          | <b>\$1,456</b>           | <b>\$9,072</b>        | <b>\$10,528</b>  | <b>\$3,920</b>               | <b>\$14,448</b>              |

SUMMARY OF ECO #1A - INSULATE WALLS

| ITEM NO. | BUILDING NO. | CONSTRUCTION COST (\$) | PRESENT ENERGY USE (MBTU/YR) | PROPOSED ENERGY USE (MBTU/YR) | ANNUAL ENERGY SAVINGS: (MBTU/YR) | PAYBACK (\$) | SIR (Yrs) |
|----------|--------------|------------------------|------------------------------|-------------------------------|----------------------------------|--------------|-----------|
| 1.       | T4436        | \$1,806                | 377.9                        | 316.2                         | 61.7                             | \$352        | 5.1 3.6   |
| 2.       | T4A16        | \$1,806                | 377.9                        | 316.2                         | 61.7                             | \$352        | 5.1 3.6   |
| 3.       | T6A38        | \$1,806                | 377.9                        | 316.2                         | 61.7                             | \$352        | 5.1 3.6   |
| 4.       | T8A27        | \$1,806                | 377.9                        | 316.2                         | 61.7                             | \$352        | 5.1 3.6   |
| 5.       | T9C28        | \$1,806                | 377.9                        | 316.2                         | 61.7                             | \$352        | 5.1 3.6   |
| 6.       | T10C8        | \$1,806                | 377.9                        | 316.2                         | 61.7                             | \$352        | 5.1 3.6   |
| 7.       | T4E1         | \$1,806                | 377.9                        | 316.2                         | 61.7                             | \$352        | 5.1 3.6   |
| 8.       | T8E23        | \$1,806                | 377.9                        | 316.2                         | 61.7                             | \$352        | 5.1 3.6   |
| TOTALS:  |              | \$14,448               | 3023.2                       | 2529.6                        | 493.6                            | \$2,816      | 5.1 3.6   |

SUMMARY OF COST ESTIMATES  
ECO # 1B - INSULATE FLOORS

| ITEM NO.       | BUILDING NO. | MATERIAL COST (\$) | LABOR COST (\$) | SUBTOTAL (\$)   | OVERHEAD & PROFIT (\$) | CONSTRUCTION COST (\$) |
|----------------|--------------|--------------------|-----------------|-----------------|------------------------|------------------------|
| 1.             | T4336        | 442                | 509             | 949             | 309                    | 1258                   |
| 2.             | T4A16        | 442                | 509             | 949             | 309                    | 1258                   |
| 3.             | T6A8         | 442                | 509             | 949             | 309                    | 1258                   |
| 4.             | T6A8         | 442                | 509             | 949             | 309                    | 1258                   |
| 5.             | T6A38        | 442                | 509             | 949             | 309                    | 1258                   |
| 6.             | T5B10        | 442                | 509             | 949             | 309                    | 1258                   |
| 7.             | T6B10        | 442                | 509             | 949             | 309                    | 1258                   |
| 8.             | T9C28        | 442                | 509             | 949             | 309                    | 1258                   |
| 9.             | T10C8        | 442                | 509             | 949             | 309                    | 1258                   |
| 10.            | T4E1         | 442                | 509             | 949             | 309                    | 1258                   |
| 11.            | T8E23        | 442                | 509             | 949             | 309                    | 1258                   |
| <b>TOTALS:</b> |              | <b>\$4,862</b>     | <b>\$5,599</b>  | <b>\$10,439</b> | <b>\$3,399</b>         | <b>\$13,838</b>        |

SUMMARY OF ECO # 1B - INSULATE FLOORS

| ITEM NO.       | BUILDING NO. | CONSTRUCTION COST (\$) | PRESENT ENERGY USE (MBTU/YR) | PROPOSED ENERGY USE (MBTU/YR) | FIRST YEAR SAVINGS (\$) | PAYBACK (Yrs)  | SIR        |
|----------------|--------------|------------------------|------------------------------|-------------------------------|-------------------------|----------------|------------|
| 1.             | T4436        | \$1,258                | 377.9                        | 307.1                         | 70.8                    | \$4,04         | 3.1        |
| 2.             | T4A16        | \$1,258                | 377.9                        | 307.1                         | 70.8                    | \$4,04         | 3.1        |
| 3.             | T6AB         | \$1,258                | 377.9                        | 307.1                         | 70.8                    | \$4,04         | 3.1        |
| 4.             | T6A38        | \$1,258                | 377.9                        | 307.1                         | 70.8                    | \$4,04         | 3.1        |
| 5.             | T8A27        | \$1,258                | 377.9                        | 307.1                         | 70.8                    | \$4,04         | 3.1        |
| 6.             | T5B10        | \$1,258                | 377.9                        | 307.1                         | 70.8                    | \$4,04         | 3.1        |
| 7.             | T6B10        | \$1,258                | 377.9                        | 307.1                         | 70.8                    | \$4,04         | 3.1        |
| 8.             | T9C28        | \$1,258                | 377.9                        | 307.1                         | 70.8                    | \$4,04         | 3.1        |
| 9.             | T10C8        | \$1,258                | 377.9                        | 307.1                         | 70.8                    | \$4,04         | 3.1        |
| 10.            | T4E1         | \$1,258                | 377.9                        | 307.1                         | 70.8                    | \$4,04         | 3.1        |
| 11.            | T8E23        | \$1,258                | 377.9                        | 307.1                         | 70.8                    | \$4,04         | 3.1        |
| <b>TOTALS:</b> |              | <b>\$13,838</b>        | <b>4156.9</b>                | <b>3378.1</b>                 | <b>778.8</b>            | <b>\$4,439</b> | <b>3.1</b> |
|                |              |                        |                              |                               |                         |                | <b>5.9</b> |

SUMMARY OF COST ESTIMATES FOR  
 ECO #3 - WEATHERSTRIP & CAULK

| ITEM<br>NO.    | BUILDING<br>NO. | MATERIAL<br>COST<br>(\$) | LABOR<br>COST<br>(\$) | SUBTOTAL<br>(\$) | OVERHEAD<br>& PROFIT<br>(\$) | CONSTRUCTION<br>COST<br>(\$) |
|----------------|-----------------|--------------------------|-----------------------|------------------|------------------------------|------------------------------|
| 1.             | T10C8           | 559                      | 1390                  | 1676             | 992                          | 2668                         |
| 2.             | 2400            | 244                      | 143                   | 388              | 105                          | 493                          |
| 3.             | 9980            | 234                      | 205                   | 439              | 122                          | 561                          |
| <b>TOTALS:</b> |                 | <b>\$1,037</b>           | <b>\$1,738</b>        | <b>\$2,503</b>   | <b>\$1,219</b>               | <b>\$3,722</b>               |

SUMMARY OF ECO #3 - WEATHERSTRIP & CAULK

| ITEM NO.       | BUILDING NO. | CONSTRUCTION COST (\$) | PRESENT ENERGY USE (MBTU/YR) | PROPOSED ENERGY USE (MBTU/YR) | ANNUAL ENERGY SAVINGS: (MBTU/YR) | PAYBACK (\$) | SIR (Yrs)  |
|----------------|--------------|------------------------|------------------------------|-------------------------------|----------------------------------|--------------|------------|
| 1.             | T10C8        | \$2,668                | 377.9                        | 342.2                         | 35.7                             | \$203        | 13.1       |
| 2.             | 2400         | \$493                  | 3856.0                       | 3810.4                        | 45.6                             | \$241        | 2.0        |
| 3.             | 9980         | \$561                  | 4435.0                       | 4383.0                        | 52.0                             | \$286        | 2.0        |
| <b>TOTALS:</b> |              | <b>\$3,722</b>         | <b>8668.9</b>                | <b>8535.6</b>                 | <b>133.3</b>                     | <b>\$730</b> | <b>5.1</b> |
|                |              |                        |                              |                               |                                  |              | <b>3.5</b> |

SUMMARY OF COST ESTIMATES FOR  
ECO # 13 - NIGHT SETBACK THERMOSTAT

| ITEM<br>NO.    | BUILDING<br>NO. | MATERIAL<br>COST<br>(\$) | LABOR<br>COST<br>(\$) | SUBTOTAL<br>(\$) | OVERHEAD<br>&<br>PROFIT<br>(\$) | CONSTRUCTION<br>COST<br>(\$) |
|----------------|-----------------|--------------------------|-----------------------|------------------|---------------------------------|------------------------------|
| 1.             | T9C28           | 94                       | 20                    | 114              | 14                              | 128                          |
| 2.             | 1450            | 94                       | 20                    | 114              | 14                              | 128                          |
| 3.             | 2006            | 45                       | 111                   | 156              | 54                              | 210                          |
| 4.             | 2400            | 1140                     | 337                   | 1477             | 177                             | 1654                         |
| 5.             | 8085            | 1026                     | 633                   | 1659             | 200                             | 1859                         |
| 6.             | 8989            | 472                      | 408                   | 880              | 187                             | 1067                         |
| 7.             | 9980            | 752                      | 160                   | 912              | 110                             | 1022                         |
| <b>TOTALS:</b> |                 | <b>\$3,623</b>           | <b>\$1,689</b>        | <b>\$5,312</b>   | <b>\$756</b>                    | <b>\$6,068</b>               |

SUMMARY OF ECO # 13 - NIGHT SETBACK THERMOSTAT

| ITEM NO.       | BUILDING NO. | CONSTRUCTION COST (\$) | PRESENT ENERGY USE (MBTU/YR) | PROPOSED ENERGY USE (MBTU/YR) | FIRST YEAR SAVINGS (\$) | PAYBACK (Yrs)   | SIR        |
|----------------|--------------|------------------------|------------------------------|-------------------------------|-------------------------|-----------------|------------|
| 1.             | T9C2B        | \$128                  | 520.9                        | 449.4                         | 71.5                    | \$408           | 0.3        |
| 2.             | 1450         | \$128                  | 176.5                        | 151.8                         | 24.7                    | \$141           | 0.9        |
| 3.             | 2006         | \$210                  | 1872.5                       | 1806.7                        | 65.8                    | \$375           | 0.6        |
| 4.             | 2400         | \$1,654                | 8031.3                       | 7061.1                        | 970.2                   | \$4,856         | 0.3        |
| 5.             | 8085         | \$1,859                | 7045.3                       | 6824.1                        | 221.2                   | \$1,212         | 1.7        |
| 6.             | 8989         | \$1,067                | 422.0                        | 184.0                         | 238.0                   | \$2,437         | 0.4        |
| 7.             | 9980         | \$1,022                | 4435.0                       | 4205.0                        | 230.0                   | \$1,265         | 0.8        |
| <b>TOTALS:</b> |              | <b>\$6,068</b>         | <b>22503.5</b>               | <b>20682.1</b>                | <b>1821.4</b>           | <b>\$10,694</b> | <b>0.6</b> |
|                |              |                        |                              |                               |                         |                 | 20.8       |

**SUMMARY OF COST ESTIMATES**  
**ECO # 17 - INSULATE PIPING**

| ITEM<br>NO.    | BUILDING<br>NO. | MATERIAL<br>COST<br>(\$) | LABOR<br>COST<br>(\$) | SUBTOTAL<br>(\$) | OVERHEAD<br>& PROFIT<br>(\$) | CONSTRUCTION<br>COST<br>(\$) |
|----------------|-----------------|--------------------------|-----------------------|------------------|------------------------------|------------------------------|
| 1.             | T4436           | 82                       | 120                   | 202              | 64                           | 266                          |
| 2.             | T4A16           | 52                       | 88                    | 140              | 47                           | 187                          |
| 3.             | T6A8            | 106                      | 162                   | 268              | 87                           | 355                          |
| 4.             | T6A38           | 38                       | 51                    | 89               | 27                           | 116                          |
| 5.             | T8A27           | 112                      | 187                   | 299              | 111                          | 410                          |
| 6.             | T5B10           | 16                       | 24                    | 40               | 13                           | 53                           |
| 7.             | T6B10           | 24                       | 34                    | 58               | 18                           | 76                           |
| 8.             | T9C28           | 23                       | 34                    | 57               | 18                           | 75                           |
| 9.             | T10C8           | 15                       | 25                    | 40               | 13                           | 53                           |
| 10.            | T4E1            | 33                       | 45                    | 78               | 28                           | 106                          |
| 11.            | T8E23           | 25                       | 61                    | 86               | 31                           | 117                          |
| 12.            | 3654            | 89                       | 128                   | 217              | 71                           | 288                          |
| 13.            | 3655            | 89                       | 128                   | 217              | 71                           | 288                          |
| 14.            | 3657            | 89                       | 128                   | 217              | 71                           | 288                          |
| 15.            | 1450            | 236                      | 377                   | 613              | 202                          | 815                          |
| 16.            | 1452            | 69                       | 113                   | 182              | 61                           | 243                          |
| 17.            | 8085            | 31                       | 35                    | 66               | 20                           | 86                           |
| <b>TOTALS:</b> |                 | <b>\$1,129</b>           | <b>\$1,740</b>        | <b>\$2,869</b>   | <b>\$953</b>                 | <b>\$3,822</b>               |

SUMMARY OF ECO # 17 - INSULATE PIPING

| ITEM NO.       | BUILDING NO. | CONSTRUCTION COST (\$) | PRESENT ENERGY USE (MBTU/YR) | PROPOSED ENERGY USE (MBTU/YR) | FIRST YEAR SAVINGS (MBTU/VR) | PAYBACK (\$)   | SIR (Yrs)   |
|----------------|--------------|------------------------|------------------------------|-------------------------------|------------------------------|----------------|-------------|
| 1.             | T4436        | \$266                  | 94.2                         | 14.1                          | 80.1                         | \$457          | 0.6         |
| 2.             | T4A16        | \$187                  | 72.9                         | 6.9                           | 66.0                         | \$376          | 0.5         |
| 3.             | T6A8         | \$355                  | 20.3                         | 3.6                           | 16.7                         | \$95           | 3.7         |
| 4.             | T6A38        | \$116                  | 18.5                         | 4.5                           | 14.9                         | \$85           | 1.4         |
| 5.             | T8A27        | \$410                  | 294.1                        | 18.1                          | 276.0                        | \$1,573        | 15.0        |
| 6.             | T5B10        | \$53                   | 6.9                          | 1.0                           | 5.9                          | \$34           | 0.3         |
| 7.             | T6B10        | \$76                   | 12.8                         | 2.2                           | 10.6                         | \$60           | 78.7        |
| 8.             | T9C28        | \$75                   | 14.0                         | 2.1                           | 11.9                         | \$68           | 1.6         |
| 9.             | T10C8        | \$53                   | 14.8                         | 1.3                           | 13.5                         | \$77           | 13.0        |
| 10.            | T4E1         | \$117                  | 108.7                        | 8.0                           | 100.7                        | \$574          | 1.3         |
| 11.            | T8E23        | \$106                  | 20.3                         | 3.0                           | 17.3                         | \$99           | 16.3        |
| 12.            | 3654         | \$288                  | 175.3                        | 21.3                          | 154.0                        | \$847          | 1.1         |
| 13.            | 3655         | \$288                  | 175.3                        | 21.3                          | 154.0                        | \$847          | 18.6        |
| 14.            | 3657         | \$288                  | 175.3                        | 21.3                          | 154.0                        | \$847          | 58.0        |
| 15.            | 1450         | \$815                  | 660.0                        | 220.0                         | 440.0                        | \$2,508        | 0.3         |
| 16.            | 1452         | \$243                  | 183.0                        | 18.0                          | 165.0                        | \$941          | 58.0        |
| 17.            | 8085         | \$86                   | 35.1                         | 4.1                           | 31.0                         | \$168          | 0.3         |
| <b>TOTALS:</b> |              | <b>\$3,822</b>         | <b>2081.5</b>                | <b>370.8</b>                  | <b>1711.6</b>                | <b>\$9,656</b> | <b>0.4</b>  |
|                |              |                        |                              |                               |                              |                | <b>47.0</b> |

SUMMARY OF COST ESTIMATES FOR  
ECO # 21 - UPGRADE HVAC CONTROLS

| ITEM<br>NO.    | BUILDING<br>NO. | MATERIAL<br>COST<br>(\$) | LABOR<br>COST<br>(\$) | SUBTOTAL<br>(\$) | OVERHEAD<br>&<br>PROFIT<br>(\$) | CONSTRUCTION<br>COST<br>(\$) |
|----------------|-----------------|--------------------------|-----------------------|------------------|---------------------------------|------------------------------|
| 1.             | 1450            | 336                      | 114                   | 450              | 45                              | 495                          |
| 2.             | 2400            | 3125                     | 0                     | 3125             | 313                             | 3438                         |
| 3.             | 3654            | 336                      | 114                   | 450              | 45                              | 495                          |
| 4.             | 3655            | 672                      | 228                   | 900              | 90                              | 990                          |
| 5.             | 3657            | 672                      | 228                   | 900              | 90                              | 990                          |
| 6.             | 8085            | 7500                     | 0                     | 7500             | 750                             | 8250                         |
| <b>TOTALS:</b> |                 | <b>\$12,641</b>          | <b>\$684</b>          | <b>\$13,325</b>  | <b>\$1,333</b>                  | <b>\$14,658</b>              |

SUMMARY OF ECO # 21 - UPGRADE HVAC CONTROLS

| ITEM NO.       | BUILDING NO. | CONSTRUCTION COST (\$) | PRESENT ENERGY USE (MBTU/YR) | PROPOSED ENERGY USE (MBTU/YR) | FIRST YEAR SAVINGS (MBTU/YR) | PAYBACK (\$)   | (Yrs)      | SIR        |
|----------------|--------------|------------------------|------------------------------|-------------------------------|------------------------------|----------------|------------|------------|
| 1.             | 1450         | \$495                  | 1232.9                       | 911.7                         | 321.0                        | \$1,766        | 0.3        | 45.9       |
| 2.             | 2400         | \$3,438                | 3116.6                       | 3023.1                        | 93.5                         | \$514          | 6.7        | 1.5        |
| 3.             | 3654         | \$495                  | 271.0                        | 202.5                         | 68.5                         | \$377          | 1.3        | 9.8        |
| 4.             | 3655         | \$990                  | 1503.9                       | 1114.4                        | 389.5                        | \$2,143        | 0.5        | 27.9       |
| 5.             | 3657         | \$990                  | 1503.9                       | 1114.4                        | 389.5                        | \$2,143        | 0.5        | 27.9       |
| 6.             | 8085         | \$8,250                | 5762.6                       | 5474.3                        | 288.3                        | \$1,564        | 5.3        | 2.3        |
| <b>TOTALS:</b> |              | <b>\$14,658</b>        | <b>13390.9</b>               | <b>11840.4</b>                | <b>1550.3</b>                | <b>\$8,507</b> | <b>1.7</b> | <b>7.3</b> |

| ITEM<br>NO.    | BUILDING<br>MATERIAL<br>COST<br>(\$) | LABOR<br>COST<br>(\$) | SUBTOTAL<br>(\$) | OVERHEAD<br>& PROFIT<br>(\$) | CONSTRUCTION<br>COST<br>(\$) |
|----------------|--------------------------------------|-----------------------|------------------|------------------------------|------------------------------|
| 1. T4436       | 5040                                 | 2176                  | 7216             | 1514                         | 8730                         |
| 2. T4A16       | 5040                                 | 2176                  | 7216             | 1514                         | 8730                         |
| 3. T6A38       | 5040                                 | 2176                  | 7216             | 1514                         | 8730                         |
| 4. T8A27       | 5040                                 | 2176                  | 7216             | 1514                         | 8730                         |
| 5. T9C28       | 5040                                 | 2176                  | 7216             | 1514                         | 8730                         |
| 6. T10C8       | 5040                                 | 2176                  | 7216             | 1514                         | 8730                         |
| 7. T4E1        | 5040                                 | 2176                  | 7216             | 1514                         | 8730                         |
| 8. T8E23       | 5040                                 | 2176                  | 7216             | 1514                         | 8730                         |
| 9. 3654        | 31400                                | 7006                  | 38406            | 6169                         | 44575                        |
| 10. 3655       | 31400                                | 7006                  | 38406            | 6169                         | 44575                        |
| 11. 3657       | 31400                                | 7006                  | 38406            | 6169                         | 44575                        |
| 12. 1450       | 34540                                | 7707                  | 42247            | 6786                         | 49033                        |
| 13. 1452       | 22958                                | 5123                  | 28081            | 4511                         | 32592                        |
| 14. 2006       | 25827                                | 6173                  | 32000            | 5061                         | 37061                        |
| 15. 2015       | 25689                                | 5854                  | 31543            | 5008                         | 36551                        |
| 16. 2020       | 25689                                | 5854                  | 31543            | 5008                         | 36551                        |
| 17. 2027       | 25689                                | 5854                  | 31543            | 5008                         | 36551                        |
| 18. 2400       | 69760                                | 19562                 | 89322            | 13998                        | 103320                       |
| 19. 3757       | 78246                                | 21988                 | 100234           | 15788                        | 116022                       |
| 20. 8085       | 49200                                | 12536                 | 61736            | 9670                         | 71406                        |
| 21. 9980       | 54226                                | 21587                 | 75813            | 14331                        | 90144                        |
| <b>TOTALS:</b> | <b>\$546,344</b>                     | <b>\$150,664</b>      | <b>\$697,008</b> | <b>\$115,788</b>             | <b>\$812,796</b>             |

SUMMARY OF ECO # 22A - HEAT PUMP SPACE HEATING

| ITEM NO. | BUILDING NO. | CONSTRUCTION COST (\$) | PRESENT ENERGY USE (MBTU/YR) | PROPOSED ENERGY USE (MBTU/YR) | ANNUAL ENERGY SAVINGS: (\$) | PAYOUTBACK (Yrs) | SIR  |
|----------|--------------|------------------------|------------------------------|-------------------------------|-----------------------------|------------------|------|
| 1.       | T4436        | \$8,730                | 316.2                        | 242.5                         | 73.7                        | \$1,448          | 6.0  |
| 2.       | T4A16        | \$8,730                | 316.2                        | 242.5                         | 73.7                        | \$1,448          | 6.0  |
| 3.       | T6A38        | \$8,730                | 316.2                        | 242.5                         | 73.7                        | \$1,448          | 6.0  |
| 4.       | T8A27        | \$8,730                | 316.2                        | 242.5                         | 73.7                        | \$1,448          | 6.0  |
| 5.       | T9C28        | \$8,730                | 316.2                        | 242.5                         | 73.7                        | \$1,448          | 6.0  |
| 6.       | T10C8        | \$8,730                | 280.5                        | 215.1                         | 65.4                        | \$1,284          | 6.8  |
| 7.       | T4E1         | \$8,730                | 316.2                        | 242.5                         | 73.7                        | \$1,448          | 6.0  |
| 8.       | T8E23        | \$8,730                | 316.2                        | 242.5                         | 73.7                        | \$1,448          | 6.0  |
| 9.       | 3654         | \$44,575               | 1114.0                       | 1475.0                        | -361.0                      | \$3,521          | 12.7 |
| 10.      | 3655         | \$44,575               | 1114.0                       | 1475.0                        | -361.0                      | \$3,521          | 12.7 |
| 11.      | 3657         | \$44,575               | 1114.0                       | 1475.0                        | -361.0                      | \$3,521          | 12.7 |
| 12.      | 1450         | \$49,033               | 1485.0                       | 1512.0                        | -27.0                       | \$5,625          | 8.7  |
| 13.      | 1452         | \$32,592               | 1043.0                       | 1061.0                        | -18.0                       | \$3,955          | 8.2  |
| 14.      | 2006         | \$37,061               | 896.0                        | 913.6                         | -17.6                       | \$3,773          | 9.8  |
| 15.      | 2015         | \$36,551               | 1280.0                       | 1302.0                        | -22.0                       | \$4,852          | 7.5  |
| 16.      | 2020         | \$36,551               | 1280.0                       | 1302.0                        | -22.0                       | \$4,852          | 7.5  |
| 17.      | 2027         | \$36,551               | 1097.0                       | 1242.9                        | -145.9                      | \$3,042          | 12.0 |
| 18.      | 2400         | \$103,320              | 3855.7                       | 4221.7                        | -366.0                      | \$7,255          | 14.2 |
| 19.      | 3757         | \$116,022              | 4378.0                       | 5797.0                        | -1419.0                     | \$13,848         | 8.4  |
| 20.      | 8085         | \$71,406               | 5656.0                       | 6623.0                        | -967.0                      | \$19,152         | 3.7  |
| 21.      | 9980         | \$90,144               | 4383.0                       | 5022.0                        | -639.0                      | \$6,234          | 14.5 |
| TOTALS:  |              | \$812,796              | 31189.6                      | 35334.8                       | -4145.2                     | \$94,571         | 8.6  |
|          |              |                        |                              |                               |                             |                  | 1.5  |

SUMMARY OF ECO # 23 - OPTIMIZE FACILITY OPERATION

| ITEM NO.       | BUILDING NO. | CONSTRUCTION COST (\$) | PRESENT ENERGY USE (MBTU / YR) | PROPOSED ENERGY USE (MBTU / YR) | ANNUAL ENERGY SAVINGS: (MBTU / YR) | PAYBACK (Yrs)  | SIR        |
|----------------|--------------|------------------------|--------------------------------|---------------------------------|------------------------------------|----------------|------------|
| 1.             | T6B8         | \$3,200                | 377.9                          | 0.0                             | 377.9                              | \$2,154        | 1.8        |
| 2.             | T5B10        | \$7,500                | 1952.0                         | 787.0                           | 1165.0                             | \$3,303        | 2.3        |
| 3.             | T6B10        | \$7,500                | 1952.0                         | 787.0                           | 1165.0                             | \$3,303        | 2.3        |
| <b>TOTALS:</b> |              | <b>\$18,200</b>        | <b>4281.9</b>                  | <b>1574.0</b>                   | <b>2707.9</b>                      | <b>\$8,760</b> | <b>2.1</b> |

**SUMMARY OF COST ESTIMATES FOR  
ECO # 26 - MAKE-UP AIR FOR EXHAUST HOODS**

| ITEM<br>NO.    | BUILDING MATERIAL<br>NO. | COST<br>(\$)    | LABOR<br>COST<br>(\$) | OVERHEAD<br>& PROFIT<br>(\$) | CONSTRUCTION<br>COST<br>(\$) |
|----------------|--------------------------|-----------------|-----------------------|------------------------------|------------------------------|
| 1.             | T4336                    | 1947            | 1482                  | 3429                         | 774                          |
| 2.             | T4A16                    | 1947            | 1482                  | 3429                         | 774                          |
| 3.             | T6A8                     | 1947            | 1482                  | 3429                         | 774                          |
| 4.             | T6A38                    | 1947            | 1482                  | 3429                         | 774                          |
| 5.             | T8A27                    | 1947            | 1482                  | 3429                         | 774                          |
| 6.             | T5B10                    | 1947            | 1482                  | 3429                         | 774                          |
| 7.             | T6B10                    | 1947            | 1482                  | 3429                         | 774                          |
| 8.             | T9C28                    | 1947            | 1482                  | 3429                         | 774                          |
| 9.             | T10CB                    | 1947            | 1482                  | 3429                         | 774                          |
| 10.            | T4E1                     | 1947            | 1482                  | 3429                         | 774                          |
| 11.            | T8E23                    | 1947            | 1482                  | 3429                         | 774                          |
| 12.            | 3654                     | 2081            | 2351                  | 4432                         | 1204                         |
| 13.            | 3655                     | 2081            | 2351                  | 4432                         | 1204                         |
| 14.            | 3657                     | 2081            | 2351                  | 4432                         | 1204                         |
| 15.            | 1450                     | 3234            | 2230                  | 5464                         | 1345                         |
| 16.            | 1452                     | 1264            | 877                   | 2141                         | 471                          |
| 17.            | 2006                     | 3088            | 3237                  | 6325                         | 1803                         |
| 18.            | 2015                     | 3088            | 3237                  | 6325                         | 1803                         |
| 19.            | 2020                     | 3088            | 3237                  | 6325                         | 1803                         |
| 20.            | 2027                     | 3088            | 3237                  | 6325                         | 1803                         |
| 21.            | 2400                     | 4195            | 1823                  | 6018                         | 1148                         |
| 22.            | 3757                     | 1402            | 3171                  | 4573                         | 1385                         |
| 23.            | 8085                     | 3618            | 2402                  | 6020                         | 1347                         |
| 24.            | 9980                     | 9574            | 6394                  | 15968                        | 3802                         |
| <b>TOTALS:</b> |                          | <b>\$63,299</b> | <b>\$53,200</b>       | <b>\$116,499</b>             | <b>\$28,836</b>              |
|                |                          |                 |                       |                              | <b>\$145,335</b>             |

SUMMARY OF ECO # 26 - MAKE-UP AIR FOR EXHAUST HOODS

| ITEM NO.       | BUILDING NO. | CONSTRUCTION COST (\$) | PRESENT ENERGY USE (MBTU/YR) | PROPOSED ENERGY USE (MBTU/YR) | FIRST YEAR SAVINGS (\$) | PAYOUT (Yrs)     | SIR         |
|----------------|--------------|------------------------|------------------------------|-------------------------------|-------------------------|------------------|-------------|
| 1.             | T4436        | \$4,203                | 377.9                        | 128.9                         | 249.0                   | \$1,419          | 3.0         |
| 2.             | T4A16        | \$4,203                | 377.9                        | 128.9                         | 249.0                   | \$1,419          | 3.0         |
| 3.             | T6A8         | \$4,203                | 377.9                        | 246.6                         | 131.3                   | \$748            | 5.6         |
| 4.             | T6A38        | \$4,203                | 377.9                        | 128.9                         | 249.0                   | \$1,419          | 3.0         |
| 5.             | T8A27        | \$4,203                | 377.9                        | 128.9                         | 249.0                   | \$1,419          | 3.0         |
| 6.             | T5B10        | \$4,203                | 377.9                        | 128.9                         | 249.0                   | \$1,419          | 3.0         |
| 7.             | T6B10        | \$4,203                | 377.9                        | 128.9                         | 249.0                   | \$1,419          | 3.0         |
| 8.             | T9C28        | \$4,203                | 377.9                        | 128.9                         | 249.0                   | \$1,419          | 3.0         |
| 9.             | T10C8        | \$4,203                | 377.9                        | 246.6                         | 131.3                   | \$748            | 5.6         |
| 10.            | T4E1         | \$4,203                | 377.9                        | 128.9                         | 249.0                   | \$1,419          | 3.0         |
| 11.            | T8E23        | \$4,203                | 377.9                        | 128.9                         | 249.0                   | \$1,419          | 3.0         |
| 12.            | 3654         | \$5,636                | 1113.9                       | 173.9                         | 940.0                   | \$5,170          | 1.1         |
| 13.            | 3655         | \$5,636                | 1113.9                       | 173.9                         | 940.0                   | \$5,170          | 1.1         |
| 14.            | 3657         | \$5,636                | 1113.9                       | 173.9                         | 940.0                   | \$5,170          | 1.1         |
| 15.            | 1450         | \$6,809                | 1827.0                       | 285.0                         | 1542.0                  | \$8,789          | 0.8         |
| 16.            | 1452         | \$2,612                | 1043.0                       | 403.0                         | 640.0                   | \$3,648          | 0.7         |
| 17.            | 2006         | \$8,128                | 1873.0                       | 599.1                         | 1273.9                  | \$7,261          | 1.1         |
| 18.            | 2015         | \$8,128                | 1873.0                       | 599.1                         | 1273.9                  | \$7,261          | 1.1         |
| 19.            | 2020         | \$8,128                | 1873.0                       | 599.1                         | 1273.9                  | \$7,261          | 1.1         |
| 20.            | 2027         | \$8,128                | 1873.0                       | 599.1                         | 1273.9                  | \$7,261          | 1.1         |
| 21.            | 2400         | \$7,166                | 6478.4                       | 5058.4                        | 1393.0                  | \$7,662          | 0.9         |
| 22.            | 3757         | \$5,958                | 4378.0                       | 510.0                         | 3868.0                  | \$21,274         | 0.3         |
| 23.            | 8085         | \$7,367                | 9380.1                       | 8275.8                        | 1104.3                  | \$6,074          | 1.2         |
| 24.            | 9980         | \$19,770               | 4435.0                       | 1323.0                        | 3112.0                  | \$17,116         | 1.2         |
| <b>TOTALS:</b> |              | <b>\$145,335</b>       | <b>42532.1</b>               | <b>20426.6</b>                | <b>22078.5</b>          | <b>\$123,384</b> | <b>1.2</b>  |
|                |              |                        |                              |                               |                         |                  | <b>15.9</b> |

**SUMMARY OF COST ESTIMATES FOR  
ECO #28 - HOT WATER HEAT PUMP**

| ITEM NO.       | BUILDING MATERIAL COST (\$) | LABOR COST (\$) | SUBTOTAL (\$)   | OVERHEAD & PROFIT (\$) | CONSTRUCTION COST (\$) |
|----------------|-----------------------------|-----------------|-----------------|------------------------|------------------------|
| 1. T4436       | 1939                        | 972             | 2911            | 437                    | 3348                   |
| 2. T4A16       | 1939                        | 972             | 2911            | 437                    | 3348                   |
| 3. T6A38       | 1939                        | 972             | 2911            | 437                    | 3348                   |
| 4. T8A27       | 1939                        | 972             | 2911            | 437                    | 3348                   |
| 5. T9C28       | 1939                        | 972             | 2911            | 437                    | 3348                   |
| 6. T4E1        | 1939                        | 972             | 2911            | 437                    | 3348                   |
| 7. T8E23       | 1939                        | 972             | 2911            | 437                    | 3348                   |
| 8. 3654        | 3031                        | 1519            | 4550            | 683                    | 5233                   |
| 9. 3655        | 3031                        | 1519            | 4550            | 683                    | 5233                   |
| 10. 3657       | 3031                        | 1519            | 4550            | 683                    | 5233                   |
| 11. 1450       | 2487                        | 1276            | 3763            | 564                    | 4327                   |
| 12. 1452       | 4878                        | 993             | 5841            | 876                    | 6717                   |
| 13. 2006       | 1939                        | 972             | 2911            | 437                    | 3348                   |
| 14. 2015       | 1939                        | 972             | 2911            | 437                    | 3348                   |
| 15. 2020       | 1939                        | 972             | 2911            | 437                    | 3348                   |
| 16. 2027       | 1939                        | 972             | 2911            | 437                    | 3348                   |
| 17. 2400       | 1939                        | 972             | 2911            | 437                    | 3348                   |
| 18. 3757       | 8531                        | 1530            | 10061           | 1509                   | 11570                  |
| 19. 8085       | 3031                        | 1519            | 4550            | 683                    | 5233                   |
| 20. 9980       | 4818                        | 993             | 5811            | 872                    | 6683                   |
| <b>TOTALS:</b> | <b>\$56,106</b>             | <b>\$22,532</b> | <b>\$78,608</b> | <b>\$11,797</b>        | <b>\$90,405</b>        |

SUMMARY OF ECO # 28 - HOT WATER HEAT PUMP

| ITEM NO. | BUILDING CONSTRUCTION COST (\$) | PRESENT ENERGY USE (MBTU/YR) | PROPOSED ENERGY USE (MBTU/YR) | ANNUAL ENERGY SAVINGS: (MBTU/YR) | PAYOUT BACK (\$) | SIR (Yrs) |
|----------|---------------------------------|------------------------------|-------------------------------|----------------------------------|------------------|-----------|
| 1. T4436 | \$3,348                         | 126.0                        | 150.0                         | -24.0                            | \$474            | 7.1       |
| 2. T4A16 | \$3,348                         | 126.0                        | 150.0                         | -24.0                            | \$474            | 7.1       |
| 3. T6A38 | \$3,348                         | 126.0                        | 150.0                         | -24.0                            | \$474            | 7.1       |
| 4. T8A27 | \$3,348                         | 220.5                        | 262.5                         | -42.0                            | \$874            | 3.8       |
| 5. T9C28 | \$3,348                         | 232.0                        | 276.0                         | -44.0                            | \$919            | 3.6       |
| 6. T4E1  | \$3,348                         | 182.0                        | 217.0                         | -35.0                            | \$721            | 4.6       |
| 7. T8E23 | \$3,348                         | 182.0                        | 217.0                         | -35.0                            | \$721            | 4.6       |
| 8. 3654  | \$5,233                         | 190.0                        | 259.0                         | -69.0                            | \$667            | 7.8       |
| 9. 3655  | \$5,233                         | 171.0                        | 232.0                         | -61.0                            | \$602            | 8.7       |
| 10. 3657 | \$5,233                         | 115.6                        | 157.3                         | -41.7                            | \$406            | 12.9      |
| 11. 1450 | \$4,327                         | 216.5                        | 294.3                         | -77.8                            | \$804            | 5.4       |
| 12. 1452 | \$6,717                         | 501.0                        | 681.0                         | -180.0                           | \$1,861          | 3.6       |
| 13. 2006 | \$3,348                         | 201.2                        | 273.5                         | -72.3                            | \$707            | 4.7       |
| 14. 2015 | \$3,348                         | 126.8                        | 172.3                         | -45.5                            | \$446            | 7.5       |
| 15. 2020 | \$3,348                         | 157.5                        | 214.1                         | -56.6                            | \$554            | 6.0       |
| 16. 2027 | \$3,348                         | 280.0                        | 380.5                         | -100.5                           | \$984            | 3.4       |
| 17. 2400 | \$3,348                         | 275.6                        | 374.6                         | -99.0                            | \$969            | 3.5       |
| 18. 3757 | \$11,570                        | 708.6                        | 963.3                         | -254.7                           | \$2,491          | 4.6       |
| 19. 8085 | \$5,233                         | 218.7                        | 297.3                         | -78.6                            | \$769            | 6.8       |
| 20. 9980 | \$6,683                         | 503.0                        | 683.8                         | -180.0                           | \$1,758          | 3.8       |
| TOTALS:  | \$90,405                        | 4860.0                       | 6405.5                        | -1544.7                          | \$17,675         | 5.1       |
|          |                                 |                              |                               |                                  |                  | 2.5       |

SUMMARY OF COST ESTIMATES FOR  
ECO #30 - USE MICROWAVE OVENS

| ITEM<br>NO. | BUILDING MATERIAL<br>NO. | COST<br>(\$) | LABOR<br>COST<br>(\$) | SUBTOTAL<br>(\$) | OVERHEAD<br>& PROFIT<br>(\$) | CONSTRUCTION<br>COST<br>(\$) |
|-------------|--------------------------|--------------|-----------------------|------------------|------------------------------|------------------------------|
| 1.          | T4436                    | 3000         | 0                     | 3000             | 450                          | 3450                         |
| 2.          | T4A16                    | 3000         | 0                     | 3000             | 450                          | 3450                         |
| 3.          | T6A38                    | 3000         | 0                     | 3000             | 450                          | 3450                         |
| 4.          | T8A27                    | 3000         | 0                     | 3000             | 450                          | 3450                         |
| 5.          | T4E1                     | 3000         | 0                     | 3000             | 450                          | 3450                         |
| 6.          | T8E23                    | 3000         | 0                     | 3000             | 450                          | 3450                         |
| 7.          | 2400                     | 4000         | 0                     | 4000             | 600                          | 4600                         |
| 8.          | 8085                     | 4000         | 0                     | 4000             | 600                          | 4600                         |
| TOTALS:     |                          | \$26,000     | \$0                   | \$35,000         | \$5,250                      | \$40,250                     |

SUMMARY OF ECO #30 - USE MICROWAVE OVENS

| ITEM NO.       | BUILDING NO. | CONSTRUCTION COST (\$) | PRESENT ENERGY USE (MBTU/yr) | PROPOSED ENERGY USE (MBTU/yr) | ANNUAL ENERGY SAVINGS: (MBTU/yr) | PAYOUT (Yrs)   | SIR            |
|----------------|--------------|------------------------|------------------------------|-------------------------------|----------------------------------|----------------|----------------|
| 1.             | T4436        | \$3,450                | 1040.0                       | 647.0                         | 393.0                            | \$574          | 6.0 2.3        |
| 2.             | T4A16        | \$3,450                | 1040.0                       | 647.0                         | 393.0                            | \$574          | 6.0 2.3        |
| 3.             | T6A38        | \$3,450                | 1040.0                       | 647.0                         | 393.0                            | \$574          | 6.0 2.3        |
| 4.             | T8A27        | \$3,450                | 1040.0                       | 647.0                         | 393.0                            | \$574          | 6.0 2.3        |
| 5.             | T4E1         | \$3,450                | 1040.0                       | 647.0                         | 393.0                            | \$574          | 6.0 2.3        |
| 6.             | T8E23        | \$3,450                | 1040.0                       | 647.0                         | 393.0                            | \$574          | 6.0 2.3        |
| 7.             | 2400         | \$4,600                | 875.6                        | 822.9                         | 52.7                             | \$290          | 15.9 1.1       |
| 8.             | 8085         | \$4,600                | 875.6                        | 822.9                         | 52.7                             | \$290          | 15.9 1.1       |
| <b>TOTALS:</b> |              | <b>\$29,900</b>        | <b>7991.2</b>                | <b>5527.8</b>                 | <b>2463.4</b>                    | <b>\$4,024</b> | <b>7.4 2.0</b> |