Tutorial 02b

Problem 1

There are 100 men on a plane. Let X_i be the weight (in pounds) of the ith man on the plane. Suppose that the X_i 's are i.i.d., and $EX_i = \mu = 170$ and $\sigma_{X_i} = \sigma = 30$. Find the probability that the total weight of the men on the plane exceeds 18,000 pounds.

Problem 2

Let X_1, X_2, \dots, X_{25} be i.i.d. with the following PMF

$$P_X(k) = \left\{ egin{array}{ll} 0.6 & k=1 \ 0.4 & k=-1 \ 0 & ext{otherwise} \end{array}
ight.$$

And let

Y	$=X_1$	$+X_2$	$+\cdots$	$+X_n$.	

Using the CLT	and continuity	correction,	estimate	$P(4 \leq Y$	\leq 6).

Problem 3

You have invited 64 guests to a party. You need to make sandwiches for the guests. You believe that a guest might need 0, 1 or 2 sandwiches with probabilities $\frac{1}{4}$, $\frac{1}{2}$, and $\frac{1}{4}$ respectively. You assume that the number of sandwiches each guest needs is independent from other guests. How many sandwiches should you make so that you are 95% sure that there is no shortage?

Solution

Problem 4

Let X_1 , $X_2,\, \cdots$, X_n be i.i.d. $Exponential(\lambda)$ random variables with $\lambda=1.$ Let

$$\overline{X} = \frac{X_1 + X_2 + \dots + X_n}{n}.$$

How large n should be such that

$$P\left(0.9 \leq \overline{X} \leq 1.1
ight) \geq 0.95?$$

,				

