732A96/TDDE15 Advanced Machine Learning Graphical Models

Jose M. Peña IDA, Linköping University, Sweden

Lecture 1: Bayesian and Markov Networks

Contents

- Causal Structures
- Bayesian Networks
 - Definition
 - Causal Inference
 - ► Probabilistic Inference
- Markov Networks
 - Definition
 - Probabilistic Inference

Literature

- Main source
 - Bishop, C. M. Pattern Recognition and Machine Learning. Springer, 2006. Chapter 8.
- Additional source
 - Koski, T. J. T. and Noble, J. M. A Review of Bayesian Networks and Structure Learning. *Mathematica Applicanda* 40, 51-103, 2012.

Causal Structures

- Assume that we want to represent the causal relations between a set of random variables, e.g. the variables may represent the state of the components of a system.
- A natural and intuitive representation consists of a graph where the nodes are the random variables, and the edges are the causal relations between the variables. We call such a graph a causal structure.

- What happens if some random variables are not modeled ?
 - Nothing if they have at most one modeled effect, e.g. mediators.
 - ▶ Problems otherwise, e.g. $WG \rightarrow WS$ and $WG \leftarrow WS$ are both wrong.
- Exercise. Produce a causal structure for the domain Temperature, Ice cream sales and Soda sales.
- ▶ Exercise. Produce a causal structure for Boyle's law, which relates the pressure and volume of a gas as *Pressure · Volume = constant* if the temperature and amount of gas remain unchanged within a closed system.

Bayesian Networks: Definition

DAG	Parameter values for the conditional probability distributions
Sprinkler Rain Wet Grass Wet Street	$q(s) = (0.3, 0.7)$ $q(r) = (0.5, 0.5)$ $q(wg n, s_0) = (0.1, 0.9)$ $q(wg r_0, s_1) = (0.7, 0.3)$ $q(wg r_1, s_0) = (0.8, 0.2)$ $q(wg r_1, s_1) = (0.9, 0.1)$ $q(wg r_1) = (0.1, 0.9)$ $q(wg r_1) = (0.7, 0.3)$ $p(s, r, wg, ws) = q(s)q(r)q(wg s, r)q(ws r)$

- A Bayesian network (BN) over a finite set of discrete random variables $X = X_{1:n} = \{X_1, \dots, X_n\}$ consists of
 - ightharpoonup a directed acyclic graph (DAG) G whose nodes are the elements in X, and
 - parameter values $\hat{\theta}$ specifying probability distributions $q(x_i|pa_i)$, where Pa_i are the parents of X_i in G, i.e. the nodes with an edge into X_i .
- ▶ The BN represents a causal model of the system.
- ▶ And also a probabilistic model of the system as $p(x) = \prod_i q(x_i|pa_i)$.

Bayesian Networks: Definition

- We now show that $p(x) = \prod_i q(x_i|pa_i)$ is a probability distribution.
- Clearly, $0 \le \prod_i q(x_i|pa_i) \le 1$.
- Assume without loss of generality that $Pa_i \subseteq X_{1:i-1}$ for all i. Then $\sum_{i=1}^{n} p_i(y_i|x_i) = \sum_{i=1}^{n} p_i(y_i|x_i)$

$$\sum_{x} \prod_{i} q(x_{i}|pa_{i}) = \sum_{x_{1}} [q(x_{1}) \dots \sum_{x_{n-1}} [q(x_{n-1}|pa_{n-1}) \sum_{x_{n}} q(x_{n}|pa_{n})] \dots] = 1$$

▶ Moreover, $p(x_j|pa_j) = q(x_j|pa_j)$. To see it, note that

$$p(x_{j}|pa_{j}) = \frac{p(x_{j}, pa_{j})}{p(pa_{j})} = \frac{\sum_{x \setminus \{x_{j}, pa_{j}\}} \prod_{i} q(x_{i}|pa_{i})}{\sum_{x \setminus pa_{j}} \prod_{i} q(x_{i}|pa_{i})}$$

$$= \frac{\sum_{x_{1:j} \setminus \{x_{j}, pa_{j}\}} \prod_{i \leq j} q(x_{i}|pa_{i})}{\sum_{x_{1:j} \setminus pa_{j}} \prod_{i \leq j} q(x_{i}|pa_{i})} = q(x_{j}|pa_{j})$$

6/2

Bayesian Networks: Separation

We now show that many of the independencies in p can be read off G without numerical calculations.

- **Chain**: Age → Battery → Radio
 - ► Age ‡ Radio Ø
 - ▶ Age ⊥ Radio Battery
- **Fork**: Radio ← Battery → Lights
 - ▶ Radio ‡ Lights Ø
 - Radio ⊥ Lights | Battery
- Collider: Battery → Lights ← Bulb
 - Battery ⊥ Bulb|Ø
 - ▶ Battery \(\psi \) Bulb \| Lights
- **Chain** + collider: Age → Battery → Lights ← Bulb
 - $Age \perp Bulb | \emptyset$
 - ► Age ‡ Bulb Lights
 - ightharpoonup Age \perp Bulb Lights, Battery

Bayesian Networks: Separation

- A path in G is a sequence of distinct and adjacent nodes, i.e. the direction of the edge is irrelevant. A node B is a descendant of a node A in G if there is a path A → ... → B.
 - ▶ E.g., $Age \rightarrow Battery \rightarrow Lights \leftarrow Bulb$ is a path.
 - ► E.g., *Lights* is a descendant of *Age*.
- Let ρ be a path in G between the nodes α and β .
- ▶ A node B in ρ is a **collider** when $A \rightarrow B \leftarrow C$ is a subpath of ρ .
 - ▶ E.g., Lights is a collider in the path $Age \rightarrow Battery \rightarrow Lights \leftarrow Bulb$.
- ▶ Moreover, ρ is Z-**open** with $Z \subseteq X \setminus \{\alpha, \beta\}$ when
 - no non-collider in ρ is in Z, and
 - every collider in ρ is in Z or has a descendant in Z.
 - ▶ E.g., the path $Age \rightarrow Battery \rightarrow Lights \leftarrow Bulb$ is Z-open with $Z = \{Lights\}$.
- Let U, V and Z be three disjoint subsets of X. Then, U and V are separated given Z in G (i.e. U⊥GV|Z) when there is no Z-open path in G between a node in U and a node in V.
 - ► E.g., $Age \perp_G Bulb | \varnothing$.
- ▶ The separation criterion is **sound**, i.e. if $U \perp_G V | Z$ then $U \perp_P V | Z$.
- ▶ For instance, $S \perp_p R$, $S \not\perp_p R | WG$, $S \not\perp_p WS | WG$, $S \perp_p WS | WG$, R.

▶ Note that we read independencies from *G*, never dependencies.

Bayesian Networks: Separation

- Moreover, the separation criterion is also **complete**, i.e. p may be such that $U \perp_G V | Z$ if and only if $U \perp_D V | Z$.
- Moreover, p factorizes as $p(X) = \prod_i q(x_i|pa_i)$ if and only if it satisfies all the independencies identified by the separation criterion.
- ▶ Exercise. Prove that $A \perp_p B | C$ for the DAGs $A \rightarrow C \rightarrow B$, $A \leftarrow C \rightarrow B$ and $A \leftarrow C \leftarrow B$, i.e. prove that p(a,b|c) = p(a|c)p(b|c).
- ▶ **Exercise**. Prove that $A \perp_p B | \varnothing$ for the DAG $A \rightarrow C \leftarrow B$, i.e. prove that p(a,b) = p(a)p(b).
- Exercise. Find the minimal set of nodes that separates a given node from the rest. This set is called the Markov blanket of the given node.
- Exercise. How many free parameters do we have in the wet grass BN? How many do we have if we specify the distribution without the assistance of a BN?

Bayesian Networks: Causal Inference

Original	After $do(r_1)$	
Sprinkler Rain Wet Grass Wet Street	Sprinkler Wet Grass Wet Street	
$\begin{array}{l} q(s) = (0.3, 0.7) \\ q(r) = (0.5, 0.5) \\ q(wg r_0, s_0) = (0.1, 0.9) \\ q(wg r_0, s_1) = (0.7, 0.3) \\ q(wg r_1, s_0) = (0.8, 0.2) \\ q(wg r_1, s_1) = (0.9, 0.1) \\ q(ws r_0) = (0.1, 0.9) \\ q(ws r_1) = (0.7, 0.3) \\ p(s, r, wg, ws) = q(s)q(r)q(wg s, r)q(ws r) \end{array}$	$q(s) = (0.3, 0.7)$ $q(wg s_0) = (0.8, 0.2)$ $q(wg s_1) = (0.9, 0.1)$ $q(ws) = (0.7, 0.3)$ $p(s, wg, ws) = q(s)q(wg s)q(ws)$	

- ▶ What would be the state of the system if a random variable X_j is forced to take the state x_i , i.e. $p(x \setminus x_i|do(x_i))$?
 - Remove X_i and all the edges from and to X_i from G.
 - Remove $q(x_i|pa_i)$.
 - If $X_i \in Pa_i$, then replace $q(x_i|pa_i)$ with $q(x_i|pa_i \setminus x_i, x_i)$
 - Set $p(x \setminus x_i | do(x_i)) = \prod_i q(x_i | pa_i)$.
- ▶ So, the result of do(x) on a BN is a BN. More on causality in Lecture 5.

Bayesian Networks: Probabilistic Inference

▶ What is the state of a random variable X_i if a random variable X_i is observed to be in the state x_i , i.e. $p(x_k|x_i)$?

$$\begin{split} & p(x_k|x_i) = \frac{p(x_k,x_i)}{p(x_i)} = \frac{\sum_{x \in \{x_i,x_k\}} p(x)}{\sum_{x \in x_i} p(x)} \\ & p(ws|s) = \frac{\sum_{r,wg} p(r,wg,ws,s)}{\sum_{r,wg,ws} p(r,wg,ws,s)} \\ & = \frac{\sum_{r,wg} q(s)q(r)q(wg|s,r)q(ws|r)}{\sum_{r,wg,ws} q(s)q(r)q(wg|s,r)q(ws|r)} = \frac{q(s)\sum_{r} [q(r)q(ws|r)\sum_{wg} q(wg|s,r)]}{q(s)\sum_{r} [q(r)\sum_{wg} [q(wg|s,r)\sum_{wg} q(ws|r)]]} \end{split}$$

- Mhat is the state of a random variable X_k if a random variable X_i is observed to be in the state x_i , after forcing a random variable X_j to take the state x_j , i.e. $p(x_k|x_i, do(x_j))$?
- Answering questions like the one above can be computationally hard.
- A BN is an efficient (because it uses the independences encoded) formalism to compute a posterior probability distribution from a prior probability distribution in the light of observations, hence the name.

Markov Networks: Definition

 A BN represents asymmetric (causal) relations, whereas a Markov network represents symmetric relations, e.g. physical laws.

UG	Potentials assuming binary random variables
A — B	$\varphi(a, b, c) = (0, 0, 0, 0, 1, 1, 1, 1)$ $\varphi(b, c, d) = (1, 2, 3, 4, 5, 6, 7, 8)$ $p(a, b, c, d) = \varphi(a, b, c)\varphi(b, c, d)/Z \text{ with } Z = \sum_{a,b,c,d} \varphi(a, b, c)\varphi(b, c, d)$

- ▶ A Markov network (MN) over X consists of
 - ightharpoonup an undirected graph (UG) G whose nodes are the elements in X, and
 - ullet a set of non-negative functions $\varphi(k)$ over the cliques Cl(G) of G, i.e. the maximal complete sets of nodes in G. The functions are called potentials. They represent **compatibility** relations between the random variables in the cliques.
- ▶ The MN represents a probabilistic model of the system, namely

$$p(x) = \frac{1}{Z} \prod_{K \in Cl(G)} \varphi(k)$$

where Z is a normalization constant, i.e.

$$Z = \sum_{x} \prod_{K \in Cl(G)} \varphi(k)$$

• Clearly, p(x) is a probability distribution.

Markov Networks: Separation

- We now show that many of the independencies in p can be read off G without numerical calculations.
- A path ρ in G between two nodes α and β is Z-open with $Z \subseteq X \setminus \{\alpha, \beta\}$ when no node in ρ is in Z.
- Let U, V and Z be three disjoint subsets of X. Then, U and V are separated given Z in G (i.e. U⊥GV|Z) when there is no Z-open path in G between a node in U and a node in V.
- ▶ The separation criterion is **sound**, i.e. if $U \perp_G V | Z$ then $U \perp_p V | Z$.
- ▶ Moreover, it is also **complete**, i.e. p may be such that $U_{\perp_G}V|Z$ if and only if $U_{\perp_p}V|Z$.
- Moreover, p factorizes as $p(x) = \frac{1}{Z} \prod_{K \in CI(G)} \varphi(k)$ if and only if it satisfies all the independencies identified by the separation criterion.

Markov Networks: Separation

- ▶ **Exercise**. Prove that $A \perp_p B | C$ for the UG A C B, i.e. prove that p(a, b|c) = f(a, c)g(b, c) for some functions f and g.
- Exercise. Find the minimal set of nodes that separates a given node from the rest. This set is called the Markov blanket of the given node.
- Exercise. How many free parameters do we have in the ABCD MN? How many do we have if we specify the distribution without the assistance of a MN?

Markov Networks: Probabilistic Inference

What is the state of a random variable A if a random variable B is observed to be in the state b?

$$p(a|b) = \frac{\sum_{c,d} \varphi(a,b,c) \varphi(b,c,d)/Z}{\sum_{a,c,d} \varphi(a,b,c) \varphi(b,c,d)/Z} = \frac{\sum_{c} [\varphi(a,b,c) \sum_{d} \varphi(b,c,d)]}{\sum_{a,c} [\varphi(a,b,c) \sum_{d} \varphi(b,c,d)]}$$

- Answering questions like the one above can be computationally hard.
- A MN is an efficient (because it uses the independences encoded) formalism to answer such questions.

Markov Networks: Factor Graphs

- ▶ What if $\varphi(a,b,c) = \varphi(a,b)\varphi(b,c)\varphi(a,c)$? That is, $\varphi(k) = \prod_j \varphi(k_j)$ with $K_j \subset K$ for all j.
- A MN may obscure the structure of the potentials. Solution: Factor graphs.
- A factor graph over X consists of an UG G with two types of nodes: The elements in X and a set of potentials $\varphi(k)$ over subsets of X. All the edges in G are between a potential and the elements of X that are in the potential's domain.

MN	Factor graph	Factor graph
$A \stackrel{\frown}{-} B \stackrel{\frown}{-} C$	$ \begin{array}{c c} \varphi(a,b,c) \\ & \\ A & B & C \end{array} $	$A = \varphi(a,b) - B = \varphi(b,c) - C$

▶ The factor graph represents a probabilistic model of the system, namely

$$p(x) = \frac{1}{Z} \prod_{k} \varphi(k)$$

where Z is a normalization constant, i.e.

$$Z = \sum_{x} \prod_{k} \varphi(k)$$

Factor graphs: Finer-grained parameterization of MNs.

Intersection of Bayesian and Markov Networks

- An unshielded collider in a DAG is a subgraph of the form A → C ← B such that A and B are not adjacent in the DAG.
- An UG is triangulated if every cycle in it contains a chord, i.e. an edge between two non-consecutive nodes in the cycle.
- Given a DAG G, there is an UG H such that G and H represent the same separations if and only if G has no unshielded colliders.
- Given an UG G, there is an DAG H such that G and H represent the same separations if and only if G is triangulated.

Families of Graphical Models

Relevance of Graphical Models

Photo-Essay

BIRTH:

September 4, 1936, Tel Aviv.

B.S., Electrical Engineering (Technion, 1960); M.S., Electronics (Newark College of Engineering, 1961); M.S., Physics (Rutgers University, 1965); Ph.D., Electrical Engineering (Polytechnic Institute of Brooklyn., 1965).

EXPERIENCE:

JUDEA PEARL

United States - 2011

CITATION

For fundamental contributions to artificial intelligence through the development of a calculus for probabilistic and causal reasoning.

Judea Pearl created the representational and computational foundation for the processing of information under uncertainty.

He is credited with the invention of *Biyesian relavoix*, a mathematical formalism for defining complex probability models, as well as the principal algorithms used for inference in these models. This work not only revolutionized the field of artificial infelligence but also became an important tool for many other branches of engineering and the natural sciences. He later created a mathematical framework for causal inference that has had somificant integrated in the social sciences.

Judea Pearl was born on Sagtember 4, 1936, in 16 Alw, which was at that time administered under the British Mandate for Paleatine. He grew up in Pine Black, a Biblication his parandisher went to resetablish in 1924. In 1956, after sening in the Israel army and joining a Kibbutz. Judea decided to study engineering, He attended the Technion, where he met his wife, RAUL, and received a SS. degree in Electrical Engineering in 1950. Recalling the Technion faculty members in a 2012 intensieve in the Technion Magazine, he emphasized the thill of discovery.

Contents

- Causal Structures
- Bayesian Networks
 - Definition
 - Causal Inference
 - Probabilistic Inference
- Markov Networks
 - Definition
 - Probabilistic Inference

Thank you