Generalization Bounds for Passive and Active Learning

Maria-Florina (Nina) Balcan Carnegie Mellon University

Plan for the talk

- Briefly recap classic distributional learning model and generalization bounds for supervised machine learning, discuss data-dependent bounds for deep nets.
- Active learning: learning algo takes a much more active role than in classic supervised learning in order to minimize the need for expert intervention.

Plan for the talk

Active learning: learning algo takes a much more active role than in classic supervised learning in order to minimize the need for expert intervention.

Modern applications: massive amounts of raw data.

Only a tiny fraction can be annotated by human experts.

Protein sequences

Billions of webpages

Images

Passive Supervised Learning

Supervised Learning

• E.g., which emails are spam and which are important.

Not spam thesis - Mozilla Thunderbird <u>File Edit View Go Message Tools Help</u> 🙈 Get Mail 🔹 📝 Write 🔲 Address Book 🏽 🥙 Tag 🖜 X → Teligil Subject

Subject

Teligil From Date Congrats on the dissertation award! Michelle Leah Goodstein 10/12/2009 9:56 ... SCS Dissertation Award & ACM Dissertatio... Randy Bryant 10/14/2009 10:0... reimbursemrent · 10/15/2009 9:34 ... Re: Congrats on the dissertation award! Maria Florina Balcan repeated-eq. Re: SCS Dissertation Award & ACM Dissert Doru-Cristian Balcan 10/15/2009 12:4 review seminars-gatech sindofrii archive junk Xdelete students 10/14/2009 10:00 PM subject SCS Dissertation Award & ACM Dissertation Nominees students-diverse atalks-accross-gatech cc Catherine Copetas <copetas@cs.cmu.edu> talks-campus atalks-gatech Nina: talks-outside You might have already seen this announcement, but I would like to teaching tech-report personally congratulate you for your outstanding dissertation. I would like to invite you to return to CMU to give a distinguished lecture theory-group sometime in the winter of 2010. Catherine Copetas will work out the theory-talks timing for you. You'll get to use the new Rashid Auditorium---a big improvement over Wean 7500. Tong total-diverse-gatech Best of wishes to you at Georgia Tech upcoming-trips Randy Downloading 26 of 29 in thesi Unread: 0 Total: 29

• E.g., classify objects as chairs vs non chairs.

chair

Statistical / PAC learning model

- Algo sees $(x_1,c^*(x_1)),...,(x_m,c^*(x_m)),x_i$ i.i.d. from D
 - Does optimization over S, finds hypothesis $h \in H$.
 - Goal: h has small error, $err(h)=Pr_{x \in D}(h(x) \neq c^*(x))$
- · c* in H, realizable case; else agnostic

Two Main Aspects in Classic Machine Learning

Algorithm Design. How to optimize? [Luigi]

Automatically generate rules that do well on observed data.

Runing time: poly $\left(d, \frac{1}{\epsilon}, \frac{1}{\delta}\right)$

Generalization Guarantees, Sample Complexity [Guido]
Confidence for rule effectiveness on future data.

Sample Complexity: $O\left(\frac{1}{\epsilon^2}\left(VCdim(H) + \log\left(\frac{1}{\delta}\right)\right)\right)$

Sample Complexity for Supervised Learning Realizable Case

Theorem

$$m \ge \frac{1}{\varepsilon} \ln(|H|) + \ln\left(\frac{1}{\delta}\right) \qquad \text{samples of m}$$
 training examples

Prob. over different samples of m

labeled examples are sufficient so that with prob. $1-\delta$ all $h\in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

Linear in $1/\epsilon$

Theorem

$$m = O\left(\frac{1}{\varepsilon}\right)VCdim(H)\log\left(\frac{1}{\varepsilon}\right) + \log\left(\frac{1}{\delta}\right)\right]$$

labeled examples are sufficient so that with probab. $1-\delta$, all $h\in H$ with $err_D(h) \geq \varepsilon$ have $err_S(h) > 0$.

VC-dimension [Vapnik-Chervonenkis, 1971]

VC-dimension of a function class H is the cardinality of the largest set S that can be labeled in all possible ways $2^{|S|}$ by H.

E.g., H= linear separators in
$$\mathbb{R}^2$$
 $VCdim(H) = 3$

[If arbitrarily large finite sets can be shattered by H, then $VCdim(H) = \infty$]

 $VCdim(H) \ge 3$

VCdim(H) < 4

E.g., H= linear separators in
$$R^d$$

$$VCdim(H) = d + 1$$

Sample Complexity: Infinite Hypothesis Spaces Realizable Case

Theorem

$$m = O\left(\frac{1}{\varepsilon} \left[VCdim(H) \log\left(\frac{1}{\varepsilon}\right) + \log\left(\frac{1}{\delta}\right) \right] \right)$$

labeled examples are sufficient so that with probab. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

E.g., H= linear separators in R^d

$$m = O\left(\frac{1}{\varepsilon} \left[d \log \left(\frac{1}{\varepsilon}\right) + \log \left(\frac{1}{\delta}\right) \right] \right)$$

Sample complexity linear in d

So, if double the number of features, then only need roughly twice the number of samples to do well.

Sample Complexity: Finite Hypothesis Spaces Agnostic Case

1) How many examples suffice to get UC whp (so success for ERM).

Theorem

$$m \ge \frac{1}{2\varepsilon^2} \left[\ln(|H|) + \ln\left(\frac{2}{\delta}\right) \right]$$

 $1/\epsilon^2$ dependence [as opposed to $1/\epsilon$ for realizable], but get for something stronger.

labeled examples are sufficient s.t. with probab. $\geq 1 - \delta$, all $h \in H$ have $|err_D(h) - err_S(h)| < \varepsilon$.

2) Statistical Learning Theory style:

With prob. at least $1 - \delta$, for all $h \in H$:

$$\sqrt{\frac{1}{m}}$$
 as opposed to $\frac{1}{m}$ for realizable

$$\operatorname{err}_{D}(h) \leq \operatorname{err}_{S}(h) + \sqrt{\frac{1}{2m} \left(\ln \left(2|H| \right) + \ln \left(\frac{1}{\delta} \right) \right)}.$$

Sample Complexity: Infinite Hypothesis Spaces Agnostic Case

1) How many examples suffice to get UC whp (so success for ERM).

Theorem

$$m = O\left(\frac{1}{\varepsilon^2} \left[VCdim(H) + \log\left(\frac{1}{\delta}\right) \right] \right)$$

labeled examples are sufficient so that with probab. $1 - \delta$, all $h \in H$ with $|err_D(h) - err_S(h)| \le \epsilon$.

2) Statistical Learning Theory style:

With prob. at least $1 - \delta$, for all $h \in H$:

$$\operatorname{err}_{D}(h) \leq \operatorname{err}_{S}(h) + O\left(\sqrt{\frac{1}{2m}\left(\operatorname{VCdim}(H) + \ln\left(\frac{1}{\delta}\right)\right)}\right).$$

Tight bounds in the worst case.

VC-Dimension of Neural Networks

Theorem: H class of neural networks with L layers, W weights.

- Piecewise constant (linear threshold units): $VCdim(H) = \widetilde{O}(W)$. [Baum-Haussler, 1989]
- Piecewise linear (ReLUs): $VCdim(H) = \widetilde{O}(WL)$. [Bartlett-Harvey-Liaw-Mehrabian, 2017]

(Note: all final output values thresholded to $\{-1,1\}$) Nearly tight bounds.

Classic VCdim bounds have a strong explicit dependence on # of parameters in the network.

Trivial if # of parameters exceeds the number of examples.

Generalization in Deep Nets

How can we explain successful training of very deep networks?

- Stronger Data-Dependent Bounds
- Algorithm Does Implicit Regularization (finds local optima with special properties)
- Transfer Learning

Generalization in Deep Nets

How can we explain successful training of very deep networks?

- Stronger Data-Dependent Bounds
- Algorithm Does Implicit Regularization (finds local optima with special properties)
- Transfer Learning

Data Dependent Generalization Bounds

- Distribution/data dependent. Tighter for nice distributions.
- Apply to general classes of real valued functions & can be used to recover the VC-bounds for supervised classification.
- Prominent technique for generalization bounds since 2000.

Covering Numbers Generalization Bounds

See Anthony-Bartlett, "Neural Network Learning: Theoretical Foundations", 1999.

Rademacher Complexity Generalization Bounds

See Bousquet-Boucheron-Lugosi, "Introduction to Statistical Learning Theory", 2014.

Problem Setup

- A space Z and a distr. $D_{|Z}$
- F be a class of functions from Z to [0,1]
- $S = \{z_1, ..., z_m\}$ be i.i.d. from $D_{|Z|}$

Want a high prob. uniform convergence bound, all $f \in F$ satisfy:

```
E_D[f(z)] \le E_S[f(z)] + term(complexity of F, niceness of D/S)
```

What measure of complexity?

General discrete Y

```
E.g., Z=X\times Y, Y=\{-1,1\}, \qquad H=\{h\colon X\to Y\} hyp. space (e.g., lin. sep) F=L(H)=\{l_h\colon X\times Y\to [0,1]\}, \text{ where } l_h\big(z=(x,y)\big)=1_{\{h(x)\neq y\}} [Loss fnc induced by hand E_{z\sim D}[l_h(z)]=\operatorname{err}_D(h) and E_S[l_h(z)]=\operatorname{err}_S(h). \operatorname{err}_D[h]\leq \operatorname{err}_S[h]+\operatorname{term}(\text{complexity of } H, \text{niceness of } D/S)
```

Space Z and a distr. $D_{|Z}$; F be a class of functions from Z to [0,1] Let $S = \{z_1, ..., z_m\}$ be i.i.d from $D_{|Z}$.

The empirical Rademacher complexity of F is:

$$\widehat{R}_{m}(F) = E_{\sigma_{1},...,\sigma_{m}} \left[\sup_{f \in F} \frac{1}{m} \sum_{i} \sigma_{i} f(z_{i}) \right]$$

where σ_i are i.i.d. Rademacher variables chosen uniformly from $\{-1,1\}$.

The Rademacher complexity of F is: $R_m(F) = E_S[\widehat{R}_m(F)]$

sup measures for any given set S and Rademacher vector σ , the max correlation between $f(z_i)$ and σ_i for all $f \in F$

So, taking the expectation over σ this measures the ability of class F to fit random noise.

Space Z and a distr. $D_{|Z}$; F be a class of functions from Z to [0,1] Let $S = \{z_1, ..., z_m\}$ be i.i.d from $D_{|Z}$.

The empirical Rademacher complexity of F is:

$$\widehat{R}_{m}(F) = E_{\sigma_{1},...,\sigma_{m}} \left[\sup_{f \in F} \frac{1}{m} \sum_{i} \sigma_{i} f(z_{i}) \right]$$

where σ_i are i.i.d. Rademacher variables chosen uniformly from $\{-1,1\}$.

The Rademacher complexity of F is: $R_m(F) = E_S[\widehat{R}_m(F)]$

$$\begin{aligned} &\text{Theorem:} & \text{Whp all } f \in F \text{ satisfy:} & \text{Useful if it decays with m.} \\ & E_D[f(z)] \leq E_S[f(z)] + 2 R_m(F) + \sqrt{\frac{\ln(2/\delta)}{2m}} \\ & E_D[f(z)] \leq E_S[f(z)] + 2 \, \widehat{R}_m(F) + 3 \sqrt{\frac{\ln(1/\delta)}{m}} \end{aligned}$$

Space Z and a distr. $D_{|Z}$; F be a class of functions from Z to [0,1] Let $S = \{z_1, ..., z_m\}$ be i.i.d from $D_{|Z}$.

The empirical Rademacher complexity of F is:

$$\widehat{R}_{m}(F) = E_{\sigma_{1},...,\sigma_{m}} \left[\sup_{f \in F} \frac{1}{m} \sum_{i} \sigma_{i} f(z_{i}) \right]$$

where σ_i are i.i.d. Rademacher variables chosen uniformly from $\{-1,1\}$.

The Rademacher complexity of F is: $R_m(F) = E_S[\widehat{R}_m(F)]$

E.g.,:

- 1) F={f}, then $\widehat{R}_m(F) = 0$ [Linearity of expectation: each $\sigma_i f(z_i)$ individually has expectation 0.]
- 2) F={all 0/1 fnc}, then $\widehat{R}_m(F) = 1/2$

[To maximize set $f(z_i) = 1$ when $\sigma_i = 1$ and $f(z_i) = 0$ when $\sigma_i = -1$. Then quantity inside expectation is $\#1's \in \sigma$, which is m/2 by linearity of expectation.]

Space Z and a distr. $D_{|Z}$; F be a class of functions from Z to [0,1] Let $S = \{z_1, ..., z_m\}$ be i.i.d from $D_{|Z}$.

The empirical Rademacher complexity of F is:

$$\widehat{R}_{m}(F) = E_{\sigma_{1},...,\sigma_{m}} \left[\sup_{f \in F} \frac{1}{m} \sum_{i} \sigma_{i} f(z_{i}) \right]$$

where σ_i are i.i.d. Rademacher variables chosen uniformly from $\{-1,1\}$.

The Rademacher complexity of F is: $R_m(F) = E_S[\widehat{R}_m(F)]$

E.g.,:

- 1) F={f}, then $\widehat{R}_m(F) = 0$
- 2) F={all 0/1 fnc}, then $\widehat{R}_m(F) = 1/2$
- 3) F=L(H), H=binary classifiers then: $R_S(F) \le \sqrt{\frac{\ln(2|H[S]|)}{\frac{m}{m}}}$ H finite: $R_S(F) \le \sqrt{\frac{\ln(2|H|S)|}{m}}$

Rademacher Complexity Bounds

Space Z and a distr. D_{1Z} ; F be a class of functions from Z to [0,1]Let $S = \{z_1, ..., z_m\}$ be i.i.d from $D_{|Z}$.

The empirical Rademacher complexity of F is:

$$\widehat{R}_m(F) = E_{\sigma_1,\dots,\sigma_m} \left[\sup_{f \in F} \frac{1}{m} \sum_i \sigma_i f(z_i) \right]$$
 where σ_i are i.i.d. Rademacher variables chosen uniformly from $\{-1,1\}$.

The Rademacher complexity of F is: $R_m(F) = E_S[\widehat{R}_m(F)]$

Theorem: Whp all $f \in F$ satisfy: Data dependent bound!

$$\begin{split} E_D[f(z)] &\leq E_S[f(z)] + 2R_m(F) + \sqrt{\frac{ln(2/\delta)}{2m}} \\ E_D[f(z)] &\leq E_S[f(z)] + 2\,\widehat{R}_m(F) + \sqrt{\frac{ln(1/\delta)}{2m}} \end{split} \quad \begin{array}{l} \text{Bound expectation of each f in terms of its empirical average \& the RC of F} \\ \frac{ln(1/\delta)}{m} \end{split}$$

Proof uses Symmetrization and Ghost Sample Tricks! (same as for VC bound)

Rademacher Complex: Binary classification

Fact: $H = \{h: X \to Y\}$ hyp. space (e.g., lin. sep) F = L(H), d = VCdim(H):

$$R_S(F) \leq \sqrt{\frac{\ln(2|H[S]|)}{m}} \qquad \text{So, by Sauer's lemma, } R_S(F) \leq \sqrt{\frac{2d\ln\left(\frac{em}{d}\right)}{m}}$$

Theorem: For any H, any distr. D, w.h.p. $\geq 1 - \delta$ all $h \in H$ satisfy:

$$\operatorname{err}_{D}(h) \leq \operatorname{err}_{S}(h) + R_{m}(H) + 3\sqrt{\frac{\ln(2/\delta)}{2m}}.$$
 $\operatorname{err}_{D}(h) \leq \operatorname{err}_{S}(h) + \sqrt{\frac{2\dim(\frac{\operatorname{em}}{d})}{m}} + 3\sqrt{\frac{\ln(2/\delta)}{2m}}.$

generalization bound

Many more uses!!! Margin bounds for SVM, boosting, regression bounds, margin based bounds for deep nets, etc.

Data-Dependent Bounds for Deep Networks

E.g., very recent papers:

 Via covering numbers: "Spectrally-normalized margin bounds for neural networks". [Bartlett-Foster-Telgarsky, NIPS 2017]

 Via Rademacher complexity: "Size-independent sample complexity of neural networks". [Golowich-Rakhlin-Shamir, COLT 2018]

Data-Dependent Bounds for Deep Networks

 Spectrally-normalized margin bounds for neural networks. [Bartlett-Foster-Telgarsky, NIPS 2017]

Theorem: With high probability, every f_W with $R_W \le r$ satisfies

$$\Pr(\mathsf{M}(\mathsf{f}_{\mathsf{W}}(\mathsf{X}),\mathsf{Y}) \leq 0) \leq \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}[\mathsf{M}(\mathsf{f}_{\mathsf{W}}(\mathsf{X}_{i}),\mathsf{Y}_{i}) \leq \gamma] + \widetilde{\mathsf{O}}\left(\frac{\mathsf{RL}}{\gamma \sqrt{n}}\right)$$

• Network with L layers, parameters $W_1, ..., W_L$:

$$f_{W}(x) := \sigma(W_{L}\sigma_{L-1}(W_{L-1} \dots \sigma_{1}(W_{1}x) \dots))$$

[Golowich-Rakhlin-Shamir, COLT 2018] provide a related bound via a Rademacher complexity argument

Generalization in Deep Nets

How can we explain successful training of very deep networks?

- Stronger Data-Dependent Bounds
- Algorithm Does Implicit Regularization (finds local optima with special properties)

"Algorithmic Regularization in Over-parameterized Matrix Sensing and Neural Networks with Quadratic Activations". [Li-Ma-Zhang. COLT 2018]

Transfer Learning

"Risk Bounds for Transferring Representations With and Without Fine-Tuning". [McNamara-Balcan. ICML 2017]

Generalization in Deep Nets

How can we explain successful training of very deep networks?

- Str
- Algorith
 - ", N

Tro

¥" T Lots of open questions.

Active Learning

Classic Fully Supervised Learning Paradigm Insufficient Nowadays

Modern applications: massive amounts of raw data.

Only a tiny fraction can be annotated by human experts.

Protein sequences

Billions of webpages

Images

Modern ML: New Learning Approaches

Modern applications: massive amounts of raw data.

Techniques that best utilize data, minimizing need for expert/human intervention.

Paradigms where there has been great progress.

· Semi-supervised Learning, (Inter)active Learning.

Active Learning

Nice resources:

- Two faces of active learning. Sanjoy Dasgupta. 2011.
- Active Learning. Bur Settles. 2012.
- Active Learning. Balcan-Urner. Encyclopedia of Algorithms. 2015
- Interactive Learning Workshop, Foundations of Machine Learning Semester, Simons Theory of Computing:

https://simons.berkeley.edu/workshops/machinelearning2017-1

Batch Active Learning

- Learner can choose specific examples to be labeled.
- Goal: use fewer labeled examples [pick informative examples to be labeled].

Active Learning

Selective Sampling Active Learning

- Selective sampling AL (Online AL): stream of unlabeled examples, when each arrives make a decision to ask for label or not.
 - · Goal: use fewer labeled examples [pick informative examples to be labeled].

What Makes a Good Active Learning Algorithm?

- Guaranteed to output a relatively good classifier for most learning problems.
- · Doesn't make too many label requests.

Hopefully a lot less than passive learning and SSL.

 Need to choose the label requests carefully, to get informative labels.

Can adaptive querying really do better than passive/random sampling?

- YES! (sometimes)
- We often need far fewer labels for active learning than for passive.
- This is predicted by theory and has been observed in practice.

Active Learning in Practice

- Text classification: active SVM (Tong-Koller, ICML2000).
 - e.g., request label of the example closest to current separator.

Video Segmentation (Fathi-Balcan-Ren-Regh, BMVC 11).

Can adaptive querying help? [CAL92, Dasgupta04]

• Threshold fns on the real line: $h_w(x) = 1(x \ge w)$, $H = \{h_w : w \in R\}$

- Get N unlabeled examples
- How can we recover the correct labels with $\ll N$ queries?
- Do binary search! Just need O(log N) labels!

- Output a classifier consistent with the N inferred labels.
- $N = O(1/\epsilon)$ we are guaranteed to get a classifier of error $\leq \epsilon$.

<u>Passive supervised</u>: $\Omega(1/\epsilon)$ labels to find an ϵ -accurate threshold.

Active: only $O(\log 1/\epsilon)$ labels. Exponential improvement.

Uncertainty sampling in SVMs common and quite useful in practice. E.g., [Tong-Koller, ICML 2000; Jain-Vijayanarasimhan-Grauman, NIPS 2010; Schohon Cohn, ICML 2000]

Active SVM Algorithm

- At any time during the alg., we have a "current guess" \mathbf{w}_t of the separator: the max-margin separator of all labeled points so far.
- Request the label of the example closest to the current separator.

Active SVM seems to be quite useful in practice.

[Tong-Koller, ICML 2000; Jain-Vijayanarasimhan-Grauman, NIPS 2010]

Algorithm (batch version)

Input $S_u = \{x_1, ..., x_{m_u}\}$ drawn i.i.d from the underlying source D

Start: query for the labels of a few random x_i s.

For t = 1,,

- Find w_t the max-margin separator of all labeled points so far.
- Request the label of the example closest to the current separator: minimizing $|x_i \cdot w_t|$.

(highest uncertainty)

Active SVM seems to be quite useful in practice.

E.g., Jain-Vijayanarasimhan-Grauman, NIPS 2010

Newsgroups dataset (20.000 documents from 20 categories)

Active SVM seems to be quite useful in practice.

E.g., Jain-Vijayanarasimhan-Grauman, NIPS 2010

CIFAR-10 image dataset (60.000 images from 10 categories)

Active SVM/Uncertainty Sampling

- Works sometimes....
- However, we need to be very very careful!!!
 - Myopic, greedy technique can suffer from sampling bias.
 - A bias created because of the querying strategy; as time goes on the sample is less and less representative of the true data source.

Active SVM/Uncertainty Sampling

- Works sometimes....
- However, we need to be very very careful!!!

Active SVM/Uncertainty Sampling

- Works sometimes....
- However, we need to be very very careful!!!
 - Myopic, greedy technique can suffer from sampling bias.
 - Bias created because of the querying strategy; as time goes on the sample is less and less representative of the true source.
 - Observed in practice too!!!!

 Main tension: want to choose informative points, but also want to guarantee that the classifier we output does well on true random examples from the underlying distribution.

Safe Active Learning Schemes

Disagreement Based Active Learning Hypothesis Space Search

[CAL92] [BBL06]

[Hanneke'07, DHM'07, Wang'09, Fridman'09, Kolt10, BHW'08, BHLZ'10, H'10, Ailon'12, ...]

Version Spaces

- X feature/instance space; distr. D over X; c^* target fnc
- Fix hypothesis space H.

```
Definition (Mitchell'82) Assume realizable case: c^* \in H.
 Given a set of labeled examples (x_1, y_1), ..., (x_{m_l}, y_{m_l}), y_i = c^*(x_i)
 Version space of H: part of H consistent with labels so far.
 I.e., h \in VS(H) iff h(x_i) = c^*(x_i) \ \forall i \in \{1, ..., m_l\}.
```

Version Spaces

- X feature/instance space; distr. D over X; c^* target fnc
- Fix hypothesis space H.

Definition (Mitchell'82) Assume realizable case: $c^* \in H$.

Given a set of labeled examples (x_1, y_1) , ..., (x_{m_1}, y_{m_1}) , $y_i = c^*(x_i)$

Version space of H: part of H consistent with labels so far.

E.g.,: data lies on circle in R², H = homogeneous linear seps.

region of disagreement in data space

Version Spaces. Region of Disagreement

Definition (CAL'92)

Version space: part of H consistent with labels so far.

Region of disagreement = part of data space about which there is still some uncertainty (i.e. disagreement within version space)

 $x \in X, x \in DIS(VS(H))$ iff $\exists h_1, h_2 \in VS(H), h_1(x) \neq h_2(x)$

Disagreement Based Active Learning [CAL92]

Algorithm:

Pick a few points at random from the current region of uncertainty and query their labels.

Stop when region of uncertainty is small.

Note: it is active since we do not waste labels by querying in regions of space we are certain about the labels.

Disagreement Based Active Learning [CAL92]

Algorithm:

Query for the labels of a few random x_i s.

Let H_1 be the current version space.

For t = 1,,

Pick a few points at random from the current region of disagreement $DIS(H_t)$ and query their labels.

Let H_{t+1} be the new version space.

Region of uncertainty [CAL92]

- Current version space: part of C consistent with labels so far.
- "Region of uncertainty" = part of data space about which there is still some uncertainty (i.e. disagreement within version space)

Region of uncertainty [CAL92]

- Current version space: part of C consistent with labels so far.
- "Region of uncertainty" = part of data space about which there is still some uncertainty (i.e. disagreement within version space)

How about the agnostic case where the target might not belong the H?

A² Agnostic Active Learner

[Balcan, Beygelzimer, Langford, ICML'06] [Balcan, Beygelzimer, Langford, JCSS'08]

Algorithm:

Let $H_1 = H$.

Careful use of generalization bounds; Avoid the sampling bias!!!!

For t = 1,,

- Pick a few points at random from the current region of disagreement $DIS(H_t)$ and query their labels.
- Throw out hypothesis if you are statistically confident they are suboptimal.

When Active Learning Helps. Agnostic case

A² the first algorithm which is robust to noise.

[Balcan-Beygelzimer-Langford, ICML'06] [Balcan-Beygelzimer-Langford, JCSS'08]

"Region of disagreement" style: Pick a few points at random from the current region of disagreement, query their labels, throw out hypothesis if you are statistically confident they are suboptimal.

Guarantees for A² [BBL'06,'08]:

- It is safe (never worse than passive learning) & exponential improvements.
 - C thresholds, low noise, exponential improvement,
 - C homogeneous linear separators in R^d,
 - D uniform, low noise, only $d^2 \log (1/\epsilon)$ labels.

A lot of subsequent work.

[Hanneke'07, DHM'07, Wang'09, Fridman'09, Kolt10, BHW'08, BHLZ'10, H'10, Ailon'12, ...]

General guarantees for A² Agnostic Active Learner

"Disagreement based": Pick a few points at random from the current region of uncertainty, query their labels, throw out hypothesis if you are statistically confident they are suboptimal. [BBL'06]
How quickly the region of disagreement

collapses as we get closer and closer to optimal classifier

Guarantees for A² [Hanneke'07]:

Disagreement coefficient
$$\theta_{s^*} = \sup_{r \geq \eta + \epsilon} \frac{\Pr(DIS(B(c^*, r)))}{r}$$

Theorem

$$m = \left(1 + \frac{\eta^2}{\epsilon^2}\right) VCdim(C)\theta_{c^*}^2 \log(\frac{1}{\epsilon})$$

labels are sufficient s.t. with prob. $\geq 1-\delta$ output h with $err(h) \leq \eta + \epsilon$.

Realizable case: $m = VCdim(C)\theta_{c^*}\log(\frac{1}{\epsilon})$

Linear Separators, uniform distr.: $\theta_{c^*} = \sqrt{d}$

General guarantees for A² Agnostic Active Learner

"Disagreement based": Pick a few points at random from the current region of uncertainty, query their labels, throw out hypothesis if you are statistically confident they are suboptimal. [BBL'06]
How quickly the region of disagreement

collapses as we get closer and closer to optimal classifier

Guarantees for A² [Hanneke'07]:

Disagreement coefficient
$$\theta_{s^*} = \sup_{r \geq \eta + \epsilon} \frac{\Pr(DIS(B(c^*, r)))}{r}$$

Theorem

$$m = \left(1 + \frac{\eta^2}{\epsilon^2}\right) VCdim(C)\theta_{c^*}^2 \log(\frac{1}{\epsilon})$$

labels are sufficient s.t. with prob. $\geq 1-\delta$ output h with $err(h) \leq \eta + \epsilon$.

Realizable case: $m = VCdim(C)\theta_{c^*}\log(\frac{1}{\epsilon})$

Linear Separators, uniform distr.: $\theta_{c^*} = \sqrt{d}$

Disagreement Based Active Learning

"Disagreement based" algos: query points from current region of disagreement, throw out hypotheses when statistically confident they are suboptimal.

- Generic (any class), adversarial label noise.
- Computationally efficient for classes of small VC-dimension

Still, could be suboptimal in label complex & computationally inefficient in general.

Lots of subsequent work trying to make is more efficient computationally and more aggressive too: [Hanneke07, DasguptaHsuMontleoni'07, Wang'09, Fridman'09, Koltchinskii10, BHW'08, Beygelzimer-Hsu-LangfordZhang'10, Hsu'10, Ailon'12, ...]

Other Interesting ALTechniques used in Practice

Interesting open question to analyze under what conditions they are successful.

Density-Based Sampling

Uncertainty Sampling

Maximal Diversity Sampling

Ensemble-Based Possibilities

Graph-based Active and Semi-Supervised Methods

Graph-based Methods

- Assume we are given a pairwise similarity fnc and that very similar examples probably have the same label.
- If we have a lot of labeled data, this suggests a Nearest-Neighbor type of algorithm.
- If you have a lot of unlabeled data, perhaps can use them as "stepping stones".

Graph-based Methods

Idea: construct a graph with edges between very similar examples.

Unlabeled data can help "glue" the objects of the same class together.

Graph-based Methods

Often, transductive approach. (Given L + U, output predictions on U). Are alllowed to output any labeling of $L \cup U$.

Main Idea:

 Construct graph G with edges between very similar examples.

 Might have also glued together in G examples of different classes.

 Run a graph partitioning algorithm to separate the graph into pieces.

Several methods:

- Minimum/Multiway cut [Blum-Chawla01]
- Minimum "soft-cut" [Zhu-Ghahramani-Lafferty'03]
- Spectral partitioning
- ...

SSL using soft cuts

[Zhu-Ghahramani-Lafferty'03]

Solve for label function $f(x) \in [0,1]$ to minimize:

$$J(f) = \sum_{edges(i,j)} w_{ij} (f(x_i) - f(x_j))^2 + \sum_{x_i \in L} \lambda (f(x_i) - y_i)^2$$

Similar nodes get similar labels (weighted similarity) Agreement with labels (agreement not strictly enforces)

Active learning with label propagation

(1) Build neighborhood graph

(2) Query some random points

(3) Propagate labels (using soft-cuts)

How to choose which node to query?

Active learning with label propagation

One natural idea: query the most uncertain point.

But this has only one edge. Query won't have much impact!

(even worse: a completely isolated node)

(3) Propagate labels (using soft-cuts)

(4) Make query and go to (3)

Active learning with label propagation

Instead, use a 1-step-lookahead heuristic:

- For a node with label p, assume that querying will have prob p of returning answer 1, 1-p of returning answer 0.
- Compute "average confidence" after running soft-cut in each case: $p\frac{1}{n}\sum_{x_i}\max\bigl(f_1(x_i),1-f_1(x_i)\bigr)+(1-p)\frac{1}{n}\sum_{x_i}\max\bigl(f_0(x_i),1-f_0(x_i)\bigr)$
- Query node s.t. this quantity is highest (you want to be more confident on average).
 - (3) Propagate labels (using soft-cuts)

(4) Make query and go to (3)

Active Learning with Label Propagation in Practice

Does well for Video Segmentation (Fathi-Balcan-Ren-Regh, BMVC 11).

Discussion, Open Directions

- · Active learning: important modern learning paradigm.
 - could be really helpful, could provide exponential improvements in label complexity (both theoretically and practically)!
- Common heuristics (e.g., those based on uncertainty sampling). Need to be very careful due to sampling bias.
- Very general sample complexity results, arbitrary concept spaces, high dimensional cases via disagreement based schemes.

Discussion, Open Directions

- Active learning: important modern learning paradigm.
- Very general sample complexity results, arbitrary concept spaces, high dimensional cases.
- Localization developed for label efficiency also useful for handling adversarial examples. [Awasthi-Balcan-Long STOC 2014 & JACM'17]

Open Directions

- Active deep learning.
- More general interactions with the expert.
 - E.g., Local Algorithms for Interactive Clustering.

 [Awasthi-Balcan-Voevodski, ICML 2014 & JMLR 2017]

Important direction: richer interactions with the expert.

Better Accuracy

Natural interaction

Fewer queries

