CSCI 301, Winter 2018 Math Exercises #7

Jesse Ericksen - W01173602

Due: February $28^{th}2018$

Problem 1. A = $\{a^i b^j \mid i \ge j \ge 0\}$

Proof. Suppose A is regular.

Let p = pumping length.

Let s be some string $\in A$ with $|s| \ge p$.

Suppose $s = a^{p-1}b^{p-1}$.

Therefore, s is in the language and |s| > p.

Suppose x, y, z exist.

Since $|x,y| \le p$ and $|a| \le p$, we know at least that y MUST contain only b's.

Now, the pumping lemma states $xy^iz \in A$.

Yet, we can see that for i > 1,

i.e. xyyz, xyyyz xyyyyz ...

the resulting string CANNOT be in the language A because then we would have more b's than a's which would not satisfy the condition that $i \ge j \ge 0$. Therefore, this equation cannot be pumped and must NOT be regular.

Problem 2. $A = \{a^{4n+5}b^{3n+2} : n \ge 0\}$

Proof. Suppose A is regular.

Let p = pumping length.

Let s be some string \in A with |s| > p

Suppose $s = a^{4p+5}b^{3p+2}$.

Therefore, s is in the language A and $|s| \ge p$.

Suppose x, y, z exist.

Since, $|xy| \le p$ we know that x and y must be all a's.

The pumping lemma states that for regular languages with x, y, z that xy^iz must also be in that language. However, for any i > 1 this is not true for $s \in A$.

For example, consider xyyz

then
$$s = a^{4p+5+1}b^{3p+2} = a^{4p+6}b^{3p+2} \notin A$$

In this case, any extra a's would result in a string that is not in our language, thus this expression cannot be pumped and must NOT be a regular language.

Problem 3. A = $\{a^{i}b^{j}c^{k} \mid i = j \text{ or } j = k\}$

Proof. Suppose A is regular.

Lets break this problem up into two cases and evaluate them individually.

Let p = pumping length. Let s be some string $\in A$ with $|s| \ge p$

Case 1: [i = j]

Suppose $s = a^p b^p c^k$.

Therefore, s is in the language and its length is greater than p.

Since, $|xy| \le p$, we know x and y must consist of all a's.

We know by the pumping lemma for regular languages that $xy^iz \in A$ Consider one example of this, xyyz.

This results in $s = a^{p+1}b^pc^k$.

Now, $|a| \neq |b|$ which does not satisfy the condition for case 1 that i = j. We have a contradiction.

Case 2: [j = k]

Let $s = a^i b^p c^p$.

Therefore, s is in the language and $|s| \ge p$.

Suppose i = 0.

Then for $|xy| \le p, x, y$ must be all b's.

According to the pumping lemma $xy^iz \in A$. Lets consider xy^2z .

This results in $s = a^i b^{p+1} c^p$ and now our condition is not met as $j \neq k$.

Furthermore, this contradiction arises for any value > 1. Since y cannot be pumped without such a contradiction, we have proven that this language is NOT regular.

2