

ARMY RESEARCH LABORATORY

Pressure Oscillations in a Regenerative Liquid Propellant Gun and Influence of Random Processes

Gloria P. Wren
U.S. ARMY RESEARCH LABORATORY

Paul S. Gough
PAUL GOUGH ASSOCIATES, INC.

ARL-TR-103

March 1993

13-4 12 068

NOTICES

Destroy this report when it is no longer needed. DO NOT return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden. To Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA. 22252-4302. and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188), Washington, OC. 20503.

1. AGENCT USE ONLY (Leave Dialik)	2 REPORT DATE	3. REPORT TIPE AND DATES COVERED
	March 1993	Final, September 1990 - June 1991
4. TITLE AND SUBTITLE		5. FUNDING NUMBERS
Pressure Oscillations in a Regenera	tive I iquid Propellant Gun	PR: 1L162618AH80
and Influence of Random Processes	DA 30 6709	
6. AUTHOR(S)		
, A011101(1)		
Gloria P. Wren and Paul S. Gough	k	
. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)	8. PERFORMING ORGANIZATION
		REPORT NUMBER
U.S. Army Research Laboratory		
ATTN: AMSRL-WT-PA		
Aberdeen Proving Ground, MD 21	005-5066	
9. SPONSORING/MONITORING AGENCY	NAME(S) AND ADDRESS(ES)	10. SPONSORING / MONITORING AGENCY REPORT NUMBER
U.S. Army Research Laboratory		
AMSRL-OP-CI-B (Tech Lib)		ARL-TR-103
Aberdeen Proving Ground, MD 21	005-5066	į
11. SUPPLEMENTARY NOTES	, <u>, , , , , , , , , , , , , , , , , , </u>	
* Paul Gough Associates, Portsmou	ith, NH	
	•	
12a. DISTRIBUTION / AVAILABILITY STAT		12b. DISTRIBUTION CODE
Approved for public release; distrib	ution is unlimited.	
		į
3. ABSTRACT (Maximum 200 words)		
		t gun (RLPG) interior ballistic cycle has been developed
in which the jet breakup and energy	release is governed by a Tay!	lor formulation. The model allows a random component
in the jet breakup to simulate condit	ions which may exist in the g	un. The random component produces rough combustion
		esulting chamber pressure history exhibits oscillations
qualitatively similar to those obser	ved experimentally. Moreov	ver, it is shown that even though the energy release is
contined to the chamber, the oscilla	tions can be propagated dow	nbore to the base of the projectile, thereby presenting a
potential hazard for sensitive muniti	ions. A possible remedy is a	iscussed.

14. SUBJECT TERMS	15. NUMBER OF PAGES		
liquid propellants; combustion pressure oscillations	n instability; oscillation; regener	ative:	45 16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT
		1	1

INTENTIONALLY LEFT BLANK.

TABLE OF CONTENTS

		Page
	LIST OF FIGURES	•
	ACKNOWLEDGMENT	vi
1.	INTRODUCTION	1
2.	DESCRIPTION OF MODEL	4
3.	MESH INDIFFERENCE	7
4.	APPLICATION	9
5.	REDUCTION OF PRESSURE OSCILLATIONS	13
6.	SUMMARY	14
7.	REFERENCES	17
	APPENDIX: OUTPUT FROM COMPUTER SIMULATION	19
	DISTRIBUTION LIST	41

DING QUALITY LYSE TOTAL

Acce	sion For	
NTIS DTIC Unan	CRA&I TAB nounced	000
By Distrit	oution/	
F	vailability Co	odes
0151 A-\	Avail and J Special	or

INTENTIONALLY LEFT BLANK.

LIST OF FIGURES

Figure		Page
1.	Experimental chamber pressure history from a regenerative liquid propellant gun	1
2.	A Concept VIC regenerative liquid propellant gun	2
3.	Illustration of "maximum conditioning time" and "coherence interval"	6
4.	Comparison of breech pressure histories for 33 (line) and 69 (dot) mesh points in the chamber	8
5.	Comparison of projectile base pressure histories for 33 (line) and 69 (dot) mesh points in the chamber	8
6.	Comparison of breech chamber pressure histories for BUKLEN values of 0.2 (line) and 1.0 (dot)	9
7.	Liquid accumulation in the combustion chamber based on simulation	10
8.	Simulation of chamber pressure with random breakup of liquid jet	10
9.	Mass in the jet at various time steps based on simulation	12
10.	Simulation of base pressure history with random jet breakup	13
11.	Simulation of chamber pressure history reducing the degree of coherence in the jet breakup	14

INTENTIONALLY LEFT BLANK.

ACKNOWLEDGMENT

The authors acknowledge the invaluable assistance of Ms. Sharon Richardson of the U.S. Army Research Laboratory* (ARL), Aberdeen Proving Ground, MD, who performed many of the code runs and data presentations. In addition, the authors would like to thank the reviewers of this manuscript, Performed Robbins and Mr. William Oberle of ARL, for their comments.

^{*} The U.S. Army Ballistic Research Laboratory (BRL) was deactivated on 30 September 1992 and subsequently became a part of ARL on 1 October 1992.

INTENTIONALLY LEFT BLANK.

1. INTRODUCTION

Experimental pressure-time curves from regenerative liquid propellant gun (RLPG) firings characteristically show the presence of high amplitude, high frequency pressure fluctuations in the combustion chamber as demonstrated in Figure 1. The graph in Figure 1 is taken from a combustion chamber gage for a 155-mm RLPG firing. The gun was built under contract by the General Electric Company for the U.S. Army. Broadband high-frequency (0–75 kHz), high-amplitude (up to 30% of mean pressure) pressure oscillations have occurred in virtually all regenerative liquid propellant gun firings, including all calibers and diverse injection patterns studied nationally and internationally (Cook 1990; Klingenberg 1991; Haberl 1991; and Rychanovsky 1991). The origin of these pressure fluctuations, their propagation, and their influence on gun components are areas of active study in a number of programs sponsored by the U.S. Army. The oscillations may propagate downtube and cause the pressure at the base of the projectile to fluctuate as well, a potential source of concern for munitions compatibility (Bannister et al. 1991).

Figure 1. Experimental combustion chamber pressure history from a 155-mm regenerative liquid propellant gun.

A schematic of the RLPG developed in the United States is shown in Figure 2 and is referred to as a Concept VIC design. An external solid or liquid propellant igniter (not shown) venting into the combustion chamber initiates the ballistic cycle. The control (inner) piston moves first in response to the combustion chamber pressure rise, and its motion is modulated by the pressure in the damper. The injection (outer) piston follows the control piston in response to the chamber and liquid pressures acting on the exposed surface areas. The liquid propellant, LGP1846 (now called XM46), flows through the annulus created between the two moving pistons into the combustion chamber, where it burns, accelerating the projectile. Liquid propellant gun mean performance (data with oscillations removed by filtering) is modeled with a mature, predictive, lumped parameter, interior ballistic model which has been compared extensively to experimental data (Coffee, Wren, and Morrison 1989, 1990; Wren, Coffee and Morrison 1991).

Figure 2. A Concept VIC regenerative liquid propellant gun.

The liquid jet encounters a hot, dense, and turbulent high-pressure environment of reacted and partially reacted products. Subsequently, the injected liquid undergoes an intricate series of processes, including atomization, heating, vaporization, diffusion, turbulent mixing, and chemical reaction. The details of propellant breakup and combustion are poorly understood at present, although diagnostic research efforts are ongoing to characterize the jet under gun conditions (Birk 1991). The ensuing combustion process is characterized by pressure fluctuations which typically initiate at approximately 50 MPa (Figure 1).

Several theories have been advanced for the origin of the pressure oscillations, and several are under active study. One potential explanation which has been successfully modeled maintains that the pressure fluctuations result from the combination of a highly pressure-sensitive burn rate of the propellant combined with a continuous accumulation of unburned propellant near the injector (Oberle and Wren 1991; Coffee 1992; McBratney, Teague, and Vanderhoff 1992). Another explanation advanced is that flow conditions created by the liquid jet as it emerges from the injector into the combustion chamber form vortical structures containing propellant which circulate in-phase with pressure waves and periodically release heat in the combustion chamber (Schadow 1992). A third explanation proposed is that pressure variations moving over the intact jet core result in enhanced breakup at the jet boundaries, leading to atomization and local high-energy release rates (Faeth 1992). A fourth possible source is random, impulsive combustion of ligaments of propellant in localized regions of the combustion chamber (Haberl 1991).

Visualization of the liquid propellant LGP1846 at gun conditions has not precisely determined the mechanism which initiates pressure oscillations. Diagnostics at pressures up to 30 MPa show a highly turbulent process in which flame is visible at various locations in the combustion chamber and conditions which change rapidly with time (Birk 1991). There does not appear to be an identifiable pattern to either the location or the change of location of burning. Thus, it might be conjectured the pressure fluctuations are caused by randomness in the jet breakup and energy release, resulting from one, or a combination of the mechanisms discussed above, together with mechanisms not identified.

Thus, the objective of this work is to (1) develop a physically supportable model of random energy release in the RLPG using experimental data to suggest needed parameter values in a one-dimensional (1-D) model; (2) determine to what extent the experimental pressure history can be explained by randomness in the energy release of the liquid propellant in the jet; and (3) examine the propagation of chamber pressure fluctuations from the combustion chamber to the projectiles's base in a one-dimensional (1-D) model. In addition, the model is used to suggest methods of reduction of pressure fluctuations.

2. DESCRIPTION OF MODEL

As reported previously (Wren and Gough 1990), the model is a fully 1-D continuum model of the RLPG, including treatment of the liquid reservoir, damper, combustion chamber, and tube. The governing equations for the combustion chamber are the same as those of the tube. In the general case when droplets are present, they consist of 1-D balances of mass, momentum, and energy for the mixture of combustion gases and droplets. The cross-sectional area of the flow in each of the regions of the combustion chamber or tube is that of the chamber or tube reduced by the cross-sectional area of the jet. The change in area is also considered due to the intrusion of the center bolt.

The liquid jet in the RLPG is "thick" (up to a hydraulic diameter of 1.5 cm as calculated by simulation). Breakup of the jet entails finite rate processes, and there appears to be a "conditioning time" before combustion involving atomization, heating, kinetics, etc. (Birk and Reeves 1987; Klein 1990; Bracco 1986). Attempts to apply sensitive time lag theory to the jet breakup (Coffee et al. 1991) have been successful. Sensitive time lag theory was developed as a description of the delay in energy release in liquid propellant rockets (Crocco and Cheng 1956). Sensitive time lag theory is essentially a model of energy release as a two-part step function. The first step is a conditioning time, which is related to pressure, for an injected packet of liquid. The second step is an instantaneous release of energy in the packet of liquid. Thus, it is implicitly assumed that all delay processes can be related to pressure.

The model described in this report develops a description of the jet breakup based on a conditioning time, a randomness associated with the condition of "packets" of liquid, and a Taylor theory (Birk and Bliesener 1991) which has been used to describe the energy release of liquid propellant (LP) in a limited regime.

The conditions under which the jet is injected change with time during the interior ballistic (IB) process in terms of pressures, jet velocity, etc. Physically, these changes do not take place instantaneously but occur over a finite time interval. Therefore, injection conditions would be expected to be similar over some time interval. The "coherence interval" is therefore defined in the model as the time interval over which injection conditions are expected to be similar.

However, injected propellant cannot persist indefinitely in the combustion chamber. This implies a maximum "conditioning time" before the propellant begins to release energy. The "conditioning time"

is defined as the delay time after injection before which an increment of propellant begins to release energy. The "maximum conditioning time" and the "coherence interval" are parameters which are input (fixed) at the beginning of a calculation and are illustrated in Figure 3. Since, physically, randomness in the injection of propellant is introduced into the gun by mechanical motion of the pistons, a constantly varying area for propellant flow between the two pistons, and pressure fluctuations in the liquid reservoir, as well as the breakup process, the conditioning time for the increments of propellant contained in a given coherence interval is randomly chosen to be between zero and the maximum conditioning time.

Once mature, the energy release rate of each packet of liquid is modeled with a Taylor formulation in which the breakup time is determined from entrance conditions at the interface between the liquid reservoir and the combustion chamber (Birk and Bliesener 1991). Taylor's theory is an aerodynamic theory which treats the primary atomization of the jet. The theory utilizes a parameter B which is the ratio of the Reynold's number to the Weber number, that is,

$$B = \frac{Re}{We} = \frac{\rho V D/\mu}{\rho V^2 D/\sigma} = \frac{\sigma}{\mu V} ,$$

with μ the viscosity, σ the surface tension, ρ the density, V the velocity, and D the diameter of the injector. In the case of an annulus, the diameter D is taken to be twice the gap or the thickness.

Thus, it is assumed that the rate of decomposition of a jet increment, once begun, is fixed by the conditions which prevail on average during the sampling interval. Each elementary increment follows an inertial trajectory which is uncoupled from that of any other increment. If the increment impacts the face of the chamber, it is partially reflected and partially transmitted to the tube according to a fixed value of admittance which is set by the user. Similarly, the velocity achieved following reflection from either the chamber face or the projectile base is related to the incident velocity by means of a user-defined coefficient of restitution. Thus, as the solution evolves, there is an aggregate of elementary jet increments, each moving inertially, except as modified by reflections from the chamber face, the projectile base and the piston face.

The assumption that each jet increment follows a purely inertial path is thought to be a reasonable first approximation, provided that the fraction of the available cross section occupied by the jet is not too large.

Figure 3. Illustration of "maximum conditioning time" and "coherence interval".

Considering the jet from a continuum perspective, it is radially unconfined. Accordingly, since the jet is much less compressible than the surrounding mixture, it is expected that the axial pressure distribution within the jet is controlled by the dynamics of the mixture. As one portion of the jet presses against another, it is expected that the radial boundary will displace to accommodate the interaction. Only when the jet begins to fill the cross section does this assumption break down, making it necessary to consider an axial stress field in the jet independently of that in the mixture. As for the gas dynamic forces, there are two kinds—namely, drag and buoyancy. Drag forces are expected to exert a negligible influence on the momentum of the jet; the associated shear is accommodated by the material which is converted to droplets. The buoyancy force is simply that due to gradients of the gas pressure. Although the gas pressure gradient can become large, especially at the entrance to the tube, neglect of its influence on the jet is thought to be justified at this stage of the development of the model since the density of the jet is much greater than that of the gas. The effects of buoyancy and of the stresses due to interactions between jet increments can be modeled when future applications of the code so demand.

3. MESH INDIFFERENCE

A Macormack scheme is utilized to numerically solve the governing equations. A comparison of the chamber pressure and base pressure histories for two mesh spacings are shown in Figures 4 and 5. The pressures are taken at the breach, considered to be the face of the outer piston in the combustion chamber. The solid line in Figures 4 and 5 is the solution using 33 mesh points, while the dotted line utilizes 69 mesh points in the chamber. In both cases, 21 mesh points are used in the barrel. The initial axial distance in the chamber from the piston face in the combustion chamber to the projectile base is 15.808 cm, and the final axial distance in the combustion chamber is 25.9 cm. Thus, 33 mesh points correspond to an initial spacing of 0.49 cm and a final spacing of 0.81 cm. Similarly, 69 mesh points correspond to an initial spacing of 0.23 cm and a final spacing of 0.38 cm. As can be seen from Figures 4 and 5, the solutions show some expected variation with mesh spacing. However, the details of the fluctuations from mean pressure are almost identical for either mesh spacing, and the solutions in Figures 4 and 5 demonstrate acceptable mesh indifference.

A second numeric parameter is the ratio of an elementary jet increment to the mesh spacing in the combustion chamber, referred to as BUKLEN. The solutions in terms of chamber pressure history at the breech for BUKLEN values of 0.2 (line) and 1.0 (dot) are shown in Figure 6. As can be seen in Figure 6, the solution also demonstrates reasonable insensitivity to the value of BUKLEN. Thus, the solution is felt to have demonstrated the required numeric insensitivity.

Figure 4. Comparison of breech pressure histories for 33 (line) and 69 (dot) mesh points in the chamber.

Figure 5. Comparison of projectile base pressure histories for 33 (line) and 69 (dot) mesh points in the chamber.

Figure 6. Comparison of breech chamber pressure histories for BUKLEN values of 0.2 (line) and 1.0 (dot).

4. APPLICATION

The model is applied to a 155-mm gun geometry. A typical experimental pressure history in the combustion chamber for a 5-liter shot, Round 81, from the first-generation gun is shown in Figure 1. An inverse analysis of the experimental data based on an energy balance yields an approximation of the liquid accumulation (liquid propellant which has been injected into the chamber but has not apparently released energy) in the combustion chamber as a function of time (Coffee, private communication 1991) as shown in Figure 7. The maximum amount of accumulated liquid propellant is estimated to be 200–400 g, depending upon the burn rate law used for the propellant (Coffee et al. 1991). The percentage of accumulation is defined as the mass of accumulated liquid propellant divided by the amount of mass injected by that time step. Accumulation has been as high as 30% in some fixtures, implying a substantial amount of unburned liquid in the combustion chamber, particularly during early times in the ballistic cycle.

In the model, the value of maximum conditioning time is chosen such that the model agrees with the approximation of the mass of accumulated liquid as shown in Figure 7. The maximum conditioning time used is 0.2 ms, the coherence interval is 0.1 ms, and the user-specified coefficient in the Taylor theory is 0.2. The resultant pressure-time simulation in the combustion chamber is shown in Figure 8. At 3 ms,

Old burning rate, droplet breakup model (line). New burning rate, Large droplets (doi).

Figure 7. Liquid accumulation in the combustion chamber based on simulation.

Figure 8. Simulation of chamber pressure with random breakup of liquid jet.

the injection rate is 951,692 g/s in the simulation. The coherence interval of 0.1 ms implies that approximately 95 g of liquid act as a body of fluid which translates to a distance equal to approximately the injection velocity times the coherence interval before releasing energy. The choice of the Taylor parameter is such as to induce very rapid decomposition of the fluid element once it is "mature". It is the combination of localization and rapid energy release which drives the oscillations in the present model. It can be seen that significant excursions from mean pressure can result from randomness in the jet breakup length. Since analysis of experimental data suggest radial modes in the combustion chamber, it is not expected that a 1-D model will duplicate experimental pressure histories. However, the model suggests that randomness in the jet breakup may be implicated in the production of pressure fluctuations.

A characterization of the jet at various time steps is shown in Figure 9, where 0.0 cm represents the tube origin and -15.8 cm represents the initial piston position. At each timestep shown, the location and amount of mass in the jet is shown, with the right-most boundary representing the face of the piston. Since the piston is moving rearward to inject liquid propellant, the right-most boundary recedes with time. It is noted that, consistent with the derived accumulation from experiment, the jet is short. Even with little penetration into the combustion chamber, the liquid jet provides an energy source for substantial pressure fluctuations. The base pressure history for this simulation is shown in Figure 10. It can be seen that the fluctuations in chamber pressure propagate acoustically to the base of the projectile and that substantial fluctuations in the base pressure result. The model, therefore, validates observations of downbore pressure histories which exhibit oscillations of similar amplitude to those measured in the combustion chamber. Since the modeled jet is quite short and the chemical energy release is confined to the combustion chamber, the pressure oscillations at the projectile base are shown to be a consequence of 1-D wave propagation rather than local energy release at the projectile base. However, it is noted that a 1-D model is not capable of describing possible three-dimensional effects which could randomize the pressure fluctuations on the base of the projectile, an issue of interest to the munitions community.

Figure 9. Mass in the jet at various time steps based on simulation.

Figure 10. Simulation of base pressure history with random jet breakup.

5. REDUCTION OF PRESSURE OSCILLATIONS

In this theoretical study, pressure fluctuations can be reduced by decreasing the maximum conditioning time or decreasing the coherence interval or both. However, since the initial conditions are not changed, it is more physically meaningful to utilize the same value of the coherence interval. Thus, the maximum conditioning time is decreased. In Figure 11, the jet breakup is random, but the maximum conditioning time is 1/10 the previous value used in Figure 8. The maximum conditioning time used is 0.02 ms, the coherence interval is 0.1 ms, and the user-specified coefficient in the Taylor theory is 0.2. At a similar injection velocity at 3 ms, compared to the previous simulation, a maximum conditioning time of 0.02 ms implies that the jet increment will begin releasing energy almost immediately upon introduction into the combustion chamber.

The results suggest that injection patterns which break the liquid propellant into small packets, such as finely atomized sprays or jet splitters, may result in quieter combustion. Jet splitters have been successfully utilized in a diagnostic LP fixture (Rychanovsky 1991) and in a 30-mm gun (Despirito 1991). Jet splitters are mounted downstream of the injector and are intended to disrupt the liquid jet. Currently

Figure 11. <u>Simulation of chamber pressure history reducing the degree of coherence in the jet breakup.</u>

they have achieved only limited success in reducing pressure oscillations. However, the model suggests that mechanisms which shorten the time from injection to the beginning of energy release may reduce pressure oscillations.

6. SUMMARY

A one-dimensional model of the regenerative liquid propellant gun has been presented which uses a Taylor theory for the breakup and energy release of the liquid jet and treats the axial extension of the jet in the combustion chamber. The model allows for randomness in the jet breakup to mimic the physical conditions of randomness in conditioning time which may be associated with propellant combustion. The model suggests that:

(1) significant fluctuations in chamber pressure can be produced with a random jet breakup length, even with short jets;

- (2) if pressure oscillations are due to rough combustion, energy can be radiated acoustically to the base of the projectile;
- (3) downbore pressure fluctuations are physically plausible, even with short jets confined to the combustion chamber;
- (4) pressure fluctuations can be potentially reduced by decreasing the conditioning time before the liquid propellant begins to release energy.

One interpretation of conclusion (4) is to finely atomize the liquid or break it apart upon introduction into the chamber. This analysis suggests that designs which utilize thicker jets in order to increase the mass flow into the combustion chamber may be expected to experience even larger magnitudes in the amplitude of pressure oscillations due to the potential for more coherence in the structure of the jet.

INTENTIONALLY LEFT BLANK.

7. REFERENCES

- Bannister, K., T. Coffee, G. Wren, and S. Wilkerson. "Finite Element Analyses of 155-mm Projectile Response to LP-Type Loading." Paper presented at the 28th JANNAF Combustion Meeting, Brooks Air Force Base, San Antonio, TX, October 1991.
- Birk, A., and P. Reeves. "Annular Liquid Propellant Jets-Injection, Atomization and Ignition." BRL-TR-2780, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, March 1987.
- Birk, A., and G. Bliesener. "Comparative Spray Reactivities of LGP 1845/98 and Their Subcomponents." Proceedings of the 28th JANNAF Combustion Meeting, San Antonio, TX, October 1991.
- Bracco, F. "High Pressure Injection of Liquid Sprays." Published in ARO/BRL/JANNAF Workshop Summary Report, "Injection and Combustion of Liquid Monopropellants in a Regenerative Liquid Propellant Gun." Edited by D. Mann, G. Wren, and A. Mellor, 9–10 October 1986.
- Carling, R., R. Rychnovsky, S. Griffiths, S. Vosen, and R. Renzi. "Progress Report on Reduction of Pressure Oscillations in the Liquid Propellant Injector/Combustor." Proceedings of the 28th JANNAF Combustion Subcommittee Meeting, vol. III, San Antonio, TX, October 1991.
- Coffee, T. P., G. P. Wren, and W. F. Morrison. "A Comparison Between Experiment and Simulation for Concept VIC Regenerative Liquid Propellant Guns. I. 30 mm." BRL-TR-3072, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, December 1989.
- Coffee, T. P., G. P. Wren, and W. F. Morrison. "A Comparison Between Experiment and Simulation for Concept VIC Regenerative Liquid Propellant Guns. II. 105 mm." BRL-TR-3093, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, March 1990.
- Coffee, T. P., P. Baer, W. F. Morrison, and G. P. Wren. "Jet Breakup and Combustion Modeling for the Regenerative Liquid Propellant Gun." BRL-TR-3223, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, April 1991.
- Coffee, T. Private communication. U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, 1991.
- Coffee, T. "A Two-Dimensional Model for the Combustion Chamber/Gun Tube of a Concept VIC Regenerative Liquid Propellant Gun." BRL-TR-3341, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, May 1992.
- Cook, G. Private communication. RARDE Fort Halstead, England, 1990.
- Crocco, L., and S. Cheng. <u>Theory of Combustion Instability in Liquid Propellant Rocket Motors</u>. Butterworths Scientific Publications, 1956.
- Despirito, J., N. Boyer, J. Knapton, and A. Johnson. "Pressure Oscillation Reduction in a 30 mm Concept VIC RLPG." Proceedings of the 28th JANNAF Combustion Subcommittee Meeting, vol. I, San Antonio, TX, October 1991.

- Faeth, G. Private communication. University of Michigan, 1992.
- Haberl, B. Private communication, General Electric Company, 1991.
- Kiein, N. "Ignition and Combustion of the HAN-Based Liquid Propellants." Proceedings of the 27th JANNAF Combustion Meeting, Cheyenne, WY, October 1990.
- Klingenberg, G. Private communication. Ernst Mach Institute, Germany, 1991.
- McBratney, W., M. Teague, and J. Vanderhoff. Private communication. U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, 1992.
- Oberle, W., and Wren, G. "Burn Rates of LGP 1846 Conditioned Ambient, Hot, and Cold." BRL-TR-3287, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, October 1991.
- Rychanovsky, R. Private communication. Sandia National Laboratories, 1991.
- Schadow, K. Private communication. China Lake, CA, 1992.
- Wren, G. P., T. P. Coffee, and W. F. Morrison. "A Comparison Between Experiment and Simulation for Concept VIC Regenerative Liquid Propellant Guns. III. 155 mm." U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, to be published.
- Wren, G., and P. Gough. "A One-Dimensional Analysis of a Liquid Jet in a Regenerative Liquid Fropellant Gun." BRL-TR-3077, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, April 1990.

APPENDIX:

OUTPUT FROM COMPUTER SIMULATION

INTENTIONALLY LEFT BLANK.

MAX TIME LIMIT set to 600 seconds SIMULATION OF INTERIOR BALLISTICS OF HYBRID LIQUID PROPELLANT GUN VERSION OF JUNE 20,

LOGOUT PARAMETERS

0	TO START) 0	-	6666	c) 0.100	s) 0	0	1) 0	(Y=0, N=1) 0	$(Y=0, N=1) \qquad 0$	$(Y=0,N=1) \qquad 0$	D(X=0,N=1) 0	REG 1>4 (CONT) DATA PRINTED (Y=0,N=1) 0	D (Y=0,N=1) 0	Y=0, N=1 0
SAVE ON UNIT 8 (0=NO, 1=YES)	START FROM UNIT 8 (0=NO, >0=STEP TO START)	PLOTTING ON LOGOUT (0=NO, 1=YES)	NUMBER OF STEPS BEFORE LOGOUT	TIME INTERVAL BEFORE LOGOUT (MSEC)	DEBUG PRINT REQUIRED (0=NO, 1=YES	INPUT DATA PRINTED (Y=0,N=1)	TRAJECTORY DATA PRINTED (Y=0,N=1)	EXTRA TRAJECTORY DATA PRINTED (Ω	MASS BAL. REG 5>8 DATA PRINTED (Y=0,N=1	ENERGY BAL. REG 1>4 DATA PRINTED (Y=0,N=1)	ENERGY BAL. REG 1>4 (CONT) DATA	ENERGY BAL. REG 5>8 DATA PRINTED (Y=0,N=1)	PROFILE AND PLOT DATA PRINTED (Y=0,N=1)

TERMINATION PARAMETERS

66666	100.000	591,800
NUMBER OF INTEGRATION STEPS	TIME INTERVAL (MSEC)	PROJECTILE TRAVEL(CM)

INTEGRATION PARAMETERS

0 12	0.500	0.100	3.000	0.010	0.050
NUMBER OF POINTS ASSIGNED TO TRAVELING CHARGE	MINIMUM MESH SPACING IN TRAVELING CHARGE(CM)	MINIMUM MESH SPACING IN TUBE(CM)	C-F-L SAFETY FACTOR(-)	FLUX CONVERGENCE TOLERANCE(GM**2/SEC**2)	SOURCE TERM STABILITY FACTOR(-)

33 MAXIMUM NUMBER OF MESH POINTS ASSIGNED TO EACH CHAMBER MINIMUM MESH SPACING IN RESERVOIR(CM)

DESCRIPTION OF TUBE

4	; ,	15.500	1.000
NUMBER OF PAIRS OF OBTURATOR RESISTANCE DATA	ATR SHOCK RESISTANCE (0=NO, 1=YES)	TIPE DISMETER (CM)	TUBE ENTRANCE COEFFICIENT(-)

OBTURATOR RESISTANCE

RESISTANCE (MPA)	10.000	10.000	3.000	3.000	IN FRONT OF PROJECTILE
PROJECTILE TRAVEL (CM)	000.0	3.810	4.000	591.800	PROPERTIES OF GAS

0.100	300.000	1.400	28.840
THIMIAL DDESCHOE (MDA)	INTITAL FACOUNT(inti)	INTITUD TENTERMINE (TENTE (TEN	MOTECHTAR WEIGHT (GM/GMOL)

PROPERTIES OF PROJECTILE

43200.000	0.000	0.000	0.000
MS (GM)	LOCATION OF BASE WITH RESPECT TO TUBE ENTRANCE(CM)	TRAVEL REQUIRED TO INITIATE VENTING OF TRAVELING LIQUID CHARGE(CM)	PRESSURE FOR SEPARATION OF TLC FROM BASE OF PROJECTILE (MPA)

PROPERTIES OF COMPOUND RLPG BOOSTER

5204.860 8406.000 53.600	1.000
INITIAL VOLUME OF FUEL CHAMBER(CC) INITIAL VOLUME OF COMBUSTION CHAMBER(CC)	INJECTION HOLE AREA(CM**2) NUMBER OF INJECTION HOLES(-) INJECTION HOLE DISCHARGE COEFFICIENT(-)

PROPERTIES OF FORWARD CYLINDER

109000.000	_	461.511	9		10.104	0.980	
MASS OF PISTON (GM)	INITIAL VOLUME OF DAMPING LIQUID CHAMBER(CC)	FUEL SIDE PISTON AREA (CM**2)	COMBUSTION CHAMBER SIDE PISTON AREA(CM**2)	DAMPING CHAMBER SIDE PISTON AREA (CM**2)	MAXIMUM PISTON DISPLACEMENT (CM)	% OF MAXIMUM PISTON DISPLACEMENT	

PROPERTIES OF CENTER CYLINDER

PROPERTIES OF REAR CYLINDER

MASS OF PISTON (GM)	0.000
THITTAL VOLUME OF DAMPING LIQUID CHAMBER(CC)	000.0
VOLUME OF D. L. RECEIVER CHAMBER (CC)	000.0
FIRE STDE DISTON AREA (CM**2)	000.0
COMBISTION CHAMPED SIDE PISTON AREA (CM**2)	000.0
DAMPING CHAMBER SIDE DISTON AREA (CM**2)	0.000
MAXIMIM PISTON DISPLACEMENT (CM)	000.0
& OF MAXIMIM PISTON DISPLACEMENT	000.0

GEOMETRIC DATA FOR CONTINUUM ANALYSIS OF CHAMBERS

H

15.808 12.808 25.912 0.000 0.000
DIST. FROM TUBE TO FORWARD CYLINDER(CM) DIST. FROM TUBE TO CENTER CYLINDER(CM) DIST. FROM TUBE TO REAR CYLINDER(CM) DIST. FROM TUBE TO REAR OF INT. CHAMBER(CM) DIST. FROM TUBE TO BREECH(CM) LENGTH OF INJECTION HOLES IN FWD. CYL.(CM)

RADIUS OF C.C. (CM) DIST. FROM TUBE(CM)

0

7.7500	16.497	16.497	RADIUS OF FWD. CYL. (CM)
0.0000	13,691	30.000	DIET FROM FRONT (CM)

RADIUS OF FWD. CYL. (CM)	14.435 14.435 RADIUS OF CENT. CYL. (CM)
DIST. FROM FRONT (CM)	0.00000 30.000 DIST. FROM FRONT(CM)

0

6.6650 PROPERTIES OF DAMPING LIQUID 0.00000 3.0000 33.000

0.0000.0

DENSITY AT ONE ATMOSPHERE (GM/CC)	,
THE STATE OF THE S	160
BULK MUDULUS AT ONE ATMOST MENSOR	•
DEDITATIVE OF MODIII, IIS W.R.T PRESSURE(-)	4

0.889

COMPOUND BOOSTER CONTROL DATA

FUNCTION OF	O FINCTION OF	
AS	4	•
NPXSGN (0 - FUEL INJECTION AREA GIVEN AS FUNCTION OF	Z-FWD MINUS Z-CENTER > 0	(1 - FUEL INJECTION AKER GIVEN Z-CENTER MINUS Z-FWD)
NPXS		

NO. OF DATA TO DESCRIBE FWD CYL DAMPER VENT AREA NO. OF DATA TO DESCRIBE CENTER CYL DAMPER VENT AREA NO. OF DATA TO DESCRIBE REAR CYL DAMPER VENT AREA

000

0

000						
GE COEFF HARGE COEFF O 0 0 0 0		1.430 5350.000 9.110 4035.500 1.223 22.848 0.677		0.001		0.200 6.000 20.000 1.000 0.200 0.100
NO. OF DATA TO DESCRIBE FWD CYL DAMPER DISCHARGE COEFF NO. OF DATA TO DESCRIBE CENTER CYL DAMPER DISCHARGE COEFF NO. OF DATA TO DESCRIBE REAR CYL DAMPER DISCHARGE COEFF NO. OF DATA TO DESCRIBE REAR CYL DAMPER DISCHARGE COEFF NPISRC(1) (0 - NO RESISTANCE FOR FWD CYL) (1 - RES. DEPENDS ON VEL. AND PRES.) (2 - RES. DEPENDS ON VEL. AND PRES.) (3 - COMBINATION OF 1 AND 2) (3 - COMBINATION OF 1 AND 2) NPISRC(2) - RESISTANCE LAW FOR REAR CYL NPISRC(3) - RESISTANCE LAW FOR REAR CYL (>0 - RAP INJECTION AS ABOVE) (>0 - RAP INJECTION AS ABOVE)	PROPERTIES OF LIQUID FUEL	DENSITY AT ONE ATMOSPHERE(GM/CC) BULK MODULUS AT ONE ATMOSPHERE(MPA) DERIVATIVE OF MODULUS W.R.T PRESSURE(-) CHEMICAL ENERGY(J/GM) RATIO OF SPECIFIC HEATS OF PRODUCTS(-) MOLECULAR WEIGHT OF PRODUCTS(GM/GMOL) COVOLUME OF PRODUCTS(CC/GM)	FINITE RATE HELMHOLTZ MIXING DATA	DROPLET DIAMETER(CM) HELMHOLTZ MIXING COEFFICIENT(GM/CM)	BOOSTER JET PROPERTIES	BREAKUP LENGTH COEFFICIENT(-) SURFACE TENSION(GM/SEC**2) VISCOSITY(GM/CM-SEC) NOZZLE INVERSE AREA INTEGRAL(1/CM) COEFFICIENT OF RESTITUTION FOR JET IMPACT(-) TUBE ADMITTANCE(-) INCREMENT LENGTH/MESH SPACING(-) MAXIMUM DELAY FOR START OF BREAKUP(MSEC) AUTOCORRELATION TIME(MSEC) INTERVAL FOR WRITE TO UNIT 24 (MSEC)

INITIAL DATA

20.000 3.450 0.000 2569.000 3.450	0 H	855.019	(CM**2)	300.000 0.622100 0.147100 1.00000	
PRESSURE OF GAS(MPA) PRESSURE OF LIQUID BOOSTER CHARGE(MPA) PRESSURE OF LIQUID TRAVELING CHARGE(MPA) TEMPERATURE(DEG.K) PRESSURE OF DAMPING LIQUID(MPA)	DESCRIPTION OF INITIAL CAVITY NUMBER OF PAIRS OF DATA TO DESCRIBE CAVITY CAVITY MECHANICALLY STABILIZED(0=NO,1=YES)	CROSS-SECTIONAL AREA COMBUSTION CHAMBER(CM**2) PISTON TRAVEL - INJECTION AREA TABLE	F. PISTON TRAVEL PISTON TRAVEL(CM) VENT AREA 0.0000 0.000 0.10000E-01 0.1000 1.016 53.6000 1.0000	THERMAL PROPERTIES OF TUBE INITIAL TUBE TEMPERATURE (DEG.K) THERMAL CONDUCTIVITY (J/CM-SEC-DEG.K) THERMAL DIFFUSIVITY (CM**2/SEC) EMISIVITY FACTOR (-) HEAT LOSS MULTIPLIER FACTOR (-)	TOTAL PROPELLANT WEIGHT (GM) 7621.474 TOTAL CHEMICAL ENERGY (KJ) 30785.07 BOOSTER WEIGHT (GM) 7447.207 TRAVELING CHARGE WEIGHT (GM) 177.2681 LOADING DENSITY (GM/CC) 0.5599553 C/M

LIQUID PROPELLANT GUN IB TRAJECTORY

Q.	_						(H/S)	
STEP	0						JET VEL(M/S)	0.0000 0.0000 0.0000
F.DROP PR4/PL4 CD X (LIQ)	0.000 1.0000 0.950						CAV.RAD(CM) JET MASS(GM/CM)	0.0000
Z F.08					66		35 JET	0000
	0.0 0.00			000	621.474 0.000 30785072.299 0.000	0.000 0.000 0.0000 0.00000 0.000000	/.RAD(C	0.000
ACCEL		000	00000	100.000	7621.474 0.000 3078507 0.000	0.0000000000000000000000000000000000000		0.000
PROJECTILE POS.(M) VEL(M/S)	0.00	0.000	0.000	100	7621 307		7(DEG.K) SIGEQ(MPA)	0000
ROJECT	0.000	# ()#	0 0				is O:	0000
9 S) POS	•	DELTA T(MSEC)					7(DEG	2222
I- /EL.(M/	0.000	DELT		% % %			EPS(-)	0.0000 0.0000 0.0000
-P1STO	0.000			E (%) RGE (0.0000
K)	0.0	0.000		BOOSTER CHARGE (TRAVELING CHARGE IN DROPLET PHASE		(s)	U(M/S)	0000
(DEG	0	11		R CLING		CM) M/S) JET(GM/S)		
TEMP.	0.0 2569.	TIME (MSEC)		BOOSTER TRAVELIN IN DROPI			RHO(GM/CC)	1.4309 1.4309 1.4309 1.4309
BASE	0.0	TIME(· ·			(MPA) (MPA) (CM) (CM) (CM) (CM) (CM) (CM) (CM)		2222
THROAT	0.0		(M) · [Y (M/S) 	N OF N OF FUEL			P(MPA)	3.450 3.450 3.450 3.450
E (MPA Chimbr	20.0	0	VEL SCIT (CM) Y (M	CTIO CTIO FAL	~ £ £	STAN STAN JET (L JE AXI ION EGRA	Z(H)	-0.2591 -0.2560 -0.2528 -0.2496
RESSUR MBR C.	0.0	E E	TRA VEL EL	FRA FRA TO	(GM) (%) 3Y (J	ESI (ESI (AL AXIA I OF I OF JECT SINT		ဝှ်ဝှင်
PRESSURE (MPA) TEMP. (DEG K)PISTONPROJECTILE LIQUID I.CHLMBR C.CHMBR THROAT BASE CHAMBER THROAT POS.(CM) VEL.(M/S) POS.(M) VEL(M/S)	2	STEP NUMBER =	PROJECTILE TRAVEL PROJECTILE VELOCIT PISTUN TRAVEL (CM) PISTON VELOCITY (M)	UNATOMIZED FRACTION OF UNATOMIZED FRACTION OF FRACTION OF TOTAL FUEL	TOTAL MASS (GM) MASS DEFECT (%) TOTAL ENERGY (C	OBTURATOR RESISTANCE (MASS OF AXIAL JET(GM) LENGTH OF AXIAL JET (CM) MAX. LENGTH OF AXIAL JET RATE OF INJECTION OF JE RATE OF DISINTEGRATION TAYLOR JET PARAMETER(-)	REGION MESH POINT	- NW 4
LIQUID	3.5	STE	ECT. CN.	COMI	AL MAIL MAIL MENTER SERVING	SHO SHO SOF STH TE E OF	ë e	
71.E	8		PROJECTILE TRAVEL (M) PROJECTILE VELOCITY (PISTCN TRAVEL (CM) PISTON VELOCITY (M/S)	UNATOMIZED FRACTION UNATOMIZED FRACTION FRACTION OF TOTAL FI	TOTAL MASS (GM) MASS DEFECT (%) TOTAL ENERGY (GE) ENERGY (GE)	OBTUR AIR S MASS LENGT MAX. RATE RATE TAYLC	REGIC	

JET VEL(M/S)		0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
JET		
CAV.RAD(CM) JET MASS(GM/CM)	0.000 0.000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
CAV.RAD(CH)	000000000000000000000000000000000000000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
EQ(MPA)	0.0000000000000000000000000000000000000	0.000
T(DEG.K) SIGEQ(MPA)		2569.0 2569.0 2569.0 2569.0 2569.0 2569.0 2569.0 2569.0 2569.0 2569.0 2569.0 2569.0
EPS(-) T		1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
U(M/S)		0.0000000000000000000000000000000000000
RHO(GM/CC)	1,4309 1,	0.21088E-01 0.21088E-01 0.21088E-01 0.21088E-01 0.21088E-01 0.21088E-01 0.21088E-01 0.21088E-01 0.21088E-01 0.21088E-01 0.21088E-01 0.21088E-01 0.21088E-01 0.21088E-01
P(MPA)		20.000 20.0000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.00000 20.
Z(H)	0.2465 0.2437 0.2437 0.2337 0.2337 0.2275 0.2275 0.2214 0.	0.1581 0.1482 0.1433 0.1334 0.1334 0.1235 0.1136 0.1087 0.0938 0.0939 0.0840 0.0780 0.0780
MESH POINT	23.3.8888.8888.888888888888888888888888	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
REGION	** ** ** ** ** ** ** ** ** ** ** ** **	M M M M M M M M M M M M M M M M M M M

JET VEL(M/S)	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000		P.RCVR (MPA)		= 0.0003			
JET MASS(GM/CM)	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000			000	T (MSEC)			
CAV.RAD(CM)	000000000000000000000000000000000000000	0.000		P.DAMP(MPA)		DELTA	T	459 000 000	.559
	000000000000000000000000000000000000000	0.000		P.D	000		0.035 4.7608 1.1893	89.459 0.000 0.000	7614.
T(DEG.K) SIGEQ(MPA)	2569.0 2569.0 2569.0 2569.0 2569.0 2569.0 2569.0 2569.0 2569.0 2569.0	2569.0 2569.0		<u> </u>		3.000	34		
EPS(-) T	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	1.0000		VEL (M/S	0.000	11		(%) E (%) E (%)	
U(M/S)	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000	NC			TIME (MSEC)		CHARGE (G CHARGE ET PHASE	
RHO(GM/CC)	0.21088E-01 0.21088E-01 0.21088E-01 0.21088E-01 0.21088E-01 0.21088E-01 0.21088E-01 0.21088E-01 0.21088E-01 0.21088E-01	0.21088E-01	NOISIG OND	DISP(M)	0.0000	TIME	S)	BOOSTER CH TRAVELING (
P(MPA)	20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000	20.000	COMPO				EL (M) CITY (M/ CM) (M/S)	RACTION OF FRACTION OF TOTAL FUEL	
Z(M)	0.0593 0.0543 0.0543 0.0445 0.0345 0.0346 0.0247 0.0198 0.0049 0.0049	0.0000	STATE OF	PISTON	FORWARD CENTER REAR	= 8729	TRAVEL VELOCI EL (CM CITY ((GM)
MESH POINT	8,48,52,52,53,53,53,53,53,53,53,53,53,53,53,53,53,	69 20	ST	Id	FORWAR CENTER REAR	NUMBER	PROJECTILE TRAVEL (PROJECTILE VELOCITY PISTON TRAVEL (CM) PISTON VELOCITY (M/	ag ag o	TOTAL MASS
REGION	M M M M M M M M M M M M M M	44				STEP N	PROJEC' PROJEC' PISTON PISTON	UNATOMIZ UNATOMIZ FRACTION	TOTA

		JET VEL/M,	
	8	CAV.RAD(CH) JET MASS(GH/CH)	0.0000 0.0000
.091 48540.991 .119	10.000 0.115 195.650 2.1661 2.1786 951692. 509418.	AV.RAD(CH) J	000000000000000000000000000000000000000
0.091 3074854 0.119	10.000 0.115 195.65 2.16 2.16 9516 5094		
		T(DEG.K) SIGEQ(MPA)	
		EPS(-) T((
	(S/W	U(M/S) E	0.0000 -0.0002 -0.0008 0.0038 0.0267 0.0267 0.0584 0.1580 0.1580 0.2380 0.2384
	(MPA) (MPA) CM) JET (CM) JET(GM/S) NN 'OF JET(GM/S)	RHO(GM/CC)	1.4506 1.4506 1.4506 1.4506 1.4506 1.4506 1.4508 1.4508 1.4508 1.4509 1.4509 1.4510 1.4510 1.4510 1.4510 1.4510 1.4510 1.4510 1.4510 1.4510 1.4510 1.4510 1.4510
		P(MPA)	81.737 81.737 81.862 81.802 81.902 82.165 82.165 82.165 82.167 82.1007 83.007 83.007 83.226 8
(%) (J) (%)	OR RESISTANCE (WAXIAL JET (GM) PAXIAL JET (GM) PAXIAL JET (CM) PAXIAL JET (CM) INJECTION OF JET DISINTEGRATION TET PARAMETER(-)	Z(H)	0.2591 0.2583 0.2583 0.2583 0.2588 0.2358 0.2358 0.2358 0.2257 0.
DEFECT (ENERGY Y DEFECT	A A H A H D S H	MESH POIFT	
MASS D TOWAL ENERGY	OBTURATOR AIR SHOCK MASS OF A LENGTH OF MAX. LENG RATE OF II RATE OF II RATE OF II	REGION	ين عن زير شد شد غيد غيد غيد غيد غيد غيد غيد غيد غيد غي

JET VEL(M/S)	0.0000	112.9 112.9 112.9 112.9 112.9 112.9 112.9 10000 0.0	0.000
CAV.RAD(CM) JET MASS(GM/CM)	0.0000	\$2.15 \$7.25	0.000
AV.RAD(CH) JE	0.000		0.000
	0.000		0.000
T(DEG.K) SIGEQ(MPA)	0000	2256.7 2221.0 2158.7 2083.4 2084.8 2082.9 2165.2 2165.2 2165.0 2165.2 2232.5 2232.5 2232.5 2232.5 2241.1 2741.2 2838.5 2948.5 3175.7 3196.6 3175.7 3176.6	3255.9
EPS(-) T(0.0000	00000111000001110000011100000111000001110000	1.0000
U(M/S)	0.8679 0.9032 0.9225 0.9081	-11.8236 -0.4658 -6.4253 -10.2213 -4.658 -4.5516 43.3500 46.7685 54.6443 54.6443 54.6443 54.6443 54.6443 54.6443 54.6443 54.6443 54.6443 54.6443 112.6448 113.5488 113.6434 114.8888 115.0888 117.5319 11	68.4305
RHO(GM/CC)	1.4511 1.4511 1.4511	0.82916E-01 0.84355E-01 0.87004E-01 0.9207ZE-01 0.9277ZE-01 0.9277ZE-01 0.87888E-01 0.87888E-01 0.87888E-01 0.87878E-01 0.77247-01 0.77247-01 0.7724E-01 0.7724E-01 0.7724E-01 0.67278E-01	0.60811E-01
P(MPA)	83.904 83.932 84.016 84.193	72727272727272727272727272727272727272	75.144
Z(M)	-0.1783 -0.1755 -0.1728 -0.1700	0.1700 0.1593 0.1593 0.1593 0.1593 0.1275 0.1275 0.1074 0.0074 0.0073 0.0000 0.0003	0.0158
MESH POINT	8222	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	82
REGION		พพพพพพพพพพพพพพพพพพพพพพพพพพพพพพพพพพพพ	4

T(DEG.K) SIGEQ(MPA) CAV.RAD(CM) JET MASS(GM/CM) JET VEL(M/S)	.0000 3256.4 0.000 0.0000 0.0000 .0000 3256.6 0.000 0.000 0.0000 .0000 3256.6 0.000 0.000 0.0000 .0000 3256.7 0.000 0.000 0.0000 .0000 3256.5 0.000 0.000 0.0000 .0000 3256.4 0.000 0.000 0.0000 .0000 3256.4 0.000 0.000 0.0000 .0000 3256.4 0.000 0.000 0.0000 .0000 3257.1 0.000 0.000 0.0000 .0000 3258.2 0.000 0.000 0.0000 .0000 3256.1 0.000 0.000 0.0000 .0000 3256.2 0.000 0.000 0.0000 .0000 3256.1 0.000 0.000 0.0000 .0000 3250.1 0.000 0.000 0.0000	6.000 DELTA T(MSEC) = 0.0003	0.4502 289.5238 9.6712 40.2353	4.539 0.000 0.000	7460.562 2.111 30206648.848 1.879	3.000 0.288 324.641 0.9138 2.2580 0.318771E+07 0.000000 0.669700E-31
REGION PESH POINT Z(M) P(MPA) RHO(GM/CC) U(M/S) EPS(-)	4 79 0.0176 75.149 0.60807E-01 64.5886 1.0000 4 80 0.0214 75.137 0.6074E-01 60.9545 1.0000 4 81 0.0214 75.132 0.6073E-01 57.51.5 1.0000 4 82 0.0228 75.077 0.60747E-01 57.51.5 1.0000 4 83 0.0246 75.036 0.60747E-01 51.1453 1.0000 4 84 0.0263 74.993 0.60685E-01 48.1833 1.0000 4 85 0.0281 74.995 0.60653E-01 45.3379 1.0000 4 86 0.0281 74.995 0.60653E-01 45.5379 1.0000 4 87 0.0334 74.846 0.60588E-01 37.2968 1.0000 4 89 0.0354 74.858 0.60514E-01 34.7608 1.0000	STEP NUMBER =18391 TIME(MSEC) =	PROJECTILE TRAVEL (M) PROJECTILE VELOCITY (M/S) PISTON TRAVEL (CM) PISTON VELOCITY (M/S)	UNATOMIZED FRACTION OF BOOSTER CHARGE (%) UNATOMIZED FRACTION OF TRAVELING CHARGE (%) FRACTION OF TOTAL FUEL IN DROPLET PHASE (%)	TOTAL MASS (GM) MASS DEFECT (%) TOTAL ENERGY (J) ENERGY DEFECT (%)	OFTURATOR RESISTANCE (MPA) AIR SHOCK RESISTANCE (MPA) MASS OF AXIAL JET (GM) LENGTH OF AXIAL JET (CM) MAX, LENGTH OF AXIAL JET (CM) RATE OF INJECTION OF JET (GM/S) RATE OF DISINTEGRATION OF JET (GM/S) TAYLOR JET PAPAMETER(-)

שבו אבריע <i>ו</i> אל	0.0000	0.0000 0.0000	0.000
JET MASS(GM/CM)	0.0000	67.13 67.74 67.74 67.87 67.87 67.87 67.87 67.87 67.87 67.87 67.87 67.87 67.87 67.87 67.87 67.87 67.87 67.87 67.80	0.0000 0.0000
CAV.RAD(CM) JET MASS(GM/CM)	0.000		0.000
	0.000		0.000
T(DEG.K) SIGEQ(MPA)	000	2047.0 2037.6 2037.8 2055.3 2055.3 2055.3 2055.3 2073.3 2073.3 2073.3 2107.3 207.3 20	2257.8 2282.6
EPS(-) T	0.0000		1.0000
U(M/S) EI	0.000 0.2678 0.5851	-40.2353 -25.4559 -5.4499 23.3593 27.4524 48.7272 55.1735 55.1735 55.1735 55.1735 55.1735 62.9631 74.6169 86.7740 105.4244 107.4244 117.2240 93.4349 93.4349 144.8253 149.9582 149.9582 149.9582 149.9583	245.5675 271.1909
RHO(GM/CC)	1.5161 1.5161 1.5160	0.30244 0.30422 0.30422 0.30427 0.30477 0.30545 0.30545 0.30544 0.30546 0.31438 0.312126 0.312126 0.32213 0.32341 0.32341 0.32341 0.32341 0.32344 0.32344 0.32344 0.32344 0.32344 0.32344 0.32344 0.32344 0.32344 0.32446 0.33125 0.33125 0.33144 0.33144 0.31640 0.31640 0.31640 0.31640 0.31640 0.31640 0.31640 0.31640 0.31640 0.31640 0.31640 0.31640 0.31640	0.23006 0.22504
P(MPA)	413.073 412.993 412.733	283.295 282.345 288.110 288.011 288.011 287.199 288.267 335.468 335.47 335.666	223.891 220.518
Z(H)	-0.2591 -0.2570 -0.2548	0.22468 0.2389 0.2389 0.2399 0.2299 0.1752 0.1752 0.1752 0.1752 0.0876 0.0080 0.0080 0.00876 0.0089 0.0089 0.0089 0.0089 0.00899 0.00899 0.00899 0.00899 0.00899 0.00899 0.00899 0.00899 0.008999 0.00899	0.1576 0.1801
MESH POINT	- 0 M	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
REGION		мимимимимимимимимимимимимимимимимимими	4 4

T(DEG.K) SIGEQ(MPA) CAV.RAD(CM) JET MASS(GM/CM) JET VEL(M/S)	.0000 2319.3 0.000 0.000 0.0000 .0000 2365.5 0.000 0.000 0.000 0.0000 .0000 2421.2 0.000 0.000 0.0000 0.0000 .0000 2490.7 0.000 0.000 0.0000 0.0000 .0000 2581.6 0.000 0.000 0.0000 0.0000 .0000 2583.9 0.000 0.000 0.0000 0.0000 .0000 3270.5 0.000 0.000 0.0000 0.0000 .0000 3565.9 0.000 0.000 0.0000 0.0000 .0000 4247.0 0.000 0.000 0.0000 0.0000	15.000 DELTA T(MSEC) = 0.0018	5.5734 690.7966 10.1040 0.0000	0.000 0.000 (3	7498.957 1.608 30295210.044 1.591	3.000 0.863 0.000 ******** 2.2580 0.000000 0.000000 0.716509E-31
REGION MESH POINT Z(M) P(MPA) RHO(GM/CC) U(M/S) EPS(-)	4 C.2526 222.407 0.22363 297.4862 1.00 4 49 C.2251 227.443 0.22413 324.6652 1.00 4 50 0.2476 234.270 0.22533 351.6731 1.00 4 51 0.2701 243.469 0.22729 374.1085 1.00 4 52 0.2927 256.793 0.23066 385.6523 1.00 4 53 0.3152 273.554 0.23426 382.8450 1.00 4 54 0.3362 316.394 0.23426 387.4441 1.00 4 55 0.3362 316.140 0.22515 451.2991 1.00 4 56 0.3827 316.140 0.22515 451.4960 1.00 4 58 0.4052 330.960 0.21744 485.0271 1.00 4 59 0.4502 343.439 0.19316 289.5238 1.00	STEP NUMBER =22227 TIME(MSEC) =	PROJECTILE TRAVEL (M) PROJECTILE VELOCITY (M/S) PISTON TRAVEL (CM) PISTON VELOCITY (M/S)	UNATOMIZED FRACTION OF BOOSTER CHARGE (%) UNATOMIZED FRACTION OF TRAVELING CHARGE (%) FRACTION OF TOTAL FUEL IN DROPLET PHASE (%)	TOTAL MASS (GM) MASS DEFECT (%) TOTAL ENERGY (J) ENERGY DEFECT (%)	OBTURATUR RESISTANCE (MPA) AIR SHOCK RESISTANCE (MPA) MASS OF AXIAL JET (GM) LENGTH OF AXIAL JET (CM) MAX. LENGTH OF AXIAL JET (CM) RATE OF INJECTION OF JET(GM/S) RATE OF DISINTEGRATION OF JET(GM/S) TAYLOR JET PARAMETER(-)
8		ST	ር ር ር ር	DDH	HZHM	OASHREE

JET VEL(M/S)		000000000000000000000000000000000000000
CAV.RAD(CM) JET MASS(GM/CM)		0.0000000000000000000000000000000000000
CAV.RAD(CH) J		000000000000000000000000000000000000000
T(DEG.K) SIGEQ(MPA)	44444444444444444444444444444444444444	1415.0 1405.7 1398.0 1388.0 1366.4 1366.4 1359.8 1359.4 1364.0 1372.3 1404.3
EPS(-) T(1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
U(M/S) E	0.0000 0.9818 3.9254 4.9064 5.8869 6.8882 6.8882 11.7627 11.7627 12.1319 12.2575 12.2575 14.265 16.422 20.8001 23.3885 26.222 26.422 26.422 26.422 26.422 26.422 26.422 27.426 28.396 41.3445 46.422 58.396 66.6323 76.0276	100.3003 133.4011 167.8393 204.4075 234.2719 256.4420 278.4655 299.8693 326.0692 418.6676 451.7626 484.6950 514.3296
RHO(GM/CC)	0.6933E-01 0.69345E-01 0.69345E-01 0.69540E-01 0.69551E-01 0.69551E-01 0.69551E-01 0.69551E-01 0.69534E-01 0.69231E-01 0.69231E-01 0.69231E-01 0.69231E-01 0.69231E-01 0.69231E-01 0.69231E-01 0.69231E-01 0.69231E-01 0.69231E-01 0.69231E-01 0.69231E-01 0.69231E-01 0.69231E-01 0.69231E-01	0.68971E-01 0.69447E-01 0.69695E-01 0.69203E-01 0.68451E-01 0.67532E-01 0.65467E-01 0.64256E-01 0.64256E-01 0.64256E-01 0.64256E-01 0.6426E-01
P(MPA)	37.486 37.486	37.255 37.277 37.287 36.672 36.652 35.369 33.943 33.284 33.284 33.397 33.397
Z(M)	SED	0.0000 0.2787 0.5573 0.8360 1.1147 1.3933 1.6720 1.9507 2.5080 2.5080 2.7867 3.3440 3.3440 3.3440
MESH POINT	1. S	220244444444 22024444444444444
REGION	#	4444444444444

		MAX 2.438 2.496			
() JET VEL(M/S)	0.0000 0.0000 0.0000 0.0000 0.0000	MIN 0.000 0.000 34.024 3.42	NSTEP 16906	NSTEP 0	NSTEP 17452
ET MASS(GM/C)	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	(%) (%) (%)	E Z 0.7898	z z 0.0000	E 2 0.8518
CAV.RAD(CH) JET MASS(GM/CH)	0.000	RROR (° ERROR O. EFF EFF.	BASE 215.84	BASE	BASE 243.93
	0.000	MASS ERRC ENERGY EI THERMO. PIEZO. EI	(MPA) THROAT 268.77	SURE (MPA) THROAT 0.00	(MPA) THROAT 398.97
T(DEG.K) SIGEQ(MPA)	.0000 1474.9 .0000 1538.8 .0000 1637.8 .0000 1793.9 .0000 2031.3	696. 40. 502.29 0.00 400.47 423.44	ESSURE -PRESSURE CHAMBER 382.18	CHAMBER PRESSURE PRESSURE (MPA IID CHAMBER THR 00 0.00 0.	RESSURE -PRESSURE CHAMBER 252.48
'S) EPS(-)	541.8584 1.0000 570.5611 1.0000 600.9801 1.0000 631.1365 1.0000 659.7966 1.0000		LIQUID PRESSURE LPRESS LIQUID CHAM 47 502.29 382.		CHAMBER PRESSURE LIQUID CHAMB
(S/#)n (c)/	0.58144E-01 54 0.54896E-01 570 0.50831E-01 600 0.46036E-01 63 0.40521E-01 653	SUMMARY OUTPUT (M/S) ITY (M/S) URE (MPA) PRESSURE (MPA) SURE (MPA) URE (MPA)	MAX. LIQU ACCEL KG I 9.47	MAX. INTER. ACTEL KG LIQU	MAX. CHANACEL KG I
P(MPA) RHO(GM/CC)	32.485 0.581 31.927 0.548 31.374 0.508 31.020 0.460 30.797 0.403 30.647 0.343	ON ERS ON			
Z(M) P(M	4.1800 32 4.4587 31 4.7374 31 5.0160 31 5.2947 30 5.5734 30	<u> </u>	Λ Κ	VEI	VE
MESH POINT	555 558	MUZZ MAX. MAX. MAX. MAX.	0	0	Ŋ
REGION H	44444		TIME MS 5.60	TIME MS 0.00	TIME MS 5.75

NSTEP 15359	NSTEP 15360	NSTEP 18348	NSTEP 18513	NSTEP 22401	NSTEP 22401
z 0.6322	2,6322	Z .9491	z z 0.9990	z 2	z 2
BASE 423.44 0.	z BASE 423.42 0.6322	Z BASE 310.77 0.9491	BASE 291.14	BASE 28.50 1.0000	BASE 28.50 1.0000
(MPA) THROAT 221.47	(MPA) THROAT 221.48	(MPA) THROAT 321.86	(MPA) THROAT 298.68	ON (MPA) THROAT 34.54	(MPA) THROAT 34.54
SSURE PRESSURE CHAMBER 249.70	ON PRESSURE CHAMBER 249.70	LOCITY -PRESSURE CHAMBER 297.32	BOOSTER PRESSURE CHAMBER 273.30	MAX. DROPLET FRACTION LPRESSURE (; LIQUID CHAMBER 10 0.00 34.77	-PRESSURE CHAMBER 34.77
MAX. BARREL PRESSURE ACCELPRESSURE KG LIQUID CHAMBER 18.72 342.77 249.70	MAX. ACCELERATION ACCELPRESSURE KG LIQUID CHAMBER 18.72 342.77 249.70	MAX. PISTON VELOCITY ACCELPRESS KG LIQUID CHAM 13.66 428.07 297.	BURNOUT OF L LIQUID 83 396.92	C. DROPLE LIQUID 0.00	MUZZLE LIQUID 0.00
MAX. BA ACCEL - KG 18.72	MAX. AC ACCEL - KG 18.72	MAX. PI ACCEL - KG 13.66	BUR ACCEL - KG 12.83	MAX ACCEL - KG 1.10	MCACCEL - KG 1.10
TRAVEL VELOCITY M M/S 0.251 192.42	TRAVEL VELOCITY M M/S 0.251 192.42	TRAVEL VELOCITY M M/S 0.447 287.71	TRAVEL VELOCITY M M/S 0.482 305.36	TRAVEL VELOCITY M M/S 5.918 696.37	TRAVEL VELOCITY M M/S 5.918 696.37
TRAVEL M 0.251	TRAVEL M 0.251	TRAVEL M 0.447	TRAVEL M 0.482	TRAVEL M 5.918	TRAVEL M 5.918
TIME MS 5.18	TIME MS 5.18	TIME MS 5.99	TIME MS 6.11	TIME MS 15.50	TIME MS 15.50

ENERGY BALANCE SUMMARY	KILO-JOULES	PERCENT
NT CHEMICAL:	000.0	00.00
(2) TOTAL GAS INTERNAL ENERGY: (3) WORK AND LOSSES:	17478.612	57.72 36.44
(A) PROJECTILE KINETIC:	10474.418	34.59
STON KINETIC:	000.0	0.00
LIQUID KINETIC:	000.0	00.0
GAS KINETIC:	556.233	1.84
HEAT LOSS:	1766.359	5.83
FRICTION AND AIR SHOCK WORK	K 4.931	0.02

INTENTIONALLY LEFT BLANK.

	o. of opies	Organization	No. of Copies	Organization
	2	Administrator Defense Technical Info Center ATTN: DTIC-DDA Cameron Station Alexandria, VA 22304-6145	1	Commander U.S. Army Missile Command ATTN: AMSMI-RD-CS-R (DOC) Redstone Arsenal, AL 35898-5010
	1	Commander U.S. Army Materiel Command ATTN: AMCAM 5001 Eisenhower Ave. Alexandria, VA 22333-0001	1	Commander U.S. Army Tank-Automotive Command ATTN: ASQNC-TAC-DIT (Technical Information Center) Warren, MI 48397-5000
	1	Director U.S. Army Research Laboratory ATTN: AMSRL-D 2800 Powder Mill Rd. Adelphi, MD 20783-1145	1	Director U.S. Army TRADOC Analysis Command ATTN: ATRC-WSR White Sands Missile Range, NM 88002-5502 Commandant
	1	Director U.S. Army Research Laboratory ATTN: AMSRL-OP-CI-AD, Tech Publishing 2800 Powder Mill Rd.	(Class. only)]	U.S. Army Field Artillery School ATTN: ATSF-CSI Ft. Sill, OK. 73503-5000 Commandant U.S. Army Infantry School
	2	Adelphi, MD 20783-1145 Commander U.S. Army Armament Research, Development, and Engineering Center ATTN: SMCAR-IMI-I Picatinny Arsenal, NJ 07806-5000	(Unclass. only)]	ATTN: ATSH-CD (Security Mgr.) Fort Benning, GA 31905-5660 Commandant U.S. Army Infantry School ATTN: ATSH-CD-CSO-OR Fort Benning, GA 31905-5660
	2	Commander U.S. Army Armament Research, Development, and Engineering Center ATTN: SMCAR-TDC	1	WL/MNOI Eglin AFB, FL 32542-5000 Aberdeen Proving Ground
	1	Picatinny Arsenal, NJ 07806-5000 Director Benet Weapons Laboratory U.S. Army Armament Research, Development, and Engineering Center ATTN: SMCAR-CCB-TL	2	Dir, USAMSAA ATTN: AMXSY-D AMXSY-MP, H. Cohen Cdr, USATECOM ATTN: AMSTE-TC
(Unclass, only)	1	Watervliet, NY 12189-4050 Commander U.S. Army Rock Island Arsenal ATTN: SMCRI-IMC-RT/Technical Library Rock Island, IL 61299-5000	1	Dir, ERDEC ATTN: SCBRD-RT Cdr, CBDA ATTN: AMSCB-CI
	1	Director U.S. Army Aviation Research and Technology Activity ATTN: SAVRT-R (Library)	1	Dir, USARL ATTN: AMSRL-SL-I Dir, USARL
		M/S 219-3 Ames Research Center Moffett Field, CA 94035-1000		ATTN: AMSRL-OP-CI-B (Tech Lib)

No. of No. of Copies Organization Copies Organization 1 OSD/SDIO/IST 1 Commander ATTN: Dr. Len Caveny U.S. Army Belvoir RD&E Center Pentagon ATTN: STRBE-WC, Washington, DC 20301-7100 Tech Library (Vault) B-315 Fort Belvoir, VA 22060-5606 1 Commander U.S. Army Armament Research, 1 Commander U.S. Army Research Office Development, and Engineering Center ATTN: SMCAR-TSS ATTN: Technical Library Picatinny Arsenal, NJ 07806-5000 P.O. Box 12211 Research Triangle Park, NC 27709-2211 Commander 1 Commandant U.S. Army Atmament Research, Development, and Engineering Center U.S. Army Armor Center ATTN: SMCAR-AEE-BR, A. Beardell ATTN: ATSB-CD-MLD SMCAR-AEE-B, D. Downs Fort Knox, KY 40121 SMCAR-AEE, Commander A. Bracuti D. Chieu Dahlgren Division Picatinny Arsenal, NJ 07806-5000 Naval Surface Warfare Center ATTN: Code G30, Guns and Munitions Divisior 1 Commander Code G301, D. Wilson U.S. Army Armament Research, Code G32, Gun Systems Branch Code E23, Technical Library Development, and Engineering Center ATTN: SMCAR-FSA-S, H. Liberman Dahlgren, VA 22448-5000 Picatinny Arsenal, NJ 07806-5000 2 Commander Commander Naval Surface Warfare Center U.S. Army Armament Research, ATTN: O. Dengel Development, and Engineering Center K. Thorsted ATTN: SMCAR-FSS-DA, Bldg 94. Silver Spring, MD 20302-5000 B. Machak S. Traendly 1 Commander T. Kuriata Naval Weapons Center R. Kopmann China Lake, CA 93555-6001 J. Irizarry L. Pinder Director C. Spinelli Benet Laboratories K. Chung U.S. Army Armament Research, Picatinny Arsenal, NJ 07806-5000 Development, and Engineering Center ATTN: SMCAR-CCB-RA, Julius Frankel Watervliet, NY 12189-4050 Commandant U.S. Army Field Artillery School ATTN: ATSF-CMW 1 Commandant ATSF-TSM-CN, J. Spicer **USAFAS**

ATTN: ATSF-TSM-CN Fort Sill, OK 73503-5600

Fort Sill, OK 73503

No. of Copies Organization

- 1 HQ USAMC COM
 AMSMC-SAS
 ATTN: George Schlenker
 Rock Island, IL 61299-6000
- 1 California Institute of Technology Jet Propulsion Laboratory ATTN: Technical Library 4800 Oak Grove Drive Pasadena, CA 91109

- 1 Director
 National Aeronautics and
 Space Administration
 Manned Spacecraft Center
 Houston, TX 77058
- 1 The Johns Hopkins University Applied Physics Laboratory Johns Hopkins Road Laurel, MD 20707
- University of Illinois at Chicago
 Department of Chemical Engineering
 ATTN: Professor Sohail Murad
 Box 4348
 Chicago, IL 60680
- University of Missouri at Columbia Department of Chemistry ATTN: Professor R. Thompson Columbia, MO 65211

No. of Copies Organization

- 1 University of Michigan ATTN: Professor Gerard M. Faeth Department of Aerospace Engineering Ann Arbor, MI 48109-3796
- University of Missouri at Kansas City Department of Physics ATTN: Professor R. D. Murphy 1110 East 48th Street Kansas City, MO 64110-2499
- Pennsylvania State University
 Department of Mechanical Engineering
 ATTN: Professor K. Kuo
 University Park, PA 16802
- University of Arkansas
 Department of Chemical Engineering
 ATTN: J. Havens
 227 Engineering Building
 Fayetteville, AR 72701
- University of Delaware
 Department of Chemistry
 ATTN: Mr. James Cronin
 Professor Thomas Brill
 Newark, DE 19711
- Institute of Advanced Technology
 ATTN: Dr. Harry Fair
 4030-2 W. Braker Lane
 Austin, TX 78759-5329
- School of Enginearing and Computer Science
 California State University, Sacramento ATTN: Dr. Frederick Reardon 6000 J St.
 Sacramento, CA 95819-2694
- University of Colorado at Boulder Department of Mechanical Engineering ATTN: Dr. John Daily Engineering Center ME 1-13 Campus Box 427 Boulder, CO 80309-0427

No. of Copies Organization

- University of Maryland at College Park ATTN: Professor Franz Kasler Department of Chemistry College Park, MD 20742
- Director
 Sandia National Laboratories
 Division 8152
 ATTN: Dr. Ray Rychnovsky
 P.O. Box 969
 Livermore, CA 94551-0969
- Director
 Sandia National Laboratories
 Division 8244
 ATTN: Dr. Stuart Griffiths
 P.O. Box 969
 Livermore, CA 94551-0969
- Princeton Combustion Research
 Laboratories, Inc.

 ATTN: Neale A. Messina
 Dr. Martin Summerfield

 Princeton Corporate Plaza
 11 Deerpark Dr., Bldg. IV, Suite 119
 Monmouth Junction, NJ 08852
- 1 Conway Enterprises
 ATTN: Professor Alistair Macpherson
 499 Pine Top Trial
 Bethlehem, PA 18017-1828
- Paul Gough Associates, Inc. ATTN: Dr. Paul S. Gough 1048 South Street Portsmouth, NH 03801-5423
- 1 IITRI
 ATTN: Library
 10 W. 35th St
 Chicago, IL 60616
- 1 Science Applications International Corporation ATTN: Norman Banks Suite 255 4900 Waters Edge Drive Raleigh, NC 27606

No. of Copies Organization

- Calspan Corporation ATTN: Technical Library P.O. Box 400 Buffalo, NY 14225
- 6 General Electric Ord Sys Div
 ATTN: J. Mandzy, OP43-220
 R. E. Mayer
 W. Pasko
 B. Haberl
 I. Magoon
 L. A. Walter
 100 Plastics Avenue
 Pittsfield, MA 01201-3698
- 1 Sundstrand Aviation Operations ATTN: Mr. Owen Briles P.O. Box 7202 Rockford, IL 61125
- 1 Veritay Technology, Inc. ATTN: E. B. Fisher P.O. Box 305 4845 Millersport Highway East Amherst, NY 14051-0305
- Science Applications International Corporation ATTN: Dr. Sanford Dash
 Mr. Neeraj Sinha
 501 Office Center Drive
 Suite 420
 Ft. Washington, PA 19034-3211
- Georgia Institute of Technology School of Aerospace Engineering ATTN: Dr. Suresh Menon Atlanta, GA 30332-0150
- 2 Institute for Defense Analysis ATTN: 1r. Joan Cartier Jr. David Sparrow 1801 N. Beauregard St. Alexandria, VA 22311-1772

No. of Copies Organization

1 R ARDE
GS2 Division
ATTN: Dr. Clive Woodley
Building R31
Ft. Halstead
Sevenoaks, Kent TN14 7BT
ENGLAND

Imperial College of Science and Medicine Mechanical Engineering Department ATTN: Professor J. H. Whitelaw Exhibition Road, London SW7 2BX ENGLAND INTENTIONALLY LEFT BLANK.