6. You are considering the purchase of 100 units of a 3-month 25-strike European call option on a stock.

You are given:

- (i) The Black-Scholes framework holds.
- (ii) The stock is currently selling for 20.
- (iii) The stock's volatility is 24%.
- (iv) The stock pays dividends continuously at a rate proportional to its price. The dividend yield is 3%.
- (v) The continuously compounded risk-free interest rate is 5%.

Calculate the price of the block of 100 options.

- (A) 0.04
- (B) 1.93
- (C) 3.63
- (D) 4.22
- (E) 5.09
- 7. Company A is a U.S. international company, and Company B is a Japanese local company. Company A is negotiating with Company B to sell its operation in Tokyo to Company B. The deal will be settled in Japanese yen. To avoid a loss at the time when the deal is closed due to a sudden devaluation of yen relative to dollar, Company A has decided to buy at-the-money dollar-denominated yen put of the European type to hedge this risk.

You are given the following information:

- (i) The deal will be closed 3 months from now.
- (ii) The sale price of the Tokyo operation has been settled at 120 billion Japanese yen.
- (iii) The continuously compounded risk-free interest rate in the U.S. is 3.5%.
- (iv) The continuously compounded risk-free interest rate in Japan is 1.5%.
- (v) The current exchange rate is 1 U.S. dollar = 120 Japanese yen.
- (vi) The daily volatility of the yen per dollar exchange rate is 0.261712%.
- (vii) 1 year = 365 days; 3 months = $\frac{1}{4}$ year.

Calculate Company A's option cost.

8. Let S(t) denote the price at time t of a stock that pays no dividends. The Black-Scholes framework holds. Consider a European call option with exercise date T, T > 0, and exercise price $S(0)e^{rT}$, where r is the continuously compounded risk-free interest rate.

You are given:

- (i) S(0) = \$100
- (ii) T = 10
- (iii) $Var[\ln S(t)] = 0.4t, t > 0.$

Determine the price of the call option.

- (A) \$7.96
- (B) \$24.82
- (C) \$68.26
- (D) \$95.44
- (E) There is not enough information to solve the problem.

- **3.** You are asked to determine the price of a European put option on a stock. Assuming the Black-Scholes framework holds, you are given:
 - (i) The stock price is \$100.
 - (ii) The put option will expire in 6 months.
 - (iii) The strike price is \$98.
 - (iv) The continuously compounded risk-free interest rate is r = 0.055.
 - (v) $\delta = 0.01$
 - (vi) $\sigma = 0.50$

Calculate the price of this put option.

- (A) \$3.50
- (B) \$8.60
- (C) \$11.90
- (D) \$16.00
- (E) \$20.40