## A Taxation Principle with Non-Contractible Events

Francisco Poggi and Bruno Strulovici

- Setup:
  - Agent private type  $\theta \in \Theta$ .
  - Agent takes action  $a \in \mathcal{A}$
  - Principal
    - observes action taken.
    - Charges the agent a tax  $t \in \mathbb{R}$ .
- Agent has a utility function

$$u(\theta, a, t) = v(\theta, a) - t$$

• Principal wants to implement a (deterministic) social choice function  $f:\Theta \to \mathcal{A}$ . Can commit to any mechanism.

- Setup:
  - Agent private type  $\theta \in \Theta$ .
  - Agent takes action  $a \in \mathcal{A}$
  - Principal
    - observes action taken.
    - Charges the agent a tax  $t \in \mathbb{R}$ .
- Agent has a utility function

$$u(\theta, a, t) = v(\theta, a) - t$$

• Principal wants to implement a (deterministic) social choice function  $f:\Theta \to \mathcal{A}$ . Can commit to any mechanism.

- Setup:
  - Agent private type  $\theta \in \Theta$ .
  - Agent takes action  $a \in \mathcal{A}$
  - Principal
    - observes action taken.
    - Charges the agent a tax  $t \in \mathbb{R}$ .
- Agent has a utility function

$$u(\theta, a, t) = v(\theta, a) - t$$

• Principal wants to implement a (deterministic) social choice function  $f:\Theta \to \mathcal{A}$ . Can commit to any mechanism.

#### • Direct Revelation Mechanisms:

- Ask the agent to report their type.
- Recommend an action  $\hat{a} \in A$ .
- Set up taxes so that agent has incentives to
  - Report truthfully.
  - Follow the recommended action.
- Revelation Principle: DRM are without loss.

- Set up a tariff  $t: A \to \mathbb{R}$ .
- Let the agent choose the action.
- Charge tax according to the tariff.
- Taxation Principle: TM are without loss.

### • Direct Revelation Mechanisms:

- Ask the agent to report their type.
- Recommend an action  $\hat{a} \in A$ .
- Set up taxes so that agent has incentives to
  - Report truthfully.
  - Follow the recommended action.
- Revelation Principle: DRM are without loss.

- Set up a tariff  $t: A \to \mathbb{R}$ .
- Let the agent choose the action.
- Charge tax according to the tariff.
- Taxation Principle: TM are without loss.

### • Direct Revelation Mechanisms:

- Ask the agent to report their type.
- Recommend an action  $\hat{a} \in A$ .
- Set up taxes so that agent has incentives to
  - Report truthfully.
  - Follow the recommended action.
- Revelation Principle: DRM are without loss.

- Set up a tariff  $t: \mathcal{A} \to \mathbb{R}$ .
- Let the agent choose the action.
- Charge tax according to the tariff.
- Taxation Principle: TM are without loss.

### • Direct Revelation Mechanisms:

- Ask the agent to report their type.
- Recommend an action  $\hat{a} \in A$ .
- Set up taxes so that agent has incentives to
  - Report truthfully.
  - Follow the recommended action.
- Revelation Principle: DRM are without loss.

- Set up a tariff  $t: \mathcal{A} \to \mathbb{R}$ .
- Let the agent choose the action.
- Charge tax according to the tariff.
- Taxation Principle: TM are without loss.

# Extending the Taxation Principle

- Tariff mechanisms are attractive in Law applications.
  - Examples:
    - liability as a function of precaution taken.
    - years of imprisonment as function of crime.
  - Main advantage: no information elicitation.

• The Classical Taxation Principle is ill-suited for many application.

## Limitations

- Observability/verifiability of actions.
  - In general, evidence that is partially informative about actions.

- Contractability of outcomes.
  - Injurer can only be liable if damage occurs.
  - Criminal can only be punished if captured.
- Quasilinear preferences.
  - Risk-aversion.
  - Same punishment could be more costly for 'innocent' agents.

## Our contribution

- Necessary and sufficient conditions for a Taxation Principle to hold in a more general setup:
  - Moral hazard.
  - Non-contractible outcomes.
  - Non-quasilinear preferences.

- This conditions are strong. Sometimes it is useful to show that a particular family of SCF can be implemented without information elicitation.
  - We show sufficient conditions on f and the environment that guarantee tariff implementation.

## Our contribution

- Necessary and sufficient conditions for a Taxation Principle to hold in a more general setup:
  - Moral hazard.
  - Non-contractible outcomes.
  - Non-quasilinear preferences.

- This conditions are strong. Sometimes it is useful to show that a particular family of SCF can be implemented without information elicitation.
  - We show sufficient conditions on *f* and the environment that guarantee tariff implementation.

## Our contribution

- Necessary and sufficient conditions for a Taxation Principle to hold in a more general setup:
  - Moral hazard.
  - Non-contractible outcomes.
  - Non-quasilinear preferences.
- This conditions are strong. Sometimes it is useful to show that a particular family of SCF can be implemented without information elicitation.
  - We show sufficient conditions on *f* and the environment that guarantee tariff implementation.

## Model Primitives

- Imperfectly verifiable actions.
  - Action  $a \in \mathcal{A}$  generates outcome  $z \in \mathcal{Z}$ .
  - Only z is verifiable.
- Non-contractible events.
  - Set of contractible outcomes  $Y \subset Z$ .
  - Only if  $z \in Y$ , the principal charges a tax  $t \in T(z) \subset \mathbb{R}$ .
- Preferences:

$$u(\theta, a, z, t) = v(\theta, a, z) - h(\theta, a) \cdot w(t, z)$$

with  $h(\theta, a) > 0$ . Set  $\mathcal{U}$ 

## Model Primitives

- Imperfectly verifiable actions.
  - Action  $a \in \mathcal{A}$  generates outcome  $z \in \mathcal{Z}$ .
  - Only z is verifiable.
- Non-contractible events.
  - Set of contractible outcomes  $Y \subset Z$ .
  - Only if  $z \in Y$ , the principal charges a tax  $t \in T(z) \subset \mathbb{R}$ .
- Preferences:

$$u(\theta, a, z, t) = v(\theta, a, z) - h(\theta, a) \cdot w(t, z)$$

with  $h(\theta, a) > 0$ . Set  $\mathcal{U}$ .

## Model Primitives

- Imperfectly verifiable actions.
  - Action  $a \in \mathcal{A}$  generates outcome  $z \in \mathcal{Z}$ .
  - Only z is verifiable.
- Non-contractible events.
  - Set of contractible outcomes  $Y \subset Z$ .
  - Only if  $z \in Y$ , the principal charges a tax  $t \in T(z) \subset \mathbb{R}$ .
- Preferences:

$$u(\theta, a, z, t) = v(\theta, a, z) - h(\theta, a) \cdot w(t, z)$$

with  $h(\theta, a) > 0$ . Set  $\mathcal{U}$ .

## Our results

Taxation Principle ⇔

For any  $z \in Y$  it is possible to identify the conditional distribution of contractible outcomes.

• Example: A single contractible outcome for each action.

- Taxation Principle guarantees that all implementable SCF are tariff implementable.
- Sometimes, the principal is interested in a subset of SCF.
  - $f(\Theta) \subset A$ .  $f \nearrow$ , etc.

f is observably injective if there exists a partition  $A_1,...,A_K$  of A such that:

- Principal identifies which cell the action belongs to.
- If two implemented actions are in the same element, they generate the same distribution of contractible outcomes.

### Theorem

- Taxation Principle guarantees that all implementable SCF are tariff implementable.
- Sometimes, the principal is interested in a subset of SCF.
  - $f(\Theta) \subset A$ .  $f \nearrow$ , etc.

f is observably injective if there exists a partition  $A_1,...,A_K$  of  $\mathcal A$  such that:

- Principal identifies which cell the action belongs to.
- If two implemented actions are in the same element, they generate the same distribution of contractible outcomes.

#### Theorem

- Taxation Principle guarantees that all implementable SCF are tariff implementable.
- Sometimes, the principal is interested in a subset of SCF.
  - $f(\Theta) \subset A$ .  $f \nearrow$ , etc.

f is observably injective if there exists a partition  $A_1,...,A_K$  of  $\mathcal A$  such that:

- Principal identifies which cell the action belongs to.
- If two implemented actions are in the same element, they generate the same distribution of contractible outcomes.

#### Theorem

- Taxation Principle guarantees that all implementable SCF are tariff implementable.
- Sometimes, the principal is interested in a subset of SCF.
  - $f(\Theta) \subset A$ .  $f \nearrow$ , etc.

f is observably injective if there exists a partition  $A_1,...,A_K$  of  $\mathcal A$  such that:

- Principal identifies which cell the action belongs to.
- If two <u>implemented</u> actions are in the same element, they generate the same distribution of contractible outcomes.

### Theorem

- Taxation Principle guarantees that all implementable SCF are tariff implementable.
- Sometimes, the principal is interested in a subset of SCF.
  - $f(\Theta) \subset A$ .  $f \nearrow$ , etc.

f is observably injective if there exists a partition  $A_1,...,A_K$  of  $\mathcal A$  such that:

- Principal identifies which cell the action belongs to.
- If two <u>implemented</u> actions are in the same element, they generate the same distribution of contractible outcomes.

### **Theorem**

## Intuition



- A product can be faulty or safe.
- Firm decides weather to lunch it or not  $a \in \{0, 1\}$ .
  - ullet has some private information heta about risk
  - can run an experiment  $e \in \mathcal{E}$  before launching it. Cost C(e)
- Z : whether product was launched, faulty, and the likelihood ratio of the evidence obtained in the experiment.
- Contractible outcome only if the product was launched and faulty.
- Action: experiment and map from results to launch decisions.
- The Taxation Principle does not hold.
- However, if we restrict attention to binary experiments such that the agent launches conditional on one of the outcomes, the second result applies.

- A product can be faulty or safe.
- Firm decides weather to lunch it or not  $a \in \{0, 1\}$ .
  - has some private information  $\theta$  about risk,
  - can run an experiment  $e \in \mathcal{E}$  before launching it. Cost C(e).
- Z : whether product was launched, faulty, and the likelihood ratio of the evidence obtained in the experiment.
- Contractible outcome only if the product was launched and faulty.
- Action: experiment and map from results to launch decisions.
- The Taxation Principle does not hold.
- However, if we restrict attention to binary experiments such that the agent launches conditional on one of the outcomes, the second result applies.

- A product can be faulty or safe.
- Firm decides weather to lunch it or not  $a \in \{0, 1\}$ .
  - ullet has some private information heta about risk,
  - can run an experiment  $e \in \mathcal{E}$  before launching it. Cost C(e).
- Z : whether product was launched, faulty, and the likelihood ratio of the evidence obtained in the experiment.
- Contractible outcome only if the product was launched and faulty.
- Action: experiment and map from results to launch decisions.
- The Taxation Principle does not hold.
- However, if we restrict attention to binary experiments such that the agent launches conditional on one of the outcomes, the second result applies.

- A product can be faulty or safe.
- Firm decides weather to lunch it or not  $a \in \{0, 1\}$ .
  - ullet has some private information heta about risk,
  - can run an experiment  $e \in \mathcal{E}$  before launching it. Cost C(e).
- Z : whether product was launched, faulty, and the likelihood ratio of the evidence obtained in the experiment.
- Contractible outcome only if the product was launched and faulty.
- Action: experiment and map from results to launch decisions.
- The Taxation Principle does not hold.
- However, if we restrict attention to binary experiments such that the agent launches conditional on one of the outcomes, the second result applies.

- A product can be faulty or safe.
- Firm decides weather to lunch it or not  $a \in \{0, 1\}$ .
  - has some private information  $\theta$  about risk,
  - can run an experiment  $e \in \mathcal{E}$  before launching it. Cost C(e).
- Z : whether product was launched, faulty, and the likelihood ratio of the evidence obtained in the experiment.
- Contractible outcome only if the product was launched and faulty.
- Action: experiment and map from results to launch decisions.
- The Taxation Principle does not hold.
- However, if we restrict attention to binary experiments such that the agent launches conditional on one of the outcomes, the second result applies.

- A product can be faulty or safe.
- Firm decides weather to lunch it or not  $a \in \{0, 1\}$ .
  - has some private information  $\theta$  about risk,
  - can run an experiment  $e \in \mathcal{E}$  before launching it. Cost C(e).
- Z : whether product was launched, faulty, and the likelihood ratio of the evidence obtained in the experiment.
- Contractible outcome only if the product was launched and faulty.
- Action: experiment and map from results to launch decisions.
- The Taxation Principle does not hold.
- However, if we restrict attention to binary experiments such that the agent launches conditional on one of the outcomes, the second result applies.

- A product can be faulty or safe.
- Firm decides weather to lunch it or not  $a \in \{0, 1\}$ .
  - has some private information  $\theta$  about risk,
  - can run an experiment  $e \in \mathcal{E}$  before launching it. Cost C(e).
- Z: whether product was launched, faulty, and the likelihood ratio of the evidence obtained in the experiment.
- Contractible outcome only if the product was launched and faulty.
- Action: experiment and map from results to launch decisions.
- The Taxation Principle does not hold.
- However, if we restrict attention to binary experiments such that the agent launches conditional on one of the outcomes, the second result applies.

- A product can be faulty or safe.
- Firm decides weather to lunch it or not  $a \in \{0, 1\}$ .
  - has some private information  $\theta$  about risk,
  - can run an experiment  $e \in \mathcal{E}$  before launching it. Cost C(e).
- Z: whether product was launched, faulty, and the likelihood ratio of the evidence obtained in the experiment.
- Contractible outcome only if the product was launched and faulty.
- Action: experiment and map from results to launch decisions.
- The Taxation Principle does not hold.
- However, if we restrict attention to binary experiments such that the agent launches conditional on one of the outcomes, the second result applies.

- A product can be faulty or safe.
- Firm decides weather to lunch it or not  $a \in \{0, 1\}$ .
  - has some private information  $\theta$  about risk,
  - can run an experiment  $e \in \mathcal{E}$  before launching it. Cost C(e).
- Z : whether product was launched, faulty, and the likelihood ratio of the evidence obtained in the experiment.
- Contractible outcome only if the product was launched and faulty.
- Action: experiment and map from results to launch decisions.
- The Taxation Principle does not hold.
- However, if we restrict attention to binary experiments such that the agent launches conditional on one of the outcomes, the second result applies.