

Error Analysis

Carrying out error analysis

Look at dev examples to evaluate ideas

Should you try to make your cat classifier do better on dogs?

Error analysis:

- Get ~100 mislabeled dev set examples.
- Count up how many are dogs.

Evaluate multiple ideas in parallel

Ideas for cat detection:

- Fix pictures of dogs being recognized as cats
- Fix great cats (lions, panthers, etc..) being misrecognized <

• Improve performance on blurry images —

	Image	Dog	Great Cats	Plury	Instagram Con	uments
	1	✓			~ Pitle	oull
	2			/	V	
	3		✓	V	Rain at	200
J	:	<i>:</i>	: 1/	;	K	
	% of total	8 %	430/2	(6/0/0)	12%	
			←	₹		

Incorrectly labeled examples

DL algorithms are quite robust to <u>random errors</u> in the training set.

Systematic esces

Error analysis

•	Image	Dog	Great Cat	Blurry	Incorrectly labeled	Comments					
个	•••										
	98				\checkmark	Labeler missed cat in background	\leftarrow				
	99		✓								
	100				\bigcirc	Drawing of a cat; Not a real cat.	\leftarrow				
	% of total	8%	43%	$\underline{61\%}$	6%	V					
Overall dev set error 2%											
Errors due incorrect labels 0.6°/. O.6°/.											
Errors due to other causes											
				1		2.10/0	1.9./6				

Goal of dev set is to help you select between two classifiers A & B.

Correcting incorrect dev/test set examples

- Apply same process to your dev and test sets to make sure they continue to come from the same distribution
- Consider examining examples your algorithm got right as well as ones it got wrong.
- Train and dev/test data may now come from slightly different distributions.

Speech recognition example

- Noisy background
 - → Café noise
 - → Car noise
- -> Accented speech
- → Far from microphone
- Young children's speech
- > Stuttering uh, ah, um,...
- ightarrow lacktriangle

- Set up dev/test set and metric
 - Build initial system quickly
 - Use Bias/Variance analysis & Error analysis to prioritize next steps.

Mismatched training and dev/test data

Training and testing on different distributions

Cat app example Data from webpages

Option 2:

> 2 10,000

2,500

deu (tese

Speech recognition example

Speak outietel rearries million

Training

Purchased data

Smart speaker control

Voice keyboard

.. 500,000 utvanes

Dev/test

Speech activated rearview mirror

Mismatched training and dev/test data

Bias and Variance with mismatched data distributions

Cat classifier example

Assume humans get $\approx 0\%$ error.

Training error 10%

Training-dev set: Same distribution as training set, but not used for training

Bias/variance on mismatched training and dev/test sets

More general formulation

Reasures milror

Addressing data mismatch

 Carry out manual error analysis to try to understand difference between training and dev/test sets

 Make training data more similar; or collect more data similar to dev/test sets

Artificial data synthesis

Artificial data synthesis

Car recognition:

WSD cons

Learning from multiple tasks

Transfer learning

When transfer learning makes sense

Transfer from A -> B

- Task A and B have the same input x.
- You have a lot more data for $\underbrace{Task A}_{\uparrow}$ than $\underbrace{Task B}_{\downarrow}$.
- Low level features from A could be helpful for learning B.

Simplified autonomous driving example

Neural network architecture

When multi-task learning makes sense

• Training on a set of tasks that could benefit from having shared lower-level features.

Usually: Amount of data you have for each task is quite

1,000

,000

99,000

similar. A Looo, ooo

 Can train a big enough neural network to do well on all the tasks.

End-to-end deep learning

What is end-to-end deep learning

What is end-to-end learning?

Speech recognition example

Face recognition

[Image courtesy of Baidu]

Andrew Ng

More examples

Machine translation

(X, y)
English -> text analysis -> --- -> French
English
English

Estimating child's age:

Pros and cons of end-to-end deep learning

Pros:

• Let the data speak

Less hand-designing of components needed

Cons:

May need large amount of data

• Excludes potentially useful hand-designed components

Applying end-to-end deep learning

Key question: Do you have sufficient data to learn a function of the complexity needed to map x to y?

