Lecture 7

Optimal Consumption with Endowments

Overview

Previously: the optimal consumption problem for a rational agent whose income is given as fixed

Today: the same problem for a rational agent whose income is generated from initial endowments

拥有禀赋时的最优消费问题

The list of resource units with which a consumer starts is his endowment. A consumer's endowment will be denoted by the vector (1) (omega).

E.g. $\omega = (\omega_1, \omega_2) = (10, 2)$ states that the consumer is endowed with 10 units of good 1 and 2 units of good 2.

E.g. $\omega = (\omega_1, \omega_2) = (10, 2)$ states that the consumer is endowed with 10 units of good 1 and 2 units of good 2.

What is the endowment's value?

For which consumption bundles may it be exchanged?

p₁=2 and p₂=3 so the value of the endowment
$$(\omega_1, \omega_2) = (10, 2)$$
 is

$$p_1\omega_1 + p_2\omega_2 = 2 \times 10 + 3 \times 2 = 26$$

Q: For which consumption bundles may the endowment be exchanged?

A: For any bundle costing no more than the endowment's value.

So, given p_1 and p_2 , the budget constraint for a consumer with an endowment (ω_1, ω_2) is

$$p_1x_1 + p_2x_2 = p_1\omega_1 + p_2\omega_2$$
.

The budget set is

$$\{ (x_1, x_2) | p_1 x_1 + p_2 x_2 \le p_1 \omega_1 + p_2 \omega_2, \\ x_1 \ge 0, x_2 \ge 0 \}.$$

The constraint

$$p_1x_1 + p_2x_2 = p_1\omega_1 + p_2\omega_2$$

is

$$p_1(x_1 - \omega_1) + p_2(x_2 - \omega_2) = 0.$$
 Net demand for x1 Net demand for x2

The net demands for x1 and x2 can not be both positive or negative.

Suppose
$$(\omega_1, \omega_2) = (10,2)$$
 and $p_1=2$, $p_2=3$. Then the constraint is $p_1x_1 + p_2x_2 = p_1\omega_1 + p_2\omega_2 = 26$.

If the consumer demands $(x_1^*, x_2^*) = (7,4)$, then 3 good 1 units exchange for 2 good 2 units. Net demands are $x_1^* - \omega_1 = 7 - 10 = -3$ and $x_2^* - \omega_2 = 4 - 2 = +2$.

$$p_1=2$$
, $p_2=3$, $x_1^*-\omega_1=-3$ and $x_2^*-\omega_2=+2$ so $p_1(x_1-\omega_1)+p_2(x_2-\omega_2)=$ $2\times(-3)+3\times2=0$.

The consumer is a net supplier of x1 and a net demander of x2.

A worker is endowed with \$m of nonlabor income and \overline{R} hours of time which can be used for labor or leisure. $\omega = (\overline{R}, m)$. Consumption good's price is p_c . w is the wage rate.

The consumer's utility depends on both consumption (C) and leisure (R)

$$U = U(C, R)$$

效用由消费数量和闲暇时间共同决定

The consumer's utility depends on both consumption (C) and leisure (R)

$$U = U(C, R)$$

Q: How much time will be devoted to work in order to max utility?

The worker's budget constraint is

$$p_cC = w(\overline{R} - R) + m$$

where C, R denote gross demands for the consumption good and for leisure. That is

$$p_{c}C + wR = wR + m$$
expenditure endowment value

$$p_cC + wR = wR + m$$
expenditure endowment value

$$p_{c}C + wR = wR + m$$
expenditure endowment value

This is equivalent to

$$wR + p_cC = w\overline{R} + p_c\overline{C}$$

where
$$\overline{C} = \frac{m}{p_c}$$

$$p_cC = w(\overline{R} - R) + m$$

rearranges to

$$C = -\frac{w}{p_c}R + \frac{m + w\overline{R}}{p_c}.$$

Note: $R \leq \overline{R}$. 预算线是禀赋点以左的那部分线段。

What if $R^* > \overline{R}$?

What if $R^* > \overline{R}$?

- Set $R^* = \overline{R}$

Slutsky's Equation Revisited

Slutsky: changes to demands caused by a price change are the sum of

- -a pure substitution effect, and
- -an income effect.

This assumed that income y did not change as prices changed. But

$$y = p_1\omega_1 + p_2\omega_2$$

does change with price. How does this modify Slutsky's equation?

Slutsky's Equation Revisited

A change in p_1 or p_2 changes $y = p_1\omega_1 + p_2\omega_2$ so there will be an additional income effect, called the endowment income effect.

Slutsky's decomposition will thus have three components

- -a pure substitution effect
- -an (ordinary) income effect, and
- -an endowment income effect.

价格变化会造成禀赋收入的变化,进而造成需求的改变;这一效应被称为禀赋收入效应

Slutsky's Equation Revisited

(change the income to the original income while holding prices constant)

(change the income to the new income while holding prices constant)

Overall change in demand caused by a change in price is the sum of:

- (i) a pure substitution effect
- (ii) an ordinary income effect
- (iii) an endowment income effect

Step 0: derive the demand function $x(p_1, p_2, m)$

Step 0: derive the demand function $x(p_1, p_2, m)$

Step 1: find the old bundle, the new bundle, the intermediate bundle 1, and the intermediate bundle 2.

The old

Old prices: (p_1,p_2) , old income: $m^0 =$ $p_1\omega_1+p_2\omega_2$ X_2 **Old bundle:** $x_1^*(p_1, p_2, m^0), x_2^*(p_1, p_2, m^0)$ ω_2

The new

new prices: (p_1', p_2) , new income: $m^1 = p_1' \omega_1 + p_2 \omega_2$

Intermediate 1

new prices: (p'_1, p_2) , hypothetical income: $m^h = p_1'x_1^* + p_2x_2^*$, which makes the old bundle just affordable **Intermediate bundle 1:** $x(p_1', p_2, m^h)$

Intermediate 2

new prices: (p_1', p_2) , old income: $m^0 = p_1\omega_1 + p_2\omega_2$

Step 3: calculate the substitution and income effects:

- (i) a pure substitution effect
- (ii) an ordinary income effect
- (iii) an endowment income effect

Step 3: calculate the substitution and income effects:

- (i) a pure substitution effect Intermediate 1 – old
- (ii) an ordinary income effect Intermediate 2 – Intermediate 1
- (iii) an endowment income effect new – Intermediate 2

When income is given as fixed, the Slutsky equation is the following:

$$\frac{\Delta x_1}{\Delta p_1} = \frac{\Delta x_1^s}{\Delta p_1} + \frac{\Delta x_1^n}{\Delta p_1}$$

$$= \frac{\Delta x_1^s}{\Delta p_1} - \frac{\Delta x_1(p_1, p_2, m)}{\Delta m} x_1$$
due to changes in due to changes in relative price real income

With endowments, the price change also causes change in nominal income

$$\frac{\Delta x_1}{\Delta p_1} = \frac{\Delta x_1^s}{\Delta p_1} + \frac{\Delta x_1^n}{\Delta p_1} + \frac{\text{endowment effect}}{\Delta p_1}$$

$$= \frac{\Delta x_1^s}{\Delta p_1} - \frac{\Delta x_1(p_1, p_2, m)}{\Delta m} x_1 + \frac{\text{endowment effect}}{\Delta p_1}$$

The Endowment Income Effect

endowment effect

$$= x_1(p_1', p_2, m^1) - x_1(p_1', p_2, m^0)$$

endowment effect

$$= x_1(p_1', p_2, m^1) - x_1(p_1', p_2, m^0)$$

$$= x_1(p_1', p_2, m^0 + (m^1 - m^0)) - x_1(p_1', p_2, m^0)$$

endowment effect

$$= x_1(p_1', p_2, m^1) - x_1(p_1', p_2, m^0)$$

$$= x_1(p_1', p_2, m^0 + (m^1 - m^0)) - x_1(p_1', p_2, m^0)$$

Remember that

$$f(x + \Delta x) - f(x) \rightarrow f'(x)\Delta x$$

endowment effect

$$= x_1(p_1', p_2, m^1) - x_1(p_1', p_2, m^0)$$

$$= x_1(p_1', p_2, m^0 + (m^1 - m^0)) - x_1(p_1', p_2, m^0)$$

Remember that

$$f(x + \Delta x) - f(x) \rightarrow f'(x)\Delta x$$

endowment effect

$$= \frac{\Delta x_1(p_1, p_2, m)}{\Delta m} (m^1 - m^0)$$

endowment effect =
$$\frac{\Delta x_1(p_1, p_2, m)}{\Delta m}(m^1 - m^0)$$

endowment effect =
$$\frac{\Delta x_1(p_1, p_2, m)}{\Delta m}(m^1 - m^0)$$

$$m^{1} - m^{0} = p'_{1}\omega_{1} + p_{2}\omega_{2} - (p_{1}\omega_{1} + p_{2}\omega_{2})$$

= $(p'_{1} - p_{1})\omega_{1} = \Delta p_{1}\omega_{1}$

endowment effect =
$$\frac{\Delta x_1(p_1, p_2, m)}{\Delta m}(m^1 - m^0)$$

$$m^{1} - m^{0} = p'_{1}\omega_{1} + p_{2}\omega_{2} - (p_{1}\omega_{1} + p_{2}\omega_{2})$$

= $(p'_{1} - p_{1})\omega_{1} = \Delta p_{1}\omega_{1}$

endowment effect =
$$\frac{\Delta x_1(p_1, p_2, m)}{\Delta m} \Delta p_1 \omega_1$$

endowment effect =
$$\frac{\Delta x_1(p_1, p_2, m)}{\Delta m} \Delta p_1 \omega_1$$

$$\frac{\Delta x_1}{\Delta p_1} = \frac{\Delta x_1^s}{\Delta p_1} - \frac{\Delta x_1(p_1, p_2, m)}{\Delta m} x_1 + \frac{\text{endowment effect}}{\Delta p_1} = \frac{\Delta x_1^s}{\Delta p_1} - \frac{\Delta x_1(p_1, p_2, m)}{\Delta m} x_1 + \frac{\Delta x_1(p_1, p_2, m)}{\Delta m} \omega_1$$

$$= \frac{\Delta x_1^s}{\Delta p_1} + \frac{\Delta x_1(p_1, p_2, m)}{\Delta m} (\omega_1 - x_1)$$

$$\frac{\Delta x_1}{\Delta p_1} = \frac{\Delta x_1^s}{\Delta p_1} - \frac{\Delta x_1(p_1, p_2, m)}{\Delta m} x_1$$
(-) (+) if normal

Without endowments:

$$\frac{\Delta x_1}{\Delta p_1} = \frac{\Delta x_1^s}{\Delta p_1} - \frac{\Delta x_1(p_1, p_2, m)}{\Delta m} x_1$$

$$\frac{\Delta x_1}{\Delta p_1} = \frac{\Delta x_1^s}{\Delta p_1} + \frac{\Delta x_1(p_1, p_2, m)}{\Delta m} (\omega_1 - x_1)$$

$$\frac{\Delta x_1}{\Delta p_1} = \frac{\Delta x_1^s}{\Delta p_1} + \frac{\Delta x_1(p_1, p_2, m)}{\Delta m} (\omega_1 - x_1)$$
(-) (+) if normal (?)

$$\frac{\Delta x_1}{\Delta p_1} = \frac{\Delta x_1^s}{\Delta p_1} + \frac{\Delta x_1(p_1, p_2, m)}{\Delta m} (\omega_1 - x_1)$$
(+) if normal (?)

If
$$\omega_1 - x_1 < 0$$
 (net demander of x_1),
$$\frac{\Delta x_1(p_1, p_2, m)}{\Delta m}(\omega_1 - x_1) < 0$$
$$\frac{\Delta x_1}{\Delta m} < 0$$

$$\frac{\Delta x_1}{\Delta p_1} = \frac{\Delta x_1^s}{\Delta p_1} + \frac{\Delta x_1(p_1, p_2, m)}{\Delta m} (\omega_1 - x_1)$$
(-) (+) if normal (?)

If
$$\omega_1 - x_1 > 0$$
 (net supplier of x1),
$$\frac{\Delta x_1(p_1, p_2, m)}{\Delta m} (\omega_1 - x_1) \leq 0$$

$$\frac{\Delta x_1}{\Delta m} \geq 0$$

An Application to the Intertemporal Choice Problem

Let m₁ and m₂ be incomes received in periods 1 and 2.

Let c₁ and c₂ be consumptions in periods 1 and 2.

Let p₁ and p₂ be the prices of consumption in periods 1 and 2.

跨期消费选择

The Intertemporal Choice Problem

The intertemporal choice problem: Given incomes m_1 and m_2 , and given consumption prices p_1 and p_2 , what is the most preferred intertemporal consumption bundle (c_1,c_2) ?

For an answer we need to know:

- the intertemporal budget constraint
- intertemporal consumption preferences.

To start, let's ignore price effects by supposing that

$$p_1 = p_2 = $1.$$

To start, let's ignore price effects by supposing that

$$p_1 = p_2 = $1.$$

The interest rate is denoted by r. i.e. \$1 saving today will become \$(1+r) tomorrow.

\$1 tomorrow is $\frac{1}{1+r}$ in today's dollar

Suppose that c_1 units are consumed in period 1. This costs c_1 and leaves c_1 saved. Period 2 consumption will then be $c_2 = c_1 + (1+r)(c_1)$

Suppose that c_1 units are consumed in period 1. This costs c_1 and leaves c_1 are consumption will then be

$$c_2 = m_2 + (1+r)(m_1 - c_1)$$

which is

$$c_2 = -(1+r)c_1 + m_2 + (1+r)m_1$$
.

slope

intercept

$$c_2 = -(1+r)c_1 + m_2 + (1+r)m_1$$
.

$$(1+r)c_1 + 1 \times c_2 = (1+r)m_1 + m_2$$

" p_1 " " p_2 " " m "

$$p_1x_1 + p_2x_2 = p_1\omega_1 + p_2\omega_2$$

$$c_2 = -(1+r)c_1 + m_2 + (1+r)m_1$$
.

$$(1+r)c_1 + 1 \times c_2 = (1+r)m_1 + m_2$$

" p_1 " " p_2 " " m "

"future-valued" form of the budget constraint

$$\mathbf{p}_1\mathbf{x}_1 + \mathbf{p}_2\mathbf{x}_2 = \mathbf{p}_1\omega_1 + \mathbf{p}_2\omega_2$$

$$c_2 = -(1+r)c_1 + m_2 + (1+r)m_1$$
.

$$1 \times c_1 + \frac{1}{1+r}c_2 = m_1 + \frac{1}{1+r}m_2$$
"\[\begin{align*} \pm_1 \\ \pm_1 \\ \pm_1 \end{align*} \\ \pm_2 \\ \end{align*}

$$\mathbf{p}_1\mathbf{x}_1 + \mathbf{p}_2\mathbf{x}_2 = \mathbf{p}_1\omega_1 + \mathbf{p}_2\omega_2$$

$$c_2 = -(1+r)c_1 + m_2 + (1+r)m_1$$
.

$$1 \times c_1 + \frac{1}{1+r}c_2 = m_1 + \frac{1}{1+r}m_2$$

" p_1 "

" p_2 "

" m "

"present-valued" form of the budget constraint

$$p_1x_1 + p_2x_2 = p_1\omega_1 + p_2\omega_2$$

$$c_1^* < m_1$$

$$c_1^* > m_1$$

The Intertemporal Budget

Q: If the interest rate r falls, how would the budget constraint change?

$$c_2 = -(1+r)c_1 + m_2 + (1+r)m_1.$$

slope intercept
$$(1+r)c_1 + 1 \times c_2 = (1+r)m_1 + m_2$$

$$"p_1"$$
 $"p_2"$

$$(1+r)c_1 + 1 \times c_2 = (1+r)m_1 + m_2$$

" p_1 " " p_2 " " m "

If r falls, today's consumption c_1 becomes relatively cheaper.

The budget line pivots around (m_1, m_2) and becomes flatter.

Q: How would C_1 change?

Q: How would C_1 change?

According to Slutsky equation:

$$\frac{\Delta x_1}{\Delta p_1} = \frac{\Delta x_1^s}{\Delta p_1} + \frac{\Delta x_1(p_1, p_2, m)}{\Delta m} (\omega_1 - x_1)$$
(-) (+) if normal (+) for savers

Q: How would C_1 change?

According to Slutsky equation:

$$\frac{\Delta c_1}{\Delta p_1} = \frac{\Delta c_1^s}{\Delta p_1} + \frac{\Delta x_1(p_1, p_2, m)}{\Delta m} (m_1 - c_1)$$
(+) if normal (+) for savers

 $\frac{\Delta c_1}{\Delta p_1} \gtrless 0$ (positive or negative). C_1 could increase or decrease as $r(p_1)$ falls.

Q: How would C_1 change?

According to Slutsky equation:

$$\frac{\Delta c_1}{\Delta p_1} = \frac{\Delta c_1^s}{\Delta p_1} + \frac{\Delta x_1(p_1, p_2, m)}{\Delta m} (m_1 - c_1)$$
(-) (+) if normal (-) for borrowers

It must be that $\frac{\Delta c_1}{\Delta p_1} < 0$. C_1 increases as r (p_1) falls.

 c_1 increases, and the consumer borrows more. The welfare is increased.

No. Otherwise WARP will be violated.