

Sistemas de Computação

- Os principais elementos de um sistema de computação são:
 - Unidade Central de Processamento (CPU)
 - Memória principal
 - Subsistema de E/S
 - Mecanismos de interconexão
- A CPU por sua vez consiste em:
 - Unidade de Controle (UC)
 - Unidade Lógica e Aritmética (ULA)
 - Registradores internos
 - Mecanismos de interconexão

Arquitetura e Organização

Estrutura e Função

- Estrutura → o modo como os componentes estão relacionados
- Função → a operação de cada componentes individual como parte da estrutura.

Tanto estrutura quanto as funções de um computador/servidor são, em sua essência, muito simples.

Em termos gerais, existem apenas quatro funções básicas que um computador/servidor pode desempenhar.

- Processamento de dados
- Armazenamento de dados
- Transferência de dados
- Controle

Visão Funcional

Figura 2: Visão funcional em um computador

Visão Estrutural

Figura 3.1: Operações possíveis em um computador.

Visão Estrutural

Figura 3.2: Operações possíveis em um computador.

Máquina de von Neumann

Figura 4: Estrutura do computador.IAS

Máquina de von Neumann

O IAS, embora concluído somente em 1952, constitui o protótipo de todos os computadores de propósito geral subseqüentes.

Consiste em:

- Uma memória principal, que armazena dados e instruções;
- Uma unidade lógica e aritmética (ULA), capaz de realizar operações de dados binários;
- Uma unidade de controle, que interpreta e executa instruções armazenadas na memória;
- Dispositivos de entrada e saída (E/S), operados pela unidade de controle.

Unidade Central de Processamento

Unidade lógica e aritmética

- Registrador temporário de dados (Memory Buffer Register MBR): contém uma palavra com dados a ser armazenada na memória ou é utilizado para receber uma palavra da memória.
- Registrador de endereçamento à memória (Memory Address Register MAR): especifica o endereço, na memória, da palavra a ser escrita ou lida no MBR.
- Registrador de instruções (Instruction Register IR): contém o código de operação de 8 bits que está sendo executado.
- Registrador de armazenamento temporário de instruções (Instruction Buffer Register IBR): é utilizado para armazenar temporariamente a instrução contida na porção à direita de uma palavra da memória.
- Contador do programa (Program Counter PC): contém o endereço de memória do próximo par de instrucões a ser buscado da memória.
- Acumulador (Accumulator AC) e Quociente de Multiplicação (Multiplier Quotient — MQ): são utilizados para armazenar temporariamente os operandos e o resultado de operações efetuadas na ULA. Por exemplo, o resultado da multiplicação de dois números de 40 bits é um número de 80 bits; os 40 bits mais significativos são armazenados no acumulador (AC) e os 40 bits menos significativos, no registrador de quociente de multiplicação (MQ).

AC MΩ Equipamentos Circuitos lógicos e aritméticos de entrada e saída MBR Instruções e dados IBR PC Memória MAR IR principal M Circuitos Sinais de de controle Endereços controle Unidade de controle de programa

Figura 5: Estrutura detalhada do.IAS

Conjunto de Instruções

O processamento necessário para a execução de uma instrução é chamado de ciclo de instrução.

Apresenta-se na forma de 4 ações:

Figura 6:Ciclo de instrução básico

- Processador-memória: transferência de dados da memória para o processador e do processador para a memória;
- Processador-E/S: transferência de dados entre o processador e um dispositivo periférico por meio de um módulo de E/S;
- Processamento de dados: execução de operações aritméticas ou lógicas sobre os dados;
- Controle: determinadas instruções podem especificar que a sequencia de execução de instruções seja alterada.

Processadores

 Os processadores são circuitos integrados passíveis de ser programados para executar uma tarefa predefinida, basicamente manipulando e processando dados.

Figura 7: Modelo simplificado de processo computacional

Técnicas de desempenho

- O desempenho de um sistema depende muito do desempenho de seus processadores.
- Um processador pode ser dividido em um conjunto de instruções que é
 o conjunto de instruções de máquina que ele pode executar, e sua
 implementação, que é o hardware.
- A arquitetura do conjunto de instruções (Instruction Set Architeture ISA)
 de um processador é uma interface que descreve o processador, incluindo
 seu conjunto de instruções, número de registradores e tamanho de
 memória.

Processadores

CISC – Complex Instruction Set Computing

Computação com conjunto de instruções complexas

- Uma instrução complexa equivale a várias microinstruções presentes no microcódigo do processador.
- Quando o compilador encontra um comando complexo, ele converte esse comando em uma instrução complexa do processador.
- Essa instrução complexa na verdade é desmembrada internamente pelo decodificador de instruções em diversas microinstruções simples, o que é feito consultando o microcódigo

Processadores

Processadores

RISC - Reduced Instruction Set Computing

Computação com conjunto reduzido de instruções

- Como não existem instruções complexas, o compilador deve converter comandos complexos em diversas instruções simples que deêm o mesmo resultado da operação.
- Assim, enquanto que CISC um comando de alto nível é convertido pelo compilador em poucas instruções, em um processador RISC esse comando é convertido em várias instruções.
- Conclusão: o código de programas RISC é maior, necessitando, portanto, de mais memória RAM.

Processadores

Comparação entre CISC e RISC

Categoria	Características dos processadores CISC	Características dos processadores RISC
Tamanho da instrução	Variável, tipicamente de 1 a 10 Bytes	Fixo, tipicamente 4 Bytes
Decodificação da instrução	Via microcódigo	Em hardware
Número de instruções em ISA	Muitas (tipicamente várias centenas). Incluindo muitas instruções complexas	Poucas (tipicamente menos de uma centenas
Número de instruções por programa	Poucas	Muitas (geralmente cerca de 20% mais do que para o CISC)
Número de registradores de propósito geral	Quase sempre poucos (por exemplo, 8 no processador Intel Pentium 4	Muitos (tipicamente 32)
Complexidade	No hardware	No compilador
Habilidade para explorar paralelismo por meio de pipeline	Limitada	Ampla
Filosofia subjacente	Implementar o máximo possível de operações	Tornar rápido o caso comum
Exemplos	Pentium, Athlon	MIPS, SPARC, G5

Arquitetura Superescalar

- Permite que mais de uma instrução seja executada em paralela durante cada ciclo.
- Incluem várias unidades de execução em um único chip e, até recentemente, eram usadas primariamente em processadores CISC para reduzir o tempo requerido para decodificar instruções complexas.
- Hoje, é encontrada na maioria dos processadores porque o paralelismo que ela permite aumenta o desempenho.
- Essas arquiteturas contêm hardware complicado que garante que duas instruções que executem simultaneamente não dependam uma da outra.
- Exemplo: P4 e G5

Barramentos Físicos

- Poderíamos dizer que um barramento é uma via de comunicação.
- Temos vários barramentos, a conhecer:
 - ISA (Industry Standard Architecture)
 - EISA (Extended Industry Standard Architecture)
 - VLB (Vesa Local Bus)
 - PCI (Peripheral Component Interconnect)
 - AGP (Accelerated Graphics Port)
 - AMR (Audio Modem Riser)
 - CNR (Communications and Network Riser)
 - USB (Universal Serial Bus)
 - FireWire (também chamado IEEE 1394)
 - IrDA (Infrared Developers Association)

Barramentos Físicos

ISA

- Barramento de dados de 16 bits;
- Barramento de endereços de 24 bits;
- Frequência de operação de 8 Mhz.

Placa ISA 16 Bits e seu Slot de Conexão

Barramentos Físicos

MCA

- Até o At, a IBM utilizava barramento ISA, porém quando lançou o 80386, a IBM decidiu não mais produzir computadores usando placa-mãe no formato AT (componentes disponíveis para todos os concorrentes)
- Daí surgiu o projeto PS/2, com arquitetura proprietária e barramento MCA (que não apresentava problemas de desempenho).
- Porém, o MCA era uma arquitetura proprietária da IBM; para os outros fabricantes a única alternativa era o uso do barramento ISA.

Barramentos Físicos

EISA

- Barramento de dados de 32 bits;
- Barramento de endereços de 32 bits;
- Frequência de operação de 8 Mhz.

Barramentos Físicos

VLB

- Barramento de dados iguais ao do processador;
- Barramento de endereços de 32 bits;
- Frequência de operação igual à frequencia do barramento local.

Barramentos Físicos

PCI

- Barramento criado pela Intel;
- O barramento PCI não é dependente de processador e nem de plataforma;
- Para a interligação do barramento local com o PCI, é utilizada uma ponte (bridge);
- Recursos Plug-and Play;
- Barramento PCI Hotplug (servidores)

Barramentos Físicos

AGP

- Barramento específico para placas de vídeo AGP.
- É utilizada para aumentar a velocidade do vídeo, pois permite que a placa de vídeo use a memória RAM do micro como uma extensão de sua memória de vídeo.
- Existe também o AGP PRO com mais linhas de alimentação elétrica.

Barramentos Físicos

AMR

- Permite que dispositivos com tecnologia HSP(Host Signal Processing) sejam instalados no micro, especialmente placas de som e modems.
- Não tem nenhum circuito de processamento de sinais, ficando o processador da máquina responsável pelo processamento do circuito.
- O grande trunfo desses dispositivos é o preço e não o desempenho.

Barramentos Físicos

CNR

- Similar ao barramento AMR, com a diferença de também permitir a construção de placas de rede usando este padrão.
- Não tem nenhum circuito de processamento de sinais, ficando o processador da máquina responsável pelo processamento do circuito.
- A grande diferença é a localização enquanto o AMR está sempre localizado entre o último slot PCI e o slot AGP, o CNR é encontrado na extremidade.

Barramentos Físicos

USB

- Barramento para periféricos onde através de um único plugue na placa-mãe, todos os periféricos externos poderão ser encaixados.
- Podemos conectar até 127 dispositivos diferentes a cada porta USB, com a utilização de algumas tomadas USB ou com a instalação de hubs USB (concentradores).

Barramentos Físicos

FireWire

- A idéia desse barramento e bem parecida com a do barramento USB, porém sua taxa de transferência é bem maior.
- Enquanto o USB é voltado diretamente para periféricos normais, o FireWire vai mais além: pretende simplesmente substituir o padrão SCSI.
- Podemos conectar até 63 dispositivos diferentes; além dos "comuns", videocassetes, ap. de som, fitas DAT...

Barramentos Físicos

IrDA

- Barramento sem fios: a comunicação é feita através de luz infravermelha.
- Podemos ter até 126 periféricos IrDA na mesma porta.
- Existem dois padrões:
 - IrDA 1.0: comunicações a até 115.200 bps
 - IrDA 1.1: comunicações a até 4.194.304 bps (4 Mbps).