Planning for MEMS Product Development

Alissa M. Fitzgerald, Ph.D. | June 6, 2011

Overview

- About AMFitzgerald
- MEMS industry infrastructure yesterday and today
- Planning for successful MEMS development

Mission

MEMS Product Development

We turn your ideas into silicon.

Fully integrated services: concept to production

- Multi-disciplinary engineering team
 - Skilled at managing development risk and uncertainty
 - Small batch prototype fabrication (150 mm wafers) by engineers, not operators
 - Design optimization using simulation
- Complete project management
- Smooth transition to production
- A supplier ecosystem to address all MEMS needs

Our Value

- First time developing MEMS?
 - With our expertise and supplier ecosystem, we can provide the complete solution
- Improving your MEMS product?
 - Leverage expert analysis and deep process knowledge to optimize your design
- Our competitive advantage
 - In MEMS, design and process are inseparable
 - Our engineers are experts at both

What are MEMS?

- Micro Electro Mechanical Systems
 - Not a platform device technology
 - But a powerful manufacturing technology for miniaturization
- Semiconductor process heritage

Airbag sensors (1980)

Source: Ed Phillips

Airbag sensors (2005)

Why MEMS are exciting for so many applications

- Smaller, better, cheaper
 - But not always all three
- Sophisticated capabilities in small form factor:
 - Multiple sensors
 - Signal processing and analysis
 - Telemetry capability
 - Low power

Stacked MEMS and ASIC chips, wirebonded

Integrated Pressure Sensor

Source: IMD

Source: Chipworks/Kionix

Challenges of MEMS product development

- Business operations complexity
 - Development of a supplier ecosystem ... specific to your technology
- High technical complexity
 - Coupled physics
 - Moving parts
 - Environmental exposure
 - Test and packaging challenges

Microvision Pico-P

TI DLP pixels

Wildly different approaches to image projection

MEMS supplier ecosystem: circa 1995

Only large, vertical companies can do this (and did)

Large companies dominate the MEMS industry today

Only two of Top 30 companies are totally fabless

MEMS supplier ecosystem today – much improved

Specialization reduces resource requirements

Development timelines have improved significantly

Assembling an ecosystem takes time

- Diversity of MEMS: no two ecosystems will be identical
- Pick your team carefully

Information exchange between parties is critical to success

Do you think it looks like this?

Gaps and lack of standards burden communications

- Reality: messy and inefficient!
- But the fabless, outsourced model will prevail

Today, there are two MEMS industries

Companies will move up – and they will be fabless

Viable business models for new MEMS companies

"Real men have fabs." – Jerry Sanders, AMD

Today: "Smart MEMS companies don't have fabs"

- Fabless
 - Plenty of capacity at 150 and 200 mm
- Hybrid or Fab-Lite
 - Adds value with specialty processes/equipment that are kept in-house

Not all MEMS will need 200mm wafers

Number of Wafers Needed to Produce 10M Units (85% yield)

Planning for efficient MEMS development

- Assemble your supplier ecosystem
 - Foundry partner is a critical choice
- Consider buying/licensing existing MEMS technology
- Due to gaps in infrastructure, still need a team of experienced MEMS engineers
 - Hire employees or use development firm like AMFitzgerald
- Plan realistic budgets and timelines

Working with foundries

- The foundry is your partner in a long-term relationship
- Cannot just throw MEMS designs "over the fence"
- Plan for constant interaction

 Switching foundries = starting over (\$\$\$ and time)

"I think this is the beginning of a beautiful friendship."

Foundry selection

- Evaluate process capability and experience with your type of product
- Make sure you have compatible:
 - Business models
 - Timelines
 - Expectations
 - Quality standards
 - Product volumes ideally, don't want to be smallest or largest customer

Ramp to production timeline (with an existing prototype)

Cost of new device (fabless) development: Minimums

Conclusions

- MEMS infrastructure is improving, but gaps still exist
- Successful product development requires both operational and technical excellence
- Be realistic about funding and timelines
- Leverage foundries, standard tools, processes, and methods to the extent possible
- Take a shortcut: buy or license existing MEMS technology

AMFitzgerald can help you – ask us how! 207A in the MEMS Innovation Area

