Development of Novel Computational Algorithms for Localization in Wireless Sensor Networks through Incorporation of Dempster-Shafer Evidence Theory

Colin Elkin

Advisor and Committee Chair: Dr. Vijay Devabhaktuni Committee: Dr. Hong Wang, Dr. Mansoor Alam, and Dr. Richard Molyet

Department of Electrical Engineering and Computer Science The University of Toledo, College of Engineering

Overview

- 1 Introduction
- 2 First Method: Expected Value
 - Introduction and Background
 - Mathematical Theory
 - Experimental Setup
 - Results and Discussion
- 3 Second Method: Plausibility
 - Introduction and Background
 - Mathematical Theory
 - Experimental Setup
 - Results and Discussion
- 4 Conclusive Remarks

- Collection of small, interchangeable, disposable low-power devices that monitor sensory data
- Node responds to event and sends alert signal
- Anchor node reads measurements from all sensor nodes
- Data from anchor nodes are processed to locate the node sending the

- Collection of small, interchangeable, disposable low-power devices that monitor sensory data
- Node responds to event and sends alert signal
- Anchor node reads measurements from all sensor nodes
- Data from anchor nodes are processed to locate the node sending the

- Collection of small, interchangeable, disposable low-power devices that monitor sensory data
- Node responds to event and sends alert signal
- Anchor node reads measurements from all sensor nodes
- Data from anchor nodes are processed to locate the node sending the

- Collection of small, interchangeable, disposable low-power devices that monitor sensory data
- Node responds to event and sends alert signal
- Anchor node reads measurements from all sensor nodes
- Data from anchor nodes are processed to locate the node sending the alert

Problem Statement

Objectives and Goals of This Research

To develop new methods for finding a Node's location in a Wireless Sensor Network with both High Accuracy and Low Computational Cost

Applications and Challenges

Established Localization Techniques

Received Signal Strength (RSS)

- Defined as measured power or square of signal strength
- Most vital property: RSS is inversely proportional to distance
- Estimation done by trilateration

Angle of Arrival (AOA)

- Measures angles at 2+ receivers
- Estimation done through triangulation
- Based on TDOA measurements

Other Localization Techniques

Technique	Technique Overview		Disadvan- tages	
Genetic Algorithm (GA)	Evolutionary population of candidate solutions	ldeal for large-scale search problems	Premature convergence	
Particle Swarm Op- timization (PSO)	Based on particles and movements	ldeal for problems with real values	Expensive computa- tional runtime	

Table: Summary of global, biologically inspired localization techniques.

Overview of DS Theory

- Divergence from Bayesian Probability
- Based on concept of ignorance
- Bayesian probability combines internal factors
- DS Theory uses external factors

Component	Failure Probability
Wheels	60% chance of breaking
Back	20% chance of falling apart
Arm Rests	40% chance of falling off

Table: Failure analysis of each chair component

Probability of Total Failure

$$.6 \times .4 \times .2 = .048$$
 or 4.8%

Component	Failure Probability				
Wheels	60% chance of breaking				
Back	20% chance of falling apart				
Arm Rests	40% chance of falling off				

Table: Failure analysis of each chair component

Probability of Total Failure

 $.6 \times .4 \times .2 = .048$ or 4.8%

Component	Failure Probability				
Wheels	60% chance of breaking				
Back	20% chance of falling apart				
Arm Rests	40% chance of falling off				

Table: Failure analysis of each chair component

Probability of Total Failure

$$.6 \times .4 \times .2 = .048$$
 or 4.8%

Expert	Lower Bound	Upper Bound	Confidence
А	11	18	.4
D	14	21	.4
$\bigvee\bigvee$	10	20	.2

- Expected Value Range of 100% Failure: 12-19.6 Days
- Most Plausible Time of 100% Failure: 14 Days
- Most Believable Time of 100% Failure: 21 Days

Expert	Lower Bound	Upper Bound	Confidence	
Α	11	18	.4	
D	14	21	.4	
W	10	20	.2	

- Expected Value Range of 100% Failure: 12-19.6 Days
- Most Plausible Time of 100% Failure: 14 Days
- Most Believable Time of 100% Failure: 21 Days

Expert	Lower Bound	Upper Bound	Confidence	
Α	11	18	.4	
D	14	21	4	
W	10	20	.2	

- Expected Value Range of 100% Failure: 12-19.6 Days
- Most Plausible Time of 100% Failure: 14 Days
- Most Believable Time of 100% Failure: 21 Days

Expert	Lower Bound	Upper Bound	Confidence	
А	11	18	.4	
D	14	21	.4	
W	10	20	.2	

- Expected Value Range of 100% Failure: 12-19.6 Days
- Most Plausible Time of 100% Failure: 14 Days
- Most Believable Time of 100% Failure: 21 Days

Expert	Lower Bound	Upper Bound	Confidence	
Α	11	18	.4	
D	14	21	4	
W	10	20	.2	

- Expected Value Range of 100% Failure: 12-19.6 Days
- Most Plausible Time of 100% Failure: 14 Days
- Most Believable Time of 100% Failure: 21 Days

Proposed Algorithm

Figure: First proposed classifier.

DS Theory: Mathematical Foundation

Suppose that:

- lacktriangleright Finite set of all possible mutually exclusive values are denoted as Frame of Discernment, Θ
- A_1, \ldots, A_n denote all possible sets within power set 2^{Θ}

Theorem (Basic Probability Assignment (BPA) m)

$$m: 2^{\Theta} \to [0,1], \sum_{i=1}^{n} m(A_i) = 1, m(\emptyset) = 0$$

Theorem (Aggregation of m_1 and m_2)

$$[m_1 \oplus m_2] = \frac{\sum_{A \cap B = y} m_1(A) m_2(B)}{1 - \sum_{A \cap B = y} m_1(A) m_2(B)}$$

Belief and Plausibility

Theorem (Belief of B)

$$Bel(B) = \sum_{A_i \subset B} m(A_i)$$

Theorem (Plausibility of B)

$$PI(B) = 1 - \sum_{A_i \cap B = \emptyset} m(A_i)$$

Linear Representation

$$m = \begin{bmatrix} \underline{x} & \overline{x} & \mu \end{bmatrix} \tag{1}$$

$$Val_{Ex} = \sum_{BPAs} \begin{bmatrix} \mu \underline{x} & \mu \overline{x} \end{bmatrix}$$
 (2)

$$m = \begin{bmatrix} m_1 \\ m_2 \\ \vdots \\ m_n \end{bmatrix} = \begin{bmatrix} \underline{x}_1 & \overline{x}_1 & \mu_1 \\ \underline{x}_2 & \overline{x}_2 & \mu_2 \\ \vdots & \vdots & \vdots \\ \underline{x}_n & \overline{x}_n & \mu_n \end{bmatrix}$$
(3)

Measurement Types

$$RSS = \frac{1}{d^2} \tag{4}$$

$$AOA = \begin{cases} \tan^{-1}(\frac{y_n - y_m}{x_n - x_m}) & \text{if } y_n > y_m \text{ and } x_n > x_m \\ \tan^{-1}(\frac{y_n - y_m}{x_n - x_m}) + 180 & \text{if } y_n \neq y_m \text{ and } x_n < x_m \\ \tan^{-1}(\frac{y_n - y_m}{x_n - x_m}) + 360 & \text{if } y_n < y_m \text{ and } x_n > x_m \end{cases}$$

$$(5)$$

$$SB = \sqrt{(x_{sb}^2 - x_n^2) + (y_{sb}^2 - y_n^2)}$$
 (6)

Data Fusion

$$\lambda = \begin{bmatrix} \lambda_{RSS} & \lambda_{AOA} & \lambda_{SB} \end{bmatrix}^T \tag{7}$$

$$\lambda_{RSS} = \begin{bmatrix} m_{1,RSS} \\ m_{2,RSS} \\ \vdots \\ m_{n,RSS} \end{bmatrix}, \lambda_{AOA} = \begin{bmatrix} m_{1,AOA} \\ m_{2,AOA} \\ \vdots \\ m_{n,SB} \end{bmatrix}, \lambda_{SB} = \begin{bmatrix} m_{1,SB} \\ m_{2,SB} \\ \vdots \\ m_{n,SB} \end{bmatrix}$$
(8)

$$m_i = \begin{bmatrix} d_{min} & d_{max} & 1 \end{bmatrix} \tag{9}$$

Algorithm¹

Figure: Flowchart of DS localization algorithm.

Table: Simulation results.

Feature Description	Test Accuracy (%)	Runtime (s)	
RSS, SB	79.97	12736.30	
RSS, AOA	78.41	12731.71	
RSS, AOA, SB	87.36	12731.49	

Table: Comparison of accuracy among different localization techniques.

Algorithm	PSO	WSLA	WSRA	MLE	DS1
Accuracy (%)	71	90	92	93	87
Runtime (μs)	114570	7800	9700	NR	12733

Proposed Algorithm

Figure: Second proposed classifier.

Formation of Belief

$$m = \begin{bmatrix} m_1^u \\ m_2^u \\ \vdots \\ m_n^u \end{bmatrix} = \begin{bmatrix} \underline{x}_1^u & \bar{x}_1^u & \mu_1^u \\ \underline{x}_2^u & \bar{x}_2^u & \mu_2^u \\ \vdots & \vdots \\ \underline{x}_n^u & \bar{x}_n^u & \mu_n^u \end{bmatrix}$$

$$\begin{bmatrix} \bar{x}_1^u & \mu_1^u \\ \vdots & \vdots \\ \bar{x}_n^u & \bar{x}_n^u & \mu_n^u \end{bmatrix}$$
(10)

$$Bel = \begin{bmatrix} \bar{x}_{1}^{u} & \mu_{1,new}^{u} \\ \bar{x}_{2}^{u} & \mu_{2,new}^{u} \\ \bar{x}_{3}^{u} & \mu_{3,new}^{u} \\ \vdots & \vdots \\ \bar{x}_{n}^{u} & \mu_{n,new}^{u} \end{bmatrix}$$
(11)

where

$$\mu_{1,\text{new}}^{u} = \mu_{1}^{u} \tag{12}$$

$$\mu_{2,\text{new}}^{u} = \mu_{2}^{I} + \mu_{1,\text{new}}^{u}$$

$$\mu_{3,\text{new}}^{u} = \mu_{3}^{u} + \mu_{2,\text{new}}^{u}$$

$$(13)$$

$$(14)$$

$$\mu_{3,\text{new}}^{u} = \mu_{3}^{u} + \mu_{2,\text{new}}^{u}$$
 (

Formation of Plausibility

$$m = \begin{bmatrix} m_{1}^{l} \\ m_{2}^{l} \\ \vdots \\ m_{n}^{l} \end{bmatrix} = \begin{bmatrix} \underline{x}_{1}^{l} & \overline{x}_{1}^{l} & \mu_{1}^{l} \\ \underline{x}_{2}^{l} & \overline{x}_{2}^{l} & \mu_{2}^{l} \\ \vdots & \vdots & \vdots \\ \underline{x}_{n}^{l} & \overline{x}_{n}^{l} & \mu_{n}^{l} \end{bmatrix}$$

$$Pl = \begin{bmatrix} \underline{x}_{1}^{l} & \mu_{1,\text{new}}^{l} \\ \underline{x}_{2}^{l} & \mu_{2,\text{new}}^{l} \\ \underline{x}_{3}^{l} & \mu_{3,\text{new}}^{l} \\ \vdots & \vdots \\ \underline{x}_{n}^{l} & \mu_{n,\text{new}}^{l} \end{bmatrix}$$

$$(16)$$

where

$$\mu'_{1,\text{new}} = \mu'_{1} \tag{18}$$

$$\mu'_{2,\text{new}} = \mu'_{2} + \mu'_{1,\text{new}} \tag{19}$$

$$\mu'_{3,\text{new}} = \mu'_{3} + \mu'_{2,\text{new}} \tag{20}$$

Algorithm¹

Figure: Flowchart of DS localization algorithm

Accuracy Results under Iterative Weight Training

(a) Full Accuracy

Plot of Matching Accuracy versus Upper Bound Weight versus Lower Bound Wei

- (b) Short Accuracy (c) Matching Accuracy

(d) Average Accuracy

Table: Simulation results for two-monitor and three-monitor WSNs.

Accuracy	Full (%	6)	Short	(%)	Match	(%)	Averag	ge (%)
Monitors	2	3	2	3	2	3	2	3
RSS	97.04	97.49	97.20	98.50	56.17	66.64	83.47	87.54
RSS, SB	97.00	97.43	100.0	100.0	94.58	96.07	97.19	97.83
RSS, AOA	97.03	97.47	98.13	98.97	57.81	67.29	84.33	87.92
RSS, AOA, SB	97.01	97.44	100.0	100.0	92.52	94.21	96.51	97.22

Table: Runtime results for two-monitor and three-monitor WSNs.

Runtime (ms)	2 Monitors	3 Monitors		
T . I	707470 00	1075061.00		
Total	787478.00	1375261.00		
Per Feature Set	196869.00	343815.20		
Per Iteration	17.20	30.03		
Per Node	0.160	0.281		

Table: Comparison of accuracy among different localization techniques.

Algorithm	PSO	WSLA	WSRA	MLE	DS1	DS2
Accuracy (%)	71	90	92	93	87	97
Runtime (μs)	114570	7800	9700	NR	12733	281

Publications

Colin Elkin, Rajika Kumarasiri, and Vijay Devabhaktuni, "A Novel Approach to Localization in Wireless Sensor Networks using Dempster-Shafer Evidence Theory," *Expert Systems with Applications* (Under review).

Conclusions

- Dempster-Shafer Evidence Theory was introduced for the first time to the area of WSN localization
- Expected value function generates good accuracy but with high computational cost
- Plausibility function generates great accuracy at low computational cost
- Variety of applications in time-critical WSN localization will be greatly enhanced with these novel algorithms

Future Work

- Enhance Training of Upper and Lower Bound Coefficients
- Fusion of DS Theory with Support Vector Machines
- DS Theory as Meta-Learning Component for Data Mining

Acknowledgements

- Dr. Vijay Devabhaktuni
- Dr. Hong Wang, Dr. Mansoor Alam, and Dr. Richard Molyet
- All other attendees here today
- NSF, EECS Department, and ET Department
- Rajika Kumarasiri, Hem Regmi, and Arushi Gupta
- Colleagues at NE 2033 & 2042
- My family and friends, both near and far

Any Questions?

