Biostatistics I: Statistical tests for categorical data

Eleni-Rosalina Andrinopoulou

Department of Biostatistics, Erasmus Medical Center

✓ e.andrinopoulou@erasmusmc.nl

y@erandrinopoulou

z-test for proportions

One-sample

Is the probability of being diagnosed with asthma now different than it was 50 years ago?

Two-sample

Is the probability of being diagnosed with asthma in the Netherlands different than in Belgium?

Scenario

Is the probability of being diagnosed with asthma now different than it was 50 years ago?

Hypothesis

 H_{O} : $\pi = \pi_{\mathsf{O}}$

 $H_1: \pi \neq \pi_0$

Hypothesis

If one-tailed

Is the probability of being diagnosed with asthma now higher than it was 50 years ago?

 $H_0: \pi = \pi_0$ $H_1: \pi > \pi_0$

or

Is the probability of being diagnosed with asthma now lower than it was 50 years ago?

 $H_0: \pi = \pi_0$ $H_1: \pi < \pi_0$

Test statistic

For large sample sizes, the distribution of the test statistic is approximately normal

$$Z = \frac{p - \pi_{\rm O}}{\sqrt{\frac{\pi_{\rm O}(1 - \pi_{\rm O})}{n}}}$$

- ► Sample proportion: p
- Population proportion: π_0
- Number of subjects: n

If continuity correction is applied:
$$z = \frac{p - \pi_0 + c}{\sqrt{\frac{\pi_0(1 - \pi_0)}{n}}}$$
,

where

►
$$c = -\frac{1}{2n}$$
 if $p > \pi_0$

►
$$c = \frac{1}{2p}$$
 if $p < \pi_0$

►
$$c = \frac{1}{2n}$$
 if $p < \pi_0$
► $c = 0$ if $|p - \pi_0| < \frac{1}{2n}$

Sampling distribution

- ▶ z-distribution
- Critical values and p-value

Type I error

Normally $\alpha = 0.05$

Draw conclusions

▶ Compare test statistic (z) with the critical values $_{\alpha/2}$ or the p-value with α

If **one-tailed**: Compare test statistic with the critical value_{α}

Bionomial test

One-sample

Is the probability of being diagnosed with asthma now different than it was 50 years ago?

► If the normal distribution cannot be used, then we need to use the binomial distribution

Chi-square test

The chi-square test tests the statistical significance of the observed relationship with respect to the expected relationship

- ► Two variables are related or independent
- Goodness-of-fit between observed distribution and theoretical distribution of frequencies

Fisher's Exact Test

- Fisher's exact test is an exact test
- Fisher's exact test is a special case of permutation tests
 - Calculate the original test statistic
 - ► Shuffle (permute) the data and calculate the test statistic
 - Repeat the above step for every possible permutation of the sample
 - Calculate the fraction of the values of the test statistic that are as extreme or more to the original test statistic

Fisher's Exact Test: Theory

Advantages/Disadvantages

- ► The advantage is that permutation tests exist for any test statistic, regardless the distribution.
- ► The disadvantage of this type of tests is that it can become computationally very intensive

Assumptions

▶ Both row and column marginal totals are fixed in advance