Solving Continuous Games With Oracle Algorithms

Tomáš Kasl

Focus of the Project

- examination of the Expected Regret Minimization algorithm (ERM, 2023)
 - modified for computing Nash Equilibria in continuous zero-sum two-player games
- experimental comparison with the Double Oracle algorithm (DO, 2021)
- experimental confirmation of proposed bounds
 - for the convergence rate
 - for the computational complexity

A Game

a two-player, zero-sum continuous game is

$$G = (X, Y, u)$$

where:

- X is the action space of player 1, a hypercube* (e.g. $[0,1]^n$)
- Y is the action space of player 2, a hypercube* $([0,1]^m)$
- $u: X \times Y \to R$ is the utility function for player 1
 - $u(x,y) = -u_2(x,y)$, to maximize u_2 is to minimize u
- * or generally $[a, b] \times [c, d] \times ... \times [v, w]; a, ..., w \in R$

A Strategy, a Nash Equilibrium

- a (mixed) strategy is a prob. distribution p(q) over X(Y)
- the final action $a \in X \ (b \in Y)$ is i.i.d drawn from $p \ (q)$
- the expected utility (for finite action spaces):

$$U(p,q) = \sum_{x_i \in X} \sum_{y_j \in Y} u(x_i, y_j) \cdot p_i \cdot q_j$$

• a Nash Equilibrium (\sim a solution of a game) is a pair of strategies (p^*, q^*) of a stable state, that is:

$$U(p,q^*) \leq U(p^*,q^*) \leq U(p^*,q); \forall p,q$$

Finding the Nash Equilibria

- solved for games with finite action spaces
- create matrix M of the utilities of every pair of actions, then solve a LP (based on M and the minmax theorem)
- for infinite games, the LP is no longer applicable (cannot enumerate actions)
 - \rightarrow Settle for ϵ -NE instead
 - iterative algorithms based on oracles

Expected Regret Minimization

definition of the algorithm

main routine epsilon-approximate Nash Equilibrium for a zero-sum game

inputs: game G = (X, Y, u), number ϵ output: equilibrial strategies p_t^*, q_t^*

- 1. $A_0 \leftarrow \{a\}, B_0 \leftarrow \{b\}$, where $a \in X$ and $b \in Y$ are arbitrary actions
- 2. For t = 1, 2, ...
 - (a) $(responses_a, probabilities_b) \leftarrow NASH(G, B_{t-1}, \epsilon)$
 - (b) $A_t \leftarrow A_{t-1} \cup responses_a$
 - (c) $(responses_b, probabilities_a) \leftarrow NASH(G, A_t, \epsilon)$
 - (d) $B_t \leftarrow B_{t-1} \cup responses_b$
 - $(e) \text{ if } \operatorname{Val}(A_t, B_{t-1}) \geq \operatorname{Val}(A_{t-1}, B_{t-1}) \epsilon \quad \text{or } \operatorname{Val}(A_t, B_t) \leq \operatorname{Val}(A_t, B_{t-1}) + \epsilon :$ Return NE (p_t^*, q_t^*) of subgame G'= (A_t, B_t, u)

subroutine epsilon Nash Equilibrium

inputs: game G = (X, Y, u), output: equilibrial strategies

1.
$$V \leftarrow \left\lceil \frac{Clog|A_t|}{\epsilon^2} \right\rceil$$
; $\eta \leftarrow \sqrt{\frac{log}{\epsilon^2}}$

2.
$$p^1 = (p_1^1, ..., p_n^1)$$
 is a unifor

3.
$$responses \leftarrow bestRespons$$

4. for
$$v = 2, ..., V$$

(a) for
$$i = 1, ..., N$$
: p_i^v where:

$$Z^v = \sum_{j:}^n$$

$$Z^{v} = \sum_{j=1}^{n} (b) \ b_{v} \leftarrow bestResponse(A_{t})$$

Convergence Comparison, 1

the Rosenbrock function:

$$u(x,y) = (1-x)^2 + 100(y-x^2)^2$$

Convergence Comparison, 2

the Townsend function:

$$u(x,y) = -[\cos((x-0.1) \cdot y)]^2 - x\sin(3x+y)$$

Testing Complexity Claims

[&]quot;Assume that the ERM algorithm runs for T iterations. Then, the number of oracle calls is bounded by $O((T/\epsilon^2)\log(T/\epsilon^2))$."

More Claims, Value of C, part 1

"Let $G=(A=a_1,...,a_n,Y,u)$ be a zero-sum game where |A|=n and Y is possibly infinite, and let $\epsilon>0$. Then, the subroutine, executed with the parameter ϵ , finds an $O(\epsilon)$ -Nash equilibrium, after $V=O(\log n/\epsilon^2)$ iterations." - Tested on Rock-Paper-Scissors

More Claims, Value of C, part 2

the Rosenbrock function (with infinite action spaces):

Conclusions

- the ERM algorithm solves continuous games
- a possible tradeoff
 - ERM requires less iterations (LP calls)
 - DO requires less bestResponse calls
- how to find adequate value of C?
 - to be examined

Thank you

Tomáš Kasl

(kasltoma@fel.cvut.cz)

Software or Research Project

Open Informatics

FEE CTU in Prague