Final Exam Review Session CS 171

April 30, 2024

1 U P 1 UP P 1 E P 1 E P E

Table of Contents

- Identity-Based Encryption
- 2 Group-Based Assumptions and Bilinear Maps: DLOG, CDH, DDH, DBDH
- Signatures
- 4 Commitment Schemes
- Secret Sharing
- 6 Proof Systems

Table of Contents

- Identity-Based Encryption
- ② Group-Based Assumptions and Bilinear Maps: DLOG, CDH, DDH, DBDH
- Signatures
- 4 Commitment Schemes
- Secret Sharing
- 6 Proof Systems

IBE: Syntax

(Similar high-level syntax and properties as other encryption schemes we've seen earlier like SKE/PKE)

- $Setup(1^{\lambda}) \rightarrow (msk, mpk)$.
- $KeyGen(msk, ID) \rightarrow sk_{ID}$
- $Enc(mpk, \mathbf{ID}, m) \rightarrow ct$
- $Dec(\mathbf{sk_{ID}}, ct) \rightarrow m$

Properties:

- Correctness: $Dec(\mathbf{sk_{ID}}, Enc(mpk, \mathbf{ID}, m)) \rightarrow m$
- CPA Security slightly different game compared to CPA security in SKE/PKE

CS 171 4 / 53

IBE: CPA Security Game

- Challenger runs $Setup(1^{\lambda}) \to (msk, mpk)$ and sends mpk to the adversary.
- **Example 2 Keygen Queries: Phase 1** Adversary sends *ID* to the challenger and gets back $sk_{ID} \leftarrow KeyGen(msk, ID)$ corresponding to the ID.
- **One of the control o** well as messages $m_0 \neq m_1$.
- Challenger picks $b \leftarrow \{0,1\}$ and returns $c_b \leftarrow Enc(mpk, ID^*, m_b)$.
- **Solution** Keygen Queries: Phase 2 Adversary sends *ID* to the challenger and gets back $sk_{ID} \leftarrow KeyGen(msk, ID)$ corresponding to the ID (ID^* not allowed).
- **1** Adversary outputs a guess b' for b.

5 / 53

IBE: Tips

- The adversary has the power to choose which ID to use for the challenge phase, unlike in SKE/PKE, where the public key for encryption is fixed at the very beginning.
- KeyGen does what is designed to be hard to do in SKE/PKE it computes a secret key for an ID given a public key (How? Using additional secret information msk).
- For questions: Most reductions will look similar to CPA security of SKE/PKE – make sure the adversaries receive the right answers to queries and that the ciphertext distribution is correct.
- Additional complexity: Need to take care of KeyGen queries.

CS 171 6 / 53

IBE: Practice problem

Show that IBE implies PKE, i.e., given a CPA-secure IBE scheme (S, K, E, D), construct a CPA-secure PKE scheme (Gen, Enc, Dec).

CS 171 7/53

IBE: Practice problem

Show that IBE implies PKE, i.e., given a CPA-secure IBE scheme (S, K, E, D), construct a CPA-secure PKE scheme (Gen, Enc, Dec).

- $Gen(1^{\lambda})$: Run $S(1^{\lambda}) \rightarrow (msk, mpk)$ and return sk = msk, pk = mpk.
- Enc(pk, m): Sample a random ID and run $E(mpk, ID, m) \rightarrow ct$. Output (ID, ct) as the ciphertext.
- Dec(sk, (ID, ct)): First, derive sk_{ID} for the ID and then run $Dec(sk_{ID}, ct) \rightarrow m$.

CS 171 7 / 53

IBE: Practice problem - Properties

Correctness: follows from correctness of IBE.

8/53

IBE: Practice problem - Properties

Correctness: follows from correctness of IBE.

CPA security: Suppose PKE was not CPA-secure. Let \mathcal{A} be an adversary that wins in the CPA game for PKE. We'll build an adversary \mathcal{B} to break CPA security of IBE.

- IBE challenger runs $S(1^{\lambda}) \to (msk, mpk)$ and gives mpk to B. B sends it to A as pk.
- A outputs two challenge messages m_0, m_1 .
- B samples a random ID and sends (ID, m_0, m_1) to the IBE challenger.
- The IBE challenger chooses random b = 0/1 and returns $c = E(mpk, ID, m_b)$.
- B sends (ID, c) to A and outputs whatever A outputs.

We did not need to make any keygen queries!

CS 171 8 / 53

Table of Contents

- Identity-Based Encryption
- 2 Group-Based Assumptions and Bilinear Maps: DLOG, CDH, DDH, DBDH
- Signatures
- 4 Commitment Schemes
- Secret Sharing
- 6 Proof Systems

Groups: Syntax

A group G is a set with a binary operation \cdot satisfying the following properties:

Closure $\forall g, h \in G$, we have that $g \cdot h \in G$.

Identity existence $\exists i \in G$ such that $\forall g \in G$, $g \cdot i = g = i \cdot g$.

Inverse existence $\forall g \in G$, $\exists h \in G$ such that $g \cdot h = i = h \cdot g$.

Associativity $\forall g_1, g_2, g_3 \in G$, we have that $(g_1 \cdot g_2) \cdot g_3 = g_1 \cdot (g_2 \cdot g_3)$.

CS 171 10 / 53

Groups: Properties

- Let G be a finite group with order m, Then:
 - for any element $g \in G$, we have $g^m = 1$.
 - for any element $g \in G$ and integer x, $g^x = g^{x \mod m}$.
- ② A group G is cyclic if $\exists g \in G$ such that $\{g^1, \dots, g^m\} = G$.
 - If G is a group of prime order p, then G is cyclic and every element except the identity is a generator of G.

The Discrete-Log Problem

- Let $\mathcal{G}(1^n)$ be a PPT algorithm generating the description of a cyclic group of order q ($q = |G| \approx 2^n$) and a generator g.
- Onte that:
 - We can represent each group element with a unique bit representation of size $log_2(n)$.
 - The group operation (addition) can be performed in time poly(n).
 - Sampling a group element uniformly at random can be performed in time poly(n) (given randomness).
- **③** I.e., we can sample a random element $x \in \mathbb{Z}_q$ and compute g^x in time poly(n).

CS 171 12 / 53

The Discrete-Log Game

$\mathrm{DLog}_{\mathcal{A},\mathcal{G}}(n)$

- ① Run $\mathcal{G}(1^n)$ to obtain (G, g, q).
- ② Sample uniform $h \in G$.
- **3** A is given (G, g, q, h) and it outputs x.
- Output 1 if $g^x = h$ and 0 otherwise.

We say that the Discrete-Log Problem is hard relative to \mathcal{G} if \forall PPT adversaries A, \exists function negl(·) such that

$$|\mathsf{Pr}[\mathsf{DLog}_{\mathcal{A},\mathcal{G}}(n)=1]| \leq \mathsf{negl}(n).$$

13 / 53

The Diffie-Hellman Problems

Two main forms:

- **1** Computational Diffie-Hellman Problem (CDH): given g^a and g^b , adversary needs to compute g^{ab} to win the game.
- ② Decisional Diffie-Hellman Problem (DDH): given g^a and g^b , adversary needs to distinguish g^{ab} from a random group element to win the game.

The Computational Diffie-Hellman Game

$CDH_{\mathcal{A},\mathcal{G}}(n)$

- Run $\mathcal{G}(1^n)$ to obtain (G, g, q).
- ② Sample uniform $a, b \in \mathbb{Z}_q^*$.
- **3** \mathcal{A} is given (G, g, q, g^a, g^b) and it outputs h.
- Output 1 if $g^{ab} = h$ and 0 otherwise.

We say that the CDH Problem is hard relative to $\mathcal G$ if \forall PPT adversaries $\mathcal A$, \exists function negl(·) such that

$$|\Pr[CDH_{\mathcal{A},\mathcal{G}}(n)=1]| \leq \mathsf{negl}(n).$$

CS 171 15 / 53

The Decisional Diffie-Hellman Game

$DDH_{\mathcal{A},\mathcal{G}}(n)$

- ① Run $\mathcal{G}(1^n)$ to obtain (G, g, q).
- ② Sample uniform $a, b, r \in \mathbb{Z}_q^*$. Sample a uniform bit $c \in \{0, 1\}$.
- 3 A is given $(G, g, q, g^a, g^b, g^{ab+cr})$ and it outputs c'.
- Output 1 if c = c' and 0 otherwise.

We say that the DDH Problem is hard relative to \mathcal{G} if \forall PPT adversaries \mathcal{A} , \exists function negl(·) such that

$$|\Pr[\mathrm{DDH}_{\mathcal{A},\mathcal{G}}(n)=1]| \leq \frac{1}{2} + \operatorname{negl}(n).$$

CS 171 16 / 53

Bilinear Groups

- "Groups where CDH is hard, but DDH is easy"
- 2 Consider a group G of prime order q and generator g:
- **1** We get a pairing operation *e* such that:
 - $e: G \times G \rightarrow G_T$
 - If g is a generator of G then e(g,g) is a generator of G_T
 - $\forall a, b \in \mathbb{Z}_q^*$, $e(g^a, g^b) = e(g, g)^{ab}$
- Intuition:
 - DDH is easy because if A, B, C is a DDH tuple, we can check e(A, B) = e(g, C)
 - CDH is hard because... no attacks are known.

17/53

The Decisional *Bilinear* Diffie-Hellman Game

$DBDH_{\mathcal{A},\mathcal{G}}(n)$

- 1 Run $\mathcal{G}(1^n)$ to obtain $(G, G_T, g, q, e(\cdot, \cdot))$.
- ② Sample uniform $a, b, c, r \in \mathbb{Z}_a^*$. Sample a uniform bit $\beta \in \{0, 1\}$.
- **3** A is given $(G, G_T, g, q, g^a, g^b, g^c, e(g, g)^{abc+\beta r})$ and it outputs β' .
- **4** Output 1 if $\beta = \beta'$ and 0 otherwise.

We say that the DBDH Problem is hard relative to \mathcal{G} if \forall PPT adversaries \mathcal{A} , \exists function negl(·) such that

$$|\Pr[\mathrm{DBDH}_{\mathcal{A},\mathcal{G}}(n)=1]-rac{1}{2}|\leq \operatorname{negl}(n).$$

CS 171 18 / 53

Relationships Between (Hard) Problems

From Weakest (Easiest) to Strongest (Hardest):

$$\begin{array}{c} \text{DDH} \implies \text{CDH} \implies \text{DLog} \implies \text{CRHF} \implies \text{OWF} \\ \text{CDH} \implies \text{DBDH} \end{array}$$

Relationships Between (Hard) Problems Continued

$CDH \implies DLog$:

- ① Want to show that if computing x from g^x in G was easy, then so is computing g^{ab} from g^a and g^b in G.
- ② Given (G, g, q, g^a, g^b) , run \mathcal{A}_{Dlog} on g^a to get a. Compute $(g^b)^a = g^{ab}$.
- ullet This approach wins with the same probability that $\mathcal{A}_{\mathrm{Dlog}}$ solves the Dlog instance (non-negl).

$DDH \implies CDH$:

- Want to show that if computing g^{ab} from g^a and g^b in G was easy, then so is distinguishing DDH triples.
- ② Given $(G, g, q, g^a, g^b, g^{ab+cr})$, run \mathcal{A}_{CDH} on g^a and g^b to get g^{ab} and check if it equals g^{ab+cr} .
- **3** This approach wins the DDH game with non-negl $-\frac{1}{q} =$ probability.

CS 171 20 / 53

Table of Contents

- Identity-Based Encryption
- ② Group-Based Assumptions and Bilinear Maps: DLOG, CDH, DDH, DBDH
- Signatures
- 4 Commitment Schemes
- Secret Sharing
- 6 Proof Systems

Signatures: Syntax

- **Gen** (1^n) : Outputs public key and secret key pair (pk, sk).
- Sign_{sk}(m): Outputs a signature σ on the message m.
- **Vrfy**_{pk}(m, σ): Outputs 0/1.

Correctness: For all n, except for negligible choices of (pk, sk), it holds that for all m, $Vrfy_{nk}(m, Sign_{sk}(m)) = 1$.

22 / 53

Signatures: Unforgeability Security Game

The task of the adversary is essentially to forge a valid signature, which successfully verifies, without having the secret key.

Forge_{A, Π}(1ⁿ)

- **1** Sample $(pk, sk) \leftarrow \mathbf{Gen}(1^n)$.
- ② Let (m^*, σ^*) be the output of $\mathbf{Sign}_{sk}(\cdot)$ by adversary A(pk). Let Mbe the list of queries A makes.
- **3** Output 1 if $\mathbf{Vrfy}_{pk}(m^*, \sigma^*) = 1 \wedge m^* \notin M$ and 0 otherwise.

 $\Pi = (Gen, Sign, Vrfy)$ is existentially unforgeable under adaptive chosen message attack if \forall probabilistic polynomial time (PPT) adversary A, it holds that:

$$Pr[Forge_{A,\Pi} = 1] \le negl(n)$$

CS 171 23 / 53

Signatures: Practice Problem, Spring 2021 Final

Let (Gen, Sign, Vrfy) be a perfectly correct secure digital signature scheme. Perfect correctness states that for any message m,

$$\Pr_{r_{\mathsf{Gen}},r_{\mathsf{Sign}} \leftarrow \{0,1\}^n,(vk,sk) := \mathsf{Gen}(1^n;r_{\mathsf{Gen}})}[\mathsf{Vrfy}(vk,m,\mathsf{Sign}(sk,m;r_{\mathsf{Sign}})) = 1] = 1,$$

where r_{Gen} are the random coins used by Gen and r_{Sign} are the random coins used by Sign. **Define** f(x) to output the verification key vk output by Gen $(1^n; x)$. **Show that** f is a one-way function.

CS 171 24 / 53

Signatures: Practice Problem Solution

If there exists a probabilistic polynomial time (PPT) A that can invert fwith non-negligible probability, then we can construct a PPT B that breaks the security of the signature scheme:

- ullet B gets pk from its challenger and forwards it to A.
- 2 A outputs x' such that f(x') = pk.
- **3** B computes $(pk, sk') := \text{Gen}(1^n; x')$.
- B picks an arbitrary message m and computes $\sigma \leftarrow \operatorname{Sign}_{sk'}(m)$.
- **Since** (pk, sk') is generated from Gen, σ is a valid signature for m with respect to pk. Hence B breaks the security of the signature scheme with non-negligible probability.

25 / 53

Table of Contents

- Identity-Based Encryption
- ② Group-Based Assumptions and Bilinear Maps: DLOG, CDH, DDH, DBDH
- Signatures
- 4 Commitment Schemes
- Secret Sharing
- 6 Proof Systems

Commitment Scheme Syntax

- lacksquare Gen $(1^n) o params$
- ② Commit(params, m; r) = com
 - \mathcal{M} is the message space, and $m \in \mathcal{M}$.
 - Other notation: Commit(params, m) \rightarrow com
- Open: Committer publishes m and proves that com is a commitment to m. The verifier decides whether to accept or reject the proof.

Canonical Opening Procedure:

- Committer publishes (m, r).
- Verifier checks whether com = Commit(params, m; r). If so, they accept; if not, they reject.

CS 171

Hiding Definition

The definition of hiding resembles CPA security.

Hiding-Game(n, A):

- The challenger samples params $\leftarrow \mathbf{Gen}(1^n)$ and sends params to the adversary A.
- ② \mathcal{A} outputs two messages $m_0, m_1 \in \mathcal{M}$.
- **1** The challenger samples $b \leftarrow \{0,1\}$ and computes:

$$com^* \leftarrow Commit(params, m_b)$$

They send com* to A.

• A outputs a guess b' for b. The output of the game is 1 if b' = b and 0 otherwise.

> CS 171 28 / 53

Hiding Definition

The commitment scheme is **computationally hiding** (a.k.a. **hiding**) if for any PPT adversary A,

$$\mathsf{Pr}[\mathsf{Hiding}\text{-}\mathsf{Game}(n,\mathcal{A}) \to 1] \leq \frac{1}{2} + \mathsf{negl}(n)$$

The commitment scheme is **statistically hiding** if for any adversary $\mathcal A$ running in unbounded time,

$$\mathsf{Pr}[\mathsf{Hiding}\text{-}\mathsf{Game}(n,\mathcal{A}) \to 1] \leq \frac{1}{2} + \mathsf{negl}(n)$$

Binding Definition

The definition of binding resembles collision-resistance.

Binding-Game(n, A):

- **①** The challenger samples params $\leftarrow \mathbf{Gen}(1^n)$ and sends params to the adversary \mathcal{A} .
- ② \mathcal{A} outputs two pairs (m_0, r_0) and (m_1, r_1) , where $m_0, m_1 \in \mathcal{M}$.
- **3** The output of the game is 1 if $m_0 \neq m_1$, and

$$Commit(params, m_0; r_0) = Commit(params, m_1; r_1)$$

Otherwise, the output of the game is 0.

CS 171 30 / 53

Binding Definition

The commitment scheme satisfies **computational binding** (a.k.a. **binding**) if for any PPT adversary A,

$$Pr[Binding-Game(n, A) \rightarrow 1] \leq negl(n)$$

The commitment scheme satisfies **statistical binding** if for any adversary A running in unbounded time,

$$\mathsf{Pr}[\mathsf{Binding}\text{-}\mathsf{Game}(n,\mathcal{A}) o 1] \leq \mathsf{negl}(n)$$

31/53

Notes

- By default, "hiding" refers to computational hiding, and "binding" refers to computational binding.
- No commitment scheme can be both statistically hiding and statistically binding.

Commitment Scheme Practice Problem¹

The following construction uses a PRG to construct a commitment scheme.

Let $G: \{0,1\}^n \to \{0,1\}^{3n}$ be a PRG. Let $m \in \{0,1\} = \mathcal{M}$.

- $\bullet \ \, \mathsf{Gen}(1^n) : \mathsf{Sample} \ s \leftarrow \{0,1\}^{3n} \ \mathsf{and} \ \mathsf{output} \ \mathsf{params} = s.$
- ② Commit(params, m; r): Let $r \leftarrow \{0,1\}^n$. Compute

$$com = G(r) \oplus (m \cdot s)$$

Prove that this construction satisfies computational hiding and statistical binding.

CS 171 33 / 53

Commitment Scheme Practice Problem: Hiding

Theorem

The scheme is computationally hiding.

Proof:

- Intuition: This follows from the PRG security of G.
- ② Overview: Assume toward contradiction that there exists a PPT adversary \mathcal{A} that can break hiding. Then we will use \mathcal{A} to construct an adversary \mathcal{B} that breaks the PRG security of \mathcal{G} . This is a contradiction because \mathcal{B} is a secure PRG. Therefore, there is not actually a PPT adversary \mathcal{A} that can break hiding, so the commitment scheme is computationally hiding.

CS 171

Commitment Scheme Practice Problem: Hiding

Construction of \mathcal{B} :

- **1** Pseudorandom Case: The PRG challenger samples $r \leftarrow \{0,1\}^n$ and sends g = G(r) to \mathcal{B} .
 - **9** Truly Random Case: The PRG challenger samples $g \leftarrow \{0,1\}^{3n}$ and sends g to \mathcal{B} .
- ② \mathcal{B} chooses $m_0 = 0$ and $m_1 = 1$ and then samples $b \leftarrow \{0, 1\}$.
- \odot \mathcal{B} computes

$$com^* = g \oplus (m_b \cdot s)$$

and sends com* to A.

• A outputs a guess b' for b. B checks whether b = b'. If so, B outputs 0. If not, \mathcal{B} outputs 1.

Commitment Scheme Practice Problem: Hiding

1 Pseudorandom Case: If g = G(r) for some random $r \leftarrow \{0,1\}^n$, then \mathcal{B} simulates the hiding security game for the commitment scheme. In this case,

$$\mathsf{Pr}[b=b'] = \mathsf{Pr}[\mathsf{Hiding}\text{-}\mathsf{Game}(n,\mathcal{A}) o 1] \geq \frac{1}{2} + \mathsf{non}\text{-}\mathsf{negl}(n)$$

2 Truly Random Case: If $g \leftarrow \{0,1\}^{3n}$, then com* is independent of b. com* is basically a one-time pad ciphertext. In this case:

$$\Pr[b=b']=\frac{1}{2}$$

Commitment Scheme Practice Problem: Hiding

In summary, \mathcal{B} breaks the PRG security of G because:

$$\begin{split} \Pr[\mathcal{B} \to 0 | \mathsf{Pseudorandom Case}] - \Pr[\mathcal{B} \to 0 | \mathsf{Truly Random Case}] \\ &\geq \frac{1}{2} + \mathsf{non-negl}(n) - \frac{1}{2} \\ &\geq \mathsf{non-negl}(n) \end{split}$$

Q.E.D.

Commitment Scheme Practice Problem: Binding

Theorem

The scheme is statistically binding.

Proof:

1 If the adversary can break binding, then they can find two openings $(0, r_0)$ and $(1, r_1)$ such that

$$G(r_0) = G(r_1) \oplus s$$

2 This is only possible if there exist values $(r_0, r_1) \in \{0, 1\}^n \times \{0, 1\}^n$ such that $G(r_0) \oplus G(r_1) = s$.

Commitment Scheme Practice Problem: Binding

1 Let T be the set of all the values that $G(r_0) \oplus G(r_1)$ can take:

$$T = \{t \in \{0,1\}^{3n} : \exists (r_0, r_1) \in \{0,1\}^n \times \{0,1\}^n \text{ s.t. } t = G(r_0) \oplus G(r_1)\}$$

- $|T| \le 2^{2n}$ because there are at most 2^{2n} values of (r_0, r_1) .
- **3** Finally, s is sampled uniformly at random from $\{0,1\}^{3n}$. Therefore,

$$\Pr[s \in T] = \frac{|T|}{2^{3n}} \le \frac{2^{2n}}{2^{3n}} = 2^{-n} = \operatorname{negl}(n)$$

• If $s \notin T$, then no adversary, even a computationally unbounded one, can break binding.

Commitment Scheme Practice Problem: Binding

Over the randomness of s, the probability that a computationally unbounded adversary can break binding is $\leq 2^{-n} = \text{negl}(n)$. Therefore, the commitment scheme satisfies statistical binding.

Q.E.D.

Table of Contents

- Identity-Based Encryption
- ② Group-Based Assumptions and Bilinear Maps: DLOG, CDH, DDH, DBDH
- Signatures
- 4 Commitment Schemes
- Secret Sharing
- 6 Proof Systems

Secret Sharing: Concept

- A (t, n) threshold secret sharing scheme allows one to split a secret s into n pieces so that one will need at least t shares to reconstruct s.
- A dealer takes s as input and uses a sharing algorithm to split the secret s into parts s_1, \ldots, s_n to be given to parties P_1, \ldots, P_n .
- **Correctness:** Any *t* parties can reconstruct *s*.
- **Security:** No collusion of < t parties can reconstruct s.

CS 171 42 / 53

Secret-Sharing: Definition

A (t, n)-secret sharing scheme (**Share**, **Reconstruct**) is defined as follows.

- **Share**(s): On input a secret s it outputs shares s_1, \ldots, s_n .
- **Reconstruct**($\{s_i\}_{i\in\mathcal{T}}$): Outputs s or \perp .
- Correctness: For any T such that $|T| \ge t$ and secret s we have that Reconstruct($\{s_i\}_{i\in T}$) = s.
- **Security**: For any T such that |T| < t, secrets s, s' and adversary A we have that p = p' where

$$p = \Pr[A(\{s_i\}_{i \in T}) = 1 \mid (s_1, \dots, s_n) \leftarrow \text{Share}(s)],$$

 $p' = \Pr[A(\{s_i'\}_{i \in T}) = 1 \mid (s_1', \dots, s_n') \leftarrow \text{Share}(s')].$

CS 171 43 / 53

Secret-Sharing: Practice Problem

How can you secret-share among n parties and reconstruct using only a threshold t of n?

CS 171 44 / 53

Secret-Sharing: Solution, Shamir's

Main Idea: Remember polynomial interpolation from CS 70? This is literally that. To share $s \in \mathbb{Z}_q$: choose a random degree t-1 polynomial p(x) such that p(0) = s. Give out the shares $(p(1), \ldots, p(n))$.

• Given t shares, we can reconstruct p(x), and can then recover p(0).

Sharing:

• Given a secret $s \in \mathbb{Z}_q$, choose $p(x) = s + a_1x + \cdots + a_{t-1}x^{t-1}$, where a_i 's are chosen randomly in \mathbb{Z}_q . Give out the shares $(p(1), \ldots, p(n))$.

Reconstruct:

• Given t values $(i_1, p(i_1)), \ldots, (i_t, p(i_t))$, reconstruct p and output p(0).

CS 171 45 / 53

Table of Contents

- Identity-Based Encryption
- ② Group-Based Assumptions and Bilinear Maps: DLOG, CDH, DDH, DBDH
- Signatures
- 4 Commitment Schemes
- Secret Sharing
- 6 Proof Systems

Proof systems: Syntax

A proof system is an interactive protocol between a Prover and Verifier. Prover wants to convince Verifier of the truth of some statement.

- Prover has access to the instance x and witness w such that C(x, w) = 1.
- Verifier only has the instance x and outputs 0/1 at the end of the interaction depending on if it is convinced by the prover.

Three main properties:

- **Completeness**: If Prover is honest, Verifier always (or with overwhelming probability) outputs 1.
- **Soundness**: If Prover is cheating (i.e., the statement is actually false and no witness exists), Verifier must output 1 only with negligible probability.
- **Zero-Knowledge**: If Prover is honest (follows the protocol), no (cheating) Verifier can gain any information about the witness from the interaction.

CS 171 47 / 53

Proof systems: Properties and Tips

Soundness: Cheating prover vs Honest verifier

- Building sound protocols: Most protocols usually have a randomized step where the verifier sends a random element. Honest provers will always be able to answer for any random element, but a cheating prover will only be able to answer for a very small (read negligible) set of random values – has to hope that the verifier chooses one of those values at random.
- General proof structure (to prove soundness): Suppose the statement is false and the verifier accepts the proof (outputs 1) with non-negligible probability. Then, break some assumption / show that the statement is true - which is a contradiction - hence the verifier cannot accept the proof with non-negligible probability. QED.

Proof systems: Zero-Knowledge

Zero-Knowledge: Honest prover vs Cheating verifier

- Definition: $\exists Sim$ such that for all V^* and honest prover P(x, w), the view of the verifier in the interaction with P(x, w) and the output of $Sim^{V^*}(x)$ are indistinguishable to any PPT distinguisher.
 - What the verifier sees in a honest interaction can be simulated without knowing the witness, hence contains "zero knowledge" about the witness.
- Building ZK protocols: What the verifier sees should not contain any information about the witness – all messages should be blinded with some randomness.
- General proof structure: Construct a simulator that generates a transcript of the interaction without the witness. Can run V^* multiple times, can sample things out of order. Then, show that the distributions are either identical or computationally indistinguishable.

CS 171 49 / 53

Proof systems: Practice problem

Q: Come up with a ZKP for Quadratic Residuosity: Consider a modulus m and a w such that $x = w^2 \mod m$. The instance is (x, m) and the witness is the square root of $x \mod m$.

Hint: This is also a three round protocol similar to other protocols you have seen. We only want soundness 1/2 – we can use soundness amplification to make it negligible.

CS 171 50 / 53

Proof systems: Practice problem - Construction

Construction:

- **①** The prover samples a random $r \in \mathbb{Z}$ and sends $a = r^2 \mod m$ to the verifier.
- ② The verifier samples a random bit $b \leftarrow \{0,1\}$ and sends it.
- 3 The prover sends $z = w^b \cdot r \mod m$ to the verifer.
- Verifier accepts if $z^2 = x^b a \mod m$.

CS 171 51 / 53

Proof systems: Practice problem - Properties

Correctness.

$$z^2 = w^{2b}r^2 = x^b a \mod m$$

Soundness: Suppose there does not exist a square root of x. For the prover to succeed with probability > 1/2, the prover should be able to pass the check for both b=0 and b=1 for some choice of first message a. If both checks pass, notice that

$$z_1^2 = a \mod m$$

$$z_2^2 = xa \mod m$$

$$\implies \left(\frac{z_2}{z_1}\right)^2 = x \mod m$$

which is a contradiction.

Proof systems: Practice problem - Properties

Zero-Knowledge: Idea = Prover can always answer correctly if they know what bit the verifier would pick before they send the first message. The simulator works like that of Graph Isomorphism (Disc 11).

- Sim samples a random bit b', samples a random $z \mod m$ and computes $a = \frac{z^2}{zb'}$ as the first message.
- ② Sim runs V^* with a as the first message. If the second message from V^* is the same as b', send z in the third step. Else go to step 1 and start over.

In expectation, Sim will need two tries to succeed as V^* 's view is independent of b' after the first message.

CS 171 53 / 53