

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Факультет «Радиотехнический» Кафедра ИУ5 «Системы обработки информации и управления»

Лабораторная работа №4 по дисциплине «Технологии машинного обучения»

Выполнил: студент группы РТ5-61Б М.А. Ходосов

Задание лабораторной работы:

Задание:

- 1. Выберите набор данных (датасет) для решения задачи классификации или регрессии.
- 2. В случае необходимости проведите удаление или заполнение пропусков и кодирование категориальных признаков.
- 3. С использованием метода train_test_split разделите выборку на обучающую и тестовую.
- 4. Обучите следующие модели:
 - одну из линейных моделей (линейную или полиномиальную регрессию при решении задачи регрессии, логистическую регрессию при решении задачи классификации);
 - o SVM;
 - о дерево решений.
- 5. Оцените качество моделей с помощью двух подходящих для задачи метрик. Сравните качество полученных моделей.
- 6. Постройте график, показывающий важность признаков в дереве решений.
- 7. Визуализируйте дерево решений или выведите правила дерева решений в текстовом виде.

Лабораторная работа 4

Линейные модели, SVM и деревья решений.

Цель лабораторной работы: изучение линейных моделей, SVM и деревьев решений.

Выберите набор данных (датасет) для решения задачи классификации или регрессии. В случае необходимости проведите удаление или заполнение пропусков и кодирование категориальных признаков. С использованием метода train_test_split разделите выборку на обучающую и тестовую.

Обучите следующие модели:

- одну из линейных моделей (линейную или полиномиальную регрессию при решении задачи регрессии, логистическую регрессию при решении задачи классификации);
- дерево решений.

Оцените качество моделей с помощью двух подходящих для задачи метрик. Сравните качество полученных моделей.

Постройте график, показывающий важность признаков в дереве решений.

Визуализируйте дерево решений или выведите правила дерева решений в текстовом виде.

```
In [1]: import pandas as pd import numpy as np import seaborn as sns from sklearn.preprocessing import tabelEncoder from sklearn.model_selection import train_test_split from sklearn.linear_model import SOClassifier from sklearn.metrics import SOClassifier from sklearn.metrics import fl_score, precision_score from sklearn.tree import DecisionTreeClassifier, plot_tree from sklearn.tree import DecisionTreeClassifier, plot_tree from sklearn.tree import becisionTreeClassifier, plot_tree from sklearn.model_selection import GridSearchCV import matplotlib.pyplot as plt
                                                  target_col='class'
                                                  %matplotlib inline
sns.set(style="ticks")
```

In [2]: data = pd.read_csv('.../datasets/mushrooms.csv')
data.head()

Out[2]:		class	cap-shape	cap-surface	cap-color	bruises	odor	gill-attachment	gill-spacing	gill-size	gill-color	 stalk-surface-below-ring	stalk-color-above-ring	stalk-color-below-ring	veil-type	veil-color	ring-number	ring-type	spore-print-color	population	habitat
	0	р	x	5	n	t	р	f	С	n	k	 5	w	w	р	w	0	р	k	5	u
	1	e	×	s	У	t	а	f	c	b	k	 s	w	w	р	w	0	р	n	n	g
	2	e	b	5	w	t	- 1	f	С	ь	n	 5	w	w	р	w	0	р	n	n	m
	3	р	x	у	w	t	р	f	c	n	n	 s	w	w	р	w	0	р	k	s	u
	4	e	x	s	9	f	n	f	w	b	k	 s	w	w	р	w	0	e	n	a	9

5 rows × 23 columns

In [3]: data.shape

In [4]: data = data.dropna(axis=1, how='any')
data.head()

Out[3]: (8124, 23)

Удаляем пустые значения и кодируем категориальные признаки

```
class cap-shape cap-surface cap-color bruises odor gill-attachment gill-spacing gill-size gill-color ... stalk-surface-below-ring stalk-color-above-ring stalk-color-below-ring veil-type veil-color ring-number ring-type spore-print-color population habitat
5 rows × 23 columns
```

```
In [5]: for col in data.columns:
    null_count = data[data[col].isnull()].shape[0]
    if null_count == 0:
        column_type = data[col].dtype
        print('{} - {} - {}'.format(col, column_type, null_count))
```

class - object - 0
cap-shape - object - 0
cap-surface - object - 0
cap-color - object - 0
bruises - object - 0
odor - object - 0
gill-attachment - object - 0 odor - object - 0
gill-stackment - object - 0
gill-spacing - object - 0
gill-size - object - 0
gill-size - object - 0
gill-clor - object - 0
stalk-snape - object - 0
stalk-snape - object - 0
stalk-surface-above-ring - object - 0
stalk-surface-above-ring - object - 0
stalk-color-below-ring - object - 0
stalk-color-below-ring - object - 0
veil-color - object - 0
veil-type - object - 0
ring-number - object - 0
ring-number - object - 0
population - object - 0
population - object - 0
habitat - object - 0

Категориальные признаки

```
le = LabelEncoder()
for col in data.columns:
    colum.type = data[col].dtype
    if column.type == 'object':
        data[col] = le.fit_transform(data[col]);
        print(col)
```

```
class
cap-shape
cap-surface
cap-color
bouses
odo gill-attachment
gill-spacing
gill-size
gill-color
stalk-shape
stalk-root
stalk-shape
stalk-surface-above-ring
stalk-surface-below-ring
otalk-color-below-ring
veil-type
veil-color
ring-number
ring-type
spore-print-color
population
habitat
```

Разделение выборки на обучающую и тестовую

```
In [7]: X = data.drop(target_col, axis=1)
Y = data[target_col]
```

Out[8]:	cap-shape	cap-surface	cap-color	bruis	es oc	lor gill-attachme	nt gill-spacii	ng gill-si:	e gill-col	or stalk-sha	pe	stalk-surface-below-ri	ng stalk-color-above-ri	ng stalk-color-be	low-ring	veil-type	veil-color	ring-number	ring-type	spore-print-colo	population	habitat
	0 5	2	4		1	6	1	0	1	4	0		2	7	7	0	2	1	4	2	. 3	5
	1 5	2	9		1	0	1	0	0	4	0		2	7	7	0	2	1	4	3	2	1
	2 0	2	8		1	3	1	0	0	5	0		2	7	7	0	2	1	4	3	2	3
	3 5	3	8		1	6	1	0	1	5	0	**	2	7	7	0	2	1	4	2	3	5
	4 5	2	3		0	5	1	1	0	4	1		2	7	7	0	2	1	0	3	0	1
													***					***				
8	119 3	2	4		0	5	0	0	0	11	0		2	5	5	0	1	1	4	(1	2
8	120 5	2	4		0	5	0	0	0	11	0	**	2	5	5	0	0	1	4	(4	2
8	121 2	2	4		0	5	0	0	0	5	0		2	5	5	0	1	1	4	(1	2
8	122	3	4		0	8	1	0	1	0	1	**	1	7	7	0	2	1	0	7	4	2
8	123	2	4		0	5	0	0	0	11	0		2	5	5	0	1	1	4	4	1	2

8124 rows × 22 columns

```
8119 0
8120 0
8121 0
8121 1
8122 1
8123 0
Name: class, Length: 8124, dtype: int32
```

In [10]: pd.DataFrame(X, columns=X.columns).describe()

[10]:		cap-shape	cap-surface	cap-color	bruises	odor	gill- attachment	gill-spacing	gill-size	gill-color	stalk-shape		k-surface- elow-ring	stalk-color- above-ring	stalk-color- below-ring	veil- type	veil-color	ring- number	ring-type	spore-print- color	population	habitat
	count	8124.000000	8124.000000	8124.000000	8124.000000	8124.000000	8124.000000	8124.000000	8124.000000	8124.000000	8124.000000	81	24.000000	8124.000000	8124.000000	8124.0	8124.000000	8124.000000	8124.000000	8124.000000	8124.000000	8124.000000
	mean	3.348104	1.827671	4.504677	0.415559	4.144756	0.974151	0.161497	0.309207	4.810684	0.567208		1.603644	5.816347	5.794682	0.0	1.965534	1.069424	2.291974	3.596750	3.644018	1.508616
	std	1.604329	1.229873	2.545821	0.492848	2.103729	0.158695	0.368011	0.462195	3.540359	0.495493		0.675974	1.901747	1.907291	0.0	0.242669	0.271064	1.801672	2.382663	1.252082	1.719975
	min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000		0.000000	0.000000	0.000000	0.0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
	25%	2.000000	0.000000	3.000000	0.000000	2.000000	1.000000	0.000000	0.000000	2.000000	0.000000		1.000000	6.000000	6.000000	0.0	2.000000	1.000000	0.000000	2.000000	3.000000	0.000000
	50%	3.000000	2.000000	4.000000	0.000000	5.000000	1.000000	0.000000	0.000000	5.000000	1.000000		2.000000	7.000000	7.000000	0.0	2.000000	1.000000	2.000000	3.000000	4.000000	1.000000
	75%	5.000000	3.000000	8.000000	1.000000	5.000000	1.000000	0.000000	1.000000	7.000000	1.000000		2.000000	7.000000	7.000000	0.0	2.000000	1.000000	4.000000	7.000000	4.000000	2.000000
	max	5.000000	3.000000	9.000000	1.000000	8.000000	1.000000	1.000000	1.000000	11.000000	1.000000		3.000000	8.000000	8.000000	0.0	3.000000	2.000000	4.000000	8.000000	5.000000	6.000000

8 rows × 22 columns

Разделим выборку на обучающую и тестовую:

```
In [11]: X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.25, random_state=1)
print('{}, {}'.format(X_train.shape, X_test.shape))
print('{}, {}'.format(Y_train.shape, Y_test.shape))
                  (6093, 22), (2031, 22)
(6093,), (2031,)
```

Обучение моделей

Линейная модель

```
In [12]: SGD = SGDClassifier(max_iter=10000)
SGD.fit(X_train, Y_train)
```

Out[12]: - SGDClassifier SGDClassifier(max_iter=10000)

In [13]: from sklearn.metrics import median_absolute_error, r2_score, precision_score f1_score(Y_test, SGD.predict(X_test), average='micro') precision_score(Y_test, SGD.predict(X_test), average='micro')

Out[13]: 0.9187592319054653

SVM

```
In [14]: 

SVC = SVC(kernel='rbf')
SVC.fit(X_train, Y_train)

Out[14]: 
SVC
SVC()
```

In [15]: f1_score(Y_test, SVC.predict(X_test), average='micro')
precision_score(Y_test, SVC.predict(X_test), average='micro')

Out[15]: 0.9862136878385032

Дерево решений

In [16]: DT = DecisionTreeClassifier(random_state=1)
DT.fit(X_train, Y_train)

Out[16]:

DecisionTreeClassifier

DecisionTreeClassifier(random_state=1)

 $\label{eq:constraint} In \ [17]: \ print(f1_score(Y_test, DT.predict(X_test), average='micro')) \\ precision_score(Y_test, DT.predict(X_test), average='micro') \\ \\$

1.0 Out[17]: 1.0

Можно сделать вывод, что дерево решений дает лучший результат

