日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2003年 2月28日

出願番号

Application Number: ---

特願2003-055020

[ST. 10/C]:

Applicant(s):

[JP2003-055020]

出 願 人

セイコーエプソン株式会社

2003年11月21日

特許庁長官 Commissioner, Japan Patent Office 今井康

【書類名】

特許願

【整理番号】

15P069

【あて先】

特許庁長官 殿

【国際特許分類】

B41J 2/01

【発明者】

【住所又は居所】

長野県諏訪市大和3丁目3番5号 セイコーエプソン株

式会社内

【氏名】

新川 修

【発明者】

【住所又は居所】

長野県諏訪市大和3丁目3番5号 セイコーエプソン株

式会社内

【氏名】

坂上 裕介

【特許出願人】

【識別番号】

000002369

【氏名又は名称】

セイコーエプソン株式会社

【代理人】

【識別番号】

100091292

【弁理士】

【氏名又は名称】

増田 達哉

【電話番号】

3595-3251

【選任した代理人】

【識別番号】

100091627

【弁理士】

【氏名又は名称】

朝比 一夫

【電話番号】

3595-3251

【手数料の表示】

【予納台帳番号】

007593

【納付金額】

21,000円

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 0015134

【プルーフの要否】 要

្នា

【書類名】 明細書

【発明の名称】 液滴吐出装置、及び、液滴吐出ヘッドの吐出異常検出・判定方法

【特許請求の範囲】

【請求項1】 振動板と、前記振動板を変位させるアクチュエータと、内部 に液体が充填され、前記振動板の変位により、該内部の圧力が増減されるキャビ ティと、前記キャビティに連通し、前記キャビティ内の圧力の増減により前記液 体を液滴として吐出するノズルとを有する液滴吐出ヘッドと、

前記アクチュエータを駆動する駆動回路と、

前記駆動回路によって前記アクチュエータが駆動された後、前記アクチュエータにより変位された前記振動板の残留振動を検出する残留振動検出手段を有し、前記残留振動検出手段によって検出された前記振動板の残留振動の振動パターンに基づいて、前記液滴の吐出の異常を検出する吐出異常検出手段と、

を備えることを特徴とする液滴吐出装置。

【請求項2】 前記吐出異常検出手段は、前記振動板の残留振動の振動パターンに基づいて、前記液滴吐出ヘッドの液滴の吐出異常の有無を判定する判定手段を含む請求項1に記載の液滴吐出装置。

【請求項3】 前記判定手段は、前記液滴吐出ヘッドの液滴の吐出異常があると判定した際、その吐出異常の原因を判定する請求項2に記載の液滴吐出装置

【請求項4】 前記振動板の残留振動の振動パターンは、前記残留振動の周期を含む請求項3に記載の液滴吐出装置。

【請求項5】 前記判定手段は、前記振動板の残留振動の周期が所定の範囲の周期よりも短いときには、前記キャビティ内に気泡が混入したものと判定する請求項4に記載の液滴吐出装置。

【請求項6】 前記判定手段は、前記振動板の残留振動の周期が所定の閾値 よりも長いときには、前記ノズル付近の液体が乾燥により増粘したものと判定す る請求項4に記載の液滴吐出装置。

【請求項7】 前記判定手段は、前記振動板の残留振動の周期が所定の範囲

の周期よりも長く、所定の閾値よりも短いときには、前記ノズルの出口付近に紙 粉が付着したものと判定する請求項4に記載の液滴吐出装置。

【請求項8】 前記判定手段によって判定された判定結果を記憶する記憶手段を更に備える請求項2乃至7のいずれかに記載の液滴吐出装置。

【請求項9】 前記アクチュエータの駆動による前記液滴の吐出動作後、前記アクチュエータを前記駆動回路から前記吐出異常検出手段に切り替える切替手段を更に備える請求項1乃至8のいずれかに記載の液滴吐出装置。

【請求項10】 前記残留振動検出手段は、発振回路を備え、前記振動板の 残留振動によって変化する前記アクチュエータの静電容量成分に基づいて、該発 振回路が発振する請求項1乃至9のいずれかに記載の液滴吐出装置。

【請求項11】 前記発振回路は、前記アクチュエータの静電容量成分と、前記アクチュエータに接続される抵抗素子の抵抗成分とによるCR発振回路を構成する請求項10に記載の液滴吐出装置。

【請求項12】 前記発振回路の発振周波数は、前記振動板の残留振動の振動周波数よりもおよそ1桁以上高い周波数になるよう構成される請求項10又は11に記載の液滴吐出装置。

【請求項13】 前記残留振動検出手段は、前記発振回路の出力信号における発振周波数の変化に基づいて生成される所定の信号群により、前記振動板の残留振動の電圧波形を生成するF/V変換回路を含む請求項10乃至12のいずれかに記載の液滴吐出装置。

【請求項14】 前記残留振動検出手段は、前記F/V変換回路によって生成された前記振動板の残留振動の電圧波形を所定の波形に整形する波形整形回路を含む請求項13に記載の液滴吐出装置。

·) .

【請求項15】 前記波形整形回路は、前記F/V変換回路によって生成された前記振動板の残留振動の電圧波形から直流成分を除去するDC成分除去手段と、このDC成分除去手段によって直流成分を除去された電圧波形と所定の電圧値とを比較する比較器とを含み、該比較器は、該電圧比較に基づいて、矩形波を生成して出力する請求項14に記載の液滴吐出装置。

【請求項16】 前記吐出異常検出手段は、前記残留振動検出手段によって

生成された前記矩形波から前記振動板の残留振動の周期を計測する計測手段を含む請求項15に記載の液滴吐出装置。

【請求項17】 前記計測手段は、カウンタを有し、該カウンタが基準信号のパルスをカウントすることによって、前記矩形波の立ち上がりエッジ間あるいは立ち上がりエッジと立ち下がりエッジの間の時間を計測する請求項16に記載の液滴吐出装置。

【請求項18】 前記アクチュエータは、静電式アクチュエータである請求項1万至17のいずれかに記載の液滴吐出装置。

【請求項19】 前記アクチュエータは、圧電素子のピエゾ効果を利用した 圧電アクチュエータである請求項1乃至17のいずれかに記載の液滴吐出装置。

【請求項20】 前記液滴吐出装置は、インクジェットプリンタを含む請求項1乃至19のいずれかに記載の液滴吐出装置。

Ċ

【請求項21】 アクチュエータを駆動して振動板を振動することにより、 キャビティ内の液体を液滴としてノズルから吐出する動作を行った後、前記振動 板の残留振動を検出し、検出された前記振動板の残留振動の振動パターンに基づ いて、前記液滴の吐出の異常を検出することを特徴とする液滴吐出ヘッドの吐出 異常検出・判定方法。

【請求項22】 前記振動板の残留振動の振動パターンに基づいて、前記液 滴吐出ヘッドの液滴の吐出異常の有無を判定する請求項21に記載の液滴吐出ヘッドの吐出異常検出・判定方法。

【請求項23】 前記液滴吐出ヘッドの液滴の吐出異常があると判定された際、その吐出異常の原因を判定する請求項22に記載の液滴吐出ヘッドの吐出異常検出・判定方法。

【請求項24】 前記残留振動の振動パターンは残留振動の周期であり、この検出された残留振動の周期が所定の範囲の周期よりも短いときには、前記吐出異常の原因として前記液滴吐出ヘッドのキャビティ内に気泡が混入したものと判定する請求項23に記載の液滴吐出ヘッドの吐出異常検出・判定方法。

【請求項25】 前記残留振動の振動パターンは残留振動の周期であり、この検出された残留振動の周期が所定の閾値よりも長いときには、前記吐出異常の

原因として前記液滴吐出ヘッドのノズル付近の液体が乾燥により増粘したものと 判定する請求項23に記載の液滴吐出ヘッドの吐出異常検出・判定方法。

【請求項26】 前記残留振動の振動パターンは残留振動の周期であり、この検出された残留振動の周期が所定の範囲の周期よりも長く、所定の閾値よりも短いときには、前記吐出異常の原因として前記液滴吐出ヘッドのノズルの出口付近に紙粉が付着したものと判定する請求項23に記載の液滴吐出ヘッドの吐出異常検出・判定方法。

【請求項27】 前記判定において判定された判定結果を記憶部に記憶する 請求項22乃至26のいずれかに記載の液滴吐出ヘッドの吐出異常検出・判定方 法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、液滴吐出装置、及び、液滴吐出ヘッドの吐出異常検出・判定方法に 関する。

 $[0\ 0\ 0\ 2]$

【従来の技術】

液滴吐出装置の一つであるインクジェットプリンタは、複数のノズルからインク滴(液滴)を吐出して所定の用紙上に画像形成を行っている。インクジェットプリンタの印刷ヘッド(インクジェットヘッド)には、多数のノズルが設けられているが、インクの粘度の増加や、気泡の混入、塵や紙粉の付着等の原因によって、いくつかのノズルが目詰まりしてインク滴を吐出できない場合がある。ノズルが目詰まりするとプリントされた画像内にドット抜けが生じ、画質を劣化させる原因となっている。

[0003]

従来、このようなインク滴の吐出異常(以下、「ドット抜け」ともいう)を検 出する方法として、インクジェットヘッドのノズルからインク滴が吐出されない 状態(インク滴吐出異常状態)をインクジェットヘッドのノズル毎に光学的に検 出する方法が考案されている(例えば、特許文献1など)。この方法により、ド

[0004]

しかしながら、上述の光学式のドット抜け(液滴吐出異常)検出方法では、光源及び光学センサを含む検出器が液滴吐出装置(例えば、インクジェットプリンタ)に取付けられている。この検出方法では、一般に、液滴吐出ヘッド(インクジェットヘッド)のノズルから吐出する液滴が光源と光学センサの間を通過し、光源と光学センサの間の光を遮断するように、光源及び光学センサを精密な精度で(高精度に)設定(設置)しなければならないという問題がある。また、このような検出器は通常高価であり、インクジェットプリンタの製造コストが増大してしまうという問題もある。さらに、ノズルからのインクミストや印刷用紙等の紙粉によって、光源の出力部や光学センサの検出部が汚れてしまい、検出器の信頼性が問題となる可能性もある。

[0005]

また、上述の光学式のドット抜け検出方法では、ノズルのドット抜け、すなわち、インク滴の吐出異常(不吐出)を検出することはできるが、その検出結果に基づいてドット抜け(吐出異常)の原因を特定(判定)することができず、ドット抜けの原因に対応する適切な回復処理を選択し、実行することが不可能であるという問題もある。そのため、例えば、ワイピング処理で回復可能な状態であるにもかかわらず、インクジェットヘッドからインクをポンプ吸引などすることにより、排インク(無駄なインク)が増加することや、適切な回復処理が行われないために複数の回復処理を実施することによって、インクジェットプリンタ(液滴吐出装置)のスループットを低下あるいは悪化させてしまう。

[0006]

【特許文献1】

特開平8-309963号公報

[0007]

【発明が解決しようとする課題】

本発明の目的は、液滴吐出動作後におけるアクチュエータの振動板の静電容量

にある。

[0008]

【課題を解決するための手段】

上記課題を解決するために、本発明の一態様において、本発明の液滴吐出装置 は、

振動板と、前記振動板を変位させるアクチュエータと、内部に液体が充填され、前記振動板の変位により、該内部の圧力が増減されるキャビティと、前記キャビティに連通し、前記キャビティ内の圧力の増減により前記液体を液滴として吐出するノズルとを有する液滴吐出ヘッドと、

前記アクチュエータを駆動する駆動回路と、

前記駆動回路によって前記アクチュエータが駆動された後、前記アクチュエータにより変位された前記振動板の残留振動を検出する残留振動検出手段を有し、前記残留振動検出手段によって検出された前記振動板の残留振動の振動パターンに基づいて、前記液滴の吐出の異常を検出する吐出異常検出手段と、

を備えることを特徴とする。

本発明の液滴吐出装置によれば、アクチュエータの駆動により、液体を液滴として吐出する動作を行った際に、アクチュエータによって変位させられた振動板の残留振動を検出し、その振動板の残留振動の振動パターンに基づいて、液滴が正常に吐出されたか、あるいは吐出されなかったか(吐出異常)を検出する。

[0009]

本発明の液滴吐出装置によって、従来のドット抜け検出方法を備える液滴吐出装置に比べ、他の部品(例えば、光学式検出装置など)を必要としないので、液滴吐出ヘッドのサイズを大きくすることなく液滴の吐出異常を検出することができるとともに、製造コストを低く抑えることができる。また、本発明の液滴吐出ヘッドでは、液滴吐出動作後の振動板の残留振動を用いて液滴の吐出異常を検出しているので、印字動作の途中でも液滴の吐出異常を検出することができる。

[0010]

また、好ましくは、前記吐出異常検出手段は、前記振動板の残留振動の振動パターンに基づいて、前記液滴吐出ヘッドの液滴の吐出異常の有無を判定する判定手段を含む。そして、好ましくは、前記判定手段は、前記液滴吐出ヘッドの液滴の吐出異常があると判定した際、その吐出異常の原因を判定する。ここで、前記振動板の残留振動の振動パターンは、前記残留振動の周期含んでもよい。これにより、光学式検出装置など従来のドット抜け検出を行うことができる装置では、判定不可能である液滴の吐出異常の原因を判定することができ、それによって、必要に応じ、その原因に対し適切な回復処理を選択し、実行することができる。

$[0\ 0\ 1\ 1]$

ここで、好ましくは、前記判定手段は、前記振動板の残留振動の周期が所定の 範囲の周期よりも短いときには、前記キャビティ内に気泡が混入したものと判定 し、前記振動板の残留振動の周期が所定の閾値よりも長いときには、前記ノズル 付近の液滴が乾燥により増粘したものと判定する。また、好ましくは、前記判定 手段は、前記振動板の残留振動の周期が前記所定の範囲の周期よりも長く、所定 の閾値よりも短いときには、前記ノズルの出口付近に紙粉が付着したものと判定 する。なお、本発明において、「紙粉」とは、単に記録用紙などから発生した紙 粉のみに限らず、例えば、紙送りローラ(給紙ローラ)などのゴムの切れ端や、 空気中に浮遊するごみなどを含むノズル付近に付着して液滴吐出の妨げとなるす べてのものをいう。

なお、本発明の液滴吐出装置は、前記判定手段によって判定された判定結果を 記憶する記憶手段をさらに備えてもよい。これにより、記憶された判定結果に基 づいて、例えば、印字動作の終了後など適切なときに適切な回復処理を実行する ことができる。

[0012]

8/

また、本発明の液滴吐出装置は、好ましくは、前記アクチュエータの駆動による前記液滴の吐出動作後、前記アクチュエータを前記駆動回路から前記残留振動検出手段に切り替える切替手段をさらに備えている。このように、アクチュエータの駆動後に、駆動回路からアクチュエータを切り離して、振動板の残留振動を検出しているので、駆動回路から発生し得るノイズなどの影響を受けることなく、液滴の吐出異常を検出することができる。

[0013]

また、好ましくは、前記残留振動検出手段は、発振回路を備え、前記振動板の 残留振動によって変化する前記アクチュエータの静電容量成分に基づいて、該発 振回路が発振する。そして、前記発振回路は、前記アクチュエータの静電容量成 分と、前記アクチュエータに接続される抵抗素子の抵抗成分とによるCR発振回 路を構成してもよい。このように、本発明の液滴吐出装置は、振動板の残留振動 波形(残留振動の電圧波形)をアクチュエータの静電容量成分の時系列的な微小 変化(発振周期の変化)として検出しているので、アクチュエータに圧電素子を 用いた場合には、その起電圧の大小に依存することなく、振動板の残留振動波形 を正確に検出することができる。

$[0\ 0\ 1\ 4]$

ここで、好ましくは、前記発振回路の発振周波数は、前記振動板の残留振動の振動周波数よりもおよそ1桁以上高い周波数になるよう構成される。このように、発振回路の発振周波数を、振動板の残留振動の振動周波数の数十倍程度の周波数に設定することによって、この振動板の残留振動をより正確に検出することができ、それによって、液滴の吐出異常をより正確に検出することができる。

$[0\ 0\ 1\ 5]$

また、好ましくは、前記残留振動検出手段は、前記発振回路の出力信号における発振周波数の変化に基づいて生成される所定の信号群により、前記振動板の残留振動の電圧波形を生成するF/V変換回路を含む。このように、F/V変換回路を用いて電圧波形を生成することにより、アクチュエータの駆動に影響を与えることなく、残留振動波形を検出する際、その検出感度を大きく設定することができる。

[0016]

さらに、好ましくは、前記残留振動検出手段は、前記F/V変換回路によって 生成された前記振動板の残留振動の電圧波形を所定の波形に整形する波形整形回 路を含む。そして、好ましくは、この波形整形回路は、前記F/V変換回路によって生成された前記振動板の残留振動の電圧波形から直流成分を除去するDC成 分除去手段と、このDC成分除去手段によって直流成分を除去された電圧波形と 所定の電圧値とを比較する比較器とを含み、該比較器は、該電圧比較に基づいて 、矩形波を生成して出力する。

[0017]

また、好ましくは、前記吐出異常検出手段は、前記残留振動検出手段によって生成された前記矩形波から前記振動板の残留振動の周期を計測する計測手段を含む。さらに、前記計測手段は、カウンタを有し、該カウンタが基準信号のパルスをカウントすることによって、前記矩形波の立ち上がりエッジ間あるいは立ち上がりエッジと立ち下がりエッジの間の時間を計測してもよい。このようにカウンタを用いて矩形波の周期を計測することにより、振動板の残留振動の周期をより簡単に、そしてより正確に検出することができる。

[0018]

なお、前記アクチュエータは、静電式アクチュエータであってもよく、圧電素子のピエゾ効果を利用した圧電アクチュエータであってもよい。本発明の液滴吐出装置は、上記のようなコンデンサからなる静電アクチュエータのみならず、圧電アクチュエータも用いることができるので、既存のほとんどの液滴吐出装置に本発明を適用することができる。また、好ましくは、本発明の液滴吐出装置は、インクジェットプリンタを含む。

[0019]

また、本発明の別の態様において、本発明の液滴吐出ヘッドの吐出異常検出・ 判定方法は、アクチュエータを駆動して振動板を振動することにより、キャビティ内の液体を液滴としてノズルから吐出する動作を行った後、前記振動板の残留 振動を検出し、検出された前記振動板の残留振動の振動パターンに基づいて、前 記液滴の吐出の異常を検出することを特徴とする。そして、好ましくは、前記振 動板の残留振動の振動パターンに基づいて、前記液滴吐出ヘッドの液滴の吐出異常の有無を判定し、前記液滴吐出ヘッドの液滴の吐出異常があると判定された際、その吐出異常の原因を判定する。これにより、上記液滴吐出ヘッドにおける効果と同様の効果を得ることができる。

[0020]

ここで、好ましくは、前記残留振動の振動パターンは残留振動の周期であり、この検出された残留振動の周期が所定の範囲の周期よりも短いときには、前記吐出異常の原因として前記液滴吐出ヘッドのキャビティ内に気泡が混入したものと判定してもよく、この検出された残留振動の周期が所定の閾値よりも長いときには、前記吐出異常の原因として前記液滴吐出ヘッドのノズル付近の液体が乾燥により増粘したものと判定してもよく、さらに、この検出された残留振動の周期が前記所定の範囲の周期よりも長く、所定の閾値よりも短いときには、前記吐出異常の原因として前記液滴吐出ヘッドのノズルの出口付近に紙粉が付着したものと判定してもよい。なお、好ましくは、前記判定において判定された判定結果が記憶部に記憶される。

[0021]

【発明の実施の形態】

以下、図1~図30を参照して本発明の液滴吐出装置、及び、液滴吐出ヘッドの吐出異常検出・判定方法の好適な実施形態を詳細に説明する。なお、この実施形態は例示として挙げるものであり、これにより本発明の内容を限定的に解釈すべきではない。なお、以下、本実施形態では、本発明の液滴吐出装置の一例として、インク(液状材料)を吐出して記録用紙に画像をプリントするインクジェットプリンタを用いて説明する。

[0022]

<第1実施形態>

図1は、本発明の第1実施形態における液滴吐出装置の一種であるインクジェットプリンタ1の構成を示す概略図である。なお、以下の説明では、図1中、上側を「上部」、下側を「下部」という。まず、このインクジェットプリンタ1の構成について説明する。

図1に示すインクジェットプリンタ1は、装置本体2を備えており、上部後方に記録用紙Pを設置するトレイ21と、下部前方に記録用紙Pを排出する排紙口22と、上部面に操作パネル7とが設けられている。

[0023]

操作パネル7は、例えば、液晶ディスプレイ、有機ELディスプレイ、LED ランプ等で構成され、エラーメッセージ等を表示する表示部(図示せず)と、各 種スイッチ等で構成される操作部(図示せず)とを備えている。

また、装置本体2の内部には、主に、往復動する印字手段(移動体)3を備える印刷装置(印刷手段)4と、記録用紙Pを1枚ずつ印刷装置4に送り込む給紙装置(給紙手段)5と、印刷装置4及び給紙装置5を制御する制御部(制御手段)6とを有している。

[0024]

制御部6の制御により、給紙装置5は、記録用紙Pを一枚ずつ間欠送りする。この記録用紙Pは、印字手段3の下部近傍を通過する。このとき、印字手段3が記録用紙Pの送り方向とほぼ直交する方向に往復移動して、記録用紙Pへの印刷が行なわれる。すなわち、印字手段3の往復動と記録用紙Pの間欠送りとが、印刷における主走査及び副走査となって、インクジェット方式の印刷が行なわれる

[0025]

印刷装置 4 は、印字手段 3 と、印字手段 3 を主走査方向に移動させる駆動源となるキャリッジモータ 4 1 と、キャリッジモータ 4 1 の回転を受けて、印字手段 3 を往復動させる往復動機構 4 2 とを備えている。

印字手段3は、その下部に、多数のノズル110を備えるインクの種類に対応 した複数のヘッドユニット35と、各ヘッドユニット35にインクを供給する複 数のインクカートリッジ(I/C)31と、各ヘッドユニット35及びインクカ ートリッジ31を搭載したキャリッジ32とを有している。

[0026]

また、ヘッドユニット35は、図3において後述するように、それぞれ一つの 、ノズル110と、振動板121と、静電アクチェータ120と、キャビティ1 41と、インク供給口142等で構成されたインクジェット式記録へッド(インクジェットへッドあるいは液滴吐出ヘッド)100を多数備えている。なお、ヘッドユニット35は、図1ではインクカートリッジ31を含んだ構成を示しているが、このような構成に限定されない。例えば、インクカートリッジ31を別に固定し、チューブなどによってヘッドユニット35に供給されるようなものでもよい。したがって、以下において、印字手段3とは別に、それぞれ一つの、ノズル110と、振動板121と、静電アクチェータ120と、キャビティ141と、インク供給口142等で構成されたインクジェットヘッド100を複数設けたものをヘッドユニット35と称するものとする。

[0027]

なお、インクカートリッジ31として、イエロー、シアン、マゼンタ、ブラック (黒)の4色のインクを充填したものを用いることにより、フルカラー印刷が可能となる。この場合、印字手段3には、各色にそれぞれ対応したヘッドユニット35が設けられることになる。ここで、図1では、4色のインクに対応した4つのインクカートリッジ31を示しているが、印字手段3は、その他の色、例えば、ライトシアン、ライトマゼンダ、ダークイエローなどのインクカートリッジ31をさらに備えるように構成されてもよい。

[0028]

往復動機構42は、その両端をフレーム(図示せず)に支持されたキャリッジガイド軸422と、キャリッジガイド軸422と平行に延在するタイミングベルト421とを有している。

キャリッジ32は、往復動機構42のキャリッジガイド軸422に往復動自在に支持されるとともに、タイミングベルト421の一部に固定されている。

[0029]

キャリッジモータ41の作動により、プーリを介してタイミングベルト421を正逆走行させると、キャリッジガイド軸422に案内されて、印字手段3が往復動する。そして、この往復動の際に、印刷されるイメージデータ(印刷データ)に対応して、ヘッドユニット35内の複数のインクジェットヘッド100のノズル110から適宜インクが吐出され、記録用紙Pへの印刷が行われる。

[0030]

給紙装置5は、その駆動源となる給紙モータ51と、給紙モータ51の作動により回転する給紙ローラ52とを有している。

給紙ローラ52は、記録用紙Pの送り経路(記録用紙P)を挟んで上下に対向する従動ローラ52aと駆動ローラ52bとで構成され、駆動ローラ52bは給紙モータ51に連結されている。これにより、給紙ローラ52は、トレイ21に設置した多数枚の記録用紙Pを、印刷装置4に向かって1枚ずつ送り込めるようになっている。なお、トレイ21に代えて、記録用紙Pを収容する給紙カセットを着脱自在に装着し得るような構成であってもよい。

[0031]

制御部6は、例えば、パーソナルコンピュータ(PC)やディジタルカメラ(DC)等のホストコンピュータ8から入力された印刷データに基づいて、印刷装置4や給紙装置5等を制御することにより記録用紙Pに印刷処理を行うものである。また、制御部6は、操作パネル7の表示部にエラーメッセージ等を表示させ、あるいはLEDランプ等を点灯/点滅させるとともに、操作部から入力された各種スイッチの押下信号に基づいて、対応する処理を各部に実行させるものである。

[0032]

図2は、本発明のインクジェットプリンタの主要部を概略的に示すブロック図である。この図2において、本発明のインクジェットプリンタ1は、ホストコンピュータ8から入力された印刷データなどを受け取るインターフェース部(IF:Interface)9と、制御部6と、キャリッジモータ41と、キャリッジモータ41を駆動制御するキャリッジモータドライバ43と、給紙モータ51と、給紙モータ51を駆動制御する給紙モータドライバ53と、ヘッドユニット35と、ヘッドユニット35を駆動制御するヘッドドライバ33と、吐出異常検出手段10とを備える。なお、吐出異常検出手段10及びヘッドドライバ33については、詳細を後述する。

[0033]

この図2において、制御部6は、印刷処理や吐出異常検出処理などの各種処理

を実行するCPU(Central Processing Unit)61と、ホストコンピュータ8からIF9を介して入力される印刷データを図示しないデータ格納領域に格納する不揮発性半導体メモリの一種であるEEPROM(Electrically Erasable Programmable Read-Only Memory)(記憶手段)62と、後述する吐出異常検出処理などを実行する際に各種データを一時的に格納し、あるいは印刷処理などのアプリケーションプログラムを一時的に展開するRAM(Random Access Memory)63と、各部を制御する制御プログラム等を格納する不揮発性半導体メモリの一種であるPROM64とを備えている。なお、制御部6の各構成要素は、図示しないバスを介して電気的に接続されている。

[0034]

上述のように、印字手段3は、各色のインクに対応した複数のヘッドユニット35から構成され、この各ヘッドユニット35は、複数のノズル110と、これらの各ノズル110に対応する静電アクチュエータ120と(複数のインクジェットヘッド100)を備える。すなわち、ヘッドユニット35は、1組のノズル110及び静電アクチュエータ120を有してなるインクジェットヘッド(液滴吐出ヘッド)100を複数個備えた構成になっている。そして、ヘッドドライバ33は、各インクジェットヘッド100の静電アクチュエータ120を駆動して、インクの吐出タイミングを制御する駆動回路18と、切替手段23とから構成される(図16参照)。なお、インクジェットヘッド100及び静電アクチュエータ120の構成については後述する。

[0035]

また、制御部6には、図示しないが、例えば、インクカートリッジ31のインク残量、印字手段3の位置、温度、湿度等の印刷環境等を検出可能な各種センサが、それぞれ電気的に接続されている。

制御部6は、IF9を介して、ホストコンピュータ8から印刷データを入手すると、その印刷データをEEPROM62に格納する。そして、CPU61は、この印刷データに所定の処理を実行して、この処理データ及び各種センサからの入力データに基づいて、各ドライバ33、43、53に駆動信号を出力する。各ドライバ33、43、53を介してこれらの駆動信号が入力されると、ヘッドユ

ニット35の複数のインクジェットヘッド100に対応する静電アクチュエータ 120、印刷装置4のキャリッジモータ41及び給紙装置5がそれぞれ作動する 。これにより、記録用紙Pに印刷処理が実行される。

[0036]

次に、各ヘッドユニット35内の各インクジェットヘッド100の構造を説明する。図3は、図2に示すヘッドユニット35内の1つのインクジェットヘッド100の概略的な断面図(インクカートリッジ31などの共通部分を含む)であり、図4は、1色のインクに対応するヘッドユニット35の概略的な構成を示す分解斜視図であり、図5は、図3に示すインクジェットヘッド100を複数適用したヘッドユニット35のノズル面の一例を示す平面図である。なお、図3及び図4は、通常使用される状態とは上下逆に示されており、図5は、図3に示すインクジェットヘッド100を図中上方から見たときの平面図である。

[0037]

図3に示すように、ヘッドユニット35は、インク取り入れ口131、ダンパ室130及びインク供給チューブ311を介して、インクカートリッジ31に接続されている。ここで、ダンパ室130は、ゴムからなるダンパ132を備えている。このダンパ室130により、キャリッジ32が往復走行する際のインクの揺れ及びインク圧の変化を吸収することができ、これにより、ヘッドユニット35の各インクジェットヘッド100に所定量のインクを安定的に供給することができる。

[0038]

また、ヘッドユニット35は、シリコン基板140を挟んで、上側に同じくシリコン製のノズルプレート150と、下側にシリコンと熱膨張率が近いホウ珪酸ガラス基板(ガラス基板)160とがそれぞれ積層された3層構造をなしている。中央のシリコン基板140には、独立した複数のキャビティ(圧力室)141(図4では、7つのキャビティを示す)と、1つのリザーバ(共通インク室)143と、このリザーバ143を各キャビティ141に連通させるインク供給口(オリフィス)142としてそれぞれ機能する溝が形成されている。各溝は、例えば、シリコン基板140の表面からエッチング処理を施すことにより形成するこ

とができる。このノズルプレート150と、シリコン基板140と、ガラス基板 160とがこの順序で接合され、各キャビティ141、リザーバ143、各イン ク供給口142が区画形成されている。

[0039]

これらのキャビティ141は、それぞれ短冊状(直方体状)に形成されており、後述する振動板121の振動(変位)によりその容積が可変であり、この容積変化によりノズル(インクノズル)110からインク(液状材料)を吐出するよう構成されている。ノズルプレート150には、各キャビティ141の先端側の部分に対応する位置に、ノズル110が形成されており、これらが各キャビティ141に連通している。また、リザーバ143が位置しているガラス基板160の部分には、リザーバ143に連通するインク取入れ口131が形成されている。インクは、インクカートリッジ31からインク供給チューブ311、ダンパ室130を経てインク取入れ口131を通り、リザーバ143に供給される。リザーバ143に供給されたインクは、各インク供給口142を通って、独立した各キャビティ141に供給される。なお、各キャビティ141は、ノズルプレート150と、側壁(隔壁)144と、底壁121とによって、区画形成されている

[0040]

独立した各キャビティ141は、その底壁121が薄肉に形成されており、底壁121は、その面外方向(厚さ方向)、すなわち、図3において上下方向に弾性変形(弾性変位)可能な振動板(ダイヤフラム)として機能するように構成されている。したがって、この底壁121の部分を、以後の説明の都合上、振動板121と称して説明することもある(すなわち、以下、「底壁」と「振動板」のいずれにも符号121を用いる)。

[0041]

ガラス基板 1 6 0 のシリコン基板 1 4 0 側の表面には、シリコン基板 1 4 0 の 各キャビティ 1 4 1 に対応した位置に、それぞれ、浅い凹部 1 6 1 が形成されて いる。したがって、各キャビティ 1 4 1 の底壁 1 2 1 は、凹部 1 6 1 が形成され たガラス基板 1 6 0 の対向壁 1 6 2 の表面に、所定の間隙を介して対峙している 。すなわち、キャビティ141の底壁121と後述するセグメント電極122の間には、所定の厚さ(例えば、0.2ミクロン程度)の空隙が存在する。なお、前記凹部161は、例えば、エッチングなどで形成することができる。

[0042]

ここで、各キャビティ141の底壁(振動板)121は、ヘッドドライバ33から供給される駆動信号によってそれぞれ電荷を蓄えるための各キャビティ141側の共通電極124の一部を構成している。すなわち、各キャビティ141の振動板121は、それぞれ、後述する対応する静電アクチュエータ120の対向電極(コンデンサの対向電極)の一方を兼ねている。そして、ガラス基板160の凹部161の表面には、各キャビティ141の底壁121に対峙するように、それぞれ、共通電極124に対向する電極であるセグメント電極122が形成されている。また、図3に示すように、各キャビティ141の底壁121の表面は、シリコンの酸化膜(SiO2)からなる絶縁層123により覆われている。このように、各キャビティ141の底壁121、すなわち、振動板121と、それに対応する各セグメント電極122とは、キャビティ141の底壁121の図3中下側の表面に形成された絶縁層123と凹部161内の空隙とを介し、対向電極(コンデンサの対向電極)を形成(構成)している。したがって、振動板121と、セグメント電極122と、これらの間の絶縁層123及び空隙とにより、静電アクチュエータ120の主要部が構成される。

[0043]

図3に示すように、これらの対向電極の間に駆動電圧を印加するための駆動回路18を含むヘッドドライバ33は、制御部6から入力される印字信号(印字データ)に応じて、これらの対向電極間の充放電を行う。ヘッドドライバ(電圧印加手段)33の一方の出力端子は、個々のセグメント電極122に接続され、他方の出力端子は、シリコン基板140に形成された共通電極124の入力端子124aに接続されている。なお、シリコン基板140には不純物が注入されており、それ自体が導電性をもつために、この共通電極124の入力端子124aから底壁121の共通電極124に電圧を供給することができる。また、例えば、シリコン基板140の一方の面に金や銅などの導電性材料の薄膜を形成してもよ

い。これにより、低い電気抵抗で(効率良く)共通電極124に電圧(電荷)を 供給することができる。この薄膜は、例えば、蒸着あるいはスパッタリング等に よって形成すればよい。ここで、本実施形態では、例えば、シリコン基板140 とガラス基板160とを陽極接合によって結合(接合)させるので、その陽極結 合において電極として用いる導電膜をシリコン基板140の流路形成面側(図3 に示すシリコン基板140の上部側)に形成している。そして、この導電膜をそ のまま共通電極124の入力端子124aとして用いる。なお、本発明では、例 えば、共通電極124の入力端子124aを省略してもよく、また、シリコン基 板140とガラス基板160との接合方法は、陽極接合に限定されない。

$[0\ 0\ 4\ 4]$

図4に示すように、ヘッドユニット35は、複数のインクジェットヘッド100に対応する複数のノズル110が形成されたノズルプレート150と、複数のキャビティ141、複数のインク供給口142、1つのリザーバ143が形成されたシリコン基板(インク室基板)140と、絶縁層123とを備え、これらがガラス基板160を含む基体170に収納されている。基体170は、例えば、各種樹脂材料、各種金属材料等で構成されており、この基体170にシリコン基板140が固定、支持されている。

[0045]

なお、ノズルプレート150に形成された複数のノズル110は、図4では簡潔に示すためにリザーバ143に対して略並行に直線的に配列されているが、ノズル110の配列パターンはこの構成に限らず、通常は、例えば、図5に示すノズル配置パターンのように、段をずらして配置される。また、このノズル110間のピッチは、印刷精度(dpi)に応じて適宜設定され得るものである。なお、図5では、4色のインク(インクカートリッジ31)を適用した場合におけるノズル110の配置パターンを示している。

[0046]

図6は、図3のIII-III断面の駆動信号入力時の各状態を示す。ヘッドドライバ33から対向電極間に駆動電圧が印加されると、対向電極間にクーロン力が発生し、底壁(振動板)121は、初期状態(図6(a))に対して、セグメント

電極122側へ撓み、キャビティ141の容積が拡大する(図6 (b))。この 状態において、ヘッドドライバ33の制御により、対向電極間の電荷を急激に放 電させると、振動板121は、その弾性復元力によって図中上方に復元し、初期 状態における振動板121の位置を越えて上部に移動し、キャビティ141の容 積が急激に収縮する(図2(c))。このときキャビティ141内に発生する圧 縮圧力により、キャビティ141を満たすインク(液状材料)の一部が、このキャビティ141に連通しているインクノズル110からインク滴として吐出される。

[0047]

各キャビティ141の振動板121は、この一連の動作(ヘッドドライバ33の駆動信号によるインク吐出動作)により、次の駆動信号(駆動電圧)が入力されて再びインク滴を吐出するまでの間、減衰振動をしている。以下、この減衰振動を残留振動とも称する。振動板121の残留振動は、ノズル110やインク供給口142の形状、あるいはインク粘度等による音響抵抗 r と、流路内のインク重量によるイナータンスmと、振動板121のコンプライアンスCmとによって決定される固有振動周波数を有するものと想定される。

[0048]

上記想定に基づく振動板121の残留振動の計算モデルについて説明する。図7は、振動板121の残留振動を想定した単振動の計算モデルを示す回路図である。このように、振動板121の残留振動の計算モデルは、音圧Pと、上述のイナータンスm、コンプライアンスCm及び音響抵抗rとで表せる。そして、図7の回路に音圧Pを与えた時のステップ応答を体積速度uについて計算すると、次式が得られる。

[0049]

ページ: 20/

【数1】

$$u = \frac{P}{\omega \cdot m} e^{-\omega t} \cdot \sin \omega t \qquad (1)$$

$$\omega = \sqrt{\frac{1}{m \cdot C_m} - \alpha^2} \qquad (2)$$

$$\alpha = \frac{r}{2m} \qquad (3)$$

この式から得られた計算結果と、別途行ったインク吐出後の振動板121の残留振動の実験における実験結果とを比較する。図8は、振動板121の残留振動の実験値と計算値との関係を示すグラフである。この図8に示すグラフからも分かるように、実験値と計算値の2つの波形は、概ね一致している。

[0050]

さて、ヘッドユニット35の各インクジェットヘッド100では、前述したような吐出動作を行ったにもかかわらずノズル110からインク滴が正常に吐出されない現象、すなわち液滴の吐出異常が発生する場合がある。この吐出異常が発生する原因としては、後述するように、①キャビティ141内への気泡の混入、②ノズル110付近でのインクの乾燥・増粘(固着)、③ノズル110出口付近への紙粉付着、等が挙げられる。

[0051]

この吐出異常が発生すると、その結果としては、典型的にはノズル110から 液滴が吐出されないこと、すなわち液滴の不吐出現象が現れ、その場合、記録用 紙 P に印刷(描画)した画像における画素のドット抜けを生じる。また、吐出異常の場合には、ノズル110から液滴が吐出されたとしても、液滴の量が過少であったり、その液滴の飛行方向(弾道)がずれたりして適正に着弾しないので、 やはり画素のドット抜けとなって現れる。このようなことから、以下の説明では、液滴の吐出異常のことを単に「ドット抜け」という場合もある。

[0052]

以下において、図8に示す比較結果に基づいて、インクジェットヘッド100

のノズル110に発生する印刷処理時のドット抜け(吐出異常)現象(インク不 吐出現象)の原因別に、振動板121の残留振動の計算値と実験値がマッチ(概 ね一致)するように、音響抵抗r及び/又はイナータンスmの値を調整する。な お、ここでは、気泡混入、乾燥増粘及び紙粉付着の3種類について検討する。

[0053]

まず、ドット抜けの1つの原因であるキャビティ141内への気泡の混入について検討する。図9は、図3のキャビティ141内に気泡Bが混入した場合のノズル110付近の概念図である。この図9に示すように、発生した気泡Bは、キャビティ141の壁面に発生付着しているものと想定される(図9では、気泡Bの付着位置の一例として、気泡Bがノズル110付近に付着している場合を示す)。

[0054]

このように、キャビティ141内に気泡Bが混入した場合には、キャビティ141内を満たすインクの総重量が減り、イナータンスmが低下するものと考えられる。また、気泡Bは、キャビティ141の壁面に付着しているので、その径の大きさだけノズル110の径が大きくなったような状態となり、音響抵抗 r が低下するものと考えられる。

[0055]

したがって、インクが正常に吐出された図8の場合に対して、音響抵抗 r、イナータンスmを共に小さく設定して、気泡混入時の残留振動の実験値とマッチングすることにより、図10のような結果(グラフ)が得られた。図8及び図10のグラフから分かるように、キャビティ141内に気泡が混入した場合には、正常吐出時に比べて周波数が高くなる特徴的な残留振動波形が得られる。なお、音響抵抗 r の低下などにより、残留振動の振幅の減衰率も小さくなり、残留振動は、その振幅をゆっくりと下げていることも確認することができる。

[0056]

次に、ドット抜けのもう1つの原因であるノズル110付近でのインクの乾燥 (固着、増粘)について検討する。図11は、図3のノズル110付近のインク が乾燥により固着した場合のノズル110付近の概念図である。この図11に示 すように、ノズル110付近のインクが乾燥して固着した場合、キャビティ14 1内のインクは、キャビティ141内に閉じこめられたような状況となる。この ように、ノズル110付近のインクが乾燥、増粘した場合には、音響抵抗 r が増 加するものと考えられる。

[0057]

したがって、インクが正常に吐出された図8の場合に対して、音響抵抗 r を大きく設定して、ノズル110付近のインク乾燥固着(増粘)時の残留振動の実験値とマッチングすることにより、図12のような結果(グラフ)が得られた。なお、図12に示す実験値は、数日間図示しないキャップを装着しない状態でヘッドユニット35を放置し、キャビティ141内のノズル110付近のインクが乾燥、増粘したことによりインクを吐出することができなくなった(インクが固着した)状態における振動板121の残留振動を測定したものである。図8及び図12のグラフから分かるように、ノズル110付近のインクが乾燥により固着した場合には、正常吐出時に比べて周波数が極めて低くなるとともに、残留振動が過減衰となる特徴的な残留振動波形が得られる。これは、インク滴を吐出するために振動板121が図3中下方に引き寄せられることによって、キャビティ141内にリザーバ143からインクが流入した後に、振動板121が図3中上方に移動するときに、キャビティ141内のインクの逃げ道がないために、振動板121が急激に振動できなくなるため(過減衰となるため)である。

[0058]

次に、ドット抜けのさらにもう1つの原因であるノズル110出口付近への紙粉付着について検討する。図13は、図3のノズル110出口付近に紙粉が付着した場合のノズル110付近の概念図である。この図13に示すように、ノズル110の出口付近に紙粉が付着した場合、キャビティ141内から紙粉を介してインクが染み出してしまうとともに、ノズル110からインクを吐出することができなくなる。このように、ノズル110の出口付近に紙粉が付着し、ノズル110からインクが染み出している場合には、振動板121からみてキャビティ141内及び染み出し分のインクが正常時よりも増えることにより、イナータンスmが増加するものと考えられる。また、ノズル110の出口付近に付着した紙粉

の繊維によって音響抵抗rが増大するものと考えられる。

[0059]

したがって、インクが正常に吐出された図8の場合に対して、イナータンスm、音響抵抗rを共に大きく設定して、ノズル110の出口付近への紙粉付着時の残留振動の実験値とマッチングすることにより、図14のような結果(グラフ)が得られた。図8及び図14のグラフから分かるように、ノズル110の出口付近に紙粉が付着した場合には、正常吐出時に比べて周波数が低くなる特徴的な残留振動波形が得られる(ここで、紙粉付着の場合、インクの乾燥の場合よりは、残留振動の周波数が高いことも、図12及び図14のグラフから分かる。)。なお、図15は、この紙粉付着前後におけるノズル110の状態を示す写真である。ノズル110の出口付近に紙粉が付着すると、紙粉に沿ってインクがにじみ出している状態を、図15(b)から見出すことができる。

[0060]

ここで、ノズル110付近のインクが乾燥して増粘した場合と、ノズル110の出口付近に紙粉が付着した場合とでは、いずれも正常にインク滴が吐出された場合に比べて減衰振動の周波数が低くなっている。これら2つのドット抜け(インク不吐出:吐出異常)の原因を振動板121の残留振動の波形から特定するために、例えば、減衰振動の周波数や周期、位相において所定のしきい値を持って比較するか、あるいは、残留振動(減衰振動)の周期変化や振幅変化の減衰率から特定することができる。このようにして、各インクジェットヘッド100におけるノズル110からのインク滴が吐出されたときの振動板121の残留振動の変化、特に、その周波数の変化によって、各インクジェットヘッド100の吐出異常を検出することができる。また、その場合の残留振動の周波数を正常吐出時の残留振動の周波数と比較することにより、吐出異常の原因を特定することもできる。

[0061]

次に、本発明の吐出異常検出手段10について説明する。図16は、図2に示す吐出異常検出手段10の概略的なブロック図である。この図16に示すように、本発明の吐出異常検出手段10は、発振回路11と、F/V変換回路12と、

波形整形回路 1 5 とから構成される残留振動検出手段 1 6 と、この残留振動検出手段 1 6 によって検出された残留振動波形データから周期や振幅などを計測する計測手段 1 7 によって計測された周期などに基づいてインクジェットヘッド 1 0 0 の吐出異常を判定する判定手段 2 0 とを備えている。吐出異常検出手段 1 0 では、残留振動検出手段 1 6 は、静電アクチュエータ 1 2 0 の振動板 1 2 1 の残留振動に基づいて、発振回路 1 1 が発振し、その発振周波数から F / V 変換回路 1 2 及び波形整形回路 1 5 において振動波形を形成して、検出する。そして、計測手段 1 7 は、検出された振動波形に基づいて残留振動の周期などを計測し、判定手段 2 0 は、計測された残留振動の周期など(残留振動の振動パターン)に基づいて、ヘッドユニット 3 5 内のインクジェットヘッド 1 0 0 の吐出異常を検出、判定する。以下、吐出異常検出手段 1 0 の各構成要素について説明する。

[0062]

まず、静電アクチュエータ120の振動板121の残留振動の周波数(振動数)を検出するために、発振回路11を用いる方法を説明する。図17は、図3の静電アクチュエータ120を平行平板コンデンサとした場合の概念図であり、図18は、図3の静電アクチュエータ120から構成されるコンデンサを含む発振回路11の回路図である。なお、図18に示す発振回路11は、シュミットトリガのヒステリシス特性を利用するCR発振回路であるが、本発明はこのようなCR発振回路に限定されず、アクチュエータ(振動板を含む)の静電容量成分(コンデンサC)を用いる発振回路であればどのような発振回路でもよい。発振回路11は、例えば、LC発振回路を利用した構成としてもよい。また、本実施形態では、シュミットトリガインバータを用いた例を示して説明しているが、例えば、インバータを3段用いたCR発振回路を構成してもよい。

[0063]

図3に示すインクジェットヘッド100では、上述のように、振動板121と 非常にわずかな間隔(空隙)を隔てたセグメント電極122とが対向電極を形成 する静電アクチュエータ120を構成している。この静電アクチュエータ120 は、図17に示すような平行平板コンデンサと考えることができる。このコンデ

[0064]

【数2】

$$C(x) = \varepsilon_0 \cdot \varepsilon_r \frac{S}{g - x} \qquad (F)$$

なお、式(4)のxは、図17に示すように、振動板121の残留振動によって 生じる振動板121の基準位置からの変位量を示している。

[0065]

[0066]

また、一般に、液滴吐出装置(本実施形態では、インクジェットプリンタ 1)の解像度が高まるにつれて、吐出されるインク滴(インクドット)が微小化されるので、この静電アクチュエータ 1 2 0 は、高密度化、小型化される。それによって、インクジェットヘッド 1 0 0 の振動板 1 2 1 の表面積 S が小さくなり、小さな静電アクチュエータ 1 2 0 の が構成される。さらに、インク滴吐出による残留振動によって変化する静電アクチュエータ 1 2 0 の 静電容量の変化量は非常に小さな値となる。

[0067]

この静電アクチュエータ120の静電容量の変化量(残留振動の振動パターンにより異なる)を検出するために、以下のような方法、すなわち、静電アクチュエータ120の静電容量に基づいた図18のような発振回路を構成し、発振された信号に基づいて残留振動の周波数(周期)を解析する方法を用いる。図18に示す発振回路11は、静電アクチュエータ120から構成されるコンデンサ(C)と、シュミットトリガインバータ111と、抵抗素子(R)112とから構成される。

[0068]

シュミットトリガインバータ111の出力信号がHighレベルの場合、抵抗素子112を介してコンデンサCを充電する。コンデンサCの充電電圧(振動板121とセグメント電極122との間の電位差)が、シュミットトリガインバータ111の入力スレッショルド電圧 V_T +に達すると、シュミットトリガインバータ111の出力信号がLowレベルに反転する。そして、シュミットトリガインバータ111の出力信号がLowレベルとなると、抵抗素子112を介してコンデンサCに充電されていた電荷が放電される。この放電によりコンデンサCの電圧がシュミットトリガインバータ111の入力スレッショルド電圧 V_T -に達すると、シュミットトリガインバータ111の出力信号が再びHighレベルに反転する。以降、この発振動作が繰り返される。

[0069]

ここで、上述のそれぞれの現象(気泡混入、乾燥、紙粉付着、及び正常吐出)におけるコンデンサCの静電容量の時間変化を検出するためには、この発振回路 11による発振周波数は、残留振動の周波数が最も高い気泡混入時(図10参照)の周波数を検出することができる発振周波数に設定される必要がある。そのため、発振回路11の発振周波数は、例えば、検出する残留振動の周波数の数倍から数十倍以上、すなわち、気泡混入時の周波数よりおよそ1桁以上高い周波数となるようにしなければならない。この場合、好ましくは、気泡混入時の残留振動の周波数が正常吐出の場合と比較して高い周波数を示すため、気泡混入時の残留振動周波数が検知可能な発振周波数に設定するとよい。そうしなければ、吐出異

常の現象に対して正確な残留振動の周波数を検出することができない。そのため、本実施形態では、発振周波数に応じて、発振回路11のCRの時定数を設定している。このように、発振回路11の発振周波数を高く設定することにより、この発振周波数の微小変化に基づいて、より正確な残留振動波形を検出することができる。

[0070]

なお、発振回路 1 1 から出力される発振信号の発振周波数の周期(パルス)毎に、測定用のカウントパルス(カウンタ)を用いてそのパルスをカウントし、初期ギャップ g 0 におけるコンデンサ C の静電容量で発振させた場合の発振周波数のパルスのカウント量を測定したカウント量から減算することにより、残留振動波形について発振周波数毎のデジタル情報が得られる。これらのデジタル情報に基づいて、デジタル/アナログ(D/A)変換を行うことにより、概略的な残留振動波形が生成され得る。このような方法を用いてもよいが、測定用のカウントパルス(カウンタ)には、発振周波数の微小変化を測定することができる高い周波数(高解像度)のものが必要となる。このようなカウントパルス(カウンタ)は、コストをアップさせるため、本発明の吐出異常検出手段 1 0 では、図 1 9 に示す F / V 変換回路 1 2 を用いている。

[0071]

図19は、図16に示す吐出異常検出手段10のF/V変換回路12の回路図である。この図19に示すように、F/V変換回路12は、3つのスイッチSW1、SW2、SW3と、2つのコンデンサC1、C2と、抵抗素子R1と、定電流Isを出力する定電流源13と、バッファ14とから構成される。このF/V変換回路12の動作を図20のタイミングチャート及び図21のグラフを用いて説明する。

[0072]

まず、図20のタイミングチャートに示す充電信号、ホールド信号及びクリア信号の生成方法について説明する。充電信号は、発振回路11の発振パルスの立ち上がりエッジから固定時間 t r を設定し、その固定時間 t r の間H i g h レベルとなるようにして生成される。ホールド信号は、充電信号の立ち上がりエッジ

に同期して立ち上がり、所定の固定時間だけHighレベルに保持され、Lowレベルに立ち下がるようにして生成される。クリア信号は、ホールド信号の立ち下がりエッジに同期して立ち上がり、所定の固定時間だけHighレベルに保持され、Lowレベルに立ち下がるようにして生成される。なお、後述するように、コンデンサC1からコンデンサC2への電荷の移動及びコンデンサC1の放電は瞬時に行われるので、ホールド信号及びクリア信号のパルスは、発振回路11の出力信号の次の立ち上がりエッジまでにそれぞれ1つのパルスが含まれればよく、上記のような立ち上がりエッジ、立ち下がりエッジに限定されない。

[0073]

[0074]

次いで、図22を参照して、図16に示す波形整形回路15の構成を説明する。図22は、図16の波形整形回路15の回路構成を示す回路図である。この波形整形回路15は、残留振動波形を矩形波として判定手段20に出力するものである。この図22に示すように、波形整形回路15は、2つのコンデンサC3(DC成分除去手段)、C4と、2つの抵抗素子R2、R3と、2つの直流電圧源Vref1、Vref2と、増幅器(オペアンプ)151と、比較器(コンパレ

ータ) 152とから構成される。なお、残留振動波形の波形整形処理において、 検出される波高値をそのまま出力して、残留振動波形の振幅を計測するように構 成してもよい。

[0075]

F/V変換回路12のバッファ14の出力には、静電アクチュエータ120の初期ギャップg0に基づくDC成分(直流成分)の静電容量成分が含まれている。この直流成分は各インクジェットヘッド100によりばらつきがあるため、コンデンサC3は、この静電容量の直流成分を除去するものである。そして、コンデンサC3は、バッファ14の出力信号におけるDC成分を除去し、残留振動のAC成分のみをオペアンプ151の反転入力端子に出力する。

[0076]

オペアンプ151は、直流成分が除去されたF/V変換回路12のバッファ14の出力信号を反転増幅するとともに、その出力信号の高域を除去するためのローパスフィルタを構成している。なお、このオペアンプ151は、単電源回路を想定している。オペアンプ151は、2つの抵抗素子R2、R3による反転増幅器を構成し、入力された残留振動(交流成分)は、-R3/R2倍に振幅される

[0077]

また、オペアンプ151の単電源動作のために、その非反転入力端子に接続された直流電圧源Vref1によって設定された電位を中心に振動する、増幅された振動板121の残留振動波形が出力される。ここで、直流電圧源Vref1は、オペアンプ151が単電源で動作可能な電圧範囲の1/2程度に設定されている。さらに、このオペアンプ151は、2つのコンデンサC3、C4により、カットオフ周波数1/(2 π ×С4×R3)となるローパスフィルタを構成している。そして、直流成分を除去された後に増幅された振動板121の残留振動波形は、図20のタイミングチャートに示すように、次段の比較器(コンパレータ)152でもう一つの直流電圧源Vref2の電位と比較され、その比較結果が矩形波として波形整形回路15から出力される。なお、直流電圧源Vref2は、もう一つの直流電圧源Vref1を共用してもよい。

[0078]

次に、図20に示すタイミングチャートを参照して、図19のF/V変換回路12及び波形整形回路22の動作を説明する。上述のように生成された充電信号、クリア信号及びホールド信号に基づいて、図19に示すF/V変換回路12は動作する。図20のタイミングチャートにおいて、静電アクチュエータ120の駆動信号がヘッドドライバ33を介してヘッドユニット35のインクジェットヘッド100に入力されると、図6(b)に示すように、静電アクチュエータ120の振動板121がセグメント電極122側に引きつけられ、この駆動信号の立ち下がりエッジに同期して、図6中上方に向けて急激に収縮する(図6(c)参照)。

[0079]

この駆動信号の立ち下がりエッジに同期して、駆動回路18と吐出異常検出手段10とを切り替える駆動/検出切替信号がHighレベルとなる。この駆動/検出切替信号は、対応するインクジェットヘッド100の駆動休止期間中、Highレベルに保持され、次の駆動信号が入力される前に、Lowレベルになる。この駆動/検出切替信号がHighレベルの間、図18の発振回路11は、静電アクチュエータ120の振動板121の残留振動に対応して発振周波数を変えながら発振している。

[0080]

上述のように、駆動信号の立ち下がりエッジ、すなわち、発振回路11の出力信号の立ち上がりエッジから、残留振動の波形がコンデンサC1に充電可能な範囲を超えないように予め設定された固定時間 t r だけ経過するまで、充電信号は、Highレベルに保持される。なお、充電信号がHighレベルである間、スイッチSW1はオフの状態である。

[0081]

 わち、発振回路11の出力信号の次のパルスの立ち上がりエッジに同期してHi ghレベルになるまでの間、コンデンサC1は充電される。

[0082]

充電信号がHighVベルになると、スイッチSW1はオフ(オープン)となり、定電流源13とコンデンサC1は切り離される。このとき、コンデンサC1には、充電信号がLowVベルの期間 t1の間に充電された電位(すなわち、理想的には $Is \times t1/C1$ (V))が保存されている。この状態で、ホールド信号がHighVベルになると、スイッチSW2がオンされ(図19参照)、コンデンサC1とコンデンサC2が、抵抗素FR1を介して接続される。スイッチSW2の接続後、2つのコンデンサC1、C2の充電電位差によって互いに充放電が行われ、2つのコンデンサC1、C2の電位差が概ね等しくなるように、コンデンサC1からコンデンサC2に電荷が移動する。

[0083]

ここで、コンデンサC1の静電容量に対してコンデンサC2の静電容量は、約1/10以下程度に設定されている。そのため、2つのコンデンサC1、C2間の電位差によって生じる充放電で移動する(使用される)電荷量は、コンデンサC1に充電されている電荷の1/10以下となる。したがって、コンデンサC1からコンデンサC2へ電荷が移動した後においても、コンデンサC1の電位差は、それほど変化しない(それほど下がらない)。なお、図19のF/V変換回路12では、コンデンサC2に充電されるときF/V変換回路12の配線のインダクタンス等により充電電位が急激に跳ね上がらないようにするために、抵抗素子R1とコンデンサC2により一次のローパスフィルタを構成している。

[0084]

コンデンサC2にコンデンサC1の充電電位と概ね等しい充電電位が保持された後、ホールド信号がL0 w Vベルとなり、コンデンサC1はコンデンサC2から切り離される。さらに、クリア信号がHighVベルとなり、スイッチSW3がオンすることにより、コンデンサC1がグラウンドGNDに接続され、コンデンサC1に充電されていた電荷がV0となるように放電動作が行なわれる。コンデンサV1の放電後、クリア信号はV1の以下なり、スイッチV1の放電後、クリア信号はV1の放電後、クリア信号はV1の

ることにより、コンデンサC1の図19中上部の電極がグラウンドGNDから切り離され、次の充電信号が入力されるまで、すなわち、充電信号がLowレベルになるまで待機している。

[0085]

コンデンサC2に保持されている電位は、充電信号の立ち上がりのタイミング毎、すなわち、コンデンサC2への充電完了のタイミング毎に更新され、バッファ14を介して振動板121の残留振動波形として図22の波形整形回路15に出力される。したがって、発振回路11の発振周波数が高くなるように静電アクチュエータ120の静電容量(この場合、残留振動による静電容量の変動幅も考慮しなければならない)と抵抗素子112の抵抗値を設定すれば、図20のタイミングチャートに示すコンデンサC2の電位(バッファ14の出力)の各ステップ(段差)がより詳細になるので、振動板121の残留振動による静電容量の時間的な変化をより詳細に検出することが可能となる。

[0086]

以下同様に、充電信号がLowレベル→Highレベル→Lowレベル・・・と繰り返し、上記所定のタイミングでコンデンサC2に保持されている電位がバッファ14を介して波形整形回路15に出力される。波形整形回路15では、バッファ14から入力された電圧信号(図20のタイミングチャートにおいて、コンデンサC2の電位)の直流成分がコンデンサC3によって除去され、抵抗素子R2を介してオペアンプ151の反転入力端子に入力される。入力された残留振動の交流(AC)成分は、このオペアンプ151によって反転増幅され、コンパレータ152の一方の入力端子に出力される。コンパレータ152は、予め直流電圧源Vref2によって設定されている電位(基準電圧)と、残留振動波形(交流成分)の電位とを比較し、矩形波を出力する(図20のタイミングチャートにおける比較回路の出力)。

[0087]

次に、インクジェットヘッド100のインク滴吐出動作(駆動)と吐出異常検 出動作(駆動休止)との切り替えタイミングについて説明する。図23は、駆動 回路18と吐出異常検出手段10との切替手段23の概略を示すブロック図であ る。なお、この図23では、図16に示すヘッドドライバ33内の駆動回路18をインクジェットヘッド100の駆動回路として説明する。図20のタイミングチャートでも示したように、本発明の吐出異常検出処理は、インクジェットヘッド100の駆動信号と駆動信号の間、すなわち、駆動休止期間に実行されている。

[0088]

図23において、静電アクチュエータ120を駆動するために、切替手段23 は、最初は駆動回路18側に接続されている。上述のように、駆動回路18から駆動信号(電圧信号)が振動板121に入力されると、静電アクチュエータ120が駆動し、振動板121は、セグメント電極122側に引きつけられ、印加電圧が0になるとセグメント電極122から離れる方向に急激に変位して振動(残留振動)を開始する。このとき、インクジェットヘッド100のノズル110からインク滴が吐出される。

[0089]

駆動信号のパルスが立ち下がると、その立ち下がりエッジに同期して駆動/検 出切替信号(図20のタイミングチャート参照)が切替手段23に入力され、切 替手段23は、駆動回路18から吐出異常検出手段(検出回路)10側に切り替 えられ、静電アクチュエータ120(発振回路11のコンデンサとして利用)は 吐出異常検出手段10と接続される。

[0090]

そして、吐出異常検出手段10は、上述のような吐出異常(ドット抜け)の検 出処理を実行し、波形整形回路15の比較器152から出力される振動板121 の残留振動波形データ(矩形波データ)を計測手段17によって残留振動波形の 周期や振幅などに数値化する。本実施形態では、計測手段17は、残留振動波形 データから特定の振動周期を測定し、その計測結果(数値)を判定手段20に出 力する。

[0091]

具体的には、計測手段17は、比較器152の出力信号の波形(矩形波)の最初の立ち上がりエッジから次の立ち上がりエッジまでの時間(残留振動の周期)

を計測するために、図示しないカウンタを用いて基準信号(所定の周波数)のパルスをカウントし、そのカウント値から残留振動の周期(特定の振動周期)を計測する。なお、計測手段17は、最初の立ち上がりエッジから次の立ち下がりエッジまでの時間を計測し、その計測された時間(すなわち、半周期)の2倍の時間を残留振動の周期として判定手段20に出力してもよい。以下、このようにして得られた残留振動の周期をTwとする。

[0092]

判定手段20は、計測手段17によって計測された残留振動波形の特定の振動周期など(計測結果)に基づいて、ノズルの吐出異常の有無、吐出異常の原因、比較偏差量などを判定し、その判定結果を制御部6に出力する。制御部6は、EEPROM(記憶手段)62の所定の格納領域にこの判定結果を保存する。そして、駆動回路18からの次の駆動信号が入力されるタイミングで、駆動/検出切替信号が切替手段23に再び入力され、駆動回路18と静電アクチュエータ120とを接続する。駆動回路18は、一旦駆動電圧を印加するとグラウンド(GND)レベルを維持するので、切替手段23によって上記のような切り替えを行っている(図20のタイミングチャート参照)。これにより、駆動回路18からの外乱などに影響されることなく、静電アクチュエータ120の振動板121の残留振動波形を正確に検出することができる。

[0093]

なお、本発明では、残留振動波形データは、比較器152により矩形波化したものに限定されない。例えば、オペアンプ151から出力された残留振動振幅データは、比較器152により比較処理を行うことなく、A/D変換を行う計測手段17によって随時数値化され、その数値化されたデータに基づいて、判定手段20により吐出異常の有無などを判定し、この判定結果を記憶手段62に記憶するように構成してもよい。

[0094]

また、ノズル110のメニスカス(ノズル110内インクが大気と接する面)は、振動板121の残留振動に同期して振動するため、インクジェットヘッド100は、インク滴の吐出動作後、このメニスカスの残留振動が音響抵抗rによっ

て概ね決まった時間で減衰するのを待ってから(所定の時間待機して)、次の吐出動作を行っている。本発明では、この待機時間を有効に利用して振動板121 の残留振動を検出しているので、インクジェットヘッド100の駆動に影響しない吐出異常検出を行うことができる。すなわち、インクジェットプリンタ1(液滴吐出装置)のスループットを低下させることなく、インクジェットヘッド100のノズル110の吐出異常検出処理を実行することができる。

[0095]

上述のように、インクジェットヘッド100のキャビティ141内に気泡が混入した場合には、正常吐出時の振動板121の残留振動波形に比べて、周波数が高くなるので、その周期は逆に正常吐出時の残留振動の周期よりも短くなる。また、ノズル110付近のインクが乾燥により増粘、固着した場合には、残留振動が過減衰となり、正常吐出時の残留振動波形に比べて、周波数が相当低くなるので、その周期は正常吐出時の残留振動の周期よりもかなり長くなる。また、ノズル110の出口付近に紙粉が付着した場合には、残留振動の周波数は、正常吐出時の残留振動の周波数は、しかし、インクの乾燥時の残留振動の周波数よりも高くなるので、その周期は、正常吐出時の残留振動の周期よりも長く、インク乾燥時の残留振動の周期よりも短くなる。

[0096]

したがって、正常吐出時の残留振動の周期として、所定の範囲Trを設け、また、ノズル110出口に紙粉が付着した場合における残留振動の周期と、ノズル110の出口付近でインクが乾燥した場合における残留振動の周期とを区別するために、所定のしきい値(所定の閾値)T1を設定することにより、このようなインクジェットヘッド100の吐出異常の原因を決定することができる。判定手段20は、上記吐出異常検出処理によって検出された残留振動波形の周期Twが所定の範囲の周期であるか否か、また、所定のしきい値よりも長いか否かを判定し、それによって、吐出異常の原因を判定する。

[0097]

次に、本発明の液滴吐出装置の動作を、上述のインクジェットプリンタ1の構成に基づいて説明する。まず、1つのインクジェットヘッド100のノズル11

0に対する吐出異常検出処理(駆動/検出切替処理を含む)について説明する。 図24は、本発明の吐出異常検出・判定処理を示すフローチャートである。印刷 される印字データ(フラッシング動作における吐出データでもよい)がホストコ ンピュータ8からインターフェース(IF)9を介して制御部6に入力されると 、所定のタイミングでこの吐出異常検出処理が実行される。なお、説明の都合上 、この図24に示すフローチャートでは、1つのインクジェットヘッド100、 すなわち、1つのノズル110の吐出動作に対応する吐出異常検出処理を示す。

[0098]

まず、印字データ(吐出データ)に対応する駆動信号がヘッドドライバ33の駆動回路18から入力され、それにより、図20のタイミングチャートに示すような駆動信号のタイミングに基づいて、静電アクチュエータ120の両電極間に駆動信号(電圧信号)が印加される(ステップS101)。そして、制御部6は、駆動/検出切替信号に基づいて、吐出したインクジェットヘッド100が駆動休止期間であるか否かを判断する(ステップS102)。ここで、駆動/検出切替信号は、駆動信号の立ち下がりエッジに同期してHighレベルとなり(図20参照)、制御部6から切替手段23に入力される。

[0099]

駆動/検出切替信号が切替手段23に入力されると、切替手段23によって、 静電アクチュエータ120、すなわち、発振回路11を構成するコンデンサは、 駆動回路18から切り離され、吐出異常検出手段10(検出回路)側、すなわち 、残留振動検出手段16の発振回路11に接続される(ステップS103)。そ して、後述する残留振動検出処理を実行し(ステップS104)、計測手段17 は、この残留振動検出処理において検出された残留振動波形データから所定の数 値を計測する(ステップS105)。ここでは、上述のように、計測手段17は 、残留振動波形データからその残留振動の周期を計測する。

[0100]

次いで、判定手段20によって、計測手段の計測結果に基づいて、後述する吐出異常判定処理が実行され(ステップS106)、その判定結果を制御部6のEEPROM(記憶手段)62の所定の格納領域に保存する(ステップS107)

。そして、ステップS 1 0 8 においてインクジェットヘッド 1 0 0 が駆動期間であるか否かが判断される。すなわち、駆動休止期間が終了して、次の駆動信号が入力されたか否かが判断され、次の駆動信号が入力されるまで、このステップS 1 0 8 で待機している。

[0101]

次の駆動信号のパルスが入力されるタイミングで、駆動信号の立ち上がりエッジに同期して駆動/検出切替信号がLowレベルになると(ステップS108で「yes」)、切替手段23は、静電アクチュエータ120との接続を、吐出異常検出手段(検出回路)10から駆動回路18に切り替えて(ステップS109)、この吐出異常検出処理を終了する。

$[0 \ 1 \ 0 \ 2]$

なお、図24に示すフローチャートでは、計測手段17が残留振動検出処理(残留振動検出手段16)によって検出された残留振動波形から周期を計測する場 合について示したが、本発明はこのような場合に限定されず、例えば、計測手段 17は、残留振動検出処理において検出された残留振動波形データから、残留振 動波形の位相差や振幅などの計測を行ってもよい。

[0103]

次に、図24に示すフローチャートのステップS104における残留振動検出処理(サブルーチン)について説明する。図25は、本発明の残留振動検出処理を示すフローチャートである。上述のように、切替手段23によって、静電アクチュエータ120と発振回路11とを接続すると(図24のステップS103)、発振回路11は、CR発振回路を構成し、静電アクチュエータ120の静電容量の変化(静電アクチュエータ120の振動板121の残留振動)に基づいて、発振する(ステップS201)。

[0104]

上述のタイミングチャートなどに示すように、発振回路11の出力信号(パルス信号)に基づいて、F/V変換回路12において、充電信号、ホールド信号及びクリア信号が生成され、これらの信号に基づいてF/V変換回路12によって発振回路11の出力信号の周波数から電圧に変換するF/V変換処理が行われ(

ステップS 2 0 2)、F/V変換回路 1 2 から振動板 1 2 1 の残留振動波形データが出力される。F/V変換回路 1 2 から出力された残留振動波形データは、波形整形回路 1 5 のコンデンサC 3 により、D C 成分(直流成分)が除去され(ステップS 2 0 3)、オペアンプ 1 5 1 により、D C 成分が除去された残留振動波形(A C 成分)が増幅される(ステップS 2 0 4)。

[0105]

増幅後の残留振動波形データは、所定の処理により波形整形され、パルス化される(ステップS205)。すなわち、本実施形態では、比較器152において、直流電圧源Vref2によって設定された電圧値(所定の電圧値)とオペアンプ151の出力電圧とが比較される。比較器152は、この比較結果に基づいて、2値化された波形(矩形波)を出力する。この比較器152の出力信号は、残留振動検出手段16の出力信号であり、吐出異常判定処理を行うために、計測手段17に出力され、この残留振動検出処理が終了する。

[0106]

次に、図24に示すフローチャートのステップS106における吐出異常判定処理(サブルーチン)について説明する。図26は、本発明の制御部6及び判定手段20によって実行される吐出異常判定処理を示すフローチャートである。判定手段20は、上述の計測手段17によって計測された周期などの計測データ(計測結果)に基づいて、該当するインクジェットヘッド100からインク滴が正常に吐出したか否か、正常に吐出していない場合、すなわち、吐出異常の場合にはその原因が何かを判定する。

[0107]

まず、制御部6は、EEPROM62に保存されている残留振動の周期の所定の範囲Tr及び残留振動の周期の所定のしきい値T1を判定手段20に出力する。残留振動の周期の所定の範囲Trは、正常吐出時の残留振動周期に対して、正常と判定できる許容範囲を持たせたものである。これらのデータは、判定手段20の図示しないメモリに格納され、以下の処理が実行される。

[0108]

図24のステップS105において計測手段17によって計測された計測結果

が判定手段20に入力される(ステップS301)。ここで、本実施形態では、 計測結果は、振動板121の残留振動の周期Twである。

ステップS202において、判定手段20は、残留振動の周期Twが存在するか否か、すなわち、吐出異常検出手段10によって残留振動波形データが得られなかったか否かを判定する。残留振動の周期Twが存在しないと判定された場合には、判定手段20は、そのインクジェットヘッド100のノズル110は吐出異常検出処理においてインク滴を吐出していない未吐出ノズルであると判定する(ステップS306)。また、残留振動波形データが存在すると判定された場合には、続いて、ステップS303において、判定手段20は、その周期Twが正常吐出時の周期と認められる所定の範囲Tr内にあるか否かを判定する。

[0109]

残留振動の周期Twが所定の範囲Tr内にあると判定された場合には、対応するインクジェットヘッド100からインク滴が正常に吐出されたことを意味し、判定手段20は、そのインクジェットヘッド100のノズル110は正常にインク滴と吐出した(正常吐出)と判定する(ステップS307)。また、残留振動の周期Twが所定の範囲Tr内にないと判定された場合には、続いて、ステップS304において、判定手段20は、残留振動の周期Twが所定の範囲Trよりも短いか否かを判定する。

[0110]

残留振動の周期Twが所定の範囲Trよりも短いと判定された場合には、残留振動の周波数が高いことを意味し、上述のように、インクジェットヘッド100のキャビティ141内に気泡が混入しているものと考えられ、判定手段20は、そのインクジェットヘッド100のキャビティ141に気泡が混入しているもの(気泡混入)と判定する(ステップS308)。

[0111]

また、残留振動の周期Twが所定の範囲Trよりも長いと判定された場合には、続いて、判定手段20は、残留振動の周期Twが所定のしきい値T1よりも長いか否かを判定する(ステップS305)。残留振動の周期Twが所定のしきい値T1よりも長いと判定された場合には、残留振動が過減衰であると考えられ、

判定手段20は、そのインクジェットヘッド100のノズル110付近のインクが乾燥により増粘しているもの(乾燥)と判定する(ステップS309)。

[0112]

そして、ステップS305において、残留振動の周期Twが所定のしきい値T1よりも短いと判定された場合には、この残留振動の周期Twは、Tr<Tw<T1を満たす範囲の値であり、上述のように、乾燥よりも周波数が高いノズル110の出口付近への紙粉付着であると考えられ、判定手段20は、そのインクジェットヘッド100のノズル110出口付近に紙粉が付着しているもの(紙粉付着)と判定する(ステップS310)。

このように、判定手段 20 によって、対象となるインクジェットヘッド 100 の正常吐出あるいは吐出異常の原因などが判定されると(ステップ S306~S310)、その判定結果は、制御部 6 に出力され、この吐出異常判定処理を終了する。

[0113]

以上のように、本実施形態の液滴吐出装置(インクジェットプリンタ1)及び液滴吐出ヘッドの吐出異常検出・判定方法では、静電アクチュエータ120の駆動により、液滴吐出ヘッド100から液体を液滴として吐出する動作を行った際に、残留振動検出手段16は、この静電アクチュエータ120によって変位させられた振動板121の残留振動を検出し、計測手段17は、残留振動検出手段16によって検出された残留振動に基づいて、振動板121の残留振動の振動パターン(例えば、残留振動波形の周期や振幅など)を計測し、その計測結果に基づいて、判定手段20は、液滴が正常に吐出されたか、あるいは吐出されなかったか(吐出異常)、吐出異常の場合には、その原因が何であるかを判定することとした。

[0114]

したがって、本発明の液滴吐出装置、及び、液滴吐出ヘッドの吐出異常検出・ 判定方法によって、従来のドット抜け検出方法(例えば、光学式検出方法など) を備える液滴吐出ヘッド、液滴吐出装置に比べ、他の部品(例えば、光学式のドット抜け検出装置など)を必要としないので、液滴吐出ヘッドのサイズを大きく することなく液滴の吐出異常を検出することができるとともに、吐出異常(ドット抜け)検出を行うことができる液滴吐出装置の製造コストを低く抑えることができる。また、本発明の液滴吐出装置では、液滴吐出動作後の振動板の残留振動を用いて液滴の吐出異常を検出しているので、印字動作の途中でも液滴の吐出異常を検出することができる。したがって、印字動作中に本発明の吐出異常検出・判定方法を実行しても、液滴吐出装置のスループットを低下又は悪化させることはない。

また、本発明の液滴吐出装置によって、光学式検出装置など従来のドット抜け 検出を行うことができる装置では判定不可能である液滴の吐出異常の原因を判定 することができ、それによって、必要に応じ、その原因に対し適切な回復処理を 選択し、実行することができる。

[0115]

<第2実施形態>

次に、本発明におけるインクジェットヘッドの他の構成例について説明する。 図27~図30は、それぞれ、インクジェットヘッド100の他の構成例の概略 を示す断面図である。以下、これらの図に基づいて説明するが、前述した実施形態と相違する点を中心に説明し、同様の事項についてはその説明を省略する。

[0116]

図27に示すインクジェットヘッド100Aは、圧電素子200の駆動により振動板212が振動し、キャビティ208内のインク(液体)がノズル203から吐出するものである。ノズル(孔)203が形成されたステンレス鋼製のノズルプレート202には、ステンレス鋼製の金属プレート204が接着フィルム205を介して接合されており、さらにその上に同様のステンレス鋼製の金属プレート204が接着フィルム205を介して接合されている。そして、その上には、連通口形成プレート206及びキャビティプレート207が順次接合されている。

[0117]

ノズルプレート202、金属プレート204、接着フィルム205、連通口形成プレート206及びキャビティプレート207は、それぞれ所定の形状(凹部

が形成されるような形状)に成形され、これらを重ねることにより、キャビティ208及びリザーバ209が形成される。キャビティ208とリザーバ209とは、インク供給口210を介して連通している。また、リザーバ209は、インク取り入れ口211に連通している。

[0118]

キャビティプレート207の上面開口部には、振動板212が設置され、この振動板212には、下部電極213を介して圧電素子(ピエゾ素子)200が接合されている。また、圧電素子200の下部電極213と反対側には、上部電極214が接合されている。ヘッドドライブ215は、駆動電圧波形を生成する駆動回路を備え、上部電極214と下部電極213との間に駆動電圧波形を印加(供給)することにより、圧電素子200が振動し、それに接合された振動板212が振動する。この振動板212の振動によりキャビティ208の容積(キャビティ内の圧力)が変化し、キャビティ208内に充填されたインク(液体)がノズル203より液滴として吐出する。

液滴の吐出によりキャビティ208内で減少した液量は、リザーバ209からインクが供給されて補給される。また、リザーバ209へは、インク取り入れ口211からインクが供給される。

[0119]

図28に示すインクジェットヘッド100Bも前記と同様に、圧電素子200の駆動によりキャビティ221内のインク(液体)がノズルから吐出するものである。このインクジェットヘッド100Bは、一対の対向する基板220を有し、両基板220間に、複数の圧電素子200が所定間隔をおいて間欠的に設置されている。

隣接する圧電素子200同士の間には、キャビティ221が形成されている。 キャビティ221の図28中前方にはプレート(図示せず)、後方にはノズルプレート222が設置され、ノズルプレート222の各キャビティ221に対応する位置には、ノズル(孔)223が形成されている。

[0120]

各圧電素子200の一方の面及び他方の面には、それぞれ、一対の電極224

が設置されている。すなわち、1つの圧電素子200に対し、4つの電極224 が接合されている。これらの電極224のうち所定の電極間に所定の駆動電圧波 形を印加することにより、圧電素子200がシェアモード変形して振動し(図2 8において矢印で示す)、この振動によりキャビティ221の容積(キャビティ 内の圧力)が変化し、キャビティ221内に充填されたインク(液体)がノズル 223より液滴として吐出する。すなわち、インクジェットヘッド100Bでは 、圧電素子200自体が振動板として機能する。

[0121]

図29に示すインクジェットヘッド100Cも前記と同様に、圧電素子200の駆動によりキャビティ233内のインク(液体)がノズル231から吐出するものである。このインクジェットヘッド100Cは、ノズル231が形成されたノズルプレート230と、スペーサ232と、圧電素子200とを備えている。圧電素子200は、ノズルプレート230に対しスペーサ232を介して所定距離間して設置されており、ノズルプレート230と圧電素子200とスペーサ232とで囲まれる空間にキャビティ233が形成されている。

[0122]

圧電素子200の図29中上面には、複数の電極が接合されている。すなわち、圧電素子200のほぼ中央部には、第1電極234が接合され、その両側部には、それぞれ第2の電極235が接合されている。第1電極234と第2電極235との間に所定の駆動電圧波形を印加することにより、圧電素子200がシェアモード変形して振動し(図29において矢印で示す)、この振動によりキャビティ233の容積(キャビティ内の圧力)が変化し、キャビティ233内に充填されたインク(液体)がノズル231より液滴として吐出する。すなわち、インクジェットヘッド100Cでは、圧電素子200自体が振動板として機能する。

[0123]

図30に示すインクジェットヘッド100Dも前記と同様に、圧電素子200の駆動によりキャビティ245内のインク(液体)がノズル241から吐出するものである。このインクジェットヘッド100Dは、ノズル241が形成されたノズルプレート240と、キャビティプレート242と、振動板243と、複数

の圧電素子200を積層してなる積層圧電素子201とを備えている。

[0124]

キャビティプレート242は、所定の形状(凹部が形成されるような形状)に成形され、これにより、キャビティ245及びリザーバ246が形成される。キャビティ245とリザーバ246とは、インク供給口247を介して連通している。また、リザーバ246は、インク供給チューブ311を介してインクカートリッジ31と連通している。

[0125]

積層圧電素子201の図30中下端は、中間層244を介して振動板243と接合されている。積層圧電素子201には、複数の外部電極248及び内部電極249が接合されている。すなわち、積層圧電素子201の外表面には、外部電極248が接合され、積層圧電素子201を構成する各圧電素子200同士の間(又は各圧電素子の内部)には、内部電極249が設置されている。この場合、外部電極248と内部電極249の一部が、交互に、圧電素子200の厚さ方向に重なるように配置される。

[0126]

そして、外部電極248と内部電極249との間にヘッドドライブ249より 駆動電圧波形を印加することにより、積層圧電素子201が図30中の矢印で示 すように変形して(図30中上下方向に伸縮して)振動し、この振動により振動 板243が振動する。この振動板243の振動によりキャビティ245の容積(キャビティ内の圧力)が変化し、キャビティ245内に充填されたインク(液体)がノズル241より液滴として吐出する。

液滴の吐出によりキャビティ245内で減少した液量は、リザーバ246からインクが供給されて補給される。また、リザーバ246へは、インクカートリッジ31からインク供給チューブ311を介してインクが供給される。

[0127]

以上のような圧電素子を備えるインクジェットヘッド100A~100Dにおいても、前述した静電容量方式のインクジェットヘッド100と同様にして、振動板又は振動板として機能する圧電素子の残留振動に基づき、液滴吐出の異常を

検出しあるいはその異常の原因を特定することができる。なお、インクジェット ヘッド100B及び100Cにおいては、キャビティに面した位置にセンサとし ての振動板(残留振動検出用の振動板)を設け、この振動板の残留振動を検出す るような構成とすることもできる。

[0128]

以上のように、本発明の液滴吐出装置、及び、液滴吐出ヘッドの吐出異常検出・判定方法は、静電アクチュエータ又は圧電アクチュエータの駆動により、液滴吐出ヘッドから液体を液滴として吐出する動作を行った際に、このアクチュエータによって変位させられた振動板の残留振動を検出し、その振動板の残留振動に基づいて、液滴が正常に吐出されたか、あるいは吐出されなかったか(吐出異常)を検出することとした。

また、本発明は、上記振動板の残留振動の振動パターン(例えば、残留振動波 形の周期など)に基づいて、このようにして得られた液滴の吐出異常の原因を判 定することとした。

[0129]

したがって、本発明によって、従来のドット抜け検出方法を備える液滴吐出装置に比べ、他の部品(例えば、光学式のドット抜け検出装置など)を必要としないので、液滴吐出ヘッドのサイズを大きくすることなく液滴の吐出異常を検出することができるとともに、製造コストを低く抑えることができる。また、本発明の液滴吐出ヘッドでは、液滴吐出動作後の振動板の残留振動を用いて液滴の吐出異常を検出しているので、印字動作の途中でも液滴の吐出異常を検出することができる。

また、本発明によって、光学式検出装置など従来のドット抜け検出を行うことができる装置では判定不可能である液滴の吐出異常の原因を判定することができ、それによって、必要に応じ、その原因に対し適切な回復処理を選択し、実行することができる。

[0130]

以上、本発明の液滴吐出装置、及び、液滴吐出ヘッドの吐出異常検出・判定方法を図示の各実施形態に基づいて説明したが、本発明は、これに限定されるもの

ではなく、液滴吐出ヘッドあるいは液滴吐出装置を構成する各部は、同様の機能 を発揮し得る任意の構成のものと置換することができる。また、本発明の液滴吐 出ヘッドあるいは液滴吐出装置に、他の任意の構成物が付加されていてもよい。

[0131]

なお、本発明の液滴吐出装置の液滴吐出ヘッド(上述の実施形態では、インクジェットヘッド100)から吐出する吐出対象液(液滴)としては、特に限定されず、例えば以下のような各種の材料を含む液体(サスペンション、エマルション等の分散液を含む)とすることができる。すなわち、カラーフィルタのフィルタ材料を含むインク、有機EL(Electro Luminescence)装置におけるEL発光層を形成するための発光材料、電子放出装置における電極上に蛍光体を形成するための蛍光材料、PDP(Plasma Display Panel)装置における蛍光体を形成するための蛍光材料、電気泳動表示装置における泳動体を形成する泳動体材料、基板Wの表面にバンクを形成するためのバンク材料、各種コーティング材料、電極を形成するための液状電極材料、2枚の基板間に微小なセルギャップを構成するためのスペーサを構成する粒子材料、金属配線を形成するための液状金属材料、マイクロレンズを形成するためのレンズ材料、レジスト材料、光拡散体を形成するための光拡散材料などである。

また、本発明では、液滴を吐出する対象となる液滴受容物は、記録用紙のような紙に限らず、フィルム、織布、不織布等の他のメディアや、ガラス基板、シリコン基板等の各種基板のようなワークであってもよい。

【図面の簡単な説明】

- 【図1】 本発明の液滴吐出装置の一種であるインクジェットプリンタの構成を示す概略図である。
- 【図2】 本発明のインクジェットプリンタの主要部を概略的に示すブロック図である。
 - 【図3】 図1に示すインクジェットヘッドの概略的な断面図である。
- 【図4】 図1に示す1色のインクに対応するヘッドユニット35の構成を示す分解斜視図である。
 - 【図5】 4色インクを用いるヘッドユニットのノズルプレートのノズル配

置パターンの一例である。

- 【図6】 図3のIIIーIII断面の駆動信号入力時の各状態を示す状態図である。
- 【図7】 図3の振動板の残留振動を想定した単振動の計算モデルを示す回 路図である。
- 【図8】 図3の振動板の残留振動の実験値と計算値との関係を示すグラフである。
- 【図9】 図3のキャビティ内に気泡が混入した場合のノズル付近の概念図である。
- 【図10】 キャビティへの気泡混入によりインク滴が吐出しなくなった状態における残留振動の計算値及び実験値を示すグラフである。
- 【図11】 図3のノズル付近のインクが乾燥により固着した場合のノズル付近の概念図である。
- 【図12】 ノズル付近のインクの乾燥増粘状態における残留振動の計算値 及び実験値を示すグラフである。
- 【図13】 図3のノズル出口付近に紙粉が付着した場合のノズル付近の概念図である。
- 【図14】 ノズル出口に紙粉が付着した状態における残留振動の計算値及び実験値を示すグラフである。
- 【図15】 ノズル付近に紙粉が付着した前後におけるノズルの状態を示す写真である。
 - 【図16】 図3に示す吐出異常検出手段の概略的なブロック図である。
- 【図17】 図3の静電アクチュエータを平行平板コンデンサとした場合の概念図である。
- 【図18】 図3の静電アクチュエータから構成されるコンデンサを含む発振回路の回路図である。
- 【図19】 図16に示す吐出異常検出手段のF/V変換回路の回路図である。
 - 【図20】 本発明の発振回路から出力する発振周波数に基づく各部の出力

信号などのタイミングを示すタイミングチャートである。

- 【図21】 固定時間tr及びt1の設定方法を説明するための図である。
- 【図22】 図16の波形整形回路の回路構成を示す回路図である。
- 【図23】 駆動回路と検出回路との切替手段の概略を示すブロック図である。
- 【図24】 本発明の吐出異常検出・判定処理を示すフローチャートである。
 - 【図25】 本発明の残留振動検出処理を示すフローチャートである。
 - 【図26】 本発明の吐出異常判定処理を示すフローチャートである。
- 【図27】 本発明におけるインクジェットヘッドの他の構成例の概略を示す断面図である。
- 【図28】 本発明におけるインクジェットヘッドの他の構成例の概略を示す断面図である。
- 【図29】 本発明におけるインクジェットヘッドの他の構成例の概略を示す断面図である。
- 【図30】 本発明におけるインクジェットヘッドの他の構成例の概略を示す断面図である。

【符号の説明】

1 ……インクジェットプリンタ 2 ……装置本体 2 1 ……トレイ 2 2 …… 排紙口 3 ……印字手段(移動体) 3 1 ……インクカートリッジ 3 1 1 ……インク供給チューブ 3 2 ……キャリッジ 3 3 ……ヘッドドライバ 3 5 …… ヘッドユニット 4 ……印刷装置 4 1 ……キャリッジモータ 4 2 ……往復動機構 4 2 1 ……タイミングベルト 4 2 2 ……キャリッジガイド軸 4 3 ……キャリッジモータドライバ 5 ……給紙装置 5 1 ……給紙モータ 5 2 ……給紙モータ 5 2 ……給紙ローラ 5 2 a ……従動ローラ 5 2 b ……駆動ローラ 5 3 ……給紙モータドライバ 6 ……制御部 6 1 ……CPU 6 2 …… EEPROM(記憶手段) 6 3 ……RAM 6 4 ……PROM 7 ……操作パネル 8 ……ホストコンピュータ 9 …… IF 1 0 ……吐出異常検出手段 1 1 ……発振回路 1 1 1 ……シュミットトリガインバータ 1 1 2 ……抵抗素子 1 2 …… F / V 変換回路

13……定電流源 14……バッファ 15……波形整形回路 151……増 幅器(オペアンプ) 152……比較器(コンパレータ) 16……残留振動検 出手段 17……計測手段 18……駆動回路 20……判定手段 100、1 00A~100D……インクジェットヘッド 110…ノズル 120……静 電アクチュエータ 121……振動板(底壁) 122……セグメント電極 1 2 3 ·····・ 絶縁層 1 2 4 ·····・ 共通電極 1 2 4 a ······ 入力端子 1 3 0 ·····・ ダンパ 室 131……インク取入れ口 132……ダンパ 140……シリコン基板 141……キャビティ 142……インク供給口 143……リザーバ 144 ·····-側壁 150······ノズルプレート 160······ガラス基板 161······凹部 162……対向壁 170……基体 200……圧電素子 201……積層圧 電素子 202、222、230、240……ノズルプレート 203、223 、231、241……ノズル 204……金属プレート 205……接着フィル ム 206……連通口形成プレート 207、242……キャビティプレート 208、221、233、245……キャビティ 209、246……リザーバ 210、247……インク供給口 211……インク取り入れ口 212、2 4 3 ……振動板 2 1 3 ……下部電極 2 1 4 ……上部電極 2 1 5 、 2 4 9 … …ヘッドドライブ 220……基板 224……電極 232……スペーサ 2 3 4 …… 第 1 電極 2 3 5 …… 第 2 電極 2 4 8 …… 外部電極 2 4 9 …… 内部 電極 P……記録用紙 S101~S109、S201~S205、S301~ S 3 1 0 ······ステップ

【書類名】

図面

【図1】

[図2]

【図3】

【図4】

【図5】

【図6】

【図8】

【図9】

【図11】

【図12】

【図13】

【図14】

(a) 紙粉付着前

(b) 紙粉付着後

BEST AVAILABLE COPY

【図16】

【図18】

【図20】

【図21】

【図22】

【図23】

【図28】

【図29】

【書類名】 要約書

【要約】

【課題】 液滴吐出動作後におけるアクチュエータの静電容量の変化により振動 板の残留振動の周期を測定することより、吐出異常の検出及びその原因判定が可 能な液滴吐出装置及び吐出異常検出・判定方法を提供する。

【解決手段】 本発明の液滴吐出装置は、振動板121と、この振動板121を変位させる静電アクチュエータ120と、内部に液体が充填され、振動板121の変位により、該内部の圧力が増減されるキャビティ141と、キャビティ141に連通し、キャビティ141内の圧力の増減により液体を液滴として吐出するノズル110とを有する液滴吐出ヘッド100と、静電アクチュエータ120を駆動する駆動回路と、振動板121の残留振動を検出する残留振動検出手段と、残留振動検出手段によって検出された振動板121の残留振動に基づいて、液滴の吐出の異常を検出する吐出異常検出手段とを備える。

【選択図】図3

認定 · 付加情報

特許出願の番号

特願2003-055020

受付番号

5 0 3 0 0 3 3 7 1 2 3

書類名

特許願

担当官

第二担当上席 0091

作成日

平成15年 3月 3日

<認定情報・付加情報>

【提出日】

平成15年 2月28日

次頁無

特願2003-055020

出願人履歴情報

識別番号

[000002369]

1. 変更年月日 [変更理由]

住所氏名

1990年 8月20日 新規登録

東京都新宿区西新宿2丁目4番1号

セイコーエプソン株式会社