UC Berkeley Department of Statistics Fall 2016

STAT 210A: Introduction to Mathematical Statistics

Problem Set 4

Student: Ivana Malenica Due: Thursday, Oct. 6

Note: All measure-theoretic niceties about conditioning on measure-zero sets, almost-sure equality vs. actual equality, "all functions" vs. "all measurable functions," etc. are disregarded for the time being.

1. Bayesian law of large numbers

1. Let p(x) and q(x) denote two strictly positive densities with respect to a common dominating measure μ . The Kullback-Leibler divergence between p and q is defined as

$$D(p||q) = \int_{\mathcal{X}} p(x) \log \frac{p(x)}{q(x)} d\mu(x).$$

Show that $D(p||q) \ge 0$, with equality only in the case that p(X) = q(X) almost surely (Hint: use Jensen's inequality; you may need a more general statement of Jensen's inequality than what is in Keener).

2. Consider a dominated likelihood model $\mathcal{P} = \{p_{\theta}(x) : \theta \in \Omega\}$, where the parameter space Ω is a finite set, and the densities are strictly positive on \mathcal{X} . Let λ denote a prior density w.r.t. the counting measure on Ω , and consider the Bayes posterior after observing a sample $X_1, \ldots, X_n \overset{\text{i.i.d.}}{\sim} p_{\theta_0}(x)$ for some fixed value θ_0 (that is, we are studying frequentist properties of the Bayesian posterior distribution).

If the prior λ puts positive mass on all values in Ω , show that as $n \to \infty$ with the true value θ_0 fixed, the posterior density eventually concentrates nearly all its mass on the true value θ_0 . That is,

$$\mathbb{P}_{\theta_0} \left[\lambda(\theta_0 \mid X_1, \dots, X_n) \ge 1 - \varepsilon \right] \to 1, \text{ for all } \varepsilon > 0.$$

(Hint: use the law of large numbers).

(Note: the requirement that the prior density should be nonzero everywhere is sometimes called Cromwell's Rule, after Oliver Cromwell's quotable plea to the Church of Scotland: "I beseech you, in the bowels of Christ, think it possible that you may be mistaken.")

2. Bayesian prediction

Consider a Bayesian model in which the prior distribution for Θ is uniform on (0,1) and given $\Theta = \theta$, $X_i, i \ge 1$, are i.i.d. Bernoulli with success probability θ . Find

$$\mathbb{P}(X_{n+1} = 1 \mid X_1, \dots, X_n).$$

(Note: here the probability should be read as being taken over the joint distribution of Θ, X_1, X_2, \ldots)

3. Ridge regression

Consider the i.i.d. linear observation model

$$Y_i = x_i'\beta + W_i, \qquad i = 1, \dots n \tag{1}$$

where $\beta \in \mathbb{R}^d$, the design vectors $x_i \in \mathbb{R}^d$ are fixed and known, and $W_i \sim N(0, \sigma^2)$ is observation noise. Assume that d < n, and the design matrix **X** (the $n \times d$ matrix whose *i*th row is x_i') has full column rank.

- (a) Assume that $\sigma^2 > 0$ is known, and that β is modeled as a fixed but unknown vector. Find the UMVU estimate of β based on Y.
- (b) Now consider Bayesian estimation with the prior $\beta \sim N(\mu, \sigma^2 Q)$, where $Q \in \mathbb{R}^{d \times d}$ is a known, positive definite symmetric matrix. Find the posterior mean of β .

4. Absolute error loss

For a Bayesian model with a single real parameter Θ , assume that the posterior distribution of Θ given X = x is absolutely continuous for all x. What is the Bayes estimator for the loss $L(\theta, d) = |\theta - d|$?

5. Exponential-exponential model

Consider a Bayesian model in which the prior distribution for Θ is $\lambda(\theta) = e^{-\theta} \mathbb{1}\{\theta > 0\}$ (the standard exponential distribution) and the density for X given $\Theta = \theta$ is

$$p_{\theta}(x) = e^{\theta - x} 1\{x > \theta\}.$$

- (a) Find the marginal density for X, and the marginal expectation $\mathbb{E}[X]$.
- (b) Find the Bayes estimator for θ under squared error loss. (Assume X > 0.)

6. Exponential families

This problem addresses the issue of implementing Bayes estimators for an s-parameter exponential family model in canonical form:

$$p_{\theta}(x) = e^{\theta' T(x) - A(\theta)} h(x)$$

where $x = (x_1, \dots, x_n)$ and the random vector Θ has prior density $\lambda(\cdot)$.

(a) If q(x) denotes the marginal density of X, show that for $i = 1, \ldots, n$, we have

$$\mathbb{E}\left[\sum_{j=1}^{s} \Theta_{j} \frac{\partial T_{j}(x)}{\partial x_{i}} \mid X = x\right] = \frac{\partial}{\partial x_{i}} \log q(x) - \frac{\partial}{\partial x_{i}} \log h(x).$$

(Assume here that all relevant quantities are suitably differentiable.)

(b) If T(x) = x, use part (a) to conclude that the posterior mean of Θ is given by

$$\nabla \log q(x) - \nabla \log h(x)$$
.

7. Jeffreys prior

For each distribution and each parameter, find the Jeffreys prior (possibly improper).

- (a) Poisson distribution $X \sim \text{Pois}(\theta) = \frac{\theta^x e^{-\theta}}{x!}$, parameterized by θ and $\eta = \log \theta$.
- (b) Normal distribution $X \sim N(\mu, \sigma^2)$, parameterized by μ (with σ^2 known) and by σ^2 (with μ known).