0.1 Numerical methods

0.1.1 | Errors

Floating-point representation

Theorem 1.1. Let $b \in \mathbb{N}$, $b \geq 2$. Any real number $x \in \mathbb{R}$ can be represented of the form

$$x = s \left(\sum_{i=1}^{\infty} \alpha_i b^{-i} \right) b^q,$$

where $s \in \{-1, 1\}$, $q \in \mathbb{Z}$ and $\alpha_i \in \{0, 1, \dots, b-1\}$. Moreover, this representation is unique if $\alpha_1 \neq 0$ and $\forall i_0 \in \mathbb{N}$, $\exists i \geq i_0 : \alpha_i \neq b-1$. We will write

$$x = s(0.\alpha_1\alpha_2\cdots)_b b^q$$
,

where the subscript b in the parenthesis indicates that the number $0.\alpha_1\alpha_2\alpha_3\cdots$ is in base b.

Definition 1.2 (Floating-point representation). Let x be a real number. Then the floating-point representation of x is

$$x = s \left(\sum_{i=1}^{t} \alpha_i b^{-i} \right) b^q.$$

Here s is called the sign; $\sum_{i=1}^{t} \alpha_i b^{-i}$, the significant or mantissa, and q, the exponent, limited to a prefixed range $q_{\min} \leq q \leq q_{\max}$. So, the floating-point representation of x is

$$x = smb^q = s(0.\alpha_1\alpha_2\cdots\alpha_t)_b b^q.$$

Finally we say a floating-point number is normalized if $\alpha_1 \neq 0$.

Definition 1.3. Let $x \in \mathbb{R}$ be such that $x = s(0.\alpha_1\alpha_2\cdots)_bb^q$ with $q_{\min} \leq q \leq q_{\max}$. We say the floating-point representation by truncation of x is

$$fl_T(x) = s(0.\alpha_1\alpha_2\cdots\alpha_t)_b b^q$$
.

We say the floating-point representation by rounding of x is

$$fl_R(x) = \begin{cases} s(0.\alpha_1 \cdots \alpha_t)_b b^q & \text{if } 0 \le \alpha_{t+1} < \frac{b}{2} \\ s(0.\alpha_1 \cdots \alpha_{t-1}(\alpha_t + 1))_b b^q & \text{if } \frac{b}{2} \le \alpha_{t+1} \le b - 1. \end{cases}$$

Definition 1.4. Given a value $x \in \mathbb{R}$ and an approximation \tilde{x} of x, the *absolute error* is

$$\Delta x := |x - \tilde{x}|.$$

If $x \neq 0$, the relative error is

$$\delta x := \frac{|x - \tilde{x}|}{x}.$$

If x is unknown, we take

$$\delta x \approx \frac{|x - \tilde{x}|}{\tilde{x}}.$$

Definition 1.5. Let \tilde{x} be an approximation of x. If $\Delta x \leq \frac{1}{2}10^{-t}$, we say \tilde{x} has t correct decimal digits. If $x = sm10^q$ with $0.1 \leq m < 1$, $\tilde{x} = s\tilde{m}10^q$ and

$$u:=\max\{i\in\mathbb{Z}:|m-\tilde{m}|\leq\frac{1}{2}10^{-i}\},$$

then we say that \tilde{x} has u significant digits.

Proposition 1.6. Let $x \in \mathbb{R}$ be such that $x = s(0.\alpha_1\alpha_2\cdots)_bb^q$ with $\alpha_1 \neq 0$ and $q_{\min} \leq q \leq q_{\max}$. Then, its floating-point representation in base b and with t digits satisfy:

$$|fl_T(x) - x| \le b^{q-t}, \qquad |fl_R(x) - x| \le \frac{1}{2}b^{q-t}.$$
 $\left|\frac{fl_T(x) - x}{x}\right| \le b^{1-t}, \qquad \left|\frac{fl_R(x) - x}{x}\right| \le \frac{1}{2}b^{1-t}.$

Definition 1.7. The machine epsilon ϵ is defined as

$$\epsilon := \min\{\varepsilon > 0 : fl(1+\varepsilon) \neq 1\}.$$

Proposition 1.8. For a machine working by truncation, $\epsilon = b^{1-t}$. For a machine working by rounding, $\epsilon = \frac{1}{2}b^{1-t}$.

Propagation of errors

Proposition 1.9 (Propagation of absolute errors). Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function of class C^2 . If Δx_j is the absolute error of the variable x_j and $\Delta f(x)$ is the absolute error of the function f evaluated at the point $x = (x_1, \ldots, x_n)$, we have

$$|\Delta f(x)| \lesssim \sum_{j=1}^{n} \left| \frac{\partial f}{\partial x_j}(x) \right| |\Delta x_j|^{1}.$$

The coefficients $\left|\frac{\partial f}{\partial x_j}(x)\right|$ are called absolute condition numbers of the problem.

Proposition 1.10 (Propagation of relative errors). Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function of class C^2 . If δx_j is the relative error of the variable x_j and $\delta f(x)$ is the relative error of the function f evaluated at the point $x = (x_1, \ldots, x_n)$, we have

$$|\delta f(x)| \lesssim \sum_{j=1}^{n} \frac{\left|\frac{\partial f}{\partial x_{j}}(x)\right| |x_{j}|}{|f(x)|} |\delta x_{j}|.$$

The coefficients $\frac{\left|\frac{\partial f}{\partial x_j}(x)\right||x_j|}{|f(x)|}$ are called *relative condition* numbers of the problem.

¹The symbol \lesssim means that we are omitting terms of order $\Delta x_j \Delta x_k$ and higher.

Numerical stability of algorithms

Definition 1.11. An algorithm is said to be *numerically stable* if errors in the input lessen in significance as the algorithm executes, having little effect on the final output. On the other hand, an algorithm is said to be *numerically unstable* if errors in the input cause a considerably larger error in the final output.

Definition 1.12. A problem with a low condition number is said to be *well-conditioned*. Conversely, a problem with a high condition number is said to be *ill-conditioned*.

0.1.2 | Zeros of functions

Definition 1.13. Let $f : \mathbb{R} \to \mathbb{R}$ be a function. We say α is a zero or a solution to the equation f(x) = 0 if $f(\alpha) = 0$.

Definition 1.14. Let $f: \mathbb{R} \to \mathbb{R}$ be a sufficiently differentiable function. We say α is a zero of multiplicity $m \in \mathbb{N}$ if

$$f(\alpha) = f'(\alpha) = \dots = f^{(m-1)}(\alpha) = 0$$
 and $f^{(m)}(\alpha) \neq 0$.

If m=1, the zero is called simple; if m=2, double; if m=3, triple...

Root-finding methods

For the following methods consider a continuous function $f: I \subseteq \mathbb{R} \to \mathbb{R}$ with an unknown zero $\alpha \in I$. Given $\varepsilon > 0$, we want to approximate α with $\tilde{\alpha}$ such that $|\alpha - \tilde{\alpha}| < \varepsilon$.

Theorem 1.15 (Bisection method). Suppose $I = [a_0, b_0]$. For each step $n \ge 0$ of the algorithm we will approximate α by

$$c_n = \frac{a_n + b_n}{2}.$$

If $f(c_n) = 0$ we are done. If not, let

$$[a_{n+1}, b_{n+1}] = \begin{cases} [a_n, c_n] & \text{if } f(a_n) f(c_n) < 0, \\ [c_n, b_n] & \text{if } f(a_n) f(c_n) > 0. \end{cases}$$

and iterate the process again². Observe the length of the interval $[a_n, b_n]$ is $\frac{b_0 - a_0}{2n}$ and therefore:

$$|\alpha - c_n| < \frac{b_0 - a_0}{2^{n+1}} < \varepsilon \iff n > \frac{\log\left(\frac{b_0 - a_0}{\varepsilon}\right)}{\log 2} - 1.$$

Theorem 1.16 (Regula falsi method). Suppose $I = [a_0, b_0]$. For each step $n \geq 0$ of the algorithm we will approximate α by

$$c_n = b_n - f(b_n) \frac{b_n - a_n}{f(b_n) - f(a_n)} = \frac{a_n f(b_n) - b_n f(a_n)}{f(b_n) - f(a_n)}.$$

If $f(c_n) = 0$ we are done. If not, let

$$[a_{n+1}, b_{n+1}] = \begin{cases} [a_n, c_n] & \text{if} \quad f(a_n) f(c_n) < 0, \\ [c_n, b_n] & \text{if} \quad f(a_n) f(c_n) > 0, \end{cases}$$

and iterate the process again.

Theorem 1.17 (Secant method). Suppose $I = \mathbb{R}$ and that we have two different initial approximations x_0, x_1 . Then for each step $n \geq 0$ of the algorithm we obtain a new approximation x_{n+2} , given by:

$$x_{n+2} = x_{n+1} - f(x_{n+1}) \frac{x_{n+1} - x_n}{f(x_{n+1}) - f(x_n)}.$$

Theorem 1.18 (Newton-Raphson method). Suppose $I = \mathbb{R}$, $f \in \mathcal{C}^1$ and that we have an initial approximation x_0 . Then for each step $n \geq 0$ we obtain a new approximation x_{n+1} , given by:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

Theorem 1.19 (Newton-Raphson modified

method). Suppose $I = \mathbb{R}$, $f \in \mathcal{C}^1$ and that we have an initial approximation x_0 of a zero α of multiplicity m. Then for each step $n \geq 0$ we obtain a new approximation x_{n+1} , given by:

$$x_{n+1} = x_n - m \frac{f(x_n)}{f'(x_n)}.$$

Theorem 1.20 (Chebyshev method). Suppose $I = \mathbb{R}$, $f \in C^2$ and that we have an initial approximation x_0 . Then for each step $n \geq 0$ we obtain a new approximation x_{n+1} , given by:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} - \frac{1}{2} \frac{[f(x_n)]^2 f''(x_n)}{[f'(x_n)]^3}.$$

Fixed-point iterations

Definition 1.21. Let $g:[a,b]\to [a,b]\subset \mathbb{R}$ be a function. A point $\alpha\in [a,b]$ is n-periodic if $g^n(\alpha)=\alpha$ and $g^j(\alpha)\neq \alpha$ for $j=1,\ldots,n-1^3$.

Theorem 1.22 (Fixed-point theorem). Let (M,d) be a complete metric space and $g: M \to M$ be a contraction⁴. Then g has a unique fixed point $\alpha \in M$ and for every $x_0 \in M$,

$$\lim_{n \to \infty} x_n = \alpha, \quad \text{where } x_n = g(x_{n-1}) \quad \forall n \in \mathbb{N}.$$

Proposition 1.23. Let (M,d) be a metric space and $g:M\to M$ be a contraction of constant k. Then if we want to approximate a fixed point α by the iteration $x_n=g(x_{n-1})$, we have:

$$d(x_n, \alpha) \le \frac{k^n}{1-k} d(x_1, x_0)$$
 (a priori estimation)
 $d(x_n, \alpha) \le \frac{k}{1-k} d(x_n, x_{n-1})$ (a posteriori estimation)

Corollary 1.24. Let $g: \mathbb{R} \to \mathbb{R}$ be a function of class \mathcal{C}^1 . Suppose α is a fixed point of g and $|g'(\alpha)| < 1$. Then, there exists $\varepsilon > 0$ and $I_{\varepsilon} := [\alpha - \varepsilon, \alpha + \varepsilon]$ such that $g(I_{\varepsilon}) \subseteq I_{\varepsilon}$ and g is a contraction on I_{ε} . In particular, if $x_0 \in I_{\varepsilon}$, the iteration $x_{n+1} = g(x_n)$ converges to α .

²Note that bisection method only works for zeros of odd multiplicity.

³Note that 1-periodic points are the fixed points of f.

⁴Remember definitions ??, ?? and ??.

Definition 1.25. Let $g: \mathbb{R} \to \mathbb{R}$ be a function of class \mathcal{C}^1 and α be a fixed point of g. We say α is an attractor fixed point if $|g'(\alpha)| < 1$. In this case, any iteration $x_{n+1} = g(x_n)$ in I_{ε} converges to α . If $|g'(\alpha)| > 1$, we say α is a repulsor fixed point. In this case, $\forall x_0 \in I_{\varepsilon}$ the iteration $x_{n+1} = g(x_n)$ doesn't converge to α .

Figure 1: Cobweb diagrams. In the figures at the top, α is a attractor point, that is, $|g'(\alpha)| < 1$. More precisely, the figure at the top left occurs when $-1 < g'(\alpha) \le 0$ and the figure at the top right when $0 \le g'(\alpha) < 1$. In the figure at bottom left, α is a repulsor point. Finally, in the figure at bottom right the iteration $x_{n+1} = g(x_n)$ has no limit. It is said that to have a *chaotic behavior*.

Order of convergence

Definition 1.26 (Order of convergence). Let (x_n) be a sequence of real numbers that converges to $\alpha \in \mathbb{R}$. We say (x_n) has order of convergence $p \in \mathbb{R}^+$ if exists C > 0 such that:

$$\lim_{n \to \infty} \frac{|x_{n+1} - \alpha|}{|x_n - \alpha|^p} = C.$$

The constant C is called asymptotic error constant. For the case p=1, we need C<1. In this case the convergence is called *linear convergence*; for p=2, is called quadratic convergence; for p=3, cubic convergence... If it's satisfied that

$$\lim_{n \to \infty} \frac{|x_{n+1} - \alpha|}{|x_n - \alpha|^p} = 0$$

for some $p \in \mathbb{R}^+$, we say the sequence has order of convergence at least p.

Theorem 1.27. Let $g: \mathbb{R} \to \mathbb{R}$ be a function of class C^p and let α be a fixed point of g. Suppose

$$g'(\alpha) = g''(\alpha) = \dots = g^{(p-1)}(\alpha) = 0$$

with $|g'(\alpha)| < 1$ if p = 1. Then the iteration $x_{n+1} = g(x_n)$, with x_0 sufficiently close to α , has order of convergence at

least p. If, moreover, $g^{(p)}(\alpha) \neq 0$, then the previous iteration has order of convergence p with asymptotic error constant $C = \frac{|g^{(p)}(\alpha)|}{p!}$.

Theorem 1.28. Let $f: \mathbb{R} \to \mathbb{R}$ be a function of class \mathcal{C}^3 and α be a simple zero of f. If $f''(\alpha) \neq 0$, then Newton-Raphson method for finding α has quadratic convergence with asymptotic error constant $C = \frac{1}{2} \left| \frac{f''(\alpha)}{f'(\alpha)} \right|$.

If $f \in \mathcal{C}^{m+2}$, and α is a zero of multiplicity m>1, then Newton-Raphson method has linear convergence but Newton-Raphson modified method has at least quadratic convergence.

Theorem 1.29. Let $f : \mathbb{R} \to \mathbb{R}$ be a function of class C^3 and let α be a simple zero of f. Then Chebyshev's method for finding α has at least cubic convergence.

Definition 1.30. We define the computational efficiency of an algorithm as a function E(p,t), where t is the time taken for each iteration of the method and p is the order of convergence of the method. E(p,t) must satisfy the following properties:

- 1. E(p,t) is increasing with respect to the variable p and decreasing with respect to t.
- 2. $E(p,t) = E(p^m, mt) \ \forall m \in \mathbb{R}$.

Examples of such functions are the following:

$$E(p,t) = \frac{\log p}{t}, \quad E(p,t) = p^{1/t}.$$

Sequence acceleration

Definition 1.31 (Aitken's Δ^2 **method).** Let (x_n) be a sequence of real numbers. We denote:

$$\Delta x_n := x_{n+1} - x_n,$$

$$\Delta^2 x_n := \Delta x_{n+1} - \Delta x_n = x_{n+2} - 2x_{n+1} + x_n.$$

Aitken's Δ^2 method is the transformation of the sequence (x_n) into a sequence y_n , defined as:

$$y_n := x_n - \frac{(\Delta x_n)^2}{\Delta^2 x_n} = x_n - \frac{(x_{n+1} - x_n)^2}{x_{n+2} - 2x_{n+1} + x_n},$$

with $y_0 = x_0$.

Theorem 1.32. Let (x_n) be a sequence of real numbers such that $\lim_{n\to\infty} x_n = \alpha$, $x_n \neq \alpha \ \forall n \in \mathbb{N}$ and $\exists C, |C| < 1$, satisfying

$$x_{n+1} - \alpha = (C + \delta_n)(x_n - \alpha), \text{ with } \lim_{n \to \infty} \delta_n = 0.$$

Then the sequence (y_n) obtained from Aitken's Δ^2 process is well-defined and

$$\lim_{n \to \infty} \frac{y_n - \alpha}{x_n - \alpha} = 0^5.$$

⁵This means that Aitken's Δ^2 method produces an acceleration of the convergence of the sequence (x_n) .

Theorem 1.33 (Steffensen's method). Let $g: \mathbb{R} \to \mathbb{R}$ be a continuous function and suppose we have an iterative method $x_{n+1} = g(x_n)$. Then for each step n we can consider a new iteration y_{n+1} , with $y_0 = x_0$, given by:

$$y_{n+1} = y_n - \frac{(g(y_n) - y_n)^2}{g(g(y_n)) - 2g(y_n) + y_n}.$$

Proposition 1.34. Let $f : \mathbb{R} \to \mathbb{R}$ be a function of class C^2 and α be a simple zero of f. Then Steffensen's method for finding α has at least quadratic convergence⁶.

Zeros of polynomials

Lemma 1.35. Let $p(z) = a_0 + a_1 z + \cdots + a_n z^n \in \mathbb{C}[x]$ with $a_n \neq 0$. We define

$$\lambda := \max \left\{ \left\| \frac{a_i}{a_n} \right\| : i = 0, 1, \dots, n - 1 \right\}.$$

Then if $p(\alpha) = 0$ for some $\alpha \in \mathbb{C}$, $\|\alpha\| \le \lambda + 1$.

Definition 1.36 (Strum's sequence). Let (f_i) , $i = 0, \ldots, n$, be a sequence of continuous functions defined on $[a, b] \subset \mathbb{R}$ and $f : [a, b] \to \mathbb{R}$ be a function of class \mathcal{C}^1 such that $f(a)f(b) \neq 0$. We say (f_n) is a *Sturm's sequence* if:

- 1. $f_0 = f$.
- 2. If $\alpha \in [a, b]$ satisfies $f_0(\alpha) = 0 \implies f'_0(\alpha) f_1(\alpha) > 0$.
- 3. For i = 1, ..., n 1, if $\alpha \in [a, b]$ satisfies $f_i(\alpha) = 0 \implies f_{i-1}(\alpha)f_{i+1}(\alpha) < 0$.
- 4. $f_n(x) \neq 0 \ \forall x \in [a, b]$.

Definition 1.37. Let (a_i) , i = 0, ..., n, be a sequence. We define $\nu(a_i)$ as the number of sign variations of the sequence

$$\{a_0, a_1, \ldots, a_n\},\$$

without taking into account null values.

Theorem 1.38 (Sturm's theorem). Let $f:[a,b] \to \mathbb{R}$ be a function of class \mathcal{C}^1 such that $f(a)f(b) \neq 0$ and with a finite number of zeros. Let $(f_i), i = 0, \ldots, n$, be a Sturm sequence defined on [a,b]. Then the number of zeros of f on [a,b] is

$$\nu\left(f_i(a)\right) - \nu\left(f_i(b)\right)$$
.

Lemma 1.39. Let $p \in \mathbb{C}[x]$ be a polynomial. Then the polynomial $q = \frac{p}{\gcd(p,p')}$ has the same roots as p but all of them are simple.

Proposition 1.40. Let $p \in \mathbb{R}[x]$ be a polynomial with $\deg p = m$. We define $f_0 = \frac{p}{\gcd(p,p')}$ and $f_1 = f'_0$. If $\deg f_0 = n$, then for $i = 0, 1, \ldots, n-2$, we define f_{i+2} as

$$f_i(x) = q_{i+1}(x)f_{i+1}(x) - f_{i+2}(x),$$

(similarly to the euclidean division between f_i and f_{i+1}). Then f_n is constant and hence the sequence (f_i) , $i = 0, \ldots, n$, is a Sturm sequence.

Theorem 1.41 (Budan-Fourier theorem). Let $p \in \mathbb{R}[x]$ be a polynomial with deg p = n. Consider the sequence $(p^{(i)})$, $i = 0, \ldots, n$. If $p(a)p(b) \neq 0$, the number of zeros of p on [a, b] is

$$\nu\left(p^{(i)}(a)\right) - \nu\left(p^{(i)}(b)\right) - 2k, \quad \text{for some } k \in \mathbb{N} \cup \{0\}.$$

Corollary 1.42 (Descartes' rule of signs). Let $p = a_0 + a_1 x + \cdots + a_n x^n \in \mathbb{R}[x]$ be a polynomial. If $p(0) \neq 0$, the number of zeros of p on $[0, \infty)$ is

$$\nu(a_i) - 2k$$
, for some $k \in \mathbb{N} \cup \{0\}^7$.

Theorem 1.43 (Greshgorin theorem). Let $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{C})$ be a complex matrix and λ be an eigenvalue of A. For all $i, j \in \{1, 2, ..., n\}$ we define:

$$r_i = \sum_{\substack{k=1\\k\neq i}}^n |a_{ik}|, \quad R_i = \{z \in \mathbb{C} : |z - a_{ii}| \le r_i\},$$

$$c_j = \sum_{\substack{k=1\\k\neq j}}^n |a_{kj}|, \quad C_j = \{z \in \mathbb{C} : |z - a_{jj}| \le c_j\}.$$

Then $\lambda \in \bigcup_{i=1}^n R_i$ and $\lambda \in \bigcup_{j=1}^n C_j$. Moreover in each connected component of $\bigcup_{i=1}^n R_i$ (respectively $\bigcup_{j=1}^n C_j$) there are as many eigenvalues (taking into account the multiplicity) as disks R_i (respectively C_i).

Corollary 1.44. Let $p(z) = a_0 + a_1 z + \cdots + a_n z^n + z^{n+1} \in \mathbb{C}[x]$. We define

$$r = \sum_{i=1}^{n-1} |a_i|, \quad c = \max\{|a_0|, |a_1|+1, \dots, |a_{n-1}|+1\}.$$

Then if $p(\alpha) = 0$ for some $\alpha \in \mathbb{C}$,

$$\alpha \in (B(0,1) \cup B(-a_n,r)) \cap (B(-a_n,1) \cup B(0,c)).$$

0.1.3 | Interpolation

Definition 1.45. Suppose we have a family of real valued functions \mathfrak{C} and a set of points $\{(x_i, y_i)\}_{i=0}^n := \{(x_i, y_i) : x_j \neq x_k \iff j \neq k, i = 0, \dots, n\}$. These points $\{(x_i, y_i)\}_{i=0}^n$ are called *support points*. The *interpolation problem* consists in finding a function $f \in \mathfrak{C}$ such that $f(x_i) = y_i$ for $i = 0, \dots, n^8$.

 $^{^6}$ Note that the advantage of Steffensen's method over Newton-Raphson method is that in the former we don't need the differentiability of the function whereas in the latter we do.

⁷Note that making the change of variable t = -x one can obtain the number of zeros on $(-\infty, 0]$ of p by considering the polynomial p(t).

p(t).

8 Types of interpolation are for example polynomial interpolation, trigonometric interpolation, Padé interpolation, Hermite interpolation and spline interpolation.

Polynomial interpolation

Definition 1.46. Given a set of support points $\{(x_i, y_i)\}_{i=0}^n$, Lagrange's interpolation problem consists in finding a polynomial $p_n \in \mathbb{R}[x]$ such that $\deg p_n \leq n$ and $p_n(x_i) = y_i$.

Proposition 1.47. Lagrange's interpolation problem has a unique solution and this is:

$$p_n(x) = \sum_{k=0}^n y_k \frac{\omega_n(x)}{\omega'_n(x)}, \quad \text{where } \omega_n(x) := \prod_{j=0}^n (x - x_j).$$

Proposition 1.48 (Neville's algorithm). Let

 $P_{i_1,\ldots,i_k}(x)\in\mathbb{R}[x]$ be such that $\deg P_{i_0,\ldots,i_k}\leq k$ and $P_{i_1,\ldots,i_k}(x_{i_j})=y_{i_j}$ for $j=0,\ldots,k$. Then, it is satisfied that:

1.
$$P_i(x) = y_i$$
.

$$2. \ P_{i_0,\dots,i_k}(x) = \frac{\begin{vmatrix} P_{i_1,\dots,i_k}(x) & x - x_{i_k} \\ P_{i_0,\dots,i_{k-1}}(x) & x - x_{i_0} \end{vmatrix}}{x_{i_k} - x_{i_0}}$$

Definition 1.49. Let $f: \mathbb{R} \to \mathbb{R}$ be a function and $\{x_i\}_{i=0}^k \subset \mathbb{R}$ be pairwise distinct points. We define the divided difference of order k of f applied to $\{x_i\}_{i=0}^k$, denoted by $f[x_0, \ldots, x_k]$, as the coefficient of x^k of the interpolating polynomial with support points $\{(x_i, f(x_i))\}_{i=0}^k$

Proposition 1.50. Let $f : \mathbb{R} \to \mathbb{R}$ be a function and $\{x_i\}_{i=0}^k \subset \mathbb{R}$ be different points. Lagrange interpolating polynomial with support points $\{(x_i, f(x_i))\}_{i=0}^k$ is

$$p_n(x) = \sum_{j=0}^{n} f[x_j]\omega_{j-1}(x),$$

assuming $\omega_{-1} := 1$.

Proposition 1.51 (Newton's divided differences method). Let $f: \mathbb{R} \to \mathbb{R}$ be a function. For $x \in \mathbb{R}$, we have f[x] = f(x). And if $\{x_i\}_{i=0}^n \subset \mathbb{R}$ are different points, then

$$f[x_0, \dots, x_n] = \frac{f[x_1, \dots, x_n] - f[x_0, \dots, x_{n-1}]}{x_n - x_0}.$$

Theorem 1.52. Let $f:[a,b] \to \mathbb{R}$ be a function of class C^{n+1} , $\{x_i\}_{i=0}^n \subset \mathbb{R}$ be different points and $p_n \in \mathbb{R}[x]$ be the interpolating polynomial with support points $\{(x_i, f(x_i))\}_{i=0}^n$. Then $\forall x \in [a, b]$:

$$f(x) - p_n(x) = \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \omega_n(x),$$

where $\xi_x \in \langle x_0, \dots, x_n, x \rangle^9$.

Lemma 1.53. Let $f:[a,b]\to\mathbb{R}$ be a function of class \mathcal{C}^{n+1} and $\{x_i\}_{i=0}^n\subset\mathbb{R}$ be pairwise distinct points. Then $\exists \xi\in\langle x_0,\ldots,x_n\rangle$ such that:

$$f[x_0,\ldots,x_n] = \frac{f^{(n)}(\xi)}{n!}.$$

Proposition 1.54. Let $f: \mathbb{R} \to \mathbb{R}$ be a function of class C^{n+1} , $\{x_i\}_{i=0}^n \subset \mathbb{R}$ be pairwise distinct points and $\sigma \in S_n$.

$$f[x_0,\ldots,x_n]=f[x_{\sigma(0)},\ldots,x_{\sigma(n)}]$$

Definition 1.55. Let $\{(x_i, y_i)\}_{i=0}^n$ be support points. The x-axis points $\{(x_i)\}_{i=0}^n$ are equally-spaced if

$$x_i = x_0 + ih$$
, for $i = 0, ..., n$ with $h := \frac{x_n - x_0}{n}$.

Definition 1.56. Let $f:[a,b] \to \mathbb{R}$ be a function and $\{x_i\}_{i=0}^n \subset \mathbb{R}$ be equally-spaced points. We define:

$$\Delta f(x) := f(x+h) - f(x),$$

$$\Delta^{n+1} f(x) := \Delta(\Delta^n f(x)).$$

Lemma 1.57. Let $f:[a,b]\to\mathbb{R}$ be a function and $\{x_i\}_{i=0}^n\subset\mathbb{R}$ be equally-spaced points. Then,

$$\Delta^n f(x_0) = n! h^n f[x_0, \dots, x_n].$$

Corollary 1.58. Let $f \in \mathbb{R}[x]$ with $\deg f = n$. Suppose we interpolate f with equally-spaced nodes. Then, $\Delta^n f(x) \equiv \text{constant}$.

Hermite interpolation

Definition 1.59. Given a sets of points $\{(x_i)\}_{i=0}^m \subset \mathbb{R}$, $\{(n_i)\}_{i=0}^m \subset \mathbb{N}$ and $\{(y_i^{(k)}: k=0,\ldots,n_i-1\}_{i=0}^m \subset \mathbb{R}$ Hermite interpolation problem consists in finding a polynomial $h_n \in \mathbb{R}[x]$ such that $\deg h_n \leq n$, $\sum_{i=0}^m n_i = n+1$ and

$$h_n^{(k)}(x_i) = y_i^{(k)}$$
 for $i = 0, \dots, m$ and $k = 0, \dots, n_i - 1$.

Proposition 1.60. Hermite interpolation problem has a unique solution.

Theorem 1.61. Let $f:[a,b] \to \mathbb{R}$ be a function of class C^{n+1} , $\{x_i\}_{i=0}^m \subset \mathbb{R}$ be different points, $\{(n_i)\}_{i=0}^m \subset \mathbb{N}$ be such that $\sum_{i=0}^m n_i = n+1$. Let h_n be the Hermite interpolating polynomial of f with nodes $\{x_i\}_{i=0}^m \subset \mathbb{R}$, that is,

$$h_n^{(k)}(x_i) = f^{(k)}(x_i)$$
 for $i = 0, ..., m$ and $k = 0, ..., n_i - 1$.

Then $\forall x \in [a, b] \; \exists \xi_x \in \langle x_0, \dots, x_n, x \rangle$ such that:

$$f(x) - h_n(x) = \frac{f^{(n+1)}(\xi_x)}{(n+1)!} (x - x_0)^{n_0} \cdots (x - x_m)^{n_m}.$$

The interval $\langle a_1, \dots, a_k \rangle$ is defined as $\langle a_1, \dots, a_k \rangle := (\min(a_1, \dots, a_k), \max(a_1, \dots, a_k))$

Spline interpolation

Figure 2: Runge's phenomenon. In this case $f(x) = \frac{1}{1+25x^2}$. $p_5(x)$ is the 5th-order Lagrange interpolating polynomial with equally-spaced interpolating points; $p_9(x)$, the 9th-order Lagrange interpolating polynomial with equally-spaced interpolating points, and $p_{13}(x)$, the 13th-order Lagrange interpolating polynomial with equally-spaced interpolating points.

Definition 1.62 (Spline). Let $\{(x_i, y_i)\}_{i=0}^n$ be support points of an interval [a, b]. A *spline of degree* p is a function $s: [a, b] \to \mathbb{R}$ of class \mathcal{C}^{p-1} satisfying:

$$s_{|[x_i,x_{i+1}]} \in \mathbb{R}[x], \quad \deg s_{|[x_i,x_{i+1}]} = p, \quad s(x_i) = y_i,$$

for $i=0,\ldots,n-1$. The most common case are splines of degree p=3 or *cubic spline*. In this case we can impose two more conditions on their definition in one of the following ways:

1. Natural cubic spline:

$$s''(x_0) = s''(x_n) = 0.$$

2. Cubic Hermite spline: Given $y'_0, y'_n \in \mathbb{R}$,

$$s'(x_0) = y'_0, \quad s'(x_n) = y'_n.$$

3. Cubic periodic spline:

$$s'(x_0) = s'(x_n), \quad s''(x_0) = s''(x_n)$$

Definition 1.63. Let $f:[a,b]\to\mathbb{R}$ a function of class \mathcal{C}^2 . We define the *seminorm*¹⁰ *of* f as

$$||f||^2 = \int_a^b (f''(x))^2 dx.$$

Proposition 1.64. Let $f:[a,b] \to \mathbb{R}$ a function of class C^2 interpolating the support points $\{(x_i,y_i)\}_{i=0}^n \subset \mathbb{R}^2$, $a \le x_0 < \dots < x_n \le b$. If s is the natural cubic spline associated with $\{(x_i,y_i)\}_{i=0}^n$, then:

$$||f-s||^2 = ||f||^2 - ||s||^2 - 2(f'-s)s''\Big|_{x_0}^{x_n} + 2\sum_{i=1}^n (f-s)s'''\Big|_{x_{i-1}^+}^{x_i^-}.$$

Theorem 1.65. Let $f:[a,b] \to \mathbb{R}$ a function of class C^2 interpolating the support points $\{(x_i,y_i)\}_{i=0}^n \subset \mathbb{R}^2$, $a \le x_0 < \dots < x_n \le b$. If s is the natural cubic spline associated with $\{(x_i,y_i)\}_{i=0}^n$, then

$$||s|| \le ||f||$$
.

0.1.4 | Numerical differentiation and integration

Differentiation

Theorem 1.66 (Intermediate value theorem). Let $f:[a,b]\to\mathbb{R}$ be a continuous function, $\xi_0,\ldots,\xi_n\in[a,b]$ and $\alpha_0,\ldots,\alpha_n\geq 0$. Then, $\exists\eta\in[a,b]$ such that:

$$\sum_{i=0}^{n} \alpha_i f(\xi_i) = \left(\sum_{i=0}^{n} \alpha_i\right) f(\eta).$$

Theorem 1.67 (Forward and backward difference formula of order 1). Let $f: \mathbb{R} \to \mathbb{R}$ be a function of class C^2 . Then, forward difference formula of order 1 is:

$$f'(a) = \frac{f(a+h) - f(a)}{h} - \frac{f''(\xi)}{2}h,$$

where $\xi \in \langle a, a+h \rangle$. Analogously, backward difference formula of order 1 is:

$$f'(a) = \frac{f(a) - f(a - h)}{h} + \frac{f''(\eta)}{2}h,$$

where $\eta \in \langle a - h, a \rangle$.

Theorem 1.68 (Symmetric difference formula of order 1). Let $f : \mathbb{R} \to \mathbb{R}$ be a function of class \mathcal{C}^3 . Then, symmetric difference formula of order 1:

$$f'(a) = \frac{f(a+h) - f(a-h)}{2h} - \frac{f^{(3)}(\xi)}{6}h^2,$$

where $\xi \in \langle a - h, a + h \rangle$.

Theorem 1.69 (Symmetric difference formula of order 2). Let $f : \mathbb{R} \to \mathbb{R}$ be a function of class C^4 . Then, symmetric difference formula of order 2:

$$f''(a) = \frac{f(a+h) - 2f(a) + f(a-h)}{h^2} - \frac{f^{(4)}(\xi)}{12}h^2,$$

where $\xi \in \langle a - h, a, a + h \rangle$.

Richardson extrapolation

Theorem 1.70 (Richardson extrapolation). Suppose we have a function f that approximate a value α with an error that depends on a small quantity h. That is:

$$f(h) = \alpha + a_1 h^{k_1} + a_2 h^{k_2} + \cdots,$$

with $k_1 < k_2 < \cdots$ and a_i are unknown constants. Given q > 0, we define

$$D_1(h) = f(h), \quad D_{n+1}(h) = \frac{q^{k_n} D_n (h/q) - D_n(h)}{q^{k_n} - 1}.$$

And we can observe that $\alpha = D_{n+1}(h) + O(h^{k_{n+1}})$.

 $^{^{10}}$ The term seminorm has been used instead of norm to emphasize that not all properties of a norm are satisfied with this definition.

Integration

Definition 1.71. Let $f:[a,b] \to \mathbb{R}$ be a continuous function, $\{x_i\}_{i=0}^n \subseteq [a,b]$ be a set of nodes and P_n be the Lagrange interpolating polynomial with support points $\{(x_i, f(x_i))\}_{i=0}^n$. We define the *integration formula base on interpolation* as

$$I(f) = \int_{a}^{b} P_n(x)dx \tag{1}$$

Lemma 1.72. Let $f:[a,b]\to\mathbb{R}$ be a continuous function $\{x_i\}_{i=0}^n\subseteq [a,b]$ be a set of nodes. Then,

$$I(f) = \sum_{i=1}^{n} A_i f(x_i), \text{ where } A_i = \int_a^b \prod_{\substack{j=0 \ j \neq i}}^n \frac{x - x_j}{x_i - x_j} dx.$$

Lemma 1.73. Let $p \in \mathbb{R}[x]$ be a polynomial defined on an interval [a,b] such that $\deg p \leq n$ and let $\{x_i\}_{i=0}^n \subseteq [a,b]$ be a set of nodes. Then, $I(p) = \int_a^b p(x) dx$.

Lemma 1.74. Let $p \in \mathbb{R}[x]$ be a polynomial defined on an interval [a, b] such that $\deg p \leq n$ and let $\{x_i\}_{i=0}^n \subseteq [a, b]$ be a set of nodes. Then,

$$I(p) = \int_a^b p(x) dx \iff I(x^k) = \int_a^b x^k dx, \text{ for } 0 \le k \le n.$$

Newton-Cotes formulas