《实变函数》期末考试试题汇编

目录

•••••	(−)	拟试题	期末考试模	《实变函数》
•••••				
1				
1	(四)	拟试题	期末考试模	《实变函数》
2	(五)	拟试题	期末考试模	《实变函数》
3	(六)	拟试题	期末考试模	《实变函数》
3	(七)	拟试题	期末考试模	《实变函数》
3	(八)	拟试题	期末考试模	《实变函数》
4	(九)	拟试题	期末考试模	《实变函数》
4	(十)	拟试题	期末考试模	《实变函数》
5	•••••	(-)	期末考试题	《实变函数》
6	•••••	(二)	期末考试题	《实变函数》

《实变函数》期末考试模拟试题(一)

(含解答)

一、选择题(单选题)

1、下列集合关系成立的是(A)

	(A) $(A \setminus B) \cup B = A \cup B$ (B) $(A \setminus B) \cup B = A \cup B$	$(A \setminus B) \cup B = A$
	(C) $(B \setminus A) \cup A \subseteq A$ (D)	$(B \setminus A) \subseteq A$
2,	若 E ⊂ R^n 是开集,则(B)	
	(A) E'⊂E (B) E 的内部=E	(C) $\overline{E} = E$ (D) $E' = E$
3、	设 <i>P</i> 是康托集,则((C) $mP = 0$ (D) $mP = 1$
4、	设 $E \neq R^1$ 中的可测集, $\varphi(x) \neq E$ 上	的简单函数,则(D)
	(A) $\varphi(x)$ 是 E 上的连续函数	(B) $\varphi(x)$ 是 E 上的单调函数
	(C) $\varphi(x)$ 在 E 上一定不 L 可积	(D) $\varphi(x)$ 是 E 上的可测函数
5、	设 E 是 R "中的可测集, $f(x)$ 为 E 上	的可测函数,若 $\int_E f(x) dx = 0$,则(A)
	(A) 在 E 上, $f(z)$ 不一定恒为零	(B) 在 $E \perp$, $f(z) \geq 0$
	(C) 在 E 上, $f(z) \equiv 0$	(D) $ \pm E \perp$, $f(z) \neq 0$
=	、多项选择题(每题至少有两个或两个	·以上的正确答案)
1,	设 E 是 $[0,1]$ 中的无理点全体,则(\mathbb{C}	、D)
	(A) <i>E</i> 是可数集	
2、	(C) E 中的每一点都是聚点 若 $E \subset R^1$ 至少有一个内点,则(B、	
	(A) m^*E 可以等于零 (B) m^*E	
	(C) <i>E</i> 可能是可数集 (D) <i>E</i> 是	不可数集
3、	设 E ⊂ $[a,b]$ 是可测集,则 E 的特征	函数 $X_{E}(x)$ 是($A \setminus B \setminus C$)
	(A) [a,b]上的简单函数 (B) [a,b]	b]上的可测函数
	(C) <i>E</i> 上的连续函数 (D) [<i>a</i> , <i>b</i>]]上的连续函数

(A) $f^+(z)$ 和 $f^-(z)$ 有且仅有一个在 E 上 L 可积	
(B) $f^+(z)$ 和 $f^-(z)$ 都在 $E \perp L$ 可积	
(C) $ f(z) $ 在 E 上不一定 L 可积	
(D) $ f(z) $ 在 E 上一定 L 可积	
5、设 $f(z)$ 是 $[a,b]$ 的单调函数,则(A 、 C 、 D)	
(A) $f(z)$ 是 $[a,b]$ 的有界变差函数 (B) $f(z)$ 是 $[a,b]$ 的绝对连续函数	
(C) $f(z)$ 在 $[a,b]$ 上几乎处处连续 (D) $f(z)$ 在 $[a,b]$ 上几乎处处可导	
三、填空题(将正确的答案填在横线上)	
1、设 X 为全集, A , B 为 X 的两个子集, 则 $A \setminus B$ $=$ $A \cap B^c$ 。	
2、设 $E \subset R$ ",如果 E 满足 $E' \subset E$,则 E 是	
3 、若开区间 (α,β) 是直线上开集 G 的一个构成区间,则 (α,β) 满足 $(\alpha,\beta)\subset G$	_`
$\alpha \notin G, \ \beta \notin G$.	
4、设 A 是无限集,则 A 的基数 A \geq a (其中 a 表示可数基数)。	
5、设 E_1 , E_2 为可测集, $mE_2 < +\infty$, 则 $m(E_1 \setminus E_2)$ \geq $mE_1 - mE_2$ 。	
6、设 $f(x)$ 是定义在可测集 E 上的实函数,若对任意实数 a ,都有 $E[x f(x)>a]$	
是 可测集 , 则称 $f(x)$ 是可测集 E 上的可测函数。	
7、设 x_0 是 $E \subset R^1$ 的内点,则 $m^*E_{\underline{}} > \underline{} 0$ 。	
8、设函数列 $\{f_n(x)\}$ 为可测集 E 上的可测函数列,且 $f_n(x)$ \Rightarrow $f(x)$ $(x \in E)$,则由黎斯	定
理可得,存在 $\{f_n(x)\}$ 的子列 $\{f_{n_k}(x)\}$,使得 $f_{n_k}(x)$ _ $\xrightarrow{a.e.}$ $f(x)$ $(x \in E)$ 。	
9、设 $f(x)$ 是 E 上的可测函数,则 $f(x)$ 在 E 上的 L 积分不一定存在,且 $\left f(x)\right $ 在 E 上_	<u>不</u>
$_{-定}$ $_{L}$ 可积。	
10、若 $f(x)$ 是 $[a,b]$ 上的绝对连续函数,则 $f(x)$ 一定 <u>是</u> $[a,b]$ 上的有界变差函数。	
四、判断题(正确的打"√",错误的打"×")	
1、可列(数)个闭集的并集仍为闭集。 (×) 2、任何无限集均含有一个可数子集。 (✓)	

- 3、设E是可测集,则一定存在 G_δ 型集G,使得 $E \subset G$,且 $m(G \setminus E) = 0$ 。(\checkmark)
- 4、设E是零测集,f(z)是E上的实函数,则f(x)不一定是E上的可测函数。(\times)
- 5、设f(z)是可测集E上的非负可测函数,则f(x)必在E上L可积。 (imes)

五、简答题

1、简述无穷多个开集的交集是否必为开集?

答: 不一定为开集。例如 取 R^1 上一列开集为 $\left(-1-\frac{1}{n}, 1+\frac{1}{n}\right)$, $n=1,2,3,\cdots$

而 $\bigcap_{n=1}^{\infty} (-1 - \frac{1}{n}, 1 + \frac{1}{n}) = [-1, 1]$ 是闭集,不是开集。

- 2、可测集 E 上的可测函数与简单函数有何关系?
- 答: ①简单函数是可测函数;
 - ②可测函数不一定是简单函数;
 - ③可测函数一定可以表示成一列简单函数的极限。
- 3、[a,b]上的有界变差函数与单调函数有何关系?
- 答: ①单调函数是有界变差函数;
 - ②有界变差函数不一定是单调函数,但一定可以表示成单调函数的和或差。

六、计算题

1、设
$$D(x) = \begin{cases} 1 & x \in [0,1] \cap Q \\ 0 & x \notin [0,1] \cap Q \end{cases}$$
, 其中 Q 是有理数集, 求 $\int_{[0,1]} D(x) dx$ 。

解: 因为 $m\{[0,1] \cap Q\} = 0$, 所以D(x) = 0 a.e. 于[0,1], 于是

$$\int_{[0,1]} D(x) dx = \int_{[0,1]} 0 dx = 0$$

$$2. \ \ \ \ \ \ \lim_{n\to\infty}\int\limits_0^{+\infty}\frac{\ln(x+n)}{n}\cdot e^{-x}\cos x\mathrm{d}x\ .$$

解: 因为
$$\left| \frac{\ln(x+n)}{n} e^{-x} \cos x \right| \le \frac{\ln(1+x-1+n)}{n} e^{-x} \le \frac{x-1+n}{n} e^{-x} \le (1+x)e^{-x}$$

$$\overline{m} \quad \int\limits_{0}^{+\infty} (1+x)e^{-x}dx < +\infty$$

所以,由L控制收敛定理

$$\lim_{n\to\infty}\int_{0}^{+\infty}\frac{\ln(x+n)}{n}\cdot e^{-x}\cos x dx = \int_{0}^{+\infty}\frac{\ln(x+n)}{n}\cdot e^{-x}\cos x dx = \int_{0}^{+\infty}0 dx = 0$$

七、证明题

1、证明集合等式: $(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C)$

证明: (方法1)对任意 $x \in (A \cup B) \setminus C$,有 $x \in (A \cup B)$ 且 $x \notin C$,即 $x \in A$ 或 $x \in B$ 且 $x \notin C$ 所以 $x \in A \setminus C$ 或 $x \in B \setminus C$,即 $x \in (A \setminus C) \cup (B \setminus C)$ 。

反之,对任意 $x \in (A \setminus C) \cup (B \setminus C)$,有 $x \in A \setminus C$ 或 $x \in B \setminus C$,即 $x \in A$ 或 $x \in B$ 且 $x \notin C$, 所以 $x \in (A \cup B)$ 且 $x \notin C$,即 $x \in (A \cup B) \setminus C$,

综上所述, $(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C)$ 。

(方法 2)
$$(A \cup B) \setminus C = (A \cup B) \cap C^c = (A \cap C^c) \cup (B \cap C^c) = (A \setminus C) \cup (B \setminus C)$$
。

2、设 E_0 是[0,1]中的有理点全体,则 E_0 是可测集且 $mE_0=0$ 。

证明: 因为 E_0 是可数集,则 $E_0 = \{r_1, r_2, \dots, r_n, \dots\}$

对任意 $\varepsilon > 0$,取开区间 $(r_n - \frac{\varepsilon}{2^{n+1}}, r_n + \frac{\varepsilon}{2^{n+1}})$, $n = 1, 2, \cdots$,显然它们把 E_0 覆盖住。

于是 $m^*E_0 \leq \sum_{n=1}^{\infty} \frac{\mathcal{E}}{2^n} = \mathcal{E}$ 。让 $\mathcal{E} \to 0$ 得, $m^*E_0 = 0$,从而 E_0 是可测集且 $mE_0 = 0$ 。

3、证明: R^1 上的实值连续函数 f(x) 必为 R^1 上的可测函数。

证明:因为对于任意实数a,由连续函数的局部保号性易知, $R^1[x|f(x)>a]$ 是开集,从而 $R^1[x|f(x)>a]$ 是可测集。所以f(x)必为 R^1 上的可测函数。

4、设 f(x) 是可测集 $E \subset R^1$ 上的 L 可积函数, $\{E_n\}$ 为 E 的一列可测子集, $mE < +\infty$,如果 $\lim_{n \to \infty} mE_n = mE$,则 $\lim_{n \to \infty} \int_E f(x) dx = \int_E f(x) dx$ 。

证明: 因为 $mE < +\infty$ 且 $E_n \subset E$, 所以 $mE_n = m(E \setminus E_n) = mE - mE_n$

从而由题设 $\lim_{n\to\infty} m(E \setminus E_n) = mE - \lim_{n\to\infty} mE_n = mE - mE = 0$

又 f(x) 在 $E \subset R^1$ 上的 L 可积,且

$$\int_{E} f(x) dx - \int_{E_{n}} f(x) dx = \int_{(E \setminus E_{n}) \cup E_{n}} f(x) dx - \int_{E_{n}} f(x) dx$$

$$= \int_{E \setminus E_{n}} f(x) dx + \int_{E_{n}} f(x) dx - \int_{E_{n}} f(x) dx = \int_{E \setminus E_{n}} f(x) dx$$

所以由积分的绝对连续性得

$$\lim_{n\to\infty} \left(\int_{E_n} f(x) dx - \int_{E} f(x) dx \right) = \lim_{n\to\infty} \int_{E\setminus E_n} f(x) dx = 0$$

$$\lim_{n\to\infty} \int_{E_n} f(x) dx = \int_E f(x) dx.$$

5、设f(x)是可测集 $E \subset R^1$ 上的L可积函数, $\{E_n\}$ 为E中的一列递增可测子集,

$$\lim_{n\to\infty}\int_{E_n}f(x)\mathrm{d}x=\int_{\bigcup_{n=0}^{\infty}E_n}f(x)\mathrm{d}x.$$

证明:记

$$f_n(x) = f(x) \cdot \chi_{E_n}(x)$$
, $\sharp \, \forall \, \chi_{E_n}(x) = \begin{cases} 1, & x \in E_n \\ 0, & x \notin E_n \end{cases}$

显然在
$$\bigcup_{n=1}^{\infty} E_n$$
上, $f_n(x) = f(x) \cdot \chi_{E_n}(x) \rightarrow f(x)$, $|f_n(x)| \leq |f(x)|$ 且

$$\int_{\bigcup_{n=1}^{\infty} E_n} f_n(x) dx = \int_{E_n} f(x) dx$$

于是由勒贝格控制收敛定理即可的结论。

《实变函数》期末考试模拟试题(二)

(含解答)

一、选择题(单选题)

1、下列集合关系成立的是(A)

(A) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ (B) $(A \setminus B) \cap A = \emptyset$

- (C) $(B \setminus A) \cap A \neq \emptyset$
- (D) $(B \setminus A) \subseteq A$

2、若 $E \subset R^n$ 是闭集,则(B)

(A) E 的内部 = E (B) $\overline{E} = E$ (C) $E \subset E'$ (D) E' = E

3、设Q是有理数集,则(C)

(A) mQ > 0 (B) Q是闭集 (C) mQ = 0 (D) Q是不可数集

4、设 f(x) 为 R^1 上的连续函数, a 为任意实数,则(D)

(A) $R^{l}[x|f(x) \le a]$ 是开集 (B) $R^{l}[x|f(x) \ge a]$ 是开集

(C) $R^{1}[x|f(x)>a]$ 是闭集 (D) $R^{1}[x|f(x)>a]$ 是开集

5、 设 $E \in R^n$ 中的可测集, f(x), g(x)都是E上的可测函数, 若

$$\int_{E} |f(x) - g(x)| dx = 0,$$

则 (A)

(A) f(z) = g(x) a.e. $\mp E$ (B) $\not\equiv E \perp$, f(z) = g(x)

(C) $\notin E \perp$, $f(z) \neq g(x)$ (D) $\notin E \perp$, $f(z) \leq g(x)$

二、多项选择题(每题至少有两个或两个以上的正确答案)

1、设E是[0,1]中的有理点全体,则(\mathbb{C} 、 \mathbb{D})

(A) *E*是闭集

(B) E中的每一点都是内点

(C) *E* 是可数集

(D) mE = 0

2、若E ⊂ R¹ 的外测度为零,则(B、D)

(A) E 一定是可数集 (B) E 一定是可测集

(C) E 不一定是可数集 (D) mE = 0

3、设 $mE < +\infty$ ($E \subset R^n$),函数列 { $f_n(x)$ } 为E上几乎处处有限的可测函数列,f(x) 为E

上几乎处处有限的可测函数, 若 $f_n(x) \Rightarrow f(x)$ ($x \in E$), 则下列哪些结论不一定成立 (A、

B, C, D)

(A)
$$\int f(x) dx$$
 存在 (B) $f(x)$ 在 $E \perp L$ 可积

(B)
$$f(x)$$
 在 E 上 L 可积

(C)
$$f_n(x) \xrightarrow{a.e.} f(x) (x \in E)$$

(C)
$$f_n(x) \xrightarrow{a.e.} f(x)$$
 $(x \in E)$ (D) $\lim_{n \to \infty} \int_E f_n(x) dx = \int_E f(x) dx$

- 4、若 f(x) 在可测集 E 上有 L 积分值,则(A、C
 - (A) $f^+(z)$ 和 $f^-(z)$ 中至少有一个在 $E \perp L$ 可积
 - (B) $f^+(z)$ 和 $f^-(z)$ 都在 $E \perp L$ 可积
 - (C) |f(z)| 在 E 上也有 L 积分值
 - (D) |f(z)|在E上一定L可积
- 5、设f(z)是[a,b]的绝对连续函数,则($A \setminus B \setminus C$)

 - (A) f(z)是[a,b]上的连续函数 (B) f(z)是[a,b]上的一致连续函数
 - (C) f(z)是[a,b]上的有界变差函数 (D) f(z)在[a,b]上处处可导

三、填空题 (将正确的答案填在横线上)

- 1、设A, B是两个集合,则 $A \cup B$ = $(B \setminus A) \cup A$
- 2、设 $E \subset R^n$,如果E满足int E = E,则E是 ______集。
- 3、设G 为直线上的开集, 若开区间 (α,β) 满足 $(\alpha,\beta) \subset G$ 和 $\alpha \not\in G$, $\beta \not\in G$, 则 (α,β) 必为G的 构成 区间。
- = 4、设A是偶数集,则则A的基数A = a (其中a表示可数基数)。
- 5、设 E_1 , E_2 为可数集, $E_2 \subset E_1$ 且 $mE_2 < +\infty$, 则 $m(E_1 \setminus E_2) = mE_1 mE_2$ 。
- 6、设 f(x) 是可测集 E 上的可测函数,则对任意实数 a , b (a < b),都有 E[x|a < f(x) < b]是___可测集___。
- 7、若 $E \subset R^1$ 是可数集,则 $m^*E = 0$ 。
- 8、设函数列 $\{f_n(x)\}$ 为可测集E上的可测函数列,f(x)是E上的可测函数,如果 $f_n(x) \xrightarrow{a.e.} f(x) (x \in E)$,则 $f_n(x) \Rightarrow f(x) (x \in E)$ 不一定成立。
- 9、设 f(x) 是 E 上的非负可测函数,则 f(x) 在 E 上的 L 积分的值 一定存在 。
- 10、若 f(x) 是 [a,b] 上的有界变差函数,则 f(x) 必可表示成两个 递增函数的差 (或递减

函数的差)。

四、判断题(正确的打"√",错误的打"×")

1、可列(数)个开集的交集仍为开集。

2、任何无限集均都是可数集。

3、设E是可测集,则一定存在 F_a 型集F,使得 $F \subset E$,且 $m(E \setminus F) = 0$ 。(\checkmark)

4、设 E 是可测集,则 f(z) 是 E 上的可测函数 ⇔ 对任意实数 a ,都有 $E[x|f(x) \ge a]$ 是可 测集。

5、设f(z)是可测集E上的可测函数,则 $\int_{z} f(x) dx$ 一定存在。

五、简答题

1、简述无穷多个闭集的并集是否必为闭集?

答: 不一定为闭集。例如 取 R^1 上一列闭集为 $\left[-1+\frac{1}{n}, 1-\frac{1}{n}\right], n=1,2,3,\cdots$

而 $\bigcup_{i=1}^{\infty} [-1 + \frac{1}{i}, 1 - \frac{1}{i}] = (-1,1)$ 是开集,不是闭集。

2、可测集E上的可测函数与连续函数有何关系?

答: ①连续函数是可测函数;

- ②可测函数不一定连续:
- ③可测函数在E上是"基本上"连续的。

3、[a,b]上的绝对连续函数与有界变差函数有何关系?

答: ①绝对连续函数是有界变差函数:

②有界变差函数不一定是绝对连续函数。

六、计算题

1、设
$$f(x) = \begin{cases} x^2 & x \in P \\ x^3 & x \in [0,1] \setminus P \end{cases}$$
, 其中 P 是康托集,求 $\int_{[0,1]} f(x) dx$ 。

解: 因为mP = 0,所以 $f(x) = x^3$ a.e.于[0,1],于是

$$\int_{[0,1]} f(x) dx = \int_{[0,1]} x^3 dx$$

再由L积分与R积分的关系得

$$\int_{[0,1]} f(x) dx = \int_{[0,1]} x^3 dx = \int_0^1 x^3 dx = \frac{1}{4} x^4 \Big|_0^1 = \frac{1}{4}.$$

解: 因为
$$|f_n(x)| = \left|\frac{nx}{1+n^2x^2}\right| \le \frac{1}{2}$$
, 而 $\int_{\mathbb{R}} \frac{1}{2} dx = \frac{1}{2} < +\infty$

所以, 由L控制收敛定理

$$\lim_{n\to\infty}\int_E f_n(x)dx = \int_E \lim_{n\to\infty} f_n(x)dx = \int_E 0dx = 0$$

七、证明题

1、证明集合等式: $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$

证明: (方法 1) 对任意 $x \in A \setminus (B \cup C)$, 有 $x \in A \perp x \notin B \cup C$, 即 $x \in A \perp x \notin B$, $x \notin C$ 所以 $x \in A \setminus B \perp x \in A \setminus C$, 即 $x \in (A \setminus B) \cap (A \setminus C)$ 。

反之,对任意 $x \in (A \setminus B) \cap (A \setminus C)$,有 $x \in A \setminus B$ 且 $x \in A \setminus C$,即 $x \in A$ 且 $x \notin B$, $x \notin C$, 所以 $x \in A$ 且 $x \notin B \cup C$,即 $x \in A \setminus (B \cup C)$,

综上所述, $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$ 。

(方法2)

$$A \setminus (B \cup C) = A \cap (B \cup C)^c = A \cap B^c \cap C^c = (A \cap B^c) \cap (A \cap C^c) = (A \setminus B) \cap (A \setminus C).$$

2、设 $E \subset R^1$, 且 $m^*E = 0$, 则E是可测集。

证明: 对任意 $T \subset R^1$,显然 $m^*T \leq m^*(T \cap E) + m^*(T \cap E^c)$

又
$$m^*(T \cap E) \le m^*E = 0$$
 (因为 $T \cap E \subset E$), 从而 $m^*(T \cap E) = 0$

所以
$$m^*(T \cap E) + m^*(T \cap E^c) = m^*(T \cap E^c) \le m^*T$$
 (因为 $T \cap E^c \subset T$)

所以 $m^*T = m^*(T \cap E) + m^*(T \cap E^c)$,即E是可测集。

3、证明: R^1 上的单调函数 f(x) 必为 R^1 上的可测函数。

证明:不妨设 f(x) 是单调递增函数,对于任意实数 a,记 $\inf R^1[x|f(x)>a]=\alpha_0$,由于

$$f(x)$$
 是单调递增函数, $R^1[x|f(x)>a]= egin{cases} (lpha_0,+\infty) & lpha_0
otin R^1[x|f(x)>a] \ [lpha_0,+\infty) & lpha_0
otin R^1[x|f(x)>a] \end{cases}$, 显然是可

测集。所以 f(x) 必为 R^1 上的可测函数。

4、设f(x)是可测集 $E \subset R^n$ 上的可测函数,则f(x)在 $E \perp L$ 可积 $\Leftrightarrow |f(x)|$ 在 $E \perp L$ 可积。

证明: 必要性: 因为
$$f(x)$$
在 E 上 L 可积,则 $\int_E f^+(x)dx < +\infty$ 和 $\int_E f^-(x)dx < +\infty$

而
$$|f(x)| = f^+(x) + f^-(x)$$
, 所以

$$\int_{E} |f(x)| dx = \int_{E} f^{+}(x) dx + \int_{E} f^{-}(x) dx < +\infty,$$

即|f(x)|在E上L可积。

充分性: 因为 $\int_{E} |f(x)| dx < +\infty$, 且 $0 \le f^{+}(x) \le |f(x)|$, $0 \le f^{-}(x) \le |f(x)|$

$$\text{III} \int_{E} f^{+}(x) dx \leq \int_{E} |f(x)| dx < +\infty, \int_{E} f^{-}(x) dx \leq \int_{E} |f(x)| dx < +\infty.$$

所以f(x)在E上L可积。

5、设 $\{f_n(x)\}$ 可测集E上的非负可测函数列,且 $f_n(x) \ge f_{n+1}(x)$ ($n \ge 1$),存在 k_0 使得

$$\int_{\Gamma} f_{k_0}(x) \mathrm{d}x < +\infty ,$$

记 $\lim_{n\to\infty} f_n(x) = f(x)$,则f(x)在E上勒贝格可积,且

$$\lim_{n\to\infty}\int_E f_n(x)\mathrm{d}x = \int_E f(x)\mathrm{d}x \ .$$

证明:不妨设 $\int_{\Gamma} f_{1}(x)dx < +\infty$,由题设注意到 $f_{n}(x)$ 单调递减可得

$$f_1(x) \ge f_n(x) \ge 0,$$

且在 E 上恒有

$$\lim_{n\to\infty} f_n(x) = f(x) ,$$

于是,由勒贝格控制收敛定理得,f(x)在E上勒贝格可积,且

$$\lim_{n\to\infty}\int_E f_n(x)\mathrm{d}x = \int_E f(x)\mathrm{d}x \ .$$

6、 设 $mE < +\infty$, $\{f_n(x)\}$ 为E上几乎处处有界的可测函数列,证明:在E上 $f_n(x) \Rightarrow 0$

的充要条件是
$$\lim_{n\to\infty}\int_{E}\frac{|f_n(x)|}{1+|f_n(x)|}\mathrm{d}x=0$$
。

证明: 先证
$$f_n(x) \Rightarrow 0 \Leftrightarrow \frac{|f_n(x)|}{1+|f_n(x)|} \Rightarrow 0$$
。

事实上,由对任意 $\delta > 0$, $\left| f_n(x) \right| \ge \delta \Leftrightarrow \frac{\left| f_n(x) \right|}{1 + \left| f_n(x) \right|} \ge \frac{\delta}{1 + \delta}$ 再结合依测度收敛的定义即可得上面的结论。

下面证明本题的结论。

必要性: 因 $f_n(x)$ \Rightarrow 0 可得 $\frac{|f_n(x)|}{1+|f_n(x)|}$ \Rightarrow 0 , 于是 $\forall \varepsilon > 0$, $\exists N > 0$, 当 n > N 时,有

$$mE[x\left|\frac{\left|f_{n}(x)\right|}{1+\left|f_{n}(x)\right|}\geq\varepsilon]<\varepsilon$$

因此,当
$$n > N$$
时,并注意到 $\frac{|f_n(x)|}{1+|f_n(x)|} \le 1$ 和 $mE[x] \frac{|f_n(x)|}{1+|f_n(x)|} < \varepsilon] \le mE$ 可得

$$\int_{E} \frac{|f_n(x)|}{1+|f_n(x)|} dx = \int_{E[x] \frac{|f_n(x)|}{1+|f_n(x)|} < \varepsilon]} \frac{|f_n(x)|}{1+|f_n(x)|} dx + \int_{E[x] \frac{|f_n(x)|}{1+|f_n(x)|} \ge \varepsilon]} \frac{|f_n(x)|}{1+|f_n(x)|} dx$$

$$\leq \varepsilon \cdot mE\left[x \left| \frac{\left| f_n(x) \right|}{1 + \left| f_n(x) \right|} < \varepsilon \right] + 1 \cdot mE\left[x \left| \frac{\left| f_n(x) \right|}{1 + \left| f_n(x) \right|} \ge \varepsilon \right] < (1 + mE)\varepsilon$$

所以
$$\lim_{n\to\infty}\int_E \frac{|f_n(x)|}{1+|f_n(x)|}dx=0$$
。

充分性:对任意 $\delta > 0$,由

$$\delta \cdot mE\left[x \left| \frac{\left| f_n(x) \right|}{1 + \left| f_n(x) \right|} \ge \delta \right] \le \int_{E\left[x \left| \frac{\left| f_n(x) \right|}{1 + \left| f_n(x) \right|} \ge \delta \right]} \frac{\left| f_n(x) \right|}{1 + \left| f_n(x) \right|} dx \le \int_E \frac{\left| f_n(x) \right|}{1 + \left| f_n(x) \right|} dx \to 0 \ (n \to \infty)$$

可得
$$\frac{|f_n(x)|}{1+|f_n(x)|} \Rightarrow 0$$
,从而 $f_n(x) \Rightarrow 0$ 。

《实变函数》期末考试模拟试题(三)

(含解答)

一、选择题(单选题)

1,	下列集合关系成立的是(A)
	(A) $A \setminus (A \cap B) = A \setminus B$ (B) $A \setminus (A \cap B) \neq A \setminus B$
	(C) $(B \cap A) \cup A = A \cup B$ (D) $(B \setminus A) \cap A \neq \emptyset$
2,	若 E ⊂ R " 是孤立点集,则(B)
	(A) $E' \supset E$ (B) $E' = \emptyset$ (C) E 的內部 $\neq \emptyset$ (D) $E' = E$
3、	设 W 是 $[0,1]$ 上的无理数集,则(C)
	(A) W 是可数集 (B) W 是开集 (C) W 是不可数集 (D) $mW = 0$
4、	设 $f(x)$ 是 R^1 上的单调函数,则(D)
	(A) $f(x)$ 在 R^1 上连续 (B) $f(x)$ 在 R^1 中的不连续点有不可数个
	(C) $f(x)$ 在 R^1 上一定不 L 可积 (D) $f(x)$ 是 R^1 上的可测函数
5、	设 $E \neq R''$ 中的可测集, $f(x)$ 为 E 上的可测函数,若 $\int_E f^2(x) dx = 0$,则(A)
	(A), $f(z)$ 在 E 上几乎处处为零 (B) 在 E 上, $f(z) \equiv 0$
	(C) $\not\equiv E \perp$, $f(z) \neq 0$ (D) $mE[x f(x) = 0] = 0$
二.	、多项选择题(每题至少有两个或两个以上的正确答案)
1,	设 E 是 $[0,1]$ 上康托集,则((\mathbf{B}, \mathbf{C}))
	(A) <i>E</i> 是可数集 (B) <i>E</i> 是闭集
2、	(C) E 中的每一点都是聚点 (D) $mE > 0$ 若 $E \subset R^1$ 至少有一个聚点,则($C \subset D$)
_,	$(A) m^*E > 0 \qquad (B) \overline{m^*E} = 0$
	(C) <i>E</i> 可能是可数集 (D) <i>E</i> 可能是不可数集
3、	设 $E \subset [a,b]$ 是不可测集,则 E 的特征函数 $X_E(x)$ 是($C \subset D$)
	(A) $[a,b]$ 上的简单函数 (B) $[a,b]$ 上的可测函数
	(C) E 上的连续函数 (D) $[a,b]$ 上的不可测函数
4、	设 $f(x)$ 在可测集 E 上不 L 可积,则(B 、 D)

(A) $f^+(z)$ 和 $f^-(z)$ 都在 E 上不 L 可积
(B) $f^+(z)$ 和 $f^-(z)$ 至少有一个在 E 上不 L 可积
(C) $ f(z) $ 在 E 上可能 L 可积
(D) $ f(z) $ 在 E 上一定不 L 可积
5、设 $f(z)$ 是 $[a,b]$ 的有界变差函数,则(A 、 D)
(A) $f(z)$ 在 $[a,b]$ 上几乎处处连续 (B) $f(z)$ 是 $[a,b]$ 的连续函数
(C) $f(z)$ 在 $[a,b]$ 上不可导 (D) $f(z)$ 在 $[a,b]$ 上几乎处处可导
三、填空题(将正确的答案填在横线上)
1、设 X 为全集, A , B 为 X 的两个子集, 则 $A \cap B$ $=$ $A \setminus (A \setminus B)$
2、设 $E \subset R^n$,如果 E 满足 $E' = E$,则 E 是 完全 集。
a 、 若 开 区 间 (a,b) 和 (c,d) 是 直 线 上 开 集 a 的 两 个 不 同 的 构 成 区 间 , 则
$(a,b)\cap(c,d)=\underline{\varnothing}_{\circ}$
4、设 A 是无限集, B 是至多可数集,则 $A \cup B$ 的基数 $\overline{A \cup B}$ $=$ A 。
5、设 E_1 , E_2 为可测集, $mE_2=0$, 则 $m(E_1 \setminus E_2)$ = mE_1 。
6、设 $f(x)$ 是定义在可测集 E 上的有限实函数,若对任意实数 $a < b$,都有
$E[x a < f(x) \le b]$ 是可测集,则 $f(x)$ 是可测集 E 上的 可测函数。
7、设 $E \subset R^1$ 是孤立点集,则 $m^*E = 0$ 。
8、设函数列 $\{f_{\scriptscriptstyle n}(x)\}$ 为可测集 E 上的可测函数列, 且 $f_{\scriptscriptstyle n}(x)$ \Rightarrow $f(x)$ $(x \in E)$, 则
$f_n(x) \stackrel{a.e.}{\rightarrow} f(x) (x \in E) \underline{\kappa - \underline{\varepsilon} \underline{\kappa} \underline{\dot{\sigma}}}.$
9、设 $f(x)$ 是 E 上的可测函数,则 $f(x)$ 在 E 上的 L 可积的充要条件是 $ f(x) $ 在 E 上
勒贝格可积。
10、若 $f(x)$ 是 $[a,b]$ 上的有界变差函数或绝对连续函数,则 $f(x)$ $[a,b]$ 上的导数

四、判断题(正确的打"√",错误的打"×")

几乎处处存在

- 1、可列(数)个 F_{σ} 型集的并集仍为 F_{σ} 型集。
- 2、无限集中一定存在具有最大基数的无限集。 (X)
- 3、设E是可测集,则一定存在开集G,使得 $E \subset G$,且 $m(G \setminus E) = 0$ 。(×)
- 4、设 E_1 和 E_2 都是可测集,f(z)是 E_1 和 E_2 上的可测函数,则f(x)不一定是 $E_1 \cup E_2$ 上的可测函数。 (\times)
- 5、设f(z)是可测集E上的可测函数,且 $\int_E f(x) dx$ 存在(可为 $\pm \infty$),则 $f^+(x)$ 和 $f^-(x)$ 至少有在E上L可积。

五、简答题

1、简述无穷多个零测集的并集是否必为零测集?

答: 不一定为零测集。例如 $R^1 = \bigcup_{x \in R^1} \{x\}$, 显然 $\{x\}$ 为单元素集,为零测集, R^1 不是零测集。

- 2、 R^1 上的可测集与 Borel 集的关系?
- 答:①Borel 集是可测集;
 - ②可测集不一定是 Borel 集:
 - ③可测集一定可以表示成一个 Borel 集与零测集的差或并。
- 3、可测集 $E \subset R^1$ 上的可测函数与连续函数有何关系?
- 答: ①可测集 E 上的连续函数一定是可测函数;
 - ②可测集E上的可测函数不一定是连续函数:
 - ③对E上的一个可测函数,任取 $\varepsilon > 0$,在可测集E中去掉一个测度小于 ε 的可测子集后,可使此可测函数成为连续函数。

六、计算题

1、设
$$f(x) = \begin{cases} e^{\sin x} & x \in [0,1] \cap Q \\ x & x \notin [0,1] \cap Q \end{cases}$$
,其中 Q 是有理数集,求 $\int_{[0,1]} f(x) dx$ 。

解: 因为 $m\{[0,1] \cap Q\} = 0$, 所以f(x) = x a.e. 于[0,1], 于是

$$\int_{[0,1]} f(x) dx = \int_{[0,1]} x dx = \frac{1}{2}$$

$$\mathfrak{M}: \ \, \mathbb{B} \, \, \mathbb{B} \, \, |f_n(x)| = \left| \frac{nx^{\frac{1}{2}}}{1 + n^2 x^2} \right| = \left| \frac{nx}{1 + n^2 x^2} \right| \frac{1}{x^{\frac{1}{2}}} \leq \frac{1}{2x^{\frac{1}{2}}}, \ \, \overline{\mathbb{m}} \, \int_E \frac{1}{2x^{\frac{1}{2}}} dx = 1 < +\infty$$

所以, 由L控制收敛定理

$$\lim_{n\to\infty}\int_{E}f_{n}(x)dx=\int_{E}\lim_{n\to\infty}f_{n}(x)dx=\int_{E}0dx=0$$

七、证明题

1、证明集合等式: $(A \setminus B) \cap C = (A \cap C) \setminus B$

证明: (方法 1)对任意 $x \in (A \setminus B) \cap C$,有 $x \in (A \setminus B)$ 且 $x \in C$,即 $x \in A$, $x \notin B$ 且 $x \in C$ 所以 $x \in A \cap C$ 或 $x \notin B$,即 $x \in (A \cap C) \setminus B$ 。

反之,对任意 $x \in (A \cap C) \setminus B$,有 $x \in A \cap C$ 且 $x \notin B$,即 $x \in A$, $x \in C$ 且 $x \notin B$,所以 $x \in (A \setminus B)$ 且 $x \in C$,即 $x \in (A \setminus B) \cap C$,

综上所述, $(A \setminus B) \cap C = (A \cap C) \setminus B$ 。

(方法 2)
$$(A \setminus B) \cap C = (A \cap B^c) \cap C = (A \cap C) \cap B^c = (A \cap C) \cap B^c = (A \cap C) \setminus B$$
。

2、设 E_0 是[0,1]中的无理点全体,则 E_0 是可测集且 $mE_0=1$ 。

证明: 记 Q_0 是[0,1]中的有理点全体,由于 Q_0 是可数集,从而 Q_0 可测,且 $mQ_0=0$ 。又 $E_0=[0,1]\setminus Q_0$,所以, E_0 是可测集且 $mE_0=m[0,1]-mQ_0=1-0=0$ 。

3、设 $E \subset R^1$, $\chi_E(x) = \begin{cases} 1, & x \in E \\ 0, & x \notin E \end{cases}$, 证明: $\chi_E(x) \neq R^1$ 上的可测函数的充要条件是E为可测集。

证明: 充分性: 因为 $\chi_E(x)$ 是 R^1 上的可测函数,则对任意实数a, $R^1[x|\chi_E(x)>a]$

是可测集,特别取 $a = \frac{1}{2}$,注意到 $R^1[x|\chi_E(x) > \frac{1}{2}] = E$,可得E为可测集。

必要性: 若E为可测集,则 $\chi_E(x)$ 是 R^1 上的简单函数,从而为 R^1 上的可测函数。

4、设 $\{f_n(x)\}$ 为可测集 $E \subset R^1$ 上的可测函数列,若 $\lim_{n\to\infty}\int_E |f_n(x)| dx = 0$,则在 $E \perp f_n(x) \Rightarrow 0$ 。

证明:对任意 $\delta > 0$,由于

$$\delta \cdot mE[x || f_n(x)| \ge \delta] \le \int_{E[x || f_n(x)| \ge \delta]} |f_n(x)| dx \le \int_E |f_n(x)| dx$$

所以

$$\lim_{n\to\infty} mE[x||f_n(x)| \ge \delta] = 0,$$

即在 $E \perp f_n(x) \Rightarrow 0$ 。

5、设 $mE < +\infty$,若 $\{f_n(x)\}$ 是E上一列几乎处处收敛于零的可积函数,且满足对任意 $\varepsilon > 0$,存在 $\delta > 0$,只要 $e \subset E, me < \delta$,就有 $\int_e |f_n(x)| dx < \varepsilon (n \ge 1)$,证明:

$$\lim_{n\to\infty}\int_{F}|f_{n}(x)|\,dx=0.$$

证明: 由题设及 Egoroff 定理得, 对题设中的 $\delta>0$, 存在可测集 $F\subset E$, $mF<\delta$, 在 $E\setminus F$ 上 $f_n(x)$ 一致收敛于 0 , 从而对题设中的 $\forall \varepsilon>0$, 存在 N>0 , 当 n>N 时

$$|f_n(x)| < \varepsilon, (x \in E \setminus F)$$

于是, $\exists n > N$ 时, 并注意到题设的条件, 有

$$\int_{E} |f_n(x)| dx = \int_{E} |f_n(x)| dx + \int_{E \setminus E} |f_n(x)| dx < \varepsilon + m(E \setminus F) \cdot \varepsilon \le (1 + mE)\varepsilon.$$

$$\lim_{n\to\infty}\int_E |f_n(x)| dx = 0.$$

《实变函数》期末考试模拟试题(四)

(含解答)

_	夕西进级斯	(短期云小右册	(1) 人田 (1)	上的正确答案)
一、	多坝远拌越	(毋甦王少有 例	小蚁网小以	工的正确谷条人

、多项处许成(每成主)有两个以内个以上的工物合杂)
1、设 E 是 $[0,1]$ 中的有理点全体,则(\mathbb{C} 、 \mathbb{D}) $[考核对典型集合掌握的情况]$
(A) E 是闭集 (B) E 中的每一点都是内点 (C) E 是可数集 (D) $mE=0$
2、设 E 是[0,1]中的无理点全体,则(C 、 D)
(A) E 是可数集 (B) E 是闭集 (C) E 中的每一点都是聚点 (D) $mE > 0$ 3、若 $E \subset R^1$ 的外测度为零,则 (B, D) [考核零测集的特点] (A) E 一定是可数集 (B) E 一定是可测集 (C) E 不一定是可数集 (D) $mE = 0$
4、若 $E \subset R^1$ 至少有一个内点,则(B 、 D)[考核典型集的外测度可数性的特点] (A) m^*E 可以等于零 (B) $m^*E > 0$ (C) E 可能是可数集 (D) E 是不可
数集
5、设 $mE < +\infty$ $(E \subset R^n)$,函数列 $\{f_n(x)\}$ 为 E 上几乎处处有限的可测函数列, $f(x)$ 为 E
上几乎处处有限的可测函数, 若 $f_n(x) \Rightarrow f(x)$ $(x \in E)$, 则下列哪些结论不一定成立 (A, C)
B、C、D) [考核可测函数与勒贝格积分的简单综合] (A) $\int_E f(x) dx$ 存在 (B) $f(x)$ 在 $E \perp L$ 可积
(C) $f_n(x) \xrightarrow{a.e.} f(x)$ $(x \in E)$ (D) $\lim_{n \to \infty} \int_E f_n(x) dx = \int_E f(x) dx$
6、设 $E \subset [a,b]$ 是可测集,则 E 的特征函数 $X_E(x)$ 是 (A、B、C)[考核特征函数的特点]
(A) $[a,b]$ 上的简单函数 (B) $[a,b]$ 上的可测函数 (C) E 上的连续函数 (D) $[a,b]$ 上的连续函数
7、若 $f(x)$ 在可测集 E 上有 L 积分值,则(A 、 C)[考核勒贝格积分的定义]
(A) $f^+(z)$ 和 $f^-(z)$ 中至少有一个在 $E \perp L$ 可积 (B) $f^+(z)$ 和 $f^-(z)$ 都在 $E \perp L$ 可积
(C) $ f(z) $ 在 E 上也有 L 积分值 (D) $ f(z) $ 在 E 上一定 L 可积

18

(A) $f^+(z)$ 和 $f^-(z)$ 有且仅有一个在 $E \perp L$ 可积 (B) $f^+(z)$ 和 $f^-(z)$ 都在 $E \perp L$ 可

8、设f(x)在可测集 $E \perp L$ 可积,则(\mathbf{B} 、 \mathbf{D})[考核勒贝格积分的定义]

积

- (C) |f(z)| 在 E 上不一定 L 可积 (D) |f(z)| 在 E 上一定 L 可积
- 9、设 f(z) 是 [a,b] 的绝对连续函数,则(A、B、C) [考核绝对连续函数、有界变差函数 的基本性质]

 - (A) f(z)是[a,b]上的连续函数 (B) f(z)是[a,b]上的一致连续函数
 - (C) f(z)是[a,b]上的有界变差函数 (D) f(z)在[a,b]上处处可导
- 10、设 f(z) 是 [a,b] 的单调函数,则(A、C、D) [考核绝对连续函数、有界变差函数的 基本性质1
 - (A) f(z)是[a,b]的有界变差函数 (B) f(z)是[a,b]的绝对连续函数
 - (C) f(z)在[a,b]上几乎处处连续 (D) f(z)在[a,b]上几乎处处可导
- 二、单项选择题 (每题仅有一个正确答案)
- 1. 设 $E \neq [0,1]$ 中的无理点全体,则 $E \neq (C)$).[考核对典型集合掌握的情况]
 - (A) 可数集 (B) 有限集 (C) 不可数集 (D) 零测集
- 2. 下面集合关系成立的是(A).[考核对集合的基本运算掌握的情况]
- $(A)(A \setminus B) \cup B = A \cup B \quad (B)(A \setminus B) \cup B = A \quad (C)(B \setminus A) \cup A \subset A \quad (D)B \setminus A \subset A$
- 3. 若 $E \subset R^2$ 至少有一个内点,则有(B). [考核对典型集合外测度掌握的情况]
 - (A) $m^*E = 0$ (B) $m^*E > 0$ (C) mE = 0 (D) mE < 0
- 4. 设 $E \subset R^2$ 是开集,则(B).[考核开集闭集的基本特征]
- (A) $E' \subset E$ (B) $E^0 = E$ (C) $\overline{E} = E$ (D) E' = E
- 5. 设 $E \subset [a,b]$ 是可测集,则E的特征函数 $X_{E}(x)$ 是[a,b]上的(A). [考核对集合的特征 函数的认识]
 - (A) 简单函数 (B) 常函数 (C) 连续函数 (D) 单调函数
- 6. 设 $Q \subset [0,1]$ 是有理数集, $D(x) = \begin{cases} 1, x \in Q \\ 0, x \notin Q \end{cases}$,则D(x)是[0,1]上的(C).[考核目标同上

题]

- (A)连续函数(B)单调函数(C)简单函数(D)定积分存在的函数
- 7. 设 f(x) 在可测集 E 上勒贝格可积,则(B). [考核勒贝格积分的定义]
- (A) $f^+(x)$ 和 $f^-(x)$ 有且仅有一个在 E 上勒贝格可积; (B) $f^+(x)$ 和 $f^-(x)$ 都在 E 上勒 贝格可积
- (C) $f^+(x)$ 和 $f^-(x)$ 都在 E 上不勒贝格可积; (D) $|f(x)| = f^+(x) + f^-(x)$ 在 E 上不勒

贝格可积

- 8. 设W是[0,1]上的无理数集,c表示连续基数,则(D).[考核对典型集合基数和测度掌握的情况]
- (A) $\overline{\overline{W}} > c$ (B) $\overline{\overline{W}} < c$ (C) mW = 0 (D) mW = 1
- 9. 设 f(x) 是 [a,b] 上的单调函数,则 f(x) 是 [a,b] 上的(D). [考核基本的有界变差函数和绝对连续函数]
 - (A)连续函数 (B)绝对连续函数 (C)可导函数 (D)有界变差函数
- 10. 设 f(x) 在 [a,b] 上绝对连续,则 f(x) 在 [a,b] 上(A). [考核绝对连续函数的关系的基本性质]
 - (A) 有界变差 (B) 可导 (C) 单调 (D) 连续可微

三、填空题

- 1. 设A, B为X的两个子集,则 $A \setminus B$ **等于** $A \cap B^c$. [考核集合之间的基本关系]
- 2. 设A, B为两个集合,则 $A \cup B$ 等于 $(B \setminus A) \cup A$. [考核目标同上]
- 3. 设 $E \subset R$ ",如果E满足 $E' \subset E$,则E是 _______集.[考核开集、闭集的定义]
- 5. 若开区间 (α, β) 是直线上开集 G 的一个构成区间,则 (α, β) 满足 $(\alpha, \beta) \subset G$ 且 $\alpha, \beta \not\in G$. [考核开集的构成区间的定义和特点]
- 6. 设E是 R^1 上的开集,若开区间(a,b)满足(a,b) \subset E 且a,b $\not\in$ E ,则称(a,b) 是开集E 的 构成 区间. [考核开集的构成区间的定义和特点]
- 7. 设A是无限集,则A的基数A <u>大于或等于</u> a (其中a表示可数基数). [考核可数集的性质]
- 8. 设A是偶数集,则A的基数A <u>等于</u> a (其中a表示可数基数). [考核可数集的性质]
- 9. 设 E_1 , E_2 为可测集, $mE_2 < +\infty$, 则 $m(E_1 \setminus E_2)$ <u>大于或等于</u> $mE_1 mE_2$. [考核测度的性质,单调性和次可加性]
- 10. 设A, B 为可测集,则 $m(A \cup B)$ 小于或等于 mA + mB. [考核测度的性质,次可加性]
- 11. 设 f(x) 是定义在可测集 E 上的实函数,若对任意实数 a ,都有 E[x] f(x) > a 是 可测
- $\underline{\mathbf{\xi}}$, 则称 f(x) 是可测集 E 上的可测函数. [考核可测函数的定义]

12. 设 f(x) 是可测集 E 上的可测函数,则对任意实数 a , b (a < b),有 E[x|a < f(x) < b] 是

___**可测**__集.[考核可测函数的基本性质]

- 13. 设 $E \subset R^1$ 是可数集,则 m^*E **等于** 0.[考核典型集合的测度和外测度]
- 14. 设 $P \subset [0,1]$ 是康托集,则mP **等于** 0.[考核典型集合的测度和外测度]
- 15. 设函数列 $\{f_n(x)\}$ 为可测集 E 上的可测函数列,且 $f_n(x)$ 在 E 上依测度收敛于 f(x),

则存在 $\{f_n(x)\}$ 的子列 $\{f_{n_k}(x)\}$,使得 $f_{n_k}(x)$ 在E上<u>几乎处处收敛于</u>f(x).[考核函数列收敛与依测度收敛的关系的记忆,本题是其中的黎斯定理]

16. 设 $mE < +\infty$, $\{f_n(x)\}$ 是E上的可测函数列,f(x)是E上的实函数,若 $f_n(x)$ 在E上几乎处处收敛于f(x),则 $f_n(x)$ 在E上<u>依测度</u>收敛于f(x).[考核函数列收敛与依测度收敛的关系的记忆,本题是其中的勒贝格定理]

- 17. 设 f(x) 在 [a,b] 上黎曼可积,则 f(x) 在 [a,b] 上勒贝格可积,且它们的积分值 <u>相</u> **等** __. [考核黎曼积分与勒贝格积分的关系]
- 18. 设 f(x), g(x) 都在 [a,b] 上勒贝格可积,且几乎处处相等,则它们在 [a,b] 上勒贝格积分值 相等 . [考核勒贝格积分的基本性质]
- 19. 若 f(x) 是 [a,b] 上的绝对连续函数,则 f(x) 是 [a,b] 上的有界变差函数. [考核有界变差函数和绝对连续函数的关系]
- 20. 若 f(x) 是 [a,b] 上的有界变差函数,则 f(x) 可以表示成两个单调函数的<u>和或差</u>. [考核有界变差函数和单调函数的关系,即约当分解定理]
- 四、判断说明题(注意这类题不仅要求判断对还是不对,而且还要简单的说明理由)
- 1. 无限个闭集的并集仍为闭集. [考核开集、闭集的性质]
- 答:不对,因为闭集只对有限的并集运算封闭。
- 2. 无限个开集的交集仍为开集. [考核开集、闭集的性质]
- 答:不对,因为开集只对有限的交集运算封闭。
- 3. 无限集均含有一个可数子集. [考核可数集的性质]
- 答:对,因为这是可数集与无限集的关系。
- 4. 无限集都是可数集. [考核无限集的分类]
- 答:不对,因为无限集还包括不可数集。
- 5. 设 E 是可测集,则一定存在 G_{δ} 型集 G , 使得 $E \subset G$, 且 $m(G \setminus E) = 0$. [考核可测集

与 G_{s} 型集或 F_{σ} 型集的关系]

答:对,因为这是可测集与 G_s 型集的关系。

6. 设E是可测集,则一定存在 F_σ 型集F,使得 $F \subset E$,且 $m(E \setminus F) = 0$. [考核可测集与 G_s 型集或 F_σ 型集的关系]

答:对,因为这是可数集与 F_a 型集的关系。

7. 设E是测度为零的集,f(z)是E上的实函数,则f(x)不一定是E上的可测函数. [考核可测函数的基本性质]

答:不对,因为零测集上的任何实函数都是可测函数。

8. 设E是可测集,f(z)是E上几乎处处为零的实函数,则f(x)在E上可测. [考核可测函数的基本性质]

答:对,因为常函数 0 是可测函数,由可测函数的性质可得 f(x) 在 E 上可测。

9. 设 f(z) 是可测集 E 上的非负可测函数,则 f(x) 必在 E 上勒贝格可积. [考核勒贝格积分的定义]

答:不对,因为可测集E上的非负可测函数只能保证有勒贝格积分,不一定能保证勒贝格可积。

10. 设 f(z) 是可测集 E 上的可测函数,则 $\int_{E} f(x) dx$ 一定存在. [考核勒贝格积分的定义]

答:不对,因为可测集E上的可测函数,不一定能定义勒贝格积分,因此不一定能保证 $\int_{\mathcal{E}} f(x) \mathrm{d}x$ 存在。

五、简答题(此类题关键是要把要点答出来)

1. 简述无穷多个开集的交集是否必为开集? [考核开集、闭集的运算性质]

要点:首先,回答结论:不一定为开集

其次、举出交集为开集的例子和交集不是开集的例子。

2. 简述无穷多个闭集的并集是否必为闭集? [考核开集、闭集的运算性质]

要点: 首先, 回答结论: 不一定为闭集

其次, 举出并集为闭集的例子和并集不是闭集的例子。

3. 可测集E上的可测函数与简单函数有何关系? [考核可测函数与简单函数的关系]

要点: 1、简单函数是可测函数; 2、可测函数不一定是简单函数; 3、可测函数一定可表示成一列简单函数的极限。

4. 可测集 E 上的可测函数与连续函数有何关系? [考核可测函数与简单函数的关系]

要点: 1、连续函数是可测函数; 2、可测函数不一定是连续函数; 3、对任意 $\varepsilon > 0$,在E中去掉一个测度小于 ε 的可测集后,可测函数能成为连续函数(鲁津定理)。

5. [a,b]上的有界变差函数与单调函数有何关系?[考核单调函数与有界变差函数的关系]

要点: 1、单调函数是有界变差函数; 2、有界变差函数不一定是单调函数; 3、有界变差函数能分解成两个单调函数的和或差。

6. [a,b]上的绝对连续函数与有界变差函数有何关系? [考核有界变差函数与绝对连续函数的关系]

要点: 1、绝对连续函数是有界变差函数; 2、有界变差函数不一定是绝对连续函数。 六、计算题(注意这类题要写出主要步骤)

1. 设
$$f(x) = \begin{cases} 2 & x \in [0,1] \cap W \\ 0 & x \notin [0,1] \cap W \end{cases}$$
 , 其中 W 是有理数集,求 $\int_{[0,1]} f(x) dx$. [考核简单的

勒贝格积分的计算]

解: 因[0,1] \cap W 是至多可数集,m([0,1] \cap W)=0 ,得 f(x)=0 在[0,1] 上几乎处处成立。 所以由勒贝格积分的惟一性, $\int_{[0,1]} f(x) \mathrm{d}x = \int_{[0,1]} 0 \mathrm{d}x = 0$ 。

2. 设
$$f(x) = \begin{cases} \sin x^2 & x \in C \\ x^2 & x \in [0,1] \setminus C \end{cases}$$
 , 其中 C 是康托集,求 $\int_{[0,1]} f(x) dx$. [考核简单的勒贝

格积分的计算]

解:由康托集为零测集,即mC=0,得 $f(x)=x^2$ 在[0,1]上几乎处处成立。所以

$$\int_{[0,1]} f(x) dx = \int_{[0,1]} x^2 dx = \frac{1}{3} x^3 \Big|_0^1 = \frac{1}{3} .$$

注意: 上面两题是简单积分的计算, 注意利用积分的惟一性。

3. 求 $\lim_{n\to\infty}\int\limits_0^{+\infty}\frac{\ln(x+n)}{n}\cdot e^{-x}\mathrm{d}x$. [考核勒贝格控制收敛定理的简单应用]

解: 因为
$$\lim_{n\to\infty} \frac{\ln(x+n)}{n} \cdot e^{-x} = 0$$
,且

$$\left| \frac{\ln(x+n)}{n} \cdot e^{-x} \right| = \frac{\ln(x+n)}{n} \cdot e^{-x} = \frac{\ln(1+x+n-1)}{n} \cdot e^{-x} \le \frac{x+n-1}{n} \cdot e^{-x} \le (x+1) \cdot e^{-x}$$

而 $(x+1)\cdot e^{-x}$ 在 $[0,+\infty)$ 勒贝格可积,所以,由勒贝格控制收敛定理

$$\lim_{n\to\infty}\int_{0}^{+\infty}\frac{\ln(x+n)}{n}\cdot e^{-x}\mathrm{d}x=\int_{0}^{+\infty}\lim_{n\to\infty}\frac{\ln(x+n)}{n}\cdot e^{-x}\mathrm{d}x=\int_{0}^{+\infty}0\mathrm{d}x=0$$

4. 设
$$f_n(x) = \frac{nx}{1 + n^2 x^2} \sin nx$$
, $E = [0,1]$, 求 $\lim_{n \to \infty} \int_E f_n(x) dx$. [考核勒贝格控制收敛定理的简

单应用1

解: 因为
$$\lim_{n\to\infty} f_n(x) = \lim_{n\to\infty} \frac{nx}{1+n^2x^2} \sin nx = 0$$
,且

$$|f_n(x)| = \frac{|nx|}{1 + n^2 x^2} |\sin nx| \le \frac{|nx|}{1 + n^2 x^2} \le \frac{1}{2}$$

而 $\frac{1}{2}$ 显然在E=[0,1] 勒贝格可积,所以,由勒贝格控制收敛定理

$$\lim_{n\to\infty}\int_E f_n(x)\mathrm{d}x = \int_E \lim_{n\to\infty} f_n(x)\mathrm{d}x = \int_E 0\mathrm{d}x = 0$$

注意:上面的两题在计算时,要注意验证勒贝格控制收敛定理的条件。

七、证明题

1. 证明: $(E_1 \cup E_2) \setminus E = (E_1 \setminus E) \cup (E_2 \setminus E)$.

证明: (方法1)

$$(E_1 \cup E_2) \setminus E = (E_1 \cup E_2) \cap E^c = (E_1 \cap E^c) \cup (E_2 \cap E^c) = (E_1 \setminus E) \cup (E_2 \setminus E)$$

(方法2) 直接用集合相等的定义证明。

2. 证明: $E \setminus (B \cup A) = (E \setminus B) \cap (E \setminus A)$.

证明: (方法1)

$$E \setminus (B \cup A) = E \cap (B \cup A)^c = E \cap (B^c \cap A^c) = (E \cap B^c) \cap (E \cap A^c) = (E \setminus B) \cap (E \setminus A)$$

(方法2)直接用集合相等的定义证明。

3. 设 $E \neq R$ 中的有理点全体,则 E 是可测集且 mE = 0.

提示: 用外测度的定义证明

证明: 因为 E 是可数集,则 $E = \{r_1, r_2, \dots, r_n, \dots\}$

对任意 $\varepsilon>0$,取开区间 $(r_n-\frac{\varepsilon}{2^{n+1}},r_n+\frac{\varepsilon}{2^{n+1}})$, $n=1,2,\cdots$,显然它们把 E_0 覆盖住。

于是 $m^*E \leq \sum_{n=1}^{\infty} \frac{\mathcal{E}}{2^n} = \mathcal{E}$ 。 让 $\mathcal{E} \to 0$ 得, $m^*E = 0$,从而 E_0 是可测集且 mE = 0 。

4. 设 $A \subset R^2$, 且 $m^*A = 0$, 则A是可测集.

提示:用可测集的定义证明。

证明: 对任意 $T \subset R^2$, 显然

$$m^*T \leq m^*(T \cap A) + m^*(T \cap A^c)$$

又 $m^*(T \cap A) \le m^*A = 0$ (因为 $T \cap A \subset A$), 从而

$$m^*(T \cap A) = 0$$

所以

$$m^*(T \cap A) + m^*(T \cap A^c) = m^*(T \cap A^c) \le m^*T$$
 (因为 $T \cap A^c \subset T$)

所以

$$m^*T = m^*(T \cap A) + m^*(T \cap A^c),$$

即A是可测集。

5. 证明: R 上的实值连续函数 f(x) 必为 R 上的可测函数.

证明:因为对于任意实数 a ,由连续函数的局部保号性易知, $R[x \mid f(x) > a]$ 是开集,从 而 $R[x \mid f(x) > a]$ 是可测集。所以 f(x) 必为 R 上的可测函数。

6. 证明: R上的单调函数 f(x) 必为 R上的可测函数.

证明:不妨设 f(x) 是单调递增函数,对于任意实数 a,记 $\inf R[x|f(x)>a]=\alpha_0$,由于

$$f(x)$$
 是单调递增函数, $R[x | f(x) > a] = \begin{cases} (\alpha_0, +\infty) & \alpha_0 \notin R[x | f(x) > a] \\ [\alpha_0, +\infty) & \alpha_0 \in R[x | f(x) > a] \end{cases}$, 显然是

可测集。所以 f(x) 必为 R 上的可测函数。

7. 设 f(x) 是可测集 $E \subset R^n$ 上的勒贝格可积函数, $\{E_n\}$ 为 E 的一列可测子集, $mE < +\infty$,

如果
$$\lim_{n\to\infty} mE_n = mE$$
 , 则 $\lim_{n\to\infty} \int_{E_n} f(x) dx = \int_E f(x) dx$.

证明: 因为 $mE < +\infty$ 且 $E_n \subset E$,所以 $mE_n = m(E \setminus E_n) = mE - mE_n$

从而由题设
$$\lim_{n\to\infty} m(E\setminus E_n) = mE - \lim_{n\to\infty} mE_n = mE - mE = 0$$

又 f(x) 在 $E \subset R^n$ 上的 L 可积,且

$$\int_{E} f(x)dx - \int_{E_{n}} f(x)dx = \int_{(E \setminus E_{n}) \cup E_{n}} f(x)dx - \int_{E_{n}} f(x)dx$$

$$= \int_{E \setminus E_{n}} f(x)dx + \int_{E_{n}} f(x)dx - \int_{E_{n}} f(x)dx = \int_{E \setminus E_{n}} f(x)dx$$

所以由积分的绝对连续性得

$$\lim_{n\to\infty} \left(\int_{E_x} f(x)dx - \int_E f(x)dx\right) = \lim_{n\to\infty} \int_{E\setminus E_x} f(x)dx = 0$$

$$\operatorname{Pr} \lim_{n \to \infty} \int_{E_n} f(x) dx = \int_{E} f(x) dx \circ$$

8. 设 f(x) 是可测集 $E \subset R^n$ 上的可测函数,则 f(x) 在 E 上勒贝格可积 $\Leftrightarrow |f(x)|$ 在 E 上勒贝格可积.

证明: 必要性: 因为 f(x) 在 E 上 L 可积,则 $\int_E f^+(x)dx < +\infty$ 和 $\int_E f^-(x)dx < +\infty$

而
$$\left| f(x) \right| = f^+(x) + f^-(x)$$
,所以
$$\int_E \left| f(x) \right| dx = \int_E f^+(x) dx + \int_E f^-(x) dx < +\infty ,$$

即|f(x)|在E上L可积。

充分性: 因为
$$\int_{E} |f(x)| dx < +\infty$$
, 且 $0 \le f^{+}(x) \le |f(x)|$, $0 \le f^{-}(x) \le |f(x)|$ 则 $\int_{E} f^{+}(x) dx \le \int_{E} |f(x)| dx < +\infty$, $\int_{E} f^{-}(x) dx \le \int_{E} |f(x)| dx < +\infty$.

所以 f(x) 在 E 上 L 可积。

9. 设 f(x) 是可测集 $A \subset R^n$ 上的勒贝格可积函数, $\{E_n\}$ 为 A 中的一列递增可测子集,证明:

$$\lim_{n\to\infty}\int_{E_n}f(x)\mathrm{d}x=\int_{\overset{\circ}{\cup}E_n}f(x)\mathrm{d}x.$$

证明:记

$$\begin{split} f_n(x) &= f(x) \cdot \chi_{E_n}(x) \text{ , } \\ \not\equiv \psi \chi_{E_n}(x) &= \begin{cases} 1, & x \in E_n \\ 0, & x \not\in E_n \end{cases} \end{split}$$
 显然在 $\bigcup_{n=1}^\infty E_n$ 上, $f_n(x) = f(x) \cdot \chi_{E_n}(x) \to f(x)$, $\left| f_n(x) \right| \leq \left| f(x) \right|$ 且
$$\int_{\bigcup_{E_n}} f_n(x) dx = \int_{E_n} f(x) dx$$

于是由勒贝格控制收敛定理即可的结论.

10. 设E是可测集,且mE<+ ∞ ,若 $\{f_n(x)\}$ 是E上一列几乎处处收敛于零的可积函数,

且满足对任意 $\varepsilon>0$, 存在 $\delta>0$, 只要 $e\subset E, me<\delta$, 就有 $\int_e |f_n(x)|\,dx<\varepsilon(n\geq 1)$,证明:

$$\lim_{n\to\infty}\int_E |f_n(x)|\,dx=0.$$

证明: 由题设及叶果洛夫定理得, 对题设中的 $\delta > 0$, 存在可测集 $F \subset E$, $mF < \delta$,

使得, $f_n(x)$ 在 $E \setminus F$ 上一致收敛于0,

从而对题设中的 $\forall \varepsilon > 0$,存在N > 0,当n > N时

$$|f_n(x)| < \varepsilon, (x \in E \setminus F)$$

于是, $\exists n > N$ 时, 并注意到题设的条件, 有

$$\int_{E} |f_{n}(x)| dx = \int_{F} |f_{n}(x)| dx + \int_{E \setminus F} |f_{n}(x)| dx < \varepsilon + m(E \setminus F) \cdot \varepsilon \le (1 + mE)\varepsilon$$

$$\lim_{n \to \infty} \int_{F} |f_{n}(x)| dx = 0.$$

《实变函数》期末考试模拟试题(五)

(含解答)

一、判断题(每题2分,共20分)

- 1、设 $E \subset R^1$, 若E是稠密集,则 E^c 是无处稠密集。F
- 2、若|f(x)|是可测函数,则f(x)必是可测函数。F
- 3. 设f(x)在可测集E上可积分,若 $\forall x \in E, f(x) > 0$,则 $\int_{F} f(x) > 0$ F
- 4、A为可数集,B为至多可数集,则A∪B是可数集.T
- 5、若mE = 0,则 $m\overline{E} = 0$ F
- 6、若|f(x)|是可测函数,则f(x)必是可测函数 F
- 7. 设f(x)在可测集E上可积分,若 $\forall x \in E, f(x) > 0$,则 $\int_{F} f(x) > 0$ F
- 8、任意多个开集之交集仍为开集 F
- 9、由于[0,1]-(0,1)= $\{0,1\}$,故不存在使(0,1)和[0,1]之间1-1对应的映射。F
- 10、可数个零测度集之和集仍为零测度集。T

二、选择题(每题2分,共12分)

1、下列各式正确的是(C)

$$(\mathrm{A}) \ \ \overline{\lim_{n \to \infty}} A_n = \mathop{\cup}\limits_{n=1}^{\infty} \mathop{\cap}\limits_{k=n}^{\infty} A_k \ ; \qquad (\mathrm{B}) \ \ \underline{\lim_{n \to \infty}} A_n = \mathop{\cap}\limits_{n=1}^{\infty} \mathop{\cup}\limits_{k=n}^{\infty} A_k$$

(C)
$$\overline{\lim}_{n\to\infty} A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_n$$
; (D) 以上都不对;

2、设P为Cantor集,则下列各式不成立的是(D)

(A)
$$\overrightarrow{P} = c$$
 (B) $mP = 0$ (C) $\overrightarrow{P} = P$ (D) $\overrightarrow{P} = P$

3、设 $\{E_n\}$ 是一列可测集, $E_1 \subseteq E_2 \subseteq \cdots \subseteq E_n \subseteq \cdots$,则有(B)。

(A)
$$m\left(\bigcup_{n=1}^{\infty} E_n\right) > \lim_{n \to \infty} mE_n$$
 (B) $m\left(\bigcup_{n=1}^{\infty} E_n\right) = \lim_{n \to \infty} mE_n$

(C)
$$m\left(\bigcap_{n=1}^{\infty} E_n\right) = \lim_{n \to \infty} mE_n$$
; (D) 以上都不对

4、设 $\{E_n\}$ 是一列可测集, $E_1 \supset E_2 \supset \cdots \supset E_n \supset \cdots$,且 $mE_1 < +\infty$,则有(A)

(A)
$$m \left(\bigcap_{n=1}^{\infty} E_n \right) = \lim_{n \to \infty} m E_n$$
 (B) $m \left(\bigcup_{n=1}^{\infty} E_n \right) \leq \lim_{n \to \infty} m E_n$

(C)
$$m\left(\bigcap_{n=1}^{\infty}E_{n}\right)<\lim_{n\to\infty}mE_{n}$$
; (D) 以上都不对

- 5、设 f(x)是 [a,b] 上绝对连续函数,则下面不成立的是(B)
 - (A) f(x) 在[a,b]上的一致连续函数 (B) f(x) 在[a,b]上处处可导
 - (C) f(x)在[a,b]上L可积
- (D) f(x) 是有界变差函数
- 6、设M,N是两集合,则 M-(M-N)=(C)
 - (A) M (B) N (C) $M \cap N$ (D) \varnothing
 - 三、解答题(每题6分,共18分)

解: f(x)在[0,1]上不是R-可积的,因为f(x)仅在x=1处连续,

即不连续点为正测度集

因为f(x)是有界可测函数,所以f(x)在[0,1]上是L-可积的

因为
$$f(x)$$
 与 x a.e.相等,进一步, $\int_{[0,1]} f(x) dx = \int_0^1 x dx = \frac{1}{2}$

2、求极限 $\lim_{n\to\infty}\int_0^1 \frac{nx}{1+n^2x^2}\sin^3 nxdx$.

解: 设
$$f_n(x) = \frac{nx}{1 + n^2 x^2} \sin^3 nx dx$$
,则易知当 $n \to \infty$ 时, $f_n(x) \to 0$

又 $|f_n(x)| \le \frac{nx}{1+n^2x^2}$,但是不等式右边的函数,在 $[0,+\infty)$ 上是L可积的

故有
$$\lim_{n} \int_{0}^{\infty} f_{n}(x) dx = \int_{0}^{\infty} \lim_{n} f_{n}(x) dx = 0$$

3、设 $A_{2n-1}=(0,\frac{1}{n}), A_{2n}(0,n), n=1,2,\cdots$,求出集列 $\{A_n\}$ 的上限集和下限集解: $\overline{\lim}A_n=(0,\infty)$

设 $x \in (0,\infty)$, 则存在 N, 使x < N, 因此n > N时, 0 < x < n, 即 $x \in A_{2n}$, 所

以x属于下标比 N 大的一切偶指标集,从而x属于无限多 A_n ,得 $x \in \overline{\lim_{n \to \infty}} A_n$,

又显然
$$\overline{\lim}_{n\to\infty} A_n \subset (0,\infty)$$
,所以 $\overline{\lim}_{n\to\infty} A_n = (0,\infty)$

$$\underline{\lim}_{n\to\infty}A_n=\phi$$

若有 $x \in \underline{\lim}_{n \to \infty} A_n$, 则存在 N, 使任意 n > N, 有 $x \in A_n$, 因此若 2n - 1 > N 时,

$$x \in A_{2n-1}$$
,即 $0 < x < \frac{1}{n}$,令 $n \to \infty$ 得 $0 < x \le 0$,此不可能,所以 $\varliminf_{n \to \infty} A_n = \phi$

四、证明题(每题10分,共50分)

1、试证(0,1)~[0,1]

证明:记(0,1)中有理数全体 $Q = \{r_1, r_2, \dots\}$,令

$$\varphi(x) = \begin{cases}
\varphi(r_1) = 0 \\
\varphi(r_2) = 1 \\
\varphi(r_{n+2}) = r_n, n = 1, 2 \cdots \\
\varphi(x) = x, x 为(0,1) 中 无理数,
\end{cases}$$

显然 φ 是(0,1)到[0,1]上的一一映射

所以(0,1)~[0,1]

2 、设 f(x) 是 $(-\infty, +\infty)$ 上的实值连续函数,则对于任意常数 $a, E = \{x \mid f(x) \ge a\}$ 是闭集。P51

3、设 $\{f_n(x)\}$ 为 E 上可积函数列, $\lim_n f_n(x) = f(x)a.e.$ 于 E,且 $\int_E |f_n(x)| dx < k$, k 为常数,则 f(x) 在 E 上可积. P133

4、设 f(x) 在 E 上积分确定,且 f(x) = g(x)a.e 于 E ,则 g(x) 在 E 上也积分确定,且 $\int_E f(x)dx = \int_E g(x)dx$ P108

5、设在 $E \perp f_n(x) \Rightarrow f(x)$,而 $f_n(x) = g_n(x)$ a.e. 成立, $n = 1,2,\cdots$,则有 $g_n(x) \Rightarrow f(x)$ P95

《实变函数》期末考试模拟试题(六)

(含解答)

- 1、若 N 是自然数集, N_e 为正偶数集,则 N 与 N_e 对等。(对)
- 2、由直线上互不相交的开间隔所成之集是至多可列集。(对)
- 3、若 A_1, A_2, \dots, A_n 是 R^1 上的有限个集,则下式 $\left(A_1 + A_2 + \dots + A_n\right)' = A_1' + A_2' + \dots + A_n'$ 成立。 (对)
- 4、任意多个开集的交集一定是开集。(错)
- 5、有限点集和可列点集都可测。(对)
- 6、可列个零测集之并不是零测集。(对)
- 7、若开集 G_1 是开集 G_2 的真子集,则一定有 $mG_1 < mG_2$ 。(错)
- 8、对于有界集 $E \subset \mathbb{R}^1$,必有 $m*E < +\infty$ 。(对)
- 9、任何点集 E 上的常数函数 f(x)=C, $x \in E$ 是可测函数。(错)
- 10、由 f(x) 在 E_k $(k=1,2,\cdots)$ 上可测可以推出 f(x) 在 $E=\sum_{k=1}^{\infty}E_k$ 上可测。(对)
- 二、填空
- 1、区间 (0,1) 和全体实数 R 对等,只需对每个 $x \in (0,1)$,令____ $\varphi(x) = \tan(\pi x \frac{\pi}{2})$ ______
- 2、任何无限集合都至少包含一个______可数子集______
- 3、设 S_1, S_2 都可测,则 $S_1 \cup S_2$ 也可测,并且当 $S_1 \cap S_2$ 为空集时,对于任意集合 T 总有_____

$$m^*[T \cap (S_1 \cup S_2)] = m^*(T \cap S_1) + m^*(T \cap S_2)$$

- 4、设 E 是任一可测集,则一定存在 F_{∂} 型集 F,使 $F \subset E$,且___m(E-F)=0_____
- 5、可测集 $E \subset R^n$ 上的 连续函数 是可测函数。
- 6、设E是一个有界的无限集合,则E 至少有一 个聚点。
- 8、E 为闭集的充要条件是 ______ $E' \subset E($ 或 $\partial E \subset E)$ ______ 。
- = = = = = 9、设 A、B 是两个非空集合,若 $A \le B, B \le A$,则有___ A=B_____。
- 三、证明
- 1、证明: 若 $A \subset B$, 且 $A \sim A \cup C$, 则有 $B \sim B \cup C$ 。证明: 由条件易得,

$$B = A \cup (B - A) \tag{1}$$

$$B \cup C = [A \cup (C - B)] \cup (B - A) \tag{2}$$

 $\pm \mp A \cap (B-A) = \emptyset, [A \cup (C-B)] \cap (B-A) = \emptyset,$

$$\overline{n}$$
 $A \subset A \cup (C - B) \subset A \cup C$,

已知 $A \sim A \cup C$,所以 $A \sim A \cup (C - B)$.

而 $B-A\sim B-A$,由(1)(2)得 $B\sim B\cup C$ 。

2、设f(x)为 R^1 上的连续函数,则对任意的 $a \in R^1$, $E[f(x) \ge a]$ 、 $E[f(x) \le a]$ 为闭集 $(E = R^1)$

证: 先证 $E[f(x) \ge a]$ 是闭集。设 x_0 是 $E[f(x) \ge a]$ 的一个极限点,则 $E[f(x) \ge a]$ 中有点列 $\{x_n\}$,使 $x_n \to x_0 (n \to \infty)$.

由 $x_n \in E\big[f(x) \le a\big]$ 知 $f(x_n) \ge a$.又由 f(x) 的连续性及极限不等性可得

$$f(x_0) = \lim_{x \to \infty} f(x_n) \ge a.$$

$$\therefore x_0 \in E[f(x) \ge a].$$

$$\mathbb{P} \qquad (E[f(x) \ge a]) \subseteq E[f(x) \ge a].$$

故 $E[f(x) \ge a]$ 为闭集.

4、设 $\left\{f_{n}\right\}$ 是 E 上的可测函数列,则其收敛点集与发散点集都是可测的。

证: 显然, $\{f_n\}$ 的收敛点集可表示为

$$E_0 = E[x \left| \overline{\lim}_{x \to \infty} f_n(x) = \lim_{x \to \infty} f_n(x) \right] = \prod_{k=1}^{\infty} E[\left| \overline{\lim}_{x \to \infty} f_n - \lim_{x \to \infty} f_n \right| < \frac{1}{k} \right].$$

由 f_n 可测 $\overline{\lim_{x\to\infty}} f_n$ 及 $\underline{\lim_{x\to\infty}} f_n$ 都可测,所以 $\left|\overline{\lim_{x\to\infty}} f_n - \underline{\lim_{x\to\infty}} f_n\right|$ 在 E 上可测。

从而,对任一自然数 k , $E[\left|\overline{\lim_{x\to\infty}}f_n-\lim_{x\to\infty}f_n\right|<\frac{1}{k}]$ 可测。故

$$E_0 = \prod_{k=1}^{\infty} E\left[\left|\overline{\lim}_{x \to \infty} f_n - \lim_{x \to \infty} f_n\right| < \frac{1}{k}\right] \text{ if } \mathbb{W} \,.$$

既然收敛点集 E_0 可测,那么发散点集 $E-E_0$ 也可测。

《实变函数》期末考试模拟试题(七)

(含解答)

一、判断题(判断正确、错误,请在括号中填"对"或"错"。	共10小题,每题1.5分,共10×1.5=15分)
$_1$ 、 \mathbf{R}^lack 中全体子集构成一个 $oldsymbol{\sigma}$ 代数。	(√)
2、存在闭集使其余集仍为闭集。	(\(\)
$_3$ 、若 E 是可测集, F 是 E 的可测子集,则 $m(E-F)=\pi$	nE−mF _。 (×)
4、无限集中存在基数最大的集合,也存在基数最小的集合。	(×)
5、可数个可数集的并集是可数集。	(🗸)
\mathbf{G} 、可数个 \mathbf{G} 集的交集不一定是 \mathbf{G} 集。	(X)
7、若 尼 是可测集, $f(x)$ 是 E 上的实函数,则 $f(x)$ 在 E	上可测的充要条件是:存在实数☎,使
$E[x f>a]_{\text{e-rin}_{\#}}$	(×)
8、若 尼 是可测集, F 是 尼 的可测子集,则 m(E-F) = n	Æ−mF 。 (×)
9、若 E 是可测集, f(x) 是 E 上的非负可测函数,则 f(x) 在.	医 上一定可积。 (×)
$\int f(x)dx$ $f(x) \in \mathbf{E}$ $f($	쇼 c 一定存在。 (√)
二、选择题。(每道题只有一个答案正确,多选或者不选均为零	分,每道题 1.5 分,共 15 分)
1、下列集合关系成立的是(A) (A) $(A \setminus B) \cup B = A \cup B$ (B) $(A \setminus B) \cup B = A$	
(C) $(B \setminus A) \cup A \subseteq A$ (D) $(B \setminus A) \subseteq A$	
2、若 $E \subset R^n$ 是开集,则(B)	
(A) $E' \subset E$ (B) E 的内部 = E (C) $\overline{E} = E$	(D) $E' = E$
3、设□ 是有理数,则下列正确的是(B)	
A. $\overline{\square} > \overline{\overline{[0,1]}}$; B. $\overline{\square} < \overline{\overline{[0,1]}}$; C. $\overline{\square} = \overline{\overline{[0,1]}}$;	D. 以上都不正确。
4.、设 E 是 R "中的可测集, $f(x)$ 为 E 上的可测函数,若 \int_{E}	$f(x)dx = 0$, $\mathbb{Q}(A)$

(A) 在 E 上, $f(z)$ 不一定恒为零 (B) 在 E 上, $f(z) \ge 0$
(C) $\notin E \perp$, $f(z) \equiv 0$ (D) $\notin E \perp$, $f(z) \neq 0$
5、设 E 是 R^1 中的可测集, $arphi(x)$ 是 E 上的简单函数,则($ extst{D}$)
(A) $\varphi(x)$ 是 E 上的连续函数 (B) $\varphi(x)$ 是 E 上的单调函数
(C) $\varphi(x)$ 在 E 上一定不 L 可积 (D) $\varphi(x)$ 是 E 上的可测函数
6、设 $f(z)$ 是 $[a,b]$ 的单调函数,则(${\color{red} { m C}}$)
(A) $f(z)$ 不是 $[a,b]$ 的有界变差函数 (B) $f(z)$ 不是 $[a,b]$ 的绝对连续函数
(C) $f(z)$ 在 $[a,b]$ 上几乎处处连续 (D) $f(z)$ 不在 $[a,b]$ 上几乎处处可导
 7、若 E ⊂ R¹ 至少有一个内点,则(D) (A) m*E 可以等于零 (B) E 是可数集 (C) E 可能是可数集 (D) m*E > 0
8、设 E 是 $[0,1]$ 中的无理点全体,则($^{ extsf{C}}$)
(A) E 是可数集 (B) E 是闭集
(C) E 中的每一点都是聚点 (D) $m*E<0$
9、设 $f(x)$ 在可测集 $E \perp L$ 可积,则(D)
(A) $f^+(z)$ 和 $f^-(z)$ 有且仅有一个在 $E \perp L$ 可积
(B) $f^+(z)$ 和 $f^-(z)$ 不都在 $E \perp L$ 可积
(C) $ f(z) $ 在 E 上不一定 L 可积
(D) $ f(z) $ 在 E 上一定 L 可积
10、设 $E\subset [a,b]$ 是可测集,则 E 的特征函数 $X_{_E}(x)$ 是 (B)
(A) 在 $[a,b]$ 上不是简单函数 (B) 在 $[a,b]$ 上的可测函数
(C) 在 E 上不是连续函数 (D) $[a,b]$ 上的连续函数

三、填空题(将正确的答案填在横线上,每道题1分,共10分)

1、设X为全集, A, B为X的两个子集,则 $A \backslash B$ _____ $A \cap B^{C}$ 。

- 2、设 $E \subset R^n$,如果E满足 $E' \subset E$,则E是 闭 集。
- 3、若开区间 (lpha,eta) 是直线上开集 G 的一个构成区间,则 (lpha,eta) 满足 (lpha,eta) $\subset G$ 、

$$\alpha \notin G, \ \beta \notin G$$
 .

- = 4、设A是无限集,则A的基数A \geq a (其中a表示可数基数)。
- 5、设 E_1 , E_2 为可测集, $mE_2 < +\infty$, 则 $m(E_1 \setminus E_2) \geq mE_1 mE_2$ 。
- 6、设f(x)是定义在可测集E上的实函数,若对任意实数a,都有E[x|f(x)>a]
- 是<u>可测集</u>,则称 f(x) 是可测集 E 上的可测函数。
- 7、设 x_0 是 $E \subset R^1$ 的内点,则 $m^*E > 0$ 。
- 8、设函数列 $\{f_n(x)\}$ 为可测集E上的可测函数列,且 $f_n(x) \Rightarrow f(x)(x \in E)$,则由黎斯定理可得,

存在
$$\{f_n(x)\}$$
的子列 $\{f_{n_k}(x)\}$,使得 $f_{n_k}(x)$ $\overset{a.e.}{ o}$ $f(x)$ $(x \in E)$ 。

- 9、设 f(x) 是 E 上的可测函数,则 f(x) 在 E 上的 L 积分不一定存在,且 $\left|f(x)\right|$ 在 E 上 不一定 L 可积。
- 10、若f(x)是[a,b]上的绝对连续函数,则f(x)一定<u>是</u>[a,b]上的有界变差函数。

四、证明题。

1、[0,1]上的全体无理数作成的集合其基数为 c

证明:设 A 为 [0,1] 中的有理数集, B 为[0,1] 上的无理数集, 则 $A \cup B = [0,1]$,

$$\mathbb{II} \ \overline{A \cup B} = \overline{[0,1]} = \mathbf{c}$$

又因为 $\overline{\overline{A}} = a < c$ 所以 $\overline{\overline{B}} = c$

2、开集减闭集后的差集仍是开集;闭集减开集后的差集仍是闭集。

证明:设A为开集,B为闭集,则 $A-B=A\cap C_B$

因为 B 为闭集, 所以 C_{B} 为开集

因此 A-B 为开集;

同上所设有 $B - A = B \cap C_A$

又因为 A 为开集

所以为 C_A 闭集。

因此 B-A 为闭集。

3、设 A, B \subset R^P 且 $m*B < +\infty$,若 A 是可测集,证明 $m*(A \cup B) = mA + m*B - m*(A \cap B)$

证明: 因为 A 是可测集, 所以由卡拉泰奥多里条件得

$$m*(A \cup B) = m*((A \cup B) \cap A) + m*((A \cup B) \cap C_A) = mA + m*(B - A)$$
 (I)

$$m * B = m * (B \cap A) + m * (B \cap C_A) < +\infty$$

于是
$$m*(B-A) = m*B-m*(A \cap B)$$
 (II)

将(II)代入(I)得 $m*(A \cup B) = mA + m*B - m*(A \cap B)$

4、设 $E\subset R^q$,存在两侧两列可测集 $\{A_n\}$, $\{B_n\}$,使得 $A_n\subset E\subset B_n$ 且m(A_n - B_n) \to 0, $(n\to\infty)$

则E可测.

证明: 对于任意
$$i$$
, $\bigcap_{n=1}^{\infty}B_n\subset B_i$, 所以 $\bigcap_{n=1}^{\infty}B_n-E\subset B_i-E$

又因为
$$A_i \subset E$$
 , $B_i - E \subset B_i - A_i$

所以对于任意
$$i$$
, $m^*(\bigcap_{n=1}^{\infty} B_n - E) \le m^*(B_i - E) \le m^*(B_i - A_i) = m(B_i - A_i)$

$$\diamondsuit i \rightarrow \propto \ , \ \boxplus m(B_i - A_i) \rightarrow 0 \ \not \exists \ m^*(\bigcap_{n=1}^{\infty} B_n - E) = 0$$

所以
$$\bigcap_{n=1}^{\infty} B_n - E$$
 是可测的

又由于 B_n 可测,有 $\bigcap_{n=1}^{\infty} B_n$ 也是可测的

所以
$$E = \bigcap_{n=1}^{\infty} B_n - (\bigcap_{n=1}^{\infty} B_n - E)$$
是可测的。

《实变函数》期末考试模拟试题(八)

(含解答)

一、证明题:

1、设在 $E \perp f_n(x) \Rightarrow f(x)$,而 $f_n(x) = g_n(x)$ a.e.成立,n = 1, 2...,则有 $g_n(x) \Rightarrow f(x)$

证明: 开集减闭集后的差集仍是开集; 闭集减开集后的差集仍然是闭集。

3. 设M是 R^3 空间中以有理点(即坐标都是有理数)为中心,有理数为半径的球的全体,证明M为可

$$m^*(B_i-E) \to 0$$
, $(i \to \infty)$, 证明 E 是可测集.

二、选择题:

1. A 为可数集, B 为有限或可数集, 则 $A \cup B$ 为 (A)

A 可数集 B 不可数集 C 无法确定

2、有 C 个 (C 表示连续基数)集的并集,若每个集的基数都是 (C)

A
$$C^2$$
 B C C 2C

3、E 为开集的充要条件是(A)

A
$$E \subset E$$
 B $E' \subset E$ C $\partial E \subset E$

4、A 为开集。B 为闭集, A-B 为 (A)

A开集 B 闭集 C 可开可闭

5、设 S1、S2 都是可测, $S_1 \cap S_2$ (B)

A 不可测 B 可测 C 不确定

- 6. 下列命题错误的是()
 - A. 开集、闭集都是可测集 B. 可测集都是 Borel 集

 - C. 外测度为零的集是可测集 D. F_{σ} 型集、 G_{δ} 型集都是可测集

7. 设 $\left\{E_n\right\}$ 是一列递降的可测集合, $E_1 \supset E_2 \supset \cdots \supset E_n \cdots$,且 $mE_1 < +\infty$,则有()

A.
$$m\left(\bigcap_{n=1}^{\infty} E_n\right) \le \lim_{n \to \infty} mE_n$$
 B. $m\left(\bigcap_{n=1}^{\infty} E_n\right) \ge \lim_{n \to \infty} mE_n$

B.
$$m\left(\bigcap_{n=1}^{\infty} E_n\right) \ge \lim_{n \to \infty} m E_n$$

C.
$$m\left(\bigcap_{n=1}^{\infty} E_n\right) = \lim_{n \to \infty} mE_n$$
 D. 以上都不对

8. 下列命题错误的是()

A. 若
$$|f(x)|$$
在 E 上可测,则 $f(x)$ 在 E 上也可测

- B. 可测集 E 上的连续函数是可测函数
- C. f(x)在 $E \perp L$ 可积的充要条件是|f(x)|在E上可积
- D. [a,b]上任意一有界变差函数 f(x)都可表示为两个增函数之差
 - 9. 下列表达正确的是()

A.
$$f^+(x) = \max\{-f(x), 0\}$$
 B. $f(x) = f^+(x) + f^-(x)$

B.
$$f(x) = f^{+}(x) + f^{-}(x)$$

c.
$$|f(x)| = f^{+}(x) - f^{-}(x)$$

c.
$$|f(x)| = f^{+}(x) - f^{-}(x)$$

 D. $[f(x)]_{n} = \min\{f(x), n\}$

三、填空题:

2,
$$\operatorname{id} A_n = \left[\frac{1}{n}, 2\right], \ n = 1, 2 \cdots, \ \operatorname{ilim}_{n \to \infty} A_n = \underline{\qquad}$$

- 3、(a,b) \square $(-\infty,+\infty)$,因为存在两个集合之间的一一映射为______.
- 4、设 $E \in \mathbb{R}^2$ 中函数 $y = \begin{cases} \cos \frac{1}{x}, x \neq 0 \\ 0, x = 0 \end{cases}$ 的图形上的点所组成的 集合,则

$$E' = \underline{\qquad}$$
 , $E^{\circ} = \underline{\qquad}$.

- 6、若 (α, β) 是直线上开集G的一个构成区间,则 (α, β) 满足:

8、若
$$mE[f_n(x) \not\to f(x)] = 0$$
,则说 $\{f_n(x)\}$ 在 E 上______.

9、 $_{0}E \subset R^{n}$, $x_{0} \in R^{n}$, $x_$

 $\{f_n(x)\}$ 是 E 上几乎处处有限的可测函数列, f(x) 是 E 上 几乎处处有限的可测函数,

$$_{\mathtt{A}}\, orall\, \sigma > 0$$
,有______

四、判断题

 $_{1. }$ 若A,B 可测。 $A \subset B$ 且 $A \neq B$ 则 mA < mB .

2. 设E 为点集、 $P \notin E$ 、则P 是E 的外点. ()

- 4. 任意多个闭集的并集是闭集. ()
- 5. 若 $E \subset R^n$,满足 $m^*E = +\infty$,则E为无限集合. ()
- 6. 任意无限集合都至少包含一个可数子集。()

$$A_1, A_1, \dots A_n$$
 ……是一列相交的集合,它们的基数都是 C ,则 $n=1$ 的基数是 nc 。()

- 8. E 为闭集的充要条件是 $\partial E \subset E$ 。()
- 9. 集合的交或并满足交换率、结合率、分配率。()
- 10. 任意无限集合都至少包含一个可数子集。()

答案

一. 证明答案:

1、证明: 设
$$E_n = E\left[f_n \neq g_n\right]$$
,则 $m\left(\bigcup_{n=1}^\infty E_n\right) \leq \sum_{n=1}^\infty m E_n = 0$ 。
$$\forall \sigma > 0 \text{ , } \quad E\left[|f - g_n| \geq \sigma\right] \subset \left(\bigcup_{n=1}^\infty E_n\right) \cup E\left[|f - f_n| \geq \sigma\right]$$
所以
$$mE\left[|f - g_n| \geq \sigma\right] \leq m\left(\bigcup_{n=1}^\infty E_n\right) + mE\left[|f - f_n| \geq \sigma\right] = mE\left[|f - f_n| \geq \sigma\right]$$
 因为 $f_n(x)$ ⇒ $f(x)$,所以 $0 \leq \lim mE\left[|f - g_n| \geq \sigma\right] \leq \lim mE\left[|f - f_n| \geq \sigma\right] = 0$

$$\mathbb{P} g_n(x) \Rightarrow f(x)$$

2、证:设A为开集,B为闭集

则 A-B=
$$A \cap \ell B$$

∵B 为闭集

B的补集为开集

故A-B为开集

 \therefore B - A = B $\bigcap \ell A$

由 A 为开集 则 ℓA 为闭集

∴B-A 为闭集

3、M 中任何一个元素可以由球心 $\left(x,y,z
ight)$, 半径为r 唯一确定, x, y, z 跑遍所有的正有理

数, r 跑遍所有的有理数. 因为有理数集于正有理数集为可数集都是可数集, 故 M 为可数集.

4、
$$\Rightarrow B = \bigcup_{i=1}^{\infty} B_{i}$$
,则 $E \subset B \subset B_{i}$ 且 B 为可测集,于是对于 $\forall i$,都有 $B - E \subset B_{i} - E$,故 $0 \le m^{*}(B - E) \le m^{*}(B_{i} - E)$,

$$\diamond i \longrightarrow \infty$$
, 得到 $m^*(B-E) = 0$, $\mathrm{th} B - E$ 可测. 从而

$$E = B - (B - E)$$
可测.

二、选择题答案:

1、A 2、C 3、A 4、A 5、B 6. B 7. C 8. A 9. D 10、

三、填空题答案:

 $_{1}$, [0,2].

2.
$$\varphi(x) = \tan \left[\frac{\pi}{b-a} (x-a) - \frac{\pi}{2} \right], x \in (a,b).$$

3.
$$\left\{ (x,y) \middle| y = \cos \frac{1}{x}, x \neq 0 \right\} \cup \left\{ (0,y) \middle| |y| \leq 1 \right\}; \varnothing$$
.

4、 闭集.

5.
$$(\alpha, \beta) \subset G$$
. $\alpha \notin G$, $\beta \notin G$.

$$b-a$$

7、 几乎处处收敛于
$$f(x)$$
 或 $a.e.$ 收敛于 $f(x)$.

8、 对
$$\forall \delta > 0$$
, $U^{\circ}(x_0, \delta)$ 有 $(E - \{x_0\}) = \emptyset$.

9.
$$\lim_{n\to\infty} mE\left[\left|f_n(x)-f(x)\right| \ge \sigma\right] = 0$$

$$f_n(x) \to f(x)$$
 a.e. $\mp E$

四、判断题答案:

1. 错 例如,
$$A = (0,1)$$
, $B = [0,1]$,则 $A \subset B$ 且 $A \neq B$,但 $mA = mB = 1$.

2. 错 例如,
$$0 \notin (0,1)$$
, 但 0 不是 $(0,1)$ 的外点.

$$_{3. \oplus}$$
 由于 $E' = \{0\} \subset E$.

4. 错 例如,在
$$R^1$$
中, $F_n = \left[\frac{1}{n}, 1 - \frac{1}{n}\right]$, $n = 3, 4 \cdots$ 是一系列的闭集,但是 $\bigcup_{n=3}^{\infty} F_n = (0,1)$ 不是闭集.

5. 对 因为若 E 为有界集合,则存在有限区间 I , $|I|<+\infty$, 使得 $E\subset I$, 则

$$m^*E \le m^*I = |I| < +\infty, \quad \pm m^*E = +\infty$$

- $_{6.$ 对 见教材 P_{20}
- $_{7.错}$ 见教材 P_{26}
- $_{8.$ 对 见教材 P_{39}
- $_{9.$ 对 见教材 P_{9}
- $_{
 m 10.对}$ 见教材 $P_{
 m 13}$

《实变函数》期末考试模拟试题(九)

(含解答)

一,填空题

13、设
$$A_n = \left[\frac{1}{n}, 2\right], \quad n = 1, 2 \cdots, \quad \text{则} \lim_{n \to \infty} A_n = \underline{\qquad}.$$

14、(a,b)□(-∞,+∞),因为存在两个集合之间的一一映射为

____·

15、设
$$E \in \mathbb{R}^2$$
 中函数 $y = \begin{cases} \cos \frac{1}{x}, x \neq 0 \\ 0, x = 0 \end{cases}$ 的图形上的点所组成的

集合,则 E' = _______, E° = ______.

16、若集合 $E \subset R^n$ 满足 $E' \subset E$,则E为_______集.

17、若 (α,β) 是直线上开集G的一个构成区间,则 (α,β) 满足:

18、设E使闭区间[a,b]中的全体无理数集,则 $mE = ____$.

19、若 $mE[f_n(x) \not\rightarrow f(x)] = 0$, 则 说 $\{f_n(x)\}$ 在 E 上

20、设 $E \subset R^n$, $x_0 \in R^n$,若 ,则称 $x_0 \notin E$ 的聚点.

21、设 $\{f_n(x)\}$ 是E上几乎处处有限的可测函数列, f(x)是E

上 几乎处处有限的可测函数, 若 $\forall \sigma > 0$, 有

_________,则称 $\{f_n(x)\}$ 在E上依测度收敛于f(x).

22、设
$$f_n(x)$$
 ⇒ $f(x)$, $x \in E$, 则∃ $\{f_n(x)\}$ 的子列 $\{f_{n_j}(x)\}$, 使得______.

- 二, 判断题. 正确的证明, 错误的举反例.
- 11. 若 A, B 可测, $A \subset B \perp A \neq B$,则 mA < mB .
- 12. 设E为点集, $P \notin E$, 则P是E的外点.

13. 点集
$$E = \left\{1, 2, \cdots \frac{1}{n}, \cdots \right\}$$
 的闭集.

- 14. 任意多个闭集的并集是闭集.
- 15. 若 $E \subset \mathbb{R}^n$,满足 $m^*E = +\infty$,则 E 为无限集合.
- 三, 计算证明题
- 1. 证明: $A (B C) = (A B) \cup (A \cap C)$
- 2. 设 $M \in \mathbb{R}^3$ 空间中以有理点(即坐标都是有理数)为中心,有理数为半径的球的全体,证明M为可数集.
- 3. 设 $E \subset R^n$, $E \subset B_i$ 且 B_i 为可测集, $i = 1, 2 \cdots$.根据题意, 若有 $m^*(B_i E) \to 0$, $(i \to \infty)$, 证明E 是可测集.

4. 设
$$P$$
 是 Cantor 集, $f(x) = \begin{cases} \ln(1+x^3), & x \in P \\ x^2, & x \in [0,1]-P \end{cases}$.

求(L)
$$\int_0^1 f(x)dx$$
.

5. 设函数 f(x) 在 Cantor 集 P_0 中点 x 上取值为 x^3 ,而在 P_0 的余集中长为 $\frac{1}{3^n}$ 的构成区间上取值为 $\frac{1}{6^n}$, $(n=1,2\cdots)$,求

$$\int_0^1 f(x) dx$$

6. 求极限:
$$\lim_{n\to\infty}(\mathbf{R})\int_0^1 \frac{nx}{1+n^2x^3}\sin^3 nx dx.$$

试题解答

- 一 填空题
- 1. [0,2].

2.
$$\varphi(x) = \tan\left[\frac{\pi}{b-a}(x-a) - \frac{\pi}{2}\right], x \in (a,b).$$

3.
$$\left\{ (x,y) \middle| y = \cos \frac{1}{x}, x \neq 0 \right\} \cup \left\{ (0,y) \middle| |y| \leq 1 \right\}; \varnothing.$$

- 4. 闭集.
- 5. $(\alpha, \beta) \subset G$. $\alpha \notin G$, $\beta \notin G$.
- 6. b-a.
- 7. 几乎处处收敛于 f(x) 或 a.e.收敛于 f(x).

8. 对
$$\forall \delta > 0$$
, $U^{\circ}(x_0, \delta)$ 有 $(E - \{x_0\}) = \emptyset$.

9.
$$\lim_{n\to\infty} mE\left[\left|f_n(x)-f(x)\right| \ge \sigma\right] = 0$$

10.
$$f_n(x) \rightarrow f(x)$$
 a.e. $\mp E$.

二 判断题

- 6. F. 例如, A = (0,1), B = [0,1], 则 $A \subset B$ 且 $A \neq B$,但 mA = mB = 1.
- 7. F. 例如, $0 \neq (0,1)$, 但 0 不是 (0,1) 的外点.
- 8. F. 由于 $E' = \{0\} \subset E$.
- 9. F. 例如, 在 R^1 中, $F_n = \left[\frac{1}{n}, 1 \frac{1}{n}\right]$, $n = 3, 4 \cdots$ 是一系列的

闭集, 但是
$$\bigcup_{n=3}^{\infty} F_n = (0,1)$$
 不是闭集.

- 10. T. 因为若 E 为有界集合,则存在有限区间 I , $|I| < +\infty$, 使得 $E \subset I$, 则 $m^*E \le m^*I = |I| < +\infty$, 于 $m^*E = +\infty$.
- 三, 计算证明题.
- 1. 证明如下:

$$A - (B - C) = A - (B \cap) \square_{S} C$$

$$= A \cap \square_{S} (B \cap \square_{S} C)$$

$$= A \cap \square_{S} (B \cup C)$$

$$= (A \cup \square_{S} B) \cup (A \cup C)$$

$$= (A - B) \cup (A \cap C)$$

2. M 中任何一个元素可以由球心(x,y,z), 半径为r 唯一确定, x,y, z 跑遍所有的正有理数, r 跑遍所有的有理数. 因为有理数集于正有理数集为可数集都是可数集, 故M 为可数集.

- 3. 令 $B = \bigcup_{i=1}^{\infty} B_i$,则 $E \subset B \subset B_i$ 且 B 为可测集,于是对于 $\forall i$,都有 $B E \subset B_i E$,故 $0 \le m^* (B E) \le m^* (B_i E)$,令 $i \to \infty$,得到 $m^* (B E) = 0$,故 B E 可测. 从而 E = B (B E) 可测.
- 4. 己知 mP = 0, $\Leftrightarrow G = [0,1] P$,则

$$(L) \int_{0}^{1} f(x)dx = (L) \int_{P} \ln(1+x^{3})dx + (L) \int_{G} x^{2}dx$$

$$= 0 + (L) \int_{G} f(x)dx$$

$$= (L) \int_{P} x^{2}dx + (L) \int_{G} x^{2}dx$$

$$= (R) \int_{0}^{1} f(x)dx$$

$$= \frac{x^{3}}{3} \Big|_{0}^{1} = \frac{1}{3}$$

5. 将积分区间[0,1]分为两两不相交的集合: P_0 , G_1 , G_2 ..., 其中 P_0 为 Cantor 集, G_n 是 P_0 的余集中一切长为 $\frac{1}{3^n}$ 的构成区间 (共有 2^{n-1} 个)之并. 由 L 积分的可数可加性,并且注意到题中的 $mP_0=0$,可得

$$\int_{0}^{1} f(x)dx = \int_{P_{0}} f(x)dx + \int_{\bigcup_{n=1}^{\infty} G_{n}}^{\infty} f(x)dx$$

$$= \int_{P_{0}} f(x)dx + \sum_{n=1}^{\infty} \int_{G_{0}}^{\infty} f(x)dx$$

$$= \int_{P_{0}} f(x)dx + \sum_{n=1}^{\infty} \int_{G_{0}}^{\infty} \frac{1}{6^{n}}dx$$

$$= 0 + \sum_{n=1}^{\infty} \frac{1}{6^{n}} mG_{n} = \sum_{n=1}^{\infty} \frac{1}{6^{n}} \cdot \frac{2^{n-1}}{3^{n}}$$

$$= \sum_{n=1}^{\infty} \frac{1}{2} \cdot \frac{1}{9^{n}} = \frac{1}{16}$$

6. 因为 $\frac{nx}{1+n^2x^3}\sin^3 nx$ 在[0,1]上连续, $(R)\int_0^1 \frac{nx}{1+n^2x^3}\sin^3 nx dx$ 存在且与 $(L)\int_0^1 \frac{nx}{1+n^2x^3}\sin^3 nx dx$ 的值相等. 易知

$$\left| \frac{nx}{1+n^2x^3} \sin^3 nx \right| \le \frac{nx}{1+n^2x^3} \le \frac{2nx^{\frac{3}{2}}}{1+n^2x^3} \cdot \frac{1}{2\sqrt{x}} \le \frac{1}{2\sqrt{x}}.$$
由于 $\frac{1}{2\sqrt{x}}$ 在 $(0,1)$ 上非负可测, 且广义积分 $\int_0^1 \frac{1}{2\sqrt{x}} dx$ 收敛,则 $\frac{1}{2\sqrt{x}}$ 在 $(0,1)$ 上(L) 可积, 由于 $\lim_{n\to\infty} \frac{nx}{1+n^2x^3} \sin^3 nx = 0$,

 $x \in (0,1)$,于是根据勒贝格控制收敛定理,得到

$$\lim_{n \to \infty} (R) \int_0^1 \frac{nx}{1 + n^2 x^3} \sin^3 nx dx = \lim_{n \to \infty} (L) \int_0^1 \frac{nx}{1 + n^2 x^3} \sin^3 nx dx$$
$$= \int_0^1 \left(\lim_{n \to \infty} \frac{nx}{1 + n^2 x^3} \sin^3 nx \right) dx$$
$$= \int_0^1 0 dx = 0$$

《实变函数》期末考试模拟试题(十)

(含解答)

一、单项选择题

、早坝远挥越						
1,	下列各式正确的是(C D)					
	(A) $\overline{\lim}_{n\to\infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k$; (B) $\underline{\lim}_{n\to\infty} A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$					
	(C) $\overline{\lim}_{n\to\infty} A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_n$; (D) $\underline{\lim}_{n\to\infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_n$;					
2,	设 P 为 Cantor 集,则下列各式不成立的是(D)					
	(A) $\overline{P} = c$ (B) $mP = 0$ (C) $P' = P$ (D) $\stackrel{\circ}{P} = P$					
3,	下列说法不正确的是(B)) (A) 凡外侧度为零的集合都可测(B)可测集的任何子集都可测(C)开集和闭集都是波雷耳集(D)波雷耳集都可测					
4,	设 $\{f_n(x)\}$ 是 E 上的 $a.e.$ 有限的可测函数列,则下面不成立的是(A)					
	(A) 若 $f_n(x) \Rightarrow f(x)$, 则 $f_n(x) \to f(x)$ (B) $\sup_n \{f_n(x)\}$ 是可测函数					
	(C) $\inf_{n} \{f_n(x)\}$ 是可测函数; (D) 若 $f_n(x) \Rightarrow f(x)$,则 $f(x)$ 可测					
5.	下列说法不正确的是(C)					
	(A) P_0 的任一领域内都有 E 中无穷多个点,则 P_0 是 E 的聚点					
	(B) P_0 的任一领域内至少有一个 E 中异于 P_0 的点,则 P_0 是 E 的聚点					
	(C) 存在 E 中点列 $\{P_n\}$, 使 $P_n \rightarrow P_0$, 则 $P_0 \in E$ 的聚点					
	(D) 内点必是聚点					

6. 设 $f(x)$ 在 $E \perp L$ 可积,则下面不成立的是(C)
(A) $f(x)$ 在 E 上可测 (B) $f(x)$ 在 E 上 a. e. 有限
(C) $f(x)$ 在 E 上有界 (D) $ f(x) $ 在 E 上 L 可积
7. 设 $\{E_n\}$ 是一列可测集, $E_1 \subseteq E_2 \subseteq \cdots \subseteq E_n \subseteq \cdots$,则有(B)。
(A) $m\left(\bigcup_{n=1}^{\infty} E_n\right) > \lim_{n \to \infty} mE_n$ (B) $m\left(\bigcup_{n=1}^{\infty} E_n\right) = \lim_{n \to \infty} mE_n$
(C) $m\left(\bigcap_{n=1}^{\infty} E_n\right) = \lim_{n \to \infty} mE_n$; (D) 以上都不对
9、设 $A_n = [\frac{1}{n}, 2 + (-1)^n], n = 1, 2, \dots$,则(B)
(A) $\lim_{n\to\infty} A_n = [0,1]$ (B) $\lim_{n\to\infty} A_n = (0,1]$
(C) $\lim_{n\to\infty} A_n = (0,3]$ (D) $\lim_{n\to\infty} A_n = (0,3)$
10、设 E 是 $[0,1]$ 上有理点全体,则下列各式不成立的是(D)
(A) $E' = [0,1]$ (B) $\stackrel{\circ}{E} = \emptyset$ (C) $\overline{E} = [0,1]$ (D) $mE = 1$ 11、下列说法不正确的是(C) (A) 若 $A \subset B$,则 $m*A \le m*B$ (B) 有限个或可数个零测度集之和集仍为零测度集 (C) 可测集的任何子集都可测 (D) 凡开集、闭集皆可测
12、设 $\{E_n\}$ 是一列可测集, $E_1 \supset E_2 \supset \cdots \supset E_n \supset \cdots$,且 $mE_1 < +\infty$,则有(A)
(A) $m \left(\bigcap_{n=1}^{\infty} E_n \right) = \lim_{n \to \infty} m E_n$ (B) $m \left(\bigcup_{n=1}^{\infty} E_n \right) \leq \lim_{n \to \infty} m E_n$
(C) $m\left(\bigcap_{n=1}^{\infty}E_{n}\right) < \lim_{n \to \infty}mE_{n}$; (D) 以上都不对
13、设 $f(x)$ 是 $[a,b]$ 上绝对连续函数,则下面不成立的是(B)
(A) $f(x)$ 在[a , b]上的一致连续函数 (B) $f(x)$ 在[a , b]上处处可导
(C) $f(x)$ 在 $[a,b]$ 上 I 可积 (D) $f(x)$ 是有界变差函数
14. 设 <i>M</i> , <i>N</i> 是两集合,则 <i>M</i> -(<i>M</i> - <i>N</i>)= (C)

- (A) M (B) N (C) $M \cap N$ (D) \varnothing
- 16. 下列断言(B)是正确的。
 - (A) 任意个开集的交是开集; (B) 任意个闭集的交是闭集;
 - (C) 任意个闭集的并是闭集; (D) 以上都不对;
- 17. 下列断言中(C)是错误的。
 - (A) 零测集是可测集;
- (B) 可数个零测集的并是零测集;
- (C) 任意个零测集的并是零测集: (D) 零测集的任意子集是可测集;
- 18. 若 f(x)是可测函数,则下列断言(A)是正确的
 - (A) f(x)在[a,b]L-可积 \Leftrightarrow |f(x)|在[a,b]L-可积;
 - (B) f(x)在[a,b]R-可积 \Leftrightarrow |f(x)|在[a,b]R-可积
 - (C) f(x)在[a,b]L-可积 \Leftrightarrow |f(x)|在[a,b]R-可积;
 - (D) f(x)在 $(a,+\infty)$ R-广义可积 \Rightarrow f(x)在 $(a,+\infty)$ L-可积
- 19、设E是闭区间[0,1]中的无理点集,则(A)

A. mE = 1

B. mE = 0

C. E 是不可测集

D. E 是闭集

二、填空题

- 1, $(C_s A \cup C_s B) \cap (A (A B)) = \emptyset$
- 2、设E是[0,1]上有理点全体,则E'=[0,1], $\stackrel{\circ}{E}$ =Ø, \overline{E} =[0,1].
- 3、设E是R"中点集,如果对任一点集T都有m*T = m* $(T \cap E) + m$ * $(T \cap E^c)$,则称E是L可测的.
- 4、f(x) 可测的(充要)条件是它可以表成一列简单函数的极限函数.
- 6、设 $E \subset R$,若 $E' \subset E$,则E是闭集;若 $E \subset E'$,则E是<u>开</u>集;若E = E',则E是完备集.
- 7、设 $\{S_i\}$ 是一列可测集,则 $m\left(\bigcup_{i=1}^{\infty}S_i\right) \leq \sum_{i=1}^{\infty}mS_i$
- 8、设集合 $N \subset M$,则M (M N) = N
- 9、设P为 Cantor 集,则 $\stackrel{=}{P}=c$, mP=0 , $\stackrel{\circ}{P}=\varnothing$ 。

- 10、果洛夫定理:设 $m(E) < \infty$, $\{f_n\}$ 是E上一列a.e.收敛于一个a.e.有限的函数f 的可测函数,则对任意 $\delta > 0$,存在子集 $E_\delta \subset E$,使 $\{f_n\}$ 在 E_δ 上一致收敛且 $m(E \setminus E_\delta) < \delta$ 。
- 11、f(x)在E上可测,则 f(x)在E上可积的<u>充要条件</u>是|f(x)|在E上可积.
 - 12、设P为 Cantor 集,则 $\stackrel{=}{P} = \underline{c}$, mP = 0, $\stackrel{\circ}{P} = \emptyset$ 。
 - 13、设 $\{S_i\}$ 是一列可测集,则 $m\left(\bigcup_{i=1}^{\infty}S_i\right) \leq \sum_{i=1}^{\infty}mS_i$
 - 14、鲁津定理:设 f(x) 是 E 上 a.e. 有限的可测函数,则对任意 $\delta > 0$,存在闭子集 $E_{\delta} \subset E$,使得 f(x) 在 E_{δ} 上是连续函数,且 $m(E \setminus E_{\delta}) < \delta$ 。
 - 15、设F(x)为[a,b]上的有限函数,如果对任意 $\varepsilon > 0$, $\exists \delta > 0$,使对[a,b]中 互不相交的任意有限个开区间 (a_i,b_i) , $i=1,2,\cdots,n$,只要 $\sum_{i=1}^n (b_i-a_i) < \delta$,就有

 $\sum_{i=1}^{n} |F(b_i) - F(a_i)| < \varepsilon$ 则称F(x)为[a,b]上的绝对连续函数。

16、(a,b) \square $(-\infty,+\infty)$,因为存在两个集合之间的一一映射为

$$\varphi(x) = \tan\left[\frac{\pi}{b-a}(x-a) - \frac{\pi}{2}\right], x \in (a,b).$$

17、设E是 R^2 中函数 $y = \begin{cases} \cos\frac{1}{x}, x \neq 0 \\ 0, x = 0 \end{cases}$ 的图形上的点所组成的集合,

$$\mathbb{R}' = \left\{ (x,y) \middle| y = \cos\frac{1}{x}, x \neq 0 \right\} \cup \left\{ (0,y) \middle\| y \middle| \leq 1 \right\}, \quad E^{\circ} = \underline{\emptyset}.$$

18、设E是闭区间[a,b]中的全体无理数集,则 $mE = \underline{b-a}$.

19 、 设 $E \subset R^n$, $x_0 \in R^n$, 若 x_0 的任一邻域内都含有无穷多个属于E的点 ,则称 $x_0 \notin E$ 的聚点.

20 设 $\{f_n(x)\}$ 是 E 上几乎处处有限的可测函数列,f(x) 是 E 上 几乎处 处 有 限 的 可 测 函 数 , 若 $\forall \sigma > 0$, 有 $\lim_{n \to \infty} mE \Big[|f_n(x) - f(x)| \ge \sigma \Big] = 0$,则称 $\{f_n(x)\}$ 在 E 上依测度收敛于 f(x) .

三、判断

F

1、设 $E \subset R^1$,若E是稠密集,则 E^c 是无处稠密集。F

2、若mE = 0,则E一定是可数集.F

3、若|f(x)|是可测函数,则f(x)必是可测函数。F

4. 设f(x)在可测集E上可积分,若 $\forall x \in E, f(x) > 0$,则 $\int_{E} f(x) > 0$ F

5、A 为可数集, B 为至多可数集, 则 A∪B 是可数集. T

6、若mE = 0,则 $m\overline{E} = 0$ F

7、若|f(x)|是可测函数,则f(x)必是可测函数 F

8. 设f(x)在可测集E上可积分,若 $\forall x \in E, f(x) > 0$,则 $\int_{F} f(x) > 0$ F

9、任意多个开集之交集仍为开集 F

10、若mE = 0,则E一定是可数集.F

11、a.e.收敛的函数列必依测度收敛。F

12、由于[0,1]-(0,1)= $\{0,1\}$,故不存在使(0,1)和[0,1]之间1-1对应的映射。

13、可数个零测度集之和集仍为零测度集。T

14、 若 A, B 可测, $A \subset B$ 且 $A \neq B$ 则 mA < mB .F

15、设E 为点集, $P \notin E$, 则P 是E 的外点. F

 $_{16$ 、点集 $E = \left\{1, 2, \cdots \frac{1}{n}, \cdots\right\}$ 为闭集.F

17、任意多个闭集的并集是闭集.F

四、解答题

1、设 $f(x) = \begin{cases} x^2, x$ 为无理数 a, x为有理数 ,则 f(x) 在 a, x为有理数 ,则 f(x) 在 a, x为有理数 积,若可积,求出积分值。

解: f(x)在[0,1]上不是R-可积的,因为f(x)仅在x=a处连续,即不连续点为正测度集,因为f(x)是有界可测函数,f(x)在[0,1]上是L-可积的

因为
$$f(x)$$
 与 x^2 a.e.相等,进一步, $\int_{[0,1]} f(x) dx = \int_0^1 x^2 dx = \frac{1}{3}$

$$2 \cdot \Re \lim_{n} \int_{0}^{\infty} \frac{\ln(x+n)}{n} e^{-x} \cos x dx$$

解: 设
$$f_n(x) = \frac{\ln(x+n)}{n} e^{-x} \cos x$$
,则易知当 $n \to \infty$ 时, $f_n(x) \to 0$

又因
$$\left(\frac{\ln t}{t}\right)' = \frac{1-\ln t}{t^2} < 0$$
, $(t \ge 3)$, 所以当 $n \ge 3, x \ge 0$ 时,

$$\frac{\ln(x+n)}{n} = \frac{n+x}{n} \frac{\ln(x+n)}{x+n} \le \frac{n+x}{n} \frac{\ln 3}{3} \le \frac{\ln 3}{3} (1+x)$$

从而使得 $|f_n(x)| \le \frac{\ln 3}{3}(1+x)e^{-x}$ 但是不等式右边的函数,在 $[0,+\infty)$ 上是L可积

的,故有
$$\lim_{n} \int_{0}^{\infty} f_{n}(x) dx = \int_{0}^{\infty} \lim_{n} f_{n}(x) dx = 0$$
, $\lim_{n} \int_{0}^{\infty} f_{n}(x) dx = \int_{0}^{\infty} \lim_{n} f_{n}(x) dx = 0$

3、求极限
$$\lim_{n\to\infty} \int_0^1 \frac{nx^{\frac{1}{2}}}{1+n^2x^2} \sin^3 nx dx$$

解: 记
$$f_n(x) = \frac{nx^{\frac{1}{2}}}{1 + n^2x^2} \sin^3 nx$$

则 $f_n(x)$ 在 [0,1] 上连续, 因而在 [0,1] 上 (R) 可积和 (L) 可积.

$$|f_n(x)| = \frac{nx^{\frac{1}{2}}}{1 + n^2x^2} \sin^3 nx \le \frac{nx^{\frac{1}{2}}}{1 + n^2x^2} \le \frac{1}{2} \cdot x^{-\frac{1}{2}} \quad x \in [0,1], n = 1,2,\dots$$

且 $\frac{1}{2} \cdot x^{-\frac{1}{2}}$ 在[0,1]上非负可积,故由 Lebesgue 控制收敛定理得

$$\lim_{n \to \infty} (R) \int_0^1 f_n(x) dx = \lim_{n \to \infty} \int_0^1 \frac{nx^{\frac{1}{2}}}{1 + n^2 x^2} \sin^3 nx dx = \int_0^1 0 dx = 0$$

4、设 $f(x) = \begin{cases} x, x$ 为无理数 ,则 f(x) 在[0,1]上是否 R —可积,是否 L —可积,

若可积, 求出积分值。

解: f(x)在[0,1]上不是R-可积的,因为f(x)仅在x=1处连续,

即不连续点为正测度集

因为f(x)是有界可测函数,所以f(x)在[0,1]上是L-可积的

因为
$$f(x)$$
 与 x a.e.相等,进一步, $\int_{[0,1]} f(x) dx = \int_0^1 x dx = \frac{1}{2}$

5、求极限 $\lim_{n\to\infty}\int_0^1 \frac{nx}{1+n^2x^2}\sin^3 nx dx$.

解: 设
$$f_n(x) = \frac{nx}{1 + n^2 x^2} \sin^3 nx dx$$
,则易知当 $n \to \infty$ 时, $f_n(x) \to 0$

又 $|f_n(x)| \le \frac{nx}{1+n^2x^2}$,但是不等式右边的函数,在 $[0,+\infty)$ 上是L可积的

故有
$$\lim_{n} \int_{0}^{\infty} f_{n}(x) dx = \int_{0}^{\infty} \lim_{n} f_{n}(x) dx = 0$$

6、设 $A_{2n-1} = (0, \frac{1}{n}), A_{2n}(0, n), n = 1, 2, \cdots$, 求出集列 $\{A_n\}$ 的上限集和下限集证明: $\overline{\lim}_{n \to \infty} A_n = (0, \infty)$

设 $x \in (0,\infty)$,则存在 N,使x < N,因此n > N 时,0 < x < n,即 $x \in A_{2n}$,所以x属于下标比 N 大的一切偶指标集,从而x属于无限多 A_n ,得 $x \in \overline{\lim}_{n \to \infty} A_n$,

又显然
$$\overline{\lim}_{n\to\infty} A_n \subset (0,\infty)$$
,所以 $\overline{\lim}_{n\to\infty} A_n = (0,\infty)$

$$\underline{\lim}_{n\to\infty} A_n = \phi$$

若有 $x \in \underline{\lim}_{n \to \infty} A_n$, 则存在 N, 使任意 n > N, 有 $x \in A_n$, 因此若 2n - 1 > N 时,

$$x \in A_{2n-1}$$
,即 $0 < x < \frac{1}{n}$,令 $n \to \infty$ 得 $0 < x \le 0$,此不可能,所以 $\varliminf_{n \to \infty} A_n = \phi$

五、证明题

1、证明[0,1]上的全体无理数作成的集其势为c.

证明: 设
$$E = [0,1], A = E \cap Q, B = E \setminus (E \cap Q).$$

:: B是无限集,∴∃可数子集 $M \subset B$ 。 :: A是可数集,∴ $A \cup M \square M$.

$$:: B = M \cup (B \setminus M), E = A \cup B = A \cup M \cup (B \setminus M),$$

$$:: E \square B, :: \overline{B} = c.$$

$$:: E \square B, :: \overline{B} = c.$$

2. 设 $\varepsilon > 0$, \exists 开集 $G \supset E$, 使 $m^*(G - E) < \varepsilon$,则 E 是可测集。

证明: 对任何正整数 n,由条件存在开集 $G_n \supset E$, 使 $m^*(G_n - E) < \frac{1}{n}$

令
$$G = \bigcap_{n=1}^{\infty} G_n$$
 ,则 G 是可测集

又因 $m^*(G-E) \le m^*(G_n-E) < \frac{1}{n}$ 对一切正整数 n 成立,因而 $m^*(G-E) = 0$,即 M = G - E 是一零测度集,所以也可测.

由E = G - (G - E)知, E可测。

3. 试用 Fatou 引理证明 Levi 定理.

证明: 设 $\{f_n\}$ 为可测集 $E \subset R^q$ 上的一列非负可测函数,且在E上有

$$f_n(x) \le f_{n+1}(x), n = 1, 2, \dots, \Leftrightarrow f(x) = \lim_n f_n(x)$$

由 $\{f_n\}$ 为单调可测函数列知,f(x)可测,且 $f_n(x) \le f(x)$

于是
$$\int_{E} f_{n}(x) dx \leq \int_{E} f(x) dx$$

从而
$$\lim_{n} \int_{F} f_{n}(x) dx \le \int_{F} f(x) dx$$
 ... (*)

另一方面,因 $\{f_n\}$ 为可测集 $E \subset R^q$ 上的一列非负可测函数,由 Fatou 引理知

$$\int_{E} f(x)dx = \int_{E} \lim_{n} f_{n}(x)dx \le \lim_{n} \int_{E} f_{n}(x)dx \quad \dots \quad (**)$$

曲 (*)、(**) 两式即证
$$\lim_{n} \int_{E} f_{n}(x) dx = \int_{E} f(x) dx$$

4、试证(0,1)~[0,1]

证明:记(0,1)中有理数全体 $Q = \{r_1, r_2, \dots\}$,令

$$\varphi(x) = \begin{cases}
\varphi(r_1) = 0 \\
\varphi(r_2) = 1 \\
\varphi(r_{n+2}) = r_n, n = 1, 2 \cdots \\
\varphi(x) = x, x 为(0,1) 中无理数,
\end{cases}$$

显然 φ 是(0,1)到[0,1]上的一一映射 所以(0,1)~[0,1]

5、设 f(x) 是可测集 E 的非负可积函数, g(x) 是 E 的可测函数,且 $|g(x)| \le f(x)$,则 g(x) 也是 E 上的可积函数。

证明:
$$\therefore |g(x)| \le f(x)$$
, $\therefore g^+(x) \le f(x)$, $g^-(x) \le f(x)$
$$\therefore \int_{E_n} \left[g^+(x)\right]_n dx \le \int_{E_n} \left[f(x)\right]_n dx \le \int_E f(x) dx$$

:: f(x) 是可测集 E 的非负可积函数

$$\therefore \lim_{n\to\infty} \int_{E_n} \left[g^+(x) \right]_n dx \le \int_E f(x) dx < +\infty \quad \therefore g^+(x) \ \text{是 E 上的可积函数.}$$

同理, $g^{-}(x)$ 也是 E 上的可积函数. $\therefore g(x)$ 是 E 上的可积函数。

7. 设 f(x) 在 E = [a,b]上可积,则对任何 $\varepsilon > 0$,必存在 E 上的连续函数 $\varphi(x)$,使 $\int_a^b |f(x)-\varphi(x)| dx < \varepsilon$.

证明: 设 $e_n = E[|f| > n]$,由于f(x)在E上a.e.有限,故 $me_n \to 0$, $(n \to \infty)$ 由积分的绝对连续性,对任何 $\forall \varepsilon > 0$, $\exists N$,使 $N \cdot me_N \leq \int_{e_N} |f(x)| dx < \frac{\varepsilon}{4}$ 令 $B_N = E \setminus e_N$,在 B_N 上利用鲁津定理,存在闭集 $F_N \subset B_N$ 和在 R^1 上的连续函

数 $\varphi(x)$ 使 (1) $m(B_N \setminus F_N) < \frac{\varepsilon}{4N}$; (2) $x \in F_N$ 时, $f(x) = \varphi(x)$,且 $\sup_{x \in R^1} |\varphi(x)| = \sup_{x \in F_N} |f(x)| \le N$

$$\int_{a}^{b} |f(x) - \varphi(x)| dx \le \int_{e_{N}} |f(x) - \varphi(x)| dx + \int_{B_{N}} |f(x) - \varphi(x)| dx$$
所以 $\le \int_{e_{N}} |f(x)| dx + \int_{e_{N}} |\varphi(x)| dx + \int_{B_{N} \setminus F_{N}} |f(x) - \varphi(x)| dx$

$$\le \frac{\varepsilon}{4} + N \cdot me_{N} + 2N \cdot \frac{\varepsilon}{4N} \le \frac{\varepsilon}{4} + \frac{\varepsilon}{4} + \frac{\varepsilon}{2} = \varepsilon$$

8、 设 $E \subset R^n$, $E \subset B_i$ 且 B_i 为可测集, $i = 1, 2 \cdots$.根据题意, 若有 $m*(B_i - E) \to 0$, $(i \to \infty)$. 证明E 是可测集.

证明: 令
$$E = \bigcup_{i=1}^{\infty} B_i$$
 ,则 $E \subset B \subset B_i$ 且 B 为可测集,于是对于 $\forall i$,都 $E \subset B \subset B_i$ 为可测集,于是对于 $E \subset B_i$ 和

$$0 \le m^* (B - E) \le m^* (B_i - E)$$

9. 证明: $A - (B - C) = (A - B) \cup (A \cap C)$ 证明:

$$A - (B - C) = A - (B \cap \Box_{S} C)$$

$$= A \cap \Box_{S} (B \cap \Box_{S} C)$$

$$= A \cap (\Box_{S} B \cup C)$$

$$= (A \cap \Box_{S} B) \cup (A \cap C)$$

$$= (A - B) \cup (A \cap C)$$

- 1、设 f(x) 是 $(-\infty, +\infty)$ 上的实值连续函数,则对于任意常数 $a, E = \{x \mid f(x) \ge a\}$ 是闭集。P51
- 2、设 $mE < \infty$, f(x)在E上可积, $e_n = E(|f| \ge n)$, 则 $\lim_n n \cdot me_n = 0$. P132
- 3、设 f(x) 是 E 上 a.e. 有限的函数,若对任意 $\delta > 0$,存在闭子集 $F_{\delta} \subset E$,使 f(x) 在 F_{δ} 上连续,且 $m(E-F_{\delta}) < \delta$,证明: f(x) 是 E 上的可测函数。(鲁津定理的逆定理)P94
- 4. 设 $\{f_n(x)\}$ 为 E 上可积函数列, $\lim_n f_n(x) = f(x)a.e.$ 于 E,且

 $\int_{\mathbb{R}} |f_n(x)| dx < k$, k 为常数,则 f(x) 在 E 上可积. P133

5. 设函数列 $f_n(x)$ $(n=1,2,\cdots)$ 在有界集 E 上 "基本上"一致收敛于 f(x),证明: $f_n(x)a.e.$ 收敛于 f(x). P94

6、设 f (x) 是 ($-\infty$, $+\infty$) 上的实值连续函数,则对任意常数 c, $E = \{x \mid f(x) > c\}$ 是一开集. P51

7、设f(x)在E上积分确定,且f(x) = g(x)a.e于E,则g(x)在E上

也积分确定,且
$$\int_{E} f(x)dx = \int_{E} g(x)dx$$
 P108

8、设在 $E \perp f_n(x) \Rightarrow f(x)$,而 $f_n(x) = g_n(x)$ a.e. 成立, $n = 1, 2, \cdots$,则有 $g_n(x) \Rightarrow f(x)$ P95

《实变函数》期末考试题(一)

<u> </u>	、判断正误(每小题2分)						
1,	若一个点不是 E 的聚点,则必然也不是 E 的内点.	()				
2,	若 $f(x) = g(x)$, a. e. 于 E , $f(x)$ 在可测集 E 上可测,则	則 $g(x)$ 也在	<i>E</i> 上可测. ()			
3,	、若 $f(x)$ 在可测集 E 上可测,则 $f(x)$ 在 E 的任意可测子集上也可测. ()						
4,	任意个开集的交也是开集.	()				
5,	可列集在无限集中具有最小的势.	()				
6,	、若 E 可测, A 可测,且 $m(A-E)=0$,则 $mE=m(E \cup A)$.						
7、	7、设 $f(x)$ 在可测集 E 上可积分,若 $\forall x \in E, f(x) > 0$,则 $\int_{E} f(x) > 0$. ()						
8,	由于 $[0,1]$ - $(0,1)$ = $\{0,1\}$, 故不存在使 $(0,1)$ 和 $[0,1]$ 之间1	1-1对应的图	映射.()				
9、	a.e. 收敛的函数列必依测度收敛.	()				
10	、连续函数一定是有界变差函数.	()				
二、	、填空题(每空2分)						
1,	设 $A_{2n-1} = (0, \frac{1}{n})$, $A_n = (0, n)$, $n = 1, 2, \cdots$, 则集列 $\{A_n\}$ 的	的上限集为_		•			
2,	设 P 为 Cantor 集,则 $mP =$.						
3,	设 Q 为有理数集,则 \overline{Q} =						

- 4、若 f(x)是可测函数,则下列断言()是正确的.
 - (A) f(x)在[a,b]L-可积⇔|f(x)|在[a,b]L-可积;
 - (B) f(x)在[a,b]R-可积 \Leftrightarrow |f(x)|在[a,b]R-可积;
 - (C) f(x)在[a,b]L-可积 \Leftrightarrow |f(x)|在[a,b]R-可积;
 - (D) f(x)在 $(a,+\infty)$ R-广义可积 \Rightarrow f(x)在 $(a,+\infty)$ L-可积.
- 5、设f(x)是[a,b]上有界变差函数,则下面不成立的是().
 - (A) f(x) 在[a,b]上有界; (B) f(x) 在[a,b]上几乎处处存在导数;
- (C) f'(x)在[a,b]上L可积; (D) $\int_a^b f'(x)dx = f(b) f(a)$.

四、计算题(每小题10分)

1、设
$$f(x) = \begin{cases} x^2, x \in P_0 \\ \sqrt[3]{x}, & x \in [0,1] - P_0 \end{cases}$$
,其中 P_0 为 Cantor 集,计算 $\int_{[0,1]} f(x) dm$.

2、求极限 $\lim_{n} \int_{0}^{\infty} \frac{\ln(x+n)}{n} e^{-x} \cos x dx$.

五、证明题 (每小题 10 分)

- 1、设 f(x) 是 $\left(-\infty, +\infty\right)$ 上的实值连续函数,则对于任意常数 $a, E = \{x \mid f(x) \geq a\}$ 是闭集.
- 2、设在 $E \perp f_n(x) \Rightarrow f(x)$,而 $f_n(x) = g_n(x)$ a.e.成立, $n = 1, 2, \cdots$,则有 $g_n(x) \Rightarrow f(x)$.

3、设 f(x) 是 E 上 a.e. 有限的函数,若对任意 $\delta>0$,存在闭子集 $F_\delta\subset E$,使 f(x) 在 F_δ 上 连续,且 $m(E-F_\delta)<\delta$,证明: f(x) 是 E 上的可测函数. (鲁津定理的逆定理)

4、在有限闭区间[a,b]上的单调有限函数 f(x) 是有界变差函数.

《实变函数》期末考试题(一)答案

一、判断正误(每小题2分,共20分)

1,
$$\checkmark$$
 2, \checkmark 3, \checkmark 4, \times 5, \checkmark 6, \checkmark 7, \times 8, \times 9, \times 10, \times

$$6, \sqrt{7}, \times 8, \times 9, \times 10, \times$$

二、填空题(每小题2分,共10分)

$$1$$
、 $\overline{A} = (0, +\infty)$ 2、0 3、R 4、充要 5、 \subset

三、单项选择题(每小题2分,共10分)

四、计算题(每小题10分,共20分)

1、设
$$f(x) = \begin{cases} x^2, x \in P_0 \\ \sqrt[3]{x}, x \in [0,1] - P_0 \end{cases}$$
,其中 P_0 为 Cantor 集,计算 $\int_{[0,1]} f(x) dm$ 。

解. 设
$$g(x) = \sqrt[3]{x}, x \in [0,1]$$
 , 因 $mP_0 = 0$, … 3 分

$$\therefore \int_{[0,1]} f(x) dm = \int_{[0,1]} g(x) dm = (R) \int_0^1 \sqrt[3]{x} dx = \frac{3}{4} \qquad \dots 10 \text{ f}$$

2、求极限
$$\lim_{n} \int_{0}^{\infty} \frac{\ln(x+n)}{n} e^{-x} \cos x dx$$

解: 设
$$f_n(x) = \frac{\ln(x+n)}{n} e^{-x} \cos x$$
,则易知当 $n \to \infty$ 时, $f_n(x) \to 0$ ············2分

又因
$$\left(\frac{\ln t}{t}\right)' = \frac{1 - \ln t}{t^2} < 0$$
, $(t \ge 3)$, 所以当 $n \ge 3, x \ge 0$ 时, …… 4 分

$$\frac{\ln(x+n)}{n} = \frac{n+x}{n} \frac{\ln(x+n)}{x+n} \le \frac{n+x}{n} \frac{\ln 3}{3} \le \frac{\ln 3}{3} (1+x) \dots 6$$
 $\frac{1}{2}$

但是不等式右边的函数,在 $[0,+\infty)$ 上是L可积的,故有

$$\lim_{n} \int_{0}^{\infty} f_{n}(x) dx = \int_{0}^{\infty} \lim_{n} f_{n}(x) dx = 0 \cdots 10$$

五、证明题(每小题10分,共40分)

1、设 f(x) 是 $(-\infty, +\infty)$ 上的实值连续函数,则对于任意常数 $a, E = \{x \mid f(x) \ge a\}$ 是闭集。

证明: $\forall x \in E'$,则存在E中的互异点列 $\{x_n\}$,使 $\lim_{n \to \infty} x_n = x$ ··········. 4 分

$$\therefore x_n \in E, \therefore f(x_n) \ge a$$
 6

$$f(x)$$
在 x 点连续, $f(x) = \lim_{n \to \infty} f(x_n) \ge a$

2 、 设在 E 上 $f_n(x) \Rightarrow f(x)$,而 $f_n(x) = g_n(x)$ a.e. 成立, $n=1,2,\cdots$,则 有 $g_n(x) \Rightarrow f(x)$

证明:记 $E_n = E[f_n \neq g_n]$,由题意知 $mE_n = 0$

对任意 $\delta > 0$,由于 $E[|g_n - f| \ge \sigma] \subset (\bigcup_{n=1}^{\infty} E_n) \cup E[|f_n - f| \ge \sigma]$,从而有:

$$mE[\mid g_n - f \mid \geq \sigma] \leq m(\bigcup_{n=1}^{\infty} E_n) + m(E[\mid f_n - f \mid \geq \sigma]) = m(E[\mid f_n - f \mid \geq \sigma]) \cdots \cdots 4$$

又因为在
$$E \perp f_n(x) \Rightarrow f(x)$$
,故 $\lim_{n \to \infty} m(E[|f_n - f| \ge \sigma]) = 0$ ············6 分

所以
$$0 \le \lim_{n \to \infty} m(E[|g_n - f| \ge \sigma]) \le \lim_{n \to \infty} m(E[|f_n - f| \ge \sigma]) = 0$$
 ·················8 分

于是: $\lim m(E[|g_n - f| \ge \sigma]) = 0$

故在
$$E$$
上有 $g_n(x) \Rightarrow f(x)$ ························10 分

3、设 f(x) 是 E 上 a.e. 有限的函数,若对任意 $\delta > 0$,存在闭子集 $F_{\delta} \subset E$,使 f(x) 在 F_{δ} 上连续,且 $m(E - F_{\delta}) < \delta$,证明: f(x) 是 E 上的可测函数。(鲁津定理的逆定理)

证明: $\forall n \in \mathbb{N}$, 存在闭集 $F_n \subset E$, $m(E - F_n) < \frac{1}{2^n}$, f(x) 在 F_n 连续············2 分 令 $F = \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} F_n$, 则 $\forall x \in F \Rightarrow \exists k, x \in \bigcap_{n=k}^{\infty} F_n$, $\forall n \geq k, x \in F_n \Rightarrow f(x)$ 在 F 连续······4 分 又对任意 k,

$$m(E-F) \le m[E-(\bigcap_{n=k}^{\infty} F_n)] = m[\bigcup_{n=k}^{\infty} (E-F_n)] \le \sum_{n=k}^{\infty} m(E-F_n) < \frac{1}{2^k} \cdots 6$$

4、在有限闭区间[a,b]上的单调有限函数f(x)是有界变差函数.

证明. 在[a,b]上任取一组分点 $a = x_0 < x_1 < \dots < x_m = b$, ------2 分 从而对任何 n, 有

故 *f*(*x*) 有界变差. -----10 分

《实变函数》期末考试题(二)

- 一、判断题(判断正确、错误,并改正。共 5 题,共 5×3=15 分)
- 1、无限集中存在基数最大的集合,也存在基数最小的集合。 (×)

改正:无限集中不存在基数最大的集合,但存在基数最小的集合。

- 2、存在闭集使其余集仍为闭集。 (✓)
- 3、若E是可测集,F是E的可测子集,则 m(E-F)=mE-mF。 (×)

改正: 若 E 是可测集, F 是 E 的测度有限的子集,则 m(E-F)=mE-mF。

4、若E是可测集,f(x)是E上的实函数,则f(x)在E上可测的充要条件是:存在

实数
$$a$$
 ,使 $E[x \mid f > a]$ 是可测集。 (X)

改正: 若 E 是可测集, f(x) 是 E 上的实函数,则 f(x) 在 E 上可测的充要条件是: 对任意实数 a , $E[x\mid f>a]$ 是可测集。

- 5、若E是可测集,f(x)是E上的非负简单函数,则 $\int_{E} f(x)dx$ 一定存在。(\lor)
 - 二、叙述题(共5题,共5×3=15分)
 - 1、伯恩斯坦定理。
- 答: 设A、B是两个集合,若A的基数不超过B的基数,且B的基数也不超过A的基数,则A与B对等。
 - 2、伯恩斯坦定理。

答: 设A、B是两个集合,若A的基数不超过B的基数,且B的基数也不超过A的基数,则A与B的基数相等。

3、可测集与开集的关系。

答:设 E 为可测集,则对任意 $\varepsilon > 0$,存在开集 G,使 $E \subset G$ 且 $m(G - E) < \varepsilon$ 。

4、叶果洛夫定理的逆定理。

答:设 $\{f_n(x)\}$ 为E上几乎处处有限的可测函数列,f(x)也为E上几乎处处有限的可测函数如果对任意 $\varepsilon>0$,存在可测子集 $E_\varepsilon\subset E$,使在 E_ε 上, $f_n(x)$ 一致收敛于f(x),而 $m(E-E_\varepsilon)<\varepsilon$ 则 $f_n(x)\to f(x)$ a.e.于E。

5、 $f_n(x)$ 在可测集E上几乎处处收敛于f(x)的定义。

答:设E是可测集, $f_n(x)$ 、f(x)均为E上的可测函数,如果E中使 $f_n(x)$ 不收敛于 f(x)的点 所成的集为零测集,则称 $f_n(x)$ 在 E上几乎处处收敛于 f(x),记为 $f_n(x) \to f(x)$ a.e.于E。

三、简答题(共1题,共1×10=10分)

1、按从简单到复杂的方式简述 Lebesgue 的定义。

答: 1. 设E为可测集,f(x)为E上非负简单函数,即 $E = \bigcup_{i=1}^{n} E_{i}$ (E_{i} 两两不交) 且当 $x \in E_{i}$ 时 $f(x) = c_{i}$ i = 1, 2, ..., n,则称 $\sum_{i=1}^{n} c_{i} m E_{i}$ 为f(x)在E上的 Lebesgue 积分,记为 $\int_{E} f(x) dx$ 。————————————————3 分

- 2. 设 E 为可测集, f(x) 为 E 上非负可测函数,则存在一列单调递增非负简单函数列 $\varphi_n(x)$ 使 $\varphi_n(x)$ → f(x),则称 $\lim_{n\to\infty}\int_E \varphi_n(x)dx$ 为 f(x) 在 E 上的 Lebesgue 积分,记为 $\int_E f(x)dx$ 。
- 3. 设 E 为可测集,f(x) 为 E 上可测函数,由于 $f(x) = f^+(x) f^-(x)$,如果 $\int_E f^+(x) dx$ 与 $\int_E f^-(x) dx$ 至少有一个为有限数,则称 $\int_E f^+(x) dx \int_E f^-(x) dx$ 为 f(x) 在 E 上的 Lebesgue 积分,记为 $\int_E f(x) dx$ 。

分

四、 解答题(共6题,共6×10=60分)

1、设 f(x) 是 $E = (-\infty, +\infty)$ 上的单调函数,证明 f(x) 是 E 上的可测函数。

证: 由题设知 f(x) 在 $E = (-\infty, +\infty)$ 上几乎处处连续,———————6 分

而 $E = (-\infty, +\infty)$ 上连续函数是可测函数

所以由可测函数的性质知 f(x) 是 E 上的可测函数。 -10分 2、设 $E \subset R^n$,证明E是闭集的充要条件是: $E = \bigcap_{F_i \in \Lambda} F_\lambda$,其中 $\Lambda = \{$ 包含E的闭集全体 $\}$ 。 必要性 对任意 $\lambda \in \Lambda$,有 $E \subset F_{\lambda}$,所以 $E \subset \bigcap_{F_{\lambda} \in \Lambda} F_{\lambda}$ ————7分 又 $E \in \Lambda$,从而 $E \supset \bigcap_{F_1 \in \Lambda} F_{\lambda}$ 所以 $E = \bigcap_{F_{\lambda} \in \Lambda} F_{\lambda}$ 。 3、若 A_1, A_2, A_3 均为[0,1]上的可测子集,且 $\sum_{i=1}^{3} mA_i > 2$,则 $m \bigcap_{i=1}^{3} A_i > 0$ 。 证: 因为 $\bigcap_{i=1}^{3} A_i = [0,1] - \bigcup_{i=1}^{3} ([0,1] - A_i)$ $\overline{m} \ m[0,1] = 1 < \infty, \ \sum_{i=1}^{3} mA_i > 2$ 4、利用 Lebesgue 控制收敛定理,求 $\lim_{n\to\infty}\int\limits_{0}^{2}\sin^{n}xdx$ 。 所以 $\lim_{n\to\infty} \sin^n x = 0$ a.e.于 $\left[0, \frac{\pi}{2}\right]$ 5、设 $f(x) = \begin{cases} \sin x, x \notin Q_0 \\ e^{\cos x}, x \in Q_0 \end{cases}$, 其中 Q_0 是[0,1]上的有理数集,求 $\int_{[0,1]} f(x) dx$ 。 解: 因 $mQ_0 = 0$,所以 $f(x) = \sin x$ a.e.于[0,1] —————— 由积分的唯一性知

 $\int_{[0,1]} f(x)dx = \int_{[0,1]} \sin x dx = 1 - \cos 1$

6、若 R^n 中的可测集列 $\{E_n\}$,满足 $\lim_{n\to\infty}\sum_{k=n}^{\infty}mE_k=0$,则 $m(\varlimsup_{n\to\infty}E_n)=m(\varliminf_{n\to\infty}E_n)=0$ 证:因 $\varlimsup_{n\to\infty}E_n=\bigcap_{n=1}^{\infty}\bigcup_{k\geq n}E_k\subset\bigcup_{k\geq n}E_k$, 所以 $m\varlimsup_{n\to\infty}E_n\leq m\bigcup_{k\geq n}E_k\leq\sum_{k\geq n}mE_k$ 让 $n\to\infty$,由夹逼原则知 $m\varlimsup_{n\to\infty}E_n=0$

$$\mathbb{Z} \quad \underline{\lim}_{n\to\infty} E_n \subset \overline{\lim}_{n\to\infty} E_n$$