Bluetooth

Table of Contents

I.	Objectives	
II.	Duration	
III.	Procedures2	
IV.	Network diagram used (approximate)	
V.	Used devices2	
VI.	Procedures	
A.	Scan	3
B.	Pair, connect and use: mouse	5
C.	Pair, connect and use, phones	8
D.	Connect and unpair, phones	10
E.	Audio call (Messenger), phones	11
F.	Audio streaming (Spotify), phones	12
G.	Uni and bidirecctional audio, microfone (with line-out functionality)	13
H.	Other devices	15
VII.	Interface HCI	
VIII.	Bluetooth states	
IX.	Bluetooth protocols and profiles	
X.	Acronyms (with some additional information)	
XI.	Using Wireshark	
XII.	Useful links	

I. Objectives

The objectives of this work are:

- Understand Bluetooth's Host Controller Interface (HCI) interface
- Observe the different phases a Bluetooth device goes during its operation
- Identify main Bluetooth protocols and how they are used and behave

II. Duration

This work should be executed in 2h30.

III. Procedures

This Work will use:

- a) Students' personal PC with Wireshark installed
- b) Previously captured traffic exchanges and downloaded from the course available online materials

IV. Network diagram used (approximate)

Figure 1: Network diagram used

(http://www.althos.com/tutorial/Bluetooth-tutorial-host-controller-interface-HCI-Layer.html)

V. Used devices

- Master/Controller (left side of the picture)
 - a) Linux 22.04 PC with TP-Link Archer T5E, AC1200 Wi-Fi Bluetooth 4.2 PCle Adapter
 - Bluetooth version: 4.2
- Clients/Devices

HP mouse HSA-P007M	Sony Headphones WF-1000XM4	
Bluetooth version: 4.2	Bluetooth version: 5.2	
	Bluetooth profiles: A2DP, AVRCP, HFP, HSP	
	Audio formats: SBC, AAC, LDAC	
Sony Headphones WH-1000XM3	Philips AEA2000/12 adapter	
Bluetooth version: 4.2	Bluetooth version: 2.1+EDR	
Bluetooth profiles: A2DP, AVRCP, HFP, HSP	Bluetooth profiles: A2DP and AVRCP	
 Audio formats: SBC, AAC, aptX, aptX HD, LDAC 		
RAZER Seiren BT Microphone, RZ19-0415		
Bluetooth Version: 5.0		

VI. Procedures

A. Scan

- 1. Download the Wireshark files, available in eLearning, containing traffic captures taken at an HCl interface for the above listed devices
- 2. From those, start by opening the capture "1.PC.BTOn.periodicScanning.pcapng"

To better understand this and other captures, go to 'Statistics' \rightarrow 'Flow Graph' window; when selecting a frame here, it is also selected in Wireshark main window; go to the next frame by pressing 'n'; for the previous one, press 'p'; see each Frame details in Wireshark 'Packed Details' window

The following procedures were executed while the capture was running:

- The PC Bluetooth interface was turned on the 'Bluetooth settings' window; the interface starts scanning immediately
- b) After some seconds of frames capture, it was stopped and saved

3. Go to 'Wireshark' → 'Statistics' → 'Flow Graph' and open that new window side-by-side with the main Wireshark window

4. Order the capture by the column 'Protocol'; scrolling down, identify the protocols present in the capture, the actors involved ('Source' and 'Destination') and the direction of the communication

Têm HCL CMD (e são sempre host->controller) e HCL EVT (e são todos controller->host.

5. Reorder the capture by the column 'No."; Looking into the 'Source', 'Destination' and 'Protocol' columns, observe the sequence of the messages exchange

Cada HCI_CMD (comando) e respondido com um HCI_EVT (evento)

6. Order the capture using the column 'Info' to see the different messages grouped by its specific type. For instance, check the frequency of the Inquiry process. Look at the 'Read', 'Set' and 'Write' messages used in the start-up and the overall process.

Observar os 'Sent Inquiry' ou 'Rcvd Inquiry Complete' (descoberta de dispositivos); Acontece a sensivelmente cada 10 seg.

Pode usar o filtro: bthci_cmd.opcode == 0x0401 || bthci_evt.code == 0x01

7. Order again by the column 'No."; Observe and analyse the startup process; see the Read and Write commands sent to controller and the exchanged information; observe via the timing information and the time taken by the process

Na trama 1 observa-se o host a enviar um reset ao controller

A partir daí e até à 105, o host lê (Read) vários parametros do controlador e faz a sua configuração (Write,

Ver as mensagens de "Send Read ..." e "Send LE Read ..." e as respectivas respostas (ordenar por 'Info', de novo; ir alternando com o No.)

Scan Enable na 87, permitindo ao modem Bluetooth próprio ser descoberto

p.ex. na 7 pede-lhe o MAC Address.

Ver as respostas 6 (protocol version e manufacturer), 28 (Supported LE Features), 80 (Codecs), 89 (Write Class of Device)

8. Observe and analyse the periodic Inquiry process. Identify the involved messages of the process.

Na 105 inicia-se o Inquiry que termina na 120.

Observar os 'Sent Inquiry' ou 'Rcvd Inquiry Complete'; Acontece a sensivelmente cada 10 seg.

Pode usar o filtro: bthci cmd.opcode == 0x0401 || bthci evt.code == 0x01

9. Go to 'Wireshark' → 'Wireless' → Bluetooth HCl Summary'; you should get the following window:

a) Expand the several shown tree branches and compare with the previous analysis done.

Se preemir duas vezes numa frame, a captura no wireshark mostra o detalhe dessa frame

B. Pair, connect and use: mouse

10. Now open the capture "2.HP.Mouse.pair.move.buttons.switchoff.pcapng"

The following procedures were executed while the capture was running:

a) Turn on Bluetooth on the PC on the Settings Menu

- b) Check that no LE Meta (LE Advertising Reports) appear on the capture (no other active devices nearby)
- c) Put the device (mouse) in pairing mode
- d) Observe in Wireshark that LE Meta (LE Advertising Reports) messages start to appear
- e) Order the device to connect, in the PC's Bluetooth settings menu
- f) Observe that it was successful (it takes 20 seconds)
- g) 60 seconds after starting the process, started moving the mouse and pressing buttons
- h) Stop the capture and saved it

11. Go to 'Wireshark' → 'Wireless' → Bluetooth HCl Summary'; you should get the following window:

- a) Open the other vertical groups and analyse the information; keep it open and use the information during the next steps
- 12. Go to 'Wireshark' → 'Statistics' → 'Flow Graph' and open that new window side-by-side with the main Wireshark window

Figure 6: View of the capture file

- 13. Order capture by the 'Protocol' column and identify the different protocols capture in these interactions.
 - a) See their different types by applying the visualization filter hci_h4.type==0x{1|2|3|4} (see table at the end); what type of packets is missing?

Não há 3 (Svnchronous Data)

b) Take note of the entities are the messages exchanged ('Source' and 'Destination')

	Туре	Protocol	Source	Destination
ATT	2 (ACL DATA)	Attribute Protocol	IntelCor(PC)	HP 2.4G Wireless
			HP 2.4G Wireless	IntelCor(PC)
HCI_CMD	1	HCI Commands	host	controller
HCI_EVT	4	HCI Event	controller	host
L2CAP	2	Logical Link Control and Adaptation Protocol	localhost() and MAC of the device (two-way)	Device MAC and localhost() (two-way)
SMP	2	Security Manager Protocol	localhost() and MAC of the device (two-way)	Device MAC and localhost() (two-way)

Controller e host são apenas utilizados para HCI CMD e HCI EVT

Faltam pacotes de tipo 3 (Synchronous data)

14. Order again the capture by column 'No.' Observe the pairing and connect procedures that happened after it is requested in the PC Bluetooth Settings window; Identify the following events:

Note: To better analyse the pairing process, order again by 'Protocol' and see the sequence of exchanged messages of that protocol

a) LE Create Connection; register the 'Connection handle' value

Create Conn: Frame 566, respondido na 568

Observar o connection handle 0x0e01

b) Pairing Request (What protocol is used?) and Pairing Response; Search the Internet for the meaning of the different parameters (MITM, LTK, CSRK, IRK) and request

Pairing req: Frame 572; SMP (Security Manager Protocol) transportado em ACL

Pairing resp: Frame 578

c) Start Encryption

Start Encryption: Frame 591

15. Which Profile is used?

Verifique as frames 624 e 627

16. Now, observe other events; order again by column 'No.'. Look into captured frames 756 (after 60 seconds of capture) to 1298. See the type of frames exchanged during this period.

São Attribute Protocol, transportados em L2CAP e ACL (Asynchronous Connection-Less) Data

- 17. In the details view, check for 'Handle', 'Method' and 'Value' fields. Find the following:
 - a) Report on battery level

Frames ATT 744, 1000, 1272 and 1298

b) Mouse movements (happens from 60 sec to 92.4 sec of the capture) and Buttons pressed (happens from 78.1 sec to 83.9 sec of the capture);

Buttons: 1273 a 1286

18. At the end the device is physically switch off, in the built-in button. See what happens at the HCl interface.

Há uma única frame (1299) do controller ao host com o mesmo connection handle (0x0e01) estabelecido no frame 568.

C. Pair, connect and use, phones

19. Open the capture "3.0.Sony1000XM3.pairingAndConnect.pcapng"

The following procedures were executed while the capture was running:

- a) Turn on Bluetooth on the PC on the Settings Menu
- b) Check that no LE Meta (LE Advertising Reports) appear on the capture (no other active devices nearby)
- c) Put the device (phones) in pairing mode
- d) Observe in Wireshark that LE Meta (LE Advertising Reports) messages start to appear
- e) Order the device to be connected, in the PC's Bluetooth settings menu
- f) Observe that it was successful
- g) Stop the capture and saved it
- 20. Order by Protocol and list the protocols involved
 - a) By selecting a frame of each protocol, observe the protocol stack in the details window (see example).
 - b) Also chech the order they start to appear

Types and Time/Order:

- a) HCI EVT (0.00/1)
- b) HCI CMD (0.20/3)
- c) L2CAP (6.54/70) sem outros protos dentro (signalling channel)
- d) SDP/Service Discovery Protocol (6.56/86) in L2CAP
- e) RFCOMM (6.76/147) in L2CP in ACI
- f) HEP/Hand Free Profile (6.80/171) in RECOMM in L2CAP in ACL
- a) AVDTP/Audio and Video Distribution Transfer Protocol (6.81/181) in L2CAP in ACL
- h) SBC/Sub Band Codec (7.00/276) in RTP in A2DP Profile in L2CAP in ACI
- i) AVRPC/ Audio/Video Remote Control Profile (7.06/294) in AVCTP in L2CAP in ACL
- 21. Identify the start of the pairing and connect process (it is useful at this step to order again by 'No.')

Frame 33, Send Create Connection

- a) Check the presence of the following flags: Man In The Middle (MITM), Long Term Key (LTK), Connection Signature Resolving Key (CSRK) and Identity Resolving Key (IRK); search the web for their meaning and how they are used.
- 22. Observe the presence of the protocol RFCOMM; check what parameters are exchanged and the configuration done with it. Also look into HFP.

Radio Frequency Communication; Transporte para outras coisas. Começa por estabelecer o canal 10 (UIH Channel =10) onde depois passa o HFP

HFP: coisas relacionadas com ser auricular (handsfree) p chamadas de voz

23. Observe the presence of the protocol AVDTP; check what parameters are exchanged and configuration done with it. Check Frame 217

Controla os canais de audio utilizados; ver as frames 236, 256 e 885

24. Observe the presence of the protocol AVRPC; check what parameters are exchanged and configuration done with it.

Utilizado para controlar o playback: ver a Frame 346, p.ex.

25. Move to the 'SBC' set of captures frames;

a) Observe their structure, fields, and conclude about the information they transport

Transportam áudio samples, com informação de timina, forma de reproduzir, etc: transporte ACL

b) Selecting one of the SBC frames, reorder by their capture order ('No.' or 'Time') and check what follows an SBC Frame

HCI EVT fazendo ack das frames recebidas

D. Connect and unpair, phones

26. Open the capture "3.1.Sony1000XM3.powerOn.Connect.unPair.pcapng"

The following procedures were executed while the capture was running:

- a) Switch on the device
- b) Wait to see the device switching to Sniff Mode (Frame 745)
- c) In the PC Bluetooth Settings remove the device
- d) Wait a few seconds, stop the capture and save it
- 27. Observe the immediate connect request sent by the device

O dispositivo faz um pedido de ligação que traz o seu endereço (BD_ADDR) e uns parâmetros de caracterização; depois o processo é idêntico

São estabelecidos 3 signalling channels; Frames:

- 151: PSM: AVDTF
- 185: PSM: AVDTP
- 3. 196: PSM: AVCTP Control
- 28. Order the capture by 'Protocol' and search for L2CAP; observe the different L2CAP Commands and Responses; what is main L2CAP role?

Como o nome indica (Logical Link Control and Adaptation Protocol) este gere o estabelecimento de ligações lógicas a adapta (segmenta, recupera, ...) a informação de níveis superiores para transporte no rádio

29. After connecting, the headphones send audio contents to the PC; identify the adopted codec for audio encoding

SBC; 1ª frame SBC é a 276

- 30. Observe the disconnect process
 - O disconnect da Frame 851, vem do connect da Frame 196; tem SCID 0x0041
 - O disconnect da Frame 864, vem do connect da Frame 185; tem SCID 0x0042
 - O disconnect da Frame 865, vem do connect da Frame 151; tem SCID 0x0043

E. Audio call (Messenger), phones

31. Open the capture "4.Sony1000XM3.MessengerCall.pcapng"; also open 'Statistics → 'Flow Graph'; this capture was obtained in the scope of a Messenger call.

The following procedures were executed while the capture was running (Phones were already paired and connect):

- a) Started the capture in Wireshark
- b) Started a call in the PC Messenger client to another client
- c) Stop the call in the PC Messenger
- d) Wait to see the last Mode Change
- e) Stop the capture (PC)
- 32. See Frames 1 to 3; What do they mean?

O dispositivo estava em 'Sniff Mode' e passou a 'Active Mode'

33. See Frame 4 to 7; check the type of connection being established. Why that?

Chamada messenger, requer tempo real, estabelece uma ligação síncrona

- 34. From 8 to 19170, in 29 seconds, audio frames are exchanged bidirectionally.
 - a) Apply the visualization filter "hci h4.type==0x03".
 - b) Check on the table at the end of the manual the type of these frame.

Synchronous Connection Oriented Link (Data)

c) Based on that, conclude about frequency and size of the frames

São frames de 'Synchronous Data". São muito frequentes e com poucas amostras para haver baixa latencia. Erros/perdas tb têm menor impacto.

35. Check one of those frames in the 'Packet Details' window. See the protocol stack and 'HCI Packet Type'; see where this exchange fits in the HCI protocol stack present at the end of this manual

SCO Data; trocado directo da App ao Voice Codec

36. The call is finished; see what happens in and after Frame 19171 (you have to clear the visualization filter).

Há um Disconnect e o dispositivo reporta ter entrado em Sniff Mode (19179, 5 seg depois desligar,

F. Audio streaming (Spotify), phones

37. Open the capture "5.Sony1000XM3.Spotify.pcapng"

The following procedures were executed while the capture was running (Phones were already paired and connect):

- a) Started the capture in Wireshark
- b) Start streaming on PC (Spotify)
- c) Stop streaming on PC (Spotify)
- d) Start streaming on phones (Frame 835, 8.62s)
- e) Stop streaming on phones (Frame 1380, 23.925s)
- f) Stop the capture (PC)
- 38. Identity the type of established connection and see the initial mode change

Frame 1: Connection oriented request: localhost to remote (remote evice)

Frame 2: Exit sniff mode: host to controller (local)

- 39. Identity the messages exchange for the audio exchange; observe the direction of the messages
- 40. Observe what happens when resuming audio stream at the phones.

Ligação é estabelecida desde os phones

the

G. Uni and bidirecctional audio, microfone (with line-out functionality)

41. Open the capture "6.RaizerMicroph.switchOn.changeToSychroAudio.switchToOff.pcapng"

The following procedures were executed while the capture was running (the device has been already paired and connected):

- a) Start Capture
- b) Switch on the device
- Select the device as Output Device in Linux Settings window
- d) Wait for change mode notification (in Wireshark)
- e) Start streaming on Spotify
- f) Pause streaming on Spotify
- g) Wait for change mode notification (in Wireshark)
- h) Resume streaming on Spotify
- Change audio input device in the Linux Settings window to the Raizen device (see figure)
- j) Switch off device
- k) Stop the capture

42. Has with previous analysis, identify the involved protocols and their stack

AVDTP in L2CAP (dynamically allocated channel) in ACL – fase inicial

AVRPC in AVCTP in L2CAP (dynamically allocated channel) in ACL — fase inicial

HCL CMD

HCI EVT

HCI SCC

HFP in RFCOMM - fase inicial

L2CAP sem qq outro protocol dentro (signalling channel)

SBC in RTP in A2DP profile in L2CAP in ACL – fase inicial

SDP in L2CAP

- 43. Observe the overall process captured in Wireshark and analyse, considering the following guidelines:
 - a) Initial connection and configuration process between the two devices. It goes from Frame 1 to Frame 181
 - b) There is an initial exchange of empty audio packets (to be confirmed in following steps) that stop in Frame 899
 - c) Frame 901 results from Spotify start
 - d) Frame 2306 results from Spotify pause
 - e) Frame 2311 results from Spotify resuming streaming
 - f) Frame 3254 results from the device being added also as audio input device
 - g) Frame 20088 results from the device being switched off
- 44. Go to 'Telephony' → 'RTP' → 'RTP Streams' and observed that three RTP were identified. Select then and press 'Play Streams'. With an audio device in your PC you should be able to listen to the 2nd and 3rd streams!

As can be seen in the figure (and in your screen), the first sequence has no audio. The samples with "Wrong timestamps" correspond to audio sent with RTP+SBC (initial setup and unidirectional audio streaming). The last samples correspond the direct, bidirectional audio.

H. Other devices

- 45. Analyse the two other captures:
 - 7.PhilipsBTaudio.pairing.pcapng and
 - 8.Sony1000XM4.pairing.pcapng

and do similar analysis to the previous ones.

VII. Interface HCI

https://hearinghealthmatters.org/wp-content/uploads/sites/9/files/2014/01/BT-Stack.gif

Command Packet

Asynchronous Data Packet

Event Packet

VIII. Bluetooth states

Device states

Figure 9: Bluetooth state machine

(http://www.sharetechnote.com/html/Bluetooth_Protocol.html)

IX. Bluetooth protocols and profiles

X. Acronyms (with some additional information)

NOT Complete. For sure you will find many more on the capture files.

Acronym	Name	Notes
A2DP	Advanced Audio Distribution Profile	
ACP	Acceptor	
ACL	Asynchronous Connection Less	
AVCTP	Audio/Video Control Transport Protocol	Transported in L2CAP
AVDTP	Audio/Video Distribution Transport Protocol	Specifies the transport protocol for audio and video distribution and streaming; Transported in L2CAP
AVRCP	Audio/Video Remote Control Profile	Transported in AVCTP (in L2CAP)
ATT	Attribute Protocol	
CID	Channel Identifier	A channel identifier (CID) is the local name representing a logical channel endpoint on the device
DCID	Destination CID	Enable the remote side to associate the established L2CAP channel with the ongoing call
GATT	Generic ATTribute Profile	
HCI	Host Controller Interface	
HFP	Hands-Free Profile	Set of functions such that a Mobile Phone can be used in conjunction with a Hands-Free device
L2CAP	Logical Link Control and Adaptation Protocol	Supports connection-oriented as well as connectionless services Supports Synchronous Connection-Oriented (SCO) links for real-time voice traffic using reserved bandwidth and Asynchronous Connection- Less (ACL) links for best-effort traffic
LE	Low Energy	
LMP	Link Manager Protocol	
PPP		
PSM	Protocol Service Multiplexor	
RFCOMM	Radio Frequency Communication	reliable stream-based protocol providing emulated RS-232 serial ports
RTP	Real-time Transport Protocol	F
SBC	Sub-band Coding	Transported in RTP
SCID	Source Channel Identifier	Used in the L2CAP (Link Controller and Adaptation Protocol) layer and
SCO	Synchronous Connection Oriented Link	represents a channel endpoint on the device sending the request Set of reserved time slots separated by the SCO interval Tsco. Used for voice data.
SDP	Service Discovery Protocol	Tor voice data.
SEID	Stream End-point IDentifier	
SMP	Security Management Protocol	
ТСР	Transmission Control Protocol	
TCS	Telephony Control Protocol	
UDP	User Datagram Protocol	
UIH	Unnumbered Information with Header check	
UUID	Universally Unique IDentifier	
WAE	Wireless Application Environment	
WAP	Wireless Application Protocol	

XI. Using Wireshark

Preview filters

- hci_h4.direction == 0x00 / 0x01
- hci_h4.type == see table

Packet	Packet Type
Command	0x01
Asynchronous Data	0x02
Synchronous Data	0x03
Event	0x04

- bthci_cmd.opcode == Command Opcode (Opcode Group Field + Opcode Command Field)
- bthci_cmd.opcode.ocf == Opcode Command Field
- bthci_cmd.opcode.ogf == Opcode Group Field
- bthci_evt.code == *Event Code*

The opcode is subdivided into two parts (see link 2. below for a list of OGF, OCF and Events):

- 1. a 10-bit Opcode Command Field (OCF) and
- 2. a 6-bit Opcode Group Field (OGF)

XII. Useful links

- 1. https://www.bluetooth.com/specifications/specs/
- 2. https://lisha.ufsc.br/teaching/shi/ine5346-2003-1/work/bluetooth/hci commands.html
- $3. \quad \underline{\text{http://oscar.iitb.ac.in/onsiteDocumentsDirectory/Bluetooth/Bluetooth/Help/Host%20Controller%20Interface.htm}\\$
- 4. https://gitlab.com/wireshark/wireshark/-/wikis/Bluetooth
- 5. https://software-dl.ti.com/simplelink/esd/simplelink cc13x2 sdk/1.60.00.29 new/exports/docs/ble5stack/vendor specific guide/BLE Vendor Specific HCI Guide/hci interface.html
- 6. https://www.wireshark.org/docs/dfref/h/hci_h4.html
- 7. http://www.althos.com/tutorial/Bluetooth-tutorial-title-slide.html