Appunti Geometria e algebra lineare

Alexandru Gabriel Bradatan

Data di compilazione: 27 settembre 2019

1 Insiemi

Un insieme è una collezione di oggetti. Tutta la matematica si basa sulla teoria assiomatica degli insiemi. Un insieme A si può indicare per elencazione $(A = \{a_1, \ldots, a_n\})$ o con una condizione $(A = \{x | condizione\})$. La cardinalità di A è il numero di oggetti: |A| = n. La cardinalità dell'insieme vuoto è 0.

Esempi $\mathbb{N} = \{0, 1, 2, \dots\}, \mathbb{Q} = \{q = \frac{m}{n} | m, n \in \mathbb{Z}, n \neq 0\}, \mathbb{R} = \{x \text{ numeri decimali}\}.$

Un insieme particolare è l'insieme con nessun elemento detto vuoto, indicato con \emptyset . Un altro insieme particolare è l'insieme di tutti gli tutto detto insieme universo U.

1.1 Sottoinsiemi

Un insieme può essere sottoinsieme di un altro, ossia contenere una parte degli elementi dell'insieme più grande. Formalizzando si può dire che:

$$A \subset B \implies \forall a \in A, a \in B$$

1.2 Insiemi numerici

Trattati nel dettaglio negli appunti di Analisi 1.

1.3 Operazioni

Le operazioni più usate sono:

Unione $A \cup B = \{x | x \in A \lor x \in B\}$

Intersezione $A \cap B = \{x | x \in A \land x \in B\}$

Complementare $A^C = \bar{A} = \{x \in U | x \notin A\}$

Differenza $A-B=\{x|x\in A \land x\notin B\}$ Si può anche trovare indicata con \

Prodotto cartesiano $A \times B = \{(a,b)|a \in A, b \in B\}$ Le coppie (a,b) sono anche dette <u>coppie</u> (m-uple per m elementi)

2 Relazioni

Una relazione è un sottoinsieme del prodotto cartesiano tra due insiemi.

Per indicare che due elementi (a_i, b_j) sono legati da una relazione R usiamo $\underline{a_i} \sim_R b_j$. Per rappresentare le relazioni si possono usare i diagrammi di Venn (le patate) con le frecce che collegano i vari elementi tra di loro.

Esempio Presi $A = \{a_1, a_2\}, B = \{b_1, b_2\}$, calcoliamo il loro prodotto cartesiano e otterremo 16 possibili sottoinsiemi:

$$R_0 = \emptyset$$

$$R_1 = \{(a_1, b_1)\}, \dots, R_4$$

$$R_5 = \{(a_1, b_1), (a_1, b_2)\}, \dots, R_{10}$$

$$R_{11} = \{(a_1, b_1), (a_1, b_2), (a_2, b_1)\}, \dots, R_{14}$$

$$R_{15} = A \times B$$

2.1 Relazioni particolari

Relazione d'ordine Prendiamo una relazione $R \subseteq A \times A$, essa è d'ordine se:

- è riflessiva: $(a, a) \in R \forall a \in R$
- è antisimmetrica: $(a,b),(b,a) \in R \implies a=b$
- è transitiva: $(a,b),(b,c) \in R \implies (a,c) \in R$

Insieme totalmente e parzialmente ordinato Siano A un insieme ed R una relazione d'ordine su A. Se per ogni $a1, a2 \in A$ vale $(a1, a2) \in R$ oppure $(a2, a1) \in R$, R si dice relazione d'ordine totale e la coppia (A, R) si dice insieme totalmente ordinato. In caso contrario si dice che R è una relazione d'ordine parziale e la coppia (A, R) si dice insieme parzialmente ordinato.

Relazione di equivalenza Prendiamo una relazione $R \subseteq A \times A$, essa è di equivalenza se:

- è riflessiva: $(a, a) \in R \forall a \in R$
- è simmetrica: $(a,b) \in R \implies (b,a) \in R$
- è transitiva: $(a,b),(b,c) \in R \implies (a,c) \in R$

Una modo di vedere la relazione di equivalenza è come generalizzazione dell'uguaglianza.

Classe di equivalenza Data una relazione di equivalenza R, preso un elemento a, la classe di equivalenza di a sono tutti gli elementi equivalenti equivalenti ad a, ossia:

$$[a]_R = \{ b \in A | a \sim_R a \}$$

La classe di equivalenza è in sostanza l'insieme di tutti gli elementi equivalenti tra di loro.

<u>Teorema</u>: Ogni elemento $a \in A$ appartiene a una sola classe di equivalenza (dimostrazione nella dispensa, teorema 2.38). <u>Teorema</u>: Un insieme A sul quale agisce una relazione di equivalenza R è l'unione disgiunta delle sue classi di equivalenza.

Insieme quoziente L'insieme quoziente A/R di A rispetto a una relazione di equivalenza R è l'insieme di tutte le classi di equivalenza.

3 Funzioni

Le funzioni sono speciali relazioni che associano a ogni elemento del primo insieme un solo elemento del secondo. Una funzione in genere si indica con la lettera minuscola e usa questa notazione:

$$f: A \to B$$

L'insieme A è detto dominio, B il codominio. L'insieme di tutte le possibili funzioni che vanno da A a B si indica con B^A .

Preso $a \in A, b = f(a)$ sarà la sua immagine. La controimmagine di b è l'elemento tale che $f^{-1}(b) = \{a \in A | f(a) = b\}$

L'insieme di tutte le immagini è detto insieme immagine e si indica con Im(f).

Funzione particolare La funzione $A \times A = \Delta A = Id(A) = \{(a,a)|a \in A\}$ è detta funzione identità o insieme diagonale.

Iniettività Una funzione è detta iniettiva se $\forall a, b \in A, a \neq b \implies f(a) \neq f(b)$.

Suriettività Una funzione è detta suriettiva se $\forall b \in B, \exists a \in A | f(a) = b.$

Funzione biunivoca Se una funzione è sia iniettiva che suriettiva è detta biunivoca. Se una funzione è biunivoca può essere invertita ottenendo $f^{-1}: B \to A$.

Composizione di funzioni Date due funzioni $f: A \to B, g: B \to C$, la composizione $g \circ f$ delle due è una nuova funzione tale che $g \circ f: A \to C$. Ciò equivale a dire che $(g \circ f)(a) = g(f(a))$

4 Operazioni

Le operazioni sono delle speciali funzioni: dati n+1 insiemi A_1, \ldots, A_{n+1} non vuoti, una operazione n-aria * è una funzione che:

$$*: A_1 \times \dots \times A_n \to A_{n+1}$$
$$(a_1, \dots, a_n) \mapsto *(a_1, \dots, a_n)$$

Se $\underline{A_1 = \cdots = A_{n+1}}$ allora l'operazione è detta interna, altrimenti è detta esterna. Se $\underline{n=2}$ allora l'operazione è detta binaria e si può indicare con $a_1 * a_2$.

Esempi La somma + un'operazione binaria interna a N

$$\begin{array}{cccc} +: & \mathbb{N} \times \mathbb{N} & \rightarrow & \mathbb{N} \\ & (n1, n2) & \mapsto & n3 = n1 + n2 \end{array}$$

La differenza è sempre un'operazione binaria, ma esterna ad N

Le varie operazioni possono essere rappresentate in tabelle che indicano tutti i possibili casi. Ad esempio, esistono $2^4 = 16$ diverse operazioni binarie interne (* : $A \times A \rightarrow A$) ad $A = \{a_1, a_2\}$.

Proprietà delle operazioni Le operazioni possono godere di alcune proprietà:

Elemento neutro a * e = a

Inverso $a * a^{-1} = e$

Proprietà commutativa a * b = b * a

Proprietà assocativa a * (b * c) = (a * b) * c

Proprietà distributiva Lega due operazioni: $a \cdot (b * c) = (a \cdot b) * (a \cdot c)$

5 Struttura algebrica

Dicesi struttura algebrica l'insieme di un certo numero di insiemi A_1, \ldots, A_n , chiamato supporto della struttura e delle operazioni $*_1, \ldots, *_n$ su questi insiemi.

Tre importanti strutture sono il gruppo, l'anello e il campo.

5.1 Il gruppo

Il gruppo è una struttura algebrica del tipo (G,*) dove G è un insieme e * è un'operazione binaria interna a G che deve rispettare queste date proprietà $\forall a \in G$:

- \bullet Deve possedere l'elemento neutro in G
- ullet Deve possedere l'inverso in G
- Deve godere della proprietà associativa

Se l'operazione è anche commutativa il gruppo viene detto abeliano.

5.2 L'anello

Un anello è una struttura algebrica del tipo $(A, *, \cdot)$ dove le due operazioni devono soddisfare le seguenti proprietà:

- (A, *) è un gruppo abeliano
- \bullet deve avere elemento neutro in A
- · deve godere della proprietà associativa
- · e * devono essere legate dalla proprietà distributiva

Se la seconda operazione è commutativa, allora l'anello si dice commutativo.

5.3 Il campo

Un campo è una struttura algebrica del tipo $(K, *, \cdot)$ dove le due operazioni devono soddisfare le seguenti proprietà:

- (K,*) deve essere un gruppo abeliano con elemento neutro e
- Detto $K^* = K e$, (K^*, \cdot) deve essere un gruppo abeliano
- Le due operazioni sono legate dalla proprietà distributiva

Il campo $(\mathbb{R}, +, \times)$ è uno dei campi più importanti.

5.4 Omomorfismo

Un omomorfismo tra due strutture algebriche è una funzione f che commuta tra le due con le loro operazioni. Se f è invertibile, allora viene chiamata isomorfismo.

Omomorfismo di gruppi Dati due gruppi (A,*) e (B,\cdot) la funzione $\underline{f:A\to B}$ è un omomorfismo se

$$f(a_1 * a_2) = f(b_1) \cdot f(b_2)$$

Omomorfismo di campo Dati due campi $(A, *_1, \cdot_1)$ e $(B, *_2, \cdot_2)$ la funzione $\underline{f: A \to B}$ è un omomorfismo se

$$f(a_1 *_1 a_2) = f(b_1) *_2 f(b_2) \land f(a_1 \cdot_1 a_2) = f(b_1) \cdot_2 f(b_2)$$

6 Polinomi

Un polinomio P(x) è una particolare funzione della forma:

$$P(x) = \sum_{i=0}^{n} a_i x^i \text{ con } n \in \mathbb{N}$$

Dove (a_1, \ldots, a_n) (i coefficienti) appartengono a un campo K^{n+1} . L'insieme di tutti i possibili coefficienti si indica con K[x]. Un polinomio nelle m variabili x_1, \ldots, x_m è definito induttivamente come l'espressione:

$$P(x_1, \dots, x_m) = \sum_{i=0}^{n} Q_i(x_1, \dots, x_{m-1}) x_m^i$$

dove Q_1, \ldots, Q_n sono polinomi nelle prime m-1 variabili. L'insieme di tutti i polinomi di questo tipo si indica con $K[x_1, \ldots, x_m]$.

Se il campo \underline{K} coincide con il campo dei reali $((\mathbb{R}, +, \times))$ allora $K[x] = \mathbb{R}[x]$ e sarà l'insieme di tutti i possibili polinomi con variabile reale.

Un polinomio è generalmente scritto come somma di monomi.

Il grado di un polinomio Il grado di un polinomio P(x) è il massimo grado dei suoi monomi con grado diverso da 0. Il polinomio nullo ha per definizione grado indeterminato.

6.1 Divisione tra polinomi

Data la coppia $(A, B) \in K[x] \times K[x], B \neq 0$, esiste una sola coppia $(Q, R) \in K[x] \times K[x]$ tale che A = QB + R per la quale grado(R) < grado(Q) o grado(R) = 0. Q e R sono rispettivamente quoziente e resto della divisione di A e B.

Molteplicità algebrica Dati $P \in K[x], r \in \mathbb{N}$ esiste un valore $\underline{m < grado(P)}$ tale che $\underline{(x-r)^m}$ divida P(x). Tale valore è detto molteplicità algebrica di r rispetto a P. La r sarà la radice del polinomio. Se la molteplicità algebrica di r è 1, r è una radice semplice.

Chiusura algebrica Le radici di un polinomio $P \in K[x]$ di grado n rispettano la regola $\underline{m_1 + \cdots + m_i \leq n}$ dove $\underline{m_i}$ è la molteplicità algebrica di r_i con $i = 1, \ldots, k$. Per ogni campo K esisterà un altro campo K che lo contiene tale che ogni polinomio appartenente ad esso abbia le radici che soddisfino $m_1 + \cdots + m_i = n$. Tale campo è detto chiusura algebrica di K. Se K e la sua chiusura coincidono, K si dice algebricamente completo.

Il campo dei $\mathbb C$ è algebricamente chiuso, è la chiusura algebrica di $\mathbb R$ e contiene la chiusura algebrica di $\mathbb Q$.

7 Matrici

Le matrici sono uno strumento fondamentale per fare i conti in matematica.

Dati due insiemi $M=1,\ldots,m$ e $N=1,\ldots,n$, una matrice di ordine (m,n) ad elementi nel campo K è una funzione definita come:

$$A: M \times N \to K$$
$$(i,j) \mapsto a_{ij}$$

L'insieme di tutte le matrici di ordine (m, n) su K viene indicato con Mat(m, n; K).

Matrici particolari La matrice nulla è indicata con 0_{mn} . La matrice identità I_{mn} è, invece, una matrice del tipo:

$$I_{mn}: M \times N \to K \atop (m,n) \mapsto \Delta$$
 con $\Delta = 1$ se $i = j$

Rappresentazione Una matrice può essere pensata come una tabella di numeri di m righe ed n colonne:

$$A = \begin{cases} 1 & \cdots & n \\ 1 & a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ m & a_{m1} & \cdots & a_{mn} \end{cases} \in Mat(m, n; K)$$

Una matrice si può anche indicare con la notazione $[a_{ij}]$.

Il rango di una matrice Il rango r(A) di una matrice A è il rango di una matrice a scala S ottenuta tramite riduzione di Gauss di A.

7.1 Le matrici quadrate

Data una matrice $A \in Mat(m, n; \mathbb{K})$, essa è quadrata se $\underline{m = n}$. Una matrice quadrata si <u>indica con</u> $\underline{Mat(m, \mathbb{K})}$. Solo le matrici quadrate sono matrici invertibili (teorema che non abbiamo fatto).

Matrici quadrate particolari Se $a_{ij} = 0$ per

- i > j è triangolare alta
- $i \leq j$ è strettamente triangolare alta
- i < j è triangolare bassa
- $\bullet \ i \geq j$ è strettamente triangolare bassa
- $i \neq j$ è diagonale

Inoltre se $a_{ij} = a_{ji}$ la matrice è simmetrica, invece se $a_{ij} = a_{ji}$ viene detta antisimmetrica.

7.2 Matrice invertibile

Prese tre matrici quadrate A, B, C allora:

- B si dice inversa sinistra se $BA = I_n$
- C si dice inversa destra se $AC = I_n$

A si dice invertibile se B=C. La matrice inversa di A è unica e si indica con A^{-1} .

Teorema di caratterizzazione delle matrici invertibili Possiamo affermare che $\underline{\exists A^{-1}}$ se e solo se:

- $\underline{r(A) = n}$
- Esiste l'inversa sinistra o la destra

7.3 La matrice trasposta

Data una matrice A, la matrice trasposta è <u>un'altra matrice</u> A^T che si ottiene trasformando tutte le righe in colonne e viceversa:

$$A \in Mat(m, n; K); A^T \in Mat(n, m, K)$$

7.4 Operazioni con le matrici

Somma É un'operazione binaria interna. Somma gli elementi uno a uno:

$$+: Mat(m, n; K) \times Mat(m, n; K) \rightarrow Mat(m, n; K)$$

$$([a_{ij}], [b_{ij}]) \mapsto [a_{ij} + b_{ij}]$$

Prodotto con scalare É un'operazione binaria esterna:

$$\begin{array}{ccc} \cdot : & K \times Mat(m, n; K) & \to & Mat(m, n; K) \\ & & (t, [a_{ij}]) & \mapsto & [t \cdot a_{ij}] \end{array}$$

Prodotto matriciale É un'operazione binaria esterna:

*:
$$Mat(m, p; K) \times Mat(p, n; K) \rightarrow Mat(m, n; K)$$

 $([a_{ij}], [b_{ij}]) \mapsto [\sum_{k=0}^{p} a_{ik} b_{kj}]$

Osserva: il numero di colonne della prima deve essere uguale al numero di righe della seconda!

Proprietà della somma La struttura $(Mat(m, n : \setminus), +)$ è un gruppo abeliano quindi:

- É commutativa: A + B = B + A
- É associativa: (A+B)+C=A+(B+C)
- Esiste l'elemento neutro $e = 0_{mn}$
- Esiste l'inverso: $A + (-A) = 0_{mn}$

Proprietà del prodotto con scalare

- É distributiva con la somma: k(A+B) = kA + kB
- É distributiva con la somma in K: (j + k)A = jA + kA
- É omogenea rispetto alla moltiplicazione in K: (jk)A = j(kA)
- Esiste la normalizzazione $A = 1 \cdot A$

Proprietà del prodotto matriciale

- Non vale la proprietà commutativa
- ullet Non esiste l'annullamento
- L'elemento neutro è $I_m A_{mn} = A, A_{mn} I_n = A$
- Non esiste l'inverso
- <u>É associativo</u>
- É distributivo con la somma: A(B+C) = (AB) + (AC)
- É omogenea con l'altro prodotto: t(AB) = (tA)B = A(tB)

7.5 Pivot e matrice a scala

Pivot Un pivot Pi è il primo elemento non nullo della riga i della matrice.

Matrice a scala Una matrice nella quale <u>il pivot della prima riga compare prima del pivot della seconda riga, che a sua volta compare prima del pivot della terza riga e così andare, con le eventuali righe nulle per ultime, si dice matrice a scala.</u>

$$A = \begin{bmatrix} P1 & * & * & * \\ 0 & P2 & * & * \\ 0 & 0 & P3 & * \\ 0 & 0 & 0 & P4 \\ & & 0_{m-r,n} \end{bmatrix} \in Mat(m, n; K)$$

Il rango di una matrice a scala $S \in I$ rango I(S) di una matrice a scala $S \in I$ numero di pivot in S.

7.6 Eliminazione di Gauss

Il metodo di eliminazione di Gauss ci permette <u>di ridurre qualsiasi matrice in una nuova matrice a scala tramite alcune operazioni</u>. Esisteranno diverse riduzioni, ma tutte hanno lo stesso rango.

Le operazioni di Gauss

Permutazione Scambio due righe tra di loro

Moltiplicazione per uno scalare non nullo Moltiplico tutti gli elementi di una riga per un numero diverso da 0

Somma tra righe Sommo uno a uno gli elementi di due righe e la riga risultante la inserisco al posto di uno dei due addendi: $A_{R(i)} \to A_{R(i)} + tA_{R(j)}$ con $i \neq j$

8 Sistemi lineari

Un sistema lineare è un insieme di espressioni che hanno questa forma:

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ \dots + \dots + \dots = \dots \\ a_{m1}x_1 + \dots + a_{mn}a_n = b_m \end{cases}$$

Dove:

- \bullet $a_{ij}, b_i \in K$
- x_n sono incognite
- $1 \le i \le m, 1 \le j \le n$

Un sistema lineare può anche essere scritto come un'equazione matriciale:

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}, B = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}, X = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

La matrice [A|B] è detta la matrice completa del sistema. [A|0] è detta matrice del sistema omogeneo associato.

8.1 Sistema lineare omogeneo

Un sistema lineare omogeneo è un sistema lineare del tipo $[A|0_{m1}]$ e avrà sempre almeno una soluzione, di cui una $X = 0_{n1}$. La soluzione del sistema lineare omogeneo è detta soluzione generale. Un sistema lineare omogeneo e il corrispettivo sistema normale condividono la soluzione generale:

$$\begin{cases} x+y+z=0 \\ z=0 \end{cases} \quad X_0 = \begin{bmatrix} -t \\ t \\ 0 \end{bmatrix}$$

$$\begin{cases} x+y+z=1 \\ z=0 \end{cases} \quad X = \begin{bmatrix} 1-t \\ t \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} -t \\ t \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + X_0$$

Questo ci permette di enunciare il teorema di costruzione delle soluzioni.

Nucleo di una matrice In nucleo di A = Ker(A) è <u>l'insieme delle soluzioni del sistema lineare</u> omogeneo associato $(Ker(A) = \{x \in Mat(m, n; K) | AX = 0\} \neq \emptyset)$

8.2 Teorema di struttura delle soluzioni

Sia [A|B] risolvibile, la soluzione del sistema sarà la soluzione particolare di [A|B] sommata alla soluzione generale del sistema omogeneo associato $[A|0_{m1}]$

8.3 Forma chiusa per il calcolo della soluzione di un sistema lineare

La forma chiusa per la risoluzione di un generico sistema lineare AX = B è

$$A^{-1}AX = BA^{-1}$$

Questa forma chiusa è il teorema di Cramer

Teorema di Cramer Se una matrice A è invertibile, allora il sistema lineare [A|B] associato avrà soluzione $X = BA^{-1}$.

Dimostrazione Se A è invertibile, allora r(A) = n. Per il teorema di Rouché-Capelli, la soluzione del sistema associato ad A sarà unica. Possiamo allora scrivere:

$$AX = A(A^{-1}B) = (AA^{-1})B = I_nB = B$$

Confermando il fatto che $X = BA^{-1}$ è soluzione del sistema.

8.4 Equivalenza dei sistemi lineari

Sia [A|B] un generico sistema lineare e [S|B] una sua riduzione a scala. I due sistemi avranno le stesse soluzioni.

Dimostrazione Per dimostrare il teorema verifichiamo che ogni operazione di Gauss non modifichi le soluzioni:

- Permutazione: modifica solo l'ordine delle equazioni, ma non le soluzioni
- Moltiplicazione per scalare: se lo scalare $t \neq 0$ le soluzioni non cambiano in quanto

$$t(a_{i1}x_1 + \cdots + a_{ij}) = t(b_i)$$

• Somma tra righe: Prendiamo due sistemi così definiti:

$$\begin{cases} a_{i1}x_1 + \dots + a_{in} - b_i = 0 \\ a_{j1}x_1 + \dots + a_{jn} - b_j = 0 \end{cases} \begin{cases} (a_{i1}x_1 + \dots + a_{in} - b_i) + t(a_{j1}x_1 + \dots + a_{jn} - b_j) = 0 \\ a_{j1}x_1 + \dots + a_{jn} - b_j = 0 \end{cases}$$

Siano (x_1, \ldots, x_n) le soluzioni del primo sistema. Allora

$$a_{i1}x_1 + \dots + a_{in} - b_i = 0$$
 per ipotesi
 $a_{j1}x_1 + \dots + a_{jn} - b_j = 0$ per ipotesi
 $(a_{i1}x_1 + \dots + a_{in} - b_i) + t(a_{j1}x_1 + \dots + a_{jn} - b_j) = 0$

Siano (x_1, \ldots, x_n) le soluzioni anche per il secondo sistema. Allora:

$$a_{i1}x_1 + \cdots + a_{in} - b_i = 0$$
 per soluzione del primo sistema $a_{j1}x_1 + \cdots + a_{jn} - b_j = 0$ per ipotesi $(a_{i1}x_1 + \cdots + a_{in} - b_i) + t(a_{j1}x_1 + \cdots + a_{jn} - b_j) = 0$

Le stesse (x_1, \ldots, x_n) risolvono entrambi i sistemi

Le operazioni gaussiane, quindi, non modificano le soluzioni.

8.5 Algoritmo di Gauss per la risoluzione dei sistemi lineari

L'algoritmo di Gauss per risolvere i sistemi lineari si basa sull'equivalenza dei sistemi lineari. Consiste nella riduzione a scala della matrice completa del sistema lineare.

8.6 Teorema di Rouché-Capelli

Il teorema di Rouché-Capelli ci permette di capire la risolvibilità di un sistema lineare in base al rango della sua matrice associata $(r(A) \le r([A|B]) \le r([A]) + 1)$. Sia un sistema che ha come matrice dei coefficienti [A] e matrice completa [A|B]. Se:

- r([A|B]) > r(A): il sistema sarà impossibile Il sistema si dice sovradeterminato
- $\underline{r([A|B])} = r(A) = n$: il sistema avrà un'unica soluzione
- r([A|B]) = r(A) < n: il sistema avrà infinite soluzioni

Consideriamo il sistema associato ad $[A|B] \in Mat(m, n; K)$, per il teorema sopra enunciato:

- La soluzione non esiste se r([A|B]) > r(A)
- $\bullet\,$ La soluzione esiste unica se $r([A|B])=r(A)=n\ (\infty^0=1$ soluzioni)
- Esistono infinite soluzioni dipendenti da n r(A) parametri se e solo se r([A|B]) = r(A) < n $(\infty^{n-r} \text{ soluzioni})$