Lecture 21: Difference of two proportions

Chapter 6.2

Previously... Proportions

lf

- ▶ The sample observations are independent
- ► The success-failure condition holds:
 - np ≥ 10
 - ▶ $n(1-p) \ge 10$

then the sampling distribution of $\widehat{\rho}$ is nearly normal and hence we can:

- ► construct confidence intervals using z*
- ► conduct hypothesis tests and compute *p*-values using z-tables

Previously... Proportions

Both

- ▶ to verify success/failure conditions
- ▶ in estimate of SE

we require an estimate of the true proportion p. For

- \triangleright confidence intervals: use sample proportion \hat{p} in place of p
- ▶ hypothesis tests: use null value p_0 in place of p

- ---

Question for today

How do we infer about a difference in proportions $p_1 - p_2$?

Confidence Interval: Example from Text

The way a question is phrased in survey can influence a person's response. Ex: the Pew Research Center conducted a survey with the following question:

As you may know, by 2014 all Americans will be required to have health insurance. X while Y. Do you approve of disapprove of this policy?

where X and Y were randomly ordered between

- ▶ People who do not buy insurance will pay a penalty
- People who cannot afford it will receive financial help from the government

Build a 90% confidence interval for the difference in proportions.

- /-

Example from Text

	Sample size n _i	Approve (%)	Disapprove (%)	Other (%)
people who do not buy it will pay a penalty given first	771	47	49	3
people who cannot afford it will receive financial help from the gov't	732	34	63	3
given first				

6/2

Conditions for Sampling Dist'n of $\hat{p}_1 - \hat{p}_2$ Being Normal

When

- **b** both sample proportions \hat{p}_1 and \hat{p}_2 are approximately normal:
 - are independent
 - satisfies the success/failure condition from Lecture 9.1:
 - $np \ge 10 \text{ and } n(1-p) \ge 10$
- the samples are independent from each other...

Conditions for Sampling Dist'n of $\widehat{p}_1 - \widehat{p}_2$ Being Normal

...the sampling distribution for the difference of sample proportions $\hat{p}_1-\hat{p}_2$ is approximately normal with

- ▶ mean p₁ p₂
- standard error

$$SE_{\widehat{p}_1-\widehat{p}_2} = \sqrt{SE_{\widehat{p}_1}^2 + SE_{\widehat{p}_2}^2} = \sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$$

where p_1, p_2 are the true population proportions, and n_1, n_2 are the sample sizes.

Standard Error

Recall when looking at numerical data, we showed that the SE for $\overline{x}_1-\overline{x}_2$ was

$$SE_{\overline{x}_1-\overline{x}_2} = \sqrt{SE_{\overline{x}_1}^2 + SE_{\overline{x}_2}^2} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

Compare this to

$$SE_{\widehat{p}_1-\widehat{p}_2} = \sqrt{SE_{\widehat{p}_1}^2 + SE_{\widehat{p}_2}^2} = \sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$$

Confidence Intervals

Check the conditions:

- ► Normality for each group
 - Each group is a sample random sample from less than 10% of the population
 - The success/failure condition holds for both samples separately:
 - $n_1\widehat{p}_1 \geq 10$ and $n_1(1-\widehat{p}_1) \geq 10$
 - $n_2 \hat{p}_2 \ge 10$ and $n_2 (1 \hat{p}_2) \ge 10$
- We assume both groups were sampled independently from each other.

Confidence Intervals

Point estimate is

$$\hat{p}_1 - \hat{p}_2 = 0.47 - 0.34 = 0.13$$

Plug in \hat{p}_1 and \hat{p}_2 into SE:

$$SE_{\hat{p}_1 - \hat{p}_2} = \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$$
$$= \sqrt{\frac{0.47(1 - 0.47)}{771} + \frac{0.34(1 - 0.34)}{732}} = 0.025$$

Confidence Intervals

A 90% confidence interval using the normal model is, as always:

$$\begin{array}{lll} \mbox{point estimate} \pm z^* \times \textit{SE} &=& \mbox{point estimate} \pm 1.65 \times \textit{SE} \\ &0.13 \pm 1.65 \times 0.025 &\Rightarrow& (0.09, 0.17) \end{array}$$

Since the confidence interval does not contain 0,

Hypothesis Tests of $H_0: p_1 = p_2$

We are typically interested in differences in proportions being 0 vs something else. For example

$$H_0: p_1 - p_2 = 0$$

vs $H_1: p_1 - p_2 \neq 0$

Note the null hypothesis can be re-expressed as $H_0: p_1 = p_2$.

Thus, under the null hypothesis the two proportions are equal. i.e. $p_1 = p_2 = p$

Hypothesis Tests of $H_0: p_1 = p_2$

So to

- · verify the success-failure conditions
- ► compute the standard SE

we use a pooled estimate \hat{p} of the proportion p

$$\widehat{p} = \frac{\text{number of successes}}{\text{number of cases}} = \frac{\widehat{p}_1 n_1 + \widehat{p}_2 n_2}{n_1 + n_2}$$

The estimate of the SE to use in for this hypothesis test is:

$$SE_{\widehat{p}_1-\widehat{p}_2} = \sqrt{\frac{\widehat{p}(1-\widehat{p})}{n_1} + \frac{\widehat{p}(1-\widehat{p})}{n_2}}$$

Exercise 6.31

A 2010 survey asked 827 randomly sample voters in California "Do you support/oppose/don't know drilling for oil and natural gas off the coast of California?" The responses were:

	College Grad		
	Yes	No	
Support	154	132	
Oppose	180	126	
Don't Know	104	131	
Total	438	389	

Conduct a hypothesis test at the $\alpha=0.01$ significance level to determine if the proportion of college graduates who support off-shore drilling in California is different than that of non-college graduates.

15 / 21

Next Time

Chi-square tests for

- ▶ Goodness-of-fit
- ► Independence of two variables

Jury Selection

In both sensational trials a big issue was the racial makeup of the jury.

The question we ask is: is there a way to figure out if there is a racial bias in jury selection?

-- ---

Jury Selection

Say we have a population where the racial breakdown of the juror pool (registered voters) is:

		Black	Hispanic	Other	Total
Registered Voters	72%	7%	12%	9%	100%

Jury Selection

Say we had n=100 people picked as jurors, we expect the breakdown to be:

Race	White	Black	Hispanic	Other	Total
Registered Voters	72%	7%	12%	9%	100%
Representation	72	7	12	9	n = 100

19 / 21

Jury Selection

Say we observe the following breakdown. Fairly obvious bias in juror selection!

Race	White	Black	Hispanic	Other	Total
Registered Voters	72%	7%	12%	9%	100%
Representation	0	0	100	0	n = 100

Jury Selection

But what about the following? We expected 72 whites, but observe 75. Is there a bias? i.e. a non-random mechanism at play?

Race	White	Black	Hispanic	Other	Total
Registered Voters	72%	7%	12%	9%	100%
Representation	75	6	11	8	n = 100

21 / 21