Aspect ondulatoire de la lumière

Onde progressive

Définition: propagation d'une perturbation des caractéristiques physiques du milieu avec transport d'énergie mais sans transport de matière

Exemple avec une onde sonore

Onde progressive scalaire longitudinale de vibration (ou de surpression) de célérité c : \vec{c} // \vec{v} Grandeur physique perturbée : position de la particule ou pression locale (= scalaire)

Exemple avec un champ électrique

Onde progressive vectorielle transversale : $\overrightarrow{c} \perp \overrightarrow{v}$ Grandeur physique modifiée : vecteur

Modélisation

g(t,x): onde progressive à une position x et à un instant t

$$g\left(\tau + \frac{x}{c}, x\right) = g(\tau, 0)$$

 $^{\chi}/_{\mathcal{C}}$: retard de l'onde à la position x quand la perturbation à lieu à la position O

$$g(t,x) = g\left(t - \frac{x}{c}, 0\right)$$
 avec $t = \tau + \frac{x}{c}$

Propagation de l'onde dans la direction des x positifs

Onde progressive sinusoïdale

$$g(t,x) = g(0,x) + A.\sin\left[\omega\left(t - \frac{x}{c}\right)\right]$$
avant la perturbation Perturb

Gradeur physique avant la perturbation

Perturbation retardée de $^{\chi}/_{\mathcal{C}}$

A: amplitude

 ω : pulsation propre $\omega = 2\pi f = {2\pi/_T}$ T : période temporelle $T = {1/_f}$

f : fréquence

c : vitesse de propagation de l'onde (différent de la vitesse de vibration)

Décomposition en série de Fourier

Tout signal périodique $g_x(t)=g(x,t)$ de période T=1/f peut être décomposé en somme de signaux sinus ou cosinus de fréquences multiples de f (0, f, 2f, 3f,...).

Ces derniers sont appelés harmoniques du signal $g_x(t)$ (f = fréquence fondamentale)

Onde caractérisée par une fréquence unique

> Onde sinusoïdale = pure = monochromatique = radiation

Onde caractérisée par une somme d'harmoniques

> Onde complexe = onde polychromatique

$$g(t) = A_0 + \sum_{n=1}^{\infty} A_n \cdot \cos[(n\omega)t + \varphi_n]$$

 A_0 : amplitude de la fréquence fondamentale

 A_n : amplitude de l'harmonique

 $\cos[(n\omega)t + \varphi_n]$: harmonique n de fréquence $f = n\omega/2\pi$

 φ_n : phase (permet de passer d'un cosinus à un sinus)

Spectre d'une onde complexe

Carte d'identité d'un rayonnement, permet de voir le rapport entre haute et basse fréquence

Spectre discret : uniquement certaines fréquences sont représentées

Spectre continue : toutes les fréquences sont présentes

Caractéristiques d'une radiation

$$g(t,x) = A.\sin\left[\omega\left(t - \frac{x}{c}\right)\right] = A.\sin(\omega t - \varphi) = A.\sin(\omega t - kx)$$

c : célérité

Propagation dans la direction x:(t-x/c)Propagation dans la direction -x:(t+x/c)

A: amplitude (même grandeur que la grandeur g)

 ω : pulsation propre (rad.s⁻¹)

 $\omega = 2\pi f$

f: fréquence (Hz)

 $ightharpoonup \omega$ ou f déterminent la nature de l'onde et ses modes d'interaction avec l'environnement...

Période temporelle

$$T = \frac{1}{f} = \frac{2\pi}{\omega}$$

$$g(t,x) = g(t+T,x)$$

 $\textbf{P\'eriode spatiale}: \textbf{longueur d'onde} \ \lambda$

$$\lambda = c.T$$

$$g(t,x) = g(t,x+\lambda)$$

Distance parcourue par l'onde en T secondes

$$\varphi$$
: Phase

$$\varphi = \omega x/c = \frac{2\pi f x}{c} = \frac{2\pi x}{\lambda}$$

Surfaces d'onde : surfaces connexes contenant l'ensemble des points de même phase

Onde plane : les surfaces d'onde sont des plans parallèles

Onde sphérique : source ponctuelle propagée dans un milieu isotrope

Vecteur d'onde \vec{k}

Perpendiculaire aux surfaces d'ondes

De norme
$$k=\omega/_{\mathcal{C}}={^{\varphi}/_{\chi}}$$

$$\vec{k} = \frac{\omega}{c} \cdot \vec{u}$$

Onde sphérique pure

Une source ponctuelle émettant de façon isotrope produit une onde sphérique. Localement et loin de la source, la surface d'onde peut être approchée par un plan P : on parle alors d'approximation en onde plane.

A une distance d de la source, la puissance émise se réparti uniformément sur la surface d'une sphère de rayon d :

$$I(Wm^{-2}) = \frac{P}{4\pi} \cdot \frac{1}{d^2}$$

$$P_{reçue} = \frac{P_{tot} \times S_{irradi\acute{e}e}}{4\pi r^2} = I \times S_{irradi\acute{e}e}$$

La puissance surfacique reçue à la distance d varie donc comme $^1\!/_{d^2}$

Doubler la distance d diminue d'un facteur 4 : Radiopotection

Ondes électromagnétiques

Rappels mathématiques

Produit scalaire

$$\vec{u} \cdot \vec{v} = ||\vec{u}|| \cdot ||\vec{v}|| \cdot \cos(\vec{u}, \vec{v})$$

Propriété : Si $\|\vec{v}\| = 1$, alors $\vec{u} \cdot \vec{v}$ est la longueur de la projection de \vec{u} sur la direction de \vec{v}

Produit vectoriel

$$\vec{u}.\vec{v} = ||\vec{u}||.||\vec{v}||.\sin(\vec{u},\vec{v})$$

Dérivée partielle

On appelle dérivée partielle d'une grandeur suivant une variable x la dérivée de cette grandeur par rapport à x calculée en supposant constantes les autres variables dont dépend la grandeur.

Exemple:

$$E(t, x) = E_0 \sin \left[\omega \left(t - \frac{x}{c}\right)\right] \quad \Rightarrow \quad \left\{ \begin{array}{l} \frac{\partial E(t, x)}{\partial t} = \omega. E_0 \cos \left[\omega \left(t - \frac{x}{c}\right)\right] \\ \frac{\partial E(t, x)}{\partial x} = -\frac{\omega}{c}. E_0 \cos \left[\omega \left(t - \frac{x}{c}\right)\right] \end{array} \right.$$

Champs électro et magnétostatiques

Champs statiques = créés par des distributions de charges ou de courants permanents (= constants dans le temps)

Charge ponctuelle permanente

 \Rightarrow Création d'un champ électrique \vec{E}

$$\|\vec{E}(r)\| = \frac{1}{4\pi\varepsilon} \cdot \frac{q}{r^2}$$

Circuit de courant permanant

 \Rightarrow Création d'un champ magnétique \vec{B}

Lien électricité / magnétisme

Dans R (repère fixe), on voit un **champ magnétique** : déplacement de charges dans un champs magnétique ($\vec{v} = \vec{V}$) sans champ électrique

$$\Rightarrow \vec{F} = -e.\vec{V} \wedge \vec{B}$$

Dans R' (repère mobile), on voit un champ électrique : charges statiques ($\vec{v} = \vec{0}$), donc pas de force magnétique

$$\Rightarrow \vec{F} = -e.\vec{E'}$$
 où $\vec{E'} = \vec{V} \wedge \vec{B}$

Densités de charge et de courants

Soit n particules par unité de volume, de charge q et de vitesse v On définit :

• La densité de charge ρ

$$\rho = n. q \qquad (C. m^{-3})$$

• La densité de courant j

$$i = n. q. v \qquad (A. m^{-2})$$

Couplage électromagnétique

Si les densités de charges ρ et de courants j ne dépendent pas du temps, alors E et B sont permanents et indépendants l'un de l'autre.

Si les densités de charges ρ et de courants j varient au cours du temps, les champs électriques et magnétiques sont couplés : E variable \Leftrightarrow B variable

Les équations de Maxwell

Un cham électromagnétique est caractérisé par un couple de vecteurs $\vec{B}(B_x, B_y, B_z)$ et $\vec{E}(E_x, E_y, E_z)$ satisfaisants :

$$\frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z} = \frac{\rho}{\varepsilon}$$

Pas de « charge » magnétique

$$\frac{\partial B_x}{\partial x} + \frac{\partial B_y}{\partial y} + \frac{\partial B_z}{\partial z} = 0$$

Couplage électro-magnétique

$$\left(\frac{\partial E_{z}}{\partial y} - \frac{\partial E_{y}}{\partial z} \right) = -\frac{\partial}{\partial t} \begin{pmatrix} B_{x} \\ B_{y} \\ B_{z} \end{pmatrix} \qquad \text{et} \qquad \left(\frac{\partial B_{z}}{\partial y} - \frac{\partial B_{y}}{\partial z} \right) = -\epsilon \mu \frac{\partial}{\partial t} \begin{pmatrix} E_{x} \\ E_{y} \\ E_{z} \end{pmatrix} - \mu \begin{pmatrix} j_{x} \\ j_{y} \\ j_{z} \end{pmatrix}$$

Couplage

Variation de \vec{E} dans le temps ou courant $\Rightarrow~\vec{B}$

Application des équations de Maxwell

$$\vec{E}(t,x) = (0,0, E_0 \sin \left[\omega \left(t - \frac{x}{c}\right)\right])$$

1ère relation de couplage de Maxwell

$$\begin{pmatrix}
\frac{\partial E_{z}}{\partial y} - \frac{\partial E_{y}}{\partial z} \\
\frac{\partial E_{x}}{\partial z} - \frac{\partial E_{z}}{\partial x} \\
\frac{\partial E_{y}}{\partial x} - \frac{\partial E_{z}}{\partial y}
\end{pmatrix} = -\frac{\partial}{\partial t} \begin{pmatrix} B_{x} \\ B_{y} \\ B_{z} \end{pmatrix} \Rightarrow \begin{pmatrix} 0 \\ -\frac{\partial E_{z}}{\partial x} \\ 0 \end{pmatrix} = -\frac{\partial}{\partial t} \begin{pmatrix} B_{x} \\ B_{y} \\ B_{z} \end{pmatrix} \Rightarrow B_{x} = B_{z} = 0 \text{ et } \frac{\partial E_{z}}{\partial x} = \frac{\partial B_{y}}{\partial t}$$

$$\frac{\partial B_y}{\partial t} = \frac{\partial E_z}{\partial x} = -\frac{1}{c}\omega \cdot E_0 \cos\left[\omega\left(t - \frac{x}{c}\right)\right]$$

$$\Rightarrow B_y = -\frac{1}{c}E_0 \sin\left[\omega\left(t - \frac{x}{c}\right)\right]$$

$$\vec{B}(t, x) = (0, -B_0 \sin\left[\omega\left(t - \frac{x}{c}\right)\right], 0)$$

$$B_0 = \frac{1}{c}E_0$$

Généralisation

$$\vec{B} = \frac{1}{c_n} \cdot \vec{u} \wedge \vec{E}$$

$$\vec{B} \perp \vec{E} \perp \vec{c}_n$$

 \vec{E} et \vec{B} sont en phase (ils sont indissociables l'un de l'autre), même fréquence

Déplacement de $\vec{B}(t)$ et $\vec{E}(t)$ à la même célérité c_n et dans la même direction

$$c_n={}^1\!/_{\sqrt{\varepsilon\,.\,\mu}}$$

arepsilon : permitivité du milieu

 $\varepsilon=\varepsilon_R.\,\varepsilon_0 \qquad \qquad \text{avec } \varepsilon_0: \text{permitivit\'e du vide}$ $\mu=\mu_R.\,\mu_0 \qquad \qquad \text{avec } \mu_0: \text{perm\'eabilit\'e du vide}$

 μ : perméabilité du milieu

Célérité d'une onde elm dans le vide = vitesse de la lumière

$$c = \frac{1}{\sqrt{\varepsilon_0 \cdot \mu_0}} = 2,998.10^8 \,\mathrm{m.s^{-1}}$$

Indice de réfraction $n = {}^{C}/{}_{C_n} = \sqrt{\varepsilon_R \cdot \mu_R}$

Notion de polarisation

Si la direction de \vec{E} (donc de \vec{B}) est :

- Fixe: polarisation rectiligne
- Tourne à vitesse angulaire constante
 - o En décrivant un cercle : polarisation circulaire
 - En décrivant une ellipse : polarisation elliptique

Classification simplifiée des ondes électromagnétiques

Loi de propagation de la lumière

Réflexion et réfraction

Ces phénomènes peuvent être abordés de deux façons équivalentes. La première correspond à une approche «optique physique», la seconde à une approche «optique géométrique».

- ⇒ Conséquence des équations de Maxwell

Chemin optique L entre deux points

A et B d'un milieu d'indice de réfraction n

$$L(A \to B) = n.dist(A, B) = n.\vec{u}.\overrightarrow{AB}$$
 où $\vec{u} = \frac{\overrightarrow{AB}}{\|\overrightarrow{AB}\|}$

Principe de Fermat : L minimal (dL = 0)

« La lumière suit une trajectoire dans des indices minimum pour un minimum de chemin parcouru »

Variation de chemin optique

Supposons un petit déplacement \overrightarrow{dB} de B en B' et calculons la petite variation de chemin optique (on néglige la modification de \overrightarrow{u})

Si B subit un déplacement dB, L varie de : $dL = n \cdot \vec{u} \cdot \overrightarrow{dB}$ (= projection de \overrightarrow{dB} sur \vec{u})

Lois de Snell-Descartes

Ces lois de Descartes traduisent le principe de moindre action

Les rayons incidents et réfléchis sont dans le même plan

$$\Rightarrow i = r$$

Les rayons incidents et transmis sont dans le même plan

$$\Rightarrow n_1 \cdot \sin i = n_2 \cdot \sin t$$

Conséquence

Si $n_1 > n_2$: réflexion totale pour $i > sin^{-1} \binom{n_2}{n_1}$ i: angle critique

Définitions

- **Dioptre**: espace transparent d'indice de réfraction n' placé dans un milieu transparent d'indice $n \neq n'$ (= interface entre 2 milieux d'indice n différent)
- Système optique : milieu transparent contenant des miroirs ou des dioptres
 - Pas de miroirs = système dioptrique
 - Miroirs = système catadioptrique
- Système optique centré = admet un axe de révolution

Approximation de Gauss

Système optique centré dont les rayons lumineux s'écartent peu de l'axe Dans l'approximation de Gauss, le système optique est :

- ⇒ **Stigmate**: l'image d'un point A est un point A'
- ➡ Aplanétique : l'image d'un segment AB perpendiculaire à l'axe est un segment A'B' perpendiculaire à l'axe

Dioptre sphérique

On se place dans l'approximation de Gauss : $n \cdot \sin i = n' \cdot \sin t$ devient $n \cdot i = n' \cdot t$

Triangle APC : $\pi = i + \alpha + \pi - \omega \rightarrow i = \omega - \alpha$ Triangle A'PC : $\pi = t + \alpha' + \pi - \omega \rightarrow t = \omega - \alpha'$

$$n.i = n'.t \rightarrow n.(\omega - \alpha) = n'.(\omega - \alpha') \rightarrow (n'-n).\omega = n'.\alpha' - n.\alpha$$

$$\omega = \frac{SP}{SC}$$
 $\alpha = \frac{SP}{SA}$ $\alpha' = \frac{SP}{SA'}$

Formule de conjugaison du dioptre sphérique

$$\frac{n'-n}{SC} = \frac{n'}{SA'} - \frac{n}{SA}$$

Puissance (ou vergence) du dioptre

$$\overline{\pi} = \frac{n' - n}{SC} \qquad en \ dioptrie \ (Dp)$$

Foyer objet : $A' \rightarrow \infty$ d'où $\overline{SF} = -n/\pi$

Foyer image : $A \rightarrow \infty$ d'où $\overline{SF'} = n / \pi$

Lentille mince : association de 2 dioptres sphériques

Exemple: amétropies sphériques

L'œil est constitué de 4 dioptres :

- La cornée (double dioptre)
- **Le cristallin** (double dioptre) : capacité d'être variable (des muscles permettent de faire varier son diamètre)

Plus un objet à observer est près, plus la puissance du cristallin doit être importante

Lorsque l'œil n'est pas assez convergent : Hypermétropie

- ⇒ Soit SC trop grand (rayon de courbure trop grand = puissance trop faible)
- ⇒ Soit SA' trop grand (distance cornée/rétine trop petite)

Lorsque l'œil est trop convergent : Myopie

- ⇒ Soit SC trop petit (rayon de courbure trop petit = puissance trop forte)
- ⇒ Soit SA' trop petit (distance cornée/rétine trop grande)

Correction de la myopie et de l'hypermétropie

Réflexion normale

En écrivant la continuité du champ électromagnétique au niveau de l'interface, on peut calculer les fractions de l'intensité incidente qui sont réfléchies et transmises.

Coefficient de réflexion

$$r = \frac{I_r}{I_i} = \left(\frac{n_2 - n_1}{n_2 + n_1}\right)^2$$

Coefficient de transmission

$$t = \frac{I_t}{I_i} = 1 - r$$

Remarque : réflexion totale si $n_2
ightarrow \infty$

Réflexion normale totale (r = 100%)

$$\vec{E}_{i}(t,x) = \vec{E}_{0} \sin \left[\omega \left(t - \frac{x}{c}\right)\right] \qquad \qquad \vec{E}_{r}(t,x) = -\vec{E}_{0} \sin \left[\omega \left(t + \frac{x}{c}\right)\right]$$

$$\vec{E}_r(t,x) = -\vec{E}_0 \sin \left[\omega \left(t + \frac{x}{c}\right)\right]$$

Interférences: $\vec{E}(t,x) = \vec{E}_{i}(t,x) + \vec{E}_{w}(t,x)$

$$\vec{E}(x,t) = -2\vec{E_0}.\sin(kx).\cos(\omega t)$$

Onde stationnaire

$$\vec{E}(t,x) = \left[-2\sin(\frac{\omega \cdot x}{c})\vec{E}_0 \right] \cos(\omega \cdot t) = \overrightarrow{A(x)} \cdot \cos(\omega \cdot t)$$

Pas de déphasage : tous les points sont en phase à un instant t

Amplitude (variable avec x):

$$\vec{A}(x) = -2\sin\left(\frac{\omega \cdot x}{c}\right)\vec{E}_0$$

Nœud (point rouge) : $\vec{A}(x) = 0$ $x = N \cdot \frac{\lambda}{2}$ soit $x \in \left\{0, \frac{\lambda}{2}, \lambda, \frac{3\lambda}{2}\right\}$

Ventre : $\vec{A}(x) = \vec{A}_{max}$

L ou λ ne peuvent prendre que certaines valeurs discrètes On dit que ces grandeurs sont quantifiées

Diffraction

• Principe de Huygens-Fresnel

Chaque point de l'orifice atteint par la surface d'onde S se comporte comme une source ponctuelle émettant une onde sphérique en phase avec celles émises par les autres points.

\vec{k}

Après l'écran:

- ⇒ Une ou plusieurs ondes sphériques se propagent.
- □ Un déphasage apparaît entre les rayons émis dans une direction

Modélisation

Pour 2 rayons distants de x, diffractés sous θ , la différence de chemin optique est :

$$dL = x.\sin\theta$$

Ondes cohérentes

Définition

Deux ondes sont dits cohérentes si elles ont :

- Une même fréquence (donc une même longueur d'onde)
- Un déphasage constant dans le temps (indépendant du temps)

Particularité

- Elles peuvent s'additionner algébriquement
- Deux ondes cohérentes dans un même milieu : interférences

Exemples:

- Ondes stationnaires après réflexion (laser)
- Ondes sphériques après diffraction par des fentes
- OPS séparées au moyen de miroirs, de prismes...

Interférences

Définition: Addition algébrique d'ondes progressives pures cohérentes

Attention : il ne s'agit pas simplement de l'addition des intensités des ondes (qui a lieu même avec des ondes incohérentes)

- ⇒ Zones d'interférences constructives : intensité max.
- ⇒ Zones d'interférences destructives : intensité min.

Exemples:

- Onde stationnaire après réflexion normale
- Ondes sphériques après diffraction
- OPS fractionnées avec décalage de phase

Interférences après diffraction

Calcul du déphasage entre deux rayons distants de x, diffractés sous un angle θ :

$$d\varphi = \frac{\omega}{c}dL = \frac{2\pi}{\lambda}dL = \frac{2\pi.\sin\theta}{\lambda}.x = \phi.x$$

Dans la direction θ , l'onde observée après diffraction est la somme de toutes les ondes déphasées ayant passé l'obstacle entre – b/2 et +b/2 et ayant été diffractées dans la direction θ :

$$\vec{E} = \int_{-b/2}^{+b/2} \frac{\vec{A}_0}{b} \cdot \sin(\omega \cdot t - \phi \cdot x) \cdot dx$$

$$\vec{E} = \vec{A} \cdot \sin(\omega \cdot t)$$

$$\vec{A} = A_0. \, sinc \, \left(\frac{\pi. \, b. \sin \theta}{\lambda} \right) = \vec{0}$$

$$\sin heta_{min} pprox heta_{min} = N. rac{\lambda}{b}$$
 N entier $\tan heta_{min} pprox heta_{min} = rac{d}{D}$

Orifice carré de coté b:

$$\sin\theta_{min} = N.\frac{\lambda}{b}$$

Orifice circulaire de diamètre d:

$$\sin \theta_{min} = 1,22 \, N. \frac{\lambda}{d}$$

La diffraction limite la résolution

$$\sin\theta_{min} = 1,22 \, N. \frac{\lambda}{d}$$

 $\lambda/_d$: résolution de l'appareil d'imagerie

Caractérise la largeur de la tâche (plus elle est petite, plus on discerne de petit objets)

 \Rightarrow Intérêt : avoir un $heta_{min}$ le plus petit possible

Pupille

d= 0,05 mm, $\lambda=$ 600 nm donc $\theta_{min}=$ 0,1 mrad soit une résolution de 0,1 mm à 1 m

Microscope

d=1~cm, $\lambda=400~nm$ donc $\theta_{min}=$ 0,05 mrad soit une résolution de 0,5 μm à 1 cm Limitation de résolution dans le visible (400-800 nm)

- ⇒ Intérêt des télescopes de grand diamètre
- ⇒ Intérêt des faibles λ (rayons X ou g , autre ...)

Intérêts liés à la diffraction

- ⇒ Holographie
- ⇒ Détermination des structures moléculaires (ex : structure de l'ADN)

Diffusion de la lumière

Ré-émission d'une lumière incidente absorbée par les électrons de N atomes de diamètre R

Loi générale : diffusion aléatoire

$$\frac{dI}{I} = -k.x \quad soit \quad I(x) = I_0.e^{-k.x}$$

Loi de Beer $k = \sigma$. *C*

k: coef. d'atténuation linéique (m⁻¹) σ : section efficace molaire (m².mol⁻¹)

C: concentration (mol.m⁻³)

Modes de diffusion de la lumière

⇒ Diffusion Thomson

Non sélective : toutes les longueurs d'ondes sont diffusées de la même façon

Isotrope: diffusion identique dans tout l'espace

Electrons peu liés au noyau : $k \propto N$

⇒ Diffusions Rayleigh et Mie

Sélective : diffuse +/- selon les longueurs d'ondes

Anisotrope : intensité du rayon diffusé plus intense dans certaines directions

Electrons fortement liés au noyau

Rayleigh si $R_{mol\'ecule} < \lambda/10$: $k \propto N/\lambda^4$

 \Rightarrow Diffusion importante pour λ faible (ciel bleu)

Mie si $R_{mol\'ecule} pprox \lambda$: $k \propto N/_{\lambda^n}$ (1< n < 4)

Absorption de la lumière

Transfert de l'énergie lumineuse ${\it E}$ à des électrons sous forme de transitions.