

RF TEST REPORT

Number 14-023082-01-01

Be based on

FCC CFR 47 Part 15C, section 15.247 ANSI C63.4-2009

For

Applicant	POINTMOBILE CO.,LTD	
Manufacturer	POINTMOBILE CO.,LTD	
Model or Type	PM60	
	Mobile Computer	
Final HW Version	Rev02	
Final SW Version	62.00 C2	
Test result	Pass	

Issue To:	Date of Application	2014-05-20
POINTMOBILE CO.,Ltd Gasan-dong, B-9F Kabul Great Valley 32, Digital-ro9-gil,	Date of Report	2014-10-22
Geumcheon-gu, Seoul, Korea	Date of Issue	2014-10-22

This Test Report consists of 45 pages

The above test certificate is the accredited test results by Korea Laboratory Accreditation Scheme, which signed the ILAC-MRA.

Korea Testing Laboratory

723 Haean-ro, Sangnok-Gu, Ansan-Si, Gyeounggi-Do, 426-910 KOREA
• Phone :(+)82-31-500-0133 • Fax: (+)82-31-500-0149 • http://www.ktl.re.kr

Report No.: 14-023082-01-01 Page 2 of 45 Pages

Test Report revision History

Revision	Date	Comments
00	2014-10-22	Initial Version

Signature

This Test Report is issued under the authority as below

Date: 22 October, 2014

Test Engineer : Jong-gon Ban

Reviewed/Approved by : Tae-Seung Song

T. S. Song

This document may not be reproduced without written consent from Korea Testing Laboratory. Extract is not permitted. After written consent from Korea Testing Laboratory, the document must be reproduced in its entirety.

Tel.: +82-31-5000-133
Fax.: +82-31-5000-149

TABLE OF CONTENTS

1. AE	DMINISTRATIVE INFORMATION	5
1.1. A	Applicant (Client)	5
1.2. N	Manufacturer Data (only if different from Appicant)	5
1.3. T	Testing Laboratory Data	5
2. EU	JT INFORMATION	6
2.1. 0	General Description of the EUT	6
	Maximum Output Power	
	JMMARY OF TEST RESULTS	
3. SL	JMIMARY OF TEST RESULTS	/
4. ME	EASUREMENT & RESULTS	8
4.1. 2	20 dB Bandwidth & 99% Bandwidth	8
4.1	.1. Test Setup Layout	8
4.1	.2. Test Condition & Limit	8
4.1	.3. Test result	8
4.2. N	Maximum Peak Power	12
4.2	.1. Test Setup Layout	12
4.2	.2. Test Condition & Limit	12
4.2	.3. Test result	12
4.3. 1	00 KHz Bandwidth of Frequency Band Edges	16
4.3	.1. Test Setup Layout	16
4.3	.2. Test Condition & Limit	16
4.3	.3. Test result	16
4.4. H	lopping Channel Separation	21
4.4	.1. Test Setup Layout	21
4.4	.2. Test Condition & Limit	21
4.4	.3. Test result	21
45 N	lumber of Hopping Channels	23

Fax.: +82-31-5000-149

	4.5.1.	Test Setup Layout	23
	4.5.2.	Test Condition & Limit	23
	4.5.3.	Test result	23
4.6.	Dwe	ell Time	26
	4.6.1.	Test Setup Layout	26
	4.6.2.	Test Condition & Limit	26
	4.6.3.	Test result	26
4.7.	Con	ducted Spurious Emission	30
	4.7.1.	Test Setup Layout	30
	4.7.2.	Test Condition & Limit	30
	4.7.3.	Test result	30
4.8.	Rad	iated Spurious Emissions	34
	4.8.1.	Test Procedure	34
	4.8.2.	Limits	35
	4.8.3.	Sample Calculation	36
	4.8.4.	Measurement Configuration	36
	4.8.5.	Restricted Band-edge Test Results (Bluetooth)	37
	4.8.6.	Spurious Emission Test Results (Bluetooth)	39
4.9.	AC	Conducted Emissions	42
	4.9.1.	Test Procedure	42
	4.9.2.	Limits	42
	4.9.3.	Sample calculation	43
	4.9.4.	Photograph for the test configuration	43
	4.9.5.	Test Results	44
5	TFSI	EQUIPMENTS	45

1. Administrative Information

1.1. Applicant (Client)

Company Name	POINTMOBILE CO., LTD	
Address	Gasan-dong,B-9F Kabul Great Valley 32, Digital-ro9-gil, Geumcheon-gu, Seoul, Korea 153-709	
Contact Person		
Name	Jinny Cho	
E-mail	jinny.cho@pointmobil.co.kr	
Phone	010-5539-7765	

1.2. Manufacturer Data (only if different from Appicant)

Company Name	
Address	
Contact Person	
Name	
E-mail	
Phone	

1.3. Testing Laboratory Data

The following list shows all places and laboratories involved for test result generation.

Company Name	Korea Testing Laboratory	
Address	723 Haean-ro, Sangnok-Gu, Ansan-Si, Gyeounggi-Do, 426-901 KOREA	
Contact Person		
Name	Jong-gon Ban	
E-mail	banjg@ktl.re.kr	
Phone	+82-31-500-0133	
Fax	+82-31-500-0149	

http://www.ktl.re.kr FP-236-09

2.EUT Information

2.1. General Description of the EUT

The following section lists all specifications of EUT (Equipment Under Test) involved in test. Additionally, KTL has received sufficient documentation from the client and/or manufacturer to perform the tests

Genera	General Information		
FCC ID	& Model Number	FCC ID: V2X-PM60-P, Model Number: PM60	
	PM60GP74356E0T	Wifi/BT, 2D Scanner, Camera, QWERTY, WEH6.5 : Test sample selected	
SKUs	PM60GP52356E0T	Wifi/BT, 1D Scanner, Camera, Numeric, WEH6.5	
SNUS	PM60GP54356E0T	Wifi/BT, 1D Scanner, Camera, QWERTY, WEH6.5	
	PM60GP72356E0T	Wifi/BT, 2D Scanner, Camera, Numeric, WEH6.5	
Antenna Type		Internal Antenna	
Type of Radio transmission		FHSS (GFSK / π/4 DQPSK and 8DPSK)	
Frequency Range		2 402 ~ 2 480 MHz	
Channel Numbers		79	
Antenna Gain		2.2 dBi	
Battery options		Li-ion, 3.7 V (4 000 mAh)	
Date(s) tested		2014.07.07 ~ 2014.07.28	

2.2. Maximum Output Power

Modulation	Conducted Output Power (dBm)	
GFSK	3.72	
π/4 DQPSK	3.60	
8DPSK	3.67	

Note: According to the measured results to maximum output power, the EUT was tested with GFSK and 8DPSK modulation.

Tel.: +82-31-5000-133
Fax.: +82-31-5000-149

3. SUMMARY OF TEST RESULTS

The following table represents the list of measurements required under the FCC CFR47 Part 15.247..

FCC Rules	Test Items	Results	Remarks
15.247(a)(1)	20dB Bandwidth	Pass	-
15.247(b)(1)	Maximum Peak Power	Pass	-
15.247(d)	100 KHz Bandwidth of Frequency Band Edges Pass		-
15.247(a)(1)	Hopping channel separation Pass		-
15.247(b)(iii)	Number of hopping channels Pa		-
15.247(a)(1)(iii)	Dwell time	Pass	-
15.205, 15.209, 15.247(d)	Radiated Spurious Emissions Page		-
15.207	AC Line Conducted Emission Pass		-

Tel.: +82-31-5000-133
Fax.: +82-31-5000-149

4. Measurement & Results

4.1. 20 dB Bandwidth & 99% Bandwidth

4.1.1. Test Setup Layout

4.1.2. Test Condition & Limit

- Set RBW & VBW of Spectrum analyzer to 10 kHz
- The 20dB bandwidth is defined as the frequency range where the power is higher than the peak power minus 20dB. Frequencies that are separated by 25 kHz or two-thirds of the 20 dB Bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

4.1.3. Test result

* Operation Mode: GFSK

Channels	Frequency (MHz)	20 dB Bandwidth Result (MHz)	99 % Bandwidth Result (MHz)	Verdict
Low	2 402	0.88	0.83	Pass
Middle	2 441	0.92	0.83	Pass
High	2 480	0.88	0.83	Pass

* Operation Mode: 8DPSK

Channels	Frequency (MHz)	20 dB Bandwidth Result (MHz)	99 % Bandwidth Result (MHz)	Verdict
Low	2 402	1.26	1.20	Pass
Middle	2 441	1.26	1.20	Pass
High	2 480	1.27	1.20	Pass

Tel.: +82-31-5000-133
Fax.: +82-31-5000-149

- Low Channel (GFSK) -

- Mid Channel (GFSK) -

nttp://www.ktl.re. FP-236-09

- High Channel (GFSK) -

- Low Channel (8DPSK) -

Fax.: +82-31-5000-149

- Mid Channel (8DPSK) -

- High Channel (8DPSK) -

4.2. Maximum Peak Power

4.2.1. Test Setup Layout

4.2.2. Test Condition & Limit

- Set RBW & VBW of Spectrum analyzer to 1 MHz
- The Maximum Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt.

4.2.3. Test result

* Operation Mode: GFSK

Channels	Frequency (MHz)	Result (dBm)	Limit (dBm)	Verdict
0	2 402	3.57	30	Pass
39	2 441	3.45	30	Pass
78	2 480	3.72	30	Pass

* Operation Mode: 8DPSK

Channels	Frequency (MHz)	Result (dBm)	Limit (dBm)	Verdict
0	2 402	3.19	30	Pass
39	2 441	3.26	30	Pass
78	2 480	3.51	30	Pass

Tel.: +82-31-5000-133
Fax.: +82-31-5000-149

- Low Channel (GFSK) -

- Mid Channel (GFSK) -

- High Channel (GFSK) -

- Low Channel (8DPSK) -

Fax.: +82-31-5000-149 FP-236-09

- Mid Channel (8DPSK) -

- High Channel (8DPSK) -

Fax.: +82-31-5000-149

Tel.: +82-31-5000-133

4.3.100 KHz Bandwidth of Frequency Band Edges

4.3.1. Test Setup Layout

4.3.2. Test Condition & Limit

- Set RBW & VBW of Spectrum analyzer to 100 kHz
- The radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.
- The maximum frequency range measuring with the spectrum from 30 MHz to 25 GHz is investigated with the transmitter

4.3.3. Test result

Operation Mode: Hopping Off

Modulation	Operation Mode		Result (dBc)	Limit (dBc)	Verdict
GFSK	Low	2 402	40 >	20	Pass
	High	2 480	40 >	20	Pass
0DDCK	Low	2 402	40 >	20	Pass
8DPSK	High	2 480	40 >	20	Pass

Operation Mode: Hopping On

Modulation	Operation Mode	Result (dBc)	Limit (dBc)	Verdict
CESK	Hopping enable	40 >	20	Pass
GFSK	Hopping enable	40 >	20	Pass
8DPSK	Hopping enable	40 >	20	Pass
	Hopping enable	40 >	20	Pass

- Band edge lower side (GFSK) Hopping Off-

- Band edge higher side (GFSK) Hopping Off -

пир://www.ки FP-236-09

- Band edge lower side (8DPSK) Hopping Off-

- Band edge higher side (8DPSK) Hopping Off -

Fax.: +82-31-5000-149

Tel.: +82-31-5000-133

- Band edge lower side (GFSK) Hopping On-

- Band edge higher side (GFSK) Hopping On-

http://www.ktl.re.

Fax.: +82-31-5000-149

- Band edge lower side (8DPSK) Hopping On-

- Band edge higher side (8DPSK) Hopping On -

4.4. Hopping Channel Separation

4.4.1. Test Setup Layout

4.4.2. Test Condition & Limit

- Set the center frequency of spectrum analyzer = middle of hopping frequency
- Set the spectrum analyzer as RBW, VBW = 100 kHz, Span = 5 MHz
- Frequency hopping system shall have hopping channel carrier frequencies separated by minimum of 25 kHz or the two-third of 20dB bandwidth of the hopping channel, whichever is greater.

4.4.3. Test result

* Operation Mode: GFSK

Channels	Frequency (MHz)	Result (MHz)	Limit (MHz)	Verdict
Hopping	2 441	1.0	0.612	Pass

^{*} Remark: 20dB bandwidth is 0.918 MHz

* Operation Mode: 8DPSK

Channels	Frequency (MHz)	Result (MHz)	Limit (MHz)	Verdict
Hopping	2 441	1.0	0.842	Pass

^{*}Remark: 20dB bandwidth is 1.263 MHz

FP-236-09

- Channel Separation (GFSK) -

-Channel Separation (8DPSK)

4.5. Number of Hopping Channels

4.5.1. Test Setup Layout

4.5.2. Test Condition & Limit

- Set the spectrum analyzer as start frequency = 2,400 MHz, stop frequency = 2,441.5 MHz and start frequency = 2,441.5 MHz, stop frequency = 2,483.5 MHz
- Set the spectrum analyzer as RBW, VBW = 300 kHz
- Frequency hopping system operating in the $2,400 \sim 2,483.5$ MHz bands shall use at least 15 hopping frequencies.

4.5.3. Test result

* Operation Mode: GFSK

Channels	Result (Number fo Hopping channels)	Limit (channel)	Verdict
Hopping	79	>=15	Pass

* Operation Mode: 8DPSK

Channels	Channels Result (Number fo Hopping channels)		Verdict
Hopping	79	>=15	Pass

Tel.: +82-31-5000-133
Fax.: +82-31-5000-149

- Number of hopping channel (GFSK) -

- Number of hopping channel (GFSK) -

- Number of hopping channel (8DPSK) -

- Number of hopping channel (8DPSK) -

4.6. Dwell Time

4.6.1. Test Setup Layout

4.6.2. Test Condition & Limit

- Set the spectrum analyzer to zero span mode and RBW, VBW = 3 MHz.
- Frequency hopping systems in the 2 400-2 483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Since the Bluetooth technology uses 79 channels this period is calculated to be 31.6 seconds.

The dwell time is calculated by:

Dwell time = time domain slot length x (hop rate / number of hopping per channel) x 31.6 with:

4.6.3. Test result

* Operation Mode: GFSK

DH1: 0.394 * (1 600/2)/79 * 31.6 = 126.1 (ms) DH3: 1.649 * (1 600/4)/79 * 31.6 = 263.8 (ms)

DH5: 2.916 * (1 600/6)/79 * 31.6 = 311.0 (ms)

Channels	Type slot length(ms)	Dwell time (ms)	Limits (msec)	Packet type	Verdict
Mid	0.394	126.1	≤ 400	DH1	Pass
Mid	1.649	263.8	≤ 400	DH3	Pass
Mid	2.916	311.0	≤ 400	DH5	Pass

^{*} Operation Mode: 8DPSK

3-DH1: 0.414* (1.600/2)/79*31.6 = 132.5 (ms) 3-DH3: 1.654* (1.600/4)/79*31.6 = 264.6 (ms)

3-DH5 : 2.914 * (1 600/6)/79 * 31.6 = 310.8 (ms)

Channels	Type slot length(ms)	Dwell time (ms)	Limits (msec)	Packet type	Verdict
Mid	0.414	132.5	≤ 400	3-DH1	Pass
Mid	1.654	264.6	≤ 400	3-DH3	Pass
Mid	2.914	310.8	≤ 400	3-DH5	Pass

723, Haean-ro, Sangnok-gu, Ansan-si, Gyeonggi-do, KOREA (426-910)

Tel.: +82-31-5000-133

http://www.ktl.re.kr

Fax.: +82-31-5000-149

http://www.ktl.re.kr FP-236-09

Fax.: +82-31-5000-149

- DH1 packet type (GFSK) -

- DH3 packet type (GFSK) -

Fax.: +82-31-5000-149

- DH5 packet type (GFSK) -

- 3-DH1 packet type (8DPSK) -

- 3-DH3 packet type (8DPSK) -

- 3-DH5 packet type (8DPSK) -

4.7. Conducted Spurious Emission

4.7.1. Test Setup Layout

4.7.2. Test Condition & Limit

- Set the spectrum analyzer as RBW, VBW = 100 kHz
- The reference value for the measurement of the spurious RF conducted emissions is determined during the test "band edge compliance" (cf. chapter 4.5). This value is used to calculate the 20 dBc limit.
- In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

4.7.3. Test result

* Operation Mode: GFSK

Channels	Frequency (MHz)	Result (dBc)	Limit (dBc)	Verdict
Low	2 402	40 >	20	Pass
Mid	2 441	40 >	20	Pass
High	2 480	40 >	20	Pass

* Operation Mode: 8DPSK

Channels	Frequency (MHz)	Result (dBc)	Limit (dBc)	Verdict
Low	2 402	40 >	20	Pass
Mid	2 441	40 >	20	Pass
High	2 480	40 >	20	Pass

Tel.: +82-31-5000-133
Fax.: +82-31-5000-149

пцр://www.ки.r FP-236-09

- Low channel (GFSK) -

- Mid channel (GFSK) -

http://www.ktl.re.kr FP-236-09

- High channel (GFSK) -

- Low channel (8DPSK) -

FP-236-09

- Mid channel (8DPSK) -

- High channel (8DPSK) -

http://www.ktl.re.kr FP-236-09

Report No.: 14-023082-01-01 Page 34 of 45 Pages

4.8. Radiated Spurious Emissions

4.8.1. Test Procedure

4.8.1.1 Preliminary Testing for Reference

Preliminary testing was performed in a KTL absorber-lined room to determine the emission characteristics of the EUT. The EUT was placed on the wooden table which has dimensions of 0.8 meters in height, 1 meter in length and 1.5 meters in width. Receiving antenna (Biconi-Log antenna: 30 to 1 000 MHz or Horn Antenna: 1 to 40 GHz) was placed at the distance of 3 meter from the EUT.

An attempt was made to maximize the emission level with the various configurations of the EUT. Emission levels from the EUT with various configurations were examined on a spectrum analyzer connected with a RF amplifier and graphed.

The emission was within the illumination area of the 3 dB beam width of the antenna so that the maximum emission from the EUT is measured.

4.8.1.2 Final Radiated Emission Test at an Absorber-Lined Room

The final measurement of radiated field strength was carried out in a KTL Absorber-Lined Room that was listed up at FCC according to the "Radiated Emissions Testing" procedure specified by ANSI C63.4.

Based on the test results in preliminary test, measurement was made in same test set up and configuration which produced maximum emission level. Receiving antenna was installed at 3-meter distance from the EUT, and was connected to an EMI receiver.

Turntable was rotated through 360 degrees and receiving antenna height was varied from 1 to 4 meters above the ground plane to read maximum emission level. Receiving antenna polarization was changed vertical and horizontal. The worst value was recorded.

If necessary, the radiated emission measurements could be performed at a closer distance than specified distance to ensure higher accuracy and their results were extrapolated to the specified distance using an inverse linear distance extrapolation factor (20 dB/decade) as per Section 15.31(f).

The maximum emission level from the EUT occurred in such configuration as shown in the following photograph.

Tested in x, y, z axis and worst case results are reported

The maximum frequency range measuring with the spectrum from 30 MHz to 40 GHz is investigated with the transmitter

Tel.: +82-31-5000-133 Fax.: +82-31-5000-149

http://www.ktl.re.kr FP-236-09

4.8.2. Limits

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	MHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
10.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 – 1 240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1 300 – 1 427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1 435 – 1 626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1 645.5 – 1 646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1 660 – 1 710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1 718.8 – 1 722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2 200 – 2 300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2 310 – 2 390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2 483.5 – 2 500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2 690 – 2 900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3 260 – 3 267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3 332 – 3 339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3 345.8 – 3 358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3 600 – 4 400	(2)
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency Field Strength Measurement Distance (MHz) (microvolts/meter) (meters)

Frequency (MHz)	Field Strength (microvolts/meter)	Distance (Meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200**	3
above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

Tel.: +82-31-5000-133
Fax.: +82-31-5000-149

² Above 38.6

4.8.3. Sample Calculation

The emission level measured in decibels above one microvolt (dB μ) was following sample calculation.

For example;

Measured Value at 2 332.50 MHz	37.69 dB <i>⊭</i> V
Antenna Factor, Cable loss & Preamplifier	26.33 dB
= Radiated Emission	64.02 <i>⊭</i> V/m

4.8.4. Measurement Configuration

Tel.: +82-31-5000-133
Fax.: +82-31-5000-149

4.8.5. Restricted Band-edge Test Results (Bluetooth)

Test distance: 3m

Frequency (MHz)	Antenna Pol.	Bandwidth Detector	Reading level	Correction factor(dB)	Level Corrected (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Plane X/Y/Z
GFSK - Lowe	er side band	d-edge [2 310	MHz – 2 39	00 MHz], Oper	ating frequen	cy : 2402 MH	Hz		
2 332.4	Н	1 000, Peak	38.25	26.33	64.58	74.0	9.42	Peak	Χ
2 332.5	Н	1 000, Peak	24.01	26.62	50.63	54.0	3.37	Average	Х
GFSK - High	ner side bar	nd-edge [2 483	3.5 MHz – 2	2 500 MHz], O	perating frequ	iency : 2480	MHz		
2 496.6	Н	1 000, Peak	34.78	26.71	61.49	74.0	12.51	Peak	Х
2 496.6	Н	1 000, Peak	23.11	26.71	49.82	54.0	4.18	Average	Х

Level Corrected = Reading level + Correction factor (dB/m)

Correction factor = Antenna factor + Cable loss – Pre-amplifier (when using a pre-amplifier)

- Note 1. Measurement was done over the Restricted Bands. The EUT was rotated and the antenna was changed to a range of height of from 1 m to 4 m above the ground plane for maximum response.
 - 2. Pre-amplifier was used.
 - 3. Test results include the rotation of the EUT through three orthogonal axes to determine the maximum emission.
 - 4. If the peak measured values are lower than average limits, average measurements are not performed.
 - 5. RBW/VBW settings for Peak Detection: RBW =1 MHz, VBW= 1MHz
 - 6. RBW/VBW settings for Average Detection: RBW =1 MHz, VBW= 10Hz

- **Remark** 1. Noise floor of 30 ~ 1 000 MHz : <20 dBuV at 3m distance
 - 2. Noise floor of 1 000 ~ 5 000 MHz : <40 dBuV at 3m distance
 - 3. Noise floor of 5 000 ~ 25 000 MHz : <50 dBuV at 3m distance

http://www.ktl.re.kr FP-236-09

Test distance: 3m

Frequency (MHz)	Antenna Pol.	Bandwidth Detector	Reading level	Correction factor(dB)	Level Corrected (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Plane X/Y/Z
8DPSK - Lo	wer side ba	nd-edge [2 31	0 MHz – 2	390 MHz], Op	erating freque	ency : 2402 N	ИHz		
2 340.2	Н	1 000, Peak	35.12	26.62	60.65	74.0	13.35	Peak	Х
2 340.2	Н	1 000, Peak	23.04	26.62	49.09	54.0	4.91	Average	Х
8DPSK - Hig	her side ba	nd-edge [2 48	3.5 MHz – 2	2 500 MHz], C	perating freq	uency : 2480	MHz		
2 496.4	Н	1 000, Peak	35.07	26.71	61.33	74.0	12.67	Peak	Х
2 496.4	Н	1 000, Peak	23.22	26.71	49.76	54.0	4.24	Average	Х

Level Corrected = Reading level + Correction factor (dB/m)

Correction factor = Antenna factor + Cable loss – Pre-amplifier (when using a pre-amplifier)

- Note 1. Measurement was done over the Restricted Bands. The EUT was rotated and the antenna was changed to a range of height of from 1 m to 4 m above the ground plane for maximum response.
 - 2. Pre-amplifier was used.
 - 3. Test results include the rotation of the EUT through three orthogonal axes to determine the maximum emission.
 - 4. If the peak measured values are lower than average limits, average measurements are not performed.
 - 5. RBW/VBW settings for Peak Detection: RBW =1 MHz, VBW= 1MHz
 - 6. RBW/VBW settings for Average Detection: RBW =1 MHz, VBW= 10Hz

- **Remark** 1. Noise floor of 30 ~ 1 000 MHz : <20 dBuV at 3m distance
 - 2. Noise floor of 1 000 ~ 5 000 MHz : <40 dBuV at 3m distance
 - 3. Noise floor of 5 000 ~ 25 000 MHz : <50 dBuV at 3m distance

Fax.: +82-31-5000-149 http://www.ktl.re.kr FP-236-09

4.8.6. Spurious Emission Test Results (Bluetooth)

4.8.6.1 Spurious Radiated Emission (Worst case configuration, 30 MHz ~ 1 GHz)

Test mode: GFSK, 8DPSK

Frequency (MHz)	Antenna Pol.	Bandwidth	Reading level [Quasi-Peak]	Correction factor(dB)	Level Corrected (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Plane X/Y/Z
-								
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-

Level Corrected = Reading level + Correction factor (dB/m) **Correction factor** = Antenna factor + Cable loss - Pre-amplifier (when using a pre-amplifier)

Note 1. Measurement was done over the frequency range from 30 MHz to 1 GHz. The EUT was rotated and the antenna was changed to a range of height of from 1 m to 4 m above the ground plane for maximum response.

- 2. Testing is include the rotation of the EUT through three orthogonal axes to determine the maximum emission.
- 3. Any emission values 20dB lower than the limit are not recorded.
- 4. RBW/VBW settings for Quasi-Peak Detection: RBW/VBW=120 kHz

Remark 1. Noise floor of 30 ~ 1 000 MHz: <20 dBuV at 3m distance

- 2. Noise floor of 1 000 ~ 5 000 MHz : <40 dBuV at 3m distance
- 3. Noise floor of 5 000 \sim 25 000 MHz : <45 dBuV at 3m distance

723, Haean-ro, Sangnok-gu, Ansan-si, Gyeonggi-do, KOREA (426-910)

http://www.ktl.re.kr FP-236-09

4.8.6.2 Spurious Radiated Emission (1 GHz ~ 25 GHz)

RT mode : GFSK

B1 mode	: GFSK								
Frequency (MHz)	Antenna Pol.	Bandwidth Detector	Reading level	Correction factor(dB)	Level Corrected (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Plane X/Y/Z
Lowest chan	nel Ch. 0								
7 206	V	1 000, Peak	34.78	21.58	56.36	74.0	17.64	Peak	Χ
7 206	V	1 000, Peak	21.01	21.58	42.59	54.0	11.41	Average	Х
Middle chanr	nel Ch. 39								
4 882	Н	1 000, Peak	38.95	15.74	54.69	74.0	19.31	Peak	Χ
4 882	Н	1 000, Peak	32.18	15.74	47.92	54.0	6.08	Average	Х
7 323	V	1 000, Peak	34.99	20.62	55.61	74.0	18.39	Peak	Х
7 323	V	1 000, Peak	20.99	20.62	41.61	54.0	12.39	Average	Х
Highest char	nel Ch. 79								
-	-	-	-	-	-	-	-	-	-
-									

Level Corrected = Reading level + Correction factor (dB/m)

Correction factor = Antenna factor + Cable loss – Pre-amplifier (when using a pre-amplifier)

- **Note** 1. Measurement was done over the frequency range from 1GHz to 10th harmonic. The EUT was rotated and the antenna was changed to a range of height of from 1 m to 4 m above the ground plane for maximum response.
 - 2. Pre-amplifier was used in the range between $1 \sim 25$ GHz.
 - 3. Test results include the rotation of the EUT through three orthogonal axes to determine the maximum emission.
 - 4. If the peak measured values are lower than average limits, average measurements are not performed.
 - 5. Any emission values 20dB lower than the limit are not recorded.
 - 6. RBW/VBW settings for Peak Detection: RBW =1 MHz, VBW= 1MHz
 - 7. RBW/VBW settings for Average Detection: RBW =1 MHz, VBW= 10Hz

- 1. Noise floor of 30 ~ 1 000 MHz : <20 dBuV at 3m distance
- 2. Noise floor of 1 000 ~ 5 000 MHz : <40 dBuV at 3m distance
- 3. Noise floor of 5 000 ~ 25 000 MHz : <50 dBuV at 3m distance

BT mode : 8DPSK

Frequency (MHz)	Antenna Pol.	Bandwidth Detector	Reading level	Correction factor(dB)	Level Corrected (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Plane X/Y/Z
Lowest chan	nel Ch. 0								
4 804	Н	1 000, Peak	39.02	17.02	56.04	74.0	17.96	Peak	Х
4 804	Н	1 000, Peak	31.21	17.02	48.23	54.0	5.77	Average	Х
Lowest chan	nel Ch. 39								
4 882	Н	1 000, Peak	39.02	15.74	54.76	74.0	19.24	Peak	Х
4 882	Н	1 000, Peak	30.59	15.74	46.33	54.0	7.67	Average	Х
Lowest chan	nel Ch. 79	1							
-	-	-	-	-	-	-	-	-	-

Level Corrected = Reading level + Correction factor (dB/m)

Correction factor = Antenna factor + Cable loss - Pre-amplifier (when using a pre-amplifier)

- Note 1. Measurement was done over the frequency range from 1GHz to 10th harmonic. The EUT was rotated and the antenna was changed to a range of height of from 1 m to 4 m above the ground plane for maximum response.
 - 2. Pre-amplifier was used in the range between $1 \sim 25$ GHz.
 - 3. Test results include the rotation of the EUT through three orthogonal axes to determine the maximum emission.
 - 4. If the peak measured values are lower than average limits, average measurements are not performed.
 - 5. Any emission values 20dB lower than the limit are not recorded.
 - 6. RBW/VBW settings for Peak Detection: RBW =1 MHz, VBW= 1MHz
 - 7. RBW/VBW settings for Average Detection: RBW =1 MHz, VBW= 10Hz

- **Remark** 1. Noise floor of 30 ~ 1 000 MHz : <20 dBuV at 3m distance
 - 2. Noise floor of 1 000 \sim 5 000 MHz : <40 dBuV at 3m distance
 - 3. Noise floor of 5 000 \sim 25 000 MHz : <50 dBuV at 3m distance

Tel.: +82-31-5000-133 Fax.: +82-31-5000-149

4.9. AC Conducted Emissions

4.9.1.Test Procedure

Conducted emission measurements on the EUT were performed by "AC Power Line Conducted Emissions Testing" procedure as per ANSI C63.4. The EUT was set up on a wooden table 0.8 meters height, 1.0 by 1.5 meters in size, placed in the shielded enclosed with a side of wall of which constituted a vertical conducting surface of 2.2 m x 3.1 m in size to maintain 40 cm from the rear of EUT

LISN(Line Impedance Stabilization Network, ROHDE & SCHWARZ, ESH3-Z5, 50 ohm / 50 μ H) was installed and electrically boned to the conducting ground plane. The EUT was connected to the LISN using a typical power adapter.

One of two 50 ohm output terminals of the LISN was connected to the EMI Receiver (ROHDE & SCHWARZ, ESCI, 9 kHz to 3 GHz) and the other was terminated in 50 ohms. Measurements were again performed after interchanging such a connection oppositely.

The frequency range from 150 kHz to 30 MHz was examined and the remarkable frequencies were measured with Quasi-peak and Average values using the EMI receiver instrument (ROHDE & SCHWARZ, ESI, 9 kHz to 3 GHz; Detector Function; CISPR Quasi-Peak & Average). The 6 dB bandwidth of the Receiver was set to 9 kHz

The position of connecting cables of the EUT was changed to find the worst case configuration during measurements. The maximum emission level from the EUT occurred in such configuration as shown in the following photograph.

4.9.2.Limits

Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Financia de California de Cali	Conduc	ted Limits (dBuV)
Frequency (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

Decreases with the logarithm of the frequency.

Tel.: +82-31-5000-133 Fax.: +82-31-5000-149

4.9.3. Sample calculation

For example:

Measured Value at	0.1905 MHz	43.5 dB ^µ √ @ Q-Peak mode			
+ Correct factor *	9.8 dB				
= Conducted Emission	53.3 dB <i>₩</i>				

^{*} Correct factor is adding RF cable loss and Attenuation

4.9.4. Photograph for the test configuration

723, Haean-ro, Sangnok-gu, Ansan-si, Gyeonggi-do, KOREA (426-910)

4.9.5. Test Results

Final Result 1(Quasi-Peak)

Frequency (MHz)	QuasiPeak (dBuV)	Line	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.190500	53.3	N	9.8	10.7	64.0
0.258000	49.1	N	9.8	12.4	61.5
0.582000	37.5	L1	9.9	18.5	56.0
0.735000	28.9	L1	9.9	27.1	56.0
2.017500	27.9	L1	9.9	28.1	56.0
3.484500	24.3	L1	10.0	31.7	56.0

Final Result 2(Average)

Frequency (MHz)	Average (dBuV)	Line	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.195000	40.0	L1	9.8	13.8	53.8
0.321000	30.4	L1	9.8	19.3	49.7
0.523500	24.7	L1	9.9	21.3	46.0
1.162500	20.5	L1	9.9	25.5	46.0
1.297500	19.8	L1	9.9	26.2	46.0
13.771500	20.2	L1	10.9	29.8	50.0

Tel.: +82-31-5000-133
Fax.: +82-31-5000-149

5. TEST EQUIPMENTS

No.	Equipment	Manufacturer	Model	S/N	Calibration Due date
1	Spectrum Analyzer	Agilent	E4407B	US41443316	03-11-2015
2	Synthesized Sweeper	HP	83620A	3250A01653	03-03-2015
3	Digital RF Signal Generator	Agilent	E4438C	US41460859	02-18-2015
4	Signal Generator	R&S	SMIQ O3	DE22348	02-14-2015
5	PSA Series Spectrum Analyzer	Agilent	E4448A	US44300484	02-19-2015
6	DC Power Supply	Agilent	E4356A	MY41000296	02-11-2015
7	DC Power Supply	Agilent	E3645A	MY40000851	02-11-2015
8	AC Power Supply	Agilent	6811B	MY41000446	02-07-2015
9	Oscilloscope	Agilent	DSO6054A	MY44001104	01-22-2015
10	Directional Coupler	Agilent	87300C	MY44300126	03-04-2015
11	Directional Coupler	Agilent	773D	MY28390213	03-04-2015
12	VHF Attenuator	HP	355D	2522A45959	03-04-2015
13	Coaxial Attenuator	Weinschel	56-20	N8527	03-04-2015
14	Coaxial Attenuator	Agilent	8491B	50109	03-04-2015
15	Power Divider	HP	11636A	09084	03-07-2015
16	Power Spliter	HP	11667A	21063	03-04-2015
17	Temp/Humidity Chamber	ESPEC	SH-641	92007482	01-14-2015
18	Function/Arbitrary Waveform Generator	Agilent	33250A	MY40015758	04-24-2015
19	EMI Receiver	R&S	ESIB26	100280	03-12-2015
20	Pre-Amplifier	HP	83017A	MY39500982	02-19-2015
21	Pre-Amplifier	SONA INSTRUMENT	310	284609	01-08-2015
22	Biconi-Log Antenna	Schwarzbeck	VULB9168	9168-181	05-14-2015
24	Double Ridge Wave Guide	Schwarzbeck	BBHA 9120D	653	11-11-2014
25	Double Ridge Wave Guide	ETS-Lindgren	3116	2662	09-01-2015

Tel.: +82-31-5000-133
Fax.: +82-31-5000-149

http://www.ktl.re.kr FP-236-09