Probability and Statistics

Data Intelligence and Learning (<u>DIAL</u>) Lab

Prof. Jongwuk Lee

Probability Theory Basics

Why Study Probability Theory?

- > The world is full of uncertainty.
 - Is the weather sunny tomorrow?
 - Is there a person in this image?
 - Is a user likely to prefer this movie?

> We need to build a system that understands and interacts with uncertain real world.

- We often ask for the most likely explanation.
 - Probability theory is nothing, but common sense reduced to calculation (Pierre Laplace, 1812).

Probability Space

➤ A probability space is a random process (or an experiment) with three components

$$(\Omega, \mathcal{F}, P)$$

- > A sample space is the set of all possible outcomes.
- > A set of all possible events, containing zero or more outcomes
- ➤ The assignment of probabilities to the event; *P* is a function from events to probabilities.

Sample Space

 \succ The sample space Ω is the set of all possible outcomes of an experiment.

> Experiment: You rolled one die.

- \triangleright What is Ω ?
- $\triangleright \Omega = \{1, 2, 3, 4, 5, 6\}.$

Sample Space

 \succ The sample space Ω is the set of all possible outcomes of an experiment.

- > Experiment: You tossed two coins twice.
- \triangleright What is Ω ?
- $\triangleright \Omega = \{HH, HT, TH, TT\}$

> The different elements of a sample space must be mutually exclusive and collectively exhaustive.

Events

- > An event is a set of outcomes of an experiment to which a probability is assigned.
- > Experiment: You tossed two coins twice.
- > Sample space
 - $\Omega = \{HH, HT, TH, TT\}$
- > Event space
 - Ø, {*HH*}, {*TT*}, {*HT*}, {*TH*}
 - ◆ {HH,TT}, {HH,HT}, {HH,TH}, {TT,HT}, {TT,TH}, {HT,TH}
 - **♦** {*HH*,*TT*,*HT*},{*HH*,*TT*,*TH*},{*HH*,*HT*,*TH*},{*TT*,*HT*,*TH*}
 - **♦** {*HH*, *TT*, *HT*, *TH*}

Experiments and Events

- > Experiment: Tossing a coin twice.
- > Event: You get two heads.

> Experiment: You throw two dice.

- > Event: The sum of the rolls is six.
 - You got (1, 5), (2, 4), (3, 3), (4, 2) or (5, 1).
- > Event: You get two odd faces.
 - ◆ You got (1, 1), (1, 3), (1, 5), (3, 1), (3, 3), (3, 5), ...

Probability Measure Function

 \succ With each event, we associate a number that measures the probability, i.e., $P: \mathcal{F} \rightarrow [0, 1]$.

Summary: Sample Space and Events

- \triangleright Sample space Ω
 - The set of all possible outcomes of the experiment
 - If you toss a coin twice, $\Omega = \{HH, HT, TH, TT\}$.
 - The number of possible outcomes $|\Omega| = N$
- \succ Event space ${\mathcal F}$
 - The space of potential results of the experiment
 - \mathcal{F} is often the powerset of Ω , i.e., $|2^N|$.
- \succ Let (Ω, \mathcal{F}, P) be a probability space with sample space Ω , event space \mathcal{F} and probability measure function P.

Probability Axioms

- \succ The probability law assigns to an event E a non-negative number P(E) which encodes our belief/knowledge about the likelihood of the event E.
- ➤ Nonnegativity: $P(E_i) \ge 0$, for every event E_i .
- > Normalization: The probability of the sample space Ω is equal to 1, i.e., $P(\Omega) = 1$.
- Additivity: If E_1 and E_2 are two disjoint events, the probability of their union satisfies $P(E_1 \cup E_2) = P(E_1) + P(E_2)$.
 - It extends to the union of infinitely many disjoint events,

$$P(E_1 \cup E_2 \cup \cdots) = P(E_1) + P(E_2) + \cdots$$

Probability Axioms

> The probability of an event is a non-negative real number.

$$P(E_i) \in \mathbb{R}, P(E_i) \geq 0, \forall E_i \in \mathcal{F}$$

> Total probability over all outcomes must be 1.

$$P(\Omega)=1$$

Additivity of disjoint (or mutual exclusive) events:

$$P\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} P(E_i)$$

Simple Consequences of the Axioms

$$> P(A) + P(A^c) = 1$$

 $\triangleright A, B, C$ are disjoint: $P(A \cup B \cup C) = P(A) + P(B) + P(C)$

> For k disjoint events, $P(\{E_1, E_2, ..., E_k\}) = P(\{E_1\}) + P(\{E_2\}) + \cdots + P(\{E_k\})$

More Consequences of the Axioms

$$\triangleright$$
 If $A \subset B$, then $P(A) \leq P(B)$

$$> P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$> P(A \cup B) \le P(A) + P(B)$$

$$P(A \cup B \cup C) = P(A) + P(A^{C} \cap B) + P(A^{C} \cap B^{C} \cap C)$$

- Let every possible outcome have probability 1/16.
 - P(X = 1) =
- \triangleright Let $Z = \min(X, Y)$.
 - P(Z = 4) =
 - P(Z = 2) =

- Let every possible outcome have probability 1/16.
 - P(X = 1) = 4/16
- \triangleright Let $Z = \min(X, Y)$.
 - P(Z = 4) =
 - P(Z = 2) =

- Let every possible outcome have probability 1/16.
 - P(X = 1) = 4/16
- \triangleright Let $Z = \min(X, Y)$.
 - P(Z = 4) = 1/16
 - ◆ P(Z = 2) =

- Let every possible outcome have probability 1/16.
 - P(X = 1) = 4/16
- \triangleright Let $Z = \min(X, Y)$.
 - P(Z = 4) = 1/16
 - P(Z = 2) = 5/16

Discrete Uniform Law

- \triangleright Assume Ω consists of n equally likely elements.
- > Assume A consists of k elements.

$$P(A) = k \cdot \frac{1}{n} = \frac{k}{n}$$

Example: Continuous Case

- ➤ Uniform probability law: Probability = Area
- \triangleright (x, y) such that $0 \le x, y \le 1$

$$P(\{(x,y) \mid x + y \le 1/2\}) =$$

$$P(\{(0.5,0.3)\}) =$$

Example: Continuous Case

- ➤ Uniform probability law: Probability = Area
- \triangleright (x, y) such that $0 \le x, y \le 1$

$$P(\{(x,y) \mid x+y \le 1/2\})$$

$$= \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{8}$$

$$P(\{(0.5,0.3)\}) =$$

Example: Continuous Case

- > Uniform probability law: Probability = Area
- \succ (x, y) such that $0 \le x, y \le 1$

$$P(\{(x,y) \mid x+y \le 1/2\})$$

$$= \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{8}$$

$$P(\{(0.5,0.3)\}) = 0$$

Probability Calculation Steps

- > Specify the sample space.
- > Specify a probability law.
- > Identify an event of interest.
- > Calculate ...

Interpretation of Probability Theory

- > A probability of 1 means it is certain.
- > A probability of 0 means it is impossible.
- > It is the study of uncertainty.
 - Relative frequency: The faction of times an event occurs
 - If I were to toss the coin 10 times, roughly 5 times I would see a head.
 - Belief: A degree of belief about an event
 - The sun rises in the east. vs. The sun rises in the west.

The Role of Probability Theory

- > A framework for analyzing phenomena with uncertain outcomes
 - Rules or consistent reasoning
 - Used for predictions and decisions

Conditional Probability

Motivation: Partial Information

- > We have assumed we know nothing about the outcome of our experiment.
- > Sometimes, we have partial information that may affect the likelihood of a given event.
 - Experiment: you roll a die.
 - Partial information: you are told that the number is odd.
 - Experiment: we predict the weather tomorrow.
 - Partial information: we know that the weather today is rainy.

Incorporating Partial Information

 \succ Knowing about event B (e.g., "it is raining today") changes our beliefs about event A (e.g., "will it rain tomorrow?").

How to update our probability law to incorporate this new knowledge?

> Introduce a conditional probability.

What is Conditional Probability?

Original problem

- What is the probability of some event A?
 - What is the probability that we roll a number less than 4?
- This is given by our probability law.

> New problem

- Given event B, what is the probability of event A?
 - Given that the number rolled is an odd number, what is the probability that it is less than 4?
- We call this the conditional distribution of A given B.
- We write this as $P(A \mid B)$.
 - Read | as given or conditioned on the fact that.
- Our conditional probability is still describing "the probability of something", so we expect it to behave like a probability distribution.

Idea of Conditioning

 $P(A \mid B) = \text{"Probability of } A, \text{ given that } B \text{ occurred"}$

Usually, Ω is ignored.

$$P(A \mid \Omega) = \frac{P(A \cap \Omega)}{P(\Omega)}$$

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

defined only if P(B) > 0

Idea of Conditioning

- > Use new information to revise a model.
- > If **B** occurred,

$$P(A \mid B) = \frac{1}{5}$$

$$P(B \mid B) = \frac{5}{5}$$

Conditional Probability Axioms

- \triangleright Suppose that our new universe is **B** instead of Ω .
 - Nonnegativity: $P(A_i|B) \ge 0$ assuming P(B) > 0.
 - Normalization: We know $P(B \mid B) = 1$.
 - Additivity: $P(A_1 \cup A_2 \mid B) = P(A_1 \mid B) + P(A_2 \mid B)$ for two disjoint sets A_1 and A_2 .

Conditioning on **B**

Properties of Conditional Probability

- > If P(B) > 0,
 - If $A_1 \subseteq A_2$, then $P(A_1 \mid B) \leq P(A_2 \mid B)$.
 - If A_i for $i \in \{1, ..., n\}$ are all pairwise **disjoint**, then

$$P\left(\bigcup_{i=1}^{n} A_i \mid B\right) = \sum_{i=1}^{n} P(A_i \mid B)$$

Properties of Conditional Probability

- > If P(B) > 0,
 - $P(A_1 \cup A_2 \mid B) = P(A_1 \mid B) + P(A_2 \mid B) P(A_1 \cap A_2 \mid B)$
- **> Union bound:** $P(A_1 \cup A_2 \mid B)$ ≤ $P(A_1 \mid B) + P(A_2 \mid B)$

$$P\left(\bigcup_{i=1}^{n} A_i \mid B\right) \leq \sum_{i=1}^{n} P(A_i \mid B)$$

Example: Coin Tossing

➤ Consider the experiment of tossing a fair coin three times. What is the probability of getting alternating heads and tails conditioned on the event that the first toss gives a head?

> Notation

- ◆ A = {Tosses yield alternating tails and heads.}
- ◆ B = {The first toss is a head.}

\triangleright How to compute $P(A \mid B)$?

- Sample space: {HHH,HHT,HTH,HTT,THH,TTTH,TTT}.
- $A = \{HTH, THT\}, B = \{HHH, HHT, HTH, HTT\} \text{ and } A \cap B = \{HTH\}.$
- Our new sample space is B = {HHT,HTH,HTT,HHH}.
- Each of these are equally likely. Out of these 1 event satisfies alternating heads and tails. So, P(A|B) = 1/4

Example: Rolling a Die Twice

▶ Rolling a 4-side die twice

 \triangleright Let A be the event: max(X,Y)

$$> P(A = 1 \mid B) = 0 / 5$$

Example: Rolling a Die Twice

▶ Rolling a 4-side die twice

- \triangleright Let *B* be the event: min(*X*, *Y*) = 2
- \triangleright Let A be the event: max(X,Y)

$$P(A = 3 | B) = 2 / 5$$

- > Alice works for an umbrella company.
- ➤ If it is raining, the probability that she sells more than 10 umbrellas is 0.8.
- > If it's not raining, the probability that she sells more than 10 umbrellas is 0.25.
- > The probability that it rains tomorrow is 0.1.
- What is the probability that it doesn't rain tomorrow and she sells more than 10 umbrellas?

- \triangleright Let $S = \{ \text{# of umbrella sold } > 10 \}$ and $R = \{ \text{ it is rainy.} \}$.
- > If it is raining, the probability that she sells more than 10 umbrellas is $0.8. \Rightarrow P(S \mid R) = 0.8$
- > If it's not raining, the probability that she sells more than 10 umbrellas is $0.25. \Rightarrow P(S \mid R^C) = 0.25$
- \triangleright The probability that it rains tomorrow is 0.1. $\Rightarrow P(R) = 0.1$
- > What is the probability that it doesn't rain tomorrow and she sells more than 10 umbrellas? $\Rightarrow P(S \cap R^C) = ?$?

- > What is the probability that it doesn't rain tomorrow, and she sells more than 10 umbrellas? $\Rightarrow P(S \cap R^C) = ?$?
- We can rearrange our formula for conditional probability.

$$P(S \mid R^C) = \frac{P(S \cap R^C)}{P(R^C)}$$

$$P(S \cap R^C) = P(S \mid R^C)P(R^C)$$

> What is the probability that it doesn't rain tomorrow and she sells more than 10 umbrellas? $\Rightarrow P(S \cap R^C) = ?$?

$$P(S \cap R^C) = P(S \mid R^C)P(R^C)$$

> We compute $P(S \mid R^C)P(R^C) = 0.25 \times 0.9 = 0.225$.

- > We represent conditional probabilities using a tree structure.
- > The probability at a leaf node means the product of the probabilities along each path.

- > We represent conditional probabilities using a tree structure.
- > The probability at a leaf node means the product of the probabilities along each path.

- > We represent conditional probabilities using a tree structure.
- > The probability at a leaf node means the product of the probabilities along each path.

- > Event A: Airplane is flying above.
- \triangleright Event **B**: Something registers on the radar screen.

$$> P(A \cap B) =$$

$$> P(B) =$$

$$> P(A \mid B) =$$

- > Event A: Airplane is flying above.
- \triangleright Event **B**: Something registers on the radar screen.

$$P(A \cap B) = P(A)P(B \mid A) = 0.1 \cdot 0.8$$

$$> P(B) =$$

$$> P(A \mid B) =$$

- \triangleright Event A: Airplane is flying above.
- \triangleright Event **B**: Something registers on the radar screen.

$$P(A \cap B) = P(A)P(B \mid A) = 0.1 \cdot 0.8$$

$$> P(B) =$$

•
$$P(A)P(A \cap B) + P(A^C)P(A^C \cap B)$$

$$\bullet = 0.1 \cdot 0.8 + 0.9 \cdot 0.15$$

- > Event A: Airplane is flying above.
- > Event **B**: Something registers on the radar screen.

$$P(A \cap B) = P(A)P(B \mid A) = 0.1 \cdot 0.8$$

$$> P(B) =$$

•
$$P(A)P(A \cap B) + P(A^C)P(A^C \cap B)$$

$$\bullet = 0.1 \cdot 0.8 + 0.9 \cdot 0.15$$

$$> P(A \mid B) =$$

•
$$\frac{P(A \cap B)}{P(A)P(A \cap B) + P(A^C)P(A^C \cap B)} = \frac{0.1 \cdot 0.8}{0.1 \cdot 0.8 + 0.9 \cdot 0.15}$$

 \triangleright We know that $P(A \cap B) = P(A|B)P(B)$.

- \triangleright What is $P(A \cap B \cap C)$?
 - Treat $(B \cap C)$ as an event. Call this R.
- $> P(A \cap B \cap C) = P(A \cap R)$
 - So, $P(A \cap R) = P(A|R)P(R) = P(A|B \cap C)P(B \cap C)$.
 - $P(R) = P(B \cap C) = P(B|C)P(C).$

Using induction, you can prove that:

$$P(A \cap B \cap C) = P(A|B \cap C)P(B|C)P(C)$$

$$P\left(\bigcap_{i=1}^{n} A_{i}\right) = P(A_{1} \mid A_{2} \cap \cdots \cap A_{n}) \cdots P(A_{n-1} \mid A_{n})P(A_{n})$$

$$P(C \mid A \cap B) = \frac{P(A \cap B \cap C)}{P(A \cap B)} \implies P(A \cap B \cap C) = P(C \mid A \cap B)P(A \cap B)$$
$$= P(C \mid A \cap B)P(B \mid A)P(A)$$

$$P(A^{C} \cap B \cap C^{C}) = P(C^{C} | A^{C} \cap B)P(A^{C} \cap B)$$
$$= P(C^{C} | A^{C} \cap B)P(B | A^{C})P(A^{C})$$

- > Alice works for an umbrella company.
- > We have P(R) = 0.1, $P(S \mid R) = 0.8$ and $P(S \mid R^C) = 0.25$
- ➤ If we knew that Alice sells more than 10 umbrellas, then what is the probability it rained?

- > Alice works for an umbrella company.
- > We have P(R) = 0.1, $P(S \mid R) = 0.8$ and $P(S \mid R^C) = 0.25$
- ➤ If we knew that Alice sells more than 10 umbrellas, then what is the probability it rained?
- \triangleright We are interested in $P(R \mid S)$. First, we need $P(R \cap S)$ and then we need P(S).
- $P(R \cap S) = P(S|R)P(R) = 0.8 \times 0.1 = 0.08.$

- > Alice works for an umbrella company.
- > We have P(R) = 0.1, $P(S \mid R) = 0.8$ and $P(S \mid R^C) = 0.25$
- \triangleright Now, what about P(S)?
- ➤ Write S as a union of two disjoint events. Guesses?

•
$$S = S \cap \Omega = S \cap (R \cup R^C) = (S \cap R) \cup (S \cap R^C).$$

$$> P(S) = P(S \cap R) + P(S \cap R^C)$$
. Theorem of total probability

$$P(S) = P(S \mid R)P(R) + P(S \mid R^C)P(R^C)$$

$$P(S) = 0.8 \times 0.1 + 0.25 \times 0.9 = 0.305$$

- > Alice works for an umbrella company.
- > We have P(R) = 0.1, $P(S \mid R) = 0.8$ and $P(S \mid R^C) = 0.25$
- ➤ If we knew that Alice sells more than 10 umbrellas, then what is the probability it rained?
- $> P(R \mid S) = P(R \cap S)/P(S)$
- $P(R \mid S) = P(S|R)P(R)/(P(S \mid R)P(R) + P(S \mid R^C)P(R^C))$
- $P(R \mid S) = 0.08/0.305 \approx 0.262$
- > This is known as Bayes' rule.

Example: Card Decks

- > Three cards are drawn from an ordinary 52-card deck without replacement.
 - Without replacement: Drawn cards are not placed back into the deck.
- > What is the probability that there is no heart among the three?

Example: Card Decks

- > Three cards are drawn from an ordinary 52-card deck without replacement.
 - Without replacement: Drawn cards are not placed back into the deck.
- What is the probability that there is no heart among the three?
- \triangleright Notation: $A_i = \{i-th \text{ card is not a heart}\}$
- \triangleright We want: $P(A_1 \cap A_2 \cap A_3)$.
 - Remember: There are thirteen cards with hearts.
- > Use multiplication rule:
 - $P(A_1 \cap A_2 \cap A_3) = P(A_1)P(A_2|A_1)P(A_3|A_1 \cap A_2).$

Example: Card Decks

- > Three cards are drawn from an ordinary 52-card deck without replacement.
 - Without replacement: Drawn cards are not placed back into the deck.
- > What is the probability that there is no heart among the three?
- \triangleright Notation: $A_i = \{i-th \text{ card is not a heart}\}$
- > Use multiplication rule:
 - $P(A_1 \cap A_2 \cap A_3) = P(A_1)P(A_2|A_1)P(A_3|A_1 \cap A_2).$
 - $P(A_1) = \frac{39}{52}$, $P(A_2|A_1) = \frac{38}{51}$, $P(A_3|A_1 \cap A_2) = \frac{37}{50}$.

Example: Three Balls

- > I have two blue balls, and one red ball. I pick two balls randomly without replacement.
- > What is the probability that the first ball is blue?
- > What is the probability that the second ball is blue?

Example: Three Balls

- ➤ I have two blue balls, and one red ball. I pick two balls randomly without replacement.
- What is the probability that the first ball is blue?
- What is the probability that the second ball is blue?
- \triangleright Notation: X_i is color of the i-th ball.
- > We want $P(X_1 = B) = 2/3$.
- > We want $P(X_2 = B) = 2/3$.
 - $P(X_2 = B) = P(X_2 = B \cap X_1 = B) + P(X_2 = B \cap X_1 = R)$
 - $P(X_2 = B) = P(X_2 = B \mid X_1 = B)P(X_1 = B) + P(X_2 = B \mid X_1 = R)P(X_1 = R) = 1/2 \times 2/3 + 1 \times 1/3 = 2/3$

Bayes' Theorem

Bayes' Theorem

 \triangleright A simple rule to get conditional probability of A given B, from the conditional formula of B given A

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B \mid A)P(A) + P(B \mid A^{C})P(A^{C})}$$

➤ It is useful for inferring hidden causes from our observation.

Typical Bayes Rule Example

- Considering testing for some latent (hidden/unobservable) disease, it will not be symptomatic until a future time point.
- We can directly observe the outcome of the test.
- > Assuming the test is not 100% accurate, we cannot directly observe whether we have the disease.

- > Two possible hidden causes for a positive test result.
 - We have the disease, and the test is correct.
 - We don't have the disease, and the test is a false positive.
- > Inferring which hidden cause underlies our observation

- > Assume that the disease affects 2% of the population.
 - The false positive rate is 1%.
 - The false negative rate is 5%.
 - We take the test, and the result is positive.

Given that you tested positive, what is the probability you have the disease?

- > Assume that the disease affects 2% of the population.
 - The false positive rate is 1%.
 - The false negative rate is 5%.
 - We take the test, and the result is positive.
- Given that you tested positive, what is the probability you have the disease?
- ▶ Let T be the event "tests positive" and D be the event "has disease."
 - P(D) = 0.02, $P(T \mid D^{C}) = 0.01$, $P(T^{C} \mid D) = 0.05$

- Given that you tested positive, what is the probability you have the disease?
- \triangleright What is $P(D \mid T)$? Bayes' rule gives us:

$$P(D \mid T) = \frac{P(T \mid D)P(D)}{P(T \mid D)P(D) + P(T \mid D^{C})P(D^{C})}$$

➤ We get from the conditional probability of an observation given a hidden cause (which we usually know) to the conditional probability of a hidden cause given an observation (which we usually care about!)

 \triangleright What is $P(D \mid T)$? Bayes' rule gives us:

$$P(D \mid T) = \frac{P(T \mid D)P(D)}{P(T \mid D)P(D) + P(T \mid D^{C})P(D^{C})}$$

- > So, let's plug in the numbers. Recall
 - $P(D) = 0.02, P(T \mid D^{C}) = 0.01, P(T^{C} \mid D) = 0.05$
 - So, $P(T \mid D) = 0.95$, $P(D^C) = 0.98$

$$P(D \mid T) = \frac{0.95 \times 0.02}{0.95 \times 0.02 + 0.01 \times 0.98} = \frac{0.019}{0.0288} = 0.66$$

Example: Coding Message

- ➤ Alice is sending a coded message to Bob using "dot" and "dash," which are known to occur in the proportion of 3 : 4 for Morse codes.
- ➤ Because of interference on the transmission line, a dot can be mistakenly received as a dash with a probability 1/8 and vice-versa.
- ➤ If Bob receives a "dot," what is the probability that Alice sent a "dot"?

Example: Coding Message

> If Bob receives a "dot," what is the probability that Alice sent a "dot"? $\Rightarrow P(dotS \mid dotR)$

- P(dotS) = 3/7, P(dashS) = 4/7
- $P(\operatorname{dash} R \mid \operatorname{dot} S) = P(\operatorname{dot} R \mid \operatorname{dash} S) = 1/8$

$$P(dotS \mid dotR) = \frac{P(dotR \mid dotS)P(dotS)}{P(dotR)}$$

$$= \frac{P(dotR \mid dotS)P(dotS)}{P(dotR \mid dotS)P(dotS) + P(dotR \mid dashS)P(dashS)} = \frac{\left(1 - \frac{1}{8}\right) \times \frac{3}{7}}{\left(1 - \frac{1}{8}\right) \times \frac{3}{7} + \frac{1}{8} \times \frac{4}{7}} = \frac{25}{56}$$

Total Probability Theorem

- Obtaining the probability of a subset, using conditional probabilities
 - Let $A_1, ..., A_n$ be a partition of Ω , such that $P(A_i) > 0$ for all A_i .
- ▶ Let B be an event. Note that $B = \bigcup_i (A_i \cap B)$.
- $\triangleright P(B) = P(A_1 \cap B) + P(A_1 \cap B) + \dots + P(A_n \cap B).$

Bayes' Theorem

- \triangleright Let A_1, A_2, \dots, A_n be a partition of the sample space.
- \triangleright Let B be any set. Then, for each $i=1,2,\ldots,n$

$$P(A_i \mid B) = \frac{P(B \mid A_i)P(A_i)}{P(B)} = \frac{P(B \mid A_i)P(A_i)}{\sum_{j=1}^n P(B \mid A_j)P(A_j)}$$

Thomas Bayes (1701-1761). English statistician, philosopher and Presbyterian minister

- \succ You are a contestant on a game show, where you have to pick one of three doors (say A, B, and C) to open.
- > One of the three doors contains a goat; the rest are empty.
- > Assume the host knows which door contains the goat.

- \succ You pick a door, say A. To build suspense, the host opens one of the other two doors (say B), revealing it is empty.
- > The host asks, do you want to stick with your existing door or switch? What do you do? Does it make any difference?

- > Our outcome consists of two random variables: where the goat is, and which door the host opens.
- > We will observe which door is opened; we want to infer where the goat is.
 - G_A for the event "goat in A," G_B for "goat in B," G_C for "goat in C."
 - H_A for "host opens A," H_B for "host opens B," H_C for "host opens C."
- \triangleright What is $P(G_A)$?

•
$$P(G_A) = P(G_B) = P(G_C) = 1/3$$
.

- \triangleright You picked door A (without loss of generality).
- > For every possible location of the goat, we can calculate the conditional probability of the host opening a given door.
 - We assume that the host opened a door she knew to be empty.
 - We know she is not going to open door that we picked.
- \triangleright Three possible cases for $P(H_B)$
 - If the **goat** is in A, what is the probability that she opens door B?
 - If the goat is in B, what is the probability that she opens door B?
 - If the **goat** is in C, what is the probability that she opens door B?

- ➤ If the goat is in A, what is the probability that she opens door B?
 - $P(H_B \mid G_A) = 1/2$.
- ▶ If the goat is in B, what is the probability that she opens door B?
 - $P(H_B \mid G_B) = 0.$
- ➤ If the goat is in C, what is the probability that she opens door B?
 - $P(H_B \mid G_C) = 1$.

- \triangleright If the host opens door B, what's the probability that the goat is in door C?
- > By Bayes' Rule,

$$P(G_C \mid H_B) = \frac{P(H_B \mid G_C)P(G_C)}{P(H_B)}$$

- \triangleright We know that $P(G_C) = 1/3$ and $P(H_B \mid G_C) = 1$.
- \triangleright By the law of total probability, $P(H_B)$ is

•
$$P(H_B) = P(H_B|G_A)P(G_A) + P(H_B|G_B)P(G_B) + P(H_B|G_C)P(G_C)$$

•
$$P(H_B) = \frac{1}{2} \times \frac{1}{3} + 0 \times \frac{1}{3} + 1 \times \frac{1}{3} = \frac{1}{2}$$

> Therefore,

$$P(G_C \mid H_B) = \frac{P(H_B \mid G_C)P(G_C)}{P(H_B)}$$

$$P(G_{C} \mid H_{B}) = \frac{1/3 \times 1}{1/2} = \frac{2}{3}$$

- \triangleright Given the partial information that the host has opened door B, the probability that the goat is in door C is 2/3.
- > So, we should switch!

Bayes' Theorem and Inference

> Systematic approach for incorporating new evidence

- > Bayesian inference
 - Initial beliefs $P(A_i)$ on possible causes of an observed event B
 - A model of the world under each A_i : $P(B \mid A_i)$

$$\begin{array}{c} \mathsf{model} \\ A_i & \longrightarrow & B \\ P(B \mid A_i) \end{array}$$

Draw conclusions about causes.

$$\begin{array}{c}
 & \text{Inference} \\
 & \longrightarrow A_i \\
 & P(A_i \mid B)
\end{array}$$

Bayes' Theorem in ML

> It is useful for inferring hidden causes from our observation.

 θ : parameter, X: data

- > It is also commonly used for parameter estimation methods.
 - Maximum likelihood estimation (MLE)
 - Maximum a posteriori estimation (MAP)

Bayes' Theorem in ML

> Notations

- ullet Posterior is the probability of the parameters $oldsymbol{ heta}$ given $oldsymbol{X}$.
- ullet Prior encapsulates our subjective prior knowledge of the observed (latent) variable $oldsymbol{ heta}$ before observing any data.
- Likelihood is the function of θ given fixed X.

Likelihood Prior

$$P(\theta \mid X) = \frac{P(X \mid \theta)P(\theta)}{P(X)} \propto P(X \mid \theta)P(\theta)$$

Posterior

Evidence

- > It is also commonly used for parameter estimation methods.
 - Maximum likelihood estimation (MLE)
 - Maximum a posteriori estimation (MAP)

Bayes' Theorem in ML

> Intuition

- Prior: how plausible is the model a priori before observing the data?
 - The probability of being a head is 0.5.
- Likelihood: how well does the model explain the data?
 - For 4 out of 5 trials, the coin is head.
- Posterior: how plausible is the model after observing the data?
 - For this coin, the probability of a head is 0.7.

Posterior Likelihood Prior $P(\theta \mid X) \propto P(X \mid \theta)P(\theta)$

Bayes' Theorem: Model Version

- > Let M be model, E be evidence.
- > P(M|E) proportional to $P(E|M) \times P(M)$

$$P(M \mid E) \propto P(E \mid M)P(M)$$
Posterior Likelihood Prior

> Intuition

- Prior = how plausible is the event (model, theory) a priori before seeing any evidence?
- **Likelihood** = how well does the model explain the data?

Statistical Independence

Independence of Two Events

➤ Two events A and B are independent if the probability of A does not affect the probability of B.

$$P(A,B) = P(A)P(B) \Leftrightarrow P(B \mid A) = P(B)$$

- \triangleright Intuitive definition: $P(B \mid A) = P(B)$
 - The occurrence of A provides no new information about B.
- Symmetric with respect to A and B
 - Implies that $P(A \mid B) = P(A)$
 - It applies even if P(A) = 0

Example: Independence of Two Events

> Are they independent?

$$P(A,B) = P(A)P(B)$$

Example: Independence of Two Events

> Are they independent?

$$P(A,B) = P(A)P(B)$$

Ω	В
A	
H	

Example: Gambler

> A gambler is rolling 4 fair dice. What is the probability that there is at least one 6 in 4 rolls?

Example: Gambler

- ➤ A gambler is rolling 4 fair dice. What is the probability that there is at least one 6 in 4 rolls?
- > Each roll is independent.
- \triangleright Let X_i denote the event that there is no six in the *i*-th roll.
- $\triangleright P$ (at least 1 six in 4 rolls) = 1 P(no sixes in 4 rolls)

Example: Gambler

- ➤ A gambler is rolling 4 fair dice. What is the probability that there is at least one 6 in 4 rolls?
- > Each roll is independent.
- \triangleright Let X_i denote the event that there is no six in the *i*-th roll.

>
$$P$$
(at least 1 six in 4 rolls) = $1 - P$ (no sixes in 4 rolls)
= $1 - P(X_1 \cap X_2 \cap X_3 \cap X_4)$
= $1 - P(X_1)P(X_2)P(X_3)P(X_4)$
= $1 - \left(\frac{5}{6}\right)^4 = \mathbf{0.518}$

Independence of Two Events

- \triangleright If A and B are independent, then A and B^{C} are independent.
- > Is it true or false?

$$P(A) = P(A \cap B) + P(A \cap B^{C})$$

$$P(A) = P(A)P(B) + P(A \cap B^{C})$$

$$P(A \cap B^{C}) = P(A) - P(A)P(B) = P(A)(1 - P(B))$$

$$P(A \cap B^{C}) = P(A)P(B^{C})$$

Some Ground Rules

> Theorem. If A and B are independent ($A \perp B$), then so are A and B^{C} are independent.

•
$$P(A \cap B^C) = P(A) - P(A \cap B) = P(A) - P(A)P(B)$$

= $P(A)(1 - P(B)) = P(A)P(B^C)$

- > A^C and B are independent.
- > A^C and B^C are independent.

- ➤ Bob and Alice mostly go to their 9 am probability class when the weather is sunny. Are the events {Bob goes to class} and {Alice goes to class} independent events?
- ➤ No. If I know Bob went to class. Then it is likely that it is sunny. This makes it likely that Alice goes too.

- ➤ Bob and Alice mostly go to their 9am probability class when the weather is sunny. Are the events {Bob goes to class} and {Alice goes to class} independent events?
- ➢ Given the event {its sunny}, {Bob went to class} does not give us any information about {Alice went to class}.
- ➤ {Bob goes to class} and {Alice goes to class} are conditionally independent given {its sunny}.
- > Two events A and B are conditionally independent given another event C if $P(A \cap B|C) = P(A|C)P(B|C)$
 - We write this as $A \perp B|C$.

 \triangleright Recall, we said two events A and B were independent if

$$P(A \cap B) = P(A)P(B)$$

- \triangleright If P(B) > 0, this means that P(A|B) = P(A)
 - Knowing B tells us nothing about the probability of A
- > We can extend this definition to conditional probabilities.
- \triangleright We say two events A and B are conditionally independent given some event C if $P(A \cap B|C) = P(A|C)P(B|C)$.
 - We write this as $A \perp B \mid C$.

- ➤ Conditional independence: $P(A \cap B|C) = P(A|C)P(B|C)$
- \triangleright Intuitively, what we are thinking is, $P(A|B \cap C) = P(A|C)$.
- ▶ Is this true? Assume that $P(B \cap C) > 0$.

$$P(A \mid B \cap C) = \frac{P(A \cap B \cap C)}{P(B \cap C)}$$

$$= \frac{P(A \cap B \mid C)P(C)}{P(B \mid C)P(C)}$$

$$= \frac{P(A \mid C)P(B \mid C)P(C)}{P(B \mid C)P(C)} = P(A \mid C)$$

 \triangleright So, provided $P(B \cap C) > 0$, we can write

$$P(A \mid B \cap C) = P(A \mid C)$$

 \triangleright Given we know C, also knowing B tells us nothing about A.

Example: Conditional Independence

- > Assume A and B are independent.
- ➤ If C occurred, are A and B independent?

Example: Conditional Independence

- > Assume A and B are independent.
- ➤ If C occurred, are A and B independent?

 \succ Conditional independence is defined as independence under the probability law $P(\cdot | C)$.

$$P(A, B \mid C) = P(A \mid C)P(B \mid C) \Leftrightarrow P(A \mid B, C) = P(A \mid C)$$

Discrete and Continuous Probability Distribution

Motivation: Random Variable

> Example

- We are taking an opinion poll among 100 students about how understandable the lectures are.
- If "1" is used for understandable and "0" is used for not, then there are 2¹⁰⁰ possible outcomes!!
- The thing that matters most is the number of students who think the class is understandable (or equivalently not). If we define a variable X to be that number, then the range of X is $\{0,1,...,100\}$.
- Much easier to handle that!
- > For many experiments, it is easier to use a new variable that summarizes all possible outcomes.

Random Variable as a Mapping

 \succ A random variable X is a function that takes an outcome O and returns a particular quantity of interest x.

Random variable X X(0) = x, or just X = x

- Basically, a way to redefine a probability space to a new probability space
 - X must obey axioms of probability.

Example of Random Variables

- > You toss a coin: is it head or tail?
 - $f: \{H, T\} \to \{0, 1\}$
- You roll a die: what number do you get?
 - $f: \{1, 2, ..., 6\} \rightarrow \{1, 2, ..., 6\}$
- > Number of heads in three coin tosses
 - $f: \{HHH, HHT, ..., TTT\} \rightarrow \{0, 1, 2, 3\}$
- > The sum of two rolls of dice
 - $f: \{(1,1), (1,2), ..., (6,6)\} \rightarrow \{2,3,...,12\}$

Example of Random Variables

- > X = "The number of heads" is the random variable.
 - There can be 0 heads, 1 head, 2 heads, 3 heads.
- \triangleright Target space = {0, 1, 2, 3}

Types of Probability Space

 \triangleright Define $|\Omega|$ = the number of possible outcomes O

- \triangleright Discrete space: $|\Omega|$ is finite.
 - Analysis includes summations (∑).
- \succ Continuous space: $|\Omega|$ is infinite.
 - Analysis includes integrals (∫).

Examples of Discrete Probability Space

- > Consider two consecutive flips of a coin
 - 4 possible outcomes: $\Omega = \{HH, HT, TH, TT\}$
 - $2^4 = 16$ possible events
 - $E = \{TH, HT\}$, i.e., one of the coins is head.
- > If the coin is fair, then the probabilities of outcomes are equal.
 - P(HH) = P(HT) = P(TH) = P(TT) = 1/4
- > Probability of the event with one head is
 - P(HT) + P(TH) = 1/2

Examples of Discrete Probability Space

- Consider single roll of a six-sided die.
 - 6 possible outcomes: $\Omega = \{1, 2, 3, 4, 5, 6\}$
 - $2^6 = 64$ possible events
- > If the die is fair, then the probabilities of outcomes are equal.

•
$$P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6$$

- > Probability of the event with odd numbers is
 - P(1) + P(3) + P(5) = 1/2

Example of Continuous Probability Space

> Height of a randomly chosen male

- Infinite number of possible outcomes: O has some single value in range 2 feet to 8 feet
- Infinite number of possible events
 - $E = (O \mid O < 5.5 feet)$, i.e., individual chosen is less than 5.5 feet
- Probabilities of outcomes are not equal, and are described by a continuous function, p(O)

Example of Continuous Probability Space

> Height of a randomly chosen male

• Probabilities of outcomes are not equal, and are described by a continuous function, $p(\mathcal{O})$

> Examples

•
$$P(O = 5.8) > P(P = 6.2)$$

•
$$P(0 < 5.6) = \int P(0)$$
 from $0 = -\infty$ to $5.6 \approx 0.25$

Probability Distributions

- > Discrete probability distribution
- > Continuous probability distribution

Probability mass function (PMF)

Probability density function (PDF)

Multivariate Probability Distributions

- Several random processes occur (doesn't matter whether in parallel or in sequence)
 - Want to know probabilities for each possible combination of outcomes

> Joint probability

- Two processes whose outcomes are represented by random variables X and Y.
- Probability that process X has outcome x and process Y has outcome y is denoted as:

$$P(X = x, Y = y)$$

Example of Joint Probability

$$P(X = minvan, Y = European) = 0.14$$

Multivariate Probability Distributions

Marginal probability

Probability distribution of a single variable in a joint distribution

$$P(X = x) = \sum_{b=all\ values\ of\ Y} P(X = x, Y = b)$$

Conditional probability

 Probability distribution of one variable given that another variable takes a certain value

$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$

Example of Marginal Probability

$$P(X = minivan) = 0.07 + 0.11 + 0.14 = 0.32$$

Example of Conditional Probability

$$P(Y = European | X = minivan)$$

= 0.14/(0.07 + 0.11 + 0.14) = 0.4375

Q&A

