TF502: Numerical Analysis Homework 4

Prof. Boris Houska

Deadline: November 6, 2017

- 1. Assume that a function $f: \mathbb{R} \to \mathbb{R}$ satisfies f(0) = 1, f(1) = 3, and f(2) = 19. Construct a polynomial of the form $p(x) = a_0 + a_1x + a_2x^2$ such that p interpolates f at $x \in \{0, 1, 2\}$. What are a_0, a_1, a_2 ? (10 points)
- 2. Assume that a function $f: \mathbb{R}^2 \to \mathbb{R}$ satisfies

$$f(0,0)=1\,,\ \, f(0,1)=3\,,\ \, f(0,2)=19\,,\ \, f(1,0)=3\,,\ \, f(2,0)=19\,,\ \, f(1,1)=0$$

Construct a polynomial $p: \mathbb{R}^2 \to \mathbb{R}$ of the form

$$p(x) = a_0 + a_1x_1 + a_2x_1^2 + a_3x_2 + a_4x_2^2 + a_5x_1x_2$$

such that p interpolates f at all 6 points. What are $a_0, a_1, a_2, a_3, a_4, a_5$? (20 points)

3. Implement a Julia code, which interpolates the function

$$f(x) = \frac{1}{1+x^2}$$

at the points $x_1 = -5, x_2 = -4, ..., x_{11} = 5$ with a polynomial p of order 10. Plot the function f as well as the polynomial p. Do you think that p approximates f well? What can you say about the approximation error? (30 point)

4. Implement a JULIA function named natural_spline(f,a,b,N) that accepts as an input a function $f \in [a,b] \to \mathbb{R}$, interval bounds a < b, and an integer N > 0. The function should return the natural spline, a piecewise polynomial function s approximating f on the interval [a,b] with N polynomials of order 3. Test your implementation with the code

and plot your result.

(30 points)

5. Write a compute program, which solves the Gauss' approximation problem

$$\min_{p \in P_n} \int_{-5}^{5} (f(x) - p(x))^2 dx$$

for the function $f(x) = \frac{1}{1+x^2}$ on the interval [-5,5] for n=10. Plot your result. (30 points)

6. Implement a JULIA function named DFT(y) (discrete Fourier transform) that accepts as an input a vector $y \in \mathbb{R}^n$ of data points and whose output are the coefficients a_k and b_k of a function

$$p_m(x) = \frac{1}{2}a_0 + \sum_{k=1}^{m} (a_k \sin(kx) + b_k \cos(kx))$$

satisfying $p_m(\frac{2\pi j}{n+1})=y_j$ for all data points y_j . Use the routine DFT(y) to interpolate the function

$$f(x) = \operatorname{atan}\left(10^2 * \sin(x)\right)$$
 i.e. $y_j = f\left(\frac{2\pi j}{n+1}\right)$

on the interval $[0, 2\pi]$ using m=2, m=4, m=8, m=16, and m=32 and plot your results for p_m and f. [You may but you don't have to implement FFT.] (30 points)