МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ имени академика С.П. КОРОЛЕВА" (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

А.В. ШАЦКИЙ, Л.А. ШАЦКАЯ

МЕХАНИКА. МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА

Сборник задач

CAMAPA 2012

УДК 53 (075.8) Составители: А.В. Шацкий, Л.А. Шацкая Механика. Молекулярная физика и термодинамика: сборник задач / Л.А. Шацкая, А.В. Шацкий. – Самара: Самар. гос. аэрокосм. ун-т, 2012. – 64 с.: ил. Сборник задач содержит краткую теорию, вопросы и задачи разного уровня сложности к восьми практическим занятиям по первой части курса общей физики. первого Предназначен ДЛЯ студентов курса технических Самарского государственного специальностей аэрокосмического университета. Печатается по решению редакционно - издательского совета Самарского государственного аэрокосмического университета имени академика С.П. Королева

Рецензент:

ВВЕДЕНИЕ

Решение почти любой задачи не только позволяет изучать законы физики, но и прививает навык и умение использовать эти законы, развивает логическое и творческое (особенно при решении сложных и комбинированных задач) мышление, а также помогает понять процессы, происходящие в окружающем мире. При решении задач физические модели, используются поэтому ОНИ кажутся оторванными от реального мира. Поставить в соответствие модель реальному физическому процессу – это еще одна задача, которую должен решить студент. Авторы постарались подобрать задачи, которые непосредственно связаны с реальными объектами. Это позволит обсудить интересные вопросы современной физики.

В задачнике содержатся вопросы и задачи к восьми практическим занятиям по первой части курса общей физики. Основные формулы и понятия перед каждой темой должны помочь студенту при решении задач.

ЗАНЯТИЕ 1 КИНЕМАТИКА

ОСНОВНЫЕ ФОРМУЛЫ

1. Положение материальной точки в процессе движения характеризуется радиус-вектором $\vec{r} = \vec{r}(t)$, проведенным из начала координат к точке (рис. 1). Проецируя \vec{r} на координатные оси, получим x = x(t), y = y(t), z = z(t). По правилу сложения векторов можно записать: $\vec{r} = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}$.

Puc. 1

2. Скорость \vec{v} в данной точке называется мгновенной:

$$\vec{v} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} = \frac{d\vec{r}}{dt} = \dot{\vec{r}};$$

$$\stackrel{
ightharpoonup}{\upsilon_{
m cp}} = \frac{\Delta r}{\Delta t} - {
m cpe}$$
дняя путевая скорость движения частицы.

4

3. Мгновенное ускорение (рис. 2)

$$\vec{a} = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt} = \dot{\vec{v}}.$$

Puc. 2

В общем случае ускорение точки

$$\vec{a} = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t} = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}_n}{\Delta t} + \lim_{\Delta t \to 0} \frac{\Delta \vec{v}_{\tau}}{\Delta t} = \vec{a}_n + \vec{a}_{\tau},$$

где \vec{a}_{τ} – **тангенциальное** или линейное ускорение, $a_{\tau} = \frac{dv}{dt}$;

 a_n — **нормальное**, или **центростремительное**, ускорение;

$$a_n = \lim_{\Delta t \to 0} \frac{\Delta v_n}{\Delta t} = \lim_{\Delta t \to 0} \frac{v \Delta s}{r \Delta t} = \frac{v}{r} \frac{ds}{dt} = \frac{v^2}{r}.$$

4. Для равнопеременного движения

$$\int\limits_{\upsilon_0}^{\upsilon}d\upsilon=\int\limits_0^ta_{\tau}dt\,,\;\text{или}\;\upsilon=\upsilon_0+a_{\tau}t\;;$$

$$s = \int ds = \int_{0}^{t} (v_0 + a_{\tau}t) dt = v_0 t + \frac{a_{\tau}t^2}{2}.$$

5. При вращательном движении роль пройденного пути играет угол поворота тела $d\phi$, а вместо линейной скорости вводят **угловую**

скорость
$$\omega = \frac{d\varphi}{dt}$$
, $[\omega] = pag/c$.

Линейная и угловая скорости связаны соотношением $\vec{v} = |\vec{\omega} \cdot \vec{r}| = \vec{\omega} \times \vec{r}$

Угловое ускорение
$$\varepsilon = \frac{d\omega}{dt}$$
, $[\varepsilon] = \text{рад/c}^2$.

Связь между линейным и угловым ускорениями

$$a_{\tau} = \frac{d(\omega R)}{dt} = R \frac{d\omega}{dt} = \varepsilon R.$$

Зависимости угла поворота φ и угловой скорости ω от времени при равнопеременном движении имеют вид:

$$\varphi = \omega_0 t + \frac{\varepsilon t^2}{2};$$

$$\omega = \omega_0 + \varepsilon t.$$

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

- 1. Постулаты о свойствах пространства и времени.
- 2. Траектория. Элементы траектории.
- 3. Что такое система отсчета? Способы задания движения точки.
- 4. Скорость. Скорость при различных способах задания движения.
- 5. Ускорение. Ускорение в декартовой системе координат. Нормальное и касательное ускорение.
- 6. Деление движений точки по видам траектории, характеру изменения величины скорости.
 - 7. Поступательное движение точки.
 - 8. Угловая скорость. Связь угловой скорости с линейной.
 - 9. Угловое ускорение.
 - 10. Связь линейного ускорения с угловыми величинами.

ЗАДАЧИ (БАЗОВЫЙ УРОВЕНЬ)

- **1.1.** Три четверти своего пути автомобиль прошел со скоростью $\upsilon_1 = 60\,\mathrm{кm/ч}$, остальную часть пути со скоростью $\upsilon_2 = 80\,\mathrm{km/ч}$. Какова средняя путевая скорость $\langle\upsilon\rangle$ автомобиля? (64 км/ч)
- **1.2.** Тело прошло первую половину пути за время $t_1 = 2\,\mathrm{c}$, вторую за время $t_2 = 8\,\mathrm{c}$. Определить среднюю путевую скорость $\langle \upsilon \rangle$ тела, если длина пути $s = 20\,\mathrm{m}$. (2 м/с)

- **1.3.** Прямолинейное движение точки описывается уравнением $x = -1 + 3t^2 2t^3$ м. Найти среднюю скорость точки за время движения до остановки. (1 м/с)
- **1.4.** Уравнение прямолинейного движения имеет вид $x = At + Bt^2$, где $A = 3 \,\mathrm{m/c}$, $B = -0.25 \,\mathrm{m/c^2}$. Построить графики зависимости координаты, пути и скорости от времени для заданного движения. (парабола; прямая)
- **1.5.** Движения двух материальных точек выражаются уравнениями: $x_1 = A_1 + B_1 t + C_1 t^2$, $x_2 = A_2 + B_2 t + C_2 t^2$, где $A_1 = 20$ м, $A_2 = 2$ м, $B_1 = B_2 = 2$ м/с, $C_1 = -4$ м/с 2 , $C_2 = 0.5$ м/с 2 . В какой момент времени t скорости этих точек будут одинаковыми? Определить скорости v_1 и v_2 и ускорения a_1 и a_2 точек в этот момент. (0.2 м/с; 2 м/с; -8 м/с 2 ; 1 м/с 2)
- **1.6.** Тело брошено под некоторым углом α к горизонту. Найти этот угол, если горизонтальная дальность s полета тела в четыре раза больше максимальной высоты H траектории. (45°)
- **1.7.** Камень, брошенный с высоты $h = 2\,\mathrm{m}$ под углом 45° к горизонту, падает на землю на расстоянии $S = 42\,\mathrm{m}$ от места бросания. Найти начальную скорость камня, время движения, максимальную высоту подъема, радиус кривизны траектории камня в верхней точке и в точке падения. (20 м/с; 3 с; 10 м; 20 м; 67 м)
- **1.8.** Пуля пущена с начальной скоростью $\upsilon_0 = 20\,\text{м/c}$ под углом $\alpha = 60^\circ$ к горизонту. Определить максимальную высоту H подъема, дальность s полета и радиус R кривизны траектории пули в ее наивысшей точке. Сопротивлением воздуха пренебречь. (1,53 км; 3,53 км; 1,02 км)
- **1.9.** Движение материальной точки задано уравнением $\vec{r}(t) = \vec{i} \left(A + Bt^2 \right) + \vec{j} Ct$, где $A = 10\,\mathrm{m}$, $B = -5\,\mathrm{m/c^2}$, $C = 10\,\mathrm{m/c}$. Начертить траекторию точки. Найти выражения $\vec{v}(t)$ и $\vec{a}(t)$. Для момента времени t = 1 с вычислить: 1) модуль скорости $|\vec{v}|$; 2) модуль ускорения $|\vec{a}|$; 3) модуль тангенциального ускорения $|\vec{a}_{\tau}|$;

- 4) модуль нормального ускорения $|\vec{a}_n|$.(14,1 м/c; -10 м/c²; 7,07 м/c²; 7,07 м/c²)
- **1.10.** Материальная точка движется по закону x = At; $y = Bt^2$; z = 0, где $A = 3.0 \,\mathrm{m/c}$; $B = 2.0 \,\mathrm{m/c}^2$. Найти траекторию точки и для момента $t = 1.0 \,\mathrm{c}$ вычислить скорость, ускорение, угол между ними и радиус кривизны траектории. (парабола; 37°; 10 м)
- **1.11.** Материальная точка движется по окружности радиуса $R = 2.0 \,\mathrm{m}$ по закону $S = At^2$, где $A = 1.0 \,\mathrm{m/c^2}$. В момент $t = 1.0 \,\mathrm{c}$ найти полное ускорение точки и угол между скоростью и ускорением. $(2.8 \,\mathrm{m/c^2}; 45^\circ)$
- **1.12.** Материальная точка, покоящаяся в начале координат, начинает движение в плоскости (xy) с ускорением $a_x = A$, $a_y = Bt^2$, где $A = 4.0 \,\mathrm{m/c}^2$, $B = 9.0 \,\mathrm{m/c}^4$. Найти траекторию точки и скорость через 1,0 с после начала движения. (парабола; 5 м/с)
- **1.13.** Твердое тело вращается вокруг неподвижной оси по закону $\varphi = At Bt^3$, где A = 3рад/с; B = 1рад/с³. Найти средние значения угловой скорости и углового ускорения от t = 0 до остановки и угловое ускорение тела в момент остановки. $(\langle \omega \rangle = 2$ рад/с; $\langle \varepsilon \rangle = -3$ рад/с²; $\varepsilon = -6$ рад/с²)
- **1.14.** Вал вращается равнозамедленно с угловым ускорением $\varepsilon = -3,14$ рад/с 2 . Начальная угловая скорость вала $\omega_0 = 18,84$ рад/с. Через сколько времени вал остановится? Сколько оборотов он сделает до остановки? (6 с; 0,9 оборота)
- **1.15.** По дуге окружности радиусом R = 10 м движется точка. В некоторый момент времени нормальное ускорение точки $a_n = 4.9 \text{ m/c}^2$; в этот момент векторы полного и нормального ускорений образуют угол $\varphi = 60^\circ$. Найти скорость υ и тангенциальное ускорение a_τ точки. (7 м/с; 8,5 м/с²)

- **1.16.** Колесо вращается по закону $\varphi = \varphi_0 + Bt^3$, где B = 2рад/ c^3 . В момент t = 1с найти угол между скоростью и полным ускорением точек колеса. (84°)
- **1.17.** Материальная точка движется в плоскости (xy) с ускорением $a_x = -R\omega^2 \sin \omega t$; $a_y = -R\omega^2 \cos \omega t$, где R и ω постоянные величины. Найти скорость точки, уравнение траектории и закон движения. Константы интегрирования положить равными нулю. $(\upsilon = \omega R; \ x^2 + y^2 = R^2; \ s = R\omega t)$
- **1.18.** Точка движется по окружности радиусом 20 см с постоянным тангенциальным ускорением 5 см/ c^2 . Через какое время после начала движения нормальное ускорение будет равно тангенциальному? (2 с)
- **1.19.** Материальная точка начинает двигаться по окружности радиусом r = 10 см с постоянным касательным ускорением $a_{\tau} = 0.4 \,\mathrm{m/c^2}$. Через какой промежуток времени вектор ускорения \vec{a} образует с вектором скорости \vec{v} угол $\beta = 60^{\circ}$? Какой путь пройдет за это время движущаяся точка? $(6.6 \,\mathrm{c}; 8.7 \,\mathrm{m})$
- **1.20.** Маховик радиусом R = 50см начинает вращаться так, что касательное ускорение точек на ободе колеса равно $a_{\tau} = At$, где A = 0.5 м/с³. Найти нормальное ускорение точек на ободе маховика через t = 1.3с после начала вращения. (0.4 м/c^2)
- **1.21.** Колесо вращается по закону $\varphi = At^3$, где A = 1,2 рад/с 3 . В момент t = 1,5с касательное ускорение точки на ободе колеса $a_\tau = 12$ м/с. Найти радиус колеса. (1,1 м)

ЗАДАЧИ (ПОВЫШЕННЫЙ УРОВЕНЬ)

1.1*. Частица, покинув источник, пролетает с постоянной скоростью расстояние L, а затем тормозит с ускорением a. При какой скорости частицы время движения от ее вылета до остановки будет наименьшим? $(\upsilon = \sqrt{aL})$

- **1.2*.** Упругое тело падает с высоты h на наклонную плоскость. Определить, через какое время t после отражения тело упадет на наклонную плоскость повторно. Как время падения зависит от угла наклонной плоскости? $\left(t=2\sqrt{\frac{2h}{g}};$ не зависит $\right)$
- **1.3*.** Из неподвижного облака через τ секунд одна за другой начинают падать две дождевые капли. Найти, как будет изменяться со временем расстояние между каплями. Рассмотреть два случая: не учитывая силу сопротивления и считая, что сила сопротивления пропорциональна скорости капель. β коэффициент сопротивления воздуха, m масса капли, υ_0 скорость установившегося движения

капель.
$$\left(\Delta S = g\tau \left(t + \frac{\tau}{2}\right); \Delta S = \upsilon_0 \left[\tau + \frac{m}{\beta} e^{-\frac{\beta}{m}\tau} \left(1 - e^{-\frac{\beta}{m}\tau}\right)\right]\right)$$

- **1.4*.** По ровному прямолинейному шоссе с ускорением a_1 и a_2 движутся два автомобиля. Контрольный пункт второй автомобиль проходит через 14 с после первого. Замер скоростей в контрольном пункте дал следующие результаты: скорость первого автомобиля была 22 м/с, скорость второго 10 м/с. Через какое время второй автомобиль догонит первый? $(t_1 = 51c, t_2 = 3c)$
- **1.5*.** Наклон сопки к горизонту составляет 36°. Под таким же углом с неё бросают камень с начальной скоростью 5 м/с. Найти уравнение траектории и определить, на каком расстоянии от точки

бросания упадет камень.
$$\left(y = y_0 + tg\alpha(x - x_0) - \frac{g}{2v_0^2\cos^2\alpha}(x - x_0)^2\right)$$

ЗАНЯТИЕ 2

ДИНАМИКА МАТЕРИАЛЬНОЙ ТОЧКИ, ЗАКОН СОХРАНЕНИЯ ИМПУЛЬСА И ЭНЕРГИИ

ОСНОВНЫЕ ФОРМУЛЫ

1. Ускорение тела \vec{a} пропорционально результирующей силе \vec{F} , действующей на тело, и обратно пропорционально массе тела m: $\vec{F} = m\vec{a}$ — второй закон Ньютона (основной закон динамики).

Результирующая сила равна векторной сумме действующих сил: $\overrightarrow{F} = \overrightarrow{F}_1 + \overrightarrow{F}_2 + ... + \overrightarrow{F}_n$.

- **2. Третий закон Ньютона**: силы, с которыми два тела взаимодействуют друг с другом, равны по величине и противоположны по направлению: $\vec{F}_1 = -\vec{F}_2$.
 - 3. Представим второй закон Ньютона в следующем виде:

$$\overrightarrow{F} = m \frac{d\overrightarrow{v}}{dt} = \frac{d(m\overrightarrow{v})}{dt} = \frac{d\overrightarrow{p}}{dt}$$
, если $\overrightarrow{F} = 0$, то импульс системы $\overrightarrow{p} = const$ – закон сохранения импульса.

4. Элементарная работа dA на каждом участке ds составит $dA = F \cdot ds \cos \alpha$.

Работа на всём участке траектории движения $A = \int\limits_{s_1}^{s_2} F \cdot ds \cos \alpha = \int\limits_{s_1}^{s_2} F_s ds \; , \; \text{где} \; F_s \; - \; \text{проекция силы} \; \overrightarrow{F} \; \text{ на направление}$ перемещения $d \, \overrightarrow{s} \, .$

- **5.** Средняя мощность за интервал времени Δt : $\langle N \rangle = \frac{\Delta A}{\Delta t}$. Мгновенная мощность: $N = \frac{dA}{dt}$, или N = F υ cos α.
- **6.** Для тела массой m, движущегося со скоростью υ , кинетическая энергия $E_{\rm k} = \frac{m \upsilon^2}{2} = \frac{p^2}{2m}$.

- **7.** Работа по перемещению частицы в однородном поле тяготения равна $A = mgh_1 mgh_2$, а потенциальная энергия этого силового поля U = mgh.
- **8.** Работа по отклонению частицы в упругом силовом поле $A = \int\limits_{x_1}^{x_2} F \cdot dx = \int\limits_{x_1}^{x_2} -kx dx = \frac{kx_1^2}{2} \frac{kx_2^2}{2}$. Таким образом, потенциальная энергия частицы в упругом силовом поле имеет следующее выражение: $U = \frac{kx^2}{2}$.
- **9.** Сила равна градиенту потенциальной энергии частицы в данной точке, взятому со знаком «минус»: $\overrightarrow{F} = -\overrightarrow{grad}\,U = -\vec{\nabla}\,U$. Данное соотношение позволяет определить силу \overrightarrow{F} по заданной потенциальной энергии U(x,y,z).
- 10. Полная механическая энергия замкнутой системы тел остается величиной постоянной, если силы, действующие в системе являются консервативными. $E_k + U = const$ закон сохранения механической энергии. (консервативными называются силы, работа которых зависит только от начального и конечного положения тела и не зависит от траектории пути).
- **11.** Применим закон сохранения импульса и закон сохранения энергии к двум типам взаимодействия:
 - 1. Центральный абсолютно упругий удар:

$$\begin{cases} \frac{m_1 v_1^2}{2} + \frac{m_2 v_2^2}{2} = \frac{m_1 u_1^2}{2} + \frac{m_2 u_2^2}{2} \\ \vec{m_1 v_1} + \vec{m_2 v_2} = \vec{m_1 u_1} + \vec{m_2 u_2} \end{cases}$$

2. Центральный абсолютно неупругий удар:

$$\begin{cases} A_{\pi} = \frac{m_1 v_1^2}{2} + \frac{m_2 v_2^2}{2} - \frac{(m_1 + m_2)u^2}{2} \\ m_1 \vec{v}_1 + m_2 \vec{v}_2 = (m_1 + m_2)\vec{u} \end{cases}$$

12. Моментом импульса относительно некоторой точки О называется вектор \vec{L} , равный векторному произведению радиусавектора материальной точки \vec{r} , проведенного от точки О до частицы, на ее импульс $\vec{p} = m\vec{\upsilon}$: $\vec{L} = |\vec{r} \ \vec{p}|$.

Момент импульса замкнутой системы материальных точек остается постоянным во времени:

 $\vec{L} = \vec{L}_1 + \vec{L}_2 + ... + \vec{L}_n = const$ – закон сохранения момента импульса.

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

- 1. Законы Ньютона.
- 2. Импульс. Закон сохранения импульса.
- 3. Центр инерции. Движение центра инерции.
- 4. Работа. Мощность. Потенциальные, непотенциальные, диссипативные силы.
 - 5. Кинетическая энергия.
- 6. Потенциальная энергия. Потенциальная энергия однородного поля. Потенциальная энергия упругих сил.
 - 7. Связь между силой и потенциальной энергией.
- 8. Закон сохранения механической энергии. Рассеяние механической энергии.
 - 9. Потенциальные кривые. Равновесие материальной точки.
- 10. Движение материальной точки в поле потенциального барьера и потенциальной ямы.

ЗАДАЧИ (БАЗОВЫЙ УРОВЕНЬ)

2.1. В установке массы тел равны $m_1 = m_2 = m_3$, массы блока и нитей пренебрежимо малы и трения в блоке нет. Найти ускорение тел, если коэффициент трения между телами m_1 и m_2 и горизонтальной поверхностью $\mu = 0,1.$ $(2,6 \text{ M/c}^2)$

К задаче 2.1

2.2. Гладкий резиновый шнур, длина которого $l=1,0\,\mathrm{M}$ и коэффициент упругости $k=100\,\mathrm{H/M}$, подвешен одним концом к точке O. На другом конце имеется упор B. Из точки O начинает падать муфта A массой $m=100\,\mathrm{r}$. Пренебрегая массами шнура и упора, найти максимальное растяжение шнура. (15 см)

К задаче 2.2

- **2.3.** Материальная точка массой m=2 кг движется под действием некоторой силы F согласно уравнению $x=A+Bt+Ct^2+Dt^3$, где $C=1\,\mathrm{m/c^2},\ D=-0.2\,\mathrm{m/c^3}.$ Найти значения этой силы в моменты времени $t_1=2\,\mathrm{c}$ и $t_2=5\,\mathrm{c}$. В какой момент времени сила равна нулю? (- 0,8H, 8H; 0 при $t=1,67\,\mathrm{c}$)
- **2.4.** Тело массой m = 1,0кг покоится в начале координат. На него начинает действовать сила $F_x = kx^2$, где k = 6H/м 2 . Какую скорость приобретет тело, пойдя расстояние S = 1,0м? (2 м/с)
- **2.5.** На покоящееся тело массой m = 1,5 кг начинает действовать сила F = kt, где k = 60 H/c. Какой путь пройдет тело за время t = 2,4c? (9,2 м)
- **2.6.** Шарик массой m=300 г ударился о стену и отскочил от нее. Определить импульс p_1 , полученный стеной, если в последний момент перед ударом шарик имел скорость $\upsilon_0=10\,\mathrm{m/c}$, направленную под углом $\alpha=30^\circ$ к поверхности стены. Удар считать абсолютно упругим. (3 H·c)
- **2.7.** Шар массой $m_1 = 200 \, \Gamma$, движущийся со скоростью $\upsilon_1 = 10 \, \text{м/c}$, ударяет неподвижный шар массой $m_2 = 800 \, \Gamma$. Удар прямой, абсолютно упругий. Каковы будут скорости u_1 и u_2 шаров после удара? (-6 м/c; 4 м/c)
- **2.8.** Зависимость импульса частицы массой m=1кг от времени описывается законом $\vec{p}=3t\vec{i}+9t^2\vec{j}$. Чему равна проекция силы F_y в момент времени t=2с? (12 H)

- **2.9.** Брусок массой $m_2 = 5$ кг может свободно скользить по горизонтальной поверхности без трения. На нем находится другой брусок массой $m_1 = 1$ кг. Коэффициент трения соприкасающихся поверхностей брусков $\mu = 0,3$. Определить максимальное значение силы $F_{\rm max}$, приложенной к нижнему бруску, при которой начнется соскальзывание верхнего бруска. (17,7 H)
- **2.10.** Небольшая шайба массой m_1 без начальной скорости соскальзывает с гладкой горки высотой h и попадает на доску массой m_2 , лежащую у основания горки на гладкой горизонтальной

плоскости. Вследствие трения между шайбой и доской шайба тормозится и начиная с некоторого момента движется вместе с доской как единое целое. Найти работу сил трения.

К задаче 2.10

$$\left(A = \frac{m_1 m_2 g h}{m_1 + m_2}\right)$$

- **2.11.** Какой продолжительности должны быть сутки на Земле, чтобы человек на экваторе стал невесомым? Радиус Земли считать равным 6400 км. (1 ч. 25 мин.)
- **2.12.** Диск радиусом R = 40 см вращается вокруг вертикальной оси. На краю диска лежит кубик. Принимая коэффициент трения $\mu = 0,4$, найти частоту ν вращения, при которой кубик соскользнет с диска. $(0,5 \text{ c}^{-1})$
- **2.13.** С какой наименьшей высоты h должен начать скатываться акробат на велосипеде (не работая ногами), чтобы проехать по дорожке, имеющей форму «мертвой петли» радиусом R=4 м, и не оторваться от дорожки в верхней точке петли? Трением пренебречь. (10 м)

- **2.14.** Стальной шарик массой m = 20г, падая с высоты $h_1 = 1$ м на стальную плиту, отскакивает от нее на высоту $h_2 = 81$ см. Время соприкосновения шарика с плитой $\tau = 0,01$ с. Найти импульс, полученный плитой за время удара, количество тепла, выделившееся при ударе, среднюю силу, действующую на шарик. (0,17 кг·м/с; 0,038 Дж; 17 Н)
- **2.15.** По горизонтальной дороге с постоянной скоростью едет тележка. На передний край тележки, когда она проезжала около дворника, он положил кирпич массой m. При какой длине тележки кирпич не соскользнет с неё, если коэффициент трения μ , масса

тележки
$$M$$
 . Размерами кирпича пренебречь. $\left(l \ge \frac{M \upsilon_0^2}{2 \mu g (M+m)}\right)$

- **2.16.** Найти работу A подъема груза по наклонной плоскости длиной l=2 м, если масса m груза равна 100 кг, угол наклона $\phi=30^{\circ}$, коэффициент трения $\mu=0,1$ и груз движется с ускорением a=1 м/с 2 . (1,35 кДж)
- **2.17.** Вычислить работу A, совершаемую на пути $s=12\,\mathrm{m}$ равномерно возрастающей силой, если в начале пути сила $F_1=10\,\mathrm{H}$, в конце пути $F_2=46\,\mathrm{H}$. (336 Дж)
- **2.18.** За 1,0 с тело под действием силы $F_x = kx^3$, где k = 1,2 Н/м 3 , переместилось из точки $x_1 = 2,2$ м в точку $x_2 = 3,3$ м. Чему равна средняя мощность, развиваемая этой силой? (28 Вт)
- **2.19.** Насос выбрасывает струю воды диаметром d=2 см со скоростью $\upsilon=20$ м/с. Найти мощность N, необходимую для выбрасывания воды. (1,26 кВт)
- **2.20.** Ядро атома распадается на два осколка массами $m_1 = 1,6 \cdot 10^{-25}$ кг и $m_2 = 2,4 \cdot 10^{-25}$ кг. Определить кинетическую энергию T_2 второго осколка, если энергия T_1 первого осколка равна 18 нДж. (12 нДж)
- **2.21.** Пуля, летящая горизонтально, попадает в шар, подвешенный на невесомом жестком стержне, и застревает в нем. Масса пули

- $m_1 = 5.0$ г, масса шара $m_2 = 50$ г. Скорость пули $\upsilon_1 = 50$ м/с. При каком расстоянии от точки подвеса до центра шара шар от удара пули поднимется до верхней точки? (0,5 м)
- **2.22.** Тело падает с высоты 240 м и углубляется в песок на 0,2 м. Определить среднюю силу сопротивления почвы, если тело массой 1 кг начало падать со скоростью 14 м/с. (289 H)
- **2.23.** Молотком, масса которого $m_1 = 1 \, \text{кг}$, забивают в стену гвоздь массой $m_2 = 75 \, \text{г}$. Определить КПД η удара молотка при данных условиях. (0.93)

ЗАДАЧИ (ПОВЫШЕННЫЙ УРОВЕНЬ)

2.1*. В системе массы тел равны m_1 , m_2 , m_3 , трения нет, массы блоков и нитей пренебрежимо малы. Найти ускорение тела

$$m_1$$
. $\left(a_1 = \frac{4m_1m_2 + m_3(m_1 - m_2)}{4m_1m_2 + m_3(m_1 + m_2)}g\right)$

К задаче 2.1*

2.2*. Невесомый блок укреплен на вершине двух наклонных плоскостей, составляющих с горизонтом углы $\alpha = 30^{\circ}$ и $\beta = 45^{\circ}$. Гири равной массы соединены нитью, перекинутой через блок. Найти ускорение, с которым

движутся гири. Коэффициент трения гирь о плоскость $\mu = 0.1$. (0,24 m/c^2)

2.3*. Катер массой m=2 т с двигателем мощностью N=50 кВт развивает максимальную скорость $\upsilon_{\max}=25$ м/с. Определить время t, в течение которого катер после выключения двигателя потеряет половину своей скорости. Принять, что сила сопротивления

движению катера изменяется пропорционально квадрату скорости. (25 с)

- **2.4*.** Снаряд массой $m=10\,\mathrm{kr}$ выпущен из зенитного орудия вертикально вверх со скоростью $\upsilon_0=800\,\mathrm{m/c}$. Считая силу сопротивления воздуха пропорциональной скорости, определить время t подъема снаряда до высшей точки. Коэффициент сопротивления $k=0.25\,\mathrm{kr/c}$. (44,5 c)
- **2.5*.** Моторная лодка массой m = 400 кг начинает двигаться по озеру. Сила тяги F мотора равна 0,2 кН. Считая силу сопротивления F_c пропорциональной скорости, определить скорость υ лодки через $\Delta t = 20$ с после начала ее движения. Коэффициент сопротивления k = 20 кг/с . (6,3 м/с)
- **2.6*.** Частица массы m находится в силовом поле вида $\vec{F} = -\frac{a}{r^2}\vec{e}_r$, где a>0 положительная константа, r модуль, а \vec{e}_r орт радиус-вектора частицы. Частицу поместили в точку с радиусвектором \vec{r}_0 и сообщили ей начальную скорость $\vec{\upsilon}_0$, перпендикулярную к \vec{r}_0 . По какой траектории будет двигаться частица? (зависит от полной энергии частицы: $\upsilon_0>\sqrt{2a/mr_0}$ по гиперболе, $\upsilon_0=\sqrt{2a/mr_0}$ по параболе, $\upsilon_0<\sqrt{2a/mr_0}$ по эллипсу)
- **2.7*.** Горизонтальный диск начинают раскручивать вокруг его оси с угловой скоростью, возрастающей со временем по закону $\omega = at^2$, где a- константа. При какой угловой скорости ω_1 тело, расположенное на расстоянии r от оси диска, начнет соскальзывать с него, если коэффициент трения между ними равен μ ? ($\omega_1 = 0$, если $\varepsilon > \mu g/r$; $\omega_1 = \left(\mu^2 g^2/r^2 \varepsilon^2\right)^{1/4}$, если $\varepsilon < \mu g/r$)
- **2.8*.** На тележке массой $m_1 = 20 \, \mathrm{kr}$, которая может свободно перемещаться вдоль горизонтальных рельсов, лежит брусок массой $m_2 = 5 \, \mathrm{kr}$. Коэффициент трения между бруском и тележкой $\mu = 0,2$. Брусок тянут с силой F = ct параллельно рельсам. Найти ускорение

бруска и тележки, если $c=4,0\,\mathrm{H/c}$. Построить график зависимости ускорения от времени a(t). (при $a_1=a_2=a=\frac{ct}{m_1+m_2}$; при t>3,1с $a_1=0,5\,\mathrm{m/c}^2,\ a_2=\frac{ct}{m_2}-\mu g$)

ЗАНЯТИЕ З ДИНАМИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ ТВЕРДОГО ТЕЛА

ОСНОВНЫЕ ФОРМУЛЫ

- **1.** Момент M силы F относительно какой-нибудь точки определяется формулой M = Fl, где l- длина перпендикуляра, опущенного из этой точки на прямую, вдоль которой действует сила (плечо силы).
- **2.** Равновесие, или равномерное вращение рычага, без трения определяется соотношением:

$$F_1l_1 = F_2l_2$$
, где F_1 и F_2 – силы, а l_1 и l_2 – их плечи.

3. Основной закон динамики вращательного движения:

 $M = J \frac{d\omega}{dt} = J \epsilon$, где J- момент инерции твердого тела относительно его оси вращения, $\omega-$ угловая скорость, t- время вращения и $\epsilon-$ угловое ускорение.

- **4.** Моментом инерции материальной точки относительно оси называется величина $J=mR^2$, где m масса материальной точки, R расстояние от точки до оси.
 - 5. Момент инерции твердого тела относительно оси вращения:
 - $J = \int r^2 dm$, где интегрирование выполняется по всему объему тела.
- **6.** Выражения для момента инерции некоторых тел правильной формы **относительно оси вращения, проходящей через центр масс**, приведены в таблице.

Обруч (тонкостенный цилиндр)	$J_0 = mR^2$	R – радиус обруча
	· ·	(цилиндра)
Диск (сплошной однородный	$I = \frac{1}{mP^2}$	R – радиус диска
цилиндр)	$J_0 = \frac{1}{2}mR^2$	(цилиндра)
Шар	$J_0 = \frac{2}{5}mR^2$	R – радиус шара
Стержень	$J_0 = \frac{1}{12}ml^2$	l – длина стержня

7. Момент инерции тела относительно произвольной оси равен сумме момента инерции относительно оси, параллельной данной и проходящей через центр масс, и произведения массы тела на квадрат расстояния между осями:

$$J = J_0 + ma^2$$
 – теорема Штейнера.

- **8.** Кинетическая энергия вращающегося тела: $E_{\rm Bp} = \frac{J\omega^2}{2}$, где ω угловая скорость.
- **9.** Работа при постоянном вращающем моменте $M: dA = Md\phi$, где ϕ угол поворота.
 - **10.** Мощность при вращении тела: $N = M\omega$.
- **11.** Для системы при отсутствии действия внешних вращающих моментов справедлив закон сохранения суммы моментов импульсов $\sum J_i \omega_i = const$, где $J_i \omega_i = L$ момент импульса материальной точки.
- **12.** Угловая скорость $\omega_{\rm np}$ прецессии гироскопа: $\omega_{\rm np} = \frac{M}{L \sin \beta}$, где β угол наклона оси вращения.

При сопоставлении уравнения динамики вращательного движения с уравнениями динамики поступательного движения имеем:

Поступательное движение	Вращательное движение		
Основной закон динамики			
F = ma	$M=J$ ε		
$F\Delta t = mv_2 - mv_1$	$M\Delta t = J \omega_2 - J\omega_1$		

Закон сохранения		
импульса	момента импульса	
$\sum_{i=1}^{n} m_i v_i = const$	$\sum_{i=1}^{n} J_i \omega_i = const$	
Работа и мощность		
dA = Fds	$dA = Md\varphi$	
N = Fv	$N = M\omega$	
Кинетическая энергия		
$E_{\rm K} = \frac{mv^2}{2}$	$E_{\rm K} = \frac{J\omega^2}{2}$	
L_{κ} 2	$\mathcal{L}_{\kappa} = 2$	

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

- 1. Момент силы и момент импульса относительно точки и оси. Момент импульса вращающегося тела.
 - 2. Момент инерции материальной точки и тела.
 - 3. Момент инерции тел правильной формы.
 - 4. Работы при вращательном движении.
 - 5. Кинетическая энергия тела.
 - 6. Теорема об изменении момента импульса.
 - 7. Основное уравнение вращательного движения тела.
 - 8. Закон сохранения момента импульса.
 - 9. Свободные оси.
 - 10. Гироскоп. Прецессия.

ЗАДАЧИ (БАЗОВЫЙ УРОВЕНЬ)

- **3.1.** Два маленьких шарика массой $m=10\,\mathrm{\Gamma}$ каждый скреплены тонким невесомым стержнем длиной $l=20\,\mathrm{cm}$. Определить момент инерции J системы относительно оси, перпендикулярной стержню и проходящей через центр масс. $(2\cdot 10^{-4}\,\mathrm{kr}\cdot\mathrm{m}^2)$
- **3.2.** Определить момент инерции J тонкого однородного стержня длиной $l=60\,\mathrm{cm}$ и массой $m=100\,\mathrm{r}$ относительно оси, перпендикулярной ему и проходящей через точку стержня, удаленную на $a=20\,\mathrm{cm}$ от одного из его концов. $(4\cdot 10^{-3}\,\mathrm{kr}\cdot\mathrm{m}^2)$

- **3.3.** Найти момент инерции J тонкого однородного кольца радиусом R = 20 см и массой m = 100 г относительно оси, лежащей в плоскости кольца и проходящей через его центр. $(2 \cdot 10^{-3} \,\mathrm{kr} \cdot \mathrm{m}^2)$
- **3.4.** Диаметр диска $d = 20 \, \text{см}$, масса $m = 800 \, \text{г}$. Определить момент инерции J диска относительно оси, проходящей через середину одного из радиусов перпендикулярно плоскости диска. $(6 \cdot 10^{-3} \, \text{kr} \cdot \text{m}^2)$
- **3.5.** В однородном диске массой $m=1\,\mathrm{kr}$ и радиусом $R=10\,\mathrm{cm}$ вырезано круглое отверстие диаметром $d=20\,\mathrm{cm}$, центр которого находится на расстоянии $l=15\,\mathrm{cm}$ от оси диска. Найти момент инерции J полученного тела относительно оси, проходящей перпендикулярно плоскости диска через его центр. $(4,19\cdot 10^{-2}\,\mathrm{kr}\cdot\mathrm{m}^2)$
- **3.6.** Найти момент инерции J плоской однородной прямоугольной пластины массой m = 800 г относительно оси, совпадающей с одной из ее сторон, если длина другой стороны равна 40 см. $(4.27 \cdot 10^{-2} \,\mathrm{kr} \cdot \mathrm{m}^2)$

3.7. Массы тел и однородного сплошного блока одинаковы. Коэффициент трения тела о стол $\mu = 0.5$. Чему равно ускорение тел? (1.96 M/c^2)

К задаче 3.7

- **3.8.** Тонкий однородный стержень длиной l = 50 см и массой m = 400 г вращается с угловым ускорением $\varepsilon = 3$ рад/с² около оси, проходящей перпендикулярно стержню через его середину. Определить вращающий момент M. $(0,025 \, \mathrm{H} \cdot \mathrm{M})$
- К задаче 3.9 **3.9.** На однородный сплошной блок намотана невесомая нить. Верхний конец нити закреплен. Чему равно натяжение нити? Масса блока m = 3.0кг. (9,8 H)

3.10. Вал массой $m = 100 \,\mathrm{kr}$ и радиусом $R = 5 \,\mathrm{cm}$ вращался с частотой $v = 8 \,\mathrm{c}^{-1}$. К цилиндрической поверхности вала прижали тормозную колодку с силой $F = 40 \,\mathrm{H}$, под действием которой вал остановился через $t = 10 \,\mathrm{c}$. Определить коэффициент трения μ . (0,31)

3.11. Масса однородного сплошного блока $m_3 = 4.0 \, \mathrm{kr}$, радиус $R = 10 \, \mathrm{cm}$. Массы грузов m_1 и m_2 равны 2,5 кг и 0,9 кг соответственно. Скольжения нити и трения в оси блока нет. Найти угловое ускорение блока. (29 рад/с)

К задаче 3.11

- **3.12.** На однородный барабан радиусом R = 20см, момент инерции которого J = 0,1 кг \cdot м 2 , намотан невесомый шнур. К шнуру привязан груз массой m = 0,5кг. До начала вращения барабана высота груза над полом h = 1м. Найти, через какое время груз опустится до пола. Трением пренебречь. (1,1 с; 0,8 Н)
- **3.13.** Величина момента импульса тела относительно неподвижной оси изменяется по закону $L(t) = -\frac{1}{3}t^3 + 4t$. Найти величину момента сил действующих на тело в момент времени t=2c. (0)
- **3.14.** Шар массой $m=10\,\mathrm{kr}$ и радиусом $R=20\,\mathrm{cm}$ вращается вокруг оси, проходящей через его центр. Уравнение вращения шара имеет вид $\phi = A + Bt^2 + Ct^3$, где $B=4\,\mathrm{pag/c^2}$, $C=-1\,\mathrm{pag/c^3}$. Найти закон изменения момента сил, действующих на шар. Определить момент сил M в момент времени $t=2\,\mathrm{c}$. $(-0.64\,\mathrm{H\cdot m})$
- **3.15.** Человек стоит на скамье Жуковского и ловит рукой мяч массой m=0,4 кг , летящий в горизонтальном направлении со скоростью $\upsilon=20$ м/с . Траектория мяча проходит на расстоянии r=0,8 м от вертикальной оси вращения скамьи. С какой угловой скоростью начнет вращаться скамья Жуковского с человеком, поймавшим мяч, если

суммарный момент инерции J человека и скамьи равен $6\,\mathrm{kr}\cdot\mathrm{m}^2$? $(1,02\,\mathrm{pag/c})$

- **3.16.** Платформа в виде диска радиусом R = 1 м вращается по инерции с частотой v = 6 мин⁻¹. На краю платформы стоит человек, масса m которого равна 80 кг. С какой частотой v будет вращаться платформа, если человек перейдет в ее центр? Момент инерции J платформы равен $120 \, \mathrm{kr} \cdot \mathrm{m}^2$. Момент инерции человека рассчитывать так же, как для материальной точки. $(10 \, \mathrm{muh}^{-1})$
- **3.17.** Человек массой $m_1 = 60$ кг находится на неподвижной платформе массой $m_2 = 100$ кг. С какой угловой скоростью будет вращаться платформа, если человек будет двигаться по окружности радиусом r = 5м вокруг оси вращения? Скорость движения человека относительно платформы u = 4км/ч. Радиус платформы R = 10м. Считать платформу однородным диском, а человека точечной массой. (-0,05 рад/с)
- **3.18.** Маховик вращается по закону, выражаемому уравнением $\varphi = A + Bt + Ct^2$, где A = 2 рад, B = 32 рад/с, C = -4 рад/с. Найти среднюю мощность $\langle N \rangle$, развиваемую силами, которые действуют на маховик при его вращении, до остановки, если его момент инерции $J = 100 \, \mathrm{kr} \cdot \mathrm{m}^2$. (12,8 кВт)
- **3.19.** Медный шар $\left(\rho = 8930 \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}\right)$ радиусом 10 см вращается со скоростью 2 об/с вокруг оси, проходящей через его центр. Какую работу надо совершить, чтобы увеличить угловую скорость шара вдвое? (34 Дж)
- **3.20.** Снаряд имеет вид цилиндра диаметром 0,06 м. Он летит со скоростью $\upsilon = 400$ м/с и вращается, делая 500 об/с. Найти его полную кинетическую энергию, если масса снаряда m = 30 кг. $(241,7 \cdot 10^4 \, \text{Дж})$
- **3.21.** Мотор начинает вращать маховик с ускорением $\varepsilon = At$, где A = 1рад/ c^3 . Момент инерции маховика J = 12кг·м², КПД установки

- $\eta = 0.9$. Определить мощность, развиваемую мотором через t = 2 с после начала вращения. (53 Вт)
- **3.22.** Обруч и сплошной цилиндр, имеющие одинаковую массу m=2 кг, катятся без скольжения с одинаковой скоростью $\upsilon=5$ м/с. Найти кинетические энергии этих тел. (50 Дж, 37,5 Дж)
- **3.23.** Вентилятор вращается с частотой n=20об/с. После выключения вентилятор, вращаясь равнозамедленно, сделал до остановки N=32об. Работа сил торможения равна A=-800Дж. Найти момент инерции вентилятора и момент сил торможения. (0,01кг·м²; -0,094 Н·м)
- **3.24.** В течение какого времени t будет скатываться без скольжения обруч с наклонной плоскости длиной l=2 м и высотой h=10 см ? (4,04 с)

ЗАДАЧИ (ПОВЫШЕННЫЙ УРОВЕНЬ)

- **3.1*.** Два диска с моментом инерции $J_1 = 2.0\,\mathrm{kr}\cdot\mathrm{m}^2$ и $J_2 = 3.0\,\mathrm{kr}\cdot\mathrm{m}^2$ вращаются вокруг вертикальной оси с угловыми скоростями $\omega_1 = 3.0\,\mathrm{pag/c}$ и $\omega_2 = 5.0\,\mathrm{pag/c}$. Верхний диск с небольшой высоты упал на нижний. Найти работу сил трения. (-2,4 Дж)
- **3.2*.** Однородный стержень весом P = 8Н может вращаться вокруг горизонтальной оси, проходящей через его конец. Стержень отвели до горизонтального положения и отпустили. Чему равно

давление стержня на ось в этот момент? Чему равно давление стержня на ось в нижнем положении? (2 H; 20 H)

3.3*. Массы тел и однородного сплошного блока одинаковы. Коэффициент трения тела о наклонную плоскость $\mu = 0.5$, угол плоскости с горизонтом $\alpha = 60^{\circ}$. Чему равно ускорение тел? (2.9 м/c^2)

К задаче 3.3*

3.4*. На горизонтальной плоскости лежит катушка ниток. Ее тянут за нитку, как показано на рисунке. При каких углах α катушка станет ускоряться в сторону нити? $(\cos \alpha > \frac{r}{R})$

К задаче 3.4*

3.5*. На горизонтальной плоскости стоит куб массой m. С какой минимальной силой и под каким углом к горизонту надо тянуть куб за верхнее ребро, чтобы он начал опрокидываться без проскальзывания, если коэффициент трения куба о плоскость μ ?

$$\begin{cases} F = mg/2, \alpha = 0 & \text{при } \mu \ge 1/2 \\ F = \frac{mg}{2\mu} \sqrt{5\mu^2 - 4\mu + 1}, tg\alpha = \frac{1 - 2\mu}{\mu} & \text{при } \mu < 1/2 \end{cases}$$

ЗАНЯТИЕ 4 МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ И ВОЛНЫ

ОСНОВНЫЕ ФОРМУЛЫ

1. Уравнение гармонического колебательного движения имеет вид:

$$x = A\sin(\omega t + \varphi_0) = A\sin(2\pi v t + \varphi_0) = A\sin\left(\frac{2\pi t}{T} + \varphi_0\right),$$

где x — смещение точки от положения равновесия, A — амплитуда колебаний, T — период колебаний, ϕ_0 — начальная фаза колебаний,

$$u = \frac{1}{T}$$
 – частота колебаний, $ω = \frac{2\pi}{T}$ – угловая частота.

2. Скорость точки, совершающей колебания,

$$\upsilon = \frac{dx}{dt} = A\omega\cos(\omega t + \varphi_0).$$

3. Ускорение

$$a = \frac{dv}{dt} = -A\omega^2 \sin(\omega t + \varphi_0).$$

4. Сила, под действием которой точка массой m совершает гармоническое колебание,

$$F = ma = -m A\omega^{2} \sin(\omega t + \varphi_{0}) = -m\omega^{2} x = -kx,$$

где
$$k=m\omega^2=m\frac{4\pi^2}{T^2}$$
, откуда $T=2\pi\sqrt{\frac{m}{k}}$, здесь $k-$ коэффициент,

численно равный силе, вызывающей смещение, равное единице.

$$T=2\pi\sqrt{\frac{l}{g}}$$
 — период колебаний математического маятника,

$$T=2\pi\sqrt{\frac{l_{np}}{g}}$$
 – период колебания физического маятника,

здесь $l_{np}=\frac{J}{ma}$, где J- момент инерции маятника относительно оси колебания, a- расстояние центра масс маятника до оси колебания.

Центром масс (или центром инерции) тела называют точку C, положение которой задается радиус-вектором \vec{r}_c , определяемым по формуле:

$$\vec{r}_c = \frac{\vec{m_1 r_1} + \vec{m_2 r_2} + \dots + \vec{m_n r_n}}{\vec{m_1} + \vec{m_2} + \dots + \vec{m_n}} = \frac{\sum \vec{m_i r_i}}{m}.$$

5. Кинетическая энергия колеблющейся точки

$$E_{\kappa} = \frac{mv^2}{2} = \frac{m}{2} \frac{4\pi^2 A^2}{T^2} \cos^2(\omega t + \varphi_0).$$

6. Потенциальная энергия

$$E_n = \frac{kx^2}{2} = \frac{m}{2} \frac{4\pi^2 A^2}{T^2} \sin^2(\omega t + \varphi_0).$$

- 7. Полная энергия $E = E_{\kappa} + E_n = \frac{2\pi^2 A^2 m}{T^2}$.
- **8.** Уравнение затухающего колебательного движения имеет вид (при достаточно малом δ)

$$x = Ae^{-\delta t}\sin(\omega t + \varphi_0)$$
, где δ – коэффициент затухания.

Величина $\delta T = \chi$ – логарифмический декремент затухания.

9. При **сложении** двух **одинаково направленных** гармонических колебаний одинакового периода получается гармоническое колебание того же периода с амплитудой

$$A = \sqrt{{A_1}^2 + {A_2}^2 + 2A_1A_2\cos(\varphi_2 - \varphi_1)}$$

и с начальной фазой, определяемой из уравнения

$$tg\varphi = \frac{A_1 \sin \varphi_1 + A_2 \sin \varphi_2}{A_1 \cos \varphi_1 + A_2 \cos \varphi_2},$$

где A_1 и A_2 — амплитуды слагаемых колебаний, ϕ_1 и ϕ_2 — их начальные амплитуды.

10. При сложении двух перпендикулярных колебаний одинакового периода уравнение траектории результирующего движения имеет вид

$$\frac{x^2}{A_1^2} + \frac{y^2}{A_2^2} - \left(\frac{2xy}{A_1A_2}\right)\cos(\varphi_2 - \varphi_1) = \sin^2(\varphi_2 - \varphi_1).$$

11. При распространении незатухающих колебаний со скоростью υ вдоль некоторого направления, называемого лучом, смещение любой точки, лежащей на луче и отстоящей от источника колебаний на расстояние r, определяется уравнением

$$\xi(x,t) = A\sin\omega\left(t - \frac{r}{\upsilon}\right) = A\sin(\omega t - kr),$$
 где $k = \frac{2\pi}{\lambda}$ – волновое

число, $\lambda = \upsilon T$ – длина волны.

12. Две точки, лежащие на луче на расстоянии r_1 и r_2 от источника колебаний, имеют разность фаз

$$\phi_2 - \phi_1 = 2\pi \frac{r_2 - r_1}{\lambda}$$
.

- 13. При интерференции колебаний:
- максимум амплитуды результирующего колебания получается при условии

$$r_2-r_1=2n\frac{\lambda}{2}$$
 $(n=0,1,2,...),$ где $r_2-r_1=\Delta-$ разность кода лучей.

- минимум амплитуды получается при условии

$$r_2 - r_1 = (2n+1)\frac{\lambda}{2}$$
 $(n = 0, 1, 2, ...)$

14. Скорость распространения акустических колебаний в некоторой среде определяется формулой

$$\upsilon = \sqrt{\frac{E}{\rho}}$$
, где E – модуль Юнга среды, ρ – плотность среды.

15. В газах скорость распространения упругих волн

$$\upsilon = \sqrt{\frac{\gamma RT}{\mu}},$$

где $\mu-$ молярная масса газа, T- абсолютная температура газа, R- газовая постоянная, $\gamma=\frac{C_p}{C_V}-$ показатель адиабаты (коэффициент Пуассона).

16. Уровень звукового давления L' в децибелах связан с амплитудой звукового давления Δp соотношением

$$L' = 20 \lg \frac{\Delta p}{\Delta p_0},$$

где Δp_0 – амплитуда звукового давления при нулевом уровне громкости.

Уровень громкости L" в фонах связан с интенсивностью звука следующим соотношением:

$$L'' = 10 \lg \frac{I}{I_0},$$

где I_0 – нулевой уровень громкости. Условно принимается

$$I_0 = 10^{-12} \frac{Bm}{M^2}$$
 u $\Delta p_0 = 2 \cdot 10^{-5} \frac{H}{M^2}$.

17. Частота основного тона струны определяется формулой

$$v = \frac{1}{2l} \sqrt{\frac{F}{\rho S}} ,$$

где l- длина струны, F- сила ее натяжения, S- площадь поперечного сечения струны, $\rho-$ плотность материала струны.

18. В результате интерференции могут возникнуть волны особого типа – стоячие. Уравнение стоячей волны:

$$\xi(x,t) = 2A\cos\left(2\pi\frac{r}{\lambda}\right)\sin(2\pi\nu t) = 2A\cos kr\sin\omega t,$$

где не зависящий от времени множитель $2A\cos\left(2\pi\frac{r}{\lambda}\right) = A_{\rm pes} -$ амплитуда результирующего колебания.

19. Координаты пучности стоячей волны

$$r = \pm n \frac{\lambda}{2}$$
 $(n = 0, 1, 2, ...).$

Координаты узлов стоячей волны

$$r = \pm (2n+1)\frac{\lambda}{4}$$
 $(n = 0, 1, 2, ...).$

Расстояние узла от ближайшей пучности

$$(2n+1)\frac{\lambda}{4}-n\frac{\lambda}{2}=\frac{\lambda}{4}.$$

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

- 1. Уравнение гармонических колебаний.
- 2. Закон движения тела, скорость и ускорение при колебаниях.
- 3. Основные характеристики свободной колебательной системы.
- 4. От каких параметров зависит период и частота свободных колебаний системы.
 - 5. Полная энергия колебательной системы.
- 6. Метод векторных диаграмм при сложении колебаний одинакового направления и равных частот.
- 7. Уравнение траектории при сложении взаимно перпендикулярных колебаний.

- 8. Уравнение затухающих колебаний, коэффициент затухания и добротность системы.
 - 9. При каких условиях возникает резонанс?
 - 10. Уравнения бегущей и стоячей волны.
 - 11. Интерференция волн. Условия максимума и минимума.

ЗАДАЧИ (БАЗОВЫЙ УРОВЕНЬ)

- **4.1.** Уравнение колебаний точки имеет вид $x = A\cos\omega(t+\tau)$, где $\omega = \pi \, \mathrm{c}^{-1}$, $\tau = 0.2 \, \mathrm{c}$. Определить период и начальную фазу колебаний. (2 c; 36°)
- **4.2.** Точка совершает колебания по закону $x = A\cos(\omega t + \varphi)$, где A = 2 см, $\omega = \pi$ с⁻¹, $\varphi = \frac{\pi}{4}$ рад. Построить графики зависимости от времени: 1) смещения x(t), 2) скорости $\upsilon(t)$, 3) ускорения a(t).
- **4.3.** Скорость материальной точки, совершающей гармонические колебания, задается уравнением $\upsilon(t) = -6\sin 2\pi t$. Записать зависимость смещения этой точки от времени. $\left(x(t) = \frac{3}{\pi}\cos 2\pi t\right)$
- **4.4.** Точка равномерно движется по окружности против часовой стрелки с периодом $T = 6 \, \mathrm{c}$. Диаметр окружности равен 20 см. Написать уравнение движения проекции точки на ось x, проходящую через центр окружности, если в момент времени, принятый за начальный, проекция на ось x равна нулю. Найти смещение x, скорость v и ускорение v проекции точки в момент v проекции v проекции точки в момент v проекции v проекции точки в момент v проекции точки в мом
- **4.5.** Точка колеблется гармонически. Период колебаний T=1с, амплитуда A=10см. Найти скорость точки, когда смещение равно 5 см. (- 54,4 см/с)
- **4.6.** Два одинаково направленных гармонических колебания одного периода с амплитудами $A_1 = 10$ см и $A_2 = 6$ см складываются в

одно колебание с амплитудой $A = 14 \, \mathrm{cm}$. Найти разность фаз $\Delta \phi$ складываемых колебаний. ($\pi/3$ рад)

- **4.7.** Точка участвует в двух одинаково направленных колебаниях: $x_1 = A_1 \sin \omega t$ и $x_2 = A_2 \cos \omega t$, где $A_1 = 1 \, \mathrm{cm}$, $A_2 = 2 \, \mathrm{cm}$, $\omega = 1 \, \mathrm{c}^{-1}$. Определить амплитуду A результирующего колебания, его частоту ν и начальную фазу ϕ . Найти уравнение этого движения. (2,24 cm; 0,159 Γ ц; 0,353 π рад)
- **4.8.** Два камертона звучат одновременно. Частоты v_1 и v_2 их колебаний соответственно равны 440 Γ ц и 440,5 Γ ц. Определить период T биений. (2 c)
- **4.9.** Точка участвует одновременно в двух взаимно перпендикулярных колебаниях, выражаемых уравнениями $x = A_1 \cos \omega t$ и $y = A_2 \sin \omega t$, где $A_1 = 2$ см, $A_2 = 1$ см. Найти уравнение траектории точки и построить ее, указав направление движения.
- **4.10.** Написать уравнение результирующего колебания, полученного в результате сложения двух взаимно перпендикулярных колебаний с одинаковой частотой $v_1 = v_2 = 5 \, \Gamma$ ц и с одинаковой начальной фазой $\phi_1 = \phi_2 = 60^\circ$. Амплитуда одного из колебаний $A_1 = 5 \, \mathrm{cm}$, другого $A_2 = 10 \, \mathrm{cm}$. $\left(s = 11, 2 \cdot \sin \left(10 \pi t + \frac{\pi}{3} \right) \right)$
- **4.11.** Точка участвует одновременно в двух взаимно перпендикулярных колебаниях, выражаемых уравнениями $x = A_1 \cos \omega t$ и $y = A_2 \sin 0,5\omega t$, где $A_1 = 2$ см, $A_2 = 3$ см. Найти уравнение траектории точки и построить ее, указав направление движения. $\left(y = \frac{A_2^2}{2A_1}(A_1 x);\right)$
- **4.12.** Колебания материальной точки массой m=0,1 г происходят согласно уравнению $x=A\cos\omega t$, где A=5 см, $\omega=20$ с $^{-1}$. Определить максимальные значения возвращающей силы $F_{\rm max}$ и кинетической энергии $T_{\rm max}$. (2 мН; 50 мкДж)

- **4.13.** Маятник состоит из очень легкого стержня, на котором закреплены два одинаковых груза: один на расстоянии 0,3 м от оси, другой 0,15 м от оси. Какова приведенная длина такого маятника. (0,25 м)
- **4.14.** Тонкий обруч, повешенный на гвоздь, который вбит горизонтально в стену, колеблется в плоскости, параллельной стене. Радиус R обруча равен 30 см. Вычислить период T колебаний обруча. $(1,55\ c)$
- **4.15.** Математический маятник длиной $l_1 = 40 \, \mathrm{cm}$ и физический маятник в виде тонкого прямого стержня длиной $l_2 = 60 \, \mathrm{cm}$ синхронно колеблются около одной и той же горизонтальной оси. Определить расстояние a центра масс стержня от оси колебаний. $(10 \, \mathrm{cm})$
- **4.16.** Ареометр массой $m = 50 \, \Gamma$, имеющий трубку диаметром $d = 1 \, \mathrm{cm}$, плавает в воде. Ареометр немного погрузили в воду и затем предоставили самому себе, в результате чего он стал совершать гармонические колебания. Найти период T этих колебаний. $(1,6 \, \mathrm{c})$
- **4.17.** В открытую с обоих концов U-образную трубку с площадью поперечного сечения $s=0.4~{\rm cm}^2$ быстро вливают ртуть массой $m=200~{\rm r}$. Определить период T колебаний ртути в трубке. $(0.86~{\rm c})$
- **4.18.** За время t = 8 мин. амплитуда затухающих колебаний маятника уменьшилась в три раза. Определить коэффициент затухания β . $(0,0023 \text{ c}^{-1})$
- 4.19. Период гармонического колебания T=4c, логарифмический декремент затухания равен 0.8. Написать колебания. уравнение движения ЭТОГО Время отсчитывать OT наибольшего 20 смещения точки, равного CM.

$$\left(s = 20e^{-0.2t} \cdot \sin\left(0.5\pi t + \frac{\pi}{2}\right)\right)$$

- **4.20.** Тело массой m = 5 г совершает затухающие колебания. В течение времени t = 50 с тело потеряло 60% своей энергии. Определить коэффициент сопротивления b. $(9,16\cdot10^{-5} \text{ кг/c})$
- **4.21.** Скорость распространения звука в керосине $\upsilon=1330\,\mathrm{m/c}$. Плотность керосина $\rho=800\,\mathrm{kr/m^3}$. Найти коэффициент сжатия керосина. $(7,1\cdot10^{-10}\,\mathrm{m^2/H})$
- **4.22.** Определить разность фаз $\Delta \varphi$ колебаний двух точек, лежащих на луче распространения колебаний и отстоящих на расстояние x = 2 м друг от друга, если длина волны равна 1 м. $(4\pi$ рад)
- **4.23.** Интенсивность звука $I = 1 \text{ BT/m}^2$. Определить среднюю объемную плотность $\langle w \rangle$ энергии звуковой волны, если звук распространяется в сухом воздухе при нормальных условиях. $(3,01 \text{ мДж/m}^3)$

ЗАДАЧИ (ПОВЫШЕННЫЙ УРОВЕНЬ)

- **4.1*.** Физический маятник представляет собой тонкий однородный стержень длиной 35 см. Определить, на каком расстоянии от центра масс должна быть точка подвеса, чтобы частота колебаний была максимальной. (10,1 см)
- **4.2*.** Бревно массой $M=20\,\mathrm{kr}$ висит на двух шнурах длины $l=1\,\mathrm{m}$ каждый. В торец бревна попадает и застревает в нем пуля массы $m=10\,\mathrm{r}$, летящая со скоростью $\upsilon=500\,\mathrm{m/c}$. Найти амплитуду φ_m и период T колебаний бревна. Трением пренебречь. $(4,6^\circ; 2\,\mathrm{c})$
- **4.3*.** На тележке, которая движется по наклонной плоскости с ускорением \vec{a} , установлен маятник длиной l. Найти период колебаний маятника, если угол наклона плоскости равен α .

$$T = 2\pi \sqrt{\frac{l}{(g^2 + a^2 - 2ag\cos(90^\circ - \alpha))^{1/2}}}$$

4.4*. С высоты h по отношению к дну подвешенной на пружине чашки падает шарик массой m. Считая удар шарика о дно чашки неупругим, определить амплитуду колебаний чашки. Масса чашки

$$M$$
 , жесткость пружины k .
$$\left(A = \sqrt{\frac{m^2g^2}{k^2} + \frac{2m^2gh}{(M+m)k}}\right)$$

4.5*. Мелкий сухой песок плотностью ρ насыпан в цилиндрическое ведро массой M, высотой H и сечением S. Ведро подвешено на тросе и способно совершать колебательные движения в плоскости. Расстояние от точки подвеса до дна ведра l. Как будет зависеть период малых собственных колебаний получившегося маятника от уровня песка в ведре? Массой дна ведра пренебречь.

$$T = 2\pi \sqrt{\frac{M\left(l - \frac{H}{2}\right) + \rho Sh\left(l - \frac{h}{2}\right)}{M + \rho Sh}}$$

ЗАНЯТИЕ 5

МОЛЕКУЛЯРНО-КИНЕТИЧЕСКАЯ ТЕОРИЯ. ЭЛЕМЕНТЫ СТАТИСТИЧЕСКОЙ ФИЗИКИ

ОСНОВНЫЕ ФОРМУЛЫ

1. Уравнение Менделеева-Клапейрона (уравнение состояния идеального газа) имеет вид

$$pV = \frac{m}{\mu}RT,$$

где p — давление газа, μ — молярная масса газа, V — объем, занимаемый массой газа m, T — абсолютная температура, $R=8{,}31\frac{\mathcal{J}\varkappa c}{MOЛь\cdot K}$ — универсальная газовая постоянная.

2. Массу молекулы газа можно определить по формуле

$$m_0 = \frac{\mu}{N_A} = \frac{m}{N},$$

здесь $N_A = 6.02 \cdot 10^{23} \frac{1}{\text{моль}}$ — число Авогадро, N — общее число молекул в массе m .

3. Основное уравнение кинетической теории газов имеет вид

$$p = \frac{1}{3}nm_0v_{KB}^2 = \frac{2}{3}n\left(\frac{m_0v_{KB}^2}{2}\right),$$

где $n = \frac{N}{V}$ – концентрация молекул, $\upsilon_{\kappa \theta}$ – средняя квадратичная скорость молекул.

4. Число молекул в единице объема (концентрацию) можно определить по следующей формуле:

$$n = \frac{p}{kT}$$
, здесь $k = \frac{R}{N_A} = 1{,}38 \cdot 10^{-23} \frac{\text{Дж}}{\text{К}}$ – постоянная Больцмана.

5. Основные скорости молекул газа определяются по следующим формулам.

36

Наиболее вероятная скорость молекул

$$v_{\text{Bep}} = \sqrt{\frac{2RT}{\mu}}$$
.

Средняя арифметическая скорость движения молекул

$$\overline{\upsilon} = \sqrt{\frac{8RT}{\pi\mu}} \ .$$

Средняя квадратичная скорость движения молекул

$$v_{\text{KB}} = \sqrt{\frac{3RT}{\mu}}$$
.

6. Средняя кинетическая энергия поступательного движения молекулы определяется по формуле

$$E_0 = \frac{m_0 v_{\kappa e}^2}{2} = \frac{3}{2} kT.$$

7. Связь между молярной и удельной теплоемкостью газа следует из их определения:

$$C = \mu c$$
,

где C – молярная теплоемкость, c – удельная теплоемкость.

8. Молярная теплоемкость газа при постоянном объеме

$$C_V = \frac{i}{2}R$$
, где i — число степеней свободы.

Молярная теплоемкость газа при постоянном давлении

$$C_p = C_V + R$$
 — уравнение Майера.

- **9.** Закон распределения молекул газа по скоростям (распределение Максвелла) выражается двумя соотношениями:
- а) число молекул dN , скорости которых заключены в пределах от υ до $\upsilon+d\upsilon$,

$$dN(\upsilon) = Nf(\upsilon)d\upsilon = 4\pi N \left(\frac{m_0}{2\pi kT}\right)^{3/2} e^{-\frac{m_0\upsilon^2}{2kT}}\upsilon^2 d\upsilon,$$

где $f(\upsilon)$ — функция распределения молекул по скоростям, выражающая отношение вероятности того, что скорость молекулы лежит в интервале от υ до $\upsilon + d\upsilon$, к величине этого интервала, а

37

также долю числа молекул, скорости которых лежат в указанном интервале;

б) число молекул dN, относительные скорости которых заключены в пределах от u до u + du,

$$dN(u) = Nf(u)dv = \frac{4}{\sqrt{\pi}} Ne^{-u^2} u^2 du,$$

где $u = \frac{\upsilon}{\upsilon_{\text{вер}}}$ – относительная скорость, f(u) – функция распределения

по относительным скоростям.

10. Распределение молекул по импульсам. Число молекул, импульсы которых заключены в пределах от p до p+dp

$$dN(p) = Nf(p)dp = 4\pi N \left(\frac{1}{2\pi m_0 kT}\right)^{3/2} e^{-\frac{p^2}{2m_0 kT}} p^2 dp$$
,

где f(p) – функция распределения по импульсам.

11. Распределение молекул по энергиям. Число молекул, энергии которых заключены в пределах от ε до $\varepsilon + d\varepsilon$

$$dN(\varepsilon) = Nf(\varepsilon)d\upsilon = \frac{2}{\sqrt{\pi}}N\frac{e^{-\frac{\varepsilon}{kT}}}{(kT)^{3/2}}\varepsilon^{1/2}d\varepsilon,$$

где $f(\epsilon)$ – функция распределения по энергиям.

12. Барометрическая формула (распределение Больцмана) дает закон убывания давления p газа с высотой h:

$$p = p_0 e^{-\frac{\mu g h}{RT}},$$

где p_0 – давление газа на высоте h=0.

13. По закону Дальтона, общее давление смеси газов равно сумме парциальных давлений газов, составляющих смесь:

 $p = \sum p_i$, здесь i — число компонент смеси, p_i — давление компоненты смеси (парциальное давление).

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

- 1. Уравнение состояния идеального газа (уравнение Менделеева-Клапейрона).
 - 2. Основное уравнение молекулярно-кинетической теории газов.
- 3. Средняя кинетическая энергия поступательного движения молекул.
 - 4. Степень свободы. Распределение энергии по степеням свободы.
 - 5. Теплоемкость идеального газа. Уравнение Майера.
 - 6. Распределение молекул по скоростям (распределение Максвелла).
 - 7. Скорости молекул.
- 8. Распределение молекул по импульсам и распределение по энергиям.
 - 9. Барометрическая формула (распределение Больцмана).
 - 10. Закон Дальтона.

ЗАДАЧИ (БАЗОВЫЙ УРОВЕНЬ)

- **5.1.** В сосуде вместимостью V = 20 л находится газ количеством вещества v = 1,5 кмоль. Определить концентрацию n молекул в сосуде. $(4,52\cdot10^{28} \,\mathrm{m}^{-3})$
- **5.2.** Газ массой m = 58,5 г находится в сосуде вместимостью V = 5 л. Концентрация n молекул газа равна $2,2 \cdot 10^{26} \,\mathrm{m}^{-3}$. Какой это газ? (32)

- **5.3.** В колбе вместимостью $V = 240 \,\mathrm{cm}^3$ находится газ при температуре $T = 290 \,\mathrm{K}$ и давлении $p = 50 \,\mathrm{k\Pi a}$. Определить количество вещества ν газа и число N его молекул. (4,97 ммоль, $2,99\cdot10^{21}$)
- **5.4.** Найти молярную массу воздуха, рассматривая его как смесь азота (80%) и кислорода (20%). Процентное содержание дано по весу. (29 кг/кмоль)
- **5.5.** Воздушный шар объемом $1000 \,\mathrm{m}^3$ заполнен гелием. При нормальных условиях он может поднять груз массой $1000 \,\mathrm{kr}$. Какой груз может поднять тот же шар при замене гелия водородом при той же температуре? Молярная масса гелия $0,004 \,\mathrm{kr}/\mathrm{_{MОЛЬ}}$, водорода $0,002 \,\mathrm{kr}/\mathrm{_{MОЛЬ}}$. (1090 кг)
- **5.6.** Два одинаковых сосуда заполнены кислородом при температуре T_1 и соединены между собой трубкой с ничтожно малым объемом. Во сколько раз изменится давление кислорода в сосудах, если в одном из них поддерживать температуру T_1 , а второй нагреть

до температуры
$$T_2$$
 ? $\left(\eta = \frac{2T_2}{T_1 + T_2}\right)$

- **5.7.** Определить среднее значение $\langle \epsilon \rangle$ полной кинетической энергии одной молекулы гелия, кислорода и водяного пара при температуре $T = 400 \, \mathrm{K} \cdot (8,28 \cdot 10^{-21} \, \mathrm{Дж}; \, 13,8 \cdot 10^{-21} \, \mathrm{Дж}; \, 16,6 \cdot 10^{-21} \, \mathrm{Дж})$
- **5.8.** Найти энергию газа NH_3 , находящегося в баллоне объемом $V = 100\,\mathrm{л}$ при давлении $p = 4.0\,\mathrm{к}$ Па . Какую долю этой энергии составляет энергия поступательного движения молекул? Молекулы считать жесткими. (0,5)
- **5.9.** Каковы удельные теплоемкости C_V и C_p смеси газов, содержащей кислород массой $m_1=10\,\Gamma$ и азот массой $m_2=20\,\Gamma$? $\left(715\,\frac{\text{Дж}}{\text{Kr-K}};1,01\,\frac{\text{кДж}}{\text{Kr-K}}\right)$
- **5.10.** Найти показатель адиабаты γ для смеси газов, содержащей гелий массой $m_1 = 10$ г и водород массой $m_2 = 4$ г. (1,51)

- **5.11.** Найти среднюю квадратичную $\overline{\upsilon}_{\text{кв}}$, среднюю арифметическую $\overline{\upsilon}$ и наиболее вероятную $\upsilon_{\text{нв}}$ скорости молекул водорода. Вычисления выполнить для двух значений температуры: 1) T = 20 K; 2) T = 300 K. (500 м/c, 462 м/c, 407 м/c; 1,94 км/c, 1,79 км/c, 1,58 км/c)
- **5.12.** Колба вместимостью V=4 л содержит некоторый газ массой m=0,6 г под давлением p=200 кПа . Определить среднюю квадратичную скорость $\overline{\upsilon}_{\rm KB}$ молекул газа. $(2\ {\rm KM/c})$
- **5.13.** На какой высоте h над поверхностью Земли атмосферное давление вдвое меньше, чем на ее поверхности? Считать, что температура T воздуха равна 290 К и не изменяется с высотой. (5,88 км)
- **5.14.** Найти плотность воздуха ρ : а) у поверхности земли; б) на высоте $h=4\,\mathrm{km}$ от поверхности земли. Температура воздуха постоянна и равна 0 °C. Давление воздуха у поверхности земли $p_0=100\,\mathrm{k\Pi a}$. $\left(1,28\,\mathrm{kr/m}^3;0,78\,\mathrm{kr/m}^3\right)$
- **5.15.** В центрифуге находится некоторый газ при температуре $T=271\,\mathrm{K}$. Ротор центрифуги радиусом $r=0,4\,\mathrm{m}$ вращается с угловой скоростью $\omega=500\,\mathrm{pag/c}$. Определить относительную молекулярную массу M_r газа, если давление p у стенки ротора в 2,1 раза больше давления p_0 в его центре. (84 криптон)
- **5.16.** Какая часть молекул кислорода при 0 °C обладает скоростями от 100 до 110 м/с? (2,8%)
- **5.17.** Какова вероятность W того, что данная молекула идеального газа имеет скорость, отличную от $\frac{1}{2}\upsilon_{\rm HB}$ не более чем на 1%? $(4,39\cdot10^{-3})$
- **5.18.** Какая часть общего числа N молекул имеет скорости: а) больше наиболее вероятной скорости; б) меньше наиболее вероятной скорости? (57%; 43%)
- **5.19.** При какой температуре средняя квадратичная скорость молекул азота больше их наиболее вероятной скорости на $\Delta \upsilon = 50\,\mathrm{m/c}$? (83 K)

5.20. Зная функцию распределения молекул по скоростям, определить среднюю арифметическую скорость $\overline{\upsilon}$ молекул.

$$\left(\langle \upsilon \rangle = \sqrt{\frac{8kT}{\pi m_0}}\right)$$

5.21. По функции распределения молекул по скоростям определить среднюю квадратичную скорость

$$\overline{\upsilon}_{\text{KB}} \cdot \left(\overline{\upsilon}_{\text{KB}} = \sqrt{\left\langle \upsilon^2 \right\rangle} = \sqrt{\frac{3kT}{m_0}} \right)$$

ЗАДАЧИ (ПОВЫШЕННЫЙ УРОВЕНЬ)

5.1*. Давление одноатомного идеального газа зависит от температуры по закону $p = \alpha T^2$, где α – постоянная. Вычислить молярную теплоемкость газа в этом процессе.

$$\left(C = \frac{R}{2} = 4,2 \frac{\text{Дж}}{\text{моль} \cdot \text{К}}\right)$$

5.2*. Температура идеального газа меняется по закону $T = T_0 + \alpha V$, где T_0 и α — постоянные. Найти молярную теплоемкость

газа в этом процессе как функцию температуры.
$$\left(C = C_V + \frac{RT}{T - T_0}\right)$$

- **5.3*.** На сколько процентов изменится наиболее вероятное значение $p_{\rm HB}$ импульса молекул идеального газа при изменении температуры на один процент? (0,5%)
- **5.4*.** Определить долю w молекул, энергия которых заключена в пределах от $\varepsilon_1 = 0$ до $\varepsilon_2 = 0.01kT$. $(7.53 \cdot 10^{-4})$
- **5.5*.** Используя функцию распределения молекул по энергиям, определить наиболее вероятное значение энергии $\varepsilon_{_{\mathrm{HB}}}$. $\left(\varepsilon_{_{\mathrm{HB}}} = \frac{1}{2}kT\right)$.
- **5.6*.** Вблизи поверхности земли отношение концентраций кислорода (O_2) и азота (N_2) в воздухе $\eta_0 = 0.268$. Полагая

температуру атмосферы не зависящей от высоты и равной 0 °C, определить это отношение на высоте $h = 10 \,\mathrm{km}$. ($\eta = 0.225$)

5.7*. Определить массу воздуха в пространстве между двух окон и полную энергию молекул этого воздуха. Размеры окон: площадь – 2 м^2 , расстояние между окнами – 0,25 м. Температура у наружного стекла -10 °C, у внутреннего – + 20 °C. Давление воздуха считать равным атмосферному.

$$\left(m = \frac{\mu p S l}{R\alpha(T_2 - T_1)} \ln \frac{T_2}{T_1} = 610 \, \text{г}; W = \frac{i}{2} \, p S l = 127 \text{кДж}\right)$$

ЗАНЯТИЕ 6

СТОЛКНОВЕНИЕ МОЛЕКУЛ. ЯВЛЕНИЯ ПЕРЕНОСА

ОСНОВНЫЕ ФОРМУЛЫ

1. Средняя длина свободного пробега молекул газа определяется следующей формулой:

$$\overline{\lambda} = \frac{\overline{\upsilon}}{z} = \frac{1}{\sqrt{2}\pi\sigma^2 n},$$

где z — число столкновений за единицу времени, n — концентрация, σ — эффективный диаметр молекулы (если взаимодействующие молекулы одинаковые, то $\sigma = \pi d^2$, где d — диаметр молекулы).

Для идеального газа $n = \frac{p}{kT}$. Путем подстановки получим:

$$\overline{\lambda} = \frac{kT}{\sqrt{2}\pi\sigma^2 p}.$$

2. Закон Фика

$$\Delta m = -D \frac{dn}{dx} m_i S \Delta t ,$$

где Δm — масса газа, перенесенная в результате диффузии через поверхность площадью S за время Δt , $\frac{dn}{dx}$ — градиент концентрации молекул, m_i — масса одной молекулы, D — коэффициент диффузии.

Коэффициент диффузии газа D определяется по формуле

$$D = \frac{1}{3} \overline{\upsilon} \overline{\lambda} .$$

3. Закон Ньютона

$$F = \frac{dp}{dt} = \eta \frac{dv}{dz} \Delta s,$$

где F- сила внутреннего трения между движущимися слоями, $\frac{d\upsilon}{dz}-$ градиент скорости, $\Delta s-$ площадь соприкосновения слоев, $\eta-$ динамическая вязкость (коэффициент внутреннего трения).

Коэффициент внутреннего трения $\eta = \frac{1}{3}\rho \overline{\upsilon} \overline{\lambda}$.

d – толщина слоя жидкости.

4. Закон Фурье

$$\Delta Q = -\lambda \frac{dT}{dx} S \Delta t \,,$$

где ΔQ — теплота, прошедшая посредством теплопроводности через сечение площадью S за время Δt , $\frac{dT}{dx}$ — градиент температуры, λ — теплопроводность (коэффициент теплопроводности).

Коэффициент теплопроводности

$$\lambda = \frac{1}{3} \rho \, c_V \, \overline{\upsilon} \, \overline{\lambda} \, .$$

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

- 1. От чего зависит длина свободного пробега молекул газа?
- 2. Что означает понятие «соударение молекул»? Эффективный диаметр молекул.
 - 3. Диффузия.
 - 4. Закон Фика.
 - 5. Коэффициент диффузии.
 - 6. Теплопроводность.
 - 7. Коэффициент теплопроводности.

- 8. Внутреннее трение.
- 9. Закон Ньютона для течения вязкой жидкости.
- 10. Динамическая и кинематическая вязкость.

ЗАДАЧИ (БАЗОВЫЙ УРОВЕНЬ)

- **6.1.** Определить плотность ρ разреженного водорода, если средняя длина свободного пробега $\langle l \rangle$ молекул равна 1 см. $(0.55 \ \mathrm{mr/m}^3)$
- **6.2.** Какое предельное число молекул воздуха должно находиться внутри сферического сосуда, чтобы молекулы не сталкивались друг с другом? Диаметр молекул воздуха 0,3 нм, диаметр сосуда 15 см. $(n \le 1,7 \cdot 10^{19} \,\mathrm{m}^{-3})$
- **6.3.** Найти среднюю продолжительность $\langle \tau \rangle$ свободного пробега молекул кислорода при температуре $T=250\,K$ и давлении $p=100\,\Pi {\rm a}$. (288 нс)
- **6.4.** Найти зависимость средней длины свободного пробега $\langle l \rangle$ молекул идеального газа от давления p при следующих процессах: 1) изохорном; 2) изотермическом. Изобразить эти зависимости на графиках. (не зависит, $\langle l \rangle \sim \frac{1}{\rho}$)
- **6.5.** Найти зависимость средней длины свободного пробега $\langle l \rangle$ молекул идеального газа от температуры T при следующих процессах: 1) изохорном; 2) изобарном. Изобразить эти зависимости на графиках. (не зависит, $\langle l \rangle \sim T$)
- **6.6.** Найти число столкновений в одну секунду молекул некоторого газа, если длина свободного пробега при этих условиях равна $5 \cdot 10^{-4}$ см и средняя квадратичная скорость 500м/с. $(9,2 \cdot 10^7 \text{ c}^{-1})$
- **6.7.** Найти зависимость среднего числа столкновений $\langle Z \rangle$ молекулы идеального газа в 1 с от давления p при следующих

- процессах: 1) изохорном; 2) изотермическом. Изобразить эти зависимости на графиках. ($\langle Z \rangle \sim \sqrt{p}; \langle Z \rangle \sim p$)
- **6.8.** Найти зависимость среднего числа столкновений $\langle Z \rangle$ молекулы идеального газа в 1 с от температуры T при следующих процессах: 1) изохорном; 2) изобарном. Изобразить эти зависимости на графиках. $(\langle Z \rangle \sim \sqrt{T}; \langle Z \rangle \sim 1/\sqrt{T})$
- **6.9.** Диффузия D кислорода при температуре t=0 °C равна $0,19\,\mathrm{cm}^2/\mathrm{c}$. Определить среднюю длину свободного пробега $\langle l \rangle$ молекул кислорода. (135 нм)
- **6.10.** Найти коэффициент диффузии и коэффициент внутреннего трения воздуха при давлении 760 мм рт. ст. и температуре 10 °C. Диаметр молекул воздуха принять равным $3 \cdot 10^{-8}$ см, молярная масса воздуха равна $29 \cdot 10^{-3}$ кг/моль. $\left(0,148 \, \text{cm}^2/\text{c}; 1,82 \cdot 10^{-4} \, \text{г/cm} \cdot \text{c}\right)$
- **6.11.** Найти массу азота, прошедшего вследствие диффузии через площадку $S = 0.01 \,\mathrm{m}^2$ за 10 секунд, если плотность изменяется в направлении, перпендикулярном к площадке, как $\frac{\Delta \rho}{\Delta x} = 1.26 \,\mathrm{kr/m}^4$. Температура азота составляет 27 °C, средняя длина свободного пробега молекул азота равна $10 \,\mathrm{mkm}$. (2 мг)
- **6.12.** Определить зависимость диффузии D от давления p при следующих процессах: 1) изотермическом; 2) изохорном. $(D \sim \frac{1}{p}; D \sim \sqrt{p})$
- **6.13.** Вычислить динамическую вязкость η кислорода при нормальных условиях. (18 мкПа·с)
- **6.14.** Найти диаметр молекул кислорода, если при температуре t = 0°C вязкость кислорода 18,8 мкПа · с . (0,3 нм)
- **6.15.** Найти динамическую вязкость η гелия при нормальных условиях, если диффузия D при тех же условиях равна $1,06 \cdot 10^{-4} \,\mathrm{m}^2/\mathrm{c}$. (19 мкПа·с)

- **6.16.** Площадь соприкосновения слоев текущей жидкости $10 \,\mathrm{cm}^2$, коэффициент вязкости жидкости 0,01 пз, а возникающая сила трения между слоями равна 10^{-3} Н. Чему равен градиент скорости? $\left(1000 \,\mathrm{c}^{-1}\right)$
- **6.17.** Определить зависимость динамической вязкости η от давления p при следующих процессах: 1) изотермическом; 2) изохорном. Изобразить эти зависимости на графиках. (не зависит, $\eta \sim \sqrt{p}$)
- **6.18.** Вычислить теплопроводность λ гелия при нормальных условиях. (38,6 мВт/м·К)
- **6.19.** Найти зависимость теплопроводности λ от температуры T при следующих процессах: 1) изобарном; 2) изохорном. Изобразить эти зависимости на графиках. ($\lambda \sim \sqrt{T}$; $\lambda \sim \sqrt{T}$)
- **6.20.** Найти зависимость теплопроводности λ от давления p при следующих процессах: 1) изотермическом; 2) изохорном. Изобразить эти зависимости на графиках. (не зависит, $\lambda \sim \sqrt{p}$)
- **6.21.** Наружная поверхность мышц имеет температуру 35 °C, а внутренняя 37 °C. Толщина мышц 5 мм. Чему равен коэффициент теплопроводности мышц, если через каждый квадратный сантиметр ее поверхности за 1 час проходит 9,6 Дж теплоты? $\left(0,067\frac{\text{Дж}}{\text{см}\cdot\text{c}\cdot\text{град}}\right)$

ЗАДАЧИ (ПОВЫШЕННЫЙ УРОВЕНЬ)

- **6.1*.** При нормальных условиях в 1см³ атомарного водорода содержится $3 \cdot 10^{19}$ атомов. Оцените время, в течение которого половина атомов превратится в молекулы водорода. Считать, что каждое столкновение двух атомов водорода приводит к образованию молекулы. Диаметр атома водорода составляет 0,12 нм. $\left(t = \frac{\ln 2}{n\sigma\langle \upsilon \rangle}\right)$
- **6.2*.** Полость колбы литрового термоса заполнена гелием, давление которого при комнатной температуре равно 10^{-5} атм $\left(1\,\mathrm{H/m^2}\right)$. При этом давлении длина свободного пробега

молекул газа велика по сравнению с расстоянием между стенками колбы. Оцените время, за которое чай в термосе остынет от 90 °C до 80 °C. Колбу термоса считать сферической.

$$\left(t = \frac{8}{3} \frac{cm\Delta T}{pS(T - T_0)} \sqrt{\frac{\mu T_{cp}}{3R}} \approx 7 \cdot 10^3 c \approx 2 \text{ y}\right)$$

6.3*. Температура воздуха земной атмосферы линейно увеличивается с высотой h по закону $T = T_0 + \alpha h$. При этом относительное изменение температуры $\frac{\alpha h}{T_0}$ остается много меньше 1.

Длина свободного пробега молекул воздуха λ , масса каждой молекулы m, концентрация молекул n. Оцените плотность теплового потока на Землю, как она зависит от n?

$$\left(W=n\alpha\lambda k\sqrt{\frac{kT_0}{m}};$$
 не изменяется $\right)$

- **6.4*.** Найти вероятность dw столкновения молекул газа на отрезке длины dS, если средняя длина свободного пробега $\overline{\lambda}$. $\left(dw = \frac{dS}{\overline{\lambda}}\right)$
- **6.5*.** Найти вероятность dw(x) того, что молекула газа пролетит путь x без столкновений и столкнется с другой молекулой на участке от x до x+dx. Средняя длина свободного пробега молекул $\overline{\lambda}$.

$$\left(dw(x) = \frac{1}{\lambda} \exp\left(-\frac{x}{\lambda}\right) dx\right)$$

ЗАНЯТИЕ 7 ФИЗИЧЕСКИЕ ОСНОВЫ ТЕРМОДИНАМИКИ

ОСНОВНЫЕ ФОРМУЛЫ

1. Уравнение первого начала термодинамики можно записать следующим образом:

$$Q = \Delta U + A$$
,

где Q — **количество теплоты**, переданное системе, ΔU — изменение внутренней энергии системы, A — работа, совершаемая силами, приложенными со стороны системы к внешним телам. Дифференциальная форма уравнения:

$$dQ = dU + dA$$
.

2. Изменение внутренней энергии ΔU идеального газа выражается формулой

$$\Delta U = \frac{i}{2} \frac{m}{\mu} R \Delta T = C_V \frac{m}{\mu} \Delta T.$$

3. Работа, связанная с изменением объема, в общем случае вычисляется по формуле

$$A = \int_{V_1}^{V_2} p dV,$$

где V_1 – начальный объем газа, V_2 – конечный объем газа.

Работа газа:

а) при изобарном процессе (p = const, $\frac{V}{T} = const$)

$$A = p(V_2 - V_1);$$

б) при изохорном процессе $(V = const, \frac{p}{T} = const)$

$$A = 0$$
;

в) при изотермическом процессе (T = const, pV = const)

$$A = \int_{V_1}^{V_2} p dV = \frac{m}{\mu} RT \int_{V_1}^{V_2} \frac{dV}{V} = \frac{m}{\mu} RT \ln \left(\frac{V_2}{V_1} \right);$$

г) при адиабатном процессе (Q = 0, $pV^{\gamma} = const$)

$$A = \int_{V_1}^{V_2} p dV = -\int_{T_1}^{T_2} \frac{m}{\mu} C_V dT = \frac{m}{\mu} C_V (T_2 - T_1)$$

ИЛИ

$$A = \frac{RT_1}{\gamma - 1} \frac{m}{\mu} \left[1 - \left(\frac{V_1}{V_2} \right)^{\gamma - 1} \right],$$

где $\gamma = \frac{C_p}{C_V} = \frac{i+2}{i}$ – показатель адиабаты.

- 4. Первое начало термодинамики:
- а) при изобарном процессе

$$Q = \Delta U + A = \frac{m}{\mu} C_V \Delta T + \frac{m}{\mu} R \Delta T = \frac{m}{\mu} C_p \Delta T;$$

б) при изохорном процессе (A = 0)

$$Q = \Delta U = \frac{m}{\mu} C_V \Delta T;$$

в) при изотермическом процессе ($\Delta U = 0$)

$$Q = A = \frac{m}{\mu} RT \ln \left(\frac{V_2}{V_1} \right);$$

г) при адиабатном процессе (Q = 0)

$$A = -\Delta U = -\frac{m}{\mu} C_V \Delta T.$$

5. Коэффициент полезного действия КПД тепловой машины

$$\eta = \frac{A}{Q_1} = \frac{Q_1 - Q_2}{Q_1},$$

 Q_1 и Q_2 — количество теплоты, сообщенное и отданное системой соответственно, T_1 и T_2 — температура нагревателя и температура холодильника соответственно.

КПД идеальной машины, работающей по циклу Карно:

$$\eta = \frac{Q_1 - Q_2}{Q_1} = \frac{T_1 - T_2}{T_1}.$$

6. Разность энтропий $\Delta S = S_2 - S_1$ двух состояний определяется формулой

$$\Delta S = S_2 - S_1 = \int_{1}^{2} dS = \int_{1}^{2} \frac{dQ}{T}.$$

Энтропия системы определяется по формуле Больцмана $S = k \ln W$,

где W- термодинамическая вероятность состояния системы, k- постоянная Больцмана.

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

- 1. Изотермический, изобарный и изохорный процессы.
- 2. Работа при изменении объема газа.
- 3. Внутренняя энергия. Способы изменения внутренней энергии.
- 4. Адиабатный процесс.
- 5. Первое начало термодинамики для различных процессов.
- 6. Тепловые и холодильные машины.
- 7. Цикл Карно. КПД цикла.
- 8. Обратимые и необратимые процессы. Второе начало термодинамики.
 - 9. Энтропия.
 - 10. Статистический характер второго начала термодинамики.

ЗАДАЧИ (БАЗОВЫЙ УРОВЕНЬ)

- **7.1.** При изохорном нагревании кислорода объемом V = 50 л давление газа изменилось на $\Delta p = 0.5$ МПа. Найти количество теплоты Q, сообщенное газу. (62,5 Дж)
- **7.2.** Азот нагревался при постоянном давлении, причем ему было сообщено количество теплоты $Q = 21 \,\mathrm{кДж}$. Определить работу A,

- которую совершил при этом газ, и изменение ΔU его внутренней энергии. (6 кДж; 15 кДж)
- **7.3.** Двухатомный газ при нормальном давлении имеет объем $V_1 = 10\pi$. На сколько изменится внутренняя энергия ν молей этого газа, если при расширении он займет объем $V_2 = 20\pi$ при неизменном давлении? $(2.53 \cdot 10^3 \, \text{Дж})$
- **7.4.** При изотермическом расширении водорода массой m=1 г, имевшего температуру T=280~K, объем газа увеличился в три раза. Определить работу A расширения газа и полученное газом количество теплоты Q. $(1,28~\mathrm{кДж})$
- **7.5.** Определить количество теплоты, поглощенное при изотермическом расширении 0,05 кг кислорода при температуре 15 °C от нормального давления до давления, при котором газ занимает объем 0,1 м³. (3728 Дж)
- **7.6.** Расширяясь, водород совершил работу $A = 6 \, \text{кДж}$. Определить количество теплоты Q, подведенное к газу, если процесс протекал: 1) изобарно; 2) изотермически. (21 кДж; 6 кДж)
- **7.7.** Водород при нормальных условиях имел объем $V_1 = 100 \,\mathrm{m}^3$. Найти изменение ΔU внутренней энергии газа при его адиабатном расширении до объема $V_2 = 150 \,\mathrm{m}^3$. (-3,8 МДж)
- **7.8.** До какого значения поднимется температура 10 л идеального газа, взятого при 27 °C и давлении в одну атмосферу, при адиабатическом сжатии его до $\frac{1}{10}$ доли первоначального объема? Чему будет равна совершенная при этом сжатии работа, если $\gamma = 1,4$? (3800 Дж; 753,6 K)
- **7.9.** В сосуде под поршнем находится газ при нормальных условиях. Расстояние между дном сосуда и дном поршня $h=25\,\mathrm{cm}$. Когда на поршень положили груз $m=20\,\mathrm{kr}$, поршень опустился на $\Delta h=13,4\,\mathrm{cm}$. Считая сжатие адиабатическим, найти показатель

адиабаты γ . Площадь поперечного сечения поршня $S = 10 \,\mathrm{cm}^2$. Массой поршня пренебречь. (1,4)

7.10. Идеальный двухатомный газ, содержащий количество вещества v=1 моль и находящийся под давлением $p_1=0,1$ МПа при температуре $T_1=300~K$, нагревают при постоянном объеме до давления $p_2=0,2$ МПа. После этого газ изотермически расширился до начального давления и затем изобарно был сжат до начального

объема V_1 . Построить график цикла. Определить температуру T газа для характерных точек цикла и его термический КПД η . (600 K; 9,9%)

7.11. Состояние одноатомного идеального газа изменяется по циклу, представленному на рисунке. Вычислить КПД этого цикла. (0,174)

7.12. 14 грамм азота адиабатически расширяются так, что объем увеличивается в n=5 раз, а затем изотермически сжимают до первоначального объема. Начальная температура азота $T_1=1000~K$. Изобразить процесс на диаграмме p,V. Найти конечную температуру газа; приращение внутренней энергии; количество теплоты отданное газом и совершенную газом работу. (520 K; -10,0 кДж; 9,7 кДж; 300 Дж)

7.13. Ha рисунке представлены изменения давления и объема идеального Какое одноатомного газа. было количество теплоты получено или отдано газом при переходе ИЗ состояния В состояние 3? (-700 Дж)

- **7.14.** Идеальный газ совершает цикл Карно. Температура T_1 нагревателя в три раза выше температуры T_2 холодильника. Нагреватель передал газу количество теплоты $Q_1 = 42 \, \text{кДж}$. Какую работу A совершил газ? (28 кДж)
- **7.15.** Газ совершает цикл Карно. Температура нагревателя равна 100 °C. Какова температура холодильника, если ³/₄ теплоты получаемой от нагревателя, газ отдает холодильнику? (280 K)
- **7.16.** Идеальная холодильная машина работает по обратному циклу Карно в интервале температур от $t_2 = -11$ °C до $t_1 = 15$ °C. Работа, потребляемая машиной за цикл, $A' = 200 \, \text{кДж}$. Вычислить холодильный коэффициент и количество тепла, отводимого за цикл от охлаждаемого тела. (10; 2 МДж)
- **7.17.** Кусок льда массой $m = 200 \, \Gamma$, взятый при температуре $t_1 = -10 \, ^{\circ}\mathrm{C}$, был нагрет до температуры $t_2 = 0 \, ^{\circ}\mathrm{C}$ и расплавлен, после чего образовавшаяся вода была нагрета до температуры $t = 10 \, ^{\circ}\mathrm{C}$. Определить изменение ΔS энтропии в ходе указанных процессов. $\left(291 \, \frac{\text{Дж}}{\text{K}}\right)$
- **7.18.** Найти прирост энтропии при превращении 1 кг воды при 0 °C в пар при 100 °C? $\left(7,38\cdot10^3\frac{\text{Дж}}{\text{град}}\right)$
- **7.19.** Два тела с одинаковой теплоемкостью $C = 100 \frac{\text{Дж}}{\text{K}}$ имеют температуры $T_1 = 200 \, \text{K}$ и $T_2 = 400 \, \text{K}$. Чему будет равно изменение энтропии при выравнивании температуры тел? $\left(69 \frac{\text{Дж}}{\text{K}}\right)$
- **7.20.** Найти изменение ΔS энтропии при изобарном расширении азота массой m=4 г от объема $V_1=5$ л до объема $V_1=9$ л. $\left(2,43\frac{\text{Дж}}{\text{K}}\right)$
- **7.21.** Кислород массой m = 2 кг увеличил свой объем в n = 5 раз один раз изотермически, другой адиабатически. Найти изменения энтропии в каждом из указанных процессов. $\left(836\frac{\text{Дж}}{\text{K}}\right)$

ЗАДАЧИ (ПОВЫШЕННЫЙ УРОВЕНЬ)

7.1*. Газ, занимавший объем $V_1 = 1,0 \,\mathrm{m}^3$ при давлении $p_1 = 1,2 \,\mathrm{к}\Pi a$, изотермически расширяется до объема $V_2 = 2,0 \,\mathrm{m}^3$, а

К задаче 7.4*

затем изохорически нагревается, при ЭТОМ давление повышается ДО начального. В изохорическом процессе газ получает $Q = 3.0 \cdot 10^3 \, \text{кДж}$ тепла. Изобразить процесс на диаграмме вычислить коэффициент Пуассона ДЛЯ ЭТОГО газа.

$$\left(\gamma = 1 + \frac{p_1}{Q}(V_2 - V_1) = 1,4\right)$$

7.2*. Найти КПД цикла, изображенного на рисунке, и сравнить с КПД цикла Карно для того же интервала температур $T_1 = 500~K$, $T_2 = 300~K$.

$$\left(\eta = \frac{T_1 - T_2}{T_1 + T_2} = 0.25; \frac{\eta_K}{\eta} = 1 + \frac{T_2}{T_1} = 1.6\right)$$

7.3*. Волейбольный мяч массой M = 300г и объемом 8 л накачан до избыточного давления $p_1 = 0.2$ атм. Мяч был подброшен на высоту 20 м и после падения на твердый грунт подскочил почти на ту же высоту. Оцените максимальную температуру воздуха в мяче в момент удара о грунт. Температура наружного воздуха 300 К, теплоемкость воздуха при постоянном объеме $0.7 \, \text{кДж/(кг} \cdot \text{K)}$.

$$T_{\text{max}} = T \left(1 + \frac{MghR}{\mu(p_0 + p_1)Vc_V} \right) \approx 1,02T = 306 \text{ K}$$

- **7.4*.** Некоторая масса кислорода занимает объем $V_1 = 3\pi$ при температуре $T_1 = 300\,\mathrm{K}$ и давлении $p_1 = 820\,\mathrm{k}\Pi a$. В другом состоянии газ имеет параметры: $V_2 = 4\,\pi$, $p_2 = 600\,\mathrm{k}\Pi a$. Найти количество теплоты Q, полученное газом, работу A, совершенную газом при расширении, и изменение внутренней энергии ΔU при переходе газа из одного состояния в другое: а) через точку C; б) через точку D. (a) $1,55\,\mathrm{k}$ Дж; $0,92\,\mathrm{k}$ Дж; $0,63\,\mathrm{k}$ Дж; б) $1,88\,\mathrm{k}$ Дж; $1,25\,\mathrm{k}$ Дж; $0,63\,\mathrm{k}$ Дж)
- 7.5*. Азот массой m=1 кг находится в сосуде объемом $V_1=0.2\,\mathrm{m}^3$ под давлением $p=100\,\mathrm{k}\Pi a$. Азот расширяется до объема $V_2=0.54\,\mathrm{m}^3$, при этом его давление падает в 2,7 раза. Определить приращение энтропии газа ΔS и изменение его внутренней энергии ΔU . $(\Delta S \approx 296\,\mathrm{Дж/K}; \Delta U=0)$

ЗАНЯТИЕ 8 РЕАЛЬНЫЕ ГАЗЫ. ЖИДКОСТИ

ОСНОВНЫЕ ФОРМУЛЫ

1. Уравнение Ван-дер-Ваальса для одного моля газа

$$\left(p+\frac{a}{V_{\mu}^{2}}\right)\left(V_{\mu}-b\right)=RT.$$

Для произвольного количества вещества $v = \frac{m}{\mu}$ газа

$$\left(p + \frac{v^2 a}{V^2}\right)(V - vb) = vRT,$$

где V_{μ} — объем одного моля газа, a и b — постоянные Ван-дер-Ваальса, различные для разных газов.

2. Поправки a и b данного газа связаны с его критическими величинами T_{κ} , p_{κ} и $V_{\mu\kappa}$ следующими соотношениями:

$$V_{\mu\kappa} = 3b; \quad p_{\kappa} = \frac{a}{27b^2}; \quad T_{\kappa} = \frac{8a}{27bR},$$

где R – универсальная газовая постоянная.

3. Внутренняя энергия реального газа

$$U = v \left(C_{v} T - \frac{a}{V_{\mu}} \right).$$

4. Коэффициент поверхностного натяжения жидкости σ численно равен силе F, приложенной к единице длины края поверхности пленки, т.е.

$$\sigma = \frac{F}{I}$$
.

При изменении площади пленки на ΔS совершается работа $\Delta A = \sigma \Delta S$.

5. Добавочное давление Δp , вызванное кривизной поверхности жидкости, определяется формулой Лапласа:

58

$$\Delta p = \sigma \left(\frac{1}{r_1} + \frac{1}{r_2} \right)$$
, где r_1 и r_2 – радиусы кривизны двух взаимно

перпендикулярных сечений поверхности жидкости; r — считается положительным, если центр кривизны находится внутри жидкости (выпуклый мениск), и отрицательным, если центр кривизны находится вне жидкости (вогнутый мениск). Для сферической поверхности $\Delta p = \frac{2\sigma}{r}$, где r — радиус сферы.

6. Высота поднятия жидкости в капиллярной трубке

$$h = \frac{2\sigma}{rg\rho}\cos\theta,$$

здесь r — радиус трубки, ρ — плотность жидкости, θ — краевой угол. При полном смачивании θ = 0, при полном несмачивании θ = π .

7. Для установившегося течения жидкости справедливо уравнение неразрывности струи

$$\upsilon_1 S_1 = \upsilon_2 S_2,$$

где S_1 и S_2- поперечные сечения трубы, а υ_1 и υ_2- скорости текущей через них жидкости.

8. Объем жидкости, протекающей за единицу времени через любое сечение трубы (расход), определяется соотношением

$$Q = vS$$
.

9. Уравнение Бернулли для идеальной жидкости гласит, что при стационарном течении полная энергия жидкости, отнесенная к единице объема, есть величина постоянная на каждой линии тока, то есть

$$\frac{\rho v^2}{2} + \rho g h + p = const,$$

где p — статическое давление в поперечном сечении трубы, h — высота сечения над некоторым уровнем (началом отсчета).

Для трубки тока, расположенной горизонтально,

$$\frac{\rho v^2}{2} + p = const.$$

10. Скорость течения жидкости из малого отверстия в открытом широком сосуде

$$\upsilon = \sqrt{2gh} ,$$

где h — глубина, на которой находится отверстие относительно уровня жидкости в сосуде.

11. Сила внутреннего трения F, с которой слои текущей жидкости действуют друг на друга, прямо пропорциональна градиенту скорости, так что

$$F = \eta \frac{\Delta \upsilon}{\Delta x} \cdot \Delta S,$$

где η — величина, зависящая от природы жидкости, называемая коэффициентом внутреннего трения или коэффициентом вязкости жидкости, $\frac{\Delta \upsilon}{\Delta x}$ — градиент скорости, ΔS — величина поверхности соприкасающихся слоев.

12. Число Рейнольдса для потока жидкости в длинных трубках

$$Re = \frac{\rho \langle \upsilon \rangle d}{\eta},$$

где $\langle \upsilon \rangle$ — средняя по сечению скорость движения жидкости, d — диаметр трубки.

Число Рейнольдса для движения шарика в жидкости

$$Re = \frac{\rho v d}{\eta}$$
,

где υ – скорость шарика, d – его диаметр.

При малых значениях чисел Рейнольдса, меньших критического значения $Re_{\rm kp}$, движение жидкости является ламинарным. При значениях $Re > Re_{\rm kp}$ движение жидкости становится турбулентным.

Для потока жидкости в длинных трубах $Re_{\kappa p} = 2300$.

Для движения шарика в жидкости $Re_{\kappa p} = 0.5$.

13. Формула Стокса. Сила сопротивления F, действующая со стороны потока жидкости на медленно движущийся в ней шарик,

 $F = 6\pi\eta r \upsilon$,

причем, формула справедлива при Re << 1.

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

- 1. Уравнение Ван-дер-Ваальса.
- 2. Изотермы реального газа. Критические параметры.
- 3. Внутренняя энергия реального газа.
- 4. Поверхностное натяжение. Коэффициент поверхностного натяжения жидкости.
 - 5. Формула Лапласа.
 - 6. Гидрофильные и гидрофобные поверхности.
 - 7. Высота поднятия жидкости в капиллярной трубке.
 - 8. Уравнение неразрывности струи.
 - 9. Уравнение Бернулли.
- 10. Число Рейнольдса для потока жидкости в трубе и движения шарика в жидкости.

ЗАДАЧИ (БАЗОВЫЙ УРОВЕНЬ)

- **8.1.** В сосуде вместимостью V = 10 л находится азот массой m = 0.25 кг при температуре t = 27 °C. Определить: 1) внутреннее давление p' газа; 2) собственный объем V' молекул. (108 кПа; 86,2 см³)
- **8.2.** Определить давление p, которое будет производить кислород, содержащий количество вещества v=1 моль, если он занимает объем V=0.5 л при температуре T=300~K. Сравнить полученный результат с давлением, вычисленным по уравнению Менделеева Клапейрона. (4,78 МПа; 4,99 МПа)
- **8.3.** Давление p кислорода равно 7 МПа, его плотность составляет $\rho = 100 \, {\rm kr/}_{\rm M}^3$. Найти температуру T кислорода. (287 К)

- **8.4.** При какой температуре азот, находящийся в баллоне объемом 20 л, имеет давление 1,43 атм $\left(a = 1.35 \cdot 10^5 \,\mathrm{H \cdot M}^4 \middle/_{\mathrm{KMOЛЬ}^2}; b = 0.04 \,\mathrm{M}^3 \middle/_{\mathrm{KMOЛЬ}}\right)$? (75,95 °C)
- **8.5.** Вычислить постоянные a и b в уравнении Ван-дер-Ваальса для азота, если известны критические температуры $T_{\rm kp} = 126 \, {\rm K}$ и давление $p_{\rm kp} = 3{,}39 \, {\rm M}\Pi {\rm a} \cdot (0{,}136 \, {\rm H} \cdot {\rm m}^4/{\rm monb}^2; 3{,}86 \cdot 10^{-5} \, {\rm m}^3/{\rm monb})$
- **8.6.** Найти плотность $\rho_{\rm K}$ водяного пара в критическом состоянии, если $T_{\rm Kp}=647~{\rm K}$, $p_{\rm Kp}=22,0~{\rm M\Pi a}$. (196 кг/м³)
- **8.7.** Найти внутреннюю энергию U углекислого газа массой m=132 г при нормальном давлении p_0 и температуре T=300~K в двух случаях, когда газ рассматривают: 1) как идеальный; 2) как реальный. (22,4 кДж; 9,2 кДж)
- **8.8.** Определить изменение ΔU внутренней энергии неона, содержащего количество вещества v=1 моль, при изотермическом расширении его объема от $V_1=1$ л до $V_2=2$ л. (104 Дж)
- **8.9.** На сколько давление p воздуха внутри мыльного пузыря больше атмосферного давления p_0 , если диаметр пузыря d=5 мм? (62,5 Π a)
- **8.10.** Определить диаметр капилляра в термометре, если в нем находится ртуть, величина добавочного давления которой 5000 H/m^2 . (0,4 мм)
- **8.11.** Глицерин поднялся в капиллярной трубке на высоту h = 20 мм. Определить поверхностное натяжение σ глицерина, если диаметр d канала трубки равен 1 мм. (62 мН/м)
- **8.12.** Какую работу A против сил поверхностного натяжения надо совершить, чтобы разделить сферическую каплю ртути радиусом R = 3 мм на две одинаковые капли? Поверхностное натяжение ртути $0.5 \, \text{H/m} \cdot (14.7 \, \text{мкДж})$

К задаче 8.19

- **8.13.** Определить массу спирта, который поднимается в капиллярной трубке диаметром 0,4 мм. Коэффициент поверхностного натяжения спирта при 20 °C равен $2 \cdot 10^{-2}$ H/M. $\left(0,27 \cdot 10^{-6} \, \mathrm{kr}\right)$
- **8.14.** В широкой части горизонтально расположенной

трубы нефть течет со скоростью $\upsilon_1 = 2 \, \text{м/c}$. Определить скорость υ_2 нефти в узкой части трубы, если разность Δp давлений в широкой и узкой частях ее равна 6,65 кПа. (4,33 м/c)

- **8.15.** Чему равна работа, идущая на преодоление трения при передвижении 25 см³ воды в горизонтальной цилиндрической трубке, от сечения с давлением 40 к H/m^2 до сечения с давлением 20 к H/m^2 ? (0,5 Дж)
- **8.16.** В самом крупном кровеносном сосуде аорте максимальное кровяное давление 120 мм рт. ст., а минимальное в венах 6 мм рт. ст. Количество крови в организме человека 5 л. Время одного кругооборота крови 20 с. Какую работу совершает сердце человека за минуту? (81,2 Дж)
- **8.17.** Давление p ветра на стену равно 200 Па. Определить скорость υ ветра, если он дует перпендикулярно стене. Плотность ρ воздуха равна 1,29 кг/м³. (8,8 м/с)
- **8.18.** Бак высотой h = 1,5 м наполнен до краев водой. На расстоянии d = 1 м от верхнего края бака образовалось отверстие малого диаметра. На каком расстоянии l от бака падает на пол струя, вытекающая из отверстия? (1,4 м)
- **8.19.** На рисунке представлена схема водомера: по горизонтальной трубе переменного сечения протекает вода. Определить расход воды Q по разности уровней воды Δh в двух

манометрических трубках, если сечения труб известны.

$$\left(Q = S_1 S_2 \sqrt{\frac{2g\Delta h}{S_2^2 - S_1^2}}\right)$$

- **8.20.** Вода течет по круглой гладкой трубе диаметром d = 5 см со средней по сечению скоростью $\langle \upsilon \rangle = 10$ см/с. Определить число Рейнольдса Re для потока жидкости в трубе и указать характер течения жидкости. (5000, турбулентное)
- **8.21.** Медный шарик диаметром d=1 см падает с постоянной скоростью в касторовом масле. Является ли движение масла, вызванное падением в нем шарика, ламинарным? Критическое значение числа Рейнольдса $Re_{\kappa p}=0,5$. (турбулентное)

ЗАДАЧИ (ПОВЫШЕННЫЙ УРОВЕНЬ)

- **8.1*.** Газ, содержащий количество вещества v=1 моль, находится при критической температуре и занимает объем V, в n=3 раза превышающий критический объем $V_{\rm kp}$. Во сколько раз давление p газа в этом состоянии меньше критического давления $p_{\rm kp}$? (в 1,5 раза)
- **8.2*.** Газ находится в критическом состоянии. Во сколько раз возрастет давление p газа, если его температуру T изохорно увеличить в k=2 раза ? (в 5 раз)
- **8.3*.** В кровеносном сосуде диаметром 1 мм образовались три пузырька воздуха. Определить дополнительное сопротивление движению крови, вызванное наличием этих пузырьков воздуха. Считать, что в результате течения крови пузырьки воздуха деформировались так, что радиус кривизны поверхности пузырька со стороны течения крови стал равен 0,8 мм, а в сторону течения крови 0,2 мм. Коэффициент поверхностного натяжения крови равен

$$6 \cdot 10^{-2} \, \text{H/M} \cdot \left(13500 \, \frac{\text{дин/cm}^2}{\text{cm}^2}\right)$$

- **8.4*.** После покрытия слоем парафина радиус отверстий решета стал равен $r=1,5\,\mathrm{mm}$. Учитывая, что вода не смачивает парафин, определить высоту h слоя воды, который можно носить в решете так, чтобы вода не проливалась через отверстия. Поверхностное натяжение воды $0,073\,\mathrm{H/m}$. $\left(h=\frac{2\alpha}{\rho gr}=10\,\mathrm{mm}\right)$
- **8.5*.** Найти форму поверхности жидкости в цилиндрическом стакане, который вращается вместе с жидкостью вокруг своей оси с угловой скоростью ω . $\left(y = \frac{1}{2} \frac{\omega^2}{g} x^2\right)$

СПИСОК ЛИТЕРАТУРЫ

- 1. Чертов А.Г., Воробьев А.А. Задачник по физике. М.: Высш. шк., 1988. 527 с.
- 2. Волькенштейн В.С. Сборник задач по общему курсу физики. СПб.: Спец.литература, 1997. 328 с.
- 3. Куликов А.С. и др. Сборник задач по общему курсу физики. М.: Высш. шк., 1964. 197 с.
- 4. Корнев Г.П. и др. Основные принципы физики. Тольятти, 1995. 224 с.
- 5. Слободецкий И.Ш., Асламазов Л.Г. Задачи по физике. М.: Бюро Квантум, 2001. 160 с. (Библиотечка «Квант». Вып. 86)

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
ЗАНЯТИЕ 1. КИНЕМАТИКА	4
Основные формулы	4
Вопросы для самоконтроля	6
Задачи (базовый уровень)	
Задачи (повышенный уровень)	
ЗАНЯТИЕ 2. ДИНАМИКА МАТЕРИАЛЬНОЙ ТОЧКИ, ЗАКОН СОХРАНЕНИЯ	
ИМПУЛЬСА И ЭНЕРГИИ	11
Основные формулы	11
Вопросы для самоконтроля	13
Задачи (базовый уровень)	13
Задачи (повышенный уровень)	17
ЗАНЯТИЕ 3. ДИНАМИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ ТВЕРДОГО ТЕЛА	19
Основные формулы	
Вопросы для самоконтроля	21
Задачи (базовый уровень)	21
Задачи (повышенный уровень)	25
ЗАНЯТИЕ 4. МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ И ВОЛНЫ	26
Основные формулы	26
Вопросы для самоконтроля	30
Задачи (базовый уровень)	
Задачи (повышенный уровень)	34
ЗАНЯТИЕ 5. МОЛЕКУЛЯРНО-КИНЕТИЧЕСКАЯ ТЕОРИЯ. ЭЛЕМЕНТЫ	
СТАТИСТИЧЕСКОЙ ФИЗИКИ	
Основные формулы	36
Вопросы для самоконтроля	39
Задачи (базовый уровень)	39
Задачи (повышенный уровень)	42
ЗАНЯТИЕ 6. СТОЛКНОВЕНИЕ МОЛЕКУЛ. ЯВЛЕНИЯ ПЕРЕНОСА	
Основные формулы	44
Вопросы для самоконтроля	45
Задачи (базовый уровень)	46
Задачи (повышенный уровень)	48
ЗАНЯТИЕ 7. ФИЗИЧЕСКИЕ ОСНОВЫ ТЕРМОДИНАМИКИ	50
Основные формулы	50
Вопросы для самоконтроля	52
Задачи (базовый уровень)	
Задачи (повышенный уровень)	56
ЗАНЯТИЕ 8. РЕАЛЬНЫЕ ГАЗЫ. ЖИДКОСТИ	58
Основные формулы	58
Вопросы для самоконтроля	
Задачи (базовый уровень)	
Задачи (повышенный уровень)	64
СПИСОК ПИТЕРАТУРЫ	66

Учебное издание

Составители ШАЦКИЙ Александр Владимирович ШАЦКАЯ Людмила Александровна

Механика. Молекулярная физика и термодинамика

Сборник задач

Федеральное государственное бюджетное образовательное учреждение Высшего профессионального образования «Самарский государственный аэрокосмический университет им. С.П. Королева» 443086 г. Самара, ул. Московское шоссе, 34.