

Programming fundamentals

Lecture 6: Operators

- Data types,
- operators, and
- conditional statements

Agenda • Operators

Operators

- An *operator* is a symbol that tells the compiler to perform specific mathematical or logical manipulations.
- Arithmetic, assignment, relational and logical, and bitwise

	Operator	Туре
Unary operator	++,	Unary operator
	- +, -, *, /, %	Arithmetic operator
	<, <=, >, >=, ==, !=	Relational operator
Binary operator	&&, ,!	Logical operator
	&, , <<, >>, ~, ^	Bitwise operator
	=, +=, -=, *=, /=, %=	Assignment operator
Ternary operator	?:	Ternary or conditional operator

Unary

The increment (++) and decrement (--) operators.

```
int a = 1;
int b = a++; // b = 1
int c = a; // c = 2
```

• The unary minus (-) operator. (changes the sign of its argument. A positive number becomes negative, and a negative number becomes positive.)

```
int a = 10;
int b = -a; // b = -10
```

• The logical not (!) operator. (reverse the logical state of its operand. If a condition is true, then Logical NOT operator will make it false)

```
int a=2;
If(!(a==2)) { }
```


Increment and decrement

```
++ and -- (increment and decrement operators
x = x+1;
can be written as
++x; // prefix form
or as
x++; // postfix form
```

Operator's precedence

highest	++
	– (unary minus)
	* / %
lowest	+ -

e.g. solving expression

Algebra:
$$z = pr\%q + w/x - y$$

 $C++:$ $z = p * r % q + w / x - y;$

Step 1.
$$y = 2 * 5 * 5 + 3 * 5 + 7$$
; (Leftmost multiplication)
 $2 * 5 is 10$
Step 2. $y = 10 * 5 + 3 * 5 + 7$; (Leftmost multiplication)
 $10 * 5 is 50$
Step 3. $y = 50 + 3 * 5 + 7$; (Multiplication before addition)
 $3 * 5 is 15$
Step 4. $y = 50 + 15 + 7$; (Leftmost addition)
 $50 + 15 is 65$
Step 5. $y = 65 + 7$; (Last addition)
 $65 + 7 is 72$
Step 6. $y = 72$ (Last operation—place 72 in y)

Relational Operators				
Operator	Meaning			
>	greater than			
>=	greater than or equal to			
<	less than			
<=	less than or equal to			
==	equal to			
!=	not equal to			
Logical Operators				
Operator	Meaning			
88	AND			
II	OR			
!	NOT			

highest	!
	> >= < <=
	== !=
	&&
lowest	

Bitwise operators

- The & (bitwise AND) in C or C++ takes two numbers as operands and does AND
 on every bit of two numbers. The result of AND is 1 only if both bits are 1.
- The | (bitwise OR) in C or C++ takes two numbers as operands and does OR on every bit of two numbers. The result of OR is 1 if any of the two bits is 1.
- The ^ (bitwise XOR) in C or C++ takes two numbers as operands and does XOR on every bit of two numbers. The result of XOR is 1 if the two bits are different.
- The << (left shift) in C or C++ takes two numbers, left shifts the bits of the first operand, the second operand decides the number of places to shift.
- The >> (right shift) in C or C++ takes two numbers, right shifts the bits of the first operand, the second operand decides the number of places to shift.
- The ~ (bitwise NOT) in C or C++ takes one number and inverts all bits of it

р	q	p & q	p q	p ^ q
0	0	0	0	0
0	1	0	1	1
1	1	1	1	0
1	0	0	1	1

Assume if A = 60; and B = 13; now in binary format they will be as follows –

A = 0011 1100

B = 0000 1101

A&B = 0000 1100

A|B = 0011 1101

 $A^B = 0011 0001$

 \sim A = 1100 0011

e.g

```
#include <iostream>
#include <iomanip>
using namespace std;
int main()
{
    int b = 9;
    cout << "b<<1: "<<(b<<1)<<endl;
    b = 9;
    cout <<'"b<<2: "<< (b << 2)<<endl;
    return 0;
}</pre>
```

Microsoft Visual Studio Debug Console

b<<1: 18 b<<2: 36

Ternary operator (conditional operator) ?:

Consider this code:

```
if ( a < b )
{
    a = b;
}
else
{
    a = -b;
}</pre>
```

You can replace the above code with:

```
a = (a < b) ? b : -b;
```

```
(a<b) is an if condition</li>b is a true case (if)-b is a false case (else)
```

The ternary operator is more readable than a if...else statement for short conditions.

```
#include <iostream>
Using namespace std;
int main()
{
  // variable declaration
int n1 = 5, n2 = 10, max;

  // Largest among n1 and n2
max = (n1 > n2) ? n1 : n2;

  // Print the largest number
Cout<<"Largest number between";
Cout<<n1<< n2<< max<<endl;

return 0;
}</pre>
```


If we want to print something

```
#include <iostream>
#include <string>
using namespace std;
int main() {
    int n1 = 5, n2 = 10, max;

    // Largest among n1 and n2
    string m = (n1 > n2) ? "n1 is greater" : "n2 is greater";
    cout << m;
return 0;
}</pre>
```


.....

Recommended reads

- Dietal & Dietal
 - Chapter 4
 - page 10: **section 4.5:** if selection statement, **4.6**, till page 114
 - Page 139: **Section 4.11:** Assignment operators, **4.12**
- Walter Savitch, Problem Solving with C++ The Object of Programming
 - Chapter 2
 - Page 60-82
- Schildt C++ From the Ground Up (3rd Edition)
 - Chapter 3