問題1

拡大体 $\mathbb{Q}(\sqrt{3})/\mathbb{Q}$ について、以下の問いに答えよ

- 1. $\mathbb{Q}(\sqrt{3})/\mathbb{Q} = \{a+b\sqrt{3} \mid a,b\in\mathbb{Q}\}$ であることを確認せよ.また拡大次数 $[\mathbb{Q}(\sqrt{3});\mathbb{Q}]$ を求めよ.
- 2. $\mathbb{Q}(\sqrt{3})/\mathbb{Q}$ のガロア群 $Gal(\mathbb{Q}(\sqrt{3})/\mathbb{Q})$ を求めたい.
 - (a) f を $\mathbb{Q}(\sqrt{3})/\mathbb{Q}$ の自己同型写像とする. f(1) および $f(\sqrt{3})$ が決まれば、写像 f 自体が定まることを示せ.
 - (b) f が $\mathbb{Q}(\sqrt{3})/\mathbb{Q}$ の自己同型写像となるための、f(1) および $f(\sqrt{3})$ に関する条件を求め $\mathbb{Q}(\sqrt{3})/\mathbb{Q}$ の自己同型写像を列挙せよ。
 - (c) $\mathbb{Q}(\sqrt{3})/\mathbb{Q}^{Gal(\mathbb{Q}(\sqrt{3})/\mathbb{Q})}$ を求めよ。
 - (d) $\mathbb{Q}(\sqrt{3})/\mathbb{Q}$ はガロア拡大かどうか判定せよ。

解答

- 1. $f(x)=x^2-3\in \mathbb{Q}[x]$. f(x) はアイゼンシュタインの判定法より $\mathbb{Q}[x]$ 上の既約多項式であり、 $\sqrt{3}\not\in \mathbb{Q}$ より、 $\sqrt{3}$ の $\mathbb{Q}[x]$ 上の最小多項式の次数は 2 以上. よって、f(x) は $\mathbb{Q}[x]$ 上の最小多項式. したがって、 $\mathbb{Q}(\sqrt{3})$ は \mathbb{Q} 上のベクトル空間としての次元は 2 であり、基底として $\{1,\sqrt{3}\}$ が取れるので、 $\mathbb{Q}(\sqrt{3})=\{a+b\sqrt{3}\mid a,b\in \mathbb{Q}\}$ $[\mathbb{Q}(\sqrt{3});\mathbb{Q}]=2$
- 2. (a) $\forall a + b\sqrt{3}$ に対して、f が \mathbb{Q} 自己同型写像であることに注意して、 $f(a + b\sqrt{3}) = f(a) + f(\sqrt{3}) = a \cdot f(1) + b \cdot f(\sqrt{3})$. よって、 $f(1), f(\sqrt{3})$ によって f が定まる。
 - (b) f が \mathbb{Q} 自己同型写像であることから, f(1)=1. $f(\sqrt{3}) \cdot f(\sqrt{3}) = f(\sqrt{3}^2) = f(3) = 3. \ \, \text{よって,} \ \, f(\sqrt{3}) = \pm \sqrt{3}.$ 以上から、 $\mathbb{F}f(1) = 1$ 』かつ $\mathbb{F}f(\sqrt{3}) = \pm \sqrt{3}$ 』 よって、 $Gal(\mathbb{Q}(\sqrt{3})/\mathbb{Q}) = \{id,\sigma\}.$ (ただし, $\sigma(\sqrt{3}) = -\sqrt{3}$ となる写像)
 - (c) $\mathbb{Q}(\sqrt{3})/\mathbb{Q}^{Gal(\mathbb{Q}(\sqrt{3})/\mathbb{Q})} = \{\alpha \in \mathbb{Q}(\sqrt{3}) \mid \forall \sigma \in Gal(\mathbb{Q}(\sqrt{3})/\mathbb{Q}), \ \sigma(\alpha) = \alpha\} = \mathbb{Q} \$ を示す。
 - ・ \subset $\forall \alpha = a + b\sqrt{3} \in \mathbb{Q}(\sqrt{3})/\mathbb{Q}^{Gal(\mathbb{Q}(\sqrt{3})/\mathbb{Q})}$ に対して、 $\sigma(a + b\sqrt{3}) = a b\sqrt{3}$ より、 $a + b\sqrt{3} = a b\sqrt{3}$. $(::\mathbb{Q}(\sqrt{3})/\mathbb{Q}^{Gal(\mathbb{Q}(\sqrt{3})/\mathbb{Q})})$ の定義) $\Leftrightarrow 2b\sqrt{3} = 0$ $\Leftrightarrow b = 0$ よって、 $\alpha = a \in \mathbb{Q}$
 - □ は明らか

以上から、 $\mathbb{Q}(\sqrt{3})/\mathbb{Q}^{Gal(\mathbb{Q}(\sqrt{3})/\mathbb{Q})}=\mathbb{Q}$

(d) $\mathbb{Q}(\sqrt{3})/\mathbb{Q}^{Gal(\mathbb{Q}(\sqrt{3})/\mathbb{Q})} = \mathbb{Q}$ より、ガロア拡大 $|\mathbb{Q}(\sqrt{3})/\mathbb{Q}^{Gal(\mathbb{Q}(\sqrt{3})/\mathbb{Q})}| = [\mathbb{Q}(\sqrt{3});\mathbb{Q}] = 2$ からガロア拡大と言ってもよい

問題 2

ガロア理論の基本定理を $\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q}$ について、確認したい

- 1. $\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q}$ の拡大次数を求めよ。
- 2. $Gal(\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q})$ を求めよ。
- 3. 中間体 $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$ に対応する。 $Gal(\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q})$ の部分群を求めよ。
- 4. $f \in Gal(\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q})$ を f(1) = 1, $f(\sqrt{2}) = -\sqrt{2}$, $f(\sqrt{3}) = \sqrt{3}$ で定める自己同型写像とする。 $\{id,f\}$ は $Gal(\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q})$ の部分群となるが、これに対応する中間体を求めよ。

解答

- 1. $f(x) = x^2 2$ は $\sqrt{2} \notin \mathbb{Q}$ より、 \mathbb{Q} 上の最小多項式. よって、 $[\mathbb{Q}(\sqrt{2}); \mathbb{Q}] = 2$
 - $g(x)=x^2-3$ は $\sqrt{3} \not\in \mathbb{Q}(\sqrt{2})$ より、 $\mathbb{Q}(\sqrt{2})$ 上の最小多項式。よって、 $[\mathbb{Q}(\sqrt{2},\sqrt{3});\mathbb{Q}(\sqrt{2})]=2$

以上から、 $[\mathbb{Q}(\sqrt{2},\sqrt{3});\mathbb{Q}] = [\mathbb{Q}(\sqrt{2},\sqrt{3});\mathbb{Q}(\sqrt{2})] [\mathbb{Q}(\sqrt{2});\mathbb{Q}] = 4.$

- 2. $Gal(\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q})$ について
 - まず、 $\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q}$ がガロア拡大であることを示す $\sqrt{2} \notin \mathbb{Q}$ より、 $\sqrt{2}$ の \mathbb{Q} 上の最小多項式は x^2-2 であり、 \mathbb{Q} 上の共役は $\pm\sqrt{2}$. $\sqrt{3} \notin \mathbb{Q}$ より、 $\sqrt{3}$ の \mathbb{Q} 上の最小多項式は x^2-3 であり、 \mathbb{Q} 上の共役は $\pm\sqrt{3}$ $\pm\sqrt{3},\pm\sqrt{2}\in\mathbb{Q}(\sqrt{2},\sqrt{3})$ より、 $\mathbb{Q}(\sqrt{2},\sqrt{3})$ は正規拡大なので、ガロア拡大 また、 x^2-3 は $\mathbb{Q}(\sqrt{2})$ 上の最小多項式でもあるので、拡大次数は $[\mathbb{Q}(\sqrt{2},\sqrt{3});\mathbb{Q}]=[\mathbb{Q}(\sqrt{2},\sqrt{3});\mathbb{Q}(\sqrt{2})]$ $[\mathbb{Q}(\sqrt{2});\mathbb{Q}]=4$ となる。
 - $\forall \sigma \in Gal(\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q})$ に対して、 $\sigma(\sqrt{2})$ は $\sqrt{2}\sigma$ K 上の共役となるので、 $\sigma(\sqrt{2}) = \pm \sqrt{2}$. 同様に、 $\sigma(\sqrt{3})$ は $\sqrt{3}\sigma$ K 上の共役となるので、 $\sigma(\sqrt{3}) = \pm \sqrt{3}$ よって、id, $\sigma(\sigma(\sqrt{2}) = -\sqrt{2}, \sigma(\sqrt{3}) = \sigma 3)$, $\tau(\tau(\sqrt{2}) = \sqrt{2}, \tau(\sqrt{3}) = -\sqrt{3})$, $\phi(\phi(\sqrt{2}) = -\sqrt{2}, \phi(\sqrt{3}) = -\sqrt{3})$, $Gal(\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q})$ の元であり、拡大次数が4 であることからこれが $Gal(\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q})$ の全ての元である。

以上から、 $Gal(\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q}) = \{1,\sigma,\tau,\phi\}$

- 3. ガロア理論の基本定理より、中間体 $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$ に対応するガロア群は $Gal(\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q}(\sqrt{2}))$ である。 $[\mathbb{Q}(\sqrt{2},\sqrt{3});\mathbb{Q}(\sqrt{2})]=2$ より $|Gal(\sqrt{2},\sqrt{3})/\mathbb{Q}(\sqrt{2})|=2$. よって、 $Gal(\mathbb{Q}(\sqrt{2},\sqrt{3}));\mathbb{Q}(\sqrt{2})$ は位数 2 の部分群である。 $Gal(\mathbb{Q}(\sqrt{2},\sqrt{3}))/\mathbb{Q}(\sqrt{2})$ は $\mathbb{Q}(\sqrt{2})$ の元を不変にするので、 $Gal(\mathbb{Q}(\sqrt{2},\sqrt{3}))/\mathbb{Q}(\sqrt{2}))=\{id,\tau\}$
- 4. $H = \{id, f\}$ とおく.ガロア理論の基本定理から、 $\mathbb{Q}(\sqrt{2}, \sqrt{3})^H$ が H に対応する中間体である。 $\mathbb{Q}(\sqrt{2}, \sqrt{3})^H = \{\alpha \in \mathbb{Q}(\sqrt{2}, \sqrt{3}) \mid \forall \sigma \in H, \ \sigma(\alpha) = \alpha\} = \mathbb{Q}(\sqrt{3})$

 $*\{id,f\}$ は $\mathbb{Q}(\sqrt{3})$ の元を固定するので、対応する中間体は $\mathbb{Q}(\sqrt{3})$

中間体との対応のまとめ

1. 中間体が与えられたときにガロア群を求める方法の概要 中間体を固定するような K-自己同型群を求める 2. ガロア群が与えられたときに中間体を求める方法の概要 与えられたガロア群で固定されている中間体を求める

問 3

 $K=\mathbb{Q}(\sqrt{2}),\ L=\mathbb{Q}(^4\sqrt{3})$ とする。全問と同様,K は \mathbb{Q} のガロア拡大である。

- 1. L は K のガロア拡大であることを示せ。
- 2. L は $\mathbb Q$ のガロア拡大出ないことを示せ。