Efficiently Modeling Long Sequences with Structured State Spaces (S4)

- Albert Gu, Karan Goel, Christopher Re (Stanford)

Mathieu Ravaut

Nanyang Technological University

Overview

- ICLR 2022 with impressive review scores: 8, 8, 8.
- An alternative way of sequence modeling without Transformer or even self-attention.
- Uses state-space models.
- Combined with *multiple linear algebra tricks* to keep computation cost low. There'll be *a lot* of maths!
- Extremely good at long sequence modeling : SOTA in Long Range Arena with much faster inference.
- The Annotated S4, a dedicated illustrated notebook by Sasha Rush (March 2022).

Table of content

- Introduction
- 2 Model
- 3 Experiments
- 4 Conclusion

State-space models (SSMs)

- State-space models are a classical mathematical tool from the 1970s and 1980s, used for instance in control engineering.
- Framework:
 - A 1-D input signal u(t)
 - An N-D latent representation x(t)
 - A 1-D output signal y(t)
- The state-space model is defined by:

$$x'(t) = \mathbf{A}.x(t) + \mathbf{B}.u(t) \tag{1}$$

$$y(t) = \mathbf{C}.x(t) + \mathbf{D}.u(t) \tag{2}$$

State-space models (SSMs)

• In practice, they ignore **D** because it's simply a skip-connection and set the matrix to 0, so the SSM equation becomes :

$$x'(t) = \mathbf{A}.x(t) + \mathbf{B}.u(t) \tag{3}$$

$$y(t) = \mathbf{C}.x(t) \tag{4}$$

Hippo Matrix

- The basic SSM is a linear first-order ODE.
- It solves with an exponential function.
- Thus, it performs poorly in practice, due to vanishing/exploding gradient issues.
- The same authors propose to use the **HiPPO Matrix** as matrix A, from their previous paper *HiPPO*: Recurrent memory with optimal polynomial projections (Neurips 2020).
- This special class of matrices allows the state x(t) to memorize the input u(t) (hard to get the intuition..).

HiPPO Matrix

The HiPPO matrix:

$$\mathbf{A}_{n,k} = -\begin{cases} (2n+1)^{1/2} \cdot (2k+1)^{1/2} & \text{if } n > k \\ (n+1) & \text{if } n = k \\ 0 & \text{if } n < k \end{cases}$$
 (5)

$$\mathbf{A} = -\begin{bmatrix} 1 & 0 & \dots & 0 & 0 \\ \sqrt{3} & 2 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \sqrt{2N-1} & \sqrt{(2N-1).3} & \dots & \sqrt{(2N-1)(2N-3)} & N \end{bmatrix}$$
(6)

Discrete SSM

- So far everything was continuous.
- But in practice, the input signal is discrete $u = (u_0, u_1, \dots)$.
- The bilinear method enables to derive a discrete SSM:

$$x_k = \overline{\mathbf{A}}.x_{k-1} + \overline{\mathbf{B}}.u_k \tag{7}$$

$$y_k = \overline{\mathbf{C}}.x_k = \mathbf{C}.x_k \tag{8}$$

with the following new matrices (Δ is the step size):

$$\overline{\mathbf{A}} = (\mathbf{I} - \frac{\Delta}{2}.\mathbf{A})^{-1}.(\mathbf{I} + \frac{\Delta}{2}.\mathbf{A})$$
 (9)

$$\overline{\mathbf{B}} = (\mathbf{I} - \frac{\Delta}{2}.\mathbf{A})^{-1}.\Delta.\mathbf{B}$$
 (10)

• The discrete SSM converts the problem to a sequence-to-sequence mapping, useful for NLP.

Structured state-spaces

- The previous recurrent equation is not practical on modern hardware due to sequentiality.
- Instead, we write it as a **convolution**.
- If we enroll the discrete SSM:

$$x_k = \overline{\mathbf{A}^k}.\overline{\mathbf{B}}.u_0 + \overline{\mathbf{A}^{k-1}}.\overline{\mathbf{B}}.u_1 + \dots + \overline{\mathbf{B}}.u_k$$
 (11)

$$y_k = \overline{\mathbf{C}.\mathbf{A}^k.\mathbf{B}}.u_0 + \overline{\mathbf{C}.\mathbf{A}^{k-1}.\mathbf{B}}.u_1 + \dots + \overline{\mathbf{C}.\mathbf{B}}.u_k$$
 (12)

(13)

• As a convolution:

$$y = \overline{\mathbf{K}} * u$$

with the kernel

$$\overline{\mathbf{K}} = (\overline{\mathbf{C}.\mathbf{B}}, \overline{\mathbf{C}.\mathbf{A}.\mathbf{B}}, \dots, \overline{\mathbf{C}.\mathbf{A}^{L-1}.\mathbf{B}}) = (\overline{\mathbf{C}.\mathbf{A}^i.\mathbf{B}})_i$$

Structured state-spaces

- This was just the pre-requisite to the paper!
- We reduced the problem to a single convolution.
- It can be computed very efficiently using **Fast Fourier Transform** (FFT).
- The main contribution of this paper is computing the SSM convolution kernel \overline{K} fast.

Kernel computation

- \bullet Computing the kernel $\overline{\mathbf{K}}$ requires raising the matrix $\overline{\mathbf{A}}$ to several powers.
- That is fine if we diagonalize $\overline{\mathbf{A}}$, because conjugation is an equivalence relation in state-space models:

$$(\mathbf{A}, \mathbf{B}, \mathbf{C}) \sim (\mathbf{V}^{-1}.\mathbf{A}.\mathbf{V}, \mathbf{V}^{-1}.\mathbf{B}, \mathbf{C}.\mathbf{V})$$
 (14)

• The problem is that there exists a matrix V diagonalizing the HiPPO matrix \overline{A} , but it has entries exponentially large in the state space N! Not stable numerically.

Diagonal plus low-rank

Instead of directly diagonalizing $\overline{\mathbf{A}}$, we decompose it into a **normal plus low-rank** matrix (linear algebra property) :

$$\mathbf{A} = \mathbf{V}.\mathbf{D}.\mathbf{V}^* - \mathbf{P}.\mathbf{Q}^{\mathbf{T}} \tag{15}$$

which means conjugating to a *diagonal plus low-rank* (DPLR) :

$$\mathbf{A} = \mathbf{V}.(\mathbf{D}. - (\mathbf{V}^*\mathbf{P}).(\mathbf{V}^*.\mathbf{Q})^*).\mathbf{V}^*$$
(16)

The above is **Theorem 1** of the paper.

S4 Recurrence

Remember that we care about $\overline{\mathbf{A}}$, not \mathbf{A} :

$$\overline{\mathbf{A}} = (\mathbf{I} - \frac{\Delta}{2}.\mathbf{A})^{-1}.(\mathbf{I} + \frac{\Delta}{2}.\mathbf{A})$$
 (17)

- Since **A** is DPLR, so is the second term (obvious).
- The first term is also DPLR because of **Woodbury** identity.
- Thus, we obtain $\overline{\mathbf{A}}$ from \mathbf{A} in O(N).
- In other words, one recurrent step of the discrete SSM has complexity O(N) (**Theorem 2**).

S4 Convolution

- Instead of computing K directly, we compute its spectrum by evaluating its truncated generating function $\sum_{j=0}^{L-1} \overline{\mathbf{K}_j} \zeta^j$ at the roots of unity ζ^j .
- \bullet $\overline{\mathbf{K}}$ is then retrieved with an inverse FFT.
- We can replace the matrix powers in the kernel with just an inverse:

$$\overline{\mathbf{K}}(z) = \sum_{i=1}^{L-1} \overline{\mathbf{C}} \cdot \overline{\mathbf{A}}^{i} \cdot \overline{\mathbf{B}} \cdot z^{i} = \dots = \tilde{\mathbf{C}} \cdot (\mathbf{I} - \overline{\mathbf{A}} \cdot z)^{-1} \cdot \overline{\mathbf{B}}$$
 (18)

• However, this inverse needs to be calculated L times (once for each root of the unity).

S4 Convolution

- Evaluating the kernel $\overline{\mathbf{A}}$ to the roots of the unity, because of the special structure of the matrix A that we explored before, ends up becoming a **Cauchy kernel**.
- A Cauchy kernel can be evaluated efficiently in $O(N+L) \cdot \log^2(N+L)$ operations (while it would be O(N.L) naively).
- The S4 convolutional kernel involves 4 Cauchy kernels, requiring O(N+L) operations and O(N+L) space (**Theorem 3**).

S4 Layer

- One S4 layer has the following learnable parameters: D, P,
 Q, B and C.
- An S4 layer maps a \mathbb{R}^L signal to another \mathbb{R}^L signal.
- We make it process H features instead of 1:
 - \bullet Define H independant copies of the S4 layer.
 - Mix the features with a position-wise linear layer.
 - Add non-linear activations between these layers.
- After this process, S4 defines a sequence-to-sequence map of shape (batch size, sequence length, hidden dimension), just like Transformer.

Algorithm

Overview of S4 algorithm to compute the convolutional kernel:

Algorithm 1 S4 CONVOLUTION KERNEL (SKETCH)

Input: S4 parameters $\Lambda, P, Q, B, C \in \mathbb{C}^N$ and step size Δ

Output: SSM convolution kernel $\overline{K} = \mathcal{K}_L(\overline{A}, \overline{B}, \overline{C})$ for $A = \Lambda - PQ^*$ (equation (5))

1:
$$\widetilde{\pmb{C}} \leftarrow \left(\pmb{I} - \overline{\pmb{A}}^L \right)^* \overline{\pmb{C}}$$

 \triangleright Truncate SSM generating function (SSMGF) to length L

2:
$$\begin{bmatrix} k_{00}(\omega) & k_{01}(\omega) \\ k_{10}(\omega) & k_{11}(\omega) \end{bmatrix} \leftarrow \begin{bmatrix} \widetilde{C} \ \mathbf{Q} \end{bmatrix}^* \left(\frac{2}{\Delta} \frac{1-\omega}{1+\omega} - \mathbf{\Lambda} \right)^{-1} [\mathbf{B} \ \mathbf{P}]$$

 $\frac{-\omega}{\frac{1}{2}\omega} - \mathbf{\Lambda}$ $B \mathbf{P}$ \Rightarrow Black-box Cauchy kernel

3:
$$\hat{\mathbf{K}}(\omega) \leftarrow \frac{2}{1+\omega} \left[k_{00}(\omega) - k_{01}(\omega)(1+k_{11}(\omega))^{-1} k_{10}(\omega) \right]$$

4:
$$\hat{\boldsymbol{K}} = \{\hat{\boldsymbol{K}}(\omega) : \omega = \exp(2\pi i \frac{k}{L})\}$$

 \triangleright Evaluate SSMGF at all roots of unity $\omega \in \Omega_L$

5:
$$\overline{\pmb{K}} \leftarrow \mathsf{iFFT}(\hat{\pmb{K}})$$

▷ Inverse Fourier Transform

Complexity

L is sequence length, B is the batch size, H is the feature size.

	Convolution ³	Recurrence	Attention	S4
Parameters	LH	H^2	H^2	H^2
Training	$ ilde{L}H(B+H)$	BLH^2	$B(L^2H + LH^2)$	$BH(ilde{H}+ ilde{L})+B ilde{L}H$
Space	BLH	BLH	$B(L^2 + HL)$	BLH
Parallel	Yes	No	Yes	Yes
Inference	LH^2	H^2	$L^2H + H^2L$	H^2

S4 is optimal or near-optimal on all aspects.

Long-Range Arena

LRA is a benchmark of several tasks with very long-range dependencies :

MODEL	LISTOPS	TEXT	RETRIEVAL	IMAGE	PATHFINDER	Ратн-Х	Avg
Transformer	36.37	64.27	57.46	42.44	71.40	Х	53.66
Reformer	37.27	56.10	53.40	38.07	68.50	X	50.56
BigBird	36.05	64.02	59.29	40.83	74.87	Х	54.17
Linear Trans.	16.13	65.90	53.09	42.34	75.30	X	50.46
Performer	18.01	65.40	53.82	42.77	77.05	Х	51.18
FNet	35.33	65.11	59.61	38.67	77.80	Х	54.42
Nyströmformer	37.15	65.52	79.56	41.58	70.94	X	57.46
Luna-256	37.25	64.57	79.29	47.38	77.72	Х	59.37
S4	58.35	76.02	87.09	87.26	86.05	88.10	80.48

S4 is SOTA by a very large margin, and is the first model ever to beat random chance on Path-X (Path-X is a Pathfinder task, aka identifying the correct target contour of a shape, but with very high resolution (16k) images).

Speech classification

Speech classification accuracy with standard MFCC features, unprocessed signals (Raw), and frequency change at test time (x0.5).

	MFCC	RAW	$0.5 \times$
Transformer	90.75	X	X
Performer	80.85	30.77	30.68
ODE-RNN	65.9	X	X
NRDE	89.8	16.49	15.12
ExpRNN	82.13	11.6	10.8
LipschitzRNN	88.38	X	X
CKConv	95.3	71.66	65.96
WaveGAN-D	X	96.25	X
LSSL	93.58	х	<i>x</i>
S4	93.96	98.32	96.30

Image classification

Pixel-level sequential image classification, slidding non-overlapping windows of 1024 pixels.

	sMNIST	PMNIST	sCIFAR
Transformer	98.9	97.9	62.2
LSTM	98.9	95.11	63.01
r-LSTM	98.4	95.2	72.2
UR-LSTM	99.28	96.96	71.00
UR-GRU	99.27	96.51	74.4
HiPPO-RNN	98.9	98.3	61.1
LMU-FFT	-	98.49	-
LipschitzRNN	99.4	96.3	64.2
TCN	99.0	97.2	-
TrellisNet	99.20	98.13	73.42
CKConv	99.32	98.54	63.74
LSSL	99.53	98.76	84.65
S4	99.63	98.70	91.13

S4 is better than Transformer, LSTMs, and CNNs.

Image density estimation

Density estimation on CIFAR-10:

Model	bpd	2D bias	Images / sec
Transformer	3.47	None	0.32 (1×)
Linear Transf.	3.40	None	$17.85(56\times)$
PixelCNN	3.14	2D conv.	-
Row PixelRNN	3.00	2D BiLSTM	-
PixelCNN++	2.92	2D conv.	$19.19(59.97 \times)$
Image Transf.	2.90	2D local attn.	$\overline{0.54}(1.7\times)$
PixelSNAIL	2.85	2D conv. + attn.	$0.13(0.4\times)$
Sparse Transf.	2.80	2D sparse attn.	-
S4 (base)	2.92	None	20.84 (65.1×)
S4 (large)	2.85	None	$3.36(10.5\times)$

S4 is competitive with SOTA in terms of bits per dimension. S4-base is the fastest overall.

Language modeling

Word-level language modeling (perplexity) on WikiText-103:

Model	Params	Test ppl.	Tokens / sec
Transformer	247M	20.51	0.8K (1×)
GLU CNN	229M	37.2	-
AWD-QRNN	151M	33.0	-
LSTM + Hebb.	-	29.2	-
TrellisNet	180M	29.19	-
Dynamic Conv.	255M	25.0	-
TaLK Conv.	240M	23.3	-
S4	249M	21.28	48K (60×)

A Transformer with attention blocks replaced by S4 blocks provides the best perplexity among attention-free models, very close to Transformer with self-attention.

Besides S4 processes 60x more tokens per second.

Conclusion

- A fresh departure from the classical Transformer layers and self-attention.
- Very high performing on long sequence modeling.
- Also computationnally efficient, as it's not limited by the $O(L^2)$ complexity of self-attention.
- A method derived from an old tool (state-space models), rendered useful through applying multiple linear algebra tricks.
- I am currently working with an intern at A*STAR on how to extend S4 to an encoder-decoder model, with the goal of applying it to long-input summarization (e.g, Arxiv, PubMed), perhaps document-level translation too.

