This is a title

Jiuru Lyu

March 20, 2024

1

Contents

1 This is the section name

-	1.1 This is the subsection name
1	This is the section name
1.1 This is the subsection name	
7	Γheorem 1.1.1 Name of thm
L	Γhis is a theorem.
	eorem
Def	inition 1.1.2 (Name for df). This is a definition.
Def	inition
Ex	xample 1.1.3
	This is an example
	Solution 1.
	Solution.

```
Proof 2. This is a proof

Proof.

□

Disproof 3.

Disproof.

□

Corollary 1.4: This is a corollary

Lemma 1.5: This is a lemma

Proposition 1.6: This is a proposition

Conjecture 1.7: This is a conjecture

Axiom 1.8: This is an axiom.

Claim 1.
```

Answer.m

```
% Plot function f(x) = 2*x^3 - x - 2
1
    ezplot('2*x^3-x-2', [0, 2])
2
3
    hold on
    plot([0, 2], [0, 0], 'r')
4
    def __self__(self):
1
2
    for i in range(10):
       print(f"This number is {i}.")
3
    public static void main(String[] args) {
1
       System.out.println("Hello World!"); // comment
2
3
    }
```

Algorithm 1: Bisection Algorithm

```
Input: a, b, M, \delta, \varepsilon
   u \leftarrow f(a)
   b \leftarrow f(b)
   e \leftarrow b - a
   Output: output
1 begin
       if sign(u) = sign(v) then
2
         stop
 3
        for k=1 to M do
 4
            e \leftarrow e/2
 5
             c \leftarrow a + e
 6
             w \leftarrow f(c)
 7
             return k, c, w, e
 8
             if |e|<\delta or |w|<\varepsilon then
 9
              stop
10
             if sign(u) \neq = sign(v) then
11
                 b \leftarrow c
12
                 v \leftarrow w
13
             else
14
                 a \leftarrow c
15
16
                 u \leftarrow w
```