(0/5/6,9/8

AUF DEM GEBIET DES (12) NACH DEM VERTR BER DIE INTERNATIONALE ZUSAMMENAF PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONAL ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 24. Dezember 2003 (24.12.2003)

PCT

(10) Internationale Veröffentlichungsnummer WO 03/105998 A1

(51) Internationale Patentklassifikation7: B01J 8/04, 8/02, 19/30, 29/06

B01D 53/86,

US): UHDE GMBH [DE/DE]; Friedrich-Uhde-Strasse 15, 44141 Dortmund (DE).

(21) Internationales Aktenzeichen:

PCT/EP03/06051

(22) Internationales Anmeldedatum:

10. Juni 2003 (10.06.2003)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität! 3 Dec ou

102 26 461.9

13. Juni 2002 (13.06.2002) DE

- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): SCHWEFER, Meinhard [DE/DE]; Auf'm Ufer 12, 59872 Meschede (DE). GROVES, Michael [GB/DE]; Isenberger Weg 12, 45529 Hattingen (DE). SIEFERT, Rolf [DE/DE]; Wartenbergstrasse 18, 33378 Rheda-Wiedenbrück (DE). MAURER, Rainer [DE/DE]; Martinstrasse 14, 58332 Schwelm (DE).

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von

(74) Anwalt: ACKERMANN, Joachim; Postfach 11 13 26, 60048 Frankfurt (DE).

[Fortsetzung auf der nächsten Seite]

(54) Title: METHOD AND DEVICE FOR REDUCING THE NO_X AND N₂O OF GASES

(54) Bezeichnung: VERFAHREN UND VORRICHTUNG ZUR VERRINGERUNG DES GEHALTS AN NO₂ UND N₂O IN GA-SEN

- (57) Abstract: The method comprises the following steps: conduction of the gas containing N₂O and NO_x over a series of two catalyst beds consisting of one or more zeolites charged with iron; addition of a reduction agent for NO_x between the catalyst beds; setting of a temperature of less than 500 °C in the first and second catalyst bed; setting of a gas pressure of at least 2 bar in the two catalyst beds; and the selection of a space velocity in the first and second catalyst bed that achieves a degradation of the N₂O content of the gas in the first catalyst bed by a maximum of up to 90 %, in relation to the N2O content at the entrance to the catalyst bed and an additional degradation of the N2O content of the gas in the second catalyst bed by at least 30 % in relation to the N₂O content at the entrance to the second catalyst bed. The first reaction zone is used to degrade the N₂O and the second reaction zone reduces the NOx and breaks down at least part of the remaining N2O. The inventive device comprises at least one radially traversed catalyst bed.
- (57) Zusammenfassung: Das Verfahren umfasst das Leiten des N2O und NOx enthaltenden Gases über eine Folge zweier Katalysatorbetten enthaltend einen oder mehrere mit Eisen beladene Zeolithe, die Zugabe eines Reduktionsmittels für NOx zwischen den Katalysatorbetten, das Einstellen einer Temperatur von weniger als 500 °C im ersten und zweiten Katalysatorbett, das Einstellen eines Gasdruckes von mindestens 2 bar in den beiden Katalysatorbetten, und die Auswahl einer solchen Raumgeschwindigkeit im ersten und zweiten Katalysatorbett, so dass im ersten

Katalysatorbett ein Abbau des N₂O-Gehalts des Gases um höchstens bis zu 90 %, bezogen auf den N₂O

[Fortsetzung auf der nächsten Seite]

ç,

- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ,

TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Gehalt am Eingang des ersten Kataysatorbettes, erfolgt, und dass im zweiten Katalysatorbett ein weiterer Abbau des N_2O -Gehalts des Gases um mindestens 30 %, bezogen auf den N_2O Gehalt am Eingang des zweiten Katalysatorbettes, erfolgt. Die erste Reaktionszone dient zum Abbau von N_2O und in der zweiten Reaktionszone wird das NO_x reduziert und zumindest ein Teil des verbliebenen N_2O wird zersetzt. Die beschriebene Vorrichtung umfasst mindestens ein radial durchströmtes Katalysatorbett.

Beschreibung

5

10

15

20

25

30

Verfahren und Vorrichtung zur Verringerung des Gehaltes an NO_x und N₂O in Gasen

Die vorliegende Erfindung betrifft ein Verfahren zur Verringerung Gehaltes an Stickoxiden in Gasen, insbesondere in Prozess- und Abgasen, sowie eine daran angepasste Vorrichtung.

Bei vielen Prozessen, wie z.B. Verbrennungsprozessen oder bei der industriellen Herstellung von Salpetersäure resultiert ein mit Stickstoffmonoxid NO, Stickstoffdioxid NO₂ (zusammen bezeichnet als NO_x) sowie Lachgas N₂O beladenes Abgas. Während NO und NO₂ seit langem als Verbindungen mit ökotoxischer Relevanz bekannt sind (Saurer Regen, Smog-Bildung) und weltweit Grenzwerte für deren maximal zulässige Emissionen festgelegt sind, rückt in den letzten Jahren in zunehmenden Maße auch Lachgas in den Focus des Umweltschutzes, da dieses in nicht unerheblichem Maße zum Abbau von stratosphärischem Ozon und zum Treibhauseffekt beiträgt. Es besteht daher aus Gründen des Umweltschutzes ein dringender Bedarf an technischen Lösungen, die Lachgasemissionen zusammen mit den NO_x-Emissionen zu beseitigen.

Zur separaten Beseitigung von N₂O einerseits und andererseits sind bereits zahlreiche Möglichkeiten bekannt.

Bei der NO_x-Reduktion ist die selektive katalytische Reduktion (SCR) von NO_x mittels Ammoniak in Gegenwart vanadiumhaltiger TiO₂-Katalysatoren hervorzuheben (vgl. etwa G. Ertl, H. Knözinger J. Weitkamp: Handbook of Heterogeneous Catalysis, Vol. 4, Seiten 1633-1668, VCH Weinheim (1997)). Diese kann je nach Katalysator bei Temperaturen von ca. 150°C bis ca. 450°C ablaufen und ermöglicht einen NO_x-Abbau von mehr als 90%. Sie ist die meist genutzte Variante der NO_x-Minderung aus Abgasen industrieller Prozesse.

Auch auf Basis von Zeolith-Katalysatoren finden sich Verfahren zur Reduktion von NO_x, die unter Verwendung verschiedenster Reduktionsmittel ablaufen. Neben Cuausgetauschten Zeolithen (vergl. z.B. EP-A-0914866) scheinen vor allem eisenhaltige Zeolithe für praktische Anwendung von Interesse.

5

So beansprucht US-A- 4,571,329 ein Verfahren zur Reduktion von NO_x in einem Gas, welches zu mindestens 50% aus NO₂ besteht, mittels Ammoniak in Gegenwart eines Fe-Zeolithen. Das Verhältnis von NH₃ zu NO₂ beträgt mindestens 1,3. Gemäß des hier beschriebenen Verfahrens sollen NO_x-enthaltende Gase mit Ammoniak reduziert werden, ohne dass es zur Bildung von N₂O als Nebenprodukt kommt.

10

US 5,451,387 beschreibt ein Verfahren zur selektiven katalytischen Reduktion von NO_x mit NH₃ über eisenausgetauschten Zeolithen, welches bei Temperaturen um 400°C arbeitet.

15

Im Unterschied zur NO_{x^-} Minderung in Abgasen, die seit vielen Jahren in der Technik etabliert ist, existieren zur N_2O -Beseitigung nur wenige technische Prozesse, die zumeist auf einen thermischen oder katalytischen Abbau des N_2O abzielen. Eine Übersicht über die Katalysatoren, deren prinzipielle Eignung zum Abbau und zur Reduktion von Lachgas nachgewiesen wurde, gibt Kapteijn et al. (Kapteijn F. et al., Appl. Cat. B: Environmental 9 (1996) 25-64).

20

Als besonders geeignet erscheinen wiederum Fe- und Cu-Zeolith-Katalysatoren, die entweder eine reine Zersetzung des N_2O in N_2 und O_2 bewirken (US-A-5,171,553), oder auch zur katalytischen Reduktion des N_2O mit Hilfe von NH_3 oder Kohlenwasserstoffen zu N_2 und H_2O bzw. CO_2 dienen.

25

So wird in JP-A-07 060 126 ein Verfahren zur Reduktion von N₂O mit NH₃ in Gegenwart von eisenhaltigen Zeolithen vom Pentasil-Typ bei Temperaturen von 450°C beschrieben. Der mit diesem Verfahren erreichbare N₂O-Abbau liegt bei 71%.

30

Mauvezin et al. geben in Catal. Lett. 62 (1999) 41-44 eine diesbezügliche Übersicht über die Eignung verschiedener, eisenausgetauschter Zeolithe vom Typ MOR, MFI,

10

15

20

25

30

BEA, FER, FAU, MAZ und OFF. Danach kann eine mehr als 90%ige N₂O-Reduktion durch NH₃-Zugabe unterhalb von 500°C nur im Falle von Fe-BEA erreicht werden.

Neben den zuvor genannten Verfahren zur separaten Beseitigung von N₂O und NO_x existieren aber auch Verfahren zur kombinierten Beseitigung, die unter Verwendung eines einzigen Katalysators ablaufen können.

Aus der WO-A-00/48715 ist ein Verfahren bekannt, bei dem ein NO_x und N₂O enthaltendes Abgas bei Temperaturen zwischen 200 und 600°C über einen Eisen-Zeolith-Katalysator vom Typ Beta (= Typ BEA) geleitet wird, wobei das Abgas außerdem NH₃ in einem Mengenverhältnis zwischen 0,7 und 1,4 bezogen auf die Gesamtmenge an NO_x und N₂O enthält. NH₃ dient hier als Reduktionsmittel sowohl für NO_x als auch für N₂O. Das Verfahren arbeitet zwar bei Temperaturen von kleiner als 500°C, besitzt aber wie das vorgenannte Verfahren den prinzipiellen Nachteil, dass zur Beseitigung des N₂O Gehaltes eine in etwa äquimolare Menge an Reduktionsmittel (hier NH₃) benötigt wird.

Aus der WO-A-01/51,181 ist ein Verfahren zur Beseitigung von ein NO_x und N₂O bekannt, worin ein Prozess- oder Abgas durch zwei Reaktionszonen geleitet, die mit Eisen beladene Zeolithe als Katalysatoren enthalten. In der ersten Reaktionszone wird dabei N₂O abgebaut, zwischen der ersten und der zweiten Reaktionszone wird dem Gasgemisch Ammoniak zugesetzt und in der zweiten Reduktionszone wird NO_x reduziert.

Es wurde jetzt überraschenderweise gefunden, dass die Effektivität des oben genannten Verfahrens deutlich gesteigert werden kann, wenn die Minderung des N₂O-Gehaltes bis zum gewünschten Abbaugrad nicht alleinig in der ersten Reaktionszone erfolgt, sondern auch die Reaktionszone der NO_x-Reduktion zur N₂O-Minderung genutzt werden kann. Dieses wurde möglich, seitdem überraschend festgestellt wurde, dass bei Verwendung von Eisen-beladenen Zeolith-Katalysatoren eine simultane NO_x-Reduktion (z.B. mittels NH₃) und N₂O-Zersetzung möglich ist. Der Beitrag zur N₂O-Zersetzung in der zweiten Reaktionsstufe ist dann besonders

10

15

25

30

groß, wenn das Verfahren bei erhöhten Drucken, d.h. bei Drucken oberhalb von 2 bar, vorzugsweise oberhalb von 4 bar betrieben wird.

Aufgabe der vorliegenden Erfindung ist es, ein einfaches, aber wirtschaftliches Verfahren zur Verfügung zu stellen, das gute Umsätze sowohl für den NO_x- als auch für den N₂O-Abbau liefert, sich durch minimale Betriebs- und Investitionskosten auszeichnet. Zu ersteren zählen neben der Energie zur Einstellung der notwendigen Betriebstemperatur der Verbrauch an Reduktionsmittel sowie Energieverluste durch Strömungswiderstände im Katalysatorbett (Druckverluste). Die Investitionskosten werden wesentlich bestimmt durch die benötigten Mengen an Katalysator und die damit verbundenen Apparatevolumina.

Zusätzlich besteht das Problem der Einbringung des Reduktionsmittels, welches mit dem zu behandelnden Gasstrom innig gemischt werden muss, um einem möglichst hohen Wirkungsgrad des Reduktionsmittels zu gewährleisten (Vermeidung von Schlupf und Nebenreaktionen). Der hierzu notwendige Mischer sollte aus aufstellungstechnischen und wirtschaftlichen Erwägungen möglichst platzsparend angeordnet sein.

Diese Aufgaben werden durch das erfindungsgemäße Verfahren und die erfindungsgemäße Vorrichtung gelöst.

Gegenstand der Erfindung ist ein Verfahren zur Minderung des Gehalts von NO_x und N_2O in Gasen, insbesondere in Prozessgasen und Abgasen, umfassend die Massnahmen:

- a) Leiten des N₂O und NO_x enthaltenden Gases über eine Folge zweier Katalysatorbetten enthaltend einen oder mehrere mit Eisen beladene Zeolithe,
- b) Zugabe eines Reduktionsmittels für NO_x zwischen den Katalysatorbetten,
- c) Einstellen einer Temperatur von weniger als 500°C im ersten Katalysatorbett und zweiten Katalysatorbett,

- d) Einstellen eines Gasdruckes von mindestens 2 bar in den beiden Katalysatorbetten,
- e) Auswahl einer solchen Raumgeschwindigkeit im ersten und zweiten Katalysatorbett, so dass im ersten Katalysatorbett ein Abbau des N₂O-Gehalts des Gases um höchstens bis zu 90%, bezogen auf den N₂O Gehalt am Eingang des ersten Katalysatorbettes, erfolgt, und dass im zweiten Katalysatorbett ein weiterer Abbau des N₂O-Gehalts des Gases um mindestens 30%, bezogen auf den N₂O Gehalt am Eingang des zweiten Katalysatorbettes, erfolgt.

5

Im ersten Katalysatorbett zur reinen N₂O-Zersetzung beschleunigt dabei das noch im Gas vorhandene NO_x erwartungsgemäß die gewünschte N₂O Zersetzung durch eine aktivierende Wirkung, wie diese für unterschiedliche N₂O/NO_x-Verhältnisse von Kögel et al. in Catal. Comm. 2 (2001)273-6 beschrieben wurde.

15

Aber auch im zweiten Katalysatorbett kann ein merklicher N₂O-Abbau durch Zersetzung in Stickstoff und Sauerstoff erreicht werden. Dies war überraschend, da zum einen der NO_x-Gehalt, welcher die N₂O-Zersetzung aktiviert, durch Zugabe des Reduktionsmittels reduziert wird und zum anderen erwartet wurde, dass das zugesetzte Reduktionsmittel intermediär auf der Katalysatoroberfläche adsorbiert und damit die aktiven Zentren zur N₂O Zersetzung blockiert.

20

Unter den gewählten Verfahrensbedingungen, also den erhöhten Drücken und insbesondere einem reduzierten Verhältnis NH₃/NO_x kommen diese Einflüsse aber offenbar nicht zum Tragen.

25

Das erfindungsgemäße Verfahren ermöglicht es damit, sowohl die Zersetzung von N_2O , als auch die Reduktion von NO_x bei einer niedrigen Betriebstemperatur und wirtschaftlichen Raumgeschwindigkeiten durchzuführen und gleichzeitig hohe Abbauraten von N_2O und NO_x zu erzielen.

30

Unter dem Begriff Raumgeschwindigkeit ist dabei der Quotient aus Volumenanteilen Gasgemisch (gemessen bei 0 °C und 1,014 bara) pro Stunde bezogen auf einen

15

20

25

30

. G

Volumenanteil Katalysator zu verstehen. Die Raumgeschwindigkeit kann somit über den Volumenstrom des Gases und/oder über die Katalysatormenge eingestellt werden.

Das mit Stickstoffoxiden beladene Gas wird üblicherweise mit einer Raumgeschwindigkeit von 200 bis 200.000 h⁻¹, vorzugsweise von 5.000 bis 100.000 h⁻¹, insbesondere von 5.000 bis 50.000 h⁻¹, bezogen auf das addierte Katalysatorvolumen beider Katalysatorbetten, über den Katalysator geleitet.

Nach Verlassen des ersten Katalysatorbettes liegt der Gehalt an N₂O nach dem erfindungsgemäßen Verfahren vorzugsweise oberhalb von 200 ppm, insbesondere oberhalb von 300 ppm. Im ersten Katalysatorbett erfolgt eine höchstens 90 %ige, vorzugsweise höchstens 80%ige Minderung des zu Beginn des ersten Katalysatorbettes vorhandenen N₂O-Gehaltes.

Nach dem Verlassen des ersten Katalysatorbettes wird das N_2O und NO_X enthaltende Gas zunächst mit einem gasförmigen Reduktionsmittel, vorzugsweise mit NH_3 , gemischt und anschließend zum gleichzeitigen Abbau von N_2O (durch Zersetzung) und NO_X (durch Reduktion) bei einer Temperatur von vorzugsweise weniger als 450°C mit der ausgewählten Raumgeschwindigkeit über den Katalysator geleitet.

Im zweiten Katalysatorbett erfolgt eine zusätzliche mindestens 30 %ige, vorzugsweise mindestens 40%ige Minderung des zu Beginn des zweiten Katalysatorbettes vorhandenen N₂O-Gehaltes.

Bei dem erfindungsgemäßen Verfahren kommen im ersten und zweiten Katalysatorbett eisenhaltige Zeolithe zum Einsatz. Dabei kann es sich um unterschiedliche Katalysatoren in den jeweiligen Katalysatorbetten oder bevorzugt um den gleichen Katalysator handeln.

Bei einer räumlichen Trennung der Katalysatorbetten ist es möglich, die Temperatur des zweiten Katalysatorbettes bzw. des hierin eintretenden Gastromes durch

10

15

20

25

30

PCT/EP03/06051

Wärmeabfuhr oder -zufuhr so einzustellen, dass sie niedriger oder höher als die des ersten Katalysatorbettes ist.

Die Temperatur des Gasstromes im ersten Katalysatorbett, in dem nur das N₂O abgebaut wird, sowie im zweiten Katalysatorbett, in dem N₂O und NO_x abgebaut werden, liegt erfindungsgemäß unterhalb von 500 °C, vorzugsweise im Bereich von 250 bis 500°C, insbesondere bei 300 bis 450°C, und ganz besonders bevorzugt bei 350 bis 450°C. Die Temperatur im zweiten Katalysatorbett entspricht bevorzugt der Temperatur im ersten Katalysatorbett. Die Temperatur im Katalysatorbett lässt sich zweckmässigerweise als arithmetischer Mittelwert der Temperatur des Gasstromes am Ein- und Austritt des Katalysatorbettes bestimmen.

Die Wahl der Betriebstemperatur ist dabei ebenso wie gewählten Raumgeschwindigkeiten bestimmt durch den gewünschten Abbaugrad an N₂O.

Vorzugsweise erfolgen die Auswahl von Temperatur, Volumenstrom und Katalysatormenge im ersten Katalysatorbett derart, dass dort höchstens 90 %, vorzugsweise höchstens 80% und ganz besonders bevorzugt höchstens 70% des zu Beginn des ersten Katalysatorbettes vorhandenen N₂O zersetzt werden.

Vorzugsweise erfolgen die Auswahl von Temperatur, Volumenstrom und Katalysatormenge im zweiten Katalysatorbett derart, dass dort ein weiterer Abbau des N₂O-Gehalts des Gases um mindestens 30%, bezogen auf den N₂O Gehalt am Eingang des zweiten Katalysatorbettes, erfolgt.

Das erfindungsgemäße Verfahren wird bei einem erhöhten Druck von mindestens 2 bar, vorzugsweise mindestens 3 bar, ganz besonders bevorzugt von 4 bis 25 bar durchgeführt. Die Einspeisung des Reduktionsmittels zwischen dem ersten und dem zweiten Katalysatorbett, d.h. hinter dem ersten und vor dem zweiten Katalysatorbett, erfolgt durch eine geeignete Vorrichtung, wie z.B. einem entsprechenden Druckventil oder entsprechend ausgestalteten Düsen.

10

15

20

25

30

In der ersten Reaktionszone wird im allgemeinen eine relativ niedrige Wasser-konzentration bevorzugt, da ein sehr hoher Wassergehalt hohe Betriebstemperaturen (z.B. >500°C) erforderlich machen würde. Diese könnte je nach eingesetztem Zeolithtyp und Betriebsdauer die hydrothermalen Stabilitätsgrenzen des Katalysators überschreiten. Allerdings spielt hier der NO_x-Gehalt eine entscheidende Rolle, da dieser die Deaktivierung durch Wasser aufheben kann.

Für die NO_x-Reduktion in der zweiten Reaktionszone spielt ein hoher Wassergehalt eine untergeordnete Rolle, da hier bereits bei relativ niedrigen Temperaturen hohe NO_x-Abbauraten erzielt werden.

Das Reduktionsmittel wird in einer solchen Menge zugesetzt, wie zur Reduktion des NO_x benötigt wird. Darunter wird im Rahmen dieser Beschreibung diejenige Menge an Reduktionsmittel verstanden, die notwendig ist, um den Anteil des NO_x im Gasgemisch vollständig oder bis zur gewünschten Endkonzentration zu reduzieren, ohne dass eine merkliche Reduktion des N_2O stattfindet.

Als Reduktionsmittel im Sinne der Erfindung können solche Stoffe eingesetzt werden, die eine hohe Aktivität und Selektivität zur Reduktion von NO₂ aufweisen und deren Selektivität und Aktivität unter den gewählten Reaktionsbedingungen größer ist als zur möglichen Reduktion von N₂O.

Als Reduktionsmittel im Sinne der Erfindung sind beispielsweise Kohlenwasserstoffe, Wasserstoff, Kohlenmonoxid, Ammoniak oder deren Gemische, wie z.B. Synthesegas, einsetzbar. Besonders bevorzugt wird Ammoniak oder Stoffe, die bei Einbringung Ammoniak freisetzen, wie Harnstoff oder Ammoniumcarbamat.

Die zugesetzte Menge an Reduktionsmittel darf dabei nicht nennenswert größer sein, als bei den gewählten Reaktionsbedingungen zur Reduktion von NO_x erforderlich ist.

Im Falle von Ammoniak als Reduktionsmittel verwendet man, je nach dem gewünschten Grad des Abbaus des NO_x-Gehaltes, bis zu maximal 1,2,

PCT/EP03/06051

vorzugsweise 1,0 bis 1,2 molare Anteile an Ammoniak, bezogen auf einen molaren Anteil an NO_x. Ist ein geringerer Abbaugrad von NO_x gewünscht, so beträgt die Menge an molaren Anteilen von Ammoniak maximal 1,2*y, bezogen auf einen molaren Anteil an NO_x; dabei ist y der prozentuale Anteil des NO_x der in der Reduktion verbraucht werden soll.

Bei Auswahl geeigneter Katalysatoren und Verfahrensbedingungen wirkt das zugesetzte NH_3 nicht als Reduktionsmittel für N_2O , sondern reduziert selektiv das im Abgas enthaltene NO_x .

10

5

Das erfindungsgemäße Verfahren ermöglicht es damit, die Beseitigung von N_2O und von NO_X bei einer niedrigen Betriebstemperatur mit geringem Verbrauch an gasförmigen Reduktionsmittel, wie NH_3 , durchzuführen, was mit den im Stand der Technik beschriebenen Verfahren bis dahin nicht möglich war.

15

Dieses ist insbesondere dann von großem Vorteil, wenn große Mengen an №0 beseitigt werden sollen.

20

Auch die Art der Einbringung des gasförmigen Reduktionsmittels in den zu behandelnden Gasstrom ist im Sinne der Erfindung frei gestaltbar, solange dieses in Stromrichtung vor dem zweiten Katalysatorbett erfolgt. Sie kann zum Beispiel in der Eintrittsleitung vor dem Behälter für das zweite Katalysatorbett oder unmittelbar vor dem Katalysatorbett erfolgen. Das Reduktionsmittel kann in Form eines Gases oder auch einer Flüssigkeit bzw. wässrigen Lösung eingebracht werden, die im zu behandelnden Gasstrom verdampft.

25

30

Erfindungsgemäß verwendete Katalysatoren enthalten im wesentlichen, vorzugsweise > 50 Gew%, insbesondere > 70 Gew.% eines oder mehrerer mit Eisen beladener Zeolithe. So kann beispielsweise neben einem Fe-ZSM-5 Zeolith ein weiterer Eisen enthaltender Zeolith, wie z.B. ein eisenhaltiger Zeolith des MFI-, oder FER-Typs, in dem erfindungsgemäß verwendeten Katalysator enthalten sein.

10

15

25

30

Darüber hinaus kann der erfindungsgemäß verwendete Katalysator weitere dem Fachmann bekannte Zusatzstoffe, wie z.B. Bindemittel enthalten.

Erfindungsgemäß verwendete Katalysatoren basieren vorzugsweise auf Zeolithen, in die durch einen Festkörper-Ionenaustausch Eisen eingebracht wurde. Üblicherweise geht man hierfür von den kommerziell erhältlichen Ammonium-Zeolithen (z.B. NH₄-ZSM-5) und den entsprechenden Eisensalzen (z.B. FeSO₄ x 7 H₂0) aus und mischt diese auf mechanischem Wege intensiv miteinander in einer Kugelmühle bei Raumtemperatur. (Turek et al.; Appl. Catal. 184, (1999) 249-256; EP-A-0 955 080). Auf diese Literaturstellen wird hiermit ausdrücklich Bezug genommen. Die erhaltenen Katalysatorpulver werden anschließend in einem Kammerofen an der Luft bei Temperaturen im Bereich von 400 bis 600°C kalziniert. Nach dem Kalzinieren werden die eisenhaltigen Zeolithe in destilliertem Wasser intensiv gewaschen und nach Abfiltrieren des Zeolithen getrocknet. Abschließend werden die so erhaltenen eisenhaltigen Zeolithe mit den geeigneten Bindemitteln versetzt und gemischt und beispielsweise zu zylindrischen Katalysatorkörpern extrudiert. Als Bindemittel eignen sich alle üblicherweise verwendeten Binder, die gebräuchlichsten sind hierbei Aluminiumsilikate wie z.B. Kaolin.

Gemäß der vorliegenden Erfindung sind die verwendbaren Zeolithe mit Eisen beladen. Der Eisengehalt kann dabei bezogen auf die Masse an Zeolith bis zu 25% betragen, vorzugsweise jedoch 0,1 bis 10%.

Vorzugsweise handelt es sich um mit Eisen beladene Zeolithe vom Typ MFI, BEA, FER, MOR, FAU und/oder MEL, insbesondere vom Typ ZSM-5.

In einer bevorzugten Ausführungsform werden zumindest im zweiten Katalysatorbett mit Eisen beladene Zeolithe verwendet, deren Kristallstruktur keine Poren bzw. Kanäle mit kristallographischen Durchmessern größer gleich 7,0 Ångstrom aufweist.

Dazu zählen mit Eisen beladene Zeolithe vom Typ MFI, FER und/oder MEL, insbesondere vom Typ ZSM-5.

10

15

20

25

30

PCT/EP03/06051

Im erfindungsgemäßen Verfahren ist auch der Einsatz solcher Zeolithe eingeschlossen, in welchen das Gitteraluminium teilweise durch ein oder mehrere Elemente isomorph substituiert ist, beispielsweise durch ein oder mehrere Elemente ausgewählt aus B, Be, Ga, Fe, Cr, V, As, Sb und Bi ersetzt ist. Ebenso eingeschlossen ist der Einsatz von Zeolithen, bei denen das Gittersilicium durch ein oder mehrere Elemente isomorph substituiert ist, beispielsweise durch ein oder mehrere Elemente ausgewählt aus Ge, Ti, Zr und Hf ersetzt ist.

Genaue Angaben zum Aufbau oder Struktur der erfindungsgemäß eingesetzten Zeolithe werden im Atlas of Zeolite Structure Types, Elsevier, 4th revised Edition 1996, gegeben, auf den hiermit ausdrücklich Bezug genommen wird.

Ganz besonders bevorzugt kommen im erfindungsgemäßen Verfahren die weiter oben definierten Zeolith-Katalysatoren zum Einsatz, die mit Wasserdampf behandelt worden sind ("gesteamte" Katalysatoren). Durch eine derartige Behandlung wird das Gitter des Zeolithen dealuminiert; diese Behandlung ist dem Fachmann an sich bekannt. Überraschenderweise zeichnen sich diese hydrothermal behandelte Zeolith-Katalysatoren im erfindungsgemäßen Verfahren durch eine besonders hohe Aktivität aus.

Bevorzugt werden hydrothermal behandelte Zeolith-Katalysatoren eingesetzt, die mit Eisen beladen worden sind und bei denen das Verhältnis von Extra-Gitter-Aluminium zu Gitter-Aluminium mindestens 1:2 beträgt, vorzugsweise 1:2 bis 20:1 beträgt.

Der Wassergehalt des Reaktionsgases liegt vorzugsweise im Bereich von <25 Vol.%, insbesondere im Bereich <15 Vol.%. Ein niedriger Wassergehalt ist im allgemeinen zu bevorzugen.

Im allgemeinen wird eine relativ niedrige Wasserkonzentration bevorzugt, da höhere Wassergehalte höhere Betriebstemperaturen erforderlich machen würden. Diese könnte je nach eingesetztem Zeolithtyp und Betriebsdauer die hydrothermalen Stabilitätsgrenzen des Katalysators überschreiten und ist somit dem jeweils gewählten Einzelfall anzupassen.

ij

Auch die Anwesenheit von CO₂ sowie von anderen desaktivierenden Bestandteilen des Reaktionsgases, die dem Fachmann bekannt sind, sollten nach Möglichkeit minimiert werden, da sich diese negativ auf den N₂O-Abbau auswirken würden.

Das erfindungsgemäße Verfahren arbeitet auch in Gegenwart von O₂, da die erfindungsgemäß verwendeten Katalysatoren entsprechende Selektivitäten aufweisen, die bei Temperaturen <500°C eine Reaktion des gasförmigen Reduktionsmittels, wie NH₃, mit O₂ unterdrücken.

All diese Einflussfaktoren, sowie die gewählte Katalysatorbelastung d.h.

Raumgeschwindigkeit sind bei der Wahl der geeigneten Betriebstemperatur der Reaktionszone zu berücksichtigen.

Das erfindungsgemäße Verfahren kann besonders bei der Salpetersäureproduktion, bei Kraftwerksabgasen oder bei Gasturbinen zum Einsatz kommen. In diesen Prozessen fallen stickoxidhaltige Prozeß- und Abgase an, die mit Hilfe des hier aufgezeigten Verfahrens kostengünstig entstickt werden können. Das erfindungsgemässe Verfahren wird zweckmäßigerweise im Restgas der Salpetersäureproduktion nach dem Absorptionsturm eingesetzt.

Die Ausführung der Katalysatorbetten ist im Sinne der Erfindung frei gestaltbar. So kann beispielsweise der Katalysator oder die Katalysatoren in einem axial oder vorzugsweise radial durchströmten Katalysatorbett angeordnet sein, die in einem oder mehreren Behältern untergebracht sind.

Gegenstand der Erfindung ist weiterhin eine Vorrichtung zur Minderung des Gehalts von NO_x und N_2O in Gasen, insbesondere in Prozessgasen und Abgasen, umfassend:

A) zwei hintereinander geschaltete Katalysatorbetten enthaltend einen oder mehrere mit Eisen beladene Zeolithe, welche von dem NO_x und N₂O enthaltenden Gas durchströmt werden,

25

20

15

15

20

25

30

- B) eine zwischen den Katalysatorbetten angeordnete Vorrichtung zur Einbringung eines gasförmigen Reduktionsmittels in den Strom des NO_x und N₂O enthaltenden Gases, wobei
- C) mindestens eines der Katalysatorbetten von dem NO_x und N₂O enthaltenden Gas radial durchströmt wird.

In einer bevorzugten Ausführungsform sind beide Katalysatorbetten in einem Behälter angeordnet, was die Apparatekosten deutlich senkt.

10 Erfindungsgemäß wird mindestens ein Katalysatorbett, bevorzugt beide Katalysatorbetten, vom zu reinigenden Gas radial durchströmt, was einen deutlich geminderten Druckverlust verursacht.

Die radial durchströmten Katalysatorbetten sind beispielsweise in der Form von Hohlzylindern ausgestaltet, können aber auch andere Formen aufweisen. Die radial durchströmten Katalysatorbetten können übereinander angeordnet sein oder es kann eine Kombination von axial und radial durchströmten Katalysatorbetten gewählt werden. Dabei ist durch geeignet angebrachte Trennflächen zwischen den Katalysatorbetten der Weg des Gases so vorzugeben, dass zunächst das erste und sodann das zweite Katalysatorbett durchströmt wird.

Im Fall von radial durchströmten Katalysatorbetten können diese auch in Form von konzentrisch ineinander angeordneten Hohlzylindern vorliegen. Auch bei dieser Ausführungsform ist darauf zu achten, dass durch geeignet angebrachte Trennflächen zwischen den Katalysatorbetten der Weg des Gases so vorgegeben wird, dass zunächst das erste und sodann das zweite Katalysatorbett durchströmt wird.

Die Strömungsrichtung des Gases kann im Radialkorbreaktor von innen nach außen oder von außen nach innen verlaufen.

In einer bevorzugten Ausführungsform liegen zwei radial durchströmte Katalysatorbetten, beispielsweise in Form von zwei Hohlzylindern, mit

10

15

20

25

30

verschiedenen Abmessungen vor, wobei das Außenmaß des einen Katalysatorbettes kleiner ist als das Innenmaß des anderen Katalysatorbettes und beide Katalysatorbetten konzentrisch zueinander angeordnet sind, und wobei durch geeignet angebrachte Trennflächen zwischen den Katalysatorbetten der Weg des Gases so vorgegeben wird, dass zunächst das erste und sodann das zweite Katalysatorbett durchströmt wird.

In einer weiteren bevorzugten Ausführungsform der erfindungsgemäßen Vorrichtung wird das Gas nach Durchströmung des ersten Katalysatorbettes in einen Mischer geleitet, der vorzugsweise im Zentrum der Vorrichtung angeordnet ist, und bei der eine Zuleitung für Reduktionsmittel vorgesehen ist, die in den Raum hinter dem ersten Katalysatorbett und vor oder vorzugsweise in den Mischer mündet, und wobei das zu reinigende Gas nach Verlassen des Mischers durch das zweite Katalysatorbett geleitet wird.

Der Mischer dient zur innigen Verteilung des Reduktionsmittels im Gasstrom. Der Mischer ist im Sinne der Erfindung frei gestaltbar, beispielsweise als statischer Mischer mit entsprechenden Einbauten oder als dynamischer Mischer. Auch die einfachste Form eines vorzugsweise turbulent durchströmten Rohres ist als Mischer im Sinne der Erfindung anzusehen.

Figuren 1 bis 6 beschreiben bevorzugte Ausführungsformen der erfindungsgemäßen Vorrichtung im Längsschnitt.

Figur 1 stellt eine erfindungsgemäße Vorrichtung mit Gaseintritt (1) und Gasaustritt (2) dar. Im oberen, dem Gaseintritt (1) zugewandten Innenraum ist das erste Katalysatorbett in Form eines Hohlzylinders (4) angeordnet und befindet sich auf einer Trennwand, die den Raum der Vorrichtung in zwei Hälften aufteilt. Ferner ist die obere Seitenfläche des Hohlzylinders (4) durch eine Trennwand verschlossen. Das zu reinigende Gas strömt durch den Gaseintritt (1) und über den Ringspalt des Eintritts (7) des ersten Katalysatorbettes in den Ringspalt des Austritts (8) des ersten Katalysatorbettes radial durch das erste Katalysatorbett. Von dort strömt es in den Mischer (6), an dessen Eintrittsseite eine Eintrittsleitung (3) für das Reduktionsmittel

10

15

20

25

30

mündet. Mischer (6) wird durch die Trennwand geführt und das Gas strömt sodann durch den Ringspalt des Eintritts (9) des unter dem ersten Katalysatorbett (4) angeordneten zweiten Katalysatorbettes (5) in den Ringspalt des Austritts (10) des zweiten Katalysatorbettes (5) radial durch das zweite Katalysatorbett. Von dort verlässt das gereinigte Gas die Vorrichtung über den Gasaustritt (2).

Figur 2 beschreibt eine ähnliche Ausführungsform wie Figur 1 mit der Abänderung, dass das erste Katalysatorbett (4) unterhalb des zweiten Katalysatorbettes (5) angeordnet ist und dass Gaseintritt (1) und Gasaustritt (2) seitlich in der Vorrichtung angeordnet sind. Die übrigen Bezugszeichen haben die bei der Beschreibung von Figur 1 aufgeführte Bedeutung.

Figur 3 stellt eine weitere Ausführungsform der erfindungsgemäße Vorrichtung mit Gaseintritt (1) und Gasaustritt (2) dar. Erstes Katalysatorbett (4) und zweites Katalysatorbett (5) sind hier in Form von zwei konzentrisch ineinander angeordneten Hohlzylindern ausgestaltet. Das erste Katalysatorbett (4) befindet sich außerhalb einer konzentrischen Trennwand (11), die die untere Seitenfläche des Katalysatorbettes (4), die Ringspalte (7) und (8) sowie den Innenraum der Vorrichtung und die obere Seitenfläche des zweiten Katalysatorbettes (5) abschließt. Das zu reinigende Gas tritt durch den Gaseintritt (1) in die Vorrichtung ein, durchströmt das erste Katalysatorbett vom Ringspalt Eintritt (7) radial von außen nach innen in den Ringspalt Austritt (8). Von dort strömt es in den Mischer (6), an dessen Eintrittsseite eine Eintrittsleitung (3) für das Reduktionsmittel mündet. Mischer (6) mündet in den Innenraum des zweiten Katalysatorbetts (5), das nach unter durch eine Trennwand verschlossen ist. Das Gas strömt sodann durch den Ringspalt des Eintritts (9) des zweiten Katalysatorbettes (5) in den Ringspalt des Austritts (10) des zweiten Katalysatorbettes (5) radial nach außen durch das zweite Katalysatorbett. Von dort verlässt das gereinigte Gas die Vorrichtung über den Gasaustritt (2).

Figur 4 beschreibt eine ähnliche Ausführungsform wie Figur 3 mit der Abänderung, dass das erste Katalysatorbett (4) den inneren Hohlzylinder bildet und das zweite

10

15

20

25

30

Katalysatorbett (5) den äußeren Hohlzylinder bildet. Die übrigen Bezugszeichen haben die bei der Beschreibung von Figur 3 aufgeführte Bedeutung.

Figur 5 beschreibt eine Ausführungsform, in der ein axial und ein radial durchströmtes Katalysatorbett vorgesehen sind. Das Gas strömt über den Gaseintritt (1) axial durch das erste Katalysatorbett (4) und in den Mischer (6). In der Vorrichtung befindet sich eine Trennwand, die den Raum der Vorrichtung in zwei Hälften aufteilt. An der Eintrittsseite des Mischers (6) mündet eine Eintrittsleitung (3) für das Reduktionsmittel. Von Mischer (6) strömt das Gas in den Ringspalt des Eintritts (9) des zweiten Katalysatorbettes (5) und durch dieses radial in den Ringspalt des Austritts (10). Von dort verlässt das gereinigte Gas die Vorrichtung über den Gasaustritt (2).

Figur 6 beschreibt eine ähnliche Ausführungsform wie Figur 5 mit der Abänderung, dass das erste Katalysatorbett (4) radial und das zweite Katalysatorbett (5) axial durchströmt werden. Die übrigen Bezugszeichen haben die bei der Beschreibung von Figur 3 aufgeführte Bedeutung.

Das erfindungsgemäße Verfahren wird durch das nachfolgende Beispiel erläutert.

Als Katalysator wurde ein mit Eisen beladener Zeolith vom Typ ZSM-5 eingesetzt. Die Herstellung des Fe-ZSM-5-Katalysators erfolgte durch Festkörper-lonentausch ausgehend von einem kommerziell verfügbaren Zeolith in Ammonium-Form (ALSI-PENTA, SM27). Detaillierte Angaben zur Präparation können entnommen werden aus: M. Rauscher, K. Kesore, R. Mönnig, W. Schwieger, A. Tißler, T. Turek: "Preparation of highly active Fe-ZSM-5 catalyst through solid state ion exchange for the catalytic decomposition of N₂O" in Appl. Catal. 184 (1999) 249-256.

Die Katalysatorpulver wurden an der Luft für 6h bei 823K kalziniert, gewaschen und über Nacht bei 383K getrocknet. Nach Zusatz entsprechender Binder folgte die Extrusion zu zylindrischen Katalysatorkörpern.

Als Vorrichtung zur Minderung des NO_x- und N₂O-Gehaltes kamen zwei hintereinander geschaltete Rohrreaktoren zum Einsatz, welche jeweils mit einer solchen Menge an obigem Katalysator befüllt waren, dass bezogen auf den eintretenden Gasstrom jeweils eine Raumgeschwindigkeit von 15.000 h⁻¹ resultierte. Zwischen den beiden Reaktionszonen erfolgt die Zugabe von NH₃-Gas. Die Betriebstemperatur der Reaktionszonen wurde durch Beheizung eingestellt. Die Analyse der in die Reaktoren ein- und austretenden Gasströme erfolgte mit Hilfe eines FTIR-Gasanalysators.

Bei Eingangskonzentrationen von 1.500 ppm N₂O, 350 ppm NO_x, 3.000 ppm H₂O und 1,2 %vol O₂ in N₂ und einer intermediären Zugabe von NH₃ resultierten bei einer einheitlichen Betriebstemperatur von 425°C und einem Betriebsdruck von 6,5 bar die in der folgenden Tabelle aufgelisteten Umsatzergebnisse für N₂O, NO_x und NH₃

15 Tabelle

	Eingangskonzentration	Austrittskonzentration	Umsatz
N ₂ O	1.500 ppm (Reaktor 1)	540 ppm (Reaktor 1)	64 %
NO _x (x=1-2)	360 ppm (Reaktor 2)	80 ppm (Reaktor 2)	78 %
NH ₃	310 ppm ^{*)} (Reaktor 2)	0 ppm (Reaktor 2)	100 %
N ₂ O	540 ppm (Reaktor 2)	190 ppm (Reaktor 2)	65 %

^{*)} zugegeben zwischen erstem und zweiten Reaktor

Patentansprüche:

5

10

15

20

- 1. Verfahren zur Minderung des Gehalts von NO_x und N₂O in Gasen, insbesondere in Prozessgasen und Abgasen, umfassend die Massnahmen:
 - a) Leiten des N_2O und NO_x enthaltenden Gases über eine Folge zweier Katalysatorbetten enthaltend einen oder mehrere mit Eisen beladene Zeolithe,
 - b) Zugabe eines Reduktionsmittels für NO_x zwischen den Katalysatorbetten,
 - c) Einstellen einer Temperatur von weniger als 500°C im ersten Katalysatorbett und zweiten Katalysatorbett,
 - d) Einstellen eines Gasdruckes von mindestens 2 bar in den beiden Katalysatorbetten,
 - e) Auswahl einer solchen Raumgeschwindigkeit im ersten und zweiten Katalysatorbett, so dass im ersten Katalysatorbett ein Abbau des N₂O-Gehalts des Gases um höchstens bis zu 90%, bezogen auf den N₂O Gehalt am Eingang des ersten Katalysatorbettes, erfolgt, und dass im zweiten Katalysatorbett ein weiterer Abbau des N₂O-Gehalts des Gases um mindestens 30%, bezogen auf den N₂O Gehalt am Eingang des zweiten Katalysatorbettes, erfolgt.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass im ersten und zweiten Katalysatorbett der gleiche Katalysator verwendet wird.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der oder die mit Eisen beladenen Zeolithe vom Typ MFI, BEA, FER, MOR, FAU und/oder MEL sind.
 - 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der mit Eisen beladene Zeolith vom Typ MFI ist.
 - 5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Zeolith ein Fe-ZSM-5 ist.

15

20

25

- 6. Verfahren nach Anspruche 1, dadurch gekennzeichnet, dass das Verfahren bei einem Druck im Bereich von 4 bis 25 bar durchgeführt wird.
- 7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Reduktionsmittel für NO_x Ammoniak verwendet wird, das in einer Menge von 1,0 bis 1,2 molaren Anteilen, bezogen auf einen molaren Anteil an abzubauendem NO_x, eingesetzt wird.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das NO_x und N₂O
 enthaltende Gas mit einer Raumgeschwindigkeit von 5.000 bis 50.000 h⁻¹,
 bezogen auf das addierte Katalysatorvolumen beider Katalysatorbetten über diese geleitet wird.
 - 9. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Temperatur in der ersten und in der zweiten Reaktionszone zwischen 350 bis 450°C liegt.
 - 10. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass in mindestens einem Katalysatorbett mit Eisen beladene Zeolithe eingesetzt werden, die mit Wasserdampf behandelt worden sind.
 - 11. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Katalysatoren in mindestens einem Katalysatorbett mit Eisen beladene Zeolithe eingesetzt werden, bei denen das Verhältnis von Extra-Gitter-Aluminium zu Gitter-Aluminium mindestens 0,5 beträgt.
 - 12. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass dieses in den Prozeß der Salpetersäureproduktion integriert ist.
 - 13. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass dieses in den Prozeß des Betriebes einer Gasturbine integriert ist.
 - 14. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass dieses in den Prozeß des Betriebes eines Kraftwerks integriert ist.

10

15

25

- 15. Vorrichtung zur Minderung des Gehalts von NO_x und N₂O in Gasen, insbesondere in Prozessgasen und Abgasen, umfassend:
 - A) zwei hintereinander geschaltete Katalysatorbetten enthaltend einen oder mehrere mit Eisen beladene Zeolithe, welche von dem NO_x und N₂O enthaltenden Gas durchströmt werden,
 - B) eine zwischen den Katalysatorbetten angeordnete Vorrichtung zur Einbringung eines gasförmigen Reduktionsmittels in den Strom des NO_x und N₂O enthaltenden Gases, wobei
 - C) mindestens eines der Katalysatorbetten von dem NO_x und N₂O enthaltenden Gas radial durchströmt wird.
- Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, dass beide Katalysatorbetten in einem Behälter angeordnet sind.
- 17. Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, dass beide Katalysatorbetten vom NO_x und N₂O enthaltenden Gas radial durchströmt werden.
- 20 18. Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, dass das radial durchströmte Katalysatorbett in der Form eines Hohlzylinders ausgestaltet ist.
 - 19. Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, dass zwei radial durchströmte Katalysatorbetten übereinander angeordnet sind oder dass eine Kombination von übereinander angeordneten axial und radial durchströmten Katalysatorbetten vorliegt, wobei durch geeignet angebrachte Trennflächen zwischen den Katalysatorbetten der Weg des Gases so vorgegeben wird, dass zunächst das erste und sodann das zweite Katalysatorbett durchströmt wird.
 - 20. Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, dass zwei radial durchströmte Katalysatorbetten mit verschiedenen Abmessungen vorliegen, wobei das Außenmaß des einen Katalysatorbettes kleiner ist als das

10

Innenmaß des anderen Katalysatorbettes und beide Katalysatorbetten konzentrisch zueinander angeordnet sind, und wobei durch geeignet angebrachte Trennflächen zwischen den Katalysatorbetten der Weg des Gases so vorgegeben wird, dass zunächst das erste und sodann das zweite Katalysatorbett durchströmt wird.

- 21. Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, dass das Gas nach Durchströmung des ersten Katalysatorbettes in einen, vorzugsweise im Zentrum der Vorrichtung angeordneten, Mischer geleitet wird, und bei der eine Zuleitung für Reduktionsmittel vorgesehen ist, die in den Raum hinter dem ersten Katalysatorbett und vor oder vorzugsweise in den Mischer mündet, und wobei das zu reinigende Gas nach Verlassen des Mischers durch das zweite Katalysatorbett geleitet wird.
- 15 22. Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, dass der Mischer als statischer Mischer oder als dynamischer Mischer ausgestaltet ist, vorzugsweise in Form eines durchströmten Rohres.

1/6

Figur 1

Figur 2

Figur 3

Figur 4

Figur 5

Figur 6

Internation implication No PC 1 03/06051

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 B01D53/86 B01J8/04

B01J8/02

B01J19/30

B01J29/06

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 B01D B01J

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 01 51181 A (SCHWEFER MEINHARD ;SZONN ERICH (DE); KRUPP UHDE GMBH (DE); TUREK T) 19 July 2001 (2001-07-19)	1-17
Υ	cited in the application the whole document	18-22
Y	US 3 733 181 A (VILLIERS FISHER J ET AL) 15 May 1973 (1973-05-15) figures 1,2	18,20-22
Y	EP 0 967 006 A (KRUPP UHDE GMBH) 29 December 1999 (1999-12-29) figure 2	18,19
X	US 5 516 497 A (BYRNE JOHN W ET AL) 14 May 1996 (1996-05-14) claims	1–17
	-/	

Purther documents are listed in the Continuation of box C.	X I alent harmy members are instead in annox.
Special categories of cited documents: A* document defining the general state of the art which is not considered to be of particular relevance E* earlier document but published on or after the International filling date L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) O* document referring to an oral disclosure, use, exhibition or other means P* document published prior to the international filling date but later than the priority date claimed	 "T" later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the International search report
19 September 2003	01/10/2003
Name and mailing address of the ISA	Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	Gruber, M

Internation pplication No PCT/SP 03/06051

	-	PCT/FR 03/06051
	ation) DOCUMENTS CONSIDE O BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Х	WO 01 51182 A (SCHWEFER MEINHARD ;KOEGEL MARKUS (DE); MAURER RAINER (DE); KRUPP U) 19 July 2001 (2001-07-19) claims; figure	1-17
P,A	WO 02 068098 A (ABB LUMMUS GLOBAL INC) 6 September 2002 (2002-09-06) figures 2B-2I	1-22
Α	US 5 053 210 A (PIETZARKA FRIEDRICH-WILHELM ET AL) 1 October 1991 (1991-10-01) claims; figures	1
Α	EP 1 022 056 A (AIR LIQUIDE) 26 July 2000 (2000-07-26) the whole document	18-22
Α	US 2 475 855 A (PETERS HARRY F) 12 July 1949 (1949-07-12) the whole document	18-22
A	US 4 372 920 A (ZARDI UMBERTO) 8 February 1983 (1983-02-08) the whole document	18-22

Information on patent family members

PCT/FP 03/06051

				101	03/00031
Patent document cited in search report		Publication . date		Patent family member(s)	Publication date
WO 0151181	Α	19-07-2001	DE	10001539 A1	02-08-2001
	••	20 0, 2002	ΑÜ	3368801 A	24-07-2001
			CA	2397250 A1	19-07-2001
			CN	1395501 T	05-02-2003
			CZ	20022433 A3	18-06-2003
			WO	0151181 A1	19-07-2001
			EP	1259307 A1	27-11-2002
			HU	0204088 A2	28-04-2003
			NO	20023342 A	05-09-2002
			US	2003143141 A1	31-07-2003
US 3733181	Α	15-05-1973	DE	2306471 A1	29-08-1974
			FR	2217061 A1	06-09-1974
			GB	1366061 A	11-09-1974
			NL	7301678 A	08-08-1974
EP 0967006	Α	29-12-1999	DE	19828777 A1	30-12-1999
2. 000.000	• •		ĀŤ	246038 T	15-08-2003
			DE	59906415 D1	04-09-2003
		•	EP	0967006 A2	29-12-1999
			JP	2000033258 A	02-02-2000
			UF 		
US 5516497	Α	14-05-1996	US	5024981 A	18-06-1991
	-		AT	125461 T	15-08-1995
			CA	2012039 A1	20-10-1990
			DE	69021115 D1	31-08-1995
			DE	69021115 T2	14-03-1996
			DK	393905 T3	11-12-1995
			EP	0393905 A2	24-10-1990
			ES	2075151 T3	01-10-1995
			GR	3017607 T3	31-01-1996
			JP 	2293022 A	04-12-1990
W0 0151182	Α	19-07-2001	DE	10001541 A1	02-08-2001
			AU	2845801 A	24-07-2001
			CA	. 2397265 A1	19-07-2001
			CN	1395502 T	05-02-2003
			CZ	20022435 A3	14-05-2003
			WO	0151182 A1	19-07-2001
			EP	1268040 A1	02-01-2003
			HU	0204148 A2	28-05-2003
				20023341 A	27-08-2002
			NO US	20023341 A 2003143142 A1	27-08-2002 31-07-2003
		06 00 0000			
W0 02068098	Α	06-09-2002	US	2002159923 A1	31-10-2002
			WO	02068098 A2	06-09-2002
US 5053210	Α	01-10-1991	DE	3604204 A1	13-08-1987
			ΑT	65934 T	15-08-1991
			EP	0232731 A2	19-08-1987
			JP	62193632 A	25-08-1987
EP 1022056	A	26-07-2000	FR	2788450 A1	21-07-2000
	**	20 07 2000	EP	1022056 A1	26-07-2000
US 2475855		 12-07-1949	NONE		
US 4372920	Α	08-02-1983	IT	1132092 B	25-06-1986
					

Info patent family members

Internation Repplication No
PCT 03/06051

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
US 4372920 · A		IT	1123468 B	30-04-1986
		AR	223885 A1	30-09-1981
		BR	8004275 A	27-01-1981
		CH	643752 A5	29-06-1984
		DE	3026199 A1	29-01-1981
		ES	8105580 A1	01-09-1981
		FR	2460707 A1	30-01-1981
		GB	2055606 A ,B	11-03-1981
		IN	157234 A1	15-02-1986
		MX	155877 A	06-01-1988
		NL	8004046 A ,C	15-01-1981
		JP	1050452 B	30-10-1989
		JP	1568046 C	10-07-1990
1		JP	56081129 A	02-07-1981
		SU	1058487 A3	30-11-1983

INTERNATIONALER BECHERCHENBERICHT

Interna Aktenzeichen 03/06051

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 B01D53/86 B01J8/04

B01J8/02

B01J19/30

B01J29/06

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) $IPK \ 7 \quad B01D \quad B01J$

Recherchlerte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal

C. ALS WE	SENTLICH ANGESEHENE UNTERLAGEN	
Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
Х	WO 01 51181 A (SCHWEFER MEINHARD ;SZONN ERICH (DE); KRUPP UHDE GMBH (DE); TUREK T) 19. Juli 2001 (2001-07-19) in der Anmeldung erwähnt	1-17
Υ	das ganze Dokument	18-22
Y	US 3 733 181 A (VILLIERS FISHER J ET AL) 15. Mai 1973 (1973-05-15) Abbildungen 1,2	18,20-22
Y	EP 0 967 006 A (KRUPP UHDE GMBH) 29. Dezember 1999 (1999-12-29) Abbildung 2	18,19
X	US 5 516 497 A (BYRNE JOHN W ET AL) 14. Mai 1996 (1996-05-14) Ansprüche	1-17

X Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen	X Slehe Anhang Patentfamilie		
 Besondere Kategorien von angegebenen Veröffentlichungen : 'A* Veröffentlichung, die den aligemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist 'E* älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist 'L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) 'O* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht 'P* Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist 	erfinderischer Tätinkeit herubend betrachtet werden		
Datum des Abschlusses der Internationalen Recherche	Absendedatum des internationalen Recherchenberichts		
19. September 2003	. 01/10/2003		
Name und Postanschrift der Internationalen Recherchenbehörde	Bevollmächtigter Bediensteter		
Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	Gruber, M		

INTERNATIONALER BECHERCHENBERICHT

PC 03/06051

		PCT	03/06051
	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN	•	
Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht komm	enden Teile	Betr. Anspruch Nr.
Х	WO 01 51182 A (SCHWEFER MEINHARD ;KOEGEL MARKUS (DE); MAURER RAINER (DE); KRUPP U) 19. Juli 2001 (2001-07-19) Ansprüche; Abbildung		1-17
P,A	WO 02 068098 A (ABB LUMMUS GLOBAL INC) 6. September 2002 (2002-09-06) Abbildungen 2B-2I		1–22
A	US 5 053 210 A (PIETZARKA FRIEDRICH-WILHELM ET AL) 1. Oktober 1991 (1991-10-01) Ansprüche; Abbildungen		1
A	EP 1 022 056 A (AIR LIQUIDE) 26. Juli 2000 (2000-07-26) das ganze Dokument		18-22
A	US 2 475 855 A (PETERS HARRY F) 12. Juli 1949 (1949-07-12) das ganze Dokument		18-22
A	US 4 372 920 A (ZARDI UMBERTO) 8. Februar 1983 (1983-02-08) das ganze Dokument 		18-22
		4	
	·		

INTERNATIONALER RECHENBERICHT

Angaben zu Veröffentlichungen, d

Formblatt PCT/ISA/210 (Anhang Patentlamilia)(.luli 1992)

selben Patentfamilie gehören

Internation Aktenzeichen PCT/EP 03/06051

				101/6	.P 03/00051
lm Recherchenberich angeführtes Patentdokum		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
WO 0151181	Α	19-07-2001	DE	10001539 A1	02-08-2001
			AU	3368801 A	24-07-2001
			CA	2397250 A1	19-07-2001
			CN		
				1395501 T	05-02-2003
			CZ	20022433 A3	18-06-2003
			WO	0151181 A1	19-07-2001
			EP	1259307 A1	27-11-2002
			HU	0204088 A2	28-04-2003
			NO	20023342 A	05-09-2002
			ÜS	2003143141 A1	31-07-2003
					31-07-2003
US 3733181	Α	15-05-1973	DE	2306471 A1	29-08-1974
			FR	2217061 A1	06-09-1974
			GB	1366061 A	11-09-1974
			NL	7301678 A	08-08-1974
EP 0967006	^	20 12 1000		10000777 41	20 10 1000
EF 090/000	Α	29-12-1999	DE	19828777 A1	30-12-1999
			AT	246038 T	15-08-2003
			DE	59906415 D1	04-09-2003
			EP	0967006 A2	29-12-1999
			JP	2000033258 A	02-02-2000
US 5516497	Α	14-05-1996	US	5024981 A	18-06-1991
00 0010 107		1. 00 1330	AT	125461 T	15-08-1995
			CA	2012039 A1	20-10-1990
			DE	69021115 D1	31-08-1995
			DE	69021115 T2	14-03-1996
			DK	393905 T3	11-12-1995
			EP	0393905 A2	24-10-1990
			ES	2075151 T3	01-10-1995
			GR	3017607 T3	31-01-1996
			JP	2293022 A	04-12-1990
WO 0151182		10 07 0001		7.0001547.47	
MO 0121195	Α	19-07-2001	DE	10001541 A1	02-08-2001
			AU	2845801 A	24-07-2001
			CA	2397265 A1	19-07-2001
			CN	1395502 T	05-02-2003
			CZ	20022435 A3	14-05-2003
			WO	0151182 A1	19-07-2001
			EP	1268040 A1	02-01-2003
			HU		
				0204148 A2	28-05-2003
			NO	20023341 A	27-08-2002
			US 	2003143142 A1	31-07-2003
WO 02068098	A	06-09-2002	US	2002159923 A1	31-10-2002
			WO	02068098 A2	06-09-2002
US 5053210	^	01-10-1991	DE.	2604004 41	12 00 1007
03 3033210	Α	01-10-1991	DE	3604204 A1	13-08-1987
			AT	65934 T	15-08-1991
			EP	0232731 A2	19-08-1987
			JP	62193632 A	25-08-1987
EP 1022056	A	26-07-2000	FR	2788450 A1	21-07-2000
	- -		EP	1022056 A1	26-07-2000
US 2475855	 А	12-07-1949	KEIN	 IF	
~					
US 4372920	Α	08-02-1983	IT	1132092 B	25-06-1986
CTROLICA IA A D					

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen,

r selben Patentfamilie gehören

Inter Aktenzelchen
PC1--2P 03/06051

lm Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
US 4372920 A		IT	1123468 B	30-04-1986
		AR	223885 A1	30-09-1981
		BR	8004275 A	27-01-1981
		CH	643752 A5	29-06-1984
		DE	3026199 A1	29-01-1981
		ES	8105580 A1	01-09-1981
		FR	2460707 A1	30-01-1981
		GB	2055606 A ,B	11-03-1981
		IN	157234 A1	15-02-1986
		MX	155877 A	06-01-1988
		NL	8004046 A ,C	15-01-1981
		JP	1050452 B	30-10-1989
		JP	1568046 C	10-07-1990
		JP	56081129 A	02-07-1981
		SU	1058487 A3	30-11-1983