# Deep Single-View 3D Object Reconstruction with Visual Hull Embedding

Hanqing Wang, Jiaolong Yang, Wei Liang, Xin Tong

Beijing Institute of Technology

Microsoft Research Asia

Beijing, China

Beijing, China





# Single-View 3D Reconstruction

- Input: a single RGB(D) Image
- Output: the corresponding 3D representation







#### **Previous Works**

Deep Learning based Methods:





[Choy ECCV'16]

Other works:

[Yan NIPS'16][Wu NIPS'16][Tulsiani CVPR'17][Zhu ICCV'17]

# Limitations of previous works

- Problems of Existing Deep Learning based Methods:
  - 1. Arbitrary-view images vs. Canonical-view aligned 3D shapes



Z

• 2. Unsatisfactory results



Missing shape details



Inconsistency with input

2/15/2019

#### Core Idea

- Goal: Reconstruct the object precisely with the given image
- Idea: Embed explicitly the **3D-2D projection geometry** into a network
- Approach: Estimating a single-view visual hull inside of the network





Single-view Visual Hull

#### **Method Overview**







- V-Net: coarse shape prediction
- P-Net: object pose and camera parameters estimation
- S-Net: silhouette prediction
- PSVH layer: visual hull generation
- R-Net: coarse shape refinement



- V-Net: coarse shape prediction
- P-Net: object pose and camera parameters estimation
- S-Net: silhouette prediction
- PSVH layer: visual hull generation
- R-Net: coarse shape refinement



- V-Net: coarse shape prediction
- P-Net: object pose and camera parameters estimation
- S-Net: silhouette prediction
- PSVH layer: visual hull generation
- R-Net: coarse shape refinement





- V-Net: coarse shape prediction
- P-Net: object pose and camera parameters estimation
- S-Net: silhouette prediction
- PSVH layer: visual hull generation
- R-Net: coarse shape refinement

#### **Network Architecture**







# Training Details

#### Loss:

We use the binary cross-entropy loss to train V-Net, S-Net and R-Net, let  $p_n$  be the estimated probability at location n, the loss is defined as

$$l = -\frac{1}{N} \sum_{n} (p_n^* \log p_n + (1 - p_n^*) \log(1 - p_n))$$
 (2)

Where  $p_n^*$  is the target probability

For *P-Net*, we use the  $L_1$  regression loss to train the network:

$$l = \sum_{i=1,2,3} \alpha |\theta_i - \theta_i^*| + \sum_{j=u,v} \beta |t_j - t_j^*| + \gamma |t_Z - t_Z^*|$$
 (3)

where we set  $\alpha=1, \gamma=1, \beta=0.01$ 

# Training Details

#### **Steps:**

- 1. Train the V-Net, S-Net, P-Net independently.
- 2. Train the R-Net with the coarse shape predicted by V-Net and the ground truth visual hull.
- 3. Train the whole network end-to-end.

# Implementation Details

- Network implemented in Tensorflow
- Input image size: 128x128x3
- Output voxel grid size: 32x32x32

#### Dataset

- Object categories: car, airplane, chair, sofa
- Datasets:
  - Rendered ShapeNet objects (ShapeNet) dataset of tremendous CAD models

















• Real images - (PASCAL 3D+ dataset) manually associated with limited CAD models

















- Results on the 3D-R2N2 dataset (rendered ShapeNet objects)
  - Ablation study:

|                                                        | car            | airplane              | chair          | couch          | Mean           |
|--------------------------------------------------------|----------------|-----------------------|----------------|----------------|----------------|
| Before Refine. After Refine.                           |                | 0.537<br><b>0.631</b> |                |                |                |
| Refine. w. GT $\mathcal{H}$<br>Refine. w/o 2 prob.maps | 0.869<br>0.840 | 0.610                 | 0.592<br>0.549 | 0.741<br>0.701 | 0.726<br>0.675 |
| Refine. w/o end-to-end                                 | 0.822          | 0.593                 | 0.542          | 0.677          | 0.658          |



Results on the rendered ShapeNet objects



Results on the rendered ShapeNet objects



- Results on the synthetic dataset (rendered ShapeNet objects)
  - Ablation study:



Figure 5: Comparison of the results before and after refinement on rendered ShapeNet objects.

 Comparison with MarrNet[Wu et al. 2017] on the synthetic dataset



Results on the PASCAL 3D+ dataset (real images)



Results on the PASCAL 3D+ dataset (real images)



#### Running Time

- ~18ms for one image (55 fps!)
- (Tested with a batch of 24 images on a NVIDIA Tesla M40 GPU)

#### Contributions

• Embedding **Domain knowledge** (3D-2D perspective geometry) into a DNN

Performing reconstruction jointly with segmentation and pose estimation

 A novel, GPU-friendly PSVH (Probabilistic Single-view Visual Hull) layer

# Thanks for listening!

- Welcome to ask any problem!
- Email: <a href="mailto:hangingwang@bit.edu.cn">hangingwang@bit.edu.cn</a>