Embedded Model Error Representation and Propagation in Climate Models

Khachik Sargsyan¹, Xun Huan¹, Habib Najm¹, Cosmin Safta¹, Daniel Ricciuto², Peter Thornton²

¹Sandia National Laboratories, Livermore, CA
²Oak Ridge National Laboratory, Oak Ridge, TN

AGU Fall Meeting Dec 11-15, 2017

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell under International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration contract DE-NA-0003525.

Embedded Model Error Representation and Propagation in Climate Models

Khachik Sargsyan¹, Xun Huan¹, Habib Najm¹, Cosmin Safta¹, Daniel Ricciuto². Peter Thornton²

> ¹Sandia National Laboratories, Livermore, CA ²Oak Ridge National Laboratory, Oak Ridge, TN

> > AGU Fall Meeting Dec 11-15, 2017

Sandia National Laboratories

DOE Office of Advanced Scientific Computing Research (ASCR) DOE Office of Biological and Environmental Research (BER)

Main target: model structural error

deviation from 'truth' or from a higher-fidelity model

- Inverse modeling context
 - Given experimental or higher-fidelity model data, estimate the model error
- Represent and estimate the error associated with
 - Simplifying assumptions, parameterizations
 - Mathematical formulation, theoretical framework
 - Numerical discretization
- ...will be useful for
 - Model validation
 - Model comparison
 - Scientific discovery and model improvement
 - Reliable computational predictions

• Given noisy data g, calibrate an exponential model f: $g(x) \approx f(x; \lambda)$

Posterior on parameters

- Given noisy data g, calibrate an exponential model f: $g(x) \approx f(x; \lambda)$
- ullet Employ Bayesian inference to obtain posterior PDFs on λ

Posterior on parameters

- Given noisy data g, calibrate an exponential model f: $g(x) \approx f(x; \lambda)$
- ullet Employ Bayesian inference to obtain posterior PDFs on λ
- True model dashed-red is *structurally* different from fit model $f(x, \lambda)$

Posterior on parameters

- Given noisy data g, calibrate an exponential model f: $g(x) \approx f(x; \lambda)$
- ullet Employ Bayesian inference to obtain posterior PDFs on λ
- True model dashed-red is *structurally* different from fit model $f(x, \lambda)$
- Higher data amount reduces posterior and predictive uncertainty
 - Increasingly sure about predictions based on the wrong model

Posterior on parameters

- Given noisy data g, calibrate an exponential model f: $g(x) \approx f(x; \lambda)$
- ullet Employ Bayesian inference to obtain posterior PDFs on λ
- True model dashed-red is *structurally* different from fit model $f(x, \lambda)$
- Higher data amount reduces posterior and predictive uncertainty
 - Increasingly sure about predictions based on the wrong model

- Given noisy data g, calibrate an exponential model f: $g(x) \approx f(x; \lambda)$
- ullet Employ Bayesian inference to obtain posterior PDFs on λ
- True model dashed-red is *structurally* different from fit model $f(x, \lambda)$
- Accounting for model error allows extra uncertainty component to propagate through predictions

Explicit model discrepancy: issues for physical models

$$y_i = \underbrace{f(x_i; \lambda) + \delta(x_i)}_{\text{truth } g(x_i)} + \epsilon_i$$

- Explicit additive statistical model for model error $\delta(x)$ [Kennedy-O'Hagan, 2001]
- Potential violation of physical constraints
- Disambiguation of model error $\delta(x_i)$ and data error ϵ_i
- Calibration of model error on measured observable does not impact the quality of model predictions on other Qols
- Physical scientists are unlikely to augment their model with a statistical model error term on select outputs
 - Calibrated predictive model: $f(x; \lambda) + \delta(x)$ or $f(x; \lambda)$?
- Problem is highlighted in model-to-model calibration ($\epsilon_i = 0$)
 - no a priori knowledge of the statistical structure of $\delta(x)$

Key Idea: Model Error Embedding

Ideally, modelers want predictive *errorbars*: inserting randomness on the outputs has issues, so...

 \bullet Augment input parameters λ with a stochastic term δ_α

$$y_i = f(x_i; \lambda + \delta_\alpha) + \epsilon_i$$

Generalize parameter forms,

$$y_i = f(x_i; \lambda + \delta_{\alpha}(x_i)) + \epsilon_i$$

More generally, explore additional parameterizations,

$$y_i = \tilde{f}(x_i; \lambda, \delta_{\alpha}(x_i)) + \epsilon_i$$

Non-Intrusive Probabilistic Embedding

Additive corrections δ_{α} for input parameters λ

$$y_i = f(x_i; \lambda + \delta_\alpha) + \epsilon_i$$

- Embed model error in specific submodel phenomenology
 - a modified transport or constitutive law
 - a modified formulation for a material property
 - turbulent model constants
- Allows placement of model error term in locations where key modeling assumptions and approximations are made
 - as a correction or high-order term
 - as a possible alternate phenomenology
- Naturally preserves model structure and physical constraints
- Disambiguates model/data errors

Bayesian Framework for Model Error Estimation

$$y_i = f(x_i; \lambda + \delta_\alpha) + \epsilon_i$$

- Given data y_i , perform simultaneous estimation of $\tilde{\alpha} = (\lambda, \alpha)$, i.e. model parameters λ and model-error parameters α .
- Bayes' theorem

Posterior
$$p(\tilde{\alpha}|y) = \frac{p(y|\tilde{\alpha}) Prior}{p(y|\tilde{\alpha}) p(\tilde{\alpha})}$$
Evidence

- In order to estimate the likelihood $L_y(\tilde{\alpha}) = p(y|\tilde{\alpha}) = p(y|\lambda,\alpha)$, one needs uncertainty propagation through $f(x_i; \lambda + \delta_\alpha)$,
- ullet ... hence, we employ Polynomial Chaos (PC) representation for δ_{lpha} .

Model error embedding - workflow

Predictive uncertainty decomposition: Total Variance =
 Parametric uncertainty + Data noise + Model error + Surrogate error

More data leads to 'leftover' model error

Calibrating a quadratic $f(x) = \lambda_0 + \lambda_1 x + \lambda_2 x^2$ w.r.t. 'truth' $g(x) = 6 + x^2 - 0.5(x+1)^{3.5}$ measured with noise $\sigma = 0.1$.

Summary of features:

- Well-defined model-to-model calibration
- Model-driven discrepancy correlations
- Respects physical constraints
- Disambiguates model and data errors
- Calibrated predictions of multiple Qols

- US Department of Energy (DOE) sponsored Earth system model
- Land, atmosphere, ocean, ice, human system components
- High-resolution, employ DOE leadership-class computing facilities

Predictive variance decomposition with model-error component

- US Department of Energy (DOE) sponsored Earth system model
- Land, atmosphere, ocean, ice, human system components
- High-resolution, employ DOE leadership-class computing facilities

- Predictive variance decomposition with model-error component
- ... with predictive uncertainty that captures model error

- US Department of Energy (DOE) sponsored Earth system model
- Land, atmosphere, ocean, ice, human system components
- High-resolution, employ DOE leadership-class computing facilities

- Predictive variance decomposition with model-error component
- Allows meaningful prediction of other Qols (e.g. no data/observable)

- US Department of Energy (DOE) sponsored Earth system model
- Land, atmosphere, ocean, ice, human system components
- High-resolution, employ DOE leadership-class computing facilities

- Predictive variance decomposition with model-error component
- Allows meaningful prediction of other Qols (e.g. no data/observable)
- ... with predictive uncertainty that captures model error

- US Department of Energy (DOE) sponsored Earth system model
- Land, atmosphere, ocean, ice, human system components
- High-resolution, employ DOE leadership-class computing facilities

- Predictive variance decomposition with model-error component
- Allows (a more dangerous) extrapolation to other sites

- US Department of Energy (DOE) sponsored Earth system model
- Land, atmosphere, ocean, ice, human system components
- High-resolution, employ DOE leadership-class computing facilities

- Predictive variance decomposition with model-error component
- Allows (a more dangerous) extrapolation to other sites
- ... with predictive uncertainty that captures model error

- US Department of Energy (DOE) sponsored Earth system model
- Land, atmosphere, ocean, ice, human system components
- High-resolution, employ DOE leadership-class computing facilities

- Predictive variance decomposition with model-error component
- For surrogate construction (forward UQ) under the hood, see poster by C. Safta [NG33A-0190: Machine Learning Techniques for Global Sensitivity Analysis in Climate Models] Wednesday afternoon.

Software

Inference library in UQTk v3.0 (www.sandia.gov/uqtoolkit)

- Workflow for model error representation, quantification and propagation
- Custom components: forward model, likelihood and prior
- A range of common forward models, including polynomial surrogates
- Various likelihood options, including classical, Kennedy-O'Hagan, model-error-embedding and its approximations
- Several prior options for embedded parameters α , including Wishart, Jeffreys, range-constrained
- All pieces forward model, likelihood and prior can be made custom

Summary Thank You

- Represent, quantify and propagate model structural errors
- Bayesian machinery for simultaneous estimation of physical parameters and model error
- A principled guide for model exploration (embedded representation, but can be performed non-intrusively!)
- Differentiates from data noise; allows model-to-model calibration
- Connections with Bayesian model averaging, model 'nudging', and stochastic physics
- Besides climate models, applied successfully in LES, transport models, chemistry, fusion
- K. Sargsyan, H. Najm, and R. Ghanem. "On the Statistical Calibration of Physical Models". *International Journal for Chemical Kinetics*, 47(4): 246-276, 2015.
- K. Sargsyan, X. Huan, and H. Najm. "Embedded Model Error Representation for Model Calibration", to be submitted, *Journal of Computational Physics*, 2017.

Summary Thank You

- Represent, quantify and propagate model structural errors
- Bayesian machinery for simultaneous estimation of physical parameters and model error
- A principled guide for model exploration (embedded representation, but can be performed non-intrusively!)
- Differentiates from data noise; allows model-to-model calibration
- Connections with Bayesian model averaging, model 'nudging', and stochastic physics
- Besides climate models, applied successfully in LES, transport models, chemistry, fusion

We are hiring!

- Postdoctoral Position UQ-in-Climate at Sandia National Labs
- Go to Sandia careers' website and look for job ID 659182
- Experience with UQ, climate modeling, coding.
- Salary \$85700+/year, in Livermore, CA

Additional Material

Calibrate $f(x; \lambda)$, given data g(x)

x are operating conditions, design parameters, various QoIs λ are model parameters to be inferred/calibrated

- Default: Ignore model errors:
 - Biased or overconfident physical parameters
 - Wrong model predictions
- Conventional: Correct for model errors: $g(x) = f(x; \lambda) + \delta(x) + \epsilon$

 $g(x) = f(x; \lambda) + \epsilon$

- Physical parameters are ok
- Wrong model predictions (data-specific corrections)
- Model and data errors mixed up
- What we do: Correct *inside* the model: $g(x) = f(x; \lambda + \delta(x)) + \epsilon$
 - Embedded model error
 - Preserves model structure and physical constraints
 - Disambiguates model and data errors
 - Allows meaningful extrapolation

Data-Model-Truth

Measurements

data truth data error
$$y_i = g(x_i) + \epsilon_i^d$$

Model

truth model model error
$$g(x_i) = f(x_i; \lambda) + \delta(x_i)$$

Total error budget

$$y_i = \underbrace{f(x_i; \lambda) + \delta(x_i)}_{\text{truth } g(x_i)} + \epsilon_i^{d}$$

Explicit statistical modeling of model discrepancy/error $\delta(x)$

Model Error: $\delta(x) \sim \text{GP}(\mu(x), C(x, x'))$

Data Error: $\epsilon_i^{
m d} \sim {
m N}(0,\sigma^2)$

Estimate model parameters λ along with those of $\delta(x)$, ϵ_i^d

Polynomial Chaos Representation of Augmented Input

$$y_i = f(x_i; \lambda + \delta_\alpha) + \epsilon_i$$

- Zero-mean PC form $\delta_{\alpha} = \sum_{k=1}^{K} \alpha_k \Psi_k(\xi)$
- Functional representation of a large class of random variables
- The PC $germ \xi$ is a standard random variable
 - ullet e.g. $\mathsf{Uniform}(-1,1)$ or $\mathsf{Normal}(0,1)$
- The PC bases (e.g. Legendre or Hermite polynomials) are orthogonal w.r.t. PDF of ξ

$$\int \Psi_m(\xi)\Psi_k(\xi)\pi_{\xi}(\xi)d\xi = 0 \quad \text{ for } m \neq k.$$

- PC representation allows efficient
 - Sampling
 - Moment estimation
 - Variance-based decomposition
 - Uncertainty propagation (via NISP, see next slide)

Non-intrusive Spectral Projection (NISP) for Uncertainty Propagation

Input random variable represented as PC

$$\Lambda(\xi) = \sum_{k} \alpha_k \Psi_k(\xi)$$

- Black-box forward model $Z = f(\Lambda)$
- Seeking PC representation of output random variable

$$Z(\xi) = \sum_{k} z_k \Psi_k(\xi)$$

Use orthogonality property and quadrature integration to find PC coefficients

$$z_{k} = \frac{1}{||\Psi_{k}||^{2}} \int f(\Lambda(\xi)) \Psi_{k}(\xi) \pi_{\xi}(\xi) d\xi \approx \frac{1}{||\Psi_{k}||^{2}} \sum_{q} f(\Lambda(\xi^{(q)})) \Psi_{k}(\xi^{(q)}) w^{(q)}$$

Likelihood construction: data model

• Data $y_i = g(x_i) + \epsilon_i$

• Model $f(x_i; \Lambda)$

• Model input as a PC $\Lambda = \lambda + \delta_{\alpha} = \sum_{k} \alpha_{k} \Psi_{k}(\xi_{1}, \dots, \xi_{d})$

Data generation model

$$y_{i} = f(x_{i}, \lambda + \delta_{\alpha}) + \epsilon_{i} =$$

$$= f\left(x_{i}, \sum_{k} \alpha_{k} \Psi_{k}(\xi_{1}, \dots, \xi_{d})\right) + \sigma \xi_{d+i} =$$

$$\stackrel{NISP}{\approx} \sum_{k} f_{ik}(\tilde{\alpha}) \Psi_{k}(\xi_{1}, \dots, \xi_{d}) + \sigma \xi_{d+i}$$

• Likelihood $L_y(\tilde{\alpha}) = p(y|\tilde{\alpha})$ for $\tilde{\alpha} = (\lambda, \alpha)$ and its construction directly follows, via sampling or moment extraction.

Model Error – Likelihood options

$$y_i = \sum_k f_{ik}(\tilde{\alpha}) \Psi_k(\xi_1, \dots, \xi_d) + \sigma \xi_{d+i}$$

True Likelihood:

$$L_{\mathbf{y}}(\tilde{\alpha}) = p(\mathbf{y}|\tilde{\alpha}) = p(\mathbf{y}_1, \dots, \mathbf{y}_N|\tilde{\alpha}) = \pi(\mathbf{y})$$

- Degenerate if no data noise
- Requires multivariate kernel density estimation (KDE) or high-d integration
- Gaussian approximation:

$$L_{\mathbf{y}}(\tilde{\alpha}) \propto \exp\left(-\frac{1}{2}(\mathbf{y} - \mu(\tilde{\alpha}))^T \Sigma^{-1}(\tilde{\alpha})(\mathbf{y} - \mu(\tilde{\alpha}))\right)$$

• NISP PC relieves the expense and provides easy access to mean $\mu(\tilde{\alpha})$ and covariance $\Sigma(\tilde{\alpha})$

Model Error – Likelihood options

$$y_i = \sum_k f_{ik}(\tilde{\alpha}) \Psi_k(\xi_1, \dots, \xi_d) + \sigma \xi_{d+i}$$

Marginalized Likelihood:

$$L_{\mathbf{y}}(\tilde{\alpha}) = p(\mathbf{y}|\tilde{\alpha}) \approx \prod_{i=1}^{N} p(y_i|\tilde{\alpha}) = \prod_{i=1}^{N} \pi(y_i)$$

- Requires univariate KDE
- Neglects built-in correlations looks for a pointwise match
- Gaussian approximation:

$$L_{\mathbf{y}}(\tilde{\alpha}) \propto \exp\left(-\frac{1}{2}\sum_{i=1}^{N}\Sigma_{ii}^{-1}(\tilde{\alpha})(y_i - \mu_i(\tilde{\alpha}))^2\right)$$

• NISP PC relieves the expense and provides easy access to marginal means $\mu_i(\tilde{\alpha})$ and variances $\Sigma_{ii}(\tilde{\alpha})$

Model Error – Likelihood options

$$y_i = \sum_k f_{ik}(\tilde{\alpha}) \Psi_k(\xi_1, \dots, \xi_d) + \sigma \xi_{d+i}$$

Approximate Bayesian Computation (ABC):

$$L_{y}(\tilde{\alpha}) = \frac{1}{\epsilon} K\left(\frac{\rho(\mathcal{S}_{\mathcal{M}}, \mathcal{S}_{\mathcal{D}})}{\epsilon}\right)$$

- Mean of $f(x_i; \Lambda)$ is "centered" on the data
- The width of the distribution of $f(x_i; \Lambda)$ is consistent with the spread of the data around the nominal model prediction

$$L_{y}(\tilde{\alpha}) \propto \exp\left(-\frac{1}{2\epsilon^{2}}\sum_{i=1}^{N}\left[\left(\mu_{i}(\tilde{\alpha})-y_{i}\right)^{2}+\left(\sqrt{\Sigma_{ii}(\tilde{\alpha})}-\gamma|\mu_{i}(\tilde{\alpha})-y_{i}|\right)^{2}\right]\right)$$

• NISP PC relieves the expense and provides easy access to marginal means $\mu_i(\tilde{\alpha})$ and variances $\Sigma_{ii}(\tilde{\alpha})$

Optimal Embedding via Bayes Factors

- Question: which parameters should be augmented with stochastic structure to capture model error?
- Initially, we base the decision on GSA (heuristic)
- Implementing formal model comparison via Bayes Factor

Bayes' formula for a given model M_k

$$\underbrace{p(\tilde{\alpha}|y, M_k)}_{\text{Posterior}} = \underbrace{\frac{\text{Likelihood}}{p(y|\tilde{\alpha}, M_k)} \underbrace{p(\tilde{\alpha}|M_k)}_{\text{Evidence}}}_{\text{Evidence}}$$

Bayes factor between two models is the ratio of two evidence terms:

BF
$$(M_1, M_2) = \frac{p(y|M_1)}{p(y|M_2)}$$

Computing log-evidence $\log p(y|M_k)$ is key for model selection.

Model Selection: Model Evidence Computation

- Model evidence is a high-dimensional integral, requiring many model evaluations – challenging to compute
- We investigated five methods
 - GA (Gaussian approximation to posterior)
 - HM (Harmonic Mean estimator)
 - MC (Plain Monte-Carlo)
 - IMC (Importance sampling Monte-Carlo)
 - TMCMC (Transitional Markov chain Monte-Carlo)

Model Selection: Model Evidence Computation

- Model evidence is a high-dimensional integral, requiring many model evaluations – challenging to compute
- We investigated five methods
 - GA (Gaussian approximation to posterior)
 - HM (Harmonic Mean estimator)
 - MC (Plain Monte-Carlo)
 - IMC (Importance sampling Monte-Carlo)
 - TMCMC (Transitional Markov chain Monte-Carlo)

Param	GSA \bar{S}_{T_i}	GA
$\overline{C_R}$	5.24×10^{-1}	2.82×10^{2}
Pr_t^{-1}	1.58×10^{-2}	-2.55×10^{3}
Sc_t^{-1}	4.90×10^{-1}	2.30×10^{2}
$I_i = u_i'/U_i$	3.63×10^{-2}	-9.68×10^{2}
$I_r = v'/u'$	2.24×10^{-3}	-3.74×10^3
L_i	5.32×10^{-2}	-4.15×10^2
C_R, Sc_t^{-1}		2.79×10^{2}

Model Selection: Model Evidence Computation

- Model evidence is a high-dimensional integral, requiring many model evaluations – challenging to compute
- We investigated five methods
 - GA (Gaussian approximation to posterior)
 - HM (Harmonic Mean estimator)
 - MC (Plain Monte-Carlo)
 - IMC (Importance sampling Monte-Carlo)
 - TMCMC (Transitional Markov chain Monte-Carlo)

Param	$GSA\bar{S}_{T_i}$	GA
$\overline{C_R}$	5.24×10^{-1}	2.82×10^{2}
Pr_t^{-1}	1.58×10^{-2}	-2.55×10^{3}
Sc_t^{-1}	4.90×10^{-1}	2.30×10^{2}
$I_i = u_i'/U_i$	3.63×10^{-2}	-9.68×10^{2}
$I_r = v'/u'$	2.24×10^{-3}	-3.74×10^{3}
L_i	5.32×10^{-2}	-4.15×10^2
C_R, Sc_t^{-1}		2.79×10^{2}

Embedded Model: Predictions

$$f(x; \Lambda) = f(x; \sum_{k} \alpha_k \Psi_k(\xi_{1:d})) = \sum_{k} f_k(x; \tilde{\alpha}) \Psi_k(\xi_{1:d})$$

- Non-intrusive spectral projection (NISP) will allow
 - Posterior/pushed-forward predictions
 - Easy access to first two moments:

$$\mu(x; \tilde{\alpha}) = f_0(x; \tilde{\alpha}),$$
 $\sigma^2(x; \tilde{\alpha}) = \sum_{k>0} f_k^2(x; \tilde{\alpha}) ||\Psi_k||^2$

Predictive mean

$$\mathbb{E}[y(x)] = \mathbb{E}_{\tilde{\alpha}}[\mu(x; \tilde{\alpha})]$$

Decomposition of predictive variance

$$\mathbb{V}[y(x)] = \underbrace{\mathbb{E}_{\tilde{\alpha}}[\sigma^2(x;\tilde{\alpha})]}_{\text{Model error}} + \underbrace{\mathbb{V}_{\tilde{\alpha}}[\mu(x;\tilde{\alpha})]}_{\text{Posterior error}}$$

Embedded Model: Predictions at Data Locations

$$f(x_i; \Lambda) = f(x_i; \sum_k \alpha_k \Psi_k(\xi_{1:d})) + \sigma \xi_{i+d} = \sum_k f_k(x_i; \tilde{\alpha}) \Psi_k(\xi_{1:d}) + \sigma \xi_{i+d}$$

- Non-intrusive spectral projection (NISP) will allow
 - Likelihood computation
 - Easy access to first two moments:

$$\mu(x_i; \tilde{\alpha}) = f_0(x_i; \tilde{\alpha}),$$
 $\sigma^2(x_i; \tilde{\alpha}) = \sum_{k>0} f_k^2(x_i; \tilde{\alpha}) ||\Psi_k||^2$

Predictive mean

$$\mathbb{E}[y(x_i)] = \mathbb{E}_{\tilde{\alpha}}[\mu(x_i; \tilde{\alpha})]$$

Decomposition of predictive variance

$$\mathbb{V}[y(x_i)] = \underbrace{\mathbb{E}_{\tilde{\alpha}}[\sigma^2(x_i; \tilde{\alpha})]}_{\text{Model error}} + \underbrace{\mathbb{V}_{\tilde{\alpha}}[\mu(x_i; \tilde{\alpha})] + \sigma^2}_{\text{Posterior/Data error}}$$

Two common embedding forms

$$y_i = f(x_i; \Lambda = \lambda + \delta_\alpha) + \epsilon_i$$

- Unconstrained inputs:
 - First-order Gauss-Hermite PC (Multivariate Normal):

$$\begin{cases} \Lambda_1 = \lambda_1 + \alpha_{11}\xi_1 \\ \Lambda_2 = \lambda_2 + \alpha_{21}\xi_1 + \alpha_{22}\xi_2 \\ \vdots \\ \Lambda_d = \lambda_d + \alpha_{d1}\xi_1 + \alpha_{d2}\xi_2 + \cdots + \alpha_{dd}\xi_d \end{cases}$$
 puts:

- Constrained inputs:
 - First-order Legendre-Uniform PC (Independent Uniform):

$$\begin{cases} \Lambda_1 = \lambda_1 + \alpha_1 \xi_1 \\ \Lambda_2 = \lambda_2 + \alpha_2 \xi_2 \\ \vdots \\ \Lambda_d = \lambda_d + \alpha_d \xi_d \end{cases}$$

Surrogate construction is necessary

Remember output PC construction

$$z_{k} = \frac{1}{||\Psi_{k}||^{2}} \int f(\Lambda(\xi)) \Psi_{k}(\xi) \pi_{\xi}(\xi) d\xi \approx \frac{1}{||\Psi_{k}||^{2}} \sum_{q} f(\Lambda(\xi^{(q)})) \Psi_{k}(\xi^{(q)}) w^{(q)}$$

requires multiple model evaluations, hence...

- \bullet We pre-construct a surrogate or a response surface to $f(\Lambda)$ via standard polynomial regression
- Subsequent NISP can be made exact if the bases of surrogate and PC match
- Access to leave-one-out (LOO) surrogate error as yet another component of the predictive uncertainty

Attribution of error components

$$y_{i} = \underbrace{\sum_{k} f_{ik}(\alpha) \Psi_{k}(\xi_{1}, \dots, \xi_{d}) + \sigma_{\mathcal{D}} \xi_{d+i}}_{h_{i}(\hat{\xi}; \hat{\alpha})}$$

Stochastic dimensions:

- Model error ξ_1, \ldots, ξ_d
- Measurement error $\xi_{d+1}, \dots, \xi_{d+N}$
- Posterior uncertainty (α): can be represented via its own PC expansion (using MCMC samples and Rosenblatt transformation)

Full PC expansion: $y_i = \sum f_j \Psi_j(\hat{\hat{\xi}})$ Full stochastic *germ*:

$$\hat{\xi} = (\underbrace{\xi_1, \dots, \xi_d}_{\text{Model error}}, \underbrace{\xi_{d+1}, \dots, \xi_{d+N}}_{\text{Measurement error}}, \underbrace{\xi_{d+N+1}, \dots, \xi_{d+N+N_{\alpha}}}_{\text{Posterior uncertainty}})$$

Posterior predictive variance:

$$\sigma_{\text{PP}}^2(x_i) = \mathbb{E}_{\alpha}[\sigma^2(x_i, \alpha)] + \mathbb{E}_{\sigma_{\mathcal{D}}}[\sigma_{\mathcal{D}}^2] + \mathbb{V}_{\alpha}[\mu(x_i, \alpha)]$$

Predictions account for model error

Calibrating single-exponential models with data from a double exponential model $g(x) = e^{-0.5x} + e^{-2x}$

Linear-exponential
$$f(x, \lambda) = e^{\lambda_1 + \lambda_2 x}$$

Additive Gaussian error

Predictions account for model error

Calibrating single-exponential models with data from a double exponential model $g(x) = e^{-0.5x} + e^{-2x}$

Linear-exponential
$$f(x, \lambda) = e^{\lambda_1 + \lambda_2 x}$$

Quadratic-exponential $f_2(x,\lambda) = e^{\lambda_1 + \lambda_2 x + \lambda_3 x^2}$

Key Steps

- Formulation: Identify a pair of models with different degree of fidelity
 - e.g., low-vs-high grid resolution, simplified-vs-detailed geometry, or data-vs-model.
- Representation: Embed model error a few parameters at a time
 - Build surrogate, perform GSA for initial screening
- Quantification: Calibrate for embedded PC coefficients
 - Challenging Bayesian formulation: adaptive MCMC sampling.
- Prediction: Embedded model error propagation via PC NISP
 - Posterior predictive checks
- Attribution: Attribute model errors to specific components
 - Variance-based decomposition into contributions from model error, surrogate error, data noise, posterior uncertainty.

Treatment of Discrete or Categorical Parameters

- We have developed an approach to incorporate discrete parameters in the embedded model error framework.
- Augment discrete parameters with a probability mass function (PMF) and infer the mass weights (just like the continuous case of inferring PDF).
- Allows MCMC on continuous parameters.
- Connections to Bayesian model averaging and model selection.

The overall mean for a given (α, a, x) is

$$\mu(\alpha, a; x) = \mathbb{E}_{\Lambda, L} [f(\Lambda(\alpha), L(a); x)] = \sum_{r=1}^{R} a_r \mu_r(\alpha; x),$$

and the variance is

$$\sigma^{2}(\alpha, a; x) = \mathbb{V}_{\Lambda, L} [f(\Lambda(\alpha), L(a); x)]$$

$$= \underbrace{\sum_{r=1}^{R} a_{r} \sigma_{r}^{2}(\alpha; x)}_{\text{due to cont. param.}} + \underbrace{\sum_{r=1}^{R} a_{r} \mu_{r}^{2}(\alpha; x) - \mu(\alpha, a; x)^{2}}_{\text{due to categorical param.}}.$$