Design Primer & Probe

Course: MICROBIAL GENOME & MICROBIOME ANALYSIS - 2024

Ms. Ngo Dai Phu

PI: PhD. Luu Phuc Loi

Email: phudaingobio@gmail.com; bioinformatics.mgma@gmail.com;

Kary B. Mullis

The Nobel Prize in Chemistry 1993

Born: 28 December 1944, Lenoir, NC, USA

Died: 7 August 2019, Newport Beach, CA, USA

Prize motivation: "for his invention of the polymerase chain reaction (PCR) method"

Prize share: ½

Work

An organism's genome is stored inside DNA molecules, but analyzing this genetic information requires quite a large amount of DNA. In 1985, Kary Mullis invented the process known as polymerase chain reaction (PCR), in which a small amount of DNA can be copied in large quantities over a short period of time. By applying heat, the DNA molecule's two strands are separated and the DNA building blocks that have been added are bonded to each strand. With the help of the enzyme DNA polymerase, new DNA chains are formed and the process can then be repeated. PCR has been of major importance in both medical research and forensic science.

What are primer and probe? Why do we need to design for our own?

General Rules for Design of Oligonucleotides

With four possibilities (A, C, G, T) for selection of nucleotides at each position of the sequence, 4^18 (~10^11) possibilities exist for the design of an 18 nucleotide oligonucleotide.

Lengths of PCR Primers and Products

- o PCR primers in length: 18 and 24 nt
 - PCR primers of 15 nucleotides or shorter are only used for arbitrary or random short priming in the mapping of simple genomes.
- Melting temperature (Tm): approximately 60 °C(59±2 °C) for qPCR but may vary (55±5 °C) for conventional PCR
- o Tm difference between primers: ≤ 5 °C
 - To match the Tm of both forward and reverse primers, the length of a primer with high GC content needs to be shorter compared to one with less GCs.
- Primer pairs' GC content: 40–60% GC
- Product in length: approximately 200 to 1500 bp for conventional PCR and < 200 bp for qPCR
- o Primer dimers (hairbin, seft-dimer, hetero-dimer): $\Delta G \ge -2.0$ kcal
 - Any primer with both a terminal $\Delta G < -2.0$ kcal and an extendable 3'-end (5'-overlap) should be avoided.
 - Avoid 3' clamping (examine the <u>5 bases of the 3' and accept 3 of these as A or T and 2 as G or C</u>)
 - The strongest overall dimer should be unstable ($\Delta G \ge -6.0 \text{ kcal}$)

Lengths of Oligonucleotide Hybridization Probes

- Hybridization probes have been applied with lengths from around 20 nt up to several hundreds of nt.
 - At least one or two nucleotide differences are needed for separation of target from nontarget sequences.
 - Mismatches near the end of probes are less destabilizing than internal mismatches
- o For microarray experiments, the usual size is 25 nt, but probes of 50–70 nt are also used on certain applications

- DNA sequence of the hemagglutinin (HA) gene of strain 1734 with serotype H5N1 isolated from duck in Fujian in 2005 with GenBank/EBI/DDBJ acc. no. DQ095629
- https://www.ncbi.nlm.nih.gov/nuccore/

- https://bioinfo.ut.ee/primer3-0.4.0/

Pair Max Repeat Mispriming 24.00

Pair Max Template Mispriming 24.00

Drimar2	Checks for mispriming in template.	<u>disclaimer</u>	Primer3 Home
Primer3 (v. 0.4.0) Pick primers from a DNA sequence.	Primer3plus interface	<u>cautions</u>	FAQ/WIKI

There is a newer version of Primer3 available at http://primer3.ut.ee

Paste source sequence below (5'->3', string of ACG1 Nacgtn other letters treated as N numbers and blanks ignored). FAS1A format ok. Please N-out undesirable se (repeat library): NONE	quence (vector, ALUs, LINEs, etc.) or use a Mispriming Library
ATGGAGAAAATAGTGCTTCTTCTTGCAATAGTCAGCCTTGTTAAAAGTGATCAGATTTGCATTGGTTACCATGCAAACAACTCGACAGAGCAGGT TGACACAATAATGGAAAAGAACGTTACTGTTACACATGCCCAAGACATACTGGAAAAGACACACAACGGGAAGCTCTGCGATCTAGATGGAGTGA AGCCTCTGATTTTAAGAGATTGTAGTGTAG	
Pick left primer, or use left primer below: Pick hybridization probe (internal oligo), or use oligo below: Pick right primer, or use right primer below (5' to 3	on opposite strand):
Pick Primers Reset Form	
Sequence Id: A string to identify your output.	
E.g. 50,2 requires primers to surround the 2 bases at positions 50 and 51. Or mark the source sequence with [and]: e.g CCCC.	.ATCT[CCCC]TCAT means that primers must flank the central
Excluded Regions: E.g. 401,7 68,3 forbids selection of primers in the 7 bases starting at 401 and the 3 bases at 68. Or mark the source sequence the central CCCC.	ace with < and >: e.gATCT <cccc>TCAT forbids primers in</cccc>
Product Size Ranges 100-300	
Number To Pature 5 May 2! Stability 9.0	>

General Primer Picking Conditions

Max Repeat Mispriming 12.00

Max Template Mispriming 12.00

Pick Primers Reset Form

Primer3 Output

No mispriming library specified

Using 1-based sequence positions

OLIGO	<u>start</u>	<u>len</u>	tm	g <u>c%</u>	<u>any</u>	<u>3'</u>	<u>seq</u>
LEFT PRIMER	697	20	60.10	45.00	2.00	0.00	TCCAAAGTAAACGGGCAAAG
RIGHT PRIMER	899	20	59.93	50.00	4.00	3.00	GCCCCTATTGGAGTTTGACA

SEQUENCE SIZE: 1698
INCLUDED REGION SIZE: 1698

PRODUCT SIZE: 203, PAIR ANY COMPL: 5.00, PAIR 3' COMPL: 2.00

1 ATGGAGAAAATAGTGCTTCTTCTTGCAATAGTCAGCCTTGTTAAAAGTGATCAGATTTGC

61 ATTGGTTACCATGCAAACAACTCGACAGAGCAGGTTGACACAATAATGGAAAAGAACGTT

181 GATGGAGTGAAGCCTCTGATTTTAAGAGATTGTAGTGTAGCTGGATGGCTCCTCGGAAAC

241 CCAATGTGTGACGAATTCATCAATGTGCCGGAATGGTCTTACATAGTGGAGAAGGCCAAC

301 CCAGCCAATGACCTCTGTTACCCAGGGAATTTCAACGACTATGAAGAACTGAAACACCTA

361 TTGAGCAGAATAAACCATTTTGAGAAAATTCAGATCATCCCCAAAAGTTCTTGGTCCGAT

421 CATGAAGCCTCATCAGGGGTGAGCTCAGCATGTCCATACCAGGGAACGCCCTCCTTTTTC

481 AGAAATGTGGTATGGCTTATCAAAAAGAACAATACATACCCAACAATAAAGAGAAGCTAC

541 AATAATACCAACCAGGAAGATCTTTTGATACTGTGGGGGATTCATCATTCTAATGATGCG

```
1501 ACGTATGACTACCCGCAGTATTCAGAAGAAGCAAGATTAAAAAGAGAGAAATAAGTGGA
```

1561 GTAAAATTGGAATCAATAGGAACTTACCAAATACTGTCAATTTATTCAACAGTGGCGAGT

1621 TCTCTAGCACTGGCAATCATGGTGGCTGGTCTATCTTTATGGATGTGCTCCAATGGGTCG

1681 TTACAATGCAGAATTGCA

```
KEYS (in order of precedence):

>>>>> left primer

<<<<< right primer
```

ADDITIONAL OLIGOS

1	LEFT PRIMER	8	2 20	60.03	55.00	4.00	1.00	TCGACAGAGCAGGTTGACAC
	RIGHT PRIMER	23	4 20	59.83	60.00	4.00	0.00	GAGGAGCCATCCAGCTACAC
	PRODUCT SIZE: 1	53, PA	IR ANY	COMPL: 5	.00, PAI	R 3' C	OMPL:	2.00
2	LEET DRIMER		2 20	CO 03	FF 00	4 00	1 00	TCCACACACCACCTTCACAC
		-						TCGACAGAGCAGGTTGACAC
	RIGHT PRIMER	28	2 20	59.82	50.00	4.00	2.00	GTAAGACCATTCCGGCACAT
	PRODUCT SIZE: 2	01, PA	IR ANY	COMPL: 3	3.00, PAI	R 3' C	OMPL:	0.00
3	LEFT PRIMER	57	2 20	60.13	45.00	4.00	2.00	TGTGGGGGATTCATCATTCT

start len tm gc% any 3' seq

RIGHT PRIMER 572 20 60.13 45.00 4.00 2.00 TGTGGGGGGATTCATCATTCT RIGHT PRIMER 716 20 60.10 45.00 2.00 0.00 CTTTGCCCGTTTACTTTGGA PRODUCT SIZE: 145, PAIR ANY COMPL: 3.00, PAIR 3' COMPL: 1.00

4 LEFT PRIMER 150 20 60.16 50.00 2.00 2.00 AAAGACACACACAGGGAAGC RIGHT PRIMER 414 20 59.90 45.00 7.00 1.00 CCAAGAACTTTTGGGGATGA

Statistics

	con	too	ın	ın		no	tm	tm	high	high		high	
	sid	many	tar	excl	bad	GC	too	too	any	3'	poly	end	
	ered	Ns	get	reg	GC%	clamp	low	high	compl	compl	X	stab	ok
Left	14722	0	0	0	44	0	6567	3702	1	10	0	186	4212
Right	14582	0	0	0	44	0	6424	3736	0	4	0	202	4172
Pair S	tats:												

considered 790, unacceptable product size 772, ok 18 primer3 release 1.1.4

- https://www.idtdna.com/calc/analyzer/

Left Primer – TCCAAAGTAAACGGGCAAAG Hairpin

Homo-Dimer Analysis

The delta G is calculated by taking into account the longest stretch of complementary bases. These pairs of complementary bases are represented by a solid line. Dotted lines represent additional complementary bases for that dimer structure, but their presence does not impact calculated delta G values. Actual delta G values may vary based on presence of additional complementary bases. The Maximum Delta G value refers to the free energy of the oligo sequence binding to its perfect complement.

Structures

structure	Image	Δ G (kcal.mole ⁻¹)	T _m (°C)	ΔH (kcal.mole ⁻¹)	ΔS (cal.K⁻¹mole⁻¹)	Output
1	₫ _⊋	0.24	21	-17.9	-60.86	Ct Det
2	\$	0.45	16.3	-15.2	-52.5	Ct Det
3	दे	1.23	0.9	-14	-51.09	Ct Det

- https://www.idtdna.com/calc/analyzer/

Left Primer – TCCAAAGTAAACGGGCAAAG Seft-Dimer

Homo-Dimer Analysis

The delta G is calculated by taking into account the longest stretch of complementary bases. These pairs of complementary bases are represented by a solid line. Dotted lines represent additional complementary bases for that dimer structure, but their presence does not impact calculated delta G values. Actual delta G values may vary based on presence of additional complementary bases. The Maximum Delta G value refers to the free energy of the oligo sequence binding to its perfect complement.


```
Delta G: -3.07 kcal/mol Base Pairs: 2

5' TCCAAAGTAAACGGGCAAAG

|| :: ::

3' GAAACGGGCAAATGAAACCT
```

```
Delta G: -1.34 kcal/mol Base Pairs: 2

5' TCCAAAGTAAACGGGCAAAG
: || :: :

3' GAAACGGGCAAATGAAACCT
```

- https://www.idtdna.com/calc/analyzer/

Right Primer – GCCCCTATTGGAGTTTGACA Hairpin

OligoAnalyzer

Hetero-Dimer Analysis

The delta G is calculated by taking into account the longest stretch of complementary bases. These pairs of complementary bases are represented by a solid line. Dotted lines represent additional complementary bases for that dimer structure, but their presence does not impact calculated delta G values. Actual delta G values may vary based on presence of additional complementary bases. The Maximum Delta G value refers to the free energy of the oligo sequence binding to its perfect complement.

Structures

Image Batch date: 5/29/2024 4:37 PM

structure	Image	Δ G (kcal.mole ⁻¹)	T _m (°C)	ΔH (kcal.mole ⁻¹)	ΔS (cal.K ⁻¹ mole ⁻¹)	Output
1	37	-1.1	42.5	-19.8	-62.73	Ct Det
2	37	-0.99	43.5	-16.9	-53.38	Ct Det
3	3 7	-0.53	34.3	-17.6	-57.24	Ct Det

- https://www.idtdna.com/calc/analyzer/

Right Primer – GCCCCTATTGGAGTTTGACA Seft-Dimer

OligoAnalyzer

Delta G: -3.14 kcal/mol Base Pairs: 2

5' GCCCCTATTGGAGTTTGACA

3' ACAGTTTGAGGTTATCCCCG

Delta G: -1.95 kcal/mol Base Pairs: 2

5' GCCCCTATTGGAGTTTGACA

3 ' ACAGTTTGAGGTTATCCCCG

Delta G: -3.07 kcal/mol Base Pairs: 2

GCCCCTATTGGAGTTTGACA

11 :: ::

3' ACAGTTTGAGGTTATCCCCG

Delta G: -1.95 kcal/mol Base Pairs: 2

5' GCCCCTATTGGAGTTTGACA

11 ::

3' ACAGTTTGAGGTTATCCCCG

Delta G: -3.07 kcal/mol Base Pairs: 2

GCCCCTATTGGAGTTTGACA

3' ACAGTTTGAGGTTATCCCCG

Delta G: -1.6 kcal/mol Base Pairs: 2

GCCCCTATTGGAGTTTGACA

11 ::

3' ACAGTTTGAGGTTATCCCCG

Hetero-Dimer Analysis

The delta G is calculated by taking into account the longest stretch of complementary bases. These pairs of complementary bases are represented by a solid line. Dotted lines represent additional complementary bases for that dimer structure, but their presence does not impact calculated delta G values. Actual delta G values may vary based on presence of additional complementary bases. The Maximum Delta G value refers to the free energy of the oligo sequence binding to its perfect complement.

Delta G: -3.07 kcal/mol Base Pairs: 2

GCCCCTATTGGAGTTTGACA

: || :: :: :

3' ACAGTTTGAGGTTATCCCCG

Delta G: -1.34 kcal/mol Base Pairs: 2

5' GCCCCTATTGGAGTTTGACA

3 ' ACAGTTTGAGGTTATCCCCG

https://www.idtdna.com/calc/analyzer/

Left Primer – TCCAAAGTAAACGGGCAAAG Right Primer – GCCCCTATTGGAGTTTGACA Hetero-Dimer

Hetero-Dimer Analysis

Delta G: -1.6 kcal/mol Base Pairs: 2

3' ACAGTTTGAGGTTATCCCCG

TCCAAAGTAAACGGGCAAAG

Delta G: -3.07 kcal/mol Base Pairs: 2
5' TCCAAAGTAAACGGGCAAAG
:::::::!!

General Rules for Design of Oligonucleotides

With four possibilities (A, C, G, T) for selection of nucleotides at each position of the sequence, 4^18 (~10^11) possibilities exist for the design of an 18 nucleotide oligonucleotide.

Lengths of PCR Primers and Products

- o PCR primers in length: 18 and 24 nt
 - PCR primers of 15 nucleotides or shorter are only used for arbitrary or random short priming in the mapping of simple genomes.
- Melting temperature (Tm): approximately 60 °C(59±2 °C) for qPCR but may vary (55±5 °C) for conventional PCR
- o Tm difference between primers: ≤ 5 °C
 - To match the Tm of both forward and reverse primers, the length of a primer with high GC content needs to be shorter compared to one with less GCs.
- o Primer pairs' GC content: 40–60% GC
- Product in length: approximately 200 to 1500 bp for conventional PCR and < 200 bp for qPCR
- Primer dimers (hairbin, seft-dimer, hetero-dimer): $\Delta G \ge -2.0$ kcal
 - Any primer with both a terminal $\Delta G < -2.0$ kcal and an extendable 3'-end (5'-overlap) should be avoided.
 - Avoid 3' clamping (examine the <u>5 bases of the 3' and accept 3 of these as A or T and 2 as G or C</u>)
 - The strongest overall dimer should be unstable ($\Delta G \ge -6.0 \text{ kcal}$)

Lengths of Oligonucleotide Hybridization Probes

- Hybridization probes have been applied with lengths from around 20 nt up to several hundreds of nt.
 - At least one or two nucleotide differences are needed for separation of target from nontarget sequences.
 - Mismatches near the end of probes are less destabilizing than internal mismatches
- o For microarray experiments, the usual size is 25 nt, but probes of 50–70 nt are also used on certain applications

Homework 1

- 1. Between global and local alignments, which algorithm do we use for designing primer/probe?
- 2. Is the primer pair appropriate for the hemagglutinin (HA) gene of strain 1734 with serotype H5N1 and Why?

Based on 'General Rules for Design of Oligonucleotides' to answer the question 2.

The serotype H7N2 of influenza virus: acc. no. U20461

https://www.ncbi.nlm.nih.gov/tools/primer-blast/

Primer-BLAST

A tool for finding specific primers

Finding primers specific to your PCR template (using Primer3 and BLAST)

Input PCR template |cl|Query_1

Range 1 - 1731

Your PCR template is highly similar to the following sequence(s) from the search database. To increase the chance of finding specific primers, please review the list below and select all sequences (within the given sequence ranges) that are intended or allowed targets.

Accession	Title	Identity	Alignment length	Seq. start	Seq. stop
U20461.1	Influenza A virus (A/duck/Hong Kong/293/78(H7N2)) hemagglutinin precursor (HA) mRNA, complete cds	100%	1731	1	1731
CY006029.1	Influenza A virus (A/dk/Hong Kong/293/1978(H7N2)) segment 4, complete sequence	99.94%	1731	2	1732
CY067686.1	Influenza A virus (A/swine/KU/16/2001(H7N2)) segment 4 sequence	99.36%	1731	2	1732
✓ AB302789.1	Influenza A virus (A/duck/Hong Kong/301/1978(H7N2)) HA gene for haemagglutinin, complete cds	99.82%	1698	1	1698
XX130802.1	Influenza A virus (A/twite/Gangcha/02/2006(H7N2)) segment 4 hemagglutinin (HA) gene, complete cds	99.76%	1683	1	1683
XX130803.1	Influenza A virus (A/tree sparrow/Gangcha/02/2006(H7N2)) segment 4 hemagglutinin (HA) gene, complete cds	99.7%	1683	1	1683
XX130801.1	Influenza A virus (A/twite/Gangcha/01/2006(H7N2)) segment 4 hemagglutinin (HA) gene, complete cds	99.7%	1683	1	1683
XX130820.1	Influenza A virus (A/pika/Maduo/01/2009(H7N2)) segment 4 hemagglutinin (HA) gene, complete cds	99.64%	1683	1	1683
XX130811.1	Influenza A virus (A/pika/QH-Maduo/02/2006(H7N2)) segment 4 hemagglutinin (HA) gene, complete cds	99.64%	1683	1	1683
XX130809.1	Influenza A virus (A/ground jay/Maduo/01/2006(H7N2)) segment 4 hemagglutinin (HA) gene, complete cds	99.64%	1683	1	1683
DQ003216.1	Influenza A virus (A/duck/Hongkong/301/72(H7N1)) hemagglutinin (HA) gene, complete cds	99.58%	1682	1	1682

Submit

Show results in a new window

Input PCR template |cl|Query_1

Range 1 - 1731

Specificity of primers Primers may not be specific to the input PCR template as targets were found in selected database: Nucleotide collection (nt) (Organism limited to

Alphainfluenzavirus)...help on specific primers

Other reports Search Summary

- Graphical view of primer pairs

- Detailed primer reports

You can re-search for specific primers by accepting some of the unintended targets, check the box(es) next to the ones you accept and try again to re-search for specific primers

D				
Dri	m	or	na	ır
Pri		-	υa	

Sequence (5'->3') Self 3' complementarity Template strand Length Start Stop Tm GC% Self complementarity Forward primer GTCACTGGACCACCTCAGTG Plus 20 271 59.97 60.00 5.00 3.00 ATCGATCCGTCCAGATTGGC Reverse primer Minus 20 740 721 59.97 55.00 6.00 2.00 Product length 489

19

Homework 2

- 1. Are all primers of 'Products of intended targets' for Primer pair 1 matching the type H7N2?
- 2. Are all 'Products of unintended targets' forming mismatches for Primer pair 1 that are expected not to result in generation of product?

Based on 'General Rules for Design of Oligonucleotides' to answer this question.

Reference

- https://www.sigmaaldrich.com/NL/en/technical-documents/technical-article/genomics/pcr/assay-optimization-and-validation
- https://www.sigmaaldrich.com/NL/en/technical-documents/protocol/genomics/pcr/pcr-qpcr-dpcr-assay-design
- https://www.idtdna.com/pages/education/decoded/article/designing-pcr-primers-and-probes
- https://www.idtdna.com/pages/education/decoded/article/design-efficient-pcr-and-qpcr-primers-and-probes-using-online-tools
- Christensen, Henrik, and John Elmerdahl Olsen. "Primer Design: Design of Oligonucleotide PCR Primers and Hybridization Probes." *Introduction to Bioinformatics in Microbiology* (2018): 81-102.
- Nolan, Tania, Jim Huggett, and Elena Sanchez. "Good practice guide for the application of quantitative PCR (qPCR)." Teddington: LGC (2013).

Tm Calculations

- Estimation of Tm by Formula
 - For oligonucleotides of \leq 20 nt: Tm = 4 (G + C + 2(A-T)
 - \circ For oligonucleotides of 10–50 nt: Tm = 81.5 + 16.6logM + 0.41(G + C%) (820/(length of probe)
 - For oligonucleotides of \geq 50 nt: Tm = 81.5°C + 16.6logM + 0.41(G + C%) (500/length of probe)
- Formamide Considerations
 - 1% formamide reduces Tm by 0.6°C
- Estimation of Tm by Nearest Neighbor Prediction
 - \circ Td = ΔH/(ΔS + RlnC) + 16.6log10 [M]
- Combination of Formula and nearest neighbor calculations
 - \circ Ta = 0.3 Tm primer +0.7 Tm product 14.9

Design of Primers for PCR and "Kwok's Rules"

Prediction of amplication from interactions between PCR oligonucleotide primer at the 3 end and template (based on Kwok et al. 1990). Low degree of mismatch is assumed between oligonucleotide and template for the remaining part of sequence

Design of Probes for Hybridization

Prediction of binding in hybridization between probe and template. A low degree of mismatch formation is assumed between oligonucleotide and template for the remaining part of the sequence

Program	Description	URL and reference
Amplifx2.1	PCR design program for MacOS X	https://macdownload.informer.com/amplifx/
FastPCR	PCR primer design including multiplex PCR	http://primerdigital.com/fastpcr.html
Netprimer	Numerous parameters of single PCR primers	http://www.premierbiosoft.com/netprimer/index.html
Oligo	Nearest neighbor calculations of secondary structures and Tm	https://www.oligo.net/ Rychlik and Rhoads (1989)
OligoAnalyzer	Nearest neighbor parameters. Hair-pin and primer-dimer analysis	https://eu.idtdna.com/pages/tools Owczarzy et al. (2008)
OligoCalc	Physical properties of oligonucleotides, self complementarity and hairpin loop formation	http://biotools.nubic.northwestern.edu/OligoCalc.html Kibbe (2007)
OligoFaktory	DNA microarrays, primers for PCR, siRNAs	http://www.bioinformatics.org/oligofaktory/
Pride and Genome pride	PCR and microarray	http://pride.molgen.mpg.de/ (Staden package)
Pria	Search for primers in multiple alignments	https://services.birc.au.dk/pria/ Fredslund et al. (2005)
Primegens	Primer design	http://primegens.org/ Xu et al. (2002)
Primer3	The most frequently used program see also Activity 5.1	http://bioinfo.ut.ee/primer3-0.4.0/primer3/input.htm Rozen and Skaletsky (2000)
Primer3Plus	Simpliaed version of Primer3	http://www.bioinformatics.nl/cgi- bin/primer3plus/primer3plus.cgi/
Primer Design Assistant (PDA)	Primer design with all parameters	http://dbb.nhri.org.tw/primer/ Chen et al. (2003)
PrimerPremier	PCR primer design, multiplex, degeneracies and nested PCRs	http://www.premierbiosoft.com/primerdesign/index.html
PrimerQuest	PCR and hybridization probes. Based on Primer3	https://eu.idtdna.com/PrimerQuest/Home/Index
Primer Search (EMBOSS)	Matches between primers-pairs and DNA template by string comparisons	http://emboss.sourceforge.net/ Rice et al. (2000)
Primo Oligo	Calculation of Tm	http://www.changbioscience.com/primo/oligo.html
Web Primer	PCR primer design	https://www.yeastgenome.org/cgi-bin/web-primer
SciTools	A series of tools	http://www.idtdna.com/SciTools/Scitools.aspx Owczarzy et al (2008)

Program	Description	URL and reference
ARB	Design of rRNA targeted probes	http://www.arb-home.de Ludwig et al. (2004).
ArrayDesigner	Oligo-arrays, cDNA arrays and SNP arrays	http://www.premierbiosoft.com/dnamicroarray/index.html
Assembly PCR oligo maker	PCR-based construction of long DNA molecules for RNA molecules by T7 RNA polymerase	http://www.yorku.ca/pjohnson/AssemblyPCRoligomaker.html
Beacon designer™	Real-time PCR	http://www.premierbiosoft.com/molecular_beacons/index.html
BLOCKMAKER and CODEHOP	Degenerate primers to genes of proteins	https://4virology.net/virology-ca-tools/j-codehop/Rose et al. (2003)
Expeditor	QTL design	https://www.animalgenome.org/cgi-bin/expeditor/expeditor2
Geneasher2	Degenerate PCR primers based on multiple aligned sequences	https://bibiserv.cebitec.uni-bielefeld.de/geneasher2/
MFOLD	Evaluates probes	http://www.unafold.org/mfold/applications/rna-folding-form-v2.php
OligoPicker	microarray design of oligonucleotides	https://pga.mgh.harvard.edu/oligopicker/index.html
Pira-PCR	SNP	http://primer1.soton.ac.uk/primer2.html Ke et al. (2001)
PrimerD	Degenerate primer pairs	http://mblab.wustl.edu/software.html#primerdLink
Primer exmplore	LAMP primers	http://primerexplorer.jp/e/
PrimerX	Site-directed mutagenesis	http://www.bioinformatics.org/primerx/cgi-bin/DNA_1.cgi
ProDesign	Oligonucleotide design for microarray	http://wwwlabs.uhnresearch.ca/tillier/ProDesign/ProDesign.html Feng and Tillier (2007)