Week 1

Andrew Yao (姚期智)

2024-2-27

Math for CS and AI, Spring 2024

Teachers:

Weeks 1-8, math for general CS, Andrew Yao (姚期智)

Weeks 9-16, math focused on AI, Jingzhou Zhang (张景昭)

TAs: Homework sessions/Grading

Format: Weekly homework sets – 50%

Midterm exam – 25%

Final exam – 25%

> All exams are in-class, and open-book

Contents for 1st Half (Weeks 1-8)

Tentative Plan:

- Probability Theory: 3 weeks
- Graphs/Combinatorics: 2 weeks
- Geometry/Advanced Topics: 2 weeks
 - -- complexity, geometry, topology
- Midterm exam: April 15
- Reference book:
 - Discrete Mathematics, by Lovasz, Pelikan and Vesztergombi, 2003; elementary, supplemental reading (not required)
- Other reading materials as needed

Probability Theory

In the face of uncertainties, we often need to estimate <u>how likely</u> something occurs. Throw a pair of unbiased dice, let the result be (i, k)

- Question: What is the probability that i+k = 8?
 Intuitively, there are 36 possible values of (i,k), all equally likely to occur.
- ➤ There are 5 of these that satisfy i+k=8.
 Thus, the probability must be 5/36 ≈ 14%
- ➤ How about more complex questions? Say, if one performs the above experiment 100 times, what is the probability that the outcome i+k=8 occured 35 times?
- As the question gets more complicated, we need a precise mathematical definition of what probability means!

Definition: A probability space P = (U, p) consists of:

- -- <u>universe</u> **U** : finite non-empty set
- -- probability function $p: U \rightarrow [0,1]$ such that $\sum_{u \in U} p(u) = 1$

An event is $T \subseteq U$

The *probability of* T is defined to be $Pr\{T\} = \sum_{u \in T} p(u)$

* Intuition of event T: Pick a random point u in U according to p,

Pr{T} is the chance that u falls into subset T

For throwing two unbiased dice, formalize it as:

- \rightarrow U = { (i,k) | 1 \le i,k \le 6 }
- $T = \{ (i,k) \mid 1 \le i,k \le 6, i+k=8 \}$
- p(u) = 1/|U| for all $u \in U$. $Pr\{T\} = |T|/|U| = 5/36$

Example 1: Monte Hall Problem

Mr. Monte Hall hosts a game show "Let's make a deal" on TV.

One such game involves 3 closed doors. Behind one (randomly chosen) door is a beautiful sports car, while the other 2 doors each has a donkey behind it

Game format: Guest is invited to try to win the car as follows:

- > Guest: Picks a random door i.
- Monte: Opens a <u>different</u> door j ≠ i which has a donkey behind it.
- > Monte then asks the Guest, "Would you like to switch your choice of i?"

Our Question: Should the Guest switch?

Example 1: Monte Hall Problem (continued)

Marilyn vos Savant writes a column "Ask Marilyn" in Parade magazine (she reportedly has an extremely high IQ). In a 1990 column, she gave her opinion on the Monte Hall Problem, saying that Switch is the correct choice! Many readers doubted and protested about Marilyn's answer:

How can the new info about donkey <u>from a different door</u> affect the location of car? But Marilyn turned out to be correct! Here's the analysis.

Let's formulate it in the formal probability language.

P = (U, p), where $U = \{a, b\}$ ("a" represents the situation when Guest's initial pick is the *correct* door with car behind it; "b" the other case)

$$p(a) = 1/3, p(b) = 2/3$$

> Let T be the event that "action Switch would lead Guest to the car".

Clearly, $T=\{b\}$, hence $Pr\{T\} = p(b) = 2/3$. (Note non-Switch gives 1/3 success probability.)

Example 1: Monte Hall Problem (continued)

According to Wikipedia, Paul Erdös, a famous mathematician, remains unconvinced until he was shown a computer simulation \bigcirc

**But imagine 100 doors, with 98 doors revealed!

A Question about Passwords

Mr. Zhang is a data center manager in a university with 30,000 faculty and students. He assigns a random m-bit password x₁ to each faculty/student i ∈ {1,2,..., 30000}. What value of m should Mr. Zhang choose?

Requirement: $x_i \neq x_j$ for all $i \neq j$.

For example: Smallest m such that $Pr\{x_i \neq x_j \text{ for all } i \neq j\} > 1 - 10^{-10}$.

Along this line, there is a famous problem which we will discuss next. (Mr. Zhang's problem will be left as a homework problem.)

Example 2: Birthday Paradox

In a party of n random people, how likely is it to have two people with same birthday? Assume there are 365 days in a year, and all days are equally likely to be a birthday. Let q(n) stand for this probability.

- If one does experiments, it turns out empirically q(23) is about $\frac{1}{2}$, meaning that in a group as small as 23 people, there is a fifty-fifty chance to have two people with the same birthday
- ➤ A counter-intuitive result (hence called a paradox)!

 As n gets larger, q(50)=0.97, and q(70)=0.999

Example 2: Birthday Paradox (continued)

How do we explain this mathematically?

Consider the *Probability Space*:

- ➤ P = (U, p), where U= $\{(x_1, x_2, ..., x_n) | 1 \le x_k \le 365 \text{ for all } k \}$ p(u) = 1/|U| T = $\{(x_1, x_2, ..., x_n) | \text{ there exists } x_i = x_k \text{ for some } j \ne k \} \subseteq U$
- Analyze Pr{T}.

<u>Theorem</u> Let $q(n) = Pr\{T\}$. Then q(n) is a non-decreasing function of n.

- For all n>0, q(n) = 1 (1-1/365) (1-2/365) ... (1-(n-1)/365)
- > q(22)<0.5, q(23)>0.5

Consider the *complemented* (or, *negated*) event $\bar{T} = U - T$. Then

$$|T| = |U| - |\bar{T}|. \tag{1}$$

Now, each element $(i_1, i_2, \dots, i_n) \in \overline{T}$ can be uniquely specified by picking i_1 (365 choices), then i_2 (364 choices), ..., i_n (365-n+1 choices). Thus

$$|\bar{T}| = 365 \cdot 364 \cdots (365 - n + 1).$$
 (2)

It follows from (1), (2) that

$$\begin{aligned} &\Pr\{T\} \\ &= \frac{|T|}{|U|} = 1 - \frac{|\bar{T}|}{|U|} \\ &= 1 - \frac{365 \cdot 364 \cdots (365 - n + 1)}{365^n} \\ &= 1 - 1 \cdot (1 - \frac{1}{365}) \cdot (1 - \frac{2}{365}) \cdots (1 - \frac{n - 1}{365}). \end{aligned}$$

The series expansion for e^x is $\sum_{i\geq 0} \frac{x^i}{i!}$ for all x. When |x| is small, a reasonable approximation is

$$e^{-x} \approx 1 - x$$
.

(Also in fact $e^{-x} \ge 1 - x$ for $x \ge 0$.)

Thus, for $n \leq 80$, intuitively

$$\Pr\{T\} = 1 - \left(1 - \frac{1}{365}\right) \cdot \left(1 - \frac{2}{365}\right) \cdot \dots \left(1 - \frac{n-1}{365}\right)$$

$$\approx 1 - e^{\frac{-1}{365}} e^{\frac{-2}{365}} \dots e^{\frac{-(n-1)}{365}}$$

$$= 1 - \exp\left(-\sum_{1 \le i < n} \frac{i}{365}\right)$$

$$= 1 - \exp\left(-\frac{n(n-1)}{2 * 365}\right)$$

$$\equiv d(n).$$

To see what n makes q(n) rise above 0.5, look at when d(n) rises above 0.5.

Consider the solution of d(x) = 0.5.

$$\exp(-\frac{x(x-1)}{2*365}) = 0.5,$$

i.e

$$\frac{x(x-1)}{2*365} = \ln 2 = 0.69.$$

So, roughly,

$$x = (2 * 365 * 0.69)^{1/2} = 22.44.$$

Exactly the correct crossover location 22 < n < 23!

In fact d(n) approximates q(n) very well (except when n is really small). That's why we get the crossover location exactly. We will show you the numerical values. In the homework we will show how to treat this issue analytically.

Error of Approximation seems small

```
Pr{T}
               Approx error
         q(n) d(n) d(n)-q(n)
   n
   20
        0.412 0.406 - 0.006
        0.444 0.437 -0.007
   21
   22
       0.476 0.469 -0.007
   23
        0.507 0.500 -0.007
   24
       0.538 0.530 -0.008
       0.569 0.560 -0.009
   25
Note |d(n)-q(n)| << q(n) - q(n-1)
i.e. d(n) is much closer to q(n) than to q(n-1)
```

For probability space with uniform probability function p, we have $Pr\{T\}=|T|/|U|$, evaluating probability of an event T is the same as *counting the size* of T.

- > Kindergarten counting rules:
 - -- Addition rule: If a set S is the disjoint union of S_k, then $|S| = \sum_{k} |S_{k}|$.
 - -- Multiplication rule: If each item s in S can be uniquely specified as s =(i1, i2, ..., im), where 1 ≤ ik ≤ ck then |S| = c1 ⋅ c2 ⋅⋅⋅ cm
- > These elementary rules are surprisingly useful in solving many probability problems, e.g. in solving the birthday paradox, we implicitly used the multiplication principle.
- > Our next example shows an example where both principles are utilized.

Example 3. Online Auction Problem (aka. Beauty contest, Secretary's problem)

Suppose you're selling a concert ticket online to n=10⁶ interested bidders:

Given a stream of n distinct offers $x_1,x_2,...,x_n$, you have to make decision in real-time.

You want to maximize the probability of accepting the <u>highest</u> offer.

Strategy k: (k<n)

- 1) Skip the first k offers
- 2) Accept x_j if j is the first j satisfying $x_j > \max\{x_1, x_2, ..., x_k\}$
- (* If no x_i is selected, clearly the strategy has failed.)

Analysis of Strategy k

Consider the *Probability Space*:

P = (U,p), where U= the set of all permutations of $\{1,2,...,n\}$, p = 1/|U|=1/n!

Let T be the event of success (i.e. when the best offer j gets selected by Strategy k)

Fact. A permutation $x = (x_1, x_2, ..., x_n)$ is in T iff the following are true:

- (1) j > k (where j is defined by $x_j = n$)
- (2) max $\{x_1, x_2, ..., x_{j-1}\} = \max\{x_1, x_2, ..., x_k\}$

Thus, $Pr\{T\} = |T|/|U| = |T|/n!$

For each k+1 \leq j \leq n, let T_j \subseteq T be the subset of those permutations x satisfying x_j = n Lemma 1. $|T| = \sum_{k+1 \leq i \leq n} |T_j|$.

Proof. By addition principle, as T_j's are disjoint.

Lemma 2. $|T_j| = n! k/(n(j-1))$.

Proof. Using multiplication principle. (Omitted)

Theorem
$$Pr\{T\} = h_{n,k} = \frac{k}{n}(\frac{1}{k} + \frac{1}{k+1} + \dots + \frac{1}{n-1}).$$

e.g $h_{n,k} \approx 38\%$ for n=8, k=4

Coming back to our Online Auction Problem with $n = 10^6$

Consider the *Harmonic Numbers*
$$H_n = 1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{n} \approx \ln n + C + ...$$

Choose
$$k = \lceil n/e \rceil = \lceil n/2.718 \rceil$$
 ceiling function

Then
$$h_{n,k} = \frac{k}{n} (H_{n-1} - H_{k-1}) \approx \frac{k}{n} (\ln n - \ln(n/e)) = 1/e \approx 38\%$$

Amazingly, by choosing k=n/e, you can land on exactly the <u>highest</u> offer with probability close to 40% among a million offers!

For more complex problems and questions, we need to develop additional probability concepts and a set of essential tools useful for analysis and calculations.

Essential Probability Tools #1: The Union Bound

- 1) Let T, T₁,...,T_m be events, and T \subseteq U $_i$ T_i. Then $Pr\{T\} \leq \sum_i Pr\{T_i\}$.
- 2) If Ti's are disjoint and $T = U_i T_i$ then $Pr\{T\} = \sum_i Pr\{T_i\}$.

This simple bound often yields surprisingly <u>powerful</u> results, as illustrated by a celebrated result on Ramsey numbers by <u>Paul Erdös</u>.

What are Ramsey numbers?

Ramsey numbers: simplest case

Among 6 people, there must exist <u>either</u> 3 mutual friends, <u>or</u> 3 mutual strangers. (called the Friendship Theorem)

proof. Construct the <u>Friendship Graph</u>: an edge between 2 friends

no edge between 2 strangers

5 vertices

G has no triangle and no anti-triangle

6 vertices

Any 6-vertex graph has Either a triangle or an anti-triangle

Ramsey's Theorem For any integer $k \ge 3$, there exists an integer N > 0 such that among N people, either $\exists k$ mutual friends or k mutual strangers.

> The smallest such N is called the k-th Ramsey number, R(k). For example R(3)=6.

- > You are going to prove Ramsey's theorem in Homework #1 by showing that $R(k) \le {2k-2 \choose k-1} < 4^k$
- How about <u>lower bound</u> for R(k)?
 A famous result by Paul Erdös gives a lower bound:

Theorem (Paul Erdös 1947) For all $k \ge 3$, $R(k) \ge \lfloor 2^{k/2} \rfloor$

Proof. Let $n = \lfloor 2^{k/2} \rfloor$. Let P = (U,p) where U is the set of all graphs on n vertices, and p is the uniform probability function on U. In other words, a random graph G is obtained by setting x_{ij} randomly to 0 or 1 with equal prob for each pair of vertices $\{i,j\}$.

Let T be the event that "G contains no clique of size k and no independent set of size k". We prove $Pr\{T\} > 0$. Equivalently, we show $Pr\{\overline{T}\} < 1$ where $\overline{T}=U-T$. For any subset V of k vertices, let A_V , B_V be the event that V forms a clique (or an independent set) in the random G, respectively.

By definition,

$$\bar{T} = (\cup_{V,|V|=k} A_V) \cup (\cup_{V,|V|=k} B_V).$$

By the Union Bound, we have for any $k \geq 3$, with $n = \lfloor 2^{k/2} \rfloor$

$$\Pr{\bar{T}} \le \sum_{V,|V|=k} (\Pr{A_V} + \Pr{B_V})
= 2 \binom{n}{k} \frac{1}{2^{\binom{k}{2}}} \le 2 \frac{n^k}{k!} \frac{1}{2^{\binom{k}{2}}}
\le 2 \frac{(2^{\frac{k}{2}})^k}{k!} \frac{1}{2^{\binom{k}{2}}} = 2 \frac{2^{\frac{k^2}{2}}}{k!} \frac{1}{2^{(k^2-k)/2}}
= 2 \frac{2^{k/2}}{k!} < 1.$$

Significance of Erdös' Theorem:

- It is a novel idea to prove the existence of a mathematical object with certain sophisticated properties without explicitly constructing it.
- Erdös' 1947 paper started an important field "Probabilistic Method" in combinatorics, number theory, theoretical computer science.

Long-standing Open Problem: Give an explicit construction, for each k, a graph on $n = \lceil c^k \rceil$ vertices that contains no clique and no independent set of size k, where c > 1 is some constant.

- * For computer scientists, this means a construction by an algorithm running in polynomial time in n
- * Best constructive bounds known (roughly): for some small constant $\epsilon > 0$

$$R(k) > 2^{2^{(\log k)^{\epsilon}}}.$$

We next introduce an important concept of conditional probability.

Definition For events S, T, the conditional probability of S (given T) is defined as:

$$\Pr\{S \mid T\} = \begin{cases} & \Pr\{S \cap T\} / \Pr\{T\}, \text{ if } \Pr\{T\} > 0; \\ & 0, \text{ if } \Pr\{T\} = 0. \end{cases}$$

* We often write $\Pr\{S \cap T\}$ as $\Pr\{S \wedge T\}$ (S AND T in logical sense); write $\Pr\{S \cup T\}$ as $\Pr\{S \vee T\}$ (S OR T in logical sense).

Example 2: P=(U,p) where U is the set of all college students, and p is the uniform probability function. Let $S \subseteq U$ be the event consisting of all students who are "smart". Let's say $Pr\{S\} = 40\%$.

Let T=Tsinghua students. Then Pr{S|T}=100%.

It is easy to verify that $Pr\{S \cap T\} = Pr\{T\} \cdot Pr\{S|T\}$.

This basic equation has the following important generalizations.

Essential Probability Tools #2:

2A: The Chain Rule (for Conditional Probability)

$$\Pr\{S_1 \cap S_2 \cap \dots \cap S_m\} = \prod_{1 \le j \le m} \Pr\{S_j \mid S_1 \cap S_2 \cap \dots \cap S_{j-1}\}.$$
(e.g.
$$\Pr\{S_1 \cap S_2 \cap S_3\} = \Pr\{S_1\} \cdot \Pr\{S_2 \mid S_1\} \cdot \Pr\{S_3 \mid S_2 \cap S_1\}.$$
)

2B: Distributive Law (Law of Total Probability)

Let
$$T \subseteq W_1 \cup W_2 \cup \cdots \cup W_m$$
.

Then
$$\Pr\{T\} \leq \sum_{1 \leq j \leq m} \Pr\{W_j\} \cdot \Pr\{T \mid W_j\}.$$

Furthermore, if W_j 's are disjoint, then the above inequality is equality.

Essential Probability Tools #1 & 2 are generalizations of the Kindergarten Addition and Multiplication rules).

- Let us revisit the Birthday problem and the Auction problem using these new tools.
 - 1. Birthday Problem: Analysis of probability of birthday coincidence of n people

$$P = (U, p)$$
 where $U = \{x = (x_1, \dots, x_n) | 1 \le x_i \le 365\}$ and p is uniform over U .

Recall T = $\{(x_1, x_2, ..., x_n) | \text{ there exists } x_i = x_k \text{ for some } j \neq k\} \subseteq U$

For each j,

let S_j = the set of x satisfying $x_j \notin \{x_1, \dots, x_{j-1}\}$.

 \bar{T} : the event that all birthdays x_i are distinct

By Chain Rule,

$$\Pr\{ar{T}\} = \Pr\{S_1 \cap S_2 \cap \dots \cap S_n\}$$

$$= \prod_{1 \leq j \leq n} \Pr\{S_j \mid S_1 \cap S_2 \cap \dots \cap S_{j-1}\}$$

$$= \prod_{1 \leq j \leq n} \left(1 - \frac{j-1}{365}\right)$$
QED

2. Auction Problem: Analysis of Strategy k in selecting best bid (revisited)

First recall the notations:

P = (U, p) where p is uniform over U, and

U: the set of all n! permutations of $\{1, 2, \dots, n\}$

Any $x = (x_1, \dots, x_n) \in U$ is a stream of bid sequence. Strategy k tries to select the highest bid x_j .

T: the set of x for which Strategy k successfully selects the highest bid n

 W_j : the set of x with $x_j = n$;, clearly all W_j are disjoint

> As we analyzed before:

 $T = \bigcup_{k+1 \le j \le n} T_j$ where T_j is the set of x satisfying:

- (a) $x \in W_i$, and
- (b) max of $\{x_1, \dots, x_{j-1}\}\$ occurs in $\{x_1, \dots, x_k\}$
- ightharpoonup Thus $T\subseteq \cup_{1\leq j\leq n}W_j$

By Distributive Law,

$$\Pr\{T\} = \sum_{k+1 \le j \le n} \Pr\{W_j\} \cdot \Pr\{T \mid W_j\}$$

$$= \sum_{k+1 \le j \le n} \frac{1}{n} \cdot \frac{k}{j-1}$$

$$= \frac{k}{n} \left(\frac{1}{k} + \frac{1}{k+1} + \dots + \frac{1}{n-1}\right).$$

The End