Classification I Fundamentals & Decision Trees

Text Classification JSOM
Information Gain
Business Analytics
Entropy Shujing Sun
Precision
Classification Recall
Decision Tree
Naive Bayes

Shujing Sun

Outline

- Classification Fundamentals
- Decision Tree
- R Lab

What is Classification?

Predictive Task

- Supervised Learning
- Class/Label: a categorical decision/outcome variable
- Use past instances with known labels to develop a model.
- Use the model to predict labels for *new instances* with *unknown* labels.

Examples

- Classifying a customer as "loyal" vs. "disloyal"
- Classifying credit risk as "high" vs. "low"
- Classifying email to "spam" or "non-spam"

Classification Terminology

Inputs = Predictors = Features = Independent
 Variables (X)

- Outputs = Responses = Dependent Variables (Y)
 - Categorical outputs (e.g., binary, nominal, ordinal)
 - Use <u>classification</u> techniques
 - Numeric outputs
 - Use <u>regression</u> techniques
- Models = *Classifiers*

Steps of Classification

Model <u>building</u> (using <u>training data</u>)

- Model <u>evaluation</u> (using <u>testing data</u>)
 - Offers an unbiased assessment of the model's performance
 - Detect overfitting of the training data

 Model <u>application</u> (using <u>new data</u> where the value of dependent variable is unknown)

Decision Tree Classifier

- Goal: classify or predict an outcome based on a set of predictors
- The output is a set of <u>rules</u>
- Example:
 - Classify a customer as "will default a loan" or "will not default a loan"
 - Rule might be
 - "IF (Income >= 100,000) AND (credit score >700) THEN Class = 0 (will not default)"
 - "IF (Income <= 20,000) AND (credit score <400) THEN Class = 1 (will default)"

Decision Tree Classifier

 Recursive partitioning: Repeatedly split the records into two parts so as to achieve maximum homogeneity of outcome within each new part.

• **Pruning the tree**: Simplify the tree by pruning peripheral branches to avoid overfitting.

Recursive Partitioning

- Pick one of the predictor variables, x_i
- Pick a value of x_{i_j} say s_i , that divides the training data into two (not necessarily equal) portions.
 - Measure how "pure" each of the resulting portions is "Pure" ⇔ containing records of mostly one class
 - The algorithm tries different x_i and s_i to maximizes purity in an initial split.
- After we get a "maximum purity" split, repeat the process for a second split (on any variable), and so on.

Which split is the best?

Which one is best?

The best split \Leftrightarrow largest reduction of the impurity in the resulting partitions, which is calculated as the impurity before the split minus the impurities after a split.

Measures of Impurity

Information Gain = impurity before split – average impurity after split

- rpart: an R library that implements Recursive Partitioning for classification, regression and survival trees
- rpart uses Gini impurity measure (Corrado Gini, 1912) as a default
 - Entropy is an alternative impurity measure
- The higher the Information Gain, the better the split.

Gini Measure

If a total n observations have

- n_1 observations of class 1, in proportion $p_1 = n_1 / n$
- n_2 observations of class 2, in proportion $p_2 = n_2 / n$
- ..
- n_m observations of class m, in proportion $p_m = n_m / n$
- $Gini = 1 \sum_{i=1}^{m} p_i^2$

- ❖ This measure takes value between 0 (when all the records belong to the same class) and (m-1)/m (when all m classes are equally represented).
- ❖ Higher Gini less pure, more chaos

Gini measure of impurity with two classes = $1 - (\frac{n_1}{n})^2 - (\frac{n_2}{n})^2$

Example: 10 observations

Gini Gain = Gini before the split – weighted average Gini after the split = 0.5 - ((2/10)*0 + (8/10)*0.46875) = 0.125

Example: 10 observations

Higher Information Gain is Better!

2 neg 0 pos

3 neg 5 pos

Customer Churn at a Cell Provider

Variable	Description		
gender	0 (for female) or 1 (for male)		
age	Age of customer in years		
income	Annual income		
overage	Over usage of plan per month, averaged over a year, in minutes		
underage	Underusage of plan per month, averaged over a year, in minutes		
phone	Kind of phone for the main line (android, ios, etc.)		
price	Price of the phone at last purchase		
lines	Number of lines in the account		
bill	Monthly bill, averaged over a year		
churn	Did the customer leave the plan? (neg/pos)		

Churn – Balanced Data Set

	Churn neg	Churn pos	Total
Number	5,022	4,987	10,000
Percentage	50.22%	49.78%	100%

Classification Tree for Churn Prediction

rpart: R package for Recursive Partition

```
# load the data into data.frame
cellco <- read.csv("cellco_full.csv", stringsAsFactors = FALSE)</pre>
# split the data into training and testing data sets
# we will first randomly select 2/3 of the rows
set.seed(345)
                                                    # for reproducible
results
train = sample(1:nrow(cellco), nrow(cellco)*(2/3)) # replace=F by default
# Use the train index set to split the dataset
churn.train = cellco[train,]
                                                     # 6,666 rows
                                                     # the other 3,334 rows
churn.test = cellco[-train,]
```

rpart: R package for Recursive Partition

```
# Install the rpart Package
```

install.packages('rpart')
library(rpart)

fit = rpart(formula, data, method, control, ...)

- fit: name of the model
- formula: dep ~ ind1 + ind2 + ...
- data: data = your data.frame name
- control: control=rpart.control(minsplit=1000, minbucket=150, cp=0.1, xval=0)

of Cross-Validation folds.

Minimum obs. of a leaf node.

Complexity measure.

Minimum obs. of node to consider a split.

More details: https://cran.r-project.org/web/packages/rpart/rpart.pdf

Grow Tree

```
fit = rpart(churn ~ ., # formula

data=churn.train, # dataframe used

method="class", # treat churn as a categorical variable, default

control=rpart.control(xval=0, minsplit=1000),

# xval: num of cross validation

# minsplit=1000: stop splitting if node has 1000 or fewer observations

parms=list(split="gini"))

# criterial for splitting: gini default, entropy if set

parms=list(split="information")
```

Grow Tree

display basic results

> fit n= 6666

node), split, n, loss, yval, (yprob)

- * denotes terminal node
- 1) root 6666 3322 pos (0.4983498 0.5016502)
 - 2) income< 75826 4156 1506 neg (0.6376323 0.3623677)
 - 4) overage< 36.5 2870 697 neg (0.7571429 0.2428571)
 - 8) phone=and,other,win 2356 420 neg (0.8217317 0.1782683) *
 - 9) phone=ios 514 237 pos (0.4610895 0.5389105) *
 - 5) overage>=36.5 1286 477 pos (0.3709176 0.6290824)
 - 10) underage< 9.5 452 201 neg (0.5553097 0.4446903) *
 - 11) underage>=9.5 834 226 pos (0.2709832 0.7290168) *
 - 3) incomę>=75826 2510 672 pos (0.2677291 0.7322709) *

• right child: 2x + 1

Numbering scheme:

Children of node x:

left child: 2x

Root node has number 1.

Split Number of Obs.

Number Incorrect Assigned Class

Proportions of neg/pos

Leaf Node 20

Plot Tree

```
# rpart built-in plot
plot(fit, uniform=TRUE, # space out the tree evenly
  branch=0.5, # make elbow type branches
  compress=F, # make it shorter vertically
  main="Classification Tree for Churn Prediction", # title
  margin=0.1) # leave space so it all fits
text(fit, use.n=TRUE, # show numbers for each class
  all=TRUE, # show data for internal nodes as well
  fancy=F, # draw ovals and boxes
  pretty=T, # show split details
  cex=0.8) # compress fonts to 80%
# plot a prettier tree using rpart.plot
install.packages('rpart.plot')
library(rpart.plot)
# method 1
prp(fit, type = 1, extra = 1, under = TRUE, split.font = 1, varlen = -10)
# method 2
rpart.plot(fit, type = 1, extra = 1, main="Classification Tree for Churn Prediction") 21
```

Tree Interpretation

Classification Tree for Churn Prediction

Example:

Tree Interpretation

Classification Tree for Churn Prediction

Confusion Matrix

```
# extract the vector of <u>predicted</u> class for each observation in chur.train churn.pred <- predict(fit, churn.train, type="class")
# extract the <u>actual</u> class of each observation in chur.train churn.actual <- churn.train$churn
```

now build the confusion matrix # which is the contingency table of predicted vs actual confusion.matrix <- table(churn.pred, churn.actual) confusion.matrix

	churn.actu	al
churn.pred	neg	pos
neg	2187 (TN)	621 (FN)
pos	1135 (FP)	2723 (TP)

```
Summary
TP = 1838 + 277 + 608 = 2,723
FP = 672 + 237 + 226 = 1,135
TN = 1936 + 251 = 2,187
FN = 420 + 201 = 621
```

More on Confusion Matrix

Overall Performance

Accuracy = Total Number Correct / Total Number of Obs.

= (TP + TN)/(TP+FP+TN+FN)

Error Rate = Total Incorrect / Total Number of Obs. = 1 – Accuracy

<u>Given a positive class (for example, churn = positive)</u>

TPR = Recall = Sensitivity = TP/P = 2,723/(621+2,723) = 0.814

TNR = Specificity = TN/N = 2,187/(2,187+1,135) = 0.658

FPR = FP/N = Type 1 Error Rate (α) = 1,135/(2,187+1,135) = 0.342

FNR = FN/P = Type 2 Error Rate (β) = 621/(621+2,723) = 0.186

		Actual	
		neg	pos
Predicted	neg	TN	FN
		2,187	621
ed	pos	FP	TP
Ā		1,135	2,723

```
Summary
TP = 1838 + 277 + 608 = 2,723
FP = 672 + 237 + 226 = 1,135
TN = 1936 + 251 = 2,187
FN = 420 + 201 = 621
```

Question

- 1. If a new instance has INCOME >= 76k, should we predict CHURN = pos?
- 2. If we make the decision this way, can we expect:
 It to be accurate 1838 / (672 + 1838) = 0.73 (i.e., 73%) of the time?

Or more generally, can we expect to be correct 73% of the time when apply this rule to new data?

No, not necessarily!

Test on the hold out data

Accuracy on the Training Data churn.pred <- predict(fit, churn.train, type="class") churn.actual <- churn.train\$churn confusion.matrix <- table(churn.pred, churn.actual) pt <- prop.table(confusion.matrix) #accuracy pt[1,1] + pt[2,2] [1] 0.7365737

Accuracy on the Testing data

```
churn.pred <- predict(fit, churn.test, type="class")
churn.actual <- churn.test$churn
confusion.matrix <- table(churn.pred, churn.actual)
addmargins(confusion.matrix)
pt <- prop.table(confusion.matrix)
#accuracy
pt[1,1] + pt[2,2]
[1] 0.714757
```

Training VS. Testing Accuracy

- Overall accuracy
 - We would generally expect the model to do better with training data than with testing data.
- The hold-out sample (i.e., testing data) is just one new set of data and the model performance is subject to sample variability.
 - It is possible, but not likely, to have the testing accuracy be higher.
- Recommended practice: repeat the experiments with different training/testing data to get mean accuracy rates with a lower bias (e.g., <u>cross-validation</u>)

Summary of Decision Tree

Strengths

- There is no need to transform variables, any monotone transformation of the variables will give the same tree.
- Variable subset selection is automatic since it is part of the split selection.
- Easy to understand and interpret, as the tree structure captures the entire decision trajectory.
- It is computationally cheap to deploy even on large data sets.

Weaknesses

- Sensitive to changes in data.
- Cannot capture interactions between variables because each split is based only on one variable.
- A large dataset is required to construct a good classifier.

Textbooks to Read After Class

- Data Mining for Business Analytics: Concepts, Techniques, and Applications in R, by Galit Shmueli, Peter Bruce, Inbal Yahav, Nitin Patel, and Kenneth Lichtendahl. Wiley, ISBN-10: 1118879368, ISBN-13: 978-1118879368
- Today's lecture: Chapter 9
- Next week's lecture: Chapters 7, 8, 10, 13
 - Avoid overfitting
 - Other common classifiers
 - Logistic Regression
 - K-Nearest Neighbors
 - Naïve Bayes Classifier

Start RStudio ...

- ☐ Start Rstudio
- ☐ Download cellco_full.csv and decisionTree_template.R