Homework 3: Proofs with Quantifiers (Due 2/16/2022)

Assignments should be **stapled** and written clearly and legibly. Problems 6, 7, 8, and 9 are optional.

- 1. §1.2, #8, 9(c), (d), 10, 11.
- 2. §1.4, #11.
- 3. Prove that for every integer b, there exists a positive integer a such that $|a-|b|| \leq 1$.
- 4. Prove that for every positive real number e, there exists a positive real number d such that if x is a real number with |x| < d, then 2|x| < e.
- 5. Prove that for every positive real number ϵ , there exists a natural number N such that if n > N, then $\frac{1}{n^2 + 1} < \epsilon$.
- 6. Let $f,g:\mathbb{R}\to\mathbb{R}$ be two functions whose ranges are bounded. Justify each of the following inequalities:

$$\inf\{f(x) : x \in \mathbb{R}\} + \inf\{g(x) : x \in \mathbb{R}\} \le \inf\{f(x) + g(x) : x \in \mathbb{R}\}$$

\$\leq \sup\{f(x) + g(x) : x \in \mathbb{R}\}\$
\$\leq \sup\{f(x) : x \in \mathbb{R}\} + \sup\{g(x) : x \in \mathbb{R}\}\$

- 7. Let S be a nonempty set. Prove that the following three assertions are equivalent:
 - (a) S is countable.
 - (b) There exists an injection $f: S \to \mathbb{N}$.
 - (c) There exists a surjection $g: \mathbb{N} \to S$.
- 8. Give an explicit bijection $f:[0,1)\to(0,1)$.
- 9. Which is greater, π^3 or 3^{π} ?