Modelos Polinomiales de Grado Menor

Dulce Ximena Cid Sanabria 1850231 Diego Alejandro Rincón Pacheco 1849687 José Alejandro Lagos Martínez 1941592 **EQUIPO 8**

INTRODUCCIÓN

El objetivo es ajustar un conjunto de datos a un polinomio de grado "bajo". Esto "suaviza" la función haciendo que no sea muy sensible a pequeños cambios.

Debemos identificar de que grado es el polinomio que vamos a usar y luego encontrar los coeficientes.

Diferencias Divididas

Data		First divided difference	Second divided difference		
x_1	<i>y</i> ₁	$\frac{y_2 - y_1}{x_2 - x_1}$	$y_3 - y_2 $ $y_2 - y_1$		
<i>x</i> ₂	<i>y</i> ₂	$y_3 - y_2$	$\frac{x_3 - x_2}{x_3 - x_1} - \frac{x_2 - x_1}{x_2 - x_1}$		
х3	<i>y</i> 3	$x_3 - x_2$			

[©] Cengage Learning

DIFERENCIAS DIVIDIDAS

x_i	0	2	4	6	8
y_i	0	4	16	36	64

[©] Cengage Learning

Data	4	Divided diff	ferences
	$\frac{y_i}{0}$	- Д	4 4
$\Delta x = 6 \begin{cases} 2 & \\ 4 & 1 \\ 6 & 3 \\ 8 & \end{cases}$	4 < 2 = 4/2 = 12/2 = 20/2 = 28/2 = 12/2 =	= 2 $= 6 - 4/4$ $= 10$ $= 14 - 4/4$	= 1 = 1 = 0/6 = 0 = 1 0/6 = 0

[©] Cengage Learning

EJEMPLO 1

Se recopilaron datos que relacionan el contador de una grabadora (X) con el tiempo de reproducción transcurrido (Y).

X	c_i	100	200	300	400	500	600	700	800
Y	t_i (sec)	205	430	677	945	1233	1542	1872	2224

[©] Cengage Learning

Graficar

Diferencias Divididas

X	у	Δ	Δ^2	Δ^3
100	205	2.25	0.0011	-1.667E-07
200	430	2.47	0.00105	-1.667E-07
300	677	2.68	0.001	1.667E-07
400	945	2.88	0.00105	0
500	1233	3.09	0.00105	1.667E-07
600	1542	3.3	0.0011	
700	1872	3.52		
800	2224			

Forma de la Función:

$$P_2(x) = a + bx + cx^2$$

Min
$$S = \sum_{i=1}^{m} [y_i - (a + bx_i + cx_i^2)]^2$$

$$ma + \left(\sum x_i\right)b + \left(\sum x_i^2\right)c = \sum y_i$$

$$\left(\sum x_i\right)a + \left(\sum x_i^2\right)b + \left(\sum x_i^3\right)c = \sum x_iy_i$$

$$\left(\sum x_i^2\right)a + \left(\sum x_i^3\right)b + \left(\sum x_i^4\right)c = \sum x_i^2y_i$$

Minimizar el error

Derivando parcialmente con respecto a cada variable obtenemos el siguiente sistema de ecuaciones.

SOLUCIÓN

$$8a + 3600b + 2,040,000c = 9128$$

$$3600a + 2,040,000b + 1,296,000,000c = 5,318,900$$

$$2,040,000a + 1,296,000,000b + 8.772 \times 10^{11} c = 3,435,390,000$$

a= 0.142857143

b= 1.942261905

c = 0.001046429

$$P_2(x) = 0.1428 + 1.9422x + 0.0010x^2$$

SOLUCIÓN

EJEMPLO 2

En la siguiente tabla **X** representa la longitud (pulgadas) y **Y** el peso (onzas) de cierto tipo de pescado.

			14.125			
Υ	17	16.5	23	26.5	41	49

GRAFICAR LOS DATOS.

Tabla de diferencias divididas

Longitud	Peso	Δ	Δ^{2}	Δ^{3}	$\Delta^{f 4}$	Δ^{5}
12.5	17	-4	5.1282	-1.2308	0.0785	0.0641
12.625	16.5	4.3333	2.6667	-0.8575	0.4149	
14.125	23	9.3333	-1.2994	1.2690		
14.5	26.5	5.2727	3.3007			
17.25	41	16				
17.75	49					

Función del modelo

Forma de la función: $P(x)=a+bx+cx^2+dx^3$

Minimizar
$$S = \sum_{i=1}^{m} (y_i - (ai + bx_i + cx_i^2 + dx_i^3))^2$$

Con las siguientes condiciones

$$ma + b \sum x_i + c \sum x_i^2 + d \sum x_i^3 = \sum y_i$$

$$a \sum x_i + b \sum x_i^2 + c \sum x_i^3 + d \sum x_i^4 = \sum x_i y_i$$

$$a \sum x_i^2 + b \sum x_i^3 + c \sum x_i^4 + d \sum x_i^5 = \sum x_i^2 y_i$$

$$a \sum x_i^3 + b \sum x_i^4 + c \sum x_i^5 + d \sum x_i^6 = \sum x_i^3 y_i$$

6a+88.75b+1338.03c+20557.53d=173

88.75a+1338.03b+20557.53c+321638.8d=2706.938

1338.03a+20557.53b+321638.8c+5118476d=43084.8

20557.53a+321638.8b+5118476c+82721896d=696489.1

Solución

Despues de resolver el sistema de 40ecuaciones, se obtuvieron los siguientes valores.

$$a = 133.6$$

$$b = -25.717$$

$$c = 1.6303$$

$$d = -0.0257$$

$$P(x)=133.6-25.717x+1.6303x^2$$

-0.0257x^3

EJEMPLO 3

En los siguientes datos, X es la temperatura Fahrenheit y Y es el número de chirridos que un grillo produce en un minuto.

X	46	51	54	57	59	61	63	66	68	72	
Y	40	55	72	77	90	96	99	113	127	132	,

1-.Graficar los datos

2-. Hacemos la tabla de diferencias divididas para más apoyo

		Diferencias Divididas								
Χ	Υ	Δ	Δ^2	Δ3	Δ^4					
46	40	3.0000								
51	55	5.6667	0.3333							
54	72	1.6667	-0.6667	-0.0909						
57	77	6.5000	0.9667	0.2042	0.0227					
59	90	3.0000	-0.8750	-0.2631	-0.0467					
61	96	1.5000	-0.3750	0.0833	0.0385					
63	99	4.6667	0.6333	0.1440	0.0067					
66	113	7.0000	0.4667	-0.0238	-0.0187					
68	127	1.2500	-0.9583	-0.1583	-0.0122					
72	132									

3-.Se procede a definir la función del modelo

Forma de la función: P(x)=a+bx

$$Minimizar S = \sum_{i=1}^{m} (y_i - (a + bx_i))^2$$

Y las condiciones necesarias para que se de el minimo son:

$$ma + \left(\sum x_i\right)b = \sum y_i$$
 10a + 597b = 901

$$\left(\sum x_i\right)a + \left(\sum x_i^2\right)b = \sum x_iy_i$$
 597a + 36217b = 55923

Después de resolver las ecuaciones los valores quedan: a = -130.9693, b= 3.7030

$$P(x) = -130.9693 + 3.7030x$$

