

ME,CE,EC,EE,CS

Lecture No-03

Topics to be Covered

Ungrouped data

Grouped data

Introduction to Random variables

<u>Revision</u>

Probability -> Random Experiments
$$\frac{n(\Lambda)}{n(S)}$$

$$P(AUB) = P(A) + P(B) - P(ANB)$$

Conditional Probability -> P(A/B)

If E_1, E_2, E_3, \dots En one Such that $E_1 \cap E_j = \emptyset$ and $E_1 \cup E_2 \cup E_3 \cup \dots \in E_n = S$, then

$$P(A) = \sum_{i=1}^{n} P(E_i) \cdot P(A|E_i)$$

$$P(E_i|A) = \frac{P(E_i) \cdot P(A|E_i)}{\sum_{i \in I} P(E_i) \cdot P(A|E_i)}$$

Introduction to Statistics

Collection and analysis of Data.

Survey - Data (ungrouped Data (as) Raw Data).

uncisoufed Data -> Raw Data
is converted to Grouped Data.

Ex: The Marks of 40 Students are.

19	24	31	32	17	16	9	22	24	17
14	23	20	06	20	19	06	22	27	11
06	29	14	12	18	32	30	17	13	19
23	11	33	31	28	24	21	09	11	30

Ungrouped data

(i) Mean: If x1, x2, x3, x4, -- xn are n'observations, then
the Mean is denoted by M or x and it is given by

$$M = \overline{x} = \frac{\text{Sum of observations}}{\text{No. of observations}} = \frac{\sum_{i=1}^{\infty} x_i}{n}$$

Ex: The Mean of 1st 'n' natural numbers is _____ $\overline{X} = \underbrace{1+2+3+\cdots+n}_{2.N} = \underbrace{n+1}_{2.N}$

(2) Median: If x, xz, xz, -... xn ore 'n' observations, assanged in ascending (or) Descending order, then

(i) Median is $(\frac{n+1}{2})^{th}$ observation if 'n' is odd.

(ii) Median is mean of $(\frac{9}{2})^{th}$ and $(\frac{9}{2}+1)^{th}$ observation if his even

Ex: let the observations be 19,23,27,11,14,18,40,26,27

Ascending oxder $\rightarrow 11,14,18,19(23)26$, 28,2023,2048. Median = $(9+1)^{th}$ observation = 5^{th} observation = 23.

-> The Median of the data -> 11,23,17,12,14,28,27,13,12,20.

Ascending order -> 11,12,12,13,14,17 20,23,27,28.

Median is average of $(\frac{10}{2})^{th}$ observations.

$$=$$
) Median = $\frac{14+17}{2} = \frac{31}{2} = 15.5$

-> Mode: The most refeatitive data birt in a data is called mode.

Ex: $2,3,5,2,7,2,14,18,23,2,12 \rightarrow Mode = 2$.

4) Deviation: (di):

let $x_1, x_2, x_3, x_4, \ldots, x_n$ are 'n' observations with mean x, then $d_1, d_2, d_3, \ldots, d_n$ be the corresponding 'n' deviations.

Such that
$$d_1 = x_1 - x_1$$

$$d_2 = x_2 - x_1$$

Sum of deviations about $Mean = \sum_{i=1}^{n} (x_i - \overline{x}) = (x_1 + x_2 + x_3 + \dots + x_n) - n \cdot \overline{x}$ = $n \cdot \overline{x} - n \cdot \overline{x} = 0$.

R

Variance: If x, xz, xz, -. , xn are 'n' data Points, then Variance

of the data is denoted by on and it is given by

$$\sum_{i=1}^{\infty} \frac{1}{n!} \sum_{i=1}^{\infty} \frac{1}{n!} \sum_{i=1}^{\infty} (x_i - x_i)^{x_i}$$

:
$$\sigma = \sqrt{\frac{1}{n}} \cdot \frac{1}{\sum_{i=1}^{n} (x_i - \mu_i)^2} \rightarrow Standard Deviation$$

Coefficient of Valiation:

Player-1 -> High Average and high Standard deviation.

Player-2 -> Less Average and also less standard deviation

Ex: The Marks of 40 Students are.

19 24 31 32 17 16 9 22 24 17 14 23 20 06 20 19 06 32 27 11 06 29 14 12 18 32 36 17 13 19 23 11 33 31 28 24 21 91 11 30

Grouped Data

unGroufed Data -> Groufed Data. Data is distributed into finite Number of classes. cass frequency Lower Moorwood 0-57 W/O -(10) boundary 12-50 50-52 25-30 30-35

class width = uffer boundary -Lower boundary

Mean:

class	frequency(fi)	Class Mark (xi)	1;x;	
<u>.</u> 0-5	0	2.5	0	. = -
5 - 10	5	7.5	37.5	: X =
10-15	7	12.5	87.5	
15-20	8	17.5	140	
20-25	10	22.5	225	: 7:
25-30	3	27.5	82.5	
30-35	c 7	35.2	227.5	
5	f=40=N		Ef;x;=800	

Median:

6	5	1	
(1	ť,	(,)	
	Y	<i>y</i>	١

class	frequency	Cumulative-frame
0-5	0	0
5-10	5	5
10-15	7	12 Median
15-20	8	20
20 - 25 25 - 30 30 - 3 -	3	30 33
30-35	7	40
	Sf=40=N	

Median:
$$L+(\frac{N}{2}-F)_{x}$$

ency

L-> Lower boundary of Median class

N-> Ef; F-) Cumulative frequency of class Preceeding the medianchi t-) fredhench of Wegian Class

C->class Width

Median =
$$L + (\frac{N}{2} - F) \times C$$

$$= 15 + \left(\frac{20 - 12}{8} \times 5 \right)$$

$$=15+(\frac{8}{8}\times5)=15+5=20$$

Median = 20.

Mode:

class frequency:

0-5

5-10

$$|0-15|$$
 $|5-20|$
 $|5-20|$
 $|5-30|$
 $|5-30|$
 $|5-30|$
 $|5-30|$
 $|5-35|$
 $|5-30|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35|$
 $|5-35$

Mode =
$$20 + \frac{(10-8)}{(10-8)+(10-3)} \times 5$$

$$=20+\left(\frac{2}{2+7}\right)\times 5$$

$$=20+\left(\frac{10}{9}\right)=2|\cdot||$$

19.5-24.5

Median = 3 Mean - 2 Mode. S'Empirical formulae.

