Pravděpodobnost a statistika - zkoušková písemka 7.6.2017

Jméno a příjmení	1	2	3	4	celkem	známka

Úloha 1. Vrátný na FEL během své pracovní doby od 9:00 do 17:00 obslouží průměrně 80 lidí - studentů a pedagogů, přičemž studentů, kteří využívají pomoci vtátného, je třikrát víc než pedagogů. Předpokládejme, že časy příchodů studentů i pedagogovů jsou nezávislé a jsou v této době rozloženy rovnoměrně. Určete pravděpodobnost, že

- a) do 10:00 využijí služeb vrátného minimálně dva pedagogové, (5 bodů)
- b) po 15:00 využije služeb vrátného maximálně 5 lidí, přičemž všichni to budou studenti,
 (5 bodů)
- c) doba čekání na prvního pedagoga bude kratší než 2 hodiny, (5 bodů)
- d) v daný den bude nejpozději třetí příchozí člověk student, (5 bodů)
- e) v 75 po sobě jdoucích příchozích lidech bude minimálně 20 studentů. Řešte pomocí CLV. (10 bodů)

Úloha 2. Sdružené pravděpodobnosti dvou diskrétních náhodných veličin X a Y jsou dány následující tabulkou:

	X = -1	X = 0	X = 1
Y = -1	1/12	1/4	1/12
Y = 0	1/12	0	1/12
Y=1	1/12	1/4	1/12

- a) Určete marginální rozdělení X a Y (2 body) a spočtěte kovarianci cov(X,Y) (3 body).
- b) Jaká je souvislost této kovariance s (ne)závislostí X a Y? (5 bodů)
- c) Určete sdružené rozdělení náhodného vektoru (U,V), v němž náhodné veličiny U, resp. V, mají stejná marginální rozdělení jako X, resp. Y, ale přitom jsou U a V nezávislé. (5 bodů)
- d) Určete $P(X \le 0, Y = 1)$. (5 bodů)

Úloha 3. Na 9 stromech jsme sledovali obvod kmene, hodnoty (v cm) byly následující:

94.2 102.1 101.4 96.3 112.2 97.4 103.1 104.0 107	94.2	102.1	101.4	96.3	112.2	97.4	103.1	104.0	107.3
--	------	-------	-------	------	-------	------	-------	-------	-------

- a) Nakreslete histogram těchto dat a odhadněte z něj, jaké rozdělení má obvod kmene. (5 bodů)
- b) Odhadněte střední hodnotu a rozptyl tohoto rozdělení z dat (5 bodů; hint: $\sum x_i = 918$, $\sum (x_i \bar{x})^2 \doteq 252$).
- c) Otestujte na hladině 5%, zda je možné říct, že střední obvod kmene je 1 m. (7 bodů)
- d) Co se stane (ohledně počtu zamítnutých hypotéz), když u **libovolného** testu snížíme testovací hladinu z 5% na 1%? (5 bodů)

Úloha 4. Během jednoho měsíce byla v jistém baru pozorována obliba nabízených značek whisky u mužů a u žen. Pozorování jsou uvedena v následující tabulce:

$pohlavi \setminus whisky$	Jameson	Tullamore Dew	Johnnie Walker	ChivasRegal
muz	47	18	32	13
zena	33	42	8	7

- a) Statisticky otestujte na hladině 1%, zda je počet mužů a žen popíjejících whisky přibližně stejný. (7 bodů)
- b) Statisticky otestujte na hladině 5%, zda jsou všechny značky whisky přibližně stejně oblíbené (8 bodů).
- c) Uvažujte pouze značky Jameson a Chivas Regal. Statisticky otestujte (na libovolné hladině), zda je prodej těchto dvou značek nezávislý na pohlaví. (8 bodů)
- d) Definujte **obecně** nezávislost náhodných veličin X a Y. (5 bodů)