Math 311W Worksheet for April 27-28

Jacob Harkins jah6863@psu.edu

May 20, 2024

Exercise 1) Construct the table for multiplication modulus 7 on $Z_7^* = \{[1], [2], [3], [4], [5], [6]\}.$

Assume that it is known that this operation is associative. Is (Z_7^*, x_7) a group? Provide explanations for your answers. (If you say yes, what is the identity? What is the inverse for each element?)

	1	2	3	4	5	6
1	1	2	3 6 2 5 1 4	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

 (Z_7^*, x_7) is a group:

Identity: 1

Inverse: 1 is 1, 2 is 4, 3 is 5, 4 is 2, 5 is 3, and 6 is 6.

Exercise 2) Construct the table for multiplication modulus 6 on $Z_6^* = \{[1], [2], [3], [4], [5]\}$

Assume that it is known that this operation is associative. Is (Z_6^*, x_6) a group? Provide explanations for your answers. (If you say yes, what is the identity? what is the inverse for each element?)

	1	2	3	4	5
1	1	2	3	4	5
2	2	4	0	2	4
3	3	0	3	0	3
4	4	2	0	4	2
5	5	4	3	4 2 0 4 2	1

 (Z_6^*, x_6) is not a group:

There is no identity element.

Exercise 3) Prove the following statement.

Let $A = \{all \ integer \ multiples \ of \ 5\}$ and $B = \{all \ integer \ multiples \ of \ 4\}$.

There exists a bijective function between these two sets, and thus they have the same size. (construct a function, and show it is bijective)

Let $N = \{all \ integer \ multiples \ of \ n\}$:

$$f: N \to \mathbb{Z}$$
$$f(x) = \frac{x}{n}$$

We'll show that f is one-to-one:

$$f(a) = f(b) \implies \frac{a}{n} = \frac{b}{n}$$

 $\implies a = b$

We'll show that f is onto: Let $a \in \mathbb{Z}$

$$f(an) = \frac{an}{n}$$
$$= a$$

Therefore for every n, there exists a bijection between the set of integer multiples of n and \mathbb{Z} .

Let $f: A \to \mathbb{Z}, g: \mathbb{Z} \to B$ be such bijections.

Then $g \circ f : A \to B$ is a bijection.(Note: $(g \circ f)(x) = \frac{4}{5}x$)

Exercise 4) Use a truth table to prove that the statement $A \to B$ and its contrapositive $(notB) \to (notA)$ are logically equivalent.

A	В	not A	not B	$A \rightarrow B$	$ \mid (\text{not B}) \rightarrow (\text{not A}) $
Т	Т	F	F	Т	Т
${\rm T}$	\mathbf{F}	F	${ m T}$	F	F
\mathbf{F}	Т	Т	\mathbf{F}	Т	m T
F	F	T	${ m T}$	${ m T}$	ho

Exercise 5) Prove the following statement: Let a and b be two rational numbers. if a < b, then there exists at least one rational number c with a < c < b.

Consider $\frac{a+b}{2}$

$$\frac{a+b}{2} > \frac{a+a}{2}$$

$$> a$$

$$\frac{a+b}{2} < \frac{b+b}{2}$$

$$< b$$

Let
$$a = \frac{p}{q}, \ b = \frac{s}{t}$$
 with $p, q, s, t \in \mathbb{Z}$

$$\frac{a+b}{2} = \frac{pt+sq}{2st}$$

$$\Longrightarrow \frac{a+b}{2} \in \mathbb{Q}$$

Exercise 6) Prove that for all natural numbers $n \ge 1$ the following inequality holds true:

$$\sqrt{1}+\sqrt{2}+\sqrt{3}+\ldots+\sqrt{n}\leq n\sqrt{n}$$

Base Case, n=1:

$$1 = 1\sqrt{1}$$

So this holds true.

Assume there is some $k \ge 1$, such that $\sqrt{1} + \sqrt{2} + \sqrt{3} + \dots + \sqrt{k} \le k\sqrt{k}$ Is this true for k+1?

$$\begin{array}{l} \sqrt{1}+\sqrt{2}+\sqrt{3}+\ldots+\sqrt{k}+\sqrt{k+1} \leq & k\sqrt{k}+\sqrt{k+1} \\ < & k\sqrt{k+1}+\sqrt{k+1} \\ < & (k+1)\sqrt{k+1} \end{array}$$

It holds for k+1

Therefore, by P.M.I. it holds for all $n \geq 1$.