TD Nº 4: Modèles linéaires mixtes (mais pas trop)

EXERCICE 1. Pour $j=1,\ldots,J$ et pour $i=1,\ldots,n_J$ on définit des variables i.i.d. $\varepsilon_{i,j}\sim\mathcal{N}(0,\sigma_{\varepsilon}^2)$, avec $\sum_{j=1}^J n_j = n$. On note $\bar{\varepsilon}_{:,j} = \frac{1}{n_j} \sum_{i=1}^{n_j} \varepsilon_{i,j}$ et $\bar{\varepsilon}_n = \frac{1}{n} \sum_{j=1}^J \sum_{i=1}^{n_j} \varepsilon_{i,j}$. On suppose que l'on définit de manière indépendante pour $j=1,\ldots,J$ des variables i.i.d. $A_j\sim\mathcal{N}(0,\sigma_A^2)$. Enfin le modèle d'observation est :

$$y_{i,j} = \mu + A_j + \varepsilon_{i,j} . \tag{1}$$

1) Montrer que

$$\mathbb{E}\left(\frac{1}{J-1}\sum_{j=1}^{J}\sum_{i=1}^{n_j}\left(\bar{\varepsilon}_{:,j}-\bar{\varepsilon}_n\right)^2\right)=\sigma_{\varepsilon}^2. \tag{2}$$

2) Montrer que

$$\mathbb{E}\left(\sum_{j=1}^{J}\sum_{i=1}^{n_j} \left(A_j - \frac{1}{n}\sum_{j'=1}^{J}\sum_{i'=1}^{n_j}A_{j'}\right)^2\right) = \frac{n^2 - \sum_{j=1}^{J}n_j^2}{n}\sigma_A^2 . \tag{3}$$

- 3) En déduire $\mathbb{E}\left(\sum_{j=1}^{J}\sum_{i=1}^{n_{j}}\left(\bar{y}_{:,j}-\bar{y}_{n}\right)^{2}\right)$ (avec les notations similaires).
- 4) Montrer que $\mathbb{E}\left(\sum_{j=1}^{J}\sum_{i=1}^{n_j}\left(y_{i,j}-\bar{y}_{:,j}\right)^2\right)=(n-J)\sigma_{\varepsilon}^2$
- 5) En déduire des estimateurs $\hat{\sigma}_A^2$ et $\hat{\sigma}_\varepsilon^2$ de σ_A^2 et σ_ε^2

EXERCICE 2. Prenons un modèle à effet aléatoire pour une catégorie à J modalités C_1, \ldots, C_J et n observations (avec $n = n_1 + \cdots + n_J$):

$$y = \mu \mathbb{1}_n + \sum_{j=1}^J \mathbb{1}_{C_j} A_j + \varepsilon . \tag{4}$$

avec $\varepsilon \sim \mathcal{N}(0, \sigma_{\varepsilon}^2 \operatorname{Id}_n)$ et $A \sim \mathcal{N}(0, \sigma_A^2 \operatorname{Id}_J)$.

- 1) Reprendre la feuille de TD précédente pour obtenir $(var(y))^{-1}$.
- 2) Donner les conditions du premier ordre pour l'estimateur du maximum de vraisemblance de μ (en supposant connu σ_{ε}^2 et σ_A^2)
- 3) Retrouver la valeur de l'estimateur vu en cours

$$\hat{\mu} = \sum_{j=1}^{J} w_j \left(\frac{1}{n_j} \sum_{i \in C_j} y_i \right) , \qquad (5)$$

où $w_j \propto \frac{1}{\sigma_A^2 + \frac{\sigma_{\varepsilon}^2}{n_j}}$