PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-264201

(43)Date of publication of application: 18.09.2002

(51)Int.Cl.

B29C 47/88

// B29K 67:00

B29L 7:00

(21)Application number : 2001-069705

(71)Applicant: TORAY IND INC

(22)Date of filing:

13.03.2001

(72)Inventor: FUNAYAMA NOBUTAKA

OUCHI KUNIHIKO YOSHIDA TATSURO

(54) METHOD FOR MANUFACTURING POLYESTER FILM

(57)Abstract:

PROBLEM TO BE SOLVED: To improve thickness accuracy and productivity of a polyester film having a specific resistance of $5\times108~\Omega$ —cm or more at a melting time and to be used for optical application, electrical application, beverage can/food can application and the like.

SOLUTION: A method for manufacturing the polyester film comprises the steps of melt extruding a thermoplastic polyester resin having the specific resistance of $5\times108~\Omega$ -cm or more at the melting time of a melting point +10 to 30° C, closely contacting the resin with a cooling drum, and solidifying the resin. The method further comprises the steps of moving a tape-like electrode above a polymer, precipitating a charge at the film of a molten state on the drum by using an electrode unit having a mechanism for always feeding a new tape-like electrode, and closely contacting the film with the drum.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's

decision of rejection]
[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-264201 (P2002-264201A)

(43)公開日 平成14年9月18日(2002.9.18)

(51) Int.Cl. ⁷	識別記号	FI	テーマコート*(参考)			
B 2 9 C 47/88		B 2 9 C 47/88	Z 4F207			
// B29K 67:00		B29K 67:00				
B29L 7:00		B 2 9 L 7:00				
		審査請求 未請求 請求	空項の数4 OL (全 5 頁)			
(21)出顧番号	特驥2001-69705(P2001-69705)	(71)出願人 000003159 東レ株式会社	-			
(22) 出願日	平成13年3月13日(2001.3.13)		- 【日本橘室町2丁目2番1号			
,	• • • • • • • • • • • • • • • • • • • •	(72)発明者 舟山 信孝				
			i4845番地(町、丁目表示な			
			式会社三島工場内			
		(72)発明者 大内 邦彦				
		静岡県三島市	14845番地(町、丁目表示な			
		し)東レ樹	式会社三島工場内			
		(74)代理人 100091384				
•		弁理士 伴	俊光			

(54) 【発明の名称】 ポリエステルフイルムの製造方法

(57)【要約】

【課題】 光学用途、電気用途、飲料缶/食缶用途等に使用される溶融時の比抵抗が 5×10°Ω-cm以上のポリエステルフイルムの厚み精度及び生産性を向上する。 【解決手段】 融点+10~30℃での溶融時比抵抗が 5×10°Ω-cm以上の熱可塑性ポリエステル樹脂を溶融押出し冷却ドラムに密着させ固化させてフイルムを製造するに際し、テープ状電極がポリマー上方を移動することにより、常に新しいテープ状電極がくりだされる機構を有する電極装置を用い、冷却ドラム上の溶融状態にあるフイルムに電荷を析出させて該フイルムを冷却ドラムに密着させることを特徴とするポリエステルフイルムの製造方法。

最終頁に続く

【特許請求の範囲】

【請求項1】 融点+10~30℃での溶融時比抵抗が 5×10°Ω-cm以上の熱可塑性ポリエステル樹脂を溶 融押出し冷却ドラムに密着させ固化させてフイルムを製造するに際し、テープ状電極がポリマー上方を移動する ことにより、常に新しいテープ状電極がくりだされる機構を有する電極装置を用い、冷却ドラム上の溶融状態にあるフイルムに電荷を析出させて該フイルムを冷却ドラムに密着させることを特徴とするポリエステルフイルムの製造方法。

【請求項2】 アルカリ金属成分の含有量が5 0 ppm未満である熱可塑性ポリエステル樹脂を溶融押出することを特徴とする請求項1記載のポリエステルフイルムの製造方法。

【請求項3】 テープ状電極のポリマー上方での滞在時間が10~60分であることを特徴とする請求項1または2記載のポリエステルフイルムの製造方法。

【請求項4】 テープ状電極の厚みが $10\sim100\mu$ m であり且つ走行方向の厚み斑が20%以下であることを特徴とする請求項 $1\sim3$ のいずれかに記載のポリエステルフイルムの製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、優れた厚み精度を有するポリエステルフイルムの製造方法に関するものである。さらに詳しくは、含まれる不純物が少ないことが要求される写真などに用いられる光学フイルム用、食品包装用、食缶/飲料缶用、コンデンサー用ポリエステルフイルムの厚み精度の向上、生産性の向上を図ることができるポリエステルフイルムの製造方法に関するものである。

[0002]

【従来の技術】ボリエステル、とりわけボリエチレンテレフタレートのフイルムは、光学特性、機械特性、電気特性、耐薬品性、寸法安定性等の点で優れていることから、磁気テープ用、コンデンサー用、製版用、電気絶縁用、写真フイルム用、ディスプレー用、食品包装用、食缶/飲料缶用等多くの分野で基材として用いられている。

【0003】ところで、近年これらの用途からの品質に 対する要求特性はますます厳しくなり、それに伴い厚み 精度を向上させることが必要な条件となっている。

【0004】これらの問題を解決する方法として、例えば特公昭37-6142号公報記載のように、押出口金から溶融押出したフイルム状物を回転冷却ドラムで急冷する際、該フイルム状物の表面に静電荷を析出させ、フィルム状物を冷却ドラムの表面に密着させる静電印加法が知られている。しかし、この方法においては、生産能力を高めるために冷却ドラムの回転速度を上げるとフイルム状物と冷却ドラムとの密着力が減少し、フイルム状

物と冷却ドラムとの間に気体を噛み込むようになって、 大きな厚み斑発生の原因となる。

【0005】このような気体の噛み込みを防ぎ、冷却ドラムの速度を上げる方法として、たとえば特公昭61一39177号公報記載のように、冷却ドラム表面に微細なクラックを多数設ける方法が知られている。しかしながら、本発明者の知るところによれば、かかる方法を用いることにより、冷却ドラムのクラックにポリエステル樹脂中に含まれる低分子量物(オリゴマー)が析出蓄積され、クラックが埋もれてしまうので、その効果を保つためには、ある時間間隔で冷却ドラムを洗浄し、クラックに蓄積された低分子量物を除去する必要がある。生産能力を高めると冷却ドラムの汚れる時間が短くなるため、洗浄間隔も短くなり、生産性の向上につながらない。

【0006】また、気体の噛み込み現象は、一般に原料 ポリエステルの溶融時の比抵抗が高いほど、特に後述す る方法によって測定した溶融時比抵抗の値が5×108 Ω-cmを超えたときに顕在化し、厚みの均一なフイルム を効率良く製造することが困難となる。かかる困難性を 改良する方法として、例えば特公昭53-40231号 公報、61一43173号公報記載のように、金属化合 物、あるいは金属塩を添加することにより溶融時の比抵 抗を減じ、密着性を上げる方法が提案されている。しか し、これらの方法では、溶融押出時に長時間高温にさら された場合、その一部、または全部がポリエステルオリ ゴマーの金属塩、あるいは他の形の金属塩となり、ポリ エステルに不溶の微粒子を生成してしまうことがある。 このポリエステルに不溶な微粒子が生成すると、フイル ムの透明性、表面粗度等に変化をきたし、光学用途につ いては、目的の品質のフイルムを得られないことがあ る。また、コンデンサー、電気絶縁用途では、金属化合 物、金属塩などの導電性のあるものを添加することによ り耐電圧特性が悪化し、飲料缶/食缶用途では味・保香 性が悪くなる。したがって、このような用途ではしばし ばこれらの金属化合物、金属塩の添加は避けなければな らず、この場合該溶融時の比抵抗が高いと、従来の静電 印加法では高い生産性が得られないことになる。

[0007]

【発明が解決しようとする課題】そこで本発明の課題は、溶融時の比抵抗が5×10°Ω-cm以上のポリエステルフイルムを製造するに際して、厚み精度の向上、生産性の向上を図ることができる方法を提供することにある。

[0008]

【課題を解決するための手段】上記課題を解決するために、本発明に係るポリエステルフイルムの製造方法は、 融点+10~30℃での溶融時比抵抗が5×10°Ω-с 叫上の熱可塑性ポリエステル樹脂を溶融押出し冷却ド ラムに密着させ固化させてフイルムを製造するに際し、 テープ状電極がポリマー上方を移動することにより、常に新しいテープ状電極がくりだされる機構を有する電極装置を用い、冷却ドラム上の溶融状態にあるフイルムに電荷を析出させて該フイルムを冷却ドラムに密着させることを特徴とする方法からなる。

[0009]

【発明の実施の形態】以下に、本発明について、望まし い実施の形態とともに詳細に説明する。本発明における ポリエステル樹脂とは、ジカルボン酸とグリコール成分 との重縮合反応から製造され、ジカルボン酸として例え ばテレフタル酸、イソフタル酸、ナフタレンジカルボン 酸、ジフェニルジカルボン酸、ジフェニルスルホンジカ ルボン酸、ジフェノキシエタンジカルボン酸、5ーナト リウムスルホイソフタル酸、フタル酸等の芳香族ジカル ボン酸、シュウ酸、コハク酸、アジピン酸、セバシン 酸、ダイマー酸、マレイン酸、フタル酸等の脂肪族ジカ ルボン酸、シクロヘキシンジカルボン酸等の脂環族ジカ ルボン酸、pーオキシ安息酸等のオキシカルボン酸等を 挙げることができる。グリコール成分としては、エチレ ングリコール、プロパンジオール、ブタンジオール、ペ ンタンジオール、ヘキサンジオール、ネオペンチルグリ コールなどの脂肪族グリコール、シクロヘキサンジメタ ノール等の脂環族グリコール、ビスフェノールA、ビス フェノールS等の芳香族グリコール等が挙げられる。な お、これらのジカルボン酸成分、グリコール成分は2種 類以上を併用してもよい。重縮合方法としては、エステ ル交換法、エステル反応法(直接重合法)のどちらを用 いてもよいが、エステル交換法は、反応触媒として、ア ルカリ金属化合物を使用するので、その添加量と種類は 用途目的に合わせて調整し、特に電気特性、味・保香性 等を保つには、ポリマー中のアルカリ金属の含有量を5 Oppm未満にする必要がある。これに対してエステル反 応法は、反応触媒を使用しないので、より好ましい。重 合触媒としは、アンチモン化合物、チタン化合物、ゲル マニウム化合物が挙げられるが、特に二酸化ゲルマニウ ムは、重縮合反応において過剰のグリコール成分ととも に飛散し、樹脂中に残存する量は減少するので、味・保 香性の点において特に好ましい。このようにして製造さ れたポリエステル樹脂の融点+10~30℃での溶融時 比抵抗が5×108Ω - cm以上となる。

【0010】また、本発明でいうテープ状電極は、ステンレス、タングステン、チタン等の金属を厚さ10~100μmに圧延したものを、幅2~30mmの帯状にスリットして得られる。厚さ10μm未満では、必要な強度が得られず、100μmを超えると放電し難くなり密着性が得られ難くなる。幅2mm未満では、静電荷を印加する際の指向性が不足するため十分な密着力が得られず、フイルムの厚み斑が大きくなり、30mmを超えたものは指向性の向上が無いので実用上無意味である。テープの走行方向の厚み斑は20%以下であることが好ましい。

20%を超えると静電荷の印加状態に斑が発生し、この結果フイルムの厚み斑も悪化する。

【0011】さらに、本発明に係る電極装置においては、テープ状電極がポリマー上を移動することにより、常に新しいテープ状電極がくりだされる機構を有することが必要である。テープ状電極のポリマー上での滞在時間は、10~60分であることが好ましい。高温のポリマー上での滞在時間が60分を超えるとテープ状電極の放電している端面が荒れ、局所的なグロー放電が発生しやすくなり。グロー放電の発生したところは、密着力の変動が大きくなりフイルムに空気を噛み込み厚み斑になる。また、10分より短くなると、テープの使用量が多くなりすぎ経済性が悪化するとともに、テープ状電極の使用量が増え、交換のために製造を中断する機会が増え、生産性が低下する。

【0012】本発明に係るポリエステルフイルムは、キャストフイルム等の未延伸シート状のものでもよいし、必要に応じてキャストフイルムを一軸または二軸に延伸した延伸フイルムであってもよい。このような延伸フイルムは従来公知の任意の方法を用いて製膜することができる。

【0013】図1は、本発明の方法によりポリエステル フイルムを製造する場合の、冷却ドラム周りの構造の一 実施態様を示している。押出機1から押し出されてき た、融点+10~30℃での溶融時比抵抗が5×108 Ω - cm以上の熱可塑性ポリエステル樹脂は、口金2から 冷却ドラム3の表面上にシート状に吐出され、冷却ドラ ム3の表面に密着され、冷却ドラム3の表面上で固化さ れて未延伸のポリエステルフイルム4に成形される。上 記口金2から吐出される溶融熱可塑性ポリエステルシー トの上方で、冷却ドラム3への着地点上またはその近傍 に、電極装置5から常に新しいテープ状電極6がくりだ される。矢印は、テープ状電極6の走行方向を示してい る。このテープ状電極6には、図示を省略した電極から 所定の電圧が印加され、未だ溶融状態にあるポリエステ ルフイルム4に電荷を析出させ、その静電印加によりポ リエステルフイルム4が冷却ドラム3に密着される。

[0014]

【実施例】以下、実施例を挙げて本発明を更に詳細に説明する。本発明において用いるポリエステル樹脂及び本発明により得られたフイルムの特性の測定方法は次の通りである。

【0015】(1)ポリエステルフイルムに含まれる金 属成分量

蛍光×線分析装置(RIGAKU3270)を用いて、あらかじめ 測定しておいた検量線から金属成分の含有量を求める。 【0016】(2)ポリエステル樹脂溶融時の比抵抗 (R)

図2に示す測定法により測定される。図2において11は直流高電圧発生装置、12は電流計、13は電圧計、

14はシリコン加熱浴、15は溶融状態にあるポリエステル樹脂、16は平行平板電極である。溶融時の比抵抗は電圧V、電流 Iをそれぞれ読み取り、以下の式により求める。具体的にはVは3kV印加し、30秒後の電流値を読み取って求める。

溶融時の比抵抗 R=(V/I)×(S/d)

ここでdは電極間の距離、Sは電極の表面積である。

【0017】(3) フイルムの厚み斑(Df) 及びテープ電極の厚み斑(Dt)

得られたポリエステルフイルム及びテープ状電極の長手 方向及び走行方向の厚みをデジタルマイクロメーター (NIKKON DIGMICRO MH-15)を用いて2cm間隔で10

m測定し、以下の式で求める。 フイルムの厚み斑又はテープ状電極の厚み斑 (D f 又は D t) = [(最高厚み - 最低厚み) / 平均厚み] × 1 0

【0018】(4)テープ状電極の溶融ポリマー上での 滞在時間

あらかじめテープ状電極の表面に黒の油性マジック等で 印をつけ、印が冷却ドラム上の溶融フイルムを横切る時間をストップウオッチで測定する。

【0019】(5)フイルムヘーズ

ASTM D 1003-61に従い、日本電色(株) 製濁度計: NDH-2A型で測定した。

【0020】以下の各実施例、比較例におけるフイルムの評価結果を表1にまとめた。

【0021】実施例1

0 (%)

直接重合法でポリエステル樹脂を製造した。すなわち攪拌槽を有するエステル化反応槽にジカルボン酸としてテレフタル酸を87部、グリコール成分としてエチレングリコール42部を投入し、280℃で反応率が97%になるまでエステル化反応させた後、重合槽に移し、重合触媒として二酸化ゲルマニウム、着色防止剤として燐酸を添加した後、温度285℃、3mmHgの減圧下で極限粘度が0.68になるまで重合を行い、目的のポリエステル樹脂を得た。

【0022】このポリエステル樹脂の285℃での溶融時の比抵抗は $12\times10^8\Omega$ -cmであった。またアルカリ金属含有量は20ppm未満(測定限界以下)であった。

【0023】次いでこのボリエステル樹脂を温度150℃、5mmlg以下の真空度で攪拌しながら5時間乾燥した後、285℃の単軸押出機を用いて型口金でフイルム状に押し出し静電印加法を用いて無定形フイルムを得た。即ち電極として厚み40μmの圧延されたステンレス製(SUS304)のテープ状電極を用い、これをリールで常時巻き取りながら、25℃の回転冷却ドラムの表面上にフイルムの流れと直角方向に張り、これに直流電圧8000Vをかけた。回転冷却ドラムの速度を10m/分から徐々に増しながら、50m/分に上げ、厚さ190μm

の未延伸フイルムを得た。

【0024】実施例2

ジカルボン酸としてナフタレン-2,6-ジカルボン酸ジメチル100部、エチレングリコール65部、及び酢酸カルシウムー水塩0.05部をエステル交換反応槽に投入し、240℃で反応率が99.5%以上になるまでエステル交換反応させた後、重合槽に移し、重合触媒として二酸化ゲルマニウム、着色防止剤として燐酸を添加した後、温度295℃、3mHgの減圧下で極限粘度が0.6になるまで重合を行い、目的のポリエステル樹脂を得た。

【0025】このポリエステル樹脂の285℃での溶融時の比抵抗は $11\times10^8\Omega$ -cmであった。またアルカリ金属含有量は73ppmであった。

【0026】その後、押出機の温度を295℃、テープ 状電極の滞在時間を50分にする以外は実施例1と同じ 方法で未延伸フイルムを得た。

【0027】実施例3

テープ状電極の厚みを 7 0 μm、テープ状電極の滞在時間を 5 0 分にする以外は実施例 1 と同じ方法で未延伸フィルムを得た。

【0028】比較例1

テープ状電極の代わりに150μmΦのタングステン線 を使用する以外は実施例1と同じ方法で未延伸フイルム を得た。

【0029】比較例2

直接重合法でポリエステル樹脂を製造した。すなわち損拌槽を有するエステル化反応槽にジカルボン酸としてテレフタル酸を87部、グリコール成分としてエチレングリコール42部とを投入し、280℃で反応率が97%になるまでエステル化反応させた後、重合槽に移し、酢酸リチウム0.1部、重合触媒として三酸化アンチモン、着色防止剤として燐酸を添加した後、温度285℃、3mmHgの減圧下で極限粘度が0.68になるまで重合を行い、目的のポリエステル樹脂を得た。

【0030】このポリエステル樹脂の285℃での溶融時の比抵抗は $0.8 \times 10^8 \Omega$ -cmであった。またアルカリ金属含有量は130ppmであった。その後、比較例1と同じ方法で未延伸フイルムを得た。

【0031】比較例3

テープ状電極の厚みを150μm、気泡噛み込みのため 回転冷却ドラムの速度を30m/分に下げた以外は、実 施例1と同じ方法で未延伸フイルムを得た。

【0032】比較例4

テープ状電極の厚みを 7μ mにする以外は、実施例1と同じ方法で未延伸フィルムを得た。

【0033】比較例5

テープ状電極の溶融ポリマー上での滞在時間を90分に する以外は実施例1と同じ方法で未延伸フイルムを得 た。

【0034】比較例6

[0035]

テープ状電極の厚み斑が28%のものを使用する以外

【表1】

は、実施例1と同じ方法で未延伸フイルムを得た。

	ポリエスラ	ポリエステル制脂				電腦			フイルム		
	種類	R × 10 ⁸ Ω – cm	比抵抗測定 過度 ℃	7月19金昌 含有量 pps	形状	単み # 155	厚み斑 Dt %	滞在時間 分	冷却*5kの 速度 ■/分	厚み壁 Df %	ペーズ
突旋例 1	ま"りゴレン テレフタレート	1 2	286	20未過	テーソ	40	8.3	40	50	3. 2	2. 8
实监例?	ま。リエデレン ナフテン	11	29 б	7 3	テープ	40	8. 3	50	50	3. ь	2. 5
实监例3	本" タエテレン テレフタレート	1 2	285	20未清	テープ	70	9.2	2 5	50	3.	2. 8
比较例1	** タエナレン ナレフタレート	12	285	20未濟	ワイヤ	揺 150Φ	_	40	50	6. 8	9.5
比较例2	# 915VV 5V75V-1	0.8	285	130	ワイヤ	径150中	_	40	60	3. 5	7. 8
比较例3	** 525VV 7V75V-}	1 2	286	20未濟	テープ	150	10. 4	40	30	7. 6	3. 7
比较例 4	が リュテレン テレフタレー}	12	285	2.0未満	テープ	7	13.6	40	ь 0	8. 3	5. 3
比较例 b	# Jェテレン テレフテレート	12	285	2 0 末間	テープ	40	8. 3	90	ь 0	12.5 ゲル放電 が発生	8.8
比较例 6	ま りェチレン テレフタレート	1 2	285	2.0未満	テープ	40	28. 0	40	50	9. 6	6. 2

[0036]

【発明の効果】以上説明したように、本発明のポリエステルフイルムの製造方法によれば、溶融時の比抵抗が $5 \times 10^8 \Omega$ - cm以上のポリエステルフイルムの製造するに際し、キャスト速度を高くして生産性の向上をはかりつつ、フイルムの厚み精度(とくに厚み斑)を向上でき、ヘーズを低く保って良好な透明性を確保できる。

【図面の簡単な説明】

【図1】本発明の方法の実施に用いる装置の一実施態様

を示す概略斜視図である。

【図2】溶融時比抵抗の測定装置の概略構成図である。 【符号の説明】

- 1 押出機
- 2 口金
- 3 冷却ドラム
- 4 ポリエステルフイルム
- 5 電極装置
- 6 テープ状電極

【図1】

フロントページの続き

(72)発明者 吉田 達朗

静岡県三島市4845番地(町、丁目表示な し) 東レ株式会社三島工場内 F ターム(参考) 4F207 AA24 AB11 AG01 AH54 AH73 AH81 AJ02 AR06 AR08 KA01 KA17 KK66 KL84 KW41