

# **Table of Contents**

| Capítulo 1. Introducción.                         | 1  |
|---------------------------------------------------|----|
| Sobre el libro                                    | 1  |
| Cómo resolver tus dudas                           | 1  |
| El lenguaje C                                     | 1  |
| Peculiaridades de C                               | 1  |
| Compiladores de C                                 | 1  |
| El editor de código fuente                        | 2  |
| IDE: Entorno de desarrollo integrado              | 2  |
| El primer programa: Hola Mundo                    | 2  |
| ¿Cómo se hace?                                    | 4  |
| Nota adicional sobre los comentarios              | 5  |
| ¿Qué sabemos hacer?                               | 5  |
| Ejercicios                                        | 5  |
| Capítulo 2. Mostrando Información por pantalla.   | 6  |
| Printf: Imprimir en pantalla                      | 6  |
| Gotoxy: Posicionando el cursor (requiere conio.h) | 8  |
| Clrscr: Borrar la pantalla (requiere conio.h)     | 9  |
| Borrar la pantalla (otros métodos).               | 9  |
| ¿Qué sabemos hacer?                               | 9  |
| Ejercicios                                        |    |
| Capítulo 3. Tipos de Datos.                       | 12 |
| Introducción                                      | 12 |
| Notas sobre los nombres de las variables          | 12 |
| Fl tino Int                                       | 13 |

# Capítulo 1. Introducción.

#### Sobre el libro

Este es un curso para principiantes así que intentaré que no haga falta ningún conocimiento anterior para seguirlo. Muchos otros cursos suponen conocimientos previos pero voy a intentar que eso no suceda aquí.

NOTA IMPORTANTE: Si te pierdes no te desanimes, ponte en contacto conmigo y consúltame (al final del libro tienes varias formas para contactarme). Puede que alguna sección esté mal explicada. De esta forma estarás colaborando a mejorar el libro.

#### Cómo resolver tus dudas

En la última sección del libro podrás encontrar varias formas de contactar conmigo (email, Twitter, mi blog, etc).

## El lenguaje C

El lenguaje C es uno de los más rápidos y potentes que hay hoy en día. Hay quien dice que está desfasado. No se si tendrá futuro pero está claro que presente si tiene. No hay más que decir que el sistema operativo Linux está desarrollado en C en su práctica totalidad. Así que creo que no sólo no perdemos nada aprendiéndolo sino que ganamos mucho. Para empezar nos servirá como base para aprender C++ e introducirnos en el mundo de la programación Windows. Si optamos por Linux existe una biblioteca llamada gtk (o librería, como prefieras) que permite desarrollar aplicaciones estilo Windows con C.

No debemos confundir C con C++, que no son lo mismo. Se podría decir que C++ es una extensión de C. Para empezar en C++ conviene tener una sólida base de C. Existen otros lenguajes como Visual Basic que son muy sencillos de aprender y de utilizar. Nos dan casi todo hecho. Pero cuando queremos hacer algo complicado o que sea rápido debemos recurrir a otros lenguajes (C++, Delphi,...).

#### Peculiaridades de C

Una de las cosas importantes de C que debes recordar es que es Case Sensitive (sensible a las mayúsculas o algo así). Es decir que para C no es lo mismo escribir Printf que printf. Conviene indicar también que las instrucciones se separan por ";".

## Compiladores de C

Un compilador es un programa que convierte nuestro código fuente en un programa ejecutable (me imagino que la mayoría ya lo sabéis pero más vale asegurar). El ordenador trabaja con 0 y 1. Si escribiéramos un programa en el lenguaje del ordenador nos volveríamos locos. Para eso están lenguajes como el C. Nos permiten escribir un programa de manera que sea fácil entenderlo por una persona (el código fuente). Luego es el compilador el que se encarga de convertirlo al

complicado idioma de un ordenador.

En la practica a la hora de crear un programa nosotros escribimos el código fuente, en nuestro caso en C, que normalmente será un fichero de texto normal y corriente que contiene las instrucciones de nuestro programa. Luego se lo pasamos al compilador y este se encarga de convertirlo en un programa.

Si tenemos el código fuente podemos modificar el programa tantas veces como queramos (sólo tenemos que volver a compilarlo), pero si tenemos el ejecutable final no podremos cambiar nada (realmente sí se puede pero es mucho más complicado y requiere más conocimientos).

Existen multitud de compiladores. Yo suelo recomendar el Geany y Code::Blocks, que tiene versiones tanto para Linux como para Windows. Estos programas usa el compilador GNU GCC (http://gcc.gnu.org) y se pueden descargar aquí:

- Geany http://www.geany.org/
- Code::Blocks http://www.codeblocks.org/

Nota: Cuando comencé a escribir el curso solía usar el DJGPP en Windows, sin embargo, ahora me decanto más bien por el Geany por la comodidad y facilidad que supone para los principiantes.

## El editor de código fuente

El compilador en sí mismo sólo es un programa que traduce nuestro código fuente y lo convierte en un ejecutable. Para escribir nuestros programas necesitamos un editor. La mayoría de los compiladores al instalarse incorporan ya un editor; es el caso de los conocidos Turbo C, Borland C, Code::Blocks, Visual C++,... Pero otros no lo traen por defecto. No debemos confundir por tanto el editor con el compilador. Estos editores suelen tener unas características que nos facilitan mucho el trabajo: permiten compilar y ejecutar el programa directamente, depurarlo (corregir errores), gestionar complejos proyectos, etc. Si nuestro compilador no trae editor la solución más simple usar un editor de texto plano (sin formato).

## IDE: Entorno de desarrollo integrado

Para la comodidad de los desarrolladores se crearon lo que se llaman Entornos de Desarrollo Integrado (en inglés IDE). Un IDE es un software que incluye todo lo necesario para la programación: un compilador (con todos sus programas accesorios), un editor con herramientas que ayudan en la creación de programas, un depurador para buscar errores, etc... Es la solución más completa y recomendada.

Existen multitud de IDE que puedes utilizar. Geany y Code::Blocks anteriormente mencionados son muy recomendables en entornos MS Windows, para Linux tenemos montones de opciones, como el Geany, Anjuta o el Kdevelop.

## El primer programa: Hola Mundo

En un alarde de originalidad vamos a hacer nuestro primer programa: hola mundo. Nadie puede llegar muy lejos en el mundo de la programación sin haber empezado su carrera con este original y

funcional programa. Allá va:

#include <stdio.h>

int main() { /\* Aquí va el cuerpo del programa \*/ printf("Hola mundo\n"); return 0; }

Nota: Hay mucha gente que programa en Windows que se queja de que cuando ejecuta el programa no puede ver el resultado. Para evitarlo se puede añadir antes de return 0; la siguiente línea:

system("PAUSE");

Si esto no funciona prueba a añadir getch();

Otra nota: En compiladores MS Windows, para poder usar la función system() debes añadir al principio del fichero la línea:

#include <windows.h>

¿Qué fácil eh? Este programa lo único que hace es sacar por pantalla el mensaje:

Hola mundo

Vamos ahora a comentar el programa línea por línea (Esto no va a ser más que una primera aproximación).

#include <stdio.h>

#include es lo que se llama una directiva. Sirve para indicar al compilador que incluya otro archivo. Cuando en compilador se encuentra con esta directiva la sustituye por el archivo indicado. En este caso es el archivo stdio.h que es donde está definida la función printf, que veremos luego.

int main()

Es la función principal del programa. Todos los programas de C deben tener una función llamada main. Es la que primero se ejecuta. El int (viene de Integer=Entero) que tiene al principio significa que cuando la función main acabe devolverá un número entero. Este valor se suele usar para saber cómo ha terminado el prorama. Normalmente este valor será 0 si todo ha ido bien, o un valor distinto si se ha producido algún error (pero esto lo decidimos nosotros, ya lo veremos). De esta forma si nuestro programa se ejecuta desde otro el programa *padre* sabe como ha finalizado, si ha habido errores o no.

Se puede usar la definición *void main()*, que no necesita devolver ningún valor, pero se recomienda la forma con *int* que es más correcta. Es posible que veas muchos ejemplos que uso *void main* y en los que falta el return 0; del final; el código funciona correctamente pero puede dar un *warning* (un aviso) al compilar dado que no es una práctica correcta.

{

Son las llaves que indican, entre otras cosas, el comienzo de una función; en este caso la función main.

/\* Aquí va el cuerpo del programa \*/

Esto es un comentario, el compilador lo ignorará. Sirve para describir el programa a otros desarrolladores o a nosotros mismos para cuando volvamos a ver el código fuente dentro de un tiempo. Conviene acostumbrarse a comentar los programas pero sin abusar de ellos (ya hablaremos sobre esto más adelante).

Los comentarios van encerrados entre /\* y \*/.

Un comentario puede ocupar más de una línea. Por ejemplo el comentario:

/\* Este es un comentario que ocupa dos filas \*/

es perfectamente válido.

printf( "Hola mundo\n" );

Aquí es donde por fin el programa hace algo que podemos ver al ejecutarlo. La función printf muestra un mensaje por la pantalla.

Al final del mensaje "Hola mundo" aparece el símbolo |n|; este hace que después de imprimir el mensaje se pase a la línea siguiente. Por ejemplo:

printf( "Hola mundo\nAdiós mundo" );

mostrará:

Hola mundo Adiós mundo

Fíjate en el ";" del final. Es la forma que se usa en C para separar una instrucción de otra. Se pueden poner varias en la misma línea siempre que se separen por el punto y coma.

return 0;

Como he indicado antes el programa al finalizar develve un valor entero. Como en este programa no se pueden producir errores (nunca digas nunca jamás) la salida siempre será 0. La forma de hacer que el programa devuelva un 0 es usando return. Esta línea significa 'finaliza la función main haz que devuelva un 0.

}

...y cerramos llaves con lo que termina el programa. Todos los programas finalizan cuando se llega al final de la función main.

## ¿Cómo se hace?

Primero debemos crear el código fuente del programa. Para nuestro primer programa el código fuente es el del listado anterior. Arranca tu compilador de C, sea cual sea. Crea un nuevo fichero y copia el código anterior. Llámalo por ejemplo primero.c. Ahora, tenemos que compilar el programa para crear el ejecutable. Si estás usando un IDE busca una opción llamada "compile", o make, build o algo así. Si estamos usando GCC sin IDE tenemos que llamarlo desde la línea de comando:

gcc primero.c -o primero

#### Nota adicional sobre los comentarios

Los comentarios se pueden poner casi en cualquier parte. Excepto en medio de una instrucción. Por ejemplo lo siguiente no es válido:

```
pri/* Esto es un comentario */ntf( "Hola mundo" );
```

No podemos cortar a printf por en medio, tendríamos un error al compilar. Lo siguiente puede no dar un error, pero es una fea costumbre:

```
printf( /* Esto es un comentario */ "Hola mundo" );
```

Y por último tenemos:

printf("Hola/\* Esto es un comentario \*/ mundo");

Que no daría error, pero al ejecutar tendríamos:

Hola /\* Esto es un comentario \*/ mundo

porque /\* Esto es un comentario \*/ queda dentro de las comillas y C lo interpreta como texto, no como un comentario.

#### ¿Qué sabemos hacer?

Pues la verdad es que todavía no hemos aprendido mucho. Lo único que podemos hacer es compilar nuestros programas. Pero paciencia, en seguida avanzaremos.

## **Ejercicios**

Busca los errores en este programa:

```
int main() { /* Aquí va el cuerpo del programa */ Printf( "Hola mundo\n" ); return 0; }
```

Solución:

Si lo compilamos obtendremos un error que nos indicará que no hemos definido la función *Printf*. Esto es porque no hemos incluído la dichosa directiva *#include <stdio.h>*. (En algunos compiladores no es necesario incluir esta directiva, pero es una buena costumbre hacerlo).

Si lo corregimos y volvemos a compilar obtendremos un nuevo error. Otra vez nos dice que desconoce *Printf*. Esta vez el problema es el de las mayúsculas que hemos indicado antes. Lo correcto es poner *printf* con minúsculas. Parece una tontería, pero seguro que nos da más de un problema.

# Capítulo 2. Mostrando Información por pantalla.

## Printf: Imprimir en pantalla

Siempre he creído que cuando empiezas con un nuevo lenguaje suele gustar el ver los resultados, ver que nuestro programa hace *algo*. Por eso creo que el curso debe comenzar con la función *printf*, que sirve para sacar información por pantalla. Para utilizar la función *printf* en nuestros programas debemos incluir la directiva:

```
#include <stdio.h>
```

al principio de programa. Como hemos visto en el programa hola mundo. Si sólo queremos imprimir una cadena basta con hacer (no olvides el ";" al final):

```
printf( "Cadena" );
```

Esto resultará por pantalla:

```
Cadena
```

Lo que pongamos entre las comillas es lo que vamos a sacar por pantalla. Si volvemos a usar otro *printf*, por ejemplo:

```
#include <stdio.h>
int main() {
    printf( "Cadena" );
    printf( "Segunda" );
    return 0;
}
```

Obtendremos:

```
CadenaSegunda
```

Este ejemplo nos muestra cómo funciona printf. Para escribir en la pantalla se usa un cursor que no vemos. Cuando escribimos algo el cursor va al final del texto. Cuando el texto llega al final de la fila, lo siguiente que pongamos irá a la fila siguiente. Si lo que queremos es sacar cada una en una línea deberemos usar "\n". Es el indicador de retorno de carro. Lo que hace es saltar el cursor de escritura a la línea siguiente:

```
#include <stdio.h>

int main()
{
    printf( "Cadena\n" );
    printf( "Segunda" );
    return 0;
}
```

y tendremos:

```
Cadena
Segunda
```

También podemos poner más de una cadena dentro del printf:

```
printf( "Primera cadena" "Segunda cadena" );
```

Lo que no podemos hacer es meter cosas entre las cadenas:

```
printf( "Primera cadena" texto en medio "Segunda cadena" );
```

esto no es válido. Cuando el compilador intenta interpretar esta sentencia se encuentra "Primera cadena" y luego texto en medio, no sabe qué hacer con ello y da un error. Pero ¿qué pasa si queremos imprimir el símbolo " en pantalla? Por ejemplo imaginemos que queremos escribir:

```
Esto es "raro"
```

Si hacemos:

```
printf( "Esto es "raro"" );
```

obtendremos unos cuantos errores. El problema es que el símbolo " se usa para indicar al compilador el comienzo o el final de una cadena. Así que en realidad le estaríamos dando la cadena "Esto es", luego extraño y luego otra cadena vacía "". Pues resulta que *printf* no admite esto y de nuevo tenemos errores.

La solución es usar \". Veamos:

```
printf( "Esto es \"extraño\"" );
```

Esta vez todo irá como la seda. Como vemos la contrabarra | sirve para indicarle al compilador que

escriba caracteres que de otra forma no podríamos. Esta contrabarra se usa en C para indicar al compilador que queremos meter símbolos especiales. Pero ¿Y si lo que queremos es usar | como un carácter normal y poner por ejemplo Hola\Adiós? Pues muy fácil, volvemos a usar |:

```
printf( "Hola\\Adiós" );
```

y esta doble | indica a C que lo que queremos es mostrar una |. He aquí un breve listado de códigos que se pueden imprimir:

Código Nombre Significado \a alert Hace sonar un pitido \b backspace Retroceso \n newline Salta a la línea siguiente (salto de línea) \r carriage return Retorno de carro (similar al anterior) \t horizontal tab Tabulador horizontal \v vertical tab Tabulador vertical \\ backslash Barra invertida \? question mark Signo de interrogación \' single quote Comilla sencilla \" double quote Comilla doble

Es recomendable probarlas para ver realmente lo que significa cada una.

Esto no ha sido mas que una introducción a printf. Luego volveremos sobre ella.

## Gotoxy: Posicionando el cursor (requiere conio.h)

Esta función sólo está disponible en compiladores de C que dispongan de la biblioteca <conio.h>, de hecho, en la mayoría de compiladores para Linux no viene instalada por defecto. No debería usarse aunque se menciona aquí porque en muchos cursos de formación profesional y en universidades aún se usa. Hemos visto que cuando usamos printf se escribe en la posición actual del cursor y se mueve el cursor al final de la cadena que hemos escrito.

Vale, pero ¿qué pasa cuando queremos escribir en una posición determinada de la pantalla? La solución está en la función gotoxy. Supongamos que queremos escribir *Hola* en la fila 10, columna 20 de la pantalla:

```
#include <stdio.h>
#include <conio.h>

int main()
{
    gotoxy( 20, 10 );
    printf( "Hola" );
    return 0;
}
```



para usar gotoxy hay que incluir la biblioteca conio.h).

Fíjate que primero se pone la columna (x) y luego la fila (y). La esquina superior izquierda es la posición (1, 1).

## Clrscr: Borrar la pantalla (requiere conio.h)

Ahora ya sólo nos falta saber cómo se borra la pantalla. Pues es tan fácil como usar:

```
clrscr();
```

(clear screen, borrar pantalla).

Esta función nó solo borra la pantalla, sino que además sitúa el cursor en la posición (1, 1), en la esquina superior izquierda.

```
#include <stdio.h>
#include <conio.h>

int main()
{
    clrscr();
    printf( "Hola" );
    return 0;
}
```

Este método sólo vale para compiladores que incluyan el fichero conio.h. Si tu sistema no lo tiene puedes consultar la sección siguiente.

## Borrar la pantalla (otros métodos)

Existen otras formas de borrar la pantalla aparte de usar conio.h.

Si usas DOS:

system ("cls"); //Para DOS

Si usas Linux:

system ("clear"); // Para Linux

Otra forma válida para ambos sistemas:

char a[5]={27,[,2,J,0}; /\* Para ambos (en DOS cargando antes ansi.sys) \*/ printf("%s",a);

## ¿Qué sabemos hacer?

Bueno, ya hemos aprendido a sacar información por pantalla. Si quieres puedes practicar con las instrucciones printf, gotoxy y clrscr. Lo que hemos visto hasta ahora no tiene mucho secreto, pero ya veremos cómo la función printf tiene mayor complejidad.

## **Ejercicios**

**Ejercicio 1:** Busca los errores en el programa (este programa usa conio.h, pero aunque tu compilador no la incluya aprenderás algo con este ejercicio).

```
#include <stdio.h>
int main()
{
    ClrScr();
    gotoxy( 10, 10 )
    printf( Estoy en la fila 10 columna 10 );
    return 0;
}
```

#### Solución:

ClrScr está mal escrito, debe ponerse todo en minúsculas, recordemos una vez más que el C diferencia las mayúsculas de las minúsculas. Además no hemos incluído la directiva #include <conio.h>, que necesitamos para usar clrscr() y gotoxy(). Tampoco hemos puesto el punto y coma (;) después del gotoxy( 10, 10 ). Después de cada instrucción debe ir un punto y coma. El último fallo es que el texto del printf no lo hemos puesto entre comillas. Lo correcto sería: printf( "Estoy en la fila 10 columna 10" );

**Ejercicio 2:** Escribe un programa que borre la pantalla y escriba en la primera línea tu nombre y en la segunda tu apellido:

Solución:

```
#include <stdio.h>
#include <conio.h>
int main()
{
    clrscr();
    printf( "Gorka\n" );
    printf( "Urrutia" );
    return 0;
}
```

También se podía haber hecho todo de golpe:

```
#include <stdio.h>
#include <conio.h>
int main()
{
    clrscr();
    printf( "Gorka\nUrrutia" );
    return 0;
}
```

**Ejercicio 3:** Escribe un programa que borre la pantalla y muestre el texto "estoy aqui" en la fila 10, columna 20 de la pantalla.

Solución:

```
#include <stdio.h>
#include <conio.h>
int main() {
    clrscr();
    gotoxy( 20, 10 );
    printf( "Estoy aqui" );
    return 0;
}
```

## Capítulo 3. Tipos de Datos.

#### Introducción

Cuando usamos un programa es muy importante manejar datos. En C podemos almacenar los datos en variables. Una variable es una porción de la memoria del ordenador que queda asignada para que nuestro programa pueda almacenar datos. El contenido de las variables se puede ver o cambiar en cualquier momento. Estas variables pueden ser de distintos tipos dependiendo del tipo de dato que queramos meter. No es lo mismo guardar un nombre que un número.

Hay que recordar también que la memoria del ordenador es limitada, así que cuando guardamos un dato, debemos usar sólo la memoria necesaria. Por ejemplo si queremos almacenar el número 400 usaremos una variable tipo *int* (la estudiamos más abajo) que ocupa menos memoria que una variable de tipo *float*. Si tenemos un ordenador con 32Mb de RAM parece una tontería ponernos a ahorrar bits (1Mb=1024Kb, 1Kb=1024bytes, 1byte=8bits), pero si tenemos un programa que maneja muchos datos puede no ser una cantidad despreciable. Además ahorrar memoria es una buena costumbre.



Por si alguno tiene dudas: No hay que confundir la memoria con el espacio en el disco duro. Son dos cosas distintas. La capacidad de ambos se mide en bytes, y la del disco duro suele ser mayor que la de la memoria RAM. La información en la RAM se pierde al apagar el ordenador, la del disco duro permanece. Cuando queremos guardar un fichero lo que necesitamos es espacio en el disco duro. Cuando queremos ejecutar un programa lo que necesitamos es memoria RAM. La mayoría me imagino que ya lo sabéis, pero me he encontrado muchas veces con gente que los confunde).

#### Notas sobre los nombres de las variables

A las variables no se les puede dar cualquier nombre pero siguiendo unas sencillas normas:

- No se pueden poner más que letras de la a a la z (la ñ no vale), números y el símbolo \_.
- No se pueden poner signos de admiración, ni de interrogación...
- El nombre de una variable puede contener números, pero su primer carácter no puede ser un número.

Ejemplos de nombres válidos:

- camiones
- numero
- buffer
- a1
- j10hola29
- num\_alumnos

Ejemplos de nombres no válidos:

- 1abc
- · nombre?
- número
- num/alumnos

Tampoco valen como nombres de variable las palabras reservadas que usa el compilador. Por ejemplo: for, main, do, while. Lista de palabras reservadas según el estándar ISO-C90:

```
auto
          double int
                            struct
                  long
break
          else
                            switch
                  register
                            typedef
case
          enum
char
          extern return
                            union
          float
                  short
                            unsigned
const
continue for
                  signed
                            void
default
                  sizeof
                            volatile
          goto
do
          if
                  static
                            while
```

Por último es interesante señalar que el C distingue entre mayúsculas y minúsculas. Por lo tanto:

- Nombre
- nombre
- NOMBRE

serían tres variables distintas.

#### El tipo Int

En una variable de este tipo se almacenan números enteros (sin decimales). El rango de valores que admite es -32.768 a 32.767.



Nota importante: el rango indicado (de -32.768 a 32.767) puede variar de un compilador a otro, en este caso sería un compilador donde el tipo int es de 16 bits.

¿Por qué estos números tan extraños? Esto se debe a los 16 bits mencionados. 2^16 = 65.536, que dividido por dos nos da 32.768. Por lo tanto, en una variable de este tipo podemos almacenar números negativos desde el -32.768 hasta el -1 y números desde el 0 hasta el 32.767.

Cuando definimos una variable lo que estamos haciendo es decirle al compilador que nos reserve una zona de la memoria para almacenar datos de tipo *int*. Para guardarla necesitaremos por tanto 16 bits de la memoria del ordenador.

Las variables de tipo int se definen así:

```
int número;
```

Esto hace que declaremos una variable llamada número que va a contener un número entero.

#### ¿Pero dónde se declaran las variables?

Tenemos dos posibilidades, una es declararla como global y otra como local. Por ahora vamos a decir que global es aquella variable que se declara fuera de la función main y local la que se declara dentro. Variable global:

```
#include <stdio.h>
int x;
int main()
{
}
```

Variable local:

```
#include <stdio.h>
int main()
{
   int x;
}
```

La diferencia práctica es que las variables globales se pueden usar en cualquier función (o procedimiento). Las variables locales sólo pueden usarse en el procedimiento en el que se declaran. Como por ahora sólo tenemos el procedimiento (o función, o rutina, o subrutina, como prefieras) main esto no debe preocuparnos mucho por ahora. Cuando estudiemos cómo hacer un programa con más funciones aparte de main volveremos sobre el tema. Sin embargo debes saber que es buena costumbre usar variables locales que globales. Ya veremos por qué.

Podemos declarar más de una variable en una sola línea:

```
int x, y;
```

#### Mostrar variables por pantalla

Vamos a ir un poco más allá con la función *printf*. Supongamos que queremos mostrar el contenido de la variable x por pantalla:

```
printf( "%i", x );
```

Suponiendo que x valga 10 (x=10) en la pantalla tendríamos:

```
10
```

Empieza a complicarse un poco ¿no? Vamos poco a poco. ¿Recuerdas el símbolo "\" que usábamos para sacar ciertos caracteres? Bueno, pues el uso del "%" es parecido. "%i" no se muestra por pantalla, se sustituye por el valor de la variable que va detrás de las comillas (%i, de integer=entero en inglés). Para ver el contenido de dos variables, por ejemplo x e y, podemos hacer:

```
printf( "%i ", x );
printf( "%i", y );
```

resultado (suponiendo x=10, y=20):

```
10 20
```

Pero hay otra forma mejor:

```
printf( <mark>"%i %i"</mark>, x, y );
```

...y así podemos poner el número de variables que queramos. Obtenemos el mismo resultado con menos trabajo. No olvidemos que por cada variable hay que poner un %i dentro de las comillas.

También podemos mezclar texto con enteros:

```
printf( "El valor de x es %i, ¡que bien!\n", x );
```

que quedará como:

```
El valor de x es 10, ¡que bien!
```

Como vemos %i al imprimir se sustituye por el valor de la variable.

#### A veces %d, a veces %i

Seguramente habrás visto que en ocasiones se usa el modificador %i y otras %d ¿cuál es la diferencia entre ambos? ¿cuál debe usarse? En realidad, cuando los usamos en un *printf* no hay ninguna diferencia, se pueden usar indistintamente. La diferencia está cuando se usa con otras funciones como *scanf* (esta función la estudiaremos más adelante).

Hay varios modificadores para los números enteros:

Tipo de variable Modificador int: entero decimal %i int: entero decimal %d unsigned int: entero decimal sin signo %u int: entero octal %o int: entero hexadecimal %x Podemos verlos en acción con el siguiente ejemplo:

```
#include <stdio.h>

int main()
{
    int numero = 13051;

    printf("Decimal usando 'i': %i\n", numero);
    printf("Decimal usando 'd': %d\n", numero);
    printf("Hexadecimal: %x\n", numero);
    printf("Octal: %o\n", numero);
    return 0;
}
```

#### Este ejemplo mostraría:

Decimal usando i: 13051 Decimal usando d: 13051 Hexadecimal: 32fb Octal: 31373 1.3.4 Asignar valores a variables de tipo int La asignación de valores es tan sencilla como: x = 10; También se puede dar un valor inicial a la variable cuando se define: int x = 15; También se pueden inicializar varias variables en una sola línea: int x = 15, y = 20; Hay que tener cuidado con lo siguiente: int x, y= 20; Podríamos pensar que x e y son igual a 20, pero no es así. La variable x está sin valor inicial y la variable y tiene el valor 20. Veamos un ejemplo para resumir todo: #include <stdio.h> int main() { int x = 10; printf( "El valor inicial de x es %i\n", x ); x = 50; printf( "Ahora el valor es %i\n", x ); } Cuya salida será: El valor inicial de x es 10 Ahora el valor es 50 ¡Importante! Si imprimimos una variable a la que no hemos dado ningún valor no obtendremos ningún error al compilar pero la variable tendrá un valor cualquiera. Prueba el ejemplo anterior quitando int x = 10; Puede que te imprima el valor 10 o puede que no. 1.4 El tipo Char Las variables de tipo char se puede usar para almacenar caracteres. Los caracteres se almacenan en realidad como números del 0 al 255. Los 128 primeros (0 a 127) son el ASCII estándar. El resto es el ASCII extendido y depende del idioma y del ordenador. Consulta la tabla ASCII en el anexo. (más información sobre los caracteres ASCII: http://es.wikipedia.org/wiki/Ascii). Para declarar una variable de tipo char hacemos: char letra; En una variable char sólo podemos almacenar solo una letra, no podemos almacenar ni frases ni palabras. Eso lo veremos más adelante (strings, cadenas). Para almacenar un dato en una variable char tenemos dos posibilidades: letra = A; o letra = 65; En ambos casos se almacena la letra A en la variable. Esto es así porque el código ASCII de la letra A es el 65. Para imprimir un char usamos el símbolo %c (c de character=caracter en inglés): letra = A; printf( "La letra es: %c.", letra ); resultado: La letra es A. También podemos imprimir el valor ASCII de la variable usando %i en vez de %c: letra = A; printf( "El número ASCII de la letra %c es: %i.", letra, letra ); resultado: El código ASCII de la letra A es 65. Como vemos la única diferencia para obtener uno u otro es el modificador (%c ó %i) que usemos. Las variables tipo char se pueden usar (y de hecho se usan mucho) para almacenar enteros. Si necesitamos un número pequeño (entre -128 y 127) podemos usar una variable char (8bits) en vez de una int (16bits), con el consiguiente ahorro de memoria. Todo lo demás dicho para los datos de tipo "int" se aplica también a los de tipo "char". Una curiosidad: #include <stdio.h>

int main() { char letra = A; printf( "La letra es: %c y su valor ASCII es: %i\n", letra, letra ); letra = letra + 1; printf( "Ahora es: %c y su valor ASCII es: %i\n", letra, letra );

```
return 0;
```

```
En este ejemplo letra comienza con el valor 'A', que es el código ASCII 65. Al sumarle
1 pasa a tener el valor 66, que equivale a la letra 'B' (código ASCII 66). La salida
de este ejemplo sería:
La letra es A y su valor ASCII es 65
Ahora es B y su valor ASCII es 66
1.5 El modificador Unsigned
Este modificador (que significa sin signo) modifica el rango de valores que puede
contener una variable. Sólo admite valores positivos. Si hacemos:
unsigned char variable;
Esta variable en vez de tener un rango de -128 a 127 pasa a tener un rango de 0 a 255.
Los indicadores de signo signed y unsigned solo pueden aplicarse a los tipos enteros.
El primero indica que el tipo puede almacenar tanto valores positivos como negativos y
el segundo indica que solo se admiten valores no negativos, esto es, solo se admite el
cero y valores positivos.
Si se declara una variable de tipo short, int o long sin utilizar un indicador de
signo esto es equivalente a utilizar el indicador de signo signed. Por ejemplo:
signed int i;
int j;
Declara dos variables de tipo signed int.
La excepcion es el tipo char. Cuando se declara una variable de tipo char sin utilizar
un indicador de signo si esta variable es equivalente a signed char o a unsigned char
depende del compilador que estemos utilizando.
Por lo mismo si debemos tener total certeza de que nuestras variables de tipo char
puedan almacenar (o no) valores negativos es mejor indicarlo explicitamente utilizando
ya sea signed char o unsigned char.
1.6 El tipo Float
En este tipo de variable podemos almacenar números decimales, no sólo enteros como en
los anteriores. El mayor número que podemos almacenar en un float es 3,4E38 y el más
pequeño 3,4E-38.
¿Qué significa 3,4E38? Esto es equivalente a 3,4 * 10^38, que es el número:
El número 3,4E-38 es equivalente a 3,4 * 10^-38, vamos un número muy, muy pequeño.
Declaración de una variable de tipo float:
float número:
Para imprimir valores tipo float Usamos %f.
int main()
{
    float num=4060.80;
    printf( "El valor de num es : %f", num );
}
Resultado:
El valor de num es: 4060.80
Si queremos escribirlo en notación exponencial usamos %e:
float num = 4060.80;
printf( "El valor de num es: %e", num );
Que da como resultado:
El valor de num es: 4.06080e003
1.7 El tipo Double
En las variables tipo double se almacenan números reales. El mayor número que se pueda
almacenar es el 1,7E308 y el más pequeño del 1,7E-307.
```

```
Se declaran como double:
double número;
Para imprimir se usan los mismos modificadores que en float.
1.7.1 Números decimales ¿float o double?
Cuando escribimos un número decimal en nuestro programa, por ejemplo 10.30, ¿de qué
tipo es? ¿float o double?
#include <stdio.h>
int main() {
    printf( "%f\n", 10.30 );
    return 0;
}
Por defecto, si no se especifica nada, las constantes son de tipo double. Para
especificar que queremos que la constante sea float debemos especificar el sufijo "f"
o "F". Si queremos que la constante sea de tipo long double usamos el sufijo "l" o "L".
Veamos el siguiente programa:
int main() {
    float num;
    num = 10.20 * 20.30;
}
En este caso, ya que no hemos especificado nada, tanto 10.20 como 20.30 son de tipo
double. La operación se hace con valores de tipo double y luego se almacena en un
float. Al hacer una operación con double tenemos mayor precisión que con floats, sin
embargo es innecesario, ya que en este caso al final el resultado de la operación se
almacena en un float, de menor precisión.
El programa sería más correcto así:
int main() {
float num;
num = 10.20f * 20.30f;
1.8 Cómo calcular el máximo valor que admite un tipo de datos
Lo primero que tenemos que conocer es el tamaño en bytes de ese tipo de dato. Vamos a
ver un ejemplo con el tipo INT. Hagamos el siguiente programa:
#include <stdio.h>
int main() {
    printf( "El tipo int ocupa %i bytes\n", sizeof(int) );
    return 0;
}
La función sizeof() calcula el tamaño en bytes de una variable o un tipo de datos.
En mi ordenador el resultado era (en tu ordenador podría ser diferente):
El tipo int ocupa 4 bytes.
Como sabemos 1byte = 8 bits. Por lo tanto el tipo int ocupa 4*8=32 bits. Ahora para
calcular el máximo número debemos elevar 2 al número de bits obtenido. En nuestro
ejemplo: 2^32=4.294.967.296. Es decir en un int se podrían almacenar 4.294.967.296 n
úmeros diferentes.
El número de valores posibles y únicos que pueden almacenarse en un tipo entero
depende del número de bits que lo componen y esta dado por la expresión 2^N donde N es
el número de bits.
Si usamos un tipo unsigned (sin signo, se hace añadiendo la palabra unsigned antes de
int) tenemos que almacenar números positivos y negativos. Así que de los
4.294.967.296 posibles números la mitad serán positivos y la mitad negativos. Por lo
tanto tenemos que dividir el número anterior entre 2 = 2.147.483.648. Como el 0 se
```

considera positivo el rango de números posibles que se pueden almacenar en un int ser ía: -2.147.483.648 a 2.147.483.647.

1.9 El fichero <limits.h>

Existe un fichero llamado limits.h en el directorio includes de nuestro compilador (sea cual sea) en el que se almacena la información correspondiente a los tamaños y m áximos rangos de los tipos de datos char, short, int y long (signed y unsigned) de nuestro compilador.

Se recomienda como curiosidad examinar este fichero.

1.10 Overflow: Qué pasa cuando nos saltamos el rango

El overflow es lo que se produce cuando intentamos almacenar en una variable un número mayor del máximo permitido. El comportamiento es distinto para variables de números enteros y para variables de números en coma flotante.

1.10.1 Con números enteros

Supongamos que en nuestro ordenador el tipo int es de 32 bits. El número máximo que se puede almacenar en una variable tipo int es por tanto 2.147.483.647 (ver apartado anterior). Si nos pasamos de este número el que se guardará será el siguiente pero empezando desde el otro extremo, es decir, el -2.147.483.648. El compilador seguramente nos dará un aviso (warning) de que nos hemos pasado.

#include <stdio.h>

```
int main() {
    int num1;
    num1 = 2147483648;
    printf( "El valor de num1 es: %i\n", num1 );
}
```

El resultado que obtenemos es:

El valor de num1 es: -2147483648

Comprueba si quieres que con el número anterior (2.147.483.647) no pasa nada.

1.10.2 Con números en coma flotante

El comportamiento con números en coma flotante es distinto. Dependiendo del ordenador si nos pasamos del rango al ejecutar un programa se puede producir un error y detenerse la ejecución.

Con estos números también existe otro error que es el underflow. Este error se produce cuando almacenamos un número demasiado pequeño (3,4E-38 en float).

1.11 Los tipos short int, long int y long double

Existen otros tipos de datos que son variaciones de los anteriores que son: short int, long int, long long y long double.

En realidad, dado que el tamaño de los tipos depende del compilador, lo único que nos garantiza es que:

- El tipo long long no es menor que el tipo int.
- El tipo long no es menor que el tipo int.
- El tipo int no es menor que el tipo short.
- 1.12 Resumen de los tipos de datos en C

Los números en C se almacenan en variables llamadas "de tipo aritmético". Estas variables a su vez se dividen en variables de tipos enteros y de tipos en coma flotante.

Los tipos enteros son char, short int, int y long int. Los tipos short int y long int se pueden abreviar a solo short y long.

Esto es algo orientativo, depende del sistema. Por ejemplo en un sistema de 16 bits podría ser algo así:

Tipo

Datos almacenados

```
Nº de Bits
Valores posibles (Rango)
Rango usando unsigned
char
Caracteres y enteros pequeños
-128 a 127
0 a 255
int
Enteros
16
-32.768 a 32.767
16 0 a 65.535
long
Enteros largos
32
-2.147.483.648 a 2.147.483.647
0 a 4.294.967.295
float
Números reales (coma flotante)
32
3,4E-38 a 3,4E38
No se aplica
double
Números reales (coma flotante doble)
64
1,7E-307 a 1,7E308
No se aplica
```

Como hemos mencionado antes esto no siempre es cierto, depende del ordenador y del compilador. Para saber en nuestro caso qué tamaño tienen nuestros tipos de datos debemos hacer lo siguiente. Ejemplo para int: #include <stdio.h> int main() { printf( "Tamaño (en bits) de int = %i\n", sizeof( int )\*8 ); return 0; } Ya veremos más tarde lo que significa sizeof. Por ahora basta con saber que nos dice cual es el tamaño de una variable o un tipo de dato. 1.13 Ejercicios Ejercicio 1: Busca los errores: #include <stdio.h> int main() { int número; número = 2; return 0; } Solución: Los nombres de variables no pueden llevar acentos, luego al compilar número dará error. #include <stdio.h> int main() { int número; número = 2; printf( "El valor es %i" número ); return 0; } Solución: Falta la coma después de "El valor es %i". Además la segunda vez número está escrito con mayúsculas.