

Estructura de Computadores Grado en Ingeniería Informática 18 de Diciembre de 2015

Nombre: DNI: Grupo:

Sobre 10, cada respuesta vale 2 si es correcta, 0 si está en blanco o claramente tachada, y -2/3 si es errónea. Anotar las respuestas (**a**, **b**, **c** o **d**) en la siguiente tabla.

1	2	3	4	5
С	a	С	a	b

- 1. La localidad temporal consiste en que si en el instante de tiempo t se accede a la posición d(t),
 - a. en el instante (t+1) se accederá a la posición d(t)+1
 - b. en algún instante (t+n) se accederá a la posición d(t+n)
 - c. en algún instante (t+n) se accederá a la posición d(t)

ver T6, tr.16

- d. en algún instante (t+n) se accederá a la posición d(t)+k
- 2. Un procesador accede en el instante de tiempo t a una posición de memoria d(t). Poco tiempo después (en el instante de tiempo t+k) accede a la posición anterior d(t)-1. Esos dos accesos son un ejemplo de...
 - a. Localidad espacial

ver T6, tr.16, con k=-1

- b. Localidad temporal
- c. No tiene nombre, ese tipo de localidad con incremento negativo (d(t)-1) no se ha estudiado en clase
- d. No es una localidad, porque no coincide ni el instante de tiempo $(t \neq t+k)$ ni la posición $(d(t) \neq d(t+k) = d(t)-1)$
- **3.** Una de las siguientes afirmaciones sobre los parámetros que caracterizan los distintos niveles de una jerarquía de memoria es **incorrecta**. ¿Cuál?
 - a. El tiempo de acceso t_i aumenta conforme se baja en la jerarquía, $t_i < t_{i+1}$
 - b. El tamaño del nivel $\,s_{i}\,$ aumenta conforme se baja en la jerarquía, $s_{i} < s_{i+1}$
 - c. El coste por byte c_i aumenta conforme se baja en la jerarquía, $c_i < c_{i+1}$

ver T6, tr.16

- d. El ancho de banda b_i disminuye conforme se baja en la jerarquía, $b_i > b_{i+1}$
- **4.** Sólo una de las siguientes afirmaciones sobre memorias ROM es correcta. ¿Cuál?
 - a. Para fabricar una ROM se deben conocer los datos que se desea que almacene

ver T6, tr.32-34

- b. Una PROM (*Programmable* ROM) se puede grabar usando un dispositivo programador que selectivamente funde contactos aplicándoles altas temperaturas mediante diminutas cabezas soldadoras (*"equipo de puntas"*)
- c. Una EPROM (Electrically Progr. ROM) se puede grabar eléctricamente, sin fundir contactos, pero no se puede borrar
- d. Una EEPROM (Erasable EPROM) se puede grabar (eléctricamente), y borrar (usando rayos ultravioleta)
- 5. Respecto a la temporización y cronogramas de funcionamiento de memorias DRAM... ¿cuál afirmación es incorrecta?
 - a. En lectura, normalmente se proporciona la dirección de fila y se activa #RAS, luego la dirección de columna y se activa #CAS, y un tiempo después (t_{RAC} tras #RAS, o t_{CAC} tras #CAS) el dato solicitado está disponible en el bus tr.49-52
 - En el modo llamado FPM (Fast Page Mode) se pueden leer varias palabras de una misma fila en menos tiempo, porque cambiar la dirección de columna y activar #CAS sólo se hace una vez al principio, y la precarga de fila t_{RP} sólo se hace una vez al final, al cambiar de fila
 tr.53, CA
 - c. Indicar una fila y no indicar columna no tendría mucho sentido, y algunos chips tienen el llamado "Refresco sólo RAS", en donde si se activa RAS y no se activa CAS durante un tiempo, se realiza el refresco tr.67
 - d. Indicar la columna antes que la fila no tendría sentido, y algunos chips tienen el llamado "Refresco CAS antes de RAS", en donde activar CAS antes que RAS indica al chip que realice el refresco
 tr.68-69