Traffic Flow Modelling

Andrew Dixon

Supervisor: Dr Panagiotis (Takis) Tsoutsanis

Cranfield University

June 13, 2019

Contents Slide

Main Aims and Challenges

Research Objectives

Methodology

Preliminary Simulation

Future Work

Main Aims and Challenges

Main aims:

- To develop a traffic flow modelling tool
- Capability of modelling complicated road networks
- Numerically solving a governing PDE using various methods/tools from CFD

Challenges:

- ► How can you unambiguously describe a traffic network as input for a computer program?
- ► Coupling a *numerical* PDE solver with a *probabilistic* method for governing flow through junctions
 - Interaction of junction boundary information on incoming and outgoing roads

Research Objectives

By addressing the previous aims and challenges, the following can be achieved:

- Assess the influence of numerical methods on microscale decisions relevant to applied problems
- Design a suitable test case to expose advantages and disadvantages in network traffic flow solvers
- Calibrate the model using empirical data on real roads

Methodologies

Existing methodologies:

- Microscopic modelling individual cars
- Macroscopic aggregate variables for density ρ, flow rate f, velocity u

My method:

▶ A Godunov numerical solver for the macroscopic Lighthill, Whitham, Richards (1955/56) conservation model:

$$\frac{\partial \rho}{\partial t} + \frac{\partial f}{\partial x} = 0$$

► Traffic distribution matrix (TDM) (Shi-Guo, 2016) determines the flow decisions at junctions

Traffic Distribution Matrix

TDM elements, $A = (a_{ij})$, describe the proportion of traffic passing through a junction from incoming road i to outgoing road j,

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix}$$

Preliminary Simulation

► Simple network of a 1-2 split exercising a preferred route by the traffic distribution matrix (play movie)

$$A = [a_{1,1}, a_{1,2}] = [0.7, 0.3]$$

Future Work

Next steps:

- Expand the capabilities and behaviour of the current program:
 - ▶ Junctions of *m*-incoming and *n*-outgoing roads
 - Network of many junctions
 - Introduce an input file for quicker test simulations of varying parameters (δx , *CFL*, etc.)
 - Add extra numerical method options: discretisation, gradient limiters, reconstruction
- Verify the numerical methods against test cases in current papers