Laptops

Problem statement: Laptops (link) Implementation: Code (link)

Our approach is to sort the laptops by price, then do a linear search. After sorting (increasingly), let $L_i.quality$ denote the quality of the *i*-th laptop. Also, let max_i denote the maximum quality up to and including the *i*-th laptop. Then we can visit each laptop, from cheapest to most expensive. On each visit, we check whether $L_i.quality < max_{i-1}$ and update max_i . If at any point the the inequality $L_i.quality < max_{i-1}$ is true, we can output "Happy Alex" and terminate. Otherwise, at the end of this process, we output "Poor Alex".

Runtime complexity: O(nlog(n)), the sort subroutine dominates.

Memory complexity: O(n)