Using logs to solve exponential equations

The crucial thing to remember is that you must manipulate the equation first so that you are taking the log of a single exponential expression. This is because $\log(a+b) \neq \log a + \log b$.

To undo p^x we use $\log_p x$.

e.g. solve $5 \times 7^{x+1} - 3 = 8$ giving your answer in exact form

$$7^{x+1} = \frac{11}{5}$$

$$x + 1 = \log_7\left(\frac{11}{5}\right)$$

$$x = \log_7\left(\frac{11}{5}\right) - 1$$

There are several equivalent answers

e.g.
$$x = \log_7(11) - \log_7(5) - 1$$
 or $x = \log_7\left(\frac{11}{35}\right)$

e.g. solve $2^{2x+1} - 11 \times 2^x + 5 = 0$ giving your answers to 2dp where appropriate

$$2 \times (2^x)^2 - 11 \times (2^x) + 5 = 0$$

Use the index laws to rewrite as a quadratic: $2^{2x+1} = 2^1 \times 2^{2x} = 2 \times (2^x)^2$

Let $y = 2^x$. Then:

$$2y^2 - 11y + 5 = 0$$
$$(2y - 1)(y - 5) = 0$$

$$y = \frac{1}{2}$$
 or $y = 5$

Convert back to an equation in x

$$2^{x} = \frac{1}{2} \text{ or } 2^{x} = 5$$

$$x = \log_{2}\left(\frac{1}{2}\right) \text{ or } x = \log_{2}(5)$$

$$x = -1 \text{ or } x = \log_{2}(5)$$

$$(x = -1 \text{ or } 2.32 \text{ (2dp)})$$

By default you should give exact answers, simplifying any logs which give a simple rational answer, unless the question specifies a required accuracy. However, there is no harm in giving both exact and rounded.

NB It is quite normal to have solutions to the quadratic in y which are ≤ 0 and therefore give you a "math error" when you try to take a log. Don't panic! There is simply no corresponding x solution.

e.g.
$$3^{2x+2} + 17 \times 3^x - 2 = 0$$

Let $y = 3^x$. Then $9y^2 + 17y - 2 = 0$
 $(9y - 1)(y + 2) = 0$
 $y = \frac{1}{9}$ or $y = -2$
 $3^x = \frac{1}{9}$ or $3^x = -2$

We may discard the second equation as 3^x can never be negative, so the only solution is x=-2