Lecture 9: Introduction to texts

Ivan Provilkov

Plan

- NLP tasks
- Text classification overview
- Word representations
- LSA
- TFIDF

Natural Language Processing (NLP)

This is a subfield of computer science about how to program computers to deal with natural languages (English, Russian...).

NLP tasks (1)

- Machine Translation
 Between different languages
- Language modeling
 Model which can predict probability of sentence, or word, given context
- Part of speech tagging
 Determine part of speech for each word
- Parsing
 Determine parse tree for sentence which shows relations between words

NLP tasks (2)

- Natural language generation
 Convert some information (images, digits) into human readable way
- Named entity recognition
 Determine which items in text map to proper classes. For example, people or organizations
- Question answering
 Given a human language question, determine its answer
- Topic modeling
 Extract topics and determine which relate to text
- ...

Text classification

Text classification

- Discrete labels:
 - ▶ Binary: spam filtering, sentiment analysis

- Discrete labels:
 - ▶ Binary: spam filtering, sentiment analysis
 - ▶ Multi-class: categorization of items by its description

- Discrete labels:
 - ▶ Binary: spam filtering, sentiment analysis
 - ▶ Multi-class: categorization of items by its description
 - ▶ Multi-label: #hashtag prediction

- Discrete labels:
 - ▶ Binary: spam filtering, sentiment analysis
 - ▶ Multi-class: categorization of items by its description
 - ▶ Multi-label: #hashtag prediction
- Continuous labels:
 - ▶ Predict product price by its description

Text classification

Text classification

► Tokenization: split the input into tokens

▶ Token normalization:

- ▶ Token normalization:
 - Stemming: removing and replacing suffixes to get to the root of the word (stem)

- Token normalization:
 - Stemming: removing and replacing suffixes to get to the root of the word (stem)
 - Lemmatization: to get base or dictionary form of a word (lemma)

Lemmatization

- Lemmatizer:
 - Tries to resolve word to its dictionary form
 - ▶ Based on WordNet database
 - ▶ For the best results feed part-of-speech tagger

Handful tools for preprocessing

- NLTK
 - ▶ nltk.stem.SnowballStemmer
 - ▶ nltk.stem.PorterStemmer
 - nltk.stem.WordNetLemmatizer
 - ▶ nltk.corpus.stopwords
- BeautifulSoup (for parsing HTML)
- Regular Expressions (import re)

Also need to worry about

- Capital Letters
- Punctuation
- Contractions (e.g, etc.)
- Numbers (dates, ids, page numbers)
- Stop-words ("the", "is", etc.)
- Tags

Feature extraction

I saw a cat.

Sequence of tokens

Word representation - vector (input for your model/algorithm)

Sequence of tokens

Any algorithm for solving a task

Word representation - vector (input for your model/algorithm)

Sequence of tokens

Note UNKs: Out-of-Vocabulary Tokens

Vocabulary is chosen in advance

Therefore, some tokens may be "unknown" – you can use a special token for them

How can we get word representations?

In the following:

How can we get these representations?

One-Hot Vectors: Represent Words as Discrete Symbols

One-Hot Vectors: Represent Words as Discrete Symbols

Problems:

- Vector size is too large
- Vectors know nothing about meaning

e.g., cat is as close to

dog as it is to table!

One-Hot Vectors: Represent Words as Discrete Symbols

Problems:

- Vector size is too large
- Vectors know nothing about meaning

e.g., cat is as close to dog as it is to table!

What is meaning?

Do you know what the word tezgüino means?

(We hope you do not)

Now look how this word is used in different contexts:

A bottle of tezgüino is on the table. Everyone likes tezgüino.

Tezgüino makes you drunk.

We make tezgüino out of corn.

Can you understand what tezgüino means?

Now look how this word is used in different contexts:

A bottle of tezguino is on the table.

Everyone likes tezgüino.

Tezgüino makes you drunk.

We make tezgüino out of corn.

Tezgüino is a kind of alcoholic beverage made from corn.

With context, you can understand the meaning!

How did you do this?

- (1) A bottle of _____ is on the table.
- (2) Everyone likes _____
- (3) _____ makes you drunk.
 - (4) We make ____ out of corn.

What other words fit into these contexts?

- (1) A bottle of _____ is on the table.
- (2) Everyone likes _____
- (3) _____ makes you drunk.
 - (4) We make ____ out of corn.
 - (1) (2) (3) (4) tezgüino 1 1 1 1 1 loud 0 0 0 0 motor oil 1 0 0 1 tortillas 0 1 0 1 wine 1 1 0

What other words fit into these contexts?

contexts

rows show contextual

properties: 1 if a word can

appear in the context, 0 if not

(1) A bottle of is on the table. (2) Everyone likes ____ makes you drunk. (3) (4) We make ____ out of corn. (2) (3) (4) This is the distributional hypothesis tezgüino 1 1 1 loud 0 0 0 meanings of the motor oil 1 0 0 1 <u>rows</u> are tortillas 0 1 0 words are similar similar wine 1 1 1

Distributional Hypothesis

Words which frequently appear in similar contexts have similar meaning.

(Harris 1954, Firth 1957)

Main idea:

We have to put information about contexts into word vectors.

Count-Based Methods

Idea: co-occurrence counts

Corpus sentences

He also found five fish swimming in murky water in an old **bathtub**.

We do abhor dust and dirt, and stains on the <u>bathtub</u>, and any kind of filth.

Above At the far end of the garden room a **<u>bathtub</u>** has been planted with herbs for the winter.

They had been drinking Cisco, a fruity, wine-based fluid that smells and tastes like a mixture of cough syrup and **bathtub** gin.

Science finds that a surface tension on the water can draw the boats together, like toy boats in a **bathtub**.

In fact, the godfather of gloom comes up with a plot that takes in Windsor Davies (the ghost of sitcoms past), a **bathtub** and a big box of concentrated jelly.

'I'll tell him,' said the Dean from the bathroom above the sound of bathwater falling from a great height into the ample Edwardian **bathtub**.

Count-Based Methods: The General Pipeline

each element says about the association between a word and a context

Count-Based Methods: The General Pipeline

Count-Based Methods: The General Pipeline

Need to define:

- what is context
- how to compute matrix elements

Simple: Co-Occurrence Counts

surrounding words
 in a L-sized window

Matrix element:

 number of times word w appears in context c

Singular Value Decomposition (SVD)

SVD:
$$M = U\Sigma V^T$$
 $U^TU = I$

- M (m x n) real matrix
- U (m x m) orthogonal matrix
- \sum (m x n)- diagonal matrix with non-negative real numbers on the diagonal (singular values)
- V (m x m) orthogonal matrix

Latent Semantic Analysis (LSA)

Let X be the matrix where t_i is i-th term (word) and d_j is j-th document.

Latent Semantic Analysis (LSA)

Dot product $t_i^T t_p$ gives correlation between two terms in the corpus, analogically with documents.

- Let's use SVD $X = U\Sigma V^T$
- If you take k biggest singular vectors you will get the rank k approximation to X with the smallest error (Frobenius norm)
- Now we can treat terms and documents as semantic space
- Finally we have small representations for terms and documents with meaning
 We can compute similarity with cosine metric.

Latent semantic analysis (LSA)

X - document-term co-occurrence matrix

$$X \approx \hat{X} = U \Sigma V^T$$

LSA term vectors

same direction

Hope: term having common

meaning are mapped to the

Term frequency-inverse document frequency.

We want to represent sentence or document with a vector, based on words we see in this document (also n-grams)

Term frequency:

$$tf(t,d) = \frac{f_{t,d}}{\sum_{l} f_{l,d}}$$

• $f_{t,d}$ is number of times term t occurs in document d

Another way:
$$\operatorname{tf}(t,d) = 0.5 + 0.5 \cdot \frac{f_{t,d}}{\max\{f_{t',d}: t' \in d\}}$$

Such view is needed to prevent a bias towards long documents

Inverse document frequency: $\operatorname{idf}(t,D) = \log \frac{N}{|\{d \in D: t \in d\}|}$

- N total number of documents in corpus
- Denominator is the number of documents where t appears

$$tfidf(t, d, D) = tf(t, d) \cdot idf(t, D)$$

$$ext{tf}(t,d) = 0.5 + 0.5 \cdot rac{f_{t,d}}{\max\{f_{t',d}: t' \in d\}} \qquad ext{idf}(t,D) = \log rac{N}{|\{d \in D: t \in d\}|}$$

Probabilities

$$tf(t,d) = \frac{f_{t,d}}{\sum_{l} f_{l,d}} \qquad \qquad tf(t,d) \sim P(t)$$

$$idf(t,D) = \log \frac{N}{|\{d \in D : t \in d\}|} \qquad \qquad idf(t,D) \sim \log \frac{1}{P(t|d)}$$

$$tfidf(t,d) \sim -P(t)\log(P(t|d))$$

Bag-of-words

Bag-of-words is a model where a text is represented as as bag (multiset) of its words.

We do not consider word order here.

```
Sentence: "John","likes","to","watch","movies","Mary","likes","movies","too"
BoW = {"John":1,"likes":2,"to":1,"watch":1,"movies":2,"Mary":1,"too":1}
```

N-gram Bag-of-words

Instead of words we do the same with n-grams:

```
"John likes",
  "likes to",
  "to watch",
  "watch movies",
  "Mary likes",
  "likes movies",
  "movies too",
]
```