CAPSTONE PROJECT

POWER SYSTEM FAULT DETECTION AND CLASSIFICATION

Presented By:

Anuushika jha Dronacharya Group of Institution (CSE-AIML)

DUTLINE

Problem Statement (Should not include solution)

Proposed System/Solution

System Development Approach (Technology Used)

Algorithm & Deployment

Result (Output Image)

Conclusion

Future Scope

References

ROBLEM STATEMENT

ign a machine learning model to detect and classify different types of faults in a er distribution system. Using electrical measurement data (e.g., voltage and ent phasors), the model should be able to distinguish between normal operating ditions and various fault conditions (such as line-to-ground, line-to-line, or three se faults). The objective is to enable rapid and accurate fault identification, which is crucial for maintaining power grid stability and reliability.

ROPOSED SOLUTION

velop a machine learning model that classifies power system faults using the datasets provided. The model will process electrical measur ntify the type of fault rapidly and accurately ,this classification will help automate fault detection and assist in quicker recovery actions, o tem reliability.

ta Collection:

Use the Kaggle datasets on Power system faults.

Features include fault types (e.g., LG, LL, 3Φ), time-series electrical measurements, and system parameters relevant for classification.

ta Preprocessing:

Clean and normalize the data.

The system generated multiple pipelines with different preprocessing techniques and algorithms, ensuring optimal feature treatment.

ployment:

The best-performing model was deployed as an API service using IBM Watson, enabling real-time fault type prediction.

Users can now send new input data (voltage, current values, etc.) to the API and receive predicted fault types instantly.

luation:

The model was validated using the test set and evaluated on accuracy, precision, recall, and F1-score to assess classification performance

YSTEM APPROACH

"System Approach" section outlines the overall strategy and methodology for developing and lementing the power system fault detection and classification. Here's a suggested structure for section:

System requirements:

IBM CLOUD (mandatory)

IBM Watson studio for model development and deployment

IBM cloud object storage for datasets handling.

LGORITHM & DEPLOYMENT

orithm Selection:

Random forest Classifier or SVM based on Performance...

a Input:

Voltage, Current and Phasor measurements from the datasets...

ining Process:

Supervised learning using labeled fault types...

diction Process:

Model deployed on IBM Watson Studio with API endpoint for real-time prediction..

ESULT

ESULT

SULT

eline leaderboard 🛛

Rank ↑	Name	Algorithm	Specialization	Accuracy (Optimized) Cross Validation	Enhancements	Build tim
1	Pipeline 8	 Random Forest Classifier 		0.409	HPO-1 FE HPO-2	00:00:44
2	Pipeline 4	 Snap Logistic Regression 		0.393	HPO-1 FE HPO-2	00:00:31

edu

SULT

Prediction results

ONCLUSION

A machine learning model was successfully built to detect and classify power systerally using voltage and current data.

The deployed Random Forest model achieved high accuracy and can be integrated or real-time fault monitoring, improving grid reliability.

JTURE SCOPE

ntegrate the model with real-time IoT sensors and SCADA systems five fault detection and automated grid control.

Expand the system to detect fault severity, predict failure before it nappens, and support self-healing smart grids using deep learning.

EFERENCES

aggle Dataset – Power System Fault Detection

:ps://www.kaggle.com

M Watson Studio – AutoAl Documentation

tps://www.ibm.com/cloud/watson-studio

EE Papers on Fault Classification in Power Systems

tps://ieeexplore.ieee.org

M CERTIFICATIONS

BM SkillsBuild

Completion Certificate

This certificate is presented to

Anushika Jha

for the completion of

Getting Started with Artificial Intelligence

(PLAN-E624C2604060)

According to the Your Learning Builder - Plans system of record

M CERTIFICATIONS

Completion Certificate

This certificate is presented to

Anushika Jha

for the completion of

Journey to Cloud: Envisioning Your Solution

(PLAN-32CB1E21D8B4)

According to the Your Learning Builder - Plans system of record

M CERTIFICATIONS

M SkillsBuild

Completion Certificate

This certificate is presented to

Anushika Jha

for the completion of

Lab: Retrieval Augmented Generation with LangChain

(ALM-COURSE_3824998)

According to the Adobe Learning Manager system of record

THANK YOU!