U.S. Patent Application No.: Unknown

August 9, 2006 Page 5 of 9

AMENDMENTS TO THE CLAIMS:

Claim 1 (original): A method of making a material alloy for an R-T-Q based rare-

earth magnet, the method comprising the steps of:

preparing a melt of an R-T-Q based rare-earth alloy, where R is rare-earth

elements, T is a transition metal element, Q is at least one element selected from the

group consisting of B, C, N, Al, Si and P, and the rare-earth elements R include at least

one element R_L selected from the group consisting of Nd, Pr, Y, La, Ce, Pr, Sm, Eu, Gd,

Er, Tm, Yb and Lu and at least one element R_H selected from the group consisting of Dy,

Tb and Ho;

cooling the melt of the alloy to a temperature of 700 °C to 1,000 °C as first

cooling process, thereby making a solidified alloy;

maintaining the solidified alloy at a temperature within the range of 700 °C to 900

°C for 15 seconds to 600 seconds; and

cooling the solidified alloy to a temperature of 400 °C or less as a second cooling

process.

Claim 2 (original): The method of claim 1, wherein the step of maintaining the

solidified alloy at a temperature within the range includes the step of decreasing the

temperature of the solidified alloy at a temperature decrease rate of 10 °C /min or less or

the step of increasing the temperature of the solidified alloy at a temperature increase rate

of 1 °C /min or less.

U.S. Patent Application No.: Unknown

August 9, 2006 Page 6 of 9

Claim 3 (original): The method of claim 1, wherein the first cooling process

includes the step of decreasing the temperature of the alloy at a cooling rate of 102 °C /s to

10⁴ °C /s.

Claim 4 (original): The method of claim 1, wherein the second cooling process

includes the step of decreasing the temperature of the alloy at a cooling rate of 10 °C /s or

more.

Claim 5 (original): The method of claim 1, wherein the element R_H accounts for

at least 5 at% of the rare-earth elements included.

Claim 6 (original): The method of claim 1, wherein just after the second cooling

process is finished, the atomicity ratio of the element R_H included in the R₂T₁₄Q phase of

the solidified alloy is higher than that of the element R_H to the overall rare-earth elements.

Claim 7 (original): The method of claim 1, wherein just after the second cooling

process is finished, the atomicity ratio of the element R_H included in the R₂T₁₄Q phase of

the solidified alloy is more than 1.1 times as high as that of the element R_H to the overall

rare-earth elements.

Claim 8 (original): The method of claim 1, wherein the rare-earth elements R

account for 11 at% to 17 at% of the overall alloy, and

wherein the transition metal element T accounts for 75 at% to 84 at% of the overall

U.S. Patent Application No.: Unknown

August 9, 2006 Page 7 of 9

alloy, and

wherein the element Q accounts for 5 at% to 8 at% of the overall alloy.

Claim 9 (original): The method of claim 1, wherein the alloy further includes at least one additional element M that is selected from the group consisting of Ti, V, Cr, Mn, Ni, Cu, Zn, Ga, Zr, Nb, Mo, In, Sn, Hf, Ta, W and Pb.

Claim 10 (original): The method of claim 1, wherein the first cooling process includes the step of cooling the melt of the alloy with a rotating chill roller.

Claim 11 (original): The method of claim 1, wherein the step of maintaining includes the step of transferring heat from a member that has been heated to a temperature of 700 °C to 900 °C to the rapidly cooled alloy.

Claim 12 (currently amended): A method of making a material alloy powder for an R-T-Q based rare-earth magnet, the method comprising the steps of:

decrepitating the R-T-Q based rare-earth magnet material alloy, which has been made by the method of one of claims 1 to 11, by a hydrogen decrepitation process; and pulverizing the R-T-Q based rare-earth magnet material alloy that has been decrepitated.

Claim 13 (original): The method of claim 12, wherein the step of pulverizing the R-T-Q based rare-earth magnet includes finely pulverizing the R-T-Q based rare-earth

U.S. Patent Application No.: Unknown

August 9, 2006 Page 8 of 9

magnet with a high-speed airflow of an inert gas.

Claim 14 (currently amended): A method for producing a sintered magnet, the

method comprising the steps of

preparing the R-T-Q based rare-earth magnet material alloy powder by the method

of claim 12 or 13 and making a compact of the powder, and

sintering the compact.

Claim 15 (original): The method of claim 14, wherein the step of sintering the

compact includes controlling a temperature increase rate at 5 °C /min or more when the

compact is heated from a temperature of 800 °C, at which a liquid phase is produced, to a

temperature, at which sintered density reaches a true density, after a dehydrogenation

process is finished.

Claim 16 (original): An R-T-B based rare-earth magnet material alloy made by the

method of claim 1, the alloy comprising a main phase and an R-rich phase.

wherein the concentration of the element R_H in a portion of the R-rich phase, which

is in contact with an interface between the main phase and the R-rich phase, is lower than

that of the element R_H in a portion of the main phase, which is also in contact with the

interface, and

wherein crystal grains that form the main phase have minor-axis sizes of 3 µm to 10

μm.