Übungen zur Vorlesung "SAT-Solving und Anwendungen"

(Abgabe 7)

Aufgabe 7.1

Gegeben sei folgende Aussage in non-CNF:

$$F = (z \land x) \lor \neg(\neg x \land y)$$

mit seinem zugehörigen DAG. Es ist der non
CNF-Algorithmus aus der Vorlesung anzuwenden, um eine mögliche Belegung der Forme
l ${\cal F}$ zu finden. Dabei entsteht folgende Tabelle:

lvl	var	val	Reason	Clause	Stack	Comment
1	V	Т	Decision	-	$\vee = T@1$	root init
2	\neg_0	F	Decision	-	$\neg_0 = F@2$	negate first
	\wedge_1	Т	Parent	$\neg_0 = F$	$\wedge_1 = T@2$	
	\wedge_0	Т	Parent	$\neg_0 = F, \lor = T$	$\wedge_0 = T@2$	
	\neg_1	Т	Parent	$\wedge_1 = T$	$\neg_1 = T@2$	
	x	Т	Parent	$\wedge_0 = T$	x = T@2	Conflict
	x	F	Parent	$\neg_1 = T$	x = F@2	Conflict

Nun ist ein Konflikt gegeben, welcher im folgenden Implikationsgraph illustriert wird:

Auf den Kanten steht jeweils <u>Parent als Reason</u>. Es entsteht folgende NoGood Menge:

$$\texttt{NoGood} = \{ (\lor = T@1), (\lnot_0 = F@2) \}$$

Neue Klausel:

$$\neg ((\lor = T) \land (\neg_0 = F))$$

Nun ist der Algorithmus mit der neuen Klausel zu wiederholen.

lvl	var	val	Reason	Clause	Stack	Comment
1	V	Т	Decision	-	$\vee = T@1$	root init
	\neg_0	Т	NoGood	-	$\neg_0 = T@1$	NoGood flip
	\wedge_1	F	Parent	$\neg_0 = T$	$\wedge_1 = F@1$	
	\wedge_0	*	Parent	$\neg_0 = T, \lor = T$	$\wedge_0 = *@1$	Don't care case (*)
	\neg_1	F	Parent	$\wedge_1 = F$	$\neg_1 = F@1$	
	x	Т	Parent	$\neg_1 = F$	x = T@1	
	x	*	Parent	$\wedge_0 = *$	x = *@1	don't care Vererbung
	y	*	Parent	$\wedge_1 = F, \neg_1 = F$	y = *@1	\wedge_1 already false, don't care
	z	*	Parent	$\wedge_0 = *$	z = *@1	

Nun haben wir eine Menge von erfüllbaren Belegungen gefunden.

$$F(\mathtt{True}, *, *) = \mathtt{True}$$

Aufgabe 7.2

Aufgabenstellung gleich wie in Aufgabe 1, nun mit einer anderen Formel:

$$F = \neg x \vee (y \wedge (z \wedge \neg x))$$

Es entsteht folgende Tabelle:

lvl	var	val	Reason	Clause	Stack	Comment
1	V	Т	Decision	-	$\vee = T@1$	root init
2	_	F	Decision	-	$\neg = F@2$	negate first
	\wedge_0	Т	Parent	$\vee = T$	$\wedge_0 = T@2$	
	\wedge_1	Т	Parent	$\wedge_0 = T$	$\wedge_1 = T@2$	Conflict
	\wedge_1	F	Child	$\neg = F$	$\wedge_1 = F@2$	Conflict

Der Konflikt führt zu folgendem Implikationsgraph:

Dies führt nun zu einer neuen Tabelle:

lvl	var	val	Reason	Clause	Stack	Comment
1	V	Т	Decision	-	$\vee = T@1$	root init
	_	Т	NoGood	-	$\neg = T@1$	NoGood flip
	\wedge_0	*	Parent	$\lor = T, \neg = T$	$\wedge_0 = *@1$	
	\wedge_1	*	Parent	$\wedge_0 = *$	$\wedge_1 = *@1$	don't care Vererbung
	x	F	Parent	$\neg = T$	x = F@1	
	y	*	Parent	$\wedge_0 = *$	y = *@1	
	z	*	Parent	$\wedge_1 = *$	z = *@1	

Kein Konflikt, somit eine Menge von erfüllbaren Belegungen gefunden

$$F(\mathtt{False}, *, *) = \mathtt{True}$$