

SEQUENCE LISTING

<110>	Old Sto	Scanlan, Matthew J. Old, Lloyd J. Stockert, Elisabeth Chen, Yao-Tseng												
<120>	Col	on Cancer A	ntigen Pane	1										
<130>	L04	61/7105 (JRV)											
<160>	30													
<170>	Pate	entIn versi	on 3.0											
<210><211><211><212><213>	1 5901 DNA Homo	1 o sapiens												
<400>	1	202555050	tanaanaaan	astastassa	-tt	~~~~~	60							
				gatgatgcag			60							
				gaatctgttg			120							
			_	aagcagaagg			180							
attgagg	gaat	tctatgtgaa	atacaaaaac	ttctcttatc	ttcattgtca	gtgggcatct	240							
atagaag	gatc	tggaaaaaga	taagagaatt	cagcaaaaaa	ttaaacgatt	taaggcaaag	300							
cagggcc	aga	acaagttcct	ttcagagatt	gaggatgagc	tttttaatcc	agattatgtg	360							
gaggttg	jacc	ggataatgga	ctttgcacgt	agcacagatg	accggggaga	gcctgtgact	420							
cactato	tgg	tgaagtggtg	ttcacttcct	tatgaagaca	gcacgtggga	gcggaggcag	480							
gacatag	gatc	aagcaaagat	cgaggagttt	gagaaactaa	tgtccaggga	gccggaaaca	540							
gagcgtg	ıtgg	agcgacctcc	tgctgatgat	tggaagaaat	cggagagttc	cagggagtat	600							
aaaaaca	ata	acaaactcag	ggaataccag	ttggagggag	taaactggct	acttttcaat	660							
tggtaca	aca	tgcgaaactg	cattttagca	gatgaaatgg	gtttgggaaa	aactatccag	720							
tccatta	cat	ttctctatga	gatatatttg	aaaggaatcc	atggcccttt	tttagtaatt	780							
gccccat	tgt	ccacaatccc	caactgggaa	agggaattcc	gaacctggac	agagttgaac	840							
gtggttg	ıtgt	atcatgggag	tcaagctagt	cgtcggacca	ttcagttgta	tgaaatgtac	900							
ttcaaag	atc	cccagggtcg	agtgataaag	gggtcctata	agtttcatgc	catcatcact	960							
acatttg	aga	tgattttgac	tgattgtcct	gagctgcgga	atattccatg	gcgctgtgta	1020							
gtcattg	atg	aagcccacag	gctgaagaac	aggaactgca	agctgttgga	gggactcaag	1080							
atgatgg	act	tggaacacaa	agtgctgctg	acgggaaccc	cactccagaa	cactgtggaa	1140							
gaactct	tca	acttacttca	tttcttagaa	ccaagtcgct	tecetteaga	aaccacattt	1200							

1260 atgcaagaat ttggtgatct aaaaacagaa gagcaggtgc aaaaacttca agctattcta aagccaatga tgttgagacg tctcaaagag gatgtagaaa agaacttggc ccccaaagaa 1320 1380 gaaactatta ttgaagttga gctaacaaac attcagaaga aatattaccg agccatcctt gagaagaatt tcacatttct ttccaaaggc ggtggtcaag ctaacgtacc taacctatta 1440 1500 aacactatga tggaattgcg gaagtgctgc aatcatccgt accttatcaa tggtgctgaa 1560 gagaaaattt tggaagagtt taaagaaaca cacaatgcag agtctccaga ttttcagctc caggcaatga tccaggctgc tggcaagcta gtgctgattg acaagctgct gccaaaactg 1620 aaggetggtg gecacagggt gettatettt teecagatgg tgegetgett ggacataetg 1680 gaagactacc tcattcaaag acggtaccca tatgaaagga tcgacggccg agtaagaggc 1740 1800 aacctccgcc aggcagctat cgacagattc tccaaacctg attctgatag gtttgttttc 1860 ctcctgtgta caagggcagg aggtttaggc attaacctca ctgctgctga tacctgcatc atctttgatt cagactggaa tccccaaaat gacctccagg ctcaggctag atgtcataga 1920 ataggacaga gcaaatctgt gaaaatctac aggctgatta caagaaattc ctatgaaagg 1980 gaaatgttcg acaaggctag tttgaaactg ggcctggata aagctgtgct acagtctatg 2040 2100 agtggaagag aaaatgctac caatggggta caacagcttt ccaagaaaga aatagaggat cttctacgaa aaggggccta tggtgcactc atggatgagg aggatgaagg gtctaaattc 2160 tgtgaagaag atattgatca gatcctccta cgtcgaaccc acaccattac cattgagtca 2220 gaagggaaag gttccacatt tgctaaggcc agttttgttg catctggaaa taggacagat 2280 2340 atttccttgg atgatccaaa tttctggcaa aagtgggcta agaaggctga attggatatt 2400 gatgccttaa atgggaggaa caacctggtt attgatactc caagagtgag aaagcagacc aggetetaca gtgeagtgaa ggaagatgag etgatggagt teteagaett ggaaagtgat 2460 tetgaagaaa ageeetgtge aaageeaegg egteeeeagg ataagteaea gggetatgea 2520 2580 aggagtgaat gtttcagggt ggagaagaat ctgcttgtct atggttgggg acggtggaca 2640 gacattettt cecaeggaeg etataaaege caaeteaetg ageaagatgt agaaaceate tgcagaacca tcctggtgta ctgtcttaat cattacaaag gggatgagaa tatcaaaagc 2700 ttcatctggg atctgatcac acccacagcg gatggccaga ctcgagcctt ggtcaaccat 2760 tccggtttgt cagctcctgt gccaagggga aggaagggaa agaaggtgaa agcccagagc 2820 2880 acacageegg tggtgeagga tgeegaetgg etggeeaget geaaceeaga tgeeetgtte 2940 caggaggaca gctacaagaa acacctgaag catcactgta acaaggtcct gctgcgtgtc 3000 cgcatgctgt actacctaag acaagaagtg ataggagacc aggcggataa gatcttagag

3060 ggtgctgact caagtgaagc cgatgtgtgg atccctgaac ctttccatgc tgaagttcct gcagattggt gggataagga agcagacaaa tccctcttaa ttggagtgtt caaacatggc 3120 tatgagaagt acaactccat gcgagctgac cccgcgctgt gctttctgga acgagtcggt 3180 atgeetgatg ccaaggeeat agetgeegag caaagaggaa cagacatget ageagatggt 3240 ggtgacgggg gagaatttga tagagaagat gaagacccag aatataaacc aaccagaaca 3300 3360 ccgttcaaag atgaaataga tgaatttgca aattctcctt cagaggataa ggaagaatcc atggaaatac atgccacagg caagcacagt gagagtaatg ctgagttagg ccaactttac 3420 3480 tggcctaaca cttcaaccct gactacacgt ctgcgccggc tcattactgc ctatcagcgc 3540 agctataaaa ggcaacagat gaggcaagag gccctaatga agactgaccg gcgcagacgg cggcctcgag aggaagtgag agctctggaa gcggaaaggg aagctattat atctgagaag 3600 cggcaaaagt ggacaagaag agaagaggct gatttttacc gtgtggtatc cacctttggg 3660 3720 gttatttttg accetgtgaa acagcaattt gactggaacc aatttagage etttgccagg 3780 cttgacaaaa aatctgatga gagtttggag aaatacttca gttgttttgt ggccatgtgt 3840 aggegagtat gtegaatgee egteaageea gatgatgaae egeeegaeet eteeteeata 3900 attgagccga tcacagagga gcgagcctct cgaactctgt accgcattga gctgctacgg aagatccgcg agcaggttct ccatcacccc cagctgggag agaggcttaa gctctgccag 3960 4020 ccaagettgg atetgecaga gtggtgggag tgtggaegge atgaeegaga ettgetggtt ggtgctgcta aacacggggt cagtcggacg gattatcaca tcctcaatga ccctgagtta 4080 teettettgg atgeacataa aaaetttget caaaacagag gggeaggtaa tacatettee 4140 4200 4260 caagatgaga gggtactgga acaagccgaa ggcaaagtgg aggagcctga aaacccagct 4320 gccaaggaga aatgtgaggg caaagaagag gaagaagaaa ccgatggcag cgggaaggag 4380 agcaagcagg aatgtgaggc agaggccagc tctgtgaaaa atgaactgaa aggtgttgag gtcggcgcag acactgggtc caaatctatt tcagagaaag gttccgaaga ggatgaagag 4440 4500 gaaaagctgg aggatgacga taagtcggaa gagtcttccc agcccgaagc aggagctgtc tctagaggga agaattttga tgaagaaagc aatgcttcca tgagcactgc tagagatgaa 4560 accegagatg gattetacat ggaggaegga gateetteag tageteaget eetteatgaa 4620 agaacatttg ccttctcgtt ttggcctaag gatagagtaa tgataaaccg cttagacaac 4680 4740 atctgtgaag cagtgttgaa aggcaaatgg ccagtaaata ggcgccagat gtttgatttc caaggeetea teecaggtta cacacecace acagtggaca geceettgea gaagaggage 4800

```
4860
tttgctgagc tctccatggt cggccaagcc agcattagtg ggagtgagga catcactacg
tctcctcagt tgtcaaagga agatgccctc aacctctctg tccctcgcca gcggaggagg
                                                                    4920
aggaggagaa aaatcgaaat tgaggccgaa agagctgcca agaggcgaaa tctcatggag
                                                                    4980
atggttgccc agcttcgaga gtctcaggtg gtctcagaaa atggacaaga aaaagttgta
                                                                    5040
                                                                    5100
gatttatcaa aggcctcaag agaggcaaca agctctacct caaatttttc atctctttct
tcaaagttta tcttgcctaa tgtctcaaca ccagtgtctg atgcctttaa gactcaaatg
                                                                    5160
                                                                    5220
gaactgctcc aagcaggcct ttcgcgcaca cccacaaggc atctccttaa tggctcccta
gtggatggag agcctcccat gaagaggagg cggggaagga ggaaaaatgt ggagggactt
                                                                    5280
gatctgcttt tcatgagcca caaacggacg tcattgagtg cagaggatgc tgaggtgacc
                                                                    5340
aaagcttttg aagaagatat agagacccca ccaacaagaa acattccttc tcccggacag
                                                                    5400
ctggacccag acacacggat ccctgttatc aatcttgaag atgggactag gctggtgggg
                                                                    5460
gaagatgctc ctaaaaataa ggatttagtt gaatggctga agctgcaccc tacttacact
                                                                    5520
                                                                    5580
gttgatatgc caagttatgt accaaagaat gcagatgtgc tgttttcctc atttcagaaa
ccgaaacaga aacgacatag atgtcgaaac cctaataaat tggatataaa cactttgaca
                                                                     5640
                                                                     5700
ggagaagaaa gggtgcctgt tgtcaataaa cgaaatggga agaagatggg tggagctatg
gcgcctccaa tgaaggatct acccaggtgg ctggaagaaa atcctgaatt tgcagttgct
                                                                     5760
ccagactgga ctgatatagt taagcagtct ggttttgttc ctgagtcgat gtttgaccgc
                                                                     5820
cttctcactg ggcctgtagt gcggggagag ggagcgagca gaagaggaag aaggcccaaa
                                                                     5880
                                                                     5901
agtgagatcg ccagagcagc c
```

```
<210>
       2
<211>
      485
<212> DNA
<213> Homo sapien
<220>
<221> Unsure
      (252)..(252)
<222>
<223> n = a, g, c, or t/u
<220>
<221> Unsure
       (301)..(301)
<222>
<223> n = a, g, c, or t/u
<220>
<221> Unsure
<222> (371)..(371)
```

```
<223> n = a, g, c, or t/u
<220>
<221> Unsure
<222> (390)..(390)
<223> n = a, g, c, or t/u
<220>
<221> Unsure
<222> (417)..(417)
<223> n = a, g, c, or t/u
<220>
<221> Unsure
<222> (434)..(434)
<223> n = a, g, c, or t/u
<220>
<221> Unsure
<222> (437)..(437)
<223> n = a, g, c, or t/u
<220>
<221> Unsure
<222> (442)..(442)
<223> n = a, g, c, or t/u
<220>
<221> Unsure
<222> (449)..(449)
<223> n = a, g, c, or t/u
<220>
<221> Unsure
<222> (452)..(452)
<223> n = a, g, c, or t/u
<220>
<221> Unsure
<222> (460)..(460)
<223> n = a, g, c, or t/u
<220>
<221> Unsure
<222> (461)..(461)
<223> n = a, g, c, or t/u
<220>
<221> Unsure
<222> (476)..(476)
```

<223> $n \approx a$, g, c, or t/u

<400> 2	
ggcgcccctc gctgccccgc gcgctccccg ccgccccca tgagcgcagc cccgcgcggc	60
ccgggtccgt aggcggcggg gcgccccca tgctgctgca gcccgcgccg tgcgccccga	120
gcgcgggctt cccgcggccc ctggccgccc ccggcgccat gcacttgttc gcagaaggac	180
accacgttca ccaagatett egtgggegge etgeegtace acaetacega egeetegete	240
aggaagtact tngagggett eggegaeate tgaggaggee gtggteatea eegaeegeea	300
nacgggcaag teeegegget aeggettegt gaccatggee gaccgggegg cagetgagag	360
ggcttgcaaa nacccgaacc ccatcatcgn cggccgccag gccaacgtga acctggnata	420
tttgggcgcc aagntenegg ancetteana enggetttgn nattggggtg caacanetge	480
acecc	485
<210> 3 <211> 2885 <212> DNA <213> Homo sapien	
<400> 3 ggaatteete ttgtegaagt caaaggagee caeaceagge ggeeteaaee atteeeteee	60
acagcacccc aaatgctggg gagcccacca tgcttctttg gaccagagtt cccctcccca	120
gageggeece cetgggaege eteceteeta caaactgeet ttgeetggge eetacgaeag	180
togagacgae tteccectee geaaaacage etetgaacce aacttgaaag tgegtteaag	240
gctaaaacag aaggtggctg agcggagaag cagtcccctc ctgcgtcgca aggatgggac	300
tgttattagc acctttaaga agagagctgt tgagatcaca ggtgccgggc ctggggcgtc	360
gtccgtgtgt aacagcgcac ccggctccgg ccccagctct cccaacagct cccacagcac	420
categetgag aatggettta etggeteagt eeccaacate eecactgaga tgeteeetea	480
gcaccgagee etecetetgg acageteece caaccagtte ageetetaca egteteette	540
tetgeceaac atetecetag ggetgeagge caeggteact gteaceaact caeaceteae	600
tgcctccccg aagctgtcga cacagcagga ggccgagagg caggccctcc agtccctgcg	660
gcagggtggc acgctgaccg gcaagttcat gagcacatcc tctattcctg gctgcctgct	720
gggcgtggca ctggagggcg acgggagccc ccacgggcat gcctccctgc tgcagcatgt	780
gctgttgctg gagcaggccc ggcagcagag caccctcatt gctgtgccac tccacgggca	840
gtccccacta gtgacgggtg aacgtgtggc caccagcatg cggacggtag gcaagctccc	900

gcggcatcgg cccctgagcc gcactcagtc ctcaccgctg ccgcagagtc cccaggccct

gcagcagctg gtcatgcaac aacagcacca gcagttcctg gagaagcaga agcagcagca 1020 gctacagctg ggcaagatcc tcaccaagac aggggagctg cccaggcagc ccaccaccca 1080 1140 ccctgaggag acagaggagg agctgacgga gcagcaggag gtcttgctgg gggagggagc 1200 cctgaccatg ccccgggagg gctccacaga gagtgagagc acacaggaag acctggagga 1260 ggaggacgag gaagaggatg gggaggagga ggaggattgc atccaggtta aggacgagga gggcgagagt ggtgctgagg aggggcccga cttggaggag cctggtgctg gatacaaaaa 1320 1380 actgttctca gatgcccaac cgctgcaacc tttgcaggtg taccaagcgc ccctcagcct 1440 ggccactgtg ccccaccaag ccctgggccg tacccaatcc tcccctgctg cccctggggg 1500 catgaagaac ccccagacc aacccgtcaa gcacctcttc accacaagtg tggtctacga 1560 cacgttcatg ctaaagcacc agtgcatgtg cgggaacaca cacgtgcacc ctgagcatgc tggccggatc cagagcatct ggtcccggct gcaggagaca ggcctgctta gcaagtgcga 1620 geggateega ggtegeaaag eeaegetaga tgagateeag acagtgeaet etgaataeea 1680 caccetgete tatgggacca gteceeteaa eeggeagaag etagacagca agaagttget 1740 eggteceate agecagaaga tgtatgetgt getgeettgt gggggcateg gggtggaeag 1800 tgacaccgtg tggaatgaga tgcactcctc cagtgctgtg cgcatggcag tgggctgcct 1860 gctggagctg gccttcaagg tggctgcagg agagctcaag aatggatttg ccatcatccg 1920 gcccccagga caccacgccg aggaatccac agccatggga ttctgcttct tcaactctgt 1980 2040 agccatcacc gcaaaactcc tacagcagaa gttgaacgtg ggcaaggtcc tcatcgtgga 2100 ctgggacatt caccatggca atggcaccca gcaggcgttc tacaatgacc cctctgtgct ctacatetet etgeateget atgacaaegg gaacttettt ecaggetetg gggeteetga 2160 agaggttggt ggaggaccag gcgtggggta caatgtgaac gtggcatgga caggaggtgt 2220 ggacccccc attggagacg tggagtacct tacagccttc aggacagtgg tgatgcccat 2280 tgcccacgag ttctcacctg atgtggtcct agtctccgcc gggtttgatg ctgttgaagg 2340 acatetytet cetetygyty getaetetyt eacegecaga tyttttygee aettyaecag 2400 gcagctgatg accetggcag ggggccgggt ggtgctggcc ctggagggag gccatgactt 2460 gaccgccatc tgtgatgcct ctgaagcttg tgtctcggct ctgctcagtg taaagctgca 2520 gcccttggat gaggcagtct tgcagcaaaa gcccaacatc aacgcagtgg ccacgctaga 2580 gaaagtcatc gagatccaga gcaaacactg gagctgtgtg cagaagttcg ccgctggtct 2640 2700 gggccggtcc ctgcgagggg cccaagcagg tgagaccgaa gaagccgaaa tgtgaacgcc 2760 atggccttgc tgttggtggg ggccgaacag gcccaagctg cggcagcccg ggaacacagc

cccaggccgg cagaggagcc catggagcag gagcctgccc tgtgacgccc cggcccccat 2820 ccctttgggc ttcaccattg tgattttgtt tattttttct attaaaaaca aaaagttaaa 2880 2885 aattt <210> <211> 3876 <212> DNA Homo sapien <213> <400> atgtttgatt acatggattg tgagctgaag ctttctgaat cagttttccg acagctcaac 60 acggccatcg ccgtatccca gatgtcctca ggccagtgcc gcctggcccc cctcatccag 120 180 gtcatccagg actgcagcca cctctaccac tacacggtca agctcctgtt caagctacac tettgtetee etgeggaeae eetgeaagge cacagggaee ggtteeaega geagttteae 240 agcctcagga acttcttccg cagagcctcc gacatgctgt acttcaagcg gctcatccag 300 atcccccggc tgcccgaggg accccctaac ttcctgcggg cctcagccct ggctgagcac 360 atcaagccgg tggtggtgat ccccgaggag gccccggaag atgaggagcc ggagaatctc 420 attgagatca gcacagggcc ccccgcgggg gagccagtgg tggtggctga cctcttcgat 480 cagacgtttg gaccccccaa tgggtctgtg aaggacgaca gggacctcca gattgagagc 540 600 ttgaagagag aggtggaaat gctccgctct gaactggaga agatcaagct ggaggcccag cggtacatcg cgcagctgaa gagccaggtg aatgcactgg agggtgagct ggaggagcag 660 cggaagcaga agcagaaggc cctggtggat aatgagcagc tccgccacga gctggcccag 720 ctgagggctg cccagctgga gggcgagcgg agccagggcc tgcgtgagga ggctgagagg 780 aaggccagtg ccacggaggc gcgctacaac aagctgaagg aaaagcacag tgagctcgtc 840 900 catgtgcacg cggagctgct cagaaagaac gcggacacag ccaagcagct gacggtgacg 960 cagcaaagcc aggaggaggt ggcgcgggtg aaggagcagc tggccttcca ggtggagcag 1020 gtgaagcggg agtcggagtt gaagctagag gagaagagcg accagctgga gaagctcaag agggagctgg aggccaaggc cggagagctg gcccgcgcgc aggaggccct gagccacaca 1080 1140 gagcagagca agtcggagct gagctcacgg ctggacacgc tgagtgcgga gaaggatgct 1200 ctgagtggag ctgtgcggca gcgggaggca gacctgctgg cggcgcagag cctggtgcgc 1260 gagacagagg cggcgctgag ccgggagcag cagcgcagct cccaggagca gggcgagttg 1320 cagggccggc tggcagagag ggagtctcag gagcaggggc tgcggcagag gctgctggac

gagcagttcg cagtgttgcg gggcgctgct gccgaggccg cgggcatcct gcaggatgcc

gtgagcaagc	tggacgaccc	cctgcacctg	cgctgtacca	gctccccaga	ctacctggtg	1440
agcagggccc	aggaggcctt	ggatgccgtg	agcaccctgg	aggagggcca	cgcccagtac	1500
ctgacctcct	tggcagacgc	ctccgccctg	gtggcagctc	tgacccgctt	ctcccacctg	1560
gctgcggata	ccatcatcaa	tggcggtgcc	acctcgcacc	tggctcccac	cgaccctgcc	1620
gaccgcctca	tagacacctg	cagggagtgc	ggggcccggg	ctctggagct	catggggcag	1680
ctgcaggacc	agcaggctct	gcggcacatg	caggccagcc	tggtgcggac	acccctgcag	1740
ggcatccttc	agctgggcca	ggaactgaaa	cccaagagcc	tagatgtgcg	gcaggaggag	1800
ctgggggccg	tggtcgacaa	ggagatggcg	gccacatccg	cagccattga	agatgctgtg	1860
cggaggattg	aggacatgat	gaaccaggca	cgccacgcca	gctcgggggt	gaagctggag	1920
gtgaacgaga	ggatcctcaa	ctcctgcaca	gacctgatga	aggctatccg	gctcctggtg	1980
acgacatcca	ctagcctgca	gaaggagatc	gtggagagcg	gcaggggggc	agccacgcag	2040
caggaatttt	acgccaagaa	ctcgcgctgg	accgaaggcc	tcatctcggc	ctccaaggct	2100
gtgggctggg	gagccacaca	gctggtggag	gcagctgaca	aggtggtgct	tcacacgggc	2160
aagtatgagg	agctcatcgt	ctgctcccac	gagatcgcag	ccagcacggc	ccagctggtg	2220
gcggcctcca	aggtgaaggc	caacaagcac	agcccccacc	tgagccgcct	gcaggaatgt	2280
tctcgcacag	tcaatgagag	ggctgccaat	gtggtggcct	ccaccaagtc	aggccaggag	2340
cagattgagg	acagagacac	catggatttc	tccggcctgt	ccctcatcaa	gctgaagaag	2400
caggagatgg	agacgcaggt	gcgtgtcctg	gagctggaga	agacgctgga	ggctgaacgc	2460
atgcggctgg	gggagttgcg	gaagcaacac	tacgtgctgg	ctggggcatc	aggcagccct	2520
ggagaggagg	tggccatccg	gcccagcact	gccccccgaa	gtgtaaccac	caagaaacca	2580
cccctggccc	agaagcccag	cgtggccccc	agacaggacc	accagcttga	caaaaaggat	2640
ggcatctacc	cagctcaact	cgtgaactac	taggcccccc	aggggtccag	cagggtggct	2700
ggtgacaggc	ctgggcctct	gcaactgccc	tgacaggacc	gagaggcctt	gcccctccac	2760
ctggtgccca	agcctcccgc	cccaccgtct	ggatcaatgt	cctcaaggcc	cctggccctt	2820
actgagcctg	cagggtcctg	ggccatgtgg	gtggtgcttc	tggatgtgag	tctcttattt	2880
atctgcagaa	ggaactttgg	ggtgcagcca	ggacccggta	ggcctgagcc	tcaactcttc	2940
agaaaatagt	gtttttaata	ttcctcttca	gaaaatagtg	tttttaatat	tccgagctag	3000
agctcttctt	cctacgtttg	tagtcagcac	actgggaaac	cgggccagcg	tggggctccc	3060
tgccttctgg	actcctgaag	gtcgtggatg	gatggaaggc	acacagcccg	tgccggctga	3120
tgggacgagg	gtcaggcatc	ctgtctgtgg	ccttctgggg	caccgattct	accaggccct	3180

ccagctgcgt	ggtctccgca	gaccaggctc	tgtgtgggct	agaggaatgt	cgcccattac	3240
tcctcaggcc	tggccctcgg	gcctccgtga	tgggagcccc	ccaggagggg	tcagatgctg	3300
gaaggggccg	ctttctgggg	agtgaggtga	gacatagcgg	cccaggcgct	gccttcactc	3360
ctggagtttc	catttccagc	tggaatctgc	agccaccccc	atttcctgtt	ttccattccc	3420
ccgttctggc	cgcgccccac	tgcccacctg	aaggggtggt	ttccagccct	ccggagagtg	3480
ggcttggccc	taggccctcc	agctcagcca	gaaaaagccc	agaaacccag	gtgctggacc	3540
agggccctca	gggaggggac	cctgcggcta	gagtgggcta	ggccctggct	ttgcccgtca	3600
gatttgaacg	aatgtgtgtc	ccttgagccc	aaggagagcg	gcaggagggg	tgggaccagg	3660
ctgggaggac	agagccagca	gctgccatgc	cctcctgctc	ccccacccc	agccctagcc	3720
ctttagcctt	tcaccctgtg	ctctggaaag	gctaccaaat	actggccaag	gtcaggagga	3780
gcaaaaatga	gccagcacca	gcgccttggc	tttgtgttag	catttcctcc	tgaagtgttc	3840
tgttggcaat	aaaatgcact	ttgactgttt	gttgtc			3876

<210> 5 <211> 2740 <212> DNA

<213> Homo sapien

<400> 60 gcgaaattga ggtttcttgg tattgcgcgt ttctcttcct tgctgactct ccgaatggcc atggactcgt cgcttcaggc ccgcctgttt cccggtctcg ctatcaagat ccaacgcagt 120 aatggtttaa ttcacagtgc caatgtaagg actgtgaact tggagaaatc ctgtgtttca 180 gtggaatggg cagaaggagg tgccacaaag ggcaaagaga ttgattttga tgatgtggct 240 gcaataaacc cagaactctt acagcttctt cccttacatc cgaaggacaa tctgcccttg 300 360 caggaaaatg taacaatcca gaaacaaaaa cggagatccg tcaactccaa aattcctgct ccaaaagaaa gtcttcgaag ccgctccact cgcatgtcca ctgtctcaga gcttcgcatc 420 acggctcagg agaatgacat ggaggtggag ctgcctgcag ctgcaaactc ccgcaagcag 480 ttttcagttc ctcctgcccc cactaggcct tcctgccctg cagtggctga aataccattg 540 aggatggtca gcgaggagat ggaagagcaa gtccattcca tccgtggcag ctcttctgca 600 aaccctgtga actcagttcg gaggaaatca tgtcttgtga aggaagtgga aaaaatgaag 660 aacaagcgag aagagaagaa ggcccagaac tctgaaatga gaatgaagag agctcaggag 720 tatgacagta gttttccaaa ctgggaattt gcccgaatga ttaaagaatt tcgggctact 780 ttggaatgtc atccacttac tatgactgat cctatcgaag agcacagaat atgtgtctgt 840 gttaggaaac gcccactgaa taagcaagaa ttggccaaga aagaaattga tgtgatttcc 900

attcctagca agtgtctcct cttggtacat gaacccaagt tgaaagtgga cttaacaaag 960 tatctggaga accaagcatt ctgctttgac tttgcatttg atgaaacagc ttcgaatgaa 1020 gttgtctaca ggttcacagc aaggccactg gtacagacaa tctttgaagg tggaaaagca 1080 acttgttttg catatggcca gacaggaagt ggcaagacac atactatggg cggagacctc 1140 tetgggaaag cecagaatge atecaaaggg atetatgeea tggeeteeeg ggaegtette 1200 ctcctgaaga atcaaccctg ctaccggaag ttgggcctgg aagtctatgt gacattcttc 1260 gagatetaca atgggaaget gtttgaeetg etcaacaaga aggeeaaget gegegtgetg 1320 gaggacggca agcaacaggt gcaagtggtg gggctgcagg agcatctggt taactctgct 1380 gatgatgtca tcaagatgct cgacatgggc agcgcctgca gaacctctgg gcagacattt 1440 gccaactcca attecteeeg eteccaegeg tgettecaaa ttattetteg agetaaaggg 1500 agaatgcatg gcaagttctc tttggtagat ctggcaggga atgagcgagg cgcagacact 1560 tccagtgctg accggcagac ccgcatggag ggcgcagaaa tcaacaagag tctcttagcc 1620 ctgaaggagt gcatcagggc cctgggacag aacaaggctc acaccccgtt ccgtgagagc 1680 aagctgacac aggtgctgag ggactccttc attggggaga actctaggac ttgcatgatt 1740 gccacgatet caccaggeat aageteetgt gaatataett taaacaceet gagatatgea 1800 gacagggtca aggagctgag cccccacagt gggcccagtg gagagcagtt gattcaaatg 1860 gaaacagaag agatggaagc ctgctctaac ggggcgctga ttccaggcaa tttatccaag 1920 gaagaggagg aactgtcttc ccagatgtcc agctttaacg aagccatgac tcagatcagg 1980 gagctggagg agaaggctat ggaagagctc aaggagatca tacagcaagg accagactgg 2040 cttgagetet etgagatgae egageageea gaetatgaee tggagaeett tgtgaacaaa 2100 geggaatetg etetggeeca geaageeaag eattteteag eeetgegaga tgteateaag 2160 gccttacgcc tggccatgca gctggaagag caggctagca gacaaataag cagcaagaaa 2220 eggeeceagt gaegaetgea aataaaaate tgtttggttt gaeaceeage etetteeetg 2280 gccctcccca gagaactttg ggtacctggt gggtctaggc agggtctgag ctgggacagg 2340 ttctggtaaa tgccaagtat gggggcatct gggcccaggg cagctgggga gggggtcaga 2400 gtgacatggg acacteettt tetgtteete agttgtegee eteaegagag gaaggagete 2460 ttagttaccc ttttgtgttg cccttctttc catcaagggg aatgttctca gcatagagct 2520 ttctccgcag catcctgcct gcgtggactg gctgctaatg gagagctccc tggggttgtc 2580 ctggctctgg ggagagagac ggagccttta gtacagctat ctgctggctc taaaccttct 2640 acgcctttgg gccgagcact gaatgtcttg tactttaaaa aaatgtttct gagacctctt 2700

```
<210> 6
<211> 2569
<212> DNA
<213> Homo sapien
<220>
<221> Unsure
<222> (2237)..(2237)
<223> n = a, c, g, or t/u
<220>
<221> Unsure
<222> (2260)..(2260)
<223> n = a, c, g, or t/u
<220>
<221> Unsure
<222> (2305)..(2305)
<223> n = a, c, g, or t/u
<220>
<221> Unsure
<222> (2315)..(2315)
<223> n = a, c, g, or t/u
<220>
<221> Unsure
<222> (2355)..(2355)
<223> n = a, c, g, or t/u
<220>
<221> Unsure
<222> (2420)..(2420)
<223> n = a, c, g, or t/u
<220>
<221> Unsure
<222> (2421)..(2421)
<223> n = a, c, g, or t/u
<220>
<221> Unsure
<222> (2423)..(2423)
<223> n = a, c, g, or t/u
<220>
<221> Unsure
```

<222> (2490)..(2490)

<223> n = a, c, g, or t/u

<220>

<221> Unsure

<222> (2523)..(2523)

<223> n = a, c, g, or t/u

<400> 6 aagagtaaaa gctactcttt cagagagaaa aataggagat tcatgtgaca aagatttgcc 60 120 tctgaaattt tgtgagttcc cacagaagac tataatgcct ggatttaaaa caactgtata 180 tgtttctcat ataaatgacc tttcagactt ttatgttcaa ctaatagaag atgaagctga aattagtcat ctttcagaga gattaaacag tgttaaaaca aggcccgaat attatgtagg 240 tccacctttg caaagaggag atatgatatg tgctgttttc ccagaagata atttatggta 300 tcgtgctgtg atcaaggagc aacaacccaa tgaccttctc tctgtgcagt ttatagatta 360 tggcaatgtt tctgtggttc atactaacaa aataggtagg cttgaccttg ttaatgcaat 420 480 attgccgggg ttgtgcattc attgctcctt gcagggattt gaggttcctg acaataaaaa 540 ttctaagaaa atgatgcatt acttttccca acggaccagc gaggctgcaa taagatgtga atttgttaaa tttcaagaca gatgggaagt tattcttgct gatgaacatg ggatcatagc 600 agatgatatg attagcaggt atgctctcag tgaaaaatct caagtagaac tttctaccca 660 agtaattaaa agtgccagtt caaagtctgt taacaaatca gacattgaca cttcagtatt 720 tcttaactgg tataatccag aaaaaaaaat gataagagct tatgccactg tgatagatgg 780 acctgagtac ttttggtgtc agtttgctga tacggagaaa cttcagtgtt tagaagtaga 840 agtacagact gctggagaac aggtagcaga caggagaaat tgtatcccat gtccttatat 900 tggagatcct tgtatagtaa gatacagaga agatggacat tattataggg cacttatcac 960 taatatttgt gaagattatc ttgtatctgt caggcttgtg gactttggaa acattgaaga 1020 ctgtgtggac ccaaaagcac tctgggccat tccttctgaa cttctgtcgg ttcccatgca 1080 agcctttcca tgttgcctct cagggtttaa catttcagaa ggattatgtt ctcaagaggg 1140 1200 aaatgactat ttctatgaaa taataacaga agatgtgttg gaaataacaa tactagaaat cagaagggat gtttgtgata tccctttagc aattgttgac ttgaaaagca aaggtaaaag 1260 tattaatgag aaaatggaga aatattctaa gactggtatt aaaagtgctc ttccctatga 1320 aaatattgac tcagagataa agcagactct tgggtcctac aatcttgatg taggacttaa 1380 gaaattaagt aataaagctg tacaaaataa aatatatatg gaacaacaga cagatgagct 1440 tgctgaaata actgaaaaag atgtaaacat tattggaacc aaaccaagta acttccgtga 1500

```
ccctaaaact gataacattt gtgaagggtt tgaaaacccc tgcaaagata aaattgatac
                                                                    1560
tgaggaactg gaaggtgaat tagagtgcca tctggttgac aaagcagagt ttgatgataa
                                                                    1620
atacctgatt acaggattta acacattact accacatgct aatgaaacaa aggagatact
                                                                    1680
agaactgaat tcacttgagg tgccgctttc tcctgatgat gaatcaaaag aattcttaga
                                                                    1740
actggaatct attgagttac agaattetet ggtggtggat gaagaaaaag gggagetaag
                                                                    1800
cccggtgcca ccgaatgtgc cactctccca agagtgtgtc acaaaaggcg ccatggagct
                                                                    1860
atttacactg cagcttcctc tcagctgtga agctgagaaa cagccagaac tagaactacc
                                                                    1920
tacagcccag ctgcctttag atgacaagat ggatcctttg tctttaggag ttagtcagaa
                                                                    1980
agcacaggaa tccatgtgta ctgaggacat gagaaagtca agttqtqtaq aatcttttqa
                                                                    2040
tgaccagege aggatgteat tgeatetaca tggaqeaqat tgtqateeta aaacacaqaa
                                                                    2100
tgaaatgaat atatgtgaag aagaatttgt agagtataaa aacagggatg ccatttcggc
                                                                    2160
attgatgcct ttttctctga ggaagaaagc agtgatggaa gcaagcacaa taatggttta
                                                                    2220
ccagatcata tttcagntca attacagaac acctacactn tgaaagcctt tactgttgga
                                                                    2280
tctaaatgtg ttgtgtggtc aagtntaaga aacanatggt ctaaatgtga gattttagaa
                                                                    2340
acagctgaag aaggnacaag ggttttgaac ctttcaaatg gtatggagga gatagtgaac
                                                                    2400
cctgagaatg tctggaatgn nanacccaaa ttggataaga gtccacctga gaaaaggggt
                                                                    2460
ttggaggtga tggagattta accgtggatn tatagctgtg gccaatcagt caqaaqctqc
                                                                    2520
ccntgaacaa gtggcatctt acgcagacca acagagtatt tgagaaaat
                                                                    2569
```

```
<210>
      7
<211> 1997
<212> DNA
<213> Homo sapien
<220>
<221> Unsure
<222> (105)..(105)
<223> n = a, g, c, or t/u
<220>
<221> Unsure
<222> (132)..(132)
<223> n = a, g, c, or t/u
<220>
<221> Unsure
<222> (151)..(151)
<223> n = a, g, c, or t/u
```

```
<220>
<221> Unsure
<222> (209)..(209)
<223> n = a, g, c, or t/u
<220>
<221> Unsure
<222> (221)..(221)
<223> n = a, g, c, or t/u
<220>
<221> Unsure <222> (462)..(462)
<223> n = a, g, c, or t/u
<220>
<221> Unsure
<222> (542)..(542)
<223> n = a, g, c, or t/u
<220>
<221> Unsure
<222> (625)..(625)
<223> n = a, g, c, or t/u
<220>
<221> Unsure
<222> (642)..(642)
<223> n = a, g, c, or t/u
<220>
<221> Unsure
<222> (659)..(659)
<223> n = a, g, c, or t/u
<220>
<221> Unsure
<222> (663)..(663)
<223> n = a, g, c, or t/u
<220>
<221> Unsure
<222> (666)..(666)
<223> n = a, g, c, or t/u
<220>
<221> Unsure
<222> (672)..(672)
<223> n = a, g, c, or t/u
```

```
<220>
<221> Unsure <222> (675)..(675)
<223> n = a, g, c, or t/u
<220>
<221> Unsure
<222> (686)..(686)
<223> n = a, g, c, or t/u
<220>
<221> Unsure
<222> (693)..(693)
<223> n = a, g, c, or t/u
<220>
<221> Unsure
<222> (695)..(695)
<223> n = a, g, c, or t/u
<220>
<221> Unsure
<222> (724)..(724)
<223> n = a, g, c, or t/u
<220>
<221> Unsure
<222> (778)..(778)
<223> n = a, g, c, or t/u
<220>
<221> Unsure
<222> (872)..(872)
<223> n = a, g, c, or t/u
<220>
<221> Unsure
<222> (979)..(979)
<223> n = a, g, c, or t/u
<220>
<221> Unsure
<222> (1146)..(1146)
<223> n = a, g, c, or t/u
<220>
<221> Unsure
<222> (1609)..(1609)
<223> n = a, g, c, or t/u
```

<220>
<221> Unsure
<222> (1875)..(1875)
<223> n = a, g, c, or t/u

<400> 60 gggctgggga agatggcggt ggctggggcg gtgtccgggg agccgctggt gcactggtgc acccagcagt tgcggaagac tttcggcctg gatgtcagcg agganatcat tcagtacgtt 120 ttgtcaattg anagtgctga agagatacga naatatgtta ctgatctcct ccaggggaaa 180 tgaaggcaaa aaaggtcaat tcatacaana acttataacc naatggcaaa agaatgatca 240 300 ggagttgatt tcggatcctt tgcagcagtg cttcaaaaaa gatgaaattt tagatgggca gaaatcaggc gaccatctaa agcggggtat gaagaaaggg agaaacagac aggaagttcc 360 tgcatttact gaacctgaca cgactgcaga ggttaaaaca cttttgattg gccaaggcac 420 aagagaacag caactccgta aagaagaaga caaagtttgt cnatttatac acaagagagg 480 gacaggacag gettgeagte etgeteeetg gtegteacee ttgtgattge etgggeeaga 540 600 ancacaagct catcaataac tgtctgatct gtgggcgcat tgtctgtgaa caagaaggct caggcccttg cttattctgt ggcantctgg tgtgtactct tnaggaacaa gatattttnc 660 agngtnactc anacnaaagc cagaanctgc tananaaact catgtcagga gtggacaatt 720 780 ctgnaaatgt ggacatctct accaaggacc ttcttcctca tcaagaattg cgaattangt 840 ctqqtctgga gaaggctatc aagcataaag acaaactgtt agagtttgac agaactagta ttcgaaggac ccaagtcatt gatgatgagt cngattactt tgccagtgat tctaaccaat 900 ggttgtccaa acttgagcgg gaaaccttgc agaagcgaga ggaggagctg agagaacttc 960 gacacgcctc tcgactttnt aagaagttca ccattgactt tgcaggaagg aagatcctgg 1020 aagaagaaaa ttcactagca gagtatcata gcagactaga tgagacaata caggccattg 1080 ccaatggaac cttgaaccag ccactgacca aattggatag atcttctgaa gagcctttgg 1140 gagttntggt aaatcccaac atgtaccagt cccctcccca gtgggttgac cacacaggtg 1200 cagcctcaca gaagaaggct ttccgttctt caggatttgg actagagttc aactcatttc 1260 1320 agcaccagct gcgaatccag gatcaagaat ttcaggaagg ctttgatggt ggctggtgcc 1380 tctctgtaca tcagccctgg gcttctctgc ttgtcagagg gattaaaaagg gtggagggca 1440 gatcctggta cacccccac agaggacgac tttggatagc agccacagct aaaaaaccct cccctcaaga agtctcagaa ctccaggcta catatcgtct tcttcgtggg aaagatgtgg 1500 aatttcctaa tgactatccg tcaggttgtc ttctgggctg tgtggaccta attgactgct 1560 tgtcccagaa gcaatttaag gagcagtttc cagacatcag tcaagaatnt gattctccat 1620

attcaca

ttgttttcat	ctgcaaaaat	cctcaggaaa	tggttgtgaa	gtttcctatt	aaaggaaatc	1680
caaaaatctg	gaaattggat	tccaagatcc	atcaaggagc	aaagaagggg	ttaatgaagc	1740
agaataaagc	tgtctgaccc	aggagaaaag	gaactataca	gcatagtgga	gttttgtgta	1800
ctaaaattgc	tatctactgg	tcctttggaa	ttgaagtagt	agaaacctaa	aggcttggcg	1860
tcaggcttga	atatntcaga	acttaaactc	ttaccaaaat	ctgtatattt	ttcttaagga	1920
gtgggattcc	tactttatgt	aatggggtcg	aaatctttga	acacattatt	tataaaaacc	1980
tgtttaaaaa	ttctaaa					1997
<210> 8 <211> 1087 <212> DNA <213> Homo <400> 8	sapien					
aagatgatgc	ctagtaaatt	acagaagaac	aaacagagac	tgcgaaacga	tcctctcaat	60
caaaataagg	gtaaaccaga	cttgaataca	acattgccaa	ttagacaaac	agcatcaatt	120
ttcaaacaac	cggtaaccaa	agtcacaaat	catcctagta	ataaagtgaa	atcagaccca	180
caacgaatga	atgaacagcc	acgtcagctt	ttctgggaga	agaggctaca	aggacttagt	240
gcatcagatg	taacagaaca	aattataaaa	accatggaac	tacccaaagg	tcttcaagga	300
gttggtccag	gtagcaatga	tgagaccctt	ttatctgctg	ttgccagtgc	tttgcacaca	360
agctctgcgc	caatcacagg	gcaagtctcc	gctgctgtgg	aaaagaaccc	tgctgtttgg	420
cttaacacat	ctcaacccct	ctgcaaagct	tttattgtca	cagatgaaga	catcaggaaa '	480
caggaagagc q	gagtacagca	agtacgcaag	aaattggaag	aagcactgat	ggcagacatc	540
ttgtcgcgag (ctgctgatac	agaagagatg	gatattgaaa	tggacagtgg	agatgaagcc	600
taagaatatg	atcaggtaac	tttcgaccga	ctttccccaa	gagaaaattc	ctagaaattg	660
aacaaaaatg	tttccactgg	cttttgcctg	taagaaaaaa	aatgtacccg	agcacataga	720
gctttttaat a	agcactaacc	aatgcctttt	tagatgtatt	tttgatgtat	atatctatta	780
ttcaaaaaat o	catgtttatt	ttgagtccta	ggacttaaaa	ttagtctttt	gtaatatcaa	840
gcaggaccct a	aagatgaagc	tgagcttttg	atgccaggtg	caatttactg	gaaatgtagc	900
acttacgtaa a	aacatttgtt	tcccccacag	ttttaataag	aacagatcag	gaattctaaa	960
taaatttccc a	agttaaagat	tattgtgact	tcactgtata	taaacatatt	tttatacttt	1020
attgaaaggg g	gacacctgta	cattcttcca	tcgtcactgt	aaagacaaat	aaatgattat	1080

<210> 9 <211> 1760 <212> DNA <213> Homo sapien

<400> gtcgaccctt tccacccctg gaagatggaa ataaacctgc gtgtgggtgg agtgttagga 60 caaaaaaaaa aaaaaaaaag tctagagcca ccgtccaggg agcaggtagc tgctgggctc 120 180 cggggacact ttgcgttcgg gctgggagcg tgctttccac gacggtgaca cgcttccctg 240 gattggcagc cagactgcct tccgggtcac tgccatggag gagccgcagt cagatcctag 300 cgtcgagccc cctctgagtc aggaaacatt ttcagaccta tggaaactac ttcctgaaaa caacgttctg tcccccttgc cgtcccaagc aatggatgat ttgatgctgt ccccggacga 360 420 tattgaacaa tggttcactg aagacccagg tccagatgaa gctcccagaa tgccagaggc 480 tgctccccc gtggcccctg caccagcage tectacaccg geggeccctg caccagecce ctcctggccc ctgtcatctt ctgtcccttc ccagaaaacc taccagggca gctacggttt 540 ccgtctgggc ttcttgcatt ctgggacagc caagtctgtg acttgcacgt actcccctgc 600 660 cctcaacaag atgttttgcc aactggccaa gacctgccct gtgcagctgt gggttgattc 720 cacacccccg cccggcaccc gcgtccgcgc catggccatc tacaagcagt cacagcacat 780 gacggaggtt gtgaggcgct gccccacca tgagcgctgc tcagatagcg atggtctggc ccctcctcag catcttatcc gagtggaagg aaatttgcgt gtggagtatt tggatgacag 840 900 aaacactttt cgacatagtg tggtggtgcc ctgtgagccg cctgaggttg gctctgactg taccaccatc cactacaact acatgtgtaa cagttcctgc atgggcggca tgaaccggag 960 geceateete accateatea eactggaaga etecagtggt aatetaetgg gaeggaacag 1020 ctttgaggtg catgtttgtg cctgtcctgg gagagaccgg cgcacagagg aagagaatct 1080 ccgcaagaaa ggggagcctc accacgagct gcccccaggg agcactaagc gagcactgcc 1140 caacaacacc agctcctctc cccagccaaa gaagaaacca ctggatggag aatatttcac 1200 ccttcagatc cgtgggcgtg agcgcttcga gatgttccga gagctgaatg aggccttgga 1260 1320 actcaaggat gcccaggctg ggaaggagcc aggggggagc agggctcact ccagccacct gaagtccaaa aagggtcagt ctacctcccg ccataaaaaa ctcatgttca agacagaagg 1380 gcctgactca gactgacatt ctccacttct tgttccccac tgacagcctc ccacccccat 1440 ctctccctcc cctgccattt tgggttttgg gtctttgaac ccttgcttgc aataggtgtg 1500 cgtcagaagc acccaggact tccatttgct ttgtcccggg gctccactga acaagttggc 1560

ctgcactggt gttttgttgt ggggaggagg atggggagta ggacatacca gcttagattt

taaggttttt actgtgaggg atgtttggga gatgtaagaa atgttcttgc agttaagggt	1680
tagtttacaa tcagccacat tctaggtagg gacccacttc accgtactaa ccagggaagc	1740
tgtccctcac tgttgaattc	1760
<210> 10 <211> 1953 <212> DNA <213> Homo sapien	
<400> 10 acgectgeca ggageaagee gaagageeag eeggeeggeg eacteegaet eegageagte	60
totgtootto gaccogagoo cogogocott toogggacco otgoooogg ggcagogotg	120
ccaacctgcc ggccatggag accccgtccc agcggcgcgc cacccgcagc ggggcgcagg	180
ccagctccac tecgetgteg eccaecegea teaccegget geaggagaag gaggaeetge	240
aggageteaa tgategettg geggtetaea tegacegtgt gegetegetg gaaaeggaga	300
acgcagggct gcgccttcgc atcaccgagt ctgaagaggt ggtcagccgc gaggtgtccg	360
gcatcaaggc cgcctacgag gccgagctcg gggatgcccg caagaccctt gactcagtag	420
ccaaggagcg cgcccgcctg cagctggagc tgagcaaagt gcgtgaggag tttaaggagc	480
tgaaagcgcg caataccaag aaggagggtg acctgatagc tgctcaggct cggctgaagg	540
acctggaggc tctgctgaac tccaaggagg ccgcactgag cactgctctc agtgagaagc	600
gcacgctgga gggcgagctg catgatctgc ggggccaggt ggccaagctt gaggcagccc	660
taggtgaggc caagaagcaa cttcaggatg agatgctgcg gcgggtggat gctgagaaca	720
ggctgcagac catgaaggag gaactggact tccagaagaa catctacagt gaggagctgc	780
gtgagaccaa gcgccgtcat gagacccgac tggtggagat tgacaatggg aagcagcgtg	840
agtttgagag ccggctggcg gatgcgctgc aggaactgcg ggcccagcat gaggaccagg	900
tggagcagta taagaaggag ctggagaaga cttattctgc caagctggac aatgccaggc	960
agtctgctga gaggaacagc aacctggtgg gggctgccca cgaggagctg cagcagtcgc	1020
gcatccgcat cgacagcctc tetgcccage teagecaget ceagaagcag etggcageca	1080
aggaggcgaa gcttcgagac ctggaggact cactggcccg tgagcgggac accagccggc	1140
ggctgctggc ggaaaaggag cgggagatgg ccgagatgcg ggcaaggatg cagcagcagc	1200
tggacgagta ccaggagett etggacatea agetggeeet ggacatggag atecaegeet	1260
accgcaaget ettggaggge gaggaggaga ggetacgeet gteecceage ectacetege	1320
agcgcagccg tggccgtgct tcctctcact catcccagac acagggtggg ggcagcgtca	1380

ccaaaaagcg	caaactggag	tccactgaga	gccgcagcag	cttctcacag	cacgcacgca	1440
ctagcgggcg	cgtggccgtg	gaggaggtgg	atgaggaggg	caagtttgtc	cggctgcgca	1500
acaagtccaa	tgaggaccag	tccatgggca	attggcagat	caagcgccag	aatggagatg	1560
atcccttgct	gacttaccgg	ttcccaccaa	agttcaccct	gaaggctggg	caggtggtga	1620
cgatctgggc	tgcaggagct	ggggccaccc	acagcccccc	taccgacctg	gtgtggaagg	1680
cacagaacac	ctggggctgc	gggaacagcc	tgcgtacggc	tctcatcaac	tccactgggg	1740
aagaagtggc	catgcgcaag	ctggtgcgct	cagtgactgt	ggttgaggac	gacgaggatg	1800
aggatggaga	tgacctgctc	catcaccacc	acgtgagtgg	tagccgccgc	tgaggccgag	1860
cctgcactgg	ggccaccagc	caggcctggg	ggcagcctct	ccccagcctc	cccgtgccaa	1920
aaatcttttc	attaaagaat	gttttggaac	ttt			1953
<210> 11						
<211> 601	3					

<212> DNA <213>

Homo sapien

<400> getgeeteeg eegeegggg geageegggg ggeagggage eeagegaggg gegegegtgg 60 gcgcggccat gggactgcgc cggatccggt gacagcaggg agccaagcgg cccgggccct 120 gagcgcgtct tctccggggg gcctcgcct cctgctcgc gggccggggc tcctgctccg 180 gttgctggcg ctgttgctgg ctgtggcggc ggccaggatc atgtcgggtc gccgctgcgc 240 cggcggggga gcggcctgcg cgagcgccgc ggccgaggcc gtggagccgg ccgcccgaga 300 getgttegag gegtgeegea aeggggaegt ggaaegagte aagaggetgg tgaegeetga 360 gaaggtgaac agccgcgaca cggcgggcag gaaatccacc ccgctgcact tcgccgcagg 420 ttttgggcgg aaagacgtag ttgaatattt gcttcagaat ggtgcaaatg tccaagcacg 480 tgatgatggg ggccttattc ctcttcataa tgcatgctct tttggtcatg ctgaagtagt 540 caatctcctt ttgcgacatg gtgcagaccc caatgctcga gataattgga attatactcc 600 tetecatgaa getgeaatta aaggaaagat tgatgtttge attgtgetgt tacageatgg 660 agctgagcca accatccgaa atacagatgg aaggacagca ttggatttag cagatccatc 720 tgccaaagca gtgcttactg gtgaatataa gaaagatgaa ctcttagaaa gtgccaggag 780 tggcaatgaa gaaaaaatga tggctctact cacaccatta aatgtcaact gccacgcaag 840 tgatggcaga aagtcaactc cattacattt ggcagcagga tataacagag taaagattgt 900 acagctgtta ctgcaacatg gagctgatgt ccatgctaaa gataaaggtg atctggtacc 960 attacacaat gcctgttctt atggtcatta tgaagtaact gaacttttgg tcaagcatgg 1020

tgcctgtgta aatgcaatgg acttgtggca attcactcct cttcatgagg cagcttctaa 1080 gaacagggtt gaagtatgtt ctcttctctt aagttatggt gcagacccaa cactgctcaa 1140 1200 ttgtcacaat aaaagtgcta tagacttggc tcccacacca cagttaaaag aaagattagc atatgaattt aaaggccact cgttgctgca agctgcacga gaagctgatg ttactcgaat 1260 caaaaaacat ctctctctgg aaatggtgaa tttcaagcat cctcaaacac atgaaacagc 1320 attgcattgt gctgctgcat ctccatatcc caaaagaaag caaatatgtg aactgttgct 1380 aagaaaagga gcaaacatca atgaaaagac taaagaattc ttgactcctc tgcacgtggc 1440 atctgagaaa gctcataatg atgttgttga agtagtggtg aaacatgaag caaaggttaa 1500 tgctctggat aatcttggtc agacttctct acacagagct gcatattgtg gtcatctaca 1560 aacctgccgc ctactcctga gctatgggtg tgatcctaac attatatccc ttcagggctt 1620 tactgettta cagatgggaa atgaaaatgt acagcaaete etecaagagg gtateteatt 1680 aggtaattca gaggcagaca gacaattgct ggaagctgca aaggctggag atgtcgaaac 1740 tgtaaaaaaa ctgtgtactg ttcagagtgt caactgcaga gacattgaag ggcgtcagtc 1800 tacaccactt cattttgcag ctgggtataa cagagtgtcc gtggtggaat atctgctaca 1860 1920 gcatggagct gatgtgcatg ctaaagataa aggaggcctt gtacctttgc acaatgcatg ttottatgga cattatgaag ttgcagaact tottgttaaa catggagcag tagttaatgt 1980 agctgattta tggaaattta cacctttaca tgaagcagca gcaaaaggaa aatatgaaat 2040 2100 ttgcaaactt ctgctccagc atggtgcaga ccctacaaaa aaaaacaggg atggaaatac 2160 teetttggat ettgttaaag atggagatae agatatteaa gatetgetta ggggagatge agetttgeta gatgetgeca agaagggttg tttagecaga gtgaagaagt tgtettetee 2220 2280 tgataatgta aattgccgcg atacccaagg cagacattca acacctttac atttagcagc tggttataat aatttagaag ttgcagagta tttgttacaa cacggagctg atgtgaatgc 2340 ccaagacaaa ggaggactta ttcctttaca taatgcagca tcttacgggc atgtagatgt 2400 2460 agcageteta etaataaagt ataatgeatg tgteaatgee aeggaeaaat gggettteae acctttgcac gaagcagccc aaaagggacg aacacagctt tgtgctttgt tgctagccca 2520 tggagctgac ccgactctta aaaatcagga aggacaaaca cctttagatt tagtttcagc 2580 agatgatgte agegetette tgacageage catgeececa tetgetetge cetettgtta 2640 caageeteaa gtgeteaatg gtgtgagaag eecaggagee actgeagatg etetetette 2700 aggtccatct agcccatcaa gcctttctgc agccagcagt cttgacaact tatctgggag 2760 tttttcagaa ctgtcttcag tagttagttc aagtggaaca gagggtgctt ccagtttgga 2820

gaaaaaggag gttccaggag tagattttag cataactcaa ttcgtaagga atcttggact 2880 tgagcaccta atggatatat ttgagagaga acagatcact ttggatgtat tagttgagat 2940 ggggcacaag gagctgaagg agattggaat caatgcttat ggacataggc acaaactaat 3000 taaaggagtc gagagactta tctccggaca acaaggtctt aacccatatt taactttgaa 3060 cacctctggt agtggaacaa ttcttataga tctgtctcct gatgataaag agtttcagtc 3120 tgtggaggaa gagatgcaaa gtacagttcg agagcacaga gatggaggtc atgcaggtgg 3180 aatetteaae agatacaata tteteaagat teagaaggtt tgtaacaaga aactatggga 3240 aagatacact caccggagaa aagaagtttc tgaagaaaac cacaaccatg ccaatgaacg 3300 aatgctattt catgggtctc cttttgtgaa tgcaattatc cacaaaggct ttgatgaaag 3360 gcatgcgtac ataggtggta tgtttggagc tggcatttat tttgctgaaa actcttccaa 3420 aagcaatcaa tatgtatatg gaattggagg aggtactggg tgtccagttc acaaagacag 3480 atcttgttac atttgccaca ggcagctgct cttttgccgg gtaaccttgg gaaagtcttt 3540 cctgcagttc agtgcaatga aaatggcaca ttctcctcca ggtcatcact cagtcactgg 3600 taggcccagt gtaaatggcc tagcattagc tgaatatgtt atttacagag gagaacaggc 3660 ttatcctgag tatttaatta cttaccagat tatgaggcct gaaggtatgg tcgatggata 3720 aatagttatt ttaagaaact aattccactg aacctaaaat catcaaagca gcagtggcct 3780 ctacgtttta ctcctttgct gaaaaaaaat catcttgccc acaggcctgt ggcaaaagga 3840 taaaaatgtg aacgaagttt aacattctga cttgataaag ctttaataat gtacagtgtt 3900 ttctaaatat ttcctgtttt ttcagcactt taacagatgc cattccaggt taaactgggt 3960 tgtctgtact aaattataaa cagagttaac ttgaaccttt tatatgttat gcattgattc 4020 taacaaactg taatgccctc aacagaacta attttactaa tacaatactg tgttctttaa 4080 aacacagcat ttacactgaa tacaatttca tttgtaaaac tgtaaataag agcttttgta 4140 ctagcccagt atttatttac attgctttgt aatataaatc tgttttagaa ctgcagcggt 4200 ttacaaaatt ttttcatatg tattgttcat ctatacttca tcttacatcg tcatgattga 4260 gtgatcttta catttgattc cagaggctat gttcagttgt tagttgggaa agattgagtt 4320 atcagattta atttgccgat gggagccttt atctgtcatt agaaatcttt ctcatttaag 4380 aacttatgaa tatgctgaag atttaatttg tgataccttt gtatgtatga gacacattcc 4440 aaagagetet aactatgata ggteetgatt aetaaagaag ettetttaet ggeeteaatt 4500 tetagettte atgttggaaa attttetgea gteettetgt gaaaattaga geaaagtget 4560 cctgtttttt agagaaacta aatcttgctg ttgaacaatt attgtgttct tttcatggaa 4620

cataagtagg atgttaacat ttccagggtg ggaagggtaa tcctaaatca tttcccaatc 4680 tattctaatt accttaaatc taaaggggaa aaaaaaaatc acaaacagga ctgggtagtt 4740 ttttatccta agtatatttt ttcctgttct ttttacttgg ttttattgct gtatttatag 4800 ccaatctata catcatgggt aaacttaacc cagaactata aaatgtagtt gtttcagtcc 4860 cetteaggee teetgaatgg geaagtgeag tgaaacaggt getteetget cetgggtttt 4920 ctctccatga tgttatgccc aattggaaat atgctgtcag tttgtgcacc atatggtgac 4980 cacgcctgtg ctcagtttgg cagctataga aggaaatgct gtcccataaa atgccatccc 5040 tatttctaat ataacactct tttccaggaa gcatgcttaa gcatcttgtt acagagacat 5100 acatccatta tggcttggca atctctttta tttgttgact ctagctccct tcaaagtcga 5160 ggaaagatct ttactcactt aatgaggaca ttccccatca ctgtctgtac cagttcacct 5220 ttattttacg ttttattcag tctgtaaatt aactggccct ttgcagtaac ttgtacataa 5280 agtgctagaa aatcatgttc cttgtcctga gtaagagtta atcagagtaa gtgcatttct 5340 ggagttgttt ctgtgatgta aattatgatc attatttaag aagtcaaatc ctgatcttga 5400 agtgettttt atacagetet etaataatta caaatateeg aaagteattt ettggaacae 5460 aagtggagta tgccaaattt tatatgaatt tttcagatta tctaagcttc caggttttat 5520 aattagaaga taatgagaga attaatgggg tttatattta cattatctct caactatgta 5580 gcccatatta ctcaccctat gagtgaatct ggaattgctt ttcatgtgaa atcattgtgg 5640 totatgagtt tacaatactg caaactgtgt tattttatct aaaccattgc ttaatgagtg 5700 tgtttttcca tgaatgaata taccgtggtt catatgttag catggcagca ttttcagata 5760 gctttttgtt tgttgggaag ttggggtttt ggggggaggg ggagtattag tacqttqcat 5820 ggaatagcct actttataat gatgggaatg ctttttcttt tgttttggga ttttttttt 5880 tgaagtgaaa tttaactttt tgtgccagta gtactattat acccatcttc agtgtcttac 5940 ttgtactgta tcaaattcca taccctcatt taattcttaa taaaactgtt cacttgtaaa 6000 aaaaaaaaa aaaaaaaa 6018

<210> 12

²⁰³⁹

DNA

Homo sapien

<400>

ccacatccag aagcaaaagc acttcaatga gcgagaagcc agccgagtgg tgcgggacgt 60 tgctgctgcc cttgacttcc tgcataccaa aggcattgct catcgtgatc tgaaaccaga

aaatatattg tgtgaatctc cagaaaaggt gtctccagtg aaaatctgtg actttgactt 180 gggcagtggg atgaaactga acaactcctg tacccccata accacaccag agctgaccac 240 cccatgtggc tctgcagaat acatggcccc tgaggtagtg gaggtcttca cggaccaggc 300 cacattetae gacaageget gtgacetgtg gageetggge gtggteetet acateatget 360 gagtggctac ccaccetteg tgggtcactg cggggccgac tgtggctggg accggggcga 420 ggtctgcagg gtgtgccaga acaagctgtt tgaaagcatc caggaaggca agtatgagtt 480 tectgacaag gaetgggeae acatetecag tgaagecaaa gaeeteatet ecaageteet 540 ggtgcgagat gcaaagcaga aacttagcgc cgcccaagtt ctgcagcacc catgggtgca 600 ggggcaaget ccagaaaagg gactececae geegeaagte etecagagga acageageae 660 aatggacctg acgetetteg cagetgagge categeeett aacegeeage tateteagea 720 cgaagagaac gaactagcag aggagccaga ggcactagct gatggcctct gctccatgaa 780 gctttcccct ccctgcaagt cacgcctggc ccggagacgg gccctggccc aggcaggccg 840 tggtgaaaac aggagcccgc ccacagcact ctgaaatgct ccagtcacac cttataggcc 900 ctaggcctgg ccaggcattg tcccctggaa acctgtgtgg ctaaagtctg ctgagcaggc 960 agcageetet getetgtgge tecatteagg ettttteate taegaaggee etgaggttee 1020 catcaacccc catttcccta gggtcctgga ggaaaaagct ttttccaaag gggttgtctt 1080 tgaaaaggaa agcaatcact tctcactttg cataattgcc tgcagcagga acatctcttc 1140 actgggctcc acctgctcac ccgcctgcag atctgggatc cagcctgctc tcaccgctgt 1200 agctgtggcg gctggggctg cagcctgcag ggagaagcaa gaagcatcag ttgacagagg 1260 etgeegacae gtgeetette ectetettet etgteaceet ectetggegg teetteeace 1320 ttcctctgtc ctccggatgt cctctttgcc cgtcttctcc cttggctgag caaagccatc 1380 ccctcaattc agggaagggc aaggagcctt cctcattcag gaaatcaaat cagtcttccg 1440 gtctgcagca cggaaaagca cataatcttt ctttgctgtg actgaaatgt atccctcgtt 1500 tatcatcccc tttgtttgtg attgctgcta aagtcagtag tatcgttttt ttaaaaaaaa 1560 agtttggtgt ttttaaccat gctgttccat caaagatgat accttaaact cccactgcaa 1620 gcccatgaat ttcccagaga gtggaacggc ttgctcttct ttctagaatg tccatgcact 1680 tgggttttaa tcagcagttc cctattattc tgattttaag ctgttcctgt gatgaactta 1740 gagacagcat cggtgtctgc tgctgtgtcc ccaggtcttg tgtgggtggc acagatctgg 1800 gcagttagat agtgctctgt gcctaaggtg aagccacact agggtgaagc ctcacttccc 1860 tgtttgagca atgcagtgcc tgctgcccgt gtgcatgaag gtacagccat tcagataagt 1920

	ggaactattg	agttacataa	agaaaataga	tttgcatttg	tcaggcagac	gtttatacaa	1980
	caccacggtg	cttttataca	ttgtgcttat	tttaataaaa	ctgaaattct	aaaaaaaa	2039
	<210> 13 <211> 766						
	<212> DNA <213> Hom	o sapien					
	<400> 13						
	ctctctttcg	attcttccat	actcagagta	cgcacggtct	gattttctct	ttggattctt	60
	ccaaaatcag	agtcagactg	ctcccggtgc	catgaacgga	gacgacgcct	ttgcaaggag	120
	acccacggtt	ggtgctcaaa	taccagagaa	gatccaaaag	gccttcgatg	atattgccaa	180
	atacttctct	aaggaagagt	gggaaaagat	gaaagcctcg	gagaaaatct	tctatgtgta	240
	tatgaagaga	aagtatgagg	ctatgactaa	actaggtttc	aaggccaccc	tcccaccttt	300
	catgtgtaat	aaacgggccg	aagacttcca	ggggaatgat	ttggataatg	accctaaccg	360
	tgggaatcag	gttgaacgtc	ctcagatgac	tttcggcagg	ctccagggaa	tctccccgaa	420
	gatcatgccc	aagaagccag	cagaggaagg	aaatgattcg	gaggaagtgc	cagaagcatc	480
	tggcccacaa	aatgatggga	aagagctgtg	cccccggga	aaaccaacta	cctctgagaa	540
	gattcacgag	agatctggac	ccaaaagggg	ggaacatgcc	tggacccaca	gactgcgtga	600
	gagaaaacag	ctggtgattt	atgaagagat	cagcgaccct	gaggaagatg	acgagtaact	660
	cccctcaggg	atacgacaca	tgcccatgat	gagaagcaga	acgtggtgac	ctttcacgaa	720
	catgggcatg	gctgcggacc	cctcgtcatc	aggtgcatag	caagtg		766
	<210> 14						
	<211> 4204	1					
	<212> DNA <213> Homo	o sapien					
	<400> 14						
	acgcaggcag	tgatgtcacc	cagaccacac	cccttccccc	aatgccactt	cagggggtac	60
	tcagagtcag	agacttggtc	tgaggggagc	agaagcaatc	tgcagaggat	ggcggtccag	120
9	gctcagccag	gcatcaactt	caggaccctg	agggatgacc	gaaggccccg	cccacccacc	180
(cccaactccc	ccgaccccac	caggatctac	agcctcagga	ccccgtccc	aatccttacc	240
•	ccttgcccca	tcaccatctt	catgettace	tccaccccca	tccgatcccc	atccaggcag	300
ě	aatccagttc	cacccctgcc	cggaacccag	ggtagtaccg	ttgccaggat	gtgacgccac	360
1	tgacttgcgc	attggaggtc	agaagaccgc	gagattctcg	ccctgagcaa	cgagcgacgg	420
•	cctgacgtcg	gcggagggaa	gccggcccag	gctcggtgag	gaggcaaggt	aagacgctga	480

gggaggactg aggcgggcct cacctcagac agagggcctc aaataatcca gtgctgcctc 540 tgctgccggg cctgggccac cccgcagggg aagacttcca ggctgggtcg ccactacctc 600 accccgccga cccccgccgc tttagccacg gggaactctg gggacagagc ttaatgtggc 660 cagggcaggg ctggttagaa gaggtcaggg cccacgctgt ggcaggaatc aaggtcagga 720 ccccgagagg gaactgaggg cagcctaacc accaccctca ccaccattcc cgtccccaa 780 cacccaaccc caccccatc ccccattccc atccccaccc ccaccctat cctggcagaa 840 teegggettt geecetggta teaagteaeg gaageteegg gaatggegge eaggeaegtg 900 agtcctgagg ttcacatcta cggctaaggg agggaagggg ttcggtatcg cgagtatggc 960 cgttgggagg cagcgaaagg gcccaggcct cctggaagac agtggagtcc tgaggggacc 1020 cagcatgcca ggacaggggg cccactgtac ccctgtctca aaccgaggca ccttttcatt 1080 cggctacggg aatcctaggg atgcagaccc acttcagcag ggggttgggg cccagcctg 1140 cgaggagtca tggggaggaa gaagagggag gactgagggg accttggagt ccagatcagt 1200 ggcaaccttg ggctggggga tgctgggcac agtggccaaa tgtgctctgt gctcattgcg 1260 ccttcagggt gaccagagag ttgagggctg tggtctgaag agtgggactt caggtcagca 1320 gagggaggaa teccaggate tgeagggeee aaggtgtaee eecaagggge eectatgtgg 1380 tggacagatg cagtggtcct aggatctgcc aagcatccag gtgaagagac tgagggagga 1440 ttgagggtac ccctgggaca gaatgcggac tgggggcccc ataaaaatct gccctgctcc 1500 tgctgttacc tcagagagcc tgggcagggc tgtcagctga ggtccctcca ttatcctagg 1560 atcactgatg tcagggaagg ggaagccttg gtctgagggg gctgcactca gggcagtaga 1620 gggaggctct cagaccctac taggagtgga ggtgaggacc aagcagtctc ctcacccagg 1680 gtacatggac ttcaataaat ttggacatct ctcgttgtcc tttccgggag gacctgggaa 1740 tgtatggcca gatgtgggtc ccctcatgtt tttctgtacc atatcaggta tgtgagttct 1800 tgacatgaga gattctcagg ccagcagaag ggagggatta ggccctataa ggagaaaggt 1860 gagggccctg agtgagcaca gaggggatcc tccaccccag tagagtgggg acctcacaga 1920 gtctggccaa ccctcctgac agttctggga atccgtggct gcgtttgctg tctgcacatt 1980 gggggcccgt ggattcctct cccaggaatc aggagctcca ggaacaaggc agtgaggact 2040 tggtctgagg cagtgtcctc aggtcacaga gtagaggggg ctcagatagt gccaacggtg 2100 aaggtttgcc ttggattcaa accaagggcc ccacctgccc cagaacacat ggactccaga 2160 gegeetggee teacceteaa taettteagt cetgeageet cageatgege tggeeggatg 2220 taccctgagg tgccctctca cttcctcctt caggttctga ggggacaggc tgacctggag 2280

gaccagaggc ccccggagga gcactgaagg agaagatctg taagtaagcc tttgttagag 2340 cctccaaggt tccattcagt actcagctga ggtctctcac atgctccctc tctccccagg 2400 ccagtgggtc tccattgccc agctcctgcc cacactcccg cctgttgccc tgaccagagt 2460 catcatgcct cttgagcaga ggagtcagca ctgcaagcct gaagaaggcc ttgaggcccg 2520 aggagaggcc ctgggcctgg tgggtgcgca ggctcctgct actgaggagc aggaggctgc 2580 ctcctcctct tctactctag ttgaagtcac cctgggggag gtgcctgctg ccgagtcacc 2640 agatectece cagagtecte agggagecte cageetecee actaceatga actaceetet 2700 ctggagccaa tcctatgagg actccagcaa ccaagaagag gaggggccaa gcaccttccc 2760 tgacctggag tccgagttcc aagcagcact cagtaggaag gtggccgagt tggttcattt 2820 tetgeteete aagtategag eeagggagee ggteacaaag geagaaatge tggggagtgt 2880 cgtcggaaat tggcagtatt tettteetgt gatetteage aaagetteea gtteettgea 2940 gctggtcttt ggcatcgagc tgatggaagt ggaccccatc ggccacttgt acatctttgc 3000 cacctgcctg ggcctctcct acgatggcct gctgggtgac aatcagatca tgcccaaggc 3060 aggceteetg ataategtee tggeeataat egeaagagag ggegaetgtg eecetgagga 3120 gaaaatctgg gaggagctga gtgtgttaga ggtgtttgag gggagggaag acagtatctt 3180 gggggatccc aagaagctgc tcacccaaca tttcgtgcag gaaaactacc tggagtaccg 3240 gcaggtcccc ggcagtgatc ctgcatgtta tgaattcctg tggggtccaa gggccctcgt 3300 tgaaaccagc tatgtgaaag tcctgcacca tatggtaaag atcagtggag gacctcacat 3360 ttcctaccca cccctgcatg agtgggtttt gagagagggg gaagagtgag tctgagcacg 3420 agttgcagcc agggccagtg ggagggggtc tgggccagtg caccttccgg ggccgcatcc 3480 ettagtttee actgeeteet gtgaegtgag geceattett eactetttga agegageagt 3540 cagcattett agtagtgggt ttetgttetg ttggatgaet ttgagattat tetttgttte 3600 ctgttggagt tgttcaaatg ttccttttaa cggatggttg aatgagcgtc agcatccagg 3660 tttatgaatg acagtagtca cacatagtgc tgtttatata gtttaggagt aagagtcttg 3720 ttttttactc aaattgggaa atccattcca ttttgtgaat tgtgacataa taatagcagt 3780 ggtaaaagta tttgcttaaa attgtgagcg aattagcaat aacatacatg agataactca 3840 agaaatcaaa agatagttga ttcttgcctt gtacctcaat ctattctgta aaattaaaca 3900 aatatgcaaa ccaggatttc cttgacttct ttgagaatgc aagcgaaatt aaatctgaat 3960 aaataattet teetetteae tggetegttt etttteegtt eacteageat etgetetgtg 4020 ggaggccctg ggttagtagt ggggatgcta aggtaagcca gactcacgcc tacccatagg 4080

gctgtagagc	ctaggacctg	cagtcatata	attaaggtgg	tgagaagtcc	tgtaagatgt	4140
agaggaaatg	taagagaggg	gtgagggtgt	ggcgctccgg	gtgagagtag	tggagtgtca	4200
gtgc						4204
<210> 15 <211> 752						
<212> DNA <213> Homo	o sapien					
<400> 15						
atcctcgtgg	gccctgacct	tctctctgag	agccgggcag	aggctccgga	gccatgcagg	60
ccgaaggccg	gggcacaggg	ggttcgacgg	gcgatgctga	tggcccagga	ggccctggca	120
ttcctgatgg	cccagggggc	aatgctggcg	gcccaggaga	ggcgggtgcc	acgggcggca	180
gaggtccccg	gggcgcaggg	gcagcaaggg	cctcggggcc	gggaggaggc	gccccgcggg	240
gtccgcatgg	cggcgcggct	tcagggctga	atggatgctg	cagatgcggg	gccagggggc	300
cggagagccg	cctgcttgag	ttctacctcg	ccatgccttt	cgcgacaccc	atggaagcag	360
agctggcccg	caggagcctg	gcccaggatg	ccccaccgct	tecegtgeca	ggggtgcttc	420
tgaaggagtt	cactgtgtcc	ggcaacatac	tgactatccg	actgactgct	gcagaccacc	480
gccaactgca	gctctccatc	agctcctgtc	tccagcagct	ttccctgttg	atgtggatca	540
cgcagtgctt	tctgcccgtg	tttttggctc	agcctccctc	agggcagagg	cgctaagccc	600
agcctggcgc	cccttcctag	gtcatgcctc	ctcccctagg	gaatggtccc	agcacgagtg	660
gccagttcat	tgtgggggcc	tgattgtttg	tcgctggagg	aggacggctt	acatgtttgt	720
ttctgtagaa	aataaaactg	agctacgaaa	aa			752
<210> 16 <211> 1967	7					
<212> PRT <213> Homo	o sapiens					
	Sapichs					
<400> 16				_		
Leu Glu Phe	e Lys Ile S 5	er Asp Glu	Glu Ala Asp 10	Asp Ala Asp	o Ala Ala 15	
Gly Arg Asp	Ser Pro S	er Asn Thr	Ser Gln Ser	Glu Gln Gl	n Glu Ser	
	20		25	30		
Val Asp Ala	a Glu Gly P	ro Val Val 40	Glu Lys Ile	Met Ser Ser 45	r Arg Ser	
Val Lys Lys	s Gln Lys G	lu Ser Gly	Glu Glu Val	Glu Ile Glu	ı Glu Phe	

Tyr Val Lys Tyr Lys Asn Phe Ser Tyr Leu His Cys Gln Trp Ala Ser

65					70					75					80
Ile	Glu	Asp	Leu	Glu 85	Lys	Asp	Lys	Arg	Ile 90	Gln	Gln	Lys	Ile	Lys 95	Arg
Phe	Lys	Ala	Lys 100	Gln	Gly	Gln	Asn	Lys 105	Phe	Leu	Ser	Glu	Ile 110	Glu	Asp
Glu	Leu	Phe 115	Asn	Pro	Asp	Tyr	Val 120	Glu	Val	Asp	Arg	Ile 125	Met	Asp	Phe
Ala	Arg 130	Ser	Thr	Asp	Asp	Arg 135	Gly	Glu	Pro	Val	Thr 140	His	Tyr	Leu	Val
Lys 145	Trp	Cys	Ser	Leu	Pro 150	Tyr	Glu	Asp	Ser	Thr 155	Trp	Glu	Arg	Arg	Gln 160
Asp	Ile	Asp	Gln	Ala 165	Lys	Ile	Glu	Glu	Phe 170	Glu	Lys	Leu	Met	Ser 175	Arg
Glu	Pro	Glu	Thr 180	Glu	Arg	Val	Glu	Arg 185	Pro	Pro	Ala	Asp	Asp 190	Trp	Lys
Lys	Ser	Glu 195	Ser	Ser	Arg	Glu	Tyr 200	Lys	Asn	Asn	Asn	Lys 205	Leu	Arg	Glu
Tyr	Gln 210	Leu	Glu	Gly	Val	Asn 215	Trp	Leu	Leu	Phe	Asn 220	Trp	Tyr	Asn	Met
Arg 225	Asn	Cys	Ile	Leu	Ala 230	Asp	Glu	Met	Gly	Leu 235	Gly	Lys	Thr	Ile	Gln 240
Ser	Ile	Thr	Phe	Leu 245	Tyr	Glu	Ile	Tyr	Leu 250	Lys	Gly	Ile	His	Gly 255	Pro
Phe	Leu	Val	Ile 260	Ala	Pro	Leu	Ser	Thr 265	Ile	Pro	Asn	Trp	Glu 270	Arg	Glu
Phe	Arg	Thr 275	Trp	Thr	Glu	Leu	Asn 280	Val	Val	Val	Tyr	His 285	Gly	Ser	Gln
Ala	Ser 290	Arg	Arg	Thr	Ile	Gln 295	Leu	Tyr	Glu	Met	Tyr 300	Phe	Lys	Asp	Pro
Gln 305	Gly	Arg	Val	Ile	Lys 310	Gly	Ser	Tyr	Lys	Phe 315	His	Ala	Ile	Ile	Thr 320
Thr	Phe	Glu	Met	Ile 325	Leu	Thr	Asp	Cys	Pro 330	Glu	Leu	Arg	Asn	Ile 335	Pro
Trp	Arg	Cys	Val 340	Val	Ile	Asp	Glu	Ala 345	His	Arg	Leu	Lys	Asn 350	Arg	Asn
Cys	Lys	Leu 355	Leu	Glu	Gly	Leu	Lys 360	Met	Met	Asp	Leu	Glu 365	His	Lys	Val
Leu	Leu 370	Thr	Gly	Thr	Pro	Leu 375	Gln	Asn	Thr	Val	Glu 380	Glu	Leu	Phe	Ser
Leu	Leu	His	Phe	Leu	Glu	Pro	Ser	Arg	Phe	Pro	Ser	Glu	Thr	Thr	Phe

385					390					395					400
Met	Gln	Glu	Phe	Gly 405		Leu	Lys	Thr	Glu 410		Gln	Val	Gln	Lys 415	Leu
Gln	Ala	Ile	Leu 420		Pro	Met	Met	Leu 425		Arg	Leu	Lys	Glu 430	_	Val
Glu	Lys	Asn 435		Ala	Pro	Lys	Glu 440		Thr	Ile	Ile	Glu 445	Val	Glu	Leu
Thr	Asn 450		Gln	Lys	Lys	Tyr 455		Arg	Ala	Ile	Leu 460	Glu	Lys	Asn	Phe
Thr 465	Phe	Leu	Ser	Lys	Gly 470	Gly	Gly	Gln	Ala	Asn 475	Val	Pro	Asn	Leu	Leu 480
Asn	Thr	Met	Met	Glu 485		Arg	Lys	Cys	Cys 490	Asn	His	Pro	Tyr	Leu 495	Ile
Asn	Gly	Ala	Glu 500	Glu	Lys	Ile	Leu	Glu 505	Glu	Phe	Lys	Glu	Thr 510	His	Asn
Ala	Glu	Ser 515	Pro	Asp	Phe	Gln	Leu 520	Gln	Ala	Met	Ile	Gln 525	Ala	Ala	Gly
Lys	Leu 530	Val	Leu	Ile	Asp	Lys 535	Leu	Leu	Pro		Leu 540	Lys	Ala	Gly	Gly
His 545	Arg	Val	Leu	Ile	Phe 550	Ser	Gln	Met	Val	Arg 555	Cys	Leu	Asp	Ile	Leu 560
Glu	Asp	Tyr	Leu	Ile 565	Gln	Arg	Arg	Tyr	Pro 570	Tyr	Glu	Arg	Ile	Asp 575	Gly
Arg	Val	Arg	Gly 580	Asn	Leu	Arg	Gln	Ala 585	Ala	Ile	Asp	Arg	Phe 590	Ser	Lys
Pro	Asp	Ser 595	Asp	Arg	Phe	Val	Phe 600	Leu	Leu	Cys	Thr	Arg 605	Ala	Gly	Gly
Leu	Gly 610	Ile	Asn	Leu	Thr	Ala 615	Ala	Asp	Thr	Cys	Ile 620	Ile	Phe	Asp	Ser
Asp 625	Trp	Asn	Pro	Gln	Asn 630	Asp	Leu	Gln	Ala	Gln 635	Ala	Arg	Cys	His	Arg 640
Ile	Gly	Gln	Ser	Lys 645	Ser	Val	Lys	Ile	Tyr 650	Arg	Leu	Ile	Thr	Arg 655	Asn
Ser	Tyr	Glu	Arg 660	Glu	Met	Phe	Asp	Lys 665	Ala	Ser	Leu	Lys	Leu 670	Gly	Leu
Asp	Lys	Ala 675	Val	Leu	Gln	Ser	Met 680	Ser	Gly	Arg	Glu	Asn 685	Ala	Thr	Asn
Gly	Val 690	Gln	Gln	Leu	Ser	Lys 695	Lys	Glu	Ile	Glu	Asp 700	Leu	Leu	Arg	Lys
Gly	Ala	Tyr	Gly	Ala	Leu	Met	Asp	Glu	Glu	Asp	Glu	Gly	Ser	Lys	Phe

705	i				710					715					720
Cys	Glu	Glu	Asp	Ile 725		Gln	Ile	Leu	Leu 730		Arg	Thr	His	735	Ile
Thr	Ile	Glu	Ser 740		Gly	Lys	Gly	Ser 745		Phe	Ala	Lys	Ala 750		Phe
Val	Ala	Ser 755		Asn	Arg	Thr	Asp 760		Ser	Leu	Asp	Asp 765		Asn	Phe
Trp	Gln 770		Trp	Ala	Lys	Lys 775		Glu	Leu	Asp	Ile 780	Asp	Ala	Leu	Asn
Gly 785	Arg	Asn	Asn	Leu	Val 790	Ile	Asp	Thr	Pro	Arg 795	Val	Arg	Lys	Gln	Thr 800
Arg	Leu	Tyr	Ser	Ala 805	Val	Lys	Glu	Asp	Glu 810	Leu	Met	Glu	Phe	Ser 815	Asp
Leu	Glu	Ser	Asp 820	Ser	Glu	Glu	Lys	Pro 825	Cys	Ala	Lys	Pro	Arg 830	Arg	Pro
Gln	Asp	Lys 835	Ser	Gln	Gly	Tyr	Ala 840	Arg	Ser	Glu	Cys	Phe 845	Arg	Val	Glu
Lys	Asn 850	Leu	Leu	Val	Tyr	Gly 855	Trp	Gly	Arg	Trp	Thr 860	Asp	Ile	Leu	Ser
865					870					Gln 875	_				880
				885					890	His				895	
			900					905		Thr			910	_	_
		915					920			Leu		925			
	930					935				Gln	940				
945					950					Asn 955					960
				965					970	His				975	
			980					985		Arg			990		-
Asp		Ala 995	Asp	Lys	Ile	Leu	Glu 1000		Ala	Asp	Ser	Ser 100		u Al	a As
	Trp 1010					101	.5			u Va	10	20			
Trp	Asp	Lys	Glu	Ala	Asp	Lys	Se	r Le	u Le	u Il	e Gl	y V	al P	he L	ys

	1025					1030					1035			
His	Gly 1040		Glu	Lys	Tyr	Asn 1045		Met	Arg	Ala	Asp 1050		Ala	Leu
Cys	Phe 1055		Glu	Arg	Val	Gly 1060		Pro	Asp	Ala	Lys 1065		Ile	Ala
Ala	Glu 1070		Arg	Gly	Thr	Asp 1075		Leu	Ala	Asp	Gly 1080	_	Asp	Gly
Gly	Glu 1085		Asp	Arg	Glu	Asp 1090		Asp	Pro	Glu	Tyr 1095	_	Pro	Thr
Arg	Thr 1100		Phe	Lys	Asp	Glu 1105		Asp	Glu	Phe	Ala 1110		Ser	Pro
Ser	Glu 1115		Lys	Glu	Glu	Ser 1120		Glu	Ile	His	Ala 1125		Gly	Lys
His	Ser 1130		Ser	Asn	Ala	Glu 1135	Leu	Gly	Gln	Leu	Tyr 1140	Trp	Pro	Asn
Thr	Ser 1145		Leu	Thr	Thr	Arg 1150		Arg	Arg	Leu	Ile 1155	Thr	Ala	Tyr
Gln	Arg 1160		Tyr	Lys	Arg	Gln 1165	Gln	Met	Arg	Gln	Glu 1170	Ala	Leu	Met
Lys	Thr 1175	Asp	Arg	Arg	Arg	Arg 1180	Arg	Pro	Arg	Glu	Glu 1185	Val	Arg	Ala
Leu	Glu 1190	Ala	Glu	Arg	Glu	Ala 1195	Ile	Ile	Ser	Glu	Lys 1200	Arg	Gln	Lys
Trp	Thr 1205		Arg	Glu	Glu	Ala 1210	Asp	Phe	Tyr	Arg	Val 1215	Val	Ser	Thr
Phe	Gly 1220	Val	Ile	Phe	Asp	Pro 1225	Val	Lys	Gln	Gln	Phe 1230	Asp	Trp	Asn
Gln	Phe 1235	Arg	Ala	Phe	Ala	Arg 1240	Leu	Asp	Lys	Lys	Ser 1245	Asp	Glu	Ser
Leu	Glu 1250	Lys	Tyr	Phe	Ser	Cys 1255	Phe	Val	Ala	Met	Cys 1260	Arg	Arg	Val
Cys	Arg 1265	Met	Pro	Val	Lys	Pro 1270	Asp	Asp	Glu	Pro	Pro 1275	Asp	Leu	Ser
Ser	Ile 1280	Ile	Glu	Pro	Ile	Thr 1285	Glu	Glu	Arg	Ala	Ser 1290	Arg	Thr	Leu
Tyr	Arg 1295	Ile	Glu	Leu	Leu	Arg 1300	Lys	Ile	Arg	Glu	Gln 1305	Val	Leu	His
His	Pro 1310	Gln	Leu	Gly	Glu	Arg 1315	Leu	Lys	Leu	Cys	Gln 1320	Pro	Ser	Leu
Asp	Leu	Pro	Glu	Trp	Trp	Glu	Cys	Gly	Arg	His	Asp	Arg	Asp	Leu

	1325					1330					1335			
Leu	Val 1340	Gly	Ala	Ala	ГÀЗ	His 1345	Gly	Val	Ser	Arg	Thr 1350	Asp	Tyr	His
Ile	Leu 1355	Asn	Asp	Pro	Glu	Leu 1360	Ser	Phe	Leu	Asp	Ala 1365	His	Lys	Asn
Phe	Ala 1370	Gln	Asn	Arg	Gly	Ala 1375	Gly	Asn	Thr	Ser	Ser 1380	Leu	Asn	Pro
Leu	Ala 1385	Val	Gly	Phe	Val	Gln 1390	Thr	Pro	Pro	Val	Ile 1395	Ser	Ser	Ala
His	Ile 1400	Gln	Asp	Glu	Arg	Val 1405	Leu	Glu	Gln	Ala	Glu 1410	Gly	Lys	Val
Glu	Glu 1415	Pro	Glu	Asn	Pro	Ala 1420	Ala	Lys	Glu	Lys	Cys 1425	Glu	Gly	Lys
Glu	Glu 1430	Glu	Glu	Glu	Thr	Asp 1435	Gly	Ser	Gly	Lys	Glu 1440	Ser	Lys	Gln
Glu	Cys 1445	Glu	Ala	Glu	Ala	Ser 1450	Ser	Val	Lys	Asn	Glu 1455	Leu	Lys	Gly
Val	Glu 1460	Val	Gly	Ala	Asp	Thr 1465	Gly	Ser	Lys	Ser	Ile 1470	Ser	Glu	Lys
Gly	Ser 1475	Glu	Glu	Asp	Glu	Glu 1480	Glu	Lys	Leu	Glu	Asp 1485	Asp	Asp	Lys
Ser	Glu 1490	Glu	Ser	Ser	Gln	Pro 1495	Glu	Ala	Gly	Ala	Val 1500	Ser	Arg	Gly
Lys	Asn 1505	Phe	Asp	Glu	Glu	Ser 1510	Asn	Ala	Ser	Met	Ser 1515	Thr	Ala	Arg
Asp	Glu 1520	Thr	Arg	Asp	Gly	Phe 1525	Tyr	Met	Glu	Asp	Gly 1530	Asp	Pro	Ser
Val	Ala 1535	Gln	Leu	Leu	His	Glu 1540	Arg	Thr	Phe	Ala	Phe 1545	Ser	Phe	Trp
Pro	Lys 1550	Asp	Arg	Val	Met	Ile 1555	Asn	Arg	Leu	Asp	Asn 1560	Ile	Cys	Glu
Ala	Val 1565	Leu	Lys	Gly	Lys	Trp 1570	Pro	Val	Asn	Arg	Arg 1575	Gln	Met	Phe
Asp	Phe 1580	Gln	Gly	Leu	Ile	Pro 1585	Gly	Tyr	Thr	Pro	Thr 1590	Thr	Val	Asp
Ser	Pro 1595	Leu	Gln	Lys	Arg	Ser 1600	Phe	Ala	Glu	Leu	Ser 1605	Met	Val	Gly
Gln	Ala 1610	Ser	Ile	Ser	Gly	Ser 1615	Glu	Asp	Ile	Thr	Thr 1620	Ser	Pro	Gln
Leu	Ser	Lys	Glu	Asp	Ala	Leu	Asn	Leu	Ser	Val	Pro	Arg	Gln	Arg

	1625					1630					1635			
Arg	Arg 1640		Arg	Arg	Lys	Ile 1645		Ile	Glu	Ala	Glu 1650	_	Ala	Ala
Lys	Arg 1655	_	Asn	Leu	Met	Glu 1660		Val	Ala	Gln	Leu 1665	_	Glu	Ser
Gln	Val 1670		Ser	Glu	Asn	Gly 1675		Glu	Lys	Val	Val 1680		Leu	Ser
Lys	Ala 1685		Arg	Glu	Ala	Thr 1690		Ser	Thr	Ser	Asn 1695		Ser	Ser
Leu	Ser 1700		Lys	Phe	Ile	Leu 1705		Asn	Val	Ser	Thr 1710	Pro	Val	Ser
Asp	Ala 1715		Lys	Thr	Gln	Met 1720		Leu	Leu	Gln	Ala 1725		Leu	Ser
Arg	Thr 1730		Thr	Arg	His	Leu 1735		Asn	Gly	Ser	Leu 1740		Asp	Gly
Glu	Pro 1745	Pro	Met	Lys	Arg	Arg 1750	Arg	Gly	Arg	Arg	Lys 1755	Asn	Val	Glu
Gly	Leu 1760	Asp	Leu	Leu	Phe	Met 1765		His	Lys	Arg	Thr 1770	Ser	Leu	Ser
Ala	Glu 1775	Asp	Ala	Glu	Val	Thr 1780	Lys	Ala	Phe	Glu	Glu 1785	Asp	Ile	Glu
Thr	Pro 1790	Pro	Thr	Arg	Asn	Ile 1795	Pro	Ser	Pro	Gly	Gln 1800	Leu	Asp	Pro
Asp	Thr 1805	Arg	Ile	Pro	Val	Ile 1810	Asn	Leu	Glu	Asp	Gly 1815	Thr	Arg	Leu
Val	Gly 1820	Glu	Asp	Ala	Pro	Lys 1825	Asn	Lys	Asp	Leu	Val 1830	Glu	Trp	Leu
Lys	Leu 1835	His	Pro	Thr	Tyr	Thr 1840	Val	Asp	Met	Pro	Ser 1845	Tyr	Val	Pro
Lys	Asn 1850	Ala	Asp	Val	Leu	Phe 1855	Ser	Ser	Phe	Gln	Lys 1860	Pro	Lys	Gln
Lys	Arg 1865	His	Arg	Cys	Arg	Asn 1870	Pro	Asn	Lys	Leu	Asp 1875	Ile	Asn	Thr
Leu	Thr 1880	Gly	Glu	Glu	Arg	Val 1885	Pro	Val	Val	Asn	Lys 1890	Arg	Asn	Gly
Lys	Lys 1895	Met	Gly	Gly	Ala	Met 1900	Ala	Pro	Pro	Met	Lys 1905	Asp	Leu	Pro
Arg	Trp 1910	Leu	Glu	Glu	Asn	Pro 1915	Glu	Phe	Ala	Val	Ala 1920	Pro	Asp	Trp
Thr	Asp	Ile	Val	Lys	Gln	Ser	Gly	Phe	Val	Pro	Glu	Ser	Met	Phe

1935 1930 1925 Asp Arg Leu Leu Thr Gly Pro Val Val Arg Gly Glu Gly Ala Ser 1945 Arg Arg Gly Arg Arg Pro Lys Ser Glu Ile Ala Arg Ala Ala 1960 1955 <210> 17 <211> 109 <212> PRT <213> Homo sapiens <220> <221> UNSURE <222> (84)..(84) <223> x = any amino acid <220> <221> UNSURE <222> (100)..(100) <223> x = any amino acid<400> 17 Arg Pro Ser Leu Pro Arg Ala Leu Pro Ala Ala Pro His Glu Arg Ser Pro Ala Arg Pro Gly Ser Val Gly Gly Gly Ala Pro Pro Met Leu Leu Gln Pro Ala Pro Cys Ala Pro Ser Ala Gly Phe Pro Arg Pro Leu Ala Ala Pro Gly Ala Met His Leu Phe Ala Glu Gly His His Val His Gln Asp Leu Arg Gly Arg Pro Ala Val Pro His Tyr Arg Arg Leu Ala Gln Glu Val Leu Xaa Gly Leu Arg Arg His Leu Arg Arg Pro Trp Ser Ser Pro Thr Ala Xaa Arg Ala Ser Pro Ala Ala Thr Ala Ser 105 <210> 18 <211> 897 <212> PRT <213> Homo sapiens <400> 18 Glu Phe Leu Leu Ser Lys Ser Lys Glu Pro Thr Pro Gly Gly Leu Asn His Ser Leu Pro Gln His Pro Lys Cys Trp Gly Ala His His Ala Ser

25

Leu Asp Gln Ser Ser Pro Pro Gln Ser Gly Pro Pro Gly Thr Pro Pro 35 40 45

Ser Tyr Lys Leu Pro Leu Pro Gly Pro Tyr Asp Ser Arg Asp Asp Phe 50 55 60

Pro Leu Arg Lys Thr Ala Ser Glu Pro Asn Leu Lys Val Arg Ser Arg 65 70 75 80

Leu Lys Gln Lys Val Ala Glu Arg Arg Ser Ser Pro Leu Leu Arg Arg 85 90 95

Lys Asp Gly Thr Val Ile Ser Thr Phe Lys Lys Arg Ala Val Glu Ile 100 105 110

Thr Gly Ala Gly Pro Gly Ala Ser Ser Val Cys Asn Ser Ala Pro Gly 115 120 125

Ser Gly Pro Ser Ser Pro Asn Ser Ser His Ser Thr Ile Ala Glu Asn 130 135 140

Gly Phe Thr Gly Ser Val Pro Asn Ile Pro Thr Glu Met Leu Pro Gln 145 150 155 160

His Arg Ala Leu Pro Leu Asp Ser Ser Pro Asn Gln Phe Ser Leu Tyr 165 170 175

Thr Ser Pro Ser Leu Pro Asn Ile Ser Leu Gly Leu Gln Ala Thr Val 180 185 190

Thr Val Thr Asn Ser His Leu Thr Ala Ser Pro Lys Leu Ser Thr Gln
195 200 205

Gln Glu Ala Glu Arg Gln Ala Leu Gln Ser Leu Arg Gln Gly Gly Thr 210 215 220

Leu Thr Gly Lys Phe Met Ser Thr Ser Ser Ile Pro Gly Cys Leu Leu 225 230 235 240

Gly Val Ala Leu Glu Gly Asp Gly Ser Pro His Gly His Ala Ser Leu 245 250 255

Leu Gln His Val Leu Leu Glu Gln Ala Arg Gln Gln Ser Thr Leu 260 265 270

Ile Ala Val Pro Leu His Gly Gln Ser Pro Leu Val Thr Gly Glu Arg
275 280 285

Val Ala Thr Ser Met Arg Thr Val Gly Lys Leu Pro Arg His Arg Pro 290 295 300

Leu Ser Arg Thr Gln Ser Ser Pro Leu Pro Gln Ser Pro Gln Ala Leu 305 310 315 320

Gln Gln Leu Val Met Gln Gln Gln His Gln Gln Phe Leu Glu Lys Gln 325 330 335

Lys Gln Gln Gln Leu Gln Leu Gly Lys Ile Leu Thr Lys Thr Gly Glu 340 345 350

Leu Pro Arg Gln Pro Thr Thr His Pro Glu Glu Thr Glu Glu Glu Leu 355 Thr Glu Gln Gln Glu Val Leu Leu Gly Glu Gly Ala Leu Thr Met Pro 375 Arg Glu Gly Ser Thr Glu Ser Glu Ser Thr Gln Glu Asp Leu Glu Glu 390 395 Glu Asp Glu Glu Glu Glu Glu Glu Glu Asp Cys Ile Gln Val Lys Asp Glu Glu Gly Glu Ser Gly Ala Glu Gly Pro Asp Leu Glu Glu Pro Gly Ala Gly Tyr Lys Lys Leu Phe Ser Asp Ala Gln Pro Leu Gln Pro Leu Gln Val Tyr Gln Ala Pro Leu Ser Leu Ala Thr Val Pro 455 His Gln Ala Leu Gly Arg Thr Gln Ser Ser Pro Ala Ala Pro Gly Gly 470 475 Met Lys Asn Pro Pro Asp Gln Pro Val Lys His Leu Phe Thr Thr Ser 490 Val Val Tyr Asp Thr Phe Met Leu Lys His Gln Cys Met Cys Gly Asn Thr His Val His Pro Glu His Ala Gly Arg Ile Gln Ser Ile Trp Ser 520 Arg Leu Gln Glu Thr Gly Leu Leu Ser Lys Cys Glu Arg Ile Arg Gly Arg Lys Ala Thr Leu Asp Glu Ile Gln Thr Val His Ser Glu Tyr His 555 550 Thr Leu Leu Tyr Gly Thr Ser Pro Leu Asn Arg Gln Lys Leu Asp Ser Lys Lys Leu Leu Gly Pro Ile Ser Gln Lys Met Tyr Ala Val Leu Pro 585 Cys Gly Gly Ile Gly Val Asp Ser Asp Thr Val Trp Asn Glu Met His 595 Ser Ser Ser Ala Val Arg Met Ala Val Gly Cys Leu Leu Glu Leu Ala 615 Phe Lys Val Ala Ala Gly Glu Leu Lys Asn Gly Phe Ala Ile Ile Arg 635 Pro Pro Gly His His Ala Glu Glu Ser Thr Ala Met Gly Phe Cys Phe

Phe Asn Ser Val Ala Ile Thr Ala Lys Leu Leu Gln Gln Lys Leu Asn 665

670

Val Gly Lys Val Leu Ile Val Asp Trp Asp Ile His His Gly Asn Gly 675 680 685

Thr Gln Gln Ala Phe Tyr Asn Asp Pro Ser Val Leu Tyr Ile Ser Leu 690 695 700

His Arg Tyr Asp Asn Gly Asn Phe Phe Pro Gly Ser Gly Ala Pro Glu 705 710 715 720

Glu Val Gly Gly Pro Gly Val Gly Tyr Asn Val Asn Val Ala Trp
725 730 735

Thr Gly Gly Val Asp Pro Pro Ile Gly Asp Val Glu Tyr Leu Thr Ala 740 745 750

Phe Arg Thr Val Val Met Pro Ile Ala His Glu Phe Ser Pro Asp Val 755 760 765

Val Leu Val Ser Ala Gly Phe Asp Ala Val Glu Gly His Leu Ser Pro 770 775 780

Leu Gly Gly Tyr Ser Val Thr Ala Arg Cys Phe Gly His Leu Thr Arg
785 790 795 800

Gln Leu Met Thr Leu Ala Gly Gly Arg Val Val Leu Ala Leu Glu Gly 805 810 815

Gly His Asp Leu Thr Ala Ile Cys Asp Ala Ser Glu Ala Cys Val Ser 820 825 830

Ala Leu Leu Ser Val Lys Leu Gln Pro Leu Asp Glu Ala Val Leu Gln 835 840 845

Gln Lys Pro Asn Ile Asn Ala Val Ala Thr Leu Glu Lys Val Ile Glu 850 855 860

Ile Gln Ser Lys His Trp Ser Cys Val Gln Lys Phe Ala Ala Gly Leu 865 870 875 880

Gly Arg Ser Leu Arg Gly Ala Gln Ala Gly Glu Thr Glu Glu Ala Glu 885 890 895

Met

<210> 19

<211> 890

<212> PRT

<213> Homo sapiens

<400> 19

Met Phe Asp Tyr Met Asp Cys Glu Leu Lys Leu Ser Glu Ser Val Phe 5 10 15

Arg Gln Leu Asn Thr Ala Ile Ala Val Ser Gln Met Ser Ser Gly Gln
20 25 30

Cys Arg Leu Ala Pro Leu Ile Gln Val Ile Gln Asp Cys Ser His Leu

		35					40					45			
Tyr	His 50	Tyr	Thr	Val	Lys	Leu 55	Leu	Phe	Lys	Leu	His 60	Ser	Cys	Leu	Pro
Ala 65	Asp	Thr	Leu	Gln	Gly 70	His	Arg	Asp	Arg	Phe 75	His	Glu	Gln	Phe	His 80
Ser	Leu	Arg	Asn	Phe 85	Phe	Arg	Arg	Ala	Ser 90	Asp	Met	Leu	Tyr	Phe 95	Lys
Arg	Leu	Ile	Gln 100	Ile	Pro	Arg	Leu	Pro 105	Glu	Gly	Pro	Pro	Asn 110	Phe	Leu
Arg	Ala	Ser 115	Ala	Leu	Ala	Glu	His 120	Ile	Lys	Pro	Val	Val 125	Val	Ile	Pro
Glu	Glu 130	Ala	Pro	Glu	Asp	Glu 135	Glu	Pro	Glu	Asn	Leu 140	Ile	Glu	Ile	Ser
Thr 145	Gly	Pro	Pro	Ala	Gly 150	Glu	Pro	Val	Val	Val 155	Ala	Asp	Leu	Phe	Asp 160
Gln	Thr	Phe	Gly	Pro 165	Pro	Asn	Gly	Ser	Val 170	Lys	Asp	Asp	Arg	Asp 175	Leu
Gln	Ile	Glu	Ser 180	Leu	Lys	Arg	Glu	Val 185	Glu	Met	Leu	Arg	Ser 190	Glu	Leu
Glu	Lys	Ile 195	Lys	Leu	Glu	Ala	Gln 200	Arg	Tyr	Ile	Ala	Gln 205	Leu	Lys	Ser
Gln	Val 210	Asn	Ala	Leu	Glu	Gly 215	Glu	Leu	Glu	Glu	Gln 220	Arg	Lys	Gln	Lys
Gln 225		Ala	Leu	Val	Asp 230	Asn	Glu	Gln	Leu	Arg 235	His	Glu	Leu	Ala	Gln 240
Leu	Arg	Ala	Ala	Gln 245	Leu	Glu	Gly	Glu	Arg 250	Ser	Gln	Gly	Leu	Arg 255	Glu
Glu	Ala	Glu	Arg 260	Lys	Ala	Ser	Ala	Thr 265	Glu	Ala	Arg	Tyr	Asn 270	Lys	Leu
Lys	Glu	Lys 275	His	Ser	Glu	Leu	Val 280	His	Val	His	Ala	Glu 285	Leu	Leu	Arg
Lys	Asn 290		Asp	Thr	Ala	Lys 295		Leu	Thr	Val	Thr 300		Gln	Ser	Gln
Glu 305		Val	Ala	Arg	Val 310		Glu	Gln	Leu	Ala 315		Gln	Val	Glu	Gln 320
Val	Lys	Arg	Glu	Ser 325		Leu	Lys	Leu	Glu 330		Lys	Ser	Asp	Gln 335	Leu
Glu	Lys	Leu	Lys 340		Glu	Leu	Glu	Ala 345		Ala	Gly	Glu	Leu 350	Ala	Arg

Ala Gln Glu Ala Leu Ser His Thr Glu Gln Ser Lys Ser Glu Leu Ser

Designation of the second of t

Ser	Arg 370	Leu	Asp	Thr	Leu	Ser 375	Ala	Glu	Lys	Asp	Ala 380	Leu	Ser	Gly	Ala
Val 385	Arg	Gln	Arg	Glu	Ala 390	Asp	Leu	Leu	Ala	Ala 395	Gln	Ser	Leu	Val	Arg 400
Glu	Thr	Glu	Ala	Ala 405	Leu	Ser	Arg	Glu	Gln 410	Gln	Arg	Ser	Ser	Gln 415	Glu
Gln	Gly	Glu	Leu 420	Gln	Gly	Arg	Leu	Ala 425	Glu	Arg	Glu	Ser	Gln 430	Glu	Gln
Gly	Leu	Arg 435	Gln	Arg	Leu	Leu	Asp 440	Glu	Gln	Phe	Ala	Val 445	Leu	Arg	Gly
Ala	Ala 450	Ala	Glu	Ala	Ala	Gly 455	Ile	Leu	Gln	Asp	Ala 460	Val	Ser	Lys	Leu
Asp 465	Asp	Pro	Leu	His	Leu 470	Arg	Cys	Thr	Ser	Ser 475	Pro	Asp	Tyr	Leu	Val 480
Ser	Arg	Ala	Gln	Glu 485	Ala	Leu	Asp	Ala	Val 490	Ser	Thr	Leu	Glu	Glu 495	Gly
His	Ala	Gln	Tyr 500	Leu	Thr	Ser	Leu	Ala 505	Asp	Ala	Ser	Ala	Leu 510	Val	Ala
Ala	Leu	Thr 515	Arg	Phe	Ser	His	Leu 520	Ala	Ala	Asp	Thr	Ile 525	Ile	Asn	Gly
Gly	Ala 530	Thr	Ser	His	Leu	Ala 535	Pro	Thr	Asp	Pro	Ala 540	Asp	Arg	Leu	Ile
Asp 545	Thr	Cys	Arg	Glu	Cys 550	Gly	Ala	Arg	Ala	Leu 555	Glu	Leu	Met	Gly	Gln 560
Leu	Gln	Asp	Gln	Gln 565	Ala	Leu	Arg	His	Met 570	Gln	Ala	Ser	Leu	Val 575	Arg
Thr	Pro	Leu	Gln 580	Gly	Ile	Leu	Gln	Leu 585	Gly	Gln	Glu	Leu	Lys 590	Pro	Lys
Ser	Leu	Asp 595	Val	Arg	Gln	Glu	Glu 600	Leu	Gly	Ala	Val	Val 605	Asp	Lys	Glu
Met	Ala 610	Ala	Thr	Ser	Ala	Ala 615	Ile	Glu	Asp	Ala	Val 620	Arg	Arg	Ile	Glu
Asp 625		Met	Asn	Gln	Ala 630	Arg	His	Ala	Ser	Ser 635	Gly	Val	Lys	Leu	Glu 640
Val	Asn	Glu	Arg	Ile 645	Leu	Asn	Ser	Cys	Thr 650	Asp	Leu	Met	Lys	Ala 655	Ile
Arg	Leu	Leu	Val 660	Thr	Thr	Ser	Thr	Ser 665		Gln	Lys	Glu	Ile 670	Val	Glu
Ser	Gly	Arg	Gly	Ala	Ala	Thr	Gln	Gln	Glu	Phe	Tyr	Ala	Lys	Asn	Ser

		675					680					685			
Arg	Trp 690	Thr	Glu	Gly	Leu	Ile 695	Ser	Ala	Ser	Lys	Ala 700	Val	Gly	Trp	Gly
Ala 705	Thr	Gln	Leu	Val	Glu 710	Ala	Ala	Asp	Lys	Val 715	Val	Leu	His	Thr	Gly 720
Lys	Tyr	Glu	Glu	Leu 725	Ile	Val	Cys	Ser	His 730	Glu	Ile	Ala	Ala	Ser 735	Thr
Ala	Gln	Leu	Val 740	Ala	Ala	Ser	Lys	Val 745	Lys	Ala	Asn	Lys	His 750	Ser	Pro
His	Leu	Ser 755	Arg	Leu	Gln	Glu	Cys 760	Ser	Arg	Thr	Val	Asn 765	Glu	Arg	Ala
Ala	Asn 770	Val	Val	Ala	Ser	Thr 775	Lys	Ser	Gly	Gln	Glu 780	Gln	Ile	Glu	Asp
Arg 785	Asp	Thr	Met	Asp	Phe 790	Ser	Gly	Leu	Ser	Leu 795	Ile	Lys	Leu	Lys	Lys 800
Gln	Glu	Met	Glu	Thr 805	Gln	Val	Arg	Val	Leu 810	Glu	Leu	Glu	Lys	Thr 815	Leu
Glu	Ala	Glu	Arg 820	Met	Arg	Leu	Gly	Glu 825	Leu	Arg	Lys	Gln	His 830	Tyr	Val
Leu	Ala	Gly 835	Ala	Ser	Gly	Ser	Pro 840	Gly	Glu	Glu	Val	Ala 845	Ile	Arg	Pro
Ser	Thr 850	Ala	Pro	Arg	Ser	Val 855	Thr	Thr	Lys	Lys	Pro 860	Pro	Leu	Ala	Gln
Lys 865	Pro	Ser	Val	Ala	Pro 870	Arg	Gln	Asp	His	Gln 875	Leu	Asp	Lys	Lys	Asp 880
Gly	Ile	Tyr	Pro	Ala 885	Gln	Leu	Val	Asn	Tyr 890						
<21 <21 <21 <21	1> 2>	20 725 PRT Homo	sap	iens											
<40	0>	20													
Met 1	Ala	Met	Asp	Ser 5	Ser	Leu	Gln	Ala	Arg 10	Leu	Phe	Pro	Gly	Leu 15	Ala
Ile	Lys	Ile	Gln 20	Arg	Ser	Asn	Gly	Leu 25	Ile	His	Ser	Ala	Asn 30	Val	Arg
Thr	Val	Asn 35	Leu	Glu	Lys	Ser	Cys 40	Val	Ser	Val	Glu	Trp 45	Ala	Glu	Gly
Gly	Ala	Thr	Lys	Gly	Lys	Glu 55	Ile	Asp	Phe	Asp	Asp 60	Val	Ala	Ala	Ile

Asn Pro Glu Leu Leu Gln Leu Leu Pro Leu His Pro Lys Asp Asn Leu 70 Pro Leu Gln Glu Asn Val Thr Ile Gln Lys Gln Lys Arg Arg Ser Val Asn Ser Lys Ile Pro Ala Pro Lys Glu Ser Leu Arg Ser Arg Ser Thr 105 Arg Met Ser Thr Val Ser Glu Leu Arg Ile Thr Ala Gln Glu Asn Asp Met Glu Val Glu Leu Pro Ala Ala Ala Asn Ser Arg Lys Gln Phe Ser 130 Val Pro Pro Ala Pro Thr Arg Pro Ser Cys Pro Ala Val Ala Glu Ile Pro Leu Arg Met Val Ser Glu Glu Met Glu Glu Gln Val His Ser Ile Arg Gly Ser Ser Ser Ala Asn Pro Val Asn Ser Val Arg Arg Lys Ser Cys Leu Val Lys Glu Val Glu Lys Met Lys Asn Lys Arg Glu Glu Lys 195 Lys Ala Gln Asn Ser Glu Met Arg Met Lys Arg Ala Gln Glu Tyr Asp 215 Ser Ser Phe Pro Asn Trp Glu Phe Ala Arg Met Ile Lys Glu Phe Arg 225 230 Ala Thr Leu Glu Cys His Pro Leu Thr Met Thr Asp Pro Ile Glu Glu 250 His Arg Ile Cys Val Cys Val Arg Lys Arg Pro Leu Asn Lys Gln Glu 265 Leu Ala Lys Lys Glu Ile Asp Val Ile Ser Ile Pro Ser Lys Cys Leu 280 Leu Leu Val His Glu Pro Lys Leu Lys Val Asp Leu Thr Lys Tyr Leu 295 290 Glu Asn Gln Ala Phe Cys Phe Asp Phe Ala Phe Asp Glu Thr Ala Ser Asn Glu Val Val Tyr Arg Phe Thr Ala Arg Pro Leu Val Gln Thr Ile

Gly Lys Thr His Thr Met Gly Gly Asp Leu Ser Gly Lys Ala Gln Asn 355 360 365

Phe Glu Gly Gly Lys Ala Thr Cys Phe Ala Tyr Gly Gln Thr Gly Ser

325

330

Ala Ser Lys Gly Ile Tyr Ala Met Ala Ser Arg Asp Val Phe Leu Leu 370 375 380

Lys Asn Gln Pro Cys Tyr Arg Lys Leu Gly Leu Glu Val Tyr Val Thr 385 390 395 400

Phe Phe Glu Ile Tyr Asn Gly Lys Leu Phe Asp Leu Leu Asn Lys Lys 405 410 415

Ala Lys Leu Arg Val Leu Glu Asp Gly Lys Gln Gln Val Gln Val Val
420 425 430

Gly Leu Gln Glu His Leu Val Asn Ser Ala Asp Asp Val Ile Lys Met 435 440 445

Leu Asp Met Gly Ser Ala Cys Arg Thr Ser Gly Gln Thr Phe Ala Asn 450 455 460

Ser Asn Ser Ser Arg Ser His Ala Cys Phe Gln Ile Ile Leu Arg Ala 465 470 475 480

Lys Gly Arg Met His Gly Lys Phe Ser Leu Val Asp Leu Ala Gly Asn 485 490 495

Glu Arg Gly Ala Asp Thr Ser Ser Ala Asp Arg Gln Thr Arg Met Glu
500 505 510

Gly Ala Glu Ile Asn Lys Ser Leu Leu Ala Leu Lys Glu Cys Ile Arg 515 520 525

Ala Leu Gly Gln Asn Lys Ala His Thr Pro Phe Arg Glu Ser Lys Leu 530 540

Thr Gln Val Leu Arg Asp Ser Phe Ile Gly Glu Asn Ser Arg Thr Cys 545 550 555 560

Met Ile Ala Thr Ile Ser Pro Gly Ile Ser Ser Cys Glu Tyr Thr Leu 565 570 575

Asn Thr Leu Arg Tyr Ala Asp Arg Val Lys Glu Leu Ser Pro His Ser 580 585 590

Gly Pro Ser Gly Glu Gln Leu Ile Gln Met Glu Thr Glu Glu Met Glu
595 600 605

Ala Cys Ser Asn Gly Ala Leu Ile Pro Gly Asn Leu Ser Lys Glu Glu 610 620

Glu Glu Leu Ser Ser Gln Met Ser Ser Phe Asn Glu Ala Met Thr Gln 625 630 635 640

Ile Arg Glu Leu Glu Glu Lys Ala Met Glu Glu Leu Lys Glu Ile Ile 645 650 655

Gln Gln Gly Pro Asp Trp Leu Glu Leu Ser Glu Met Thr Glu Gln Pro 660 665 670

Asp Tyr Asp Leu Glu Thr Phe Val Asn Lys Ala Glu Ser Ala Leu Ala 675 680 685

Gln Gln Ala Lys His Phe Ser Ala Leu Arg Asp Val Ile Lys Ala Leu 690 695 700 Arg Leu Ala Met Gln Leu Glu Glu Gln Ala Ser Arg Gln Ile Ser Ser 705 710 715 720

Lys Lys Arg Pro Gln 725

<210> 21

<211> 752

<212> PRT

<213> Homo sapiens

<400> 21

Arg Val Lys Ala Thr Leu Ser Glu Arg Lys Ile Gly Asp Ser Cys Asp 1 5 10 15

Lys Asp Leu Pro Leu Lys Phe Cys Glu Phe Pro Gln Lys Thr Ile Met 20 25 30

Pro Gly Phe Lys Thr Thr Val Tyr Val Ser His Ile Asn Asp Leu Ser 35 40 45

Asp Phe Tyr Val Gln Leu Ile Glu Asp Glu Ala Glu Ile Ser His Leu 50 55 60

Ser Glu Arg Leu Asn Ser Val Lys Thr Arg Pro Glu Tyr Tyr Val Gly 65 70 75 80

Pro Pro Leu Gln Arg Gly Asp Met Ile Cys Ala Val Phe Pro Glu Asp 85 90 95

Asn Leu Trp Tyr Arg Ala Val Ile Lys Glu Gln Gln Pro Asn Asp Leu 100 105 110

Leu Ser Val Gln Phe Ile Asp Tyr Gly Asn Val Ser Val Val His Thr 115 120 125

Asn Lys Ile Gly Arg Leu Asp Leu Val Asn Ala Ile Leu Pro Gly Leu 130 135 140

Cys Ile His Cys Ser Leu Gln Gly Phe Glu Val Pro Asp Asn Lys Asn 145 150 155 160

Ser Lys Lys Met Met His Tyr Phe Ser Gln Arg Thr Ser Glu Ala Ala 165 170 175

Ile Arg Cys Glu Phe Val Lys Phe Gln Asp Arg Trp Glu Val Ile Leu 180 185 190

Ala Asp Glu His Gly Ile Ile Ala Asp Asp Met Ile Ser Arg Tyr Ala 195 200 205

Leu Ser Glu Lys Ser Gln Val Glu Leu Ser Thr Gln Val Ile Lys Ser 210 215 220

Ala Ser Ser Lys Ser Val Asn Lys Ser Asp Ile Asp Thr Ser Val Phe 225 230 235 240

Leu Asn Trp Tyr Asn Pro Glu Lys Lys Met Ile Arg Ala Tyr Ala Thr 245 250 255

Val Ile Asp Gly Pro Glu Tyr Phe Trp Cys Gln Phe Ala Asp Thr Glu 260 265 270

Lys Leu Gln Cys Leu Glu Val Glu Val Gln Thr Ala Gly Glu Gln Val 275 280 285

Ala Asp Arg Arg Asn Cys Ile Pro Cys Pro Tyr Ile Gly Asp Pro Cys 290 295 300

Ile Val Arg Tyr Arg Glu Asp Gly His Tyr Tyr Arg Ala Leu Ile Thr 305 310 315 320

Asn Ile Cys Glu Asp Tyr Leu Val Ser Val Arg Leu Val Asp Phe Gly 325 330 335

Asn Ile Glu Asp Cys Val Asp Pro Lys Ala Leu Trp Ala Ile Pro Ser 340 345 350

Glu Leu Leu Ser Val Pro Met Gln Ala Phe Pro Cys Cys Leu Ser Gly 355 360 365

Phe Asn Ile Ser Glu Gly Leu Cys Ser Gln Glu Gly Asn Asp Tyr Phe 370 375 380

Tyr Glu Ile Ile Thr Glu Asp Val Leu Glu Ile Thr Ile Leu Glu Ile 385 390 395 400

Arg Arg Asp Val Cys Asp Ile Pro Leu Ala Ile Val Asp Leu Lys Ser 405 410 415

Lys Gly Lys Ser Ile Asn Glu Lys Met Glu Lys Tyr Ser Lys Thr Gly
420 425 430

Ile Lys Ser Ala Leu Pro Tyr Glu Asn Ile Asp Ser Glu Ile Lys Gln
435 440 445

Thr Leu Gly Ser Tyr Asn Leu Asp Val Gly Leu Lys Lys Leu Ser Asn 450 455 460

Lys Ala Val Gln Asn Lys Ile Tyr Met Glu Gln Gln Thr Asp Glu Leu 465 470 475 480

Ala Glu Ile Thr Glu Lys Asp Val Asn Ile Ile Gly Thr Lys Pro Ser 485 490 495

Asn Phe Arg Asp Pro Lys Thr Asp Asn Ile Cys Glu Gly Phe Glu Asn 500 505 510

Pro Cys Lys Asp Lys Ile Asp Thr Glu Glu Leu Glu Gly Glu Leu Glu 515 520 525

Cys His Leu Val Asp Lys Ala Glu Phe Asp Asp Lys Tyr Leu Ile Thr 530 535 540

Gly Phe Asn Thr Leu Leu Pro His Ala Asn Glu Thr Lys Glu Ile Leu 545 550 555 560

Glu Leu Asn Ser Leu Glu Val Pro Leu Ser Pro Asp Asp Glu Ser Lys
565 570 575

Glu Phe Leu Glu Leu Glu Ser Ile Glu Leu Gln Asn Ser Leu Val Val 580 585 590

Asp Glu Glu Lys Gly Glu Leu Ser Pro Val Pro Pro Asn Val Pro Leu
595 600 605

Ser Gln Glu Cys Val Thr Lys Gly Ala Met Glu Leu Phe Thr Leu Gln 610 620

Leu Pro Leu Ser Cys Glu Ala Glu Lys Gln Pro Glu Leu Glu Leu Pro 625 630 635 640

Thr Ala Gln Leu Pro Leu Asp Asp Lys Met Asp Pro Leu Ser Leu Gly 645 650 655

Val Ser Gln Lys Ala Gln Glu Ser Met Cys Thr Glu Asp Met Arg Lys 660 665 670

Ser Ser Cys Val Glu Ser Phe Asp Asp Gln Arg Arg Met Ser Leu His 675 680 685

Leu His Gly Ala Asp Cys Asp Pro Lys Thr Gln Asn Glu Met Asn Ile 690 695 700

Cys Glu Glu Glu Phe Val Glu Tyr Lys Asn Arg Asp Ala Ile Ser Ala 705 710 715 720

Leu Met Pro Phe Ser Leu Arg Lys Lys Ala Val Met Glu Ala Ser Thr 725 730 735

Ile Met Val Tyr Gln Ile Ile Phe Gln Asn Tyr Arg Thr Pro Thr Leu 740 745 750

<210> 22

<211> 286

<212> PRT

<213> Homo sapiens

<400> 22

Ala Glu Val Lys Thr Pro Phe Asp Leu Ala Lys Ala Gln Glu Asn Ser 1 5 10 15

Asn Ser Val Lys Lys Lys Thr Lys Phe Val Asn Leu Tyr Thr Arg Glu 20 25 30

Arg Gln Asp Arg Leu Ala Val Leu Leu Pro Gly Arg His Pro Cys Asp 35 40 45

Cys Leu Gly Gln Lys His Lys Leu Ile Asn Asn Cys Leu Ile Cys Gly 50 60

Arg Ile Val Cys Glu Gln Glu Gly Ser Gly Pro Cys Leu Phe Cys Gly

Thr Leu Val Cys Thr His Glu Glu Gln Asp Ile Leu Gln Arg Asp Ser 85 90 95

Asn Lys Ser Gln Lys Leu Leu Lys Lys Leu Met Ser Gly Val Glu Asn

100 105 110 Ser Gly Lys Val Asp Ile Ser Thr Lys Asp Leu Leu Pro His Gln Glu Leu Arg Ile Lys Ser Gly Leu Glu Lys Ala Ile Lys His Lys Asp Lys 135 Leu Leu Glu Phe Asp Arg Thr Ser Ile Arg Arg Thr Gln Val Ile Asp 155 150 Asp Glu Ser Asp Tyr Phe Ala Ser Asp Ser Asn Gln Trp Leu Ser Lys Leu Glu Arg Glu Thr Leu Gln Lys Arg Glu Glu Glu Leu Arg Glu Leu Arg His Ala Ser Arg Leu Ser Lys Lys Val Thr Ile Asp Phe Ala Gly 200 Arg Lys Ile Leu Glu Glu Glu Asn Ser Leu Ala Glu Tyr His Ser Arg 215 Leu Asp Glu Thr Ile Gln Ala Ile Ala Asn Gly Thr Leu Asn Gln Pro 230 Leu Thr Lys Leu Asp Arg Ser Ser Glu Glu Pro Leu Gly Val Leu Val 245 250 Asn Pro Asn Met Tyr Gln Ser Pro Pro Gln Trp Leu Thr Thr Gln Val 265 Gln Pro His Arg Arg Leu Ser Val Leu Gln Asp Leu Asp <210> 23 <211> 197 <212> PRT <213> Homo sapiens <400> 23 Pro Ser Lys Leu Gln Lys Asn Lys Gln Arg Leu Arg Asn Asp Pro Leu Asn Gln Asn Lys Gly Lys Pro Asp Leu Asn Thr Thr Leu Pro Ile Arg 25 20 Gln Thr Ala Ser Ile Phe Lys Gln Pro Val Thr Lys Val Thr Asn His Pro Ser Asn Lys Val Lys Ser Asp Pro Gln Arg Met Asn Glu Gln Pro Arg Gln Leu Phe Trp Glu Lys Arg Leu Gln Gly Leu Ser Ala Ser Asp Val Thr Glu Gln Ile Ile Lys Thr Met Glu Leu Pro Lys Gly Leu Gln Gly Val Gly Pro Gly Ser Asn Asp Glu Thr Leu Leu Ser Ala Val Ala 100 105 110

Ser Ala Leu His Thr Ser Ser Ala Pro Ile Thr Gly Gln Val Ser Ala 115 120 125

Ala Val Glu Lys Asn Pro Ala Val Trp Leu Asn Thr Ser Gln Pro Leu 130 135 140

Cys Lys Ala Phe Ile Val Thr Asp Glu Asp Ile Arg Lys Gln Glu Glu 145 150 155 160

Arg Val Gln Gln Val Arg Lys Lys Leu Glu Glu Ala Leu Met Ala Asp 165 170 175

Ile Leu Ser Arg Ala Ala Asp Thr Glu Glu Met Asp Ile Glu Met Asp 180 185 190

Ser Gly Asp Glu Ala 195

<210> 24

<211> 353

<212> PRT

<213> Homo sapiens

<220>

<221> UNSURE

<222> (76)..(76)

<223> X = any amino acid

<400> 24

Met Glu Glu Pro Gln Ser Asp Pro Ser Val Glu Pro Pro Leu Ser Gln 1 5 10 15

Glu Thr Phe Ser Asp Leu Trp Lys Leu Leu Pro Glu Asn Asn Val Leu 20 25 30

Ser Pro Leu Pro Ser Gln Ala Met Asp Asp Leu Met Leu Ser Pro Asp 35 40 45

Asp Ile Glu Gln Trp Phe Thr Glu Asp Pro Gly Pro Asp Glu Ala Pro 50 55 60

Arg Met Pro Glu Ala Ala Pro Pro Val Ala Pro Xaa Thr Ser Ser Ser 65 70 75 80

Tyr Thr Gly Gly Pro Cys Thr Ser Pro Leu Leu Ala Pro Val Ile Phe 85 90 95

Val Pro Ser Gln Lys Thr Tyr Gln Gly Ser Tyr Gly Phe Arg Leu Gly
100 105 110

Phe Leu His Ser Gly Thr Ala Lys Ser Val Thr Cys Thr Tyr Ser Pro 115 120 125

Ala Leu Asn Lys Met Phe Cys Gln Leu Ala Lys Thr Cys Pro Val Gln 130 140

Leu Trp Val Asp Ser Thr Pro Pro Pro Gly Thr Arg Val Arg Ala Met 145 150 155 160

Ala Ile Tyr Lys Gln Ser Gln His Met Thr Glu Val Val Arg Arg Cys 165 170 175

Pro His His Glu Arg Cys Ser Asp Ser Asp Gly Leu Ala Pro Pro Gln
180 185 190

His Leu Ile Arg Val Glu Gly Asn Leu Arg Val Glu Tyr Leu Asp Asp 195 200 205

Arg Asn Thr Phe Arg His Ser Val Val Val Pro Cys Glu Pro Pro Glu 210 215 220

Val Gly Ser Asp Cys Thr Thr Ile His Tyr Asn Tyr Met Cys Asn Ser 225 230 235 240

Ser Cys Met Gly Gly Met Asn Arg Arg Pro Ile Leu Thr Ile Ile Thr 245 250 255

Leu Glu Asp Ser Ser Gly Asn Leu Leu Gly Arg Asn Ser Phe Glu Val
260 265 270

His Val Cys Ala Cys Pro Gly Arg Asp Arg Arg Thr Glu Glu Glu Asn 275 280 285

Leu Arg Lys Lys Gly Glu Pro His His Glu Leu Pro Pro Gly Ser Thr 290 295 . 300

Lys Arg Ala Leu Pro Asn Asn Thr Ser Ser Ser Pro Gln Pro Lys Lys 305 310 315 320

Lys Pro Leu Asp Gly Glu Tyr Phe Thr Leu Gln Ile Arg Gly Arg Glu 325 330 335

Arg Phe Glu Met Phe Arg Glu Leu Asn Glu Ala Leu Glu Leu Lys Asp 340 345 350

Ala

<210> 25

<211> 545

<212> PRT

<213> Homo sapiens

<400> 25

Met Glu Thr Pro Ser Gln Arg Arg Ala Thr Arg Ser Gly Ala Gln Ala 1 5 10 15

Ser Ser Thr Pro Leu Ser Pro Thr Arg Ile Thr Arg Leu Gln Glu Lys
20 25 30

Glu Asp Leu Gln Glu Leu Asn Asp Arg Leu Ala Val Tyr Ile Asp Arg 35 40 45

Val Arg Ser Leu Glu Thr Glu Asn Ala Gly Leu Arg Leu Arg Ile Thr

-51-

ţ

	50					55					60				
Glu 65	Ser	Glu	Glu	Val	Val 70	Ser	Arg	Glu	Val	Ser 75	Gly	Ile	Lys	Ala	Ala 80
Tyr	Glu	Ala	Glu	Leu 85	Gly	Asp	Ala	Arg	Lys 90	Thr	Leu	Asp	Ser	Val 95	Ala
Lys	Glu	Arg	Ala 100	Arg	Leu	Gln	Leu	Glu 105	Leu	Ser	Lys	Val	Arg 110	Glu	Glu
Phe	Lys	Glu 115	Leu	Lys	Ala	Arg	Asn 120	Thr	Lys	Lys	Glu	Gly 125	Asp	Leu	Ile
Ala	Ala 130	Gln	Ala	Arg	Leu	Lys 135	Asp	Leu	Glu	Ala	Leu 140	Leu	Asn	Ser	Lys
Glu 145	Ala	Ala	Leu	Ser	Thr 150	Ala	Leu	Ser	Glu	Lys 155	Arg	Thr	Leu	Glu	Gly 160
Glu	Leu	His	Asp	Leu 165	Arg	Gly	Gln	Val	Ala 170	Lys	Leu	Glu	Ala	Ala 175	Leu
Gly	Glu	Ala	Lys 180	Lys	Gln	Leu	Gln	Asp 185	Glu	Met	Leu	Arg	Arg 190	Val	Asp
Ala	Glu	Asn 195	Arg	Leu	Gln	Thr	Met 200	Lys	Glu	Glu	Leu	Asp 205	Phe	Gln	Lys
Asn	Ile 210	Tyr	Ser	Glu	Glu	Leu 215	Arg	Glu	Thr	Lys	Arg 220	Arg	His	Glu	Thr
Arg 225	Leu	Val	Glu	Ile	Asp 230	Asn	Gly	Lys	Gln	Arg 235	Glu	Phe	Glu	Ser	Arg 240
Leu	Ala	Asp	Ala	Leu 245	Gln	Glu	Leu	Arg	Ala 250	Gln	His	Glu	Asp	Gln 255	Val
Glu	Gln	Tyr	Lys 260	Lys	Glu	Leu	Glu	Lys 265	Thr	Tyr	Ser	Ala	Lys 270	Leu	Asp
Asn	Ala	Arg 275	Gln	Ser	Ala	Glu	Arg 280	Asn	Ser	Asn	Leu	Val 285	Gly	Ala	Ala
His	Glu 290	Glu	Leu	Gln	Gln	Ser 295	Arg	Ile	Arg	Ile	Asp 300	Ser	Leu	Ser	Ala
Gln 305	Leu	Ser	Gln	Leu	Gln 310	Lys	Gln	Leu	Ala	Ala 315	Lys	Glu	Ala	Lys	Leu 320
Arg	Asp	Leu	Glu	Asp 325	Ser	Leu	Ala	Arg	Glu 330	Arg	Asp	Thr	Ser	Arg 335	Arg
Leu	Leu	Ala	Glu 340	Lys	Glu	Arg	Glu	Met 345	Ala	Glu	Met	Arg	Ala 350	Arg	Met
Gln	Gln	Gln 355	Leu	Asp	Glu	Tyr	Gln 360	Glu	Leu	Leu	Asp	Ile 365	Lys	Leu	Ala
Leu	Asp	Met	Glu	Ile	His	Ala	Tyr	Arg	Lys	Leu	Leu	Glu	Gly	Glu	Glu

380

375

90

Gly Asp Val Glu Arg Val Lys Arg Leu Val Thr Pro Glu Lys Val Asn 100 105 110

Ser Arg Asp Thr Ala Gly Arg Lys Ser Thr Pro Leu His Phe Ala Ala 115 . 120 . 125

Gly Phe Gly Arg Lys Asp Val Val Glu Tyr Leu Leu Gln Asn Gly Ala 130 135 140

Asn Val Gln Ala Arg Asp Asp Gly Gly Leu Ile Pro Leu His Asn Ala 145 150 155 160

Cys Ser Phe Gly His Ala Glu Val Val Asn Leu Leu Leu Arg His Gly 165 170 175

Ala Asp Pro Asn Ala Arg Asp Asn Trp Asn Tyr Thr Pro Leu His Glu 180 185 190

Ala Ala Ile Lys Gly Lys Ile Asp Val Cys Ile Val Leu Leu Gln His 195 200 205

Gly Ala Glu Pro Thr Ile Arg Asn Thr Asp Gly Arg Thr Ala Leu Asp 210 215 220

Leu Ala Asp Pro Ser Ala Lys Ala Val Leu Thr Gly Glu Tyr Lys Lys 225 230 235 240

Asp Glu Leu Leu Glu Ser Ala Arg Ser Gly Asn Glu Glu Lys Met Met 245 250 255

Ala Leu Leu Thr Pro Leu Asn Val Asn Cys His Ala Ser Asp Gly Arg
260 265 270

Lys Ser Thr Pro Leu His Leu Ala Ala Gly Tyr Asn Arg Val Lys Ile 275 280 285

Val Gln Leu Leu Gln His Gly Ala Asp Val His Ala Lys Asp Lys 290 295 300

Gly Asp Leu Val Pro Leu His Asn Ala Cys Ser Tyr Gly His Tyr Glu 305 310 315 320

Val Thr Glu Leu Leu Val Lys His Gly Ala Cys Val Asn Ala Met Asp 325 330 335

Leu Trp Gln Phe Thr Pro Leu His Glu Ala Ala Ser Lys Asn Arg Val

Glu Val Cys Ser Leu Leu Leu Ser Tyr Gly Ala Asp Pro Thr Leu Leu 355 360 365

Asn Cys His Asn Lys Ser Ala Ile Asp Leu Ala Pro Thr Pro Gln Leu 370 375 380

Lys Glu Arg Leu Ala Tyr Glu Phe Lys Gly His Ser Leu Leu Gln Ala 385 390 395 400

Ala Arg Glu Ala Asp Val Thr Arg Ile Lys Lys His Leu Ser Leu Glu

Met Val Asn Phe Lys His Pro Gln Thr His Glu Thr Ala Leu His Cys 420 425 430

Ala Ala Ser Pro Tyr Pro Lys Arg Lys Gln Ile Cys Glu Leu Leu 435 440 445

Leu Arg Lys Gly Ala Asn Ile Asn Glu Lys Thr Lys Glu Phe Leu Thr 450 455 460

Pro Leu His Val Ala Ser Glu Lys Ala His Asn Asp Val Val Glu Val
465 470 475 480

Val Val Lys His Glu Ala Lys Val Asn Ala Leu Asp Asn Leu Gly Gln 485 490 495

Thr Ser Leu His Arg Ala Ala Tyr Cys Gly His Leu Gln Thr Cys Arg 500 505 510

Leu Leu Ser Tyr Gly Cys Asp Pro Asn Ile Ile Ser Leu Gln Gly 515 520 525

Phe Thr Ala Leu Gln Met Gly Asn Glu Asn Val Gln Gln Leu Leu Gln 530 540

Glu Gly Ile Ser Leu Gly Asn Ser Glu Ala Asp Arg Gln Leu Leu Glu 545 550 555 560

Ala Ala Lys Ala Gly Asp Val Glu Thr Val Lys Lys Leu Cys Thr Val
565 570 575

Gln Ser Val Asn Cys Arg Asp Ile Glu Gly Arg Gln Ser Thr Pro Leu
580 585 590

His Phe Ala Ala Gly Tyr Asn Arg Val Ser Val Val Glu Tyr Leu Leu 595 600 605

Gln His Gly Ala Asp Val His Ala Lys Asp Lys Gly Gly Leu Val Pro 610 620

Leu His Asn Ala Cys Ser Tyr Gly His Tyr Glu Val Ala Glu Leu Leu 625 630 635 640

Val Lys His Gly Ala Val Val Asn Val Ala Asp Leu Trp Lys Phe Thr
645 650 655

Pro Leu His Glu Ala Ala Ala Lys Gly Lys Tyr Glu Ile Cys Lys Leu 660 665 670

Leu Leu Gln His Gly Ala Asp Pro Thr Lys Lys Asn Arg Asp Gly Asn 675 680 685

Thr Pro Leu Asp Leu Val Lys Asp Gly Asp Thr Asp Ile Gln Asp Leu 690 695 700

Leu Arg Gly Asp Ala Ala Leu Leu Asp Ala Ala Lys Lys Gly Cys Leu 705 710 715 720

Ala Arg Val Lys Lys Leu Ser Ser Pro Asp Asn Val Asn Cys Arg Asp 725 730 735

- Thr Gln Gly Arg His Ser Thr Pro Leu His Leu Ala Ala Gly Tyr Asn 740 745 750
- Asn Leu Glu Val Ala Glu Tyr Leu Leu Gln His Gly Ala Asp Val Asn 755 760 765
- Ala Gln Asp Lys Gly Gly Leu Ile Pro Leu His Asn Ala Ala Ser Tyr 770 780
- Gly His Val Asp Val Ala Ala Leu Leu Ile Lys Tyr Asn Ala Cys Val
 785 790 795 800
- Asn Ala Thr Asp Lys Trp Ala Phe Thr Pro Leu His Glu Ala Ala Gln 805 810 815
- Lys Gly Arg Thr Gln Leu Cys Ala Leu Leu Leu Ala His Gly Ala Asp 820 825 830
- Pro Thr Leu Lys Asn Gln Glu Gly Gln Thr Pro Leu Asp Leu Val Ser 835 840 845
- Ala Asp Asp Val Ser Ala Leu Leu Thr Ala Ala Met Pro Pro Ser Ala 850 860
- Leu Pro Ser Cys Tyr Lys Pro Gln Val Leu Asn Gly Val Arg Ser Pro 865 870 875 880
- Gly Ala Thr Ala Asp Ala Leu Ser Ser Gly Pro Ser Ser Pro Ser Ser 885 890 895
- Leu Ser Ala Ala Ser Ser Leu Asp Asn Leu Ser Gly Ser Phe Ser Glu 900 905 910
- Leu Ser Ser Val Val Ser Ser Ser Gly Thr Glu Gly Ala Ser Ser Leu 915 920 925
- Glu Lys Lys Glu Val Pro Gly Val Asp Phe Ser Ile Thr Gln Phe Val 930 935 940
- Arg Asn Leu Gly Leu Glu His Leu Met Asp Ile Phe Glu Arg Glu Gln 945 950 955 960
- Ile Thr Leu Asp Val Leu Val Glu Met Gly His Lys Glu Leu Lys Glu 965 970 975
- Ile Gly Ile Asn Ala Tyr Gly His Arg His Lys Leu Ile Lys Gly Val 980 985 990
- Glu Arg Leu Ile Ser Gly Gln Gln Gly Leu Asn Pro Tyr Leu Thr Leu 995 1000 1005
- Asn Thr Ser Gly Ser Gly Thr Ile Leu Ile Asp Leu Ser Pro Asp 1010 1015 1020
- Asp Lys Glu Phe Gln Ser Val Glu Glu Glu Met Gln Ser Thr Val 1025 1030 1035
- Arg Glu His Arg Asp Gly Gly His Ala Gly Gly Ile Phe Asn Arg 1040 1045 1050

- Tyr Asn Ile Leu Lys Ile Gln Lys Val Cys Asn Lys Lys Leu Trp 1055 1060 1065
- Glu Arg Tyr Thr His Arg Arg Lys Glu Val Ser Glu Glu Asn His 1070 1075 1080
- Asn His Ala Asn Glu Arg Met Leu Phe His Gly Ser Pro Phe Val 1085 1090 1095
- Asn Ala Ile Ile His Lys Gly Phe Asp Glu Arg His Ala Tyr Ile 1100 1105 1110
- Gly Gly Met Phe Gly Ala Gly Ile Tyr Phe Ala Glu Asn Ser Ser 1115 1120 1125
- Lys Ser Asn Gln Tyr Val Tyr Gly Ile Gly Gly Gly Thr Gly Val 1130 1135 1140
- Gln Phe Thr Lys Thr Asp Leu Val Thr Phe Ala Thr Ala Ala Ala 1145 1150 1155
- Leu Leu Pro Gly Asn Leu Gly Lys Val Phe Pro Ala Val Gln Cys 1160 1165 1170
- Asn Glu Asn Gly Thr Ser Pro Pro Gly His His Ser Val Thr Gly 1175 1180 1185
- Arg Pro Ser Val Asn Gly Leu Ala Leu Ala Glu Tyr Val Ile Tyr 1190 1195 1200
- Arg Gly Glu Gln Ala Tyr Pro Glu Tyr Leu Ile Thr Tyr Gln Ile 1205 1210 1215
- Met Arg Pro Glu Gly Met Val Asp Gly 1220 1225
- <210> 27
- <211> 290
- <212> PRT
- <213> Homo sapiens
- <400> 27
- His Ile Gln Lys Gln Lys His Phe Asn Glu Arg Glu Ala Ser Arg Val 1 5 10 15
- Val Arg Asp Val Ala Ala Ala Leu Asp Phe Leu His Thr Lys Gly Ile 20 25 30
- Ala His Arg Asp Leu Lys Pro Glu Asn Ile Leu Cys Glu Ser Pro Glu 35 40 45
- Lys Val Ser Pro Val Lys Ile Cys Asp Phe Asp Leu Gly Ser Gly Met 50 55 60
- Lys Leu Asn Asn Ser Cys Thr Pro Ile Thr Thr Pro Glu Leu Thr Thr 65 70 75 80
- Pro Cys Gly Ser Ala Glu Tyr Met Ala Pro Glu Val Val Glu Val Phe 85 90 95

Thr Asp Gln Ala Thr Phe Tyr Asp Lys Arg Cys Asp Leu Trp Ser Leu 100 105 110

Gly Val Val Leu Tyr Ile Met Leu Ser Gly Tyr Pro Pro Phe Val Gly
115 120 125

His Cys Gly Ala Asp Cys Gly Trp Asp Arg Gly Glu Val Cys Arg Val 130 135 140

Cys Gln Asn Lys Leu Phe Glu Ser Ile Gln Glu Gly Lys Tyr Glu Phe 145 150 155 160

Pro Asp Lys Asp Trp Ala His Ile Ser Ser Glu Ala Lys Asp Leu Ile 165 170 175

Ser Lys Leu Leu Val Arg Asp Ala Lys Gln Lys Leu Ser Ala Ala Gln 180 185 190

Val Leu Gln His Pro Trp Val Gln Gly Gln Ala Pro Glu Lys Gly Leu 195 200 205

Pro Thr Pro Gln Val Leu Gln Arg Asn Ser Ser Thr Met Asp Leu Thr 210 215 220

Leu Phe Ala Ala Glu Ala Ile Ala Leu Asn Arg Gln Leu Ser Gln His 225 230 235 240

Glu Glu Asn Glu Leu Ala Glu Glu Pro Glu Ala Leu Ala Asp Gly Leu 245 250 255

Cys Ser Met Lys Leu Ser Pro Pro Cys Lys Ser Arg Leu Ala Arg Arg 260 265 270

Arg Ala Leu Ala Gln Ala Gly Arg Gly Glu Asn Arg Ser Pro Pro Thr 275 280 285

Ala Leu 290

<210> 28

<211> 188

<212> PRT

<213> Homo sapiens

<400> 28

Met Asn Gly Asp Asp Ala Phe Ala Arg Arg Pro Thr Val Gly Ala Gln

1 10 15

Ile Pro Glu Lys Ile Gln Lys Ala Phe Asp Asp Ile Ala Lys Tyr Phe 20 25 30

Ser Lys Glu Glu Trp Glu Lys Met Lys Ala Ser Glu Lys Ile Phe Tyr

Val Tyr Met Lys Arg Lys Tyr Glu Ala Met Thr Lys Leu Gly Phe Lys 50 60

Ala Thr Leu Pro Pro Phe Met Cys Asn Lys Arg Ala Glu Asp Phe Gln

80 65 70 75 Gly Asn Asp Leu Asp Asn Asp Pro Asn Arg Gly Asn Gln Val Glu Arg Pro Gln Met Thr Phe Gly Arg Leu Gln Gly Ile Ser Pro Lys Ile Met Pro Lys Lys Pro Ala Glu Glu Gly Asn Asp Ser Glu Glu Val Pro Glu Ala Ser Gly Pro Gln Asn Asp Gly Lys Glu Leu Cys Pro Pro Gly Lys Pro Thr Thr Ser Glu Lys Ile His Glu Arg Ser Gly Pro Lys Arg Gly Glu His Ala Trp Thr His Arg Leu Arg Glu Arg Lys Gln Leu Val Ile 170 Tyr Glu Glu Ile Ser Asp Pro Glu Glu Asp Asp Glu 29 <210> <211> 314 <212> PRT <213> Homo sapiens <400> 29 Met Pro Leu Glu Gln Arg Ser Gln His Cys Lys Pro Glu Glu Gly Leu Glu Ala Arg Gly Glu Ala Leu Gly Leu Val Gly Ala Gln Ala Pro Ala Thr Glu Glu Glu Ala Ala Ser Ser Ser Thr Leu Val Glu Val 40 Thr Leu Gly Glu Val Pro Ala Ala Glu Ser Pro Asp Pro Pro Gln Ser Pro Gln Gly Ala Ser Ser Leu Pro Thr Thr Met Asn Tyr Pro Leu Trp Ser Gln Ser Tyr Glu Asp Ser Ser Asn Gln Glu Glu Gly Pro Ser Thr Phe Pro Asp Leu Glu Ser Glu Phe Gln Ala Ala Leu Ser Arg Lys Val Ala Glu Leu Val His Phe Leu Leu Leu Lys Tyr Arg Ala Arg Glu 120 Pro Val Thr Lys Ala Glu Met Leu Gly Ser Val Val Gly Asn Trp Gln Tyr Phe Phe Pro Val Ile Phe Ser Lys Ala Ser Ser Leu Gln Leu 150 155

Val Phe Gly Ile Glu Leu Met Glu Val Asp Pro Ile Gly His Leu Tyr 165 170 175

Ile Phe Ala Thr Cys Leu Gly Leu Ser Tyr Asp Gly Leu Leu Gly Asp 180 185 190

Asn Gln Ile Met Pro Lys Ala Gly Leu Leu Ile Ile Val Leu Ala Ile 195 200 205

Ile Ala Arg Glu Gly Asp Cys Ala Pro Glu Glu Lys Ile Trp Glu Glu 210 215 220

Leu Ser Val Leu Glu Val Phe Glu Gly Arg Glu Asp Ser Ile Leu Gly 225 230 235 240

Asp Pro Lys Lys Leu Leu Thr Gln His Phe Val Gln Glu Asn Tyr Leu 245 250 255

Glu Tyr Arg Gln Val Pro Gly Ser Asp Pro Ala Cys Tyr Glu Phe Leu 260 265 270

Trp Gly Pro Arg Ala Leu Val Glu Thr Ser Tyr Val Lys Val Leu His 275 280 285

His Met Val Lys Ile Ser Gly Gly Pro His Ile Ser Tyr Pro Pro Leu 290 295 300

His Glu Trp Val Leu Arg Glu Gly Glu Glu 305

<210> 30

<211> 180

<212> PRT

<213> Homo sapiens

<400> 30

Met Gln Ala Glu Gly Arg Gly Thr Gly Gly Ser Thr Gly Asp Ala Asp 1 5 10 15

Gly Pro Gly Gly Pro Gly Ile Pro Asp Gly Pro Gly Gly Asn Ala Gly
20 25 30

Gly Pro Gly Glu Ala Gly Ala Thr Gly Gly Arg Gly Pro Arg Gly Ala 35 40 45

Gly Ala Ala Arg Ala Ser Gly Pro Gly Gly Gly Ala Pro Arg Gly Pro 50 55 60

His Gly Gly Ala Ala Ser Gly Leu Asn Gly Cys Cys Arg Cys Gly Ala 65 70 75 80

Arg Gly Pro Glu Ser Arg Leu Leu Glu Phe Tyr Leu Ala Met Pro Phe 85 90 95

Ala Thr Pro Met Glu Ala Glu Leu Ala Arg Arg Ser Leu Ala Gln Asp 100 105 110

Ala Pro Pro Leu Pro Val Pro Gly Val Leu Leu Lys Glu Phe Thr Val

Ser Gly Asn Ile Leu Thr Ile Arg Leu Thr Ala Ala Asp His Arg Gln 130 135 140

Leu Gln Leu Ser Ile Ser Ser Cys Leu Gln Gln Leu Ser Leu Leu Met 145 150 155 160

Trp Ile Thr Gln Cys Phe Leu Pro Val Phe Leu Ala Gln Pro Pro Ser 165 170 175

Gly Gln Arg Arg 180