Big HW. LazyFca

Denis Sharakshinov

1. Description of dataset

I have chosen Heart Attack Analysis Prediction Dataset About this dataset

- 1. Age: displays the age of the individual.
- 2. Sex: displays the gender of the individual using the following format:

1 = male

0 = female

3. Chest-pain type ("cp"): displays the type of chest-pain experienced by the individual using the following format:

1 = typical angina

2 = atypical angina

3 = non — anginal pain

4 = asymptotic

- 4. Resting Blood Pressure("trestbps"): displays the resting blood pressure value of an individual in mmHg (unit)
- 5. Serum Cholestrol("chol"): displays the serum cholesterol in mg/dl (unit)
- 6. Fasting Blood Sugar("fbs"): compares the fasting blood sugar value of an individual with 120mg/dl. If fasting blood sugar > 120mg/dl then:

1 (true)

else: 0 (false)

7. Resting ECG("restecg"): displays resting electrocardiographic results

0 = normal

1 = having ST-T wave abnormality

2 = left ventricular hyperthrophy

- 8. Max heart rate achieved: displays the max heart rate achieved by an individual.
- 9. Exercise induced angina:

1 = yes

0 = no

- 10. ST depression induced by exercise relative to rest: displays the value which is an integer or float.
- 11. Peak exercise ST segment:

1 = upsloping

2 = flat

3 = downsloping

- 12. Number of major vessels (0–3) colored by flourosopy: displays the value as integer or float.
- 13. Thal: displays the thalassemia:

3 = normal

6 =fixed defect

7 = reversible defect

14. Diagnosis of heart disease : Displays whether the individual is suffering from heart disease or not :

0 = absence

1 = present

2. Data Pre-Processing

The dataset is shown below:

1110	uatast	JU 13 3	911O V	VII UCIUV	<u>v.</u>									
	age	sex	ср	trtbps	chol	fbs	restecg	thalachh	exng	oldpeak	slp	caa	thall	output
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	1
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1
298	57	0	0	140	241	0	1	123	1	0.2	1	0	3	0
299	45	1	3	110	264	0	1	132	0	1.2	1	0	3	0
300	68	1	0	144	193	1	1	141	0	3.4	1	2	3	0
301	57	1	0	130	131	0	1	115	1	1.2	1	1	3	0
302	2 57	0	1	130	236	0	0	174	0	0.0	1	1	2	0

First of all, we should binarize it (details in code):

	_	age29_40:	_	age41_60:		age61_77:									thal0:		tha
	0	1	0	1	0	1	0	1	0	1	•••	0	1	0	1	0	
0	True	False	False	True	True	False	True	False	False	True		True	False	True	False	True	F
1	True	False	False	True	True	False	False	True	True	False		True	False	True	False	True	F
2	True	False	False	True	True	False	False	True	True	False		True	False	True	False	True	F
3	True	False	True	False	False	True	False	True	True	False		True	False	True	False	True	F
4	True	False	False	True	True	False	False	True	True	False		True	False	True	False	True	F

3. Comparison with classical classification algorithms

Here, I decided to compare the results with the other classification algorithms. There were used next classifiers:

1. Random Forest Classifier

- 2. K nearest neighbors algorithm (KNN)
- 3. Decision Tree

Classifier	Accuracy
Lazy_fca	92.7
f1_score	89.4
KNN	87.86
RandomForest	87.09
Decision Tree	83.87