V LO

Kraków 24 kwietnia 2009

Zadanie B15 Pokrycie ścieżkowe

Dany jest graf acykliczny skierowany G. Pokryciem ścieżkowym takiego grafu nazywamy zbiór P wierzchołkowo rozłącznych ścieżek w G, które pokrywają wszystkie wierzchołki grafu. Dokładniej, muszą być spełnione następujące warunki:

- \bullet Każda krawędź każdej ścieżki w P jest krawędzią grafu G.
- \bullet Każdy wierzchołek grafu G leży na dokładnie jednej ścieżce w P.

Znajdź rozmiar najmniejszego pokrycia ścieżkowego G, tzn. pokrycia ścieżkowego o minimalnej liczbie ścieżek.

Wejście

Pierwsza linia wejścia zawiera liczbę całkowitą z – liczbę zestawów danych, których opisy występują kolejno po sobie. Opis jednego zestawu jest następujący:WW pierwszym wierszu zestawu danych znajdują się dwie liczby naturalne n i m ($1 \le n \le 5000$, $0 \le m \le 100000$), oznaczające odpowiednio liczbę wierzchołków i liczbę krawędzi grafu. W kolejnych m wierszach znajdują się opisy krawędzi. Opis krawędzi składa się z dwóch liczb naturalnych x i y ($1 \le x, y \le n, x \le y$) i oznacza krawędź skierowaną od x do y. Żadna krawędź nie pojawia się więcej niż jeden raz. Podany graf jest zawsze acykliczny.

Wyjście

Dla każdego zestawu należy wypisać jedną liczbę naturalną - minimalną liczbę ścieżek pokrywających G.

Dostępna pamięć: 16MB

Algorytmika V LO 1e Rok Szkolny 2008/2009

Kraków 24 kwietnia 2009

Przykład

Dla	danych	wejściowych:
Dia	uanyon	wejsciowycii.

1 11 11

4 3

6 4

5 3

7 2

11 9 2 11

11 10

2 8

3 2

Poprawną odpowiedzią jest:

5