# Pressure dependence of superconductivity in simple-cubic Na<sub>2</sub>CsC<sub>60</sub>

#### J. Mizuki

Fundamental Research Laboratories, NEC Corporation, 34-Meyukigaoka, Tsukuba 305, Japan

#### M. Takai

Faculty of Engineering, Tokyo Denki University, Nishiki-cho, Kanda, Chiyoda-ku, Tokyo 101, Japan

### H. Takahashi and N. Môri

Institute for Solid State Physics, The University of Tokyo, 7-22-1, Roppongi, Minato-ku, Tokyo 106, Japan

## K. Tanigaki and I. Hirosawa

Fundamental Research Laboratories, NEC Corporation, 34-Miyukigaoka, Tsukuba 305, Japan

#### K. Prassides

School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ, United Kingdom (Received 28 March 1994)

The pressure dependence of the superconducting transition temperature T<sub>c</sub> of simple-cubic Na<sub>2</sub>CsC<sub>60</sub> is studied by an ac susceptibility method with a Swenson-type piston-cylinder apparatus. The observed value of  $dT_c/dP$  is  $-12.5\pm0.2$  K/GPa, significantly larger than the values of -7.8 and -9.7 K/GPa reported earlier for  $K_3C_{60}$  and  $Rb_3C_{60}$ , respectively. Using the compressibility available (that of  $K_3C_{60}$ ), we find that the evolution of  $T_c$  with interfullerene spacing in  $Na_2CsC_{60}$  is significantly different from that established for merohedrally disordered face-centered-cubic superconductors  $M_3C_{60}$  (M=alkali metal), but in excellent agreement with the ambient pressure data for the simple cubic superconductors Na<sub>2</sub>RbC<sub>60</sub> and Na<sub>2</sub>CsC<sub>60</sub>. The present results provide an additional dimension to the existing features of fulleride superconductors, establishing the importance of the relative orientation of C<sub>60</sub><sup>3-</sup> ions in affecting the electronic and conducting properties of these materials.

Since the discovery of relatively high-temperature superconductivity in alkali-metal-doped M<sub>3</sub>C<sub>60</sub> compounds, 1-3 a large amount of experimental and theoretical work<sup>4</sup> has been devoted to the understanding of the properties of these novel molecular solids. At present, the highest reported superconducting transition temperature  $T_c$  stands at 33 K, observed in the RbCs<sub>2</sub>C<sub>60</sub> compound.<sup>5</sup> Such a high  $T_c$  is only surpassed by the cuprate superconductors. What is most striking for the superconductivity in these systems is the existence of a simple monotonic relation between  $T_c$  and the unit cell size (or intermolecular spacing), observed both at ambient pressure for a number of mixed metal  $M_{3-x}M'_x$  salts<sup>6</sup> and at elevated pressures for Rb $_3$ C $_{60}$  (Ref. 7) and  $\hat{K}_3$ C $_{60}$ . 8 These results suggested that  $T_c$  depends principally only on the overlap between near-neighbor C<sub>60</sub> molecules, which modulates the electronic density of state at the Fermi level  $N(E_F)$ . Thus, it is generally believed that a relation between  $T_c$  and  $N(E_F)$  is more fundamental than between  $T_c$  and the lattice constant. Indeed, local-densityapproximation calculations with varying lattice constant by Oshiyama and Saito<sup>9</sup> showed that  $T_c$  scales well with  $N(E_F)$ .

Recently, however, studies based on the stoichiometric approach discovered deviations from such a simple empirical linear relation between  $T_c$  and the lattice constant for fulleride salts which contained small alkali met-

als Li and Na. 10,11 While Na<sub>2</sub>CsC<sub>60</sub> appeared to show "normal" behavior, all other Na<sub>2</sub>M'C<sub>60</sub> and Li<sub>2</sub>M'C<sub>60</sub> salts showed either anomalously low  $T_c$  or no superconducting transition down to 50 mK. For example,  $Na_2RbC_{60}$  has a  $T_c$  of 3.5 K, far less than that of  $K_3C_{60}$  $(\sim 10 \text{ K})$  at high pressure at the same lattice spacing.<sup>8</sup> Of importance then is the observation in the diffraction profile of Na<sub>2</sub>RbC<sub>60</sub> by high-resolution synchrotron x-ray diffraction of weak Bragg peaks, which could be indexed on a primitive cubic (space group  $Pa\overline{3}$ ) unit cell. <sup>12</sup> The crystal structure of this compound differed from the one adopted by the  $M_{3-x}M'_xC_{60}$  (M,M'=K, Rb, Cs) superconductors, namely merohedrally disordered fcc (space group  $Fm\overline{3}m$ ), 13 implying the possibility of detrimental effects to the superconductivity arising from the modified crystal structure. However, a subsequent high-resolution powder neutron-diffraction study<sup>14</sup> revealed that the structure of  $Na_2CsC_{60}$ , for which the  $T_c$  and the lattice constant lie on the universal curve of fcc fullerides, was also simple cubic, isostructural with Na<sub>2</sub>RbC<sub>60</sub>. Thus, even though the presence of different orientational ordering should have undoubtedly modified the  $N(E_F)$ , and as a consequence, the  $T_c$ , no such effect was apparent. Does not the  $T_c$  depend on the  $N(E_F)$  value? At this point there has been no simple explanation for not only the "anomalous"  $T_c$  of the  $Na_2RbC_{60}$  solid, but also the "normal"  $T_c$  of Na<sub>2</sub>CsC<sub>60</sub>. We believe that it is impor-

50

tant to understand such an anomalous feature for elucidating the superconductivity in  $C_{60}$ -based superconductors.

These considerations motivated the present work in which we address the relation between  $T_c$  and lattice constant for simple-cubic fullerides by measuring the evolution with pressure of the superconducting properties of Na<sub>2</sub>CsC<sub>60</sub>.

In this paper we will explain the apparent paradox of the anomalous  $T_c$  for the Rb and normal  $T_c$  of the Cs isostructural samples, that is, there exist two universal curves, describing the dependence of  $T_c$  on the interfullerene spacing: one for fcc and another much steeper for simple cubic fullerides, with the differences arising through the changed orientational state of the fulleride ions.

The Na<sub>2</sub>CsC<sub>60</sub> sample was prepared by reaction of stoichiometric quantities of C<sub>60</sub>, Na, and Cs, contained in a tantalum cell inside a sealed glass tube filled with He to 600 Torr, at 200 °C for 12 h and at 430 °C for three weeks with intermittent shaking. Phase purity was confirmed by x-ray-diffraction measurements. The sample was superconducting with a  $T_c$  of 12 K and a superconducting volume fraction of more than 59% measured with a superconducting-quantum-interference-device (SQUID) magnetometer. A  $Rb_3C_{60}$  superconductor with a  $T_c$  of 29.5 K was also prepared as a reference sample for comparisons with published high-pressure data. For the pressure work, the technique using a Swenson-type pistoncylinder apparatus was employed. The  $T_c$  under pressure was determined with an ac susceptibility method using the primary and secondary coils wound around the sample. The frequency of the magnetic field was 923 Hz. The data were collected as output signal of a lock-in amplifier. Nearly hydrostatic pressure was retained in a Teflon cell filled with a fluid pressure transmitting medium (mixture of Fluorinert FC70 and FC77). The force applied to the high-pressure apparatus was controlled not to change during the measurements on cooling and heating, that is, these measurements were performed always at constant pressure. The reproducibility of the present ac susceptibility data was checked by repeating the measurements at each pressure three times.

Figure 1 shows the ac magnetic susceptibility,  $\chi$ , of the present Na<sub>2</sub>CsC<sub>60</sub> sample as a function of temperature in a pressure range from 0.2 to 0.6 GPa. No transition to a superconducting state was observed at 0.8 GPa down to 2 K. The pressure dependence of  $T_c$  is presented in Fig. 2. The error bars in the temperature in Figs. 2 and 3 represent the scatter of the data for triply-performed measurements. As it can be seen,  $T_c$  varies linearly up to 0.6 GPa with a slope of  $dT_c/dP = -12.5\pm0.2$  K/GPa. This value is considerably larger than the values of -7.8and -9.7 K/GPa, reported for K<sub>3</sub>C<sub>60</sub> and Rb<sub>3</sub>C<sub>60</sub>, respectively. Figure 2 shows unequivocally the larger  $dT_c/dP$  in Na<sub>2</sub>CsC<sub>60</sub> than the counterpart on the fcc fulleredes. At present, the compressibility of Na<sub>2</sub>CsC<sub>60</sub> is not known, and thus we cannot derive the relation between the  $T_c$  and the lattice constant at the various applied pressures directly from the present experimental re-



FIG. 1. Temperature dependence of ac magnetic susceptibility curve  $\chi(T; P)$  of Na<sub>2</sub>CsC<sub>60</sub> obtained under the indicated pressures.



FIG. 2. Evolution of the superconducting transition temperature  $T_c$  determined from  $\chi(T)$  curves with pressures. The error bars in the temperature axis represent the scatter of the data for three measurements.

sults. However, to a first approximation, we can obtain an estimate of the lattice constant of  $Na_2CsC_{60}$  at elevated pressures by using the linear compressibility value,  $-d \ln a/P$  (a =lattice constant), of  $1.2 \times 10^{-2}$  GPa<sup>-1</sup>, measured for  $K_3C_{60}$ . In this way, the lattice constants at each pressure can be derived. In Fig. 3, the  $T_c$ 's observed at each pressure are plotted against the lattice constant values, together with the present high-pressure results on  $Rb_3C_{60}$  and earlier values on various superconducting  $M_3C_{60}$  (or  $M_{3-x}M_x'C_{60}$ ) fullerides. It is clearly seen that the relation between  $T_c$  and the lattice constant in  $Na_2CsC_{60}$  is markedly different from the one established in merohedral fcc fullerides. Yet it coincides exactly with the line obtained at ambient pressure for simple-cubic  $Na_2CsC_{60}$  and  $Na_2RbC_{60}$  (shown by a solid line in Fig. 3).

We believe that this agreement is not fortuitous, although the exact value of the  $\rm Na_2CsC_{60}$  compressibility is currently unknown. We do not expect it to be substantially different from the value assumed in the present study, as can be inferred from several high-pressure studies of fullerene solids. High-pressure work on pristine  $\rm C_{60}$  established that the compressibility of  $\rm -d\,ln\,V/dP = 5.5 \times 10^{-2}\,GPa^{-1}$  reported earlier shall was for the simple cubic phase of the materials. Moreover, Samara et al. Concluded that the compressibility of the fcc and sc were not too different. More detailed measure-



FIG. 3. Evolution of the superconducting transition temperature  $T_c$  with the lattice constant of various  $M_3C_{60}$  compounds, including points provided by pressure works. Filled symbols ( $\blacksquare$  and  $\blacktriangle$  for Rb<sub>3</sub>C<sub>60</sub> and Na<sub>2</sub>CsC<sub>60</sub>, respectively) are the present pressure data. Open symbols ( $\bigcirc$  and  $\square$  for  $R_3C_{60}$  and Na<sub>2</sub>CsC<sub>60</sub>, respectively) are the pressure data from Ref. 8, and symbols  $\lozenge$  are the data on various compounds from Ref. 10. The solid line is obtained by connecting the data points at ambient pressure for Na<sub>2</sub>RbC<sub>60</sub> and Na<sub>2</sub>CsC<sub>60</sub>.

ments<sup>19</sup> later established that the compressibility of the fcc is roughly 30% larger than that of the sc phase. As a result, we can conclude that the compressibility of the fullerene solids is only weakly dependent on the orientation of the  $C_{60}$  molecules in the solid. Thus, we can conclude that our approximation that the compressibility of  $Na_2CsC_{60}$  is of the same order of magnitude as that of  $K_3C_{60}$  is reasonable. As fcc phases appear to be somewhat softer than sc ones,<sup>19</sup> agreement of the present high-pressure data with the ambient pressure ones could be even better. Thus the transition temperatures of the fcc fullerides and the sc fullerides follow their own relations different to each other but common in the fullerides having the same structures.

Originally Na<sub>2</sub>RbC<sub>60</sub> was assumed to be an "anomalous" fullerene superconductor, and much effort was spent in an attempt to understand its behavior, which was thought to provide an important clue for the mechanism of superconductivity in these systems. The question arises about whether or not the density of state at the Fermi surface is an important controlling factor for  $T_c$ . Our present experiments clearly establish the existence of simple "universal" relation between  $T_c$  and interfullerene spacings for all alkali-metal intercalated C<sub>60</sub> superconductors; the different structural families characterized by the different orientational states of the  $C_{60}^{3}$  ions only give rise to different  $dT_c/da$  (a = lattice constant) gradients. Thus the unexpectedly low T<sub>c</sub> of Na<sub>2</sub>RbC<sub>60</sub> should result from the much steeper dependence of  $N(E_F)$  (and/or electron-phonon coupling V) on the intermolecular separation in sc than in fcc fullerides. Recent theoretical calculations by Hamada<sup>20</sup> within the framework of the tight-binding approximation have shown that indeed  $N(E_F)$  for a sc structure is more sensitive to lattice constant variations than for a fcc structure, entirely consistent with the results of the present experiments. In addition, the position of Na<sub>2</sub>CsC<sub>60</sub> on the universal curve of the fcc fullerides is wholly fortuitous. By taking into account the tight-binding calculations, 20,21 which indicate that  $N(E_F)$  is higher for a sc structure than for a fcc one, a strong possibility is then that the fortuitous position of Na<sub>2</sub>CsC<sub>60</sub> arises from the compensating effects of a slightly reduced electron-phonon coupling constant V, originating through the stronger influence of the Na+ ions on the C<sub>60</sub> geometry. 14 Recent neutroninelastic-measurements on Na<sub>2</sub>RbC<sub>60</sub> and Na<sub>2</sub>CsC<sub>60</sub> (Ref. 22) seem to give support for such a hypothesis, but additional accurate experimental and theoretical studies of  $N(E_F)$  and V are certainly needed.

In conclusion, we have unraveled a relationship between the superconducting transition temperature  $T_c$  and the lattice constant in alkali-metal intercalated  $C_{60}$  compounds by applying pressure on the Na<sub>2</sub>CsC<sub>60</sub> superconductor having a simple cubic structure (space group  $Pa\overline{3}$ ) at ambient pressure.  $T_c$  is found to have a substantially steeper dependence on the lattice constant in a simple cubic structure when compared with the face centered cubic structure (space group  $Fm\overline{3}m$ ) fulleride superconductors. The present results provide us with two important insights. First, the intuitive expectation based on a BCS

theory that an increased  $N(E_F)$  leads to higher  $T_c$ 's still holds for all alkali-metal intercalated  $C_{60}$  superconducting materials, including  $\mathrm{Na_2RbC_{60}}$ , which was wrongly thought to be an "anomalous" compound. We believe that this result will act as an important ingredient in all models of superconductivity in  $C_{60}$ -based materials. Second, it has been shown unambiguously that the relative orientation of  $C_{60}$  molecules in the solid does affect sensitively the details of the electronic structure, as revealed by the existence of the second "universal" line. This requires explicit consideration of an additional "new parameter," namely molecular orientation. Simply

speaking, we may view the  $C_{60}$  molecule not just like a "large atom," but like a large atom with "spin." Then, the  $C_{60}$ -based solids should lead to a variety of physical properties, just by tuning the "spin" orientation.

The authors wish to express their appreciation to Dr. Hamada for providing the results of his tight-binding calculations prior to publication. They would also like to thank Dr. S. Saito and Dr. A. Oshiyama for critical discussion, and Dr. Kubo for arranging the SQUID measurements. Work at the University of Sussex was supported by the Science and Engineering Research Council.

- <sup>1</sup>A. F. Hebard, M. J. Rosseinsky, R. C. Haddon, D. W. Murphy, S. H. Glarum, T. T. M. Palstra, A. P. Ramirez, and A. R. Kortan, Nature 350, 600 (1991).
- <sup>2</sup>R. C. Haddon et al., Nature **350**, 320 (1991).
- <sup>3</sup>K. Holczer, O. Klein, S.-M. Huang, R. B. Kaner, K. J. Fu, R. L. Whetten, and F. Diederich, Science 252, 1154 (1991).
- <sup>4</sup>See, for example a review article by M. S. Dresselhaus, G. Dresselhaus, and R. Saito, in *Physical Properties of High Temperature Superconductors IV*, edited by D. M. Ginsgerg (World Scientific, Singapore, 1994) Chap. 2, pp. 471.
- <sup>5</sup>K. Tanigaki, T. W. Ebbesen, S. Saito, J. Mizuki, J. S. Tsai, Y. Shimakawa, Y. Kubo, and S. Kuroshima, Nature 352, 222 (1991).
- <sup>6</sup>R. M. Fleming et al., Nature 352, 701 (1991).
- <sup>7</sup>G. Sparn, J. D. Thompson, S.-M. Huang, R. B. Kaner, F. Diederich, R. L. Whetten, G. Gruner, and K. Holczer, Science 252, 1829 (1991); G. Sparn et al., Phys. Rev. Lett. 68, 1228 (1992).
- <sup>8</sup>O. Zhou, G. B. M. Vaughan, Q. Zhu, J. E. Fischer, P. A. Heinney, N. Coustel, John P. McCauley, Jr., and A. B. Smith III, Science 255, 833 (1992).
- <sup>9</sup>A. Oshiyama and S. Saito, Solid State Commun. **82**, 41 (1992).
- <sup>10</sup>K. Tanigaki, I. Hirosawa, T. W. Ebbesen, J. Mizuki, Y. Shimakawa, Y. Kubo, J. S. Tsai, and S. Kuroshima, Nature 356, 419 (1992).
- <sup>11</sup>M. J. Rosseinsky, D. W. Murphy, R. M. Fleming, R. Tycko, A. P. Ramirez, T. Siegrist, G. Dabbagh, and S. E. Barrett,

- Nature 356, 416 (1992).
- <sup>12</sup>K. Kniaz, J. E. Fischer, Q. Zhu, M. J. Rosseinsky, O. Zhou, and D. W. Murphy, Solid State Commun. 88, 47 (1993).
- <sup>13</sup>P. W. Stephens, L. Mihaly, P. L. Lee, R. L. Whetten, S.-M. Huang, R. Kaner, F. Deiderich, and K. Holczer, Nature 351, 632 (1991).
- <sup>14</sup>K. Prassides, C. Christides, I. M. Thomas, J. Mizuki, K. Tanigaki, I. Hirosawa, and T. W. Ebbesen, Science 263, 950 (1994).
- <sup>15</sup>J. E. Fischer, P. A. Heiney, A. R. McGhie, W. J. Romanow, A. M. Denenstein, J. P. McCauley, Jr., and A. B. Smith III, Science 152, 1288 (1991).
- <sup>16</sup>S. J. Duclos, K. Brister, R. C. Haddon, A. R. Kortan, and F. A. Thiel, Nature 351, 380 (1991).
- <sup>17</sup>G. A. Samara, J. E. Schirber, B. Morosin, L. V. Hansen, D. Loy, and A. P. Sylwester, Phys. Rev. Lett. 67, 3136 (1991).
- <sup>18</sup>G. A. Samara, L. V. Hansen, R. A. Assink, B. Morosin, J. E. Schirber, and D. Loy, Phys. Rev. B 47, 4756 (1993).
- <sup>19</sup>A. Lundin, B. Ssundqvist, P. Skoglund, A. Fransson, and S. Pettersson, Solid State Commun. 84, 879 (1992).
- <sup>20</sup>N. Hamada (private communication).
- <sup>21</sup>S. Satpathy, V. P. Antropov, O. K. Andersen, O. Jepsen, O. Gunnarsson, and A. I. Liechtenstein, Phys. Rev. B 46, 1773 (1992).
- <sup>22</sup>K. Prassides, C. Christides, J. Mizuki, K. Tanigaki, and I. Hirosawa (unpublished).