논문 리뷰 5

링크 - https://www.frontiersin.org/articles/10.3389/fgene.2021.652907/full

1. Introduction

현대 의학은 발생 후 처방에서 예방으로 변화하고 있으며 이와 관련된 분야들은 환자 개인맞춤형의 조직적이고 정확한 예방 계획으로 초점을 맞추고 있다.

이 작업의 주요 목표는 개인의 상태에 대한 파노라마 뷰를 제공하여 인체 전체를 모델링하는데 있어 도전과 기회를 탐색하는 것이다. 이를 위해 장기, 조직 및 세포 수준에서 정보를 결합하는 기본 생물학적 시스템을 미러링하는 환자의 가상 프로토타입인 "디지털 트윈"의 개념 증명을 제안한다.

기존에 헬스케어 분야에서 훌륭한 디지털 트윈 연구 사례들이 있지만 이 사례들은 극도의 복 잡성으로 인해 인체의 한 부분만을 중점으로 연구가 이루어졌다. 이 논문에서는 인체 전체적 인 오버뷰가 필요했고, 최근의 그래프 표현 접근 방식이 다양한 수준에서 모든 다양한 신체 신호에 걸쳐 확장되는 디지털 트윈의 한계를 극복하여 의료 분야의 혁명을 가능하게 할 수 있다고 믿는다.

최근의 그래프 표현 접근 방식이 인체의 극도의 복잡성으로 한 부분에만 집중되었던 디지털 트윈의 한계를 극복하여 전체적인 메디컬 디지털 트윈을 구축할 수 있다.

장기, 조직 및 세포 수준의 정보를 결합한 최종 네트워크 구성을 통해 **개인의 상태에 대한 파노라마 뷰**가 제공된다.

시스템 의학의 아이디어를 과학적 컴퓨팅 및 머신러닝과 융합함으로써, 우리의 소프트웨어는 큰 불확실성 하에서 필수 매개 변수 모델의 분석을 통합하고 자동화한다.

[figure 1] 디지털 트윈 모델 아키텍쳐 그림. 제너레이터은 노이즈 벡터z와 카테고리 (조직, 세포 등), numeral (나이 등)

2. Design of a Biomedical Digital Twin

해당 논문의 디지털 트윈은 인체를 전체적으로 모델링하고 병리생리학적 조건의 진화를 예측하는 데 사용할 수 있는 모듈식 AI 지원 시스템으로 구성되어 있음

- 첫 번째 모듈은 임상적으로 관련된 엔드포인트(예: 혈압)를 예측하는 그래프 신경망 (GNN)을 기반
- 두 번째는 다중 오믹 통합성의 개념 증명을 제공하는 '생성적 적대 네트워크'(GAN)로 표시됩니다.
 - ∘ GAN? → https://lifeignite.tistory.com/53

[figure 2] 디지털 트윈 모델. 상미분 방정식, Graph Neural Networks(GNN), Generative Adversarial Networks(GAN) 이 환자의 상태를 모델링 하기 위해 시너지 효과로 사용됨

2.1. The Effectiveness of GNNs and GANs in Biomedical Signal Analysis

그래프의 다양한 특징과 생성가능한 반대되는 뉴럴 네트워크는 메디컬 데이터 분석에 적합 하였음

1. 비선형성

a. GNN과 GAN은 비선형성 규칙을 찾을수 있었음. 이는 자연의 대부분 시스템이 비선형적인 점에서 주목할 만함

2. 해석 가능성

- a. 그래프 기반 모델은 구조 덕분에 다른 신경 접근법과 관련하여 해석하기가 훨씬 쉬움
- b. 모델의 행동과 예측 이유를 해석할 수 있는 가능성은 임상 실습을 포함한 많은 분야 에서 중요하지는 않지만 중추적임

3. 비유클리드 기하학

- a. 기계 학습을 위한 고유한 비유클리드 데이터 구조로서 그래프는 다양한 규모의 다양한 생물학적 시스템을 모델링하는 데 사용될 수 있음
- b. 신체의 다양한 부위에 위치한 압력 및 전기 센서와 유사하게, 조직이나 장기의 분포는 각각의 노드나 그래프가 시계열 신호를 가지고 있는 그래프 모델로 표현할 수 있음

4. 모듈화

a. GNN의 핵심 속성은 모듈화로, 그래프의 여러 부분에서 재사용할 수 있는 독립적인 메커니즘을 학습할 수 있음

5. 크로스-모듈화

- a. GNN과 GAN 모두 다양한 수준의 생물학적 복잡성에 걸쳐 구조화된 데이터 소스와 비구조화된 데이터 소스를 결합하는 방법을 배울 수 있음
- b. 이는 DNA 메틸화 및 기능적 자기공명영상(fMRI) 데이터와 같은 다양한 생물학적 규모의 신호를 통합할 때 특히 중요함

6. 생상 가능성

a. GNN과 GAN은 모두 훈련 세트의 통계적 속성을 보존하는 새로운 데이터를 생성하는 방법을 배울 수 있음

7. 멀티 스케일

a. 그래프 표현은 생물학적 복잡성의 다른 계층에서 네트워크로 구성된 세분화된 정보 를 통합할 수 있는 기능을 가지고 있음 b. 이것은 모티프, 경로, 조직(세포의 구성으로서), 장기(조직의 구성으로서), 과정과 장치(장기의 구성으로서), 계층화(개인의 구성으로서)와 같은 고차 구조의 패턴을 인식할 수 있게 함

8. 스펙트럼 밀집도

- a. 공간적 특성과 함께 GNN은 주파수 영역 분석이 가능함
- b. 이를 통해 네트워크 수준에서 네트워크 모티브, 하위 구조 및 주기적 패턴을 조사할 수 있음

2.2 Graph Neural Model

- GNN은 그래프 도메인에서 동작하는 딥 러닝 기반 모델임
- 이들의 특성은 해석성이 높다는 점이며 이로 인해 최근 인공지능 연구계의 주목을 받고 있음
- 신경망에서 GNN은 데이터에서 계층적 패턴을 추출하는 핵심인 다층 아키텍처와 관련 된 데이터 중심 접근 방식을 상속함
- 그러나 다른 딥 러닝 모델과 달리 GNN은 그래프 이론 및 기타 수학 분야의 추가 기능을 활용함
- 다른 기계 학습 모델과 관련된 주요 이점은 매우 유연하고 해석 가능한 아키텍처에 의존 함

2.2.1 Stratification of Human Body Layers in a GNN

- GNN은 모둘적 접근으로 복잡한 시스템을 디자인 할 수 있게 함
- 첫번째로, 인체의 복잡성은 게놈 변화, 생물학적 경로 및 장기 생리를 나타내는 각각의 독립적인 하위 시스템을 개발함으로써 분해됨
- 각 하위 시스템은 GNN에서 다른 노드 또는 노드의 네트워크로 표현될 수 있으며, 프로 세스 간 신호는 다중 스케일 리플 효과를 지원하는 메시지 전달 동작으로 재구성될 수 있음
- 균질 서브시스템은 특성에 따라 계층으로 통합될 수 있음
- 이 논문에서 디지털 환자 모델은 전사체층, 세포층, 장기층 및 노출층의 네 가지 생물학 적 층으로 구성됨

• 다른 계층들은 쉽게 구현될 수 있음

Results

바비에로와 리오(2020)의 저자들은 인체를 설명하는 다양한 모델과 일반 미분 방정식을 통합한 시뮬레이션을 실행하기 위한 계산 도구를 제안했습니다. 이 도구는 두 가지 임상 사례연구를 생성하는 데 사용되었으며, 하나는 고혈압 및 제2형 당뇨병, 다른 하나는 SARS-CoV 독감에 사용되었습니다.

첫 번째 사례에서, 이 모델은 개인화된 치료를 위한 최선의 선택을 선택하기 위해 다양한 치료 계획 하에서 임상 엔드포인트의 진화를 시뮬레이션하는 데 사용되었습니다.

두 번째 경우, 이 모델은 환자의 생명을 위협하는 합병증, 특히 독감으로 인한 고혈압과 관련된 합병증을 방지하기 위해 임상 종말점을 지속적으로 모니터링하고 예측하는 데 사용되었습니다. 헤파린 기반 치료법 또는 조직 플라스미노겐 활성화제(tPA)가 혈전 형성을 방지하기 위해 권장되었습니다. 혈압은 심혈관 질환 및 모든 원인 사망률의 높은 위험과 관련이 있기 때문에 실시간으로 지속적으로 모니터링하고 정확하게 예측해야 하는 중요한 임상적 최종 산물입니다.

제안된 접근 방식이 이전 도구와 다른 점은 ODE 대신 최첨단 AI 모델을 사용한다는 것입니다.