## W261 Final Project -Predicting Flight Delays

Team04: Brittany Dougall, Jesse Miller, Chris Skokowski, Fengjiao Sun

### Introduction

- Business Case:
  - maximize the accuracy, f1, recall in predicting flight delays for passengers
- Datasets
  - Airlines data (primary resources for Time Series features)
  - Weather data (unused by model)

#### Passenger-centric Approach



#### **Evaluation metrics**

- Accuracy = (TN + TP) / (TN + TP + FN + FP)
- F1 = TP / (TP+0.5(FP+FN))
- Recall = TP/(TP+FN)

#### **Define question**

$$Y = \begin{cases} 0, & \text{if flight is on-time} \\ 1, & \text{if Dep\_Del15, Cancelled, or Diverted} \end{cases}$$

## EDA

#### Key Findings:

- Time-based features key
- Significant autocorrelation for response var
- Late aircraft arrival is the most frequently listed departure delay cause, i.e. departure delays can often be predicated by delays further upstream

| TAIL_NUM | utc_scheduled_departure      | DEP_DELAY | CANCELLED | OUTCOME |
|----------|------------------------------|-----------|-----------|---------|
| N832AS   | 2015-01-22T00:12:00.000+0000 | -7        | 0         | 0       |
| N832AS   | 2015-01-22T02:57:00.000+0000 | 7         | 0         | 0       |
| N832AS   | 2015-01-22T10:55:00.000+0000 | -6        | 0         | 0       |
| N832AS   | 2015-01-22T13:16:00.000+0000 | -6        | 0         | 0       |
| N832AS   | 2015-01-22T15:15:00.000+0000 | -3        | 0         | 0       |
| N832AS   | 2015-01-24T13:37:00.000+0000 | 123       | 0         | 1       |
| N832AS   | 2015-01-24T15:11:00.000+0000 | 104       | 0         | 1       |
| N832AS   | 2015-01-25T13:37:00.000+0000 | 98        | 0         | 1       |
| N832AS   | 2015-01-25T15:11:00.000+0000 | 77        | 0         | 1       |
| N832AS   | 2015-01-26T17:31:00.000+0000 | 75        | 0         | 1       |
| N832AS   | 2015-01-26T19:32:00.000+0000 | 114       | 1         | 1       |
| N832AS   | 2015-01-27T13:16:00.000+0000 | null      | 1         | 1       |
| N832AS   | 2015-01-27T15:15:00.000+0000 | null      | 1         | 1       |
| N832AS   | 2015-01-27T17:32:00.000+0000 | null      | 1         | 1       |
| N832AS   | 2015-01-27T19:27:00.000+0000 | null      | 1         | 1       |
| N832AS   | 2015-01-28T02:50:00.000+0000 | -8        | 0         | 0       |
| N832AS   | 2015-01-28T11:01:00.000+0000 | -6        | 0         | 0       |
| N832AS   | 2015-01-28T13:32:00.000+0000 | -12       | 0         | 0       |
| N832AS   | 2015-01-28T19:00:00.000+0000 | -1        | 0         | 0       |
| N832AS   | 2015-01-28T22:19:00.000+0000 | -2        | 0         | 0       |







## Feature Engineering



## Algorithms Tried

#### **Validation Scores:**

- Logistic Regression
  - Accuracy: 0.759
  - o Recall: 0.639
  - o F1: 0.510
- Decision Tree
  - Accuracy: 0.808
  - o Recall: 0.664
  - o F1: 0.577
- Random Forest
  - o Accuracy: 0.809
  - o Recall: 0.597
  - o F1: 0.551
- Gradient Boosted Decision Tree
  - o Accuracy: 0.812
  - o Recall: 0.695
  - o F1: 0.592

## Random Forest



#### **XGBoost**



## Outcome / Evaluation Metrics

- ~18% of observations misclassified
  - Highest rates of misclassified flights in June - Aug
  - FN for long intervals between arrival
     & next scheduled departure
- ~59 % accuracy in predicting delays
   15+min/diversions/cancellations

| Metric    | Train | Test  |
|-----------|-------|-------|
| F1-score  | 0.753 | 0.600 |
| Recall    | 0.699 | 0.689 |
| Precision | 0.817 | 0.532 |
| Accuracy  | 77.5% | 81.6% |



## Gap Analysis

- **3rd** Highest F1: 0.600
- **3rd** Highest Recall: 0.689
- 3rd Highest Accuracy: 0.819

| Metric    | Train | Test  |  |
|-----------|-------|-------|--|
| F1-score  | 0.753 | 0.600 |  |
| Recall    | 0.699 | 0.689 |  |
| Precision | 0.817 | 0.532 |  |
| Accuracy  | 77.5% | 81.6% |  |

- Despite our focus on the recall metric, our model performed well across all three of the main metrics
- No model outperformed ours on every metric, indicating each had different priorities

## Challenges

- Class imbalance
  - o SMOTE
- Crashing XGBoost
- Additional feature engineering
  - Weather
  - o Time-based
  - o Holiday
  - Passenger booking

#### **SMOTE**



#### **Additional Features**

#### Weather



#### **Holiday**



## Next Steps

- New algorithms for class imbalance
- Reduce size of dataset for training

More feature engineering

- Weather
- Time-based
- Holidays
- Passenger bookings



| TAIL_NUM | ORIGIN | DEST | utc_scheduled_departure     | last_flight_delayed | amount_last_delay | arrival_time_2_next_flight | prediction | label |
|----------|--------|------|-----------------------------|---------------------|-------------------|----------------------------|------------|-------|
| 218NV    | SFB    | XNA  | 2019-01-01T13:20:00.000+000 | 1                   | 29                | 46920                      | 1          | 1     |
| 218NV    | XNA    | SFB  | 2019-01-01T16:33:00.000+000 | 1                   | 46                | 2700                       | 1          | 1     |
| 218NV    | SFB    | FWA  | 2019-01-01T20:47:00.000+000 | 1                   | 35                | 7020                       | 1          | 1     |
| 218NV    | FWA    | SFB  | 2019-01-01T23:49:00.000+000 | 1                   | 27                | 2700                       | 1          | 1     |
| 218NV    | SFB    | PBG  | 2019-01-02T11:30:00.000+000 | 1                   | 27                | 33900                      | 0          | 1     |
| 218NV    | PBG    | SFB  | 2019-01-02T15:11:00.000+000 | 1                   | 8                 | 2700                       | 1          | 1     |
| 218NV    | SFB    | FNT  | 2019-01-03T11:45:00.000+000 | 1                   | 23                | 62880                      | 0          | 1     |
| 218NV    | FNT    | SFB  | 2019-01-03T15:09:00.000+000 | 1                   | 0                 | 3000                       | 1          | 0     |
| 218NV    | SFB    | SBN  | 2019-01-04T12:20:00.000+000 | 0                   | 13                | 67140                      | 0          | 0     |
| 218NV    | SBN    | SFB  | 2019-01-04T15:38:00.000+000 | 0                   | -5                | 3000                       | 0          | 0     |

## Appendix



### **Datasets**

- Airlines Data (Core + Response)
- Weather Data (Additional Features)
- ICAO to IATA Table (Used For Join)
- Stations Data (Used For Join)



**Coverage of Weather Stations** 

Weather Stations **2649** 

Airports 372

Airports w/ Weather Station 359

## Performance & Scalability

#### **Performance**

- 3 month data: 1.09 hours for crossfold validation
- Full data: xx hours for crossfold validation

| Algorithm           | Accuracy | Precision | Recall |
|---------------------|----------|-----------|--------|
| Logistic Regression | 0.9302   | 0.9472    | 0.7103 |

### **Datasets**

- Airlines Data (Core + Response)
- Weather Data (Additional Features)
- ICAO to IATA Table (Used For Join)
- Stations Data (Used For Join)

#### Stations Data



Stations Data

## Crossfold Validation & Evaluation Metric

#### **Crossfold Validation**

#### - Datasets:

- Train: 2015-2017

- Validation: 2018

- Test: 2019

#### ParamGrid

- Logistic Regression: regParam

Decision Tree: MaxDepth

#### **Evaluation Metrics:**

| Algorithm              | Accuracy | Precision | Recall |
|------------------------|----------|-----------|--------|
| Decision<br>Tree       |          |           |        |
| Logistic<br>Regression |          |           |        |

## Algorithm 1 – Logistic Regression

- 1. Evaluation Metrics
  Recall = TP / (TP + FN)
- 2. Crossfold Validation
- Current status: CrossValidator
- Next step: Blocking Time Series Split

#### **Evaluation Metrics**

| Accuracy  | 0.7997 |
|-----------|--------|
| Precision | 0.794  |
| Recall    | 0.017  |



Training set areaUnderROC: 0.7262749599356745

#### **Crossfold Validation**

- kFolds, k=3
- regParam, [2.0, 1.0, 0.1, 0.01]
- Next step: Blocking Time Series Cross Validation



## Business Problem

- Predict delays for flights
- We'll take a passenger-centric approach to establishing the problem space:
  - Reroutes and cancellations are equivalent to delays
  - Focus on identifying true positives

#### **Target Variable:**

$$X = \begin{cases} 0, & \text{if flight is on-time} \\ 1, & \text{if flight is delayed, rerouted, or cancelled} \end{cases}$$

#### **Evaluation Metric:**

$$Recall = \frac{TP}{TP + FN}$$

## Airlines + Weather Join



## Train/Validation/Test Split

#### Key Principle:

When working with time-series data, don't train on the future and test on the past

#### Proposed Approach:



## Generating the Dataset + EDA on Joined Table

- Join
  - Flights to stations
  - Weather filtered by flights
  - Flights to weather
- 99% of airline observations retained
- Issues for modeling:
  - High correlation between some numeric features
  - Differences in scale



# Data Cleaning & Feature Engineering

- Missing Data: drop rows with null, 9, 9999, 99999, 999999 and +9999
- Non-numerical features
  - One-hot encoding for logistic regression model
  - Use categorical features in original form for decision tree approach
- Features used:
- DAY OF WEEK
- OP\_UNIQUE\_CARRIER: one-hot encoding
- ORIGIN and DEST: one-hot encoding
- CRS\_DEP\_TIME: extract hours as a new column
- WND: it is parsed and derived into wind\_obs\_type and wind\_obs\_speed
- cig: the first element ceil\_height was selected
- · vis: the first element vis\_dist was selected
- TMP: the first element air\_temp was selected
- DEW: the first element dew\_pt\_temp was selected