Denial of Service

• In Feb. 2000, Yahoo's router kept crashing

- Engineers had problems with it before, but this was worse
- Turned out they were being flooded with ICMP echo replies
- Many DDoS attacks followed against high-profile sites

Basic Denial of Service attack

- Overload a server or network with too many packets
- Maximize cost of each packet to server in CPU and memory

• Distributed DoS (DDos) particularly effective:

- Penetrate many machines in semi-automatic fashion
- Make hosts into "zombies" that will attack on command
- Later start simultaneous widespread attacks on a victim

DoS attack overview

- Class of attacks that just target availability
- Many motivations for Denial of Service (DoS)
 - Extortion E.g., pay us a small sum of money or we take down your off-shore on-line gambling site
 - Revenge Spammers permanently shut down anti-spam company Blue Security
 - Bragging rights
- Can DoS at many different layers
 - Link, Network, Transport, Application, ...

Warm up: simple DoS attacks

- Jam a wireless network at physical layer
 - Simple, maybe even with off-the-shelf cordless phone
- Exploit NAV structure at 802.11 link layer
 - NAV (Net Allocation Vector) used to suggest when network may be free (e.g., "after RTS/CTS exchange")
 - Use to reserve net repeatedly for max number of seconds
- Flooding attack e.g., flood ping
 - ping -f victim.com floods victim w. ICMP echo requests
- Amplification can make attacks more powerful than resources directly available to attacker

EDNS attack

- Some EDNS [RFC 2671] responses $40 \times$ size of query
- $\bullet \sim 500,000$ open DNS resolvers on Internet
- Flood victim w. DNS responses
 - Send request forged to look like victim is source
 - Costs attacker only 60 bytes each
 - Go to many different DNS resolvers
 - All responses go back to same victim, 3,000 bytes each

SMURF attack

- ICMP echo supports pinging IP broadcast address
 - Useful to know what machines are on your network all reply
- Big amplification for flooding attack
 - Compromise one machine on net
 - Ping broadcast address "from" victim IP
 - All machines will reply
- Attack took down Yahoo!, buy.com, Amazon, in 2000

The SYN-bomb attack

- Recall the TCP handshake:
 - $C \rightarrow S$: SYN, $S \rightarrow C$: SYN-ACK, $C \rightarrow S$: ACK
- How to implement:
 - Server inserts connection state in a table
 - Waits for 3rd packet (times out after a minute)
 - Compares each new ack packet to existing connections
- OS can't handle arbitrary # partial connections
- Attack: Send SYN packets from bogus addresses
 - SYN-ACKs will go off into the void
 - Server's tables fill up, stops accepting connections
 - A few hundred pkts/sec completely disables most servers

SYN-Bombs in the wild

MS Blaster worm

- Flooded port 80 of windowsupdate.com w. SYN packets
- 50 SYN packets/sec (40 bytes each)
- Randomized last two bytes of source IP address

• Clients couldn't update to fix problem

• Microsoft's solution:

- Change the URL to windowsupdate.microsoft.com
- Update old clients through Akamai

Other attacks

• IP Fragment flooding

- Kernel must keep IP fragments around for partial packets
- Flood it with bogus fragments, as with TCP SYN bomb

• UDP echo port 7 replies to all packets

- Forge packet from port 7, two hosts echo each other
- Has been fixed in most implementations

Application-level DoS

DNS supported by both TCP and UDP

- TCP protocol: 16-bit length, followed by message
- Many implementations blocked reading message
- Take out DNS server by writing length and just keeping TCP connection open

• SSL requires public key decryption at server

- Can use up server's CPU time by opening many connections; relatively cheap to do for the client