ESO208A: Computational Methods in Engineering Programming Assignment 1

Name: Amit Kumar Yadav Roll No: 190118 Section: J1

Note: Steps taken to reach the root will be found in output.txt file in output folder once the program is executed.

Question 1:

Test case 1: $600x^4 - 550x^3 + 200x^2 - 20x - 1$

Bisection method:

False-position method:

Root: 0.5907300950364348

Modified-false-position method:

Newton-Raphson method:

Root: 0.2323529647687637

Secant Method:

Test Case 2: exp(-x) -x

Bisection method:

Root: 0.56689453125

False-position method

Modified-False-Position method

Root: 0.5671432904114888

Newton-Raphson method

Secant method:

Root: 0.5671432990837618

Question 2:

Test Case 1: $600x^4 - 550x^3 + 200x^2 - 20x - 1$

Muller method:

Root: 0.232352964749917

Bairstow method:

Roots:

- 0.2323529647499173
- -0.0358396918662678
- 0.360076695724878 + 0.26549174408570536I
- 0.360076695724878 + -0.265491744085705361

Test Case 2: $x^4 + x^3 - 4x - 4$

Muller method:

Root: 2.0000000005357

Bairstow method:

Roots:

- 2.0
- -1.0
- -2.0