Dérivation Locale

Première Spécialité Mathématiques

1 Taux de variation

Définition 1. Soit f une fonction définie sur un intervalle I. On prend $a < b \in I$. On appelle taux de variation de f entre a et b la grandeur

$$\frac{f(b) - f(a)}{b - a}$$

Exemple. Une voiture bleue roule pendant une heure. Soit f(t) la distance parcourue en km en fonction du temps t en min.

- a) Quel est l'intervalle de définition de f?
- b) Calculer le taux de variation de f entre 0 et 60. Comment interpréter votre résultat?

c) On a représenté la courbe de la fonction f sur le repère ci-dessus. Tracer la courbe représentant le trajet d'une voiture rouge, roulant à la vitesse constante de $120\,\mathrm{km}\,\mathrm{h}^{-1}$.

Proposition 1. Soit f un fonction définie sur un intervalle I, et $a < b \in I$. Si on se place sur un repère orthonormé, et que l'on considère les points A(a; f(a)) et B(b; f(b)), alors le taux de variation de f entre a et b correspond à la pente de la droite entre A et B.

2

Remarque. Le taux de variation d'une fonction entre a et b répond à la question suivante : Pour chaque abscisse parcourus entre a et b, de combien d'ordonnées sommes-nous montés ou descendus?

Proposition 2. Soit f une fonction définie sur un intervalle I. Soit $J \subseteq I$ un intervalle.

- Si f est croissante sur J, alors pour tout $a < b \in J$, le taux de variation de f entre a et b est positif.
- Si f est décroissante sur J, alors pour tout $a < b \in J$, le taux de variation de f entre a et b est négatif.

Remarque. Les réciproques sont fausses : un taux de variation de f entre a et b positif n'implique pas que la fonction f est croissante sur l'intervalle [a;b].

Exemple. Soit $f: x \mapsto (x-1)^2 - 2$ définie sur [-2; 3].

- a) Donner un intervalle I sur lequel f est croissante, et un intervalle J sur lequel f est décroissante.
- b) Choisir deux valeurs dans chacun des intervalles, et calculer les taux de variations de f entre ces deux valeurs.
- c) Calculer le taux de variation entre -2 et 2. Que peut-on en déduire?

2 DÉRIVÉE LOCALE 3

2 Dérivée locale

2.1 Limite finie en 0

Soit Q(h) une quantité dépendant d'une variable h.

Définition 2. On dit que Q(h) admet une limite finie en 0 quand il existe un nombre q tel que Q(h) s'approche de plus en plus de q à mesure que h s'approche de plus en plus de 0. Dans ce cas, ce nombre q est appelé limite de Q(h) en 0, et est noté

$$\lim_{h\to 0} Q(h)$$

Exemple. Pour chaque quantité Q(h) suivante, remplir le tableau de valeur suivant, et en déduire si Q(h) admet une limite finie en 0, et le cas échéant, donner $\lim_{h\to 0} Q(h)$.

a)
$$Q(h) = 1 + h$$

b)
$$Q(h) = \frac{1}{h}$$

h	1	0, 1	0,01	0,001	0,0001	h	1	0,1	0,01	0,001	0,0001
Q(h)						Q(h)					

Remarque. Il est donc tout à fait possible pour Q(h) de ne pas admettre de limite finie en 0. Toute notion dépendant donc d'une limite finie doit être manipulée avec précaution.

2.2 Nombre dérivé

Soit f une fonction définie sur un intervalle I. On fixe $a \in I$. Soit $h \neq 0$ un nombre tel que $a+h \in I$. Alors le taux de variation de f entre a et a+h est donné par

$$T_a(h) = \frac{f(a+h) - f(a)}{(a+h) - a} = \frac{f(a+h) - f(a)}{h}$$

Remarque. Par définition, on ne peut pas remplacer h par 0, donc $T_a(0)$ n'est pas défini. Par contre, on peut s'interesser à son éventuelle limite finie en 0

Définition 3. On dit que f est dérivable en a quand $T_a(h)$ admet une limite finie en 0. Dans ce cas, on appelle **nombre dérivé de** f en a la limite en 0 de $T_a(h)$, et on le note f'(a). En résumé, quand f est dérivable en a, alors son nombre dérivé est donné par

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

3 Interprétation géométrique

Soit f une fonction définie sur I. On fixe $a \in I$. On s'intéresse aux droites sécantes à la courbe représentative C_f de f passant par les points A(a; f(a)) et H(a+h; f(a+h)), pour h suffisamment petit pour que $a+h \in I$.

Remarque. La pente de cette droite sécante est donnée par le taux de variation

$$T_a(h) = \frac{f(a+h) - f(a)}{h}$$

Au fur et à mesure que H se rapproche de A, cette sécante se rapproche d'une certaine droite, dont la pente est donnée par f'(a).

Définition 4. On dit que f admet une **tangente en** a quand elle dérivable en a. Dans ce cas, la **tangente en** a **de** f est la droite passant par le point A(a; f(a)) et de pente f'(a).

Remarque. La tangente de f en a, quand elle existe, peut être comprise comme une droite qui « $frôle \gg la$ courbe en a. Sa pente peut-être interprétée comme la Vitesse instantanée de la fonction en a.

Proposition 3. L'équation de la tangente de f en a, quand elle existe, est

$$y = f'(a)(x - a) + f(a)$$

Exemple. Soit $f: x \mapsto x^2 - 4$ définie sur \mathbb{R} .

- a) La fonction f est-elle dérivable en 3 ? En déduire son nombre dérivé en 3.
- b) En déduire l'équation de la tangente de f en 3.