Elijah Andrushenko

CPTS 434

Introduction to Neural Network Design & Applications

10-15-2019

Homework #5

Part 1

1.

Bias

Logical OR

p_1	\mathbf{p}_2	t
0	0	0
0	1	1
1	0	1
1	1	1

Open-Circles Margin

$$d = \frac{|g(0,0)|}{||w||}$$

$$d = \frac{|[1 \quad 1] \begin{bmatrix} 0 \\ 0 \end{bmatrix} - 0.6|}{\sqrt{1^2 + 1^2}} = 0.42$$

Closed-Circles Margin

$$d = \frac{|g(0,0)|}{||w||}$$

$$d = \frac{|\begin{bmatrix} 1 & 1\end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} - 0.6|}{\sqrt{1^2 + 1^2}} = 0.28$$

Part 2

1.

Step 1

 $a = hardlim(w^T p_1 + b)$

$$a = hardlim(\begin{bmatrix} 0.5 & -1 & -0.5 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix} + 0.5)$$

a = hardlim(-0.5)

$$a = 0$$

 $t_1 = 1$ and a = 0, $t_1 \neq a$, therefore weights need to be adjusted

 $w_{new} = w_{old} + ep_1$, we need to find e

$$e = t_1 - a$$

$$e = 1 - 0$$

$$e = 1$$

$$w_{new} = \begin{bmatrix} 0.5 \\ -1 \\ -0.5 \end{bmatrix} + \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix}$$

$$w_{new} = \begin{bmatrix} -0.5\\0\\-1.5 \end{bmatrix}$$

$$b_{new} = b_{old} + e$$

$$b_{new} = 0.5 + 1$$

$$b_{new}=1.5$$

Step 2

$$a = hardlim(w^T p_2 + b)$$

$$a = hardlim([-0.5 \quad 0 \quad -1.5]\begin{bmatrix} 1\\1\\-1 \end{bmatrix} + 1.5)$$

$$a = hardlim(2.5)$$

$$a = 1$$

 $t_2 = 0$ and $a = 1, t_2 \neq a$, therefore weights need to be adjusted

$$w_{new} = w_{old} + ep_2$$
, we need to find e

$$e = t_2 - a$$

$$e = 0 - 1$$

$$e = -1$$

$$w_{new} = \begin{bmatrix} -0.5\\0\\-1.5 \end{bmatrix} + \begin{bmatrix} 1\\1\\-1 \end{bmatrix}$$

$$w_{new} = \begin{bmatrix} -1.5\\ -1\\ -0.5 \end{bmatrix}$$

$$b_{new} = b_{old} + e$$

$$b_{new} = 1.5 - 1$$

$$b_{new} = 0.5$$

Step 3

$$a = hardlim(w^T p_1 + b)$$

$$a = hardlim([-1.5 \quad -1 \quad -0.5]\begin{bmatrix} -1\\1\\-1 \end{bmatrix} + 0.5)$$

$$a = hardlim(1.5)$$

$$a = 1$$

 $t_1 = 1$ and a = 1, $t_1 = a$, therefore weights don't need to be adjusted

Step 4

$$a = hardlim(w^T p_2 + b)$$

$$a = hardlim(\begin{bmatrix} -1.5 & -1 & -0.5 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} + 0.5)$$

$$a = hardlim(-1.5)$$

$$a = 0$$

 $t_2 = 0$ and a = 0, $t_2 = a$, therefore weights don't need to be adjusted

Step 5

No Adjustments were made for p_1 or p_2 therefore we are done

Results

$$w^T = [-1.5 \quad -1 \quad -0.5]$$

$$b = 0.5$$

Decision Boundary

$$w^T p + b = 0$$

$$\begin{bmatrix} -1.5 & -1 & -0.5 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} + 0.5 = 0$$

$$-1.5x - y - 0.5z + 0.5 = 0$$

2.

Distance Calculation for p_1

$$d_1 = \frac{|g(p_1)|}{||w||}$$

$$d_1 = \frac{|[-1.5 \quad -1 \quad -0.5] \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix} + 0.5|}{\sqrt{1.5^2 + -1^2 + -0.5^2}}$$

$$d_1 = 0.80$$

Distance Calculation for p_2

$$d_2 = \frac{|g(p_2)|}{||w||}$$

$$d_2 = \frac{|[-1.5 \quad -1 \quad -0.5]\begin{bmatrix} 1\\1\\-1 \end{bmatrix} + 0.5|}{\sqrt{1.5^2 + -1^2 + -0.5^2}}$$

$$d_2=0.80$$