

#### Contents lists available at ScienceDirect

# Data in Brief





# Data Article

# Database on the mechanical properties of high entropy alloys and complex concentrated alloys



S. Gorsse a,b,\*, M.H. Nguyen b, O.N. Senkov C, D.B. Miracle C

- a CNRS, Univ. Bordeaux, ICMCB, UMR 5026, F-33600 Pessac, France
- b Bordeaux INP, ENSCBP, F-33600 Pessac, France

#### ARTICLE INFO

#### Article history: Received 10 October 2018 Received in revised form 13 November 2018 Accepted 21 November 2018 Available online 28 November 2018

#### ABSTRACT

This data article presents the compilation of mechanical properties for 370 high entropy alloys (HEAs) and complex concentrated alloys (CCAs) reported in the period from 2004 to 2016. The data sheet includes alloy composition, type of microstructures, density, hardness, type of tests to measure the room temperature mechanical properties, yield strength, elongation, ultimate strength and Young's modulus. For 27 refractory HEAs (RHEAs), the yield stress and elongation are given as a function of the testing temperature. The data are stored in a database provided in Supplementary materials, and for practical use they are tabulated in the present paper. The database was used in recent publications by Miracle and Senkov [1], Gorsse et al. [2] and Senkov et al. [3].

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

#### Specifications table

Subject area

More specific subject area

Type of data

How data was acquired

Data format

Materials Science

High-entropy alloys (HEAs) and complex concentrated alloys (CCAs)

Table, figure

Compilation of data from available literature. Data extracted from

studies on 370 alloys reported in the period from 2004 to 2016.

Analyzed

<sup>&</sup>lt;sup>c</sup> Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, OH 45433, USA

<sup>\*</sup> Corresponding author at: CNRS, Univ. Bordeaux, ICMCB, UMR 5026, F-33600 Pessac, France. E-mail address: gorsse@icmcb-bordeaux.cnrs.fr (S. Gorsse).

| Experimental factors  | Data compilation from available literature. Data sheet contains about 81 references.                                                                            |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Experimental features | Extensive Data compilation. Alloys' densities and Young's modulus were computed using the rule of mixtures (ROM) for the different reported alloy compositions. |
| Data source location  | Data are with the article                                                                                                                                       |
| Data accessibility    | Direct submission. Most relevant research article: S. Gorsse, D.B.                                                                                              |
|                       | Miracle, O.N. Senkov, Mapping the world of complex concentrated                                                                                                 |
|                       | alloys, Acta Materialia 135 (2017) 177–187 [2].                                                                                                                 |

#### Value of the data

- The database covers the main mechanical properties of HEAs and CCAs tested under uniaxial loading from published reports since 2004 until end of 2016.
- The database can be used to assess the potential of HEAs and CCAs as possible structural materials.
- The database can be used to represent various property spaces and calculate performance indices.
- The database can enable data mining to extract insights and uncover patterns to guide and accelerate the development of HEAs and CCAs.

#### 1. Data

High entropy alloys (HEAs) and complex concentrated alloys (CCAs) represent a new branch of the metallic alloy tree. HEAs are defined as alloys with 5 or more principal elements that have concentrations between 5 and 35 atom percent, promoting the formation of single-phase-disordered solid solutions presumably stabilized by the configurational entropy of mixing. CCAs encompass all alloys, including HEAs, with three or more principal components. CCAs can have single-phase or multi-phase microstructure.

A detailed comparison of CCAs with competing commercial alloys is crucial to identify the most attractive alloys for structural applications and guide future studies [1–3]. The relative merits of these new alloys depend on combinations of properties specific to the applications and loading conditions. Thus, this data article is a compilation of the density and mechanical properties of CCAs published in the literature since 2004, allowing the performance indices for lighter, stronger and stiffer structures to be evaluated for different loading conditions [2]. The data are stored in a database and tabulated in the present article.

#### 2. Experimental design, materials and methods

The database has a tree-like classification (Fig. 1) which includes four different families: 3d transition metal (3d TM), refractory metal (RHEAs and RCCAs), light metal family, and bronzes and brasses HEAs/CCAs. Each family is expanded in classes (a class is a unique combination of principal elements), and each class contains members having variations in principal element concentrations. Each member is characterized by a set of attributes which includes: alloy composition, phase content, density, hardness (Vickers), type of mechanical test (tension or compression), yield strength, ultimate strength, elongation, and Young's modulus. A listing of these entries makes up a material record. The database was used by Gorsse et al. [2] with Cambridge Education Software (CES) enabling users to (i) browse the materials data, (ii) search and filter to narrow down the set of materials using given parameters (e.g. alloy composition that contains a specific chemical element), (iii) represent material property maps by plotting any properties or combination of properties against any other property, and (iv) select materials using performance indices as defined by M. F. Ashby.

A representation of the data is illustrated in Fig. 2 where the room temperature yield strength is plotted against the density for CCAs.

Since this work reflects the state of the art of the field of HEAs and CCAs, the properties are not equally populated for every alloy due to the lack of literature data. The density of the alloy was estimated using the rule of mixtures (ROM):  $\rho = \sum x_i M_i / \sum x_i V_i$  where  $x_i$ ,  $M_i$  and  $V_i$  are the atomic fraction, molar mass and molar volume of the element i. When not experimentally measured, the Young's modulus was estimated using ROM for single phase solid solutions only:  $E = \sum x_i E_i$  where  $E_i$  is the Young modulus of the alloy element i.

For practical use by all, the data are also given in the present article using Tables and shared on Google Drive via the following link: https://docs.google.com/spreadsheets/d/1hLiqmlysSKK7Ubv362v8 fasoh8-W17V7zqNzRfSoilw/edit?usp=sharing. The main entries for 370 alloy compositions are listed at room temperature in Table 1, while Table 2 shows the temperature dependence of the mechanical properties for 27 HEAs/CCAs. Each row in Table 1 corresponds to one mechanical test for an alloy composition in an experimentally characterized metallurgical condition.



Fig. 1. Tree-like classification of the HEAs/CCAs database.



**Fig. 2.** Materials property space for room temperature yield strength vs density of HEAs and CCAs. Alloy members have been colored to identify crystal structure (Im stands for intermetallic). The lines give performance index for uniaxial loading (corresponding to the material index  $\sigma^{Y}/\rho$  where  $\sigma^{Y}$  and  $\rho$  are the yield strength and the density, respectively).

**Table 1**HEAs and CCAs for which mechanical tests are reported in literature.  $\rho$  represents the density, HV is the hardness in Vickers,  $\sigma^{\rm Y}$  is the Yield strength,  $\sigma^{\rm max}$  is the ultimate strength,  $\varepsilon$  is the elongation and E is the Young's modulus. Parentheses indicate values estimated using ROM. In the column "Type of tests", C and T stands for compression and tension. Im stands for Intermetallic. Each row represents the result of a test on a specific alloy composition.

| Composition (atomic) | Ref.       | Type of phases | $\rho$ (g/cm <sup>3</sup> ) | HV    | Type of tests | σ <sup>y</sup><br>(MPa) | σ <sup>max</sup><br>(MPa) | ε (%) | E (GPa)  |
|----------------------|------------|----------------|-----------------------------|-------|---------------|-------------------------|---------------------------|-------|----------|
| 3d TM HEAs and CCAs  | in the Al- | Co-Cr-Fe-Mn-N  | li system and o             | leriv | ates          |                         |                           |       |          |
| CoFeNi               | [4]        | FCC            | (8.5)                       | 125   | C             | 204                     |                           |       | (207)    |
| CoFeNi               | [4]        | FCC            | (8.5)                       | 125   | C             | 209                     |                           |       | (207)    |
| CoFeNi               | [5]        | FCC            | (8.5)                       |       | T             | 211                     | 513                       | 31    | (207)    |
| CoFeNiSi0.25         | [4]        | FCC            | (7.7)                       | 149   | C             | 196                     |                           |       | (194)    |
| CoFeNiSi0.5          | [4]        | FCC + Im       | (7.1)                       | 287   | C             | 476                     |                           |       |          |
| CoFeNiSi0.75         | [4]        | FCC + Im       | (6.6)                       | 570   | C             | 1301                    |                           |       |          |
| Al0.25CoFeNi         | [4]        | FCC            | (7.9)                       | 138   | C             | 158                     |                           |       | (196)    |
| Al0.5CoFeNi          | [4]        | FCC + BCC      | (7.4)                       | 212   | C             | 346                     |                           |       | (187)    |
| Al0.75CoFeNi         | [4]        | FCC + BCC      | (7.0)                       | 385   | C             | 794                     |                           |       | (179)    |
| CoCrFeNi             | [6]        | FCC            | (8.2)                       |       | T             | 148                     | 413                       | 48    | (225)    |
| CoCrFeNi             | [7]        | FCC            | (8.2)                       | 116   |               |                         |                           |       | (225)    |
| CoCrFeNi             | [7]        | FCC            | (8.2)                       | 113   |               |                         |                           |       | (225)    |
| CoCrFeMo0.5Ni        | [8]        | FCC + Im       | (8.5)                       | 210   |               |                         |                           |       |          |
| CoCrFeNb0.103Ni      | [6]        | FCC + Im       | (8.2)                       |       | T             | 318                     | 622                       | 19    |          |
| CoCrFeNb0.155Ni      | [6]        | FCC + Im       | (8.2)                       |       | T             | 322                     | 744                       | 23    |          |
| CoCrFeNb0.206Ni      | [6]        | FCC + Im       | (8.2)                       |       | T             | 403                     | 807                       | 9     |          |
| CoCrFeNb0.309Ni      | [6]        | FCC + Im       | (8.2)                       |       | T             | 479                     | 879                       | 4     |          |
| CoCrFeNb0.412Ni      | [6]        | FCC + Im       | (8.2)                       |       | T             | 638                     | 1004                      | 1     |          |
| CoCrFeNiTi           | [9]        | FCC            | (7.2)                       |       | C             |                         | 2020                      | 9     | 135 (203 |
| Co1.5CrFeNi1.5Ti0.5  | [10]       | FCC            | (7.8)                       | 509   |               |                         |                           |       | (211)    |
| Co1.5CrFeNi1.5Ti     | [10]       | FCC + Im       | (7.4)                       | 654   |               |                         |                           |       |          |
| Al0.25CoCrFeNi       | [7]        | FCC            | (7.7)                       | 110   |               |                         |                           |       | (216)    |
| Al0.25CoCrFeNi       | [7]        | FCC            | (7.7)                       | 113   |               |                         |                           |       | (216)    |
| Al0.375CoCrFeNi      | [7]        | FCC            | (7.5)                       | 131   |               |                         |                           |       | (211)    |
| Al0.375CoCrFeNi      | [7]        | FCC            | (7.5)                       | 196   |               |                         |                           |       | (211)    |
| Al0.5CoCrFeNi        | [7]        | FCC + BCC      | (7.3)                       | 159   |               |                         |                           |       | (208)    |
| Al0.5CoCrFeNi        | [7]        | FCC + BCC      | (7.3)                       | 209   |               |                         |                           |       | (208)    |
| Al0.7Co0.3CrFeNi     | [11]       | FCC + BCC +    | - B2 (6.8)                  | 624   | C             | 2033                    | 2635                      | 8     |          |
| Al0.75CoCrFeNi       | [7]        | FCC + BCC      | (7.0)                       | 388   |               |                         |                           |       | (200)    |
| Al0.75CoCrFeNi       | [7]        | FCC + BCC      | (7.0)                       | 280   |               |                         |                           |       | (200)    |
| Al0.875CoCrFeNi      | [12]       | FCC + BCC      | (6.9)                       |       |               |                         |                           |       | (197)    |
| Al0.875CoCrFeNi      | [7]        | BCC            | (6.9)                       | 538   |               |                         |                           |       | (197)    |
| Al0.875CoCrFeNi      | [7]        | FCC + BCC      | (6.9)                       | 361   |               |                         |                           |       | (197)    |
| AlCoCrFeNi           | [7]        | BCC            | (6.7)                       | 484   |               |                         |                           |       | (194)    |
| AlCoCrFeNi           | [7]        | FCC + BCC      | (6.7)                       | 433   |               |                         |                           |       | (194)    |
| AlCoCrFeNi           | [13]       | BCC            | (6.7)                       | 395   |               |                         |                           |       | (194)    |
| AlCoCrFeNi           | [14]       | BCC            | (6.7)                       |       | C             | 1251                    | 2004                      | 33    | (194)    |
| AlCoCrFeNi           | [15]       | BCC            | (6.7)                       |       | C             | 1051                    |                           |       | (194)    |
| AlCoCrFeNi           | [16]       | BCC            | (6.7)                       |       | C             | 1110                    |                           |       | (194)    |
| AlCoCrFeNi           | [17]       | BCC            | (6.7)                       |       | C             | 1138                    |                           |       | 125 (194 |
| AlCoCrFeNi           | [18]       | BCC            | (6.7)                       |       | C             | 1138                    |                           | 11    | 125 (194 |
| AlCoCrFeNi           | [19]       | BCC            | (6.7)                       |       | C             | 1051                    |                           |       | (194)    |
| AlCoCrFeNi           | [20]       | BCC            | (6.7)                       | 520   | C             | 1373                    | 3531                      | 25    | (194)    |
| Al1.25CoCrFeNi       | [7]        | BCC            | (6.5)                       | 487   |               |                         |                           |       | (188)    |
| Al1.25CoCrFeNi       | [7]        | BCC            | (6.5)                       | 499   |               |                         |                           |       | (188)    |
| Al1.5CoCrFeNi        | [7]        | BCC            | (6.2)                       | 484   |               |                         |                           |       | (183)    |
| Al1.5CoCrFeNi        | [7]        | BCC            | (6.2)                       | 517   |               |                         |                           |       | (183)    |
| Al1.5CoCrFeNi        | [13]       | BCC            | (6.2)                       | 402   |               |                         |                           |       | (183)    |
| Al2CoCrFeNi          | [7]        | BCC            | (5.9)                       | 509   |               |                         |                           |       | (173)    |
| Al2CoCrFeNi          | [7]        | BCC            | (5.9)                       | 512   |               |                         |                           |       | (173)    |
| Al2CoCrFeNi          | [13]       | BCC            | (5.9)                       | 432   |               |                         |                           |       | (173)    |
| Al2.5CoCrFeNi        | [13]       | BCC            | (5.6)                       | 487   |               |                         |                           |       | (165)    |
| Al3CoCrFeNi          | [13]       | BCC            | (5.3)                       | 506   |               |                         |                           |       | (158)    |
| AlC0.1CoCrFeNi       | [18]       | BCC + Im       | (6.7)                       |       | C             | 957                     | 2550                      | 11    | 213      |
| AlC0.2CoCrFeNi       | [18]       | BCC + Im       | (6.8)                       |       | С             | 906                     | 2386                      | 9     | 151      |

Table 1 (continued)

| Composition (atomic)               | Ref.         | Type of phases         | ρ (g/cm <sup>3</sup> ) | HV  | Type of tests | σ <sup>y</sup><br>(MPa) | σ <sup>max</sup><br>(MPa) | ε (%)    | E (GPa)   |
|------------------------------------|--------------|------------------------|------------------------|-----|---------------|-------------------------|---------------------------|----------|-----------|
| AlC0.3CoCrFeNi                     | [18]         | BCC + Im               | (6.8)                  |     | С             | 867                     | 2178                      | 8        | 137       |
| AlC0.4CoCrFeNi                     | [18]         | BCC + Im               | (6.8)                  |     | C             | 1056                    | 2375                      | 7        | 156       |
| AlC0.5CoCrFeNi                     | [18]         | BCC + Im               | (6.8)                  |     | C             | 1060                    | 2250                      | 6        | 181       |
| AlCCoCrFeNi                        | [18]         | BCC + Im               | (6.9)                  |     | C             | 1251                    | 2166                      | 7        | 75        |
| AlC1.5CoCrFeNi                     | [18]         | BCC + Im               | (7.0)                  |     | C             | 1255                    | 2083                      | 6        | 73        |
| Al0.5CoCrFeMo0.5Ni                 | [8]          | FCC + Im               | (7.7)                  | 425 |               |                         |                           |          |           |
| AlCo0.5CrFeMo0.5Ni                 | [21]         | BCC + Im               | (7.0)                  | 801 |               |                         |                           |          |           |
| AlCoCrFe0.5Mo0.5Ni                 | [22]         | BCC + Im               | (7.0)                  | 755 |               |                         |                           |          |           |
| AlCoCrFe0.6Mo0.5Ni                 | [22]         | BCC + Im               | (7.1)                  | 754 |               |                         |                           | _        | (100)     |
| AlCoCrFeMo0.1Ni                    | [19]         | BCC                    | (6.8)                  |     | С             | 1804                    | 2280                      | 9        | (196)     |
| AlCoCrFeMo0.2Ni                    | [19]         | BCC + Im               | (6.9)                  |     | С             | 2456                    | 2953                      | 3        |           |
| AlCoCrFeMo0.3Ni                    | [19]         | BCC + Im               | (7.0)                  |     | C             | 2649                    | 3208                      | 3        |           |
| AlCoCrFeMo0.4Ni                    | [19]         | BCC + Im               | (7.0)                  | 700 | С             | 2670                    | 3161                      | 3        |           |
| AlCoCrFeMo0.5Ni0.5                 | [23]         | BCC + Im               | (7.0)                  | 708 |               | 0757                    | 2026                      | •        |           |
| AlCoCrFeMo0.5Ni                    | [19]         | BCC + Im               | (7.1)                  | 700 | С             | 2757                    | 3036                      | 3        |           |
| AlCoCrFeMo0.5Ni                    | [21]         | BCC + Im               | (7.1)                  | 796 |               |                         |                           |          |           |
| AlCoCrFeMo0.5Ni                    | [8]          | BCC + Im               | (7.1)                  | 715 |               |                         |                           |          |           |
| AlCoCrFeMo0.5Ni                    | [23]         | BCC + Im               | (7.1)                  | 730 |               |                         |                           |          |           |
| AlCoCrFeMo0.5Ni1.5                 | [23]         | FCC + BCC + Im         |                        | 586 |               |                         |                           |          |           |
| AlCoCrFeMo0.5Ni2                   | [23]         | FCC + BCC + Im         |                        | 395 |               |                         |                           |          |           |
| AlCo1.5CrFeMo0.5Ni                 | [21]         | BCC + Im               | (7.2)                  | 741 |               |                         |                           |          |           |
| AlCo2CrFeMo0.5Ni                   | [21]         | FCC + BCC + Im         |                        | 586 |               |                         |                           |          |           |
| AlCoCrFe1.5Mo0.5Ni                 | [22]         | BCC + Im               | (7.2)                  | 635 |               |                         |                           |          |           |
| AlCoCrFe2Mo0.5Ni                   | [22]         | BCC + Im               | (7.2)                  | 639 |               |                         |                           |          |           |
| Al1.5CoCrFeMo0.5Ni                 | [8]          | BCC + Im               | (6.6)                  | 655 |               |                         |                           |          | (105)     |
| Al2CoCrFeMo0.5Ni                   | [8]          | BCC                    | (6.3)                  | 605 |               | 1041                    | 2205                      | 17       | (185)     |
| AlCoCrFeNb0.1Ni                    | [20]         | BCC                    | (6.8)                  | 569 |               | 1641                    | 3285                      | 17       | (192)     |
| AlCoCrFeNb0.25Ni                   | [20]         | BCC + Im               | (6.8)                  | 668 |               | 1959                    | 3008                      | 11       |           |
| AlCoCrFeNb0.5Ni                    | [20]         | BCC + Im               | (7.0)                  | 747 | C             | 2473                    | 3170                      | 4        |           |
| AlCoCrFeNb0.75Ni                   | [20]         | BCC + Im               | (7.0)                  |     | С             | 1265                    | 2172                      | 1.4      | (100)     |
| AlCoCrFeNiSi0.2                    | [24]         | BCC                    | (6.5)                  |     | C             | 1265                    | 2173                      | 14<br>13 | (188)     |
| AlCoCrFeNiSi0.4                    | [24]         | BCC<br>BCC             | (6.2)                  |     | C             | 1481<br>1834            | 2444                      |          | (183)     |
| AlCoCrFeNiSi0.6<br>AlCoCrFeNiSi0.8 | [24]<br>[24] | BCC + Im               | (6.0)                  |     | C             | 2179                    | 2195<br>2664              | 3<br>2   | (178)     |
| AlCoCrFeNiSi                       | [24]         | BCC + IIII             | (5.8)                  |     | C             | 1110                    | 2004                      | 2        | (160)     |
| AlCoCrFeNiSi                       | [24]         | BCC + Im               | (5.7)<br>(5.7)         |     | C             | 2411                    | 2950                      | 1        | (169)     |
| Al0.2Co1.5CrFeNi1.5Ti0.5           | 1 1          | FCC + IIII             | (7.6)                  | 487 |               | 2411                    | 2930                      | 1        | (206)     |
| Al0.2Co1.5CrFeNi1.5Ti              | [10]<br>[10] | FCC + Im               | (7.0)                  | 717 |               |                         |                           |          | (206)     |
| Al0.5CoCrFeNiTi                    | [9]          | BCC + Im               | (6.6)                  | /1/ | С             |                         | 1600                      | 10       | 107       |
| AlCoCrFeNiTi0.5                    | [25]         | FCC + IIII             | (6.4)                  | 178 |               | 2040                    | 3135                      | 24       | 72 (187)  |
| AlCoCrFeNiTi0.5                    | [26]         | BCC                    | (6.4)                  | 178 |               | 2260                    | 3140                      | 23       | 178 (187) |
| AlCoCrFeNiTi                       | [26]         | BCC                    | (6.2)                  | 170 | C             | 1860                    | 2580                      | 9        | 90 (181)  |
| AlCoCrFeNiTi                       | [9]          | BCC + Im               | (6.2)                  |     | C             | 1000                    | 2280                      | 6        | 148       |
| AlCoCrFeNiTi1.5                    | [26]         | BCC + III              | (6.1)                  |     | C             | 2220                    | 2720                      | 5        | 160       |
| Al1.5CoCrFeNiTi                    | [9]          | BCC + IIII             | (5.9)                  |     | C             | 2220                    | 2110                      | 10       | 133 (172) |
| Al2CoCrFeNiTi                      | [9]          | BCC                    | (5.6)                  | 643 |               |                         | 1030                      | 5        | 94 (165)  |
| AlCoCrFeNiTiVZr                    | [27]         | ВСС                    | (6.3)                  | 780 |               |                         | 1030                      | J        | 34 (103)  |
| CoCrFeMnNi                         | [28]         | FCC                    | (8.0)                  | 176 |               | 208                     |                           | 62       | (219)     |
| CoCrFeMnNi                         | [29]         | FCC                    | (8.0)                  | 144 |               | 230                     |                           | 75       | (219)     |
| CoCrFeMnNiV0.25                    | [29]         | FCC                    | (7.9)                  | 151 |               | 200                     |                           | 75<br>75 | (215)     |
| CoCrFeMnNiV0.5                     | [29]         | FCC                    | (7.8)                  | 186 |               | 620                     |                           | 75       | (211)     |
| CoCrFeMnNiV0.75                    | [29]         | FCC + Im               | (7.8)                  | 342 |               | 740                     | 1325                      | 8        | (211)     |
| CoCrFeMnNiV1.0                     | [29]         | FCC + III              | (7.7)                  | 650 |               | 1660                    | 1845                      | < 1      |           |
| Al0.10CoCrFeMnNi                   | [28]         | FCC + IIII             | (7.7)                  | 180 |               | 1000                    | 1073                      | \ I      | (216)     |
| Al0.20CoCrFeMnNi                   | [28]         | FCC                    | (7.7)                  | 171 |               | 220                     |                           | 56       | (214)     |
| Al0.38CoCrFeMnNi                   | [28]         | FCC                    | (7.7)                  | 182 |               | 244                     |                           | 45       | (209)     |
| Al0.43CoCrFeMnNi                   | [28]         | FCC + BCC              | (7.4)                  | 183 |               | 285                     |                           | 35       | (208)     |
| Al0.49CoCrFeMnNi                   | [28]         | FCC + BCC<br>FCC + BCC | (7.4)                  | 220 |               | 331                     |                           | 29       | (206)     |
| Alo.56CoCrFeMnNi                   | [28]         | FCC + BCC<br>FCC + BCC | (7.4)                  | 278 |               | 526                     |                           | 16       | (204)     |
| Al0.62CoCrFeMnNi                   | [28]         | FCC + BCC              | (7.2)                  | 405 |               | 833                     |                           | 5        | (204)     |
| ANO.UZCUCH CIVIIIINI               | [20]         | icc + bcc              | (1.2)                  | 403 | 1             | ررن                     |                           | ,        | (203)     |

Table 1 (continued)

| Composition (atomic)                        | Ref.           | Type of phases          | $\rho$ (g/cm <sup>3</sup> ) | HV                   | Type of tests | σ <sup>y</sup><br>(MPa) | σ <sup>max</sup><br>(MPa) | ε (%) | E (GPa)        |
|---------------------------------------------|----------------|-------------------------|-----------------------------|----------------------|---------------|-------------------------|---------------------------|-------|----------------|
| Al0.68CoCrFeMnNi                            | [28]           | FCC + BCC               | (7.2)                       | 486                  |               |                         |                           |       | (202)          |
| Al0.75CoCrFeMnNi                            | [28]           | FCC + BCC               | (7.1)                       | 530                  |               |                         |                           |       | (200)          |
| Al0.81CoCrFeMnNi                            | [28]           | FCC + BCC               | (7.0)                       | 539                  |               |                         |                           |       | (199)          |
| Al0.88CoCrFeMnNi                            | [28]           | FCC + BCC               | (7.0)                       | 533                  |               |                         |                           |       | (197)          |
| Al0.95CoCrFeMnNi                            | [28]           | FCC + BCC               | (6.9)                       | 535                  |               |                         |                           |       | (196)          |
| Al1.25CoCrFeMnNi                            | [28]           | BCC                     | (6.6)                       | 539                  |               |                         |                           |       | (190)          |
| CoCrNi                                      | [5]            | FCC                     | (8.3)                       |                      | T             | 300                     | 860                       | 60    | (229)          |
| CoMnNi                                      | [5]            | FCC                     | (8.4)                       |                      | T             | 231                     | 653                       | 38    | (202)          |
| FeMnNi                                      | [5]            | FCC                     | (8.1)                       |                      | T             | 221                     | 602                       | 36    | (203)          |
| CoCrFeNi                                    | [5]            | FCC                     | (8.2)                       |                      | T             | 274                     | 708                       | 39    | (225)          |
| CoCrMnNi                                    | [5]            | FCC                     | (8.1)                       |                      | T             | 282                     | 694                       | 44    | (222)          |
| CoFeMnNi                                    | [5]            | FCC                     | (8.2)                       |                      | T             | 170                     | 550                       | 41    | (205)          |
|                                             | [30]           | BCC                     | (7.0)                       | 396                  |               |                         |                           |       | (206)          |
| Al0.3CrFe1.5MnNi0.5                         | [30]           | FCC + BCC               | (7.2)                       | 297                  |               |                         |                           |       | (213)          |
| AlCoCrFeMo0.5                               | [23]           | BCC + Im                | (6.8)                       | 857                  |               | 4.400                   | 2027                      | 20    | (400)          |
|                                             | [31]           | BCC                     | (6.3)                       | 472                  |               | 1406                    | 2927                      | 29    | (190)          |
|                                             | [31]           | BCC                     | (6.5)                       | 549                  |               | 1487                    | 3222                      | 29    | (197)          |
|                                             | [31]           | BCC . I                 | (6.8)                       | 622                  |               | 1749                    | 2644                      | 13    | (205)          |
|                                             | [31]           | BCC + Im                | (7.0)                       | 854                  | C             | 1513                    | 1513                      | < 1   |                |
|                                             | [31]           | BCC + Im                | (7.2)                       | 905                  |               |                         |                           |       |                |
| <b>3d TM HEAS and CCAs in t</b><br>CoCrCuFe | he Al-<br>[32] | -Co-Cr-Cu-Fe-Mn-<br>FCC | Ni system a<br>(8.2)        | n <b>d de</b><br>134 | erivates      |                         |                           |       | (206)          |
| Al0.3CoCrCuFe                               | [32]           | FCC                     |                             | 180                  |               |                         |                           |       |                |
| Al0.5CoCrCuFe                               |                | FCC                     | (7.7)                       | 207                  |               |                         |                           |       | (194)          |
| Al0.8CoCrCuFe                               | [32]<br>[32]   | FCC + BCC               | (7.4)<br>(7.0)              | 207                  |               |                         |                           |       | (187)<br>(177) |
| AlCoCrCuFe                                  | [32]           | FCC + BCC               | (6.8)                       | 407                  |               |                         |                           |       | (177)          |
| Al1.3CoCrCuFe                               | [32]           | FCC + BCC               | (6.5)                       | 476                  |               |                         |                           |       | (165)          |
| Al1.5CoCrCuFe                               | [32]           | FCC + BCC               | (6.3)                       | 510                  |               |                         |                           |       | (167)          |
| Al1.8CoCrCuFe                               | [32]           | FCC + BCC               | (6.0)                       | 557                  |               |                         |                           |       | (155)          |
| Al2.0CoCrCuFe                               | [32]           | FCC + BCC               | (5.9)                       | 567                  |               |                         |                           |       | (152)          |
| Al2.3CoCrCuFe                               | [32]           | FCC + BCC               | (5.7)                       | 603                  |               |                         |                           |       | (147)          |
| Al2.5CoCrCuFe                               | [32]           | FCC + BCC               | (5.6)                       | 624                  |               |                         |                           |       | (144)          |
| Al2.8CoCrCuFe                               | [32]           | BCC + BCC               | (5.5)                       | 657                  |               |                         |                           |       | (140)          |
| Al3.0CoCrCuFe                               | [32]           | BCC                     | (5.4)                       | 644                  |               |                         |                           |       | (138)          |
| CoCrCu0.5FeNi                               | [33]           | FCC                     | (8.3)                       | 172                  |               |                         |                           |       | (214)          |
| CoCrCuFeNi                                  | [34]           | FCC                     | (8.3)                       | 132                  | C             | 230                     |                           |       | 56 (206        |
| CoCrCuFeNi                                  | [45]           | FCC                     | (8.3)                       | 286                  |               | 230                     | 888                       | 51    | 56 (206        |
| CoCrCuFeNi                                  | [13]           | FCC                     | (8.3)                       | 286                  |               | 230                     | 000                       | ٥.    | (206)          |
| CoCrCuFeNiTi0.5                             | [25]           | FCC                     | (7.8)                       | 200                  | С             | 700                     | 1650                      | 29    | 93 (198        |
| CoCrCuFeNiTi0.5                             | [35]           | FCC                     | (7.8)                       |                      | Ċ             | 700                     | 1650                      | 22    | 99 (198        |
| CoCrCuFeNiTi0.8                             | [35]           | FCC + Im                | (7.6)                       |                      | C             | 1042                    | 1848                      | 3     | 128            |
| CoCrCuFeNiTi                                | [35]           | FCC                     | (7.4)                       |                      | С             | 1272                    | 1272                      | 2     | 77 (191        |
| Al0.25CoCrCu0.5FeNiTi0.5                    | [25]           | FCC                     | (7.4)                       |                      |               |                         |                           |       | (198)          |
| Al0.25CoCrCu0.75FeNiTi0.5                   | [25]           | FCC                     | (7.5)                       |                      | С             | 750                     | 1970                      | 39    | 103 (19        |
| Al0.3CoCrCuFeNi                             | [34]           | FCC                     | (7.9)                       | 180                  |               |                         |                           |       | (198)          |
| Al0.5CoCrCuFeNi                             | [34]           | FCC                     | (7.6)                       | 210                  | C             | 388                     |                           |       | (193)          |
| Al0.5CoCrCuFeNi                             | [36]           |                         | (7.6)                       | 300                  |               |                         |                           |       | (193)          |
| Al0.5CoCrCuFeNi                             | [37]           | FCC                     | (7.6)                       | 225                  |               |                         |                           |       | (193)          |
| Al0.5CoCrCuFeNi                             | [38]           | FCC                     | (7.6)                       | 215                  |               |                         |                           |       | (193)          |
| Al0.8CoCrCuFeNi                             | [21]           | FCC + BCC               | (7.3)                       | 270                  |               |                         |                           |       | (187)          |
| Al0.8CoCrCuFeNi                             | [34]           | FCC                     | (7.3)                       | 270                  |               |                         |                           |       | (187)          |
| AlCoCrCuFeNi                                | [34]           | FCC + BCC               | (7.1)                       | 406                  | C             | 950                     |                           |       | (183)          |
| AlCoCrCuFeNi                                | [39]           | FCC + BCC               | (7.1)                       | 472                  |               |                         |                           |       | (184)          |
| AlCoCrCuFeNi                                | [40]           | FCC + BCC               | (7.1)                       |                      | C             | 1303                    |                           | 24    | (183)          |
| AlCoCrCuFeMnNi                              | [40]           | FCC + BCC + Ir          |                             |                      | C             | 1005                    |                           | 15    | •              |
| AlCoCrCuFeNiTi                              | [40]           | FCC + BCC               | (6.6)                       |                      | C             | 1234                    |                           | 9     | (174)          |
| AlCoCrCuFeNiV                               | [40]           | FCC + BCC               | (6.9)                       |                      | C             | 1469                    |                           | 16    | (175)          |
| Al1.3CoCrCuFeNi                             | [34]           | FCC + BCC               | (6.8)                       | 470                  |               |                         |                           |       | (178)          |
| Al1.5CoCrCuFeNi                             | [34]           | FCC + BCC               | (6.6)                       | 506                  |               |                         |                           |       | 133 (174       |
|                                             | [34]           | FCC + BCC               | (6.4)                       | 650                  |               |                         |                           |       | (170)          |

Table 1 (continued)

| (atomic) phases                                                                             | (MPa) | (MPa) | - (, | E (GPa)   |
|---------------------------------------------------------------------------------------------|-------|-------|------|-----------|
| Al2CoCrCuFeNi [34] FCC + BCC (6.3) 560 C                                                    | 1620  |       |      | (167)     |
| Al2.3CoCrCuFeNi [34] FCC + BCC (6.1) 600                                                    |       |       |      | (163)     |
| Al2.5CoCrCuFeNi $[34]$ FCC + BCC $(6.0)$ 620                                                |       |       |      | (161)     |
| Al2.8CoCrCuFeNi [34] BCC (5.8) 650                                                          |       |       |      | (157)     |
| Al3CoCrCuFeNi [41] BCC (5.7) 640                                                            |       |       |      | (153)     |
| Al0.5B0.2CoCrCuFeNi [36] (7.7) 415                                                          |       |       |      |           |
| Al0.5B0.6CoCrCuFeNi [36] (7.7) 505                                                          |       |       |      |           |
| Al0.5BCoCrCuFeNi [36] (7.8) 736                                                             |       |       |      |           |
| Al0.5CoCrCu0.5FeNiTi0.5 [25] $FCC + BCC$ (7.1) $C$                                          | 1580  | 2389  | 17   | 161 (192) |
| Al0.5CoCrCuFeNiTi0.2 [37] FCC (7.5) 272                                                     |       |       |      | (191)     |
| Al0.5CoCrCuFeNiTi0.4 [37] FCC (7.3) 321                                                     |       |       |      | (188)     |
| Al0.5CoCrCuFeNiTi0.6 [37] $FCC + BCC$ (7.2) 458                                             |       |       |      | (186)     |
| Al0.5CoCrCuFeNiTi0.8 [37] FCC + BCC (7.1) 590                                               |       |       |      | (184)     |
| Al0.5CoCrCuFeNiTi [37] $FCC + BCC + Im (7.0)$ 636                                           |       |       |      |           |
| Al0.5CoCrCuFeNiTi1.2 [37] FCC + BCC + Im (6.9) 646                                          |       |       |      |           |
| Al0.5CoCrCuFeNiTi1.4 [37] $FCC + BCC + Im (6.8)$ 664                                        |       |       |      |           |
| Al0.5CoCrCuFeNiTi1.6 [37] $FCC + BCC + Im (6.7)$ 657                                        |       |       |      |           |
| Al0.5CoCrCuFeNiTi1.8 [37] $FCC + BCC + Im (6.6)$ 667                                        |       |       |      |           |
| Al0.5CoCrCuFeNiTi2 $[37]$ FCC + BCC + Im $(6.5)$ 696                                        |       |       |      |           |
| Al0.5CoCrCuFeNiV0.2 [38] FCC (7.6) 204                                                      |       |       |      | (191)     |
| Al0.5CoCrCuFeNiV0.4 [38] FCC + BCC (7.5) 231                                                |       |       |      | (189)     |
| Al0.5CoCrCuFeNiV0.6 [38] $FCC + BCC + Im (7.5)$ 328                                         |       |       |      |           |
| Al0.5CoCrCuFeNiV0.8 [38] $FCC + BCC + Im (7.4)$ 447                                         |       |       |      |           |
| Al0.5CoCrCuFeNiV1.0 [38] FCC + BCC + Im (7.4) 639                                           |       |       |      |           |
| Al0.5CoCrCuFeNiV1.2 [38] BCC (7.3) 579                                                      |       |       |      | (182)     |
| Al0.5CoCrCuFeNiV1.4 [38] BCC (7.3) 577                                                      |       |       |      | (180)     |
| Al0.5CoCrCuFeNiV1.6 [38] BCC (7.2) 594                                                      |       |       |      | (179)     |
| Al0.5CoCrCuFeNiV1.8 [38] BCC (7.2) 597                                                      |       |       |      | (177)     |
| Al0.5CoCrCuFeNiV2.0 [38] BCC (7.2) 587                                                      |       |       |      | (176)     |
| Al0.75CoCrCu0.25FeNiTi0.5 [25] FCC + BCC (6.8) C                                            | 1900  | 2697  | 12   | 164 (189) |
| Alcocrcuniti [42] BCC (6.4) C                                                               |       | 1495  | 8    | 36 (167)  |
| AlCoCrCuNiTiY0.5 [42] Im (6.1) C                                                            |       | 1025  | 3    | 36        |
| Alcocrcunitiyo.8 [42] Im (5.9) C                                                            |       | 1325  | 5    | 38        |
| Alcocrcunitiy [42] Im (5.8) C                                                               | 004   | 1192  | 4    | 37        |
| AlCoFeNi [4] BCC (6.6) 456 C                                                                | 964   |       |      | (173)     |
| AlCoFeNiTiVZr [27] BCC (6.2) 790                                                            |       | 400   | 15   | (143)     |
| CoCuFeNi [43] FCC (8.6) T                                                                   |       | 480   | 15   | (188)     |
| CoCuFeNiSn0.02 [43] FCC (8.6) T                                                             |       | 548   | 17   | (187)     |
| CoCuFeNiSn0.04 [43] FCC + Im (8.6) T                                                        |       | 594   | 18   |           |
| CoCuFeNiSn0.05 [43] FCC + Im (8.6) T                                                        |       | 615   | 20   |           |
| CoCuFeNiSn0.07 [43] FCC + Im (8.6) T                                                        |       | 632   | 19   |           |
| CoCuFeNiSn0.1 [43] FCC + Im (8.6) T<br>CoCuFeNiSn0.2 [43] FCC + Im (8.5) T                  |       | 602   | 5    |           |
|                                                                                             |       | 261   | 2    |           |
| CoCuFeNiSn0.5 [43] FCC + Im (8.3)<br>AlCoCuFeNi [39] FCC + BCC (7.0) 536                    |       |       |      | (164)     |
|                                                                                             |       |       |      | (164)     |
|                                                                                             |       |       |      | (145)     |
| AlCocufenisi [39] FCC + BCC (5.9) 682<br>AlCocufeniti [39] FCC + BCC (6.5) 626              |       |       |      | (145)     |
| AlcocuFeNiTr $[39]$ FCC + BCC $(6.3)$ 626<br>AlCocuFeNiZr $[39]$ FCC + BCC + Im $(6.9)$ 472 |       |       |      | (130)     |
| CoCuFeMnNi [44] FCC (8.4) 208 T                                                             |       | 478   | 14   | (190)     |
| CoCuFeMnNisn0.03 [44] FCC (8.4) 192 T                                                       |       | 465   | 18   | (130)     |
| CoCuFeMnNisn0.05 [44] FCC (8.4) 192 T<br>CoCuFeMnNisn0.05 [44] FCC + Im (8.4) 205 T         |       | 475   | 12   |           |
| CocuFeMnNiSn0.08 [44] FCC + III (8.4) 203 T                                                 |       | 425   | 7    |           |
| CoCuFeMnNisn0.10 [44] FCC + Im (8.3) 253 T                                                  |       | 470   | 6    |           |
| CoCuFeMnNisn0.20 [44] FCC + Im (8.3) 319 T                                                  |       | 368   | 2    |           |
| CrCuFeMnNi [13] FCC + BCC (8.1) 296                                                         |       | 300   | _    | (204)     |
| CrCuFeMoNi [13] FCC (8.7) 263                                                               |       |       |      | (230)     |
| AlCrCuFeNio.6 [45] FCC + BCC (6.6) 496                                                      |       |       |      | (176)     |
| AlCrCuFeNio.8 [45] FCC + BCC (0.0) 450  AlCrCuFeNio.8 [45] FCC + BCC (6.7) 486              |       |       |      | (170)     |
| AlCrCuFeNi [45] FCC + BCC (6.8) 495                                                         |       |       |      | (177)     |

Table 1 (continued)

| Composition (atomic)                           | Ref.         | Type of phases       | ρ (g/cm <sup>3</sup> ) | HV         | Type of tests | σ <sup>y</sup><br>(MPa) | σ <sup>max</sup><br>(MPa) | ε (%)      | E (GPa)   |
|------------------------------------------------|--------------|----------------------|------------------------|------------|---------------|-------------------------|---------------------------|------------|-----------|
| AlCrCuFeNi1.2                                  | [45]         | FCC + BCC            | (6.8)                  | 407        |               |                         |                           |            | (179)     |
| AlCrCuFeNi1.4                                  | [45]         | FCC + BCC            | (6.9)                  | 367        |               |                         |                           |            | (180)     |
| AlCrCuFeNi2                                    | [46]         | FCC + BCC            | (7.1)                  |            |               |                         |                           |            | (182)     |
| AlCrCuFeNiTi                                   | [47]         | BCC + Im             | (6.3)                  |            | C             |                         | 1219                      |            |           |
| Al0.2CrCuFeNi2                                 | [46]         | FCC                  | (8.0)                  |            |               |                         |                           |            | (199)     |
| Al0.4CrCuFeNi2                                 | [46]         | FCC                  | (7.8)                  |            |               |                         |                           |            | (194)     |
| Al0.6CrCuFeNi2                                 | [46]         | FCC                  | (7.5)                  |            |               |                         |                           |            | (190)     |
| Al0.8CrCuFeNi2                                 | [46]         | FCC                  | (7.3)                  |            |               |                         |                           |            | (186)     |
| Al1.2CrCuFeNi2                                 | [46]         | FCC + BCC            | (6.9)                  |            |               |                         |                           |            | (178)     |
| AlCrCuFeNi                                     | [13]         | FCC + BCC            | (6.8)                  | 342        |               |                         |                           |            | (178)     |
| Al1.125CuFe0.75NiTi1.125                       | [48]         | FCC                  | (5.9)                  | 516        |               | 980                     | 1326                      | 7          | 145 (140) |
| Al22.5Cu20Fe15Ni20Ti22.5                       | 1 1          | FCC                  | (5.9)                  | 516        |               | 980                     | 1326                      | 7          | 145 (140) |
| AlCuFeNiTi                                     | [48]         | FCC                  | (6.1)                  | 516        |               | 1074                    | 1617                      | 8          | 146 (145) |
| AlCuNiTi                                       | [48]         | FCC                  | (5.7)                  | 537        | C             | 300                     | 536                       | < 1        | 108 (129) |
| Light metal base HEAs and                      |              |                      | (0.0)                  |            |               |                         |                           |            |           |
| AlLi0.5MgSn0.2Zn0.5                            | [49]         | FCC + Im             | (2.9)                  | -04        | С             | 546                     | 546                       |            | (60)      |
| AlLiMg0.5ScTi1.5                               | [50]         | FCC + HCP            | (2.7)                  | 591        |               | coo                     | C1F                       | 1          | (69)      |
| AlLiMgSnZn                                     | [49]         | FCC + HCP + Im       |                        |            | C             | 600                     | 615                       | 1          |           |
| Al8C::0.5Mg0.5Sn0.5Zn0.5                       | [49]         | FCC + Im             | (3.0)                  |            | C<br>C        | 415                     | 836                       | 16         |           |
| Al8Cu0.5Li0.5Mg0.5Zn0.5                        | [49]         | FCC + Im             | (2,9)                  |            | C             | 488                     | 879                       | 17         |           |
| AlCu0.2Li0.5MgZn0.5<br>AlCu0.5Li0.5MgSn0.2     | [49]<br>[49] | Im<br>Im             | (2.7)<br>(3.0)         |            |               |                         |                           |            |           |
| _                                              |              |                      | (===)                  |            |               |                         |                           |            |           |
| Refractory metal base HEA<br>AlCr0.5NbTiV      | 15 ana (     | BCC                  | (5.6)                  |            | С             | 1300                    | 1430                      | - 1        | (124)     |
| AlCrNbTiV                                      | [51]         | BCC + Im             | (5.6)<br>(5.8)         |            | C             | 1550                    | 1570                      | < 1<br>< 1 | (124)     |
| AlCr1.5NbTiV                                   | [51]         | FCC + Im             | (5.9)                  |            | C             | 1700                    | 1700                      | < 1        |           |
| Alo.4Hf0.6NbTaTiZr                             | [52]         | BCC + IIII           | (9.1)                  | 500        |               | 1841                    | 2269                      | 10         | (110)     |
| Alo.3HfNbTaTiZr                                | [53]         | BCC                  | 9.5 (9.6)              | 353        |               | 1188                    | 2203                      | 50         | 63 (108)  |
| Al0.5HfNbTaTiZr                                | [53]         | BCC                  | 9.34 (9.3)             |            |               | 1302                    |                           | 46         | 97 (107)  |
| Al0.75HfNbTaTiZr                               | [53]         | BCC                  | 9.3 (9.1)              | 427        |               | 1415                    |                           | 30         | 102 (105) |
| AlMo0.5NbTa0.5TiZr                             | [52]         | BCC                  | (7.1)                  | 591        |               | 2000                    | 2368                      | 10         | (123)     |
| Al0.25MoNbTiV                                  | [54]         | BCC                  | (7.1)                  | 460        | С             | 1250                    |                           | 13         | (164)     |
| Al0.5MoNbTiV                                   | [54]         | BCC                  | (6.8)                  | 487        | C             | 1625                    |                           | 11         | (158)     |
| Al0.75MoNbTiV                                  | [54]         | BCC                  | (6.6)                  | 517        | C             | 1260                    |                           | 8          | (154)     |
| AlMoNbTiV                                      | [54]         | BCC                  | (6.4)                  | 537        | C             | 1375                    |                           | 3          | (150)     |
| Al0.25NbTaTiV                                  | [55]         | BCC                  | (8.8)                  |            | C             | 1330                    |                           |            | 92 (130)  |
| Al0.5NbTaTiV                                   | [55]         | BCC                  | (8.5)                  |            | C             | 1014                    |                           |            | 97 (127)  |
| AlNbTaTiV                                      | [55]         | BCC                  | (7.9)                  |            | C             | 993                     |                           |            | 101 (121) |
| Al0.3NbTa0.8Ti1.4V0.2Zr1.3                     | [52]         | BCC                  | (7.7)                  | 500        | C             | 1965                    | 2061                      | 5          | (110)     |
| Al0.5NbTa0.8Ti1.5V0.2Zr                        | [52]         | BCC                  | (7.6)                  | 530        | C             | 2035                    | 2105                      | 5          | (111)     |
| Al0.3NbTaTi1.4Zr1.3                            | [52]         | BCC                  | (8.1)                  | 490        |               | 1965                    | 2054                      | 5          | (113)     |
| AlNb1.5Ta0.5Ti1.5Zr0.5                         | [52]         | BCC                  | (6.8)                  | 408        |               | 1280                    | 1367                      | 4          | (106)     |
| AlNbTiV                                        | [56]         | BCC                  | (5.5)                  | 448        |               | 1020                    | 1318                      | 5          | (105)     |
| AlNbTiV                                        | [51]         | BCC                  | (5.5)                  | 404        | С             | 1000                    | 1280                      | 5          | (105)     |
| CrHfNbTiZr                                     | [57]         | BCC + lm             | (8.2)                  | 464        |               | 1375                    | 2130                      | 3          | 112       |
| CrMo0.5NbTa0.5TiZr                             | [58]         | BCC + Im             | (8.0)                  | 540        |               | 1595                    | 2046                      | 5          |           |
| CrNbTiVZr                                      | [59]         | BCC + Im             | (6.6)                  | 482        |               | 1298                    |                           | 3          |           |
| CrNbTiZr                                       | [59]         | BCC + Im             | (6.6)                  | 418        |               | 1260                    |                           | 6          |           |
| FeMoNiTiVZr                                    | [27]         | BCC + Im             | (7.1)                  | 740        |               | 1170                    |                           | 25         |           |
| Hf0.5Mo0.5NbTiZr                               | [60]         | BCC + Im             | (7.9)                  | 400        |               | 1178                    |                           | 25         |           |
| Hf0.5Mo0.5NbSi0.1TiZr<br>Hf0.5Mo0.5NbSi0.3TiZr | [60]         | BCC + Im             | (7.7)                  | 442<br>494 |               | 1365<br>1428            |                           | 28<br>23   |           |
| Hf0.5Mo0.5NbSi0.5TiZr                          | [60]<br>[60] | BCC + Im<br>BCC + Im | (7.5)<br>(7.2)         | 524        |               | 1605                    |                           | 23         |           |
| Hf0.5Mo0.5NbSi0.7TiZr                          | [60]         | BCC + IIII           | (7.2)<br>(7.0)         | 580        |               | 1603                    |                           | 23<br>12   |           |
| Hf0.5Mo0.5NbSi0.9TiZr                          | [60]         | BCC + IIII           | (6.8)                  | 640        |               | 1677                    |                           | 9          |           |
| Hf0.5Mo0.5NbTiZrC0.1                           | [61]         | BCC + III            | (7.8)                  | 0-10       | C             | 1183                    | 2139                      | 38         |           |
| Hf0.5Mo0.5NbTiZrC0.3                           | [61]         | BCC + III            | (7.8)                  |            | C             | 1201                    | 1965                      | 33         |           |
| HfMo0.25NbTaTiZr                               | [62]         | BCC + IIII           | 9.9 (9.9)              | 395        |               | 1112                    | 1303                      | 50         | 96 (121)  |
| HfMo0.5NbTaTiZr                                | [62]         | BCC                  | 10.0 (9.9)             |            |               | 1317                    |                           | 50         | 102 (130) |
|                                                |              |                      | , ,                    |            |               |                         |                           |            |           |

Table 1 (continued)

| Composition (atomic)               | Ref.         | Type of phases | $\rho$ (g/cm <sup>3</sup> ) | HV         | Type of tests | σ <sup>y</sup><br>(MPa) | σ <sup>max</sup><br>(MPa) | ε (%)    | E (GPa)        |
|------------------------------------|--------------|----------------|-----------------------------|------------|---------------|-------------------------|---------------------------|----------|----------------|
| HfMo0.75NbTaTiZr                   | [62]         | ВСС            | 10.0 (9.9)                  | 492        | С             | 1373                    |                           | 50       | 109 (139)      |
| HfMoNbTaTiZr                       | [63]         | BCC            | 10.0                        | 505        | C             | 1512                    |                           | 12       | (147)          |
|                                    |              |                | (10.0)                      |            |               |                         |                           |          |                |
| HfMoNbTaTiZr                       | [62]         | BCC            | 10.0 (9.9)                  |            |               | 1512                    |                           | 12       | 115 (147)      |
| HfMoTaTiZr                         | [63]         | BCC            | 10.2 (10.2)                 | 542        |               | 1600                    |                           | 4        | (155)          |
| HfMoNbZrTi                         | [64]         | BCC            | (8.7)                       | 400        | C             | 1803                    | 1719                      | 10       | (139)          |
| HfNbSi0.5TiV                       | [65]         | BCC + lm       | 8.6 (7.8)                   | 490        |               | 1399                    | 1608                      | 11       |                |
| HfNbSi0.5TiVZr                     | [66]         | BCC + lm       | 7.8 (7.5)                   | 464        |               | 1540                    | 1643                      | 17       | (100)          |
| HfNbTaZr<br>Hf0.5Nb0.5Ta0.5Ti1.5Zr | [67]<br>[68] | BCC<br>BCC     | (11.1)<br>8.1 (8.2)         | 365<br>301 |               | 1315<br>903             | 990                       | 19       | (109)<br>(107) |
| HfNbTaTiZr                         | [62]         | BCC            | 9.9 (9.9)                   | 335        |               | 1015                    | 330                       | 50       | 85 (111)       |
| HfNbTaTiZr                         | [53]         | BCC            | 9.7 (9.9)                   | 295        |               | 1073                    |                           | 50       | 55 (111)       |
| HfNbTaTiZr                         | [69,70       |                | (9.9)                       | 390        |               | 929                     |                           | 50       | (111)          |
| HfNbTiVZr                          | [57]         | BCC + lm       | (8.1)                       | 388        |               | 1170                    | 1463                      | 30       | 128            |
| HfNbTiZr                           | [71]         | BCC            | (8.4)                       | 300        | T             | 879                     | 969                       | 15       | (92)           |
| MoNbTaV                            | [72]         | BCC            | (10.7)                      | 504        |               | 1525                    | 2400                      | 21       | (187)          |
| MoNbTaVW                           | [73]         | BCC            | (12.4)                      | 536        | С             | 1246                    | 1270                      | 2        | (232)          |
| MoNbTaW                            | [73]         | BCC            | (13.7)                      | 454        | C             | 1058                    | 1211                      | 2        | (258)          |
| MoNbTiV                            | [54]         | BCC            | (7.3)                       | 441        | C             | 1200                    |                           | 26       | (170)          |
| Mo0.3NbTiVZr                       | [74]         | BCC            | 6.7                         |            | C             | 1289                    |                           | 42       |                |
| Mo0.5NbTiVZr                       | [74]         | BCC            | 6.8                         |            | C             | 1473                    |                           | 32       |                |
| Mo0.7NbTiVZr                       | [74]         | BCC            | 7.0                         |            | C             | 1706                    |                           | 32       |                |
| MoNbTiVZr                          | [74]         | BCC            | 7.1                         |            | C             | 1779                    |                           | 32       |                |
| Mo1.3NbTiVZr                       | [74]         | BCC            | 7.3                         |            | C             | 1496                    |                           | 30       |                |
| Mo1.5NbTiVZr                       | [74]         | BCC            | 7.4                         |            | C             | 1603                    |                           | 20       |                |
| Mo1.7NbTiVZr                       | [74]         | BCC            | 7.5                         |            | C             | 1645                    |                           | 15       |                |
| Mo2NbTiVZr                         | [74]         | BCC            | 7.6                         |            | C             | 1765                    |                           | 12       |                |
| MoNbTiV0.25Zr                      | [75]         | BCC            | (7.3)                       |            | C             | 1776                    | 3893                      | 30       | (153)          |
| MoNbTiV0.50Zr                      | [75]         | BCC            | (7.2)                       |            | C             | 1647                    | 3307                      | 28       | (152)          |
| MoNbTiV0.75Zr                      | [75]         | BCC            | (7.2)                       |            | C             | 1708                    | 3929                      | 29       | (150)          |
| MoNbTiV1.0Zr<br>MoNbTiV1.5Zr       | [75]<br>[75] | BCC<br>BCC     | (7.1)<br>(7.1)              |            | C<br>C        | 1786<br>1735            | 3828<br>3300              | 26<br>20 | (149)<br>(147) |
| MoNbTiV2.0Zr                       | [75]         | BCC            | (7.1)                       |            | C             | 1538                    | 3176                      | 23       | (147)          |
| MoNbTiV3.0Zr                       | [75]         | BCC            | (6.9)                       |            | C             | 1418                    | 2508                      | 24       | (143)          |
| MoNbTiZr                           | [75]         | BCC            | (7.3)                       |            | C             | 1592                    | 3450                      | 34       | (155)          |
| NbTaTiV                            | [55]         | BCC            | (9.2)                       |            | c             | 1092                    | 3 130                     | 31       | 106 (134)      |
| NbTaVW                             | [76]         | BCC            | (12.9)                      | 492        |               | 1530                    |                           | 12       | (208)          |
| NbTaTiVW                           | [76]         | BCC+HCP        | (11.1)                      | 447        |               | 1420                    |                           | 20       | (===)          |
| NbTiV0.3Zr                         | [74]         | BCC            | 6.5                         |            | С             | 866                     |                           | 45       |                |
| NbTiV0.3Mo0.1                      | [74]         | BCC            | 6.6                         |            | C             | 932                     |                           | 45       |                |
| NbTiV0.3Mo0.3                      | [74]         | BCC            | 6.8                         |            | C             | 1312                    |                           | 50       |                |
| NbTiV0.3Mo0.5                      | [74]         | BCC            | 6.9                         |            | C             | 1301                    |                           | 43       |                |
| NbTiV0.3Mo0.7                      | [74]         | BCC            | 7.1                         |            | C             | 1436                    |                           | 27       |                |
| NbTiV0.3Mo                         | [74]         | BCC            | 7.3                         |            | C             | 1455                    |                           | 25       |                |
| NbTiV0.3Mo1.3                      | [74]         | BCC            | 7.4                         |            | C             | 1603                    |                           | 20       |                |
| NbTiV0.3Mo1.5                      | [74]         | BCC            | 7.5                         |            | C             | 1576                    |                           | 8        |                |
| NbTiVZr                            | [74]         | BCC            | 6.5                         |            | C             | 1104                    |                           | 50       |                |
| NbTiVZr                            | [59]         | BCC            | (6.5)                       | 335        |               | 1105                    |                           |          | (104)          |
| NbTiV2Zr                           | [59]         | BCC            | (6.4)                       | 304        | C             | 918                     |                           | > 50     | (109)          |
| Other HEAs and CCAs                |              |                |                             |            |               |                         |                           |          |                |
| CoCrCuFeNiTiVZr                    | [27]         |                | (7.1)                       | 680        |               |                         |                           |          | (168)          |
| CoCrFeMoNiTiVZr                    | [27]         |                | (7.3)                       | 850        |               |                         |                           |          | (193)          |
| CoCuFeNiTiVZr                      | [27]         |                | (7.1)                       | 630        |               |                         |                           |          |                |
| CoFeNiV                            | [77]         | FCC            | (7.8)                       | 238        |               |                         |                           |          | (187)          |
| CoFeMo0.2NiV                       | [77]         | FCC + Im       | (8.0)                       | 267        |               |                         |                           |          |                |
| CoFeMo0.4NiV                       | [77]         | FCC + Im       | (8.1)                       | 402        |               |                         |                           |          |                |
| CoFeMo0.6NiV                       | [77]         | FCC + Im       | (8.2)                       | 557        |               |                         |                           |          |                |
| CoFeMo0.8NiV                       | [77]         | FCC + Im       | (8.3)                       | 606        |               |                         |                           |          |                |
| CoFeMoNiV                          | [77]         | FCC + Im       | (8.4)                       | 625        |               |                         |                           |          |                |
| CoFeMoNi1.2V                       | [77]         | FCC + Im       | (8.4)                       | 602        |               |                         |                           |          |                |
|                                    |              |                |                             |            |               |                         |                           |          |                |

Table 1 (continued)

| Composition (atomic)    | Ref. | Type of phases | $\rho$ (g/cm <sup>3</sup> ) | HV  | Type of tests | σ <sup>y</sup><br>(MPa) | σ <sup>max</sup><br>(MPa) | ε (%) | E (GPa)   |
|-------------------------|------|----------------|-----------------------------|-----|---------------|-------------------------|---------------------------|-------|-----------|
| CoFeMoNi1.4V            | [77] | FCC + Im       | (8.5)                       | 538 |               |                         |                           |       |           |
| CoFeMoNi1.6V            | [77] | FCC + Im       | (8.5)                       | 520 |               |                         |                           |       |           |
| CoFeMoNi1.8V            | [77] | FCC + Im       | (8.5)                       | 510 |               |                         |                           |       |           |
| CoFeMoNi2V              | [77] | FCC + Im       | (8.5)                       | 382 |               |                         |                           |       |           |
| CoFeMoNiTiVZr           | [27] |                | (7.3)                       | 790 |               |                         |                           |       |           |
| CuFeNiTiVZr             | [27] |                | (6.8)                       | 590 |               |                         |                           |       | (142)     |
| CoCrCuFeMnNiTiV         | [78] | FCC + BCC + Im | (7.3)                       |     | C             | 1312                    | 1312                      | < 1   | 74        |
| Al11.1(CoCrCuFeMnNiTiV) | [78] | FCC + BCC      | (6.7)                       |     | C             | 1862                    | 2431                      | < 1   | 164 (182) |
| 88.9                    |      |                |                             |     |               |                         |                           |       |           |
| Al20(CoCrCuFeMnNiTiV)80 | [78] | BCC            | (6.1)                       |     | C             | 1465                    | 2016                      | 2     | 190 (180) |
| Al40(CoCrCuFeMnNiTiV)60 | [78] | BCC + Im       | (5.1)                       |     | C             | 1461                    | 1461                      | < 1   | 163       |
| AlFeNiTiVZr             | [27] | BCC            | (5.9)                       | 800 |               |                         |                           |       | (132)     |
| (CuMnNi)75Zn25          | [79] | FCC            | (8.3)                       | 147 | C             | 215                     |                           | > 60  | (169)     |
| (CuMnNi)80Zn20          | [79] | FCC            | (8.3)                       | 109 | C             | 140                     |                           | > 65  | (171)     |
| (CuMnNi)90Al10          | [79] | FCC + Im       | (8.1)                       | 241 | C             | 515                     |                           | 40    |           |
| (CuMnNi)90Sn10          | [79] | FCC + Im       | (8.3)                       | 318 | C             | 630                     |                           | 20    |           |
| (CuMnNi)95Al5           | [79] | FCC            | (8.3)                       | 166 | C             | 330                     |                           | > 45  | (174)     |
| (CuMnNi)95Sn5           | [79] | FCC + Im       | (8.4)                       | 205 | C             | 380                     |                           | > 63  |           |

**Table 2**HEAs and CCAs for which mechanical tests are reported in literature as a function of temperature.

| Composition                | Refs. | Phase     | ρ (g/cm <sup>3</sup> ) | T (°C)                                                | σ <sup>y</sup> (MPa)                                  | ε (%)              |
|----------------------------|-------|-----------|------------------------|-------------------------------------------------------|-------------------------------------------------------|--------------------|
| Al0.3NbTa0.8Ti1.4V0.2Zr1.3 | [52]  | ВСС       | 7.8 (7.7)              | 25<br>800<br>1000                                     | 1965<br>678<br>166                                    | 5<br>> 50<br>> 50  |
| Al0.3NbTaTi1.4Zr1.3        | [52]  | ВСС       | 8.2 (8.1)              | 25<br>800<br>1000                                     | 1965<br>362<br>236                                    | 5<br>> 50<br>> 50  |
| Al0.4Hf0.6NbTaTiZr         | [52]  | ВСС       | 9 (9.1)                | 25<br>800<br>1000                                     | 1841<br>796<br>298                                    | 10<br>> 50<br>> 50 |
| Al0.5CoCrCuFeNi            | [80]  | FCC       | 7.9 (7.6)              | 1000<br>25<br>300<br>500<br>700<br>900<br>1100        | 150<br>388<br>411<br>421<br>426<br>230<br>80          |                    |
| Al0.5NbTa0.8Ti1.5V0.2Zr    | [52]  | ВСС       | 7.4 (7.6)              | 25<br>800<br>1000                                     | 2035<br>796<br>220                                    | 5<br>> 50<br>> 50  |
| Al2CoCrCuFeNi              | [80]  | ВСС       | 6.7 (6.3)              | 1000<br>1100<br>25<br>600<br>500<br>700<br>900<br>800 | 116<br>79<br>1620<br>805<br>1120<br>567<br>214<br>302 |                    |
| AlCoCrCuFeNi               | [80]  | FCC + BCC | 7.4 (7.1)              | 1000<br>25<br>600<br>700<br>800<br>900                | 47<br>948<br>561<br>307<br>172<br>98                  |                    |

Table 2 (continued)

| Composition            | Refs. | Phase    | $\rho$ (g/cm <sup>3</sup> ) | T (°C)                                   | $\sigma^y$ (MPa)                      | ε (%)                            |
|------------------------|-------|----------|-----------------------------|------------------------------------------|---------------------------------------|----------------------------------|
| AlCrMoNbTi             | [81]  | ВСС      | (6.6)                       | 25<br>400<br>600<br>800<br>1000<br>1200  | 1080<br>1060<br>860<br>594<br>105     | 2<br>3<br>2<br>15<br>24          |
| AlMo0.5NbTa0.5TiZr     | [52]  | ВСС      | 7.4 (7.1)                   | 25<br>800<br>1000<br>1200                | 2000<br>1597<br>745<br>250            | 10<br>11<br>> 50<br>> 50         |
| AlNb1.5Ta0.5Ti1.5Zr0.5 | [52]  | ВСС      | 6.9 (6.8)                   | 25<br>800<br>1000                        | 1280<br>728<br>403                    | 4 > 12 > 50                      |
| AlnbTiV                | [56]  | ВСС      | 5.6 (5.5)                   | 25<br>600<br>800<br>1000                 | 1020<br>810<br>685<br>158             | 5<br>12<br>50<br>50              |
| CrHfNbTiZr             | [57]  | BCC + lm | (8.1)                       | 25<br>300<br>500<br>700<br>900           | 1375<br>1420<br>1457<br>1322<br>1328  | 3<br>4<br>2<br>1<br>5            |
| CrMo0.5NbTa0.5TiZr     | [28]  | BCC + Im | 8.2 (8)                     | 25<br>800<br>1000<br>1200                | 1595<br>983<br>546<br>170             | 5<br>6<br>50<br>50               |
| CrNbTiVZr              | [59]  | BCC + Im | 6.6                         | 25<br>600<br>800<br>1000                 | 1298<br>1230<br>615<br>259            | 3<br>10<br>> 50<br>> 50          |
| CrNbTiZr               | [59]  | BCC + Im | 6.7 (6.6)                   | 25<br>600<br>800<br>1000                 | 1260<br>1035<br>300<br>115            | 6 > 50 > 50 > 50 > 50            |
| HfMoNbTaTiZr           | [63]  | ВСС      | 9.97 (9.95)                 | 25<br>800<br>1000<br>1200                | 1512<br>1007<br>814<br>556            | 12<br>23<br>30<br>30             |
| HfMoNbTïZr             | [64]  | ВСС      | 8.7                         | 25<br>800<br>1000<br>1200                | 1575<br>825<br>635<br>187             | 9<br>50<br>50<br>50              |
| HfMoTaTiZr             | [63]  | BCC      | 10.24 (10.21)               | 25<br>800<br>1000<br>1200                | 1600<br>1045<br>855<br>404            | 4<br>19<br>30<br>30              |
| HfNbSi0.5TiV           | [65]  | BCC + lm | 8.6 (7.8)                   | 25<br>800<br>1000                        | 1399<br>875<br>240                    | 11<br>50<br>50                   |
| HfNbSi0.5TiVZr         | [66]  | BCC + lm | 7.75 (7.5)                  | 0<br>600<br>800                          | 1540<br>1252<br>427                   | 17<br>50<br>50                   |
| HfNbTaTiZr             | [40]  | ВСС      | 9.9                         | 25<br>600<br>800<br>1000<br>1200<br>1400 | 929<br>675<br>535<br>295<br>92<br>790 | 50<br>50<br>50<br>50<br>50<br>50 |

Table 2 (continued)

| Composition | Refs. | Phase    | ρ (g/cm <sup>3</sup> ) | T (°C)                                           | σ <sup>y</sup> (MPa)                           | ε (%)                                 |
|-------------|-------|----------|------------------------|--------------------------------------------------|------------------------------------------------|---------------------------------------|
| HfNbTiVZr   | [57]  | BCC + lm | (8.1)                  | 25<br>300<br>500<br>700<br>900                   | 1170<br>1120<br>1253<br>1140<br>1157           | 30<br>30<br>38<br>30<br>40            |
| MoNbTaVW    | [73]  | ВСС      | 12.4                   | 25<br>600<br>800<br>1000<br>1200<br>1400<br>1600 | 1246<br>862<br>846<br>842<br>735<br>656<br>477 | 2<br>13<br>17<br>19<br>8<br>40<br>40  |
| MoNbTaW     | [73]  | ВСС      | 13.8 (13.7)            | 25<br>600<br>800<br>1000<br>1200<br>1400<br>1600 | 1058<br>561<br>552<br>548<br>506<br>421<br>405 | 3<br>40<br>40<br>40<br>40<br>40<br>40 |
| NbTiV2Zr    | [59]  | ВСС      | 6.3 (6.4)              | 25<br>600<br>800<br>1000                         | 918<br>571<br>240<br>72                        | 50<br>50<br>50<br>50                  |
| NbTiVZr     | [59]  | ВСС      | 6.5                    | 25<br>600<br>800<br>1000                         | 1105<br>834<br>187<br>58                       | 50<br>50<br>50<br>50                  |

### Acknowledgements

SG would like to acknowledge DGA (Direction Générale de l'Armement), France, for support through the ERE program (ERE 2015 60 0013). The authors thank Adam Pilchak for the support provided for this work. SG thanks Raghavan Srinivasan for the arrangements that were made to host him at Wright State University in 2016.

## Transparency document. Supplementary material

Transparency data associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.11.111.

#### References

- [1] D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater. 122 (2017) 448-511.
- [2] S. Gorsse, D.B. Miracle, O.N. Senkov, Mapping the world of complex concentrated alloys, Acta Mater. 135 (2017) 177-187.
- [3] O.N. Senkov, D.B. Miracle, K.J. Chaput, J.-P. Couzinie, Development and exploration of refractory high-entropy alloys—a review, J. Mater. Res. (2018) 1–37. https://doi.org/10.1557/jmr.2018.153.
- [4] T.T. Zuo, R.B. Li, X.J. Ren, Y. Zhang, Effects of Al and Si addition on the structure and properties of CoFeNi equal atomic ratio alloy, J. Magn. Magn. Mater. 371 (2014) 60–68.
- [5] Z. Wu, H. Bei, G.M. Pharr, E.P. George, Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures, Acta Mater. 81 (2014) 428–441.
- [6] W.H. Liu, J.Y. He, H.L. Huang, H. Wang, Z.P. Lu, C.T. Liu, Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys, Intermetallics 60 (2015) 1–8.

- [7] Y.-F. Kao, T.-J. Chen, S.-K. Chen, J.-W. Yeh, Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi high entropy alloys, J. Alloy. Compd. 488 (2009) 57–64.
- [8] C.-Y. Hsu, C.-C. Juan, T.-S. Sheu, S.-K. Chen, J.-W. Yeh, Effect of aluminum content on microstructure and mechanical properties of AlxCoCrFeMo0.5Ni high-entropy alloys, JOM 65 (2013) 1840–1847.
- [9] K.B. Zhang, Z.Y. Fu, J.Y. Zhang, W.M. Wang, H. Wang, Y.C. Wang, Q.J. Zhanga, J. Shi, Microstructure and mechanical properties of CoCrFeNiTiAlx high entropy alloys, Mater. Sci. Eng. A 508 (2009) 214–219.
- [10] M.-H. Chuang, M.-H. Tsai, W.-R. Wang, S.-J. Lin, J.-W. Yeh, Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys, Acta Mater. 59 (2011) 6308–6317.
- [11] Weiping Chen, Zhiqiang Fu, Sicong Fang, Huaqiang Xiao, Dezhi Zhu, Alloying behavior, microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy, Mater. Des. 51 (2013) 854–860.
- [12] B.S. Murty, J. Yeh, S. Ranganathan, High Entropy Alloys, 1st edition, Butterworth-Heinemann, ISBN 9780128002513.
- [13] C. Li, J.C. Li, M. Zhao, Q. Jiang, Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys, J. Alloy. Compd. 475 (2009) 752–757.
- [14] Y.P. Wang, B.S. Li, M.X. Ren, C. Yang, H.Z. Fu, Microstructure and compressive properties of AlCrFeCoNi high entropy alloy, Mater. Sci. Eng. A 491 (2008) 154–158.
- [15] J.M. Zhu, H.M. Fu, H.F. Zhang, A.M. Wang, H. Li, Z.Q. Hu, Microstructures and compressive properties of multicomponent AlCoCrFeNiMox alloys, Mater. Sci. Eng. A 527 (2010) 6975–6979.
- [16] J.M. Zhu, H.M. Fu, H.F. Zhang, A.M. Wang, H. Li, Z.Q. Hu, Synthesis and properties of multiprincipal component AlCoCr-FeNiSix alloys, Mater. Sci. Eng. A 527 (2010) 7210–7214.
- [17] J.M. Zhu, H.M. Fu, H.F. Zhang, A.M. Wang, H. Li, Z.Q. Hu, Microstructure and compressive properties of multiprincipal component AlCoCrFeNiCx alloys, J. Alloy. Compd. 509 (2011) 3476–3480.
- [18] J.M. Zhu, H.M. Fu, H.F. Zhang, A.M. Wang, H. Li, Z.Q. Hu, Microstructure and compressive properties of multiprincipal component AlCoCrFeNiCx alloys, J. Alloy. Compd. 509 (2011) 3476–3480.
- [19] J.M. Zhu, H.M. Fu, H.F. Zhang, A.M. Wang, H. Li, Z.Q. Hua, Microstructures and compressive properties of multicomponent AlCoCrFeNiMox alloys, Mater. Sci. Eng. A 527 (2010) 6975–6979.
- [20] S.G. Ma, Y. Zhang, Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy, Mater. Sci. Eng. A 532 (2012) 480–486.
- [21] C.-Y. Hsu, W.-R. Wang, W.-Y. Tang, S.-K. Chen, J.-W. Yeh, Microstructure and mechanical properties of new AlCoxCrFe-Mo0.5Ni high-entropy alloys, Adv. Eng. Mater. 12 (2010) 44–49.
- [22] C.Y. Hsu, T.S. Sheu, J.W. Yeh, S.K. Chen, Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys, Wear 268 (2010) 653–659.
- [23] C.-C. Juan, C.-Y. Hsu, C.-W. Tsai, W.-R. Wang, T.-S. Sheu, J.-W. Yeh, S.-K. Chen, On microstructure and mechanical performance of AlCoCrFeMo0.5Nix highentropy alloys, Intermetallics 32 (2013) 401–407.
- [24] J.M. Zhu, H.M. Fu, H.F. Zhang, A.M. Wang, H. Li, Z.Q. Hu, Synthesis and properties of multiprincipal component AlCoCr-FeNiSix alloys, Mater. Sci. Eng. A 527 (2010) 7210–7214.
- [25] F.J. Wang, Y. Zhang, G.L. Chen, Atomic packing efficiency and phase transition in a high entropy alloy, J. Alloy. Compd. 478 (2009) 321–324.
- [26] Y.J. Zhou, Y. Zhang, Y.L. Wang, G.L. Chen, Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties, Cit.: Appl. Phys. Lett. 90 (2007) 181904.
- [27] J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, S.-Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater. 6 (2004) 299–303.
- [28] J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, Z.P. Lu, Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system, Acta Mater. 62 (2014) 105–113.
- [29] N.D. Stepanov, D.G. Shaysultanov, G.A. Salishchev, M.A. Tikhonovsky, E.E. Oleynik, A.S. Tortika, O.N. Senkov, Effect of v content on microstructure and mechanical properties of the CoCrFeMnNiVx high entropy alloys, J. Alloy. Compd. 628 (2015) 170–185.
- [30] S.T. Chen, et al., Microstructure and properties of age-hardenable AlxCr-Fe1.5MnNi0.5 alloys, Mater. Sci. Eng. A 527 (2010) 5818–5825.
- [31] Y. Dong, Y. Lu, J. Kong, J. Zhang, T. Li, Microstructure and mechanical properties of multi-component AlCrFeNiMox high-entropy alloys, J. Alloy. Compd. 573 (2013) 96–101.
- [32] Jien-Wei Yeh, Recent Progress in High-entropy Alloys, Ann. De. Chim. Sci. Des. Mater. 31 (2006) 633-648.
- [33] Chun-Ming Lin, Hsien-Lung Tsai, Hui-Yun Bor, Effect of aging treatment on microstructure and properties of high-entropy Cu0.5CoCrFeNi alloy, Intermetallics 18 (2010) 1244–1250.
- [34] Chung-Jin Tong, et al., Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metall. Mater. Trans. A 36 (2005) 881.
- [35] X.F. Wang, Y. Zhang, Y. Qiao, G.L. Chen, Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys, Intermetallics 15 (2007) 357–362.
- [36] C.P. Lee, Y.Y. Chen, C.Y. Hsu, J.-W. Yeh, H.C. Shih, The effect of boron on the corrosion resistance of the high entropy alloys Al0.5CoCrCuFeNiBx, J. Electrochem. Soc. 154 (2007) C424–C430.
- [37] M.-R. Chen, S.-J. Lin, J.-W. Yeh, S.-K. Chen, Y.-S. Huang, C.-P. Tu, Microstructure and properties of Al0:5CoCrCuFeNiTix (x = 0-2.0) high-entropy alloys, Mater. Trans. 47 (2006) 1395–1401.
- [38] M.R. Chen, S.J. Lin, J.W. Yeh, S.K. Chen, Y.S. Huang, M.H. Chuang, Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al0.5CoCrCuFeNi high-entropy alloy, Metall. Mater. Trans. A 37A (2006) 1363–1369.
- [39] Y.X. Zhuang, W.J. Liu, Z.Y. Chen, H.D. Xue, J.C. He, Effect of elemental interaction on microstructure and mechanical properties of FeCoNiCuAl alloys, Mater. Sci. Eng. A 556 (2012) 395–399.
- [40] B.S. Li, Y.P. Wang, M.X. Ren, C. Yang, H.Z. Fu, Effects of Mn, Ti and V on the microstructure and properties of AlCrFeCoNiCu high entropy alloy, Mater. Sci. Eng. A 498 (2008) 482–489.
- [41] J.-W. Yeh, Recent progress in high-entropy alloys, Ann. Chim. Sci. Mater. 31 (2006) 633-648.
- [42] Z. Hu, Y. Zhan, G. Zhang, J. She, C. Li, Effect of rare earth Y addition on the microstructure and mechanical properties of high entropy AlCoCrCuNiTi alloys, Mater. Des. 31 (2010) 1599–1605.

- [43] L. Liu, J.B. Zhu, C. Zhang, J.C. Li, Q. Jiang, Microstructure and the properties of FeCoCuNiSnx high entropy alloys, Mater. Sci. Eng. A 548 (2012) 64–68.
- [44] L. Liu, J.B. Zhu, L. Li, J.C. Li, Q. Jiang, Microstructure and tensile properties of FeMnNiCuCoSnx high entropy alloys, Mater. Des. 44 (2013) 223–227.
- [45] P. Jinhong, P. Ye, Z. Hui, Z. Lu, Microstructure and properties of AlCrFeCuNix (0.6 ¼ × ¼ 1.4) high-entropy alloys, Mater. Sci. Eng. A 534 (2012) 228–233.
- [46] S. Guo, C. Ng, J. Lu, C.T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, J. Appl. Phys. 109 (2011) 103505.
- [47] Jin-Hong Pi, Ye Pana, Lu Zhang, Hui Zhang, Microstructure and property of AlTiCrFeNiCu high-entropy alloy, J. Alloy. Compd. 509 (2011) 5641–5645.
- [48] E. Fazakas, V. Zadorozhnyy, D.V. Louzguine-Luzgin, Effect of iron content on the structure and mechanical properties of Al25Ti25Ni25Cu25 and (AlTi)60-xNi20Cu20Fex (x ¼15, 20) high-entropy alloys, Appl. Surf. Sci. 358 (2015) 549–555.
- [49] X. Yang, S.Y. Chen, J.D. Cotton, Y. Zhang, Phase stability of low-density, multiprincipal component alloys containing aluminum, magnesium, and lithium, IOM 66 (10) (2014) 2009–2020.
- [50] K.M. Youssef, A.J. Zaddach, C. Niu, D.L. Irving, C.C. Koch, A novel low-density, high-hardness, high entropy alloy with close-packed single-phase nanocrystalline structures, Mater. Res. Lett. 3 (2015) 95–99.
- [51] N.D. Stepanov, N. Yu Yurchenko, D.V. Skibin, M.A. Tikhonovsky, G.A. Salishchev, Structure and mechanical properties of the AlCrxNbTiV (x ¼ 0, 0.5, 1, 1.5) high entropy alloys, J. Alloy. Compd. 652 (2015) 266–280.
- [52] O.N. Senkov, C. Woodward, D.B. Miracle, Microstructure and properties of aluminum-containing refractory high entropy alloys, JOM 66 (10) (2014) 2030–2042.
- [53] C.-M. Lin, C.-C. Juan, C.-H. Chang, C.-W. Tsai, J.-W. Yeh, Effect of Al addition on mechanical properties and microstructure of refractory AlxHfNbTaTiZr alloys, J. Alloy. Compd. 624 (2015) 100–107. https://doi.org/10.1016/j.jallcom.2014.11.064.
- [54] S.Y. Chen, X. Yang, K.A. Dahmen, P.K. Liaw, Y. Zhang, Microstructures and crackling noise of AlxNbTiMoV high entropy alloys, Entropy 16 (2014) 870–884. https://doi.org/10.3390/e16020870.
- [55] X. Yang, Y. Zhang, P.K. Liaw, Microstructure and compressive properties of NbTiVTaAlx high entropy alloys, Procedia Eng. 36 (2012) 292–298.
- [56] N.D. Stepanov, D.G. Shaysultanov, G.A. Salishchev, M.A. Tikhonovsky, Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy, Mater. Lett. 142 (2015) 153–155.
- [57] E. Fazakas, V. Zadorozhnyy, L.K. Varga, A. Inoue, D.V. Louzguine-Luzgin, F. Tian, L. Vitos, Experimental and theoretical study of Ti20Zr20Hf20Nb20X20 (X = V or Cr) refractory high-entropy alloys, Int. J. Refract. Met. Hard Mater. 47 (2014) 131–138.
- [58] O.N. Senkov, C.F. Woodward, Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy, Mater. Sci. Eng. A 529 (2011) 311–320.
- [59] O.N. Senkov, V. Senkova, D.B. Miracle, C. Woodward, Mechanical properties of low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system, Mater. Sci. Eng. A 565 (2013) 51–62.
- [60] E. Fazakas, V. Zadorozhnyy, L.K. Varga, A. Inoue, D.V. Louzguine-Luzgin, F. Tian, L. Vitos, Experimental and theoretical study of Ti20Zr20Hf20Nb20X20 (X = V or Cr) refractory high-entropy alloys, Int. J. Refract. Met. Hard Mater. 47 (2014) 131–138.
- [61] N.N. Guo, L. Wang, L.S. Luo, X.Z. Li, R.R. Chen, Y.Q. Su, J.J. Guo, H.Z. Fu, Microstructure and mechanical properties of in-situ MC-carbide particulates-reinforced refractory high-entropy Mo0.5NbHf0.5ZrTi matrix alloy composite, Intermetallics 69 (2016) 74–77.
- [62] C.-C. Juan, K.-K. Tseng, W.-L. Hsu, M.-H. Tsai, C.-W. Tsai, C.-M. Lin, S.-K. Chen, S.-J. Lin, J.-W. Yeh, Solution strengthening of ductile refractory HfMoxNbTaTiZr high-entropy alloys, Mater. Lett. 175 (2016) 284–287. https://doi.org/10.1016/j.matlet.2016.03.133.
- [63] C.-C. Juan, M.-H. Tsai, C.-W. Tsai, C.-M. Lin, W.-R. Wang, C.-C. Yang, S.-K. Chen, S.-J. Lin, J.-W. Yeh, Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys, Intermetallics. 62 (2015) 76–83. https://doi. org/10.1016/j.intermet.2015.03.013.
- [64] N.N. Guo, L. Wang, L.S. Luo, X.Z. Li, Y.Q. Su, J.J. Guo, H.Z. Fu, Microstructure and mechanical properties of refractory MoNbHfZrTi high-entropy alloy, Mater. Des. 81 (2015) 87–94. https://doi.org/10.1016/j.matdes.2015.05.019.
- [65] Y. Zhang, Y. Liu, Y. Li, X. Chen, H. Zhang, Microstructure and mechanical properties of a refractory HfNbTiVSi0.5 high-entropy alloy composite, Mater. Lett. 174 (2016) 82–85. https://doi.org/10.1016/j.matlet.2016.03.092.
- [66] Y. Zhang, Y. Liu, Y. Li, X. Chen, H. Zhang, Microstructure and mechanical properties of a new refractory HfNbSi0.5TiVZr high entropy alloy, Mater. Sci. Forum (2016) 76–84. https://doi.org/10.4028/www.scientific.net/MSF.849.76.
- [67] S. Maiti, W. Steurer, Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy, Acta Mater. 106 (2016) 87–97. https://doi.org/10.1016/j.actamat.2016.01.018.
- [68] S. Sheikh, S. Shafeie, Q. Hu, J. Ahlstrom, C. Persson, J. Vesely, J. Zyka, U. Klement, S. Guo, Alloy design for intrinsically ductile refractory high-entropy alloys, J. Appl. Phys. 120 (2016) 164902. https://doi.org/10.1063/1.4966659.
- [69] O.N. Senkov, J.M. Scott, S.V. Senkova, F. Meisenkothen, D.B. Miracle, C.F. Woodward, Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy, J. Mater. Sci. 47 (2012) 4062–4074.
- [70] O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, C.F. Woodward, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, J. Alloy, Compd. 509 (2011) 6043–6048.
- [71] Y.D. Wu, Y.H. Cai, T. Wang, J.J. Si, J. Zhu, Y.D. Wang, X.D. Hui, A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties, Mater. Lett. 130 (2014) 277–280.
- [72] H. Yao, J.-W. Qiao, M.C. Gao, J.A. Hawk, S.-G. Ma, H. Zhou, MoNbTaV medium-entropy alloy, Entropy 18 (2016) 189. https://doi.org/10.3390/e18050189.
- [73] O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo 20Ta20W20 refractory high entropy alloys, Intermetallics 19 (2011) 698–706.
- [74] Y.D. Wu, Y.H. Cai, X.H. Chen, T. Wang, J.J. Si, L. Wang, Y.D. Wang, X.D. Hui, Phase composition and solid solution strengthening effect in TiZrNbMoV high-entropy alloys, Mater. Des. 83 (2015) 651–660. https://doi.org/10.1016/j. matdes.2015.06.072.
- [75] Y. Zhang, X. Yang, P.K. Liaw, Alloy design and properties optimization of high entropy alloys, JOM 64 (7) (2012) 830-838.

- [76] H.W. Yao, J.W. Qiao, M.C. Gao, J.A. Hawk, S.G. Ma, H.F. Zhou, Y. Zhang, NbTaV-(Ti,W) refractory high-entropy alloys: experiments and modeling, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 674 (2016) 203–211. https://doi. org/10.1016/j.msea.2016.07.102.
- [77] L. Jiang, Z.Q. Cao, J.C. Jie, J.J. Zhang, Y.P. Lu, T.M. Wang, T.J. Li, Effect of Mo and Ni elements on microstructure evolution and mechanical properties of the CoFeNixVMoy high entropy alloys, J. Alloy. Compd. 649 (2015) 585–590.
- [78] Y.J. Zhou, Y. Zhang, Y.L. Wang, G.L. Chen, Microstructure and compressive properties of multicomponent Alx(TiVCrMn-FeCoNiCu)100 x high-entropy alloys, Mater. Sci. Eng. A 454–455 (2007) 260–265.
- [79] K.J. Laws, C. Crosby, A. Sridhar, P. Conway, L.S. Koloadin, M. Zhao, S. Aron-Dine, L.C. Bassman, High entropy brasses and bronzes: microstructure, phase evolution and properties, J. Alloy. Compd. 650 (2015) 949–961.
- [80] C.-J. Tong, M.-R. Chen, S.-K. Chen, J.-W. Yeh, T.-T. Shun, S.-J. Lin, S.-Y. Chang, Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metall. Mater. Trans. A 26 (2005) 1263.
- [81] H. Chen, A. Kauffmann, B. Gorr, D. Schliephake, C. Seemueller, J.N. Wagner, H.-J. Christ, M. Heilmaier, Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high-entropy alloy Nb-Mo-Cr-Ti-Al, J. Alloy. Compd. 661 (2016) 206–215. https://doi.org/10.1016/j.jallcom.2015.11.050.