Matplotlib Tutorial: 5. 3D plotting

The 3D plotting toolkit introduced in matplotlib version 1.0 can lead to some very nice plots. We'll explore a few of the options here: for more examples, the <u>matplotlib tutorial</u> is a great resource.

Again we'll use inline plotting (though keep in mind that it can be useful to skip the "inline" backend to allow interactive manipulation of the 3D plots).

```
In [1]: %matplotlib inline
    from __future__ import print_function, division
    import matplotlib.pyplot as plt
    import numpy as np
```

```
In [2]: # This is the 3D plotting toolkit
from mpl_toolkits import mplot3d
```

Just as before when we created a 2D axes and called several plotting methods on it, here we'll create some 3D axes objects and call 3D plotting routines. Below are several examples.

3D scatter Plot

The 3D scatter plot takes all the same keyword parameters as the 2D scatter plot, so its use should be familiar. To create a 3D axes, we need to pass the argument projection='3d'.

```
In [3]: fig = plt.figure()
    ax = plt.axes(projection='3d')

z = np.linspace(0, 1, 100)
    x = z * np.sin(20 * z)
    y = z * np.cos(20 * z)

c = x + y

ax.scatter(x, y, z, c=c)
```

Out[3]: <mpl_toolkits.mplot3d.art3d.Path3DCollection at 0x106dc1c10>

Like the 2D and 3D scatter command, the 2D and 3D plot command have the same argument structure. Thus plotting a 3D line plot is straightforward:

```
In [4]: fig = plt.figure()
ax = plt.axes(projection='3d')
ax.plot(x, y, z, '-b');
```


Surface Plot

Surface plots are connected plots of x, y, and z coordinates. They can be used to make some pretty interesting shapes:

```
In [5]: x = np.outer(np.linspace(-2, 2, 30), np.ones(30))
y = x.copy().T
z = np.cos(x ** 2 + y ** 2)

fig = plt.figure()
ax = plt.axes(projection='3d')

ax.plot_surface(x, y, z, cmap='cubehelix', rstride=1, cstride=1, linewidt h=0);
```


Wire-frame plot

Wire-frame plots draw lines between nearby points. They can be displayed using the plot_wireframe method. Here we'll plot a parametrized sphere:

```
In [6]: u = np.linspace(0, np.pi, 30)
```

```
v = np.linspace(0, 2 * np.pi, 30)

x = np.outer(np.sin(u), np.sin(v))
y = np.outer(np.sin(u), np.cos(v))
z = np.outer(np.cos(u), np.ones_like(v))

fig = plt.figure()
ax = plt.axes(projection='3d')

ax.plot_wireframe(x, y, z);
```


More 3D Plot Examples

There are many more 3D plotting examples to explore; see the <u>matplotlib documentation</u> for more information.