Enviar as soluções de 3 exercícios a sua escolha para o email walner+comb@mat.ufc.br.

Exercício 1. Prove que para todo $\varepsilon > 0$, existe c > 0 tal que o seguinte vale para todo $n \in \mathbb{N}$ suficientemente grande. Todo grafo G com $\delta(G) \geq (1/2 + \varepsilon)n$ contém uma cópia de $K_3(t)$, para $t = c \log n$.

Exercício 2. Mostre que para todo $n \in \mathbb{N}$ grande o suficiente,

$$ex(n, C_5) = t_2(n).$$

Exercício 3. Seja G um grafo com n vértices e cintura¹ pelo menos 2k. Mostre que se $\delta(G) > \frac{2n}{2k+1}$, então G é bipartido.

Exercício 4. Mostre que o Teorema de Andrásfai, Erdős e Sós é ótimo no seguinte sentido: Existe um grafo K_{r+1} -livre com grau mínimo exatamente (3r-4)n/(3r-1) que não é r-partido.

Exercício 5. Mostre que para todo $k \in \mathbb{N}$, existe um grafo G livre de triângulos tal que $\chi(G) \geq k$ e $\delta(G) \geq v(G)/4$.

Exercício 6. Mostre que para todo $k, r \in \mathbb{N}$, existe $\delta > 0$ tal que o seguinte vale para todo $n \in \mathbb{N}$ suficientemente grande. Se G é um grafo com n vértices tal que

$$e(G) > (1 - \delta) \binom{n}{2},$$

então, em cada r-coloração de E(G), há pelo menos δn^k cópias monocromáticas de K_k .

Exercício 7. A densidade de um grafo F com n vértices é definido como $d(F) := e(F)/\binom{n}{2}$. Agora, se G é um grafo simples com infinito vértices, então a densidade superior de G, a qual denotamos por $\bar{d}(G)$, é definida da seguinte forma

$$\bar{d}(G) = \lim_{n \to \infty} \sup \left\{ d(F) : F \subseteq G, v(F) = n \right\}.$$

Mostre que $\bar{d}(G)$ é um número racional. Ademais, mostre que ou $\bar{d}=1$ ou $\bar{d}=\frac{k-1}{k}$, para algum $k\in\mathbb{N}$.

 $^{^{1}}$ A cintura de um grafo G é o comprimento do menor ciclo em G. Caso G seja acíclico, dizemos que a sua cintura é infinita.