Contents

1	On-Line Handwriting Recognition			2
	1.1	Introd	luction	2
	1.2 Handwriting Features		writing Features	3
		1.2.1	Handwriting Properties of Latin Script	3
		1.2.2	Handwriting Properties of East Asian Scripts	3
	1.3	Automated Recognition of Handwriting		4
		1.3.1	Short History of Handwriting Recognition	4
		1.3.2	Pattern Recognition Problems	5
		1.3.3	Hardware Requirements	6
		1.3.4	Recognition vs Identification	7
		1.3.5	Interpretation of Handwriting	8
		1.3.6	On-Line vs. Off-Line Recognition	8
	1.4	A Typ	oical On-Line HWR Application	9
		1.4.1	Data Capturing	10
		1.4.2	Preprocessing	10
		1.4.3	Character Recognition	10
		1.4.4	Postprocessing	10
	1.5	HWR	of Hànzì and Kanji	10
		1.5.1	The current State-of-the-Art in Japanese and Chinese Char-	
			acter Recognition	11
		1.5.2	Overview of a typical OLCCR system	11

Chapter 1

On-Line Handwriting Recognition

1.1 Introduction

Handwriting is a very personal skill to individuals. It consists of graphical marks on a surface, it can be used to identify a person, it has the main purpose of communication. This is achieved by drawing letters or other graphemes, which in turn represent parts of a language. The characters have a certain basic shape, which must be recognisable for a human in order for the communication process to function. There are rules for the combination of letters, which have the ability - if known to the reader - to help recognise a character or word.

Handwriting was developed as a means of communication and to expand one's own memory. With the advent of each new technologies the question arose, if handwriting was going to survive. However, the opposite seems to be the truth: For example, the printing press increased the number of documents available and therefore increased the number of people who learnt to read and write. Through the increased rate of alphabetisation, naturally there was an increased use of handwriting as a means of communication.

In various situations handwriting seems much more practical than typing on a keyboard. For instance children at school are using notepads and pencils or ink pens, which are regarded as a better tool to teach writing by German teachers. Therefore it can be concluded that there is little danger of the extinction of handwriting as a communication tool. In fact, as the length of handwritten messages decreases, the number of people using handwriting increases (Plamondon and Srihari 2000).

1.2 Handwriting Features

Any script of any language has a number of features. The fundamental characteristic of a script is that the differences between the features of different characters are more decisive than the different features of drawing variants of the same letter in individual handwriting styles. There might be exceptions, because θ and O or I and I respectively, can be written alike. However, in those cases, context makes clear which one was intended by the writer. Despite the exception, written communication can only work with that fundamental quality (Tappert et al. 1990).

1.2.1 Handwriting Properties of Latin Script

In the Latin script we have 26 letters, each of which has two variants, a capital and a lowercase variant. When writing a character in the Latin script, there are four main areas, in which the character can reside. All characters have their main part between a top line and a ground line. There is also a middle line. Capital characters stretch out to use the full space between the ground line and the top line, whereas lowercase characters usually use the space between the ground line and the middle line. Some lowercase characters (like lowercase b, d, f, h, k, l, t) have an ascender and use the area above the middle line as well, some lowercase characters have a descender and use the area below the ground line (like lowercase q, j, p, q, y). In handwritten cursive script, there are writing variants where also some lowercase letters (f, z) and certain uppercase characters (G, J)expand below the ground line. For all latin-based alphabets, usually one character is finished before the next one starts, however, there are exceptions: In cursive handwriting, the dots on i and j and the crosses of t might be delayed until the underlying portions of all the characters of the word are completed.

XXX Graphic with example of expanding cursive letters here.

1.2.2 Handwriting Properties of East Asian Scripts

Generally, a handwriting is a formed of a number of strokes, that are drawn in a time sequence. Opposed to the latin-based alphabets, consider Chinese and Japanese script. Chinese has a larger alphabet, up to 50000 characters, 3000-5000 of which are in active use. There are also two writing styles, block style - which corresponds to printed characters in Latin alphabets, even if handwritten. The other style is cursive style. In block style the individual parts of the character are usually written in proper stroke order, and abide by the proper stroke number. In cursive style the characters are written faster, with less care and don't necessarily

abide to stroke number or order. In fact, they are usually written with fewer strokes, connecting some block-style strokes by using simpler radical shapes (Tappert et al. 1990).

In Japanese, three different scripts are in active use at the same time, mixed and next to each other. They are called Hiragana (ひらがな), Katakana (カタカナ) and Kanji (漢字). Hiragana and Katakana are syllabic alphabets, each containing 46 characters (see ??), whereas Kanji are essentially the Chinese Hanzi characters (•字) as they were imported into the Japanese language (see ??).

The different scripts can even be blended with each other within one word. Take for instance the verb taberu (食べる - to eat). The first character is a Kanji character, pronounced /ta/, also bears the meaning of the word, the second and third characters are the Hiragana characters be and ve which are there for conjugation only as well as for phonetic reasons. However, without them, the character a0 still bears the meaning of the concept a1, but the character alone does not result in the verb a2.

1.3 Automated Recognition of Handwriting

1.3.1 Short History of Handwriting Recognition

Handwriting recognition (HWR) as a technological discipline performed by machines has been around for many years. The quality of the systems recognising handwriting has improved over the decades. It is the key technology to pen-based computer systems. The first research papers concerned with pattern recognition on computers were published in the late 1950'ies, Handwriting recognition as an individual subject in the early 1960'ies. (Goldberg 1915) describes in a US Patent a machine that can recognise alphanumeric characters as early as 1915. However, despite the surprise of how early such a device was invented, it should be taken into consideration that that was before the times of modern computers, therefore the methods he employs are quite different from the algorithms used after the advent of computers, more concretely, computers with screens.

(Tappert et al. 1990) describe in their review the development of handwriting recognition, which was a popular research topic in the early 1970'ies and then again in the 1980'ies, due to the increased availability of pen-input devices. Generally speaking, handwriting recognition (HWR) involves automatic conversion of handwritten text into a machine readable character encoding like ASCII or UTF-8. Typical HWR-environments include a pen or stylus that is used for the handwriting, a touch-sensitive surface, which the user writes on and a an application that interprets the strokes of the stylus on the surface and converts them into digital text.

Usually, the writing surface captures the x-y coordinates of the stylus movement.

1.3.2 Pattern Recognition Problems

The general problem of pattern recognition is to take a non-symbolic representation of some pattern, like mouse or pen coordinates and transform it into a symbolic representation like a rectangle with its coordinates, or in the case of handwriting recognition, a character. Pattern recognition is a symbol manipulation procedure, that tries to generate discrete structures or sub-sets of discrete structures. Some see it as a game theory problem, where machine 'players' try to match the interpretation of an input produced by machine 'experts' (Zanibbi et al. 2005).

Related Problems

There are several related problems, the recognition of equations, line drawings and gestures symbols. The recognition of language symbols includes the different large alphabets of Chinese, the different scripts of Japanese, alphabetic scripts like Greek, or Arabic and other non-alphabetic scripts like the Korean Hangul, but also various writing styles of the latin-based alphabets, and diacritics that are used to denote pronunciation variants in different languages using Latin script, like Turkish or Vietnamese.

Other Problems that are related to handwriting recognition include for example mathematical formula recognition, where mathematical formulas are analysed and put into a computable format (Chan and Yeung 2001). In diagram recognition both the characters and the diagram layout are recognised (Blostein and Haken 1999).

Problem of Similar Characters

XXX remake fig 2. in Tappert1990 which he had stolen from his reference 240

There are several subproblems to the task of pattern recognition of a character. Different styles of handwriting can be seen in xxx LABELOF-GRAPHICABOVE. The scripts towards the bottom of LABELOFGRAPHICABOVE are harder to recognise. In the case of boxed discrete characters, segmentation is done for the machine by the user. Run-on discrete characters are easier to recognise than pure cursive handwriting, because there is a pen-up and pen-down between each character. In cursive handwriting, segmentation between the characters becomes a more difficult task. Some parts of the writing may be delayed, like the crosses of t or the dots on i or j. Besides the segmentation, the discrimination of shapes is

often not trivial. Humans may or may not be able to decipher somebody else's handwriting and clearly distinguish between, say U-V, but most of the times, context helps with that task. Other characters have similar shapes, too, like C-L, a-d and n-h. Confusion can arise between characters and numbers like O-0, I-1, l-1, Z-2, S-5, G-6, I-1, Z-2. Lowercase and uppercase are hard to distinguish in the cases of C-c, K-k, O-o, others are mainly distinguished by their position relative to the base line of the rest of the text: P-p, Y-y. Therefore, context helps the human reader to identify the correct character. This could be used as an advantage in automated pattern recognition, as well. However, the other characters nearby would have to be recognised first, which creates a (solvable) hen and egg problem. In the Japanese script the problem is taken to another dimension. For example 本(root)-木(tree) is only a very simple example that might lead to confusion of the different symbols. However, due to the hierarchical organisation of the characters with their radicals (see ??) there are many more shapes that look very much alike. From the shape recognition perspective, minor changes to the shape of a character can change its meaning drastically. Compare 嘸 (how, indeed), 撫 stroke, pat), 蕪 (turnip) and 憮 (disappointment). They all contain the radical 無 (nothingness, none), which doesn't seem to have any semantic connection with the characters, however, it can be seen as the main radical in those characters.

1.3.3 Hardware Requirements

In order to perform on-line handwriting recognition, the handwriting needs to be captured in some way. Special hardware is necessary to perform the task of capturing both the x-y coordinates and the time information of the handwriting input device.

Several different hardware commercial products are available in order to capture the x-y coordinates of a stylus or pen. Graphics tablet like the products of the Wacom Co., Ltd.¹ are popular input devices for hand motions and hand gestures. The use of pen-like input devices has also been recommended, since 42% of mouse users report feelings of weakness, stiffness and general discomfort in the wrist and hand when using the mouse for long periods (Woods et al. 2002). The sampling rates of digital pens are usually around 50-200 Hz. The higher the sampling rate the finer the resolution of the resulting co-ordinates, which leads to more accurate measurement of fast strokes.

Moreover there are PDAs and Tablet PCs, where the writing surface serves as an output device, i.e. an display at the same time. If the pen capturing area is transparent and has an instantaneous display behind

¹www.wacom.com

that shows immediately whatever input the user drew with the stylus, a high level of interactivity can be reached (Santosh and Nattee 2009). These displays include touch screens, which are a newer development. New generation mobile phones like the notorious iPhone from Apple Inc. also contain touch-displays, but for those it is more common to be operated without a stylus. For the task of handwriting recognition, a stylus can be regarded as the more natural device, since people usually write with pens on paper, therefore a stylus on a display seems more natural than using a finger on a display for writing. In order to interpret user gestures, an input given directly with the fingers is a more natural option. Gestures for zooming into digital pictures, or turning to the next page of a document are interpreted on these devices.

Another rather new development are real-ink digital pens. With those, a user can write on paper with real ink, and the pen stores the movements of the pen-tip on the paper. The movements are transferred to a computer later. It can be expected that with technologies like Bluetooth it may be possible to transfer those data in real-time, not delayed. In a fairly new development accelerometer technology has been used for handwriting recognition, using a mobile phone as a device to write in the air (Agrawal et al. 2009). That approach can be regarded as an area that is only loosely related to classical handwriting recognition, as the phone stores an image of the strokes in the air that were measured by the accelerator device, but does not transform the strokes into characters.

1.3.4 Recognition vs Identification

Handwriting recognition is the task of transforming a spatial language representation into a symbolic representation. In the English language (and many others) the symbolic representation is typically 8-bit ASCII. However, with *Unicode* being around for more than a decade now, storage space on hard disks not being as much of an issue any more and RAM being readily available to the Gigabytes, it has become more common to use a UTF-8 encoding, which is a variable-length character encoding for Unicode (The Unicode Consortium 2000). Akin disciplines to handwriting recognition are handwriting identification, which is the task of identifying the author of a handwritten text sample from a set of writers, assuming that each handwriting style can be seen as individual to the person who wrote it. The task of signature verification is to determine if a given signature stems from the person who's name is given in the signature. Thus, handwriting identification and verification can be used for analysis in the field of jurisdiction. They determine the individual features of a handwritten sample of a specific writer and compare those to samples

given by a different or the same writer. By analysing those features one can find out if a piece of handwritten text is authentic or not.

1.3.5 Interpretation of Handwriting

Handwriting recognition and interpretation are trying to filter out the writer-specific variations and extract the text message only. This conversion process can be a hard task, even for a human. Humans use context knowledge in order to determine the likeliness of a certain message in a certain context. For instance, a handwritten message on a shopping list that could be read as bread or broad due to the similarities of the characters for 'e' and 'o' in some cursive handwriting styles, will be interpreted as bread, since it is a much more likely interpretation in the shopping list domain. However, if the next word on the shopping list is beans, the likelihood for the interpretation of the first word as broad rises, because the collocation broad beans is a sequence that is likely on a shopping list, at least more likely than having the interpretation bread and then beans without a clear separation between the two. Even with non-handwritten, but printed characters, the human mind can be tricked because of the brain's ability to perform these interpretations within milliseconds without conscious thinking. An example of that are modern T-Shirt inscriptions that state things like *Pozilei* in a white font on a green ground (the German police colours in most federal states are green and white), which German native speakers usually read as *Polizei* (police), because that is the most likely interpretation.

1.3.6 On-Line vs. Off-Line Recognition

Basic Features of On-Line Recognition

On-line HWR means that the input is converted in real-time, dynamically, while the user is writing. This recognition can lag behind the user's writing speed. (Tappert et al. 1990) report average writing rates of 1.5-2.5 characters/s for English alphanumerics or 0.2-2.5 characters/s for Chinese characters. In on-line systems, the data usually comes in as a sequence of coordinate points. Essentially, an on-line system accepts as input a stream of x-y coordinates from an input device that captures those data combined with the appropriate measuring times of those points.

Basic Features of Off-Line Recognition

Off-line HWR is the application of a HWR algorithm after the writing. It can be performed at any time after the writing has been completed. That

includes recognition of data transferred from the real-ink pens (see 1.3.3) to a computing device after the writing has been completed. The standard case of off-line HWR, however, is a subset of optical character recognition (OCR). An scanner transfers the physical image on paper into a bitmap, the character recognition is performed on the bitmap. An OCR system can recognise several hundred characters per second. Images are usually binarised by a threshold of its colour pattern, such that the image pixels are either 1 or 0 (Santosh and Nattee 2009).

Similarities and Differences of On-Line and Off-Line Recognition

There are two main differences between on-line and off-line handwriting recognition. a) Off-line recognition happens, hence the name, after the time of writing. Therefore, a complete piece of writing can be expected as an input by the machine. b)On-line devices also get the dynamic information of the writing as input, since each point coordinate is captured at a specific point of time, which can be provided to the handwriting recogniser along with the point coordinates by the operating system. In addition, the recogniser has information about the input stroke sequence, the stroke direction and the speed of the writing. In the off-line case these pieces of information are not readily available, but can be partially reconstructed from the off-line data (Santosh and Nattee 2009).

All these information can be an advantage for an on-line system, however, off-line systems have used algorithms of line-thinning, such that the data consists of point coordinates, similar to the input of on-line systems (Tappert et al. 1990). When line thinning has been applied, an off-line system could estimate the trajectory of the writing and then use the same algorithm as an on-line system (Plamondon and Srihari 2000). Vice versa, an on-line system can employ algorithms of off-line systems, since it is possible to construct a binary image from mouse coordinates of points. However, only few systems of that kind have been developed. A promising approach was developed in the middle of the 1990'ies by (Nishida 1995), where an on-line and and off-line system are fully integrated with each other as a blend system.

On-line systems can refer interactively to the user in case of an unsuccessful or uncertain recognition. Along these lines, an on-line system can adapt to the way a specific user draws certain characters and a user can adapt to the way a system expects characters to be written distinctively.

1.4 A Typical On-Line HWR Application

A typical HWR application has several parts that follow up on each other in a procedural fashion.

- **Data capturing**: The data is captured through an input device like a writing surface and a stylus.
- **Preprocessing**: The data is segmented, noise reduction like smoothing and filtering are applied.
- Character Recognition: Feature analysis, stroke matching, time, direction and curve matching.

1.4.1 Data Capturing

how is the data captured? what format? hardware? xxx: see Plamondon2000 1.4. xxx: see Santosh2009 sampling

1.4.2 Preprocessing

xxx: see Santosh2009 pre-processing xxx: see Tappert1990 preprocessing: segmentation, noise reduction. xxx: see Santosh2009 noise elimination xxx: see Santosh2009 normalisation xxx: see Santosh2009 repetition removal

1.4.3 Character Recognition

xxx: see Tappert1990 VI shape recognition. xxx: see Plamondon2000: 3.1.1 different models xxx: see all the substroke stuff, Santosh, shimodaira2003, nakai2003: very short, properly in OLCCR

1.4.4 Postprocessing

xxx: what happens after the recognition process? xxx: see Tappert1990 again in postprocessing chapter.

1.5 HWR of Hànzì and Kanji

- Warum: Um einen Ueberblick ueber HWR-Techniken fuer Japanische Schriftzeichen und verschiedene Herangehensweisen zu verschaffen.
- Nutzen: Leser kann sich ein Bild darueber verschaffen, in welchem Kontext sich die Applikation bewegt.

- Was: research different approaches, see what the focus on, what their specialty is and report about them. Take different specialist papers and compare them.
- Wie: Wiss. Report. / Zusammenfassung. Vergleich.

1.5.1 The current State-of-the-Art in Japanese and Chinese Character Recognition

From the 1990s , On-Line Japanese and Chinese Character Recognition (OLCCR) systems have been aiming at loosening the restrictions imposed on the writer when using an OLCCR system. Their focus shifted from recognition of block style script ('regular' script) to fluent style script, which is also called 'cursive' style. Accuracies of up to about 95% are achieved in the different systems.

(Nakagawa, Tokuno, Zhu, Onuma, Oda, and Kitadai 2008) report their recent results of on-line Japanese handwriting recognition and its applications. Their article gives important insights into character modelling, which are employed in this application.

xxx: bla. says the opposite. (Chen and Lee 1996) oder auch xxx: (Nakagawa, Tokuno, Zhu, Onuma, Oda, and Kitadai 2008) und (Nakai, Shimodaira, and Sagayama 2003) xxx: zu guter letzt: (Santosh and Nattee 2009)

1.5.2 Overview of a typical OLCCR system

xxx: (Liu, Jaeger, and Nakagawa 2004) have said:

xxx: graphic: handwritten \rightarrow character segmentation \rightarrow ... \rightarrow character codes see fig. 3 of liujaegernakagawa2004

Broadly speaking, from an abstract viewpoint, typical handwriting recognition systems for Chinese and Japanese characters have the same structure like the systems for latin-based alphabets. The process begins with Character segmentation, goes on with Preprocessing, Pattern description, Pattern recognition and ends with Contextual processing, if applicable. However, there are differences to the standard process, due to the nature of the Chinese characters (see 1.2.2). Especially the pattern representation is divers in the different OLCCR systems, whereas it is naturally more alike in the systems focusing on Latin characters. This is due to the fact that the Latin alphabet is rather small, but has more variation concerning writing style, whereas the Chinese alphabet has a larger inventory of characters, but less variation in how to write a character - at least - it is widely agreed upon a 'proper' stroke sequence for a character, even across country borders.

xxx: liujaeger
2004: 4.1. structural representation. statistical representation.

 $xxx\colon$ liujaeger
2004: character classification xxx: liujaeger
2004: very short: contextual processing.

References

- Agrawal, S., I. Constandache, S. Gaonkar, and R. R. Choudhury (2009). Phonepoint Pen: Using Mobile Phones to Write In Air. In *MobiHeld '09: Proceedings of the 1st ACM workshop on Networking, systems, and applications for mobile handhelds*, New York, NY, USA, pp. 1--6. ACM.
- Blostein, D. and L. Haken (1999). Using Diagram Generation Software to Improve Diagram Recognition: A Case Study of Music Notation. *IEEE Trans. Pattern Anal. Mach. Intell.* 21(11), 1121--1136.
- Chan, K.-F. and D.-Y. Yeung (2001). Error Detection, Error Correction and Performance Evaluation in On-Line Mathematical Expression Recognition. In *Pattern Recognition*, Volume 34, pp. 1671--1684.
- Chen, J.-W. and S.-Y. Lee (1996). A Hierarchical Representation for the Reference Database of On-Line Chinese Character Recognition. In Advances in Structural and Syntactical Pattern Recognition, Volume 1121 of Lecture Notes in Computer Science, pp. 351--360. Berlin/Heidelberg, Germany: Springer.
- Goldberg, H. E. (1915, December). Controller. *United States Patent* 1,116,663.
- Liu, C.-L., S. Jaeger, and M. Nakagawa (2004). Online Recognition of Chinese Characters: The State-of-the-Art. *IEEE Transactions on Pattern Analysis and Machine Intelligence* 26, 198--213.
- Nakagawa, M., J. Tokuno, B. Zhu, M. Onuma, H. Oda, and A. Kitadai (2008). Recent Results of Online Japanese Handwriting Recognition and Its Applications. In D. Doermann and S. Jaeger (Eds.), Arabic and Chinese Handwriting Recognition, Volume 4768 of Lecture Notes in Computer Science, pp. 170-195. Berlin/Heidelberg, Germany: Springer.
- Nakai, M., H. Shimodaira, and S. Sagayama (2003). Generation of Hierarchical Dictionary for Stroke-Order Free Kanji Handwriting Recog-

- nition Based on Substroke HMM. In *Proc. Seventh Int'l Conf. Document Analysis and Recognition*, pp. 514--518.
- Nishida, H. (1995). An Approach to Integration of Off-Line and On-Line Recognition of Handwriting. *Pattern Recogn. Lett.* 16(11), 1213-1219.
- Plamondon, R. and S. N. Srihari (2000). On-line and off-line hand-writing recognition: A comprehensive survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence* 22(1), 63--84.
- Santosh, K. and C. Nattee (2009). A Comprehensive Survey on On-Line Handwriting Recognition Technology and its Real Application to the Nepalese Natural Handwriting. *Kathmandu University Journal* of Sience, Engineering and Technology 6(I), 30--54.
- Tappert, C. C., C. Y. Suen, and T. Wakahara (1990). The State of the Art in Online Handwriting Recognition. *IEEE Transactions on* Pattern Analysis and Machine Intelligence 12(8), 787--808.
- The Unicode Consortium (Ed.) (2000). The Unicode Standard. Version 3.0. Addison-Wesley.
- Woods, V., S. Hastings, P. Buckle, and R. Haslam (2002). Ergonomics of using a mouse or other non-keyboard input device, Chapter 3, pp. 23. Number 045 in HSE research report. London: Health and Safety Executive.
- Zanibbi, R., D. Blostein, and J. R. Cordy (2005). Recognition Tasks are Imitation Games. In S. Singh, M. Singh, C. Apte, and P. Perner (Eds.), *Pattern Recognition and Data Mining*, pp. 209--218.