Enunciado

La trayectoria de un objeto es $y(x)=2m\cdot sen(4\frac{1}{m}x+\pi)^{-1}$. Si la componente de la velocidad en el eje x es $V_x=2\pi t\frac{m}{s^2}$ y la posición inicial del objeto es $\overline{r_0}=\frac{3}{4}\pi m\hat{\iota}^2$:

Escribir la velocidad y aceleración en función del tiempo.

Resolución

Para escribir el vector velocidad faltaría determinar la componente de la velocidad en el eje y. Para eso tenemos que derivar la componente en el eje y de la posición.

¡Cuidado! $V_y = \frac{dy}{dt}$, pero en el ejercicio tenemos y(x) y la coordenada x depende del tiempo, x(t) ³

Así que en primer lugar hay que encontrar x(t) para luego reemplazarlo en y(x) y obtener y(t)

a) Calcular x(t)

Sabiendo que

$$\int_{x_0 = \frac{3}{4}\pi m}^{x(t)} dx = \int_0^t 2\pi t \frac{m}{s^2} dt$$
$$x(t) - \frac{3}{4}\pi m = \pi t^2 \frac{m}{s^2}$$
$$x(t) = \pi t^2 \frac{m}{s^2} + \frac{3}{4}\pi m$$

b) Expresar y(t), reemplazando x(t) en la ecuación de la trayectoria

$$y(x) = 2m \cdot sen(4\frac{1}{m}x + \pi)$$

$$y(t) = 2m \cdot sen(4\frac{1}{m}(\pi t^2 \frac{m}{s^2} + \frac{3}{4}\pi m) + \pi)$$

$$y(t) = 2m \cdot sen(4\pi t^2 \frac{1}{s^2} + 4\pi)$$
Se reemplaza x(t)

¹ Para que resulte más sencillo leer la resolución del ejercicio las unidades se escriben en texto color verde

² **IMORTANTE SOBRE LA NOTACIÓN:** se escribe V_x y no $\overline{V_x}$ porque hace referencia sólo a una de las componentes del vector (y la dirección x está indicado en el subíndice). Mientras que la posición inicial se escribe $\overline{r_0}$ porque además del módulo se está indicando el versor. Se podría haber escrito $x_0 = \frac{3}{4}\pi m$, sin "flechita" porque no se aclara el versor pero se entiende que es la componente x de la posición inicial.

³ También es posible calcular utilizando derivadas implícitas. Es decir, $V_y = \frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt} = \frac{dy}{dx} \cdot V_x$. Pueden hacerlo y ver que se obtiene el mismo resultado. Esto estaría bien. Lo que definitivamente estaría mal es hacer $\frac{dy}{dx}$

c) Calculamos la componente y de la velocidad derivando respecto del tiempo

$$V_{y} = \frac{dy}{dt} = \frac{d[2m \cdot sen(4\pi t^{2} \frac{1}{s^{2}} + 4\pi)]}{dt}$$

$$V_{y} = 2m \cdot cos(4\pi t^{2} \frac{1}{s^{2}} + 4\pi) \cdot 8\pi t \frac{1}{s^{2}}$$

$$V_{y} = 16\pi t \frac{m}{s^{2}} \cdot cos(4\pi t^{2} \frac{1}{s^{2}} + 4\pi)$$

Una vez que tenemos ambas componentes, podemos escribir el vector velocidad⁴

$$\bar{V}(t) = \left[2\pi t \frac{m}{s^2}\right]\hat{\imath} + \left[16\pi t \frac{m}{s^2} \cdot \cos\left(4\pi t^2 \frac{1}{s^2} + 4\pi\right)\right]\hat{\jmath}$$
 Respuesta

Si ya escribimos la velocidad en función del tiempo, derivando obtenemos la aceleración

$$\bar{a}(t) = \frac{d\bar{V}}{dt} = \frac{d\left[\left[2\pi t \frac{m}{s^2}\right]\hat{\imath} + \left[16\pi t \frac{m}{s^2} \cdot \cos\left(4\pi t^2 \frac{1}{s^2} + 4\pi\right)\right]\hat{\jmath}\right]}{dt}$$

$$\bar{a}(t) = \frac{d(2\pi t \frac{m}{s^2})}{dt}\hat{\imath} + \frac{d\left[16\pi t \frac{m}{s^2} \cos\left(4\pi t^2 \frac{1}{s^2} + 4\pi\right)\right]}{dt}\hat{\jmath}^5$$

$$\bar{a}(t) = \left[2\pi \frac{m}{s^2}\right]\hat{\imath} + \left[16\pi \frac{m}{s^2} \cdot \cos\left(4\pi t^2 \frac{1}{s^2} + 4\pi\right) - 16\pi t \frac{m}{s^2} \cdot \sin\left(4\pi t^2 \frac{1}{s^2} + 4\pi\right) 8\pi t \frac{1}{s^2}\right]\hat{\jmath}$$

$$\bar{a}(t) = \left[2\pi \frac{m}{s^2}\right]\hat{\imath} + \left[16\pi \frac{m}{s^2} \cdot \cos\left(4\pi t^2 \frac{1}{s^2} + 4\pi\right) - 128\pi^2 t^2 \frac{m}{s^4} \cdot \sin\left(4\pi t^2 \frac{1}{s^2} + 4\pi\right)\right]\hat{\jmath}$$
Respuesta

⁴ Si se pide determinar la velocidad, se entiende que es una magnitud vectorial y por lo tanto es necesario escribir la respuesta indicando los versores. No el módulo (si quisiéramos el módulo se pediría explícitamente el módulo de la velocidad o la rapidez)

⁵ Se puede calcular así o hacer la derivada de cada componente por separado, como se hizo al calcular la componente de la velocidad en el eje y

Para pensar

¿Qué procedimientos habría que hacer para expresar la velocidad y la aceleración en coordenadas intrínsecas? ⁶

Se puede calcular $a_t = \frac{d|\overline{v}|}{dt} = \frac{d(\sqrt{v_x^2 + v_y^2})}{dt}$ o bien $a_t = \frac{\overline{v} \cdot \overline{a}}{|\overline{v}|} = \frac{v_x a_x + v_y a_y}{\sqrt{v_x^2 + v_y^2}}$ (producto escalar).

Y se puede calcular $a_n = \frac{|\overline{v}x\overline{a}|}{|\overline{v}|} = \frac{|v_xa_y+v_xa_y|}{\sqrt{v_x^2+v_y^2}}$ (producto vectorial). Si bien es cierto que también $a_n = \frac{|\overline{v}|^2}{\rho}$, ρ es el radio de curvatura y ese dato en este caso no lo tenemos.

 $^{^{6}}$ **RESPUESTA**: En coordenadas intrínsecas $\bar{V}=|\bar{V}|\hat{t}=\sqrt{V_{x}^{2}+V_{y}^{2}}\hat{t}$, mientras que $\bar{a}=a_{t}\hat{t}+a_{n}\hat{n}$.