

华中科技大学软件学院 万琳

裁剪问题:

裁剪问题:

(a)裁剪前

(b)直接采用直线段 裁剪的结果 (c)正确的裁剪结果

裁剪算法: Sutherland-Hodgeman多边形裁剪

(a)左边界裁剪

输入: ABCEDFGH

输出: A12DEFGH

(b)下边界裁剪

输入: A12DEFGH

输出: A134D56FGH

裁剪算法: Sutherland-Hodgeman多边形裁剪

(c)右边界裁剪

输入: A134D56FGH 输出: A134D5678GH (d)上边界裁剪

输入: A134D5678GH 输出: K34D56789IHJ

裁剪算法: Sutherland-Hodgeman多边形裁剪

2 多

多边形的裁剪

逐边裁剪时遇到的四种情况:

Sutherland-Hodgeman算法的问题:

(a) 裁剪前

(b) 裁剪后

Sutherland-Hodgeman算法的问题:

解决方案:

◆方案1:将凹多边形分割成两个或更多的凸多边形,然后分别处理各个凸多边形。

◆方案2:修改Sutherland-Hodgeman算法,沿着任何一个裁剪窗口边界检查顶点表,正确地连接顶点对。

◆方案3:采用其他多边形裁剪方法,如Weiler-Atherton算法。

Weiler-Atherton算法:

假定按顺时针方向处理顶点,且将多边形定义为Ps,窗口矩形为Pw。 算法从Ps的任一点出发,跟踪检测Ps的每一条边

Weiler-Atherton算法步骤:

(1) 由不可见侧进入可见侧,则输出可见直线段,转(3);

例如:从B到C,输出可见直线段V₁C

Weiler-Atherton算法步骤:

- (1) 由不可见侧进入可见侧,则输出可见直线段,转(3);
- (2) **由可见侧进入不可见侧**,则从当前交点开始,沿窗口边界顺时针检测Pw的边,找到Ps与Pw最靠近当前交点的另一交点,输出可见直线段和由当前交点到另一交点之间窗口边界上的线段,然后返回处理的当前交点;

Weiler-Atherton算法步骤:

- (1) 由不可见侧进入可见侧,则输出可见直线段,转(3);
- (2) 由可见侧进入不可见侧,则从当前交点开始,沿窗口边界顺时针检测Pw的边,找到Ps与Pw最靠近当前交点的另一交点,输出可见直线段和由当前交点到另一交点之间窗口边界上的线段,然后返回处理的当前交点;
 - (3)沿着Ps处理各条边,直到处理完Ps的每一条边,回到起点为止。

Weiler-Atherton算法步骤:

3

三维空间中的裁剪

Cohen-Sutherland裁剪的推广

1001	1000	1010		
0001	000 <mark>0</mark> 窗口	0010		
0101	0100	0110		
$D_3D_2D_1D_0$				

三维空间中的裁剪

三维形体裁剪问题:

Sutherland-Hodgeman算法的推广

逐边裁剪

逐边裁剪多边形:

逐边裁剪多边形的每条边

输出: 顶点序列构成多边形

逐面裁剪

逐面逐个裁剪多个多边形: 逐面裁剪多边形的每条边

输出:顶点序列,构成多面体