ДОГОВОРОМ О ПАТЕНТНОЙ КООПЕРАЦИИ (РСТ)

(19) ВСЕМИРНАЯ ОРГАНИЗАЦИЯ ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ Международное бюро

(43) Дата международной публикации: 23 октября 2003 (23.10.2003)

(10) Номер международной публикации: WO.03/086857 A1

- (51) Международная патентная классификация 7: B64C 11/46, 27/08
- (21) Номер международной заявки:

PCT/RU03/00156

(22) Дата международной подачи:

14 апреля 2003 (14.04.2003)

(25) Язык подачи:

русский

(26) Язык публикаций:

русский

(30) Данные о приоритете:

2002109755 16 апреля 2002 (16.04.2002) RU

(71) Заявитель (для всех указанных государств, кроме (US): ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ «МИДЕРА-К» [RU/RU]; 123053 Москва, ул. Большая Грузинская, д. 60, стр. 1 (RU) [OBSCHESTVO S OGRANICHENNOI OTVETSTVENNOSTIJU «MIDERA-K», Moscow (RU)].

(72) Изобретатели; и

(75) Изобретатели/Заявители (только для (US): АКАРО Андрей Игоревич [RU/RU]; 105037 Москва, 1-я Прядильная ул., д. 7, кв. 43 (RU) [АКАRО, Andrey Igorevich, Moscow (RU)]. ДЕНИСОВ Анатолий Алексеевич [RU/RU]; 191002 Санкт-Петербург, ул. Рубинштейна, д. 36, кв. 49 (RU) [DENISOV, Anatoly Alekseevich, St.Petersburg (RU)]. ЗЕЛИНСКИЙ Анатолий Михайлович [RU/RU]; 197374 Санкт-Петербург, Приморский проспект, д. 155, кв. 35 (RU) [ZELINSKY, Anatoly Mikhailovich, St.Petersburg (RU)]. МЕДВЕДЕВ Михаил Михайлович

[RU/RU]: 140186 Московская обл., Жуковский, ул. Набережная Циолковского, д. 18, кв. 134 (RU) [MEDVEDEV, Mikhail Mikhailovich, Zhukovsky (RU)].

- (74) Агент: ЕФИМОВ Игорь Дмитриевич; 125364 Москва, проезд Черепановых, д. 36, кв. 8 (RU) [YEFIMOV, Igor Dmitrievich, Moscow (RU)].
- (81) Указанные государства (национально): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) Указанные государства (регионально): ARIPO патент (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), евразийский патент (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), европейский патент (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), патент OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Опубликована

С отчётом о международном поиске.

В отношении двухбуквенных кодов, кодов языков и других сокращений см. «Пояснения к кодам и сокращениям», публикуемые в начале каждого очередного выпуска Бюллетеня РСТ.

- (54) Title: AERODYNAMIC LIFTING-THRUSTING PROPULSION DEVICE
- (54) Название изобретения: СПОСОБ СОЗДАНИЯ ПОДЪЁМНОЙ СИЛЫ И ГОРИЗОНТАЛЬНОЙ ТЯГИ
- (57) Abstract: The inventive aerodynamic lifting-thrusting propulsion device comprises a frame (1) provided with an axis (2), said frame (1) being arranged with respect to the axis (2) in such a way that it is rotatable. At least two aerodynamic surfaces (3) are fixed to a fork joint in such a way that they oscillate synchronously with the rotation of the frame (1), the fork joint being fixed to a rod (5) which is arranged on said frame (1). The axis (2) is connected to each aerodynamic surface (3) by means of a mechanical transmission which enables the aerodynamic surface (3) to rotate synchronously and oppositely with respect to the rotation of the frame and the rod (5). The oscillation of the

aerodynamic surfaces (3) is carried out by a mechanical copying device. Each aerodynamic surface can rotate around the axes which are parallel to the axes of the spider of the fork joint and pass through the aerodynamic surface (3). The frame (1) and the aerodynamic surfaces (3) rotate around the axis (2) with the aid of a rotary actuator. Each aerodynamic surface (3) synchronously rotates, by means of the mechanical transmission, in a direction opposite the circular motion thereof at an angle velocity which is equal to the angle velocity of said circular motion, whereby producing the progressive motion of the aerodynamic surfaces and regularly distributing aerodynamic forces therethrough. Each aerodynamic surface (3), synchronously with the rotation thereof, oscillates with the aid of the mechanical copying device, thereby producing a horizontal thrust simultaneously with a lifting force.

WO 03/086857 A1