

Estudo de Caso: Topologias de Redes Paralelas entre Redes Redundantes de T.O. Implementadas com **Diferentes Protocolos**

Lucas Felipe Dias, Otávio de Souza M. Gomes, Luiz Lenarth Gabriel Vermaas

Universidade Federal de Itajubá/MG

MotivaçãoSistemas Elétricos de Potência

- Confiabilidade, alta disponibilidade e alto desempenho para controle, proteção e supervisão.
- Subestações (SE) são pontos de controle e transferência do fluxo energético.
- IEC 61850 definiu requisitos ainda mais rigorosos de desempenho, confiabilidade e disponibilidade das SCN e dos IEDs.

Motivação

A estrutura de proteção deve ser rápida, segura e confiável, com a digitalização das subestações a rede de TO e os sistemas de automação devem assim ser também confiáveis. seguros e ágeis, de acordo com as normas.

Identificação do Problema

Necessidade de se desenvolver uma rede de comunicação redundante, segura e de alta disponibilidade interligando duas subestações com LANs projetadas em conformidade com as recomendações de diferentes edições da IEC 61850.

Identificação do Problema

Identificação do Problema IEC 61850:

- Arquitetura de automação de subestações para interoperabilidade (digitalização) entre fabricantes;
- Os dispositivos (disjuntor, seccionadora, TP, TC) são modelados para serem processados pelos IEDs (Intelligent Electronic Devices);

Identificação do Problema

IEC 61850 - Protocolos:

- GOOSE: requisitos rígidos (4ms), somente com endereços MAC, comunicação horizontal (multicast);
- MMS (Manufacturing Message Specification): supervisão e controle
 (1-10 seg), TCP/IP, comunicação vertical (níveis 1 e 2);
- SV (Sample values): valores amostrados nas medições analógicas (merging unit), comunicação vertical.

Identificação do Problema

Modelo O.S.I.

Open System Interconnection

APLICAÇÃO

REDE

ENLACE DE DADOS

CAMADA FÍSICA

GOOSE

Generic Objects Oriented Substation Events

Eventos Genéricos de Subestações Orientados a Objetos

Protocolo apresentado pela IEC 61850

- Publicador/Assinante
- Mensagens rápidas e de Trip (1 e 1A)
- Requisitos rígidos (4ms)
- Somente com endereços MAC, sem IP
- CSMA/CD
- Redundância é opcional

Desafio

Modelo de Transmissão

Para mensagens do tipo 1 e 1A a norma padroniza o protocolo GOOSE e define os seguintes requisitos para serviço da camadas 2 (Enlace de Dados) do modelo OSI (*Open System Interconnection*):

- É mandatório o uso de tags prioritárias VLAN, para identificar e classificar a
- Prioridade das mensagens GOOSE;
- É obrigatório o Controle de Colisão de Acesso Múltiplo (CSMA/CD);
- É opcional a implementação de redundância de link, através dos protocolos PRP,
 RSTP e HSR (High-availability Seamless Redundancy).

Identificação do Problema

Modelo de Transmissão

TO é o tempo de retransmissão em condições estáveis;

(TO) é o tempo de retransmissão interrompido por evento;

T1 é o tempo de retransmissão após o evento;

T2, T3 são os tempos de retransmissão até atingir o tempo de condições estáveis.

DESAFIO

Integração das Redes

DESAFIO

Uma aplicação contendo duas redes de comunicação de subestações, em acordo com diferentes versões da IEC 61850. Uma delas utiliza o protocolo **RSTP** para gerenciamento de uma rede de cura e seus loops, e outra possui o protocolo **PRP** com redes paralelas.

Arquitetura de rede RSTP proposta

```
330
     12/07/2023
                 03:25:21.943
                                VB012
                                                            Deasserted
                 03.25.21 951
329
     12/07/2023
                                LT02
                                                            Asserted
328
    12/07/2023
                03:25:21.960
                                PortA RSTP Role Disabled
327
    12/07/2023
                                PortA RSTP State Discarding
                 03:25:21.961
326
    12/07/2023
                 03:25:22.001
                                PortB RSTP Role Rootport
    12/07/2023 03.25.22 002
325
                                PortB RSTP State Learning
324
    12/07/2023
                03:25:22.022
                                PortB RSTP State Forwarding
    12/07/2023
323
                                VB012
                                                            Asserted
                 03:23:22.983
322
    12/07/2023
                 03:25:22.993
                                LT02
                                                            Deasserted
```


- Fragilidades de segurança;
- O RSTP não pode ser usado na rede integradora, pois as redes são independentes/ paralelas;
- QoS: Out Of Sequence;

Avaliação (1^a) Out Of Sequence

GOOSE Transmit	Status				
MultiCastAddr	Ptag:Vlan AppID	StNum	SqNum	TTL	Code
01-0C-CD-01-00	LLN0\$G0\$PP_Resp_G0 -05 4:5 5 710_PRPCFG/LLN0\$DT	2	10066	936	
GOOSE Receive S	tatus				
MultiCastAddr	Ptag:Vlan AppID	StNum	SqNum	TTL	Code
01-0C-CD-01-00	/LLN0\$G0\$G00SE_MGS -01 4:1 1 710_RSTPCFG/LLN0\$D	1	10146 st	2000	OUT OF SEQUENC
01-0C-CD-01-00	G/LLN0\$GO\$MSG_GOOS -02 4:2 2 700G_RSTPCFG/LLN0\$	ī	10137 Test	2000	OUT OF SEQUENC
01-0C-CD-01-00	/LLN0\$G0\$MSG_G00SE -03 4:3 3 787_RSTPCFG/LLN0\$G	2	10071 e	2000	OUT OF SEQUENC
01-0C-CD-01-00	LLN0\$G0\$PP_G00SEMe -04 4:4	2	10066 itais	2000	
IEC 61850 Mode/ IEC 61850 Simul	Behavior On ation Mode Off				

- Controle dos fluxos por restrição de tráfego;
- Segurança melhorada Denied
 By Default;
- Controle centralizado em cada SE, ou em apenas uma delas.

Topologia 2

Topologia 2

Dispositivo	IP/Mask			
REDE T.O. (SDN)				
SDN_1	10.10.10.242/28			
SDN_2	10.10.10.243/28			
SDN_3	10.10.10.244/28			
SDN_4	10.10.10.245/28			
Controlador	10.10.10.246/28			
REDE RSTP				
SEL-710_1	10.10.10.247/28			
SEL-700G	10.10.10.248/28			
SEL-787_1	10.10.10.249/28			
REDE PRP				
SEL-787_2	10.10.10.250/28			
SEL-710_2	10.10.10.251/28			
SWITCH				
SEL-2730M_1	10.10.10.252/28			
SEL-2730M_2	10.10.10.253/28			
GPS				
SEL-2488	10.10.10.254/28			

Avaliação(2ª)

Controlador SDN: Links Físicos e Fluxos do GOOSE

Objeto	Restrição	
EtherType	GOOSE	
MAC de destino	01-0C-CD-01-00-05	
VLAN	0x005	
Porta/Grupo de ingresso	C1	
Porta/Grupo de egresso	Failover: C2 D1	

Tabela 1: Regras e restrições de fluxo aplicadas a uma das portas do SDN A1

Avaliação (2^a)

Avaliação Geral

Rede	Δt Máximo	Δt Médio
PRP	4,5	4,168
RSTP	4,5	4,168
Recomp. PRP	6,5	5,210
Recomp. RSTP	517	5,906

Tabela 2: Dados experimentais referentes ao desempenho das mensagens GOOSE nas redes vazias - tempo em milisegundos

Avaliação Geral

Rede	Δt Máximo	Δt Médio
PRP - RSTP	6,5	4,17844
RSTP - PRP	$4,\!5$	$4,\!16793$

Tabela 4: LAN integradora sem adição de tráfego - tempo em mili-segundos

Rede	Δt Máximo	Δt Médio
PRP - RSTP	10,5	4,75429
RSTP - PRP	10,5	5,26044

Tabela 5: LAN integradora com adição de tráfego - tempo em mili-segundos

Considerações finais

- A topologia não é aplicável com a tecnologia disponível para o estudo;
- •O desempenho não deve ser considerado sem a qualidade das mensagens;
- No caso estudado, o mais adequado é que todos os IEDs tenham PRP.

Considerações finais

 A proposição ideal de aplicação do PRP em todos os dispositivos finais (adequação), juntamente com o uso de switches SDN como porta de entrada de cada LAN, se apresenta como a solução mais adequada para atuais projetos de engenharia de redes de comunicação em um SAS.

Trabalhos futuros

Analisar o uso de **RedBox** para tratar redundâncias do PRP na rede RSTP, por exemplo, e com tráfegos de igual ou maior prioridade, como o SV (Sampled Values), concorrendo com o GOOSE na rede.

Obrigado!

Lucas Felipe Dias

lucasfelipedias25@unifei.edu.br

Otávio de Souza M. Gomes

otavio.gomes@unifei.edu.br

Luiz Lenarth Gabriel Vermaas

lenarth@unifei.edu.br

