(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-210933 (P2001-210933A)

(43)公開日 平成13年8月3日(2001.8.3)

(51) Int.Cl. ⁷		識別記号	FI	F I デーマコート*(参				
H05K	3/20		H05K 3	/20	Α	5E051		
H01B	5/14		H01B 5	6/14	В	5E077		
11015	5/16		5	5/16		5 E 3 4 3		
	13/00	503	13	3/00	503D	5 G 3 O 7		
HOIR	12/08		H01R 11	/01	5012	5 G 3 2 3		
HUIK	12/00	審査請才			. (全 11 頁	() 最終頁に続く		
(21) 出願番号		特顧2000-243950(P2000-243950)	(71)出願人	(71)出願人 000231073 日本航空電子工業株式会社				
(22)出顧日		平成12年8月11日(2000.8.11)	東京都渋谷区道玄坂 1 丁目21番 2 号 (72)発明者 小口 慎雄					
(31) 優先権主張番号 (32) 優先日		特願平11-328234 平成11年11月18日(1999.11.18)		東京都渋谷区道玄坂1丁目21番2号 日本 航空電子工業株式会社内				
(33)優先権主張国		日本(JP)	(72)発明者	田井 宮茂 東京都渋谷 航空電子工		「目21番2号 日本 写		
			(74)代理人	100066153 弁理士 草	野阜(タ	(1名)		

最終頁に続く

(54) [発明の名称] 導体パターンの形成方法及びその形成方法を用いて製造される配線部材、コネクタ、フレキシブルプリント配線板、異方導電性部材

(57)【要約】

【課題】 粘着剤や接着剤上への導体パターンの形成を 簡易に行えるようにし、その粘着剤や接着剤を機械的結 合手段として各種用途に利用できるようにする。

【解決手段】 形成すべき導体パターンと対応する凸部 12を有する金型 11上に金属薄膜 15を形成し、一面に粘着剤 (接着剤) 16を備えた基材 17の一面側を凸部 12上の金属薄膜 15に密着させた後、引き上げることにより、凸部 12上の金属薄膜 15を粘着材 16上に転写して粘着剤 16上に導体パターン 18を形成する。

【特許請求の範囲】

【請求項1】 形成すべき導体パターンと対応する凸部 を有する金型上に金属薄膜を形成し、

一面に粘着剤もしくは接着剤を備えた基材の上記一面側を上記凸部上の金属薄膜に密着させた後、引き上げることにより、上記凸部上の金属薄膜を上記粘着剤もしくは接着剤上に転写して、上記粘着剤もしくは接着剤上に導体パターンを形成することを特徴とする導体パターンの形成方法。

【請求項2】 請求項1記載の導体パターンの形成方法において、

上記金属薄膜を上記金型に対し、付着力の弱い下地層を 含む複数層構造とすることを特徴とする導体パターンの 形成方法。

【請求項3】 一面に粘着剤もしくは接着剤を備えた基材と、

形成すべき導体パターンと対応する凸部を有する金型上に金属薄膜を形成し、上記基材の上記一面側をその凸部上の金属薄膜に密着させた後、引き上げることにより、凸部上の金属薄膜が上記粘着剤もしくは接着剤上に転写されて形成された導体パターンとよりなることを特徴とする配線部材。

【請求項4】 配線基板同士を接続するコネクタであっau

基材の一面上に配された粘着剤上に複数の導体パターン が配列形成されてなる配線部材よりなり、

上記導体パターンはその配列と対応する凸部を有する金型上に金属薄膜を形成し、上記基材の上記一面側をその凸部上の金属薄膜に密着させた後、引き上げることにより、凸部上の金属薄膜が上記粘着剤上に転写されて形成されたものとされ、

上記各導体パターンがそれぞれ上記両配線基板の接続すべき配線と対接されて、それら配線が接続されると共に、上記粘着剤の露出部が上記両配線基板の基板面とそれぞれ粘着して機械的結合が行われる構造とされていることを特徴とするコネクタ。

【請求項5】 請求項4記載のコネクタにおいて、

上記導体パターンの配列方向を折れ線として、上記配線 部材が上記導体パターン形成面を外側にして折り曲げら れていることを特徴とするコネクタ。

【請求項6】 請求項5記載のコネクタにおいて、 上記折り曲げは180#曲げとされて、その内側に保持 部材が挟み込まれ、

その保持部材に上記配線部材が固定されていることを特 徴とするコネクタ。

【請求項7】 板面が互いに対向する配線基板同士を接続するコネクタであって、

基材の一面上に配された粘着剤上に複数の導体パターン が配列形成されてなる一対の配線部材が互いの一半部の 導体パターンがそれぞれ対接されて接合され、かつ各他 半部の基材の他面側にそれぞれスペーサが取り付けられてなり、

上記導体パターンはその配列と対応する凸部を有する金型上に金属薄膜を形成し、上記基材の上記一面側をその凸部上の金属薄膜に密着させた後、引き上げることにより、凸部上の金属薄膜が上記粘着剤上に転写されて形成されたものとされ、

上記両スペーサがそれぞれ上記配線基板の板面によって 押圧されることにより、上記各配線部材の他半部の各導体パターンがそれぞれ上記両配線基板の接続すべき配線 と対接されて、それら配線が接続されると共に、上記各 他半部の粘着剤の露出部が上記両配線基板の基板面とそれぞれ粘着して機械的結合が行われる構造とされている ことを特徴とするコネクタ。

【請求項8】 一面に粘着剤もしくは接着剤を備えた基 材と

形成すべき導体パターンと対応する凸部を有する金型上に金属薄膜を形成し、上記基材の上記一面側をその凸部上の金属薄膜に密着させた後、引き上げることにより、 凸部上の金属薄膜が上記粘着剤もしくは接着剤上に転写されて形成された導体パターンと、

その導体パターン形成面に被され、上記粘着剤もしくは 接着剤によって接合されたカパー材とよりなることを特 徴とするフレキシブルプリント配線板。

【請求項9】 所定のピッチで互いに平行に配列形成された多数の凸条を有する金型上に金属薄膜を形成し、シート状をなす粘着剤をそれら凸条上の金属薄膜に密着させた後、引き上げることにより、それら凸条上の金属薄膜を粘着剤上に転写して、粘着剤上に導体パターンが配列形成された素材を構成し、

その素材が上記導体パターンの延伸方向と直交する方向 に切断されてなる短冊片が複数枚積層され、

その積層された短冊片が積層方向に加圧され、相互に貼 り合わされて一体化されてなることを特徴とする異方導 電性部材。

【請求項10】 表面に格子状をなすように形成された 多数の溝と、それら溝で囲まれた各方形部上にそれぞれ 突出する多数の凸部とを有する金型の表面に金属薄膜を 形成し、

一面に剥離シートを備えた粘着剤の他面から上記凸部を 圧入・貫通させて上記剥離シートに突き当て、上記凸部 の側面及び上記方形部上の金属薄膜を上記粘着剤に密着 させて上記金型から剥離した後、上記剥離シートを除去 することにより、上記粘着剤に貫通保持された多数の導 体パターンを形成することを特徴とする導体パターンの 形成方法。

【請求項11】 表面に格子状をなすように形成された 多数の溝と、それら溝で囲まれた各方形部上にそれぞれ 突出する多数の凸部とを有する金型の表面に金属薄膜を 形成し、 一面に剥離シートを備えた粘着剤の他面から上記凸部を 圧入・貫通させて上記剥離シートに突き当て、上記凸部 の側面及び上記方形部上の金属薄膜を上記粘着剤に密着 させて上記金型から剥離した後、上記剥離シートを除去 することにより、上記粘着剤に多数の導体パターンを貫 通形成したことを特徴とする異方導電性部材。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は導体パターンの形成方法及びその形成方法を用いて製造される配線部材、 コネクタ、フレキシブルプリント配線板、異方導電性部 材に関する。

[0002]

【従来の技術】例えば配線基板同士を電気的に接続するコネクタにおいては、電気的接続を担う部材と共に、その接続状態を維持すべくコネクタと配線基板とを機械的に固定するための機構・部材を一般に必要とし、このような機械的結合手段を具備する構造とされた従来のコネクタは、その分、構造が複雑となり、また小型・薄型化を図りづらいものとなっていた。

【0003】一方、例えばフレキシブルプリント配線板 (FPC) の製造を例にあげれば、基材 (ベースフィルム)上に所要の導体パターンを形成した後、その導体パターンを保護・絶縁すべく、カバー材 (カバーフィルム)を被せるものとなっており、従来においてはカバー材を接合するために、それ専用の接着剤を必要とし、その接着剤を塗布するといった工程を必要とするものとなっていた。

[0004]

【発明が解決しようとする課題】この発明は金型上に金属薄膜を形成し、その金属薄膜を界面剥離させて、粘着 削や接着剤上に転写することにより、粘着剤や接着剤上に転写することにより、粘着剤をごからないはできる方法を採用し、例えばその粘着剤をコネクタにおける機械的結合手段として配線板で増加した配線を開びできるようにし、あるいはフレキシブルント配線板で使用できる。つまりにし、よクタの構造の簡易化、小型・薄型化を可能としなうにその形成プリント配線板の製造の簡易化を可能とする導体パポポリント配線板の製造のであり、さらにその形成プリント配線板、異方導電性部材を提供するものである。【0005】

【課題を解決するための手段】請求項1の発明によれば、形成すべき導体パターンと対応する凸部を有する金型上に金属薄膜を形成し、一面に粘着剤もしくは接着剤を備えた基材の上記一面側を上記凸部上の金属薄膜に密着させた後、引き上げることにより、上記凸部上の金属薄膜を上記粘着剤もしくは接着剤上に転写して、上記粘着剤もしくは接着剤上に導体パターンが形成される。

【0006】請求項2の発明では、請求項1の発明において、上記金属薄膜が上記金型に対し、付着力の弱い下地層を含む複数層構造とされる。請求項3の発明によれば、配線部材は一面に粘着剤もしくは接着剤を備えた基材と、形成すべき導体パターンと対応する凸部を有する金型上に金属薄膜を形成し、上記基材の上記一面側をその凸部上の金属薄膜に密着させた後、引き上げることにより、凸部上の金属薄膜が上記粘着剤もしくは接着剤上に転写されて形成された導体パターンとよりなるものとされる。

【〇〇〇7】請求項4の発明によれば、配線基板同士を接続するコネクタは、基材の一面上に配された粘着剤上に複数の導体パターンが配列形成されてなる配線部材よりなり、上記導体パターンはその配列と対応する凸部を有する金型上に金属薄膜を形成し、上記基材の上記一面側をその凸部上の金属薄膜に密着させた後、引き上げることにより、凸部上の金属薄膜が上記粘着剤上に転写されて形成されたものとされ、上記各導体パターンがそれぞれ上記両配線基板の接続すべき配線と対接されて、それら配線が接続されると共に、上記粘着剤の露出部が上記両配線基板の基板面とそれぞれ粘着して機械的結合が行われる構造とされる。

【0008】請求項5の発明では請求項4の発明において、上記導体パターンの配列方向を折れ線として、上記配線部材が上記導体パターン形成面を外側にして折り曲げられているものとされる。請求項6の発明では請求項5の発明において、上記折り曲げは180#曲げとされて、その内側に保持部材が挟み込まれ、その保持部材に上記配線部材が固定されているものとされる。

【〇〇〇9】請求項7の発明によれば、板面が互いに対 向する配線基板同士を接続するコネクタは、基材の一面 上に配された粘着剤上に複数の導体パターンが配列形成 されてなる一対の配線部材が互いの一半部の導体パター ンがそれぞれ対接されて接合され、かつ各他半部の基材 の他面側にそれぞれスペーサが取り付けられてなり、上 記導体パターンはその配列と対応する凸部を有する金型 上に金属薄膜を形成し、上記基材の上記一面側をその凸 部上の金属薄膜に密着させた後、引き上げることによ り、凸部上の金属薄膜が上記粘着剤上に転写されて形成 されたものとされ、上記両スペーサがそれぞれ上記配線 基板の板面によって押圧されることにより、上記各配線 部材の他半部の各導体パターンがそれぞれ上記両配線基 板の接続すべき配線と対接されて、それら配線が接続さ れると共に、上記各他半部の粘着剤の露出部が上記両配 線基板の基板面とそれぞれ粘着して機械的結合が行われ る様浩とされる。

【0010】請求項8の発明によれば、フレキシブルプリント配線板は一面に粘着剤もしくは接着剤を備えた基材と、形成すべき導体パターンと対応する凸部を有する金型上に金属薄膜を形成し、上記基材の上記一面側をそ

の凸部上の金属薄膜に密着させた後、引き上げることにより、凸部上の金属薄膜が上記粘着剤もしくは接着剤上に転写されて形成された導体パターンと、その導体パターン形成面に被され、上記粘着剤もしくは接着剤によって接合されたカバー材とよりなるものとされる。

【〇〇11】請求項9の発明によれば、異方導電性部材は所定のピッチで互いに平行に配列形成された多数の凸条を有する金型上に金属薄膜を形成し、シート状をなす粘着剤をそれら凸条上の金属薄膜に密着させた後、引き上げることにより、それら凸条上の金属薄膜を粘着剤上に転写して、粘着剤上に導体パターンが配列形成された素材を構成し、その素材が上記導体パターンの延伸方向と直交する方向に切断されてなる短冊片が複数枚積層され、その積層された短冊片が積層方向に加圧され、相互に貼り合わされて一体化されてなるものとされる。

【0012】請求項10の発明によれば、表面に格子状をなすように形成された多数の溝と、それら溝で囲まれた各方形部上にそれぞれ突出する多数の凸部とを有する金型の表面に金属薄膜を形成し、一面に剥離シートを備えた粘着剤の他面から上記凸部を圧入・貫通させて上記剥離シートに突き当て、上記凸部の側面及び上記方形部上の金属薄膜を上記粘着剤に密着させて上記金型から剥離した後、上記剥離シートを除去することにより、上記粘着剤に貫通保持された多数の導体パターンが形成される。

【〇〇13】請求項11の発明によれば、異方導電性部材は表面に格子状をなすように形成された多数の溝と、それら溝で囲まれた各方形部上にそれぞれ突出する多数の凸部とを有する金型の表面に金属薄膜を形成し、一面に剥離シートを備えた粘着剤の他面から上記凸部を圧入・貫通させて上記剥離シートに突き当て、上記凸部の側面及び上記方形部上の金属薄膜を上記粘着剤に密着させて上記金型から剥離した後、上記剥離シートを除去することにより、上記粘着剤に多数の導体パターンが貫通形成されて構成される。

[0014]

【発明の実施の形態】この発明の実施の形態を図面を参照して実施例により説明する。図1はこの発明による導体パターンの形成方法の一実施例を工程順に示したものであり、以下各工程について説明する。

(1) 金型11を用意する。金型11はその表面に形成すべき導体パターンと対応する凸部12を有するものとされ、この例では凸部12は図2に示したように凸条とされて所定のピッチで複数本配列されて形成されている。

【0015】(2)金型11上に、まず金型11に対し付着力(密着力)の弱い金属膜を蒸着やスパッタによって成膜し、下地層13を形成する。

(3)下地層13上に導体パターンを構成するための主 導体層14を所要の厚さ成膜する。成膜は蒸着やスパッ タによって行われ、これにより下地層13と主導体層14との2層構造よりなる金属薄膜15が金型11上に構成される。

(4) 一面に粘着剤16を備えた基材17を用意し、この基材17の一面側を金型11側にし、その粘着剤16 を凸部12上の金属薄膜15に密着させる。

【0016】(5)基材17と共に粘着剤16を引き上げ、金型11から剥がす。粘着剤16に粘着されている 凸部12上の金属薄膜15は金型11との界面で金型1 1から剥離する。

(6) 凸部12上の金属薄膜15は粘着剤16上に粘着 転写され、これにより粘着剤16上に導体パターン18 が形成されてなる配線部材19が完成する。図3はこの 配線部材19の全体形状を示したものである。

【0017】上述した導体パターンの形成方法において、下地層13の構成材料には密着性の悪い金や錫などが用いられ、また主導体層14の構成材料にはニッケルや銅が用いられる。これらニッケルや銅で主導体層14を形成することにより、所要の機械的強度を有する導体がはガラス、シリコン、ステンレスあるいはフッ素樹脂といった各種材料を用いることができる。金型11を例えばフッ素樹脂製とした場合には金属膜の密着性はることができることから、金や錫の下地層13を設けることなく、直接ニッケルや銅の主導体層14を形成することができ、この主導体層14を容易に界面剥離させることができるものとなる。

【0018】なお、金型11をガラスやシリコンあるいはステンレス製とした場合も、例えばその表面をフッ化処理することにより、同様に下地層13をなしとすることができる。一方、金型11の凸部12の形成は、この例のように凸部12が凸条をなす場合、例えばダイシングソー等で表面に溝入れ加工を行うことによって下定のピッチで配列された凸部12を簡易に形成することができる。なお、凸部12の形状・寸法に応じてエッチングを加工を用いてもよく、例えば形成する導体パターン18が微細で配列ピッチが狭ピッチの場合には金型11をシリコン製とし、ドライエッチングで凸部12を形成するといった方法が採用される。

【0019】基材17には例えばポリイミド等のフレキシブルな基材あるいはガラスエポキシ樹脂等のリジッドな基材のいずれも用いることができ、配線部材19の使用形態に応じて適宜選定される。粘着剤16はシリコン系、アクリル系、ゴム系等各種粘着剤を用いることができる。なお、基材17の一面上に、この例では粘着力を維持する粘着剤16が配設されているが、粘着剤16の替りに所定の時間経過により硬化する接着剤を用いることもできる。

【〇〇2〇】また、例えば用途によっては主導体層14 を金で形成してもよく、この場合には金属薄膜15は金 の一層膜となる。さらに、導体パターン18としての対 称性及びニッケルや銅よりなる主導体層14の酸化防止 のために、主導体層14の上にさらに下地層13と同じ 金薄膜を形成してもよく、この場合には金属薄膜15は 金ノニッケル/金の3層構造となる。図4は上述したよ うな導体パターンの形成方法(以下、この欄において転 写法と言う。)を用いて製造した配線部材をコネクタと して使用する場合を示したものであり、図4Aに示した ように、このコネクタ21は基材17の一面上に配され た粘着剤16上に複数の導体パターン18が互いに平行 に所定のピッチで配列されて形成されたものとされる。 【0021】このコネクタ21は、図4日に示したよう に配線基板22同士を接続する場合等に使用され、各導 体パターン18を両配線基板22の接続すべき配線23 とそれぞれ対向させ、図4Cに示したように圧接させる ことにより、それら配線基板22の配線23が互いに接 続されると共に、コネクタ21の導体パターン18間に 露出している粘着剤16が両配線基板22の基板面とそ れぞれ粘着して機械的結合が行われるものとなってい る。

【0022】粘着剤16は押圧により弾性変形して配線基板22の基板面と粘着し、その弾性復元力が導体パターン18と配線23とを圧接させる方向の荷重として寄与するため、導体パターン18と配線23との良好な接続状態を得ることができる。このコネクタ21によれば、両配線基板22に対し、コネクタ21を機械的に固定するための専用の部材(部品)を必要とせず、つまり、粘着転写による導体パターン18形成用の粘着剤16をその機械的固定にも使用するものとなっているため、構造が簡易で極めて薄型に構成することができる。なお使用、取り付け・取り外し)も可能であり、あるいは永久接続とすることも可能である。

【0023】図5はコネクタの他の例を示したものであり、この例では転写法によって複数の導体パターン18が配列形成された配線部材19が図5Aに示したように導体パターン18の配列方向を折れ線とし、導体パターン18の形成面を外側にして、180°折り曲げられたものとされ、さらにその内側に保持部材24が挟み込まれてコネクタ25が構成されたものとされる。この例では基材17は容易に折り曲げることができる例えばポリイミド等よりなるフィルム状のものとされ、その一面に粘着剤16が配設されて導体パターン18が配列形成されたものとされる。

【0024】配線部材19の折り曲げ状態は保持部材24によって保持されており、折り曲げられた配線部材19の互いに対向する内側面はこの保持部材24に例えば接着固定されている。薄板状をなす保持部材24はガラス板やエポキシ樹脂等の樹脂板によって構成される。なお、ゴム等の弾性体を用いることも可能である。このコ

ネクタ25は図5日に示したように、接続すべき配線基板22間に挟み込まれて使用され、即ち板面が互いに対向する配線基板22同士を接続できるものとなっている。

【0025】接続は導体パターン18を両配線基板22の接続すべき配線23に対向させた状態で、両配線基板22によってコネクタ25を挟み込み、押圧することによって行われ、これにより図4に示したコネクタ21と同様に電気的接続と機械的接続とが行われる。図6は板面が互いに対向する配線基板同士を接続するコネクタの他の例を示したものである。この例では転写法によりのの場がパターン18が配列形成されてなる一対の配線部材19が図6Aに示したように、互いの一半部の配線部材19が図6Aに示したように、互いの一半部の配線の指令ーン18がそれぞれ対接されて、その粘着剤16同士の粘着により接合され、さらに各他半部の基材17の導体パターン18形成側と反対側にそれぞれスペーサ26が取り付けられたものとされる。

【0026】各配線部材19の基材17は図6Aに示すような曲げ加工を行える材料が選定される。スペーサ26は例えばゴム等の弾性材によって構成される。なお、ガラス板等を用いることも可能である。このコネクタ27は図5に示したコネクタ25と同様、図6日に示したコネクタ25と同様、図6日に示したコネクタ25と同様、図6日に示したコネクタ25と同様、図6日に決み込まれて使用され、配線をおり、配線基板22間に挟み込まれて使用され、配線をセポージを配線基板22の板面によって押圧されて導体パターンもおいとなって接続すべき配線23とが圧接され、これにより図6Cに、粘着削16が配線基板22の基板面と粘着して機械的結合が行われるものとなっている。

【0027】図7は転写法により導体パターン18を形成した配線部材19を用いてフレキシブルプリント配線板を構成する例を示したものであり、配線部材19の導体パターン形成面にカバー材28を被せることによりフレキシブルプリント配線板29が形成される。カバー材28は粘着剤16によって接合され、即ちこの例では導体パターン18上にカバー材28を貼り付けるための接着剤を新たに塗布することなく、カバー材28を接合することができる。

【0028】基材17及びカバー材28は例えばポリイミドフィルムによって構成される。なお、この例では図に示したように端部にカバー材28を被せず、つまり導体パターン18及び粘着剤16を露出させており、前述したコネクタと同様、この端部において簡易に電気的接続と機械的接続とを行えるものとなっている。一方、このような粘着剤16の粘着による接続を要しない場合には粘着剤16に替えて接着剤を用いてもよい。

【0029】図8は転写法により導体パターンが形成される粘着材が基材を具備しないものとし、つまり単に粘

着剤上に導体パターンが配列形成された素材を用いて異 方導電性部材を形成する例を示したものであり、この例 では図8Aに示したようにシート状をなす粘着剤16上 に導体パターン18が所定のピッチで互いに平行に配列 形成されて素材31が構成され、この素材31が図8A 中、破線で示した位置で、つまり導体パターン18の延 伸方向と直交する方向に切断されて複数枚の短冊片32 が形成される。

【0030】シート状をなす粘着剤16は例えばガラス 繊維等の繊維を所要量含有するものとされる。短冊片3 2は図8日に示したように互いに積層され、この積層された短冊片32がその積層方向に加圧されて相互に貼り 合わされることにより、図8Cに示したように複数の短 冊片32の粘着剤16が導体パターン18を含んで一体 化され、これにより異方導電性部材33が構成される。

【0031】この異方導電性部材33によれば配列保持された多数の導体パターン18によって異方導電性を有するものとなっており、例えば接続すべき電極間に挟み込むことにより、それら電極を導通させることができると共に、粘着剤16の粘着によって機械的結合も行えるものとなる。次に、この発明による導体パターンの形成方法(転写法)の他の形態として異方導電性部材を形成することができる方法について説明する。

【0032】図9は異方導電性部材を形成するための導体パターンの形成方法を工程順に示したものであり、以下各工程について説明する。

(1) 金型34を用意する。この例では金型34は図1 0に示すような表面形状を有するものとされ、即ち格子 状をなすように形成された多数の溝35と、それら溝3 5で囲まれた各方形部36上にそれぞれ突出する多数の 凸部37とを有するものとされる。

【0033】(2)金型34の表面に金属薄膜15を形成する。図においては簡略化し、金属薄膜15を一層膜として示しているが、図1における金属薄膜15と同様に、下地層と主導体層とよりなるものとされる。なお、金属薄膜15はこの例では図に示したように、水平部のみならず、垂直部にも成膜されるようにする。金属薄膜15及び金型34の構成材料は図1において示した材料と同様の材料が選定される。

【0034】(3)剥離シート(セパレータ)38を一面に備えた粘着剤16を用意し、この粘着剤16の他面を金型34に対向させ、金型34の凸部37を粘着剤16の層に圧入し、貫通させて、その先端を剥離シート38に突き当てる。これにより、凸部37の側面及び方形部36上の金属薄膜15は粘着剤16に密着される。

(4) 剥離シート38と共に粘着剤16を引き上げる と、粘着剤16に粘着されている凸部37の側面(上面 も含む)及び方形部36上の金属薄膜15は金型34と の界面で金型34から剥離する。

【0035】(5)剥離シート38を除去することによ

り、金属薄膜 15 が粘着転写されてなる多数の導体パターン39 が粘着剤 16 に貫通保持された異方導電性部材41 が完成する。なお、粘着剤 16 は図8 における粘着剤 16 と同様にガラス繊維等の繊維を含有するものとされる。

図11は上記のようにして形成された異方導電性部材4 1の構成を示したものであり、貫通導体をなす多数の導体パターン39が粘着剤16に格子状に配列保持された ものとなっている。

【0036】この異方導電性部材41も図8に示した異方導電性部材33と同様に、粘着剤16が粘着することにより電気的接続と機械的接続とが簡易かつ良好に行われるものとなっている。

[0037]

【発明の効果】以上説明したように、この発明によれば 金型上に成膜形成した金属薄膜を界面剥離して転写する という方法を採用したことにより、従来困難であった粘 着剤や接着剤上への導体パターンの形成を簡易に行うことができるものとなっている。なお、粘着剤や接着剤上への導体パターンの形成において、粘着剤や接着剤は特に制約を受けず、また例えば高温にさらされたり、あるいは薬品にさらされるといったこともないため、必要に応じてその種類を適宜選定することができる。

【0038】この方法では金型を一度作製すれば、その金型の形状に対応した導体パターンを繰り返し精度良く形成することができ、また金型上に形成する金属薄膜は、その成膜を制御することにより極めて薄くすることも容易であり、よって極めて薄い導体パターンであっても良好に形成することができる。この導体パターンの形成方法を使用してコネクタを製造し、導体パターン下の粘着剤を例えば相手方配線基板との機械的結合手段に用いるようにすれば、極めて簡易な構造で、かつ小型・薄型なコネクタが得られるものとなる。

【0039】また、この導体パターンの形成方法を使用してフレキシブルプリント配線板を製造すれば、カバー材を従来のように接着剤を塗布することなく、直接接合することができ、また粘着剤を使用して接続すべき相手方配線部材との接続を簡易に行うことも可能となる。なお、金型上に形成した金属薄膜をシート状をなす粘着剤の層に貫通させて粘着転写するといった方法を採用することにより、粘着剤に多数の貫通導体が保持されてなる異方導電性部材を製造することも容易に行えるものとなる。

【図面の簡単な説明】

【図1】請求項1の発明による導体パターンの形成方法 の一実施例を説明するための工程図。

【図2】図1における金型の斜視図。

【図3】図1における配線部材の斜視図。

【図4】Aは請求項4の発明によるコネクタの一実施例 を示す斜視図、B及びCはそのコネクタによって配線基 板同士が接続される様子を示す斜視図。

【図5】Aは請求項5の発明によるコネクタの一実施例 を説明するための斜視図、Bはそのコネクタによって配 線基板同士が接続された状態を示す側面図。

【図6】Aは請求項7の発明によるコネクタの一実施例を示す斜視図、B及びCはそのコネクタによって配線基板同士が接続される様子を示す側面図。

【図7】請求項8の発明によるフレキシブルプリント配 線板の一実施例を説明するための斜視図。

【図1】

[図3]

【図8】請求項9の発明による異方導電性部材の一実施例を説明するための斜視図、Aは素材を示し、Bは素材が切断されてなる短冊片が積層された状態を示し、Cは完成状態を示す。

【図9】請求項10の発明による導体パターンの形成方法の一実施例を説明するための工程図。

【図10】図9における金型の一部を示す斜視図。

【図11】請求項11の発明による異方導電性部材の一 実施例を説明するための斜視図。

【図2】

₩2

図5

16

28

図7

図10

【手続補正書】

【提出日】平成12年8月18日(2000.8.1

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】請求項6

【補正方法】変更

【補正内容】

【請求項6】 請求項5記載のコネクタにおいて、

上記折り曲げは180<u></u>曲げとされて、その内側に保持部材が挟み込まれ、

その保持部材に上記配線部材が固定されていることを特 徴とするコネクタ。 【手続補正2】

図9

【補正対象書類名】明細書

【補正対象項目名】0008

【補正方法】変更

【補正内容】

【0008】請求項5の発明では請求項4の発明において、上記導体パターンの配列方向を折れ線として、上記配線部材が上記導体パターン形成面を外側にして折り曲げられているものとされる。請求項6の発明では請求項5の発明において、上記折り曲げは180°曲げとされて、その内側に保持部材が挟み込まれ、その保持部材に上記配線部材が固定されているものとされる。

フロントページの続き

(51) Int. CI. 7		識別記 号	FI		テ ーマコード(参考)		
H01R	12/06		H01R	11/01	501H		
	11/01	5 0 1		43/00	J		
					н		
	43/00		•	9/07	Z .		
				9/09	С		

Fターム(参考) 5E051 CA01 CA04

5E077 BB05 BB31 BB32 BB37 BB38

CCO2 CC23 DD14 DD17 JJ21

5E343 AA15 AA17 AA18 AA33 BB23

BB24 BB34 BB44 CC01 CC02

DD23 DD25 DD56 DD62 GG11

5G307 GA06 GC02 HA02 HB03 HC01

5G323 CAO2