- **D.9** Sei $S_{m,l}$ die Anzahl der Möglichkeiten, eine m-elementige Menge in l nichtleere Mengen aufzuteilen $(m,l\geq 1)$. Offenbar ist $S_{m,1}=1$ für alle $m\geq 1$.
 - 1. Bestimmen Sie $S_{4,2}$ und geben Sie ein Beispiel an.

$$S_{4,2} = 2^{4-1} - 1 = 8 - 1 = 7$$

Beispiel: Teile die 4-elementige Menge $\{a, b, c, d\}$ in zwei nicht leere Mengen auf

Mögliche Aufteilungen:

- 1. $\{a,b\},\{c,d\}$
- 2. $\{a,c\},\{b,d\}$
- 3. $\{a,d\},\{b,c\}$
- 4. $\{a\},\{b,c,d\}$
- 5. $\{b\},\{b,c,d\}$
- 6. $\{c\},\{a,b,d\}$
- 7. $\{d\},\{a,b,c\}$

2. Beweisen Sie durch vollständige Induktion über m, dass

$$S_{m,2} = 2^{m-1} - 1$$

für alle $m \ge 1$ gilt.

Induktionsanfang: Für m=1 ist

Eine einelementige Menge lässt sich nicht auf 2 nicht leere Mengen aufteilen. Somit gibt es 0 Möglichkeiten der Aufteilung. Zudem gilt:

$$S_{1,2} = 2^{1-1} - 1 = 2^0 - 1 = 1 - 1 = 0$$

Induktionsannahme: Die Formel

$$S_{m,2} = 2^{m-1} - 1$$

gilt für ein $m \in \mathbb{N}^+$.

Induktionsschritt: $m \rightarrow m + 1$

(m+1)-Elemente sollen auf zwei nicht-leere Mengen aufgeteilt werden. Unter der Induktionsannahme gilt, dass es $(2^{m-1}-1)$ -viele Möglichkeiten M gibt, eine m-elementige Menge, in zwei nicht-leere Mengen L_1 und L_2 aufzuteilen:

$$M_1$$
: $L_{1,1}, L_{1,2}$

$$M_2$$
: $L_{2,1}, L_{2,2}$

... ...

$$M_{2^{m-1}-1}$$
: $L_{2^{m-1}-1,1}, L_{2^{m-1}-1,2}$

Wird nun das (n+1)-te Element hinzugezogen, kann dieses für jede Möglichkeit M_i , entweder in die Menge $L_{i,1}$ oder in die Menge $L_{i,2}$ hinzugefügt werden. Es ergeben sich also $2 \cdot (2^{m-1}-1)$ Möglichkeiten der Aufteilung.

Zudem existiert nun **eine** weitere Möglichkeit, nämlich das (n + 1)-te Element in eine der Mengen, und alle anderen Elemente in die andere Menge zu verteilen.

Unter der Induktionsannahme ergibt sich also als Anzahl der Möglichkeiten eine (m+1)-elementige Menge auf 2 Mengen aufzuteilen:

$$S_{m+1,2} = 2 \cdot (2^{m-1} - 1) + 1 = 2^m - 2 + 1 = 2^m - 1$$