Supporting Information:

On the causal structure between CO2 and global temperature

Authors: Adolf Stips^{1*}, Diego Macias¹, Clare Coughlan¹, Elisa Garcia-Gorriz¹, X. San Liang²

Table SI-1

Causality between CO_2 and GMTA time series (1850-2012) based on different causality measures. We find significant information flow from CO2 to GMTA, significant bi-directional causation using Granger causality and significant causation directed from GMTA to CO2 using CCM method. This reveals quite clearly the problem of not detecting *nil causality* with the other methods.

	Causality measures: CO ₂ – HADCRUT4					
	CO2 → G.	MTA	GMTA →	CO2		
	[nat/ut] 95%		[nat/ut]	95%		
Information flow	0.348	±0.112	-0.006	±0.003		
	F	p	F	p		
Granger	36.23	1.171e-08	10.81	1.244e-03		
CCM		0.08		0		

Table SI-2

Causality between detrended CO_2 and detrended GMTA time series (1850-2012) based on different causality measures. We find significant information flow from CO2 to GMTA, also significant directional causation using Granger causality and significant causation directed from GMTA to CO2 using CCM method. This reveals quite clearly the problem of not detecting *nil causality* with CCM method.

Detrended data	Causality measures: CO ₂ – HADCRUT4					
	CO2 → G l	МТА	GMTA →	CO2		
	[nat/ut]	95%	[nat/ut]	95%		
Information flow	0.162	±0.077	-0.006	±0.007		
	F	p	F	p		
Granger	16.403	7.98e-05	2.462	0.119		
CCM		0.27		0.01		

Table SI-3

Calculated F-statistics and p-value (significant when <0.05) for Granger causality between different forcings and HADCRUT4 global temperature data. Bold values are significant at the 95% level (p-value < 0.05). Several significant reverse flows reveal quite clearly the problem of not detecting *nil causality* using Granger causality. Further we provide the name of the forcing components as used by Meinshausen et al. 2011 and as used in the carbon cycle model MAGICC6.

Menishausen et al. 2011 and as used in the carbon cycle model MAGICCO.						
Radiative	Radiative Forcing	Granger Causality: Forcing – HADCRUT4				
Forcing	(MAGICC6 name) Forcing→GMTA GMTA→Forcing		Forcing→GMTA		→Forcing	
(Abbreviation)						
Value	Value	F	p	F	р	
Total forcing	TOTAL_INCLVOLCAN	27.411	5.386e-07	0.766	0.383	
	IC_RF					
Anthropogenic	TOTAL_ANTHRO_RF	38.006	6.065e-09	10.414	1.532e-03	
All GHG	GHG_RF	32.806	5.286e-08	14.117	2.442e-04	
CO2	CO2_RF	32.480	6.069e-08	5.656	1.863e-02	
Aerosol	TOTAER_DIR_RF	22.321	5.207e-06	0.502	0.479	
Cloud	CLOUD_TOT_RF	19.495	1.904e-05	0.340	0.560	
Solar	SOLAR_RF	7.149	0.008	1.770	0.185	
Volcanic	VOLCANIC_ANNUAL	0.640	0.425	0.9579	0.329	
	_RF					

Table SI-4Correlation and causality [nat/ut] between forcing caused by short volcano eruptions and the GMTA time series using selected time periods with and without volcanic eruptions.

Time Period : Volcanic	Liang Causality: Volcanic Forcing – HADCRUT4						
Radiative Forcing	Correlation	GMTA→ <i>Forcing</i>					
1850-2005	0.090±0.267	0.003±0.006	-0.004±0.009				
1880-1890 (Krakatoa)	0.618±0.044	0.600±0.447	-0.261±0.390				
1960-1970 (Agung)	0.547±0.082	0.443±0.284	-0.224±0.276				
1990-2000 (Pinatubo)	0.652±0.030	0.479±0.409	-0.091±0.426				
1950-1960(No Eruption)	0.015±0.965	0.010±0.021	-0.19±0.026				
1960-2005	0.301±0.042	0.037±0.052	-0.006±0.064				

Table SI-5 Correlation and information flow between EPICA CO_2/CH_4 and paleoclimatological air temperature (800 ky, all based on EDC3 chronology). The unit time step chosen is ut=1000 years.

ut-1000 years.						
EDC3 time scale	Causality measures: CO ₂ – Temperature					
	CO2 → PA	T	PAT → CO2			
Correlation	0.880	±0				
	[nat/ut]	95%	[nat/ut]	95%		
Information flow	-0.002	±0.040	0.166	±0.038		
	F	p	F	p		
Granger causality	0.012	0.913	72.544	0		
EDC3 time scale	Causality measures: CH ₄ – Temperature					
	CH4 → PAT PAT → CH4					
Correlation	0.820	±0				
	[nat/ut]	95%	[nat/ut]	95%		
Information flow	-0.040	±0.030	0.335	±0.048		
	F	p	F	p		
Granger causality	6.965	0.008	188.164	0		

Table SI-6

Correlation and information flow between EPICA $\rm CO_2/CH_4$ and paleoclimatological air temperature (800ky, all based on AICC2012 chronology). The unit time step chosen is ut=1000 years.

AICC2012 time scale	Causality measures: CO ₂ – Temperature				
	CO2 → PAT		PAT → CO2		
Correlation	0.842	±0			
	[nat/ut]	95%	[nat/ut]	95%	
Information flow	0.054	±0.039	0.123	±0.060	
	F	p	F	p	
Granger causality	7.724	0.006	15.739	0	
AICC2012 time scale	Causality measures: CH ₄ – Temperature				
	CH4 → PA	ΔT	PAT → CH4		
Correlation	0.777	±0			
	[nat/ut]	95%	[nat/ut]	95%	
Information flow	-0.007	±0.025	0.393	±0.051	
			-	D	
	F	p	F	P	

Table SI-7

Correlation and information flow between EPICA CO_2 and paleoclimatological air temperature (800ky, all based on AICC2012 chronology, but corrected data according to Bereiter et al. 2015). The unit time step chosen is ut=1000 years.

AICC2012 time scale	Causality measures: CO ₂ – Temperature				
(Bereiter et al. 2015)	CO2 → PA	T	PAT → CO)2	
Correlation	0.905	±0			
	[nat/ut]	95%	[nat/ut]	95%	
Information flow	-0.079	±0.043	0.135	±0.040	
	F	p	F	P	
Granger causality	12.72	0.001	43.58	0	

Table SI-8. Correlation and information flow between EPICA CO_2 and paleoclimatological air temperature (based on EDC3 chronology) for different interpolation time steps Δt . The unit time step chosen here is ut=1000 years.

Time step Δt	Correlation	CO2 → Temp	Temp → CO2
[years]		[nats/ut]	[nats/ut]
500	0.880 ±0	0.046±0.042	0.159 ±0.036
750	0.879 ±0	0.019±0.040	0.176 ±0.037
1000	0.880 ±0	-0.002±0.040	0.166 ±0.038
1250	0.883 ±0	-0.006±0.039	0.156 ±0.039
1500	0.880 ±0	-0.012±0.040	0.165 ±0.040
1750	0.880 ±0	-0.001±0.041	0.133 ±0.040
2000	0.876 ±0	-0.026±0.041	0.150 ±0.041
3000	0.880 ±0	-0.041±0.040	0.141 ±0.042
4000	0.862 ±0	-0.016±0.037	0.092±0.037
5000	0.880 ±0	-0.010±0.041	0.054±0.040

Table SI-9 Correlation and information flow between EPICA CO_2 and paleoclimatological air temperature (based on AICC2012 chronology) for termination I (Parrenin et al. 2013). The unit time step chosen is ut=100 years.

Termination I	Causality measures: CO ₂ – Temperature				
22000-10000	CO2 → PAT		$CO2 \rightarrow PAT$ $PAT \rightarrow CO2$		D2
AICC2012 time scale					
Correlation	0.970	±0			
	[nat/ut]	95%	[nat/ut]	95%	
Information flow	0.484	±0.168	0.120	±0.074	
	F	p	F	p	
Granger causality	9.967	0.002	31.164	0	

 $\label{eq:correlation} \textbf{Table SI-10} \\ \textbf{Correlation and information flow between EPICA CO}_2 \text{ and paleoclimatological air temperature (based on EDC3 chronology) for termination I (Parrenin et al. 2013). The unit time step chosen is ut=100 years.}$

Termination I	Causality measures: CO ₂ – Temperature					
22000-10000	CO2 → PAT		$CO2 \rightarrow PAT$ $PAT \rightarrow CO2$		D2	
EDC3 time scale						
Correlation	0.980	±0				
	[nat/ut]	95%	[nat/ut]	95%		
Information flow	0.727	±0.182	0.043	±0.047		
	F	p	F	p		
Granger causality	59.720	0	3.096	0.081		

Fig. SI-1 Comparison between cumulative Liang causality (information flow) and Granger causality calculated between total anthropogenic forcing and GMTA time series. In the case of Granger causality the F-statistics is plotted and scaled to the same range as the information flow. The thick lines at the bottom of the figure depict time periods with significant causality at the 95% level. In the case of existing causality Granger causality might therefore provide similar results as with the information flow.

0.4 Granger Liang 0.3

Granger & Liang cumulative causality: TOTAL_ANTHRO_RF - GMTA

The effect of increasing time-series length on the information analysis was tested using artificially created dependent time-series X and Y (where X cause Y by a linear combination). The information analysis results (Fig. SI-2) do reveal a rapid convergence of the information flow (\sim 1) since the beginning of the cumulative analysis. This demonstrates that the length of the considered time-series did not fundamentally influence the information flow calculations, which are, nonetheless, expressed as a function of the time-step as described above.

Fig. SI-2 Liang cumulative information flow for a time series X1 (length 200 years) that is linearly causing X2. White noise is added to both time series. Black squares indicate significant information flow. Immediately when beginning the first calculation the information flow is significant and stays about 1 [nat/year].

Fig. SI-3
Liang cumulative information flow for a time series X1 (length 200) that is linearly causing X2. White noise is added to both time series. However the first 100 elements are replaced by white noise only, so that the signal starts now at element 101. The white noise does not produce any significant information flow. Shortly after the signal starts the information flow is significant and is initially increasing fast before approaching a seemingly stationary behavior. It can be noted that already after a period of only 5 causal related years the calculated information flow is significant, despite the preceding 100 years of white noise.

