

$$R_1 = 1e-6 m$$
 $R_2 = 2e-6 n$ $\frac{cell \ size}{R_2 - R_1} = .05$

Biot
$$\# = \frac{h R_1}{K} = 10.0$$

 $dt_{explicit} = \frac{cell Size^2}{Z D}$

First mosh:

final time
$$v = t' = 2$$
 where $t' = \frac{t \cdot D}{R_i^2}$

2nd mesh: divide cell size in half

3rd mesh: again cut cell size in half:

Seems like Fify solution is converging to analytical solution.

exact.unl.edu

R23B01T0

Satish Nallapaneni & James V. Beck - June 29, 2014

1. Problem description

This problem is for a homogeneous annulus of inner radius R_1 and the outer radius R_2 . It is subjected to heating through convection with an environment temperature T_{∞} . The inner surface is insulated. At time t=0 temperature at every point inside the cylinder is 0.

Figure 1. Schematic of R23B10T0 problem

Source of analytical solution in the form of mfiles for Matlab/Octave

2