### **Bayesian Networks**

CS161

Prof. Guy Van den Broeck

#### Motivation from Logic

Starting from logic:

 $Toothache \Rightarrow Cavity$ 

Rule is wrong; some exceptions:

Toothache

- $\Rightarrow$  Cavity  $\lor$  GumProblems  $\lor$  Abscess  $\lor \cdots$
- This is intractable to model
- Perhaps make the rule causal:

 $Cavity \Rightarrow Toothache$ 

... but this rule is wrong as well...

#### Motivation from Logic

The monotonicity of logic is the problem... again

- Either you model everything exhaustively
  - Intractable to model; we are too ignorant
  - Even if you could, you will never be able to act
- Assume too much and get stuck when things don't go as expected

Epistemological change: we no longer believe in a set of possible worlds (models), we believe in a probability for each world!

#### World View

- Propositional
   Global properties that are true or false
- Probabilistic
  - Belief is still a set of possible world
  - But now they have a degree of belief Pr(.)
  - Knowledge Base KB ≈ Pr
- "Uncertainty is epistemological pertaining to an agent's beliefs of the world – rather than ontological – how the world is." [Poole et al.]
  - We can have different beliefs about the same world
  - What's the probability that the world ends tomorrow?

#### Decision-Making Motivation

- Acting with partial (noisy) sensor information
  - ⇒ Consider ever logically possible explanation
- Example: drive to airport
  - $\Rightarrow$  No plan is guaranteed to achieve goal
  - $\Rightarrow$  Yet the agent must act
- Decisions depend on
  - Relative importance of goals (utility)
  - The likelihood of achieving them (probability)
  - ⇒ Maximum expected utility

#### Propositions are only Boolean?

- Categorical variables
  - Weather=sunny, Weather=rainy, Weather=snowy
  - 3 Boolean variables that are mutually exclusive
    - Sometimes called "indicator variables"
    - Can all be encoded in sentences...
- Continuous variables
  - Temperature=73.514, Temperature=78.785, ...
  - Infinitely many Boolean variables (and worlds).
    - In logic, see SAT Modulo Theories (SMT)
    - Special accommodations for continuous variables in statistics; we will mostly stick to the discrete world.

#### Sentences or "Events"

- Knowledge is a probability for every world:  $Pr(\omega)$
- What is the probability of a sentence  $\alpha$ ? (also called an "event"  $\alpha$  in probability)
- Need to <u>axiomatize</u> probability [Kolmogorov]:
  - 1. Probabilities are non-negative:  $0 \le Pr(\alpha)$
  - 2. The probability of a true event is 1: Pr(true) = 1
  - 3. If  $\alpha$  and  $\beta$  are mutually exclusive, then  $\Pr(\alpha \vee \beta) = \Pr(\alpha) + \Pr(\beta)$ .

#### Sentences or "Events"

- Knowledge is a probability for every world:  $Pr(\omega)$
- What is the probability of a sentence  $\alpha$ ? (also called an "event"  $\alpha$  in probability)
- A sentence  $\alpha$  is equivalent to the disjunction of its models:  $\alpha \equiv \omega_1 \vee \omega_8 \vee \omega_{11} \vee \omega_{17} \vee \cdots$

$$Pr(\alpha) = \sum_{\omega \models \alpha} Pr(\omega) = \sum_{\omega \in Mods(\alpha)} Pr(\omega)$$

#### **Properties of Probability**

- Complement events
  - $-\Pr(\alpha) + \Pr(\neg \alpha) = 1$
  - Why?
- Inclusion-exclusion
  - $-\Pr(\alpha \vee \beta) = \Pr(\alpha) + \Pr(\beta) \Pr(\alpha \wedge \beta)$
  - Why?

$$\begin{array}{rcl} \Pr(\mathsf{Earthquake}) &=& \Pr(\omega_1) + \Pr(\omega_2) + \Pr(\omega_3) + \Pr(\omega_4) = .1 \\ &\quad \Pr(\mathsf{Burglary}) &=& \Pr(\omega_1) + \Pr(\omega_2) + \Pr(\omega_5) + \Pr(\omega_6) = .2 \\ \Pr(\mathsf{Earthquake} \wedge \mathsf{Burglary}) &=& \Pr(\omega_1) + \Pr(\omega_2) = .02 \\ \Pr(\mathsf{Earthquake} \vee \mathsf{Burglary}) &=& .1 + .2 - .02 = .28 \end{array}$$

#### **Conditional Probability**

- What if I observe new information in the form of a sentence  $\beta$ ?
- Belief changes from  $Pr(\alpha)$  to  $Pr(\alpha|\beta)$
- Can also be axiomatized...
- But briefly

$$Pr(\alpha|\beta) = \frac{Pr(\alpha \land \beta)}{Pr(\beta)}$$

$$Pr(Burglary) = .2$$
  
 $Pr(Burglary|Earthquake) = .2$ 

```
\Pr(\mathsf{Alarm}) = .2442
\Pr(\mathsf{Alarm}|\mathsf{Earthquake}) \approx .75 \uparrow
```

#### **Product Rule**

,

#### **Basic Properties of Probability**

#### **Betting Semantics**

#### **Inconsistent Beliefs**

| Agent 1     |        | Agent 2          |        | Outcomes and payoffs to Agent 1 |             |             |                  |
|-------------|--------|------------------|--------|---------------------------------|-------------|-------------|------------------|
| Proposition | Belief | Bet              | Stakes | a, b                            | $a, \neg b$ | $\neg a, b$ | $\neg a, \neg b$ |
| a           | 0.4    | a                | 4 to 6 | -6                              | -6          | 4           | 4                |
| b           | 0.3    | b                | 3 to 7 | <b>–</b> 7                      | 3           | <b>–</b> 7  | 3                |
| $a \lor b$  | 0.8    | $\neg(a \lor b)$ | 2 to 8 | 2                               | 2           | 2           | -8               |
|             |        |                  |        | -11                             | -1          | -1          | -1               |

## Computing Probabilities: Example

|               | toot  | hache        | $\neg toothache$ |              |
|---------------|-------|--------------|------------------|--------------|
|               | catch | $\neg catch$ | catch            | $\neg catch$ |
| cavity        | 0.108 | 0.012        | 0.072            | 0.008        |
| $\neg cavity$ | 0.016 | 0.064        | 0.144            | 0.576        |

#### Monotonicity of Belief?

- Recall: monotonicity of logic
- Is it possible to observe something new and undo prior beliefs?

| Pr(Alarm)               | =         | .2442 |
|-------------------------|-----------|-------|
| $\Pr(Alarm Earthquake)$ | $\approx$ | .75 ↑ |

| world        | Earthquake | Burglary | Alarm | Pr(.) |
|--------------|------------|----------|-------|-------|
| $\omega_1$   | true       | true     | true  | .0190 |
| $\omega_2$   | true       | true     | false | .0010 |
| $\omega_3$   | true       | false    | true  | .0560 |
| $\omega_{4}$ | true       | false    | false | .0240 |
| $\omega_5$   | false      | true     | true  | .1620 |
| $\omega_6$   | false      | true     | false | .0180 |
| $\omega_7$   | false      | false    | true  | .0072 |
| $\omega_8$   | false      | false    | false | .7128 |

#### Example:

Alarm and not Earthquake: .1620+.0072=0.1692

Not Earthquake: .9

Alarm given not Earthquake: .188

#### Independence



#### Independence







#### Naïve Bayes Assumption

$$\mathbf{P}(Cause, Effect_1, \dots, Effect_n) = \mathbf{P}(Cause) \prod_i \mathbf{P}(Effect_i \mid Cause)$$

This is how spam filters work!

#### Bayesian Networks





#### Conditional Independence and Order



#### Conditional Independence and Order



#### **Topological Semantics**

What knowledge is encoded in Bayesian network structure?

### Markovian Assumptions



#### Markov Blanket



# Example Network



# Markov Chains and Hidden Markov Models



# Inference by Enumeration

# Factors Multiplication

| A | B | $\mathbf{f}_1(A,B)$ |
|---|---|---------------------|
| T | T | .3                  |
| T | F | .7                  |
| F | T | .9                  |
| F | F | .1                  |
|   |   |                     |
|   |   |                     |
|   |   |                     |
|   |   |                     |

X

| B | C | $\mathbf{f}_2(B,C)$ |
|---|---|---------------------|
| T | T | .2                  |
| T | F | .8                  |
| F | T | .6                  |
| F | F | .4                  |
|   |   |                     |
|   |   |                     |
|   |   |                     |

\_

| A | B | C | $\mathbf{f}_3(A,B,C)$ |
|---|---|---|-----------------------|
| T | T | T | $.3 \times .2 = .06$  |
| T | T | F | $.3 \times .8 = .24$  |
| T | F | T | $.7 \times .6 = .42$  |
| T | F | F | $.7 \times .4 = .28$  |
| F | T | T | $.9 \times .2 = .18$  |
| F | T | F | $.9 \times .8 = .72$  |
| F | F | T | $.1 \times .6 = .06$  |
| F | F | F | $.1 \times .4 = .04$  |
|   |   |   |                       |

#### Summing out Variable from Factor

| A | B | C | $\mathbf{f}_3(A,B,C)$ |
|---|---|---|-----------------------|
| Т | T | T | $.3 \times .2 = .06$  |
| T | T | F | $.3 \times .8 = .24$  |
| T | F | T | $.7 \times .6 = .42$  |
| T | F | F | $.7 \times .4 = .28$  |
| F | T | T | $.9 \times .2 = .18$  |
| F | T | F | $.9 \times .8 = .72$  |
| F | F | T | $.1 \times .6 = .06$  |
| F | F | F | $.1 \times .4 = .04$  |

$$\mathbf{f}(B,C) = \sum_{a} \mathbf{f}_{3}(A,B,C) = \mathbf{f}_{3}(a,B,C) + \mathbf{f}_{3}(\neg a,B,C)$$
$$= \begin{pmatrix} .06 & .24 \\ .42 & .28 \end{pmatrix} + \begin{pmatrix} .18 & .72 \\ .06 & .04 \end{pmatrix} = \begin{pmatrix} .24 & .96 \\ .48 & .32 \end{pmatrix}.$$

#### Variable Elimination