17/10

Recall If G is a finite Abelian group, 1G1 = P1 1 P5 where P1, , Ps are distinct primes, then

G = H1 (+s

where Hi is a sylow-pangroup for i=1,...,s

cr = cr (pn) (Gr (m) when I Gr I = pnm

Induction for Pi P2 P. S

G = H1 (G1 (P2 --- P5)

If IGI = 12,", then we are done!

Assume that the theorem is true for all G s.t 1911 has atmost s-1 distinct prime factors .

=> 161 = HI (H2 (+2 (+ - ... (+ Hs)

Statement

Indecomposable p-groups (Abelian) are cyclic (troof)

to prove) If G is a finite Abelian group, then Grand this! can be written uniquely as a direct sum G1 = 1 7/p7/

> If we prove statement, we can prove the existence of such a decomposition.

Proposition

Any non-trivial finite abelian p-group having a unique cyclic subgroup of order p is cyclic [Proved |]

Proposition

If G is a finite Abelian P-group and geG is an element of maximal order, then

for some subgroup H & G

Proof

Let $|G_1| = p^n$, we prove this by induction

n=1 -> (Trivial!)

Let $n \ge 2$ and the assertion be true for all groups G of order $\le p^{n-1}$

Suppose that G is not cyclic and o(g) = pm , m < n

By Proposition $-\mathbb{O}$, G has atleast two subgroups of order p.

Suppose one of them is contained in <97 and the other one be < h>>

claim: Lg> n < h> = (0)

Note that

· Consider the projection map

TT: G1 -> G1/ch>

a -> a+ <h>>

Claim! : 0(9) = 0(9+ <h>>)

$$p^{m}(g + ch) = p^{m}g + ch$$

= ch
=> $o(g + ch) | p^{m}$
Suppose $o(g + ch) = p^{i}g + ch$ = ch
 $p^{i}(g + ch) = p^{i}g + ch$ = ch
=> $p^{i}g = ch$
But $cg > n < h > = p^{m}$
=> $o(g + ch) = p^{m}$
 $|G|/ch > | = |G|/ch > = p^{m}$

We know that $\forall a \in G_1$, $o(a) \leq p^m$, then $o(a+ch) \leq p^m$

=) g+ < h > is an element of maximal order in G1/2h7

By induction hypothesis,

$$G_1/ch$$
 = $\langle g+\langle h\rangle\rangle \oplus K_1$ where $K_1 \subseteq G_1/ch\rangle$
 $G_1/ch\rangle$ = $\langle g+\langle h\rangle\rangle \oplus H_1/ch\rangle$ where
 $H_1 \subseteq G_1$ containing
 $\langle h\rangle$

[Use correspondence theorem!]

Take
$$x \in GI$$
 $2 + Ch > = (+g + Ch >) + (h_1 + Ch >) \text{ from } (g + ch >) \oplus H_{Ch}$
 $x - +g - h_1 \in Ch >$
 $x = +g + (h_1 + h_1)$
 $x \in Cg > + \notin H_1$

Corollary

Indecomposable finite Abelian P-groups are cyclic (Proof)

Suppose IGI = pn

If G is not cyclic, then an element $g \in G$ of maximal order satisfies $O(g) = P^{m}$, m < n

By Proposition -2 $G_1 = \langle 9 \rangle \oplus H$

=) x ∈ < g> n < h> = (0)

Since $H \cong Gr/2g > 1$, we have $|H| = \frac{p^n}{p^m} > 1$ $\Rightarrow Gr$ is decomposable ($\Rightarrow \in$)

Lemma

If G is a finite Abelian p-group, then

G = K,

Km where Ki's are uniquely

determined cyclic groups of

order p'

suppose | IGI = px

C1 = H1 ⊕ ⊕ Hm

* K. D A Kn

with 14,12 1421 2 ... 2 14m1

72/472 \$ 72/272 \$ 72/272 72/472 \$ 72/472 \$ 72/272

Notation

If G is an Abelian group

G = { x 1 | x & G 3

 $f: G \rightarrow G'$ $x \mapsto x^p$

f(xy) = (xy) = x Py = f(x) f(y)

ker(f) = { x ∈ G | x = 1 }

Now, let G be an Abelian p-group

| Ker(f) | 2 P [There is a subgroup of]

|ker(f)| = P

 $|G| = [G_1: \overline{G_1}] \leq p^{n-1}$ $\ker(f)$ (abelian)

161 = [G1: rer(1)] = pn-1

if G1 is eyelic

· C1 = H1 (.... (Hm \ K1 (... .) Kn

GP = H,P+ ... + Hm = K,P+ ... + KnP

PIHit = 1411 PIKit - 1Kil

Let $m' = \max \{i \mid |Hi| > P\}$ $n' = \max \{i \mid |Ki| > P\}$

GP = HIPE ... A HMP = KIP ... A Knip

Since $|G^{r}| \leq p^{\kappa-1}$

=) m'=n' and |Hil=|Ki| for i\le m'=n'

$$G = H_1 \oplus H_2 \oplus \dots \oplus H_{m'} \oplus \left(\frac{1}{2} / p_{\mathbb{Z}} \oplus \dots \oplus \frac{1}{2} / p_{\mathbb{Z}} \right)$$

$$= k_1 \oplus k_2 \oplus \dots \oplus k_{n'} \oplus \left(\frac{1}{2} / p_{\mathbb{Z}} \oplus \dots \oplus \frac{1}{2} / p_{\mathbb{Z}} \right)$$

$$= n - n'$$

$$= (k_1) \dots (k_{m'}) \quad p^{m-m'}$$

$$= (k_1) \dots (k_{n'}) \quad p^{n-m'} \quad \Rightarrow \quad m = n$$

Classifying groups of order 8

Abelian -> (Done!)

Non-abelian -> There are two!

Let ye G1 H

 $m = \max \{ ocg \} \mid g \in G_1 \}$ $x \in G_1 \quad , o(x) = 4 \quad \begin{bmatrix} 1 & x \\ 2 & x \end{bmatrix} > (reone!)$

 $\Rightarrow y^{2} \in H \qquad \Rightarrow H = \langle x \rangle \cong Z/4Z$ CG: HJ = 2 $\Rightarrow H \neq G$

 $o(y \times y^{-1}) = o(x) = 4$ $(y + y)^{2} = y^{2} + 0$ $\Rightarrow y^{2} \in H$