Exercise 3

Module 1 - Introduction to Cryptography and Data Security

Knut Lucas Andersen Master Applied Information Security isits AG International School of IT Security

May 30, 2017

Contents

1	Adda)b)c)d)	dition in GF(2 ⁸) $A(x) = x^7 + x^5 + x^3 + x^2 + 1, B(x) = x^4 + x^3 + 1 \dots \dots A(x) = x^5 + x^3 + x^2, B(x) = x^6 + x^4 + x^3 + 1 \dots \dots A(x) = x^6 + x^5 + x^3 + x + 1, B(x) = x^7 + x^6 + x^4 + x^2 + 1.$ Which effect has the reduction polynome in general on the result of an addition?	3 3 4 4
2	Mu a) b) c) d)	Compute the addition table for this field	4 4 4 4
3	Mu a) b)	Compute $A(x) \times B(x) \mod P(x)$ for the following values and give the result in HEX	5 5 5 5 5
4	Avaa)b)c)	Calculate the respective Output to the Input W after the first round of AES!	5 5 5
5	Key a) b)	Given is a main key K, consisting of zeros. Find the sub-key K_1 after the first round of key-generation	5 5
6	Solu a) b) 	ation template for Avalanche effect in AES After conversion of the Input in matrix-form	5 5

1 Addition in $GF(2^8)$

a)
$$A(x) = x^7 + x^5 + x^3 + x^2 + 1$$
, $B(x) = x^4 + x^3 + 1$

Since addition uses XOR, I have "padded" the equation with zero's to better display the difference (and equality) between A(x) and B(x). For this, the \LaTeX frac $\{num\}\{den\}$ was used.

$$A(x) = x^7 + x^5 + x^3 + x^2 + 1,$$

$$B(x) = x^4 + x^3 + 1$$

Comparison listing:

$$+\frac{A(x)}{B(x)} \Rightarrow +\frac{x^7 + 0 + x^5 + 0 + x^3 + x^2 + 0 + 1}{0 + 0 + 0 + x^4 + x^3 + 0 + 0 + 1}$$
(1)

Modulus 2 cancels out those that are equal:

$$A(x) + B(x) \Rightarrow x^7 + x^5 + x^4 + (1+1)x^3 + x^2 + (1+1)$$
$$A(x) + B(x) \Rightarrow x^7 + x^5 + x^4 + 0x^3 + x^2 + 0$$
$$\underline{A(x) + B(x)} = x^7 + x^5 + x^4 + x^2$$

b)
$$\mathbf{A}(\mathbf{x}) = \mathbf{x}^5 + \mathbf{x}^3 + \mathbf{x}^2$$
, $\mathbf{B}(\mathbf{x}) = \mathbf{x}^6 + \mathbf{x}^4 + \mathbf{x}^3 + \mathbf{1}$
 $A(x) = x^5 + x^3 + x^2$,
 $B(x) = x^6 + x^4 + x^3 + \mathbf{1}$

Comparison listina:

$$+\frac{A(x)}{B(x)} \Rightarrow +\frac{0+x^5+0+x^3+x^2+0+0}{x^6+0+x^4+x^3+0+0+1}$$
 (2)

Modulus 2 cancels out those that are equal:

$$A(x) + B(x) \Rightarrow x^6 + x^5 + x^4 + (1+1)x^3 + x^2 + 1$$

$$A(x) + B(x) \Rightarrow x^6 + x^5 + x^4 + 0x^3 + x^2 + 1$$

$$A(x) + B(x) = x^6 + x^5 + x^4 + x^2 + 1$$

c)
$$A(x) = x^6 + x^5 + x^3 + x + 1$$
, $B(x) = x^7 + x^6 + x^4 + x^2 + 1$

$$A(x) = x^{6} + x^{5} + x^{3} + x + 1,$$

$$B(x) = x^{7} + x^{6} + x^{4} + x^{2} + 1$$

$$Comparison \ listing:$$

$$+ \frac{A(x)}{B(x)} \Rightarrow + \frac{0 + x^{6} + x^{5} + 0 + x^{3} + 0 + x + 1}{x^{7} + x^{6} + 0 + x^{4} + 0 + x^{2} + 0 + 1}$$

$$(3)$$

Modulus 2 cancels out those that are equal:

$$A(x) + B(x) \Rightarrow x^7 + (1+1)x^6 + x^5 + x^4 + x^3 + x^2 + x + (1+1)$$
$$A(x) + B(x) \Rightarrow x^7 + 0x^6 + x^5 + x^4 + x^3 + x^2 + x + 0$$
$$A(x) + B(x) = x^7 + x^5 + x^4 + x^3 + x^2 + x$$

d) Which effect has the reduction polynome in general on the result of an addition?

The reduction polynome in general has a XOR effect both for addition and substitution. This means you can just use the XOR to find the result, because each number is its additive inverse.

2 Multiplication in $GF(5^4)$

Consider the finite field $F(5^4)$ with the irreducible reduction polynome $P(x) = x^4 + x^2 + 2x + 2$.

- a) Compute the addition table for this field
- b) Compute the multiplication table for this field.
- c) Compute $x^4 \mod P(x)$, $x^5 \mod P(x)$ and $x^6 \mod P(x)$.

$$x^{4}modP(x), x^{5}modP(x)$$

$$x^{6}modP(x)$$
(4)

d) Calculate $A(x) \times B(x) \mod P(x)$ for $A(x) = x^4 + x^1 + 2$, $B(x) = 2x^3 + 2x^2 + 1$

$$A(x) \times B(x) \mod P(x);$$

 $A(x) = x^4 + x^1 + 2,$ (5)
 $B(x) = 2x^3 + 2x^2 + 1$

- 3 Multiplication in $GF(2^8)$
- a) Compute $A(x) \times B(x)$ mod P(x) for the following values and give the result in HEX

a).1
$$A(x) = x^7 + x^4 + x^{x^3} + x + 1$$
, $B(x) = x$

$$A(x) = x^7 + x^4 + x^{x^3} + x + 1$$
, $B(x) = x$ (6)

a).2
$$\mathbf{x}^6 + \mathbf{x}^3 + \mathbf{x} + \mathbf{1}$$
, $\mathbf{B}(\mathbf{x}) = \mathbf{x} + \mathbf{1}$

$$A(x) = x^6 + x^3 + x + 1$$
, $B(x) = x + 1$ (7)

a).3
$$\mathbf{x}^7 + \mathbf{x}^6 + \mathbf{x}^5$$
, $\mathbf{B}(\mathbf{x}) = \mathbf{x}^3 + \mathbf{x}$

$$A(x) = x^7 + x^6 + x^5,$$

$$B(x) = x^3 + x$$
(8)

- b) With which operation is it possible to realise both these multiplications $B_1(x) = x$, $B_2(x) = x+1$ efficiently
- 4 Avalanche effect in AES
- a) Calculate the respective Output to the Input W after the first round of AES!
- b) Compute all the output bytes for the case that all the input bytes are zero (solution only in HEX)
- c) How many output bytes have changed now? (We consider just one round of AES)
- 5 Keygeneration in AES
- a) Given is a main key K, consisting of zeros. Find the sub-key K_1 after the first round of key-generation.
- b) Given is the main key $K=(0x00000008;\,0x00000004;\,0x00000002;\,0x00000001)$. Find the sub-key K_1 after the first round of key-generation.
- 6 Solution template for Avalanche effect in AES
- a) After conversion of the Input in matrix-form
- b) After conversion of the Input in matrix-form