Project 7 (Part 1 of Final): Regression and Correlation

Name:

var var1 var2;

run;

The following SAS code may be helpful for this assignment:

```
Simple Linear Regression:
proc glm data=dataset;
model y=x;
run;
Simple Linear Regression with Confidence Intervals:
proc glm data=dataset;
model y=x/clparm;
run;
Pearson's Correlation:
proc corr data=dataset;
var var1 var2;
run;
Scatterplot:
proc sqplot data=dataset noautolegend;
scatter y=var1 x=var2; /* just a scatterplot */
reg y=var1 x=var2; /* scatterplot with reg line */
xaxis label='labelx';
yaxis label='labely';
run;
Correlation Confidence Interval:
proc corr data=dataset fishers;
var var1 var2;
run;
Shapiro-Wilk's Test:
proc univariate normal;
var eggs weight;
run;
Spearman's Correlation:
proc corr data=dataset spearman;
```

Multiple Regression: proc glm data=dataset; model y=var1 var2 var3; run; quit;

The following data depicts the amount of forest burned in forest fires, measured in thousands of hectares, in the western U.S. and the number of significant rainfall days for that year for the last ten years. Let x be the number of rainfall days and y be the hectares burned (in thousands).

i	x_i	y_i
1	31	85
2	30	40
3	18	425
4	20	325
5	22	410
6	24	180
7	26	95
8	27	98
9	19	360
10	23	295

1. Create a scatter plot of the data. Do you think the slope will be positive or negative?

I think it will be negative because of the y-values with the x-values of 18 and 19 decrease.

 Determine whether the regression is significant. Include your SAS output, hypothesis, and conclusion.

 H_0 : $β_1 = 0$ H_1 : $β_1 \neq 0$

We reject H_0 if p-val < 0.05

p-val = 0.0002

Since p-val is less than 0.05, we reject the H₀. This means that the days of rainfall are a significant indicator of hectacres burned.

Code: data forest; input RainfallDays Hectacres @@; cards; 31 85 30 40 18 425 20 325 22 410 24 180 26 95 27 98 19 360 23 295 ; run;

proc glm data=forest; model Hectacres=RainfallDays; run:

3. If the regression is significant, fit the linear regression and write an interpretation of the line. Include your SAS output and code.

$$\hat{y} = 957.43 - 30.25x$$

This means that if there are no days of rainfall, 957.43 hectacres of forest are burned. But, for each day of rainfall, 30.25 less hectacres are burned.

Same Code as before

So	ource D		DF	Sum of Square		Mean Square		ire	F Valu		Pr > F	
Model		1	16477	1.7556	16	164771.7556		56	42.	44	0.0002	
Err	or		8	31060	3444		3882	2.54	31	1		
Со	rrected	d Total	9	195832	2.1000							
		R-Squ	аге	Coeff Var	Root	MSE	Hee	ctac	cres	Mean		
		0.841	393	26.93906	62.3	1006			231	.3000		
	Source	Source DF		Type I SS		Mean Square		F Value		Pr	> F	
	Rainf	allDays	1	164771.7556		164771.7556		4	2.44	0.0	002	
	Source DF		Type III SS		Mean Square		re	F Value		Pr > F		
	RainfallDays 1		164771.75	56	164771.755		56	42.44		0.0002		
	Pa	aramete	r	Estimate	- 1	Stand E	ard rror	t V	/alue	e Pr	> t	
	Int	Intercept		957.433333	3 113	.1918	375		8.46	6 <.0	001	
	Ra	ainfallD	ays	-30.255555	6 4	.6443	173		-6.5	0.0	002	

4. Determine what percentage of the variability in y is explained by the regression. Include your SAS output and code.

As determined by the R-Square table above, 84% of variability in hectacres burned is explained by the regression

5. Determine which correlation coefficient is appropriate. Justify your answer with SAS output and code.

I tested for normality and got a p-val of 0.1622 which is more than 0.05 which means that the data is normally distributed. So we run Pearson Correlation

Code: proc univariate normal data=forest; var RainfallDays Hectacres; run;

Tests for Normality										
Test	St	ue								
Shapiro-Wilk	W	0.888297	Pr < W	0.1622						
Kolmogorov-Smirnov	D	0.216915	Pr > D	>0.1500						
Cramer-von Mises	W-Sq	0.079292	Pr > W-Sq	0.1955						
Anderson-Darling	A-Sq	0.484885	Pr > A-Sq	0.1817						

6. Calculate the correlation coefficient and determine whether the correlation is significant. Justify your answer with SAS output and code.

After running Pearson's Correlation, we get a p-val of <0.0001, so the correlation between days of rainfall and hectacres of forest burned is significant.

Code: proc corr data=forest fisher; var RainfallDays Hectacres; run;

Pearson Correlation Statistics (Fisher's z Transformation)												
Variable	With Variable	N	Sample Correlation	Fisher's	Bias Adjustment		95% Confidence Limits		p Value for H0:Rho=0			
RainfallDays	Hectacres	10	-0.91727	-1.57157	-0.05096	-0.90880	-0.978516	-0.652598	<.0001			

7. Calculate the 95% confidence interval for the correlation coefficient.

With 95% confidence, the correlation of rainfall days and hectacres of forest burned are between -0.978516 and -0.652598

Download the analysis1.csv file from eLearning and create a SAS data set.

We would like to determine if weight can be modeled from height, waist, and neck.

1. Determine whether the regression is significant. Include your SAS output, hypothesis, and conclusion.

H₀: β_1 = β_2 = β_3 = β_4 =0 H₁: at least one $\beta \neq 0$

We reject H_0 if p-val < 0.05

p-val < 0.0001

Since p-val is less than 0.05, we can conclude that the regression is significant.

Code: pROC IMPORT OUT= WORK.analysis1

DATAFILE= "G:\My Drive\STA5990Data\analysis1.csv"

DBMS=CSV REPLACE;

GETNAMES=YES;

DATAROW=2;

RUN;

proc glm data=analysis1;

model weight=height waist neck;

run;

Sourc	urce		[DF Sum of So		quares Mean S		Square	F Value		Pr > F	
Mode	Model			3	8761	86.691 2920		062.230 2		97.91	<.0001	
Error			26	43	2758	91.550		1	04.386			
Corre	Corrected Total		26	46	11520	78.242						
		R-S	qua	ire	Coeff Var	Root	MSE	w	eight M	ean		
		0.7	605	27	11.19326	10.2	1693		91.27	7760		
	Source	e	DF		Type I SS	Mean	Squa	ге	F Valu	e I	Pr > F	
	heigh	it	1	12	3031.1168	1230	31.11	68	1178.6	2 4	.0001	
	waist		1	74	2118.9880	7421	18.98	80	7109.3	89 -	<.0001	
	neck		1	1	1036.5867	110	36.58	67	105.7	3 <	<.0001	
	Source	e	DF	T	ype III SS	Mean	Squa	re	F Valu	e	Pr > F	
	heigh	it	1	2	3581.0880	235	81.08	80	225.9	0 •	.0001	
	waist		1	40	3029.4123	4030	29.41	23	3860.9	6	.0001	
	neck		1	1	1036.5867	110	36.58	67	105.7	73 .	.0001	

2. If the regression is significant, fit the linear regression and write an interpretation of the line. Include your SAS output and code.

$$\hat{y} = -99.72 + 0.37x_{height} + 0.97x_{waist} + 0.78x_{neck}$$

Weight increases .37 (pounds?) as height increases by 1 (inch?). Weight increases by .97 pounds as waist increases by 1 inch, and weight also increases by .78 pounds as neck increases by 1 inch.

Same Code

Parameter	Estimate	Standard Error	t Value	Pr > t
Intercept	-99.71832382	3.69137500	-27.01	<.0001
height	0.37471647	0.02493110	15.03	<.0001
waist	0.96882163	0.01559179	62.14	<.0001
neck	0.77866746	0.07572779	10.28	<.0001

3. Determine what percentage of the variability in y is explained by the regression. Include your SAS output and code.

As determined by the R-Square table above, 76% of variability in weight is explained by the regression

We would like to determine whether price can be modeled from number of pieces and pages in the manual.

1. Determine whether the regression is significant. Include your SAS output, hypothesis, and conclusion.

H₀: $\beta_1 = \beta_2 = \beta_3 = 0$

 H_1 : at least one β ≠ 0

We reject H_0 if p-val < 0.05

p-val < 0.0001

Since p-val is less than 0.05, we can conclude that the regression is significant.

Code: pROC IMPORT OUT= WORK.lego

DATAFILE= "G:\My Drive\STA5990Data\lego.sample.csv"

DBMS=CSV REPLACE;

GETNAMES=YES;

DATAROW=2:

RUN;

proc glm data=lego;

model price=pages pieces;

run;

Soul	rce	D	FS	ium of Sq	uares	Mean	Square	FV	alue	Pr > F
Mod	el		2	33751.	21273	16875.6063		7 52.3		<.0001
Erro	г	7	2	23222.	17393	322.5301				
Corr	ected Tot	al 7	4	56973.	38667					
	F	R-Squ	are	Coeff Va	r Roc	ot MSE	Price M	lean		
		0.592	403	55.8836	0 17	.95913	32.1	3667		
	Source	DF	Т	ype I SS	Mear	Squar	e F Val	ue	Pr > l	F
	Pages	1	322	33.30236	322	33.3023	99	94	<.000	1
	Pieces	1	15	17.91037	15	17.9103	37 4	.71	0.033	4
	Source	DF	Ту	pe III SS	Mear	Squar	e F Val	ue	Pr > I	3
	Pages	1	174	0.831323	174	0.83132	23 5	.40	0.0230)
		_	_							

2. If the regression is significant, fit the linear regression and write an interpretation of the line. Include your SAS output and code.

$$\hat{y} = 11.66 + 0.05x_{pieces} + 0.15x_{pages}$$

The legos start off at \$11.66 and increase by 5 cents for each piece and 15 cents for each page in the manual.

Same Code

Parameter	Estimate	Standard Error	t Value	Pr > t
Intercept	11.65901252	2.88577591	4.04	0.0001
Pages	0.14710698	0.06331989	2.32	0.0230
Pieces	0.04941358	0.02277762	2.17	0.0334

3. Determine what percentage of the variability in y is explained by the regression.

Include your SAS output and code.

As determined by the R-Square table above, 59% of variability in price is explained by the regression