NCERT 11.9.3.17

EE23BTECH11017 - Eachempati Mihir Divyansh*

Question

If the 4^{th} , 10^{th} and 16^{th} terms of a G.P. are x, y, and z, respectively. Prove that x, y, z are in G.P.

Given Informatn

Symbol	Value	Description
Х	$x(0) r^3$	x (4)
у	$x(0) r^9$	x (10)
Z	$x(0) r^{15}$	x (16)
r	?	$\frac{x(n)}{x(n-1)}$
x (0)	?	First term
x(n+1)	$x(0) r^n u(n)$	$(n+1)^{th}$ term

Table: Given Information

Solution: Part 1

3 numbers x, y and z are in G.P. if

$$\frac{y}{x} = \frac{z}{y} \tag{1}$$

From Table 1

$$\frac{y}{x} = \frac{x(0) r^9}{x(0) r^3} = r^6 = \frac{x(0) r^{15}}{x(0) r^9} = \frac{z}{y}$$
 (2)

By (1) and (2), x, y and z are in G.P.

Expressing x(0) and r in terms of x and y

From (2),

$$r^6 = \frac{y}{x} \implies r = \sqrt[6]{\frac{y}{x}} = \left(\frac{y}{x}\right)^{\frac{1}{6}}$$
 (3)

$$x(0) = \frac{x}{r^3} \implies x(0) = \left(\frac{x^3}{y}\right)^{\frac{1}{2}} \tag{4}$$

Z-Transform of x(0)

$$X(z) = \frac{x(0)}{1 - rz^{-1}} \tag{5}$$

$$=\frac{\left(\frac{x^3}{y}\right)^{\frac{1}{2}}}{1-\left(\frac{y}{y}\right)^{\frac{1}{6}}z^{-1}}\tag{6}$$

Exaample

Let x(0) = 1 and r = 1.2

$$x = x(3) = (1.2)^3 \tag{7}$$

$$y = x(9) = (1.2)^9$$
 (8)

$$z = x (15) = (1.2)^{15} (9)$$

C Code

```
#include <stdio.h>
\#include < math. h>
int main(){
    FILE *ptr;
    ptr= fopen("series.dat", "w");
    float x_0=1.0;
    float r=1.2;
    for(int i=0; i<17; i++){
        fprintf(ptr, "%f", x_0*pow(r,i));
    fprintf(ptr, "\b ");
    return 0;
```

Python Code

```
import numpy as np
import matplotlib.pyplot as plt
n_1=np.arange(0, 17)
n_2=np.array([3, 9, 15])
y1=np.loadtxt("series.dat", delimiter=" ", max_rows=1)
y2=y1[n_2]
plt.stem(n_1, y1, markerfmt='.', linefmt='-', basefmt='r',
\rightarrow label=r'x(n)')
plt.stem(n_2, y2, markerfmt='o', linefmt='-')
plt.xlabel('n')
plt.vlabel('x(n)')
plt.grid(True)
plt.legend()
plt.savefig('../figs/A_1.png')
```

Plot

Figure: Stem plot of x(n) v/s n