### Teori Bahasa dan Automata

Pertemuan 7
Context Free Grammar

## Tuple CFG

- N adalah himpunan simbol non-terminal.
- T adalah satu set terminal di mana N ∩ T = NULL.
- P adalah seperangkat aturan, P: N → (N ∪ T) \*
  - Sisi kiri aturan produksi P yang memiliki konteks kanan atau kiri.
- S adalah simbol awal.

#### Contoh CFG

- $(\{A\}, \{a, b, c\}, P, A), P : A \rightarrow aA, A \rightarrow abc.$
- ({S, a, b}, {a, b}, P, S), P: S  $\rightarrow$  aSa, S  $\rightarrow$  bSb, S  $\rightarrow$   $\epsilon$
- ({S, F}, {0, 1}, P, S), P: S  $\rightarrow$  00S | 11F, F  $\rightarrow$  00F |  $\epsilon$

### **Derivation Tree**

 Ordered rooted tree yang secara grafis mewakili informasi semantik string yang diturunkan dari tata bahasa bebas konteks.

## Representation Technique

- Root vertex Label berupa start symbol.
- Vertex Label dari non-terminal symbol.
- Leaves Label dari terminal symbol or ε.

## **Contoh Derivation Tree**

•  $S \rightarrow x1x2 \dots xn$ 



## Top-down Approach

- Dimulai dari symbol S
- Turun ke tree leaves menggunakan productions



## Bottom-up Approach

- Dimulai dari tree leaves
- Naik ke root yaitu symbol S



### Derivation / Yield of a Tree

- String terakhir yang diperoleh dengan menggabungkan label daun pohon dari kiri ke kanan, mengabaikan Nulls.
- Jika semua daunnya Null, turunannya Null.

#### Contoh Derivation CFG

- CFG {N,T,P,S}
- $N = \{S\}, T = \{a, b\}$
- Starting symbol = S, P = S → SS | aSb | ε
- S → SS → aSbS → abS → abaSb → abaaSbb
   → abaabb

## **Hasil Derivation Tree**



#### Sentential Form & Partial Derivation Tree

 Sub-pohon dari pohon turunan / pohon parse sedemikian rupa sehingga semua anaknya ada di sub-pohon atau tidak ada di sub-pohon.

### Contoh Partial Derivation Tree

• S  $\rightarrow$  AB, A  $\rightarrow$  aaA |  $\epsilon$ , B  $\rightarrow$  Bb|  $\epsilon$ 



# Leftmost & Rightmost Derivation

- Leftmost derivation diperoleh dengan menerapkan produksi ke variabel paling kiri di setiap langkah.
- Rightmost derivation diperoleh dengan menerapkan produksi ke variabel paling kanan di setiap langkah.

#### Contoh LRD

- $N = \{X\}, T = \{a\}$
- X → X+X | X\*X |X| a





#### Step 2:



#### $X \rightarrow X+X \mid X*X \mid X \mid a$

#### **Leftmost Derivation**

 $X \rightarrow$ 

 $X+X \rightarrow$ 

a+X →

a + X\*X →

a+a\*X →

a+a\*a

#### Step 3:



#### Step 4:







Step 1:







Step 2:



Step 4:



 $X \rightarrow X+X \mid X*X \mid X \mid a$ rightmost derivation

 $X \rightarrow$ 

 $X*X \rightarrow$ 

 $X*a \rightarrow$ 

X+X\*a →

X+a\*a →

a+a\*a

# left recursive grammar

- Memiliki left recursive production
- X → Xa
  - X: non-terminal
  - a : string of terminals

# Right recursive grammar

- Memiliki right recursive production
- X → aX
  - X: non-terminal
  - a : string of terminals