

BEST AVAILABLE COPY

.)

2-sided calendering by vertical stacks

2-sided calendering by vertical stacks

FIG. 4

		Т		_																																			正
M3, %		נכ	ינ.	יני	י כ	י כ	ဂ	ည	Ŋ	Ŋ	Ŋ	ינה	ט ע	ט ע	יז כ	n ı	သ	2	3	2	5	5	ĸ	יני	ı.	ט גכ	יער) LC	י ע	יז כ	יי כ	ט ע) L	ט ני	ט גנ	יי	ט נר		r.
E ₂ , %		33	3.8	4.3) (r	7 0	ري د ر	4,7	က က	3,8	4,3	33) c	. 4	. u	ر د د	υ, υ,	4,4	3,6	ი დ	4,4	3,5	3.9	4.4	3.6	3,0	4.4	33	2,2		5,2	. c.	0 P	F 65	4. 4.	27	် (က	3,5	8,3
M2 ₁ ,	%	8,3	8,8	63	83	ν α	י כ ס ס	2,6	ω (χ	8,8	6,3	8,3	8.7	9.2	σ	ο α) (2, 0 4, 0	8,6	დ დ	9,4	8,5	ල හ	9,4	8'0	ි හ	9,4	8,3	9.2	8,3	9,2	9.8	9.4	8.6	9,4	7.7	8,3	8,2	8,3
W ₂ ,	g/m²	ر در	1,6	1	1,5	ζ.	- c	- c		1,6	ر 9	1,5	1,8	2,1	0.2	10	† ^ O	- c	ກ (0,5	8,0	0,2	4,0	2'0	0,3	0,5	8'0	1,5	2,1	1,5	2,1	6,0	0.8	0,3	0,8	1-1	1,5	0,0	0,1
M2 ₀ , %		တ	9	9	9	9	œ) (0 (<u>،</u> م	9	ဖ	9	9	80	00	α	o ['] a	0 0	ρo	∞ (× σ	∞	&	æ	æ	8	9	9	9	9	80	œ	80	&	9	9	8	8
п, %		3,7	4,	4,6	3,3	3,6	4.0	7	. ·	4, 4	9,6	3,4	3,7	4,1	3,6	3,9	4 4	. 0	אי פ מי כ	ر ار د	ა ი	ი, ი	ი ე	4,	က် 	3,4	3,8	2,4	3,0	2,5	3,1	2,1	2,7	2,2	2,8	2,5	3,1	2,2	2,8
M ₁ , %	- 1) S	10,1	10,6	6,3	9'6	10,0	. 6	- Ç	- 0	ο' . Ο .	9,4 4	6,7	10,1	11,6	11,9	12.4	10.9	5	7 4	- -	- 7 0 0	D :	12,4	11,1	11,4 4,6	11,8	8,4	0'6	8,5	9,1	10,1	10,7	10,2	10,8	8,5	9,1	10,2	10,8
W tot	300	ر د د	0,4 0,0	4 ک	4	4 6	4,6	2.6	α	י ני ס ל	ر د د	۷,۵	3,0	က က	2,0	5,2	5,5	5.3	, rc	ນ໌ແ	ວຸດ	5 6	4, 4 ⊃ (4. ພ ລັດ	4, 4 O 0	4 , 2 ,	C, 4	ა ლ	တ ်	2,2	2,6	4,7	5,1	3,4	3,8	2,2	2,6	3,4	3,8
w ₁ ,polymer a/m²	13	- 4 5 4	- + + u	- ·	4, 1	ე,	1,6	6'0	10	· -) - ,	۲,۲	7, 1	1,7	1,8	1,9	1,8	0.7	200	ί -	ς, τ Δ	<u>-</u> +	- <u>-</u> 0 <	 t u	ر د ر	0,0	ν, ,	4, 0	æ 6	n (9, 9	χ. Σ	7,2	1,3	8 °	ი (ი ე	7,1	1,3
v*1; urefille vv ₁ , polymer q/m²	7.	i c	, c o, c	ָּהָ הַ הַ	7,7	۷,0	3,0	1,7	1,8	2.0	, -	- c	7,0 7,1	L', c	3,2	ξ, Σ, (3,5	3,4	3,5	3.7	2.4	2.6) a	, c	, c , c	2,7	5,2	ر د, د	ر'S 4	-, <i>-</i> , 4, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,	· · ·	ۍ د د	ۍ, د, د	2,2	2,4	 4	~, c	7,7	2,4
2	3) (c.	י אי	, c) (1)	ו כה	Ŋ	5	ນ	, rc	י ע	נוכ		o (ກ່	က	က	က	က	5	2	ĸ	י ינ	י ער	ס גכ	0 00	י כ	ט ע	ט ע	י כ	o c)	ល	0 4	ם כ	o u	י כ	C C
	5+5	5+5	5+5	7 14	יי ליל לי	ָ ט נ	က ဂ ၊	2+2	2+2	2+2	5+5	14. 14.	7. C	7. T	ָ טַּ	ָ ה ה ה	0+0 1	2+2	2+2	5+5	2+2	5+5	5+5	5+5	5+5	5+5	3+5	3 C	2. 5. 5. 7.	 	ر بر بر	3+5	2 4	נו האליני	2+3	0 77	2 5 5 7 7) i	3+3
m/min	1000	1500	2000	1000	1500	0000	7000	0001	1500	2000	1000	1500	2000	1000	1500	000	7007	1000	1500	2000	1000	1500	2000	1000	1500	2000	1000	2000	1000	2000	1000	2000	1000	2000	1000	2000	1000	2 0	2000
ge , g/m²	52	52	25	09	09	9	200	20.	25	52	09	09	09	25	52	52	7 0	00	09	09	25	52	52	9	90	09	99	09	09	09	9	09	9	89	09	90	09	9	3
grade	SC-A																										SC-B								SC-C				