Traductores de Lenguajes de Programación – Bloque I 3 Junio 2021

Duración del examen: 1 hora 15 minutos - Ponderación del examen: 40% de la nota total

Ejercicio 1 a): 2 puntos Ejercicio 2 c): 1,5 puntos Ejercicio 1 b): 1,5 puntos Ejercicio 3: 1,5 puntos

Ejercicio 2 a): 2 puntos Ejercicio 2 b): 1,5 puntos

Fecha prevista de publicación de notas: 22 de Junio, por la tarde, en Moodle.

Revisión: El día y horario de revisión se publicará junto con las notas.

Ejercicio 1. Se considera el lenguaje $L = (a \mid baa)^*b(a \mid \varepsilon)$ definido sobre el alfabeto $\Sigma = \{a, b\}$.

- a) Obtener el autómata finito determinista mínimo que reconoce L. Justificar por qué es mínimo.
- b) Hallar un autómata finito determinista que acepte el lenguaje L^* .
- a) El autómata mínimo es:

Si aplicamos el método de las clases de equivalencia con $C_1 = \{q_0\}$ y $C_2 = \{q_1, q_2\}$, es inmediato que la clase C_2 debe dividirse por tránsito diferente en a. Esto implica que el autómata de la figura es mínimo.

b) Un autómata finito determinista que acepta L^* puede ser:

Ejercicio 2. Sean los lenguajes $L_1 = (c \mid a^*b)^*$ y $L_2 = (ab^*c)^*$ definidos sobre el alfabeto $\Sigma = \{a, b, c\}$.

- a) Escribir una gramática regular (tipo 3) que genere el lenguaje $L_1 \cup L_2$.
- b) La misma cuestión para el lenguaje $L_1 \cap L_2$.
- c) Sea $L_3 = \{w \in \Sigma^* : w \text{ no termina en } a\}$. Justificar si es cierto o falso que $L_3 \subset (L_1 \cup L_2)^*$.
- a) Una posible gramática es $G = (\Sigma, N = \{S, A, B, C, D\}, S, P)$, con producciones:

$$P = \begin{cases} S \rightarrow aA \mid bB \mid cB \mid aC \mid \varepsilon \\ A \rightarrow aA \mid bB \\ B \rightarrow bB \mid cB \mid aA \mid \varepsilon \\ C \rightarrow bC \mid cD \\ D \rightarrow aC \mid \varepsilon \end{cases}$$

b) Tenemos que $L_1 \cap L_2 = (ab^+c)^*$, por tanto, una gramática es $G = (\Sigma, N = \{S, A, B\}, S, P)$, donde

$$P = \begin{cases} S \to aA \mid \varepsilon \\ A \to bA \mid bB \\ B \to cS \end{cases}$$

c) Falso, ya que $(L_1 \cup L_2)^* = ((c \mid a^*b)^* \mid (ab^*c)^*)^* = (c \mid a^*b \mid ab^*c)^* = (c \mid a^*b \mid ac)^* \subset L_3$. En realidad una subcadena de la forma aa^+c puede existir en L_3 pero no en $(L_1 \cup L_2)^*$.

Ejercicio 3. Sea el alfabeto $\Sigma = \{a, b\}$. Demostrar que el lenguaje $L = \{w \in \Sigma^* : w^R = w\}$ no es regular, donde w^R denota la palabra w escrita en orden inverso.

Sea p como en el lema de bombeo y sea $w=a^pba^p=xyz\in L$, entonces $|w|=2p+1\geq p$. La parte xy sólo puede contener símbolos a, ya que $|xy|\leq p$. Por otra parte, al ser $|y|\geq 1$, la palabra $w_0=xy^0z$ se escribe como $w_0=a^{p-i}ba^p$ para algún $1\leq i\leq p$, y por tanto $w_0^R=a^pba^{p-i}\neq w_0$, de donde $w_0\notin L$. Esto significa que L no es regular.