

(11)Publication number:

2003-217342

(43)Date of publication of application: 31.07.2003

(51)Int.CI.

H01B 1/06 CO8G 65/40 CO8G 75/23 H01B 13/00 H01M 8/02 H01M 8/10

(21)Application number: 2002-015986

(22)Date of filing:

24.01.2002

(72)Inventor:

(71)Applicant: TOYOBO CO LTD

KITAMURA KOTA

TAKASE SATOSHI SAKAGUCHI YOSHIMITSU

NAGAHARA SHIGENORI HAMAMOTO SHIRO **NAKAO JUNKO**

(54) PHOTO-CROSSLINKABLE POLYMER SOLID ELECTROLYTE, CROSSLINKED POLYMER SOLID ELECTROLYTE FILM AND MANUFACTURING METHOD THEREFOR

PROBLEM TO BE SOLVED: To provide a polymer solid electrolyte film and a manufacturing method therefor in which not only excellent ion conductivity is exhibited but also durability such as a swelling-resistant property is simultaneously excellent and it can be preferably used for a proton exchange film of a fuel cell or the like.

SOLUTION: After a photo-crosslinkable polymer electrolyte having one or more ionic group and photo-crosslinkable group in the molecule respectively is molded into a film, the thermal crosslinkable group is subjected to croslinking reaction by irradiation with light to obtain the polymer solid electrolyte film. The crosslinking reaction can be carried out without accompanying decomposition of the ionic group and the ion conductivity is not reduced by the crosslingking reaction. The polymer solid electrolyte film having excellent ion conductivity and durability can be obtained.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-217342 (P2003-217342A)

(43)公開日 平成15年7月31日(2003.7.31)

(51) Int.Cl.7	識別記号	FΙ	テーマコード(参考)
H01B 1/06	199033112.3	H01B 1/06	A 4J005
CO8G 65/40		C 0 8 G 65/40	4J030
75/23		75/23	5 G 3 0 1
H01B 13/00		H01B 13/00	Z 5H026
HO1M 8/02		H01M 8/02	P
110 1 W 6/02	審查請求	未請求 請求項の数8	OL (全 8 頁) 最終頁に続く
(21)出顧番号(22)出顧日	特願2002-15986(P2002-15986) 平成14年1月24日(2002.1.24)	大阪(72)発明者 北村 送賀(減株: (72)発明者 高瀬 送賀(減株)	的 結構 大
		滋賀	佳充 県大津市堅田二丁目1番1号 東洋紡 式会社総合研究所内
			最終頁に続く

(54) 【発明の名称】 光架橋性高分子固体電解質、架橋高分子固体電解質膜及びその製造方法

(57)【要約】

【課題】 優れたイオン伝導性を示すだけでなく、同時 に耐膨潤性などの耐久性にも優れ、燃料電池などのプロ トン交換膜にも好適に使用することができる高分子固体 電解質膜及びその製造方法の提供。

【解決手段】 分子中に、イオン性基と、光架橋性基とをそれぞれ1個以上有している光架橋性高分子電解質を、膜に成形した後に、光照射によって熱架橋性基を架橋反応させて、高分子固体電解質膜を得る。イオン性基の分解を伴わずに架橋反応させることができ、また架橋反応によるイオン伝導性の低下もなく、イオン伝導性と耐久性に優れた高分子固体電解質膜を得ることができる。

【特許請求の範囲】

【請求項1】 分子中にイオン性基と、光架橋性基とを それぞれ1個以上有していることを特徴とする高分子固 体電解質。

【請求項2】 イオン性基がスルホン酸基又はホスホン酸基であることを特徴とする請求項1に記載の高分子固体電解質。

【請求項3】 光架橋性基として下記一般式(1)及び(2)で表される基を有することを特徴とする請求項1 乃至2のいずれかに記載のポリマー電解質。

【化1】

(式中、Rは炭素数1~10の脂肪族炭化水素基を、nは1~4の整数を表す。)

【請求項4】 ポリマー主鎖がポリエーテルスルホン又はポリエーテルケトンであることを特徴とする請求項1 乃至3のいずれかに記載の高分子固体電解質。

【請求項5】 請求項1乃至4のいずれかに記載の高分子固体電解質を単独又は一成分として含むポリマー組成物を架橋して得ることを特徴とする高分子固体電解質。

【請求項6】 請求項1乃至5のいずれかに記載の高分子固体電解質を単独又は一成分として含むポリマー組成物から形成された膜を光照射して架橋高分子固体電解質膜を得ることを特徴とする高分子固体電解質膜の製造方法。

【請求項7】 請求項6に記載の方法で製造された高分 子固体電解質膜。

【請求項8】 請求項1乃至7のいずれかに記載の高分 子固体電解質を用いた燃料電池。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、耐久性及びイオン 伝導性に優れた光架橋性高分子固体電解質、高分子固体 電解質膜及びその製造方法に関するものである。

[0002]

【従来の技術】液体電解質のかわりに高分子固体電解質をイオン伝導体として用いる電気化学的装置の例として、水電解槽や燃料電池を挙げることができる。これらに用いられる高分子膜は、カチオン交換膜として高いプロトン伝導率を有すると共に化学的、熱的、電気化学的及び力学的に十分安定なものでなくてはならない。このため、長期にわたり使用できるものとして、主に米デュポン社製の「ナフィオン(登録商標)」を代表例とするパーフルオロカーボンスルホン酸膜が使用されてきた。しかしながら、100℃を越える条件で運転しようとすると、膜の含水率が急激に落ちる他、膜の軟化も顕著となる。このため、メタノールを燃料とする燃料電池においては、膜内のメタノール透過による性能低下が起こ

り、十分な性能を発揮することはできない。また、現在 主に検討されている水素を燃料として80℃付近で運転 する燃料電池においても、膜のコストが高すぎることが 燃料電池技術の確立の障害として指摘されている。

【0003】パーフルオロカーボンスルホン酸膜に代わる電解質膜として、ポリエーテルエーテルケトンやポリエーテルスルホン、ポリスルホンなどのポリマーにスルホン酸基などイオン性基を導入した、いわゆる炭化水素系高分子固体電解質が近年盛んに検討されている。しかしながら、炭化水素系高分子固体電解質はパーフルオロカーボンスルホン酸に比べて水和・膨潤しやすく、高湿度下での耐久性に問題があった。

【0004】膨潤を抑制する方策の一つとして、塩基性ポリマーとの混合が行なわれている。これは、高分子固体電解質中のスルホン酸基を、塩基性ポリマーによって架橋することで膨潤を抑制しようとするものである。例えば、スルホン酸基を有するポリエーテルスルホンやスルホン酸基を有するポリエーテルエーテルケトン(酸性ポリマー)と、ポリベンズイミダゾール(塩基性ポリマー)との混合物(国際公開特許公報WO99/54389号公報)などが知られている。

【0005】また、特開平6-93114号公報、国際公開特許WO99/61141号公報、特開2001-522401号公報に記載されているように、イオン性基であるスルホン酸基間を共有結合により架橋することで、膨潤を抑制することも行なわれている。

【0006】上記の方法はいずれも膨潤は抑制できるものの、イオン性基が架橋反応によりイオン性を示さなくなるため、イオン伝導性が低下するという問題点があった。

【0007】架橋構造を有する高分子固体電解質としてスチレン/ジビニルベンゼン共重合体のスルホン化物は、初期の固体高分子形燃料電池に使用されたことで良く知られている。この高分子固体電解質は、ポリマー骨格そのものの耐久性に乏しく燃料電池として満足な性質を示さなかった。特開平2-248434号公報、特開平2-245035号公報には、ルイス酸を触媒としてポリマー中のクロロメチル基を架橋反応させて得られるイオン交換体が記載されている。しかしながら架橋反応に触媒が必要である。よって、ポリマーと触媒を混合して成形体を得る場合には触媒の残留が、ポリマー成形体を触媒で処理する場合には内部で架橋反応が起こりにくいことが、それぞれ問題であった。

[0008]

【発明が解決しようとする課題】本発明の目的は、燃料 電池などのプロトン交換膜に好適な、イオン伝導性及び 耐久性に優れた、光架橋性高分子固体電解質、高分子固 体電解質膜及びその製造方法を提供することである。

[0.009]

【課題を解決するための手段】本発明者らは、鋭意研究

を重ねた結果、光架橋性基とイオン性基を有する高分子 固体電解質を用いることで上記目的を達成できることを 見出した。

【0010】すなわち本発明は、(1) 分子中にイオ ン性基と、光架橋性基とをそれぞれ1個以上有している ことを特徴とする高分子固体電解質、(2) イオン性 基がスルホン酸基又はホスホン酸基であることを特徴と する(1)に記載の髙分子固体電解質、(3) 光架橋 性基として下記一般式(1)及び(2)で表される基を 有することを特徴とする(1)又は(2)のいずれかに 記載のポリマー電解質、

[0011]

【化2】

(式中、Rは炭素数1~10の脂肪族炭化水素基を、n は1~4の整数を表す。)

(4) ポリマー主鎖がポリエーテルスルホン又はポリ エーテルケトンであることを特徴とする(1)~(3) のいずれかに記載の高分子固体電解質、(5) (1) ~(4)のいずれかに記載の髙分子固体電解質を単独又 は一成分として含むポリマー組成物を架橋して得ること を特徴とする髙分子固体電解質、(6) $(1) \sim$

(4) のいずれかに記載の高分子固体電解質を単独又は 一成分として含むポリマー組成物から形成された膜を光 照射して架橋高分子固体電解質膜を得ることを特徴とす

る高分子固体電解質膜の製造方法、(7) (6) に記 載の方法で製造された髙分子固体電解質膜、

(1)~(7)のいずれかに記載の高分子固体電解質を 用いた燃料電池、である。

[0012]

【発明の実施の形態】以下、本発明に関して詳細に説明 する。本発明における光架橋性高分子固体電解質は、ポ リマー分子中に少なくとも 1 個以上の光架橋性基及びイ オン性基を有していることが必要である。ポリマーの数 平均分子量は1, 000 \sim 1, 000, 000間であ ることが好ましく、5,000~500,000の間で あることが物性と加工性のバランスが取れるため好まし

【0013】イオン性基はスルホン酸基、ホスホン酸 基、リン酸基、カルボン酸基などのイオンに解離するこ とのできる基を表す。より好ましくはスルホン酸基又は ホスホン酸基である。スルホン酸基はイオン伝導性が高 く、ホスホン酸基は高温でもイオン伝導性を示すため、 それぞれ好ましい。ポリマー中のイオン性基の量は、

 $0.1\sim5.0mmol/g$ であることが好ましく、 1. $0 \sim 3$. 0 mmol/g であることがより好まし い。ポリマー中には、イオン性基を有するモノマーの共 重合やポリマーのスルホン化反応によってイオン性基を 導入することができる。イオン性基を有するモノマーと しては、下記に示すような化合物が挙げられる。

[0014]

【化3】

また、無水硫酸、無水硫酸の錯体、発煙硫酸、濃硫酸、 クロロスルホン酸などのスルホン化剤を用いてポリマー 50 ルホン化剤に対して不活性な溶媒に溶解した状態でスル

にスルホン酸基を導入することもできる。ポリマーをス

5

ホン化剤を反応させる方法や、ポリマーを適当な溶媒で 膨潤させた状態でスルホン化剤を反応させる方法、ポリ マーを直接スルホン化剤と反応させる方法、などの方法 によってスルホン化反応を行なうことができる。スルホ ン化剤はそのまま用いてもよいし、適当な溶媒に溶解、 分散した状態で用いることもできる。反応温度は-10 0~100℃の間で行なうことができる。

【0015】光架橋性基としては、ベンゾフェノン基、αージケトン基、アシロイン基、アシロインエーテル基、ベンジルアルキルケタール基、アセトフェノン基、多核キノン類、チオキサントン基、アシルフォスフィン基、エチレン性不飽和基などを挙げることができる。中でもベンゾフェノン機などの光によりラジカルを発生することのできる基と、メチル基やエチル基などの炭化水素基を有する芳香族基などの、ラジカルと反応することのできる基との組み合わせが好ましく、例として下記のような基を挙げることができる。

[0016]

[化4]

$$- \begin{array}{c} (R)_n \\ (R)_n \\ (R)_n \end{array}$$

これらの基は、ポリマー中の主鎖、側鎖、、末端基として存在することができる。ポリマー中の光架橋性基の量は、1~5,000mmol/kgであることが好ましく、5~5,000mmol/kgであることが好ましく、5~5,000mmol/kgであることが好まし好ましい。このような基は、共重合モノマーや末端停止射としてポリマー中に導入することができる。またエチレン性不飽和基を用いる場合には、ベンゾフェノン類、αージケトン類、アシロイン類、アシロインエーテル類、ベンジルアルキルケタール類、アセトフェノン類、多核キノン類、チオキサントン類、アシルフォスフィン類などの光重合開始剤を加えておくことが好ましい。

【0017】ポリマーの主鎖は公知の任意のポリマーを用いることができる。ポリエーテルスルホン、ポリエーテルケトン、ポリスルフィド、ポリフェニレン、ポリベンズオキサゾール、ポリベンズイミダゾール、ポリベンズチアゾール、ポリケトン、ポリスルホンなどが耐久性に優れるため好ましい。中でも、合成の容易さからポリ

エーテルスルホン、ポリエーテルケトンが好ましい。 【0018】ポリエーテルスルホンやポリエーテルケト ンは、電子吸引性基を有する芳香族ジハロゲン化合物 と、ビスフェノール化合物を縮合することで得られる。 縮合反応は公知の方法で行なうことができる。例えば有 機溶媒中で塩基の存在下加熱することで縮合できる。有 機溶媒としては、N, N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N, N-ジメチルホルムアミ ド、スルホラン、ジメチルスルホキシドなどの非プロト ン性極性溶媒を挙げることができる。中でもNーメチル - 2 - ピロリドンが好ましい。塩基としては、炭酸カリ ウム、炭酸ナトリウム、水酸化カリウム、水酸化ナトリ ウムなどが挙げられる。中でも炭酸カリウムが好まし 20 い。ビスフェノール化合物と塩基との反応で生成する水 は、トルエンやベンゼンとの共沸で除くことができる。 共沸脱水は100~150℃で行なうことが好ましい。 脱水が完了後、縮合反応を行なうことができる。縮合反 応は120~300℃で行なうことができる。反応は窒 素、アルゴンなど不活性ガス雰囲気下で行なうことが好 ましい。反応終了後、溶液を水、アセトンなどポリマー が不溶の溶媒に投入することで再沈させることができ る。再沈したポリマーは、公知の方法で精製することが できる。

【0019】 芳香族ジハロゲン化合物の例としては下記 の化合物を挙げることができる。

【化5】

ポリマーにイオン性基を導入する目的で下記の化合物も 使用することができる。 【0020】 【化6】

【0021】ビスフェノール化合物の例としては下記の

[0022]

化合物を挙げることができる。

HO OH

【0023】ポリマーにラジカル発生基を導入するためのモノマーとしては下記のような化合物を挙げることが

【0024】ポリマーにラジカルと反応する基を導入するためのモノマーは下記のような化合物を挙げることが

できる。 【化9】 9

$$H_3C$$
 H_3C
 H_3C

【0025】ラジカル発生基とラジカル反応性基は、同一のポリマーにあっても、別々のポリマーにあってもよい。それぞれの基を有する二種以上のポリマーを混合してもよいし、二つの基を有するポリマーを用いてもよい。二種以上のポリマーを用いる場合、イオン性基はい

ずれのポリマーにあってもよい。

【0026】本発明の光架橋性高分子固体電解質として 好ましい例を下記に示すが、これらに限定されるもので はない。

10

【0027】本発明の光架橋性高分子固体電解質は、光 照射によって架橋することができる。光照射は窒素、ア ルゴンなどの不活性ガス中で行なうことが好ましい。処 理時の温度は、室温~250℃の範囲で行なうことがで きる。照射時間は、1秒~100時間の間で行なうこと ができる。光架橋をする際、本発明の高分子電解質その ものを熱処理して架橋体構造とすることもできるが、他 の非架橋性ポリマーとの組成物としてから光架橋するこ ともできる。その際、非架橋性ポリマーは本発明の架橋 性ポリマーと同様にイオン性基を分子鎖中に含有するも のでもイオン性基を含有しないものでもよい。非架橋性 ポリマーの基本構造としては、例えばポリエチレンテレ フタレート、ポリブチレンテレフタレート、ポリエチレ ンナフタレート等のポリエステル類、ナイロン6、ナイ ロン6,6、ナイロン6,10、ナイロン12等のポリ アミド類、ポリメチルメタクリレート、ポリメタクリル 酸エステル類、ポリメチルアクリレート、ポリアクリル 酸エステル類等のアクリレート系樹脂、ポリアクリル酸 酸系樹脂、ポリメタクリル酸系樹脂、ジエン系ポリマー を含む各種ポリオレフィン、ポリウレタン系樹脂、酢酸 セルロース、エチルセルロースなどのセルロース系樹 脂、ポリアリレート、アラミド、ポリカーボネート、ポ リフェニレンスルフィド、ポリフェニレンオキシド、ポ 50

リスルホン、ポリエーテルスルホン、ポリエーテルエー テルケトン、ポリエーテルイミド、ポリイミド、ポリベ ンズオキサゾール、ポリベンズチアゾール、ポリベンズ イミダゾール、ポリアミドイミド等の芳香族系ポリマー など、特に制限はない。

【0028】本発明の光架橋性高分子固体電解質は、膜 に成形した後で架橋することで優れた高分子固体電解質 膜となる。膜への成形は、キャスト、溶融成形など任意 の方法で行なうことができるが、溶液からのキャストで 作製することが好ましい。溶媒には、ジメチルスルホキ シド、ジメチルアセトアミド、N-メチル-2-ピロリ ドン、ジメチルホルムアミドなど非プロトン性極性溶媒 を用いることができる。溶液の濃度は1~50wt%で あることが好ましい。溶液をガラス板上に流延し、溶媒 を乾燥させることで膜を得ることができる。膜の厚み は、 $1\sim500\mu$ mが好ましく、 $5\sim100\mu$ mがより 好ましい。必要に応じて、シリカなどの無機化合物や、 他のポリマーなどを混合してもよい。イオン性基が塩に なっている場合には、膜に成形した後、酸で処理するこ とで酸型に変換することができる。その場合、架橋反応 が終了した後で酸変換することが好ましい。膜を光処理 する場合には、収縮などを防ぐだめ、適当な治具に固定 して加熱することが好ましい。この場合も、本発明の高

分子電解質そのものの成形体を熱処理して架橋体構造と することもできるが、上述のような他の非架橋性ポリマ ーとの組成物成形体としてから光架橋することもでき

【0029】本発明の高分子固体電解質膜は、水電解や 燃料電池のプロトン交換膜として使用することができ る。また、電極に触媒を接合する際のバインダーとし て、本発明の髙分子固体電解質を用いることができる。

【実施例】以下、本発明について実施例を用いて具体的 に説明するが、本発明はこれらの実施例に限定されるこ とはない。各種測定は以下のようにして行なった。

【0031】 (膜の厚み測定) 膜の厚みは膜厚計 (PE AKOCK DIGITAL GAUGE D-10/ OZAKI MFG. CO., LTD) を用いて測定 した。サンプル中のランダムな3点の厚みを測定し、そ れらを平均したものを膜の厚みとした。

【0032】(イオン伝導性測定)自作測定用プローブ (ポリテトラフロロエチレン製) 上で短冊状膜試料の表 面に白金線(直径:0.2mm)を押しあて、80℃9 5%RHの恒温・恒湿オーブン((株)ナガノ科学機械 製作所、LH-20-01)中に試料を保持し、白金線 間の10KHzにおける交流インピーダンスをSOLA RTRON社1250FREQUENCY RESPO NSE ANALYSERにより測定した。極間距離を 変化させて測定し、極間距離と抵抗測定値をプロットし た勾配から以下の式により膜と白金線間の接触抵抗をキ ャンセルした導電率を算出した。

導電率 [S/cm] = 1/膜幅 [cm] ×膜厚 [cm] ×抵抗極間勾配 [Ω/cm]

【0033】 (ポリマー対数粘度) ポリマー濃度0.2 5g/dlのN-メチル-2-ピロリドン溶液につい て、オストワルド粘度計を用いて30℃で測定した。

【0034】(耐水性試験)ポリマー電解質膜50mg を5mlのイオン交換水と共にガラスアンプル中に封入 した。アンプルは105℃で3日間加熱した。冷却後ア ンプルを開封し、1G2のガラスフィルターで固形物を 濾取した。フィルターは80℃で一晩減圧乾燥し、濾過 前後の重量から、固形分の重量を求め、重量減少率を求 めた。

重量減少率 [%] =残留物重量 [mg] / 50×100 【0035】 (イオン性基の定量) ポリマー電解質膜1 00mgを0.01NのNaOH水溶液50mlに浸漬 し、25℃で一晩攪拌した。その後、0.05NのHC 1水溶液で中和滴定した。中和滴定には、平沼産業株式 会社製電位差滴定装置COMTITE-980を用い た。イオン性基量は下記式で求められる。

イオン性基含有量 [meq/g] = (10-滴定量 [m 11)/2

ルスルホンー3,3'-ジスルホン酸ソーダ3.930 g (8.0mmol)、4,4'ージフルオロベンゾフ ェノン0. 428g (2.0mmol)、2,2-ビス (4-ヒドロキシ-3-メチルフェニル)プロパン2. 5634g(10.0mmol)、炭酸カリウム1.5 89g (11.5mmol)、N-メチル-2-ピロリ ドン20ml、トルエン3mlを窒素導入管、攪拌翼、 ディーンスタークトラップ、温度計を取り付けた100 m l 枝付きフラスコに入れ、オイルバス中で攪拌しつつ 窒素気流下で加熱した。トルエンとの共沸による脱水を 140℃で行なった後、トルエンを全て留去した。その 後200℃に昇温し、15時間加熱した。その後、室温 まで冷却した溶液を500mlの純水に注ぎポリマーを 再沈させた。濾過したポリマーは50℃で減圧乾燥し た。ポリマーの対数粘度は0.66d1/gだった。得 られたポリマー0.4gを1.6gのジメチルアセトア ミドに溶解した溶液を、0.02cmの厚みでガラス板 上にキャストし、70℃で3日間減圧乾燥した。ガラス 板から膜を剥離した後、金属製の枠に固定し、窒素雰囲 気下50℃で紫外線ランプで1時間光照射した。その 後、膜を80℃の1mol/L硫酸で1時間処理してス ルホン酸基を酸型に変換し、さらに酸が検出できなくな るまで水で洗浄した。洗浄した膜は風乾したところ、厚 み0.0038cmの透明な膜が得られた。膜のイオン 性基濃度は2.3meq/gだった。耐水性試験での重 量減少率は0%、イオン伝導性は0.34S/cmであ り、良好な耐久性とイオン伝導性を示した。

【0037】(比較例1)4,4'-ジクロロジフェニ ルスルホン-3,3'-ジスルホン酸ソーダ3.438 g (7. 0 m m o 1) 、4, 4' - ジクロロジフェニル スルホン0.862g(3.0mmol)、ビフェノー ル1. 862g (10. 0mmol)、炭酸カリウム 1. 589g (11. 5mmol)、N-メチル-2-ピロリドン17ml、トルエン3mlを窒素導入管、攪 拌翼、ディーンスタークトラップ、温度計を取り付けた 100ml枝付きフラスコに入れ、オイルバス中で攪拌 しつつ窒素気流下で加熱した。トルエンとの共沸による 脱水を140℃で行なった後、トルエンを全て留去し た。その後200℃に昇温し、15時間加熱した。室温 まで冷却した溶液を500mlの純水に注ぎポリマーを 再沈させた。濾過したポリマーは50℃で減圧乾燥し た。ポリマーの対数粘度は0.75 d l / g だった。得 られたポリマー0.4gを1.6gのジメチルアセトア ミドに溶解した溶液を、0.02cmの厚みでガラス板 上にキャストし、70℃で3日間減圧乾燥した。その 後、膜を80℃の1mol/L硫酸で1時間処理してス ルホン酸基を酸型に変換し、さらに酸が検出できなくな るまで水で洗浄した。洗浄した膜は風乾したところ、厚 み0.0033cmの透明な膜が得られた。膜のイオン 【0036】(実施例1)4,4'-ジクロロジフェニ 50 性基濃度は2.3meq/gだった。耐水性試験では膜

が溶解してしまい固形分が回収できなかった。イオン伝 導性は0.28S/cmだった。

【0038】 (比較例2) 4, 4' -ジクロロジフェニ ルスルホン-3, 3'-ジスルホン酸ソーダ1.228 g (2. 5 m m o 1) 、4, 4' - ジクロロジフェニル スルホン2. 154g (7. 5mmol)、ビフェノー ル1.862g(10.0mmol)、炭酸カリウム 1. 589g (11. 5mmol)、N-メチル-2-ピロリドン17ml、トルエン3mlを窒素導入管、攪 100ml枝付きフラスコに入れ、オイルバス中で攪拌. しつつ窒素気流下で加熱した。トルエンとの共沸による 脱水を140℃で行なった後、トルエンを全て留去し た。その後200℃に昇温し、15時間加熱した。室温 まで冷却した溶液を500mlの純水に注ぎポリマーを 再沈させた。濾過したポリマーは50℃で減圧乾燥し

た。ポリマーの対数粘度は0.84 d l/gだった。得 られたポリマー0.4gを1.6gのジメチルアセトア ミドに溶解した溶液を、0.02cmの厚みでガラス板 上にキャストし、70℃で3日間減圧乾燥した。その 後、膜を80℃の1mol/L硫酸で1時間処理してス ルホン酸基を酸型に変換し、さらに酸が検出できなくな るまで水で洗浄した。洗浄した膜は風乾したところ、厚 み0.0031cmの透明な膜が得られた。膜のイオン 性基濃度は0.8meq/gだった。耐水性試験での重 拌翼、ディーンスタークトラップ、温度計を取り付けた 10 量減少率は0%だった。イオン伝導性は0.07S/c mと低かった。

. [0039]

【発明の効果】本発明の光架橋性高分子固体電解質によ り、耐久性とイオン伝導性に優れる高分子固体電解質膜 を得ることができる。

フロントページの続き

(51) Int. Cl. 7

識別記号

H 0 1 M 8/10

(72) 発明者 永原 重徳

滋賀県大津市堅田二丁目1番1号 東洋紡 績株式会社総合研究所内

(72)発明者 濱本 史朗

滋賀県大津市堅田二丁目1番1号 東洋紡 績株式会社総合研究所内

FΙ

テーマコート*(参考)

H 0 1 M 8/10

(72)発明者 中尾 淳子

滋賀県大津市堅田二丁目1番1号 東洋紡 績株式会社総合研究所内

Fターム(参考) 4J005 AA24 BB01 BD06 BD07

4J030 BA05 BA09 BA42 BA49 BB29 BB37 BB66 BC08 BC16 BC18 BD03 BD10 BD22 BF09 BF13 BG06

5G301 CA30 CD01 CE01 5H026 AA06 CX05 EE18