

Escola Politécnica de Pernambuco Especialização em Ciência de Dados e Analytics

Estatística Computacional

Aula 3.1 – Modelos de Regressão – PARTE II

Prof. Dr. Rodrigo Lins Rodrigues

rodrigo.linsrodrigues@ufrpe.br

...O que seria a Regressão Logística?

• É utilizada para **prever a probabilidade** de um **evento binário ocorrer**.

 Segue a mesma lógica do modelo de regressão linear com a particularidade da variável alvo ser binária;

• É uma técnica muito utilizada quando não se tem bases de dados muito grandes;

Não tem muitas exigências de pressupostos;

- Há uma infinidade de eventos de interesse que podem ser modelados pela regressão logística;
- Uma das grandes vantagens é a flexibilidade de seus pressupostos, o que amplia sua aplicabilidade.

 Deriva seu nome da transformação logit usada como variável dependente;

 Um modelo é definido como logístico se a função segue a seguinte equação:

$$logit(p_i) = \ln\left(\frac{p_i}{1 - p_i}\right) = \beta_0 + \beta_1 x_1 + \dots + \beta_n x_n$$

 Um modelo é definido como logístico se a função segue a seguinte equação:

$$logit(p_i) = \ln\left(\frac{p_i}{1 - p_i}\right) = \beta_0 + \beta_1 x_1 + \dots + \beta_n x_n$$

• Em que p_i indica a probabilidade de ocorrência, x_1, \dots, x_n representa o vetor de variáveis explicativas (ou independentes) e β_0 e β_x indicam os coeficientes do modelo.

• Os coeficientes logísticos **são difíceis de interpretar** em sua forma original, pois são expressos em termos de logaritmos quando usamos a **função** *logit*;

 E possível aplicar a transformação de anti-logaritmo por meio da exponenciação dos coeficientes originais, gerando a razão de desigualdades:

 $Razão\ de\ Desigualdades_i\ (odds) = e^{\beta_0 + \beta_1 x_1 + \dots + \beta_n x_n}$

- Para cada observação, é previsto um valor de probabilidade entre 0 e 1;
- Os valores previstos para todos os valores da variável independente gera a curva logística:

• Se a probabilidade prevista é maior do que 0,50, então a previsão é de que o resultado seja 1 (evento ocorreu);

 Caso a probabilidade prevista seja menor do que 0,50, então a previsão é de que o resultado seja 0 (evento não ocorreu);

• Esse **corte pode ser ajustado** e faz parte das configurações de parâmetros para melhorar o modelo.

Construção do modelo

 A construção de um classificador por regressão logística pode ser representado de forma simplificada por:

• Conjunto com n dados, onde cada observação x_i possui m atributos e as variáveis y_i representam as classes ou rótulos.

Construção do modelo

- A tarefa de classificação pode ser dividida em duas categorias, a classificação binária e a classificação multiclasses.
 - ✓ Regressão Logística Binária;
 - ✓ Regressão Logística Multimodal;
- **Diversos algoritmos** vêm sendo desenvolvidos ao longo de pesquisas;

A Regressão Logística é um algoritmo criado pela estatística.

Construção do modelo

 Construção de um classificador de forma computacional através do software R:

- ✓ Para entender os erros gerados por um classificador é possível visualizar por meio da construção da uma matriz de erros denominada matriz de confusão;
- ✓ A partir da matriz é possível obter métricas de qualidade para a avaliação do desempenho de um classificador;
- ✓ Resume o **número de instâncias previstas corretas ou incorretas** por um modelo de classificação.

✓ Representação da matriz de confusão:

		Classe Atual		
Matriz de Confusão		Negativa (-)	Positiva (+)	
Classe	Negativa (-)	f (TN)	f + - (FN)	
Prevista	Positiva (+)	f - + (FP)	f + + (TP)	

 As seguinte terminologias são usadas para o entendimento da matriz de confusão:

- ✓ **Positivo verdadeiro (TP):** é relacionado ao número de instâncias positivas previstas corretamente pelo classificador;
- ✓ **Negativo falso (FN):** é o número de instâncias previstas erroneamente como negativos pelo classificador;
- ✓ **Positivo falso (FP):** é o número de exemplos negativos previstos erroneamente como positivos pelo classificador;
- ✓ Falso verdadeiro (TN): é o número de exemplos negativos previstos corretamente pelo classificador.

- Uma das maneiras mais comuns de avaliar modelos é por meio da derivação de medidas que, tentam medir a "qualidade" do modelo;
- Essas medidas geralmente podem ser obtidas a partir da matriz de confusão:
 - ✓ A acurácia é definida como sendo o número de instâncias corretas divididas pelo número total de instâncias;

$$Acurácia = \frac{TP + TN}{(TP + TN + FN + FP)}$$

 A precisão determina o percentual de registros que são positivos no grupo que o classificador previu como classe positiva.

$$Precisão = \frac{TP}{TP + FP}$$

• A **lembrança** (*Recall*) mede o percentual de instâncias positivas previstas corretamente pelo classificador.

$$Recall = \frac{TP}{TP + FN}$$

Área da curva ROC:

- ✓ Representação gráfica para descrever o desempenho de um sistema classificador binário;
- ✓ É baseada na taxa de verdadeiros positivos TPR, e na taxa de falsos positivos FPR;

Área da curva ROC:

- à muito utilizada quando queremos comprar a performance entre diversos classificadores;
- ✓ Seus valores variam entre **zero e um**;
- ✓ Muito utilizada quando se tem classe desbalanceada.

- Utilização de métricas conjuntamente:
 - ✓É comum encontrar situações em que um modelo aparenta ser melhor que outro para algumas das métricas, mas pior com relação a outras;
 - ✓ Nesses casos, utilizar uma única medida pode dar a falsa impressão de que o desempenho pode ser avaliado utilizando-se apenas essa medida;
 - ✓ Para uma avaliação mais precisa é ideal que seja utilizado um conjunto de métricas levando em consideração o objetivo da pesquisa.

Exemplo:

- √ Vamos continuar com exemplo relacionado a deslocamento de alunos;
- ✓ Agora temos o interesse em investigar se as variáveis explicativas influenciam a probabilidade de um aluno chegar atrasado na aula;
- ✓O fenômeno em estudo agora apresenta somente duas categorias (atrasado e não atrasado);
- ✓ O evento de interesse refere-se a chegar atrasado.

Exemplo:

- ✓ Para realizar esse experimento fizemos uma pesquisa com 100 de uma escola específica;
- ✓ O aluno deveria informar se no dia da pesquisa chegou ou não atrasado;
- ✓ Outras variáveis coletadas foram:
 - Distância percorrida no trajeto (em quilómetros);
 - Número de semáforos pelos quais o aluno passou;
 - Período de realização do trajeto (manhã ou tarde);
 - E como cada aluno considera-se no volante (calmo, moderado ou agressivo);

• Exemplo:

✓ Tabela com as respostas de 100 alunos;

Faturalanda	Chegou atrasado à	Distância percorrida	Quantidade de	Período do dia	Perfil ao volante
Estudante	escola (Y _i)	(X_{1i})	semáforos (X_{2i})	(X_{3i})	(X_{4i})
Gabriela	Não	12.5	7	manhã	calmo
Patrícia	Não	13.3	10	manhã	calmo
Gustavo	Não	13.4	8	manhã	moderado
Letícia	Não	23.5	7	manhã	calmo
Luiz Ovídio	Não	9.5	8	manhã	calmo
Leonor	Não	13.5	10	manhã	calmo
Dalila	Não	13.5	10	manhã	calmo
Antônio	Não	15.4	10	manhã	calmo
Júlia	Não	14.7	10	manhã	calmo
•••	•••	•••	•••	•••	•••

Exemplo:

- ✓ Foi necessário aplicar algumas transformações nas variáveis;
- ✓ A variável alvo (Chegou atrasado) recebeu valores de 0 para não chegou e 1 para chegou atrasado;
- ✓ Período do dia ficou: 0 para manhã, e 1 para tarde;
- ✓ A variável (Perfil ao volante) foi transformada em variável binária:
 0 calmo e 1 moderado;
- √ Criou-se uma nova variável binária informando se o condutor se considera agressivo ou não (1 ou 0);
- √ Foi retirado espaços (renomeado) os nomes das variáveis.

• Exemplo:

✓ A nova tabela de dados ficou da seguinte forma;

			quantidade_semaf		
Estudante	chegou_atrasado	distancia	oros	periodo	perfil_volante2
Gabriela	0	12.5	7	1	0
Patrícia	0	13.3	10	1	0
Gustavo	0	13.4	8	1	1
Letícia	0	23.5	7	1	0
Luiz Ovídio	0	9.5	8	1	0
Leonor	0	13.5	10	1	0
Dalila	0	13.5	10	1	0
Antônio	0	15.4	10	1	0
Júlia	0	14.7	10	1	0
•••	•••	•••		•••	

Exemplo:

- √ Vamos abrir o script "scriptRegressaoLogistica.R";
- ✓ Abrir a Base "atrasado.CSV"

• Exemplo:

```
# Pacotes necessários
library(caret) # Para a Matriz de confusao, acuracia, sensibilidade e especificidade
library(ROCR) # Para a Curva ROC

# Importando base de dados
dados <- read.csv2("atrasado.csv", header = T)</pre>
```

```
# Separando os dados de treinamento e de teste com o pacote caret

split <- createDataPartition(y = dados$chegou_atrasado, p = 0.7, list = FALSE)

treinamento <- dados[split,]

teste <- dados[-split,]
```

• Exemplo:

```
# Criando o Modelo a partir dos dados de treinamento
modelo <- glm(chegou_atrasado~distancia+quantidade_semaforos
+periodo+perfil_volante2+perfil_volante3,
family=binomial(link="logit"), data=treinamento)
```

```
Call: glm(formula = chegou_atrasado ~ distancia + quantidade_semaforos +
    periodo + perfil_volante2 + perfil_volante3, family = binomial(link = "logit"),
    data = treinamento)
```

Coefficients:

CITCOI		
(Intercept)	distancia	quantidade_semaforos
-202.4349	0.1145	22.6367
periodo	perfil_volante2	perfil_volante3
-2.3565	-2.0163	1.9273

Exemplo:

```
# Aplicando os dados de teste no modelo construido
classificacaoProb <- predict(modelo,newdata=teste,type="response")
classificacaoBinaria <- ifelse(classificacaoProb > 0.5,1,0)
```

```
# Gerando a Matriz de confusao e metricas para a analise do modelo
MatrizDeConfusao<- confusionMatrix(data=classificacaoBinaria,
reference=teste$chegou_atrasado,positive = "1")
print(MatrizDeConfusao)
```

• Exemplo:

```
Reference
Prediction 0 1
0 12 0
1 1 17
```

```
Accuracy: 0.9667
               95% CI : (0.8278, 0.9992)
  No Information Rate: 0.5667
  P-Value [Acc > NIR] : 9.527e-07
                Kappa : 0.9315
Mcnemar's Test P-Value: 1
          Sensitivity: 1.0000
          Specificity: 0.9231
       Pos Pred Value: 0.9444
       Neg Pred Value: 1.0000
           Prevalence: 0.5667
       Detection Rate: 0.5667
  Detection Prevalence: 0.6000
     Balanced Accuracy: 0.9615
      'Positive' Class: 1
```

Exemplo:

```
# Curva ROC
predicao <- prediction(classificacaoProb, teste$chegou_atrasado)
perform <- performance(predicao, measure = "tpr", x.measure = "fpr")
plot(perform, col="blue", lwd=2, main="Curva ROC para o Modelo Logístico")
abline(a=0, b=1, lwd=2, lty=2, col="gray")
aucFG <- performance(FG, measure ="auc")
aucFG <- aucFG@y.values[[1]]
aucFG
```

Agora é com vocês!

 Qual a diferença entre a Regressão Linear Múltipla e a Regressão Logística ?

• Quais as formas de validar um modelo logístico ?

 Diga alguns fenômenos que podemos modelar através da regressão logística?

Dúvidas

Contatos:

- ✓ Email: rodrigo.linsrodrigues@ufrpe.br
- ✓ Facebook: /rodrigomuribec