Hazard Analysis Measuring Microstructure Changes During Thermal Treatment

Team #30, ReSprint Edwin Do Joseph Braun Timothy Chen Abdul Nour Seddiki Tyler Magarelli

Table 1: Revision History

Date	Developer(s)	Change
Oct 13, 2022	Abdul Nour Seddiki	Integrated the Template + Added System Boundaries and Components
•••	•••	

Contents

1	Introduction	1
2	Scope and Purpose of Hazard Analysis	1
3	System Boundaries and Components	1
4	Critical Assumptions	1
5	Failure Mode and Effect Analysis	1
6	Safety and Security Requirements	3
7	Roadmap	3

1 Introduction

[You can include your definition of what a hazard is here. —SS]

2 Scope and Purpose of Hazard Analysis

3 System Boundaries and Components

This hazard analysis is conducted on the system that consists of the following components:

- 1. Thermally treated samples
- 2. The current source
- 3. A thermometer
- 4. The nano-voltmeter
- 5. Interfaces between above devices and control computer
- 6. The control computer
- 7. The software application that will be installed on the control computer

These components comprise the system in question. And they each are also considered the boundaries for this system. Some of the components mentioned are not controllable by ReSprint team, such as the thermally treated samples and all of the measurement devices and hardware including the current source, the thermometer, the nano-voltmeter, the communication interfaces and the control computer. Therefore, the only component controllable by ReSprint team is the software application and its sub-systems.

4 Critical Assumptions

[These assumptions that are made about the software or system. You should minimize the number of assumptions that remove potential hazards. For instance, you could assume a part will never fail, but it is generally better to include this potential failure mode. —SS

5 Failure Mode and Effect Analysis

Table 2: FMEA Table

Component	Failure Mode	Effects of Failure	Causes of Fail-	Recommended Ac-	Req.	Ref.
			ure	tion		
Current	Current source	Nanovoltmeter	a. Setup error	a. Troubleshoot cur-	a. HWR1	H1-1
Source	does not provide	cannot measure	b. Hardware fail-	rent source setup	b. HWR2	
	current	voltage across sam-	ure	b. Replace current		
		ple		source		
Nanovoltmeter	Nanovoltmeter	Voltage data can-	a. Setup error	a. Troubleshoot nano-	a. HWR1	H1-2
	does not read volt-	not be communi-	b. Hardware fail-	voltmeter	b. HWR2	
	age across sample	cated to App	ure	b. Purchase new		
				nanovoltmeter		
Serial Con-	App does not re-	Data cannot be	a. Setup error	a. Troubleshoot serial	a. HWR1	H1-3
nection	ceive data from	communicated to	b. Hardware fail-	connection	b. HWR2	
	hardware	App	ure	b. Replace serial con-		
				nection cable		
Windows App	App is not er-	User cannot utilise	a. Graphics change	a. App shall not	a. SFR1	H2
windows ripp	gonomic for user	the App	brightness too	change screen bright-	b. SFR2	
			rapidly	ness unless the user		
			b. Graphics con-	chooses		
			tain colours that	b. Graphics shall be		
			are too bright	designed with dimmed		
				or neutral colours		
	App does not re-	Resistivity of sam-	a. Setup error	a. Refer to H1	a. HWR1	Н3
	ceive data	ple cannot be cal-	b. Hardware fail-	b. Refer to H1	b. HWR2	
		culated	ure	c. Check that software	c. SWR1	
			c. Software connec-	is accessing the cor-		
			tion error	rect serial port	0004	TT.4
	Calculated values	User receives inac-	a. User altered	a. Prevent user from	a. SCR1	H4
	are not correct	curate results	measurements	altering measurements	b. SWR2	
			through interface	received from hard-		
			b. Software does	ware		
			not calculate val-	b. Check that for-		
			ues correctly	mulas for calculation		
				used by software are		
				correct		

6 Safety and Security Requirements

[Newly discovered requirements. These should also be added to the SRS. (A rationale design process how and why to fake it.) —SS]

7 Roadmap

[Which safety requirements will be implemented as part of the capstone timeline? Which requirements will be implemented in the future? —SS]