HYBRID QUERY EXPANSION MODEL FOR TEXT AND MICROBLOGINFORMATION RETRIEVAL

MORTEZA EYDIPOUR 9811634

درباره ی مقاله

- سال انتشار : ۱۱۰۹
- ممل انتشار : Springer
- نویسندگان : ۵ نویسنده | دانشگاه: تونس + فرانسه

- گسترش کوری (QE)
 - HQE? •
- ما چه چیزی برای ارایه داریم ؟
 - معیار کارایی و مقایسه ؟

مقدمه

گسترش کوری:

 اضافه کردن ترم → افزایش کارایی
 روش های عملی استفاده:

 Global | Local | External
 روش ترکیبی پطور؟
 مشکلات موجود؟

تعاریف اولیه

PRF •

- ایا نتایج کوری برای ایجاد کوری مدیدی مرتبط مناسب است ؟
 - HQE •

- تركيب دانش !!
- وابستگی آماری قوی
 - 2. وابستگی معنایی
 - 3. وابستگی مفهومی

ESAC:

ESA + WIKI

تعاریف اصلی

\mathcal{C}	The <i>whole set</i> of documents which form the collection
C	A set of documents belonging to the collection $(C \subseteq C)$
d	A <i>single</i> document of the collection $(d \in C)$
V	The whole set of distinct terms of the collection C
T	A set of terms of the collection $(T \subseteq V)$
t	A <i>single</i> term of the collection $(t \in V)$
R	An association rule
q	An original query
t_q	A term in a given query q
E_q	A query q extended

 $q = \{t_{q1}, \dots, t_{qn}\}$

 $Supp(T) = |\{d|d \in \mathcal{C} \land \forall t \in T : (d,t) \in I\}|$

$$R: T_1 \Rightarrow T_2$$
 $Supp(R) = Supp(T_1 \cup T_2)$ $Conf(R) = \frac{Supp(T_1 \cup T_2)}{Supp(T_1)}$

$$ESA(q,t) = \frac{\overrightarrow{q} \times \overrightarrow{t}}{\|\overrightarrow{q}\| \times \|\overrightarrow{t}\|}$$

مثال

R	Premise (T_1)	Conclusion (T_2)	Supp(R)	Conf(R)
Manufacture ⇒ car	Manufacture	Car	356	0.8921
Campus ⇒ university	Campus	University	279	0.7431
$Manufacture\ motor \Rightarrow automobile\ car$	Manufacture motor	Automobile car	143	0.7922

از ویکی پدیا!

HQE MODEL

سافت ترم های کاندید

$$Candidate_Set_{STE}(q) = \bigcup_{\substack{(T_1 \Rightarrow T_2) \in \mathcal{R}_C \text{ so that } T_1 \in 2^q}} T_2$$

$$Candidate_Set_{SE}(q) = \bigcup_{t \in q} Def_{Semantic}(t, RS)$$

$$Candidate_Set_{CE}(q) = \bigcup_{t \in q} Concept(t, O)$$

• توسعه ی اماری

• توسعه ی معنایی

• توسعه ی مفهومی

انتفاب ترم های کاندید

$$relatedness(q,t) = score \in \mathbb{R}$$

$$E_q = q \cup \{t \in Candidate_Set(q) \mid relatedness(q, t) = score \ge \mu\}$$

$$relatedness(q, t) = ESAC(q, t)$$

$$= \begin{cases} (\alpha \times ESA(q, t) + (1 - \alpha) \times Conf_{max}(R, q, t) & \text{if } Conf_{max}(R, q, t) \neq 0; \\ ESA(q, t), & \text{otherwise.} \end{cases}$$
(16)

$$Conf_{max}(R, q, t) = \max_{t_q \in q, R \in \mathcal{R}_C} Conf(R(t_q, t))$$

Terms generation	Terms selection	Terms selection			
	With selection	Without selection			
STE	$\mathrm{STE}_{Selection}$	${ m STE}_{NoSelection}$			
SE	${ m SE}_{Selection}$	${ m SE}_{NoSelection}$			
CE	$CE_{Selection}$	${ m CE}_{NoSelection}$			
ALL	$ALL_{Selection} = STE_{Selection} \cup SE_{Selection} \cup CE_{Selection}$	$ALL_{\textit{NoSelection}} = STE_{\textit{NoSelection}} \cup SE_{\textit{NoSelection}} \cup CE_{\textit{NoSelection}}$			

Capital letters denote the corresponding runs in the experimental validation

بررسی عملکرد

Run	Configuration	P@5	P@10	P@30	MAP (%Chg. _{Baseine} ,%Chg. _{PRF})
BM25					
Baseline	1772 6	0.1265	0.1327	0.1238	0.1025
PRF	-	0.1592	0.1551	0.1245	0.1145
-	STE _{Selection}	0.4000	0.3796	0.3197	$0.3079\ ^{\dagger\circ}\ (200\%\ ,\ 168\%)$
-	$STE_{NoSelection}$	0.3551	0.3265	0.2850	0.2804 [†] ° (173%, 145%)
-	ALL _{Selection}	0.3633	0.3429	0.2707	$0.2747^{\dagger\circ}~(168\%~,~140\%)$
	$SE_{Selection}$	0.3342	0.3184	0.2626	0.2589 [†] ° (153%, 126%)
_	ALL _{NoSelection}	0.3551	0.3388	0.2553	0.2570 [†] °(151%, 124%)
	$CE_{Selection}$	0.3224	0.3041	0.2755	$0.2505^{\dagger\circ}(144\%\ ,\ 118\%)$
	CE _{NoSelection}	0.2408	0.2227	0.2041	0.2053 ^{†o} (100%, 79%)
	$SE_{NoSelection}$	0.2367	0.2224	0.2163	0.1676 [†] °(63%, 46%)

بررسی عملکرد

Run	Configuration	Unigrams	Bigrams	Bigrams with 2-gaps
Best Run INEX 2013 (258)	/	0.7939	0.8908	0.8943
Median Run INEX 2013 (278)	1	0.8673	0.9540	0.9575
Worst Run INEX 2013 (269)	1	0.9981	0.9999	0.9999
1	STE _{Selection}	0.8259	0.9310	0.9302
1	$SE_{Selection}$	0.8172	0.9319	0.9361
1	STE _{NoSelection}	0.8279	0.9356	0.9362
1	ALLSelection	0.8271	0.9374	0.9416
/	CE _{Selection}	0.8654	0.9478	0.9503
1	SE _{NoSelection}	0.8259	0.9362	0.9404
1	CE _{NoSelection}	0.8639	0.9524	0.9546