

Факультет программной инженерии и компьютерной техники Вычислительная математика

Лабораторная работа №3(1) - Решение нелинейных уравнений Методы половинного деления, касательных для одного уравнения; простых итераций для системы уравнений

Преподаватель: Перл Ольга Вячеславовна

Выполнили: Кульбако Артемий Юрьевич Р3212

Описание метода

Метод половинного деления:

На некотором интервале [a; b] вычисляем x_i :

$$x_i = \frac{a_i + b_i}{2}$$

Если $f(x_i) \le \varepsilon$ - завершаем итерационный процесс, иначе в качестве нового интервала берём ту половину отрезка, на концах которого функция имеет разные знаки: $[a; x_i]$ если $f(a) \cdot f(x_i) < 0$, или $[b; x_i]$ если $f(b) \cdot f(x_i) < 0$, и повторяем вычисления.

Касательных:

На некотором интервале [a;b] функция y=f(x) заменяется касательной, и в качестве приближенного значения принимается точка пересечения касательной с осью абсцисс.

Начальное приближение, обеспечивающее быструю сходимость, считается по формуле:

$$x_0 = \max\{f(a) \cdot f''(a); f(b) \cdot f''(b)\} > 0$$

Находим показатель λ для интервала:

$$\lambda = \frac{f(x_0)}{f'(x_0)}$$

Вычисляем x_i по формуле:

$$x_i = x_{i-1} - \frac{f(x_{i-1})}{f'(x_{i-1})}$$

пока $|f(x_i)| > \varepsilon$.

Простой итерации для СНАУ:

Все уравнения системы

$$\begin{cases} f_i(x_1..x_n) = 0\\ ...\\ f_n(x_1..x_n) = 0 \end{cases}$$

Преобразуем к виду:

$$\begin{cases} x_1 = \varphi_1(x_1, \dots x_n) \\ \dots \\ x_n = \varphi_n(x_1, \dots x_n) \end{cases}$$

Если выбрано некоторое начальное приближение

$$x^{(0)} = (x_1^{(0)} ... x_n^{(0)})$$

, то последующие приближения находятся по формулам:

$$\begin{cases} x_1^{(i+1)} = \varphi_1(x_1^{(i)}, \dots x_n) \\ \dots \\ x_n^{(i+1)} = \varphi_n(x_1^{(i)}, \dots x_n) \end{cases}$$

Находить новые приближения до тех пор, пока

$$\Delta^i = \max \left| x_n^i - x_n^{i-1} \right| <= \varepsilon$$

Вывод

+	-
Метод половинного деления	
 Обладает абсолютной сходимостью (близость получаемого численного решения задачи к истинному решению) устойчив к ошибкам округления Метод хорд 	• линейная сходимость
• быстрая сходимость при	• линейная сходимость
$f(x) \cdot f''(x) > 0$	• выбор начального приближения
Касательных (Ньютона)	
• квадратичная сходимость	вычисления производныхвыбор начального приближения
Простых итерации	
• сходимость со скоростью геометрической прогрессии если в окрестности корня $0 \le \varphi'(x) \le 1$ и $ \varphi'(x) = const$	• вычисление производных • выбор начального приближения • очень медленная сходимость при $ \varphi'(x) \approx 1$
Простой итерации для СНАУ чуть проще чем Ньютона для 	• KNOKNO CHOWNOG DOORNOONIG NO DO
СНАУ	 крайне сложная реализация из-за требования преобразовывать уравнения системы вычисление производных очень медленная сходимость при φ'(x) ≈ 1
Метод касательных (Ньютона) для СНАУ	
• быстрее простой итерации для СНАУ	 крайне сложная реализация из-за матрицы Якоби
	• вычисление производных

Примеры

Блок-схемы

Метод половинного деления:

Метод касательных:

Метод простой итерации:

