\mathcal{U} -Bootstrap percolation

Leo Davy Martin Gjorgjevski Alexandre Pak

ENS Lyon M2 Advanced Mathematics

March 2022

Outline of the presentation

- **1** Introduction to \mathcal{U} -bootstrap and examples
- Universality classes and stable directions
- critical densities
- Applications of critical densities on Spiral and DTBP
- 5
- Conclusion and open questions

Definition

For $u \in \mathbb{S}^1$ and $\theta \in [-\pi, \pi]$

$$d_u^{ heta} = \inf \left\{ q \in [0,1], \sum_n n \mathbb{P}_q(0 \notin [((A \cup V_{u,u+ heta} \cap B_n)]) < \infty
ight\}$$

Morally, it is the critical probability with infection of $V_{u,u+\theta} = \mathbb{H}_u \cap \mathbb{H}_{u+\theta}$.

Definition

We call $u \mapsto d_u = \max(d_u^+, d_u^-)$, where $d_u^{\pm} := \lim_{\theta \to 0^{\pm}}$, the *critical density function* of the model.

Theorem

$$\tilde{q}_c = \sup_{u \in \mathbb{S}^1} d_u$$

d_u and \tilde{q}_c

$$\textit{d}_{\textit{u}}^{\theta} := \inf\{q \in [0,1], \sum_{\textit{n}} \textit{n} \mathbb{P}_{\textit{q}}(0 \notin [((\textit{A} \cup \textit{V}_{\textit{u},\textit{u}+\theta} \cap \textit{B}_{\textit{n}})]) < \infty\}$$

$$\tilde{q}_c := \inf\{q \in [0,1], \sum_n n\theta_n(q) < \infty\}$$

Observing

$$\theta_n(q) := \mathbb{P}_q(0 \notin [A \cap B_n]) \geq \mathbb{P}_q(0 \notin [((A \cup V_{u,u+\theta} \cap B_n)])$$

Proposition

$$d_u^{ heta} \leq ilde{q}_c$$

d_u and \tilde{q}_c

Using the previous observation we obtain

$$\tilde{q}_c \ge \sup_{u \in \mathbb{S}^1} \ge \inf_{C \in \mathcal{C}} \sup_{u \in C} d_u$$

Thus, to prove the equality, it is left to prove

$$\tilde{q}_c \leq \inf_{C \in \mathcal{C}} \sup_{u \in C} d_u$$

which means "at $q=\inf_C\sup_{u\in C}d_u$, it holds that $\sum_n n\theta_n(q)$ is finite". In even simple words, $\theta_n(q)$ decays sufficiently fast when q is the maximal critical density of any semi-circle. A consequence of classification in universality classes is that for any q>0, it is true that $\sum_n n\theta_n(q)<\infty$ for critical and super-critical models.

Proving inf sup $d_u = \tilde{q}_c$

Sketch of the proof

- Pick a q' slightly larger than sup_u d_u
- 2 At such a q', some infected sets with specific structure, will grow into larger infected sets of the same structure
- 3 Such sets will infect the origin after a sufficiently long time

Things to check

- The proof must not depend on a specific choice of semi-circle
- 2 It must hold for every $q' > \sup d_u$

The "structured sets" will be droplets, with sides $(u_i)_{i=1}^n$ depending on $\inf \sup d_u$.

Then split q' as $q' = \varepsilon + \sup d_u$ and study the percolation as the union of two percolations

- **1** In the " ε -percolation", there exists a droplet of size L
- ② In the "sup d_u -percolation", a droplet of size L grows into a droplet of size $(1 + \delta)L$, for some $\delta > 0$.

Theorem

For any update rules U,

$$q_c \leq \tilde{q}_c = \sup_{u \in \mathbb{S}^1} d_u = \inf_{C \in \mathcal{C}} \sup_{u \in C} d_u.$$

In particular, if \mathcal{U} is not subcritical, then $\tilde{q}_c = 0$.

So, having knowledge on $u \mapsto d_u$ allows to upper bound q_c ...

Proposition

For any sub-collection of rules $\mathcal{U}' \subset \mathcal{U}$

$$q_c(\mathcal{U}) \leq \tilde{q}_c(\mathcal{U}) \leq \inf_{C \in \mathcal{C}} \sup_{u \in C} d_u(\mathcal{U}')$$

... and it is not even necessary to know the critical density for the whole set of rules to get such bounds!

The basic bound, application to DTBP

Directed Triangular Bootstrap Percolation consists of 3 rules, each rule checking two vertices to infect a new vertex. The basic bound consists in applying the previous bound on one rule, e.g. $\mathcal{U}' = \{(-1, -1), (0, 1)\}.$

Observing that L(x, y) = (x, y - x) sends \mathcal{U}' to $\{(-1, 0), (0, 1)\}$, the latter is Oriented Percolation, rotated by $\pi/4$.

Applying the basic bound gives

$$q_c(DTBP) \leq \sup_{u \in C} \min_i (\{U_i\}) \leq \sup_{u' \in C} d_{u'}^{OP}.$$

Once explicit values are computed for OP, we will obtain a bound on $q_c(DTBP)$.¹

 $^{^1\}text{Spoiler:}$ This will improve the previous best known bound from 0.312 to 0.245 \cdots .

The second level bound, application to Spiral

However, the basic bound is not tight and it is even to find two rules U_1 , U_2 such that $d(\{U_1, U_2\})$ is always strictly smaller that $\min(d(\{U_1\}), d(\{U_2\}))$.

A bright side of the general bound we obtained is that it can be applied for any sub-collection of rules. The Spiral model is an example where computing critical density for all pairs of rules can be done and gives a tight result.

Theorem

3.3 of 61

$$q_c = 1 - p_c^{OP} = \tilde{q}_c$$