Advance Computer Architecture and x86 ISA

University of Science and Technology of Hanoi

MS. LE Nhu Chu Hiep

Midterm Projects

Topics

• Implementation of a perceptron in machine learning context

Perceptron: weighted sum

Calculation

$$\operatorname{out}_1 = w_0 + x_1 w_1 + \ldots + x_{n-1} w_{n-1} + x_n w_n$$

Perceptron: Step Function

Calculation

$$\operatorname{out}_2 = f(\operatorname{out}_1)$$

Function (ReLU)

$$f(x) = egin{cases} x & ext{if } x > 0 \ 0 & otherwise \end{cases}$$

Todo Work

Tasks

• Step 1:

- Write assembly code of Perceptron algorithm
- Test the code with JSimVEM simulator tool
- Note the results produce by this code

Step 2:

- Load the same code to JSimRisc
- Configure the processor with 6 pipeline stages
- Analyze how many cycles are saved with the bypass technique
- Analyze where are the main problem in the code
- Data dependencies

Tasks (cont.)

• Step 3:

- Load the same code in JSimRisc
- Configure the processor with 8 pipeline stages
- Analyze how many cycles are saved with the bypass technique
- Conclusion about the bypass technique

Step 4:

- For 6 pipeline stages
- Explain which technique for branch instructions could be interesting
- Test static and dynamic prediction

Tasks (cont.)

Step 5:

- For 6 pipeline stages
- If the delayed branch technique is selected, what much be done before executing the code?
- Without optimization, how many cycles are necessary with this technique?
- Try to optimize the code, to reduce the number of cycles

Step 6:

- For 6 pipeline stages
- Extract the data memory accesses with JSimRisc
- Use the cache simulator to see the memory access trace
- With a cache size of 64 elements, try different cache configurations
- Try to find the best cache configuration, and explain your choice

Requirements & Submission

Requirements & Submission

Requirements

- Work in individual
- Provide executable code
- Provide report describes
 - Your implementation
 - Your input and output mechanism
 - Answer of all todo work

Submission

- Deadline: 15/05/2024
- Push all required files to a directory
- Compress the directory to a file with name "<STUDENT_ID>-<STUDENT_NAME>-midterm.zip"
- Submit zip file to USTH Moodle

Thank you for you listening