GEOMETRY OF k-FUNCTORS

1. Introduction

In these notes we introduce functorial approach to algebraic geometry. Our aim is to show that functorial and geometrical techniques are interrelated in a very efficient way.

Throughout these notes k is a fixed commutative ring and \mathbf{Alg}_k denote the category of commutative k-algebras. If A, B are k-algebras, then we denote by $\mathrm{Mor}_k(A,B)$ the set of all morphisms $A \to B$ of k-algebras. Similarly if X, Y are k-schemes (i.e. schemes together with morphism to $\mathrm{Spec}(k)$), then we denote by $\mathrm{Mor}_k(X,Y)$ the set of all morphisms $X \to Y$ of k-schemes (morphisms of schemes that preserve structure morphisms to $\mathrm{Spec}(k)$).

2. k-functors

Definition 2.1. The category $Fun(Alg_k, Set)$ of copresheaves on Alg_k is called *the category of k-functors*.

If $\mathfrak X$ and $\mathfrak Y$ are k-functors, then we denote by $\operatorname{Mor}_k(\mathfrak X,\mathfrak Y)$ the class of morphisms $\mathfrak X \to \mathfrak Y$ of k-functors. If $\sigma:\mathfrak X \to \mathfrak Y$ is a morphism of k-functors, then for every k-algebra A we denote by σ^A the corresponding component of σ .

Let $\mathfrak X$ and $\mathfrak Y$ be A-functors for some k-algebra A. Then we denote by $\operatorname{Mor}_A(\mathfrak X,\mathfrak Y)$ the class of morphisms of A-functors $\mathfrak X \to \mathfrak Y$. For every A-algebra B and a morphism $\sigma: \mathfrak X \to \mathfrak Y$ of A-functors we denote by $\mathfrak X_B$, $\mathfrak Y_B$, σ_B the restrictions $\mathfrak X_{|\mathbf{Alg}_B}$, $\mathfrak Y_{|\mathbf{Alg}_B}$, $\sigma_{|\mathbf{Alg}_B}$ of these entities to the category of B-algebras.

Fact 2.2. Let \mathfrak{X} and \mathfrak{Y} be k-functors. Assume that A is a k-algebra, B is an A-algebra, C is an B-algebra. Then the composition of maps of classes

$$\operatorname{Mor}_{A}(\mathfrak{X}_{A},\mathfrak{Y}_{A}) \xrightarrow{\sigma \mapsto \sigma_{B}} \operatorname{Mor}_{B}(\mathfrak{X}_{B},\mathfrak{Y}_{B}) \xrightarrow{\sigma \mapsto \sigma_{C}} \operatorname{Mor}_{C}(\mathfrak{X}_{C},\mathfrak{Y}_{C})$$

equals

$$\operatorname{Mor}_{A}(\mathfrak{X}_{A},\mathfrak{Y}_{A}) \xrightarrow{\sigma \mapsto \sigma_{C}} \operatorname{Mor}_{C}(\mathfrak{X}_{C},\mathfrak{Y}_{C})$$

Proof. Left to the reader.

We denote by $\mathbf{1}$ a k-functor that assigns to every k-algebra a set with one element. Then for every k-algebra A the restriction $\mathbf{1}_A$ is a terminal object in the category of A-functors.

Fact 2.3. Let \mathfrak{X} be a k-functor. Suppose A is a k-algebra and $x \in \mathfrak{X}(A)$. Then x determines a morphism $\mathbf{1}_A \to \mathfrak{X}_A$ that for every A-algebra B with structural morphism $f: A \to B$ sends a unique element of $\mathbf{1}_A(B)$ to $\mathfrak{X}(f)(x) \in \mathfrak{X}_A(B)$. This gives rise to a bijection

$$\mathfrak{X}(A) \cong \operatorname{Mor}_{A} (\mathbf{1}_{A}, \mathfrak{X}_{A})$$

Proof. Left to the reader as an exercise.

Definition 2.4. Let \mathfrak{X} be a k-functor and A be a k-algebra. The set $\mathfrak{X}(A)$ is called *the set of A-points of* \mathfrak{X} .

1

The discussion below is partially an application of the main result in [Mon19a, section 6]. For reader's convenience we make our presentation self-contained.

Definition 2.5. Let $\mathfrak{X},\mathfrak{Y}$ be k-functors. Let \mathfrak{J} be a k-functor such that $\mathfrak{J}(A)$ is a subset of a class $\operatorname{Mor}_A(\mathfrak{X}_A,\mathfrak{Y}_A)$ for every k-algebra A. Assume that for every morphism $f:A\to B$ of k-algebras and every $\sigma\in\mathfrak{J}(A)$ we have

$$\mathfrak{J}(f)(\sigma) = \sigma_B$$

where $\sigma_B \in \text{Mor}_B(\mathfrak{X}_B, \mathfrak{Y}_B)$ is the restriction of σ along f. Then we call \mathfrak{J} *a k-subfunctor of internal hom of* \mathfrak{X} *and* \mathfrak{Y} .

Let \mathfrak{X} , \mathfrak{Y} be k-functors. Suppose next that \mathfrak{U} is a k-functor and $\sigma: \mathfrak{U} \times \mathfrak{X} \to \mathfrak{Y}$ is a morphism of k-functors. We denote by $i_z: \mathbf{1}_A \to \mathfrak{U}_A$ the morphism of A-functors corresponding to z by means of Fact 2.3. Since $\mathbf{1}_A$ is terminal A-functor, a morphism $\sigma_A \cdot (i_z \times 1_{\mathfrak{X}_A})$ is isomorphic to a morphism $\sigma_z: \mathfrak{X}_A \to \mathfrak{Y}_A$ of A-functors.

Definition 2.6. Let $\mathfrak{X},\mathfrak{Y},\mathfrak{U}$ be k-functors and let $\sigma:\mathfrak{U}\times\mathfrak{X}\to\mathfrak{Y}$ be a morphism of k-functors. Suppose that \mathfrak{J} is a k-subfunctor of internal hom of \mathfrak{X} and \mathfrak{Y} . Assume that $\sigma_z:\mathfrak{X}_A\to\mathfrak{Y}_A$ is contained in $\mathfrak{J}(A)$ for every k-algebra A and $z\in\mathfrak{U}(A)$. Then we call σ a family of \mathfrak{J} -morphisms parametrized by \mathfrak{U} .

We continue the previous discussion. Let $\mathfrak J$ be a k-subfunctor of internal hom of $\mathfrak X$ and $\mathfrak D$. Assume that $\sigma: \mathfrak U \times \mathfrak X \to \mathfrak D$ is a $\mathfrak J$ -family of morphism parametrized by $\mathfrak U$. Then $z \mapsto \sigma_z$ gives rise to a morphism $\tau: \mathfrak U \to \mathfrak J$ of k-functors. Indeed, for a morphism $f: A \to B$ of k-algebras and $z \in \mathfrak U(A)$ we have

$$\sigma_B \cdot (i_{\mathfrak{U}(f)(z)} \times 1_{\mathfrak{X}_B}) = (\sigma_A \cdot (i_z \times 1_{\mathfrak{X}_A}))_B$$

and hence $\sigma_{\mathfrak{U}(f)(z)} = (\sigma_z)_B$. This gives rise to a map Φ of classes

$$\left\{ \text{families } \mathfrak{U} \times \mathfrak{X} \to \mathfrak{Y} \text{ of } \mathfrak{J}\text{-morphisms parametrized by } \mathfrak{U} \right\} \ni \sigma \mapsto \tau \in \text{Mor}_k \left(\mathfrak{U}, \mathfrak{J} \right)$$

Consider next a morphism $\tau: \mathfrak{U} \to \mathfrak{J}$ of k-functors and define $\sigma: \mathfrak{U} \times \mathfrak{X} \to \mathfrak{Y}$ by formula $\sigma^A(z,x) = \left(\tau^A(z)\right)^A(x)$ for every k-algebra A and points $z \in \mathfrak{U}(A)$, $x \in \mathfrak{X}(A)$. Let $f: A \to B$ be a morphism of k-algebras. Then

$$\sigma^{B}\left(\mathfrak{U}(f)(z),\mathfrak{X}(f)(x)\right) = \left(\tau^{B}\left(\mathfrak{U}(f)(z)\right)\right)^{B}\left(\mathfrak{X}(f)(x)\right) = \left(\left(\tau^{A}(z)\right)_{B}\right)^{B}\left(\mathfrak{X}(f)(x)\right) = \left(\tau^{A}(z)\right)^{B}\left(\mathfrak{X}(f)(x)\right) = \mathfrak{Y}(f)\left(\left(\tau^{A}(z)\right)^{A}(x)\right) = \mathfrak{Y}(f)\left(\sigma^{A}(z,x)\right)$$

Thus $\sigma: \mathfrak{U} \times \mathfrak{X} \to \mathfrak{Y}$ is a morphism of k-functors. For every k-algebra A and $z \in \mathfrak{U}(A)$ we have $\sigma_z = \tau^A(z)$. Indeed, let $f: A \to B$ be a morphism of k-algebras and x be an element in $\mathfrak{X}(B)$ then we have

$$(\sigma_z)^B(x) = \sigma^B(\mathfrak{U}(f)(z), x) = \left(\tau^B(\mathfrak{U}(f)(z))\right)^B(x) = \left(\left(\tau^A(z)\right)_B\right)^B(x) = \left(\tau^A(z)\right)^B(x)$$

Hence σ is a family of \mathfrak{J} -morphisms parametrized by \mathfrak{U} . This gives rise to a map Ψ of classes

$$\operatorname{Mor}_{k}(\mathfrak{U},\mathfrak{J})\ni\tau\mapsto\sigma\in\left\{ \operatorname{families}\mathfrak{U}\times\mathfrak{X}\to\mathfrak{Y} \text{ of }\mathfrak{J}\operatorname{-morphisms} \text{ parametrized by }\mathfrak{U} \right\}$$

Now we have the following result, which is an instance [Mon19a, Theorem 6.3]. To make presentation self-contained we give a complete proof.

Theorem 2.7. Let \mathfrak{X} , \mathfrak{Y} be k-functors and let \mathfrak{J} be a k-subfunctor of internal hom of \mathfrak{X} and \mathfrak{Y} . Then maps

$$\Phi:\left\{families\ \mathfrak{U}\times\mathfrak{X}\to\mathfrak{Y}\ of\ \mathfrak{J}\text{-morphisms}\ parametrized\ by\ \mathfrak{U}\right\}\to\operatorname{Mor}_k\left(\mathfrak{U},\mathfrak{J}\right)$$

and

$$\Psi: \operatorname{Mor}_k(\mathfrak{U}, \mathfrak{J}) \to \left\{ \text{families } \mathfrak{U} \times \mathfrak{X} \to \mathfrak{Y} \text{ of } \mathfrak{J}\text{-morphisms parametrized by } \mathfrak{U} \right\}$$

are mutually inverse bijections.

Proof. Pick a morphism $\tau: \mathfrak{U} \to \mathfrak{J}$ of *k*-functors. Let *A* be a *k*-algebra and $z \in \mathfrak{U}(A)$. In the discussion preceding the statement we showed that $\Psi(\tau)_z = \tau^A(z)$. Thus

$$\left(\Phi(\Psi(\tau))\right)^A(z) = \Psi(\tau)_z = \tau^A(z)$$

and hence $\Phi\cdot\Psi$ is the identity.

Pick a family of \mathfrak{J} -morphism $\sigma: \mathfrak{U} \times \mathfrak{X} \to \mathfrak{Y}$ parametrized by \mathfrak{U} . Let A be a k-algebra and $z \in \mathfrak{U}(A)$, $x \in \mathfrak{X}(A)$ be points. Then

$$\left(\Psi\left(\Phi(\sigma)\right)\right)^{A}(z,x) = \left(\Phi(\sigma)^{A}(z)\right)^{A}(x) = \sigma_{z}^{A}(x) = \sigma^{A}(z,x)$$

Thus $\Psi \cdot \Phi$ is the identity map.

Now we formulate direct consequences of Theorem 2.7.

Definition 2.8. Let \mathfrak{X} and \mathfrak{Y} be k-functors and suppose that for every k-algebra A the class $\operatorname{Mor}_A(\mathfrak{X}_A, \mathfrak{Y}_A)$ is a set. We define

$$\mathcal{M}$$
or _{k} $(\mathfrak{X},\mathfrak{Y})(A) = \operatorname{Mor}_{A}(\mathfrak{X}_{A},\mathfrak{Y}_{A})$

for every k-algebra A. This is a k-functor. Indeed, for every k-algebra A and A-algebra B we can compose a morphism $\sigma: \mathfrak{X}_A \to \mathfrak{Y}_A$ of k-functors with the forgetful functor $\mathbf{Alg}_B \to \mathbf{Alg}_A$. This induces a map

$$\mathcal{M}$$
or _{k} $(\mathfrak{X},\mathfrak{Y})(A) \ni \sigma \mapsto \sigma_B \in \mathcal{M}$ or _{k} $(\mathfrak{X},\mathfrak{Y})(B)$

and according to Fact 2.2 these maps make \mathcal{M} or $_k(\mathfrak{X},\mathfrak{Y})$ a k-functor. The k-functor \mathcal{M} or $_{\mathcal{C}}(\mathfrak{X},\mathfrak{Y})$ is called a hom k-functor of \mathfrak{X} and \mathfrak{Y} .

Corollary 2.9. Let $\mathfrak{X}, \mathfrak{Y}$ be k-functors. Assume that for every k-algebra A the class $\operatorname{Mor}_A(\mathfrak{X}_A, \mathfrak{Y}_A)$ is a set. Then there is a bijection

$$Mor_k (\mathfrak{U} \times \mathfrak{X}, \mathfrak{Y}) \rightarrow Mor_k (\mathfrak{U}, \mathcal{M}or_k (\mathfrak{X}, \mathfrak{Y}))$$

of classes.

Definition 2.10. Let $\mathfrak{X},\mathfrak{Y}$ be k-functors. If $\mathrm{Iso}_A(\mathfrak{X}_A,\mathfrak{Y}_A)$ is a set for every k-algebra A, then we define a k-subfunctor $\mathcal{I}\mathrm{so}_k(\mathfrak{X},\mathfrak{Y})$ of $\mathrm{Mor}_k(\mathfrak{X},\mathfrak{Y})$ by

$$\mathcal{I}$$
so_k $(\mathfrak{X},\mathfrak{Y})(A) = I$ so_A $(\mathfrak{X}_A,\mathfrak{Y}_A)$

for every k-algebra A. We call $\mathcal{I}so_k(\mathfrak{X},\mathfrak{Y})$ the k-functor of isomorphism.

Definition 2.11. Let $\mathfrak{X}, \mathfrak{Y}, \mathfrak{U}$ be k-functors and let $\sigma: \mathfrak{U} \times \mathfrak{X} \to \mathfrak{Y}$ be a morphism of k-functors. Assume that $\sigma_z: \mathfrak{X}_A \to \mathfrak{Y}_A$ is an isomorphism of A-functors for every k-algebra A. Then we call σ a family of isomorphisms parametrized by \mathfrak{U} .

Corollary 2.12. Let $\mathfrak{U}, \mathfrak{X}, \mathfrak{Y}$ be k-functors and suppose that for every k-algebra A the class Iso_A $(\mathfrak{X}_A, \mathfrak{Y}_A)$ is a set. The the following map

$$\left\{ \textit{families} \ \mathfrak{U} \times \mathfrak{X} \rightarrow \mathfrak{Y} \ \textit{of isomorphism parametrized by} \ \mathfrak{U} \right\} \rightarrow \operatorname{Mor}_k \left(\mathfrak{U}, \mathcal{I} so_k \left(\mathfrak{X}, \mathfrak{Y} \right) \right)$$

3. Zariski local k-functors and Zariski sheaves

In this part we use the notion of a Grothendieck topology on a category. For this notion we refer the reader to [Mon19b].

Definition 3.1. Let $\{f_i : X_i \to X\}_{i \in I}$ be a family of morphisms of k-schemes. We say that $\{f_i\}_{i \in I}$ is a *Zariski covering of X* if the following conditions are satisfied.

- (1) For every $i \in I$ morphism f_i is an open immersion of schemes.
- (2) Morphism $\coprod_{i \in I} X_i \to X$ induced by $\{f_i\}_{i \in I}$ is surjective.

The collection of all Zariski coverings on \mathbf{Sch}_k is a Grothendieck pretopology.

Definition 3.2. We call the Grothendieck topology generated by the pretopology consisting of Zariski coverings on \mathbf{Sch}_k the Zariski topology on \mathbf{Sch}_k . A presheaf on \mathbf{Sch}_k that is a sheaf with respect to Zariski topology on \mathbf{Sch}_k is called a Zariski sheaf.

Let $\mathfrak X$ be a presheaf on the category of k-schemes. Recall that by [Mon19b, Theorem 3.5] $\mathfrak X$ is a Zariski sheaf if and only if for every k-scheme X and for every Zariski covering $\{f_i: X_i \to X\}$ of X the diagram

$$\mathfrak{X}(X) \xrightarrow{(\mathfrak{X}(f_i))_{i \in I}} \prod_{i \in I} \mathfrak{X}(X_i) \xrightarrow{(\mathfrak{X}(f'_{ij}) \cdot pr_i)_{(i,j)}} \prod_{(i,j) \in I \times I} \mathfrak{X}(X_i \times_X X_j)$$

is a kernel of a pair of arrows, where for every $(i,j) \in I \times I$ morphisms f'_{ij} and f''_{ij} form a cartesian square

$$X_{i} \times_{X} X_{j} \xrightarrow{f''_{ij}} X_{j}$$

$$\downarrow^{f_{ij}} \qquad \qquad \downarrow^{f_{j}}$$

$$X_{i} \xrightarrow{f_{i}} X$$

Now we repeat this definitions for *k*-algebras and *k*-functors.

Definition 3.3. Let $\{f_i : A \to A_i\}_{i \in I}$ be a family of morphisms of k-algebras. We say that $\{f_i\}_{i \in I}$ is a *Zariski covering of A* if the following conditions are satisfied.

- (1) For every $i \in I$ morphism Spec f_i is an open immersion of schemes.
- (2) Morphism $\coprod_{i \in I} \operatorname{Spec} A_i \to \operatorname{Spec} A$ induced by $\left\{ \operatorname{Spec} f_i \right\}_{i \in I}$ is surjective.

The collection of all Zariski coverings on \mathbf{Alg}_k induces on its opposite category \mathbf{Aff}_k of affine k-schemes a Grothendieck pretopology.

Definition 3.4. We call the Grothendieck topology generated by the pretopology consisting of Zariski coverings on \mathbf{Aff}_k the Zariski topology on \mathbf{Aff}_k . A k-functor that is a sheaf with respect to Zariski topology on \mathbf{Aff}_k is called a Zariski local k-functor.

Let \mathfrak{X} be a k-functor. Again by [Mon19b, Theorem 3.5] \mathfrak{X} is a Zariski local k-functor if and only if for every k-algebra A and for every Zariski covering $\{f_i : A \to A_i\}$ of A the diagram

$$\mathfrak{X}(A) \xrightarrow{(\mathfrak{X}(f_i))_{i \in I}} \prod_{i \in I} \mathfrak{X}(A_i) \xrightarrow{(\mathfrak{X}(f''_{ij}) \cdot pr_i)_{(i,j)}} \prod_{(i,j) \in I \times I} \mathfrak{X}(A_i \otimes_A A_j)$$

is a kernel of a pair of arrows, where for every $(i, j) \in I \times I$ morphisms f'_{ij} and f''_{ij} form a cocartesian square

$$\begin{array}{ccc}
A & \xrightarrow{f_j} & A_j \\
\downarrow^{f_i} & & \downarrow^{f'_{ji}} \\
A_i & \xrightarrow{f'_{ij}} & A_i \otimes_A A_j
\end{array}$$

Now we state the main result of this section.

Theorem 3.5. Let

$$\widehat{\mathbf{Sch}_k}$$
 \longrightarrow the category of k -functors

be the restriction of presheaves on \mathbf{Sch}_k to copresheaves on \mathbf{Alg}_k (k-functors) induced by the contravariant functor $\mathrm{Spec}: \mathbf{Alg}_k \to \mathbf{Sch}_k$. Then it induces an equivalence of categories between Zariski sheaves on \mathbf{Sch}_k and Zariski local k-functors.

Proof. Note that \mathbf{Aff}_k with Zariski topology is a dense subsite ([Mon19b, definition 4.4]) of \mathbf{Sch}_k with Zariski topology. Hence the result is a special case of a more general theorem [Mon19b, Theorem 4.6].

Proposition 3.6. Let $\sigma: \mathfrak{X} \to \mathfrak{Y}$ be a monomorphism of k-functors and \mathfrak{Y} be a Zariski local k-functor. Assume that for every k-algebra A and every morphism $\tau: \mathfrak{B}_{\operatorname{Spec} A} \to \mathfrak{Y}$ of k-functors there exist a Zariski local k-functor \mathfrak{F} that fits into a cartesian square

$$\begin{array}{ccc}
3 & \longrightarrow & \mathfrak{X} \\
\downarrow & & \downarrow \sigma \\
\mathfrak{B}_{\operatorname{Spec} A} & \longrightarrow & \mathfrak{Y}
\end{array}$$

Then \mathfrak{X} *is a Zariski local k-functor.*

Proof. Suppose that A is a k-algebra and S is a covering sieve on A with respect to Zariski topology. Recall that by [Mon19b, page 2] we may consider S as a subcopresheaf of $\mathfrak{B}_{\operatorname{Spec} A}$. Suppose that $\tau: \mathfrak{B}_{\operatorname{Spec} A} \to \mathfrak{Y}$ and $m: S \to \mathfrak{X}$ are morphisms of k-functors such that $\sigma \cdot m$ is equal to the composition of $S \hookrightarrow \mathfrak{B}_{\operatorname{Spec} A}$ with τ . Next there exists a Zariski local k-functor \mathfrak{Z} that fits into a cartesian square

$$3 \xrightarrow{\tau'} \mathfrak{X} \\
\downarrow^{\sigma} \\
\mathfrak{B}_{\text{Spec } A} \xrightarrow{\tau} \mathfrak{Y}$$

of *k*-functors. By universal property of cartesian squares there exists a unique morphism $n: S \to \mathfrak{Z}$ of *k*-functors such that the diagram

is commutative. Since $\mathfrak Z$ is Zariski local, there exists a morphism $\rho: \mathfrak B_{\operatorname{Spec} A} \to \mathfrak Z$ such that $\rho_{|S} = n$. Then $(\tau' \cdot \rho)_{|S} = \tau' \cdot n = m$ and hence matching family m admits an amalgamation. Since σ is a monomorphism, this suffices to prove that $\mathfrak X$ is a Zariski local k-functor.

4. Schemes and their functors of points

Let *X* be a *k*-scheme. We define a *k*-functor \mathfrak{P}_X by formula

$$\mathfrak{P}_X(A) = \operatorname{Mor}_k(\operatorname{Spec} A, X)$$

That is \mathfrak{P}_X is the restriction of the presheaf on \mathbf{Sch}_k represented by X to the category \mathbf{Alg}_k along the functor $\mathrm{Spec}: \mathbf{Alg}_k \to \mathbf{Sch}_k$. Next if $f: X \to Y$ is a morphism of k-schemes, then \mathfrak{P}_f is the restriction of a morphism of presheaves on \mathbf{Sch}_k represented by f to the category of k-algebras along $\mathrm{Spec}: \mathbf{Alg}_k \to \mathbf{Sch}_k$. Thus we have a functor

$$\mathbf{Sch}_k \xrightarrow{\mathfrak{P}}$$
 the category of *k*-functors

Fact 4.1. Functor

$$\mathbf{Sch}_k \xrightarrow{\mathfrak{P}}$$
 the category of *k*-functors

is full, faithful and its image consists of Zariski local k-functors. Moreover, $\mathfrak B$ preserves limits.

Proof. Note that the presheaf h_X on \mathbf{Sch}_k represented by X is a Zariski sheaf. Indeed, this just rephrases standard fact that morphism of schemes can be glued in Zariski topology. Next according to Theorem 3.5 the functor $\mathrm{Spec}: \mathbf{Alg}_k \to \mathbf{Sch}_k$ induces an equivalence between the category of Zariski sheaves and the category of local Zariski k-functors. Thus \mathfrak{P}_X is a local Zariski k-functor and \mathfrak{B} it is full and faithful. Note that Yoneda embedding $h: \mathbf{Sch}_k \to \overline{\mathbf{Sch}_k}$ and the functor

$$\widehat{\mathbf{Sch}_k} \xrightarrow{\text{induced by Spec}} \text{the category of } k\text{-functors}$$

preserve limits. Thus their composition $\mathfrak B$ also preserves limits.

Definition 4.2. Let *X* be a *k*-scheme. Then \mathfrak{P}_X is called *the k-functor of points of X*.

Finally note that for every k-algebra A we have an identification $\mathfrak{P}_{\operatorname{Spec} A} = \operatorname{Hom}_k(A, -)$ and this identification is natural with respect to A. In other words $\mathfrak{B} \cdot \operatorname{Spec}$ is the (co)Yoneda embedding of Alg_k into the category of k-functors.

Suppose now that A is a k-algebra and $\mathfrak{a} \subseteq A$ is an ideal. Then we define $V(\mathfrak{a}) = \operatorname{Spec} A/\mathfrak{a}$ as a closed subscheme $\operatorname{Spec} A$ induced by the quotient morphism $A \to A/\mathfrak{a}$. We define an open subscheme $D(\mathfrak{a}) = \operatorname{Spec} A \setminus V(\mathfrak{a})$ of $\operatorname{Spec} A$.

Definition 4.3. Let $\sigma: \mathfrak{X} \to \mathfrak{Y}$ be a morphism of k-functors. Assume that for every k-algebra A and every morphism $\tau: \mathfrak{B}_{\operatorname{Spec} A} \to \mathfrak{Y}$ of k-functors there exist an ideal \mathfrak{a} in A and a morphism $\tau': \mathfrak{B}_{D(\mathfrak{a})} \to \mathfrak{X}$ of k-functors such that the square

$$\mathfrak{B}_{D(\mathfrak{a})} \xrightarrow{\tau'} \mathfrak{X}$$

$$\downarrow^{\sigma}$$

$$\mathfrak{B}_{\operatorname{Spec} A} \xrightarrow{\tau} \mathfrak{Y}$$

is cartesian. Then σ is an open immersion of k-functors.

Fact 4.4. *The class of open immersions of k-functors is closed under base change and composition.*

Proof. Left to the reader.
$$\Box$$

Definition 4.5. Let \mathfrak{X} be a k-functor and $\{\sigma_i : \mathfrak{X}_i \to \mathfrak{X}\}_{i \in I}$ be a family of open immersions. Then for every k-algebra A and $x \in \mathfrak{X}(A)$ we have a family of ideals $\{\mathfrak{a}_i\}_{i \in I}$ defined by cartesian squares

$$\mathfrak{B}_{D(\mathfrak{a}_i)} \xrightarrow{\tau'} \mathfrak{X}_i$$

$$\downarrow \sigma_i$$

$$\mathfrak{B}_{\operatorname{Spec} A} \xrightarrow{\tau} \mathfrak{X}$$

in which bottom vertical morphism $\tau: \mathfrak{B}_{\operatorname{Spec} A} \to \mathfrak{X}$ corresponds to x. We say that $\{\sigma_i\}_{i\in I}$ is an open cover of \mathfrak{X} if for every k-algebra A and $x \in \mathfrak{X}(A)$ we have

$$\operatorname{Spec} A = \bigcup_{i \in I} D(\mathfrak{a}_i)$$

or in other words $A = \sum_{i \in I} \mathfrak{a}_i$.

Theorem 4.6. Let \mathfrak{X} be a k-functor. Then the following are equivalent.

- (i) \mathfrak{X} is isomorphic with functor of points of some k-scheme.
- (ii) \mathfrak{X} is a Zariski local k-functor and there exists an open cover $\{\sigma_i : \mathfrak{B}_{X_i} \to \mathfrak{X}\}_{i \in I}$ of k-functors for some family $\{X_i\}_{i \in I}$ of k-schemes.
- (iii) \mathfrak{X} is a Zariski local k-functor and there exists an open cover $\{\sigma_i:\mathfrak{B}_{\operatorname{Spec} A_i}\to\mathfrak{X}\}_{i\in I}$ of k-functors for some family $\{A_i\}_{i\in I}$ of k-algebras.

The proof depends on two lemmas. Check [Mon19b, Definition 7.1] for the notion of a locally surjective morphism.

Lemma 4.6.1. Let $f: X \to Y$ be a morphism of k-schemes. Suppose that f is surjective morphism and an open immersion locally on X. Then \mathfrak{B}_f is a locally surjective morphism of Zariski local k-functors.

Proof of the lemma. Let A be a k-algebra and $g: \operatorname{Spec} A \to Y$ be a morphism of k-schemes. Since f is surjective and an open immersion locally on X, there exist a Zariski cover $\{f_i: A \to A_i\}_{i \in I}$ and a family $\{g_i: \operatorname{Spec} A_i \to X\}_{i \in I}$ of morphisms of k-schemes such that $f \cdot g_i = g \cdot \operatorname{Spec} f_i$ for every $i \in I$. This implies that $\mathfrak{B}_f(g_i) = \mathfrak{B}_Y(f_i)(g)$ for every $i \in I$. Thus \mathfrak{B}_f is a locally surjective morphism of Zariski local k-functors.

Lemma 4.6.2. Let $X = \coprod_{i \in I} X_i$, $R = \coprod_{i,j \in I} R_{ij}$ be disjoint sums of k-schemes and let $p,q: R \to X$ be morphisms of k-schemes such that the following conditions are satisfied.

- (1) For any $i, j \in I$ morphism $p_{|R_{ij}}$ induces an open immersion $R_{ij} \hookrightarrow X_i$ and morphism $q_{|R_{ij}}$ induces an open immersion $R_{ij} \hookrightarrow X_j$.
- **(2)** For every $i \in I$ morphisms $p_{|R_{ii}}$ and $q_{|R_{ii}}$ are equal and induce an isomorphisms $R_{ii} \to X_i$.
- **(3)** *Triple* (R, p, q) *is an equivalence relation on* X *in the category of* k-schemes.

Then there exist a k-scheme Y and a morphism $f: X \to Y$ of k-schemes such that

$$\mathfrak{B}_R \xrightarrow{\mathfrak{B}_p} \mathfrak{B}_X \xrightarrow{\mathfrak{B}_f} \mathfrak{B}_Y$$

is a cokernel of a pair $(\mathfrak{B}_{p},\mathfrak{B}_{q})$ in the category of Zariski local k-functors.

Proof of the lemma. Let

$$R \xrightarrow{p \atop a} X \xrightarrow{f} Y$$

be a cokernel in the category of ringed spaces. It exists according to [Mon19c, Remark 2.3]. Moreover, [Mon19c, Theorem 3.2] states that for every $i \in I$ subset $f(X_i)$ is open in Y and we have an isomorphism of ringed spaces $X_i \cong f(X_i)$ induced by f. Therefore, Y is a k-scheme and $f: X \to Y$ is a morphism of k-schemes.

Now we verify that \mathfrak{B}_f is the quotient in the category of Zariski local k-functors. For this note that we proved above that f is open immersion of k-schemes locally on X and it is surjective. Thus by Lemma 4.6.1 we derive that \mathfrak{B}_f is a locally surjective morphism of Zariski local k-functors. Therefore ([Mon19b, Theorem 7.3]), it suffices to show that the square

$$\mathfrak{B}_{R} \xrightarrow{\mathfrak{B}_{q}} \mathfrak{B}_{X} \\
\mathfrak{B}_{p} \downarrow \qquad \qquad \downarrow \mathfrak{B}_{f} \\
\mathfrak{B}_{X} \xrightarrow{\mathfrak{B}_{f}} \mathfrak{B}_{Y}$$

is cartesian. Since B preserves limits (Fact 4.1), we derive that it suffices to check that

$$R \xrightarrow{q} X$$

$$\downarrow p \qquad \qquad \downarrow f$$

$$X \xrightarrow{f} Y$$

is cartesian square of *k*-schemes. By [Mon19c, Remark 2.3] we have $R_{ij} = X_i \times_Y X_j$ for every $i, j \in I$ and hence

$$X \times_Y X = \left(\coprod_{i \in I} X_i\right) \times_Y \left(\coprod_{i \in I} X_i\right) = \coprod_{i,j \in I} \left(X_i \times_Y X_j\right) = \coprod_{i,j \in I} R_{ij} = R$$

Thus the result follows. \Box

Proof of the theorem. If (i) holds, then we may assume that $\mathfrak{X} = \mathfrak{B}_Y$ for some k-scheme Y. Fact 4.1 states that \mathfrak{B}_Y is a Zariski local k-functor and clearly $1_{\mathfrak{B}_Y} : \mathfrak{B}_Y \to \mathfrak{B}_Y$ is an open cover. Thus (i) \Rightarrow (ii).

Every functor of points of a k-scheme admits open cover by functors of points of affine k-schemes. Indeed, it suffices to take open affine subschemes that cover given k-scheme and apply $\mathfrak B$. This implies that every open cover of a k-functor $\mathfrak X$ by functors of points of k-schemes admits refinement by open cover of functors of points of affine k-schemes. Therefore, implication (ii) \Rightarrow (iii) holds.

Suppose that a k-functor $\mathfrak X$ is Zariski local and $\{\sigma_i: \mathfrak B_{\operatorname{Spec} A_i} \to \mathfrak X\}_{i \in I}$ is an open cover of $\mathfrak X$. Note that for every $i,j \in I$ there exist a k-scheme R_{ij} and open immersions $p_{ij}: R_{ij} \to \operatorname{Spec} A_i$, $q_{ij}: R_{ij} \to \operatorname{Spec} A_j$ such that the square

$$\mathfrak{B}_{R_{ij}} \xrightarrow{\mathfrak{B}_{q_{ij}}} \mathfrak{B}_{\operatorname{Spec} A_{j}} \\
\mathfrak{B}_{p_{ij}} \downarrow \qquad \qquad \downarrow \sigma_{j} \\
\mathfrak{B}_{\operatorname{Spec} A_{i}} \xrightarrow{\sigma_{i}} \mathfrak{X}$$

is cartesian. Consider k-scheme $X = \coprod_{i \in I} \operatorname{Spec} A_i$ and morphism $\sigma : \mathfrak{B}_X \to \mathfrak{X}$ induced by $\{\sigma_i\}_{i \in I}$. Moreover, consider k-scheme $R = \coprod_{i,j \in I} R_{ij}$ and morphisms $p,q:R \to X$ induced by $\{p_{ij}\}_{i,j \in I}$ and $\{q_{ij}\}_{i,j \in I}$, respectively. Note that the square

$$\mathfrak{B}_{R} \xrightarrow{\mathfrak{B}_{q}} \mathfrak{B}_{X} \\
\mathfrak{B}_{p} \downarrow \qquad \qquad \downarrow^{\sigma} \\
\mathfrak{B}_{X} \xrightarrow{\sigma} \mathfrak{X}$$

is cartesian and hence $(\mathfrak{B}_R, \mathfrak{B}_p, \mathfrak{B}_q)$ is an equivalence relation. By Lemma 4.6.2 there exist a k-scheme Y and a morphism $f: X \to Y$ such that

$$\mathfrak{B}_R \xrightarrow{\mathfrak{B}_p} \mathfrak{B}_X \xrightarrow{\mathfrak{B}_f} \mathfrak{B}_Y$$

is a cokernel of $(\mathfrak{B}_p, \mathfrak{B}_q)$. Moreover, σ is locally surjective morphism of Zariski local k-functors and hence also

$$\mathfrak{B}_R \xrightarrow{\mathfrak{B}_p} \mathfrak{B}_X \xrightarrow{\sigma} \mathfrak{X}$$

is a cokernel of $(\mathfrak{B}_p, \mathfrak{B}_q)$. Thus \mathfrak{B}_Y is isomorphic with \mathfrak{X} . This proves (iii) \Rightarrow (i).

5. Representable morphisms of k-functors

Definition 5.1. Let $\sigma: \mathfrak{X} \to \mathfrak{Y}$ be a morphism of k-functors. Assume that for every k-algebra A and every morphism $\tau: \mathfrak{B}_{\operatorname{Spec} A} \to \mathfrak{Y}$ of k-functors there exist a k-scheme X, a morphism $f: X \to \operatorname{Spec} A$ and a morphism $\tau': \mathfrak{B}_X \to \mathfrak{X}$ of k-functors such that the square

$$\mathfrak{B}_{X} \xrightarrow{\tau'} \mathfrak{X} \\
\mathfrak{B}_{f} \downarrow \qquad \qquad \downarrow^{\sigma} \\
\mathfrak{B}_{\operatorname{Spec} A} \xrightarrow{\tau} \mathfrak{Y}$$

is cartesian. Then σ is a representable morphism of k-functors.

Fact 5.2. *The class of representable morphisms of k-functors is closed under base change and composition.*

Proof. Left to the reader. \Box

Proposition 5.3. Let $\sigma: \mathfrak{X} \to \mathfrak{Y}$ be a representable morphism of Zariski local k-functors. Fix a k-scheme Y and a morphism $\tau: \mathfrak{B}_Y \to \mathfrak{Y}$. Then there exist a k-scheme X, a morphism $f: X \to Y$ and a morphism $\tau': \mathfrak{B}_X \to \mathfrak{X}$ such that the square

$$\mathfrak{B}_{X} \xrightarrow{\tau'} \mathfrak{X}$$

$$\mathfrak{B}_{f} \downarrow \qquad \qquad \downarrow^{\sigma}$$

$$\mathfrak{B}_{Y} \xrightarrow{\tau} \mathfrak{Y}$$

is cartesian.

Proof. Let

be a cartesian square. According to [Mon19b, Theorem 2.12] k-functor \mathfrak{J} is Zariski local. Suppose that $\{f_i : \operatorname{Spec} A_i \to Y\}_{i \in I}$ is an open cover of Y. Then $\{\mathfrak{B}_{f_i} : \mathfrak{B}_{\operatorname{Spec} A_i} \to \mathfrak{B}_Y\}_{i \in I}$ is an open cover of \mathfrak{B}_Y and hence its base change $\{\tau_i : \mathfrak{J}_i \to \mathfrak{J}\}_{i \in I}$ is an open cover of \mathfrak{J} . Since σ is representable, we deduce that \mathfrak{J}_i is a functor of points of some k-scheme for $i \in I$. Now by Theorem 4.6 we derive that there exists a k-scheme X such that \mathfrak{J} is isomorphic with \mathfrak{B}_X . This proves the result.

Definition 5.4. Let $\sigma: \mathfrak{X} \to \mathfrak{Y}$ be a morphism of k-functors. Assume that for every k-algebra A and every morphism $\tau: \mathfrak{B}_{\operatorname{Spec}_A} \to \mathfrak{Y}$ of k-functors there exist an ideal \mathfrak{a} in A and morphism $\tau': \mathfrak{B}_{V(\mathfrak{a})} \to \mathfrak{X}$ such that the square

$$\mathfrak{B}_{V(\mathfrak{a})} = \mathfrak{B}_{\operatorname{Spec} A/\mathfrak{a}} \xrightarrow{\tau'} \mathfrak{X}$$

$$\mathfrak{B}_{\operatorname{Spec} A} \xrightarrow{\tau} \mathfrak{Y}$$

is cartesian, where $q: A \to A/\mathfrak{a}$ is the quotient map. Then σ is a closed immersion of k-functors.

Fact 5.5. *The class of closed immersions of k-functors is closed under base change and composition.*

Proof. Left to the reader.

Proposition 5.6. Let $\sigma: \mathfrak{X} \to \mathfrak{Y}$ be a closed (open) immersion of k-functors. Fix a k-scheme Y and a morphism $\tau: \mathfrak{B}_Y \to \mathfrak{Y}$. Then there exist a k-scheme X, a closed (open) immersion $f: X \to Y$ of schemes and a morphism $\tau': \mathfrak{B}_X \to \mathfrak{X}$ of k-functors such that the square

$$\mathfrak{B}_{X} \xrightarrow{\tau'} \mathfrak{X}$$

$$\mathfrak{B}_{f} \downarrow \qquad \qquad \downarrow \sigma$$

$$\mathfrak{B}_{Y} \xrightarrow{\tau} \mathfrak{Y}$$

is cartesian.

Proof. According to Fact 5.5 (Fact 4.4) pullback $\mathfrak{X} \times_{\mathfrak{Y}} \mathfrak{B}_Y \to \mathfrak{B}_Y$ of σ along τ is a closed (open) immersion of k-functors. Since \mathfrak{B}_Y is a Zariski local k-functor by Fact 4.1 and closed (open) immersions are monomorphisms, we derive by Proposition 3.6 that a fiber-product $\mathfrak{X} \times_{\mathfrak{Y}} \mathfrak{B}_Y$ of σ and τ is a Zariski local k-functor. Since closed (open) immersions of k-functors are representable, we deduce by Proposition 5.3 that there exists a k-scheme X, a morphism $f: X \to Y$ of k-schemes and a morphism $\tau': \mathfrak{B}_X \to \mathfrak{X}$ of k-functors such that the square

$$\mathfrak{X} \times_{\mathfrak{Y}} \mathfrak{B}_{Y} \cong \mathfrak{B}_{X} \xrightarrow{\tau'} \mathfrak{X}$$

$$\mathfrak{B}_{f} \downarrow \qquad \qquad \downarrow^{\sigma}$$

$$\mathfrak{B}_{Y} \xrightarrow{\tau} \mathfrak{Y}$$

is cartesian and \mathfrak{B}_f is a closed (open) immersion of k-functors. Since the functor

$$\widehat{\mathbf{Sch}_k} \xrightarrow{\mathfrak{B}}$$
 the category of *k*-functors

preserves finite limits, it follows that for every open affine subset V of Y we have a cartesian square

$$\mathfrak{B}_{f^{-1}(V)} \longleftrightarrow \mathfrak{B}_{X}$$

$$\mathfrak{B}_{f_{V}} \longleftrightarrow \mathfrak{B}_{Y}$$

where $f_V: f^{-1}(V) \to V$ is the restriction of f. Next as \mathfrak{B}_f is a closed (open) immersion and V is affine, we derive that f_V is a closed (open) immersion of schemes. Since this holds for every affine open subset V of Y, we deduce that f is a closed (open) immersion.

The next result is frequently used in the theory of algebraic spaces.

Proposition 5.7. Let \mathfrak{Y} be a k-functor such that the diagonal $\mathfrak{Y} \to \mathfrak{Y} \times \mathfrak{Y}$ is representable. Then every morphism $\sigma: \mathfrak{X} \to \mathfrak{Y}$ of k-functors is representable.

Proof. Fix a morphism of k-functors $\sigma: \mathfrak{X} \to \mathfrak{Y}$. Let Y be a k-scheme and let $\tau: \mathfrak{B}_Y \to \mathfrak{Y}$ be a morphism of k-functors. Consider the cartesian square

$$3 \xrightarrow{\tau'} \mathfrak{X}
\downarrow^{\sigma} \downarrow^{\sigma}
\mathfrak{B}_{Y} \xrightarrow{\tau} \mathfrak{Y}$$

Then there exists a cartesian square

Since the diagonal of $\mathfrak Y$ is representable, we derive that $\mathfrak Z$ is isomorphic with functor of points of some k-scheme. This finishes the proof.

6. CLOSED IMMERSIONS AND HOM k-FUNCTORS

Definition 6.1. Let X be a k-scheme. Suppose that there exists an open affine cover $X = \bigcup_{i \in I} X_i$ such that k-algebra $\Gamma(X_i, \mathcal{O}_{X_i})$ is free as a k-module. Then we say that X is a locally free k-scheme.

Next theorem is the main result of this section.

Theorem 6.2. Let $j: \mathfrak{Y}' \to \mathfrak{Y}$ be a closed immersion of k-functors and X be a locally free k-scheme. Suppose that classes $\operatorname{Mor}_A((\mathfrak{B}_X)_A, \mathfrak{Y}_A)$ are sets for every k-algebra A. Then classes $\operatorname{Mor}_A((\mathfrak{B}_X)_A, \mathfrak{Y}'_A)$ are sets for every k-algebra A and the morphism

$$\mathcal{M}$$
or_k $(1_{\mathfrak{B}_X}, j) : \mathcal{M}$ or_k $(\mathfrak{B}_X, \mathfrak{Y}') \to \mathcal{M}$ or_k $(\mathfrak{B}_X, \mathfrak{Y})$

is a closed immersion of k-functors.

It is useful to isolate crucial steps in the argument. For this we proceed by proving some lemmas.

Lemma 6.2.1. Suppose that A is a commutative ring. Let $j: \mathfrak{Y}' \to \mathfrak{Y}$ be a closed immersion of A-functors and X be an affine A-scheme such that $\Gamma(X, \mathcal{O}_X)$ is a free A-module. Assume that $\tau: \mathfrak{B}_X \to \mathfrak{Y}$ is a morphism of A-functors. Then there exists an ideal $\mathfrak{a} \subseteq A$ such that for every A-algebra B the restriction τ_B factors through j_B if and only if the structure morphism $f: A \to B$ of B satisfies $\mathfrak{a} \subseteq \ker(f)$.

Proof of the lemma. Since j is a closed immersion of A-functors and X is affine k-scheme there exists an affine A-scheme X', a closed immersion $j': X' \to X$ of schemes and a cartesian square

$$\mathfrak{B}_{X'} \longrightarrow \mathfrak{Y}' \\
\mathfrak{B}_{J'} \downarrow \qquad \qquad \downarrow^{j} \\
\mathfrak{B}_{X} \longrightarrow \mathfrak{Y}$$

of A-functors. Next let B be an A-algebra with the structure morphism $f:A \to B$. Then τ_B factors through j_B if and only if the projection Spec $B \times_{\operatorname{Spec} A} X \to X$ induced by f factors through X'. Let A[X] be the A-algebra of global regular functions on X and let \mathfrak{J} be an ideal in A[X] such that $A[X]/\mathfrak{J} = A[X']$ is the A-algebra of global regular functions of X'. With this notation we derive that the projection $\operatorname{Spec} B \times_{\operatorname{Spec} A} X \to X$ induced by f factors through X' if and only if the morphism $A[X] \to B \otimes_A A[X]$ induced by f sends every element of \mathfrak{J} to zero. Since A[X] is a free A-module, we write $A[X] = A^{\oplus I}$ for some index set f. Then the morphism f and f and f is just $f^{\oplus I}: A^{\oplus I} \to B^{\oplus I}$. We have $f^{\oplus I}(\mathfrak{J}) = 0$ if and only if f and consider the commutative diagram

$$A^{\oplus I} \xrightarrow{f^{\oplus I}} B^{\oplus I}$$

$$pr_i^A \downarrow \qquad \qquad \downarrow pr_i^B$$

$$A \xrightarrow{f} B$$

In the diagram pr_i^A is the projection on i-th component. Diagram implies that $\left(pr_i^B \cdot f^{\oplus I}\right)(\mathfrak{J}) = \text{for every } i \in I$ if and only if $\left(f \cdot pr_i^A\right)(\mathfrak{J}) = 0$ for every $i \in I$. This is equivalent with the condition that $f(\mathfrak{a}) = 0$ for ideal \mathfrak{a} in A generated by $\sum_{i \in I} pr_i^A(\mathfrak{J})$. Thus the lemma is proved.

Lemma 6.2.2. Suppose that A is a commutative ring. Let $j: \mathfrak{Y}' \to \mathfrak{Y}$ be a closed immersion of A-functors and X be an A-scheme with open cover

$$X = \bigcup_{i \in I} X_i$$

Assume that $\tau: \mathfrak{B}_X \to \mathfrak{Y}$ is a morphism of A-functors. Fix an A-algebra B. Then τ_B factors through j_B if and only if $\left(\tau_{\mid \mathfrak{B}_{X_i}}\right)_{\scriptscriptstyle B}$ factors through j_B for every $i \in I$.

Proof of the lemma. If τ_B factors through j_B , then also $\left(\tau_{|\mathfrak{B}_{X_i}}\right)_B$ factors through j_B for every $i \in I$. It suffices to prove the converse. So suppose that $\left(\tau_{|\mathfrak{B}_{X_i}}\right)_B$ factors through j_B for every $i \in I$. Since j is a closed immersion of A-functors and X is an A-scheme, Proposition 5.6 implies that there exists a cartesian square

$$\mathfrak{B}_{X'} \longrightarrow \mathfrak{Y}'
\mathfrak{B}_{j'} \downarrow \qquad \qquad \downarrow_{j}
\mathfrak{B}_{X} \longrightarrow \mathfrak{Y}$$

where $j': X' \to X$ is a closed immersion of A-schemes. For each $i \in I$ let $j'_i: j'^{-1}(X_i) \to X_i$ be the restriction of j'. We have the induced cartesian square

$$\mathfrak{B}j'^{-1}(X_i) \longrightarrow \mathfrak{Y}'$$

$$\mathfrak{B}_{j'_i} \downarrow \qquad \qquad \downarrow j$$

$$\mathfrak{B}_{X_i} \xrightarrow{\tau_{\mathfrak{IB}_{\mathbf{Y}}}} \mathfrak{Y}$$

Now $\left(\tau_{\mid \mathfrak{B}_{X_{i}}}\right)_{B}$ factors through j_{B} . This implies that $(\mathfrak{B}_{j'_{i}})_{B}$ admits a section for every $i \in I$. Then $(\mathfrak{B}_{j'_{i}})_{B}$ is an isomorphism for every $i \in I$. Thus $j'_{i} \times_{\operatorname{Spec} A} 1_{\operatorname{Spec} B}$ is an isomorphism for every $i \in I$ and hence $j' \times_{\operatorname{Spec} A} 1_{\operatorname{Spec} B}$ is an isomorphism of B-schemes. This means that τ_{B} factors through j_{B} .

Proof of the theorem. Let A be a k-algebra. The restriction functor $(-)_{|\mathbf{Alg}_A} = (-)_A$ preserves all closed immersions. Thus j_A is a closed immersion of A-functors and hence we derive that $j_A : \mathfrak{Y}'_A \to \mathfrak{Y}_A$ is a monomorphism of A-functors. Thus we have an injective map of classes

$$\operatorname{Mor}_{A}\left(1_{(\mathfrak{B}_{X})_{A}}, j_{A}\right) : \operatorname{Mor}_{A}\left((\mathfrak{B}_{X})_{A}, \mathfrak{Y}'_{A}\right) \hookrightarrow \operatorname{Mor}_{A}\left((\mathfrak{B}_{X})_{A}, \mathfrak{Y}_{A}\right)$$

Hence if $\operatorname{Mor}_A((\mathfrak{B}_X)_A, \mathfrak{Y}_A)$ is a set, then $\operatorname{Mor}_A((\mathfrak{B}_X)_A, \mathfrak{Y}'_A)$ is a set. All these facts imply that both internal homs

$$\mathcal{M}$$
or_k $(\mathfrak{B}_X, \mathfrak{Y}')$, \mathcal{M} or_k $(\mathfrak{B}_X, \mathfrak{Y})$

exist and morphism $\mathcal{M}\mathrm{or}_k(1_{\mathfrak{B}_X},j)$ of k-functors is a monomorphism. Our task is to prove that it is a closed immersion. For this consider a k-algebra A and a morphism $\sigma:\mathfrak{B}_{\operatorname{Spec} A}\to\mathcal{M}\mathrm{or}_k(\mathfrak{B}_X,\mathfrak{Y})$ of k-functors that sends 1_A to some morphism $\tau:(\mathfrak{B}_X)_A\to\mathfrak{Y}_A$ of A-functors. Consider a cartesian square

$$\mathfrak{U} \xrightarrow{\longrightarrow} \mathcal{M}\mathrm{or}_{k}(\mathfrak{B}_{X}, \mathfrak{Y}')$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \mathcal{M}\mathrm{or}_{k}(1_{\mathfrak{B}_{X}}, j)$$

$$\mathfrak{B}_{\mathrm{Spec}\,A} \xrightarrow{\sigma} \mathcal{M}\mathrm{or}_{k}(\mathfrak{B}_{X}, \mathfrak{Y})$$

Since $\mathcal{M}\mathrm{or}_k\left(1_{\mathfrak{B}_X},j\right)$ is a monomorphism, we may consider \mathfrak{U} as a k-subfunctor of $\mathfrak{B}_{\mathrm{Spec}\,A}$. For every k-algebra B subset $\mathfrak{U}(B)\subseteq \mathrm{Mor}_k(A,B)=\mathrm{Mor}_k(\mathrm{Spec}\,B,\mathrm{Spec}\,A)$ consists of A-algebras B with structure morphisms $f:A\to B$ such that τ_B factors through $j_B:\mathfrak{Y}'_B\to\mathfrak{Y}_B$. Since X is a locally free k-scheme, we deduce that $(\mathfrak{B}_X)_A$ is a functor of points of a locally free A-scheme

$$\operatorname{Spec} A \times_{\operatorname{Spec} k} X$$

Pick an open affine cover $\bigcup_{i \in I} X_i$ of this A-scheme such that $\Gamma(X_i, \mathcal{O}_X)$ is a free A-module. Now Lemma 6.2.2 implies that τ_B factors through j_B if and only if $(\tau_{|X_i})_B$ factors through j_B for every $i \in I$. Next by Lemma 6.2.1 we deduce that $(\tau_{|X_i})_B$ factors through j_B for given $i \in I$ if and only if $f(\mathfrak{a}_i) = 0$ for some ideal $\mathfrak{a}_i \subseteq A$ independent of f. Thus $\mathfrak U$ consists of all morphisms $f: A \to B$ of k-algebras such that $f(\mathfrak{a}) = 0$ where $\mathfrak{a} = \sum_{i \in I} \mathfrak{a}_i$. Therefore, $\mathfrak U \to \mathfrak B_{\operatorname{Spec} A}$ is isomorphic with $\mathfrak B_{V(\mathfrak{a})} = \mathfrak B_{\operatorname{Spec} A/\mathfrak{a}} \to \mathfrak B_{\operatorname{Spec} A}$ induced by the quotient map $A \to A/\mathfrak{a}$ and hence $\operatorname{Mor}_k(1_{\mathfrak B_X}, j)$ is a closed immersion of k-functors.

7. Algebra of regular functions of a k-functor

Let $|-|: \mathbf{Alg}_k \to \mathbf{Set}$ be the forgetful *k*-functor.

Definition 7.1. A ring k-functor is a ring object in the category of k-functors.

Example 7.2. Basic example of a ring k-functor is a k-functor \Re given by

$$\mathfrak{K}(A) = k$$
, $\mathfrak{K}(f) = 1_k$

for any k-algebra A and morphism f of k-algebras. It can be described as a constant k-functor ([ML98, page 67]) corresponding to k.

Definition 7.3. An \Re -algebra is an \Re -algebra object in the category of k-functors.

Note that a \mathcal{R} -algebra \mathfrak{A} can be viewed as a functor $\mathfrak{A}: \mathbf{Alg}_k \to \mathbf{Alg}_k$.

Definition 7.4. The \mathfrak{K} -algebra \mathfrak{O}_k represented by the identity functor on \mathbf{Alg}_k is called *the structure* \mathfrak{K} -algebra.

Note that |-| is the underlying k-functor of \Re -algebra \mathfrak{O}_k .

Definition 7.5. Let \mathfrak{X} be a k-functor and assume that $\operatorname{Mor}_k(\mathfrak{X}, \mathfrak{O}_k)$ is a set. Then $\operatorname{Mor}_k(\mathfrak{X}, \mathfrak{O}_k)$ is a k-algebra with respect to the structure induced by \mathfrak{O}_k . We call this k-algebra the k-algebra of global regular functions on \mathfrak{X} . Its elements are called *global regular functions on* \mathfrak{X} .

Definition 7.6. Let \mathfrak{X} be a k-functor. Suppose that A is a k-algebra, $x \in \mathfrak{X}(A)$ and $f \in \operatorname{Mor}_k(\mathfrak{X}, \mathfrak{O}_k)$. The element $f^A(x) \in A$ is called *the value of f on point x*.

For given k-functor \mathfrak{X} we describe k-algebra operations on $\operatorname{Mor}_k(\mathfrak{X}, \mathfrak{O}_k)$ in terms of values of its elements on points of \mathfrak{X} . For this consider $\alpha \in k$ and $f, g \in \operatorname{Mor}_k(\mathfrak{X}, \mathfrak{O}_k)$. We have formulas

$$(f+g)^{A}(x) = f^{A}(x) + g^{A}(x), (f \cdot g)^{A}(x) = f^{A}(x) \cdot g^{A}(x), (\alpha \cdot f)^{A}(x) = \alpha \cdot f^{A}(x)$$

in which right hand side are *k*-algebra operations in *A*.

Recall that the affine line \mathbb{A}^1_k is an affine k-scheme having k-algebra of polynomials with one variable as a k-algebra of regular functions.

Fact 7.7. Let $|-|: \mathbf{Alg}_k \to \mathbf{Set}$ be the forgetful k-functor. Then we have natural isomorphism

$$\mathfrak{B}_{\mathbb{A}^1_{\iota}} \cong |-|$$

Proof. Let *B* be a *k*-algebra. We have the following chain of identifications

$$\mathfrak{B}_{\mathbb{A}^1_k}(B) = \operatorname{Mor}_k\left(\operatorname{Spec} B, \mathbb{A}^1_k\right) = \operatorname{Mor}_k\left(\operatorname{Spec} B, \operatorname{Spec} k[x]\right) = \operatorname{Mor}_k\left(k[x], B\right) = |B|$$

natural in B.

In particular, since |-| carries the structure \mathfrak{K} -algebra \mathfrak{D}_k , we derive that $\mathfrak{B}_{\mathbb{A}^1_k}$ admits a structure of \mathfrak{K} -algebra isomorphic to \mathfrak{D}_k .

REFERENCES

[ML98] Saunders Mac Lane. Categories for the working mathematician, volume 5 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1998.

[Mon19a] Monygham. Categories of presheaves. github repository: "Monygham/Pedo-mellon-a-minno", 2019.

[Mon19b] Monygham. Categories of sheaves. github repository: "Monygham/Pedo-mellon-a-minno", 2019.

[Mon19c] Monygham. Locally ringed spaces. github repository: "Monygham/Pedo-mellon-a-minno", 2019.