CIS 4930/6930-002 DATA VISUALIZATION

Machine Learning & Data Mining

Paul Rosen

Assistant Professor

University of South Florida

THE PROBLEM

Number of data points and attributes are large Limited human visual capacity

THE SOLUTION

use the machine to do most of the work

BUT HOW?

STATISTICS

As we will see, statistics can help in a number of ways, but they don't give you everything you need/want

DATA MINING TOOLS

Help to interpret data by (hopefully) reducing them to their core components/features

WE'LL (BRIEFLY) TALK ABOUT

Dimensionality Reduction

Classifiers

Regression

Clustering

DIMENSIONALITY REDUCTION

Comes in 2 basic flavors, linear and nonlinear

LINEAR DIMENSIONALITY REDUCTION: PRINCIPAL COMPONENT ANALYSIS (PCA)

Given a set of data points embedded in any number of dimensions

Find the vector (direction) with the largest variance

Repeat for additional vectors, finding the next largest variance orthogonal to all previous principal components

PCA PROVIDES

A new basis that maximizes variance, where the length of the vectors indicates variance in that direction

Common practice is to reproject points by subtracting the mean and adjusting basis

PCA PROVIDES

If data is higher than 2D, the first 2 principal components can be selected (or 3 for 3D)

WHAT DO WE GAIN/LOSE... WHEN IS THIS A GOOD/BAD IDEA...

In the 2D case?

In an nD case?

PRINCIPAL COMPONENT ANALYSIS (PCA)

Can be calculated by finding the eigenvectors $O(d^3)$ of the covariance matrix $O(nd^2)$

Practically speaking, the covariance matrix finding dominates computation, since $n\gg d$

Subsampling points can improve performance, as long as the sampling is good

Nonlinear Dimensionality Reduction: Multidimensional Scaling (MDS)

Given pairwise distances/dissimilarities Find a map that preserves distances

MDS

Many "flavors"

We'll look at classical MDS

BASIC MDS PROCESS

Given a dissimilarity (distance) matrix $D = (d_{ij})$

MDS seeks to find an embedding in P dimensions $x_1, ..., x_n \in R^P$, so that $d_{ij} = \|x_i - x_j\|$

For certain types of dissimilarity matrices, this exists for some large ${\it P}$

More generally, we want $d_{ij} \approx \|x_i - x_j\|$, as close as possible

BASIC MDS PROCESS

The mapping from matrix $D=(d_{ij})$ to $d_{ij} \approx \|x_i-x_j\|$ is found using eigenvector/eigenvalue decomposition of the dissimilarity matrix

Although this is a linear operation, the effect to data is nonlinear

METRIC VS. NON-METRIC SPACE

Distance and dissimilarity are defined for any pair of objects in any space. A distance function is also called metric if it satisfies...

$$d(x,y) \ge 0$$
, non-negativity $d(x,y) = 0 \ iff \ x = y$ identity $d(x,y) = d(y,x)$ symmetry $d(x,z) \le d(x,y) + d(y,z)$ triangle inequality

METRIC VS. NON-METRIC SPACE

Given a set of dissimilarities, one can ask whether these values are distances, and whether the space they define is metric or not

WHY DOES THIS MATTER?

Non-metric data requires special treatment

TABLE 13.2. Airline distances (km) between 18 cities. Source: Atlas of the World, Revised 6th Edition, National Geographic Society, 1995, p. 131.

	Beijing	Cape Town	Hong Kong	Honolulu	London	Melbourne
Cape Town	12947					
Hong Kong	1972	11867				
Honolulu	8171	18562	8945			
London	8160	9635	9646	11653		
Melbourne	9093	10338	7392	8862	16902	
Mexico	12478	13703	14155	6098	8947	1355
Montreal	10490	12744	12462	7915	5240	1673
Moscow	5809	10101	7158	11342	2506	14418
New Delhi	3788	9284	3770	11930	6724	1019
New York	11012	12551	12984	7996	5586	1667
Paris	8236	9307	9650	11988	341	1679
Rio de Janeiro	17325	6075	17710	13343	9254	1322
Rome	8144	8417	9300	12936	1434	1598
San Francisco	9524	16487	11121	3857	8640	1264
Singapore	4465	9671	2575	10824	10860	605
Stockholm	6725	10334	8243	11059	1436	1559
Tokyo	2104	14737	2893	6208	9585	815
	Mexico	Montreal	Moscow	New Delhi	New York	Paris
Montreal	3728					
Moscow	10740	7077				
New Delhi	14679	11286	4349			
New York	3362	533	7530	11779		
Paris	9213	5522	2492	6601	5851	

Negative eigenvalues indicate
Airline distance is non-metric
Should only use at most first
3 eigenvectors (negative
eigenvalues produce resulting
in the imaginary domain)

TABLE 13.6. Eigenvalues of B and the eigenvectors corresponding to the first three largest eigenvalues (in red) for the airline distances example.

	Eigenvalues	E	igenvecto	rs
1	471582511	0.245	-0.072	0.183
2	316824787	0.003	0.502	-0.347
3	253943687	0.323	-0.017	0.103
4	-98466163	0.044	-0.487	-0.080
5	-74912121	-0.145	0.144	0.205
6	-47505097	0.366	-0.128	-0.569
7	31736348	-0.281	-0.275	-0.174
8	-7508328	-0.272	-0.115	0.094
9	4338497	-0.010	0.134	0.202
10	1747583	0.209	0.195	0.110
11	-1498641	-0.292	-0.117	0.061
12	145113	-0.141	0.163	0.196
13	-102966	-0.364	0.172	-0.473
14	60477	-0.104	0.220	0.163
15	-6334	-0.140	-0.356	-0.009
16	-1362	0.375	0.139	-0.054
17	100	-0.074	0.112	0.215
18	0	0.260	-0.214	0.173

FIGURE 13.1. Two-dimensional map of 18 world cities using the classical scaling algorithm on airline distances between those cities. The colors

FIGURE 13.2. Three-dimensional map of 18 world cities using the classical scaling algorithm on airline distances between those cities. The colors reflect the different continents: Asia (purple), North America (red), South America (yellow), Europe (blue), Africa (brown), and Australasia (green).

FIGURE 13.1. Two-dimensional map of 18 world cities using the classical scaling algorithm on airline distances between those cities. The colors

FIGURE 13.2. Three-dimensional map of 18 world cities using the classical scaling algorithm on airline distances between those cities. The colors reflect the different continents: Asia (purple), North America (red), South America (yellow), Europe (blue), Africa (brown), and Australasia (green).

NONLINEAR DIMENSION REDUCTION

A lot of options, all preserve different features of the high dimensional space

MULTIDIMENSIONAL SCALING (MDS)

We've already seen

LOCAL LINEAR EMBEDDING (LLE)

Tries to embed such that local neighborhood distances are preserved as well as possible

LLE EXTENSIONS

Fix various issues associated with regularization of the domain in LLE

LOCAL TANGENT SPACE ALIGNMENT (LTSA)

Tries to characterize geometry via local tangent directions

ISOMAP

Extension of MDS. Tries to preserve geodesic distance as well as possible

SPECTRAL EMBEDDING

Uses a spectral decomposition of the graph Laplacian

T-DISTRIBUTED STOCHASTIC NEIGHBOR EMBEDDING (T-SNE)

Converts the points probability distribution and samples that distribution

SO...VISUALIZING DATA, WHAT DO YOU USE AND WHEN?

