Electron and Proton Heating in Transrelativistic Magnetic Reconnection

arXiv:1708.04627

Michael E. Rowan¹, Lorenzo Sironi², and Ramesh Narayan¹ (¹Harvard, ²Columbia)

- Transrelativistic reconnection: $\sigma_w \equiv B_0^2/4\pi w \sim 0.1-1$ (w is enthalpy density)
 - Corona of Sgr A*
 - Microphysics: unresolved in MHD
 - Reconnection: important effect
 - Should Include to model EHT observations
- How much magnetic energy is dissipated to electrons, protons?
 - Particle in cell simulations: TRISTAN-MP
 - 2D in space, but track all 3 components of momentum
- Main focus: electron heating (rather than acceleration)
 - How does the energy partition vary with inflow parameters, in the transrelativistic regime?

Yuan + Narayan 2014

Beta (of the ions)

Sigma (magnetization)

$$\beta_i = \frac{n_i k_B T_i}{B^2/(8\pi)} = \frac{\text{thermal pressure}}{\text{magnetic pressure}} \quad \sigma_w = \frac{B^2/4\pi}{w} = \frac{\text{magnetic pressure}(\times 2)}{\text{enthalpy density}}$$

Temperature ratio

$$\frac{T_e}{T_i} = \frac{\text{electron temperature}}{\text{ion temperature}}$$

Mass ratio

$$\frac{m_i}{m_e} = \frac{\text{Ion mass}}{\text{Electron mass}}$$

10 - 1836

- Here, we focus on antiparallel reconnection (no guide field)
- Characterize heating via dimensionless ratio (as in Drake et al. 2014)

$$M_{Te} = \frac{k_B T_{e,out} - k_B T_{e,in}}{B^2 / 4\pi n}$$

 We further separate heating into irreversible and adiabatic components

Mass ratio

- At low β_i , electron heating depends on mass ratio, m_i/m_e
- Mass ratio ranges from 10 1836

Magnetization

- ightharpoonup vary σ_w from 0.1 10
- ightharpoonup Here, $m_i/m_e=1836$ and $T_e/T_i=1$
- At high β_i , total electron heating attains a value of $M_{Te,tot} \approx 0.05 \approx M_{Ti,tot}$
- σ_w dependent plateau at low β_i , with higher magnetizations giving larger heating efficiency

Energy equipartition

- Achieve by increasing β_i (at fixed σ_w), or by increasing σ_w (at fixed β_i)
- In either case, ratio of ion to elec. skin-depth→1 in the downstream
- In panels (a) and (b), points

indicate simulations, lines are fit: $q_{ue,fit} = 0.5 \exp\left[-(1-\beta_i/\beta_{i,max})^{3.3}/(1+1.2\sigma_w^{0.7})\right]$, where $\beta_{i,max} = 1/4\sigma_w$