Valószínűségszámítás

- 1) Egy rendezvényen 150 tombolajegyet adtak el. Ági 21-et vásárolt. Mekkora annak a valószínűsége, hogy Ági nyer, ha egy nyereményt sorsolnak ki? (A jegyek nyerési esélye egyenlő.) (2 pont)
- 2) Egy rejtvényújságban egymás mellett két, szinte azonos rajz található, amelyek között 23 apró eltérés van. Ezek megtalálása a feladat. Először Ádám és Tamás nézték meg figyelmesen az ábrákat: Ádám 11, Tamás 15 eltérést talált, de csak 7 olyan volt, amelyet mindketten észrevettek.
 - a) Hány olyan eltérés volt, amelyet egyikük sem vett észre? (4 pont) Közben Enikő is elkezdte számolni az eltéréseket, de ő sem találta meg az összeset. Mindössze 4 olyan volt, amelyet mind a hárman megtaláltak. Egyeztetve kiderült, hogy az Enikő által bejelöltekből hatot Ádám is, kilencet Tamás is észrevett, és örömmel látták, hogy hárman együtt az összes eltérést megtalálták.
 - b) A feladat szövege alapján töltse ki az alábbi halmazábrát arról, hogy ki hányat talált meg! (7 pont)
 - c) Fogalmazza meg a következő állítás tagadását! Enikő minden eltérést megtalált. (2 pont)
 - d) Mennyi annak a valószínűsége, hogy egy eltérést véletlenszerűen kiválasztva, azt legalább ketten megtalálták? (4 pont)
- 3) Egy középiskolába 700 tanuló jár. Közülük 10% sportol rendszeresen a két iskolai szakosztály közül legalább az egyikben. Az atlétika szakosztályban 36 tanuló sportol rendszeresen, és pontosan 22 olyan diák van, aki az atlétika és a kosárlabda szakosztály munkájában is részt vesz.
 - a) Készítsen halmazábrát az iskola tanulóiról a feladat adatainak feltüntetésével! (4 pont)
 - b) Hányan sportolnak a kosárlabda szakosztályban? (4 pont)
 - c) Egy másik iskola sportegyesületében 50 kosaras sportol, közülük 17 atletizál is. Ebben az iskolában véletlenszerűen kiválasztunk egy kosarast. Mennyi a valószínűsége, hogy a kiválasztott tanuló atletizál is? (4 pont)
- 4) Egy öttagú társaság egymás után lép be egy ajtón. Mekkora a valószínűsége, hogy Anna, a társaság egyik tagja, elsőnek lép be az ajtón? (2 pont)
- 5) Egy szellemi vetélkedő döntőjébe 20 versenyzőt hívnak be. A zsűri az első három helyezettet és két további különdíjast fog rangsorolni. A rangsorolt versenyzők oklevelet és jutalmat kapnak.
 - a) Az öt rangsorolt versenyző mindegyike ugyanarra a színházi előadásra kap egy-egy jutalomjegyet. Hányféle kimenetele lehet ekkor a versenyen a jutalmazásnak? (4 pont)
 - b) A dobogósok három különböző értékű könyvutalványt, a különdíjasok egyike egy színházjegyet, a másik egy hangversenyjegyet kap. Hányféle módon alakulhat ekkor a jutalmazás? (4 pont)
 - c) Ha már eldőlt, kik a rangsorolt versenyzők, hányféle módon oszthatnak ki nekik jutalmul öt különböző verseskötetet? (3 pont)
 - d) Kis Anna a döntő egyik résztvevője. Ha feltesszük, hogy a résztvevők egyenlő eséllyel versenyeznek, mekkora a valószínűsége, hogy Kis Anna eléri a három, dobogós hely egyikét, illetve, hogy az öt rangsorolt személy egyike lesz? (6 pont)

- 6) Egy televíziós játékban 5 kérdést tehet fel a játékvezető. A játék során a versenyző, ha az első kérdésre jól válaszol, 40 000 forintot nyer. Minden további kérdés esetén döntenie kell, hogy a játékban addig megszerzett pénzének 50, 75 vagy 100 százalékát teszi-e fel. Ha jól válaszol, feltett pénzének kétszeresét kapja vissza, ha hibázik, abba kell hagynia a játékot, és a fel nem tett pénzét viheti haza.
 - a) Mennyi pénzt visz haza az a játékos, aki mind az öt feltett kérdésre jól válaszol, s bátran kockáztatva mindig a legnagyobb tétet teszi meg?(4 pont)
 - b) Az a játékos, aki mindig helyesen válaszol, de óvatos, és a négy utolsó fordulóban pénzének csak 50%-át teszi fel, hány forintot visz haza?(4 pont)
 - c) A vetélkedő során az egyik versenyző az első négy kérdésre jól válaszolt. A második kérdésnél a pénzének 100 %-át, a 3., 4. és 5. kérdés esetén pénzének 75 %-át tette fel. Az 5. kérdésre sajnos rosszul válaszolt. Hány forintot vihetett haza ez a játékos? (5 pont)
 - d) Egy versenyző mind az 5 fordulóban jól válaszol, és közben minden fordulóban azonos eséllyel teszi meg a játékban megengedett lehetőségek valamelyikét. Mennyi annak a valószínűsége, hogy az elnyerhető maximális pénzt viheti haza? (4 pont)
- 7) A 12. évfolyam tanulói magyarból próbaérettségit írtak. Minden tanuló egy kódszámot kapott, amely az 1, 2, 3, 4 és 5 számjegyekből mindegyiket pontosan egyszer tartalmazta valamilyen sorrendben.
 - a) Hány tanuló írta meg a dolgozatot, ha az összes képezhető kódszámot mind kiosztották? (3 pont)

(6 pont)

- b) Az alábbi kördiagram a dolgozatok eredményét szemlélteti:
 Adja meg, hogy hány tanuló érte el a szereplő érdemjegyeket! Válaszát foglalja táblázatba, majd a táblázat adatait szemléltesse oszlop-
- c) Az összes megírt dolgozatból véletlenszerűen kiválasztunk egyet. Mennyi a valószínűsége annak, hogy jeles vagy jó dolgozatot veszünk a kezünkbe? (3 pont)

- 8) Egy kétforintos érmét kétszer egymás után feldobunk, és feljegyezzük az eredményt. Háromféle esemény következhet be: *A* esemény: két fejet dobunk.
 - B esemény: az egyik dobás fej, a másik írás.
 - C esemény: két írást dobunk.

diagramon is!

Mekkora a B esemény bekövetkezésének valószínűsége?

(2 pont)

- 9) A 100-nál kisebb és hattal osztható pozitív egész számok közül véletlenszerűen választunk egyet. Mekkora valószínűséggel lesz ez a szám 8cal osztható? Írja le a megoldás menetét! (3 pont)
- 10) Egy dobozban húsz golyó van, aminek 45 százaléka kék, a többi piros. Mekkora annak a valószínűsége, hogy ha találomra egy golyót kihúzunk, akkor az piros lesz? (3 pont)

11) Egy tanulmányi verseny döntőjében 8 tanuló vett részt. Három feladatot kellett megoldaniuk. Az első feladat maximálisan elérhető pontszáma 40, a másodiké 50, a harmadiké 60. A nyolc versenyző feladatonkénti eredményeit tartalmazza az alábbi táblázat:

and the transfer to the transf								
Versenyző sorszáma	I.	II.	III.	Összpontszám	Százalékos teljesítmény			
1.	28	16	40					
2.	31	35	44					
3.	32	28	56					
4.	40	42	49					
5.	35	48	52					
6.	12	30	28					
7.	29	32	45					
8.	40	48	41					

- a) Töltse ki a táblázat hiányzó adatait! A százalékos teljesítményt egészre kerekítve adja meg!
 Melyik sorszámú versenyző nyerte meg a versenyt, ki lett a második, és ki a harmadik helyezett?
- b) A nyolc versenyző dolgozata közül véletlenszerűen kiveszünk egyet. Mennyi a valószínűsége annak, hogy 75 %-osnál jobb teljesítményű dolgozat került a kezünkbe? (2 pont)
- c) Egy tanuló betegség miatt nem tudott megjelenni a döntőn. Másnap megkapta, és megoldotta a feladatokat. Eredményét később összehasonlította a nyolc döntős versenyző eredményével. Észrevette, hogy az első feladatot a versenyzők I. feladatra kapott pontszámainak a mediánjára teljesítette (egészre kerekítve), a második feladatot pedig a nyolc versenyző II. feladata pontszámainak a számtani közepére (szintén egészre kerekítve). A III. feladatot 90 %-ra teljesítette.

 Mennyi lett ennek a tanulónak az összpontszáma? Ezzel hányadik helyen végzett volna?
- 12) Egy gimnáziumban 50 diák tanulja emelt szinten a biológiát. Közülük 30-an tizenegyedikesek és 20-an tizenkettedikesek. Egy felmérés alkalmával a tanulóktól azt kérdezték, hogy hetente átlagosan hány órát töltenek a biológia házi feladatok megoldásával. A táblázat a válaszok összesített eloszlását mutatja.

A biológia házi feladatok megoldásával hetente eltöltött órák száma*	0-2	2-4	4-6	6-8	8-10
Tanulók száma	3	11	17	15	4

^{*} A tartományokhoz az alsó határ hozzátartozik, a felső nem.

a) Ábrázolja oszlopdiagramon a táblázat adatait!

(3 pont)

b) Átlagosan hány órát tölt a biológia házi feladatok megoldásával hetente ez az 50 tanuló? Az egyes időintervallumok esetében a középértékekkel (1, 3, 5, 7 és 9 órával) számoljon! (3 pont)

Egy újságíró két tanulóval szeretne interjút készíteni. Ezért a biológiát emelt szinten tanuló 50 diák névsorából véletlenszerűen kiválaszt két nevet.

- c) Mennyi a valószínűsége annak, hogy az egyik kiválasztott tanuló tizenegyedikes, a másik pedig tizenkettedikes? (6 pont)
- d) Mennyi a valószínűsége annak, hogy mindkét kiválasztott tanuló legalább
 4 órát foglalkozik a biológia házi feladatok elkészítésével hetente? (5 pont)

- 13) Az iskola rajztermében minden rajzasztalhoz két széket tettek, de így a legnagyobb létszámú osztályból nyolc tanulónak nem jutott ülőhely. Minden rajzasztalhoz betettek egy további széket, és így hét üres hely maradt, amikor ebből az osztályból mindenki leült.
 - a) Hány rajzasztal van a teremben? Hányan járnak az iskola legnagyobb létszámú osztályába? (6 pont)

A rajzterem falát (lásd az ábrán) egy naptár díszíti, melyen három forgatható korong található. A bal oldali korongon a hónapok nevei vannak, a másik két korongon pedig a napokat jelölő számjegyek forgathatók ki. A középső korongon a 0, 1, 2, 3; a jobb szélsőn pedig a 0, 1, 2, 3,8, 9 számjegyek szerepelnek. Az ábrán beállított dátum február 15. Ezzel a szerkezettel kiforgathatunk valóságos vagy csak a képzeletben létező "dátumokat".

b) Összesen hány "dátum" forgatható ki?

- (3 pont)
- c) Mennyi a valószínűsége annak, hogy a három korongot véletlenszerűen megforgatva olyan dátumot kapunk, amely biztosan létezik az évben, ha az nem szökőév. (3 pont)

- 14) Szabó nagymamának öt unokája van, közülük egy lány és négy fiú. Nem szeret levelet írni, de minden héten ír egy-egy unokájának, így öt hét alatt mindegyik unoka kap levelet.
 - a) Hányféle sorrendben kaphatják meg az unokák a levelüket az öt hét alatt? (3 pont)
 - b) Ha a nagymama véletlenszerűen döntötte el, hogy melyik héten melyik unokájának írt levél következik, akkor mennyi annak a valószínűsége, hogy lányunokája levelét az ötödik héten írta meg? (3 pont) Szabó nagymama sálat kötött egyetlen lányunokájának. Az első napon 8 cm készült el a sálból, és a nagymama elhatározta, hogy a további napokon minden nap 20 százalékkal többet köt meg, mint az előző napon. Ezt az elhatározását tartani tudta.
 - c) Hány nap alatt készült el a 2 méter hosszúra tervezett sál? (11 pont)
- 15) Egy televíziós vetélkedőn 20 játékos vesz részt. A műsorvezető kérdésére a lehetséges három válasz közül kell a játékosoknak az egyetlen helyes megoldást kiválasztani, melyet az A, a B vagy a C gomb megnyomásával jelezhetnek. A vetélkedő három fordulóból áll, minden fordulóban négy kérdésre kell válaszolni. Amelyik versenyző hibásan válaszol, 0 pontot kap. A helyes válaszért annyi pont jár, ahány helytelen válasz született (pl. ha Péter jól válaszol és 12-en hibáznak, akkor Péter 12 pontot szerez).
 - a) Töltse ki az első forduló táblázatának hiányzó adatait!

(4 pont)

Első forduló eredményei	1. kérdés	2. kérdés	3. kérdés	4. kérdés
Anikó válasza	helyes	hibás	helyes	
Jó válaszok száma	7	10		8
Anikó elért pontszáma			5	0

 b) Hány százalékkal növekedett volna Anikó összpontszáma az első fordulóban, ha a második kérdésre is jól válaszolt volna? (A többi játékos válaszát változatlannak képzeljük.)

- c) Ha Anikó valamelyik másik fordulóban mind a négy kérdésre találomra válaszol, akkor mennyi annak a valószínűsége, hogy minden válasza helyes? (3 pont)
- d) Hány játékosnak kell helyesen válaszolnia egy adott kérdésre ahhoz, hogy a 20 játékosnak erre a kérdésre kapott összpontszáma a lehető legtöbb legyen? (7 pont)
- 16) Péter egy 100-nál nem nagyobb pozitív egész számra gondolt. Ezen kívül azt is megmondta Pálnak, hogy a gondolt szám 20-szal osztható. Mekkora valószínűséggel találja ki Pál elsőre a gondolt számot, ha jól tudja a matematikát? (2 pont)
- 17) Egy szerencsejáték a következőképpen zajlik:

A játékos befizet 7 forintot, ezután a játékvezető feldob egy szabályos dobókockát. A dobás eredményének ismeretében a játékos abbahagyhatja a játékot; ez esetben annyi Ft-ot kap, amennyi a dobott szám volt.

Dönthet azonban úgy is, hogy nem kéri a dobott számnak megfelelő pénzt, hanem újabb 7 forintért még egy dobást kér. A játékvezető ekkor újra feldobja a kockát. A két dobás eredményének ismeretében annyi forintot fizet ki a játékosnak, amennyi az első és a második dobás eredményének szorzata. Ezzel a játék véget ér.

Zsófi úgy dönt, hogy ha 3-nál kisebb az első dobás eredménye, akkor abbahagyja, különben pedig folytatja a játékot.

- a) Mennyi annak a valószínűsége, hogy Zsófi tovább játszik? (4 pont)
- b) Zsófi játékának megkezdése előtt számítsuk ki, mekkora valószínűséggel fizet majd neki a játékvezető pontosan 12 forintot? (6 pont) Barnabás úgy dönt, hogy mindenképpen két dobást kér majd. Áttekinti a két dobás utáni lehetséges egyenlegeket: a neki kifizetett és az általa befizetett pénz különbségét.
- c) Írja be a táblázat üres mezőibe a két dobás utáni egyenlegeket! (4 pont)

		ma	második dobás eredménye					
		1	1 2 3 4 5					
dobás nénye	1	-13						
	2							
dol né	3							
	4						10	
első ered	5							
	6							

- d) Mekkora annak a valószínűsége, hogy Barnabás egy (két dobásból álló) játszmában nyer? (3 pont)
- 18) Az autókereskedés parkolójában 1–25-ig számozott hely van. Minden beérkező autó véletlenszerűen kap parkolóhely számot.
 - a) Az üres parkolóba elsőként beparkoló autó vezetőjének szerencseszáma a 7. Mekkora annak a valószínűsége, hogy a kapott parkolóhely számnak van hetes számjegye, vagy a szám hétnek többszöröse? (4 pont)
 Május 10-én az üres parkolóba 25 kocsi érkezik: 12 ezüstszínű ötajtós, 4 piros négyajtós, 2 piros háromajtós és 7 zöld háromajtós.
 - b) Az üres parkolóba már beálltak a négy és ötajtós autók. Hányféleképpen állhatnak be az üresen maradt helyekre a háromajtósak? (Az azonos színű autókat nem különböztetjük meg egymástól.) (5 pont)

A május 10-re előjegyzett 25 vevő az autó színére is megfogalmazta előzetesen a kívánságait. Négyen zöld kocsit rendeltek, háromnak a piros szín kivételével mindegyik megfelel, öten akarnak piros vagy ezüst kocsit, tízen zöldet vagy pirosat. Három vevőnek mindegy, milyen színű kocsit vesz.

- c) Színek szempontjából kielégíthető-e a május 10-re előjegyzett 25 vevő igénye az aznap reggel érkezett autókkal? (8 pont)
- 19) Egy vetélkedőn részt vevő versenyzők érkezéskor sorszámot húznak egy urnából. Az urnában 50 egyforma gömb van. Minden egyes gömbben egy-egy szám van, ezek különböző egész számok 1-től 50-ig.
 - a) Mekkora annak a valószínűsége, hogy az elsőnek érkező versenyző héttel osztható sorszámot húz? (3 pont)

A vetélkedő győztesei között jutalomként könyvutalványt szerettek volna szétosztani a szervezők. A javaslat szerint Anna, Bea, Csaba és Dani kapott volna jutalmat, az egyes jutalmak aránya az előbbi sorrendnek megfelelően 1:2:3:4. Közben kiderült, hogy akinek a teljes jutalom ötödét szánták, önként lemond az utalványról. A zsűri úgy döntött, hogy a neki szánt 16000 forintos utalványt is szétosztják a másik három versenyző között úgy, hogy az ő jutalmaik közötti arány ne változzon.

b) Összesen hány forint értékű könyvutalványt akartak a szervezők szétosztani a versenyzők között, és ki mondott le a könyvutalványról?

(6 pont)

- c) Hány forint értékben kapott könyvutalványt a jutalmat kapott három versenyző külön-külön? (3 pont)
- 20) Egy zsákban nyolc fehér golyó van. Hány fekete golyót kell a zsákba tenni hogy véletlenszerűen kiválasztva egy golyót -, fehér golyó kiválasztásának 0,4 legyen a valószínűsége, ha bármelyik golyót ugyanakkora valószínűséggel választjuk?
 (2 pont)
- 21) Béla egy fekete és egy fehér színű szabályos dobókockával egyszerre dob. Feljegyzi azt a kétjegyű számot, amelyet úgy kap, hogy a tízes helyiértéken a fekete kockával dobott szám, az egyes helyiértéken pedig a fehér kockával dobott szám áll.

Mennyi annak a valószínűsége, hogy a feljegyzett kétjegyű szám

- a) négyzetszám; (3 pont)
- b) számjegyei megegyeznek; (3 pont)
- c) számjegyeinek összege legfeljebb 9? (6 pont)
- 22) Az alábbi kilenc szám közül egyet véletlenszerűen kiválasztva, mekkora annak a valószínűsége, hogy a kiválasztott szám nem negatív?

-3.5; -5; 6; 8.4; 0; -2.5; 4; 12; -11. (2 pont)

23) A héten az ötös lottón a következő számokat húzták ki: 10, 21, 22, 53 és 87. Kata elújságolta Sárának, hogy a héten egy két találatos szelvénye volt. Sára nem ismeri Kata szelvényét, és arra tippel, hogy Kata a 10-est és az 53-ast találta el. Mekkora annak a valószínűsége, hogy Sára tippje helyes? Válaszát indokolja! (3 pont)

- 24) Egy középiskolába 620 tanuló jár. Az iskola diákbizottsága az iskolanapra három kiadványt jelentetett meg:
 - I. Diákok Hangja
 - II. Iskolaélet
 - III. Miénk a suli!

Később felmérték, hogy ezeknek a kiadványoknak milyen volt az olvasottsága az iskola tanulóinak körében.

A Diákok Hangját a tanulók 25%-a, az Iskolaéletet 40%-a, a Miénk a suli! c. kiadványt pedig 45%-a olvasta. Az első két kiadványt a tanulók 10%-a, az első és harmadik kiadványt 20%-a, a másodikat és harmadikat 25%-a, mindhármat pedig 5%-a olvasta.

a) Hányan olvasták mindhárom kiadványt?

(2 pont)

- b) A halmazábra az egyes kiadványokat elolvasott tanulók létszámát szemlélteti. Írja be a halmazábra mindegyik tartományába az oda tartozó tanulók számát! (6 pont)
- c) Az iskola tanulóinak hány százaléka olvasta legalább az egyik kiadványt?
 (2 pont

Az iskola 12. évfolyamára 126 tanuló jár, közöttük kétszer annyi látogatta az iskolanap rendezvényeit, mint aki nem látogatta. Az Iskolaélet című kiadványt a rendezvényeket látogatók harmada, a nem látogatóknak pedig a fele olvasta. Egy újságíró megkérdez két, találomra kiválasztott diákot az évfolyamról, hogy olvasták-e az Iskolaéletet.

- d) Mekkora annak a valószínűsége, hogy a két megkérdezett diák közül az egyik látogatta az iskolanap rendezvényeit, a másik nem, viszont mindketten olvasták az Iskolaéletet? (7 pont)
- 25) Az egyik csokoládégyárban egy újfajta, kúp alakú desszertet gyártanak. A desszert csokoládéból készült váza olyan, mint egy tölcsér. (Lásd ábra.)

A külső és belső kúp hasonló, a hasonlóság aránya $\frac{6}{5}$. A kisebb kúp adatai: alapkörének sugara 1 cm, magassága 2,5 cm hosszú.

a) Hány cm³ csokoládét tartalmaz egy ilyen csokoládéváz? A választ tizedre kerekítve adja meg! (5 pont)

Az elkészült csokoládéváz üreges belsejébe marcipángömböt helyeznek, ezután egy csokoládéból készült vékony körlemezzel lezárják a kúpot.

b) Hány cm a sugara a lehető legnagyobb méretű ilyen marcipángömbnek? A választ tizedre kerekítve adja meg! (7 pont)

A marcipángömböket gyártó gép működése nem volt hibátlan. A mintavétellel végzett minőség-ellenőrzés kiderítette, hogy a legyártott gömbök 10%-ában a marcipángömb mérete nem felel meg az előírtnak.

- c) A már legyártott nagy mennyiségű gömb közül 10-et kiválasztva, mekkora annak a valószínűsége, hogy a kiválasztottak között pontosan 4-nek a mérete nem felel meg az előírásnak?
 - (A kérdezett valószínűség kiszámításához használhatja a binomiális eloszlás képletét.) (5 pont)

- 26) Egy kockajátékban egy menet abból áll, hogy szabályos dobókockával kétszer dobunk egymás után. Egy dobás 1 pontot ér, ha négyest vagy ötöst dobunk, egyébként a dobásért nem jár pont. A menetet úgy pontozzák, hogy a két dobásért járó pontszámot összeadják.
 - a) Mennyi annak a valószínűsége, hogy egy menetben 1 pontot szerzünk, és azt az első dobásért kapjuk? (5 pont)
 - b) Minek nagyobb a valószínűsége,
 - annak, hogy egy menetben szerzünk pontot, vagy
 - annak, hogy egy menetben nem szerzünk pontot?

(7 pont)

- 27) Egy piros és egy sárga szabályos dobókockát egyszerre feldobunk. Mennyi a valószínűsége annak, hogy a dobott számok összege pontosan 4 lesz? Válaszát indokolja! (3 pont)
- 28) András, Balázs, Cili, Dóra és Enikő elhatározták, hogy sorsolással döntenek arról, hogy közülük ki kinek készít ajándékot. Úgy tervezték, hogy a neveket ráírják egy-egy papír cetlire, majd a lefelé fordított öt cédulát összekeverik, végül egy sorban egymás mellé leteszik azokat az asztalra. Ezután, keresztnevük szerinti névsorban haladva egymás után vesznek el egy-egy cédulát úgy, hogy a soron következő mindig a bal szélső cédulát veszi el.
 - a) Mennyi a valószínűsége, hogy az elsőnek húzó Andrásnak a saját neve jut?
 (5 pont)
 - b) Írja be az alábbi táblázatba az összes olyan sorsolás eredményét, amelyben csak Enikőnek jut a saját neve! A táblázat egyes soraiban az asztalon lévő cédulák megfelelő sorrendjét adja meg! (A megadott táblázat sorainak a száma lehet több, kevesebb vagy ugyanannyi, mint a felsorolandó esetek száma. Ennek megfelelően hagyja üresen a felesleges mezőket, vagy egészítse ki újabb mezőkkel a táblázatot, ha szükséges!) (6 pont)

c) Az ajándékok átadása után mind az öten moziba mentek, és a nézőtéren egymás mellett foglaltak helyet. Hány különböző

	A húzó neve						
	Α	В	С	D	E		
lő					E		
A cédulák megfelelő sorrendiei					E		
					E		
					E		
céd1 s					E		
A					E		

módon kerülhetett erre sor, ha tudjuk, hogy a két fiú nem ült egymás mellett? (6 pont)

29) Egy felmérés során két korcsoportban összesen 200 embert kérdeztek meg arról, hogy évente hány alkalommal járnak színházba. Közülük 120-an 40 évesnél fiatalabbak, 80 válaszadó pedig 40 éves vagy annál idősebb volt. Az eredményeket (százalékos megoszlásban) az alábbi diagram szemlélteti.

- a) Hány legalább 40 éves ember adta azt a választ, hogy 5-nél kevesebbszer volt színházban? (3 pont)
- b) A megkérdezettek hány százaléka jár évente legalább 5, de legfeljebb 10 alkalommal színházba? (4 pont)
- c) A 200 ember közül véletlenszerűen kiválasztunk kettőt. Mekkora a valószínűsége annak, hogy közülük legfeljebb az egyik fiatalabb 40 évesnél?

Válaszát három tizedesjegyre kerekítve adja meg!

(5 pont)

- 30) Tekintsük a következő halmazokat:
 - $A = \{a \ 100\text{-n\'al nem nagyobb pozit\'iv eg\'esz számok}\}$
 - $B = \{a \ 300\text{-n\'al nem nagyobb}, 3\text{-al oszthat\'o pozit\'iv eg\'esz számok}\}$
 - $C = \{a 400-nál nem nagyobb, 4-el osztható pozitív egész számok\}$
 - a) Töltse ki a táblázatot a minta alapján, majd a táblázat alapján írja be az 52, 78, 124, 216 számokat a halmazábra megfelelő tartományába! (8 pont)

	A halmaz	B halmaz	C halmaz
114	nem eleme	eleme	nem eleme
52			
78			
124			
216			

C

- b) Határozza meg az $A \cap B \cap C$ halmaz elemszámát!(3 pont)
- c) Számítsa ki annak valószínűségét, hogy az *A* halmazból egy elemet véletlenszerűen kiválasztva a kiválasztott szám nem eleme sem a *B*, sem a *C* halmaznak! (6 pont)
- 31) Adja meg annak valószínűségét, hogy a 7; 8; 9; 10; 11, 12; 13; 14 számok közül egyet véletlenszerűen kiválasztva a kiválasztott szám prím! (2 pont)
- 32) Egy iskola asztalitenisz bajnokságán hat tanuló vesz részt. Mindenki mindenkivel egy mérkőzést játszik. Eddig Andi egy mérkőzést játszott, Barnabás és Csaba kettőt-kettőt, Dani hármat, Enikő és Feri négyet-négyet.
 - a) Rajzolja le az eddig lejátszott mérkőzések egy lehetséges gráfját! (4 pont)
 - b) Lehetséges-e, hogy Andi az eddig lejátszott egyetlen mérkőzését Barnabással játszotta? (Igen válasz esetén rajzoljon egy megfelelő gráfot; nem válasz esetén válaszát részletesen indokolja!)
 (6 pont)
 - c) Számítsa ki annak a valószínűségét, hogy a hat játékos közül kettőt véletlenszerűen kiválasztva, ők eddig még nem játszották le az egymás elleni mérkőzésüket! (7 pont)
- 33) Tekintsünk két egybevágó, szabályos négyoldalú (négyzet alapú) gúlát, melyek alapélei 2 cm hosszúak, oldalélei pedig 3 cm-esek. A két gúlát alaplapjuknál fogva összeragasztjuk (az alaplapok teljesen fedik egymást), így az ábrán látható testet kapjuk.
 - a) Számítsa ki ennek a testnek a felszínét (cm²-ben) és a térfogatát (cm³-ben)! Válaszait egy tizedesjegyre kerekítve adja meg!

A test lapjait 1-től 8-ig megszámozzuk, így egy "dobó-

oktaédert" kapunk, amely minden oldallapjára egyforma valószínűséggel esik. Egy ilyen test esetében is van egy felső lap, az ezen lévő számot tekintjük a dobás kimenetelének. (Az ábrán látható "dobó-oktaéderrel" 8-ast dobtunk.) (9 pont)

- b) Határozza meg annak a valószínűségét, hogy ezzel a "dobó-oktaéderrel" egymás után négyszer dobva, legalább három esetben 5-nél nagyobb számot dobunk! (8 pont)
- 34) Egy ajándéktárgyak készítésével foglalkozó kisiparos családi vállalkozása keretében zászlókat, kitűzőket is gyárt. Az ábrán az egyik általa készített kitűző stilizált képe látható. A kitűzőn lévő három mező kiszínezéséhez 5 szín (piros, kék, fehér, sárga, zöld) közül választhat. Egy mező kiszínezéséhez egy színt használ, és a különböző mezők lehetnek azonos színűek is.

a) Hányféle háromszínű kitűzőt készíthet a kisiparos?

(3 pont)

b) Hányféle kétszínű kitűző készíthető?

(5 pont)

A kisiparos elkészíti az összes lehetséges különböző (egy-, két- és háromszínű) kitűzőt egy-egy példányban, és véletlenszerűen kiválaszt közülük egyet.

- c) Mennyi annak a valószínűsége, hogy olyan kitűzőt választ, amelyen az egyik mező kék, egy másik sárga, a harmadik pedig zöld színű? (4 pont)
- 35) Az egyik világbajnokságon részt vevő magyar női vízilabdacsapat 13 tagjának életkor szerinti megoszlását mutatja az alábbi táblázat.

Életkor	17	18	19	21	22	23	24	25	26	31
Gyakoriság	2	1	1	1	2	1	2	1	1	1

a) Számítsa ki a csapat átlagéletkorát!

(2 pont

Jelölje A azt az eseményt, hogy a csapatból 7 játékost véletlenszerűen kiválasztva, a kiválasztottak között legfeljebb egy olyan van, aki 20 évnél fiatalabb.

b) Számítsa ki az A esemény valószínűségét!

(8 pont)

- A világbajnokság egyik mérkőzésén a magyar kezdőcsapat 6 mezőnyjátékosáról a következőket tudjuk:
 - a legidősebb és a legfiatalabb játékos életkorának különbsége 12 év,
 - a játékosok életkorának egyetlen módusza 22 év,
 - a hat játékos életkorának mediánja 23 év,
 - a hat játékos életkorának átlaga 24 év.
- c) Adja meg a kezdőcsapat hat mezőnyjátékosának életkorát!

(7 pont)

- 36) Egy dobozban 50 darab golyó van, közülük 10 darab piros színű. Mennyi annak a valószínűsége, hogy egy golyót véletlenszerűen kihúzva pirosat húzunk? (Az egyes golyók húzásának ugyanakkora a valószínűsége.) (2 pont)
- 37) Anna, Béla, Cili és Dénes színházba megy. Jegyük a baloldal 10. sor 1., 2., 3., 4. helyére szól.
 - a) Hányféle sorrendben tudnak leülni a négy helyre?

(2 pont)

- b) Hányféleképpen tudnak leülni a négy helyre úgy, hogy Anna és Béla egymás mellé kerüljenek? (3 pont)
- c) Mekkora annak a valószínűsége, hogy Anna és Béla jegye egymás mellé szól, ha a fenti négy jegyet véletlenszerűen osztjuk ki közöttük? (4 pont)

A színház 1200 személyes. A szombati előadásra az összes jegy elkelt. Az eladott jegyek 40%-a 800 Ft-os, 25%-a 1000 Ft-os, 20%-a 1200 Ft-os, 15%-a 1500 Ft-os jegy volt.

- d) Ábrázolja kördiagramon az eladott jegyek jegyárak szerinti százalékos megoszlását! (3 pont)
- e) Számítsa ki, hogy átlagosan mennyibe kerül egy színházjegy! (5 pont)
- 38) Egy teherautóval több zöldségboltba almát szállítottak. Az egyik üzletbe 60 kg jonatánt, 135 kg starkingot, 150 kg idaredet és 195 kg golden almát vittek. A jonatán és az idared alma kilóját egyaránt 120 Ft-ért, a starking és a golden kilóját 85 Ft-ért árulta a zöldséges.
 - a) Hány százalékkal volt drágább a jonatán alma kilója a goldenéhez képest?
 (2 pont)
 - b) Mennyi bevételhez jutott a zöldséges, ha a teljes mennyiséget eladta? (2 pont)
 - c) A zöldségeshez kiszállított árukészlet alapján számítsa ki, hogy átlagosan mennyibe került nála 1 kg alma! (3 pont)
 - d) Ábrázolja kördiagramon a zöldségeshez érkezett alma mennyiségének fajták szerinti megoszlását! (6 pont)

A jonatán alma mérete kisebb, mint az idaredé, így abból átlagosan 25%-kal több darab fér egy ládába, mint az idaredből. Rakodásnál mindkét fajtából kiborult egy-egy tele láda alma, és tartalmuk összekeveredett.

- e) A kiborult almákból véletlenszerűen kiválasztva egyet, mekkora a valószínűsége annak, hogy az jonatán lesz? (4 pont)
- 39) Egy zeneiskola minden tanulója szerepelt a tanév során szervezett három hangverseny, az őszi, a téli, a tavaszi koncert valamelyikén. 20-an voltak, akik az őszi és a téli koncerten is, 23-an, akik a télin és a tavaszin is, és 18-an, akik az őszi és a tavaszi hangversenyen is szerepeltek. 10 olyan növendék volt, aki mindhárom hangversenyen fellépett.
 - a) Írja be a halmazábrába a szövegben szereplő adatokat a megfelelő helyre! (4 pont)

A zeneiskolába 188 tanuló jár. Azok közül, akik csak egy hangversenyen léptek fel, kétszer annyian szerepeltek tavasszal, mint télen, de csak negyedannyian ősszel, mint tavasszal.

- b) Számítsa ki, hogy hány olyan tanuló volt, aki csak télen szerepelt! (8 pont)
- c) 32 tanuló jár az A osztályba, 28 pedig a B-be. Egy ünnepélyen a két osztályból véletlenszerűen kiválasztott 10 tanulóból álló csoport képviseli az iskolát. Mennyi annak a valószínűsége, hogy mind a két osztályból pontosan 5-5 tanuló kerül a kiválasztott csoportba? (5 pont)
- 40) Adja meg annak az eseménynek a valószínűségét, hogy egy szabályos dobókockával egyszer dobva a dobott szám osztója a 60-nak! Válaszát indokolja! (3 pont)

- 41) a) Egy memóriajáték 30 olyan egyforma méretű lapból áll, melyek egyik oldalán egy-egy egész szám áll az 1, 2, 3, ... 14, 15 számok közül. Mindegyik szám pontosan két lapon szerepel. A lapok másik oldala (a hátoldala) teljesen azonos mintázatú. A 30 lapot összekeverjük. A játék kezdetén a lapokat az asztalra helyezzük egymás mellé, hátoldalukkal felfelé fordítva, így a számok nem látszanak. Számítsa ki annak a valószínűségét, hogy a játék kezdetén két lapot véletlenszerűen kiválasztva a lapokon álló számok megegyeznek! (5 pont)
 - b) Egy dominókészlet azonos méretű kövekből áll. Minden dominókő egyik oldala egy vonallal két részre van osztva. Az egyes részeken elhelyezett pöttyök száma 0-tól 6-ig bármi lehet. Minden lehetséges párosításnak léteznie kell, de két egyforma kő nem lehet egy készletben. Az ábrán két kő látható: a 4-4-es és a 0-5-ös (vagy 5-0-ás). Hány kőből áll egy dominókészlet?

- c) A "Ki nevet a végén?" nevű társasjátékban egy játékos akkor indulhat el a pályán, amikor egy szabályos dobókockával 6-ost dob. Számítsa ki annak a valószínűségét, hogy valaki pontosan a harmadik dobására indulhat el a pályán! (6 pont)
- 42) Egy kalapban 3 piros, 4 kék és 5 zöld golyó van. Találomra kihúzunk a kalapból egy golyót. Adja meg annak valószínűségét, hogy a kihúzott golyó nem piros! (2 pont)
- 43) András és Péter "számkártyázik" egymással. A játék kezdetén mindkét fiúnál hat-hat lap van: az 1, 2, 3, 4, 5, 6 számkártya. Egy mérkőzés hat csata megvívását jelenti, egy csata pedig abból áll, hogy András és Péter egyszerre helyez el az asztalon egy-egy számkártyát. A csatát az nyeri, aki a nagyobb értékű kártyát tette le. A nyertes elviszi mindkét kijátszott lapot. (Például ha András a 4-est, Péter a 2-est teszi le, akkor András viszi el ezt a két lapot.) Ha ugyanaz a szám szerepel a két kijátszott számkártyán, akkor a csata döntetlenre végződik. Ekkor mindketten egy-egy kártyát visznek el. Az elvitt kártyákat a játékosok maguk előtt helyezik el, ezeket a továbbiakban már nem játsszák ki.

 $\boxed{1}\boxed{2}\boxed{3}\boxed{4}\boxed{5}\boxed{6}$

a) Hány kártya van Péter előtt az első mérkőzés után, ha András az 1, 2, 3, 4, 5, 6, Péter pedig a 2, 4, 5, 3, 1, 6 sorrendben játszotta ki a lapjait?

(2 pont)

A második mérkőzés során Péter az 1, 2, 3, 4, 5, 6 sorrendben játszotta ki a lapjait, és így összesen két lapot vitt el.

b) Adjon meg egy lehetséges sorrendet, amelyben András kijátszhatta lapjait! (3 pont)

A harmadik mérkőzés hat csatája előtt András elhatározta, hogy az első csatában a 2-es, a másodikban a 3-as számkártyát teszi majd le, Péter pedig úgy döntött, hogy ő véletlenszerűen játssza ki a lapjait (alaposan megkeveri a hat kártyát, és mindig a felül lévőt küldi csatába).

c) Számítsa ki annak a valószínűségét, hogy az első két csatát Péter nyeri meg! (6 pont)

A negyedik mérkőzés előtt mindketten úgy döntöttek, hogy az egész mérkőzés során véletlenszerűen játsszák majd ki a lapjaikat. Az első három csata után

- Andrásnál a 3, 4, 6 számkártyák maradtak, Péternél pedig az 1, 5, 6 számkártyák.
- d) Adja meg annak a valószínűségét, hogy András az utolsó három csatából pontosan kettőt nyer meg! (6 pont)
- 44) Az első 100 pozitív egész szám közül véletlenszerűen kiválasztunk egyet. Adja meg annak a valószínűségét, hogy a kiválasztott szám osztható 5-tel! (2 pont)
- 45) Egy focicsapat 11 játékosa megérkezik az edzésre, néhányan kezet fognak egymással. (Két játékos között legfeljebb egy kézfogás történik.) Az edző felírta, hogy ki hányszor fogott kezet, és a következő számokat kapta: 0; 1; 2; 2; 2; 5; 0; 0; 4; 4; 2.
 - a) Ábrázolja a kézfogásoknak egy lehetséges gráfját, ahol a pontok a játékosokat jelölik, és két pont között akkor van él, ha az illetők kezet fogtak az edzés előtt! (3 pont)
 - b) Hány kézfogás történt összesen? (2 pont) Egy másik alkalommal az edző által feljegyzett 11 nemnegatív egész számról a következőket állapítottuk meg: a számok egyetlen módusza 2, mediánja 3, átlaga 4, terjedelme pedig 5 volt.
 - c) Adjon meg a fenti feltételeknek megfelelő 11 nemnegatív egész számot! (5 pont

Az edzésen a játékosok a tizenegyesrúgást gyakorolják. Az egyik játékos 0,9 valószínűséggel lövi be a tizenegyest.

- d) Mennyi a valószínűsége annak, hogy három rúgásból legalább egyszer betalál? A valószínűség pontos értékét adja meg! (7 pont)
- 46) Két különböző színű szabályos dobókockával egyszerre dobunk. Adja meg annak a valószínűségét, hogy a dobott számok szorzata prímszám lesz! Megoldását részletezze! (4 pont)
- 47) Egy webáruházba való belépés előzetes regisztrációhoz kötött, melynek során a regisztráló életkorát is meg kell adnia. Az adatok alapján a 25560 regisztráló közül 28 évesnél fiatalabb 7810 fő, 55 évesnél idősebb 4615 fő, a többiek 28 és 55 év közöttiek.
 - a) Készítsen a létszámadatok alapján kördiagramot, kiszámítva a három körcikkhez tartozó középponti szögeket is! (5 pont)

A webáruház üzemeltetői a vásárlói szokásokat szeretnék elemezni, ezért a regisztráltak közül véletlenszerűen kiválasztanak két személyt.

- b) Adja meg annak a valószínűségét, hogy az egyik kiválasztott személy 28 évesnél fiatalabb, a másik 55 évesnél idősebb! (4 pont)
- A regisztráltak egy része vásárol is a webáruházban. A vásárlók között a 28 év alattiak éppen kétszer annyian vannak, mint az 55 évesnél idősebbek. A 28 év alattiak az elmúlt időszakban összesen 19 325 700 Ft, az 55 év felettiek 17 543 550 Ft értékben vásároltak. Az 55 év felettiek átlagosan 2410 Ft-al költöttek többet, mint a 28 év alattiak.
 - c) Számítsa ki, hány 55 év feletti vásárlója volt a webáruháznak, és adja meg, hogy ezek a vásárlók átlagosan mennyit költöttek! (8 pont)
- 48) A biológiaérettségi egyik tesztkérdésénél a megadott öt válaszlehetőség közül a két jót kell megjelölni.
 - a) Számítsa ki annak a valószínűségét, hogy az öt lehetőség közül kettőt véletlenszerűen kiválasztva a két jó választ találjuk el! (3 pont)

Nóri, Judit és Gergő egy 58 kérdésből álló biológiateszttel mérik fel tudásukat az érettségi előtt. A kitöltés után, a helyes válaszokat megnézve az derült ki, hogy Nóri 32, Judit 38 kérdést válaszolt meg helyesen, és 21 olyan kérdés volt, amelyre mindketten jó választ adtak. Megállapították azt is, hogy 11 kérdésre mindhárman helyesen válaszoltak, és Gergő helyesen megoldott feladati közül 17-et Nóri is, 19-et Judit is jól oldott meg. Volt viszont 4 olyan kérdés, amelyet egyikük sem tudott jól megválaszolni.

b) Számítsa ki annak a valószínűségét, hogy egy kérdést véletlenszerűen kiválasztva, arra Gergő helyes választ adott! Válaszát három tizedesjegyre kerekítve adja meg! (8 pont)

Nóri a biológia és kémia szóbeli érettségire készül. Biológiából 28, kémiából 30 tételt kell megtanulnia. Az első napra mindkét tárgyból 3-3 tételt szeretne kiválasztani, majd a kiválasztott tételeket sorba állítani úgy, hogy a két tantárgy tételei felváltva kövessék egymást.

- c) Számítsa ki, hányféleképpen állíthatja össze Nóri az első napra szóló tanulási programját! (6 pont)
- 49) Az 50-nél nem nagyobb pozitív páros számok közül egyet véletlenszerűen kiválasztunk. Mennyi a valószínűsége annak, hogy néggyel osztható számot választunk? Válaszát indokolja! (3 pont)
- 50) Egy műanyag terméket gyártó üzemben szabályos hatoldalú csonkagúla alakú, felül nyitott virágtartó dobozokat készítenek egy kertészet számára (lásd az ábrát). A csonkagúla alaplapja 13 cm oldalú szabályos hatszög, fedőlapja ^{7cm} oldalú szabályos hatszög, az oldalélei 8 cm hosszúak.

a) Egy műanyagöntő gép 1 kg alapanyagból (a virágtartó doboz falának megfelelő anyagvastagság mellett) $^{0,93~\mathrm{m}^2}$ felületet képes készíteni. Számítsa ki, hány virágtartó doboz készíthető 1 kg alapanyagból!

(11 pont)

A kertészetben a sok virághagymának csak egy része hajt ki: 0,91 annak a valószínűsége, hogy egy elültetett virághagyma kihajt.

- b) Számítsa ki annak a valószínűségét, hogy 10 darab elültetett virághagyma közül legalább 8 kihajt! Válaszát három tizedesjegyre kerekítve adja meg! (6 pont)
- 51) Az osztály lottót szervez, melyben az 1, 2, 3, 4, 5, számok közül húznak ki hármat. Tamás a 2, 3, 5 számokat jelöli be a szelvényen. Számítsa ki annak a valószínűségét, hogy Tamásnak telitalálata lesz! Számítását részletezze! (4 pont)

52) Egy hat kérdéses tesztben minden kérdésnél a megadott három lehetőség (A, B és C) közül kellett választani a helyes választ. A tesztet tíz diák írta meg. Az alábbi diagram az egyes feladatokra adott választok eloszlását mutatja.

A teszt értékelésekor minden helyes válaszra 1 pont, helytelen válaszra pedig 0 pont jár. Tudjuk, hogy a tíz diák összesen 35 pontot szerzett.

- Határozza meg az összes jó és az összes rossz válasz számát, és készítsen ezekről kördiagramot! (4 pont)
- b) Igaz-e, hogy minden kérdésre az a jó válasz, amit a legtöbben jelöltek be? Válaszát indokolja!

Éva, János és Nóra is megírták ezt a tesztet. Egyetlen olyan kérdés volt, amelyre mindhárman jól válaszoltak. Három olyan kérdés volt, amit Éva és János is jól válaszolt meg, kettő olyan, amire János és Nóra is, és egy olyan, amire Nóra és Éva is jó választ adott. Két olyan kérdés volt, amelyet csak egyvalaki oldott meg helyesen hármuk közül.

- c) Hány pontot szereztek ők hárman összesen ezen a teszten? (5 pont) Az egyik diák nem készült fel a tesztre, válaszait tippelve, véletlenszerűen adja
- d) Mekkora valószínűséggel lesz legalább egy jó válasza a tesztben? (5 pont)
- 53) Zsófi gyertyákat szeretne önteni, hogy megajándékozhassa a barátait. Öntőformának egy négyzet alapú szabályos gúlát választ, melynek alapéle $^{6~\mathrm{cm}}$, oldaléle $^{5}~\mathrm{cm}$ hosszúságú. Egy szaküzletben 11 cm oldalú, kocka alakú tömbökben árulják a gyertyának való viaszt. Ezt megolvasztva és az olvadt viaszt a formába öntve készülnek a gyertyák. (A számítások során tekintsen el az olvasztás és öntés során bekövetkező térfogatváltozástól.)
 - Legfeljebb hány gyertyát önthet Zsófi egy 11 cm oldalú, kocka alakú tömbből? (6 pont)

Zsófi az elkészült gúla alakú gyertyák lapjait szeretné kiszínezni. Mindegyik lapot (az alaplapot és az oldallapokat is) egy-egy színnek, kékkel vagy zölddel fogja színezni.

b) Hányféle különböző gyertyát tud Zsófi ilyen módon elkészíteni? (Két gyertyát különbözőnek tekintünk, ha forgással nem vihetők egymásba.)

Zsófi a gyertyák öntéséhez három különböző fajta "varázskanócot" használ. Mindegyik fajta "varázskanóc" fehér színű, de a meggyújtáskor (a benne lévő anyagtól függően) az egyik fajta piros, a másik lila, a harmadik narancssárga lánggal ég, Zsófi hétfőn egy dobozba tesz 6 darab gyertyát, mindhárom fajtából kettőt-kettőt. Keddtől kezdve minden nap véletlenszerűen kivesz egy gyertvát a dobozból, és meggyújtja.

c) Számítsa ki annak a valószínűségét, hogy Zsófi az első három nap három különböző színű lánggal égő gyertyát gyújt meg! (5 pont) 54) Adja meg az alábbi állítások logikai értékét (igaz vagy hamis)!

A: Egy szabályos dobókockával egyszer dobva $\frac{2}{6}$ annak a valószínűsége, hogy négyzetszámot dobunk.

B: Két szabályos pénzérmét feldobva $\frac{1}{3}$ annak a valószínűsége, hogy mindkettővel írást dobunk.

C: Az egyjegyű pozitív egész számok közül egyet véletlenszerűen választva $\frac{4}{9}$ annak a valószínűsége, hogy páros számot választunk. (2 pont)

55) Egy 30 fős osztály matematikaérettségi vizsgájának érdemjegyei olvashatók le az alábbi diagramról. _____

a) Adja meg az osztály matematikaérettségi érdemjegyeinek átlagát, mediánját és móduszát! (4 pont)

b) Ábrázolja az érdemjegyek eloszlását kördiagramon! (4 pont)

Az osztály tanulóinak matematikaérettségi dolgozatai közül az érettségi elnök véletlenszerűen kiválaszt és megvizsgál kettőt.

c) Számítsa ki annak a valószínűségét, hogy mindkét kiválasztott dolgozat érdemjegye hármas! Válaszát három tizedesjegyre kerekítve adja meg! (4 pont)

56) Egy kockával kétszer egymás után dobunk. Adja meg annak a valószínűségét, hogy a két dobott szám összege 7 lesz! Válaszát indokolja! (4 pont)

57) A Hód Kft. Faárutelephelyén rönkfából (henger alakú fatörzsekből) a következő módon készítenek gerendát. A keresztfűrészgép először két oldalt levág egy-egy – az ábra sötéttel jelölt – részt, majd a fa 90°-kal történő elfordítása után egy hasonló vágással végül egy négyzetes hasáb alakú gerendát készít. A gépet úgy állítják be, hogy a kapott hasáb alaplapja a lehető legnagyobb legyen. Most egy forgáshenger alakú, 60 cm átmérőjű, 5 méter hosszú rönkfát fűrészel így a gép.

a) Igaz-e, hogy a kapott négyzetes hasáb alakú fagerenda térfogata kisebb 1 köbméternél? (6 pont)

A Hód Kft. Deszkaárut is gyárt, ehhez a faanyagot 30000 Ft/m³-es beszerzési áron vásárolja meg a termelőtől. A gyártás közben a megvásárolt fa kb. 40%-ából hulladékfa lesz. A késztermék 1 köbméterét 90000 forintért adja el a cég, de az eladási ár 35%-át a költségekre kell fordítania (feldolgozás, telephely fenntartása stb.).

b) Mennyi haszna keletkezik a Hód Kft.-nek 1 köbméter deszkaáru eladásakor? (5 pont)

A fakitermelő cég telephelyéről hat teherautó indul el egymás után. Négy teherautó fenyőfát, kettő pedig tölgyfát szállít.

- c) Számítsa ki annak a valószínűségét, hogy a két, tölgyfát szállító teherautó közvetlenül egymás után gördül ki a telephelyről, ha az autók indulási sorrendje véletlenszerű! (6 pont)
- 58) Egy 20 fős társaság tagjait az április havi szabadidős tevékenységeikről kérdezték. Mindenki három eldöntendő kérdésre válaszolt (igennel vagy nemmel).
 - I. Volt-e moziban?
 - II. Olvasott-e szépirodalmi könyvet?
 - III. Volt-e koncerten?

A válaszokból kiderült, hogy tizenketten voltak moziban, kilencen olvastak szépirodalmi könyvet, és négy fő járt koncerten. Öten voltak, akik moziban jártak és szépirodalmi könyvet is olvastak, négyen pedig moziban és koncerten is jártak. Hárman mindhárom kérdésre igennel válaszoltak.

a) Hány olyan tagja van a társaságnak, aki mindhárom kérdésre nemmel válaszolt? (6 pont)

A társaság 20 tagja közül véletlenszerűen kiválasztunk kettőt.

b) Számítsa ki annak a valószínűségét, hogy legalább egyikük volt moziban április folyamán! (5 pont)

Attól a kilenc személytől, akik olvastak áprilisban szépirodalmi könyvet, azt is megkérdezték, hogy hány könyvet olvastak el a hónapban. A válaszok (pozitív egész számok) elemzése után kiderült, hogy a kilenc szám (egyetlen) módusza

1, mediánja 2, átlaga $\frac{16}{9}$, terjedelme pedig 2.

c) Adja meg ezt a kilenc számot!

(6 pont)

- 59) Anna, Bence, Cili, Dénes véletlenszerűen leülnek egymás mellé egy padra. Számítsa ki annak a valószínűségét, hogy sem két fiú, sem két lány nem ül egymás mellé! Válaszát indokolja! (4 pont)
- 60) Anna dominókészletében a dominókövek egyik oldala egy vonallal két részre van osztva. Az egyes részeken a pöttyök száma 0, 1, 2, 3, 4, 5 vagy 6 lehet. A készletben minden lehetséges pöttyözésű dominóból pontosan egy darab van. Az ábrán a 2-6-os (6-2-es) dominó látható.

a) Hány olyan dominó van a készletben, amelyen a két részen lévő pöttyök számának szorzata prímszám? (4 pont)

A játékban két dominó akkor csatlakozhat egymáshoz, ha a két érintkező részen ugyanannyi pötty van. (Lásd az ábrát.)

Anna egy lapra elhelyezte dominókészletének azt a hat dominóját, amelyek mindkét részén van legalább 1, de legfeljebb 3 pötty. Ezután összekötötte azokat a dominókat, amelyeket a játékban csatlakoztatni lehetne egymáshoz. Az alábbi ábra a hat dominót és az összekötő vonalakat mutatja, de csak két részen adtuk meg a pöttyöket.

b) Rajzolja be a tíz üres részre a hiányzó pöttyöket az összekötésnek megfelelően! (4 pont)

Anna a teljes 28 darabos készletből kihúzta a 2-6-os dominót. Ezután véletlenszerűen kihúz még egy dominót.

c) Számítsa ki annak a valószínűségét, hogy a másodiknak kihúzott dominót csatlakoztatni tudja az elsőhöz! (5 pont)

Egy játékbemutatóra Anna és Balázs 1800 dominót szeretne felállítani a földre úgy, hogy a legelsőt meglökve az összes dominó sorban eldőljön. Anna egyedül 6 óra alatt, Balázs pedig 9 óra alatt építené meg a dominóláncot.

- d) Ha Anna és Balázs tartva a saját tempójukat együtt dolgozna, akkor hány óra alatt végeznének az 1800 dominó felállításával? (4 pont)
- 61) Egy 30 fős osztályban felmérést készítettek a diákok internetezési szokásairól. Az egyik kérdés az volt, hogy naponta átlagosan ki hány órát használja az internetet a szabadidejében. A válaszok alapján az itt látható kördiagram készült.
 - a) Hány olyan diák van az osztályban, aki naponta legalább 2 órát használja az internetet a szabadidejében? (3 pont)
 Egy másik kérdés az volt, hogy a mobiltelefon, a laptop, illetve a táblagép (tablet) közül melyiket használják internetezésre. A mobiltelefont mind a 30-an, a laptopot 24-en, a táblagépet 16-an jelölték meg. A felmérésből az is kiderült, hogy a mobiltelefon, a laptop és a táblagép közül pontosan kétféle eszközt 14 diák használ.
 - b) Hányan használják mind a háromféle eszközt internetezésre?

A vezeték nélküli hálózati kapcsolatot létrehozó egységek (wifi routerek) 3%-a 2 éven belül meghibásodik (ezt úgy tekinthetjük, hogy 0,03 annak a valószínűsége, hogy egy készülék meghibásodik 2 év alatt). A meghibásodott eszközt garanciálisan kicserélik. Az iskola 20 ilyen eszközt vásárolt.

c) Mennyi a valószínűsége annak, hogy 2 év alatt legfeljebb egy hibásodik meg a vásárolt eszközök közül?

(6 pont)

62) Mennyi annak a valószínűsége, hogy két szabályos pénzérmét egyszerre feldobva mindkét dobás fej lesz? (2 pont)

63)

- a) Egy tört számlálója 119-cel kisebb a nevezőjénél. A tört egyszerűsített alakja $\frac{4}{11}$. Határozza meg ezt a törtet! (5 pont)
- b) A $\frac{100}{n}$ tört nevezőjében az n helyére véletlenszerűen beírunk egy 100-nál nem nagyobb pozitív egész számot. Mekkora annak a valószínűsége, hogy az így kapott tört értéke egész szám lesz? (5 pont)
- 64) Barnabás telefonján a képernyő átlója 5,4 col (1 col ≈ 25,4 mm), a képernyő oldalainak aránya 16:9. A telefon téglalap alakú előlapján a képernyő alatt és felett 12-12 mm, két oldalán 3-3 mm szélességű szegély van.
 - a) Mekkorák a telefon előlapjának oldalai? Válaszát egész mm-re kerekítve adja meg!

 Az írásbeli érettségi vizsga megkezdése előtt a felügyelő tanár megkéri a vizsgázókat, hogy telefonjaikat kikapcsolt állapotban tegyék ki a tanári asztalra. Általános tapasztalat, hogy egy-egy diák a "vizsgaláz" miatt 0,02 valószínűséggel bekapcsolva felejti a telefonját.
 - b) Mekkora annak a valószínűsége, hogy a teremben lévő 12 vizsgázó közül legalább egy bekapcsolva felejti a telefonját?(3 pont)

A vizsgateremben lévő 12 egyszemélyes pad négy egymás melletti oszlopba van rendezve. Mindegyik oszlopban három egymás mögötti pad áll. Julcsi és Tercsi jó barátnők, elhatározzák, hogy a vizsgán két egymás melletti padba ülnek. (Például ha Julcsi a Bvel jelölt padban ül, akkor Tercsi az A vagy C jelű padot foglalja el.)

Ta	nár	
A B	C	

c) Hányféleképpen ülhet le a 12 vizsgázó a teremben úgy, hogy Julcsi és Tercsi valóban két egymás melletti padban üljön? (5 pont) Az iskolában érettségiző 100 tanuló matematika írásbeli érettségi vizsgájának pontszámairól készült összesítést mutatja a táblázat.

Pontszám	Tanulók száma
0-20	0
21-30	8
31-40	12
41-50	8
51-60	18
61-70	20
71-80	12
81-90	16
91-100	6

- d) A táblázat alapján mennyi a 100 tanuló pontszámának lehetséges legmagasabb átlaga? (3 pont)
- 65) A Molnár házaspár építési telket vásárolt. Öt évvel korábban egy bankban 7 millió Ft-ot helyeztek el kamatos kamatra. Az 5 év elteltével Molnárék 8115000 Ft-ot vehettek fel a bankból.
 - a) Hány százalékos kamatot fizetett évente a bank, ha a kamatláb az 5 év során nem változott? (4 pont)

Az építési telket egy olyan övezetben vásárolták, ahol a telkek területének a 20 százaléka építhető be. A megvásárolt telek méretei az ábrán láthatók. A telek 15 méteres és 36 méteres oldala merőleges egymásra.

b) Határozza meg a 18 méter és a 38 méter hosszú oldalak által bezárt szög (β) nagyságát, és számítsa ki a telken beépíthető rész területét! (9 pont)
Molnár úr kulcscsomóján négy ugyanolyan kinézetű kulcs van, amelyek közül az egyik az új telek kapuját nyitja. Molnár úr általában nem találja el elsőre, hogy melyik kulcs való ebbe a zárba.

- c) Határozza meg annak a valószínűségét, hogy a kapuhoz érve Molnár úr először nem a megfelelő kulccsal próbálja kinyitni a kaput, de a második próbálkozása már sikeres lesz! (Molnár úr két különböző kulcsot próbál a zárba.) (4 pont)
- 66) A Föld teljes vízkészlete (jég, víz és vízgőz) folyékony halmazállapotban közel 1400 millió km³ lenne. Ennek a vízkészletnek csupán 3%-a édesvíz, melynek valójában mindössze 20%-a folyékony halmazállapotú (a többi főleg a sarkvidék jégtakarójában található fagyott, szilárd állapotban).
 - a) Számítsa ki, hogy hány kilométer lenne annak a legkisebb gömbnek a sugara, amelybe összegyűjthetnénk a Föld folyékony édesvízkészletét! Válaszát egész kilométerre kerekítve adja meg! (6 pont)

Az ábrán egy környezetvédő szervezet logójának ki nem színezett terve látható. A logó kilenc tartományát három színnel (sárga, kék és zöld) szeretnénk kiszínezni úgy, hogy a szomszédos tartományok különböző színűek legyenek. (Két tartomány szomszédos, ha a határvonalaiknak van közös pontja. Egy-egy tartomány színezéséhez egy színt használhatunk.)

b) Hányféleképpen lehet a logót a feltételeknek megfelelően kiszínezni? (6 pont)

Egy iskolai italautomata meghibásodott, és véletlenszerűen ad szénsavas, illetve szénsavmentes vizet. A diákok tapasztalata szerint, ha valaki szénsavmentes vizet kér, akkor csak 0,8 a valószínűsége annak, hogy valóban szénsavmentes vizet kap. Anna a hét mind az öt munkanapján egy-egy szénsavmentes vizet szeretne vásárolni az automatából, így minden nap az ennek megfelelő gombot nyomja meg.

- c) Mennyi a valószínűsége annak, hogy legalább négy napon valóban szénsavmentes vizet ad az automata? (5 pont)
- 67) Az ábrán egy kis múzeum alaprajzát látjuk. A múzeum termei közötti kapcsolatot gráffal is szemléltethetjük. A gráf pontjai a termek, élei pedig az átjárók a termek között. (Egy él egy átjárót szemléltet két terem között.)
 - a) Rajzolja fel a múzeum termeit és átjáróit szemléltető gráfot! (2 pont)

A múzeumba háromféle belépőjegyet lehet váltani:

Teljes árú jegy	400 Ft
Kedvezményes jegy (gyerek, diák, pedagógus, nyugdíjas)	250 Ft
Fotójegy (belépőjegy és fényképezőgép-használat)	500 Ft

Januárban négyszer annyi kedvezményes belépőjegyet adtak el, mint teljes árú jegyet, továbbá az eladott fotójegyek száma az eladott teljes árú jegyek számának 12,5%-a volt. A múzeum belépőjegy-eladásból származó bevétele januárban 912 600 Ft volt.

b) Hány belépőjegyet adtak el januárban összesen?

(4 pont

Csilla, Dezső, Emese, Feri és Gyöngyi délelőtt 10-re beszéltek meg találkozót a múzeum előtt. Sorban egymás után érkeznek (különböző időpontokban), véletlenszerűen.

c) Mennyi a valószínűsége annak, hogy legfeljebb egy lánynak kell várakoznia fiúra? (6 pont)

A kiállításon több gondolkodtató, minimalista kép is szerepel. Dezső szerint az ábrán látható, csatlakozó félköröket ábrázoló kép címe azért "Egyenlőség", mert a felső és az alsó görbe vonal hossza egyenlő. A felső görbét alkotó két egyforma félkör átmérőjének összege 48 cm. Az alsó görbét alkotó két félkör átmérőjének összege szintén 48 cm.

- d) Igaz-e Dezső sejtése, hogy a két görbe vonal hossza egyenlő? (5 pont)
- 68) Az $A = \{-13; -5; 29\}$ és a $B = \{-17; 0; 1; 4\}$ halmazokból véletlenszerűen kiválasztunk egy-egy számot. Határozza meg annak a valószínűségét, hogy a két kiválasztott szám szorzata negatív lesz! Válaszát indokolja! (4 pont)
- 69) Egy A4-es papírlapot négy egyforma kisebb lapra vágtunk. Ezekre a kisebb lapokra felírtuk az 1, 2, 3, 4 számokat, mindegyik lapra egy számot. A négy lapot véletlenszerűen sorba rakjuk.
 - a) Mennyi annak a valószínűsége, hogy így sem két páros, sem két páratlan szám nem kerül egymás mellé? (4 pont)

Egy A4-es papírlap vastagsága 0,1 mm. Egy ilyen papírlapot kettévágunk, majd a keletkező két fél lapot egymásra tesszük. Az így kapott "kupacot" ismét kettévágjuk, és a keletkező négy negyedlapot egymásra tesszük (a kupac magassága ekkor 0,4 mm). Ezt a műveletet tovább folytatjuk, tehát először egy vágással a kupacot kettévágjuk, majd a keletkező lapokat egymásra tesszük. Azt tervezzük, hogy ezt a műveletet összesen 20-szor hajtjuk végre. Luca szerint, ha ezt meg tudnánk tenni, akkor a 20 vágás és egymásra rakás után keletkező kupac magasabb lenne, mint 100 méter.

b) Igaza van-e Lucának? Válaszát számítással igazolja!

(4 pont)

Egy A4-es papírlap méretei: 21 cm × 29,7 cm. A szövegszerkesztő programok általában 2,5 cm-es margóval dolgoznak, vagyis a papírlap minden oldalától számítva egy-egy 2,5 cm-es sáv üresen marad (lásd az ábrát). A lap közepén a szövegnek fennmaradó rész szintén téglalap alakú. Zsófi szerint az *ABCD* és az *EFGH* téglalapok hasonlók.

c) Igaza van-e Zsófinak? Válaszát indokolja! Tekintsük a következő állítást:

Ha két négyszög hasonló, akkor megfelelő szögeik páronként egyenlők.

- d) Adja meg az állítás logikai értékét (igaz vagy hamis)! Írja fel az állítás megfordítását, és adja meg a megfordítás logikai értékét is! Ez utóbbi válaszát indokolja! (4 pont)
- 70) Egy 125 férőhelyes szállodában összesen 65 szoba van: egy-, két- és háromágyasak.
 - a) Hány háromágyas szoba van a szállodában, ha a kétágyas szobák száma háromszorosa az egyágyas szobák számának? (7 pont) A szállodába egy hat főből álló társaság érkezik: Aladár, Balázs, Csaba, Dezső, Elemér és Ferenc. Aladár és Balázs testvérek. A társaság tagjai az egyágyas 101-es, a kétágyas 102-es és a háromágyas 103-as szobát kapják. A recepciós kitesz a pultra egy darab 101-es, két darab 102-es és három darab 103-as szobakulcsot. A társaság tagjai a pultra helyezett kulcsok közül véletlenszerűen elvesznek egyet-egyet (ezzel kiválasztják a szobájukat).
 - b) Határozza meg annak a valószínűségét, hogy Aladár és Balázs kerül a 102-es szobába! (6 pont) Érkezésük után a vendégek a szálloda éttermében vacsoráztak. Vacsorájukra várva látták, hogy az egyik pincér sietős mozdulatai közben leejtett és összetört egy tányért. A szálloda pincérei felszolgálás közben átlagosan minden kétezredik tányért összetörik (ezt tekinthetjük úgy, hogy $\frac{1}{2000}$ annak a valószínűsége, hogy egy adott tányért összetörnek). A pincérek a következő
 - c) Határozza meg annak a valószínűségét, hogy a következő vacsora közben a pincérek legalább egy tányért összetörnek! (4 pont)
- 71)
- a) Határozza meg azt a háromjegyű számot, amelyről a következőket tudjuk:
 - számjegyei a felírás sorrendjében egy számtani sorozat egymást követő tagjai;
 - a szám értéke 53,5-szerese a számjegyei összegének;

vacsora alkalmával összesen 150 tányért szolgálnak fel.

- ha kivonjuk belőle az első és utolsó jegy felcserélésével kapott háromjegyű számot, akkor 594 az eredmény. (10 pont)
- b) Sorolja fel azokat a 200-nál nagyobb háromjegyű számokat, amelyeknek számjegyei a felírás sorrendjében növekvő számtani sorozat tagjai! (4 pont)
- c) Számítsa ki annak a valószínűségét, hogy a b) kérdésben szereplő számok közül véletlenszerűen egyet kiválasztva, a kiválasztott szám osztható 9-cel! (3 pont)
- 72) Egy fa építőjáték-készlet négyféle, különböző méretű téglatestfajtából áll. A készletben a különböző méretű elemek mindegyikéből 10 db van. Az egyik téglatest, nevezzük alapelemnek, egy csúcsából induló éleinek hossza: 8 cm, 4 cm, 2 cm. A többi elem méreteit úgy kapjuk, hogy az alapelem valamelyik 4 párhuzamos élének a hosszát megduplázzuk, a többi él hosszát pedig változatlanul hagyjuk.
 - a) Mekkora az egyes elemek felszíne? (4 pont)
 - b) Rajzolja le az alapelem kiterített hálózatának 1:2 arányú kicsinyített képét! (4 pont)
 - c) Elférhet-e a játékkészlet egy olyan kocka alakú dobozban, amelynek belső éle 16 cm? (4 pont)
 - d) A teljes készletből öt elemet kiveszünk. (A kiválasztás során minden elemet azonos valószínűséggel választunk.) Mekkora valószínűséggel lesz mind az öt kiválasztott elem négyzetes oszlop? (A valószínűség értékét három tizedesjegy pontossággal adja meg!)

- 73) Egy csonkakúp alakú tejfölös doboz méretei a következők: az alaplap átmérője 6 cm, a fedőlap átmérője 11 cm és az alkotója 8,5 cm.
 - a) Hány cm³ tejföl kerül a dobozba, ha a gyárban a kisebbik körlapján álló dobozt magasságának 86%-áig töltik meg?
 Válaszát tíz cm³-re kerekítve adja meg! (11 pont)
 - b) A gyártás során a dobozok 3%-a megsérül, selejtes lesz. Az ellenőr a gyártott dobozok közül visszatevéssel 10 dobozt kiválaszt. Mennyi a valószínűsége annak, hogy a 10 doboz között lesz legalább egy selejtes? Válaszát két tizedesjegyre kerekítve adja meg! (6 pont)
- 74) Egy sétálóutca díszburkolatát ötszög alapú egyenes hasáb alakú kövekkel készítik el. (Az ábrán négy ilyen követ lehet látni a burkolaton megfigyelhető elrendezésben.)
 - A kő alapját képző *ABCDE* ötszög tengelyesen szimmetrikus (egy, a *D* csúcson átmenő egyenesre), négy oldala 10 cm hosszú, három szöge 120°-os, az ábrának megfelelően.
 - a) Számítással igazolja, hogy az *AED* és *BCD* háromszög derékszögű! (2 pont)
 - b) Számítsa ki az *ABCDE* ötszög területét!(6 pont) Róbert egy járdaszakaszt egyedül 20 óra alatt burkolna le ezzel a kővel, Sándor ugyanazt a munkát egyedül 30 óra alatt végezné el.
 - c) Mennyi idő alatt végeznek, ha együtt dolgoznak? (4 pont) Ezt a követ szürke és sárga színben árulják a kereskedésben. A dobozokon matrica jelzi a dobozban lévő kövek színét. Állítólagosan minden századik dobozon rossz a matrica: szürke helyett sárga vagy fordítva. (Ezt tekinthetjük úgy, hogy 0,01 annak a valószínűsége, hogy rossz matrica kerül a dobozra.) Péter kiválaszt 21 szürke jelzésű dobozt, és ellenőrzi a dobozokban lévő kövek színét.
 - d) Mennyi a valószínűsége annak, hogy a 21 kiválasztott doboz közül legalább 20 dobozban valóban szürke kő van? (5 pont)
- 75) Egy szabályos dobókockával háromszor dobunk, majd a dobott számokat (a dobások sorrendjében) balról jobbra egymás mellé írjuk. Így egy háromjegyű számot kapunk.
 - Mennyi a valószínűsége annak, hogy a kapott háromjegyű szám 500-nál nagyobb lesz? Válaszát indokolja! (3 pont)
- 76) Egy textilgyár felmérést készített, hogy a vásárlói igényeknek megfelelő arányban gyárthassa le törölközőit. Megkérdeztek 500 járókelőt arról, hogy négy lehetséges szín közül melyik színben vásárolnának legszívesebben ilyen törölközőt. Az alábbi táblázat<u>ban látható a felmérés eredmény</u>e.

	kék	sárga	piros	zöld
válaszok száma	176	153	124	47

A gyár a válaszoknak megfelelő arányban határozta meg az egyes színekből készülő törölközők darabszámát.

 a) Számítsa ki, hogy hány kék, sárga, piros, illetve zöld törölközőt gyártottak, ha összesen 10000 darab készült! A darabszámokat százasokra kerekítve adja meg! (3 pont)

Négy kék, két sárga és egy piros törölköző közül (visszatevés nélkül) véletlenszerűen kiválasztunk kettőt.

Mennyi annak a valószínűsége, hogy mindkét törölköző sárga lesz?

(3 pont)

A textilgyárban dolgozók között tavaly háromszor annyi nő volt, mint férfi. Idén felvettek még 70 nőt és 6 férfit, így már négyszer annyi nő dolgozik a gyárban, mint férfi.

- c) Hány nổ és hány férfi dolgozója van a gyárnak idén? (5 pont)
- 77) A Föld Nap körüli pályájának hossza kb. 939 millió km. A Föld egy teljes Nap körüli "kört" kb. 365,25 nap alatt tesz meg.
 - Számítsa ki, hogy hány km/h a Föld átlagsebessége egy teljes kör megtétele során! (3 pont)

A Naprendszer Naptól legtávolabbi bolygója a Neptunusz, mely kb. 4,2 fényóra távolságra van a naptól. A fényóra az a távolság, melyet a fény egy óra alatt megtesz.

Számítsa ki a Neptunusz kilométerben mért távolságát a Naptól! Válaszát normálalakban adja meg! (A fény egy másodperc alatt kb. 300000 km-t tesz meg.) (3 pont)

A Naprendszer bolygói: Merkúr, Vénusz, Föld, Mars, Jupiter, Szaturnusz, Uránusz, Neptunusz. Egy földrajzdolgozatban a Naptól való távolságuk sorrendjében kell megadni a bolygókat. Judit csak abban biztos, hogy a Föld a harmadik a sorban, a Neptunusz pedig a legutolsó. Ezeket helyesen írja a megfelelő helyre. Emlékszik még arra is, hogy a Naphoz a Merkúr és a Vénusz van a legközelebb, de a sorrendjüket nem tudja, így e két bolygó sorrendjére is csak tippel. Végül a többi négy bolygó nevét véletlenszerűen írja be a megmaradt helyekre.

Határozza meg annak a valószínűségét, hogy Judit éppen a helyes sorrendben adja meg a bolygókat! (4 pont)

A nyolc bolygó nevét egy-egy cédulára felírjuk, és ezeket beletesszük egy kalapba. Kétszer húzunk a kalapból véletlenszerűen egy-egy cédulát.

- Visszatevéses vagy visszatevés nélküli húzás esetén nagyobb valószínűsége annak, hogy legalább egyik húzott cédulán a Föld neve szerepel? (Visszatevéses húzás esetén az először húzott cédulát a második húzás előtt visszatesszük, visszatevés nélküli húzás esetén nem tesszük vissza.) (7 pont)
- 78) Két szabályos dobókockával egyszerre dobva mennyi annak a valószínűsége, hogy két különböző számot dobunk? (2 pont)
- 79) Egy nyolccsapatos jégkorongbajnokságban minden csapat minden másikkal egyszer mérkőzik meg. Az ábrán látható gráf az eddig lejátszott mérkőzéseket szemlélteti. A pontok a csapatokat jelképezik, és két pont között pontosan akkor van él, ha a két csapat már játszott egymással. A bajnokságból 5 fordulót már megrendeztek, ám néhány mérkőzés elmaradt. (Egy fordulóban - ha nincs elmaradó mérkőzés mindegyik csapat egy mérkőzést játszik.)

a) Adja meg három olyan csapat betűjelét, melyek

közül bármely kettő már lejátszotta az egymás közötti mérkőzését! (2 pont)

Hány mérkőzés maradt el az első 5 fordulóban?

(4 pont)

Az egyik játékos 0,3 valószínűséggel szerez gólt egy büntetőlövésből.

Mekkora a valószínűsége, hogy 10 büntetőlövésből pontosan 4 gólt szerez? (4 pont) A szabványos jégkorong egy olyan vulkanizált gumihenger, amelynek magassága 2,54 cm (1 inch), alapkörének átmérője 7,62 cm (3 inch). Az egyik csapat a pálya bejáratához egy olyan nagyméretű korongot terveztet, amely (matematikai értelemben) hasonló a szabványos jégkoronghoz. A tervben szereplő nagyméretű korong térfogata 1 m³.

- d) Számítsa ki a nagyméretű korong magasságának és alapköre átmérőjének a hosszát! (7 pont)
- 80) A háromjegyű pozitív egész számok közül véletlenszerűen kiválasztunk egyet. Mennyi annak a valószínűsége, hogy a kiválasztott szám számjegyei különbözők? Megoldását részletezze! (4 pont)
- 81) Dávidnak ebben a félévben három darab 3-as és két darab 5-ös érdemjegye van angolból. Jánosnak is öt jegye van angolból. Az ő jegyeinek mediánja 1-gyel nagyobb, mint Dávid jegyeinek mediánja, az átlaga viszont 1-gyel kisebb Dávid jegyeinek átlagánál.
 - a) Határozza meg János angoljegyeit! (A jegyek egész számok.) (6 pont) Eszter az első félévben 9 jegyet szerzett angolból, és ezek átlaga pontosan 3. A második félévben 6 jegyet szerzett, ezek átlaga pontosan 4,5.
 - b) Mennyi Eszter egész évben szerzett angoljegyeinek az átlaga?
 - Az {1;2;3;4;5} halmaz elemei közül véletlenszerűen kiválasztunk két különbözőt. (3 pont)
 - c) Mennyi a valószínűsége, hogy a két kiválasztott szám átlaga egész szám lesz? (4 pont)
- 82) Egy osztályban kétszer annyian járnak matematikafakultációra, mint fizikafakultációra. Összesen 15 olyan diák van az osztályban, aki a két fakultáció közül valamelyikre jár. A 15 diák közül 6-an mindkét fakultációra járnak.
 - a) Hány olyan diák van az osztályban, aki matematikafakultációra jár, de fizikára nem?

A távoktatás időszakában ennek az osztálynak a tagjai a tanárral együtt 24-en vesznek részt az alapmatematikaórákon. Az órákon használt online alkalmazás 4 sorban és 6 oszlopban rendezi el a

				
				
		③	③	③

résztvevőket megjelenítő egybevágó kis téglalapokat úgy, hogy ezek kitöltik a teljes képernyőt. Stefi számítógépén a képernyő vízszintes és függőleges oldalának aránya 16: 9.

- b) Adja meg egy kis téglalap vízszintes és függőleges oldalának arányát két egész szám hányadosaként! (5 pont)
- Az alkalmazás a bejelentkező személyekhez tartozó 24 téglalapot véletlenszerűen rendezi el a képernyőn.
- c) Számítsa ki annak a valószínűségét, hogy a következő órán Stefit és barátnőjét, Cilit megjelenítő téglalap is a képernyő első sorába fog kerülni! (A 24 kis téglalapot az alkalmazás mindig 4 sorban és 6 oszlopban rendezi el.)
- A 24 bejelentkező személyt a képernyőn 24!-féleképpen lehet elrendezni.
- d) Mutassa meg, hogy a 24! osztható 10 000-rel! (3 pont)

			1						
83)	meg	piros és annak a szát indo	egy kék s valószínűs kolja!	szabályos ségét, hog	dobókoc gy a két d	ckát egys: lobott szá	zerre felde m összege	obunk. Ha e legalább	atározza 11 lesz! (3 pont)