Event cameras

presented by Emanuela Haller
Bucharest Computer Vision Reading Group

Contents

- Introduction to event cameras
- Semi-dense 3D structure estimation [1]
- Optical flow and intensity estimation [2]

- [1] H Rebecq, G. Gallego and D. Scaramuzza. "EMVS: Event-based Multi-View Stereo", BMVC 2016.
- [2] P. Bardow, A.J. Davison and S. Leutenegger. "Simultaneous Optical Flow and Intensity Estimation from an Event Camera", CVPR 2016.

Event cameras

- Silicon retina
- Pixel-level changes
- Asynchronous events (microsecond resolution)
 - OFF events encode decreasing brightness
 - ON events encode increasing brightness

DVS – Dynamic Vision Sensor

DVS

- No redundant information
- Low latency
- High dynamic range
- No motion blur
- Reduced power consumption

Paradigm shift

• DVS128

(Dynamic Vision Sensor)

array size	128 x 128	
pixel size	40 x 40 μm	
dynamic	120 dB	
range		
latency	15 μs	
bandwidth	1 M events / sec	
price	3000 CHF	

[3] P.Lichtsteiner, C. Posch and T. Delbruck. "A 128x128 120dB 15µs latency asynchronous temporal contrast vision sensor". JSSC 2008

http://inilabs.com/

DAVIS240

(Dynamic and Active-pixel Vision Sensor)

/ 	
array size	240 x 180
pixel size	18.5 x 18.5 μm
dynamic	130 dB
range	
latency	3 μs
bandwidth	3 M events / sec
ASP(active	55 dB, 30 fps
pixel sensor)	

[4] C. Brandli, R. Berner, M. Yang, S.C. Liu and T. Delbruck. "A 240x180 130dB 3µs Latency Global Shutter Spatiotemporal Vision Sensor". JSSC 2014

http://inilabs.com/

EMVS: Event-based Multi-View Stereo [1]

Semi-dense 3D structure

• MVS — the problem of 3D structure estimation, of a static scene, from a collection of images taken from known viewpoints

A Space-Sweep Approach to True Multi-Image Matching [5]

Binary edge images

Event-based Space-Sweep

- 1. Back-project event locations as rays through a defined volume of interest
- 2. Record the number of rays that pass through each voxel
- 3. Determine locations of 3D points

Frame-based vs. Event-based

Volume of interest - Disparity Space Image (DSI)

(240x180 px)

240 x 180 x 100 voxels

(a) Ray density DSI $f(\mathbf{X})$.

(b) Confidence map.

(c) Semi-dense depth map.

(d) 3D point cloud.

Camera positions

- Motorized linear slider
- Visual odometry algorithm SVO [6]

[6] C. Forster, M. Pizzoli and D. Scaramuzza. ""SVO: Fast semi-direct monocular visual odometry". ICRA 2014

Table 1: Depth estimation accuracy in the synthetic datasets ($N_z = 100$)

	Dunes	3 planes	3 walls
Depth range	3.00 m	1.30 m	7.60 m
Mean error	0.14 m	0.15 m	0.52 m
Relative error	4.63%	11.31%	6.86%

Table 2: Depth estimation accuracy in the HDR experiment

	Close (distance: 23.1 cm)		Far (distance: 58.5 cm)				
Illumination ○ constant ○ HDR	Mean error 1.22 cm 1.21 cm	Relative error 5.29% 5.25%	Mean error 2.01 cm 1.87 cm	Relative error 4.33% 3.44%			

Large-scale reconstruction with hand-held DAVIS

Frames (240x180 px)

Events (ON, OFF)

Real-Time

3 walls dataset (synthetic)

Frames (240x180 px)

Events (ON, OFF)

Simultaneous Optical Flow and Intensity Estimation from an Event Camera[2]

(a) Raw event camera output

(b) Standard camera image

(c) Intensity estimate from events

(d) Optical flow from events

Optical flow

Apparent motion of brightness patterns

Problem formulation

Events:
$$e_i = (x_i, t_i, \rho_i)$$

$$x_i \in \Omega$$

- position of the event

$$t_i$$

- timestamp

$$\rho_i \in \{-1, 1\}$$
 - polarity

Event fired if:
$$\left| L(x,t) - L(x,t_p(x,t)) \right| \ge \theta$$

L(x,t) log intensity at pixel x, at time t

 $t_p(x,t)$ time of the previous event

I - image

$$I(x + \delta_t u, t + \delta_t) = I(x, t)$$

 δ_t time discretisation

Spatial smoothness of the flow

$$\lambda_1 \|\mathbf{u}_{\mathbf{x}}\|_1$$

Temporal smoothness of the flow

$$\lambda_2 \|\mathbf{u}_t\|_1$$

Intensity smoothness

$$\lambda_3 \|\mathbf{L}_{\mathbf{x}}\|_1$$

Temporal consistency

$$\lambda_4 \|\langle L_x, \delta_t u \rangle + L_t \|_1$$

Event data term

$$\textstyle \sum_{i=2}^{|P(x)|} \lVert L(x,t_i) - L(x,t_{i-1}) - \theta \rho_i \rVert_1$$

No-event data term

$$\lambda_5 h_{\theta} \left(L(x,t) - L(x,t_p(x,t)) \right)$$

Prior image constraint

$$\|\mathbf{L}(\mathbf{x}, \mathbf{t}_1) - \hat{\mathbf{L}}(\mathbf{x})\|_2^2 \qquad \hat{\mathbf{L}} - \text{prior image}$$

t₁ - first event timestamp at x, in current window, or minimum of T

P(x) set of all events fired at x

$$h_{\theta}(x) = \begin{cases} |x| - \theta & \text{, if } |x| > \theta \\ 0 & \text{, otherwise} \end{cases}$$

Discretisation

 $\Omega =>$ regular pixel grid of size MxN T => K cells, each of length δ_t μs

Figure 4: Approximation of the intensity for two given events e_1 and e_2 between two intensity estimates L_1 and L_2 . For the discrete data term, we use the linear approximations f_1 and f_2 at the time of each event η_1 and η_2 .

Figure 3: The sliding window (green box) bins the incoming positive events (red bars) and negative events (blue bars) into a regular grid (dashed lines). When the minimisation converges, the window is shifts to the right.

Optimisation

$$\begin{split} \min_{u,L} \int_{\Omega} \; \int_{T} \; \left(\lambda_{1} \|u_{x}\|_{1} + \lambda_{2} \|u_{t}\|_{1} + \lambda_{3} \|L_{x}\|_{1} + \lambda_{4} \|\langle L_{x}, \delta_{t}u \rangle + L_{t}\|_{1} + \lambda_{5} h_{\theta} \left(L - L \big(t_{p} \big) \right) \right) dt dx \\ + \int_{\Omega} \left(\left(\sum_{i=2}^{|P(x)|} \|L(t_{i}) - L(t_{i-1}) - \theta \rho_{i}\|_{1} \right) + \lambda_{6} \left\| L(x, t_{1}) - \widehat{L}(x) \right\|_{2}^{2} \right) dx \end{split}$$

- preconditioned primal-dual algorithm [7]
- Legendre-Fenchel transform [8]

- [7] T.Pock and A. Chambolle. "Diagonal preconditioning for first order primal-dual algorithms in convex optimization". ICCV 2011
- [8] A. Handa, R. A. Newcombe, A. Angeli and A.J. Davison. "Applications of the Legendre-Fenchel transformation to computer vision problems"

DVS128 => 128 x 128
K = 128,
$$\delta_{\rm t} = 15 \, {\rm ms}$$

 $\theta = 0.22$
 $\lambda_1 = 0.02$, $\lambda_2 = 0.05$, $\lambda_3 = 0.02$, $\lambda_4 = 0.2$, $\lambda_5 = 0.1$, $\lambda_6 = 1$

Benefits of simultaneous estimation

(b) With optical flow

(c) Camera images

DVS128 => 128 x 128 K = 128, $\delta_{\rm t}=15{\rm ms}$ $\theta=0.22$ $\lambda_1=0.02,~\lambda_2=0.05,\lambda_3=0.02,\lambda_4=0.2,\lambda_5=0.1,\lambda_6=1$

DVS128 => 128 x 128
 K = 128,
$$\delta_{\rm t}=15{\rm ms}$$

 $\theta=0.22$
 $\lambda_1=0.02,~\lambda_2=0.05,\lambda_3=0.02,\lambda_4=0.2,\lambda_5=0.1,\lambda_6=1$

High Dynamic Range

DVS128 => 128 x 128
K = 128,
$$\delta_{t}$$
 = 4ms
 θ = 0.22
 λ_{1} = 0.02, λ_{2} = 0.05, λ_{3} = 0.02, λ_{4} = 0.2, λ_{5} = 0.1, λ_{6} = 1

Rapid motion

DVS128 => 128 x 128
K = 128,
$$\delta_{\rm t}$$
 = 7ms
 θ = 0.22
 $\lambda_{\rm 1}$ = 0.01, $\lambda_{\rm 2}$ = 0.05, $\lambda_{\rm 3}$ = 0.01, $\lambda_{\rm 4}$ = 0.2, $\lambda_{\rm 5}$ = 0.1, $\lambda_{\rm 6}$ = 1

References

- [1] H Rebecq, G. Gallego and D. Scaramuzza. "EMVS: Event-based Multi-View Stereo", BMVC 2016
- [2] P. Bardow, A.J. Davison and S. Leutenegger. "Simultaneous Optical Flow and Intensity Estimation from an Event Camera", CVPR 2016
- [3] P.Lichtsteiner, C. Posch and T. Delbruck. "A 128x128 120dB 15µs latency asynchronous temporal contrast vision sensor". JSSC 2008
- [4] C. Brandli, R. Berner, M. Yang, S.C. Liu and T. Delbruck. "A 240x180 130dB 3µs Latency Global Shutter Spatiotemporal Vision Sensor". JSSC 2014
- [5] R.T. Collins. "A space-sweep approach to true multi-image matching". CVPR 1996
- [6] C. Forster, M. Pizzoli and D. Scaramuzza. ""SVO: Fast semi-direct monocular visual odometry". ICRA 2014
- [7] T.Pock and A. Chambolle. "Diagonal preconditioning for first order primal-dual algorithms in convex optimization". ICCV 2011
- [8] A. Handa, R. A. Newcombe, A. Angeli and A.J. Davison. "Applications of the Legendre-Fenchel transformation to computer vision problems"