What is Statistical Language Model?

- Statistical language models are probability $P(w_1, w_2, ..., w_n)$ defined on sequences of words $w_1, w_2, ..., w_n$
- Many NLP applications
 - speech recognition, machine translation and information retrieval
- Estimating the probability becomes expensive and infeasible for long sequences (not enough data/storage)
- Smoothed N-gram models based on unigrams, bigrams, and trigrams are often used to approximate the language model:

$$P(w_1, w_2, ..., w_n) = P(w_1) \times P(w_2|w_1) \times P(w_3|w_2) ... \times P(w_n|w_{n-1})$$

How to derive a language model

- I. Get a corpus of texts
- 2. Break texts into sentences, sentences into tokens
- 3. Count the frequencie of tokens, pairs, triples
- Apply probability theory and information theory to estimate model parameters (prob. of tokens, pairs, triples)
 - MLE (Maximal Likelihood Estimation) = based on frequency, maximizing the prob. of sample, but gives zero prob. to unseen events
 - Smoothing = Dealing with low-count and unseen events (giving them non-zero probability)

Example – Case Restoration

- Input:
 - THE U.S. MILITARY ISSUED A PUBLIC APOLOGY TO THE PEOPLE OF A SHIITE MUSLIM NEIGHBORHOOD IN BAGHDAD ON THURSDAY ...
- Output:
 - The U.S. military issued a public apology to the people of a Shiite Muslim neighborhood in Baghdad on Thursday ...
- Many Likely Candidates for Output
 - the u.s. military issued a public apology to the people of a shiite muslim neighborhood in baghdad on thursday ...
 - The u.s. military issued a public apology to the people of a shiite muslim neighborhood in baghdad on thursday ...
- Which is more likely = Max Probability
 - P(the u.s. military issued a public apology to the people of a shiite muslim neighborhood in maghdad on thursday ...)
 - P(The u.s. military issued a public apology to the people of a shiite muslim neighborhood in maghdad on thursday ...)

Example – Filling in Articles and Prepositions

- In Alan Meryers (2005) Gateways to Academic Writing pp. 277, learners are asked to fill articles and prepositions in the blanks.
- The model T Ford was a fragile-looking automobile, but it became _____ the ___ most popular car in history. Henry Ford sold 16 million Model Ts _____ the years 1908 and 1928. The Model T is _____ immediate best-seller, not only because of its low price, but because it was _____ powerful car.

Example – using articles and prepositions correctly

- In Gateways to Academic Writing (Meryers 2005, pp. 277), learners are asked to fill articles and prepositions in the blanks.
- The model T Ford was a fragile-looking automobile, but it became <u>the</u> most popular car in history. Henry Ford sold 16 million Model Ts <u>in</u> the years 1908 and 1928. The Model T is <u>an</u> immediate best-seller, not only because of its low price, but because it was <u>the</u> powerful car.

How to Estimate Probability

- Counting words (w, count(w)) (done in Lab 1)
- MLE (maximal likelihood estimator)
 - For all words w with count i → P(w) = i / N
 - For all unseen words \rightarrow P(w) = 0

Smoothing

- Good-Turing Estimation
- V = Vocabulary Size
- 1. Counting word types with counts 1, 2, 3, ...
 - $N = N_1 + 2 N_2 + 3 N_3 + ...$
 - $N_0 = V N_1 N_2 N_3 ...$ (for 1gram)
 - $N_0 = V^2 N_1 N_2 N_3$ (N_1, N_2, N_3 are different for 2gram)
- 2. Compute $0^* = 1 \times N_1 / N_0$

$$r^* = (r+1) N_{r+1} / N_r$$
, for $r = 1, k-1$
 $r^* = r$, for $r > k$

- 3. Adjusting counts and prob. with r*
 - For unseen word w (r = 0)

$$r^* = 0^* = N_1 / N_0$$

P(w) = $r^* / N = N_1 / (N_0 N)$

For seen word w with count r < k (k = 10)

$$r^* = (r+1) N_{r+1} / N_r$$

 $P(w) = r^* / N = (r+1) N_{r+1} / (N_r N)$

Re-normalization

- All probabilistic values must sum to 1
- Adjusted total

$$-N' = N_1 + 2 N_2 + 3 N_3 + ... + (k-1) N_{k-1} + k N_k + k N_k + (k+1) N_{K+1} + ...$$

- Prob sum to $N' / N = (N + k N_k) / N$ (not 1.0)
- Normalization

$$P'(w) = N P(w) / (N + k N_k)$$

- Do the same for bigram (w, w')
- Or directly

$$P(w) = r^* / (N + k N_k) = N_{r+1} / N_r / (N + k N_k)$$
 for $r = 0, 1, ..., k-1$
 $P(w) = r / (N + k N_k) = r / (N + k N_k)$ for $r > = k$

Estimating P(w) and P(w'|w)

P(w) = r*/N
-- r = count(w), go from r to r* (for unigram)
P(w, w') = r*/N
-- r = count (w, w'), go from r to r* (for bigram)
P(w'|w) = P(w', w) / P(w)

Language Modeling Tools

- SRI Language Modeling Toolkit
 - http://www.speech.sri.com/projects/srilm/
- Tutorial
 - Introduction to SRILM by Berlin Chen
 - http://berlin.csie.ntnu.edu.tw/Courses/2005F-SpeechRecognition/Lectures2005F/ SP2005F_Lecture08_SRILM%20Tutorial.pdf
- Python Wrapper for SRILM
 - http://www.isi.edu/~chiang/software/psrilm.tgz

Example of Running SRILM

- INPUT (科技想要什麼?)
 - 寫給 台灣 的 讀者 凱 文 · 凱利
 - 這本書,可以說是四十年前在台灣扎下了根基
 - 一九七二年,二十歲的我離開美國紐澤西,結束平淡的生活,展開長長的旅程,來到一個完全不同的世界,也就是當時正開始面臨轉變的台灣
 - 我第一次出國,目的地就是台灣
 - 眼前 所 見 , 令 我 震驚 不能 自己
 - 那個時候,最主要的交通工具是腳踏車,現在的新北市則是一片片稻田
 - 我親眼見證,這塊活躍的土地急速現代化,幾乎每天都在改變,從第三世界國家提升到名列世界富國
 - 台灣 ,達成 了不可能 的 任務

Example of Running SRILM

- Language Model
 - \data\
 - ngram 1=11589
 - ngram 2=71201
 - ngram 3=8893
 - \1-grams:
 - -5.149576 一共 -0.1150313
 - -4.149576 一再 -0.2703053
 - -3.516108 一切 -0.3589188

Example of Running SRILM

- \2-grams:
- -0.6187539 一共 有
- -0.4609967 一再 出現 0.00103879
- -1.618754 一再 提出
- ...