# પ્રશ્ન 1(અ) [3 માર્ક્સ]

ATmega32 ની લાક્ષણિકતાઓ જણાવો.

### જવાબ:

| લાક્ષણિકતા   | વર્ણન                         |
|--------------|-------------------------------|
| Flash Memory | 32KB programmable memory      |
| SRAM         | 2KB internal SRAM             |
| EEPROM       | 1KB non-volatile data storage |
| I/O Pins     | 32 programmable I/O lines     |
| Timers       | 3 flexible timer/counters     |
| ADC          | 10-bit 8-channel ADC          |

Operating Voltage: 2.7V થી 5.5V રેંજ
Clock Speed: 16 MHz સુધી ની ઓપરેશન

• Communication: USART, SPI, I2C interfaces

યાદી માટે: "Fast SRAM Enjoys Input Timers And Communication"

# પ્રશ્ન 1(બ) [4 માર્ક્સ]

માઈક્રોકંટ્રોલર પસંદ કરવા માટેના માપદંડો લખો.

#### જવાબ:

| માપદંડો           | વિચારણા                           |
|-------------------|-----------------------------------|
| Processing Speed  | Clock frequency આવશ્યકતાઓ         |
| Memory Size       | Program અને data storage જરૂરિયાત |
| I/O Requirements  | જરૂરી pins ની સંખ્યા              |
| Power Consumption | Battery life વિચારણાઓ             |
| Cost              | Budget મર્યાદાઓ                   |
| Development Tools | Compiler અને debugger ઉપલબ્ધતા    |

• Application Type: Real-time vs general purpose

• Communication Needs: Serial, parallel, wireless protocols

• Package Size: Final product ๚i space constraints

યાદી માટે: "Processing Memory I/O Power Cost Development Application Communication Package"

### પ્રશ્ન 1(ક) [7 માર્ક્સ]

એમ્બેડેડ સિસ્ટમનો સામાન્ય બ્લોક ડાયાગ્રામ દોરો અને સમજાવો.

#### જવાબ:



### લ્લોક કાર્યો:

- Processor: Instructions execute seg central processing unit
- **Memory**: Program code અને data temporary store કરે છે
- **Input Devices**: Sensors, switches જે system input આપે છે
- **Output Devices**: Actuators, displays જે results બતાવે છે
- Communication: External device connectivity หาร interfaces
- Power Supply: બધા components ને stable voltage પૂરું પાડે છે
- **Clock/Timer**: System operations અને timing synchronize કરે છે

યાદી માટે: "Processors Memory Input Output Communication Power Clock"

# પ્રશ્ન 1(ક OR) [7 માર્ક્સ]

રીયલ ટાઈમ ઓપરેટિંગ સિસ્ટમને વ્યાખ્યાયિત કરો અને તેની લાક્ષણિકતાઓ સમજાવો.

#### જવાબ:

**Real Time Operating System (RTOS)**: કડક time constraints માં data અને events process કરવા માટે design કરેલું operating system.

| લાક્ષણિકતા          | વર્ણન                                      |
|---------------------|--------------------------------------------|
| Deterministic       | Predictable response times                 |
| Preemptive          | Higher priority tasks interrupt lower ones |
| Multitasking        | Multiple tasks concurrently run થાય છે     |
| Fast Context Switch | Quick task switching capability            |
| Priority Scheduling | Tasks priority પર આધારે execute થાય છે     |
| Interrupt Handling  | Efficient interrupt processing             |

- Hard Real-time: Deadline miss થવાથી system failure થાય છે
- Soft Real-time: Deadline miss થવાથી performance degraded થાય છે
- Time Constraints: Operations deadline માં complete થવા જોઈએ

યાદી માટે: "Deterministic Preemptive Multitasking Fast Priority Interrupt"

# પ્રશ્ન 2(અ) [3 માર્ક્સ]

ATmega32 નો પીન ડાયાગ્રામ દોરો.

#### જવાબ:

```
+---U---+
    |1 40| PA0
PB0
PB1 2
           39 PA1
PB2 | 3 | 38 | PA2
         37| PA3
      4
PB3
PB4 |5 36| PA4
PB5 |6 35| PA5
PB6 | 7 34 | PA6
PB7 | 8 33 | PA7
RESET |9 32 | AREF
VCC |10 31| GND
     |11 30| AVCC
GND
XTAL2 | 12 29 | PC7
XTAL1 |13 28 | PC6
PD0 |14 27| PC5
PD1 | 15 26 | PC4
PD2 |16 25| PC3
PD3 |17 24| PC2
PD4 |18 23 | PC1
PD5 | 19 22 | PC0
           21 | PD7
PD6
     20
```

याही भाटे: "Port B A Reset Vcc Ground Crystal Port D C"

# પ્રશ્ન 2(બ) [4 માર્ક્સ]

### ATmega32 નો સ્ટેટસ રજિસ્ટર સમજાવો.

### જવાબ:

| Bit   | Name | Function                |
|-------|------|-------------------------|
| Bit 7 | 1    | Global Interrupt Enable |
| Bit 6 | Т    | Bit Copy Storage        |
| Bit 5 | Н    | Half Carry Flag         |
| Bit 4 | S    | Sign Bit                |
| Bit 3 | V    | Overflow Flag           |
| Bit 2 | N    | Negative Flag           |
| Bit 1 | Z    | Zero Flag               |
| Bit 0 | С    | Carry Flag              |

- Flags Update: ALU operations દ્વારા automatically set/clear થાય છે
- Conditional Branching: Program flow control માટે વપરાય છે

याही भाटे: "I Think Half Sign Overflow Negative Zero Carry"

# પ્રશ્ન 2(ક) [7 માર્ક્સ]

### ATmega32 ની ડેટા મેમરી વિગતવાર સમજાવો.

#### જવાબ:



### મેમરી સંગઠન:

- General Purpose Registers: Data operations หาร 32 registers (R0-R31)
- **I/O Memory**: Peripheral control registers नो direct access
- Extended I/O: Additional peripheral registers અને stack pointer

• Internal SRAM: Variables અને stack માટે 2KB volatile memory

• Address Space: 0x00 થી 0x8FF સુધી linear addressing

• Stack Operation: High memory addresses થી downward grows થાય છે

યાદી માટે: "General I/O Extended SRAM Address Stack"

# પ્રશ્ન 2(અ OR) [3 માર્ક્સ]

DDRx, PINx અને PORTx રજિસ્ટરના કાર્યો લખો.

#### જવાબ:

| Register | Function                                                             |
|----------|----------------------------------------------------------------------|
| DDRx     | Data Direction Register - pin ને input/output તરીકે configure કરે છે |
| PINx     | Pin Input Register - current pin state read કરે છે                   |
| PORTX    | Port Output Register - output pins પર data write કરે છે              |

• **DDRx Bit**: 1 = Output, 0 = Input configuration

• PINx Read: Pins પર actual voltage level return કરે છે

• **PORTx Write**: Pin output હોય ત્યારે output state control કરે છે

યાદી માટે: "Direction Input Output"

# પ્રશ્ન 2(બ OR) [4 માર્ક્સ]

AVR માં EEPROM સાથે સંકળાયેલા વિવિધ I/O રજિસ્ટરો સમજાવો.

#### જવાબ:

| Register    | Function                                |
|-------------|-----------------------------------------|
| EEARH/EEARL | EEPROM Address Register (9-bit address) |
| EEDR        | EEPROM Data Register                    |
| EECR        | EEPROM Control Register                 |

### **EECR Control Bits**:

• **EERIE**: EEPROM Ready Interrupt Enable

• **EEMWE**: EEPROM Master Write Enable

• **EEWE**: EEPROM Write Enable

• **EERE**: EEPROM Read Enable

**Programming Sequence**: Address set કરો → Data set કરો → Master write enable કરો → Write enable કરો **યાદી માટે**: "Address Data Control Ready Master Write Read"

# પ્રશ્ન 2(ક OR) [7 માર્ક્સ]

કલોક સોર્સને AVR સાથે જોડવાની વિવિધ રીતો સમજાવો.

#### જવાબ:

| Clock Source     | นย์า                                          |
|------------------|-----------------------------------------------|
| External Crystal | High precision, 1-16MHz                       |
| External RC      | Low cost, moderate precision                  |
| Internal RC      | Built-in 1/8MHz, કોઈ external components નહીં |
| External Clock   | External clock signal input                   |



### **Clock Configuration:**

- Fuse Bits: CKSEL3:0 અને SUT1:0 clock source select કરે છે
- Startup Time: Different sources માં અલગ અલગ startup delays હોય છે
- Frequency Range: Internal RC 1MHz અથવા 8MHz provide કરે છે
- External Components: Crystal ને stability માટે capacitors જોઈએ છે

યાદી માટે: "Crystal RC Internal External Fuse Startup Frequency Components"

# પ્રશ્ન 3(અ) [3 માર્ક્સ]

Timer 1 સાથે સંકળાયેલા રજિસ્ટરોનું કાર્ય લખો.

| Register      | Function                          |
|---------------|-----------------------------------|
| TCNT1H/TCNT1L | Timer/Counter 1 register (16-bit) |
| TCCR1A/TCCR1B | Timer/Counter 1 Control registers |
| ICR1H/ICR1L   | Input Capture register            |
| OCR1AH/OCR1AL | Output Compare A register         |
| OCR1BH/OCR1BL | Output Compare B register         |

• TIMSK: Timer Interrupt Mask register

• TIFR: Timer Interrupt Flag register

યાદી માટે: "Timer Control Input Output Mask Flag"

# પ્રશ્ન 3(બ) [4 માર્ક્સ]

Timer 0 ને સામાન્ય મોડમાં પ્રોગ્રામ કરવાના મુદ્દાઓ લખો.

જવાબ:

### **Programming Steps:**

- 1. **Timer Mode Set કરો**: Normal mode માટે TCCR0 configure કરો
- 2. **Prescaler Select કરો**: Clock division ratio choose કરો
- 3. Initial Value Load કરો: TCNT0 register set કરો
- 4. Interrupts Enable કરો: જરૂર હોય તો TIMSK માં TOIE0 set કરો
- 5. **Timer Start કરો**: TCCR0 માં prescaler bits set કરો

```
TCCR0 = 0x05;  // Normal mode, prescaler 1024
TCNT0 = 0x00;  // Initial value
TIMSK |= 0x01;  // Enable overflow interrupt
```

थाही भाटे: "Set Select Load Enable Start"

## પ્રશ્ન 3(ક) [7 માર્ક્સ]

ડેટા બાઈટોને સીરીયલી રીસીવ કરાવવા અને તેમને PORTA પર મૂકવા માટેનો C પ્રોગ્રામ લખો. બાઉડ રેટ 9600, 8-બીટ, અને 1-બીટ સેટ કરો.

```
#include <avr/io.h>
void USART_Init() {
```

```
// Baud rate 9600 set sei (8MHz clock भाटे)
    UBRRH = 0x00;
    UBRRL = 51;
    // Receiver enable sरो
    UCSRB = (1 << RXEN);
    // Frame format set Sel: 8 data bits, 1 stop bit
    UCSRC = (1 << URSEL) | (3 << UCSZO);
}
unsigned char USART_Receive() {
    // Data receive थप। भाटे wait sरो
    while(!(UCSRA & (1<<RXC)));
   return UDR;
}
int main() {
    DDRA = 0xFF;
                       // PORTA output તરીકે
                       // USART initialize sरो
    USART_Init();
    while(1) {
        PORTA = USART Receive(); // Receive Sਟੀ ਅਜੇ display Sਟੀ
    return 0;
}
```

યાદી માટે: "Initialize Receive Display Loop"

# પ્રશ્ન 3(અ OR) [3 માર્ક્સ]

AVR માં સીરીયલ કોમ્યુનિકેશન સાથે સંકળાયેલા રજિસ્ટરોના કાર્યો લખો.

જવાબ:

| Register    | Function                            |
|-------------|-------------------------------------|
| UDR         | USART Data Register                 |
| UCSRA       | USART Control and Status Register A |
| UCSRB       | USART Control and Status Register B |
| UCSRC       | USART Control and Status Register C |
| UBRRH/UBRRL | USART Baud Rate Registers           |

मुज्य डार्थों: Data transmission/reception, status monitoring, control configuration

યાદી માટે: "Data Control Status Baud"

### પ્રશ્ન 3(બ OR) [4 માર્ક્સ]

ડેટા સીરીયલી ટ્રાન્સફર કરવા માટે AVR ને પ્રોગ્રામ કરવાના મુદ્દાઓની ચર્ચા કરો.

જવાબ:

**Programming Steps:** 

- 1. Baud Rate Set કરો: UBRRH/UBRRL registers configure કરો
- 2. **Transmitter Enable કરો**: UCSRB માં TXEN bit set કરો
- 3. Frame Format Set કરો: UCSRC માં data bits, stop bits configure કરો
- 4. Empty Buffer માટે Wait કરો: UCSRA માં UDRE flag check કરો
- 5. **Data Load કરો**: UDR register માં data write કરો

```
void USART_Transmit(unsigned char data) {
   while(!(UCSRA & (1<<UDRE))); // Empty buffer HIZ wait SZÌ
   UDR = data; // Data send SZÌ
}
```

યાદી માટે: "Baud Enable Format Wait Load"

# પ્રશ્ન 3(ક OR) [7 માર્ક્સ]

દર 2 મિલિસેકન્ડે માત્ર PORTB.4 બીટને સતત ટોગલ કરવા માટેનો C પ્રોગ્રામ લખો. Delay જનરેટ કરવા timer 1ને પ્રીસ્કેલર વગર નોર્મલ મોડમાં ઉપયોગ કરો. XTAL=8MHz ધારો.

```
#include <avr/io.h>
#include <avr/interrupt.h>
volatile unsigned int timer_count = 0;
ISR(TIMER1_OVF_vect) {
   timer_count++;
   if(timer count >= 1) { // 여기어기 2ms
       PORTB ^= (1<<4); // PORTB.4 toggle sel
       timer_count = 0;
       TCNT1 = 49911; // 2ms delay 412 reload Sel
}
int main() {
   DDRB |= (1<<4); // PORTB.4 output dels
   // Timer1 Normal mode, no prescaler
   TCCR1A = 0x00;
   TCCR1B = 0x01;
                         // No prescaler
```

```
TCNT1 = 49911;  // 2ms Hl2 initial value

TIMSK |= (1<<TOIE1);  // Timer1 overflow interrupt enable S2)

sei();  // Global interrupts enable S2)

while(1) {
    // Main loop
}
return 0;
}
```

**ગણતરી**: 8MHz clock સાથે 2ms delay માટે: 8MHz × 2ms = 16000 cycles Timer1 counts: 65536 - 16000 = 49536 (adjustment માટે લગલગ 49911)

थाही भारे: "Configure Timer Calculate Enable Loop"

# પ્રશ્ન 4(અ) [3 માર્ક્સ]

ULN2803 નો ATmega32 સાથે ઇન્ટરફેસિંગ ડાયાગ્રામ દોરો.

#### જવાબ:

```
ATmega32
           ULN2803
                       Load
+----+ +----+
                    +----+
  PB0 |---->| 1 |---->| Relay|
                |---->| LED |
  PB2 |---->| 3 |---->| Motor|
  PB3 |----> | 4
                     +----+
     |---->| 5
  PB4
  PB5 |---->| 6
  PB6 |--->| 7
  PB7 |---->| 8
         9 |<----+ +12V
  GND |--->| 10
```

### કનેક્શન વિગતો:

- Input: ATmega32 PORTB pins થી ULN2803 inputs
- Output: ULN2803 outputs high current loads drive કરે છે
- **Common**: Pin 9 positive supply સાથે, Pin 10 ground સાથે connects થાય છે

યાદી માટે: "Input Output Common Supply Ground"

# પ્રશ્ન 4(બ) [4 માર્ક્સ]

Port B પરથી ડેટા બાઈટ લેવો અને તેને Port C પર મોકલવા AVR માટેનો C પ્રોગ્રામ લખો.

#### જવાબ:

#### પ્રોગ્રામ Flow:

- Ports Configure કરો: Direction registers set કરો
- Pull-ups Enable કરો: Internal pull-up resistors activate કરો
- Data Read કરો: PINB register થી byte get કરો
- Data Write કરો: PORTC register પર byte output કરો

યાદી માટે: "Configure Enable Read Write"

# પ્રશ્ન 4(ક) [7 માર્ક્સ]

MAX7221 નો ATmega32 સાથે ઇન્ટરફેસિંગ ડાયાગ્રામ દોરો અને સમજાવો.

#### જવાબ:

```
ATmega32
             MAX7221
                          7-Segment Display
+----+
            +----+
     |---->| DIN
  PB5
                             а
     |---->| CLK
  PB7
     |---->| LOAD |
  PB4
      |---->| VCC
  VCC
     |---->| GND
             | DIG0-7 |-----+
             SEG A-G
             DP
```

### Interface વર્ણન:

• SPI Communication: 3-wire SPI protocol ตเนล้ છ่

- DIN (Data In): PB5 (MOSI) થી serial data input
- CLK (Clock): PB7 (SCK) થી clock signal
- LOAD (Chip Select): PB4 (SS) થી latch signal
- Multiplexed Display: 8 seven-segment digits સુધી control કરે છે
- Current Control: LEDs માટે internal current limiting

**Programming Steps**: SPI initialize  $s \ge i \rightarrow Address send <math>s \ge i \rightarrow Data send s \ge i \rightarrow LOAD$  pin toggle  $s \ge i$ 

યાદી માટે: "SPI Data Clock Load Multiplex Current Program"

# પ્રશ્ન 4(અ OR) [3 માર્ક્સ]

LM35 નો ATmega32 સાથે ઇન્ટરફેસિંગ ડાયાગ્રામ દોરો.

#### જવાબ:

### કનેક્શન વિગતો:

- VCC: +5V supply સાથે connect કરો
- OUT: ADC channel (PA0) पर analog output
- GND: Ground સાથે connect કરો
- Output: 10mV/°C linear voltage output

ขเยิ มเล้: "VCC OUT GND Linear"

# પ્રશ્ન 4(બ OR) [4 માર્ક્સ]

Port C ના બીટ-5 ને મોનીટર કરો, જો તે HIGH હોય તો 55H ને Port B પર મોકલો નહીં તો AAH ને Port B પર મોકલવા AVR માટેનો C પ્રોગ્રામ લખો.

### પ્રોગ્રામ Logic:

- Bit Monitor: Bit masking વાપરીને PC5 status check કરો
- Conditional Output: Input આધારે અલગ અલગ values send કરો
- Continuous Loop: Changes માટે continuously monitor કરો

યાદી માટે: "Monitor Conditional Output Loop"

# પ્રશ્ન 4(ક OR) [7 માર્ક્સ]

AVR માં SPI ને પ્રોગ્રામ કરવા માટેના રજિસ્ટરોની ચર્ચા કરો.

#### જવાબ:

| Register | Function             |
|----------|----------------------|
| SPCR     | SPI Control Register |
| SPSR     | SPI Status Register  |
| SPDR     | SPI Data Register    |

#### **SPCR Control Bits**:

• SPIE: SPI Interrupt Enable

• SPE: SPI Enable

• DORD: Data Order (MSB/LSB first)

• MSTR: Master/Slave Select

• CPOL: Clock Polarity

• CPHA: Clock Phase

• SPR1:0: SPI Clock Rate Select

### **SPSR Status Bits**:

• SPIF: SPI Interrupt Flag

• WCOL: Write Collision Flag

• SPI2X: Double SPI Speed

**Programming Sequence**: SPCR configure કરો ightarrow SPI enable કરો ightarrow SPDR write કરો ightarrow SPIF માટે wait કરો ightarrow SPDR

read કરો

યાદી માટે: "Control Status Data Configure Enable Write Wait Read"

### પ્રશ્ન 5(અ) [3 માર્ક્સ]

મોટર ડ્રાઇવર આઈસી L293D નો પીન ડાયાગ્રામ દોરો.

#### જવાબ:

### Pin รเขโ:

• EN1, EN2: Motor control หเว้ enable pins

• 1A, 2A, 3A, 4A: Microcontroller થી input pins

• 1Y, 2Y, 3Y, 4Y: Motors પર output pins

• VCC: Logic ਅਜੇ motor supply voltages

• GND: Ground connections

याही भारे: "Enable Input Output Supply Ground"

# પ્રશ્ન 5(બ) [4 માર્ક્સ]

ADMUX રજિસ્ટર દોરો અને સમજાવો.

### જવાબ:

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| REFS1 | REFS0 | ADLAR | MUX4  | MUX3  | MUX2  | MUX1  | MUX0  |

### Bit કાર્યો:

- REFS1:0: Reference Selection (00=AREF, 01=AVCC, 11=Internal 2.56V)
- ADLAR: ADC Left Adjust Result (data format)
- MUX4:0: Analog Channel Selection (32 possible channels)

### Channel Selection ઉદાહરણો:

• 00000: ADC0 (PA0)

• 00001: ADC1 (PA1)

• **00111**: ADC7 (PA7)

यादी भादे: "Reference Adjust Multiplex Channel"

# પ્રશ્ન 5(ક) [7 માર્ક્સ]

GSM આધારિત સિક્યુરિટિ સિસ્ટમનો બ્લોક ડાયાગ્રામ સમજાવો.

#### જવાબ:



### સિસ્ટમ ઘટકો:

- **Sensors**: PIR, door/window sensors intrusion detect ອ<sub>ີ</sub> ອີ
- Microcontroller: Sensor data process કરે છે અને system control કરે છે
- **GSM Module**: Registered numbers પર SMS/calls send કરે છે
- **Mobile Network**: Cellular infrastructure સાથે connects કરે છે
- Alarm System: Local audio/visual alerts
- **Display Unit**: System status અને messages show કરે છે
- Power Supply: Continuous operation หาว battery backup
- Operation Flow: Sensor detects → Microcontroller processes → GSM sends alert → User receives notification → Alarm activates

યાદી માટે: "Sensors Microcontroller GSM Mobile Alarm Display Power Operation"

# પ્રશ્ન 5(અ OR) [3 માર્ક્સ]

મોટર ડ્રાઇવર L293D નો ઉપયોગ કરી ડી.સી. મોટરને ATmega32 સાથે ઇન્ટરફેસ કરવાનો સર્કિટ ડાયાગ્રામ દોરો.

#### જવાબ:

| ATm | ega32 | L293D    | DC Mc  | tor |
|-----|-------|----------|--------|-----|
| +   |       | + ++     | +      | +   |
|     | PB0   | -> EN1   | M      |     |
|     | PB1   | -> 1A    | 0      |     |
|     | PB2   | -> 2A 1Y | ->  T  |     |
|     |       | 2Y       | ->   O |     |
|     | VCC   | -> VCC   | R      |     |
|     | GND   | -> GND   | +      | +   |
| +   |       | + ++     |        |     |

### કનેક્શન્સ:

• PB0 → EN1: Motor operation enable ຣ ຂ છે

• **PB1** → **1A**, **PB2** → **2A**: Direction control inputs

• 1Y, 2Y → Motor: Motor terminals ਪ੨ output

• VCC, GND: Power supply connections

Motor Control: 1A, 2A પર અલગ અલગ input combinations motor direction અને speed control કરે છે

યાદી માટે: "Enable Direction Output Power Control"

# પ્રશ્ન 5(બ OR) [4 માર્ક્સ]

ADCSRA રજિસ્ટર દોરો અને સમજાવો.

#### જવાબ:

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| ADEN  | ADSC  | ADATE | ADIF  | ADIE  | ADPS2 | ADPS1 | ADPS0 |

#### Bit કાર્યો:

• ADEN: ADC Enable

• ADSC: ADC Start Conversion

• ADATE: ADC Auto Trigger Enable

• ADIF: ADC Interrupt Flag

• ADIE: ADC Interrupt Enable

• ADPS2:0: ADC Prescaler Select (division factor)

Prescaler Settings: 000=2, 001=2, 010=4, 011=8, 100=16, 101=32, 110=64, 111=128

**Programming**: ADEN set કરો → Prescaler configure કરો → ADSC set કરો → ADIF માટે wait કરો

याही भादे: "Enable Start Auto Interrupt Prescaler Configure"

# પ્રશ્ન 5(ક OR) [7 માર્ક્સ]

વેધર મોનીટરીંગ સિસ્ટમનો બ્લોક ડાયાગ્રામ સમજાવો.

#### જવાબ:



### સિસ્ટમ ઘટકો:

- **Temperature Sensor**: Ambient temperature measure ອ<sub>ເ</sub>ຂັ້ છે (LM35/DS18B20)
- **Pressure Sensor**: Atmospheric pressure changes detect နုဒဲ ဗဲ
- Rain Sensor: Precipitation levels detect ອ ຂໍ ອີ
- Microcontroller: Data collection หเว้ central processing unit
- LCD Display: Local visual data presentation
- Data Logger: Historical weather data store ອ ຂ છે
- **Wireless Module**: Remote locations પર data transmit કરે છે
- Alarm System: Extreme weather conditions หเ2 alerts
- Power Supply: System ને stable power પૂરું પાડે છે

**ઓપરેશન**: Sensors data collect કરે છે → Microcontroller processes કરે છે → Display updates થાય છે → Data logging થાય છે → Wireless transmission થાય છે → Alert generation થાય છે

યાદી માટે: "Temperature Humidity Pressure Rain Microcontroller Display Logger Wireless Alarm Operation"