On the Subject of Bitwise Operators

Nobody's favorite kind of math. Who even likes math, Anyway?

- There are 2 total screens on the module
 - 1. Bitwise operator (AND, OR, XOR, NOT)
 - 2. Result input

Filling out the below tables with a 'l' for each true piece of data will give you bytes l and two.

Obtaining byte 1:

No AA bats.	Parallel port	lit indicator NSA	More modules than you have (starting) time	More than one lit indicator	Number of modules divisible by 3	Less than 2 D batteries	less than 4 ports
0	0	0	0	0	0	0	0

Obtaining byte 2:

l or more D battery	3+ ports	2 battery containers or more	lit indicator BOB	more than one unlit indicator	Odd serial number	Even number of modules	2+ ba tt eries
0	0	0	0	0	0	0	0

Here is a table of explanations of each bitwise operator.

Info	AND	OR	XOR	NOT
HOW	Going bit by bit, if both bits are 1, the return bit is 1. Otherwise, the return bit is 0.	Going bit by bit, if either (or both) bit is 1, the return bit is 1. Otherwise, the return bit is 0.	Going bit by bit, if either (but not both) bits are 1, the return bit is 1. Otherwise, the return bit is 0.	Basically, ignore the second operator. The answer works regardless. Going bit by bit, the return bit is the opposite.

MATH	(bit1 == 1) && (bit2 == 1)	(bit1 == 1) (bit2 == 1)	((bit1 == 1) && (bit2 == 0)) ((bit1 == 0) && (bit2 == 1))	bitl = !bitl
------	-------------------------------	-------------------------------	---	--------------