AK High-Dimensional Projection Structural Theory: Formal Proofs of Lemmas

A. Kobayashi

Version 1.4 - May 2025

Overview

This paper provides formal mathematical proofs of the lemmas introduced in the AK High-Dimensional Projection Structural Theory, reinforcing the logical rigor and structural reliability of the framework.

1 Formal Proofs of Lemmas

Lemma 1.1 (Structural Group Connectivity Lemma). Given Axiom A2, if each group $\{G_i\}$ is a connected component and satisfies the adjacency condition $\overline{G_i} \cap \overline{G_{i+1}} \neq \emptyset$, then the projected space $\mathcal{P} = \bigcup_i G_i$ is connected.

Proof. Each G_i is assumed to be a connected closed set. The adjacency ensures that closures of adjacent groups intersect nontrivially. As the union of a finite chain of connected sets with non-empty intersections remains connected, $\mathcal{P} = \bigcup_i G_i$ is connected.

Lemma 1.2 (Local Smoothness Lemma). Given Axiom A3, for any group G_i , if the structural stability function $S_i(t)$ exists and $\lim_{t\to\infty} S_i(t) = 0$, then the inverse map $\Phi^{-1}|_{G_i}$ is smooth.

Proof. Assume $S_i(t)$ quantifies structural features such as topological persistence (e.g., PH distance) or analytical features (e.g., energy gradient). Convergence of $S_i(t)$ to zero implies the disappearance of structural perturbations over time, yielding a steady geometric/topological regime. Consequently, the inverse $\Phi^{-1}|_{G_i}$ preserves differentiability and continuity, hence is smooth.

Lemma 1.3 (Inverse Projection Continuity Lemma). Given Axiom A4 and the above lemmas, the inverse projection Φ^{-1} is continuous on each G_i , and hence on the whole space \mathcal{P} .

Proof. Since Φ is a structure-preserving continuous map and each G_i satisfies structural stability, the restriction $\Phi^{-1}|_{G_i}$ is continuous. As the decomposition $\{G_i\}$ is MECE, the total map Φ^{-1} is a union of local continuous maps and hence globally continuous on \mathcal{P} .

2 Main Theorem and Corollary

Theorem 2.1 (Global Smoothness Theorem (Complete Form)). Given Axioms A1 through A4, and if each structural stability function $S_i(t)$ is monotonically decreasing and convergent, then the original space $\mathcal{X}(t)$ evolves smoothly over time.

<i>Proof.</i> Lemma 1 shows that the projected space \mathcal{P} is connected. Lemmas 2 and 3 establish smoothness on each group and continuity of the inverse map. Together, they imply global smoothness on $\mathcal{X}(t)$.
Corollary 2.2 (Non-Singularity Corollary). Under the above conditions, no singularities (blow-up or non-differentiable points) emerge in the evolution of the original space $\mathcal{X}(t)$.
<i>Proof.</i> The preservation of smoothness implies absence of singularities. Therefore, continuity and differentiability hold globally for all t .