Physics II (PH 102) Electromagnetism (Lecture 8 & 9)

Udit Raha

Indian Institute of Technology Guwahati

Feb 2020

Electrostatic Potential Energy of a Point Test Charge in Electric Field

Consider a stationary configuration of source charge distribution.

- ▶ Let E(r) be a pre-existing electric field with potential V(r) at a point P.
- ightharpoonup The electrostatic force \mathbf{F}_{field} on a positive test charge Q is

$$\mathbf{F}_{field} = Q\mathbf{E} = -\mathbf{F}_{ext}$$
.

Definition

Electrostatic Potential Energy of a test charge Q at point $P(\mathbf{r})$ is equal to the amount of work done by an external agent against the electrostatic field to bring the charge Q from ∞ (or ref) to the point $P(\mathbf{r})$:

$$U_{E}(\mathbf{r}) = \int_{-\infty}^{r} \mathbf{F}_{ext} \cdot d\mathbf{r}' = -\int_{-\infty}^{r} \mathbf{F}_{field} \cdot d\mathbf{r}' = -Q \int_{-\infty}^{r} \mathbf{E} \cdot d\mathbf{r}' = QV(\mathbf{r}).$$

Note: The ambiguity in the absolute value of U_E at a point like V!

► Electrostatic Energy difference between two points **a** and **b** can be unambiguously expressed in terms of the Potential difference:

$$U_{E}(\mathbf{b}) - U_{E}(\mathbf{a}) = Q[V(\mathbf{b}) - V(\mathbf{a})] = -Q \int_{a}^{\mathbf{b}} \mathbf{E}(\mathbf{r}') \cdot d\mathbf{r}'.$$

Potential Energy due to a system of Point Charges in free Field

Consider bringing in source charges $q_1, q_2, q_3, \dots, q_n$, one by one from ∞ .

- No work done in placing first charge q_1 at $\mathbf{r_1}$, i.e., $W_1=0$
- ► Total Work done is placing up to the second charge q₂ at r₂:

$$W_2 = W_1 + \delta w_2 = 0 + \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{|\mathbf{r}_1 - \mathbf{r}_2|} = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r_{12}}$$

► Total Work done in placing up to the third charge q₃ at r₃:

$$W_3 = W_2 + \delta w_3 = W_2 + \frac{q_3}{4\pi\epsilon_0} \left(\frac{q_1}{r_{13}} + \frac{q_2}{r_{23}} \right)$$

• q₅ • q₂ • q₃ • q₁ • q₄

Generalize formula up to n charges: $(j \neq i \text{ Self interactions excluded!})$

$$W_n = W_{n-1} + \delta w_n = rac{1}{4\pi\epsilon_0} \sum_{i=1}^{n-1} \sum_{j=2,j>i}^n \left(rac{q_i q_j}{r_{ij}}
ight)
ightarrow ext{No Double Counting}$$
 $\equiv rac{1}{8\pi\epsilon_0} \sum_{i=1}^n \sum_{j=2,j>i}^n \left(rac{q_i q_j}{r_{ij}}
ight)
ightarrow ext{With Double Counting}$

Potential Energy of a system of Point Charges in free Field (contd.)

▶ The Electrostatic Potential Energy is equal to the total work done W_n to assemble the configuration of n point charges at $\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_n$:

$$U_{E}(\mathbf{r}_{1}, \mathbf{r}_{2}, \dots, \mathbf{r}_{n}) \equiv W_{n} = \frac{1}{8\pi\epsilon_{0}} \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} \left(\frac{q_{i}q_{j}}{r_{ij}}\right)$$

$$= \frac{1}{2} \sum_{i=1}^{n} q_{i} \left(\sum_{j=1, j \neq i}^{n} \frac{1}{4\pi\epsilon_{0}} \frac{q_{j}}{r_{ij}}\right)$$

$$= \frac{1}{2} \sum_{i=1}^{n} q_{i} V(\mathbf{r}_{i}) \equiv \frac{1}{2} \sum_{i=1}^{n} q_{i} V_{i} = \frac{1}{2} \sum_{i=1}^{n} u_{Ei}$$

- $V_i \equiv V(\mathbf{r}_i)$: Potential at the i^{th} charge site \mathbf{r}_i due to other n-1 charges.
- ▶ The result is independent of the order/sequence in which the charges are assembled at the respective EXACT locations, $\mathbf{r}_1, \mathbf{r}_2, \cdots, \mathbf{r}_n$.

$$\textit{U}_{\textit{E}}(r_1, r_2, \cdots, r_n) = \textit{U}_{\textit{E}}(r_2, r_n, \cdots, r_1) = \cdots = \textit{U}_{\textit{E}}\left[\mathrm{Permute}(r_1, r_2, \cdots, r_n) \right]$$

► The result OBVIOUSLY, depends on the respective locations of the charges. Thus, *U_E* is called the CONFIGURATION ENERGY.

Configuration Energy of Point Charges in free space

► Superposition Principle is <u>invalid</u> (1/2 factor avoids **double counting!**):

$$U_E = \frac{1}{2} \sum_{i=1}^n u_{Ei}$$

Recall:

- \blacktriangleright While defining U_E , we said "No work done in placing first charge q_1 at r_1 ."
- \blacktriangleright All terms i = j were absent in U_E .
- ► SELF-ENERGIES of the individual point charges were excluded!

Definition

SELF-ENERGY: This is the amount of energy needed to fabricate or build-up the individual point charges by bringing their respective differential amounts of constituent charges from ∞ to the specific locations.

Electrostatic Potential Energy of General Distribution of Source Charges

(a) Discrete charges

(b) Line charge, λ

(c) Surface charge, σ

(d) Volume charge, ρ

Localized charge distributions:

- ▶ Volume \mathcal{V} with volume charge density $\rho(\mathbf{r})$
- Surface S with surface charge density $\sigma(\mathbf{r})$
- ► Curve Γ with linear charge density $\lambda(\mathbf{r})$
- ▶ Discrete point charges q_i at \mathbf{r}'_i
- ▶ Potential V(r)
- ► Configuration Energy of system of charges:

$$U_{E} \approx \frac{1}{2} \iiint_{\mathcal{V}} \rho(\mathbf{r}') V(\mathbf{r}') d\tau' + \frac{1}{2} \iint_{S} \sigma(\mathbf{r}') V(\mathbf{r}') da'$$
$$+ \frac{1}{2} \int_{\Gamma} \lambda(\mathbf{r}') V(\mathbf{r}') dl' + \frac{1}{2} \sum_{i=1}^{n} q_{i} V(\mathbf{r}'_{i})$$

- Note: Self-energies of continuous distributions are included but not for discrete point charges!
- What else is missing here? INTERACTION ENERGIES
- ► Superposition Principle is <u>invalid</u> in general!

True Configuration Energy of General Localized Charge Distribution

Consider the most general localized charge distribution $\rho_{\rm tot}$ in a region V, bounded by a closed surface S:

$$U_E = rac{1}{2} \iiint\limits_{\mathcal{V}}
ho_{\mathrm{tot}}(\mathbf{r}') V(\mathbf{r}') \, d au'.$$

▶ Using Gauss's differential law <u>at source</u>: $\rho_{\text{tot}}(\mathbf{r}') = \epsilon_0 \nabla' \cdot \mathbf{E}(\mathbf{r}')$,

$$\begin{split} U_{\mathsf{E}} &= \frac{1}{2} \iiint\limits_{\mathcal{V}} \rho(\mathbf{r}') V(\mathbf{r}') \, d\tau' = \frac{\epsilon_0}{2} \iiint\limits_{\mathcal{V}} \left[\nabla' \cdot \mathbf{E}(\mathbf{r}') \right] V(\mathbf{r}') \, d\tau' \\ &= \frac{\epsilon_0}{2} \iiint\limits_{\mathcal{V}} \left[\left| \mathbf{E}(\mathbf{r}') \right|^2 + \nabla' \cdot \left[V(\mathbf{r}') \, \mathbf{E}(\mathbf{r}') \right] \right]_{\mathrm{source}} d\tau' \\ &= \frac{\epsilon_0}{2} \iiint\limits_{\mathcal{V}} \left| \mathbf{E}(\mathbf{r}') \right|_{\mathrm{source}}^2 d\tau' + \frac{\epsilon_0}{2} \iint\limits_{\mathcal{S}} \left[V(\mathbf{r}') \, \mathbf{E}(\mathbf{r}') \right]_{\mathrm{boundary}} \cdot d\mathbf{a}'. \end{split}$$

▶ In the last step, we applied the Gauss' Divergence Theorem to obtain the surface integral over the bounding surface S.

Recall Identity: $\nabla \cdot (V \mathbf{E}) = V (\nabla \cdot \mathbf{E}) + (\nabla V) \cdot \mathbf{E} = V (\nabla \cdot \mathbf{E}) - |\mathbf{E}|^2$

Let us EXTEND the integration over a very large SPHERICAL volume $\tilde{\mathcal{V}}$, with bounding surface $\tilde{\mathcal{S}}$, enclosing the LOCALIZED distribution \mathcal{V} :

$$U_{E} = rac{1}{2} \iiint\limits_{\mathcal{V}}
ho_{ ext{tot}}(\mathbf{r}') V(\mathbf{r}') \, d au' = rac{1}{2} \iiint\limits_{\mathcal{V}}
ho_{ ext{tot}}(\mathbf{r}') V(\mathbf{r}') \, d au'$$

- lacktriangle For ${
 m localized}$ distribution at a distant point P, $V({
 m r}) \propto 1/r, \ |{
 m E}({
 m r})| \propto 1/r^2$
- For points \mathbf{r}' on this very large spherical surface \tilde{S} ,

$$\iint [V(\mathbf{r}') \mathbf{E}(\mathbf{r}')]_{\text{boundary}} \cdot d\mathbf{a}' \propto \left(\frac{1}{r'} \cdot \frac{1}{r'^2} \cdot r'^2\right)_{\tilde{S}} \sim \#\left(\frac{1}{r'}\right)_{\tilde{S}} \to 0, \ r' \to \infty.$$

True Configuration Energy of General Charge Distribution (contd.)

Extending to include ALL SPACE: $\tilde{\mathcal{V}} \to \mathcal{V}_{\infty} \equiv \mathbb{R}^3$ and $\tilde{S} \to S_{\infty}$, then the surface integral vanishes!

$$\begin{array}{ll} \textit{U}_{E} & = & \frac{1}{2} \iiint\limits_{\mathcal{V}} \rho_{\mathrm{tot}}(\mathbf{r}') \textit{V}(\mathbf{r}') \, d\tau' = \frac{1}{2} \iiint\limits_{\tilde{\mathcal{V}}} \rho_{\mathrm{tot}}(\mathbf{r}') \textit{V}(\mathbf{r}') \, d\tau' \\ \\ & = & \frac{\epsilon_{0}}{2} \iiint\limits_{\tilde{\mathcal{V}} \rightarrow \mathcal{V}_{\infty}} |\mathbf{E}|_{\mathrm{source}}^{2} \, d\tau' + \frac{\epsilon_{0}}{2} \iint\limits_{\tilde{\mathcal{S}} \rightarrow \tilde{\mathcal{S}}_{\infty}} (\textit{V} \, \mathbf{E})_{\mathrm{boundary}} \cdot d\mathbf{a}' \\ \\ & = & \frac{\epsilon_{0}}{2} \iiint\limits_{\mathrm{All \ Space}} |\mathbf{E}(\mathbf{r}')|_{\mathrm{source}}^{2} \, d\tau' \end{array}$$

All inclusive formula: SELF-ENERGIES and INTERACTION ENERGIES of ALL localized charge distributions.

In Summary: 2 Prescriptions to determine the Configuration Energy of a Localized distribution (depending on convenience) in a given problem

$$U_E = rac{1}{2} \iiint \int
ho_{
m tot}({f r}) V({f r}) \, d au = rac{\epsilon_0}{2} \iiint \int
ho_{
m pace} |{f E}({f r})|^2 \, d au$$

Configuration Energy of a Charged Sphere

Example

Determine the total configuration/self energy of a uniformly charged solid sphere V_R of radius R and charge q.

▶ AUGMENTED VOLUME: Consider a very large <u>concentric</u> spherical volume V_a of radius $a\gg R$, with its bounding surface S_a , enclosing the original charged sphere V_R .

$$U_{E} = \frac{1}{2} \iiint\limits_{V_{R} \rightarrow V_{g}} \rho(\mathbf{r}) V(\mathbf{r}) d\tau = \frac{\epsilon_{0}}{2} \iiint\limits_{V_{g}} \left| \mathbf{E}(\mathbf{r}) \right|^{2} d\tau + \frac{\epsilon_{0}}{2} \oiint\limits_{S_{g}} V(\mathbf{r}) \mathbf{E}(\mathbf{r}) \cdot d\mathbf{a}$$

ightharpoonup Electric fields due to **original** charged sphere V_R (by Using Gauss's Law):

$$\mathsf{E}(\mathsf{r}) = \begin{cases} \frac{1}{4\pi\epsilon_0} \frac{qr}{R^3} \hat{\mathsf{r}} & r < R \\ \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{\mathsf{r}} & r > R \end{cases}$$

Potentials due to **original** charged sphere V_R (using $V(r) = -\int_{-\infty}^{r} \mathbf{E} \cdot d\mathbf{I}$):

$$V(\mathbf{r}) = \begin{cases} \frac{q}{8\pi\epsilon_0 R} \left(3 - \frac{r^2}{R^2} \right) & r < R \\ \frac{1}{4\pi\epsilon_0} \frac{q}{r} & r > R \end{cases}$$

▶ Volume integral over the **augmented** volume V_a of radius $a \gg R$:

$$\frac{\epsilon_0}{2} \iiint_{\mathbf{V}_a} |\mathbf{E}(\mathbf{r})|^2 d\tau = \frac{\epsilon_0}{2} \left(\frac{q}{4\pi\epsilon_0}\right)^2 \left\{ \int_0^R \left(\frac{r^2}{R^6}\right) r^2 dr + \int_R^a \left(\frac{1}{r^4}\right) r^2 dr \right\} \int_0^{\pi_A} d\Omega$$

$$= \frac{q^2}{8\pi\epsilon_0} \left\{ \left(\frac{1}{5R}\right)_{r \le R} + \left(\frac{1}{R} - \frac{1}{a}\right)_{R < r \le a} \right\}$$

▶ Surface integral over the **augmented** sphere S_a of radius $a \gg R$:

$$\underbrace{\frac{\epsilon_0}{2} \oiint \left[V(a\hat{\mathbf{r}}) \, \mathbf{E}(a\hat{\mathbf{r}}) \right] \cdot d\mathbf{a}}_{\epsilon} = \underbrace{\frac{\epsilon_0}{2} \left(\frac{q}{4\pi\epsilon_0 a} \right) \left(\frac{q}{4\pi\epsilon_0 a^2} \right) \left(4\pi a^2 \right) = \left(\frac{q^2}{8\pi\epsilon_0 r} \right)_{r=a}$$

Extend V_a to include ALL SPACE:

$$V_a o \mathcal{V}_\infty \equiv \mathbb{R}^3$$
 & $S_a o S_\infty \Longrightarrow a o \infty$

 \triangleright Configuration energy (self-energy) of the charged sphere V_R :

$$\begin{split} U_E &= \frac{\epsilon_0}{2} \iiint_{V_a \to V_\infty} |\mathbf{E}(\mathbf{r})|^2 \ d\tau + \frac{\epsilon_0}{2} \iiint_{S_a \to S_\infty} V(\mathbf{r}) \, \mathbf{E}(\mathbf{r}) \cdot d\mathbf{a} \\ &= \lim_{a \to \infty} \left[\frac{q^2}{8\pi\epsilon_0} \left\{ \frac{1}{5R} + \left(\frac{1}{R} - \frac{1}{A} \right) \right\} + \frac{q^2}{8\pi\epsilon_0 a} \right]^0 \\ &= \frac{1}{4\pi\epsilon_0} \left(\frac{3q^2}{5R} \right) \\ U_E &\equiv \frac{\epsilon_0}{2} \iiint_{\text{All Space}} |\mathbf{E}(\mathbf{r})|^2 \ d\tau = \frac{1}{4\pi\epsilon_0} \left(\frac{3q^2}{5R} \right). \end{split}$$

 \triangleright Check by <u>direct</u> integration over the **original** charged sphere V_R :

$$U_{E} = \frac{1}{2} \iiint \rho(\mathbf{r}) V(\mathbf{r}) d\tau = \frac{\epsilon_{0}}{2} \left(\frac{q}{4\pi\epsilon_{0}}\right)^{2} \int \limits_{s}^{R} \left(\frac{r^{2}}{R^{6}}\right) r^{2} dr \int \limits_{s}^{4\pi} d\Omega = \frac{1}{4\pi\epsilon_{0}} \left(\frac{3q^{2}}{5R}\right).$$

Self-energy of a Point Charge

► Electric field of a point charge placed at origin:

$$\mathsf{E}(\mathsf{r}) = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{\mathsf{r}}$$

► Self-Energy:

$$\begin{split} W &= \frac{\epsilon_0}{2} \iiint\limits_{\text{All Space}} |\mathbf{E}(\mathbf{r})|^2 d\tau &= \frac{\epsilon_0}{2} \left(\frac{q}{4\pi\epsilon_0} \right)^2 \left\{ \int_0^\infty \left(\frac{1}{r^4} \right) r^2 dr \int\limits_0^\pi \sin\theta d\theta \int\limits_0^{2\pi} d\phi \right\} \\ &= \frac{\epsilon_0}{2} \left(\frac{q}{4\pi\epsilon_0} \right)^2 \left\{ \int_0^\infty \left(\frac{1}{r^4} \right) 4\pi r^2 dr \right\} \\ &= \frac{q^2}{8\pi\epsilon_0} \int_0^\infty \frac{1}{r^2} dr \\ &= \frac{q^2}{8\pi\epsilon_0} \lim_{\delta R \to 0} \int_{\epsilon_R}^\infty \frac{1}{r^2} dr = \frac{q^2}{8\pi\epsilon_0} \lim_{\delta R \to 0} \frac{1}{\delta R} \Rightarrow \infty \end{split}$$

- ightharpoonup Since the radius δR of the point charge vanishes, the self-energy blow up!
- Point charges are <u>idealized</u> concepts. In reality $\delta R \neq 0$ (say, for electrons), so **Self-Energies** (classically) of spherical objects of finite radius δR is:

$$W_{\rm sphere} = \frac{1}{4\pi\epsilon_0} \left(\frac{3q^2}{5\delta R} \right) \rightarrow \text{finite}$$

Interaction Energy of two Point Charges

Example

Find the Interaction energy of two charges, q_1 and q_2 located at r_1 and r_2 , respectively.

Net Electric field at any point r (Superposition Principle)

$$\mathsf{E}(\mathsf{r}) = \mathsf{E}_1(\mathsf{r}) + \mathsf{E}_2(\mathsf{r})\,,$$

Total Configuration Energy:

$$\begin{split} W &= \frac{\epsilon_0}{2} \iiint\limits_{\mathrm{All~Space}} |\mathsf{E}(\mathsf{r})|^2 \, d\tau = \frac{\epsilon_0}{2} \iiint\limits_{\mathrm{All~Space}} |\mathsf{E}_1(\mathsf{r}) + \mathsf{E}_2(\mathsf{r})|^2 \, d\tau \\ &= \frac{\epsilon_0}{2} \iiint\limits_{\mathrm{All~Space}} |\mathsf{E}_1(\mathsf{r})|^2 \, d\tau + \frac{\epsilon_0}{2} \iiint\limits_{\mathrm{Space}} |\mathsf{E}_2(\mathsf{r})|^2 \, d\tau + \frac{\epsilon_0}{2} \iiint\limits_{\mathrm{All~Space}} 2\mathsf{E}_1(\mathsf{r}) \cdot \mathsf{E}_2(\mathsf{r}) \, d\tau \end{split}$$

Interaction Energy:

$$W^{\rm int} = \epsilon_0 \iiint\limits_{\rm All~Space} {\bf E_1(r) \cdot E_2(r)} \ d\tau = \frac{q_1 q_2}{16 \pi^2 \epsilon_0} \iiint\limits_{\rm All~Space} \frac{({\bf r} - {\bf r_1}) \cdot ({\bf r} - {\bf r_2})}{|{\bf r} - {\bf r_1}|^3 |{\bf r} - {\bf r_2}|^3} d\tau = \frac{q_1 q_2}{4 \pi \epsilon_0 r_{12}}$$

 \Rightarrow This is exactly the work done by an external agent in bringing q_2 from ∞ to r_2 with q_1 already present at r_1 .

Total Configuration Energy & Density

- ► Interesting Question: Where is the total energy stored?
- ...in the charges?...in the fields? No unique answer to that question!
- ► The equation involves integration over all charge distributions:

$$U_E = \frac{1}{2} \iiint\limits_{\mathcal{V}} \rho(\mathbf{r}) V(\mathbf{r}) \ d^3 r$$

⇒ suggests that the energy may be stored in the charges.

► The equation involves integration over all field configurations:

$$U_E = \frac{\epsilon_0}{2} \iiint_{\text{All Space}} E^2(\mathbf{r}) \ d^3 r$$

 \Longrightarrow suggests that the energy may be stored in the fields.

▶ It is conventional to define an **ENERGY DENSITY**:

$$u(\mathbf{r}) = \frac{\epsilon_0}{2} \left| \mathbf{E} \left(\mathbf{r} \right) \right|^2$$

 \Longrightarrow a volume dv will contain Electrostatic Potential Energy equal to $u(\mathbf{r})dv$.

