Bioquímica Geral

Sumário

LÍPIDOS

Propriedades e funções dos lípidos

Lípidos de reserva

Ácidos gordos

Triglicéridos

Lípidos estruturais

Glicerofosfolípidos

Esfingolípidos

Glicolípidos

Colesterol e seus derivados

MEMBRANAS BIOLÓGICAS

Composição e arquitectura das membranas biológicas

Modelo do mosaico fluido

Proteínas membranares (topologia e características)

Propriedades das membranas biológicas

Fluidez e temperatura de fusão

Difusão lateral e transversal

Permeabilidade

LÍPIDOS

São moléculas insolúveis em água...

FUNÇÕES

Lípidos de reserva: armazenamento de energia

Lípidos estruturais: componentes das

membranas biológicas

Lípidos de reserva

São derivados dos ácidos gordos. São lípidos apolares.

A oxidação destas moléculas liberta uma grande quantidade de energia porque o carbono está num estado muito reduzido.

(Ver: Utilização de lípidos vs. açúcares como reserva energética)

Os ácidos gordos

São ácidos carboxílicos com cadeias longas de hidrocarbonetos:

- A cadeia hidrocarbonada possui, normalmente, um nº par de carbonos (12 a 24)
- Podem ser saturados ou insaturados
- A grande maioria dos ácidos gordos insaturados têm ligações duplas não conjugadas na conformação CÍS.

Estrutura dos ácidos gordos

Nomenclatura dos ácidos gordos

Nome comum: ácido linoleico

Nomenclatura utilizada em Bioquímica:

- •A numeração dos carbonos começa no grupo carboxílico
- •É indicado o número total de carbonos
- •É indicado o número total de insaturações e as suas posições na cadeia alifática

$$\begin{array}{c} \begin{picture}(0,0) \put(0,0) \put$$

Nomenclatura alternativa: ácidos gordos omega.

A numeração dos carbonos começa no fim da cadeia alifática

omega-3

ácido α-linoleico 18:3 ($\Delta^{9,12,15}$) Pertencem à classe dos ácidos gordos omega-3 todos os ácidos gordos poliinsaturados que terminam com uma insaturação no carbono 3, (a contar do fim da cadeia).

omega-6 ultima insaturação no C6 omega-9 última insaturação no C9

Propriedades dos ácidos gordos

As propriedades físico-químicas dos ácidos gordos (e de outros compostos que os contêm) são determinadas pelo comprimento e pelo grau de insaturação das cadeias hidrocarbonadas:

1. Solubilidade

 – cadeias mais longas e menor nº de insaturações ⇔ menor solubilidade em água.

2. Temperatura de fusão

- cadeias mais longas ⇔ temperaturas de fusão mais elevadas
- maior nº de insaturações ⇔ menores temperaturas de fusão

ΰ

empacotamento dos ácidos gordos (melhor empacotamento requer mais energia térmica para quebrar a estrutura ordenada e muito estável)

Empacotamento de ácidos gordos saturados e insaturados:

Os ácidos gordos saturados não têm dobras e permitem um maior grau de compactação, maximizando as interacções de Van der Waals entre as cadeias hidrocarbonadas vizinhas. O empacotamento das cadeias de hidrocarbonetos reflecte-se nas propriedades fisico-químicas dos ácidos gordos.

12:0 a 24:0 são sólidos à temperatura ambiente (25 °C) C18 insaturados são líquidos à temperatura ambiente.

Triacilgliceróis (Triglicéridos)

Lípidos de reserva

- Os triacilgliceróis são ésteres do glicerol e 3 ácidos gordos
- São moléculas apolares, hidrofóbicas, insolúveis em água.
- A sua função é o armazenamento de energia e o isolamento térmico.
- Constituem as reservas alimentares nos tecidos adiposos.

Triacilglicerol

Glicerol

1-esteroil, 2-linoleoil, 3-palmitoil glicerol

Lípidos estruturais

Constituíntes das membranas biológicas.

São moléculas anfipáticas: contêm regiões hidrofóbicas e grupos polares

Glicerofosfolípidos (fosfoglicéridos)

São derivados do glicerol, têm fosfato, um álcool e 2 ácidos gordos

São os principais constituíntes das membranas biológicas (bicamadas lipídicas).

Fosfoglicéridos Comuns em Membranas

Derivados Glicerol

Phosphatidyl serine

Phosphatidyl ethanolamine

$$R_1$$
 C
 CH_2
 R_2
 C
 H_2
 CH_3
 CH_3
 CH_3
 CH_3

Phosphatidyl choline

Phosphatidyl inositol

Diphosphatidyl glycerol (cardiolipin)

Esfingolípidos

São lípidos estruturais derivados da esfingosina (C18)

- não contêm glicerol
- os C-1, C-2 e C-3 da molécula de esfigosina são estruturalmente análogos aos três carbonos do glicerol nos glicerofosfolípidos;
- A ligação de um único ácido gordo à esfingosina é feita através de uma ligação amida (–NH₂). (Obtém-se uma ceramida, que é estruturalmente semelhante a um diacilglicerol)

Esfingolípidos

Esfingomielina (contém fosfato)

Esteróis

São lípidos estruturais presentes nas membranas das células eucarióticas, cuja característica comum é a presença de um núcleo esteróide

O **núcleo esteróide** é quase planar e é relativamente rígido

Colesterol

É o esterol predominante nos tecidos animais; é anfipático devido ao grupo hidroxilo.

É um dos lípidos importantes nas membranas plasmáticas mas não se encontra nas membranas intracelulares nem nas membranas das bactérias.

É o precursor na síntese das hormonas esteróides (regulam a expressão genética e o metabolismo) e sais biliares (actuam como detergentes no intestino).

Lípidos com funções de sinais químicos, cofactores, pigmentos

Existem em muito menor quantidade mas têm um papel importante.

Sinais químicos:

- hormonas (comunicação entre células)
- Mensageiros intracelulares (gerados em resposta a sinais extracelulares, ex. fosfatidil inositol)

Cofactores de enzimas:

- Reacções de transferência electrónica na mitocôndria ou no cloroplasto (ubiquinona, plastoquinona)
- reacções de glicosilação (dolicol)

Pigmentos: lípidos com sistema de ligações duplas conjugadas que absorvem luz no visível importantes na visão e na fotossíntese, ex. retinal (derivado da vitamina A) e corantes naturais como β-caroteno ou licopeno.

MEMBRANAS BIOLÓGICAS

Funções das membranas biológicas

- Definem as fronteiras celulares (definem/mantêm a forma da célula via ligações não-covalentes entre os seus componentes). Protegem a célula do exterior (força mecânica). Dividem as células em compartimentos
- 2. Envolvidas no transporte controlado de substâncias → homeostasia
- 3. Actuam na recepção/transmissão de sinais extracelulares
- Contêm enzimas (enzimas membranares). Conversão de substratos não-polares (lípidos), enzimas da cadeia de transporte electrónico, fosforilação oxidativa e síntese de ATP
- Medeiam a interacção entre células (fusão celular, formação de tecidos)
- Servem de âncora ao citoesqueleto (manutenção da forma da célula e organelos, movimento celular)

Composição: Lípidos, proteínas e açúcares

... em proporções variáveis

Membranas Biológicas têm lípidos e proteínas

Os lípidos são responsáveis pelas propriedades estruturais:

- Formação de bicamadas que delimitam compartimentos separando os meios intracelular/extracelular ou, dentro da célula, organelos/citoplasma
- Capacidade de romper e selar espontaneamente a bicamada.
- A diferença de composição destes compartimentos pode ser mantida devido à relativa impermeabilidade destas barreira bilipídicas.
- A flexibilidade da camada bilipídica permite que as células se adaptem a vários ambientes, modificando a sua forma.

As proteínas são responsáveis pelas propriedades funcionais específicas das membranas:

- Transporte de solutos: as permeabilidades medidas experimentalmente a iões e moléculas polares são muito mais elevadas do que as previstas pela sua solubilidade em lípidos.
- Transdução de energia
- Recepção de sinais moleculares (comunicação entre células)
- Catálise

Estruturas de moléculas anfipáticas em solução aquosa

Na presença de água os glicerofosfolípidos, esfingolípidos e esteróis agregam-se espontaneamente \Leftrightarrow elevada hidrofobicidade

cavity

Dependendo das condições experimentais e da natureza dos lípidos podem formar-se 3 tipos de agregados:

Individual units are wedge-shaped (cross section of head greater than that of side chain)

micelas

Misturas de sais de ácidos gordos formam micelas: agregados esféricos de 10 a 1000 moléculas Diâmetro < 200 Å

bicamadas

Fosfolípidos e glicolípidos formam bicamadas ou lipossomas. As bicamadas são estruturas planares relativamente instáveis.

lipossomas

Lipossomas são vesículas com água dentro. Resultam do fecho da bicamada sobre si própria. Diâmetro variável de 500 a 10⁴ Å

A formação preferencial de bicamadas que originam vesículas fechadas com cavidades aquosas foi um passo evolutivo fundamental pois permitiu a compartimentação essencial ao desenvolvimento e manutenção da vida.

Arquitectura supramolecular das membranas Modelo Mosaico Fluido

As membranas biológicas são impermeáveis a iões e solutos polares e são permeáveis a solutos não polares.

As membranas biológicas são assimétricas:

- A composição em lípidos é diferente nas duas camadas
- A orientação das proteínas na bicamada reflecte assimetria funcional
- Só se encontram açúcares na camada exterior

Topologia das proteínas membranares

Proteínas Transmembranares

Ex. glicoforina

A glicoforina, uma glicoproteína da membrana do eritrócito, tem uma disposição assimétrica

- um domínio hidrofílico contendo todos os resíduos de açúcar localiza-se na superfície exterior
- um domínio hidrofóbico (19 aa.)
 atravessa a bicamada em hélice-α
- um segundo domínio hidrofílico, sem açúcares, localiza-se na superfície interior (citosol)

A maior parte das proteínas transmembranares atravessa a bicamada com estrutura secundária em hélice α

Previsão da existência de segmentos transmembranares

A estrutura secundária e disposição das proteínas membranares pode ser prevista a partir da sequência de aminoácidos:

Gráficos de hidropatia

Presume-se que sequências com pelo menos 20 a.a. hidrofóbicos constituam segmentos transmembranares

Isto só é válido para segmentos transmembranares em hélice α !!

Algumas proteínas transmembranares atravessam a bicamada numa estrutura em barril β

A dinâmica das membranas

Estado paracristalino (gel)

ordenado e rígido

Todas as membranas biológicas apresentam uma estrutura flexível

- associação não-covalente entre os lípidos da bicamada, o que lhes permite moverem-se individualmente
- os lípidos e as proteínas difudem lateralmente.
- a estrutura e flexibilidade da bicamada depende da temperatura e do tipo e conteúdo em lípidos.

Estado fluído

± desordenado (quase líquido)

o calor promove a transição entre os estados gel-fluido

Temperatura de fusão

A transição entre os estados rígido e fluido da membrana ocorre abruptamente.

Define-se uma temperatura de fusão (T_f)

Temperatura de fusão

- A temperatura de fusão depende do comprimento das caudas dos ácidos gordos e do seu grau de insaturação.
- Nos animais, o conteúdo em colesterol ajuda a regular a fluidez da membrana, fazendo com que a transição de estado deixe de ser abrupta. Devido à estrutura rígida e à forma como se insere entre os fosfolípidos, o colesterol aumenta a fluidez da membrana abaixo da temperatura de fusão e diminui a fluidez da membrana acima da temperatura de fusão. Para concentrações elevadas de colesterol a transição de fase desaparece.
- As bactérias têm a capacidade de alterar a composição em ácidos gordos da membrana para manter a fluidez quando há variações da temperatura.

Difusão lateral e transversal nas membranas

Difusão lateral espontânea (não-catalisada)

- i) os lípidos e as proteínas difudem rapidamente no plano lateral da membrana; esta difusão é apenas limitada pelas interacções de proteínas membranares com estruturas do citoesqueleto e pela interacção entre os lípidos;
- i) à temperatura fisiológica, a difusão dos lípidos entre-camadas (flip-flop) é muito lenta, a não ser que seja catalisada por uma flipase.
- iii) as proteínas não difudem transversalmente, mantendo a assimetria estrutural (e funcional) da bicamada

Difusão transversal (flip-flop) catalisada pela flipase

Permeabilidade da camada bilipídica

Permeabilidade P (cm s-1) da Bicamada Lipídica a moléculas pequenas aumenta com a fluídez da bicamada e é proporcional à Solubilidade dessas moléculas em lípidos K (constante de partição, adimensional), ao coeficiente de difusão D (cm2 s-1) através da bicamada e inversamente proporcional à espessura I (cm) . P = DK/I

