Neural Networks: Perceptrons

Spring 2021

The artificial neuron

A neuron connects a series on inputs (dendrites) to an output (axon).

The artificial neuron

A neuron connects a series on inputs (dendrites) to an output (axon).

Our model needs to include two processes:

- 1. The cell body (soma) combines all of the n inputs.
- 2. If the combined input exceeds a threshold, the output fires.

Modeling the artificial neuron

Let's model the combined input z as a linear combination of the inputs.

$$z = w_1 x_1 + w_2 x_2 + \dots + w_n x_n = \mathbf{w} \cdot \mathbf{x}$$

Modeling the artificial neuron

Let's model the combined input z as a linear combination of the inputs.

$$z = w_1 x_1 + w_2 x_2 + \dots + w_n x_n = \mathbf{w} \cdot \mathbf{x}$$

For now, let's assume the neuron "fires" based on the sign of z:

$$y = \begin{cases} +1, & \mathbf{w} \cdot \mathbf{x} > 0 \\ -1, & \mathbf{w} \cdot \mathbf{x} < 0 \end{cases}$$

Learning to classify

Let's assume we have n training points (\mathbf{x}_i, y_i) . How can we use these data to find the weights \mathbf{w} so the neuron fires only when $y_i = +1$?

Learning to classify

Let's assume we have n training points (\mathbf{x}_i, y_i) . How can we use these data to find the weights \mathbf{w} so the neuron fires only when $y_i = +1$?

The Perceptron Update Algorithm

- 1. Choose a random vector of initial weights $\mathbf{w}^{(0)}$ and a step size α .
- 2. For each training point (\mathbf{x}_i, y_i) , update the weights by

$$\mathbf{w}^{(k+1)} = \begin{cases} \mathbf{w}^{(k)} + \alpha y_i \mathbf{x}_i, & \text{if } \mathbf{x}_i \text{ is misclassified} \\ \mathbf{w}^{(k)}, & \text{otherwise} \end{cases}$$

3. Repeat until all points are classified correctly.

Does it work?

Heart attack classification by SVM.

Heart attack classification by a perceptron.

Why does it work?

Point ${\bf x}$ is +1 and is therefore misclassified by ${\bf w}^{(k)}.$

Why does it work?

Point ${\bf x}$ is +1 and is therefore misclassified by ${\bf w}^{(k)}.$

The weight is updated by $\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} + \alpha \mathbf{x},$ tilting \mathbf{w} toward \mathbf{x} .

Why does it work?

Point ${\bf x}$ is +1 and is therefore misclassified by ${\bf w}^{(k)}.$

The weight is updated by $\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} + \alpha \mathbf{x},$ tilting \mathbf{w} toward \mathbf{x} .

The new hyperplane is rotated toward x so the point will eventually be on the correct side.

Wait, what happened to the intercept?

The SVM problem used a linear classifier

$$y = \begin{cases} +1, & \mathbf{a} \cdot \mathbf{x} \ge b \\ -1, & \mathbf{a} \cdot \mathbf{x} \le b \end{cases}$$

but our perceptron fires using the rule

$$y = \begin{cases} +1, & \mathbf{w} \cdot \mathbf{x} > 0 \\ -1, & \mathbf{w} \cdot \mathbf{x} < 0 \end{cases}$$

Does this mean the perceptron hyperplane always passes through the origin?

Wait, what happened to the intercept?

The SVM problem used a linear classifier

$$y = \begin{cases} +1, & \mathbf{a} \cdot \mathbf{x} \ge b \\ -1, & \mathbf{a} \cdot \mathbf{x} \le b \end{cases}$$

but our perceptron fires using the rule

$$y = \begin{cases} +1, & \mathbf{w} \cdot \mathbf{x} > 0 \\ -1, & \mathbf{w} \cdot \mathbf{x} < 0 \end{cases}$$

Does this mean the perceptron hyperplane always passes through the origin?

No. We use a common ML trick to move the *bias* (intercept) into the weight vector and expand \mathbf{x} with a dummy dimension containing 1.

$$\mathbf{w} \cdot \mathbf{x} = b \Leftrightarrow \begin{pmatrix} w_1 \\ w_2 \\ -b \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix} = 0$$

x_1	x_2	y
1	0.9	+1
-1	0.3	+1
0	0.5	+1
1	-1	-1
-0.5	-0.7	-1
0.4	-0.3	-1

$$k = 0, \quad \mathsf{accuracy} = 4/6$$

$$\mathbf{w}^{(0)} = \left(-0.2, 0.05, 0.03\right)^\mathsf{T}$$

x_1	x_2	y	
1	0.9	+1	\leftarrow
-1	0.3	+1	
0	0.5	+1	
1	-1	-1	
-0.5	-0.7	-1	
0.4	-0.3	-1	

$$k = 0, \quad \text{accuracy} = 4/6$$

$$\mathbf{w}^{(0)} = (-0.2, 0.05, 0.03)^{\mathsf{T}}$$

$$\mathbf{w}^{(0)} \cdot \mathbf{x} = -0.125 \quad \text{(mismatch)}$$

$$\mathbf{w}^{(1)} = \mathbf{w}^{(0)} + 0.1(+1)\mathbf{x}$$

$$= (-0.1, 0.14, 0.13)^{\mathsf{T}}$$

x_1	x_2	y	
1	0.9	+1	\leftarrow
-1	0.3	+1	
0	0.5	+1	
1	-1	-1	
-0.5	-0.7	-1	
0.4	-0.3	-1	

$$\begin{aligned} k &= 0, & \mathsf{accuracy} &= 4/6 \\ \mathbf{w}^{(0)} &= (-0.2, 0.05, 0.03)^\mathsf{T} \\ \mathbf{w}^{(0)} \cdot \mathbf{x} &= -0.125 \quad \mathsf{(mismatch)} \\ \mathbf{w}^{(1)} &= \mathbf{w}^{(0)} + 0.1(+1)\mathbf{x} \\ &= (-0.1, 0.14, 0.13)^\mathsf{T} \end{aligned}$$

x_1 x_2 y	
1 $0.9 + 1$	
-1 0.3 +1	\leftarrow
0 0.5 +1	
1 -1 -1	
-0.5 -0.7 -1	
0.4 -0.3 -1	

$$\begin{aligned} k &= 1, \quad \mathsf{accuracy} = 4/6 \\ \mathbf{w}^{(1)} &= (-0.1, 0.14, 0.13)^\mathsf{T} \\ \mathbf{w}^{(1)} \cdot \mathbf{x} &= 0.272 \quad \mathsf{(match)} \\ \mathbf{w}^{(2)} &= \mathbf{w}^{(1)} \end{aligned}$$

x_1	x_2	y	
1	0.9	+1	
-1	0.3	+1	\leftarrow
0	0.5	+1	
1	-1	-1	
-0.5	-0.7	-1	
0.4	-0.3	-1	

$$\begin{aligned} k &= 1, & \mathsf{accuracy} &= 4/6 \\ \mathbf{w}^{(1)} &= (-0.1, 0.14, 0.13)^\mathsf{T} \\ \mathbf{w}^{(1)} \cdot \mathbf{x} &= 0.272 \quad \mathsf{(match)} \\ \mathbf{w}^{(2)} &= \mathbf{w}^{(1)} \end{aligned}$$

x_1	x_2	y	
1	0.9	+1	
-1	0.3	+1	
0	0.5	+1	\leftarrow
1	-1	-1	
-0.5	-0.7	-1	
0.4	-0.3	-1	

$$\begin{aligned} k &= 2, \quad \mathsf{accuracy} = 4/6 \\ \mathbf{w}^{(2)} &= (-0.1, 0.14, 0.13)^\mathsf{T} \\ \mathbf{w}^{(2)} \cdot \mathbf{x} &= 0.2 \quad \mathsf{(match)} \\ \mathbf{w}^{(3)} &= \mathbf{w}^{(2)} \end{aligned}$$

x_1	x_2	y	
1	0.9	+1	
-1	0.3	+1	
0	0.5	+1	\leftarrow
1	-1	-1	
-0.5	-0.7	-1	
0.4	-0.3	-1	

$$\begin{aligned} k &= 2, \quad \mathsf{accuracy} = 4/6 \\ \mathbf{w}^{(2)} &= (-0.1, 0.14, 0.13)^\mathsf{T} \\ \mathbf{w}^{(2)} \cdot \mathbf{x} &= 0.2 \quad \mathsf{(match)} \\ \mathbf{w}^{(3)} &= \mathbf{w}^{(2)} \end{aligned}$$

x_1	x_2	y	
1	0.9	+1	
-1	0.3	+1	
0	0.5	+1	
1	-1	-1	\leftarrow
-0.5	-0.7	-1	
0.4	-0.3	-1	

$$\begin{aligned} k &= 3, \quad \mathsf{accuracy} = 4/6 \\ \mathbf{w}^{(3)} &= (-0.1, 0.14, 0.13)^\mathsf{T} \\ \mathbf{w}^{(3)} \cdot \mathbf{x} &= -0.11 \quad \mathsf{(match)} \\ \mathbf{w}^{(4)} &= \mathbf{w}^{(3)} \end{aligned}$$

x_1	x_2	y	
1	0.9	+1	
-1	0.3	+1	
0	0.5	+1	
1	-1	-1	\leftarrow
-0.5	-0.7	-1	
0.4	-0.3	-1	

$$\begin{aligned} k &= 3, \quad \mathsf{accuracy} = 4/6 \\ \mathbf{w}^{(3)} &= (-0.1, 0.14, 0.13)^\mathsf{T} \\ \mathbf{w}^{(3)} \cdot \mathbf{x} &= -0.11 \quad \mathsf{(match)} \\ \mathbf{w}^{(4)} &= \mathbf{w}^{(3)} \end{aligned}$$

$\overline{x_1}$	x_2	\overline{y}	
1	0.9	+1	
-1	0.3	+1	
0	0.5	+1	
1	-1	-1	
-0.5	-0.7	-1	\leftarrow
0.4	-0.3	-1	

$$k = 4, \quad \text{accuracy} = 4/6$$

$$\mathbf{w}^{(4)} = (-0.1, 0.14, 0.13)^{\mathsf{T}}$$

$$\mathbf{w}^{(4)} \cdot \mathbf{x} = 0.082 \quad \text{(mismatch)}$$

$$\mathbf{w}^{(5)} = \mathbf{w}^{(4)} + 0.1(-1)\mathbf{x}$$

$$= (-0.05, 0.21, 0.03)^{\mathsf{T}}$$

x_1	x_2	y	
1	0.9	+1	
-1	0.3	+1	
0	0.5	+1	
1	-1	-1	
-0.5	-0.7	-1	\leftarrow
0.4	-0.3	-1	

$$\begin{aligned} k &= 4, & \mathsf{accuracy} &= 4/6 \\ \mathbf{w}^{(4)} &= (-0.1, 0.14, 0.13)^\mathsf{T} \\ \mathbf{w}^{(4)} \cdot \mathbf{x} &= 0.082 \quad \mathsf{(mismatch)} \\ \mathbf{w}^{(5)} &= \mathbf{w}^{(4)} + 0.1(-1)\mathbf{x} \\ &= (-0.05, 0.21, 0.03)^\mathsf{T} \end{aligned}$$

x_1	x_2	y	
1	0.9	+1	
-1	0.3	+1	
0	0.5	+1	
1	-1	-1	
-0.5	-0.7	-1	
0.4	-0.3	-1	\leftarrow

$$\begin{aligned} k &= 5, \quad \mathsf{accuracy} = 6/6 \\ \mathbf{w}^{(5)} &= (-0.05, 0.21, 0.03)^\mathsf{T} \\ \mathbf{w}^{(5)} \cdot \mathbf{x} &= -0.05 \quad \mathsf{(match)} \\ \mathbf{w}^{(6)} &= \mathbf{w}^{(5)} \end{aligned}$$

x_1	x_2	y	
1	0.9	+1	
-1	0.3	+1	
0	0.5	+1	
1	-1	-1	
-0.5	-0.7	-1	
0.4	-0.3	-1	\leftarrow

$$\begin{aligned} k &= 5, \quad \mathsf{accuracy} = 6/6 \\ \mathbf{w}^{(5)} &= (-0.05, 0.21, 0.03)^\mathsf{T} \\ \mathbf{w}^{(5)} \cdot \mathbf{x} &= -0.05 \quad \mathsf{(match)} \\ \mathbf{w}^{(6)} &= \mathbf{w}^{(5)} \end{aligned}$$

Summary

- ▶ A perceptron is a simplistic model of a single neuron.
- ▶ A perceptron can learn to perform simple classification tasks using an update rule.

Summary

- ▶ A perceptron is a simplistic model of a single neuron.
- ▶ A perceptron can learn to perform simple classification tasks using an update rule.
- ▶ **Next time:** Imagine what a network of millions of perceptrons can learn!