

EXPLORING DATA SCIENCE WITH »R«

Created: 2021-05-19 Mi 19:47

WHAT WILL YOU LEARN?

Two ways of looking at data

 $\mathsf{Data}\,\mathsf{science} \leftarrow \mathsf{modeling} \cup \mathsf{coding}$

Data science examples using R

R vs. Python for data science

WHAT CAN YOU DO?

- Answer polls, like "do you know R?"
- Leave comments/questions in the chat
- Download the slides (PDF) here
- Learn R, e.g. here

TWO WAYS OF LOOKING AT DATA

SCENARIO 1: "DATA MAGIC"

- We've got data!
- We've got computers!
- Let's compute something!

GOOD QUESTION, BAD SETUP

What's the story behind the data?

"DATA MAGIC" WORKFLOW

EXPLORATORY DATA ANALYSIS

SCENARIO 2: "DECISION INTELLIGENCE"

- A client got a problem!
- A client needs a solution!

BETTER QUESTION, GOOD SETUP

What are your options?

PROBLEM-BASED COLLABORATIVE EXPLORATORY DATA ANALYSIS

EXAMPLE: TEXT MINING

EXAMPLE: SPEED DATING

SUMMARY

- "Data magic" vs. "decision intelligence"
- Data/solitary vs. Client/collaborative
- Text mining and recommender systems
- Modeling/coding as collaborative activities

$\mathsf{DS} \leftarrow \mathsf{MODELING} \cup \mathsf{CODING}$

CODING SKILLS

- Algorithmic thinking
- Fixed at run-time
- Procedure oriented
- Depends on data structures
- Object-oriented programming (OOP)
- Functional Programming (FP)

MODELING SKILLS

- Heuristic thinking
- Adaptive at run-time
- Pattern oriented
- Cognitive bias
- Analogy, induction
- Petri nets, BPMN, UML

FOUR SCENARIOS

- Data Visualization
- Application Building
- Numerical Computation
- Machine Learning

PROGRAMMING LANGUAGES

- Apps: Java, C++
- Numerics: FORTRAN, C, Octave
- DataViz: R / Python, Snap!, Processing
- Machine Learning: Python / R, Julia

DATA SCIENCE FRAMEWORK

SUMMARY

- Coding is algorithmic, modeling is heuristic
- Paradigms: OOP/FP, BPMN/UML
- Scenarios: DataViz, Apps, Numerics, ML
- Languages: R, Python, and many more
- Two pathways: CS/coding vs. DS/modeling

DATA SCIENCE EXAMPLES USING R

- Text mining Jane Austen
- What matters in speed dating
- Current student projects

TEXT MINING JANE AUSTEN

The most common words in Jane Austen's novels

TEXT MINING JANE AUSTEN: STEPS

BPMN diagram showing required R libraries

TEXT MINING JANE AUSTEN: CODE

Source: Silge & Robinson (2017)

REAL WORLD APPLICATION

Arxiv Sanity Preserver (recommender)

WHAT MATTERS IN SPEED DATING

WHAT MATTERS IN SPEED DATING: STEPS

BPMN diagram showing process & output

WHAT MATTERS IN SPEED DATING: CODE

Source: McNulty (2020)

REAL WORLD APPLICATION

"Will Smith Tries Online Dating"

CURRENT STUDENT PROJECTS

- Avocado sales in different US cities
- Rental prices in German cities
- What is my Netflix consumption like?
- Popularity of different US bills
- Lifestyle habits and weight issues
- Musical consumption during a pandemic
- Influence of Elon Musk tweets on bitcoin
- Influence of Queens Gambit on Chess.com

WHICH LANGUAGE?

Data visualization	Numerical computation	Application building	Machine learning
R	FORTRAN	Java	R
Snap!	GNU Octave	C++	Python
Processing	С	Kotlin	Julia

R VS. PYTHON

- Product
- Popularity
- Prediction
- Proposal

PRODUCT - DIFFERENCES

	R	Python
	[4.1.0]	[3.9.5]
Release:	1991 (1976)	2008 (1989)
Written in:	FORTRAN, C, R	С
Purpose:	Math & Statistics	Productivity
License:	GPL	<u>PSF</u>
Libraries:	17,634 (CRAN)	137,000 (<u>PyPI</u>)
Vectors:	Start at 1	Start at 0
Typedness:	Weak	Strong

PRODUCT - SIMILARITIES

Access:	Free	Easy to learn
Paradigms:	OOP	Functional
Memory:	Dynamical ¹⁴	Garbage ¹⁵
Translation:	Interpreter	REPL/shell
Analytics:	Visualization	Machine Learning
Creativity:	Packages	Portability
Interfaces:	Shiny/Django	SQL/SQLite

POPULARITY - SEARCH

POPULARITY - NO CONTEST

	R	Python
TIOBE Index	1.38%	11.74%
Loved (Dev)	44.5%	66.7%
Dreaded (Dev)	55.5%	33.3%
Wanted (Dev)	5.1%	30.0%
Salary (US)	\$109k	\$120k
Salary (World)	\$59k	\$57k

PREDICTION - THE WAR IS OVER!

PROPOSAL - WHAT YOU SHOULD DO

- R
- R + Python
- R + Python + Java
- R + Python + Java + C++
- R + Python + Java + C++ + ^[\w]+\$

SUMMARY

Data science: Decision intelligence

Core skills: Modeling and coding

Applications: ML/EDA/NLP

R vs. Python: R + Python

TOOLS

- BPMN: Signavio Process Manager
- R: Emacs + ESS + Org-Mode (+ Python)
- Slides: GNU <u>Emacs</u> + <u>Org-Mode</u> + <u>reveal.js</u>
- Computer: Dell 7300 i7 1.9GHz (2019)
- OS: Ubuntu 18.04 LTS Linux (2018)
- Wacom Intuos Art Tablet

THANK YOU! QUESTIONS? COMMENTS?

Contact: birkenkrahe@outlook.com

REFERENCES

- 1. Cox. Translating Statistics to Make Decisions. Apress 2017.
- 2. Huang, Evans & Chattopadhyay. Deep Learning Without Neural Networks: Fractal-nets for Rare Event Modeling. Preprint. **10.21203/rs.3.rs- 86045/v1**
- 3. Landin. The next 700 programming languages. In: Communications of the ACM 9(3) (1966). 10.1145/365230.365257
- 4. McNulty. What Matters in Speed Dating? Online: **towardsdatascience.com** (02/14/2020)
- 5. Pearl & Mackenzie. The Book of Why: The New Science of Cause and Effect. New York: Basic Books (2018).
- 6. Page. The Model Thinker. Basic Books (2018).
- 7. Polya. How to solve it. Doubleday (1957).
- 8. Programming vs Coding A Short Comparison Between Both. Online: GeeksforGeeks (09/08/2020)
- 9. R: A language and environment fo statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.r-project.org/.
- 10. Silge & Robinson. Text Mining with R. O'Reilly (2017). Online: tidytextmining.com
- 11. Wickham & Grolemund. R for Data Science: Visualize, Model, Transform, Tidy, And Import

Data. O'Reilly (2016). Online: **r4ds.had.co.nz** (2016)]]

12. Wing. The Data Life Cycle. In: Harvard Data Science Review 1(1) (2019).

doi:10.1162/99608f92.e26845b4