

Last time...

Multilayer Perceptron

Layer Representation

$$y_i = W_i x_i$$
$$x_{i+1} = \sigma(y_i)$$

- (typically) iterate between linear mapping Wx and nonlinear function
- Loss function $l(y, y_i)$ to measure quality of estimate so far

Last time... Forward Pass

Output of the network can be written as:

$$h_j(\mathbf{x}) = f(v_{j0} + \sum_{i=1}^{D} x_i v_{ji})$$

$$o_k(\mathbf{x}) = g(w_{k0} + \sum_{j=1}^{J} h_j(\mathbf{x}) w_{kj})$$

(j indexing hidden units, k indexing the output units, D number of inputs)

Activation functions f, g: sigmoid/logistic, tanh, or rectified linear (ReLU)

Suppose
$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$
, $\tanh(z) = \frac{\exp(z) - \exp(-z)}{\exp(z) + \exp(-z)}$, $\det(z) = \max(0, z)$

slide by Raquel Urtasun, Richard Zemel, Sanja

Last time... Forward Pass in Python

Example code for a forward pass for a 3-layer network in Python:


```
# forward-pass of a 3-layer neural network:
f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid)
x = np.random.randn(3, 1) # random input vector of three numbers (3x1)
h1 = f(np.dot(W1, x) + b1) # calculate first hidden layer activations (4x1)
h2 = f(np.dot(W2, h1) + b2) # calculate second hidden layer activations (4x1)
out = np.dot(W3, h2) + b3 # output neuron (1x1)
```

- Can be implemented efficiently using matrix operations
- Example above: W_1 is matrix of size 4×3 , W_2 is 4×4 . What about biases and W_3 ?

Backpropagation

Recap: Loss function/Optimization

airplane	-3.45
automobile	-8.87
bird	0.09
cat	2.9
deer	4.48
dog	8.02
frog	3.78
horse	1.06
ship	-0.36
truck	-0.72

	free Bills
-0.51	3.42
6.04	4.64
5.31	2.65
-4.22	5.1
-4.19	2.64
3.58	5.55
4.49	-4.34
-4.37	-1.5

-2.09 -4.79

6.14

TODO:

- 1. Define a **loss function** that quantifies our unhappiness with the scores across the training data.
- 2. Come up with a way of efficiently finding the parameters that minimize the loss function. (optimization)

We defined a (linear) score function:

$$f(x_i, W, b) = Wx_i + b$$

-2.93

3.2

5.1

slide by Fei-Fei Li & Andrej Karpathy & Justin Johnson

scores = unnormalized log probabilities of the classes.

 $s = f(x_i; W)$

3.2

5.1

slide by Fei-Fei Li & Andrej Karpathy & Justin Johnson

scores = unnormalized log probabilities of the classes.

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 where $egin{aligned} s=f(x_i;W) \end{aligned}$

$$s = f(x_i; W)$$

3.2

5.1

slide by Fei-Fei Li & Andrej Karpathy & Justin Johnson

scores = unnormalized log probabilities of the classes.

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$

where
$$s=f(x_i;W)$$

Softmax function

3.2

5.1

slide by Fei-Fei Li & Andrej Karpathy & Justin Johnson

scores = unnormalized log probabilities of the classes.

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 where $egin{equation} s=f(x_i;W) \end{bmatrix}$

$$s=f(x_i;W)$$

Want to maximize the log likelihood, or (for a loss function) to minimize the negative log likelihood of the correct class:

$$L_i = -\log P(Y = y_i|X = x_i)$$

-1.7

5.1

ej Karpathy & Justin C

scores = unnormalized log probabilities of the classes.

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 where $egin{aligned} s=f(x_i;W) \end{aligned}$

$$s=f(x_i;W)$$

Want to maximize the log likelihood, or (for a loss function) to minimize the negative log likelihood of the correct class:

$$L_i = -\log P(Y = y_i|X = x_i)$$

in summary:

$$L_i = -\log(\frac{e^{sy_i}}{\sum_i e^{s_j}})$$

cat

car

frog

3.2

5.1

-1.7

$$L_i = -\log(\frac{e^{sy_i}}{\sum_j e^{s_j}})$$

unnormalized probabilities

cat

car

frog

3.2

5.1

-1.7

24.5

164.0

0.18

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

unnormalized probabilities

cat

car

frog

slide by Fei-Fei Li & Andrej Karpathy & Justin Johnson

3.2

24.5

exp

164.0 0.18

0.13 normalize

probabilities

15

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

unnormalized probabilities

car frog

normalize

__i = -log(0.13) = **0.89**

probabilities

Optimization

Gradient Descent

Vanilla Gradient Descent

while True:

weights_grad = evaluate_gradient(loss_fun, data, weights)
weights += - step_size * weights_grad # perform parameter update

In 1-dimension, the derivative of a function:

$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

In multiple dimensions, the gradient is the vector of (partial derivatives).

Mini-batch Gradient Descent

 only use a small portion of the training set to compute the gradient

```
# Vanilla Minibatch Gradient Descent

while True:
   data_batch = sample_training_data(data, 256) # sample 256 examples
   weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
   weights += - step_size * weights_grad # perform parameter update
```

Mini-batch Gradient Descent

 only use a small portion of the training set to compute the gradient

```
# Vanilla Minibatch Gradient Descent

while True:
   data_batch = sample_training_data(data, 256) # sample 256 examples
   weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
   weights += - step_size * weights_grad # perform parameter update
```

there are also more fancy update formulas (momentum, Adagrad, RMSProp, Adam, ...)

The effects of different update form formulas

Example of optimization progress while training a neural network.

(Loss over mini-batches goes down over time.)

Computational Graph

Neural Turing Machine

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q = x + y$$
 $\frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q = x + y$$
 $\frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

y = 5 y = 5 y = 5 y = 6 y =

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q = x + y$$
 $\frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

y 5 + q 3 z -4 $+ \frac{q 3}{1}$ $\frac{\partial f}{\partial f}$

Want:

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q = x + y$$
 $\frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

 $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$

 $\frac{\partial f}{\partial z}$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q = x + y$$
 $\frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

x -2 + q 3 y 5 * f -12 1

 $\frac{\partial f}{\partial z}$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q = x + y$$
 $\frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y$$
 $\frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q = x + y$$
 $\frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

 $\begin{array}{c}
x -2 \\
y 5 \\
z -4 \\
3
\end{array}$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q = x + y$$
 $\frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

y 5 -4 z -4 3

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q = x + y$$
 $\frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$

Chain rule:

$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial y}$$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q = x + y$$
 $\frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q = x + y$$
 $\frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$

Chain rule:

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x}$$

Another example:
$$f(w,x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}}$$

$$f(x)-e^x
ightarrow rac{df}{dx}-e^x \ f_a(x)=ax
ightarrow rac{df}{dx}=a$$

$$f(x) = rac{1}{x}
ightarrow rac{df}{dx} = -1/x^2 \ f_c(x) = c + x
ightarrow rac{df}{dx} = 1$$

Another example:
$$f(w,x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}}$$

$$f(x)-e^x \qquad o \qquad rac{df}{dx}-e^x \ f_a(x)=ax \qquad o \qquad rac{df}{dx}=a$$

$$f(x) = rac{1}{x}
ightarrow rac{df}{dx} = -1/x^2 \ f_c(x) = c + x
ightarrow rac{df}{dx} = 1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

sigmoid function

$$\frac{d\sigma(x)}{dx} = \frac{e^{-x}}{(1+e^{-x})^2} = \left(\frac{1+e^{-x}-1}{1+e^{-x}}\right) \left(\frac{1}{1+e^{-x}}\right) = (1-\sigma(x))\sigma(x)$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$\sigma(x) = \frac{1}{1+e^{-x}}$$

sigmoid function

$$\frac{d\sigma(x)}{dx} = \frac{e^{-x}}{(1+e^{-x})^2} = \left(\frac{1+e^{-x}-1}{1+e^{-x}}\right) \left(\frac{1}{1+e^{-x}}\right) = (1-\sigma(x))\sigma(x)$$

Patterns in backward flow

- add gate: gradient distributor
- · max gate: gradient router
- mul gate: gradient... "switcher"?

Implementation: forward/backward API

Graph (or Net) object. (Rough pseudo code)

```
class ComputationalGraph(object):
    #...

def forward(inputs):
    # 1. [pass inputs to input gates...]

# 2. forward the computational graph:
    for gate in self.graph.nodes_topologically_sorted():
        gate.forward()
    return loss # the final gate in the graph outputs the loss

def backward():
    for gate in reversed(self.graph.nodes_topologically_sorted()):
        gate.backward() # little piece of backprop (chain rule applied)
    return inputs_gradients
```


Implementation: forward/backward API

(x,y,z are scalars)

```
class MultiplyGate(object):
    def forward(x,y):
         z = x*y
         return z
    def backward(dz): 
         \# dx = \dots \#todo
         \# dy = \dots \#todo
                                     \partial L
         return [dx, dy]
```

Implementation: forward/backward API

(x,y,z are scalars)

```
class MultiplyGate(object):
    def forward(x,y):
        z = x*y
        self.x = x # must keep these around!
        self.y = y
        return z

    def backward(dz):
        dx = self.y * dz # [dz/dx * dL/dz]
        dy = self.x * dz # [dz/dy * dL/dz]
        return [dx, dy]
```


Summary

- neural nets will be very large: no hope of writing down gradient formula by hand for all parameters
- backpropagation = recursive application of the chain rule along a computational graph to compute the gradients of all inputs/parameters/intermediates
- implementations maintain a graph structure, where the nodes implement the forward() / backward() API.
- forward: compute result of an operation and save any intermediates needed for gradient computation in memory
- backward: apply the chain rule to compute the gradient of the loss function with respect to the inputs.

Where are we now...

Mini-batch SGD

Loop:

- 1.Sample a batch of data
- 2.Forward prop it through the graph, get loss
- 3.Backprop to calculate the gradients
- 4. Update the parameters using the gradient

Next Lecture:

Introduction to Deep Learning