МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра «Измерительно-вычислительные комплексы»

«Методы искусственного интеллекта»

Отчёт по лабораторной работе №5

Выполнил:

студент группы ИСТбд-42

Миридонов Павел

Проверил:

доцент кафедры ИВК, к.т.н.

Шишкин В.В

Задание на лабораторную работу:

- 1. Ознакомиться с классификаторами библиотеки Scikit-learn
- 2. Выбрать для исследования не менее 3 классификаторов
- 3. Выбрать набор данных для задач классификации из открытых источников

https://tproger.ru/translations/the-best-datasets-for-machine-learning-and-data-science/

https://vc.ru/ml/150241-15-proektov-dlya-razvitiya-navykov-raboty-s-mashinnym-obucheniem

https://archive.ics.uci.edu/ml/index.php

https://habr.com/ru/company/edison/blog/480408/

https://www.kaggle.com/datasets/

учебные наборы библиотеки Scikit-learn

- 4. Выбор классификаторов и набора данных утвердить у преподавателя (не должно быть полного совпадения с выбором другого студента)
- 5. Для каждого классификатора определить целевой столбец и набор признаков. Обосновать свой выбор. При необходимости преобразовать типы признаковых данных.
- 6. Подготовить данные к обучению.
- 7. Провести обучение и оценку моделей на сырых данных.
- 8. Провести предобработку данных.
- 9. Провести обучение и оценку моделей на очищенных данных.
- 10. Проанализировать результаты.
- 11. Результаты анализа представить в табличной и графической форме.
- 12. Сформулировать выводы.
- 13. Оформить отчет по л/р.
- 14. Защитить результаты работы.
 - 1. Для исследования были выбраны следующие классификаторы:
 - 1) К ближайших соседей
 - 2) Случайный лес
 - 3) Наивный байесовский метод
 - 2. Был выбран набор данных, в котором отражен химический состав воды и ее пригодность для питья

https://www.kaggle.com/datasets/adityakadiwal/water-potability

- 3. В качестве набора признаков были использованы:
 - 1) рН воды
 - 2) Жесткость воды (Hardness)
 - 3) Минерализация (solids)
 - 4) Хлорамины
 - 5) Сульфаты
 - 6) Проводимость воды
 - 7) Органический углерод
 - 8) Тригалометаны
 - 9) Мутность воды
- 4. За целевой столбец для каждого классификатора был принят столбец, который отражает пригодность воды для питья, потому что он является выходным для датасета.

Результат работы программы:

Классификатор КНН:

[[629 212] [343 224]]

True positive: 224
True negative: 629
False positive: 212
False negative: 343

support	f1-score	recall	precision	
841	0.69	0.75	0.65	Θ
567	0.45	0.40	0.51	1
1408	0.61			accuracy
1408	0.57	0.57	0.58	macro avg
1408	0.59	0.61	0.59	weighted avg

Точность модели: 0.6058238636363636

Классификатор Random Forest:

[[710 125] [368 205]]

True positive: 205
True negative: 710
False positive: 125
False negative: 368

	precision	recall	f1-score	support
0	0.66	0.85	0.74	835
1	0.62	0.36	0.45	573
accuracy			0.65	1408
macro avg	0.64	0.60	0.60	1408
weighted avg	0.64	0.65	0.62	1408

Точность модели: 0.6498579545454546

Классификатор N	aive	Bayes:
[[731 92]		
[467 118]]		
True positive:	118	

True negative: 731
False positive: 92
False negative: 467

	•	precision	recall	f1-score	support
	Θ	0.61	0.89	0.72	823
	U	0.01	0.07	0.72	023
	1	0.56	0.20	0.30	585
accur	acy			0.60	1408
macro	avg	0.59	0.54	0.51	1408
weighted	avg	0.59	0.60	0.55	1408
Точность модели: 0.6029829545454546					

Вывод графиков:

Матрицы ошибок для методов:

Средняя точность моделей по результатам 100 прогонов с одинаковыми данными:

Вывод: в результате выполнения лабораторной работы были изучены следующие классификаторы библиотеки sklearn: К ближайших соседей, случайный лес, наивный байесовский метод. По итогам тестирования наиболее точной моделью оказалась модель, в которой использовался классификатор случайный лес. Наименее точными оказались модели с классификаторами KNN и наивный байесовский метод. Их точность оказалась примерно одинаковой и немного колеблется от прогона к прогону. Разница в точности оказалась не особо большой, возможно, это связано с достаточно большим размером выборки.