## **FOTOSYNTÉZA**

-anabolický dej, pri ktorom sa <u>jednoduché</u> anorg. látky - oxid uhličitý a voda - účinkom slnečného žiarenia za prítomnosti chlorofylu menia <u>na zložité organické</u> látky (cukor). + <u>vzniká kyslík</u> a zvyšok vody

## Princíp:

- premena slnečnej energie na energiu viazanú v chemických väzbách - ATP.
- premena látok <u>redukcia CO<sub>2</sub></u> (nízky obsah E) na organické látky (vysokoenergetické látky)

-1. fotosyntetizujúce org.na Zemi- sinice

sumárna rovnica vyjadrujúca podstatu: 6 CO<sub>2</sub> + 12 H<sub>2</sub>O → C<sub>6</sub>H<sub>12</sub>O<sub>6</sub> + 6 O<sub>2</sub> + 6 H<sub>2</sub>O

miesto priebehu v rastline: - všetky zelené časti, hlavný orgán-LIST

- hlavná organela: CHLOROPLAST

- (u siníc tylakoidy)



karotenoidy

chlorofyl b

<u>PODMIENKY</u>: 1. asimilačné farbivá-chlorofyly 7 typov (a,b,c,d,e)

- chlorofyl a – fotosynteticky aktívny=hlavný=modrozelený

+ doplnkové: chlorofyl b-žltozelený, β-karotén, xantofyly, fykoerytrín, fykocyanín..- fungujú ako zberače(pasce)e- - energiu odovzdávajú na aktívny chlorofyl a – iba on ju môže využiť

na 1 chlorofyl a pripadá E z 500 zberačov

2. CO<sub>2</sub>

3. H<sub>2</sub>O

4. slnečná energia (vlnová dĺžka 400-700 nm) Priebeh:

# 1. PRIMÁRNE PROCESY (fotochemická fáza, svetelná fáza)

- premena slnečnej energie do energie ch. väzieb
- musí byť nevyhnutne prítomné svetlo
- miesto priebehu: na <u>tylakoidoch</u> chloroplastov
   fotosystémy P-680 a P700 necyklická
   a cyklická fáza

## A. fotofosforylácia

absorpciou fotónov farbivami ... vzniká ATP – do tmavej fázy
 fotolýza vody – vznik O<sub>2</sub>, H+ na redukciu koenzýmu

 $2 H^+ + \frac{1}{2} O_2 + 2e^- \rightarrow H_2O$ 

Kyslík vzniká ako vedľajší produkt a uvoľňuje sa do ovzdušia

C. redukcia koenzýmu NADP vznik **NADPH + H**+ (redukovaný koenzým nikotínamidadeníndinukleotidfosfát, prenáša e-, H+) – do tmavej fázy

**Výsledok:** ATP, O<sub>2</sub>, redukované koenzýmy



- premena látok- viazanie=fixácia CO<sub>2</sub> a vznik glukózy C<sub>6</sub>H<sub>12</sub>O<sub>6</sub>
- prebieha aj v tme, svetlo sa vyžaduje nepriamo
- miesto priebehu: v stróme chloroplastov
   Podmienky: CO<sub>2</sub>, ATP z prim.fázy, nejaký organický substrát, enzýmy a koenzýmy
   A. Fixácia CO<sub>2</sub>

-cyklus C3 -Calvinov-Bensonov– v C $_3$  rastlinách (väčšina rastlín) – CO $_2$  sa fixuje na RuBP $\rightarrow$  6C  $\rightarrow$ 2 C3 cyklus C4 - Hatchov-Slackov cyklus C4 – v C $_4$  rastlinách (kukrica, cukr. trstina) – CO $_2$  sa fixuje na fosfoenolpyruvát 3.CAM cyklus – u sukulentov – fotosyntetizujú aj so zavretými prieduchami

#### B. vznik **glukózy**

- polymerizáciou vzniká škrob a premenami aj ostatné org. látky





## JEDINEČNOSŤ FOTOSYNTÉZY

- spočíva v tom, že na jej produktoch závisia všetky heterotrofné organizmy – aj my! (org. látky a kyslík)
- celá príroda, život existuje na princípe uhlíkatých látok (organických)
- tvorba biomasy, geologickými procesmi: vznik uhlia, ropy, z. plynu (fosílne palivá) - aj na tých sme závislí!

## FAKTORY ovplyvňujúce fotosyntézu:

- celkový fyziologický stav rastliny a environmentálne podmienky(zaprášenie napr. spomaľuje, ťažké kovy...
- vlnová dĺžka a intenzita svetla výhodné je červené a modrofialové svetlo, rastlina využíva len 2% svetla, zvyšok odráža alebo prepúšťa
- množstvo CO₂ v atmosfére je 0,03%, jeho zvýšenie alebo zníženie koncentrácie spomaľuje fotosyntézu
- teplota optimum sa pohybuje medzi 25 30°C
- množstvo vody nedostatok vody spomaľuje fotosyntézu, pretože sa uzatvárajú prieduchy, ktorými preniká do rastliny CO<sub>2</sub>
- minerálne látky (nedostatok spomaľuje)

### Porovnanie:

anabolický dej (z jednod.l. vznikajú zložitejšie)

katabolický dej (zo zložitých I. vznikajú jednoduchšie)

| CAM cyklus                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>osobitný spôsob viazania CO<sub>2</sub></li> <li>väčšina sukulentov - adaptácia na suché podmienky</li> <li>v noci sa CO<sub>2</sub> zhromažďuje do ovocných kyselín, odkiaľ ho cez deň rastlina využíva,</li> <li>fotosyntéza tak môže prebiehať aj pri uzavretých prieduchoch.</li> </ul> |

#### dýchanie fotosyntéza vyžaduje svetlo prebieha na svetle aj v tme prebieha vo všetkých bunkách prebieha len za účasti asimilačných pigmentov prebieha v chloroplastoch (tylakoidoch) prebieha v mitochondriách na cytoplazmatickej membráne prokaryotov štiepenie organických látok syntéza organických látok CO<sub>2</sub> sa spotrebúva CO<sub>2</sub> sa uvoľňuje do ovzdušia O<sub>2</sub> sa uvoľňuje O<sub>2</sub> sa spotrebúva energia sa spotrebúva energia sa uvoľňuje

Čo by sa stalo, ak by si Slnko vzalo 1 deň dovolenky? Fotosyntéza by sa zastavila, neznamenalo by to však, okamžitú spotrebu kyslíka v atmosfére. Či by to hneď znamenalo fatálne následky pre živé organizmy je povedať ťažko, potrebovali by sme k tomu vedieť, koľko kyslíka je prítomného v atmosfére a či by vystačil pre všetkých.