Phil 120, Review Notes

Stuff

May 23, 2021

Contents

1	References					
	1.1	BasicLogic Operators	3			
	1.2	Some Logic Identities	3			

1 References

1.1 BasicLogic Operators

The followings are for A * B, where '*' is an operator, A is top row, B is left column.

\wedge			
			AND. Conjuction. A \wedge B is true only when both A and B are true.
\mathbf{F}	F	F	

1.2 Some Logic Identities

$A \vee \neg A = T$	Excluded Middle, either A or not A must be true.
$\neg(A \land \neg A)$	Non-contradiction. It is true that not both A and not A hold at the same time.
$A \to B, A \implies B$	Modus ponenes, to prove. If A implies and B and A is true, then B is true.
$A \to B, \neg B \implies \neg A$	Modus tollens, to disprove. If the conclusion is false, then the premise is false also.
$A \lor B, \neg A \implies B$	Disjunctive syllogism. If at least one of A or B is true, then if one of them is false, the other must be true.
$(A \to B) \iff (\neg B \to \neg A)$	Contrapositive. Similar to Modus tollens.
$A, \neg A \implies B$	Explosion. From a false premise you can arrive at any conclusion.

$$A \vee (B \wedge C)$$

 $\neg (A \lor B) \iff \neg A \land \neg B$

 $\neg (A \land B) \iff \neg A \lor \neg B$

De Morgan's Law.