Chapter 5: MATRIX COMPUTATIONS

FuSen F. Lin

Department of Computer Science and Engineering National Taiwan Ocean University

Scientific Computing, Fall 2011

Matrix Computations

- 5.0 Introduction
- 5.1 Setting Up Matrix Problems
- 5.2 Matrix Operations
- 5.3 Once Again, Setting Up Matrix Problems
- 5.4 Recursive Matrix Operations
- 5.5* Distributed Memory Matrix Multiplications

Introduction

- The next item on our agenda is the linear equation problem Ax = b. However, before we get into algorithmic details, it is important to study two calculations: matrix-vector multiplication and matrix-matrix Multiplication.
- We first pay attention to the act of setting up a matrix, particularly, when each matrix entry a_{ij} is an evaluation of a continuous function f(x, y).
- Fast Fourier transform and the fast Strassen matrix multiply algorithm are presented as examples of recursion in matrix computations.

Setting Up Matrix Problems

- Before a matrix problem can be solved, it must be set up.
 In many applications, the amount of work associated with the set-up phase rivals the amount of work associated with the solution phase.
- Therefore, it is in our interest to acquire this activity and also occasionally to see how many of MATLAB's vector capabilities extend to the matrix level.

Simple ij Recipes

• If the entries in a matrix $A = (a_{ij})$ are specified by recipes, such as (the Hilbert matrix)

$$a_{ij}=\frac{1}{i+j-1},$$

then a double-loop script can be used for its computation:

Hilbert matrix

```
% double-loop
A = zeros(n, n);
for i=1:n,
    for j=1:n,
      A(i,j) = 1/(i+j-1);
    end
 end
% Using symmetry
A = zeros(n, n);
 for i=1:n,
    for j=i:n,
       A(i,j) = 1/(i+j-1);
      A(j,i) = A(i,j);
    end
 end
```

Hilbert matrix

- Pre-allocation with zeros(n,n) reduces memory management overhead.
- If a matrix is symmetric, that is, $a_{ij} = a_{ji}$ for all i and j, then the (i, j) recipe need only be applied half the time.
- In MATLAB, there is a built-in function A = hilb(n) for Hilbert matrix that can be used in lieu of the preceding scripts.
- The setting-up of a matrix can often be made more efficient by exploiting relationships that exist between the entries.

Binomial Coefficient Matrix

 Consider the construction of the lower triangular matrix of binomial coefficients:

$$P = \left[\begin{array}{ccccc} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 2 & 1 & 0 & 0 \\ 1 & 3 & 3 & 1 & 0 \\ 1 & 4 & 6 & 4 & 1 \end{array} \right]$$

The binomial coefficient "m-choose-k" is defined by

$$\begin{pmatrix} m \\ k \end{pmatrix} = \begin{cases} \frac{m!}{k!(m-k)!}, & \text{if } 0 \le k \le m, \\ 0, & \text{otherwise.} \end{cases}$$

Matrix of Pascal Triangle

Let the ij entry of the matrix we are setting up is defined by

$$p_{ij} = \left(\begin{array}{c} i-1\\ j-1 \end{array}\right).$$

- If we compute each entry using the factorial definition, then $O(n^3)$ flops are involved.
- Notice that P is lower triangular with ones on the diagonal and in the first column. An entry not in these locations is the sum of its "north" and "northwest" neighbors. That is,

$$p_{ij} = p_{i-1,j-1} + p_{i-1,j}$$
.

Therefore, we have the following set-up strategy:

Binomial Coefficient Matrix

```
P = zeros(n, n);
P(:,1) = ones(n,1); % put the first column to be 1.
for i = 2:n,
   for j = 2:i,
      P(i,j) = P(i-1,j-1) + P(i-1,j);
   end
end
% Also call it as Pascal triangle matrix.
% This script only involves $0(n^2)$ flops and is
% therefore an order of magnitude faster than the
% method that ignores the connections between the p_ij.
```

Vandermonde Matrices

Many matrices are defined by a vector of parameters.
 Such as the Vandermonde matrices:

$$P = \begin{bmatrix} 1 & x_1 & x_1^2 & x_1^3 & x_1^4 \\ 1 & x_2 & x_2^2 & x_2^3 & x_2^4 \\ 1 & x_3 & x_3^2 & x_3^3 & x_3^4 \\ 1 & x_4 & x_4^2 & x_4^3 & x_4^4 \\ 1 & x_5 & x_5^2 & x_5^3 & x_5^4 \end{bmatrix}$$

• The best set-up strategy is the column-oriented technique:

Vandermonde Matrix

Circulant Matrices (1)

 The circulant matrices are also of this genre (type). They also are defined by a vector of parameters, for example

$$C = \left[\begin{array}{ccccc} a_1 & a_2 & a_3 & a_4 \\ a_4 & a_3 & a_2 & a_3 \\ a_3 & a_4 & a_1 & a_2 \\ a_2 & a_3 & a_4 & a_1 \end{array} \right]$$

 Each row in a circulant is a shifted version of the row above it. Two kinds of set-up functions: The MATLAB functions are circulant1 and circulant2.

Circulant Matrices (2)

circulant1 exploits the fact that

$$c_{ij} = a_{((n-i+j)_{\text{mod }n})+1}$$

and is a scalar-level implementation.

- **circulant2** exploits the fact that C(i,:) is a left shift of C(i-1,:) and is a vector-level implementation.
- The script ScircBench compares t₁ (the time required by circulant1) with t₂ (the time required by circulant2).

Toeplitz Matrices

- Circulant matrices are examples of Toeplitz matrices.
 Toeplitz matrices arise in many applications and are constant along their diagonals.
- For example,

$$T = \begin{bmatrix} c_1 & r_2 & r_3 & r_4 \\ c_2 & c_1 & r_2 & r_3 \\ c_3 & c_2 & c_1 & r_2 \\ c_4 & c_3 & c_2 & c_1 \end{bmatrix}$$

If **c** and **r** are *n*-vectors, then $\mathbf{T} = \mathbf{toeplitz(c,r)}$ set up the matrix

$$t_{ij} = \left\{ \begin{array}{ll} c_{i-j+1}, & \text{if } i \geq j, \\ r_{j-i+1}, & \text{if } j > i. \end{array} \right.$$

Band Matrices

Many important classes of matrices have lots of zeros.
 Such as the lower triangular matrices, upper triangular matrices, and tridiagonal matrices:

$$L = \begin{bmatrix} x & 0 & 0 & 0 & 0 \\ x & x & 0 & 0 & 0 \\ x & x & x & 0 & 0 \\ x & x & x & x & x \end{bmatrix} \quad U = \begin{bmatrix} x & x & x & x & x \\ 0 & x & x & x & x \\ 0 & 0 & x & x & x \\ 0 & 0 & 0 & x & x \\ 0 & 0 & 0 & 0 & x \end{bmatrix}$$

$$T = \left[\begin{array}{ccccc} x & x & 0 & 0 & 0 \\ x & x & x & 0 & 0 \\ 0 & x & x & x & 0 \\ 0 & 0 & x & x & x \\ 0 & 0 & 0 & x & x \end{array} \right]$$

 The x-0 notation is a handy way to describe patterns of zeros and nonzeros in a matrix. Each "x" designates a nonzeros scalar.

Banded Matrices

- In general, a matrix $A = (a_{ij})$ has lower bandwidth p if $a_{ij} = 0$ whenever i > j + p. Thus, an upper triangular matrix has lower bandwidth 0 and a tridiagonal matrix has lower bandwidth 1.
- A matrix $A = (a_{ij})$ has upper bandwidth q if $a_{ij} = 0$ whenever j > i + q. Thus, a lower triangular matrix has upper bandwidth 0 and a tridiagonal matrix has upper bandwidth 1.
- For instance, here is a matrix with upper bandwidth 2 and lower bandwidth 3:

Diagonal Matrices

- Diagonal matrices have upper and lower bandwidth 0 and can be established by using diag function.
- \bullet For instance, if $\mathbf{d} = [10, 20, 30, 40]$ and $\mathbf{D} = \mathbf{diag(d)}$, then

$$D = \left[\begin{array}{cccc} 10 & 0 & 0 & 0 \\ 0 & 20 & 0 & 0 \\ 0 & 0 & 30 & 0 \\ 0 & 0 & 0 & 40 \end{array} \right]$$

Some Banded Matrices (1)

- Two-argument calls to diag are also possible and can be used to create the other diagonals of a matrix.
- For instance, how to build the matrix: An entry a_{ij} is on the kth diagonal if j-i=k. That is, a matrix whose entries equal the diagonal values (called diagonal-value matrix). Such as

$$D = \begin{bmatrix} 0 & 1 & 2 & 3 \\ -1 & 0 & 1 & 2 \\ -2 & -1 & 0 & 1 \\ -3 & -2 & -1 & 0 \\ -4 & -3 & -2 & -1 \end{bmatrix}$$

Some Banded Matrices (2)

 If v is an m-vector, then D = diag(v,k) establishes an (m+k)-by-(m+k) matrix that has a kth diagonal equal to v and is zero everywhere else. Thus

 If A is a matrix, then v = diag(A, k) extracts the kth diagonal and assigns it (as a column vector) to v. (see and play diagValue.m)

Some Banded Matrices (3)

- The functions tril and triu can be used to punch out a banded portion of a given matrix.
- If B = tril(A, k), then

$$b_{ij} = \begin{cases} a_{ij}, & \text{if } j \leq i+k, \\ 0, & \text{if } j > i+k. \end{cases}$$

Analogously, if B = triu(A, k), then

$$b_{ij} = \begin{cases} a_{ij}, & \text{if } j \geq i + k, \\ 0, & \text{if } j < i + k. \end{cases}$$

• For example, A = tril(ones(6, 6), 1)

Examples of banded Matrices

- The following commands are equivalent:
- T = triu(tril(ones(6, 6), 1), -1) + 3*eye(6,6)
- T = diag(ones(5, 1), -1) + diag(2*ones(6, 1), 0) diag(ones(5, 1), 1)
- T = toeplitz([2;-1; zeros(4, 1)], [2; -1; zeros(4,1)])

Block Matrices (1)

 MATLAB supports the synthesis of matrices at scalar level or matrix level. That is, the notation

$$A = \left[\begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{array} \right]$$

means that A is a 2-by-3 matrix with entries a_{ij} , which can be scalars or matrices.

Suppose A₁₁, A₁₂, A₁₃, A₂₁, A₂₂, and A₂₃ have the following shapes:

$$A_{11} = \begin{bmatrix} u & u & u \\ u & u & u \\ u & u & u \end{bmatrix} \quad A_{12} = \begin{bmatrix} v \\ v \\ v \end{bmatrix} \quad A_{13} = \begin{bmatrix} w & w \\ w & w \\ w & w \end{bmatrix}$$

$$A_{21} = \begin{bmatrix} x & x & x \\ x & x & x \end{bmatrix} \quad A_{22} = \begin{bmatrix} y \\ y \end{bmatrix} \quad A_{23} = \begin{bmatrix} z & z \\ z & z \end{bmatrix}$$

Block Matrices (2)

We then define a 2-by-3 block matrix

$$A = \left[\begin{array}{ccc} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \end{array} \right]$$

by

$$A = \begin{bmatrix} u & u & u & v & w & w \\ u & u & u & v & w & w \\ u & u & u & v & w & w \\ \hline x & x & x & y & z & z \\ x & x & x & y & z & z \end{bmatrix}$$

- The lines delineate the block entries. Of course, A is also a 5-by-6 scalar matrix.
- Block matrix manipulations are very important and can be effectively carried out in MATLAB (see blockTest).

Block Matrices (3)

- The block rows of a matrix are separated by semicolons, and it is important to make sure that the dimensions are consistent. The final result must be rectangular at the scalar level.
- The extraction of blocks requires the colon notation. The assignment C = A(2:4, 5:6) is equivalent to any of the following:

```
C = [A(2:4,5) A(2:4,6)]
C = [A(2,5:6), A(3,5:6), A(4,5:6)]
C = [A(2,5) A(2,6); A(3,5) A(3,6); A(4,5) A(4,6)]
```

Block Matrices (4)

- A block matrix can be conveniently represented as a cell array with matrix entries. The function MakeBlock does this when the underlying matrix can be expressed as a square block matrix with square blocks.
- As the examples, see MakeBlockTest.

Matrix-Vector Multiplication (1)

- Once a matrix is set up, it can participate in matrix-vector and matrix-matrix products. Although these operations are MATLAB one-liners, it is instructive to examine the different ways that they can be implemented.
- Suppose $A \in \mathbb{R}^{m \times n}$, and we wish to compute the matrix-vector product y = Ax, where $x \in \mathbb{R}^n$.
- The usual way this computation proceeds is to compute the dot products

$$y_i = \sum_{j=1}^n a_{ij} x_j$$

one at a time for i = 1: m. This leads to the following algorithm:

Matrix-Vector Multiplication: Dot Products

```
% Algorithm of dot product for y = Ax

[m,n] = size(A);
y = zeros(m,1);
for i = 1:m,
    for j = 1:n,
        y(i) = y(i) + A(i,j)*x(j);
    end
end
```

Matrix-Vector Multiplication (2)

- The one-line assignment y = Ax is equivalent and requires 2mn flops.
- Instructively, we reconsider the preceding double loop and recognize that the j-loop oversees an inner product of the ith row of A and the x vector. We therefore have the function MatVecRo.
- This procedure is row oriented because A is accessed by row.

Matrix-Vector Multiplication: Row-Oriented

```
function y = MatVecRo(A, x)
y = MatVecRo(A,x)
% Computes the matrix-vector product y = A*x
% (via saxpys) where A is an m-by-n matrix and x is
% a column-vector.
[m,n] = size(A);
y = zeros(m,1);
for i=1:m
   y(i) = A(i,:)*x;
end
```

Matrix-Vector Multiplication (3)

- If A is accessed by column, then we have the column-oriented procedure, the MATLAB function MatVecCo.
- For example, we start with a 3-by-2 observation: y = Ax =

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} 7 \\ 8 \end{bmatrix} = \begin{bmatrix} 1 \cdot 7 + 2 \cdot 8 \\ 3 \cdot 7 + 4 \cdot 8 \\ 5 \cdot 7 + 6 \cdot 8 \end{bmatrix} = 7 \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} + 8 \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix} = \begin{bmatrix} 23 \\ 53 \\ 83 \end{bmatrix}$$

- In other words, y is a linear combination of A's columns with the x_i being the coefficients.
- In terms of program transformation, this function MatVecCo is just MatVecRo with the i and j loops swapped.

Matrix-Vector Multiplication: Column-Oriented

```
function y = MatVecCo(A,x)
y = MatVecCo(A,x)
% This computes the matrix-vector product y = A*x
% (via saxpys) where A is an m-by-n matrix and x is
% a columnn-vector.
[m,n] = size(A);
y = zeros(m,1);
for j=1:n
 y = y + A(:,j)*x(j);
end
```

Matrix-Vector Multiplication (4)

The saxpy operation is the form

$$vector \leftarrow scalar \cdot vector + vector.$$

 Along with the dot product, it is a key player in matrix computations. Here is an expanded view of the saxpy operation in MatVecco:

$$\begin{bmatrix} y(1) \\ y(2) \\ \vdots \\ y(m) \end{bmatrix} = \begin{bmatrix} A(1,j) \\ A(2,j) \\ \vdots \\ A(m,j) \end{bmatrix} x(j) + \begin{bmatrix} y(1) \\ y(2) \\ \vdots \\ y(m) \end{bmatrix}$$

 This procedure is row oriented because A is accessed by row.

Structure-Exploiting Upper Triangular (1)

- In many matrix computations, the matrix are structured with lots of zeros (such as lower/upper triangular matrices or banded matrices). In such a context it may be possible to streamline the computations.
- We first examine the matrix-vector product problem y = Ax where A ∈ R^{n×n} is upper triangular. By looking at MatVecRo, the inner products include many zeros.
- We therefore can reduce the computations so that they only include the nonzero portion of the row. The command in MatVecRo should be modified by

$$A(i,:)*x \longrightarrow A(i,i:n)*x(i:n)$$

Structure-Exploiting Upper Triangular (2)

• The assignment to y(i) requires 2i flops, so overall

$$\sum_{i=1}^{n} (2i) = 2(1+2+\cdots+n) = n(n+1)$$

flops required.

• Ignoring the O(n) term, we merely state that the algorithm requires n^2 flops, and that our streamlining halved the number of floating point operations.

Structure-Exploiting Upper Triangular (3)

The function MatVecRo can also be abbreviated. Note that A(:, j) is zero in components j + 1 through n, and so the "essential" saxpy to perform in the jth step is

$$\begin{bmatrix} y(1) \\ y(2) \\ \vdots \\ y(j) \end{bmatrix} = \begin{bmatrix} A(1,j) \\ A(2,j) \\ \vdots \\ A(j,j) \end{bmatrix} x(j) + \begin{bmatrix} y(1) \\ y(2) \\ \vdots \\ y(j) \end{bmatrix}.$$

The rendering of the key command is

$$y(1:j) = A(1:j,j) * x(j) + y(1:j);$$

Again, the number of required flops is halved.

Matrix-Matrix Multiplication (1)

• If $A \in \mathbb{R}^{m \times p}$ $B \in \mathbb{R}^{p \times n}$, then the product C = AB is defined by

$$c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj}$$

for all *i* and *j* that satisfy $1 \le i \le m$ and $1 \le j \le n$.

- In other words, each entry in C is the inner product of a row in A and a column in B. Thus, the fragment (see next page) computes the product AB and assigns the result to C.
- MATLAB supports matrix-matrix multiplication, and so this can be implemented with one-liner

$$C = A * B$$
.

Matrix-matrix Multiplication: Scalar product

```
C = zeros(m,n);
for j = 1:n,
    for i = 1:m,
        for k=1:p,
            C(i,j) = C(i,j) + A(i,k)*B(k,j);
        end
    end
end
```

Matrix-Matrix Multiplication (2)

- There are a number of different ways to look at matrix multiplication, and we shall present four distinct versions.
- First, dot-product version: the innermost loop in the preceding script oversees the dot product between row i of A and column j of B. See MatMatDot.
- Second, saxpy version: the jth column of C is equal to A times the j column of B. See MatMatSax.
- Third, matrix-vector product version: By replacing the inner loop in saxpy operation with a single matrix-vector product.
 See MatMatVec.
- Fourth, outer product version: the product A * B is the sum
 of p outer products which are the columns of A multiply the
 rows of B. See MatMatOuter.

Outer Product Version of Matrix Multiplication (1)

 The outer product between a column m-vector u and a row n-vector v is given by

$$uv^{T} = \begin{bmatrix} u_{1} \\ u_{2} \\ \vdots \\ u_{m} \end{bmatrix} [v_{1}, v_{2}, \cdots, v_{n}] = \begin{bmatrix} u_{1}v_{1} & u_{1}v_{2} & \cdots & u_{1}v_{n} \\ u_{2}v_{1} & u_{2}v_{2} & \cdots & u_{2}v_{n} \\ \vdots & \vdots & \cdots & \vdots \\ u_{m}v_{1} & u_{m}v_{2} & \cdots & u_{m}v_{n} \end{bmatrix}$$

- This is just the ordinary matrix multiplication of an m-by-1 matrix and a 1-by-n matrix (producing an m-by-n matrix).
- For instance,

$$\begin{bmatrix} 10\\15\\20 \end{bmatrix}_{3\times 1} [1,2,3,4]_{1\times 4} = \begin{bmatrix} 10&20&30&40\\15&30&45&60\\20&40&60&80 \end{bmatrix}_{3\times 4}$$

Outer Product Version of Matrix Multiplication (2)

Therefore, the outer-product version of matrix multiplication
 C = A * B is given by the sum of p outer products:

$$C = AB = [A(:,1)|A(:,2)|\cdots|A(:,p)] \begin{bmatrix} B(1,:) \\ B(2,:) \\ \vdots \\ B(p,:) \end{bmatrix} = \sum_{k=1}^{p} A(:,k)B(k,:),$$

which are the columns of A multiply the rows of B.

 The Script File MatBench benchmarks the four versions of matrix-multiply functions along with the (default) direct, one-liner C = A * B.

Sparse Matrices (1)

For many matrices that arise in practice, the ratio

Number of Nonzero Entries Number of zero Entries

is very small. Matrices with this property are said to be **sparse**.

- An important class of sparse matrices are band matrices, such as the block tridiagonal matrix shown in Figure 5.1 (page 183).
- If A is sparse then
 - 1 it can be represented with reduced storage and
 - 2 matrix-vector products that involve A can be carried out with reduced number of flops.

Sparse Matrices (2)

- For example, If A is an n-byn tridiagonal matrix then it can be represented with with three n-vectors and when it multiplies a vector only 5n flops are involved. However, this would not be the case if A is represented as a full matrix.
- Thus, A = diag(2*ones(n,1)) - diag(ones(n-1,1),-1) - diag(ones(n-1,1),1); y = A*rand(n,1);involves $O(n^2)$ storage and $O(n^2)$ flops.
- The sparse function addresses these issues in MATLAB. If
 A is a matrix then S_A = sparse(A) produces a sparse
 array representation of A.
- The sparse array S_A can be engaged in the same matrix operations as A and MATLAB will exploit the underlying sparse structure whenever possible.

Sparse Matrices (3)

Consider the script

```
A = diag(2*ones(n,1)) - diag(ones(n-1,1),-1) - diag(ones(n-1,1),1);
S_A = sparse(A);
y = A*rand(n,1);
```

- The representation **S_A** involves O(n) storage and the product O(n) flops.
- The script ShowSparse looks at the flop efficiency in more detail and produces the plot shown in Figure 5.2.
- There are more sophisticated ways to use sparse which the interested reader can be pursue via help.

Norms of Vectors (1)

- Norms are a vehicle for measuring distance in a vector space. A norm is just a generalization of absolute value.
- For a vector $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, the 1, 2, p(>1), and infinity norms are defined as

$$||x||_{1} = |x_{1}| + |x_{2}| + \dots + |x_{n}| = \sum_{i=1}^{n} |x_{i}|$$

$$||x||_{2} = \sqrt{x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2}}$$

$$||x||_{p} = (x_{1}^{p} + x_{2}^{p} + \dots + x_{n}^{p})^{1/p} = \left[\sum_{i=1}^{n} x_{i}^{p}\right]^{1/p}$$

$$||x||_{\infty} = \max_{1 \le i \le n} |x_{i}| = \max\{|x_{1}|, \dots, |x_{n}|\}$$

Norms of Vectors (2)

- Whenever we think about vectors of errors in an order-of-magnitude sense, then the choice of norm is generally not important.
- It can be shown that

$$||x||_{\infty} \leq ||x||_{1} \leq n||x||_{\infty}$$

$$||x||_{\infty} \leq ||x||_{2} \leq \sqrt{n}||x||_{\infty}$$

Thus, the 1-norm cannot be particularly small without the others following suit.

Norms of Vectors (3)

- In Matlab, if x is a vector, norm(x,1), norm(x,2), and norm(x,inf) can be used to ascertain these quantities. A single-argument call to norm returns the 2-norm (i.e., norm(x)).
- A script **AveNorms** tabulates the ratios $||x||_1/||x||_{\infty}$ and $||x||_2/||x||_{\infty}$ for large collections of random *n*-vectors.

Norms of Matrices (1)

The matrix norms we will consider have the norms

$$||A||_{\infty} = \max_{||\mathbf{x}||_{\infty}=1} ||A\mathbf{x}||_{\infty} \quad \text{and} \quad ||A||_2 = \max_{||\mathbf{x}||_2=1} ||A\mathbf{x}||_2$$

• If $A = (a_{ij})$ is an $m \times n$ matrix, then

$$||A||_{\infty} = \max_{1 \leq i \leq m} \sum_{j=1}^{n} |a_{ij}|, \ ||A||_{1} = \max_{1 \leq j \leq n} \sum_{i=1}^{m} |a_{ij}|, \ ||A||_{F} = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^{2}}.$$

• For example, find $||A||_{\infty}$ and $||A||_{1}$ for the matrix

$$A = \left[\begin{array}{rrr} 1 & 2 & -1 \\ 0 & 3 & -1 \\ 5 & -1 & 1 \end{array} \right]$$

Norms of Matrices (2)

- In MATLAB if A is a matrix then norm(A,1), norm(A,2), norm(A,inf), and norm(A,'fro') can be used to compute these values.
- As a simple illustration of how matrix norms can be used to quantify error at matrix level, we prove a result about the roundoff errors that arise when an m-by-n matrix is stored.
- **Theorem 5:** If \hat{A} is the stored version of $A \in \mathbb{R}^{m \times n}$, then $\hat{A}A + E$ where $E \in \mathbb{R}^{m \times n}$ and

$$||E||_1 \leq \mathsf{eps} \cdot ||A||_1.$$

Norms of Matrices (3)

• PROOF: From Theorem 1, if $\hat{A} = (\hat{a}_{ij})$, then

$$\hat{\mathbf{a}}_{ij} = \mathbf{fl}(\mathbf{a}_{ij}) = \mathbf{a}_{ij}(1 + \epsilon_{ij}),$$

where $|\epsilon_{ij}| \leq \text{eps. Thus,}$

$$||E||_{1} = ||\hat{A} - A||_{1} = \max_{1 \le j \le n} \sum_{i=1}^{m} |\hat{a}_{ij} - a_{ij}|$$

$$\leq \max_{1 \le j \le n} \sum_{i=1}^{m} |a_{ij}\epsilon_{ij}| \le \operatorname{eps} \cdot \max_{1 \le j \le n} \sum_{i=1}^{m} |a_{ij}| = \operatorname{eps} \cdot ||A||_{1}.$$

Norms of Matrices (4)

- This theorem says that the errors of order eps $\cdot ||A||_1$ arise when a real matrix A is stored in floating point. There is nothing to do with what kind of norms is chosen.
- when the effect of roundoff error is the issue, we will be content with order-of-magnitude approximation. For example, it can be shown that if A and B are matrices of floating point numbers, then

$$||fl(AB) - AB|| \approx \operatorname{eps} \cdot ||A|| ||B||.$$

By f(AB) we mean the computed floating point product of A and B. See **ProdBound**.

Evaluation of a Function f(x, y) with Vectors x and y

- On numerous occasions we have been required to evaluate a continuous function f(x) on a vector of values.
- The analog of this in two dimensions is the evaluation of a function f(x, y) on a pair of vectors x and y.
- Suppose that $f(x, y) = \exp^{-(x^2+3y^2)}$ and that we want to set up an n-by-n matrix F with the property that

$$f_{ij} = e^{-(x_i^2 + 3y_j^2)}$$

where $x_i = (i-1)/(n-1)$ and $y_j = (j-1)/(n-1)$. We can proceed at the scalar, vector, or matrix level.

Two-Dimt'l Tables of Function Values (1)

```
% the scalar level
v = linspace(0, 1, n);
F = zeros(n, n);
for i = 1:n.
   for j = 1:n,
     F(i,j) = \exp(-v(i)^2 - 3*v(j)^2);
   end
end
% the vector level (set F up by column)
v = linspace(0, 1, n);
F = zeros(n, n);
for j = 1:n,
  F(:,j) = \exp(-v.^2 - 3*v(j)^2);
end
```

Two-Dimt'l Tables of Function Values (2)

```
% evaluate 'exp' on the matrix of arguments:
 v = linspace(0, 1, n);
A = zeros(n, n);
 for i = 1:n.
    for j = 1:n,
       F(i,j) = \exp(-(v(i)^2 + 3*v(i)^2));
    end
 end
 F = \exp(A);
function F = SampleF(x, y)
% x is a column n-vector, y is a column m-vector and
% F is an m-by-n matrix with F(i,j)=\exp(-x(i)^2-3y(i)^2
n = length(x); m = length(y);
A = -((3*y.^2)*ones(1,n) + ones(m,1)*(x.^2)');
F = \exp(A);
```

Evaluation of a Function f(x, y) with Matrix Arguments

- Many of MATLAB's built-in functions, like exp, accept matrix arguments. The Assignment F = exp(A) sets F to be a matrix that is the same as size as A with $f_{ij} = e^{a_{ij}}$ for all i and j.
- In general, the most efficient approach depends on the structure of the matrix arguments, the nature of the underlying function f(x, y), and what is already available through M-files.
- In order to increase the efficiency of computations, it is best to be consistent with Matlab's vectorizing philosophy (processing with vector or matrix level) when designing functions or programs.

Contour Plots

- If f(x, y) is a function of two real variables, then a curve in the xy-plane of the form f(x, y) = c is a contour.
- The function contour can be used to display such curves.
 See ShowContour.

Approximating Double Integrals (1)

 Let us consider the problem of approximating the double integral

$$I = \int_{a}^{b} \int_{c}^{d} f(x, y) dx dy$$

using a quadrature rule of the form

$$\int_a^b g(x)dx \approx (b-a)\sum_{i=1}^{N_x} \omega_i g(x_i) \equiv Q_x$$

in the x-direction and a quadrature rule of the form

$$\int_{c}^{d} g(y)dy \approx (d-c)\sum_{j=1}^{N_{y}} \mu_{j}g(y_{j}) \equiv Q_{y}$$

in the y-direction.

Approximating Double Integrals (2)

Doing this, we obtain

$$I = \int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx \approx (b - a) \sum_{i=1}^{N_{x}} \omega_{i} \left(\int_{c}^{d} f(x_{i}, y) dy \right)$$

$$= (b - a) \sum_{i=1}^{N_{x}} \omega_{i} \left((d - c) \sum_{j=1}^{N_{y}} \mu_{j} f(x_{i}, y_{j}) \right)$$

$$= (b - a)(d - c) \sum_{i=1}^{N_{x}} \omega_{i} \left(\sum_{j=1}^{N_{y}} \mu_{j} f(x_{i}, y_{j}) \right) \equiv Q$$

Approximating Double Integrals (3)

• Observe that the quantity in parentheses is the *i*th component of the vector F_{μ} , where

$$F = \left[\begin{array}{ccc} f(x_1, y_1) & \cdots & f(x_1, y_{N_y}) \\ \vdots & \ddots & \vdots \\ f(x_{N_x}, y_1) & \cdots & f(x_{N_x}, y_{N_y}) \end{array} \right]$$

and

$$\mu = \left[\begin{array}{c} \mu_1 \\ \vdots \\ \mu_{N_y} \end{array} \right]$$

It follows that

$$\mathsf{Q} = (b-a)(d-c)\omega^{\mathsf{T}}(\mathsf{F}\mu), \quad \mathsf{where} \quad \omega = \left[egin{array}{c} \omega_1 \ dots \ \omega_{\mathsf{N_x}} \end{array}
ight]$$

See Show2Dquad and CompQNC2D.

Recursive Matrix Operations

- Some of the most interesting algorithmic developments in matrix computations are recursive. Two examples are given in this section.
- The first is the fast Fourier transform, a super-quick way of computing a special, very important matrix-vector product.
- The second is a recursive matrix multiplication algorithm that involves markedly fewer flops than the conventional algorithm.

The Fast Fourier Transform (1)

• The discrete Fourier transform (DFT) matrix is a complex Vandermonde matrix. Complex numbers have the form $a+i\cdot b$, where $i=\sqrt{-1}$. If we define

$$\omega_4 = \exp(-2\pi i/4) = \cos(2\pi/4) - i \cdot \sin(2\pi/4) = -i$$

then the 4-by-4 DFT is given by

$$F_4 = \left[\begin{array}{cccc} 1 & 1 & 1 & 1 \\ 1 & \omega_4 & \omega_4^2 & \omega_4^3 \\ 1 & \omega_4^2 & \omega_4^4 & \omega_4^6 \\ 1 & \omega_4^3 & \omega_4^6 & \omega_4^9 \end{array} \right]$$

The Fast Fourier Transform (2)

• The parameter ω_4 is a fourth root of unity, meaning that $\omega_4^4=$ 1. It follows that

$$F_4 = \left[\begin{array}{cccc} 1 & 1 & 1 & 1 \\ 1 & -i & -1 & i \\ 1 & -1 & 1 & -1 \\ 1 & i & -1 & -i \end{array} \right]$$

MATLAB supports complex matrix manipulation. The command

$$i = \sqrt{-1}$$
;
F = [1 1 1 1; 1 $-i$ -1 i ; 1 -1 1 -1 ; 1 i -1 $-i$] assign the 4-by-4 DFT to F.

The Fast Fourier Transform (3)

For general n, the DFT matrix is defined in terms of

$$\omega_n = \exp(-2\pi i/n) = \cos(2\pi/n) - i \cdot \sin(2\pi/n)$$

In particular, the *n*-by-*n* DFT matrix is defined by

$$F_n = (f_{pq}), \qquad f_{pq} = \omega_n^{(p-1)(q-1)}.$$

 Setting up the DFT matrix gives us an opportunity to sample MATLAB's complex arithmetic capabilities:

Setting the DFT matrix (1)

```
F = ones(n, n);
F(:, 2) = \exp(-2*pi*sqrt(-1)/n).^(0:n-1);
for k = 3:n,
   F(:, k) = F(:, 2) .* F(:, k-1);
end
% Using the functions 'real' and 'imag' to extract
% the real and imaginary parts of a matrix.
v = F*x;
% is equivalent to
FR = real(F); FI = imag(F);
xR = real(x); xI = imag(x);
y = (FR*xR - FI*xI) + sqrt(-1)*(FR*xI + FI*xR);
```

Setting the DFT matrix (2)

```
% It is possible to compute 'y = F_n*x' without
% explicitly forming the DFT matrix 'F_n'.

n = length(x);
y = x(1)*ones(n,1);
for k = 2:n,
    y = y + exp(-2*pi*sqrt(-1)*(k-1)*(0:n-1)')*x(k);
end
```

The Fast Fourier Transform (4)

The update carries out the saxpy computation

$$y = \begin{bmatrix} 1 \\ \omega_n^{k-1} \\ \omega_n^{2(k-1)} \\ \vdots \\ \omega_n^{(n-1)(k-1)} \end{bmatrix} x_k$$

- Notice that since $\omega_n^n = 1$, all power of ω_n are in the set $\{1, \omega_n, \omega_n^2, \dots, \omega_n^{n-1}\}$. In particular, $\omega_n^m = \omega_n^m \mod n$.
- Thus, if

$$v = \exp(-2 * pi * sqrt(-1)/n) * (0 : n - 1)'$$

 $z = \operatorname{rem}((k - 1) * (0 : n - 1)', n) + 1;$

then v(z) equals the kth column of F_n and we obtain the function **DFT**, which is an $O(n^2)$ algorithm.

The Fast Fourier Transform (5)

 An O(n log₂ n) implementation, called the algorithm of fast Fourier transform, by exploiting the structure of F_n with n = 2^k (an integer power of 2). Consider the case n = 8, ...

Strassen Multiplication (1)

- The idea of Strassen algorithm for matrix multiplication is based on the 'block' matrix multiplication.
- Ordinarily, 2-by-2 matrix multiplication requires 8 multiplications and 4 additions:

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$
$$= \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{bmatrix}$$

Strassen Multiplication (2)

 In the Strassen multiplication scheme, the computations are rearranged so that they involve 7 multiplications and 18 additions:

$$P_{1} = (A_{11} + A_{22})(B_{11} + B_{22}) P_{2} = (A_{21} + A_{22})B_{11}$$

$$P_{3} = A_{11}(B_{12} - B_{22}) P_{4} = A_{22}(B_{21} - B_{11})$$

$$P_{5} = (A_{11} + A_{12})B_{22} P_{6} = (A_{21} - A_{11})(B_{11} + B_{12})$$

$$P_{7} = (A_{12} - A_{22})(B_{21} + B_{22})$$

$$C_{11} = P_{1} + P_{4} - P_{5} + P_{7} C_{12} = P_{3} + P_{5}$$

$$C_{21} = P_{2} + P_{4} C_{22} = P_{1} + P_{3} - P_{2} + P_{6}$$

 It is easy to verify that these recipes correctly define the product AB.

Strassen Multiplication (3)

- The Strassen specification holds when A_{ij} and B_{ij} are square matrices themselves. In this case, it amounts to a special method for computing 2-by-2 matrix products.
- The 7 multiplications are now m-by-m (m = n/2) matrix multiplication and require $2(7m^3)$ flops. The 18 additions are matrix additions and they involve $18m^2$ flops.
- Thus, for this block size the Strassen multiplications requires

$$2(7m^3) + 18m^2 = \frac{7}{8}(2n^3) + \frac{9}{2}n^2$$

flops while the corresponding figure for the conventional algorithm is given by $2n^3 - n^2$. We see that for large enough n, the Strassen approach involves less arithmetic (for n > 22).

• The idea can obviously be implemented recursively. See **Strass**.

