Chapter 6: The Riemann-Stieltjes Integral

Author: Meng-Gen Tsai Email: plover@gmail.com

Supplement. Another definition of Riemann-Stieltjes integral. (Exercise 7.3, 7.4 of the book T. M. Apostol, Mathematical Analysis, Second Edition.) Let P be a partition of [a,b]. The norm of a partition P is the length of the largest subinterval $[x_{i-1},x_i]$ of P and is denoted by ||P||.

We say $f \in \mathcal{R}(\alpha)$ if there exists $A \in \mathbb{R}$ having the property that for any $\varepsilon > 0$, there exists $\delta > 0$ such that for any partition P of [a,b] with norm $||P|| < \delta$ and for any choice of $t_i \in [x_{i-1},x_i]$, we have $|\sum_{i=1}^n f(t_i)\Delta\alpha_i - A| < \varepsilon$.

Claim. $f \in \mathcal{R}$ in the sense of Definition 6.2 implies that $f \in \mathcal{R}$ in the sense of this another definition.

Proof of Claim. Let $A = \int f dx$, M > 0 be one upper bound of |f| on [a, b]. Given $\varepsilon > 0$, there exists a partition $P_0 = \{a = x_0, x_1, \dots, x_{N-1}, x_N = b\}$ such that $U(P_0, f) \leq A + \frac{\varepsilon}{2}$. Let $\delta = \frac{\varepsilon}{2MN} > 0$. Then for any partition P with norm $||P|| < \delta$, write

$$U(P, f) = \sum_{i=1}^{n} M_i \Delta x_i = S_1 + S_2,$$

where S_1 is the sum of terms arising from those subintervals of P containing no point of P_0 , S_2 is the sum of the remaining terms. Then

$$\begin{split} S_1 &\leq U(P_0,f) < A + \frac{\varepsilon}{2}, \\ S_2 &\leq NM \|P\| < NM\delta < \frac{\varepsilon}{2}. \end{split}$$

Therefore, $U(P, f) < A + \varepsilon$. Similarly, $L(P, f) > A - \varepsilon$ whenever $||P|| < \delta'$. Hence, $|\sum_{i=1}^{n} f(t_i) \Delta x_i - A| < \varepsilon$ whenever $||P|| < \min\{\delta, \delta'\}$. (Copy Apostol's hint and ensure M > 0. M in Apostol's hint might be zero if f = 0.) \square

This supplement will be used in computing $\int_0^\infty (\frac{\sin x}{x})^2 dx = \frac{\pi}{2}$ in Exercise 8.12.

Exercise 6.1. Suppose α increases on [a,b], $a \leq x_0 \leq b$, α is continuous at x_0 , $f(x_0) = 1$, and f(x) = 0 if $x \neq x_0$. Prove that $f \in \mathcal{R}(\alpha)$ and that $\int f d\alpha = 0$.

Given any partition $P = \{a = p_0, p_1, \dots, p_{n-1}, p_n = b\}$, where $a = p_0 \le p_1 \le \dots \le p_{n-1} \le p_n = b$. We might compute $L(P, f, \alpha)$ and $U(P, f, \alpha)$ by using $\varepsilon - \delta$

argument since we are hinted by the condition that α is continuous. A function which is continuous at x_0 has a nice property near x_0 and this property would help us estimate $U(P, f, \alpha)$ near x_0 . On the contrary, if both f and α are discontinuous at x_0 , it might be $f \notin \mathcal{R}(\alpha)$. Besides, if f has too many points of discontinuity (f(x) = 0) if $x \in \mathbb{Q}$ and f(x) = 1 otherwise, for example), then f might not be Riemann-integrable on [0, 1].

Claim 1. $L(P, f, \alpha) = 0$.

Proof of Claim 1. $m_i = 0$ since $\inf f(x) = 0$ on any subinterval of [a, b]. So $L(P, f, \alpha) = \sum m_i \Delta \alpha_i = 0$. Here we don't need the condition that α is continuous at x_0 . \square

Claim 2. For any $\varepsilon > 0$, there exists a partition P such that $U(P, f, \alpha) < \varepsilon$.

Proof of Claim 2. Say $x_0 \in [p_{i_0-1}, p_{i_0}]$ for some i_0 . Then

$$M_i = \sup_{p_{i-1} \le x \le p_i} f(x) = \begin{cases} 0 & \text{if } i \ne i_0, \\ 1 & \text{if } i = i_0. \end{cases}$$

So

$$U(P, f, \alpha) = \sum M_i \Delta \alpha_i = \Delta \alpha_{i_0}.$$

It is not true for any arbitrary α . (For example, α has a jump on $x=x_0$.) In fact, Exercise 6.3 shows this. Luckily, α is continuous at x_0 . So for $\varepsilon > 0$, there exists $\delta > 0$ such that $|\alpha(x) - \alpha(x_0)| < \frac{\varepsilon}{2}$ whenever $|x - x_0| < \delta$ (and $x \in [a, b]$). Now we pick a nice partition

$$P = \{a, x_0 - \delta_1, x_0 + \delta_2, b\},\$$

where $\delta_1 = \min\{\delta, x_0 - a\} \ge 0$ and $\delta_2 = \min\{\delta, b - x_0\} \ge 0$. (It is a trick about resizing " δ " to avoid considering the edge cases $x_0 = a$ or $x_0 = b$ or a = b.) Then $x_0 \in [x_0 - \delta_1, x_0 + \delta_2]$ and $\Delta \alpha$ on $[x_0 - \delta_1, x_0 + \delta_2]$ is

$$\alpha(x_0 + \delta_2) - \alpha(x_0 - \delta_1) = (\alpha(x_0 + \delta_2) - \alpha(x_0)) + (\alpha(x_0) - \alpha(x_0 - \delta_1))$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Therefore, $U(P, f, \alpha) < \varepsilon$. \square

Proof (Definition 6.2). By Claim 1 and 2 and notice that $U(P, f, \alpha) \geq 0$ for any

partition P,

$$\int_{a}^{b} f d\alpha = \inf U(P, f, \alpha) = 0,$$
$$\int_{a}^{b} f d\alpha = \sup L(P, f, \alpha) = 0,$$

the inf and sup again being taken over all partitions. Hence $f \in \mathcal{R}(\alpha)$ and that $\int f d\alpha = 0$ by Definition 6.2. \square

Proof (Theorem 6.6). By Claim 1 and 2,

$$0 \le U(P, f, \alpha) - L(P, f, \alpha) < \varepsilon.$$

Hence $f \in \mathcal{R}(\alpha)$ by Theorem 6.6. Furthermore,

$$\int f d\alpha = \int_{a}^{b} f d\alpha = \sup L(P, f, \alpha) = 0.$$

Proof (Theorem 6.10). $f \in \mathcal{R}(\alpha)$ by Theorem 6.10. Thus, by Claim 1

$$\int f d\alpha = \int_a^b f d\alpha = \sup L(P, f, \alpha) = 0.$$

Exercise 6.2. Suppose $f \ge 0$, f is continuous on [a,b], and $\int_a^b f(x)dx = 0$. Prove that f(x) = 0 for all $x \in [a,b]$. (Compare with Exercise 6.1.)

For one application, see Exercise 7.20.

Proof. (Reductio ad absurdum) If there were $p \in [a,b]$ such that f(p) > 0. Since f is continuous on [a,b], given $\varepsilon = \frac{1}{64} f(p) > 0$ there exists $\delta > 0$ such that

$$|f(x) - f(p)| \le \frac{1}{64}f(p)$$
 whenever $|x - p| \le \delta, x \in [a, b]$.

Hence

$$f(x) \ge \frac{63}{64}f(p)$$

whenever $x \in E = [\max\{a, p - \delta\}, \min\{b, p + \delta\}] \subseteq [a, b]$. Note that the length of E is |E| > 0. So

$$0 = \int_{a}^{b} f(x)dx \ge \int_{E} f(x)dx \ge \int_{E} \frac{63}{64} f(p)dx = \frac{63}{64} f(p)|E| > 0,$$

which is absurd. \square

Note. (Lebesgue integral) Let f be a nonnegative measurable function. Then $\int f = 0$ implies f = 0 a.e.

Exercise 6.3. Define three functions β_1 , β_2 , β_3 as follows: $\beta_j(x) = 0$ if x < 0, $\beta_j(x) = 1$ if x > 0 for j = 1, 2, 3; and $\beta_1(0) = 0$, $\beta_2(0) = 1$, $\beta_3(0) = \frac{1}{2}$. Let f be a bounded functions on [-1, 1].

(a) Prove that $f \in \mathcal{R}(\beta_1)$ if and only if f(0+) = f(0) and that then

$$\int f d\beta_1 = f(0).$$

- (b) State and prove a similar result for β_2 .
- (c) Prove that $f \in \mathcal{R}(\beta_3)$ if and only if f is continuous at 0.
- (d) If f is continuous at 0 prove that

$$\int f d\beta_1 = \int f d\beta_2 = \int f d\beta_3 = f(0).$$

Proof of (a).

(1) Given any $\delta > 0$, we have

$$|f(x) - f(0)| \le \sup_{x \in [0,\delta]} f(x) - \inf_{x \in [0,\delta]} f(x)$$

if $x \in [0, \delta]$.

(2) Given any $\varepsilon > 0$ and $\delta > 0$. Show that if f is bounded and $|f(x) - f(0)| < \varepsilon$ on $[0, \delta]$ then

$$\sup_{x \in [0,\delta]} f(x) - \inf_{x \in [0,\delta]} f(x) < 2\varepsilon.$$

Since f is bounded, there exists $x_1, x_2 \in [0, \delta]$ such that

$$f(x_1) = \sup_{x \in [0,\delta]} f(x)$$
 and $f(x_2) = \inf_{x \in [0,\delta]} f(x)$.

By assumption,

$$f(x_1) - f(x_2) \le |f(x_1) - f(0)| + |f(0) - f(x_2)| < 2\varepsilon.$$

(3) Show that
$$f \in \mathcal{R}(\beta_1)$$
 iff $f(0+) = f(0)$.

$$f \in \mathcal{R}(\beta_1)$$

$$\iff \forall \varepsilon > 0 \text{ there is } P \text{ such that } U(P, f, \beta_1) - L(P, f, \beta_1) < \varepsilon$$
 (Theorem 6.6)

$$\iff \forall \varepsilon > 0 \text{ there is } P \text{ containing } 0 \text{ such that } U(P, f, \beta_1) - L(P, f, \beta_1) < \varepsilon \quad \text{(Theorem 6.4)}$$

where $P = \{-1 = x_0 < x_1 < \ldots < x_k = 0 < \ldots < x_n = 1\}$

$$\iff \forall \varepsilon > 0 \text{ there is } P \text{ containing } 0 \text{ such that } M_{k+1} - m_{k+1} < \varepsilon$$

$$\Longleftrightarrow \forall \varepsilon > 0 \text{ there is } P \text{ containing } 0 \text{ such that } \sup_{x \in [0,\delta]} f(x) - \inf_{x \in [0,\delta]} f(x) < \varepsilon$$

where
$$[x_k, x_{k+1}] = [0, \delta], \delta > 0$$

(Take
$$P = \{-1, 0, \delta, 1\}$$
 in "\(\infty\)" direction)

$$\iff \forall \varepsilon > 0 \text{ there is } \delta > 0 \text{ such that } |f(x) - f(0)| < \varepsilon \text{ whenever } x \in [0, \delta] \tag{(1)(2)}$$

(Replace ε by $\frac{\varepsilon}{2}$ in " \Leftarrow " direction)

$$\iff \lim_{x \to 0+} f(x) = f(0).$$

(4) Show that $\int f d\beta_1 = f(0)$ if $f \in \mathcal{R}(\beta_1)$. By (3) and Theorem 6.7,

$$\left| f(0) - \int_a^b f d\beta_1 \right| < \varepsilon.$$

Since ε is arbitrary, $\int f d\beta_1 = f(0)$.

Proof of (b). Show that $f \in \mathcal{R}(\beta_2)$ if and only if f(0-) = f(0) and that then

$$\int f d\beta_2 = f(0).$$

Similar to (a).

(1) Given any $\delta > 0$, we have

$$|f(x) - f(0)| \le \sup_{x \in [-\delta, 0]} f(x) - \inf_{x \in [-\delta, 0]} f(x)$$

if $x \in [-\delta, 0]$.

(2) Given any $\varepsilon > 0$ and $\delta > 0$. Show that if f is bounded and $|f(x) - f(0)| < \varepsilon$ on $[-\delta, 0]$ then

$$\sup_{x \in [-\delta,0]} f(x) - \inf_{x \in [-\delta,0]} f(x) < 2\varepsilon.$$

Since f is bounded, there exists $x_1, x_2 \in [-\delta, 0]$ such that

$$f(x_1) = \sup_{x \in [-\delta, 0]} f(x)$$
 and $f(x_2) = \inf_{x \in [-\delta, 0]} f(x)$.

By assumption,

$$f(x_1) - f(x_2) \le |f(x_1) - f(0)| + |f(0) - f(x_2)| < 2\varepsilon.$$

(3) Show that $f \in \mathcal{R}(\beta_1)$ iff f(0-) = f(0).

$$f \in \mathcal{R}(\beta_2)$$

$$\iff \forall \varepsilon > 0 \text{ there is } P \text{ such that } U(P, f, \beta_2) - L(P, f, \beta_2) < \varepsilon$$
 (Theorem 6.6)

$$\iff \forall \varepsilon > 0 \text{ there is } P \text{ containing } 0 \text{ such that } U(P, f, \beta_2) - L(P, f, \beta_2) < \varepsilon$$
 (Theorem 6.4) where $P = \{-1 = x_0 < x_1 < \ldots < x_k = 0 < \ldots < x_n = 1\}$

 $\iff \forall \varepsilon > 0 \text{ there is } P \text{ containing } 0 \text{ such that } M_k - m_k < \varepsilon$

 $\Longleftrightarrow \forall \varepsilon > 0 \text{ there is } P \text{ containing } 0 \text{ such that } \sup_{x \in [-\delta,0]} f(x) - \inf_{x \in [-\delta,0]} f(x) < \varepsilon$

where
$$[x_{k-1}, x_k] = [-\delta, 0], \ \delta > 0$$

(Take
$$P = \{-1, -\delta, 0, 1\}$$
 in " \Leftarrow " direction)

$$\iff \forall \varepsilon > 0 \text{ there is } \delta > 0 \text{ such that } |f(x) - f(0)| < \varepsilon \text{ whenever } x \in [-\delta, 0] \tag{(1)(2)}$$

(Replace ε by $\frac{\varepsilon}{2}$ in " \longleftarrow " direction)

$$\iff \lim_{x \to 0^-} f(x) = f(0).$$

(4) Show that $\int f d\beta_2 = f(0)$ if $f \in \mathcal{R}(\beta_2)$. By (3) and Theorem 6.7,

$$\left| f(0) - \int_a^b f d\beta_2 \right| < \varepsilon.$$

Since ε is arbitrary, $\int f d\beta_2 = f(0)$.

Proof of (c). Note that f is continuous at 0 iff f(0+) = f(0-) = f(0). Apply the same argument in (a) and (b), we have $f \in \mathcal{R}(\beta_3)$ if and only if f(0+) = f(0-) = f(0). \square

Proof of (d). It suffices to show that

$$\int_a^b f d\beta_3 = f(0).$$

We can apply Theorem 6.12(d)(e) to $\beta_3 = \frac{1}{2}(\beta_1 + \beta_2)$. That is,

$$\int_{a}^{b} f d\beta_{3} = \frac{1}{2} \left[\int_{a}^{b} f d\beta_{1} + \int_{a}^{b} f d\beta_{2} \right] = \frac{1}{2} [f(0) + f(0)] = f(0).$$

Or apply the same argument in (a) and (b) to get

$$\left| f(0) - \int_{a}^{b} f d\beta_{3} \right| < \varepsilon$$

for any $\varepsilon > 0$, or $\int_a^b f d\beta_3 = f(0)$. \square

Exercise 6.4. If

$$f(x) = \begin{cases} 0 & \text{for all irrational } x, \\ 1 & \text{for all rational } x, \end{cases}$$

prove that $f \notin \mathcal{R}$ on [a,b] for any a < b.

Proof. Given any partition

$$P = \{a = p_0, p_1, \dots, p_{n-1}, p_n = b\}$$

of [a,b] where $a=p_0 \leq p_1 \leq \cdots \leq p_{n-1} \leq p_n=b$. Since a < b, we might assume that $a=p_0 < p_1 < \cdots < p_{n-1} < p_n=b$ by removing duplicated points. Since $\mathbb Q$ and $\mathbb R - \mathbb Q$ are dense in $\mathbb R$, we have

$$M_{i} = \sup_{p_{i-1} \le x \le p_{i}} f(x) = 1,$$

$$m_{i} = \inf_{p_{i-1} \le x \le p_{i}} f(x) = 0,$$

$$U(P, f) = \sum_{i=1}^{n} M_{i} \Delta x_{i} = \sum_{i=1}^{n} \Delta x_{i} = b - a,$$

$$L(P, f) = \sum_{i=1}^{n} m_{i} \Delta x_{i} = \sum_{i=1}^{n} 0 = 0.$$

Since P is arbitrary,

$$\int_{a}^{b} f dx = \inf U(P, f) = b - a > 0,$$
$$\int_{a}^{b} f dx = \sup L(P, f) = 0.$$

Hence $f \notin \mathcal{R}$ on [a,b] for any a < b. \square

Note.

- (1) (Lebesgue integral) f is Lebesgue integrable.
- (2) $f \in \mathcal{R}$ on [a, b] iff a = b.

(3) (Problem 4.1 in H. L. Royden, Real Analysis, 3rd edition.) Construct a sequence $\{f_n\}$ of nonnegative, Riemann integrable functions such that f_n increases monotonically to f. What does this imply about changing the order of integration and the limiting process? (Since \mathbb{Q} is countable, write

$$\mathbb{Q} = \{r_1, r_2, \ldots\}.$$

Define

$$f_n(x) = \begin{cases} 0 & \text{if } x \notin \{r_1, \dots, r_n\} ,\\ 1 & \text{if } x \in \{r_1, \dots, r_n\} . \end{cases}$$

By construction, f_n increases monotonically to f pointwise. Note that $f_n \to f$ not uniformly. Also, $\int_a^b f_n(x) dx = 0$ by using the same argument in Theorem 6.10. Therefore, $\lim_{n\to\infty} \int_a^b f_n(x) dx = 0$ but $\int_a^b \lim_{n\to\infty} f_n(x) dx = \int_a^b f(x) dx$ does not exist.)

Exercise 6.5. Suppose f is a bounded real function on [a,b], and $f^2 \in \mathcal{R}$ on [a,b]. Does it follow that $f \in \mathcal{R}$? Does the answer change if we assume that $f^3 \in \mathcal{R}$?

Actually we can omit the boundedness assumption of f since $f^2 \in \mathcal{R}$ or $f^3 \in \mathcal{R}$.

Proof.

(1) Show that $f^2 \in \mathcal{R}$ on [a,b] does not imply that $f \in \mathcal{R}$ (unless $f \geq 0$ on [a,b]). Similar to Exercise 6.4, define

$$f(x) = \begin{cases} -1 & \text{for all irrational } x, \\ 1 & \text{for all rational } x. \end{cases}$$

 $f^2 = 1 \in \mathcal{R}$ on [a, b] but $f \notin \mathcal{R}$ on [a, b] for any a < b. (The proof for the "unless" part is similar to (2).)

(2) Show that $f^3 \in \mathcal{R}$ on [a,b] implies that $f \in \mathcal{R}$. Let $\phi(x) = x^{\frac{1}{3}}$ on \mathbb{R} . By Theorem 6.11, $f(x) = \phi(f(x)^3) \in \mathcal{R}$. (The boundedness condition in Theorem 6.11 is unnecessary.)

Note. (Lebesgue integral) Suppose that f^2 is Lebesgue integrable. Does it follow that f is Lebesgue integrable? Does the answer change if we assume that f^3 is Lebesgue integrable? Both answers are no.

Exercise 6.6. Let P be the Cantor set constructed in Sec. 2.44. Let f be a bounded real function on [0,1] which is continuous at every point outside P.

Prove that $f \in \mathcal{R}$ on [0,1]. (Hint: P can be covered by finitely many segments whose total length can be made as small as desired. Proceed as in Theorem 6.10.)

Proof (Theorem 6.10). Given any $\varepsilon > 0$.

(1) Note that in Section 2.44, we have

$$P = \bigcap_{n=1}^{\infty} E_n$$

and each E_n is the union of 2^n intervals, each of length $\frac{1}{3^n}$. For each interval $[u_j, v_j] \subseteq E_n$ of E_n $(1 \le j \le 2^n)$, we construct a slightly larger open set

$$(u_j - \lambda, v_j + \lambda) \supseteq [u, v]$$

where $\lambda = \frac{1}{2} \left(\frac{1}{2.28^n} - \frac{1}{3^n} \right) > 0$. Each length of $(u_j - \lambda, v_j + \lambda)$ is $\frac{1}{2.28^n}$. Write

$$G_n = \bigcup_{1 \le j \le 2^n} (u_j - \lambda, v_j + \lambda).$$

Hence

$$G_n \supseteq \bigcup_{1 \le j \le 2^n} [u_j, v_j] = E_n \supseteq P,$$

and the total length $|G_n|$ of G_n satisfies

$$|G_n| \le \sum_{1 \le j \le 2^n} |(u_j - \lambda, v_j + \lambda)| = \left(\frac{2}{2.28}\right)^n.$$

(Two different subintervals might be overlapped.) As $n \to \infty$, P can be covered by finitely many open segments whose total length can be made as small as desired. Now we take an integer N such that $\left(\frac{2}{2.28}\right)^N < \frac{\varepsilon}{64(M+1)}$.

- (2) Let $K = [0,1] G_N$ be a compact set (Theorem 2.35). By construction, f is continuous on K and thus f is uniformly continuous. So there is $\delta > 0$ such that $|f(s) f(t)| < \frac{\varepsilon}{89}$ if $s, t \in K$ and $|s t| < \delta$.
- (3) Now we construct a partition $P = \{x_0, x_1, \dots, x_n\}$ of [a, b], as the following steps:
 - (a) Put $\frac{0}{m}, \frac{1}{m}, \dots, \frac{m}{m}$ in P for some integer $m \geq \frac{1}{\delta}$.
 - (b) Put $u_j \lambda$ and $v_j + \lambda$ in P.
 - (c) Remove any points in the segment $(u_j \lambda, v_j + \lambda)$ except 0 and 1.
- (4) Note that $M_i m_i \leq 2M$ $(1 \leq i \leq n)$ where $M = \sup |f(x)|$ is defined. Hence,

$$U(P,f) - L(P,f) \le \frac{\varepsilon}{89} + 2M \cdot \frac{\varepsilon}{64(M+1)} \le \varepsilon.$$

Since ε is arbitrary, Theorem 6.6 shows that $f \in \mathcal{R}$.

Supplement (Lebesgue's criterion for Riemann-integrability). Let f be a bounded real function on [a,b] and let D be the set of discontinuities of f in [a,b]. Then $f \in \mathcal{R}$ on [a,b] if and only if D has measure zero.

For a proof, see Theorem 7.48 in Tom M. Apostol, Mathematical Analysis, 2nd edition.

Exercise 6.7. Suppose f is a real function on (0,1] and $f \in \mathcal{R}$ on [c,1] for every c > 0. Define

$$\int_0^1 f(x)dx = \lim_{c \to 0} \int_c^1 f(x)dx$$

if this limit exists (and is finite).

- (a) If $f \in \mathcal{R}$ on [0,1], show that this definition of the integral agrees with the old one.
- (b) Construct a function such that the above limit exists, although it fails to exist with |f| in place of f.

Proof of (a).

- (1) Since $f \in \mathcal{R}$ on [0,1], f is bounded or $|f| \leq M$ for some real M.
- (2) For any 0 < c < 1, we have

$$\left| \int_0^1 f(x)dx - \int_c^1 f(x)dx \right| = \left| \int_0^c f(x)dx \right|$$
 (Theorem 6.12(c))
 $\leq Mc.$ (Theorem 6.12(d))

(3) Given any $\varepsilon > 0$, there exists $\delta = \frac{\varepsilon}{M+1} > 0$ such that

$$\left| \int_0^c f(x)dx - \int_0^1 f(x)dx \right| \le Mc < M\delta = M \cdot \frac{\varepsilon}{M+1} < \varepsilon$$

whenever $0 < c < \delta$. Hence $\lim_{c\to 0} \int_0^c f(x) dx = \int_0^1 f(x) dx$.

 $Proof \ of \ (b) (Construct \ by \ nonabsolutely \ convergent \ series).$

(1) Given any nonabsolutely (conditionally) convergent series $\sum_{k=1}^{n} a_k$ (take $\sum \frac{(-1)^n}{n}$ for example and then see Remark 3.46), we define f on (0,1] by

$$f(x) = 2^n a_n$$

if $\frac{1}{2^n} < x \le \frac{1}{2^{n-1}}$ as $n = 1, 2, \dots$

(2) By construction,

$$\int_{\frac{1}{2^n}}^{\frac{1}{2^{n-1}}} f(x)dx = \left(\frac{1}{2^{n-1}} - \frac{1}{2^n}\right) 2^n a_n = a_n.$$

and thus

$$\int_{\frac{1}{2^n}}^1 f(x)dx = \int_{\frac{1}{2^n}}^{\frac{1}{2^{n-1}}} f(x)dx + \dots + \int_{\frac{1}{2}}^1 f(x)dx = \sum_{k=1}^n a_k.$$

(3) Given any $\varepsilon > 0$. Since $\sum a_n$ is convergent, there exists a common integer N such that

$$|a_n| \le \frac{\varepsilon}{89}$$

and

$$\left| \sum_{k=1}^{n} a_k - A \right| \le \frac{\varepsilon}{64}$$

for some real A whenever $n \geq N$ (Definition 3.21 and Theorem 3.23). Therefore, for any $0 < c \leq \frac{1}{2^N}$, say $\frac{1}{2^{n+1}} < c \leq \frac{1}{2^n} \leq \frac{1}{2^N}$ for some $n \geq N$, we have

$$\left| \int_{c}^{1} f(x)dx - A \right| = \left| \int_{c}^{\frac{1}{2^{n}}} f(x)dx + \int_{\frac{1}{2^{n}}}^{1} f(x)dx - A \right|$$

$$\leq \left| \left(\frac{1}{2^{n}} - c \right) 2^{n+1} a_{n+1} \right| + \left| \sum_{k=1}^{n} a_{k} - A \right|$$

$$\leq |a_{n+1}| + \left| \sum_{k=1}^{n} a_{k} - A \right|$$

$$\leq \frac{\varepsilon}{89} + \frac{\varepsilon}{64}$$

$$\leq \varepsilon$$

Hence, $\lim_{c\to 0} \int_c^1 f(x)dx = A$ exists.

(4) Since

$$\int_{\frac{1}{2^n}}^1 |f(x)| dx = \int_{\frac{1}{2^n}}^{\frac{1}{2^{n-1}}} |f(x)| dx + \dots + \int_{\frac{1}{2}}^1 |f(x)| dx = \sum_{k=1}^n |a_k| \to \infty$$

as $n \to \infty$, $\lim_{c\to 0} \int_c^1 f(x) dx$ does not exist. (Or show that $\lim_{c\to 0} \int_c^1 f(x) dx = \infty$ by definition directly.)

Exercise 6.8. Suppose $f \in \mathcal{R}$ on [a,b] for every b > a where a is fixed. Define

$$\int_{a}^{\infty} f(x)dx = \lim_{b \to \infty} \int_{a}^{b} f(x)dx$$

if this limit exists (and is finite). In that case, we say that the integral on the left **converges**. If it also converges after f has been replaced by |f|, it is said to converge **absolutely**. Assume that $f(x) \geq 0$ and that f decreases monotonically on $[1,\infty)$. Prove that

$$\int_{1}^{\infty} f(x)dx$$

converges if and only if

$$\sum_{n=1}^{\infty} f(n)$$

converges. (This is the so-called "integral test" for convergence of series.)

Proof. Similar to Exercise 8.9.

(1) Define

$$a_n = \int_1^n f(x)dx,$$

$$b_n = \sum_{k=1}^n f(k),$$

$$c_n = b_n - a_n$$

for $n = 1, 2, 3, \dots$

(2) Show that $\{c_n\}$ decreases. Since f decreases monotonically on $[1,\infty)$, we have

$$c_n - c_{n+1} = (b_n - a_n) - (b_{n+1} - a_{n+1})$$

$$= (a_{n+1} - a_n) - (b_{n+1} - b_n)$$

$$= \int_n^{n+1} f(x)dx - f(n+1)$$

$$\geq \int_n^{n+1} f(n+1)dx - f(n+1)$$

$$= f(n+1) - f(n+1)$$

$$= 0.$$

(3) Show that $\{c_n\}$ is bounded. Since f decreases monotonically on $[1, \infty)$,

$$c_n = b_n - a_n$$

$$= \sum_{k=1}^n f(k) - \int_1^n f(x) dx$$

$$= \sum_{k=1}^n f(k) - \sum_{k=1}^{n-1} \int_k^{k+1} f(x) dx$$

$$\geq \sum_{k=1}^n f(k) - \sum_{k=1}^{n-1} \int_k^{k+1} f(k) dx$$

$$= \sum_{k=1}^n f(k) - \sum_{k=1}^{n-1} f(k)$$

$$= f(n).$$

Since f(n) is nonnegative, $c_n \ge 0$.

- (4) By (2)(3), $\{c_n\}$ converges (Theorem 3.14).
- (5) Since $c_n = b_n a_n$ and $\{c_n\}$ converges, $\{a_n\}$ converges if and only if $\{b_n\}$ converges, or $\int_1^\infty f(x)dx$ converges if and only if $\sum_{n=1}^\infty f(n)$ converges.

Exercise 6.9. Show that integration by parts can sometimes be applied to the "improper" integrals defined in Exercise 6.7 and 6.8. (State appropriate hypotheses, formulate a theorem, and prove it.) For instance show that

$$\int_0^\infty \frac{\cos x}{1+x} dx = \int_0^\infty \frac{\sin x}{(1+x)^2} dx.$$

Show that one of these integrals converges **absolutely**, but that the other does not.

PLACEHOLDER

Exercise 6.10. Let p and q be positive real integers such that

$$\frac{1}{p} + \frac{1}{q} = 1.$$

Prove the following statements.

(a) If $u \ge 0$ and $v \ge 0$, then

$$uv \le \frac{u^p}{p} + \frac{v^q}{q}.$$

Equality holds if and only if $u^p = v^q$.

(b) If $f \in \mathcal{R}(\alpha)$, $g \in \mathcal{R}(\alpha)$, $f \geq 0$, $g \geq 0$, and

$$\int_{a}^{b} f^{p} d\alpha = \int_{a}^{b} g^{q} d\alpha = 1,$$

then

$$\int_{a}^{b} fg d\alpha \leq 1.$$

(c) If f and g are complex functions in $\mathcal{R}(\alpha)$, then

$$\left| \int_a^b fg d\alpha \right| \leq \left\{ \int_a^b |f|^p d\alpha \right\}^{\frac{1}{p}} \left\{ \int_a^b |g|^q d\alpha \right\}^{\frac{1}{q}}.$$

This is **Hölder's inequality**. When p = q = 2 it is usually called the Schwarz inequality. (Note that Theorem 1.35 is a very special case of this.)

(d) Show that Hölder's inequality is also true for the "improper" integrals described in Exercise 6.7 and 6.8.

Proof of (a) (Young's inequality).

- (1) u = 0 or v = 0 is nothing to do. For u > 0 and v > 0, we give some different proofs.
- (2) First proof.

$$\begin{split} uv &= \exp(\log(uv)) \\ &= \exp\left(\frac{1}{p}\log(u^p) + \frac{1}{q}\log(v^q)\right) \\ &\leq \frac{1}{p}\exp(\log(u^p)) + \frac{1}{q}\exp(\log(v^q)) \qquad \text{(Convexity of } \exp(x)) \\ &= \frac{u^p}{p} + \frac{v^q}{q}. \end{split}$$

Here the convexity of $\exp(x)$ can be derived by the fact that $(\exp(x))'' > 0$ and Exercise 5.14. The fact that the equality holds if and only if $u^p = v^q$ is derived from the strictly convexity of $\exp(x)$ additionally. (For the details about the exponential and logarithmic functions, might see Chapter 8.)

(3) Second proof.

$$\log\left(\frac{u^p}{p} + \frac{v^q}{q}\right) \ge \frac{1}{p}\log(u^p) + \frac{1}{q}\log(v^q) \qquad \text{(Concavity of } \log(x)\text{)}$$

$$= \log(u) + \log(v)$$

$$= \log(uv).$$

Since $\log(x)$ increases monotonically $((\log(x))' = \frac{1}{x} > 0 \text{ if } x > 0), \frac{u^p}{p} + \frac{v^q}{q} \ge uv$ (or take the exponential function to get the same conclusion). Here the concavity of $\log(x)$ can be derived by the fact that $(\log(x))'' < 0$ and a statement that $f''(x) \le 0$ if and only if f is concave. The fact that the equality holds if and only if $u^p = v^q$ is derived from the strictly concavity of $\log(x)$ additionally. (The proof is analogous to Exercise 5.14.)

(4) Third proof. Suppose that $f:[0,\infty)\to [0,\infty)$ is a strictly increasing continuous function such that f(0)=0 and $\lim_{x\to\infty} f(x)=\infty$. Then

$$uv \le \int_0^u f(x)dx + \int_0^v f^{-1}(x)dx$$

for every $u, v \ge 0$, and equality occurs if and only if v = f(u). Define

$$F(x) = -xf(x) + \int_0^x f(t)dt + \int_0^{f(x)} f^{-1}(t)dt.$$

By Theorem 6.20 (the fundamental theorem of calculus) and Theorem 5.5 (chain rule),

$$F'(x) = -(f(x) + xf'(x)) + f(x) + f'(x)f^{-1}(f(x)) = 0.$$

Hence F(x) is a constant on (0, u) (Theorem 5.11(b)). Note that F(x) is continuous on [0, u] and F(0) = 0, so F(x) = 0 on [0, u] or

$$\int_0^x f(t)dt + \int_0^{f(x)} f^{-1}(t)dt = xf(x).$$

Take x = u to get

$$\int_0^u f(x)dx + \int_0^{f(u)} f^{-1}(x)dx = uf(u).$$

Hence

$$\int_{0}^{u} f(x)dx + \int_{0}^{v} f^{-1}(x)dx - uv$$

$$= \int_{0}^{u} f(x)dx + \int_{0}^{f(u)} f^{-1}(x)dx + \int_{f(u)}^{v} f^{-1}(x)dx - uv$$

$$= uf(u) + \int_{f(u)}^{v} f^{-1}(x)dx - uv$$

$$= \int_{f(u)}^{v} [f^{-1}(x) - f^{-1}(f(u))]dx$$

$$\geq 0.$$

The last inequality holds since f is strictly increasing and thus f^{-1} is strictly increasing too. Besides, the equality holds if and only if f(u) = v. Now the conclusion holds by taking $f(x) = x^{p-1}$ in

$$uv \leq \int_0^u f(x)dx + \int_0^v f^{-1}(x)dx$$

and the equality holds if and only if $u^p = v^q$.

Proof of (b). Every integral is well-defined (Theorem 6.11 and Theorem 6.13(a)). Let $u=f\geq 0$ and $v=g\geq 0$ in (a). Integrate both sides of the inequality

$$fg \le \frac{f^p}{p} + \frac{g^q}{q}$$

to get

$$\begin{split} \int_a^b fg d\alpha &\leq \int_a^b \left(\frac{f^p}{p} + \frac{g^q}{q}\right) d\alpha & \text{(Theorem 6.12(b))} \\ &= \int_a^b \frac{f^p}{p} d\alpha + \int_a^b \frac{g^q}{q} d\alpha & \text{(Theorem 6.12(a))} \\ &= \frac{1}{p} \int_a^b f^p d\alpha + \frac{1}{q} \int_a^b g^q d\alpha & \text{(Theorem 6.12(a))} \\ &= \frac{1}{p} + \frac{1}{q} & \text{(Assumption)} \\ &= 1. \end{split}$$

The equality holds if $f^p = g^q$. Note that the equality does not hold only if $f^p = g^q$. (Consider α is constant on some subinterval $[c,d] \subsetneq [a,b]$.) Luckily, it is true for the additional assumption that $\alpha(x) = x$ and f,g are continuous on [a,b]. \square

Proof of (c). There are three possible cases.

- (1) The case $\left\{ \int_a^b |f|^p d\alpha \right\}^{\frac{1}{p}} = 0$. So $\int_a^b |f|^p d\alpha = 0$.
 - (a) Show that $\int_a^b |f| d\alpha = 0$ if $\int_a^b |f|^p d\alpha = 0$. (Reductio ad absurdum) If $\int_a^b |f| d\alpha = A > 0$, then given $\varepsilon = \frac{A}{2} > 0$, there exists a partition $P_0 = \{a = x_0 \leq \cdots \leq x_n = b\}$ such that

$$\sum_{i=0}^{n} m_i \Delta \alpha_i > \frac{A}{2},$$

where $m_i = \inf_{x \in [x_{i-1}, x_i]} |f|$ and $\Delta \alpha_i = \alpha(x_i) - \alpha(x_{i-1})$. By the pigeonhole principle, there exists $1 \le i_0 \le n$ such that

$$L(P_0, |f|, \alpha) = m_{i_0} \Delta \alpha_{i_0} > \frac{A}{2n} > 0.$$

Especially, $m_{i_0} > 0$ and $\Delta \alpha_{i_0} > 0$. Now we consider $L(P, |f|^p, \alpha)$. Hence

$$L(P_0, |f|^p, \alpha) = \sum_{i=0}^n m_i^p \Delta \alpha_i \ge m_{i_0}^p \Delta \alpha_{i_0} > 0,$$

or

$$\int_{a}^{b} |f| d\alpha = \sup L(P, f, \alpha) \ge m_{i_0}^{p} \Delta \alpha_{i_0} > 0,$$

which is absurd

(b) Show that $\int_a^b |fg| d\alpha = 0$ if $\int_a^b |f| d\alpha = 0$. Since $g \in \mathcal{R}(\alpha)$, |g| is bounded by some real M on [a,b], that is, $|g(x)| \leq M$. Hence

$$0 \leq \int_a^b |fg| d\alpha \leq \int_a^b M|f| d\alpha = M \int_a^b |f| d\alpha = 0.$$

Therefore $\int_a^b |fg| d\alpha = 0$.

By (a)(b), $\int_a^b |fg| d\alpha = 0$ and thus Hölder's inequality holds for this case.

- (2) The case $\left\{ \int_a^b |g|^q d\alpha \right\}^{\frac{1}{q}} = 0$. Similar to (1).
- (3) If both $\left\{ \int_a^b |f|^p d\alpha \right\}^{\frac{1}{p}} > 0$ and $\left\{ \int_a^b |g|^q d\alpha \right\}^{\frac{1}{q}} > 0$, then we apply (b) to

$$F(x) = \frac{|f(x)|}{\left\{\int_a^b |f(x)|^p d\alpha\right\}^{\frac{1}{p}}} \qquad \text{and} \qquad G(x) = \frac{|g(x)|}{\left\{\int_a^b |g(x)|^q d\alpha\right\}^{\frac{1}{q}}}.$$

Here $F(x) \ge 0$ and $G(x) \ge 0$ are well-defined and Riemann integrable. Thus the conclusion holds. The equality holds if $F(x)^p = G(x)^q$ or

$$\frac{|f|^p}{\int_a^b |f|^p d\alpha} = \frac{|g|^q}{\int_a^b |g|^q d\alpha}.$$

Note that the equality does not hold only if $\frac{|f|^p}{\int_a^b|f|^pd\alpha}=\frac{|g|^q}{\int_a^b|g|^qd\alpha}$. Luckily, it is true for the additional assumption that $\alpha(x)=x$ and f,g are continuous on [a,b].

By (1)(2)(3), in any case the equality holds if

$$|f|^p \int_a^b |g|^q d\alpha = |g|^q \int_a^b |f|^p d\alpha.$$

In addition, if $\alpha(x)=x$ and f,g are continuous on [a,b], then the equality holds if and only if

$$|f|^p \int_a^b |g|^q d\alpha = |g|^q \int_a^b |f|^p d\alpha.$$

Proof of (d).

(1) Suppose f and g are real functions on (0,1] and $f,g \in \mathcal{R}$ on [c,1] for every c>0. Show that

$$\left| \int_0^1 f g dx \right| \le \left\{ \int_0^1 |f|^p dx \right\}^{\frac{1}{p}} \left\{ \int_0^1 |g|^q dx \right\}^{\frac{1}{q}}.$$

Here \int_0^1 is one improper integral defined in Exercise 6.7.

(a) By (c), we have

$$\left| \int_{c}^{1} f g dx \right| \leq \left\{ \int_{c}^{1} |f|^{p} dx \right\}^{\frac{1}{p}} \left\{ \int_{c}^{1} |g|^{q} dx \right\}^{\frac{1}{q}}$$

for any $c \in (0,1]$. Here every integral is well-defined (Theorem 6.11 and Theorem 6.13).

(b) Since every integral is $\geq 0,$ by taking the limit in the right hand side we have

$$\begin{split} \left| \int_{c}^{1} f g dx \right| &\leq \left\{ \int_{c}^{1} |f|^{p} dx \right\}^{\frac{1}{p}} \left\{ \int_{c}^{1} |g|^{q} dx \right\}^{\frac{1}{q}} \\ &\leq \left\{ \int_{0}^{1} |f|^{p} dx \right\}^{\frac{1}{p}} \left\{ \int_{0}^{1} |g|^{q} dx \right\}^{\frac{1}{q}}. \end{split}$$

It is possible that $\left\{ \int_0^1 |f|^p dx \right\}^{\frac{1}{p}} = \infty$ or $\left\{ \int_0^1 |g|^q dx \right\}^{\frac{1}{q}} = \infty$.

(c) Now $\left|\int_c^1 fg dx\right|$ is bounded by $\left\{\int_0^1 |f|^p dx\right\}^{\frac{1}{p}} \left\{\int_0^1 |g|^q dx\right\}^{\frac{1}{q}}$. Take limit to get

$$\left| \int_0^1 fg dx \right| \le \left\{ \int_0^1 |f|^p dx \right\}^{\frac{1}{p}} \left\{ \int_0^1 |g|^q dx \right\}^{\frac{1}{q}}$$

even if some limit is divergent.

(2) Suppose f and g are real functions on [a,b] and $f,g\in \mathcal{R}$ on [a,b] for every b>a where a is fixed. Show that

$$\left| \int_{a}^{\infty} f g dx \right| \le \left\{ \int_{a}^{\infty} |f|^{p} dx \right\}^{\frac{1}{p}} \left\{ \int_{a}^{\infty} |g|^{q} dx \right\}^{\frac{1}{q}}.$$

Here \int_a^∞ is one improper integral defined in Exercise 6.8. Same as (1).

Exercise 6.11. Let α be a fixed increasing function on [a,b]. For $u \in \mathcal{R}(\alpha)$, define

$$||u||_2 = \left\{ \int_a^b |u|^2 d\alpha \right\}^{\frac{1}{2}}.$$

Suppose $f, g, h \in \mathcal{R}(\alpha)$, and prove the triangle inequality

$$||f - h||_2 \le ||f - g||_2 + ||g - h||_2$$

as a consequence of the Schwarz inequality, as in the proof of Theorem 1.37.

Proof.

(1) By Exercise 6.10(c) with p = q = 2, we have

$$\begin{split} \int_{a}^{b} |f - g||g - h|d\alpha &= \left| \int_{a}^{b} |f - g||g - h|d\alpha \right| \\ &\leq \left\{ \int_{a}^{b} |f - g|^{2} dx \right\}^{\frac{1}{2}} \left\{ \int_{a}^{b} |g - h|^{2} dx \right\}^{\frac{1}{2}} \\ &= \|f - g\|_{2} \|g - h\|_{2}. \end{split}$$

Every integral is well-defined (Theorem 6.12 and Theorem 6.13 (or Theorem 6.11)).

(2) Since

$$\begin{split} \|f-h\|_2^2 &= \int_a^b |f-h|^2 d\alpha \\ &\leq \int_a^b (|f-g|+|g-h|)^2 d\alpha \qquad \qquad \text{(Triangle inequality)} \\ &= \int_a^b (|f-g|^2+2|f-g||g-h|+|g-h|^2) d\alpha \\ &= \int_a^b |f-g|^2 d\alpha + 2 \int_a^b |f-g||g-h| d\alpha + \int_a^b |g-h|^2 d\alpha \\ &\leq \|f-g\|_2^2 + 2\|f-g\|_2 \|g-h\|_2 + \|g-h\|_2^2 \\ &= (\|f-g\|_2 + \|g-h\|_2)^2, \end{split} \tag{(1)}$$

we have

$$||f - h||_2 \le ||f - g||_2 + ||g - h||_2.$$

Here every integral is well-defined (Theorem 6.12 and Theorem 6.13 (or Theorem 6.11)).

Exercise 6.12. With the notations of Exercise 6.11, suppose $f \in \mathcal{R}(\alpha)$ and $\varepsilon > 0$. Prove that there exists a continuous function g on [a,b] such that $||f-g||_2 < \varepsilon$. (Hint: Let $P = \{a = x_0 \leq \cdots \leq x_n = b\}$ be a suitable partition of [a,b], define

$$g(t) = \frac{x_i - t}{\Delta x_i} f(x_{i-1}) + \frac{t - x_{i-1}}{\Delta x_i} f(x_i)$$

if $x_{i-1} \le t \le x_i$.)

Proof. Given $\varepsilon > 0$.

(1) There are some real numbers m and M such that $m \leq f(x) \leq M$ if $x \in [a,b]$ since $f \in \mathcal{R}(\alpha)$ or f is bounded on [a,b]. By Theorem 6.6, there exists a partition $P = \{a = x_0 \leq \cdots \leq x_n = b\}$ such that

$$U(P, f, \alpha) - L(P, f, \alpha) < \frac{\varepsilon^2}{M - m + 1}.$$

Here

$$U(P, f, \alpha) = \sum_{i=1}^{n} M_i \Delta \alpha_i \text{ where } M_i = \sup_{x_{i-1} \le x \le x_i} f(x)$$
$$L(P, f, \alpha) = \sum_{i=1}^{n} m_i \Delta \alpha_i \text{ where } m_i = \inf_{x_{i-1} \le x \le x_i} f(x).$$

(2) For such partition P, define g on [a, b] by

$$g(t) = \frac{x_i - t}{\Delta x_i} f(x_{i-1}) + \frac{t - x_{i-1}}{\Delta x_i} f(x_i)$$

if $x_{i-1} \leq t \leq x_i$. So that

$$|f(t) - g(t)| = \left| \left(\frac{x_i - t}{\Delta x_i} + \frac{t - x_{i-1}}{\Delta x_i} \right) f(t) - \frac{x_i - t}{\Delta x_i} f(x_{i-1}) + \frac{t - x_{i-1}}{\Delta x_i} f(x_i) \right|$$

$$= \left| \frac{x_i - t}{\Delta x_i} (f(t) - f(x_{i-1})) + \frac{t - x_{i-1}}{\Delta x_i} (f(t) - f(x_i)) \right|$$

$$\leq \frac{x_i - t}{\Delta x_i} |f(t) - f(x_{i-1})| + \frac{t - x_{i-1}}{\Delta x_i} |f(t) - f(x_i)|$$

$$\leq \frac{x_i - t}{\Delta x_i} (M_i - m_i) + \frac{t - x_{i-1}}{\Delta x_i} (M_i - m_i)$$

$$= M_i - m_i$$

if $x_{i-1} \leq t \leq x_i$. Especially,

$$|f(t) - q(t)| \le M - m$$

if a < t < b.

(3) Note that the integral $\int_a^b |f-g|^2 d\alpha$ is well-defined (Theorem 6.8, Theorem 6.11 and Theorem 6.12). So that

$$\int_{a}^{b} |f - g|^{2} d\alpha = \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} |f - g|^{2} d\alpha$$

$$\leq \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} (M - m)(M_{i} - m_{i}) d\alpha$$

$$= (M - m) \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} (M_{i} - m_{i}) \Delta \alpha_{i}$$

$$= (M - m) [U(P, f, \alpha) - L(P, f, \alpha)]$$

$$\leq (M - m) \cdot \frac{\varepsilon^{2}}{M - m + 1}$$

$$< \varepsilon^{2}.$$

Hence,

$$\|f-g\|_2 = \left\{ \int_a^b |f-g|^2 d\alpha \right\}^{\frac{1}{2}} < \varepsilon.$$

Note.

(1) Apply the same argument we can prove the following statement:

Suppose $f \in \mathcal{R}(\alpha)$ and $\varepsilon > 0$. Prove that there exists a continuous function g on [a,b] such that $\int_a^b |f-g| d\alpha < \varepsilon$.

- (2) (Lebesgue integral)
 - (a) Let f be Lebesgue integrable over E. Then, given $\varepsilon > 0$, there is a simple function φ such that

$$\int_{E} |f - \varphi| < \varepsilon.$$

(b) Under the same hypothesis there is a step function ψ such that

$$\int_{E} |f - \psi| < \varepsilon.$$

(c) Under the same hypothesis there is a continuous function g vanishing outside a finite interval such that

$$\int_{E} |f - g| < \varepsilon.$$

Exercise 6.13. Define

$$f(x) = \int_{x}^{x+1} \sin(t^2) dt.$$

(a) Prove that $|f(x)| < \frac{1}{x}$ if x > 0. (Hint: Put $t^2 = u$ and integrate by parts, to show that f(x) is equal to

$$\frac{\cos(x^2)}{2x} - \frac{\cos[(x+1)^2]}{2(x+1)} - \int_{x^2}^{(x+1)^2} \frac{\cos u}{4u^{\frac{3}{2}}} du.$$

Replace $\cos u \ by -1.$)

(b) Prove that $2xf(x)=\cos\left(x^2\right)-\cos[(x+1)^2]+r(x)$ where $|r(x)|<\frac{c}{x}$ and c is a constant.

- (c) Find the upper and lower limits of xf(x), as $x \to \infty$.
- (d) Does $\int_0^\infty \sin(t^2) dt$ converges?

Proof of (a).

(1) Put $t^2 = u$ and integrate by parts to get

$$f(x) = \int_{x}^{x+1} \sin(t^{2}) dt$$

$$= \int_{x^{2}}^{(x+1)^{2}} \frac{\sin u}{2u^{\frac{1}{2}}} du$$

$$= -\frac{\cos[(x+1)^{2}]}{2(x+1)} + \frac{\cos(x^{2})}{2x} - \int_{x^{2}}^{(x+1)^{2}} \frac{\cos u}{4u^{\frac{3}{2}}} du.$$

(2)

$$|f(x)| \le \left| \frac{\cos[(x+1)^2]}{2(x+1)} \right| + \left| \frac{\cos(x^2)}{2x} \right| + \left| \int_{x^2}^{(x+1)^2} \frac{\cos u}{4u^{\frac{3}{2}}} du \right|$$

$$\le \left| \frac{\cos[(x+1)^2]}{2(x+1)} \right| + \left| \frac{\cos(x^2)}{2x} \right| + \int_{x^2}^{(x+1)^2} \frac{|\cos u|}{4u^{\frac{3}{2}}} du$$

$$\le \frac{1}{2(x+1)} + \frac{1}{2x} + \int_{x^2}^{(x+1)^2} \frac{1}{4u^{\frac{3}{2}}} du$$

$$= \frac{1}{2(x+1)} + \frac{1}{2x} + \left[\frac{1}{2x} - \frac{1}{2(x+1)} \right]$$

$$= \frac{1}{x}.$$

(3) The equality in (2) holds only if $\left|\cos[(x+1)^2]\right| = 1$, $\left|\cos(x^2)\right| = 1$, and

$$\left| \int_{x^2}^{(x+1)^2} \frac{\cos u}{4u^{\frac{3}{2}}} du \right| = \int_{x^2}^{(x+1)^2} \frac{|\cos u|}{4u^{\frac{3}{2}}} du = \int_{x^2}^{(x+1)^2} \frac{1}{4u^{\frac{3}{2}}} du.$$

Since $\cos u$ has two absolute minimums or maximums at two different points $u=x^2$ and $u=(x+1)^2$, by the property of $\cos(u)$ there is some $u_0 \in [x^2, (x+1)^2]$ such that $\cos(u_0) = 0$. Hence given $\varepsilon = \frac{1}{2} > 0$ there exists $\delta > 0$ such that

$$|\cos(u)| \le \frac{1}{2}$$

whenever

$$u \in E = [\max\{u_0 - \delta, x^2\}, \min\{u_0 + \delta, (x+1)^2\}] \subseteq [x^2, (x+1)^2].$$

Here |E| > 0. So that

$$\int_{x^2}^{(x+1)^2} \frac{|\cos u|}{4u^{\frac{3}{2}}} du = \int_{x^2}^{(x+1)^2} \frac{1}{4u^{\frac{3}{2}}} du - \frac{1}{2} \int_E \frac{1}{4u^{\frac{3}{2}}} du < \int_{x^2}^{(x+1)^2} \frac{1}{4u^{\frac{3}{2}}} du,$$

which is absurd. Hence the equality in (2) does not hold.

Proof of (b).

(1) By (a),

$$2xf(x) = \cos(x^2) - \cos[(x+1)^2] + r(x)$$

where

$$r(x) = \frac{\cos[(x+1)^2]}{x+1} - 2x \int_{x^2}^{(x+1)^2} \frac{\cos u}{4u^{\frac{3}{2}}} du.$$

(2) Similar to (a),

$$|2xf(x)| \le \frac{1}{x+1} + 2x \int_{x^2}^{(x+1)^2} \frac{1}{4u^{\frac{3}{2}}} du$$

$$= \frac{1}{x+1} + 2x \left[\frac{1}{2x} - \frac{1}{2(x+1)} \right]$$

$$= \frac{2}{x+1}$$

$$< \frac{2}{x}.$$

Proof of (c). \square

Note.

$$\int_0^\infty \sin(t^2)dt = \int_0^\infty \cos(t^2)dt = \frac{\sqrt{\pi}}{2\sqrt{2}}.$$

Exercise 6.14. Deal similarly with

$$f(x) = \int_{x}^{x+1} \sin(e^{t}) dt.$$

Show that

$$e^x |f(x)| < 2$$

and that

$$e^{x} f(x) = \cos(e^{x}) - e^{-1} \cos(e^{x+1}) + r(x)$$

where $|r(x)| < Ce^{-x}$ for some constant C.

PLACEHOLDER

Exercise 6.15. Suppose f is a real, continuously differentiable function on [a,b], f(a) = f(b) = 0, and

$$\int_a^b f(x)^2 dx = 1.$$

Prove that

$$\int_{a}^{b} x f(x) f'(x) dx = -\frac{1}{2}$$

and that

$$\int_{a}^{b} [f'(x)]^{2} dx \int_{a}^{b} x^{2} f(x)^{2} dx > \frac{1}{4}.$$

Proof. Every integral is well-defined (Theorem 4.9 and Theorem 6.8).

(1) By Theorem 6.22 (integration by parts),

$$\int_{a}^{b} x \left(\frac{f(x)^{2}}{2} \right)' dx = \left[x \cdot \frac{f(x)^{2}}{2} \right]_{x=a}^{x=b} - \int_{a}^{b} \frac{f(x)^{2}}{2} dx,$$

or

$$\int_{a}^{b} x f(x) f'(x) dx = \left[b \cdot \frac{f(b)^{2}}{2} - a \cdot \frac{f(a)^{2}}{2} \right] - \frac{1}{2} \int_{a}^{b} f(x)^{2} dx = -\frac{1}{2}.$$

(2) By Exercise 6.10(c),

$$\int_{a}^{b} [f'(x)]^{2} dx \int_{a}^{b} x^{2} f(x)^{2} dx \ge \left(\int_{a}^{b} x f(x) f'(x) dx \right)^{2} = \frac{1}{4}.$$

(3) (Reductio ad absurdum) If the equality were holding, then by Exercise 6.10(c)

$$(f'(x))^2 \int_a^b x^2 f(x)^2 dx = x^2 f(x)^2 \int_a^b [f'(x)]^2 dx$$

on [a, b] (since x, f(x) and f'(x) are continuous on [a, b]).

(a) Show that both integrals are nonzero. (Reductio ad absurdum) If $\int_a^b x^2 f(x)^2 dx = 0$, then $x^2 f(x)^2 = 0$ or x f(x) = 0 on [a, b] (Exercise 6.2). So that

$$\int_{a}^{b} x f(x) f'(x) dx = 0 \neq -\frac{1}{2},$$

which is absure. Similarly, $\int_a^b [f'(x)]^2 dx \neq 0$.

(b) By (a), we write

$$C = \left\{ \frac{\int_{a}^{b} [f'(x)]^{2} dx}{\int_{a}^{b} x^{2} f(x)^{2} dx} \right\}^{\frac{1}{2}} > 0$$

be a positive constant. Hence

$$f'(x) = \pm Cxf(x).$$

Here the sign " \pm " is not necessary unchanged on [a,b]. Luckily, we can show that the sign " \pm " is unchanged on some subinterval of [a,b].

(c) To find such subinterval of [a, b], we consider the zero set Z(f') and Z(xf) on [a, b]. Since $f'(x) = \pm Cxf(x)$ with C > 0, we have

$$Z(f') = Z(xf).$$

Note that Z(f') = Z(xf) is closed (Exercise 4.3) and not equal to [a, b] (by applying the same argument in (a)). Hence the complement of Z(f') = Z(xf) is open and nonempty, which can be written as the union of an at most countable collection of disjoint segments (Exercise 2.29).

(d) Consider any nonempty open interval in (c), say

$$(c,d) \subseteq [a,b].$$

By construction, $f'(x) \neq 0$ for all $x \in (c, d)$. Since f'(x) is continuous, by Theorem 4.23 there are only two mutually exclusive possible cases:

- (i) f'(x) > 0 for all $x \in (c, d)$,
- (ii) f'(x) < 0 for all $x \in (c, d)$.

Similar result for xf(x). Therefore, the sign " \pm " of $f'(x) = \pm Cxf(x)$ are unchanged on (c,d), that is,

- (i) f'(x) = Cxf(x) for all $x \in (c, d)$,
- (ii) f'(x) = -Cxf(x) for all $x \in (c, d)$,
- (e) Suppose f'(x) = Cxf(x) on (c,d). Since f'(x) and xf(x) are both vanishing at x = c and x = d, f'(x) = Cxf(x) at x = c and x = d. So

$$f'(x) = Cxf(x)$$
 if $x \in [c, d]$.

Define

$$\phi(x,y) = Cxy$$

be a real function on $R=[c,d]\times \mathbb{R}.$ And consider the initial-value problem

$$y' = \phi(x, y)$$
 with $y(c) = 0$.

Then

$$|\phi(x, y_2) - \phi(x, y_1)| = Cx|y_2 - y_1| \le A|y_2 - y_1|$$

where $A = C \cdot \max\{|c|, |d|\}$ is a constant. By Exercise 5.27, this initial-value problem has at most one solution. Clearly, y = f(x) = 0 on [c, d] is one solution of this initial-value problem, contrary to the construction of [c, d]. Similar result for the case f'(x) = -Cxf(x).

Therefore, the equality does not hold.

Exercise 6.16. For $1 < s < \infty$, define

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

(This is Riemann's zeta function, of great importance in the study of the distribution of prime numbers.) Prove that

(a)
$$\zeta(s) = s \int_{1}^{\infty} \frac{[x]}{x^{s+1}} dx$$

and that

(b)
$$\zeta(s) = \frac{s}{s-1} - s \int_{1}^{\infty} \frac{x - [x]}{x^{s+1}} dx,$$

where [x] denotes the greatest integer $\leq x$. Prove that the integral in (b) converges for all s > 0. (Hint: To prove (a), compute the difference between the integral over [1, N] and the Nth partial sum of the series that defines $\zeta(s)$.)

Proof of (a) (Hint).

(1) Define

$$a_N = s \int_1^N \frac{[x]}{x^{s+1}} dx - \sum_{n=1}^N \frac{1}{n^s}.$$

Hence

$$s \int_{1}^{N} \frac{[x]}{x^{s+1}} dx = \sum_{n=1}^{N-1} s \int_{n}^{n+1} \frac{[x]}{x^{s+1}} dx$$
$$= \sum_{n=1}^{N-1} s \int_{n}^{n+1} \frac{n}{x^{s+1}} dx$$
$$= \sum_{n=1}^{N-1} n \left(\frac{1}{n^{s}} - \frac{1}{(n+1)^{s}} \right)$$
$$= \left(\sum_{n=1}^{N} \frac{1}{n^{s}} \right) - \frac{1}{N^{s-1}},$$

or

$$a_N = -\frac{1}{N^{s-1}}.$$

(2) So

$$\lim_{N \to \infty} a_N = 0$$

(since s-1>0). By Theorem 3.28, $\zeta(s)$ converges if s>1. Hence

$$\lim_{N \to \infty} s \int_{1}^{N} \frac{[x]}{x^{s+1}} dx = \zeta(s)$$

converges.

(3) Hence given any real b>1, there exists an integer N such that $N\leq b< N+1$. Since $x\mapsto \frac{[x]}{x^{s+1}}\geq 0$ on $[1,\infty)$,

$$s \int_{1}^{N} \frac{[x]}{x^{s+1}} dx \le s \int_{1}^{b} \frac{[x]}{x^{s+1}} dx \le s \int_{1}^{N+1} \frac{[x]}{x^{s+1}} dx.$$

Since $b \to \infty$ if and only if $N \to \infty$,

$$\lim_{N \to \infty} s \int_1^N \frac{[x]}{x^{s+1}} dx \le \lim_{b \to \infty} s \int_1^b \frac{[x]}{x^{s+1}} dx \le \lim_{N \to \infty} s \int_1^{N+1} \frac{[x]}{x^{s+1}} dx$$

$$\Longrightarrow \zeta(s) \le \lim_{b \to \infty} s \int_1^b \frac{[x]}{x^{s+1}} dx \le \zeta(s).$$

Hence

$$\lim_{b \to \infty} s \int_{1}^{b} \frac{[x]}{x^{s+1}} dx = s \int_{1}^{\infty} \frac{[x]}{x^{s+1}} dx = \zeta(s)$$

(in the sense of Exercise 6.8).

Proof of (b).

(1) Show that

$$s \int_{1}^{\infty} \frac{1}{x^s} dx = \frac{s}{s-1}.$$

Given any real b > 1. By the fundamental theorem of calculus (Theorem 6.21),

$$s \int_{1}^{b} \frac{1}{x^{s}} dx = \frac{s}{s-1} - \frac{s}{(s-1)b^{s-1}}.$$

Hence

$$\lim_{b \to \infty} s \int_1^b \frac{1}{x^s} dx = \frac{s}{s-1}$$

since $\frac{1}{b^{s-1}} \to 0$ as $b \to \infty$ (in the sense of Exercise 6.8).

(2) By (a) and (1), $s \int_1^\infty \frac{x-[x]}{x^{s+1}} dx$ exists and equal to

$$s \int_{1}^{\infty} \frac{x - [x]}{x^{s+1}} dx = s \int_{1}^{\infty} \frac{1}{x^{s}} dx - s \int_{1}^{\infty} \frac{[x]}{x^{s+1}} dx = \frac{s}{s-1} - \zeta(s).$$

The result is established.

(3) Show that

$$\int_{1}^{\infty} \frac{x - [x]}{x^{s+1}} dx$$

converges for all s>0. Note that $0\leq x-[x]<1$ on $[1,\infty).$ So

$$\int_1^b \frac{x - [x]}{x^{s+1}} dx \le \int_1^b \frac{1}{x^{s+1}} dx = \frac{1}{s} - \frac{1}{sb^s}.$$

Since $\frac{1}{sb^s} \to 0$ as $b \to \infty$,

$$\int_{1}^{\infty} \frac{x - [x]}{x^{s+1}} dx = \lim_{b \to \infty} \int_{1}^{b} \frac{x - [x]}{x^{s+1}} dx \le \lim_{b \to \infty} \frac{1}{s} - \frac{1}{sb^{s}} = \frac{1}{s}.$$

Note that $\frac{1}{s}$ is finite, and thus the integral $\int_1^\infty \frac{x-[x]}{x^{s+1}} dx$ converges.

Note.

- (1) The integral $\int_1^\infty \frac{[x]}{x^{s+1}} dx$ does not converge for all $1 \ge s > 0$.
- (2) Compare to Exercise 8.9.
- (3) **Euler's summation formula.** (Theorem 7.13 in the textbook: *Tom. M. Apostol, Mathematical Analysis, 2nd edition.*) If f has a continuous derivative f' on [a,b], then we have

$$\sum_{a < n < b} f(n) = \int_{a}^{b} f(x)dx + \int_{a}^{b} f'(x)\{x\}dx + f(a)\{a\} - f(b)\{b\},$$

where $\sum_{a < n \le b}$ means the sum from n = [a] + 1 to n = [b]. When a and b are integers, this becomes

$$\sum_{n=a}^{b} f(n) = \int_{a}^{b} f(x)dx + \int_{a}^{b} f'(x) \left(\{x\} - \frac{1}{2} \right) dx + \frac{f(a) + f(b)}{2}.$$

By taking $f(x) = \frac{1}{x^s}$ we can get (a) as well.

Exercise 6.17. Suppose α increases monotonically on [a,b], g is continuous, and g(x) = G'(x) for $a \le x \le b$. Prove that

$$\int_{a}^{b} \alpha(x)g(x)dx = G(b)\alpha(b) - G(a)\alpha(a) - \int_{a}^{b} Gd\alpha.$$

(Hint: Take g real, without loss of generality. Given $P = \{a = x_0, x_1, \dots, x_n = b\}$, choose $t_i \in (x_{i-1}, x_i)$ so that $g(t_i)\Delta x_i = G(x_i) - G(x_{i-1})$. Show that

$$\sum_{i=1}^{n} \alpha(x_i)g(t_i)\Delta x_i = G(b)\alpha(b) - G(a)\alpha(a) - \sum_{i=1}^{n} G(x_{i-1})\Delta \alpha_i.$$

Proof (Hint). Given $\varepsilon > 0$.

(1) Take g real, without loss of generality. Given any partition

$$P = \{a = x_0 < x_1 < \ldots < x_n = b\}$$

of [a,b].

(2) By the mean value theorem (Theorem 5.10), there is $t_i \in (x_{i-1}, x_i)$ such that

$$G(x_i) - G(x_{i-1}) = (x_i - x_{i-1})G'(t_i) = g(t_i)\Delta x_i.$$

(3) Hence,

$$\begin{split} \sum_{i=1}^n \alpha(x_i)g(t_i)\Delta x_i &= \sum_{i=1}^n \alpha(x_i)(G(x_i) - G(x_{i-1})) \\ &= \sum_{i=1}^n \alpha(x_i)G(x_i) - \sum_{i=1}^n \alpha(x_i)G(x_{i-1}) \\ &= \underbrace{G(b)\alpha(b) - G(a)\alpha(a) + \sum_{i=1}^n \alpha(x_i)G(x_{i-1})}_{\text{adjust the index of } \sum_{i=1}^n \alpha(x_i)G(x_i)} - \sum_{i=1}^n \alpha(x_i)G(x_{i-1}) \\ &= G(b)\alpha(b) - G(a)\alpha(a) - \sum_{i=1}^n G(x_{i-1})\Delta\alpha_i. \end{split}$$

(4) Since G(x) is differentiable on [a,b], G(x) is continuous (Theorem 5.2) and thus $G \in \mathcal{R}(\alpha)$ (Theorem 6.8). So there is a partition P_1 such that

$$\left| \sum_{j=1}^{n} G(t_j) \Delta \alpha_j - \int_{a}^{b} G d\alpha \right| < \varepsilon$$

whenever $t_j \in [x_{j-1}, x_j]$ (Theorem 6.7). In particular, we pick $t_j = x_{j-1} \in [x_{j-1}, x_j]$ for all j, that is,

$$\left| \sum_{j=1}^{n} G(x_{j-1}) \Delta \alpha_{j} - \int_{a}^{b} G d\alpha \right| < \varepsilon.$$

Note that if P^* is a refinement of P, the result is true too (Theorem 6.4).

(5) Since α increases monotonically, $\alpha \in \mathcal{R}$ (Theorem 6.9). Since g is continuous, $g \in \mathcal{R}$ (Theorem 6.8). Hence $\alpha g \in \mathcal{R}$ (Theorem 6.13). So there is a partition P_2 such that

$$\left| \sum_{k=1}^{m} \alpha(t_k) g(t_k) \Delta x_k - \int_{a}^{b} \alpha g dx \right| < \varepsilon$$

whenever $t_k \in [x_{k-1}, x_k]$ (Theorem 6.7). In particular, we pick $t_k = x_k \in [x_{k-1}, x_k]$ for all k, that is,

$$\left| \sum_{k=1}^{m} \alpha(x_k) g(x_k) \Delta x_k - \int_a^b \alpha g dx \right| < \varepsilon.$$

Note that if P^* is a refinement of P, the result is true too (Theorem 6.4).

(6) Since g is continuous on a compact set $[a,b],\ g$ is uniformly continuous. Hence there exists $\delta>0$ such that

$$|g(y) - g(x)| < \varepsilon$$

whenever $|y-x|<\delta$ and $x,y\in[a,b].$ For such δ , we construct a partition P_3 such that

$$|g(t_l) - g(x_l)| < \varepsilon$$

whenever $t_l \in [x_{l-1}, x_l]$. (For example, we might take

$$P_3 = \left\{ a, a + \frac{1}{N}(b-a), a + \frac{2}{N}(b-a), \dots, a + \frac{N-1}{N}(b-a), b \right\}$$

where N is an integer $\geq \frac{b-a}{\delta}$.) Hence

$$\left| \sum_{l=1}^{N} \alpha(x_l) g(t_l) \Delta x_l - \sum_{l=1}^{N} \alpha(x_l) g(x_l) \Delta x_l \right|$$

$$= \left| \sum_{l=1}^{N} \alpha(x_l) [g(t_l) - g(x_l)] \Delta x_l \right|$$

$$\leq \sum_{l=1}^{N} |\alpha(x_l)| \cdot |g(t_l) - g(x_l)| \cdot \Delta x_l$$

$$\leq M \varepsilon \sum_{l=1}^{N} \Delta x_l$$

$$= M(b-a) \varepsilon.$$

Note that if P^* is a refinement of P, the result is true too (by the uniformly convergence of g).

(7) Let $P = \{a = x_0 < x_1 < \ldots < x_n = b\}$ be a common refinement of P_1, P_2

and P_3 . By (3)(4)(5)(6) we have

$$\begin{split} & \left| \int_a^b \alpha(x)g(x)dx - G(b)\alpha(b) + G(a)\alpha(a) + \int_a^b Gd\alpha \right| \\ & = \left| \int_a^b \alpha(x)g(x)dx - \sum_{i=1}^n \alpha(x_i)g(t_i)\Delta x_i + \int_a^b Gd\alpha - \sum_{i=1}^n G(x_{i-1})\Delta\alpha_i \right| \\ & \leq \left| \int_a^b \alpha(x)g(x)dx - \sum_{i=1}^n \alpha(x_i)g(t_i)\Delta x_i \right| + \left| \int_a^b Gd\alpha - \sum_{i=1}^n G(x_{i-1})\Delta\alpha_i \right| \\ & \leq \left| \int_a^b \alpha(x)g(x)dx - \sum_{i=1}^n \alpha(x_i)g(x_i)\Delta x_i \right| + \left| \sum_{i=1}^n \alpha(x_i)g(x_i)\Delta x_i - \sum_{i=1}^n \alpha(x_i)g(t_i)\Delta x_i \right| \\ & + \left| \int_a^b Gd\alpha - \sum_{i=1}^n G(x_{i-1})\Delta\alpha_i \right| \\ & \leq \varepsilon + M(b-a)\varepsilon + \varepsilon \\ & = (M(b-a)+2)\varepsilon. \end{split}$$

Since ε is arbitrary,

$$\left|\int_a^b \alpha(x)g(x)dx - G(b)\alpha(b) + G(a)\alpha(a) + \int_a^b Gd\alpha\right| = 0,$$
 or
$$\int_a^b \alpha(x)g(x)dx - G(b)\alpha(b) + G(a)\alpha(a) + \int_a^b Gd\alpha = 0,$$
 or
$$\int_a^b \alpha(x)g(x)dx = G(b)\alpha(b) - G(a)\alpha(a) - \int_a^b Gd\alpha.$$

Exercise 6.18. Let γ_1 , γ_2 , γ_3 be curves in the complex plane, defined on $[0, 2\pi]$ by

$$\gamma_1 = \exp(it),
\gamma_2 = \exp(2it),
\gamma_3 = \exp\left(2\pi it \sin\left(\frac{1}{t}\right)\right).$$

Show that these three curves have the same range, that γ_1 and γ_2 are rectifiable, that the length of γ_1 is 2π , that the length of γ_2 is 4π , and that γ_3 is not rectifiable.

Might assume that $\gamma_3(0) = 1$.

PLACEHOLDER

Exercise 6.19. Let γ_1 be a curve in \mathbb{R}^k , defined on [a,b]; let ψ be a continuous 1-1 mapping of [c,d] onto [a,b], such that $\psi(c)=a$; and define $\gamma_2(s)=\gamma_1(\psi(s))$. Prove that γ_2 is an arc, a closed curve, or a rectifiable curve if and only if the same is true of γ_1 . Prove that γ_2 and γ_1 have the same length.

PLACEHOLDER