Estudos de associação Genética em Larga Escala

GWAS

Diego R. Mazzotti, Ph.D.

Pesquisador

Laboratório de Biologia Molecular do Sono Departamento de Psicobiologia Universidade Federal de São Paulo

Supervisor Molecular Core Associação Fundo de Incentivo à Pesquisa (AFIP)

E-mail: mazzottidr@gmail.com

o Fontes de variação genética

Projeto Genoma Humano

 Projetos para caracterização de variações no genoma humano

Era da genotipagem em larga escala

Era do sequenciamento de nova geração

- Quais são as fontes de variação genética?
 - Single nucleotide polymorphisms (SNPs)
 - Variable Number of Tandem Repeats (VNTRs)
 - Microssatélites (STRs)
 - Variações estruturais
 - Inserções, deleções, inversões, duplicações, translocações
 - Copy Number Variations (CNVs)

- Como medir essas variações?
 - Genes candidatos (poucos de cada vez)
 - PCR-RFLP (SNPs)
 - TaqMan Real Time PCR (SNPs e CNVs)
 - MLPA (SNPs e CNVs)
 - **O** ...
 - Abordagem "Genome-Wide" (muitos de uma vez!)
 - DNA microarrays (SNPs e CNVs)

From Computer Desktop Encyclopedia Reproduced with permission. © 2007 Affymetrix

From Computer Desktop Encyclopedia Reproduced with permission. © 2007 Affymetrix

Duas sondas, uma específica para cada alelo do SNP

Genotipagem em larga escala

DNA microarrays

Sequência Ref. ATCGGTAGCCAT Y CATGAGTTACTA

Sonda 1: Alelo A ATCGGTAGCCATTCATGAGTTACTA

Sonda 2: Alelo B ATCGGTAGCCATCCATGAGTTACTA

Sequência Ref. ATCGGTAGCCAT Y CATGAGTTACTA

Sonda 1: Alelo A ATCGGTAGCCATTCATGAGTTACTA

Sonda 2: Alelo B ATCGGTAGCCATCCATGAGTTACTA

Perfect Match

Mismatch

Perfect Match

Mismatch

Allele 'A'

Allele 'B'

Quatro spots por SNP (Quarteto)

Homozigoto "AA"

Homozigoto "BB"

Heterozigoto "AB"

 Genotipagem em larga escala – muitos SNPs genotipados de uma só vez

- o Número de SNPs na espécie humana:
 - ~30 milhões catalogados (dbSNP)
 - Dois indivíduos diferem-se por ~3 a 4 milhões de SNPs

 Genotipagem em larga escala – muitos SNPs genotipados de uma só vez

- o Número de SNPs na espécie humana:
 - ~30 milhões catalogados (dbSNP)
 - Dois indivíduos diferem-se por ~3 a 4 milhões de SNPs

o ... Mas quantos são necessários genotipar?

Genoma é formado em blocos de haplótipos!

Desequilíbrio de ligação → medida de quanto dois SNPs estão "ligados" e são herdados juntos

Não preciso genotipar todos os SNPs em um bloco de haplótipos que está em desequilíbrio de ligação

- Será que um determinado SNP é mais frequente em uma população de casos do que em uma população de controles?
- Verificação da associação entre SNP e doença
 - Não é relação causal
 - É sujeita a viés de amostras, estratificação populacional, etc.

 Cuidado! Associação não implica em causalidade!

 Cuidado! Associação não implica em causalidade!

• Exemplo: 10 casos e 10 controles:

Controles \rightarrow f(T) = **20**%

Casos
$$\rightarrow$$
 f(T) = **60%**

• Exemplo: 10 casos e 10 controles:

Controles \rightarrow f(T) = **20**%

Casos \rightarrow f(T) = **60%**

Teste estatístico (qui-quadrado) revelou **p <0,05 Alelo T está associado à doença**

- Se fizermos isso para 500.000 SNPs → identificar quais SNPs estão associados com a doença!
- Genome-Wide Association Study

Exemplo de visualização → Manhattan Plot

Estudos de associação genética •HLA region

TNPO3-IRF5

Região associada no cromossomo 6

- Principais cuidados quando trabalhamos com estudos de associação genética em larga escala:
 - Equilíbrio de Hardy-Weinberg
 - Estratificação populacional
 - Controles de qualidade
 - Correção para múltiplos testes
 - Replicação

- Principais cuidados quando trabalhamos com estudos de associação genética em larga escala:
 - Equilíbrio de Hardy-Weinberg
 - Estratificação populacional
 - Controles de qualidade
 - Correção para múltiplos testes
 - Replicação

- Equilíbrio de Hardy-Weinberg (HWE)
 - O princípio de HW diz que:
 - 1. A <u>frequência dos alelos e genótipos</u> em uma população permanecem <u>constantes</u> de geração em geração na ausência de influências
 - 2. A distribuição da frequência dos genótipos e alelos segue a seguinte distribuição:

$$p^2 + 2pq + q^2 = 1 = p + q = 1$$

Onde:

p = Frequência da alelo selvagem

q = Frequência da alelo alternativo

- Equilíbrio de Hardy-Weinberg (HWE)
 - Em HWE, assume-se que:
 - A população é grande
 - Não há fluxo gênico (migração) entre populações
 - Não há mutações
 - Os casamentos são aleatórios
 - Não há efeito da seleção natural

Equilíbrio de Hardy-Weinberg

Figure 17-5 Introduction to Genetic Analysis, Ninth Edition © 2008 W.H. Freeman and Company

Estratificação populacional

Estratificação populacional

ENGLISH:

	Cases	Controls
Α	160	160
a	40	40

$$\chi^2 = 0$$

CHINESE:

	Cases	Controls
Α	160	40
a	160	40

$$\chi^2 = 0$$

Estratificação populacional

COMBINED:

	Cases	Controls
Α	320	200
а	200	80

$$\chi^2 = 7.81$$

- Estratificação populacional PROBLEMAS:
 - Associações espúrias
 - Aumento de falsos positivos
 - Inflação genômica

Estudos de associação genética (GWAS)

- Estratificação populacional como contornar?
 - Marcadores genéticos de ancestralidade (AIMs)
 - PCA / MDS de dados de GWAS

o Redução de dimensionalidade

- Técnica matemática/ estatística usada para tentar "resumir" muitas variáveis em poucas variáveis, sem perder informação (mantendo a variação do conjunto)
- Técnicas
 - Escalonamento Multidimensional (MDS)
 - Análise dos Componentes Principais (PCA caso particular de MDS)

PCA / MDS para GWAS

- Genótipos → Muitas variáveis (N>500.000)
 - 1. Tentar reduzir essas variáveis em poucas, que explicam maior parte da variabilidade de todas (componentes principais)
 - 2. Plotar em um gráfico os primeiros componentes principais (os que explicam maior parte da variabilidade)
 - 3. Identificar grupos (ou *clusters*) que apresentam perfis semelhantes
- Se estamos derivando variáveis genéticas, o que os componentes principais "explicam" ou "separam" em um GWAS?

População representativa da cidade de SP (EPISONO)

Estratificação populacional – Inflação genômica:

QQ-plot da associação <u>sem</u> ajuste para ancestralidade

Estratificação populacional – Inflação genômica:

QQ-plot da associação <u>com</u> ajuste para ancestralidade

Controles de qualidade

- Cuidados antes de iniciar os dados, removendo amostras e SNPs que apresentaram baixa qualidade
 - Amostras não genotipadas para mais que 5% dos SNPs
 - Amostras duplicadas ou com alto grau de parentesco
 - SNPs fora do HWE
 - SNPs genotipados em menos que 95% da amostra
 - SNPs raros (minor allele frequency < 5% ou 1%)

Fluxograma de análise

	SNP1	SNP2	SNP3	SNP4	SNP5	 SNP500.000
Amostra 1	AA	AA	AA	AA	AB	 AB
Amostra 2	AB	AA	AA	BB	AB	 ВВ
Amostra 3	ВВ	AA	AB	AA	AB	 AA
Amostra 4	ВВ	AA	AA	BB	AA	 AB
Amostra 5	ВВ	AA	AB	AB	AA	 AB
Amostra 2000	BB	AA	AA	AB	ВВ	 AA

 Verificar estratificação populacional

 Verificar Inflação Genômica Teste estatístico apropriado(ex: Regressão Logística)

- Fluxograma de análise
 - Principais softwares:
 - Análise PLINK (http://pngu.mgh.harvard.edu/~purcell/plink/)
 - Visualização Ferramentas de visualização do R (http://www.r-project.org/)

plink...

Whole genome association analysis toolset

Introduction | Basics | Download | Reference | Formats | Data management | Summary s

| Profiles | ID helper | Resources | Flow chart | Misc. | FAQ | gPLINK

Manolio et al, 2009