1 Polynomial calculus proofs

Опр: Дано поле K и множество переменных. Polynomial calculus refutation множества аксиом P, это последовательность полиномов такие что последняя строчка это 1 и каждая строчка это либо аксиома, либо получается из предедущих строчек использованием правил вывода: $\frac{f-g}{\alpha f + \beta g}$ и $\frac{f}{x \cdot f}$. Где α , β из K это скаляры а x любая переменная.

Опр: Степень опровержения равна d если степени все полиномов в опровержении степени не больше d.

Мы считаем, что полиномы x^2-x входят в аксиомы для всех переменных x. Это означает, что аксиомы $f_1, ..., f_k$ опровержимы тогда и только тогда когда $f_1 = f_2 = ... = f_k = 0$ не имеет 0-1 решений.

Обозн: Для полинома f пусть \bar{f} это единственный полилинейный полином равный f по модулю идеала порожденного всеми полиномами x^2-x .

Обозн: Множество из чисел от 1 до i будем обозначать как [i]

Обозн: $x_{ij} = 1$ означает, что голубь i стоит в клетке j.

Пусть $Q_i = 1 - \sum_{j \in [n]} x_{ij}$. Тогда ¬ PHP_n^m

это следующие полиномы:

1) Q_i для $i \in [m]$ 2) $x_{ij}x_{ij'}$ для $i \in [m], j, j' \in [n], j \neq j'$ 3) $x_{ij}x_{i'j}$ для $i, i' \in [m], j \in [n], i \neq i'$

Опр: Пусть T это множество всех мономов $x_{i_1j_1}...x_{i_kj_k}$ таких что все i_l различны и все j_l различны и пусть T_d будет множество всех мономов степени не более d.

 ${\bf Утв}$: Любой полином это линейная комбинация термов из T без увеличения степени.

Мы хотим построить базис B_d от векторного пространтсва порожденного T_d так чтобы элементами базиса были произведения неких переменных и неких аксиом Q, например $x_{3,1}x_{5,3}Q_2Q_4$. Если мы справимся все строчки доказательства выписать в этом базисе то 1 нельзя будет вывести из аксиом. Определение B_d использует понятие "pigeon dance" которое мы сейчас определим

Опр: Пусть $A = \{a | a \text{ функция из } [m] \text{ в}$

$$\{0, 1, ..., n\}$$

такая что

$$\forall i, a(i) = a(i')$$

означает что i = i'

$$\mathbf{Onp}: A_d = \{a \in A | |a| \le d\}$$

Для $a=\{(i_1,j_1),...,(i_k,j_k),(i_1',0),...,(i_l',0)$ где j_m ненулевые, определяем $x_a=x_{i_1,j_1}...x_{i_k,j_k}Q_{i_1'}..Q_{i_l'}$ и

$$\hat{a} = \{(i_1, j_1), ..., (i_k, j_k)\}$$

Опр: Интуитивно, pigeon dance это когда у нас есть расстановка голубей по клеткам (те которые не в какой то клетке считаем в клетке 0), и мы передвигаем первого голубя до какой то незабитой клетки большей по номеру чем в той который он сидит. И так с каждем голубем.

Опр: Минимальный pigeon dance это когда передвигаем голубей до **минимальной** незабитой клетки большей по номеру.

Теорема 1. Если существует pigeon dance то существует минимальный pigeon dance.

 $Onp \ B_d = \{x_a | a \in A_d \ u \ cyществует \ pigeon \ dance \ на \ mex \ голубях которые не в клетке <math>0\}$

Утв Если $d \leq \lceil n/2 \rceil$ и $a \in A_d$ то существует pigeon dance на а тогда и только тогда когда существует на \hat{a}

Утв Минимальный pigeon dance это биекция

Утв B_d это базис

Теорема 2. PHP_m^n не имеет polynomial calculus refutation степени $\leq \lceil n/2 \rceil$