MEMORIES

```
Single port BRAM (16 X 2048)
Verilog code:
module singleport_BRAM(
  input clk,
  input we,
  input [10:0] addr,
  input [15:0] din,
  output reg [15:0] dout
);
  (* ram_style = "block" *)
  reg [15:0] mem [0:2047];
  always @(posedge clk) begin
    if (we) begin
      mem[addr] <= din;
    end
    dout <= mem[addr];</pre>
  end
```

RTL schematic:

endmodule

Synthesis schematic:

Memory

Site Type	Used	i	Fixed	Prohibited	Available	Util%
Block RAM Tile RAMB36/FIFO*	1 1	1	0	I 0	140 140	
RAMB36El only RAMB18		 -	0	I I 0	 280	0.00

^{*} Note: Each Block RAM Tile only has one FIFO logic available and therefore can accomm

ONE 36K BRAM is needed since (16x2048 = 32768) less than 36K = 36x1024 = 36864 of RAMB36E1

True dual port BRAM (32X16K)

```
Verilog code:
```

```
module truedualport_BRAM (
  input clka,
  input clkb,
  input wea,
  input web,
  input [8:0] addra,
  input [8:0] addrb,
  input [31:0] dina,
  input [31:0] dinb,
  output reg [31:0] douta,
  output reg [31:0] doutb
);
  (* ram_style = "block" *)
  reg [31:0] mem [0:511]; // locations (16K = 16384) 16384 /32 = 512 words
  always @(posedge clka) begin
    if (wea)
      mem[addra] <= dina;
    douta <= mem[addra];
  end
  always @(posedge clkb) begin
    if (web)
      mem[addrb] <= dinb;
    doutb <= mem[addrb];</pre>
  end
endmodule
```

RTL schematic:

Synthesis schematic:

Distributed BRAM (256 X 32)

```
Verilog code:
module distributed_BRAM (
  input clk,
  input we,
  input [7:0] addr,
  input [31:0] din,
  output reg [31:0] dout
);
  (* ram_style = "distributed" *)
  reg [31:0] mem [0:255];
  always @(posedge clk) begin
  if (we)
    mem[addr] <= din;
  dout <= mem[addr];
  end</pre>
```

RTL schematic:

endmodule

2. Memory

+	Site Type	•		•		•	Prohibited			•		•
ı	Block RAM Tile	ı	0	i	0	ı	0	ı	140	ı	0.00	I
1	RAMB36/FIFO*	I	0	I	0	I	0	Ī	140	I	0.00	I
1	RAMB18	I	0	I	0	I	0	I	280	I	0.00	I

1. Slice Logic

Site Type		Used	1		•	Prohibited	•		•		1
Slice LUTs*	Ī	128	I	0	ı	0	ı	53200	Ī	0.24	I
LUT as Logic	1	0	I	0	I	0	I	53200	I	0.00	I
LUT as Memory	1	128	I	0	I	0	I	17400	I	0.74	I
LUT as Distributed RAM	1	128	I	0	I		I		I		I
LUT as Shift Register	1	0	I	0	I		1		I		I
Slice Registers	1	32	I	0	I	0	I	106400	I	0.03	I
Register as Flip Flop	1	32	I	0	I	0	I	106400	I	0.03	I
Register as Latch	1	0	I	0	I	0	I	106400	I	0.00	1
F7 Muxes	1	64	I	0	I	0	I	26600	I	0.24	I
F8 Muxes	I	32	I	0	I	0	I	13300	I	0.24	I