计算物理 作业报告6

PB14203209 张静宁 2017.11.01

第六题

用 $< x^k >$ 测试均匀性(取不同量级的N值,讨论偏差与N的关系)}、C(l) 测试其二维独立性(总点数 $N > 10^7$).与前面的randomz子程序进行比较(采用同样的常数以及单精度或双精度实数运算),总结和评价两个随机数产生器的随机性质量.

算法思路

生成随机数的独立性和均匀性,是判断随机数生成器质量的重要标准.针对生成的随机数序列 $\{x_n\}$,共N个随机数,可以用以下方法来检验伪随机数质量.

1. 用 $< x^k >$ 测试均匀性

X 是 $[0,\ 1]$ 上均匀分布的随机变量,它的 k 阶原点矩理论值为 $< x^k> = \int_0^1 x^k dx = \frac{1}{k+1}$.

计算伪随机序列的 k 阶矩 $< x^k > = \sum_{n=1}^N x_n^k$,比较实际值和理论值的偏差.偏差越小,均匀性越好.

2. 用 *C(l)* 测试独立性

讨论伪随机数序列独立性的一个方法是顺序相关法,用相邻两个随机数的相关系数来标识伪随机数序列的独立性情况,相关系数越小,独立性越好.相距为 l 的相关系数为 $C(l)=\frac{<x_nz_{n+l}>-<x_n>^2}{<x_n^2>-<x_n>^2}$.

其中平均值的定义是 $\langle x_n \rangle = \sum_{n=1}^N x_n/N$. 当两个随机数序列 x_n 与 x_{n+l} 不相关时,相关系数为 0.

3. 用 $<\chi^2>$ 测试均匀性 - 频率性检验

将区间 [0,1] 分为K个子区间,统计随机数落在第i个子区间的实际频数 o_k ,它应该趋近于理论频数 $e_i=N/K$.

$$<\chi^{2}>=\sum_{i=1}^{K}rac{(o_{i}-e_{i})^{2}}{e_{i}}$$

如果 χ^2 值很大,表示实际值远远偏离理想值,因此要求 χ^2 尽可能小,通常求和中的每一项大小约为1,因此 χ^2 的值约为K. 若给定显著水平 α (或置信系数 $1-\alpha$),查表可以求出,系统的自由度为v=K-1,此时 $P(\chi^2<\chi_{\alpha}^2)=1-\alpha$ 的 χ_{α} 值.

程序说明

作业压缩包中含有3个C程序,和对应的linux下的可执行文件.

• kth-order-moment.c 计算k阶矩近似值和理论值的偏差,并输出结果

• correlation.c 计算距离为l的相关系数,并输出结果

• chi-square.c 频率测试均匀性,输出结果

结果分析

以下对比两个随机数生成器的质量:**16807**随机数生成器 和 randomz子程序 .这两个随机数生成器都采用线性同余法,随机数种子Seed=1.

不同的是用Schrage方法实现的16807随机数生成器:

$$a=7^5=16807,\ b=0,\ m=2^{31}-1=2147483647,\ q=127773,\ r=2836$$

而 randomz子程序的参数为: $a=329,\ b=0,\ m=100000001,\ q=303951,\ r=122$

1.用 $< x^k >$ 测试均匀性

以下计算了随机数个数 $N=10^3,~10^4,~10^5,~10^6,~10^7$ 时,伪随机序列 k 阶矩 $< x^k>=\sum_{n=1}^N x_n^k$ 实际值和理论值的偏差,这里 $k=\{1,2,3,4,5\}$.

16807随机数生成器

$N = 10^{3}$

k	kth moment	exact value	deviation
1	0.497961379353871	0.500000000000000	0.002038620646129
2	0.326714332985556	0.333333333333333	0.006619000347778
3	0.240649039774140	0.2500000000000000	0.009350960225860
4	0.189388583017933	0.200000000000000	0.010611416982067
5	0.155662594227676	0.166666666666667	0.011004072438990

$N = 10^4$

k	kth moment	exact value	deviation
1	0.501826822208346	0.500000000000000	0.001826822208346
2	0.335474181824202	0.333333333333333	0.002140848490869
3	0.252227887119419	0.250000000000000	0.002227887119419
4	0.202284192730505	0.200000000000000	0.002284192730505
5	0.169010758675060	0.166666666666667	0.002344092008393

$N=10^5$

k kth moment exact value deviation 1 0.500284291040183 0.50000000000000 0.000284291040183
1 0.500264291040165 0.500000000000000 0.000264291040165
2 0.333479083574409 0.3333333333333 0.000145750241075
3 0.249986406269735 0.25000000000000 0.000013593730265
4 0.199876901167479 0.20000000000000 0.000123098832521
5 0.166480365252800 0.16666666666666 0.000186301413866

$N=10^6$

1 0.500030059810347 0.5000000000000000 0.000030059810347 2 0.333277476842541 0.333333333333333333333333333333333333	k	kth moment	exact value	deviation
3 0.249887435959530 0.25000000000000 0.000112564040470 4 0.199855340869154 0.2000000000000 0.000144659130846	1	0.500030059810347	0.500000000000000	0.000030059810347
4 0.199855340869154 0.20000000000000 0.000144659130846	2	0.333277476842541	0.333333333333333	0.000055856490792
	3	0.249887435959530	0.2500000000000000	0.000112564040470
5 0.166506514811243 0.16666666666666 0.000160151855423	4	0.199855340869154	0.200000000000000	0.000144659130846
	5	0.166506514811243	0.166666666666667	0.000160151855423

k	kth moment	exact value	deviation
1	0.500018649529947	0.500000000000000	0.000018649529947
2	0.333338565201802	0.333333333333333	0.000005231868468
3	0.249999311568265	0.250000000000000	0.000000688431735
4	0.199995011791548	0.200000000000000	0.000004988208452
5	0.166657935933247	0.166666666666667	0.000008730733420

randomz

$N=10^3$

k	kth moment	exact value	deviation
1	0.494168796918312	0.500000000000000	0.005831203081688
2	0.327209749224882	0.333333333333333	0.006123584108451
3	0.244058479602565	0.2500000000000000	0.005941520397435
4	0.194434481961693	0.200000000000000	0.005565518038307
5	0.161564966711644	0.166666666666667	0.005101699955022

$N=10^4$

k	kth moment	exact value	deviation
1	0.495326428114739	0.500000000000000	0.004673571885261
2	0.328362662186440	0.333333333333333	0.004970671146893
3	0.245384427836464	0.2500000000000000	0.004615572163536
4	0.195810631192975	0.200000000000000	0.004189368807025
5	0.162868352006182	0.166666666666667	0.003798314660485

$N=10^5$

k	kth moment	exact value	deviation
1	0.498766980902036	0.500000000000000	0.001233019097964
2	0.332221741898782	0.333333333333333	0.001111591434551
3	0.249083833772251	0.2500000000000000	0.000916166227749
4	0.199243379765067	0.2000000000000000	0.000756620234933
5	0.166029902961628	0.166666666666667	0.000636763705039

$N=10^6$

k	kth moment	exact value	deviation
1	0.499548065658263	0.500000000000000	0.000451934341737
2	0.332917404061433	0.333333333333333	0.000415929271901
3	0.249677505682398	0.2500000000000000	0.000322494317602
4	0.199762070045909	0.200000000000000	0.000237929954091
5	0.166494584040172	0.166666666666667	0.000172082626494

k	kth moment	exact value	deviation
1	0.499829460155746	0.500000000000000	0.000170539844254
2	0.333143689935933	0.333333333333333	0.000189643397401
3	0.249813558420753	0.250000000000000	0.000186441579247
4	0.199822656809137	0.200000000000000	0.000177343190863
5	0.166500043746960	0.166666666666667	
0.0	000166622919707		

可见随着随机数个数 N 的增加,两组随机数的< x^k >阶矩实验值和理论值偏差越来越小(比较相同阶的矩). 并且明显可以看出**16807**生成器 比 randomz子程序均匀性更好一些.

2. 用 C(l) 测试独立性

以下测量随机数序列 $N=10^8$,Seed=1,相关系数为 $C(l)=rac{< x_n x_{n+l}> - < x_n>^2}{< x_n^2> - < x_n>^2}$.

由以下表格和图片可以看出,这两组随机数C(l)都非常小,故独立性都还不错.但**16807**随机数生成器 生成的随机数独立性更好一些!

l	16807 $C(l)$	randomz $C(l)$
0	1.000000	1.000000
1	0.000048	0.003025
2	-0.000151	-0.000079
3	0.000103	0.000104
4	0.000071	0.000369
5	-0.000037	0.000374
6	-0.000067	0.000231
7	0.000074	-0.000917
8	0.000101	0.000233
9	-0.000065	0.000300

Correlation Coefficient of 16807(N=10^8,Seed=1)

Correlation Coefficient of Randomz(N=10^8,Seed=1)

3. 用 $<\chi^2>$ 测试均匀性 - 频率性检验

令
$$D_i=rac{(o_i-e_i)^2}{e_i}$$
,测量随机数数列 $N=3*10^7,~K=$ 30, $Seed=1$.

16807随机数生成器

$$<\chi^2>=34.195560$$

Cell	Observed	Expected	Di
0	999347	1000000.0	0.426
1	1000004	1000000.0	0.000
2	1001152	1000000.0	1.327
3	998556	1000000.0	2.085
4	1002066	1000000.0	4.268
5	1002188	1000000.0	4.787
6	999513	1000000.0	0.237
7	999208	1000000.0	0.627
8	998594	1000000.0	1.977
9	999594	1000000.0	0.165
10	1000060	1000000.0	0.004
11	1000244	1000000.0	0.060
12	999313	1000000.0	0.472
13	1000580	1000000.0	0.336
14	1001644	1000000.0	2.703
15	999581	1000000.0	0.176
16	999357	1000000.0	0.413
17	999648	1000000.0	0.124
18	998376	1000000.0	2.637
19	1000765	1000000.0	0.585
20	1001102	1000000.0	1.214
21	999050	1000000.0	0.902
22	1002044	1000000.0	4.178
23	999543	1000000.0	0.209
24	1000829	1000000.0	0.687
25	1000221	1000000.0	0.049
26	999935	1000000.0	0.004
27	998293	1000000.0	2.914
28	999985	1000000.0	0.000
29	999208	1000000.0	0.627

randomz 子程序

$$<\chi^2>=89.564122$$

Cell	0bserved	Expected	Di
0	1002053	1000000.0	4.215
1	999830	1000000.0	0.029
2	1000938	1000000.0	0.880
3	1001217	1000000.0	1.481
4	1000499	1000000.0	0.249
5	1000538	1000000.0	0.289
6	1002664	1000000.0	7.097
7	998079	1000000.0	3.690
8	1001320	1000000.0	1.742
9	999684	1000000.0	0.100
10	1000741	1000000.0	0.549
11	999486	1000000.0	0.264
12	1001897	1000000.0	3.599
13	999791	1000000.0	0.044
14	998280	1000000.0	2.958
15	1001453	1000000.0	2.111
16	996590	1000000.0	11.628
17	1001774	1000000.0	3.147
18	1001344	1000000.0	1.806
19	996007	1000000.0	15.944
20	1001985	1000000.0	3.940
21	1001868	1000000.0	3.489
22	1000222	1000000.0	0.049
23	999344	1000000.0	0.430
24	998446	1000000.0	2.415
25	997899	1000000.0	4.414
26	1001261	1000000.0	1.590
27	997107	1000000.0	8.369
28	998418	1000000.0	2.503
29	999265	1000000.0	
(9.540		

用卡方检验法,给定显著水平 $\alpha=0.1$ (即置信系数0.9),系统的自由度为 v=29 ,满足 $P(\chi^2<\chi_{\alpha}{}^2)=0.9$ 的 $\chi_{\alpha}=39.087$.即 χ^2 有 90% 的概率小于 39.087 .

而上表得出: $<\chi^2_{16807}>=34.195560<39.087<\chi^2_{randomz}>=89.564122>39.087$

故16807生成器满足该置信系数下的随机检验,而randomz子程序不满足.所以16807生成随机数的均匀性更好.

PS:用相邻随机数做图

randomz 子程序

总结评价

- 1. 可见随着随机数个数 N 的增加,两组随机数的< x^k >阶矩实验值和理论值偏差越来越小(比较相同阶的矩).并且明显可以看出**16807**生成器 比 randomz子程序均匀性更好一些.
- 2. 这两组随机数C(l)都非常小,故独立性都还不错.但**16807**随机数生成器 生成的随机数独立性更好一些!
- 3. 用卡方检验法,16807生成器满足置信系数为**0.9**时的拟合优度检验,而randomz子程序不满足. 所以**16807**生成随机数的均匀性更好.

综上,16807随机数生成器,生成的伪随机数均匀性和独立性,都比randomz子程序的更好!