Thomas
Debris-Alazard
and
Jean-Pierre
Tillich

Generalities on Rank-Based Cryptography

LRPC-codes i RankSign IGMR7131

Our Attack

Two attacks on rank metric code-based schemes: RankSign and an IBE scheme

Thomas Debris-Alazard and Jean-Pierre Tillich

Inria Saclay, EPI GRACE

Thomas
Debris-Alazard
and
Jean-Pierre
Tillich

Generalities of Rank-Based Cryptography

LRPC-codes i RankSign [GMRZ13]

Our Attac

Results

Results of the paper:

- Attack on a code-based "hash-and-sign" scheme RankSign [GRSZ14] submitted to the NIST PQC Standardization;
 - \longrightarrow Can not be thwarted by changing the parameters.
- Attack on the first code-based Identity-Based-Encryption (IBE)
 [GHPT17] in rank-metric;
 - ---- Parameters can be chosen to avoid it.
- IBE: moving Rank → Hamming metric no go.

Thomas
Debris-Alazard
and
Jean-Pierre
Tillich

Generalities on Rank-Based Cryptography

LRPC-codes i RankSign [GMRZ13]

Our Associa

1 Generalities on Rank-Based Cryptography

2 LRPC-codes in RankSign [GMRZ13]

Our Attack

Thomas Debris-Alazard and Jean-Pierre Tillich

Generalities on Rank-Based Cryptography

Rank vs Hamming in Cryptography

Advantages:

- In rank metric: alphabet size q^m has an impact on the metric →Useful for security reductions
- Smaller key sizes than Hamming.

Disadvantage:

Rank metric: security less understood (algebraic attacks)

Thomas
Debris-Alazard
and
Jean-Pierre
Tillich

Generalities on Rank-Based Cryptography

RankSign [GMRZ13]

Our Attack

Code-Based Cryptography

F finite field.

Syndrome Decoding Problem.

- Given: a matrix $H \in \mathbb{F}^{r \times n}$ with $r \leq n$, a vector $s \in \mathbb{F}^r$, an integer w;
- Goal: find $e \in \mathbb{F}^n$, $\begin{cases} He^T = s^T \\ weight(e) = w \end{cases}$

Hamming: weight(\cdot) = # non-zero components and usually $\mathbb{F} = \mathbb{F}_2$

Rank: weight(\cdot) = Rank metric and $\mathbb{F} = \mathbb{F}_{q^m}$

Probabilistic polynomial reduction (Gaborit & Zémor) to the decoding problem in Hamming metric

Thomas
Debris-Alazard
and
Jean-Pierre
Tillich

Generalities on Rank-Based Cryptography

LRPC-codes i RankSign [GMRZ13]

O.... 0.1.---1.

Rank Metric over \mathbb{F}_{q^m}

- ullet \mathbb{F}_{q^m} is a \mathbb{F}_q -space of dimension m
- $\mathsf{x} = (x_1, \cdots, x_n) \in \mathbb{F}_{q^m}^n$, its rank is defined as:

Support of x:
$$\langle x_1, \cdots, x_n \rangle_{\mathbb{F}_q} \stackrel{\triangle}{=} \left\{ \sum_i \lambda_i x_i : \lambda_i \in \mathbb{F}_q \right\} \subseteq \mathbb{F}_{q^m}$$

$$\operatorname{rank}(\mathsf{x}) = \dim_{\mathbb{F}_q} \left(\langle x_1, \cdots, x_n \rangle_{\mathbb{F}_q} \right)$$

Thomas
Debris-Alazard
and
Jean-Pierre
Tillich

Generalities of Rank-Based Cryptography

LRPC-codes in RankSign [GMRZ13]

• Generalities on Rank-Based Cryptography

2 LRPC-codes in RankSign [GMRZ13]

Our Attack

Thomas
Debris-Alazard
and
Jean-Pierre
Tillich

Generalities of Rank-Based Cryptography

LRPC-codes in RankSign [GMRZ13]

Our Attac

Some History...

- Gabidulin codes: first rank-codes with a polynomial decoder
 - ightarrow Strong algebraic structure... and a zillion attacks (Overbeck'05...)
- LRPC-codes: decoder introduced in [GMRZ13]
 - \rightarrow Finding the underlying structure is close to solving the syndrome decoding problem.

Thomas
Debris-Alazard
and
Jean-Pierre
Tillich

Generalities or Rank-Based Cryptography

LRPC-codes in RankSign [GMRZ13]

Our Attack

LRPC-codes [GMRZ13]

• Random Code: Given some random matrix $\mathsf{H}_{\mathsf{Rand}} \in \mathbb{F}_{a^m}^{(n-k) imes n}$

$$\{c: H_{Rand}c^T = 0\}$$

• LRPC Code: Given $\mathsf{H}_{\mathsf{LRPC}} = (h_{i,j}) \in \mathbb{F}_{q^m}^{(n-k) \times n}$ s.t

$$\dim (\langle h_{i,j} : i,j \rangle_{\mathbb{F}_q}) = \text{ small }$$

then,

$$\{c_{LRPC}: H_{LRPC}c_{LRPC}^{\mathsf{T}} = 0\}$$

When $\mathsf{H}_{\mathsf{Rand}} = (h_{i,j}) \in \mathbb{F}_{q^m}^{(n-k) \times n}$ is random, typically when m < n(n-k):

$$\langle h_{i,j}:i,j\rangle_{\mathbb{F}_q}=\mathbb{F}_{q^m}.$$

Thomas
Debris-Alazard
and
Jean-Pierre
Tillich

Generalities o Rank-Based Cryptography

LRPC-codes in RankSign [GMRZ13]

Our Attac

LRPC-codes in RankSign[GRSZ14]

LRPC-codes come in RankSign with a decoder [GRSZ14]:

$$\forall s$$
, it computes polynomially e s.t $\begin{cases} H_{LRPC}e^T = s^T \\ rank(e) = w \end{cases}$

• Constraint RankSign: $\mathsf{H}_{\mathsf{LRPC}} = (h_{i,j}) \in \mathbb{F}_{q^m}^{(n-k) \times n}$ s.t

$$(n-k)\dim (\langle h_{i,j}:i,j\rangle_{\mathbb{F}_q})=n$$

Problem: Rows of H_{LRPC} gives words of low weight...

→ A masking is needed!

Thomas
Debris-Alazard
and
Jean-Pierre
Tillich

Generalities of Rank-Based Cryptography

LRPC-codes in RankSign [GMRZ13]

Our Attac

Masking LRPC-codes in RankSign

In RankSign [GRSZ14]:

- Increase the weight of rows: [H_{LRPC}|R] for R random;
- Change the code: $[H_{LRPC}|R]P$ for P invertible in \mathbb{F}_q .
- Change the basis: Q[H_{LRPC}|R]P for Q invertible;

 $H_{pub} \stackrel{\triangle}{=} Q[H_{LRPC}|R]P$: public key

Thomas
Debris-Alazard
and
Jean-Pierre
Tillich

Generalities of Rank-Based Cryptography

LRPC-codes RankSign [GMRZ13]

Our Attack

1 Generalities on Rank-Based Cryptography

2 LRPC-codes in RankSign [GMRZ13]

3 Our Attack

Thomas
Debris-Alazard
and
Jean-Pierre
Tillich

Generalities of Rank-Based

LRPC-codes RankSign [GMRZ13]

Our Attack

Idea of the Attack

To look for low weight codewords... where?

- Suspect: $\mathscr{C}_{pub}^{\perp} \stackrel{\triangle}{=} \{ \mathsf{mH}_{pub} : \mathsf{m} \in \mathbb{F}_{q^m} \};$
- Real Problem: $\mathscr{C}_{pub} \stackrel{\triangle}{=} \{c : H_{pub}c^{\mathsf{T}} = 0\}.$

Thomas
Debris-Alazard
and
Jean-Pierre
Tillich

Generalities of Rank-Based Cryptography

LRPC-codes RankSign

Our Attack

Low Rank Codewords in an LRPC?

$$\begin{aligned} \mathsf{H}_{\mathsf{LRPC}} &= (h_{i,j}) \in \mathbb{F}_{q^m}^{(n-k) \times n} \quad \text{with} \quad \langle h_{i,j} : i, j \rangle_{\mathbb{F}_q} = F \\ & \mathsf{c} = (c_j) \in \mathbb{F}_{q^m}^n \end{aligned}$$

$$\mathsf{H}_{\mathsf{LRPC}} \mathsf{c}^\mathsf{T} = 0 \iff \forall i \in [\![1, n-k]\!], \quad \sum_{j=1}^n h_{i,j} c_j = 0$$

Thomas
Debris-Alazard
and
Jean-Pierre
Tillich

Generalities or Rank-Based Cryptography

LRPC-codes i RankSign [GMRZ13]

Our Attack

Low Rank Codewords in an LRPC?

$$\mathsf{H}_{\mathsf{LRPC}} = (h_{i,j}) \in \mathbb{F}_{q^m}^{(n-k) \times n} \quad \text{with} \quad \langle h_{i,j} : i,j \rangle_{\mathbb{F}_q} = F$$
 $\mathsf{c} = (c_j) \in \mathbb{F}_{q^m}^n$

$$\mathsf{H}_{\mathsf{LRPC}}\mathsf{c}^{\mathsf{T}} = 0 \iff \forall i \in \llbracket 1, n - k
rbracket, \quad \sum_{j=1}^n h_{i,j}c_j = 0$$

Suppose that
$$\langle c_1, \cdots, c_n \rangle_{\mathbb{F}_q} = F'$$

$$\forall i \in \llbracket 1, n-k
rbracket, \sum_{i=1}^n h_{i,j} c_j \in F' \cdot F \stackrel{\triangle}{=} \langle f' f : f' \in F', f \in F \rangle_{\mathbb{F}_q}$$

This gives a linear system in \mathbb{F}_q with

- $(n-k)\dim_{\mathbb{F}_q}(F\cdot F')$ equations;
- $n \dim_{\mathbb{F}_q}(F')$ unknowns.
- \rightarrow We would like #Unknowns > #Equations to ensure the existence of solutions

Thomas
Debris-Alazard
and
Jean-Pierre
Tillich

Generalities o Rank-Based Cryptography

LRPC-codes RankSign [GMRZ13]

Our Attack

... But How to Choose F'?

What we want:

$$n \dim_{\mathbb{F}_q}(F') > (n-k) \dim_{\mathbb{F}_q}(F \cdot F')$$

What we typically have:

$$n \dim_{\mathbb{F}_q}(F') = (n-k) \dim_{\mathbb{F}_q}(F \cdot F')$$

Because,

$$\begin{cases} \dim_{\mathbb{F}_q}(F \cdot F') = \dim_{\mathbb{F}_q}(F) \dim_{\mathbb{F}_q}(F') \text{ (typically)} \\ (n-k) \dim(F) = n \text{ (RankSign)}. \end{cases}$$

Thomas
Debris-Alazard
and
Jean-Pierre
Tillich

Generalities o Rank-Based Cryptography

LRPC-codes RankSign [GMRZ13]

Our Attack

The Subspace $F \cdot F'$

$$F \stackrel{\triangle}{=} \langle x_1, \cdots, x_d \rangle_{\mathbb{F}_q} \quad (F = \langle h_{i,j} : i, j \rangle_{\mathbb{F}_q})$$

$$\text{Let } F' \stackrel{\triangle}{=} \langle x_1, x_2 \rangle_{\mathbb{F}_q} \subseteq F.$$

$$F \cdot F' = \langle x_1^2, x_1 x_2, \cdots, x_1 x_d, x_2 x_1, x_2^2, \cdots, x_2 x_d \rangle_{\mathbb{F}_q}.$$

$$\Rightarrow \dim(F \cdot F') \leq 2d - 1$$

Therefore,

#Unknowns - #Equations =
$$n \dim_{\mathbb{F}_q}(F') - (n-k) \dim_{\mathbb{F}_q}(F \cdot F')$$

= $2n - (n-k)(2d-1)$

Thomas
Debris-Alazard
and
Jean-Pierre
Tillich

Generalities of Rank-Based Cryptography

RankSign [GMRZ13]

Our Attack

The Subspace $F \cdot F'$

$$F \stackrel{\triangle}{=} \langle x_1, \cdots, x_d \rangle_{\mathbb{F}_q} \quad (F = \langle h_{i,j} : i, j \rangle_{\mathbb{F}_q})$$

$$\text{Let } F' \stackrel{\triangle}{=} \langle x_1, x_2 \rangle_{\mathbb{F}_q} \subseteq F.$$

$$F \cdot F' = \langle x_1^2, x_1 x_2, \cdots, x_1 x_d, x_2 x_1, x_2^2, \cdots, x_2 x_d \rangle_{\mathbb{F}_q}.$$

$$\Rightarrow \dim(F \cdot F') \leq 2d - 1$$

Therefore,

$$\#Unknowns - \#Equations = n \dim_{\mathbb{F}_q}(F') - (n-k) \dim_{\mathbb{F}_q}(F \cdot F')$$

= $2n - (n-k)(2d-1)$

Constraint in RankSign:

$$n = (n - k)d$$

which gives:

$$#Unknowns - #Equations = 2(n-k)d - (n-k)(2d-1)$$
$$= n-k > 0$$

Thomas
Debris-Alazard
and
Jean-Pierre
Tillich

Generalities or Rank-Based Cryptography

LRPC-codes i RankSign [GMRZ13]

Our Attack

Low Rank Codewords in RankSign

• Fact: $rank(c_{LRPC}) = 2$ such that $H_{LRPC}c_{LRPC}^{\mathsf{T}} = 0$

$$\Rightarrow \left\{ \begin{array}{ll} (i) & H_{pub}\big((c_{LRPC},0)P^{\tau-1}\big)^{\intercal} = 0 \\ (ii) & \mathrm{rank}(c_{LRPC},0)P^{\tau-1} = 2. \end{array} \right.$$

Indeed, P invertible in \mathbb{F}_q and:

$$H_{pub} = Q H_{LRPC} P$$

Thomas
Debris-Alazard
and
Jean-Pierre
Tillich

Generalities or Rank-Based Cryptography

LRPC-codes RankSign

Our Attack

Summary

We proved, whatever is the choice of parameters, there are codewords of rank 2 in the public key.

Thomas
Debris-Alazard
and
Jean-Pierre
Tillich

Generalities or Rank-Based Cryptography

LRPC-codes in RankSign [GMRZ13]

Our Attack

How to Effectively Find Them?

Low-rank codewords in public keys of RankSign. How to find them?

- → Gröbner basis techniques with a system of equations:
- Bilinear;
- Over-determined composed of (#Unknowns)² equations;
- With an exponential number of solutions.

The attack is effective: we find low rank codewords in 20s for 128bits of security (with Magma)

Thomas
Debris-Alazard
and
Jean-Pierre
Tillich

Generalities of Rank-Based Cryptography

LRPC-codes RankSign [GMRZ13]

Our Attack

Limits of the Attack

(n-k)d = n is essential for the attack and

Generally $(n-k)d \neq n$ for other schemes based on LRPC codes;

ightarrow LRPC codes: be careful with the choice of parameters.

Thomas
Debris-Alazard
and
Jean-Pierre
Tillich

Generalities of Rank-Based Cryptography

LRPC-codes RankSign [GMR713]

Our Attack

Attacks Against the Code-Based IBE [GHPT17]

One IBE in code-based cryptography: it used RankSign...

The problem is deeper: even without RankSign, we also broke the parameters in the encryption part of the IBE.

Still admissible parameters for the encryption part.

Thomas
Debris-Alazard
and
Jean-Pierre
Tillich

Generalities of Rank-Based Cryptography

LRPC-codes RankSign [GMRZ13]

Our Attack

Attacks Against the Code-Based IBE [GHPT17]

One IBE in code-based cryptography: it used RankSign...

The problem is deeper: even without RankSign, we also broke the parameters in the encryption part of the IBE.

Still admissible parameters for the encryption part.

Changing Rank \rightarrow Hamming metric in the IBE scheme [GHPT17]: we gave a polynomial attack against the encryption part.

Thomas
Debris-Alazard
and
Jean-Pierre
Tillich

Generalities or Rank-Based Cryptography

LRPC-codes RankSign [GMRZ13]

Our Attack

Thank You!