1 A

1.1 \mathbb{Z} -HS

Pure of weight n is a lattice $V_{\mathbb{Z}}$ with a decreasing filtration,

$$V_{\mathcal{C}} = F_0 \supset F^1 \supset \cdots \supset F^n = \{0\}$$

where $V_{\mathcal{C}} = F^p \oplus \overline{Fn-p+1}$. Comparison between the lattice and the filtration gives the period matrix.

Polarization: $Q: V_{\mathbb{Z}} \times V_{\mathbb{Z}} \to \mathbb{Z}$ nondegenerate $(-1)^n$ -symmetric such that

- (a) $Q(F^p, F^{n-p+1}) = 0$ or equivalently the decomposition $V = \bigoplus V^{p,q}$ is orthogonal
- (b) $i^{2p-n}Q(\xi,\xi) > 0$ for nonzero $\xi \in V^{p,n-p} := F^p \cap \overline{F^{n-p}}$.

1.2 Variations of PHS

Of weight n over a complex manifold S. A VHS \mathcal{V} consists of

- (a) a \mathbb{Z} -local system $V_{\mathbb{Z}}$ over S
- (b) $Q: V_{\mathbb{Z}} \times V_{\mathbb{Z}} \to \mathbb{Z}$ a pairing
- (c) a filtration $F^{\bullet} \subset V := V_{\mathbb{Z}} \otimes \mathcal{O}_S$ by holomorphic vector bundles
- (d) a connection $\nabla: V \to V \otimes \nabla$ with $V_{\mathbb{Z}} = \ker \nabla$

such that

- (a) on each fiber the filtration and Q gives a PHS
- (b) $\nabla F^p \subset F^{p-1} \otimes \Omega^1_S$ for all p

The first two give the data of a representation,

$$\rho: \pi_1(S, s_0) \to \text{Aut}(()(V_{\mathbb{Z}})_{s_0}, Q_{s_0})$$

and we define the monodromy group

$$M = (\overline{\rho(\pi_1)}^{\operatorname{Zar}})^{\circ}$$

Remark. If $\pi:X\to S$ is smooth projective then it defines a VHS on cohomology with $V_{\mathbb{Z}}=(R^n\pi_*\underline{\mathbb{Z}})/\mathrm{tors}$ and $\mathscr{F}^p=^n\pi_*\Omega_{X/S}^{\bullet\geq p}$. The connection is induced by

$$\pi^*\Omega^1_S \otimes \Omega_X^{\bullet \geq p-1}[1] \to \Omega_X^{\bullet \geq p} \to \Omega_{X/S}^{\bullet \geq p}$$

Remark. Let $S = \mathbb{P}^1 \setminus \Sigma$ where Σ is a finite set of points and $V_{\mathcal{C}}$ is irreducible and $h^{n,0} \neq 0$ then there is a section $\mu \in \Gamma(\mathbb{P}^1, \mathscr{F}_e^n)$ (where \mathscr{F}_e^n is the extension to \mathbb{P}^1) such that $(V, \nabla) \cong \mathcal{D}/\mathcal{D}L$ for some $L \in \mathbb{C}[D, t]$ is a \mathcal{D} -module. This L is called the Picard-Fuchs operator. The periods:

$$\mu\gamma = \pi_{\gamma}(t)$$

for $\gamma \in \Gamma(S^{\mathrm{an}}, V_{\mathbb{Z}}^{\vee})$ satisfy $L\pi_{\gamma} = 0$.

Remark. Let $S = \Delta^*$ and let T be the monodromy operator around the look. Then T is quasi-unipotent meaning $T = T_{ss}Y_u$ such that $T_{ss}^m = I$ and $(T_u - I)^k = 0$ and $[T_{ss}, T_u] = 0$. Write $N = \log T_u$.

 $(\mathbb{Q}-)$ LMHS ψ_t basechange such that T is unipotent then $\mathscr{F}^{\bullet} \subset V$ extends to

$$\mathscr{F}_e^{\bullet} \subset V_e := e^{-\frac{\log(t)}{2\pi i}N} V_{\mathbb{Q}} \otimes \mathcal{O}_S$$

which is well-defined over Δ . Then N is part of an 2-tripple (N, Y, N^+) . Then $V = \mathcal{V}_e|_{t=0}$ has two filtrations

- (a) $F_e^{\bullet}|_{t=0}$
- (b) $W_{\bullet} = W(N)[-n]$

this defines a mixed hodge structure.

1.3 Example

Conifold point: A_1 singularity on a CY 3-fold.

1.4 hypergeometric variations

Let $\alpha = (\alpha_1, \dots, \alpha_r)$ and $\beta = (\beta_1, \dots, \beta_r)$ be numbers in $(0, 1] \cap \mathbb{Q}$ and $\alpha_i \neq \beta_j$ for all i, j. We suppose that the $\underline{\alpha}$ and β satisfy,

$$q_{\infty}(\lambda) := \prod_{j} (\lambda - e^{2\pi i \alpha_{j}}) \in \mathbb{Q}[\lambda]$$

and

$$q_0(\lambda) := \prod_j (\lambda - e^{2\pi i \beta_j}) \in \mathbb{Q}[\lambda]$$

Theorem 1.4.1. There exists a geometrric Q-PVHS $\mathcal{V}_{\alpha,\beta}$ over $\mathbb{P}^1_z \setminus \{0,1,\infty\}$ with $L = \prod (D+\beta_j-1) - z \prod (D_{\alpha j})$ such that q_0, q_∞ are the char polys o T_0 and T_∞ and period

$$\prod = \sum_{k>0} \frac{\prod [\alpha_j]_k}{\prod [\beta_j]_k} z^k$$

where $[\alpha]_k$ is the rising factorial $\alpha(\alpha+1)\cdots(\alpha+k)$. There is an interesting formula for the hodge numbers in terms of a zig-zag diagram. Furthermore, the monodromy group is

- (a) $\{1\}$ weight zero (i.e. if α, β are intertwined: they alternate in order)
- (b) Sp_r for odd weight
- (c) $SO(h_{even}, h_{odd})$ for even weight,