(Px, Py) (Ibrx, 1bry) (Cx, Cy) $m = p_j$ $y = m(-x-x_i)$ $y = p_j(x-x_i)$ (Cx, Cy)= (Cx, m (Cx-X1)) y'=-(x-lbrx)
y-1679 y'= m=-(c,-15m) m(cx-x1)-15m 1 -m2 (Cx-x1) - m 16m = -Cx + 16cx Cx(m2+1) 2 m lbg + lbcx + m2x1 Cx = m 16m + 16m +m2xi 0 7

Define and	
Define gap:	
$il \circ l \circ$	
if Py > lbry:	
· · ·	
Cx > lbcx? Sgn mner = 1: sgninner=-1 gimer left = $((Cx-lbcx)^2 + (cn-lbg)^2)^{l_2}$ Cx > lbcx + t	
gimer left = (((x-16x)" + (y-16y))	
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5
growterleft = - //[Cx, Cg] - [lbrx, lbm] + [to]/	55)
	50
gammer left = Px-d	5
gaouterleft = - gainnerleft	
V	
else	
gi mortest, gamerlest = 11 [Px, Py] -[16m, elby]	
1 99 monds	
gronterleft, gronteleft = - gimerleft - t	
1. James de	
end	
Repeat for right wall	

$$Cy = \frac{1}{(A + B \times 1)} - \frac{(x_1 - C_X) + 1}{\sin^2(\theta)} \times \frac{x_1}{\tan(\theta)}$$

$$= \left[\frac{1}{A} - \frac{(x_1 - C_X)}{\sin^2(\theta)} \right] + \frac{1}{B} \times \frac{x_1}{\tan(\theta)} \times \frac{x_2}{\tan(\theta)}$$

$$= \left[\frac{1}{A} - \frac{(x_1 - C_X)}{\tan(\theta)} \right] + \frac{1}{A} \times \frac{x_2}{\tan(\theta)} \times \frac{x_2}{\tan(\theta)}$$

$$= \left[\frac{1}{A} - \frac{(x_1 - C_X)}{\tan(\theta)} \right] + \frac{1}{A} \times \frac{x_2}{\tan(\theta)} \times \frac{x_2}{\tan(\theta)}$$

$$= \left[\frac{1}{A} - \frac{(x_1 - C_X)}{\tan(\theta)} \right] + \frac{1}{A} \times \frac{x_2}{\tan(\theta)} \times \frac{x_2}{\tan(\theta)}$$

$$= \left[\frac{1}{A} - \frac{(x_1 - C_X)}{\tan(\theta)} \right] + \frac{1}{A} \times \frac{x_2}{\tan(\theta)} \times \frac{x_2}{\tan(\theta)}$$

$$= \left[\frac{1}{A} - \frac{(x_1 - C_X)}{\tan(\theta)} \right] + \left[\frac{1}{A} \times \frac{x_2}{\tan(\theta)} \right] \times \frac{x_2}{\tan(\theta)}$$

$$= \left[\frac{1}{A} - \frac{(x_1 - C_X)}{\tan(\theta)} \right] + \left[\frac{1}{A} \times \frac{x_2}{\tan(\theta)} \right] \times \frac{x_2}{\tan(\theta)}$$

$$= \left[\frac{1}{A} - \frac{(x_1 - C_X)}{\tan(\theta)} \right] + \left[\frac{1}{A} \times \frac{x_2}{\tan(\theta)} \right] \times \frac{x_2}{\tan(\theta)}$$

$$= \left[\frac{1}{A} - \frac{(x_1 - C_X)}{\tan(\theta)} \right] \times \frac{x_2}{\tan(\theta)}$$

$$= \left[\frac{1}{A} - \frac{(x_1 - C_X)}{\tan(\theta)} \right] + \left[\frac{x_2}{\tan(\theta)} \right] \times \frac{x_2}{\tan(\theta)}$$

$$= \left[\frac{1}{A} - \frac{x_2}{\tan(\theta)} \right] \times \frac{x_2}{\tan(\theta)}$$

$$= \left[\frac{x_2}{\tan(\theta)} \right] \times \frac{x_2$$