ESCUELA COLOMBIANA DE INGENIERÍA LÓGICA CALCULATORIA

Semántica

- 1. Demuestre que las siguientes proposiciones son tautologías
 - $((\phi \lor (\psi \equiv \tau)) \equiv ((\phi \lor \psi) \equiv (\phi \lor \tau)))$
 - $((\phi \to (\psi \to \tau)) \equiv ((\phi \to \psi) \to (\phi \to \tau)))$
- 2. Demuestre que la siguiente proposición es satisfacible, pero no tautología $((\neg(p \lor q)) \to p)$
- 3. En cada uno de los siguientes casos, determine si existe una proposición ϕ que sea una tautología y explique su respuesta
 - ϕ tiene a \vee como único conectivo lógico.
 - ϕ tiene a \wedge como único conectivo lógico.
- 4. Demuestre para cualesquiera proposiciones ϕ , ψ , τ : \models $(\phi \equiv \psi)$ si y solo si \models $(\phi \rightarrow \psi)$ y \models $(\phi \leftarrow \psi)$
- 5. Demuestre o refute para cualesquiera proposiciones ϕ y ψ : \models $(\phi \land \psi)$ si y solo si \models ϕ y \models ψ
- 6. Demuestre para cualesquiera proposiciones ϕ , ψ , τ : $\{(\phi \lor \psi), ((\neg \phi) \lor \tau)\} \models (\psi \lor \tau)$
- 7. Sean Γ y Δ conjuntos de proposiciones, y ϕ , ψ proposiciones. Demuestre: $\Gamma \cup \{\phi\} \models \psi$ si y solo si $\Gamma \models (\phi \rightarrow \psi)$
- 8. Sean Γ y Δ conjuntos de proposiciones, y ϕ , ψ proposiciones. Demuestre o refute: Si $\Delta \not\models \phi$ y $\Gamma \subset \Delta$, entonces $\Gamma \not\models \phi$.
- 9. Especifique cada una de los siguientes argumentos y determine cuáles de las argumentaciones son válidas y cuales inválidas. Justifique su respuesta.
 - Si Pedro entiende matemáticas, entonces puede entender lógica. Pedro no entiende lógica. Consecuentemente, Pedro no entiende matemáticas.
 - Si llueve o cae nieve, entonces no hay electricidad. Llueve. Entonces, no habrá electricidad.
 - Si llueve o cae nieve, entonces no hay electricidad. Hay electricidad. Entonces no nevó.
 - Es peligroso conducir cuando está nevando. Esta nevando ahora. Sería peligroso conducir en este momento.
 - Cuando llueve los árboles se mojan. Los árboles están húmedos esta mañana, así que llovió anoche.
 - Un paraguas evita que se moje bajo la lluvia. Alicia tomó su paraguas y no se mojó. Probablemente estaba lloviendo.
 - Las luces rojas previenen accidentes. Miguél no tuvo un accidente, por lo tanto, Miguél se detuvo en una luz roja.
 - Si sin(x) es diferenciable, entonces sin(x) es continua. Si sin(x) es continua, entonces sin(x) es diferenciable. La función sin(x) es diferenciable. Consecuentemente, la función sin(x) es integrable.
 - Si Gödel fuera presidente, entonces el Congreso presentaría leyes razonables. Gödel no es presidente.
 Por lo tanto, el Congreso no presenta leyes razonables.
 - Si llueve, entonces no hay picnic. Si cae nieve, entonces no hay picnic. Llueve o cae nieve. Por lo tanto, no hay picnic.