Folha 2

1. Pretendemos uma implementação em linguagem C do algoritmo de Graham ($Graham \, scan$) para cálculo do invólucro convexo de n pontos do plano, descrito nas aulas. Admitir que os pontos têm coordenadas inteiras. **Garantir que a complexidade do algoritmo implementado é** $O(n \log n)$. Assumir que cada ponto tem coordenadas inteiras e é representado por uma estrutura do tipo PONTO assim definida:

```
typedef struct ponto {
   int x, y;
} PONTO;
```

Definir funções:

- a) int viragem_esq(PONTO p1, PONTO p2,PONTO p3) para verificar se uma sequência de três pontos (P_1, P_2, P_3) define uma viragem à esquerda, i.e., se a componente não nula do *produto vetorial* do vetor P_1P_2 pelo vetor P_1P_3 (no espaço) tem sinal positivo. Retorna 1 se definir e 0 se não definir.
- b) int ponto_ord_minima (PONTO p[], int n) para encontrar o ponto \mathcal{M} que tem ordenada mínima (se existirem vários, tomar o de abcissa máxima), sendo dado um array com n pontos. Retorna o índice desse ponto no array p.
- c) void ordena (PONTO p[], int a, int b) para ordenar o segmento [a,b] do vetor p por ordem crescente de ângulo polar crescente relativamente a p[0], que se supõe ter já o ponto \mathcal{M} , acima referido (assuma $0 < a \le b < n$). Deve adaptar a função mergesort, descrita nas aulas.

Notar que Q tem ângulo polar maior do que P se (\mathcal{M}, P, Q) constitui uma viragem à esquerda. Se \mathcal{M} , P e Q forem colineares (caso em que o produto vetorial é nulo), aparecerá primeiro o ponto que estiver mais afastado de \mathcal{M} (para o determinar, analisar o sinal do *produto interno* dos vetores $\mathcal{M}P$ e PQ).

- **d)** int convexhull_Graham (PONTO p[], int n) que determina em p a sequência de vértices que define o invólucro convexo dos pontos dados em p. Retorna ainda o número de pontos nessa sequência. Assumir que os n pontos estão em posição geral, isto é, que não existem três (ou mais) pontos colineares.
- **2.** Seja S um conjunto ordenado de inteiros não negativos inferiores a N (dado) e seja $\bigcup_{i=1}^{n} [a_i, b_i]$ com $0 \le n < N$ uma representação canónica de S como união de intervalos, com $a_i \le b_i$ e $1 + b_i < a_{i+1}$, para todo i. Se n = 0, o conjunto S é vazio.

Para cada alínea, escreva a função pedida em pseudocódigo, traduza-a para linguagem C e caracterize a sua complexidade temporal assintótica, se S for representado por:

- (caso A) um vetor com N posições, em que a posição k indica se $k \in S$ ou se $k \notin S$;
- (caso B) uma matriz com pelo menos n linhas e duas colunas, que guarda a sequência de intervalos $[a_i, b_i]$, ordenada;
- (caso C) uma lista ligada simples, ordenada, em que cada nó tem $[a_i, b_i]$ e o identificador do nó seguinte (a lista será vazia se $S = \emptyset$);

Pretendemos algoritmos **eficientes**, em cada caso. Nas alíneas 1c) e 1d), as funções alteram S e preservam a forma canónica descrita.

- a) Determinar o número de elementos de S.
- **b)** Verificar se um inteiro x pertence a S ou não.
- c) Determinar $S \setminus \{x\}$, para x dado.
- **d**) Determinar $S \cup [a, b]$ para um intervalo [a, b] dado tal que $S \cap [a, b] = \emptyset$, com $0 \le a \le b < N$.
- e) Escrever S na saída padrão ($standard\ output$) agrupando todos os pontos isolados num só conjunto, que será escrito no fim. Para $[3,10]\cup[15,15]\cup[25,25]\cup[34,36]\cup[50,50]\cup[125,127]$, deve escrever $[3,10] \cup [34,36] \cup [125,127] \cup [15,25,50]$. Analogamente, escrevia $[3,10] \cup [34,36] \cup [125,127]$ se não tivesse pontos isolados, e $[34,36] \cup [125,127]$ se não tivesse pontos isolados, e $[34,36] \cup [34,36] \cup [34,36]$ se só tivesse pontos isolados. Se $S = \emptyset$, deve escrever $[34,36] \cup [34,36] \cup [34,36]$
- **3.** Resolver os problemas "Bacalhaus congelados" e "Construção de mapa". A estrutura de dados que representará o grafo deve ser baseada em listas de adjacências (adaptar a definição que consta do arquivo disponibilizado). Analisar a **complexidade** temporal assintótica dos algoritmos implementados.