

Detecting Migrating Birds at Night

Microsoft Research Jia-Bin Huang¹, Rich Caruana², Andrew Farnsworth³, Steve Kelling³, and Narendra Ahuja¹ CVPR 2016

The Cornell Lab 1 University of Illinois, Urbana-Champaign, 2 Microsoft Research, 3 Cornell Lab of Ornithology

http://bit.ly/bird_detection

Goal

Automatic bird detection from stereo sequences

Existing Solutions

- Satellite tracking -> expensive
- indirect/inaccurate Weather radar
- Moon watching -> labor-intensive

Challenges

- Small targets
- Unknown trajectory
- Very low SNR

Method

Foreground detection Background subtraction

Geometry verification

RANSAC with stereo vision constraints

Trajectory verification

- Integrating along hypothesized bird trajectory
- Handling uncertainty using generalized distance transform

Experimental Results

Data collection

- Near IR VGA momo camera x2
- Two meters baseline
- Spring migration
- 20 mins

Evaluation

Statistics

