Lime Microsystems Limited

Surrey Tech Centre Occam Road The Surrey Research Park Guildford Surrey GU2 7YG United Kingdom

S – Parameter measurements of the LMS6002D Transceiver

Application Note

Chip version: LMS6002

Chip revision: Dr2
Document version: 1.0
Document revision: 1

Last modified: 02/10/2013 11:50:00

Contents

1. Introd	luction	
1.1	S-parameter accuracy	
1.2	Limitations of S-parameter measurements	
2. Lime'	s De-embedded s-parameter files	5
2.1	LNA Files	5
2.2	Mixer External Input Files	
2.3	Transmitter Output Files	7
3. Meası	rements and de-embedding process	8
3.1	Measurement	8
3.2	De-embedding process:	9
4 I MS6	5002DFN S-Parameters	10
4. LIVISU 4.1	LNA1 S-parameters	
4.2	LNA2 S-parameters	
4.3	LNA3 S-parameters	
4.4	Mixer input S-parameters.	
4.5	TX1 output S-parameters	
4.6	TX2 output S-parameters	
5 Lime'	s De-embedded s-parameter files	16
5.1	Verification	
Annendi	ix 1	17
A1.1	Register configuration for LNA1a.s2p (Max Gain)	
A1.2	Register configuration for LNA1b.s2p (Mid Gain)	
A1.3	Register configuration for LNA1c.s2p (Bypass)	
A1.4	Register configuration for LNA2a.s2p (Max Gain)	
A1.5	Register configuration for LNA2b.s2p (Mid Gain)	
A1.6	Register configuration for LNA2c.s2p (Bypass)	
A1.7	Register configuration for LNA3a.s2p (Max Gain)	
A1.8	Register configuration LNA3b.s2p (Mid Gain)	
A1.9	Register configuration for ExMixa.s2p (internal termination disabled)	
A1.10		
A1.11	Register configuration for TX1a.s2p (Max gain, TxVGA2 set to 25 dB)	
A1.12		
A1.13		
A1.14		
A1.15 A1.16		
Reference	res	29

Revision History

Version 1.0r0

Released: 25/03/2013 Initial version.

Version 1.0r1

Released: 27/03/2013

Document updated.

Version 1.0r2

Released: 28/03/2013 Updated chapter 4.

Version 1.0r3

Released: 29/03/2013

Corrections in chapter 3.

Version 1.0r4

Released: 30/03/2013

Appendix added to the document.

Version 1.0r5

Released: 01/04/2013

Corrections.

Version 1.0r6

Released: 01/04/2013

Corrections.

Version 1.0r7

Released: 16/04/2013 Updated all Graphs.

Version 1.0r8

Released: 17/04/2013

Corrections.

Version 1.0r9

Released: 18/04/2013

Corrections.

Introduction

The LMS6002DFN is a versatile RF transceiver IC continuously covering a bandwidth of 300MHz to 3800MHz. This document provides a description of de-embedded 2-port S-parameter files provided for the design of matching networks in common RF CAD and EM simulators such as ADS, Sonnet EM and Microwave Office.

A brief description of the measurement procedure is given in Section 3. The S-parameters measurements are presented in Section 4. An example simulation demonstrating accuracy is given in Section 5. Detailed device settings used for the measurements are given in the Appendix.

1.1 S-parameter accuracy

Vector Network Analysers use a well defined calibration kit and procedure to ensure accuracy of S-parameter measurements at the connector of the instrument's cables. The de-embedding process can introduce errors into the derived de-embedded files. By using the de-embedded S-parameters to simulate one of the inputs of the Lime's Universal Wireless Communication Tool (UWCT) kit [1] and comparing it to measurements, we provide an evaluation of the de-embedded S-parameter accuracy.

1.2 Limitations of S-parameter measurements

Although de-embedded S-parameters provide a fast way to design a matching network, it does not contain any noise data for optimisation of noise and sensitivity. In designs where noise figure is critical it may be necessary to optimise the matching network component values to get the best noise figure or sensitivity. Alternatively it is possible to use one of Lime's reference designs for the best performance.

Although the RF outputs can also be described by S-parameters and are included in this report, it is not recommended for the design of the RF output. Like most power output stages, best performance is obtained through load pull rather than conjugate matching.

Lime's De-embedded s-parameter files

2.1 LNA Files

All three LNAs have differential inputs. Each port on the s2p file corresponds to one of the differential terminals. For best results the LNAs should be matched differentially as shown in Figure 1. Note the matching network also DC isolates the LNA from ground.

Figure 1 π -type matching network used for LNA2 matching in evaluation board

s2p files are provided for each LNA on the LMS6002DFN for a variety of gain settings. For a full list of register settings used for each file please see Appendix 1.

LNA1a.s2p (Max Gain) LNA1b.s2p (Mid Gain) LNA1c.s2p (Bypass)

LNA2a.s2p (Max Gain) LNA2b.s2p (Mid Gain) LNA2c.s2p (Bypass)

LNA3a.s2p (Max Gain) LNA3b.s2p (Mid Gain)

The narrow band inputs, LNA1 and LNA2, are very similar, with small differences in wire bonding. LNA3 is broadband and has a different S-parameter behaviour compared to LNA1 and LNA2.

2.2 Mixer External Input Files

All Mixer External Inputs are differential inputs. Each port on the s2p file corresponds to one of the differential terminals. For best results the Mixer External Inputs should be matched differentially as shown in Figure 2. Note the matching network also DC isolates the mixer from ground.

Figure 2 π -type matching network for external mixer input

ExMixa.s2p (internal termination disabled)

The two mixer external inputs are very similar with small differences in wire bonding.

2.3 Transmitter Output Files

All transmitter outputs are differential outputs. Each port on the s2p file corresponds to one of the differential terminals. For best results the transmitter outputs should be used differentially as shown in Figure 3. Note the output matching network also provides DC power to the output devices.

Figure 3 π -type matching network used for TXOUT1 matching in evaluation board

TX1a.s2p (Max gain, TxVGA2 set to 25 dB)

TX1b.s2p (Nominal gain, TxVGA2 set to 15 dB)

TX1c.s2p (Min gain, TxVGA2 set to 0 dB)

TX2a.s2p (Max gain, TxVGA2 set to 25 dB)

TX2b.s2p (Nominal gain, TxVGA2 set to 15 dB)

TX2c.s2p (Min gain, TxVGA2 set to 0 dB)

The two transmitter outputs are very similar with small differences in wire bonding.

Measurements and de-embedding process

3.1 Measurement

A test fixture (Figure 4) was made for the characterisation of the LMS6002DFN S-parameters which included a stable low loss Rogers RO4350 layer for the RF microstrip tracks. The test fixture also included a number of support test structures used to assist the de-embedding procedure.

Figure 4 Network Analyzer measurement setup

2-port S-parameters measurements were made using an Agilent E5071C Vector Network Analyzer (VNA) calibrated with an automatic Short, Open, Line and Termination (SOLT) calibration kit (Agilent N4691B) over the frequency range of 10MHz to 4500MHz.

3.2 De-embedding process:

The de-embedding procedure removes the effects of test fixture SMA connectors, DC blocks, bias components and transmission lines from the measured S-parameter data. The de-embedding procedure was carried out in ADS.

LMS6002DFN S-Parameters

This section presents graphs of the de-embedded s-parameters in Figures 5 to 16.

4.1 LNA1 S-parameters

Figure 5 LNA1 de-embedded S11 parameters. Max gain (red), Mid gain (blue line) and Bypass (magenta)

Figure 6 LNA1 de-embedded S12. Max gain (red), Mid gain (blue) and Bypass (magenta)

4.2 LNA2 S-parameters

Figure 7 LNA2 de-embedded S11 parameters. Max gain (red), Mid gain (blue) and Bypass (magenta).

Figure 8 LNA2 de-embedded S12. Max gain (red), Mid gain (blue) and Bypass (magenta)

4.3 LNA3 S-parameters

Figure 9 LNA3 de-embedded S11 parameters. Max gain (red) and Mid gain (blue)

Figure 10 LNA3 de-embedded S12. Max gain (red) and Mid gain (blue)

4.4 Mixer input S-parameters

Figure 11 Mixer input de-embedded S11 parameters. Mix input with (blue) and without (red) internal resistor termination.

Figure 12 LNA3 de-embedded S12. Mix input with (blue) and without (red) internal resistor termination

4.5 TX1 output S-parameters

Figure 13 TXout1 de-embedded S22. VGA2 set to 25 dB (red), VGA2 set 15 dB (blue) and VGA2 set to 0 dB (magenta)

Figure 14 TXout1 de-embedded S12. VGA2 set to 25 dB (red), VGA2 set 15 dB (blue line) and VGA2 set to 0 dB (magenta)

4.6 TX2 output S-parameters

Figure 15 TXout2 de-embedded S22. VGA2 set to 25 dB (red), VGA2 set 15 dB (blue) and VGA2 set to 0 dB (magenta).

Figure 16 TXout2 de-embedded S12. VGA2 set to 25 dB (red), VGA2 set 15 dB (blue) and VGA2 set to 0 dB (magenta)

Lime's De-embedded s-parameter files

5.1 Verification

The LNA2 input of the Universal Wireless Communication Tool (UWCT) kit was used to verify measured LMS6002DFN S-parameters.

A microstrip model was made in ADS of the LNA2 port on the UWCT board. The deembedded S-parameters of Section 4.2 were added to represent the input port of the LMS6002DFN. The simulated and measured 1-port S-parameters are plotted together in Figure 17. Note that the matching network has been optimized for Band I W-CDMA sensitivity.

Figure 17 LNA2 reflection coefficient (S11) simulated with de-embedded s-parameters (red) and measured (blue)

Appendix 1

A1.1 Register configuration for LNA1a.s2p (Max Gain)

LMS6002DFN register configuration for LNA1a.s2p are shown in Table 1.

Top Modules		
Register Name	Register Value	
DC_REGVAL[5:0]	Read Only	
RCCAL_LPFCAL[2:0]	Read Only	
DC_LOCK[2:0]	Read Only	
DC_CLBR_DONE	Read Only	
DC_UD	Read Only	
DC_CNTVAL[5:0]	Read Only	
DC_START_CLBR		
DC_LOAD		
DC_SRESET		
DC_ADDR[2:0]		
VER[3:0]	Read Only	
REV[3:0]	Read Only	
DECODE	User Mode	
SRESET	Inactive	
EN	Enabled	
STXEN	Powered Down	
SRXEN	Enabled	
TFWMODEA	4 Wire	
CLKSEL_LPFCAL	PLL Reference	
PD_CLKLPFCAL	Powered Down	
ENF_EN_CAL_LPFCAL	Enforce Mode Disabled	
RST_CAL_LPFCAL	Reset State	
EN_CAL_LPFCAL	Disabled	
FORCE_CODE_CAL_LPFCAL[2:0]	0X0	
BWC_LPFCAL[3:0]	14MHz	
BBBYP_RX	Disabled	
LBEN_LPFIN_RX	Disabled	

LBEN_VGA2IN_RX	Disabled		
LBEN_OPIN_RX	Disabled		
LBRFEN_RXFE[3:0]	Disabled		
CLKSEL_LPFCAL	Closed (on)		
CLK_EN[6]	PLLCLKOUT Disabled		
CLK_EN[5]	LPF CALCORE Clk Disabled		
CLK_EN[4]	Rx VGA2 DCCLK Disabled		
CLK_EN[3]	Rx LPF DCCLK Disabled		
CLK_EN[2]	Rx DSM SPI Enabled		
CLK_EN[1]	Tx LPF DCCLK Disabled		
CLK_EN[0]	Tx DSM SPI Disabled		
FDDTDD	FDD		
TDDMOD	Transmit		
PDXCOBUF	XCO buffer powered up		
SLFBXCOBUF	XCO buffer self bias enabled		
BYPXCOBUF	XCO buffer active		
PD[1]	PD_DCOREF_LPFCAL powered up		
PD[0]	RF loop back switch powered down		
RxPL	RxPLL Modules		
Register Name	Register Name Value		
NINT[8:0]	126		
NFRAC[22:0]	7995392		
DITHEN	Enabled		
DITHN[2:0]	0X1Bit(s)		
EN	Enabled		
AUTOBYP	Enabled		
DECODE	User Mode		
MODE	Fractional Mode		
SELVCO[2:0]	Low Frequency		
FRANGE[2:0]	Fvco/2		
SELOUT[1:0]	First		
EN_PFD_UP	Enabled		
OEN TSTD SX	Disabled		
PASSEN_TSTOD_SD	Disabled		
ICHP[4:0]	1200 uA		
BYPVCOREG	Bypassed		
PDVCOREG	Powered Down		
FSTVCOBG	Resistor Shorted		
OFFUP[4:0]	30uA		
VOVCOREG[3:0]	1.9V		
OFFDOWN[4:0]	0 uA		
VCOCAP[5:0]	15		
VTUNE_H	Read Only		
VTUNE_L	Read Only		
BCODE[5:0]	12		

ACODE[3:0]	0	
PD VCOCOMP SX	Enabled	
ENLOBUF	Enabled	
ENLAMP	Enabled	
TRI	Normal Mode	
POL	Normal	
PFDPD	Enabled	
ENFEEDDIV	Enabled	
ENFEEDDIV	Inverted	
BCLKSEL[1:0]	Feedback Div Out	
BINSEL	NINT/NFRAC	
BSTART	Read Only	
BSTATE	Read Only	
BSIG[22:16]	Read Only	
BSIG[15:8]	Read Only	
BSIG[7:0]	Read Only	
RxLPF	Modules	
Register Name	Register Name Value	
DC_REGVAL[5:0]	Read Only	
DC_LOCK[2:0]	Read Only	
DC_CLBR_DONE	Read Only	
DC_UD	Read Only	
DC_CNTVAL[5:0]	Read Only	
DC_START_CLBR		
DC_LOAD		
DC_SRESET		
DC_ADDR[2:0]		
BWC_LPF[3:0]	14 MHz	
EN	Enabled	
DECODE	User Mode	
BYP_EN_LPF	Normal Operation	
DCO_DACCAL_LPF[5:0]	0X1F	
RCCAL_LPF[2:0]	0X3	
PD_DCOCMP_LPF	DC Offset Comparator powered up	
PD_DCODAC_LPF	DC Offset DAC powered up	
PD_DCOREF_LPF	DC DAC Reference powered up	
PD_FIL_LPF	LPF powered up	
RxVGA2 Modules		
Register Name	Register Value	
DC_REGVAL[5:0]	Read Only	
DC_LOCK[2:0]	Read Only	
DC_CLBR_DONE	Read Only	
DC_UD	Read Only	
DC_CNTVAL[5:0]	Read Only	
DC START CLBR		

DC LOAD			
DC_LOAD			
DC_SRESET			
DC_ADDR[2:0]	10		
VCM[3:0]	12		
EN	Enabled		
DECODE	User Mode		
MIXVGA2GAIN[4:0]	3 dB		
PD[9]	DC Current Regulator powered up		
PD[8]	VGA2B DC Cal. DAC powered up		
PD[7]	VGA2B DC Cal. Comp. powered up		
PD[6]	VGA2A DC Cal. DAC powered up		
PD[5]	VGA2A DC Cal. Comp. powered up		
PD[4]	Band Gap powered up		
PD[3]	Bypass Both VGAs powered up		
PD[2]	Bypass VGA2B powered up		
PD[1]	Bypass VGA2A powered up		
PD[0]	Current Reference powered up		
VGA2GAINB[3:0]	0 dB		
VGA2GAINA[3:0]	3 dB		
RxF	RxFE Modules		
Register Name	Register Value		
DECODE	User Mode		
EN	Enabled		
IN1SEL_MIX_RXFE	To LNA Out		
DCOFF_I_RXFE[6:0]	0X7F		
INLOAD_LNA_RXFE	Internal Load Active		
DCOFF_Q_RXFE[6:0]	0X7F		
XLOAD_LNA_RXFE	External Load Disabled		
IP2TRIM_I_RXFE[6:0]	0X7F		
IP2TRIM_Q_RXFE[6:0]	0X7F		
G_LNA_RXFE[1:0]	Max Gain		
LNASEL_RXFE[1:0]	LNA 1		
CBE LNA RXFE[3:0]	0X0		
RFB_TIA_RXFE[6:0]	0X78		
CFB_TIA_RXFE[6:0]	0X0		
RDLEXT_LNA_RXFE[5:0]	0X1C		
RDLINT LNA RXFE[5:0]	0X37		
ICT MIX RXFE[3:0]	0X7		
ICT LNA RXFE[3:0]	0X7		
ICT TIA RXFE[3:0]	0X7		
ICT MXLOB RXFE[3:0]	0X7		
LOBN MIX RXFE[3:0]	0X3		
RINEN MIX RXFE	Inactive		
G FINE LNA3 RXFE[1:0]	+0 dB		
PD TIA RXFE	TIA powered up		
	porretea ap		

PD_MXLOB_RXFE	MXLOB powered up
PD_MIX_RXFE	MIX powered up
PD_LNA_RXFE	LNA powered up
ADDC M	Todules
Register Name	Register Value
EN	Enabled
DECODE	User Mode
DAC Internal Out Load Resistor	200 Ohms
DAC Ref Current Resistor	External
DAC Full Scale Output Control	5 mA
Reference Bias Resistor Adjust	20uA
Reference Bias UP	1.0X
Reference Bias Down	0
Reference Gain Adjust	1.50V
Common Mode Adjust	960mV
Reference Buffer Boost	1.0X
Input Buffer Disable	Disabled
Rx Fsync Polarity, frame start	0
Rx Interleave Mode	I, Q
DAC Clk Edge Polarity	Neg
Tx Fsync Polarity, frame start	0
Tx Interleave Mode	I, Q
ADC Sampling Phase	Rising Edge
Clock Non-Overlap Adjust	Nominal
ADC Bias Resistor Adjust	20uA
Main Bias Down	0 (Nom)
ADC Amp1 Stage1 Bias Up	20uA
ADC Amp2-4 Stage1 Bias Up	20uA
ADC Amp1 Stage2 Bias Up	20uA
ADC Amp2-4 Stage2 Bias Up	20uA
Quantizer Bias Up	20uA
Input Buffer Bias Up	20uA
Bandgap Temperature Coeff	0 (Nom)
Bandgap Gain Control	0 (Nom)
Reference Amps Bias Adjust	20uA
Reference Amps Bias UP	1.0X
Reference Amps Bias Down	0
Enable DAC	Enabled
Enable ADC1 (I Channel)	Enabled
Enable ADC2 (Q Channel)	Enabled
Enable ADC Reference	Enabled
Enable Master Reference	Enabled

Table 1 LMS6002DFN register configuration for LNA1a.s2p (Max Gain)

A1.2 Register configuration for LNA1b.s2p (Mid Gain)

The same as Table 1, except the Register values shown in Table 2.

RxFE Modules	
Register Name	Register Value
G_LNA_RXFE[1:0]	Mid Gain

Table 2 Modified register values for LNA1b.s2p (Mid Gain)

A1.3 Register configuration for LNA1c.s2p (Bypass)

The same as Table 1, except the Register values shown in Table 3.

RxFE Modules	
Register Name	Register Value
G LNA RXFE[1:0]	Bypass

Table 3 Modified register values for LNA1c.s2p (Bypass)

A1.4 Register configuration for LNA2a.s2p (Max Gain)

The same as Table 1, except the Register values shown in Table 4.

RxPLL Modules		
Register Name	Register Value	
SELOUT[1:0]	Second	
RxFE Modules		
Register Name	Register Value	
LNASEL RXFE[1:0]	LNA 2	

Table 4 Modified register values for LNA2a.s2p (Max Gain)

A1.5 Register configuration for LNA2b.s2p (Mid Gain)

The same as Table 1, except the Register values shown in Table 5.

RxPLL Modules		
Register Name Register Value		
SELOUT[1:0]	Second	
RxFE Modules		
Register Name	Register Value	

LNASEL_RXFE[1:0]	LNA 2
G_LNA_RXFE[1:0]	Mid Gain

Table 5 Modified register values for LNA2b.s2p (Mid Gain)

A1.6 Register configuration for LNA2c.s2p (Bypass)

The same as Table 1, except the Register values shown in Table 6.

RxPLL Modules		
Register Name	Register Value	
SELOUT[1:0]	Second	
RxFE Modules		
Register Name	Register Value	
LNASEL_RXFE[1:0]	LNA 2	
G_LNA_RXFE[1:0]	Bypass	

Table 6 Modified register values for LNA2c.s2p (Bypass)

A1.7 Register configuration for LNA3a.s2p (Max Gain)

The same as Table 1, except the Register values shown in Table 7.

RxPLL Modules		
Register Name Register Value		
SELOUT[1:0]	Third	
RxFE Modules		
Register Name	Register Value	
LNASEL_RXFE[1:0]	LNA 3	

Table 7 Modified register values for LNA3a.s2p (Max Gain)

A1.8 Register configuration LNA3b.s2p (Mid Gain)

The same as Table 1, except the Register values shown in Table 8.

RxPLL Modules		
Register Name	Register Value	
SELOUT[1:0]	Third	
RxFE Modules		
Register Name	Register Value	
LNASEL_RXFE[1:0]	LNA 3	
G_LNA_RXFE[1:0]	Bypass	

Table 8 Modified register values for LNA3b.s2p (Mid Gain)

A1.9 Register configuration for ExMixa.s2p (internal termination disabled)

The same as Table 1, except the Register values shown in Table 10.

RxPI	L Modules	
Register Name	Register Value	
SELOUT[1:0]	Second	
RxFE Modules		
Register Name	Register Value	
LNASEL_RXFE[1:0]	LNA 2	
IN1SEL MIX RXFE	To LNA Out	

Table 9 Modified register values for ExMixa.s2p (internal termination disabled)

A1.10 Register configuration for ExMixa Term.s2p (internal termination Enabled)

The same as Table 1, except the Register values shown in Table 10.

RxPLL Modules		
Register Name	Register Value	
SELOUT[1:0]	Second	
RxFE Modules		
Register Name	Register Value	
LNASEL_RXFE[1:0]	LNA 2	
IN1SEL MIX RXFE	To LNA Out	
RINEN_MIX_RXFE	Active	

Table 10 Modified registers values for ExMixa_Term.s2p (internal termination Enabled)

A1.11 Register configuration for TX1a.s2p (Max gain, TxVGA2 set to 25 dB)

LMS6002DFN register configuration for TX1a.s2p is shown in Table 111.

TopModules	
Register Name	Register Value
DC_REGVAL[5:0]	ReadOnly
RCCAL_LPFCAL[2:0]	ReadOnly
DC_LOCK[2:0]	ReadOnly
DC_CLBR_DONE	ReadOnly
DC_UD	ReadOnly

DC CNTVALIS:01	PoodOnly
DC_CNTVAL[5:0]	ReadOnly
DC_START_CLBR	
DC_LOAD	
DC_SRESET	
DC_ADDR[2:0]	P. 10.1
VER[3:0]	ReadOnly
REV[3:0]	ReadOnly
DECODE	UserMode
SRESET	Inactive
EN	Enabled
STXEN	Enabled
SRXEN	PoweredDown
TFWMODEA	4Wire
CLKSEL_LPFCAL	PLLReference
PD_CLKLPFCAL	PoweredDown
ENF_EN_CAL_LPFCAL	EnforceModeDisabled
RST_CAL_LPFCAL	ResetState
EN_CAL_LPFCAL	Disabled
FORCE_CODE_CAL_LPFCAL[2:0]	0X0
BWC_LPFCAL[3:0]	14MHz
BBBYP_RX	Disabled
LBEN_LPFIN_RX	Disabled
LBEN_VGA2IN_RX	Disabled
LBEN OPIN RX	Disabled
LBRFEN RXFE[3:0]	Disabled
CLKSEL LPFCAL	Closed(on)
CLK EN[6]	PLLCLKOUTDisabled
CLK EN[5]	LPFCALCOREClkDisabled
CLK EN[4]	RxVGA2DCCLKDisabled
CLK EN[3]	RxLPFDCCLKDisabled
CLK EN[2]	RxDSMSPIDisabled
CLK EN[1]	TxLPFDCCLKDisabled
CLK EN[0]	TxDSMSPIEnabled
FDDTDD	FDD
TDDMOD	Transmit
PDXCOBUF	XCObufferpoweredup
SLFBXCOBUF	XCObufferselfbiasenabled
BYPXCOBUF	XCObufferactive
PD[1]	PD DCOREF LPFCALpoweredup
PD[0]	RFloopbackswitchpowereddown
TxLPFN	
Register Name	Register Value
DC REGVAL[5:0]	ReadOnly
DC LOCK[2:0]	ReadOnly
DC CLBR DONE	ReadOnly
DC_CEDIC_DONE	ReadOnly

DC UD	ReadOnly
DC CNTVAL[5:0]	ReadOnly
DC START CLBR	ricua o my
DC LOAD	
DC SRESET	
DC ADDR[2:0]	
BWC LPF[3:0]	14MHzMHz
EN	Enabled
DECODE	UserMode
BYP EN LPF	NormalOperation
DCO DACCAL LPF[5:0]	0X1F
TX DACBUF EN	TXDACBufferspoweredup
RCCAL LPF[2:0]	0X3
PD DCOCMP LPF	DCOffsetComparatorpoweredup
PD DCODAC LPF	DCOffsetDACpoweredup
PD DCOREF LPF	DCDACReferencepoweredup
PD FIL LPF	LPFpoweredup
_	Modules
Register Name	Register Value
EN	Enabled
DECODE	UserMode
VGA1GAIN[4:0]	-14dB
VGA1DC I[7:0]	0mV
VGA1DC Q[7:0]	0mV
VGA2PA	PA1Selected
PD_DRVAUX	PoweredDown
PD_PKDET	PoweredDown
VGA2GAIN[4:0]	25dB
ENVD[2]	ReferenceDC
ENVD[1:0]	AUXPAEDoutput
PKDBW[3:0]	0
LOOPBBEN[1:0]	SwitchesOpen
FST_PKDET	Switchopen
FST_TXHFBIAS	Switchopen
ICT_TXLOBUF[3:0]	4
VBCAS_TXDRV[3:0]	0
ICT_TXMIX[4:0]	12
ICT_TXDRV[4:0]	12
PW_VGA1_I	VGA1Ipoweredup
PW_VGA1_Q	VGA1Qpoweredup
PD_TXDRV	PA1,PA2,AUXPAEnabled
PD_TXLOBUF	TxLOBUFEnabled
PD_TXMIX	MIXandVGA2poweredup
VGA1GAINT[7:0]	-14dB
G_TXVGA2[8:0]	0

A1.12 Register configuration for TX1b.s2p (Nominal gain, TxVGA2 set to 15 dB)

The same as Table 1, except the Register values shown in Table 12.

TxFE Modules	
Register Name	Register Value
VGA2GAIN[4:0]	15dB

Table 12 Modified register values for TX1b.s2p (Nominal gain, TxVGA2 set to 15 dB)

A1.13 Register configuration for TX1c.s2p (Min gain, TxVGA2 set to 0 dB)

The same as Table 1, except the Register values shown in Table 13.

TxFE Modules	
Register Name	Register Value
VGA2GAIN[4:0]	0 dB

Table 13 Modified register values for TX1c.s2p (Min gain, TxVGA2 set to 0 dB)

A1.14 Register configuration for TX2a.s2p (Max gain, TxVGA2 set to 25 dB)

The same as Table 1, except the Register values shown in Table 14.

TxFE Modules	
Register Name	Register Value
VGA2PA	PA2Selected

Table 14 Modified register values for TX2a.s2p (Max gain, TxVGA2 set to 25 dB)

A1.15 Register configuration for TX2b.s2p (Nominal gain, TxVGA2 set to 15 dB)

The same as Table 1, except the Register values shown in Table 15.

TxFE Modules	
Register Name	Register Value
VGA2PA	PA2Selected
VGA2GAIN[4:0]	15 dB

Table 15 Modified register values for TX2b.s2p (Nominal gain, TxVGA2 set to 15 dB)

A1.16 Register configuration for TX2c.s2p (Min gain, TxVGA2 set to 0 dB)

The same as Table 1, except the Register values shown in Table 16.

TxFE Modules	
Register Name	Register Value
VGA2PA	PA2Selected
VGA2GAIN[4:0]	0 dB

Table 16 Modified register values for TX2c.s2p (Min gain, TxVGA2 set to 0 dB)

References

[1] <u>http://www.limemicro.com/products/wireless_comms_toolkit.php?sector=consumer</u>