The Path Poset and Multipath Homology

Jason P. Smith (joint with Luigi Caputi, Carlo Collari, and Sabino Di Trani)

Nottingham Trent University

18th June 2025

Some Topology

ullet Simplicial Complex $\Delta=$ n-dimensional triangles glued along faces

Some Topology

- ullet Simplicial Complex $\Delta=$ n-dimensional triangles glued along faces
- Homology = "Holes", β_k = number of holes in dimension k β_0 = connected components, β_1 = holes, β_2 = spheres, ...

$$\beta_0 = 1 \quad \beta_1 = 2 \quad \beta_2 = 1$$

Some Topology

- ullet Simplicial Complex $\Delta=$ n-dimensional triangles glued along faces
- Homology = "Holes", β_k = number of holes in dimension k β_0 = connected components, β_1 = holes, β_2 = spheres, ...
- Euler Characteristic $\chi(\Delta) = \beta_0 \beta_1 + \beta_2 \beta_3 + \cdots$

Graph Homology Theories

What is the homology of a graph?

Directed graph: bidirectional edges allowed, no self loops, no multiedges.

Directed graph: bidirectional edges allowed, no self loops, no multiedges.

A **path** is a sequence of sequential consistently oriented edges. No repeat vertices, not a cycle.

Directed graph: bidirectional edges allowed, no self loops, no multiedges.

A **path** is a sequence of sequential consistently oriented edges. No repeat vertices, not a cycle.

A multipath on a digraph is collection of disjoint paths.

Directed graph: bidirectional edges allowed, no self loops, no multiedges.

A **path** is a sequence of sequential consistently oriented edges. No repeat vertices, not a cycle.

A multipath on a digraph is collection of disjoint paths.

Multipath Poset and Complex Graph G

Multipath Poset and Complex Graph G

Multipath Poset and Complex

Graph G

Multipath Poset and Complex Graph G

Multipath Poset and Complex

Graph G

Multipath Poset and Complex Graph G

Multipath Poset and Complex Graph G

Multipath Poset and Complex

$$eta_0=1, \qquad eta_k=0 \ \ \ \ \ \ \ \ \chi(G):=\chi(X(G))=1$$

Möbius Function and Order Complex

Möbius Function and Order Complex

Möbius Function and Order Complex

Multipath Poset and Complex

Multipath Poset and Complex

Simple Examples

Digraph	Complex	χ	β_0	β_1	$\beta_k \ \forall k \geq 2$
••••	<i>n</i> -simplex	1	1	0	0
•—•	• •	2	2	0	0
	• • •	3	3	0	0
→ <	••	1	1	0	0
	\Diamond	-1	1	2	0

Simple Examples

Digraph	Complex	χ	β_0	β_1	$\beta_k \ \forall k \geq 2$
••••	<i>n</i> -simplex	1	1	0	0
••	• •	2	2	0	0
	• • •	3	3	0	0
$\longrightarrow \subset$	••	1	1	0	0
	\Leftrightarrow	-1	1	2	0

Existing homology theories cannot distinguish trees.

Complete Bidirectional Graph K_n

Bidirectional edges between every pair

Complete Bidirectional Graph K_n

Bidirectional edges between every pair

Theorem

$$\chi(K_n) = \sum_{k=1}^n (-1)^{n-k-1} \binom{n-1}{k-1} \frac{n!}{k!}$$

Complete Bidirectional Graph K_n

Bidirectional edges between every pair

Theorem

$$\chi(K_n) = \sum_{k=1}^{n} (-1)^{n-k-1} \binom{n-1}{k-1} \frac{n!}{k!}$$

Proof Sketch:

- 1. multipaths \leftrightarrow ordered set partitions
- 2. $\mu(\emptyset, m) = (-1)^{n-k-1}$, where k = # edges
- 3. # ordered partitions = Lah numbers
- 4. $\chi(G) = \text{sum of Lah numbers}$

Theorem

$$\chi(T_n) = \sum_{k=1}^n (-1)^{n-k-1} S(n,k) ,$$

where S(n, k) are the Stirling numbers of the second kind.

Theorem

$$\chi(T_n) = \sum_{k=1}^{n} (-1)^{n-k-1} S(n,k) ,$$

where S(n, k) are the Stirling numbers of the second kind.

Proof Sketch:

- 1. multipaths \leftrightarrow set partitions
- 2. $\mu(\emptyset, m) = (-1)^{n-k-1}$
- 3. # partitions = Stirling numbers

Theorem

The multipath complex of the transitive tournament is either contractible, or homotopy equivalent to a wedge of spheres.

Theorem

The multipath complex of the transitive tournament is either contractible, or homotopy equivalent to a wedge of spheres.

Proof Sketch:

I have a truly marvelous demonstration of this theorem which this slide is too small to contain

Almost Transitive Tournament R_n

Reverse the edge between source and sink

Almost Transitive Tournament R_n

Reverse the edge between source and sink

Theorem

$$\chi(\mathbb{R}_n) = \sum_{k=1}^{n-2} (-1)^{n-k-1} k S(n-2,k) ,$$

where S(n, k) are the Stirling numbers of the second kind.

Almost Transitive Tournament R_n

Reverse the edge between source and sink

Theorem

$$\chi(\mathbf{R}_n) = \sum_{k=1}^{n-2} (-1)^{n-k-1} k S(n-2,k) ,$$

where S(n, k) are the Stirling numbers of the second kind.

Proof Sketch:

- 1. Delete vertices 1 and n from R_n gives T_{n-2}
- 2. Connect 1 and n to any path of multipath, yielding kS(n-2,k)

Theorem

$$\chi(K_{n,m}) = \sum_{k=0}^{\infty} (-1)^{k+1} \binom{m}{k} \binom{n}{k} k!$$

Theorem

$$\chi(K_{n,m}) = \sum_{k=0}^{\infty} (-1)^{k+1} \binom{m}{k} \binom{n}{k} k!$$

Proof Sketch:

- 1. Multipaths = matchings, there are $\binom{m}{k} \frac{n!}{(n-k)!}$
- 2. $\mu(m) = (-1)^{k+1}$

Theorem

$$\chi(K_{n,m}) = \sum_{k=0}^{\infty} (-1)^{k+1} \binom{m}{k} \binom{n}{k} k!$$

Proof Sketch:

1. Multipaths = matchings, there are $\binom{m}{k} \frac{n!}{(n-k)!}$

2.
$$\mu(m) = (-1)^{k+1}$$

This is equivalent to the matching complex and the chessboard complex, for which it is proven in: A. Björner, et al. Chessboard complexes and matching complexes. J. London Math. Soc. (2), 49(1):25–39, 1994.

Grid Graph $I_n \times I_m$

Proposition

$$X(\mathtt{I}_n \times \mathtt{I}_m) \simeq \left\{ egin{array}{ll} * & ext{if} & n, m
eq 1 \ S^n & ext{if} & m = 1 \ S^m & ext{if} & n = 1 \end{array}
ight.$$

Future work and open questions

- Conjecture: For any digraph G on n vertices $\chi(K_n) \geq \chi(G)$.
- Betti numbers of Transitive Tournament?
- Characterisation of contractible multipath complexes
- Applications in Topological Data Analysis

The collaborators:

Luigi Caputi Carlo Collari Sabino Di Trani
University of Bologna University of Pisa Sapienza University of Rome

The paper:

On the homotopy type of multipath complexes. Mathematika (2023), 70: e12235. https://doi.org/10.1112/mtk.12235

The code:

https://github.com/JasonPSmith/path_poset

The advert:

AATRN Networks Seminar

https://sites.google.com/view/aatrn-networks-seminar

The collaborators:

Luigi Caputi Carlo Collari Sabino Di Trani
University of Bologna University of Pisa Sapienza University of Rome

The paper:

On the homotopy type of multipath complexes. Mathematika (2023), 70: e12235. https://doi.org/10.1112/mtk.12235

The code:

https://github.com/JasonPSmith/path_poset

The advert:

AATRN Networks Seminar

https://sites.google.com/view/aatrn-networks-seminar

Thanks for Listening!