Importing required Libraries

```
In [1]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import warnings
   warnings.filterwarnings('ignore')
   from haversine import haversine
   import seaborn as sns
```

Reading the data

```
In [2]: data=pd.read_csv("C:/Users/AYRUS/Desktop/nyc_taxi_trip_duration.csv")
In [3]: data.head()
Out[3]:
                     id vendor_id pickup_datetime dropoff_datetime passenger_count pickup_longitude
                                                          2016-02-29
                                         2016-02-29
           0 id1080784
                                                                                             -73.953918
                                                             16:47:01
                                           16:40:21
                                         2016-03-11
                                                          2016-03-11
              id0889885
                                                                                             -73.988312
                                           23:35:37
                                                             23:53:57
                                         2016-02-21
                                                          2016-02-21
           2 id0857912
                                                                                    2
                                                                                             -73.997314
                                           17:59:33
                                                            18:26:48
                                         2016-01-05
                                                          2016-01-05
             id3744273
                                                                                             -73.961670
                                           09:44:31
                                                             10:03:32
                                         2016-02-17
                                                          2016-02-17
             id0232939
                                                                                             -74.017120
                                           06:42:23
                                                             06:56:31
```

Performing EDA

```
In [4]: # Converting vendor_id and store_and_fwd_flag as category
    data['vendor_id']=data['vendor_id'].astype('category')
    data['store_and_fwd_flag']=data['store_and_fwd_flag'].astype('category')

In [5]: # Converting pickup_datetime and dropoff_datetime in datetime format
    data['pickup_datetime']=pd.to_datetime(data['pickup_datetime'],format='%Y-%m-%ddata['dropoff_datetime'],format='%Y-%m-%ddata['dropoff_datetime'],format='%Y-%m-%ddata['dropoff_datetime'],format='%Y-%m-%ddata['dropoff_datetime']
```

Extracting More information from datetime columns

```
In [6]: # Creating new column and storing hour value
         data['pickup hour']=data['pickup datetime'].dt.hour
 In [7]: # Creating new column and storing pickup time of day value
         data['pick time of the day']=data.pickup hour.apply(lambda y:(y%24+4)//4).replace
 In [8]: # Creating new day_of_the_week column which stores the day of week
         data['day of the week']=data.pickup datetime.apply(lambda x:x.day name())
 In [9]: # Converting trip duration in hours to second
         data['trip duration in hours']=data.trip duration.apply(lambda x: x/3600)
In [10]: data['trip duration'].sort values(ascending=False)
Out[10]: 21813
                   1939736
         259437
                     86391
                     86387
         119185
         177225
                     86378
         496391
                     86377
         672240
                         1
         102646
                         1
         533760
                         1
         512833
                         1
         622664
         Name: trip_duration, Length: 729322, dtype: int64
In [11]: data.drop(data[data['trip duration']==1939736].index,inplace=True)
```

```
Benchmark Model - Jupyter Notebook
In [12]: sns.countplot(x='passenger_count',data=data)
Out[12]: <AxesSubplot:xlabel='passenger count', ylabel='count'>
             500000
             400000
             300000
             200000
             100000
                  0
                                 ż
                                                 5
                                      3
                                      passenger_count
In [13]: data.passenger_count.value_counts()
Out[13]: 1
                517414
          2
                105097
          5
                 38926
          3
                 29692
          6
                 24107
          4
                 14050
          0
                    33
          7
                     1
          9
                     1
          Name: passenger_count, dtype: int64
```

In [14]: data=data[data['passenger count']!=0] data=data[data['passenger_count']<=6]</pre>

In [15]: data.passenger_count.value_counts()

Out[15]: 1 Name: passenger_count, dtype: int64

In [16]: #Transforming day of week - Monday (0) to Sunday (6) data['pickup day of week']=data['pickup datetime'].dt.dayofweek

```
In [17]: #Transforming pick up time of the day
         condition=[data['pick_time_of_the_day']=='Late Night',
                    data['pick time of the day']=='Early Morning',
                    data['pick_time_of_the_day']=='Morning',
                    data['pick_time_of_the_day']=='Afternoon',
                    data['pick_time_of_the_day']=='Evening',
                    data['pick time of the day']=='Night']
         choice=[0,1,2,3,4,5]
         data['pick time of the day in numbers']=np.select(condition,choice)
In [18]: # define a function to calculate distance
         def calc distance(df):
             pickup = (df['pickup latitude'], df['pickup longitude'])
             drop = (df['dropoff_latitude'], df['dropoff_longitude'])
             return haversine(pickup, drop)
In [19]: # creating a new column to store the distance value
         data['total_distance'] = data.apply(lambda x: calc_distance(x), axis = 1)
In [20]: # calculating speed
         data['speed'] = (data.total_distance/(data.trip_duration/3600))
```

Shuffling and Creating Train and Test Set

```
In [21]: from sklearn.utils import shuffle

# Shuffling the Dataset
data = shuffle(data, random_state = 42)

#creating 4 divisions
div = int(data.shape[0]/4)

# 3 parts to train set and 1 part to test set
train = data.loc[:3*div+1,:]
test = data.loc[3*div+1:]
```

```
In [22]:
          train.head()
Out[22]:
                            id vendor_id pickup_datetime
                                                            dropoff_datetime passenger_count pickup_longitud
                                                                  2016-04-13
                                                2016-04-13
             327115 id3409206
                                        1
                                                                                             1
                                                                                                      -73.99181
                                                                     20:09:14
                                                   19:13:06
                                                2016-03-09
                                                                  2016-03-09
            642546
                     id0775978
                                        1
                                                                                             2
                                                                                                      -73.99146
                                                   22:45:37
                                                                     22:54:14
                                                2016-03-23
                                                                  2016-03-23
                    id2056331
            500012
                                        1
                                                                                             2
                                                                                                      -73.98487
                                                   22:46:29
                                                                     22:53:36
                                                2016-01-01
                                                                  2016-01-01
            217796
                     id0698750
                                        2
                                                                                                      -73.94348
                                                   03:13:08
                                                                     03:31:02
                                                2016-03-08
                                                                  2016-03-08
            319765
                     id2047272
                                                                                                      -73.98135
                                                   22:12:53
                                                                     22:20:18
In [23]: test.head()
Out[23]:
                                                            dropoff_datetime
                            id
                                vendor_id pickup_datetime
                                                                             passenger_count pickup_longitud
                                                2016-02-23
                                                                  2016-02-23
                     id0107411
                                                                                                      -73.95735
            546964
                                        2
                                                                                             1
                                                   15:22:09
                                                                     15:29:57
                                                2016-06-02
                                                                  2016-06-02
            207141
                     id2054450
                                        1
                                                                                                      -73.86325
                                                   14:52:46
                                                                     15:49:14
                                                2016-06-24
                                                                  2016-06-24
            637544
                     id3748355
                                                                                                      -73.96664
                                                   09:33:41
                                                                     09:38:29
                                                2016-06-26
                                                                  2016-06-26
            721586
                     id2252210
                                        1
                                                                                             1
                                                                                                      -73.96629
                                                   22:24:27
                                                                     22:37:12
                                                 2016-01-11
                                                                  2016-01-11
                                        2
            639710 id3986761
                                                                                             1
                                                                                                      -74.00502
                                                   01:41:02
                                                                     01:49:06
In [24]:
           # storing simple mean in a new column in the test set as "simple_mean"
           test['simple mean'] = train['trip duration'].mean()
```

Importing Mean Absolute Error

```
In [25]: #calculating mean absolute error
from sklearn.metrics import mean_absolute_error as MAE

simple_mean_error = MAE(test['trip_duration'] , test['simple_mean'])
k1=simple_mean_error
print(k1)
```

619.2166118070093

Mean of trip duration with respect to day of week

```
In [26]: day_of_week = pd.pivot_table(train, values='trip_duration', index = ['day_of_the]
          day of week
Out[26]:
                          trip_duration
          day_of_the_week
                   Friday
                           991.163134
                  Monday
                           887.608527
                 Saturday
                           913.308500
                  Sunday
                           895.722581
                          1000.425391
                 Thursday
                  Tuesday
                           951.364416
               Wednesday
                           976.745333
In [27]: # initializing new column to zero
          test['day of week mean'] = 0
          # For every unique entry in day_of_the_week
          for i in train['day of the week'].unique():
           # Assign the mean value corresponding to unique entry
           test['day_of_week_mean'][test['day_of_the_week'] == str(i)] = train['trip_durat
In [28]: # Calculating mean absolute error
          day_of_week_error = MAE(test['trip_duration'] , test['day_of_week_mean'] )
          k2=day of week error
          print(k2)
          617.8423952237875
```

Mean of trip duration with respect to pick time of the day

```
In [29]: pick_time_ofday = pd.pivot_table(train, values='trip_duration', index = ['pick_time_ofday]
          pick_time_ofday
Out[29]:
                              trip_duration
           pick_time_of_the_day
                    Afternoon
                               1036.265361
                 Early Morning
                               803.841514
                      Evening
                               993.368725
                    Late Night
                               900.405327
                     Morning
                               936.597452
                        Night
                               902.440389
In [30]: # Intialising new column to 0
          test['pick time of day mean'] = 0
          # For every unique entry in pick time of the day
          for i in train['pick time of the day'].unique():
            # Assign the mean value corresponding to unique entry
            test['pick time of day mean'][test['pick time of the day'] == i] = train['trip
In [31]: # calculating mean absolute error
          pick_time_of_day_mean = MAE(test['trip_duration'] , test['pick_time_of_day_mean']
          k3=pick time of day mean
          print(k3)
```

617.2126886180122

Mean of trip duration with respect to (day of week , pick time of the day)

Out[32]:

trip_duration

		• -
day_of_the_week	pick_time_of_the_day	
Friday	Afternoon	1112.996287
	Early Morning	827.379850
	Evening	1030.498331
	Late Night	930.599739
	Morning	970.067302
	Night	963.237128
Monday	Afternoon	969.098355
	Early Morning	806.133631
	Evening	902.258530
	Late Night	824.975474
	Morning	928.543204
	Night	803.730506
Saturday	Afternoon	911.925256
	Early Morning	821.376752
	Evening	953.253432
	Late Night	1002.974466
	Morning	767.335642
	Night	930.558050
Sunday	Afternoon	974.057451
	Early Morning	861.982496
	Evening	984.909267
	Late Night	889.631985
	Morning	713.518252
	Night	865.551665
Thursday	Afternoon	1122.625688
	Early Morning	797.625035
	Evening	1039.956102
	Late Night	789.184609
	Morning	1047.875391
	Night	960.755472
Tuesday	Afternoon	1050.837115
	Early Morning	732.572561

trip_duration

```
day_of_the_week pick_time_of_the_day
                                      Evening
                                               999.479825
                                    Late Night
                                               859.441383
                                     Morning
                                              1022.606745
                                        Night
                                               859.987412
               Wednesday
                                    Afternoon
                                              1114.302747
                                 Early Morning
                                               809.201041
                                      Evening
                                              1038.884893
                                    Late Night
                                               792.122238
                                     Morning
                                              1000.712488
                                        Night
                                               889.034803
In [33]: # intialising new empty column
          test['Super mean'] = 0
          # Assigning variables to strings ( to shorten code length)
          s2 = 'day_of_the_week'
          s1 = 'pick_time_of_the_day'
          # For every Unique Value in s1
          for i in test[s1].unique():
            # For every Unique Value in s2
            for j in test[s2].unique():
              # Calculate and Assign mean to new column, corresponding to both unique value
              test['Super mean'][(test[s1] == i) & (test[s2]==str(j))] = train['trip durati
In [34]: # calculating mean absolute error
          super mean error = MAE(test['trip duration'] , test['Super mean'] )
          k4=super_mean_error
          print(k4)
```

614.2076349732165

Mean Error of trip duration with respect to vendor id and pick time of the day

```
In [35]: combine_error2 = pd.pivot_table(train, values = 'trip_duration', index = ['vendor combine_error2
```

Out[35]:

trip_duration

vendor_id	pick_time_of_the_day	
1	Afternoon	919.080553
	Early Morning	700.924005
	Evening	874.475381
	Late Night	736.865394
	Morning	845.294923
	Night	791.386258
2	Afternoon	1140.209045
	Early Morning	900.803300
	Evening	1094.252714
	Late Night	1046.911520
	Morning	1014.371861
	Night	996.309600

```
In [36]: # intialising new empty column
    test['Super_mean2'] = 0

# Assigning variables to strings ( to shorten code length)
    s3 = 'vendor_id'
    s1 = 'pick_time_of_the_day'

# For every Unique Value in s1
    for i in test[s1].unique():
        # For every Unique Value in s2
        for j in test[s3].unique():
            # Calculate and Assign mean to new column, corresponding to both unique value test['Super_mean2'][(test[s1] == i) & (test[s3]==str(j))] = train['trip_durat
```

955.9752624884534

print(k5)

In [37]: # calculating mean absolute error

k5=super mean error2

Mean Error of trip duration with respect to vendor id and day of the week

super_mean_error2 = MAE(test['trip_duration'] , test['Super_mean2'])

```
In [38]:
          combine_error3 = pd.pivot_table(train, values = 'trip_duration', index = ['vendor
          combine error3
Out[38]:
                                      trip_duration
           vendor_id day_of_the_week
                   1
                               Friday
                                        865.987889
                              Monday
                                        802.823595
                             Saturday
                                        777.348877
                              Sunday
                                        753.822135
                             Thursday
                                        887.225736
                             Tuesday
                                        847.620776
                           Wednesday
                                        876.870775
```

```
In [39]: # intialising new empty column
test['Super_mean3'] = 0

# Assigning variables to strings ( to shorten code length)
s3 = 'vendor_id'
s1 = 'day_of_the_week'

# For every Unique Value in s1
for i in test[s1].unique():
    # For every Unique Value in s2
    for j in test[s3].unique():
        # Calculate and Assign mean to new column, corresponding to both unique value
        test['Super_mean3'][(test[s1] == i) & (test[s3]==str(j))] = train['trip_durat
```

super_mean_error3 = MAE(test['trip_duration'] , test['Super_mean3'])

create data for bar plot

calculating mean absolute error

k6=super mean error3

955.9752624884534

print(k6)

In [40]:

2

Friday

Monday

Saturday

Sunday

Thursday

Tuesday

Wednesday

1099.800625

960.821436

1030.426555

1017.217663

1100.434994

1040.593231

1064.684819

```
In [41]:
         # creating data for bar plot
         create_data={'simple_mean_error':k1,
                      'day of week error':k2,
                      'pick_time_of_day_mean':k3,
                      'super_mean_error':k4,
                      'super mean error2':k5,
                      'super mean error3':k6}
         display=list(create_data.keys())
         value=list(create_data.values())
         fig = plt.figure(figsize = (10, 5))
         # creating the bar plot
         plt.bar(display, value, color ='blue',
         plt.xlabel(" test error")
         plt.ylabel("value of error")
         plt.title("MAE of TEST data")
         plt.show
```

Out[41]: <function matplotlib.pyplot.show(close=None, block=None)>

