Manifolds and its "applications"

Néstor Fernando Díaz Morera Advisers

Dr. Lino Feliciano Reséndis Ocampo Dr. Luis Manuel Tovar Sánchez

Instituto Politécnico Nacional, ESFM, Ciudad de México Seminario Departamental III

17 de septiembre de 2018

Outline

- Motivation
- Topological reviews
 - Definitions
 - Manifolds
- A Riemann Surface
 - Classical examples
 - Holomorphic mappings
 - The uniformization Theorem [Poincaré-Koebe]
- Classification problem
- "applications"
- 6 References

Figura: Timeline by Fernando.

Let M be a topological space, then

- M is **path-connected** if for any two points $a, b \in M$ there is a continuous function $f : [0,1] \to M$ such that f(0) = a and f(1) = b.
- M is **simply connected** if it is path-connected and any continuous map $g: \mathbb{S}^1 \to M$ can be contracted to a point.

Example

- Any **convex** set $B \subset \mathbb{R}^n$ is simply connected.
- \mathbb{R}^n itself is simply connected.
- For $n \ge 2$, \mathbb{S}^n is simply connected.

Let M be a topological space, then

- M is **path-connected** if for any two points $a, b \in M$ there is a continuous function $f : [0,1] \to M$ such that f(0) = a and f(1) = b.
- M is **simply connected** if it is path-connected and any continuous map $g: \mathbb{S}^1 \to M$ can be contracted to a point.

Example

- Any **convex** set $B \subset \mathbb{R}^n$ is simply connected.
- \mathbb{R}^n itself is simply connected.
- For $n \ge 2$, \mathbb{S}^n is simply connected.

Figura: Path and simply connected spaces.

Let M be a topological space. We say that M is a **topological** *n*-**manifold** if it has the following properties:

- M is a **Hausdorff space**: for every pair of distinct points $p, q \in M$, there are disjoint open subsets $U, V \subseteq M$ such that $p \in U$ and $q \in V$.
- M is second-countable: there exists a countable basis for the topology of M.
- M is **locally Euclidean of dimension** n: each point of M has a neighborhood that is homeomorphic to an open subset of \mathbb{R}^n .

 \mathbb{R}^n is a n-manifold since

- It is Hausdorff because it is a metric space.
- It is second-countable because the set of all open balls with rational centers and rational radii is a countable basis for its topology.

Let M be a topological space. We say that M is a **topological** n—**manifold** if it has the following properties:

- M is a **Hausdorff space**: for every pair of distinct points $p, q \in M$, there are disjoint open subsets $U, V \subseteq M$ such that $p \in U$ and $q \in V$.
- M is second-countable: there exists a countable basis for the topology of M.
- M is **locally Euclidean of dimension** n: each point of M has a neighborhood that is homeomorphic to an open subset of \mathbb{R}^n .

Example

 \mathbb{R}^n is a n-manifold since

- It is Hausdorff because it is a metric space.
- It is second-countable because the set of all open balls with rational centers and rational radii is a countable basis for its topology.

Let M be a two dimensional manifold. A **complex chart** on M is a homeomorphism $\varphi:U\to V$ of an open subset $U\subset M$ onto an open subset $V\subset \mathbb{C}$. The open subset U is called the *domain* of the chart φ . The chart φ is said to be *centered at* $p\in U$ if $\varphi(p)=0$.

Definition

Two complex charts $\varphi_i: U_i \to V_i$, i = 1, 2 on M are said to be **compatible** if either $U_1 \cap U_2 = \emptyset$ or the map

$$\varphi_2 \circ \varphi_1^{-1} : \varphi(U_1 \cap U_2) \to \varphi_2(U_1 \cap U_2).$$

is holomorphic (See Figure).

Figura: Compatible charts.

A **complex atlas** (or simply *atlas*) $\mathfrak A$ on M is a collection $\mathfrak A = \{\varphi_i : U_i \to V_i, i \in I\}$ of pairwise compatible complex charts whose domains cover M, i.e., $M = \bigcup_{i \in I} U_i$.

Definition

Two complex atlases $\mathfrak A$ and $\mathfrak B$ are *equivalent* if every chart of one is compatible with every chart of the other respectively.

Definition

A **complex structure** on M is a maximal complex atlas on M, or, equivalently, an equivalence class of complex atlases on M.

Definition (The definition of a Riemann Surface)

A Riemann surface is a pair (M, Σ) , where M is a connected two-dimensional manifold and Σ is a complex structure on M.

A **complex atlas** (or simply *atlas*) $\mathfrak A$ on M is a collection $\mathfrak A = \{\varphi_i : U_i \to V_i, i \in I\}$ of pairwise compatible complex charts whose domains cover M, i.e., $M = \bigcup_{i \in I} U_i$.

Definition

Two complex atlases $\mathfrak A$ and $\mathfrak B$ are *equivalent* if every chart of one is compatible with every chart of the other respectively.

Definition

A **complex structure** on M is a maximal complex atlas on M, or, equivalently, an equivalence class of complex atlases on M.

Definition (The definition of a Riemann Surface)

A Riemann surface is a pair (M, Σ) , where M is a connected two-dimensional manifold and Σ is a complex structure on M.

Example

Let $M = \mathbb{C}$, and let U be any open subset. Define $\varphi_U(x,y) = x + iy$ from (considered as a subject of \mathbb{C}) to the complex plane. This is a complex chart on \mathbb{C} . Moreover Let M be \mathbb{C} itself, considered topologically as \mathbb{R}^2 . Therefore, it is a Riemann surface which is called *complex plane*.

Example (**Sphere**.)

Let \mathbb{S}^2 denote the unit 2-sphere inside \mathbb{R}^3 , i.e.,

$$\mathbb{S}^2 = \{(x, y, t) \in \mathbb{R}^3 | x^2 + y^2 + t^2 = 1\}.$$

Consider the t=0 plane as a copy of the complex plane \mathbb{C} , with (x,y,0)being identified with z = x + iy.

Example (carrying on...)

Let's us considere the following two charts

$$U_{1} = \mathbb{S}^{2} \setminus \{(0,0,1)\}, \quad \varphi_{1}(x,y,t) = \frac{x}{1-t} + i \frac{y}{1-t}$$

$$U_{2} = \mathbb{S}^{2} \setminus \{(0,0,-1)\}, \quad \varphi_{2}(x,y,t) = \frac{x}{1+t} - i \frac{y}{1+t}$$

Since $\frac{x - iy}{1 + t} = \frac{1 - t}{x + iy}$, it follows that the transition function is

$$\varphi_2\circ\varphi_1^{-1}(z)=\frac{1}{z}$$

which is holomorphic on a domain $\varphi_1(U_1 \cap U_2) = \mathbb{C} \setminus \{0\}.$

Figura: Compatible charts on \mathbb{S}^2 .

Example (Riemann Sphere)

Let $\widehat{\mathbb{C}}=\mathbb{C}\cup\{\infty\}$ be the *one point compactification* of \mathbb{C} . Thus, $\widehat{\mathbb{C}}$ is compact Hausdorff topological such that $\widehat{\mathbb{C}}\simeq\mathbb{S}^2$. So, the complex structure is given by:

$$U_1 = \mathbb{C}, \qquad \varphi_1(z) = z$$
 $U_2 = \widehat{\mathbb{C}} \setminus \{0\}, \quad \varphi_2(z) := egin{cases} 1/z & \text{if } z
eq \infty \\ 0 & \text{if } z = \infty. \end{cases}$

Since
$$\varphi_1(U_1\cap U_2)=\varphi_2(U_1\cap U_2)=\mathbb{C}\setminus\{0\}=\mathbb{C}^*$$
, it follows
$$\varphi_2\circ\varphi_1^{-1}:\mathbb{C}^*\to\mathbb{C}^*,\ z\mapsto \frac{1}{z}$$

is holomorphic.

Let M be a Riemann surface and $Y\subset M$ a open subset. A function $f:Y\to\mathbb{C}$ is called **holomorphic**, if for every chart $\psi:U\to V$ on M the function

$$f \circ \psi^{-1} : \psi(U \cap Y) \to \mathbb{C}$$

is holomorphic in the usual sense on the open set $\psi(U \cap Y) \subset \mathbb{C}$.

Definition

Suppose M and N are Riemann surfaces. A continuous map $F:M\to N$ is called holomorphic, if for every pair of charts $\psi_1:U_1\to V_1$ on M and $\psi_2:U_2\to V_2$ on N with $f(U_1)\subset U_2$, the mapping

$$\psi_2 \circ F \circ \psi_1^{-1} : V_1 \to V_2$$

is holomorphic in the usual sense.

Figura: Morphism between Riemann surfaces.

A function $F: M \to N$ is said to be a **biholormorphic** if it is a bijective and both $F: M \to N$ and $F^{-1}: N \to M$ are holomorphic.

Figura: Morphism between Riemann surfaces.

A function $F: M \to N$ is said to be a **biholormorphic** if it is a bijective and both $F: M \to N$ and $F^{-1}: N \to M$ are holomorphic.

Are \mathbb{C} $\widehat{\mathbb{C}}$ and \mathbb{D} biholomorphic to each other?

Figura: Likely biholomorphisms among \mathbb{S}^2 , \mathbb{D} and \mathbb{C} .

Are \mathbb{C} $\widehat{\mathbb{C}}$ and \mathbb{D} biholomorphic to each other?

Figura: Likely biholomorphisms among \mathbb{S}^2 , \mathbb{D} and \mathbb{C} .

Theorem (Riemann Mapping Theorem)

Any non-empty simply connected domain $\Omega \subset \mathbb{C}$, which is not \mathbb{C} , is **biholomorphic** to the unit disc \mathbb{D} .

They aren't biholomorphic among them since:

- $\diamond \ \mu: \mathbb{C} \to \mathbb{D} \ \text{neither by Liouville's theorem}.$
- $\diamond \ \psi: \mathbb{S}^2 \to \mathbb{D}$ and $\phi: \mathbb{S}^2 \to \mathbb{C}$ neither by compactness of \mathbb{S}^2 .

However, $\mathbb H$ and $\mathbb D$ are biholomorphic via the following Möbius transformation

$$\varphi(z) = \frac{z - i}{z + i}$$

Theorem (Riemann Mapping Theorem)

Any non-empty simply connected domain $\Omega \subset \mathbb{C}$, which is not \mathbb{C} , is **biholomorphic** to the unit disc \mathbb{D} .

They aren't biholomorphic among them since:

- $\diamond \ \mu : \mathbb{C} \to \mathbb{D}$ neither by Liouville's theorem.
- $\diamond \ \psi : \mathbb{S}^2 \to \mathbb{D}$ and $\phi : \mathbb{S}^2 \to \mathbb{C}$ neither by compactness of \mathbb{S}^2 .

However, \mathbb{H} and \mathbb{D} are biholomorphic via the following Möbius transformation

$$\varphi(z) = \frac{z - i}{z + i}$$

Are there other Riemann surfaces beside \mathbb{C} , \mathbb{D} and $\widehat{\mathbb{C}}$?

Theorem (The Uniformization Theorem (Poincaré, Koebe (1907))) Every simply connected Riemann surface M is biholomorphic either to

- D (hyperbolic),
- ullet $\mathbb C$ (parabolic),
- $\widehat{\mathbb{C}}$ (elliptic).

Are there other Riemann surfaces beside \mathbb{C} , \mathbb{D} and $\widehat{\mathbb{C}}$?

Theorem (The Uniformization Theorem (Poincaré, Koebe (1907)))

Every simply connected Riemann surface M is biholomorphic either to

- D (hyperbolic),
- ℂ (parabolic),
- $\widehat{\mathbb{C}}$ (elliptic).

We know $\mathbb D$ and $\mathbb C$ aren't bilomorphic. Nonetheless, there exists a **diffeomorphism*** between them given

$$\phi(z) = \frac{z}{\sqrt{1 + \|z\|^2}}, \quad \phi^{-1}(w) = \frac{w}{\sqrt{1 - \|w\|^2}}$$

Example (*)

In \mathbb{R} , we can show

$$f:(\pi/2,\pi/2)\to\mathbb{R}$$
$$x\mapsto \tan(x)$$

is a diffeomorphism.

So, we point out the following observation:

- (Topological view) $M \cong N$ if there exists a homeomorphism $\phi: M \to N$ (topological invariant g, for instance).
- (Differential view) $M \cong N$ if there exists a **diffeomorphism** $\varphi: M \to N$.
- In general, every topological type splits into different diffeomorphy types. However, in the case of compact, orientable surface there is just one diffeomorphy type for every genus g.
- Be careful! in higher dimensions, **John Milnor** proved the topological space \mathbb{S}^7 admits 28 different differential structures.

Manifolds are used in other mathematical areas as well as physics. For instance,

- Algebraic geometry \to elliptic curves on $\mathbb C$ (cryptography) \leftarrow compact Riemann surfaces g=1.
- \circ Differential geometry \rightarrow String Theory \leftarrow physics.
- \circ Topological quantum field theory \longleftrightarrow Moduli spaces.

Manifolds are a bit like pornography: hard to define, but you know one when you see one.

S. Weinberger.

Manifolds are used in other mathematical areas as well as physics. For instance,

- o Algebraic geometry \to elliptic curves on $\mathbb C$ (cryptography) \leftarrow compact Riemann surfaces g=1.
- \circ Differential geometry \rightarrow String Theory \leftarrow physics.
- \circ Topological quantum field theory \longleftrightarrow Moduli spaces.

Manifolds are a bit like pornography: hard to define, but you know one when you see one.

S. Weinberger.

TO BE CONTINUED...

THANK YOU!

Main references I

- Otto Forster, Lectures on Riemann Surfaces, 1993.
- Jhon M, Lee, Introduction to Topological Manifolds 2000.
- Jhon M, Lee, Introduction to Smooth Manifolds 2002.
- R. Busam and E. Freitag, Complex Analysis, 2005.
- Joseph H. Silverman The Arithmetic of Elliptic Curves 1986.

Main references II

Martin Schlichenmaier.

An introduction to Riemann surfaces, Algebraic Curves and Moduli Spaces 2007.

- Stephen Lovett, Differential Geometry of Manifolds, 2010.
- J. B. Conway, Functions of one complex variable, 1978.
- B. Farb and D. Margalit, A Primer on Mapping Class Groups, Princeton University Pres, 2012