Projet 8: Réalisez un dashboard et assurez une veille technique

25/11/2024

Soukaina GUAOUA ELJADDI

Parcours Data Scientist OpenClassrooms

Plan:

- Rappel de la problématique
- Présentation du dashboard
 - Présentation des graphiques du dashboard
 - Démonstration de l'application dashboard, déployée sur le Cloud
- Présentation du travail de veille
 - Description nouvelle approche ou technique
 - Synthèse comparative des résultats

Problématique

Contexte: Société financière "Prêt à dépenser" qui propose des crédits à la consommation.

- "scoring crédit" pour calculer la probabilité qu'un client rembourse son crédit.
- un algorithme de classification (crédit accordé ou refusé)

Objectifs et Missions:

- Concevez un dashboard de credit scoring.
- Réalisez une veille technique.

Présentation des graphiques du dashboard :

Critères WCAG:

- 1. Contenu non textuel
- 2. Utilisation de la couleur
- 3. Contraste (minimum)
- 4. Redimensionnement du texte
- 5. Titre de page

Prédiction: Crédit Accordé

Probabilité de paiement : 0.73

Présentation des graphiques du dashboard :

Importance Locale des Caractéristiques

Présentation des graphiques du dashboard :

Analyse Univariée des Caractéristiques

Définition de la caractéristique sélectionnée

DAYS_EMPLOYED: Nombre de jours que le client a été employé.

POS_CNT_INSTALMENT_MIN: Le nombre minimal de paiements par versement.

Présentation des graphiques du dashboard :

Distribution de DAYS_EMPLOYED

Présentation des graphiques du dashboard :

Analyse Bi-Variée des Caractéristiques

Relation entre DAYS_EMPLOYED et POS_CNT_INSTALMENT_MIN

Présentation des graphiques du dashboard : Importance globale des caractéristiques

Démonstration de l'application dashboard, déployée sur le Cloud :

https://p7apid-ploiement-e26adgmbbclbb5rzd4ujfd.streamlit.a pp/

Description nouvelle approche ou technique : ViT (Vision

Transformer)

ViT (Vision
Transformer):
Modèle basé sur les
Transformers, adapté
à la vision par
ordinateur pour
capturer des relations
globales.

Démarche de modélisation :

- 1. Préparation des données
- 2. Extraction des caractéristiques avec Vision Transformer (ViT)
- 3. Réduction de dimension (PCA)
- 4. Clustering avec KMeans
- 5. Évaluation et Matrice de confusion

Résultats : Visualisation des clusters formés par ViT

Résultats : Matrice de confusion

Comparaison avec d'autres approches :

SIFT (Scale-Invariant Feature Transform) : Méthode basée sur l'extraction de points d'intérêt et de descripteurs locaux.

VGG16 : Réseau convolutif profond pré-entraîné, capable d'extraire des caractéristiques globales après fine-tuning.

Métriques utilisés :

ARI: Mesure la correspondance entre deux partitions (clusters vs classes réelles), allant de -1 (aucune correspondance) à 1 (parfaite correspondance).

accuracy : Pourcentage de prédictions correctes sur le total des échantillons.

F1-score : Moyenne harmonique de la précision et du rappel

Synthèse comparative des résultats

	SIFT	VGG16	Vit
ARI	0.0019	0.439	0.054
Accuracy	0.14	0.65	0.30
F1-score moyen	0.14	0.66	0.27

Limites et améliorations ViT:

Limites identifiés :

- 1. Données d'Entraînement Limitées.
- 2. Complexité Computationnelle.
- 3. Confusions Inter-Catégories.
- 4. Faible Interprétabilité.
- 5. Sensibilité aux Hyperparamètres.

Améliorations possibles:

- 1. Augmentation des Données.
- 2. Fine-Tuning du Modèle Pré-Entraîné.
- 3. Réduction de la Résolution et des Patches.
- 4. Exploration de ViT Hybrides.
- 5. Meilleure Sélection des Hyperparamètres.
- 6. Optimisation Matériel et Logiciel.

Conclusion

- Les Performances limitées de ViT sont dues à l'absence de fine-tuning, qui est crucial pour adapter le modèle aux spécificités de l'ensemble de données.
- ViT est prometteur mais nécessite de grandes quantités de données pour un apprentissage optimal.