

Speech Processing dan Music Information Retrieval

192,500

M Octaviano Pratama, S.Kom., M.Kom Director BISA Al Academy

Outline

- Course Introduction
- Speech Processing
- Music Information Retrieval
- Klasifikasi Voice Gender pada Feature low-Level Suara dengan dan Deep Neural Networks

Silabus

- Speech Processing & MIR
- Basic Feature Extraction
- ASR
- Pengolahan Sinyal Digital
- Machine Learning
- Mini Project 1
- UTS

- Research 1
- Research 2
- State-of-the-art Speech
- Mini Project 2
- Mini Project 3
- Music & Speech Apps
- UAS

Mini Project

- Mini Project 1: Klasifikasi low-level Audio dataset dengan Algoritma Machine Learning
- Mini Project 2: Building Music Dataset from collection audio files
- Mini Project 3: Music Information Retrieval

Outline

- Course Introduction
- Speech Processing
- Music Information Retrieval
- Klasifikasi Voice Gender pada Feature low-Level Suara dengan dan Deep Neural Networks

Spoken Language Processing Apps

Hi, how can I help?

Speech Translation

ASR

Machine Translation

We Need Features

Outline

- Course Introduction
- Speech Processing
- Music Information Retrieval
- Klasifikasi Voice Gender pada Feature low-Level Suara dengan dan Deep Neural Networks

Music Retrieval

Outline

- Course Introduction
- Speech Processing
- Music Information Retrieval
- Klasifikasi Voice Gender pada Feature low-Level Suara dengan dan Deep Neural Networks

Artificial Intelligence

Python Install

https://www.anaconda.com/distribution/

We Need Data!

- https://archive.ics.uci.edu/ml/index.php
- https://www.kaggle.com/datasets
- https://data.go.id/
- https://www.kaggle.com/ronitf/heart-disease-uci
- http://faculty.neu.edu.cn/yunhyan/NEU surface defect dat abase.html

Programming

Flow Classification: Voice Gender Recognition

emosi	sentiment	ZCR	sc	RMSE	SB	SROLL	SFLAT	SCON
4	3	0.430664	5395.540679	0.000003	2970.705638	8914.746094	0.305180	24.323693
4	3	0.040527	1180.375774	0.026604	1557.050021	2713.183594	0.000447	29.543887
4	3	0.068848	1617.700879	0.000417	1895.989101	3186.914062	0.007749	10.379656
4	3	0.074707	2067.990375	0.000701	1784.612375	3552.978516	0.011723	22.355055
4	3	0.065918	2118.206491	0.000601	2251.859553	4618.872070	0.010714	10.943335

meanfreq	sd	median	Q25	Q75	IQR	skew
0.059781	0.064241	0.032027	0.015071	0.090193	0.075122	12.863462
0.066009	0.067310	0.040229	0.019414	0.092666	0.073252	22.423285
0.077316	0.083829	0.036718	0.008701	0.131908	0.123207	30.757155

Flow Classification: Voice Gender Recognition

```
data low level = []
def extract low features(signal):
  zcr = librosa.feature.zero crossing rate(signal[0][0])[0, 0]
     = librosa.feature.spectral centroid(signal[0][0])[0, 0] #average freq
  sb = librosa.feature.spectral bandwidth(signal[0][0])[0, 0] #varian
  sroll = librosa.feature.spectral rolloff(signal[0][0])[0, 0] #max freq
  sflat = librosa.feature.spectral flatness(signal[0][0])[0, 0] #flat
       = librosa.feature.spectral_contrast(signal[0][0])[0, 0] #contrast
 rmse = librosa.feature.rmse(signal[0][0])[0, 0]
 mfcc = librosa.feature.mfcc(y=signal[0][0], sr=signal[0][1], n mfcc=40)
 return zcr, sc, rmse, mfcc, sb, sroll, sflat, scon
for x in audio spec:
 try:
   data low level.append(extract low features(x))
 except:
   print("Error Baca File")
```



```
from sklearn.model selection import train test split
from keras.utils import to categorical
from sklearn import preprocessing #label encoder: categorical --> numeric
from keras.utils import np utils
X = df.iloc[:, 0:df.shape[1]-1] #dataset fix yang isinya low level feature kit
y = df.iloc[:, df.shape[1]-1] #dataset fix untuk class label kita jadikan y
le = preprocessing.LabelEncoder() #panggil LE
le.fit(y)
y = le.transform(y) #ubah class yang masih text ke numeric
X train, X test, y train, y test = train test split(X, y, test size=0.1)
y train = to categorical(y train, 2) #change label to binary / categorical: [
y test = to categorical(y test, 2) #change label to binary / categorical
```

Flow Classification: Contoh Klasifikasi

Neural Networks

Inputs

Flow Classification: Machine Learning Model

Training Process

```
loss: 0.4712 - acc: 0.8066 - val_loss: 0.4341 - val_acc: 0.8494
loss: 0.4568 - acc: 0.8184 - val_loss: 0.4301 - val_acc: 0.8564
loss: 0.4561 - acc: 0.8189 - val_loss: 0.4374 - val_acc: 0.8546
loss: 0.4509 - acc: 0.8202 - val loss: 0.4273 - val acc: 0.8476
```

Flow Classification: Contoh Klasifikasi

Precision Recall + Confusion Matrix

$$ext{Precision} = rac{tp}{tp+fp}$$

$$ext{Precision} = rac{tp}{tp+fp} \qquad ext{Accuracy} = rac{tp+tn}{tp+tn+fp+fn}$$

$$ext{Recall} = rac{tp}{tp + fn}$$

$$ext{Recall} = rac{tp}{tp + fn} \hspace{1cm} F = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}}$$

```
[[249,
                            10,
                                                      01,
    0, 261,
                                                      4],
          3, 232,
                                                      0],
                0, 363,
                                                      0],
          1, 7, 16,
                                                      0],
                0, 35, 1, 15, 11,
                                                      0],
          0, 0, 0, 0, 0, 393, 1, 0, 0, 0, 0, 2, 514, 55, 2, 0, 0, 0, 0, 0,
                                                      0],
```


How many selected items are relevant?

How many items are

Recall =

Flow Classification: Evaluasi

support	f1-score	recall	precision
41 50	0.79 0.82	0.80	0.77 0.83
91	0.80	0.80	0.80