

- 免费检测
- 免费提供3天备份
- 专业数据恢复工 程师提供服务
- 数据恢复前报 价,客户确认后 工程师开始数据 修复
- 数据恢复不成功 不收费
- 与客户签订保密 协议,对客户的 数据严格保密
- 整个恢复过程不 会对客户的原盘 有任何的写操 作,以确保原盘 的数据完全。

头产生感应电流或线圈阻抗产生变化,经相关电路处理后还原成数据。因此只要能将盘片表面处理得更平滑、磁头设计得更精密以及尽量提高盘片旋转速度,就能造出容量更大、读写数据速度更快的硬盘。这是因为盘片表面处理越平、转速越快就能越使磁头离盘片表面越近,提高读、写灵敏度和速度;磁头设计越小越精密就能使磁头在盘片上占用空间越小,使磁头在一张盘片上建立更多的磁道以存储更多的数据。

二、硬盘的逻辑结构。

硬盘由很多盘片(platter)组成,每个盘片的每个面都有一个读写磁头。如果有N个盘片。就有2N个面,对应2N个磁头(Heads),从0、1、2开始编号。每个盘片被划分成若干个同心圆磁道(逻辑上的,是不可见的。)每个盘片的划分规则通常是一样的。这样每个盘片的半径均为固定值R的同心圆再逻辑上形成了一个以电机主轴为轴的柱面(Cylinders),从外至里编号为0、1、2······每个盘片上的每个磁道又被划分为几十个扇区(Sector),通常的容量是512byte,并按照一定规则编号为1、2、3······形成Cylinders×Heads×Sector个扇区。这三个参数即是硬盘的物理参数。我们下面的很多实践需要深刻理解这三个参数的意义。

三、磁盘引导原理。

3.1 MBR (master boot record) 扇区:

计算机在按下power键以后,开始执行主板bios程序。进行完一系列检测和配置以后。开始按bios中设定的系统引导顺序引导系统。假定现在是硬盘。Bios执行完自己的程序后如何把执行权交给硬盘呢。交给硬盘后又执行存储在哪里的程序呢。其实,称为mbr的一段代码起着举足轻重的作用。MBR (master boot record),即主引导记录,有时也称主引导扇区。位于整个硬盘的0柱面0磁头1扇区(可以看作是硬盘的第一个扇区),bios在执行自己固有的程序以后就会jump到mbr中的第一条指令。将系统的控制权交由mbr来执行。在总共512byte的主引导记录中,MBR的引导程序占了其中的前446个字节(偏移0H~偏移1BDH),随后的64个字节(偏移1BEH~偏移1FDH)为DPT (Disk PartitionTable,硬盘分区表),最后的两个字节"55 AA"(偏移1FEH~偏移1FFH)是分区有效结束标志。

MBR不随操作系统的不同而不同,意即不同的操作系统可能会存在相同的MBR,即使不同,MBR也不会夹带操作系统的性质。具有公共引导的特性。

我们来分析一段mbr。下面是用winhex查看的一块希捷120GB硬盘的mbr。

	ı																
Offset	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F	访问▼
0000000000	33			D0			7C		50		50				1B	7C	3飲屑. 鸓.P
0000000010	BF		06	50							СВ			07		04	?.PW瑰.螭私??
0000000020			00			75					E2						8n. .u.兣.怍?嫫
0000000030	83			49		19		2C			A0						兤.It.8,t鰻??
0000000040		AC		00		FC					0E						
0000000050	4E	10			00		2A			10	80		04			0B	N.鐵.s*榉.€~t.
0000000060	80	7E		0C		05			07					02			€~t.轴.u襽F
0000000070	46			83					21	00				В6			F 僔 ?. s. 轴. ë
0000000080	BC	81	3E	FE	7D	55	AA	74	0B	80	7E	10	00	74			紒>襛U猼.€~t葼
0000000090	В7	07		A9			1E		8B	F5	СВ	BF	05	00			?氅孅.W嫫丝奦V
00000000A0				CD				8A	C1	24	3F			DE			.??r#娏\$?槉迠 Šu
00000000B0	43	F7	E3	8B		86			06		EE			E2			C縻嬔喼?翌B麾9VV
00000000C0	0A	77	23			39				1C				ВВ			.w#r.9F.s.?.? .
0000000D0	8B			8B				13		51	4F			32		8A	婲.媀.?sQOtN2鋳Š
00000000E0		00									ВВ					CD	V.?脘奦. 华U碅 Í
00000000F0		72								F6				2B		60	.r6伽狐須0隽.t+a`
0000000100		00									6A					6A	j. j. v. v. j. h.
0000000110		6A							13			73			74	0B	.j.碆嬼?aas.Ot
0000000120		E4							D6	61	F9					61	2鋳V.?胫a Invaa
0000000130	6C	69	64	20	70	61	72	74	69	74	69	6F	6E	20	74	61	lid partition ta
0000000140	62	6C	65	00	45	72	72	6F	72	20	6C	6F	61	64	69	6E	ble.Error loadin
0000000150	67	20	6F	70	65	72	61	74	69	6E	67	20	73	79		74	g operating syst
0000000160	65	6D	00	4D	69	73	73	69	6E	67	20	6F	70	65	72	61	em.Missing opera
0000000170	74	69	6E	67	20	73	79	73	74	65	6D	00	00	00	00	00	ting system
0000000180	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0000000190	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	MBR引导代码
00000001A0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000001B0	00	00	00	00	00	20		63	33			B1		00		01	,Dc3??.€.
00000001C0	01	00		FE			3F				3D					00	DPT硬盘分区表
00000001D0	C1			FE							45					00	羭.? 丫.E?
00000001E0								005								00	- 分区省社社表
00000001F0	00	00	00	00	00	00	00	00	90	00	00	00	00	00	55	AA	
								130									

你的硬盘的MBR引导代码可能并非这样。不过即使不同,所执行的功能大体是一样的。这是wowocock关于磁盘mbr的反编译,己加了详细的注释,感兴趣可以细细研究一下。

我们看DPT部分。操作系统为了便于用户对磁盘的管理。加入了磁盘分区的概念。即将一块磁盘逻辑划分为几块。磁盘分区数目的多少只受限于C~Z的英文字母的数目,在上图DPT共64个字节中如何表示多个分区的属性呢?microsoft通过链接的方法解决了这个问题。在DPT共64个字节中,以16个字节为分区表项单位描述一个分区的属性。也就是说,第一个分区表项描述一个分区的属性,一般为基本分区。第二个分区表项描述除基本分区外的其余空间,一般而言,就是我们所说的扩展分区。这部分的大体说明见表1。

	表1 图	图2分区	表第一字段
字节位 移	字段长度	值	字段名和定义
0x01BE	ВҮТЕ	0x80	引导指示符(Boot Indicator) 指明该 分区是否是活动分 区。
0x01BF	ВҮТЕ	0x01	开始磁头(Starting He ad)
0x01C0	6位	0x01	开始扇区(Starting S ector) 只用了0~5 位。后面的两位(第6 位和第7位)被开始柱 面字段所使用
0x01C1	10位	0x00	开始柱面(Starting C ylinder) 除了开始 扇区字段的最后两位 外,还使用了1位来组 成该柱面值。开始柱 面是一个10位数,最 大值为1023
0x01C2	ВҮТЕ	0x07	系统ID(System ID) 定义了分区的类型, 详细定义,请参阅图4
0x01C3	ВҮТЕ	0xFE	结束磁头(Ending Hea d)
0x01C4	6位	0xFF	结東扇区 (Ending Sector) 只使用了0 [~] 5位。最后两位(第6、 7位)被结束柱面字段

			所使用
0x01C5	10位	0x7B	结束柱面(Ending Cyl inder)除了结束扇区 字段最后的两位外, 还使用了1位,以组成 该柱面值。结束柱面 是一个10位的数,最 大值为1023
0x01C6	DWORD	0x000 0003F	相对扇区数(Relative Sectors) 从该磁盘的 开始到该分区的开始 的位移量,以扇区来 计算
0x01CA	DWORD	0x00D AA83D	总扇区数(Total Sect ors) 该分区中的扇区 总数

注:上表中的超过1字节的数据都以实际数据显示,就是按高位到地位的方式显示。存储时是按低位到高位存储的。两者表现不同,请仔细看清楚。以后出现的表,图均同。

也可以在winhex中看到这些参数的意义:

Offset	标题	教 值
o **	Master bootstrap loader code	33 CO 8E DO BC OO 7C FB
Partition '	Table Entry #1	
1BE	80 = active partition海前分区标志	80 80表示活动,00表示非
1BF	Start head ######	1
100	Start sector #機廠を	i
1C0	Start cylinder #機柱管	0
1C2	Operating system indicator (hex	07 分包类型标志
1C3	End head 维蒙縣 英	254
1C4	End sector 海東高 を	63
1C4	End cylinder 结束柱面	891
106	Sectors preceding partition 1	63 本分区之前的扇区数
1CA	Length of partition 1 in sector	
Partition 1 1CE	Table Entry #2 80 = active partition	00
1CF	Start head	0
1D0	Start sector	1
100	Start cylinder	892
102	Operating system indicator (hex	OF
1D3	End head	254
1D4	End sector	63
1D4	End cylinder	1023
1D6	Sectors preceding partition 2	14329980
1DA	Length of partition 2 in sector	220106565
Partition '	Table Entry #3	
1DE OH	80 = active partition	00
1DF /H	Start head	0
1E0 2H	Start sector	0
1E0 2H	Start cylinder	0

说明: 每个分区表项占用16个字节,假定偏移地址从0开始。如图3的分区表项3。分区表项4同分区表项3。

- 1、0H偏移为活动分区是否标志,只能选00H和80H。80H为活动,00H为非活动。其余值对microsoft而言为非法值。
- 2、重新说明一下(这个非常重要):大于1个字节的数被以低字节在前的存储格式格式(little endian format)或称反字节顺序保存下来。低字节在前的格式是一种保存数的方法,这样,最低位的字节最先出现在十六进制数符号中。例如,相对扇区数字段的值0x3F000000的低字节在前表示为0x0000003F。这个低字节在前的格式数的十进制数为63。
- 3、系统在分区时,各分区都不允许跨柱面,即均以柱面为单位,这就是通常所说的分区粒度。有时候我们分区是输入分区的大小为7000M,分出来却是6997M,就是这个原因。 偏移2H和偏移6H的扇区和柱面参数中,扇区占6位(bit),柱面占10位(bit),以偏移6H为例,其低6位用作扇区数的二进制表示。其高两位做柱面数10位中的高两位,偏移7H组成的8位做柱面数10位中的低8位。由此可知,实际上用这种方式表示的分区容量是有限的,柱面和磁头从0开始编号,扇区从1开始编号,所以最多只能表示1024个柱面×63个扇区×256个磁头×512byte=8455716864byte。即通常的8.4GB(实际上应该是7.8GB左右)限制。实际上磁头数通常只用到255个(由汇编语言的寻址寄存器决定),即使把这3个字节按线性寻址,依然力不从心。 在后来的操作系统中,超过8.4GB的分区其实已经不通过C/H/S的方式寻址了。而是通过偏移CH~偏移FH共4个字节32位线性扇区地址来表示分区所占用的扇区总数。可知通过4个字节可以表示2³2个扇区,即2TB=2048GB,目前对于大多数计算机而言,这已经是个天文数字了。在未超过8.4GB的分区上,C/H/S的表示方法和线性扇区的表示方法所表示的分区大小是一致的。也就是说,两种表示方法是协调的。即使不协调,也以线性寻址为准。(可能在某些系统中会提示出错)。超过8.4GB的分区结束C/H/S一般填充为FEH FFH FFH。即C/H/S所能表示的最大值。有时候也会用柱面对1024的模来填充。不过这几个字节是什么其实都无关紧要了。

虽然现在的系统均采用线性寻址的方式来处理分区的大小。但不可跨柱面的原则依然没变。本分区的扇区总数加上与前一分区之间的保留扇区数目依然必须是柱面容量的整数倍。(保留扇区中的第一个扇区就是存放分区表的MBR或虚拟MBR的扇区,分区的扇区总数在线性表示方式上是不计入保留扇区的。如果是第一个分区,保留扇区是本分区前的所有扇区。

附: 分区表类型标志如图4

分区类型标志:	
00 空,mocrosoft不允许使用。	63 GNU HURD or Sys
01 FAT32	64 Novell Netware
02 XENIX root	65 Novell Netware
03 XENIX usr	70 Disk Secure Mult
04 FAT16 <32M	75 PC/IX
05 Extended	80 Old Minix
06 FAT16	81 Minix/Old Linux
07 HPFS/NTFS	82 Linux swap
08 AIX	83 Linux
09 AIX bootable	84 OS/2 hidden C:
OA OS/2 Boot Manage	85 Linux extended
OB Win95 FAT32	86 NTFS volume set
OC Win95 FAT32	87 NTFS volume set
OE Win95 FAT16	93 Amoeba
OF Win95 Extended(>8GB)	94 Amoeba BBT
10 OPUS	AO IBM Thinkpad hidden
11 Hidden FAT12	A5 BSD/386
12 Compaq diagnost	Λ6 Open BSD
16 HiddenFAT16	A7 NextSTEP
14 Hidden FAT16<32GB	B7 BSDI fs
17 Hidden HPFS/NTFS	B8 BSDI swap
18 AST Windows swap	BE Solaris boot
1B Hidden FAT32	partition
1C Hidden FAT32 partition	CO DR-DOS/Novell DOS
(using LBA-mode	secured partition
INT 13 extensions)	C1 DRDOS/sec
1E Hidden LBA VFAT partition	
24 NEC DOS	C6 DRDOS/sec
3C Partition Magic	C7 Syrinx
40 Venix 80286	DB CP/M/CTOS
41 PPC PreP Boot	E1 DOS access
42 SFS	E3 DOS R/O
4D QNX4. x	E4 SpeedStor
4E QNX4.x 2nd part	EB BeOS fs
4F QNX4.x 3rd part	F1 SpeedStor
50 Ontrack DM	F2 DOS 3.3+ secondary
51 Ontrack DM6 Aux	partition
52 CP/M	F4 SpeedStor
53 oNtRACK DM6 Aux	FE LAN step
54 OnTrack DM6	FF BBT
55 EZ-Drive	e aibs mat
56 Golden Bow WWW	sjhf.net
oc Friam Edisk	图4
61 Speed Stor	<u></u>

3.2 扩展分区:

扩展分区中的每个逻辑驱动器都存在一个类似于MBR的扩展引导记录(Extended Boot Record, EBR),也有人称之为虚拟mbr或扩展mbr,意思是一样的。扩展引导记录包括一个扩展分区表和该扇区的标签。扩展引导记录将记录只包含扩展分区中每个逻辑驱动器的第一个柱面的第一面的信息。一个逻辑驱动器中的引导扇区一般位于相对扇区32或63。但是,如果磁盘上没有扩展分区,那么就不会有扩展引导记录和逻辑驱动器。第一个逻辑驱动器的扩展分区表中的第一项指向它自身的引导扇区。第二项指向下一个逻辑驱动器的EBR。如果不存在进一步的逻辑驱动器,第二项就不会使用,而且被记录成一系列零。如果有附加的逻辑驱动器,那么第二个逻辑驱动器的扩展分区表的第一项会指向它本身的引导扇区。第二个逻辑驱动器的扩展分区表的第二项指向下一个逻辑驱动器的EBR。扩展分区表的第三项和第四项永远都不会被使用。

通过一幅4分区的磁盘结构图可以看到磁盘的大致组织形式。如图5:

京ICP备09039053号