Ejm.

Ejm.

- Este nuevo arco añadido no incluye ninguna capacidad límite, de hecho queremos maximizar el flujo por este arco.
- Maximizar el flujo sobre el arco del nodo 7 al 1 es equivalente a maximizar el número de carros que pueden atravesar de norte a sur.

Ejm.

• Las variables de decisión son las siguientes: $x_{ij} = cantidad de tráfico que fluye desde el nodo i al j$

La función objetivo que maximiza el flujo del sistema es:

 $Max x_{71}$

Ejm.

- Como todo problema de red, cada arco genera una variable y cada nodo una restricción.
- Para cada nodo, la restricción de conservación de flujo representa el requerimiento de que el flujo de salida debe ser igual al flujo de entrada.

Ejm.

• Para el nodo 1: el flujo de salida es:

$$x_{12} + x_{13} + x_{14}$$

Y el flujo de entrada es:

$$x_{71}$$

Por lo tanto la restricción para el nodo 1 es:

$$x_{12} + x_{13} + x_{14} = x_{71}$$

Ejm.

• Las restricciones de conservación de flujo de los otros 6 nodos quedan:

Flujo de Salida:

Flujo de Entrada:

Nodo 2
$$x_{23} + x_{25}$$
 = $x_{12} + x_{32}$
Nodo 3 $x_{32} + x_{34} + x_{35} + x_{36}$ = $x_{13} + x_{23}$
Nodo 4 x_{46} = $x_{14} + x_{34}$
Nodo 5 $x_{56} + x_{57}$ = $x_{25} + x_{35} + x_{65}$
Nodo 6 $x_{65} + x_{67}$ = $x_{36} + x_{46} + x_{56}$
Nodo 7 x_{71} = $x_{57} + x_{67}$

ESFOT-EPN Luis Alfredo Ponce

Ejm.

•Se requiere de restricciones adicionales que representen las capacidades de los arcos, estas 14 restricciones simples son:

$$x_{12} \le 5$$
 $x_{13} \le 6$ $x_{14} \le 5$
 $x_{23} \le 2$ $x_{25} \le 3$
 $x_{32} \le 2$ $x_{34} \le 3$ $x_{35} \le 3$ $x_{36} \le 7$
 $x_{46} \le 5$
 $x_{56} \le 1$ $x_{57} \le 8$
 $x_{65} \le 1$ $x_{67} \le 7$

Ejm. RESOLUCIÓN:

Ejm.

RESOLUCIÓN:

La capacidad máxima de flujo a través de este sistema es de 14,000 vehículos.

Por lo tanto la propuesta no va a ser suficiente para manejar el flujo en hora pico de 15,000 vehículos por hora.

Ejm. RESOLUCIÓN:

Ej.

CONTOIS es una pequeña empresa fabricante de alfombras para instalaciones en casa y oficina. Capacidad de producción, demanda, costo de producción por metro cuadrado y costo de inventorio/almacenaje por metro cuadrado para los próximos 4 trimestres se presentan en la siguiente tabla:

Ej.

TRIMESTRE	CAPACIDAD DE PRODUCCIÓN (metros cuadrados)	DEMANDA (metros cuadrados)	COSTO DE PRODUCCIÓN (\$/ metro cuadrado)	COSTO DE ALMACENAJE (\$/metro cuadrado)
1	600	400	2	0.25
2	300	500	5	0.25
3	500	400	3	0.25
4	400	400	3	0.25

Ej.

Capacidad, demanda y costos de producción varían por cada trimestre, mientras que el costo de almacenaje se mantiene constante (\$0.25 por metro cuadrado). CONTOIS desea determinar cuantos metros cuadrados de alfombra debe producir cada trimestre para minimizar el costo total de producción e inventario para los 4 trimestres.

Ej.

- Primero se debe desarrollar una red para el problema, creando cuatro nodos que corresponden a la producción en cada trimestre y cuatro nodos correspondientes a la demanda de cada trimestre.
- Cada nodo está conectado por un arco, el cual representa el número de alfombras producidas en ese periodo.

Ej.

 Para cada nodo de demanda, se tiene un arco de salida que representa la cantidad de inventario (cantidad de alfombras que se pasan al siguiente periodo)

Ej.

- El objetivo es el de determinar un programa de producción e inventario que minimice el costo total.
- •Se debe como de costumbre, modelar un problema de programación lineal estableciendo cada nodo como una restricción y cada arco como una variable.

Ej.

• x_{15} denota el número de metros cuadrados de alfombra que serán producidos en el trimestre 1. Debido a que la capacidad de producción es de 600, se tiene la siguiente restricción:

$$x_{15} \le 600$$

De igual manera con las demás restricciones:

$$x_{26} \le 300$$

$$x_{37} \le 500$$

$$x_{48} \le 400$$

Ej.

- Ahora se debe considerar la restricción por cada nodo de demanda.
- Para el nodo 5, entra un arco (el cual representa el número metros cuadrados de alfombra producidos en el trimestre 1) y sale un arco el cual representa el número de metros cuadrados de alfombra que no serán vendidos en el trimestre 1 y que serán asignados a una posible venta en el trimestre 2.

Ej.

• Por lo que queda la siguiente restricción:

$$x_{15} - x_{56} = 400$$

Para los nodos 2, 3 y 4 queda:

$$x_{56} + x_{26} - x_{67} = 500$$

$$x_{67} + x_{37} - x_{78} = 400$$

$$x_{78} + x_{48} = 400$$

Ej.

•El objetivo es minimizar el costo total de producción e inventario por lo que la función objetivo es:

$$Min 2x_{15} + 5x_{26} + 3x_{37} + 3x_{48} + 0.25x_{56} + 0.25x_{67} + 0.25x_{78}$$
$$+0.25x_{78}$$

Ej.

• El problema final queda:

s.t.
$$x_{15} \leq 600$$

$$x_{26} \leq 300$$

$$x_{37} \leq 500$$

$$x_{48} \leq 400$$

$$x_{15} - x_{56} - x_{67} = 500$$

$$x_{37} + x_{67} - x_{78} = 400$$

$$x_{48} + x_{78} = 400$$

Min $2x_{15} + 5x_{26} + 3x_{37} + 3x_{48} + 0.25x_{56} + 0.25x_{67} + 0.25x_{78}$

ESFOT-EPN Luis Alfredo Ponce 07/01/16

for all i and j

Ejm.

RESOLUCIÓN:

CONTOIS debe producir 600, 300, 400 y 400 m^2 de alfombra en los trimestres 1, 2, 3 y 4 respectivamente.

El costo total de producción e inventario será de \$5.150.

REFERENCIAS

• [1] D. Anderson, D. Sweeney, T. Williams, J. Camm and K. Martin, An introduction to management science, quantitative approaches to decision making, 13th ed. Mason, USA: South-Western CENGAGE Learning, 2012.