18.404/6.840 Lecture 4

Last time:

- Finite automata → regular expressions
- Proving languages aren't regular
- Context free grammars

Today:

- Context free grammars (CFGs) definition
- Context free languages (CFLs)
- Pushdown automata (PDA)
- Converting CFGs to PDAs
- Problem Set 2 will be posted by tomorrow on the homepage.
- Confirm your checkins are recorded on Canvas/grades.
- The 12:00 and 2pm recitations will be in 2-190, but have space for 20 people only.

Context Free Grammars (CFGs)

$$G_1$$
 $S \rightarrow 0S1$
 $S \rightarrow R$
 $R \rightarrow \epsilon$
 $S \rightarrow 0S1 \mid R$
 $R \rightarrow \epsilon$

Recall that a CFG has terminals, variables, and rules.

Grammars generate strings

- 1. Write down start variable
- 2. Replace any variable according to a rule Repeat until only terminals remain
- 3. Result is the generated string
- 4. L(G) is the language of all generated strings
- 5. We call L(G) a Context Free Language.

Example of G_1 generating a string

CFG – Formal Definition

Defn: A Context Free Grammar (CFG) G is a 4-tuple (V, Σ, R, S)

- V finite set of variables
- Σ finite set of terminal symbols
- \overline{R} finite set of rules (rule form: $V o (V \cup \Sigma)^*$)
- S start variable

For $u, v \in (V \cup \Sigma)^*$ write

- 1) $u \Rightarrow v$ if can go from u to v with one substitution step in
- 2) $u \stackrel{*}{\Rightarrow} v$ if can go from u to v with some number of substit $u \Rightarrow u_1 \Rightarrow u_2 \Rightarrow \cdots \Rightarrow u_k = v$ is called a derivat If u = S then it is a <u>derivation</u> of v.

$$L(G) = \{ w | w \in \Sigma^* \text{ and } S \stackrel{*}{\Rightarrow} w \}$$

Defn: A is a Context Free Language (CFL) if A = L(G) for so

Check-in 4.1

Which of these are valid CFGs?

$$C_1$$
: $B \to 0B1 \mid \epsilon$ C_2 : $S \to 0S \mid S1$
 $B1 \to 1B$ $R \to RR$
 $OB \to OB$

- a) \mathcal{C}_1 only
- b) C_2 only
- c) Both C_1 and C_2
- d) Neither

CFG – Example

$$G_2$$
 $E \rightarrow E+T \mid T$
 $T \rightarrow T \times F \mid F$
 $F \rightarrow (E) \mid a$

$$V = \{E, T, F\}$$

 $\Sigma = \{+, \times, (,), a\}$
 $R = \text{the 6 rules above}$
 $S = E$

Generates a+a×a

Observe that the parse tree contains additional information such as the precedence of \times over +.

If a string has two different parse trees then it is derived a and we say that the grammar is <u>ambiguous</u>.

Check-in 4.2

How many reasonable distinct meanings does the following English sentence have?

The boy saw the girl with the mirror.

- (a) 1
- (b) 2
- (c) 3 or more

Ambiguity

$$G_2 \\ \to E+T \mid T \\ T \to T\times F \mid F \\ F \to (E) \mid a$$

Both G_2 and G_3 recognize the same language, i.e., $L(G_2) = L(G_3)$. However G_2 is an unambiguous CFG and G_3 is ambiguous.

Pushdown Automata (PDA)

Operates like an NFA except can <u>write-add</u> or <u>read-remove</u> symbols from the top of stack.

Example: PDA for $D = \{0^k 1^k | k \ge 0\}$

- 1) Read 0s from input, push onto stack until read 1.
- 2) Read 1s from input, while popping 0s from stack.
- 3) Enter accept state if stack is empty. (note: acceptance only at end of input)

PDA – Formal Definition

Defn: A <u>Pushdown Automaton</u> (PDA) is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$

- Σ input alphabet
- Γ stack alphabet
- δ: $Q × Σ_ε × Γ_ε → \mathcal{P}(Q × Γ_ε)$ $δ(q, a, c) = {(r_1, d), (r_2, e)}$

Accept if some thread is in the accept state at the end of the input string.

Example: PDA for $B = \{ww^{\mathcal{R}} | w \in \{0,1\}^*\}$ Sample input:

0 1 1 1 1 0

- Read and push input symbols.
 Nondeterministically either repeat or go to (2).
- Read input symbols and pop stack symbols, compare.If ever ≠ then thread rejects.
- 3) Enter accept state if stack is empty. (do in "software")

The nondeterministic forks replicate the stack.

This language requires nondeterminism.

Our PDA model is nondeterministic.

Converting CFGs to PDAs

Theorem: If A is a CFL then some PDA recognizes A

Proof: Convert A's CFG to a PDA

IDEA: PDA begins with starting variable and guesses substitutions.

It keeps intermediate generated strings on stack. When done, compare with input.

Input:

Problem! Access below the top of stack is cheating!

Instead, only substitute variables when on the top of stack.

If a terminal is on the top of stack, pop it and compare with input. Reject if \neq .

Converting CFGs to PDAs (contd)

Theorem: If A is a CFL then some PDA recognizes A

Proof construction: Convert the CFG for *A* to the following PDA.

- Push the start symbol on the stack.
- If the top of stack is

Variable: replace with right hand side of rule (nondet choice).

a

Terminal: pop it and match with next input symbol.

If the stack is empty, accept. 3)

Example:

a

$$G_2$$
 $E \rightarrow E+T \mid T$ $T \rightarrow T \times F \mid F$ $F \rightarrow (E) \mid a$

Equivalence of CFGs and PDAs

Theorem: A is a CFL iff* some PDA recognizes A

← Done.

In book. You are responsible for knowing it is true, but not for knowing the proof.

* "iff" = "if an only if" means the implication goes both ways. So we need to prove both directions: forward (\rightarrow) and reverse (\leftarrow) .

Check-in 4.3

Is every Regular Language also a Context Free Language?

- (a) Yes
- (b) No
- (c) Not sure

Check-in 4.3

Recap

	Recognizer	Generator
Regular language	DFA or NFA	Regular expression
Context Free language	PDA	Context Free Grammar

Quick review of today

- 1. Defined Context Free Grammars (CFGs) and Context Free Languages (CFLs)
- 2. Defined Pushdown Automata(PDAs)
- 3. Gave conversion of CFGs to PDAs.