5.3 Confidence Intervals for Continuous Data

MBC 638

Data Analysis and Decision Making

2 of 37

Another Statistical Inference Method

3 of 37

Another Statistical Inference Method

Drawing a conclusion about a population

4 of 37

Another Statistical Inference Method

Drawing a conclusion about a population

Takes into account the *natural variability* in the data

Another Statistical Inference Method

Drawing a conclusion about a population

...based on a sample

Takes into account the *natural variability* in the data

6 of 37

Another Statistical Inference Method

Drawing a conclusion about a population

...based on a sample

Takes into account the *natural variability* in the data

Reasons to sample:

7 of 37

Another Statistical Inference Method

Drawing a conclusion about a population

...based on a sample

Takes into account the *natural variability* in the data

Reasons to sample:
Too time consuming

8 of 37

Another Statistical Inference Method

Drawing a conclusion about a population

...based on a sample

Takes into account the *natural variability* in the data

Reasons to sample:
Too time consuming
Too expensive

Another Statistical Inference Method

Drawing a conclusion about a population

Takes into account the *natural variability* in the data

...based on a sample

Reasons to sample:
Too time consuming
Too expensive
May require destruction

12 of 37

How Is a Confidence Interval Useful?

13 of 37

How Is a Confidence Interval Useful?

• Estimates an unknown population parameter (e.g., mean, standard deviation, variance, proportion)

14 of 37

How Is a Confidence Interval Useful?

- Estimates an unknown population parameter (e.g., mean, standard deviation, variance, proportion)
- · Gives an indication of how accurate that estimate is

How Is a Confidence Interval Useful?

- Estimates an unknown population parameter (e.g., mean, standard deviation, variance, proportion)
- · Gives an indication of how accurate that estimate is
- Also indicates how confident we are that the results are correct

16 of 37

What Is a Confidence Interval?

17 of 37

What Is a Confidence Interval?

Confidence interval: a range of values (from sample data) in which we expect the population parameter to occur

18 of 37

What Is a Confidence Interval?

Confidence interval: a range of values (from sample data) in which we expect the population parameter to occur

Parameter estimate

What Is a Confidence Interval?

Confidence interval: a range of values (from sample data) in which we expect the population parameter to occur

Parameter estimate ±

20 of 37

What Is a Confidence Interval?

Confidence interval: a range of values (from sample data) in which we expect the population parameter to occur

Parameter estimate ±

21 of 37

What Is a Confidence Interval?

Confidence interval: a range of values (from sample data) in which we expect the population parameter to occur

Parameter estimate \pm [(Confidence) × (Variability)]

22 of 37

Confidence Interval Formulas for Mean

Confidence Interval Formulas for Mean

Boundaries of interval (two sided)

Upper confidence limits for μ Lower confidence limits for μ

Confidence Interval Formulas for Mean

Boundaries of interval (two sided)

Upper confidence limits for μ Lower confidence limits for μ

Boundaries of interval (two sided)

Upper confidence limits for μ

Lower confidence limits for μ

27 of 37

Confidence Interval Formulas for Mean

Boundaries of interval (two sided)

When population standard deviation is known (not often)

Upper confidence limits for μ

$$U = \bar{x} + z^* \, \frac{\sigma}{\sqrt{n}}$$

Lower confidence limits for μ

$$L = \bar{x} - z^* \, \frac{\sigma}{\sqrt{n}}$$

28 of 37

Confidence Interval Formulas for Mean

Boundaries of interval (two sided)

When population standard deviation is known (not often)

When population standard deviation is unknown and sample size *n* is *large* (≥ 30)

Upper confidence limits for μ

$$U = \bar{x} + z^* \, \frac{\sigma}{\sqrt{n}}$$

$$U = \bar{x} + z^* \frac{\sigma}{\sqrt{n}} \qquad U = \bar{x} + z^* \frac{s}{\sqrt{n}}$$

Lower confidence limits for μ

$$L = \bar{x} - z^* \frac{\sigma}{\sqrt{n}} \qquad L = \bar{x} - z^* \frac{s}{\sqrt{n}}$$

$$L = \bar{x} - z^* \frac{s}{\sqrt{n}}$$

Boundaries of interval (two sided)

When population standard deviation is known (not often)

When population standard deviation is unknown and sample size *n* is *large* (≥ 30)

When population standard deviation is unknown and sample size n is small (< 30)

Upper confidence limits for μ

 $U = \bar{x} + z^* \frac{\sigma}{\sqrt{n}} \qquad U = \bar{x} + z^* \frac{s}{\sqrt{n}} \qquad U = \bar{x} + t \frac{s}{\sqrt{n}}$

Lower confidence limits for μ

 $L = \bar{x} - z^* \frac{\sigma}{\sqrt{n}} \qquad L = \bar{x} - z^* \frac{s}{\sqrt{n}} \qquad L = \bar{x} - t \frac{s}{\sqrt{n}}$

30 of 37

Confidence Interval Formulas for Mean

Boundaries of interval (two sided)

When population standard deviation is known (not often)

When population standard deviation is unknown and sample size n is large (≥ 30)

When population standard deviation is unknown and sample size n is small (< 30)

Upper confidence limits for μ

Lower confidence limits for μ

 $U = \bar{x} + z^* \frac{\sigma}{\sqrt{n}} \qquad U = \bar{x} + z^* \frac{s}{\sqrt{n}} \qquad U = \bar{x} + t \frac{s}{\sqrt{n}}$

 $L = \bar{x} - z^* \frac{\sigma}{\sqrt{n}}$ $L = \bar{x} - z^* \frac{s}{\sqrt{n}}$ $L = \bar{x} - t \frac{s}{\sqrt{n}}$

31 of 37

Confidence Interval Formulas for Mean

Boundaries of interval (two sided)

When population standard deviation is known (not often)

When population standard deviation is unknown and sample size n is large (\geq 30)

When population standard deviation is unknown and sample size n is small (< 30)

Upper confidence limits for μ

Lower confidence limits for μ

 $U = \bar{x} + z^* \frac{\sigma}{\sqrt{n}}$ $U = \bar{x} + z^* \frac{s}{\sqrt{n}}$ $U = \bar{x} + t \frac{s}{\sqrt{n}}$

 $L = \bar{x} - z^* \frac{\sigma}{\sqrt{n}}$ $L = \bar{x} - z^* \frac{s}{\sqrt{n}}$ $L = \bar{x} - t \frac{s}{\sqrt{n}}$

Boundaries of interval (two sided)

When population standard deviation is known (not often)

When population standard deviation is unknown and sample size *n* is *large* (≥ 30)

When population standard deviation is unknown and sample size n is small (< 30)

Upper confidence limits for μ

$$U = \bar{x} + z^* \frac{\sigma}{\sqrt{n}}$$

$$U = \bar{x} + z^* \, \frac{s}{\sqrt{n}}$$

$$U = \bar{x} + z^* \frac{\sigma}{\sqrt{n}} \qquad U = \bar{x} + z^* \frac{s}{\sqrt{n}} \qquad U = \bar{x} + t \frac{s}{\sqrt{n}}$$

Lower confidence limits for μ

$$L = \bar{x} - z^* \frac{\sigma}{\sqrt{n}} \qquad L = \bar{x} - z^* \frac{s}{\sqrt{n}} \qquad L = \bar{x} - t \frac{s}{\sqrt{n}}$$

$$L = \bar{x} - z^* \frac{s}{\sqrt{n}}$$

$$L = \bar{x} - t \frac{s}{\sqrt{s}}$$

In all cases, assume a normal distribution.

33 of 37

Confidence Interval Formulas for Mean

Boundaries of interval (two sided)

When population standard deviation is known (not often)

When population standard deviation is unknown and sample size *n* is *large* (≥ 30)

When population standard deviation is unknown and sample size n is small (< 30)

Upper confidence limits for μ

Lower confidence limits for μ

$$L = \bar{x} - z^* \frac{\sigma}{\sqrt{n}}$$

$$U = \bar{x} + z^* \frac{\sigma}{\sqrt{n}} \qquad U = \bar{x} + z^* \frac{s}{\sqrt{n}} \qquad U = \bar{x} + t \frac{s}{\sqrt{n}}$$

$$U = \bar{x} + t \frac{s}{\sqrt{n}}$$

$$L = \bar{x} - z^* \frac{\sigma}{\sqrt{n}}$$
 $L = \bar{x} - z^* \frac{s}{\sqrt{n}}$ $L = \bar{x} - t \frac{s}{\sqrt{n}}$

$$L = \bar{x} - t \frac{s}{\sqrt{n}}$$

In all cases, assume a normal distribution.

Boundaries of interval (two sided)

When population standard deviation is known (not often)

When population standard deviation is unknown and sample size *n* is *large* (≥ 30)

When population standard deviation is unknown and sample size n is small (< 30)

Upper confidence limits for μ

 $U = \bar{x} + z^* \frac{\sigma}{\sqrt{n}} \qquad U = \bar{x} + z^* \frac{s}{\sqrt{n}} \qquad U = \bar{x} + t \frac{s}{\sqrt{n}}$

Lower confidence limits for μ

 $L = \bar{x} - z^* \frac{\sigma}{\sqrt{n}} \qquad L = \bar{x} - z^* \frac{s}{\sqrt{n}} \qquad L = \bar{x} - t \frac{s}{\sqrt{n}}$

In all cases, assume a normal distribution.

35 of 37

Confidence Interval Formulas for Mean

Boundaries of interval (two sided)

When population standard deviation is known (not often)

When population standard deviation is unknown and sample size *n* is *large* (≥ 30)

When population standard deviation is unknown and sample size n is small (< 30)

Upper confidence limits for μ

Lower confidence limits for μ

 $U = \bar{x} + z^* \frac{\sigma}{\sqrt{n}} \qquad U = \bar{x} + z^* \frac{s}{\sqrt{n}} \qquad U = \bar{x} + t \frac{s}{\sqrt{n}}$

 $L = \bar{x} - z^* \frac{\sigma}{\sqrt{n}}$ $L = \bar{x} - z^* \frac{s}{\sqrt{n}}$ $L = \bar{x} - t \frac{s}{\sqrt{n}}$

- In all cases, assume a normal distribution.
- Find z* and t-values in Table D, p. T-11.

Doundarias
Boundaries
of interval
(two sided)

When population standard deviation is known (not often)

When population standard deviation is unknown and sample size *n* is *large* (≥ 30)

When population standard deviation is unknown and sample size n is small (< 30)

Upper confidence limits for μ

 $U = \bar{x} + z^* \frac{\sigma}{\sqrt{n}} \qquad U = \bar{x} + z^* \frac{s}{\sqrt{n}} \qquad U = \bar{x} + t \frac{s}{\sqrt{n}}$

Lower confidence limits for μ

 $L = \bar{x} - z^* \frac{\sigma}{\sqrt{n}} \qquad L = \bar{x} - z^* \frac{s}{\sqrt{n}} \qquad L = \bar{x} - t \frac{s}{\sqrt{n}}$

- In all cases, assume a normal distribution.
- Find z^* and t-values in Table D, p. T-11.

37 of 37

Confidence Interval Formulas for Mean

Boundaries of interval (two sided)

When population standard deviation is known (not often)

When population standard deviation is unknown and sample size *n* is *large* (≥ 30)

When population standard deviation is unknown and sample size n is small (< 30)

Upper confidence limits for μ

confidence limits for μ

Lower

 $U = \bar{x} + z^* \frac{\sigma}{\sqrt{n}} \qquad U = \bar{x} + z^* \frac{s}{\sqrt{n}} \qquad U = \bar{x} + t \frac{s}{\sqrt{n}}$

 $L = \bar{x} - z^* \frac{\sigma}{\sqrt{n}}$ $L = \bar{x} - z^* \frac{s}{\sqrt{n}}$ $L = \bar{x} - t \frac{s}{\sqrt{n}}$

df = n - 1

- In all cases, assume a normal distribution.
- Find z* and t-values in Table D, p. T-11.