

# 飞行力学 Flight Mechanics

Chen, Song (陈松)

School of General Engineering (SGE)

chensong@buaa.edu.cn; Office: D-1109

### **Contents**

- Common Coordinate Frames
- Transformation Matrices and Angles
- Equation of Motion in General Form

## Question

- How to track a fighter jet
- How to describe its attitude?
- How to describe its motion?



## The Earth Axis System



## **The Body-fixed Frame**



## **The Body-fixed Frame**



### **Aircraft Yaw Motion**



 $Source: \underline{https://howthingsfly.si.edu/flight-dynamics/roll-pitch-and-yaw}$ 

### **Aircraft Roll Motion**



Source: <a href="https://howthingsfly.si.edu/flight-dynamics/roll-pitch-and-yaw">https://howthingsfly.si.edu/flight-dynamics/roll-pitch-and-yaw</a>

### **Aircraft Pitch Motion**



Source: <a href="https://howthingsfly.si.edu/flight-dynamics/roll-pitch-and-yaw">https://howthingsfly.si.edu/flight-dynamics/roll-pitch-and-yaw</a>

## **The Aerodynamic Frame**



## **The Aerodynamic Frame**



### **The Kinematic Frame**



## The Ground Speed



If there's no wind (air is still), the ground speed equals to the true airspeed

 $Ox_A$  coincides with  $Ox_K$ 

### The Newton's Law

- Newton's laws only hold for Inertial frame
- A rotating frame of reference is not an inertial frame
- We assume earth is inertial frame of reference

$$\vec{F} = m \frac{d\vec{V}}{dt}$$

## **Assumptions**

### 1. the earth is non-rotating



## **Assumptions**

#### 2. the earth is flat



Centrifugal Force  $\approx 0$ 

## **Assumptions**

### 3. the gravity is constant

Gravitational acceleration at h altitude:

$$g_h = g_0 \frac{R_e^2}{(R_e + h)^2}$$

Since:  $R_e \gg h$ 

We have:  $g_h \approx g_0$ 

## **Summary**

#### Inertial coordinate frames

• Earth axis system:  $(O_g, x_g, y_g, z_g)$ 

#### Other common coordinate frames

- Body-fixed frame:  $(O_B, x_B, y_B, z_B)$
- Aerodynamic frame:  $(O_A, x_A, y_A, z_A)$
- Kinematic frame:  $(O_K, x_K, y_K, z_K)$

## Summary

#### Inertial coordinate frames

• Earth axis system:  $(O_g, x_g, y_g, z_g)$ 

#### Other common coordinate frames

- Body-fixed frame:  $(O_B, x_B, y_B, z_B)$
- Aerodynamic frame:  $(O_A, x_A, y_A, z_A)$
- Kinematic frame:  $(O_K, x_K, y_K, z_K)$

$$\vec{F} = m \frac{dV}{dt}$$

Coordinate transform

## Roadmap



### **Aircraft Attitude**



### **Aircraft Attitude**



### **Aircraft Attitude**



## Flight Path Angle



## Flight Path Angle



## The Bank Angle



## **Control Surfaces of J-20**





## **Summary**

Relate body-fixed frame to the earth axis system

Yaw angle 偏航角

Pitch angle 俯仰角

Roll angle 滚转角

Relate aerodynamic frame to the earth axis system

Course angle/ Flight path azimuth angle 航向角、航迹偏角

Climb angle/ Flight path elevation angle 爬升角/航迹倾角

Bank angle 速度滚转角

• Assume the angle between  $Ox_py_p$  and  $Ox_qy_q$  is  $\alpha$ 



$$\begin{bmatrix} x_q \\ y_q \end{bmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{bmatrix} x_p \\ y_p \end{bmatrix}$$
 Error in the Eq. (1.18)- (1.19) of textbook

### **Transformation Matrix**

$$L_{qp} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \quad p \to q$$



$$p \rightarrow q$$

$$L_{x}(\alpha)$$

Error in the Eq. (1.24) of textbook

### **Rotation Rule**

The rotation around x axis, y axis and z axis

$$\boldsymbol{L}_{x}(\phi) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\phi & \sin\phi \\ 0 & -\sin\phi & \cos\phi \end{bmatrix}$$

$$\boldsymbol{L}_{y}(\theta) = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$$

$$\boldsymbol{L}_{z}(\psi) = \begin{bmatrix} \cos\psi & \sin\psi & 0 \\ -\sin\psi & \cos\psi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$







### **Rotation Rule**

#### Successive rotations around coordinate system axis are <u>not</u> commutative!

Pay attention to the order of rotation when constructing a rotation matrix created through multiplication!

$$M_{321} = M_3 \cdot M_2 \cdot M_1 \neq M_1 \cdot M_2 \cdot M_3$$

Order of rotation: 1 - 2 - 3

Assume the angle between  $Ox_py_pz_p$  and  $Ox_qy_qz_q$  is  $\zeta$ ,  $\eta$ ,  $\xi$ , the transform matrix is

$$L_{qp} = L_x(\xi)L_y(\eta)L_z(\zeta)$$

The 3D  $L_{qp}$  have the same properties as 2D case.

From Earth axis system to body-fixed frame

$$(O_g, x_g, y_g, z_g) \longrightarrow (O_B, x_B, y_B, z_B)$$
 $(X, Y, Z)$ 
 $(x, y, z)$ 

- 1. Rotate ( $\psi$ ) around OZ
- 2. Rotate ( $\theta$ ) around Oy'
- 3. Rotate ( $\phi$ ) around Ox''



Consider a moving coordinate system with origin at centroid. The absolute speed and rotation speed are  $\it V$  and  $\it \omega$ 

$$\frac{dV}{dt} = \frac{dV_{x}\mathbf{i} + V_{y}\mathbf{j} + V_{z}\mathbf{k}}{dt} + \frac{dV_{y}}{dt}\mathbf{j} + \frac{dV_{z}}{dt}\mathbf{k} + V_{x}\frac{d\mathbf{i}}{dt} + V_{y}\frac{d\mathbf{j}}{dt} + V_{z}\frac{d\mathbf{k}}{dt}$$

$$\frac{dV}{dt} = \frac{\delta V}{\delta t} + V_{x}\frac{d\mathbf{i}}{dt} + V_{y}\frac{d\mathbf{j}}{dt} + V_{z}\frac{d\mathbf{k}}{dt}$$

$$\omega = \omega_{x}\mathbf{i} + \omega_{y}\mathbf{j} + \omega_{z}\mathbf{k}$$

## **Equation of Motion**

$$\frac{dV}{dt} = \frac{\delta V}{\delta t} + V_x \frac{di}{dt} + V_y \frac{dj}{dt} + V_z \frac{dk}{dt} \qquad \boldsymbol{\omega} = \omega_x \mathbf{i} + \omega_y \mathbf{j} + \omega_z \mathbf{k}$$

$$\begin{cases}
\frac{d\mathbf{i}}{dt} = \boldsymbol{\omega} \times \mathbf{i} = (\omega_x \mathbf{i} + \omega_y \mathbf{j} + \omega_z \mathbf{k}) \times \mathbf{i} = -\omega_y \mathbf{k} + \omega_z \mathbf{j} \\
\frac{d\mathbf{j}}{dt} = \boldsymbol{\omega} \times \mathbf{j} = -\omega_z \mathbf{i} + \omega_x \mathbf{k}
\end{cases}$$

$$\frac{dV}{dt} = \frac{\delta V}{\delta t} + \frac{\boldsymbol{\omega} \times V}{\delta t}$$

$$\frac{d\mathbf{k}}{dt} = \boldsymbol{\omega} \times \mathbf{k} = -\omega_x \mathbf{j} + \omega_y \mathbf{i}$$

$$\begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\boldsymbol{\omega}_x & \boldsymbol{\omega}_y & \boldsymbol{\omega}_z \\
V_x & V_y & V_z
\end{vmatrix}$$

## **Equation of Motion**



## **Equation of Motion**

Project the force in moving axis system ( $\mathbf{F} = F_x \mathbf{i} + F_y \mathbf{j} + F_z \mathbf{k}$ ), and substitute into the equation of motion. The equation of motion in general coordinate system is

$$\begin{cases} m(\frac{dV_x}{dt} + V_z\omega_y - V_y\omega_z) = F_x \\ m(\frac{dV_y}{dt} + V_x\omega_z - V_z\omega_x) = F_y \\ m(\frac{dV_z}{dt} + V_y\omega_x - V_x\omega_y) = F_z \end{cases}$$