2:18-mn-02873-RMG Date Filed 06/17/25 Entry Number 7391-42 Page 1 of 20

JX37

TRICHLOROETHYLENE, TETRACHLOROETHYLENE, AND SOME OTHER CHLORINATED AGENTS VOLUME 106

TO HUMANS

OF CARCINOGENIC RISKS

ON THE EVALUATION

TRICHLOROETHYLENE, TETRACHLOROETHYLENE, AND SOME OTHER CHLORINATED AGENTS

VOLUME 106

This publication represents the views and expert opinions of an IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, which met in Lyon, 2-9 October 2012

LYON, FRANCE - 2014

ON THE EVALUATION
OF CARCINOGENIC RISKS
TO HUMANS

IARC MONOGRAPHS

In 1969, the International Agency for Research on Cancer (IARC) initiated a programme on the evaluation of the carcinogenic risk of chemicals to humans involving the production of critically evaluated monographs on individual chemicals. The programme was subsequently expanded to include evaluations of carcinogenic risks associated with exposures to complex mixtures, lifestyle factors and biological and physical agents, as well as those in specific occupations. The objective of the programme is to elaborate and publish in the form of monographs critical reviews of data on carcinogenicity for agents to which humans are known to be exposed and on specific exposure situations; to evaluate these data in terms of human risk with the help of international working groups of experts in carcinogenesis and related fields; and to indicate where additional research efforts are needed. The lists of IARC evaluations are regularly updated and are available on the Internet at http:// monographs.iarc.fr/.

This programme has been supported since 1982 by Cooperative Agreement U01 CA33193 with the United States National Cancer Institute, Department of Health and Human Services. Additional support has been provided since 1986 by the European Commission Directorate-General for Employment, Social Affairs, and Inclusion, initially by the Unit of Health, Safety and Hygiene at Work, and since 2014 by the European Union Programme for Employment and Social Innovation "EaSI" (2014–2020) (for further information please consult: http://ec.europa.eu/social/easi). Support has also been provided since 1992 by the United States National Institute of Environmental Health Sciences, Department of Health and Human Services. The contents of this volume are solely the responsibility of the Working Group and do not necessarily represent the official views of the United States National Cancer Institute, the United States National Institute of Environmental Health Sciences, the United States Department of Health and Human Services, or the European Commission.

> Published by the International Agency for Research on Cancer, 150 cours Albert Thomas, 69372 Lyon Cedex 08, France [©]International Agency for Research on Cancer, 2014 On-line publication, 5 June 2014 (see Corrigenda)

Distributed by WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; email: bookorders@who.int).

Publications of the World Health Organization enjoy copyright protection in accordance with the provisions of Protocol 2 of the Universal Copyright Convention. All rights reserved.

Corrigenda to the IARC Monographs are published online at http://monographs.iarc.fr/ENG/Publications/corrigenda.php To report an error, please contact: editimo@iarc.fr

Co-funded by the European Union

The International Agency for Research on Cancer welcomes requests for permission to reproduce or translate its publications, in part or in full. Requests for permission to reproduce or translate IARC publications - whether for sale or for non-commercial distribution – should be addressed to the IARC Communications Group at: publications@iarc.fr.

The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the World Health Organization concerning the legal status of any country,

territory, city, or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.

The mention of specific companies or of certain manufacturers' products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.

The IARC Monographs Working Group alone is responsible for the views expressed in this publication.

IARC Library Cataloguing in Publication Data

Trichloroethylene, tetrachloroethylene, and some other chlorinated agents / IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (2012: Lyon, France)

(IARC monographs on the evaluation of carcinogenic risks to humans; v. 106)

- 1. Carcinogens 2. Humans 3. Neoplasms chemically induced 4. Occupational Exposure
- 5. Trichloroethylene adverse effects 6. Tetrachloroethylene adverse effects 7. Dichloroacetic Acid adverse effects
- 8. Trichloroacetic Acid adverse effects 9. Chloral Hydrate adverse effects
- I. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans II. Series

ISBN 978 92 832 45315 ISSN 1017-1606

(NLM Classification: W1)

CONTENTS

NOTE TO THE READER		
LISTAFE	PARTICIPANTS	1
LIST OF I	ARTICHANIS	
PREAMB	LE	
	NERAL PRINCIPLES AND PROCEDURES	
1.	Background	
2.	Objective and scope.	
3.	Selection of agents for review	
4.	Data for the <i>Monographs</i>	
5.	Meeting participants	
6.	Working procedures.	
	ENTIFIC REVIEW AND EVALUATION	
1.	Exposure data.	
2.	Studies of cancer in humans	
3.	Studies of cancer in experimental animals.	
4.	Mechanistic and other relevant data.	
5.	Summary	
6.	Evaluation and rationale.	
	nces.	
GENERAL	L REMARKS	3
TRICHLO	PROETHYLENE	35
1. Exp	osure Data	35
	Identification of the agent	
1.2	Production and use	37
1.3	Occurrence and exposure	40
	Regulations and guidelines	
	cer in Humans	
	Introduction	
	Cohort studies	
	Case-control studies	
	Ecological studies.	
	Meta-analyses and pooled analyses	

IARC MONOGRAPHS - 106

3.	Cancer in Experimental Animals	97
	3.1 Mouse	98
	3.2 Rat	.112
	3.3 Hamster	.117
	3.4 Administration with known carcinogens or other modifying factors	. 117
	3.5 Effects of stabilizers.	
	3.6 Carcinogenicity of metabolites	. 118
4.	Mechanistic and Other Relevant Data	
	4.1 Toxicokinetic data	. 119
	4.2 Genotoxicity and related effects	
	4.3 Non-genotoxic mechanisms of carcinogenesis.	
	4.4 Susceptibility data	
	4.5 Other adverse effects	
5.	Summary of Data Reported	
	5.1 Exposure data	
	5.2 Human carcinogenicity data	
	5.3 Animal carcinogenicity data	
	5.4 Mechanistic and other relevant data.	
6.	Evaluation	
	6.1 Cancer in humans	
	6.2 Cancer in experimental animals.	
	6.3 Overall evaluation	.189
	6.4 Rationale	.189
R	eferences	. 189
	RACHLOROETHYLENE	
1.	Exposure Data	.219
	1.1 Identification of the agent	
	1.2 Production and use	
	1.3 Occurrence and exposure	
	1.4 Regulations and guidelines	
2.	Cancer in Humans	
	2.1 Cohort studies	
	2.2 Case–control studies	
	2.3 Ecological studies.	.271
	2.4 Meta-analyses	.272
3.	Cancer in Experimental Animals	.272
	3.1 Mouse	.272
	3.2 Rat	.277
	3.3 Studies with mixtures of solvents	.279
	3.4 Initiation–promotion studies	.279
	3.5 Carcinogenicity of metabolites	.279

	4.	Mechanistic and Other Relevant Data	280
		4.1 Toxicokinetic data	
		4.2 Genotoxicity and related effects	292
		4.3 Non-genotoxic effects and organ toxicity	301
		4.4 Susceptibility	320
		4.5 Mechanistic considerations	322
	5.	Summary of Data Reported	325
		5.1 Exposure data	325
		5.2 Human carcinogenicity data	326
		5.3 Animal carcinogenicity data	327
		5.4 Mechanistic and other relevant data	328
	6.	Evaluation	329
		6.1 Cancer in humans	329
		6.2 Cancer in experimental animals.	329
		6.3 Overall evaluation	329
	Re	eferences.	. 329
DI	CH	LOROACETIC ACID	353
	1.	Exposure Data	353
		1.1 Identification of the agent	353
		1.2 Production and use	355
		1.3 Occurrence and exposure	355
		1.4 Regulations and guidelines	357
	2.	Cancer in Humans	357
	3.	Cancer in Experimental Animals	357
		3.1 Mouse	357
		3.2 Rat	365
		3.3 Co-administration with known carcinogens or other modifying factors	366
	4.	Mechanistic and Other Relevant Data	368
		4.1 Absorption, distribution, metabolism, and excretion	368
		4.2 Genotoxicity and related effects	368
		4.3 Non-genotoxic mechanisms of carcinogenesis.	375
		4.4 Susceptibility data	381
		4.5 Mechanistic considerations	383
	5.	Summary of Data Reported	385
		5.1 Exposure data	385
		5.2 Human carcinogenicity data	385
		5.3 Animal carcinogenicity data	385
		5.4 Mechanistic and other relevant data	
	6.	Evaluation	386
		6.1 Cancer in humans	386
		6.2 Cancer in experimental animals.	386
		6.3 Overall evaluation	
	Pο	farances	386

Date Filed 06/17/25

IARC MONOGRAPHS - 106

TRIC	CHLOROACETIC ACID	393
1.	Exposure Data	393
	1.1 Chemical and physical data	393
	1.2 Production and use	394
	1.3 Occurrence	396
	1.4 Regulations and guidelines	401
2.	Cancer in Humans	401
3.	Cancer in Experimental Animals	401
	3.1 Mouse	402
	3.2 Rat	406
	3.3 Administration with known carcinogens or other modifying factors	406
4.	Mechanistic and Other Relevant Data	
	4.1 Absorption, distribution, metabolism, and excretion	407
	4.2 Genotoxicity and related effects	413
	4.3 Nongenotoxic mechanisms of carcinogenesis	416
	4.4 Susceptibility data	426
	4.5 Mechanistic considerations	428
5.	Summary of Data Reported	429
	5.1 Exposure data.	429
	5.2 Human carcinogenicity data	429
	5.3 Animal carcinogenicity data	
	5.4 Mechanistic and other relevant data.	
6.	Evaluation	
	6.1 Cancer in humans	430
	6.2 Cancer in experimental animals.	
	6.3 Overall evaluation	430
Re	eferences	430
	ORAL AND CHLORAL HYDRATE	
1.	Exposure Data	
	1.1 Chemical and physical data	
	1.2 Production and use	
	1.3 Occurrence and exposure.	
	1.4 Regulations and guidelines	
2.	Cancer in Humans	
3.	Cancer in Experimental Animals	
	3.1 Mouse	
_	3.2 Rat	
4.	Mechanistic and Other Relevant Data	
	4.1 Toxicokinetic data	
	4.2 Genotoxicity and related effects	
	4.3 Non-genotoxic mechanisms of carcinogenesis.	462

	4.4 Susceptibility data	463
	4.5 Toxic non-cancer effects	
	4.6 Synthesis of mechanistic considerations.	
5.		
	5.1 Exposure data	
	5.2 Human carcinogenicity data	
	5.3 Animal carcinogenicity data	
	5.4 Mechanistic and other relevant data	467
6.	Evaluation	467
	6.1 Cancer in humans	467
	6.2 Cancer in experimental animals.	467
	6.3 Overall evaluation	467
	6.4 Rationale	468
Re	eferences	. 468
	2-TETRACHLOROETHANE	
1.	Exposure Data	
	1.1 Identification of the agent	
	1.2 Production and use	
	1.3 Occurrence and exposure.	
	1.4 Regulations and guidelines	
	Cancer in Humans	
3.	Cancer in Experimental Animals	
	3.1 Mouse	
	3.2 Rat	
4.	Mechanistic and Other Relevant Data	
	4.1 Absorption, distribution, metabolism and excretion.	
	4.2 Genotoxicity and related effects	
	4.3 Nongenotoxic mechanisms of carcinogenesis	
	4.4 Susceptibility	486
_	4.5 Synthesis of mechanistic considerations.	
5.	Summary of Data Reported	
	5.1 Exposure data	
	5.2 Human carcinogenicity data	
	5.3 Animal carcinogenicity data	
_	5.4 Mechanistic and other relevant data.	
6.	Evaluation.	
	6.1 Cancer in humans	
	6.2 Cancer in experimental animals.	
ъ	6.3 Overall evaluation	
Re	eferences	. 487

Date Filed 06/17/25

1,1,2,2	2-TETRACHLOROETHANE	491
1.	Exposure Data	491
	1.1 Identification of the agent	491
	1.2 Production and use	492
	1.3 Occurrence	493
	1.4 Regulations and guidelines	
2.	Cancer in Humans	
3.	Cancer in Experimental Animals	495
	3.1 Mouse	
	3.2 Rat	497
4.	Mechanistic and Other Relevant Data	498
	4.1 Absorption, distribution, metabolism and excretion	
	4.2 Genotoxicity and related effects	
	4.3 Nongenotoxic mechanisms of carcinogenesis	
	4.4 Other adverse effects.	
	4.5 Mechanistic considerations	507
5.	Summary of Data Reported	508
	5.1 Exposure data	
	5.2 Human carcinogenicity data	
	5.3 Animal carcinogenicity data	508
	5.4 Mechanistic and other relevant data.	
6.	Evaluation.	508
	6.1 Cancer in humans	508
	6.2 Cancer in experimental animals.	509
	6.3 Overall evaluation	
Re	eferences.	
LIST	OF ABBREVIATIONS	513

Date Filed 06/17/25

NOTE TO THE READER

The term 'carcinogenic risk' in the IARC Monographs series is taken to mean that an agent is capable of causing cancer. The Monographs evaluate cancer hazards, despite the historical presence of the word 'risks' in the title.

Inclusion of an agent in the Monographs does not imply that it is a carcinogen, only that the published data have been examined. Equally, the fact that an agent has not yet been evaluated in a Monograph does not mean that it is not carcinogenic. Similarly, identification of cancer sites with sufficient evidence or limited evidence in humans should not be viewed as precluding the possibility that an agent may cause cancer at other sites.

The evaluations of carcinogenic risk are made by international working groups of independent scientists and are qualitative in nature. No recommendation is given for regulation or legislation.

Anyone who is aware of published data that may alter the evaluation of the carcinogenic risk of an agent to humans is encouraged to make this information available to the Section of IARC Monographs, International Agency for Research on Cancer, 150 cours Albert Thomas, 69372 Lyon Cedex 08, France, in order that the agent may be considered for re-evaluation by a future Working Group.

Although every effort is made to prepare the *Monographs* as accurately as possible, mistakes may occur. Readers are requested to communicate any errors to the Section of IARC Monographs, so that corrections can be reported in future volumes.

Members¹

Aaron Blair [Scientist Emeritus] (Meeting Chair)

Division of Cancer Epidemiology and Genetics National Cancer Institute Rockville, MD USA

Richard J. Bull [retired]

Washington State University Richland, WA USA

Jane Caldwell

National Center for Environmental Assessment United States Environmental Protection Agency Research Triangle Park, NC USA

Barbara Charbotel

Transport, Work and Environmental Epidemiology Research Unit Claude Bernard University Lyon I Lyon France

¹ Working Group Members and Invited Specialists serve in their individual capacities as scientists and not as representatives of their government or any organization with which they are affiliated. Affiliations are provided for identification purposes only. Invited Specialists do not serve as Meeting Chair or Subgroup Chair, draft text that pertains to the description or interpretation of cancer data, or participate in the evaluations.

Each participant was asked to disclose pertinent research, employment, and financial interests. Current financial interests and research and employment interests during the past 4 years or anticipated in the future are identified here. Minor pertinent interests are not listed and include stock valued at no more than US \$1000 overall, grants that provide no more than 5% of the research budget of the expert's organization and that do not support the expert's research or position, and consulting or speaking on matters not before a court or government agency that does not exceed 2% of total professional time or compensation. All grants that support the expert's research or position and all consulting or speaking on behalf of an interested party on matters before a court or government agency are listed as significant pertinent interests.

Weihsueh Chiu

National Center for Environmental Assessment United States Environmental Protection Agency Washington, DC USA

Marlin D. Friesen

Bloomberg School of Public Health Johns Hopkins University Baltimore, MD USA

Lin Fritschi

Western Australian Institute for Medical Research The University of Western Australia Perth, WA Australia

Kathryn Z. Guyton

National Center for Environmental Assessment United States Environmental Protection Agency Washington, DC **USA**

Johnni Hansen (Subgroup Chair, Cancer in Humans)

Danish Cancer Society Research Centre Institute of Cancer Epidemiology Copenhagen Denmark

Rogene Henderson [retired]

Lovelace Respiratory Research Institute Albuquerque, NM **USA**

Hans Kromhout (Subgroup Chair, Exposure Data)

Institute for Risk Assessment Sciences **Utrecht University** Utrecht The Netherlands

Qing Lan [unable to attend]

Division of Cancer Epidemiology & Genetics National Cancer Institute Rockville, MD USA

Lawrence H. Lash

Department of Pharmacology Wayne State University School of Medicine Detroit, MI **USA**

Elsebeth Lynge

Department of Public Health University of Copenhagen Copenhagen Denmark

Ronald Melnick (Subgroup Chair, Cancer in Experimental Animals)

Ron Melnick Consulting, LLC North Logan, UT **USA**

Avima Ruder

National Institute for Occupational Safety and Health Centers for Disease Control and Prevention Cincinnati, OH **USA**

Ivan Rusyn (Subgroup Chair, Mechanistic and Other Relevant Data)

Gillings School of Global Public Health University of North Carolina Chapel Hill, NC **USA**

Cristina Villanueva Belmonte [unable to attend1

Centre for Research in Environmental Epidemiology (CREAL) Barcelona Spain

Representatives

Entry Number 7391-42

Laurent Bodin

French Agency for Food, Environment and Occupational Health Safety (ANSES) Maisons-Alfort France

Frank J. Bove

Agency for Toxic Substances and Disease Registry Centers for Disease Control and Prevention Atlanta, GA USA

Marie-Estelle Gouze

French Agency for Food, Environment and Occupational Health Safety (ANSES) Maisons-Alfort France

Jill Järnberg

European Commission Directorate-General for Employment, Social Affairs and Inclusion Luxembourg City Luxembourg

Engin Tutkun [unable to attend]

Ankara Occupational Diseases Hospital Ministry of Health Ankara Republic of Turkey

Observers²

Paul H. Dugard³

Washington, MD USA

Claire Marant Micallef

Léon Bérard Centre Department of Cancer and the Environment Lyon France

Gerard Swaen⁴

Epidemiology Health Services The Dow Chemical Company Terneuzen The Netherlands

IARC Secretariat

Robert Baan, Senior Visiting Scientist (Rapporteur, Mechanistic and Other Relevant Data) Lamia Benbrahim-Tallaa (Rapporteur, Mechanistic and Other Relevant Data) Véronique Bouvard (Rapporteur, Mechanistic and Other Relevant Data)

Fatiha El Ghissassi (Rapporteur, Mechanistic and Other Relevant Data) Yann Grosse (Rapporteur, Cancer in Experimental Animals) Neela Guha (Responsible Officer) Rachel Hanisch Béatrice Lauby-Secretan (Rapporteur, Exposure Data) Dana Loomis (Rapporteur, Cancer in Humans) Heidi Mattock (Scientific Editor) Kurt Straif (*Head of Programme*) Jelle Vlaanderen

Administrative Assistance

Entry Number 7391-42

Sandrine Egraz Brigitte Kajo Michel Javin Helene Lorenzen-Augros Annick Leroux

Production Team

Elisabeth Elbers Dorothy Russell

² Each Observer agreed to respect the Guidelines for Observers at IARC Monographs meetings. Observers did not serve as Meeting Chair or Subgroup Chair, draft any part of a Monograph, or participate in the evaluations. They also agreed not to contact participants before the meeting, not to lobby them at any time, not to send them written materials, and not to offer them meals or other favours. IARC asked and reminded Working Group Members to report any contact or attempt to influence that they may have encountered, either before or during the meeting.

³ Observer for the American Chemistry Council. Paul Dugard was Director (until September 2011) of Halogenated Solvents Industry Alliance (HSIA), an Employment-Trade Association representing manufacturers of trichloroethylene and tetrachloroethylene. He is sole proprietor of PHD Consulting which consults for HSIA. His mutual fund includes stock in chemical companies. He is sponsored by HSIA.

⁴ Observer for the European Chlorinated Solvents Association (ECSA). Gerard Swaen is employed by and holds stock in Dow Chemical company. He is sponsored by the European Chlorinated Solvents Association.

However, strong evidence of genotoxicity of DCVC, the metabolite of trichloroethylene in the kidney, supported an overall conclusion that the evidence of mechanisms of carcinogenesis in kidney is strong. There was strong evidence for liver as a target tissue for trichloroethylene from cancer and toxicity findings in experimental animals. The evidence for non-genotoxic and/ or genotoxic mechanisms of liver carcinogenesis was moderate. The available data suggested that multiple non-genotoxic mechanisms of carcinogenesis exist, and that there is the potential for genotoxic mechanisms from trichloroethylene metabolites dichloroacetic acid and chloral hydrate. The evidence for the immune system as a target tissue for trichloroethylene from findings of a generalized hypersensitivity syndrome and of alterations of immune response in humans and experimental animals was strong. Evidence from studies in humans and experimental animals identifying active metabolites or the mechanisms for cancers of the immune system was weak, being limited to studies of immunological and haematological toxicity in humans and experimental animals. The evidence for the lung as a target tissue for trichloroethylene, from cancer and toxicity findings in experimental animals, was moderate. The data supporting the mechanisms of carcinogenesis in the lung were weak. The evidence for the nervous system as a target tissue for trichloroethylene on the basis of a variety of neurobehavioural effects in studies in humans and experimental animals was strong. The relevance of these effects to the potential cancer hazard of trichloroethylene in the nervous system is unknown. The data regarding the mechanism of carcinogenesis of trichloroethylene in the central nervous system were inconclusive. Trichloroethylene has been shown to adversely affect the male and female reproductive systems. The evidence for the male reproductive system as a target tissue for trichloroethylene was strong, on the basis of studies of toxicity in humans and experimental animals and studies of cancer in

rats. The overall data supporting the mechanisms of carcinogenesis of trichloroethylene in the testes were weak, with limited data from humans and experimental animals available to support a mechanism involving hormonal disruption for trichloroethylene-induced testicular tumours. The overall support for an association between exposure to trichloroethylene and reproductive toxicity in females was weak.

The carcinogenicity and toxicity of trichloroethylene, particularly in the liver and kidney, are associated with its metabolism. Inter-individual differences in the formation of trichloroethylene metabolites that are thought to be responsible for toxic and carcinogenic effects of trichloroethylene in the kidney and liver exist in humans and rodents. Susceptibility to the adverse health effects of trichloroethylene may be influenced by genetics, sex, life stage and other conditions that influence the extent and nature of its metabolism. Polymorphisms in genes involved in oxidative metabolism (e.g. CYP2E1, ADH, ALDH) and glutathione conjugation (e.g. GSTs) have been studied in connection with susceptibility to toxicity and carcinogenicity caused by trichloroethylene. Polymorphisms in genes for plasma-membrane transporters (e.g. OAT1 and OAT3) may also influence rates or extent of cellular accumulation of key metabolites. With respect to life-stage susceptibility, data were available to support conclusions concerning differences in exposure (e.g. transplacental transfer or exposure through breast milk in early life stages) or life-stage-specific differences in toxicokinetics. Lifestyle factors (e.g. consumption of alcoholic beverages) may also affect the metabolism of trichloroethylene, while nutrition or obesity may affect internal concentrations of trichloroethylene and its metabolites.

6. **Evaluation**

6.1 Cancer in humans

There is sufficient evidence in humans for the carcinogenicity of trichloroethylene. Trichloroethylene causes cancer of the kidney. A positive association has been observed between exposure to trichloroethylene and non-Hodgkin lymphoma and liver cancer.

6.2 Cancer in experimental animals

There is sufficient evidence in experimental animals for the carcinogenicity of trichloroethylene.

6.3 Overall evaluation

Trichloroethylene is carcinogenic to humans (*Group 1*).

6.4 Rationale

The Working Group was unanimous in its conclusion that trichloroethylene is a Group 1 carcinogen.

The majority of the Working Group concluded that the epidemiological data were sufficient; however, a minority had concerns because most of the positive evidence came from case-control studies, while the data from cohort studies were weaker.

In reaching unanimous agreement, the Working Group took into consideration the following supporting evidence:

- The absorption, distribution, metabolism and excretion of trichloroethylene are well characterized in experimental animals and humans.
- In experimental animals and humans, oxidative metabolism of trichloroethylene is

catalysed by cytochrome P450 enzymes and GSH conjugation of trichloroethylene is catalysed by GST enzymes.

Entry Number 7391-42

- The formation of reactive metabolites of trichloroethylene in the kidney from processing of GSH-conjugation metabolites in situ has been observed in experimental animals and in human kidney cells.
- The reactive GSH-conjugation metabolites of trichloroethylene are genotoxic on the basis of consistent results in several available test systems.

Consistent with the importance of the GSH-conjugation metabolic pathway for kidney carcinogenesis, one study demonstrated a statistically significant association among trichloroethylene-exposed people with at least one intact GSTT1 allele, but not among those with two deleted alleles.

References

Abbas R & Fisher JW (1997). A physiologically based pharmacokinetic model for trichloroethylene and its metabolites, chloral hydrate, trichloroacetate, dichloroacetate, trichloroethanol, and trichloroethanol glucuronide in B6C3F1 mice. Toxicol Appl Pharmacol, 147: 15-30. doi:10.1006/taap.1997.8190 PMID:9356303

Abraham DG, Patel PP, Cooper AJL (1995a). Isolation from rat kidney of a cytosolic high molecular weight cysteine-S-conjugate β-lyase with activity toward leukotriene E4. J Biol Chem, 270: 180-188. doi:10.1074/ jbc.270.1.180 PMID:7814371

Abraham DG, Thomas RJ, Cooper AJL (1995b). Glutamine transaminase K is not a major cysteine S-conjugate β-lyase of rat kidney mitochondria: evidence that a high-molecular weight enzyme fulfills this role. Mol Pharmacol, 48: 855-860. PMID:7476916

Abrahamsson K, Ekdahl A, Collén J, Pedersén M (1995). Marine algae- a source of trichloroethylene and perchloroethylene. Limnol Oceanogr, 40: 1321-1326. doi:10.4319/lo.1995.40.7.1321

Adgate JL, Eberly LE, Stroebel C et al. (2004). Personal, indoor, and outdoor VOC exposures in a probability sample of children. J Expo Anal Environ Epidemiol, 14: Suppl 1: S4-S13. doi:10.1038/sj.jea.7500353 PMID:15118740

Ahlmark A, Gerhardsson G, Holm A (1963). Trichloroethylene exposure in Swedish engineering workshops. In: Proceedings of the 14th International

Congress on Occupational Health. London, United Kingdom: Permanent Commission and International Association on Occupational Health, pp. 448–450

- Ala A, Stanca CM, Bu-Ghanim M et al. (2006). Increased prevalence of primary biliary cirrhosis near Superfund toxic waste sites. Hepatology, 43: 525-531. doi:\\ PMID:16496326
- Alberati-Giani D, Malherbe P, Köhler C et al. (1995). Cloning and characterization of a soluble kynurenine aminotransferase from rat brain: identity with kidney cysteine conjugate β-lyase. J Neurochem, 64: 1448–1455. doi:10.1046/j.1471-4159.1995.64041448.x PMID:7891071
- Alexander DD, Kelsh MA, Mink PJ et al. (2007). A meta-analysis of occupational trichloroethylene exposure and liver cancer. Int Arch Occup Environ Health, 81: 127-143. doi:10.1007/s00420-007-0201-4 PMID:17492303
- Alexander DD, Mink PJ, Mandel JH et al. (2006). A meta-analysis of occupational trichloroethylene exposure and multiple myeloma or leukaemis. Occup Med, 56: 485–493. doi:10.1093/occmed/kql083
- Allen JW, Collins BW, Evansky PA (1994). Spermatid micronucleus analyses of trichloroethylene and chloral hydrate effects in mice. Mutat Res, 323: 81-88. doi:10.1016/0165-7992(94)90049-3 PMID:7508572
- Almaguer O, Kramkowski RS, Orris P (1984). Johnson Controls Inc., Watertown, WL (Health Hazard Evaluation Report No. 83-296-1491). Cincinnati, OH: United States National Institute for Occupational Safety and Health
- Amacher DE & Zelljadt I (1983). The morphological transformation of Syrian hamster embryo cells by chemicals reportedly nonmutagenic to Salmonella typhimurium. Carcinogenesis, 4: 291-295. doi:10.1093/carcin/4.3.291 PMID:6339095
- Andelman JB (1985). Inhalation exposure in the home to volatile organic contaminants of drinking water. Sci Total Environ, 47: 443-460. doi:10.1016/0048-9697(85)90349-3 PMID:4089611
- Anderson PM & Schultze MO (1965). Cleavage of S-(1,2-dichlorovinyl)-L-cysteine by an enzyme of bovine origin. Arch Biochem Biophys, 111: 593-602. doi:10.1016/0003-9861(65)90240-7 PMID:5862209
- Anna CH, Maronpot RR, Pereira MA et al. (1994). ras proto-oncogene activation in dichloroacetic acid-, trichloroethylene- and tetrachloroethylene-induced liver tumors in B6C3F1 mice. Carcinogenesis, 15: 2255– 2261. doi:10.1093/carcin/15.10.2255 PMID:7955063
- Anttila A, Pukkala E, Sallmén M et al. (1995a). Cancer incidence among Finnish workers exposed to halogenated hydrocarbons. J Occup Environ Med, 37:

- 797-806. doi:10.1097/00043764-199507000-00008 PMID:7552463
- Anttila A, Riala R, Pukkala E et al. (1995b). Occupational exposure to solvents and risk of cancer. Final report, Project No. 92293. Helsinki, Finland: The Finnish working environment fund, pp. 1–74.
- Aranyi C, O'Shea WJ, Graham JA, Miller FJ (1986). The effects of inhalation of organic chemical air contaminants on murine lung host defenses. Fundam Appl *Toxicol*, 6: 713–720. doi:10.1016/0272-0590(86)90184-3 PMID:3519345
- Arif AA & Shah SM (2007). Association between personal exposure to volatile organic compounds and asthma among US adult population. Int Arch Occup Environ Health, 80: 711-719. doi:10.1007/s00420-007-0183-2 PMID:17357796
- Arizona Department of Health Services (1995). Update of the Incidence of Childhood Cancers and Testicular Cancer in Southwest Tuscon: 1987–1991. Phoenix, AZ.
- Ashley DL, Bonin MA, Cardinali FL et al. (1992). Determining volatile organic compounds in human blood from a large sample population by using purge and trap gas chromatography/mass spectrometry. Anal Chem, 64: 1021-1029. doi:10.1021/ac00033a011 PMID:1590585
- Astrand I & Ovrum P (1976). Exposure to trichloroethylene I. Uptake and distribution in man. Scand J Work Environ Health, 2: 199-211. doi:10.5271/ sjweh.2803 PMID:1019594
- ATSDR; Agency for Toxic Substances and Disease Registry (1997). Toxicological Profile for Tetrachloroethylene. Atlanta, GA: Agency for Toxic Substances and Disease Registry, US Department of Health and Human Services, Public Health Service, pp. 1-318. Available http://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=265&tid=48. Accessed 19 November 2013.
- ATSDR; Agency for Toxic Substances and Disease Registry (2004). Feasibility investigation of worker exposure to trichloroethylene at the View-Master factory in Beaverton, Oregon. Atlanta, GA, USA: Department of Health and Human Services.
- ATSDR; Agency for Toxic Substances and Disease Registry (2006). Health statistics review: Cancer and birth outcome analysis: Endicott area investigation: Endicott area, Town of Union, Broome County, New York. Atlanta, GA: US Department of Health and Humans Services, pp. 7-6. Available at: http://www. atsdr.cdc.gov/HAC/pha/EndicottAreaInvestigation/ EndicottHealthStatsReviewHC052606.pdf
- ATSDR; Agency for Toxic Substances and Disease Registry (2008). Health consultation: Health statistics review follow-up: Cancer and birth outcome analysis: Endicott area investigation, Endicott area, Town of Union, Broome County, New York. Atlanta, GA: US Department of Health and Human Services. Available at: http://www.atsdr.cdc.gov/

LIST OF ABBREVIATIONS

2,4-D	2,4-dichlorophenoxyacetic acid
2,4,5-T	2,4,5-trichlorophenoxyacetic acid
5MeC	5-methylcytosine
8-OHdG	8-hydrodeoxyguanosine adducts
ADH	alcohol dehydrogenase
ALDH	aldehyde dehydrogenase
ALT	alanine transferase
AST	aspartate transferase
AUC	area under the concentration-time curve
BEI	biological exposure index
bw	body weight
CAREX	CARcinogen EXposure
CBI	covalent binding index
CCBL	cysteine-conjugate β -lyase
CI	confidence interval
coA	coenzyme A
CYP450	cytochrome P450
DCVCS	S-(1,2-dichlorovinyl)-L-cysteine sulfoxide
DCVT	S-(1,2-dichlorovinyl)-thiol
DDT	dichlorodiphenyltrichloroethane
DMSO	dimethyl sulfoxide
ECD	electron capture detection
ENU	N-ethyl-N-nitrosourea
EPA	Environmental Protection Agency
EU	European Union
FDA	Food and Drug Administration
FID	flame ionization detection
FMO	flavin-containing monooxygenase
GC	gas chromatography
GGT	γ-glutamyltranspeptidase OR γ-glutamyltransferase???
GSH	glutathione
GST	glutathione-S-transferase
GTK	glutamine transaminase K
HDL	high-density lipoprotein
HECD	Hall electrolytic conductivity detection

IARC MONOGRAPHS – 106

HR hazard ratio LO ₃ median lethal dose LOH loss of heterozygosity MCD microcoulometric detection MNNG N-methyl-N-nitrosourea MS mass spectrometry NA not applicable NAcDCVC N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine NADPH nicotinamide adenine dinucleotide NADPH nicotinamide adenine dinucleotide phosphate NAG N-acetylglucosaminidase ND not detected NHL non-Hodgkin lymphoma NIOSH National Institute for Occupational Safety and Health NR not reported NS not significant NTP National Toxicology Program OEL occupational exposure limit OR odds ratio OSHA Occupational Safety and Health Administration PBN phenyl-tert-butyl nitroxide PID photoionization detection PPARa peroxisome proliferator-activated receptor alpha ppm parts per trillion RR relative risk S9 9000 x g supernatant SCOEL Scientific Committee on Occupational Exposure Limits SSR standardized mortality ratio SSR standardized mortality ratio SSR single-strand DNA break SCCP single-strand DNA break SCCP single-strand DNA break TUV threshold limit value time-weighted average UDS unscheduled DNA synthesis USP United States Pharmacopeia		
IOH loss of heterozygosity MCD microcoulometric detection MNNG N-methyl-N-nitrosourea MNU N-methyl-N-nitrosourea MS mass spectrometry NA not applicable NACDCVC N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine NADH nicotinamide adenine dinucleotide NADH nicotinamide adenine dinucleotide phosphate NAG N-acetylglucosaminidase ND not detected NHL non-Hodgkin lymphoma NIOSH National Institute for Occupational Safety and Health NR not reported NS not significant NTP National Toxicology Program OEL occupational Safety and Health Administration OR odds ratio OSHA Occupational Safety and Health Administration PBN phenyl-tert-butyl nitroxide PID photoionization detection PPARa peroxisome proliferator-activated receptor alpha ppm parts per million RR relative risk	HR	hazard ratio
MCD microcoulometric detection MNNG N-methyl-N-nitrosourea MS mass spectrometry NA not applicable NACDCVC N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine NADH nicotinamide adenine dinucleotide NADH nicotinamide adenine dinucleotide phosphate NAG N-acetylglucosaminidase ND not detected NHL non-Hodgkin lymphoma NISOSH National Institute for Occupational Safety and Health NR not reported NS not significant NTP National Toxicology Program OEL occupational exposure limit OR odds ratio OSHA Occupational Safety and Health Administration OSHA Occupational Safety and Health Administration PBN phenyl-terl-butyl nitroxide PID photoionization detection PPARa peroxisome proliferator-activated receptor alpha ppm parts per million ppt parts per million prt parts per trillion <tr< td=""><td>LD_{50}</td><td></td></tr<>	LD_{50}	
MNNG N-methyl-N-nitro-N-nitrosoguanidine MNU N-methyl-N-nitrosourea MS mass spectrometry NA not applicable NAcDCVC N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine NADH nicotinamide adenine dinucleotide NADPH nicotinamide adenine dinucleotide phosphate NAG N-acetylglucosaminidase ND not detected NHL non-Hodgkin lymphoma NIOSH National Institute for Occupational Safety and Health NR not reported NS not significant NTP National Toxicology Program OEL occupational exposure limit OR odds ratio OSHA Occupational Safety and Health Administration PBN phenyl-tert-butyl nitroxide PID photoionization detection PPARa peroxisome proliferator-activated receptor alpha ppm parts per trillion RR relative risk S9 9000 x g supernatant SCOEL Scientific Committee on Occupational Exposure Limits SD standard deviation SIR standardized mortality ratio SSB single-strand DNA break SSCP single-stand on Synthesis USP United States Pharmacopeia	LOH	loss of heterozygosity
MNU N-methyl-N-nitrosourea MS mass spectrometry NA not applicable NACDCVC N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine NADH nicotinamide adenine dinucleotide phosphate NADPH nicotinamide adenine dinucleotide phosphate NAG N-acetylglucosaminidase ND not detected NHL non-Hodgkin lymphoma NIOSH National Institute for Occupational Safety and Health NR not reported NS not significant NTP National Toxicology Program OEL occupational exposure limit OR odds ratio OSHA Occupational Safety and Health Administration PBN phenyl-tert-butyl nitroxide PID photoionization detection PPARa peroxisome proliferator-activated receptor alpha ppm parts per million ppt parts per trillion RR relative risk S9 9000 x g supernatant SCOEL Scientific Committee on Occupational Exposure Limits	MCD	microcoulometric detection
MS mass spectrometry NA not applicable NAcDCVC N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine NADH nicotinamide adenine dinucleotide NADPH nicotinamide adenine dinucleotide phosphate NAG N-acetylglucosaminidase ND not detected NHL non-Hodgkin lymphoma NIOSH National Institute for Occupational Safety and Health NR not reported NS not significant NTP National Toxicology Program OEL occupational Safety and Health Administration OSHA Occupational Safety and Health Administration OSHA Occupational Safety and Health Administration PBN phenyl-tert-butyl nitroxide PID photoionization detection PPARa peroxisome proliferator-activated receptor alpha ppm parts per million ppt parts per trillion RR relative risk S9 9900× g supernatant SCOEL Scientific Committee on Occupational Exposure Limits SD standard deviation SIR standardized incidence ratio SMR standardized mortality ratio SSB single-strand DNA break SSCP single-strand conformation polymorphism TBARS thiobarbituric acid-reactive substances TLV threshold limit value TWA time-weighted average UDS unscheduled DNA synthesis USP United States Pharmacopeia	MNNG	N-methyl-N'-nitro-N-nitrosoguanidine
NA not applicable NACDCVC N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine NADH nicotinamide adenine dinucleotide NADPH nicotinamide adenine dinucleotide phosphate NAG N-acetylglucosaminidase ND not detected NHL non-Hodgkin lymphoma NIOSH National Institute for Occupational Safety and Health NR not reported NS not significant NTP National Toxicology Program OEL occupational exposure limit OR odds ratio OSHA Occupational Safety and Health Administration PBN phenyl-tert-butyl nitroxide PID photoionization detection PPARa peroxisome proliferator-activated receptor alpha ppm parts per million RR relative risk S9 9000 x g supernatant SCOEL Scientific Committee on Occupational Exposure Limits SD standard deviation SIR standardized mortality ratio SSB single-stand conformation polymorphism<	MNU	N-methyl-N-nitrosourea
NACDCVC N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine NADH nicotinamide adenine dinucleotide NADPH nicotinamide adenine dinucleotide phosphate NAG N-acetylglucosaminidase ND not detected NHL non-Hodgkin lymphoma NIOSH National Institute for Occupational Safety and Health NR not significant NTP National Toxicology Program OEL occupational exposure limit OR odds ratio OSHA Occupational Safety and Health Administration PBN phenyl-tert-butyl nitroxide PID photoionization detection PPARa peroxisome proliferator-activated receptor alpha ppm parts per million RR relative risk S9 9000 x g supernatant SCOEL Scientific Committee on Occupational Exposure Limits SD standardized mortality ratio SIR standardized mortality ratio SSB single-strand DNA break SCP single-stand conformation polymorphism TBARS	MS	mass spectrometry
NADH nicotinamide adenine dinucleotide NADPH nicotinamide adenine dinucleotide phosphate NAG N-acetylglucosaminidase ND not detected NHL non-Hodgkin lymphoma NIOSH National Institute for Occupational Safety and Health NR not reported NS not significant NTP National Toxicology Program OEL occupational exposure limit OR odds ratio OSHA Occupational Safety and Health Administration OSHA Occupational Safety and Health Administration PBN phonyl-tert-butyl nitroxide PID photoionization detection PPARa peroxisome proliferator-activated receptor alpha ppm parts per million RR relative risk S9 9000 × g supernatant CCOEL Scientific Committee on Occupational Exposure Limits SD standard deviation SIR standardized mortality ratio SSB single-stand DNA break SCP single-stand conformation pol	NA	not applicable
NADPH nicotinamide adenine dinucleotide phosphate NAG N-acetylglucosaminidase ND not detected NHL non-Hodgkin lymphoma NIOSH National Institute for Occupational Safety and Health NR not reported NS not significant NTP National Toxicology Program OEL occupational exposure limit OR odds ratio OSHA Occupational Safety and Health Administration PBN phenyl-tert-butyl nitroxide PID photoionization detection PPARa peroxisome proliferator-activated receptor alpha ppm parts per million RR relative risk S9 9000 × g supernatant SCOEL Scientific Committee on Occupational Exposure Limits SD standard deviation SIR standardized incidence ratio SMR standardized mortality ratio SSB single-strand DNA break SSCP single-stand conformation polymorphism TBARS thiobarbituric acid-reactive substances	NAcDCVC	N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine
NAG N-acetylglucosaminidase ND not detected NHL non-Hodgkin lymphoma NIOSH National Institute for Occupational Safety and Health NR not reported NS not significant NTP National Toxicology Program OEL occupational exposure limit OR odds ratio OSHA Occupational Safety and Health Administration PBN phenyl-tert-butyl nitroxide PID photoinization detection PPARa peroxisome proliferator-activated receptor alpha ppm parts per million ppt parts per trillion RR relative risk S9 9000 x g supernatant SCOEL Scientific Committee on Occupational Exposure Limits SD standard deviation SIR standardized mortality ratio SSB single-strand DNA break SSCP single-stand conformation polymorphism TBARS thiobarbituric acid-reactive substances UDS unscheduled DNA synthesis USP United States Pharmacopeia	NADH	nicotinamide adenine dinucleotide
ND not detected NHL non-Hodgkin lymphoma NIOSH National Institute for Occupational Safety and Health NR not reported NS not significant NTP National Toxicology Program OEL occupational exposure limit OR odds ratio OSHA Occupational Safety and Health Administration PBN phenyl-tert-butyl nitroxide PID photoionization detection PPARa peroxisome proliferator-activated receptor alpha ppm parts per million RR relative risk S9 9000 x g supernatant SCOEL Scientific Committee on Occupational Exposure Limits SD standard deviation SIR standardized incidence ratio SMR standardized mortality ratio SSB single-strand DNA break SCP single-stand conformation polymorphism TBARS thiobarbituric acid-reactive substances TLV threshold limit value TWA time-weighted average	NADPH	nicotinamide adenine dinucleotide phosphate
NHL non-Hodgkin lymphoma NIOSH National Institute for Occupational Safety and Health NR not reported NS not significant NTP National Toxicology Program OEL occupational exposure limit OR odds ratio OSHA Occupational Safety and Health Administration PBN phenyl-tert-butyl nitroxide PID photoionization detection PPARa peroxisome proliferator-activated receptor alpha ppm parts per million pR parts per trillion RR relative risk S9 9000 × g supernatant SCOEL Scientific Committee on Occupational Exposure Limits SD standard deviation SIR standardized incidence ratio SMR standardized mortality ratio SSB single-strand DNA break SSCP single-strand conformation polymorphism TBARS thiobarbituric acid-reactive substances TLV threshold limit value TWA time-weighted average UDS United States Pharmacopeia <td>NAG</td> <td>N-acetylglucosaminidase</td>	NAG	N-acetylglucosaminidase
NIOSH National Institute for Occupational Safety and Health NR not reported NS not significant NTP National Toxicology Program OEL occupational exposure limit OR odds ratio OSHA Occupational Safety and Health Administration PBN phenyl-tert-butyl nitroxide PID photoionization detection PPARa peroxisome proliferator-activated receptor alpha PPPM parts per trillion RR relative risk S9 9000 × g supernatant SCOEL Scientific Committee on Occupational Exposure Limits SD standard deviation SIR standardized incidence ratio SMR standardized mortality ratio SSB single-strand DNA break SSCP single-stand conformation polymorphism TBARS thiobarbituric acid-reactive substances TLV threshold limit value TWA time-weighted average UDS unscheduled DNA synthesis USP United States Pharmacopeia	ND	not detected
NRnot reportedNSnot significantNTPNational Toxicology ProgramOELoccupational exposure limitORodds ratioOSHAOccupational Safety and Health AdministrationPBNphenyl-tert-butyl nitroxidePIDphotoionization detectionPPARαperoxisome proliferator-activated receptor alphappmparts per millionpptparts per trillionRRrelative riskS99000 × g supernatantSCOELScientific Committee on Occupational Exposure LimitsSDstandard deviationSIRstandardized incidence ratioSMRstandardized mortality ratioSBsingle-strand DNA breakSCCPsingle-strand conformation polymorphismTBARSthiobarbituric acid-reactive substancesTLVthreshold limit valueTWAtime-weighted averageUDSunscheduled DNA synthesisUSSUnited States Pharmacopeia	NHL	non-Hodgkin lymphoma
NSnot significantNTPNational Toxicology ProgramOELoccupational exposure limitORodds ratioOSHAOccupational Safety and Health AdministrationPBNphenyl-tert-butyl nitroxidePIDphotoionization detectionPPARαperoxisome proliferator-activated receptor alphappmparts per millionpptparts per trillionRRrelative riskS99000 × g supernatantSCOELScientific Committee on Occupational Exposure LimitsSDstandard deviationSIRstandardized incidence ratioSMRstandardized mortality ratioSSBsingle-strand DNA breakSSCPsingle-stand conformation polymorphismTBARSthiobarbituric acid-reactive substancesTIVthreshold limit valueTWAtime-weighted averageUDSunscheduled DNA synthesisUSPUnited States Pharmacopeia	NIOSH	National Institute for Occupational Safety and Health
NTP National Toxicology Program OEL occupational exposure limit OR odds ratio OSHA Occupational Safety and Health Administration PBN phenyl-tert-butyl nitroxide PID photoionization detection PPARa peroxisome proliferator-activated receptor alpha Ppm parts per million Ppt parts per trillion RR relative risk S9 9000 × g supernatant SCOEL Scientific Committee on Occupational Exposure Limits SD standard deviation SIR standardized incidence ratio SMR standardized mortality ratio SSB single-stand DNA break SSCP single-stand conformation polymorphism TBARS thiobarbituric acid-reactive substances TLV threshold limit value TWA time-weighted average UDS unscheduled DNA synthesis USP United States Pharmacopeia	NR	not reported
OELoccupational exposure limitORodds ratioOSHAOccupational Safety and Health AdministrationPBNphenyl-tert-butyl nitroxidePIDphotoionization detectionPPARαperoxisome proliferator-activated receptor alphappmparts per millionpptparts per trillionRRrelative riskS99000 × g supernatantSCOELScientific Committee on Occupational Exposure LimitsSDstandard deviationSIRstandardized incidence ratioSMRstandardized mortality ratioSSBsingle-strand DNA breakSSCPsingle-stand conformation polymorphismTBARSthiobarbituric acid-reactive substancesTLVthreshold limit valueTWAtime-weighted averageUDSunscheduled DNA synthesisUSPUnited States Pharmacopeia	NS	not significant
ORodds ratioOSHAOccupational Safety and Health AdministrationPBNphenyl-tert-butyl nitroxidePIDphotoionization detectionPPARαperoxisome proliferator-activated receptor alphappmparts per millionpptparts per trillionRRrelative riskS99000 × g supernatantSCOELScientific Committee on Occupational Exposure LimitsSDstandard deviationSIRstandardized incidence ratioSMRstandardized mortality ratioSSBsingle-strand DNA breakSSCPsingle-stand conformation polymorphismTBARSthiobarbituric acid-reactive substancesTLVthreshold limit valueTWAtime-weighted averageUDSunscheduled DNA synthesisUSPUnited States Pharmacopeia	NTP	National Toxicology Program
OSHAOccupational Safety and Health AdministrationPBNphenyl-tert-butyl nitroxidePIDphotoionization detectionPPARαperoxisome proliferator-activated receptor alphappmparts per millionpptparts per trillionRRrelative riskS99000 × g supernatantSCOELScientific Committee on Occupational Exposure LimitsSDstandard deviationSIRstandardized incidence ratioSMRstandardized mortality ratioSSBsingle-strand DNA breakSSCPsingle-stand conformation polymorphismTBARSthiobarbituric acid-reactive substancesTLVthreshold limit valueTWAtime-weighted averageUDSunscheduled DNA synthesisUSPUnited States Pharmacopeia	OEL	occupational exposure limit
PBNphenyl-tert-butyl nitroxidePIDphotoionization detectionPPARαperoxisome proliferator-activated receptor alphappmparts per millionpptparts per trillionRRrelative riskS99000 × g supernatantSCOELScientific Committee on Occupational Exposure LimitsSDstandard deviationSIRstandardized incidence ratioSMRstandardized mortality ratioSSBsingle-strand DNA breakSSCPsingle-stand conformation polymorphismTBARSthiobarbituric acid-reactive substancesTLVthreshold limit valueTWAtime-weighted averageUDSunscheduled DNA synthesisUSPUnited States Pharmacopeia	OR	odds ratio
PID photoionization detection PPARa peroxisome proliferator-activated receptor alpha ppm parts per million ppt parts per trillion RR relative risk S9 9000 × g supernatant SCOEL Scientific Committee on Occupational Exposure Limits SD standard deviation SIR standardized incidence ratio SMR standardized mortality ratio SSB single-strand DNA break SSCP single-stand conformation polymorphism TBARS thiobarbituric acid-reactive substances TLV threshold limit value TWA time-weighted average UDS unscheduled DNA synthesis USP United States Pharmacopeia	OSHA	Occupational Safety and Health Administration
PPARαperoxisome proliferator-activated receptor alphappmparts per millionpptparts per trillionRRrelative riskS99000 × g supernatantSCOELScientific Committee on Occupational Exposure LimitsSDstandard deviationSIRstandardized incidence ratioSMRstandardized mortality ratioSSBsingle-strand DNA breakSSCPsingle-stand conformation polymorphismTBARSthiobarbituric acid-reactive substancesTLVthreshold limit valueTWAtime-weighted averageUDSunscheduled DNA synthesisUSPUnited States Pharmacopeia	PBN	
ppm parts per million ppt parts per trillion RR relative risk S9 9000 × g supernatant SCOEL Scientific Committee on Occupational Exposure Limits SD standard deviation SIR standardized incidence ratio SMR standardized mortality ratio SSB single-strand DNA break SSCP single-stand conformation polymorphism TBARS thiobarbituric acid-reactive substances TLV threshold limit value TWA time-weighted average UDS unscheduled DNA synthesis USP United States Pharmacopeia	PID	photoionization detection
ppt parts per trillion RR relative risk S9 9000 × g supernatant SCOEL Scientific Committee on Occupational Exposure Limits SD standard deviation SIR standardized incidence ratio SMR standardized mortality ratio SSB single-strand DNA break SSCP single-stand conformation polymorphism TBARS thiobarbituric acid-reactive substances TLV threshold limit value TWA time-weighted average UDS unscheduled DNA synthesis USP United States Pharmacopeia	PPARα	peroxisome proliferator-activated receptor alpha
RR relative risk S9 9000 × g supernatant SCOEL Scientific Committee on Occupational Exposure Limits SD standard deviation SIR standardized incidence ratio SMR standardized mortality ratio SSB single-strand DNA break SSCP single-stand conformation polymorphism TBARS thiobarbituric acid-reactive substances TLV threshold limit value TWA time-weighted average UDS unscheduled DNA synthesis USP United States Pharmacopeia	ppm	parts per million
RR relative risk S9 9000 × g supernatant SCOEL Scientific Committee on Occupational Exposure Limits SD standard deviation SIR standardized incidence ratio SMR standardized mortality ratio SSB single-strand DNA break SSCP single-stand conformation polymorphism TBARS thiobarbituric acid-reactive substances TLV threshold limit value TWA time-weighted average UDS unscheduled DNA synthesis USP United States Pharmacopeia	ppt	parts per trillion
SCOEL Scientific Committee on Occupational Exposure Limits SD standard deviation SIR standardized incidence ratio SMR standardized mortality ratio SSB single-strand DNA break SSCP single-stand conformation polymorphism TBARS thiobarbituric acid-reactive substances TLV threshold limit value TWA time-weighted average UDS unscheduled DNA synthesis USP United States Pharmacopeia		relative risk
SIR standardized incidence ratio SMR standardized mortality ratio SSB single-strand DNA break SSCP single-stand conformation polymorphism TBARS thiobarbituric acid-reactive substances TLV threshold limit value TWA time-weighted average UDS unscheduled DNA synthesis USP United States Pharmacopeia	S9	$9000 \times g$ supernatant
SIR standardized incidence ratio SMR standardized mortality ratio SSB single-strand DNA break SSCP single-stand conformation polymorphism TBARS thiobarbituric acid-reactive substances TLV threshold limit value TWA time-weighted average UDS unscheduled DNA synthesis USP United States Pharmacopeia	SCOEL	Scientific Committee on Occupational Exposure Limits
SMR standardized mortality ratio SSB single-strand DNA break SSCP single-stand conformation polymorphism TBARS thiobarbituric acid-reactive substances TLV threshold limit value TWA time-weighted average UDS unscheduled DNA synthesis USP United States Pharmacopeia	SD	
SSB single-strand DNA break SSCP single-stand conformation polymorphism TBARS thiobarbituric acid-reactive substances TLV threshold limit value TWA time-weighted average UDS unscheduled DNA synthesis USP United States Pharmacopeia	SIR	standardized incidence ratio
SSCP single-stand conformation polymorphism TBARS thiobarbituric acid-reactive substances TLV threshold limit value TWA time-weighted average UDS unscheduled DNA synthesis USP United States Pharmacopeia	SMR	standardized mortality ratio
TBARS thiobarbituric acid-reactive substances TLV threshold limit value TWA time-weighted average UDS unscheduled DNA synthesis USP United States Pharmacopeia	SSB	single-strand DNA break
TBARS thiobarbituric acid-reactive substances TLV threshold limit value TWA time-weighted average UDS unscheduled DNA synthesis USP United States Pharmacopeia	SSCP	
TWA time-weighted average UDS unscheduled DNA synthesis USP United States Pharmacopeia	TBARS	
UDS unscheduled DNA synthesis USP United States Pharmacopeia	TLV	threshold limit value
UDS unscheduled DNA synthesis USP United States Pharmacopeia	TWA	time-weighted average
USP United States Pharmacopeia	UDS	
	USP	·
	vs	