

Datos y Ciencia para la Toma de Decisiones en Aguas transfronterizas en

América Latina y el Caribe (ALC)

Translate English Traduzir Português

Resumen

Este repositorio contiene la agenda, las instrucciones de instalación y los materiales de capacitación para el taller del Grupo de trabajo interinstitucional sobre agua (ISAT), Creando Capacidades sobre Herramientas y Metodologías Científicamente Sólidas para la GIRH en la Cuenca del Plata: Acceso a Datos. Este taller se llevó a cabo en Buenos Aires. en noviembre de 2022, y fue organizado en alianza con la Organización de los Estados Americanos (OEA) y el Comité Intergubernamental Coordinador de los Países de la Cuenca del Plata (CIC).

Tabla de contenido

- 1. Agenda de Capacitación
- 2. Instrucciones de instalación
- â 2.1. Requisitos
- â 2.2. Instalar Miniconda
- â 2.3. Descargar materiales de capacitación
- â 2.4. Crear ambiente conda
- â 2.5. Prueba de Instalación
- â 2.6. Actualización del software Conda
- 3. Recursos Útiles
- 4. Agradecimientos

1. Agenda de Capacitación

▼ Click para ocultar agenda

Día 1: Lunes, 14 de Noviembre

Introducciones

Tiempo	Título y temas	Tipo
09:00-10:30	Sesión de apertura	Discusión
10:30-11:30	Pausa	
11:00-12:00	Introducción a la Asociación ISAT	Discusión
12:00-1:00	Almuerzo	

Sesión 1: Introducción a la Teledetección Hidrológica

Tiempo	Título y temas	Tipo	Pr
1:00-2:00	Fundamentos de la teledetección	Presentación	N
2:00-3:00	Descripción general de la detección remota de la cobertura terrestre	Presentación	N
3:00-3:30	Pausa		
3:30-4:30	Acceso y examen de la cobertura terrestre	Ejercicio	N
4:30-5:00	Discusión al final del día	Discusión	IS،
5:30-6:15	Recepción de bienvenida del día de apertura	Evento	CI

Día 2: Martes, 15 de Noviembre

Sesión 2A: Precipitación

Tiempo	Título y temas	Tipo
09:00-09:15	Bienvenida/Agenda	Discusión
09:15-10:00	Resumen de la misión GPM	Presentacić
10:00-11:00	Análisis y discusión de precipitaciones	Ejercicio
11:00-11:30	Pausa	
11:30-12:00	Introducción a MODIS	Presentacić
12:00-1:00	Acceso & Análisis de MODIS NDVI	Ejercicio

1:00-2:00	Almuerzo
1.00 2.00	7 (11111412120

Sesión 2B: Humedad del suelo & Evapotranspiración

Tiempo	Título y temas	Tipo
2:00-2:30	Introducción a SMAP	Presentaci
2:30-3:30	Acceso a datos SMAP & Análisis	Ejercicio
3:30-4:00	Pausa	
4:00-4:30	Introducción al acceso a la evapotranspiración	Presentaci
4:30-5:00	Acceda a ET basado en Landsat	Ejercicio
5:00-5:30	Preguntas/Discusión al final del día	Discusión

Día 3: Miércoles, 16 de Noviembre

Sesión 3A: Altura del agua / Extensión aérea

Tiempo	Título y temas	Tipo
09:00-09:15	Bienvenida/Agenda	Discusión
09:15-10:00	Introducción a MOGWAI	Presentacić
10:00-11:00	Ejemplo MOGWAI	Ejercicio
11:00-11:30	Pausa	
11:30-12:00	Introducción a AWS	Presentacić
12:00-12:30	Preguntas y respuestas	Discusión
12:30-1:30	Almuerzo	

Sesión 3B: Calidad del agua

Tiempo	Título y temas	Tipo
1:30-2:00	Índice de Salud del Agua Dulce (FHI)	Presentaci

2:00-2:30	Introducción a la percepción remota de la calidad del agua	Presentaci
2:30-3:00	Pausa	
3:00-4:00	Aplicaciones de detección remota de calidad del agua	Ejercicio
4:00-4:30	Preguntas y respuestas	Discusión
4:30-5:00	Preguntas/Discusión al final del día	Discusión

Día 4: Jueves, 17 de Noviembre

Visita de campo			
Tiempo	Título y temas	Tipo	
08:00-12:00	Visita al Laboratorio y Campo del INA	Visita de campo	
1:00-2:00	Almuerzo		

Sesión 4: Introducción al modelado de la superficie terrestre

Tiempo	Título y temas	Tipo	Pr
2:00-2:45	Resumen de la asimilación global de datos terrestres (GLDAS)	Presentación	US
2:45-3:30	Resumen de los componentes del presupuesto de aguas superficiales	Presentación	U۱
3:30-4:00	Pausa		
4:00-5:00	Acceso & Análisis de Escorrentía GLDAS	Ejercicio	US
5:00-5:30	Preguntas/Discusión al final del día	Discusión	IS،

Día 5: Viernes, 18 de Noviembre

Sesión 5A: Introducción a los marcos de modelado b>

Tiempo	Título y temas	Tipo	Pr€
09:00-10:30	Sistema de Apoyo a la Decisión de La Plata (SSTD)	Discusión	De
10:30-11:00	Pausa		
11:00-12:00	Introducción a SWAT-Online & Acceso NASA	Presentación	NA
12:00-1:00	Introducción al Sistema de modelado hidrológico (HEC-HMS) y al Sistema de información terrestre (LIS)	Presentación	US
1:00-2:00	Almuerzo		

Sesión 5B: Informe de capacitación y amp; Direcciones futuras

Tiempo	Título y temas	Tipo	Pr
2:00-3:00	Estudio de caso de DSS: Lima, Perú	Presentación	RT
3:00-4:00	Informe de capacitación (Reflexiones sobre la semana, Instrucciones para futuras capacitaciones)	Discusión	IS
4:00	Cerrar	Discusión	IS،

2. Instrucciones de instalación

2.1. Requisitos

Sistema operativo:

- Windows 8 o posterior, 64-bits
- macOS 10.13+
 - o Si no está seguro de qué chip tiene (Intel vs. M1), verifique aquí.
- Espacio en disco mínimo de 5 GB para descargar e instalar

2.2. Instalar Miniconda

Anaconda es un sistema de administración de entornos y paquetes de código abierto que se ejecuta en Windows, macOS y Linux. Conda instala, ejecuta y actualiza rápidamente los paquetes y sus dependencias. También crea, guarda, carga y cambia fácilmente entre entornos en su computadora local. Fue creado para programas Python, pero puede empaquetar y distribuir software para cualquier lenguaje. Esta capacitación utilizará una instalación simplificada llamada *Miniconda*.

1. Vaya a la página de instalación y descargue el instalador para su sistema operativ.

Instaladores de Windows

Windows				
Python version	Name	Size	SHA256 hash	
Python 3.9	Miniconda3 Windows 64-bit	71.2 MiB	lacbc2e8277ddd54a5f724896c7edee112d068529588d944702966c867e7e9cc	
Python 3.8	Miniconda3 Windows 64-bit	70.6 MiB	94f24e52e316fa935ccf94b0c584ceca8e6abc6190c68378e18550c95bb7cee1	
Python 3.7	Miniconda3 Windows 64-bit	69.0 MiB	b221ccdb2bbc5e8209a292f858ae05fd87f882f79be75b37d26faa881523c057	
Python 3.9	Miniconda3 Windows 32-bit	67.8 MiB	4fb64e6c9c28b88beab16994bfba4829110ea3145baa60bda5344174ab65d462	
Python 3.8	Miniconda3 Windows 32-bit	66.8 MiB	60cc5874b3ccedd80a38fb2b28df96d880e8e95d1b5848b15c20f1181e2807db	
Python 3.7	Miniconda3 Windows 32-bit	65.5 MiB	a6af674b984a333b53aaf99043f6af4f5@b@bb2ab78e@b732aa6@c47bbfb@7@4	

Instaladores de Mac OS. Para usuarios de Mac OS, elija la opción de instalación pkg.

Python version	Name	Size	SHA256 hash
Python 3.9	Miniconda3 macOS Intel x86 64-bit bash	56.0 MiB	007bae6f18dc7b6f2ca6209b5a0c9bd2f283154152f82becf787aac709a51633
Intel	Miniconda3 macOS Intel x86 64-bit pkg	62.7 MiB	cb56184637711685b08f6eba9532cef6985ed7007b38e789613d5dd3f94ccc6b
	Miniconda3 macOS Apple M1 ARM 64-bit bash	52.2 MiB	4bd112168cc33f8a4a60d3ef7e72b52a85972d588cd065be803eb21d73b625ef
M1	Miniconda3 macOS Apple M1 ARM 64-bit pkg	63.5 MiB	@cb5165ca751e827d91a4ae6823bfda24d22c398a0b3b01213e57377a2c54226
Python 3.8	Miniconda3 macOS Intel x86 64-bit bash	56.4 MiB	f930f5b1c85e509ebbf9f28e13c697a082581f21472dc5360c41905d10802c7b
	Miniconda3 macOS Intel x86 64-bit pkg	63.1 MiB	62eda1322b971d43409e5dde8dc0fd7bfe799d18a49fb2d8d6ad1f6833448f5c
	Miniconda3 macOS Apple M1 ARM 64-bit bash	52.5 MiB	13b992328ef088a49a685ae84461f132f8719bf0cabc43792fc9009b0421f611
	Miniconda3 macOS Apple M1 ARM 64-bit pkg	63.8 MiB	e92fd40710f7123d9e1b2d44f71e7b2101e3397049b87807ccf612c964beef35
Python 3.7	Miniconda3 macOS Intel x86 64-bit bash	66.0 MiB	323179e4873e291f87db041f3d968da2ffc182dcf709915b48a253914d981868
	Miniconda3 macOS Intel x86 64-bit pkg	72.7 MiB	9278875a235ef625d581c63b46129b27373c3cf5516d36250a1a3640978280cd

- 2. Vaya a la carpeta Descargas y haga doble clic en el instalador para iniciar.
- 3. Lea los términos de licencia y haga clic en **Acepto**.
- 4. Seleccione Tipo de instalación. En Windows, se recomienda instalar para **Just Me**, ya que esto no requiere derechos de administrador. Para usuarios de Mac OS, elija la opción "Standard Install":

5. Para instalaciones de Windows, seleccione una carpeta de destino para instalar Miniconda y haga clic en *Siguiente*.

6. Elija si desea agregar Miniconda a su variable de entorno PATH o registrar Miniconda como su Python predeterminado. **No recomendamos** agregar Miniconda a su variable de entorno PATH, ya que esto puede interferir con otro software

7. Haga clic en **Instalar**. Si desea ver los paquetes que Miniconda está instalando, haga clic en Mostrar detalles

2.3. Descargar materiales de capacitación

1. Abra la ventana del terminal ("Anaconda Prompt" en Windows, "Terminal" en Mac)

2. Instale *git* a través de la terminal. Esto permite que su computadora descargue los materiales de capacitación alojados en Github:

conda config --add channels conda-forge
conda install -c conda-forge git

Cuando se le pida que continúe, escriba "y"

3. Navegue hasta el directorio de trabajo deseado (por ejemplo, "C:\Users \Name\Documents"):

cd Documents

4. Clonar repositorio al directorio de trabajo:

git clone https://github.com/pcoddo/ISAT-Training-LaPlata.git

2.4. Crear ambiente Conda

Cree un entorno conda utilizando el archivo environment.yml proporcionado:

conda env create -f environment.yml

Este entorno debe instalar todo el software y los paquetes necesarios para la capacitación. Dependiendo de las velocidades de Internet y del procesador, **esto puede tardar varios minutos**.

Activar nuevo entorno:

conda activate plata

El terminal ahora debería mostrar el entorno activado:

2.5. Prueba de instalación

Verifique si QGIS se instaló correctamente.

qgis

La aplicación debería abrirse en una nueva ventana. Una vez que lo haga, intente abrir el archivo de mapa Cuenca-del-Plata_Map.qgz:

2.6. Actualización del software Conda

Los presentadores pueden hacer actualizaciones a este repositorio a medida que avanza el taller. Para asegurarse de tener la última versión de los materiales, es posible que deba actualizar sus archivos locales con cualquier cambio reciente.

1. Primero, asegúrese de que el entorno "plata" esté activado:

conda activate plata

- 2. A continuación, navegue a la carpeta de capacitación (por ejemplo, "C:\Users \Name\Documents\ISAT-Training-LaPlata") y descargue los archivos más recientes:
- cd Documents
 cd ISAT-Training-LaPlata
- 3. Finalmente, descargue los archivos más recientes:

git pull

3. Recursos Útiles

Fuentes de datos directos

- USGS Earth Explorer
 - Landsat
 - o Sentinel-2
 - o SRTM
- Copernicus Open Access Hub
 - Sentinel-1 Synthetic Aperture Radar (SAR)
 - o Sentinel-2
 - Sentinel-3
 - Sentinel-5P
- NASA EARTHDATA
 - Alaska Satellite Facility, a source for current and historic RADAR data
- GEO on AWS

Visores de datos e Imágenes

- NASA Worldview
 - Satellite data
- NOAA View
 - o Ocean, land and atmospheric data
- Resource Watch
 - Hundreds of data sets on the state of the planet's resources and citizens
- Global Forest Watch
 - Data, technology and tools tobetter protect forests

Fuentes de imágenes Comercial

- Google Earth Engine
- Planet
 - High temporal resolution
 - Relatively high spatial resolution
 - Relatively low spectral resolution
- Maxar
- Iceye
 - High spatial and temporal resolution synthetic-aperture radar data
- Airbus

• High resolution RGB and synthetic-aperture radar imagery.

Blacksky

- Plan for high temporal resolution
- Relatively high spatial resolution
- Relatively low spectral resolution

Algunas de las fuentes anteriores fueron extraídas del repositorio nicar20-imagery-sources por [Tim Wallace] (https://github.com /timwallace)

4. Agradecimientos

Estos materiales se basan en capacitaciones previas desarrolladas por el Programa de Capacitación de Detección Remota Avanzada de la NASA (ARSET). Un agradecimiento especial a Dr. Amita Mehta, Dra. Erika Podest, Dra. Ana Prados y al resto del equipo de ARSET por proporcionar esos materiales! Gracias también a Aarti Arora por ayudar a diseñar la agenda de la reunión.

(Back to top)