Контрольная работа 1-05

Вариант 11 (решения)

За разговоры с соседом -3 балла за каждый разговор.

1. (14 баллов) Рассмотрим однопроцессорную вычислительную систему с объемом оперативной памяти 200 Мb, в которой используется схема организации памяти с динамическими (переменными) разделами. Для долгосрочного планирования процессов в ней применен алгоритм SJF. В систему поступают пять заданий с различной длительностью и различным объемом занимаемой памяти по следующей схеме:

Номер за- дания	Момент поступления в очередь за- даний	Время исполнения (CPU burst)	Объем занимаемой памяти
1	0	3	80 Mb
2	2	4	50 Mb
3	3	5	60 Mb
4	4	2	80 Mb
5	5	1	10 Mb

Вычислите среднее время между стартом задания и его завершением (turnaround time) и среднее время ожидания (waiting time) для следующих комбинаций алгоритмов краткосрочного планирования и стратегий размещения процессов в памяти:

- a) RR (Round Robin) и first fit (первый подходящий);
- b) RR и best fit (наиболее подходящий);
- c) вытесняющий SJF (Short Job First) и first fit:
- d) вытесняющий SJF и best fit.

При вычислениях считать, что процессы не совершают операций ввода-вывода, величину кванта времени принять равной 2. Временами переключения контекста, рождения процессов и работы алгоритмов планирования пренебречь. Освобождение памяти, занятой процессами, происходит немедленно по истечении их CPU burst. Краткосрочное планирование осуществляется после рождения новых процессов в текущий момент времени. Для алгоритма RR принять, что родившиеся процессы добавляются в САМЫЙ конец очереди готовых процессов (ПОСЛЕ процесса, перешедшего в состояние готовность из состояния исполнение в это время).

Решение:

а. Рассмотрим выполнение процессов в системе для алгоритма RR и стратегии first fit. По вертикали в таблице отложены номера процессов, по горизонтали — промежутки времени. Столбец 0 соответствует временному интервалу от 0 до 1. Буква И означает состояние исполнения, буква Г — состояние готовности, буква О — ожидание в очереди заданий. Под таблицей приведено распределение памяти, а еще ниже — содержимое очереди заданий.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	И	И	И												
2			Γ	И	И	Γ	Γ	И	И						
3				Γ	Γ	И	И	Γ	Γ	Γ	И	И	Γ	Γ	И
4					О	О	О	О	О	Γ	Γ	Γ	И	И	
5						Γ	Γ	Γ	Γ	И					

80 P ₁	80 Pı	80 Pı	60 P ₃											
0011	0011	0011	20	20	10 P ₅	10	10	10	10					
			20	20	10	10	10	10						
		50 P ₂	80 P ₄	140										
120	120	70	70	70	70	70	70	70						
		70	70	70	70	70	70	70	50	50	50	50	50	

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
				P ₄										

Среднее время между стартом задания и его завершением: tt = (3 + 7 + 12 + 10 + 5)/5 = 7.4. Среднее время ожидания: wt = (0 + 3 + 7 + 8 + 4)/5 = 4.4.

b. Рассмотрим выполнение процессов в системе для алгоритма RR и стратегии best fit.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	И	И	И												
2			Γ	И	И	Γ	Γ	Γ	Γ	И	И				
3				Γ	Γ	И	И	Γ	Γ	Γ	Γ	Γ	И	И	И
4					Γ	Γ	Γ	И	И						
5						Γ	Γ	Γ	Γ	Γ	Γ	И			

| 80 P ₁ | 80 P ₁ | 80 P ₁ | 80 | 80 P ₄ | 80 | 80 | 130 | 130 | 130 | 130 |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| | | 50 P ₂ | | | | |
| 120 | 120 | 70 | 60 P ₃ |
| | | | 10 | 10 | 10 P ₅ | 10 | 10 | 10 |

1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14

Среднее время между стартом задания и его завершением: tt = (3 + 9 + 12 + 5 + 7)/5 = 7.2. Среднее время ожидания: wt = (0 + 5 + 7 + 3 + 6)/5 = 4.2.

с. Рассмотрим выполнение процессов в системе для вытесняющего алгоритма SJF и стратегии first fit.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	И	И	И												
2			Γ	И	И	Γ	И	И							
3				Γ	Γ	Γ	Γ	Γ	И	И	Γ	Γ	И	И	И
4					О	O	О	О	Γ	Γ	И	И			
5						И									

80 P ₁	80 P ₁	80 P ₁	60 P ₃											
			20	20	10 P ₅	20	20							
		50 P ₂	50 P	80 P ₄	80 P ₄	80 P ₄	80 P ₄	140	140	140				
120	120													
		70	70	70	70	70	70	60	60	60	60			

木															
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
					P ₄	P ₄	P ₄	P ₄							

Среднее время между стартом задания и его завершением: tt = (3 + 6 + 12 + 8 + 1)/5 = 6.0 Среднее время ожидания: wt = (0 + 2 + 7 + 6 + 0)/5 = 3.0.

d. Рассмотрим выполнение процессов в системе для вытесняющего алгоритма SJF и стратегии best fit.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	И	И	И												
2			Γ	И	Γ	Γ	Γ	И	И	И					
3				Γ	Γ	Γ	Γ	Γ	Γ	Γ	И	И	И	И	И
4					И	И									
5						Γ	И								

80 P ₁	80 P ₁	80 P ₁	80	80 P ₄	80 P ₄	80	80	80	80	130	130	130	130	130
		50 P ₂												
120	120	70	60 P ₃											
			10	10	10 P ₅	10 P ₅	10	10	10	10	10	10	10	10

1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14

Среднее время между стартом задания и его завершением: tt = (3 + 8 + 12 + 2 + 2)/5 = 5.4. Среднее время ожидания: wt = (0 + 4 + 7 + 0 + 1)/5 = 2.4.

<u>Оценка:</u>

За каждый алгоритм со стратегией — по 3 балла. Если времена нахождения в очереди заданий включены в подсчет времен — еще 2 балла на всю задачу

2. (12 баллов) В диком каннибальском племени вокруг котла с пищей спят дикари и повар. Изначально в котле находится N порций мяса. Дикари по очереди просыпаются, берут из котла порцию мяса, съедают его и засыпают снова. Дикарь, не обнаруживший мяса в котле, будит повара. Повар находит добычу и снова готовит N порций, не подпуская никого к котлу во время приготовления, после чего тоже засыпает. Используя классические очереди сообщений и разделяемые переменные, постройте корректную модель происходящего, описав поведение каждого из дикарей и повара с помощью отдельных процессов. Классические очереди сообщений используют примитивы send(A,message) и receive(A,message), где A - имя очереди сообщений.

Решение:

Заводим 2 очереди сообщений A (для дикарей) и B (для повара) и разделяемую переменную Nportion (для количества порций).

Shared int Nportion = N;

```
Для дикарей
                                                         Для повара
While(1){
                                                         send(A, message);
  receive(A, message);
                                                         While(1){
  if(Nportion == 0)
                                                            receive(B, message);
     {Разбудить повара; send(B,message);}
                                                            Найти добычу и приготовить еду;
                                                            Nportion = N;
     Взять порцию; Nportion--;
                                                            send(A, message);
     send(A, message); Съесть порцию; Поспать;
                                                            Лечь спать;
}
```

Оценка:

Грубые ошибки: нет взаимоисключения, тупиковые ситуации, убитые за попытку взять пищу не вовремя дикари — -8 баллов, средней тяжести: циклы ожидания, прохождение дикарями критических участков без совершения разумных действий — -4 балла. Полный балл только за полностью правильный ответ.

3. (6 баллов) В вычислительной системе с сегментно-страничной организацией памяти и 32-х битовым адресом максимальный размер сегмента составляет 2 Мb, а размер страницы памяти 256 Кb. Для некоторого процесса в этой системе таблица сегментов имеет вид:

Номер сегмента	Длина сегмента				
0	0x7e000				
1	0x080000				

Таблицы страниц, находящихся в памяти, для сегментов 0 и 1 приведены ниже:

Сегмент 0 Номер страницы Номер кадра (десятичный) 0 0 1 12

CELMENT					
Номер страницы	Номер кадра (десятичный)				
0	63				
2	32				

Каким физическим адресам соответствуют логические адреса: 0x0007f123, 0x002b3312, 0x00502005?

Решение:

2 Mb — это 2^{21} байт, т.е. под номер сегмента в логическом адресе отводится 11 бит, а 21 бит — под смещение внутри сегмента. Размер страницы 256 Kb — это 2^{18} байт, т.е. из смещения внутри сегмента 18 бит отводится под смещение внутри страницы, а 3 бита — под номер страницы.

 $0x0007f123 \longrightarrow$ сегмент 0, смещение $0x07f123 \longrightarrow$ смещение больше длины сегмента —>error,

0x002b3312 —> сегмент 1, смещение 0x0b3312 —> сегмент 1, страница 2, смещение 0x00033312 —> кадр 32, смещение 0x00033312 —> 0x00833312.

0х00502005 —> сегмент 2, смещение 0х102005 —> **еггог**.

Оиенка:

По 2 балла за адрес:

- 4. (6 баллов) Ответьте на следующие вопросы:
 - а) Что понимается под термином spooling (спулинг)?
 - b) Что понимается под термином mutual exclusion (взаимоисключение)? Достаточно ли организации взаимоисключений для корректной работы взаимодействующих процессов?

Решение:

- а) На основании знаний, данных на лекции к моменту написания контрольной, ответ должен выглядеть примерно так: «Одновременное выполнение на одном компьютере вычислений на центральном процессоре для одного процесса и реальных операций ввода-вывода на медленных устройствах, требующих монопольного использования (таких как принтер, устройства ввода с перфокарт и т.д.) для другого процесса, получило название spooling (от SPOOL Simultaneous Peripheral Operations On Line)».
- b) Под взаимоисключением (mutual exclusion) понимают следующую ситуацию: если один из процессов исполняется в своем критическом участке, то ни один из взаимодействующих с ним процессов не может находиться в своем соответствующем критическом участке. Более общо: взаимоисключение это обеспечение эксклюзивного доступа к какому-либо ресурсу. Одних взаимоисключений недостаточно для организации корректной работы взаимодействующих процессов. Если очередность доступа к ресурсу не важна, то необходимо еще выполнение условий ограниченного ожидания и прогресса. Если очередность доступа имеет значение, то требуется дополнительно взаимная синхронизация работы процессов.

Оиенка:

За каждый пункт предполагается по 3 балла.