

Production Technology 1

Lecture Unit 08 Additive Manufacturing

Additive manufacturing Technologies within ISO-ASTM 52900

Powder bed fusion	Directed Energy Deposition	Material Extrusion	Material Jetting	Sheet lamination	Binder Jetting	Vat Photopoly- merisation
PBF- LB/M	DED-LB/M	MEX- MSt/M	MJT	SHL	BJT	VPP
PBF- LB/P		MEX- MSt/C				
PBF- EB/M		MEX- SSt/P				

Live-Survey

Consider airplanes could be manufactured by additive manufacturing technology, how long would this take for a modern system? (Expected build rate: 100 cm³/h)

- a) 10 days
- b) 36 months
- c) 20 years

Result

Classification of manufacturing technologies

Alternative subdivision of manufacturing technologies (according to Burns):

Subtractive Manufacturing:

→ Ablation of defined areas,
 e. g. cutting or milling

sr-tech.de

Additive manufacturing:

→ joining volume elements e. g. PBF-LB/M or DED-LB/M

eos.info

Formative manufacturing:

→ deforming of a given volume e. g. deep drawing or bending

tracto-technik.de

Trends in production

Current trend: increasing amount of part variants and part complexity

Additive vs. conventional manufacturing

Economic efficiency of additive manufacturing technologies for small lot sizes and complex parts

Additive manufacturing – Potential

Additively manufactured parts: 10-50 times more expensive

Conventionally fabricated belt buckle

Where lies the potential of AM processes?

Example: SAVING Project

Weight of a belt buckle:

Conventionally fabricated (steel): 155 g

Additively manufactured (titanium): 70 g

Airbus A-380: max. 853 seats

Weight reduction: max. 72.5 kg

→ Saving of 3.3 million liters of fuel or 2 million euro over the product life of an airplane

Additively manufactured (PBF-LB/M) belt buckle

manufacturingthefuture.co.uk

Features of the additive manufacturing: Support structures

Vat Photopolymerization (VPP)

Powder bed fusion PBF-LB/P

Powder bed fusion PBF-LB/M

Material extrusion MEX-SSt/P

Need of support structures and consequences

Support structures (e.g. for PBF-LB/M)

Consequences of the part placement on the support structure

Built time

Ease of support removal

Built height

Cross section

Pieces per build

- Residual stress → deformation
- Restraint of powder recoating
- Supports reduce deformation
- After building:
 - Stress relief heat treatment
 - Removal of supports

second layer

Over, C.: Generative Fertigung von Bauteilen aus Werkzeugstahl X38CrMoV5-1 und Titan TiAl6V4 mit "Selective Laser Melting". Dissertation, RWTH Aachen. Aachen: Shaker Verlag (2003)

Support structure in additive manufacturing

Reasons for supports:

- Component distortion (Curling)
 - Irregular hardening of the material
 - Negatively affecting the dimensional accuracy
- Sinking of the component when the underlying powder cannot hold the component
 - → Forming of a separation layer (interruption of the layer bonding)

Possible failures without support structures

europa-lehrmittel.de

File format: Surface Tesselation Language (STL)

- STL-files consist of triangles with 12 coordinates each:
 - → 3 vectors of the corner points
 - → Normal vector
- Smaller triangles result in better approximation of curvatures
- More triangles are equivalent to larger file size
- *.STL file format has no consistency check
- → Potentially repair of the file required

Normal vector

reprap.org

Powder Bed Fusion with Laser Beam of Metals

ISO-ASTM 52900: PBF-LB/M

Process steps:

- Powder coating
- Melting of the applied powder layer by a focused laser beam
- Lowering of the build platform
- → Iteration of the 3 process steps until completion of the part

custompart.net

Powder Bed Fusion with Laser Beam of Metals

Energy input by the laser

Example: PBF-LB/M

Process parameter

P_L: Laser power

 $v_{\rm S}$: Scan velocity

 h_S : Line distance (Hatch)

 h_c : Layer thickness

Es: Energy per unit area

$$E_{S} = \frac{P_{L}}{v_{S} * h_{S}}$$
 in J/m² (area energy density)

$$E_{S} = \frac{P_{L}}{v_{S} * h_{S} * h_{c}} \quad in \quad J/m^{3} (volume energy density)$$

Live-Survey

Which process is comparable to the melting of the layers in the PBF-LB/M process?

- a) laser deep penetration welding
- b) heat conduction welding
- c) laser-based brazing

Result

PBF-LB/M: Pre-Process

Metal powder handling

- Powder particles are partly alveolar
- Powder is reactive
 - → Explosion hazard (e. g. titanium powder)
- Fractionation of powder under protective atmosphere (Argon)
 - → Particle size: 20 63 µm homogenous and reproducible powder layers
 - → Avoidance of oxidation on powder surface
- Further quality control: chemical composition, particle form, particle size distribution

Sieving machine

Haver & Böcker
Glovebox with Ar protective
atmosphere

PBF-LB/M: Post-Processing

- Removal of non melted powder particles
 →Abrasive blast machine
- Heat treatment in a furnace
 - → Annealing in order to reduce residual stress
 - → Annealing and tempering in order to customize the microstructure and mechanical properties
- Removal of support structures
- Surface roughness: 50-150 μm
- → Often not sufficient for the end product application
- → Post-processing by milling or grinding
- Powder recycling / powder preparation

Furnace for heat treatment

Tensile samples with supports

PBF-LB/M: Process features

- Relative density of parts: > 99,9 %
- Powder particle size:
 20 63 μm
- Typical layer thickness:
 20 100 μm
- High-performance laser (Fiber laser, disk laser)
- Mechanical properties of parts are comparable to conventionally fabricated parts
- Recoating mechanism:
 Ceramic or steel blade,
 rubber lip or roller

Build chamber (Realizer SLM 50 at LPT)

Cross-section of PBF-LB/M fabricated cubes (AlSi10Mg)

PBF-LB/M: Process challenges

- Porosity
- Heat accumulation
- High temperature gradients in space and time
 - → Crack formation
 - → Deformation

Subject of current research

- Development of specific process strategies (scan strategies, parameter studies for specific materials)
- Improvement of process understanding

Porosity and crack formation

Warpage of a part, fabricated by PBF-LB/M

Fraunhofer ILT

PBF-LB/M application: Medical engineering

Advantages:

- Economical production of individualized implants
- Low weight of the implants (Lattice / hollow structure)
- Graded porosity→ Osseointegration
- Adapted stiffness
- Low heat conductivity (sensitivity in cold weather)

Titanium screw for a dental crown

Dental crown frames (CoCr alloy)

realizer.com

Titanium implant (acetabulum)

medicaldesign.com

PBF-LB/M application: Tool manufacturing

- Conformal cooling channels
 - → Reduction of cycle time
 - → Higher product life of the tool
 - → Fabricated products with better surface quality
- Fast production of injection molding tools (Time-tomarket)

Conformal cooling channels

inglass.it

Fraunhofer ILT

Comparison of temperature Conformal cooling and traditional cooling

rmit.edu

PBF-LB/M application: Lightweight construction / function integration

- Optimization with regard to function, weight and load for different parts
- Lightweight materials:
 Titanium, aluminium and other alloys

Example: Turbine injection nozzle

Advantages to the previous model:

- Integration of 20 single components to one part
- Design optimization:
 Fivefold higher product life
- 25 % weight reduction
- Lower production cost

Door hinge (Ti6Al4V) (employed in aircrafts, EADS project)

mmsonline.com

Turbine injection nozzle

Manufactured by GE and used in LEAP

Engine

Powder Bed Fusion with Electron Beam of Metals

ISO-ASTM 52900: PBF-EB/M

Process steps:

- Powder recoating
- Pre-Sintering of the whole powder layer
- Melting of the metal powder by an electron beam
- Lowering the build platform
- → Repetition of the four process steps until the part is finished

<u>Directed Energy Deposition with Laser Beam of Metals</u>

- ISO-ASTM 52900: DED-LB/M
- Generation of a melt pool on the workpiece surface
- Supply of an additional material (powder or wire) to the melt pool and complete melting of the supplied material
- Generation of a metallurgical joint
- Near-Net-Shape geometries possible (mechanical postprocessing required)

DED-LB/M: Process visualization

DED-LB/M: Geometry of the weld tracks

→ Sufficient overlap to obtain a completely dense structure

	Min.*	Max.*
Line width	0,3 mm	7 mm
Layer height	0,1 mm	2 mm
Overlap	0,15 mm	3 mm

^{*)} depending on the material and the laser parameters

Stainless steel (4 layers; Layer height 0.5 mm)

University of Liverpool

DED-LB/M: Applications

Wear resistant cutting edge

eifeler-lasertechnik.de

Turbine rotors

stork-gears.com

Coating of a shaft

LPT; FAU Erlangen

repair of a gas turbine blade

industrial-lasers.com

DED-LB/M: Repair of a steel shaft

- Repair of costly high-performance components
 - → Thermal damage
 - → Chemical abrasion
 - → Mechanical abrasion
- Examples: Turbine blades, engine components, etc.
- Reconstitution of the surface geometry
 - → High requirements in terms of the microstructure of the deposited material, e.g. orientation, crystallite size and growth

Powder Bed Fusion with Laser Beam of Polymers

ISO-ASTM 52900: PBF-LB/P

Process steps:

 Preheating and holding the powder near melting temperature

Powder coating

 Selective melting of the powder by focused laser beam

 Lowering of the build platform by one layer height

→ Iteration of the last three process steps

custompartnet.com

PBF-LB/P application: Medical engineering

Knee prosthesis with patient specific drilling guide:

- Drilling, guided by PBF-LB/P PA12 drilling template
- Removal of drilling guides and insertion of fixing pins
- Reusable sawing guide put on fixing pins
- Guided cutting of the bone and removal of the support instruments
- Insertion of the knee implant

Drilling template for knee-surgery

Materialise, Zimmer

Bracers:

- Adaption to the bone structure
- Optimized, local support for the injured area

Exoskeleton (prototype) for fracture of the arm

3druck.com

PBF-LB/P: Application

Gear housing (Design-Prototype)

Manifold (Functional prototype)

iopscience.iop.org

UAV "SULSA"

Fruit bowl (design product)

cribcandy.com

Vat Photopolymerization (VPP) - Digital Light Processing

Process steps:

- Uses a conventional light source e.g. arc lamp with liquid crystal display panel
- Build projector displays image of 3D model onto resin layer
- Exposed liquid resin cures and the build plate moves down
- Repeated until part is built
- Optional: Post heat treatment to fully cure resin

Pros:

- Short printing time
- UV light source is cheaper than a laser

Cons:

- Accuracy
- Projector housing requires a lot of space

quickparts.com

Vat Photopolymerization (VPP) - Digital Light Processing

Material Extrusion of Metals / Ceramics – Process Steps

- Shaping: Extrusion of a powder filled polymer mixture through a heated nozzle -> green part
- Solvent extraction: Debinding of the green part in a solvent
- Thermal decomposition: Debinding of the insoluble binder
- Sintering to reduce porosity and obtain the final material properties

Shrinkage during sintering: consideration of an oversize for the part before printing

Gonzalez-Gutierrez et al. Materials 2018, 840; doi:10.3390/ma11050840

Material Extrusion (Metals, Ceramics)

ISO-ASTM 52900: MEX-MSt/M or MEX-MSt/C

<u>Material Extrusion in a Multi Step Process of Metals</u>

<u>Material Extrusion in a Multi Step Process of Ceramics</u>

Printer for green part generation

Facility for solvent debinding

Furnace for thermal debinding and sintering

© LPT PT 1 SS 24 34

Material Extrusion (Metals, Ceramics) – Pros and Cons

Advantages (compared to powder bed fusion)

- Diverse materials: numerous thermoplastic polymers, metals, ceramics and composite materials processable
- Good scalability of the process due to moderate costs of the required systems
- Few safety issues: no free powder and no laser radiation required
- Multi material parts possible
- Low thermal gradients due to the isothermal sintering process
 - -> beneficial for brittle materials susceptible to cracking

Disadvantages

- Only for moderate wall thicknesses of <10 mm and part mass <1 kg
- High linear shrinkage during sintering (15-20 %)
- Filaments cost-intensive due to limited number of suppliers
- Frequently residual porosity in the final parts

Material Extrusion (Polymers)

ISO-ASTM 52900: MEX-SSt/P

Material Extrusion in a Single Step of Polymers

Controller (Design prototype)

Positioning aid

javelin-tech.com

Battery box (Function prototype)

Air conditioning channel (in aircrafts)

