Mathematics for Engineering

Assignment 1

1. Let
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & 3 \end{pmatrix}$$
 and $B = \begin{pmatrix} 4 & 1 & 1 \\ -4 & 2 & 0 \\ 1 & 2 & 1 \end{pmatrix}$. What is the $(1, 2)$ -entry of the matrix $AB - BA$?

(a) -4
(b) 2
(c) -2
(d) 1

- 2. The (2,3)-entry of the product $\begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 2 & 5 & 1 \\ 4 & -1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 4 & 2 & 1 \\ 2 & 3 & 2 \\ 5 & 1 & 0 \\ 0 & 4 & 3 \end{bmatrix}$ is
 (a) 8 (b) 10 (c) 11
- If ABC can be formed and A is 4 × 4, C is 7 × 7. What is the size of B?
 (a) 4 × 7
 (b) 4 × 4
 (c) 7 × 4
 (d) 7 ×
- 4. If A is a 2×2 invertible matrix and $(3A)^{-1} = \begin{pmatrix} -1 & 3 \\ 4 & 5 \end{pmatrix}$, what is the (1,1)-entry of A?
 - (a) -5/51 (b) -25/3 (c) 5/21
- 5. If an $n \times n$ matrix A satisfies $A^2 6A + 5I_n = 0$, then A^{-1} (a) does not exist
 (b) is $(6I_n A)/5$ (c) $(A 6I_n)/5$ (d) exists only if n < 6
- 6. Let A be an arbitrary square matrix. Which of the following matrices are symmetric:
 - (i) $A + A^T$
 - (ii) $A + 2A^T$
 - (1) 11 | 211

- (b) (ii)
- (a) (i) (c) (i) and (ii)

(d) None of the other choices is correct

(d) 7

7. Given that
$$3\begin{pmatrix} x & 2 & 1 \\ 0 & z & y \end{pmatrix} = \begin{pmatrix} 9 & 2z & -y \\ 0 & t & s \end{pmatrix}$$
. Find $t+s$.

(a) 0 (b) 5 (c) 9 (d) 12

- 8. Find all a, b, c such that the following matrix is in reduced row-echelon form: $\begin{bmatrix} a & 1 & b & b & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & c \end{bmatrix}$ (a) (1, 0, 0) (b) (0, 0, 0) and (1, 0, 0)(c) (0, 0, 1) (d) (1, 0, 0) and (0, 0, 1)
- (a) (1,0,0) (b) (0,0,0) and (1,0,0)(c) (0,0,1) (d) (1,0,0)9. Let $A = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}$ and $B = \begin{pmatrix} -1 & 2 \\ 2 & -3 \end{pmatrix}$. Solve AXB = BA, where X is a matrix
 - (a) X = I (b) $X = \begin{pmatrix} 59 & 32 \\ -24 & -13 \end{pmatrix}$ (c) $X = \begin{pmatrix} 27 & -16 \\ -32 & 19 \end{pmatrix}$ (d) None of the others

1

- 10. Find rank of $\begin{pmatrix} 0 & 1 & 1 \\ 0 & 2 & 3 \\ 1 & 2 & 0 \end{pmatrix}$ (a) 0 (b) 1 (c) 2 (d) 3
- 11. Which of the following statements are true for invertible $n \times n$ matrices A, B, and C?
 - (i) $(A+B)^{-1} = A^{-1} + B^{-1}$ (ii) $(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$ (iv) $(A+B)^2 = A^2 + 2AB + B^2$ (v) $(A+C)(A-C) = A^2 - C^2$
 - (iii) $A^2B^2 = (AB)^2$
 - (a) (ii) and (v) (b) (ii) and (iii) only (c) (i) and (iv) only (d) (ii) only
- 12. Given that rank of the matrix $\begin{pmatrix} -1 & 4 & 5 \\ 2 & 3 & -2 \\ 3 & 10 & a \end{pmatrix}$ is 2, what is a?

 (a) -1 (b) 1/2 (c) 0 (d) 1
- 13. Let A be a 3×5 matrix. Choose correct statements
 - (i) A can have rank 3
 - (ii) A can have rank 5
 - (iii) A can have linearly independent rows
 - (iv) A can have linearly independent columns
 - (a) (i) (b) (i) and (iii) (c) (ii) and (iv) (d) (iv)
- 14. Let $T: \mathbb{R}^4 \longrightarrow \mathbb{R}^3$ be a linear transformation with T(1,1,0,-2)=(2,3,-1) and T(0,-1,1,1)=(5,0,1). Find T(1,3,-2,-4).
 - (a) (7, 3, 0)
- (b) (1, -6, 3)
- (c) (-8, 3, -3)
 - (d) None of the others
- 15. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation such that the matrix of T is $\begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$. Find T(3,2).
 - (a) (7,3)
- (b) (8.4)
- (c) (3,2)
- (d) (43)
- 16. Find all values of m for which the following system of equations has nontrivial solutions:

$$\begin{cases} x - 2y + z &= 0 \\ x + my - 3z &= 0 \\ -x + 6y - 5z &= 0 \end{cases}$$

- (a) m = 2
- (b) m = -2
- (c) $m \neq -2$
- (d) $m \neq 2$
- 17. Consider a homogeneous system of 5 linear equations in 6 unknowns. Which of the following is true?
 - (a) The system can have no solution
 - (b) The system has between 0 and 5 solutions
 - (c) The system always has infinitely many solutions
 - (d) The system has only the trivial solution

Page 2

- 18. Let A be the augmented matrix of a homogeneous of 3 equations in 6 variables. If rank(A) = 1, how many solutions and how many parameters does this system have?
 - (a) Infinitely many solutions and 3 parameters(b) Infinitely many solutions and 2 parameters
 - (c) Infinitely many solutions and 5 parameters(d) Unique solution
- 19. Consider the matrix $A = \begin{pmatrix} 2 & -1 & 1 \\ -4 & 2 & 2 \\ 4 & 2 & 3 \end{pmatrix}$. If A is the augmented matrix of a system of linear equations, determine the number of equations and the number of variables.

 - (a) 3 equations, 3 unknowns
- (b) 2 equations, 3 unknowns
- (c) 2 equations, 2 unknowns
- (d) 3 equations, 2 unknowns
- 20. Find all values m such that the system of equations $\begin{cases} x+y-z &= 1\\ x+2y+mz &= 0 \text{ has exactly one solution}\\ 2x+3y-2z &= m \end{cases}$ (a) $m\neq 1$ (b) $m\neq 2$ (c) $m\neq -1$ (d) m=-1

- 21. Find all values of t such that the system $\begin{cases} x+ty&=0\\ tx+y&=2\text{ is consistent.}\\ x+y&=1 \end{cases}$

- (d) Does not exist
- 22. Find all values of m such that the following system has no solution

$$\begin{cases} x - 2y + z &= 0 \\ x + y + 3z &= 1 \\ 2x - y + 4z &= m \end{cases}$$

- (b) Any number (c) $m \neq 1$

- 23. Solve the system of linear equations: $\begin{cases} 3x + y &= 9 \\ x y &= 3 \end{cases}$ Solve the system of linear equations: $\begin{cases} 3x+y=9\\ x-y=3 \end{cases}$ (a) x=6,y=3 (b) x=0,y=-3 (c) x=3,y=0 (d) x=1,y=1

- 24. The (3,1)-cofactor of $\begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 5 \\ 3 & 0 & 6 \end{pmatrix}$ is:
 - (a) 2
- (c) 3
- 25. Find the second row of the adjugate of the matrix $\begin{pmatrix} -6 & -9 & -8 \\ 2 & 9 & 6 \\ 0 & 1 & -1 \end{pmatrix}$.
- (c) (2 6 20)
- (d) (17 6 6)

- 26. Let $\begin{vmatrix} a & m & d \\ b & n & e \\ c & p & f \end{vmatrix} = 10$. Find $\begin{vmatrix} 2a + 3d & d & -m \\ 2b + 3e & e & -n \\ 2c + 3f & f & -p \end{vmatrix}$.

- (d) 60
- 27. If det $\begin{bmatrix} a & b & c \\ p & q & r \\ x & y & z \end{bmatrix} = 2$, compute det $\begin{bmatrix} -p & -q & -r \\ 2p+a & 2q+b & 2r+c \\ p+3x & q+3y & r+3z \end{bmatrix}$
 - (a) -6

- (d) -3

Page 3

- (a) 2/105
- (b) 210
- (c) 16/105
- (d) None of the others
- 29. Suppose A and B are 3×3 matrix with det A = 2, det B = 5. What is $\det(2AB)$?
 - (a) 20
- (b) 14
- (c) 80
- (d) 60
- 30. A is a 4×4 matrix with det A = 4. If adi(A) denotes the transpose of the matrix of cofactors of A, find det(adj(A)).
 - (a) 16
- (b) 1/16
- (c) 1/64
- (d) 64
- 31. Find m such that the matrix $\begin{pmatrix} 0 & m & -4 \\ 2 & 3 & -1 \\ 1 & 4 & 1 \end{pmatrix}$ is not invertible.
 - (a) All number but -20/3
- (b) All numbers but 20/3

(c) 20/3

- 32. Let $A = \begin{bmatrix} 1 & 3 & 1 \\ 0 & 1 & 0 \\ 2 & -1 & m \end{bmatrix}$. For which values of m is A invertible?

- 33. The characteristic polynomial of $A = \begin{pmatrix} 3 & -2 \\ 1 & 0 \end{pmatrix}$ is

 - (a) (x-2)(x+1) (b) x^2-3x+2 (c) (x+2)(x+1) (d) $3x^2$
- 34. Find the eigenvalues of the matrix $\begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & 1 \\ -12 & 11 & 4 \end{pmatrix}$.
 - (a) 3: 3: -1

- 35. Given that $\lambda = 1$ is an eigenvalues for the matrix $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$. Find a set of basic eigenvectors corresponding to this eigenvalue $\lambda = 1$
 - (a) $\{(0,0,1)\}$
- (b) $\{(1,0,0),(0,0,1)\}\$ (c) $\{(1,0,0)\}\$ (d) $\{(0,-1,1)\}\$
- 36. Find all values of a such that $\begin{pmatrix} a & 1 \end{pmatrix}^T$ is an eigenvector of matrix $A = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$.
 - (a) 1 or 0
- (b) -1 or 0
- (c) 1 or -1

- 37. Which of the following are subspaces of \mathbb{R}^3 .
 - (i) $U = \{(x, y, z) \in \mathbb{R}^3 : x + y^2 z = 0\}$
 - (ii) $V = \{(x, y, z) \in \mathbb{R}^3 : x + 2y 3z = 0 \text{ and } 2x z = 0\}$
 - (a) (ii)

(b) (i) and (ii)

(c) (i)

- (d) None of the other choices is correct
- 38. Find the value of t for which (4,6,t) is a linear combination of (1,3,1); (2,8,-1) and (-1,-5,2).
 - (a) 0
- (b) 4
- (c) 7
- (d) 13

Page 4

(a) m = 1

(i) $\{u, v - w, w\}$

(d) m = -1

39. Find all values of m such that the set $\{(1,-1,2),(3,0,1),(-2,m,1)\}$ is linearly independent

(b) $m \neq -1$

40. Let $\{u, v, w\}$ be independent. Which of the following sets are independent?

(c) m = 3

about:blank 5/5