CMSC 411 | Computer Architecture

Lecture 11: Multiplier Design

Dr. Ergun Simsek

Facit C1-13 https://www.youtube.com/watch?v=zJ3q4zjCKnM

Overview

Previous Lecture

- Constructing an Arithmetic Logic Unit
- Addition, subtraction, slt, and branching

This Lecture

- Algorithms for multiplying unsigned numbers
- Booth's algorithm for signed number multiplication
- Multiple hardware design for integer multiplier

How Humans Multiply

Binary makes things easy

0 => place 0 (0 x multiplicand) 1 => place a copy (1 x multiplicand) m bits

n bits

m+n bits

Unsigned mult has no overflow risk, so let's forget about the sign problem and focus on some mult designs

How would you design it?

Unsigned Combinational Multiplier

- Stage i accumulates A * 2ⁱ if B_i == 1
- At each stage shift A left (x 2)
- Use next bit of B to determine whether to add in shifted multiplicand
- Accumulate 2n bit partial product at each stage

Assume we have a

- 64-bit multiplicand register,
- o 64-bit ALU,
- 64-bit product register, and
- 32-bit multiplier register

- The 32-bit value of the multiplicand starts in the right half of the 64-bit register
- The multiplier is shifted in the opposite direction of the multiplicand shift
- The product register starts with an initial value of zero
- Control decides when to shift the multiplicand and the multiplier registers and when to write new value into the product register

Multiplicand 1000 Multiplier <u>x1001</u>

Multiplier = Datapath + Control

Product 0000

Multiply Algorithm Version 1

Multiplying two n-bit numbers needs a maximum of $2n^2$ addition operations mostly for adding zeros

- •If the least significant bit of the multiplier is
 - 1, then add the multiplicand to the product
 - o 0, then go to the next bit
- •Shift the multiplicand left and the multiplier right
- Repeat for 32 times

Multiply Hardware Version 2

- Since half of the 64-bit Multiplicand are zeros, a 64-bit ALU looks wasteful in the first version of multiplier
- This version uses only 32-bit Multiplicand register, 32-bit ALU, 64-bit Product register, and 32-bit Multiplier register
- Since the least significant bits of the product would not change, the product could be shifted to the right instead of shifting the multiplicand
- The most significant 32-bits would be used by the ALU as a result register

Multiply Algorithm Version 2

Multiplicand stays still Product shifts right Multiplier shifts right!

An Example

Follow the multiplication algorithm (version 2) to get the product of 2 × 3 using only 4-bit binary representation

Doesn't

ıaı	ige
	L

Iteration	Step	Multiplier	Multiplicand	Product
0	Initial value	0011	0010	0000 0000
1				
2				
3				
4				

Multiply Hardware Version 3

- Product register wastes space that exactly matches size of multiplier
 ⇒ combine Multiplier register and Product register
- Uses only 32-bit Multiplicand register, 32-bit ALU, 64-bit Product register, and 0-bit Multiplier register
- Shifting the product register would remove the least significant bit which is already used in the multiplication
- The most significant 32-bits are still being used by ALU as a result register

Multiply Algorithm Version 3

2 steps per bit because Multiplier & Product combined

The product of 2×3

Iteration		Step	Multiplicand	Product
0	Initial value		0010	0000 0011
1				
2				
3				
4				

Multiplying Signed Number

- Easiest solution is to make both positive and remember whether to complement product when done (leave out the sign bit, run for 31 steps)
- Alternative idea: Apply definition of 2's complement ⇒ need to sign-extend partial products

Example: multiply 1001 (-7) by 0010 (+2)

Iteration	Step	Multiplicand	Product
0	Initial value	1001	0000 0010
1			
2			
3	-		
4	_	,	

Multiply 0111 (+7) by 1110 (-2)

Iteration	Step	Multiplicand	Product
0	Initial value	0111	0000 1110
1	1a: 0 ⇒ no operation	0111	0000 1110
	2: Shift right Product	0111	0000 0111
2	1a: 1 ⇒ Prod = Prod + Mcand	0111	0111 0111
	2: Shift right Product	0111	0011 1011
3	1a: 0 ⇒ Prod = Prod + Mcand	0111	1010 1011
	2: Shift right Product	0111	1 101 0101
4	1a: 0 ⇒ Prod = Prod + Mcand	0111	0100 0101
	2: Shift right Product	0111	0010 0010

Solution: Booth's Algorithm

An elegant way to multiply signed numbers using same hardware as before and save cycles

The Idea Behind Booth's Algorithm

Let's say we want to compute the following multiplication

Since there are three 1's in 0111, normally this would require 3 "8-bit numbers addition" = 24 "1-bit addition"

How about writing the same multiplication in the following format?

There are two 1's here, this would require

1 "8-bit numbers addition" and 1 "8-bit numbers subtraction"

Booth observed and proved that this can be partially applied to multiplication of long binary numbers

Booth's Algorithm

Let's say we want to multiply M by n = 6 $n = 6 = (0110)_2$

Product = M * (8 – 2)
= (M * 8) - (M * 2)
= (M *
$$2^3$$
) - (M * 2^1)
= shifting M left by 3 - shifting M left by 1

How can this be implemented on ALU? Booth came up with the following algo Scan left from the LSB, compare current "bit *i*" with the previous "bit *i*-1" to take the arithmetic action

00 ⇒ no arithmetic operation

01 ⇒ add multiplicand to left half of product

10 ⇒ subtract multiplicand from left half of product

11 ⇒ no arithmetic operation

Important: If it is the FIRST pass, use 0 as the previous LSB.

Binary Arithmetic

$$2^{5}$$
 2^{4} 2^{3} 2^{2} 2^{1} 2^{0}
 0 1 0 0 0 \Rightarrow 24 $=$ 2^{5} 2^{3} $=$ 32 8

Starting from LSB, scan left

$$0$$
 1 \Rightarrow add 2^i to the sum

1 0
$$\Rightarrow$$
 subtract 2^i from the sum

1 1
$$\Rightarrow$$
 no arithmetic operation

Product =
$$2 * (8 - 2)$$

= $(2 * 8) - (2 * 2)$
= $(0010 * 2^3) - (0010 * 2^1)$
= $(\text{shift } 0010 \text{ left by } 3) - (\text{shifting } 0010 \text{ left by } 1)$
= $0001 \ 0000 - 0000 \ 0100$
= $0001 \ 0000 + 1111 \ 1100$ (2's complement of 4)

Booth's Algorithm

Why should we use Booth's Algorithm?

- Provides fast multiplication for consecutive 0's or 1's in the multiplier
- Handles signed multiplication
 - Extend the sign when shifting to preserve the sign (arithmetic right shift)

Example (unsigned numbers)

Compare the multiplication algorithm (version 3) and Booth's algorithm applied to getting the product of 2 × 6 using only 4-bit binary representation

Multiplicand	Original Algorithm		Booth's Algorithm	
	Step	Product	Step	Product
0010	Initial value	0000 0110	Initial value	0000 0110 0
0010	1a: 0 ⇒ no operation	0000 0110	1a: 00 ⇒ no operation	0000 0110 0
0010	2: Shift right Product	0000 0011	2: Shift right Product	0000 0011 0
0010	1a: 1 ⇒ Prod = Prod + Mcand	0010 0011	1a: 10 ⇒ Prod = Prod - Mcand	1110 0011 0
0010	2: Shift right Product	0001 0001	2: Shift right Product	1111 0001 1
0010	1a: 1 ⇒ Prod = Prod + Mcand	0011 0001	1a: 11 ⇒ no operation	1111 0001 1
0010	2: Shift right Product	0001 1000	2: Shift right Product	1111 1000 1
0010	1a: 0 ⇒ no operation	0001 1000	1a: 01 ⇒ Prod = Prod + Mcand	0001 1000 1
0010	2: Shift right Product	0000 1100	2: Shift right Product	0000 1100 0

- Booth's algorithm uses both the current bit and the previous bit to determine its course of action
- Extend the sign when shifting to preserve the sign (arithmetic right shift)

Example (signed numbers)

Follow Booth's algorithm to get the product of 2 × -3 using only 4-bit binary representation

Iteration	Step	Multiplicand	Product
0	Initial value	0010	0000 1101 0
	1a: 10 ⇒ Prod = Prod - Mcand	0010	1110 1101 0
1	2: Shift right Product	0010	1111 0110 1
	1a: 01 ⇒ Prod = Prod + Mcand	0010	0001 0110 1
2	2: Shift right Product	0010	0000 1011 0
	1a: 10 ⇒ Prod = Prod - Mcand	0010	1110 1011 0
3	2: Shift right Product	0010	1111 0101 1
	1a: 11 ⇒ no operation	0010	1111 0101 1
4	2: Shift right Product	0010	1111 1010 1

Faster Multiplication-1

- We know whether the multiplicand is to be added or not at the beginning of the multiplication by looking at each of the 32 multiplier bits
- Faster multiplications are possible by essentially providing one
 32-bit adder for each bit of the multiplier
 - Input-1: the multiplicand ANDed with a multiplier bit
 - Input-2: the output of a prior adder

Faster Multiplication-1

Since we deal with bit-wise ANDs, no data storage is required

Faster Multiplication-2

