Introduction to Neural Networks

Philipp Koehn

3 October 2017

Linear Models

• We used before weighted linear combination of feature values h_j and weights λ_j

$$score(\lambda, \mathbf{d}_i) = \sum_j \lambda_j \ h_j(\mathbf{d}_i)$$

• Such models can be illustrated as a "network"

Limits of Linearity

- We can give each feature a weight
- But not more complex value relationships, e.g,
 - any value in the range [0;5] is equally good
 - values over 8 are bad
 - higher than 10 is not worse

XOR

• Linear models cannot model XOR

Multiple Layers

• Add an intermediate ("hidden") layer of processing (each arrow is a weight)

• Have we gained anything so far?

Non-Linearity

• Instead of computing a linear combination

$$score(\lambda, \mathbf{d}_i) = \sum_{j} \lambda_j \ h_j(\mathbf{d}_i)$$

• Add a non-linear function

$$score(\lambda, \mathbf{d}_i) = f(\sum_j \lambda_j \ h_j(\mathbf{d}_i))$$

Popular choices

$$tanh(x)$$
 sigmoid(x) =

(sigmoid is also called the "logistic function")

Deep Learning

• More layers = deep learning

What Depths Holds

- Each layer is a processing step
- Having multiple processing steps allows complex functions
- Metaphor: NN and computing circuits
 - computer = sequence of Boolean gates
 - neural computer = sequence of layers
- Deep neural networks can implement complex functions e.g., sorting on input values

example

Simple Neural Network

• One innovation: bias units (no inputs, always value 1)

Sample Input

- Try out two input values
- Hidden unit computation

$${\rm sigmoid}(1.0\times 3.7 + 0.0\times 3.7 + 1\times -1.5) = {\rm sigmoid}(2.2) = \frac{1}{1+e^{-2.2}} = 0.90$$

$$sigmoid(1.0 \times 2.9 + 0.0 \times 2.9 + 1 \times -4.5) = sigmoid(-1.6) = \frac{1}{1 + e^{1.6}} = 0.17$$

Computed Hidden

- Try out two input values
- Hidden unit computation

$$\text{sigmoid}(1.0 \times 3.7 + 0.0 \times 3.7 + 1 \times -1.5) = \text{sigmoid}(2.2) = \frac{1}{1 + e^{-2.2}} = 0.90$$

$$sigmoid(1.0 \times 2.9 + 0.0 \times 2.9 + 1 \times -4.5) = sigmoid(-1.6) = \frac{1}{1 + e^{1.6}} = 0.17$$

Compute Output

• Output unit computation

sigmoid(
$$.90 \times 4.5 + .17 \times -5.2 + 1 \times -2.0$$
) = sigmoid(1.17) = $\frac{1}{1 + e^{-1.17}} = 0.76$

Computed Output

• Output unit computation

sigmoid(
$$.90 \times 4.5 + .17 \times -5.2 + 1 \times -2.0$$
) = sigmoid(1.17) = $\frac{1}{1 + e^{-1.17}} = 0.76$

Output for all Binary Inputs

Input x_0	Input x_1	Hidden h_0	Hidden h_1	Output y_0
0	0	0.12	0.02	$0.18 \rightarrow 0$
0	1	0.88	0.27	0.74 ightarrow 1
1	0	0.73	0.12	0.74 o 1
1	1	0.99	0.73	$0.33 \rightarrow 0$

- Network implements XOR
 - hidden node h_0 is OR
 - hidden node h_1 is AND
 - final layer operation is $h_0 -h_1$
- Power of deep neural networks: chaining of processing steps just as: more Boolean circuits → more complex computations possible

why "neural" networks?

Neuron in the Brain

• The human brain is made up of about 100 billion neurons

• Neurons receive electric signals at the dendrites and send them to the axon

Neural Communication

• The axon of the neuron is connected to the dendrites of many other neurons

The Brain vs. Artificial Neural Networks

Similarities

- Neurons, connections between neurons
- Learning = change of connections, not change of neurons
- Massive parallel processing
- But artificial neural networks are much simpler
 - computation within neuron vastly simplified
 - discrete time steps
 - typically some form of supervised learning with massive number of stimuli

back-propagation training

Error

- Computed output: y = .76
- Correct output: t = 1.0
- \Rightarrow How do we adjust the weights?

Key Concepts

• Gradient descent

- error is a function of the weights
- we want to reduce the error
- gradient descent: move towards the error minimum
- compute gradient \rightarrow get direction to the error minimum
- adjust weights towards direction of lower error

Back-propagation

- first adjust last set of weights
- propagate error back to each previous layer
- adjust their weights

Gradient Descent

Gradient Descent

Derivative of Sigmoid

• Sigmoid

$$\operatorname{sigmoid}(x) = \frac{1}{1 + e^{-x}}$$

• Reminder: quotient rule

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{g(x)f'(x) - f(x)g'(x)}{g(x)^2}$$

Derivative

$$\frac{d \operatorname{sigmoid}(x)}{dx} = \frac{d}{dx} \frac{1}{1 + e^{-x}}$$

$$= \frac{0 \times (1 - e^{-x}) - (-e^{-x})}{(1 + e^{-x})^2}$$

$$= \frac{1}{1 + e^{-x}} \left(\frac{e^{-x}}{1 + e^{-x}}\right)$$

$$= \frac{1}{1 + e^{-x}} \left(1 - \frac{1}{1 + e^{-x}}\right)$$

$$= \operatorname{sigmoid}(x)(1 - \operatorname{sigmoid}(x))$$

Final Layer Update

- Linear combination of weights $s = \sum_k w_k h_k$
- Activation function y = sigmoid(s)
- Error (L2 norm) $E = \frac{1}{2}(t-y)^2$
- Derivative of error with regard to one weight w_k

$$\frac{dE}{dw_k} = \frac{dE}{dy}\frac{dy}{ds}\frac{ds}{dw_k}$$

Final Layer Update (1)

- Linear combination of weights $s = \sum_k w_k h_k$
- Activation function y = sigmoid(s)
- Error (L2 norm) $E = \frac{1}{2}(t-y)^2$
- Derivative of error with regard to one weight w_k

$$\frac{dE}{dw_k} = \frac{dE}{dy}\frac{dy}{ds}\frac{ds}{dw_k}$$

• Error E is defined with respect to y

$$\frac{dE}{dy} = \frac{d}{dy} \frac{1}{2} (t - y)^2 = -(t - y)$$

Final Layer Update (2)

- Linear combination of weights $s = \sum_k w_k h_k$
- Activation function y = sigmoid(s)
- Error (L2 norm) $E = \frac{1}{2}(t-y)^2$
- Derivative of error with regard to one weight w_k

$$\frac{dE}{dw_k} = \frac{dE}{dy}\frac{dy}{ds}\frac{ds}{dw_k}$$

y with respect to x is sigmoid(s)

$$\frac{dy}{ds} = \frac{d \text{ sigmoid}(s)}{ds} = \text{sigmoid}(s)(1 - \text{sigmoid}(s)) = y(1 - y)$$

Final Layer Update (3)

- Linear combination of weights $s = \sum_k w_k h_k$
- Activation function y = sigmoid(s)
- Error (L2 norm) $E = \frac{1}{2}(t-y)^2$
- Derivative of error with regard to one weight w_k

$$\frac{dE}{dw_k} = \frac{dE}{dy}\frac{dy}{ds}\frac{ds}{dw_k}$$

• x is weighted linear combination of hidden node values h_k

$$\frac{ds}{dw_k} = \frac{d}{dw_k} \sum_k w_k h_k = h_k$$

Putting it All Together

• Derivative of error with regard to one weight w_k

$$\frac{dE}{dw_k} = \frac{dE}{dy} \frac{dy}{ds} \frac{ds}{dw_k}$$
$$= -(t - y) \quad y(1 - y) \quad h_k$$

- error
- derivative of sigmoid: y'
- ullet Weight adjustment will be scaled by a fixed learning rate μ

$$\Delta w_k = \mu \ (t - y) \ y' \ h_k$$

Multiple Output Nodes

- Our example only had one output node
- Typically neural networks have multiple output nodes
- Error is computed over all *j* output nodes

$$E = \sum_{j} \frac{1}{2} (t_j - y_j)^2$$

• Weights $k \rightarrow j$ are adjusted according to the node they point to

$$\Delta w_{j \leftarrow k} = \mu(t_j - y_j) \ y_j' \ h_k$$

Hidden Layer Update

- In a hidden layer, we do not have a target output value
- But we can compute how much each node contributed to downstream error
- Definition of error term of each node

$$\delta_j = (t_j - y_j) \ y_j'$$

• Back-propagate the error term (why this way? there is math to back it up...)

$$\delta_i = \left(\sum_j w_{j \leftarrow i} \delta_j\right) y_i'$$

• Universal update formula

$$\Delta w_{j \leftarrow k} = \mu \ \delta_j \ h_k$$

Our Example

- Computed output: y = .76
- Correct output: t = 1.0
- Final layer weight updates (learning rate $\mu = 10$)

$$-\delta_{\rm G} = (t-y) \ y' = (1-.76) \ 0.181 = .0434$$

$$-\Delta w_{\rm GD} = \mu \, \delta_{\rm G} \, h_{\rm D} = 10 \times .0434 \times .90 = .391$$

$$-\Delta w_{\rm GE} = \mu \ \delta_{\rm G} \ h_{\rm E} = 10 \times .0434 \times .17 = .074$$

$$-\Delta w_{\rm GF} = \mu \, \delta_{\rm G} \, h_{\rm F} = 10 \times .0434 \times 1 = .434$$

Our Example

- Computed output: y = .76
- Correct output: t = 1.0
- Final layer weight updates (learning rate $\mu = 10$)

$$- \delta_{G} = (t - y) y' = (1 - .76) 0.181 = .0434$$

$$-\Delta w_{\rm GD} = \mu \ \delta_{\rm G} \ h_{\rm D} = 10 \times .0434 \times .90 = .391$$

$$-\Delta w_{\rm GE} = \mu \ \delta_{\rm G} \ h_{\rm E} = 10 \times .0434 \times .17 = .074$$

$$-\Delta w_{\rm GF} = \mu \ \delta_{\rm G} \ h_{\rm F} = 10 \times .0434 \times 1 = .434$$

Hidden Layer Updates

• Hidden node **D**

$$- \delta_{D} = \left(\sum_{j} w_{j \leftarrow i} \delta_{j} \right) y_{D}' = w_{GD} \delta_{G} y_{D}' = 4.5 \times .0434 \times .0898 = .0175$$

$$-\Delta w_{\rm DA} = \mu \ \delta_{\rm D} \ h_{\rm A} = 10 \times .0175 \times 1.0 = .175$$

$$-\Delta w_{\rm DB} = \mu \ \delta_{\rm D} \ h_{\rm B} = 10 \times .0175 \times 0.0 = 0$$

$$-\Delta w_{\rm DC} = \mu \ \delta_{\rm D} \ h_{\rm C} = 10 \times .0175 \times 1 = .175$$

• Hidden node **E**

$$- \delta_{\mathsf{E}} = \left(\sum_{j} w_{j \leftarrow i} \delta_{j} \right) y_{\mathsf{E}}' = w_{\mathsf{GE}} \ \delta_{\mathsf{G}} \ y_{\mathsf{E}}' = -5.2 \times .0434 \times 0.2055 = -.0464$$

$$-\Delta w_{\rm EA} = \mu \ \delta_{\rm E} \ h_{\rm A} = 10 \times -.0464 \times 1.0 = -.464$$

- etc.

some additional aspects

Initialization of Weights

- Weights are initialized randomly e.g., uniformly from interval [-0.01, 0.01]
- Glorot and Bengio (2010) suggest
 - for shallow neural networks

$$\big[-\frac{1}{\sqrt{n}},\frac{1}{\sqrt{n}}\big]$$

- n is the size of the previous layer
- for deep neural networks

$$\left[-\frac{\sqrt{6}}{\sqrt{n_j+n_{j+1}}}, \frac{\sqrt{6}}{\sqrt{n_j+n_{j+1}}}\right]$$

 n_j is the size of the previous layer, n_j size of next layer

Neural Networks for Classification

- Predict class: one output node per class
- Training data output: "One-hot vector", e.g., $\vec{y} = (0, 0, 1)^T$
- Prediction
 - predicted class is output node y_i with highest value
 - obtain posterior probability distribution by soft-max

$$softmax(y_i) = \frac{e^{y_i}}{\sum_j e^{y_j}}$$

Problems with Gradient Descent Training

Problems with Gradient Descent Training

Problems with Gradient Descent Training

Speedup: Momentum Term

- Updates may move a weight slowly in one direction
- To speed this up, we can keep a memory of prior updates

$$\Delta w_{j\leftarrow k}(n-1)$$

• ... and add these to any new updates (with decay factor ρ)

$$\Delta w_{j \leftarrow k}(n) = \mu \,\,\delta_j \,\, h_k + \rho \Delta w_{j \leftarrow k}(n-1)$$

Adagrad

- Typically reduce the learning rate μ over time
 - at the beginning, things have to change a lot
 - later, just fine-tuning
- Adapting learning rate per parameter
- Adagrad update based on error E with respect to the weight w at time $t = g_t = \frac{dE}{dw}$

$$\Delta w_t = \frac{\mu}{\sqrt{\sum_{\tau=1}^t g_\tau^2}} g_t$$

Dropout

- A general problem of machine learning: overfitting to training data (very good on train, bad on unseen test)
- Solution: **regularization**, e.g., keeping weights from having extreme values
- Dropout: randomly remove some hidden units during training
 - mask: set of hidden units dropped
 - randomly generate, say, 10–20 masks
 - alternate between the masks during training
- Why does that work?
 - \rightarrow bagging, ensemble, ...

Mini Batches

- Each training example yields a set of weight updates Δw_i .
- Batch up several training examples
 - sum up their updates
 - apply sum to model
- Mostly done or speed reasons

computational aspects

Vector and Matrix Multiplications

- Forward computation: $\vec{s} = W\vec{h}$
- Activation function: $\vec{y} = \text{sigmoid}(\vec{h})$
- Error term: $\vec{\delta} = (\vec{t} \vec{y})$ sigmoid' (\vec{s})
- Propagation of error term: $\vec{\delta}_i = W \vec{\delta}_{i+1} \cdot \text{sigmoid'}(\vec{s})$
- Weight updates: $\Delta W = \mu \vec{\delta} \vec{h}^T$

GPU

- Neural network layers may have, say, 200 nodes
- Computations such as \vec{Wh} require $200 \times 200 = 40,000$ multiplications
- Graphics Processing Units (GPU) are designed for such computations
 - image rendering requires such vector and matrix operations
 - massively mulit-core but lean processing units
 - example: NVIDIA Tesla K20c GPU provides 2496 thread processors
- Extensions to C to support programming of GPUs, such as CUDA

Toolkits

- Theano
- Tensorflow (Google)
- PyTorch (Facebook)
- MXNet (Amazon)
- DyNet