Rotational motion

Physics 211 Syracuse University, Physics 211 Spring 2017 Walter Freeman

March 8, 2023

Announcements

- Next homework due Friday
- Extended office hours: tonight 7:30-9:30 (Clinic/Stolkin); Thursday 5-7 (Clinic)

Rotational motion

Everything you've learned about linear motion has a rotational equivalent:

- \bullet Position, velocity, acceleration \leftrightarrow angle, angular velocity, angular acceleration
- Kinematics for coordinates \leftrightarrow kinematics for angles
- Newton's second law \leftrightarrow Newton's law for rotation
- Force \leftrightarrow torque
- Mass \leftrightarrow moment of inertia
- ... and others

We're going to go over these things piece by piece – learning their details as we go.

First, though, you should see the whole picture (and keep it for reference):

March 8, 2023

Translation	Rotation
Position \vec{s} Velocity \vec{v} Acceleration \vec{a}	Angle θ Angular velocity ω Angular acceleration α
Kinematics: $\vec{s}(t)\frac{1}{2}\vec{a}t^2 + \vec{v}_0t + \vec{s}_0$	$\theta(t) = \frac{1}{2}\alpha t^2 + \omega_0 t + \theta_0$
Force \vec{F} Mass m Newton's second law $\vec{F} = m\vec{a}$	Torque τ Rotational inertia I Newton's second law for rotation $\tau = I\alpha$
Kinetic energy $KE = \frac{1}{2}mv^2$ Work $W = \vec{F} \cdot \Delta \vec{s}$ Power $P = \vec{F} \cdot \vec{v}$	Kinetic energy $KE = \frac{1}{2}I\omega^2$ Work $W = \tau\Delta\theta$ Power $P = \tau\omega$
Momentum $\vec{p} = m\vec{v}$	Angular momentum $L = I\omega$

Rotational motion and kinematics

First, we need to describe how rotating objects move.

Rotational motion can be described separate from its translational motion.

Describing rotation by itself is simple: it's the same as one-dimensional motion (no vectors!)

By convention: counter-clockwise is always positive (like with the unit circle).

An example: consider a centrifuge rotating at $\omega = 1000 \text{rad/s}$. Once its motor is turned off, slows down at $\alpha = -100 \text{rad/s}^2$. How long will it take to stop?

Rotation plus translation

In general, rotation and translation are separate; we can study each separately.

Example: this bike wheel

- Its position is given by some function $\vec{s}(t)$: "where is it at some time t?"
- Its angle is given by some other function $\theta(t)$: "which way is the reference point pointing at some time t?"
- The angle has the familiar derivatives: angular velocity ω , angular acceleration α

Recall that points along the edge of a rotating object move at a speed $v_{\rm edge} = \omega r$.

Example: rolling without slipping

Sometimes the translational and rotational motion are linked.

"How fast do the tires on a car turn?"

- → Static friction means that the bottom piece of the wheel doesn't move
 - If a wheel is turning counterclockwise at angular velocity ω :
 - the top moves at $v_{\text{top}} = -\omega r$ (left)
 - the bottom moves at $v_{\rm bot} = \omega r$ (right)
 - ullet This means that the velocity of the axle must be equal and opposite to $v_{
 m bot}$
 - Thus, the car must be moving at $v_{\text{axle}} = -\omega r$ (left).

Let's look at a diagram.

So: if the wheels turn counterclockwise at ω :

- The axle moves at a velocity $-\omega r$ (left);
- The top of the wheels move at a velocity $v_{\text{axle}} + v_{\text{top}} = -\omega r \omega r = -2\omega r$;
- The top of the wheels move at a velocity $v_{\text{axle}} + v_{\text{bot}} = -\omega r + \omega r = 0$.

Rolling without slipping

Translation + Rotation = Rolling

What corresponds to Newton's second law?

The key idea in translational motion is Newton's second law $\vec{F} = m\vec{a}$.

What corresponds to Newton's second law?

The key idea in translational motion is Newton's second law $\vec{F} = m\vec{a}$.

What is the corresponding idea for rotational motion?

- Angular acceleration α corresponds to \vec{a}
- The rotational analogue of force is called **torque**
- The rotational analogue of mass is called **moment of inertia**

What corresponds to Newton's second law?

The key idea in translational motion is Newton's second law $\vec{F} = m\vec{a}$.

What is the corresponding idea for rotational motion?

- Angular acceleration α corresponds to \vec{a}
- The rotational analogue of force is called **torque**
- The rotational analogue of mass is called **moment of inertia**

Today, we'll study only torque: this limits us to situations where $\alpha = 0$.

Torque

Torque (τ) is the rotational analogue of force: "rotational push or pull"

- Forces applied to an object result in torques: "push on something to turn it"
- The size of the torque depends on three things:

Torque

Torque (τ) is the rotational analogue of force: "rotational push or pull"

- Forces applied to an object result in torques: "push on something to turn it"
- The size of the torque depends on three things:
- The size of the force
 - Push harder to exert more torque that's easy!

Torque

Torque (τ) is the rotational analogue of force: "rotational push or pull"

- Forces applied to an object result in torques: "push on something to turn it"
- The size of the torque depends on three things:
- The size of the force
 - Push harder to exert more torque that's easy!
- The distance from the force to the pivot point
 - The further from the pivot to the point of force, the greater the torque
 - This is why the door handle is on the outside of the door...
- The angle at which the force is applied
 - Only forces "in the direction of rotation" make something turn
 - The torque depends only on the component of the force perpendicular to the radius

Computing torque

$$\tau = F_{\perp} r$$

Torque is equal to the distance from the pivot, times the perpendicular component of the force

Note that torque has a sign, just like angular velocity: CCW is positive; CW is negative.

Computing torque

- We can think of the torque in any other equivalent way; there is another one that's often useful
- The previous way: "The radius vector, times the component of force perpendicular to it"
- The alternative: "The force vector, times the component of the radius perpendicular to it"

Here's the figure from the text:

I'll draw a clearer version on the document camera

Important notes about torque

These are very important: note them somewhere for later reference!

- Torques are in reference to a particular pivot
- This is different from force; if you're talking about torque, you must say what axis it's
 measured around
- Torque now depends on the *location* of forces, not just their size
 - Your force diagrams now need to show the place where forces act!
 - Weight acts at the center of mass ("the middle"); we'll see what that means later
 - A sample force diagram might look like this:

Drawing diagrams: torque problems

- Now you need to draw the position at which every force acts
- Pick a pivot; label it
- Remember, the torque from each force is either...
 - $F_{\perp}r$ (most useful)
 - Fr_{\perp} (sometimes useful)
 - $Fr \sin \theta$ (θ is angle between vectors)
 - Direction of torques matters!

Equilibrium problems

- Often we know $\alpha = \vec{a} = 0$
- This tells us that the net torque (about any pivot) and the net force are both zero
- Usually this is because an object isn't moving, but sometimes it's moving at a constant rate (tomorrow's recitation problem)
- Compute the torque about any point and set it to zero
- Choose a pivot conveniently at the location of a force we don't care about
- \bullet If needed, also write $\sum \vec{F} = 0$

• What is the weight of the bar?

- What is the weight of the bar?
- How does the force needed to support it depend on the angle of the force?

- What is the weight of the bar?
- How does the force needed to support it depend on the angle of the force?
- How does the force needed to support it depend on the angle of the bar?

- What is the weight of the bar?
- How does the force needed to support it depend on the angle of the force?
- How does the force needed to support it depend on the angle of the bar?
- What if I hang weights from it?