Topology

K

December 20, 2022

Contents

1	Rings	5
	1.1 Definition and Theorems	5
	1.2 Exercises and Notes	6

4 CONTENTS

Chapter 1

Rings

1.1 Definition and Theorems

Definition 1 (Ring). A ring is a set A equipped with two binary operations + (addition) and \cdot (multiplication) satisfying the following three sets of axioms, called the ring axioms.

- 1. (A, +) is an abelian group.
- 2. (A, \cdot) is a semigroup.
- 3. Multiplication is distributive with respect to addition, meaning that
 - $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$ for all $a, b, c \in A$ (left distributivity).
 - $(b+c) \cdot a = (b \cdot a) + (c \cdot a)$ for all $a,b,c \in A$ (right distributivity).

A ring is called unitary if it contains the multiplicative identity and commutative if multiplication is commutative.

Definition 2 (Ideal).

Definition 3 (Ideal Operation). Let \mathfrak{a} and \mathfrak{b} be ideals of a ring A.

1. The sum of two ideals \mathfrak{a} and \mathfrak{b} is defined by

$$\mathfrak{a} + \mathfrak{b} = \{ a + b \mid a \in \mathfrak{a} \text{ and } b \in \mathfrak{b} \}$$

which is again an ideal. It is the smallest ideal in A that contains \mathfrak{a} and \mathfrak{b} .

- 2. The product of an ideal
- 3. The intersection of
- 4. The radical of an ideal \mathfrak{a} is defined by

$$\sqrt{\mathfrak{a}} = \left\{ x \in A \mid x^n \in \mathfrak{a} \text{ for some } n \in \mathbb{N}^+ \right\}$$

which is again an ideal.

5. The transporter

6 CHAPTER 1. RINGS

Proposition 4. Let \mathfrak{a} be an ideal.

1. $\sqrt{\mathfrak{a}} = A$ if and only if $\mathfrak{a} = A$.

Proof. 1.

Definition 5 (Nilpotent Element and Nilradical). An element x of a ring A is called nilpotent if there exists some positive integer $n \in \mathbb{N}^+$, called the index or the degree, such that $x^n = 0$.

The set of all nilpotent elements is called the nilradical of the ring and is denoted by Nil(A).

1.2 Exercises and Notes

Example 5.1. Let K be a field and $A = K[X,Y]/(X - XY^2, Y^3)$.

1. Compute the nilradical Nil(A).

Solution. Denote $(X - XY^2, Y^3) =: \mathfrak{a}$.

$$\begin{split} X+\mathfrak{a} &= XY^2+\mathfrak{a} & \text{because } X-XY^2 \Rightarrow X \sim XY^2. \\ &= XY^2Y^2+\mathfrak{a} & \text{because } XY^2-XY^2Y^2 = Y^2(X-XY^2)=0 \Rightarrow XY^2 \sim XY^2Y^2 \\ &= XY\cdot Y^3+\mathfrak{a} \\ &= XY\cdot 0+\mathfrak{a} \\ &= 0+\mathfrak{a}. \end{split}$$

Thus, $X \in (X-XY^2,Y^3)$. We have therefore the isomorphism ${}^{K[X,Y]}/(X-XY^2,Y^3) \simeq {}^{K[Y]}/(Y^3)$. [I WANT A ELEGANT REASON FOR THIS. PROBABLY ISOMORPHISM THEOREM.]

Clearly, $Y \in \text{Nil}(A)$ or in other words $(Y) \subset \text{Nil}(A)$. But we also have that ${}^{K[Y]}/(Y) = K$ which is a field, therefore (Y) is a maximal ideal. Because $1 \notin \text{Nil}(A)$ conclude Nil(A) = (Y).