	MFS Lecture 4
	Last time: Rules of diff, approximations
10	Tooley: Daving functions and optimisation problems
	Extreme points
	Definition: Let f(x) be a for defined on on internal I and pe I be a pt. Then p is
	a global maximum (resp. mm.) of f on I if
	$f(p) \geqslant f(x) \ \forall x \in I \ (f(p) \leq f(x) \ \forall x \in I, resp.).$
1.5	Example: f(x)=x2 has a global minimum on I=1R at (0,0), as f(0) < f(x) for
	all xeI.
A	
	Example: f(x)=sm(x) has a global max at x===
-	
	Key pt: f(2)>, f(x) Vx-greater than or equal to.
	They project to grade to.
-(1)	Finding a global max/mm can be hard, but are can often find local extrema:
<u> </u>	Descritor: Let f(x) be a for defined on an internal I, and poI a pt. We say
	pix a local max/(rosp mm) of f or I if I on open interval (a,b) CI s.f. f(p) > f(x) \forall x \ell(a,b) (rosp., f(p) \left(f(x)) \forall x \ell(a,b)).
	0 1
0	Ex; If f(x)=x3+3x2 as shown, then oc=2 is a local max ord oc=0 is a global min. Are they also global extrara?
	Are they also global extrava?
	410
0	
0	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0	Let's look at 2 eggs local minima. f(x)=x² and 3 g(x)= x . What an are say about the derivatives at those pts? either f(p)=0 or g(p) down't exist! This leads us to define those pts:
1	either f'(p)= O or a'(a) down't exist! This loads is to down those otes
	de and the most line
0	Definition. Let f be a diff for, and p in the domain of f a pt. We say
9	

Concavity. Definition! Let I be a turce diff. for I a concare up at a pt if f"(6)>0 and concare down if f"(p) (0. Being concurre up means you look like on upwords facing possiboli. Ex. Where is flot= >3 concare up/down from its graph. Confirm by computation. fla=6x. >0 if oc70 (0 if x <0 So indeed, fled is concorne up it acro, down it acro. Example/warning: Where is the concare up/down? g"(61=-42=80 B always regother of sc>0. This to is always concave down and always in crowsing Concerty is this not related syrony mass we increasing decreasing. Def Let f(x) he a for and f" its second derivantle. A pt p where F' changes sign from positive to negative or vice-versa is called on inflection Ronarki. You must check if I" changes sign at p - 5" (p)= 0 is NOT magh-Ex: If f60=3x3-3x2+6, we fond f'(x1=2x-6. Thus f'6c1=0 implies oc=3, and f" suitches signs at oc=3, so oc=3 is in inflection pt Drawing Functions. Let flet be a for. To draw it, follow these steps: 1. Find the local extrema of f and where f is increasing / decreasing 2. Find where f is concare up/down and the inflection pits. 3. Find the oc and y-intercepts.
4. Find x-sos ford our observes.

Exi Power line from station to facility. SOE/m booch, 130 m wanter. Sooo loom 0 5x 5 5000. C(x)= (5000-x) (50) + Jx2+10002 (130 $C(x) = -50 + \frac{130x}{\sqrt{2x^2 + 1000^2}}$ + x = 416.67Exi Operating rate of a factory over a 365 day period is

f(4)=100 + 800+/42+90000) 0 ≤ + ≤ 365.

On which day (5) is the rate maximized? A: $f'(t) = 800(1^2 + 90000) - 21(800t) = -800t^2 + 800(90000)$ $(t^2 + 90000)^2$ $(t^2 + 90000)^2$ (+2+90000)2 So += 190000 = 300 is a max.