Informed search
Admissibility and Consistency
Iterative deepening A* search (IDA*)
Recursive best first search
MA* and SMA*
Heuristic functions

CISS450 Lecture 4: Informed Search

Yihsiang Liow

October 13, 2020

Table of contents I

- Informed search
- 2 Admissibility and Consistency
- 3 Iterative deepening A* search (IDA*)
- Recursive best first search
- MA* and SMA*
- 6 Heuristic functions

Informed search I

- <u>Informed search</u> = <u>heuristic search</u>
- Search uses more state information
- Recall: For uninformed search, state used only in:
 - expansion
 - goal test
- ullet Let n be a search node. If actions have costs or weights, let
 - g(n) = path cost from initial node to n= sum of weights on actions from initial node to n

(Also written $path_cost(n)$.) If weights are not indicated, assume cost of each edge/action is 1

Informed search II

- Note that path cost depends on the path and therefore depends on the search node n. Remember that in during a search, the path cost to a state can change, i.e., path cost depends on the path of a search node (of the state) going back to the initial node. A state can appear in many search nodes.
- (WARNING: The book AIMA's notation is wrong. It uses g(s) where s is a state. The cost is path dependent. The correct notation is g(n), where n is a search node, and not g(s).)
- IMPORTANT. g(n) does <u>not</u> include the cost to go from n to a node containing a goal state:

Informed search III

• NOTATION: I'll be talking about heuristic functions. These functions are functions on <u>states</u>. For convenience, if f is a function on <u>states</u>, if n is a search node that contains state s, I will also write f(n) to mean f(s):

$$f(n) = f(s)$$

Informed search IV

- It's really important to distinguish between g(n) (i.e. $\mathtt{path_cost}(n)$) which depends on search nodes and heuristic functions f(s) which depend on states.
- Recall that uniform cost search (UCS) uses g(n) to prioritize the fringe. I am now going to consider other ways to prioritize the fringe.

Best first search I

Best first search:

- create function f an evaluation function
- f(n) = measures approximately the cost from initial node to n and then from s (the state in n) to a goal state.
- Implement fringe as priority queue with search nodes ordered by f, i.e., this is just uniform cost search using this function f instead of path cost. Note that smallest f-value means higher priority.
- Note: This is a generalization of uniform cost search in the sense that best first search with f(n) = g(n) is the uniform cost search.

Best first search II

• Usually *f* involves a heuristic function:

$$f(n) = g(n) +$$
(some heuristic function on state of n)

See later.

- Not complete, not optimal in general depends on quality of heuristic function.
- Worse time and space $= O(b^m)$ where m is max depth of search space.

Greedy Best first search I

- Heuristic function h(n) = measures "distance" from node n to goal such that h(goal state or node with goal state) = 0
- Note: h(n) is usually an approximation!

• Greedy best-first search = best-first search with f = h

Greedy Best first search II

- Examples of *h*:
 - Path finding in real world: straight line distance from a point to the goal
 - n^2-1 puzzle: h(n)= number of misplaced tiles for state corresponding to node
 - $n^2 1$ puzzle: h(n) = sum of Manhattan distances of all tiles
- Properties of greedy best-first search:
 - Not optimal. Can you find an example?

A* search I

• A* search: use

$$f(n) = g(n) + h(n)$$

where h is a heuristic function.

A* search II

• Note: g(n) is the actual (real) cost to go from initial state to n (along some path). h(n) is an approximate cost from n to a goal state.

Admissibility and consistency I

- A heuristic function h is <u>admissible</u> if it never overestimates the cost to reach a goal.
- Question: Is the straight line distance function an admissible heuristic function?

Admissibility and consistency II

• h is **consistent** if for any n with successor n' via action a:

$$h(n) \le \cos(n, a, n') + h(n')$$

where cost(n, a, n') is the cost of action a from n to n'. The above inequality is called the **triangle inequality**.

triangle inequality

Admissibility and consistency III

- Facts:
 - ullet A* using tree search algorithm is optimial if h is admissible
 - ullet A* using graph search is optimal if h is consistent.

Admissibility and consistency IV

Fact 1: A* using tree search is optimal if h is admissible

Proof: Let G be an optimal goal node and G' be a suboptimal goal node in the fringe. Let C^* be cost of an optimal path.

$$\begin{array}{ccc} G' \text{ suboptimal } & \Longrightarrow & g(G') > C^* \\ & G \text{ optimal } & \Longrightarrow & f(G) = C^* \end{array}$$

Admissibility and consistency V

So

$$f(G) = C^*$$
< $g(G') = g(G') + 0$
= $g(G') + h(G')$
= $f(G')$

So G goes before G' in the fringe.

Admissibility and consistency VI

 Fact 3: If h is consistent, then the f-values along any path are nondecreasing.

Proof: Let n' be the successor of n via action a. Then

$$g(n') = g(n) + c(n, a, n')$$

So

$$f(n') = g(n') + h(n')$$

= $g(n) + c(n, a, n') + h(n')$
 $\geq g(n) + h(n) = f(n)$

Admissibility and consistency VII

• Fact 2: A^* using GRAPH SEARCH is optimal if h is consistent

Proof: Let G be the first goal node found. By Fact 2, the cost to reach any later goal nodes must be at least as expensive.

Consistency I

• f-contour: Line with cost C labeled and enclosing states with path costs $\leq C$ Study Figure 3.25 page 97.

- Let C^* be cost of optimal path.
 - A* expands all nodes with $f(n) < C^*$

Consistency II

- Then A* might expand some nodes with $f(node) = C^*$ before selecting a goal node.
- A* is complete.
- Note that A^* does not expand nodes with $f(n) > C^*$ these nodes are pruned.
- A* is good: complete, optimal, optimally efficient
 - Optimally efficient = any other optimal search cannot guarantee that to expand fewer nodes
- Problem: Space may be exponential in length of solution

Iterative deeping A* search (IDA*) I

- Recall Iterative Deepening DFS (IDDFS): depth limited search for depth =0,1,2,3,4,...
- Iterative deepening A* (IDA*): Same as Iterative
 Deepening DFS except that f-values are used. The cut-off
 value = smallest of the f-values of any node that exceeded
 cutoff of previous iteration

Iterative deeping A* search (IDA*) II

What is the cut-off for the **next iteration**?

Recursive best first search (RBFS) I

 Keeps track of f-value of best alternative path from any ancestor of current node

Recursive best first search (RBFS) II

 If f-value of current node exceeds limit, go backward and choose alternative.

Recursive best first search (RBFS) III

60 is worse than 10. So:

2. Update min path cost to 60

Recursive best first search (RBFS) IV

Recursive best first search (RBFS) V

- RBFS more efficient than IDA* but there is still a lot of nodes generated
 - Algorithm can take a wrong path and change it's mind and go backward
 - Optimal if h is admissible
- See algorithm on page 99.

MA* and SMA* I

- A* uses too much memory; IDA* and RBFS uses too little
- MA* and SMA* are variations using more memory
- MA* = memory bound A*
- SMA* = simplified MA*

Effective Branching Factor I

- **Effective branching factor** b^* of a heuristic function:
 - Let N be number of nodes generated by A^*
 - ullet Suppose solution depth is d
 - Define b^* by:

$$N + 1 = 1 + b^* + (b^*)^2 + \dots + (b^*)^d$$

• Good heuristic function: $b^* \approx 1$

Effective branching factor

Domination
Generating heuristic functions
Relaxed problem
Subproblem
Combining heuristic functions

Domination I

- Let h_2 , h_1 be heuristic functions.
- h_2 dominates h_1 if

$$h_2(n) \ge h_1(n)$$

for all nodes n.

- If h_2 dominates h_1 , then using A^* , h_2 will not expand more nodes than h_1
 - \bullet except possibly for some nodes n with $f(n)=C^{\ast}$
- Heuristic function with higher values are better (unless if it takes a long time to compute)

Effective branching factor
Domination
Generating heuristic functions
Relaxed problem
Subproblem
Combining heuristic functions

Generating heuristic functions I

- There are two basic methods for generating heuristic functions, by considering
 - Relaxed problems
 - Subproblems
- When you have more than one possible heuristic function, you can take the max.

Domination
Relaxed problem
Subproblem
Combining heuristic functions
Combining heuristic functions

Relaxed problems I

- When you relax conditions/rules on a problem, you get a relaxed problem.
- $n^2 1$: Tile can move from square A to square B if
 - A is horizontally or vertically adjacent to B, and
 - B is blank
- <u>Relaxed</u> $n^2 1$: Tile can move from square A to square B if
 - B is blank
- Another relaxed $n^2 1$: Tile can move from square A to square B if ...
 - NO CONDITION!!!

Effective branching factor
Domination
Generating heuristic functions
Relaxed problem
Subproblem
Combining heuristic functions

Relaxed problems II

- \bullet Note that for n^2-1 when we use the last relaxed problem, we get the heuristic function that gives the number of misplaced tiles
- FACT: The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem.
 Proof: Exercise.

Effective branching factor
Domination
Generating heuristic function
Relaxed problem
Subproblem
Combining heuristic functions

Subproblems I

- **Subproblem** = remove some goal(s) from a problem
- Example: Subproblem for n^2-1 problem. Move the tiles so that the <u>first half</u> of the tiles are in their correct positions. See diagram on page 106.
- Precompute for each state the number of moves to get first half of tiles to right place and save in database.
- Instead of first half, can also consider bottom half, or even numbered tiles, etc. Combine all using max. (See page 106-107)

Domination
Generating heuristic functions
Relaxed problem
Subproblem
Combining heuristic functions

Combining heuristic functions I

- But suppose now you have generated more than one heuristic function ... which one to use?!?
- If $h_1, ..., h_m$ are all admissible and you can't decide which is the best, then use

$$h(n) = \max(h_1(n), ..., h_m(n))$$

• FACT: If $h_1, ..., h_m$ are all admissible then so is

$$\max(h_1(n),...,h_m(n))$$

Proof: Exercise.

