1

I. Introduction

THIS document serves as a starting template for writing IEEE-trans. paper in NCTU, RFVLIS-Lab.

A. First Time Usa of Latex

- 1) Download Miktex.
- Use package MANAGER TO install the following packages:
 - All IEEE transactions/bibtex packages
 - **Textcomp**: support some symbols.
 - amsmath: support some maths.
 - **Subfiles**: support independent compilable subfiles .tex structure as used in this template.
 - Dblfloatfix: fixes double column figures ordering problems.

B. Specialized Semiconductor Process

- 1 Some forwards about why needs a rectifier?.
- 2 Focus on introduction of several representative topologies.
- 3 Bring up the the later sections.

C. Equation Templates

In all of the following approaches, a gate DC bias $V_{g,bias}$ is introduced as in Eq. XXXX.

$$V_{out} = N(V_{RF,Peak} - V_{th} + V_{gs,bias}). \tag{1}$$

D. Table Templates

- use {v/t/v/t/} to control columns and column separating rule(line). Note that the separating rule are also treated as a column.
- use

\IEEEeqnarrayrulerow,

\IEEEeqnarrayrulerow[rule_thickness],

\IEEEeqnarraydblrulerow

\IEEEeqnarraydblrulerow[rule_thickness][spacing],

\IEEEeqnarraydblrulerowcut,

\IEEEeqnarraydblrulerowcut[rule_thickness][spacing] to control horizontal separating rules. Use \IEEEeqnarraystrutsizeadd{4pt}{4pt} in the last hidden column in each row to add spaces above/below each row: \IEEEeqnarraystrutsizeadd{4pt}{4pt}

- Use \parbox{18ex}{}} to control width.
- Use \raggedright, and \raggedleft to adjust left/right alignment inside each cell.

E. Inductive Peaking Approach

F. Other Approaches

TABLE I
DEFINITION OF SENSITIVITY AND POWER CONVERSION EFFICIENCY.

Terminology	Definition			
Power Sensitivity	The minimum input power required to achieve a specified DC output current, or voltage, or both.			
Voltage Sensitivity	The minimum input voltage required to achieve a specified DC output current, or voltage, or both.			
Power Conversion Efficiency (PCE)	$PCE \equiv rac{ ext{Output DC power}}{ ext{Input RF power}}$			

 $\label{table ii} \textbf{Summary of the UHF RF-to-DC rectifier performance}.$

Specification	This work	A	В	C
Frequency(MHz)	900	950	915	915
Technology	0.28 µm thick-gate oxide CMOS in 65nm process	$0.35 \mu\mathrm{m}$	90nm	$0.2 \mu \mathrm{m}$
PCE@Output power	27.97%@19.3mW	15.1%@0.6μW	11%@13.1μW	71.5%@0.285mW
Number of stage / type of the rectifier	5/half-wave	1 (six stacks) / full-wave	17/half-wave	1/full-wave
Chip area	0.442mm^2	0.104mm ²	0.19mm^2	0.133mm ²