# TA2 - Enzo Cozza - Agustín Fernández

## Ejercicio 1



Se seleccionaron los siguientes valores para los parámetros:

maximal depth 3, gain\_ratio, confidence vote.

#### Number of trees 10

| accuracy: 95.50%      |                  |                      |                     |                 |  |  |  |
|-----------------------|------------------|----------------------|---------------------|-----------------|--|--|--|
|                       | true Iris-setosa | true Iris-versicolor | true Iris-virginica | class precision |  |  |  |
| pred. Iris-setosa     | 15               | 0                    | 0                   | 100.00%         |  |  |  |
| pred. Iris-versicolor | 0                | 14                   | 1                   | 93.33%          |  |  |  |
| pred. Iris-virginica  | 0                | 1                    | 14                  | 93.33%          |  |  |  |
| class recall          | 100.00%          | 93.33%               | 93.33%              |                 |  |  |  |

## Number of trees 100

| accuracy: 95.56%      |                  |                      |                     |                 |  |  |  |
|-----------------------|------------------|----------------------|---------------------|-----------------|--|--|--|
|                       | true Iris-setosa | true Iris-versicolor | true Iris-virginica | class precision |  |  |  |
| pred. Iris-setosa     | 15               | 0                    | 0                   | 100.00%         |  |  |  |
| pred. Iris-versicolor | 0                | 14                   | 1                   | 93.33%          |  |  |  |
| pred. Iris-virginica  | 0                | 1                    | 14                  | 93.33%          |  |  |  |
| class recall          | 100.00%          | 93.33%               | 93.33%              |                 |  |  |  |

La mayor parte de los árboles obtenidos, en ambos casos, cuentan en sus divisiones solamente con los atributos a3 y a4.

Aumentando la profundidad o la cantidad de árboles, la performance siempre se mantiene igual para el dataset dado.

## Comparando con la TA1:

### Votación

| accuracy: 95.56% |
|------------------|
|------------------|

|                       | true Iris-setosa | true Iris-versicolor | true Iris-virginica | class precision |
|-----------------------|------------------|----------------------|---------------------|-----------------|
| pred. Iris-setosa     | 16               | 0                    | 0                   | 100.00%         |
| pred. Iris-versicolor | 0                | 16                   | 1                   | 94.12%          |
| pred. Iris-virginica  | 0                | 1                    | 11                  | 91.67%          |
| class recall          | 100.00%          | 94.12%               | 91.67%              |                 |

## Bagging

| accuracy: 95.56%      |                  |                      |                     |                 |  |  |
|-----------------------|------------------|----------------------|---------------------|-----------------|--|--|
|                       | true Iris-setosa | true Iris-versicolor | true Iris-virginica | class precision |  |  |
| pred. Iris-setosa     | 16               | 0                    | 0                   | 100.00%         |  |  |
| pred. Iris-versicolor | 0                | 16                   | 1                   | 94.12%          |  |  |
| pred. Iris-virginica  | 0                | 1                    | 11                  | 91.67%          |  |  |
| class recall          | 100.00%          | 94.12%               | 91.67%              |                 |  |  |

Se puede observar que se obtuvo la misma performance en los tres casos. Esto probablemente esté dado por el dataset con el que fueron evaluados, el cual tiene sus tres clases bastante marcadas.

## Ejercicio 2

#### Parte 1



El problema que presenta este conjunto de datos es automatizar la clasificación de imágenes de satélite de diferentes clases de suelos. Las clases son: *impervious, farm, forest, grass, orchard, water.* 

Los demás atributos son *max\_ndvi* y 20150720\_N - 20140101\_N. El primero es la máxima diferencia normalizada del índice de vegetación. Los demás son valores de NDVI extraídos (entre Enero 2014 y Julio 2015) en orden cronológico inverso con el formato *yyyymmdd*.

## Árbol de decisión

#### accuracy: 54.00%

|                  | true water | true forest | true grass | true farm | true orchard | true impervious | class precision |
|------------------|------------|-------------|------------|-----------|--------------|-----------------|-----------------|
| pred. water      | 37         | 0           | 0          | 0         | 0            | 1               | 97.37%          |
| pred. forest     | 3          | 71          | 22         | 37        | 45           | 1               | 39.66%          |
| pred. grass      | 0          | 3           | 6          | 1         | 0            | 0               | 60.00%          |
| pred. farm       | 3          | 2           | 6          | 13        | 1            | 4               | 44.83%          |
| pred. orchard    | 0          | 0           | 0          | 1         | 1            | 0               | 50.00%          |
| pred. impervious | 3          | 2           | 2          | 1         | 0            | 34              | 80.95%          |
| class recall     | 80.43%     | 91.03%      | 16.67%     | 24.53%    | 2.13%        | 85.00%          |                 |

| Iteraciones | Precisión |  |
|-------------|-----------|--|
| 5           | 54%       |  |
| 10          | 54%       |  |
| 100         | 54%       |  |

## k-NN

Se elige utilizar este método ya que es un método sencillo de utilizar, y ya que se utilizan valores reales para los atributos (con tres dígitos después de la coma), se decide no utilizar naive bayes.

#### accuracy: 62.00%

|                  | true water | true forest | true grass | true farm | true orchard | true impervious | class precision |
|------------------|------------|-------------|------------|-----------|--------------|-----------------|-----------------|
| pred. water      | 32         | 0           | 1          | 0         | 0            | 0               | 96.97%          |
| pred. forest     | 1          | 39          | 5          | 7         | 13           | 0               | 60.00%          |
| pred. grass      | 5          | 26          | 16         | 1         | 3            | 2               | 30.19%          |
| pred. farm       | 0          | 10          | 6          | 44        | 13           | 1               | 59.46%          |
| pred. orchard    | 0          | 0           | 0          | 0         | 18           | 0               | 100.00%         |
| pred. impervious | 8          | 3           | 8          | 1         | 0            | 37              | 64.91%          |
| class recall     | 69.57%     | 50.00%      | 44.44%     | 83.02%    | 38.30%       | 92.50%          |                 |

| Iteraciones | Precisión |
|-------------|-----------|
| 5           | 62%       |
| 10          | 62%       |
| 100         | 62%       |

Se puede concluir que al aplicar AdaBoost la precisión no sufre mayores cambios ya que analizando los modelos obtenidos, no se producen mejoras luego de las primeras 3 iteraciones.

Parte 2
Gradient Boosted Trees



| accuracy: 60,33% |            |             |            |           |              |                 |                 |
|------------------|------------|-------------|------------|-----------|--------------|-----------------|-----------------|
|                  | true water | true forest | true grass | true farm | true orchard | true impervious | class precision |
| pred. water      | 36         | 0           | 1          | 0         | 0            | 1               | 94.74%          |
| pred. forest     | 2          | 65          | 16         | 14        | 41           | 1               | 46.76%          |
| pred. grass      | 1          | 7           | 7          | 1         | 1            | 1               | 38.89%          |
| pred. farm       | 3          | 5           | 10         | 37        | 5            | 1               | 60.66%          |
| pred. orchard    | 0          | 0           | 0          | 0         | 0            | 0               | 0.00%           |
| pred. impervious | 4          | 1           | 2          | 1         | 0            | 36              | 81.82%          |
| class recall     | 78.26%     | 83.33%      | 19.44%     | 69.81%    | 0.00%        | 90.00%          |                 |

Un modelo *gradient boosted* es un ensamble de árboles tanto de regresión como de clasificación. Ambos métodos son métodos de ensamble que obtienen valores de predicción a partir de estimaciones gradualmente incrementales. *Boosting* es un método no lineal de regresión que permite mejorar la exactitud de los árboles. Aplicando secuencialmente algoritmos de clasificación débiles a los datos cambiados incrementalmente, una serie de árboles de decisión son creados que producen un ensamble de modelos de predicción débiles. Mientras los *boosting trees* incrementan la precisión, también decrementan velocidad e interpretabilidad. Este método *gradient boosting* generaliza el *tree boosting* para minimizar estos asuntos.