

my account

🕝 learning center

📜 patent cart

📜 document ca

help

home

research

patents w

alerts v

documents v

Mon-Fri 4AM to 10PM ET

Format Examples

US Patent

US6024053 or 6024053

US Design Patent D0318249

US Plant Patents PP8901

US Reissue RE35312

US SIR H1523

US Applications 20020012233

World Patent Applications
W004001234 or W02004012345

European FP01302782

Great Britain Applications

GB2018332

French Applications FR02842406

German Applications

DE29980239

Nerac Document Number (NDN)

certain NDN numbers can be used for patents

. <u>view examples</u>

Adobe Reader
6.0 recommended
Win98SE/2000/XP

😂 Patent Ordering

antional reference note

Enter Patent Type and Number: optional reference note

GO

optional reference note

Add patent to cart automatically. If you uncheck this box then you must *click on* Publication number and view abstract to Add to Cart.

99 Patent(s) in Cart

Patent Abstract

Add to cart

FRA 1990-12-28 02648966 CIRCUIT REDRESSEUR DE SIGNAUX ELECTRIQUES ALTERNATIFS

INVENTOR- GEORGES MANOLIKAKIS

APPLICANT- GEC ALSTHOM SA

PATENT NUMBER- 02648966/FR-A1
PATENT APPLICATION NUMBER- 08908534

DATE FILED- 1989-06-27
PUBLICATION DATE- 1990-12-28
PATENT FAMILY- 1989, 8908534, A; 1989, 8908534, A
INTERNATIONAL PATENT CLASS- H02M00708
PATENT APPLICATION PRIORITY- 8908534
PRIORITY COUNTRY CODE- FR, France
PRIORITY DATE- 1989-06-27 NDN- 204-0062-6524-1

EXEMPLARY CLAIMS- 1/rectifying Circuit of alternate electric signals, with bridge of diodes, characterized in that it comprises in parallel on atleast one of the diodes {D, D. 0, DJ of this bridge a transistor 5 MOS(1, TJ ordered so as to respectively present a state passing or a state blocked for a state respectively passer by or blocked EC diode. It rectifying Circuit according to claim 1, characterized in that the tension of ordering of this transistor MOS is taken "ntre 10 the exit of the bridge connected to the diode considered and the entryof the bridge off-line to the diode considered, and in what this transistor is crossed by a current in opposite direction of a nomale use, namely of the source towards the drain for a transistor with channel N, or drain towards the source for a transistor with channel P. T3 f3 X: ; I T=C R **, R-* *-O I p Ho-.. "-

NO-DESCRIPTORS

proceed to checkout

Nerac, Inc. One Technology Drive • Tolland, CT • 06084 • USA Phone +1.860.872.7000 • Contact Us • Privacy Statement • ©1995-2007 All Rights Reserved 19 RÉPUBLIQUE FRANÇAISE

INSTITUT NATIONAL
DE LA PROPRIÉTÉ INDUSTRIELLE

PARIS

(1) N° de publication :

là n'utiliser que pour les

(21) N° d'enregistrement national :

89 08534

2 648 966

(51) Int CI⁵: H 02 M 7/08.

DEMANDE DE BREVET D'INVENTION

A1

- (22) Date de dépôt : 27 juin 1989.
- (30) Prioritė:
- (43) Date de la mise à disposition du public de la demande : BOPI « Brevets » n° 52 du 27 décembre 1990.
- 60 Références à d'autres documents nationaux apparentés :

- (71) Demandeur(s): ALSTHOM. FR.
- (72) Inventeur(s): Georges Manolikakis.
- (73) Titulaire(s): GEC ALSTHOM SA. FR.
- (74) Mandataire(s): Josiane El Manouni, SOSPI.
- (54) Circuit redresseur de signaux électriques alternatifs.
- Ce circuit redresseur de signaux électriques alternatifs, à pont de diodes comporte en parallèles sur au moins une des diodes de ce pont un transistor MOS commandé de manière à présenter respectivement un état passant ou un état bloqué pour un état respectivement passant ou bloqué de cette diode, afin de diminuer la chute de tension de redressement.

Circuit redresseur de signaux électriques alternatifs

La présente invention concerne un circuit redresseur de signaux électriques alternatifs, et plus particulièrement un circuit redresseur dit à pont de diodes.

Un tel montage est bien connu ; son principe est rappelé sur la figure 1.

Une tension alternative "e" étant appliquée en entrée de ce montage, entre les points E_1 et E_2 communs respectivement à deux diodes D_1 et D_2 disposés dans l'un des bras du pont, et à deux diodes D_3 et D_4 disposées dans l'autre bras du pont, les diodes D_1 et D_4 d'une part, D_2 et D_3 d'autre part, conduisent alternativement, de sorte qu'une tension redressée "s" est obtenue en sortie de ce montage, entre les points S_1 et S_2 communs respectivement aux diodes D_1 et D_3 , et aux diodes D_2 et D_4 .

Le sens de montage des diodes détermine la polarité sur chacune des sorties S_1 et S_2 , en l'occurrence une polarité positive sur S_1 et une polarité négative sur S_2 dans l'exemple représenté sur la figure 1.

15

20

25

30

35

Les signaux appliqués à ce montage subissent cependant, outre une modification de forme qui est le résultat recherché, une chute de tension égale à la tension aux bornes des diodes rendues passantes à un instant donné, ce qui peut présenter un inconvénient dans certaines applications.

La présente invention a pour objet un circuit redresseur à diodes permettant d'éviter un tel inconvénient.

Suivant une caractéristique de l'invention, un circuit redresseur de signaux électriques alternatifs, à pont de diodes, comporte essentiellement, en parallèle sur au moins une des diodes de ce pont, un transistor MOS commandé de manière à présenter respectivement un état passant ou un état bloqué pour un état respectivement passant ou bloqué de cette diode.

D'autres objets et caractéristiques de la présente invention apparaîtront plus clairement à la lecture de la description suivante d'un exemple de réalisation, faite en relation avec les dessins ci-annexés dans lesquels, outre la figure 1 relative à l'art antérieur,

la figure 2 est un schéma d'un circuit redresseur à pont de diodes suivant l'invention.

La figure 2 reprend le montage de la figure 1, en y adjoignant deux transistors MOS T_2 et T_4 en parallèle respectivement sur les diodes D_2 et D_4 situées chacune sur l'un des bras du pont dans la partie inférieure de celui-ci, ces transistors étant respectivement commandés par un signal relatif à l'autre bras du pont.

Plus précisément le transistor T_2 à sa source connectée au point S_2 , son drain connecté au point E_1 et sa grille connectée au point E_2 , via une résistance R_1 . De même, le transistor T_4 a sa source connecté au point S_2 , son drain connecté au point E_2 , et sa grille connecté au point E_1 , via une résistance R_2 .

Avec le sens de branchement des diodes considéré, ces transistors sont des transistors à canal N.

A l'état conducteur, ils sont par ailleurs parcourus par un courant orienté de la source vers le drain, c'est-à-dire en sens inverse d'une utilisation classique de transistors de ce type.

Chacun d'eux est ainsi à l'état passant pour un état passant de la diode sur laquelle il est monté en parallèle, et à l'état bloqué pour un état bloqué de celle-ci.

La conduction en parallèle d'une diode de redressement et d'un transistor MOS permet de diminuer la chute de tension de redressement, ceci restant vrai tant que le produit R x I de la résistance à l'état passant du transistor MOS par le courant de charge du pont redresseur est inférieur au seuil de la diode.

Des transistors MOS pourraient être associés de la même façon aux diodes de redressement D_1 et D_3 situées dans la partie supérieure du pont en vue de réduire encore les chutes de tension. Ils seraient alors à canal P.

Afin d'accélérer le basculement des transistors T_2 et T_4 , une résistance R_3 en série avec un condensateur C_1 et une résistance R_4 en série avec un condensateur C_2 peut être ajoutés en parallèle respectivement sur la résistance R_1 et sur la résistance R_2 .

10

15

20

25

30

REVENDICATIONS

10

1/ Circuit redresseur de signaux électriques alternatifs, à pont de diodes, caractérisé en ce qu'il comporte en parallèle sur au moins une des diodes (D_1, D_2, D_3, D_4) de ce pont un transistor MOS (T_2, T_4) commandé de manière à présenter respectivement un état passant ou un état bloqué pour un état respectivement passant ou bloqué de cette diode.

2/ Circuit redresseur selon la revendication 1, caractérisé en ce que la tension de commande de ce transistor MOS est prise entre la sortie du pont connectée à la diode considérée et l'entrée du pont non connectée à la diode considérée, et en ce que ce transistor est traversé par un courant en sens inverse d'une utilisation normale, à savoir de la source vers le drain pour un transistor à canal N, ou du drain vers la source pour un transistor à canal P.

1/1

FIG.1

FIG. 2

