CSC258 LAB2 PRELAB

TINGFENG XIA, 1003780884, xiatingf

5 PART I

1. This is a screen shot of the output.

Our inputs are SW[0], SW[1], SW[9] and output is sent to LEDR[0], we ran each combination of input for 10ns. We have the output as follows:

SW[0] (x)	SW[1] (y)	SW[9] (s)	LEDR[0] (m)
0	0	0	0
0	1	0	0
1	0	0	1
1	1	0	1
0	0	1	0
0	1	1	1
1	0	1	0
1	1	1	1

According to the results above, we can confirm that the design is working properly since when SW[9], i.e. input s, is zero, the output m is equal to SW[0] which is our x input and when SW[9] is 1, the output m is equal to the y input(SE[1]). So the multiplexer is correct.

6 PART II

- 1. Here we have 6 inputs in total to consider, so there would be $2^6 = 64$ rows in a full truth table.
- 2. Here is my design (Notice that I assumed the mux2to1 multiplexer to have the same input/output layout as specified in the handout.)

- 3. Please see the mux4.v file.
- 5. Please see the mux4.do file for the ModelSim code, here is the output

The result is consistent with my design. Notice that by the way I designed my do file, the first 40ns output wave should look like the first input(u, SW[0]), the second 40ns output should look like the second input(V, SW[1]), the third 40ns input should look like the third input(w,

SW[2]) and the last 40ns input should look like the fourth input(x, SW[3]). The output that I got from LEDR[0] is exactly what I expected so I am confident that my circuit is working correctly.

7 PART III

1. First, let's write down the full truth table (Notice that here 0 marks emitting light)

111156, 1	rist, let's write down the full truth table (Notice that here o marks emitting light)										
hex.	C_3	C_2	C_1	C_0	HEX[0]	HEX[1]	HEX[2]	HEX[3]	HEX[4]	HEX[5]	HEX[6]
0	0	0	0	0	0	0	0	0	0	0	1
1	0	0	0	1	1	0	0	1	1	1	1
2	0	0	1	0	0	0	1	0	0	1	0
3	0	0	1	1	0	0	0	0	1	1	0
4	0	1	0	0	1	0	0	1	1	0	0
5	0	1	0	1	0	1	0	0	1	0	0
6	0	1	1	0	0	1	0	0	0	0	0
7	0	1	1	1	0	0	0	1	1	1	1
8	1	0	0	0	0	0	0	0	0	0	0
9	1	0	0	1	0	0	0	0	1	0	0
A	1	0	1	0	0	0	0	1	0	0	0
В	1	0	1	1	1	1	0	0	0	0	0
С	1	1	0	0	0	1	1	0	0	0	1
D	1	1	0	1	1	0	0	0	0	1	0
E	1	1	1	0	0	1	1	0	0	0	0
F	1	1	1	1	0	1	1	1	0	0	0

#NOTATION: For the following 7 tables and expressions, by \overline{AB} I mean $A\overline{B}$, this was to simplify the typesetting.

a. For HEX[0], we have the Karnaugh map

	$\overline{c_1c_0}$	$\overline{c_1}c_0$	$c_{1}c_{0}$	$c_1 \overline{c_o}$
$\overline{c_3c_2}$	0	1	0	0
$\overline{c_3}$ c ₂	1	0	0	0
c_3c_2	0	1	0	0
$c_3\overline{c_2}$	0	0	1	0

 $\overline{\text{Thus, } HEX[0] = \overline{c_3 c_2 c_1} c_0 + \overline{c_3} c_2 \overline{c_1} \overline{c_0}} + c_3 c_2 \overline{c_1} c_0 + c_3 \overline{c_2} c_1 c_0$

b. For HEX[1], we have the Karnaugh map

	$\overline{c_1c_0}$	$\overline{c_1}c_0$	$c_1 c_0$	$c_1 \overline{c_o}$
$\overline{c_3c_2}$	0	0	0	0
$\overline{c_3}$ c ₂	0	1	0	1
c_3c_2	1	0	1	1
$c_3\overline{c_2}$	0	0	1	0

Thus, $HEX[1] = \bar{c_3}c_2\bar{c_1}c_0 + c_3c_1c_0 + c_2c_1\bar{c_0} + c_3c_2\bar{c_0}$

c. For HEX[2], we have the Karnaugh map

	$\overline{c_1c_0}$	$\overline{c_1}c_0$	$c_1 c_0$	$c_1 \overline{c_o}$
$\overline{c_3c_2}$	0	0	0	1
$\overline{c_3}$ c ₂	0	0	0	0

c_3c_2	1	0	1	1
$c_3\overline{c_2}$	0	0	0	0

Thus, $HEX[2] = c_3c_2\overline{c_0} + c_3c_2c_1 + \overline{c_3c_2}c_1\overline{c_o}$

d. For HEX[3], we have the Karnaugh map

	$\overline{c_1c_0}$	$\overline{c_1}c_0$	$c_1 c_0$	$c_1 \overline{c_o}$
$\overline{c_3c_2}$	0	1	0	0
$\overline{c_3}$ c ₂	1	0	1	0
c_3c_2	0	0	1	0
$c_3 \overline{c_2}$	0	0	0	1

Thus, $HEX[3] = \overline{c_3}c_2\overline{c_1c_0} + \overline{c_3c_2}\overline{c_1}c_0 + c_2c_1c_0 + c_3\overline{c_2}c_1\overline{c_0}$

e. For HEX[4], we have the Karnaugh map

	$\overline{c_1c_0}$	$\overline{c_1}c_0$	$c_1 c_0$	$c_1 \overline{c_o}$
$\overline{c_3c_2}$	0	1	1	0
$\overline{c_3}$ c ₂	1	1	1	0
c_3c_2	0	0	0	0
$c_3 \overline{c_2}$	0	1	0	0

Thus, $HEX[4] = \overline{c_3}c_0 + \overline{c_2}\overline{c_1}c_0 + \overline{c_3}c_2\overline{c_1}$

f. For HEX[5], we have the Karnaugh map

	$\overline{c_1c_0}$	$\overline{c_1}c_0$	$c_{1}c_{0}$	$c_1 \overline{c_o}$
$\overline{c_3c_2}$	0	1	1	1
$\overline{c_3}$ c ₂	0	0	1	0
c_3c_2	0	1	0	0
$c_3\overline{c_2}$	0	0	0	0

Thus, $HEX[5] = \overline{c_3}\overline{c_2}c_0 + \overline{c_3}\overline{c_2}c_1 + \overline{c_3}c_1c_0 + c_3c_2\overline{c_1}c_0$

g. For HEX[6], we have the Karnaugh map

	$\overline{c_1c_0}$	$\overline{c_1}c_0$	c_1c_0	$c_1 \overline{c_o}$
$\overline{c_3c_2}$	1	1	0	0
$\overline{c_3}$ c ₂	0	0	1	0
c_3c_2	1	0	0	0
$c_3\overline{c_2}$	0	0	0	0

Thus, $HEX[6] = \overline{c_3}\overline{c_2}\overline{c_1} + \overline{c_3}c_2c_1c_0 + c_3c_2\overline{c_1}\overline{c_0}$

- 2. Please see the hexdecoder.v file
- 3. Here is a screenshot of the output, please see the hexdecoder.do file for the test code, notice that here we are using BA3165 which is the lab name for the test.

