09-04-01-LinearAlgebra

Created on 20230405.

Last modified on 2023 年 6 月 23 日.

目录

4 目录

Chapter 1 Vector

1.1 Basic Defination

we define the basic element as following, where e_i means $x_i = 1, x_j = 0$ for all $j \neq i$. When we say a vector, it means a column vector.

$$\vec{x} = \boldsymbol{x} = [x_1, x_2, \dots]^T = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \Sigma x_i \boldsymbol{e_i}$$
(1.1)

We define Kronecker sign to simply the description of $e_i \cdot e_j$.

$$\delta_{ij} := \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$
 (1.2)

The set of bases $\{e_i\} \xrightarrow{apply} \boldsymbol{x} \longrightarrow \{x_i\}.$

1.2 Operation

1.2.1 Dot Product

We define in algebra, $\boldsymbol{x} \cdot \boldsymbol{y} := \sum x_i y_i \delta_{ij} = \boldsymbol{x}^T \cdot \boldsymbol{y}$.

Then the defination is restricted to the choose of the coordinate system.

1.2.2 Cross Product

 $a,b\in\mathbb{F}^m,a\wedge b=c\in\mathbb{F}^n,$ if m = n, we have m = 0, 1, 3, 7. Therefore, we define cross product in 3d.

$$u \times v = \begin{vmatrix} i & j & k \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$
 (1.3)

Proposition 1.1. 外积对于 u、v 双线性。从定义易知。

Proposition 1.2. $(a \times b) \times c = (c \cdot a)b - (b \cdot c)a$

证明:

$$\begin{vmatrix} i & j & k \\ 23 & 31 & 12 \\ 1 & 2 & 3 \end{vmatrix}$$
 (1.4)

例如对 i 分量,有 $31 \cdot 3 - 12 \cdot 2$,形式上 ijk 一样,因而证明 i 即可。展开后,按正负号分类,we have (313 + 212) - (133 + 122),两部分都加上 111 即得。b 和-a 的线性组合。

Proposition 1.3. 混合积 $(u, v, w) = (u \times v) \cdot w$, 其具有轮换对称性。

证明: for $\cdot w$, we have $23 \cdot 1 + 31 \cdot 2 + 12 \cdot 3$

231 - 321,312 - 132,123 - 213

对 $\cdot v$, 即中间元素按 1,2,3 顺序组合, 易有 wu; 同样对 $\cdot u$, 易有 vw。即证。

另外, 从展开后的分量对应上, 易有

$$(u, v, w) = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$
 (1.5)

1.2.3 Add

$$x + y := \sum (x_i + y_i)e_i$$

$$k \cdot x := \sum kx_i e_i$$
(1.6)

Law x + y = y + x, law (x + y) + z = x + (y + z) is not obvious in the view of Set Theory.

1.2. OPERATION 7

1.2.4 geometry Properties

Length and Angle

$$\| \boldsymbol{x} \| := \sqrt{\boldsymbol{x} \cdot \boldsymbol{x}}$$

$$\cos \theta_{x,y} := \frac{\boldsymbol{x} \cdot \boldsymbol{x}}{\| \boldsymbol{x} \| \cdot \| \boldsymbol{y} \|}$$
(1.7)

Distance

Distance function satisfies the following:

$$d(x, y) \ge 0$$

$$d(x, y) = d(y, x)$$

$$d(x, y) \le d(x, z) + d(z, y)$$

$$(1.8)$$

$$d_p = \left[\sum_i |x_i - y_i|^p\right]^{\frac{1}{p}}, 1 \leqslant p < \infty$$

$$d_\infty = \max_i |x_i - y_i|$$
(1.9)

Chapter 2 Space

2.0.1 Linear Space

向量加法、标量乘法构成的单位环。

2.0.2 Metric Space

Definition 2.1. The set X with a distance function d, d satisfies??. Metric Space is noted as (X, d).

Definition 2.2. 紧集: (X,d) 中的子集 A, A 中任意序列都存在一子列 x_n,x_n 收敛到 A 中某点。

Definition 2.3. 稠密集: (X,d) 中的子集 A, 对于 X 中的任意点 x, A 中存在点 a, 使得 $d(x,a)<\varepsilon$

Definition 2.4. X 可分: (X,d) 中存在一个可数稠密集。

Complete Metric Space

Definition 2.5. 收敛: sequence $\{x_n\}$ 收敛到 c, means that $\lim_{x\to\infty} d(x_n,c)=0$, noted as $\lim_{x\to\infty} x_n=c$

Definition 2.6. Cauchy 基本列: $\lim_{m\to\infty,n\to\infty} d(x_m,x_n)=0$

Definition 2.7. 完备距离空间: 所有 Cauchy 基本列收敛于一点

Definition 2.8. 不完备:对于苹果空间,从宇宙开始到宇宙结束的所有苹果序列,收敛到我,则不完备。

2.0.3 Banach Space

完备、赋范、线性。

2.0.4 Inner Product Space

$$(\alpha x + \beta y) \cdot z = \alpha x \cdot z + \beta y \cdot z,$$
 线性
$$x \cdot (\alpha y + \beta z) = \bar{\alpha} x \cdot y + \bar{\beta} x \cdot z,$$
 共轭线性
$$x \cdot y = y \bar{\cdot} x,$$
 共轭对称
$$x \cdot x \geqslant 0,$$
 正定 $\Rightarrow ||x|| = \sqrt{x \cdot x}$
$$|x \cdot y| \leqslant ||x|| \cdot ||y||,$$
 satisfies Cauchy $-$ Schwarz

2.0.5 Hilbert Space

完备,内积。

内积 ⇒ 范数 ⇒ 完备

Proposition 2.1. [0,1] 上的复连续函数空间 C([0,1]), 定义内积 $f \cdot g = \int_0^1 f(t)g(t) dt$, proof that C([0,1]) 不是 Hilbert Space

$$f_n(t) = \begin{cases} 1, & 0 \leqslant t \leqslant \frac{1}{2} \\ -2n(t - \frac{1}{2}) + 1, & \frac{1}{2} < t \leqslant \frac{1}{2n} + \frac{1}{2} \\ 0, & \frac{1}{2n} + \frac{1}{2} < t \leqslant 1 \end{cases}$$

$$||f_n - f_m|| \leqslant (\frac{1}{n} + \frac{1}{m})^{\frac{1}{2}} \to 0, \text{ is Cauchy Sequence.}$$

$$\lim f_n = \begin{cases} 1, 0 \leqslant t \leqslant \frac{1}{2} \\ 0, \frac{1}{2} < t \leqslant 1 \end{cases}$$

$$\therefore \lim f_n \notin C([0, 1])$$

$$(2.2)$$

2.0.6 Euclid Space

有序的 n 元组的全体称为 n 维 Euclid 空间,记为 \mathbb{R}^n ,称 $\mathbf{p}=(p_i)_{i=1}^n\in\mathbb{R}^n$ 是 \mathbb{R}^n 的一个点。为便于研究,本论文以 \mathbb{R}^3 为背景空间,所涉及的函数默认为可微实值函数。如果实函数 f 的任意阶偏导数存在且连续,则称函数是可微的(或无限可微的,或光滑的,或 C^∞ 的)。

由于微分运算是函数的局部运算,限制所讨论函数的定义域在 \mathbb{R}^3 中的任意开集,所讨论的结论仍然成立。

自然坐标函数: 定义在 \mathbb{R}^n 上的实值函数 $x_i:\mathbb{R}^n\to\mathbb{R}$,使得 $\boldsymbol{p}=(p_i)_{i=1}^n=(x_i(\boldsymbol{p}))_{i=1}^n$ 切向量:由 \mathbb{R}^n 中的二元组构成, $\boldsymbol{v_p}=(\boldsymbol{p},\boldsymbol{v})$,其中 \boldsymbol{p} 是作用点, \boldsymbol{v} 是向量部分 切空间 $T_p\mathbb{R}^n$:作用点 $\boldsymbol{p}\in\mathbb{R}^n$ 的所有切向量的集合。利用向量加法与数量乘法使某点的切空间称 为向量空间,与背景空间存在非平凡同构。

向量场 V: 作用于空间点的向量函数, $V(p) \in T_p \mathbb{R}^n$

逐点化原理: (V + W)(p) = V(p) + W(p), (fV)(p) = f(p)V(p)

自然标架场: 定义 $U_i=(\delta_j^i)_{j=1}^n$,按 Einstein 求和约定,有 $V(p)=v^i(p)U_i(p)$,称 v^i 为场的 Euclid 坐标函数,其中 Kronecker δ 函数定义为:

$$\delta_i^j = \begin{cases} 1, i = j \\ 0, i \neq j \end{cases}$$
 (2.3)

Chapter 3 linear algebra

3.1 linear equation

Normally, we consider vector space over the fields of real or complex numbers.

3.1.1 Ax = B

Defination

linear equation in n variables. $\sum_{i=1}^{i=n} a_i x^i = b$, which can be written as $\boldsymbol{a}^T \boldsymbol{x} = b$. We collect m equations and write like this:

$$\begin{bmatrix} \boldsymbol{a}_{1}^{T} \\ \vdots \\ \boldsymbol{a}_{m}^{T} \end{bmatrix} \cdot \begin{bmatrix} \boldsymbol{x} \end{bmatrix} = \begin{bmatrix} b_{1} \\ \vdots \\ b_{m} \end{bmatrix}$$

$$(3.1)$$

Noticed that x_1 is only applied toe the first column of the left matrix, we can say that x is one point, or a specific composition, of the space spanned by the column vector of the matrix. Then it is easy to see that this equation has the solution, only if the vector b is in the space spanned by the column vector of the matrix.

Or we can write like this:

$$\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ & \ddots & \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$$

$$(3.2)$$

The equation Ax = b has solution, means y 可由 A 的列向量线性表出。

If b=0, called homogeneous linear equations, homogeneous because 所有非 0 项是 1 次的。 if $b\neq 0$, it is inhomogeneous. 显然 0 向量 (zero solution, or trivial solution) 是一个解. A 的列向量正交,只有零解;若 A 的列向量线性相关,有多解,即可按多种方式回到原点。

Number of solution

构造增广矩阵 [A,b] 后,初等行变换化为阶梯型,如??所示,解的个数讨论。

Figure 3.1: [number of solution]

 $r \neq 0$, no solution;

d = 1, one solution, $tr \mathbf{A}_{mn} = m$;

 $d \neq 1$, $tr \mathbf{A}_{mn} < m$,inifinity solution,最后一行是解的超平面方程,图中 d 是解的维度, $d = n - tr \mathbf{A}_{mn}$,如 d 为 3,有 3 列独立的,即解空间是三维的。齐次方程组的未知数个数大于方程个数,有无数解。

3.1.2 Matrix

Defination

If we have a serious of x, we have a serious of b, like this:

$$A_{mn} \cdot X_{nt} = B_{mt} \Longrightarrow \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ & \ddots & \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} x_{11} & \cdots & x_{1t} \\ \vdots & & \vdots \\ x_{n1} & \cdots & x_{nt} \end{bmatrix} = \begin{bmatrix} b_{11} & \cdots & b_{1t} \\ \vdots & \ddots & \vdots \\ b_{m1} & \cdots & b_{mt} \end{bmatrix}$$
(3.3)

The normal definition of the product of two matrix is as above.

Transposition

Defination: $a_{ij}^T = a_{ji}$

3.2. DETERMINANT

Proposition 3.1. $(AB)^T = B^T A^T$

Proof:
$$L = (a_{ik}b_{kj})^T = c_{ij}^T = c_{ji} = b_{jk}a_{ki} = R \square$$

Proposition 3.2. We take a look a the product with reflect $T: x \to T \cdot x$. $(Tx)^T Ty = x^T (T^T T)y = [(TT^T)x]^T y$. $0 \le ||TT^T|| < 1$, T is a contractive mapping.

3.1.3 solve equation

求解方法,如消元法、迭代法等。

消元法

利用初等变换化为"阶梯形(或称上三角形)",从下往上回代。

Augmented matrix

3.2 determinant

行列式,定义、性质、展开、Gramer 法则等

3.3 polynomial

因式分解定理, 多项式的根, 多元多项式。

3.4 operation

初等变换、代数运算、分块运算、乘法、秩

3.5 Transformation

线性变换、坐标变换、像与核、特征向量、特征子空间、商空间 正交变换规范变换

酉相似

3.5.1 Elementary Transformation

初等变换。

1) 交换两行: $A \xrightarrow{(i,j)} B$

- 2) 某行乘以不为 0 的数: $\mathbf{A} \xrightarrow{\lambda(i)} \mathbf{B}$
- 3) 某行乘以不为 0 的数加到另一行上: $\mathbf{A} \xrightarrow{\lambda(i)+(j)} \mathbf{B}$

初等矩阵: 单位矩阵执行一系列初等变换得到的矩阵.

初等变换作用于矩阵 A, 等于初等变换作用于单位阵之后得到的初等矩阵 E 再作用于 A.

3.6 Form

3.6.1 Jordan

Jordan 型、根子空间分解、循环子空间、多项式矩阵相抵不变量、特征方阵与相似标准型

3.6.2 二次

配方法构造、对称方阵的相合、相合不变量