	金沢大学大学院自然科学研究科	博士前期課程入学試験 問題用紙
対象	機械科学専攻,電子情報科	学専攻、環境デザイン学専攻
試験科目名	数学	P. 1 / 1

2012年8月28日 (火) 10:00-11:00

[注意] 1. 問題 [1], [2], [3], [4] のうち、2題を選択して解答すること.

2. 解答は各題ごとに分けて、1題を1枚の答案用紙の表に書くこと.

1 次の微分方程式を解け.

(1)
$$\frac{dy}{dx} + 2y = xe^{-3x}$$
 (2) $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} = 2x^2 + x$

(3)
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} + 2y = 3\sin x$$
 (4) $\left(\frac{x}{y^2} - \frac{y}{x^2}\right)dx + \left(\frac{1}{x} - \frac{x^2}{y^3}\right)dy = 0$

- [2] (1) ϕ をスカラー場とするとき、 $\operatorname{grad} \phi^2 = 2\phi \operatorname{grad} \phi$ を grad の定義を用いて示せ.
 - (2) スカラー場 $\phi = xy z$ に対して次の問いに答えよ.
 - (i) C を始点 (1,0,0) と終点 (3,2,2) を結ぶ線分とするとき、 $\int_C (\phi \operatorname{grad} \phi) \cdot dr$ を求めよ.
 - (ii) S を円柱領域 $V: x^2 + y^2 \le 1, 0 \le z \le 2$ の表面とするとき、

$$\iint_{S} (\phi \operatorname{grad} \phi) \cdot n \, dS$$

を求めよ. ただし、n は S の外向き法線ベクトルとする.

- 3 複素関数 $f(z) = \frac{1}{(z^2+4)(z^2-2z+2)}$ について、次の問いに答えよ.
 - (1) f(z) の各特異点における留数を求めよ.
 - (2) 積分 $\int_{|z|=\sqrt{3}} f(z) dz$ の値を求めよ.
 - (3) 正の実数 R に対して、 $C_R: z=Re^{i\theta}$ $(0 \le \theta \le \pi)$ とする. $\lim_{R\to\infty} \int_{C_R} f(z)\,dz = 0$ であることを用いて、 $\int_{-\infty}^{\infty} f(x)\,dx$ の値を求めよ.
- f(x) は周期 2 の関数で $f(x) = |\cos \pi x| \cos \pi x$ $(-1 \le x < 1)$ で定められている。 次の問いに答えよ.
 - (1) f(x) のフーリエ級数を求めよ.
 - (2) (1) の結果を用いて $\sum_{m=1}^{\infty} \frac{(-1)^m}{4m^2-1}$ の値を求めよ.