ЛЕКЦИЯ 17

ОСНОВНА ТЕОРЕМА НА АЛГЕБРАТА. СЛЕДСТВИЯ.

Основна теорема на алгебрата (Теорема на Даламбер). Всеки неконстантен полином $f(x) \in \mathbb{C}[x]$ има комплексен корен.

Ще са ни необходими следните две леми.

Лема 1. Нека $f(x) \in \mathbb{R}[x]$ и ст. f(x) е нечетно число. Тогава f(x) има реален корен.

Доказателство:

Нека $f(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1} + a_n x^n$, $a_n \neq 0$, ст. f(x) = n, n — нечетно число. Разглеждаме унитарния полином

$$h(x) = \frac{1}{a_n} f(x) = \frac{1}{a_n} \left(\frac{a_0}{a_n} + \frac{a_1}{a_n} x + \dots + x^n \right).$$

Ясно е, че f(x) има реален корен тогава и само тогава, когато h(x) има реален корен. Поради това достатъчно е да докажем, че h(x) има реален корен. Тъй като ст. (h(x)) е нечетна имаме

$$\lim_{x \to -\infty} (h(x)) = -\infty \text{ } \text{и} \text{ } \lim_{x \to +\infty} (h(x)) = +\infty.$$

Следователно съществува $x_1 \in \mathbb{R}$ такова, че $h(x_1) < 0$ и съществува $x_2 \in \mathbb{R}$ такова, че $h(x_2) > 0$. Тъй като h(x) е непрекъсната функция, съществува $x_0 \in [x_1, x_2]$, такова че $h(x_0) = 0$, т.е. x_0 е корен на h(x).

Лема 2. Нека $ax^2+bx+c \in \mathbb{C}[x]$, $a \neq 0$. Тогава ax^2+bx+c има комплексен корен.

Доказателство:

Ако $f(x) = ax^2 + bx + c \in \mathbb{R}[x]$, тогава корените на f(x) се получават от формулите

(1)
$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

Знаем, че за всяко $\alpha \in \mathbb{C}$ и всяко естествено число n съществува $\beta \in \mathbb{C}$, такова че $\beta^n = \alpha$. Понеже $a, b, c \in \mathbb{C}, b^2 - 4ac \in \mathbb{C}$. Нека $z \in \mathbb{C}$ и $z^2 = b^2 - 4ac$. Тогава комплексните числа

(2)
$$x_{1,2} = \frac{-b \pm z}{2a}.$$

са корени на $ax^2 + bx + c$. Наистина

$$a\left(\frac{-b \pm z}{2a}\right)^{2} + b\left(\frac{-b \pm z}{2a}\right) + c = \frac{z^{2} \mp 2bz + b^{2} - 2b^{2} \pm 2bz + 4ac}{4a} = 0.$$

С това лема 2 е доказана.

Забележка. Ако $b^2-4ac \neq 0$, формулите (2) дават два различни комплексни корена на ax^2+bx+c . Ако $b^2-4ac=0$, тогава от (2) получаваме $x_1=x_2=-\frac{b}{2a}$. Като използваме, че в тази ситуация $c=\frac{b^2}{4a}$ получаваме

$$ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x + \frac{b^{2}}{4a^{2}}\right) = a\left(x + \frac{b}{2a}\right)^{2}.$$

Следователно, когато $b^2 - 4ac = 0$, $x = -\frac{b}{2a}$ е двукратен комплексен корен на $ax^2 + bx + c$. Тъй като $ax^2 + bx + c$ не може да има повече от два различни комплексни корена или повече от един двукратен комплексен корен, с тези разсъждения доказахме, че освен получените от (2) комплексни корени, $ax^2 + bx + c$ няма други комплексни корени.

Лема 3. Нека $f(x) = a_0 + a_1 x + \dots + a_n x^n \in \mathbb{C}[x]$ и $\overline{f}(x) = \overline{a}_0 + \overline{a}_1 x + \dots + \overline{a}_n x^n \in \mathbb{C}[x]$, където $\overline{a_i}$ е комплексно спрегнатото число на a_i .

- а) Ако $\alpha \in \mathbb{C}$ е корен на единия от полиномите f(x), $\overline{f}(x)$, тогава $\overline{\alpha}$ е корен на другия;
- б) Ако $f(x) \in \mathbb{R}[x]$ и $\alpha \in \mathbb{C}$ е корен на f(x), тогава $\overline{\alpha}$ също е корен на f(x).

Доказателство:

Нека $f(\alpha) = a_0 + a_1\alpha + \cdots + a_n\alpha^n = 0$. Понеже $\overline{f}(\overline{\alpha}) = \overline{a}_0 + \overline{a}_1\overline{\alpha} + \cdots + \overline{a}_n(\overline{\alpha})^n$ и $f(\alpha)$ са комплексно спрегнати, следва че $\overline{f}(\overline{\alpha}) = 0$. Ако $\overline{f}(\alpha) = \overline{a}_0 + \overline{a}_1\alpha + \cdots + \overline{a}_n\alpha^n = 0$, понеже $f(\overline{\alpha}) = a_0 + a_1\overline{\alpha} + \cdots + a_n\overline{\alpha}^n$

и $\overline{f}(\alpha)$ са комплексно спрегнати числа, следва че $f(\overline{\alpha})=0$. С това а) е доказано.

Нека $f(x) \in \mathbb{R}[x]$. В тази ситуация $\overline{f}(x) = f(x)$ и поради това б) следва от а).

Преди доказателството на теоремата на Даламбер ще докажем следното по-слабо твърдение:

Теорема 1. Нека f(x) е неконстантен полином с реални коефициенти. Тогава f(x) има комплексен корен.

Доказателство:

Нека $f(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1} + a_n x^n$, $a_n \neq 0$ и ст. f(x) = n. Нека $n = 2^s . k$, k — нечетно число.

Доказателството ще извършим по индукция относно s.

База s=0. В тази ситуация n е нечетно число и от Лема 1 следва, че f(x) има даже реален корен.

Нека $s \geq 1$. Разглеждаме разширение E на полето на комплексните числа \mathbb{C} над което f(x) се разлага на линейни множители, т. е.

$$f(x) = a_n(x - \alpha_1)(x - \alpha_2) \dots (x - \alpha_n),$$

където $\alpha_1,\alpha_2,\ldots,\alpha_n\in E$ и са корени на f(x) в E. Трябва да докажем, че някое $\alpha_i\in\mathbb{C}$.

Разглеждаме

$$H(x; x_1, x_2, \dots, x_n) = \prod_{1 \le i < j \le n} (x - (x_i + x_j + cx_i x_j))$$
 $\binom{n}{2}$ множителя),

където c е произволно реално число и x, x_1, x_2, \ldots, x_n са променливи. След като развием дясната част и направим съответните опростявания ще получим полином на променливата x, коефициентите на който са от пръстена на полиномите $\mathbb{R}[x_1, x_2, \ldots, x_n]$. Нека разменим местата на x_i и x_i . При това разместване имаме

$$x_i + x_j + cx_i x_j \leftrightarrow x_j + x_i + cx_j x_i$$

$$x_i + x_k + cx_i x_k \leftrightarrow x_j + x_k + cx_j x_k, \quad k \neq j$$

Множителите на $H(x; x_1, x_2, ..., x_n)$, в които не участват x_i и x_j не се променят. Следователно при разместване местата на две от променливите $x_1, x_2, ..., x_n$, множителите на $H(x; x_1, x_2, ..., x_n)$ се разместват, но тяхното произведение не се променя. Следователно при всяко разместване на променливите $x_1, x_2, ..., x_n, H(x; x_1, x_2, ..., x_n)$ не се променя,

т. е. коефициентите на $H(x; x_1, x_2, \ldots, x_n)$ не се променят. Това означава, че коефициентите пред степените на x са симетрични полиноми от пръстена $\mathbb{R}[x_1, x_2, \ldots, x_n]$. Съгласно основното следствите на теоремата за симетрични полиноми, коефициентите на $h(x) = H(x; \alpha_1, \alpha_2, \ldots, \alpha_n)$ ще бъдат реални числа, т. е.

(*)
$$h(x) = \prod_{1 \le i \le j \le n} (x - (\alpha_i + \alpha_j + c\alpha_i \alpha_j)) \in \mathbb{R}[x]$$

Имаме

ст.
$$h(x) = \binom{n}{2} = \frac{n(n-1)}{2} = \frac{2^s k(2^s k-1)}{2} = 2^{s-1} k(2^s k-1) = 2^{s-1} k',$$
 където k' е нечетно число.

И така $h(x) \in \mathbb{R}[x]$ и ст. $h(x) = 2^{s-1}k'$, където k' е нечетно число. Съгласно индуктивната хипотеза h(x) има комплексен корен $\beta \in \mathbb{C}$. Заместваме в (*) и получаваме

$$h(\beta) = \prod_{1 \le i \le j \le n} (\beta - (\alpha_i + \alpha_j + c\alpha_i \alpha_j)) = 0.$$

Тъй като в E няма делители на нулата, имаме $\beta = \alpha_i + \alpha_j + c\alpha_i\alpha_j$ за някои индекси i и j. И така за всяко реално число $c \in \mathbb{R}$ съществуват индекси i и j, такива че $\alpha_i + \alpha_j + c\alpha_i\alpha_j \in \mathbb{C}$. Понеже двойките индекси (i,j), където $1 \le i \le n$ и $1 \le j \le n$, са краен брой, а реалните числа са безброй много, съществуват реални числа $c_1 \ne c_2$, за които при едни и същи индекси i и j имаме:

$$\alpha_i + \alpha_j + c_1 \alpha_i \alpha_j = z_1 \in \mathbb{C}$$

 $\alpha_i + \alpha_j + c_2 \alpha_i \alpha_j = z_2 \in \mathbb{C}$

като извадим тези равенства получаваме

$$(c_1 - c_2)\alpha_i \alpha_j = z_1 - z_2 \in \mathbb{C}, \quad c_1 \neq c_2$$

И

$$\alpha_i \alpha_j = q = \frac{z_1 - z_2}{c_1 - c_2} \in \mathbb{C}.$$

Поради това $\alpha_i + \alpha_j = p = z_1 - c_1 \alpha_i \alpha_j \in \mathbb{C}$. Разглеждаме

(**)
$$t(x) = (x - \alpha_i)(x - \alpha_j) = x^2 - (\alpha_i + \alpha_j)x + \alpha_i\alpha_j = x^2 - px + q \in \mathbb{C}[x]$$

От Лема 2 имаме, че t(x) има комплексен корен γ . Заместваме в (**) и получаваме

$$t(\gamma) = (\gamma - \alpha_i)(\gamma - \alpha_i) = 0$$

Тъй като в E няма делители на нулата имаме, че $\gamma = \alpha_i$ или $\gamma = \alpha_j$. Следователно α_i или α_j е комплексно число. Теорема 1 е доказана.

Доказателство на Теоремата на Даламбер:

Нека $f(x) = a_0 + a_1 x + \dots + a_n x^n \in \mathbb{C}[x], \ a_n \neq 0, \ n \geq 1$. Разглеждаме полинома

$$\overline{f}(x) = \overline{a}_0 + \overline{a}_1 x + \dots + \overline{a}_n x^n,$$

където \overline{a}_i е комплексно спрегнатото число на a_i . Разглеждаме също

$$h(x) = f(x).\overline{f}(x) = b_0 + b_1 x + \dots + b_{2n} x^{2n}$$

Тъй като $b_k=\sum\limits_{i+j=k}a_i\overline{a}_j$, имаме $\overline{b}_k=\sum\limits_{i+j=k}\overline{a}_ia_j$. Следователно $b_k=\overline{b}_k$ за всяко $k=0,\,1,\,\ldots,\,2n,\,$ т. е. $h(x)\in\mathbb{R}[x].$ От Теорема 1 имаме, че h(x) има комплексен корен $\alpha\in\mathbb{C}.$ Следователно

$$h(\alpha) = f(\alpha).\overline{f}(\alpha) = 0.$$

Тъй като в полето няма делители на нулата, или $f(\alpha)=0$, или $\overline{f}(\alpha)=0$. Ако $f(\alpha)=0$, тогава f(x) има комплексен корен α и теоремата е доказана.

Нека $\overline{f}(\alpha)=0.$ Съгласно Лема 3 комплексното число $\overline{\alpha}$ е корен на f(x).

Следствие 1. Над полето на комплексните числа \mathbb{C} неразложими са само полиномите от първа степен.

Доказателство:

Трябва да се докаже, че за всеки полином от степен по-голяма или равна на две е разложим над \mathbb{C} . Нека $f(x) \in \mathbb{C}[x]$ и ст. $f(x) \geq 2$. Съгласно Теоремата на Даламбер f(x) има корен $\alpha \in \mathbb{C}$. Следователно $f(x) = (x-\alpha)g(x)$ и $(x-\alpha), g(x) \in \mathbb{C}[x]$. От ст. $f(x) \geq 2$ следва, че ст. $g(x) \geq 1$. Следователно f(x) е разложим над полето на комплексните числа.

Следствие 2. Всеки неконстантен полином от $\mathbb{C}[x]$ се разлага на линейни множители над \mathbb{C} .

Доказателство:

Съгласно Следствие 1 в каноничното разлагане на всеки неконстантен полином ще участват само полиноми от първа степен, което представлява желаното разлагане.

Определение. Казваме, че полето F е алгебрично затворено, ако всеки неконстантен полином от F[x] се разлага на линейни множители над F.

От Следствие 2 става ясно, че полето на комплексните числа е алгебрично затворено. Ясно е, че $\mathbb R$ и $\mathbb Q$ не са алгебрически затворени (защото например x^2+1 не е разложим над $\mathbb R$ и над $\mathbb Q$).

Следствие 3. Над полето на реалните числа неразложими са полиномите от първа степен и тези полиноми над \mathbb{R} от втора степен, които нямат реални корени. Други неразложими полиноми в $\mathbb{R}[x]$ няма.

Доказателство:

Нека $f(x) \in \mathbb{R}[x]$, ст. $f(x) \geq 2$ и f(x) е неразложим над \mathbb{R} . Тогава както доказахме в Твърдение 5 на лекцията за неразложими полиноми, f(x) няма реални корени. От теоремата на Даламбер следва, че f(x) има комплексен корен α , който не е реален, т. е. $\alpha \neq \overline{\alpha}$. Съгласно Лема 3 (б), $\overline{\alpha}$ също е корен на f(x). Следователно в каноничното разлагане на f(x) ще участват $(x - \alpha)$ и $(x - \overline{\alpha})$, т. е.

$$f(x) = (x - \alpha)(x - \overline{\alpha})g(x)$$

$$f(x) = (x^2 - (\alpha + \overline{\alpha})x + \alpha.\overline{\alpha})g(x)$$

Тъй като $(x^2 - (\alpha + \overline{\alpha})x + \alpha.\overline{\alpha}) \in \mathbb{R}[x]$ следва, че $g(x) \in \mathbb{R}[x]$. Понеже f(x) е неразложим над \mathbb{R} , следва, че g(x) = const и ст. f(x) = 2.

С тези разсъждения доказахме, че неразложимите и нелинейни полиноми над $\mathbb R$ са квадратни тричлени с реални коефициенти. Съгласно Твърдение 6 от втората част на Лекция 12 неразложими над $\mathbb R$ са тези и само тези квадратни тричлени, които нямат реални корени, с което Следствие 3 е доказано.

Следствие 4. Всеки неконстантен полином $f(x) \in \mathbb{R}[x]$ може да се разложи по следния начин:

$$f(x) = a_n(x - \alpha_1)^{k_1} \dots (x - \alpha_s)^{k_s} (x^2 + p_1 x + q_1)^{l_1} \dots (x^2 + p_t x + q_t)^{l_t},$$

където $\alpha_i \in \mathbb{R}$ и $x^2 + p_j x + q_j \in \mathbb{R}[x]$ и нямат реални корени.

Доказателство:

От Следствие 3 в каноничното разлагане на f(x) над \mathbb{R} ще участват линейни множители и квадратни тричлени, които нямат реални корени.

Следствие 5. Ако един неконстантен полином с реални коефициенти няма реални корени, тогава той се разлага в произведение на квадратни тричлени с реални коефициенти, които нямат реални корени. В тази ситуация полиномът има четна степен.

Следствие 6. Характеристичният полином на реална симетрична матрица се разлага над \mathbb{R} на линейни множители

Доказателство:

От лекцията за симетрични оператори знаем, че комплексните корени на симетричните матрици са реални. Поради това линейните множители в разлагането от Следствие 2 са с реални коефициенти.