

Confidence in Causal Inference under Structure Uncertainty

David Strieder (joint work with Mathias Drton)

18. Doktorand:innentreffen der Stochastik, Heidelberg Aug 21 to Aug 23, 2023

Tura Vhranturm

Data from Messerli F., Chocolate Consumption, Cognitive Function, and Nobel Laureates, N Engl J Med 2012.

David Strieder | Confidence in Causal Inference under Structure Uncertainty

Page 5/15

Structural Equation Models Observational Distribution

$$X_{1} = f_{1}(X_{3}, \varepsilon_{1})$$

$$X_{2} = f_{2}(X_{1}, X_{4}, X_{5}, \varepsilon_{2})$$

$$X_{3} = f_{3}(\varepsilon_{3})$$

$$X_{4} = f_{4}(X_{1}, \varepsilon_{4})$$

$$X_{5} = f_{5}(X_{3}, \varepsilon_{5})$$

where ε_i mutually independent

Structural Equation Models Interventional Distribution $do(X_1 = x_1)$

$$X_{1} = x_{1}$$

$$X_{2} = f_{2}(X_{1}, X_{4}, X_{5}, \varepsilon_{2})$$

$$X_{3} = f_{3}(\varepsilon_{3})$$

$$X_{4} = f_{4}(X_{1}, \varepsilon_{4})$$

$$X_{5} = f_{5}(X_{3}, \varepsilon_{5})$$

where ε_i mutually independent

Structural Equation Models Linear SEM with equal variances

$$X_{1} = \beta_{13}X_{3} + \varepsilon_{1}$$

$$X_{2} = \beta_{21}X_{1} + \beta_{24}X_{4} + \beta_{25}X_{5} + \varepsilon_{2}$$

$$X_{3} = \varepsilon_{3}$$

$$X_{4} = \beta_{41}X_{1} + \varepsilon_{4}$$

$$X_{5} = \beta_{25}X_{3} + \varepsilon_{5}$$

where $\varepsilon_i \overset{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$

Setup

■ Interest: Total causal effect of an intervention on X_1 onto X_2 .

$$\begin{split} \mathcal{C}(1 \to 2) := \frac{\mathrm{d}}{\mathrm{d}x_1} \mathbb{E}[X_2 | \, \mathrm{do}(X_1 = x_1)] \\ = \Sigma_{12|p(1)} / \Sigma_{11|p(1)} \end{split}$$

$$\mathcal{C}(1 \to 2) = \beta_{21} + \beta_{41}\beta_{24}$$

Setup

■ Idea: Use test inversion.

■ Goal: Construct suitable tests for all $\psi \in \mathbb{R}$.

Setup

Idea: Use test inversion.

- Goal: Construct suitable tests for all $\psi \in \mathbb{R}$.
- Difficulty: Hypothesis is union of single hypotheses over all structures.

$$\mathsf{H}_0^{(\psi)} := \bigcup_{G \in \mathcal{G}(d)} \mathsf{H}_0^{(\psi)}(G)$$

Single Hypothesis $H_0^{(\psi)}(G)$

$$\mathsf{H}_{0}^{(\psi)}(G) : \left\{ \Sigma \! \in \! \mathsf{PD}(d) \colon \exists \sigma^2 \! > \! 0 \text{ with } \psi \sigma^2 \! = \! \Sigma_{1,2|p(1)} \text{ and } \sigma^2 \! = \! \Sigma_{k,k|p(k)} \ \forall \, k \! = \! 1, \ldots, d \right\}$$

- Idea: Use theory of intersection union test.
- Reject union if we reject each single hypothesis.

Constrained likelihood ratio test

- **Idea:** Relax alternative to entire cone of covariance matrices.
- Each single defines hypothesis smooth submanifold.
- Limit distribution is a chi-squared distribution.
- **Result:** Asymptotic $(1-\alpha)$ -confidence set for causal effect $\mathcal{C}(1\to 2)$ is

$$\{\psi \in \mathbb{R} : \min_{G \in \mathcal{G}(d) : 1 <_G 2} \lambda_n^{(\psi)}(G) \le \chi_{d,1-\alpha}^2\} \cup \{0 : \min_{G \in \mathcal{G}(d) : 2 <_G 1} \lambda_n^{(0)}(G) \le \chi_{d-1,1-\alpha}^2\}$$

Split likelihood ratio test¹

- Idea: Split data and use universal critical value.
- \blacksquare Calculate MLE of Σ under alternative based on data part 1.
- \blacksquare Calculate MLE of Σ under hypothesis and likelihoods based on data part 2.
- **Result:** $(1-\alpha)$ -confidence set for causal effect $\mathcal{C}(1\to 2)$ is

$$\{\psi \in \mathbb{R} : \min_{G \in \mathcal{G}(d) : 1 <_G 2} \tilde{\lambda}_n^{(\psi)}(G) \le -2\log(\alpha)\} \cup \{0 : \min_{G \in \mathcal{G}(d) : 2 <_G 1} \tilde{\lambda}_n^{(0)}(G) \le -2\log(\alpha)\}$$

¹Wasserman L, Ramdas A, Balakrishnan S., *Universal inference*, Proc. Natl. Acad. Sci. USA 2020.

Simulations

		TRUE EFFECT		
method	$n \backslash \beta$	0.05	0.1	0.5
LRT	100	1.00	0.99	1.00
	500	0.95	0.98	1.00
	1000	0.94	0.97	1.00
SLRT	100	1.00	1.00	1.00
	500	0.98	0.99	1.00
	1000	0.96	0.99	1.00
Bootstrap	100	0.64	0.71	0.97
	500	0.70	0.79	0.98
	1000	0.76	0.83	0.98

Empirical Coverage of 95%-Cls

Simulations

Zero Contained and Mean Width of 95%-CIs (1000 Random 5-dim. DAGs)