Swimmer Environment - RLGlue Implementation

leon.zheng

May 2019

1 State

In the current implementation of the environment, the state is stored in a double array u of size 2n + 4, where n is the number of segments.

- A_0 , position of the swimmer head, is stored in u_0, u_1 .
- \dot{A}_0 , velocity of the swimmer head, is stored in u_2, u_3 .
- θ_i , the angle i at the beginning of the segment i, is stored in u_{3+i} , for $i \in \{1, ..., n\}$.
- $\dot{\theta}_i$, the first derivative of the angle i at the beginning of the segment i, is stored in u_{3+n+i} , for $i \in \{1, ..., n\}$.

2 Solving dynamics equations

2.1 Variables

- \bullet *n* is the number of segments.
- l_i is the length of segment i.
- θ_i is the angle *i* at the beginning of the segment *i*, for $i \in \{1, ..., n\}$. See the figure in Remy's paper, Annex B.4 [1].
- G_i is the mass center of the segment i, for $i \in \{1, ..., n\}$.

2.2 Unknowns

The goal is to compute the following unknowns:

- n unknowns of dimension 1: $\ddot{\theta_1}, \ddot{\theta_2}, ..., \ddot{\theta_n} \in \mathbb{R}$
- n+1 unknowns of dimension 2: $\vec{f_0}, \vec{f_1}, ..., \vec{f_n} \in \mathbb{R}^2$
- n unknowns of dimension 2: $\ddot{G}_1, \ddot{G}_2, ..., \ddot{G}_n \in \mathbb{R}^2$

Let $X \in \mathbb{R}^{5n+2}$ be the unknown vector encoding all the unknown variables. We index the components of this vector from 0 to 5n + 1:

- $\ddot{\theta}_i$ corresponds to X[i-1] for $i \in \{1,...,n\}$.
- $\vec{f}_i = \begin{pmatrix} f_i^x \\ f_i^y \end{pmatrix}$ corresponds to $\begin{pmatrix} X[n+2i] \\ X[n+2i+1] \end{pmatrix}$ for $i \in \{0,...,n\}$.
- \ddot{G}_i corresponds to $\begin{pmatrix} X[3n+2i] \\ X[3n+2i+1] \end{pmatrix}$ for $i \in \{1,...,n\}$.

2.3 Equations

Since $X \in \mathbb{R}^{5n+2}$, we need to write 5n+2 equations. From Remy's model [1] in Annex B.4.3, we have the following equations.

• Equations 0 to n-1, for $i \in \{1,...,n\}$:

$$m_i \frac{l_i}{12} \ddot{\theta}_i - \frac{l_i}{2} \left(\cos \theta_i (f_i^y + f_{i+1}^y) - \sin \theta_i (f_i^x + f_{i+1}^x) \right) = \mathcal{M}_i - u_i + u_{i-1}$$
 (1)

• Equations n to 3n + 3, for $i \in \{1, ..., n\}$:

$$\vec{f_0} = 0 \tag{2}$$

$$\vec{f_{i-1}} - \vec{f_i} + m_i \ddot{G_i} = \vec{F_i}$$
 (3)

$$\vec{f_n} = 0 \tag{4}$$

• Equations 3n + 4 to 5n + 1, for $i \in \{1, ..., n - 1\}$:

$$-\ddot{G}_{i+1} + \ddot{G}_i + \frac{l_i}{2}\ddot{\theta}_i \begin{pmatrix} -\sin\theta_i \\ \cos\theta_i \end{pmatrix} + \frac{l_{i+1}}{2}\ddot{\theta}_{i+1} \begin{pmatrix} -\sin\theta_{i+1} \\ \cos\theta_{i+1} \end{pmatrix} = \frac{l_i}{2}\dot{\theta}_i^2 \begin{pmatrix} \cos\theta_i \\ \sin\theta_i \end{pmatrix} + \frac{l_{i+1}}{2}\dot{\theta}_{i+1}^2 \begin{pmatrix} \cos\theta_{i+1} \\ \sin\theta_{i+1} \end{pmatrix}$$
(5)

which is the second derivative of the following equations:

$$G_{i+1} = G_i + \frac{l_i}{2} \begin{pmatrix} \cos \theta_i \\ \sin \theta_i \end{pmatrix} + \frac{l_i}{2} \begin{pmatrix} \cos \theta_{i+1} \\ \sin \theta_{i+1} \end{pmatrix}$$
 (6)

Using the same indices of the unknowns as X, left members of the previous equations are stored in $A \in \mathbb{R}^{(5n+2)\times(5n+2)}$, right members of the previous equations are stored in $B \in \mathbb{R}^{5n+2}$.

Thus, we have the relation AX = B, and solving the linear system is done by using $X = A^{-1}B$.

References

[1] Rémi Coulom. Reinforcement Learning Using Neural Networks, with Applications to Motor Control. PhD thesis, Institut National Polytechnique de Grenoble, 2002.