# Statistical Inference and Multivariate Analysis (MA324)

Lecture 34

#### Principal Component Analysis



Indian Institute of Technology Guwahati

Jan-May 2023

## Principal Components Obtained from Standardized Variables

$$Z_{i} = \frac{X_{i} - \mu_{i}}{\sqrt{\sigma_{ii}}}, i = 1, 2, ..., p$$

$$\Leftrightarrow \quad \tilde{Z} = \begin{pmatrix} Z_{1} \\ \cdot \\ \cdot \\ \cdot \\ Z_{p} \end{pmatrix} = V^{-1}(\tilde{X} - \mu), \text{ where } V = diag(\sqrt{\sigma_{11}}, \sqrt{\sigma_{22}}, ..., \sqrt{\sigma_{pp}})$$

- Proportion of standardized population variance due to  $k^{th}$  principal component  $=\frac{\lambda_k}{n}, \ k=1,2,...,p,$  where  $\lambda_k$ 's are the eigen values pf  $\rho_{p\times p}$ .

# Summarizing Sample Variation using Principal Componenets

- Let  $x_1, x_2, ..., x_n$  denote n independent draws from a p-dimensional population with mean vector  $\mu$  and variance-covariance matrix  $\Sigma$ .
- The sample mean is  $\overline{x}$ , the sample var-cov matrix S and the sample correlation matrix R.
- $1^{st}$  sample principal component = Linear combination  $a'_1x_j$  that maximizes the sample variance of  $a'_1x_j$  subject to  $a'_1a_1=1$ .



•  $i^{th}$  sample principal component = Linear combination  $a_i'x_j$  that maximizes the sample variance of  $a_i'x_j$  subject to  $a_i'a_i=1$  and zero sample correlation between  $a_i'x_j$  and  $a_k'x_j$  for all k < i.

• Note that sample variance of  $a_1'x_j$  is  $a_1'Sa_1$ . The sample covariance between  $a_1'x_j$  and  $a_k'x_j$  is  $a_1'Sa_k$ .

#### Theorem

Let S be  $p \times p$  sample var-cov matrix with eigen-value-eigen-vector pair  $(\hat{\lambda_1}, \hat{e_1}), ..., (\hat{\lambda_p}, \hat{e_p})$  with  $\hat{\lambda_1} \geq \hat{\lambda_2} \geq ... \geq \hat{\lambda_p} \geq 0$ . Then  $i^{th}$  sample principal component is given by,

$$\hat{y_i} = \hat{e_i}' \underbrace{\tilde{x}}_{i} = \hat{e_{i1}} x_1 + ... + \hat{e_{ip}} x_p, \ i = 1, 2, ..., p$$

Also, sample variance of  $\hat{y_i}=\hat{\lambda_i},\ i=1,2,...,p$  and sample covariance  $\hat{y_i}$  and  $\hat{y_k}$  is 0, for  $i\neq k$ .

### How many components to retain?

- No definite answer
- Scree plot

## Sample principal components based on standardized data

ullet S matrix needs to be replaced by R.

#### Application of PCA...



Figure 1. The regions that are either highlighted or contoured when used in PCA.[1]

 Reference: Alkandari, A., & Aljaber, S. J. (2015, April). Principle Component Analysis algorithm (PCA) for image recognition. In 2015 Second International Conference on Computing Technology and Information Management (ICCTIM) (pp. 76-80). IEEE.

#### Application of PCA...



- Original and compressed image with two, five, and eight principal components. (a) Original image. (b) Compression with two components. (c)
   Compression with five components. (d) Compression with eight components.
- Reference: Hernandez, W., Mendez, A., & Göksel, T. (2018). Application of principal component analysis to image compression.
   Statistics-Growing Data Sets and Growing Demand for Statistics.

### Application of PCA...

Did you spot the bias in AI?