Simulation framework for the digitization module of scintillators and its implementation in NeuLAND

Yanzhao Wang, Jan Mayer, Igor Gasparic, and Andreas Zilges

Institute for Nuclear Physics, University of Cologne

HK 25.2 DPG-Frühjahrstagung Dresden 2023

Supported by BMBF (05P21PKFN1)

NeuLAND setup in R³B

NeuLAND setup in R³B

Geometry:

- 13 double planes
- $\bullet~250\times250\,\mathrm{cm}^2$
- 50 scintillation bars each plane
- 100 PMTs each plane

NeuLAND setup in R³B

Geometry:

- 13 double planes
- $\bullet \ 250 \times 250 \, \mathrm{cm}^2$
- 50 scintillation bars each plane
- 100 PMTs each plane

Measurement:

- neutron 4-momentum
- neutron multiplicity

NeuLAND

Method 1: Clustering ¹

Method 2: Bayes WCP

$$P(H|\vec{\mathbf{E}}) = P(H) \frac{P(\vec{\mathbf{E}}|H)}{\sum_{h} P(\vec{\mathbf{E}}|H_{h}) P(H_{h})}$$

Method 3: Convolutional neural network

¹ Technical Report for the Design, Construction and Commissioning of NeuLAND 2011.

University of Cologne | AG Zilges | Yanzhao Wang

Method 1: Clustering ¹

Method 2: Bayes WCP

$$P(H|\vec{\mathbf{E}}) = P(H) \frac{P(\vec{\mathbf{E}}|H)}{\sum_{h} P(\vec{\mathbf{E}}|H_{h}) P(H_{h})}$$

Method 3: Convolutional neural network

Validation?

¹ Technical Report for the Design, Construction and Commissioning of NeuLAND 2011.

Method 1: Clustering ¹

Method 2: Bayes WCP

$$P(H|\vec{\mathbf{E}}) = P(H) \frac{P(\vec{\mathbf{E}}|H)}{\sum_{h} P(\vec{\mathbf{E}}|H_{h}) P(H_{h})}$$

Method 3: Convolutional neural network

Validation? Simulation!

¹ Technical Report for the Design, Construction and Commissioning of NeuLAND 2011.

Method 1: Clustering ¹

Method 2: Bayes WCP

$$P(H|\vec{\mathbf{E}}) = P(H) \frac{P(\vec{\mathbf{E}}|H)}{\sum_{h} P(\vec{\mathbf{E}}|H_{h}) P(H_{h})}$$

Method 3: Convolutional neural network

Validation? Simulation!

¹ Technical Report for the Design, Construction and Commissioning of NeuLAND 2011.

Method 1: Clustering ¹

Method 2: Bayes WCP

$$P(H|\vec{\mathbf{E}}) = P(H) \frac{P(\vec{\mathbf{E}}|H)}{\sum_{h} P(\vec{\mathbf{E}}|H_{h}) P(H_{h})}$$

Method 3: Convolutional neural network

Validation? Simulation!

¹ Technical Report for the Design, Construction and Commissioning of NeuLAND 2011.

Interactions

Hit data

¹Photomultiplier tubes: basics and applications, 3a, Hamamatsu (Nov. 2007), p. 197

PMT saturation¹

¹Photomultiplier tubes: basics and applications, 3a, Hamamatsu (Nov. 2007), p. 197

PMT saturation¹

Light attenuation

$$Y_{PMT} = Y_{edep} \exp(-\alpha \cdot L)$$

 α : Attenuation factor

¹Photomultiplier tubes: basics and applications, 3a, Hamamatsu (Nov. 2007), p. 197

PMT saturation¹

Light attenuation

$$Y_{PMT} = Y_{edep} \exp(-\alpha \cdot L)$$

 α : Attenuation factor

PMT signal coupling

$$\min \ \Delta = \begin{cases} |E_1/E_2 \cdot e^{\alpha c(t_1-t_2)} - 1| \ , & t_1 > t_2 \\ |E_2/E_1 \cdot e^{\alpha c(t_2-t_1)} - 1| \ , & t_2 > t_1 \end{cases}$$

¹Photomultiplier tubes: basics and applications, 3a, Hamamatsu (Nov. 2007), p. 197

Simulation steps

- Apply threshold
- Perform pileup of PMT signals (addition)
- \bigcirc PMT signals \Rightarrow FQT signals
- Perform pileup of FQT signals (merge)
- Energy and time value smearing

Simulation steps

- Apply threshold
- Perform pileup of PMT signals (addition)
- **3** PMT signals \Rightarrow FQT signals
- Perform pileup of FQT signals (merge)
- Energy and time value smearing

Simulation steps

- Apply threshold
- Perform pileup of PMT signals (addition)
- **3** PMT signals \Rightarrow FQT signals
- Perform pileup of FQT signals (merge)
- Energy and time value smearing

Total energy deposition

Energy deposition of hits

Comparisons to Tacquila and mockup

Hit energy deposition (M=4, KE=1 GeV)

Total energy deposition $(M=4,KE=1\,\mathrm{GeV})$

Summary and outlook

In this talk

- simulation on scintillation bars and digitization channels
- multi-hit capability
- distribution on total energy deposition and hit energies
- better performance on low energy filtering

What to do next

- integration time window on Tamex
- comparison to real calibrated data
- applications on other detectors

