Lecture 26

MATH 0200

Amplitude Period

Lecture 26 Transformation of trigonometric functions

MATH 0200

Dr. Boris Tsvelikhovskiy

Outline

Lecture 26

MATH 0200

Amplitud Period

Amplitude

Period

Amplitude

Lecture 26

MATH 0200

Amplitude Period

Definition

The **amplitude** of a function is one-half the difference between the maximum and minimum values of the function.

Amplitude

Lecture 26

MATH 0200

Amplitude Period

Definition

The **amplitude** of a function is one-half the difference between the maximum and minimum values of the function.

Example

Let's find the amplitude of the function $f(x) = 5\cos(x)$.

Amplitude

Lecture 26

MATH 0200

Amplitude Period

Definition

The **amplitude** of a function is one-half the difference between the maximum and minimum values of the function.

Example

Let's find the amplitude of the function $f(x) = 5\cos(x)$. Recall that the range of cosine is the closed interval [-1,1], hence, the range of f(x) is [-5,5] and the amplitude equals (5-(-5))/2=5.

Remark

A shift of a function f(x) will likely change the maximal and minimal values, but will **NOT** change the difference between them. Therefore shifts preserve amplitude.

Example

Let's find the amplitude of the function $f(x) = 5\cos(x-2) + 7$.

Remark

A shift of a function f(x) will likely change the maximal and minimal values, but will **NOT** change the difference between them. Therefore shifts preserve amplitude.

Example

Let's find the amplitude of the function

$$f(x) = 5\cos(x - 2) + 7.$$

The range of cosine $\cos(x-2)$ is still the closed interval [-1,1], hence, the range of f(x) is [2,12] (here $2=5\cdot(-1)+7$ and $12=5\cdot1+7$), so the amplitude equals (12-2)/2=5 (as before).

Period

Lecture 26

MATH 0200

Amplitude Period

Definition

Let f be a function and p a positive number. We say that p is the **period** of f if p is the smallest positive number with f(x+p) = f(x) for every real number x in the domain of f.

Period

Lecture 26

MATH 0200

Amplitude Period

Definition

Let f be a function and p a positive number. We say that p is the **period** of f if p is the smallest positive number with f(x+p) = f(x) for every real number x in the domain of f.

Remark

Some functions do not repeat their behavior at regular intervals and thus do not have a period. For instance, any linear function f(x) = mx + b (with $m \neq 0$) does not have a period. A function is called **periodic** if it has a period.

• The period of the function f(x) whose graph is depicted below is equal to $\frac{\pi}{2}$.

• The period of the function f(x) whose graph is depicted below is equal to $\frac{\pi}{2}$.

• The period of the function f(x) whose graph is depicted below is equal to $\frac{\pi}{2}$.

② The amplitude of f(x) is equal to $\frac{2-(-2)}{2}=2$.

Find the period of the function $g(x) = 3\cos(0.1x)$.

Find the period of the function $g(x) = 3\cos(0.1x)$. Recall that the period of $\cos(x)$ is $p = 2\pi$ and the graph of g(x) is obtained from the graph of $\cos(x)$ by stretching it 10 times horizontally and 3 times vertically. While vertical stretch has no effect on the period, the horizontal one increases it 10 times, so we get $p = 20\pi$.

Find the period of the function $g(x) = 3\cos(0.1x)$. Recall that the period of $\cos(x)$ is $p = 2\pi$ and the graph of g(x) is obtained from the graph of $\cos(x)$ by stretching it 10 times horizontally and 3 times vertically. While vertical stretch has no effect on the period, the horizontal one increases it 10 times, so we get $p = 20\pi$.

Remark

• Shifts and vertical stretch have no effect on the period.

Find the period of the function $g(x) = 3\cos(0.1x)$. Recall that the period of $\cos(x)$ is $p = 2\pi$ and the graph of g(x) is obtained from the graph of $\cos(x)$ by stretching it 10 times horizontally and 3 times vertically. While vertical stretch has no effect on the period, the horizontal one increases it 10 times, so we get $p = 20\pi$.

Remark

- Shifts and vertical stretch have no effect on the period.
- The period of $\sin(mx)$ and $\cos(mx)$ is $p = \frac{2\pi}{m}$.

Question

Find the amplitude and period of $f(x) = 3\sin(7x) - 2$.

Question

Find the amplitude and period of $f(x) = 3\sin(7x) - 2$.

Answer: the range of f(x) is the closed interval [-5, 1], so the amplitude equals $\frac{1-(-5)}{2}=3$.

Question

Find the amplitude and period of $f(x) = 3\sin(7x) - 2$.

Answer: the range of f(x) is the closed interval [-5, 1], so the amplitude equals $\frac{1-(-5)}{2}=3$. The period is $p=\frac{2\pi}{7}$.