| Double Array Trie 木構造機概要書 09-01-2007 丁 | 志剛 |
|----------------------------------------|----|

Double Array Trie 木構造機概要書

| 作成者 | 作成日        | バージョン |
|-----|------------|-------|
| 丁志剛 | 2007/09/01 | 0.1   |

| テーマ:                      | 作成日        | 作成者  |
|---------------------------|------------|------|
| Double Array Trie 木構造機概要書 | 09-01-2007 | 丁 志剛 |

# 目次

|    | the state of the s |     |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1, | 概要                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .3  |
| 2, | トライ木(Trie)とは                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .3  |
| 3, | 基本構造                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .4  |
|    | <ul><li>構造体定義</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .4  |
|    | ・UTF8 コードテーブル                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5   |
|    | <ul><li>データタイプ定義</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5   |
|    | <ul><li>・文字のANSI/UTF8数値を取得する</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .6  |
|    | ・DFA構造図                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .7  |
|    | <ul><li>DFA構造テーブル</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .8  |
|    | ・Double Array Trie 木を構造する必須条件                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .9  |
|    | ・Double Array Trie 木探索のC++実現                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .9  |
|    | • Double Array Trie 木構造結果                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .12 |
|    | ・Double Array Trie 辞書構造スクリーンショット                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .13 |
| 4, | 利点と欠点                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .16 |
|    | · 利点                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .16 |
|    | · 欠点                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .17 |
| 5、 | 附録                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18  |
|    | • 形能素解析                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18  |

| テーマ:                      | 作成日        | 作成者  |
|---------------------------|------------|------|
| Double Array Trie 木構造機概要書 | 09-01-2007 | 丁 志剛 |
|                           |            |      |

#### 1、概要

下記の Double Array Trie 構造プログラムは Minidx2.0 の一部である

#### 2、 トライ木 (Trie) とは

順序付き木構造 (データ構造)の一種。プレフィックス木 (Prefix Tree) とも呼ばれる。キーが文字 列である連想配列の実装構造として使われる。Trie という名称は "retrieval" (探索、検索) が語源であるため、"tree" と同じ発音を用いる (リトゥリーヴァル)。しかし、ツリー構造との混同を避けるために「トライ」という読み方を奨励する人もいる。日本語では、「トライ木」という呼び方がほぼ定着している。Trieon

注①:「DFA」 決定性有限オートマトン(けっていせい・、Deterministic Finite Automaton)または 決定性有限状態機械(けっていせいゆうげんじょうたいきかい、Deterministic Finite State Machine)は、状態と入力によって次に遷移すべき状態が一意に定まる有限オートマトンである。DFA と略記される。

| テーマ:                      | 作成日        | 作成者  |
|---------------------------|------------|------|
| Double Array Trie 木構造機概要書 | 09-01-2007 | 丁 志剛 |

#### 3、基本構造

◆ 構造体定義

```
struct ST_STATE
    uint16_t code;
    uint16_t final;
    uint32_t state;
};
struct ST_TRIE_ITEM
    int32_t base;
    int32_t check;
    int32_t handle;
};
struct ST_STAT_BASE
    int32_t offset;
    uint32_t state;
    uint16_t final;
    uint16_t child_count;
    ST_STAT_BASE() {}
    ST_STAT_BASE(int32_t o, uint16_t f, uint32_t t, int c) :
        offset(o),
        final(f),
        state(t),
        child_count(c),
        next(NULL)
           {
           ST_STAT_BASE *next;
};
```

| Double Array Trie 木構造機概要書 09-01-2007 工 志剛    | テーマ:                      | 作成日        | 作成者  |
|----------------------------------------------|---------------------------|------------|------|
| Double I I I I I I I I I I I I I I I I I I I | Double Array Trie 木構造機概要書 | 09-01-2007 | 丁 志剛 |

#### ◆ UTF8 コードテーブル:

| U+00000000 - U+0000007F: | 0 xxxxxx                      | 0x - 7x                            |
|--------------------------|-------------------------------|------------------------------------|
| U+00000080 - U+000007FF: | 110 xxxxx 10 xxxxxx           | Cx 8x - Dx Bx                      |
| U+00000800 - U+0000FFFF: | 1110 xxxx 10 xxxxxx 10 xxxxxx | Ex 8x 8x - Ex Bx Bx                |
| U+00010000 - U+001FFFFF: | 11110 xxx 10 xxxxxx 10 xxxxxx | F0 8x 8x 8x - F7 Bx Bx Bx          |
|                          | 10 xxxxxx                     |                                    |
| U+00200000 - U+03FFFFFF: | 111110 xx 10 xxxxxx 10 xxxxxx | F8 8x 8x 8x 8x - FB Bx Bx Bx Bx    |
|                          | 10 xxxxxx 10 xxxxxx           |                                    |
| U+04000000 - U+7FFFFFF:  | 1111110 x 10 xxxxxx 10 xxxxxx | FC 8x 8x 8x 8x 8x - FD Bx Bx Bx Bx |
|                          | 10 xxxxxx 10 xxxxxx 10 xxxxxx | Bx                                 |

#### ◆ タイプ定義:

```
#ifndef WIN32
```

#include <inttypes.h>

typedef uint8\_t byte;

#else //for Win32

#include <sys/types.h>

typedef unsigned short

#include <wchar.h>

typedef unsigned long uint32\_t;

typedef \_\_int64 intmax\_t;

typedef unsigned \_\_int64 uintmax\_t;

#endif

uint16\_t;

| テーマ:                      | 作成日        | 作成者  |
|---------------------------|------------|------|
| Double Array Trie 木構造機概要書 | 09-01-2007 | 丁 志剛 |

```
◆ 文字のANSI/UTF8数値を取得する
//uint16_t sInput;
 //const char
                                                     *pInput = NULL;
 switch (MINIDX_DEF_ENCODE)
 case MINIDX_DEF_ENCODE_ANSI: // ANSI=- F
               if ( (*pInput < 0) && *(pInput+1) )</pre>
                            sInput = ((byte) (*(pInput++))) << 8;
                           sInput |= (byte) (*(pInput++));
              }
              else
                            sInput = (byte)*(pInput++);
              }
              break;
 case MINIDX_DEF_ENCODE_UTF8: // UTF8モード
               if (((*(byte *)pInput) \& 0x80) == 0) {
                            sInput = *(byte *)pInput;
                            pInput += 1;
              else\ if\ (((*(byte\ *)pInput)\ \&\ 0xe0)\ ==\ 0xc0)\ \{
                            sinput = ((*(byte *)pinput & 0x1f) << 6) + (*(byte *)(pinput + 1) & 0x3f);
                            pInput += 2;
              else if (((*(byte *)pInput) & 0xf0) == 0xe0) {}
                            sInput = ((*(byte *)pInput \& 0x0f) << 12) + ((*(byte *)(pInput + 1) \& 0x3f) << 6) + (*(byte *)(pInput + 1) & 0x3f) << 6) + (*(byte *)(pInput + 1) & 0x3f) << 6) + (*(byte *)(pInput + 1) & 0x3f) << 6) + (*(byte *)(pInput + 1) & 0x3f) << 6) + (*(byte *)(pInput + 1) & 0x3f) << 6) + (*(byte *)(pInput + 1) & 0x3f) << 6) + (*(byte *)(pInput + 1) & 0x3f) << 6) + (*(byte *)(pInput + 1) & 0x3f) << 6) + (*(byte *)(pInput + 1) & 0x3f) << 6) + (*(byte *)(pInput + 1) & 0x3f) << 6) + (*(byte *)(pInput + 1) & 0x3f) << 6) + (*(byte *)(pInput + 1) & 0x3f) << 6) + (*(byte *)(pInput + 1) & 0x3f) << 6) + (*(byte *)(pInput + 1) & 0x3f) << 6) + (*(byte *)(pInput + 1) & 0x3f) << 6) + (*(byte *)(pInput + 1) & 0x3f) << 6) + (*(byte *)(pInput + 1) & 0x3f) << 6) + (*(byte *)(pInput + 1) & 0x3f) << 6) + (*(byte *)(pInput + 1) & 0x3f) << 6) + (*(byte *)(pInput + 1) & 0x3f) << 6) + (*(byte *)(pInput + 1) & 0x3f) << 6) + (*(byte *)(pInput + 1) & 0x3f) << 6) + (*(byte *)(pInput + 1) & 0x3f) << 6) + (*(byte *)(pInput + 1) & 0x3f) << 6) + (*(byte *)(pInput + 1) & 0x3f) << 6) + (*(byte *)(pInput + 1) & 0x3f) << 6) + (*(byte *)(pInput + 1) & 0x3f) << 6) + (*(byte *)(pInput + 1) & 0x3f) << 6) + (*(byte *)(pInput + 1) & 0x3f) << 6) + (*(byte *)(pInput + 1) & 0x3f) << 6) + (*(byte *)(pInput + 1) & 0x3f) << 6) + (*(byte *)(pInput + 1) & 0x3f) << 6) + (*(byte *)(pInput + 1) & 0x3f) << 6) + (*(byte *)(pInput + 1) & 0x3f) << 6) + (*(byte *)(pInput + 1) & 0x3f) << 6) + (*(byte *)(pInput + 1) & 0x3f) << 6) + (*(byte *)(pInput + 1) & 0x3f) << 6) + (*(byte *)(pInput + 1) & 0x3f) << 6) + (*(byte *)(pInput + 1) & 0x3f) << 6) + (*(byte *)(pInput + 1) & 0x3f) << 6) + (*(byte *)(pInput + 1) & 0x3f) << 6) + (*(byte *)(pInput + 1) & 0x3f) << 6) + (*(byte *)(pInput + 1) & 0x3f) << 6) + (*(byte *)(pInput + 1) & 0x3f) << 6) + (*(byte *)(pInput + 1) & 0x3f) << 6) + (*(byte *)(pInput + 1) & 0x3f) << 6) + (*(byte *)(pInput + 1) & 0x3f) << 6) + (*(byte *)(pInput + 1) & 0x3f) << 6) + (*(byte *)(pInput + 1) & 0x3f) << 6) + (*(byte *)(pInput + 1) & 0x3f) << 6) + (*(byte *)
 *) (pInput + 2) & 0x3f);
                            pInput += 3;
              }
              break:
 default:
              //
              break;
}
```

| Double Array Trie 木構造機概要書 09-01-2007 工 志剛    | テーマ:                      | 作成日        | 作成者  |
|----------------------------------------------|---------------------------|------------|------|
| Double I I I I I I I I I I I I I I I I I I I | Double Array Trie 木構造機概要書 | 09-01-2007 | 丁 志剛 |

## ◆ DFA構造図



単語:

live 日本

look 中国

let 中国製造

man 丁志剛

| Double Array Trie 木構造機概要書 09-01-2007 工 志剛    | テーマ:                      | 作成日        | 作成者  |
|----------------------------------------------|---------------------------|------------|------|
| Double I I I I I I I I I I I I I I I I I I I | Double Array Trie 木構造機概要書 | 09-01-2007 | 丁 志剛 |

### ◆ DFA構造テーブル

| character | code  | final | state | count | charCode |
|-----------|-------|-------|-------|-------|----------|
| 1         | 108   | 0     | 1     | 1     | 1        |
| i         | 105   | 0     | 2     | 1     | 2        |
| v         | 118   | 0     | 3     | 1     | 3        |
| е         | 101   | 1     | 4     | 1     | 4        |
| 1         | ×     | _     | _     | _     | _        |
| 0         | 111   | 0     | 5     | 2     | 5        |
| 0         | 111   | 0     | 6     | 1     | 5        |
| k         | 107   | 1     | 7     | 1     | 6        |
| 1         | ×     | _     | _     | _     | _        |
| е         | 101   | 0     | 8     | 3     | 4        |
| t         | 116   | 1     | 9     | 1     | 7        |
| m         | 109   | 0     | 10    | 2     | 8        |
| a         | 97    | 0     | 11    | 1     | 9        |
| n         | 110   | 1     | 12    | 1     | 10       |
| 日         | 26085 | 0     | 13    | 3     | 11       |
| 本         | 26412 | 1     | 14    | 1     | 12       |
| 中         | 20013 | 0     | 15    | 4     | 13       |
| 玉         | 22269 | 1     | 16    | 1     | 14       |
| 中         | ×     | _     | _     | _     | _        |
| 国         | ×     | _     | _     |       | _        |
| 製         | 35069 | 0     | 17    | 1     | 15       |
| 造         | 36896 | 1     | 18    | 1     | 16       |
| 丁         | 19969 | 0     | 19    | 5     | 17       |
| 志         | 24535 | 0     | 20    | 1     | 18       |
| 剛         | 21083 | 1     | 21    | 1     | 19       |

| テーマ:                      | 作成日        | 作成者  |
|---------------------------|------------|------|
| Double Array Trie 木構造機概要書 | 09-01-2007 | 丁 志剛 |

◆ DFAから Double Array Trie 木を構造するのは、下記の条件は必須である

```
• base[s] + c = t
```

```
• check[t] = s
```

#### ◆ DAT の検索

```
• Step1: 「c」を入力する
```

• Step2:

```
t = base[s] + c
if (check[t] == s) then
    next state: = t
else
    fail
endif
```

• Step3: if(base[t] > 0) then

goto Step1

else

end state

#### 下記は DAT 検索のC++実現:

```
//
// @param pcszWord: key word(utf8)
// @return bool
//
bool DATCreator::IsWord(const char* pcszWord)
{
    int i = 0;
    int nPos;
    int32_t base=1, check=0;
    uint16_t input;

    while(*pcszWord)
    {
        // 文字のUTF8数値を取得する
        switch (MINIDX_DEF_ENCODE)
        {
        case MINIDX_DEF_ENCODE_ANSI:
```

| テーマ:                      | 作成日        | 作成者  |
|---------------------------|------------|------|
| Double Array Trie 木構造機概要書 | 09-01-2007 | 丁 志剛 |

```
if (pcszWord[i] < 0))
               input = ((byte)pcszWord[i] << 8) | (byte)pcszWord[i+1];
               ++ j ;
           }
           else
            {
               input = (byte)pcszWord[i];
           break:
       case MINIDX_DEF_ENCODE_UTF8:
           if (((*(byte *)pcszWord) \& 0x80) == 0) {
               input = *(byte *)pcszWord;
               pcszWord += 1;
               i += 1;
           else\ if\ (((*(byte\ *)pcszWord)\ \&\ 0xe0)\ ==\ 0xc0)\ \{
               input = ((*(byte *)pcszWord \& 0x1f) << 6) + (*(byte *)(pcszWord + 1) & 0x3f);
               pcszWord += 2;
               i += 2;
           } else if (((*(byte *)pcszWord) & 0xf0) == 0xe0) {
               input = ((*(byte *)pcszWord & 0x0f) << 12) + ((*(byte *)(pcszWord + 1) & 0x3f) << 6)
+ (*(byte *) (pcszWord + 2) & 0x3f);
               pcszWord += 3;
               i += 3;
           }
           break;
       default:
           //
           break:
       }
       // 存在しない
       if (!m_charCode[input])
           return false;
       // inputが存在する場合、遷移位置を計算する
       nPos=base+m_charCode[input];
       // 配列位置範囲外、DAT遷移条件が満足していなければ存在しない
                                            - 10 -
```

| テーマ:                      | 作成日        | 作成者  |
|---------------------------|------------|------|
| Double Array Trie 木構造機概要書 | 09-01-2007 | 丁 志剛 |
|                           |            |      |

```
if (nPos>m_nTotal||m_pTrie[nPos].check!=check)
{
    return false:
}

// 上記の条件を満足する場合、DAT遷移する
check = nPos:

base = m_pTrie[nPos].base & (~MINIDX_DEF_FINAL_TAG);
}

// 存在する場合
if (nPos<=m_nTotal && (m_pTrie[nPos].base & MINIDX_DEF_FINAL_TAG))
{
    return true:
}

// ここまで実行すれば存在しない
return false:
}
```

| テーマ:                      | 作成日        | 作成者  |
|---------------------------|------------|------|
| Double Array Trie 木構造機概要書 | 09-01-2007 | 丁 志剛 |

#### ◆ DAT 構造結果

 $base[] = \{1, 0, 6, 0, 0, 0, 0, 0, 19, 6, 14, 8, 4, 13, 3, 15, -1, -214783635, 6, 2, -1, 12, -1, 19, -1, 0, -1, 0, 0, 14, 0, -1, -1\}$   $check[] = \{-1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 11, 0, 9, 12, 14, 0, 13, 18, 10, 8, 22, 0, 15, 0, 0, 17, 0, 28, 20\}$ 

※ -214783635=13 | MINIDX\_DEF\_FINAL\_TAG; 13 は元 base 値、MINIDX\_DEF\_FINAL\_TAG= 0x80000000

| No. | base       | check | handle |
|-----|------------|-------|--------|
| 1   | base 1     | -1    | 0      |
| 2   | 0          | 0     | 0      |
| 3   | 6          | 0     | 0      |
|     |            |       |        |
| 4   | 0          | 0     | 0      |
| 5   | 0          |       | 0      |
| 6   | 0          | 0     | 0      |
| 7   | 0          | 0     | 0      |
| 8   | 19         | 0     | 0      |
| 9   | 6          | 2     | 0      |
| 10  | 14         | 0     | 0      |
| 11  | 8          | 2     | 0      |
| 12  | 4          | 2     | 0      |
| 13  | 13         | 0     | 0      |
| 14  | 3          | 11    | 0      |
| 15  | 15         | 0     | 0      |
| 16  | -1         | 9     | 0      |
| 17  | -214783635 | 12    | 5      |
| 18  | 6          | 14    | 6      |
| 19  | 2          | 0     | 0      |
| 20  | -1         | 13    | 2      |
| 21  | 12         | 18    | 0      |
| 22  | -1         | 10    | 3      |
| 23  | 19         | 8     | 0      |
| 24  | -1         | 22    | 1      |
| 25  | 0          | 0     | 0      |
| 26  | -1         | 15    | 4      |
| 27  | 0          | 0     | 0      |
| 28  | 0          | 0     | 0      |
| 29  | 14         | 17    | 0      |
| 30  | 0          | 0     | 0      |
| 31  | -1         | 28    | 7      |
| 32  | -1         | 20    | 8      |
|     |            | 9 -   |        |

| テーマ:                      | 作成日        | 作成者  |
|---------------------------|------------|------|
| Double Array Trie 木構造機概要書 | 09-01-2007 | 丁 志剛 |
|                           |            |      |

◆ DAT 辞書構造スクリーンショット



| テーマ:                      | 作成日        | 作成者  |
|---------------------------|------------|------|
| Double Array Trie 木構造機概要書 | 09-01-2007 | 丁 志剛 |



(日本語解析)

| テーマ:                      | 作成日        | 作成者  |
|---------------------------|------------|------|
| Double Array Trie 木構造機概要書 | 09-01-2007 | 丁 志剛 |



(中国語解析)

| テーマ:                      | 作成日        | 作成者  |
|---------------------------|------------|------|
| Double Array Trie 木構造機概要書 | 09-01-2007 | 丁 志剛 |
|                           |            |      |

#### 4、利点と欠点

#### 利点:

◆ キー検索が高速である

長さ m のキー検索は最悪で O(m) の時間がかかる。2 分探索木では  $O(\log n)$  の時間であり、n は木を構成するノード数である(木の深さに応じた時間がかかり、2 分探索木の深さは n の対数となる)。トライ木が検索処理で行う文字でインデックス付けした配列の操作なども、実際のマシンでは高速である。

- ◆ 多数の短い文字列を格納する場合にはトライ木の方がメモリを節約できる これはキーが明示的に格納されないためであり、複数のキーによってノードが共有されるためである。
- ◆ 辞書引き終了のタイミングが自動的にわかる

| テーマ:                      | 作成日        | 作成者  |
|---------------------------|------------|------|
| Double Array Trie 木構造機概要書 | 09-01-2007 | 丁 志剛 |

#### 欠点:

トライ木はキーの順序を与えるが、それは辞書式順序でなければならない。

- ◆ トライ木は状況によっては極めて巨大になる。例えば、少数の非常に長い文字列を格納するトライ木などである(この場合はパトリシア木が適している)。
- ◆ トライ木のアルゴリズムは単純な2分探索木よりも複雑である。
- ◆ データを文字列として表すのは常に簡単とは言えない。例えば、複雑なデータ構造や浮動小数点数などをキーとする場合、工夫が必要となる。

| テーマ:                      | 作成日        | 作成者  |
|---------------------------|------------|------|
| Double Array Trie 木構造機概要書 | 09-01-2007 | 丁 志剛 |

#### 5、附録

#### 形態素解析

(<a href="http://ja.wikipedia.org/wiki/%E5%BD%A2%E6%85%8B%E7%B4%A0%E8%A7%A3%E6">http://ja.wikipedia.org/wiki/%E5%BD%A2%E6%85%8B%E7%B4%A0%E8%A7%A3%E6</a> %9E%90)

**形態素解析**(けいたいそかいせき、*Morphological Analysis*)とは、コンピュータ等の計算機を用いた自然言語処理の基礎技術のひとつ。かな漢字変換等にも応用されている。

対象言語の文法の知識(文法のルールの集まり)や辞書(品詞等の情報付きの単語リスト)を情報源として用い、自然言語で書かれた文を形態素(Morpheme, おおまかにいえば、言語で意味を持つ最小単位)の列に分割し、それぞれの品詞を判別する作業を指す。

以下は「お待ちしております」という文を形態素解析した例である(形態素解析ツールには「茶筌」を使用した)。

#### 文字列 読み 原形 品詞の種類 活用の種類活用形

お待ち オマチ お待ち 名詞-サ変接続

し シ する 動詞-自立 サ変・スル 連用形

て テ て 助詞-接続助詞

おり オリ おる 動詞-非自立 五段・ラ行 連用形

ます マス ます 助動詞 特殊・マス 基本形

。 。 。 記号-句点