Print This Solution Close This Solution

Find Solution of Transportation Problem using North-West Corner method

TOTAL no. of supply constraints: 9 TOTAL no. of demand constraints: 6

Problem Table is

	`D_1`	`D_2`	`D_3`	`D_4`	`D_5`	`D_6`	Supply
`S_1`	0	2	4	6	8	0	20
`S_2`	5	7	9	11	13	0	15
`S_3`	10	12	14	16	18	0	30
`S_4`	999999	5	7	9	11	0	20
`S_5`	999999	10	12	14	16	0	30
`S_6`	999999	999999	7	9	11	0	25
`S_7`	999999	999999	10	12	14	0	30
`S_8`	999999	999999	999999	8	10	0	30
`S_9`	999999	999999	999999	10	12	0	30
Demand	30	40	50	60	20	30	

The rim values for `S_1`=20 and `D_1`=30 are compared.

The smaller of the two i.e. min(20,30) = 20 is assigned to `S_1` `D_1`

This exhausts the capacity of S_1 and leaves 30 - 20 = 10 units with D_1

Table-1

	`D_1`	`D_2`	`D_3`	`D_4`	`D_5`	`D_6`	Supply
`S_1`	0 (20)	2	4	6	8	0	0
`S_2`	5	7	9	11	13	0	15
`S_3`	10	12	14	16	18	0	30
`S_4`	999999	5	7	9	11	0	20
`S_5`	999999	10	12	14	16	0	30
`S_6`	999999	999999	7	9	11	0	25
`S_7`	999999	999999	10	12	14	0	30
`S_8`	999999	999999	999999	8	10	0	30
`S_9`	999999	999999	999999	10	12	0	30
Demand	10	40	50	60	20	30	

The rim values for $S_2=15$ and $D_1=10$ are compared.

The smaller of the two i.e. min(15,10) = 10 is assigned to `S_2` `D_1`

This meets the complete demand of D_1 and leaves 15 - 10 = 5 units with S_2

Table-2

	`D_1`	`D_2`	`D_3`	`D_4`	`D_5`	`D_6`	Supply
`S_1`	0 (20)	2	4	6	8	0	0
`S_2`	5 (10)	7	9	11	13	0	5
`S_3`	10	12	14	16	18	0	30
`S_4`	999999	5	7	9	11	0	20
`S_5`	999999	10	12	14	16	0	30
`S_6`	999999	999999	7	9	11	0	25
`S_7`	999999	999999	10	12	14	0	30
`S_8`	999999	999999	999999	8	10	0	30
`S_9`	999999	999999	999999	10	12	0	30
Demand	0	40	50	60	20	30	

The rim values for $S_2=5$ and $D_2=40$ are compared.

The smaller of the two i.e. min(5,40) = 5 is assigned to $S_2 \ D_2$

This exhausts the capacity of S_2 and leaves 40 - 5 = 35 units with D_2

Table-3

	`D_1`	`D_2`	`D_3`	`D_4`	`D_5`	`D_6`	Supply
`S_1`	0 (20)	2	4	6	8	0	0
`S_2`	5 (10)	7 (5)	9	11	13	0	0
`S_3`	10	12	14	16	18	0	30
`S_4`	999999	5	7	9	11	0	20
`S_5`	999999	10	12	14	16	0	30
`S_6`	999999	999999	7	9	11	0	25
`S_7`	999999	999999	10	12	14	0	30
`S_8`	999999	999999	999999	8	10	0	30
`S_9`	999999	999999	999999	10	12	0	30

Demand	0	35	50	60	20	30	

The rim values for $S_3=30$ and $D_2=35$ are compared.

The smaller of the two i.e. min(30,35) = 30 is assigned to `S_3` `D_2`

This exhausts the capacity of S_3 and leaves 35 - 30 = 5 units with D_2

Table-4

	`D_1`	`D_2`	`D_3`	`D_4`	`D_5`	`D_6`	Supply
`S_1`	0 (20)	2	4	6	8	0	0
`S_2`	5 (10)	7 (5)	9	11	13	0	0
`S_3`	10	12 (30)	14	16	18	0	0
`S_4`	999999	5	7	9	11	0	20
`S_5`	999999	10	12	14	16	0	30
`S_6`	999999	999999	7	9	11	0	25
`S_7`	999999	999999	10	12	14	0	30
`S_8`	999999	999999	999999	8	10	0	30
`S_9`	999999	999999	999999	10	12	0	30
Demand	0	5	50	60	20	30	

The rim values for $S_4=20$ and $D_2=5$ are compared.

The smaller of the two i.e. min(20,5) = 5 is assigned to `S_4` `D_2`

This meets the complete demand of D_2 and leaves 20 - 5 = 15 units with S_4

Table-5

	`D_1`	`D_2`	`D_3`	`D_4`	`D_5`	`D_6`	Supply
`S_1`	0 (20)	2	4	6	8	0	0
`S_2`	5 (10)	7 (5)	9	11	13	0	0
`S_3`	10	12 (30)	14	16	18	0	0
`S_4`	999999	5 (5)	7	9	11	0	15
`S_5`	999999	10	12	14	16	0	30
`S_6`	999999	999999	7	9	11	0	25
`S_7`	999999	999999	10	12	14	0	30
`S_8`	999999	999999	999999	8	10	0	30

`S_9`	999999	999999	999999	10	12	0	30
Demand	0	0	50	60	20	30	

The rim values for $S_4=15$ and $D_3=50$ are compared.

The smaller of the two i.e. min(15,50) = 15 is assigned to `S_4` `D_3`

This exhausts the capacity of S_4 and leaves 50 - 15 = 35 units with D_3

Table-6

	`D_1`	`D_2`	`D_3`	`D_4`	`D_5`	`D_6`	Supply
`S_1`	0 (20)	2	4	6	8	0	0
`S_2`	5 (10)	7 (5)	9	11	13	0	0
`S_3`	10	12 (30)	14	16	18	0	0
`S_4`	999999	5 (5)	7 (15)	9	11	0	0
`S_5`	999999	10	12	14	16	0	30
`S_6`	999999	999999	7	9	11	0	25
`S_7`	999999	999999	10	12	14	0	30
`S_8`	999999	999999	999999	8	10	0	30
`S_9`	999999	999999	999999	10	12	0	30
Demand	0	0	35	60	20	30	

The rim values for `S_5`=30 and `D_3`=35 are compared.

The smaller of the two i.e. min(30,35) = 30 is assigned to `S_5` `D_3`

This exhausts the capacity of S_5 and leaves 35 - 30 = 5 units with D_3

Table-7

	`D_1`	`D_2`	`D_3`	`D_4`	`D_5`	`D_6`	Supply
`S_1`	0 (20)	2	4	6	8	0	0
`S_2`	5 (10)	7 (5)	9	11	13	0	0
`S_3`	10	12 (30)	14	16	18	0	0
`S_4`	999999	5 (5)	7 (15)	9	11	0	0
`S_5`	999999	10	12 (30)	14	16	0	0
`S_6`	999999	999999	7	9	11	0	25

`S_7`	999999	999999	10	12	14	0	30
`S_8`	999999	999999	999999	8	10	0	30
`S_9`	999999	999999	999999	10	12	0	30
Demand	0	0	5	60	20	30	

The rim values for $S_6=25$ and $D_3=5$ are compared.

The smaller of the two i.e. min(25,5) = 5 is assigned to `S_6` `D_3`

This meets the complete demand of D_3 and leaves 25 - 5 = 20 units with S_6

Table-8

	`D_1`	`D_2`	`D_3`	`D_4`	`D_5`	`D_6`	Supply
`S_1`	0 (20)	2	4	6	8	0	0
`S_2`	5 (10)	7 (5)	9	11	13	0	0
`S_3`	10	12 (30)	14	16	18	0	0
`S_4`	999999	5 (5)	7 (15)	9	11	0	0
`S_5`	999999	10	12 (30)	14	16	0	0
`S_6`	999999	999999	7 (5)	9	11	0	20
`S_7`	999999	999999	10	12	14	0	30
`S_8`	999999	999999	999999	8	10	0	30
`S_9`	999999	999999	999999	10	12	0	30
Demand	0	0	0	60	20	30	

The rim values for `S_6`=20 and `D_4`=60 are compared.

The smaller of the two i.e. min(20,60) = 20 is assigned to `S_6` `D_4`

This exhausts the capacity of S_6 and leaves 60 - 20 = 40 units with D_4

Table-9

	`D_1`	`D_2`	`D_3`	`D_4`	`D_5`	`D_6`	Supply
`S_1`	0 (20)	2	4	6	8	0	0
`S_2`	5 (10)	7 (5)	9	11	13	0	0
`S_3`	10	12 (30)	14	16	18	0	0
`S_4`	999999	5 (5)	7 (15)	9	11	0	0
`S_5`	999999	10	12 (30)	14	16	0	0

`S_6`	999999	999999	7 (5)	9 (20)	11	0	0
`S_7`	999999	999999	10	12	14	0	30
`S_8`	999999	999999	999999	8	10	0	30
`S_9`	999999	999999	999999	10	12	0	30
Demand	0	0	0	40	20	30	

The rim values for $S_7=30$ and $D_4=40$ are compared.

The smaller of the two i.e. min(30,40) = 30 is assigned to `S_7` `D_4`

This exhausts the capacity of \S_7 and leaves 40 - 30 = 10 units with D_4

Table-10

	`D_1`	`D_2`	`D_3`	`D_4`	`D_5`	`D_6`	Supply
`S_1`	0 (20)	2	4	6	8	0	0
`S_2`	5 (10)	7 (5)	9	11	13	0	0
`S_3`	10	12 (30)	14	16	18	0	0
`S_4`	999999	5 (5)	7 (15)	9	11	0	0
`S_5`	999999	10	12 (30)	14	16	0	0
`S_6`	999999	999999	7 (5)	9 (20)	11	0	0
`S_7`	999999	999999	10	12 (30)	14	0	0
`S_8`	999999	999999	999999	8	10	0	30
`S_9`	999999	999999	999999	10	12	0	30
Demand	0	0	0	10	20	30	

The rim values for $S_8=30$ and $D_4=10$ are compared.

The smaller of the two i.e. min(30,10) = 10 is assigned to `S_8` `D_4`

This meets the complete demand of D_4 and leaves 30 - 10 = 20 units with S_8

Table-11

	`D_1`	`D_2`	`D_3`	`D_4`	`D_5`	`D_6`	Supply
`S_1`	0 (20)	2	4	6	8	0	0
`S_2`	5 (10)	7 (5)	9	11	13	0	0
`S_3`	10	12 (30)	14	16	18	0	0
`S_4`	999999	5 (5)	7 (15)	9	11	0	0

`S_5`	999999	10	12 (30)	14	16	0	0
`S_6`	999999	999999	7 (5)	9 (20)	11	0	0
`S_7`	999999	999999	10	12 (30)	14	0	0
`S_8`	999999	999999	999999	8 (10)	10	0	20
`S_9`	999999	999999	999999	10	12	0	30
Demand	0	0	0	0	20	30	

The rim values for $S_8=20$ and $D_5=20$ are compared.

The smaller of the two i.e. min(20,20) = 20 is assigned to `S_8` `D_5`

This exhausts the capacity of S_8 and leaves 20 - 20 = 0 units with D_5

Table-12

14010 12							
	`D_1`	`D_2`	`D_3`	`D_4`	`D_5`	`D_6`	Supply
`S_1`	0 (20)	2	4	6	8	0	0
`S_2`	5 (10)	7 (5)	9	11	13	0	0
`S_3`	10	12 (30)	14	16	18	0	0
`S_4`	999999	5 (5)	7 (15)	9	11	0	0
`S_5`	999999	10	12 (30)	14	16	0	0
`S_6`	999999	999999	7 (5)	9 (20)	11	0	0
`S_7`	999999	999999	10	12 (30)	14	0	0
`S_8`	999999	999999	999999	8 (10)	10 (20)	0	0
`S_9`	999999	999999	999999	10	12	0	30
Demand	0	0	0	0	0	30	

The rim values for $S_9=30$ and $D_5=0$ are compared.

The smaller of the two i.e. min(30,0) = 0 is assigned to `S_9` `D_5`

This meets the complete demand of D_5 and leaves 30 - 0 = 30 units with S_9

Table-13

	`D_1`	`D_2`	`D_3`	`D_4`	`D_5`	`D_6`	Supply
`S_1`	0 (20)	2	4	6	8	0	0
`S_2`	5 (10)	7 (5)	9	11	13	0	0
`S_3`	10	12 (30)	14	16	18	0	0

`S_4`	999999	5 (5)	7 (15)	9	11	0	0
`S_5`	999999	10	12 (30)	14	16	0	0
`S_6`	999999	999999	7 (5)	9 (20)	11	0	0
`S_7`	999999	999999	10	12 (30)	14	0	0
`S_8`	999999	999999	999999	8 (10)	10 (20)	0	0
`S_9`	999999	999999	999999	10	12	0	30
Demand	0	0	0	0	0	30	

The rim values for $S_9=30$ and $D_6=30$ are compared.

The smaller of the two i.e. min(30,30) = 30 is assigned to `S_9` `D_6`

Table-14

	`D_1`	`D_2`	`D_3`	`D_4`	`D_5`	`D_6`	Supply
`S_1`	0 (20)	2	4	6	8	0	0
`S_2`	5 (10)	7 (5)	9	11	13	0	0
`S_3`	10	12 (30)	14	16	18	0	0
`S_4`	999999	5 (5)	7 (15)	9	11	0	0
`S_5`	999999	10	12 (30)	14	16	0	0
`S_6`	999999	999999	7 (5)	9 (20)	11	0	0
`S_7`	999999	999999	10	12 (30)	14	0	0
`S_8`	999999	999999	999999	8 (10)	10 (20)	0	0
`S_9`	999999	999999	999999	10	12	0 (30)	0
Demand	0	0	0	0	0	0	

Final Allocation Table is

	`D_1`	`D_2`	`D_3`	`D_4`	`D_5`	`D_6`	Supply
`S_1`	0 (20)	2	4	6	8	0	20
`S_2`	5 (10)	7 (5)	9	11	13	0	15
`S_3`	10	12 (30)	14	16	18	0	30
`S_4`	999999	5 (5)	7 (15)	9	11	0	20
`S_5`	999999	10	12 (30)	14	16	0	30
`S_6`	999999	999999	7 (5)	9 (20)	11	0	25

`S_7`	999999	999999	10	12 (30)	14	0	30
`S_8`	999999	999999	999999	8 (10)	10 (20)	0	30
`S_9`	999999	999999	999999	10	12	0 (30)	30
Demand	30	40	50	60	20	30	

The minimum total transportation cost $= 0 \times 20 + 5 \times 10 + 7 \times 5 + 12 \times 30 + 5 \times 5 + 7 \times 15 + 12 \times 30 + 7 \times 5 + 9 \times 20 + 12 \times 30 + 8 \times 10 + 10 \times 20 + 0 \times 30 = 1790$

Here, the number of allocated cells = 13, which is one less than to m + n - 1 = 9 + 6 - 1 = 14 :: This solution is degenerate

Solution is provided by AtoZmath.com

about:blank