Chapitre 30

Fonctions de deux variables

Sommaire

I	Cont	Continuité	
	1)	Ouverts	
	2)	Fonctions de deux variables	
	3)	Continuité	
	4)	Extension	
II	Calc	ul différentiel	
	1)	Dérivées partielles premières	
	2)	Extremum	
	3)	Fonctions de classe C^1	
	4)	Propriétés des fonctions C^1	

I CONTINUITÉ

1) Ouverts

On rappelle que \mathbb{R}^2 est un \mathbb{R} -espace vectoriel muni du produit scalaire canonique : si u=(x,y)et v = (x', y') alors (u|v) = xx' + yy', la norme euclidienne est : $||u|| = \sqrt{x^2 + y^2}$, celle-ci ayant les propriétés suivantes :

- $\begin{array}{ll}
 \Gamma & \forall u = (x, y) \in \mathbb{R}^2, \|u\| \geqslant 0. \\
 \forall u \in \mathbb{R}^2, \|u\| = 0 \iff u = 0. \\
 \forall u \in \mathbb{R}^2, \lambda \in \mathbb{R}, \|\lambda u\| = |\lambda|.\|u\|.
 \end{array}$
- $\forall u, v \in \mathbb{R}^2$, $||u + v|| \le ||u|| + ||v||$ (inégalité triangulaire).

Définition 30.1

- Distance : la distance de $u \in \mathbb{R}^2$ à $v \in \mathbb{R}^2$ est la norme de la différence : d(u, v) = ||u v||.
- Partie bornée : une partie A de \mathbb{R}^2 est dite **bornée** lorsqu'il existe un réel M tel que : $\forall x \in A, ||x|| \leq M.$
- Boule ouverte : soit $u \in \mathbb{R}^2$ et r > 0, la boule ouverte de centre u et de rayon r est l'ensemble $B(u,r) = \{v \in \mathbb{R}^2 \mid ||u-v|| < r\}$. De même on peut définir les boules fermées et les sphères.

À retenir

Si u = (x, y) alors le pavé ouvert $P =]x - \frac{r}{\sqrt{2}}; x + \frac{r}{\sqrt{2}}[\times]y - \frac{r}{\sqrt{2}}; y + \frac{r}{\sqrt{2}}[$ est inclus dans la boule ouverte B(u, r).

\bigcirc Théorème 30.1 (Ouverts de \mathbb{R}^2)

Une partie A de \mathbb{R}^2 est un ouvert lorsque A est une réunion (quelconque) de boules ouvertes. Ce qui équivaut à : $\forall u \in A, \exists r > 0, B(u, r) \subset A$. Par convention, \emptyset est un ouvert.

Preuve : Celle-ci est simple et laissée en exercice.

Exemples:

™Exemples :

- $-\mathbb{R}^2$ est une partie ouverte de \mathbb{R}^2 .
- Une boule ouverte est une partie ouverte de \mathbb{R}^2 .
- Un demi-plan ouvert (i.e. bord exclu) est une partie ouverte.
- Une réunion quelconque de parties ouvertes est une partie ouverte.
- Une intersection finie de parties ouvertes est une partie ouverte.
- Une boule fermée n'est pas une partie ouverte de

2) Fonctions de deux variables

Nous considérerons par la suite des fonctions définies sur une partie A de \mathbb{R}^2 et à valeurs dans \mathbb{R} . **Exemples**:

- f: (x, y) $\mapsto x^2 + y^2$ est définie sur A = \mathbb{R}^2 .
- $-f:(x,y)\mapsto \frac{1}{x^2-y^2}$ est définie sur $A=\mathbb{R}^2\setminus\{(x,\pm x\,/\,x\in\mathbb{R}\}\ (c'\text{est un ouvert de }\mathbb{R}^2).$

Soit $A \subset \mathbb{R}^2$, l'ensemble des fonctions de A vers \mathbb{R} est noté $\mathcal{F}(A, \mathbb{R})$, il est facile de voir que pour les opérations usuelles sur les fonctions, c'est une R-algèbre.

Définition 30.2 (représentation graphique)

Soit $f: A \to \mathbb{R}$ une fonction de deux variables, le graphe de la fonction est l'ensemble : $\{(x, y, f(x, y)) / (x, y) \in A\}$. La représentation graphique de f est l'ensemble des points de \mathbb{R}^3 de coordonnées (x, y, f(x, y)), cet ensemble est appelé **surface cartésienne** d'équation z = f(x, y).

FIGURE 30.1 – Surface d'équation $z = x^2 + y^2$ (tronquée à z = 4)

Définition 30.3 (applications partielles)

Soit A une partie de \mathbb{R}^2 , soit $f: A \to \mathbb{R}$ une fonction, et soit $a = (x_0, y_0) \in A$. La première application partielle de f en a est la fonction $f_{1,a}: t \mapsto f(t,y_0)$ (on fixe la deuxième variable à y_0), et la deuxième application partielle de f en a est la fonction $f_{2,a}: t \mapsto f(x_0,t)$ (on fixe la première variable à x_0).

Exemple: Soit $f(x,y) = \frac{x^2+y}{x^2+y^2+1}$, la première application partielle de f en a=(0,0) est $f_{1,a}(t)=\frac{t^2}{1+t^2}$, et la deuxième application partielle de f en a est $f_{2,a}(t) = \frac{t}{1+t^2}$.

Remarque 30.1 – Les applications partielles permettent de se ramener aux fonctions d'une variable réelle.

Continuité 3)

'Définition 30.4 (continuité)

Soit $f: A \to \mathbb{R}$ et soit $a \in A$, on dit que f est continue en a lorsque :

$$\forall \varepsilon > 0, \exists r > 0, \forall u \in A, ||u - a|| < r \implies |f(u) - f(a)| < \varepsilon.$$

Si f est continue en tout point de A, on dit que f est continue sur A, l'ensemble des fonctions continues sur A est noté $\overline{\mathcal{C}}^0(A, \mathbb{R})$.

Théorème 30.2

- Si f est continue en $a \in A$, alors f est bornée au voisinage de a.
- Si f est continue en a et si $f(a) \neq 0$, alors au voisinage de a f ne s'annule pas.
- On retrouve les théorèmes généraux de la continuité (somme, produit, quotient). En particulier on en déduit que $C^0(A, \mathbb{R})$ est une \mathbb{R} -algèbre.
- Si $f: A \to \mathbb{R}$ est continue sur A, et si $g: J \to \mathbb{R}$ est continue sur J avec $Im(f) \subset J$, alors $g \circ f$ est continue sur A.

Preuve : Celle-ci est simple et laissée en exercice.

g-À retenir

Il en découle en particulier que toute fonction polynomiale ou rationnelle en x et y, est continue sur son ensemble de définition.

🙀 Théorème 30.3

Si f est continue en $a = (x_0, y_0) \in A$, alors la première application partielle de f en a est continue en x_0 , et la deuxième est continue en y_0 . Mais la réciproque est fausse.

Preuve: Soit $\varepsilon > 0$, il existe r > 0 tel que $\forall u \in A$, $||u - a|| < r \implies |f(u) - f(a)| < \varepsilon$. Soit $t \in \mathbb{R}$, si $|t - x_0| < r$, alors $||(t, y_0) - a|| = |t - x_0| < r$, donc $|f(t, y_0) - f(a)| < \varepsilon$, c'est à dire $|f_{1,a}(t) - f_{1,a}(x_0)| < \varepsilon$, ce qui prouve que $f_{1,a}(t) - f_{1,a}(t) = f_{1,a}(t)$ est continue en x_0 . Le raisonnement est similaire pour $f_{2,a}$.

Donnons un contre-exemple pour la réciproque : $f(x,y) = \frac{xy}{x^2+y^2}$ si $(x,y) \neq (0,0)$, et f(0,0) = 0. Les deux applications partielles de f en (0,0) sont continues en 0 car elles sont nulles. Par contre, on considérant les couples (x,x) non nuls, on a $f(x,x) = \frac{1}{2}$, donc on ne peut pas avoir par exemple $|f(x,x) - f(0,0)| < \frac{1}{4}$ quand (x, x) est voisin de (0, 0), donc f n'est pas continue en (0, 0).

4) Extension

Soit A un partie de \mathbb{R}^2 et $f: A \to \mathbb{R}^2$, alors pour tout couple (x, y) de A, f(x, y) est un couple de réels dont les deux composantes sont fonctions de x et y, par conséquent il existe deux fonctions : $f_1, f_2 : A \to \mathbb{R}$ telles que :

$$\forall (x, y) \in A, f(x, y) = (f_1(x, y), f_2(x, y)).$$

Par définition, les fonctions f_1 et f_2 sont les fonctions **composantes** de f.

Définition 30.5

Une telle fonction f est dite continue en $a \in A$ lorsque les fonctions composantes sont continues en a.

Remarque 30.2:

- Cela s'applique aussi aux fonctions à valeurs complexes.
- Cette définition se généralise aux fonctions à valeurs dans \mathbb{R}^n .

CALCUL DIFFÉRENTIEL

Dérivées partielles premières

Soit U un ouvert de \mathbb{R}^2 et soit $a=(x_0,y_0)\in U$, il existe $\varepsilon>0$ tel que $B(a,\sqrt{2}\varepsilon)\subset A$, par conséquent le pavé ouvert $]x_0 - \varepsilon; x_0 + \varepsilon[\times]y_0 - \varepsilon; y_0 + \varepsilon[$ est inclus dans U, donc la première application partielle de f en a est définie au moins sur l'intervalle $]x_0 - \varepsilon$; $x_0 + \varepsilon[$, et la deuxième sur $]y_0 - \varepsilon$; $y_0 + \varepsilon[$.

🐙 Définition 30.6

Si la première (respectivement la deuxième) application partielle de f en a est dérivable en x_0 (respectivement y_0), on dit que f admet une dérivée partielle par rapport à x (respectivement par rapport à y) en a, on la note : $\frac{\partial f}{\partial x}(a)$ (respectivement $\frac{\partial f}{\partial y}(a)$). Si f admet une dérivée partielle

par rapport à x en tout point de U, alors on définit la fonction : $\frac{\partial f}{\partial x}$: (même chose par rapport à y).

Remarque 30.3 – Les applications partielles sont des fonctions de I dans R où I est un intervalle de R, on peut donc utiliser les théorèmes généraux pour étudier leur dérivabilité, et les règles de dérivation usuelles pour les calculs.

Exemple: Soit $f(x,y) = \frac{x^2+y}{x^2+y^2+1}$ et soit a = (x,y), on a $f_{1,a}(t) = \frac{t^2+y}{t^2+y^2+1}$ qui est dérivable sur \mathbb{R} d'où $\frac{\partial f}{\partial x}(a) = \frac{2x(y^2-y+1)}{(x^2+y^2+1)^2}$; d'autre part $f_{2,a}(t) = \frac{x^2+t}{x^2+t^2+1}$ qui est dérivable sur \mathbb{R} , d'où $\frac{\partial f}{\partial y}(a) = \frac{x^2(1-2y)-y^2+1}{(x^2+y^2+1)^2}$.

2) **Extremum**

Définition 30.7

Soit $f: U \to \mathbb{R}$ définie sur un ouvert U de \mathbb{R}^2 . On dit que :

- f admet un maximum global en $a = (x_0, y_0) \in U$ lorsque $\forall u \in U, f(u) \leq f(a)$.
- f admet un minimum global en $a = (x_0, y_0) \in U$ lorsque $\forall u \in U, f(a) \leq f(u)$.
- f admet un maximum local en $a = (x_0, y_0) \in U$ lorsque $\exists r > 0, \forall u \in U \cap B(a, r), f(u) \leq f(a)$.
- f admet un minimum local en $a = (x_0, y_0) \in U$ lorsque $\exists r > 0, \forall u \in U \cap B(a, r), f(a) \leq f(u)$.

Théorème 30.4 (condition nécessaire pour un extremum)

Si $f: U \to \mathbb{R}$ admet un extremum local en $a = (x_0, y_0) \in U$, et si f admet ses deux dérivées partielles en a, alors $\frac{\partial f}{\partial x}(a) = 0$ et $\frac{\partial f}{\partial v}(a) = 0$, mais la réciproque est fausse.

Preuve : Supposons que *a* soit un maximum local, il existe donc r > 0 tel que $B(a, r) \subset U$ et $\forall u \in B(a, r), f(u) \leq$ f(a), par conséquent $\forall t \in]x_0 - \frac{r}{\sqrt{2}}; x_0 + \frac{r}{\sqrt{2}}[$, $f(t, y_0) \leq f(a)$, c'est à dire $f_{1,a}(t) \leq f_{1,a}(x_0)$, or la fonction $f_{1,a}(t)$ est dérivable en x_0 et x_0 est à 'intérieur de l'intervalle $]x_0 - \frac{r}{\sqrt{2}}; x_0 + \frac{r}{\sqrt{2}}[$, d'où $f'_{1,a}(x_0) = 0$, c'est à dire $\frac{\partial f}{\partial x}(a) = 0$, le raisonnement est le même pour la deuxième variable.

 $z = x^2 + 3y^2 + 2x - 4y$ minimum en $\left(-1,\frac{2}{3}\right)$

 $z=x^2-y^2,$ pas d'extrêmum en (0,0) (point col)

™Exemples:

- Soit $f(x, y) = x^2 + 3y^2 + 2x 4y$, f admet ses deux dérivées partielles sur \mathbb{R}^2 , qui sont $\frac{\partial f}{\partial x}(x, y) = 2x + 2$ et $\frac{\partial f}{\partial y}(x,y)=6y-4$, ces deux fonctions s'annulent pour x=-1 et $y=\frac{2}{3}$, donc le seul point où il peut y avoir un extremum est $a = (-1, \frac{2}{3})$. On a $f(x, y) = (x + 1)^2 + 3(y - \frac{2}{3})^2 - \frac{7}{3}$, or $f(-1, \frac{2}{3}) = -\frac{7}{3}$, on voit donc que $f(x, y) \ge f(a)$, f présente donc un minimum global en a.
- Soit $f(x,y) = x^2 y^2$, f admet ses deux dérivées partielles sur \mathbb{R}^2 et $\frac{\partial f}{\partial x}(x,y) = 2x$ et $\frac{\partial f}{\partial y}(x,y) = -2y$, donc le seul point où f peut présenter un extremum est a = (0,0), on a f(a) = 0, or si t > 0, on a $f(t,0) = t^2 > 0$ et $f(0,t) = -t^2 < 0$, donc f ne présente pas d'extremum en a (ce qui fournit un contre-exemple pour la réciproque du théorème).

Remarque 30.4 – Soit $f: A \to \mathbb{R}$ définie par f(x,y) = 2x - y + 1 avec A = B'(0,1), alors en notant $u = (x,y) \ \underline{et} \ n = (2,-1) \ on \ \underline{a} \ f(x,y) = \langle u \mid n \rangle + 1 \ \underline{et} \ donc \ 1 - \|u\| \times \|n\| \leqslant f(u) \leqslant 1 + \|u\| \times \|n\|, \ \underline{c'est} \ \hat{a}$ dire $1-\sqrt{5} \le f(u) \le 1+\sqrt{5}$, f est donc bornée, mais on voit que les bornes sont atteintes lorsque $u=\pm \frac{n}{\|u\|}$, f a donc un maximum et un minimum sur U. Mais si on observe les deux dérivées partielles : $\frac{\partial f}{\partial x}(x,y) = 2$ et $\frac{\partial f}{\partial v}(x,y)=-1$, ont voit qu'elles ne s'annulent jamais, **le théorème ne s'applique donc pas sur** U**, car ici,** U n'est pas un ouvert. Par contre, le théorème s'applique sur la boule ouverte B(0,1) et permet de dire que f ne présente pas d'extremum local sur la boule ouverte.

Fonctions de classe C^1

Définition 30.8

Soit U un ouvert de \mathbb{R}^2 , soit $f: U \to \mathbb{R}$ une fonction, on dit que f est de classe \mathcal{C}^1 sur U lorsque fadmet ses deux dérivées partielles en tout point de U, et que celles-ci sont toutes deux continues sur U. L'ensemble des fonctions de classe C^1 sur U est noté $C^1(U, \mathbb{R})$.

À retenir

Toute fraction rationnelle en x et y est de classe C^1 sur son ensemble de définition.

🎦 Théorème 30.5 (DL1)

Si $f \in C^1(U, \mathbb{R})$, alors f admet un développement limité d'ordre 1 en tout point $a \in U$, qui s'écrit :

$$f(a+h) = f(a) + h_1 \tfrac{\partial f}{\partial x}(a) + h_2 \tfrac{\partial f}{\partial y}(a) + \|h\|\varepsilon(h)$$

 $avec \lim_{\|h\|\to 0} \varepsilon(h) = 0.$

Preuve : On a (avec a = (x, y) et $h = (h_1, h_2)$) :

$$f(x+h_1,y+h_2) - f(a) - h_1 \frac{\partial f}{\partial x}(a) - h_2 \frac{\partial f}{\partial y}(a)$$

$$= f(x+h_1,y+h_2) - f(x,y+h_2) + f(x,y+h_2) - f(a) - h_1 \frac{\partial f}{\partial x}(a) - h_2 \frac{\partial f}{\partial y}(a)$$

$$= h_1 \frac{\partial f}{\partial x}(x+\theta h_1,y+h_2) + h_2 \frac{\partial f}{\partial y}(x,y+\theta' h_2) - h_1 \frac{\partial f}{\partial x}(a) - h_2 \frac{\partial f}{\partial y}(a) \text{ avec } \theta, \theta' \in]0;1[$$

ďoù

$$\begin{split} |f(x+h_1,y+h_2)-f(a)-h_1\frac{\partial f}{\partial x}(a)-h_2\frac{\partial f}{\partial y}(a)|\\ &\leqslant |h_1||\frac{\partial f}{\partial x}(x+\theta h,y+h_2)-\frac{\partial f}{\partial x}(a)|+|h_2||\frac{\partial f}{\partial y}(x,y+\theta'h_2)-\frac{\partial f}{\partial y}(a)|\\ &\leqslant \|h\|\left(|\frac{\partial f}{\partial x}(x+\theta h,y+h_2)-\frac{\partial f}{\partial x}(a)|+|\frac{\partial f}{\partial y}(x,y+\theta'h_2)-\frac{\partial f}{\partial y}(a)|\right) \end{split}$$

les deux dérivées partielles étant continues, le terme entre parenthèses tend vers 0 lorsque h tend vers (0,0), ce qui termine la preuve.

$\mathbf{\mathcal{J}}$ Définition 30.9 (gradient de f)

Si f est de classe C^1 sur U, alors on pose pour $a \in U$: $\operatorname{Grad}_f(a) = \nabla f(a) = \left(\frac{\partial f}{\partial x}(a), \frac{\partial f}{\partial y}(a)\right)$, c'est le **gradient de** f **en** a. En prenant le produit scalaire canonique de \mathbb{R}^2 , le développement limité d'ordre 1 de f en a s'écrit: $f(a+h) = f(a) + (\nabla f(a)|h) + o(h)$.

Définition 30.10 (plan tangent)

Si $f \in C^1(U, \mathbb{R})$, alors pour tout $a = (x_0, y_0) \in U$, le plan d'équation :

$$z = f(x_0, y_0) + (x - x_0) \frac{\partial f}{\partial x}(a) + (y - y_0) \frac{\partial f}{\partial y}(a).$$

est appelé plan tangent à la surface z = f(x, y) au point $M(x_0, y_0, f(x_0, y_0))$.

Remarque 30.5 – Le plan tangent en $a = (x_0, y_0)$ a donc pour équation :

$$z - z_0 = (x - x_0) \frac{\partial f}{\partial x}(a) + (y - y_0) \frac{\partial f}{\partial y}(a).$$

un vecteur normal à ce plan est $(\frac{\partial f}{\partial x}(a), \frac{\partial f}{\partial v}(a), -1)$.

Exemple: $f(x,y) = \sqrt{1-x^2-y^2}$ avec $x^2+y^2 \le 1$, (demi-sphère de centre O de rayon 1).

Soit $a=(x_0,y_0)\in B(0,1)$ et $z_0=f(a)$, le plan tangent à la surface en $M=(x_0,y_0,z_0)$ a pour équation $(x-x_0)\frac{\partial f}{\partial x}(a)+(y-y_0)\frac{\partial f}{\partial y}(a)=z-z_0$, ce qui donne $xx_0+yy_0+zz_0=0$, on remarque que le vecteur \overrightarrow{OM} est normal au plan tangent.

Définition 30.11 (courbe de niveau)

Soit $f: U \to \mathbb{R}$ et soit $\lambda \in \mathbb{R}$, on appelle courbe de niveau d'équation $f(x, y) = \lambda$, l'ensemble : $C_{\lambda} = \{(x, y, z) / z = f(x, y) = \lambda\}.$

C'est l'intersection de la surface d'équation z = f(x, y) avec le plan d'équation $z = \lambda$.

 $z = f(x, y) = xye^{-x}$ courbes de niveau

même chose dans le plan *x*O*y*

🥉 À retenir

Sur une courbe de niveau de $f(f(x,y) = \lambda)$ le DL1 devient $(\nabla f(a)|\frac{h}{\|h\|}) = o(1)$ ce qui entraîne que dans le plan $z = \lambda$, la tangente à cette courbe « au point a » est la droite **orthogonale au** vecteur gradient.

Propriétés des fonctions \mathcal{C}^1

🙀 Théorème 30.6

- Une fonction de classe C^1 sur U est continue sur U.
- $\mathcal{C}^1(U,\mathbb{R})$ est une \mathbb{R} -algèbre pour les lois usuelles sur les fonctions, c'est en fait une sous-algèbre $de C^0(U, \mathbb{R}).$

Preuve : Soit $f: U \to \mathbb{R}$ une fonction de classe C^1 , et soit $a \in U$, on peut écrire pour h voisin de (0,0) : $f(a+h) = f(a) + h_1 \frac{\partial f}{\partial x}(a) + h_2 \frac{\partial f}{\partial y}(a) + \|h\| \varepsilon(h), \text{ on voit que } \lim_{h \to (0,0)} f(a+h) = f(a), \text{ i.e. } f \text{ est continue en } a.$

Montrons par exemple la stabilité pour l'addition : si f, g sont C^1 sur U, soit $a = (x, y) \in U$, la première application partielle de f+g en a est $f_{1,a}+g_{1,a}$: $t\mapsto f(t,y)+g(t,y)$ or ces deux fonctions sont dérivables en x, donc f + g admet une dérivée partielle par rapport à sa première variable et $\frac{\partial (f+g)}{\partial x}(a) = \frac{\partial f}{\partial x}(a) + \frac{\partial f}{\partial y}(a)$, or ces deux fonctions sont continues sur U et donc $\frac{\partial (g+h)}{\partial x}$ est continue sur U. Le raisonnement est le même pour la deuxième variable, finalement les deux dérivées partielles de f + g sont continues sur U, donc f + g est de classe C^1 sur U.

Soit U un ouvert de \mathbb{R}^2 , soit $a \in \mathbb{U}$, soit $f \colon \mathbb{U} \to \mathbb{R}$, et soit $h = (h_1, h_2) \in \mathbb{R}^2$ non nul, il existe r > 0tel que $B(a,r) \subset U$, comme $\lim_{n \to \infty} a + th = a$, il existe $\varepsilon > 0$ tel que $t \in]-\varepsilon$; $\varepsilon[\implies a + th \in B(a,r)$ et donc $a+th\in U$, on peut alors considérer la fonction $g_{h,a}\colon t\mapsto f(a+th)$, c'est une fonction de $\mathbb R$ dans $\mathbb R$ définie au moins sur $]-\varepsilon$; ε [(voisinage de 0).

Définition 30.12 (dérivée suivant un vecteur h)

Si la fonction $g_{h,a}$ ci-dessus est dérivable en 0, on dit que f admet une dérivée en a suivant le **vecteur** h, et on pose $g'_{h,a}(0) = D_h(f)(a)$.

Exemple : Soit $f(x, y) = \sin(xy) + x - y$, soit a = (0, 0), et soit h = (1, -2), on a alors $g_{h,a}(t) = f(t, -2t) = 0$ $-\sin(2t^2) + 3t$, cette fonction est dérivable en 0 et $g'_{h,a}(0) = 3$, donc f admet une dérivée en a suivant le vecteur h et $D_h(f)(a) = 3$.

Cas particuliers:

- f admet une dérivée partielle par rapport à la première variable en $a = (x_0, y_0)$ si et seulement si f admet une dérivée en a suivant le vecteur (1, 0).
 - **Preuve** : On a $g_{h,t} = f(x_0 + t, y_0) = f_{1,a}(x_0 + t)$, donc $g_{h,a}$ et dérivable en 0 ssi $f_{1,a}$ est dérivable en x_0 . Si c'est le cas, alors $D_h(f)(a) = \frac{\partial f}{\partial x}(a)$.
- f admet une dérivée partielle par rapport à la deuxième variable en $a = (x_0, y_0)$ ssi f admet une dérivée en a suivant le vecteur (0, 1).
 - **Preuve** : On a $g_{h,t} = f(x_0, y_0 + t) = f_{2,a}(y_0 + t)$, donc $g_{h,a}$ et dérivable en 0 ssi $f_{2,a}$ est dérivable en y_0 . Si c'est le cas, alors $D_h(f)(a) = \frac{\partial f}{\partial v}(a)$.

🄁 Théorème 30.7 (dérivée d'une composée : règle de la chaîne)

Soit U un ouvert de \mathbb{R}^2 , soit I un intervalle de \mathbb{R} , soit $\varphi \colon I \to \mathbb{R}^2$ définie par $\varphi(t) = (u_1(t), u_2(t))$ où u_1 et u_2 sont de classe \mathcal{C}^1 de I dans \mathbb{R} , avec $\operatorname{Im}(\varphi) \subset \mathbb{U}$, et soit $f \colon \mathbb{U} \to \mathbb{R}$ une fonction de *classe* C^1 *sur* U, *alors la fonction* $f \circ \varphi : I \to \mathbb{R}$ *est de classe* C^1 *et :*

$$\forall\ t\in \mathrm{I}, (f\circ\varphi)'(t)=u_1'(t)\frac{\partial f}{\partial x}(\varphi(t))+u_2'(t)\frac{\partial f}{\partial y}(\varphi(t))$$

Preuve : $f \circ \varphi(t) = f(u_1(t), u_2(t))$, soit $t_0 \in I$:

$$f[\varphi(t)] - f[\varphi(t_0)] = \left[u_1(t) - u_1(t_0)\right] \frac{\partial f}{\partial x}(\varphi(t_0)) + \left[u_2(t) - u_2(t_0)\right] \frac{\partial f}{\partial y}(\varphi(t_0)) + \mathrm{N}(\varphi(t) - \varphi(t_0)) \varepsilon(\varphi(t) - \varphi(t_0)).$$

On divise tout par $t-t_0$, il est clair que la somme des deux premiers termes va tendre vers $u_1'(t_0)\frac{df}{dx}(\varphi(t_0))$ + $u_2'(t_0) \tfrac{\partial f}{\partial v}(\phi(t_0)), \text{ et c'est une fonction continue de } t_0, \text{ quant au reste, il devient : } \tfrac{|t-t_0|}{t-t_0} \left\| \tfrac{\phi(t)-\phi(t_0)}{t-t_0} \right\| \epsilon(\phi(t)-\phi(t_0)), \text{ il est est une fonction continue de } t_0, \text{ quant au reste, il devient : } \tfrac{|t-t_0|}{t-t_0} \left\| \tfrac{\phi(t)-\phi(t_0)}{t-t_0} \right\| \epsilon(\phi(t)-\phi(t_0)), \text{ et c'est une fonction continue de } t_0, \text{ quant au reste, il devient : } \tfrac{|t-t_0|}{t-t_0} \left\| \tfrac{\phi(t)-\phi(t_0)}{t-t_0} \right\| \epsilon(\phi(t)-\phi(t_0)), \text{ et c'est une fonction continue de } t_0, \text{ quant au reste, il devient : } \tfrac{|t-t_0|}{t-t_0} \left\| \tfrac{\phi(t)-\phi(t_0)}{t-t_0} \right\| \epsilon(\phi(t)-\phi(t_0)), \text{ et c'est une fonction continue de } t_0, \text{ quant au reste, il devient : } \tfrac{|t-t_0|}{t-t_0} \left\| \tfrac{\phi(t)-\phi(t_0)}{t-t_0} \right\| \epsilon(\phi(t)-\phi(t_0)), \text{ et c'est une fonction continue de } t_0, \text{ quant au reste, il devient : } \tfrac{|t-t_0|}{t-t_0} \left\| \tfrac{\phi(t)-\phi(t_0)}{t-t_0} \right\| \epsilon(\phi(t)-\phi(t_0)), \text{ et c'est une fonction continue de } t_0, \text{ quant au reste, il devient : } \tfrac{|t-t_0|}{t-t_0} \left\| \tfrac{\phi(t)-\phi(t_0)}{t-t_0} \right\| \epsilon(\phi(t)-\phi(t_0)), \text{ et c'est une fonction continue de } t_0, \text{ quant au reste, il devient : } \tfrac{|t-t_0|}{t-t_0} \left\| \tfrac{\phi(t)-\phi(t_0)}{t-t_0} \right\| \epsilon(\phi(t)-\phi(t_0)), \text{ et c'est une fonction continue de } t_0, \text{ quant au reste, il devient : } \tfrac{|t-t_0|}{t-t_0} \left\| \tfrac{\phi(t)-\phi(t_0)}{t-t_0} \right\| \epsilon(\phi(t)-\phi(t_0)), \text{ quant au reste, il devient : } \tfrac{|t-t_0|}{t-t_0} \left\| \tfrac{\phi(t)-\phi(t_0)}{t-t_0} \right\| \epsilon(\phi(t)-\phi(t_0)), \text{ quant au reste, il devient : } \tfrac{|t-t_0|}{t-t_0} \left\| \tfrac{\phi(t)-\phi(t_0)}{t-t_0} \right\| \epsilon(\phi(t)-\phi(t_0)), \text{ quant au reste, il devient : } \tfrac{|t-t_0|}{t-t_0} \left\| \tfrac{\phi(t)-\phi(t_0)}{t-t_0} \right\| \epsilon(\phi(t)-\phi(t_0)), \text{ quant au reste, il devient : } \tfrac{|t-t_0|}{t-t_0} \left\| \tfrac{\phi(t)-\phi(t_0)}{t-t_0} \right\| \epsilon(\phi(t)-\phi(t_0)), \text{ quant au reste, il devient : } \tfrac{|t-t_0|}{t-t_0} \left\| \tfrac{\phi(t)-\phi(t_0)}{t-t_0} \right\| \epsilon(\phi(t)-\phi(t_0)), \text{ quant au reste, il devient : } \tfrac{\phi(t)-\phi(t_0)}{t-t_0} \left\| \tfrac{\phi(t)-\phi(t_0)}{t-t_0} \right\| \epsilon(\phi(t)-\phi(t_0)), \text{ quant au reste, il devient : } \tfrac{\phi(t)-\phi(t_0)}{t-t_0} \left\| \tfrac{\phi(t)-\phi(t_0)}{t-t_0} \right\| \epsilon(\phi(t)-\phi(t_0)), \text{ quant au reste, il devient : } \tfrac{\phi(t)-\phi(t_0)}{t-t_0} \left\| \tfrac{\phi(t)-\phi(t_0$ facile de voir que cette expression a pour limite 0 lorsque t tend vers t_0 , ce qui termine la preuve.

★Exercice 30.1 La formule d'Euler. Soit $f: U \to \mathbb{R}$ une fonction de classe C^1 sur U homogène de rapport $\alpha > 0$, i.e. $\forall a \in U, f(ta) = t^{\alpha} f(a). \ On \ a \ alors : x \frac{\partial f}{\partial x}(a) + y \frac{\partial f}{\partial y}(a) = \alpha f(a).$

🚧 Théorème 30.8

Soient U et V deux ouverts de \mathbb{R}^2 , soit $\varphi \colon V \to U$ définie par $\varphi(x,y) = (\varphi_1(x,y), \varphi_2(x,y))$ où φ_1 et φ_2 sont de classe \mathcal{C}^1 à valeurs réelles, soit $f: U \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 , alors la fonction $f \circ \varphi \colon V \to \mathbb{R}$ est de classe C^1 sur V et $\forall a \in V$:

$$\frac{\partial (f \circ \varphi)}{\partial x}(a) = \frac{\partial \varphi_1}{\partial x}(a) \times \frac{\partial f}{\partial x}(\varphi(a)) + \frac{\partial \varphi_2}{\partial x}(a) \times \frac{\partial f}{\partial y}(\varphi(a))$$

$$\frac{\partial (f \circ \varphi)}{\partial y}(a) = \frac{\partial \varphi_1}{\partial y}(a) \times \frac{\partial f}{\partial x}(\varphi(a)) + \frac{\partial \varphi_2}{\partial y}(a) \times \frac{\partial f}{\partial y}(\varphi(a))$$

Preuve: La première application partielle de $f \circ \varphi$ en $a = (x, y) \in V$ est $(f \circ \varphi)_{1,a}(t) = f(\varphi_1(t, y), \varphi_2(t, y))$, il suffit alors d'appliquer le théorème précédent en prenant $u_1(t) = \varphi_1(t, y)$ et $u_2(t) = \varphi_2(t, y)$.