styl se	**	
Deformation ()		•;
FEDERAL UNIVERSITY	OYE -EKITI) 5
cond Semester Examination 2015/2016 Academic Semi	HYSICS	1
phy 102: General Physics II 3 Credit Unit INSTRUCTION: Circle your chosen answer with pen	Time allowed: 1Hr	
Department_	Matric Number	pron
1. The enclosed charge in Maywell's arrest		- (
2. A line charge with linear charge density 2 and 2	dimension	Ċ
 A line charge with linear charge density λ=10⁻¹² C/m passes surface of the sphere is 1.13 × 10⁻³ Vm, what is the radius R of the sphere is 1.13 × 10⁻³ Vm. 	through the center of a sphere. If the	ne flux through the
A. 4×10^{-3} m B. 1×10^{-3} m C. 5×10^{-3} m D. 7×10^{-3} m 3. The integral form of Ampere's law for electricity is	ine spriere:	
A. $\oint B.dA = \varepsilon_0 I$ B. $\oint B.dA = u.s$		
A. $\oint_S B.dA = \mathcal{E}_0 I_{enclosed}$ B. $\oint_S B.dA = \mu_0 q_{enclosed}$ C. $\oint_S B.dA$ 4. The divergence of magnetic field as in gauss's law in different	$B.dA = \mu_0 I_{enclosed} D. \oint_S B.dA = \varepsilon_0 d$	9 enclosed
A. Current density B Charge density C.	itial form can be equal to zero provi	ded there is no
5. An electron in a TV camera tube is moving at 7.60 × 10 ⁶ n point, the electron has an acceleration of magnitude 4.70 magnetic field is	2/s in a magnetic field of strength	83.0 mT. At one
magnetic field is A. 0.52 ° B. 52 ° C. 0.24 ° D. 24 °	\times 10-1 m/s^2 . The angle between	the velocity an
Lenz's law is the consequence of the law of consequence		
7. The emf induced in a coil due to the changing.	. 19	
A. Dynamically induced emf B. Self-induced emf C. Stati What do you call the characteristic of a magnetic material.	her neighboring coil is called ically induced emf D. Mutually in	odused au 5
application of a magnetizing force?	rial whereby a change in magne	cization lage the
Hysteresis B. Induction C Retentivity C Co. L.	28 A.	
Three capacitors (3.0 μr, 5.0μF and 8μF) are connected in seriors (4.16μF B. 1.52 μF C. 16 F D. 120 μF	les. What is their equivalent disposit	suces
10. Two capacitors (0.2 μF and 0.6μF) are connected in parallel combination. What is the potential difference across it?	. A charge of 200 μC is now placed	on the parallel
A. 0.16 KV B. 8.0 KV C. 40 KV P. 0.35 KV		
11. Filtering out unwanted frequency signals is one of the applicat A. Resistor B. Capacitor C. Transistor D. Inductor		
12. In parallel plate capacitor, the Capacitance C is inversely proportion. A. True B. False C. Not known D. All of the above	ortional to the distance of separation	
13. The electromagnet has 50 turns and a current of 1A flows three	ough the coil. If the length of the m	agnetic circuit is
A. 2500 AT/m B. 25AT/ C. 250AT/m D. 25 AT/m	The state of the	1/4/19
A capacitor of capacitance 3.0 μF is subjected to a 2000 V pot energy stored in the capacitor.	ential difference across its terminal	ls. Calculate the
A. 18000 J B. 1.5 J C. 6000 J & 6 J	1 1	
How much work is required to carry an electron from the protection	ositive terminal of a 12-V battery	lo the negative
A. 1.9×10^{-16} J M. -1.9×10^{-18} J C. 1.6×10^{-17} J D. 1.2×10^{-18} 16. Which of these systems has the most negative charge?		11/1/21
A. 2 electrons B. 3 electrons and 1 proton C. 5 electrons a	and 5 protons D. N electrons and	N-3 electrons
17. If magnetic flux density and current are at right angles, then con A. BIL tanθ B. BIL sinθ C. BIL cosθ D. BL sinθ	mponent of force acting on conduct	or is
16. Whenever a conductor cuts magnetic flux, an emf is induced in	STORE TO THE STORE	no brough
A. Coulomb's law 8. Faraday's law C. Joule's law D. Or 19. The following are measurable quantities to define magnetic fiel	nm's law d EXCEPT	1 11
A. Charge B. Velocity C. The deflecting force D. Torq		
mg V 3		
	The To	1
- 1 Mar - 1 Ma	Scanned by Ca	mScanner

20. The property of a substance to oppose or restrict the flow of electricity through it is called
A Conductance B Inductance C Canatitance Resistance
21. Calculate the electric field intensity at a point 15cm from a charge 10 MC.
A. 3 x 10° NC B. 1.5 x 10° NC C. 4 x 10 NC B. 6 x 10 vc 22. Two long parallel conductors carry a current of 100A each. If the conductors are separated by 20
per meter of length of each conductor will be
A. 100 N/m B. 10 N/m C. 0.1 N/m D. 1 N/m
23. A capacitor charged to 200 V has 2000 μC of charge. The value of capacitance will be
Α. 10F Β. 100μF C. 1000μF Β. 10μF
24. Charging an object without direct contact with it is known as charging by
A. Convection B. Induction C. Conduction D. Reaction
25. Which of the following is NOT one of the fundamental forces?
A. Gravity B. Electromagnetism C. Frictional D. Strong
26. The magnetic flux ϕ_g through the loop is given by
abla A. abla B. dA B. $ abla B. dE C. abla D. abla E $
27. The equation $F = q(E + V \times B)$ is termed as
A. Magnetic force B. Electric force C. Force square law 2. Lorentz force law
28. A coil made of 500 turns of wire is placed with its plane perpendicular magnetic field which changes
0.85 T within 0.6secs If the diameter of the wire is 12 cm, what is the EMF induced in the coil?
A. 3.30 volts B.45.6 volts C. 33.0 volts D. 62.4 volts
29. A transformer is designed to convert a 30 V supply to an output of 230 V. Assuming that the transf
efficient, calculate the current in the primary windings when the out terminals are connected to a
lamp. A 320 A B. 392A C. 34.6 A D. 3.92 A
n. 320 n 3. 44
38. The unit of magnetic induction is A. Ampere B. Tesla Z. Henry D. Farad
A. Ampere B. Tesla Z. Henry D. Farad 31. Which of the following is not a method/instrument of measuring resistance?
32. Two equal but opposite charges are held 40cm apart on the x-axis. If the magnitude of each dis
calculate the electric field midway between the charges. (k = 9 x 10 ⁹ Nm ² /C ²)
A. $2.25 \times 10^6 \text{N/C}$ B. $4.5 \times 10^6 \text{N/C}$ C. $20 \times 10^{-6} \text{N/C}$ D. $2.25 \times 10^5 \text{N/C}$
33. What is the magnitude of the electric field, E such that an electron placed in the field would
electrical force equal to its weight? (Take g = 9.8ms^{-2} , $m_e = 9.1 \times 10^{-31} \text{kg}$, $e = 1.6 \times 10^{-19} \text{C}$)
A. $4 \times 10^{-10} \text{N/C}$ B. $5.6 \times 10^{-11} \text{N/C}$ C. 9.8N/C D. None of the above
34. A thin-walled metal sphere has a radius of 20cm and carries a charge of 6µC. Find the electric fi
inside the sphere.
A. 1.35×10^{-6} N/C B. 0 C. 1×10^{-6} N/C D. None of the above
35. The space outside the magnet where its pole has a force of attraction or repulsion on a magnetic p
A. Free Space Field B. Electric field C. Electromagnetic field D. Magnetic field
36. Who stated the law that whenever there is a change in magnetic flux linked with a circuit, an EM
the circuit?
A. Fleming B. Newton C. Faraday D. Lenz
37. The ∫ int gives
A. current B. Quantity of charges C. Potential difference D. Resistance
38. Which of the following does not affect the resistance of a wire?
A. Cross sectional area B. Temperature C. Potential difference D. Nature of the material
39. For resistors in parallel, which of the following is the same?
A Courant B Power C Resistance D. Voltage
-40. The resistivity of a given piece of uniform wire of length 2.0 m is 5.4 x 10 ⁻⁷ Ωm. If the cross section
wire is 9.5 x 10 ⁻³ cm ² , calculate the resistance of the wire
A. 10.8 Ω B. 0.10 Ω C. 2.28 V D. 1.14 Ω

FEDERAL UNIVERSITY OYE-EKITI DEPARTMENT OF PHYSICS

B.Sc. Second Semester Examination 2016/2017 Academic Session

PHY 102: General Physics II

3 Credit Unit

Time allowed: 11/2 hr

INSTRUCTION: Tick your answers on the answer sheet

- 1. Filtering out unwanted frequency signals is one of the applications of
 - (a) Resistor (b) Capacitor (c) Transistor (d) Inductor (e) insulator
- The higher the self-inductance of a coil
 - (a) the lesser it weber-turns (b) the lower the emf induced (c) the greater the flux produced by it
 - (d) the longer the delay in establishing steady current through it (e) a and b
- 3. The electron and proton of a hydrogen atom are separated (on the average) by a distance of approximately $5.3 \times 10^{-11} m$. Find the magnitudes of the electric force.
 - (a) $5.3 \times 10^{-8} N$ (b) $9.6 \times 10^{-8} N$ (c) $8.2 \times 10^{-8} N$ (d) $11.4 \times 10^{-6} N$ (e) $3.3 \times 10^{-9} N$
- 4. Calculate the cyclotron frequency of an electron of mass $9.11 \times 10^{-31} kg$ and charge $1.6 \times 10^{-19} C$ circulating in a plane at right angle to a uniform magnetic field B of magnitude $2.0 \times 10^{-4} T$.
 - (a) $3.2 \times 10^{-23} Hz$
- (b) $5.72 \times 10^{-30} Hz$
- (c) $5.59 \times 10^6 Hz$ (d) $1.82 \times 10^{-34} Hz$ (e) $1.59 \times 10^6 Hz$

- 5. A positive test charge of 3.0×10^{-8} C is placed in a place where it experiences a force $F = 6.0 \times 10^{-8}$ N Calculate the electric field the charge experiences
 - (a) 2 N/C (b) 18 N/C (c) 9 N/C (d) 6 N/C(e) 8 N/C
- 6. The total electric flux over any closed surface is

- (b) q^2/ε_0 (c) ε_0/q (d) q^2/ε_0 (e) $q\varepsilon_0$
- 7. The electric potential at points in an xy plane is given by $V = 2x^2 3y^2$. The magnitude and direction of the electric field at the point (3.0 m, 2.0 m) respectively are:
 - (a) 25Vm⁻¹ and 45° (b) 17 Vm⁻¹ and 135° (c) 38 Vm⁻¹ and 150° (d) 42 Vm⁻¹ and 35° (e) 45 Vm⁻¹ and 75°
- The resistance across AB in the is circuit below is

- (a) 1Ω (b) 2Ω (c) 0.5Ω (d) 4Ω (e) 3Ω
- A magnetic field is given by the expression $B = axz\hat{i} + byz\hat{j} + c\hat{k}$, use differential form of gauss law for magnetic field to find 'a'
 - (a) a = b (b) a = c (c) a = -b (d) a = -c (e) a = 2b
- 10. The magnetic flux ϕ_B through the loop is given by
 - (a) $\oint \mathbf{B} \cdot d\mathbf{A}$ (b)
- $\oint B \cdot dE$ (c) $\nabla \cdot D$ (d) $\nabla \cdot \vec{E}$ (e) $\oint \vec{E} \cdot dD$
- 11. How much energy is stored in a 20-mH coil when it carries a current of 0.2A?
 - (a) $4 \times 10^{-3} \text{J}$ (b) $4 \times 10^{-4} \text{J}$ (c) $0.4 \times 10^{-4} \text{J}$ (d) $6.4 \times 10^{-6} \text{J}$ (e) $7 \times 10^{-3} \text{J}$
- .12. A point charge -10 °C is situated in air at the origin of a rectangular coordinate system, a second charge +10 °C situated at a distance of 50cm from the origin. Calculate the force on the second charge,

13. The magnetic flux through a loop increases according to the relation $\Phi = 6e^2 + 7i$ in milliweber and in seconds. Find the magnitude of the emf induced in the loop when t = 2seconds.

14. An air cored coil of self-inductance L has N turns of fine insulated copper wire wound on a former of en section area A. If the area and number of turns are doubled and the core is a medium of relative permeabilities 1000, the self-inductance of the coil will be

(a) 8000 L (b) 4000 L (c) $8 \times 10^{-3} L$ (d) $4 \times 10^{-3} L$ (e) L

15. The $\int_0^t i \, dt$ gives ----- through the plane or material in a time interval extending from 0 to t.

(a) Resistance (b) quantity of charges (c) Current (d) Potential difference (e) Field

16. A particle initially moving north in a vertically downward magnetic field is deflected toward east. What is sign of the charge on the particle?

(a) Positive (b) Negative (c) Neutral (d) Electron (e) Oscillatory

17. The total electric flux through a closed surface depends

- (a) On the location of the charge only (b) on the shape of the closed surface only (c) on the value of the charge only (a) on both the location of the charge and the shape of the surface (e) all of the above
- 18. Two identical conducting small spheres are placed with their centers 0.300 m apart. One is given a charge 12.0 nC and the other a charge of -18.0 nC. Find the electric force exerted by one sphere on the other

(a) $8.5 \times 10^6 N$ (b) $6.5 \times 10^{-6} N$ (c) $5.5 \times 10^{-7} N$ (d) $7.1 \times 10^{-6} N$ (e) $1.5 \times 10^{-3} N$

19. An infinite nonconducting sheet has a surface charge density $\sigma = 0.10 \mu \text{C m}^2$ on one side. How far apar equipotential surfaces whose potentials differ by 50V?

(a) 76mm (b) 58mm (c) 88mm (d) 95mm (e) 68mm

20. A 100 turn coil whose resistance is 6Ω encloses an area of 80 cm². How rapidly should a magnetic field pa to its axis change in order to induce a current of 1mA in the coil?

(a) 0.0075 Ts^{-1} (b) 75.0 Ts^{-1} (c) 0.75 Ts^{-1} (d) 0.0075 V (e) 0.0085 Ts^{-1}

21. A capacitor of capacitance 3.0 μF is subjected to a 2000 V potential difference across its terminals. Calculate energy stored in the capacitor.

(a) 13700 J (b) 6 J (c) 6000 J (d) 1.5 J (e) 150J

2. Object A has a charge of $\pm 2\mu C$, and object B has a charge of $\pm 6\mu C$. Which statement is true about the c forces on the objects?

(a) $F_{AB} = -3F_{BA}$ (b) $F_{AB} = -F_{BA}$ (c) $3F_{AB} = -F_{BA}$ (d) $F_{AB} = 3F_{BA}$ (e) $F_{AB} = F_{BA}$

23. Mutarl inductance between two magnetically chapled coil depend on

(a) Permeability of the coil (b) The number of turns (c) Cross-sectional area of their common core

(d) All of the above (e) a and b

24. Two electric fields $E_1 = 3.00$ N/C and $E_2 = 2.00$ N/C at right angles in a glapp. Calculate the net electric fields direction at a point P in the plane (a) 3.61N/C and 33,7° (b) 3.61N/C and 42° (c) 5N/C and 33.7° (d) 5N C and 42° (e) 5.61N/C and 22.7°

25 A circular coil of 160 turns has a radius of 1.90cm. What value of current result in magnetic dipole mor

(a) $1.134 \times 10^{-2} A$ (b) 0.0805A (c) 12.78A (d) 1.3A (e) 5.67A (e) Which of these formulae is incorrect? $2.30Am^{2}$?

(a) $\sigma = \frac{1}{P}$ (b) $\sigma = \frac{E}{I}$ (c) $E = \frac{V}{L}$ (d) $R = \frac{PI}{A}$ (e) $\sigma = \frac{EA}{A}$

27. For a given configuration of charges, a set of points where the electric potential V (r) has a given value which it takes no work to move a charged particle from one point to another is known as:

(a) Inter parallel potential surface (b) Interpolar potential surface (c) Equipotential surface

(d) Semipotential surface (e) Multi parallel potential surface

28. Two $\pm 2\mu C$ point charges are located on the x axis. One is at $x = 1.00 \, \mathrm{m}$, and the other is at $x = -1.00 \, \mathrm{m}$. Determine the electric field on the y axis at y = 0.500 m.

(a) $4.2 \times 10^6 \text{ N/C}$ (b) $6.3 \times 10^4 \text{ N/C}$ (c) $1.6 \times 10^4 \text{ N/C}$ (d) $4.7 \times 10^4 \text{ N/C}$ (e) $6.2 \times 10^6 \text{ N/C}$

Calculate the inductance of a solenoid containing 250 turns if the length of the solenoid is 20.0cm and its so sectional area is 4.00×10 m2 (a) 0 0157 mH (b) 13.7 mH (c) 0 1 52 mH (d) 0 157 H (e) 18.7 mH Which of the following mathematical expression is a Lorentz equation for magnetic field $V = qV \times \vec{B}$ (b) $F_R = qB \times \vec{V}$ (c) $F = qB \times \vec{V}$ (d) $F_R = qV \times \vec{B}$ (e) $F_B = qAB \times \vec{V}$ How much work is required to early an electron from the positive terminal of a 12-V battery to the negative (a) 1.9 x 10 18 J (b) 1.9 x 10 18 J (c) 1.6 x 10 1 J (d) 1.2 x 10 18 J (e) 1.0 x 10 1 J Calculate the conductivity and rexistance of a given uniform wire of length 2.0 m and resistivity 5.4 x 1071 if the cross sectional area of the ware is 9.5×10^{-3} cm⁻². (a) 1.85 x 10° Ω 1m⁻¹, 1.14 Ω (b) 3.70 x 10° Ω 1m⁻¹, 1.14 Ω (c) 1.85 x 10° Ω 1m⁻¹, 2.28 Ω (d) 3.70 x 10° Ω 1 $\sqrt{2.28} \Omega$ (e) $1.6 \times 10^{6} \Omega^{-1} \text{m}^{-1}$, 3.14Ω 33. The equation $F = q(E + V \times B)$ is formed as: (a) Magnetic force (b) I leatric force (of Lorentz force law (d) Force square law (e) Electromotive Force 34. A coil of 10 turns and cross-sectional area 5cm² is at right angles to a flux density 2×10^{-2} T which is reduced zero in 10s. Find the induced e.m.f. (a) $1.0 \times 10^{-5} \text{V}$. (b) $10 \times 10^{-5} \text{V}$ (c) $100 \times 10^{-5} \text{V}$ (d) $1.0 \times 10^{-5} \text{A}$ (e) $13 \times 10^{-5} \text{V}$ 35. Two large, parallel conducting plates are 12 cm apart and have charges of equal magnitude and opposite sign (their facing suffaces. An electrostatic force of 3.9 × 10 15 N acts on an electron placed anywhere between the tw. plates (Neglect/fringing). The electric field at the position of the electron and the potential difference between the plates respectively are: (a) $\frac{1}{2}$ 4 x 10° Vm \(^{1}\) and 2.9 x 10° V(b) 3.5 x 10° Vm\(^{1}\) and 2.7 x 10° V(c) 2.5 x 10° Vm\(^{1}\) and 2.5 x 10° V (d) $4.5 \times 10^3 \text{ Vm}^{-1}$ and $5.0 \times 10^3 \text{ V}$ (e) $6.4 \times 10^4 \text{ Vm}^{-1}$ and $5.9 \times 10^3 \text{ V}$ ✓ 36. An electric field with a magnitude of 150N/C exists at a spot that is 15cm away from a charge. At a place 45cr. from this charge, calculate the electric field strength. (a) 53 3 N/C (b) 50 N/C (c) 36 N/C (d)/18 N/C (e) 19 N/C 37. Which of the following circuit element stores charges energies in term of magnetic field (a) Condenser (b) Inductance (c) Variable resistor (d) Resistance (e) Reactance. 8. Which of the following statements is not correct about the resistance of a wire? (a) The length of the wire increases as the resistance increases (b) The cross-sectional area increases as the resistance increases (c) l'emperature increases as the resistance increases (d) The nature of material does not affect the resistance of a wire (e) none If the electric field in the region between the collecting plates of a cathode ray oscilloscope is 30,000N/C. calculate the force on an electron in the region. (b) $2.8 \times 10^{-15} N$ (c) $4.8 \times 10^{-15} N$ (d) $2.8 \times 10^{-15} N$ (e) $6.8 \times 10^{-18} N$ (a) $4.3 \times 10^{-18} N$ 49. The electric potential difference between the ground and a cloud in a particular thunderstorm is 1.2 ×109 V. The magnitude of the change in potential energy (in multiples of the electron-volt) of an electron that moves between the growing and the cloud is: (a) 4.8 GeV (b) 1.2 GeV (c) 2.4 GeV (d) 3.6 GeV (e) 6.2 GeV 11. One of the following type of waves propagates via a material medium (a) Sound wave (b) both transverse and longitudinal wave (c) transverse wave only (d) none of the above (e) Alomic wave Three boin: charges q1 = - \(\mu \), q2 = +3\(\mu \) and \(\mu \) = -7\(\mu \). If the separation between q1 and \(\mu \) is 29cm and between q2 and q3 is 15cm, calculate the net force on q2. (d) 11.1N/C (e) 7.4 N/C (c)-2.7 N/C (a) 8.4 N/C (b) 5. N/C 13. A transformer connected to a 120V ac power line has 200 turns in its primary winding and 50 turns secondary winding. The secondary is connected to a 100 Q light bulb. How much current is drawn from the 12% (a) 0.0750 (b) 0.075A (c) 0.0075A (d) 0.065A (e) 0.56A OVE PRITE

44. A test charge of +3 µC is at a point P where an external electric field is directed to the eight and has a wagni $4 \times 10^6 N/C$. If the test charge is replaced with another test charge of $-3\mu C$, the external electric field at P (a) is an affected (b) reverses direction (c) changes in a way that cannot be determined there in and down increased in magnitude. 45. The core of a coil has a length of 200 mm. The industance of coil is 6 mH. If the core length is dou. doubt all other quantities remaining the same. What is the inductance of the coil? (a) 3 mH (b) 12 mH (c) 24 mH (d) 48 mH (e) a and b 46. Five point charges are enclosed in a cylindrical surface S. If the values of the charges are q₁=+3nC, q₂=-2nC, q $\pm 2nC$, $q_4 = \pm 4nC$ and $q_5 = -1nC$, find the total flux through S. (a) 200Vm (B) 678Vm (C) 260Vm (D) 700Vm (e) 760Vm 47. A circular coil of wire 6.5 cm in diameter has 12 turns and carries a current of 2.7A. The coil is in a region with the magnetic field is 0.56 T. What is the maximum torque on the coil? (b) $0.60890 \ Nm$ (c) $0.27353 \ Nm$ (d) $0.19698 \ Nm$ (e) $1.25 \ Nm$ (a) 0.0698 Nm 48. The \(\int J \, dA \) represents ----- where J is the current density and A is the area (a) Resistance (b) Potential difference (c) electric current (d) resistivity (e) Field 49. The electric potential energy of two electrons separated by 2.0 nm is: (a) $1.15 \times 10^{-19} \text{J}$ (b) $2.75 \times 10^{-19} \text{J}$ (c) $17.25 \times 10^{-19} \text{J}$ (d) $6.95 \times 10^{-19} \text{J}$ (e) $4.75 \times 10^{-19} \text{J}$ 50. An electron moves round a fixed proton at a distance of 5.29 x 10⁻¹¹m, calculate the potential the proton creates a (a) =13.6 V (b) +6.8 V (c) +27.2 V (d) +13.6 V (e) -6.8 V