Залание 9-3. Конечная бесконечность

1.1 «**Шаг за шагом ...**» Рассмотрим линейную электрическую цепь из резисторов R и 2R, составленную из одинаковых повторяющихся звеньев (Puc. 1). Интересно, что сопротивление R_{∞}^* такой цепи будет конечным даже при бесконечном числе звеньев $(n \to \infty)$.

Пусть R_n — сопротивление конечной линейной цепи ∞ — при n ($n=1,2,3,...,\infty$) звеньях. Назовем *относительной погрешностью оценки* R_{∞}^* величину $\varepsilon_n = \frac{R_n - R_{n+1}}{R_m}$, выраженную в процентах.

Найдите сопротивления одного звена R_1 данной цепи, её двух звеньев R_2 , а также относительную погрешность ε_1 оценки R_∞^* . Далее проделайте такую же процедуру с R_2 и R_3 , найдите ε_2 . Продолжайте данную процедуру шаг за шагом до тех пор, пока относительная погрешность ε_n оценки R_∞^* не станет меньше одного процента ($\varepsilon_n < 1,0$ %). При каком значении n это произошло? Чему равно R_n ?

- **1.2** «Линейная бесконечность» Найдите точное значение сопротивления R_{∞}^{*} всей бесконечной линейной цепочки (Рис. 1).
- **1.3** «Плоская бесконечность» Из резисторов R и 2R на плоскости собрана бесконечная электрическая цепь AZ (Рис. 2), некоторые части которой стерты (затонированы). Известно, что

данная цепь обладает следующим свойством: сопротивление R_{AB} первого звена цепи равно сопротивлению R_{AC} её двух первых звеньев, которое, в свою очередь, равно сопротивлению R_{AD} первых трех звеньев цепи и т.д. (до бесконечности). Восстановите стертые (затонированные) участки цепи на рисунке. Найдите сопротивление $R_{\infty}^{**} = R_{AZ}$ восстановленной вами бесконечной плоской цепи.

