

Machine Learning in Graphics and Vision

- SVMs & Random Forests-

SoSe 2018

Hendrik Lensch

Classification and Regression

- Classification task
 - Given sample x produce class label / category y(x)
 - Discrete set of possible classes
- Regression task
 - Given sample x produce function value y(x)
 - Continuous space of values, even vectors

Examples

$$\binom{THU}{ml} \rightarrow true$$

$$\binom{THU}{cp}$$
 \rightarrow false

$$\binom{TUE}{cp} \rightarrow true$$

$$\binom{0.3}{1.4} \longrightarrow 42$$

$$\begin{pmatrix} 1.1 \\ 0.7 \end{pmatrix} \longrightarrow 3$$

$$\binom{0.1}{2.3} \rightarrow 63$$

Machine Learning

- Learning / training
 - Determine parameters θ given some training set

- Prediction
 - Assign class or value to new sample x given trained parameters θ

- Generalization
 - How well does the task perform on the new samples

(Un)Supervised Learning

- Learning is closely related to optimization
- Supervised Learning
 - Given data points and labels
 - Labels are expensive
 - Training set = { (sample, class) }
- Unsupervised Learning
 - No given labels required
 - Training set = { (samples) }
- Semi-supervised
 - Training set = some labeled samples + many unlabeled samples

Classification

• Distribution of labeled samples

- class 1
- class 2
- ★ query

Classification

How to determine the class of the query?

$$y(\bigstar) = class 1$$

$$y(\bigstar) = ?$$

$$y(\bigstar) = \text{class } 2$$

- class 1
- class 2
- ★ query

Classification

• How to determine the class of the query?

$$y(\bigstar) = \text{class 2}$$

$$y(\bigstar) = class 1$$

$$y(\bigstar) = ?$$

- class 1
- class 2
- ★ query

kNN Classification

Nearest Neighbor Classification

Nearest Neighbor Classification

Nearest Neighbor

 NN classification assigns the label of the representative sample to the entire area of ist Voronoi cell

kNN Classification

More robust classification by considering multiple neighbors?

- Aggregation for classification: e.g. majority voting
- Aggregation for regression

average
$$y(x) = \frac{1}{k} \sum_{k} y(x_i)$$
 distance-weighted average $y(x) = \frac{\sum_{k} w(x, x_i) y(x_i)}{\sum_{k} w(x, x_i)}$

kNN Classification

- How to chose *k*?
- Larger *k* reduces classification noise
- Larger *k* renders decision boundaries less distinct
- Optimal choice depends on data

Curse of Dimensionality

• Relative size of N Voronoi cells grow in D — dimensional feature spaces

Example 1

- Volume of unit hypercube: 1
- Volume of N subcubes / partitioning: $\frac{1}{N}$

• Side length:
$$d = \left(\frac{1}{N}\right)^{\left(\frac{1}{D}\right)}$$
 $\lim_{D \to \infty} d = 1$

Example 2

- uniform sample distribution in unit sphere
- Expected median distance *d*
- Volume between the sphere of radius 1 and sphere of radius d $\frac{1}{2} = \left(\frac{k_n k_n d^n}{k}\right)^N$

In a highly dimensional space all homogeneously distributed data points seem to be near the shell of the sphere

Support Vector Machines

Some slides from

Support Vector Machine & Its Applications by Mingyue Tan Überwachtes Lernen / Support Vector Machines by Rudolf Kruse

Under / Over Fitting

Possible decision boundaries

- class 1
- class 2
- ★ query

Classification boundary given by hyperplane

$$\mathcal{H} = \{x | \langle w, x \rangle + b = 0\}$$

• Which hyperplane is a good choice?

Classification boundary given by hyperplane

$$\mathcal{H} = \{x | \langle w, x \rangle + b = 0\}$$

• Which hyperplane is a good choice?

Classification boundary given by hyperplane

$$\mathcal{H} = \{x | \langle w, x \rangle + b = 0\}$$

Which hyperplane is a good choice?

Classification boundary given by hyperplane

$$\mathcal{H} = \{x | \langle w, x \rangle + b = 0\}$$

- Which hyperplane is a good choice?
 - Hyperplane separating classes with maximal margin δ
- Empirical Risk Minimization
 - Optimize parameter, e.g. $\theta = (w, b)$
 - Given training set of N pairs (x_i, x_i)

$$R_{emp}(\theta) = \frac{1}{2N} \sum_{i=1}^{N} |y_i - f(x_i, \theta)|$$

EBERHARD KARLS
UNIVERSITÄT
TÜBINGEN

- Binary class label $Y = \{-1,1\}$
- Correct classification if

$$y(x) = \langle w, x \rangle + b > 0$$

- Scaling pushes margin to 1
- Maximum margin as

$$2\delta = \left\langle \frac{w}{\|w\|}, (x_1 - x_2) \right\rangle = \frac{2}{\|w\|}$$

• Maximize $\delta \equiv \min \|w\|^2$

SVM for linearly separable problems

Optimal separation by minimizing quadratic cost function with linear side condition

Primary optimization problem

Mimimize
$$J(w,b)=\frac{1}{2}\|w\|^2$$
 subject to $\forall i \left[y_i(w^Tx_i+b)\geq 1\right],\ i=1,2,...,n$ Type equation here.

Introduce Lagrange-function and Lagrange multiply α_i for each sample

$$L(w, b, \alpha) = \frac{1}{2} ||w||^2 - \sum_{i=1}^{N} \alpha_i [y_i(w^T w x_i + b) - 1]; \quad \alpha_i \ge 0$$

leads to dual optimization problem: maximize $L(w, b, \alpha)$. wrt. α subject to

$$\frac{\mathsf{L}(w,b,\alpha)}{\partial w} = 0 \quad \Longrightarrow w = \sum_{i=1}^{N} \alpha_{i} y_{i} x_{i} \qquad \qquad \frac{\mathsf{L}(w,b,\alpha)}{\partial b} = 0 \quad \Longrightarrow \sum_{i=1}^{N} \alpha_{i} y_{i} = 0$$

Dual Optimization

Find $\alpha_1 \dots \alpha_N$ such that

$$\mathbf{Q}(\mathbf{\alpha}) = \sum \alpha_i - \frac{1}{2} \sum \sum \alpha_i \alpha_j y_i y_j \mathbf{x_i}^T \mathbf{x_j}$$
 is maximized and

- (1) $\sum \alpha_i y_i = 0$
- (2) $\alpha_i \ge 0$ for all α_i
- The solution has the form:

$$\mathbf{w} = \sum \alpha_i y_i \mathbf{x_i}$$
 $b = y_k - \mathbf{w^T} \mathbf{x_k}$ for any $\mathbf{x_k}$ such that $\alpha_k \neq 0$

- Each non-zero α indicates that corresponding x_i is a support vector.
- Then the classifying function will have the form:

$$f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x_i}^{\mathsf{T}} \mathbf{x} + b$$

- Notice that it relies on an inner product between the test point x and the support vectors xi
 we will return to this later.
- Also keep in mind that solving the optimization problem involved computing the inner products $x_i^T x_i$ between all pairs of training points.

Soft Margin Classification

• Slack variables ξi can be added to allow misclassification of difficult or noisy examples.

Minimize

$$\frac{1}{2}\mathbf{w}.\mathbf{w} + C\sum_{k=1}^{R} \varepsilon_k$$

Hard Margin v.s. Soft Margin

The old formulation:

Find w and b such that
$$\Phi(\mathbf{w}) = \frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$$
 is minimized and for all $\{(\mathbf{x_i}, y_i)\}$ $y_i (\mathbf{w}^{\mathrm{T}} \mathbf{x_i} + \mathbf{b}) \ge 1$

• The new formulation incorporating slack variables:

Find **w** and *b* such that
$$\mathbf{\Phi}(\mathbf{w}) = \frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w} + C \sum_{i} \xi_{i} \text{ is minimized and for all } \{(\mathbf{x_{i}}, y_{i})\}$$
$$y_{i} (\mathbf{w}^{\mathrm{T}} \mathbf{x_{i}} + b) \ge 1 - \xi_{i} \text{ and } \xi_{i} \ge 0 \text{ for all } i$$

• Parameter C can be viewed as a way to control overfitting.

Linear SVMs: Overview

- The classifier is a separating hyperplane.
- Most "important" training points are support vectors; they define the hyperplane.
- Quadratic optimization algorithms can identify which training points x_i are support vectors with non-zero Lagrangian multipliers α_i .
- Both in the dual formulation of the problem and in the solution training points appear only inside dot products:

Find $\alpha_{I}...\alpha_{N}$ such that $Q(\alpha) = \sum \alpha_{i} - \frac{1}{2} \sum \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x_{i}}^{T} \mathbf{x_{j}}$ is maximized and (1) $\sum \alpha_{i} y_{i} = 0$

- (2) $0 \le \alpha_i \le C$ for all α_i

$$f(\mathbf{x}) = \sum \alpha_i \mathbf{y}_i \mathbf{x}_i^{\mathrm{T}} \mathbf{x} + \mathbf{b}$$

Multiclass Classification

- Binary label $Y = \{-1,1\}$
- Multiclass label $Y = \{1, ..., n\}$

- Train SVM for each class individual
- Aggregate classification results

$$c(x) = \arg \max_{1 \le i \le n} (\langle w_i \cdot x \rangle + b_i)$$

• Geometric interpretation of result: label with the largest distance to hyperplane

Non-linear SVMs

• Datasets that are linearly separable with some noise work out great:

• But what are we going to do if the dataset is just too hard?

• How about... mapping data to a higher-dimensional space:

Non-linear SVM: Transformation of Feature Space

• Embed original features into a higher dimensional space to support simpler classification

Kernel Trick

- Map samples into an inner product space $\Phi: x \to \varphi(x)$
- Usually embedding into space of higher dimensionality than input features
- Allows for simpler classification / regression typically linear
- Kernel K(X,Y)
 - Symmetric
 - Positive semi-definite (Mercer's condition):

$$\iint f(x)K(x,y)f(y)dxdy \ge 0$$

- $K(X,Y) = \langle \varphi(x), \varphi(y) \rangle$
- Result of inner product is sufficient
- Mapping needs not to be known (might have implicit representation, e.g. Gaussian kernel)

Kernel - Examples

- Polynomial (homogeneous): $K(X,Y) = (x \cdot y)^d$
- Polynomial (inhomogeneous): $K(X,Y) = (x \cdot y + 1)^d$
- Hyperbolic tanget: $K(X,Y) = \tanh(\alpha x \cdot y + \beta)$
- Gaussian: $K(X,Y) = \exp(-\frac{1}{\sigma^2}|x-y|^2)$

• Function of the distance between samples

Non-linear SVMs Mathematically

Dual problem formulation:

Find
$$\alpha_1...\alpha_N$$
 such that
$$Q(\alpha) = \sum \alpha_i - \frac{1}{2} \sum \alpha_i \alpha_j y_i y_j K(\mathbf{x_i}, \mathbf{x_j}) \text{ is maximized and}$$
(1) $\sum \alpha_i y_i = 0$
(2) $\alpha_i \geq 0$ for all α_i

The solution is:

$$f(\mathbf{x}) = \sum \alpha_i y_i K(\mathbf{x}_i, \mathbf{x}_j) + b$$

Optimization techniques for finding αi's remain the same!

Non-linear SVM - Properties

- SVM locates a separating hyperplane in the feature space and classify points in that space
- It does not need to represent the space explicitly, simply by defining a kernel function
- The kernel function plays the role of the dot product in the feature space.

Classification Landscape

Gaussian kernel $\sigma = 0.1$ overfitting

Gaussian kernel $\sigma = 0.2$ good

Gaussian kernel $\sigma = 0.4$ underfitting

SVM Summary

- Flexibility in choosing a similarity function
- Sparseness of solution when dealing with large data sets
 - only support vectors are used to specify the separating hyperplane
- Ability to handle large feature spaces
 - complexity does not depend on the dimensionality of the feature space
- Overfitting can be controlled by soft margin approach
- Nice math property: a simple convex optimization problem which is guaranteed to converge to a single global solution
- Feature Selection

Software

- List of SVM implementations
 - http://www.kernel-machines.org/software
- libSVM at
 - http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Random Forest

Decision Tree

- Inner nodes
 - A condition evaluated for each data point
 - One child per possible answer
 - Often only binary decisions
- Leaf nodes
 - Corresponding to some decision reached
 / predicted label

CART – Classification and Regression Tree

- Supervised training with labeled sample set
 - Classification or
 - regression
- Binary decision tree
 - Top down, greedy build
 - Inner nodes: recursive partitioning of the feature space into hyper-rectangles
 - Compare kD-tree

Building a CART

- All labeled samples are assigned to root node
- Try to find a split condition that separates the sample set into two "more meaningful" subsets
- Recurse

Building a CART

- Assing samples S to root node N
- With node N do
 - Find feature *F* + threshold *T*
 - Split samples S assigned to N into 2 subsets S_{left} and S_{right} ; $S = S_{left} \cup S_{right}$
 - Split should increase purity within subsets
 - If S_{left} or S_{right} are too small to be split again
 - Create leaf node
 - Assign label which is most present in S_{left} or S_{right} , resp.
 - Assign S_{left} to N_{left} and S_{right} to N_{right}
 - Recurse with N_{left} and N_{right}

Measure of (Im)Purity

- Quality measure for the purity of the labels in a given sample set
- ullet p_l is the proportion of examples in S that belong to class l

Examples:

• Gini index

$$G(S) = \sum_{l}^{L} p_l (1 - p_l)$$

Entropy

$$E(S) = -\sum_{l}^{L} p_{l} \log p_{l}$$

Missclassification error

$$E(S) = 1 - \max_{l \in L} p_l$$

Classification Properties

	CART	kNN	SVM
Intrinsically multiclass			
Handles apple and oranges well			
Robustness to outliers			
Works w/ "small" learning set			
Large learning set			
Prediction accuracy			
Parameter tuning			

Random Forest

Definition

- Collection of unpruned CARTs
- Requires rule to combine indivdual tree decisions

Goal

Improve prediction accuracy

Principle

Encourage diversity amoung trees

Solution: Randomness

- Bagging
- Random decsion trees (rCART)

Bagging

- Bagging: Bootstrap aggregation
- Technique of ensemble learning
 - To avoid over-fitting
 - To improve stability and accuracy
- Two steps:
 - Bootstrap sample set
 - Aggregation

Bagging - Bootstrap

- *L*: original learning set composed of *n* samples
- Generate k learning sets of L_k
 - Composed of q samples, $q \le n$
 - Obtained by uniform sampling with replacement from L
 - In consequence, L_k may contain repeated samples
- Random Forest: often q = n
 - Approx. 63% unique samples for k = 100
 - The remaining samples can be used for testing

Bagging - Aggregation

- Learning
 - For each L_k train one classifier (rCART) C_k

- Prediction
 - For sample *x*
 - Compute all results $C_k(x)$
 - Aggregate:
 - Classification: majority vote on $C_k(x)$
 - Regression: average over $C_k(x)$

Building Random CART

Random subset of features

- Random drawing repeated at each node (e.g. \sqrt{D} possible dimension out of D)
- Increase diversity amoung the rCARTs + reduce computational load
- Assing samples S to root node N
- With node N do
 - Find feature F among random subset of features + threshold T
 - Split samples S assigned to N into 2 subsets S_{left} and S_{right} ; $S = S_{left} \cup S_{right}$
 - Split should increase purity within subsets
 - If S_{left} or S_{right} are too small to be split again
 - Create leaf node
 - Assign label which is most present in S_{left} or S_{right} , resp.
 - Assign S_{left} to N_{left} and S_{right} to N_{right}
 - Recurse with N_{left} and N_{right}

Classification Properties

	RF	CART	kNN	SVM
Intrinsically multiclass				
Handles apple and oranges well				
Robustness to outliers				
Works w/ "small" learning set				
Large learning set				
Prediction accuracy				
Parameter tuning				

Video

• <u>link</u>

Random Forest - Example

1 rCART

10 rCARTs

100 rCARTs

1000 rCARTs

Random Forest - Limitation

- Oblique / curved decision boundaries
 - Staircase effect
 - Involves many orthogonal hyperplanes
- Fundamentally discreet
 - Classification of functional data?

Kernel Trick

- Map samples into an inner product space $\Phi: x \to \varphi(x)$
- Usually embedding into space of higher dimensionality than input features
- Allows for simpler classification / regression typically linear
- Kernel K(X,Y)
 - Symmetric
 - Positive semi-definite (Mercer's condition):

$$\iint f(x)K(x,y)f(y)dxdy \ge 0$$

- $K(X,Y) = \langle \varphi(x), \varphi(y) \rangle$
- Result of inner product is sufficient
- Mapping needs not to be known (might have implicit representation, e.g. Gaussian kernel)

Kernel - Examples

- Polynomial (homogeneous): $K(X,Y) = (x \cdot y)^d$
- Polynomial (inhomogeneous): $K(X,Y) = (x \cdot y + 1)^d$
- Hyperbolic tanget: $K(X,Y) = \tanh(\alpha x \cdot y + \beta)$
- Gaussian: $K(X,Y) = \exp(-\gamma |x y|^2)$

Function of the distance between samples

Kernel-Induced Random Forest - Examples

- Using a Gaussian kernel
 - Decision boundaries typically get simpler

RF w/ 100 rCARTs

Kernel-induced RF w/ 100 rCARTs

Generalization

How to measure classification performance?

Generalization

How well does the classifier perfom on new data?

Gaussian kernel $\sigma = 0.1$ overfitting Error on training set = zero Gaussian kernel $\sigma = 0.2$ good

Gaussian kernel $\sigma = 0.4$ underfitting Error on training set = low Error on training set = higher

Measure generalization performance

Need to provide

- Training data set
- Testing data set
- Non-overlapping
- E.g. for random forests:
 - Training data set: drawn with replication covers approximately 63% of samples
 - Testing data set: rest (out-of-bag) as test samples

TP, TN, FP, FN

- TP True Positive the number of observations correctly assigned to the positive class
- TN True Negative the number of observations correctly assigned to the negative class
- FP False Positive the number of observations assigned by the model to the positive class, which in reality belong to the negative class
- FN False Negative the number of observations assigned by the model to the negative class, which in reality belong to the positive class

predicted→ real↓	Class_pos	Class_neg
Class_pos	TP	FN
Class_neg	FP	TN

Precision, Recall, Accuracy

•
$$precision = \frac{TP}{TP+FP}$$

•
$$recall = \frac{TP}{TP + FN}$$

• true negative rate =
$$\frac{Tn}{TN+FP}$$

•
$$accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Possible Measures

		True condition				
	Total population	Condition positive	Condition negative	Prevalence = $\frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$	Σ True positive	cy (ACC) = + Σ True negative population
Predicted condition	Predicted condition positive	True positive, Power	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	False discovery rate (FDR) = Σ False positive Σ Predicted condition positive	
	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = $\frac{\Sigma \text{ False negative}}{\Sigma \text{ Predicted condition negative}}$	Σ True	tive value (NPV) = negative ondition negative
		True positive rate (TPR), Recall, Sensitivity, probability of detection $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) = $\frac{TPR}{FPR}$	ratio (DOR) 2 1 + 1	
		False negative rate (FNR), Miss rate = $\frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$ True negative rate (TNR), Specificity (SPC) = $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$ Negative likelihood ratio (LR-) = $\frac{F}{T}$		Negative likelihood ratio (LR-) = $\frac{FNR}{TNR}$		

[wikipedia]

Receiver Operating Characteristic

- Depending on the hyperparameter the performance can be tuned, accepting more or less samples in one class
- True positive / False positive rate: development of TP/FP given this parameter

Confusion Matrix

References

- Bernhard Schölkopf und Alexander J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond, The MIT Press 2001.
- V. Vapnik, Statistical Learning Theory, Wiley 1998.
- www.cs.utexas.edu/users/mooney/cs391L/svm.ppt
- Mingyue Tan, Support Vector Machine & Its Applications, UBC 2004
- Raul Rojas, The Curse of Dimensionality, 2015
- Eric Debreuve, An introduction to random forests, INRIA
- Rudolf Kruse, Neuronale Netze, Universität Oldenburg