Curre Fitting: Method of Least Squares Approximation: y From the above figure, the actual

X from the above figure, He actual relationship blu x and y is linear. * no line precisely fix the deta is because if enor in the data. (10,15.4) (8,12.5)

X To determine the best linear apparais - motion involves finding the value of ao and a, to minimize $E = \underbrace{8}(y - (\alpha_1 x_1 + \alpha_0))$ U = U = U U = U U = U* The least square method involves deter -mining the best approximation line when the error involved is the sum of squeres of the difference blow y-volues on the approfuncting line and the given values. and a, must he of Thus contents as the least square approximate 2 found that minimite the least of actually actually approximate 2 error between $Y_1 - (a_1 x_1 + a_0)$ $E = \sum_{i=1}^{n} \left[Y_i - (a_1 x_1 + a_0) \right]$

with respect to the parameter as and an. Fre a minimum to accur, we here $\frac{\partial E}{\partial a_0} = \frac{\partial E}{\partial a_1} = 0$ $\frac{\partial E}{\partial a_0} = 0 \implies 2 \sum_{i=1}^{\infty} (y_i - (a_i x_i + a_0))(1)$ $\frac{\partial E}{\partial a} = 0 \Rightarrow 2 \sum_{i=1}^{m} (y_i - (a_i x_i + a_0))(-x_i) = 0$ From (3) (3) (3) (3) (3) (4) celled Normal Reruchon.

It means to by the linear curre y = aot aix Normal Egm: aom + a, Ex; = Sy; $ao \sum_{i=1}^{M} x_i + a_i \sum_{i=1}^{M} x_i^{L} = \sum_{i=1}^{M} x_i^{i}$ 1) Find the least square line for the date (1,1.3) (2,3.5) (3,4.2) (4,5) (5,7) (6, 8.8) (7, 10·1) (8,12·5) (9,13) (10,15.6))(! Xi Yi yi Xi 1.3 l· 3 7

3.5

. normal equations an

1000 + 5501 = 81 5500 + 38501 = 572.4

Use any iterative method to some the above system of egm, we get

- 0.36 ab = 1. 53818 an apportinches live + 1.53818 _0.36 -0.36 + 1.53 X **(** 3

Polynomial Leat Squarus:

The problem of approximating a set ef bata (Zi, Yi) i=1,2...m with an polynomich $Pn(x) = a_n x^n + a_{n+1} x^{n-1} + \dots + a_{1} x + a_{0}$ Choose ao, a,... an 6 minimile the lease square error dre
actual actual appropriate

i = 1

i = 1 $= \sum_{i=1}^{m} y_{i}^{2} - 2 \sum_{i=1}^{m} y_{i}^{2} + \sum_{i=1}^{m} P_{n}(x_{i})$ $= \sum_{i=1}^{m} y_{i}^{2} - 2 \sum_{i=1}^{m} y_{i}^{2} + \sum_{i=1}^{m} P_{n}(x_{i})$ $= \sum_{i=1}^{m} y_{i}^{2} - 2 \sum_{i=1}^{m} y_{i} \left(\sum_{j=0}^{m} q_{j} x_{i}^{j} \right)$

 $+ \underbrace{\sum_{i=1}^{m} \left(\sum_{j=0}^{n} a_{j} x_{i}^{j} \right)}_{}$

$$\sum_{j=0}^{\infty} a_{j} x_{j}^{2} = a_{j} x_{j}^{2} + a_{j} x_{j}^{2} + a_{j} x_{j}^{2}$$

$$= \sum_{j=0}^{\infty} y_{j}^{2} - 2 \sum_{j=0}^{\infty} a_{j}^{2} \left(\sum_{j=1}^{\infty} y_{j}^{2} x_{j}^{2}\right)$$

$$+ \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} a_{j}^{2} a_{k} \sum_{j=1}^{\infty} x_{j}^{2}$$

$$+ \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} a_{j}^{2} a_{k} \sum_{j=0}^{\infty} x_{j}^{2}$$

$$+ \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} a_{j}^{2} a_{k} \sum_{j=0}^{\infty} a_{k} \sum_{j=0$$

Remark: In polynomed Phi(x)

(1)
$$N=1$$
, $P_1(x) = a_1x + a_0$,

$$\sum_{k=0}^{\infty} a_k \sum_{i=1}^{\infty} x_i^{ik} = \sum_{i=1}^{\infty} y_i x_i^{ik}$$

$$\sum_{k=0}^{\infty} a_0 m + a_1 \sum_{i=1}^{\infty} x_i^{ik} = \sum_{i=1}^{\infty} x_i y_i^{ik}$$

$$\sum_{i=1}^{\infty} a_i \sum_{i=1}^{\infty} x_i^{ik} + a_1 \sum_{i=1}^{\infty} x_i^{ik}$$
(2) $N=2$, $P_2(x) = a_2x^2 + a_1x + a_0$

$$\sum_{k=0}^{\infty} a_k \sum_{i=1}^{\infty} x_i^{ik} = \sum_{i=1}^{\infty} y_i^{ik} x_i^{ik}$$

$$\sum_{k=0}^{\infty} a_k \sum_{i=1}^{\infty} x_i^{ik} = \sum_{i=1}^{\infty} y_i^{ik} x_i^{ik}$$

$$\sum_{k=0}^{\infty} a_k \sum_{i=1}^{\infty} x_i^{ik} = \sum_{i=1}^{\infty} y_i^{ik} x_i^{ik}$$

$$\sum_{k=0}^{\infty} a_i \sum_{i=1}^{\infty} x_i^{ik} = \sum_{i=1}^{\infty} y_i^{ik} x_i^{ik}$$

$$\sum_{k=0}^{\infty} a_i \sum_{i=1}^{\infty} x_i^{ik} = \sum_{i=1}^{\infty} y_i^{ik} x_i^{ik}$$

 $\frac{1}{40m + 4} \frac{m}{5} \frac{1}{1} + 42 \frac{m}{5} \frac{2}{1} = \frac{m}{5} \frac{y_{1}}{1}$ j=1 $ao \sum_{i=1}^{m} x_i + a_i \sum_{i=1}^{m} x_i^2 + a_i \sum_{i=1}^{m} x_i^2 = \sum_{i=1}^{m} x_i y_i$ $ao \sum_{i=1}^{m} x_i + a_i \sum_{i=1}^{m} x_i^2 + a_i \sum_{i=1}^{m} x_i^2 = \sum_{i=1}^{m} x_i y_i$ $ao \sum_{i=1}^{m} x_i + a_i \sum_{i=1}^{m} x_i^2 = \sum_{i=1}^{m} x_i y_i$ $ao \sum_{i=1}^{m} x_i + a_i \sum_{i=1}^{m} x_i^2 = \sum_{i=1}^{m} x_i y_i$ $ao \sum_{i=1}^{m} x_i + a_i \sum_{i=1}^{m} x_i^2 = \sum_{i=1}^{m} x_i y_i$ $ao \sum_{i=1}^{m} x_i + a_i \sum_{i=1}^{m} x_i^2 = \sum_{i=1}^{m} x_i y_i$ $ao \sum_{i=1}^{m} x_i + a_i \sum_{i=1}^{m} x_i^2 = \sum_{i=1}^{m} x_i y_i$ 2) Fit the data (0,1) (0.25,1.2840)

2) Fit the data (0,1) (0.25,1.2840) (0.5, 1.6487) (0.75, 2.1170)(1,2.7183) with legge square polynomial of deg 2. With y; N; N; N; X, y, N; y;

0.25 1.2840

1.6487 0.2 2.1170 0.75 2.7183 1.875 1.5625 1.3828 5.4514 8.7680 4.4015 2.5 : normal equations are 8.7680 5ao + 2,5a, +1.87592 = = 5.4514 2.5 av + 1.875ax + 1.562592 1.875GO +1.5625G, +1.3828GZ = 4.4015 Sove the above egns using any iterche metud, we set ao = 1.005075 0.864676 91=

0.843164

62 =

i. required polynomich is J= 1.005075 + 6.864676x + 6.843164×2

Exponential Function:

Approximeting function to be of the

Iny = Inb+ax

X = B+ Cx

where y = In y

B= Inb

Egm: Noing

$$\frac{1}{mB+a} = \sum_{i=1}^{m} x_i = \sum_{i=1}^{m} Y_i$$

$$\frac{1}{mB+a} = \sum_{i=1}^{m} x_i = \sum_{i=1}^{m} Y_i$$

$$\frac{1}{mB+a} = \sum_{i=1}^{m} x_i = \sum_{i=1}^{m} Y_i$$

is: Fix a curr y = be at 1.75 2 X; 1 1.25 1.5 7.45 8.42 6.53 5.79 yi 5.10 X Yi= Yi= x1 Yi oci In 41 Lnyi χ ; 1.629 1.629 5.1 2.155 1. 5625 1. 756 6.79 1.25 2.814 2.25 1.876 6.53 1.5 3.514 3.0625 2.008 7.45 1.75 4.270 4 2.175 8.42 11.875 14.422 9.404 7.5

wind Eym:

5B + 7.5 a = 9.404 7.5B + 11.875a = 14,422

2) Fix a corre $y = b \times a$ x_i 1 1.25 1.75 2 y_i 5.1 5.79 6.53 7.45 8.46