Package 'builtenvir'

August 11, 2017

Version 0.1 **Date** 2017-5-15

Title Built EnviRonment

Description Functions for modeling the built environment

Author Andrew Whiteman <awhitem@umich.edu>
Maintainer Andrew Whiteman <awhitem@umich.edu>

License GPL (>= 2)
Depends R ($>= 3.0.2$), methods
LinkingTo Rcpp, RcppEigen
Imports nlme, ggplot2, Rcpp, RcppEigen
RoxygenNote 6.0.1
RemoteType local
RemoteUrl /Users/AprilVKwong/Dropbox/research/brisa/builtenvir
RemoteSha 0.1
R topics documented:
BayesDlm
coef.Dlm
coef.sims
coef.sims,BayesDlm-method
cr
dlm
Dlm-class
fitted.Dlm
fixef
lag.basis
LagBasis
logLik.Dlm
omega
plot.Dlm
predict.Dlm
predict.LagBasis

2 coef.Dlm

Index		19
	vcovTheta	17
	vcov.Dlm	
	theta	16
	SummaryDlm	16
	summary.Dlm	15
	SmoothLag	15
	simdata	14
	sigma.Dlm	14
	se.ranef	13
	se.fixef	13
	scaleMat	12
	residuals.Dlm	12

BayesDlm

Bayesian Distributed Lag Model

Description

Parameters and summaries from a Bayesian DLM. Inherits from "Dlm-class".

Slots

```
fitted fitted values; conditional expectation of observed y
DIC Deviance Information Criterion
residuals observed residuals
sims list of posterior simulation draws of model parameters
```

References

```
Baek J, et al. (2016) Epidemiology 27(1):116-24. (PubMed)
```

See Also

```
dlm, Dlm-class, FreqDlm
```

coef.Dlm

Extract Distributed Lag Model Coefficients

Description

Return DLM coefficients

Usage

```
## S3 method for class 'Dlm'
coef(object, ...)
```

coef.sims 3

Details

Note that these are the basis-scaled coefficients. To extract coefficients on the scale of the original design (θ) , see theta.

Value

A numeric vector of fitted coefficients.

coef.sims

Extract Coefficient Simulations

Description

Extract simulated coefficients from a model fitted with MCMC

Usage

```
coef.sims(object, ...)
```

Arguments

object

a fitted model object

Details

```
coef.sims is S4 generic.
```

Value

A numeric matrix

```
coef.sims,BayesDlm-method
```

Extract Distributed Lag Coefficient Simulation Draws

Description

Dlm objects fit by the Bayesian method store a matrix of simulated coefficients drawn via MCMC from their full conditional distribution. Extract the distributed lag-scaled simulated coefficient matrix.

Usage

```
## S4 method for signature 'BayesDlm'
coef.sims(object, ...)
```

Value

A numeric matrix containing the scaled simulated coefficient matrix

4 dlm

cr Cubic Radial Basis

Description

Construct a natural cubic radial basis function for a given distance set vector and apply as a linear transformation of a covariate matrix.

Usage

```
cr(x, Z, ...)
```

Arguments

x a vector of values to construct the basis from. Missing values are not allowed.

Z a covariate matrix (or object that can be coerced to a matrix) to take the basis transformation of. length(x) should be the same as ncol(Z). Missing values are not allowed.

... arguments to be passed to lag.basis

Details

At the time of writing, cr is little more than a convenient wrapper to lag.basis intended to simplify the task of specifying lag terms in a model formula. The longer term goal is for cr (and potentially other basis functions) to replace lag.basis entirely.

Value

An S4 object of class SmoothBasis.

dlm

Distributed Lag Models

Description

Fit distributed lag models to distance-profiled data. frequentist method relies on lme. bayesian method uses Gibbs to sample from full conditionals, with sampling parameters named in the control list

Usage

```
dlm(formula, data, subset, na.action, method = c("frequentist", "bayesian",
    "Frequentist", "Bayesian"), control = list(), ...)
```

dlm 5

Arguments

formula	an object of class "formula": a symbolic description of the model to be fitted. See Details.
data	an optional data frame, list, or environment containing the variables of the fitted model.
subset	optional vector specifying a subset of observations to be used in the fitting process.
na.action	optional function that indicates what should happen when the data contains NA's.
method	method used to fit the DLM. Partial matching and capitalization allowed.
control	a list of simulation control parameters. See Details.
	Ignored for now.

Details

Models are specified using familiar R formula syntax with one set of lag terms returned by a given smoothing function (e.g. see cr). The smoothing function can be any that returns a SmoothLag basis object. Multiple lag terms or interactions with lag terms are not allowed, nor are NA and missing-value lag terms supported. See Examples for a basic call to dlm using the formula interface, and a cubic radial lag basis specified via cr.

The control list specifies additional optional "bayes" method arguments, and may include: n.sims, the total number of simulations to run (default = 5000); n.save, the total number of simulations to save (default = 1000); burnin, number of simulations to discard from the start of the chain (default = 2000); alpha.tau.prior, prior (shape) parameter α_{τ^2} (default = 0.1); beta.tau.prior, prior (rate) parameter β_{τ^2} (default = 1e-6); alpha.sigma.prior, prior (shape) parameter α_{σ^2} (default = 0.1); beta.sigma.prior, prior (rate) parameter β_{σ^2} (default = 1e-6).

The prior distribution heirarchy we assume in the Bayesian formulation of the DLM is as follows:

$$y \sim N(D\theta, \sigma^{2}I_{n})$$

$$\theta \sim N(\mu_{\theta}, \Sigma_{\theta})$$

$$\theta_{l} \sim N(\mu_{l}, \tau^{2})$$

$$\sigma^{2} \sim Inv - Gamma(\alpha_{\sigma^{2}}, \frac{1}{\beta_{\sigma^{2}}})$$

$$\tau^{2} \sim Inv - Gamma(\alpha_{\tau^{2}}, \frac{1}{\beta_{\tau^{2}}})$$

Where $l \in L$ indexes the set of lag coefficients.

Value

An S4 object that inherits from "Dlm" containing the results of the fitted model. If construction of this object fails, dlm will issue a warning, and as a last resort attempt to return a list with components of the fitted model.

References

Baek J, et al. (2016) Epidemiology 27(1):116-24. (PubMed)

6 Dlm-class

See Also

```
lme, cr, Dlm-class, FreqDlm, BayesDlm
```

Examples

```
data (simdata)
## Setup distance count matrix and corresponding lag distances
X <- as.matrix(simdata[, -(1:3)])
lag <- seq(0.1, 10, length.out = ncol(X))

fit <- dlm(Y ~ Age + Gender + cr(lag, X), data = simdata)
summary (fit)</pre>
```

Dlm-class

S4 Distributed Lag Models

Description

Parent class for DLM object representation. Users will interact mainly with daughter classes, FreqDlm and BayesDlm.

Slots

```
method character identifier for method (frequentist vs. Bayesian) used to fit the DLM call language object containing matching function call coefficients DLM coefficients sigma residual standard deviation tau random effects standard deviation logLik log likelihood vcov fitted variance-covariance matrix basis LagBasis object containing lag basis representation N Number of data points the model was fit to K list of coefficient type lengths. See 'Details.'
```

See Also

```
dlm, LagBasis
```

Examples

```
methods(class = "Dlm")
```

fitted.Dlm 7

fitted.Dlm

Extract DLM Model Fitted Values

Description

Extract the predicted y values from a fitted by dlm

Usage

```
## S3 method for class 'Dlm'
fitted(object)
```

Arguments

```
object a fitted "Dlm" object
```

Value

A numeric vector

fixef

Extract Fixed Effects

Description

Returns a vector of fixed effects coefficients from a fitted mixed effects model.

Usage

```
fixef(object, ...)
## S4 method for signature 'Dlm'
fixef(object)
```

Details

fixef is S4 generic.

Value

A numeric vector

Methods (by class)

8 lag.basis

FreqDlm

Classical Distributed Lag Model

Description

Parameters and summaries from a classically fit DLM (frequentist; model fit using lme). Inherits from "Dlm-class".

Slots

lme output of fitted lme object

References

```
Baek J, et al. (2016) Epidemiology 27(1):116-24. (PubMed)
```

See Also

```
dlm, lme, Dlm-class, BayesDlm
```

lag.basis

Cubic Radial Basis Functions for Distributed Lags

Description

Compute cubic radial basis for a given lag set.

Usage

```
## S3 method for class 'basis'
lag(lag, center = TRUE, scale = FALSE)
```

Arguments

lag Distributed lag to compute basis of

center Either logical or numeric value to indicate if the lag should be mean centered

before computing basis (center = TRUE), or else giving the value to center lag

at.

scale Either logical or numeric value to indicate if the lag should be standard deviation-

scaled before computing basis (center $\,=\,$ TRUE), or else giving the value to scale

lag by.

Value

LagBasis object containing the basis matrix.

Examples

```
1 <- seq(0.1, 10, length.out = 100)
1b <- lag.basis(1)</pre>
```

LagBasis 9

LagBasis

Create and Manipulate Lag Basis Functions

Description

S4 class object to store and query components of lag basis functions. User interface for creating this class can be found in lag.basis.

Slots

- x original lag data
- x.center store the value the lag data was centered to. In theory this is useful for the non-yet-implemented predict method
- x.scale store the value the lag data was scaled by. Again, should be useful primarily for the predict method in the future
- C0 C_0 part of basis matrix
- K1 K_1 part of basis matrix

References

Baek J, et al. (2016) Epidemiology 27(1):116-24. (PubMed)

logLik.Dlm

Extract Log-Likelihood

Description

Log likelihood of the observed data given the model

Usage

```
## S3 method for class 'Dlm'
logLik(object, ...)
```

Value

An object of class "logLik" containing the log-likelihood of the data given the fitted DLM.

10 plot.Dlm

omega

Extract Lag Basis Matrix

Description

Extract lag basis matrix, Ω

Usage

```
omega(object, ...)
## S4 method for signature 'LagBasis'
omega(object, ...)
```

Details

omega is S4 generic.

Value

A square numeric matrix

Methods (by class)

• LagBasis: Method for "LagBasis" objects

plot.Dlm

Plot a Fitted Dlm

Description

Plots point estimates and intervals for distributed lag terms from a fitted dlm. Default aesthetic relies on geom_pointrange from the ggplot2 package.

Usage

```
## S3 method for class 'Dlm'
plot(x, y, ...)
```

Arguments

```
x a fitted "Dlm-class" object
... additional arguments passed to summary.Dlm
```

Value

A ggplot2 graphic object

predict.Dlm 11

predict.Dlm

Generate New Predictions from a Fitted DLM

Description

Not yet implemented

Usage

```
## S3 method for class 'Dlm'
predict(object, ...)
```

predict.LagBasis

Predict New Values for Fitted Lag Basis

Description

Not yet implemented

Usage

```
## S3 method for class 'LagBasis'
predict(object, ...)
```

Arguments

object

A LagBasis object

ranef

Extract Random Effects

Description

Returns a vector of random effects coefficients from a fitted mixed effects model.

Usage

```
ranef(object, ...)
## S4 method for signature 'Dlm'
ranef(object)
```

Details

ranef is S4 generic.

Value

A numeric vector

12 scaleMat

Methods (by class)

• Dlm: S4 Method for "Dlm" Objects

residuals.Dlm

Extract DLM Model Residuals

Description

Extract residuals from a model fitted by dlm

Usage

```
## S3 method for class 'Dlm'
residuals(object)
```

Arguments

```
object a fitted "Dlm" object
```

Value

A numeric vector

scaleMat

Extract Distributed Lag Scale Matrix

Description

Return lag coefficient scale matrix, S, such that the distributed lag coefficients fit by the model are obtained via the transformation $\beta = S\theta$. S should be invertable.

Usage

```
scaleMat(object, ...)
## S4 method for signature 'Dlm'
scaleMat(object, ...)
```

Arguments

object a fitted model object

Details

scaleMat is S4 generic.

Value

A square numeric matrix

Methods (by class)

se.fixef

se.fixef

Extract Standard Errors of Fixed Effects

Description

Returns a vector of fixed effects standard errors from a fitted mixed effects model.

Usage

```
se.fixef(object)
## S4 method for signature 'Dlm'
se.fixef(object)
```

Details

fixef is S4 generic.

Value

A numeric vector

Methods (by class)

• Dlm: S4 Method for "Dlm" Objects

se.ranef

Extract Standard Errors of Random Effects

Description

Returns a vector of random effects standard errors from a fitted mixed effects model.

Usage

```
se.ranef(object)
## S4 method for signature 'Dlm'
se.ranef(object)
```

Details

fixef is S4 generic.

Value

A numeric vector

Methods (by class)

14 simdata

sigma.Dlm

Extract Residual Standard Deviation 'Sigma'

Description

Return observed residual standard deviation

Usage

```
## S3 method for class 'Dlm'
sigma(object, ...)
```

Value

A positive numeric scalar: the residual standard deviation

simdata

Simulated Built Environment Data

Description

Simulated Built Environment Data

Usage

```
data(simdata)
```

Format

The first column (Y) is the outcome variable, covariates Gender and Age come next, and are followed by 100 location description variables. Each column of these 100 location count variables corresponds to a distance lag equal to the values in seq(0.1, 10, 0.1).

References

```
Baek J, et al. (2016) Epidemiology 27(1):116-24. (PubMed)
```

Examples

```
data(simdata)
simdata[1:10, 1:5]
```

SmoothLag 15

SmoothLag Lag Matrix With Applied Smoothing	
---	--

Description

An S4 class object for representing a smoothed lag matrix in addition to containing details about the basis smoothing. Intended for use within dlm modeling framework to assist extraction of basis components treated as "fixed" and "random" effects. Inherits from matrix.

Slots

basis A LagBasis smoothing object containing details about the lag and the smoothing parameters used

.Data Contains the "fixed effects" components of the smoothed lag function. This scheme is intended to work conveniently with stats::model.matrix

random Contains the "random effects" components of the smoothed lag function

signature Character string contianing the departed call to whatever smoothing function generated the SmoothLag object

summary.Dlm

Summarize a Fitted Dlm Object

Description

Computes likelihood based statistics, t-statistic summaries, and correlations between fixed effects terms after the nlme package. Also computes rough distributional summaries for distributed lag terms (estimates and intervals, with confidence coefficient level determined by the level parameter).

Usage

```
## S3 method for class 'FreqDlm'
summary(object, level = 0.95, ...)
## S3 method for class 'BayesDlm'
summary(object, level = 0.95, ...)
```

Arguments

```
object a fitted "Dlm" object

level desired confidence coefficient (or credible interval) level for summarizing distributed lag terms

... ignored
```

Value

An S4 object of class "SummaryDlm"

16 theta

SummaryDlm

Summarize a Distributed Lag Model

Description

Compute and store various statistical summaries of a fitted distributed lag model object

Slots

method Character vector with details of the model fitting procedure

call Matching call from dlm

coefficients Numeric vector of distributed lag coefficients

likelihood.stats Named numeric vector of likelihood based statistical summaries

variances Named numeric vector with estimaed random effects and residual variance parameters

tTable t-statistic table summaries of fixed effects with (approximate) significance

lag.coefs A matrix with rough distributional summaries of the fitted lag coefficients, like estimates and confidence or posterior intervals.

cor.fixef Correlation matrix of fixed effects

residuals Numeric vector with the residuals from the fitted model

N Number of data points the model was fit to

K List of numbers of various covariate types

theta

Extract Natural Scale Model Parameters 'Theta'

Description

Extract θ coefficients from a fitted model

Usage

```
theta(object, ...)
## S4 method for signature 'Dlm'
theta(object, ...)
```

Arguments

object

a fitted model object

Details

Returns the natural scale coefficients $\theta=S^{-1}\beta$ given some invertable scale matrix, S. theta is S4 generic.

vcov.Dlm

Value

A numeric vector

Methods (by class)

• Dlm: S4 Method for "Dlm" Objects

vcov.Dlm

Calculate the Distributed Lag Variance-Covariance Matrix for a Fitted Model Object

Description

Returns the variance-covariance matrix of the fitted model coefficients (including the random effects terms).

Usage

```
## S3 method for class 'Dlm'
vcov(object, ...)
```

Value

A numeric matrix: the coefficient variance-covariance matrix

vcovTheta

Extract Natural Scale Coefficient Covariance Matrix

Description

Extract $var\theta$ matrix from a fitted model

Usage

```
vcovTheta(object, ...)
## S4 method for signature 'Dlm'
vcovTheta(object, ...)
```

Arguments

object a fitted model object

Details

Returns the covariance matrix for the natural scale coefficients, θ . vcovTheta is S4 generic.

18 vcovTheta

Value

A square numeric matrix

Methods (by class)

Index

```
*Topic datasets
    simdata, 14
.BayesDlm (BayesDlm), 2
.Dlm (Dlm-class), 6
.FreqDlm (FreqDlm), 8
.LagBasis (LagBasis), 9
.SmoothLag (SmoothLag), 15
.SummaryDlm (SummaryDlm), 16
BayesDlm, 2, 6, 8
coef.Dlm, 2
coef.sims, 3
coef.sims,BayesDlm-method, 3
cr, 4, 5, 6
Dlm, 5, 7, 12, 13, 15, 17, 18
dlm, 2, 4, 6-8, 10, 12, 15
Dlm-class, 6
fitted.Dlm, 7
fixef, 7
fixef,Dlm-method(fixef),7
formula, 5
FreqDlm, 2, 6, 8
geom_pointrange, 10
lag.basis, 4, 8, 9
LagBasis, 6, 8, 9, 11, 15
lme, 4, 6, 8
logLik, 9
logLik.Dlm, 9
omega, 10
omega, LagBasis-method (omega), 10
plot.Dlm, 10
predict.Dlm, 11
predict.LagBasis, 11
ranef, 11
ranef, Dlm-method (ranef), 11
residuals.Dlm, 12
scaleMat, 12
```

```
scaleMat,Dlm-method(scaleMat), 12
se.fixef, 13
se.fixef,Dlm-method(se.fixef),13
se.ranef, 13
se.ranef,Dlm-method(se.ranef), 13
sigma.Dlm, 14
simdata, 14
SmoothBasis, 4
SmoothLag, 5, 15
summary.BayesDlm(summary.Dlm), 15
summary.Dlm, 10, 15
summary.FreqDlm(summary.Dlm), 15
SummaryDlm, 15, 16
theta, 3, 16
theta, Dlm-method (theta), 16
vcov.Dlm, 17
vcovTheta, 17
vcovTheta, Dlm-method (vcovTheta), 17
```