M1 UE2Probabilités

Compléments sur le conditionnement.

Loi conditionnelle

- Si X est discrète, $P_Y^{[X=x]}(B) = \frac{P([X=x] \cap [Y \in B])}{P([X=x])}$;
- \bullet Si X et Y sont absolument continues, $P_Y^{(X=x)}$ loi absolument continue de densité

$$f_Y^{(X=x)}(y) = \frac{f_{X,Y}(x,y)}{f_X(x)}$$
 pour x fixé tel que $f_X(x) \neq 0$.

Remarque : Pour la loi conditionnelle de Y à X = x, le réel x est fixé et donc il ne doit pas y avoir d'indicatrice dans $f_X(x)$ et dans $f_{X,Y}(x,y)$, c'est y qui doit être exprimé en fonction de x et non l'inverse.

Espérance conditionnelle à un événement : si P(A) > 0, $\mathbb{E}^A(Y) = \frac{\mathbb{E}(Y \mathbb{I}_A)}{P(A)}$.

Espérance conditionnelle de Y à (X = x): espérance d'une variable de loi $P_Y^{(X=x)}$. C'est un **réel** qui est fonction de x.

- \bullet Si (X,Y) est discret, $\mathbb{E}^{[X=x]}(Y) = \sum\limits_{y \in Y(\Omega)} y P^{[X=x]}([Y=y])$;
- si (X,Y) est absolument continu, $\mathbb{E}^{(X=x)}(Y) = \int y \frac{f_{X,Y}(x,y)}{f_X(x)} dy$.

 $\mathbb{E}^X(Y)$ est la variable aléatoire h(X) fonction de X avec $h(x) = \mathbb{E}^{(X=x)}(Y)$.

Propriétés:

- Si Y admet une espérance, $\mathbb{E}^X(Y)$ aussi et alors $\mathbb{E}(\mathbb{E}^X(Y)) = \mathbb{E}(Y)$. $\mathbb{E}^X(\psi(X)Y) = \psi(X)\mathbb{E}^X(Y)$ pour toute variable bornée $\psi(X)$.

Régressions : si $X, Y \in L^2$ (espace des v.a. ayant un moment d'ordre 2),

- $\mathbb{E}(Y)$ est la <u>constante</u> qui minimise $\mathbb{E}((Y-a)^2)$
- $\frac{\text{cov}(X,Y)}{\text{var}(X)}(X-\mathbb{E}(X))+\mathbb{E}(Y)$ est la fonction affine de X qui minimise $\mathbb{E}((Y-(aX+b))^2)$.
- $\mathbb{E}^X(Y)$ est la fonction de X qui minimise $\mathbb{E}((Y \psi(X))^2)$.

 $\mathbb{E}^X(Y)$ est la projection orthogonale de Y sur $L^2(X)$ (on a donc $\mathbb{E}(Y\psi(X)) = \mathbb{E}(\mathbb{E}^X(Y)\psi(X))$ et en particulier $\mathbb{E}(\mathbb{E}^X(Y)) = \mathbb{E}(Y)$).

Conditionnement discret

- 1. * Soient X et Y deux v.a.r. indépendantes. Déterminer la loi conditionnelle de X sachant [X + Y = n], puis $\mathbb{E}^{[X+Y=n]}(X)$ ainsi que $\mathbb{E}^{X+Y}(X)$ dans les cas suivants :
- (a) X et Y suivent respectivement les lois de Poisson $\mathcal{P}(\lambda)$ et $\mathcal{P}(\mu)$;
- (b) X et Y suivent respectivement les lois binomiales $\mathcal{B}(m,p)$ et $\mathcal{B}(n,p)$.
- **2.** ** Soit a,b,c trois réels de]0,1[tels que a+b+c=1 et α,β deux réels de]0,1[tels que $\alpha+\beta=1$.
- (a) Montrer que la famille $(p_{m,n})$ définie par:

$$\begin{cases} p_{0,0} = \alpha + \beta a \\ p_{m,n} = \beta a \frac{(m+n)!}{m!n!} b^m c^n \text{ si } (m,n) \neq (0,0) \end{cases}$$

est une probabilité sur \mathbb{N}^2 .

(b) On considère un couple (X,Y) de v.a.r. à valeurs dans \mathbb{N}^2 tel que :

$$P([X = m] \cap [Y = n]) = p_{m,n}.$$

Déterminer les lois conditionnelles de Y sachant [X=0], puis sachant [X=m] pour tout $m \in \mathbb{N}^*$. Déterminer $\mathbb{E}^X(Y)$.

3. * Soit $\lambda > 0$ et (X,Y) un couple à valeurs dans \mathbb{N}^2 de loi conjointe définie par :

$$P([X = m] \cap [Y = k]) = \frac{1}{\lambda} C_{m+k}^{k} (\frac{\lambda}{2\lambda + 1})^{m+k+1}$$

- (a) Déterminer la loi de Z=X+Y et pour tout $n\in\mathbb{N}$, la loi conditionnelle de X sachant [Z=n].
- (b) Déterminer $\mathbb{E}^{\mathbb{Z}}(X)$ et retrouver $\mathbb{E}(X)$.
- **4.** ** On considère le vecteur aléatoire U=(X,Y) équiré parti sur $\{(0,0),(0,2),(1,1)\}$. Les v.a. X et Y sont-elles indépendantes ? Déterminer $\mathbb{E}(Y)$ et $\mathbb{E}^X(Y)$.
 - **5.** *** Soit Y et Z deux v.a. indépendantes, de loi l'équiprobabilité dans $\{-1,1\}$.
- (a) Montrer que $X = \mathbb{I}_{[Y+Z=0]}$ est indépendante de Y et de Z. Les v.a. X, Y, Z sont-elles mutuellement indépendantes ?
- (b) Déterminer $\mathbb{E}^Y(X)$ et $\mathbb{E}^Z(X)$. Ces v.a. sont-elles indépendantes de Y et Z ?

- (c) Déterminer $\mathbb{E}^{(Y,Z)}(X)$. Est-elle indépendante de (Y,Z) ?
- (d) Est-il vrai que, lorsqu'une v.a. Z est indépendante de la v.a.r. U et de la v.a. Y, on a p.s. $\mathbb{E}^{(Y,Z)}(U)=\mathbb{E}^Y(U)$?
 - **6.** ** Soit X une v.a. équiprobable dans $\{-1,1\}$ et $Y=X^2$.
- (a)Les v.a. X et Y sont-elles indépendantes ? non corrélées ?
- (b) Déterminer $\mathbb{E}^X(Y)$. Deux v.a.r. liées par une relation fonctionnelle sont-elles toujours dépendantes ?
- 7. ** (a) Déterminer l'espérance et la variance d'une v.a. Y dont la loi est définie par :

$$\forall m \in \mathbb{N}, \ P([Y=m]) = \frac{2}{3^{m+1}}.$$

- Si X une v.a. entière dont la loi conditionnelle à [Y=m], pour chaque m de \mathbb{N} , est l'équiprobabilité sur $\{m,m+1\}$. Déterminer $\mathbb{E}^Y(X)$. En déduire que X admet une espérance que l'on indiquera.
- (b) Déterminer la loi conjointe des v.a. X et Y.
- (c) Préciser la loi de X, sa variance et l'espérance conditionnelle de Y à X.
- (d) Calculer cov(X, Y) et le coefficient de corrélation linéaire $\rho_{X,Y}$ des v.a. X et Y. Déterminer les droites de régression linéaire de X en Y et de Y en X.
- 8. ** Soit U une indicatrice d'espérance p $(p \in]0,1[)$ et X une v.a. à valeurs dans \mathbb{N} (avec $P([X=n]) \neq 0$ pour tout n), ayant un moment d'ordre 2. On suppose U et X indépendantes. On note φ la fonction génératrice de X $(\varphi(s) = \mathbb{E}(s^X))$. Tous les résultats demandés (sauf au (2)) sont à exprimer en fonction de p et φ .
- (a) On rappelle que l'on pose par convention : $0^0 = 1$. Calculer $\mathbb{E}\left(0^X\right)$ et $\mathbb{E}\left(X^0\right)$.
- (b) Montrer que, pour toute fonction numérique f, on peut écrire : $f \circ U = AU + B$, où A et B sont des constantes à préciser en fonction de f.
- (c) Calculer $\mathbb{E}^{U}\left(U^{X}\right)$ et en déduire $\mathbb{E}\left(U^{X}\right)$, puis calculer $\mathbb{E}^{X}\left(U^{X}\right)$ et retrouver $\mathbb{E}\left(U^{X}\right)$.
- $\text{(d) Calculer } \mathbb{E}^{X}\left(X^{U}\right) \text{ et en déduire } \mathbb{E}\left(X^{U}\right), \text{ puis calculer } \mathbb{E}^{U}\left(X^{U}\right) \text{ et retrouver } \mathbb{E}\left(X^{U}\right).$
 - 9. * Soit λ_1 et λ_2 deux éléments de]0,1[vérifiant l'inégalité :

$$\lambda_1 + \lambda_2 < 1$$
.

On considère un couple (X, Y) de v.a.r. dont la loi est définie par :

$$\forall (n,m) \in \mathbb{N}^2 - \{(0,0)\}, \quad P([X=n] \cap [Y=m]) = -\frac{(n+m-1)!}{n! \, m!} \, \frac{\lambda_1^n \, \lambda_2^m}{\ln (1-\lambda_1 - \lambda_2)}.$$

- (a) Calculer P([X=0]) et, pour tout n de \mathbb{N}^* , P([X=n]). Déterminer les lois de X et Y. Préciser les espérances et les variances de ces v.a.
- (b) Identifier la loi de Y conditionnelle à l'événement [X = n] (distinguer les cas n = 0 et $n \in \mathbb{N}^*$). Calculer $\mathbb{E}^{[X=n]}(Y)$. En déduire $\mathbb{E}^X(Y)$. Vérifier, à partir de là, que l'on a :

$$\mathbb{E}(Y) - \frac{\lambda_2}{1 - \lambda_2} \mathbb{E}(X) = -\frac{\lambda_2}{(1 - \lambda_2) \ln (1 - \lambda_1 - \lambda_2)}.$$

Conditionnement continu

10. * Soit (X, Y) un couple de v.a.r. définies sur un espace probabilisé (Ω, \mathcal{A}, P) tel que la loi de X soit donnée par la densité :

$$f_X(x) = \begin{cases} 4x^3 \text{ si } 0 < x < 1, \\ 0 \text{ sinon.} \end{cases}$$

Les lois conditionnelles de Y à X sont définies, pour chaque x de]0,1[, par :

$$f_Y^{X=x}(y) = \begin{cases} \frac{2y}{x^2} & \text{si } 0 < y < x, \\ 0 & \text{sinon.} \end{cases}$$

- (a) Déterminer la denstité de la loi de Y, puis $\mathbb{E}(Y)$.
- (b) Déterminer $\mathbb{E}^X(Y)$ puis retrouver $\mathbb{E}(Y)$.
- (c) Calculer cov(X, Y).
 - ${\bf 11.}\ ^*$ On considère un couple (X,Y) de v.a.r. absolument continu de densité :

$$f_{X,Y}: (x,y) \in \mathbb{R}^2 \mapsto \frac{a^{p+q}}{\Gamma(p)\Gamma(q)} x^{p-1} (y-x)^{q-1} e^{-ay} \mathbb{I}_{\Delta}(x,y),$$

où l'on a posé : $\Delta = \{(x,y) \in \mathbb{R}^2 : 0 < x < y\}$ et où (p,q) est un couple de réels strictement supérieurs à 1.

- (a) Déterminer (et identifier) la loi de X. Préciser l'espérance et la variance de X.
- (b) Expliciter (et identifier) les lois conditionnelles de Y à X. Écrire $\mathbb{E}^X(Y)$. En déduire l'espérance de Y. Calculer la variance d'une v.a. ayant pour loi $P_Y^{X=x}$ (x>0).
- (c) Déterminer (et identifier) la loi de Y. Écrire son espérance et sa variance.
- (d) Calculer $\mathbb{E}^Y(X)$.
- (e) Écrire la matrice des covariances de X et Y. Calculer le coefficient $\rho_{X,Y}$ de corrélation linéaire de X et Y.

- (f) Déterminer la droite de régression linéaire de Y en X.
 - 12. Soient X, Y et Z trois v.a.r. telles que :
 - i. X suit la loi uniforme sur [0,1];

 - ii. $f_Y^{(X=x)}(y) = (y-x)e^{-(y-x)} \mathbb{I}_{]x,+\infty[}(y)$; iii. $f_Z^{(X=x)\cap (Y=y)}(z) = (y-x)e^{-z(y-x)} \mathbb{I}_{]0,+\infty[}(z)$ pour $x\in]0,1[$ et y>x.
- (a) Déterminer la loi conjointe de (X, Y, Z) et la loi de Z.
- (b) Déterminer la loi conditionnelle de (X, Y) sachant (Z = z).
- (c) Calculer $\mathbb{E}^{(Z=z)}(\sqrt{Y-X})$ puis $\mathbb{E}(\sqrt{Y-X})$.
- 13. Soient X_1, X_2, \cdots, X_n des v.a.r. absolument continues, indépendantes, de même loi de densité f. On pose $X = \max(X_1, X_2, \dots, X_n)$ et $Y = \min(X_1, X_2, \dots, X_n)$.
- (a) Exprimer en fonction de f la loi conditionnelle de Y sachant (X = x) et $\mathbb{E}^X(Y)$.
- (b) Appliquer ce qui précède au cas où les X_i suivent la loi uniforme sur]0,1[.
- **14.** ** Soit θ un réel donné et $(X_1, \dots, X_i, \dots, X_n)$ un n-échantillon de la loi $\mathcal{N}(\theta, 1)$. On note G la fonction de répartition de la loi $\mathcal{N}(0,1)$ et on pose : $\overline{X}_n = \frac{1}{n}\sum_{i=1}^n X_i$.
- (a) Déterminer l'espérance de $Y = \mathbb{I}_{]-\infty,c]}(X_1)$.
- (b) Identifier la loi de \overline{X}_n .
- (c) Montrer que le couple (X_1, \overline{X}_n) admet pour densité :

$$(x,\overline{x}) \mapsto \frac{n}{2\pi\sqrt{n-1}}\exp\left(-\frac{n}{2(n-1)}\left[(x-\theta)^2-2(x-\theta)(\overline{x}-\theta)+n(\overline{x}-\theta)^2\right]\right).$$

- (d) Calculer $\mathbb{E}^{\overline{X_n}}(Y)$. La suite $(\mathbb{E}^{\overline{X_n}}(Y))_n$ est-elle convergente?
- 15. Considérant un n-échantillon $(X_1,...,X_i,...,X_n)$ de loi de Poisson $\mathcal{P}(\lambda)$ $(\lambda>0)$, on pose:

$$U_n = \sum_{i=1}^n X_i$$
 et $T_n = \frac{1}{n} \sum_{i=1}^n \mathbb{I}_{[X_i = 0]}$.

Déterminer $\mathbb{E}^{U_n}\left(\mathbb{I}_{[X_1=0]}\right)$, puis $Z_n=\mathbb{E}^{U_n}\left(T_n\right)$. Calculer var Z_n .

Conditionnement pouvant être mixte

16. ** Soit (X_n) une suite de v.a.r. indépendantes de même loi avec $\mathbb{E}(X_n) = \mu$ et $V(X_n) = v$ et soit N une v.a.r. entière, indépendante des X_n avec $\mathbb{E}(N) = v$ et V(N) = w. On pose $S_k = X_1 + \cdots + X_k$ et on note S_N l'application, qui à ω associe $S_{N(\omega)}(\omega)$.

- (a) Montrer que S_N est une v.a.r. et que $\mathbb{E}^{(N=n)}(S_N) = \mathbb{E}(S_n)$.
- (b) En déduire l'espérance et la variance de S_N .
- 17. * Soient X une v.a.r. de loi uniforme sur [0,1] et Y une v.a.r. entière telle que, pour tout $x \in [0,1]$, la loi conditionnelle de Y sachant (X = x) soit la loi binomiale $\mathcal{B}(n,x)$.
- (a) Déterminer la loi et l'espérance de Y.
- (b) Déterminer $\mathbb{E}^{(X=x)}(Y)$, puis $\mathbb{E}^X(Y)$ et retrouver $\mathbb{E}(Y)$.
- 18. *** Soient a et b deux réels strictement positifs et $n \in \mathbb{N}^*$. Soient Y une v.a.r. absolument continue de loi Béta $\beta(a,b)$ et X une v.a.r. entière telle que la loi conditionnelle de X sachant (Y = y) soit la loi binomiale $\mathcal{B}(n,y)$.
- (a) Déterminer la loi de X, que l'on appellera loi Béta-binomiale $\beta B(a,b,n)$.
- (b) Déterminer $\mathbb{E}^{(Y=y)}(X)$, puis $\mathbb{E}^Y(X)$, puis $\mathbb{E}(X)$. Déterminer également $\mathbb{E}^{(Y=y)}(X^2)$, puis $\mathbb{E}^Y(X^2)$, puis $\mathbb{E}(X^2)$ et V(X).
- (c) Soient $N \geq n$, U une v.a.r. de loi Béta-binomiale $\beta B(a,b,N)$ et V une v.a.r. telle que, pour tout $i \in \{0,1,\cdots,N\}$, la loi conditionnelle de V sachant [U=i] soit la loi hypergéométrique $\mathcal{H}(n,i,N-i)$ (définie par $p_j = \frac{C_i^j C_{N-i}^{n-j}}{C_N^n}$).
- i. Déterminer $P([U=i]\cap [V=j])$, puis $P([U-V=k]\cap [V=j])$. En déduire que V suit la loi Béta-binomiale $\beta B(a,b,n)$ et que la loi conditionnelle de U-V sachant [V=j] est la loi Béta-binomiale $\beta B(a+j,b+n-j,N-n)$.
 - ii. Calculer $\mathbb{E}^{[V=j]}(U-V)$ et montrer que $\mathbb{E}^{[V=j]}(U)=\frac{(N-n)a+(N+a+b)j}{a+b+n}$.