3dVPM - 3D Unsteady Vortex Panel Method

Generated by Doxygen 1.8.6

Mon May 11 2015 17:24:03

Contents

1	Hier	archica	l Index		1
	1.1	Class	Hierarchy		 1
2	Clas	s Index			3
	2.1	Class	List		 3
3	Clas	s Docu	mentation	1	5
	3.1	Domai	n Class Re	eference	 5
		3.1.1	Detailed	Description	 5
	3.2	matlab	_writer Cla	ass Reference	 5
		3.2.1	Detailed	Description	 6
	3.3	Param	eters Clas	s Reference	 6
		3.3.1	Detailed	Description	 6
	3.4	PLOT	BD Class R	Reference	 7
		3.4.1	Detailed	Description	 7
	3.5	Solver	Class Refe	ference	 7
		3.5.1	Detailed	Description	 8
		3.5.2	Member	Function Documentation	 8
			3.5.2.1	solve	 8
	3.6	Surfac	e Class Re	eference	 8
		3.6.1	Detailed	Description	 10
		3.6.2	Member	Function Documentation	 10
			3.6.2.1	compute_doublet_panel_influence	 10
			3.6.2.2	compute_doublet_panel_unit_velocity	 10
			3.6.2.3	compute_panel_components	 10
			3.6.2.4	compute_source_doublet_panel_influence	 11
			3.6.2.5	compute_source_panel_influence	 11
			3.6.2.6	compute_source_panel_unit_velocity	 11
			3.6.2.7	get_collocation_point	 11
			3.6.2.8	get_collocation_point	 11
			3.6.2.9	get_kinematic_velocity	 11
			36210	get trailing edge hisector	12

iv CONTENTS

		3.6.2.11 n_nodes	2
		3.6.2.12 n_panels	12
		3.6.2.13 rotate_surface	12
		3.6.2.14 set_angular_velocity	12
		3.6.2.15 translate_surface	12
	3.6.3	Member Data Documentation	13
		3.6.3.1 panel_neighbours	13
		3.6.3.2 panels	13
3.7	vector3	d Class Reference	13
	3.7.1	Detailed Description	14
3.8	vtk_wr	er Class Reference	14
	3.8.1	Detailed Description	14
	3.8.2	Member Function Documentation	14
		3.8.2.1 write_domain_data	14
		3.8.2.2 write_surface_data	15
3.9	Wake (lass Reference	15
	3.9.1	Detailed Description	16

Chapter 1

Hierarchical Index

1.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

Domain	 	
matlab_writer	 	
Parameters	 	6
PLOT3D	 	
Solver		
Surface	 	
Wake	 	15
vector3d	 	
vtk writer	 	14

2 **Hierarchical Index**

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Domain		
	Domain class to compute velocity off-surface	5
matlab_v	vriter	
	Writes output in matlab format. DO NOT USE - NOT a standard format	5
Paramete	ers	
	Defines certain parameters used in the panel method	6
PLOT3D		
	PLOT3D class to read plot3D mesh file and manipulates surface object	7
Solver		
	Solver class for 3D unsteady panel method	7
Surface		
	Surface class to represent geometry and perform various operations on it	8
vector3d		
	Vector3d class to represent an array of size 3	13
vtk_write		
	Vtk_writer class to write output in vtk format	14
Wake		
	Wake class to represent wake of a body	15

Class Index

Chapter 3

Class Documentation

3.1 Domain Class Reference

Domain class to compute velocity off-surface.

```
#include <domain.hpp>
```

Public Member Functions

- void set_domain_ranges (const int i, const int j, const int k)
- int get_IMAX () const

returns maximum nodes in x direction

• int get_JMAX () const

returns maximum nodes in y direction

int get_KMAX () const

returns maximum nodes in z direction

• int n_nodes () const

returns total number of nodes

Public Attributes

• std::vector< vector3d > nodes

point data of the domain mesh file

3.1.1 Detailed Description

Domain class to compute velocity off-surface.

The documentation for this class was generated from the following files:

- /home/pranav/Google Drive/Classes/wind-turbine/panel_method/code/3dVPM/3dVPM/src/domain.hpp
- /home/pranav/Google Drive/Classes/wind-turbine/panel_method/code/3dVPM/3dVPM/src/domain.cpp

3.2 matlab_writer Class Reference

writes output in matlab format. DO NOT USE - NOT a standard format

```
#include <matlab_writer.hpp>
```

Public Member Functions

- void write_surface_mesh (std::string filename, const std::shared_ptr< Surface > surface)
- template<class T >

void **write_surface_data** (std::string filename, const std::shared_ptr< Surface > surface, const std::vector< T > &data, std::string name, bool writemesh=false)

template < class T >

void **write_domain_data** (std::string filename, std::shared_ptr< Domain > domain, std::vector< T > data, std::string name, bool writemesh)

3.2.1 Detailed Description

writes output in matlab format. DO NOT USE - NOT a standard format

The documentation for this class was generated from the following files:

- /home/pranav/Google Drive/Classes/wind-turbine/panel_method/code/3dVPM/3dVPM/src/matlab_writer.hpp
- /home/pranav/Google Drive/Classes/wind-turbine/panel_method/code/3dVPM/3dVPM/src/matlab_writer.cpp

3.3 Parameters Class Reference

Defines certain parameters used in the panel method.

```
#include <parameters.hpp>
```

Static Public Attributes

• static double inversion_tolerance = 1e-12

tolerance check for division

static double farfield_factor = 10.0

farfield factor

static double trailing_edge_wake_shed_factor = 0.25

controls the trailing edge wake panel distance

static bool unsteady_problem = false

decides whether problem is steady or unsteady

• static bool static wake = false

decides whether to use static wake or force free wake model

• static double static_wake_length = 1.0

sets static wake length

• static bool use vortex core model = false

decides whether to use vortex core model

3.3.1 Detailed Description

Defines certain parameters used in the panel method.

The documentation for this class was generated from the following files:

- /home/pranav/Google Drive/Classes/wind-turbine/panel_method/code/3dVPM/3dVPM/src/parameters.hpp
- /home/pranav/Google Drive/Classes/wind-turbine/panel_method/code/3dVPM/3dVPM/src/parameters.cpp

3.4 PLOT3D Class Reference

PLOT3D class to read plot3D mesh file and manipulates surface object.

```
#include <plot3d.hpp>
```

Public Member Functions

```
    void set surface filename (std::string)
```

set file name to read

void set_surface (std::shared_ptr< Surface >)

connect to surface object

• void flip_normals (bool)

Flips the normals of the surface.

void read_surface (std::string name)

read the plot3d mesh file

void build_topology ()

buid topology from mesh file

void set_domain (std::shared_ptr< Domain >)

connect to domain object

void read_domain (std::string name)

read mesh file for the domain

3.4.1 Detailed Description

PLOT3D class to read plot3D mesh file and manipulates surface object.

The documentation for this class was generated from the following files:

- /home/pranav/Google Drive/Classes/wind-turbine/panel_method/code/3dVPM/3dVPM/src/plot3d.hpp
- /home/pranav/Google Drive/Classes/wind-turbine/panel_method/code/3dVPM/3dVPM/src/plot3d.cpp

3.5 Solver Class Reference

Solver class for 3D unsteady panel method.

```
#include <solver.hpp>
```

Public Member Functions

```
    Solver (int argC, char **argS)
```

constructor - takes command line arguments

void add_surface (const std::shared_ptr< Surface >)

attaches surface object with solver

void add_wake (const std::shared_ptr< Wake >)

attaches wake object with solver

void add_logger (const std::shared_ptr< vtk_writer >)

attaches vtk-logger object with solver

void add_logger (const std::shared_ptr< matlab_writer >)

attaches matlab-logger object with solver

void set_free_stream_velocity (const vector3d &)

Set free stream velocity.

void set_reference_velocity (const vector3d &)

Set reference velocity.

void set fluid density (const double value)

Set fluid density velocity.

void solve (const double dt, int iteration=0)

driver function of solver

· void convect_wake (const double &dt)

convects the wake with local induced velocity

void compute_domain_velocity (const std::shared_ptr< Domain > domain)

compute velocity at each node in the domain

• void finalize_iteration ()

performs some post-solution operations

vector3d get_body_forces () const

Returns body force vectors.

vector3d get_body_force_coefficients () const

Returns body force coefficents.

double get_pressure_coefficient (const int panel) const

Returns pressure coefficients.

· void write output (const int &interation) const

Write output to a file.

void write_matlab_output () const

Write output to matlab format - do not use!

3.5.1 Detailed Description

Solver class for 3D unsteady panel method.

Solver class calculates the solution of the given problem. Takes input in terms of surface, wake, configurational parameters such as surface velocity, free stream velocity, reference velocity, density, etc. Calculates the solution in terms of surface velocity, pressure, body forces (and force coefficients). Also write output to vtk files.

3.5.2 Member Function Documentation

3.5.2.1 void Solver::solve (const double dt, int iteration = 0)

driver function of solver

The function is responsible for solution of given problem. The function calculates and influence coefficients, applied boundary conditions, builds system of equations, solves them, post-processes solution, write them in output file.

The documentation for this class was generated from the following files:

- /home/pranav/Google Drive/Classes/wind-turbine/panel_method/code/3dVPM/3dVPM/src/solver.hpp
- /home/pranav/Google Drive/Classes/wind-turbine/panel_method/code/3dVPM/3dVPM/src/solver.cpp

3.6 Surface Class Reference

Surface class to represent geometry and perform various operations on it.

#include <surface.hpp>

Inheritance diagram for Surface:

Public Member Functions

• int n panels () const

returns number of panels in the current surface

int n_nodes () const

returns total number of nodes in the current surface

· void compute panel components ()

Computes the panel components.

vector3d & get_collocation_point (int panel)

returns panel's collocation point by reference

vector3d get collocation point (int panel) const

returns panel's collocation point

void translate_surface (const vector3d &dX)

translates the surface by distance dX

void rotate surface (vector3d dTheta, bool isRadian)

rotates the surface by an angle

void set linear velocity (const vector3d &)

Set the linear velocity of the surface.

void set_angular_velocity (vector3d vel, bool isRadian_sec)

Set angular velocity of the body.

• int n_trailing_edge_nodes () const

returns number of trailing edge nodes

• int n_trailing_edge_panels () const

returns nuber of trailing edge panels

vector3d get_trailing_edge_bisector (const int) const

returns trailing edge bisecor

vector3d get_kinematic_velocity (const vector3d &) const

returns kinematic velocity at a point on surface

vector3d get_panel_normal (const int) const

return panel's normal vector

• double compute source panel influence (const int panel, const vector3d &node) const

computes the influence coefficient due to source panel

double compute_doublet_panel_influence (const int panel, const vector3d &node) const

computes the influence coefficient due to doublet panel

std::pair< double, double > compute_source_doublet_panel_influence (const int panel, const vector3d &node) const

computes the influence coefficient due to source and doublet panel

vector3d transform_point_panel (int panel, const vector3d &x) const

transforms a point in a panel's local coordinate

• vector3d transform_vector_panel_inverse (int panel, const vector3d &x) const

transforms a point from panel's local coordinate to global coordinate

vector3d transform_vector_panel (int panel, const vector3d &x) const

transforms a vector in a panel's local coordinate

double get_panel_area (const int &panel) const

transforms a vector from panel's local coordinate to global coordinate

- vector3d compute_source_panel_unit_velocity (const int &panel, const vector3d &node) const computes the induced velocity due to source panel at a point
- vector3d compute_doublet_panel_unit_velocity (const int &panel, const vector3d &node) const computes the induced velocity due to doublet panel at a point

Public Attributes

- std::vector< vector3d > nodes
 stores node data containing x,y,z coordinate
- std::vector < std::vector < int > > panels
 panel vector containing vector of its nodes
- std::vector< std::vector< int > > panel_neighbours stores the neighbouring panel ids
- std::vector < int > trailing_edge_nodes
 nodes on trailing edge
- std::vector< int > upper_TE_panels
 panels connected to upper trailing edge
- std::vector < int > lower_TE_panels
 panels connected to lower trailing edge

3.6.1 Detailed Description

Surface class to represent geometry and perform various operations on it.

Class for containing geometry entities and functions to perform operations on them

3.6.2 Member Function Documentation

3.6.2.1 double Surface::compute_doublet_panel_influence (const int panel, const vector3d & node) const

computes the influence coefficient due to doublet panel

Parameters

in	panel	doublet panel whose influence is sought
in	node	point which is being influenced by panel
in	double	return influence due to unit doublet strength panel

3.6.2.2 vector3d Surface::compute_doublet_panel_unit_velocity (const int & panel, const vector3d & node) const

computes the induced velocity due to doublet panel at a point

Parameters

in	panel	doublet panel
in	node	point at which induced velocity by panel is sought
in	vector3d	return induced velocity vector

3.6.2.3 void Surface::compute_panel_components ()

Computes the panel components.

computes panel collocation point, panel local coordinates, area, panel transformations and farfield factors

3.6.2.4 std::pair< double, double > Surface::compute_source_doublet_panel_influence (const int *panel*, const vector3d & node) const

computes the influence coefficient due to source and doublet panel

Parameters

in	panel	panel whose influence is sought
in	node	point which is being influenced by panel
in		return influence due to unit strength source and doublet panel
	pair <double,doubl< td=""><td>e></td></double,doubl<>	e>

3.6.2.5 double Surface::compute_source_panel_influence (const int panel, const vector3d & node) const

computes the influence coefficient due to source panel

Parameters

in	panel	source panel whose influence is sought
in	node	point which is being influenced by panel
in	double	return in the influence due to unit source strength panel

3.6.2.6 vector3d Surface::compute_source_panel_unit_velocity (const int & panel, const vector3d & node) const

computes the induced velocity due to source panel at a point

Parameters

in	panel	source panel
in	node	point at which induced velocity by panel is sought
in	vector3d	return induced velocity vector

3.6.2.7 vector3d & Surface::get_collocation_point (int panel)

returns panel's collocation point by reference

Parameters

in	panel	panel number
out	vector3d&	panel collocation point by reference

3.6.2.8 vector3d Surface::get_collocation_point (int panel) const

returns panel's collocation point

Parameters

in	panel	panel number
out	vector3d	panel collocation point

3.6.2.9 vector3d Surface::get_kinematic_velocity (const vector3d & x) const

returns kinematic velocity at a point on surface

Parameters

in	X	input location
out	vector3d	kinematic velocity due to surface's motion

3.6.2.10 vector3d Surface::get_trailing_edge_bisector (const int TE_node) const

returns trailing edge bisecor

Parameters

in	TE_node	trailing edge node
out	vector3d	normalized vector which points in the bisector at TE_node

3.6.2.11 int Surface::n_nodes () const

returns total number of nodes in the current surface

Parameters

out	int	total number of nodes in the surface

3.6.2.12 int Surface::n_panels () const

returns number of panels in the current surface

Parameters

out	int	total number of panels in the surface

3.6.2.13 void Surface::rotate_surface (vector3d dTheta, bool isRadian)

rotates the surface by an angle

Parameters

in	dTheta	angle by which to rorate the surface
in	isRadian	true if dTheta is in radians, false otherwise

3.6.2.14 void Surface::set_angular_velocity (vector3d vel, bool isRadian_sec)

Set angular velocity of the body.

Parameters

Г	in	vel	angular velocity
	in	isRadian_sec	true if vel is in radians per seconds

3.6.2.15 void Surface::translate_surface (const vector3d & dX)

translates the surface by distance dX

Parameters

in	dX	distance vector
----	----	-----------------

3.6.3 Member Data Documentation

3.6.3.1 std::vector<std::vector<int>> Surface::panel_neighbours

stores the neighbouring panel ids

stores neighbouring panel ids - required in surface velocity calculations

3.6.3.2 std::vector<std::vector<int>> Surface::panels

panel vector containing vector of its nodes

represents panel vector. Each panel contains node number associated with it the node numbers are in counter-clockwise order

The documentation for this class was generated from the following files:

- /home/pranav/Google Drive/Classes/wind-turbine/panel_method/code/3dVPM/3dVPM/src/surface.hpp
- /home/pranav/Google Drive/Classes/wind-turbine/panel_method/code/3dVPM/3dVPM/src/surface.cpp

3.7 vector3d Class Reference

vector3d class to represent an array of size 3

#include <vector3d.h>

Public Member Functions

- vector3d (double a, double b, double c)
- vector3d (const vector3d &vec)
- double **operator[]** (int i) const
- double & operator[] (int i)
- void operator= (const vector3d &vec)
- const vector3d & operator= (const vector3d &vec) const
- double dot (const vector3d &vec)
- vector3d cross (const vector3d &vec) const
- void normalize ()
- double squared_norm () const
- double **norm** () const
- int size () const
- vector3d operator- (const vector3d &vec) const
- vector3d operator+ (const vector3d &vec) const
- void print ()
- · vector3d operator/ (const double &val) const
- vector3d operator* (const double &val) const
- void operator= (const double val)
- vector3d operator- () const
- operator vector3d & ()
- operator vector3d const & () const
- double * begin ()
- void operator+= (const vector3d &vec)

- void operator-= (const vector3d &vec)
- void **operator***= (const double &x)
- vector3d operator/ (const vector3d &vec) const

Friends

std::ostream & operator<< (std::ostream &os, const vector3d &vec)

3.7.1 Detailed Description

vector3d class to represent an array of size 3

useful in representing 3d point coordinates, vectors, forces, etc. Also performs some basic operations, helps in reducing equations sizes

The documentation for this class was generated from the following file:

/home/pranav/Google Drive/Classes/wind-turbine/panel_method/code/3dVPM/3dVPM/src/vector3d.h

3.8 vtk_writer Class Reference

vtk writer class to write output in vtk format

```
#include <vtk_writer.hpp>
```

Public Member Functions

 $\bullet \ \ \text{template}{<} \text{class T} >$

void write_surface_data (std::string filename, const std::shared_ptr< Surface > surface, const std::vector< T > &data, std::string name, bool writemesh)

writes surface data to a file

void write_surface_mesh (std::string filename, std::shared_ptr< Surface >)

write mesh data to vtk format

void write_domain_mesh (std::string filename, std::shared_ptr< Domain >)

write domain mesh to vtk format

• template<class T >

void write_domain_data (std::string filename, std::shared_ptr< Domain > domain, std::vector< T > data, std::string name, bool writemesh)

writes surface data to a file

3.8.1 Detailed Description

vtk_writer class to write output in vtk format

3.8.2 Member Function Documentation

3.8.2.1 template < class T > void vtk_writer::write_domain_data (std::string filename, std::shared_ptr< Domain > domain, std::vector< T > data, std::string name, bool writemesh) [inline]

writes surface data to a file

3.9 Wake Class Reference 15

Parameters

in	filename	filename of the output file, extension will be attaced automatically
in	domain	domain to write
in	data	data to write for a given domain
in	name	name of the data variable
in	writemesh	true if mesh data needs to be written, else false

3.8.2.2 template < class T > void vtk_writer::write_surface_data (std::string filename, const std::shared_ptr < Surface > surface, const std::vector < T > & data, std::string name, bool writemesh) [inline]

writes surface data to a file

Parameters

in	filename	filename of the output file, extension will be attaced automatically
in	surface	surface to write
in	data	data to write for a given surface
in	name	name of the data variable
in	writemesh	true if mesh data needs to be written, else false

The documentation for this class was generated from the following files:

- /home/pranav/Google Drive/Classes/wind-turbine/panel_method/code/3dVPM/3dVPM/src/vtk_writer.hpp
- /home/pranav/Google Drive/Classes/wind-turbine/panel_method/code/3dVPM/3dVPM/src/vtk_writer.cpp

3.9 Wake Class Reference

Wake class to represent wake of a body.

#include <wake.hpp>

Inheritance diagram for Wake:

Public Member Functions

- void add_lifting_surface (const std::shared_ptr< Surface > surf)
 associate with surface object
- void initialize (const vector3d &free_stream_velocity, const double &dt)
 create first row of wake panels
- void build_topology ()

build topology of the wake panels, such as connectivity information

void shed_wake (const vector3d &free_stream_velocity, double dt)

adds a row of wake panels

Additional Inherited Members

3.9.1 Detailed Description

Wake class to represent wake of a body.

The documentation for this class was generated from the following files:

- /home/pranav/Google Drive/Classes/wind-turbine/panel_method/code/3dVPM/3dVPM/src/wake.hpp
- /home/pranav/Google Drive/Classes/wind-turbine/panel_method/code/3dVPM/3dVPM/src/wake.cpp