

SEQUENCE LISTING

<110> Children's Medical Center
Ren, Dejian
Clapham, David

<120> Sperm-Specific Calcium Channel Gene, Expressing Calcium Channel Protein, and In-Vitro as a System for Detecting Male Infertility

<130> 110313.130 PCT

<150> US 60/288,402
<151> 2001-05-03

<160> 6

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 2343
<212> DNA
<213> Homo sapiens

<400> 1
atggatcaaa actcagtgcc tgaaaaggct cagaatgagg cagacaccaa taacgcagat 60
aggttcttc gctctactc atcacccca caccacaggc caggccacag cagagctctc 120
caccattacg agttgcacca tcacggcg 180
ccggagttcc aagacttcca cgaccaagcc ttgtcctccc atgtccacca atctcaccac 240
cacagcgagg cacggaatca cggcagagcc catggccca caggcttgg tctggctccc 300
tctcaaggcg ccgtccctc ccaccgttcc tacggtgagg actaccatga tgagctccaa 360
cgtgatggca ggaggcatca ttaggggtcc caatacggtg ggttccatca gcagagtgac 420
tcccattacc ataggggtc tcaccatggc agacccaat atctcggtga gaatttatcc 480
caactattcc ctggcgtgcc ccaccacggt gaggctccc accatggtg gtcctaccc 540
ccccatggac ccaatcccta cagttagtcc ttccaccaca gcgaggcttc ccaccttagc 600
gggctccaac acgttagtcc ccagcatcac caagtcccc accgtggctg gccccaccat 660
caccaggatcc accaccatgg caggtcccgat catcatgaag cccaccagca tggaaagtct 720
cctcatcactc gagagaccat ttcccctcat tcctctgtgg ggtcctacca gcgtgggata 780
tctgactatc acagcgagta ccaccaaggat gatcaccacc ccagttagtcc ccaccatggc 840
gaccatcccc accacacaca gcaccactac caccagaccc accggcaccc agactaccat 900
cagcaccaag accaccacgg cgcttatcat tccagttacc tccatggcga ctacgtccag 960
agcaactccc aactcttat cccacacaca tcccgagcc tgattcacga tgccccggc 1020
cctgctgtttt ctcgtacagg agtctccccc tatcacgttag cacacccacg gggctcggt 1080
cacagcatga ctccgtccctc cagcacaatc cgctcacgtg tcacccagat gtccaaaaaaa 1140
gtccatacccg aggatatctc caccaaacat tcagaagact gggcaaaaga agaaggccaa 1200
tttcagaaac gcaaaaccgg caggctccag cggaccgcgca agaaggccaa ctctaccaat 1260
ctcttccagt ggctgtggaa aaagctaacc ttccctcattc agggctcccg ggaaatgatc 1320
cggaacctga cccaaatcctt ggccttggaa actttcatct tcttcgttgt ctgcctcaac 1380
accgtcatgc tggtggccca gacccatgc gaagtcgaga tccggggcga gtggacttc 1440
atggccttgg actccatatt ctctgtcattc tacgtggtgg aagccctgct caagatcatc 1500
gccctggcc tctcgtaatt ctggacttc tggaacaatt tgacttctt cattatggcc 1560
atggccgtgc tggacttctt gctgatgcag accccactcct tcgccatcta ccaccaaagc 1620
ctcttccggaa tcctcaaggt cttaagagc ctgcggggcc tgaggccaa ctgggtcctg 1680
cgaggctca gcttccgtac cagcgtccag gaagtgacag ggaccctggg ccagtccttg 1740
ccgtccatcg cagccatcct catctcatg tttacctgcc tcttcctt ctccgcggc 1800
ctccgggcac tgttccgcaa atctgacccca aagcgcttcc agaacatctt caccaccatc 1860

ttcacccctct tcaccttgct cacgctggat gactggtccc tcatctacat ggacagccgt 1920
gcccaggcg cctggtacat catccccatc ctcataattt acatcatcat ccagtacttc 1980
atcttcctca acctgggtat tactgtcctg gtggatagtt tccagacggc gctgttcaaa 2040
ggccttgaga aagcgaagca ggagagggcc gcccggatcc aagagaagct gctggaagac 2100
tcactgacgg agctcagagc tgcaagagccc aaagaggtgg cgagtgaagg caccatgctg 2160
aagcggctca tcgagaaaaa gtttgggacc atgactgaga agcagcagga gctcctgttc 2220
cattacctgc agctggtggc aagcgtggag caggacgagc agaagttccg ctcccaggca 2280
gccgtcatcg atgagattgt ggacaccaca tttgaggctg gagaagagga cttcaggaat 2340
tga 2343

<210> 2
<211> 780
<212> PRT
<213> Homo sapiens

<400> 2
Met Asp Gln Asn Ser Val Pro Glu Lys Ala Gln Asn Glu Ala Asp Thr
1 5 10 15
Asn Asn Ala Asp Arg Phe Phe Arg Ser His Ser Ser Pro Pro His His
20 25 30
Arg Pro Gly His Ser Arg Ala Leu His His Tyr Glu Leu His His His
35 40 45
Gly Val Pro His Gln Arg Gly Glu Ser His His Pro Pro Glu Phe Gln
50 55 60
Asp Phe His Asp Gln Ala Leu Ser Ser His Val His Gln Ser His His
65 70 75 80
His Ser Glu Ala Arg Asn His Gly Arg Ala His Gly Pro Thr Gly Phe
85 90 95
Gly Leu Ala Pro Ser Gln Gly Ala Val Pro Ser His Arg Ser Tyr Gly
100 105 110
Glu Asp Tyr His Asp Glu Leu Gln Arg Asp Gly Arg Arg His His Asp
115 120 125
Gly Ser Gln Tyr Gly Phe His Gln Gln Ser Asp Ser His Tyr His
130 135 140
Arg Gly Ser His His Gly Arg Pro Gln Tyr Leu Gly Glu Asn Leu Ser
145 150 155 160
His Tyr Ser Ser Gly Val Pro His His Gly Glu Ala Ser His His Gly
165 170 175
Gly Ser Tyr Leu Pro His Gly Pro Asn Pro Tyr Ser Glu Ser Phe His
180 185 190
His Ser Glu Ala Ser His Leu Ser Gly Leu Gln His Asp Glu Ser Gln
195 200 205
His His Gln Val Pro His Arg Gly Trp Pro His His Gln Val His
210 215 220
His His Gly Arg Ser Arg His His Glu Ala His Gln His Gly Lys Ser
225 230 235 240
Pro His His Gly Glu Thr Ile Ser Pro His Ser Ser Val Gly Ser Tyr
245 250 255
Gln Arg Gly Ile Ser Asp Tyr His Ser Glu Tyr His Gln Gly Asp His
260 265 270
His Pro Ser Glu Tyr His His Gly Asp His Pro His His Thr Gln His
275 280 285
His Tyr His Gln Thr His Arg His Arg Asp Tyr His Gln His Gln Asp
290 295 300
His His Gly Ala Tyr His Ser Ser Tyr Leu His Gly Asp Tyr Val Gln
305 310 315 320
Ser Thr Ser Gln Leu Ser Ile Pro His Thr Ser Arg Ser Leu Ile His

325	330	335
Asp Ala Pro Gly Pro Ala Ala Ser Arg Thr Gly Val Phe Pro Tyr His		
340	345	350
Val Ala His Pro Arg Gly Ser Ala His Ser Met Thr Arg Ser Ser Ser		
355	360	365
Thr Ile Arg Ser Arg Val Thr Gln Met Ser Lys Lys Val His Thr Gln		
370	375	380
Asp Ile Ser Thr Lys His Ser Glu Asp Trp Gly Lys Glu Glu Gly Gln		
385	390	395
Phe Gln Lys Arg Lys Thr Gly Arg Leu Gln Arg Thr Arg Lys Lys Gly		
405	410	415
His Ser Thr Asn Leu Phe Gln Trp Leu Trp Glu Lys Leu Thr Phe Leu		
420	425	430
Ile Gln Gly Phe Arg Glu Met Ile Arg Asn Leu Thr Gln Ser Leu Ala		
435	440	445
Phe Glu Thr Phe Ile Phe Val Val Cys Leu Asn Thr Val Met Leu		
450	455	460
Val Ala Gln Thr Phe Ala Glu Val Glu Ile Arg Gly Glu Trp Tyr Phe		
465	470	475
Met Ala Leu Asp Ser Ile Phe Phe Cys Ile Tyr Val Val Glu Ala Leu		
485	490	495
Leu Lys Ile Ile Ala Leu Gly Leu Ser Tyr Phe Phe Asp Phe Trp Asn		
500	505	510
Asn Leu Asp Phe Phe Ile Met Ala Met Ala Val Leu Asp Phe Leu Leu		
515	520	525
Met Gln Thr His Ser Phe Ala Ile Tyr His Gln Ser Leu Phe Arg Ile		
530	535	540
Leu Lys Val Phe Lys Ser Leu Arg Ala Leu Arg Ala Ile Arg Val Leu		
545	550	555
Arg Arg Leu Ser Phe Leu Thr Ser Val Gln Glu Val Thr Gly Thr Leu		
565	570	575
Gly Gln Ser Leu Pro Ser Ile Ala Ala Ile Leu Ile Leu Met Phe Thr		
580	585	590
Cys Leu Phe Leu Phe Ser Ala Val Leu Arg Ala Leu Phe Arg Lys Ser		
595	600	605
Asp Pro Lys Arg Phe Gln Asn Ile Phe Thr Thr Ile Phe Thr Leu Phe		
610	615	620
Thr Leu Leu Thr Leu Asp Asp Trp Ser Leu Ile Tyr Met Asp Ser Arg		
625	630	635
Ala Gln Gly Ala Trp Tyr Ile Ile Pro Ile Leu Ile Ile Tyr Ile Ile		
645	650	655
Ile Gln Tyr Phe Ile Phe Leu Asn Leu Val Ile Thr Val Leu Val Asp		
660	665	670
Ser Phe Gln Thr Ala Leu Phe Lys Gly Leu Glu Lys Ala Lys Gln Glu		
675	680	685
Arg Ala Ala Arg Ile Gln Glu Lys Leu Leu Glu Asp Ser Leu Thr Glu		
690	695	700
Leu Arg Ala Ala Glu Pro Lys Glu Val Ala Ser Glu Gly Thr Met Leu		
705	710	715
Lys Arg Leu Ile Glu Lys Lys Phe Gly Thr Met Thr Glu Lys Gln Gln		
725	730	735
Glu Leu Leu Phe His Tyr Leu Gln Leu Val Ala Ser Val Glu Gln Glu		
740	745	750
Gln Gln Lys Phe Arg Ser Gln Ala Ala Val Ile Asp Glu Ile Val Asp		
755	760	765
Thr Thr Phe Glu Ala Gly Glu Glu Asp Phe Arg Asn		
770	775	780

<210> 3
 <211> 2061
 <212> DNA
 <213> Murine Catsper 1

<400> 3
 atggatcaat cttcaaggag ggacgagtct taccatgaga cacaccccg tagcttagac 60
 ccaagccatc aatcccaccc ccaccccccac ccccacccca ccctgcata gccaacccaa 120
 ggtggcgtct attacgattc tcctcagcat gggatgtcc aacaaccata ccaacagcat 180
 ggtgggttcc atcaacaaaa tgaattgcag catttgcgtg agttctcaga ctccccatgac 240
 aatgcttct cccatcattc ctatcagcag gacaggctg gtgtctctac cttacctaat 300
 aacatctctc acgcttatgg tggatcgac ccccttgctg agtcccagca ctctgtgga 360
 cccagagtg gacctcgat tgacccgaat catcatcccc accaagatga ccccccata 420
 cccagtgaac ctttgtccca cccctctct actggcagcc accaagggac aacccatcaa 480
 caataccatg agaggtctca ccatttaac ccccagcaga acagagatca tgcagacacc 540
 atttcctatc gtcctcgtac gcggttctat cgctccatg cggcgttca gtcggcaggaa 600
 agacctcatc tccacgcgtc tcaccatcat gagggccatc atgcccattc tcaccatgt 660
 gaacatcccc accacaagga gcaacggcac tattcaggag atcatatgca tcaccatata 720
 catcatcgct ccccaagtgc ctcccaactc tcacacaagt ctacacgac acttgcacc 780
 tctccatctc atgtgggatc gaaaagcaca gccagtgggg ctcggatcac ctttggagct 840
 cgctctcaaa ttttcggcaa agtcagtc agggagagct tgagagaatc agccttttgc 900
 agtgaagggg aggatcacgt tcagaaacgc aaaaaggccc agagggccca caagaaggca 960
 cacacccggaa atatcttcca attgctatgg gaaaaaataa gcacatctcct tttgggtctt 1020
 cagcaaatga tattgtcaact gaccctgtcc ctgggctttg agacctttat cttcatcggt 1080
 gtctgcctca acacagtcat cttgtggcc cagacttca ctgagctaga gatccgaggt 1140
 gaatggtaact tcatggtctt ggactccatc ttctcttcca tctatgtact agaagcagtc 1200
 ctcaagctaa ttggcctggg cctggagat ttttatgacc catggAACAA cctggacttc 1260
 ttcatcatgg tcatggcagt gctggacttt gtgtccttc agataaaactc gctctcatat 1320
 tcattctaca accacagctt gttccggatt ctcaaaagtct tcaaaagtat gcgccctg 1380
 agggccatcc ggggtctcg gaggctcagc atcctgacca gcctccacga agtggccggg 1440
 actctgagtg gatcttacc atccatcactc gccatctca ccctcatgtt tacctgcctc 1500
 ttcccttctc ctgtggtctt ccgagactg tttcagact cagacccaa ggccttccag 1560
 aacatctta ccacacttt caccctgttc accatgtca ccctggacga ctggccctc 1620
 atctacatag acaacaggcc ccaaggccgc tggtacatca taccgatcct catgattac 1680
 attgtcatcc agtacttcat ctccctcaac ctggtgattt ctgtcctggt agataactc 1740
 cagatggcgt tgctcaaaagg cctagagaaa gtgaagctgg agcaagctgc ccgggtccat 1800
 gagaagttgt tggacgactc tctgacagat ctcaacaaag cagacgccaa tgcacaaatg 1860
 accgaggagg ctttgaagat gcagcttatt gagggatgt ttggcaacat gacagtgaag 1920
 cagcgggtgc tccacttcca gttcctgcag ttggtgccag cgtagaaaca gcatcaacag 1980
 aagttcggtt cccaaaggta cgatcgat gagttgtgg acatggcatt tgaggctgga 2040
 gacgacgact acgggaagtgc a 2061

<210> 4
 <211> 686
 <212> PRT
 <213> Murine Catsper 1

<400> 4
 Met Asp Gln Ser Ser Arg Arg Asp Glu Ser Tyr His Glu Thr His Pro
 1 5 10 15
 Gly Ser Leu Asp Pro Ser His Gln Ser His Pro His Pro His
 20 25 30
 Pro Thr Leu His Arg Pro Asn Gln Gly Gly Val Tyr Tyr Asp Ser Pro
 35 40 45
 Gln His Gly Met Phe Gln Gln Pro Tyr Gln Gln His Gly Gly Phe His

50	55	60
Gln Gln Asn Glu Leu Gln His Leu Arg Glu Phe Ser Asp Ser His Asp		
65	70	75
Asn Ala Phe Ser His His Ser Tyr Gln Gln Asp Arg Ala Gly Val Ser		80
85	90	95
Thr Leu Pro Asn Asn Ile Ser His Ala Tyr Gly Gly Ser His Pro Leu		
100	105	110
Ala Glu Ser Gln His Ser Gly Gly Pro Gln Ser Gly Pro Arg Ile Asp		
115	120	125
Pro Asn His His Pro His Gln Asp Asp Pro His Arg Pro Ser Glu Pro		
130	135	140
Leu Ser His Pro Ser Ser Thr Gly Ser His Gln Gly Thr Thr His Gln		
145	150	155
Gln Tyr His Glu Arg Ser His His Leu Asn Pro Gln Gln Asn Arg Asp		160
165	170	175
His Ala Asp Thr Ile Ser Tyr Arg Ser Ser Thr Arg Phe Tyr Arg Ser		
180	185	190
His Ala Pro Phe Ser Arg Gln Glu Arg Pro His Leu His Ala Asp His		
195	200	205
His His Glu Gly His His Ala His Ser His His Gly Glu His Pro His		
210	215	220
His Lys Glu Gln Arg His Tyr His Gly Asp His Met His His His Ile		
225	230	235
His His Arg Ser Pro Ser Ala Ser Gln Leu Ser His Lys Ser His Ser		240
245	250	255
Thr Leu Ala Thr Ser Pro Ser His Val Gly Ser Lys Ser Thr Ala Ser		
260	265	270
Gly Ala Arg Tyr Thr Phe Gly Ala Arg Ser Gln Ile Phe Gly Lys Ala		
275	280	285
Gln Ser Arg Glu Ser Leu Arg Glu Ser Ala Ser Leu Ser Glu Gly Glu		
290	295	300
Asp His Val Gln Lys Arg Lys Lys Ala Gln Arg Ala His Lys Lys Ala		
305	310	315
His Thr Gly Asn Ile Phe Gln Leu Leu Trp Glu Lys Ile Ser His Leu		
325	330	335
Leu Leu Gly Leu Gln Gln Met Ile Leu Ser Leu Thr Gln Ser Leu Gly		
340	345	350
Phe Glu Thr Phe Ile Phe Ile Val Val Cys Leu Asn Thr Val Ile Leu		
355	360	365
Val Ala Gln Thr Phe Thr Glu Leu Glu Ile Arg Gly Glu Trp Tyr Phe		
370	375	380
Met Val Leu Asp Ser Ile Phe Leu Ser Ile Tyr Val Leu Glu Ala Val		
385	390	395
Leu Lys Leu Ile Ala Leu Gly Leu Glu Tyr Phe Tyr Asp Pro Trp Asn		400
405	410	415
Asn Leu Asp Phe Phe Ile Met Val Met Ala Val Leu Asp Phe Val Leu		
420	425	430
Leu Gln Ile Asn Ser Leu Ser Tyr Ser Phe Tyr Asn His Ser Leu Phe		
435	440	445
Arg Ile Leu Lys Val Phe Lys Ser Met Arg Ala Leu Arg Ala Ile Arg		
450	455	460
Val Leu Arg Arg Leu Ser Ile Leu Thr Ser Leu His Glu Val Ala Gly		
465	470	475
Thr Leu Ser Gly Ser Leu Pro Ser Ile Thr Ala Ile Leu Thr Leu Met		480
485	490	495
Phe Thr Cys Leu Phe Leu Phe Ser Val Val Leu Arg Ala Leu Phe Gln		
500	505	510

Asp	Ser	Asp	Pro	Lys	Arg	Phe	Gln	Asn	Ile	Phe	Thr	Thr	Leu	Phe	Thr
515						520							525		
Leu	Phe	Thr	Met	Leu	Thr	Leu	Asp	Asp	Trp	Ser	Leu	Ile	Tyr	Ile	Asp
530						535						540			
Asn	Arg	Ala	Gln	Gly	Ala	Trp	Tyr	Ile	Ile	Pro	Ile	Leu	Met	Ile	Tyr
545						550					555			560	
Ile	Val	Ile	Gln	Tyr	Phe	Ile	Phe	Leu	Asn	Leu	Val	Ile	Ala	Val	Leu
						565				570			575		
Val	Asp	Asn	Phe	Gln	Met	Ala	Leu	Leu	Lys	Gly	Leu	Glu	Lys	Val	Lys
						580			585			590			
Leu	Glu	Gln	Ala	Ala	Arg	Val	His	Glu	Lys	Leu	Leu	Asp	Asp	Ser	Leu
						595			600			605			
Thr	Asp	Leu	Asn	Lys	Ala	Asp	Ala	Asn	Ala	Gln	Met	Thr	Glu	Glu	Ala
						610			615			620			
Leu	Lys	Met	Gln	Leu	Ile	Glu	Gly	Met	Phe	Gly	Asn	Met	Thr	Val	Lys
						625			630			635			640
Gln	Arg	Val	Leu	His	Phe	Gln	Phe	Leu	Gln	Leu	Val	Ala	Ala	Val	Glu
						645			650			655			
Gln	His	Gln	Gln	Lys	Phe	Arg	Ser	Gln	Ala	Tyr	Val	Ile	Asp	Glu	Leu
						660			665			670			
Val	Asp	Met	Ala	Phe	Glu	Ala	Gly	Asp	Asp	Asp	Tyr	Gly	Lys		
						675			680			685			

<210> 5
<211> 926
<212> DNA
<213> Mouse CatSper1

<400> 5
gctagctccc tcttagtctt gtcctcagcg tgagggagcc cattacata gcaatgttga 60
gctcaacttg agataaccct gacattgtgg gaaatgccc aagaaccactc ttcatgggcc 120
tgcggcagct tgccaattcc atggcctcag gctcaggcct gttcgtgagc ctggcggtt 180
cttcaggcctt gaactacagt tgctggtttgc tgtctgtatgt ctgcttgatg aaaggactgg 240
tctcagctg ctgggtcatg tgtgtatgt gtatgcctag aggactggtc tgcagctgtct 300
gagtcatatt tggtgtttgc tacaggactg aactgctgac aaagatcgaa ctcgtcccc 360
aagaactatt gctgaacacagg tccacttccc ccagacccta ataacttcc tctaacaactg 420
cctctgctgg gtggtgagct agaggagagg ttaaacccctt attaaaagta gggtgaaaa 480
aatgtatgcc tacagtgttag ccctgggtga ctggaaactc attgtgtaga ccagacttga 540
gctcacagag atctacctgc ctctgcctcc ctatgtctgg gttcgggggc ctttactatc 600
acaccaggcc cagtttctg attttacaat aaagaggtga gtgagctatg ctaattccct 660
ttttcatct tttatattgtt tgggtttgt tttgtttaga cacaatagtt ctcaattctg 720
aatgataagc tcaaagaaag tcctcatttg taaagcgaga cctaagcaca ctgatgacat 780
catagaaaagg aagattccga gagaagagtc agagctccctt ggaagccggg gctgtggttg 840
gactgagctt ggcttgaggg gatcccgaga agggactttg gtttatacac acgtgatgtc 900
tttggccatggggctccaaag acagtc 926

<210> 6
<211> 498
<212> DNA
<213> Mouse CatSper1

<220>
<221> misc_feature
<222> 445, 480
<223> n = A,T,C or G

<400> 6
ccctgaagaa tactaacctg agtttctggc aagctaccta cctcggtggg ttgggacatg 60
gccctaattgc tgctggatt atccagaacc atgttgact gaggtcccaa tagagtttt 120
aaaacccctg gagggctctg tgtccttact ggcttagcctg aagcaaaggtaa 180
tcgaatagtgc tgccgttagac atatgttgc 240
ctcccttgac ctcaccaggat tctagcctct gagttcagtc caacatgaca ttagcagaga 300
tcagaagagc ggtatagaaa gaggagcctg gggagaggat ggaagaccca ctgtgaagtc 360
ctttgatggg gagaacctgt ctgtcctggg gttggagaa aaaagaacag actgaaacag 420
tccagaacctt tcagggttgc attanaggcc aggcattggg ctcagcaccc aggaactcan 480
gcttaccagg aaccccaa 498