Transformate Laplace, z și z modificate

f(t) ⁴ f[t] ▶	$f(s) = \mathbf{L}[f(t)]$	$f(z) = \mathbf{Z}[f[t]] = $ $Z\{f(s)\}$	$f_{9}(z) = \mathbf{Z} \{f[t, 9]\} = Z_{9} \{f(s)\}$
(1)	(2)	(3)	(4)
δ(t)	1	5	x
4 δ[t] >	X	1	х
1 , σ(t)	<u>1</u> s	$\frac{z}{z-1}$	$\frac{z}{z-1}$
4 (−1) ^t ▶	х	$\frac{z}{z+1}$	x
t	$\frac{1}{s^2}$	$\frac{hz}{(z-1)^2}$	$\frac{h z \cdot [9z + (1-9)]}{(z-1)^2}$
$\frac{1}{2} \cdot t^2$	$\frac{1}{s^3}$	$\frac{h^2z(z+1)}{2(z-1)^3}$	$\frac{h^2z[9^2z^2 + (1+29-29^2)z + (1-9)^2]}{2\cdot(z-1)^3}$
$\frac{1}{3!} \cdot t^3$	$\frac{1}{s^4}$	$\frac{h^3z(z^2+4z+1)}{3!\cdot(z-1)^4}$	$\frac{h^3z\left[9^3z^3 + (1+39+39^2-39^3)z^2 + (4-69^2+39^3)z + (1-9)^3\right]}{3!\left(z-1\right)^4}$
$\frac{1}{n!} \cdot t^n$	$\frac{1}{s^{n+1}}$	$\frac{1}{n!} \cdot \lim_{a \to 0} \frac{\partial^n}{\partial a^n} \left\{ \frac{z}{z - e^{-ah}} \right\}$	$\frac{1}{n!} \cdot \lim_{a \to 0} \frac{\partial^n}{\partial a^n} \left\{ \frac{z e^{a \vartheta h}}{z - e^{-ah}} \right\}$
$a^t, a > 0$	$\frac{1}{s-\ln a}$	$\frac{z}{z-a^{h}}$	$\frac{za^{9h}}{z-a^{h}}$
(-a) ^t ,a>0 ▶	х	$\frac{z}{z+a}$	x
$\frac{a^t}{t!}$, a>0	x	$\frac{a}{e^{z}}$	x
e ^{-at}	$\frac{1}{s+a}$	$\frac{z}{z - e^{-ah}}$	$\frac{z \cdot e^{-a\theta h}}{z - e^{-ah}}$
$\delta(t) - a \cdot e^{-at}$	$\frac{s}{s+a}$	x	x
t · e ^{−at}	$\frac{1}{(s+a)^2}$	$\frac{hze^{-ah}}{(z-e^{-ah})^2}$	$\frac{hze^{-a9h}\cdot[9z+(1-9)\cdot e^{-ah}]}{(z-e^{-ah})^2}$
(1−at)·e ^{−at}	$\frac{s}{(s+a)^2}$	$\frac{z \cdot [z - (1 + ah)e^{-ah}]}{(z - e^{-ah})^2}$	$\frac{ze^{-a\vartheta h}}{(z-e^{-ah})^2}\cdot[(1-a\vartheta h)z-(1+ah-a\vartheta h)e^{-ah}]$
t ² e ^{-at}	$\frac{2}{(s+a)^3}$	$\frac{h^2z e^{-ah}(z + e^{-ah})}{(z - e^{-ah})^3}$	$\frac{h^2ze^{-a\vartheta h}}{(z-e^{-ah})^3}[\vartheta^2z^2+(1+2\vartheta-2\vartheta^2)e^{-ah}z+(1-\vartheta)^2e^{-2ah}]$
t ⁿ e ^{at}	$\frac{n!}{(s+a)^{n+1}}$	$\frac{\partial^n}{\partial a^n} \left\{ \frac{z}{z - e^{-ah}} \right\}$	$(-1)^{n} \cdot \frac{\partial^{n}}{\partial a^{n}} \left\{ \frac{ze^{-a\theta h}}{z - e^{-ah}} \right\}$
1-e ^{-at}	$\frac{a}{s(s+a)}$	$\frac{(1 - e^{-ah})z}{(z - 1)(z - e^{-ah})}$	$\frac{(1 - e^{-a9h})z^2 + (e^{-a9h} - e^{-ah})z}{(z - 1)(z - e^{-ah})}$

chω ₀ t		$\frac{z(z-\operatorname{ch}\omega_0 h)}{z^2 - 2z \cdot \operatorname{ch}\omega_0 h + 1}$	$\frac{\mathbf{z} \cdot [\mathbf{z} \mathbf{ch} \boldsymbol{\theta} \boldsymbol{\omega}_0 \mathbf{h} - \mathbf{ch} (1 - \boldsymbol{\theta}) \boldsymbol{\omega}_0 \mathbf{h}]}{\mathbf{z}^2 - 2\mathbf{z} \cdot \mathbf{ch} \boldsymbol{\omega}_0 \mathbf{h} + 1}$
shω ₀ t	$\frac{\omega_0}{s^2 - \omega_0^2}$	$\frac{z \cdot sh\omega_0 h}{z^2 - 2z \cdot ch\omega_0 h + 1}$	$\frac{z \cdot [z \cdot \operatorname{sh} \theta \omega_0 \operatorname{h} + \operatorname{sh} (1 - \theta) \omega_0 \operatorname{h}]}{z^2 - 2z \cdot \operatorname{ch} \omega_0 \operatorname{h} + 1}$
		$\mathbf{Z}\left\{\left(-e^{ah}\right)^{t}\right\} = \frac{z}{z + e^{-ah}}$	$\frac{(z\cos 9\frac{\pi}{2} - e^{-ah}\sin 9\frac{\pi}{2}) \cdot z \cdot e^{-a 9h}}{z^2 - 2ze^{-a h}\cos \omega_0 h + e^{-2a h}}$
$e^{-at}\cos\omega_0 t$	$\frac{s+a}{(s+a)^2+\omega_0^2}$	$\frac{z(z-e^{-ah}\cos\omega_h)}{z^2-2ze^{-ah}\cos\omega_h+e^{-2ah}}$ $caz \ special:$ $\omega_0 h = \pi$	$\begin{split} \frac{[z\cos\vartheta\omega_0h-e^{-ah}\cos(1-\vartheta)\omega_0h]\cdot z\cdot e^{-a\vartheta h}}{z^2-2ze^{-ah}\cos\omega_0h+e^{-2ah}} \\ \\ caz \ special: \ \omega_0h=\pi \end{split}$
$e^{-at}\sin\omega_0 t$	$\frac{\omega_0}{(s+a)^2 + \omega_0^2}$	$\begin{split} \frac{z e^{-ah} \sin \omega_0 h}{z^2 - 2z e^{-ah} \cos \omega_0 h + e^{-2ah}} \\ & \textit{caz special:} \\ & \omega_0 h = \pi/2 \\ \textbf{Z} \bigg\{ \frac{1 - (-1)^t}{2} (-e^{ah})^t \bigg\} = \\ & = \frac{z e^{-ah}}{z^2 + e^{-2ah}} \end{split}$	$\frac{[z\sin \theta\omega_0 h + e^{-ah}\sin(1-\theta)\omega_0 h] \cdot z \cdot e^{-a\theta h}}{z^2 - 2ze^{-ah}\cos \omega_0 h + e^{-2ah}}$ $caz \ special: \ \omega_0 h = \pi/2$ $\frac{(z\sin \theta \frac{\pi}{2} + e^{-ah}\cos \theta \frac{\pi}{2}) \cdot z \cdot e^{-a\theta h}}{z^2 + e^{-2ah}}$
$\frac{\cos at - \cos bt}{b^2 - a^2}$	$\frac{s}{(s^2 + a^2) \cdot (s^2 + b^2)}$	$\frac{1}{b^2 - a^2} \cdot \frac{1}{z^2 - a^2} \cdot \left[\frac{z(z - \cos ah)}{z^2 - 2z \cos ah + 1} - \frac{z(z - \cos bh)}{z^2 - 2z \cos bh + 1} \right]$	$\frac{1}{b^2 - a^2} \cdot \left[\frac{z^2 \cos 9ah - z \cos (1 - 9)ah}{z^2 - 2z \cos ah + 1} - \frac{z^2 \cos 9bh - z \cos (1 - 9)bh}{z^2 - 2z \cos bh + 1} \right]$
cos ω ₀ t	$\frac{s}{s^2 + \omega_0^2}$	$\frac{z(z - \cos \omega_0 h)}{z^2 - 2z \cos \omega_0 h + 1}$ $caz \ special:$ $\omega_0 h = \pi$ $\mathbf{Z} \left\{ (-1)^t \right\} = \frac{z}{z+1}$	$\frac{z^2 \cos 9\omega_0 h - z \cos(1-9)\omega_0 h}{z^2 - 2z \cos \omega_0 h + 1}$ $caz \ special: \ \omega_0 h = \pi$ $\frac{z \cos 9\pi}{z + 1}$
sin ω ₀ t	· ·	$\frac{z\sin\omega_0h}{z^2-2z\cos\omega_0h+1}$	$\frac{z^2 \sin 9\omega_0 h + z \sin (1 - 9)\omega_0 h}{z^2 - 2z \cos \omega_0 h + 1}$
$ab(a-b)t+$ $(b^{2}-a^{2}) -b^{2}e^{-at}+$ $+a^{2}e^{-bt}$	$\frac{a^2b^2(a-b)}{s^2(s+a)(s+b)}$	$\frac{ab(a-b)hz}{(z-1)^2} + \frac{(b^2 - a^2)z}{z-1} - \frac{b^2z}{z-e^{-ah}} + \frac{a^2z}{z-e^{-bh}}$	$\frac{a b (a - b) h z}{(z - 1)^{2}} + \frac{[a b (a - b) 9 h + b^{2} - a^{2}] \cdot z}{z - 1} - \frac{b^{2} e^{-a9h} z}{z - e^{-ah}} + \frac{a^{2} e^{-b9h} z}{z - e^{-bh}}$
a(1-e ^{-lxt})- -b(1-e ^{-at})	$\frac{ab(a-b)}{s(s+a)(s+b)}$	$\begin{split} \frac{z}{(z-1)(z-e^{-ah})(z-e^{-bh})} \cdot \\ \cdot \{ (a-b-ae^{-bh}+be^{-ah}) \cdot z + \\ [(a-b) \cdot e^{-(a+b)h}-ae^{-ah}+be^{-bh}] \end{split}$	$\frac{\left(a-b\right)z}{z-1} + \frac{bze^{a\vartheta h}}{z-e^{-ah}} - \frac{aze^{-b\vartheta h}}{z-e^{-bh}}$
e ^{-at} -e ^{-bt}	b-a (s+a) (s+b)	$\frac{z(e^{-ah} - e^{-bh})}{(z - e^{-ah})(z - e^{-bh})}$	$\frac{(e^{-a9h} - e^{-b9h})z^2 + (e^{-(a+b9)h} - e^{-(b+a9)h})z}{(z - e^{-ah})(z - e^{-bh})}$
at-1+e ^{-at}	$\frac{a^2}{s^2(s+a)}$	$\frac{(ah-1+e^{-ah})z^2}{(z-1)^2(z-e^{-ah})}^+$ $+\frac{(1-ahe^{-ah}-e^{-ah})z}{(z-1)^2(z-e^{-ah})}$	$\frac{z}{(z-1)^2(z-e^{-ah})} \cdot \{[a9h - 1 + e^{-a9h}) \cdot z^2 + \\ + [ah(1-9-9e^{-ah}) + 1 - 2e^{-a9h} + e^{-ah}] \cdot z + \\ + \left[e^{-a9h} - ahe^{-ah}(1-9) - e^{-ah}\right]$

$\frac{1}{\sqrt{t}} \cdot e^{-at}, t > 0$	$\sqrt{\frac{\pi}{s+a}}$	xx	xx
$ \begin{array}{c} $	x	$\frac{z}{(z-1)^{k+1}}$	x
$\sum_{k=1,3,}^{\infty} \frac{2sirk\pi t}{k\pi}$	$\frac{1}{s(1+e^{-s})}$	xx	xx
f[0]=0, f[t]=(-1) ^{t-1} t- 1,t ∈ N * •	X	$\ln\left(1+\frac{1}{z}\right)$	х
f[0]=0, f[t]=a ^{t-1} t- 1,t ∈ N * •	х	$\frac{1}{a} \cdot \ln \frac{z}{z-a}$	x

În tabel s-au folosit notațiile "x" și "xx" pentru situațiile în care transformatele respective nu există, respectiv nu prezintă interes.