Activité : Comment minimiser les pertes par effet Joule lors du transport de l'électricité ?

Document 1 : Ligne électrique

Description du schéma ci-dessus : Une usine et un lotissement de maisons sont alimentés par un barrage hydroélectrique et une centrale solaire. Les intensités maximales que peuvent délivrer le barrage et la centrale sont notées $I_{1Max}=100A$ et $I_{2Max}=200A$. Ces centrales sont raccordées à une même sous-station. Celle-ci-transmet une puissance $P_3=600kW$ à l'usine et une puissance $P_4=11,5~kW$ au lotissement. De plus, on connait la tension $U_3=20kV$ à l'entrée de l'usine et la tension $U_4=230V$ pour le lotissement.

La ligne électrique entre les panneaux solaires et la sous station a une résistance $R_1=0.6~\Omega$. Les résistances des autres lignes R_2,R_3 et R_4 valent toutes 1 Ω (voir schéma).

Document 2 : Un exemple de graphe orienté

Document 3 : Règles des lignes électriques

On note:

P (en Watt) la puissance électrique ;

I (en Ampère) l'intensité (aussi appelé courant)

U (en Volt) la tension

R (en Ohm : Ω) la résistance d'une ligne de transport

Règle 1: L'intensité totale qui rentre dans une sous station est égale à l'intensité totale qui sort de la sous station.

Règle 2 : La puissance produite par les centrales est égale à la somme de la puissance consommée et de la puissance perdue.

Document 4 : Minimisation d'une fonction f

Méthode 1 (Spé Maths):

- Calculer la fonction dérivée $m{f}$ '
- Tracer le tableau de signe de la fonction f' puis le tableau de variation de f
- En déduire la position du minimum de la fonction f.

Méthode 2 (non Spé Maths) :

- Aller sur le site http://acver.fr/minfonc
- Cliquer sur , puis dans « option » choisir :
 - \circ Xmin = 0 , xmax = I_{1Max}
 - o Ymin = 5000 , ymax = 11000
 - O Cliquer sur « Enregistrer Options »
- Ecrire la fonction à minimiser [par exemple : 1,7 $x^2 + 5x 2$ (x^2 veut dire x^2)]
- Cliquer sur « Tracer fonction »
- Repérer le minimum sur la courbe.

Travail:

- Représenter le dessin du document 1 sous la forme d'un *graphe orienté*. On indiquera les grandeurs connues tension, intensité, courant).
 On note I₁, l'intensité générée par la centrale solaire et I₂, l'intensité générée par le barrage.
 On note I₃ et I₄ les intensités dans les lignes alimentant respectivement l'usine et le lotissement.
- **2-** Calculer l'intensité I_3 puis I_4 . (Indice : Quelle est la formule reliant Puissance, Tension et Courant ?)
- **3-** Exprimer I_1 en fonction de I_2 .
- 4- Le document 3 fait référence à de la « *puissance perdue* ». Sous quelle forme cette puissance est perdue ? Comment appelle-t-on l'effet mis en jeu. Réciter la formule reliant la puissance perdue par effet joule dans une ligne électrique, la résistance de la ligne et l'intensité de la ligne
- 5- En déduire l'expression des pertes totales par effet Joule dans les lignes électriques. Il ne doit rester que I_1 dans la formule.
- 6- En déduire que la fonction à minimiser pour réduire les pertes par effet joule est $f(x) = 1.6 \cdot x^2 160 \cdot x + 9800$. Trouver l'intensité I_1 optimale pour réduire les pertes par effet joule. En déduire, la puissance perdue par effet joule P_{loule} .
- 7- Calculer le rendement global de la ligne