Lagrange Multipliers

We've seen how we can optimize a function subject to a constraint using substitution, and we've seen that it can be very difficult to correctly handle the constraints! Fortunately, there is a tool that we can use to simplify this process. This tool is called "Lagrange multipliers."

Gradients

Suppose we wish to optimize a function $f:\mathbb{R}^n\to\mathbb{R}$ subject to some constraint $g(\vec{x})=C$, where C is a constant, and $g:\mathbb{R}^n\to\mathbb{R}$ is a function. For now, we'll focus on the case n=2, so we have a function $f:\mathbb{R}^2\to\mathbb{R}$ and a constraint g(x,y)=C. The graph of f will be a surface in \mathbb{R}^3 ,

and the graph of g(x,y) = C is a curve in \mathbb{R}^2 .

Author(s): Melissa Lynn

Learning outcomes: Understand the justification for Lagrange multipliers, and use them to solve constrained optimization problems.

Now, suppose that the maximum value of f(x,y) subject to the constraint g(x,y) = C occurs at some point (a,b). Suppose we parametrize the curve g(x,y) = C as $\vec{x}(t)$, with $(a,b) = \vec{x}(t_0)$. We can view g(x,y) = C as a level curve of the function g(x,y), and then the gradient of g(x,y) will always be perpendicular to the curve g(x,y) = C.

More precisely, for any point $(x,y) = \vec{x}(t)$ on the curve g(x,y) = C, we'll have $\nabla g(x,y)$ is perpendicular to $\vec{x}'(t)$. That is, $\nabla g(\vec{x}(t)) \perp \vec{x}'(t)$ for all t.

Next, let's turn our attention back to f. If f has an absolute maximum subject to g(x,y)=C, then $f(\vec{x}(t))$ has an absolute maximum at $t=t_0$. This means that $f(\vec{x}(t))$ has a critical point at $t=t_0$, so $\frac{d}{dt}f(\vec{x}(t))|_{t=t_0}=0$. Using the chain rule, we can rewrite this as

$$\nabla f(\vec{x}(t_0)) \cdot \vec{x}'(t) = 0.$$

So, both $\nabla f(a,b)$ and $\nabla g(a,b)$ are perpendicular to $\vec{x}'(t)$. Since we are considering vectors in \mathbb{R}^2 , this means that $\nabla f(a,b)$ and $\nabla g(a,b)$ are parallel, so we can write

$$\nabla f(a,b) = \lambda \nabla g(a,b)$$

for some constant λ .

So, we can find candidate points for the absolute maximum (and similarly, the absolute minimum) of f(x,y) subject to the constraint g(x,y)=C by finding points where

$$\nabla f(a,b) = \lambda \nabla g(a,b).$$

This observation generalizes to \mathbb{R}^n .

Proposition 1. Consider C^1 functions $f, g : \mathbb{R}^n \to \mathbb{R}$, and let C be a constant. If f has an absolute maximum or absolute minimum at \vec{a} subject to the constraint $g(\vec{x}) = C$, then there exists some scalar λ such that

$$\nabla f(\vec{a}) = \lambda \nabla g(\vec{a}).$$

The constant λ is called a Lagrange Multiplier.

We can leverage this theorem into a method for finding absolute extrema of a function subject to a constraint, which we call the *method of Lagrange multipliers*

To find the absolute extrema of a function $f(\vec{x})$ subject to a constraint $g(\vec{x}) = C$:

- (a) Compute the gradients $\nabla f(\vec{x})$ and $\nabla g(\vec{x})$.
- (b) Solve the system of equations

$$\begin{cases} \nabla f(\vec{x}) = \lambda \nabla g(\vec{x}) \\ g(\vec{x}) = C \end{cases}$$

for \vec{x} and λ .

(c) The solutions to the system of equations in (2) are the critical points of $f(\vec{x})$ subject to $g(\vec{x}) = C$. Classify these critical points in order to determine the absolute extrema.

If $g(\vec{x}) = C$ is compact, we can determine the absolute extrema by comparing the values of f at the critical points. In this case, absolute extrema are guaranteed to exist by the Extreme Value Theorem.

We'll see how this process works in a couple of examples. First, we repeating an optimization problem which was previously done with substitution.

Example 1. We'll find the absolute maximum and absolute minimum of $f(x, y) = x^2 - y^2$ subject to the constraint $x^2 + y^2 = 1$. Notice that $x^2 + y^2 = 1$ is a compact region, so absolute extrema will exist.

If we let $g(x,y) = x^2 + y^2$, our constraint is g(x,y) = 1.

Computing the gradients of f and g, we have

$$\nabla f(x,y) = \boxed{(2x,-2y)},$$

$$\nabla g(x,y) = \boxed{(2x,2y)}.$$

Setting up the system of equations

$$\begin{cases} \nabla f(\vec{x}) = \lambda \nabla g(\vec{x}) \\ g(\vec{x}) = 1 \end{cases},$$

we have

$$\nabla(2x, -2y) = \lambda(2x, 2y)$$
$$x^2 + y^2 = 1$$

We can rewrite this as a system of three equations,

$$\begin{cases} 2x = 2\lambda x \\ 2y = -2\lambda y \\ x^2 + y^2 = 1 \end{cases}.$$

From the first equation, we have either x = 0 or $\lambda = 1$.

If x = 0, the third equation gives us $y = \pm 1$. Thus, we obtain the critical points $(0, \pm 1)$.

If $\lambda = 1$, the second equation gives us y = 0. Then, the third equation gives us $x = \pm 1$. This gives us the critical points $(\pm 1, 0)$.

Since we know that f will have an absolute maximum and minimum subject to our constraint, we will compare the values at the critical points to determine the absolute maximum and minimum.

$$f(0,-1) = -1$$

$$f(0,1) = -1$$

$$f(-1,0) = 1$$

$$f(1,0) = 1$$

We see that the absolute maximum of f subject to our constraint is 1, and this occurs at the points $(\pm 1,0)$. The absolute minimum of f subject to our constraint is -1, and this occurs at the points $(0,\pm 1)$.

Example 2. Next, we'll attempt to optimize $f(x,y) = 12 - x^2 - y^2$ subject to the constraint $y^2 = x + 5$. Here, we'll need to be a bit more careful, since the curve defined by $y^2 = x + 5$ is not compact, as it is unbounded.

However, Lagrange multipliers will still be helpful for finding critical points. We can rewrite our constaint as $y^2 - x = 5$, and take $g(x, y) = y^2 - x$. So, we are optimizing f(x, y) subject to the constraint g(x, y) = 5.

We begin by finding the gradients of f and g.

$$\nabla f(x,y) = \boxed{(-2x,-2y)}$$
$$\nabla g(x,y) = \boxed{(-1,2y)}$$

Next, we solve the system

$$\begin{cases} \nabla f(\vec{x}) = \lambda \nabla g(\vec{x}) \\ g(\vec{x}) = 5 \end{cases},$$

which is

$$\begin{cases} (-2x, -2y) = \lambda(-1, 2y) \\ y^2 - x = 5 \end{cases}.$$

We can rewrite this system as the three equations

$$\begin{cases}
-2x = -\lambda \\
-2y = 2\lambda y \\
y^2 - x = 5
\end{cases}$$

From the second equation, we have either y = 0, or $\lambda = -1$.

If y = 0, the third equation gives us x = -5. So, we have a critical point (-5,0).

If $\lambda = -1$, the first equation gives us $x = -\frac{1}{2}$. Then the third equation gives us $y = \pm \frac{3}{\sqrt{2}}$. So, we have the critical points $\left(-\frac{1}{2}, \pm \frac{3}{\sqrt{2}}\right)$.

In this case, we can't determine the absolute maximum and absolute minimum by plugging in these points, since we aren't optimizing over a compact region.

However, looking at the graph of f over the curve g(x,y)=5, we can see that the absolute maximum occurs at the points $\left(-\frac{1}{2},\pm\frac{3}{\sqrt{2}}\right)$. Although there is a local minimum at (-5,0), this is not an absolute minimum, as there is no absolute minimum.

Lagrange Multipliers

