林華君(7) 资务

Introduction to Information Engineering-Midterm exam. #1(Fall 2013)

- 1. (6%) What is the main difference between Turing model and von Neumanm model of a computer?
- 2. (6%) In which of the following situations does an overflow never occur? Justify the answer.
 - a. Adding two positive integers.
 - b. Adding one positive integer to a negative integer.
 - c. Subtracting one positive integer from a negative integer.
 - d. Subtracting two negative integers
- 3. (6%) What is the advantage and disadvantage of using indexed color compared with using true color to encode the color of a pixel?
- 4. (9%) Compare and contrast the representation of zero in sign-and-magnitude, two's complement, and Excess formats.
- 5. (4%) We need to unset the two leftmost bits and set the three rightmost bits of an 8-bit pattern. Show the masks and operations.
- 6. (4%) A computer has 256MB (megabytes) of memory. Each word is 2 bytes. How many bits are required to address each single word in memory?
- 7. (6%) What are the advantages and disadvantages of memory-mapped I/O compared with isolated I/O?
- 8. (12%) Describe the operation of direct memory access (DMA).
- 9. (8%) How does a DMA controller increase the efficiency of transferring data between memory and an I/O device?
- 10. (8%) Suppose that a program consists of *n* instructions in sequential order. A machine cycle consists of three phases, namely, phase 1, phase 2, and phase 3. All phases require the same amount of time, *T*, to complete.
 - (a) Calculate the total amount of time to complete the execution of the program using a CPU with no pipelining.
 - (b) Calculate the total amount of time to complete the execution of the program using a CPU with pipelining.
- 11. (12%) An imaginary computer has 16 data registers (R0 to R15), 4M words in memory, and 64 different instructions.
 - (a) Consider a typical instruction uses the following format:

instruction M R1

where *M* denotes a memory address. What is the minimum size of an instruction in bits?

- (b) What is the minimum size of the instruction register?
- (c) What is the size of the program counter?

- (d) What is the size of the address bus?
- 12. (20%) Using the instruction set of the simple computer in Section 5.7, write a program and convert it into a set of binary codes that performs the following calculation:

$$D \leftarrow A + B + C$$

A, B, C are integers in two's complement format. The keyboard is mapped to memory location (FE)₁₆ and the monitor is mapped to memory location (FF)₁₆. The user types the value of A, B, and C, and the value of D is displayed on the monitor.

Table 5.4 List of instructions for the simple computer

Instruction	Code	Operands			Action		
	d ₁	d ₂	d ₃	d ₄	Action		
HALT	0				Stops the execution of the program		
LOAD	1	R _D	M _S		R _D <- M _S		
STORE	2	M _D		R _S	M _D ← R _S		
ADDI	3	RD	R _{S1}	R ₅₂	R _D ~~ R _{S1} + R _{S2}		
ADDF	4	R _D	R _{S1}	R _{S2}	$R_D \leftarrow R_{S1} + R_{S2}$		
MOVE	5	R _D	R _S		R _D < R _S		
NOT	6	R _D	Rs		$R_D \leftarrow \overline{R}_S$		
AND	7	R _D	R ₅₁	R _{S2}	$R_D \leftarrow R_{S1}$ AND R_{S2}		
OR	8	R _D	R _{S1}	R _{S2}	R _D ← R _{S1} OR R _{S2}		
XOR	9	R _D	R ₅₁	R _{S2}	R _D · R _{S1} XOR R _{S2}		
INC	А	R	. 11		R <∞ R + 1		
DEC	В	R			R 5000 R = 1		
ROTATE	С	R	n	0 or 1	Rot _n R		
JUMP	D	R	n		IF $R_0 \times R$ then PC = n , otherwise continue		
R _D : H M _S : H M _D : I n: he	lexadeo lexade Hexade xadecii	cimal a cimal a cimal a mal nu	ddress ddress iddress mber	of dest of sour s of des	s of source registers ination register rce memory location tination memory location , and fourth hexadecimal digits		

Opcode Operand

4 bits 12 bits

a. Instruction format

Opcode R-address	R-address	R-address	Opcode	Memory a	ddress	R-address
Opcode R-address	R-address		Opcode	R-address	Memor	y address
Opcode R-address			Opcode F	R-address	п	0 or 1
	Opcode					

b. Instruction types