Package 'opls'

July 3, 2014

Title Implementation and extension of Orthogonal Projection to Latent Structures

Version 0.1

Description Implementation of orthogonal projection onto latent structures (OPLS). Based on the original method described by Trygg and Wold (Trygg J,Wold S. Orthogonal projections to latent structures (O-PLS). J. Chemometrics 2002; 16: 119128). Includes novel variable selection and

n-group discriminant analysis. This software is provided "AS IS" without warranty of any kind, express or implied.

Depends R (>= 3.1.0)

Imports pracma, caret

License MIT License

LazyData true

Index

R topics documented:

apply_opls_model	
determine_significant_features	3
n.group.opls	4
n.group.opls.helper	5
opls	5
opls_CV	6
permutation_test	
run_det_sig	
run_opls	7
	•

2 apply_opls_model

Description

Apply a model to new (or old) data. Computes the t scores and the predicted-y value for each sampel in new_X.

Usage

```
apply_opls_model(X, Y, opls_results, new_X)
```

Arguments

X - n x p matrix, where n is the number of samples and p is the number of variables.

Y - n x 1 matrix. Must be numeric

new_X - m x p matrix, where m is the number of samples and p is the number of vari-

ables.

opls_model - opls model.

Value

List containing

t t-score

t_ortho t-orthogonal scores

Y_pred the predicted-y values for the samples

```
X <- rand(10,10)
new_X <- rand(5,10)
Y <- rand(10,1)
model <- opls(X,Y,1)
res <- apply_opls_model(X,Y,model,new_X)</pre>
```

Description

Permute the values of each variable and recompute its loadings. Compare this distribution of loadings with the original loading for each variable.

Usage

```
determine_significant_features(X, Y, orig_model, num_permutations, talpha,
  inside_num_permutations, inside_talpha)
```

Arguments

X - n x p matrix, where n is the number of samples and p is the number of variables.

Y - n x 1 matrix. Must be numeric

orig_model - original model.

num_permutations

- Number of permutation iterations.

talpha - test alpha to use as cutoff

inside_num_permutations

- the smaller number of permutations used to efficiently rule out insignificant

features. Should be less than num_permutations.

inside_talpha - corresponding test alpha for ruling out loadings that are not close to being

significant. This is purely for efficient calculations.

Value

List containing

sig_inxs Significant indices

significant 0/1 bit vector for significant variables

p_permuted the permuted loading values

```
X <- rand(10,10)
Y <- rand(10,1)
model <- opls(X,Y,1)
res <- determine_significant_features(X,Y,model,500,0.05,100,0.2)</pre>
```

n.group.opls

n.group.opls n.group.opls

Description

Create an OPLS-DA model when there are more than 2 classes. This function is not applicable if you have a continuous response variable. It iteratively adds classes to the model. New classes are added such that they maximize the Q2. The class label is determine by the previous model (i.e., new data is projected into the previous model).

Usage

```
n.group.opls(X, Y, num_permutations, CV, nIterations = 100,
    min_num_OPLS_fact = 0)
```

Arguments

X - n x p matrix, where n is the number of samples and p is the number of variables.

Y - n x 1 matrix. Must be numeric

num_permutations

- number of permutation for the randomization test.

CV - Parameter for internal cross-validation. -1 for leave-one-out cross-validation.

The value of k in k-fold cross-validation otherwise.

nIterations - number of iterations for external validation. One of each sample is held out

each iteration.

min_num_OPLS_fact

- minimum number of OPLS factors. Default 0.

Value

List containing

Q2 External Q2 value

helper.results Results from running helper function, including an opls model, opls model history, original unique Y values, new unique Y values, and adjusted Y values

```
X <- rand(10,10)
new_X <- rand(5,10)
Y <- rand(12,1)
Y[1:4,] = 1
Y[5:8,] = 2
Y[9:12,] = 3
res <- n.group.opls(X,Y,100,-1)</pre>
```

n.group.opls.helper 5

```
n.group.opls.helper n.group.opls.helper
```

Description

An internal helper function. Do not call this directly.

Usage

```
n.group.opls.helper(X, Y, num_permutations, CV, min_num_OPLS_fact = 0)
```

Arguments

```
X - n x p matrix, where n is the number of samples and p is the number of variables.

Y - n x 1 matrix. Must be numeric
num_permutations
- number of permutation for the randomization test.

CV - number of folds for k-fold cross-validation or -1 for leave one out.

min_num_OPLS_fact
- minimum number of OPLS factors to consider.
```

opls opls.

Description

opls.

This allows you to create an OPLS model if you know the number of orthogonal components.

Usage

```
opls(X, Y, num_OPLS_fact)
```

Arguments

X - n x p matrix, where n is the number of samples and p is the number of variables.
 Y - n x 1 matrix. Must be numeric

num_OPLS_fact - Integer specifying the number of OPLS orthogonal components.

Value

the found opls model

```
model <- opls(rand(10,10),rand(10,1),1)\\
```

6 permutation_test

opls_CV opls_CV

Description

This allows you to create an OPLS model if you know the number of orthogonal components.

Usage

```
opls_CV(X, Y, num_OPLS_fact, folds)
```

Arguments

X - n x p matrix, where n is the number of samples and p is the number of variables.

Y - n x 1 matrix. Must be numeric

num_OPLS_fact - Integer specifying the number of OPLS orthogonal components.

folds - Number of k-fold cross-validation groups or -1 for leave one out cross-validation.

Value

List containing

Q^2 Cross-validated R^2
Q2s One for each iteration

press residual calculation used in Q^2 calculation

accuracy standard accuracy that is only relevant if this is a classification problem

Examples

```
res <- opls_CV(rand(10,10),rand(10,1),1,-1)
```

Description

Internal helper function. Do not use.

Usage

```
permutation_test(X, Y, num_OPLS_fact, num_permutations, folds)
```

run_det_sig 7

Arguments

X - n x p matrix, where n is the number of samples and p is the number of variables.

Y - n x 1 matrix. Must be numeric

num_OPLS_fact - number of orthogonal OPLS factors

num_permutations

- number of permutation for the randomization test.

folds - number of folds for CV

run_det_sig run_det_sig

Description

This is an internal helper function. Do not call directly.

Usage

```
run_det_sig(X, Y, orig_model, N, variables)
```

Arguments

X - n x p matrix, where n is the number of samples and p is the number of variables.

Y - n x 1 matrix. Must be numeric

orig_model - original model.

N - Number of permutation iterations.

variables - list of variables to test

run_opls run_opls

Description

This will perform OPLS analysis including cross-validation and a permutation test.

Usage

```
run_opls(X, Y, num_permutations, CV, min_num_OPLS_fact = 0)
```

run_opls

Arguments

X - n x p matrix, where n is the number of samples and p is the number of variables.

Y - n x 1 matrix. Must be numeric

num_permutations

- Number of permutation iterations.

 ${\tt CV} \qquad {\tt -Number\ of\ k-fold\ cross-validation\ groups\ or\ -1\ for\ leave\ one\ out\ cross-validation.}$ ${\tt min_num_OPLS_fact}$

- minimum number of OPLS orthogonal components. Default 0.

Value

List containing

model Final OPLS model
Q2 Cross-validated R^2

accuracy standard accuracy that is only relevant if this is a classification problem

num_OPLS_fact number of orthogonal components

permutation_Q2s

Q2 from each permutation test

pvalue p-value using the permutation test

```
res <- run_opls(rand(10,10),rand(10,1),100,-1)
```

Index

```
apply_opls_model, 2
determine_significant_features, 3
n.group.opls, 4
n.group.opls.helper, 5
opls, 5
opls-package (opls), 5
opls_CV, 6
permutation_test, 6
run_det_sig, 7
run_opls, 7
```