Euclidian Algorithm In Z

Definition: -----

for $c \in \mathbb{Z}_+^*$ to be the Greatest Common Divisor(gcd) of a and b

i) c must divid a and b

ii) any divisor of a and b must divid c
$$c = \max[k \in \mathbb{Z}^*, k|a \text{ and } k|b]$$

iii) we define $\gcd(0,0) = 0$

and because gcd must be positive

$$\forall a,b \in \mathbb{Z} \quad \gcd(a,b) = \gcd(-a,b) = \gcd(a,-b) = \gcd(-a,-b) = \gcd(|a|,|b|) = c$$

 $* \rightarrow Algorithm for finding gcd(a,b)$

for $a, b \in \mathbb{Z}$ because gcd(a, b) is positive and for sake of the argument we suppose $a \ge b > 0$, negative value is just change of sign the value will be the same.

algstart:

$$\exists d \in \mathbb{Z}^+ \ d = \gcd(a, b)$$

$$\exists q_1, r_1 \in \mathbb{Z}^+ \ a = q_1 * b + r_1 \text{ with } q_1 = \left\lfloor \frac{a}{b} \right\rfloor \text{ and } 0 \leqslant r_1 < b$$

$$if r_1 = 0 then gcd(a, b) = b$$

else

so we know that d|a and d|b by the fifth property of the normal division $d|a - q_1b$, hence $d|r_1$ the next step is to find the gcd of r_1 and b because $a|q_1*b+r_1$, wich will be equal to d lets prove it. suppose that $c|r_1$ and c|b that means $c|q_1*b+r_1$ implying c|a so c is a dividor of both a and b by definition $d \ge c$ both divid r_1 and b, hence $gcd(b, r_1)$. (this step is true for every iteration) now lets find d in the next step

$$\exists q_2, r_2 \in \mathbb{Z}^+ \ b = q_2 * r_1 + r_2 \text{ with } q_2 = \left| \frac{b}{r_1} \right| \text{ and } 0 \leqslant r_2 < r_1$$

if
$$r_2 = 0$$
 then $gcd(b, r_1) = r_1$

else

if we continue like this we can notice that we started by $0 \le r_1 < b$ and now we have $0 \le r_2 < r_1$ because of the nature of the set \mathbb{Z} this cant continue for ever so

$$\forall b \in \mathbb{Z}^+ \ \exists n \in \mathbb{N} \quad 0 \leq r_n < r_{n-1} < \dots < r_1 < b \implies r_n = 0$$

this is true because if we take the oposite sence

 $\exists b \in \mathbb{Z}^+ \ \forall n \in \mathbb{N} \ 0 \leq r_n < r_{n-1} < \dots < r_1 < b \ and \ r_n \neq 0$

the most major value can r_i take is $r_i = b - i$ so we take n = b + 1, wich contradict that $0 \le r_n$, hence the order property, so we are sure that is algorithm will eventually for some larger finite n, $r_n = 0$ so after n iteration

$$\exists q_n, r_n \in \mathbb{Z}^+ \; r_{n-2} = q_n * r_{n-1} + r_n \; with \; q_n = \left\lfloor \frac{r_{n-2}}{r_{n-1}} \right\rfloor \; and \; 0 \leqslant r_n < r_{n-1} \; with \; r_n = 0$$

meaning $gcd(r_{n-1}, r_n) = gcd(r_{n-1}, 0) = r_{n-1}$ because everything divid 0, hence $d = r_{n-1}$: endalg