In [75]:	This notebook provided All stages of ML provided import usining in this notebook. Import numpy import pandas import os import glob import seabor import matple from pathlib from functool from datetime from sklearn. StandardScale from sklearn. StandardScale from sklearn. F	de full data exploration dect phases are explair guncurred amount given amount give	plt e d mport Binarizer, import train_tes e, StratifiedShuf mean_absolute_erro mport PCA isionTreeRegresso RandomForestRegro odel Pipeline ig ssor mport residuals_p mport prediction_o columns', None) crows', None) format', lambda: ar\OneDrive\Deskt	OneHotEncoder, Fit_split, GridSeafleSplit or, mean_squared ressor	PowerTransformed archCV, Randomid error, r2_sco	ad-on-collision data oroject is to predict ultimate discussed and imple or, MinMaxScaler	mate
In [77]: In [78]:	In this section we wind about data we are described as we are described as we are described as we called as a column and a column are described as a column and a column are described as a column are d	Oration Ilload the train and telealing with. E = pd.read_exce , engine='openpraw_excel_dff.co row: (excel_df Iff.info()) and columns: 46 if Core.frame.DataFrat l entries, 0 to 76 cotal 46 columns): er ss iption con_period to_loss f_incident ditions coile red_TP_at_fault gistration_present extails_present ails_present ails_present ails_present ails_present sd_pass_back sd_pass_front iver ss_back ss_front red colist ss_multi destrian ner whiplash traumatic fatality unclear nk extails_present ails_present ails_	Py() f.shape[0] and come Shape Sh	type nt64 bject	statistics on each fea	rance\Data\Data	
In [79]: Out[79]:	Claim Number date of	of_loss Notifier Loss04-15 PH	code Loss_description No. D003 Head on collision	22 1 5 1 1 1 16 5 0 4 2 0 1 0 2 0 6 61 2 0 0 6 61 2 0 0 0 at range of values are petween 0 to 7. Mean ever, there are few feat 49k as mean and standard 49k as mean and 49k as	13 9 17 23 48 23 4 40 26 85 109 22 46 7 57 104 55 27 128 18 depicted by each of is closer to 0.3 and sures with extreame in the extreame of the extreament of the ex	Main Road Main Road Main Road Main Road Other Other Main Road Main Road Main Road Minor Road Main Road Main Road Minor Road Main Road Main Road Main Road Main Road Main Road Other Minor Road Minor Road Minor Road Other Minor Road Mot Applicable Main Road Mot Applicable Main Road Minor Road Not Applicable Main Road Minor Road	NORMAL WET N/K N/K N/K NORMAL WET N/K WET NORMAL NORMAL NORMAL NORMAL NORMAL NORMAL VET NaN NORMAL VET NAN NORMAL VET NAN NORMAL
In [80]:	is not liable to pay a def descripti # percent count_zer # skewnes skew_df = # unique unique_df #describe describe descripti right_index=1 descripti right_index=1 descripti right_index=1 for the skewness If the skewness If the skewness If the skewness Leptokurtic or here	nything. At this stage Tive_fun (dff): Tage of zeros To = pd.DataFrame To sand kurtosis To pd.DataFrame (divalues To = pd.DataFrame To df = pd.DataFrame To df = pd.DataFrame To df = pd.DataFrame To df = pd.Conc To descriptive_df The pd.Conc T	tive and 0 values so assume don't want to make a we don't want to make a e ((dff == 0).sum(.ff.agg(['skew', 'df.agg(['skew',	ny harsh hypothesis and axis=0)/len (dff) kurtosis']).tran clumns = ['unique 'unique 'uni	* 100, column spose()) ric Feature features. From this a	index=True, index=True,	e
In [81]: Out[81]: In [82]:	From descriptive_fu distribution. Again, v Another important of any difference to mo Claim Number count 7691.000 mean 3846.000 std 2220.345 min 1.000 25% 1923.500 50% 3846.000 75% 5768.500 max 7691.000 unique 7691.000 zeros% 0.000 skew 0.000 kurtosis -1.200 # Removing co columns_drop excel_dff.dro Explorato In data visualization exists some degree	In functions observation we can see target columbservation from described predictive power. Fun (excel_dff) Notification_period Inc. 7691.000 7.163 39.138 -18.000 0.000 1.000 2.000 1042.000 189.000 44.637 13.597 251.053 Plumns with just ['Loss_code', op (columns_drop, or features which further features which feature	7691.000 7691.000 166.855 12.730 104.453 5.100 0.000 0.000 75.000 9.000 161.000 13.000 253.000 17.000 365.000 23.000 366.000 24.000 0.338 4.642 0.171 -0.490 -1.156 -0.052	tures are either mode ewed and has exterement re are few columns where the columns w	rately or highly skew outliers. nich has just 1 unique present Incident_det 691.000 0.999 0.028 0.000 1.000 1.000 1.000 2.000 0.078 -35.768 277.665	e value, hence it will not be value, and hence it will not be value, hence it will not	nils_present 7691.000 0.232 0.422 0.000 0.000 0.000 1.000 2.000 76.791 1.269 -0.389
In [83]: Out[83]:	<pre>with target column. corr = excel_ plt.figure(fi corr.sort_val</pre>	dff.corrwith(ex.gsize=(8,16)) ues(ascending=8) tle={'center':'Strank er	cel_dff['Incurred alse).plot.barh(t rength of Correlation Strength of Correlation 12 0.4 (1)	']) itle='Strength o			rrelated
In [84]: Out[84]:	correlation coefficient region depicts weak correlation stricts weak correlation stricts and correlation depicts weak correlations. Clusterman clusterman coefficient region depicts weak correlations weak correlation depicts weak correlation depicts weak correlation depicts weak correlations. Clusterman coefficient region depicts weak correlation depicts were correctly depicted by the correlation depicts were correctly depicted by the correlation depicts were correctly depicted by the correctly depicted by th	tas shown in below for correlation among the	cmap='coolwarm', 25ff9b0ab00>	e can see lighter region are strong correlation are strong correlation are strong correlation. In the strong correlation are strong correlation are strong correlation. In the strong correlation are strong correlation are strong correlation. In the strong correlation are strong correlation are strong correlation. In the strong correlation are strong correlation are strong correlation are strong correlation. In the strong correlation are strong correlation are strong correlation are strong correlation. In the strong correlation are strong correlation are strong correlation are strong correlation. In the strong correlation are strong correlation are strong correlation are strong correlation. In the strong correlation are strong correlation are strong correlation are strong correlation. In the strong correlation are strong correlation are strong correlation are strong correlation are strong correlation. In the strong correlation are strong correlation are strong correlation are strong correlation are strong correlation. In the strong correlation are strong correlation are strong correlation are strong correlation are strong correlation. In the strong correlation are strong corre	TP_type_pass_back Capped Incurred TP_type_pass_front TP_injury_whiplash Incident_details_prec Claim Number TP_type_nk TP_injury_unclear TP_injury_unclear TP_injury_unclear TP_injury_nk TP_type_cyclist TP_region_westmid TP_region_southw TP_region_southw TP_region_london TP_region_london TP_region_outerIdn Inception_to_loss Vechile_registration Notification_period TP_type_bike TP_region_north TP_region_scotland TP_region_scotland TP_region_north TP_region_north TP_region_scotland TP_region_scotland TP_region_scotland TP_region_north TP_region_scotland TP_regio	strong correlation and sent sent sent this was done to avoid	d clutter
In [85]: Out[85]:	# only column pd.plotting.s alpha=0.1, fi Carray([[AxesSu	Solve Correla Statter_matrix(e Statter_matrix(e)	what we discovered in he tion with incurre xcol discovered in he	d is more than (r. sort_values (as) y ylabel='Injury_c, y ylabel='Injury_c, y ylabel='Injury_c, the injury_details, bel='Injury_details, bel='Injury_details, label='Injury_details, bel='Injury_details, bel='Injury_details, bel='Injury_details, bel='Injury_details, bel='Injury_details, bel='Injury_details, bel='Injury_details, bel='Injury_details, bel='Injury_details, y ylabel='Tp_type_insd, bel='Injury_details, y ylabel='Tp_type_insd, bel='Injury_details, y ylabel='Tp_type_insd, bel='Injury_details, y ylabel='Tp_type_insd, bel='Tp_type_insd, bel='Tp_type_driven, bel='Tp_type_driven, ylabel='Tp_type_driven, bel='Tp_type_driven, bel='Tp_type_driven, bel='Tp_type_driven, bel='Tp_type_driven, bel='Tp_type_driven, bel='Tp_type_driven, bel='Tp_type_driven, bel='Tp_type_driven, ylabel='Tp_type_driven, bel='Tp_type_driven, bel='Tp_type_driven, bel='Tp_type_pass,	details present's details pres	>, >, >,	
	Axessu	polotixiabel='TP- polotixiabel	ypepassinot', yl ypepassinot', yl ypepiokes, ylabel- ypeyson ylabel- ypeyson ylabel- ypegion, sastmid', yla yegion, ylabel- ype ylabel- ylabel- ylabel- ylabel- ylabel- y	## ADDA STANDS OF THE PROPRISE OF THE	raumatic'>, ic'>,		
In [86]:	AxesSudtype=obi	etection ask in ML pipeline, single discovered in description be mearged together will run get_outlier for the contract of th	ce outliers can push pred iptive analysis part, no car to create missing category two columns are indent	icted regression line to tegorical features have ory.	owards it even if only e missing however so	ome of them has n/k a	and not
In [86]:	outliers stats = 0 # select numerics outlier_0 # select outlier_0 for col i mu = sigma condi n_sigma) outli return ou outliers = ge outliers.info <class #="" 'pandas.="" (t="" 0="" 1="" 2="" 325="" capped="" claim="" column="" columns="" data="" dtypes:="" float64="" inc="" incurred_o="" int64index:="" memory="" numb="" td="" usage:="" winsorizati<=""><td>= pd.DataFrame(Iff.describe() only numeric co = ['int16', 'in If = dff.select_ columns having Iff = outlier_df n outlier_dff.c stats.loc['mean a = stats.loc['s tion = (outlier ers[f'{col}_out ttliers et_outliers(exce columns): only numeric columns a = dff.select_ columns having Iff = outlier_df Iff = o</td><td><pre>igma, which defin lumns t32', 'int64', 'f dtypes(include=num more than 500 uni [[col for col in columns: ', col] td', col] _dff[col] > mu + liers'] = outlier l_dff, n_sigma = ame'> signo on-Null Count Dtype accompany columns = columns</pre></td><td>loat16', 'float3 merics) que values outlier_df if ou sigma * n_sigma) _dff[col][condit 1) 64 64</td><td>dtlier_df[col]. [(outlier_dfcion]</td><td><pre>nunique() > 500</pre> <pre>f[col] < mu - s</pre></td><td>igma *</td></class>	= pd.DataFrame(Iff.describe() only numeric co = ['int16', 'in If = dff.select_ columns having Iff = outlier_df n outlier_dff.c stats.loc['mean a = stats.loc['s tion = (outlier ers[f'{col}_out ttliers et_outliers(exce columns): only numeric columns a = dff.select_ columns having Iff = outlier_df Iff = o	<pre>igma, which defin lumns t32', 'int64', 'f dtypes(include=num more than 500 uni [[col for col in columns: ', col] td', col] _dff[col] > mu + liers'] = outlier l_dff, n_sigma = ame'> signo on-Null Count Dtype accompany columns = columns</pre>	loat16', 'float3 merics) que values outlier_df if ou sigma * n_sigma) _dff[col][condit 1) 64 64	dtlier_df[col]. [(outlier_dfcion]	<pre>nunique() > 500</pre> <pre>f[col] < mu - s</pre>	igma *
In [88]: In [90]: In [91]:	Outliers to a specific percentile, and data Normal Dis Considering if data is within two standard Outlier_column out_new_dff = Outlier_cutof out_new_dff.r. outlier_cutof # seaborn his sns.distplot # Add labels plt.title('His warnings.warn) Text(0.5, 1.0, 1.0, 1.0) # seaborn his sns.distplot # Add labels plt.title('His warnings.warn) Text(0.5, 1.0, 1.0, 1.0) # Add labels # Add	d percentile of the data above the 95th percentile above the 95th perc	ca; for example, a 95% wintile set to the 95th percentile set to the 95th p	nsorization would see entile. Note here, the seemandard deviation of the three standard deviation of three standard deviations	all data below the 5thape of the datafrar e mean account for ons account for about er_columns)].respectively.	ch percentile set to the ne remains the same. about 68% of the set; at 99.7% eset_index(drop= quantile(1-	e 5th while True)

max 100 unique 5 zeros% skew kurtosis # Adding excel_df excel_df excel_df excel_df excel_df excel_df excel_df - Adding F - Date Col	5877.285 6117 6875.706 11053 0.000 (0 24.909 24 6237.714 1237 6258.404 6258 0110.251 50000 6595.000 5474 23.430 23 3.995 2 18.806 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1.000 1.512 3.888 0.000 4.909 7.714 3.404 0.000 4.000 3.430 2.559 5.302 to main date columns, a xcel_dff, columns are columns	xis=, inplace the inplace that it is a second of the	ce=True) left_index=True, merefore we will create ing flag for all TP coluts own therefore conv	some new feature	es by combinin s greater than	10
• Injury Fla • Insurred • Combine • Combine [94]: def flag bina for retu [95]: tp_cols new_dff new_dff new_dff (new_dff (new_dff (new_dff (new_dff new_dff new_dff (new_dff new_dff	duction - Converted ag - If count is greated Passanger Injury - If ad Categories - Some int (dff, col_ rizer = Binari columns in col dff[f'{columns} in dff = [col for col = flag_int(exc 'Month'] = pd. 'Weekend'] = n 'MSL'] = round 'TP_injury_tr ['TP_injury_tr ['TP_injury_tr ['TP_injury_tr ['TP_injury_tr ['TP_injury_fl issing', new_d 'PH_considered (new_dff['PH_columns) 'PH_considered (new_dff['Local 'New_dff['Local 'New_dff	er than 0 for "W count is greated e of the categor list): zer (threshold list: lis	iplash", "Traumation than to 0 for insuring than to 0 for insuring are combined to the state of	it_transform(dff artswith('TP_') date_of_loss']). (new_dff['date_of loss']/30, 0) ['TP_injury_whip ff['TP_injury_fa w_dff['TP_type_i 'Vehicle_mobile' r.lower()) .str.lower().isi r()) lower().isin(['r	kand Injury Flag is gory (like n/k and is and excel_df: and excel_df	lues.resharesharesharesharesharesharesharesha	<pre>pe(-1, 1)) ique() > 2] /k']) == e, 'missing' == 'n/k']) ons'])</pre>
[99]: print(f" print(f" Number of	Number of colu Number of colu Columns in datas columns in datas head (20) Notifier Notification PH CNF CNF CNF CNF PH Other Other Other Other Other TP PH PH PH PH	mns in data mns in data set before fe set after fea	set before for set after feat ature engineer ture engineeri		.ng: {raw_exce	_ shape[1]}")
StratifiedShort [101 min_value max_value print (min print (max print (max print (bins = nax print	de = descriptiv de = descripti	rn is used to ge re_fun (pd.Da	taFrame(new_contaFrame(new_contaFrame(new_contaFrame)) =_value, 5) 5.12527352 75 new_dff["Incomple = [-np.inf, cols = range(1, cols = range	on of train and test set dff["Incurred"]) dff["Incurred"]) 082.68791028 urred"], 0., 25027., 500 , 6))).loc['min',).loc['max',	:][0]	
AxesSubplo 2 0.693 1 0.234 3 0.047 5 0.014 4 0.011 Name: Incut 5000 4000 2000 1000 1000 1000 1000 1000 1	tred cat, dtype: 1.5 20 25 3. data using "In StratifiedShuf	float64 float64 float64 float64 float64 float64 frows in tellary " float64	4.5 5.0 Column define splits=1, test splits=1, test split (new test_index].: t"].value_compared test_index test_index].: est set: {stimulation of the stimulation	ned above st_size=0.2, ran w_dff, new_dff["].reset_index(drop unts()/len(strat trat_train_set.s rat_test_set.sha	Tincurred_cat' cop=True) c=True) c_test_set)) chape[0]} and		
train_ta # Drop I train_id # Seprate # Seprate test_fea test_id_ Seprate [106 # Integer numerics int_list int_cols	rget = strat_t D Column and s col = strat_t ing featues, t cures = strat_t get = strat_te Column and s col = strat_te Numeric and cr continuous of e = ['int16', '' e = train_featu e = [col for co	rain_set['I ave it for rain_set['C arget and I test_set['Inc ave it for st_set['Inc ave it for st_set['Cla columns int32', 'in res.select_ l in train_	ncurred'] future use laim Number' D column for op(['Incurred'] future use im Number'] orical feat t64', 'float: dtypes(include features[int]	======= test set ======= d', 'Claim Numbe	'float64'] .umns .features[col		xis = 1)
int_flag cat_list cat_cols Count mean std min 25% 50% 75% max unique zeros% skew kurtosis Target ([113 power =	remove = TP	l in train_ type_cycli t_flag) - s res.select_ l in train_ features) eption_to_loss T 6152.000 166.799 104.246 0.000 75.000 161.000 252.250 365.000 366.000 0.341 0.175 -1.150 ing validater (method='	time_hour Vechile_ features [cat] fime_hour Vechile_ features [cat] fine_hour Vechile_ fine_hour Vechile_	remove)) de=numerics).col	.umn s 6152.0 0.8 0.3 0.0 1.0 1.0 1.0 2.0 19.0 -1.5	ent Injury_det 000 809 893 000 000 000 000 000	
data_tra [114 descript [114 count 615 mean std min - 25% - 50% 75% max unique 448 zeros% skew - kurtosis - [115 # seabor sns.dist # Add la plt.titl	0 52.000 0.000 1.000 1.458 -0.848 0.170 0.759 2.043 89.000 0.000 -0.170 -1.071 cn histogram plot (pd.DataFr bins=int (hist_kws= abels e ('Histogram o	iso.fit_tra aFrame(data_tr 180/5), col {'edgecolor} f Incurred'	nsform(train_ _trans)) _trans))	_target.values.r = ["Incurred"])	, hist=True,	kde=True,	
From the price transform data and zero value normal distribution high number. For features ware converted are con	ta to Power Scale usines. As we observed in the search of 0 values so we can be again use Power defined by the search of 0 values so we can be again use Power defined by the search of 0 values so we can be again use Power defined by the search of 0 values and the search of 0 values are search of 0 values and the search of 0 values are search of 0 values and the search o	that Incurred taking PowerTrans in above plot, ske in above plot, ske in begining may in safely ignore Transformer me it Encoded features coder (handle cols]) Frame (OH_encoder coder (method=' coder (meth	former method preserves and kurtors suggest another of it in first iteration). The second but before the pressures. Since we done it in first iteration in the second but before the press. Since we done it in first iteration. Sometimes are second but before the pressure in the second but before the seco	chat we scaled data with the too many unique of the too many unique	rith over data analysts the StandardScaler use categories True) True True True The pe (-1, 1)) The pe (-1, 1)) The pe (-1, 1))	nethod which n and now data ysis we know to method. Cate	can scale negative ta looks more like that this is due to egorical Features
[189	tification_period Inco 6152.000 0.000 1.000 -26.447 -0.644	eption_to_loss T 6152.000 -0.000 1.000 -1.701 -0.876 0.005	6152.000 0.000 1.000 -2.133 -0.782	e_insd_pass_back	pe_driver TP_type_ 6152.000 0.000	pass_back TP_ 6152.000 -0.000	
Benchmark hand target) w Removed attribute Categori After fitting the split to t	-0.222 0.148 2.759 174.000 0.000 -1.541 80.564 Benchma as been established ithout much data productions using the same one chrough Linear Regression in ear model. Linear model. Linear Regression in ear model. Linear model. Line	0.840 1.783 366.000 0.000 0.037 -1.191 Orking on LinearRegresseprocessing. So the control of the contro	me of the basic property and validation date of that numerical value gall default parameters and the second	-0.146 -0.146 -0.146 -0.146 -0.146 6.860 2.000 0.000 6.716 43.120 klearn. Training data is reprocessing steps dorata as it doesn't providualues are given as inpuneters), prediction is described by the second of	ne on data are listed e any value for Income to model. one on test data to ew, test_sizes Compute Mean of	ed below. urred prediction compute MA	6152.000 0.000 1.000 -0.246 -0.246 -0.246 4.072 3.000 0.000 3.827 12.649 with feature input on. Its like index AE. om_state=0)
zeros% skew kurtosis Model Benchmark hand target) w Removed attribute Categori After fitting the strain, # Split X_train, import manual fregrant fitting the strain fitting the st	-0.222 0.148 2.759 174.000 0.000 -1.541 80.564 Benchma as been established ithout much data productions are one or	0.840 1.783 366.000 0.000 0.037 -1.191 Orking on LinearRegresseprocessing. So on ber" from train each claim row hot encoded so oscion(considering Linear encoded so oscion(considering Linear encoded so oscion(considering Linear encoded so oscion(considering Linear encoded enco	0.838 2.394 24.000 0.000 -0.032 -0.454 Sor model from slame of the basic properties of the basic	-0.146 -0.146 -0.146 -0.146 -0.146 -0.000 -0.000 -0.716 -0.16 -0.16 -0.16 -0.19 -0.16 -0.19 -0.19 -0.10 -0.10 -0.10 -0.10 -0.10 -0.11 -0.1	-1.184 -1.184 0.643 0.643 7.858 6.000 0.000 0.309 1.307 feed through Line are on data are listed any value for Incomparation on test data to arriance explainability of the second of t	-0.177 -0.177 -0.177 -0.177 5.664 3.000 0.000 5.488 28.130 earRegressor (ved below. compute MA compute MA absolute e eats. Original dia ats.	6152.000 0.000 1.000 -0.246 -0.246 -0.246 4.072 3.000 0.000 3.827 12.649 with feature input on. Its like index AE. om_state=0) rror.
skew kurtosis Model Benchmark h and target) w Removed attribute Categori After fitting to # Split X_train, import m # Run Lif regr = 1 regr.fit # Make p Y_pred # Removed for i, n if num Y_pr # Compute mae = me (target print ("N) Mean Absol Princip From the data dimentionality PCA select co After running 87 [184 # ====== # PCA on # ====== ist_ = me reduced_ list_ ap print (for reduced_ ap list_ ap reduced_ ap list_	O.222 O.148 2.759 174.000 O.000 -1.541 80.564 Benchman as been established ithout much data production to uniquely identify cal variables are one through LinearRegression ark model. Rundark model. Linear Regression in ear model. Linear Regression in ear model. Linear Regression in ear model. Linear model. L	0.840 1.783 366.000 0.000 0.007 -1.191 Prking on LinearRegresser eprocessing. So on ber" from train each claim row hot encoded so sion(considering Linear encoded so encoded so encoded so encoded so encoded encode	0.838 2.394 24.000 0.000 -0.032 -0.454 Soor model from sime of the basic properties of the basic	-0.146 -0.146 -0.146 -0.146 6.860 2.000 0.000 6.716 43.120 klearn. Training data is reprocessing steps dore at as it doesn't provide alues are given as inputaters), prediction is don features data politically and the variance ratio we see that a sit doesn't provide alues are given as inputation data. On features data politically are seen as form (years on Some will set the variance ratio we see the seed of strong correlation. The seed of strong correlation we see that are seen as form (years of strong correlation). 10.999 11.101: 12.101: 13.101: 14.101: 15.101: 16.101: 16.101: 17.101: 17.101: 18.101: 18.101: 19.	-1.184 -1.184 -0.643 -0.643 -7.858 -6.000 -0.000 -0.309 -1.307 feed through Line are on data are liste e any value for Inc. at to model. one on test data to ariance explainabil got 69 componer Sum (list_[0]) ares 3 Sum (list_[0]) ares 3 Sum (list_[0]) ares	-0.177 -0.177 -0.177 -0.177 5.664 3.000 0.000 5.488 28.130 earRegressor (value) compute MA compute	6152.000 0.000 1.000 -0.246 -0.246 -0.246 4.072 3.000 0.000 3.827 12.649 with feature input on. Its like index AE. om_state=1) rror.
skew kurtosis Model Benchmark hand target) w Removed attribute Categori After fitting the special strain, and the special strains and the specia	O.222 0.148 2.759 174.000 0.000 -1.541 80.564 Benchma as been established ithout much data properties are one of the analysis of the analys	1.783 366.000 0.000 0.037 -1.191 Orking on LinearRegresserocessing. So on ber" from train each claim row hot encoded so distinct considerin ming Linear and the same of the	0.838 2.394 2.4.000 0.000 -0.032 -0.454 Sor model from slime of the basic promote of the bas	-0.146 -0.146 -0.146 -0.146 -0.146 -0.000 -0.000 -0.716 -0.120 -0.000 -0.716 -0.120 -0.000 -0.716 -0.120 -0.000 -0.716 -0.120 -0.000 -0.716 -0.120 -0.000 -0.000 -0.716 -0.120 -0.000 -0	-1.184 -1.184 -1.184 0.643 0.643 7.858 6.000 0.000 0.309 1.307 feed through Lines and the condata are listed and the condata are	asure of absolute e sing unsupervity component absolute e sing unsupervity component absolute e sing unsupervity component ats. Original did as a comparison of the component ats. Original did as a comparison of the component ats. Original did as a comparison of the component ats. Original did as a comparison of the component ats. Original did as a comparison of the component ats. Original did as a comparison of the component ats. Original did as a comparison of the component ats. Original did as a comparison of the component ats. Original did as a comparison of the component ats. Original did as a comparison of the component ats. Original did as a comparison of the component ats. Original did as a comparison of the component ats. Original did as a comparison of the component ats. Original did as a component ats. Original did ats. Origin	ised ised ited
See See	1-0.222 0.148 2.759 174.000 1.000 1.000 1.001	1.783 366.000 0.0037 -1.191 Crking on LinearRegres eprocessing. So onber" from train each claim row hot encoded so ission(considerin ining Linear and year and categorica and Categori	0.838 2.394 2.4000 0.000 0.000 -0.032 -0.454 ssor model from stand validation data validation	-0.146 -0.100 -0.000 -0.116 -0.110 -0.000 -0.1110 -0.121 -	to model. MAE is mentally and the straight of the difference is a straight of the difference in the difference is a straight of the difference in the difference is a straight of the difference in the difference is a straight of the difference in the difference is a straight of the difference in the difference in the difference in the difference ind	into one and absolute e assure of absolute e assure	fised tited difference with feature input on. Its like index AE. fised tited tite
See	Decision free design of the components of the co	0.840 1.783 36.000 0.000 0.000 0.000 0.017 1.191 Carking on Linear gree eprocessing. So onber" from train each claim row hot encoded so sistin(considerin ming Linear data in rain may data in rain explained one of the data in may data in rain may day = cercare in control may data in rain may day = cercare in rain my day	0.838 2.394 2.4000 0.000 -0.032 -0.434 sor model from sime of the basic production of and validation data data and validation data and validation data and validation data data and validation data data data data data data data dat	### Programment of the samples. ### Programment of the samples. ### Programment of the samples. #### Programment of the samples. ##### Programment of the samples. ##### Programment of the samples. ###################################	## Therefore we are unariance explainability ## Computer Means ## Co	asure of absolute e sing unsupervity component absolute e strong function at the absolute e at the abso	review final shap at the difference that difference at the differen

	<pre>train_features = features new_target = target # Target normalizer # scaler = MinMaxScaler() power = PowerTransformer(method='yeo-johnson', standardize = True) # target_pipeline = Pipeline(steps=[('s', scaler), ('p', power)]) target_pipeline = Pipeline(steps=[('p', power)]) target_pipeline.fit(new_target.values.reshape(-1, 1))) target_y = pd.DataFrame(target_pipeline.transform(new_target.values.reshape(-1, 1))) # Take holdout from train train_cv, train_holdout, train_cv_y, train_holdout_y = train_test_split(train_features, target_y, test_size = 0.1, random_state = seed) if(verbose): print("\nTtain_dataset_(Full)") print(train_features.shape) print("\nTtain_CV dataset_(Subset)") print("Train_Holdout_dataset_(Subset)") print("Train_holdout_dataset_(Subset)") print("Train_holdout_dataset_(Subset)") print(train_holdout_shape)</pre>
n [16^	Train Model Below function perform gri search using RandomizedSearchCV from sklearn which is much faster than GridSearchCV howwer it is a trade off between computation power and accuracy. The 5 fold random shuffled cross validation is performed with grid search (Computationally expensive step). However GPU is used throughout model training process
n [162	<pre>global cv global seed ## Regressor type if (type_ == "xgb"): regressor_type = XGBRegressor(tree_method = "gpu_hist", verbose = 1) grid = {</pre>
	<pre>'max_depth': [10, 20], 'min_child_weight': [8, 10, 20], 'subsample': [0.5], 'colsample_bytree': [0.5, 0.6, 0.8, 0.9], 'colsample_bylevel': [0.5, 0.6, 0.8, 0.9], 'n_estimators': [100, 500, 1000] # 'alpha': [1] } if (type_ == "rf"): regressor_type = RandomForestRegressor(random_state = seed, n_jobs = -1) grid = {</pre>
	<pre>'bootstrap': [True],</pre>
	<pre>'min_samples_leaf': [20, 40, 100], 'min_samples_split': [5, 10, 20, 40, 60, 80], "max_leaf_nodes": [20, 100, 200], # 'max_features': ['auto', 'log2', 'sqrt'] # "criterion": ["mse", "mae"] } if (type_ == "linear"): regressor_type = linear_model.LinearRegression(n_jobs = -1) grid = { }</pre>
	<pre># Model print(colored(name, 'red')) model = RandomizedSearchCV(estimator = regressor_type, cv = cv, param_distributions = grid, n_jobs=-1) print(colored(model.fit(train_vector, trian_target), "yellow")) # Score print(colored("\nCV-scores", "blue")) mean_score = model.cv_results_['mean_test_score'] std score = model.cv_results_["std test score"]</pre>
	<pre>for mean, std, params in sorted(zip(mean_score, std_score, model.cv_results_['params']), key = lambda x: -x[0]): print("Mean Test Score: %0.3f (+/-%0.03f) for params: %r" % (mean, std * 2, params)) print("\n") print(colored("\nBest Estimator Params", "blue")) print(colored(model.best_estimator_, "yellow")) # Predictions print(colored("\nPredictions:", "blue")) y pred = model.predict(holdout vector).reshape(-1,1)</pre>
	<pre># for i, num in enumerate(y_pred): # if num > descriptive_fun(trian_target).loc['max', :][0]: # print("Prediction has outliers") # y_pred[i] = y_pred[i-1] model_train_pred = pipeline.inverse_transform(y_pred) print(model_train_pred[:10]) # Compute MAE from prediction and actual values MAE = performance_metric(pipeline.inverse_transform(holdout_target), model_train_pred) print("\nMean Absolute Error: %2.f" % MAE)</pre>
	<pre># Compute RMSE MSE = mean_squared_error(pipeline.inverse_transform(holdout_target), model_train_pred) RMSE = np.round(np.sqrt(MSE), 2) print(f"\nRoot Mean Squared Error: {RMSE}") # Compute R-squared R_squared = round(r2_score(pipeline.inverse_transform(holdout_target), model_train_pred),2) print(f"\nR-squared: {R_squared}") # Adjusted R-squared Adj_r2 = round(1 - (1-R_squared) * (len(trian_target)-1)/(len(trian_target)-</pre>
n [158	<pre>train_vector.shape[1]-1),2) print(f"\nAdjusted R-squared: (Adj_r2)") return [name, model, MAE, MSE, RMSE, R_squared, Adj_r2] target_pipeline, train_cv, train_holdout, train_cv_y, train_holdout_y = split_train_holdout(features = reduced_feature, target = strat_train_set['Incurred']) Train_dataset_(Full) (6152, 69)</pre>
n [167	<pre>Train CV dataset (subset) (5536, 69) Train Holdout dataset (subset) (616, 69) models = pd.DataFrame(columns = ["model_name", "model_object", "MAE", "MSE", "R_Square", "Adj_r2"]) linear_regressor = ruModel(pipeline=target_pipeline, train_vector=train_cv, trian_target=train_cv_y, holdout_vector=train_holdout, holdout_target=train_holdout_y, type_ = "linear",</pre>
	<pre>name = "linear_regression") linear_regression C:\Users\kumar\.conda\envs\ins\lib\site-packages\sklearn\model_selection_search.py:289: UserWarning: The total space of parameters 1 is smaller than n_iter=10. Running 1 iterations. For exhaustive searches, use GridSearchC V.</pre>
	Predictions: [[16.404637] [1595.24983994] [471.06247805] [206.87705922] [22.00660347] [17.12870515] [8621.86559605] [8029.44595945] [60.72949028] [34.53798793]] Mean Absolute Error: 3367 Root Mean Squared Error: 8258.67
n [159	<pre>Adjusted R-squared: 0.65 dt_regressor = ruModel(pipeline=target_pipeline, train_vector=train_cv, trian_target=train_cv_y, holdout_vector=train_holdout, holdout_target=train_holdout_y, type_ = "dt", name = "decision_tree") decision_tree RandomizedSearchCV(cv=ShuffleSplit(n_splits=5, random_state=1234, test_size=0.2, train_size=None),</pre>
	param_distributions={\max_depth': [4, 6, 8, 10, 12, 20],
	Mean Test Score: 0.738 (+/-0.043) for params: {'min_samples_split': 40, 'min_samples_leaf': 100, 'max_leaf_node s': 100, 'max_depth': 10} Mean Test Score: 0.729 (+/-0.052) for params: {'min_samples_split': 60, 'min_samples_leaf': 20, 'max_leaf_node s': 20, 'max_depth': 12} Mean Test Score: 0.727 (+/-0.045) for params: {'min_samples_split': 20, 'min_samples_leaf': 100, 'max_leaf_node s': 20, 'max_depth': 10} Mean Test Score: 0.727 (+/-0.052) for params: {'min_samples_split': 80, 'min_samples_leaf': 20, 'max_leaf_node s': 20, 'max_depth': 4} Best Estimator Params DecisionTreeRegressor(criterion='mae', max_depth=12, max_leaf_nodes=200,
n [163	ii_legiessoi = lumodei(pipelime=caigec_pipelime;
	<pre>train_vector=train_cv, trian_target=train_cv_y, holdout_vector=train_holdout, holdout_target=train_holdout_y, type_ = "rf", name = "random_forest") random_forest RandomizedSearchCV(cv=ShuffleSplit(n_splits=5, random_state=1234, test_size=0.2, train_size=None),</pre>
	'n_estimators': [100, 500, 1000]}) CV-scores Mean Test Score: 0.851 (+/-0.032) for params: {'n_estimators': 100, 'min_samples_split': 80, 'min_samples_lea f': 20, 'max_depth': 20, 'bootstrap': True} Mean Test Score: 0.844 (+/-0.034) for params: {'n_estimators': 1000, 'min_samples_split': 80, 'min_samples_lea f': 40, 'max_depth': 10, 'bootstrap': True} Mean Test Score: 0.844 (+/-0.035) for params: {'n_estimators': 100, 'min_samples_split': 40, 'min_samples_lea f': 40, 'max_depth': 10, 'bootstrap': True} Mean Test Score: 0.844 (+/-0.033) for params: {'n_estimators': 500, 'min_samples_split': 60, 'min_samples_lea f': 40, 'max_depth': 10, 'bootstrap': True} Mean Test Score: 0.803 (+/-0.035) for params: {'n_estimators': 100, 'min_samples_split': 60, 'min_samples_lea f': 100, 'max_depth': 20, 'bootstrap': True} Mean Test Score: 0.803 (+/-0.035) for params: {'n_estimators': 100, 'min_samples_split': 60, 'min_samples_lea f': 100, 'max_depth': 20, 'bootstrap': True} Mean Test Score: 0.803 (+/-0.035) for params: {'n_estimators': 100, 'min_samples_split': 40, 'min_samples_lea f': 100, 'max_depth': 20, 'bootstrap': True} Mean Test Score: 0.803 (+/-0.035) for params: {'n_estimators': 100, 'min_samples_split': 40, 'min_samples_lea f': 100, 'max_depth': 20, 'bootstrap': True} Mean Test Score: 0.803 (+/-0.035) for params: {'n_estimators': 100, 'min_samples_split': 80, 'min_samples_lea f': 100, 'max_depth': 20, 'bootstrap': True} Mean Test Score: 0.803 (+/-0.035) for params: {'n_estimators': 1000, 'min_samples_split': 80, 'min_samples_lea f': 100, 'max_depth': 20, 'bootstrap': True}
	Mean Test Score: 0.803 (+/-0.035) for params: {'n_estimators': 1000, 'min_samples_split': 20, 'min_samples_lea f': 100, 'max_depth': 10, 'bootstrap': True} Mean Test Score: 0.803 (+/-0.035) for params: {'n_estimators': 500, 'min_samples_split': 5, 'min_samples_leaf': 100, 'max_depth': 20, 'bootstrap': True} Best Estimator Params RandomForestRegressor(max_depth=20, min_samples_leaf=20, min_samples_split=80,
n [161	<pre>[6.92706043e+03] [1.17850769e+01] [2.68521495e+00]] Mean Absolute Error: 2581 Root Mean Squared Error: 9687.68 R-squared: 0.52 Adjusted R-squared: 0.51 xgb_regressor = ruModel(pipeline=target_pipeline, train_vector=train_cv, trian_target=train_cv_y, holdout_vector=train_holdout, holdout target=train holdout y,</pre>
	<pre>type_ = "xgb", name = "xgb_regressor") xgb_regressor [16:20:31] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.4.0/src/learner.cc:573: Parameters: ("verbose") might not be used. This may not be accurate due to some parameters are only used in language bindings but passed down to XGBoost core. Or some parameters are not used but slip through this verification. Please open an issue if you find above cases. RandomizedSearchCV(cv=ShuffleSplit(n_splits=5, random_state=1234, test_size=0.2, train_size=None), estimator=XGBRegressor(base_score=None, booster=None, colsample_bylevel=None, colsample_bylevel=None, gamma=None, gpu id=None, importance type='gain',</pre>
	<pre>gpu_ld=None, interaction_constraints=None, learning_rate=None,</pre>
	CV-scores Mean Test Score: 0.920 (+/-0.011) for params: ('subsample': 0.5, 'n_estimators': 1000, 'min_child_weight': 10, 'max_depth': 10, 'learning_rate': 0.03, 'colsample_bytree': 0.8, 'colsample_bylevel': 0.6) Mean Test Score: 0.920 (+/-0.014) for params: ('subsample': 0.5, 'n_estimators': 1000, 'min_child_weight': 10, 'max_depth': 20, 'learning_rate': 0.03, 'colsample_bytree': 0.8, 'colsample_bylevel': 0.8} Mean Test Score: 0.918 (+/-0.015) for params: ('subsample': 0.5, 'n_estimators': 500, 'min_child_weight': 8, 'm ax_depth': 20, 'learning_rate': 0.05, 'colsample_bytree': 0.9, 'colsample_bylevel': 0.6} Mean Test Score: 0.915 (+/-0.014) for params: ('subsample': 0.5, 'n_estimators': 500, 'min_child_weight': 10, 'max_depth': 10, 'learning_rate': 0.01, 'colsample_bytree': 0.9, 'colsample_bylevel': 0.9} Mean Test Score: 0.914 (+/-0.015) for params: ('subsample': 0.5, 'n_estimators': 1000, 'min_child_weight': 8, 'max_depth': 20, 'learning_rate': 0.04, 'colsample_bytree': 0.6, 'colsample_bylevel': 0.9} Mean Test Score: 0.914 (+/-0.014) for params: ('subsample': 0.5, 'n_estimators': 500, 'min_child_weight': 10, 'max_depth': 10, 'learning_rate': 0.05, 'colsample_bytree': 0.6, 'colsample_bylevel': 0.9} Mean Test Score: 0.913 (+/-0.018) for params: ('subsample': 0.5, 'n_estimators': 500, 'min_child_weight': 10, 'max_depth': 20, 'learning_rate': 0.03, 'colsample_bytree': 0.5, 'colsample_bylevel': 0.8} Mean Test Score: 0.910 (+/-0.015) for params: ('subsample': 0.5, 'n_estimators': 500, 'min_child_weight': 8, 'm ax_depth': 20, 'learning_rate': 0.04, 'colsample_bytree': 0.6, 'colsample_bylevel': 0.8} Mean Test Score: 0.910 (+/-0.015) for params: ('subsample': 0.5, 'n_estimators': 500, 'min_child_weight': 8, 'm ax_depth': 20, 'learning_rate': 0.04, 'colsample_bytree': 0.6, 'colsample_bylevel': 0.5} Mean Test Score: 0.908 (+/-0.020) for params: ('subsample': 0.5, 'n_estimators': 500, 'min_child_weight': 10, 'max_depth': 20, 'learning_rate': 0.04, 'colsample_bytree': 0.6, 'colsample_bylevel': 0.5}
	<pre>'max_depth': 20, 'learning_rate': 0.04, 'colsample_bytree': 0.5, 'colsample_bylevel': 0.5) Mean Test Score: 0.901 (+/-0.016) for params: {'subsample': 0.5, 'n_estimators': 500, 'min_child_weight': 20, 'max_depth': 10, 'learning_rate': 0.01, 'colsample_bytree': 0.6, 'colsample_bylevel': 0.5)</pre> <pre>Best Estimator Params XGBRegressor(base_score=0.5, booster='gbtree', colsample_bylevel=0.6,</pre>
n [168	[3.3987195e+03] [1.8884628e+03] [5.3858191e+02] [1.7376553e+01] [1.3893664e+00] [7.3092920e+03] [1.3052926e+04] [3.9899754e+01] [4.4515753e-01]] Mean Absolute Error: 2192 Root Mean Squared Error: 8884.36 R-squared: 0.6 Adjusted R-squared: 0.59 models.loc[len(models)] = linear_regressor
	models.loc(len (models)) = rf_regressor models.loc(len (models)) = xgb_regressor models.loc(len (models)) = xgb_regressor Mand the best model is XGBRegressor performed best among all selected models with least Mean Absolute error of ~2k. XGBRegressor is parallelizable onto GPU's and across networks of computers making it feasible to train on very large datasets as in our case. It is an implementation of gradient boosted decision trees designed for speed and performance. The two reasons to use XGBRegressor Bagging and Boosting features Model Performance I have used XGBRegressor API from XGBoost class. It has lots of trainable parameters. The ones best perfoming parameters are available in model_object column. Boosting and Bagging process can be computationally very extensive and time consuming. With large dataset it becomes worse unless appropriate params are tuned to optimal values. After instantiating XGBRegressor with optimal parameters, model is fitted with train data features and Incurred target variable. Prediction is done on trained model with test data and finally MAE is computed and returned based on ground truth and predicted values. I have used these parameters to train algorithm on entire training data (Code is available in model_pipeline_full.ipynb).
n [171 ut[171 n [174	<pre>models.head(*).sort_values("MAE") model_name</pre>
In []:	<pre>models.to_excel(str(output_path) + r"/Regression Model Metrics " + now.strftime("%d%B%y") + ".xlsx", index = False, header = True)</pre>

In [155... seed = 1234

cv = ShuffleSplit(n_splits = 5, test_size = 0.2, random_state = seed)