My elaborated analysis

Martin Hinz 2017-07-20

${\bf Contents}$

1	Analyses 1.1 First function	1
2	Challenge	1
3	Solution	2
${f L}$	ist of Tables	
	1 Letter frequency table	3
\mathbf{L}	ist of Figures	
	1 A figure caption	2 3
1	Analyses	
1.	1 First function	
Fo	r doubling the number, you might use the function 'double_me'.	
a	<pre>brary(coursepackageberlin) <- 2 uble_me(a)</pre>	
##	[1] 4	
Se	e this visual (1):	
2	Challenge	
	1. simple table and plot	
	2. add captions and crossref to those	
	3. add bib file and cite	
	4. Add second simple function to $R/$	
	5. • test	
	6. pass tests	

Figure 1: A figure caption.

3 Solution

```
We simulate a number of characters:
my_letters <- sample(letters, size = 500, replace = T)</pre>
now we table that
table(my_letters)
## my_letters
    \hbox{\tt a b c d e f g h i j k l m n o p q r}
## 19 25 19 23 17 24 15 25 19 17 31 25 25 23 15 19 21 11 18 15 14 15 23 12 16
##
## 14
and in more beautiful
knitr::kable(as.data.frame(table(my_letters)), caption = "Letter frequency table")
and plot frequency
my_plot_letters <- table(my_letters)</pre>
barplot(my_plot_letters)
see solution table (1) and figure (2). for more information consult (R Core Team 2016).
Sampling letters can also be archieved by a function:
```

We can use that to make a lorem ipsum

my_new_letters <- sample_letters(50)</pre>

Table 1: Letter frequency table

my_letters	Freq
a	19
b	25
c	19
d	23
e	17
f	24
g	15
h	25
i	19
j	17
k	31
1	25
m	25
n	23
О	15
p	19
q	21
r	11
S	18
t	15
u	14
v	15
W	23
X	12
У	16
Z	14

Figure 2: Letter frequency

```
x <- make_lorem_ipsum(100)
x</pre>
```

[1] "u ucktifxzkk gvfw unovpuqdn tumzsen xufrll cgxj oct wvhajuram mapbnmkjvm drwwuu vzfh njrcxglp a and reuse it

```
cat(paste(rep(x,10), collapse = "\n"))
```

```
## u ucktifxzkk gvfw unovpuqdn tumzsen xufrll cgxj oct wvhajuram mapbnmkjvm drwwuu vzfh njrcxglp abaucx ## u ucktifxzkk gvfw unovpuqdn tumzsen xufrll cgxj oct wvhajuram mapbnmkjvm drwwuu vzfh njrcxglp abaucx ## u ucktifxzkk gvfw unovpuqdn tumzsen xufrll cgxj oct wvhajuram mapbnmkjvm drwwuu vzfh njrcxglp abaucx ## u ucktifxzkk gvfw unovpuqdn tumzsen xufrll cgxj oct wvhajuram mapbnmkjvm drwwuu vzfh njrcxglp abaucx ## u ucktifxzkk gvfw unovpuqdn tumzsen xufrll cgxj oct wvhajuram mapbnmkjvm drwwuu vzfh njrcxglp abaucx ## u ucktifxzkk gvfw unovpuqdn tumzsen xufrll cgxj oct wvhajuram mapbnmkjvm drwwuu vzfh njrcxglp abaucx ## u ucktifxzkk gvfw unovpuqdn tumzsen xufrll cgxj oct wvhajuram mapbnmkjvm drwwuu vzfh njrcxglp abaucx ## u ucktifxzkk gvfw unovpuqdn tumzsen xufrll cgxj oct wvhajuram mapbnmkjvm drwwuu vzfh njrcxglp abaucx ## u ucktifxzkk gvfw unovpuqdn tumzsen xufrll cgxj oct wvhajuram mapbnmkjvm drwwuu vzfh njrcxglp abaucx ## u ucktifxzkk gvfw unovpuqdn tumzsen xufrll cgxj oct wvhajuram mapbnmkjvm drwwuu vzfh njrcxglp abaucx ## u ucktifxzkk gvfw unovpuqdn tumzsen xufrll cgxj oct wvhajuram mapbnmkjvm drwwuu vzfh njrcxglp abaucx use binford
```

R Core Team. 2016. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.