data cleaning and preparation

July 13, 2025

1 Used Car Data Analysis Project

by Sam Buwalda | Portfolio Project, 2025

2 Used Car Data Analysis Project

By Sam Buwalda — Portfolio Project, 2025

This notebook covers the **data loading**, **inspection**, **and cleaning steps** for a dataset of 426,880 used car listings scraped from Craigslist. It is part of a larger project that analyzes pricing trends, brand depreciation, and feature importance based on realistic business questions.

2.1 Dataset Source

- Kaggle: Used Cars Dataset
- 426,880 rows before cleaning
- 26 columns before cleaning

2.2 Business Questions

- 1. Descriptive: What are the most common categorical traits of cars priced above \$20,000?
- 2. Diagnostic: How does car age affect price?
- 3. Descriptive + Diagnostic: Which car brands retain their value best over time?
- 4. Diagnostic: How does fuel type and transmission affect car price?
- 5. Diagnostic + Predictive: What factors most influence the price of a used car (based on the available data)?

2.3 Cleaning Objectives

The cleaning decisions are guided by the analytical goals of the full project, which includes questions about price drivers, brand depreciation, and feature-value relationships.

- Dropping irrelevant features (based on the business questions) or high-missing-value columns
- Filtering out unrealistic prices and odometer readings
- Removing duplicate rows

- Dropping rows with missing values in key columns (like year, manufacturer, transmission, etc.)
- Keeping only features relevant to the business questions

2.4 Importing and loading CSV file

```
[1]: # Import pandas for data loading, inspection, and cleaning
import pandas as pd

# Load the CSV file and load into DataFrame 'df'

df = pd.read_csv(".../Data Files/vehicles.csv", low_memory=False)

# Display general information about the dataset: column names, data types, under non-null counts, and memory usage.

df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 426880 entries, 0 to 426879
Data columns (total 26 columns):

#	Column	Non-Null Count	Dtype	
0	id	426880 non-null	int64	
1	url	426880 non-null	object	
2	region	426880 non-null	object	
3	region_url	426880 non-null	object	
4	price	426880 non-null	int64	
5	year	425675 non-null	float64	
6	manufacturer	409234 non-null	object	
7	model	421603 non-null	object	
8	condition	252776 non-null	object	
9	cylinders	249202 non-null	object	
10	fuel	423867 non-null	object	
11	odometer	422480 non-null	float64	
12	title_status	418638 non-null	object	
13	transmission	424324 non-null	object	
14	VIN	265838 non-null	object	
15	drive	296313 non-null	object	
16	size	120519 non-null	object	
17	type	334022 non-null	object	
18	<pre>paint_color</pre>	296677 non-null	object	
19	image_url	426812 non-null	object	
20	${\tt description}$	426810 non-null	object	
21	county	0 non-null	float64	
22	state	426880 non-null	object	

```
23 lat 420331 non-null float64
24 long 420331 non-null float64
25 posting_date 426812 non-null object
dtypes: float64(5), int64(2), object(19)
memory usage: 84.7+ MB
```

2.5 Data Cleaning & Preparation

In this section, we clean the dataset to prepare it for analysis. Steps include removing duplicates, handling missing values, filtering outliers, and dropping irrelevant columns.

2.5.1 Initial Inspection

```
[2]: # Show the number of rows and columns in the dataset to understand its overall_u size.

df.shape
```

[2]: (426880, 26)

```
[3]: # Display the first 5 rows to visually inspect the structure and content of the dataset.

# This helps confirm that the file was loaded correctly and gives an early look at the values.

df.head()
```

[3]:		id			url \				
	0	7222695916	https://prescott.craigslist.org/cto/d/prescott						
	1	7218891961	https://fayar.craigslist.org/ctd/d/bentonville						
	2	7221797935	https://keys.craigslist.org/cto/d/summerland-k						
	3								
	4								
			region	region_url	price	year	\		
	0		prescott	https://prescott.craigslist.org	6000	NaN			
	1	fayetteville		https://fayar.craigslist.org	11900	NaN			
	2	f	lorida keys	https://keys.craigslist.org	21000	NaN			
	3	worcester /	central MA	https://worcester.craigslist.org 1500					

greensboro https://greensboro.craigslist.org

4900

NaN

	manufacturer	model	condition	cylinders	•••	size	type p	paint_color	\
0	NaN	NaN	NaN	NaN	•••	NaN	NaN	NaN	
1	NaN	NaN	NaN	NaN	•••	NaN	NaN	NaN	
2	NaN	NaN	NaN	NaN		NaN	NaN	NaN	
3	NaN	NaN	NaN	NaN	•••	NaN	NaN	NaN	
4	NaN	NaN	NaN	NaN		NaN	NaN	NaN	

```
image_url description county state lat long posting_date
0
         NaN
                       NaN
                               {\tt NaN}
                                                 NaN
                                                                 NaN
                                        az NaN
                       NaN
                                                                 NaN
1
         NaN
                               {\tt NaN}
                                        ar NaN
                                                 NaN
2
         NaN
                       NaN
                               {\tt NaN}
                                        fl NaN
                                                 NaN
                                                                 NaN
3
         NaN
                       NaN
                               NaN
                                        ma NaN NaN
                                                                 NaN
         NaN
                       NaN
                               \mathtt{NaN}
                                        nc NaN NaN
                                                                 NaN
```

[5 rows x 26 columns]

[4]: # Identify the number of missing values in each column to assess data quality \rightarrow and decide on cleaning strategy.

df.isnull().sum()

[4]: id 0 0 url region 0 0 region_url price 0 year 1205 manufacturer 17646 model 5277 condition 174104 cylinders 177678 fuel 3013 odometer 4400 title_status 8242 transmission 2556 VIN 161042 drive 130567 size 306361 type 92858 paint_color 130203 image_url 68 description 70 426880 county state 0 lat 6549 long 6549 posting_date 68 dtype: int64

[5]: # Generate summary statistics for numerical columns to detect potential...

outliers and understand value distributions.

df.describe()

```
[5]:
                                  price
                      id
                                                             odometer
                                                                       county \
                                                  year
     count 4.268800e+05
                           4.268800e+05
                                         425675.000000
                                                         4.224800e+05
                                                                           0.0
            7.311487e+09
                          7.519903e+04
                                           2011.235191
                                                         9.804333e+04
                                                                          NaN
    mean
            4.473170e+06
                           1.218228e+07
                                                         2.138815e+05
                                                                          NaN
     std
                                              9.452120
    min
            7.207408e+09
                           0.000000e+00
                                           1900.000000
                                                         0.000000e+00
                                                                          NaN
     25%
            7.308143e+09
                          5.900000e+03
                                           2008.000000
                                                         3.770400e+04
                                                                          NaN
     50%
            7.312621e+09
                          1.395000e+04
                                           2013.000000
                                                         8.554800e+04
                                                                          NaN
     75%
            7.315254e+09
                          2.648575e+04
                                           2017.000000
                                                         1.335425e+05
                                                                          NaN
            7.317101e+09 3.736929e+09
                                           2022.000000
                                                        1.000000e+07
                                                                          NaN
    max
                      lat
                                     long
            420331.000000
                           420331.000000
     count
                               -94.748599
                38.493940
     mean
     std
                 5.841533
                                18.365462
    min
               -84.122245
                              -159.827728
     25%
                34.601900
                              -111.939847
     50%
                39.150100
                               -88.432600
     75%
                42.398900
                               -80.832039
                82.390818
                               173.885502
     max
```

2.5.2 Remove Duplicates

```
[6]: # Check for and remove any duplicate rows to avoid skewing the analysis.

print("Number of duplicates:", df.duplicated().sum())
df = df.drop_duplicates()

# Confirm new shape after dropping

print("New shape:", df.shape)
```

Number of duplicates: 0 New shape: (426880, 26)

2.5.3 Drop (Irrelevant) Columns with High Missing Values

```
[7]: # Drop columns that are mostly missing ('county' and 'size')

# 'errors="ignore"' ensures the code doesn't break if a column is already

dropped earlier.

df = df.drop(columns=['county', 'size'], errors='ignore')
```

```
[8]: # Confirm new shape after dropping 'county' column
print("New shape:", df.shape)
```

New shape: (426880, 24)

```
[9]: # Drop unnecessary or low-value columns that do not contribute meaningfully to
              ⇔the current analysis goals
           df = df.drop(columns=[
                     # 'url' and 'region_url' are only useful for linking externally to the
              ⇔original listings;
                     # they have no analytical value for understanding vehicle pricing or understanding vehicle pricing veh
              \hookrightarrow features.
                     'url',
                     'region_url',
                     # 'image_url' is purely visual and not relevant for data-driven analysis.
                     'image_url',
                     # 'VIN' is a unique identifier per vehicle. It is not informative for
              →analysis unless checking for duplicates,
                     # which we've already handled. It adds no predictive or explanatory power.
                     'VIN',
                     \# 'condition' is around 33% missing and subjective in nature (e.g., "good" \sqcup
              ⇔vs "like new").
                     # Removing it avoids potential inconsistencies and row loss.
                     'condition',
                     # 'cylinders' is missing in ~36% of the data. Including it would require
              ⇔dropping over a third of the dataset.
                     # It's not part of our final questions, so we drop it to retain data,
              \hookrightarrow integrity.
                     'cylinders',
                     \# 'drive' (e.g., AWD, FWD, RWD) is missing in ~30% of the data. While it
              →might influence price in certain use cases,
                     # it is not part of our business questions and is excluded to preserve row,
              ⇔count and clarity.
                     'drive',
                     # 'paint color' is missing in ~28% of rows and is a mostly aesthetic,
                     # Since our goal is to analyze core pricing factors (like year, mileage, u
              \hookrightarrow brand), it's excluded.
                     'paint_color'
           ], errors='ignore') # 'errors=ignore' ensures no crash if a column was already_
              ⇔removed earlier
```

```
[10]: # Check current columns to confirm unnecessary ones were successfully dropped
      print(" Remaining columns in the DataFrame:")
      print(df.columns.tolist())
      Remaining columns in the DataFrame:
     ['id', 'region', 'price', 'year', 'manufacturer', 'model', 'fuel', 'odometer',
     'title_status', 'transmission', 'type', 'description', 'state', 'lat', 'long',
     'posting_date']
     2.5.4
             Filter Unrealistic Price & Odometer Readings
[11]: # Filter out vehicle listings with unrealistic prices.
      # Prices below $500 or above $120,000 are likely data entry errors or rare edge,
       ⇔cases.
      df = df[(df['price'] >= 500) & (df['price'] <= 120000)]</pre>
      # Remove vehicle listings with unrealistic (used car) odometer readings of 0 or 1
       →over 300,000 miles.
      # Odometer values of O likely represent missing data (since this is about used,
       ⇔cars), and over 300,000 miles are extremely rare.
      df = df[(df['odometer'] > 0) & (df['odometer'] < 300000)]</pre>
[12]: # Confirm dataset statistics after filtering to ensure the changes were applied
       correctly and data looks reasonable.
      df.describe()
[12]:
                       id
                                   price
                                                   year
                                                              odometer \
     count 3.782430e+05
                           378243.000000 377161.000000 378243.000000
     mean
            7.311470e+09
                            19261.528972
                                            2011.071548
                                                          91917.520419
      std
             4.390466e+06
                            14545.539541
                                               9.434529
                                                          61678.501355
     min
            7.301583e+09
                              500.000000
                                            1900.000000
                                                               1.000000
     25%
            7.308073e+09
                            7900.000000
                                            2008.000000
                                                          38335.000000
     50%
            7.312575e+09
                            15987.000000
                                                          87155.000000
                                            2013.000000
     75%
            7.315245e+09
                            27990.000000
                                            2017.000000 135000.000000
     max
            7.317101e+09 120000.000000
                                            2022.000000 299999.000000
                       lat
                                     long
            374895.000000 374895.000000
      count
                 38.523599
                               -94.255949
     mean
      std
                  5.845846
                                18.083272
     min
                -81.838232
                              -159.719900
      25%
                 34.720000
                              -110.890427
      50%
                 39.254962
                              -87.971900
```

```
75%
                         -80.820900
           42.364188
           82.390818
                         173.885502
max
```

Final Cleaning: Drop Rows with & filling Missing Info 2.5.5

```
[13]: # Drop rows with missing values in key columns needed for analysis
      df = df.dropna(subset=[
          # 'year' is essential for calculating vehicle age, which directly affects
       ⇔price and depreciation.
          'year',
          # 'manufacturer' is required to analyze brand-level trends and pricing.
          'manufacturer',
          # 'model' provides necessary detail within each brand for comparing_
       ⇔specific vehicles.
          'model',
          # 'fuel' type impacts price significantly (e.g., electric vs gas vs diesel).
          'fuel'.
          # 'title_status' affects vehicle value and trustworthiness - a salvaged_
       ⇔title lowers price.
          'title_status',
          # 'transmission' (auto/manual) influences price and is important for buyer
       ⇔preference analysis.
          'transmission',
          # 'lat' and 'long' allow for location-based analysis, regional trends, and
       \hookrightarrow mapping.
          'lat', 'long'
      ])
```

```
[14]: # Fill missing descriptions with a placeholder string
      df['description'] = df['description'].fillna('No description provided')
```

Confirm Final Dataset Structure

```
[15]: # Final confirmation after cleaning
      # Check the final shape of the dataset
```

```
print(" Final dataset shape:", df.shape)

# Confirm that there are no missing values remaining

print("\n Missing values per column (should all be 0, except for 'type'):")
print(df.isnull().sum())
```

Final dataset shape: (347305, 16)

Missing values per column (should all be 0, except for 'type'):

0 0 region price 0 0 year manufacturer 0 model 0 fuel 0 0 odometer title_status transmission 0 type 73849 description 0 state 0 lat 0 0 long posting_date 0 dtype: int64

2.6 Export to CSV in Data Files folder

```
[16]: df.to_csv("../Data Files/vehicles_cleaned.csv", index=False)
```