Introduction to Artificial Intelligence

COMP307
Introduction to Bayesian Network

Yi Mei *yi.mei@ecs.vuw.ac.nz*

Outline

- Rules from previous lectures
- What is Bayesian Networks
- Why Bayesian Networks
- Cause Effect
- Summary

Thomas Bayes (/'beɪz/; c. 1701 – 7 April 1761)

Rules from Previous Lectures

Product Rule

$$- P(X_1, ..., X_n, Y_1, ..., Y_m) = P(X_1, ..., X_n) * P(Y_1, ..., Y_m | X_1, ..., X_n)$$

Sum Rule:

$$- P(X_1, ..., X_n) = \sum_{y_1, ..., y_m} P(X_1, ..., X_n, Y_1 = y_1, ..., Y_m = y_m)$$

Normalisation Rule

$$-\sum_{x_1,\dots,x_n} P(X_1 = x_1,\dots,X_n = x_n) = 1,$$

$$-\sum_{x_1,\dots,x_n} P(X_1 = x_1,\dots,X_n = x_n | Y_1,\dots,Y_m) = 1$$

Independence

$$- X \perp Y, P(X|Y) = P(X), P(X,Y) = P(X) * P(Y)$$

- X \perp Y | Z, P(X|Y,Z) = P(X|Z), P(X,Y|Z) = P(X|Z) * P(Y|Z)

Bayes Rule

$$- P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

$$- P(Y|X_1,...,X_n) = \frac{P(X_1|Y)*\cdots*P(X_n|Y)*P(Y)}{P(X_1,...,X_n)}$$
 [assume conditional independence]

Alarm Network

- Your house is installed an alarm against burglary
 - The alarm will usually be set off by burglars
 - but sometimes it may also be set off by earthquakes
 - There are two neighbours, John and Mary
 - John and Mary might call you when they hear the alarm
 - They might also call you for other issues without alarm

Variables:

- Burglary, Earthquake, Alarm, JohnCalls, MaryCalls
- All binary (true or false)
- Relationship between them?
 - Cause -> Effect

Alarm Network

- Domain causal knowledge (causes and effects)
 - A burglar can set the alarm off
 - An earthquake can set the alarm off
 - The alarm can cause Mary to call
 - The alarm can cause John to call

Alarm Network

Conditional Probability Tables

Quantify likelihood under different conditions/situations

Bayesian Networks

- Bayesian networks (BNs): a graphical representation of a probabilistic dependency model
 - also known as Belief networks (or Bayes nets for short)
 - Belong to the family of probabilistic graphical models (GMs).
 - Other GMs: Markov network ...
- These graphical structures are used to represent knowledge about an uncertain domain.
 - each node in the graph represents a random variable,
 - the edges between the nodes represent probabilistic dependencies among the corresponding random variables.
 - The conditional dependencies in the graph are often estimated by using known statistical and computational methods.
- BNs combine principles from graph theory, probability theory, computer science, and statistics.

Bayesian Networks

- Each node or variable may take one of a number of possible states or values.
- The belief each of these values is determined from the belief in each possible value of every node directly connected to it and its relationship with each of these nodes.
- The belief in each state of a node is updated whenever the belief in each state of any directly connected node changes.

Semantics of Bayesian Networks

- A set of nodes, one for a variable X
- A directed, acyclic graph
 - Each edge shows the direct influence between parent and child
 - A child depends on its parents
- A conditional probability table for each node
 - a collection of distributions over X, one for each combination of parents values

$$P(X \mid a_1, \dots, a_n)$$

(usually) description of a "causal" process

A Bayes Net = Topology (graph) + Local Conditional Probabilities

Why Bayesian Networks

- Several advantages for data analysis:
 - the model encodes dependencies among all variables, it readily handles situations where some data entries are missing.
 - a Bayesian network can be used to learn causal relationships, and hence can be used to gain understanding about a problem domain and to predict the consequences of intervention.
 - the model has both a causal and probabilistic semantics, it is an ideal representation for combining prior knowledge (which often comes in causal form) and data.
 - Bayesian statistical methods in conjunction with Bayesian networks offer an efficient and principled approach for avoiding the overfitting of data.

(In)Dependencies in BN

- [Direct cause]: A is a direct cause of B
 - A and B are dependent
- [Indirect cause]: A is a direct cause of B, B is a direct cause of C
 - A and C are independent given B

(In)Dependencies in BN

- [Common Cause]: A is a common direct cause of B and C
 - B and C are dependent (if A is not given)
 - B and C are independent given A
- [Common Effect]: C is a common direct effect of A and B
 - A and B are independent (if C is not given)
 - A and B are dependent given C ("explaining away")

(In)Dependencies in BN

- Which are true?
 - B and E are independent
 - B and E are independent given A
 - B and M are independent
 - B and M are independent given A
 - J and M are independent
 - J and M are independent given A

Factorisation

 In a Bayesian network, a node is conditionally independent from all the nodes except its direct effects, if the direct causes are all given, and no direct effect is given.

Factorisation

 If we sort the variables so that the causes are always before the effects, e.g., [B, E, A, J, M], then we have

$$-P(X_i \mid X_1, \dots, X_{i-1}) = P(X_i \mid parents(X_i))$$

- $-P(E \mid B) = P(E)$
- $P(J \mid A, B, E) = P(J \mid A)$
- **–** ...

Factorisation

Combine the chain (product) rule

$$P(B, E, A, J, M) = P(B) * P(E|B) * P(A|B, E) * P(J|B, E, A) * P(M|B, E, A, J)$$
$$= P(B) * P(E) * P(A|B, E) * P(J|A) * P(M|A)$$

Bayesian network is a **factorization** of the joint probability

Summary

- Bayesian networks
 - A directed acyclic graph
 - Represent conditional dependencies between variables
 - Conditional distribution tables
- Independencies between variables in BN
- Factorisation

Next lecture: how to build a BN