Used Car Price Prediction Using Machine Learning Techniques

Mrs Shyamali Das¹, Mr Ananta Laha², Mr Alok Jena³, Ms Priyadarshini Samal⁴

¹Asst Professor in BPUT Affiliated Engineering College -Bhubaneswar.

²Associeate Consultant (TCS) -Bhubaneswar.

³Asst Professor in Andhra Affiliated Eng College – Vijayanagaram.

⁴ Asst Professor in BPUT Affiliated Engineering College, Bhubaneswar.

Abstract: The price of a new car is being set by the manufacture by having a significant profit value with inclusive to government forms and taxes. Sometime, customers start thinking on value for price on the money while the even buy a car, especially the middle/economic class or some of the travel agents and assistance for which this detailed analysis would be very much helpful. This also covers the accuracy and precisions into prediction of used cars into great extent which can help the travel industry audiences. This also explains the comparisons between linear regression, lasso regression and logistic regression results on same data sets and their respective accuracies and precisions. Post these comparisons among all these techniques, we also detailed about heat map i.e. relative study of dependent and independent variables in same topic, classifications using Random Forest and

This comparison studies would help to get a better precision and accuracy with a predicted value rather than a range of values with a continuous output value. This also covers the details about the various outliers for the prediction methodologies being used.

General Terms: Data Mining, Machine Learning, Artificial Intelligence

Keywords— Used Car Prediction, Lasso Regression, Logistic Regression, Random Forest Classifier, Heat Map. Supervised Learning.

1. Introduction:

Predicting price of a car when it is not coming directly from a factory is really a challenging and critical task, with demand of used cars resale and buying is quiet increasing now-a-days and recent era the fuel price challenges are significantly increasing which becomes more challenging for the used car seller. People and organization prefer to have a legal between seller and buyer with a

business part on the estimated price, thus finding a fair estimation is important and crucial step for buyers and predicting them with highest accuracy is really a great. Predicting the actual price of a car with a greater extent of precision would help really the buyers, so we had used the various supervised learning algorithms such as

- 1- Liner Regression Model
- 2- Lasso Regression Model
- 3- Stats Regression Model
- 4- Random Forest ML Classification Techniques
- 5- Heat Map correlation and Further scope

1. Linear Regression:

Linear Regression is most used Machine Learning supervised algorithm which works on train to predict a well established output that is dependent on the input data. These algorithms generally trains the set and results the output. Regression Analysis is about a predictive modeling methodology that has a objective to investigate the relation ship between various input data. For simple regression problem (a single x and single y) the format model follows as

$$Y = B0 + B1*X$$

When we move on higher model and discuss on complexity of the model that varies as per B0 and B1 Values.

Example: Weight =B0 + B1 * height

Using the coefficient values will help you predicting the Weight values as per the height which falls into Linear Regression model.

2. <u>Lasso Regression Model</u>

Regularization is very effective model of Linear Regression adding with penalty term when the test and trained data is varying significantly. Usually, we reduce the magnitude of the coefficients for different ML techniques. Lasso Regression is being used for accurate prediction. This model uses shrinkage. Shrinkage is where data values are shrunk towards a central point as the mean. The lasso procedure encourages simple, sparse models (i.e. models with fewer parameters). This regression is well-suited for models showing high levels of multicollinearity or when you want to automate certain parts of model selection, like variable selection/parameter elimination.

Mathematical Equation:

Residual Sum Squares + λ * (Sum of Absolute Value of the magnitude coefficient)

$$\sum_{i=1}^{n} \left(y_i - \sum_{i \in J} x_{i_j^0} B_j \right)^2 + \lambda \sum_{j=1}^{p} |B_j|$$

Where λ denotes the amount of shrinkage

 $\lambda = 0$ Refers to all features considered and equivalent to linear regression and sum of squares to be considered

 $\lambda = \infty$ Refers no features considered, closes to infinity reduce features

Variance to be increased or decreased by λ value.

3. Statistics Regression Model

This model used for statistical methodology to explore the data with a descriptive statistical analysis, This used with scikit-learn but may not be hard core statistics in python, This uses the simple methodologies (fit->transform-> Predict)

4. Random Forest ML Classification Techniques

A random forest is a supervised machine learning algorithm that is constructed from decision tree algorithms. This is a classification of regression trees. This algorithm works on possible illustrated graphs and decision trees where set of trees would move to the actual predicted output closer. Decision trees are in parallel and used with bagging techniques. This works efficiently as classification algorithms with large data set with better accuracy but where as it is slow in training and may create a biased values on categorized variables. Maximum depth of trees determines the overfitting.

5. Heat Map:

Heatmap is a way to show some sort of matrix plot. To use a heatmap the data should be in a matrix form. By matrix we mean that the index name and the column name must match in some way so that the data that we fill inside the cells are relevant.

1.1.Literature Survey

The price of a pre-owned car depends on various factors including model year, mileage, condition, equipment, etc. Since the price depends on so many factors, it is difficult to estimate it directly using rule-based algorithms. A more feasible strategy is to use inductive based learning to learn the price from the dataset. Hence, a machine learning approach is very suitable for this application. References to authors of "Application of ML techniques to predict the price of Pre-owned cars in

Bangladesh" have been performed with only restricted fields analysis and this is only restricted into Bangladesh. The second paper explains about Support Vector machine through the accurate price and the third paper is based on big data analysis and ANN neural networks which largely varies for vehicles The fourth and further papers are only explains the results Linear Regression, Ridge Regression, Lasso Regression and this paper aims also includes comparative study of Random Forest including with all other mentioned machine learning techniques.

1.2. Hardware / Software Requirements

Hardware requirements Operating system- Windows 7,8,10 Processor- dual core 2.4 GHz (i5 or i7 series Intel processor or equivalent AMD) RAM-4GB

Software Requirements: Python Pycharm PIP 2.7 Jupyter Notebook Chrome

2. Methodologies

2.1.Background

We started collecting the regular data by Kaggle and data crawled to prepare the data set for training which took almost one month and prior to this literature survey took 2-3 weeks and a team of 4 people have been contributed as follows.

Mr Anant & Alok has contributed with Linear and Lasso regression techniques which consumed one additional month where the results were not much satisfied hence we got into a decision with all other co-authors where Mrs Shayamali & Priyadarshini has been contributed to Random forest post heat map derived which has better results than linear regression results.

2.2.Step Wise Process for Purposed Model

Figure:1

2.3. Collected Data Sample

The data have been collected over 20K Indian data samples where we have collected with various open source types and classified as below variables

Table-1

Sl No	Variable Name	Description
1	Car Name	Name of the Car

2	Fuel type	Type of the Fuel being Used					
3	aspiration	Std /Turbo - IC aspiration					
4	Door number	Number of doors					
5	Car body	Body of Car					
6	Drive wheel	Wheel details					
7	Engine location	Location of Engines					
8	wheelbase	Base of Wheel					
9	Car length	Length of Car					
10	Car width	Width of Car					
11	Car height	Height of Car					
12	Curb weight	Weight of Cube					
13	Engine type	Type of Engine					
14	Cylinder number	Cylinder No					
15	Engine size	Size of Engine					
16	Fuel system	Fuel System details					
17	Bore ratio	Bore Ratio for the care					
18	stroke	Stroke Ratio of Car					
19	Compression ratio	Compression Ratio					
20	horsepower	Horse Power					
21	Peak rpm	Peak RPM					
22	City mpg	Lowest MPG Rating for Car					
23	Highway mpg	Average MPG Rating of Car					
24	price	Price of Car					

2.4.Basic Data Analysis & Visuals

Fuel Type Vs Car count and Body Type Vs Car Count can be presented as below with actual data.

Figure -2

This has been performed to understand very basic feasibility on the relation towards targeted price vs Fuel Type and Body Type and then we decided to follow heat map to find the better relation ship between target (Price) and dependent variables (all other)

2.5.Heat Map

This is a matrix or graphical way of presentations where the data can be utilized color-coded systems, The primary purpose of heat map to locate and assist the data sets to viewers. This corelates between the target and dependent variables. As per below heat map Target Variable (Price) is negatively correlated with "city mpg"," highway mpg" and positively corelated with "Wheel base" and "Car Width", "Car Length", and e.t.c.

3. Outputs with Accuracy Results

3.1.Linear Regression:

Applied Linear Regression Algorithms with Training Data Set and Testing data set results as followed: Linear Regression is a type of supervised machine learning algorithm which is used to predict the value of a dependent variable based on the value of another independent variable. Here the model finds the best fit linear line between the independent and dependent variable.

- 1. Data Sourcing, Data Understanding
- 2. Data cleaning, Manipulation, Visualization and Detecting Outliers
- 3. Perform EDA on Prepared Dataset (Univariate and Bivariate Analysis)
- 4. Model Preparation
- 5. Training and Testing set Data Split
- 6. Model Building
- 7. Residual Analysis of the Train Data
- 8. Making Predictions
- 9. Model Evaluation
- 10. Final Interface

3.2.Lasso Regression - Least Absolute Shrinkage and Selection Operator

This is L1 regularization method

The Statistics Of Lasso Regression

d1, d2, d3, etc., represents the distance between the actual data points and the model line in the above graph.

Least-squares is the sum of squares of the **distance between the points** from the plotted curve.

In linear regression, the best model is chosen in a way to **minimize** the least-squares.

While performing lasso regression, we add a penalizing factor to the least-squares. That is, the model is chosen in a way to reduce the below loss function to a minimal value.

D = least-squares + lambda * summation (absolute values of the magnitude of the coefficients)

Lasso regression penalty consists of all the estimated parameters. Lambda can be any value between zero to infinity. This value decides how aggressive regularization is performed. It is usually chosen using cross-validation.

Lasso penalizes the sum of absolute values of coefficients. As the lambda value increases, coefficients decrease and eventually **become zero**. This way, lasso regression eliminates insignificant variables from our model. Our regularized model may have a slightly high bias than linear regression but less variance for future predictions.

3.3.Statistical Model

ML includes random forests, recursive partitioning (CART), bagging, boosting, support vector machines, neural networks, and deep learning .This consists multiple iterations to get the better accuracy by removing one by one attributes that are not needed. Statistical modeling is the process of applying statistical analysis to a dataset. A statistical model is a mathematical representation (or mathematical model) of observed data.

Dep. Variable:	price	R-squared:	0.885
Model:	OLS	Adj. R-squared:	0.873
Method:	Least Squares	F-statistic:	70.73
Date:	Sat, 07 May 2022	Prob (F-	8.22E-
Date:	Sai, 07 May 2022	statistic):	68
Time:	15:39:26	Log-Likelihood:	-1717.8

No. Observations:	184	AIC:	3474
Df Residuals:	165	BIC:	3535
Df Model:	18		
Covariance Type:	nrobust		

		Iteration-1					
	coef	std err	t	P> t	[0.025	0.975]	
Intercept	-7.00E+04	1.42E+04	-4.933	0	-9.81E+04	-4.20E+04	
aspiration	2034.8216	847.73	2.4	0.017	361.025	3708.618	
doornumber	199.7214	605.634	0.33	0.742	-996.07	1395.513	
carbody	90.6465	252.42	0.359	0.72	-407.743	589.036	
drivewheel	1148.2433	502.632	2.284	0.024	155.824	2140.663	
enginelocation	1.28E+04	2490.133	5.156	0	7923.546	1.78E+04	
wheelbase	111.5045	94.53	1.18	0.24	-75.141	298.15	
carlength	39.3484	57.126	0.689	0.492	-73.444	152.141	
carwidth	712.8731	237.65	3	0.003	243.647	1182.1	
cylindernumber	1104.1492	278.862	3.959	0	553.551	1654.747	
enginesize	117.7557	14.96	7.871	0	88.218	147.294	
fuelsystem	-152.854	218.778	-0.699	0.486	-584.82	279.112	
boreratio	-1592.6456	1357.128	-1.174	0.242	-4272.221	1086.929	
stroke	-1833.0059	904.835	-2.026	0.044	-3619.553	-46.459	
compressionratio	56.7956	85.934	0.661	0.51	-112.876	226.467	
horsepower	-5.5863	17.874	-0.313	0.755	-40.877	29.704	
peakrpm	2.2502	0.723	3.113	0.002	0.823	3.677	
citympg	-192.6521	186.045	-1.036	0.302	-559.987	174.683	
highwaympg	211.6861	172.246	1.229	0.221	-128.405	551.777	

Next Attribute to be removed as" door number"

Next "C	ar Bod	y"						Next "Com	npressio	on Ratio)"				Next "Highwaympg"							
		It	eration-2				Iteration-3 Iteration-4															
coef	std err	t	P>H	[0.025	0.975]			coef	std err	t	P>N	[0.025	0.975]			coef	std err	t	P>ltl	[0.025	0.975]	
Intercept	-6.95E+04	1.41E+04	-4.943	0	-9.72E+04	-4.17E+04		Intercept	-6.80E+04	1.38E+04	-4.912	0	-9.53E+04	-4.06E+04		Intercept	-7.18E+04	1.31E+04	-5.466	0	-9.77E+04	-4.59E+04
aspiration	2029.837	845.316	2.401	0.017	360.88	3698.794		aspiration	1955.7068	835.185	2.342	0.02	306.897	3604.516		aspiration	2164.6108	800.293	2.705	0.008	584.751	3744.47
carbody	115.3606	240.39	0.48	0.632	-359.256	589.977		drivewheel	1153.9207	494.236	2.335	0.021	178.208	2129.634		drivewheel	1212.8491	489.365	2.478	0.014	246.793	2178.906
drivewheel	1156.8401	500.606	2.311	0.022	168.464	2145.216		enginelocation	130E+04	2391.886	5.414	0	8227.065	1.77E+04		enginelocation	1.35E+04	2316.245	5.815	0	8897.118	180E+04
enginelocation	1.27E+04	2463.793	5.17	0	7872.682	1.76E+04		wheelbase	136.631	70.519	1938	0.054	-2.586	275.848		wheelbase	141.0595	70.293	2.007	0.046	2.295	279.824
wheelbase	109.0143	93.975	116	0.248	-76.526	294.555		carwidth	744.9677	232.329	3.207	0.002	286.307	1203.628		carwidth	795.6409	224.949	3.537	0.001	351.569	1239.713
carlength	33.2603	53.916	0.617	0.538	-73.188	139.709		cylindernumber	1086.9441	272.997	3.982	0	547.998	1625.891		cylindernumber	1124.2214	269.52	4.171	0	592.162	1656.281
carwidth	719.8038	236.082	3.049	0.003	253.693	1185.915		enginesize	118.3352	14.826	7.981	0	89.065	147.605		enginesize	119.1	14.791	8.052	0	89.901	148.299
cylindernumbe	1110.6266	277.422	4.003	0	562.897	1658.356		fuelsystem	-179.8639	212.149	-0.848	0.398	-598.686	238.958		fuelsystem	-156.095	210.288	-0.742	0.459	-571.224	259.034
enginesize	118.0021	14.901	7.919	0	88.582	147.423		boreratio	-1362.455	1318.049	-1.034	0.303	-3964.527	1239.617		boreratio	-1298.5385	1315.18	-0.987	0.325	-3894.835	1297.758
fuelsystem	-148.4609	217.785	-0.682	0.496	-578.447	281.525		stroke	-1720.7381	885.486	-1.943	0.054	-3468.852	27.376		stroke	-1619.809	877.464	-1.846	0.067	-3352.012	112.394
boreratio	-1562.3482	1350.375	-1.157	0.249	-4228.471	1103.775		compressionratio	71.8082	81.499	0.881	0.38	-89.087	232.703		horsepower	-7.6816	17.365	-0.442	0.659	-41.962	26.599
stroke	-1794.3371	894.793	-2.005	0.047	-3560.978	-27.696		horsepower	-5.5433	17.545	-0.316	0.752	-40.181	29.094		peakrpm	2.1181	0.706	3	0.003	0.724	3.512
compressionra tio	57.0137	85.7	0.665	0.507	-112.189	226.217		peakrpm	2.2069	0.714	3.092	0.002	0.798	3.616		citympg	-189.3441	175.691	-1.078	0.283	-536.175	157.487
horsepower	-4.8894	17.701	-0.276	0.783	-39.837	30.058		citympg	-213.4806	177.928	-12	0.232	-564.744	137.783		highwaympg	206.7427	168.713	1.225	0.222	-126.314	539.799
peakrpm	2.2595	0.72	3.137	0.002	0.837	3.682		highwaympg	203.8794	168.856	1207	0.229	-129.474	537.232								
citympg	-190.8985	185.469	-1.029	0.305	-557.08	175.283																

Next "Fuel System" Next "Horse Power" Next "Citympg" | State | Telephone | Telephon 449.339 119.261 1893.117 0.026 138E+04 2306.454 5.971 9219.068 1.83E+04 1.38E+04 1.83E+04 2282.348 9276.191 1.83E+04 120, 1918 0.077 -13.224 375.16 248.402 1238.873 1608.566 258.271 1262.379 67.589 68.752 1.783 3.65 253.608 1255.077 124.524 0.646 376.787 224.448 218.377 269.188
 VEX.401
 13.774
 8 KB
 0
 65.241
 139.62

 -850838
 20.322
 -0.904
 0.423
 -59.277
 26.85

 -1022522
 103.04
 0.064
 0.399
 -378.74
 1451.85

 -1025922
 103.04
 -0.064
 0.399
 -378.74
 1451.85

 -1366
 16.607
 -0.002
 0.535
 -34.49
 24.48

 1.9555
 0.856
 2.224
 0.005
 0.952
 3.39

 1.5227
 61.81
 0.205
 0.898
 -108.21
 10.255
 139.686 244.356 1336.968 13.639 112.7639 111.0106 9.278 129.324 -158.7282 139.734 -0.794 -1254.4472 1217.209 -1.031 -1424.4705 855.054 -1.666 1.8625 0.516 3.61 19411 Next "Stroke" Next "Wheel base " Next "Bore Ratio"

			Iteration-8								Iteration-9				Iteration-10						
coef	std err	t	P> t	[0.025	0.975]			coef	std err	t	P> t	[0.025	0.975]		coef	std err	t	P> t	[0.025	0.975]	
Intercept	-6.96E+04	1.08E+04	-6.45	0	-9.09E+04	-4.83E+04		Intercept	-7.10E+04	1.07E+04	-6.636	0	-9.21E+04	-4.99E+04	Intercept	-7.53E+04	1.05E+04	-7.178	0	-9.60E+04	-5.46E+04
aspiration	1664.2041	622.751	2,672	0.008	435.036	2893.372		aspiration	1618.7001	621.469	2.605	0.01	392.112	2845.289	aspiration	1362.728	608.036	2.241	0.026	162.701	2562.755
drivewheel	1019.9378	448.526	2.274	0.024	134.649	1905.226	dr	drivewheel	891.1626	431.802	2.064	0.041	38.918	1743.407	drivewheel	1152.0178	408.28	2.822	0.005	346.232	1957.803
enginelocatio n	1.38E+04	2279.851	6.051	0	9294.74	1.83E+04	engi	ginelocatio n	1.34E+04	2256.367	5.958	0	8990.851	1.79E+04	enginelocatio n	1.41E+04	2242.399	6.272	0	9639.277	1.85E+04
wheelbase	127.8147	62.556	2.043	0.043	4.344	251.286	w	wheelbase	126.3131	62.561	2.019	0.045	2.838	249.789	wheelbase	119.9254	62.835	1.909	0.058	-4.086	243.937
carwidth	824.9565	217.078	3.8	0	396.494	1253.419		carwidth	773.5629	211.632	3.655	0	355.867	1191.259	carwidth	793.741	212.604	3.733	0	374.143	1213.339
cylindernum ber	1040.8741	254.969	4.082	0	537.623	1544.125	cyli	/lindernum ber	1118.2123	244.324	4.577	0	635.993	1600.432	cylindernum ber	1123.6581	245.784	4.572	0	638.575	1608.741
enginesize	112.6064	9.048	12.445	0	94.747	130.465	e	enginesize	110.0064	8.71	12.63	0	92.815	127.198	enginesize	105.8511	8.438	12.545	0	89.198	122.504
boreratio	-1284.3822	1215.328	-1.057	0.292	-3683.161	1114.397		stroke	-1383.7879	782.573	-1.768	0.079	-2928.345	160.769	peakrpm	1.8406	0.513	3.59	0	0.829	2.853
stroke	-1626.7566	815,393	-1.995	0.048	-3236.156	-17.357		peakrpm	1.9355	0.512	3.777	0	0.924	2,947							
peakrpm	1.8815	0.515	3.655	0	0.865	2.898															

	Iteration -11														
coef	std err	t	P> t	[0.025	0.975]										
Intercept	-7.96E+04	1.03E+04	-7.713	0	-1.00E+05	-5.92E+04									
aspiration	1351.0973	612.553	2.206	0.029	142.203	2559.992									
drivewheel	1255	407.725	3.078	0.002	450.34	2059.66									
enginelocation	1.34E+04	2227.106	5.993	0	8951.109	1.77E+04									
carwidth	1055.7247	163.568	6.454	0	732.918	1378.531									
cylindernumber	1035.5292	243.214	4.258	0	555.539	1515.519									
enginesize	105.9679	8.501	12.466	0	89.191	122.745									
peakrpm	1.6185	0.503	3.217	0.002	0.626	2.611									

3.4.Random Forest Implementations

It is an ensemble method which is better than a single decision tree because it reduces the overfitting by averaging the result. We can understand the working of Random Forest algorithm with the help of following steps

We can understand the working of Random Forest algorithm with the help of following steps –

- Step 1 First, start with the selection of random samples from a given dataset.
- Step 2 Next, this algorithm will construct a decision tree for every sample. Then it will get the prediction result from every decision tree.
- Step 3 In this step, voting will be performed for every predicted result.
- Step 4 At last, select the most voted prediction result as the final prediction result.

The following diagram will illustrate its working -

Benefits:

- Overcomes the problem of overfitting of combining decision trees.
- Works for large set of data
- This has less variance to single decision tree
- Proves high accuracy

Implementing Random forest on last Statistics modeling resulted as

R score error: 0.9143581729539816 Accuracy: 91.435%

Accuracy by Implementation of Random Forest 91. 435 %

3.5. Comparison between all Results

This comparative study evidence that application of "Random Forest with Statistical Modeling proved the better accuracy on old car price prediction over other supervised machine learning techniques.

4. Conclusion

The detailed study of the Machine Learning Techniques used with prediction of used Car Prices through various Supervised Learning approaches as Linear , Lasso, Statistical and Random forest model applied with Training and test set of data and Random forest over multiple iteration produced a great accuracy approx. 91.5% and it also leaves the further research methodologies to be applied as deep learning systems like ANN , B-Networks methodologies. This analysis definitely help the researcher and users widely on determination of prices for old cars in India.

The current analysis has been done with open source data base but if could be improvised by association of "True Value" or similar industry player who can provide the recent actual data set to be trained and tested then that could result better class definition with greater accuracy.

5. References

- [1] "Vehicle Price Prediction using SVM Techniques" in IJITEE on June, 2020 by S.E. Viswapriya, Durbaka Sai Sandeep Sharma, Gandavarapu Sathya kiran.
- [2] "Application of Machine Learning Techniques to Predict the Price of Pre-Owned Cars in Bangladesh" published on MDPI by Fahad Rahman Amik , Akash Lanard , Ahnaf Ismat and Sifat Momen
- [3] "USED CAR PRICE PREDICTION" published in IRJET on 4th APR 2021 by Praful Rane, Deep Pandya, Dhawal Kotak
- [4] "Vehicle Price Prediction System using Machine Learning Techniques" published in IJCA on 9th June 2017 by Kanwal Noor, Sadaqat Jan
- [5] "Car's Selling Price Prediction using Random Forest Machine Learning Algorithm." Published by Abhishek Pandey, Vanshika Rastogi, Sanika Singh
- [6] "Car Price Prediction using Machine Learning Techniques" published in TEM Journal on Feb 2019 by Enis Gegic, Becir Isakovic, Dino Keco, Zerina Masetic, Jasmin Kevric
- [7] Sameerchand Pudaruth, "Predicting the Price of Used Cars using Machine Learning Techniques"; (IJICT 2014)
- [8] Ning sun, Hongxi Bai, Yuxia Geng, Huizhu Shi, "Price Evaluation Model In Second Hand Car System Based On BP Neural Network Theory"; (Hohai University Changzhou, China)
- [9] Nitis Monburinon, Prajak Chertchom, Thongchai Kaewkiriya, Suwat Rungpheung, Sabir Buya, Pitchayakit Boonpou, "Prediction of Prices for Used Car by using Regression Models" (ICBIR 2018)
- [10] Doan Van Thai, Luong Ngoc Son, Pham Vu Tien, Nguyen Nhat Anh, Nguyen Thi Ngoc Anh, "Prediction car prices using qualify qualitative data and knowledge-based system" (Hanoi National University)