SPAZI DI MISURA E PROBABILITA

Def. (T-algebra):

Sia E un insieur, una famiglia & di sottainsieuri di E si dice T-ALGEBRA se:

- 1) E E E
- 2) $A \in \mathcal{E} \Rightarrow A^{C} := E \setminus A \in \mathcal{E}$
- 3) $(A_n)_{n\geqslant 1}$ con $A_n \in \mathcal{E} \Rightarrow \bigcup_{n=1}^{+\infty} A_n \in \mathcal{E}$

<u>Ons.</u>:

Una V-algebra é chiusa per unioni finite e per interserioni finite e muerabili.

esempi:

- 1) $\mathcal{E} = \mathcal{P}(E) = \{A : A \subseteq E\}$
- 2) E insieme, $C \subseteq P(E)$. Chiamiamo T(C) la più piccola T-algebra contenente C:
 - · T(E) é T-algebra
 - C ∈ T(E)
 - \mathcal{E} \mathcal{E} \mathcal{F} -algebra con $\mathcal{C} \subseteq \mathcal{E} \Rightarrow \mathcal{F}(\mathcal{E}) \subseteq \mathcal{E}$ $\mathcal{F}(\mathcal{E})$ \mathcal{E} delto \mathcal{F} -algebra generata da \mathcal{E} Per mostrare che $\mathcal{F}(\mathcal{E})$ esiste, consideriamo $\mathcal{U}_{\mathcal{E}} := \{\mathcal{E} \subseteq \mathcal{P}(\mathcal{E}) : \mathcal{E} \neq \mathcal{F} \text{-olgebra} \land \mathcal{E} \subseteq \mathcal{E}\}.$ Chiaramente $\mathcal{U}_{\mathcal{E}} \neq \mathcal{F}(\mathcal{E}) \in \mathcal{U}_{\mathcal{E}}$.

Definioner $A = \Lambda U_e = \{A \subseteq C : A \in E \mid \forall E \in U_e\}.$ Si ha:

- 1) CEE => CEL ovvers CEL
- 2) EE 4 => 1 = E
- 3) A é V-algebra:
 - · EEE ∀EEUe ⇒ EEL
 - $A \in A \Rightarrow A \in E \quad \forall E \in U_{e}$ $\Rightarrow A^{c} \in E \quad \forall E \in U_{e} \Rightarrow A^{c} \in A$
 - · (An) uss con An E A Vu
 - ⇒ Anee YEE Ue ⇒ WAnee YEE Ue ⇒ UAn ∈ A

Quindi A = T(E)

3) T-algebra di Bosel su IR": É la T-algebra generata dalle palle aperte di IR" e si denota con B(IR")

esercizia:

Sia E insieme non numeralile, $C = \{\{x\}: x \in \mathbb{R}\}.$ Descrivere T(C).

Def. (Spario misurabile):

Se É é un insieure ed É é T-algebra di sottainsieure di É, la coppia (É, É) si dice SPAZIO MISURABILE

Def. (Frurioue misurable):

Siano (E, E), (F, F) spari misuralile. Una funcione f: E→F si dèce Funzione MisuraBILE Se:

VBEF si ho
$$f^{-1}(B) \subseteq E$$

con $f^{-1}(B) := \{x \in E : f(x) \in B\}$

N.B.

Se E = R", sceglierems SEMPRE & = B(IR")

esempi:

- 1) E ivvieue, (F, F) sporio misuralile, f: E→F

 Qual é la più piccola T-algebra su E che

 rende misuralile f? Consideriamor l'invieue

 T(f):= {f⁻¹(B): B ∈ F} ⊆ P(E). Notiamor

 che se É é T-algebra di sottainsiemi di E

 allora f é misuralile se e solo se T(f) ⊆ É.

 Inoltre T(f) é essa stessa ma T-algebra ed

 é quindi la più piccola T-algebra di E che

 rende f misuralile.
- 2) Più in generale, sia (fi)i∈I famiglia di fuzioni fi: E→F con E insieme, (F, F) sposio misuralile. La più piccola T-algebra su E che rende misuralili tutte le fi é:

 $\nabla(f_i:i\in I) = \{f_i^{-1}(B): B\in F, i\in I\}$

- 3) Dota f: IR" IR, si ha che:
 - · se f é contina, allora é misuralile
 - · se u=1 e f é menteno, allora é

unsur alile

· se (fu) é successione di funzioni unsurabili, allos (se]) lin fu, sup fu, inf fu,... sono misurabili.

esercitio:

Sianor (E, \mathcal{E}) , (F, F) sporti mismolile t.c. $F \in \nabla(\mathcal{E})$ con $\mathcal{E} \subseteq \mathcal{P}(E)$. Dim. che $f: E \to F$ i mismolile se e solo se si ho: $f^{-1}(B) \in \mathcal{E} \quad \forall B \in \mathcal{E}$

Def. (lurieure misurabile):

Se (E, E) é una sparia misuralile, gli elementi di E sona delli insiEMi MisuraBiLi

esercitio:

Dati (E, E) sparia misuralile, $A \subseteq E$, dim. la seguente: $f = 1_A$ é misuralile $\iff A \in E$

Def. (Misura, Sparia di misura):

Sia (E, \mathcal{E}) sporior misuralile. Una Misura su (E, \mathcal{E}) e una funcione $\mathcal{V}: \mathcal{E} \longrightarrow \mathbb{R}^{>0}$ t.c.: 1) $\mathcal{V}(\phi) = 0$

2) $\forall (An)_{n>1}$ con Ai disginti ri ho $\forall (\bigcup_{n=1}^{+\infty} A_n) = \sum_{n=1}^{+\infty} \forall (A_n)$

La terna (E, E, Y) si dice SPAZIO DI MISURA

<u>Def.</u> (Sparia di probabilità): Una Sparia di PROBABILITA (12, A, P) è una sparia di misura per un 1P(12) = 1

esempi:

 $\tilde{e} \quad l' \text{ unico } \text{ unisuro } \lambda \text{ su } (IR^n B(IR^n)) \text{ t.c. } \text{ volgo}:$ $\lambda \left(\prod_{i=1}^n \left[a_i, b_i \right] \right) = \prod_{i=1}^n \left(b_i - a_i \right) \quad \forall a_1 < b_1, \dots, a_n < b_n$