

Introduction to the Course

CS-604: Advanced System Security
Autumn 2024

Deepti Vidyarthi
Assistant Professor, SoCE&MS

Outline

- What will we learn?
- Prerequisites, Syllabus
- Hands-on
- Organization of the course
- Security Threats
- System Security OS Security Intro
- Security Goals, Threat Model, Trust Model
- Access Control Defn, Lampson Access Matrix
- References

What will we learn?

- Why is the traditional security mechanism insufficient today?
- How are the processes are separated?
- How do processes run at different privilege levels?
- Can we make memory attacks harder?
- How can the operating-systems be hardened?
 - · Enforcing mandatory access control
 - Compartmentalization and virtualization

What will we learn?

- Theoretical concepts of operating system security
- Security architectures of current Operating Systems
- Details of security implementation
- Concept of virtualization, Security mechanisms in virtual machines
- Syllabus

Prerequisites

- Basics of Operating System
 - Processes & threads
 - Memory management
- Linux shell scripting commands
- Web Sources:
 - https://codex.cs.yale.edu/avi/courses/CS-423/slides/index.html
 - https://www.tutorialspoint.com/unix/unix-usefulcommands.htm

- Lab Requirements:
 - Virtual environments: VMWare Workstation / Oracle VirtualBox
 - Windows Systinternals
 - Kali Linux
 - LSM by SELinux

(will share sources for VM instances with required tools)

Organization of the course

 Classroom interaction + Reading assignments + Lab work + Paper discussion

Assessment	Marks	Weightage (%)
Test (Three tests one per month)	10 x 3	30
Internal (Lab-work + Research paper study & presentation)	20	20
End semester examination	50	50

Note: Reading assignments are essential to fulfill the pre-requisites & understand classroom sessions more clearly.

Security Threats

Malware attacks rose 53% in India in 2018: SonicWall

Ransomware attacks were up in every geography except India and the UK, showed the findings based on an analysis 3.9 trillion malicious events in over 215 countries.

IANS | Mar 28, 2019, 04.37 PM IST

Save

O Comments

While ransomware attacks were down 49 per cent in India in 2018, the country experienced 53 per cent rise in malware attacks last year, according to a new report from cybersecurity firm SonicWall.

Ref: Economics Times article, Mar28, 2019

C

You became victim of the PETYA RANSOMWARE!

The harddisks of your computer have been encrypted with an military grade encryption algorithm. There is no way to restore your data without a special key. You can purchase this key on the darknet page shown in step 2.

To purchase your key and restore your data, please follow these three easy steps:

- Download the Tor Browser at "https://www.torproject.org/". If you need help, please google for "access onion page".
- Visit one of the following pages with the Tor Browser:

```
http://pety ___ | .onion/g .
```

3. Enter your personal decryption code there:

If you already purchased your key, please enter it below.

Caught unaware?

System Security

System Security

Secure Operating System

Secure Operating System

- Provides security mechanisms that ensure that the system's security goals are enforced by trusted components despite threats from attackers.
- Building any secure system must consider
 - how the system achieves its <u>security goals</u>
 - under a set of threats (i.e., a threat model)
 - o given a set of software, including the security mechanisms, that must be trusted (i.e., a trust model).

- Lots of unsatisfying definitions
 - Users can perform only authorized operations (safety)
 - Processes perform only their necessary operations.
- principe of (least privilege)
 - Operations can only permit information to be written to more secret levels (MLS) Multilively security whole security
 - Defining practical and effective security goals is a difficult task

- Define the operations that can be executed by a system while still preventing unauthorized access
- Define requirement that the system's design can satisfy
- Defined at a high-level of abstraction
- Describe how system implements accesses to system resources to satisfy the security goals- safety - least privilege - MLS → (secrecy/ integrity/availability)

- A system access is stated in terms of:
- which subjects (e.g., processes and users)
- can perform which operations (e.g., read and write)
- on which objects (e.g., files and sockets)

Examples of goal defined:

- simple-security property of the Bell-LaPadula model This goal states that a process cannot read an object whose secrecy classification is higher than the process's.
- principle of least privilege
 It limits a process to only the set of operations necessary for its execution.

Trust Model

- Set of software and data
 Upon which the system depends for correct enforcement of system security goals
- security-sensitive operations. For Operating system Trust model = system's trusted computing base (TCB) TCB - minimal amount of software necessary to enforce the security goals correctly 15 code + advin level apps.

Trust Model

Ideal TCB - bootstrapping mechanism (enabling the security goals to be loaded and enforced)

Actual TCB - varied software - (OS + outside) code

Trust Model

- Secure OS developer must prove that their systems have a viable trust model
- (1) System TCB must mediate all security-sensitive operations
- (2) Verification of the correctness of the TCB software and its data
- (3) Verification that the software's execution cannot be tampered by processes outside the TCB.

Threat Model

- Set of operations used to compromise a system
- Attacker can find vulnerability in system
- Provide access to secret information or permits the modification of information

Get control of a process running on the system

Threat Model

- Cannot trust processes outside of the TCB to behave as expected
- Protecting the TCB:
 - system security goals will always be enforced regardless of the behaviour of user processes
- Restricting user process:
 - Prevent a user process from leaking secret data by limiting interactions of that process

Memory Access

- All access to resources is handled through file-access permissions - through system calls
- Cannot do that for reading/writing memory
- Load/store instructions are very frequent in programs
- OS still needs control over memory access of processes!

Access

Access requests - Requests (e.g., system calls) from multiple subjects (e.g., users, processes, etc.) to perform operations (e.g., read, write, etc.) on objects (e.g., files, sockets, etc.)

Operation Object Object

Access Control

 Access requests authorized by access Epoit 86 05) describing (policies) enforcement mechanism Reference Monitor Operation Subject Object

Access Control

Protection System

Lampson Access Matrix

- set of subjects $s \in S$
- set of objects o ∈ O
- set of operations op ∈ OP
- function ops(s, o) \subseteq OP The function ops(s, o) is said to return a set of operations corresponding to cell (s, o)

Lampson Access Matrix

Protection domain -

- Set of resources (objects) that process can access and the operations that process may use to access such resources
- Rows in Access Matrix
- For a secure OS, we need assurance that protection domain of each process satisfies system Secrecy & Integrity

Lampson Access Matrix

Representations:

Problem with matrix?

- Access control list or ACL: protection state using individual object columns
- Capability list or C-List: objects that a particular subject can access are stored

à Matrix -> Lampson.

Problem?

- Using protection state operations, untrusted user
 processes can modify the access matrix by adding
 new subjects, objects, or operations assigned to cells
- Permits untrusted processes to modify the protection state discretionary access control (DAC) system
- Protection System is at discretion of users & processes

 To ensure that a protection state & all possible future protection states derivable - provide no unauthorized access

- Undecidable for protection systems with compound protection state operations
- One process is protected only if all behave benignly

- Process 1 is malicious
- Process 1 is non-malicious but has interface with Process 2 and is vulnerable

- Security: where a system's security mechanisms can enforce system security goals even when any of the software outside the trusted computing base may be malicious
- Protection state must be defined based on accurate identification of the <u>secrecy and integrity</u> of user data and processes
- No untrusted processes may be allowed to perform protection state operations

References

Books:

- 1. Jaeger, T., "Operating System Security", Morgan & Claypool (online), 2008. as Textbook.
- 2. Morrie Gasser, "Building a Secure Computer System".
- 3. Silberschatz and Galvin: "Operating System Concepts", Addison Wesley, 2006.

Research papers and tutorials would be shared on the fly.

Homework

Basic Security in Windows/Linux/Android

- Does your system's OS provide access control?
- How does is allow access control for multiple users?
- Can you change permission to access- read/write any file?

Research Challenges

Foolproof Security

Security VS User Friendliness

Security VS Performance

Thank You!