Peso por sismo:

será la suma del 100% de la carga muerta más el 25% de la carga viva

Wsismo = 100%WWMM + 25%WWVV Planta de losas

LOSA	LONGITUD Y (m)	LONGITUD X (m)	AREA (m2)
1	3.02	4.3	12.99
2	3.02	4.32	13.05
3	4.5	5.9	26.55
4	4.5	4.35	19.58
		TOTAL AREAS (m2)	72.1574

			Espesor de losa (m)	0.12
Carga (kg/m^2)	Viva	Sobre Iosa	Bajo losa	Sobre Carga
Entre piso	250.00	60.00	25.00	295.00
Carga (Ton/m^2)	Viva	Sobre Iosa	Bajo losa	Sobre Carga
Techo	0.25	0.06	0.025	0.295
				2.40

Peso muerto total

Peso carga viva

$$W_V = carga\ viva * área\ total\ de\ la\ losa$$

Wv (Ton)	18.04
----------	-------

Peso por sismo

$$W_{sismo} = 100\%WM + 25\%WV$$

Wsismo (Ton)	52.71
--------------	-------

W total losa (Ton)	52.71
vv cocar rosa (rom	22.12

PESO POR MUROS

Para entrepisos: La altura de los muros de relleno se determina por áreas tributarias, es decir, se considera la mitad de la columna del piso anterior y la mitad del piso en análisis. Además, se le restará el alto de la viga del piso en análisis.

Para último piso: La altura de los muros de relleno se determina por áreas tributarias, es decir, se considera la mitad de la columna del piso en análisis. Además, se le restará el alto de la viga del piso en análisis.

Altura de muros

Longitud de Muros

Se suman todas las longitudes de los muros tanto en X como en Y

Wm = peso superficial de mampostería

	L total (m)	42.22	L
Wm	n (Ton/m2)		0.18

Para determinar el peso total de muros se utiliza la ecuación:

WW = AAPPVVvvAArr SSvv vvvvAAooee * PPooWWccvvVvvvSS VVooVVrrPP SSvv vvvvAAooee * FFvveeoo eevvFFvvAAssvvccvvrrPP SSvv PPrr vvrrvvFFooeeVVvvAAvvrr

Altura de muro	2.5	m
Long. de muro	42.21	m
Wm	0.18	Ton/m^2
W total muros	18.99	Ton

El cálculo del peso sísmico del nivel en análisis es igual a la suma de todos los pesos obtenidos WWtotal nivel de análisis = WWtotal col + WWtotal viga + WWtotal losa + WWtotal muro

		_
Peso sismico del nivel en	116.40	Ton
analisis		

CÁLCULO NIVEL 1

Las áreas tributarias determinaran la altura de las columnas, para los pisos inferiores, como piso 1 y 2, se considera la mitad de la columna del piso anterior y la mitad del piso en analisis.

Para el ultimo piso: debido a que los muros de corte y elevadores llegan hasta la parte más alta de la estructura, se debe de considerar la mitad faltante de la viga del último piso; ya que las áreas tributarias toman como referencia el eje de la viga.

PESO DE COLUMNAS

Elemento	Área (m^2)	Altura (m)		No
Columnas	0.18	3.5	2.4	5
Muro 1	0.45	3.5	2.4	1
Muro 2	0.54	3.5	2.4	1
Elevadores	2.56	3.5	2.4	1

Para el cálculo del peso de los elementos se utilizara la siguiente formula

WW = SSooPPvvvvvWW SSvvPP vvPPvvvvvWWVVoo * yy * µµoo SSvv vvPPvvvvvVWWVVooee

<u>Columnas</u>		
Wcol. (Ton)	7.56	
<u>Muro</u>		
WM1 (Ton)	3.78	
WM2 (Ton)	4.54	
<u>Elevadores</u>		
Welev. (Ton)	21.50	
W total de columnas		
Wcol total (Ton)	37.37	

Eje Y				
Eje	Base de viga (m)	Altura de viga	Longitud (m)	
Α	0.25	0.5	2.35	
Α	0.25	0.5	3.82	
В	0.25	0.5	4.43	
С	0.25	0.5	2.94	
С	0.25	0.5	4.43	
	_	Longitud total	17.97	
		Area de viga (m^2)	0.13	

EJE X					
Eje	Base de viga (m)	Altura de viga	Longitud (m)		
1	0.25	0.5	4		
1	0.25	0.5	3.97		
2	0.25	0.5	4.3		
2	0.25	0.5	3.97		
3	0.25	0.5	4.78		
3	0.25	0.5	3.22		
		Longitud total	24.24		

Area de viga (m^2)	0.13
	2.40

El peso total de las vigas se cálculan utilizando la siguiente formula

WW = SSooPPvvvvvvWW SSvvPP vvPPvvvvvvWWVVoo * yy

PESO POR LOSA

El peso por losa estara compuesto por los siguientes pesos

Peso por carga muerta: El peso por carga muerta es igual a la suma de los siguientes pesos

$$W_{MUERTA\ TOTAL} = W_{PROPIO} + W_{S/LOSA} + W_{B/LOSA} + W_{S/C}$$

Wpropio = peso propio

Ws/losa = peso sobre losa

Wb/losa = peso bajo losa

Ws/c =peso por sobre carga

W peso propio: el peso propio se cálcula utilizando la siguiente ecuación:

$$W_{Propio} = \gamma * \'area total de la losa * espesor$$

Ws/losa: es todo el peso que se encuentre sobre la losa como: piso, relleno, ducteria

$$W_{S/Losa} = carga sobre losa * área total de la losa$$

Wb/losa: es todo el peso que se encuentra bajo la losa como: lamparas, repello, cernido, cielo falso

$$W_{B/Losa} = carga bajo losa * área total de la losa$$

Ws/c: el peso por sobre carga se cálcula utilizando la ecuacion:

$$W_{s/c} = sobre carga * área total de la losa$$

Peso por carga viva: Será el equivalente al producto de la carga viva por el área donde se aplica \overline{WW} =

ccrrAAccrr SSvvSSrr * áAAvvrr VVooVVrrPP SSvv PPrr PPooeerr

Peso por sismo:

será la suma del 100% de la carga muerta más el 25% de la carga viva

WWsismo= 100%WWMM + 25%WWVV

Planta de losa

LOSA	LONGITUD Y (m)	LONGITUD X (m)	AREA (m2)
1	3.02	4.3	12.99
2	3.02	4.32	13.05
3	4.5	5.9	26.55
4	4.5	4.35	19.58
		TOTAL AREAS (m2)	72.1574

			Espesor de losa (m)	0.12
Carga (kg/m^2)	Viva	Sobre losa	Bajo losa	Sobre Carga
Entre piso	250.00	60.00	25.00	295.00
Carga (Ton/m^2)	Viva	Sobre losa	Bajo losa	Sobre Carga
Techo	0.25	0.06	0.025	0.295
				2.40

Peso muerto total

	Wpropio (Ton)	20.78	
	WS/Losa (Ton)	4.33	
	WB/Losa (Ton)	1.80	
	WS/C (Ton)	21.29	
$W_{MUERTA\ TOTAL} = W_{I}$	$P_{ROPIO} + W_{S/LOSA} +$	$W_{B/LOSA} +$	$W_{S/C}$
	W muerta total	48.20	

Peso carga viva

 $W_V = carga \ viva * \'area \ total \ de \ la \ losa$

Wv (Ton)	18.04

Peso por sismo

$$W_{sismo}~=100\%WM+25\%WV$$

Wsismo (Ton)	52.71
--------------	-------

W total losa (Ton)	52.71
--------------------	-------

PESO POR MUROS

Para entrepisos: La altura de los muros de relleno se determina por áreas tributarias, es decir, se considera la mitad de la columna del piso anterior y la mitad del piso en análisis. Además, se le restará el alto de la viga del piso en análisis.

Para ultimo piso: La altura de los muros de relleno se determina por áreas tributarias, es decir, se considera la mitad de la columna del piso en análisis. Además, se le restará el alto de la viga del piso en análisis.

Altura de muros

Longitud de Muros

Se suman todas las longitudes de losros tanto en x como en y

	L total (m)	42.21	
Wm = pes	o superficial	de mampos	stería
	Wm		
	(Ton/m2)	0.18	

Para determinar el peso total de muros se utiliza la ecuación:

WW = AAPPVVvvAArr SSvv vvvvAAooee * PPooWWccvvVvvvSS VVooVVrrPP SSvv vvvvAAooee * FFvveeoo eevvFFvvAAssvvccvvrrPP SSvv PPrr vvrrvvFFooeeVVvvAAvvrr

Altura de muro	2.5	m
Long. de muro	42.21	m
Wm	0.18	Ton/m^2
W total muros	18.99	Ton

CENTRO DE MASA

Centro de masa: El centro de masa se calcula con el peso de las losas de cada piso considerando que la mayor contribucion en el peso de la estructura es por parte de las losas.

Peso sismico del nivel en analisis	126.49	Ton
---------------------------------------	--------	-----

<u>Punto de referencia:</u> Se coloca un punto de referencia en una de las esquinas de la estructura el cual servira para obtener los centros de masa de cada una de las losas.

Metodo de cálculo: se calcula las cordenadas del centro de masa respecto al punto de referencia haciendo uso de el teorema de ejes paralelos.

Ecuación ejes paralelos:

$$X_{CM} = \frac{\sum A * \bar{x}}{\sum A}$$

$$Y_{CM} = \frac{\sum A * \bar{y}}{\sum A}$$

Planta de centro de masa

Cálculo de Centro de masa de cada losa

Losa	Área (m^2)	x (m)	y (m)	A*x	A*y
1	12.99	2.42	6.51	31.43	84.54
2	13.05	8.58	6.51	111.94	84.93
3	26.55	3.2	2.5	84.96	66.38
4 Σ Area	19.58	8.58	2.5 Σ A*x - A*y	167.95	48.94
	72.16			396.28	284.78

Centro de masa XCM, YCM utilizando teorema de ejes paralelos

Sumatoria A*x	Sumatoria A*y	Sumatoria Area
396. 28	284.78	72.16
	XCM (m)	5.49
	YCM (m)	3.95

Altura acumulada: es la suma de todos los niveles en la ruta.

Nivel	Peso sismico (ton)	Altura acumulada(m)
1	126.49	4
2	116.40	7
3	83.82	10
	326.71	21

METODO AGIES

Ingrese:	Descripcion de Variables	Norma	Busqueda
4.2	lo= Indice de sísmisidad		Figura: 4.5-1
1.5	Scr= Ordenada espectral T corto (g)	- 5	Figura: 4.5-1
0.55	S1r= Ordenada espectral T largo (g)	NSE	Figura: 4.5-1
D	NPS= Nivel de proteccion sísmica	ž	Figura: 4.2.2-1
5%	Prob= En 50 años		Figura: 4.2.2-1
1	Fa= Coeficiente de sitio T corto		Tabla: 4.5-1
1.7	Fv= Coeficientes de sitio T largo		Tabla: 4.5-2
1.12	Na= Fac. por la proximidad de amenazas		Figura: 4.6.2-2
1.20	Nv= Fac. por la proximidad de amenazas		Figura: 4.6.2-3
0.8	Kd= Factores por nivel sísmico		Figura: 4.5.5-1

Por clase de sitio

Periodo de Meseta

 $\frac{\text{Aceleración Maxima}}{\text{AMS}_d = 0.40 * S_{cd}}$

 $T_0 = 0.2 T_S$

То

AMSd

Componente Vertical

Scs	1.5	S1s	0.94	Svd	0.24
Por intensidad :	sismica	- 6	20	7/2	100
Scs = Scr * i	Fa * Na	S1s = S1r * Fv * Ni			
Control of	000000	AND COLOR			
Scs	1.68	S1s	1.12		
Por nivel sismic		S1s	1.12		
	0_	$S_{1d} = K_d * S_{1S}$	1.12		
Por nivel sismic	0_	$S_{1d} = K_d * S_{1S}$	0.748		
$S_{cd} = K_d *$	S _{CS}	$S_{1d} = K_d * S_{1S}$			

0.12

0.48

PERÍODO DE VIBRACIÓN

NSE-3

						IVOL 0
T_a=K_T*	((h_n)^x)	h_n (m) =	10.25	edificación	Altura de	
		K_T=	0.047		Coeficiente	2.1.6
T_a	0.34	x	0.85		Coeficiente	2.1.6

NOTA:

KT y X asignados para un sistema E-1 de concreto reforzado con fachada rígida , se incluye mampostería reforzada.

	Demanda sismica			
Caso 1	$S_a(T) = S_{cd}$	cuando $T_0 \leq T \leq T_S$	(4.5.6-1)	
Caso 2	$S_a(T) = \frac{S_{1d}}{T} \le S_{cd}$	cuando $T > T_S$	(4.5.6-2)	
Caso 3	$S_a(T) = S_{cd} \left[0.4 + 0.6 \right]$	$\left[\frac{T}{T_0}\right]$ cuando $T < T_0$	(4,5.6-3)	
То	0.12			
Та	0.34			
ts	0.62			
	Caso 1			
	Sa (T)	1.2		

NOTA:

Sí el período de vibración cumple con alguna de las condiciones establecidas, elegir la expresión correspondiente para determinar la demanda sísmica Sa(T)

NSE-2 4.5.6

Coeficiente sismico

$$Sc = \frac{Sa(T)}{R}$$

Sa (T)=	1.2 NS2	demanda sisr	mica
R	8 NS3	Tabla	1.6.12-1
Cs	0.15		

NOTA:

Coeficiente minimo

 $Cs \ge 0.044Scd \ge 0.01$

$$C_s \geq \frac{0.75*K_d*S_{1r}}{R}$$

Cs 0.15 0.044Scd 0.0528 0.75*Kd*S1r/r 0.04125

Coeficiente sismico a utilizar

NOTA:

El coeficiente sísmico obtenido mediante la sección 4.5.6 de la norma NSE-2, se debe comparar con los valores mínimos obtenidos propuestos en la sección 2.1.4 de la NSE-3, debiendo tomar el mayor de los tres valores.

Cc	0.15
CS	0.15

Periodo Natural de Vibracion

Para PNVse utiliza la siguiente ecuación:

Para X

$$PNV_X = \frac{0.0906 * h_{total}}{\sqrt{D_X}}$$

Para Y

$$PNV_y = \frac{0.0906*h_{total}}{\sqrt{D_y}}$$

Donde:

hn= la altura total del edificio, no altura total a eje.

Dx= distancia total en el eje x

Dy= distancia total en el eje y

La ecuacion a utilizar depende del eje que se desee analizar

El valor del PNV obtenido tambien servira para determinar si a la estructura se le deberá de calcular la FUERZA TOP, pues si PNV>0.25 debe de calcularse

Análisis en el eje X

$$=\frac{0.0906*h_{total}}{\sqrt{x}}$$

ΡΡμμ۷۷

	עע
hn (m)	10.25
Dx (m)	11
PNV	0.28

חח

EXISTE FUERZA TOP

DISTRIBUCIÓN DE FUERZA POR PISO

Peso sismico Se utiliza el peso sismico total del nivel a analisar

Altura hacum La altura acumulada es la altura que hay del suelo al nivel a analizar.

Factor de Distribución

El factor de distribución Cx equivale al producto del peso sismico* la altura acumulada, esto dividido entre la sumatoria total del producto peso sismico * altura acum.

$$C_x = \frac{W_{sism} * h_{acum}}{\sum (W_{sism} * h_{acum})}$$

Fuerza en cada piso

La fuerza por piso sera el producto entre la Cortante Basal-la fuerza top*Cx. Solo al ultimo piso se le suma la fuerza top

Fuerza top

Fuerza que se le suma únicamente al último nivel

Fuerza top(ton)	0.96
-----------------	------

Corte Basal Vb

		Vb (ton)	49.01		
Nivel	peso sismico	h acumulada	Wsismico*hacum	Сх	Fp (Ton)
1	126.49	4	505.95	0.23	11.26
2	116.40	7	814.81	0.38	18.13
3	83.82	10	838.16	0.39	19.61
	326.71		2158.92	1.00	49.01

La sumatoria de todas las fuerzas de piso debe de ser igual a el Corte Basal

SI CUMPLE

CONDICIONES			
K=	1		Ta≥0.5
K=	0.75+0.5Ta		0.5 <ta<2.5< td=""></ta<2.5<>
K=	2		Ta>2.5

Cortant	Cortante basal:		
Vb=C	Vb=Cs*Ws		
Vb=	49.01		

Fuerza top =	= 0.07 * <i>PNV</i> * <i>Vb</i>	
	PNV	0.28
	Vb	49.01
	Fuerza Top (Ton)	0.96

Rigidez por piso

Para la determinación de la Rigidez haremos uso de las siguientes expresiones

Modulo de elasticidad del Concreto: se determina según ACI318S-14, con la siguiente expresión

$$EE = 15100$$

Modulo de cortante del concreto: El modulo del cortante de concreto sera igual al 40% de su modulo de elasticidad, según lo indica el codigo ACI318S-14

<u>Rigidez:L</u>os ultimos niveles se asumen en voladizo, mientras que los entre pisos se toman como empotrados

Voladizo
$$\delta = \frac{h^3}{3E_cI} + \frac{1.2h}{A*G_c}$$
 Rigidez
$$K = \frac{1}{\delta}$$
 Empotrado
$$\delta = \frac{h^3}{12E_cI} + \frac{1.2h}{A*G_c}$$

Se debe de determinar los elementos que soportan el sismo en cada uno de los ejes en cada sentido, X y Y, teniendo los elementos determinados se cálcula la rigidez de cada uno

Modulo de elasticidad

30.00 cm

60.00 cm

М	uro (cm)	A	ltura	300.0
Long. M1	150.00	lo	e todos os	0
Long. M2	180.00		lement s (cm)	
Espe t	30.00			

ador (cm)
354.00
95.00
98.00
183.00
183.00
30.00

K total en Y	416716.
	6449

RIGIDEZ EN CADA MARCO

	En sentido X						
Eje	elemento	Nivel	Volad/Empo	b (cm)	h (cm)	Inercia	Area (cm^2)
Α	Columna	3	Voladizo	60.00	30.00	540000.00	1800.00
Α	Muro M1	3	Voladizo	30.00	100.00	225000.00	3000.00
Α	Columna	3	Voladizo	60.00	30.00	540000.00	1800.00
В	Muro elev. Lado largo	3	Voladizo	30.00	354.00	796500.00	10620.00
В	Muro M2	3	Voladizo	180.00	30.00	14580000.00	5400.00
С	Columna	3	Voladizo	60.00	30.00	540000.00	1800.00
С	Columna	3	Voladizo	60.00	30.00	540000.00	1800.00
С	Columna	3	Voladizo	60.00	30.00	540000.00	1800.00

Eje	elemento	Inercia	Area (cm^2)	altura (cm)	Ec (kg/cm^2)	Gc (kg/cm^2)	
Α	Columna	540000.00	1800.00	300.00	248118.32	99247.33	6.91874E-05
Α	Muro M1	225000.00	3000.00	300.00	248118.32	99247.33	0.000162423
Α	Columna	540000.00	1800.00	300.00	248118.32	99247.33	6.91874E-05
В	Muro elev. Lado largo	796500.00	10620.00	300.00	248118.32	99247.33	4.58821E-05
В	Muro M2	14580000.00	5400.00	300.00	248118.32	99247.33	3.15958E-06
С	Columna	540000.00	1800.00	300.00	248118.32	99247.33	6.91874E-05
С	Columna	540000.00	1800.00	300.00	248118.32	99247.33	6.91874E-05
С	Columna	540000.00	1800.00	300.00	248118.32	99247.33	6.91874E-05

Eje	Elemento	Rigidez K	K total de eje
A	Columna	14453.49428	
Α	Muro M1	6156.782098	35063.77067
Α	Columna	14453.49428	
В	Muro elev. Lado largo	21795.00863	338292.3913
В	Muro M2	316497.3827	
С	Columna	14453.49428	
С	Columna	14453.49428	43360.48285
С	Columna	14453.49428	

K total en Y	416716.6449
--------------	-------------

	En sentido Y						
Eje	elemento	Nivel	Volad/Empo	b (cm)	h (cm)	Inercia	Area (cm^2)
1	Columna	3	Voladizo	60.00	30.00	135000.00	1800.00
1	Muro elev.lado inter 1	3	Voladizo	183.00	30.00	411750.00	5490.00
1	Columna	3	Voladizo	60.00	30.00	135000.00	1800.00
2	Muro M1	3	Voladizo	30.00	100.00	2500000.00	3000.00
2	Muro elev.lado inter 2	3	Voladizo	183.00	30.00	411750.00	5490.00
2	Columna	3	Voladizo	60.00	30.00	135000.00	1800.00
3	Columna	3	Voladizo	60.00	30.00	135000.00	1800.00
3	Muro M2	3	Voladizo	180.00	30.00	405000.00	5400.00
3	Columna	3	Voladizo	60.00	30.00	135000.00	1800.00

Eje	elemento	Inercia	Area (cm^2)	altura (cm)	Ec (kg/cm^2)	Gc (kg/cm^2)	
	1 Columna	135000.00	1800.00	300.00	248118.32	99247.33	0.000270704
	1 Muro elev.lado inter 1	411750.00	5490.00	300.00	248118.32	99247.33	8.87555E-05
	1 Columna	135000.00	1800.00	300.00	248118.32	99247.33	0.000270704
	2 Muro M1	2500000.00	3000.00	300.00	248118.32	99247.33	1.57183E-05
	2 Muro elev.lado inter 2	411750.00	5490.00	300.00	248118.32	99247.33	8.87555E-05
	2 Columna	135000.00	1800.00	300.00	248118.32	99247.33	0.000270704
	3 Columna	135000.00	1800.00	300.00	248118.32	99247.33	0.000270704
	3 Muro M2	405000.00	5400.00	300.00	248118.32	99247.33	9.02347E-05
	3 Columna	135000.00	1800.00	300.00	248118.32	99247.33	0.000270704

Eje	Elemento	Rigidez K	K total de eje
1	Columna	3694.069259	
1	Muro elev.lado inter 1	11266.91124	18655.04976
1	Columna	3694.069259	
2	Muro M1	63620.08168	
2	Muro elev.lado inter 2	11266.91124	78581.06218
2	Columna	3694.069259	
3	Columna	3694.069259	
3	Muro M2	11082.20778	18470.34629
3	Columna	3694.069259	

K total en X	115706.4582
--------------	-------------

Centro de Rigidez

Planta de distancia de Rigidez

en direccion y

٧	Dx	K	K*Dx
Α	0.13	350.64	45.58
В	6.28	3382.92	21244.76
С	10.88	433.6	4717.62
		4167.17	26007.97

en direccion x

V	Dx	K	K*DY
1	8.12	186.55	1514.79
2	4.88	785.81	3834.76
3	0.15	184.7	27.71
		1157.06	5377.25

Utilizamos la ecuación de ejes paralelos para determinar el centro de Rigidez.

$$X_{CR} = \frac{\sum K*Dy}{\sum K} \qquad Y_{CR} = \frac{\sum K*Dx}{\sum K}$$

Ecuación ejes paralelos:

СМу	3.95	m
CMx	5.49	m

El CM Y CR deben de coincidir lo más que se pueda.

Rigidez por piso

Para la determinación de la Rigidez haremos uso de las siguientes expresiones

<u>Módulo de elasticidad del Concreto:</u> se determina según ACI318S-14, con la siguiente expresión

$$EE = 15100 \sqrt{*ss'cc}$$

Módulo de cortante del concreto: El módulo del cortante de concreto sera igual al 40% de su módulo de elasticidad, según lo indica el código ACI318S-14

<u>Rigidez:</u> Los últimos niveles se asumen en voladizo, mientras que los entre pisos se toman como empotrados

Voladizo

$$\delta = \frac{h^2}{3E_c I} + \frac{1.2h}{A * G_c}$$

Empotrado

$$\delta = \frac{h^3}{12E_cI} + \frac{1.2h}{A*G_c}$$

Se debe de determinar los elementos que soportan el sismo en cada uno de los ejes en cada sentidos, X y Y, teniendo los elementos determinados se cálcula la rigidez de cada uno

Módulo de elasticidad

Muro (cm)				
Long. M1	150.00			
Long. M2	250.00			
Espe t	30.00			

Altura de	
todos los	300.00
elementos	
(cm)	

Elevador (cm)				
Lado Largo	354.00			
Lado corto 1	95.00			
Lado corto 2	98.00			
Lado inter 1	153.00			
Lado inter 2	153.00			
Espe t	30.00			

RIGIDEZ EN CADA MARCO.

	En sentido Y						
Eje	elemento	Nivel	Volad/Empo	b (cm)	h (cm)	Inercia	Area (cm^2)
A	Columna	3	Voladizo	60.00	30.00	540000.00	1800.00
A	Muro M1	3	Voladizo	115.00	30.00	3802187.50	3450.00
A	Columna	3	Voladizo	60.00	30.00	540000.00	1800.00
В	Muro elev. Lado largo	3	Voladizo	30.00	354.00	796500.00	10620.00
В	Muro M2	3	Voladizo	70.00	30.00	857500.00	2100.00
С	Columna	3	Voladizo	60.00	30.00	540000.00	1800.00
С	Columna	3	Voladizo	60.00	30.00	540000.00	1800.00
С	Columna	3	Voladizo	60.00	30.00	540000.00	1800.00

Eje	elemento	Inercia	Area (cm^2)	altura (cm)	Ec (kg/cm^2)	Gc (kg/cm^2)	
Α	Columna	540000.00	1800.00	300.00	248118.32	99247.33	6.91874E-05
Α	Muro M1	3802187.50	3450.00	300.00	248118.32	99247.33	1.05914E-05
Α	Columna	540000.00	1800.00	300.00	248118.32	99247.33	6.91874E-05
В	Muro elev. Lado largo	796500.00	10620.00	300.00	248118.32	99247.33	4.58821E-05
В	Muro M2	857500.00	2100.00	300.00	248118.32	99247.33	4.40282E-05
С	Columna	540000.00	1800.00	300.00	248118.32	99247.33	6.91874E-05
С	Columna	540000.00	1800.00	300.00	248118.32	99247.33	6.91874E-05
С	Columna	540000.00	1800.00	300.00	248118.32	99247.33	6.91874E-05

Eje	Elemento	mento Rigidez K	
Α	Columna	14453.49428	
Α	Muro M1	94415.94989	123322.9385
Α	Columna	14453.49428	
В	Muro elev. Lado largo	21795.00863	44507.73434
В	Muro M2	22712.72572	
С	Columna	14453.49428	
С	Columna	14453.49428	43360.48285
С	Columna	14453.49428	

K total en Y	211191.1557

	En sentido X							
Eje	elemento	Nivel	Volad/Empo	b (cm)	h (cm)	Inercia	Area (cm^2)	
1	Columna	3	Voladizo	60.00	30.00	135000.00	1800.00	
1	Muro elev.lado inter 1	3	Voladizo	153.00	30.00	344250.00	4590.00	
1	Columna	3	Voladizo	60.00	30.00	135000.00	1800.00	
2	Muro M1	3	Voladizo	115.00	30.00	258750.00	3450.00	
2	Muro elev.lado inter 2	3	Voladizo	153.00	30.00	344250.00	4590.00	
2	Columna	3	Voladizo	60.00	30.00	135000.00	1800.00	
3	Columna	3	Voladizo	60.00	30.00	135000.00	1800.00	
3	Muro M2	3	Voladizo	70.00	30.00	157500.00	2100.00	
3	Columna	3	Voladizo	60.00	30.00	135000.00	1800.00	

Eje	elemento	Inercia	Area (cm^2)	altura (cm)	Ec (kg/cm^2)	Gc (kg/cm^2)	
1	Columna	135000.00	1800.00	300.00	248118.32	99247.33	0.000270704
1	Muro elev.lado inter 1	344250.00	4590.00	300.00	248118.32	99247.33	0.000106159
1	Columna	135000.00	1800.00	300.00	248118.32	99247.33	0.000270704
2	Muro M1	258750.00	3450.00	300.00	248118.32	99247.33	0.000141237
2	Muro elev.lado inter 2	344250.00	4590.00	300.00	248118.32	99247.33	0.000106159
2	Columna	135000.00	1800.00	300.00	248118.32	99247.33	0.000270704
3	Columna	135000.00	1800.00	300.00	248118.32	99247.33	0.000270704
3	Muro M2	157500.00	2100.00	300.00	248118.32	99247.33	0.000232032
3	Columna	135000.00	1800.00	300.00	248118.32	99247.33	0.000270704

Eje	Elemento	Rigidez K	K total de eje
1	Columna	3694.069259	
1	Muro elev.lado inter 1	9419.87661	16808.01513
1	Columna	3694.069259	
2	Muro M1	7080.299413	
2	Muro elev.lado inter 2	9419.87661	20194.24528
2	Columna	3694.069259	
3	Columna	3694.069259	
3	Muro M2	4309.747469	11697.88599
3	Columna	3694.069259	

K total en X 48700.146

Centro de Rigidez

Planta de distancia de Rigidez

V	Dy	K	K*DY
Α	0.125	1233.23	154.15
В	6.28	445.08	2795.09
С	10.88	433.6	4717.62
		2111.91	7666.86

V	Dx	K	K*Dx
1	8.12	168.08	1364.81
2	4.88	201.94	985.48
3	0.15	116.98	17.55
		487	2367.84

Utilizamos la ecuacion de ejes paralelos para determinar el centro de Rigidez.

$$X_{CR} = \frac{\sum K * Dx}{\sum K}$$
 $Y_{CR} = \frac{\sum K * Dy}{\sum K}$

$$Y_{CR} = \frac{\sum K * Dy}{\sum K}$$

CRy	3.63	m
CRx	4.86	m

CMy	3.95	m
CMx	5.49	m

e Exentr	ricidad		
ex (m)	0.32	e (m)	0.70
ey (m)	0.63		

El CM Y CR deben de coincidir lo más que se pueda.

DISTRIBUCIÓN DE FUERZA POR EJE.

Fuerza de piso					
Nivel Peso h sísmico acumulada Fp (ton)					
	1	126.49	4.00	11.26	
2 116.40		7.00	18.13		
	3	83.82	10.00	19.61	

Fuerza por eje

Se utiliza la siguiente ecuación

Eje	Nivel	K	Fp (ton)	Feje (Ton)
1	3	168.08	19.61	6.77
2	3	201.94	19.61	8.13
3	3	116.98	19.61	4.71
	Total	487.00	F TOTAL	19.61

La fuerza distribuida en cada eje al sumarla debe de ser igual a la fuerza basal que ingresa.

INGRESO DE SISMO EN SENTIDO XX

