Inteligência Artificial – Trabalho 2

Algoritmos de Pesquisa

Vitor Alberto de Sá Ribeiro – 78138

Pedro de Carvalho Martins - 76934

Índice

ĺno	dice de Figuras	4
Re	esumo	5
Int	trodução	6
Subida da Colina		
	Conceito	7
	Implementações	7
	Características do Código	8
	Visualização:	8
	Diferença Principal:	8
	Exemplos	. 8
	Conclusão	9
Sir	mulated Annealing	9
	Conceito	9
	Implementação	9
	Definição de Parâmetros e Inicialização:	9
	Exploração do Espaço de Busca:	10
	Critério de Aceitação:	10
	Decaimento da Temperatura:	10
	Armazenamento e Análise dos Dados:	10
	Identificação do Melhor Ponto:	11
	Visualização dos Resultados:	11
	Resumo do Processo	11
	Exemplos	11
	Conclusão	14
Ca	aixeiro Viajante	14
	Conceito	14
	Implementação	15
	Carregamento das Cidades	15
	Configuração do Algoritmo de Simulated Annealing	15
	Execução do Simulated Annealing	15
	Resfriamento e Convergência	15

Exibição	15
Exemplos	15
Conclusão	19
Conclusão	19
Codigo em Anexo	20
Subida de Colina Original	20
Subida e Colina Reinicialização Múltipla	24
Simulated Annealing	27
Caixeiro Viajante	32
Swapcities_24	32
Pt_nt_sul_30	33
Pt_nt_sul_20	35
Pt_nt	37
Plotcities_2024	39
Main_2024	41
Geo_distance	45
Distance_24	46

Índice de Figuras

Figura 1 - Subida Da Colina Original	8
Figura 2 - Subida Da Colina Reinicialização Múltipla	9
Figura 3 - SA Definições Teste 1	11
Figura 4 - SA Teste 1 Plot 1	12
Figura 5 - SA Teste 1 Plot 2	12
Figura 6 - SA Definições Teste 2	13
Figura 7 - SA Teste 2 Plot 1	13
Figura 8 - SA Teste 2 Plot 2	14
Figura 9 - TSP Definições	16
Figura 10 - TSP 30 Cidades Plot 1	16
Figura 11- TSP 30 Cidades Plot 2	17
Figura 12 - TSP 20 Cidades Plot 1	17
Figura 13 - TSP 20 Cidades Plot 2	18
Figura 14 - TSP 10 Cidades Plot 1	18
Figura 15 - TSP 10 Cidades Plot 2	19

Resumo

Este trabalho tem como objetivo a análise e comparação de três abordagens clássicas de resolução de problemas de otimização: Hill Climbing, Simulated Annealing (SA) e a aplicação do Simulated Annealing ao Problema do Caixeiro Viajante (TSP). O TSP é um problema de otimização combinatória clássico, onde se busca a rota mais curta para visitar um conjunto de cidades, retornando à cidade inicial. O trabalho visa entender as vantagens e limitações de cada algoritmo, avaliar a sua eficácia e aplicar o SA ao TSP para verificar seu desempenho em um cenário real.

O Hill Climbing e o Simulated Annealing são métodos de otimização amplamente usados em inteligência artificial e teoria da computação. O primeiro é um algoritmo iterativo que busca encontrar a solução ótima, movendo-se sempre na direção que melhora a solução corrente, mas, em alguns casos, pode ficar preso em mínimos locais. Já o Simulated Annealing é inspirado no processo físico de resfriamento de metais, permitindo que a solução explore novas áreas do espaço de soluções e aceite soluções subótimas com o objetivo de escapar de mínimos locais. A aplicação do SA ao TSP é uma forma de explorar o potencial dessa técnica heurística em um problema clássico de otimização combinatória.

O principal objetivo deste trabalho é comparar os algoritmos Hill Climbing e Simulated Annealing para avaliar o desempenho de ambos em termos de capacidade de encontrar soluções ótimas e a sua robustez frente a problemas de otimização como o TSP. Para isso, o trabalho tem os seguintes objetivos específicos:

Implementar e testar o Hill Climbing e o Simulated Annealing em problemas de otimização.

Aplicar o Simulated Annealing ao TSP e avaliar os resultados obtidos.

Comparar os resultados dos dois algoritmos, destacando suas vantagens, limitações e eficiência em diferentes cenários.

Para atingir os objetivos propostos, foram seguidas as seguintes etapas:

Implementação dos Algoritmos: O Hill Climbing e o Simulated Annealing foram implementados em MATLAB. No caso do TSP, foi criada uma implementação específica do Simulated Annealing, onde o algoritmo foi adaptado para otimizar a rota entre um conjunto de cidades, utilizando um critério de aceitação probabilística baseado na diferença de distância entre soluções sucessivas.

Testes e Comparações: Para avaliar a eficácia dos algoritmos, foram realizadas várias simulações, utilizando um conjunto de 30 cidades representando cidades em Portugal. O desempenho dos algoritmos foi analisado com base na distância total da rota encontrada e na evolução das métricas ao longo das iterações, como a temperatura no caso do SA e a probabilidade de aceitação de novas soluções.

Análise dos Resultados: Os resultados obtidos foram analisados, comparando a capacidade de ambos os algoritmos em encontrar boas soluções e escapar de mínimos locais, bem como a sua eficiência em termos de tempo computacional.

Os resultados demonstraram que o Simulated Annealing superou o Hill Climbing na maioria dos cenários, especialmente em problemas mais complexos como o TSP. O Hill Climbing foi eficaz em encontrar soluções rápidas, mas muitas vezes ficou preso em mínimos locais, resultando em soluções subótimas. Por outro lado, o Simulated Annealing, com sua capacidade de explorar o espaço de soluções de forma mais ampla e aceitar soluções subótimas, conseguiu encontrar soluções mais robustas e mais próximas do ótimo global. No caso do TSP, o SA foi capaz de encontrar rotas eficientes com distâncias otimizadas, demonstrando ser uma técnica mais apropriada para esse tipo de problema.

Em suma, o trabalho confirmou que, para o problema do TSP, o Simulated Annealing é uma abordagem mais eficaz do que o Hill Climbing, oferecendo melhores resultados e maior robustez.

Introdução

Os métodos de pesquisa estocástica, como Hill-Climbing e Simulated Annealing (SA), são usados para resolver problemas de otimização. Este trabalho explora esses algoritmos, aplicando-os na otimização de funções e na resolução do problema do Caixeiro Viajante (TSP). O trabalho tem como objetivo implementar e comparar os algoritmos Hill-Climbing e SA na otimização de uma função bidimensional, e aplicar o SA para encontrar a rota mais curta Utilizaremos Matlab para implementar o Hill-Climbing tradicional e com reinicialização múltipla e o SA na otimização da função alvo. Posteriormente, adaptaremos o SA para o TSP, utilizando as coordenadas de 30, 20 e 10 cidades em Portugal.

Espera-se que o SA mostre maior eficácia na busca pelo máximo global e que encontre soluções aproximadas eficientes para o TSP, superando as limitações do Hill-Climbing em cenários complexos

Subida da Colina

Conceito

O algoritmo de Subida de Colina (Hill Climbing) é uma técnica de otimização iterativa que busca maximizar (ou minimizar) uma função movendo-se na direção dos pontos que oferecem melhor valor da função objetivo. O algoritmo para ao encontrar um máximo local, onde nenhum movimento melhora o valor da função.

Implementações

Sem Reinicialização Múltipla

Neste caso, o algoritmo começa de um ponto aleatório e segue avaliando pequenos passos para a direita e para a esquerda dentro do intervalo permitido.

Funcionamento:

- Um passo é escolhido aleatoriamente entre um valor mínimo (StepMin) e um valor máximo (StepMax).
- O valor da função objetivo é avaliado no ponto atual e nos pontos deslocados.
- o O algoritmo move-se na direção que aumenta o valor da função.
- Quando um máximo local é encontrado, o algoritmo para e retorna o melhor ponto identificado.

Limitação: Se o algoritmo cair em um máximo local, ele não consegue explorar outras regiões do espaço de busca.

Com Reinicialização Múltipla

Aqui, o algoritmo segue a mesma lógica básica, mas, ao encontrar um máximo local, ele reinicializa para um ponto aleatório dentro do intervalo definido e continua a busca.

Funcionamento:

- Após identificar um máximo local, a variável xProbe é redefinida para um novo ponto aleatório.
- O algoritmo repete o processo até alcançar o número máximo de iterações (It).

Vantagem: A reinicialização permite explorar múltiplos máximos locais, aumentando as chances de encontrar o máximo global.

Características do Código

Ambos os algoritmos utilizam a mesma função alvo:

$$f(x)=4\cdot(\sin(5\pi x+0.5))^6\cdot\exp(\log(2((x-0.8)^2))$$

definida no intervalo [0,1.6].

Visualização:

- O código inclui gráficos que mostram a evolução dos valores de x e f(x) ao longo das iterações, assim como os pontos percorridos no gráfico da função.
- o Destaca-se o maior ponto encontrado com um marcador especial.

Diferença Principal:

- O algoritmo sem reinicialização para na primeira subida a um máximo local.
- O algoritmo com reinicialização continua explorando até atingir o limite de iterações.

Exemplos

Após 5 tentativas, o melhor resultado com a subida de colina original foi o seguinte:

Figura 1 - Subida Da Colina Original

No entanto, apenas uma tentativa com o Subida de colina com reinicialização múltipla, resultou na melhor solução.

Figura 2 - Subida Da Colina Reinicialização Múltipla

Conclusão

O método com reinicialização é mais robusto, pois melhora a exploração do espaço de busca, conseguindo assim resolver o problema dos máximos local da implementação original.

Simulated Annealing

Conceito

O Simulated Annealing (SA) é um algoritmo de otimização inspirado no processo de recozimento térmico em metalurgia. Ele tenta encontrar o máximo (ou mínimo) global de uma função, explorando o espaço de busca de maneira eficiente. Ele evita ficar preso em máximos/mínimos locais ao permitir movimentos "maus" (soluções piores) de forma controlada, com base numa "temperatura" que decresce gradualmente.

Implementação

Ambos os algoritmos utilizam a mesma função alvo:

$$f(x)=4\cdot(\sin(5\pi x+0.5))^6\cdot\exp(\log(2((x-0.8)^2))$$

definida no intervalo [0,1.6].

Definição de Parâmetros e Inicialização:

Define o número de iterações externas (It) e internas (ItInternas)
 para controlar o número de avaliações.

- Define o passo máximo (StepMax) que determina o tamanho do deslocamento para o próximo ponto.
- Estabelece uma temperatura inicial (Temp) e uma taxa de decaimento (TempDecay) para reduzir gradualmente a probabilidade de aceitar soluções piores.
- Um ponto inicial é escolhido aleatoriamente dentro do intervalo permitido da função objetivo ([0,1.6])

Exploração do Espaço de Busca:

- o Para cada iteração:
 - Avalia o valor da função objetivo (f(x)) no ponto atual.
 - Gera um novo ponto com um deslocamento aleatório dentro do limite definido por StepMax.
 - Garante que o novo ponto está dentro do intervalo permitido.

Critério de Aceitação:

- \circ Calcula a diferença de energia (ΔE) entre o valor da função no ponto atual e no novo ponto.
- Aceita o novo ponto em dois casos:
 - Se o novo ponto é melhor ($\Delta E > 0$).
 - Se o novo ponto é pior, mas passa no teste probabilístico (e^(ΔΕ/Temp)>random(0,1)).
- Este segundo critério permite que o algoritmo escape de máximos locais.

Decaimento da Temperatura:

 Após cada iteração externa, a temperatura é reduzida de acordo com o fator TempDecay. Isto diminui gradualmente a probabilidade de aceitar soluções piores, focando mais na exploração inicial e no refinamento final.

Armazenamento e Análise dos Dados:

- São armazenados os valores de:
 - Pontos visitados (x e f(x)).
 - Diferença de energia (ΔΕ) entre os pontos.
 - Probabilidade de aceitação (e[^](ΔΕ/Temp)).

o Isto permite a análise da evolução do processo de otimização.

Identificação do Melhor Ponto:

 Durante todo o processo, o maior valor de f(x) encontrado é armazenado, junto com o valor correspondente de x.

Visualização dos Resultados:

- o Gráficos são criados para:
 - Mostrar os pontos percorridos em relação à função.
 - Exibir a evolução dos valores de x e f(x) ao longo das iterações.
 - Representar a probabilidade de aceitação e as diferenças de energia.

Resumo do Processo

- O algoritmo começa explorando amplamente a função devido à alta temperatura.
- Conforme a temperatura diminui, a exploração torna-se mais refinada, focando na área em torno dos melhores valores encontrados.
- A combinação de exploração inicial ampla e exploração refinada final permite encontrar o máximo global da função, mesmo em presença de máximos locais.

Exemplos

Neste algoritmo temos alguns parâmetros que podemos alterar para mudar o seu funcionamento.

Começamos com as seguintes definições:

```
It = 30;

ItInternas = 10;

StepMax = 0.02;

Temp = 90.0;

TempDecay = 0.65;
```

Figura 3 - SA Definições Teste 1

Obtivemos então o seguinte resultado:

Figura 4 - SA Teste 1 Plot 1

Figura 5 - SA Teste 1 Plot 2

Alterando as definições para:

```
It = 3000;

ItInternas = 10;

StepMax = 0.02;

Temp = 1000.0;

TempDecay = 0.99;
```

Figura 6 - SA Definições Teste 2

Resultado Obtido:

Figura 7 - SA Teste 2 Plot 1

Figura 8 - SA Teste 2 Plot 2

Conclusão

Podemos concluir que o Simulated Annealing (SA) oferece uma grande flexibilidade e personalização, permitindo que o algoritmo se adapte a diferentes problemas e cenários por meio da modulação de suas variáveis de entrada, como a temperatura inicial, a taxa de decaimento, o passo máximo e o número de iterações. Isso torna o SA uma abordagem eficiente e robusta para otimizar funções complexas, especialmente quando se trata de problemas com múltiplos ótimos locais ou funções não lineares.

Caixeiro Viajante

Conceito

O problema do Caixeiro Viajante (ou TSP - Travelling Salesman Problem) é um clássico problema de otimização combinatória onde o objetivo é encontrar o caminho mais curto que passa por um conjunto de cidades, visitando cada cidade uma única vez e retornando à cidade de origem. Este problema é conhecido por sua complexidade computacional, sendo NP-difícil, ou seja, não existe um algoritmo eficiente para resolvê-lo em tempo polinomial.

Neste programa, utilizamos o algoritmo de Simulated Annealing (SA) para resolver o problema do Caixeiro Viajante. O SA é uma técnica de otimização inspirada no processo de resfriamento de metais e é particularmente útil para encontrar ótimos globais em problemas com muitos ótimos locais. Ao longo da execução, o

algoritmo começa com uma "temperatura" alta, permitindo grandes mudanças na solução, e gradualmente diminui a temperatura, restringindo as mudanças até que uma solução de baixo custo seja encontrada.

Implementação

Carregamento das Cidades

O programa começa com a carga de 30 20 ou 10 cidades localizadas em Portugal. Essas cidades são representadas por coordenadas geográficas, e o objetivo é encontrar o caminho que as conecta com a menor distância total.

Configuração do Algoritmo de Simulated Annealing

A temperatura inicial (T), a temperatura mínima (T_min), a taxa de resfriamento (alpha) e o número máximo de iterações por temperatura (max_iter) são definidos. Esses parâmetros controlam o comportamento do algoritmo e determinam sua eficiência e capacidade de exploração do espaço de soluções.

Execução do Simulated Annealing

O algoritmo começa com uma solução inicial e tenta melhorar a rota ao trocar aleatoriamente duas cidades em cada iteração. A aceitação de uma nova solução é determinada pela diferença de custo (distância) entre a solução atual e a nova, com uma probabilidade que depende da temperatura. Caso a nova solução seja melhor, ela é aceite; caso contrário, ela pode ser aceita com base numa probabilidade que diminui à medida que a temperatura diminui.

Resfriamento e Convergência

A cada iteração, a temperatura é reduzida, permitindo que o algoritmo se concentre mais em otimizar a solução e escapar de soluções subótimas. Esse processo continua até que a temperatura alcance o valor mínimo.

Exibição

Após a execução do algoritmo, o programa exibe a melhor rota encontrada e a sua distância total. Também gera gráficos que mostram a evolução da temperatura, da distância da melhor solução, da probabilidade de aceitação e da variação de distância (delta E) ao longo do processo.

Exemplos

Nestes testes será utilizada a seguinte configuração inicial:

```
T = 10000;
T_min = 0.001;
alpha = 0.99;
max_iter = 10;
```

Figura 9 - TSP Definições

É importante entender que as soluções são sempre diferentes então iremos mostrar o primeiro resultado de cada teste.

Primeiro Resultado 30 Cidades:

Figura 10 - TSP 30 Cidades Plot 1

Figura 11- TSP 30 Cidades Plot 2

Primeiro Resultado 20 Cidades:

Figura 12 - TSP 20 Cidades Plot 1

Figura 13 - TSP 20 Cidades Plot 2

Primeiro Resultado 10 Cidades:

Figura 14 - TSP 10 Cidades Plot 1

Figura 15 - TSP 10 Cidades Plot 2

Conclusão

O algoritmo de Simulated Annealing aplicado ao TSP, neste programa, demonstrou ser uma técnica robusta e adaptável, capaz de explorar o espaço de soluções e encontrar boas soluções em tempo razoável. A capacidade do SA de aceitar soluções subótimas com base em uma probabilidade controlada pela temperatura permite que ele escape de mínimos locais, o que é essencial para evitar que o algoritmo fique preso em soluções subótimas.

Os resultados obtidos mostram que, apesar de não garantir uma solução ótima global, o SA proporciona uma solução de alta qualidade, especialmente para problemas de maior escala. A flexibilidade do algoritmo em termos de parâmetros como temperatura inicial, taxa de resfriamento e número de iterações permite que ele seja ajustado de acordo com a complexidade do problema, oferecendo uma boa relação entre tempo de execução e qualidade da solução.

Em resumo, o Simulated Annealing é uma abordagem poderosa para o TSP, proporcionando soluções eficientes para instâncias de diferentes tamanhos e complexidades. Embora não ofereça garantias de otimização global, ele é uma excelente escolha para problemas práticos em que a rapidez de execução e a qualidade da solução são fatores determinantes.

Conclusão

Neste trabalho, foram analisadas três abordagens clássicas para a resolução de problemas de otimização: Hill Climbing, Simulated Annealing (SA) e a aplicação do

Simulated Annealing ao problema do Caixeiro Viajante (TSP). Através de simulações e análises, foi possível avaliar as vantagens, limitações e eficácia de cada método, proporcionando uma visão mais clara sobre as suas aplicações em diferentes cenários.

O algoritmo Hill Climbing, embora simples e intuitivo, demonstrou ser limitado pela sua tendência a ficar preso em mínimos locais. Como se trata de uma técnica greedy, o Hill Climbing prioriza a melhoria imediata, mas a falta de capacidade para explorar outras áreas do espaço de soluções dificulta a obtenção de resultados globais ótimos em problemas mais complexos.

Já o Simulated Annealing (SA) revelou-se significativamente mais robusto e eficaz, graças à sua capacidade de aceitar soluções subótimas durante a execução, permitindo escapar de mínimos locais e realizar uma busca mais ampla pelo espaço de soluções. Esta característica faz do SA uma técnica especialmente adequada para problemas onde o espaço de soluções é vasto e não linear, como o TSP. No caso do Caixeiro Viajante, o SA foi capaz de encontrar rotas eficientes com distâncias otimizadas em tempo razoável, mesmo sem garantir uma solução global ótima, devido à natureza heurística do algoritmo.

A comparação entre Hill Climbing e Simulated Annealing evidenciou que o SA apresenta um desempenho superior em problemas mais complexos. A sua flexibilidade na exploração de soluções, controlada por parâmetros como a temperatura inicial, a taxa de resfriamento e o número de iterações, permite uma adaptação mais eficiente a diferentes problemas.

Em suma, este trabalho demonstrou que, para problemas como o TSP, o Simulated Annealing é uma abordagem mais eficaz do que o Hill Climbing, oferecendo resultados mais robustos e próximos do ótimo global. Além disso, a aplicação de técnicas heurísticas como o SA a problemas clássicos realça a sua utilidade na resolução de desafios de otimização. Para trabalhos futuros, sugere-se a investigação de configurações mais avançadas de parâmetros ou a integração com outras técnicas, como algoritmos genéticos, para melhorar ainda mais o desempenho em problemas de maior escala e complexidade.

Codigo em Anexo

Subida de Colina Original

close all;

clear all:

```
% Variáveis do programa
It = 300;
           % Número máximo de iterações
StepMax = 0.02; % Passo máximo inicial
StepMin = 0.001; % Passo mínimo para evitar passos muito pequenos
% Inicialização da matriz para guardar todos os pontos percorridos
todos_pontos = zeros(2, lt);
contador = 1;
% Variáveis para armazenar o maior ponto
maiorX = 0;
maiorY = -Inf;
% Função e dados para o gráfico
f = @(x) 4 * (sin(5 * pi * x + 0.5)).^6 .* exp(log2((x - 0.8).^2));
x = linspace(0, 1.6, 200);
y = f(x);
% Plot da função
figure;
subplot(1, 3, 1); % 1 row, 3 columns, position 2
plot(x, y, 'b');
hold on;
title ('Subida de Colina (Hill Climbing) - Máximos Locais Encontrados');
xlabel('x');
ylabel('f(x)');
```

```
% Ponto inicial aleatório
xProbe = rand * 1.6;
for i = 1:lt
 % Passo aleatório para direita e esquerda com passo adaptativo
 xStep = max(StepMin, rand * StepMax);
 xProbeR = xProbe + xStep;
 xProbeL = xProbe - xStep;
  % Garantir que xProbeR e xProbeL fiquem dentro do intervalo [0, 1.6]
 xProbeR = max(0, min(1.6, xProbeR));
 xProbeL = max(0, min(1.6, xProbeL));
  % Avaliar os valores de f(x) no ponto atual e nas direções direita e esquerda
 currentValue = f(xProbe);
 valueR = f(xProbeR);
 valueL = f(xProbeL);
  % Guardar o ponto atual na matriz de todos os pontos percorridos
 todos_pontos(1, contador) = xProbe;
 todos_pontos(2, contador) = currentValue;
  contador = contador + 1;
 % Determinar a direção da subida
 if (valueR > currentValue)
   xProbe = xProbeR;
  elseif (valueL > currentValue)
   xProbe = xProbeL;
```

```
elseif (valueL == valueR)
   xProbe = xProbeR; % Em caso de empate, move-se para a direita
 else
   % Se nenhum passo aumenta f(x), um máximo local é alcançado
   if currentValue > maiorY
     maiorX = xProbe;
     maiorY = currentValue;
   end
 end
end
% Exibir a matriz de todos os pontos percorridos
disp('Topo da Colina:');
maiorX
maiorY
% Plot de todos os pontos percorridos
plot(todos_pontos(1, 1:contador-1), todos_pontos(2, 1:contador-1), 'go');
% Destacar o maior ponto com uma cor diferente
plot(maiorX, maiorY, 'ro', 'MarkerSize', 8, 'LineWidth', 2);
hold off;
% Plot dos valores de Y (f(x)) ao longo do tempo
subplot(1, 3, 2); % 1 row, 3 columns, position 2
plot(1:contador-1, todos_pontos(2, 1:contador-1), 'b.-');
```

```
title('Evolução dos valores de Y ao longo do tempo');
xlabel('Iteração');
ylabel('f(x)');
% Plot dos valores de X ao longo do tempo
subplot(1, 3, 3); % 1 row, 3 columns, position 2
plot(1:contador-1, todos_pontos(1, 1:contador-1), 'r.-');
title('Evolução dos valores de X ao longo do tempo');
xlabel('Iteração');
ylabel('x');
Subida e Colina Reinicialização Múltipla
close all;
clear all;
% Variáveis do programa
It = 300;
             % Número máximo de iterações
StepMax = 0.02; % Passo máximo inicial
StepMin = 0.001; % Passo mínimo para evitar passos muito pequenos
% Inicialização da matriz para guardar todos os pontos percorridos
todos_pontos = zeros(2, lt);
contador = 1;
% Variáveis para armazenar o maior ponto
maiorX = 0;
maiorY = -Inf;
% Função e dados para o gráfico
```

```
f = @(x) 4 * (sin(5 * pi * x + 0.5)).^6 .* exp(log2((x - 0.8).^2));
x = linspace(0, 1.6, 200);
y = f(x);
% Criar figura com subplots para exibir todos os gráficos lado a lado
figure;
% Subplot 1: Plot da função e pontos percorridos
subplot(1, 3, 1); % 1 row, 3 columns, position 1
plot(x, y, 'b');
hold on;
title('Função e Pontos Percorridos');
xlabel('x');
ylabel('f(x)');
% Ponto inicial aleatório
xProbe = rand * 1.6;
for i = 1:It
  % Passo aleatório para direita e esquerda com passo adaptativo
 xStep = max(StepMin, rand * StepMax);
 xProbeR = xProbe + xStep;
 xProbeL = xProbe - xStep;
 % Garantir que xProbeR e xProbeL fiquem dentro do intervalo [0, 1.6]
 xProbeR = max(0, min(1.6, xProbeR));
 xProbeL = max(0, min(1.6, xProbeL));
```

```
% Avaliar os valores de f(x) no ponto atual e nas direções direita e esquerda
 currentValue = f(xProbe);
 valueR = f(xProbeR);
 valueL = f(xProbeL);
 % Guardar o ponto atual na matriz de todos os pontos percorridos
 todos_pontos(1, contador) = xProbe;
 todos_pontos(2, contador) = currentValue;
 contador = contador + 1;
 % Determinar a direção da subida
 if (valueR > currentValue)
   xProbe = xProbeR;
 elseif (valueL > currentValue)
   xProbe = xProbeL;
 elseif (valueL == valueR)
   xProbe = xProbeR; % Em caso de empate, move-se para a direita
 else
   % Se nenhum passo aumenta f(x), um máximo local é alcançado
   if currentValue > maiorY
     maiorX = xProbe;
     maiorY = currentValue;
   end
   % Reinicializar o xProbe para outro ponto aleatório
   xProbe = rand * 1.6;
 end
end
```

```
% Exibir a matriz de todos os pontos percorridos
disp('Todos os pontos percorridos:');
disp(todos_pontos(:, 1:contador-1));
% Plot dos pontos percorridos
plot(todos_pontos(1, 1:contador-1), todos_pontos(2, 1:contador-1), 'go');
% Destacar o maior ponto encontrado
plot(maiorX, maiorY, 'ro', 'MarkerSize', 8, 'LineWidth', 2);
hold off;
% Subplot 2: Evolução dos valores de Y ao longo do tempo
subplot(1, 3, 2); % 1 row, 3 columns, position 2
plot(1:contador-1, todos_pontos(2, 1:contador-1), 'b.-');
title('Evolução dos valores de Y ao longo do tempo');
xlabel('Iteração');
ylabel('f(x)');
% Subplot 3: Evolução dos valores de X ao longo do tempo
subplot(1, 3, 3); % 1 row, 3 columns, position 3
plot(1:contador-1, todos_pontos(1, 1:contador-1), 'r.-');
title('Evolução dos valores de X ao longo do tempo');
xlabel('Iteração');
ylabel('x');
```

Simulated Annealing

close all;

```
% Variáveis do programa
It = 30; % Número máximo de iterações
ItInternas = 10;
StepMax = 0.02; % Passo máximo
Temp = 90.0; % Temperatura inicial
TempDecay = 0.65; % Taxa de decaimento da temperatura
% Inicialização para guardar todos os pontos percorridos
todos_pontos = zeros(2, lt*ltInternas);
Probabilidade = zeros(1, It*ItInternas);
DeltaEnergia = zeros(1, It*ItInternas);
contador = 1;
% Variáveis para armazenar o maior ponto encontrado
maiorX = 0;
maiorY = -Inf;
% Função e dados para o gráfico
f = @(x) 4 * (sin(5 * pi * x + 0.5)).^6 .* exp(log2((x - 0.8).^2));
x = linspace(0, 1.6, 200);
y = f(x);
% Criar figura com subplots para exibir todos os gráficos lado a lado
figure;
% Subplot 1: Plot da função e pontos percorridos
subplot(3,1,1); % 1 row, 3 columns, position 1
```

```
plot(x, y, 'b');
hold on;
title('Simulated Annealing - Pontos Percorridos');
xlabel('x');
ylabel('f(x)');
% Ponto inicial aleatório
xProbe = rand * 1.6;
for i = 1:lt
 for j = 1:ltInternas
    % Calcular f(x) no ponto atual
   currentValue = f(xProbe);
   % Armazenar o ponto atual na matriz de todos os pontos percorridos
   todos_pontos(1, contador) = xProbe;
   todos_pontos(2, contador) = currentValue;
   contador = contador + 1;
   % Atualizar o maior ponto encontrado
   if currentValue > majorY
     maiorX = xProbe;
     maiorY = currentValue;
    end
   % Passo aleatório para a direita e esquerda
   xStep = (rand * 2 - 1) * StepMax;
   xNew = xProbe + xStep;
```

```
% Garantir que xNew está dentro do intervalo [0, 1.6]
   xNew = max(0, min(1.6, xNew));
   % Calcular f(x) no novo ponto e a diferença de energia
   newValue = f(xNew);
   deltaE = newValue - currentValue;
   Probabilidade(contador) = exp(-abs(deltaE)/ Temp); %Adicionar a vetor
   DeltaEnergia(contador) = deltaE; %% adicionar a Vetor
   % Aceitar novo ponto com base na temperatura
   if deltaE > 0 || (exp(deltaE / Temp) > rand)
     xProbe = xNew; % Mover para o novo ponto
   end
 end
 % Reduzir a temperatura
 Temp = Temp * TempDecay;
end
% Exibir a matriz de todos os pontos percorridos
disp('Todos os pontos percorridos:');
disp(todos_pontos(:, 1:contador-1));
% Plot dos pontos percorridos
plot(todos_pontos(1, 1:contador-1), todos_pontos(2, 1:contador-1), 'go');
% Destacar o maior ponto encontrado
plot(maiorX, maiorY, 'ro', 'MarkerSize', 8, 'LineWidth', 2);
```

```
hold off;
% Subplot 2: Evolução dos valores de Y ao longo do tempo
subplot(3, 1, 2); % 1 row, 3 columns, position 2
plot(1:contador-1, todos_pontos(2, 1:contador-1), 'b.-');
title('Evolução dos valores de Y ao longo do tempo');
xlabel('Iteração');
ylabel('f(x)');
% Subplot 3: Evolução dos valores de X ao longo do tempo
subplot(3, 1, 3); % 1 row, 3 columns, position 3
plot(1:contador-1, todos_pontos(1, 1:contador-1), 'r.-');
title('Evolução dos valores de X ao longo do tempo');
xlabel('Iteração');
ylabel('x');
figure;
% Subplot 2: Evolução dos valores de Probabilidade ao longo de tempo
subplot(2, 1, 1); % 1 row, 3 columns, position 2
plot(1:contador-1, Probabilidade(1:contador-1), 'b.-');
title('Evolução dos valores de Probabilidade ao longo do tempo');
xlabel('Iteração');
ylabel('Probabilidade');
% Subplot 3: Evolução dos valores de DeltaE ao longo do tempo
subplot(2, 1, 2); % 1 row, 3 columns, position 3
plot(1:contador-1, DeltaEnergia(1:contador-1), 'r.-');
```

```
title('Evolução dos valores de DeltaE ao longo do tempo');
xlabel('DeltaE');
ylabel('x');
Caixeiro Viajante
Swapcities_24
% swapcities_24
% returns a set of m cities where n cities are randomly swaped.
function s = swapcities_24(inputcities,n)
% Stores inputcities
s = inputcities;
for i = 1:n
 % city_1- random number betweeen 0-no of cities
 city_1 = round(length(inputcities)*rand(1));
 if city_1 < 1
   city_1 = 1;
  end
 % city_2- random number betweeen 0-no of cities
 city_2 = round(length(inputcities)*rand(1));
 if city_2 < 1
   city_2 = 1;
```

end

% temp variable for swapping city_1 with city_2 coordinates

end

Pt_nt_sul_30

% PMO

% UTAD 2017

clear all;

% 1 Bragança 41N49 6W45

% 2 Vila Real 41N18 7W45

% 3 Chaves 41N44 7W28

% 4 Viana do Castelo 41N42 8W50

% 5 Braga 41N33 8W26

% 6 Aveiro 40N38 8W39

% 7 Porto 41N11 8W36

% 8 Viseu 40N39 7W55

% 9 Lamego 41N06 7W49

% 10 Guimarães 41N27 8W18

% 11 Coimbra 40N12 8W25

% 12 Faro 37N01 7W56

% 13 Évora 38N34 7W54

% 14 Lisboa 38N43 9W10

% 15 Portalegre 39N17 7W26

% 16 Tavira 37N07 7W39

% 17 Sagres 37N00 8W56

% 18 Setúbal 38N32 8W54

% 19 Guarda 40N32 7W16

% 20 Santarém 39N14 8W41

% 21 Beja 38N01 7W52

% 22 Sines 37N57 8W52

% 23 Covilhã 40N17 7W30

% 24 Tomar 39N36 8W25

% 25 Águeda 40N34 8W27

% 26 Leiria 39N45 8W48

% 27 Castelo Branco 39N49 7W30

% 28 Elvas 38N53 7W10

% 29 Miranda do Douro 41N30 6W16

% 30 Sintra 38N48 9W23

temp_x = [1 41.49 6.45

2 41.18 7.45

3 41.44 7.28

4 41.42 8.50

5 41.33 8.26

6 40.38 8.39

7 41.11 8.36

8 40.39 7.55

9 41.06 7.49

10 41.27 8.18

11 40.12 8.25

```
12 37.01 7.56
```

13 38.34 7.54

14 38.43 9.10

15 39.17 7.26

16 37.07 7.39

17 37.00 8.56

18 38.32 8.54

19 40.32 7.16

20 39.14 8.41

21 38.01 7.52

22 37.57 8.52

23 40.17 7.30

24 39.36 8.25

25 40.34 8.27

26 39.45 8.48

27 39.49 7.30

28 38.53 7.10

29 41.30 6.16

30 38.48 9.23

];

cities = $[temp_x(:,2)';temp_x(:,3)'];$

Pt_nt_sul_20

% PMO

% 20 Portuguese Cities Coordinates

clear all;

% 1 Bragança	41N49 6W45
70 i Biaganiça	111110011

temp_x = [1 41.49 6.45

2 41.18 7.45

3 41.44 7.28

```
4 41.42 8.50
5 41.33 8.26
6 40.38 8.39
7 41.11 8.36
8 40.39 7.55
9 41.06 7.49
10 41.27 8.18
11 40.12 8.25
12 37.01 7.56
13 38.34 7.54
14 38.43 9.10
15 39.17 7.26
16 37.07 7.39
17 37.00 8.56
18 38.32 8.54
19 40.32 7.16
20 39.14 8.41
```

```
cities = [temp_x(:,2)';temp_x(:,3)'];
```

Pt_nt

];

% Set of 14 cities

% Mostly in the North of Portugal

% Paulo Moura Oliveira, 2017

%-----

% 1 Bragança 41N49 6W45

% 2 Vila Real 41N18 7W45

% 3 Chaves 41N44 7W28

% 4 Viana do Castelo 41N42 8W50

% 5 Braga 41N33 8W26

% 6 Aveiro 40N38 8W39

% 7 Porto 41N11 8W36

% 8 Viseu 40N39 7W55

% 9 Lamego 41N06 7W49

% 10 Águeda 40N34 8W27

% 11 Régua 41N10 7W47

% 12 Guimarães 41N27 8W18

% 13 Valença 42N02 8W38

% 14 Barcelos 41N32 8W37

%-----

% Lati and Longit\\

temp_x = [1 41.49 6.45

2 41.18 7.45

3 41.44 7.28

4 41.42 8.50

5 41.33 8.26

6 40.38 8.39

7 41.11 8.36

8 40.39 7.55

9 41.06 7.49

```
10 40.34 8.27
11 41.10 7.47
12 41.27 8.18
13 42.02 8.38
14 41.32 8.37];
% Stores the cities coordinates in a matrix
cities = [temp_x(:,2)';temp_x(:,3)'];
Plotcities_2024
% This function plots the cities with coordinates in
% the array inputcities(2xn)
% rows - coordinates in the form of latitute and longitude
% columns - cities
% set_id - ste identification to adjust plotting scale
function f = plotcities_2024(inputcities,set_id)
shg % Show graph window
% temp_1 = plot(inputcities(1,:),inputcities(2,:),'b*');
% set(temp_1,'erasemode','none');
clf
```

```
temp_2 =
line(inputcities(1,:),inputcities(2,:),'Marker','o','Markersize',6,'Markerfacecolor','r');
set(temp_2,'color','r');
xlabel('Lati.')
ylabel('Longi.')
% -----
% In the case of cities in the North Portugal you can use the following
if set_id == 1
axis([40.2 42.3 6.2 8.7])
elseif set_id == 2
%-----
% In the case of cities all over Portugal you can use the following
axis([36.5 42 6 9.5])
else
 fprintf(1,'Error in the set_id number');
end
% Original-----
x = [inputcities(1,1) inputcities(1,length(inputcities))];
y = [inputcities(2,1) inputcities(2,length(inputcities))];
temp_3 = line(x,y);
set(temp_3,'color','r');
```

```
Main_2024
```

% Clear screen

clc

clear all; % Clear all variables from workspace close all; % Close all figures %-----% Loading 30 cities in Portugal %pt_nt_sul_30; %pt_nt_sul_20; pt_nt; $set_id = 2;$ % Input Settings cities = swapcities_24(cities, size(cities, 2)); inputcities = cities; % Configurações do Simulated Annealing T = 10000; % Temperatura inicial T_min = 0.001; % Temperatura mínima alpha = 0.99; % Taxa de resfriamento max_iter = 10; % Iterações máximas por temperatura % Inicializar solução inicial current_cities = inputcities; best_cities = current_cities; best_distance = distance_24(current_cities); % Arrays para armazenar dados das iterações

```
temperatures = [];
distances = [];
acceptance_probs = [];
deltaE_values = [];
% Definicao do Plot
figure;
hold off
plotcities_2024(best_cities, set_id);
title('Melhor rota encontrada com Simulated Annealing');
% Algoritmo de Simulated Annealing
iter = 1; % Contador de iterações
while T > T_min
 for i = 1:max_iter
   % Gera uma nova rota trocando duas cidades
   new_cities = swapcities_24(current_cities, 2); % Troca 2 cidades
aleatoriamente
   % Calcula a diferença de custo (distância)
   current_distance = distance_24(current_cities);
   new_distance = distance_24(new_cities);
   delta = new_distance - current_distance;
   % Probabilidade de aceitação
   prob = exp(-delta / T);
   % Armazenar dados da iteração
```

```
temperatures(end + 1) = T;
   distances(end + 1) = best_distance;
   acceptance_probs(end + 1) = max(0, min(prob, 1)); % Garantir que esteja no
intervalo [0, 1]
   deltaE_values(end + 1) = delta;
   % Critério de aceitação
   if delta < 0 || rand() < prob
     current_cities = new_cities;
     % Atualiza a melhor solução encontrada
     if new_distance < best_distance
       best_cities = new_cities;
       best_distance = new_distance;
     end
   end
   iter = iter + 1; % Incrementa o contador
 end
 % Resfriamento
 T = T * alpha;
end
% Resultados finais
fprintf(1, 'A melhor rota encontrada para %d cidades tem uma distância total de
%4.2f Km\n', length(inputcities), best_distance);
% Plot da melhor rota encontrada
plotcities_2024(best_cities, set_id);
```

```
% Figura com evolução de métricas
figure;
subplot(2, 2, 1);
plot(temperatures);
title('Temperatura');
xlabel('Iterações');
ylabel('Temperatura');
subplot(2, 2, 2);
plot(distances);
title('Melhor Distância');
xlabel('Iterações');
ylabel('Distância');
subplot(2, 2, 3);
plot(acceptance_probs);
title('Probabilidade de Aceitação');
xlabel('Iterações');
ylabel('Probabilidade');
subplot(2, 2, 4);
plot(deltaE_values);
title('DeltaE (Variação de Distância)');
xlabel('Iterações');
ylabel('DeltaE');
```

```
Geo_distance
```

```
% -----
% Function to evaluate the geographical distance
% Conversion from coordinates
% Inputs: [ lat1, long1], [lat2, long2]
function [dist] = geo_distance(city_1,city_2)
% City 1
x_graus_city_1 = fix(city_1(1));
min_x_city_1 = city_1(1)-x_graus_city_1;
lati\_city\_1=pi*(x\_graus\_city\_1 + 5*min\_x\_city\_1/3)/180;
y_graus_city_1 = fix(city_1(2));
min_y_city_1 = city_1(2)-y_graus_city_1;
longi_city_1=pi*(y_graus_city_1 + 5*min_y_city_1/3)/180;
% City 2
x_graus_city_2 = fix(city_2(1));
min_x_city_2 = city_2(1)-x_graus_city_2;
lati_city_2=pi*(x_graus_city_2 + 5*min_x_city_2/3)/180;
y_graus_city_2 = fix(city_2(2));
min_y_city_2 = city_2(2)-y_graus_city_2;
longi_city_2=pi*(y_graus_city_2 + 5*min_y_city_2/3)/180;
```

```
RRR = 6378.388; % Idealized sphere radius
q1 = cos( longi_city_1 - longi_city_2);
q2 = cos(lati_city_1 - lati_city_2);
q3 = cos(lati_city_1 + lati_city_2);
dist = fix ( RRR * acos( 0.5*((1.0+q1)*q2 - (1.0-q1)*q3) ) + 1.0);
Distance_24
% Function distance_24
% Evaluates de round trip distance
% Modified by PMO for evaluating geographical distances
function d = distance_24(inputcities)
d = 0;
```

for n = 1 : length(inputcities)

if n == length(inputcities)

```
d = d + geo_distance(inputcities(:,n),inputcities(:,1));
else
  d = d + geo_distance(inputcities(:,n),inputcities(:,n+1));
end
end
```