

Charm Quark Jets in Au+Au Collisions at $\sqrt{s_{\rm NN}}$ = 200 GeV

STAR Collaboration Meeting *February 28, 2023*

Diptanil Roy Rutgers University

roydiptanil@gmail.com

Supported in part by

Recap

Summary

- First D⁰-tagged measurement at RHIC energies
- Fragmentation from PYTHIA 8 used for correcting jet momenta and substructure
 - ✓ Spectra for D⁰-tagged jets in central and mid-central events consistent with being suppressed with respect to peripheral events
 - ✓ Radial profile of D⁰ mesons in jets consistent with unity within uncertainties.

Outlook

- Measure fragmentation function for D⁰-tagged jets in Au+Au collisions
- Extend kinematic reach to low $D^0 p_T$ to get closer to charm quark mass

ISSUES

- 1. Fragmentation function for PYTHIA is 'too' hard for the full range of D0 pT
- 2. For low D^0 p_T in jets, unfolding is dependent on the fragmentation function

Details here: https://drupal.star.bnl.gov/STAR/system/files/Kelsey_JetCorr_17Mar2022.pdf

Issues with simulation

DCA cuts were not applied to the detector level tracks

DCA < 3.0 cm nHitsFit > 15 nHitsRatio > 0.52

Multiple detector level tracks → Matched to 1 generated track

Not accounted for earlier

Reco Track with lowest DCA is chosen as the matched track

Issues with simulation

DCA cuts were not applied to the detector level tracks

DCA < 3.0 cm nHitsFit > 15 nHitsRatio > 0.52

Multiple detector level tracks → Matched to 1 generated track

Not accounted for earlier

Issues with simulation

DCA cuts were not applied to the

Multiple detector level tracks → I

Not accounted for earlier

Different Jet pT distributions → Changes in response matrix

Revisiting 1D Unfolding Closure

PYTHIA 8 Detroit Tune

- $5 < p_{T,D^0} < 10 \text{ GeV/}c$
- $5 < p_{T,Iet}^{Gen} < 20 \text{ GeV/c}$
- $3 < p_{T,Jet}^{Reco} < 30 \text{ GeV/c}$
- $\left|\eta_{\text{let}}^{\text{Gen,Reco}}\right| < 0.6$
- Misses: Everything outside the acceptance in p_T and η
- Background estimated with single particle embedding

All centralities close well with new response matrices

February 28, 2023 Diptanil Roy @ STAR Collaboration

Revisiting Data

- $3 < p_{T,Jet}^{Uncorrected} < 30 \text{ GeV/c} \rightarrow 5 < p_{T,Jet}^{Corrected} < 20 \text{ GeV/c}$
- $5 < p_{T,D^0} < 10 \text{ GeV/}c$

STAR, $Au + Au \sqrt{s_{NN}} = 200 \text{ GeV}$

Central

Peripheral

Revisiting Data

- $3 < p_{T,Jet}^{Uncorrected} < 30 \text{ GeV/c} \rightarrow 5 < p_{T,Jet}^{Corrected} < 20 \text{ GeV/c}$
- $5 < p_{T,D}$ o < 10 GeV/c

STAR, $Au + Au \sqrt{s_{NN}} = 200 \text{ GeV}$

Central

Peripheral

Peripheral spectra shifts significantly from QM

Revisiting Data

- $3 < p_{T,Jet}^{Uncorrected} < 30 \text{ GeV/c} \rightarrow 5 < p_{T,Jet}^{Corrected} < 20 \text{ GeV/c}$
- $5 < p_{T,D^0} < 10 \text{ GeV/}c$

STAR, Au + Au $\sqrt{s_{\mathrm{NN}}}$ = 200 GeV

Rise of RCP with Jet pT less steep after corrections

9

Updating the simulation

Earlier, single particle embedded in minimum bias event to determine background fluctuation

- Get a minimum bias event
- Sample a PYTHIA event for each minimum bias event
- Run jet maker on the PYTHIA events 'embedded' in the minimum bias event -> This is PARTICLE level
- Run jet maker on the combined PYTHIA + Minbias event -> This is **DETECTOR** level
- Each PYTHIA event is sampled ~10 times on average

Closure with Heavy Ion Overlay for 1D Unfolding

PYTHIA 8 Detroit Tune

- $5 < p_{T,D^0} < 10 \text{ GeV/}c$
- $5 < p_{T,Iet}^{Gen} < 20 \text{ GeV/c}$
- $3 < p_{T,Jet}^{Reco} < 30 \text{ GeV/c}$
- $\left|\eta_{\text{Jet}}^{\text{Gen,Reco}}\right| < 0.6$
- Misses: Everything outside the acceptance in p_T and η

All centralities close well with the HI Overlay Method

Unfolding Data With HI Overlay

- $3 < p_{T,Jet}^{Uncorrected} < 30 \text{ GeV/c} \rightarrow 5 < p_{T,Jet}^{Corrected} < 20 \text{ GeV/c}$
- $5 < p_{T,D^0} < 10 \text{ GeV/}c$

STAR, $Au + Au \sqrt{s_{NN}} = 200 \text{ GeV}$

Central

Peripheral

Slight differences in spectra – Good overall agreement

Unpacking the differences between HI Overlay and Single Particle Embedding

Reco Jets in HI Overlay for peripheral events have larger smearing in η , ϕ

13

Unpacking the differences between HI Overlay and Single Particle Embedding

Example of effect of different η smearing

- ~2% difference in central events
- ~1% difference in peripheral events

Small differences between HI and Single Particle Embedding can be attributed to the η smear.

HI is more reliable (?)

Closure For 2D Unfolding Using HI Overlay

- PYTHIA 8 Detroit Tune
- $5 < p_{T,D^0} < 10 \text{ GeV/}c$
- 5 < p^{Gen}_{T,let} < 20 GeV/c
- $3 < p_{T,Jet}^{Reco} < 30 \text{ GeV/c}$
- $\left|\eta_{\text{Jet}}^{\text{Gen,Reco}}\right| < 0.6$
- Misses: Everything outside the acceptance in p_{T} and η

Central

Jet pT and Fragmentation function close simultaneously using HI Overlay

February 28, 2023 Diptanil Roy @ STAR Collaboration 15

Fragmentation Function From Data - Unfolding using HI

FIRST LOOK

- $3 < p_{T,Jet}^{Uncorrected} < 30 \text{ GeV/c} \rightarrow 5 < p_{T,Jet}^{Corrected} < 20 \text{ GeV/c}$
- $5 < p_{T,D^0} < 10 \text{ GeV/}c$

STAR, $Au + Au \sqrt{s_{NN}} = 200 \text{ GeV}$

Central

Peripheral

Unfolded Fragmentation With PYTHIA (FONLL) Prior for high pT D⁰ in Jets.

Theory suggestions for comparison are welcome.

Summary

- Changed preliminary spectra due to missed track QA cuts in QM results.
- Heavy-Ion Overlay is a viable alternative for unfolding.
- Results from HI and SP Embedding have pretty good agreement.
- HI gives us enough stats to attempt 2D unfolding in Jet pT and z axis.
- First look at the unfolded z spectra and RCP.

Outlook

- Extending to D0 pT > 1 GeV/c, where PYTHIA prior is possibly incorrect.
- Theory expectations for RCP of fragmentation functions (?)

BACKUP

η smearing steps in simulation

Final $\Delta\eta$ in AuAu

19

February 28, 2023 Diptanil Roy @ STAR Collaboration

Unfolding Data With HI Overlay (Includes the plot from 2D Unfolding of Jet pT)

- $3 < p_{T,Jet}^{Uncorrected} < 30 \text{ GeV/c} \rightarrow 5 < p_{T,Jet}^{Corrected} < 20 \text{ GeV/c}$
- $5 < p_{T,D^0} < 10 \text{ GeV/}c$

STAR, $Au + Au \sqrt{s_{NN}} = 200 \text{ GeV}$

Central

Peripheral

Slight differences in spectra – Good overall agreement

Fragmentation Function From Data – Unfolding using HI ($z \in [0, 1]$) FIRST LOOK

- $3 < p_{T,let}^{Uncorrected} < 30 \text{ GeV/c} \rightarrow 5 < p_{T,let}^{Corrected} < 20 \text{ GeV/c}$
- $5 < p_{T.D^0} < 10 \text{ GeV/}c$

STAR, $Au + Au \sqrt{s_{NN}} = 200 \text{ GeV}$

Central

Peripheral

Unfolded Fragmentation With PYTHIA (FONLL) Prior for high pT D⁰ in Jets.

Theory suggestions for comparison are welcome.