ch25: All-Pairs Shortest Path

3 Dec 2013 CMPT231 Dr. Sean Ho Trinity Western University

- Single-source shortest path:
 - Bellman-Ford greedy algorithm: O(VE)
 - Dijkstra's greedy algorithm: O(V lg V + E)
- All-pairs shortest paths:
 - Dyn prog by path length:
 - ◆ Naive bottom-up solution: O(V⁴)
 - Exponential bottom-up: O(V³ lg V)
 - Floyd-Warshall dyn prog: O(V³)
 - Transitive closure
 - Johnson's algorithm for sparse: O(V² lg V + VE)
- Semester review

Dijkstra's algorithm

- No negative-weight edges allowed
- Weighted version of breadth-first search
- Use priority queue instead of FIFO
 - Keys are the shortest-path estimates v.d
 - Similar to Prim's algo but calculating v.d
 - Dijkstra(V, E, w, s):
 - → InitSingleSource(V, E, s)
 - → Q = new PriorityQueue(V)
 - → while Q not empty:
 - u = ExtractMin(Q)
 - for each v ∈ Adj(u):
 - Relax(u,v,w)

Greedy choice: select u with lowest u.d.

Dijkstra: correctness

- Loop invariant: at top of loop, u.d = $\delta(s,u) \forall u \notin Q$
- Proof: suppose not: let u be the first vertex removed from Q that has u.d $\neq \delta(s,u)$
 - \exists path $s \sim u$ (otherwise, $u.d = \infty = \delta(s,u)$)
 - Let p be a shortest path s ~ u, and let (x,y) be the first edge in p crossing from !Q to Q
 - ♦ Then x.d = $\delta(s,d)$ (as u is first to have u.d ≠ $\delta(s,u)$)
 - (x,y) was then relaxed, so y.d = $\delta(s,y)$ (convgc)
 - y on shortest path, so $\delta(s,y) \leq \delta(s,u) \leq u.d$
 - But both y,u ∈ Q when ExtractMin, so u.d ≤ y.d
 - Hence y.d = u.d, so u.d = $\delta(s,u)$, contradiction

Dijkstra: running time

- Init for weights and \bigcirc takes $\Theta(\lor)$
- ExtractMin is run exactly | V | times
- DecreaseKey (called by Relax) is run O(E) times
- Using binary max-heaps:
 - All operations are O(lg V)
 - ⇒ Total time O(E |g V)
- Using Fibonacci heaps:
 - ExtractMin takes O(1) amortised time
 - Other operations total O(V) ops with amortised time O(Ig V) each
 - \Rightarrow Total time O(\lor \lor \lor \lor + E)

- Single-source shortest path:
 - Bellman-Ford greedy algorithm: O(VE)
 - Dijkstra's greedy algorithm: O(V lg V + E)
- All-pairs shortest paths:
 - Dyn prog by path length:
 - Naive bottom-up solution: O(V⁴)
 - Exponential bottom-up: O(V³ lg V)
 - Floyd-Warshall dyn prog: O(V³)
 - Transitive closure
 - Johnson's algorithm for sparse: O(V² lg V + VE)
- Semester review

All-pairs shortest paths

- Input: directed graph G=(V,E), weights w
 - Vertices numbered 1...n
- Output: nxn matrix $D = (d_{ij} = \delta_{ij})$ of shortest-path distances from vertex i to j
- Naive solution: run Bellman-Ford for every vertex:
 - $O(V^2E)$: if graph is dense, $E = \Theta(V^2)$, so get $O(V^4)$
- If no negative-weight edges, try Dijkstra:
 - binary heap: O(VE IgV), = O(V³ IgV) if dense
 - Fib heap: $O(V^2 \lg V + VE)$, = $O(V^3)$ if dense
- Floyd-Warshall: $O(V^3)$, even if dense

Dynamic programming solution

- Work toward a dynamic programming solution:
 - Recall we have optimal substructure: subpaths of shortest paths are shortest paths
- Represent graph as weighted adjacency matrix:
 - $w_{ii} = 0 \ \forall i$, and $w_{ij} = \infty \ \text{if no edge } i \rightarrow j$
- Recurrence for naive recursive solution:
 - Let |_{ij} (m) = wt of shortest-path i → j w/ ≤m edges
 - Compute as $I_{ij}^{(m)} = \min_{k=1..n} \{ I_{ik}^{(m-1)} + W_{kj} \}$
 - Base case: $I_{ij}^{(0)} = 0$ if i=j, and ∞ otherwise
- Note $I_{ij}^{(1)} = W_{ij}$, and $I_{ij}^{(m \ge n-1)} = \delta_{ij}$ (i.e., the solution)

Bottom-up solution

- Start with $L^{(1)} = W$, the weighted adjacency matrix
- Extend paths L^(m-1) of length m-1 to length m: L^(m)
 - Extend(L, W):
 - Jet L' = (I'_{||}) be a new nxn matrix
 - → for i in 1..n, for j in 1..n:
 - I'_{ii} = ∞
 - for k = 1..n:
 - $I'_{ij} = min(I'_{ij}, I_{ik} + w_{kj})$
 - Call this n-2 times to get up to solution L⁽ⁿ⁻¹⁾
 - Time: $\Theta(n^3)$ for Extend, so $\Theta(n^4)$ total: not hot...
- Key observation: Extend looks a lot like matrix multiply!

Exponential bottom-up

- To find a matrix power Aⁿ, can either do
 - A*A*...*A (n-1 times), or
 - $A*A \rightarrow A^2$, then $A^2*A^2 \rightarrow A^4$, etc:
 - Only lg n multiplications
- Apply this to extending all-pairs shortest paths:
 - Faster-APSP(W):
 - \rightarrow L⁽¹⁾ = W
 - \rightarrow for m = 1 .. ceil(lg n):
 - L^(2^m) = Extend(L^(m), L^(m), W)
 - → return L^(2^m)
 - If n not a power of 2, this overshoots, but that's okay since products don't change after L⁽ⁿ⁾

- Single-source shortest path:
 - Bellman-Ford greedy algorithm: O(VE)
 - Dijkstra's greedy algorithm: O(V lg V + E)
- All-pairs shortest paths:
 - Dyn prog by path length:
 - Naive bottom-up solution: O(V⁴)
 - Exponential bottom-up: O(V³ lg V)
 - Floyd-Warshall dyn prog: O(V³)
 - Transitive closure
 - Johnson's algorithm for sparse: O(V² lg V + VE)
- Semester review

Floyd-Warshall substructure

- Define subtasks not by path length, but by vertices in a subset of V:
 - Let d_{ij}^(k) = weight of shortest-path i ~ j where all intermediate vertices along path are in {1..k}
- Optimal substructure:
 - Let p_{ij} be a shortest path i ~ j
 with intermediate vertices in {1..k}
 - Either vertex k is not on the path, or if it is, then split path into i ~ k ~ j, where each subpath has intermediate vertices only in {1..k-1}
 - Hence every optimal solution on {1..k} has subpaths that are optimal on {1..k-1}

FW: recurrence, solution

- **Recurrence:** $d_{ij}^{(k)} = \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)})$
 - Either k not on path, or two subpaths through k
 - Base case: $d_{ij}^{(0)} = W_{ij}$
 - Final solution: $D^{(n)} = (d_{ij}^{(n)})$
- Bottom-up dynamic programming solution:
 - FloydWarshall(W):
 - \rightarrow D⁽⁰⁾ = W
 - \rightarrow for k = 1...n: for i = 1...n: for j = 1...n:
 - $d_{ij}^{(k)} = \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{ki}^{(k-1)})$
 - → return D⁽ⁿ⁾
 - (can even drop superscripts to save memory)

Use FW for transitive closure

- Transitive closure $G^* = (V,E^*)$ of a graph G = (V,E):
 - (i,j) ∈ E* iff ∃ path i ~ j in G
 (j is "reachable" from i)
- One way: run FW with w=1 on all edges:
 - ∃ path i ~ j iff d_{ij} < ∞
- Even simpler: $d_{ij}^{(k)}$ is just a bit (0/1) tracking if \exists path $i \sim j$ with all intermediate nodes in 1...k
 - Recurrence: $d_{ij}^{(k)} = d_{ij}^{(k-1)} OR (d_{ik}^{(k-1)} AND d_{kj}^{(k-1)})$
 - Same outline as FW, still Θ(n³)
 - But bitwise logical operations are even faster!

- Single-source shortest path:
 - Bellman-Ford greedy algorithm: O(VE)
 - Dijkstra's greedy algorithm: O(V lg V + E)
- All-pairs shortest paths:
 - Dyn prog by path length:
 - Naive bottom-up solution: O(V⁴)
 - Exponential bottom-up: O(V³ lg V)
 - Floyd-Warshall dyn prog: O(V³)
 - Transitive closure
 - Johnson's algorithm for sparse: O(V² Ig V + VE)
- Semester review

Using Dijkstra for APSP

- For sparse graphs, Dijkstra (w/Fib heaps) on every vertex can be better than FW:
 - $O(V^2 | g | V + VE)$ is better than $O(V^3)$ if $|E| = o(V^2)$
- But Dijkstra can't handle negative weights!
 - Need to reweight in a way that doesn't change shortest paths, but now has all w ≥ 0
- Given h:V $\rightarrow \mathbb{R}$, let w'(u,v) = w(u,v) + h(u) h(v).
 - Lemma: p is a shortest path u ~ v under w iff p is a shortest path u ~ v under w'.
 - w'(p) = w(p) + h(u) h(v): indep of intermed verts
 - Neg-wt cycles also are preserved under this kind of reweighting

Johnson's reweighting

- Johnson's trick: add new vertex s: V' = V ∪ {s}
 - Add zero-weight edges from s to all vertices:
 E' = E ∪ {(s,v): v ∈ V}, and w(s,v) = 0 ∀ v
 - Compute $\delta(s,v)$ for all $v \in V$ (e.g., Bellman-Ford)
 - Reweight using $h(v) = \delta(s, v)$

- Proof that this makes weights positive:
 - By triangle inequality, $\delta(s,v) \leq \delta(s,u) + w(u,v)$
 - Hence $h(v) \le h(u) + w(u,v)$
 - Hence $w'(u,v) = w(u,v) + h(u) h(v) \ge 0$

Johnson's alg for APSP

- Johnson(G,w):
- Θ(V+E)
- Θ(VE)
- **■** Θ(E)
- |V| times:O(V lg V + E)O(V)

- → Create G' = (V', E') with new vertex s
- ⇒ BellmanFord(G', w, s) to get $\delta(s,v)$ for all $v \in V$
 - If returns FALSE, we have a neg-wt cycle: quit
- → Reweight: $w'(u,v) = w(u,v) + \delta(s,u) \delta(s,v)$
- \rightarrow for each $u \in V$:
 - Dijkstra(G, w', u) to get $\delta'(u,v)$ for all $v \in V$
 - for each v ∈ V:
 - $d_{uv} = \delta'(u,v) \delta(s,u) + \delta(s,v)$
- → return D = (d_{uv})
- Innermost for loop converts back to original weighting
- Total time: O(V² lg V + VE)

- Single-source shortest path:
 - Bellman-Ford greedy algorithm: O(VE)
 - Dijkstra's greedy algorithm: O(V lg V + E)
- All-pairs shortest paths:
 - Dyn prog by path length:
 - Naive bottom-up solution: O(V⁴)
 - Exponential bottom-up: O(V³ lg V)
 - Floyd-Warshall dyn prog: O(V³)
 - Transitive closure
 - Johnson's algorithm for sparse: O(V² lg V + VE)
- Semester review

Semester review

- 1-4: Intro: $\Theta/O/\Omega$, induction, solving recurrences
 - Divide-and-conquer: max-subarray, Strassen
- 6-8: Sorts: insert, merge, heap, quick, radix, buckt
- 10-12: Data structs: hash, list, stack/Q, tree/BST
- 15-16: Dynamic programming & greedy
 - Rod, Fib, mat-chain, opt BST, activity sel, Huff
- **22-25:** Graphs:
 - Breadth-first, depth-first, topo sort, conn comps
 - Min span tree: Kruskal, Prim
 - Single-source: Bellman-Ford, Dijkstra, DAG
 - All-pairs: Floyd-Warshall, Johnson

ch1-4: Algorithmic analysis

- Definitions: Θ , Ω , Θ , σ , ω
- Analysis: pseudocode ⇒ running time
- Divide-and-conquer:
 - Merge sort: ⊖(n | g n) but out-of-place
 - Max subarray in ⊖(n lg n)
 - Matrix multiply: divide-and-conquer ⊖(n³)
 - Strassen ⊖(n^{lg 7})
- Math & logic: proofs, \Rightarrow , \forall , \exists , log, n!, Stirling
- Solving recurrences:
 - Induction ("substitution") w/recurrence tree
 - Master method

ch6-8: Sorting

- Comparison sorts: $\Omega(n \mid g \mid n)$ theoretical bound
 - Worst-case inputs? Best-case inputs?
 - Insertion sort: $\Theta(n^2)$
 - Merge sort: ⊖(n | g n) but out-of-place
 - Heap sort: $\Theta(n \mid g \mid n)$, and priority queue
 - Quick sort: ⊖(n | g n) average case
 - Randomised variant
- Linear-time sorts: assumptions?
 - Counting sort: $\Theta(n + k)$ (k values)
 - Radix sort: Θ(d(n+k)) (d digits)
 - Bucket sort on [0,1): ⊖(n)

ch10-12: Data structures

- Hash tables:
 - Collision handling by chaining
 - Load factor and time for search / insert / delete
 - Hash functions: criteria
 - div, mul, universal hashing
 - Collision handling by open addressing
 - Probe sequences: linear, quad, double-hash
- Linked lists: single, double, circular
 - Stacks and queues (impl using linked lists)
- Trees: degree, height, depth, traversals
 - BSTs: min/max, search, insert, delete

ch15-16: Dynamic prog

- Optimal substructure
 - Naive top-down recursive solution
 - Top-down with memoisation
 - Bottom-up dynamic programming
- Examples: 1D: rod cutting, Fibonacci
 - 2D: matrix-chain mult, optimal BST
 - Shortest unweighted path vs longest
- Greedy choice property
 - Activity selection, Huffman coding
 - Fractional knapsack vs 0-1 knapsack

ch22-25: Graph algorithms

- G = (V,E): adjacency list vs adjacency matrix
- Breadth-first w/FIFO; depth-first w/recursion stack
 - Appl: topological sort, connected components
- Minimum spanning tree
 - Kruskal using disjoint-sets: O(E lg E)
 - Prim using priority queue: O(V lg V + E)
- Single-source shortest path
 - Bellman-Ford: Θ(VE); on DAG: Θ(V+E)
 - Dijkstra w/priority queue: O(V lg V + E)
- All-pairs: Floyd-Warshall: O(V³)
- phnson w/priority queue: O(V2 lg V + E)