Tecnología Electrónica	Nombre:		
2017 - 5R1 Evaluación T.P. Nº2	Legajo:		
22 de junio de 2017 Tiempo limite: 60 Minutos	1070 Tu		
	Nota Informe		
 (5 points) Considere un disipador con tiene el área del mismo sobre la resi 	mercial para un dispositivo electrónico, que influencia stencia térmica disipador-ambiente:		
A. a media que aumenta el área au	menta la resistencia térmica $ heta_{DA}$.		
B. a media que aumenta el área dis	sminuye la resistencia térmica θ_{DA} .		
C. no tiene efecto el área sobre la t	resistencia térmica θ_{DA} .		
D. Todas las anteriores.			
E. Ninguna de las anteriores.			
 (5 points) En el mecanismo de trans el modelo simplificado, la cantidad de 	ferencia de calor denominado CONDUCCIÓN, según le calor disipado depende de:		
 A. El área efectiva del cuerpo. 			
B. El color del cuerpo.			
C. La posición del cuerpo.			
D. Todas las anteriores.			
E. Ninguna de las anteriores.			
3. (5 points) ¿Que mecanismo de transfe con las aletas en forma vertical en la	erencia de calor determina el montaje de un disipador ugar de las aletas en forma horizontal?		
A. Conducción.			
B. Radiación.			
C. Convección.			
D. Todas las anteriores.			
E. Ninguna de las anteriores.			
 (5 points) Se debe diseñar un disposi de disipación de energía debe ser ten de energía al medio? 	tivo para ser instalado en un satélite ¿Qué mecanismo nido en cuenta como predominante en la transferencia		
A. Conducción.			
B. Convección.			
C. Radiación.			

D. Todas las anteriores.

E. Ninguna de las anteriores.

5. (60 points) Se pretende construir un regulador serie con las características que se indican en la figura 1 el cual será instalado en un electrodoméstico, con temperaturas en el rango (25 a 70° C).

Figura 1: Circuito regulador

- (a) (10 points) Calcule la potencia a disipar requerida por las condiciones.
- (b) (15 points) ¿Qué valor deberá tener la θ_{ja} del dispositivo a utilizar?
- (c) (5 points) Teniendo en cuenta el resultado anterior, elija el encapsulado apropiado para la aplicación y determine si se requiere algún mecanismo para mejorar la disipación.
 - A. DFN-8 (SMD) $T_{JMax} = 125^{\circ}C$; $\theta_{jc} = 1.8^{\circ}C/W$ $y \theta_{ja} = 59^{\circ}C/W$ (sin disipador).
 - B. SOT-23(SMD) $T_{JMax}=125^{\circ}C$; $\theta_{jc}=1.8^{\circ}C/W$ y $\theta_{ja}=220^{\circ}C/W$ (sin disipador).
 - C. SO-8 (SMD) $T_{JMax} = 125^{\circ}C$; $\theta_{jc} = 1.8^{\circ}C/W$ $y \theta_{ja} = 128.4^{\circ}C/W$ (sin disipador).
- (d) (15 points) Ahora para esta aplicación se dispone de un encapsulado **TO-220**. ¿Qué valor deberá tener la suma ($\theta_{cd} + \theta_{da}$) para cumplir con las especificaciones de potencia del regulador? (Despreciar el efecto de θ_{ca} para estos cálculos.)
 - TO-220: $T_{JMax} = 125^{\circ}C$; $\theta_{jc} = 3^{\circ}C/W$ $y \theta_{ja} = 79^{\circ}C/W$ (sin disipador).
- (e) (15 points) Para la misma aplicación, se dispone del encapsulado DDPAK. En base a la figura 2, determine si este encapsulado sería apropiado y en cuyo caso el área de cobre mínima que sería necesario para disipar esa energía.
 - DDPAK(SMD): $T_{JMax} = 125$ °C; $\theta_{jc} = 1.8$ °C/W $y \theta_{ja} = 143.9$ °C/W (sin disipador).

Figura 2: Resistencia térmica Juntura-Ambiente en función del área del cobre.

- (20 points) Se tiene que montar un transistor con encapsulado T0-3 con un disipador, el cual tiene que estar aislado eléctricamente.
 - (a) (5 points) Elija la interfaz adecuada:
 - A. Grasa siliconada (1,0°C/W)
 - B. Mica + Grasa $(3, 1^{\circ}C/W)$
 - C. Pad de silicona $(1,5^{\circ}C/W)$
 - D. Directo $(2, 9^{\circ}C/W)$
 - E. Mica (3,9°C/W)
 - (b) (15 points) Con el medio de acoplamiento seleccionado. Elija el disipador adecuado de la lista para cumplir las especificaciones de disipación de potencia y de menor costo/tamaño posible, siendo la resistencia necesaria $\theta_{ca}=4,5$. El mismo debe ser montado en forma vertical.

Lista de disipadores ordenados de menor a mayor tamaño.

Fabricante	Part Number	Rth *C/W	Montaje	Encapsulado
SGS-THOMSON	HS01	2.8	Vert.	TO-3
THERMALLOY	6177	3	Horiz.	TO-3
THERMALLOY	6152	4	Vert.	TO-3
THERMALLOY	6111	10	Vert.	TO-220
THERMALLOY	6155	4.5	Vert.	TO-220
THERMALLOY	6601	5	Vert.	TO-220
THERMALLOY	6176	4.5	Vert.	TO-220
THERMALLOY	6320	1.5	Horiz.	TO-220 y T0-3
ALUTRONIC	PR139	3	Vert.	TO-220
ALUTRONIC	PR140	2	Horiz.	TO-220
ALUTRONIC	PR159	2.5	Vert.	TO-220
AAVID	60885	4.5	Vert.	TO-220
AAVID	60660	1.5	Horiz.	TO-220
AAVID	62355	3	Vert.	TO-220
AUSTERLITZ	KS50	3	Vert.	TO-220 y TO-3
AUSTERLITZ	KS100.3	2.5	Horiz.	TO-220
FISCHER	SK18	3	Vert.	TO-220
FISCHER	SK48	3	Vert.	TO-220
FISCHER	SK16	1.5	Horiz.	TO-220
FISCHER	SK52	2	Horiz.	TO-220 y TO-3
FISCHER	SK07	4	Vert.	TO-220 y TO-3
SGE	L30	3	Horiz.	TO-220 y TO-3
SGE	LZ50	3	Vert.	TO-220
SGE	SR50	6	Vert.	TO-220
ASSMAN	V5280	2	Horiz	. TO-220
ASSMAN	V5805	2	Vert.	TO-220 y TO-
ASSMAN	V5440	4	Vert.	TO-220
SSMAN	V5382	4	Horiz	. TO-220
SSMAN	V5460	3	Vert	то-3
SSMAN	V5510	3	Vert	. TO-3

Tecnología Electrónica 2017 5R1	Legajo:	
Evaluación T.P. Nº3	Legajo.	
22 de junio de 2017 Fiempo limite: 60 Minutos	Nota Informe	
(5 points) : Oué sucede si se supera	el voltaje nominal de los capacitores?	
. (5 points) ¿Que sucede al se superio		

- 1
 - A. Se apaga.
 - B. Se pincha el dieléctrico.
 - C. Aumenta su capacitancia.
 - D. Todas las anteriores.
 - E. Ninguna de las anteriores.
- (5 points) ¿Qué indica el signo en los coeficiente de variación CTC o CTR?
 - A. Aumenta el valor nominal con el aumento de la presión atmosférica.
 - B. Aumenta el valor nominal con el aumento de la temperatura.
 - C. Disminuye el valor nominal con el aumento de la temperatura.
 - D. Disminuye el valor nominal con la disminución de la temperatura.
 - E. Todas las anteriores.
 - F. Ninguna de las anteriores.
- (5 points) Si se tiene que diseñar un circuito electrónico que va a funcionar en un ambient con temperatura estable (controlada a 20°C), ¿Qué tecnología de resistencia elegiría par el mismo?
 - A. Metal film.
 - B. Carbón (Composición).
 - C. Bobinados (wire wound).
 - D. Es indiferente, solo hace falta precisar la tolerancia que se necesita.
 - E. La mas estable en relación con la variación de la temperatura.
 - F. Ninguna de las anteriores.

4. (55 points) Se pretende construir un oscilador RC como el de la figura 1, donde el capacitor tiene un $CTC = -0.25\%/^{\circ}C$, y su tolerancia es de +20% - 10%; y el resistor presenta un $CTR = -110ppm/^{\circ}C$ y una tolerancia de +-5%.

Figura 1: Oscilador RC

- (a) (15 points) ¿Cuál será la banda de frecuencia de oscilación independientemente de la temperatura?
- (b) (15 points) ¿Cuál será la frecuencia de oscilación, sin tener en cuenta las tolerancias, a 45°C si los valores presentados son para 25°C?
- (c) (25 points) ¿Qué capacitor de la lista utilizaría para minimizar las variaciones de frecuencia con respecto a la temperatura?.
 - A. Mica Plate −150ppm/°C
 - B. Polister 650ppm/°C
 - C. Tantalio 350ppm/°C
 - D. Cerámico -1400ppm/°C
- 5. (15 points) En el siguiente circuito determinar el voltaje final de salida para una temperatura de 100°C. Los valores especificados en el circuito son para una temperatura de 25°C.

(15 points) En el circuito anterior ¿Cuál será la banda de error en la señal de salida si las esistencias presentan una tolerancia del 0.1%? Expresar en +/-% y despreciar el divisor esistivo de la entrada.