MK Dasar Algoritma dan Pemrograman

MK Dasar Algoritma dan Pemrograman

Kode Mata Kuliah : TKE60001

Beban Studi : 3 sks Sifat : Wajib

Tujuan :

• Memberikan pengertian tentang dasar algoritma dan memberikan kemampuan dan keterampilan melakukan pemecahan masalah secara sistematis kemudian meingimplementasikannya ke dalam bahasa pemrograman.

Capaian

- Mampu menyusun algoritma dengan menggunakan diagram alir dan pseudocode untuk berbagai kasus.
- Mampu mengimplementasikan algoritma menggunakan Bahasa Pemrograman

Pokok Bahasan

- Pengenalan komputer;
- Pengertian algoritma;
- Algoritma-algoritma dasar: percabangan, perulangan, pengurutan (sorting), pencarian (searching), rekursi;
- Pengenalan Bahasa Pemrograman: Struktur bahasa pemrograman, Type data, Operator, Fungsi dan Prosedur, Array, User defined data type.;
- Konsep pemograman terstruktur;
- Pemrograman berukuran besar.

Tools

- Installer program Dev C++ Version 4.9.9.2 Dapat didownload di: https://sourceforge.net/projects/orwelldevcpp/
- Flowchart bisa dibuat di https://app.diagrams.net/
- Materi reading, source code, dan ppt bisa diunduh di: https://vlm2.ub.ac.id/course/view.php?id=xxx
- Referensi buku :

Bab 6, "Modular Programming", Problem Solving and Program Design in C, Jeri R. Hanly dan Elliot B. Koffman, Addison Wesley, 2002

Pertemuan sebelumnya

- Pendahuluan
- Algoritma dan Representasinya
- Komputer dan Pemrograman
- Pemrograman Bahasa C
- Perancangan Top-down Menggunakan Fungsi
- Struktur Percabangan
- Struktur Perulangan
- Pemrograman Modular

•

Tujuan

Memberikan pemahaman mengenai berbagai macam tipe fungsi berkaitan dengan argumen input dan "result value" serta bagaimana mengimplementasikannya dalam bahasa C.

Indikator

Setelah mengikuti materi ini, mahasiswa diharapkan dapat mendesain program yang kompleks secara modular

Metode Pembelajaran

Ceramah, diskusi, Problem based learning

Waktu

5-10 menit

Materi Pembelajaran:

- 1. Pemrograman dengan Fungsi
- 2. Jenis-jenis Fungsi
- 3. Pemanggilan Fungsi
- 4. Contoh pemrograman dengan Fungsi

- Fungsi (Function) merupakan blok dari kode yang dirancang untuk melaksanakan tugas khusus.
 - Mengurangi pengulangan penulisan program
 - Program menjadi terstruktur, sehingga mudah dipahami dan dikembangkan.

Ketentuan

- Nama fungsi, boleh dituliskan secara bebas dengan ketentuan, tidak menggunakan spasi dan nama-nama fungsi yang mempunyai arti sendiri.
- Argumen/Parameter, diletakan diantara tanda kurung "()" yang terletak dibelakang nama fungsi. Argumen boleh diisi dengan suatu data atau dibiarkan kosong.
- Pernyataan / perintah, diletakan diantara tanda kurung '{ }'.
- Pada pemanggilan sebuah fungsi, cukup dengan menuliskan nama fungsinya.

Struktur Fungsi

```
float total((float a, float b)
    float jumlah;
    jumlah = a + b;
    return jumlah;
main()
    printf("Jumlah dari 2 dan 3 = %f\n", total(2,3));
```

```
Nama fungsi

Argumen input

float total(float a, float b)

parameter b
Tipe parameter a
Tipe parameter a
Tipe keluaran fungsi
```


Pemrograman Modular -> Jenis-jenis Fungsi

Struktur Fungsi

```
float total(float a, float b)
{
    float jumlah;
    jumlah = a + b;
    return jumlah;
}
```

Berdasarkan argumen input dan result value

- Fungsi tanpa result value, void (procedure)
- Fungsi dengan beberapa argumen input dan satu hasil/return value
- Fungsi dengan satu argumen input dan beberapa hasil
- Fungsi dengan parameter input/output

Pemrograman Modular -> Pemanggilan Fungsi

```
main()
{
    printf("Jumlah dari 2 dan 3 = %f\n", total(2,3));
}
```

return jumlah;

Argumen/Parameter :

- Memungkinkan terjadinya komunikasi antara "main function" dan fungsi-fungsi lain dalam program
- Membuat fungsi menjadi lebih serba guna karena daftar argumen memungkinkan fungsi untuk dapat memanipulasi data yang berbeda setiap kali fungsi tersebut dipanggil
- Return statement : mengembalikan satu "result value" dari suatu fungsi

Pemrograman Modular -> Pemanggilan Fungsi

```
main()
{
    printf("Jumlah dari 2 dan 3 = %f\n", total(2,3));
}
```

return jumlah;

Penjelasan Terdapat dua macam para parameter fungsi, yaitu :

- Parameter formal adalah variabel yang ada pada daftar parameter dalam definisi fungsi.
- Parameter Aktual <u>adalah</u> variabel yang dipakai dalam pemanggilan fungsi.
 Bentuk penulisan Parameter Formal dan Parameter Aktual.

```
main()
{
...
    x = total(a, b);
...
}

parameter formal 

float total(float a, float b)
{
    return(a+b);
}
```


Pemrograman Modular -> Pemanggilan Fungsi

Pemanggilan Fungsi

Pemanggilan dengan nilai (Call by Value)

Pemanggilan dengan Referensi (Call by Reference)

Pengiriman Data Ke Fungsi

Pengiriman Data Konstanta

Pengiriman Data Variabel

Contoh kasus

• Buatlah program untuk membandingkan manakah yang lebih luas dari segitiga jika diketahui Panjang ke-3 sisi-sisinya: (13,12,5); (7,7,7);

```
main
{
    int ls1 = luas_segitiga(13,12,5);
    int ls2 = luas_segitiga(7,7,7);
    printf("Luas segitiga %1", (ls1>ls2)?ls1;ls2);
}
```

Hint: gunakan rumus Heron

$$\text{Luas} = \sqrt{s(s-a)(s-b)(s-c)}$$

Materi Pembelajaran:

- 1. Pemrograman dengan Fungsi; reuseable, simplify
- 2. Jenis-jenis Fungsi; procedure,
- 3. Pemanggilan Fungsi, call by reference/value, pass a constanta/variable
- 4. Contoh pemrograman dengan Fungsi