1. 8 queen (GA population = 4)

(a) average #attacks

HC method:

1	1	0	2	1	0	2	1	2	3
0	1	1	1	1	2	1	1	0	1
2	1	0	2	1	0	0	1	1	1

$$31 / 30 = 1.033$$

GA method: 0

(b) average running time

HC method:

	3	3	7	9	5	4	3	3	5	2
Ī	6	4	4	3	5	2	3	2	4	4
Ī	3	4	3	5	5	4	3	3	4	2

$$117 / 30 = 3.9 \text{ ms}$$

GA method:

13	10	0	1	3	7	1	1	2	5
1	6	1	1	1	6	4	11	1	6
4	0	4	0	0	1	1	4	0	3

$$98 / 30 = 3.267 \text{ ms}$$

(c) success rate

HC method:

X	X	0	X	X	0	X	X	X	X
0	X	X	X	X	X	X	X	О	X

-										
	v	v	\circ	v	v		\circ	v	v	v
	Λ	Λ	0	Λ	Λ	1 0	0	Λ	Λ	Λ

$$7 / 30 = 0.233$$

GA method:

О	0	0	0	0	0	0	0	0	О
О	О	О	О	О	О	О	О	О	О
О	0	0	0	0	0	О	0	0	0

$$30 / 30 = 1$$

2. 50 queen (GA population = 25)

(a) average #attacks

HC method :

2	4	4	2	3	6	6	4	4	4
4	2	5	3	4	2	5	5	3	5
3	3	3	3	5	3	3	2	4	3

$$109 / 30 = 3.633$$

GA method:

(b) average running time

HC method:

591	446	535	558	548	468	496	550	567	506
522	538	414	666	470	540	588	571	632	490
554	527	504	515	461	561	529	576	553	538

$$16014 / 30 = 533.8 \text{ ms}$$

GA method:

434	1598	1131	1262	933	541	274	1159	3970	283
2875	1235	2098	311	964	1602	566	994	2261	1400
1504	2088	2127	2084	1979	5128	1825	2142	2576	509

47853 / 30 = 1595.1 ms

(c) success rate

HC method:

X	X	X	X	X	X	X	X	X	X
X	X	X	X	X	X	X	X	X	X
X	X	X	X	X	X	X	X	X	X

0 / 30 = 0

GA method:

О	0	0	0	0	0	0	0	0	0
О	О	О	О	О	О	О	О	О	О
О	О	О	О	О	О	О	О	О	О

30 / 30 = 1

3. Method

HC method:

以一個 array 紀錄每一個 column 的 queen 位於哪一 row,初始位置 random 設置。

每一次進入 HC,都記錄下每次移動任意 queen 到任意 row 的 attack 數,找 出低於現在 attack 數的移動後的 board,再從相同 attack 數中,random 挑出一個 board 替換為現在的 board。

當找不到低於現在 attack 數的移動後的 board,就結束 HC。時間從開始進入 HC 計算,到不進入 HC 時停止計算。

GA method:

以二維 array 紀錄每次的 population,每一 row 記錄每一個 column 的 queen 位於哪一 row,初始位置 random 設置。

挑選 parent 的 fitness:

每一次進入 GA, 先從這些 population 中挑出兩個最優秀的 parent(attack 數最低的)。

挑選 parent:

從兩位最優秀的 parent 中 random 挑選出兩位來產生 child。

Crossover:

產生 child 使用 one cut crossover, random 出要切在哪個位置, child 前半段繼承 parent1, 後半段繼承 parent2。

Mutate:

random 看是否要 mutate, mutate 隨機選中一個 column 的 queen, 移動到另一個隨機選出的 row。

每次都計算是否有 attack 數為 0 的 child 產生,有的話就結束 GA,如果新的 generation 沒有 attack 數為 0 的 child,就把舊的 generation 替換誠信的 generation,再繼續執行 GA。

時間從開始進入 GA 計算, 到不進入 GA 時停止計算。

變數設定:

在程式內用 RANGE 去設定 queen 個數。

GA population 的大小設為棋盤大小的一半。

如果GA population 的大小越大,執行速度會越快,而且每次都會是最佳解。

結論:

HC 可以在較短的時間內找出一個不錯的解,但是當 RANGE 變大時,時間雖然比 GA 快,可是 HC 的正確率就會下降,可能會很久才會有一個最佳解。

GA 每次都會找到最佳解,但是當 RANGE 變大時,速度會比 HC 慢很多,雖然可以調整 population 的大小去縮短時間,但是因為空間比時間更珍貴,所以不太適合用在範圍很大的程式上。