JP-A-H10-308791 Page 1 of 20

PATENT ABSTRACTS OF JAPAN

(11)Publication number : **10-308791**

(43) Date of publication of application: 17.11.1998

(51)Int.CI. H04L 29/08

(21)Application number: **09-118217** (71)Applicant: **MATSUSHITA ELECTRIC IND CO**

LTD

(22) Date of filing: 08.05.1997 (72) Inventor: SUGIMOTO KUNIAKI

OGAWA NORIYUKI

SAEKI YUKO

MORIOKA MASAAKI

(54) METHOD AND EQUIPMENT FOR DATA COMMUNICATION AND DATA COMMUNICATION PROGRAM RECORDING MEDIUM

(57)Abstract:

PROBLEM TO BE SOLVED: To prevent communication efficiency from being lowered by setting waiting time in transmission right transfer frame transmission without increasing power consumption by transferring the right of transmission to a counter station when a frame is received and that frame is a transmission right transfer frame and a data frame.

SOLUTION: It is judged whether a present station 10 has the transmission right or not and when it has the transmission right, a frame discrimination part 2 judges whether the received frame is addressed to the present station or not. When it is addressed to the present station, it is judged whether the received frame is the transmission right transfer frame or not and when it is the

transmission right transfer frame and that frame is an I frame, a transmission right transfer request is reported from the frame discrimination part 2 through a communication control part 4 to a frame preparation part 3. At that part 3, the transmission right transfer frame is prepared and transmitted from a transmission/reception part 1 to a station (secondary station) 20 of

JP-A-H10-308791 Page 2 of 20

communicating party, and the transmission right is transferred to the counter station 20.

* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1]In a data communication method which transmits and receives per frame with a disequilibrium half duplex HDLC communication method, A data communication method characterized by performing a transmission-right transfer to a distant office when a frame is received, and a this received frame is a transmission-right transfer frame and is a data frame. [Claim 2]The data communication method comprising according to claim 1: Transfer frame decision processing which judges whether a frame which received [abovementioned] is a transmission-right transfer frame when a frame is received. Data frame decision processing which judges whether a frame which received [abovementioned] is a data frame.

[Claim 3]In a data communication method which transmits and receives per frame with a disequilibrium half duplex HDLC communication method, It is what is taken out and processed after accumulating a received frame in a receive buffer temporarily, when a frame is received, when a frame which carries out [above-mentioned] picking appearance among frames accumulated in the above-mentioned receive buffer, and is processed is a transmission-right transfer frame, A data communication method canceling without carrying out reception of this transmission-right transfer frame if it judges whether it is the newest transmission-right transfer frame, reception of this transmission-right transfer frame will be carried out if it is the newest, and it is not the newest.

[Claim 4]The data communication method comprising according to claim 3: Sequential reading processing which reads a frame accumulated in earliest from a receive buffer which accumulated temporarily a frame which received [above-mentioned].

JP-A-H10-308791 Page 3 of 20

transfer frame decision processing which judges whether the earliest reception frame which carried out [above-mentioned] reading appearance is a transmission-right transfer frame. Accumulation frame decision processing which judges whether a transmission-right transfer frame is accumulated in the above-mentioned receive buffer.

it being judged with a reception frame which carried out [above-mentioned] reading appearance being a transmission-right transfer frame by the above-mentioned transfer frame decision processing, and by the above-mentioned accumulation frame decision processing. reception frame cancellation processing in which a reception frame which carried out [above-mentioned] reading appearance is canceled when judged with a transmission-right transfer frame being accumulated in the above-mentioned receive buffer.

[Claim 5]In a data communication method which transmits and receives per frame with a disequilibrium half duplex HDLC communication method, A data communication method characterized by canceling the received frame when a value of an address field of a received frame is in agreement with a value of an address field of a frame which transmits from a local station in a connected state.

[Claim 6] The data communication method comprising according to claim 5:

Connection decision processing which judges whether the present communication state is a connected state when a frame is received.

Address field decision processing which judges whether it is in agreement as compared with a value of an address field of a frame which transmits a value of an address field of a frame which received [above-mentioned] from a local station.

Reception frame cancellation processing in which a frame which received [above-mentioned] is canceled when it is judged with it being in a connected state by the above-mentioned connection decision processing and is judged with it being in agreement in the above-mentioned address field decision processing.

[Claim 7]In a data communication method which transmits and receives per frame with a disequilibrium half duplex HDLC communication method, It is what is taken out and processed after accumulating a received frame in a receive buffer temporarily, when a frame is received, About a frame accompanied by a transfer of a transmission right, among frames accumulated in the above-mentioned receive buffer, A data communication method which carries out reception only of the newest frame, cancels a frame accompanied by a transfer of the other transmission right, and is characterized by performing a transmission-right transfer to a distant office when the newest above-mentioned frame that carries out reception is a transmission-right transfer frame and is a data frame.

[Claim 8]In a data communication method which transmits and receives per frame with a

JP-A-H10-308791 Page 4 of 20

disequilibrium half duplex HDLC communication method, When a value of an address field of a frame received in a connected state is in agreement with a value of an address field of a frame which transmits from a local station, A data communication method which cancels the received frame, and is characterized by performing a transmission-right transfer to a distant office when the above-mentioned frame which carries out reception without canceling is a transmission-right transfer frame and is a data frame.

[Claim 9]In a data communication method which transmits and receives per frame with a disequilibrium half duplex HDLC communication method, When a value of an address field of a frame received in a connected state is in agreement with a value of an address field of a frame which transmits from a local station, Cancel the received frame and the above-mentioned reception frame which performs reception without canceling, About a frame accompanied by a transfer of a transmission right, among frames which take out and process after accumulating in a receive buffer temporarily, and were accumulated in the above-mentioned receive buffer, A data communication method carrying out reception only of the newest frame and canceling a frame accompanied by a transfer of the other transmission right.

[Claim 10]In a data communication method which transmits and receives per frame with a disequilibrium half duplex HDLC communication method, When a value of an address field of a frame received in a connected state is in agreement with a value of an address field of a frame which transmits from a local station, Cancel the reception frame and the above-mentioned reception frame which performs reception without canceling, About a frame accompanied by a transfer of a transmission right, among frames which take out and process after accumulating in a receive buffer temporarily, and were accumulated in the above-mentioned receive buffer, A data communication method which carries out reception only of the newest frame, cancels a frame accompanied by a transfer of the other transmission right, and is characterized by performing a transmission-right transfer to a distant office when the newest above-mentioned frame that carries out reception is a transmission-right transfer frame and is a data frame. [Claim 11]A data communication unit which transmits and receives per frame with a disequilibrium half duplex HDLC communication method, comprising:

A transmission and reception section which receives from a transmission medium by using data as a frame, and transmits to a transmission medium by using data as a frame.

A frame preparing part which creates a frame which should transmit to a distant office and is outputted to the above-mentioned transmission and reception section.

Transfer frame decision processing which judges whether it is a transmission-right transfer frame to a reception frame which the above-mentioned transmission and reception section received.

A frame judgment part which performs frame decision processing including data frame decision processing which judges whether it is a data frame.

JP-A-H10-308791 Page 5 of 20

A communication control part which directs to create and output a transmission-right transfer frame to the above-mentioned frame preparing part by a result of frame decision processing in the above-mentioned frame judgment part in the above-mentioned reception frame's being a transmission-right transfer frame and being a data frame.

[Claim 12]A data communication unit which transmits and receives per frame with a disequilibrium half duplex HDLC communication method, comprising:

A transmission and reception section which receives from a transmission medium by using data as a frame, and transmits to a transmission medium by using data as a frame.

A receive buffer which accumulates temporarily a frame which the above-mentioned transmission and reception section received.

Sequential reading processing which reads a frame accumulated in earliest from a receive buffer which accumulated temporarily a frame which received [above-mentioned]. transfer frame decision processing which judges whether the earliest reception frame which carried out [above-mentioned] reading appearance is a transmission-right transfer frame. Accumulation frame decision processing which judges whether a transmission-right transfer frame is accumulated in the above-mentioned receive buffer.

when judged with a reception frame which carried out [above-mentioned] reading appearance being a transmission-right transfer frame, and a transmission-right transfer frame being accumulated in the above-mentioned receive buffer, a frame judgment part which extracts the newest frame about a frame accompanied by a transfer of a transmission right among frames which performed reception frame cancellation processing in which a reception frame which carried out [above-mentioned] reading appearance was canceled, and were accumulated in the above-mentioned receive buffer.

A communication control part controlled to perform reception about a frame which the abovementioned frame judgment part extracted.

[Claim 13]A data communication unit which transmits and receives per frame with a disequilibrium half duplex HDLC communication method, comprising:

A transmission and reception section which receives from a transmission medium by using data as a frame, and transmits to a transmission medium by using data as a frame. Connection decision processing which judges whether the present communication state is a connected state to a frame which the above-mentioned transmission and reception section received.

As compared with a value of an address field of a frame which transmits a value of an address field of a frame which received [above-mentioned] from a local station, by address field decision processing which judges whether it is in agreement. A frame judgment part which will

JP-A-H10-308791 Page 6 of 20

be canceled if it is the reception frame which judged whether it was the frame which carried out self-reception in a connected state, and carried out self-reception in a connected state. A communication control part controlled to a reception frame which the above-mentioned frame judgment part does not cancel to perform reception.

[Claim 14]A frame reception step which is the recording medium characterized by comprising the following which recorded a data communication program which transmits and receives per frame with a disequilibrium half duplex HDLC communication method, and receives a frame, A transfer frame determination step which judges whether a frame which received [abovementioned] is a transmission-right transfer frame, a data frame determination step which judges whether a frame which received [abovementioned] is a data frame, and the abovementioned transfer frame determination step.

A transmission-right transfer frame creation step which creates a transmission-right transfer frame when judged with a frame which was judged as a frame which received [above-mentioned] being a transmission-right transfer frame, and received [above-mentioned] in the above-mentioned data frame determination step being a data frame.

A transmission step which transmits a transmission-right transfer frame which created [above-mentioned].

[Claim 15]A frame reception step which is the recording medium characterized by comprising the following which recorded a data communication program which transmits and receives per frame with a disequilibrium half duplex HDLC communication method, and receives a frame, Temporarily accumulate temporarily a frame which received [above-mentioned] in a receive buffer An accumulation step, A sequential read-out step which reads a frame accumulated in earliest from the above-mentioned receive buffer, a transfer frame determination step which judges whether the earliest reception frame which carried out [above-mentioned] reading appearance is a transmission-right transfer frame, an accumulation frame determination step which judges whether a transmission-right transfer frame is accumulated in the abovementioned receive buffer, and the above-mentioned transfer frame determination step. a reception frame cancellation step which cancels a reception frame which carried out [abovementioned] reading appearance when it is judged with a reception frame which carried out [above-mentioned] reading appearance being a transmission-right transfer frame and is judged with a transmission-right transfer frame being accumulated in the above-mentioned receive buffer in the above-mentioned accumulation frame determination step. it being judged with a reception frame which carried out [above-mentioned] reading appearance not being a transmission-right transfer frame, and in the above-mentioned transfer frame determination step, or the newest frame extraction step which outputs a reception frame

JP-A-H10-308791 Page 7 of 20

which carried out [above-mentioned] reading appearance when judged with a transmissionright transfer frame not being accumulated in the above-mentioned receive buffer in the abovementioned accumulation frame determination step.

A reception step which performs reception to an acquired reception frame in the abovementioned newest frame extraction step.

[Claim 16]A recording medium which recorded a data communication program which transmits and receives per frame with a disequilibrium half duplex HDLC communication method, comprising:

A frame reception step which receives a frame.

A connection decision step which judges whether the present communication state is a connected state.

An address field determination step which judges whether it is in agreement as compared with a value of an address field of a frame which transmits a value of an address field of a frame which received [above-mentioned] from a local station.

A reception frame cancellation step which cancels a frame which received [above-mentioned] when it is judged with it being in a connected state in the above-mentioned connection decision step and is judged with it being in agreement in the above-mentioned address field determination step, A reception step which performs reception to a frame which received [above-mentioned] when it is judged with there being nothing to a connected state in the above-mentioned connection decision step or is judged with it not being in agreement in the above-mentioned address field determination step.

[Translation done.]

* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

JP-A-H10-308791 Page 8 of 20

[Detailed Description of the Invention] [0001]

[Field of the Invention] Especially this invention about a data communication method, a data communication unit, and a data communication program recording medium with the data communications which transmit and receive per frame with a disequilibrium half duplex HDLC communication method, and also infrared rays. It is related with the data communication method in the IrDA (Infrared Data Association) communications system which communicates by the primary station and a secondary station, a data communication unit, and a data communication program recording medium.

[0002]

[Description of the Prior Art]Centering on terminals for portable individuals, such as a note type personal computer and an electronic notebook, infrared ray communication is between [suitable for these cellular phones] electronic equipment, or has spread through the data exchange of these, a desktop type personal computer, the printer corresponding to infrared rays, etc., etc. in recent years. As a communication method in infrared ray communication, although there are an IrDA method, an ASK system, etc., Based on the HDLC communication method which is a communication method for high-speed and efficient transmission which makes between computers a subject, an IrDA method is the communications protocol specified for infrared ray communication, and has spread well as a general thing. [0003]Although it is common to be based on packet switching which transmits and receives the packet which consists of data of a certain size and information which shows the consecutive numbers given before and after that, an address, etc. in the data communications in a computer etc., The packet used in a HDLC communication method or an IrDA communication method is called a frame.

[0004]A frame Each field of an address (A), control (C), information (I), and FCS, The I (Information) frame which comprises a flag given forward and backward and is used for information (data) transmission, There is the U (Unnumbered) frame used for connection, cutting, etc. in the S (Supervisary) frame for communicative supervisor control and communication.

[0005]Usually, since it cannot transmit by one frame in many cases, the data which should be transmitted is divided and transmitted to two or more frames (I frame). The I frame has data to transmit in I field, and realization of reliable communication is aimed at by having the consecutive numbers used for the check of a data omission. It is used for the S frame having the composition of not having I field holding data, and transmitting receiving preparation completion, a busy state, request sending, etc. Since a U frame does not have a number like the I frame, it is called an off duty item frame and used for setting out of communicate mode, a response and a report of an abnormal condition, and establishment and cutting of a data link.

JP-A-H10-308791 Page 9 of 20

[0006]As mentioned above, although an IrDA communication method is based on a HDLC communication method, Generally, as a communication method, there are a full duplex transmission which can perform transmission and reception simultaneously, and half duplex [which it does not hold simultaneously], and to be half duplex, it is necessary to specify the signal which switches transmission and reception. By a HDLC method, although fill duplex adoption is also possible, when it is an IrDA communication method, if the infrared rays of the baseband abnormal conditions which spread a free-space top are used for transmission of data and two or more offices transmit simultaneously by a communication within the circle, an infrared interference occurs and normal communication cannot be performed. For this reason, an IrDA communication method transmits, only when infrared rays do not exist in a communication within the circle before establishing a communication link, and after communication link establishment uses the half-duplex system which exchanges transmission rights periodically between two games which are communicating.

[0007] Drawing 9 (a) is a figure for explaining application of this communication method. In a HDLC communication method or an IrDA communication method, call an "office" what performs transmission or reception, and generally, The primary station which performs data link control which controls communication, and the secondary station according to control of a primary station communicate by transmitting and receiving the above-mentioned frame as a command (primary station -> secondary station) and a response (secondary station -> primary station). This method is called disequilibrium communication method. A computer, an electronic notebook, etc. function as an office in communication, and perform data exchange by using infrared rays as a transmission medium so that it may illustrate.

[0008] Drawing 9 (b) is a sequence diagram for explaining the general procedure in these communication methods. To a B station, A station asks for connection for data transmission, and transmits the SNRM frame. The B station which received this replies the DM frame, when it cannot communicate, and when it can communicate, the UA frame which means consent is replied. Each of SNRM frames, DM frames, and UA frames is U frames. If a B station replies the UA frame, both offices will be in a connected state and the data exchange of them will become possible.

[0009]Here, the case where the data divided into two or more I frames from A station at the B station is transmitted is shown. First, by using the first data frame as the I frame, A station gives the number "0" and transmits. The B station which received this replies the frame which gave the next number of "1" of "0", and transmits the mind of "transmit the 1st data." This response frame is an S frame called the RR frame. A station checks the response of a B station and transmits the 1st data. By repeating this procedure as required, improvement in the accuracy of multiple frame communication can be aimed at.

[0010]Data transmission will be completed, A station tends to end connection and transmits

JP-A-H10-308791 Page 10 of 20

the DISC frame which is a U frame and shows a disconnect request to a B station, if a B station replies this the UA frame of the U frame which shows consent, cutting will be performed and communication will be ended. Communication is ended when there is inconvenience, such as abnormalities in communication, in one of offices, and the office emits a disconnect request.

[0011]Below, the transmission and reception of data covering (1) multiple frame in communication by such a method, use of (2) receive buffers, and evasion of (3) self-reception are explained using figures.

[0012](1) the transmission and reception of data covering a multiple frame -- it being necessary to specify the procedure of exchange of a transmission right, for this reason by a half-duplex system as mentioned above. It is specified that the frame by which the poll bit or the final bit was set to the defined position in the control field (C field) of the frame which transmits is a transmission-right transfer frame which transmits transferring a transmission right. The appointed above-mentioned bit is called a final bit with the frame transmitted to a primary station from a poll bit and a secondary station with the frame transmitted to a secondary station from a primary station.

[0013]And since power consumption will increase by the infrared ray emission for transmitting a transmission-right transfer frame if it is always exchanging transmission rights at the time of communication, in the high notebook computer or portable remote terminal of the request of power saving, it will not be desirable. Therefore, from the primary station side, when there is no send data of a primary station -> secondary station, after only a certain time passes, it is supposed that a transmission-right transfer frame will be transmitted to a secondary station, in order to control unnecessary power consumption. This waiting time is the greatest time that can hold a transmission right, and is called the maximum turn around time.

[0014] The office to which the transmission-right transfer frame was transmitted in principle, Since a certain transmission is performed, a primary station transfers a response frame etc. to a secondary station, and a transmission right Later, Even if it carries out the maximum turnaround-time progress, when there is no transmission of a secondary station to a transmission-right transfer frame, a primary station judges that the transmission-right transfer to a secondary station went wrong, and transmits a transmission-right transfer frame again.

[0015]Below, communication with the primary station and secondary station which transmit data is explained with the conventional data communication method, exchanging transmission rights. Drawing 10 (a) is a sequence diagram in the case of dividing a certain data into a multiple frame to a secondary station, and transmitting to it from a primary station, and the figure (b) is a sequence diagram in case same data transmission is performed from a secondary station to a primary station. It means being the transmission-right transfer frame for which the poll bit was set as for "P" shown in a figure, and the final bit was set as for "F", and in

JP-A-H10-308791 Page 11 of 20

this communication sequence, all the frames are transmission-right transfer frames so that it may illustrate.

[0016] First, according to the figures (a), the case of the data transmission from a primary station to a secondary station is explained. The transmission order number whose primary station is the first frame that contained data in the secondary station transmits the I frame 511 of 0. 511 transmits as a transmission-right transfer frame. the secondary station which received this transmits the RR frame 521 of the receiving sequence number 1 as a response frame -- the next -- it should receive -- it tells that it is data of the number 1. Then, as for a primary station, a transmission order number transmits the I frame 512 of 1 to a secondary station. The I frame of the number which continued similarly continues being transmitted hereafter, and the primary station can transmit two or more frames [be / no delay]. After transmitting the I frame of a number with a primary station, time until it transmits the I frame of the continuing number, t01, and t12 -- are shorter than the maximum turn around time. [0017]On the other hand, the case where the same data is transmitted from a secondary station to a primary station is explained according to the figures (b). The transmission order number whose secondary station is the first frame that contained data in the primary station transmits the I frame 621 of 0. Like the case of the point, 621 is a transmission-right transfer frame, and a secondary station transfers a transmission right and waits for the response from a primary station. However, since it is only performing a response and data transmission is not carried out from a primary station, When not carrying out the above-mentioned data transmission, a primary station transmits the RR frame 611 which is a response frame as a transmission-right transfer frame, after only the maximum turn around time tm passes according to regulation of waiting the maximum turnaround time. Since the transmission right yielded, a secondary station becomes possible [transmitting the following data], and transmits the I frame 622. Hereafter, although transmission continues similarly, Since the RR frame is sent after it carries out the maximum turn-around-time progress as long as there is no data transmission from the primary station side, After transmitting the I frame of a certain number from a secondary station, time until it transmits the I frame of the continuing number, t01, and t12 -- become longer than the maximum turn around time.

[0018]Actually, although a primary station may consider it as setting out a little shorter than the maximum turn around time which transmits after carrying out time progress, since the maximum turn around time passes, the waiting time of a secondary station will become long too mostly also in this case.

[0019](2) The use primary station of a receive buffer and a secondary station are computers etc. actually, and also when they are communicating, they may be performing other tasks in parallel, or a certain interrupt may generate them. Therefore, since the received data may be unable to be processed promptly, it has a receive buffer which stores the received data

JP-A-H10-308791 Page 12 of 20

temporarily, and taking out and processing subsequent data from a receive buffer is performed. A receive buffer is realized by memory storage with a high-speed memory etc., and, as for the size, it is common that the above-mentioned frame is defined as a unit. [0020]Data communications with the primary station by the secondary station provided with the above-mentioned receive buffer are explained using <u>drawing 11</u>. <u>Drawing 11</u> shows the sequence diagram in the case of dividing data into two or more I frames to a primary station, and transmitting to it from a secondary station. All frames are transmission-right transfer frames to which the pole final bit was set. A secondary station presupposes that 01 and 02 are provided with every one receive buffer each for a total of two frames as a receive buffer shown in a figure. * NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[Drawing 1]It is a block diagram showing the composition of the data communication unit by the embodiment of the invention 1.

[Drawing 2]It is a flow chart figure by the embodiment showing the procedure of reception frame decision processing.

[Drawing 3]It is a sequence diagram by the embodiment showing a communicative state.

[Drawing 4]It is a block diagram showing the composition of the data communication unit by the embodiment of the invention 2.

[Drawing 5] It is a flow chart figure by the embodiment showing the procedure of the newest frame extracting processing.

[Drawing 6] It is a sequence diagram by the embodiment showing a communicative state. [Drawing 7] It is a flow chart figure by this Embodiment 3 showing the procedure of self-receiving decision processing.

[Drawing 8]It is a sequence diagram by the embodiment showing a communicative state. [Drawing 9]the figure for explaining the communication between the (a) offices in the data communications by a Prior art, and (b) -- it is a sequence diagram showing a general

JP-A-H10-308791 Page 13 of 20

communication procedure.

[Drawing 10] It is a sequence diagram showing the state of data communications covering a multiple frame in the data communications by a Prior art.

[Drawing 11] It is a sequence diagram showing the state of data communications using a receive buffer in the data communications by a Prior art.

[Description of Notations]

- 1 Transmission and reception section
- 2 Frame judgment part
- 3 Frame preparing part
- 4 Communication control part
- 5 Data processing part
- 6 Receive buffer
- 10 Local station
- 20 Distant office

[Translation done.]

* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DRAWINGS

[Drawing 1]

JP-A-H10-308791 Page 14 of 20

[Drawing 2]

JP-A-H10-308791 Page 15 of 20

[Drawing 3]

JP-A-H10-308791 Page 16 of 20

[Drawing 5]

JP-A-H10-308791 Page 17 of 20

[Drawing 11]

JP-A-H10-308791 Page 18 of 20

[Drawing 8]

JP-A-H10-308791 Page 19 of 20

局:コンピュータ、形態情報端末(電子手帳)、プリンタ

[Drawing 10]

JP-A-H10-308791 Page 20 of 20

[Translation done.]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-308791

(43)公開日 平成10年(1998)11月17日

(51) Int.Cl.⁶

識別記号

ΓI

H 0 4 L 29/08

H 0 4 L 13/00

307Z

審査請求 未請求 請求項の数16 〇L (全 22 頁)

(21)出願番号	特願平 9-118217	(71)出願人	000005821
			松下電器産業株式会社
(22)出願日	平成9年(1997)5月8日		大阪府門真市大字門真1006番地
		(72)発明者	杉本 国昭
			広島県広島市東区光町1丁目12番20号 株
			式会社松下電器情報システム広島研究所内
		(72)発明者	小川 典幸
			広島県広島市東区光町1丁目12番20号 株
			式会社松下電器情報システム広島研究所内
		(72)発明者	佐伯 祐子
			広島県広島市東区光町1丁目12番20号 株
			式会社松下電器情報システム広島研究所内
		(74)代理人	弁理士 早瀬 憲一
			最終頁に続く

(54) 【発明の名称】 データ通信方法、データ通信装置、およびデータ通信プログラム記録媒体

(57)【要約】

【課題】 IrDA通信方式において、二次局からのデータ送信を効率よく行うことができ、受信バッファに送信権委譲フレームが複数保存された場合や、自己受信が発生するハードウェアを使用した場合にも、順序番号不正による切断や一次局衝突による切断等のトラブルが起きない通信方法、及び通信装置。

【解決手段】 受信フレーム判定処理、最新フレーム抽出処理、又は自己受信判定処理を行うフレーム判定部2を備え、判定結果に応じて迅速な送信権委譲処理や、受信フレームの破棄を行う。

【特許請求の範囲】

【請求項1】 不平衡半二重HDLC通信方式によりフ レーム単位で送受信を行うデータ通信方法において、

1

フレームを受信したとき、該受信したフレームが、送信 権委譲フレームであり、かつ、データフレームである場 合に、相手局に対して送信権委譲を行うことを特徴とす るデータ通信方法。

【請求項2】 請求項1に記載のデータ通信方法におい

フレームを受信したとき、

上記受信したフレームが送信権委譲フレームか否かを判 断する委譲フレーム判定処理と、

上記受信したフレームがデータフレームか否かを判断す るデータフレーム判定処理とを含むフレーム判定処理を

上記フレーム判定処理によって、上記受信したフレーム が、送信権委譲フレームであり、かつ、データフレーム であると判定した場合は、相手局に対して送信権委譲フ レームを送信するものであることを特徴とするデータ通 信方法。

【請求項3】 不平衡半二重HDLC通信方式によりフ レーム単位で送受信を行うデータ通信方法において、 フレームを受信したとき、受信したフレームを受信バッ ファに一時蓄積した後に取り出して処理するものであ り、

上記受信バッファに蓄積されたフレームの内、上記取り 出して処理するフレームが送信権委譲フレームであると き、最新の送信権委譲フレームであるか否かを判定し、 最新であれば該送信権委譲フレームを受信処理し、最新 でないならば該送信権委譲フレームを受信処理せずに破 30 棄することを特徴とするデータ通信方法。

【請求項4】 請求項3に記載のデータ通信方法におい て、

上記受信したフレームを一時蓄積した受信バッファよ り、最先に蓄積したフレームを読み出す順次読み出し処 理と、

上記読み出した最先の受信フレームが送信権委譲フレー ムか否かを判断する委譲フレーム判定処理と、

上記受信バッファに送信権委譲フレームが蓄積されてい るか否かを判断する蓄積フレーム判定処理と、

上記委譲フレーム判定処理により、上記読み出した受信 フレームが送信権委譲フレームであると判定され、か つ、上記蓄積フレーム判定処理により、上記受信バッフ ァに送信権委譲フレームが蓄積されていると判定された 場合に、上記読み出した受信フレームを破棄する受信フ レーム破棄処理とを含む最新フレーム抽出処理を行い、 上記最新フレーム抽出処理において、破棄されず出力さ れた受信フレームに対して受信処理を行うものであるこ とを特徴とするデータ通信方法。

【請求項5】 不平衡半二重HDLC通信方式によりフ 50 ルドの値と一致した場合に、その受信したフレームを破

レーム単位で送受信を行うデータ通信方法において、 接続状態において、受信したフレームのアドレスフィー ルドの値が、自局から送信するフレームのアドレスフィ ールドの値と一致した場合に、その受信したフレームを

【請求項6】 請求項5に記載のデータ通信方法におい

破棄することを特徴とするデータ通信方法。

フレームを受信したとき、

現在の通信状況が接続状態であるか否かを判定する接続 判定処理と、

上記受信したフレームのアドレスフィールドの値を、自 局から送信するフレームのアドレスフィールドの値と比 較し、一致するか否かを判定するアドレスフィールド判 定処理と、

上記接続判定処理により接続状態にあると判定され、か つ、上記アドレスフィールド判定処理において一致する と判定された場合に、上記受信したフレームを破棄する 受信フレーム破棄処理とを含む自己受信判定処理を行 U4

20 上記自己受信判定処理において、破棄されず出力された 受信フレームに対して受信処理を行うものであることを 特徴とするデータ通信方法。

【請求項7】 不平衡半二重HDLC通信方式によりフ レーム単位で送受信を行うデータ通信方法において、 フレームを受信したとき、受信したフレームを受信バッ ファに一時蓄積した後に取り出して処理するものであ

上記受信バッファに蓄積されたフレームの内、送信権の 委譲を伴うフレームに関しては、最新のフレームのみを 受信処理し、それ以外の送信権の委譲を伴うフレームは

上記受信処理する最新のフレームが、送信権委譲フレー ムであり、かつ、データフレームである場合に、相手局 に対して送信権委譲を行うことを特徴とするデータ通信 方法。

【請求項8】 不平衡半二重HDLC通信方式によりフ レーム単位で送受信を行うデータ通信方法において、

接続状態において受信したフレームのアドレスフィール ドの値が、自局から送信するフレームのアドレスフィー ルドの値と一致した場合に、その受信したフレームを破 棄するものであり、

上記破棄することなく受信処理するフレームが、送信権 委譲フレームであり、かつ、データフレームである場合 に、相手局に対して送信権委譲を行うことを特徴とする データ通信方法。

【請求項9】 不平衡半二重HDLC通信方式によりフ レーム単位で送受信を行うデータ通信方法において、

接続状態において受信したフレームのアドレスフィール ドの値が、自局から送信するフレームのアドレスフィー

2

棄し、

上記破棄することなく受信処理を行う受信フレームを、 受信バッファに一時蓄積した後に取り出して処理するも

上記受信バッファに蓄積されたフレームの内、送信権の 委譲を伴うフレームに関しては、最新のフレームのみを 受信処理し、それ以外の送信権の委譲を伴うフレームは 破棄することを特徴とするデータ通信方法。

【請求項10】 不平衡半二重HDLC通信方式により フレーム単位で送受信を行うデータ通信方法において、 接続状態において受信したフレームのアドレスフィール ドの値が、自局から送信するフレームのアドレスフィー ルドの値と一致した場合に、その受信フレームを破棄

上記破棄することなく受信処理を行う受信フレームを、 受信バッファに一時蓄積した後に取り出して処理するも のであり、

上記受信バッファに蓄積されたフレームの内、送信権の 委譲を伴うフレームに関しては、最新のフレームのみを 受信処理し、それ以外の送信権の委譲を伴うフレームは 20 破棄し、

上記受信処理する最新のフレームが、送信権委譲フレー ムであり、かつ、データフレームである場合に、相手局 に対して送信権委譲を行うことを特徴とするデータ通信 方法。

【請求項11】 不平衡半二重HDLC通信方式により フレーム単位で送受信を行うデータ通信装置において、 データをフレームとして伝送媒体より受信し、また、デ ータをフレームとして伝送媒体に送信する送受信部と、 相手局に送信するべきフレームを作成し、上記送受信部 30 ことを特徴とするデータ通信装置。 に出力するフレーム作成部と、

上記送受信部が受信した受信フレームに対して、送信権 委譲フレームか否かを判断する委譲フレーム判定処理 と、データフレームか否かを判断するデータフレーム判 定処理とを含むフレーム判定処理を行うフレーム判定部

上記フレーム判定部におけるフレーム判定処理の結果に より、上記受信フレームが送信権委譲フレームであり、 かつデータフレームである場合には、上記フレーム作成 部に送信権委譲フレームを作成し出力するように指示を 40 する通信制御部とを備えたことを特徴とするデータ通信 装置。

【請求項12】 不平衡半二重HDLC通信方式により フレーム単位で送受信を行うデータ通信装置において、 データをフレームとして伝送媒体より受信し、また、デ ータをフレームとして伝送媒体に送信する送受信部と、 上記送受信部が受信したフレームを一時蓄積する受信バ ッファと、

上記受信したフレームを一時蓄積した受信バッファよ り、最先に蓄積したフレームを読み出す順次読み出し処 50 録した記録媒体であって、

理と、上記読み出した最先の受信フレームが送信権委譲 フレームか否かを判断する委譲フレーム判定処理と、上 記受信バッファに送信権委譲フレームが蓄積されている か否かを判断する蓄積フレーム判定処理と、上記読み出 した受信フレームが送信権委譲フレームであり、かつ、 上記受信バッファに送信権委譲フレームが蓄積されてい ると判定された場合に、上記読み出した受信フレームを 破棄する受信フレーム破棄処理とを行い、上記受信バッ ファに蓄積されたフレームの内、送信権の委譲を伴うフ レームに関して、最新のフレームを抽出するフレーム判 定部と、

上記フレーム判定部が抽出したフレームについて受信処 理を行うよう制御する通信制御部とを備えたことを特徴 とするデータ通信装置。

【請求項13】 不平衡半二重HDLC通信方式により フレーム単位で送受信を行うデータ通信装置において、 データをフレームとして伝送媒体より受信し、また、デ ータをフレームとして伝送媒体に送信する送受信部と、 上記送受信部が受信したフレームに対して、現在の通信 状況が接続状態であるか否かを判定する接続判定処理 と、上記受信したフレームのアドレスフィールドの値 を、自局から送信するフレームのアドレスフィールドの 値と比較し、一致するか否かを判定するアドレスフィー ルド判定処理とにより、接続状態において自己受信した フレームであるか否かを判定し、接続状態において自己 受信した受信フレームであれば破棄するフレーム判定部 と、

上記フレーム判定部が破棄しない受信フレームに対し て、受信処理を行うよう制御する通信制御部とを備えた

【請求項14】 不平衡半二重HDLC通信方式により フレーム単位で送受信を行うデータ通信プログラムを記 録した記録媒体であって、

フレームを受信するフレーム受信ステップと、

上記受信したフレームが送信権委譲フレームか否かを判 断する委譲フレーム判定ステップと、

上記受信したフレームがデータフレームか否かを判断す るデータフレーム判定ステップと、

上記委譲フレーム判定ステップにおいて、上記受信した フレームが送信権委譲フレームであると判定され、か つ、上記データフレーム判定ステップにおいて、上記受 信したフレームがデータフレームであると判定された場 合に、送信権委譲フレームを作成する送信権委譲フレー ム作成ステップと、

上記作成した送信権委譲フレームを送信する送信ステッ プを備えたデータ通信プログラムを記録したことを特徴 とするデータ通信プログラム記録媒体。

【請求項15】 不平衡半二重HDLC通信方式により フレーム単位で送受信を行うデータ通信プログラムを記

4

フレームを受信するフレーム受信ステップと、

上記受信したフレームを受信バッファに一時蓄積する一 時蓄積ステップと、

上記受信バッファより、最先に蓄積したフレームを読み 出す順次読み出しステップと、

上記読み出した最先の受信フレームが送信権委譲フレームか否かを判断する委譲フレーム判定ステップと、

上記受信バッファに送信権委譲フレームが蓄積されているか否かを判断する蓄積フレーム判定ステップと、

上記委譲フレーム判定ステップにおいて、上記読み出し 10 た受信フレームが送信権委譲フレームであると判定され、かつ、上記蓄積フレーム判定ステップにおいて、上記受信バッファに送信権委譲フレームが蓄積されていると判定された場合に、上記読み出した受信フレームを破棄する受信フレーム破棄ステップと、

上記委譲フレーム判定ステップにおいて、上記読み出した受信フレームが送信権委譲フレームでないと判定され、または、上記蓄積フレーム判定ステップにおいて、上記受信バッファに送信権委譲フレームが蓄積されていないと判定された場合に、上記読み出した受信フレーム 20を出力する最新フレーム抽出ステップと、

上記最新フレーム抽出ステップにおいて、取得された受信フレームに対して受信処理を行う受信処理ステップを備えたデータ通信プログラムを記録したことを特徴とするデータ通信プログラム記録媒体。

【請求項16】 不平衡半二重HDLC通信方式によりフレーム単位で送受信を行うデータ通信プログラムを記録した記録媒体であって、

フレームを受信するフレーム受信ステップと、

現在の通信状況が接続状態であるか否かを判定する接続 30 判定ステップと、

上記受信したフレームのアドレスフィールドの値を、自 局から送信するフレームのアドレスフィールドの値と比 較し、一致するか否かを判定するアドレスフィールド判 定ステップと、

上記接続判定ステップにおいて接続状態にあると判定され、かつ、上記アドレスフィールド判定ステップにおいて一致すると判定された場合に、上記受信したフレームを破棄する受信フレーム破棄ステップと、

上記接続判定ステップにおいて接続状態にないと判定され、または、上記アドレスフィールド判定ステップにおいて一致しないと判定された場合に、上記受信したフレームに対して受信処理を行う受信処理ステップを備えたデータ通信プログラムを記録したことを特徴とするデータ通信プログラム記録媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はデータ通信方法、デ 採用も可能であるが、IrDA通信方式の場合、データータ通信装置、およびデータ通信プログラム記録媒体に の伝送に自由空間上を伝搬するベースバンド変調の赤外関し、特に不平衡半二重HDLC通信方式によりフレー 50 線を使用しており、通信圏内で2つ以上の局が同時に送

ム単位で送受信を行うデータ通信、さらには赤外線により、一次局と二次局とで通信をおこなう I r DA (Infra red Data Association) 通信システムにおけるデータ通信方法、データ通信装置、及びデータ通信ブログラム記録媒体に関する。

6

[0002]

【従来の技術】赤外線通信は、ノート型パーソナルコンピュータや電子手帳等携帯個人用端末を中心に、これら携帯に適した電子機器相互間の、あるいはこれらと、デスクトップ型パーソナルコンピュータや赤外線対応プリンタ等とのデータ交換に、近年普及している。赤外線通信における通信方式としては、IrDA方式やASK方式などがあるが、IrDA方式は、コンピュータ間を主体とする高速・高効率な伝送のための通信方式であるHDLC通信方式を元に、赤外線通信のために規定された通信プロトコルであって、一般的なものとしてよく普及している。

【0003】また、コンピュータ等におけるデータ伝送にあたっては、ある大きさのデータと、その前後に付与された通し番号、アドレス等を示す情報とからなるパケットを送受信するパケット交換によることが一般的であるが、HDLC通信方式やIrDA通信方式において用いられるパケットはフレームと呼ばれる。

【0004】フレームは、アドレス(A)、制御

(C)、情報(I)、及びFCSの各フィールドと、前後に付与されるフラグから構成されるものであって、情報(データ)転送用に用いられる I (Information)フレーム、通信の監視制御のためのS (Supervisary)フレーム、及び通信における接続や切断等のために用いるU (Unnumbered)フレームがある。

【0005】通常、伝送されるべきデータは1フレームで送信できない場合が多いため、複数のフレーム(Iフレーム)に分割して送信される。Iフレームは伝送するデータをIフィールドに持ち、データ抜けのチェックに用いる通し番号を有することで信頼性の高い通信の実現を図る。Sフレームはデータを保持するIフィールドを有しない構成となっていて、受信準備完了、ビジー状態、再送要求等を伝送するのに用いられる。Uフレームは、Iフレームのような番号を有しないので、非番号フレームと呼ばれ、通信モードの設定、応答や異常状態の報告、データリンクの確立や切断に用いられる。

【0006】前述のようにIrDA通信方式は、HDLC通信方式に基づくものであるが、一般に通信方式としては、送信と受信とを同時に行い得る全二重通信方式と、同時に行わない半二重通信方式とがあり、半二重通信方式の場合には、送信と受信とを切り換える信号を規定しておく必要がある。HDLC方式では全二重方式の採用も可能であるが、IrDA通信方式の場合、データの伝送に自由空間上を伝搬するベースバンド変調の赤外線を使用しており 通信圏内で2つ以上の局が同時に送

信すると赤外線の干渉が発生して正常な通信を行えない。このため、IrDA通信方式は通信リンクを確立する前は通信圏内に赤外線が存在しない場合にのみ送信を行ない、通信リンク確立後は通信を行っている2局の間で送信権の交換を定期的に行なう半二重方式を用いている。

【0007】図9(a) は、かかる通信方式の応用を説明するための図である。HDLC通信方式やIrDA通信方式では、送信又は受信を行うものを「局」と呼び、一般には、通信をコントロールするデータリンク制御を行 10う一次局と、一次局の制御に従う二次局とが、上記のフレームをコマンド(一次局→二次局)とレスポンス(二次局→一次局)として送受信することで通信を行う。かかる方式は不平衡通信方式といわれる。図示するようにコンピュータや電子手帳等は通信においては局として機能し、赤外線を伝送媒体として、データ交換を行う。

【0008】図9(b) は、これら通信方式における一般的な手順を説明するためのシーケンス図である。A局がB局に対して、データ送信のため接続を求めて、SNRMフレームを送信する。これを受信したB局は通信不可能である場合にはDMフレームを返信し、通信可能である場合には承諾を意味するUAフレームを返信する。SNRMフレーム、DMフレーム、UAフレームはいずれもUフレームである。B局がUAフレームを返信すると両局は接続状態となり、データ交換が可能となる。

【0009】ここでは、A局からB局に複数のIフレームに分割されたデータを送信する場合を示している。先ずA局は最初のデータフレームをIフレームとして番号「0」を付与して送信する。これを受信したB局は、

「0」の次の「1」の番号を付与したフレームを返信し、「1番目のデータを送信せよ」の意を伝達する。この応答フレームはRRフレームというSフレームである。A局はB局の応答を確認して1番目のデータを送信する。この手順を必要なだけ繰り返すことによって、複数フレーム通信の精度の向上を図ることができる。

【0010】データ送信が終了して、A局は接続を終了しようとし、B局に対して、Uフレームであって切断要求を示すDISCフレームを送信し、これにB局が承諾を示すUフレームのUAフレームを返信すると切断が行われて通信は終了する。又、いずれかの局において通信異常等 40の不都合があった場合にもその局が切断要求を発することにより通信を終了する。

【0011】以下に、このような方式による通信における、(1)複数フレームにわたるデータの送受信、

(2)受信バッファの使用、(3)自己受信の回避について図を用いて説明する。

【0012】(1)複数フレームにわたるデータの送受信

前述のように、半二重方式では送信権の交換の手順を規 定する必要があり、このために、送信するフレームの制 50 御フィールド(Cフィールド)内の定められた位置にポールビット又はファイナルビットがセットされたフレームは、送信権を委譲することを伝達する送信権委譲フレームであると規定している。上記の定められたビットは、一次局から二次局に送信されるフレームではポールビット、二次局から一次局に送信されるフレームではファイナルビットと呼ばれる。

8

【0013】そして、通信時に常に送信権の交換を行う とととすると、送信権委譲フレームを送信するための赤 外線発光によって電力消費が増大するため、省電力の要 請の高いノート型コンピュータや携帯用端末では望まし くないこととなる。従って、不必要な電力消費を抑制す るべく、一次局の側からは、一次局→二次局の送信デー タがない場合に、ある時間だけ経過してから、送信権委 譲フレームを二次局に送信することとしている。この待 ち時間は、送信権を保持できる最大の時間であって、最 大ターンアラウンド時間と呼ばれる。

【0014】また、原則的に、送信権委譲フレームを送信された局は、応答フレーム等、何らかの送信を行うものなので、一次局が送信権を二次局に委譲して後、最大ターンアラウンド時間経過しても二次局から送信権委譲フレームの送信がなかった場合は、一次局は二次局への送信権委譲が失敗したと判断し、再び送信権委譲フレームの送信をおこなう。

【0015】以下に、従来のデータ通信方法により、送信権を交換しつつデータの伝送を行う一次局と二次局との通信について説明する。図10(a)は、一次局から二次局へ、あるデータを複数フレームに分けて送信する場合のシーケンス図であり、同図(b)は同様のデータ送信が二次局から一次局に対して行われる場合のシーケンス図である。図に示す「P」はボールビット、「F」はファイナルビットのセットされた送信権委譲フレームであることを意味し、この通信シーケンスにおいては、図示するように全てのフレームが送信権委譲フレームとなっている。

【0016】まず、同図(a) に従って、一次局から二次局へのデータ送信の場合を説明する。一次局は二次局にデータを含んだ最初のフレームである、送信順序番号が0のIフレーム511を送信する。511は送信権委譲フレームとして送信する。これを受けた二次局は、応答フレームとして、受信順序番号1のRRフレーム521を送信することにより、次に受け取るべきは、番号1のデータである旨を伝える。そこで、一次局は送信順序番号が1のIフレーム512を二次局に送信する。以下、同様に連続した番号のIフレームが送信され続け、一次局は遅滞なく複数のフレームを送信することが可能である。一次局がある番号のIフレームを送信するまでの時間、t01、t12…は、最大ターンアラウンド時間よりも短い。

【0017】一方、二次局から一次局に対して同様のデ

ータを送信する場合について、同図(b) に従って説明す る。二次局は一次局にデータを含んだ最初のフレームで ある、送信順序番号が0のⅠフレーム621を送信す る。先の場合と同様、621は送信権委譲フレームであ り、二次局は送信権を委譲して一次局からの応答を待 つ。ところが、一次局からは応答を行うのみであり、デ ータ送信をするのではないので、前述のデータ送信をし ないときは最大ターンアラウンド時間待つという規定に 従い、一次局は最大ターンアラウンド時間tmだけ経過 してから、応答フレームであるRRフレーム611を送 10 信権委譲フレームとして送信する。送信権が譲られたの で、二次局は次のデータを送信することが可能となり、 Iフレーム622を送信する。以下、同様に送信は続く が、一次局の側からのデータ送信がない限り、RRフレ ームは最大ターンアラウンド時間経過してから送られる ため、二次局よりある番号のIフレームを送信してか ら、続く番号のIフレームを送信するまでの時間、t0 1、 t 1 2 …は、最大ターンアラウンド時間よりも長く なる。

【0018】なお、実際には、一次局は最大ターンアラウンド時間より若干短い時間経過してから送信を行う設定とすることもあるが、この場合にもほぼ最大ターンアラウンド時間は経過するため、やはり二次局の待ち時間は長いものとなる。

【0019】(2)受信バッファの使用

一次局、及び二次局は、実際にはコンピュータ等であり、通信を行っている際にも他のタスクを並行して実行していたり、あるいは何らかの割り込みが発生する場合もあり得る。従って、受信したデータを直ちに処理できないこともあるので、受信したデータを一時的に蓄積する受信バッファを有しており、受信バッファから順次データを取り出して処理することが行われる。受信バッファは、メモリ等の高速な記憶装置によって実現され、その大きさは上記フレームを単位として定められることが一般的である。

【0020】上述の受信バッファを備えた二次局による、一次局とのデータ通信について、図11を用いて説明する。図11は、二次局から一次局へ、データを複数のエフレームに分割して送信する場合のシーケンス図を示している。フレームは、全てボールファイナルビットがセットされた送信権委譲フレームである。また、二次局は、図に示す受信バッファとして01、及び02が各1フレーム分ずつ、合計2フレーム分の受信バッファを備えたものであるとする。

【0021】二次局は送信順序番号が0であるIフレーム721を送信した後、他のタスクの処理負荷が大きいなどの理由で、最大ターンアラウンド時間(tm)以上受信処理を行なうことができなかった。この間に一次局からは、まず最初の応答のRRフレーム711が送信される。次いで一次局は、送信権を二次局に委譲して後、

最大ターンアラウンド時間経過しても二次局から送信権 委譲フレームの送信がないので、前述の規定に従って二 次局への送信権委譲が失敗したと判断し、再び送信権委 譲フレームの送信をおこなう。この応答は711のRR フレームの再送であるRRフレーム712であり、71 1、及び712とも次のデータは番号1のものである旨 を示す受信順序番号1のものである。受信処理が停滞し ていた二次局では、送信されたRRフレーム711、7 12が受信バッファに保存される。最初に処理される1 フレーム分のバッファ01には先に受信した711が、 次のバッファであるバッファ02には後から受信した7 12が保存される。

【0022】その後、二次局は受信処理を行う。受信バッファ内の最も古いフレーム711を処理し、バッファ02の内容であるフレーム712は、最先に処理されるべきバッファ01に移動する。そして二次局は処理したRRフレーム711の受信順序番号1に対応した送信順序番号1のIフレーム722を送信する。

【0023】一方 I フレーム722を受信した一次局は、その送信順序番号1に応じて受信順序番号2のRRフレーム713を送信する。バッファ01には先のフレーム712が保存されているため、フレーム713はバッファ02に保存されて処理を待つこととなる。

【0024】次に二次局は、受信バッファ01に保存されているフレーム712を処理する。すなわち、一次局が送信した最新のフレームであるフレーム713よりも先に、受信した順番に従ってフレーム712の処理を行うこととなる。ここで、フレーム712の受信順序番号は1であり、一次局から送信された最も新しいフレームである413の受信順序番号2よりも以前の値である。従って、送信順序番号1のIフレーム722を送信した後でフレーム712の処理を行う二次局は、一次局がIフレーム722を受信していないと判断し、Iフレーム722の再送フレームであるIフレーム723の送信を行う。

【0025】一次局は、受信順序番号2のRRフレーム713を送信した後であり、次は送信順序番号2のフレームを受信することを期待している。ところが、次に一次局が受信するのは送信順序番号1のIフレーム723である。フレーム723の送信順序番号1は一次局が期待していた送信順序番号2よりも以前の値である。IrDA通信方式では、かかる場合には通信異常として通信リンクを切断することが可能であり、一次局は切断要求フレームであるDISCフレーム714を送信する。

【0026】二次局は、次に受信バッファに保存された RRフレーム713を処理した後、送信順序番号2である「フレーム724を送信するが、一次局は切断要求を 送信した後である。そしてその後で、二次局は切断要求 DISCフレーム714を受信処理し、切断応答UAフ 50 レーム725を送信して、一次局・二次局間の通信リン

クが切断する。

【0027】(3)自己受信の回避

赤外線通信などの光通信については、コンピュータや携帯端末等に、受光部と発光部が一体化された、または近接した通信ボートが備えられていることが一般的である。このため、光通信では受発光モジュールが、自分の発光した光を自分の受光デバイスで受光することで、自分が送信したデータを受信データとして処理してしまう自己受信の問題がある。

11

【0028】これを解決する手段としては以下のような 10 ものがある。

(A) 受発光モジュールにおいてハードウェア的に送信中のデータをマスクして、自己が受信することを防止する。

(B) 受信データが、自己が送信中のデータであると判断される場合にソフトウェア的に受信したデータを破棄する。この処理を、ハードウェアである光通信ボートと、基本ソフトウェアであるOSとの仲立ちをするソフトウェアであるデバイスドライバソフトにより行う。

(C)受信データが、自己が送信中のデータであると判 20 断される場合にソフトウェア的に受信したデータを破棄する。この処理を、デバイスドライバよりも上位の処理 部分、例えば通信ソフト等で行う。

【0029】(C)では後述するような問題点があるの で、(A)のハードウェアでも、(B)のデバイスドラ イバでも自己受信防止対策の行われていない受発光モジ ュールを使用する場合について、(C)の自己受信防止 処理が行われる。(C)による場合、つまり、受発光モ ジュールのデバイスドライバよりも上位の処理部分で自 己受信防止処理を行う場合は、自己受信データを正しく 破棄するためには、送信開始時点と、送信完了時点とを 正確に知る必要がある。しかしこのことは必ずしも容易 ではなく、通信トラブルの発生につながりがちである。 例えば送信完了を認識する時点が遅れた場合に、その時 点で他局からの送信がすでに開始されていたとすると、 他局からのデータを受信しても、現在自局は送信中であ ると判断されるため、本物の受信データが自己受信デー タとして破棄されてしまい受信データから受信フレーム を組み立てることができず通信不能となるような事態に なる。また、自己受信防止処理を行なわずに自己受信フ レームを本物の受信フレームとして処理した場合は、通 信リンク確立直後に一次局衝突で切断してしまうことと なる。

[0030]

【発明が解決しようとする課題】従来技術の(1)で説明したように、従来のIrDA通信方式では、一次局からデータを複数のフレームに分割して送信する場合は、で通信一次局は最大ターンアラウンド時間待つことなく、送信権を二次局に委譲する。このため一次局は、短時間で応知のフレームを受け取り、次のデータを有するフレーム50する。

を送信することが可能であり、効率よくデータを送信することができる。しかし、一次局から送信するデータがない場合に、二次局からデータを送信するときは、一次局は二次局からのデータを受信してから最大ターンアラウンド時間、あるいはそれに近い時間経過した後でないと、二次局に送信権を委譲しないため、二次局から複数フレームでデータを送信する場合、二次局は各データフレームでデータを送信する場合、二次局は各データフレームの手に比較的長い時間以上待たなければならないため、通信効率が低下するという問題がある。前述のように、データは1フレームで送信できず複数フレームに分割して送信されることが多いため、このことが通信全体のバフォーマンスの低下につながる。このことが従来の通信方式による、第一の問題点である。

【0031】次に、従来技術の(2)で説明したように、二次局が他の処理の負荷が大きいなどの理由で最大ターンアラウンド時間以上受信処理が行えなかった場合は、一次局が再び送信権委譲フレームの送信を行うため、一次局からの送信権委譲フレームが、二次局の受信バッファに2フレーム以上保存される。二次局がこれを占いものから順に処理すると順序番号の不一致が発生し、切断する場合がある。すなわち、受信バッファを介して受信処理を行うと、通信手順通りに処理をおこなっても切断が発生する場合がある点が第二の問題点である。

【0032】さらに、従来技術の(3)で説明したように、上位レベルでの確実な自己受信データの破棄が困難であって、このため、誤って本来の受信データを自己受信データとして破棄してしまうこと、あるいは、自己受信データを本来のデータとして処理してしまうことにより通信トラブルが発生することが従来の通信方式による第三の問題点である。

【0033】本発明は、かかる事情に鑑みてなされたものであり、送信権を委譲し合って通信を行う際に、頻繁に送信権委譲フレームを送信することによって消費電力を大きくすることなく、送信権委譲フレーム送信における待ち時間の設定による通信効率の低下を防止し得るデータ通信方法を提供することを目的とする。

【0034】また、本発明は、受信バッファを用いて通信を行っている際に、バッファ中に保存された古いフレームより順に処理を行うことにより、順序番号不正が起こる事態を防止し得るデータ通信方法を提供することを目的とする。また、本発明は、ハードウェアやデバイスドライバが自己受信防止の機能を有していない場合にも、誤認識によるデータ破棄や自己受信を行ってしまうことを回避し得るデータ通信方法を提供することを目的とする。また、本発明は、上記のようなデータ通信方法で通信を行うデータ通信装置と、コンピュータ等において上記のようなデータ通信方法を実現できるデータ通信プログラムを記録した記録媒体を提供することを目的とする。

[0035]

【課題を解決するための手段】上記の課題を解決するた め、請求項1にかかるデータ通信方法は、不平衡半二重 HDLC通信方式によりフレーム単位で送受信を行うデ ータ通信方法において、フレームを受信したとき、該受 信したフレームが、送信権委譲フレームであり、かつ、 データフレームである場合に、相手局に対して送信権委 譲を行うものである。

【0036】また、請求項2にかかるデータ通信方法 は、請求項1に記載のデータ通信方法において、フレー 10 ムを受信したとき、上記受信したフレームが送信権委譲 フレームか否かを判断する委譲フレーム判定処理と、上 記受信したフレームがデータフレームか否かを判断する データフレーム判定処理とを含むフレーム判定処理を行 い、上記フレーム判定処理によって、上記受信したフレ ームが、送信権委譲フレームであり、かつ、データフレ ームであると判定した場合は、相手局に対して送信権委 譲フレームを送信するものである。

【0037】また、請求項3にかかるデータ通信方法 は、不平衡半二重HDLC通信方式によりフレーム単位 20 で送受信を行うデータ通信方法において、フレームを受 信したとき、受信したフレームを受信バッファに一時蓄 積した後に取り出して処理するものであり、上記受信バ ッファに蓄積されたフレームの内、上記取り出して処理 するフレームが送信権委譲フレームであるとき、最新の 送信権委譲フレームであるか否かを判定し、最新であれ ば該送信権委譲フレームを受信処理し、最新でないなら ば該送信権委譲フレームを受信処理せずに破棄するもの である。

【0038】また、請求項4にかかるデータ通信方法 は、請求項3に記載のデータ通信方法において、上記受 信したフレームを一時蓄積した受信バッファより、最先 に蓄積したフレームを読み出す順次読み出し処理と、上 記読み出した最先の受信フレームが送信権委譲フレーム か否かを判断する委譲フレーム判定処理と、上記受信バ ッファに送信権委譲フレームが蓄積されているか否かを 判断する蓄積フレーム判定処理と、上記委譲フレーム判 定処理により、上記読み出した受信フレームが送信権委 譲フレームであると判定され、かつ、上記蓄積フレーム 判定処理により、上記受信バッファに送信権委譲フレー ムが蓄積されていると判定された場合に、上記読み出し た受信フレームを破棄する受信フレーム破棄処理とを含 む最新フレーム抽出処理を行い、上記最新フレーム抽出 処理において、破棄されず出力された受信フレームに対 して受信処理を行うものである。

【0039】また、請求項5にかかるデータ通信方法 は、不平衡半二重HDLC通信方式によりフレーム単位 で送受信を行うデータ通信方法において、接続状態にお いて、受信したフレームのアドレスフィールドの値が、 自局から送信するフレームのアドレスフィールドの値と 50 は、不平衡半二重HDLC通信方式によりフレーム単位

14

一致した場合に、その受信したフレームを破棄するもの である。

【0040】また、請求項6にかかるデータ通信方法 は、請求項5に記載のデータ通信方法において、フレー ムを受信したとき、現在の通信状況が接続状態であるか 否かを判定する接続判定処理と、上記受信したフレーム のアドレスフィールドの値を、自局から送信するフレー ムのアドレスフィールドの値と比較し、一致するか否か を判定するアドレスフィールド判定処理と、上記接続判 定処理により接続状態にあると判定され、かつ、上記ア ドレスフィールド判定処理において一致すると判定され た場合に、上記受信したフレームを破棄する受信フレー ム破棄処理とを含む自己受信判定処理を行い、上記自己 受信判定処理において、破棄されず出力された受信フレ ームに対して受信処理を行うものである。

【 0 0 4 1 】また、請求項 7 にかかるデータ通信方法 は、不平衡半二重HDLC通信方式によりフレーム単位 で送受信を行うデータ通信方法において、フレームを受 信したとき、受信したフレームを受信バッファに一時蓄 積した後に取り出して処理するものであり、上記受信バ ッファに蓄積されたフレームの内、送信権の委譲を伴う フレームに関しては、最新のフレームのみを受信処理 し、それ以外の送信権の委譲を伴うフレームは破棄し、 上記受信処理する最新のフレームが、送信権委譲フレー ムであり、かつ、データフレームである場合に、相手局 に対して送信権委譲を行うものである。

【0042】また、請求頃8にかかるデータ通信方法 は、不平衡半二重HDLC通信方式によりフレーム単位 で送受信を行うデータ通信方法において、接続状態にお いて受信したフレームのアドレスフィールドの値が、自 局から送信するフレームのアドレスフィールドの値と一 致した場合に、その受信したフレームを破棄するもので あり、上記破棄することなく受信処理するフレームが、 送信権委譲フレームであり、かつ、データフレームであ る場合に、相手局に対して送信権委譲を行うものであ る。

【0043】また、請求項9にかかるデータ通信方法 は、不平衡半二重HDLC通信方式によりフレーム単位 で送受信を行うデータ通信方法において、接続状態にお いて受信したフレームのアドレスフィールドの値が、自 局から送信するフレームのアドレスフィールドの値と一 致した場合に、その受信したフレームを破棄し、上記破 棄することなく受信処理を行う受信フレームを、受信バ ッファに一時蓄積した後に取り出して処理するものであ り、上記受信バッファに蓄積されたフレームの内、送信 権の委譲を伴うフレームに関しては、最新のフレームの みを受信処理し、それ以外の送信権の委譲を伴うフレー ムは破棄するものである。

【0044】また、請求項10にかかるデータ通信方法

で送受信を行うデータ通信方法において、接続状態において受信したフレームのアドレスフィールドの値が、自局から送信するフレームのアドレスフィールドの値と一致した場合に、その受信フレームを破棄し、上記破棄することなく受信処理を行う受信フレームを、受信バッファに一時蓄積した後に取り出して処理するものであり、上記受信バッファに蓄積されたフレームの内、送信権の委譲を伴うフレームに関しては、最新のフレームのみを受信処理し、それ以外の送信権の委譲を伴うフレームは破棄し、上記受信処理する最新のフレームが、送信権委10譲フレームであり、かつ、データフレームである場合に、相手局に対して送信権委譲を行うものである。

15

【0045】また、請求項11にかかるデータ通信装置 は、不平衡半二重HDLC通信方式によりフレーム単位 で送受信を行うデータ通信装置において、データをフレ ームとして伝送媒体より受信し、また、データをフレー ムとして伝送媒体に送信する送受信部と、相手局に送信 するべきフレームを作成し、上記送受信部に出力するフ レーム作成部と、上記送受信部が受信した受信フレーム に対して、送信権委譲フレームか否かを判断する委譲フ レーム判定処理と、データフレームか否かを判断するデ ータフレーム判定処理とを含むフレーム判定処理を行う フレーム判定部と、上記フレーム判定部におけるフレー ム判定処理の結果により、上記受信フレームが送信権委 譲フレームであり、かつデータフレームである場合に は、上記フレーム作成部に送信権委譲フレームを作成し 出力するように指示をする通信制御部とを備えたもので ある。

【0046】また、請求項12にかかるデータ通信装置 は、不平衡半二重HDLC通信方式によりフレーム単位 30 で送受信を行うデータ通信装置において、データをフレ ームとして伝送媒体より受信し、また、データをフレー ムとして伝送媒体に送信する送受信部と、上記送受信部 が受信したフレームを一時蓄積する受信バッファと、上 記受信したフレームを一時蓄積した受信バッファより、 最先に蓄積したフレームを読み出す順次読み出し処理 と、上記読み出した最先の受信フレームが送信権委譲フ レームか否かを判断する委譲フレーム判定処理と、上記 受信バッファに送信権委譲フレームが蓄積されているか 否かを判断する蓄積フレーム判定処理と、上記読み出し た受信フレームが送信権委譲フレームであり、かつ、上 記受信バッファに送信権委譲フレームが蓄積されている と判定された場合に、上記読み出した受信フレームを破 棄する受信フレーム破棄処理とを行い、上記受信バッフ ァに蓄積されたフレームの内、送信権の委譲を伴うフレ ームに関して、最新のフレームを抽出するフレーム判定 部と、上記フレーム判定部が抽出したフレームについて 受信処理を行うよう制御する通信制御部とを備えたもの である。

【0047】また、請求項13にかかるデータ通信装置 50 上記蓄積フレーム判定ステップにおいて、上記受信バッ

は、不平衡半二重HDLC通信方式によりフレーム単位で送受信を行うデータ通信装置において、データをフレームとして伝送媒体より受信し、また、データをフレームとして伝送媒体に送信する送受信部と、上記送受信部が受信したフレームに対して、現在の通信状況が接続状態であるか否かを判定する接続判定処理と、上記受信したフレームのアドレスフィールドの値と比較し、一致するか否かを判定するアドレスフィールド判定処理とにより、接続状態において自己受信したフレームであるか否かを判定し、接続状態において自己受信した受信フレームであれば破棄するフレーム判定部と、上記フレーム判定部が破棄しない受信フレームに対して、受信処理を行うよう制御する通信制御部とを備えたものである。【0048】また、請求項14にかかるデータ通信プロ

【0048】また、請求項14にかかるデータ連信プログラム記録媒体は、不平衡半二重HDLC通信方式によりフレーム単位で送受信を行うデータ通信プログラムを記録した記録媒体であって、フレームを受信するフレーム受信ステップと、上記受信したフレームが送信権委譲フレームか否かを判断する委譲フレーム判定ステップと、上記受信したフレームがあるデータフレームがデータフレームが適けて、上記受信したフレームが送信権委譲フレームであると判定され、かつ、上記データフレームであると判定された場合に、送信権委譲フレームを作成する送信権委譲フレームを接信する送信を譲フレームを作成なデップと、上記作成した送信権委譲フレームを送信する送信ステップを備えたデータ通信プログラムを記録したものである。

【0049】また、請求項15にかかるデータ通信プロ グラム記録媒体は、不平衡半二重HDLC通信方式によ りフレーム単位で送受信を行うデータ通信プログラムを 記録した記録媒体であって、フレームを受信するフレー ム受信ステップと、上記受信したフレームを受信バッフ ァに一時蓄積する一時蓄積ステップと、上記受信バッフ ァより、最先に蓄積したフレームを読み出す順次読み出 しステップと、上記読み出した最先の受信フレームが送 信権委譲フレームか否かを判断する委譲フレーム判定ス テップと、上記受信バッファに送信権委譲フレームが蓄 積されているか否かを判断する蓄積フレーム判定ステッ プと、上記委譲フレーム判定ステップにおいて、上記読 み出した受信フレームが送信権委譲フレームであると判 定され、かつ、上記蓄積フレーム判定ステップにおい て、上記受信バッファに送信権委譲フレームが蓄積され ていると判定された場合に、上記読み出した受信フレー ムを破棄する受信フレーム破棄ステップと、上記委譲フ レーム判定ステップにおいて、上記読み出した受信フレ ームが送信権委譲フレームでないと判定され、または、

ファに送信権委譲フレームが蓄積されていないと判定された場合に、上記読み出した受信フレームを出力する最新フレーム抽出ステップと、上記最新フレーム抽出ステップにおいて、取得された受信フレームに対して受信処理を行う受信処理ステップを備えたデータ通信プログラムを記録したものである。

17

【0050】また、請求項16にかかるデータ通信プロ グラム記録媒体は、不平衡半二重HDLC通信方式によ りフレーム単位で送受信を行うデータ通信プログラムを 記録した記録媒体であって、フレームを受信するフレー 10 ム受信ステップと、現在の通信状況が接続状態であるか 否かを判定する接続判定ステップと、上記受信したフレ ームのアドレスフィールドの値を、自局から送信するフ レームのアドレスフィールドの値と比較し、一致するか 否かを判定するアドレスフィールド判定ステップと、上 記接続判定ステップにおいて接続状態にあると判定さ れ、かつ、上記アドレスフィールド判定ステップにおい て一致すると判定された場合に、上記受信したフレーム を破棄する受信フレーム破棄ステップと、上記接続判定 ステップにおいて接続状態にないと判定され、または、 上記アドレスフィールド判定ステップにおいて一致しな いと判定された場合に、上記受信したフレームに対して 受信処理を行う受信処理ステップを備えたデータ通信ブ ログラムを記録したものである。

[0051]

【発明の実施の形態】

実施の形態 1. 本発明の実施の形態 1 によるデータ通信 方法は、一次局の通信処理において、データ送信フレー ムを受信した場合は、最大ターンアラウンド時間待たず に、直ちに送信権委譲フレームを送信することで、通信 30 効率を高くするものである。

【0052】図1は、本実施の形態1によるデータ通信 装置の構成を示すブロック図である。10は局として機 能するデータ通信装置であり、ここでは一次局として通 信を行うものとする。20は局(通信装置)10と、赤 外線のような伝送媒体で通信を行う相手局である。ここ では二次局として通信を行うものとする。二次局20の 構成は一次局10と同様のものである。

【0053】1は、送受信部であり、データをフレーム単位で送信・受信する。2はフレーム判定部であり、送 40受信部1が受信したフレームに対する判定処理を行い、判定の結果と受信フレームを後述する通信制御部4に出力する。3はフレーム作成部であり、相手局20に対して送信するフレームを作成して、送受信部1に出力する。4は通信制御部であり、フレーム判定部2より出力された受信フレームについて、フレーム判定部2の判定結果に対応して、データ処理部5に処理を指示したり、フレーム作成部3にフレーム作成の指示を行うなどの制御を行う。5はデータ処理部であり、受信フレームに含まれたデータを取得し、該データについて、演算、表 50

示、記録等を行うように、外部に出力する。

【0054】図2は本実施の形態1による通信で、一次局10で行なわれる受信フレーム判定処理の手順を示すフローチャート図である。図において、S1は送信権を持っているか否かを判断する送信権判定処理、S2は自局宛のフレームを受信したか否かを判断する宛先判定処理、S3は受信したフレームが送信権委譲フレームか否かを判断する委譲フレーム判定処理、S4は受信したフレームがIフレームか否かを判断するデータフレーム判定処理、S5は送信権を相手局に委譲する送信権委譲処理である。

【0055】図3は、本実施の形態1による通信において、二次局から一次局に対して、複数フレームにわたるデータを、Iフレームとして送信する場合の通信シーケンス図である。以下に、本実施の形態1によるデータ通信装置の動作を、図3に従い、図1~2を参照して説明する。なお、図3ではフレームは全てボールファイナルビットのセットされた送信権委譲フレームである。

【0056】まず、一次局10からRRフレーム111が二次局に送信される。まだデータ送信を開始しない二次局は、111が送信権委譲フレームであるので、応答フレームとしてRRフレーム121を返信する。一次局10の送受信部は二次局20よりフレーム121を受信すると、これをフレーム判定部2に出力し、フレーム判定部2は受信フレーム121に対して、図2の受信フレーム判定処理を行う。

【0057】受信フレーム判定処理を図2のフローに従って説明する。まず、ステップ1により自局が送信権を持っているか否かを判断する。送信権を持っていた場合はステップ2を行い、受信フレーム判定処理を続行するが、送信権を持っていなかった場合は、受信フレーム判定処理を終了する。ステップ2が実行された場合、フレーム判定部2は、受信したフレームが自局宛か否かを判断し、自局宛であった場合はステップ3を実行し、自局宛でなかった場合は受信フレーム判定処理を終了する。ステップ3では、受信した自局宛フレームが送信権委譲フレームか否かを判断し、送信権委譲フレームだった場合はステップ4を実行し、送信権委譲フレームでない場合は、受信フレーム判定処理を終了する。

40 【0058】ステップ4では、受信した自局宛の送信権 委譲フレームが、「フレームか否かを判断し、「フレームである場合、すなわち、二次局からのデータを受信した場合には、ステップ5においてフレーム判定部2から通信制御部4に対して送信権委譲要請が出力される。通信制御部4は送信権委譲要請を入力すると、これをフレーム作成部3に伝え、フレーム作成部3は送信権委譲フレームを作成して送受信部1に出力し、送受信部1はこれを二次局20に送信して送信権を相手局に委譲する。その後、一次局10では受信フレーム判定判定処理を終50 了する。すなわち、ステップ5を実行することによっ て、ポールファイナルビットがセットされた(送信権委譲フレームである) I フレームを受信した場合は、従来例のように最大ターンアラウンド時間待つことなく、直ちに相手局に送信権が委譲されることとなる。

19

【0059】一方、ステップ4で、受信した自局宛の送信権委譲フレームが「フレームでなかった場合は、ステップ5を実行することなく受信フレーム判定処理を終了する。いずれかのステップにおいて、受信フレーム判定処理が終了した場合には、フレーム判定部2は受信フレームと判定結果を通信制御部4に出力する。

【0060】通信制御部4は、受け取った判定結果に応じて受信フレームを処理し、通信を制御する。受信フレームがデータフレームであった場合は、データ処理部5に処理を指示して受信フレームを出力し、制御フレームであった場合は、応答フレームの作成をフレーム作成部3に指示する。受信フレームが自局宛でなかった場合、その他不正な形式のものの場合はフレームを破棄し、対応が必要であればフレーム作成部3にフレーム作成を指示する。

【0061】図2に示す受信フレーム判定処理を行うことにより、受信したフレームがIフレームではない場合 (例えばRRフレーム)や、送信権委譲フレームではない場合は、いずれかの判定処理により、ステップ5が行われることなくデータ判定処理が終了するので、従来の処理と同様に、自局が送信権を獲得してから最大ターンアラウンド時間経過した後に相手局へ送信権が委譲される。

【0062】従って、図3のシーケンス図に示すRRフレーム121を受信した場合、図2の受信フレーム判定処理のフローにおいては、ステップ1では「送信権有り」と判定してステップ2を実行し、ステップ2では自局宛フレームであるのでステップ3を実行し、ステップ3では送信権委譲フレームであるのでステップ4が実行される。ステップ4の判定では、フレーム121はIフレームではないので、ステップ5は実行されることなく、受信フレーム判定処理は終了する。

【0063】通信制御部4は、受け取った判定結果と受信フレームとに基づいて、従来例と同様最大ターンアラウンド時間 t m だけ待ってから、応答フレームを作成するようフレーム作成部3に指示し、フレーム作成部3は 40送信権委譲フレームである応答フレームを作成して送受信部1に出力し、送受信部1はこれを二次局20に出力する。このようにして図3に示すRRフレーム112が送信される。

【0064】図3に示すように、二次局20はこれに応答するRRフレーム122を一次局10に送信する。フレーム122は上記のフレーム121と同様に処理され、やはり最大ターンアラウンド時間 t m経過後にRRフレーム113が一次局10から二次局20へと送信されることとなる。

【0065】ここで二次局20は一次局10に対してのデータ送信を開始し、まず最初のデータフレームであるIフレーム123を送信する。一次局10がこれを受信し図2のフローに従って受信フレーム判定処理を実行すると、この場合にはステップ4でIフレームであると判定されることから、ステップ5が実行されることとなる。従って、図3に示すように、Iフレーム123に対しては、最大ターンアラウンド時間待つことなく速やかに(tn<tm) 応答フレーム114が送信され、送信権が二次局20に委譲される。

【0066】受信フレーム判定処理の終了後は、通信制御部4がデータフレームであるという結果とともに受信フレームを受け取るので、通信制御部4はこのフレームをデータ処理部5に出力し、データ処理部5がデータ処理を行う。

【0067】一方、応答フレーム114を受信した二次局20は、RRフレーム114により送信権を委譲されたので、引き続いて次のデータフレーム124を送信することができる。このようにIフレームであるフレーム124、125、及び126に対しては、速やかに応答フレーム115、116、117が送信され、迅速な送信権委譲が行われることとなる。

【0068】この後、二次局20から送信されたフレーム127はデータフレームではなくRRフレームであるので、フレーム121や122に対しての処理と同様に処理されることによって、再び最大ターンアラウンド時間 t m経過後に応答フレームであるRRフレーム118が送信されることとなる。

【0069】このように、本実施の形態1によるデータ 30 通信方法においては、一次局において、受信したフレー ムがデータフレームであるか否かの判定を含む受信フレ ーム判定処理を行うものとしたことで、二次局からデー タフレーム以外のフレームを受信した場合は、従来例と 同様に最大ターンアラウンド時間待った後に、RRフレ ームを送信することで、従来のIrDA通信方式と同様 に頻繁な送信権委譲フレームの送信による必要以上の赤 外線の発光を不要とし、消費電力の低減を図ることを可 能としている。一方、「フレームを受信した場合に限っ て、最大ターンアラウンド時間待つことなく速やかにR Rフレームを送信することで、従来例のようにフレーム 送信ごとに最大ターンアラウンド時間以上待たされるこ となく、二次局は次のIフレームを直ちに送信すること が可能となり、データ送信時間の短縮が可能となる効果 が得られる。

【0070】また、本実施の形態1によるデータ通信装置においては、フレームを送信・受信する送受信部1と、送受信部1が受信したフレームについて、データフレーム(Iフレーム)であるか否かの判定を含む判定を行うフレーム判定部2と、フレーム判定部2の判定によ50り、データフレームを受信したと判定された場合には、

直ちに送信権委譲を行うよう指示する通信制御部4と、通信制御部4から送信権委譲の指示があった際に、送信権委譲フレームを作成して、送受信部1に出力するフレーム作成部3を備えたものとしたことで、データフレーム以外を受信したときは、送信権委譲フレーム送信までの時間を長くすることで省電力を図り、データフレームを受信したときは速やかに送信権委譲フレームを送信することで通信の効率向上を図ることが可能となる。

21

【0071】なお、本実施の形態1では、ウィンドウサイズ1の場合、すなわち送信権を保持している間に送信 10できるフレーム数は1である場合において説明したが、1以外のウィンドウサイズにおいても同様となり、上記の効果が得られる。

【0072】実施の形態2.本発明の実施の形態2によるデータ通信方法は、受信バッファ内に蓄積した受信フレームに対して判定を行い、最新の受信フレームに対してのみ処理を行うことで、通信エラーを回避するものである。図4は、本実施の形態2によるデータ通信装置の構成を示すブロック図である。本実施の形態2では、10を二次局、相手方20を一次局であるとして説明する。図において二次局10の6は受信バッファであり、送受信部1が受信したフレームを一時蓄積する。他の符号は図1と同じであり、説明は実施の形態1と同様であるので、ここでは省略する。

【0073】図5は本実施の形態2による通信で、二次 局10で行なわれる最新フレーム抽出処理の手順を示す フローチャート図である。S1は受信バッファ内の最も 古いフレームを取り出す順次読み出し処理、S2はS1 で取り出したフレームが送信権委譲フレームか否かを判 断する委譲フレーム判定処理、S3は受信バッファ内に 30 送信権委譲フレームがあるか否かを判断する蓄積フレー ム判定処理、S4は処理S1で取り出した受信フレーム を破棄する受信フレーム破棄処理である。

【0074】図6は、本実施の形態2による通信において、二次局から一次局に対して、複数フレームにわたるデータを、Iフレームとして送信する場合の通信シーケンス図を示している。従来例の(2)と同様に、二次局10は、図4に示す受信バッファとして01、及び02が各1フレーム分ずつ、合計2フレーム分の受信バッファを備えたものであるとする。以下に、本実施の形態2によるデータ通信装置の動作を、図6に従い、図4~5を参照して説明する。なお、図6ではフレームは全てボールファイナルビットのセットされた送信権委譲フレームである。

【0075】二次局10が一次局に対してのデータ送信を開始し、最初のデータを送信順序番号が0であるIフレーム221として送信する。Iフレーム221を送信した後、二次局10は、他のタスクの処理負荷が大きいなどの理由で、最大ターンアラウンド時間(tm)以上受信処理を行なうことができなかった。

【0076】一次局20はデータ送信順序番号0のIフレーム221を受信したので、次の順序番号である1を有するRRフレーム211を二次局10に送信する。二次局10の送受信部1はRRフレーム211を受信バッファ01に蓄積する。一次局は、順序番号1のデータフレームを要求した後、最大ターンアラウンド時間 t m経過しても、該当するフレームが送信されてこないので、再び211と同じRRフレーム212を送信する。二次局10の送受信部1はRRフレーム212を受信バッファ02に蓄積する。

22

【0077】このRRフレーム212の受信と蓄積の後 に、二次局10が通信処理を再開したとすると、二次局 10は受信バッファ6内に蓄積された受信フレームに対 して、図5に示す最新フレーム抽出処理を実行する。最 新フレーム抽出処理を図5のフローに従って説明する。 【0078】まず、ステップ1において、フレーム判定 部2は受信バッファ6より、最も古い受信フレームを取 り出す。次にステップ2が実行され、ステップ1で取り 出された受信フレームに対して、送信権委譲フレームか 否かが判断される。送信権委譲フレームであった場合は ステップ3が行われ、そうでない場合は最新フレーム抽 出処理を終了する。ステップ3では、受信バッファ内に さらに送信権委譲フレームがないか否かを判断し、送信 権委譲フレームがあった場合は、ステップ4を実行す る。ステップ4ではステップ1で取り出した受信フレー ムを破棄し、その後再びステップ1へ戻って、受信バッ ファ6から最も古い受信フレームを取り出す。ステップ 3の判定で、送信権委譲フレームがなかった場合は、ス テップ4を実行することなく、最新フレーム抽出処理を 終了する。図6のフローの最新フレーム抽出処理が終了 した場合、フレーム判定部2は取得した(破棄しなかっ た) 受信フレームを通信制御部4に出力する。

【0079】図6のシーケンス図において、二次局10がRRフレーム212の受信と蓄積後に処理を再開し、図5のフローによる処理を行った場合、次のようになる。先ずステップ1では、最先に受信バッファ6に蓄積されたフレーム211がフレーム判定部2によって取り出される。

【0080】そしてステップ2では、取り出したフレーム211に対して、送信権委譲フレームであるかどうかの判定がなされ、送信権委譲フレームであるのでステップ3が実行される。フレーム判定部2は受信バッファ6を参照して、バッファ02に送信権委譲フレームである受信フレーム212が蓄積されていることを知るので、ステップ3の判定結果は「YES(存在する)」となり、ステップ4が実行される。ステップ4ではフレーム211が破棄される。

【0081】ステップ4に続いては再びステップ1が実行され、受信バッファ6よりフレーム212が取り出さ れる。ステップ2は上記と同様に実行され、次にステッ

プ3の判定が行われる。この場合、バッファ 0 1 からフレーム 2 1 1 が、バッファ 0 2 からフレーム 2 1 2 が取り出された後なので、判定は「NO(存在せず)」となり、ステップ 4 が実行されることなく、最新フレーム抽出処理は終了する。フレーム判定部 2 は、取得したフレーム 2 1 2 を通信制御部 4 に出力し、フレーム 2 1 2 から二次局 1 0 は、順序番号「1」のデータの送信を要求されていることを知ることができる。

23

【0082】図6のIフレーム222の送信以後は、通信が遅滞なく順調に行われていることを示している。こ 10 のような場合、図5のフローでは、ステップ1において順次取り出すごとに、ステップ3の判定により、ステップ4を実行することなく処理が終了するので、ステップ1で取り出したフレームが受信処理される。

【0083】このように、本実施の形態2によるデータ 通信方法では、受信バッファより最先に蓄積された受信 フレームを読み出す順次読み出し処理と、順次読み出し 処理で読み出した受信フレームが送信権委譲フレームで あるかどうかを判定する委譲フレーム判定処理と、委譲 フレーム判定処理において送信権委譲フレームであった 20 場合に、受信バッファにさらに送信権委譲フレームが存 在するかどうかを判定する蓄積フレーム判定処理と、蓄 積フレーム判定処理により、さらに送信権委譲フレーム が存在すると判定された場合、順次読み出し処理で読み 出した受信フレームを破棄し、再び順次読み出し処理を 実行する受信フレーム破棄処理とからなる最新フレーム 抽出処理を行うものとしたことで、送信権委譲フレーム の複数が受信バッファ内に保留された場合、最新ではな い送信権委譲フレームを破棄し、最新のフレームのみを 受信処理するので、従来例の(2)に示したように、同 30 一のフレーム211と212とを引き続いて処理するこ とにより、データ順序不正が起こり、回線切断に至る事 態を回避することが可能となる。

【0084】また、本実施の形態2によるデータ通信装置においては、フレームを送信・受信する送受信部1 と、送受信部1が受信したフレームを一時蓄積する受信バッファ6と、受信バッファ6に送信権委譲フレームの複数が保留された場合、最新ではない送信権委譲フレーム判定部2を備えたものとしたことで、通信処理に遅滞があり、受信バッファに重複する送信権委譲フレームが蓄積された場合にも、そのうちの最新のもののみを受信処理するので、従来の装置において起こり得た、重複した受信フレームの処理を行うことを可能とする。

【0085】なお、本実施の形態2に示した最新フレーム抽出処理とともに、実施の形態1に示した受信フレーム判定処理を行うこととして、受信フレームが送信権委譲フレームであり、かつ、データフレームである場合には速やかに送信権委譲フレームを送信することとしても50

よく、受信バッファに送信権委譲フレームが複数保存された場合にも順序不正等のトラブルの発生を回避でき、また、送信権委譲処理を抑制することによる省電力と、連続したデータ処理の効率化とをともに実現することが可能となる。データ通信装置としてこれを実現する場合には、フレーム判定部2が最新フレーム抽出処理と受信フレーム判定処理とを行うようにし、通信制御部4はフレーム判定部2の判定により、フレーム作成部3に送信権委譲フレームの作成を指示するようにすればよい。

【0086】実施の形態3.本発明の実施の形態3によるデータ通信方法は、接続状態か否かの判定と、アドレスフィールド値の比較とにより、自己受信を判定するものである。本実施の形態3によるデータ通信装置は実施の形態1と同様の構成であり、説明には図1を用いる。なお、ここでは後述のようにA局とB局の通信について説明するが、図1においては局10がA局、相手局20がB局であるとする。

【0087】図7は本実施の形態3において、受信処理の際に行われる自己受信判定処理の手続を示すフローチャート図である。図7において、S1は自局が接続状態か否かを判断する接続判定処理、S2は受信したフレームのアドレスフィールド値と等しいか否かを判断するアドレスフィールド判定処理、S3は受信フレームを破棄する受信フレーム破棄処理である。

【0088】本実施の形態3では、ハードウェアやデバイスドライバにおいて自己受信対策がなされておらず、自己受信の発生するA局と、ハードウェア等により自己受信の発生しないB局との間で通信を行うものとする。図8は、A局でのIrDA通信の発見処理、接続処理、切断処理のシーケンス図である。両局ともデータ通信装置の構成は図1のものであり、送受信部1によりフレームを受信したとき、フレーム判定部2において、図7の自己受信判定処理が行われる。以下、本実施の形態3によるデータ通信方法を、図8のシーケンスに従い、図1及び図7を参照して、以下にA局での(1)発見処理、(2)接続処理、(3)接続状態での処理、(4)切断処理について説明する。

【0089】(1)発見処理

40 図8に示す発見処理は、スロット数1の場合の発見処理である。発見処理では、発見を起動した局から送信されるフレームのアドレスフィールド値にはFFhが、起動した局に応答する局から送信されるフレームのアドレスフィールド値にはFEhが使用される。

【0090】まずA局では、フレーム作成部3が、発見要求フレームであるXIDコマンドを、スロット0のフレーム311として作成し、送受信部1がこれをB局に送信する。この直後にA局では自己受信によってフレーム311がフレーム321として受信される。A局の送受信部1によってフレーム321が受信されると、フレ

ーム321はフレーム判定部2に渡され、フレーム判定 部2は図7のフローに従って自己受信判定処理を行う。 【0091】自己受信判定処理について図7のフローに 従って説明する。まず、ステップ1では、自局が接続状 態であるか否かを確認する。接続状態であればステップ 2を実行し自己受信判定処理を続行するが、接続状態に ない場合は自己受信判定処理を終了する。 ステップ2が 実行されると、フレーム判定部2によって、受信したフ レームのアドレスフィールド値が自局から送信するフレ ームのアドレスフィールド値と等しいか否かが判定さ れ、「YES (等しい)」の場合はステップ3が実行さ れるが、「NO(等しくない)」の場合はステップ3を 実行することなく自己受信判定処理が終了する。ステッ プ3では受信したフレームが破棄される。ステップ1よ り自己受信判定処理が終了した場合、又はステップ2の 判定によりステップ3を経ず自己受信判定処理が終了し た場合には、フレーム判定部2は送受信部1から受け取 った受信フレームを通信制御部4に出力する。一方、自 己受信判定処理がステップ3を経て終了したときは、受 信フレームの出力はない。

【0092】フレーム321受信の際の自己受信判定処 理(図7)では、ステップ1の判定により、発見処理段 階は接続状態にはないことから、直ちに自己受信判定処 理は終了し、フレーム321は通信制御部4に渡され る。そして、フレーム321に対しては、通常の受信処 理が行われる。IrDA通信方式において発見処理段階 では、XIDコマンドの送信後、XIDレスポンス以外 のフレームを受信しても、これを無視することとなって いる。従って、フレーム321はXIDレスポンスでは ないため無視される。

【0093】一方、フレーム311を受信したB局は、 自局の情報をA局に通知するためにXIDレスポンスフ レーム331をA局に送信する。フレーム331を受信 したA局では、送受信部1によるフレーム受信の後、図 7のフローが実行され、フレーム331はフレーム32 1と同様に通信制御部4に出力され、受信処理される。 A局10は、これがXIDレスポンスであることから、 フレーム331により通知されたB局の情報を保存す る。

【0094】次にA局はXID最終スロットフレーム3 12を送信する。この時自己受信により、フレーム31 2の自己受信フレーム322がA局に受信される。フレ ーム判定部2の自己受信判定処理では、フレーム322 はフレーム321、及び331と同様に処理されて、受 信処理が行われる。そして、フレーム322はXID最 終スロットフレームであるため、IrDA通信方式に従 って無視される。

【0095】以上のように発見処理においては、自己受 信が起こった場合でも、フレーム判定部2では、図7の 自己受信判定処理によりその自己受信したフレームをそ 50 フレーム332を受信して接続状態に移行したA局は、

のまま出力する。そして、自己受信したフレームはIr DA通信方式に従って処理されることにより、所定のフ レームでないことから無視されるため、正常に処理が行 われることとなる。

【0096】(2)接続処理

次にA局はB局に対して接続処理を行う。まず、A局 は、B局に対し接続要求フレームであるSNRMコマン ドフレーム313を送信する。SNRMコマンドフレー ムのアドレスフィールド値はFFhである。このときA 局はフレーム3 13の自己受信フレームであるフレーム 323を受信する。

【0097】A局10の送受信部1がフレーム323を 受信すると、フレーム判定部2によって、図7の自己受 信判定処理が実行されるが、接続処理中も接続状態では ないため、自己受信判定処理は(1)と同様ステップ1 によって直ちに終了する。そして、フレーム323が受 信処理されることとなるが、IrDA通信方式では、接 続要求SNRMに対する許否のレスポンス以外は無視す ることとなっているので、フレーム323はコマンドフ 20 レームであるため無視される。

【0098】なお、SNRMコマンドフレームによっ て、コネクションアドレスの値がB局に対して通知され る。コネクションアドレスは01hから、7Fhまでの 値からランダムに選択される乱数値であり、接続状態で 送信されるフレームのアドレスフィールド値はこのコネ クションアドレスを1ビット上位ビット側へシフトして ビット7-1の値とし、一次局からの送信の場合はビッ ト0を1に、二次局からの送信の場合はビット0を0に したものである。図8の場合はコネクションアドレスは 30 16 h である。よって以後、一次局から送信されるフレ ームのアドレスフィールド値は2 Dh、二次局から送信 されるフレームのアドレスフィールド値は2Chとな る。

【0099】フレーム313を受信したB局は、接続応 答フレームであるUAフレーム332を送信する。UA フレームのアドレスフィールド値は2 Ch である。接続 応答UAフレーム332を送信したB局は接続状態に移 行する。一方、フレーム332を受信したA局では、図 7の自己受信判定処理を経て、フレーム332を受信処 理し、接続応答があったことから、A局も接続状態に入 る。

【0100】以上のように接続処理においても(1)発 見処理と同様、自己受信が起こった場合でも、フレーム 判定部2では、図7の自己受信判定処理によりその自己 受信したフレームをそのまま出力する。そして、自己受 信したフレームは IrDA 通信方式に従って処理される ととにより、所定のフレームでないことから無視される ため、正常に処理が行われることとなる。

【0101】(3)接続状態での処理

RRフレーム314を送信する。フレーム314のアドレスフィールド値は前述のように2Dhである。この時、A局はフレーム314の自己受信フレームであるフレーム324を受信する。A局10の送受信部1がフレーム324を受信すると、フレーム判定部2により、図7に示す自己受信判定処理が行われる。

27

【0102】ステップ1の判定では、A局10は接続状態に入っているので、「YES」と判定されてステップ2が実行される。そして受信フレーム324のアドレスフィールド値が、A局が送信するフレームのアドレスフ10ィールド値と等しいかどうかの判定がなされる。フレーム324はフレーム314と同じアドレスフィールド値である。従って、フレーム324に対してはステップ2の判定は「YES(等しい)」であるため、ステップ3が実行されることとなり、フレーム324が破棄されて、自己受信判定処理は終了する。従って、この場合は、自己受信判定処理に引き続いての受信フレームの受信処理は行われない。

【0103】図7に示す自己受信判定処理を行わない従来の通信方式では、フレーム324が受信処理をされる 20 ため、フレーム324の有するアドレスフィールドが自局からの送信フレームと同じ値であるために一次局衝突として切断処理が行われるのであるが、本実施の形態3では、上述のようにフレーム324は受信処理されないので、かかる切断は発生しない。フレーム314を受信したB局は、応答フレームとして、RRフレーム333を送信する。A局10の送受信部1がフレーム333を受信すると、フレーム判定部2により、図7に示す自己受信判定処理が行われる。

【0104】ステップ1の判定では、A局10は接続状 30態に入っているので、「YES」と判定されてステップ 2が実行される。そして受信フレーム323のアドレスフィールド値が、A局が送信するフレームのアドレスフィールド値と等しいかどうかの判定がなされる。フレーム333のアドレスフィールド値は2Chであり、A局の送信フレームのアドレスフィールド値2Dhとは異なるため、ステップ2の判定は「NO(等しくない)」であるため、ステップ3が実行されることなく、自己受信判定処理は終了する。従って、この場合は、受信フレーム333に対する受信処理が行われる。 40

【0105】この後、A局は応答フレームであるRRフレーム315を送信し、自己受信によるフレーム325 と、B局からの応答フレーム334を受信することとなる。自己受信フレーム325はフレーム324と同様に処理されるので、自己受信判定処理のステップ3において破棄され、受信処理されない。一方応答フレーム334はフレーム333と同様に処理され、受信処理されることとなる。

【0106】(4)切断処理

A局はフレーム335を受信するが、ここで上位層から 50 定処理を行うこととして、受信フレームが送信権委譲フ

の切断要求があったために、切断要求フレームであるD ISCフレーム316を送信する。この時も、自己受信によってフレーム316の自己受信フレーム326が受信されるが、フレーム判定部2により自己受信判定処理が行われることによって、現在接続状態であり、かつ、受信フレーム326のアドレスフィールド値が自局から送信するフレームのアドレスフィールド値に等しいと判定されるため、ステップ3において受信フレーム326は破棄される。

【0107】切断要求フレーム316を受信したB局は 切断応答フレーム335を送信して非接続状態へ移行す る。切断応答フレーム335を受信したA局では、自己 受信判定処理の実行の後、フレーム335をフレーム3 33や331と同様に受信処理し、A局も非接続状態へ 移行して、通信リンクは終了する。

【0108】このように、本実施の形態3によるデータ 通信方法では、現在自局が接続状態にあるかどうかを判 定する接続判定処理と、受信したフレームのアドレスフ ィールド値と、自局が送信するフレームに付与するアド レスフィールド値とを比較するアドレスフィールド判定 処理と、アドレスフィールド値が一致する場合にはその 受信フレームを破棄する受信フレーム破棄処理とを含む 自己受信判定処理を行うものとしたことで、自己受信フ レームを受信フレームとして処理することが通信トラブ ルにつながり得る接続状態の場合には、アドレスフィー ルド値の比較により自己受信であるかどうかを判定し、 自己受信フレームであればこれを破棄して受信処理をし ないので、かかる自己受信判定処理を行わない場合に起 こり得る一次局衝突による回線切断などの通信トラブル を回避することが可能となる。そして、従来例で示した ように、送信開始・終了時点を正確に把握して自己受信 であるか否かを判定するのに比較して、開始・終了の時 点の変動に左右されず、しかも迅速に判定処理を行うこ とができるものである。

【0109】また、本実施の形態3によるデータ通信装置では、自局が接続状態にあり、かつ、受信したフレームのアドレスフィールド値と、自局が送信するフレームに付与するアドレスフィールド値とが等しい場合は、受信フレームを破棄するフレーム判定部2を備えたことで、自己受信フレームを受信フレームとして処理することが通信トラブルにつながり得る接続状態の場合には、アドレスフィールド値の比較により自己受信であるかどうかを判定し、自己受信フレームであればこれを破棄して受信処理をしないので、かかる自己受信判定処理を行わない場合に起こり得る一次局衝突による回線切断などの通信トラブルを回避することが可能となり、判定処理の処理負担も小さい。

【0110】なお、本実施の形態3に示した自己受信判定処理とともに、実施の形態1に示した受信フレーム判定処理を行うこととして、受信フレームが送信権委譲フ

レームであり、かつ、データフレームである場合には速やかに送信権委譲フレームを送信することとしてもよく、ソフトウェアによる自己受信の迅速かつ確実な判定と処理とを可能とし、また、送信権委譲処理を抑制することによる省電力と、連続したデータ処理の効率化とをともに実現することが可能となる。データ通信装置としてこれを実現する場合には、フレーム判定部2が自己受信判定処理と受信フレーム判定処理とを行うようにし、通信制御部4はフレーム判定部2の判定により、フレーム作成部3に送信権委譲フレームの作成を指示するようにすればよい。

29

【0111】また、本実施の形態3に示した自己受信判定処理とともに、実施の形態2に示した最新フレーム抽出処理を行うこととして、受信したフレームを受信バッファに一時蓄積した後に取り出して処理するものとし、一時蓄積された送信権委譲フレームの内から、最新のもののみを処理することとしてもよく、ソフトウェアによる自己受信の迅速かつ確実な判定と処理とを可能とし、また、受信バッファに送信権委譲フレームが複数保存された場合にも順序不正等のトラブルの発生を回避できる。データ通信装置としてこれを実現する場合には、受信バッファをさらに備え、送受信部1は受信したフレームをこの受信バッファに一時蓄積するものとし、フレームをこの受信バッファに一時蓄積するものとし、フレーム判定部2は内部バッファから取り出した受信フレームに対して自己受信判定処理と最新フレーム抽出処理とを行うようすればよい。

【0112】さらに、本実施の形態3に示した自己受信判定処理とともに、実施の形態1に示した受信フレーム判定処理と、実施の形態2に示した最新フレーム抽出処理とを行うこととしてもよく、ソフトウェアによる自己 30受信の迅速かつ確実な判定と処理とを可能とし、また、受信バッファに送信権委譲フレームが複数保存された場合にも順序不正等のトラブルの発生を回避でき、さらに、送信権委譲処理を抑制することによる省電力と、連続したデータ処理の効率化とをともに実現することが可能となる。データ通信装置としては、上記のような変更を加えることによって実現し得る。

【0113】なお、実施の形態1~3に示したデータ通信方法は、かかる通信方法によって通信を行う通信プログラムを記録媒体に記録し、該プログラムをコンピュータ、ワークステーション、電子手帳等携帯個人用端末等で実行することによって、実現できるものである。 【0114】

【発明の効果】請求項1または2のデータ通信方法によれば、フレームを受信したとき、該受信したフレームが、送信権委譲フレームであり、かつ、データフレームである場合に、相手局に対して送信権委譲を行うものとしたことで、データフレーム以外については送信権委譲のための赤外線発光を少なくすることにより省電力を図るとともに、連続送信をすることの多いデータフレーム

に対しては速やかに送信権を委譲することでデータ送信 を効率の向上を可能とする。

30

【0115】請求項3または4のデータ通信方法によれば、フレームを受信したとき、受信したフレームを受信バッファに一時蓄積した後に取り出して処理するものであり、上記受信バッファに蓄積されたフレームの内、上記取り出して処理するフレームが送信権委譲フレームであるとき、最新の送信権委譲フレームであるか否かを判定し、最新であれば該送信権委譲フレームを受信処理し、最新でないならば該送信権委譲フレームを受信処理せずに破棄するものとしたことで、通信中の処理の遅滞があり、受信バッファに送信権委譲フレームが複数保存された場合においても、順序番号不正による切断が発生することがない順調な通信を行うことが可能となる。

【0116】請求項5または6のデータ通信方法によれば、接続状態において、受信したフレームのアドレスフィールドの値が、自局から送信するフレームのアドレスフィールドの値と一致した場合に、その受信したフレームを破棄するものとしたことで、迅速かつ確実な自己受信の判定と処理とを行うので、自己受信が発生するハードウェアを使用した場合においても、一次局衝突による切断等の通信トラブルを回避することが可能となる。

【0117】請求項7のデータ通信方法によれば、フレームを受信したとき、受信したフレームを受信バッファに一時蓄積した後に取り出して処理するものであり、上記受信バッファに蓄積されたフレームの内、送信権の委譲を伴うフレームに関しては、最新のフレームのみを受信処理し、それ以外の送信権の委譲を伴うフレームは破棄し、上記受信処理する最新のフレームが、送信権委譲フレームであり、かつ、データフレームである場合に、相手局に対して送信権委譲を行うものとしたことで、受信バッファに送信権委譲フレームが複数保存された場合にも順序不正等のトラブルの発生を回避でき、また、送信権委譲処理を抑制することによる省電力と、連続したデータ処理の効率化とをともに実現することが可能となる。

【0118】請求項8のデータ通信方法によれば、接続 状態において受信したフレームのアドレスフィールドの 値が、自局から送信するフレームのアドレスフィールド の値と一致した場合に、その受信したフレームを破棄す るものであり、上記破棄することなく受信処理するフレームが、送信権委譲フレームであり、かつ、データフレームである場合に、相手局に対して送信権委譲を行うも のとしたことで、ソフトウェアによる自己受信の迅速か つ確実な判定と処理とを可能とし、また、送信権委譲処 理を抑制することによる省電力と、連続したデータ処理 の効率化とをともに実現することが可能となる。

したことで、データフレーム以外については送信権委譲 【0119】請求項9のデータ通信方法によれば、接続のための赤外線発光を少なくすることにより省電力を図 状態において受信したフレームのアドレスフィールドのるとともに、連続送信をすることの多いデータフレーム 50 値が、自局から送信するフレームのアドレスフィールド

の値と一致した場合に、その受信したフレームを破棄 し、上記破棄することなく受信処理を行う受信フレーム を、受信バッファに一時蓄積した後に取り出して処理す るものであり、上記受信バッファに蓄積されたフレーム の内、送信権の委譲を伴うフレームに関しては、最新の フレームのみを受信処理し、それ以外の送信権の委譲を 伴うフレームは破棄するものとしたことで、ソフトウェ アによる自己受信の迅速かつ確実な判定と処理とを可能 とし、また、受信バッファに送信権委譲フレームが複数 保存された場合にも順序不正等のトラブルの発生を回避 10 できる。

【0120】請求項10のデータ通信方法によれば、接 続状態において受信したフレームのアドレスフィールド の値が、自局から送信するフレームのアドレスフィール ドの値と一致した場合に、その受信フレームを破棄し、 上記破棄することなく受信処理を行う受信フレームを、 受信バッファに一時蓄積した後に取り出して処理するも のであり、上記受信バッファに蓄積されたフレームの 内、送信権の委譲を伴うフレームに関しては、最新のフ レームのみを受信処理し、それ以外の送信権の委譲を伴 20 うフレームは破棄し、上記受信処理する最新のフレーム が、送信権委譲フレームであり、かつ、データフレーム である場合に、相手局に対して送信権委譲を行うものと したことで、ソフトウェアによる自己受信の迅速かつ確 実な判定と処理とを可能とし、また、受信バッファに送 信権委譲フレームが複数保存された場合にも順序不正等 のトラブルの発生を回避でき、さらに、送信権委譲処理 を抑制することによる省電力と、連続したデータ処理の 効率化とをともに実現することが可能となる。

【0121】請求項11のデータ通信装置によれば、不 30 平衡半二重HDLC通信方式によりフレーム単位で送受 信を行うデータ通信装置において、データをフレームと して伝送媒体より受信し、また、データをフレームとし て伝送媒体に送信する送受信部と、相手局に送信するべ きフレームを作成し、上記送受信部に出力するフレーム 作成部と、上記送受信部が受信した受信フレームに対し て、送信権委譲フレームか否かを判断する委譲フレーム 判定処理と、データフレームか否かを判断するデータフ レーム判定処理とを含むフレーム判定処理を行うフレー ム判定部と、上記フレーム判定部におけるフレーム判定 40 処理の結果により、上記受信フレームが送信権委譲フレ ームであり、かつデータフレームである場合には、上記 フレーム作成部に送信権委譲フレームを作成し出力する ように指示をする通信制御部とを備えたものとしたこと で、受信したフレームが、送信権委譲フレームであり、 かつ、データフレームである場合には、相手局に対して 速やかな送信権委譲を行うものとしたことで、データフ レーム以外については送信権委譲のための赤外線発光を 少なくすることにより省電力を図るとともに、連続送信 をすることの多いデータフレームに対しては速やかに送 50 と、上記受信したフレームが送信権委譲フレームか否か

信権を委譲することでデータ送信を効率の向上を可能と

【0122】請求項12のデータ通信装置によれば、デ ータをフレームとして伝送媒体より受信し、また、デー タをフレームとして伝送媒体に送信する送受信部と、上 記送受信部が受信したフレームを一時蓄積する受信バッ ファと、上記受信したフレームを一時蓄積した受信バッ ファより、最先に蓄積したフレームを読み出す順次読み 出し処理と、上記読み出した最先の受信フレームが送信 権委譲フレームか否かを判断する委譲フレーム判定処理 と、上記受信バッファに送信権委譲フレームが蓄積され ているか否かを判断する蓄積フレーム判定処理と、上記 読み出した受信フレームが送信権委譲フレームであり、 かつ、上記受信バッファに送信権委譲フレームが蓄積さ れていると判定された場合に、上記読み出した受信フレ ームを破棄する受信フレーム破棄処理とを行い、上記受 信バッファに蓄積されたフレームの内、送信権の委譲を 伴うフレームに関して、最新のフレームを抽出するフレ ーム判定部と、上記フレーム判定部が抽出したフレーム について受信処理を行うよう制御する通信制御部とを備 えたものとしたことで、受信バッファに蓄積されたフレ ームの内、送信権委譲フレームに関しては、最新のフレ ームのみを受信処理し、それ以外のフレームは破棄する ものとしたことで、通信中の処理の遅滞があり、受信バ ッファに送信権委譲フレームが複数保存された場合にお いても、順序番号不正による切断が発生することがない 順調な通信を行うことが可能となる。

【0123】請求項13のデータ通信装置によれば、デ ータをフレームとして伝送媒体より受信し、また、デー タをフレームとして伝送媒体に送信する送受信部と、上 記送受信部が受信したフレームに対して、現在の通信状 況が接続状態であるか否かを判定する接続判定処理と、 上記受信したフレームのアドレスフィールドの値を、自 局から送信するフレームのアドレスフィールドの値と比 較し、一致するか否かを判定するアドレスフィールド判 定処理とにより、接続状態において自己受信したフレー ムであるか否かを判定し、接続状態において自己受信し た受信フレームであれば破棄するフレーム判定部と、上 記フレーム判定部が破棄しない受信フレームに対して、 受信処理を行うよう制御する通信制御部とを備えたもの としたことで、接続状態において、受信したフレームの アドレスフィールドの値が自局から送信するフレームの アドレスフィールドの値と一致した場合に、その受信し たフレームを破棄するという、迅速かつ確実な自己受信 の判定と処理とをソフトウェア的に行うので、自己受信 が発生するハードウェアを使用しても、一次局衝突によ る切断等の通信トラブルを回避することが可能となる。 【0124】請求項14のデータ通信プログラム記録媒 体によれば、フレームを受信するフレーム受信ステップ を判断する委譲フレーム判定ステップと、上記受信した フレームがデータフレームか否かを判断するデータフレ ーム判定ステップと、上記委譲フレーム判定ステップに おいて、上記受信したフレームが送信権委譲フレームで あると判定され、かつ、上記データフレーム判定ステッ プにおいて、上記受信したフレームがデータフレームで あると判定された場合に、送信権委譲フレームを作成す る送信権委譲フレーム作成ステップと、上記作成した送 信権委譲フレームを送信する送信ステップを備えたデー タ通信プログラムを記録したことで、受信したフレーム 10 が、送信権委譲フレームであり、かつ、データフレーム である場合には、相手局に対して速やかな送信権委譲を 行うものとしたことで、データフレーム以外については 送信権委譲のための赤外線発光を少なくすることにより 省電力を図るとともに、連続送信をすることの多いデー タフレームに対しては速やかに送信権を委譲することで データ送信を効率の向上を可能とする。

33

【0125】請求項15のデータ通信プログラム記録媒 体によれば、フレームを受信するフレーム受信ステップ と、上記受信したフレームを受信バッファに一時蓄積す る一時蓄積ステップと、上記受信バッファより、最先に 蓄積したフレームを読み出す順次読み出しステップと、 上記読み出した最先の受信フレームが送信権委譲フレー ムか否かを判断する委譲フレーム判定ステップと、上記 受信バッファに送信権委譲フレームが蓄積されているか 否かを判断する蓄積フレーム判定ステップと、上記委譲 フレーム判定ステップにおいて、上記読み出した受信フ レームが送信権委譲フレームであると判定され、かつ、 上記蓄積フレーム判定ステップにおいて、上記受信バッ ファに送信権委譲フレームが蓄積されていると判定され 30 た場合に、上記読み出した受信フレームを破棄する受信 フレーム破棄ステップと、上記委譲フレーム判定ステッ プにおいて、上記読み出した受信フレームが送信権委譲 フレームでないと判定され、または、上記蓄積フレーム 判定ステップにおいて、上記受信バッファに送信権委譲 フレームが蓄積されていないと判定された場合に、上記 読み出した受信フレームを出力する最新フレーム抽出ス テップと、上記最新フレーム抽出ステップにおいて、取 得された受信フレームに対して受信処理を行う受信処理 ステップを備えたデータ通信プログラムを記録したもの 40 としたことで、コンピュータ等において該プログラムを 実行することにより、受信バッファに蓄積されたフレー ムの内、送信権委譲フレームに関しては、最新のフレー ムのみを受信処理し、それ以外のフレームは破棄するも のとしたことで、通信中の処理の遅滞があり、受信バッ ファに送信権委譲フレームが複数保存された場合におい ても、順序番号不正による切断が発生することがない順 調な通信を行うことが可能となる。

【 0 1 2 6 】請求項 1 6 のデータ通信プログラム記録媒 【 % 体によれば、フレームを受信するフレーム受信ステップ 50 1

と、現在の通信状況が接続状態であるか否かを判定する 接続判定ステップと、上記受信したフレームのアドレス フィールドの値を、自局から送信するフレームのアドレ スフィールドの値と比較し、一致するか否かを判定する アドレスフィールド判定ステップと、上記接続判定ステ ップにおいて接続状態にあると判定され、かつ、上記ア ドレスフィールド判定ステップにおいて一致すると判定 された場合に、上記受信したフレームを破棄する受信フ レーム破棄ステップと、上記接続判定ステップにおいて 接続状態にないと判定され、または、上記アドレスフィ ールド判定ステップにおいて一致しないと判定された場 合に、上記受信したフレームに対して受信処理を行う受 信処理ステップを備えたデータ通信プログラムを記録し たものとしたことで、コンピュータ等において該プログ ラムを実行することにより、接続状態において、受信し たフレームのアドレスフィールドの値が自局から送信す るフレームのアドレスフィールドの値と一致した場合 に、その受信したフレームを破棄するという、迅速かつ 確実な自己受信の判定と処理とをソフトウェア的に行う ので、自己受信が発生するハードウェアを使用しても、 一次局衝突による切断等の通信トラブルを回避すること が可能となる。

【図面の簡単な説明】

【図1】 本発明の実施の形態1によるデータ通信装置の構成を示すブロック図である。

【図2】 同実施の形態による、受信フレーム判定処理 の手順を示すフローチャート図である。

【図3】 同実施の形態による、通信の状態を示すシー ケンス図である。

) 【図4】 本発明の実施の形態2によるデータ通信装置 の構成を示すブロック図である。

【図5】 同実施の形態による、最新フレーム抽出処理 の手順を示すフローチャート図である。

【図6】 同実施の形態による、通信の状態を示すシーケンス図である。

【図7】 本実施の形態3による、自己受信判定処理の 手順を示すフローチャート図である。

【図8】 同実施の形態による、通信の状態を示すシーケンス図である。

0 【図9】 従来の技術によるデータ通信における、(a) 局間の通信を説明するための図と、(b) 一般的な通信手順を示すシーケンス図である。

【図10】 従来の技術によるデータ通信における、複数フレームにわたるデータ通信の状態を示すシーケンス図である。

【図11】 従来の技術によるデータ通信における、受信バッファを用いたデータ通信の状態を示すシーケンス図である。

【符号の説明】

) 1 送受信部

- 2 フレーム判定部
- 3 フレーム作成部
- 4 通信制御部
- 5 データ処理部

* 6 受信バッファ

10 自局

20 相手局

*

【図1】

[図3]

【図2】

【図7】

【図9】

局:コンピュータ、形態情報端末(**電**子手帳)、プリンタ

【図10】

フロントページの続き

(72)発明者 森岡 正明

広島県広島市東区光町1丁目12番20号 株式会社松下電器情報システム広島研究所内