Mathématique - Devoir Maison n $^{\circ}12$

Exercice 1

- 1. Écrire la formule de Taylor avec reste intégral pour une fonction f en un point a au rang $n \in \mathbb{N}^*$.
- 2. Simplifier cette formule lorsqu'on choisit $f: x \mapsto \ln(1-x)$ et $\alpha = 0$.
- 3. Pour tout couple $(t,x) \in \mathbb{R}^2$ tel que $0 \le t \le x < 1$, vérifier les inégalités : $0 \le \frac{x-t}{1-t} \le x$
- 4. En déduire la limite de $u_n = \sum_{k=1}^n \frac{1}{k2^k}$ quand n tend vers $+\infty$.

Exercice 2

On considère les applications f et g de \mathbb{R}^3 à valeurs dans lui-même, définies par :

$$f(x,y,z) = (x+2y-z,2x+4y-2z,-x-2y+z) \text{ et } g(x,y,z) = \left(\frac{x+2y+2z}{3},\frac{2x+y-2z}{3},\frac{2x-2y+z}{3}\right)$$

- 1. Montrer que f est un endomorphisme de \mathbb{R}^3 . On admettra que g est également un endomorphisme de \mathbb{R}^3 .
- 2. (a) Vérifier que g est une symétrie.
 - (b) Déterminer les éléments caractéristiques de g.
- 3. (a) Déterminer un réel λ tel que $p = \lambda f$ soit un projecteur.
 - (b) Déterminer les éléments caractéristiques de p.

Exercice 3

On note E l'ensemble des solutions de l'équation différentielle : y'''=3y'-2y d'inconnue y, fonction de classe C^{∞} de \mathbb{R} à valeurs dans \mathbb{R} .

- 1. Montrer que E est un sous-espace vectoriel de l'espace vectoriel $C^{\infty}(\mathbb{R},\mathbb{R})$.
- 2. On pose : $F = \{ y \in C^{\infty}(\mathbb{R}, \mathbb{R}) / y'' = 2y' y \}$ et $G = \{ y \in C^{\infty}(\mathbb{R}, \mathbb{R}) / y' = -2y \}$
 - (a) Montrer que F et G sont inclus dans E
 - (b) Montrer que F et G sont deux sous-espaces vectoriels de E et déterminer une famille génératrice respective de F et de G.
- 3. Montrer que F et G sont supplémentaires dans E (On pourra raisonner par "analyse-synthèse")
- 4. Résoudre le problème de Cauchy : $\begin{cases} y''' = 3y' 2y \\ y(0) = 0 \end{cases}, \ y'(0) = 1 \enspace, \ y''(0) = 0$

Exercice 4

Dans le \mathbb{R} -espace vectoriel $E = \mathbb{R}_2[X]$, on considère l'application suivante :

$$f: E \longrightarrow E ; P(X) \longmapsto P(1)(X^2 + X + 1) - P(X)$$

- 1. (a) Vérifier que f est un endomorphisme de E.
 - (b) Déterminer le noyau Ker(f), et l'image Im(f) de l'endomorphisme f. Pour chacun de ces sous-espaces, on donnera une famille génératrice.
 - (c) f est-il un automorphisme de E? Si oui , déterminer l'expression de f^{-1} .
- 2. On souhaite trouver une expression de f^n . Pour ce faire, on introduit la fonction $g = f + Id_E$.
 - (a) Déterminer g^n , pour tout entier naturel n.
 - (b) En déduire l'expression de f^n , pour tout entier naturel n.