

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 36400 N
                                                                        M_{\star}
                                                                                    = -767000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 240 \text{ N/mm}^2
            = 22500 N
                                                                                    = 200000 \text{ N/mm}^2
           = 38900 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                        \tau(T_{yc}) =
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Calcolo degli sforzi in * con forze baricentriche essendo * il punto B di BC

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 50000 N	M _t	= 37400 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 26700 N	M_x	= -977000 Nmm	E	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_d$	=	θ_{t}	=
A _*	=	$\tau(M_t)_d$	=	σ_{ls}	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	σ_{lls}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	•	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 51500 N	M _t	= 52000 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 24300 N	M_x	= 1200000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$	=	$ au_{d}$	=	θ_{t}	=
A _.	=	$\tau(M_t)_d$	=	σ_{ls}	=	r_u	=
S_{u}^{n}	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_{v}	=
C_{w}	=	$\tau(T_{vb})$		σ_{Id}	=	r_{o}	=
J_u	=	$\tau(T_{v})_{s}$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	•	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 43900 N
                                                                        M_{\star}
                                                                                    = -1410000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 240 \text{ N/mm}^2
            = 28000 N
                                                                                    = 200000 \text{ N/mm}^2
           = 67700 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                        \tau(T_{yc}) =
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 36400 N
                                                                         M_{\star}
                                                                                     = 767000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                     = 240 \text{ N/mm}^2
            = 22500 N
                                                                                     = 200000 \text{ N/mm}^2
           = 38900 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{IId}}
                                                                         \tau(T_{yc}) =
                                                                                                                                                  \sigma_{tresca} =
                                                                         \tau(T_{yb})_d =
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                         \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 50000 N	M,	= 37400 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 26700 N	M_x	= 977000 Nmm	Ĕ	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$	=	$ au_d$	=	θ_{t}	=
, , ,	=	$\tau(M_t)_d$	=	σ_{ls}	=	r_u	=
u	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_{v}	=
C_{w}	=	$\tau(T_{yb})_{c}$	_d =	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	•	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 51500 N	M _t	= 52000 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 24300 N	M_x	= -1200000 Nmm	E	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_d$	=	θ_{t}	=
A _*	=	$\tau(M_t)_d$	=	σ_{ls}	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	σ_{lls}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	•	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 43900 N
                                                                        M_{\star}
                                                                                    = 1410000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 240 \text{ N/mm}^2
            = 28000 N
                                                                                    = 200000 \text{ N/mm}^2
           = 67700 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                        \tau(T_{yc}) =
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 35200 N
                                                                         M_{\star}
                                                                                    = -603000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 240 \text{ N/mm}^2
           = 20100 N
                                                                                    = 200000 \text{ N/mm}^2
           = 43000 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{IId}}
                                                                         \tau(T_{yc}) =
                                                                                                                                                  \sigma_{tresca} =
                                                                         \tau(T_{yb})_d =
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                                  \sigma_{\text{st.ven}} =
J_t
\sigma(N) =
\sigma(M_x) =
                                                                         \sigma_{\text{Id}}
```


Calcolo degli sforzi in * con forze baricentriche essendo * il punto B di BC

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T. Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 55100 N	M _t	= 50200 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 24700 N	M_x	= -823000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
A _*	=	$\tau(M_t)_d$	=	σ_{ls}	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	σ_{lls}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 50100 N
                                                                         M_{\star}
                                                                                    = 953000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 240 \text{ N/mm}^2
           = 21800 N
                                                                                    = 200000 \text{ N/mm}^2
           = 51600 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{IId}}
                                                                         \tau(T_{yc}) =
                                                                                                                                                  \sigma_{tresca} =
                                                                         \tau(T_{yb})_d =
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                                  \sigma_{\text{st.ven}} =
J_t
\sigma(N) =
\sigma(M_x) =
                                                                         \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 46600 N
                                                                        M_{\star}
                                                                                    = -1170000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 240 \text{ N/mm}^2
           = 25600 N
                                                                                    = 200000 \text{ N/mm}^2
           = 79000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                        \tau(T_{yc}) =
                                                                                                                                                 \sigma_{tresca} =
                                                                         \tau(T_{yb})_d =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
J_t
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Calcolo degli sforzi in * con forze baricentriche essendo * il punto B di AB

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 35200 N
                                                                        M_{\star}
                                                                                    = 603000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                     = 240 \text{ N/mm}^2
           = 20100 N
                                                                                    = 200000 \text{ N/mm}^2
           = 43000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                        \tau(T_{yc}) =
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
J_t
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 55100 N	M _t	= 50200 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 24700 N	M_x	= 823000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_d$	=	Θ_{t}	=
A _*	=	$\tau(M_t)_c$	₁ =	σ_{ls}	=	\mathbf{r}_{u}	=
Su	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	_d =	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	·	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 50100 N
                                                                       M_{\star}
                                                                                  = -953000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 240 \text{ N/mm}^2
           = 21800 N
                                                                                  = 200000 \text{ N/mm}^2
           = 51600 Nmm
                                                                       \tau(M_t)_d =
y_{G}
                                                                                                                                              \sigma_{\text{IId}}
                                                                                                                                              \sigma_{tresca} =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                                              \sigma_{\text{st.ven}} =
J_t
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{Id}}
```


Calcolo degli sforzi in * con forze baricentriche essendo * il punto B di AB

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 46600 N
                                                                      M_{\star}
                                                                                  = 1170000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 240 \text{ N/mm}^2
           = 25600 N
                                                                                  = 200000 \text{ N/mm}^2
           = 79000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
J_t
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```


Calcolo degli sforzi in * con forze baricentriche essendo * il punto medio di BC

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T. Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 28400 N	M _t	= 40500 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_v	= 21600 N	M_x	= 575000 Nmm	E	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
A _*	=	$\tau(M_t)_d$	=	σ_{ls}	=	r_u	=
S_{u}^{n}	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{vb})$		σ_{ld}	=	r_{o}	=
J_u	=	$\tau(T_{v})_{s}$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	•	

Calcolo degli sforzi in * con forze baricentriche essendo * il punto medio di BC

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T. Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 43100 N	M _t	= 56300 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 34200 N	M_x	= 907000 Nmm	E	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)		$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
A _.	=	$\tau(M_t)_d$	=	σ_{ls}	=	r_u	=
S_{u}^{n}	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{vb})$		σ_{ld}	=	r_{o}	=
J_u	=	$\tau(T_{v})_{s}$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	•	

Calcolo degli sforzi in * con forze baricentriche essendo * il punto medio di BC

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 40400 N	M _t	= 37200 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 19400 N	M_x	= 805000 Nmm	E	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)		$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
A _*	=	$\tau(M_t)_d$	=	σ_{ls}	=	r_u	=
S_{u}^{r}	=	$\tau(T_{yc})$	=	σ_{lls}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	•	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 36500 N
                                                                       M_{\star}
                                                                                   = 1120000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 240 \text{ N/mm}^2
           = 28500 N
                                                                                  = 200000 \text{ N/mm}^2
           = 75700 Nmm
                                                                       \tau(M_t)_d =
y_{G}
                                                                                                                                              \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
                                                                                                                                              \sigma_{tresca} =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{ld}}
```


Calcolo degli sforzi in * con forze baricentriche essendo * il punto medio di AB

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 28400 N	M _t	= 40500 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 21600 N	M_x	= -575000 Nmm	E	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
A _*	=	$\tau(M_t)_d$	=	σ_{ls}	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	σ_{lls}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	•	

Calcolo degli sforzi in * con forze baricentriche essendo * il punto medio di AB

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 43100 N	M _t	= 56300 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 34200 N	M_x	= -907000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$	=	$ au_{\sf d}$	=	θ_{t}	=
A _.	=	$\tau(M_t)_c$	₃ =	σ_{ls}	=	r_u	=
$\hat{S_u}$	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{vb})$		σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_{v})_{s}$, =	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_c$	₁ =	σ_{tresca}	=	•	

Calcolo degli sforzi in * con forze baricentriche essendo * il punto medio di AB

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 40400 N	M _t	= 37200 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 19400 N	M_x	= -805000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	Θ_{t}	=
A _*	=	$\tau(M_t)_d$	_l =	σ_{ls}	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	•	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 36500 N
                                                                       M_{\star}
                                                                                  = -1120000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 240 \text{ N/mm}^2
           = 28500 N
                                                                                  = 200000 \text{ N/mm}^2
           = 75700 Nmm
                                                                       \tau(M_t)_d =
y_{G}
                                                                                                                                              \sigma_{\text{IId}}
                                                                                                                                              \sigma_{tresca} =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{ld}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 31900 N
                                                                       M_{\star}
                                                                                  = 652000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 240 \text{ N/mm}^2
           = 23300 N
                                                                                  = 200000 \text{ N/mm}^2
           = 45400 Nmm
                                                                       \tau(M_t)_d =
y_{G}
                                                                                                                                              \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
                                                                                                                                              \sigma_{tresca} =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{ld}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 48200 N	M _t	= 62500 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 37300 N	M_x	= 1040000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$	=	$ au_{\sf d}$	=	θ_{t}	=
A _.	=	$\tau(M_t)_c$	_j =	σ_{ls}	=	r_u	=
$\hat{S_u}$	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{vb})$		σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_{v})_{s}$, =	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_{c}$	₁ =	σ_{tresca}	=	•	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 45500 N
                                                                 M_{\star}
                                                                           = 899000 Nmm
T_y \\ M_t
                                                                           = 240 \text{ N/mm}^2
          = 20800 N
                                                                           = 200000 \text{ N/mm}^2
          = 42200 Nmm
                                                                 \tau(M_t)_d =
y_{G}
                                                                                                                                  \sigma_{\text{IId}}
                                                                                                                                  \sigma_{tresca} =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{ld}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 41000 N
                                                               M_{\star}
                                                                         = 1280000 Nmm
                                                                         = 240 \text{ N/mm}^2
          = 30900 N
M,₊
                                                                         = 200000 \text{ N/mm}^2
          = 84600 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                              \sigma_{\text{IId}}
                                                                                                                              \sigma_{tresca} =
                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 31900 N
                                                                M_{\star}
                                                                           = -652000 Nmm
T_y M_t
                                                                           = 240 \text{ N/mm}^2
          = 23300 N
                                                                           = 200000 \text{ N/mm}^2
          = 45400 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                 \sigma_{\text{IId}}
                                                                \tau(T_{yc}) =
                                                                                                                                 \sigma_{tresca} =
                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{ld}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 48200 N	M₊	= 62500 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 37300 N	M_x	= -1040000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$	=	$ au_{d}$	=	θ_{t}	=
A _.	=	$\tau(M_t)_d$	=	σ_{ls}	=	r_u	=
S_{u}^{n}	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{vb})$		σ_{ld}	=	r_{o}	=
J_u	=	$\tau(T_{v})_{s}$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	•	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 45500 N
                                                               M_{\star}
                                                                          = -899000 Nmm
                                                                          = 240 \text{ N/mm}^2
          = 20800 N
M,₊
                                                                          = 200000 \text{ N/mm}^2
          = 42200 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                               \sigma_{\text{IId}}
                                                               \tau(T_{yc}) =
                                                                                                                               \sigma_{tresca} =
                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{ld}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 41000 N
                                                               M_{\star}
                                                                          = -1280000 Nmm
                                                                          = 240 \text{ N/mm}^2
          = 30900 N
M,₊
                                                                          = 200000 \text{ N/mm}^2
          = 84600 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                               \sigma_{\text{IId}}
                                                               \tau(T_{yc}) =
                                                                                                                               \sigma_{tresca} =
                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{ld}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 34400 N
                                                                       M_{\star}
                                                                                   = -700000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 240 \text{ N/mm}^2
           = 20100 N
                                                                                   = 200000 \text{ N/mm}^2
           = 33400 Nmm
                                                                       \tau(M_t)_d =
y_{G}
                                                                                                                                               \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
                                                                                                                                               \sigma_{tresca} =
                                                                       \tau(T_{yb})_d =
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{Id}}
```


Calcolo degli sforzi in * con forze baricentriche essendo * il punto B di BC

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 48500 N	M₊	= 34200 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_v	= 24000 N	M_x	= -900000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	Θ_{t}	=
A _*	=	$\tau(M_t)_c$	=	σ_{ls}	=	r_u	=
S_{u}^{r}	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$		σ_{ld}	=	r_{o}	=
J_u	=	$\tau(T_{v})_{s}$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	•	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 48900 N
                                                                M_{\star}
                                                                           = -1110000 Nmm
T_y \\ M_t
                                                                           = 240 \text{ N/mm}^2
          = 22400 N
                                                                           = 200000 \text{ N/mm}^2
          = 45400 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                 \sigma_{\text{IId}}
                                                                \tau(T_{yc}) =
                                                                                                                                 \sigma_{tresca} =
                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 42500 N
                                                                      M_{\star}
                                                                                  = -1330000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 240 \text{ N/mm}^2
           = 25800 N
                                                                                  = 200000 \text{ N/mm}^2
           = 61200 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 34400 N
                                                                         M_{\star}
                                                                                     = 700000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                     = 240 \text{ N/mm}^2
            = 20100 N
                                                                                     = 200000 \text{ N/mm}^2
           = 33400 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{IId}}
                                                                         \tau(T_{yc}) =
                                                                                                                                                  \sigma_{tresca} =
                                                                         \tau(T_{yb})_d =
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                         \sigma_{\text{Id}}
```


Calcolo degli sforzi in * con forze baricentriche essendo * il punto B di AB

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 48500 N	M _t	= 34200 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_v	= 24000 N	M_x	= 900000 Nmm	E	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)		$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
A _*	=	$\tau(M_t)_d$	=	σ_{ls}	=	r_u	=
S_{u}^{r}	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	•	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 48900 N
                                                                   M_{\star}
                                                                              = 1110000 Nmm
T_y \\ M_t
                                                                              = 240 \text{ N/mm}^2
           = 22400 N
                                                                              = 200000 \text{ N/mm}^2
          = 45400 Nmm
                                                                   \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                      \sigma_{\text{IId}}
                                                                   \tau(T_{yc}) =
                                                                                                                                      \sigma_{tresca} =
                                                                   \tau(T_{yb})_d =
                                                                                                                                      \sigma_{\text{mises}} =
                                                                                                                                      \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                   \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 42500 N
                                                                        M_{\star}
                                                                                    = 1330000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                     = 240 \text{ N/mm}^2
            = 25800 N
                                                                                    = 200000 \text{ N/mm}^2
           = 61200 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                        \tau(T_{yc}) =
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 36000 N
                                                                        M_{\star}
                                                                                    = -580000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 240 \text{ N/mm}^2
            = 18600 N
                                                                                    = 200000 \text{ N/mm}^2
           = 40200 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                        \tau(T_{yc}) =
                                                                                                                                                 \sigma_{tresca} =
                                                                         \tau(T_{yb})_d =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
                                                                        \tau(T_v)_d =
J_t
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 51300 N	M,	= 42700 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 22100 N	M_x	= -746000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	Θ_{t}	=
A _*	=	$\tau(M_t)_c$	_j =	σ_{ls}	=	\mathbf{r}_{u}	=
Su	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_{c}$	₁ =	σ_{tresca}	=	•	

Calcolo degli sforzi in * con forze baricentriche essendo * il punto B di BC

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 49200 N
                                                                        M_{\star}
                                                                                    = -898000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 240 \text{ N/mm}^2
           = 20300 N
                                                                                    = 200000 \text{ N/mm}^2
           = 48300 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                        \tau(T_{yc}) =
                                                                                                                                                 \sigma_{tresca} =
                                                                         \tau(T_{yb})_d =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
                                                                        \tau(T_v)_d =
J_t
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
             = 43300 N
                                                                                   M_{\star}
                                                                                                = -1070000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                                 = 240 \text{ N/mm}^2
             = 23200 N
                                                                                                = 200000 \text{ N/mm}^2
             = 68700 Nmm
                                                                                   \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                                      \sigma_{\text{IId}}
                                                                                   \tau(T_{yc}) =
                                                                                                                                                                      \sigma_{tresca} =
\begin{matrix} v_o \\ A_{\star} \\ S_u^{\star} \\ C_w \end{matrix}
                                                                                   \tau(T_{yb})_d =
                                                                                                                                                                      \sigma_{\text{mises}} =
                                                                                   \tau(T_y)_s =
                                                                                                                                                                      \sigma_{\text{st.ven}} =
                                                                                   \tau(T_v)_d =
J_t
\sigma(N) =
\sigma(M_x) =
                                                                                   \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 36000 N
                                                                   M_{\star}
                                                                              = 580000 Nmm
T_y \\ M_t
                                                                              = 240 \text{ N/mm}^2
           = 18600 N
                                                                              = 200000 \text{ N/mm}^2
          = 40200 Nmm
                                                                   \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                       \sigma_{\text{IId}}
                                                                   \tau(T_{yc}) =
                                                                                                                                       \sigma_{tresca} =
                                                                   \tau(T_{yb})_d =
                                                                                                                                       \sigma_{\text{mises}} =
                                                                                                                                       \sigma_{\text{st.ven}} =
J_t
\sigma(N) =
\sigma(M_x) =
                                                                   \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 51300 N	M _t	= 42700 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 22100 N	M_x	= 746000 Nmm	E	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
A _*	=	$\tau(M_t)_d$	=	σ_{ls}	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	•	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 49200 N
                                                                        M_{\star}
                                                                                    = 898000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                     = 240 \text{ N/mm}^2
           = 20300 N
                                                                                    = 200000 \text{ N/mm}^2
           = 48300 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                        \tau(T_{yc}) =
                                                                                                                                                 \sigma_{tresca} =
                                                                         \tau(T_{yb})_d =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
                                                                        \tau(T_v)_d =
J_t
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 43300 N
                                                                         M_{\star}
                                                                                     = 1070000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 240 \text{ N/mm}^2
           = 23200 N
                                                                                    = 200000 \text{ N/mm}^2
           = 68700 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{IId}}
                                                                         \tau(T_{yc}) =
                                                                                                                                                  \sigma_{tresca} =
                                                                         \tau(T_{yb})_d =
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                                  \sigma_{\text{st.ven}} =
J_t
\sigma(N) =
\sigma(M_x) =
                                                                         \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 28200 N
                                                                         M_{\star}
                                                                                     = 549000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                     = 240 \text{ N/mm}^2
            = 20100 N
                                                                                     = 200000 \text{ N/mm}^2
           = 36700 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{IId}}
                                                                         \tau(T_{yc}) =
                                                                                                                                                  \sigma_{tresca} =
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                         \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 42900 N	M _t	= 51300 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_v	= 32700 N	M_x	= 884000 Nmm	E	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)		$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
A _*	=	$\tau(M_t)_d$	=	σ_{ls}	=	\mathbf{r}_{u}	=
S_{u}^{r}	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	·	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 41400 N
                                                                         M_{\star}
                                                                                     = 775000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                     = 240 \text{ N/mm}^2
            = 18200 N
                                                                                     = 200000 \text{ N/mm}^2
           = 36300 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{IId}}
                                                                                                                                                  \sigma_{tresca} =
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                         \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 37100 N
                                                                         M_{\star}
                                                                                    = 1100000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 240 \text{ N/mm}^2
            = 27200 N
                                                                                    = 200000 \text{ N/mm}^2
           = 71200 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{IId}}
                                                                                                                                                  \sigma_{tresca} =
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                         \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 28200 N
                                                                   M_{\star}
                                                                             = -549000 Nmm
T_y \\ M_t
                                                                              = 240 \text{ N/mm}^2
           = 20100 N
                                                                             = 200000 \text{ N/mm}^2
          = 36700 Nmm
                                                                   \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                      \sigma_{\text{IId}}
                                                                                                                                      \sigma_{tresca} =
                                                                                                                                      \sigma_{\text{mises}} =
                                                                                                                                      \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                   \sigma_{\text{Id}}
```


Calcolo degli sforzi in * con forze baricentriche essendo * il punto medio di ED Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T. Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 42900 N
                                                                         M_{\star}
                                                                                     = -884000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                     = 240 \text{ N/mm}^2
            = 32700 N
                                                                                     = 200000 \text{ N/mm}^2
           = 51300 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{IId}}
                                                                                                                                                  \sigma_{tresca} =
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                         \sigma_{\text{ld}}
```


Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 41400 N
                                                                 M_{\star}
                                                                            = -775000 Nmm
                                                                            = 240 \text{ N/mm}^2
          = 18200 N
M,₊
                                                                            = 200000 \text{ N/mm}^2
          = 36300 Nmm
                                                                 \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                   \sigma_{\text{IId}}
                                                                                                                                   \sigma_{tresca} =
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                                                   \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{ld}}
```


Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 37100 N
                                                                 M_{\star}
                                                                           = -1100000 Nmm
                                                                           = 240 \text{ N/mm}^2
          = 27200 N
M,
                                                                           = 200000 \text{ N/mm}^2
          = 71200 Nmm
                                                                 \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                  \sigma_{\text{IId}}
                                                                                                                                  \sigma_{tresca} =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{ld}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 30400 N
                                                                         M_{\star}
                                                                                     = 606000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                     = 240 \text{ N/mm}^2
            = 21500 N
                                                                                     = 200000 \text{ N/mm}^2
           = 39700 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{IId}}
                                                                                                                                                  \sigma_{tresca} =
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                         \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 46500 N	M _t	= 56300 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 35400 N	M_x	= 996000 Nmm	E	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	$\sigma(N)$	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_d$	=	Θ_{t}	=
A _*	=	$\tau(M_t)_d$	=	σ_{ls}	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	σ_{lls}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	•	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 44300 N
                                                                   M_{\star}
                                                                             = 843000 Nmm
T_y \\ M_t
                                                                              = 240 \text{ N/mm}^2
           = 19300 N
                                                                             = 200000 \text{ N/mm}^2
          = 38400 Nmm
                                                                   \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                      \sigma_{\text{IId}}
                                                                                                                                      \sigma_{tresca} =
                                                                                                                                      \sigma_{\text{mises}} =
                                                                                                                                      \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                   \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 40000 N
                                                                         M_{\star}
                                                                                    = 1220000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 240 \text{ N/mm}^2
            = 29200 N
                                                                                    = 200000 \text{ N/mm}^2
           = 77300 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{IId}}
                                                                                                                                                  \sigma_{tresca} =
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                         \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 30400 N
                                                                         M_{\star}
                                                                                    = -606000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                     = 240 \text{ N/mm}^2
            = 21500 N
                                                                                    = 200000 \text{ N/mm}^2
           = 39700 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{IId}}
                                                                         \tau(T_{yc}) =
                                                                                                                                                  \sigma_{tresca} =
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                         \sigma_{\text{ld}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 46500 N	M _t	= 56300 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 35400 N	M_x	= -996000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)		$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
A _.	=	$\tau(M_t)_d$	=	σ_{ls}	=	r_u	=
S_{u}^{n}	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_{v}	=
C_{w}	=	$\tau(T_{yb})$		σ_{Id}	=	r_{o}	=
J_u	=	$\tau(T_{v})_{s}$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	•	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 44300 N
                                                                 M_{\star}
                                                                            = -843000 Nmm
                                                                            = 240 \text{ N/mm}^2
          = 19300 N
M,₊
                                                                            = 200000 \text{ N/mm}^2
          = 38400 Nmm
                                                                 \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                   \sigma_{\text{IId}}
                                                                 \tau(T_{yc}) =
                                                                                                                                   \sigma_{tresca} =
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                                                   \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{ld}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 40000 N
                                                                 M_{\star}
                                                                           = -1220000 Nmm
                                                                            = 240 \text{ N/mm}^2
          = 29200 N
M,
                                                                           = 200000 \text{ N/mm}^2
          = 77300 Nmm
                                                                 \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                  \sigma_{\text{IId}}
                                                                 \tau(T_{yc}) =
                                                                                                                                  \sigma_{tresca} =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{ld}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 26000 N	M _x	= 616000 Nmm	G	$= 75000 \text{ N/mm}^2$
Т	= 21700 N		$= 240 \text{ N/mm}^2$		
M _t	= 33700 Nmm	σ_a E	= 200000 N/mm ²		
y_{G}	=	$\tau(M_t)_d$	₁ =	σ_{IId}	=
u_o	=	$\tau(T_{yc})$	=	σ_{tresca}	=
V_{o}	=	$\tau(T_{yb})$		σ_{mises}	=
A _.	=	$\tau(T_y)_s$		$\sigma_{\text{st.ven}}$	=
$\hat{S_u}$	=	$\tau(T_y)_d$	₁ =	θ_{t}	=
A S _u C _w	=	σ΄	=	r_u	=
J_{u}	=	$ au_{s}$	=	r_v	=
J_v	=	$ au_d$	=	r_{o}	=
J_t	=	$\sigma_{\sf ls}$	=	J_p	=
~ (/	=	σ_{IIs}	=	•	
$\sigma(M_x)$	=	σ_{Id}	=		
∧	lalfa Zavalani Dagai Dalitaaniaa	d: Mila	no voro 24 00 06		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 37400 N	M _t	= 42800 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_v	= 31500 N	M_x	= 901000 Nmm	E	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)		$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
A _*	=	$\tau(M_t)_d$	=	σ_{ls}	=	r_u	=
S_{u}^{r}	=	$\tau(T_{yc})$	=	σ_{lls}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	•	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 34100 N
                                                                         M_{\star}
                                                                                     = 815000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                     = 240 \text{ N/mm}^2
            = 18400 N
                                                                                     = 200000 \text{ N/mm}^2
           = 29800 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{IId}}
                                                                         \tau(T_{yc}) =
                                                                                                                                                  \sigma_{tresca} =
                                                                         \tau(T_{yb})_d =
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                                  \sigma_{\text{st.ven}} =
                                                                         \tau(T_v)_d =
\sigma(N) =
\sigma(M_x) =
                                                                         \sigma_{\text{Id}}
```


Calcolo degli sforzi in * con forze baricentriche essendo * il punto medio di BC

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T. Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 31200 N	M _t	= 55500 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 26200 N	M_x	= 1110000 Nmm	E	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$	=	$ au_{d}$	=	θ_{t}	=
A _.	=	$\tau(M_t)_d$	=	σ_{ls}	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	σ_{lls}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	·	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 25800 N	M _x	= -579000 Nmm	G	$= 75000 \text{ N/mm}^2$
T	= 21500 N		= 240 N/mm ²	•	70000 14/111111
M,	= 33400 Nmm	σ _a Ε	$= 200000 \text{ N/mm}^2$		
y _G	=	$\tau(M_t)_d$	₁ =	σ_{IId}	=
u_o	=	$\tau(T_{yc})$	=	σ_{tresca}	=
V_{o}	=	$\tau(T_{yb})$	d=	σ_{mises}	
A _.	=	$\tau(T_{v})_{s}$		$\sigma_{\text{st.ven}}$	=
Su	=	$\tau(T_y)_d$	=	θ_{t}	=
$\mathbf{S}_{u}^{^{\star}}$ \mathbf{C}_{w}	=	σ΄	=	r_u	=
J_{u}	=	$ au_{s}$	=	r_v	=
J_v	=	$ au_{d}$	=	r_{o}	=
J_t	=	$\sigma_{\sf ls}$	=	J_p	=
$\sigma(N)$	=	$\sigma_{\sf IIs}$	=	•	
$\sigma(M_x)$	=	σ_{Id}	=		
	lalfa Zavalani Dagai Dalitaaniaa		no voro 24 00 06		

Calcolo degli sforzi in * con forze baricentriche essendo * il punto medio di AB

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 37100 N	M,	= 42500 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 31400 N	M_x	= -855000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
A _.	=	$\tau(M_t)_c$	₁ =	σ_{ls}	=	r_u	=
Su	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_{v}	=
C_{w}	=	$\tau(T_{vb})$	d=	σ_{Id}	=	r_{o}	=
J_u	=	$\tau(T_{v})_{s}$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	·	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 33800 N
                                                                         M_{\star}
                                                                                     = -753000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                     = 240 \text{ N/mm}^2
            = 18100 N
                                                                                     = 200000 \text{ N/mm}^2
           = 29600 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{IId}}
                                                                         \tau(T_{yc}) =
                                                                                                                                                   \sigma_{tresca} =
                                                                         \tau(T_{yb})_d =
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                                                                   \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                         \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 31000 N
                                                                         M_{\star}
                                                                                     = -1040000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                     = 240 \text{ N/mm}^2
            = 25900 N
                                                                                     = 200000 \text{ N/mm}^2
           = 55100 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{IId}}
                                                                         \tau(T_{yc}) =
                                                                                                                                                  \sigma_{tresca} =
                                                                         \tau(T_{yb})_d =
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                         \sigma_{\text{ld}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 32300 N
                                                                         M_{\star}
                                                                                     = 740000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                     = 240 \text{ N/mm}^2
            = 23800 N
                                                                                     = 200000 \text{ N/mm}^2
           = 39700 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{IId}}
                                                                         \tau(T_{yc}) =
                                                                                                                                                   \sigma_{tresca} =
                                                                         \tau(T_{yb})_d =
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                                                                   \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                         \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 45200 N	M₊	= 48300 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 34700 N	M_x	= 1080000 Nmm	E	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)		$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
A _.	=	$\tau(M_t)_c$	_I =	σ_{ls}	=	r_u	=
S_{u}^{n}	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$		σ_{Id}	=	r_{o}	=
J_u	=	$\tau(T_{v})_{s}$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	•	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 44400 N
                                                                         M_{\star}
                                                                                     = 973000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                     = 240 \text{ N/mm}^2
            = 20000 N
                                                                                     = 200000 \text{ N/mm}^2
           = 39800 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{IId}}
                                                                         \tau(T_{yc}) =
                                                                                                                                                   \sigma_{tresca} =
                                                                         \tau(T_{yb})_d =
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                                                                   \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                         \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 39300 N
                                                                        M_{\star}
                                                                                    = 1340000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                     = 240 \text{ N/mm}^2
            = 28700 N
                                                                                    = 200000 \text{ N/mm}^2
           = 66800 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                        \tau(T_{yc}) =
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 32200 N
                                                                         M_{\star}
                                                                                     = 686000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                     = 240 \text{ N/mm}^2
            = 23500 N
                                                                                     = 200000 \text{ N/mm}^2
           = 39600 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{IId}}
                                                                         \tau(T_{yc}) =
                                                                                                                                                   \sigma_{tresca} =
                                                                         \tau(T_{yb})_d =
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                                                                   \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                         \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 44900 N	M _t	= 48000 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 34800 N	M_x	= -1010000 Nmm	E	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)		$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
A _*	=	$\tau(M_t)_d$	₁ =	σ_{ls}	=	r_u	=
S_{u}^{r}	=	$\tau(T_{yc})$	=	σ_{lls}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 44500 N
                                                                   M_{\star}
                                                                              = 891000 Nmm
T_y \\ M_t
                                                                              = 240 \text{ N/mm}^2
           = 19000 N
                                                                              = 200000 \text{ N/mm}^2
          = 39900 Nmm
                                                                   \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                      \sigma_{\text{IId}}
                                                                   \tau(T_{yc}) =
                                                                                                                                      \sigma_{tresca} =
                                                                                                                                      \sigma_{\text{mises}} =
                                                                                                                                      \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                   \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 39100 N
                                                                         M_{\star}
                                                                                     = 1240000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                     = 240 \text{ N/mm}^2
            = 28100 N
                                                                                    = 200000 \text{ N/mm}^2
           = 66600 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{IId}}
                                                                         \tau(T_{yc}) =
                                                                                                                                                  \sigma_{tresca} =
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                         \sigma_{\text{Id}}
```