CSI 2103: Data Structures

HW Assignment 3

Yonsei University
Spring 2022

Seong Jae Hwang

Quadtree from Array for HW3

Quadtree

- At most 4 children
- Our quadtree is always full

column

$\times = 0$	x = 1	x = 2	x = 3

y = 0	1	2	5	6
y = 1	3	4	7	8
y = 2	9	10	13	14
y = 3	11	12	15	16

row

- At most 4 children
- Our quadtree is always full

column

$\times = 0$	× = 1	x = 2	x = 3

y = 0	1	2	5	6
y = 1	M	4	7	8
y = 2	9	10	13	14
y = 3	11	12	15	16

row

image area defined by a box with upleft corner at (ul_x=0, ul_y=0) and

downright corner at (dr_x=3, dr_y=3)

column

x = 0 x = 1 x = 2 x = 3

y = 0	1	2	5	6
y = 1	3	4	7	8
y = 2	9	10	13	14
y = 3	11	12	15	16

row

color: None level: 1 4 children pointers: {nw, ne, sw, se} Image area corners: upleft_x: 2 upleft_y: 0 downright_x: 3 downright_y: 1

Subtree rooted at root.ne covers the northeast quadrant defined by a box with upleft corner at (ul_x=2, ul_y=0) and downright corner at (dr_x=3, dr_y=1)

row

Subtree rooted at root.se covers the southeast quadrant defined by a box with upleft corner at (ul_x=2, ul_y=2) and downright corner at (dr_x=3, dr_y=3)

color: None
level: 1

4 children pointers:
{nw, ne, sw, se}

Image area corners:
upleft_x: 0
upleft_y: 0
downright_x: 1
downright_y: 1

Subtree rooted at root.nw covers the northwest quadrant defined by a box with upleft corner at (ul_x=0, ul_y=0) and downright corner at (dr_x=1, dr_y=1)

 $x = 0 \ x = 1 \ x = 2 \ x = 3$ y = 05 6 4 8 y = 1 row 9 10 13 14 y = 2y = 3

12

15

16

column

color: None level: 1 4 children pointers: {nw, ne, sw, se} Image area corners: upleft_x: 0 upleft_y: 2 downright_x: 1 downright_y: 3

Subtree rooted at root.sw covers the southwest quadrant defined by a box with upleft corner at (ul_x=0, ul_y=2) and downright corner at (dr_x=1, dr_y=3)

• A leaf is a node which covers only a pixel. A leaf always has a color.

column x = 0 x = 1 x = 2 x = 3

y = 0 1 2 5 6

3

y = 1

y = 2 | 9 | 10 | 13 | 14

4

8

y = 3 | 11 | 12 | 15 | 16

6 None None nw ne None 13 14 SW se[°] None None 15 16

color: 8
level: 2

4 children pointers:
{nw, ne, sw, se}

Image area corners:
upleft_x: 3
upleft_y: 1
downright_x: 3
downright_y: 1

This subtree is a leaf that covers the single pixel with color 8 defined by a "box" with upleft corner at (ul_x=3, ul_y=1) and downright corner at (dr_x=3, dr_y=1)

• A leaf is a node which covers only a pixel. A leaf always has a color.

column

This subtree is a leaf that covers the single pixel with color 8 defined by a "box" with upleft corner at (ul_x=3, ul_y=0) and downright corner at (dr_x=3, dr_y=0)

Quadtree Class

101 101

 Contains the image as self.image and its corresponding quadtree rooted at self.root

- self.image
 - the image array needs to be accessed throughout the recursive calls
 - our functions pass the Quadtree variable
- self.root
 - the actual quadtree begins from the root, so we just keep the root node

Part 1A: Build a Quadtree from Array

• Start from the root node with proper corners (it's a full image)

column

x = 0 x = 1 x = 2 x = 3

y = 0	1	2	5	6
y = 1	M	4	7	8
y = 2	9	10	13	14
y = 3	11	12	15	16

row

- Recursively create children nodes with proper corners and levels
 - corners can be computed using compute_corners function

column

x = 0	× = 1	x = 2	x = 3

y = 0	1	2	5	6
y = 1	M	4	7	8
y = 2	9	10	13	14
y = 3	11	12	15	16

row

level: 1
4 children pointers:
{nw, ne, sw, se}
Image area corners:

color: None

upleft_x: 2 upleft_y: 0 downright_x: 3 downright_y: 1

- Recursively create children nodes with proper corners and levels
 - corners can be computed using compute_corners function

column

 $x = 0 \times = 1 \times = 2 \times = 3$

y = 0	1	2	5	6
y = 1	3	4	7	8
y = 2	9	10	13	14
y = 3	11	12	15	16

color: None level: 1

row

4 children pointers: {nw, ne, sw, se}

Image area corners: upleft_x: 2 upleft_y: 2

downright_x: 3 downright_y: 3

- Recursively create children nodes with proper corners and levels
 - corners can be computed using compute_corners function

row

column

color: None level: 1 4 children pointers: {nw, ne, sw, se} Image area corners: upleft_x: 0 upleft_y: 0 downright_x: 1 downright_y: 1

- Recursively create children nodes with proper corners and levels
 - corners can be computed using compute_corners function

column

x = 0 $x = 1$	x = 2 x = 3
---------------	--------------

y = 0	1	2	5	6
y = 1	3	4	7	8
y = 2	9	10	13	14
y = 3	11	12	15	16

color: None level: 1

row

4 children pointers: {nw, ne, sw, se}

Image area corners:

upleft_x: 0 upleft_y: 2 downright_x: 1 downright_y: 3

• If you find corners that imply it's a single pixel, assign colors and treat them as leaves

column

x = 0 x = 1 x = 2 x = 3

None None nw ne None ŚW se' None None

color: 8 level: 2

row

4 children pointers: {nw, ne, sw, se}

Image area corners: upleft_x: 3 upleft_y: 1 downright_x: 3

downright_x: 3 downright_y: 1

nw

ŚW.

None

None

• If you find corners that imply it's a single pixel, assign colors and treat them as leaves

ne

se'

None

6

None

None

column

$\times = 0$	× = 1	x = 2	x = 3
1	2	5	6

y = 1 3 4 7 y = 2 9 10 13

y = 3 | 11 | 12 | 15 | 16

color: 6 level: 2

4 children pointers: {nw, ne, sw, se}

Image area corners: upleft_x: 3 upleft_y: 0 downright_x: 3 downright_y: 0

8

14

Build a Quadtree

• Eventually all single pixels will be reached and the quadtree will be constructed

column

y = 0	1	2	5	6
y = 1	3	4	7	8
y = 2	9	10	13	14
y = 3	11	12	15	16

row

Build a Quadtree

O 1

- build_quadtree calls build_quadtree_recursive
- The code itself is very short
- color is important, but the corners are also important
 - read and use compute_image_corners
 - ex: Node(None, compute_image_corners(node, 'nw'), node.level+1)
- In Part 1A, you also implement two simple helper functions:
 - count_nodes: recursively count the # of nodes in a quadtree
 - max_num_nodes: mathematically compute the maximum # of nodes you can have in a quadtree built from an N by N image

 Traverse the quadtree and assign color to corresponding area with upleft corner at (ul_x, ul_y) and downright corner at (dr_x, dr_y)

 Traverse the quadtree and assign color to corresponding area with upleft corner at (ul_x, ul_y) and downright corner at (dr_x, dr_y)

 Traverse the quadtree and assign color to corresponding area with upleft corner at (ul_x, ul_y) and downright corner at (dr_x, dr_y)

			COIUITIII				
		x = 0	x = 1	x = 2	x = 3		
	y = 0						
row	y = 1						
	y = 2						
	y = 3						

column

 Traverse the quadtree and assign color to corresponding area with upleft corner at (ul_x, ul_y) and downright corner at (dr_x, dr_y)

column

 Traverse the quadtree and assign color to corresponding area with upleft corner at (ul_x, ul_y) and downright corner at (dr_x, dr_y)

column

		$\times = 0$	$\times = 1$	$\times = 2$	X = 3
	y = 0	1	2		
row	y = 1				
	y = 2				

y = 3

 Traverse the quadtree and assign color to corresponding area with upleft corner at (ul_x, ul_y) and downright corner at (dr_x, dr_y)

column

	$\times = 0$	x = 1	x = 2	x = 3
y = 0	1	2		
y = 1	3			
v = 2				

row

y = 3

 Traverse the quadtree and assign color to corresponding area with upleft corner at (ul_x, ul_y) and downright corner at (dr_x, dr_y)

column

	x = 0	x = 1	x = 2	$\times = 3$
y = 0	1	2		
y = 1	3	4		
y = 2				

row

y = 3			
-------	--	--	--

Traverse the quadtree and assign color to corresponding area with upleft corner at (ul_x, ul_y) and downright corner at (dr_x, dr_y)

column

x = 0	x = 1	x = 2	x = 3

$$y = 2$$

$$y = 3$$

	X - U	X - I	X – Z	X - 3
y = 0	1	2		
y = 1	3	4		
y = 2				
y = 3				

 Traverse the quadtree and assign color to corresponding area with upleft corner at (ul_x, ul_y) and downright corner at (dr_x, dr_y)

column

x = 0	x = 1	x = 2	x = 3

5

y = 0

$$y = 2$$

4

column

		$\times = 0$	$\times = 1$	x = 2	x = 3
	y = 0	1	2	5	6
row	y = 1	3	4	7	8
	y = 2	9	10	13	14
	y = 3	11	12	15	16

This is when we have colors at leaves!

What happens if we have colors at internal nodes?

column

		$\times = 0$	$\times = 1$	$\times = 2$	x = 3
row	y = 0	1	2	5	6
	y = 1	3	4	7	8
	y = 2	9	10	13	14
	y = 3	11	12	15	16

This is when we have colors at leaves!

What happens if we have colors at internal nodes?

column x = 0 x = 1 x = 2 x = 3

			/\		
row	y = 0	1	2	100	100
	y = 1	3	4	100	100
	y = 2	9	10	13	14
	y = 3	11	12	15	16

This is when we have colors at leaves!

What happens if we have colors at internal nodes?

- The internal node's entire area has that single value
- 2. Its children do not exist
 - I. Removal happens in Part 1C
 - 2. We do NOT need to traverse its children anyway

 Traverse the quadtree and assign color to corresponding area with upleft corner at (ul_x, ul_y) and downright corner at (dr_x, dr_y)

column

		$\times = 0$	× = 1	x = 2	$\times = 3$
row	y = 0	100	100	100	100
	y = 1	100	100	100	100
	y = 2	100	100	100	100
	y = 3	100	100	100	100

One extreme case

column

		x = 0	X = 1	X = Z	$\times - 3$
row	y = 0	1	2	5	6
	y = 1	3	4	7	8
	y = 2	9	10	13	14
	y = 3	11	12	15	16

Notice that our logic does not change:

- 1. for a leaf node, its "area" is just a single pixel
 - 2. for an internal node, its "area" is just some area larger than a pixel

The "areas" are both defined by (ul_x, ul_y) and (dr_x, dr_y)

 Traverse the quadtree and assign color to corresponding area with upleft corner at (ul_x, ul_y) and downright corner at (dr_x, dr_y)

column

		$\times = 0$	$\times = 1$	$\times = 2$	x = 3
	y = 0	1	2	100	100
^OW	y = 1	$^{\circ}$	4	100	100
Ovv	y = 2	9	10	13	14
	y = 3	11	12	15	16

Notice that our logic does not change:

- for a leaf node, its "area" is just a single pixel
 - 2. for an internal node, its "area" is just some area larger than a pixel

The "areas" are both defined by (ul_x, ul_y) and (dr_x, dr_y)

Quadtree to Image

-O1

- Implement quadtree_to_image_recursive
- Recursively pass down 'qt' as argument to modify its image 'qt.image' throughout the recursion
 - This is an example of a preorder traversal: you check the condition of the parent node before deciding to traverse its children
- Use draw_color(qt, node, draw_box) to directly modify qt.image
 - draw_box argument used for Part 2 to draw boxes on the image for visualization of "areas"
- Again, not a very long code

Part 1C: Compression: How to set colors for internal nodes?

column

		X = 0	\times – 1	X - Z	x - 3
row	y = 0	1	2	5.2	5.1
	y = 1	3	4	4.9	4.8
	y = 2	11.6	11.6	13	14
	y = 3	11.5	11.3	15	16

We want to "compress" the image by simplifying pixels that are

- . siblings and
- 2. have "similar" color values

If an internal node's children have "similar" color values, then

- 1. the internal node's color = average of the children colors
- 2. children nodes are removed (pruned)

column

		$\times = 0$	$\times = 1$	X = Z	\times – 3
row	y = 0	1	2	5.2	5.1
	y = 1	3	4	4.9	4.8
	y = 2	11.6	11.6	13	14
	y = 3	11.5	11.3	15	16

We want to "compress" the image by simplifying pixels that are

- 1. siblings and
- 2. have "similar" color values

If an internal node's children have "similar" color values, then

- 1. the internal node's color = average of the children colors
- 2. children nodes are removed (pruned)

column

	X = 0	X = 1	X = Z	X - 3
y = 0	1	2	5.2	5.1
y = 1	3	4	4.9	4.8
y = 2	11.6	11.6	13	14
y = 3	11.5	11.3	15	16
	y = 1 $y = 2$	y = 0 1 $y = 1$ 3 $y = 2$ 11.6	y = 0 1 2	y = 1 3 4 4.9 y = 2 11.6 11.6 13

We want to "compress" the image by simplifying pixels that are

- 1. siblings and
- 2. have "similar" color values

If an internal node's children have "similar" color values, then

- 1. the internal node's color = average of the children colors
- 2. children nodes are removed (pruned)

column

		x = 0	x = 1	x = 2	x = 3
row	y = 0	1	2	5	5
	y = 1	M	4	5	5
	y = 2	11.5	11.5	13	14
	y = 3	11.5	11.5	15	16

quadtree_to_image then returns the compressed image:

- similar image areas are "compressed" to one (most representative) color
 - 1. this reduces the image file size
- reduces the # of trees of quadtree

Compression

• Suppose we have a quadtree from the image shown at the right

		x = 0	$\times = 1$	x = 2	x = 3
	y = 0	1	2	5	5
row	y = 1	3	4	5	5
1000	y = 2	11.5	11.5	13	14
	y = 3	11.5	11.5	15	16

column

use combine_colors(node, threshold) to update the internal node color

- 1. It checks for similarity by computing the "difference" among the children colors
- If the "difference" is less than some "standard" we call "threshold" (difference < threshold)
 - 1. The similarity is high, so combine_colors returns the average children color
- 3. If the difference >= threshold
 - The similarity is small, so combine_colors returns None

$\times = 0$	× = 1	x = 2	$\times = 3$

row	y = 0	1	2	5	5
	y = 1	M	4	5	5
	y = 2	11.5	11.5	13	14
	y = 3	11.5	11.5	15	16

This means your choice "threshold" determines the strength of compression. This is our choice.

- 1. Small threshold means you only combine children with very small difference
 - 1. weak, conservative compression
- 2. Large threshold means you are willing to combine children with larger difference
 - 1. strong, liberal compression

column

		x = 0	x = 1	x = 2	x = 3
row	y = 0	2.5	2.5	5	5
	y = 1	2.5	2.5	5	5
	y = 2	11.5	11.5	14.5	14.5
	y = 3	11.5	11.5	14.5	14.5

This means your choice "threshold" determines the strength of compression. This is our choice.

- 1. Small threshold means you only combine children with very small difference
 - 1. weak, conservative compression
- 2. Large threshold means you are willing to combine children with larger difference
 - 1. strong, liberal compression

Ex: very large threshold may combine all children

column

x = 0	× = 1	x = 2	$\times = 3$

row	y = 0	2.5	2.5	5	5
	y = 1	2.5	2.5	5	5
	y = 2	11.5	11.5	14.5	14.5
	y = 3	11.5	11.5	14.5	14.5

Note that this can happen recursively from the bottom of quadtree!

column $x = 0 \times = 1 \times = 2 \times = 3$

	y = 0	8.375	8.375	8.375	8.375
row	y = 1	8.375	8.375	8.375	8.375
	., - 2	8.375	8.375	8.375	8.375

8.375

8.375

8.375

Note that this can happen recursively from the bottom of quadtree!

8.375

y = 3

Compression

- Implement compress_quadtree_recursive
- Recursively pass down 'qt' as argument to update the internal node colors from the bottom of the quadtree
 - This is an example of a postorder traversal: you update the children colors by visiting them first
- Use combine_colors(node, threshold)
- Make sure to remove children if an internal node has a color
 - Easy to check if this happened by using count_nodes function you implement in Part1A
- assignment3.ipynb tries specific thresholds
 - I will grade with my choice of thresholds
- Again, not a very long code

Part 2: Test on a real image

