Physics 514 Computational Physics, Fall 2020

Homework 2: Molecular Dynamics

September 29, 2020

Author: Yunjie Wang

1 Problem 1

The code for the force looks like the following

```
def force(rsq):
    # Set the constant to 1
    epsilon = 1
    sigma = 1
    sigmasq = sigma ** 2
    r = np.sqrt(rsq)

return (24*epsilon/r)*((-2)*(sigmasq/rsq)**6+(sigmasq/rsq)**3)
```

2 Problem 2

I set the total time for the integrator to be 60s, and the Δt to be 10^{-3} s. And the forward Euler algorithm "blows up" really fast, while the velocity verlet gives a reasonable result. I just iterate 2s with the same Δt , the result is good enough to see the trend. And also, we could see that the energy for fluid is not that stable even with the Verlet algorithm.

3 Problem 3

By inspecting several plots, the time to be thermalized for both systems is around 10s. And I include the .mp4 files in the zip folder and please read the README at the beginning of the file.

4 Problem 4

Ref: http://www.physics.emory.edu/faculty/weeks/idl/gofr.html

Energy Visualization

Measurement I

Measurement II

