REGRESSION

1. Identify Your Problem Statement:-

Client's need to predict profits in start-up companies for various states in the USA.

1.Domain Selection:

Requirement is fully clear from the client. So it comes under Machine Learning.

2.Learning Selection:

Input and respective output data is present. So it comes under Supervised .

3. Regression & Classification:-

The output data values comes under numbers. So regression is the perfect method to sort this problem.

2.Tell basic info about the dataset:-

There are 5 Columns and 51 Rows are present in the dataset

3. Pre-Processing Method:-

learning.

Yes, Here converted categorical data into nominal data which is called **One Hot Coding**. Because Al could not understand words, It only can understand "**0 and 1**".

4. Develop a good model with r2 score: - MULTIPLE LINEAR

Multiple linear r2_score = 0.9358

Develop a good model with r2_score:- SVM-REGRESSION

KERNEL	C=0.01	C=10	C=100
	r2_Score	r2_Score	r2_Score
rbf	-0.5748	-0.5748	-0.0574
poly	-0.5748	-0.5748	-0.0574
sigmoid	-0.5748	-0.5748	-0.0574
linear	-0.5748	-0.5748	-0.0574

<u>Develop a good model with r2_score</u>:- DECISION TREE

CRITERION	SPLITTER	MAX_FEATURES	r2_Score
friedman_mse	best	auto 0.9128	
friedman_mse	best	sqrt	0.9128
friedman_mse	best	log2	0.9128
friedman_mse	random	auto	0.9128
friedman_mse	random	sqrt	0.9128
friedman_mse	random	log2	0.9128

<u>Develop a good model with r2_score</u>:- RANDOM FOREST

n_estimators	criterion	max_features	random_state	r2_Score
20	friedman_mse	sqrt	0	0.9446
20	friedman_mse	log2	0	0.9446
50	friedman_mse	sqrt	0	0.9446
<mark>50</mark>	friedman_mse	log2	0	0.9446
100	friedman_mse	sqrt	0	0.9446
100	friedman_mse	log2	0	0.9446

5. Reason for choosing this model:-

I did four types of algorithms, which are **Multiple Linear,SVM,Decision tree,Random Forest**. All r2_score values are noted. First three algorithms are given poor value while random forest gives the best "**r2=0.9446**" value. The accuracy is perfect compared to other algorithms,So I chose the "**RANDOM FOREST**" algorithm.