

Đặc tả Z (5)

Nguyễn Thanh Bình

Khoa Công nghệ Thông tin Trường Đại học Bách khoa Đại học Đà Nẵng

Giới thiệu

- được đề xuất bởi Jean René Abrial ở Đại học Oxford
- ngôn ngữ đặc tả hình thức được sử dụng rộng rãi nhất
- o dựa trên lý thuyết tập hợp
- o ký hiệu toán học
- o sử dụng các sơ đồ (schema)
 - dễ hiểu

$\bullet \bullet \bullet$

Giới thiệu

- o Gồm bốn thành phần cơ bản
 - các kiểu dữ liệu (types)
 - dựa trên khái niệm tập hợp
 - các sơ đồ trạng thái (state schemas)
 - mô tả các biến và ràng buộc trên các biến
 - các sơ đồ thao tác (operation schemas)
 - mô tả các thao tác (thay đổi trạng thái)
 - các toán tử sơ đồ (schema operations)
 - định nghĩa các sơ đồ mới từ các sơ đồ đã có

3

• • •

Kiểu dữ liệu

- o mỗi kiểu dữ liệu là một **tập hợp** các phần tử
- Ví du
 - {true, false} : kiểu lô-gíc
 - N: kiểu số tự nhiên
 - Z: kiểu số nguyên
 - R: kiểu số thực
 - {red, blue, green}

• • •

Kiểu dữ liệu

- o Các phép toán trên tập hợp
 - Hôi: A ∪ B
 - Giao: A ∩ B
 - Hiệu: A/B
 - Tập con: A ⊆ B
 - Tập các tập con: P A
 - ví dụ: P {a, b} = {{}, {a}, {b}, {a, b}}

5

• • •

Kiểu dữ liệu

- một số kiểu dữ liệu cơ bản đã được định nghĩa trước
 - kiểu số nguyên Z
 - kiểu số tự nhiên N
 - kiểu số thực R
 - ...
- o có thể định nghĩa các kiểu dữ liệu mới
 - ANSWER == yes | no
 - [PERSON]
 - sử dụng cặp ký hiệu [và] để định nghĩa kiểu cơ bản mới

• • •

Kiểu dữ liệu

- o Khai báo kiểu
 - x : T
 - x là phần tử của tập T
 - Ví dụ
 - x : R
 - n : N
 - 3 : N
 - red : {red, blue, green}

7

• • •

Vị từ

- Một vị từ (predicate) được sử dụng để định nghĩa các tính chất của biến/giá trị
- o Ví dụ
 - x > 0
 - $\pi \in R$

• • Vị từ

- Có thể sử dụng các toán tử lô-gíc để định nghĩa các vị từ phức tạp
 - Và: A ∧ B
 Hoặc: A ∨ B
 Phủ định: ¬ A
 Kéo theo: A ⇒ B
- Ví du
 - $(x > y) \land (y > 0)$
 - $(x > 10) \lor (x = 1)$
 - (x > 0)) $\Rightarrow x/x = 1$
 - $(\neg (x \in S)) \lor (x \in T)$

9

• • Vị tù

- Các toán tử khác
 - (∀x : T A)
 - A đúng với mọi x thuộc T
 - Ví dụ: (∀x : N x x =0)
 - (∃x : T A)
 - A đúng với một số giá trị x thuộc T
 - Ví dụ: $(\exists x : R \bullet x + x = 4)$
 - {x : T | A}
 - biểu diễn các phần tử x của T thỏa mãn A
 - Ví dụ: $N = \{x : Z \mid x \ge 0\}$

Sơ đồ trạng thái

- o Cấu trúc sơ đồ trạng thái gồm
 - tên sơ đồ
 - khai báo biến
 - định nghĩa vị từ

__SchemaName ____ x:X Predicate

11

• • •

Sơ đồ trạng thái

- o Đặc tả Z chứa
 - các biến trạng thái
 - khởi gán biến
 - các thao tác trên các biến
 - biến trạng thái có thể có các bất biến
 - điều kiện mà luôn đúng, biểu diễn bởi các vị từ

Counter $_$ $ctr: \mathbb{N}$ $0 \le ctr \le max$

Sơ đồ thao tác

Khởi gán biến

- o Khai báo thao tác trên biến
 - kí hiệu ∆ biểu diễn biến trạng thái bị thay đổi bởi thao tác
 - kí hiệu '(dấu nháy đơn) biểu diễn giá trị mới của biến

 $\Delta Counter$ ctr < max ctr' = ctr + 1

13

• • •

Sơ đồ thao tác

- o Thao tác có thể có các tham số vào và ra
 - tên tham số vào kết thúc bởi kí tự "?"
 - tên tham số ra kết thúc bởi kí tự "!"

Decrement $\Delta Counter$ $d?: \mathbb{N}$ $ctr \geq d?$ ctr' = ctr - d?

Sơ đồ thao tác

 Kí hiệu Ξ mô tả thao tác không thể thay đổi biến trạng thái

15

• • •

Ví dụ 1

- Đặc tả hệ thống ghi nhận các nhân viên vào/ra tòa nhà làm việc
 - Kiểu dữ liệu [Staff] là kiểu cơ bản mới của hệ thống
 - Trạng thái của hệ thống bao gồm
 - tập hợp các người sử dụng hệ thống user
 - tập hợp các nhân viên đang vào in
 - tập hợp các nhân viên đang ra out

Log $users, in, out : \mathbb{P} Staff$ $in \cap out = \{\} \land$ $in \cup out = users$ $b \text{ b t bien c u} a \text{ h e th b f on } b \text{ th b out } a \text{ h e th b out } b \text{ th$

• • • •

Ví dụ 1

o Đặc tả thao tác ghi nhận một nhân viên vào

```
CheckIn
\Delta Log
name? : Staff
name? \in out
in' = in \cup \{name?\}
out' = out \setminus \{name?\}
users' = users
```

17

• • •

Ví dụ 1

o Đặc tả thao tác ghi nhận một nhân viên ra

```
CheckOut

\Delta Log

name?: Staff

name? \in in

out' = out \cup \{name?\}

in' = in \setminus \{name?\}

users' = users
```

• • • Ví dụ 1

- o Đặc tả thao tác kiểm tra một nhân viên vào hay ra
 - Thao tác này cho kết quả là phần tử của kiểu
 QueryReply == is_in | is_out
 - Đặc tả thao tác

```
StaffQuery
\exists Log
name?: Staff
reply!: QueryReply
name? \in users
name? \in in \Rightarrow reply! = is\_in
name? \in out \Rightarrow reply! = is\_out
```

19

• • • Ví dụ 1

Khởi tạo hệ thống

```
InitLog

Log

users = {}

in = {}

out = {}
```

• • Ví dụ 1

- Tóm lai
 - Sơ đồ trạng thái: các thành phần/đối tượng của hệ thống
 - Bất biến: ràng buộc giữa các đối tượng
 - Các sơ đồ thao tác
 - Điều kiện trên các tham số vào
 - Quan hệ giữa trạng thái trước và sau
 - Tham số kết quả
 - Khởi gán

21

• • • Ví dụ 1

- o Hãy đặc tả các thao tác
 - Register: thêm vào một nhân viên mới
 - Queryln: cho biết những nhân viên đang vào/làm việc

Toán tử sơ đồ

- Các sơ đồ có thể được kết hợp để tạo ra các sơ đồ mới
- o Các toán tử sơ đồ
 - Và: ∧
 - Hoặc: ∨

23

• • •

Toán tử sơ đồ

o Các sơ đồ đã có

Schema1
$$x: X; y: Y$$
 $A(x,y)$

___Schema2 ______ z: Z; x: X ______ B(z,x)

- Tạo các sơ đồ mới
 - Schema3 == Schema1 ∧ Schema2
 - Schema4 == Schema1 v Schema2

Schema3 x:X; y:Y; z:Z $A(x,y) \wedge B(z,x)$

• • • Ví dụ 1 (tiếp)

- o Cải tiến thao tác StaffQuery
 - Thao tác StaffQuery chưa đặc tả trường hợp
 - name? ∉ users

```
_StaffQuery_
\Xi Log
name?: Staff
reply! : QueryReply
name? \in users
name? \in in \Rightarrow reply! = is\_in
name? \in out \Rightarrow reply! = is\_out
```

25

• • • Ví dụ 1 (tiếp)

- Cải tiến thao tác StaffQuery
 - Đặc tả lại kiểu QueryReply

```
QueryReply == is_in | is_out | not_registered
```

```
.BadStaffQuery ___
\Xi Log
name? : Staff
reply! : QueryReply
name? ∉ users
reply! = not_registered
```

Khi đó

RobustStaffQuery == StaffQuery v BadStaffQuery

• • •

Ví dụ 1 (tiếp)

o Cải tiến thao tác CheckIn

```
CheckIn
\Delta Log
name? : Staff
name? \in out
in' = in \cup \{name?\}
out' = out \setminus \{name?\}
users' = users
```

o Mở rộng thao tác cho trường hợp ghi nhận thành công

27

• • •

Ví dụ 1 (tiếp)

- o Cải tiến thao tác CheckIn
 - Mở rộng thao tác cho trường hợp ghi nhận thành công

```
reply! : CheckInReply
reply! = ok
```

Khi đó

GoodCheckIn == CheckIn A Success

Ví dụ 1 (tiếp)

- o Cải tiến thao tác CheckIn
 - Xử lý thêm hai trường hợp lỗi
 - 1. name? đã được ghi nhận
 - 2. name? chưa được đăng ký

BadCheckIn1_

 ΞLog

name? : Staff

reply! : CheckInReply

 $name? \in in$

reply! = already_in

29

• • • Ví dụ 1 (tiếp)

- Cải tiến thao tác CheckIn
 - Xử lý thêm hai trường hợp lỗi

.BadCheckIn2_

 ΞLog

name? : Staff

reply! : CheckInReply

name? ∉ users

reply! = not_registered

Ví dụ 1 (tiếp)

- o Cải tiến thao tác CheckIn
 - Khi đó

CheckInReply == ok | already_in | not_registered

RobustCheckIn == GoodCheckIn ∨ BadCheckIn1 ∨ BadCheckIn2

31

• • •

Quan hệ

- Cặp phần tử có thứ tự được biểu diễn
 - (x, y)
- o Tích Đề-các của hai kiểu T1 và T2
 - T1 x T2
 - (x, y) : T1 x T2

• • Quan hệ

- Quan hệ (relation) là tập các cặp phần tử có thứ tự
 - Ví dụ:

```
\begin{array}{rcl} \textit{directory} &=& \{ \; \textit{mary} \mapsto 287573, \\ & \textit{mary} \mapsto 398620, \\ & \textit{john} \mapsto 829483, \\ & \textit{jim} \mapsto 493028, \\ & \textit{jane} \mapsto 493028 \; \} \end{array}
```

 $directory : \mathbb{P}(Person \times Number)$

33

• • Quan hệ

```
o Có thể ký hiệu quan hệ
```

- $T \leftrightarrow S \Longrightarrow P(T \times S)$
- directory : Person ↔ Number
- Ánh xạ
 - cặp phần tử có thứ tự (x, y) có thể viết $x \mapsto y$

```
• Ví dụ directory = \{ mary \mapsto 287573, \\ mary \mapsto 398620, \\ john \mapsto 829483, \\ jim \mapsto 493028, \\ \acute{y}
```

- o Lưu ý
 - kí hiệu ↔ dành cho kiểu
 - kí hiệu → dành cho giá trị

\bullet

Quan hệ

- o Domain và Range
 - tập hợp các thành phần thứ nhất trong một quan hệ được gọi là domain (miền)
 - kí hiệu: dom
 - ví dụ:

dom(directory) = {mary, john, jim, jane}

- tập hợp các thành phần thứ hai trong một quan hệ được gọi là range
 - kí hiệu: ran
 - ví dụ:

ran(directory) = {287373, 398620, 829483, 493028}

35

• • •

Quan hệ

- o Phép trừ miền (domain subtraction)
 - ký hiệu: ⊲

 - Nghĩa là:

$$S \triangleleft R = \{ x \mapsto y \mid (x \mapsto y) \in R \land x \notin S \}$$

• • Quan hệ

- Phép trừ miền (domain subtraction)
 - Ví dụ: directory = { mary → 287573, mary → 398620, john → 829483, jim → 493028, jane → 493028 }
 - Khi đó:{mary}
 directory = { john → 829483, jim → 493028, jane → 493028 }

37

\bullet

Ví dụ 2

- Đặc tả danh bạ điện thoại gồm tên người và số điện thoại
 - Sử dụng kiểu cơ bản
 [Person, Phone]
 - Đặc tả trạng thái hệ thống

```
_Directory ____
dir : Person ↔ Phone
```

• • • Ví dụ 2

Xóa số điện thoại của một người

```
RemoveEntry___
\Delta Directory
name? : Person
number? : Phone
\mathit{dir'} = \mathit{dir} \setminus \{ \; \mathit{name?} \mapsto \mathit{number?} \; \}
```

41

Ví dụ 2

Xóa các mục trong danh bạ ứng với một tên

```
_RemoveName__
\Delta Directory
name? : Person
dir' = \{name?\} \triangleleft dir
```

Xóa các mục trong danh bạ ứng với một tập các

```
.RemoveNames___
\Delta Directory
names?: PPerson
dir' = names? \triangleleft dir
```


Partial Function

- là quan hệ mà mỗi phần tử trong domain cho một giá trị duy nhất trong range
- o ký hiệu

$$f: X \rightarrow Y$$

o nghĩa là

$$\begin{array}{l} f: X \leftrightarrow Y \mid \\ \forall a: X; \quad b_1, b_2: Y \cdot \\ (a \mapsto b_1) \in f \land (a \mapsto b_2) \in f \ \Rightarrow \ b_1 = b_2 \end{array}$$

43

• • •

Partial Function

```
o Ví dụ  \begin{aligned} dir1 &=& \{ \textit{mary} \mapsto 398620, \\ \textit{john} \mapsto 829483, \\ \textit{jim} \mapsto 493028, \\ \textit{jane} \mapsto 493028 \, \} \end{aligned}
```

o Có thể áp dụng các toán tử hàm

$$\{mary, john\} \triangleleft dir1 = \{jim \mapsto 493028, jane \mapsto 493028\}$$

• • Par

Partial Function

- o Toán tử quá tải hàm (Function Overriding)
 - thay thế một mục vào bởi một mục mới
 - ký hiệu
 - $f \oplus \{x \mapsto y\}$ • ví du

$$dir1 \oplus \{jim \mapsto 567325\} = \{ mary \mapsto 398620, \\ john \mapsto 829483,$$

 $\mathit{jim} \mapsto 567325,$

 $jane \mapsto 493028$ }

lưu ý

$$f \oplus \{x \mapsto y\} = (\{x\} \triangleleft f) \cup \{x \mapsto y\}$$

45

• • •

Ví dụ 3

- o Đặc tả hệ thống quản lý ngày sinh
 - sử dụng kiểu cơ bản mới [Person, Date]
 - mỗi người chỉ có một ngày sinh duy nhất

khởi tạo hệ thống

_InitBB ___ BirthdayBook

 $bb = \{\}$

• • Ví dụ 3

o Thêm một người vào hệ thống

```
\_Add
\_\Delta BirthdayBook

name?: Person

date?: Date

name? \not\in dom(bb)

bb' = bb \cup \{ name? \mapsto date? \}
```


Ví dụ 3

o Tìm ngày sinh của một người

```
Lookup.
\Xi Birthday Book
name? : Person
date! : Date
name? \in dom(bb)
date! = bb(name?)
```

49

• • • Ví dụ 3

- Tìm ngày sinh của một người
 - trường hợp tìm không thấy

```
BadLookup_
\Xi Birthday Book
name?: Person
r!: LookupReply
name? \not\in dom(bb)
r! = notknown
```

LookupReply == ok | notknown

• • •

Ví dụ 3

- o Tìm ngày sinh của một người
 - thông báo khi tìm thấy

```
Success = r! : LookupReply
r! = ok
```

khi đó

```
 \begin{array}{rcl} \textit{RobustLookup} & == & (\textit{Lookup} \land \textit{Success}) \\ & \lor \textit{BadLookup} \end{array}
```

51

• • •

Ví dụ 3

o Tìm những người cùng ngày sinh

```
egin{align*} Who $$ & \Xi Birthday Book $$ date?: Date $$ names!: $$ Person $$ names! = $$ \{ p: Person | $$ p \in \mathrm{dom}(bb) \wedge bb(p) = date? $$ \} $$
```


Total Function

- định nghĩa ánh xạ từ tất cả giá trị của domain đến range
- o ký hiệu

$$f: X \to Y$$

o nghĩa là

$$f: X \rightarrow Y \mid \text{dom}(f) = X$$

53

• • •

Total Function

o Ví du

$$square : \mathbb{Z} \to \mathbb{Z}$$
 $\forall n : \mathbb{Z} \bullet$
 $square(n) = n * n$

$\bullet \bullet \bullet$

Total Function

o Sử dụng để định nghĩa hằng số

o Ví dụ

```
min\_count, max\_count : \mathbb{N}
max\_count = 100
10 \le min\_count < max\_count
```

55

• • •

Các ký hiệu

Toán tử lô-gíc \wedge \vee \neg \Rightarrow $(\exists x \bullet P)$ $(\forall x \bullet P)$

