CS & **T** ENGINEERING Algorithms Introduction to Algorithms and Analysis

Recap of Previous Lecture

Topic

Apriori Analysis

Topic

Types of Analysis:

W.C; B.C; Av.C

Topic

Worst-Case and Best-Case Behaviour

Topic

Topic

Topics to be Covered

Topics

Asymptotic Notations

Big - Oh, Big - Omega, Theta Notations

Small Notations

Step-Count

Jime-Corrobbenity~

orden 9 Magnitude

$$T(n) = 1 + m + m^2$$

$$= 4n + 8n + 6$$

(m) Polymornial

Exponential (a)

repr. with a charast Suitable Motation

Log Const Que

Asymptotatic Notations (ASN)

Repr. Jime & Space Compl.	Building	Math Tool to
9 Algo by functions		obtain/repr. Bounds
(ASNI)	7	
U.B L.B	13 12 11	Lithon Lawen Jight
(Mrsn) (Min) floor	-	Upper town 319m Bound Bound Man (Min)
2	4	(Man) (Min)

upper Bound Small Little -> little oh: 0 > Propen U.B > 1809-oh: 0 -> Little omega: W -> Proper L.B Boig-omaga: SL > Theta: 0 Tight Bound

=> Let 'f' 4 'g' be functions from the set g integers/Reals
to Real numbers;

(1) Ris-oh (0): Upper Bound

f(n) in O(g(n)) if there enrish Some Constants

W020 $f(n) \leq c.g(n)$, Whenever

Such that

$$\Rightarrow f(n) = O(g(n))$$

$$f(n) \in O(g(n))$$

$$f(n) = (1+n+n) - O(n^2)$$

$$1+n+n^{2} \le 5.70^{3}$$
, $m > 1$
 $1+1+1 \le 5.1$
 $1+2+4 \le 5.8$
 $f(n)$ in $O(n^{2})$. chest Hishker $u = f(n)$ in $O(n^{3})$
 $f(n)$ in $O(n^{3})$

f)mbarnis Business_Man: > walk:

Roig-omega (S2): Louien Bound

f(n) is a (g(n)) if there enists consts c's no

Such that $f(n) \ge c \cdot g(n)$, whomewer $n \ge n_0$;

1)f(n)=1+n+n/-2(1)

 $|+n+n^2>1.1$ mz 1+n+n >1m, m>1 1+m+n > 1.m, m)

Slide 10

HN+1 53.7

3) Thela (0): Tight Bound: $f(n) \text{ is } \Theta(g(n)) \text{ iff } f(n) \text{ is } O(g(n))$ & f(n) is -SL(g(n))

$$\frac{1+n+n^2}{f} = \frac{O(n^2)}{S(n^2)} = \frac{O(n^2)}{s}$$

$$c^{1}.d(\omega) \leq t(\omega) \leq c^{2}.d(\omega)$$

Big O notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity.

Big O is a member of a family of notations invented by <u>Paul Bachmann</u>, <u>Edmund Landau</u>, and others, collectively called <u>Bachmann-Landau</u> notation or <u>asymptotic notation</u>. The letter O was chosen by Bachmann to stand for Ordnung, meaning the order of approximation.

In computer science, big O notation is used to classify algorithms according to how their run time or space requirements grow as the input size grows.

In analytic number theory, big O notation is used to express a bound on the difference between an arithmetical function and a better understood approximation; a famous example of such a difference is the remainder term in the prime number theorem.

Big O notation is also used in many other fields to provides similar estimates.

Big O notation characterizes functions according to their growth rates: different functions with the same asymptotic growth rate may be represented using the same O notation. The letter O is used because the growth rate of a function is also referred to as the order of the function. A description of a function in terms of big O notation usually only provides an upper bound on the growth rate of the function.

Associated with big O notation are several related notations, using the symbols O, Ω , ω and Θ , to describe other kinds of bounds on asymptotic growth rates.

Definition: A theoretical measure of the execution of an algorithm, usually the time or memory needed, given the problem size n, which is usually the number of items. Informally, saying some equation $\underline{f(n)} = O(\underline{g(n)})$ means it is less than some constant multiple of $\underline{g(n)}$. The notation is read, "f of n is big oh of g of n".

Formal Definition: f(n) = O(g(n)) means there are positive constants c and k, such that $0 < f(n) \le cg(n)$ for all $n \ge K$. The values of c and k must be fixed for the function f and must not depend on n.

Big-Omega Notation (Ω):

Similar to big O notation, big Omega (Ω) function is used in computer science to describe the performance or complexity of an algorithm. If a running time is $\Omega(f(n))$, then for large enough n, the running time is at least k.f(n) for some constant k.

The formal definitions associated with the Big Notation are as follows:

- f(n) = O(g(n)) means c . g(n) is an upper bound on f(n). Thus there exists some constant c such that f(n) is always ≤ c.g(n), for large enough n (i.e., n ≥ no for some constant n₀).
- $f(n) = \Omega(g(n))$ means c.g(n) is a lower bound on f(n). Thus there exists some constant c such that f(n) is always \geq c. g(n), for all $n \geq no$.

3	f	1 2	
	1	2	
2	4	4	
3	9	8	
- 5	25	32	
6	36	64	
7	49	128	

		cg(n)
		f(n)
	Asum	ot .
	Asym $O(g(n))$	n

Sel

 $O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$.

We write f(n) = O(g(n)) to indicate that a function f(n) is a member of the set O(g(n)). Note that $f(n) = \Theta(g(n))$ implies f(n) = O(g(n)), since Θ -notation is a stronger notion than O-notation. Written set-theoretically, we have

 $C \leq a \cdot m^3$ $P = a \cdot m^3$

f(n) = ⊖(g(n)) means c₁. g(n) is an upper bound on f(n) and c₂.g(n) is a lower bound on f(n), for all n ≥ no. Thus there exist constants c₁ and c₂ such that f(n) ≤ c₁.g(n) and f(n) ≥ c₂.g(n). This means that g(n) provides a nice, tight bound on f(n).

For any two functions f(n) and g(n), we have $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.

1)
$$f(m)=1+m+n^2 < O(n^2)
-O(n^2)
-O(n^2)$$

4)
$$f(n) = m + \log n$$
 $O(m)$ $O(m)$
5) $f(n) = Jm + \log n$ $O(Jn)$ $m + \log n \leq m + n$
 $S(Jn)$ S

THANK - YOU