Fahrzeugmechatronik I Aktoren

Prof. Dr.-Ing. Steffen Müller M. Sc. Osama Al-Saidi

Fachgebiet Kraftfahrzeuge • Technische Universität Berlin

Prof. Dr.-Ing S. Müller

Seite 2

Asynchronmaschine Allgemein

1885: Erfindung des Drehfeldes und der mehrsträngigen Wicklung durch den Italiener Galileo Ferraris und den Jugoslawen Nicola Tesla.

1889: Michael von Dolivo Dobrowolsky, Mitarbeiter der AEG erbaut den ersten dreisträngigen Asynchronmotor mit Käfigläufer. (ca. 25 Jahre nach dem Gleichstrommotor von Siemens).

80% aller elektrischen Maschinen sind heute Asynchronmaschinen. 95% davon besitzen sogenannte Käfigläufer.

Vorteile:

- Einfacher und robuster Aufbau,
- sehr preiswert wegen weitgehender Normung,
- kein Bürstenverschleiß

Nachteile:

- Drehzahl an Netzfrequenz gebunden und lastabhängig (gilt auch für GM)
 (Drehzahlregelung notwendig)
- mäßiger bis schlechter Wirkungsgrad im Vergleich zur GM.

Seite 3

Asynchronmaschine Köfig baw

Bauarten – Käfig- bzw. Kurzschlussläufer

Seite 4

Asynchronmaschine B-Feld bei konstantem Spulenstrom

Fachgebiet Kraftfahrzeuge • Fakultät Verkehrs- und Maschinensysteme • Technische Universität Berlin

Prof. Dr.-Ing. S. Müller

Seite 5

Asynchronmaschine

B-Feld bei konstantem Spulenstrom – Über den Umfang verteilte Strangwicklung

Prof. Dr.-Ing. S. Müller Seite 6

Asynchronmaschine B-Feld bei harmonischem Spulenstrom

Asynchronmaschine Erzeugung eines Drehfeldes durch den Stator

Asynchronmaschine Spannungsinduktion im Käfig (Rotor)

10 ist dabei die Gescherindybreit des Leikers relative Zum B-Feld. Prof. Dr.-Ing. S. Müller Seite 9

Asynchronmaschine Spannungsinduktion im Käfig (Rotor)

Prof. Dr.-Ing. S. Müller Seite 10

Asynchronmaschine Stromfluss und Lorentzkraft im Käfig (Rotor)

Technis du Strommichtung

Stromamplituden und -phasen werden Destiment dusch is sowie R- und L-Wirkey des Karfys.

Asynchronmaschine Entstehung des Drehmomentes

c - Maschinenkonstante

n_{A/S} - Anzahl der Windungen

 $U_{S\,0}$ - Amplitude der Wechselspannung

Drehstrom erzeugt umlaufendes Magnetfeld

Relativgeschw. zwischen Rotor/Stator induziert Spannung in kurzgeschlossener Ankerspule (ohne Herleitung)

$$U_{A0} = c \frac{n_A}{n_S} U_{S0} S$$

Induzierte Spannung führt zu Stromfluss und hierdurch Lorenzkraft bzw. Drehmoment auf Anker

$$F_I = I l B$$

Asynchronmaschine

U_{A0} bei verschiedenen Betriebszuständen

Schlupf
$$s = \frac{\omega_{Mag} - \omega_{R}}{\omega_{Mag}}$$

Leistungsform	$\omega_{\scriptscriptstyle R}$	S	$U_{{\scriptscriptstyle A}{\scriptscriptstyle 0}}$	
Stillstand	$\omega_R = 0$	1	c ha Uso	Mn +0
Asynchroner Betrieb	$0 < \omega_R < \omega_{Mag}$	0<8<1	Cuas Uso	Myzo
Synchron- drehzahl	$\omega_{R}=\omega_{Mag}$	O	0	Mn=0

Asynchronmaschine M-ω Kennlinie des Asynchronmotors

Seite 14

Asynchronmaschine Einfluss der Polpaarzahl

n-fache Polpaarralel verringert Drehrende van den Fakter u und erholit wegen Panech = Sty My das Drehmohent hun den Selben Fartor

Synchronmaschine (permanenterregt – BLDC) Funktionsprinzip

Vorteile:

- hoher Wirkungsgrad
- > geringes Massenträgheitsmoment
- > wartungsarm

Nachteile:

➤ Magnetmaterial teuer

Synchronmaschine (permanenterregt – BLDC) Funktionsprinzip

Rotormagnetfeld erzeugt umlaufende Oberflächenströme (Strombelag) auf den Köpfen des Schenkelpolrotors

Strombelag und B-Feld des Stators ergeben Lorentzkraft

- 0 bei 0° Differenz B-Feld Stator-Rotor
- Maximal bei 90° Differenz

Synchronmaschine (permanenterregt – BLDC) Kennlinien

Torque / speed - characteristic

Synchronmaschine (permanenterregt – BLDC) Funktionsprinzip (synchron)

Prof. Dr.-Ing. S. Müller

Seite 19

Vielen Dank für Ihre Aufmerksamkeit!