

COSC 522 – Machine Learning

Dimensionality Reduction

Hairong Qi, Gonzalez Family Professor Electrical Engineering and Computer Science University of Tennessee, Knoxville

https://www.eecs.utk.edu/people/hairong-qi/

Email: hqi@utk.edu

1

AICIP

	Part	Part 1: Statistical Methods	
	Baysian Learning		
08/20 (T)		Introduction	
08/22 (R)		Baysian Decision Theory and Parametric Learning	
08/27 (T)		Baysian Decision Theory and Non-Parametric Learning	
08/29 (R)		Case Study: Representation for Natural Language (taught by Andr Cozma)	
09/03 (T)		Parametric vs. Non-Parametric Learning: Some In-Depth Discussion	
09/05 (R)		Homework and Project Discussion (taught by Fanqi Wang)	
	Neural Networks		
<u>09/10 (T)</u>		Biological Neuron and Perceptron	
<u>09/12 (R)</u>		Perceptron	
<u>09/17 (T)</u>		Back Propagation and Gradient Descent	
<u>09/19 (R)</u>		Back Propagation	
09/20 (F)		TRUST-AI Seminar	
<u>09/24 (T)</u>		Kernel Methods and Review	
09/26 (R)	Test 1		
10/01 (T)		Kernel Methods and Support Vector Machine	
	Regression		
10/03 (R)		Regression	
10/08 (T)	Fall Break (No Class)		
	Unsupervised Learning		
<u>10/10 (R)</u>		Logistic Regression; k-means	
<u>10/15 (T)</u>		Hierarchical Clustering	
	Dime	nsionality Reduction	
10/17 (R)		Supervised methods	
10/22 (T)		Unsupervised methods	

AICIP RESEARCH

Questions

- What is the curse of dimensionality?
- What are the different objectives of the two dimensionality reduction approaches?
- What is the cost function for FLD? Can you verbally describe it in one sentence? What is the optimization approach taken?
- What is scatter matrix? What are between-class scatter and withinclass scatter?
- Is FLD supervised or unsupervised?
- What is the cost function for PCA? Can you verbally describe it in one sentence? What is the optimization approach taken?
- What is major principal axis?
- Is PCA supervised or unsupervised?

The Curse of Dimensionality – 1st Aspect

- The number of training samples
- What would the probability density function look like if the dimensionality is very high?
 - For a 7-dimensional space, where each variable could have 20 possible values, then the 7-d histogram contains 20⁷ cells. To distribute a training set of some reasonable size (1000) among this many cells is to leave virtually all the cells empty

AICIP RESEARCH

Curse of Dimensionality – 2nd Aspect

- Accuracy and overfitting
- ♦ In theory, the higher the dimensionality, the less the error, the better the performance. However, in realistic ML problems, the opposite is often true. Why?
 - The assumption that pdf behaves like Gaussian is only <u>approximately</u> true
 - When increasing the dimensionality, we may be overfitting the training set.
 - Problem: excellent performance on tion f(x), because it would O. Duda, Peter E. Hart, an by John Wiley & Sons, Inc. new data points which are in fact very close to the data within the training set

FIGURE 3.4. The "training data" (black dots) were selected from a quadratic function plus Gaussian noise, i.e., $f(x) = ax^2 + bx + c + \epsilon$ where $p(\epsilon) \sim N(0, \sigma^2)$. The 10th-degree polynomial shown fits the data perfectly, but we desire instead the second-order function f(x), because it would lead to better predictions for new samples. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.

Curse of Dimensionality - 3rd Aspect

Computational complexity

PART I: SUPERVISED DR - FLD

Dimensionality Reduction

- Linear
 - Fisher's linear discriminant (Linear Discriminant Analysis – LDA)
 - Best discriminating the data
 - Supervised
 - Principal component analysis (PCA)
 - Best representing the data
 - Unsupervised

Fisher's Linear Discriminant

- For two-class cases, projection of data from d-dimension onto a line
- Principle: We'd like to find vector w (direction of the line) such that the projected data set can be best separated

$$y = \mathbf{w}^T \mathbf{x}$$

$$J(\mathbf{w}) = \left| \widetilde{m}_1 - \widetilde{m}_2 \right|^2 = \left| \mathbf{w}^T \left(\mathbf{m}_1 - \mathbf{m}_2 \right) \right|^2$$

$$\widetilde{m}_i = \frac{1}{n_i} \sum_{y \in Y_i} y = \frac{1}{n_i} \sum_{\mathbf{x} \in D_i} \mathbf{w}^T \mathbf{x} = \mathbf{w}^T \mathbf{m}_i$$
 $\mathbf{m}_i = \frac{1}{n_i} \sum_{\mathbf{x} \in D_i} \mathbf{x}$

Projected mean

Sample mean

Other Approaches?

- Solution 1: make the projected mean as apart as possible
- Solution 2?

$$J(\mathbf{w}) = \frac{\left|\widetilde{m}_1 - \widetilde{m}_2\right|^2}{\widetilde{s}_1^2 + \widetilde{s}_2^2} = \frac{\left|\mathbf{w}^T (\mathbf{m}_1 - \mathbf{m}_2)\right|^2}{\mathbf{w}^T \mathbf{S}_1 \mathbf{w} + \mathbf{w}^T \mathbf{S}_2 \mathbf{w}} = \frac{\mathbf{w}^T \mathbf{S}_B \mathbf{w}}{\mathbf{w}^T \mathbf{S}_W \mathbf{w}}$$

$$\widetilde{S}_{i}^{2} = \sum_{y \in Y_{i}} (y - \widetilde{m}_{i})^{2} = \sum_{\mathbf{x} \in D_{i}} (\mathbf{w}^{T} \mathbf{x} - \mathbf{w}^{T} \mathbf{m}_{i})^{2} = \sum_{\mathbf{x} \in D_{i}} \mathbf{w}^{T} (\mathbf{x} - \mathbf{m}_{i}) (\mathbf{x} - \mathbf{m}_{i})^{T} \mathbf{w} = \mathbf{w}^{T} \mathbf{S}_{i} \mathbf{w}$$

Scatter matrix
$$S_i = \sum_{\mathbf{x} \in D_i} (\mathbf{x} - \mathbf{m}_i) (\mathbf{x} - \mathbf{m}_i)^T$$

Between-class scatter matrix

$$\mathbf{S}_{B} = (\mathbf{m}_{1} - \mathbf{m}_{2})(\mathbf{m}_{1} - \mathbf{m}_{2})^{T}$$

Within-class scatter matrix

$$\mathbf{S}_W = \mathbf{S}_1 + \mathbf{S}_2 = \sum_{i=1}^2 (\mathbf{x} - \mathbf{m}_i)(\mathbf{x} - \mathbf{m}_i)^T$$

*The Generalized Rayleigh Quotient

$$J(\mathbf{w}) = \frac{\mathbf{w}^T \mathbf{S}_B \mathbf{w}}{\mathbf{w}^T \mathbf{S}_W \mathbf{w}}$$

$$\frac{dJ(w)}{dw} = \frac{2\mathbf{S}_B \mathbf{w} (\mathbf{w}^T \mathbf{S}_W \mathbf{w}) - 2\mathbf{S}_W \mathbf{w} (\mathbf{w}^T \mathbf{S}_B \mathbf{w})}{(\mathbf{w}^T \mathbf{S}_W \mathbf{w})} = 0$$

$$\mathbf{S}_B \mathbf{w} = \frac{\mathbf{w}^T \mathbf{S}_B \mathbf{w}}{\mathbf{w}^T \mathbf{S}_W \mathbf{w}} \mathbf{S}_W \mathbf{w} \Rightarrow \mathbf{S}_W^{-1} \mathbf{S}_B \mathbf{w} = \lambda \mathbf{w}$$

 $\mathbf{S}_{B}\mathbf{w}$ is always in the direction of $\mathbf{m}_{1}-\mathbf{m}_{2}$

$$\mathbf{w} = \mathbf{S}_{W}^{-1} (\mathbf{m}_{1} - \mathbf{m}_{2})$$
 Canonical variate

Some Math Preliminaries

- Positive definite
 - A matrix **S** is positive definite if $y=x^TSx>0$ for all R^d except 0
 - x^TSx is called the quadratic form
 - The derivative of a quadratic form is particularly useful

$$\frac{d}{d\mathbf{x}} (\mathbf{x}^T \mathbf{S} \mathbf{x}) = (\mathbf{S} + \mathbf{S}^T) \mathbf{x}$$

- Eigenvalue and eigenvector
 - **x** is called the eigenvector of **A** iff **x** is not zero, and $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$
 - \blacksquare λ is the eigenvalue of **x**

AICIP RESEARCH

Multiple Discriminant Analysis

- For c-class problem, the projection is from d-dimensional space to a (c-1)-dimensional space (assume d >= c)
- Between-class scatter matrix: $S_B = \sum_{k=1}^c n_k (\mathbf{m}_k \mathbf{m}) (\mathbf{m}_k \mathbf{m})^T$ where \mathbf{m} is the global mean, \mathbf{m}_k is the class mean, and n_k is the number of samples in class k, c is the total number of classes.
- Within-class scatter matrix: $S_W = \sum_{k=1}^c S_k$, $S_k = \sum_{i \in D_k} (\mathbf{x}_i \mathbf{m}_k) (\mathbf{x}_i \mathbf{m}_k)^T$
- $J(W) = Tr(\frac{W^T S_B W}{W^T S_W W})$: trace is the sum of elements along the main diagonal direction. Can only calculate trace for a square matrix.
- $W = eig(S_w^{-1}S_B)$: At most c-1 non-zero eigenvalues as S_B has a rank of c-1.

PART II: UNSUPERVISED DR - PCA

PCA Procedure

- ◆Raw data → covariance matrix → eigenvalue → eigenvector → principal component
- How to use error rate?

Principal Component Analysis or K-L Transform

How to find a new feature space (m-dimensional) that is adequate to describe the original feature space (d-dimensional). Suppose m<d</p>

K-L Transform (1)

Describe vector x in terms of a set of basis vectors b_i.

$$\mathbf{x} = \sum_{i=1}^{d} y_i \mathbf{b}_i \qquad y_i = \mathbf{b}_i^T \mathbf{x}$$

◆ The basis vectors (b_i) should be linearly independent and orthonormal, that is,

$$\mathbf{b}_{i}^{T}\mathbf{b}_{j} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

K-L Transform (2)

Suppose we wish to ignore all but m (m<d) components of y and still represent x, although with some error. We will thus calculate the first m elements of y and replace the others with constants

$$\mathbf{x} = \sum_{i=1}^{m} y_i \mathbf{b}_i + \sum_{i=m+1}^{d} y_i \mathbf{b}_i \approx \sum_{i=1}^{m} y_i \mathbf{b}_i + \sum_{i=m+1}^{d} \alpha_i \mathbf{b}_i$$

Error:
$$\Delta \mathbf{x} = \sum_{i=m+1}^{d} (y_i - \alpha_i) \mathbf{b}_i$$

K-L Transform (3)

Use mean-square error to quantify the error

$$\varepsilon^{2}(m) = E\left\{\sum_{i=m+1}^{d} \sum_{j=m+1}^{d} (y_{i} - \alpha_{i}) \mathbf{b}_{i}^{T} (y_{j} - \alpha_{j}) \mathbf{b}_{j}\right\}$$

$$= E\left\{\sum_{i=m+1}^{d} \sum_{j=m+1}^{d} (y_{i} - \alpha_{i}) (y_{j} - \alpha_{j}) \mathbf{b}_{i}^{T} \mathbf{b}_{j}\right\}$$

$$= \sum_{i=m+1}^{d} E\left\{y_{i} - \alpha_{i}\right\}^{2}$$

K-L Transform (4)

• Find the optimal α_i to minimize ϵ^2

$$\frac{\partial \varepsilon^2}{\partial \alpha_i} = -2(E\{y_i\} - \alpha_i) = 0$$

$$\alpha_i = E\{y_i\}$$

Therefore, the error is now equal to

$$\varepsilon^{2}(m) = \sum_{i=m+1}^{d} E \left\{ y_{i} - E \left\{ y_{i} \right\} \right\}^{2} \right\}$$

$$= \sum_{i=m+1}^{d} E \left\{ \mathbf{b}_{i}^{T} \mathbf{x} - E \left\{ \mathbf{b}_{i}^{T} \mathbf{x} \right\} \right\} = \sum_{i=m+1}^{d} E \left\{ \mathbf{b}_{i}^{T} \mathbf{x} - E \left\{ \mathbf{b}_{i}^{T} \mathbf{x} \right\} \right\} \left\{ \mathbf{x}^{T} \mathbf{b}_{i} - E \left\{ \mathbf{x}^{T} \mathbf{b}_{i} \right\} \right\}$$

$$= \sum_{i=m+1}^{d} \mathbf{b}_{i}^{T} E \left\{ \mathbf{x} - E \left\{ \mathbf{x} \right\} \right\} \left(\mathbf{x} - E \left\{ \mathbf{x} \right\} \right)^{T} \right\} \mathbf{b}_{i} = \sum_{i=m+1}^{d} \mathbf{b}_{i}^{T} \Sigma_{\mathbf{x}} \mathbf{b}_{i} = \sum_{i=m+1}^{d} \lambda_{i}$$

K-L Transform (5)

- The optimal choice of basis vectors is the eigenvectors of $\Sigma_{\mathbf{x}}$
- The expansion of a random vector in terms of the eigenvectors of the covariance matrix is referred to as the Karhunen-Loeve expansion, or the "K-L expansion"
- Without loss of generality, we will sort the eigenvectors \mathbf{b}_i in terms of their eigenvalues. That is $\lambda_1 >= \lambda_2 >= \dots >= \lambda_d$. Then we refer to \mathbf{b}_1 , corresponding to λ_1 , as the "major eigenvector", or "principal component"

Dimensionality Reduction

- Linear
 - Fisher's linear discriminant
 - Best discriminating the data
 - Supervised
 - Principal component analysis (PCA)
 - Best representing the data
 - Unsupervised

