Math 114L: Problem Set 1

Owen Jones

April 16, 2024

(Note: The Problems are numbered strangely in the hw assignment. I tried to make it clear which question I was answering, but let me know if there is anything unclear.)

Problem 1:

$$(p \lor q) \neg p \to q$$

p	q	$(p \lor q)$	$(\neg p)$	$(\neg p) \to q$
T	Т	T	F	T
T	F	Т	F	T
F	Т	Т	T	Τ
F	F	F	T	F

$$(p \land q) \neg (p \rightarrow \neg q)$$

p	q	$(p \wedge q)$	$(p \rightarrow \neg q)$	$\neg(p \to \neg q)$
Τ	Т	T	F	T
Т	F	F	Т	F
F	Т	F	Т	F
F	F	F	T	F

Problem 2:

By induction:

First, we show that we can construct a string of length 3k + 1 for some non-negative integer k.

Base Case: We are given $A_i \in PL_0$. It follows we can construct a string of length 1.

Induction hypothesis: Assume for some k, we can construct a string $\phi \in PL_0$

of length 3k + 1.

Induction step: By (a) we can construct $(\neg \phi) \in PL_0$ of length 3(k+1)+1.

Thus, any string of length 3k + 1 can be constructed. Next, we show that we can construct a string of length 3k + 2 for any $k \ge 1$

Given $\phi, \psi \in PL_0$ of lengths 3(k-1)+1 and 1 with $k \geq 1$, we can construct $(\phi \to \psi)$ of length 3k+2.

Once, again, we can use a similar argument to show we can construct a string of length 3k for $k \ge 3$ (3(k-2)+2)+3+1=3k where $k \ge 3$ using strings ϕ, ψ of length 3(k-2)+2 and 1 $(\phi \to \psi)$.

Hence, we can construct a string of length n for every natural number except 2, 3, and 6.

Problem 3:

Suppose $\phi \in PL_0$. Then, it can be defined recursively by the 3 clauses. It follows ϕ must either be a propositional variable, there exists another variable $\psi \in PL_0$ s.t $\phi = (\neg \psi)$, or there exist $\psi, \chi \in PL_0$ s.t $\phi = (\psi \to \chi)$ because all other strings are not formulas. Hence, we can construct a finite sequence of sequences s.t each element satisfies one of the three conditions.

Suppose there is a finite sequence of sequences (ϕ_1, \ldots, ϕ_n) such that $\phi_n = \phi$ and for each $i \leq n$ either there exists m s.t $\phi_i = A_m$ or there exists j < i such that $\phi_i = (\neg \phi_j)$ or there exist j_1, j_2 both less than i such that $\phi_i = (\phi_{j_1} \to \phi_{j_2})$. We will show by strong induction, $\phi_i \in PL_0$ for all $i \leq n$.

Base case: For i=1, neither the second nor the third property can hold because ϕ_1 is the first element of the sequence. Thus, $\phi_1=A_m\in PL_0$ for some m.

Induction hypothesis: Assume for $1 \le i < n \ \phi_1, \dots, \phi_i \in PL_0$.

Induction step: Suppose $\phi_{i+1} = A_m$ for some m, then $\phi_{i+1} \in PL_0$ because $A_m \in PL_0$. Suppose there exists some j < i+1 s.t $\phi_{i+1} = (\neg \phi_j)$. Because $\phi_j \in PL_0$ and PL_0 is closed under the connective \neg , $\phi_{i+1} \in PL_0$. Suppose there exist j_1, j_2 both less than i+1 such that $\phi_{i+1} = (\phi_{j_1} \to \phi_{j_2})$. Because $\phi_{j_1}, \phi_{j_2} \in PL_0$ and PL_0 is closed under the connective \to , $\phi_{i+1} \in PL_0$. Hence, by induction, $\phi_i \in PL_0$ for all $i \le n$. Moreover, $\phi = \phi_n \in PL_0$

Definition 2 Proofs:

(i) Proof by induction on E

Base case: $\phi = A_i$. It follows $E(\phi) = 1$ and $D(\phi) = 0$, so $E(\phi) = D(\phi) + 1$ Induction hypothesis: Assume for some n, m we have some $\phi, \psi \in PL_0$ s.t $E(\phi) = n$, $E(\psi) = m$ and $E(\phi) = D(\phi) + 1$, $E(\psi) = D(\psi) + 1$.

Induction step: Any element of PL_0 can be constructed recursively from logical connectives and atomic propositions. Consider the statements $\phi' = (\neg \phi)$ and $\chi = (\phi \rightarrow \psi)$.

 $E(\phi') = E(\phi) = n$ and $D(\phi) = D(\phi) = n - 1$ because we neither add a binary connective nor a atomic proposition, so $E(\phi') = D(\phi') + 1$.

$$E(\chi) = E(\phi \to \psi) = E(\phi) + E(\psi) = n + m \text{ and } D(\chi) = D(\phi \to \psi) = D(\phi) + D(\psi) + 1 = n + m - 1, \text{ so } E(\chi) = D(\chi) + 1$$

Hence, $E(\phi) = D(\phi) + 1$ for any $\phi, \psi \in PL_0$

(ii) Proof by induction on S

Base case: $\phi = A_i$. $S(\phi) = 1 \ge 3 \cdot 0 = 3C(\phi)$

Induction hypothesis: Assume for some $n, m, p \neq 2, 3, 6$ we have some $\phi, \psi, \chi \in PL_0$ s.t $S(\phi) = n, S(\psi) = m, S(\chi) = p$ and $S(\phi) \geq 3C(\phi), S(\psi) \geq 3C(\psi), S(\chi) \geq 3C(\chi)$.

Induction step: Let $\phi' = (\neg \phi), \psi' = (\psi \rightarrow \chi)$.

 $S(\phi') = S(\phi) + 3 \ge 3C(\phi) + 3 = 3(C(\phi) + 1) = 3(C(\phi')).$

 $S(\psi') = S(\psi) + S(\chi) + 3 \ge 3C(\psi) + 3C(\chi) + 3 = 3(C(\psi) + C(\chi) + 1) = 3(C(\psi'))$. In problem 2, we showed that we can construct strings in PL_0 for any length $\ne 2, 3, 6$, so we can choose values of n, m, p to construct new strings of any length.

Problem 1.1

Let L be the set of all formulas. Suppose $\alpha, \beta \in L$ are some formulas in L. It follows by the definition of a formula $\alpha, \beta \in S$ for every propositionally closed set S. Thus, $L \subseteq S$. If $\alpha \in S$ then $(\neg \alpha) \in S$, and if $\alpha, \beta \in S$ and \bullet is a binary connective then $(\alpha \bullet \beta) \in S$. Since this holds for every propositionally closed set $(\neg \alpha)$ and $(\alpha \bullet \beta)$ are formulas. Hence, L is propositionally closed. Since $L \subseteq S$ for every propositionally closed set S, L is also the smallest propositionally closed set.

Problem 1.6

p	q	$(p \rightarrow q)$	$(q \rightarrow p)$	$\neg(q \to p)$	$(p \to q) \land \neg (q \to p)$
Т	Т	Т	T	F	F
Т	F	F	Т	F	F
F	Т	Т	F	T	Τ
F	F	Т	Т	F	F

Problem 1.7

$$(\phi \downarrow \phi) \quad (\neg \phi)$$

ϕ	$(\phi \downarrow \phi)$	$\neg \phi$
Т	F	F
F	T	Т

$(\phi \downarrow \phi) \downarrow (\psi \downarrow \psi) \quad (\phi \land \psi)$

ϕ	ψ	$(\phi \downarrow \phi) \downarrow (\psi \downarrow \psi)$	$(\phi \wedge \psi)$
Т	Т	Τ	Τ
Т	F	F	F
F	Т	F	F
F	F	F	F

$$(\phi \downarrow \psi) \downarrow (\phi \downarrow \psi) \quad (\phi \lor \psi)$$

ϕ	ψ	$(\phi \downarrow \psi) \downarrow (\phi \downarrow \psi)$	$(\phi \lor \psi)$
Т	Т	T	T
Т	F	T	Т
F	Т	Τ	Т
F	F	F	F

$$((\phi \downarrow \phi) \downarrow \psi) \downarrow ((\phi \downarrow \phi) \downarrow \psi) \quad (\phi \to \psi)$$

ϕ	ψ	$((\phi \downarrow \phi) \downarrow \psi) \downarrow ((\phi \downarrow \phi) \downarrow \psi)$	$(\phi \to \psi)$
Τ	Т	T	Τ
Т	F	F	F
F	Т	T	Τ
F	F	T	Τ

- (a) Every propositional variable A_i is a formula.
- (b) If ϕ and ψ are formulas then

$$(\phi \downarrow \phi) \quad (\neg \phi)$$

$$(\phi \downarrow \phi) \downarrow (\psi \downarrow \psi) \quad (\phi \land \psi)$$

$$(\phi \downarrow \psi) \downarrow (\phi \downarrow \psi) \quad (\phi \lor \psi)$$

$$((\phi \downarrow \phi) \downarrow \psi) \downarrow ((\phi \downarrow \phi) \downarrow \psi) \quad (\phi \to \psi)$$

are formulas

(c) No string is a formula except by virtue of (a) and (b).

Proof by Induction on n

Base case: n=1 There are only four unary bit functions, and each of them is written below, relative to the variable p:

$$f_1(x) = 1 \quad (p \downarrow (p \downarrow p)) \downarrow (p \downarrow (p \downarrow p))$$

$$f_2(x) = 0 \quad (p \downarrow p) \downarrow ((p \downarrow p) \downarrow (p \downarrow p))$$

$$f_3(x) = x \quad p$$

$$f_4(x) = 1 - x \quad (p \downarrow p)$$

Induction hypothesis: Assume every n-ary bit function can be defined by a \downarrow -formula with n propositional variables.

Induction step: Suppose f is (n+1)-ary. Consider the two functions obtained by

fixing the last variable of f to be 0 or 1 and choose by the induction hypothesis formulas which define them relative to the variables p_1, \ldots, p_n :

```
\begin{array}{ll} f_1(x_1,\ldots,x_n)=f(x_1,\ldots,x_n,1) & \text{defined by } \phi_1 \\ f_0(x_1,\ldots,x_n)=f(x_1,\ldots,x_n,0) & \text{defined by } \phi_0 \\ \alpha=((p_{n+1}\downarrow p_{n+1})\downarrow(\phi_1\downarrow\phi_1)) \\ \beta=(((p_{n+1}\downarrow p_{n+1})\downarrow(p_{n+1}\downarrow p_{n+1}))\downarrow(\phi_0\downarrow\phi_0)) \\ \text{Using lemma } 2A.1 \text{ to check that if } p_{n+1} \text{ is a new propositional variable, then the formula} \\ ((\alpha\downarrow\beta)\downarrow(\alpha\downarrow\beta)) \\ \text{defines } f \text{ relative to the list } p_1,\ldots,p_n,p_{n+1}. \end{array}
```