

ENGG103 – Materials in Design

Week 9: Lecture 9 – Thermal properties

Dr Ciara O'Driscoll ciaraodriscoll@uowdubai.ac.ae

Consultation hours:

Tuesday 12:30 – 14:30

https://uow.webex.com/meet/ciara

Please email first for appointment.

Chapter 19: Thermal Properties

ISSUES TO ADDRESS...

- How do materials respond to the application of heat?
- How do we define and measure...
 - -- heat capacity?
 - -- thermal expansion?
 - -- thermal conductivity?
- How do the thermal properties of ceramics, metals, and polymers differ?

Stop and check Video on moodle

Lecture 10: Distance Learning Resources folder – 1. Specific Heat Capacity

Heat Capacity

The ability of a material to absorb heat

 Quantitatively: The energy required to produce a unit rise in temperature for one mole of a material.

heat capacity (J/mol-K) =
$$\frac{dQ}{dT}$$
 energy input (J/mol) temperature change (K)

Two ways to measure heat capacity:

 C_p : Heat capacity at constant pressure.

 C_{v} : Heat capacity at constant volume.

$$C_{D}$$
 usually > C_{V}

• Heat capacity has units of $\frac{J}{\text{mol} \cdot \text{K}} \left(\frac{\text{Btu}}{\text{Ib} - \text{mol} \cdot {}^{\circ}\text{F}} \right)$

Specific Heat capacity
$$C = \left(\frac{Q}{m * \Delta T}\right)$$

Specific Heat: Comparison

	Material Polymers Polypropylene Polyethylene Polystyrene Teflon	c _p (J/kg-K) at room <i>T</i> 1925 1850 1170 1050	 c_p (specific heat): C_p (heat capacity): 	
increasing $c_{ ho}$	• <u>Ceramics</u> Magnesia (MgO) Alumina (Al ₂ O ₃) Glass	940 775 840		
	• Metals Aluminum Steel Tungsten Gold	900 486 138 128	Selected values from Table 19.1, Callister & Rethwisch 8e.	4.9 .2

Thermal Properties – Specific heat

 Metals tend to have very low values. This means that they heat up quickly and cool down quickly; they also tend to expand significantly as they get

Substance	c/J kg ⁻¹ K ⁻¹	Substance	c/J kg ⁻¹ K ⁻¹
Aluminium	900	Ice	2100
Iron/steel	450	Wood	1700
Copper	390	Nylon	1700
Brass	380	Rubber	1700
Zinc	380	Marble	880
Silver	230	Concrete	850
Mercury	140	Granite	840
Tungsten	135	Sand	800
Platinum	130	Glass	670
Lead	130	Carbon	500
Hydrogen	14000	Ethanol	2400
Air	718	Paraffin	2100
Nitrogen	1040	Water	4186
Steam	2000	Sea water	3900

Specific Heat capacity
$$C = \left(\frac{Q}{Q}\right)$$

 $\bf Q$ is Energy in Joules $\bf \Delta T$ is change in temperature in Kelvin $\bf m$ is mass in kg

Temperature: Kelvin to Celsius conversion

$$T(K) = T(^{\circ}C) + 273.15$$

Example: Specific Heat problem

Question: How much energy is needed to increase 10 kg of concrete from 22°C to 30°C?

Substance	c/J kg ⁻¹ K ⁻¹	Substance	c/J kg ⁻¹ K ⁻¹
Aluminium	900	Ice	2100
Iron/steel	450	Wood	1700
Copper	390	Nylon	1700
Brass	380	Rubber	1700
Zinc	380	Marble	880
Silver	230	Concrete	850
Mercury	140	Granite	840
Tungsten	135	Sand	800
Platinum	130	Glass	670
Lead	130	Carbon	500
Hydrogen	14000	Ethanol	2400
Air	718	Paraffin	2100
Nitrogen	1040	Water	4186
Steam	2000	Sea water	3900

Specific Heat capacity
$$C = \left(\frac{Q}{m * \Delta T}\right) \frac{J}{kg. \, k}$$

where:

 ${f Q}$ is Energy in Joules ${f \Delta T}$ is change in temperature in Kelvin ${f m}$ is mass in kg

Stop and check Video on moodle

Thermal Expansion

Materials change size when temperature is changed

$$\frac{\Delta L}{L_0} = \alpha \Delta T$$

linear coefficient of thermal expansion (1/K or 1/°C)

Coefficient of Thermal Expansion: Comparison

N	/laterial	α_ℓ (10-6/°C)	
	Polymers	at room T	
	Polypropylene	145-180	
	Polyethylene	106-198	
	Polystyrene	90-150	
	Teflon	126-216	
increasing $lpha_\ell$	Metals Aluminum Steel Tungsten Gold	23.6 12 4.5 14.2	
· ·	Ceramics Magnesia (MgO) Alumina (Al ₂ O ₃) Soda-lime glass Silica (cryst. SiO ₂)	13.5 7.6 9 0.4	Selected values from Table 19.1, Callister & Rethwisch 8e.

Thermal Expansion: Example

Ex: A copper wire 15 m long is cooled from 40 to -9°C. How much change in length will it experience?

• Answer: For Cu $\alpha_{\ell} = 16.5 \times 10^{-6} \ (^{\circ}\text{C})^{-1}$

rearranging Equation 19.3b

$$\Delta \ell = \alpha_{\ell} \ell_{0} \Delta T = [16.5 \times 10^{-6} (1/^{\circ}C)](15 \text{ m})[40^{\circ}C - (-9^{\circ}C)]$$

 $\Delta \ell = 0.012 \, \text{m} = 12 \, \text{mm}$

Example: Thermal Expansion Coefficient

Question:

A bridge is made with segments of **concrete 50 m** long. If the linear expansion coefficient is $12 \times 10^{-6} \, (^{0}\text{C})^{-1}$, how much spacing (in m) is needed to allow for expansion during an extreme temperature change of 45°C ?

$$\frac{\Delta L}{L_0} = \alpha \Delta T$$
 where:
$$\frac{\Delta L}{L_0} = \alpha \Delta T$$
 where:
$$\frac{\Delta L}{L_0} \text{ is the fractional change in length } \alpha$$
 is the coefficient of linear expansion ΔT is the change in temperature

Material	Average Linear Expansion Coefficient (α) (°C) ⁻¹	Material	Average Volume Expansion Coefficient (β) (°C) ⁻¹
Aluminum	24×10^{-6}	Alcohol, ethyl	1.12×10^{-4}
Brass and bronze	19×10^{-6}	Benzene	1.24×10^{-4}
Copper	17×10^{-6}	Acetone	1.5×10^{-4}
Glass (ordinary)	9×10^{-6}	Glycerin	4.85×10^{-4}
Glass (Pyrex)	3.2×10^{-6}	Mercury	1.82×10^{-4}
Lead	29×10^{-6}	Turpentine	9.0×10^{-4}
Steel	11×10^{-6}	Gasoline	9.6×10^{-4}
Invar (Ni-Fe allov)	0.9×10^{-6}	Air at 0°C	3.67×10^{-3}
Concrete	12×10^{-6}	Helium	3.665×10^{-3}

Thermal Expansion: Linear, area & volume

= change in length

= coefficient of linear expansion

= original length

= change in temperature

Prea
$$\Delta A = 2\alpha A_0 \Delta T$$

 ΔA = change in area

= coefficient of linear expansion

 A_0 = original area

= change in temperature

 $\Delta V = \beta V_0 \Delta T$ $\Delta V = 3 \alpha V_0 \Delta T$

 ΔA = change in volume

= coefficient of volume expansion

= original area

= change in temperature

= coefficient of linear expansion

Stop and check Video on moodle

Thermal Conductivity

The ability of a material to transport/conduct heat.

 Atomic perspective: Atomic vibrations and free electrons in hotter regions transport energy to cooler regions.

Thermal Conductivity: Comparison

Material	<i>k</i> (W/m-K)	Energy Transfer Mechanism
• Metals		
Aluminum Steel Tungsten Gold	247 52 178 315	atomic vibrations and motion of free electrons
• Ceramics Magnesia (Magnesia (Magn	O ₃) 39 ass 1.7	atomic vibrations
Polypropyler Polyethylene Polystyrene Teflon		vibration/rotation of chain molecules

Thermal Stresses

- Occur due to:
 - -- restrained thermal expansion/contraction
 - -- temperature gradients that lead to differential dimensional changes

$$\Delta l = \alpha l_0 \Delta T$$

Thermal stress =
$$\sigma$$

= $E\alpha_{\ell}(T_0 - T_f) = E\alpha_{\ell}\Delta T$

Example Problem

- -- A brass rod is stress-free at room temperature (20°C).
- -- It is heated up, but prevented from lengthening.
- -- At what temperature does the stress reach -172 MPa?

Solution:

Step 2: Compress specimen back to original length

$$\varepsilon_{\text{compress}} = \frac{-\Delta \ell}{\ell_{\text{room}}} = -\varepsilon_{\text{therma}}$$

Example Problem (cont.)
$$E = \frac{\delta}{\varepsilon} \implies \delta = \varepsilon \mathcal{E}$$

$$\mathcal{E}_{\text{thermal}} = \mathcal{A}_{\varepsilon}(\Delta T)$$

The thermal stress can be directly calculated as

$$\sigma = E(\epsilon_{compress})$$

Noting that $\varepsilon_{compress}$ = $-\varepsilon_{thermal}$ and substituting gives

$$\sigma = -E(\varepsilon_{thermal}) = -E\alpha_{\ell}(T_f - T_0) = E\alpha_{\ell}(T_0 - T_f)$$

Rearranging and solving for T_f gives

Stop and check Video on moodle

Lecture 10: Distance Learning Resources folder – 6: Thermal stress/strain 10m = 80GRa 0000000 wire is Compressed

Summary

The thermal properties of materials include:

- Heat capacity:
 - -- energy required to increase a mole of material by a unit T
 - -- energy is stored as atomic vibrations
- Coefficient of thermal expansion:
 - -- the size of a material changes with a change in temperature
 - -- polymers have the largest values
- Thermal conductivity:
 - -- the ability of a material to transport heat
 - -- metals have the largest values

Thermal Properties

Specific Heat

• Measurement used in thermodynamics and calorimetry that states the amount of heat energy necessary to increase the temperature of a given mass of a particular substance by some amount.

Thermal conductivity

- Measures the heat conducting capability of a material
- The rate at which a substance transfers heat

Thermal Expansion Coefficient

- Defined as the relative change in length or volume of a material for a unit change in temperature.
- Allowance often has to be made for the expansion of metal parts in structures and machinery is relative increase in length per unite temperature rise

