

if V is a subspace of \mathbb{R}^n with an orthonormal basis $\vec{u}_1,...,\vec{u}_m,$ then

$$\mathrm{proj}_V \vec{x} = (\vec{u}_1 \cdot \vec{x}) \vec{u}_1 + \dots + (\vec{u}_m \cdot \vec{x}) \vec{u}_m \ \, \forall \vec{x} \in \mathbb{R}^n$$

Problem

Find the orthogonal projection of $\begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}$ onto the subspace of \mathbb{R}^4 spanned by $\begin{pmatrix} 1\\1\\1\\-1\\-1 \end{pmatrix}$, $\begin{pmatrix} 1\\1\\-1\\-1\\1 \end{pmatrix}$

Problem

Find the angle between the vectors

$$\vec{x} = (1, 0, 0, 0)^T$$
 and $\vec{y} = (1, 1, 1, 1)^T$.

Problem

Find all vectors orthogonal to both
$$v=\begin{pmatrix}1\\1\\-1\end{pmatrix}$$
 and $w=\begin{pmatrix}1\\1\\1\end{pmatrix}$