- Harta duală
- $M=(V,E,F) \rightarrow harta duală M*=(V*, E*, F*)$
 - V* <= se consideră câte un punct f* în interiorul fiecărei fețe f din M
 - E* <= pentru fiecare muchie e a lui M comună la două fețe f' și f'' se construiește un segment de curbă continuă e* cu capetele în vârfurile f'* și f''* asociate fețelor f' și f'' astfel încât să intersecteze în interior muchia e și să nu mai intersecteze astfel nicio altă muchie a lui M

mai M*

- Harta duală
- $M=(V,E,F) \rightarrow harta duală M*=(V*, E*, F*)$
 - (M*)* este izomorf cu M
 - $\circ \ d_{M^*}(f^*) = d_M(f)$

(gradul vârfului corespunzător feței în dual = gradul feței în M)

Dodecaedru:

Icosaedru:

duale

Dualitatea dodecaedru ⇔ icosaedru (http://apollonius.math.nthu.edu.tw/d1/dg-07-exe/943251/dynamic/duality.htm)

duale

http://origametry.net/combgeom/graphnotes.html

Autodual (M izomorf cu M*)

Colorări ale grafurilor

Amintim:

Computațional: Dat p, este G p-colorabil?

Care este p minim cu proprietatea că G este p-colorabil? = Care este numărul cromatic al lui G?

- Este G 2-colorabil / graf bipartit algoritm polinomial
- Este G 3<u>-colorabil</u> problemă NP-completă

- Complexitatea în timp a algoritmilor joacă un rol esenţial.
- Un algoritm este considerat "acceptabil" numai dacă timpul său de executare este polinomial

Nu știm algoritm polinomial - problemă grea?

Nu ştim algoritm polinomial - problemă grea?

P = clasa problemelor pentru care există algoritmi polinomiali (determiniști)

Nu ştim algoritm polinomial - problemă grea?

NP

- există algoritm polinomial pentru a testa o soluţie candidat dacă este soluţie posibilă (verificator polinomial) / există algoritm polinomial nedeterminist
- ⇒ o problemă NP poate fi rezolvată în timp exponenţial (considerând toate soluţiile candidat)

Nu ştim algoritm polinomial - problemă grea?

NP

- $-P \neq NP$?
- Probleme NP-complete
 - B ∈ NP a.î. ∀A ∈ NP, A ≤ p B (reducere în timp polinomial)
 - Dacă pentru un B se găsește algoritm polinomial, atunci P = NP
 - SAT (Cook–Levin)
 - Probleme NP-dificile (NP-hard)
 - B a.î. $\forall A \in NP$, $A \leq p$ B.

Nu ştim algoritm polinomial - problemă grea?

NP

- P versus NP

Metode de elaborare a algoritmilor

Nu ştim algoritm polinomial

Demonstrăm NP - dificilă

Soluţii:

- algoritmi exponenţiali mai rapizi decât cei exhaustivi (brute force) de căutare în spaţiul soluţiilor: Backtracking, Branch & Bound
- ➤ Compromis: algoritmi mai rapizi care produc soluţii care nu sunt optime algoritmi euristici, aleatorii, genetici...

Algoritmi de colorare de tip greedy (euristici)

- Fie v_1, \dots, v_n o ordonare a vârfurilor
- Pentru i = 1,...,n
 - Colorează v_i cu cea mai mică culoare posibilă (care nu este culoare a unui vecin al său deja colorat)

- Complexitate?
 - O(n+m) determinarea primei culori disponibile pentru v – ordin d(v)

- Câte culori folosește maxim? (=> limită superioară pentru numărul cromatic)
- Cât de mare poate fi diferența între numărul de culori folosite de Algoritmul Greedy de colorare și numărul cromatic? Sunt clase de grafuri pentru care avem egalitate?

Algoritm Greedy de coloare

Algoritm Greedy de coloare

Algoritm Greedy de coloare

Algoritm Greedy de coloare

Algoritm Greedy de coloare

Exemplul 2: – Graful $G = K_{n,n}$ fără muchiile $x_i y_i$

Ordinea $x_1, y_1, x_2, y_2, x_3, y_3, ..., x_n, y_n$:

culori

$$\chi(G) = 2$$

Algoritm Greedy de coloare

Exemplul 2: – Graful $G = K_{n,n}$ fără muchiile $x_i y_i$

Ordinea
$$x_1, y_1, x_2, y_2, x_3, y_3, ..., x_n, y_n$$
: $n = \frac{|V(G)|}{2}$ culori $\gamma(G) = 2$

- $N_{greedy}(G, \{v_1, ..., v_n\}) = numărul de culori folosit de Algoritmul Greedy de colorare pentru G considerând vârfurile în ordinea <math>v_1, ..., v_n$
- Δ (G) = gradul maxim al lui G

Algoritm Greedy de coloare

► $N_{greedy}(G, \{v_1, ..., v_n\}) \le max\{ min(d(v_i)+1, i) | i=1,...,n \}$ $\le \Delta(G) + 1$

 v_i are $d(v_i)$ vecini și sunt cel mult i-1 vârfuri deja colorate $=> v_i$ are cel mult $\min\{d(v_i), i-1\} \le \Delta(G)$ vecini deja colorați când se alege culoare lui

Limite pentru numărul cromatic

Proprietate

$$\chi(G) \leq \Delta(G) + 1$$

(Demonstrație: $\chi(G) \leq N_{qreedy}(G,\{v_1,...,v_n\})$)

Observații:

- 1. $\chi(K_n) = n = \Delta(K_n) + 1$
- 2. $\chi(C_n) = 3 = \Delta(C_n) + 1$ pentru n impar
- 3. $\chi(S_n) = 2$, $\Delta(S_n) = n 1$ (graful stea)

Limite pentru numărul cromatic

Teorema lui Brooks

 $\chi(G) \leq \Delta(G)$ pentru G care nu este graf complet sau ciclu impar

(Demonstrație – suplimentar, v. bibliografie)

Limite pentru numărul cromatic

Proprietate

 $\chi(G) \ge \omega(G)$ = numărul clică = cardinalul maxim al unei clici (subgraf complet) din G

Demonstrație - vârfurile dintr-o clică trebuie demonstrate diferit

- Am demonstrat la grafuri planare: există o ordonare a vârfurilor pentru care Algoritmul Greedy furnizează o colorare cu cel mult 6 culori (Teorema celor 6 culori)
- Exista ordonări + clase de grafuri pentru care Algoritmul Greedy de colorare este optim?

- Exista ordonări + clase de grafuri pentru care Algoritmul Greedy de colorare este optim?
 - Grafuri bipartite, ordonare dată de o parcurgere (sau orice ordonare în care orice vârf v_i este adiacent cu cel puțin un vârf v_j cu j<i)
 - Grafuri interval

- Grafuri interval
 - Fiecare vârf i asociat unui interval [a_i,b_i]
 - Muchii între intervale care se intersectează

Algoritm Greedy de coloare

Grafuri interval

Proprietate: Fie G un graf interval si $v_1, ..., v_n$ o ordonare a vârfurilor sale după extremitatea inițială a intervalelor corespunzătoare.

Avem
$$\chi(G) = N_{greedy}(G, \{v_1, ..., v_n\})$$

Demonstrație - tablă

Algoritm Greedy de coloare

Grafuri interval

Algoritm O(n log(n)) de determinare a numărului cromoatic $\chi(G)$ si a unei $\chi(G)$ -colorări - vezi metoda Greedy, problema Partiționării intervalelor

Agoritm Greedy de coloare

Ordonări ale vârfurilor - strategii generale

- SL Smallest Last [Matula et al]: $v_1, ..., v_n$ astfel încât v_i este vârful de grad minim din $G-v_n-...-v_{i+1}$
 - folosește cel mult 6 culori pentru grafuri planare
- LF Largest first [Welsh, Powell]: v₁,...,v_n în ordine descrescătoare după grad

- Ordonări dinamice:
- DSatur se dă prioritate în ordonare vârfurilor care au un număr maxim de vecini deja colorați (și, in caz de egalitate, celor cu gradul cel mai mare)
 - optim pentru grafuri bipartite

Agoritm Greedy de coloare

Repetarea algoritmului pe ordonări diferite:

repetă în timpul avut la dispoziție:

- generează aleator o ordonare a vârfurilor
- colorează G folosind algoritmul Greedy pentru această ordonare
- dacă colorarea obținută folosește un număr mai mic de culori decât cea mai bună găsită până acum, memorează această colorare ca fiind cea mai bună