Astronomy from 4 Perspectives: the Dark Universe

prepared by: Jena participants and Björn Malte Schäfer

Play with data: Rotation curves of galaxies

Observations of the rotation of disc galaxies is nowadays done in the H α -line of hydrogen, because it reaches to much larger distances from the galaxy centre compare to the stellar light. In this exercise we have a look at a data set on low surface-brightness galaxies by W. de Blok, S. McGaugh and V. Rubin, Astronomical Journal 122, 2381 (2001).

1. Flat rotation curves

Let's start by exploring $H\alpha$ -data for low surface-brightness galaxies.

- (a) Why is it a clever idea to focus on galaxies with a low (optical) surface brightness?
- (b) What is the general relationship between rotation curve v(r) and mass profile $\rho(r)$?
- (c) A isothermal sphere with a core has the density profile $\rho(r)$,

$$\rho(r) = \rho_0 \left(1 + \left(\frac{r}{r_c} \right)^2 \right)^{-1},\tag{I}$$

with the central density ρ and the core radius r_c . The corresponding velocity profile v(r),

$$\nu(r)^2 = 4\pi G \rho_0 r_c^2 \left(1 - \frac{r_c}{r} \arctan\left(\frac{r}{r_c}\right) \right),\tag{II}$$

with the gravitational constant $G \simeq 10^{-11} \text{ m}^3/\text{kg/s}^2$.

- (d) Please show that the asymptotic value for v for $r \to \infty$ is $v_{\infty} = \sqrt{4\pi G \rho_0 r_c^2}$. Please check the units of the relation between v_{∞} and r_c and ρ_0 .
- (e) Please use the script rotplot.py and plot a couple of rotation curves: Do they show the expected behaviour?

2. Luminous and dark matter

With the script rotfit.py you can fit a model rotation curve to data. Take care to read off the distance d to the galaxy from the table, in order to convert r from arc seconds to kpc.

- (a) Are the curves from the isothermal-sphere model providing a good fit to data?
- (b) What are typical velocities v_{∞} , central densities ρ_0 and core radii r_c ?
- (c) What is the role of ϵ in the script? Why are the results not affected if ϵ is small enough?

Please continue by completing the table.

(d) Please try to find out if the mass to light-ratio M/L is large: For that purpose, estimate the total mass M in units of the solar mass $M_{\odot} = 10^{30}$ kg,

$$M = 4\pi \int_0^\infty r^2 \mathrm{d}r \, \rho(r),\tag{III}$$

and compare it to the total luminosity. For the integral, you can use the result

$$\int dx \, \frac{x^2}{1+x^2} = \arctan(x) + \text{const.}$$
 (IV)

Please truncate the integration at the tidal radius $10r_c$. With the expression for the mass, please verify the relationship between orbital velocity v and distance r.

Figure 1: rotation curve v(r) of the galaxy F568

(e) Then, please express the mass to light-ratio M/L in units of solar masses per solar luminosities M_{\odot}/L_{\odot} : The luminosity L in units of the solar luminosity L_{\odot} follows from the difference of the absolute magnitudes,

$$\frac{L}{L_{\odot}} = 10^{0.4(\text{Mag}_{\odot} - \text{Mag})},$$
 (V)

you can find the values for Mag of the galaxies in the table, and use the literature value for $Mag_{\odot} = 5.45$ in the same band (*R*-band) from the literature.

(f) Is there evidence for dark matter?

Figure 2: fit of a isothermal sphere rotation curve v(r) to the galaxy U11557 at 22 Mpc distance, with the values $r_c = 0.412$ kpc and $v_{\infty} = 169$ km/s.

galaxy	d in Mpc	v_{∞} in km/s	r_c in kpc	M in M_{\odot}	Mag	M/L in M_{\odot}/L_{\odot}
E0140040	212				-21.6	
E0840411	80				-18.1	
E1200211	15				-15.6	
E1870510	18				-16.5	
E2060140	60				-19.2	
E3020120	69				-19.1	
E3050090	11				-17.3	
E4250180	86				-20.5	
E4880049	22				-16.8	
F563-1	45				-17.3	
F568-3	77				-18.3	
F571-8	48				-17.6	
F579-V1	85				-18.8	
F583-1	32				-16.5	
F583-4	49				-16.9	
U4115	3.2				-12.4	
U5750	56				-18.7	
U6614	85				-20.3	
U11454	91				-18.6	
U11557	22	169	0.412		-20.0	
U11583	5				-14.0	
U11616	73				-20.3	
U11648	48				-21.0	
U11748	73				-22.9	
U11819	60				-20.3	