

Exploiting Expertise Rules for Statistical Data-Driven Modeling

(Dec 21, 2016)

Cheng Jianlin

Outline

- I. Rule based Data Expression
- II. Rule based Data Fusion by 12 Multiple Kernel Learning
- III. Ensemble Data and Rule based Model by Sigmoid Fitting
- IV. Results

• I. Rule based Data Expression

CART is used as a preprocessing step to extract if $\cdot \cdot \cdot$ then $\cdot \cdot \cdot$ rules.

• I. Rule based Data Expression

For some expert, assume that there are m items if \cdots then \cdots logical rules composed of the following two kinds

- if $x_{i_1} \in V_{i_1}^j$ and \cdots and $x_{i_t} \in V_{i_t}^j$, then $y = y^j$,
- if $x_{i_1} \in V_{i_1}^j$ or \cdots or $x_{i_t} \in V_{i_t}^j$, then $y = y^j$.

Here $\{V_{i_q}^j\}_{q=1,\cdots,t}^{j=1,\cdots,m}$ is called basic rule interval including three types, i.e. $(-\infty \ a), \ [b + \infty)$ and $[c \ d), \ \{i_1,\cdots,i_t\} \subset \{1,\cdots,n\}$ is the index of features used in the jth rule. Next we define the i_q th feature of the kth sample's membership, denoted as $\delta_{V_{i_q}^j}(x_{k_{i_q}}) \in [0\ 1]$, on the rule interval $V_{i_q}^j$ as

$$\delta_{V_{iq}^{j}}(x_{k_{iq}}) = \begin{cases}
\frac{1}{1+e^{s_{iq}^{j}-x_{k_{iq}}}}, & if \ V_{iq}^{j} \triangleq [b, +\infty) \\
-\frac{|x_{k_{iq}}-m_{iq}^{j}|}{\sigma_{iq}^{j}}, & if \ V_{iq}^{j} \triangleq [c, d) \\
\frac{1}{1+e^{x_{k_{iq}}-b_{iq}^{j}}}, & if \ V_{iq}^{j} \triangleq (-\infty, a).
\end{cases}$$
(1)

• I. Rule based Data Expression

where $s_{i_q}^j = \min_k \{x_{k_{i_q}} | x_{k_{i_q}} \in V_{i_q}^j, k = 1, \cdots, l\}$ and $b_{i_q}^j = \max_k \{x_{k_{i_q}} | x_{k_{i_q}} \in V_{i_q}^j, k = 1, \cdots, l\}$, $m_{i_q}^j$ and $\sigma_{i_q}^j$ denote the mean and standard deviation of the i_q th feature of samples in the set $\{x_{k_{i_q}} | x_{k_{i_q}} \in V_{i_q}^j, k = 1, \cdots, l\}$. Then, operators \vee and \wedge are used to define the or-type and and-type rule's density support of input sample \mathbf{x}_k as

$$r_j(\mathbf{x}_k) = \vee_{q=1}^t \delta_{V_{i_q}^j}(x_{k_{i_q}}) = \max_{1 \le q \le t} \delta_{V_{i_q}^j}(x_{k_{i_q}}), \tag{2}$$

and

$$r_j(\mathbf{x}_k) = \wedge_{q=1}^t \delta_{V_{iq}^j}(x_{k_{iq}}) = \min_{1 \le q \le t} \delta_{V_{iq}^j}(x_{k_{iq}}), \tag{3}$$

respectively. $r_j(\mathbf{x}_k)$ depicts the support degree of the kth sample \mathbf{x}_k to the jth rule. In this way, we generate the rule based data for the specified expert as

$$\mathbb{R} = \{\mathbf{r}_k, y_k\}_{k=1}^l \tag{4}$$

• II. . Rule based Data Fusion by 12 Multiple Learning

$$\min_{\mathbf{w},b,\mathbf{e}} \quad \frac{1}{2} \mathbf{w}^T \mathbf{w} + \frac{1}{2\nu} \sum_{k=1}^{l} e_k^2 \tag{5}$$

s.t.
$$y_k = \mathbf{w}^T \Phi(\mathbf{x}_k) + b + e_k, \ k = 1, ..., l.$$
 (6)

grangian function of Eqs.(5,6) is $L(\mathbf{w}, b, \mathbf{e}; \alpha) = \frac{1}{2} \mathbf{w}^T \mathbf{w} +$

$$\frac{1}{2\nu} \sum_{k=1}^{l} e_k^2 - \sum_{k=1}^{l} \alpha_k (\mathbf{w}^T \Phi(\mathbf{x}_k) + b + e_k - y_k) \text{ where } \alpha_k \text{ is}$$

 $\min_{\mathbf{w},b,\mathbf{e}} \max_{\alpha} L(\mathbf{w},b,\mathbf{e};\alpha) = \max_{\alpha} \min_{\mathbf{w},b,\mathbf{e}} L(\mathbf{w},b,\mathbf{e};\alpha)$

$$\max_{\alpha} \quad \alpha^T \mathbf{y} - \frac{1}{2} \alpha^T K \alpha - \frac{\nu}{2} \alpha^T \alpha \tag{7}$$

s. t.
$$\sum_{i=1}^{l} \alpha_i = 0, \tag{8}$$

• II. . Rule based Data Fusion by 12 Multiple Learning

$$\begin{split} \omega(K) &= \max\{\boldsymbol{\alpha}^T\mathbf{y} - \frac{1}{2}\boldsymbol{\alpha}^TK\boldsymbol{\alpha} - \frac{\nu}{2}\boldsymbol{\alpha}^T\boldsymbol{\alpha}|\boldsymbol{\alpha}^T\mathbf{1} = 0\} \\ &= -\min\{\frac{1}{2}\boldsymbol{\alpha}^TK\boldsymbol{\alpha} + \frac{\nu}{2}\boldsymbol{\alpha}^T\boldsymbol{\alpha} - \boldsymbol{\alpha}^T\mathbf{y}|\boldsymbol{\alpha}^T\mathbf{1} = 0\}. \end{split}$$

$$\min_{\boldsymbol{\mu}} 2\omega(\sum_{i=1}^p \mu_i K_i)$$

$$\max_{\boldsymbol{\mu}} -2\omega(\sum_{i=1}^{p+1} \mu_i K_i) \tag{10}$$

$$= \max_{\boldsymbol{\mu} \geq \mathbf{0}, \|\boldsymbol{\mu}\| = 1} \min_{\boldsymbol{\alpha}^T \mathbf{1} = 0} \{ \sum_{i=1}^{p+1} \mu_i \boldsymbol{\alpha}^T K_i \boldsymbol{\alpha} - 2\boldsymbol{\alpha}^T \mathbf{y} \} \quad (11)$$

$$\stackrel{1}{=} \max_{\boldsymbol{\mu} \geq \mathbf{0}, \|\boldsymbol{\mu}\| \leq 1} \min_{\boldsymbol{\alpha}^T \mathbf{1} = 0} \{ \sum_{i=1}^{p+1} \mu_i \boldsymbol{\alpha}^T K_i \boldsymbol{\alpha} - 2\boldsymbol{\alpha}^T \mathbf{y} \}. (12)$$

• II. . Rule based Data Fusion by 12 Multiple Learning

$$\max_{\boldsymbol{\mu},\boldsymbol{\theta}} \quad \boldsymbol{\theta} \tag{13}$$

s. t.
$$\|\mu\| \le 1$$
, (14)

$$\mu_i \ge 0, i = 1, \cdots, p + 1,$$
 (15)

$$\mu_{i} \ge 0, i = 1, \dots, p + 1,$$

$$\sum_{i=1}^{p+1} \mu_{i} f_{i}(\alpha) - 2 \sum_{k=1}^{l} \alpha_{k} y_{k} \ge \theta,$$
(15)

$$\sum_{k=1}^{l} \alpha_k = 0,\tag{17}$$

where $f_i(\alpha) = \alpha^T K_i \alpha$, $i = 1, \dots, p+1$.

• III. Ensemble Data and Rule based Model by Sigmoid Fitting

$$P(y = 1|\mathbf{x}) \approx P(y = 1|f(\mathbf{x}))$$

$$= \frac{1}{1 + \exp(\varepsilon f(\mathbf{x}) + \gamma)}.$$
 (18)

$$\min_{\varepsilon,\gamma} -\sum_{k=1}^{l} t_k \log(P_k) + (1 - t_k) \log(1 - P_k), \tag{19}$$

where

$$\begin{cases} t_k = \begin{cases} \frac{N_+ + 1}{N_+ + 2}, & \text{if } y_k = 1\\ \frac{1}{N_- + 2}, & \text{if } y_k = -1\\ P_k = \frac{1}{1 + \exp(\varepsilon f(\mathbf{x}_k) + \gamma)}. \end{cases}$$
 (20)

• III. Ensemble Data and Rule based Model by Sigmoid Fitting

$$\hat{y} = \begin{cases} 1, & \text{if } \frac{P_{data} + P_{rule}}{2} \in [0.5 \ 1] \\ -1, & \text{if } \frac{P_{data} + P_{rule}}{2} \in [0 \ 0.5). \end{cases}$$
(21)

Algorithm 1 Rule Aided Statistical Data-driven Modeling

Input: data set $\mathbb{D} = \{\mathbf{x}_k, y_k\}_{k=1}^l$, rule sets $\mathbb{E}_1, \mathbb{E}_2, \cdots, \mathbb{E}_p$ **Output:** decision value \hat{y}

- 1: With \mathbb{E}_i , transform $\mathbb{D} = \{\mathbf{x}_k, y_k\}_{k=1}^l$ into rule based data $\mathbb{R}_i = \{\mathbf{r}_k^i, y_k\}_{k=1}^l \ (i = 1, \dots, p)$ through Eqs.(1-4);
- 2: Generate kernel matrix K_i according to \mathbb{R}_i $(i = 1, \dots, p)$;
- 3: Employ ℓ_2 MKL algorithm to learn μ_i $(i=1,\cdots,p)$ through Eqs.(13-17) and derive the rule based classifier f_{rule} ;
- 4: Train LS-SVMs classifier on $\mathbb{D} = \{\mathbf{x}_k, y_k\}_{k=1}^l$, and get the data based classifier f_{data} ;
- 5: Optimize ε and γ in Eq.(18), and transform the decision values of f_{rule} and f_{data} into posterior probabilities;
- 6: Ensemble rule based model and data based model, and output the decision value \hat{y} through Eq.(21).

• IV. Results

·A Toy Experiment

Fig. 2. Green square indicates that a document is of "Christianity" and red circle stands for "Mac Computer".

Fig. 3. A toy experiment about two-class document classification.

• IV. Results

Evaluating the Performance on Benchmark Datasets

TABLE III

10-FOLD CROSS-VALIDATION RESULTS OF DIFFERENT MODELS

Dataset	$f_{Bagging}$	f_{Data}	f_{Rule}	$f_{Ensemble}$
Cancer	97.08 ± 3.39	97.50 ±2.76	96.46 ± 3.09	97.50 ±3.06
Codrna	85.67 ± 9.43	88.67 ± 8.59	85.00 ± 6.87	89.00 ±5.39
German	75.75 ± 5.01	76.75 ± 6.03	74.50 ± 3.92	77.25 ± 6.22
Heart	79.00 ± 14.45	77.00 ± 12.69	75.00 ± 10.24	90.00 ± 7.75
Ijenn l	95.37 ± 2.74	89.13 ± 2.31	88.50 ± 2.42	92.25 ± 1.75
Ionosphere	93.43 ± 4.25	93.14 ± 4.81	90.00 ± 6.03	94.86 ±4.39

• IV. Results

Tendency Prediction of Thermal State of Blast Furnace

TABLE VI

10-FOLD CROSS-VALIDATION RESULTS OF BLAST FURNACE DATASETS

BF	$f_{Bagging}$	f_{Data}	f_{Rule}	$f_{Ensemble}$
(a)	68.33±8.27	77.83 ± 6.58	67.67±6.33	78.56 ± 5.94
(b)	77.33 ± 5.49	77.83 ± 4.54	78.83 ± 3.88	79.17 ±4.96

• [1] Exploiting Expertise Rules for Statistical Data-Driven Modeling

Thanks!

模型结构图

创新点

- I. Rule Extraction through Decision Tree and how to transform the origin data into rule based data according to the expertise rules
- II. Rule based Data Fusion by Multiple Kernel Learning

意义

- I. Improve the model
- II. Make the model more understandable

方法的有待提高的点

• I. The weights of two models are equal