Extra Opgaven over Hoofdstuk 7

7.1. Stel V is een discrete stochast met verdeling gegeven door onderstaande tabel.

$$\begin{array}{c|ccccc} v & -1 & 0 & 1 & 3 \\ \hline P(V=v) & 1/4 & 1/8 & 1/8 & 1/2 \\ \end{array}$$

- 7.2. Laat X een uniforme U(0,1) variabele zijn. Bereken de verwachting van e^X .
- 7.3. De stochast X is $Geo(\frac{1}{3})$ verdeeld. Bereken de verwachting van X^2 .
- 7.4. Laat $X \sim Ber(p)$. Bereken de verwachting $E[e^X]$ van de stochast e^X .
- 7.5. Stel X heeft de verdelingsfunctie $F(x) = \begin{cases} 0, & \text{als } x \leq -1 \\ \frac{1}{4}x + \frac{1}{4}, & \text{als } -1 \leq x \leq 3 \\ 1, & \text{als } 3 \leq x \end{cases}$ Bereken de verwachting en variantie van -2X + 1
- 7.6. Stel een random variable X neemt alleen de waarden 0 en 2 aan, en P(X=0)=0.5. Dan
 - **a.** Var(X) = 0
- **b.** Var(X) = 0.5
- **c.** Var(X) = 1

- **d.** Var $(X) = \sqrt{2}$
- **e.** Var(X) = 2
- **f.** er is niet genoeg informatie.
- 7.7. Stel X heeft de dichtheid $f(x) = \begin{cases} 0, & \text{als } x \notin (-1, 1) \\ \frac{1}{2}x + \frac{1}{2}, & \text{als } -1 \le x \le 1 \end{cases}$ Bereken de verwachting en variantie van $\sqrt{2X}$

Extra opgaven over Hoofdstuk 8

8.1. Zij $a \in (0,1)$. Definieer de verdelingsfunctie F_a van een stochast X als volgt:

$$F_a(x) = \begin{cases} 0 & \text{voor } x < 0 \\ x^2 & \text{voor } x \in [0, a) \\ 1 & \text{voor } x \ge a. \end{cases}$$

Definieer $Y = X^2$ en bepaal de verdelingsfunctie F_Y van Y.

- 8.2. Stel X is $N(2, \sigma^2)$ verdeeld. Bepaal de verdeling van Y = 2X 6.
- 8.3. Van een normaal verdeelde stochast $X \sim N(\mu, \sigma^2)$ is gegeven

$$P(X > 8) = 0.0228$$
 en $P(X \le 0) = 0.0228$.

Dan zijn μ en σ^2 gegeven door

- **a.** $\mu = 2 \text{ en } \sigma^2 = 2$
- **b.** $\mu = 4 \text{ en } \sigma^2 = 4$ **c.** $\mu = 2 \text{ en } \sigma^2 = 4$ **e.** $\mu = 0 \text{ en } \sigma^2 = 8$ **f.** $\mu = 8 \text{ en } \sigma^2 = 2$
- **d.** $\mu = 4 \text{ en } \sigma^2 = 2$

- 8.4. Als $U \sim U(0,1)$, dan heeft de stochast X gedefinieerd door $X = -\ln U$ de volgende verdeling:

- **a.** $\text{Exp}(\frac{1}{2})$ **b.** Exp(1) **c.** Exp(-1) **d.** $\text{Exp}(-\frac{1}{2})$ **e.** U(-1,0) **f.** U(0,1)

Extra opgaven over Hoofdstuk 9

9.1. X en Y hebben een gezamenlijke verdeling volgens de volgende tabel:

		b			
P ((X = a, Y = b)	0	1	2	3
	-1	0.05	0.15	0.05	0.10
a	0	0.10	0.05	0.05	0.05
	1	0.10	0.20	0.05	0.05

- a. Bepaal de marginale verdelingen van X en Y.
- **b.** Bereken P(X = 1 | XY = 0).
- 9.2. De stochasten X en Y nemen alleen positieve waarden aan. Ze hebben een gezamenlijke kansdichtheid

$$f_{X,Y}(x,y) = 2e^{-x-2y}, \quad \text{voor } x, y \ge 0,$$

en $f_{X,Y}(x,y) = 0$ voor alle andere waarden van x en y.

- a. Bereken voor $x,y\geq 0$ de gezamenlijke verdelingsfunctie $F_{X,Y}(x,y)$
- **b.** Bepaal de marginale dichtheden van X en Y.
- c. Bereken de kans P(X > Y).
- 9.3. Gegeven is de onderstaande gezamenlijke kansverdeling van twee discrete stochastische variabelen X en Y:

		a		
b	0	1	2	P(Y=b)
$\overline{-1}$	1/6	$\frac{1/6}{1/2}$	1/6	1/2
1	0	1/2	0	1/2
P(X=a)	1/6	2/3	1/6	1

Bereken P(|X - Y| = 1).

Antwoorden:

- 7.1. $\frac{15}{4}$
- **7.2.** 1.718
- **7.3.** 15
- **7.4.** p(e-1)+1
- **7.5.** -1; $\frac{16}{3}$.
- 7.6. c.
- 7.7. $\frac{\sqrt{2}+12}{3}$; $\frac{4}{9}$.
- **8.1.** Voor y < 0 geldt $F_Y(y) = 0$, voor $y > a^2$ geldt $F_Y(y) = 1$.
- **8.2.** $Y \sim N(-2, 4\sigma^2)$.
- 8.3. b.
- 8.4. b.
- **9.1.a** $p_X(-1) = 0.35, p_X(0) = 0.25, p_X(1) = 0.40; p_Y(0) = 0.25, p_Y(1) = 0.40, p_Y(2) = 0.15, p_Y(3) = 0.20.$
- **9.1.**b $\frac{1}{4}$.
- **9.2.a** $1 e^{-x} e^{-2y} + e^{-x-2y}$
- **9.2.b** $f_X(x) = e^{-x}$, als $x \ge 0$ en $f_X(x) = 0$ anders; $f_Y(y) = 2e^{-2y}$, als $y \ge 0$ en $f_Y(y) = 0$ anders
- **9.2.c** $\frac{2}{3}$
- **9.3.** $\frac{1}{6}$.