Video Lectures On Artificial Intelligence

Lecture 20 Admissibility of A*

Prof. Deepak Khemani
Department of Computer Science
IIT Madras

profes made with lowest f(n) = g(n) + h(n)managen (n) -> NEN OPEN CLOSED

proces node with lowest f(n) = g(n) + h(n)mneGen(n) > NEW Revise g(m) CLOSED

mneGen(n) NEN OPEN Revisi g(m)< CLOSED

Conditions for optimal path 1) Finite branching factor

(2) preachedge k(m,n) > 0 \bigcirc

$$f(n') = g(n') + h(n')$$

$$= g^{*}(n') + h(n')$$

$$\leq g^{*}(n') + h^{*}(n')$$

f(n') = g(n') + h(n') $= 3^{\times}(m') + h(m')$ < 9/m') + h*(m') (/*(n1)

$$f(n') = g(n') + h(n')$$

$$= g^{*}(n') + h(n')$$

$$= g^{*}(n') + h^{*}(n')$$

$$= f^{*}(s)$$
NPTEL

 $\leq f^*(n')$ Let A* tolumate with g(G) it would pack n

L1: Terminates for finite graphs L2 & Akall times before termination three certs a node n' on OPEN which is on an optimal path. Further $f(n') \leqslant f^*(s)$ Firther is a path to the goal the algo f(n')terminates (oven for infinite graphs) with a path. A* is admissible For every not A* pucks f(n) \left(s)

L1: Terminates for finite graphs L23 At all times before termination three ceits a node n' on OPEN which is on an optimal path, Further $f(n') \leqslant f^*(s)$ IF there is a path to the goal the algo f(n')terminates (oven for infinite graphs) with a path. 18 AX is admissible 3 For every node (n) A* pucks f(n) \left(s)

L1: Terminates for finite graphs L2 & At all times before termination three certs a node n' on OPEN which is on an optimal path, Further $f(n') \leqslant f^*(s)$ is IF there is a rath to the goal the algo (f(n)) terminates (over for infinite graphs) with a path. A* is admissible 3 50 every node (1) A* picks f(n) < f(s) 12 IS MORE INFORMED than h, h(n) > h(n)

L1: Terminates for finite graphs L28 At all times before termination, three ceirs a node n' on OPEN which is on an optimal path, Further $f(n') \leqslant f'^*(s)$ IF there is a path to the goal the algo terminates (oven for infinite graphs) with a path. AX is admissible For every mode (n) A* pucks $f(n) \leq f^*(s)$ If h_2 is MORE INFORMED than h_1 , $h_1(n) > h_1(n)$ Seen by A^*_2 is also seen by A^*_3

ADMISSIBILITY of At prokes note u 2) Let P be true for depth K (3) Let N be a mode at depth (K+1)
preked by Azt Led At terminate without priking N

$$f_2(N) = g(N) + h_2(N) \leq f^*(s)$$
 $h_2(N) \leq f^*(s) - g(N)$

NPTEL

