Universidade do Estado de Santa Catarina - UDESC Centro de Ciências Tecnológicas - CCT Bacharelado em Ciência da Computação - BCC Programação Paralela (OPRP001) – Semestre: 2019/02

Trabalho Final

1) Objetivo do trabalho

O trabalho final da disciplina de Programação Paralela (OPRP001) busca aplicar as técnicas e ferramentas estudadas durante o semestre para o desenvolvimento de uma solução real. O problema selecionado para estudo é denominado Passeio do Cavalo em um tabuleiro de xadrez. Um problema matemático clássico no qual um cavalo é inicialmente posicionado em um tabuleiro ($N \times N$) vazio e deve percorrer todas as casas exatamente uma vez, respeitando as regras do jogo. Uma solução completa, ou seja, que percorre todas as casas, pode ser investigada iniciando-se de qualquer casa do tabuleiro. Um exemplo de percurso completo do Passeio do Cavalo é apresentado no tabuleiro abaixo. Os números indicam a ordem de execução dos saltos.

27	30	21	44	1	32	23
20	43	28	31	22	35	2
29	26	45	40	3	24	33
42	19	48	25	34	3	36
13	16	41	46	39	6	9
18	47	14	11	8	37	4
15	12	17	38	5	10	7

O movimento da peça do jogo de Xadrez denominada Cavalo é semelhante a um "L", ou seja, pulos sobre outras peças estão autorizados. A figura abaixo ilustra um cavalo posicionado no tabuleiro ($N \times N$, com N = 8) e as casas que o cavalo pode visitar (identificadas por círculos).

2) Como abordar o problema?

- a) Dentre as diferentes abordagens para análise do problema, o trabalho busca todas as soluções válidas em um tabuleiro *N x N*. Observe que a implementação deve ser escalável, considerando qualquer dimensão de tabuleiro.
- b) Utilize as ferramentas OpenMP, pthreads, MPI ou CUDA. Você selecionará como implementará o seu código. A arquitetura alvo (testes e avaliação) é a sala F-307.

3) Como serei avaliado?

- a) O trabalho será desenvolvido em duplas (no máximo).
- b) Cada dupla terá entre 20 e 30 minutos para executar seu código utilizando todos os recursos computacionais disponíveis na sala F-307. Após o tempo máximo, o número de saída encontradas será contabilizado e um *ranking* será criado.
- c) Além da implementação e domínio sobre o código, duas dimensões serão avaliadas: aceleração e escalabilidade.

4) Entrada e saída do código

As entradas e saídas são padronizadas e devem ser respeitadas.

- a) Entrada. Um inteiro ($N \ge 5$) será informado representando as dimensões do tabuleiro.
- b) Saída. Dois arquivos devem ser criados.
- O arquivo de contabilização (<id dupla>-cont.txt) informará o número de soluções que foram encontradas.
- O arquivo de verificação (<id dupla>-ver.txt) informará o caminho completo da solução. Um por linha do arquivo.

5) Como iniciar?

Um exemplo sequencial (em C++) é fornecido. O exemplo busca uma solução recebendo como entrada três inteiros: dimensão do tabuleiro, posição inicial do cavalo em X, posição inicial do cavalo em Y. A dupla pode reimplementar o código completamente, buscando auxílio na literatura especializada.