Aufgabe 3

a)

Anzahl aller möglichen Kombinationen des Tupels (A, B) = a * b

R(A,B) besitz n Einträge

S(A,B) besitz m Einträge

Tupel können einmal in einer Liste vorkommen

- Reducer berechnet Schnittmenge von k Tupeln aus R und S
- Ausgabe wenn Tupel in beiden Mengen vorhanden ist
- Größte Anzahl überdeckt, wenn alle Kombinationen vorkommen

 $q=2\ k$, wobei k die Menge der untersuchten Tupel pro Reducer ist. Im worst case entspricht k=a*b

g(q)=q, da pro Tupel, welches zweimal vorkommt nur eines zur Ausgabe gegeben wird, welches aus zwei Werten besteht

Dabei ist gilt $g(q) \le a * b$

b)

In dem Mapper Schritt wird je nach Eingabe n Zeilen der Matrix A mit $(a_{1,i}, \ldots, a_{m,i})$, der komplette Vektor \overrightarrow{x} mit (x_1, \ldots, x_n) oder n Werte des Vektors \overrightarrow{b} mit (b_i) ausgegeben $(i=1,\ldots,n)$. Der Reducer bildet zuerst das Skalarprodukt zwischen Vektor x und der Zeile aus der Matrix A. Danach wird der Wert mit dem des Vektors \overrightarrow{b} aufaddiert.

Daher ist die die maximale Anzahl an Eingabewerten für den Reducer q=k(n+m+1). Dabei ist k die Anzahl an Multiplikationen und Additionen im Reducer. Das Ergebnis ist ein n oder m dimensionaler Vektor, je nachdem ob n oder m größer ist. Pro Reducer wir dafür die Anzahl an berechneten Werten ausgegeben: $g(q)=\frac{q}{(n+m+1)}$

- c) Der Mapper übergibt die Kanten an den Reducer. Dieser sucht nach Dreiecken und gibt die Knoten der Dreiecke aus. Die maximale Anzahl an Kanten entspricht $v=\frac{n(n-1)}{2}$ bei n Knoten. Die maximale Anzahl an Dreiecken d kann durch $d \leq \frac{\sqrt{2}}{3} * v^{\frac{3}{2}}$ approximiert werden.
 - 1. Pro Kante werden2 Knoten übergeben, die durch die Kante verbunden ist. Der Mapper übergibt alle Kanten der Eingabe an den Reducer.

$$q = 2v$$

$$g(q) \le \frac{\sqrt{2}}{3} * q^{\frac{3}{2}} * 3$$

2. Die Größe der Ausgabe entspricht der maximalen Anzahl an Dreiecken mal die Anzahl an Knoten, die das Dreieck beschreiben $m \leq \frac{\sqrt{2}}{3} * v^{\frac{3}{2}} * 3$

$$3. \sum_{i} g(q_{i}) \geq m \rightarrow \sum_{i} \frac{\sqrt{2}}{3} * q_{i}^{\frac{3}{2}} * 3 \geq \frac{\sqrt{2}}{3} * v^{\frac{3}{2}} * 3 \rightarrow \sum_{i} q_{i}^{\frac{3}{2}} \geq v^{\frac{3}{2}} \rightarrow \sum_{i} q_{i} * q_{i}^{\frac{1}{2}} \geq v^{\frac{3}{2}}$$

4.
$$q \sum_{i} q_{i}^{\frac{1}{2}} \ge v^{\frac{3}{2}} \to \sum_{i} q_{i} \ge \left(\frac{v^{\frac{3}{2}}}{q}\right)^{2}$$

$$5. r \ge \left(\frac{v^{\frac{3}{2}}}{q}\right)^2 * 2v \to r \ge \frac{2v^4}{q^2}$$

d)

Gegeben: $g(q) \le \frac{q}{2} \log_2(q)$

Map übergibt die Bitstrings an den Reducer. Der Reducer vergleicht die Strings und berechnet deren Unterschied. Die maximale Anzahl an Bitstring Paaren, die sich in einer Zahl unterscheiden ist $\frac{\frac{n}{2}\left(\frac{n}{2}-1\right)}{2}$, wenn die Hälfte der Zahlen eine Zahl und die andere eine um 1 unterschiedliche. Angenommen alle Bitstrings unterscheiden sich in mindestens einem Bit und die Anzahl an Bitstrings entspricht $n=2^b$, dann ist die maximale Anzahl an möglichen Paaren $\frac{n}{2}\log_2(n)$, wie anhand der Beispieltabelle ersichtlich.

b=	4				3			2		1
	0	0	0	0	0	0	0	0	0	0
	0	0	0	1	0	0	1	0	1	1
	0	0	1	0	0	1	0	1	0	
	0	0	1	1	0	1	1	1	1	
	0	1	0	0	1	0	0			
	0	1	0	1	1	0	1			
	0	1	1	0	1	1	0			
	0	1	1	1	1	1	1			
	1	0	0	0						
	1	0	0	1						
	1	0	1	0						
	1	0	1	1						
	1	1	0	0						
	1	1	0	1						
	1	1	1	0						
	1	1	1	1						
Anzahl Paare	32				12			4		1

1. Aus der vorherigen Diskussion geht hervor:

$$q = b$$

$$g(q) = \frac{q}{2b}\log_2\left(\frac{q}{b}\right) * 2b$$

2. Die Größe der Ausgabe entspricht $m=\frac{n}{2}\log_2(n)*2b$

3.
$$\sum_{i} g(q_i) \ge m \to \sum_{i} \frac{q_i}{2b} \log_2 \left(\frac{q_i}{b}\right) * 2b \ge \frac{n}{2} \log_2(n) * 2b$$

$$\leftrightarrow \sum_{i} q_{i} \log_{2}(q_{i}) \ge n \log_{2}(n) * b - \log_{2}(b)$$

4.
$$q \sum_{i} \log_{2}(q_{i}) \ge n \log_{2}(n) * b - \log_{2}(b) \leftrightarrow \sum_{i} \log_{2}(q_{i}) \ge \frac{n \log_{2}(n) * b - \log_{2}(b)}{q}$$

$$\sum_{i} q_{i} \ge 2^{\frac{n \log_{2}(n) * b - \log_{2}(b)}{q}}$$

5.
$$r \ge \frac{\frac{n \log_2(n) * b - \log_2(b)}{q}}{b} \leftrightarrow r \ge b^{\frac{-1}{q} - 1} * n^{\frac{bn}{q}}$$