Лабораторная забота №1.

Статистическое моделирование случайных величин. Точечное оценивание параметров распределения и функций распределения случайных величин.

Часть I.

- 1. Смоделировать выборку из n независимых наблюдений над случайной величиной X, имеющей нормальный закон распределения с параметрами (a, σ^2) .
 - 1.1. Сгруппировать данные в интервалы и найти интервальный ряд абсолютных частот. Число интервалов группировки выбрать в соответствии с правилом, указанном в Вашем варианте. Вычислить средствами Python сумму абсолютных частот. Построить диаграмму абсолютных частот.
 - 1.2. Сгруппировать данные в интервалы и найти интервальный ряд относительных частот. Вычислить средствами Python сумму относительных частот. Построить диаграмму относительных частот.
- 2. Для визуализации данных:
 - 2.1. Построить гистограмму относительных частот и теоретическую кривую распределения случайной величины X (причем гистограмму и кривую распределения разместить на одном рисунке).
 - 2.2. Построить гистограмму абсолютных и график теоретической частоты распределения случайной величины X (причем и гистограмму, и график теоретической частоты разместить на одном рисунке).
 - 2.3. Построить по выборке график эмпирической функции распределения случайной величины X (кумуляту относительных частот) и график теоретической функции распределения случайной величины X, разместив их на одном рисунке.
 - 2.4. Построить по выборке бокс-плот распределения ("ящик с усами") и дать ему статистическую интерпретацию. В частности, ответить на вопрос: Каково теоретически ожидаемое число выбросов для выборки данного объема?

Проанализировав результаты п.1 и 2., ответить на следующие вопросы:

- А) Какова Ваша оценка вероятности попадания значений случайной величины X в k-ый интервал полученной группировки?
- В) Какой из полученных в п.2 графиков содержит геометрическую интерпретацию этой оценки, покажите ее на графике.
- С) Какой из полученных в п.2 графиков содержит геометрическую интерпретацию вероятности попадания значений случайной величины X в k-ый интервал, покажите ее на графике.
- D) Какова Ваша оценка значения интегральной функции распределения в правой границе k-ого интервала полученной группировки? А чему равно точное значение интегральной функции распределения в правой границе k-ого интервала?
- 3. Используя таблицу значений функции Лапласа, найти вероятность (вычисления вероятности сделать "вручную")

$$P(|X-MX| < q\sigma) \tag{*}$$

3.1. Найти вероятность (*), используя встроенные функции Python.

- 3.2. Найдите по выборке оценку вероятности (*), т.е. относительную частоту события $\{|X-MX| < q\sigma\}.$
- 3.3. Увеличьте объем выборки n в 50 раз и повторите п. 2.2. Объясните, как увеличение объема выборки повлияло на точность оценки вероятности (*).
- 4.Вычислить по выборке точечные оценки параметров распределения случайной величины X: математического ожидания, медианы, дисперсии, стандартного отклонения, коэффициента ассиметрии, эксцесса двумя способами:
 - 4.1. первый способ –непосредственное применение формул для вычисления точечных оценок;
 - 4.2. второй способ применение встроенных функций Python, например, describe, std, mean и т.д.
 - 4.3. Увеличьте объем выборки n в 50 раз и повторите п. 4. 2.

Проанализировав результаты п.4, ответить на следующие вопросы:

- А) Чему равны коэффициенты асимметрии и эксцесса распределения случайной величины X?
- В) Объясните, как увеличение объема выборки повлияло на точность оценок параметров распределения.
- X объясняет такое поведение оценок параметров распределения случайной величины X объясняет такое поведение оценок параметров распределения в ответ на рост объема выборки?

Часть II.

- 1.Смоделировать выборку из n независимых наблюдений над случайной величиной Y, имеющей закон распределения, указаный в Вашем варианте.
- 2. Для визуализации данных построить гистограмму относительных частот и теоретическую кривую распределения случайной величины Y (причем гистограмму и кривую распределения разместить на одном рисунке).
- 3.Построить по выборке бокс-плот распределения ("ящик с усами") случайной величины Y и дать ему статистическую интерпретацию. В частности, ответить на вопрос:

Каково теоретически ожидаемое число выбросов для выборки данного объема?

Проанализировав результаты п.1 и 2, ответить на следующие вопросы:

- А) Какова Ваша оценка вероятности попадания значений случайной величины Y в k-ый интервал полученной группировки?
- В) Какова вероятность попадания значений случайной величины Y в k-ый интервал полученной группировки?
- 2. Используя теоретические знания о функции распределения случайной величины, найти вероятность (вычисления вероятности сделать "вручную")

$$P(|Y - M Y| < q\sigma) \tag{*}$$

2.1. Найти вероятность (*), используя встроенные функции Python.

- 2.2. Найдите по выборке оценку вероятности (*), т.е. относительную частоту события $\{/Y \text{ -M } Y \mid < q\sigma\}.$
- 2.3. Увеличьте объем выборки n в 50 раз и повторите п. 2.2. Объясните, как увеличение объема выборки повлияло на точность оценки вероятности (*).
- 3. Вычислить по выборке точечные оценки параметров распределения случайной величины *X*: математического ожидания, медианы, дисперсии, стандартного отклонения, коэффициента ассиметрии, эксцесса, применяя встроенных функций Python, например, describe, std, mean и т.д.

Чему равны коэффициенты ассиметрии и эксцесса распределения случайной величины Y? Объясните, как увеличение объема выборки повлияло на точность оценок параметров распределения.

ВАРИАНТЫ ЗАДАНИЙ

Вариант	парамотру	n	C	k	Правило для	Закон
<u> Бариант</u>	параметры $(a; \sigma^2)$	n	q	K	-	
	(a,o^{-})				расчета	распределения случайной
					числа	· ·
					интервалов	величины Ү
1		0.0	2		группировки	П
<u>1</u>	(4.4)	80	2	3	Стерджеса	Логнормальное со
	(1;4)					математическим
						ожидание, равным
						1 и стандартным
						отклонением,
						равным 2
<u>2</u>	(-1;1)	100	1	4	Скотта	Хи-квадрат с
						числом степеней
						свободы, равным 7
<u>3</u>	(-3;9)	70	1,5	5	Фридмана -	Экспоненциальное
					Диакониса	с математическим
						ожиданием,
						равным 3
<u>4</u>	(3;16)	90	1,3	3	Стерджеса	F-распределение c
						числом степеней
						свободы k ₁ =5 и
						$k_2=10$
<u>5</u>	(-2;9)	110	1,25	4	Скотта	t-распределение
						Стьюдента с
						числом степеней
						свободы k=7
6	(-1;4)	120	1,4	5	Фридмана	Равномерное
_	. , ,				Диакониса	распределение
						на отрезке (1,2)
7	(0;9)	60	1,75	3	Стерджеса	Треугольное на
_					• • •	отрезке (-2, 4) и
						модой, равной 1
8	(0;4)	70	0,5	4	Скотта	Логистическое с
_	(~,-/		- ,-	-		параметрами
	l		1		L	PP

			<u> </u>			
						масштаба и сдвига 0 и 1
9	(-4;16)	80	0,75	3	Фридмана	соответственно Релея с модой,
2	(-4,10)	80	0,73	3	Диакониса	равной 2.
10	(-2;9)	90	1,6	3	Стерджеса	Распределение
10	(2,))		1,0	3	Стерджеей	Парето на
						промежутке (3, ∞)
						с параметром
						формы, равным 4
<u>11</u>	(-1;1)	100	2,1	4	Скотта	Логнормальное со
						средним, равным 5
						и стандартным
						отклонением,
						равным 1
<u>12</u>	(3;4)	70	1,45	5	Фридмана	t-распределение
					Диакониса	Стьюдента с
						числом степеней
12	(0;25)	80	1,55	3	Стерджеса	свободы k=4 Экспоненциальное
<u>13</u>	(0,23)	80	1,55	3	Стерджеса	с математическим
						ожиданием,
						равным 7
14	(4;9)	90	1,35	5	Скотта	Треугольное на
	(-,-)			-		отрезке (0, 5) и
						модой, равной 3
<u>15</u>	(2;16)	140	1,2	2	Фридмана	Равномерное
					Диакониса	распределение
						на отрезке (-1,3)
<u>16</u>	(-5;9)	150	1,6	5	Стерджеса	t -распределение
						Стьюдента с
						числом степеней
17	(10.1)	100	1.65	2	Creama	свободы k=6
<u>17</u>	(10;1)	100	1,65	2	Скотта	Распределение Парето на
						промежутке (1, ∞)
						c параметром
						формы, равным 2
18	(-2;1)	110	0,8	3	Фридмана	Хи-квадрат с
10	(-, -,			J	Диакониса	числом степеней
						свободы, равным 5
<u>19</u>	(-3;9)	125	0,85	4	Стерджеса	Релея с модой,
						равной 1.
<u>20</u>	(-5;4)	145	1,95	5	Скотта	Экспоненциальное
						с математическим
						ожиданием,
2.1	(7. 2.7)	4.50			*	равным 5
<u>21</u>	(7;25)	160	1,1	6	Фридмана	Распределение
					Диакониса	Парето на
						промежутке (4, ∞)
						с параметром
						формы, равным 5

22	(-1;16)	150	1,2	4	Стерджеса	Треугольное на отрезке (2, 5) и модой, равной 3
23	(2;25)	190	1,9	6	Скотта	Логистическое с параметрами масштаба и сдвига 1 3и 3 соответственно
24	(0;16)	120	2,3	5	Фридмана Диакониса	F-распределение с числом степеней свободы k_1 =6 и k_2 =5
<u>25</u>	(-3;9)	95	2,5	4	Скотта	Логистическое с параметрами масштаба и сдвига 0 и 2 соответственно

Указание.

Использовать библиотеки

math, numpy, pandas, statistics, scipy.stats, seaborn, matplotlib.pyplot и др.

В частности, изучить функции из категории summary statistics из библиотеки scipy.stats и функции для розыгрывания распределений с заданным законом из библиотеки пр.random.