

Batteryless, oscillatorless, binary time cell usable as an horological device with associated programming methods and devices

1/26

Figure 1C

(PRIOR ART)

Figure 1D

(PRIOR ART)

Batteryless, oscillatorless, binary time cell usable as an horological device with associated programming methods and devices

2/26

Time Period

1 year

3 years

6 years

31536000

94608000

1.9E+008

CALCULATION OF NV MEMORY CELL RETENTION CHARACTERISTICS

	b0, eV (barrier)	ε1	mr, e	effective mass ratio	T, K degree	2.8E+017	9 years
	2.9		3.9	0.5	300	3.8E+008	12 years
						4.7E+008	15 years
	С	b				9.1E+009	18 years
	1.0630E-006	2.3854E+6	800			6.6E+008	21 years
						7.6E+008	24 years
						8.5E+008	27 years
						9.5E+008	30 years
Lfg um	0.6000	Channel len	gth of floa	ating gate device			
Wfg um	1000.0000	Channel wid	Ith of floa	ting gate device.			
Hfg um	0.0900	Thickness o	f floating	gate polysilicon condu	ctor		
Wrx um	0.5000	Width of floa	iting gate	overlapping shallow tr	ench isolation		
Ttunox A		Tunnel oxide					
Tono A	190	Thickness o	f Oxide-N	litride-Oxide dielectric t	between floating gate and co	ntrol gate for capacitive cou	pling
Tswox A	300	Thickness o	f sidewall	oxide between floating	gate and control gate for sid	dewall coupling	
Xfd um					ion of the floating gate MOSI		
Xfs um					egion of the floating gate MO		
Ainj um2	0.0438	Area of the	electron to	unneling region betwee	n the floating gate and the se	ource for resetting the floati	ng gate charge
Cfc fF	1089.5358	Capacitance	betweer	the floating gate and t	he control gate		
Cfsx fF	0.4313	Capacitance	betweer	the floating gate and t	he silicon substrate		
Cfd fF	0.1078	Capacitance	betweer	the floating gate and t	he drain		
Cfs fF				the floating gate and t	he source		
Cfg fF	1090.8295	Total floating	g gate ca	pacitance			
Cr,wl	0.9988	Control gate	to floating	g gate coupling ratio			
Cr,src	0.0007	Source junc	tion to flo	ating gate coupling rati	0		
Vt,fg V	0.90	Threshold v	oltage of	floating gate MOSFET			
Verase	0.00	Erase voltag	je applied	I to the source(not use	d here, set to zero)		
Vfg,ini	-5.00	Initial floatin	g chaged	voltage			
Va	0.00	Actual erase	volatge	(equal to applied + cha	rge stored on the floating)		
S	3.76E+016	Derived par	ameter in	the floating gate "erase	e" equation		
Х	1.27E+011	Derived par-	ameter in	the floating gate "erase	e" equation		

Figure 1E (PRIOR ART)

Batteryless, oscillatorless, binary time cell usable as an horological device with associated programming methods and devices

Figure 1F (PRIOR ART)

Batteryless, oscillatorless, binary time cell usable as an horological device with associated programming methods and devices

4/26

CALCULATION OF NV MEMORY CELL RETENTION CHARACTERISTICS

	CALCULATION OF IN MEMORY CLEEKETEINTION CHARACTERISTICS										
						Seconds	Time Period				
	q0, C	m0, kg	kb, J/K	h, J-s	hb, J-s	60	1 minute				
	1.6022E-019	9.1095E-031	1.38062E-023	6.62617E-034	1.05459E-034	3600	1 hour				
						86400	1 day				
	b0, eV (barrier)	εi	mr, effective ma	ass ratio	T, K degree	604800	1 week				
	2.9	3.9	0.5	j.	300	2592000	1 month				
						31536000	1 year				
	С	b				1.3E+008	4 years				
	1.0630E-006	2.3854E+008				5E+008	16 years				
						1E+009	32 years				
Lfg um	0.6000	Channel length	of floating gate	device							
Wfg um	1000.0000	Channel width	of floating gate d	evice.							
Hfg um	0.0900	Thickness of flo	ating gate polys	ilicon conductor							
Wrx um	0.5000	Width of floating	gate overlappir	ng shallow trend	h isolation						
Ttunox A	80	Tunnel oxide th	ickness	_							
Tono A	190	Thickness of Ox	kide-Nitride-Oxid	le dielectric betw	een floating gate an	d control gate for capacitive	coupling				
Tswox A	300	Thickness of sid	dewall oxide bet	ween floating ga	te and control gate for	or sidewall coupling					
Xfd um	0.0500	Length of floating	ng gate overlapp	ing drain region	of the floating gate N	MOSFET					
Xfs um	0.3500	Length of floating	ng gate overlapp	ing source regio	n of the floating gate	MOSFET					
Ainj um2	0.0438	Area of the elec	Area of the electron tunneling region between the floating gate and the source for resetting the floating gate charge								
Cfc fF			Capacitance between the floating gate and the control gate								
Cfsx fF	0.4313	Capacitance be	Capacitance between the floating gate and the silicon substrate								
Cfd fF	0.1078	Capacitance be	tween the floating	ng gate and the	drain						
Cfs fF	0.7547	Capacitance be	tween the floating	ng gate and the	source						
Cfg fF	1090.8295	Total floating ga	ate capacitance								
Cr.wl	0.9988	Control gate to	floating gate cou	pling ratio							
Cr,src	0.0007	Source junction	to floating gate	coupling ratio							
		·									
Vt,fg V	0.90	Threshold volta	ge of floating ga	te MOSFET							
Verase	0.00	Erase voltage a	pplied to the sou	urce(not used he	re, set to zero)						
Vfg,ini	-5.00	Initial floating cl	Initial floating chaged voltage								
Va	0.00	Actual erase vo	Actual erase volating (equal to applied + charge stored on the floating)								
S	3.76E+016	Derived parame	eter in the floatin	g gate "erase" e	quation						
X	1.27E+011	Derived parame	eter in the floatin	g gate "erase" e	quation						
		•									

Figure 1G (PRIOR ART)

Batteryless, oscillatorless, binary time cell usable as an horological device with associated programming methods and devices

Figure 1H (PRIOR ART)

Batteryless, oscillatorless, binary time cell usable as an horological device with associated programming methods and devices

6/26

CALCULATION OF NV MEMORY CELL RETENTION CHARACTERISTICS

						Seconds	Time Period
	q0, C	m0, kg	kb, J/K	h, J-s	hb, J-s	60	1 minute
	1.6022E-019		1.38062E-023	6.62617E-034	1.05459E-034	3600	1 hour
						86400	1 day
	b0, eV (barrier)	εl	mr, effective ma	ass ratio	T, K degree	604800	1 week
	2.9	3.9			300	2592000	1 month
						31536000	1 year
	С	b				1.3E+008	4 years
	1.0630E-006	2.3854E+008				5E+008	16 years
						1E+009	32 years
Lfg um	0.6000	Channel length	of floating gate of	tevice			•
Wfg um			of floating gate de				
Hfg um	0.0900	Thickness of flo	ating gate polysi	licon conductor			
Wrx um	0.5000	Width of floating	gate overlappin	g shallow trench	isolation		
Ttunox A	85	Tunnel oxide th	ickness	-			
Tono A	190	Thickness of O	xide-Nitride-Oxid	e dielectric betw	een floating gate and	d control gate for capacit	ive coupling
Tswox A	300	Thickness of sid	dewall oxide betv	veen floating gat	e and control gate for	or sidewall coupling	
Xfd um	0.0500	Length of floating	ng gate overlappi	ng drain region of	of the floating gate M	OSFET	
Xfs um	0.3500	Length of floating	ng gate overlappi	ng source region	of the floating gate	MOSFET	
Ainj um2	0.0438	Area of the elec	tron tunneling re	gion between the	e floating gate and the	he source for resetting th	e floating gate charge
Cfc fF			tween the floatin				
Cfsx fF	0.4059	Capacitance be	tween the floatin	g gate and the s	ilicon substrate		
Cfd fF	0.1015	Capacitance be	tween the floatin	g gate and the d	rain		
Cfs fF	0.7103	Capacitance be	tween the floatin	g gate and the s	ource		
Cfg fF	1090.7534	Total floating ga	ate capacitance				
Cr,wl	0.9989	Control gate to	floating gate cou	pling ratio			
Cr,src	0.0007	Source junction	to floating gate	coupling ratio			
Vt,fg V			ge of floating gat				
Verase			pplied to the sou	rce(not used he	re, set to zero)		
Vfg,ini		Initial floating cl					
Va					stored on the floating	g)	
S			eter in the floating				
Х	1.20E+011	Derived parame	eter in the floating	g gate "erase" ed	quation		

Figure 11 (PRIOR ART)

Batteryless, oscillatorless, binary time cell usable as an horological device with associated programming methods and devices

Figure 1J (PRIOR ART)

Batteryless, oscillatorless, binary time cell usable as an horological device with associated programming methods and devices

Figure 1K

Batteryless, oscillatorless, binary time cell usable as an horological device with associated programming methods and devices

9/26

CALCULATION OF NV MEMORY CELL RETENTION CHARACTERISTICS

						Seconds	Time Period
	q0, C	m0, kg k	b, J/K	h, J-s	hb, J-s	2592000	1 month
	1.6022E-019			6.62617E-034	1.05459E-034	5184000	2 months
						7776000	3 months
	b0, eV (barrier)	εl n	nr, effective ma	ss ratio	T, K degree	10368000	4 months
	2.9	3.9	0.5		300	12960000	5 months
						15552000	6 months
	С	b				18144000	7 months
	1.0630E-006	2.3854E+008				20736000	8 months
						23328000	9 months
						25920000	10 months
						28512000	11 months
						31104000	12 months
Lfg um	0.6000	Channel length of	floating gate d	evice		33696000	13 months
Wfg um		Channel width of				36288000	14 months
Hfg um		Thickness of float				38880000	15 months
Wrx um		Width of floating g			isolation	41472000	16 months
Ttunox A		Tunnel oxide thick		•			
Tono A	190	Thickness of Oxid	le-Nitride-Oxide	dielectric between	een floating gate and	control gate for capacitive cou	ıpling
Tswox A					e and control gate fo		
Xfd um					of the floating gate M		
Xfs um	0.3500	Length of floating	gate overlappii	ng source region	of the floating gate	MOSFET	
Ainj um2	0.0438	Area of the electro	on tunneling re	gion between the	e floating gate and th	ne source for resetting the float	ing gate charge
Cfc fF		Capacitance betw					
Cfsx fF	0.5308	Capacitance betw	een the floating	g gate and the s	ilicon substrate		
Cfd fF		Capacitance betw					
Cfs fF	0.9288	Capacitance betw	een the floating	gate and the s	ource		
Cfg fF	1091.1281	Total floating gate	capacitance				
Cr,wl	0.9985	Control gate to flo	ating gate coup	oling ratio			
Cr.src	0.0009	Source junction to	floating gate o	oupling ratio			
•		·					
Vt,fg V	0.90	Threshold voltage	of floating gat	e MOSFET			
Verase	0.00	Erase voltage app	olied to the sou	rce(not used he	re, set to zero)		
Vfg,ini	-5.00	Initial floating cha	ged voltage				
Va	0.00	Actual erase volat	tge (equal to ap	plied + charge :	stored on the floating	1)	
S		Derived paramete					
X	1.56E+011	Derived paramete	er in the floating	gate "erase" ed	quation		

Figure 1L

Batteryless, oscillatorless, binary time cell usable as an horological device with associated programming methods and devices

Figure 1M

Batteryless, oscillatorless, binary time cell usable as an horological device with associated programming methods and devices

11/26

CALCULATION OF NV MEMORY CELL RETENTION CHARACTERISTICS

						Seconds	Time Period
	q0, C	m0, kg kt	b. J/K	h, J-s	hb, J-s	60	1 minute
	1.6022E-019			6.62617E-034	1.05459E-034	3600	1 hour
						86400	1 day
	b0, eV (barrier)	εl m	r, effective ma	ss ratio	T, K degree	604800	1 week
	2.9		0.5		300	1209600	2 weeks
						2592000	1 month
	С	b				5184000	2 months
	1.0630E-006	2.3854E+008				10368000	4 months
						15552000	6 months
						20736000	8 months
						25920000	10 months
						31104000	12 months
Lfg um	0.6000	Channel length of	floating gate d	evice		36288000	14 months
Wfg um		Channel width of f				41472000	16 months
Hfg um		Thickness of floati					
Wrx um		Width of floating g			isolation		
Ttunox A		Tunnel oxide thick		•			
Tono A	190	Thickness of Oxide	e-Nitride-Oxide	dielectric betwe	en floating gate ar	nd control gate for capacitive c	oupling
Tswox A						for sidewall coupling	· -
Xfd um	0.0500	Length of floating	gate overlappir	ng drain region o	of the floating gate	MOSFET	
Xfs um	0.3500	Length of floating	gate overlappir	ng source regior	of the floating gate	e MOSFET	
Ainj um2						the source for resetting the flo	ating gate charge
Cfc fF		Capacitance between					
Cfsx fF	0.5308	Capacitance between	een the floating	gate and the s	ilicon substrate		
Cfd fF	0.1327	Capacitance between	een the floating	gate and the d	rain		
Cfs fF	0.9288	Capacitance between	een the floating	gate and the s	ource		
Cfg fF	1091.1281	Total floating gate	capacitance				
Cr,wl	0.9985	Control gate to floa	ating gate coup	oling ratio			
Cr,src	0.0009	Source junction to	floating gate of	oupling ratio			
			-404	MODELL			
Vt,fg V		Threshold voltage					
Verase		Erase voltage app		rce(not usea ner	e, set to zero)		
Vfg,ini		Initial floating chag		و و و معظم و المحالية			
Va		Actual erase volate				19)	
S		Derived parameter					
X	1.56E+011	Derived parameter	r in the floating	gate "erase" ed	uation		

Figure 1N

Batteryless, oscillatorless, binary time cell usable as an horological device with associated programming methods and devices

Figure 10

Batteryless, oscillatorless, binary time cell usable as an horological device with associated programming methods and devices

13/26

CALCULATION OF NV MEMORY CELL RETENTION CHARACTERISTICS

				_		Se	conds	Time Period
	q0, C	m0, kg kb,	, J/K	h, J-s	hb, J-s		60	1 minute
	1.6022E-019	9.1095E-031 1.	.38062E-023	6.62617E-034	1.05459E-03	4	3600	1 hour
							86400	1 day
	b0, eV (barrier)	εl mr.	, effective ma	ss ratio	T, K degree	(604800	1 week
	2.9	3.9	0.5		30	0 12	209600	2 weeks
						25	592000	1 month
	С	b				51	184000	2 months
	1.0630E-006	2.3854E+008				103	368000	4 months
						155	552000	6 months
						207	736000	8 months
						259	920000	10 months
						311	104000	12 months
Lfg um	0.6000	Channel length of fl	loating gate d	evice		362	288000	14 months
Wfg um	1000.0000	Channel width of flo	oating gate de	vice.		414	472000	16 months
Hfg um	0.0900	Thickness of floatin	ng gate polysil	icon conductor				
Wrx um	0.5000	Width of floating ga	ite overlappin	g shallow trench	isolation			
Ttunox A		Tunnel oxide thickn						
Tono A						e and control gate for		
Tswox A						ate for sidewall couplir	ıg	
Xfd um		Length of floating g						
Xfs um		Length of floating g						
Ainj um2						and the source for res	atting the floating ga	te charge
Cfc fF		Capacitance betwe			•			
Cfsx fF		Capacitance betwe						
Cfd fF		Capacitance betwe						
Cfs fF		Capacitance betwe		g gate and the s	ource			
Cfg fF		Total floating gate of						
Cr,wl		Control gate to float						
Cr,src	0.0009	Source junction to f	floating gate of	coupling ratio				
Vt,fg V	0.90	Threshold voltage of	of floating gat	e MOSFET				
Verase	0.00	Erase voltage appli	ied to the sou	rce(not used hei	re, set to zero)			
Vfg,ini	-5.00	Initial floating chage	ed voltage					
Va	0.00	Actual erase volatg	je (equal to ap	oplied + charge :	stored on the flo	oating)		
S	2.70E+012	Derived parameter	in the floating	gate "erase" ec	quation			
X	1.69E+011	Derived parameter	in the floating	gate "erase" ed	quation			

Figure 1P

Batteryless, oscillatorless, binary time cell usable as an horological device with associated programming methods and devices

Figure 1Q

Batteryless, oscillatorless, binary time cell usable as an horological device with associated programming methods and devices

Batteryless, oscillatorless, binary time cell usable as an horological device with associated programming methods and devices

Figure 3B

Batteryless, oscillatorless, binary time cell usable as an horological device with associated programming methods and devices

Figure 3C

Batteryless, oscillatorless, binary time cell usable as an horological device with associated programming methods and devices

Batteryless, oscillatorless, binary time cell usable as an horological device with associated programming methods and devices

Batteryless, oscillatorless, binary time cell usable as an horological device with associated programming methods and devices

21/26

VOLTAGES DURING PROGRAMMING OPERATION

Figure 4C

VOLTAGES DURING SENSING OPERATION

Figure 4D

Figure 4E

Figure 4F

Figure 4K

Figure 4L

Batteryless, oscillatorless, binary time cell usable as an horological device with associated programming methods and devices

Figure 4M

Figure 4N

Batteryless, oscillatorless, binary time cell usable as an horological device with associated programming methods and devices

Figure 4P