

Intégrale

I.Intégrale d'une fonction

Définition:

Cette aire se note $\int_a^b f(x)dx$ et se lit intégrale de a à b de la fonction f

Les nombres a et b s'appellent respectivement la borne inférieure et la borne supérieure de l'intégrale.

Théorème:

On considère f une fonction continue et positive sur un intervalle [a,b].La fonction $F:x_1 \to \int_a^x f(t)dt$ est définie et dérivable sur [a,b] et on a F'=f.

II.Primitive d'une fonction continue

<u>Définition</u>:

On considère f une fonction continue sur un intervalle I.Une primitive de f est une fonction F définie et dérivable sur I telle que F'=f.

Théorème:

Toute fonction continue sur un intervalle I admet des primitives sur I.

Théorème: lien entre primitives.

On considère f une fonction continue sur un intervalle I et F une primitive de f sur I.La fonction f admet une une infinité de primitives sur I qui sont de la forme $x_1 \rightarrow F(x) + k(k \in \mathbb{R})$.

Théorème : condition d'unicité de la primitive.

Soient $x_0 \in I$ et y_0 deux nombres réels donnés. Parmi toutes les primitives d'une fonction f définie et continue sur un intervalle I, il en existe une seule qui vérifie $F(x_0) = y_0$

Propriété: calcul d'une intégrale.

On considère une fonction f continue sur un intervalle [a;b] et F une primitive de f sur [a;b]. Nous avons $\int_a^b f(x)dx = F(b) - F(a)$.

Exemple:

Calculer la valeur de l'intégrale suivante :

$$\int_0^3 x^2 dx = \left[\frac{x^3}{3}\right] = \left(\frac{33}{3} - \frac{03}{3}\right) = 9$$

Propriété: primitives des fonctions usuelles.

Fonction	Primitive	Intervalle
f(x) = a	F(x) = ax	${\mathbb R}$
f(x) = x	$F(x) = \frac{x^2}{2}$	${\mathbb R}$
$f(x) = x^n$	$F(x) = \frac{x^{n+1}}{n+1}$	IR
$f(x) = \frac{1}{x}$	$F(x) = \ln x$]0;+∞[
$f(x) = \frac{1}{x^n} n \neq 1$	$F(x) = -\frac{1}{(n-1)x^{n-1}}$	$]-\infty;0[\text{ ou }]0;+\infty[$
$f(x) = \frac{1}{\sqrt{x}}$	$F(x) = 2\sqrt{x}$	\mathbb{R}_+^*
$f(x) = \sin x$	$F(x) = -\cos x$	R
$f(x) = \cos x$	$F(x) = \sin x$	R
$f(x) = e^x$	$F(x)=e^x$	IR

<u>Propriété : linéarité de l'intégrale.</u>

On considère f et g deux fonctions continues sur un intervalle [a,b] et k un nombre réel. $\int_a^b (f+g)(i)di = \int_{a_i}^b f_i(i)di + \int_{a_i}^b g_i(i)di$

$$\int_a^b (kf_i)(t)dt = k \int_a^b f_i(t)dt$$

Propriété : intégrale d'une fonction négative.

On considère f une fonction continue et négative sur un intervalle [a,b]. L'aire du domaine situé entre C_I et les droites d'équation x=a et x=b et l'axe des abscisses vaut $-\int_a^b f(x)dx$.

Propriété: relation de Chasles de l'intégrale.

On considère f une fonction continue et négative sur un intervalle I et a,b,c trois nombres réels appartenant à I. $\int_a^b f_i(t)dt = \int_a^c f_i(t)dt + \int_c^b g_i(t)dt$

Propriété: intégrale et inégalité.

Soient f et g deux fonctions continues sur un intervalle [a,b]. Si f est positive sur [a,b] alors $\int_a^b f(x)dx \ge 0$.

Si pour tout $x \in [a,b]$, $f(x) \le g(x)$ alors $\int_a^b f(x) dx \le \int_a^b g(x) dx$.

<u>Définition</u>: valeur moyenne d'une fonction.

On considère f une fonction continue sur un intervalle [a,b]. La valeur moyenne de f sur [a,b] est le nombre μ défini par :

$$\mu_i = \frac{1}{b-a} \int_a^b f(t) dt$$
.

III.Carte mentale sur les intégrales

