Problem Statement

You are tasked with building a production-grade application that:

- 1. Ingests multiple Excel/CSV files, each representing data for a month/quarter/year.
- 2. Extracts numeric and categorical columns from each table.
- 3. Performs **LLM-generated operations** (average, sum, growth, trend analysis, etc.) both:
 - o Individually (per table) e.g., "average revenue in Nov 2024."
 - Across tables (temporal comparison) e.g., "compare Q3 vs Q4 revenue for Widget-A."
- 4. Stores results in a **relational DB** with session/user context.
- 5. Provides a "Talk to Your Data" conversational interface, which allows reasoning-based questions such as:
 - "Has online revenue grown consistently across the last three months?"
 - "Which region had the sharpest revenue decline in Q4 2024 compared to Q3 2024?"
 - "If discounts continue at current levels, what's the projected impact on Q1 2025 revenue?"
- 6. Uses **LangGraph** to orchestrate the reasoning flow, with nodes for parsing, planning, code generation, execution, explanation, and response.

Example Dataset

File 1: sales_nov_2024.csv

Order ID	Customer ID	Order Date	Region	Product	Units	Unit Price	Discount	Revenue	Delivery Date	Meta
1001	CUST-01	15/11/2024	APAC	Widget-A	32	10.5	0.05	319.2	20/11/2024	{"channel":"online", "priority":"high"}
1002	CUST-02	16/11/2024	EU	Widget-B	100	20.0	0.10	1800.0	25/11/2024	{"channel":"retail"}
1003	CUST-03	17/11/2024	NA	Widget-A	15	10.5	0.00	157.5	19/11/2024	{"channel":"online"}

File 2: sales_dec_2024.csv

Order ID	Customer ID	Order Date	Region	Product	Units	Unit Price	Discount	Revenue	Delivery Date	Meta
2001	CUST-04	05/12/2024	APAC	Widget- C	50	50.0	0.20	2000.0	15/12/2024	{"channel":"online"}
2002	CUST-01	07/12/2024	EU	Widget- B	80	20.0	0.05	1520.0	18/12/2024	{"channel":"retail"}
2003	CUST-05	10/12/2024	NA	Widget- A	40	10.5	0.00	420.0	15/12/2024	{"channel":"partner"}

File 3: sales_q1_2025.csv (aggregated quarterly file)

Quarter	Region	Product	Total_Units	Avg_Unit Price	Avg_Discount	Total_Revenue
Q1-2025	APAC	Widget-A	120	10.5	0.10	1134.0
Q1-2025	EU	Widget-B	300	20.0	0.08	5520.0
Q1-2025	NA	Widget-C	80	50.0	0.15	3400.0

Expectations

Backend

- Handle multiple files (monthly/quarterly/yearly).
- Support cross-table reasoning:
 - o Compute aggregates per file.
 - o Compare across time windows (growth, trends, YoY, MoM, QoQ).
- LLM-generated **analysis plans** must distinguish:
 - o Single-table operation: "average revenue in December 2024."
 - o Cross-table operation: "growth of Widget-B from November 2024 to Q1 2025."

Conversational Interface

- Must handle **temporal reasoning**: understand "last month," "quarterly trend," "compared to last year."
- Must generate actionable insights, not just numbers:

"Revenue for Widget-B grew by 15% in the EU between Nov and Dec 2024, but average discount also increased, suggesting margin pressure."

- Should allow multi-turn follow-ups:
 - o Q: "How did Widget-A perform in APAC?"
 - Q2: "Was the growth consistent across Nov and Dec?"

LangGraph

Nodes should include:

- 1. parse_files ingest multiple files, extract schemas, align columns.
- 2. plan_operations (LLM) decide if single-table or cross-table.
- 3. align_timeseries (*LLM helper*) align tables by month/quarter/year before codegen.
- generate_code → validate_code → execute_code.
- 5. trend_analysis (optional LLM node) detect patterns (growth, seasonality, anomalies).
- 6. explain_result narrative + recommended actions.

- Graph transitions should follow a clean DAG.
- Log and trace each node's input/output.
- Use LangGraph's StateGraph to define your graph structure.
- Add failure handling and retry if any node fails.

Example Queries & Expected LangGraph Flow

- Q1. "Show average Revenue by Region for Nov 2024 and Dec 2024, and the **MoM growth** per region."
 - Intent: cross-table comparison, group-by Region, MoM growth
 - Flow: ingest_query → retrieve_context → analyze_intent → plan_analysis (files=[nov, dec], ops=[groupby mean, growth]) → generate_code → validate_code → execute_code → explain_result → return chat
 - Plan (LLM):
 - Load sales_nov_2024, sales_dec_2024; group by Region, compute mean(Revenue) per month.
 - Join Nov vs Dec on Region; compute growth_pct = (Dec-Nov)/Nov.
 - Outputs: Table [Region, AvgRev_Nov, AvgRev_Dec, MoM_Growth%] + narrative (call out biggest mover) + 1 action.
- Q2. "For Widget-B in the EU, did discount increases correlate with revenue growth from Nov-Dec 2024? Show correlation and a 1-line takeaway."
- Q3. "Detect **anomalies** in **Units** for **APAC** across **Nov, Dec 2024 and Q1-2025**, and suggest 2 actions."
- Q4. "What % of **online** channel revenue (from Meta.channel) comes from **Widget-A** in **APAC** over **Nov & Dec 2024**? Also show **YoY** if prior year files exist."

Deliverables

- frontend/ (upload + config + chat), backend/ (FastAPI), langgraph/ (graph + nodes), workers/
- db/ (migrations), tests/, README.md (setup, .env, sample curls), architecture diagram, guardrails note (optional)
- Sample data: 3-6 files

Note:

- Ensure that the system is designed for **scale** (can support > **10,000** concurrent users/requests), and is **robust and fault-tolerant**.
- You are free to use any open-source language models on HuggingFace/Ollama (you can also use OpenAl/Anthropic models if you prefer, but DO NOT SHARE THE KEYS in the response codebase).
- You can **make assumptions** about the data & overall system architecture, but please state your assumptions clearly in the code.