

Quantification of Mitral Regurgitation: New Guidelines

Sunil Mankad, MD, FACC, FCCP, FASE

Associate Professor of Medicine

Mayo Clinic College of Medicine

Director, Transesophageal Echocardiography

Associate Director, Cardiology Fellowship

Mayo Clinic, Rochester, MN

mankad.sunil@mayo.edu

@MDMankad

DISCLOSURE

Relevant Financial Relationship(s)

None

Off Label Usage

None

Confusion: Unclear Terminology

- 1) Trivial
- 2) Trace
- 3) Mild
- 4) Mild to moderate
- 5) Moderate
- 6) Moderate to severe
- 7) Moderately Severe
- 8) Severe
- 9) Industrial Strength
- 10) Torrential

Semi-Quantification

- 1+
- 1-2+
- 2+
- 2-3+
- 3+
- 3-4+
- 4+

 MAYO CLINIC

Mitral Regurgitation Has Four Hallmarks

Flow Convergence

Flow Acceleration

Turbulence → Jet Area

Downstream

Adapted from Echo in Context. Kisslo et al.

 MAYO CLINIC

MR Jet Area Semi-Quantification

Adapted from Echo in Context – Kisslo et al.

Adapted from Nanda N. Textbook of Color Doppler

Quantification of MR by Jet Area

Mild	Moderate	Severe
Small Central Jet (usually < 4 cm²) < 20% of LA Area	20-40% of LA Area	Large Central Jet (usually > 10 cm²) > 40% of LA Area

- Zoghbi WA et al. Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. *J Am Soc Echocardiogr* 2003;16:777-802.
- Zoghbi WA et al. *J Am Soc Echocardiogr*. 2017

Mild MR

How Bad is the Mitral Regurgitation?

1. Mild
2. Moderate

How Bad is the Mitral Regurgitation?

1. Mild
2. Moderate

Severe MR

Eccentric Mitral Regurgitation: Coanda Effect

Problems with Jet Area

- Affected by instrumental factors
 - Pulse Repetition Frequency
 - Nyquist limit should be $> 50\text{-}70 \text{ cm/sec}$
 - Color Gain
 - Gain set so that random color speckling does not occur in non-moving regions

 MAYO CLINIC

Regurgitation Has Four Hallmarks

Flow Convergence

Flow Acceleration

Vena Contracta

Turbulence

Downstream

Adapted from Echo in Context. Kisslo et al.

 MAYO CLINIC

Vena Contracta

- Narrowest portion of a jet that occurs at or just downstream from the orifice

- Vena Contracta Width**
 - Mild < 0.3 cm
 - Moderate 0.3-0.69 cm
 - Severe > 0.7 cm
 - Biplane Severe > 0.8 cm

Zoghbi WA et al. *J Am Soc Echocardiogr* 2003;16:777-802.

Zoghbi WA et al. *J Am Soc Echocardiogr*. 2017

MAYO CLINIC

Mitral Regurgitation Transesophageal Echo Long Axis

Adapted from Grayburn PA: AJC 74, 1994

MAYO CLINIC

Problems with Vena Contracta

MAYO CLINIC

Vena Contracta Area by 3D TEE

MAYO CLINIC

Vena Contracta Area by 3D TEE

MAYO CLINIC

Valvular Regurgitation Quantitation

- Regurgitant volume (RV)
- Effective regurgitant orifice (ERO)
- Regurgitant fraction (RF)

MAYO CLINIC

Continuity Equation

Quantitative Hemodynamics (Conservation of Mass Principle)

$$\text{Stroke volume} = \text{Area} \times \text{TVI}$$

MAYO CLINIC

mayo

Four Measurements

- LVOT Diameter
- LVOT TVI

SV_{LVOT}

- Mitral annulus diameter
- Mitral annulus TVI

SV_{MV}

MAYO CLINIC

Step 1: Calculate LVOT Stroke Volume

LVOT diameter = 2.6 cm

LVOT TVI = 18 cm

No AR

$$\begin{aligned}\text{LVOT} \\ \text{Stroke} &= \pi (D/2)^2 \times 18 \text{ cm} \\ \text{Volume} &= 0.785 (2.6 \text{ cm})^2 \times 18 \text{ cm} \\ &= 96 \text{ cm}^3\end{aligned}$$

Step 2: Calculate MV Stroke Volume

MV diameter = 4.1 cm

MV Annular TVI = 12 cm

$$\begin{aligned}\text{MV} \\ \text{Stroke} &= 0.785 (4.1 \text{ cm})^2 \times 12 \text{ cm} \\ \text{Volume} &= 158 \text{ cm}^3\end{aligned}$$

Step 3: Calculate MR Volume

$$158 \text{ cm}^3 - 96 \text{ cm}^3 = 62 \text{ cm}^3$$

MAYO CLINIC

Step 4: Calculate Regurgitant Fraction (RF)

$$\text{Mitral RF} = \frac{\text{MR Volume}}{\text{MV Stroke Volume}} = \frac{62 \text{ cm}^3}{158 \text{ cm}^3} = 40\%$$

MAYO CLINIC

Step 5: Calculate MR ERO

E ffective
R egurgitant
O rifice

$$\text{ERO} = \frac{62 \text{ cm}^3}{163 \text{ cm}} = 0.38 \text{ cm}^2$$

MAYO CLINIC

Quantitation of Mitral Regurgitation

Mild

Moderate

Severe

MR Volume
(cm³/beat)

<30	30 - 44	45 - 59	≥ 60
-----	---------	---------	------

Regurgitant Fraction (%)

<30	30 - 39	40 - 49	≥ 50
-----	---------	---------	------

ERO (cm²)

<0.20	0.20-0.29	0.30-0.39	≥ 0.40
-------	-----------	-----------	--------

MAYO CLINIC

Zoghbi WA, et al. *J Am Soc Echocardiogr* 2017

Quantitation of Valvular Regurgitation Continuity Method: Potential Pitfalls

- Incorrect Doppler alignment to flow ($\theta > 20^\circ$)
- Incorrect sample volume placement:
 - Place at annulus, not leaflet tips
- Incorrect annular measurement: (error)²
 - Mitral annular calcification (MAC)
- Failure to trace modal velocity (especially MV)
- Geometric assumptions of circular annulus
 - (LVOT – excellent, MV - good, TV - poor)
- Aortic regurgitation > mild (use RVOT instead)

Arrhythmia; inadequate data averaged

Regurgitation Has Four Hallmarks

Flow Convergence → PISA

Flow Acceleration

Turbulence

Downstream

Adapted from Echo in Context. Kisslo et al.

What is PISA ?

*Effective
Regurgitant
Orifice*

- Derived from the hydrodynamic principle stating that, as blood approaches a regurgitant orifice, its velocity increases forming concentric, roughly hemispheric shells of increasing velocity and decreasing surface area

 MAYO CLINIC

Flow Convergence

P roximal
I sovelocity
S urface
A rea

 MAYO CLINIC

$$V_{MR} = 500 \text{ cm/sec}$$

PISA Calculations

Adapted from Zoghbi WA et al. *J Am Soc Echocardiogr*. 2017.

Locating the Color Flow Convergence

- Zoom region of interest (Decreases error of radius measurement)
 - Shift color Doppler baseline in the direction of the regurgitant jet
 - Baseline shift to obtain an optimal hemispheric flow convergence signal for PISA measurement

Zoom In As Tight As You Can

- Larger zoom box
- Smaller zoom box

- Courtesy of Leslie Elvert, B.S., R.D.C.S.

What is the best aliasing velocity?

- | | |
|--|--|
| <ul style="list-style-type: none"> • Alias Vel. 25 cm/s • Radius 0.99 cm • ERO 0.32 cm² • Reg Vol 44 cc | <ul style="list-style-type: none"> • Alias Vel. 38 cm/sec • Radius 0.83 cm • ERO 0.35 cm² • Reg Vol 47 cc |
|--|--|

- Courtesy of Leslie Elvert, B.S., R.D.C.S.

Advantages of PISA Method

- Can be used in presence of other valvular regurgitation or shunts
- Can be used in presence of valve stenosis or prosthetic valves
- Uses fewer variables

Quantitation of Mitral Regurgitation

	Mild	Moderate	Severe
MR Volume (cm ³ /beat)	<30	30 - 44	45 - 59
ERO (cm ²)	<0.20	0.20-0.29	0.30-0.39
Vena Contracta Width (cm)	< 0.3	0.3 - 0.69	≥ 0.7

Zoghbi WA, et al. J Am Soc Echocardiogr 2017

Simplified Approach to PISA (ERO)

- $$\begin{aligned} ERO &= 2\pi \cdot r^2 \cdot V/V_{max} \text{ of MR} \\ &= 6.28 \cdot r^2 \cdot V/V_{max} \text{ of MR} \end{aligned}$$
- If V/V_{max} of MR can be adjusted to 1/12, then $ERO = 6.28/12 \times r^2$

$$= 0.5 \times r^2$$

Aliasing velocity set at 40 cm/sec assuming
MR maximum velocity ≥ 500 cm/sec

Pu M et al. *J Am Soc Echocardiog* 2001

Simplified PISA (ERO)

- Examples
 - $r = 0.4 \text{ cm}; r^2 = 0.16 \text{ cm}^2; ERO = 0.08 \text{ cm}^2$
 - $r = 0.6 \text{ cm}; r^2 = 0.36 \text{ cm}^2; ERO = 0.18 \text{ cm}^2$
 - $r = 0.8 \text{ cm}; r^2 = 0.64 \text{ cm}^2; ERO = 0.32 \text{ cm}^2$
 - $r = 0.9 \text{ cm}; r^2 = 0.81 \text{ cm}^2; ERO = 0.4 \text{ cm}^2$
 - $r = 1.0 \text{ cm}; r^2 = 1.0 \text{ cm}^2; ERO = 0.5 \text{ cm}^2$

48 y/o Housewife: Heart murmur, dyspnea

Apical Color Views: Mayo Clinic Format (ASE Type B Format)

Mayo Clinic Format (ASE Type B Format)

PISA R = 0.5 cm; Aliasing velocity 61 cm/sec

Step 1: Calculate proximal MR flow

$$\begin{aligned}
 \text{Flow}_{\text{MR}} &= \text{Area}_{\text{PISA}} \times \text{Velocity}_{\text{Alias}} \\
 &= 2\pi \times R^2 \times V_{\text{Alias}} \\
 &= 6.28 \times (0.5\text{cm})^2 \times 61 \text{ cm/sec} \\
 \text{Flow}_{\text{MR}} &= 96 \text{ cm}^3/\text{sec}
 \end{aligned}$$

MR Peak Velocity 570 cm/sec; TVI = 179 cm

Color M-Mode: MVP and MR

31

MR Peak Velocity 570 cm/sec; TVI = 127 cm

91NM

Step 2: Calculate the mitral ERO

$$\text{Velocity}_{\text{MR}} = 570 \text{ cm/sec}$$

$$\text{ERO} = \frac{\text{Flow}_{\text{MR}}}{\text{Velocity}_{\text{MR}}}$$

$$= \frac{96 \text{ cm}^3/\text{sec}}{570 \text{ cm/sec}}$$

$$= 0.17 \text{ cm}^2$$

Step 3: Calculate MR volume

$$\text{TVI}_{\text{MR}} = 127 \text{ cm}$$

$$\text{Volume}_{\text{MR}}$$

$$= \text{ERO} \times \text{TVI}_{\text{MR}}$$

$$= 0.17 \text{ cm}^2 \times 127 \text{ cm}$$

$$= 22 \text{ cm}^3$$

Step 1: Calculate LVOT Stroke Volume

LVOT Diameter = 2.2 cm

LVOT TVI = 20 cm

LVOT

$$\text{Stroke Volume} = 0.785 (2.2 \text{ cm})^2 \times 20 \text{ cm}$$

Volume

$$= 76 \text{ cm}^3$$

Step 2: Calculate MV Stroke Volume

MV Annulus = 3.6 cm

MV Annulus TVI = 10 cm

MV

$$\text{Stroke Volume} = 0.785 (3.6 \text{ cm})^2 \times 10 \text{ cm}$$

Volume

$$= 102 \text{ cm}^3$$

Step 3: Calculate MR Volume

$$102 \text{ cm}^3 - 76 \text{ cm}^3 = 26 \text{ cm}^3$$

Step 4: Calculate Regurgitant Fraction (RF)

The diagram illustrates the calculation of the Mitral Regurgitant Fraction (RF). It shows two cylindrical containers: a yellow one labeled "MR Volume" and a green one labeled "MV Stroke Volume". The formula for RF is shown as:

$$\text{Mitral RF} = \frac{\text{MR Volume}}{\text{MV Stroke Volume}} = \frac{26 \text{ cm}^3}{102 \text{ cm}^3} = 25\%$$

Step 5: Calculate MR ERO

Effective **R**
egurgitant **O**
rifice

MR
Volume
(26 cm³)

MR TVI
(127 cm)

$$\text{ERO} = \frac{26 \text{ cm}^3}{127 \text{ cm}} = 0.20 \text{ cm}^2$$

Problems with PISA

- Sub-optimal flow convergence
 - Non-hemispheric flow
- Multiple MR jets
- Some eccentric jets may impinge on hemisphere
- LVOT obstruction may distort the isovelocity convergence zone
- PISA is dynamic during systole, timing is crucial
- PISA is too complicated for routine clinical use
- PISA just doesn't work
 - Cluelessly Reasoned Assumptions Principle

Sub-optimal Flow Convergence

MAYO CLINIC

Non - Hemispheric Flow Convergence: Wall Impingement

$$\text{ERO} = \frac{\pi \times r^2 \times \text{Av}}{\text{MR Vmax}} \times \frac{\alpha}{180}$$

MAYO CLINIC

Severe Mitral Regurgitation

- Supportive Signs

Pulmonary Vein Systolic Reversal of Flow

- Enlarged LA
- Enlarged LV
- E wave velocity > 1.2 m/sec

Final Points

- Mild, well visualized, central jet = MILD
- If suspect more than mild, analyze
- Use **all** available info, no method is perfect
 - Cardiac MRI or LV Angiography if still in doubt after echocardiography
- Learn to quantify
- **Responsibility to patients and colleagues to produce a report closest to the truth**

**“To dare is to lose one’s
footing momentarily, not to dare
is to lose oneself”**

- Soren Kierkegaard

 MAYO CLINIC

Thank You!
mankad.sunil@mayo.edu
[@MDMankad](https://twitter.com/MDMankad)

