MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department

Physics 8.286: The Early Universe Prof. Alan Guth

December 1, 2009

INTRODUCTION TO PARTICLE PHYSICS Lecture Notes 11

suggested reading mentioned below is certainly worthwhile, but it will not be part of the course this year. am making it available for completeness. It has not been updated since 2005. The STATUS FOR 2009: This set of lecture notes is being skipped this year, but I

article, so that you can read it over the summer if you are interested. Glashow, Scientific American, October 1975. This is a very good article, but there is too little time left in the term for me to assign it. I will distribute copies of the SUGGESTED READING: "Quarks with Color and Flavor", Sheldon Lee

ticle Physics in the Cosmos, edited by Richard A. Carrigan, Jr. and W. Peter Forces", by Howard Georgi, Scientific American, April 1981. Reprinted in Par-SUGGESTED READING: "A Unified Theory of Elementary Particles and discussed in lecture and in these notes. Trower. This article is not required, but may help you to understand the material

INTRODUCTION:

tures discussing the impact that particle physics has recently had on the study of begin by talking about particle physics, and then we will spend the last few leccosmology With this lecture we will begin a survey of modern particle physics. We will

a lot of information, but it would be dishonest if I pretended that they are selfexplanatory. To understand what the tables are about, you should listen and take notes in lecture. These lecture notes consist of three tables, and no text. The tables contain

at the web page http://pdg.lbl.gov/pdgmail/ very useful summary called the "Particle Properties Data Booklet", by signing up Group), Physics Letters **B592**, 1 (2004). In addition, you can obtain (for free!) a ties can be found in "Review of Particle Physics," S. Eidelman et al. (Particle Data Note, by the way, that a much more complete list of elementary particle proper-

The same information can be accessed through the web at http://pdg.lbl.gov/

8.286 LECTURE NOTES 11, FALL 2009

p. 2

TABLE 1: CLASSIFICATION OF ELEMENTARY PARTICLES

LEPTONS

Third generation	21- 21-	0 -1	$1776.99^{+0.29}_{-0.26} \text{ MeV}$ $0 - 18.2 \text{ MeV}$	ν _τ τ	Tau Tau neutrino
Second generation	2 - 2 -	0 -1	105.65836 MeV 0 - 0.19 MeV	$ u_{\mu}$	Muon Muon neutrino
First generation	<u>∞</u>	0 -1	0.5109989 MeV 0 - 3 eV	v_e	Electron Electron neutrino
	Charge Spin	harg	Energy C	\mathbf{Symbol}	Particle

Each particle listed above has a corresponding antiparticle

The neutrinos are all "left-handed", meaning that their angular momentum always points opposite their direction of motion. The antineutrinos are "right-handed".

VECTOR BOSONS

Particle	Symbol	Energy	Charge	Spin	Charge Spin Comment
Photon	Ų	0	0	1	Carrier of electromagnetic interactions
Intermediate Vector Bosons	W^+,W^-	80.423 ± 0.039 GeV	±1	Ľ	Carrier of the weak interactions
Neutral Intermediate Vector Boson	Z^0	91.1876 ± 0.0021 GeV	0	<u> </u>	Carrier of the neutral weak interactions
Gluons	g	Confined	0	Н	There are 8 gluons, carriers of the strong interactions

The photon and the \mathbb{Z}^0 are their own antiparticles, and the W^+ and W^- are antiparticles of each other. The set of eight gluons includes the antiparticles

p. 3

D Plus (Minus) D^+, D^-	Eta η	${ m K~Zero~Long} \qquad K_L^0$	K Zero Short K_S^0	Kaon K^\pm	Pion π^0	Pion π^+, π^-	Particle Symbol	MESONS:	Each particle listed above has baryon number +1, while the antiparticles have baryon number -1.	Each particle listed above has a corresponding antiparticle.	 Omega Minus Ω^-	Xi Star ".", "."*0	Sigma Star Σ^{*-}	Delta Δ^0, Δ^-	\(\frac{1}{2}\)	Y: Minus	Λ inus	Sigma Zero Σ^0	Sigma Plus Σ^+	Lambda Λ	Neutron n	Proton p	Particle Symbol	
$1869~{ m MeV}$	$547~{ m MeV}$	$498~{ m MeV}$	$498~{ m MeV}$	$494~{ m MeV}$	$134.977~\mathrm{MeV}$	$139.570~\mathrm{MeV}$	Energy		aryon number +1	corresponding an	1672 MeV	1532 to 1535 MeV	1387 MeV	1234 MeV	1930 +0	1315 MeV 1391 MeV	1197 MeV	$1193~{ m MeV}$	$1189~{ m MeV}$	$1116~{ m MeV}$	$940~{ m MeV}$	$938~{ m MeV}$	Energy	1
±1 0	0 0	0 0	0 0	± 1 0	0 0	±1 0	Charge Spin		, while the antipa	tiparticle.	ᄓ	$0,-1$ $\frac{3}{2}$	+1 2		0	1 2 ±		0 1/2	+1 1	$0 \frac{1}{2}$	$0 \frac{1}{2}$	+1 1	Charge Spin	2
$\begin{array}{c} \text{(many modes-}\\ 10^{-12}~\text{sec}~\bar{K}^0\pi^+\pi^0\\ \text{most likely)} \end{array}$	$10^{-18} \sec (\gamma \gamma, 3\pi)$	$10^{-7} \sec \frac{(3\pi, 2\pi, \pi\mu\nu,}{\pi e\nu)}$	$10^{-10} \sec (\pi^+\pi^-, \pi^0\pi^0)$	$10^{-8} \sec (\mu^+ \nu_\mu, \pi^+ \pi^0)$	$10^{-16} \sec (\gamma \gamma)$	$10^{-8} \sec (\mu^+ \nu_\mu)$	Lifetime		articles have baryon number		$10^{-10} \sec (\Lambda K^{-})$	$10^{-22} \sec (\Xi \pi)$	$10^{-23} \sec (\Lambda \pi, \Sigma \pi)$	$10^{-25} \sec (n\pi, p\pi)$	10 000 (44F)	$10^{-10} \sec (\Lambda \pi)$ $10^{-10} \sec (\Lambda \pi^{-1})$	$10^{-10} \sec{(n\pi^-)}$	$10^{-19} \sec (\Lambda \gamma)$	$10^{-10} \sec (p\pi^0, n\pi^+)$	$10^{-10} \sec (p\pi^-, n\pi^0)$	15 min $(n \to p + e + \bar{\nu}_e)$	$> 10^{32} \text{ years}$	Lifetime	
						The list above in			Upsilon		 J/Psi	Phi	Omega	Rho			B Zero		B Plus (Minus)	$ ilde{ ext{was}} \; F^{\pm}$	D_S Plus (Minus)	D Zero (Bar)	D 7 (D.m)	
						cludes both pa			$_{ m H}$		J/ψ	Ð	3	ρ^\pm,ρ^0			B^0		B^+,B^-	$ u_S, u_S $		D°, D°	カ0 戸0	
						The list above includes both particles and their antiparticles.			$9460~{ m MeV}$		$3097~{ m MeV}$	$1019~{ m MeV}$	$782~{ m MeV}$	$768~{ m MeV}$			$5279~{ m MeV}$		$5279~{ m MeV}$	TAGO MEA	1069 May	1869 Mev	100E M-17	
						ntiparticles.			0		0	0	0	±1,0			0		<u>+</u>	H	<u> </u>	C	>	
									–			<u> </u>	1	—			0		0	_		_		
									$10^{-20} \sec$		$10^{-20} \sec \frac{(\text{many mode})}{e^+e^-, \mu^+\mu^-}$ most likely)	$10^{-22} \sec (3\pi, 2K)$	$10^{-22} \sec (3\pi)$	$10^{-23} \sec{(\pi \pi)}$			(many mo) 10^{-12} sec including		10^{-12}	10	5	O	(many mode)	

p. 5

TABLE 2: QUARK MODEL OF BARYONS AND MESONS

IADLE 4
-
æ
CAR
۲
È
IVICE
Ĺ
DALL
L
Ū
1

QUARKS:

Third generation	21⊢	 3 ⊩	${\sim}5~{ m GeV}$	b	$\begin{array}{c} \text{Bottom} \\ \text{(Beauty)} \end{array}$
	291⊢	ယျလ	$100~{ m GeV}$?	t	Top (Truth)
Decome Concrete	2 <u>1</u>	 ယ ၊ ⊢	$\sim 500 \text{ MeV}$	s	Strange
Second Concretion	221⊢	ယူလ	$\sim \! 1500 \; \mathrm{MeV}$	c	Charmed
н н эс Воног астон	211	 3 ⊢	$\sim 300 \text{ MeV}$	d	Down
First concretion	21-	ωIω	$\sim 300~{ m MeV}$	u	Up
	Spin	Charge Spin	Energy	Symbol	Quark ("Flavor")
	•	2	1		Name of

Each quark comes in 3 "colors". The energy, charge, spin, etc., are independent of the color. For every quark listed above there is a corresponding antiparticle. The top quark has not yet been found.

QUARK CONTENT OF BARYONS:

Ω^{-}	[1]	[I]	\sum_{*}	Σ^{*0}	<u>\(\times_* + \)</u>	Δ^-	Δ^0	\triangleright	Δ_{+}^{+}	Σ^-	Σ^0	Σ^+	Λ	n	d
sss	dss	uss	dds	uds	uus	ddd	udd	uud	uuu	dds	uds	uus	uds	udd	uud

QUARK CONTENT OF MESONS:

 $u\bar{u}-d\bar{d}$ (The minus sign has meaning in quantum theory!) $u\bar{s}$ $d\bar{s}+s\bar{d}$ $d\bar{s}+s\bar{d}$ $d\bar{s}-s\bar{d}$ $u\bar{u}+d\bar{d}$ $c\bar{d}$ $c\bar{d}$ $c\bar{u}$ $u\bar{c}$ $c\bar{u}$ $u\bar{c}$ $c\bar{s}$ $u\bar{b}$ $u\bar{d}$ $u\bar{u}-d\bar{d}$ $u\bar{u}-d\bar{d}$ $u\bar{u}+d\bar{d}$

The color content is not shown above, but the rule is that all physical particles must be "colorless". For example, the π^+ is shown as $u\bar{d}$, but if one includes the color label it must be written as:

$$\pi^+ = u_{\rm red} \bar{d}_{\rm red} + u_{\rm blue} \bar{d}_{\rm blue} + u_{\rm yellow} \bar{d}_{\rm yellow}$$
.

TABLE 3: FUNDAMENTAL INTERACTIONS OF NATURE

SUPER- UNIFIED THEORIES	GRAND UNIFIED THEORIES	UNIFIED	EXCHANGED PARTICLE	RELATIVISTIC QUANTUM THEORY	CLASSICAL RELATIVISTIC THEORY	CLASSICAL	TYPICAL DECAY TIME	DIMENSIONLESS COUPLING (PROTON ENERGY)	INTERACTION:
			Graviton $M = 0$, Spin= 2		Einstein: General Relativity (1916, age 37)	Isaac Newton (1687, age 44)		$\frac{Gm_p^2}{\hbar c} = 5.9 \times 10^{-39}$	GRAVITATION
Su Ferrara, Freedman, Su Green and	G Theories ac	Unified E Glashow 1970 Age 37 Theory adds Z ⁰ , , Gau Theory add Crucial 't	W^{\pm} $M \approx 81 \text{ GeV, Spin} = 1$ Discovered in Jan '83 135 physicists saw 6 W 's	V-A Theory Feynman & Gell-Mann (1958) Marshak & Sudarshan (1958) FLAWED THEORY			$\begin{array}{cccc} \pi^{\pm}, K^{\pm} & 10^{-8} \; \mathrm{sec} \\ \Lambda, \Sigma^{+}, \Xi, \Omega^{-} & 10^{-10} s \\ n & 15 \; \mathrm{mins} \end{array}$	$G_F m_p^2 \approx 10^{-5}$	WEAK INTERACTIONS $n \rightarrow p + e + \bar{\nu}$ $\pi^+ \rightarrow \mu^+ \nu$
Supergravity? Ferrara, Freedman, & van Nieuwenhuizen, 1976 Superstrings? Green and Schwarz, 1981-85	Grand Unified Theories Georgi and Glashow, 1974 Georgi, Quinn, and Weinberg, 1974 Gauge theories Gauge theories add X and Y , particles with $M\approx 10^{14}$ GeV, and spin 1 Speculative	Unified Electroweak Theory Glashow Weinberg Salam 1970 1967 1968 Age 37 Age 34 Age 42 Theory adds Z^0 , with $M\approx 91$ GeV, Spin 1 Gauge Theory Theory adds "channed" quark. Crucial contributions by 't Hooft, '71	Photon γ $M = 0$, Spin= 1	Quantum Electrodynamics Feynman, Schwin- ger, Tomanaga, Dyson (1949)	James Clerk Maxwell (1864, age 33)	James Clerk Maxwell (1864, age 33) First example of a gauge theory	$\begin{array}{c} \pi^0 \rightarrow \gamma \gamma \ 10^{-16} \text{ s} \\ \Sigma^0 \rightarrow \Lambda \gamma \ 10^{-19} \text{ s} \end{array}$	$\frac{e^2}{\hbar c} = \frac{1}{137}$	ELECTROMAGNETISM
	10 ¹⁴ GeV,		Gluons (8 of them) $M = 0, \text{Spin} = 1$	Quantum Chromody- namics, 1970's Gauge Theory Quarks bound by stringlike forces, about 20 tons			$\overset{\rho,\omega,\phi}{\Delta} \ 10^{-23} \ \mathrm{sec}$	1 - 10	STRONG INTERACTIONS $(n-p)$ forces in nucleus, and force which holds quarks together)