(a) (a) (b) (c)

Theorem [Fredrickson'86] (r-divison) For any parameter r > 0, and any planar graph, \exists constants c_1 , c_2 , $c_3 > 0$; and a partition: $V_1, \ldots, V_{n/n}$, \times of V, such that:

(i) $|V_i| \le c_1 \Re$ (ii) $|X| \le c_2 \Re / \Im$ (iii) $|V_i \cap X| \le c_3 \Im$ (iv) $(V_i \setminus X) \cap (V_j \setminus X) = \emptyset \notin i \neq_j$

LS(k)

Local search: MIS in planar graphs.

- 1. Start with any IS K.
- 2. While possible
- 3. Swap k vertices from V/K
 & remove their neighbors in K
 if it improves the size of the
 IS.

For $k = O(\frac{1}{\epsilon^2})$, LSER) is a $(1-\epsilon)$ -approx.

LUOPT

Theorem: LS(k) is a (1-E)-approx.

for MIS in planar graphs.

Proof:

Let L, OPT:

G[LUOPT]. (LNOPT =)

- · Suppose r is chosen s.t. k > C,r + c2 Tr
- · Let OPT be an optimal soln.
- · Let L be the Sohn. returned by LS(k)

.....

L = 0(1 2

Proof . We can assume: LNOPT= Ø.

Obsi · ILil > IOPTil + i=1.. N/r.

 $k \geq C_1 + C_2)^r$ $Choose r \leq k$ $C_1 + C_2$

$$|OPT| = \sum_{i=1}^{N/r} |OPT_i| + |OPT_i|$$

$$|OPT|\left(1-\frac{\alpha}{\sqrt{k}}\right) \leq |IL|\left(1+\frac{\alpha}{\sqrt{k}}\right).$$

Independent Set in pseudodisks

: Each region is def. by a cont. closed curve.

A collection of regions R i said to be a set of pseudodioles

Y A, BER

Cannot pierce

- either their boundaries intersect twice, or not at all.

Har-Peled & Chan '09.

Alg: LS(k)

Pf. Let L be a LS Som.
OPT " an optimal Som.

Let G be the intersection graph of LUOPT.

- · Claim: G is a planar graph.
- For any set $4 \le k$ vertices, $4 \circ PT$; |N(s)| in 6? $|N(s)| \ge |s| \quad \forall \quad S \le \partial PT$, $|s| \le k$.

Hilling Set for disks: X = Set of disks; V = points · Find min· # pointe s:

Y DED; SND + Ø

Alg: LS(k)

Given the current soln: K

- For each CCK, ICIEK.
- If we can find a set N(C) = V/K s.t k'= (K/C)UN(C) is a hitting set and

| k'| < | k| then set k <- k'.

- Delaunay Triangulation of OPTULS -> G[D] is connected & DED.

Fix an OPT Som. & a LS Soln.

X: OPT

* : LS.

re Construct a graph on LUOPT.

s.t. for any set C ck, .

(KIC)UN(C) is a hitting set.

· If G is planar

Locality property

GIDED, I an edge between a point

in LOD & OPTAD.

LS(k).

H-minor for gaphs.