

→ APPROACH

- 1. Import all the libraries
- 2. Load and Audit the data
- 3. Data preparation and Data Transformation
 - 1. Missing values: impute all missing values using Mean, Median and Mode
 - 2. Inconistent values: Replace all inconsistence with consistent values
 - 3. Outliers: Transform or let algorithm deal
- 4. Data Visualization
- 5. Data Analysis
 - 1. Uni-Variant Analysis
 - 2. Bi-Varient Analysis
 - 3. Multi-Varient Analysis
 - 1. Classification Problem
 - 2. Apply Machine Learing Models
 - 3. Compare and bring out the best Model

▼ IMPORTING ALL THE LIBRARIES

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score,confusion_matrix,classification_report
```

```
df = pd.read_csv("/content/Iris.csv")
```

df.head(7).style.background_gradient(cmap='Reds')

	Id	${\tt SepalLengthCm}$	${\tt SepalWidthCm}$	PetalLengthCm	${\tt PetalWidthCm}$	Species
0	1	5.100000	3.500000	1.400000	0.200000	Iris-setosa
1	2	4.900000	3.000000	1.400000	0.200000	Iris-setosa
2	3	4.700000	3.200000	1.300000	0.200000	Iris-setosa
3	4	4.600000	3.100000	1.500000	0.200000	Iris-setosa
4	5	5.000000	3.600000	1.400000	0.200000	Iris-setosa
5	6	5.400000	3.900000	1.700000	0.400000	Iris-setosa
6	7	4.600000	3.400000	1.400000	0.300000	Iris-setosa

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 6 columns):

Data	columns (total	6 columns):				
#	Column	Non-Null Count	Dtype			
0	Id	150 non-null	int64			
1	SepalLengthCm	150 non-null	float64			
2	SepalWidthCm	150 non-null	float64			
3	PetalLengthCm	150 non-null	float64			
4	PetalWidthCm	150 non-null	float64			
5	Species	150 non-null	object			
<pre>dtypes: float64(4), int64(1), object(1)</pre>						
memory usage: 7.2+ KB						

There is only 1 column in object datatype.

```
print('No of Columns:',df.shape[1])
print('No of Rows:',df.shape[0])

No of Columns: 6
No of Rows: 150
```

Univarient Analysis

df.describe().style.background_gradient(cmap='Oranges')

	Id	${\tt SepalLengthCm}$	${\tt SepalWidthCm}$	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161
min	1.000000	4.300000	2.000000	1.000000	0.100000
25%	38.250000	5.100000	2.800000	1.600000	0.300000
50%	75.500000	5.800000	3.000000	4.350000	1.300000
75%	112.750000	6.400000	3.300000	5.100000	1.800000
max	150.000000	7.900000	4.400000	6.900000	2.500000

#Checking the missing value

df.isnull().sum()

Id	C
SepalLengthCm	C
SepalWidthCm	C
PetalLengthCm	C
PetalWidthCm	0
Species	C
dt.vpe: int.64	

There is no missing value, Data is clean.

```
# Checking the skewness of the data
```

```
df.skew()
```

<ipython-input-20-9e0b1e29546f>:1: FutureWarning: The default value of numeric_only in DataFrame.skew is deprecated. In a
df.skew()

Id 0.000000
SepalLengthCm 0.314911
SepalWidthCm 0.334053
PetalLengthCm -0.274464
PetalWidthCm -0.104997

dtype: float64

→ DATA MANIPULATION

```
# Drop the 'Id' column as it's not needed for the classification
df = df.drop(columns=["Id"])
#Displaying the modified data
df.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 150 entries, 0 to 149
    Data columns (total 5 columns):
                       Non-Null Count Dtype
     #
        Column
     0
         SepalLengthCm 150 non-null
                                       float64
         SepalWidthCm
                       150 non-null
                                       float64
         PetalLengthCm 150 non-null
                                       float64
         PetalWidthCm
                      150 non-null
                                       float64
         Species
                       150 non-null
                                       object
    dtypes: float64(4), object(1)
```

→ DATA VISUALISATION

memory usage: 6.0+ KB

Visualising the correlation

sns.heatmap(df.corr(),annot=True,fmt='0.1f',cmap="crest")

<ipython-input-31-6be4e8974572>:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a
 sns.heatmap(df.corr(),annot=True,fmt='0.1f',cmap="crest")
<Axes: >

Distribution of Target variable

```
plt.title('Target Class Distribution')
df['Species'].value_counts().plot(kind='pie',autopct='%0.2f%%',colors=['lightgreen','grey','teal'])
```

<Axes: title={'center': 'Target Class Distribution'}, ylabel='Species'>

Target Class Distribution

Visualize Species VS Sepal LengthCm

 $\verb|sns.barplot(data=df, x='Species', y='SepalLengthCm', palette='dark:salmon_r')| \\$

<Axes: xlabel='Species', ylabel='SepalLengthCm'>

Visualize Species VS Sepal WidthCm

sns.barplot(data=df, x='Species', y='SepalWidthCm', palette='dark:salmon_r')

<Axes: xlabel='Species', ylabel='SepalWidthCm'>

Visualize Species VS Petal LengthCm

sns.barplot(data=df, x='Species', y='PetalLengthCm', palette='cubehelix')

<Axes: xlabel='Species', ylabel='PetalLengthCm'>

Visualize Species VS Petal WidthCm

 $\verb|sns.barplot(data=df, x='Species', y='PetalWidthCm', palette='cubehelix')| \\$

<Axes: xlabel='Species', ylabel='PetalWidthCm'>

df.hist(bins=20, figsize=(10, 10))
plt.show()

→ SPLITTING TRAIN AND TEST DATA

```
# Feature Variable
x=df.drop(['Species'],axis=1)

#Target Variable
y=df['Species']

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)

print(x_train.shape)
print(y_train.shape)
print(x_test.shape)
print(y_test.shape)

(120, 4)
(120,)
(30, 4)
(30,)
```

→ BUILDING MODEL

▼ LOGISTIC REGRESSION

```
lr = LogisticRegression(max_iter=1000)
lr.fit(x_train, y_train)
lr_preds_train = lr.predict(x_train)
lr_preds_test = lr.predict(x_test)
```

```
print('Train accuracy score of the model is: ', round(accuracy_score(y_train, lr_preds_train),2))
print('Test accuracy score of the model is: ', round(accuracy_score(y_test, lr_preds_test),2))
    Train accuracy score of the model is: 0.98
    Test accuracy score of the model is: 1.0
```

▼ DECISION TREE

```
dtree = DecisionTreeClassifier()

dtree.fit(x_train, y_train)

dtree_preds_train = dtree.predict(x_train)
dtree_preds_test = dtree.predict(x_test)

print('Train accuracy score of the model is: ', round(accuracy_score(y_train, dtree_preds_train),2))
print('Test accuracy score of the model is: ', round(accuracy_score(y_test, dtree_preds_test),2))

Train accuracy score of the model is: 1.0
Test accuracy score of the model is: 1.0
```

▼ RANDOM FOREST

```
rf = RandomForestClassifier()

rf.fit(x_train, y_train)

rf_preds_train = rf.predict(x_train)

rf_preds_test = rf.predict(x_test)

print('Train accuracy score of the model is: ', round(accuracy_score(y_train, rf_preds_train),2))

print('Test accuracy score of the model is: ', round(accuracy_score(y_test, rf_preds_test),2))

Train accuracy score of the model is: 1.0

Test accuracy score of the model is: 1.0
```

→ KNN

```
knn=KNeighborsClassifier()
knn.fit(x_train, y_train)
knn_preds_train = knn.predict(x_train)
knn_preds_test = knn.predict(x_test)

print('Train accuracy score of the model is: ', round(accuracy_score(y_train, knn_preds_train),2))
print('Test accuracy score of the model is: ', round(accuracy_score(y_test,knn_preds_test),2))

Train accuracy score of the model is: 0.97
Test accuracy score of the model is: 1.0
```