THEORY OF MACHINE AND MECHANISM II

TUTORIAL NO: 7

VIBRATION OF TWO DEGREE OF FREEDOM SYSTEMS

- 1. Write the equations of motion for the system shown in **Figure P7.1** and determine its natural frequencies and mode shapes.
- **2.** Determine the natural frequencies for the two mass system shown in **Figure P7.2**. Both masses move only vertically.
- **3.** Determine the free vibration of the system shown in **Figure P7.3** when the initial conditions are $x_1(0) = 5$, $\dot{x}_1(0) = 0$; $x_2(0) = 0$, $\dot{x}_2(0) = 0$. Take $k_1 = k_3 = k$; $k_2 = 2k$ and $m_1 = m_2 = m$.
- **4.** Determine the natural frequencies for the system shown in **Figure P7.4**, $m_1 = 1$ kg, $m_2 = 2$ kg, $k_1 = 2000$ N/m, $k_2 = 1000$ N/m, $k_3 = 3000$ N/m.

Figure P7.3/P7.4

Figure P7.2

- **5.** Determine the natural frequencies of vibrations and the ratio of amplitudes of motion for the system shown in **Figure P7.5**. Given $m_1 = 10 \text{ kg}$, $m_2 = 15 \text{ kg}$, and k = 320 N/m.
- **6.** Derive the equation of motion of the vibratory system shown in **Figure P7.6**. Determine the natural frequencies for given data $k_1 = 98000 \text{ N/m}$, $k_2 = 19600 \text{ N/m}$; $m_1 = 196 \text{ kg}$, $m_2 = 49 \text{ kg}$.
- **7. Figure P7.7** shows an overhead crane schematically. The cabin is at the center of the beam of length l_1 . Reduce the system to an equivalent two degrees of freedom system and determine the natural frequencies. Assume EI = 21×10^6 Nm², $m_1 = 3000$ kg, $l_1 = 5$ m, EA = 82.47×10^6 N, $m_2 = 700$ kg, $l_2 = 6$ m.
- **8.** Determine the two natural frequencies and mode shapes for the system shown in **Figure P7.8**. The string is stretched with a large tension T.
- **9.** In the system shown in **Figure P7.9**, the mass m_1 is excited by a harmonic force having a maximum value of 50 N and a frequency of 2 Hz. Find the forced amplitude of each mass for $m_1 = 10 \text{ kg}$, $m_2 = 5 \text{ kg}$, $k_1 = 8000 \text{ N/m}$, and $k_2 = 2000 \text{ N/m}$.

Figure P7.6

Figure 7.9

- 10. A reciprocating engine has a mass of 40 kg and runs at a constant speed of 3000 rpm. After it was installed it vibrated with a large amplitude at operating speed. What dynamic vibration absorber should be coupled to the system if the nearest resonant frequency of the combined system has to be at least 25 % away from the operating speed?
- 11. Write a computer program to take inputs of mass, stiffness, initial velocity and initial displacement for a two degree of freedom system from the user and gives output for the natural frequency and response plot.

ANSWERS

1.
$$0.5695 \frac{k}{m}$$
, $4.0972 \frac{k}{m}$; 3.43 , -0.0972

2.
$$\frac{k}{m}$$
, 2.5 $\frac{k}{m}$

3.
$$2.5 \cos \sqrt{\frac{k}{m}} t + 2.5 \cos \sqrt{\frac{3k}{m}} t$$
,
 $2.5 \cos \sqrt{\frac{k}{m}} t - 2.5 \cos \sqrt{\frac{3k}{m}} t$

5.
$$\omega_1 = 0$$
, $\omega_2 = 7.30 rad/s$; 1, –1.5

$$8. \quad \frac{T}{ml} \left(\frac{3 \pm \sqrt{3}}{2} \right); \ -1 \pm \sqrt{3}$$