CPU Scheduling Problem Solving

Q: FCFS

- Consider the above set of processes that arrive at time zero. The length of the CPU **burst time** given in millisecond.
- Now calculate the average waiting time, average turnaround time and throughput.

Process	Burst Time(ms)		
P ₁	5		
P ₂	24		
P ₃	16		
P ₄	10		
P ₅	3		

	P ₁	P ₂	P ₃	P ₄	P ₅
0	5	5	29 4	5 5	5 58

Solution: FCFS

- Average Waiting Time
- First of all, we have to calculate the waiting time of each process.

 Waiting Time = Starting Time Arrival Time

 Waiting time of
 P1 = 0
 P2 = 5 0 = 5 ms
 P3 = 29 0 = 29 ms
 P4 = 45 0 = 45 ms
 P5 = 55 0 = 55 ms
- Average Waiting Time = Waiting Time of all Processes / Total Number of Process
 Therefore average weiting time = (0)

```
Therefore, average waiting time = (0 + 5 + 29 + 45 + 55) / 5 = 25 \text{ ms}
```

Average Turnaround Time

- Turnaround Time = Waiting time in the ready queue + executing time + waiting time in waiting-queue for I/O Turnaround time of P1 = 0 + 5 + 0 = 5ms P2 = 5 + 24 + 0 = 29ms P3 = 29 + 16 + 0 = 45ms P4 = 45 + 10 + 0 = 55ms P5 = 55 + 3 + 0 = 58ms
- Total Turnaround Time = (5 + 29 + 45 + 55 + 58)ms = 192ms
- Average Turnaround Time = (Total Turnaround Time / Total Number of Process) = (192 / 5)ms = 38.4ms

Solution: FCFS

Throughput

 Here, we have a total of five processes. Process P1, P2, P3, P4, and P5 takes 5ms, 24ms, 16ms, 10ms, and 3ms to execute respectively.

Throughput = (5 + 24 + 16 + 10 + 3) / 5 = 11.6ms It means one process executes in every 11.6 ms.

Q: SJF (Shortest Job First) Scheduling

Process	Burst Time(ms)		
P ₁	5		
P ₂	24		
P ₃	16		
P ₄	10		
P ₅	3		

	P ₅	P ₁	P ₄		P ₃	P ₂	
0	3	•	8	18	3	34	58

Solution: SJF

Average Waiting Time

 To find average waiting time in this problem. Here arrival time is common to all processes(i.e., zero).

Waiting Time for

$$P1 = 3 - 0 = 3ms$$

$$P4 = 8 - 0 = 8ms$$

$$P5 = 0ms$$

Now, Average Waiting Time =
$$(3 + 34 + 18 + 8 + 0) / 5 = 12.6$$
ms

Average Turnaround Time

 According to the SJF Gantt chart and the turnaround time formulae,

Turnaround Time of

$$P1 = 3 + 5 = 8ms$$

$$P2 = 34 + 24 = 58ms$$

$$P5 = 0 + 3 = 3ms$$

Therefore, Average Turnaround

Time =
$$(8 + 58 + 34 + 18 + 3) / 5$$

= 24.2 ms

Solution: SJF

Throughput

 Here, we have a total of five processes. Process P1, P2, P3, P4, and P5 takes 5ms, 24ms, 16ms, 10ms, and 3ms to execute respectively.

Therefore, Throughput will be same as above problem i.e., 11.6ms for each process.

Q: Round Robin Scheduling

Here is the Round Robin scheduling example with gantt chart.
 Time Quantum is 5ms.

Process	CPU Burst
	Time
P_1	30
P ₂	6
P ₃	8

Gantt Chart

Solution: SJF

Average Waiting Time

 For finding Average Waiting Time, we have to find out the waiting time of each process. Waiting Time of P1 = 0 + (15 - 5) + (24 - 20) =14ms P2 = 5 + (20 - 10) = 15ms P3 = 10 + (21 - 15) = 16msTherefore, Average Waiting Time = (14 + 15 + 16) / 3 =15ms

Average Turnaround Time

Same concept for finding the Turnaround Time.
Turnaround Time of
P1 = 14 + 30 = 44ms
P2 = 15 + 6 = 21ms
P3 = 16 + 8 = 24ms
Therefore, Average
Turnaround Time = (44 + 21 + 24) / 3 = 29.66ms

Throughput

Throughput = (30 + 6 + 8) / 3 = 14.66ms In 14.66ms, one process executes.

Q: Shortest Remaining Time First(SRTF)

Process	Burst	Arrival	
1100033	Time(CPU)	Time(ms)	
	Time(er o)	711110(1113)	
P ₁	3	0	
P ₂	6	2	
P ₃	4	4	
P ₄	5	6	
P ₅	2	8	

	P ₁	P ₂	P ₃	P ₅	P ₂	P ₄	
0	3	3 4	4	8 1	.0	15	_ 20

Solution: SRTF

Average Waiting Time

 First of all, we have to find the waiting time for each process. Waiting Time of process

P1 = 0ms
P2 =
$$(3 - 2) + (10 - 4) = 7ms$$

P3 = $(4 - 4) = 0ms$
P4 = $(15 - 6) = 9ms$
P5 = $(8 - 8) = 0ms$
Therefore, Average Waiting
Time = $(0 + 7 + 0 + 9 + 0) / 5 = 3.2ms$

Average Turnaround Time

 First of all, we have to find the turnaround time of each process.

Turnaround Time of process

P1 =
$$(0 + 3)$$
 = 3ms
P2 = $(7 + 6)$ = 13ms
P3 = $(0 + 4)$ = 4ms
P4 = $(9 + 5)$ = 14ms
P5 = $(0 + 2)$ = 2ms
Therefore, Average Turnaround
Time = $(3 + 13 + 4 + 14 + 2) / 5$
= 7.2ms

Throughput

Throughput = (3 + 6 + 4 + 5 + 2) / 5 = 4ms Therefore, each process takes 4ms to execute.

Q: Priority Scheduling

Process	CPU Burst	Priority
	Time	
P ₁	6	2
P ₂	12	4
P ₃	1	5
P ₄	3	1
P ₅	4	3

Gantt Chart

Solution: Priority

Average Waiting Time

 First of all, we have to find out the waiting time of each process.

Waiting Time of process

P1 = 3ms

P2 = 13ms

P3 = 25ms

P4 = 0ms

P5 = 9ms

Therefore, Average Waiting Time = (3 + 13 + 25 + 0 + 9) / 5= 10ms

Average Turnaround Time

 First finding Turnaround Time of each process.

Turnaround Time of process

$$P1 = (3 + 6) = 9ms$$

$$P4 = (0 + 3) = 3ms$$

$$P5 = (9 + 4) = 13ms$$

Therefore, Average Turnaround

Throughput

Throughput = (6 + 12 + 1 + 3 + 4) / 5 = 5.2 msTherefore, each process takes 5.2ms to execute.

Q: Shortest remaining time first scheduling

- Consider three CPU-intensive processes, which require 10, 20 and 30 time units and arrive at times 0, 2 and 6, respectively.
- How many context switches are needed if the operating system implements a shortest remaining time first scheduling algorithm?
- Do not count the context switches at time zero and at the end.

Explanation:

- Let three process be P0, P1 and P2 with arrival times 0, 2 and 6 respectively and CPU burst times 10, 20 and 30 respectively.
- At time 0, P0 is the only available process so it runs.
- At time 2, P1 arrives, but P0 has the shortest remaining time, so it continues.
- At time 6, P2 arrives, but P0 has the shortest remaining time, so it continues.
- At time 10, P1 is scheduled as it is the shortest remaining time process.
- At time 30, P2 is scheduled.
- Only two context switches are needed. P0 to P1 and P1 to P2.

Q: Shortest Remaining Time First

 Consider the set of 4 processes whose arrival time and burst time are given below:-

Process	Arrival Time	CPU Burst	I/O Burst	CPU Burst
P1	0	3	2	2
P2	0	2	4	1
Р3	2	1	3	2
P4	5	2	2	1

• CPU scheduling policy is Shortest Remaining Time First, calculate the average waiting time and average turn around time.

Solution:

Gantt Chart

- Now, we know-
 - Turn Around time = Exit time Arrival time
 - Waiting time = Turn Around time Burst time

Process Id	Exit Time	Turn Around Time	Waiting Time
P1	11	11 – 0 = 11	11 – (3+2) = 6
P2	7	7 - 0 = 7	7 – (2+1) = 4
Р3	9	9 – 2 = 7	7 – (1+2) = 4
P4	16	16 – 5 = 11	11 - (2+1) = 8

Average Turn Around time =

$$(11 + 7 + 7 + 11) / 4 = 36 / 4 = 9$$
 unit

Average waiting time =

$$(6 + 4 + 4 + 8) / 4 = 22 / 4 = 5.5$$
 units

Q: Priority Scheduling

• If the CPU scheduling policy is Priority Scheduling, calculate the average waiting time and average turn around time.

Note:-(Lower number means higher priority).

 Consider the set of 3 processes whose arrival time and burst time are given below:-

Process No.	Arrival Time	Priority	CPU Burst	I/O Burst	CPU Burst
P1	0	2	1	5	3
P2	2	3	3	3	1
Р3	3	1	2	3	1

Solution:

Gantt Chart

Now, we know-

- Turn Around time = Exit time Arrival time
- Waiting time = Turn Around time Burst time

Process Id	Exit Time	Turn Around Time	Waiting Time
P1	10	10 - 0 = 10	10 - (1+3) = 6
P2	15	15 – 2 = 13	13 – (3+1) = 9
Р3	9	9 - 3 = 6	6 – (2+1) = 3

- Average Turn Around time =
 (10 + 13 + 6) / 3 = 29 / 3 = 9.67 units
- Average waiting time =
 (6 + 9 + 3) / 3 = 18 / 3 = 6 units

Q:

Process No.	Arrival time	Priority	CPU	I/O	CPU	Completio n time
P1	0	2	1	5	3	10
P2	2	3	3	3	1	15
P3	3	1	2	3	1	9
P4	3	4	2	4	1	18

Solution:

- Now, we know-
 - Turn Around time = Exit time Arrival time
 - Waiting time = Turn Around time –
 Burst time

Process Id	Exit Time	Turn Around Time	Waiting Time
P1	10	10 - 0 = 10	10 – 1 = 9
P2	15	15 – 2 = 13	13 - 3 = 10
Р3	9	9 - 3 = 6	6 - 2 = 4
Р3	18	18 - 3= 15	15 - 2= 13

- Average Turn Around time =
 (10 + 13 + 6+15) / 4 = / 4 =
 units
- Average waiting time =
 (9 + 10 + 4+13) / 4 = / 4 = units

- Ratio of CPU idleness = 4/18
- Ratio of CPU usage = 14/18