EP1 MAP2212

Vitor Gonçalves Ribeiro N° USP: 9379548

April 4, 2022

1 Introdução

Neste EP, o código deverá estimar o valor de π usando Monte Carlo, obtendo um erro menor que $0.05\% *\pi$, estimando o tamanho da amostra "n"

2 Desenvolvimento

Para o problema temos uma soma de binomiais onde o calculo do n seria

$$n = \frac{Z_{\gamma}^2 \sigma^2}{\epsilon^2} \tag{1}$$

Começo com uma estimativa pessimista do n com $\frac{\pi}{4}=\frac{1}{2}$, um intervalo de confiança de 95% dando um $Z_{\gamma}=1,960$ com isso obtemos um n = 1.536.640.000 Como estamos com uma estimativa pessimista precisamos recalcular o n depois de algumas interaes, como queremos um erro de 0,05% aproveito para fazer 100 interaes do Monte Carlo de para um conjunto de 0,05% do n, com isso j tendo uma primeira estimativa de $\bar{\pi}$, e com isso recalculando pi recursivamente at o nmero de interaes superar n.

3 Resultados e Discussão

esse código gera um n
 da ordem de 4.200.000, e um π da ordem de 3.141, que nos dá um erro em na ordem de
 0.03%

4 Conclusão

Usando uma estimativa pessimista podemos saber uma ordem inicial de interaes do Monte Carlo, para a assim podermos usar a o valor estimado do Monte Carlo para recalcular os dados e obter valores mais assertivos.

5 Bibliografia

https://edisciplinas.usp.br/pluginfile.php/6827046/mod_resource/content/3/Livro_Stern.pdf