24 Differentiation

Differentiation

Differentiation 3/1

Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 24 Differentiation Monday 11 March 2019

Announcements

■ Assignment 5 will be posted soon.

5/15

The Derivative

Definition (Derivative)

Let f be defined on an interval I and let $x_0 \in I$. The **derivative** of f at x_0 , denoted by $f'(x_0)$, is defined as

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

provided either that this limit exists or is infinite. If $f'(x_0)$ is finite we say that f is **differentiable** at x_0 . If f is differentiable at every point of a set $E \subseteq I$, we say that f is differentiable on E. If E is all of I, we simply say that f is a **differentiable function**.

<u>Note</u>: "Differentiable" and "a derivative exists" always mean that the derivative is finite.

The Derivative

Example

$$f(x) = x^2$$
. Find $f'(2)$.

$$f'(2) = \lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} \frac{(x + 2)(x - 2)}{x - 2} = \lim_{x \to 2} x + 2 = 4$$

Note:

- In the first two limits, we must have $x \neq 2$.
- But in the third limit, we just plug in x = 2.
- Two things are equal, but in one $x \neq 2$ and in the other x = 2.
- Good illustration of why it is important to define the meaning of limits rigorously.

8/15

The Derivative

Example

Let f be defined in a neighbourhood I of 0, and suppose $|f(x)| \le x^2$ for all $x \in I$. Is f necessarily differentiable at 0? e.g.,

Definition (One-sided derivatives)

Let f be defined on an interval I and let $x_0 \in I$. The right-hand **derivative** of f at x_0 , denoted by $f'_+(x_0)$, is the limit

$$f'_{+}(x_0) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0},$$

provided either that this one-sided limit exists or is infinite. Similarly, the **left-hand derivative** of f at x_0 , denoted by $f'_-(x_0)$, is the limit

$$f'_{-}(x_0) = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0}.$$

Note:

If $x_0 \in I^{\circ}$ then f is differentiable at x_0 iff $f'_+(x_0) = f'_-(x_0) \neq \pm \infty$.

The Derivative

Example

- Same slope from left and right. Why isn't f differentiable???
- $\lim_{x\to 0^-} f'(x) = \lim_{x\to 0^+} f'(x) = \lim_{x\to 0} f'(x) = 1.$

- Higher derivatives: we write
 - f'' = (f')' if f' is differentiable;
 - $f^{(n+1)} = (f^{(n)})'$ if $f^{(n)}$ is differentiable.
- Other standard notation for derivatives:

$$\frac{df}{dx} = f'(x)$$

$$D = \frac{d}{dx}$$

$$D^n f(x) = \frac{d^n f}{dx} = f^{(n)}(x)$$

Theorem (Differentiable \implies continuous)

If f is defined in a neighbourhood I of x_0 and f is differentiable at x_0 then f is continuous at x_0 .

Proof.

Must show
$$\lim_{x \to x_0} f(x) = f(x_0)$$
, *i.e.*, $\lim_{x \to x_0} (f(x) - f(x_0)) = 0$.

$$\lim_{x \to x_0} (f(x) - f(x_0)) = \lim_{x \to x_0} \left(\frac{f(x) - f(x_0)}{x - x_0} \times (x - x_0) \right)$$

$$= \lim_{x \to x_0} \left(\frac{f(x) - f(x_0)}{x - x_0} \right) \times \lim_{x \to x_0} (x - x_0)$$

$$= f'(x_0) \times 0 = 0,$$

where we have used the theorem on the algebra of limits.

Theorem (Algebra of derivatives)

Suppose f and g are defined on an interval I and $x_0 \in I$. If f and g are differentiable at x_0 then f+g and fg are differentiable at x_0 . If, in addition, $g(x_0) \neq 0$ then f/g is differentiable at x_0 . Under these conditions:

- $(f+g)'(x_0) = (f'+g')(x_0);$
- 3 $(fg)'(x_0) = (f'g + fg')(x_0);$

(Textbook (TBB) Theorem 7.7, p. 408)

The Derivative

Theorem (Chain rule)

Suppose f is defined in a neighbourhood U of x_0 and g is defined in a neighbourhood V of $f(x_0)$ such that $f(U) \subseteq V$. If f is differentiable at x_0 and g is differentiable at $f(x_0)$ then the composite function $f(x_0) = f(x_0)$ is differentiable at $f(x_0)$ and

$$h'(x_0) = (g \circ f)'(x_0) = g'(f(x_0))f'(x_0).$$

(Textbook (TBB) §7.3.2, p. 411)

TBB provide a very good motivating discussion of this proof, which is quite technical.

Differentiation 15/15

The Derivative

Theorem (Derivative at local extrema)

Let $f:(a,b)\to\mathbb{R}$. If x is a maximum or minimum point of f in (a,b), and f is differentiable at x, then f'(x)=0.

(Textbook (TBB) Theorem 7.18, p. 424)

Note: f need not be differentiable or even continuous at other points.

