KOE-061 REAL TIME SYSTEMS

Unit	Topics	Lectures
I	Introduction	8
	Definition, Typical Real Time Applications: Digital Control, High Level	
	Controls, Signal Processing etc., Release Times, Dead-lines, and Timing	
	Constraints, Hard Real Time Systems and Soft Real Time Systems,	
	Reference Models for Real Time Systems: Processors and Resources,	
	Temporal Parameters of Real Time Workload, Periodic Task Model,	
	Precedence Constraints and Data Dependency.	
II	Real Time Scheduling	8
	Common Approaches to Real Time Scheduling: Clock Driven Approach,	
	Weighted Round Robin Approach, Priority Driven Approach, Dynamic	
	Versus Static Systems, Optimality of Effective-Deadline-First (EDF) and	
	Least-Slack-Time-First (LST) Algorithms, Rate Monotonic Algorithm,	
	Offline Versus Online Scheduling, Scheduling Aperiodic and Sporadic jobs	
	in Priority Driven and Clock Driven Systems.	
III	Resources Sharing	8
	Effect of Resource Contention and Resource Access Control (RAC), Non-	
	preemptive Critical Sections, Basic Priority-Inheritance and Priority-Ceiling	
	Protocols, Stack Based Priority-Ceiling Protocol, Use of Priority-Ceiling	
	Protocol in Dynamic Priority Systems, Preemption Ceiling Protocol, Access	
	Control in Multiple-Module Resources, Controlling Concurrent Accesses to	
	Data Objects.	
IV	Real Time Communication	
	Basic Concepts in Real time Communication, Soft and Hard RT	
	Communication systems, Model of Real Time Communication, Priority-	
	Based Service and Weighted Round-Robin Service Disciplines for Switched	
	Networks, Medium Access Control Protocols for Broadcast Networks,	
* * *	Internet and Resource Reservation Protocols.	0
V	Real Time Operating Systems and Databases	8
	Features of RTOS, Time Services, UNIX as RTOS, POSIX Issues,	
	Characteristic of Temporal data, Temporal Consistency, Con-currency	
	Control, Overview of Commercial Real Time databases.	

Text Books:

1. Real Time Systems – Jane W. S. Liu, Pearson Education Publication.

Reference Books:

- 1. Real Time Systems Mall Rajib, Pearson Education
- 2. Real-Time Systems: Scheduling, Analysis, and Verification Albert M. K. Cheng, Wiley.

Course Outcomes: At the end of this course students will demonstrate the ability to:

- 1. Describe concepts of Real-Time systems and modeling.
- 2. Recognize the characteristics of a real-time system in context with real time scheduling.
- 3. Classify various resource sharing mechanisms and their related protocols.
- 4. Interpret the basics of real time communication by the knowledge of real time models and protocols.
- 5. Apply the basics of RTOS in interpretation of real time systems.