东北大学 机械电子工程研究所 赵海滨

2025/4/23

东北大学 机械工程与自动化学院 (共20页)

- ▶基本概念
- ▶RS触发器
- ▶D触发器
- ▶JK触发器
- ▶T触发器和T'触发器
- ▶触发器的转换

2025/4/23

东北大学 机械工程与自动化学院(共20页)

触发器

- ▶触发器:具有记忆功能,能够存储一位二进制信号的基本逻辑单元。
 - ▶有两个自行保持的稳定状态, '0"和 "1"状态。
 - ▶根据输入信号的不同可以置成 '0" 或 "1" 状态。
 - ▶输入信号消失后, 能将获得的状态保持。

▶分类

- ▶按结构分:基本、同步、主从和边沿
- ▶按触发方式分:电平、脉冲和边沿触发。
- ▶按逻辑功能分:RS、JK、D和T(T')触发器。

2025/4/23

东北大学 机械工程与自动化学院(共20页)

基本RS触发器

▶由与非门组成

低电平有效

正常状态下,输出端的状态相反, 以Q端电平表示触发器状态。

$$\overline{S} = 1, \overline{R} = 0$$
 $Q = 0, \overline{Q} = 1$

0态,复位(置0)

$$\overline{S} = 0, \overline{R} = 1$$
 $Q = 1, \overline{Q} = 0$

1态,置位(置1)

$$\overline{S} = 1, \overline{R} = 1$$
 $Q = Q, \overline{Q} = \overline{Q}$

保持原状态不变

基本RS触发	 器的特	寺性表
		l or

\bar{s}	\overline{R}	Q^{n}	Q^{n+1}	功能说明
0	0	0	×	不允
0	0	1	×	许
0	1	0	1	置1
0	1	1	1	直.1
1	0	0	0	置0
1	0	1	0	.且,0
1	1	0	0	/E1+4:
1	1	1	1	19434

$$\overline{S} = 0$$
, $\overline{R} = 0$ $Q = 1$, $\overline{Q} = 1$

R先撤销 $\rightarrow 1$ 态,S先撤销 $\rightarrow 0$ 态

信号同时撤销,状态不定。

2025/4/23

东北大学 机械工程与自动化学院 (共20页)

同步RS触发器

高电平有效

2025/4/23

CP = 1

特性表

功能说明	Q^{n+1}	Q^n	R	S
/C +±:	0	0	0	0
保持	1	1	0	0
置0	0	0	1	0
且U	0	1	1	0
置1	1	0	0	1
耳工	1	1	0	1
不允许	×	0	1	1
7.7.4	×	1	1	1

$$CP = 0$$
, $\overline{S} = \overline{R} = 1$ $Q^{n+1} = Q^n$ 保持

$$CP = 1$$
, $\overline{S \cdot CP} = \overline{S}$ $\overline{R \cdot CP} = \overline{R}$ 基本RS触发器

东北大学 机械工程与自动化学院(共20页)

▶同步RS触发器,次态卡诺图

CP=1时,同步RS触发器的特性表。

CP=1时,输出随R和S的变化而变化。

	4	诗性表		
S	R	Q"	Q**1	功能说明
0	0	0	0	/cl kts
0	0	1	1	保持
0	1	0	0	置の
0	1	1	0	旦
1	0	0	1	習1
1	0	1	1	HIL
1	1	0	×	不允许
1	1	1	×	SI-SILVI

00	01	11	10
0	(1)	1	ì
0	0	X	×

▶卡诺图化简,得到特性方程

$$Q^{n+1} = S + \overline{R}Q^n$$
 $RS = 0$ (约束条件)

▶状态转换图

$$CP = 1$$

$$S=0$$

$$R=1$$

$$0$$

$$S=0$$

$$R=0$$

$$S=0$$

$$R=X$$

$$R=X$$

$$S=1$$

$$R=0$$

2025/4/23

东北大学 机械工程与自动化学院 (共20页)

▶RS触发器

与非门组成的基本RS触发器

基本RS触发器的特性表

\bar{s}	\overline{R}	Q"	Q*+1	功能说明
0	0	0	×	不允
0	0	1	×	许
0	1	0	1	買1
0	1	1	1	HI
1	0	0	0	置の
1	0	1	0	HO
1	1	0	0	/itte
1	1	1	1	保持

低电平有效

与非门组成的同步RS触发器

特性表

		AND THE PERSON NAMED IN	1111	
功能说明	Q**1	Q^{H}	R	S
保持	0	0	0	0
19614	1	1	0	0
置の	0	0	1	0
,III,U	0	1	1	0
007.4	1	0	0	1
置1	1	1	0	1
不允许	×	0	1	1
4.701	×	1	1	1

高电平有效

2025/4/23

东北大学 机械工程与自动化学院(共20页)

D触发器

同步RS触发器修改后得到。

$$S = D R = \overline{D}$$

$$Q^{n+1} = S + \overline{R}Q^n = D(1 + Q^n) = D$$

▶状态转换图

2025/4/23

特性方程:

$$Q^{n+1} = D$$

东北大学 机械工程与自动化学院(共20页)

▶D触发器仿真

$$CP=0, \quad Q^{n+1}=Q^n$$

$$CP = 1$$
, $Q^{n+1} = D$

2025/4/23

东北大学 机械工程与自动化学院 (共20页)

边沿D触发器 (了解)

特性方程: $Q^{n+1} = D$

 $\overline{R_p}$ 低电平有效,异步复位(置0)

 $\overline{S_n}$ 低电平有效,异步置位(置1)

CP上升沿前接收输入信号, 上升沿时触发翻转, 上升沿后输入被封锁。

2025/4/23

东北大学 机械工程与自动化学院(共20页)

主从RS触发器(了解)

▶主触发器接收信号, CP=1时

$$Q^{n+1} = S + \overline{R}Q^n \qquad RS = 0, \quad CP = 1$$

- ▶输出信号, CP=0时
 - ▶主触发器保持不变
 - ▶从触发器由CP下降沿到来之前的状态确定。

▶特点:从触发器输出端的变化只能发生在CP的下降沿。

- /1	5.0	47	•	-
- 1	守		Ľ.	1X
	-	-		100

S	R	Q"	Q^{o+1}	功能说明
0	0	0	0	Theway!
0	0	1	1	保持
0	1	0	0	W-0
0	1	1	0	重0
1	0	0	1	907.4
1	0	1	1	HT
1	1	0	×	不允许
1	1	1	×	213641

2025/4/23

东北大学 机械工程与自动化学院(共20页)

11

《 第9章 触发器 》 - 11/20页 -

同步JK触发器

JK触发器的特性方程

$$Q^{n+1} = J\overline{Q^n} + \overline{K}Q^n$$

JK触发器特性表

J	K	Q^n	Q^{n+1}	功能说 明
0	0	0	0	保持
0	0	1	1	冰村
0	1	0	0	置0 🛧
0	1	1	0	且0
1	0	0	1	置1
1	0	1	1	且上
1	1	0	1	翻转
1	1	1	0	田利子な

$$CP = 1$$
 $Q^{n} = 0, \overline{Q^{n}} = 1, \quad J = 0, K = 1, \quad Q^{n+1} = 0, \overline{Q^{n+1}} = 1$
 $Q^{n} = 1, \overline{Q^{n}} = 0, \quad J = 0, K = 1, \quad Q^{n+1} = 0, \overline{Q^{n+1}} = 1$

次态卡诺图 $Q^{n+1} = J\overline{Q^n} + \overline{K}Q^n$

注意变量的顺序

2025/4/23

东北大学 机械工程与自动化学院(共20页)

主从JK触发器 (了解)

在主从RS触发器的基础上 修改后得到主从JK触发器。

$$S = J\overline{Q^n}$$
 $R = KQ^n$

$$Q^{n+1} = S + \overline{R}Q^n = J\overline{Q}^n + \overline{KQ}^n \cdot Q^n$$

$$Q^{n+1} = J\overline{Q^n} + \overline{K}Q^n$$

JK触发器特性表

J	K	Q^n	Q^{n-1}	功能说明
0	0	0	0	保持
0	0	1	1	体付
0	1	0	0	置の
0	1	1	0	ELU
1	0	0	1	置1
1	0	1	1	111
1	1	0	1	#B total
1	1	1	0	田分子な

下降沿有效

 G_1

2025/4/23

东北大学 机械工程与自动化学院(共20页)

▶边沿JK触发器

特性方程:

$$Q^{n+1} = J\overline{Q^n} + \overline{K}Q^n$$

▶集成JK触发器

 $\overline{S}_D = 0$, Q = 1 异步置1 $\overline{R}_D = 0$, Q = 0 异步置0

2025/4/23

74HC76功能表

输出			输入		
Q	K	J	CP	$\overline{R}_{\!\scriptscriptstyle D}$	\overline{S}_{D}
Н	×	×	×	н	L
L	×	×	×	L	H
Q"	L	L	1	н	н
L	H	L	1	н	Н
$\frac{\mathbf{H}}{\overline{O}^n}$	L	н	1	H	н
Q"	н	н	1	H	Н

东北大学 机械工程与自动化学院(共20页)

时钟下降沿有效

▶集成D触发器和集成JK触发器

2025/4/23

东北大学 机械工程与自动化学院 (共20页)

15

雨课堂 Rain Classroom

JK触发器转换为T触发器和T'触发器

▶T触发器:将JK触发器的J和K连在一起作为T输入端。

$$Q^{n+1} = J\overline{Q^n} + \overline{K}Q^n = T\overline{Q^n} + \overline{T}Q^n \qquad J = K = T$$

$$T \longrightarrow IJ \longrightarrow Q$$

$$CP \longrightarrow CI$$

$$IK \longrightarrow \overline{Q}$$

$$T \longrightarrow IT \longrightarrow Q$$

$$CP \longrightarrow CI \longrightarrow \overline{Q}$$
下降沿有效

▶T'触发器: 当T触发器的输入端恒为1时。

2025/4/23

东北大学 机械工程与自动化学院 (共20页)

▶T触发器和T'触发器的仿真

$$Q^{n+1} = T\overline{Q^n} + \overline{T}Q^n$$

$$\begin{cases} T = 0, & Q^{n+1} = Q^n, & \text{保持} \\ T = 1, & Q^{n+1} = \overline{Q^n}, & \text{翻转} \end{cases}$$

$$Q^{n+1} = \overline{Q^n}$$
 只具有翻转功能

2025/4/23

东北大学 机械工程与自动化学院(共20页)

D触发器和JK触发器的相互转换

▶D触发器转换为JK触发器

$$Q^{n+1} = D Q^{n+1} = J\overline{Q}^n + \overline{K}Q^n D = J\overline{Q}^n + \overline{K}Q^n = \overline{J}\overline{Q}^n \cdot \overline{\overline{K}Q}^n$$

$$D = J\overline{Q^n} + \overline{K}Q^n = \overline{J}\overline{\overline{Q^n}} \cdot \overline{\overline{K}Q^n}$$

$$F = A + B = \overline{\overline{A} \cdot \overline{B}}$$

▶JK触发器转换为D触发器

$$Q^{n+1} = J\overline{Q^n} + \overline{K}Q^n \qquad Q^{n+1} = D = D(\overline{Q^n} + Q^n) = D\overline{Q^n} + DQ^n \qquad J = D, K = \overline{D}$$

$$J=D,K=\overline{D}$$

2025/4/23

东北大学 机械工程与自动化学院(共20页)

▶触发器的转换

VCC

U2B

U2A

T4LS00D

T4LS00D

T4LS04D

T4LS04D

T4LS04D

T4LS74N

VCC

JK触发器转换为D触发器

D触发器转换为JK触发器

2025/4/23

东北大学 机械工程与自动化学院 (共20页)

练习题

▶RS触发器的特性方程为(),约束条件为() 。
▶D触发器的特性方程为 ()。	
▶JK触发器的特性方程为()。	
▶对于JK触发器,当 $J = K = 1$ 时, $Q^{n+1} = ($)。	$Q^{n+1} = S + \overline{R}Q^n \qquad RS = 0$ $Q^{n+1} = D$
▶对于JK触发器,当 $J=1,K=0$ 时, $Q^{n+1}=$ ()。	$Q^{n+1} = J\overline{Q^n} + \overline{K}Q^n$
▶T触发器的特性方程为 ()。	$Q^{n+1} = \overline{Q}^n$
▶T'触发器的特性方程为 ()。	$Q^{n+1} = 1$ $Q^{n+1} = T\overline{Q^n} + \overline{T}Q^n$
▶将JK触发器转换为D触发器。	$Q^{n+1} = \overline{Q^n}$

2025/4/23

东北大学 机械工程与自动化学院(共20页)