>>> Advanced Data Minining Project
>>> First-order Theorem Proving Data Set

Name: Anna Basanskaya Date: December 19, 2017

-1\$

>>> Table of Contents	
1. Introduction	
2. Boxplots	
3. Parameter Selection	
4. Variable Importance	
5. Appendix	
[-1\$ _	[2/11]

>>> Data

- * p = 51*, n = 6118
- * Used only the first of the five original response variables.
 - * The response variable was converted from a censored quantitative variable to a binary variable.
 - * The percentage of equal values among the original five response variables was 70.4%
- * The percentage of 1s in the first response variable is 49.5%.

- * Variables (see the Appendix for details):
 - * Static Predictors: derived from the description of the problem, e.g., fraction of clauses that are unit clauses.
 - * Dynamic Predictors: measured using the proof state after the proof search started, e.g., proportion of generated clauses kept.
 - * Response: Indicates whether a conjecture could be proved by Heuristic 1 within 100 seconds.
- * Objective: Classify conjectures as proved/not proved within 100 seconds by Heuristic 1.
 - * After removing V5 and V35, which contained all zeros

[1. Introduction]\$ _

Model Selection 🚔 min 🚔 1se 🚔 AIC 📫 NA

$$n_{learn} = 2p = 1.7\%n = 102$$

 $n_{learn} = 10p = 8.3\%n = 510$

$n_{learn} = 50\% n = 3059$

 † Median values are shown in the charts. 1se values are always towards the top.

[2. Boxplots]\$ _ [4

Lasso

Usual rule: 4.78e-02 One SE rule: 5.36e-01 4656

log().)

 $\overline{n_{learn} = 50\%} \overline{n} = 3059$

▶ Lasso 10-Fold CV and ATC

>>> ATC

- * Background
 - * KL Divergence measures the ``distance'' between the true distribution P and another distribution Q:

$$D_{kl}(P||Q) = \sum_{i} P(i) \log P(i) - P(i) \log Q(i).$$

- st When comparing estimated models and the true model is known, only the last term differs.
- * The true distribution is unknown in practice. Adding 2k results in an unbiased estimate of the KL divergence, leading to the definition

$$AIC = 2k - 2\log L$$

- * One way to estimate AIC (up to a constant) is using glmnet outputs for k and $2\log\hat{L}\equiv 2\hat{\mathscr{L}}$:
 - * The deviance is defined to be 2*(loglike_sat loglike), where loglike_sat is the log-likelihood for the saturated model (a model with a free parameter per observation).
 - * Null deviance is defined to be 2*(loglike_sat loglike(Null)). The NULL model refers to the intercept model, except for the Cox, where it is the 0 model.

$$\begin{split} D &= 2 \times (\hat{\mathscr{L}}_{\mathrm{sat}} - \hat{\mathscr{L}}) & D \equiv \mathrm{deviance}, \hat{\mathscr{L}} \equiv \log \hat{L} \\ D_0 &= 2 \times (\hat{\mathscr{L}}_{\mathrm{sat}} - \hat{\mathscr{L}}_0) & \text{sat denotes the saturated model} \\ D_0 - D &= 2 \times (\hat{\mathscr{L}} - \hat{\mathscr{L}}_0), & 0 \text{ denotes the null model} \end{split}$$

* R code snippet:

```
LL.times.2 \leftarrow rep(glm.fits%nulldev, length(devs))-devs k \leftarrow glm.fits%df([glm.fits%lambda %in% glmnet.result%lambda)] #non-zero predictors for lasso ACC \leftarrow -LL.times.2 + 2*k
```

- * Glmnet probably ignores constants since:
 - * Regression (Guassian regression model†): $\log \hat{L} = -\frac{n}{2} \log 2\pi \hat{\sigma}^2 \frac{1}{2\pi^2} \sum_{i=1}^n (y_i x_i \hat{\beta}_i)^2$
 - * The deviance ratio is R^2 .
- * The constants should not affect model comparison.

†Not used for this project since the objective was classification.

◆ Lasso and Ridge 10-Fold CV Curves

[3. Parameter Selection]\$ _

[‡]Up to a constant

[3. Parameter Selection]\$ _ [8/1:

Sultimately, the default values were used since the values selected by playing around with the numbers were close to the defaults.

[9] [3. Parameter Selection]

>>> Variable Importance

[◀] Lasso 10-Fold CV and AIC

[4. Variable Importance]\$ _

 $[\]P$ For 2p, the absolute value of the coefficient for V19 is only 0.1% of the max and cannot be seen in the chart.

>>> Data Details

Variable	Description	Variable	Description	Variable	Description
	Fraction of clauses that are unit clauses.	V18	U / A	V35^	Ratio of the number of non-redundant deleted clauses to $ P $.
	Fraction of clauses that are Horn clauses.	V19	Ratio of longest clause lengths in ${\cal P}$ and ${\cal A}$.	V36	Ratio of the number of backward subsumed clauses to $ P $.
	Fraction of clauses that are ground Clauses.	V20	Ratio of average clause lengths in ${\cal P}$ and ${\cal A}$.	V37	Ratio of the number of backward rewritten clauses to $ P $.
	Fraction of clauses that are demodulators.	V21	Ratio of longest clause lengths in U and A .	V38	Ratio of the number of backward rewritten literal clauses to $ P $.
	Fraction of clauses that are rewrite rules (oriented demodulators).	V22	Ratio of average clause lengths in U and A .	V39	Ratio of the number of generated clauses to $ P $.
	Fraction of clauses that are purely positive.	V23	Ratio of maximum clause depths in ${\cal P}$ and ${\cal A}$.	V40	Ratio of the number of generated literal clauses to $ P $.
	Fraction of clauses that are purely negative.	V24	Ratio of average clause depths in ${\cal P}$ and ${\cal A}$.	V41	Ratio of the number of generated non-trivial clauses to $ P $.
	Fraction of clauses that are mixed positive and negative.	V25	Ratio of maximum clause depths in U and A .	V42	context_sr_count/ P .
	Maximum clause length.	V26	Ratio of average clause depths in U and A .	V43	Ratio of paramodulations to $ P $.
	Average clause length.	V27	Ratio of maximum clause standard weights in P and A .	V44	$factor_count/ P $.
	Maximum clause depth.	V28	Ratio of average clause standard weights in P and A .	V45	${\tt resolv_count}/ P $.
	Average clause depth.	V29	Ratio of maximum clause standard weights in U and A .	V46	Fraction of unit clauses in U .
	Maximum clause weight.	V30	Ratio of average clause standard weights in U and A .	V47	Fraction of Horn clauses in U .
V14	Average clause weight.	V31	Ratio of the number of trivial clauses to $ P $.	V48	Fraction of ground clauses in U .
	Proportion of generated clauses kept. (Subsumed or trivial clauses are discarded.)	V32	Ratio of the number of forward subsumed clauses to $\mid P \mid$.	V49	Fraction of demodulator clauses in U .
	Sharing factor. (A measure of the number of shared terms.)	V33	Ratio of the number of non-trivial clauses to $ P $.	V50	Fraction of rewrite rule clauses in $\mid U \mid$.
	$ P / P\bigcup U $	V34	Ratio of the number of other redundant clauses to		

Removed as all zeros

- * The E automatic prover was used.
- * The set of processed clauses is denoted by P and the set of unprocessed clauses by U. The set of axioms is denoted by A. context_sr_count, factor_count and resolv_count are variables within E.
- * Conjectures were taken from Problems for Theorem Provers (TPTP).
- * Heuristic 1: G_E_021_K31_F1_PI_AE_84_CS_SP_S2S as labeled by E; e.g., _PI denotes a preference for initial clauses, _SP denotes simultaneous paramodulation.

 Source: https://archive.ics.uci.edu/ml/datasets/First-order+theorem+proving

◀ Data slide

[5. Appendix]\$ _ [11/11]