IS - GM3

Analyse Numérique I

2021 / 2022

Précisions:

- Lorsqu'on demande de "rappeler", aucune démonstration n'est attendue.
- Les téléphones portables, calculatrices et documents sont interdits.
- Prenez le temps de vous relire et conservez le sujet pour lire la correction après l'examen.

Exercice 1: Questions de Cours (9 points)

- 1. Soit un système linéaire $A\mathbf{x} = \mathbf{b}$ avec $\det(A) \neq 0$.
 - (a) (1 point) Énoncez la formule de Cramer.
 - (b) (2 points) Démontrez la.
 - (c) (1 point) Expliquez succinctement pourquoi cette formule n'est pas utilisable en pratique.
- 2. Soient L une matrice triangulaire inférieure de taille $n \times n$ et $\mathbf{b} \in \mathbb{R}^n$ un vecteur colonne.
 - (a) (1 point) Donnez les formules permettant de calculer les composante x_i de \mathbf{x} vérifiant $L\mathbf{x} = \mathbf{b}$.
 - (b) (1 point) Écrivez l'algorithme de descente pour résoudre $L\mathbf{x} = \mathbf{b}$.
- 3. (1 point) Soit $\mathbf{v} \in \mathbb{R}^n$, $\mathbf{v} \neq 0$. On définit la matrice de Householder

$$H(\mathbf{v}) = I - 2\frac{\mathbf{v}\mathbf{v}^t}{\|\mathbf{v}\|^2}.$$

Montrez que si $\mathbf{v} = \mathbf{b} - \mathbf{a}$ avec $\|\mathbf{b}\| = \|\mathbf{a}\|$, alors $H(\mathbf{v})\mathbf{a} = \mathbf{b}$.

- 4. Soit $x^0 \in \mathbb{R}^n$ donné.
 - (a) (1 point) Écrivez la formule générique des méthodes itératives permettant de calculer \mathbf{x}^{k+1} en fonction de \mathbf{x}^k .
 - (b) (1 point) Démontrez que si la méthode itérative converge, i.e. $\mathbf{x}^k \to \mathbf{x}^*$, alors elle converge vers la solution de $A\mathbf{x} = \mathbf{b}$.

Exercice 2: Vrai ou Faux (3 points) Les propositions suivantes sont elles vraies ou fausses. Justifiez.

- 1. (1 point) La matrice $A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ admet une décomposition de Cholesky.
- 2. (1 point) La matrice $B = \begin{pmatrix} 1 & -2 & 0 \\ -2 & -1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$ est symétrique définie positive.
- 3. (1 point) La matrice B ci-dessus admet une décomposition LU.

Exercice 3: Algorithme de Thomas (8 points) On considère la décomposition d'une matrice tridiagonale :

$$A = \begin{pmatrix} a_1 & c_1 & & \dots & 0 \\ b_2 & a_2 & c_2 & & \dots & 0 \\ 0 & b_3 & a_3 & c_3 & \dots & 0 \\ \vdots & & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & \dots & b_{n-1} & a_{n-1} & c_{n-1} \\ 0 & \dots & \dots & 0 & b_n & a_n \end{pmatrix} = BC,$$

avec

$$B = \begin{pmatrix} 1 & 0 & & \dots & 0 \\ \beta_2 & 1 & 0 & & \dots & 0 \\ 0 & \beta_3 & 1 & 0 & \dots & 0 \\ \vdots & & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & \dots & \beta_{n-1} & 1 & 0 \\ 0 & \dots & \dots & 0 & \beta_n & 1 \end{pmatrix} \quad \text{et} \quad C = \begin{pmatrix} \alpha_1 & \gamma_1 & & \dots & 0 \\ 0 & \alpha_2 & \gamma_2 & & \dots & 0 \\ 0 & 0 & \alpha_3 & \gamma_3 & \dots & 0 \\ \vdots & & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & \dots & 0 & \alpha_{n-1} & \gamma_{n-1} \\ 0 & \dots & \dots & 0 & 0 & \alpha_n \end{pmatrix}.$$

- 1. (1 point) Calculez la factorisation de $A = \begin{pmatrix} 1 & 4 & 0 \\ 2 & 10 & 5 \\ 0 & 6 & 18 \end{pmatrix}$.
- 2. (3 points) Donnez les formules permettant de calculer les α_i , β_i , γ_i en fonction des a_i , b_i , c_i .
- 3. (2 points) Quelles sont les conditions suffisantes pour que la décomposition A = BC existe?
- 4. (2 points) Écrivez l'algorithme de décomposition A = BC.
- 5. (2 points (bonus)) Calculez le coût de la décomposition A = BC et de la résolution $BC\mathbf{x} = \mathbf{b}$.

Bon courage!