Quantum Walk with Restart

Wang Kun

Department of Computer Science and Technology Nanjing University, China

December 2, 2015

Outline

Random Walk with Restart

Quantum Walk with Restart Definition Examples

Summary

Outline

Random Walk with Restart

Quantum Walk with Restart Definition Examples

Summary

Motivation

- ▶ Should we recommend *Alice* to *Bob*?
- ▶ YES if *Alice* and *Bob* are close enough
- ► How to measure closeness/proximity?

How to measure closeness

- ► Two nodes should be close, if they have
 - many,
 - ▶ short,
 - heavy paths

Random walk with restart

Random walk with restart is described as

$$\pi$$
 ranking vector $=$ $\underbrace{(1-c)\mathbf{P}\pi}_{keep\ going} + \underbrace{c\mathbf{e}}_{restart\ the\ walk}$

- π is the probability distribution
- $c \in [0,1] \in \mathbb{R}$ is the restart factor
 - If c = 0, it is random walk on graph, may not converge
- ▶ **P** is the transition matrix
- $\mathbf{e} = (0, \dots, 1, \dots, 0)^T$ is the initial state. Always restart from node i.
 - If $\mathbf{e} = \frac{1}{N}(1, \dots, 1, \dots, 1)^T$, it is PageRank algorithm.

Example

Example (cont.)

- ► Click here for animation
- ▶ Nearer nodes, higher scores. More red, more relevant.

Applications and variances

- rwr is good at measuring the closeness between nodes
- ▶ Basic rwr
 - ► Haweliwala@02, Pan@04, Sun@06, Tong@06
 - ► Fast Random Walk with Restart and Its Applications, Tong@ICDM06. Ten year's best paper in ICDM (2006-2015).
- rwr for image segmentation ...
- ▶ *rwr* for recommendation systems ...
- rwr for clustering ...
- ▶ rwr in big data ...
- **.** . . .

Outline

Random Walk with Restart

Quantum Walk with Restart

Definition Examples

Summary

Graph denotation

- ► Consider only **undirected regular** graphs G = (V, E), V(G) = N, D(G) = D
- ightharpoonup Label each vertex with a distinct integer between 1 to N
- ► For each vertex, label its outgoing edges with distinct integers between 1 and *D*
- ▶ For each vertex $v \in \{1, \dots, N\}$, let N(v, c) denote the c-th neighbour of v

Figure: Cube, V(G) = 8, D(G) = 3. Vertices and edges are labeled

Quantum walk on graphs

- ▶ Coin operator C is Grover operator: $(I \otimes C)|v\rangle|c\rangle = |v\rangle C|c\rangle$
- ▶ Shift operator $S: S|v\rangle|c\rangle = |N(v,c)\rangle|c\rangle$
- ▶ Evolution operator U: $U = S \cdot (I \otimes C)$
- Quantum walk on graph:

one step :
$$|\psi(t+1)\rangle = U|\psi(t)\rangle = S \cdot (I \otimes C)|\psi(t)\rangle$$

 t steps : $|\psi(t)\rangle = U^t|\psi(0)\rangle$

where $|\psi(0)\rangle = |1\rangle \otimes \sum_{c=1}^{D} \psi_c(0,1)|c\rangle$ is the initial state.

▶ Probability distribution after walking *t* steps:

$$P(t) = (P(t,1), P(t,2), \cdots, P(t,N))^T$$

where P(t, i) is the probability at vertex i after t steps

Limiting distribution

Quantum walk consists only of unitary operations,

$$\lim_{t \to \infty} P(t)$$

dose not converge, the walk has no limit distribution.

Averaged Probability Distribution

$$\overline{P(T)} = \frac{1}{T} \sum_{t=0}^{T} P(t)$$

▶ $\lim_{T\to\infty} \overline{P(T)}$ has a limit distribution.

Quantum walk with restart

Currently, quantum walk with restart is described as

$$|\widetilde{\psi(t+1)}\rangle = \underbrace{(1-\rho)U|\widetilde{\psi(t)}\rangle}_{\textit{keep going}} + \underbrace{\rho|\psi(0)\rangle}_{\textit{restart the walk}}$$

- $\blacktriangleright |\psi(t)\rangle$ is the probability distribution at step t
- $\rho \in [0,1] \in \mathbb{C}$ is the restart factor
 - If $\rho = 0$, it is quantum walk on graph.
- $|\psi(0)\rangle$ is the initial state

$$|\psi(0)
angle = \underbrace{|1
angle}_{\mbox{restart from node 1}} \otimes \underbrace{\left[\frac{1}{\sqrt{D}}\sum_{c=1}^{D}|c
angle
ight]}_{\mbox{uniform superposition}}$$

Limiting distribution

▶ Relationship between $\widetilde{|\psi(t)\rangle}$ and $|\psi(t)\rangle$

$$\begin{array}{cccc} \widetilde{|\psi(t)\rangle} &=& \underbrace{(1-\rho)^t |\psi(t)\rangle} &+ \underbrace{(1-\rho)^{t-1}\rho |\psi(t-1)\rangle} \\ && \text{walking } t \text{ steps} & \text{walking } t-1 \text{ steps} \\ && + \cdots + \underbrace{(1-\rho)\rho |\psi(1)\rangle} + & \rho |\psi(0)\rangle \\ && \text{walking } 1 \text{ step} & \text{walking } 0 \text{ step} \end{array}$$

Limit form

$$\lim_{t \to \infty} \widetilde{|\psi(t)\rangle} = \sum_{i=0}^{t} (1 - \rho)^{i} \rho |\psi(i)\rangle$$

$$= \sum_{i=0}^{t} \rho (1 - \rho)^{i} U^{i} |\psi(0)\rangle$$

$$= \rho \Big[I - (1 - \rho) U \Big]^{-1} |\psi(0)\rangle$$

Difference from averaged probability distribution

Averaged probability distribution

$$\overline{P(T)} = \sum_{t=0}^{T} \frac{1}{T} \cdot P(t)$$

Sum over equally weighted probabilities of *T* quantum walks.

Quantum walk with restart

$$|\widetilde{\psi(T)}\rangle = \sum_{t=0}^{T} \rho (1-\rho)^t \cdot |\psi(t)\rangle$$

Sum over unequally weighted probability amplitudes of ${\cal T}$ quantum walks.

Decoherence by pure dephasing

▶ Decoherence by pure dephasing (PRL 104.153602, 2010)

$$\rho_{t+1} = (1 - \rho)U\rho_t U^{\dagger} + \rho \sum_i K_i U\rho_t U^{\dagger} K_i^{\dagger}$$

where $K_i = |i\rangle\langle i|$ corresponds to pure dephasing

Quantum walk with restart in density operator form

$$\widetilde{\rho_{t+1}} = (1 - \rho)U\widetilde{\rho_t}U^{\dagger} + \rho\widetilde{\rho_0}$$

From decoherence by pure dephasing to qwr

$$\rho_{t+1} = (1 - \rho)U\rho_t U^{\dagger} + \underbrace{\rho K_1 U \rho_t U^{\dagger} K_1^{\dagger}}_{\neq \rho \widetilde{\rho_0}, \text{ varies in time}}$$

Cycle

Four distributions in cycle ($T = 100, \rho = 0.25$)

QWR and RWR in cycle ($T = 100, \rho = 0.25$)

Cube

Four distributions in cube ($T = 100, \rho = 0.25$)

QWR and RWR in cube ($T = 100, \rho = 0.25$)

Glued tree (G4)

Four distributions in glued tree ($T = 100, \rho = 0.25$)

QWR and RWR in glued tree ($T = 100, \rho = 0.25$)

Outline

Random Walk with Restart

Quantum Walk with Restart Definition Examples

Summary

QWR vs. RWR

- Why random walk with restart?
 - ▶ Offers a good measure on the closeness of graph nodes
 - Many useful applications and variances
- Why quantum walk with restart?
 - More precise measure than its classical counterpart?
 - A new model of quantum walk
 - ► There are more parameters in *qwr* than in *rwr*, which give us more control on the distribution

There are so many to do

- 1. On what kind of graphs will the quantum walk with restart will converge?
- 2. Analytical form for the limit distribution
 - From the method of Aharonvo@STOC01, express the limit distribution with the evolution operator's eigenvalues and eigenstates
- 3. Convergence speed
- 4. How will coin initial state and coin operator effect the limit distribution?
- 5. Can we get the same distribution of *rwr* by setting the parameters of *qwr*? i.e., Can we simulate *rwr* by *qwr*?

Different measures

Averaged probability distribution

$$\overline{P(T)} = \sum_{t=0}^{T} \frac{1}{T} \cdot P(t)$$

Quantum walk with restart: type 1

$$|\widetilde{\psi(T)}\rangle = \sum_{t=0}^{T} \rho (1-\rho)^t \cdot |\psi(t)\rangle$$

Quantum walk with restart: type 2

$$\overline{P(T)} = \sum_{t=0}^{T} \rho (1 - \rho)^t \cdot P(t)$$

Decoherence by pure dephasing

$$|\widetilde{\psi(t+1)}\rangle=(1-\rho)\widetilde{U|\psi(t)\rangle}+\rho K_1\widetilde{U|\psi(t)\rangle}$$
 where $K_1=\sum_{c=1}^D|1,c\rangle\langle 1,c|$

$$\mu_{X} = E[X] = \sum_{x=-N}^{N} x P(x)$$

$$\mu_{X} = E[Y] = \sum_{y=-N}^{N} y P(y)$$

$$cov(X,Y) = E[(X - \mu_{X})(Y - \mu_{Y})]$$

$$= E[XY] - E[X]E[Y]$$

$$= \sum_{x=-N}^{N} \sum_{y=-N}^{N} (x - \mu_{X})(y - \mu_{Y})P(x,y)$$

$$cov(X,Y) = \sum_{x=-N}^{N} \sum_{y=-N}^{N} (x - \mu_{X})(y - \mu_{Y})P(x,y)$$

$$cov(X, Y) > 0$$
$$cov(X, Y) = 0$$
$$cov(X, Y) < 0$$

$$\begin{split} |0,L\rangle|0,L\rangle + |0,R\rangle|0,R\rangle \\ |0,L\rangle|0,L\rangle + |0,S\rangle|0,S\rangle + |0,R\rangle|0,R\rangle \\ |-1,S\rangle|-1,S\rangle + |1,S\rangle|1,S\rangle \\ |-1,S\rangle|-1,S\rangle + |0,S\rangle|0,S\rangle + |1,S\rangle|1,S\rangle \\ |-1,L\rangle|-1,L\rangle + |1,R\rangle|1,R\rangle \\ |-1,L\rangle|-1,L\rangle + |0,S\rangle|0,S\rangle + |1,R\rangle|1,R\rangle \end{split}$$

$$\begin{split} |0,L\rangle|0,R\rangle \\ |0,L\rangle|0,L\rangle &\pm |0,R\rangle|0,R\rangle \\ |0,L\rangle|0,R\rangle &\pm |0,R\rangle|0,L\rangle \\ |0,L\rangle|0,R\rangle &\pm |0,R\rangle|0,L\rangle \\ |0,L\rangle|0,L\rangle &+ |0,S\rangle|0,S\rangle + |0,R\rangle|0,R\rangle \\ |0,L\rangle|0,L\rangle &- |0,S\rangle|0,S\rangle + |0,R\rangle|0,R\rangle \\ |-1,S\rangle|-1,S\rangle &\pm |1,S\rangle|1,S\rangle \\ |-1,S\rangle|1,S\rangle &\pm |1,S\rangle|-1,S\rangle \\ |-1,S\rangle|-1,S\rangle &+ |0,S\rangle|0,S\rangle + |1,S\rangle|1,S\rangle \\ |-1,S\rangle|-1,S\rangle &- |0,S\rangle|0,S\rangle + |1,S\rangle|1,S\rangle \end{split}$$

$$\begin{split} \frac{1}{3}|0,L\rangle|0,L\rangle &\pm \frac{\sqrt{8}}{3}|0,R\rangle|0,R\rangle \\ \frac{1}{3}|0,L\rangle|0,L\rangle &+ \frac{2}{3}|0,S\rangle|0,S\rangle + \frac{2}{3}|0,R\rangle|0,R\rangle \\ \frac{1}{3}|0,L\rangle|0,L\rangle &- \frac{2}{3}|0,S\rangle|0,S\rangle + \frac{2}{3}|0,R\rangle|0,R\rangle \\ \frac{1}{3}|-1,S\rangle|-1,S\rangle &\pm \frac{\sqrt{8}}{3}|1,S\rangle|1,S\rangle \\ \frac{1}{3}|-1,S\rangle|-1,S\rangle &+ \frac{2}{3}|0,S\rangle|0,S\rangle + \frac{2}{3}|1,S\rangle|1,S\rangle \\ \frac{1}{3}|-1,S\rangle|-1,S\rangle &- \frac{2}{3}|0,S\rangle|0,S\rangle + \frac{2}{3}|1,S\rangle|1,S\rangle \end{split}$$

$$\begin{split} |-1,L\rangle|-1,L\rangle &\pm |1,R\rangle|1,R\rangle \\ |-1,R\rangle|1,L\rangle &\pm |1,L\rangle|-1,R\rangle \\ |-1,L\rangle|-1,L\rangle + |0,S\rangle|0,S\rangle + |1,R\rangle|1,R\rangle \\ |-1,L\rangle|-1,L\rangle - |0,S\rangle|0,S\rangle + |1,R\rangle|1,R\rangle \\ \frac{1}{3}|-1,L\rangle|-1,L\rangle &\pm \frac{\sqrt{8}}{3}|1,R\rangle|1,R\rangle \\ \frac{1}{3}|-1,L\rangle|-1,L\rangle &\pm \frac{2}{3}|0,S\rangle|0,S\rangle + \frac{2}{3}|1,R\rangle|1,R\rangle \\ \frac{1}{3}|-1,L\rangle|-1,L\rangle - \frac{2}{3}|0,S\rangle|0,S\rangle + \frac{2}{3}|1,R\rangle|1,R\rangle \end{split}$$

Thank you!

Any questions?