测试题解答 12.4

(1)
$$\sum_{i=0}^{7} {i+3-1 \choose i} = 120$$
.

- (2) n 元集上可定义的函数个数为 n^n ,其中双射函数个数为 n!,单调上升函数个数为 C(2n-1,n). 若 n=4,则有 $4^4=256$,4!=24,C(7,4)=35.
- (3) 使用一一对应的方法. 设选出的 n 个不相邻的数为 i_1, i_2, \cdots, i_n ,其中 $i_1 < i_2 < \cdots < i_n$,且 $i_{j+1} \neq i_{j+1}, j=1, 2, \cdots, n-1$. 令 $k_j = i_j j+1, j=1, 2, \cdots, n$. 显然, i_1, i_2, \cdots, i_n 与 k_1, k_2, \cdots, k_n 之间是一一对应的. 例如选出的不相邻的数 i_1, i_2, i_3, i_4 是 2,5,7,10,那 么对应的数 k_1, k_2, k_3, k_4 是: 2,4,5,7. 给定一组 i_1, i_2, \cdots, i_n ,就得到对应的一组 k_1, k_2, \cdots, k_n ; 反之,给定一组 k_1, k_2, \cdots, k_n ,也可以得到一组对应的 i_1, i_2, \cdots, i_n . 因为 $i_n \leq m$,即 $k_n \leq m n + 1$. $\{k_1, k_2, \cdots, k_n\}$ 恰好是 $\{1, 2, \cdots, m n + 1\}$ 的一个 n 组合,因此所求选法数是 C(m n + 1, n).

测试题解答 12.5

证 设 $n^2 = p_1^{\alpha_1} p_2^{\alpha_2} ... p_t^{\alpha_t}$, 其中 α_1 , α_2 , ..., α_t 是偶数. 设 m 是 n^2 的正因子,那么 m 具有下述形式: $m = p_1^{s_1} p_2^{s_2} ... p_t^{s_t}$, 其中 $s_i \in \{0,1,\cdots,\alpha_i\}$. s_i 有 α_i +1 种选择,根据乘法法则,正因子数 $N = (\alpha_1 + 1)(\alpha_2 + 1) \cdots (\alpha_t + 1)$. 由于每个 α_i 都是偶数,因此 N 为奇数.