- Transpose of Matrix
- Transpose of square matrix of size N*N.
- N → Number of Row and column
- changing rows to columns and columns to rows.

int x [3][3]

1	1	1
2	2	2
3	3	3

int x [3][3]

int x [3][3]

1	1	1
2	2	2
3	3	3

1	2	3
1	2	3
1	2	3

	Column 1	Column 2	Column 3
Row 1	x[0][0]	x[0][1]	x[0][2]
Row 2	x[1][0]	x[1][1]	x[1][2]
Row 3	x[2][0]	x[2][1]	x[2][2]

int x [3][3]

int x [3][3]

1	1	1		1	2	3
2	2	2	$\frac{R \rightarrow C}{C \rightarrow R}$	1	2	3
3	3	3		1	2	3

J = **0**

int x [3][3]

int x [3][3]

1	1	1		1	2	3
2	2	2	$\frac{R \rightarrow C}{C \rightarrow R}$	1	2	3
3	3	3		1	2	3

$$J = 0$$
 $J = 1$

int x [3][3]

int x [3][3]

1	1	1	D 0	1	2	3
2	2	2	$\frac{R \rightarrow C}{C \rightarrow R}$	1	2	3
3	3	3		1	2	3

$$J = 0$$

$$J = 0$$
 $J = 1$

$$J = 0$$
 $J = 1$ $J = 2$