

FACIAL RECOGNITION WITH SUPERVISED LEARNING

TABLE OF CONTENT

01 Goal of Project

04 Fine-tune the Model

O2 Prepare the Data

05 Evaluate the Model

O3 Choose the Model

GOAL OF THIS PROJECT

- Deployed Al solution that accurately distinguish between images of notable personalities and the general populace, enhancing the personal security of such high-profile individuals.
- Focus on Arnold Schwarzenegger

PREPARE THE DATA

Labe	6	5	4	3	2	1	0	
	-0.02936425	0.7516187	-1.3598989	-0.6313401	-0.24911457	0.5813201	-2.0619872	1
	0.46341223	0.9127795	-0.68634826	0.01975525	-0.10788881	-0.66722834	-0.7968382	2
	1.1112208	-0.9721871	0.2727849	-2.7272117	2.5431106	1.1426954	5.3767786	3
	0.20589042	-1.6206465	-1.1413696	1.2244786	-2.628079	1.2428827	7.029235	4
	1.919936	-1.0751754	-1.6030868	1.7404125	-4.2911143	6.752706	5.4848223	5
	1.1879293	0.20314787	2.0314894	-0.06967798	-1.6003897	1.428951	-0.13898633	6
	2.6764379	0.9182035	0.59518504	-1.5875958	-0.014346995	-5.249127	-4.9443116	7
	-0.59298164	1.3748426	0.035296015	0.20474683	2.9667895	-0.6295751	0.26447877	8
	0.21297784	-0.6201473	-1.2059602	-3.6675699	2.016866	-0.03589843	4.611807	9
	-0.91009295	-2.4563105	-0.29910663	-1.260474	3.0378122	1.0132053	-0.7734096	10
	0.16030522	1.6656278	-0.29428092	-0.84736377	-1.9767497	5.471469	10.82687	11
	-0.4328277	-2.419011	0.7579947	-3.2357833	1.3965319	2.5897965	-1.8959919	12
	0.84558564	-1.0074039	0.3601952	-1.1112196	0.7089457	1.2956209	-2.7404678	13
	-0.4369507	1.283695	2.0740452	-0.3607564	4.7283483	-2.3571577	-1.2059479	14
	3.7265582	-1.8593179	3.1826873	-2.2581217	6.4060497	1.6160346	8.030009	15
	-1.1429108	-1.7822986	-0.7474723	-0.54387957	3.1399322	5.4582734	1.6375139	16
	2.0526147	0.8853233	2.7815335	1.6626971	-4.2142415	0.033918735	-3.1716495	17
	1.5360591	-1.3620384	0.5657319	1.2646477	-1.7820765	4.176198	3.746497	18
	-1.6142217	0.60124975	1.6120536	-3.8507206	1.1876053	2.8804858	-1.6452969	19
	1.8659756	-2.327529	2.7927403	-0.7892586	-5.4775248	-2.902263	1.6608331	20
	-1.9420676	1.2274028	-0.7843416	-2.3611095	1.1850765	0.85868263	-3.53302	21
	-1.3882446	-1.9950204	1.2676188	-0.4020976	2.014958	1.2979736	-0.8072791	22
	-2.2339172	-1.9545404	3.1039023	1.1480961	-2.1743698	0.5816817	-4.8373647	23
	-1.2169197	0.87853944	0.42755648	-1.3971252	2.0177622	6.033799	2.3714836	24
	1.1589862	0.95596	-1.2560158	-0.32674932	-2.5892484	4.111673	2.5795686	25
	-0.011642457	1.2861456	-1.2075799	1.7392284	-1.3185872	2.6865888	4.669867	26
	-0.9625882	-2.3711212	2.171758	-2.5151587	1.1290458	1.6816732	4.31588	27

Shape: (190,150)

Principal components from PCA, capturing key image features.

PREPARE THE DATA

- Upload the dataset
- Seperate the features and target variable label

```
df = pd.read_csv("df.csv")

# Seperate the features and target variable label
X = df.drop('Label', axis=1)
y = df['Label']
```

 Split the data into training and testing sets using stratify to balance the class (proportionally equal between training data and testing data)

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=21, stratify=y)
```

CHOOSE THE MODEL

- Dataset: small dataset: simpler model, faster training time
- Classification Model:
 - Logistic Regression (output: probability: p < .5 => 1; p > .5 =>0)
 - KNeighborsClassifier: predict the label of data point by taking looking at the k closest labeled data point and using majority vote
 - DecisionTreeClassifier: model complex, non-linear relationships in the image data

```
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
```

- Store initialized models in a dictionary
- This approach allows for easy expansion and comparison of different models

- Store the models parameters in a dictionary
- Parameters are tailored to each model to explore a range of option during Grid Search

Logistic Regression:

- C is the regularization parameter for Logistic Regression, controlling the model's complexity
- Smaller values (e.g., 0.01) indicate stronger regularization, while larger values (e.g., 10) imply weaker regularization.
- The GridSearchCV process will test the model with each value of C to find the one that best balances accuracy and complexity.

KNeighbors Classifier

• n_neighbors specifies the number of nearest neighbors used in K-Nearest Neighbors.

Decision Tree Classifier

- max_depth: controls the maximum depth of the Decision Tree, limiting how deep the tree can go. Limiting depth can help avoid overfitting.
- min_samples_split: specifies the minimum number of samples required to split an internal node. This hyperparameter affects the tree's branching structure.
- random_state: sets a seed for reproducibility.

EVALUATE THE MODEL

- Access the performance of model and optimize hyperparameters by using crossvalidation
- It helps ensure that the model's performance is reliable and not dependent on just a single split of the data

```
# Define cross-validation parameters
# KFold is used here to ensure that our model generalizes well on unseen data
kf = KFold(n_splits=5, random_state=42, shuffle=True)
```

EVALUATE THE MODEL

- max_depth: controls the maximum depth of the Decision Tree, limiting how deep the tree can go. Limiting depth can help avoid overfitting.
- min_samples_split: specifies the minimum number of samples required to split an internal node. This hyperparameter affects the tree's branching structure.
- random_state: sets a seed for reproducibility.

- Prepare to collect Grid Search CV results
- Grid Search helps find the best parameter combination for each model

```
pipe_accuracies = {}
pipe_params = {}
pipelines = {}
```

- Create separate pipelines for each model, loop through the models and perform GridSearchCV
- Grid Search helps find the best parameter combination for each model
- Pipelines integrate preprocessing (e.g., scaling) with the model for cleaner code and to prevent data leakage

Select the best model based on the best cross-validation score

```
best_model_name = max(pipe_accuracies)
best_model_cv_score = max(pipe_accuracies.values())
best_model_info = pipe_params[best_model_name]
```

• Print the best model name, parameters, and CV score

```
# Select the best model based on the best cross-validation score
best_model_name = max(pipe_accuracies)
best_model_cv_score = max(pipe_accuracies.values())
best_model_info = pipe_params[best_model_name]

# Print the best model name, parameters, and CV score
print(f"Best Model: {best_model_name}")
print(f"Best Model Parameters: {best_model_info}")
print(f"Best Model CV Score: {best_model_cv_score}")

Best Model: LogisticRegression
Best Model Parameters: {'LogisticRegression__C': 1}
Best Model CV Score: 0.8288172043010752
```

EVALUATE THE MODEL

F1 Score: 0.2222

• Evaluate the model using metrics: help us understand the model's effectiveness

```
y_pred = pipelines[best_model_name].predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)

print(f"Accuracy: {accuracy:.4f}")
print(f"Precision: {precision:.4f}")
print(f"Recall: {recall:.4f}")
print(f"F1 Score: {f1:.4f}")

Accuracy: 0.8158
Precision: 1.0000
Recall: 0.1250
```


THANKYOU

FOR YOUR NICE ATTENTION