

Secondo turno 2024

Durata: 3 ore Zürich

Difficoltà: Gli esercizi relativi ad ogni tema sono ordinati 16 dicembre 2023

secondo un ordine crescente di difficoltà.

Punti: Ogni esercizio vale 7 punti.

Geometria

- G1) Sia ABC un triangolo. La bisettrice dell'angolo $\angle ACB$ interseca AB in D. Siano T e H punti sulle circonferenze circoscritte a CAD e CDB rispettivamente, in modo che TH sia una tangente comune alle due circonferenze circoscritte e C si trovi all'interno del quadrilatero BATH. Dimostra che BATH è ciclico.
- **G2)** Siano i punti $P \in Q$ su una circonferenza k_1 con centro O. Sia k_2 la circonferenza centrata in P e passante per Q. Definiamo X come la seconda intersezione di k_2 con la retta PQ, e Y come la seconda intersezione di k_2 con k_1 . Sia Z l'intersezione della retta OX con la retta QY. Dimostra che se PZYX è ciclico, allora PYX è un triangolo equilatero.

Combinatoria

C1) Sia n un intero positivo. Annalena ha n ciotole diverse numerate da 1 a n, e anche n mele, 2n banane e 5n fragole. Vuole combinare gli ingredienti in ogni ciotola per fare una macedonia. La macedonia è deliziosa soltanto se in ogni ciotola ci sono strettamente più fragole che banane, e strettamente più banane che mele. In quanti modi diversi Annalena può distribuire gli ingredienti nelle ciotole per fare una macedonia deliziosa in ogni ciotola?

Nota: una deliziosa macedonia può contenere 0 mele.

C2) Si consideri una griglia 2024×2024 , in cui le 2024 caselle su una delle due diagonali principali sono colorate di blu. Sam scrive i numeri $1, 2, ..., 2024^2$ nelle caselle della griglia in modo che ciascun numero appaia esattamente una volta, e che le caselle contenenti i numeri i-1 e i abbiano sempre un lato in comune, per ogni $2 \le i \le 2024^2$. Dimostrare che ci sono due caselle blu contenenti due numeri che differiscono esattamente di 2.

Teoria dei numeri

N1) Determinare tutte le terne (a, b, n) di interi positivi tali che a divide n, b divide n, c

$$(a+1)(b+1) = n.$$

N2) Determinare tutti gli interi positivi n con la seguente proprietà: per ogni divisore x di n esiste un divisore y di n tale che

$$(x+y) \mid n$$
.

Osservazione: i divisori potrebbero essere negativi.

Buona fortuna!