Tecnologías de Virtualización en Entornos de Nube

Prof. David Pérez Abreudavid.perez@ciens.ucv.ve

Universidad Central de Venezuela Facultad de Ciencias Escuela de Computación CICORE – Laboratorio ICARO

Agenda

- Virtualización
 - Arquitecturas
 - Tecnologías
- Cloud Computing
- Virtualización en Cloud Computing
- Videos & Tutoriales
- Conclusiones

Virtualización

Definiciones

 "Metodología utilizada para dividir recursos de cómputo en múltiples ambientes de ejecución, mediante la aplicación de uno o mas conceptos o tecnologías de particionamiento de hardware y software, como: compartición de tiempo, emulación, calidad de servicios, etc."

Historia de la Virtualización

Historia de la Virtualización

Virtualización

- Describe la separación de una solicitud de servicio del recurso físico subyacente que lo proveerá
 - ¿Cómo esto es posible?
- Capa de Virtualización entre el Hardware y el Sistema Operativo

Virtualización

Arquitecturas de Virtualización

- Hosted Arquitecture
 - Instala y ejecuta la capa de virtualización como una aplicación sobre un Sistema Operativo
- Hypervisor (Bare-Metal) Arquitecture
 - Instala y ejecuta la capa de virtualización directamente sobre le Hardware.

Arquitecturas de Virtualización

Arquitecturas de Virtualización

Virtualización de CPU

- Retos en la Virtualización del Hardware
 - Sistemas Operativos diseñados para ejecutarse directamente sobre le Hardware
 - ¿Qué asunciones hace el SO?

Virtualización de CPU

- Tipos de Virtualización
 - Técnicas para manejar instrucciones privilegiadas
 - Virtualización Completa usando traducción binaria
 - Virtualización Asistida por el SO o Paravirtualización
 - Virtualización Asistida por Hardware

Virtualización Completa

- Traducción del código de kernel para reemplazar instrucciones no virtualizables
 - Ejemplo
 - Habilitar interrupciones → Registro EFLAGS
- El código a nivel de usuario se ejecuta directamente en el Hardware vía el virtualizador
- A cada máquina virtual se le proporciona todos los servicios del sistema físico
 - BIOS
 - Dispositivos virtualizados
 - Memoria virtualizada
- ¿Qué permite la traducción binaria y la ejecución directa?

Virtualización Completa

Paravirtualización

- Habilitar la comunicación entre el SO anfitrión y el hypervisor con la intención de mejorar el desempeño y la eficiencia
- Implica modificar el kernel del SO con la intención de reemplazar las instrucciones no virtualizables
- Proyecto XEN
 - http://www.xenproject.org

Paravirtualización

Virtualización Asistida por Hardware

- Soporte nativo de virtualización a nivel de la arquitectura
 - VT-x → Intel Virtualization Technology
 - AMD-V → AMD
- Permitir que el VMM o hypervisor se ejecute en un modo de ejecución privilegiado por debajo del anillo 0
- Esto permite eliminar la necesidad de realizar traducción binaria de instrucciones o de paravirtualizar

Virtualización Asistida por Hardware

Resumen Técnicas de Virtualización

	Full Virtualization with Binary Translation	Hardware Assisted Virtualization	OS Assisted Virtualization / Paravirtualization	
Technique	Binary Translation and Direct Execution	Exit to Root Mode on Privileged Instructions	Hypercalls	
Guest Modification / Compatibility	Unmodified Guest OS Excellent compatibility	Unmodified Guest OS Excellent compatibility	Guest OS codified to issue Hypercalls so it can't run on Native Hardware or other Hypervisors	
			Poor compatibility; Not available on Windows OSes	
Performance	Good	Fair Current performance lags Binary Translation virtualization on various workloads but will improve over time	Better in certain cases	
Used By	VMware, Microsoft, Parallels	VMware, Microsoft, Parallels, Xen	VMware, Xen	
Guest OS Hypervisor Independent?	Yes	Yes	XenLinux runs only on Xen Hypervisor VMI-Linux is Hypervisor agnostic	

Cloud Computing

- National Institute of Standards and Technology NIST
 - "El modelo de cómputo en la nube está compuesto por cinco características esenciales, tres modelos de servicio y cuatro modelos de despliegue"

Características Esenciales

- Identifican las partes de un sistemas genérico de computo en la nube
 - Autoservicio por demanda
 - Acceso a través de la red
 - Conjunto (pools) de recursos
 - Elasticidad
 - Servicio medido

Modelos de Servicios

- Denotan la interacción entre el proveedor y el consumidor
 - Software as a Service (SaaS)
 - Platform as a Service (PaaS)
 - Infrastructure as a Service (IaaS)

Modelos de Despliegue

- Permiten caracterizar en ambiente físico en el que se despliega la nube
 - Nube Privada
 - Nube Pública
 - Nube Híbrida

Cloud Computing

Tecnologías de Virtualización en Ambientes de Alto Desempeño

- El middleware de Cloud Computing se despliega en el tope de las tecnologías de virtualización
 - Escalabilidad
 - Calidad de Servicio
 - Personalización
- ¿Cuáles serán los hypervisores más utilizados?

Tecnologías de Virtualización en Ambientes de Alto Desempeño

	Xen	KVM	VirtualBox	VMWare
Para-virtualization	Yes	No	No	No
Full virtualization	Yes	Yes	Yes	Yes
Host CPU	x86, x86-64, IA-64	x86, x86-64,IA64,PPC	x86, x86-64	x86, x86-64
Guest CPU	x86, x86-64, IA-64	x86, x86-64,IA64,PPC	x86, x86-64	x86, x86-64
Host OS	Linux, UNIX	Linux	Windows, Linux, UNIX	Proprietary UNIX
Guest OS	Linux, Windows, UNIX	Linux, Windows, UNIX	Linux, Windows, UNIX	Linux, Windows, UNIX
VT-x / AMD-v	Opt	Req	Opt	Opt
Cores supported	128	16	32	8
Memory supported	4TB	4TB	16GB	64GB
3D Acceleration	Xen-GL	VMGL	Open-GL	Open-GL, DirectX
Live Migration	Yes	Yes	Yes	Yes
License	GPL	GPL	GPL/proprietary	Proprietary

- High Performance Linkpack
 - Colección de subrutinas en Fortran para analizar y resolver ecuaciones lineales
 - http://www.netlib.org/linpack
- Fast Fourier Transforms (FTT)
 - Colección de bibliotecas para calcular una transformada discreta de Fourier en un o dos dimensiones
 - http://www.fftw.org

- Ping-Pong Benchmark
 - Reporta el ancho de banda y la latencia que experimentan una serie de paquetes luego de atravesar múltiples saltos
 - Intel MPI Benchmarks

Videos y Tutoriales

- Veamos algunos videos!!!
 - Install and import VirtualBox
 - How to use VirtualBox
 - Video XEN
 - Video Citrix Xen Server
- Tutorial
 - Tutorial XEN

Conclusiones

- Ventajas de la Virtualización
- Desventajas de la Virtualización
- Ventajas del Cloud
- Desventajas del Cloud
- ¿Qué tecnología de virtualización usar?

Gracias por su Atención!

