

Лекция 8

Плоскость в пространстве

Содержание лекции:

В лекции рассматривается одно из важнейших геометрических мест точек пространсва, которое называется плоскостью. Вводится инвариантное определение и прослеживается его формальная связь с уравнением прямой на плоскости. Также обсуждатся различные способы заания плоскости в форме векторных уравнений и уравнений в координатах.

Ключевые слова:

Определение плоскости, векторное параметрическое уравнение, параметрической уравнение, нормальное векторное уравнение, общее уравнение, уравнение с прицельным параметром, уравнение плоскости, проходящей через три заданные точки, уравнение плоскости в отрезках.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы: mathdep.ifmo.ru/geolin

8.1 Уравнения плоскости

Плоскостью в пространстве \mathbb{R}^3 называется геометрическое место точек L, равноудаленных от двух заданных точек P_1 и P_2 пространства:

$$|PP_1| = |PP_2|.$$

Nota bene Пусть $\vec{r}_1, \vec{r}_2, \vec{r}$ - радиусы-векторы точек P_1, P_2 и M соответственно, тогда формально повторяя процесс описания данного геометрического места с использованием векторов (см. лекцию прямая на плоскости, получим следующие результаты:

$$|\vec{r} - \vec{r}_1| = |\vec{r} - \vec{r}_2|.$$

И после преобразований будем иметь уравнение:

$$\left(\vec{r} - \frac{\vec{r}_1 + \vec{r}_2}{2}, \vec{r}_1 - \vec{r}_2\right) = 0.$$

Векторным параметрическим уравнением плоскости называется уравнение следующего вида:

$$\vec{r} = \vec{r}_0 + \alpha \cdot \vec{a} + \beta \cdot \vec{b}, \quad \alpha, \beta \in \mathbb{R},$$

где $M(\vec{r})$ - произвольная точка плоскости, $P_0(\vec{r}_0)$ - заданная (опорная) точка плоскости, $\vec{a} \not \mid \vec{b}$ - два вектора, параллельные плоскости.

Nota bene Геометрический смысл приведенного уравнения заключается в том, что радиус-вектор $\overrightarrow{P_0M}$ произвольной точки P плоскости относительно опорной точки может быть представлен линейной комбинацией векторов \vec{a} и \vec{b} , параллельных этой плоскости.

Параметрическими уравнениям плоскости называются уравнения вида:

$$\begin{cases} x = x_0 + \alpha \cdot a_x + \beta \cdot b_x, \\ y = y_0 + \alpha \cdot a_y + \beta \cdot b_y, \\ z = z_0 + \alpha \cdot a_z + \beta \cdot b_z, \end{cases}$$

где

$$\vec{r} = (x, y, z), \quad \vec{r}_0 = (x_0, y_0, z_0), \quad \vec{a} = (a_x, a_y, a_z), \quad \vec{b} = (b_x, b_y, b_z).$$

Nota bene Параметрическое уравнение плоскости есть векторное параметрическое уравнение в выбранной системе координат xOy.

Нормальным векторным уравнением плоскости называектся уравнение вида

$$(\vec{r} - \vec{r}_0, \vec{n}) = 0,$$

где \vec{n} - вектор, нормальный к плоскости

ПЛОСКОСТЬ В ПРОСТРАНСТВЕ

Nota bene Связь между нормальным векторным и векторным параметрическим уравнениями устанавливается следующим равенством:

$$\vec{n} = \vec{a} \times \vec{b}$$
.

Общим уравнением плоскости называется уравнение вида

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0.$$

где $\vec{n} = (A, B, C)$ - координаты вектора нормали.

Nota bene Существует альтернативная форма записи общего уравнения:

$$Ax + By + Cz + D = 0$$
, $D = -Ax_0 - By_0 - Cz_0$.

Nota bene Общее уравнение плоскости следует также из факта компланарности вектров $\vec{r} - \vec{r_0}$, \vec{a} и \vec{b} :

$$(\vec{r} - \vec{r}_0, \vec{a}, \vec{b}) = 0,$$

или в координатах

$$\begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix} = 0,$$

что также приводит к одному уравнению приведенного выше вида.

Уравнением с прицельным параметром называется уравнение вида:

$$x \cdot \cos \alpha + y \cdot \cos \beta + z \cos \gamma - p = 0, \quad p = (\vec{r_0}, \vec{n}).$$

где $\vec{n}=(\cos\alpha,\cos\beta,\cos\gamma)$ - орт вектора нормали, а $\cos\alpha,\,\cos\beta,\,\cos\gamma$ - его направляющие косинусы:

$$\cos \alpha = \frac{n_x}{|\vec{n}|}, \quad \cos \beta = \frac{n_y}{|\vec{n}|}, \quad \cos \gamma = \frac{n_z}{|\vec{n}|}$$

Nota bene Связь общего и нормального уравнений плоскости:

$$Ax + By + Cz + D = 0 \quad | \quad \cdot \frac{-\sin(D)}{\sqrt{A^2 + B^2 + C^2}}.$$

Уравнением плоскости, проходящим через три заданные точки, называется уравнение вида:

$$(\vec{r} - \vec{r}_1)(\vec{r}_2 - \vec{r}_1)(\vec{r}_3 - \vec{r}_1) = 0,$$

 $(\vec{r}-\vec{r_1})(\vec{r_2}-\vec{r_1})(\vec{r_3}-\vec{r_1})=0,$ где $P_1(\vec{r_1}),\,P_2(\vec{r_2}),\,P_3(\vec{r_3})$ - радиус-векторы трех точек пространства, не лежащих на

Nota bene Условие непринадлежности точек одной прямой, дает то, что наряду с условием равенства нулю смешанного произведения, входящее в него векторное произведение, нулю не равно:

$$(\vec{r}_2 - \vec{r}_1) \times (\vec{r}_3 - \vec{r}_1) \neq 0.$$

ПЛОСКОСТЬ В ПРОСТРАНСТВЕ

Nota bene В декартовой прямоугольной системе координат полученное уравнения имеет вид:

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1, \end{vmatrix} = 0$$

где

$$\vec{r}_1 = (x_1, y_1, z_1), \quad \vec{r}_2 = M_2(x_2, y_2, z_2), \vec{r}_3 = M_3(x_3, y_3, z_3).$$

Уравнением плоскости в отрезках называется уравнение вида:

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1,$$

где

$$a = D/A$$
, $b = D/B$, $c = D/C$.

Nota bene Если плоскость задана уравнением в отрезках в ДПСК, то числа a, b, c по абсолютной величине равны длинам отрезков, отсекаемых плоскостью на осях координат. Знаки этих чисел зависят от того, на какой полуоси (положительной или отрицательной) лежат соответствующие отрезки.