Deciding on routing

Problem find the collection of forwarding paths that allow each router to reach every other router with the least cost

1

- Connected.
- Acyclic.
- Includes all of the vertices.

- Connected.
- Acyclic.
- Includes all of the vertices.

not connected

- Connected.
- Acyclic.
- Includes all of the vertices.

not acyclic

- Connected.
- Acyclic.
- Includes all of the vertices.

Minimum spanning tree problem

Input. Connected, undirected graph G with positive edge weights.

edge-weighted graph G

Minimum spanning tree problem

Input. Connected, undirected graph G with positive edge weights. Output. A min weight spanning tree.

minimum spanning tree T (weight = 50 = 4 + 6 + 8 + 5 + 11 + 9 + 7)

Brute force. Try all spanning trees?

Models of nature

MST of random graph

Medical image processing

MST describes arrangement of nuclei in the epithelium for cancer research

http://www.bccrc.ca/ci/ta01_archlevel.html

Simplifying assumptions

- Graph is connected.
- Edge weights are distinct.

Consequence. MST exists and is unique.

Pf. Exercise for the bored.

Cut property

Def. A cut in a graph is a partition of its vertices into two (nonempty) sets. Def. A crossing edge connects a vertex in one set with a vertex in the other.

Cut property. Given any cut, the crossing edge of min weight is in the MST.

Cut property: correctness proof

Def. A cut in a graph is a partition of its vertices into two (nonempty) sets. Def. A crossing edge connects a vertex in one set with a vertex in the other.

Cut property. Given any cut, the crossing edge of min weight is in the MST.

Pf (By Contradition). Suppose min-weight crossing edge e is not in the MST.

the MST does

not contain e

- Adding e to the MST creates a cycle.
- Some other edge f in cycle must be a crossing edge.
- Removing f and adding e is also a spanning tree.
- Since weight of e is less than the weight of f,
 that spanning tree is lower weight.
- Contradiction.

- Start with all edges colored gray.
- Find cut with no black crossing edges; color its min-weight edge black.
- Repeat until V-1 edges are colored black.

an edge-weighted graph

0-7	0.16
2-3	0.17
1-7	0.19
0-2	0.26
5-7	0.28
1-3	0.29
1-5	0.32
2-7	0.34
4-5	0.35
1-2	0.36
4-7	0.37
0-4	0.38
6-2	0.40
3-6	0.52
6-0	0.58
6-4	0.93

- Start with all edges colored gray.
- Find cut with no black crossing edges; color its min-weight edge black.
- Repeat until V-1 edges are colored black.

- Start with all edges colored gray.
- Find cut with no black crossing edges; color its min-weight edge black.
- Repeat until V-1 edges are colored black.

MST edges

0-2

- Start with all edges colored gray.
- Find cut with no black crossing edges; color its min-weight edge black.
- Repeat until V-1 edges are colored black.

MST edges

0-2

- Start with all edges colored gray.
- Find cut with no black crossing edges; color its min-weight edge black.
- Repeat until V-1 edges are colored black.

MST edges

0-2 5-7

- Start with all edges colored gray.
- Find cut with no black crossing edges; color its min-weight edge black.
- Repeat until V-1 edges are colored black.

- Start with all edges colored gray.
- Find cut with no black crossing edges; color its min-weight edge black.
- Repeat until V-1 edges are colored black.

MST edges

0-2 5-7 6-2

- Start with all edges colored gray.
- Find cut with no black crossing edges; color its min-weight edge black.
- Repeat until V-1 edges are colored black.

MST edges

0-2 5-7 6-2

- Start with all edges colored gray.
- Find cut with no black crossing edges; color its min-weight edge black.
- Repeat until V-1 edges are colored black.

MST edges

0-2 5-7 6-2 0-7

- Start with all edges colored gray.
- Find cut with no black crossing edges; color its min-weight edge black.
- Repeat until V-1 edges are colored black.

MST edges

0-2 5-7 6-2 0-7

- Start with all edges colored gray.
- Find cut with no black crossing edges; color its min-weight edge black.
- Repeat until V-1 edges are colored black.

MST edges

0-2 5-7 6-2 0-7 2-3

- Start with all edges colored gray.
- Find cut with no black crossing edges; color its min-weight edge black.
- Repeat until V-1 edges are colored black.

MST edges

0-2 5-7 6-2 0-7 2-3

- Start with all edges colored gray.
- Find cut with no black crossing edges; color its min-weight edge black.
- Repeat until V-1 edges are colored black.

MST edges

0-2 5-7 6-2 0-7 2-3 1-7

- Start with all edges colored gray.
- Find cut with no black crossing edges; color its min-weight edge black.
- Repeat until V-1 edges are colored black.

MST edges

0-2 5-7 6-2 0-7 2-3 1-7

- Start with all edges colored gray.
- Find cut with no black crossing edges; color its min-weight edge black.
- Repeat until V-1 edges are colored black.

MST edges

0-2 5-7 6-2 0-7 2-3 1-7 4-5

- Start with all edges colored gray.
- Find cut with no black crossing edges; color its min-weight edge black.
- Repeat until V-1 edges are colored black.

MST edges

0-2 5-7 6-2 0-7 2-3 1-7 4-5

Greedy MST algorithm: correctness proof

Proposition. The greedy algorithm computes the MST.

Pf.

- Any edge colored black is in the MST (via cut property).
- Fewer than V-1 black edges \Rightarrow cut with no black crossing edges.

a cut with no black crossing edges

fewer than V-1 edges colored black

Greedy MST algorithm: efficient implementations

Proposition. The greedy algorithm computes the MST.

Efficient implementations. Choose cut? Find min-weight edge?

- Ex 1. Kruskal's algorithm. [stay tuned]
- Ex 2. Prim's algorithm. [stay tuned]

Removing two simplifying assumptions

- Q. What if edge weights are not all distinct?
- A. Greedy MST algorithm still correct if equal weights are present! (our correctness proof fails, but that can be fixed)

1	2	1.00
1	3	0.50
2	4	1.00
3	4	0.50

- Q. What if graph is not connected?
- A. Compute minimum spanning forest = MST of each component.

Greed is good

Gordon Gecko (Michael Douglas) address to Teldar Paper Stockholders in Wall Street (1986)

Weighted edge API

Edge abstraction needed for weighted edges.

Idiom for processing an edge e: int v = e.either(), w = e.other(v);

Weighted edge: Java implementation

```
public class Edge implements Comparable<Edge>
   private final int v, w;
   private final double weight;
   public Edge(int v, int w, double weight)
                                                                    constructor
      this.v = v;
      this.w = w;
      this.weight = weight;
   public int either()
                                                                    either endpoint
   { return v; }
   public int other(int vertex)
      if (vertex == v) return w;
                                                                    other endpoint
      else return v;
   public int compareTo(Edge that)
               (this.weight < that.weight) return -1;</pre>
                                                                    compare edges by weight
      else if (this.weight > that.weight) return +1; \leftarrow
      else
                                             return 0:
```

Edge-weighted graph API

public class	EdgeWeightedGraph	
	EdgeWeightedGraph(int V)	create an empty graph with V vertices
	EdgeWeightedGraph(In in)	create a graph from input stream
void	addEdge(Edge e)	add weighted edge e to this graph
Iterable <edge></edge>	adj(int v)	edges incident to v
Iterable <edge></edge>	edges()	all edges in this graph
int	V()	number of vertices
int	E()	number of edges
String	toString()	string representation

Conventions. Allow self-loops and parallel edges.

Edge-weighted graph: adjacency-lists representation

Maintain vertex-indexed array of Edge lists.

Edge-weighted graph: adjacency-lists implementation

```
public class EdgeWeightedGraph
   private final int V;
                                                        same as Graph, but adjacency
   private final Bag<Edge>[] adj;
                                                        lists of Edges instead of integers
   public EdgeWeightedGraph(int V)
                                                        constructor
      this.V = V;
      adj = (Bag<Edge>[]) new Bag[V];
      for (int v = 0; v < V; v++)
         adj[v] = new Bag<Edge>();
   public void addEdge(Edge e)
      int v = e.either(), w = e.other(v);
                                                        add edge to both
      adj[v].add(e);
                                                        adjacency lists
      adj[w].add(e);
   public Iterable<Edge> adj(int v)
      return adj[v]; }
```

Minimum spanning tree API

Q. How to represent the MST?

Minimum spanning tree API

Q. How to represent the MST?

```
public class MST

MST(EdgeWeightedGraph G) constructor

Iterable<Edge> edges() edges in MST

double weight() weight of MST
```

```
public static void main(String[] args)
{
    In in = new In(args[0]);
    EdgeWeightedGraph G = new EdgeWeightedGraph(in);
    MST mst = new MST(G);
    for (Edge e : mst.edges())
        StdOut.println(e);
    StdOut.printf("%.2f\n", mst.weight());
}
```

```
% java MST tinyEWG.txt
0-7 0.16
1-7 0.19
0-2 0.26
2-3 0.17
5-7 0.28
4-5 0.35
6-2 0.40
1.81
```

KRUSKAL'S ALGORITHM

Consider edges in ascending order of weight.

Add next edge to tree T unless doing so would create a cycle.

graph edges sorted by weight

an edge-weighted graph

	\downarrow
0-7	0.16
2-3	0.17
1-7	0.19
0-2	0.26
5-7	0.28
1-3	0.29
1-5	0.32
2-7	0.34
4-5	0.35
1-2	0.36
4-7	0.37
0-4	0.38
6-2	0.40
3-6	0.52
6-0	0.58
6-4	0.93

Consider edges in ascending order of weight.

Add next edge to tree T unless doing so would create a cycle.

graph edges sorted by weight

an edge-weighted graph

0-7	0.16
2-3	0.17
1-7	0.19
0-2	0.26
5-7	0.28
1-3	0.29
1-5	0.32
2-7	0.34
4-5	0.35
1-2	0.36
4-7	0.37
0-4	0.38
6-2	0.40
3-6	0.52
6-0	0.58
6-4	0.93

Consider edges in ascending order of weight.

Add next edge to tree T unless doing so would create a cycle.

43

Consider edges in ascending order of weight.

Consider edges in ascending order of weight.

Add next edge to tree T unless doing so would create a cycle.

a minimum spanning tree

0-7 0.16 2-3 0.17 0.19 1-7 0-2 0.26 5-7 0.28 1-3 0.29 1-5 0.32 2-7 0.34 4-5 0.35 1-2 0.36 4-7 0.37 0-4 0.38 6-2 0.40 3-6 0.52 0.58 $6-4 \quad 0.93$

Kruskal's algorithm: visualization

Kruskal's algorithm: correctness proof

Proposition. [Kruskal 1956] Kruskal's algorithm computes the MST.

- Pf. Kruskal's algorithm is a special case of the greedy MST algorithm.
 - Suppose Kruskal's algorithm colors the edge e = v w black.
 - Cut = set of vertices connected to v in tree T.
 - No crossing edge is black.
 - No crossing edge has lower weight. Why?

Kruskal's algorithm: implementation challenge

Challenge. Would adding edge v-w to tree T create a cycle? If not, add it.

How difficult?

- E + V
- V run DFS from v, check if w is reachable (T has at most V 1 edges)
- log *V*
- 1

Kruskal's algorithm: implementation challenge

Challenge. Would adding edge v—w to tree T create a cycle? If not, add it.

Efficient solution. Use the union-find data structure.

- Maintain a set for each connected component in T.
- If v and w are in same set, then adding v—w would create a cycle.
- To add v—w to T, merge sets containing v and w.

Case 1: adding v-w creates a cycle

Case 2: add v-w to T and merge sets containing v and w

Kruskal's algorithm: Java implementation

```
public class KruskalMST
{
   private Queue<Edge> mst = new Queue<Edge>();
   public KruskalMST(EdgeWeightedGraph G)
                                                                   build priority queue
   {
                                                                   (or sort)
      MinPQ<Edge> pq = new MinPQ<Edge>(G.edges());
      UF uf = new UF(G.V());
      while (!pq.isEmpty() && mst.size() < G.V()-1)
         Edge e = pq.delMin();
                                                                   greedily add edges to MST
         int v = e.either(), w = e.other(v);
         if (!uf.connected(v, w))
                                                                   edge v-w does not create cycle
            uf.union(v, w);
                                                                   merge sets
            mst.enqueue(e);
                                                                   add edge to MST
   }
   public Iterable<Edge> edges()
      return mst; }
}
```

Kruskal's algorithm: running time

Proposition. Kruskal's algorithm computes MST in time proportional to $E \log E$ (in the worst case).

Pf.

operation	frequency	time per op
build pq	1	E
delete-min	E	$\log E$
union	V	log* V [†]
connected	E	log* V†

[†] amortized bound using weighted quick union with path compression

PRIMS ALGORITHM

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

an edge-weighted graph

0-7	0.16
2-3	0.17
1-7	0.19
0-2	0.26
5-7	0.28
1-3	0.29
1-5	0.32
2-7	0.34
4-5	0.35
1-2	0.36
4-7	0.37
0-4	0.38
6-2	0.40
3-6	0.52
6-0	0.58
6-4	0.93

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

MST edges

0-7

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

MST edges

0-7

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

MST edges

0-7 1-7

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

MST edges

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

MST edges

0-7 1-7 0-2

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

MST edges

0-7 1-7 0-2

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

MST edges

0-7 1-7 0-2 2-3

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

MST edges

0-7 1-7 0-2 2-3

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

MST edges

0-7 1-7 0-2 2-3 5-7

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

MST edges

0-7 1-7 0-2 2-3 5-7

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

MST edges

0-7 1-7 0-2 2-3 5-7 4-5

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

MST edges

0-7 1-7 0-2 2-3 5-7 4-5

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

MST edges

0-7 1-7 0-2 2-3 5-7 4-5 6-2

Prim's algorithm: visualization

Prim's algorithm: proof of correctness

Proposition. [Jarník 1930, Dijkstra 1957, Prim 1959] Prim's algorithm computes the MST.

- Pf. Prim's algorithm is a special case of the greedy MST algorithm.
 - Suppose edge e = min weight edge connecting a vertex on the tree to a vertex not on the tree.
 - Cut = set of vertices connected on tree.
 - No crossing edge is black.
 - No crossing edge has lower weight.

Prim's algorithm: implementation challenge

Challenge. Find the min weight edge with exactly one endpoint in *T*.

How difficult?

- V
- $\log^* E$
- 1

Challenge. Find the min weight edge with exactly one endpoint in *T*.

Lazy solution. Maintain a PQ of edges with (at least) one endpoint in T.

- Key = edge; priority = weight of edge.
- Delete-min to determine next edge e = v w to add to T.
- Disregard if both endpoints v and w are marked (both in T).
- Otherwise, let w be the unmarked vertex (not in T):
 - add to PQ any edge incident to w (assuming other endpoint not in T)
 - add e to T and mark w

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.

an edge-weighted graph

)-7	0.16
2-3	0.17
L-7	0.19
)-2	0.26
5-7	0.28
L-3	0.29
L-5	0.32
2-7	0.34
1-5	0.35
L-2	0.36
1-7	0.37
)-4	0.38
5-2	0.40
3-6	0.52
6-0	0.58
6-4	0.93

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

an edge-weighted graph

0-7	0.16
2-3	0.17
1-7	0.19
0-2	0.26
5-7	0.28
1-3	0.29
1-5	0.32
2-7	0.34
4-5	0.35
1-2	0.36
4-7	0.37
0-4	0.38
6-2	0.40
3-6	0.52
6-0	0.58
6-4	0.93

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

add to PQ all edges incident to 0

edges on PQ (sorted by weight)

* 0-7 0.16

* 0-2 0.26

* 0-4 0.38

***** 6-0 0.58

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

delete 0-7 and add to MST

edges on PQ (sorted by weight)

0-7 0.16

0-2 0.26

0-4 0.38

6-0 0.58

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

edges on PQ (sorted by weight)

0-2 0.26

0-4 0.38

6-0 0.58

MST edges

0-7

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

add to PQ all edges incident to 7

edges on PQ (sorted by weight)

***** 1-7 0.19

0-2 0.26

***** 5-7 0.28

***** 2-7 0.34

***** 4-7 0.37

0-4 0.38

6-0 0.58

MST edges

0 - 7

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

delete 1-7 and add to MST

edges on PQ (sorted by weight)

1-7 0.19

0-2 0.26

5-7 0.28

2-7 0.34

4-7 0.37

0-4 0.38

6-0 0.58

MST edges

0-7

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

edges on PQ (sorted by weight)

0-2 0.26

5-7 0.28

2-7 0.34

4-7 0.37

0-4 0.38

6-0 0.58

MST edges

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

add to PQ all edges incident to 1

edges on PQ (sorted by weight)

0-2 0.26

5-7 0.28

***** 1-3 0.29

***** 1-5 0.32

2-7 0.34

* 1-2 0.36

4-7 0.37

0-4 0.38

6-0 0.58

MST edges

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

delete edge 0-2 and add to MST

edges on PQ (sorted by weight)

0-2 0.26

1-3 0.29

5-7 0.28

1-5 0.32

2-7 0.34

1-2 0.36

4-7 0.37

0-4 0.38

6-0 0.58

MST edges

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

MST edges

0-7 1-7 0-2

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.

no need to add edge 1-2 or 2-7

• Repeat until V-1 edges.

add to PQ all edges incident to 2

because it's already obsolete

7

0

6

MST edges

0-7 1-7 0-2

edges on PQ (sorted by weight)

*	2-3	0.17
	5-7	0.28
	1-3	0.29
	1-5	0.32
	2-7	0.34
	1-2	0.36
	4-7	0.37
	0-4	0.38
*	6-2	0.40
	6-0	0.58

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

delete 2-3 and add to MST

MST edges

0-7 1-7 0-2

edges on PQ (sorted by weight)

* 2-3	0.17
5-7	0.28
1-3	0.29
1-5	0.32
2-7	0.34
1-2	0.36
4-7	0.37
0-4	0.38
* 6-2	0.40
6-0	0.58

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

edges on PQ (sorted by weight)

5-7 0.28

1-3 0.29

1-5 0.32

2-7 0.34

1-2 0.36

4-7 0.37

0-4 0.38

6-2 0.40

6-0 0.58

MST edges

0-7 1-7 0-2 2-3

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

add to PQ all edges incident to 3

MST edges

0-7 1-7 0-2 2-3

edges on PQ (sorted by weight)

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

delete 5-7 and add to MST

MST edges

0-7 1-7 0-2 2-3

edges on PQ (sorted by weight)

5-7	0.28

 $1-3 \quad 0.29$

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

edges on PQ (sorted by weight)

1-3	0.29
1-5	0.32
2-7	0.34
1-2	0.36
4-7	0.37
0-4	0.38
6-2	0.40
3-6	0.52
6-0	0.58

MST edges

0-7 1-7 0-2 2-3 5-7

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

add to PQ all edges incident to 5

MST edges

0-7 1-7 0-2 2-3 5-7

edges on PQ (sorted by weight)

1-	3	0	2	9

1-5 0.32

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

delete 1-3 and discard obsolete edge

MST edges

0-7 1-7 0-2 2-3 5-7

edges on PQ (sorted by weight)

1-3	0.29
1-5	0 32

$$6-2$$
 0.40

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

delete 1-5 and discard obsolete edge

edges on PQ (sorted by weight)

1-5 0.32

2-7 0.34

4-5 0.35

1-2 0.36

4-7 0.37

0-4 0.38

6-2 0.40

3-6 0.52

6-0 0.58

MST edges

0-7 1-7 0-2 2-3 5-7

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

delete 2-7 and discard obsolete edge

edges on PQ (sorted by weight)

2-7 0.34

4-5 0.35

1-2 0.36

4-7 0.37

 $0-4 \quad 0.38$

6-2 0.40

3-6 0.52

6-0 0.58

MST edges

0-7 1-7 0-2 2-3 5-7

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

delete 4-5 and add to MST

edges on PQ (sorted by weight)

4-5 0.35

1-2 0.36

4-7 0.37

0-4 0.38

6-2 0.40

3-6 0.52

6-0 0.58

MST edges

0-7 1-7 0-2 2-3 5-7

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

edges on PQ (sorted by weight)

1-2 0.36 4-7 0.37 0-4 0.38 6-2 0.40 3-6 0.52 6-0 0.58

MST edges

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

add to PQ all edges incident to 4

edges on PQ (sorted by weight)

1-2 0.36 4-7 0.37 0-4 0.38 6-2 0.40 3-6 0.52 6-0 0.58 * 6-4 0.93

MST edges

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

delete 1-2 and discard obsolete edge

edges on PQ (sorted by weight)

1-2 0.36 4-7 0.37 0-4 0.38 6-2 0.40 3-6 0.52 6-0 0.58 6-4 0.93

MST edges

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

delete 4-7 and discard obsolete edge

edges on PQ (sorted by weight)

4-7 0.37 0-4 0.38

6-2 0.40

3-6 0.52

6-0 0.58

6-4 0.93

MST edges

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

delete 0-4 and discard obsolete edge

edges on PQ (sorted by weight)

0-4 0.38 6-2 0.40

3-6 0.52

6-0 0.58

 $6-4 \quad 0.93$

MST edges

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

delete 6-2 and add to MST

edges on PQ (sorted by weight)

6-2 0.40

3-6 0.52

6-0 0.58

6-4 0.93

MST edges

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

delete 6-2 and add to MST

edges on PQ (sorted by weight)

3-6 0.52

6-0 0.58

 $6-4 \quad 0.93$

MST edges

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

stop since V-1 edges

edges on PQ (sorted by weight)

3-6 0.52

6-0 0.58

 $6-4 \quad 0.93$

MST edges

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

MST edges

```
public class LazyPrimMST
   private boolean[] marked; // MST vertices
   private Queue<Edge> mst; // MST edges
   private MinPQ<Edge> pq; // PQ of edges
    public LazyPrimMST(WeightedGraph G)
        pq = new MinPQ<Edge>();
        mst = new Queue<Edge>();
        marked = new boolean[G.V()];
        visit(G, 0);
                                                                   assume G is connected
        while (!pq.isEmpty() && mst.size() < G.V() - 1)
                                                                   repeatedly delete the
           Edge e = pq.delMin();
                                                                   min weight edge e = v-w from PQ
           int v = e.either(), w = e.other(v);
                                                                   ignore if both endpoints in T
           if (marked[v] && marked[w]) continue;
                                                                   add edge e to tree
           mst.enqueue(e);
           if (!marked[v]) visit(G, v);
                                                                   add v or w to tree
           if (!marked[w]) visit(G, w);
```

```
private void visit(WeightedGraph G, int v)
{
    marked[v] = true;
    for (Edge e : G.adj(v))
        if (!marked[e.other(v)])
            pq.insert(e);
}

public Iterable<Edge> mst()
{    return mst; }
add v to T

for each edge e = v-w, add to
PQ if w not already in T
```

Lazy Prim's algorithm: running time

Proposition. Lazy Prim's algorithm computes the MST in time proportional to $E \log E$ and extra space proportional to E (in the worst case).

Pf.

operation	frequency	binary heap
delete min	E	$\log E$
insert	E	$\log E$

NO ONE HAS FOUND A LINEAR TIME ALGORITHM FOR MST

Does a linear-time MST algorithm exist?

deterministic compare-based MST algorithms

year	worst case	discovered by
1975	$E \log \log V$	Yao
1976	$E \log \log V$	Cheriton-Tarjan
1984	$E \log^* V, E + V \log V$	Fredman-Tarjan
1986	$E \log (\log^* V)$	Gabow-Galil-Spencer-Tarjan
1997	$E \alpha(V) \log \alpha(V)$	Chazelle
2000	$E \alpha(V)$	Chazelle
20xx	E	???

log* -> number of times youTake the log to get to one

 $\alpha(V)$ is a function that grows slower than log

Remark. Linear-time randomized MST algorithm (Karger-Klein-Tarjan 1995).

CLUSTERING USING PRIMS

Dendrogram. Tree diagram that illustrates arrangement of clusters.

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/hierarchical.html

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/hierarchical.html

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/hierarchical.html

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/hierarchical.html

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/hierarchical.html

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/hierarchical.html

Dendrogram of cancers in human

Tumors in similar tissues cluster together.

Algorithms

http://algs4.cs.princeton.edu

4.3 MINIMUM SPANNING

- introduction
- greedy algorithm
- edge-weighted graph API
- Kruskal's algorithm
- Prim's algorithm
- context

