Probability theory

Lecture 3: Probability distribution

Maksim Zhukovskii

MIPT

Distribution in \mathbb{R}

$$\Omega=\mathbb{R}$$
,

Distribution in \mathbb{R}

$$\Omega=\mathbb{R}$$
,

$$\mathfrak{F}=\mathfrak{B}(\mathbb{R})$$
,

Distribution in $\ensuremath{\mathbb{R}}$

$$\Omega=\mathbb{R}$$
 ,

$$\mathcal{F} = \mathcal{B}(\mathbb{R})$$
,

P — probability measure on
$$(\Omega, \mathcal{F})$$

Distribution in ${\mathbb R}$

$$\Omega=\mathbb{R}$$
 ,

$$\mathfrak{F}=\mathfrak{B}(\mathbb{R})$$
,

P — probability measure on (Ω, \mathcal{F}) — distribution

Distribution function

 $F:\mathbb{R} o [0,1]$,

Distribution function

$$F:\mathbb{R} o [0,1], \quad F(x)=\mathsf{P}((-\infty,x])$$

Distribution function

$$F: \mathbb{R} \to [0,1], \quad F(x) = \mathsf{P}((-\infty,x])$$

F — distribution function

Properties

1. *F* is nondecreasing,

Properties

1. *F* is nondecreasing,

2. $\lim_{x\to-\infty} F(x) = 0$, $\lim_{x\to\infty} F(x) = 1$,

Properties

1. *F* is nondecreasing,

2.
$$\lim_{x\to-\infty} F(x) = 0$$
, $\lim_{x\to\infty} F(x) = 1$,

3. *F* is right-continuous.

The proof

From distribution function to probability

Theorem

Let $F: \mathbb{R} \to [0,1]$,

From distribution function to probability

Theorem

Let $F: \mathbb{R} \to [0,1]$, F have properties 1), 2), 3).

Theorem

icoren

Let $F: \mathbb{R} \to [0,1]$,

F have properties 1), 2), 3).

Then, there exists the only distribution P such that

From distribution function to probability

Theorem

neoren

Let $F: \mathbb{R} \to [0,1]$,

F have properties 1), 2), 3).

Then, there exists the only distribution P

- such that
- F is the distribution function of P,

From distribution function to probability

Theorem

Let $F: \mathbb{R} \to [0,1]$, F have properties 1), 2), 3).

Then, there exists the only distribution P such that

• F is the distribution function of P.

From distribution function to probability

• for all $-\infty < a < b < \infty$.

$$\mathsf{P}((a,b]) = \mathsf{F}(b) -$$

$$F(x) = \begin{cases} 0, & x < 0; \\ x, & 0 \le x \le 1; \\ 1, & x > 1. \end{cases}$$

$$F(x) = \begin{cases} 0, & x < 0; \\ x, & 0 \le x \le 1; \\ 1, & x > 1. \end{cases}$$

The respective probability distribution is called Lebesgue measure μ on [0,1].

$$F(x) = \begin{cases} 0, & x < 0; \\ x, & 0 \le x \le 1; \\ 1, & x > 1. \end{cases}$$

The respective probability distribution is called Lebesgue measure μ on [0,1].

For
$$a < b \in [0,1]$$
, $\mu((a,b)) = \mu([a,b]) = \mu([a,b]) = \mu([a,b]) = b - a$.

$$F(x) = \begin{cases} 0, & x < c; \\ 1, & x \ge c. \end{cases}$$

$$F(x) = \begin{cases} 0, & x < c; \\ 1, & x \ge c. \end{cases}$$

$$ext{for } A \in \mathcal{B}(\mathbb{R}), \quad \mathsf{P}(A) = \left\{ egin{array}{ll} 0, & c
otin A, \ 1, & c
otin A, \end{array}
ight.$$

▶ $X = \{x_1, x_2, ...\} \subset \mathbb{R}$ — finite or countably infinite

- ▶ $X = \{x_1, x_2, ...\} \subset \mathbb{R}$ finite or countably infinite
- ▶ $P({x_k}) = p_k > 0$ for all k, P(X) = 1

- ▶ $X = \{x_1, x_2, ...\} \subset \mathbb{R}$ finite or countably infinite
- ▶ $P({x_k}) = p_k > 0$ for all k, P(X) = 1

P — discrete distribution

- ▶ $X = \{x_1, x_2, ...\} \subset \mathbb{R}$ finite or countably infinite
- ▶ $P({x_k}) = p_k > 0$ for all k, P(X) = 1

P — discrete distribution

$$F(x) = \sum_{k: x_k < x} p_k$$

▶ Uniform distrib. on $\{1, ..., N\}$

► Uniform distrib. on $\{1, ..., N\}$ $X = \{1, ..., N\}$,

► Uniform distrib. on $\{1, ..., N\}$ $X = \{1, ..., N\}, p_k = \frac{1}{N}.$

- ▶ Uniform distrib. on $\{1, ..., N\}$ $X = \{1, ..., N\}, p_k = \frac{1}{N}.$
- Bernoulli distrib. with parameter p

- ▶ Uniform distrib. on $\{1, ..., N\}$ $X = \{1, ..., N\}, p_k = \frac{1}{N}.$
- ▶ Bernoulli distrib. with parameter p $X = \{0, 1\},$

- ► Uniform distrib. on $\{1, ..., N\}$ $X = \{1, ..., N\}, p_k = \frac{1}{N}.$
- ▶ Bernoulli distrib. with parameter p $X = \{0, 1\}, P(\{0\}) = 1 p, P(\{1\}) = p.$

- ▶ Uniform distrib. on $\{1, ..., N\}$ $X = \{1, ..., N\}, p_k = \frac{1}{N}.$
- ▶ Bernoulli distrib. with parameter p $X = \{0, 1\}, P(\{0\}) = 1 - p, P(\{1\}) = p.$
- ▶ Binomial distrib. with parameters (n, p),

- ► Uniform distrib. on $\{1, ..., N\}$ $X = \{1, ..., N\}, p_k = \frac{1}{N}.$
 - ▶ Bernoulli distrib. with parameter p $X = \{0, 1\}, P(\{0\}) = 1 - p, P(\{1\}) = p.$
 - ▶ Binomial distrib. with parameters (n, p), $X = \{0, 1, ..., n\}$,

- ► Uniform distrib. on $\{1, ..., N\}$ $X = \{1, ..., N\}, p_k = \frac{1}{N}.$
 - ▶ Bernoulli distrib. with parameter p $X = \{0, 1\}, P(\{0\}) = 1 - p, P(\{1\}) = p.$
 - ▶ Binomial distrib. with parameters (n, p), $X = \{0, 1, ..., n\}$, $P(\{k\}) = \binom{n}{k} p^k (1 p)^{n-k}$.

► Uniform distrib. on
$$\{1, ..., N\}$$

 $X = \{1, ..., N\}, p_k = \frac{1}{N}.$

- ▶ Bernoulli distrib. with parameter p $X = \{0, 1\}$. $P(\{0\}) = 1 - p$. $P(\{1\}) = p$.
- ▶ Binomial distrib. with parameters (n, p), $X = \{0, 1, ..., n\}$, $P(\{k\}) = \binom{n}{k} p^k (1 p)^{n-k}$.
- ▶ Poisson distrib. with parameter $\lambda > 0$

- ▶ Uniform distrib. on $\{1, ..., N\}$ $X = \{1, ..., N\}, p_k = \frac{1}{N}.$
- ▶ Bernoulli distrib. with parameter p $X = \{0, 1\}$. $P(\{0\}) = 1 - p$. $P(\{1\}) = p$.
- ▶ Binomial distrib. with parameters (n, p), $X = \{0, 1, ..., n\}$, $P(\{k\}) = \binom{n}{k} p^k (1 p)^{n-k}$.
- $X = \{0, 1, \dots, n\}, P(\{k\}) = \binom{n}{k} p^k (1-p)^{n-k}$
- ▶ Poisson distrib. with parameter $\lambda > 0$ $X = \mathbb{Z}_+$,

▶ Uniform distrib. on
$$\{1, ..., N\}$$

 $X = \{1, ..., N\}, p_k = \frac{1}{N}.$

- ▶ Bernoulli distrib. with parameter p $X = \{0, 1\}, P(\{0\}) = 1 - p, P(\{1\}) = p.$
- ▶ Binomial distrib. with parameters (n, p), $X = \{0, 1, ..., n\}$, $P(\{k\}) = \binom{n}{k} p^k (1 p)^{n-k}$.
- ▶ Poisson distrib. with parameter $\lambda > 0$ $X = \mathbb{Z}_+$, $P(\{k\}) = \frac{e^{-\lambda} \lambda^k}{k!}$.

F — distribution function of P

F — distribution function of P

Let there exist $p: \mathbb{R} \to \mathbb{R}_+$ such that

F — distribution function of P

Let there exist
$$p:\mathbb{R}\to\mathbb{R}_+$$
 such that $\int\limits_{\mathbb{R}} p(t)dt=1,\ F(x)=\int\limits_{-\infty}^{x} p(t)dt.$

F — distribution function of P

Let there exist
$$p:\mathbb{R}\to\mathbb{R}_+$$
 such that $\int\limits_{\mathbb{R}} p(t)dt=1,\ F(x)=\int\limits_{-\infty}^{x} p(t)dt.$

Then

Let there exist
$$p:\mathbb{R} \to \mathbb{R}_+$$
 such that $\int\limits_{\mathbb{R}} p(t)dt = 1, \ F(x) = \int\limits_{-\infty}^{x} p(t)dt.$

Then P — absolutely continuous distribution,

Let there exist
$$p:\mathbb{R}\to\mathbb{R}_+$$
 such that $\int\limits_{\mathbb{R}} p(t)dt=1,\ F(x)=\int\limits_{-\infty}^{x} p(t)dt.$

Then P — absolutely continuous distribution, p — density.

From density to distribution

Theorem

Let $ho:\mathbb{R} o\mathbb{R}_+$, $\int\limits_{\mathbb{R}}
ho(t)dt=1$.

From density to distribution

Theorem

Let
$$ho:\mathbb{R} o\mathbb{R}_+$$
 , $\int\limits_{\mathbb{R}}
ho(t)dt=1$.

$F: \mathbb{R} \in [0,1],$ $F(x) = \int_{0}^{x} p(t)dt,$

is a distribution function.

Proof

► Let *F* be a differentiable distribution function.

Let F be a differentiable distribution function. Then it has a density p = F'.

Let F be a differentiable distribution function. Then it has a density p = F'.

▶ It p — density of P, $B \in \mathcal{B}(\mathbb{R})$,

Let F be a differentiable distribution function. Then it has a density p = F'.

▶ It
$$p$$
 — density of P, $B \in \mathcal{B}(\mathbb{R})$,

then
$$P(B) = \int_B p d\mu$$
.

Let F be a differentiable distribution function. Then it has a density p = F'.

▶ It
$$p$$
 — density of P , $B \in \mathcal{B}(\mathbb{R})$,

then
$$P(B) = \int_B p d\mu$$
.
If $\int_B p(x) dx$ exists,
then $P(B) = \int_B p(x) dx$.

• Uniform distrib. on [a, b]:

$$p(t) = \frac{I_{[a,b]}(t)}{b-a}.$$

- Uniform distrib. on [a, b]: $p(t) = \frac{I_{[a,b]}(t)}{b-a}$.
- Normal distrib. with parameters $(a, \sigma^2 > 0)$ $p(t) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(t-a)^2}{2\sigma^2}}$.

- Uniform distrib. on [a, b]: $p(t) = \frac{I_{[a,b]}(t)}{b-a}$.
- Normal distrib. with parameters $(a, \sigma^2 > 0)$ $p(t) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(t-a)^2}{2\sigma^2}}.$
- Gamma distrib. with param. $(\alpha, \beta) \in \mathbb{R}^2_{>0}$ $p(t) = \frac{\beta^{\alpha}t^{\alpha-1}}{\Gamma(\alpha)}e^{-\beta t}I_{(0,\infty)}(t)$.

- Uniform distrib. on [a, b]: $p(t) = \frac{I_{[a,b]}(t)}{L}.$
- Normal distrib. with parameters $(a, \sigma^2 > 0)$ $p(t) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(t-a)^2}{2\sigma^2}}.$
- $p(t)=rac{1}{\sqrt{2\pi\sigma^2}}e^{-2\sigma^2}$.

 Gamma distrib. with param. $(\alpha,\beta)\in\mathbb{R}^2_{>0}$ $p(t)=rac{eta^{lpha}t^{lpha-1}}{\Gamma(lpha)}e^{-eta t}I_{(0,\infty)}(t).$
- Exponential distrib. with parameter $\lambda > 0$: $p(t) = \lambda e^{-\lambda t} I_{(0,\infty)}(t)$.

- Uniform distrib. on [a, b]: $p(t) = \frac{I_{[a,b]}(t)}{b-2}.$
- Normal distrib. with parameters $(a, \sigma^2 > 0)$ $p(t) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(t-a)^2}{2\sigma^2}}.$
 - Gamma distrib. with param. $(\alpha, \beta) \in \mathbb{R}^2_{>0}$ $p(t) = \frac{\beta^{\alpha} t^{\alpha-1}}{\Gamma(\alpha)} e^{-\beta t} I_{(0,\infty)}(t).$
 - Exponential distrib. with parameter $\lambda > 0$: $p(t) = \lambda e^{-\lambda t} I_{(0,\infty)}(t)$.
- Cauchy distrib. with parameter $\theta > 0$: $p(t) = \frac{\theta}{\pi(t^2 + \theta^2)}.$

$$\Omega = \mathbb{R}^n$$
,

$$\Omega = \mathbb{R}^n$$
,

$$\mathcal{F} = \mathcal{B}(\mathbb{R}^n) = \sigma(\{B_1 \times \ldots \times B_n, B_i \in \mathcal{B}(\mathbb{R})\})$$

$$\Omega = \mathbb{R}^n$$
,

$$\mathfrak{F} = \mathfrak{B}(\mathbb{R}^n) = \sigma(\{B_1 \times \ldots \times B_n, B_i \in \mathfrak{B}(\mathbb{R})\})$$

▶ P — probability measure on (Ω, \mathcal{F})

$$\Omega = \mathbb{R}^n$$
,

$$\mathfrak{F} = \mathfrak{B}(\mathbb{R}^n) = \sigma(\{B_1 \times \ldots \times B_n, B_i \in \mathfrak{B}(\mathbb{R})\})$$

▶ P — probability measure on (Ω, \mathcal{F}) — distribution

$$\Omega=\mathbb{R}^n$$
,

$$\mathfrak{F} = \mathfrak{B}(\mathbb{R}^n) = \sigma(\{B_1 \times \ldots \times B_n, B_i \in \mathfrak{B}(\mathbb{R})\})$$

- ightharpoonup P probability measure on (Ω,\mathcal{F}) —
- distribution

►
$$F: \mathbb{R}^n \to [0,1], \ F(x_1,\ldots,x_n) =$$

 $P((-\infty,x_1] \times \ldots \times (-\infty,x_n])$ — distribution function

Notations

▶ x ≥ y

Notations

▶
$$\mathbf{x} \ge \mathbf{y}$$
: $x_i \ge y_i, i \in \{1, ..., n\}$

Notations

$$\mathbf{x} \geq \mathbf{y}$$
: $x_i \geq y_i$, $i \in \{1, \ldots, n\}$

Notations

$$\mathbf{x} \geq \mathbf{y}$$
: $x_i \geq y_i$, $i \in \{1, \dots, n\}$

 $(-\infty, \mathbf{x}] := (-\infty, x_1] \times \ldots \times (-\infty, x_n]$

Notations

▶
$$x \ge y$$
: $x_i \ge y_i$, $i \in \{1, ..., n\}$

 $\rightarrow \mathbf{x}^k \downarrow \mathbf{x}$:

 $(-\infty, \mathbf{x}] := (-\infty, x_1] \times \ldots \times (-\infty, x_n]$

Notations

$$\mathbf{x} \geq \mathbf{y}$$
: $x_i \geq y_i$, $i \in \{1, \ldots, n\}$

 $\mathbf{x}^{k+1} \leq \mathbf{x}^k, \ k \in \mathbb{N},$ $\lim_{k \to \infty} \mathbf{x}^k = \mathbf{x}.$

$$(-\infty, \mathbf{x}] := (-\infty, x_1] \times \ldots \times (-\infty, x_n]$$

$$\mathbf{x}^k \downarrow \mathbf{x}$$

Notations

▶
$$\mathbf{x} \ge \mathbf{y}$$
: $x_i \ge y_i$, $i \in \{1, ..., n\}$

$$(-\infty, \mathbf{x}] := (-\infty, x_1] \times \ldots \times (-\infty, x_n]$$

$$\mathbf{x}^k \downarrow \mathbf{x} :$$

 $\mathbf{x}^{k+1} \leq \mathbf{x}^k, \ k \in \mathbb{N},$ $\lim_{k \to \infty} \mathbf{x}^k = \mathbf{x}.$

 $\blacktriangleright \Delta_{a,b}^i F(x_1,\ldots,x_n)$

Notations

Notations
$$\mathbf{x} \geq \mathbf{y}: \ x_i \geq y_i, \ i \in \{1, \dots, n\}$$

$$\mathbf{b} \ (-\infty, \mathbf{x}] := (-\infty, x_1] \times \dots \times (-\infty, x_n]$$

$$\mathbf{x}^{k} \downarrow \mathbf{x}:$$

$$\mathbf{x}^{k+1} < \mathbf{x}^{k}. \ k \in \mathbb{N}.$$

 $\lim_{k\to\infty} \mathbf{x}^k = \mathbf{x}$.

 $\blacktriangleright \Delta_{a,b}^i F(x_1,\ldots,x_n) =$

 $F(x_1,...,x_{i-1},b,x_{i+1},...,x_n)$ $F(x_1, \ldots, x_{i-1}, a, x_{i+1}, \ldots, x_n).$

1. For all $a_1 < b_1, \ldots, a_n < b_n$, $\Delta^1_{a_1,b_1} \ldots \Delta^n_{a_n,b_n} F(x_1, \ldots, x_n) \ge 0$.

1. For all
$$a_1 < b_1, \ldots, a_n < b_n$$
, $\Delta^1_{a_1,b_1} \ldots \Delta^n_{a_n,b_n} F(x_1, \ldots, x_n) \geq 0$.

2.

$$\lim_{x_1 o \infty, ..., x_n o \infty} F(x_1, \ldots, x_n) = 1, \ orall i \in \{1, \ldots, n\} \quad \lim_{x_1 o \infty} F(x_1, \ldots, x_n) = 0.$$

Properties

1. For all
$$a_1 < b_1, \dots, a_n < b_n$$
,

$$\lim_{\substack{x_1\to\infty,\ldots,x_n\to\infty}} F(x_1,\ldots,x_n)=1,$$

 $\forall i \in \{1,\ldots,n\} \quad \lim_{x_1 \to -\infty} F(x_1,\ldots,x_n) = 0.$

 $\Delta_{a_1,b_2}^1 \dots \Delta_{a_n,b_n}^n F(x_1,\dots,x_n) \geq 0.$

3. If $\mathbf{x}^k \downarrow \mathbf{x}$, then $F(\mathbf{x}^k) \to F(\mathbf{x})$.

From distribution funcction to probability

Theorem

Let $F: \mathbb{R}^n \to [0,1]$,

From distribution funcction to probability

Theorem

Let $F: \mathbb{R}^n \rightarrow [0,1]$, F have properties 1), 2), 3).

From distribution funcction to probability Theorem

i neorei

Let $F: \mathbb{R}^n \to [0,1]$, F have properties 1), 2), 3).

Then, there exists the only distribution P such that

Theorem

Theore

Let $F: \mathbb{R}^n \to [0,1]$, F have properties 1), 2), 3).

Then, there exists the only distribution P such that

From distribution function to probability

• *F* is the distribution function of P,

Theorem

Let $F: \mathbb{R}^n \to [0,1]$,

Then, there exists the only distribution P

- for all $a_1 < b_1, \ldots, a_n < b_n$

$$_{1}^{n}$$
, $F(x_{1},\ldots,x_{n})$

 $P((a_1,b_1]\times\ldots\times(a_n,b_n]).$

From distribution function to probability

$$\Delta^1_{a_1,b_1}\dots\Delta^n_{a_n,b_n}F(x_1,\dots,x_n)=$$

▶ If $F^1, ..., F^n$ — are 1-dimensional distribution functions,

▶ If $F^1, ..., F^n$ — are 1-dimensional distribution functions, then $F^1(x_1)...F^n(x_n)$ — n-dimensional distribution function.

If F^1, \ldots, F^n — are 1-dimensional distribution functions, then $F^1(x_1) \ldots F^n(x_n)$ — n-dimensional distribution function.

$$\left(\prod_{i \in \{1, \dots, n\}: \ x_i < 1} x_i\right) I(x_i > 0) + I(x_i > 1)$$

▶ If $F^1, ..., F^n$ — are 1-dimensional distribution functions, then $F^1(x_1)...F^n(x_n)$ — n-dimensional distribution function.

$$\left(\prod_{i\in\{1,\ldots,n\}:\,x_i<1}x_i\right)I(x_i>0)+I(x_i>1)$$

is distribution function of Lebesgue measure on $[0,1]^n$.

Discrete *n*-dimensional distributions

▶ $X = \{x_1, x_2, \ldots\} \subset \mathbb{R}^n$ — finite or countably infinite

Discrete *n*-dimensional distributions

- ▶ $X = \{x_1, x_2, ...\} \subset \mathbb{R}^n$ finite or countably infinite
- ▶ $P({x_k}) = p_k > 0$ for all k, P(X) = 1

Discrete *n*-dimensional distributions

▶
$$X = \{x_1, x_2, ...\} \subset \mathbb{R}^n$$
 — finite or countably infinite

▶
$$P({x_k}) = p_k > 0$$
 for all k , $P(X) = 1$

P — discrete distribution

F — distribution function of P

F — distribution function of P

Let there exist $p: \mathbb{R}^n \to \mathbb{R}_+$ such that

F — distribution function of P

Let there exist
$$p:\mathbb{R}^n o \mathbb{R}_+$$
 such that $\int\limits_{\mathbb{R}^n} p(t_1,\ldots,t_n) dt_1\ldots dt_n = 1,$

$$F(x) = \int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_n} p(t_1, \dots, t_n) dt_1 \dots dt_n.$$

F — distribution function of P

Let there exist
$$p:\mathbb{R}^n o \mathbb{R}_+$$
 such that $\int\limits_{\mathbb{R}^n} p(t_1,\ldots,t_n) dt_1\ldots dt_n = 1$,

$$F(x) = \int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_n} p(t_1, \dots, t_n) dt_1 \dots dt_n.$$

Then

F — distribution function of P

Let there exist
$$p:\mathbb{R}^n o\mathbb{R}_+$$
 such that $\int\limits_{\mathbb{R}^n} p(t_1,\ldots,t_n)dt_1\ldots dt_n=1$,

$$F(x) = \int_{-\infty}^{x_1} \ldots \int_{-\infty}^{x_n} p(t_1, \ldots, t_n) dt_1 \ldots dt_n.$$

Then P — absolutely continuous distribution,

F — distribution function of P

Let there exist
$$p:\mathbb{R}^n o\mathbb{R}_+$$
 such that $\int\limits_{\mathbb{R}^n} p(t_1,\ldots,t_n)dt_1\ldots dt_n=1$,

$$F(x) = \int_{-\infty}^{x_1} \ldots \int_{-\infty}^{x_n} p(t_1, \ldots, t_n) dt_1 \ldots dt_n.$$

Then P — absolutely continuous distribution, p — density.

▶ If F is differentiable distribution function, then $p = \frac{\partial^n}{\partial x_1...\partial x_n} F$.

▶ If F is differentiable distribution function, then $p = \frac{\partial^n}{\partial x_1...\partial x_n} F$.

▶ If p — density, then $P(B) = \int_B p d\mu$.

▶ If F is differentiable distribution function, then $p = \frac{\partial^n}{\partial x_1...\partial x_n} F$.

If
$$p$$
 — density, then $P(B) = \int_B p d\mu$.

$$P(B) = \int_B p(x_1, \dots, x_n) dx_1 \dots dx_n$$
, if the integral exists.