Week 4: Naive Bayes Classification

Ekarat Rattagan

July 28, 2025

Overview

Review: Given a data set,

 $X \in \mathbb{R}^{N \times d}$ that has N rows and d dimensions. $y_i \in \{C_1, C_2, \dots, C_k\}$ where C_k is a class k.

- Churn prediction
- Credit score prediction
- Email classification (link)

Bayes Theorem and Classification

Bayes Theorem:

$$P(A|B) = \frac{P(B \cap A)}{P(B)} \tag{1}$$

$$P(B|A) = \frac{P(A \cap B)}{P(A)} \to P(B|A)P(A) = P(A \cap B)$$
 (2)

$$P(A \cap B) = P(B \cap A) \tag{3}$$

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} \tag{4}$$

Bayes Classifier:

$$P(C_j|x) = \frac{P(x|C_j)P(C_j)}{P(x)}$$
 (5)

Bayes' Rule

$$\underbrace{P(B \mid A)}_{\text{Posterior}} = \underbrace{\frac{P(A \mid B) \cdot P(B)}{\text{Likelihood}} \cdot \underbrace{P(B)}_{\text{Prior}}}_{\text{Marginal}}$$

There are four parts:

- Posterior probability (updated probability after the evidence is considered)
- Prior probability (the probability before the evidence is considered)
- Likelihood (probability of the evidence, given the belief is true)
- Marginal probability (probability of the evidence, under any circumstance)

Source: https://www.freecodecamp.org/news/bayes-rule-explained/

Bayes' Rule Classification Example

X ₁ (Name)	Y (Sex)	
Drew	rew M	
Claudia	F	
Drew	F	
Drew	F	
Alberto	М	
Karin	F	
Nina	F	
Sergio	М	
Drew	?	

Goal: Predict gender of the last "Drew" using Bayes' Rule.

$$P(Y_i = M \mid X_i = Drew) = \frac{P(Drew \mid M) \cdot P(M)}{P(Drew)} = \frac{\frac{1}{3} \cdot \frac{3}{8}}{\frac{3}{8}} = \frac{1}{3}$$

$$P(Y_i = F \mid X_i = \text{Drew}) = \frac{P(\text{Drew} \mid F) \cdot P(F)}{P(\text{Drew})} = \frac{\frac{2}{5} \cdot \frac{5}{8}}{\frac{3}{8}} = \frac{2}{3}$$

Prediction: Female (F) with probability $\frac{2}{3}$

Naive Bayes with Multiple Features

X_1 (Name)	X ₂ (Over 170cm)	X_3 (Eye Color)	X_4 (Hair Length)	Y (Sex)
Drew	No	Blue	Short	М
Claudia	Yes	Brown	Long	F
Drew	No	Blue	Long	F
Drew	No	Blue	Long	F
Alberto	Yes	Brown	Short	M
Karin	No	Blue	Long	F
Nina	Yes	Brown	Short	F
Sergio	Yes	Blue	Long	M

Example: Predict Y for Drew, No, Brown, Short

$$P(Y \mid x_1, x_2, x_3, x_4) = \frac{P(x_1, x_2, x_3, x_4 \mid Y) \cdot P(Y)}{P(x_1, x_2, x_3, x_4)}$$

Concept of Bayes' Rule

Features (x_i) are dependent (Assumption)

For a joint distribution of d variables, all $2^d - 1$ combinations must be known.

General form of likelihood (Chain rule of probability):

$$P(x_1, x_2, ..., x_d \mid Y) = P(x_1 \mid Y)P(x_2 \mid x_1, Y)P(x_3 \mid x_2, x_1, Y) ...$$

$$...P(x_d \mid x_{d-1}, x_{d-2}, ..., x_2, x_1, Y)$$

Naive Bayes Assumption

Assumption: Attributes x_i are conditionally independent given class y.

Likelihood:

$$P(\mathbf{X} \mid y_i) = P(x_1 \mid y_i) \cdot P(x_2 \mid y_i) \cdot \ldots \cdot P(x_d \mid y_i)$$

Example:

$$P(x_1, x_2, x_3, x_4 \mid Y) = P(\text{name} = \text{Drew} \mid Y = M) \cdot P(\text{over } 170 = \text{No} \mid Y = M) \cdot P(\text{eye color} = \text{brown} \mid Y = M) \cdot P(\text{hair} = \text{short} \mid Y = M)$$

Evidence:

evidence =
$$\sum_{c=1}^{K} P(\mathbf{X} \mid y_c) \cdot P(y_c)$$
 where K is the number of classes

Example computation

$$P(x_1 = \mathsf{Drew}, \ x_2 = \mathsf{No}, \ x_3 = \mathsf{brown}, \ x_4 = \mathsf{short} \mid \mathsf{Male})$$
 $P(x_1 = \mathsf{Drew} \mid \mathsf{Male})$
 $P(x_2 = \mathsf{No} \mid \mathsf{Male})$
 $P(x_3 = \mathsf{brown} \mid \mathsf{Male})$
 $P(x_4 = \mathsf{short} \mid \mathsf{Male})$

Advantages and Disadvantages

Advantages:

- Fast to train/classify
- Handles streaming data (e.g., Email spam detection)

Disadvantage:

- Assumes independence of features (X)
- Link: Does assumption work or not

Handling Continuous Values

Previous Example: $x_i \in \{\text{Categories}\}$ — Compute probability by counting.

If $x_i \in \{\text{Continuous-values}\}$, we will assume the values follow a Gaussian distribution.

Example: $x_i = \text{Height (cm)}$

Values: 100, 101, 99, 120, ..., 160

Gaussian Probability Density Function:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

where e = 2.7183

Laplacian Correction (Estimator)

Dealing with zero probability values:

Example: Training set contains 1000 samples

• Income = low: 0 samples, medium: 990 samples, high: 10 samples

Without Laplace:

$$P(\mathsf{low}) = 0$$
 $P(\mathsf{medium}) = rac{990}{1000}$
 $P(\mathsf{high}) = rac{10}{1000}$

With Laplace Correction:

$$P(\mathsf{low}) = rac{0+1}{1000+3}$$
 $P(\mathsf{medium}) = rac{990+1}{1000+3}$ $P(\mathsf{high}) = rac{10+1}{1000+3}$

Reference

 Olabenjo, Babatunde. "Applying naive bayes classification to google play apps categorization." arXiv preprint arXiv:1608.08574 (2016).