Big Data Analysis - Assignment 1

Davide Griffon

Vilnius University

March 26, 2025

Project Overview

Anomaly Types:

- Vessel movement anomalies
 - Speed inconsistencies
 - AIS transmission time gaps
- Location anomalies
 - Position conflicts between vessels

Technical Approach:

- Spatiotemporal binning for efficient processing
- Parallel computing with multiprocessing
- Vectorized operations (pandas/numpy)
- Unit testing with pytest
- Structured development with Taskfile

Vessel Movement Anomaly Detection

Two primary indicators:

- **Speed anomalies**: Vessels reporting unrealistic speeds
- AIS gaps: Unusually long periods between transmissions

Implementation approach:

- Group data by vessel MMSI
- Calculate distances between consecutive points using geopy
- Vectorized operations for time differences and speed calculations
- Flag vessels exceeding a threshold (default 50.0 miles/h)
- Flag transmission gaps exceeding a threshold (default 1.0 hour)

Optimization:

- Process each vessel independently (perfect for parallelization)
- Use of NumPy for vectorized distance calculations

Location Anomaly Detection - Binning

Spatiotemporal Binning:

- Challenge: Efficiently finding vessels at same location/time
- Solution: Group data into spatial and temporal bins
 - latitude "edge" = 0.01° ($\sim 1 \text{km}$)
 - ullet longitude "edge" = 0.01° (varies)
 - temporal bin = "1min"
- Boundary handling:
 - Points near bin boundaries are placed in multiple bins
 - Prevents missing conflicts at bin edges

Illustration of spatial binning with overlap

Location Anomaly Detection - Finding Conflicts

Conflict Detection Process:

- Preprocess data
 - Apply spatial binning
 - Apply temporal binning
 - Group by lat/lon/time bins
- Process each chunk/bin in parallel
 - Create position-time hash for efficient lookup
 - Find exact position and time matches
 - Identify vessels with different MMSIs at identical positions
- Ombine results and remove duplicates
 - Keep only one conflict per vessel pair (smallest distance)
 - Sort by distance for easier analysis

Performance Results

Dataset Characteristics:

- 5,901 unique vessels (MMSI) analyzed
- 36,583 spatiotemporal bins processed
- Full day of AIS data (aisdk-2024-06-30.csv)

Performance Comparison:

- Single-process: 780 seconds
- Multi-process: 230 seconds
- **Speedup:** 3.4x

Conclusion: Parallel processing provides significant performance improvement for spatiotemporal anomaly detection in vessel tracking data.