Most - Often - Needed

1941

RADIO DIAGRAMS

and Servicing Information

Compiled by

By M. N. BEITMAN

B.S. in Mathematics, Illinois Institute of Technology
Instructor, Chicago High Schools
Formerly, Engineer, U. S. Signal Corps
Associate, Institute of Radio Engineers
Holder of Radiotelephone First Class License
Author of Many Radio Books and Articles

SUPREME PUBLICATIONS

CHICAGO

INDEX

Admira1	ļ	Crosley Co		Emerson Ra	
see Continer	ıtal	CA-12	28	DB-296	38
		22	19	DB-301	38
Air King Prod		22 - AS	19	DB-315	38
4012	7 7	CR-26	20	DB-327	38
4016		27	20	DL-330	38
4112	7	28	21	DW-330A	38
4136	7	Chassis 2	8 33	DW-330B	38
Airline		29	22	FG-330	44
see Montgome	ery	30	23	DY-337	43
_	-	J30-BC	23	DY1-337	43
Allied Radio	•	33, 33-BG		DR-343	39
B-10596	8	34, 34-BH	26	DR1-343	39
B-10598	8	C-35-AK	24	DR-348	39
B-10600	8	TK-52	31-32	DR1-348	39
B-10606	8	60	28	DY-349	43
B-17103	8	TA-62	29 - 30	DY1-349	43
B-17104	8	63	29-30	DR-350	39
B-17107	8	64	31-32	DY-351	43
B-17108	8	CB-82-R	33-34	DY1-351	43
B-17113	8		ļ	DR-352	39
B-17114	8	Delco	l	DW-358	38
B-17165	9	see Unite	d Mot	DS-365	40-41
B-17180	9			DS-372	40-41
B-17187	9	Detrola Ra		DU-379	42
Arvin		295	35	DU-380	42
see Noblitt	-Sp.	295-1	35	FC-400	44
	_	297	35	FP-421	45
Belmont Radi		304	36	FP-422	45
518	10	305	36		
533	11	310	36	Fada Radio	
536	12	320	37	148	47
681	13	360	37	153	48
1100	14	392	37	194	46
Chevrolet		2741	37	F.M. data	182
985694	15	2742	37		
985694 985695	16	3041	36	Galvin Mfg	
985695 985697	17	3051	36	see Motor	o la
•	1.1	3101	36	Garod Radi	0
Continenta1		3201	37	BP-36A	49
G-5	18	3202	37	~. =0 U /1	77
M5-PH	18	3601	37	•	
XM5-PH	18	3602	37	1	

MANUAL	OF 1941	MOST POPUI	AR SE	RVICE DIA	GRAMS
General El	ectric	Montgomery-	Jar d	Philco R	
J-51	50	04WG-464	74	41-105	97
J-53	50	04NG-569B		41-110	93
J-54	50	04NG-610	76	41-220	94
J-71	51	04WG-611	76	41-221	95
J-105	52	04WG-731A	78	41-225	94
JB-410	53	04WG-803	77	41-226	95
LB-530	55	14WG-672	79	41-230	96
J-602	54	130-012	• /	41-231	98
J-603	54	Motoro1a		41-235	96
		40 new	81	41-250	99
Hallicraft		5 OV	81	41-255	99
S-27	56-57	56X 1	81	41-256	100
Howard Rad	io	58-F1	82	41-258	101
14ACB	58	58-FRC	82	41-260	102
702	58	65-BP1,2,3	,4 82	41-265	102
765	59-60	251	85	41-280	103-104
780	60-61	301	80	41-285	103
		•	83-84	41-287	103
Lafayette	Kadio			41-290	103
E-114	04	Noblitt-Spar RE-76	rks 87	41-295	105
∉ E-191	63	RE - 76 RE - 78	8 <i>1</i> 88	41-300	105
Majestic R	adio	RE-78	86	41-316	106-107
T101-L-A	65	RE -82 RE -84	86 89	41-601	108
TP221-A	65	RE-86	89 89	41-602	108
TP231-A	65	520	89 89	41-603	109
TR-321-A	64	520	89 87	41-604	109
TR-331-A	64	622	88	41-605	109
403	64	720	89	41-607	109
		822	86	41-608	110
Magnovox				41-609	110
CR-154	66	Packard Bel		41-610	
CR-156	67	65 -A	90	41-611	111
Midwest Ra	dio	67-R	90	41-620	112
51	68	67 -RPA	90	41-623	113
181	69	Philco Radio	0	41-624	113
		PT-2	92	41-625	113
Montgomery		PT-6	92	41-705	114
04BR - 511A	•	PT-12	92	41-842	116
04BR - 512A		PT-30	91	41-843	116
04BR-513A		PT-42	91	41-844	116
04BR - 514A		PT-44	91	41-851	115
04BR - 729A		PT-49	91	Pilot Rac	dio
04BR - 730A		41-90	97	B-1	117
04BR-1105	5A 73	41-95	91	T-1	117
		41-100	97	T-186	117
				. 1-100	111

RCA Mfg.	Co. I	Sears, Roel	buck	United No	tors
1X	118	6449	142	R-1171	160
1X2	118	101.614	139	R-1172	160
BP-10	119	101.615	139	R-1173	160
	120	101.617	141	R-1176	159
1 0X	121	101.628	142	R-1181	159
12X		101.026	140	R-1186	161-162
12X2	121	109.330	141	R-1188	161
14X	122 123	132.802	138		
15-BP	123	132.002	100	Wells-Gar	
15X 16K	125-126	Sentinel Ra	1	6B18	163
	125-126	248	143	Western A	uto
16T3	125-126	Silvertone		D-1175	164
16X - 1	124	see Sears		D-1190	165
16X - 2	124	See Sears	•	D-1191	166
16X-3	127	Sonora Rad			
16X - 4	128	3 way por		Westingho	
16X-11 16X-13	128	4 tube TR	F 144	WR-12X7	169
	129	Saartan		WR-173-L	
17K		Sparton	145	WR-175	167
19K	131	511 651	147	WR-184	168
45X-3	130		146	WR-186	169
45X-4	130	601-S	148	WR-388	170
45X - 16	130	761	•	WR-682	168
45X - 17	130	1091	149	WR-682A	168
45X-18	132	Stewart-Na	rner	Wilcox-Ga	v Corp.
V-100	133	11-5V	150	A-89	171
V-101	133	11-5W	151	A-91	171-172
V-102	134	11-6T	153	A-92	171
110-K	135-136	11-6T-S	153	A-93	171
111-K	137	11-8D	154	Λ-94	171
Radio Wi	re Tel.	11-8D-Z	154	A-101	171
see Laf	ayette	15-5Y	152	A-102	171
	•			•	·
Sears, R		Stromberg-	Carleon	Zenith Ra	184
R-101	139		155	4B-01	184
R-111	139	515	156	4K-600 5A-03	173
3351	138	520 520	157	5A-10	174
3361	140	530	157	5B-01	185
3451	138	535	197	5D-610	185
3461	140 138	Talk-A-Pho	one	5D-610 5D-625	185
3551	140	MS-10	158	5G-504	173
3561		LP-65	158	5G-510	173
3621	140	LP-70	158	5G-534	174
R-5561	141	Touchens			189
5601A	142	Truetone	amm Assta	6A - 05R	109
5732	141	see West	CI'II AULO	1	5

Zenith Rad	io	Zenith R	Radio	Zenith Radi	io
6A - 05R	189	6G-533	188	10H-551	179
6A-16	175	6G-560	188	10H-571	179
6A-19	176	6S-532	189	10H-571R	191
6A-20	177	6S-596	177	10H-573 19	1-192
6A - 24	187	6S-597	177	12A - 1	180
6A-25	188	7A-11	190	12S-550Z	180
6A - 26	186	7S-598	190	12S-568E	180
6D-512	175	8A - 04	178	12S-568Z	180
6D-516	187	8S- 593	178	12S-569E	180
6D-520	186	85-594	178	12S-569Z	180
6D-538	186	10A-2R	192	12S-595Z	180
6D- 5 39	175	10A-3	179	S8500Z	181
6G-501	176	10A-3R	191-192	S9000	181

PUBLICATIONS UPREME

9 South Kedzie Avenue

Chicago, Illinois

Most-Often-Needed RADIO DIAGRAMS and Servicing Information

1942 You need this newest Supreme manual of servicing data on all popular 1942 sets. VOLUME 5 Repair radios quickly and properly-follow factory instructions given in these manuals. 208 fact-packed pages: Large size, 8½x11 \$200 inches. Manual style binding

Let this important manual give you over 80% of 1940 circuits you will ever need, VOLUME 3 acquaint you with new developments, train you to service quickly and efficiently millions of sets. Data on F.M., portables, recording, etc. 417 models of 43 manufacturers. 208 pages, Nat Price \$200 8½x11 inches......Net Price

1939 Another condensed manual of most-popular diagrams you need. Circuit data, hints, and VOLUME 2 information are time-savers and money-

makers for you. Let these diagram manuals guide you to easier service work. 192 pages, \$200 8½x11 inches. Diagrams of 39 manufacturers......

☐ 1926-1938

VOLUME I

The most popular manual of the series. Will pay for itself with time saved the first day of use. 427 diagrams of most-serviced radios, with parts list and alignment information. \$250 244 pages, 8½x11 inches.....

PRACTICAL RADIO for War Training
This new, 1943 manual will clarify the important radio
facts, explain the principles which may have puzzled you,
and point the way to faster radio repairing. You will find
hundreds of practical hints for mounting parts, testing
components, trouble-shooting, using instruments. Needed
useful theory in each chapter is followed with practical
applications. This is the book that will help you repair
radios faster, or obtain a good radio War-job, or get ahead
in the Armed Forces. Use this book as your ready
reference for finding the right answer to every radio
problem. Written by M. N. Beitman. 336 large pages,
6x9 inches. Printed on thick, enamel paper. Almost 300
illustrations and diagrams to help you. Seal leatherette
cover. Attractive manual-binding. Sold with a \$295
money-back guarantee. Price only

Simplified Radio Servicing by COMPARISON Method

Repair radios in minutes instead of hours. Revolutionary different COMPARISON technique permits you to do expert work on all radio sets. Most repairs can be made

without test equipment or with only a voltohumeter. Many simple, point-to-point, cross-reference, circuit suggestions locate the faults instantly. Plan copyrighted. Covers every radio set—new and old models. This new servicing technique presented in handy manual form, size 8x11 inches, 112 pages. Over 1,000 practical service hints. 16 large, trouble-shooting blueprints. Charts for circuit analysis. 114 tests using a 5c resistor. Developed Net Price by M. N. Beitman., .Net Price

How to MODERNIZE RADIOS for Profit

Cash in by improving audio circuits, modernizing cabinets, adding features usually found on late model sets. Practical jobsheets with schematics and photographs make the work easy. You are told how to obtain modernization work, what to charge, and how to complete the job quickly and

efficiently. Large size, 81/2x11 inch manual is \$100 priced at only.....

MANUAL OF 1941 MOST POPULAR SERVICE DIAGRAMS AIR-KING PRODUCTS CO., Inc.

1523-29 63rd STREET

BROOKLYN, N. Y., U. S. A.

Air-King Products Co.
Models 4012, 4016, 4112

I.F. 455 KC.

7

I.F. 456 KC.

SCHEMATIC DIAGRAM MODELS B-17113-B-17114

Models B10600, B10606, B17107-08

8

Circuit Diagram Ref. Part No.

Description

RESISTORS

R1	130176	20M ohm—⅓ w.
R2	130100	150M ohm—⅓ w.
R3	130279	1M ohm-1 watt
R4	1304	3 megohm—⅓ w.
R5	101196	500M ohm volume control
R6	130293	30 ohm—1 watt
R7	130257	5 megohm—⅓ w.
R8	130288	50 ohm—1.5 watt
R9	1302	75M ohm—⅓ w.
R10	13011	250M ohm—⅓ w.
TD 1 1	130166	150 ohm—14 w

CONDENSERS

CI	131202	plate)
C2	10022	.05 x 200 v.
C3	124100	Antenna Trimmer
C4	12930	.00005 Mica
C5	10091	.15 x 400 v.
C6	124100	Oscillator Trimmer
C7	10022	.05 x 200 v.
C8	11992	20 mfd. x 150 v. lytic
C9	11992	40 míd. x 150 v. lytic
C10	10013	.05 x 400 v.
C11	12912	.00025 mica
C12	10025	.002 x 600 v.
C13	1292	,0005 mica
C14	10011	.01 x 400 v.
C15	10011	.01 x 400 v.
		C3 and C6 in one unit
		C8 and C9 in one unit

PARTS

T1	111136B Antenna Coil Complete	
T2	110126B Oscillator Coil	
T3	108157C Input I. F. Coil-465 kc.	
T4	108157C Output I. F. Coil-465 kc.	
T 5	114170 4" P. M. Speaker and Tra	ansiormer
S1	101196 Off-on switch on volume	control
P1	107249 6-8 v. pilot light T-47	

BOTTOM VIEW OF CHASSIS VOLTACES MEASURED WITH 1000 OHM PER VOLT VOLTMETER BETWEEN SOCKET TERMINALS AND B— [A]-CANNOT BE READ WITH VOLTMETER [B]-12 V. ACC BETWEEN PINS 2 L 7. [C]-32 V. ACC. BETWEEN PINS 2 L 7. [D]-117 V. ACC. BETWEEN PINS 2 L 8. [E]-WITTS OF CHARGE SHOULD BE EXAMPLE OF CHARGE SHOULD BE EXAMP

REAR OF CHASSIS

10

BOTTOM VIEW OF CHASSIS VOLTAGES MEASURED WITH A HIGH RESISTANCE VOLTMETER BETWEEN SOCKET TERMINALS AND CHASSIS. VOLUME CONTROL AT MINIMUM, 117 VOLT LINE [A] CANNOT BE MEASURED WITH VOLTMETER [B] SYOUTS A.C. MEASURED ACROSS PINS 2 & B [C] 117 YOST A.C. MEASURED ACROSS PINS 3 & 5 4 95 (A) 6 90 4 9 0 220 6.3 AC 6SA7 ĜSK7 6SQ7 ② 300€ 6SK7 6K6GT REAR OF CHASSIS

2 gang variable condenser S.W. antenna trimmer B.C. antenna trimmer B.C. antenna trimmer 0005 mica S.W. oscillator trimmer B.C. oscillator trimmer B.C. padding condenser S.W. padding condenser D.C. pauding condenser S.W. padding condenser 150 mfd. mica .05 x 400 v, .05 x 200 v, .05 x 200 v. .0005 mica .0001 mica .0001 mica .001 inica .02 x .600 v. .002-x 600 v. .00025 inica .02 x 400 v. .004 x 600 v .004 x 600 v. 16 mfd. x 400 w.v. lytic 16 mfd. x 400 w.v. lytic .006 x 600 v. 1 x 400 v. C4 and C5 are in same unit C13 and C14 are in same unit C6 and C7 are in same unit C20 and C21 are in same unit

RESISTORS

4M ohm-1/3 w. 4M ohm—½ w. 20 ohm—½ w. 30 ohm—½ w. 1 megohm—½ w. 30M ohm—½ w. 750 ohm—½ w. 19M ohm—½ w. 100M ohm—½ w. 3 megohm—½ w. 350 ohm—½ w. 50M ohm—½ w. 100M ohm—2 w. RR R9 R10 1 megohm volume control 10 megohm—1/3 w. 1 megonin volume control 10 megohin—1/3 w. 500M ohin—1/3 w. 1 megohin tone control 250M ohin—1/3 w. R13 R14 R15 500 ohm—1 w

Chevrolet Auto Radio, Model 985694

ANTENNA CIRCUIT: The antenna circuit is directly coupled to the antenna. The antenna coil is tuned by means of an iron core and the circuit is adjusted for slight variations in antenna capacity by means of an antenna trimmer located on the bottom of the receiver case.

Chevrolet Auto Radio, Model 985695

16

lation in 1941 Chevrolet automobiles. Special features incorporated in this speaker; permeability tuning; sensitivity control; noise limiter circuit; OZ4 cold This auto radio is a nine-tube self contained receiver, built expressly for instalreceiver are: Electric tuning on five stations; push-button tone control; elliptical cathode rectifier, and a primary type vibrator.

17

MANUAL OF 1941 MOST POPULAR SERVICE DIAGRAMS INSTALLATION, OPERATION AND SERVICE INSTRUCTIONS FOR CROSLEY MODEL 22AS

Alignment Sequence	Dummy Antenna	Frequency Setting	Input to Receiver	Band Switch	Tuning Cond. Setting	Trimmers Adjusted	Remarks
1.	.02MF.	455 K c.	Ant. Lead (Blue)	B. C.	Fully Open	2nd I-F (2) 1st I-F (2)	Adjust for Maximum output, Adjust for Maximum output,
2.	400 ohm (carbon)	15.3 Mc.	Ant. Lead (Blue)	s. w.	Fully Open	S. W. "OSC" (on gang)	Adjust for Peak. See foot note.
3.	400 ohm (carbon)	15.0 Mc.	Ant. Lead (Blue)	S. W.	Approx. 15 on dial	S. W. "ANT" center trimmer on right end	Adjust for Maximum while rock ing gang back and forth.
4.	.0002 MF.	1650 Kc.	Ant. Lead (Blue)	В, С.	Fully Open	B. C. "OSC" front trimmer on right end	Adjust for peak. Make sure the switch on loop is in B. C. position.
5.	.0002 MF.	1400 Kc.	Ant. Lead (Blue)	B. C.	Approx. 140 on dial	B. C. "ANT" rear trimmer on right end	Adjust for Maximum output.
6.	.0002 MF.	2.5 Mc.	Ant. Lead (Blue)	B. C. and switch on loop to Pol.	Approx. 2.5 on dial lower right corner	Pol. Ant on loop	Adjust for Maximum output.

VOLTAGE. CHART

ALL VOLTAGES MEASURED FROM SOCKET PIN TO CHASSIS @ 117.5 VOLT LINE

		SOCKET PIN	NUM	BER				
TUBE SECTION	1	2	3	4	5	6	7	8
6SA7—OscMod. 6SK7—I. F. Amp	0	0 0 0 0 5.0 A.C.	225 0 0 209 0	74 0 0 225 316 A.C.	0 0 0 0	0 74 100 0 316 A.C.	6.3 A.C. 6.3 A.C. 6.3 A.C. 6.3 A.C. 0	$0 \\ 225 \\ 0 \\ 10.5 \\ 283$

All voltages measured with 1000 OHM/Volt Voltmeter except heaters. Voltages may vary 10% of values given.

Output meter connected to Plate and Screen of 1T5GT ALIGNMENT PROCEDURE Volume Control on full SIGNAL GENERATOR DUMMY ANTENNA TUNING COND. SETTING TRIMMERS TO ADJUST FREQUENCY SETTING CONNECTION TO RADIO REMARKS 455 Kc Grid 1A7GT .02 MF Fully open 2nd 1-F (1) located on front Adjust for maximum signal. Adjust for maximum signal. Located top of 1st 1-F ass'y. 455 Kc Grid 1A7GT .02 MF Fully open chassis flange 1st 1-F (2) Adjust for maximum output, Gang does not have to tune through signal. "OSC" Shunt on gang 1650 Ant. Lead .0001 MF Approx. 140 "ANT" shunt on loop ant, through hole in right side of cabinet Adjust for maximum output. 1400 Ant. Lead .0001 MF on dial

Repeat above for more accurate adjustments

Maximum power output @ 75 V. "B"—approx. 200 M. W.

Maximum power output @ 90 V. "B"—approx. 340 M. W.

Maximum power output @ 90 V. "B"—approx. 200 M. W.

undistorted

A Battery drain @ 6 volts, .05 Amp.; "B" Battery drain @ 75 V., 9 M. A.; @ 90 V., 12 M. A.
Power consumption @ 117.5 volts line—30 Watts

MANUAL OF 1941 MOST POPULAR SERVICE DIAGRAMS CROSLEY MODEL 29 CHASSIS

ALIGNMENT PROCEDURE CHART

	Signal	Generator					
Align- ment Sequence	Dummy Antenna	Frequency Setting	Input Connection to Receiver	Band Switch	Tuning Cond. Setting	Trimmer Adjusted	Remarks
1,	.02 MF.	455 Kc.	Grid of 6A8GT	B. C.	Fully open	2nd I-F (2) 1st I-F (2)	Adjust for Maximum. Adjust for Maximum.
2.	.0002 MF.	1650 Kc.	Ant, Lead (Blue)	В, С.	Fully open	B. C. "OSC" Trimmer	Adjust for peak; gang does not have to tune thru signal.
3.	.0002 MF.	600 Kc.	Ant. Lead (Blue)	B. C.	Approx. 60 on dial	B. C. "OSC" Series Trimmer	Adjust for maximum output while rocking gang thru signal.
4.	Repeat St	ep No. 2 to	check possible shift	due to s	series adjustmer	nt	
5.	.0002 MF.	1400 K c.	Ant. Lead (Blue)	B. C.	Approx, 140 on dial	B. C. "ANT" Trimmer B. C. R-F Trimmer	Adjust for maximum output to not touch B.C. Osc. Trimmer. Adjust for maximum output.
6.	400 ohm (carbon)	5. 3 M c.	Ant. Lead (Blue)	Police	Fully open	Pol "OSC"	Adjust for peak gang; does not have to tune thru signal.
7.	400 ohm (carbon)	5.0 Mc,	Ant. Lead (Blue)	Police	Approx. 5.0	Pol "ANT" and R-F Trimmers	Adjust for maximum output while rocking gang thru signal.
8.	400 ohm (carbon)	18.3 Mc.	Ant. Lead (Blue)	s. w.	Fully open	S. W. "OSC"	Adjust for peak. Gang does no have to tune thru signal.
9.	400 ohm (carbon)	18.0 Mc.	Ant. Lead (Blue)	s. w.	Approx, 18	S. W. "ANT" and R-F Trimmers	Adjust for maximum output whil rocking gang thru signal.

22

THE CROSLEY CORPORATION • CINCINNATI, OHIO, U. S. A. COMPILED BY M. N. BEITMAN, SUPREME PUBLICATIONS

The chassis of this receiver is connected to one side of the power supply and for this reason all test equipment should be thoroughly insulated in order that the power supply will not become short circuited while aligning the receiver.

CONNECTING OUTPUT METER

Connect one terminal of the output meter to the plate and the other terminal to the screen of the 50L6GT output tube. Be certain that the meter is protected from D.C. by connecting a condenser (.1 mfd. or larger—not electrolytic) in series with one of the leads.

TUNING I-F AMPLIFIER TO 455 KILOCYCLES

- (a) Connect the output of the signal generator through a 100 mmf. condenser to the antenna connection (Blue or Red lead extending from rear of loop) on the receiver. Do not use a ground return from the signal generator unless it is found to be absolutely necessary. If it is found to be necessary, a small condenser (approximately .001 mfd.) should be connected in series with the ground terminal of the signal generator and the receiver chassis.
- (b) Set the station selector so that the plates of the condenser gang are completely out of mesh and turn the volume control to the right (ON).
- (c) Set the signal generator to 455 kilocycles.
- (d) Adjust the 2nd I-F trimmer condensers located on top 2nd I-F Assm. item 7, for maximum reading on the output meter.
- (e) Adjust the 1st I-F trimmer condensers, located on top of 1st I-F assy., item 6, for maximum output.
- (f) Repeat operations (d) and (e) for more accurate adjustments.

ALWAYS USE THE LOWEST SIGNAL GENERATOR OUTPUT THAT WILL GIVE A REASONABLE READING ON THE OUTPUT METER.

ALIGNING THE R-F AMPLIFIER

- (a) Set the signal generator to 1650 kilocycles.
- (b) With the condenser gang turned to the minimum capacity position, adjust the trimmer condenser B. C. "OSC" so that the 1650 kilocycle signal is heard. It is not necessary that the receiver tunes through this signal.
 - (c) Set the signal generator to 1400 kilocycles.
 - (d) Tune-in the 1400 kilocycle signal in the region of 140 on the dial for maximum output.
 - (e) Adjust the trimmer condensers B. C. "ANT" for maximum output.

NOTE: Do not readjust the "OSC" trimmer.

(f) Repeat operations (d) and (e) for more accurate adjustments.

MANUAL OF 1941 MOST POPULAR SERVICE DIAGRAMS INSTRUCTIONS FOR MODEL 33BG

Alignment Sequence	Dummy Antenna	Frequency Setting	Input to Receiver	Band Switch	Tuning Cond. Setting	Trimmers Adjusted	Remarks
1.	.02MF.	455 Kc.	Ant. Lead (Blue)	В. С.	Fully Open	2nd I-F (2) 1st I-F (2)	Adjust for Maximum output. Adjust for Maximum output.
2.	400 ohm (carbon)	15.3 Mc.	Ant. Lead (Blue)	S. W.	Fully Open	S. W. "OSC" (on gang)	Adjust for Peak. See foot note.
3.	400 ohm (carbon)	15.0 Mc.	Ant. Lead (Blue)	s. w.	Approx. 15 on dial	S. W. "ANT" center trimmer on right end	Adjust for Maximum while rock ing gang back and forth.
1.	.0002 MF.	1650 Kc.	Ant, Lead (Blue)	в. С.	Fully Open	B. C. "OSC" front trimmer on right end	Adjust for peak. Make sure the switch on loop is in B. C. position.
5	.0002 MF.	1400 Kc.	Ant. Lead (Blue)	В. С.	Approx. 140 on dial	B. C. "ANT" rear trimmer on right end	Adjust for Maximum output.
ti	.0002 MF.	2.5 Mc.	Ant. Lead (Blue)	B, C. and switch on loopto-Pol	Approx, 2.5 on dial lower right corner	Pol. Ant on loop	Adjust for Maximum output.

VOLTAGE CHART

ALL VOLTAGES MEASURED FROM SOCKET PIN TO CHASSIS @ 117.5 VOLT LINE

		SOCKET P	IN NUM	BER				
TUBE SECTION	1	2	3	4	5	6	7	8
6SA7—OscMod.	0	0	225	74	0	0	6.3	0
6SK7—I. F. Amp	0	0	0	0	0	74	6.3	225
6SQ7—Det. A.V.C.—1st A.F	0	0	0	0	0	100	6.3	10.5
6V6GT—Output	0	0	209	225	0	Ü	6.3 6.3	10.3
6SK7—Mike Amp.	0	0	0	316 A.C.	0	31 6 A .C.	0.3	283
5Y3G—Rectifier	0	5.0	U	310 A.C.	U	JIU A.C.	U	_00

All voltages measured with 1000 OHM/Volt Voltmeter except heaters. Voltages may vary 10% of values given.

*Phono Motor 40 Watts additional.

COMPILED BY M. N. BEITMAN, SUPREME PUBLICATIONS

25

MANUAL OF 1941 MOST POPULAR SERVICE DIAGRAMS INSTRUCTIONS FOR MODEL 34BH

RADIO RECEIVER ALIGNMENT PROCEDURE

Preliminary	19
Output Meter Connections	Plate to Plate of 6K6's
Generator Ground Connection	To chassis or Ground Lead
Dummy Antenna to be in series with generator output	See Chart Below
Position of Volume Control	Fully On
Position of Tone Control	Treble or Speech
Position of Function Switch	Radio
Position of Mike Level Control	All the Way to Left (Off)

Align- ment	Dummy Antenna	Frequency Setting	Input Connection to Receiver	Band Switch	Tuning Cond. Setting	Trimmer Adjusted	Remarks
Sequence 1.	.02 MF.	455 Kc.	Grid of 6A8GT	В. С.	Fully open	2nd I-F (2) 1st I-F (2)	Adjust for Maximum. Adjust for Maximum.
2.	.0002 MF.	1650 K c.	Ant. Lead (Blue)	В. С.	Fully open	B. C. "OSC" Trimmer	Adjust for peak; gang does not have to tune thru signal.
3.	.0002 MF.	600 Kc.	Ant. Lead (Blue)	В. С.	Approx. 60 on dial	B. C. "OSC" Series Trimmer	Adjust for maximum output while rocking gang thru signal.
4.	Repeat St	ep No. 2 to	check possible shift	due to s	series adjustmer	nt	
5.	.0002 MF.	1400 Kc.	Ant. Lead (Blue)	В. С.	Approx. 140 on dial	B. C. "ANT" Trimmer B. C. "R-F" Trimmer	Adjust for maximum output. Do not touch B. C. Ose. Trimmer. Adjust for maximum output while rocking gang thru signal.
6.	400 ohm (carbon)	5.3 Mc.	Ant. Lead (Blue)	Police	Fully open	Pol "OSC"	Adjust for peak; gang does not have to tune thru signal.
7.	400 ohm (carbon)	5.0 Mc.	Ant. Lead (Blue)	Police	Approx, 5.0	Pol "ANT" and "R-F" Trimmers	Adjust for maximum output while rocking gang thru signal.
8.	400 ohm	18.3 Mc.	Ant. Lead (Blue)	S. W.	Fully open	S. W. "OSC"	Adjust for peak. Gang does not have to tune thru signal.
9.	400 ohm	18.0 Mc.	Ant. Lead (Blue)	s. w.	Approx. 18	S. W. "ANT" and "R-F"	Adjust for maximum output while rocking gang thru signal.

When aligning the shortwave bands "OSC" trimmers care must be exercised to see that the circuits are aligned on the correct frequency and not on the image which is approximately 910 kilocycles less as indicated on the dial. To check, increase generator output, tune-in the generator frequency and then tune-in the image frequency which should be weaker than the fundamental and come in approximately 910 kilocycles lower on the dial than the fundamental. If image cannot be tuned-in, the "OSC" trimmer is adjusted to the wrong peak. (Correct peak is the second peak on trimmer from the closed position).

Repeat the original alignment procedure for more accurate adjustments. Always keep signal generator output as low as possible to prevent action of the A.V.C. circuit.

SOCKET VOLTAGES MEASURED @ 117.5 VOLTS LINE (BETWEEN SOCKET PIN AND CHASSIS) WITH 1000 OHM PER VOLT, 500 VOLT RANGE VOLTMETER (D. C.)

SOCKET PIN NUMBER													
TUBE FUNCTION	1	2	3	4	5	6	7	8					
6K7GT—R-F Amp6A8GT—OscMod.			195 195	78.6 78.6		2.0 136	*6.3 *6.3	2.0 1.0					
6SK7—I-F Amp.		*****			5.5 B.C. 2.6 S.W.	78.6	*6.3	234					
6SQ7—Det. A.V.C. 1st A-F				722		110	*6.3						
6J5GT—Phase Invert.			$\frac{118}{220}$	$\begin{array}{c} 195 \\ 228 \end{array}$		110	*6.3 *6.3	$\frac{4.5}{15.0}$					
6K6GT—Output 6K6GT—Output			220	228			*6.3	15.0					
6SK7Mike Amp.						*****	*6.3	POS.					
5Y3G—Rectifier6E5—Indicator		305 D.C.		*325 225		*325 *6.3		305 D.C.					

^{*}Measured with A.C. volt meter

VOLTAGE DROP ACROSS SPEAKER FIELD= 77 VOLTS MAXIMUM POWER OUTPUT @ 130 V. Line=7.5 Watts

POWER CONSUMPTION @ 117.5 V. Line=Radio 80 Watts, Phono Motor 35 Watts—TOTAL=115 WATTS Voltages may vary 10% of values given.

WIRING DIAGRAM, MODEL CA12, CHASSIS MODEL 60

ALIGNMENT PROCEDURE CHART

Align- ment Sequence	Duminy Antenna	Frequency Setting	Input Connection to Receiver	Band Switch	Tuning Cond. Setting	Trimmer Adjusted	Remarks
1.	.02 MF.	455 Kc.	Stator lug Rear section of Gang Cond.	B. C.	Fully open	2nd I-F (2) 1st I-F (2)	Adjust for Maximum, Adjust for Maximum.
2.	.0002 MF.	1600 Kc.	Ant. Lead (Red)	В. С.	Fully open	B. C. "OSC" Trimmer	Adjust for peak; gang does not have to tune thru signal. Loop must be connected.
3.	.0002 MF.	600 Kc.	Ant. Lead (Red)	В. С.	Approx. 60 on dial	B. C. "OSC" Series Trimmer	Adjust for maximum output while rocking gang thru signal.
4.	Repeat Ste	p No. 2 to	check possible shift	due to s	eries adjustmen	t	
5.	.0002 MF.	1400 Kc.	Ant. Lead (Red)	В. С.	Approx. 140 on dial	B. C. "ANT" Trimmer B. C. "R-F" Trimmer	Adjust for maximum output do not touch B. C. Osc. Trimmer. Adjust for maximum output.
5.	400 ohm (carbon)	5.3 Mc.	Ant. Lead (Red)	Police	Fully open	Pol "OSC"	Adjust for peak; gang does not have to tune thru signal.
7.	400 ohm (carbon)	5.0 Mc.	Ant. Lead (Red)	Police	Approx. 5.0	Pol "ANT" Trimmer	Adjust for maximum output while rocking gang thru signal.
3.	400 ohm (carbon)	18.3 Mc.	Ant. Lead (Red)	s. w.	Fully open	s. w. "osc"	Adjust for peak. Gang does not have to tune thru signal,
).	400 ohm (carbon)	18.0 Mc.	Ant. Lead (Red)	s. w.	Approx. 18	S. W. "ANT" Trimmer	Adjust for maximum output while rocking gang thru signal.

28

THE CROSLEY CORPORATION

MANUAL OF 1941 MOST POPULAR SERVICE DIAGRAMS INSTALLATION, OPERATING AND SERVICE INSTRUCTIONS FOR CROSLEY MODEL TA=62 — TA-62W — Chassis Model 63

Sequence	Dummy Antenna	Frequency Setting	Input Connection for Radio	Band Switch	Tuning Cond. Setting	Trimmer Adjusted	Remarks
1	.05 Mf.	456 Kc.	Antenna	S. B.	Fully open	2nd I-F (2) 1st I-F (2)	Adjust for maximum output. Adjust for maximum output.
2	400 ohm carbon	15.4 Mc.	Antenna	s. w.	Fully open	S. W. "OSC" (rear section of tuning condenser	Adjust for maximum output.
3	400 ohm carbon	15.0 Mc.	Antenna	S. W.	Approx. 15 on dial	S. W. "Ant." (center trimmer right end of chassis)	Adjust for maximum output while rocking gang thru signal.
4	.0002 Mf.	1600 Kc.	Antenna	S. B.	Fully open	B, C, "OSC" (front trimmer right end of chassis)	Adjust for maximum output, Gang does not have to tune thru signal,
7	.002 Mf.	1400 Kc.	Antenna	S. B.	Approx. 1400 on dial	B. C. "ANT" (rear trimmer right end of chassis)	Adjust for maximum output.

MANUAL OF 1941 MOST POPULAR SERVICE DIAGRAMS CROSLEY MODEL TK52 — TK52W — Chassis Model 64

Sequence	Dummy Antenna	Frequency Setting	Input Connection To Radio	Band Switch	Tuning Cond. Setting	Trimmer Cond. Adjusted	Remarks
1.	.05 Mf.	456 Kc.	Antenna	S. B.	Fully on	2nd I-F (2) 1st I-F (2)	Adjust for maximum output. Adjust for maximum output.
2.	400 Ohm carbon	15.4 Mc.	Antenna	s. w.	Fully open	S. W. "OSC" (Rear section tuning cond.)	Adjust for maximum output.
3.	400 Ohm carbon	15.0 Mc.	Antenna	s. w.	Approx. 15 on dial	S. W. "ANT" (Center trimmer right end of chassis)	Adjust for maximum output while rocking gang thru signal.
4.	.0002 Mf.	1600 K c.	Antenna	S. B.	Fully on	B. C. "OSC" (Front trimmer right end of Chassis)	Adjust for maximum output. Gang does not have to tune thru signal.
5.	.0002 Mf.	1400 Kc.	Antenna	S. B.	Approx. 140 on dial	B. C. "ANT" (Rear trimmer right end of chassis)	Adjust for maximum output.

- 1. Turn the set on and leave operate for about ten or twenty minutes before attempting to set the push buttons.
- 2. Due to the wide range to which each button will tune it is essential that the stations selected are well within each buttons tuning range.
- 3. Push in the "Manual" button (extreme right) and using the station selector knob, tune in the station to which the No. 1 button is to be set.
- 4. Push in the No. 1 button and using a long, thin screw driver adjust the "OSC"/A padder screw, turning slowly (extreme right looking at rear of cabinet) until the station you tuned in (MANUALLY) is heard again. The padder condensers are accessible through the long horizontal opening in the upper left side of cabinet back. Be sure to adjust for maximum volume in speaker.
- 5. Adjust the No. 1 push button "ANT"/AA padder condenser for maximum volume in speaker.
- 6. Push in "Manual" push button and re-check station to make sure button is correctly set. There should be no change in volume when switched from push button to manual.
- 7. The set up for No. 1 button is then complete. Set up remaining buttons, using same procedure; adjust the "OSC" padder first, then the "ANT" padder, etc.

Tubes Use	ed Functions
12SA7	Oscillator—Modulator
12SK7	Intermediate Frequency Amplifier
12SQ7	Detector, A.V.C. 1st Audio Amplifier
50L6	Beam Power Output
$35\mathbf{Z}5$	Rectifier
	Broadcast Band—1600-550 Kilo- 187.5-545 meters.

Short Wave Band—5.8-15.0 Megacycies or 62.5-20 meters

CHASSIS MODEL 28

INSTRUCTIONS FOR MODEL CB82-R

RADIO RECEIVER ALIGNMENT PROCEDURE

PRELIMINARY	
Output Meter Connections	Plate to Plate of 6K6G's
Output Meter Connections	To chassis or Ground Lead
II Diimmy Antenna to he in series With generator output	bee Chart Below
Position of Volume Control	Fully On
Position of Tone Control	Treple or Speech
Desition of Function Switch	
Position of Mike Level Control	All the Way to Left (Off)
1 OSICION OF MIRC LEVEL CONCLOS.	• •

Align- ment Sequence	Dummy Antenna	Frequency Setting			Tuning Cond. Setting	Trimmer Adjusted	Remarks		
- I,	.02 MF.	455 Kc.	Grid of 6A8GT	В. С.	Fully open	2nd I-F (2) 1st I-F (2)	Adjust for Maximum. Adjust for Maximum.		
2.	.0002 MF.	1650 Kc.	Ant. Lead (Blue)	В, С.	Fully open	B. C. "OSC" Trimmer	Adjust for peak; gang does not have to tune thru signal.		
3.	.0002 MF.	600 Kc.	Ant. Lead (Blue)	В. С.	Approx. 60 on dial	B. C. "OSC" Series Trimmer	Adjust for maximum output while rocking gang thru signal.		
4.	Repeat St	ep No. 2 to	check possible shift	due to s	eries adjustmer	nt			
5. *	,0002 MF.	1400 Kc.	Ant, Lead (Blue)	B, C.	Approx. 140 on dial	B. C. "ANT" Trimmer B. C. "PRE" Trimmer	Adjust for maximum output to not touch B.C. Osc. Trimmer Adjust for maximum output.		
3.	400 ohm (carbon)	5.3 Mc.	Ant. Lead (Blue)	Police	Fully open	Pol "OSC"	Adjust for peak gang; does no have to tune thru signal.		
7.	400 ohm (carbon)	5.0 Mc.	Ant. Lead (Blue)	Police	Approx. 5.0	Pol "ANT"	Adjust for maximum output whil rocking gang thru signal.		
8.	400 ohm (carbon)	18.3 Mc.	Ant. Lead (Blue)	s, w.	Fully open	s. w. "osc"	Adjust for peak. Gang does no have to tune thru signal.		
9.	400 ohm (carbon)	18.0 Mc.	Ant. Lead (Blue)	s. w.	Approx. 18	S. W. "ANT"	Adjust for maximum output whil rocking gang thru signal.		

When aligning the shortwave bands "OSC" trimmers care must be exercised to see that the circuits are aligned on the correct frequency and not on the image which is approximately 910 kilocycles less as indicated on the dial. To check, increase generator output, tune-in the generator frequency and then tune-in the image frequency which should be weaker than the fundamental and come in approximately 910 kilocycles lower on the dial than the fundamental. If image cannot be tuned-in, the "OSC" trimmer is adjusted to the wrong peak. (Correct peak is the second peak on trimmer from the closed position).

Repeat the original alignment procedure for more accurate adjustments. Always keep signal generator output as low as possible to prevent action of the A.V.C. circuit.

SOCKET VOLTAGES MEASURED @ 117.5 VOLTS LINE (BETWEEN SOCKET PIN AND CHASSIS) WITH 1000 OHM PER VOLT, 500 VOLT RANGE VOLTMETER (D. C.)

		PIN	NUMBER	,				
TUBE FUNCTION	1	2	3	4	5	6	7	8
6SK7—Pre-Amp. 6A8GT—OscMod. 6SK7—I. F. Amp. 6SQ7—Det. A. V.CA. F. 6J5GT—Phase Invert. 6K6G—Output 6K6G—Output 5Y3G—Rectifier *Measure with A. C. Voltmeter.	0 0 0 0 0 0 0 0 NC	0 0 0 0 0 0 0 0 0	198 2.4 0 118.5 226 226 J. B.	76.5 0 0 0 236 236 *300	0 0 2.3 0 0 0 0 J. B.	J. B. 132 76.5 98 J. B. J. B. J. B. *300	*6.3 *6.3 *6.3 *6.3 *6.3 *6.3 *6.3 J. B.	52 1 226 0 6.0 15.5 15.5

Voltages may vary 10% of values given.

J. B.—JUNCTION BLOCK

N. C.—

34

N. C.—NO CONNECTION

Detrola Corporation Detroit, Michigan

ALIGNMENT PROCEDURE

ALIGNMENT PROCEDURE

I.F. Frequency 455 KC. Set Range 540-1580 KC. Connect the test oscillator, or signal generator, to the set as follows: Connect the "hot" side of the signal generator to the grid of the 1A7 tube, and the ground side to the terminal on the back of the chassis. An output meter should be connected across the voice coil leads of the speaker to indicate resonance. Align the I.F. trimmers at 455 KC for maximum meter reading.

Adjust the trimmer on the back of the variable condenser at or near 1400 KC at full volume on a weak broadcast signal. When aligning the set do not set the receiver on or near a metal work bench or other large metal object, as it will affect the tracking of the receiver.

FACTORY 297 SERIES

I.F. 455 KC.

TUNE IN A WEAR STATION ON OR NEAR 1400MC TURN VOLUME ON FULL AND ADJUST THIS SCREW FOR MAXIMUM VOLUME.

DO NOT CUT ANTENNA CABLE DO NOT ALLOW THIS UN-SHIELDED GROUND THIS TO FRAME OF CAR MOTOR NOISE
IN THE SET WILL RESULT
IF THIS IS NOT GROUNDED

FACTORY 320 SERIES FACTORY 3201 SERIES FACTORY 3202 SERIES

I.F. 455 KC. For all Detrola Sets on this page.

DETROLA CORPORATION

CHASSIS MODEL: DL

DB-296, DB-301, DB-315 and DB-327

DW-330A, DW-330B and DW-358

CHASSIS MODEL: DB

CHASSIS MODEL: DW

and DR-352

MODELS: DR-343, DR-348, DR-350 | MODELS: DR1-343, DR1-348 and DR1-352

CHASSIS MODEL: DR

•]tem	Part No.	DESCRIPTION	
Li	7RT-531A	Antenna choke and 455 kc wave-trap	_# .85
Tı	7RW-232	Loop antenna assembly	1.00
T2	7QT-548A	Double-tuned 455 kc first i-f transformer	_ 1.00
T3	7QT-544	Double-tuned 455 kc second i-f transformer	- 92
T4	7RT-529A	Two-band oscillator coil	63
TS	7RT-530	Short-wave antenna coil	45
R1, R10	4XR-327	15 megohm ¼ wett carbon resistor.	
R2. R13	I.R-61U	200,000 ohm ¼ watt carbon resistor.	
R7. R8	KR-56	500,000 ohm 14 watt carbon resistor	16
R5	NNR-220U	3 megohm ¼ watt carbon resistor	16
R6	7BR-363C	Volume control 5 megohin with line switch	85
Po Po	3FR-293	140 ohen, 1/4 watt wire-wound resistor.	16
RII	LR-60	20,000 ohm ¼ watt carbon resistor	
R12	KR-53	50,000 ohth 34 watt carbon resistor.	16
C1. C2	7RC-464	Two-gang variable condenser	2.40
G, C	HC-34	0.006 mf, 600 volt tubular condenser	
Č4	1	0.001 mf, part of L1, wave-trap assembly.	
C5. C18	PC-29	0.02 mf. 200 vols subular condenses (see production change no. 1)	20
C6	2ZC-253	0.0025 mf mics condenser	,20
C7. C8	7RC-465	Dual trimmer assembly	30
+C9.C10. C11. C12	1	Trimmers, part of i-f transformers.	
,,,	7RC-466	Dual trimmer assembly	30
C13, C14	2NC-231D	Single adjustable padding condenser	
	51.C-410A	0.00011 mf mice condenser	
C16	7RC-479	0.0016 mf mica condenser	
C17		0.05 mf, 200 volt tubular condenser	
C20, C29	BC-12 5AC-384	0.0002 mf, 600 volt tubular or mica condenser	20
C21, C23		0.002 mf, 600 volt tubular condenser	20
C22	3HC-274	0.02 mf, 400 volt tubular condenser	
C24	LC-65	0.03 mf. 400 volt tubular condenser	.20
C25 C26	EC-23 TTC-177	0.01 mf. 600 volt tubular condenser	20
C27. C28	60C-437A	Multiple dry electrolytic condenser, 150 volt. C27-20 mf; C28-40 mf.	
C30	KC-58	0.01 mf. 400 volt tubular condenser	20
C31	LC-64	0.05 mf. 400 volt tubular condenser	
1	2CC-208	0.2 mf. 200 volt tubular condenser	
C32	1 200-208	1 000 000 000 000	

MANUAL OF 1941 MOST POPULAR SERVICE DIAGRAMS EMERSON RADIO AND PHONOGRAPH CORP.

RECORD-HOLDER SPINDLE POST PICKUP - ARM Models INDEX AND RECORD REJECT LEVER RECORD-HOLDER PICKUP REST POST DS-365 NEEDLE GAUGE PLATE RECORD-HOLDER EEDLE EJECTOR TAB DS-372 USED NEEDLE BOX TURNTABLE WITH RECORD IN PLACE SWITCH NEEDLE HOLE TO INCH

RECORDS

Top View of Automatic Record Changer

RECORD-HOLDER SHELF

Readings should be taken with a 1000 ohms-per-volt meter. Voltages listed below are from point indicated to ground (chassis) with the volume control turned on full and no signal. Line voltage for these readings was 117 volts, 60 cycles, a.c. All readings except B plus at rectifier, heaters, and cathode voltages were taken on 300 volt scale.

Tube	Plate	Screen	Cathode	Heaters
6K7GT	245	70	0	6.3
6SA7GT	245	70	0	6.3
6K7GT	235	70	0	6.3
6SQ7GT (det.)	125		0	6.3
6SQ7GT (P.I.)	150		0	6.3
6L6 (2)	275	285	18.5	6.3

40

Emerson Radio and Phonograph Corp.

Models DS-365, DS-372

REPLACEMENT PARTS

*Item	Part No.	DESCRIPTION	PRICE
L1	7ST-538	10 K.C. filter choke	\$1.40
L2	7SW-238	Loop antenna (365 cabinet)	1.75
L2	7SW-298	Antenna coil	
T1 T2	7ST-533 7ST-534	Interstage coil	
T3	7ST-535	Oscillator coil	
T4	7ST-536	Triple toned 455 be first inf transformer	, 1.42
T5	7 S T-537	Triple-tuned 455 kc second i-f transformer	8 90
T6	7ST-549	Power transformer	
R1, R12, R29, R30	KR-53	50,000 ohm ½ watt carbon resistor	
R2	KR-57	1 megohm 14 watt resistor in 6U5 tube socket	
R3	GR-31	20,000 ohm 1 watt carbon resistor	
R4	LR-60	40,000 ohm ¹ / ₂ watt carbon resistor	
R5	3BR-247	15,000 ohm 2 watt carbon resistor	
R6	7SR-411 PR-79	1000 ohm ½ watt carbon resistor	
R7, R8 R9	FR-/9	100 000 obm resistor part of T6.	
R10, R11	NNR-220	3 megahm 1 watt carbon resistor	
R13	LR-61	200,000 ohm ¼ watt carbon resistor	
R14, R18	KR-54	100,000 ohm ¼ watt carbon resistor	
R19, R21 \(\)	7SR-379	Volume control, 1.2 megohm, double tapped	
R16	3ER-262	75 ohm 3/2 watt wire-wound resistor	
R17	HR-42	2 megohm 11 watt carbon resistor.	
R20, R22, R23	KR-55	250,000 ohm ¹ / ₄ watt carbon resistor.	
R24	3BR-246	10,000 ohm 2 watt carbon resistor.	16
R25	7SR-404	3,500 ohm ½ watt carbon resistor	.16
R26	7SR-402	1500 ohm 2 watt carbon resistor.	
R27	3XR-283	180 ohm 3 watt carbon resistor.	
R28 C1, C2, C3	7SR-403 7SC-496	Three-gang variable condenser	5.05
C1, C2, C3	750 150	Trimmer, part of T1.	
C5, C6		Trimmers part of variable condenser.	20
C7, C8, C20	BC-12	0.05 mf, 200 volt tubular condenser.	
C9	7SC-498A	0.000008 mf, mica condenser	
C10	2NC-231A	Single adjustable padding condenser; range 300 to 600 mmf. 0.1 mf, 400 volt tubular condenser.	
C11	EEC-132	0.1 mt, 400 voit tubular condenser	
C12, C13 C14, C15 C16, C17		Trimmers, part of i-f transformers.	
C18, C21 }	LC-64	0.05 mf, 400 volt tubular condenser	
C19, C27 }	EEC-132	0.1 mf, 400 volt tubular condenser.	
C22, C26	5LC-410A	0.00011 mf, mica condenser	
C48 S	4XC-393A	0.00006 mf, mica condenser	
C24, C25	KC-58	0.01 mf, 400 volt tubular condenser.	
C29		Lagara of order and decomposed of L1	
C31, C35	3VC-324	0.0014 mr, mica condenser; part of E1.	
C32	3XC-374	0.1 mf, 600 volt tubular condenser.	
C33	7EC-473	0.05 mf, 600 volt tubular condenser	20
C34	QQC-173	0.015 mf, 600 volt tubular condenser (see production change number 7)	.20
C37	7SC-497	0.04 mf, 400 volt tubular condenser.	
C38 C39	4DC-349 EC-19	0.5 mf 200 volt tubular condenser	
C40, C41	7AC-444A	16 mf 400 volt dry electrolytic condenser	
C40, C41	3XC-329 or }	20 mf 450 volt wet electrolytic condenser	1.35
	7SC-501	20 mf 450 volt fabricated plate electrolytic condenser	1.00
C43, C44 C45	3LC-297A	0.01 mf, 400 volt tubular condenser	

Readings should be taken with a 1000 ohms-per-volt meter. Voltages listed are from point indicated to chassis with volume control turned on full and no signal. The battery voltages for these readings were: "A" 1.5 volts, "B" 67.5 volts. All readings except filaments were taken on the 250 volt scale, with battery saver "out."

Tube	Plate	Screen	Osc. Plate	Fil.
1R5	57	60	57	1.5
1 T 4	57	60		1.5
1 S 5	*5	*3	<u> </u>	1.5
1S4	55	60		1.5

42

NOTE: R11 and C26 are used on Underwriters' approved chassis only; on other chassis point X is grounded to the chassis.

L1	7BW-179
L1	8CW-334
T4	7QT-547A
T2	8CT-566
T3	7BT-550E
R1	LR-60U
R3	3FR-293
R4	NNR-220
R5	7BR-363D
R5	7LR-378
R6, R2	4XR-327
R7, R8	KR-56U
R11	LR-61
C1, C2	7BC-445D
C1, C2	7BC-445A
C3, C16	3HC-274
C4, C15	5AC-384
C5, C11	
C6, C7, C8, C9	
C10, C27	BC-12
C14	LC-64
C17, C18	LC-65
C20, C21	6JC-426E
C20, C21	6JC-426M
C24	AC-6
C26	2CC-208

Loop antenna assembly (FC)
Loop antenna assembly (FG)
Oscillator coil
Double-tuned 455 kc first i-f transformer
Double-tuned 455 kc second i-f transformer
20,000 ohm ¼ watt carbon resistor
140 ohm 1/2 watt wire-wound resistor
3 megohm 34 watt carbon resistor
Volume control .5 megohm with line switch (FC)
Volume control .5 megohm with line switch (FG)
15 megohm ¼ watt carbon resistor
500,000 ohm ¼ watt carbon resistor
200,000 ohm ¼ watt carbon resistor
Two-gang variable condenser (FC)
Two-gang variable condenser (FG)
0.002 mf, 600 volt tubular condenser
0.002 mf, 600 volt tubular condenser
Trimmers, part of variable condenser
Trimmers, part of variable condenser
0.05 mf, 200 volt tubular condenser
0.05 mf, 400 volt tubular
0.02 mf, 400 volt tubular condenser
Dual 20 mf, 150 volt dry electrolytic condenser (FC)
Dual 20 mf, 150 volt dry electrolytic condenser (FG)
0.1 mf, 200 volt tubular condenser
0.2 mf, 200 volt tubular condenser

Emerson

Radio

MODEL: FC-400

CHASSIS MODEL: FC

MODEL: FG-330

CHASSIS MODEL: FG

Tube	Plate	Screen	Cathode	Fil.
12SA7GT	88	88	0	12
12SK7GT	88	88	0	12
12SQ7GT	30		0	12
50L6GT	82	88	5.6	50

45

COMPILED BY M. N. BEITMAN, SUPREME PUBLICATIONS

46

Models J-51, J-53, J-54, and J-54W

*"A" rated receivers have "X" connected to "Y" and R-10 is shorted. "C" rated receivers have "X" connected to "Z."

PARTS DESCRIPTION LIST

Symbol	Description	Symbol	Description	Symbol	Description
C2a C2b C4 C9 C10 C12 C13 C14 C15 C16 C17a	Antenna section of tuning condenser Oscillator section of tuning condenser 47 mmf. mica capacitor 470 mmf. mica capacitor .05 mfd. paper capacitor .005 mfd. paper capacitor .005 mfd. paper capacitor .005 mfd. paper capacitor .01 mfd. paper capacitor .01 mfd. paper capacitor .030 mmf. mica capacitor .05 mfd. paper capacitor .05 mfd. paper capacitor .05 mfd. 150 V. dry electrolytic	C17b C19 C20 L1 L2 L3 L4 P1 R1 R2 R3	40 mfd. 150 V. dry electrolytic 10.2 mfd. paper capacitor 10.1 mfd. paper capacitor 10.1 mfd. paper capacitor 10.2 mfd. paper capacitor 10.3 mfd. paper capacitor 10.4 lamp. Scope 10.4 lamp. MazDa No. 47 10.4 lamp. MazDa No. 47 10.4 lamp. MazDa No. 47 10.4 megohms carbon resistor 10.5 megohms carbon resistor 10.6 mfd. 10.5 mf	R4 R5 R6 R7 R8 R9 R10 S1	0.5 megohms volume control 4.7 megohms carbon resistor 470,000 ohms carbon resistor 170,000 ohms carbon resistor 150 ohms carbon resistor 1200 ohms 1 W. carbon resistor 13 ohms carbon resistor Power switch Output transformer

ALIGNMENT PROCEDURE

Alignment Frequencies

<u> ագևախակարանափափափախախակակակակակա</u> 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

55

րակապատարաբարակակապատիակապատիակակա D 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Frequency-degree Reference Chart

GENERAL INFORMATION

Models J-51, J-53, J-54 and J-54W are compact, five-tube superheterodyne receivers which can be operated from either an AC or DC source of power. Model J-51 and J-53 cabinets are in matched walnut veneers. Model J-54 and J-54W cabinets are plastic in oak and gray-white respectively. All models incorporate the following design features: Built-in Beam-a-Scope, 5-inch dynapower speaker, increased dial length, automatic volume control, and beam power output.
The glass tubes used in the converter and detector stages

are interchangeable with metal tubes if the receiver is realigned following the change.

Precaution

If the signal generator is AC operated use an isolating transformer between the power supply and the radio receiver power input. The use of an isolating capacitor is not recommended as AC current through the capacitor will introduce hum modulation and/or create-the possibility of a burned-out signal generator attenuator.

Special Service Information

The following information will be very useful in servicing receivers if a vacuum tube voltmeter or similar voltage measuring instrument is available.

- (1) Stage Gains Antenna Post to Converter Grid . . . 4.0 at 1000 KC R.F. on Converter Grid to I.F. on I.F. Amplifier Grid...... I.F. on Converter Grid to I.F. on I.F. ...50 at 455 KC Amplifier Grid. . I.F. Amplifier Grid to Detector Plate. . 50 at 455 KC
- 0.15-volt, 400-cycle signal across the volume control will give ½-watt speaker output.* (Volume control turned to maximum.)
- Average DC voltage developed across oscillator grid
- * Variations of \pm 20% permissible. All readings obtained with enough signal input to give ½-watt speaker output.

GENERAL EECTRIC SEVEN-TUBE GOLDEN TONE RADIO

MODEL

Chassis or Beam-a-Scope Removal

Note: Care must be exercised in removing the chassis to avoid changing the shape of either the short-wave or broadcast loops. These loops are factory formed to give a certain inductance and any alterations in the loops in the field will throw the chassis out of alignment

throw the chassis out of alignment.

When disconnecting the short-wave loop leads from the loop, be sure to support the loop while pulling off the connections. Failure to support the loop may cause the staples to loosen and result in the loop rattling in the cabinet.

51

Symbol	Description	Symbol	Description	Symbol	Description
A17	Antenna section of tuning condenser	C33B	15 mfd. 400 V. dry electrolytic	R17	1000 ohms carbon resistor
CIB	Oscillator section of tuning condenser	C33C	30 mfd. 400 V. dry electrolytic	R18	180 ohms 2 W. carbon resistor
S	"SW2" band antenna trimmer	C34	.002 mfd. 1000 V. paper capacitor	R19	1000 ohms carbon resistor
ఔ	Touch tuning trimmer strip	C35	.01 mfd. paper capacitor	K20	1800 ohms carbon resistor
\$¦	.01 mfd. paper capacitor	<u>ت</u> .	BC and "SW1" band Beam-a-Scope	122	47,000 onms carbon resistor
သိုင်	0.1 mid paper capacitor	7.	SWI band antenna cou	K22	93 the standard of the second
35	100 mmt, mica capacitor	- - -	D W interation beam-a-Scope	220	47 000 obms carbon resistor
35	O3 mfd paper capacitor	- L	"SW9" band oscillator coil	R 25	2 mesohms volume control (1/2 mesohm
35	03 mfd. paper capacitor	9,7	"SW1" band oscillator coil	<u>;</u>	tap)
C14	.02 mfd. paper capacitor	<u> </u>	"BC" band oscillator coil	R26	56,000 ohms carbon resistor
C15	100 mmf, 1000 V. mica capacitor	F8	Touch tuning coil strip	R27	5.6 megohms carbon resistor
C16	.002 mfd. 1000 V. paper capacitor	ī.	Dial lamp, Mazda No. 44	R28	220,000 ohms carbon resistor
C17	220 mmf. mica capacitor	P2	Dial lamp, Mazda No. 44	R29	33,000 ohms carbon resistor
C18	.01 mfd. paper capacitor	2	1000 ohms carbon resistor	R30	10,000 ohms 3 W. carbon resistor
C19	"SW2" band oscillator trimmer	R2	47 ohms carbon resistor	K31	1600 ohms 4 W. candohm resistor
0 0 0	.008 mfd. paper capacitor	2	10,000 ohms carbon resistor	K32	47,000 ohms carbon resistor
CZI	47 mmf. mica capacitor	X	3300 ohms 1 W. carbon resistor	K33	4/0,000 onms carbon resistor
C222	"SWI" band oscillator trimmer	X.	47,000 ohms carbon resistor	¥2.	1000 onms carbon resistor
C23	2400 mmf. =5% mica capacitor	R 6	22.000 ohms carbon resistor	<u> </u>	Band switch
C24	"BC" band oscillator trimmer	X2	2.2 megohms carbon resistor	200	Tone control switch
33	BC. pand oscillator padder	×,	150 onms carbon resistor	ŝ	Louch tuning switch
C28	750 mmf. silvered mica capacitor	э . Х	470,000 ohms carbon resistor	4.5	Phono Key
C27	1.005 mfd. paper capacitor	2	3300 onms carbon resistor	co i	Fower Kev
C28	.05 mfd. paper capacitor	2	100,000 ohms carbon resistor	II.	lst l.F. transformer
C29	1.005 mfd. paper capacitor	R12	220,000 ohms carbon resistor	7 1 1	2nd I.F. transformer
C30	.004 mfd. paper capacitor	R13	220,000 ohms carbon resistor	T3	Output transformer
C31	150 mmf. mica capacitor	R14	150,000 ohms carbon resistor	T4	50-60-cycle power transformer
C35	.01 mfd. paper capacitor	R15	270,000 ohms carbon resistor	T.5	25-cycle power transformer
C33A	[10 mfd. 350 V. dry electrolytic	R16	4700 ohms carbon resistor		

Tuning Frequency Range

Broadcast Band		540-1700 KC
Short-wave Ban	1 No. 1	2400-7000 KC
Short-wave Bane	1 No. 2	7000-22,000 KC

Intermediate Frequency......455 KC

GENERAL ELECTRIC

MODEL J-105

52

MANUAL OF 1941 MOST POPULAR SERVICE DIAGRAMS INSTRUCTIONS

GENERAL & ELECTRIC

JB-410 Mode 1

the first I.F. transformer trimmers. Keep test oscillator output as low as a readable meter reading will permit.

R.F. Alignment

455 K.C. 1600 & 1400 K.C.

R.F.

Alignment Frequencies

I.F. Alignment

just test oscillator and receiver dial to exactly 1600 K.C. C. Then while rocking gang condenser trim Peak 1600 K.C. oscillator trimmer for maximum output. Change test oscillator signal and receiver dial to approxi-Couple test oscillator output to loop in case cover. C. antenna trimmer for maximum output. mately 1400 1400 K.C. an

gang condenser to .05 Mfd. capacitor. Connect an output meter across the voice coil. Rotate e volume to maximum. Set test oscillator to 455 K.C. trimmers, next adjust the volume to maximum. Set test signal to lug on stator second I.F. transformer loop is connected through which loop Align the

and apply

KC

General Electric Models J-602, J-603

Tuning Frequency Kange	540-1720
Intermediate Frequency	455 KC
Electrical Power Output (117 a Undistorted Maximum	line volts)
Loudspeaker—PM Dynamic	

i	Loudspeaker—PM Dynamic
i	Outside Cone Diameter 5 inches
ı	Voice Coil Impedance (400 cycles) . 3.5 ohms
ı	1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

ı	Tubes	
١	RF	A۱
ſ	C	

RF Amplifier	GE-12B7
Converter—Oscillator	GE-12SA7
1F Amplifier	GE-12B7
Detector, Audio, and AVC	GE-12SO7
Power Output	GE-351 6GT
Rectifier	GE-3525GT
Dial Lamp (see paragraph below)	Mazda #47 or #51

GENERAL INFORMATION

Models J602 and J603 are six-tube AC-DC superheterodyne receivers with Underwriters' Approval listing. The Model 1602 is housed in a mahogany plastic cabinet, while the Model 603 has an ivory plastic cabinet.

Both the MAZDA No. 47 and No. 51 dial lamps were used during production. When lamp No. 51 is used, the resistor

K16 should be omitted.

Either the metal or glass type 12B7 tube may be used in he RF or IF stage. However when the glass tube is used in he IF stage, a tube shield must be used to prevent oscillaion at the low frequency end of the broadcast band.

ALIGNMENT PROCEDURE

RF	15 00 KC
ÎF	455 KC
9	•
\	3
	3 TURNS
Dial Dial	Stringing Diagram

IF Alignment

Connect an output meter across the voice coil. Turn the volume control to maximum. Set test oscillator to 155 KC and keep the oscillator output as low as a readable meter reading will permit.

Apply signal to the 12SA7 converter grid through a .05 mfd. capacitor and align progressively the trimmers in the 2nd and 1st 1F transformers.

RF Alignment

When making the following alignment the loop antenna must be bolted to the chassis by the screw and spacer mounting. The RF signal should be capacity coupled to the re-ceiver loop by placing a two-foot piece of wire for an antenna on the test oscillator output post (high side). Keeping this antenna two feet or more from the receiver loop will generally insure freedom from too much coupling. Metal objects such as meters, tools, etc., should not be placed in close proximity to the loop when making this alignment.

With the gang condenser plates completely closed, the pointer should line up with the first mark on the left of the scale. Set the signal generator to 1500 KC. Align (C-1b) to the signal while the pointer is on the 1500 KC mark. Peak (C-1a) for maximum output.

Stock No.	Symbol	Description
RC-7049	C-1a, 1b, 2a, 2b	CONDENSER-Tuning condenser
*RC-235 *RC-242 *RC-274 *RC-039 *RC-072 *RC-104 *RC-216 *RC-023 *RC-039	C-3 C-8 C-9 C-10 C-11 C-12 C-13 C-14 C-15	CAPACITOR—100 Mmf., mica CAPACITOR—150 Mmf., mica CAPACITOR—330 Mmf., mica CAPACITOR—01 Mfd., 600 V. paper. CAPACITOR—05 Mfd., 200 V. paper. CAPACITOR—0.1 Mfd., 600 V. paper. CAPACITOR—47 Mmf., mica CAPACITOR—005 Mfd., 600 V. paper. CAPACITOR—01 Mfd., 600 V. paper.
*RC-092 RC-5183	C-16 C-17a, 17b	CAPACITOR—.05 Mfd., 600 V. paper CAPACITOR—50 Mfd., 60 Mfd., electrolytic
*RC-235 *RO-1227 *RO-1275 *RO-1299 *RO-1295 *RO-1235 *RO-1339 RV-120		CAPACITOR—100 Mmf., mica. RESISTOR—47 ohm, ½ W. carbon RESISTOR—4700 ohm, ½ W. carbon RESISTOR—37,000 ohm, ½ W. carbon RESISTOR—33,000 ohm, ½ W. carbon RESISTOR—100 ohm, ½ W. carbon RESISTOR—2.2 megohm, ½ W. carbon VOLUME CONTROL—0.5 megohm, combined with power switch
*RQ-1349 *RQ-1323	R-8 R-9, 10,	RESISTOR—5.6 megohm, 1/2 W. carbon RESISTOR—470,000 ohm, 1/2 W. carbon
*RO-1213 *RO-1239 RO-651 *RO-1299 *RO-1255	R-13 R-14 R-15	RESISTOR—12 ohm, 14 W. carbon RESISTOR—150 ohm, 14 W. carbon RESISTOR—1000 ohm, 2 W. carbon RESISTOR—47,000 ohm, 14 W. carbon RESISTOR—680 ohm, 14 W. carbon

*Used in previous receivers.

Stock No.	Symbol	Description	List Price	Stock No.	Symbol	Description	List Price
RC-7054 *RC-216 *RC-235 *RC-096 *RC-096 *RC-039 *RC-096 *RC-072 *RC-072 *RC-027 *RC-235 *RC-156A	C-7 C-8, 9 C-10 C-11 C-12, 13 C-14 C-15 C-16 C-17 C-18	CONDENSER—Tuning condenser and trimmers CAPACITOR—47 mmf, mica CAPACITOR—100 mmf, mica CAPACITOR—0.5 Mfd., 200 V. paper. CAPACITOR—0.05 Mfd., 600 V. paper. CAPACITOR—0.05 Mfd., 200 V. paper. CAPACITOR—0.05 Mfd., 200 V. paper. CAPACITOR—0.06 Mfd., 100 V. paper. CAPACITOR—0.06 Mfd., 100 V. paper. CAPACITOR—0.06 Mfd., 100 V. paper. CAPACITOR—100 mmf., mica. CAPACITOR—0.07 Mfd., 120 V.	\$1,35 .25 .25 .30 .25 .25 .30 .25 .30	*RO-1331 *RO-1339 *RO-1259 RO-1259 RC-2036 RL-568 RL-367 RL-366 RL-567 RL-365	R-8 R-9 R-10, 12, 13 B-1 L-1 L-5 L-5 L-6 L-7 L-8	RESISTOR—1.0 megohm, ½ W. carbon, RESISTOR—2.2 megohm, ½ W. carbon, RESISTOR—1.000 ohm, ½ W. carbon, RESISTOR—8.2 ohm, ½ W. carbon, CELL—5.0 V. bias cell assembly. BEAM-A-SCOPE—Loop antenna assembly (inside cover). COIL——6.0 cillator corl). COIL—5.0 cillator corl). COIL—5.0 cillator corl). COIL—5.0 cillator corl). COIL—6.0 cillator corl). COIL—6.0 cillator corl). COIL—6.0 cillator corl). CHOKE—Vibrator choke. BEAM-A-SCOPE—External loop antenna. CHOKE—Filament supply choke.	\$0.70—5 .70—5 .70—5 .70—5 .70—5 .53 .90 .30 .20 .33 .45
RC-5189	C-21A, 21B	CAPACITOR—15 Mfd., 130 V. dry electrolytic. CAPACITOR—1200 Mfd., 2 V. dry electrolytic] [RS-3115 RT-4010 RT-0525	SW1 T-1 T-2	SWITCH—Power selector switch	.70 .90
*RC-156A *RC-092 RV-125	C-22 C-23 R-1	CAPACITOR—0.5 Mfd., 120 V. paper CAPACITOR—0.5 Mfd., 800 V. paper VOLUME CONTROL—0.5 megohm volume control	.45 .30 .95	RT-0524 RT-0327	T-3 T-3	er. TRANSFORMER—50-60 cycle recti- fier step-down transformer. TRANSFORMER—25 cycle rectifier	1.20
*RQ-1315 *RQ-1299 *RQ-1339	R-4	RESISTOR—220,000 ohm, 1/4 W. carbon RESISTOR—47,000 ohm, 1/4 W. carbon. RESISTOR—2.2 megohm, 1/4 W. carbon	.70—5 .70—3	RT-393 RT-392 RV-204	T-4 T-5	step-down transformer TRANSFORMER—1st 1.F. transformer TRANSFORMER—2nd 1.F. transformer VIBRATOR—Power supply synchron-	.90 .90
*RQ-1293 *RQ-1299 *RQ-1347	R-5 R-6	RESISTOR—27,000 ohm, 1/2 W. carbon. RESISTOR—47,000 ohm, 1/2 W. carbon. RESISTOR—4.7 megohm, 1/2 W. carbon	.70—5 .70—5	RR-802 RS-1066	V-1 X-1 Spkr	Ous vibrator. RECTIFIERCopper oxide rectifier SPEAKER!'M speaker	3.60 4.6

All power necessary for the operation of the receiver is supplied by the 2-volt built-in rechargeable battery. The tube filaments are heated directly by the two volts from the battery while the necessary high voltage for the screen and plates of the tubes is furnished by a synchronous vibrator used in conjunction with a step-up power transformer and its associated filter circuit. The synchronous vibrator operates on the two volts from the battery.

on the two volts from the battery.

Provision has been made to charge the battery directly from the house current without removing the battery from the receiver circuit. Two charging positions are provided on the four-position power selector switch. The "Charge" position of this switch allows the battery to be charged at the rate of approximately 1.35 amperes from the house current during the period that the receiver is not being operated. The "AC" position of the switch allows the receiver to be operated at the same time that the battery is being charged. Under this condition, however, it takes a considerably longer period for a partially discharged battery to be fully restored due to the fact that current is taken from the battery to operate the receiver.

GENERAL ELECTRIC

MODEL LB-530

The Hallicrafters

		S - 2	27		
		RESIS	TORS		
No.	OHMS	WATTAGE	NO.	OH MS	WATTAGE
1	250	1/3	34	250,000	1/3
2	1,000	1/3	35	500,000	1/3
3	1,000	1/3	36	250,000	1/3
4	10.000	1-1/2	37	15,000	1/3
5	2,000	1/3	38	50,000	1/3
6	1,000	1/3	39	250,000	1/3
7	100,000	1/3	40	100,000	1/3
8	1,000	1/3	41	100,000	1/3
9	8	1/3	42	200,000	1/3
10	100,000	1/3	43	500,000	Audio Gain Control
11	10,000	R.F. Gain Control	44	250,000	1/3
12	35	1/3	45	250,000	1/3
13	120	1/3	46	5,000	1/3
14	40,000	1/3	47	5,000	1/3
15	300	1/3	48	120	1/3
16	8	1/3	49	250,000	1/3
17	100.000	1/3	50	250,000	1/3
18	100,000	1/3	51	100,000	1/3
19	100,000	1/3	52	250	1-1/2
20	200	1/3	53	10,000	1/3
21	1,000	1/3	54	4,000	1-1/2
22	300	1/3	55	5,000	1-1/2
23	8	1/3	56	600,000	1/3
24	500,000	1/3	57	17	1/3 Wire Wound
25	300	1/3	58	1,500	S. Meter Zero Adj.
26	5.000	1/3			Wire Wound
27	1,000	1/3	59	3,200	10
28	7,500	10 Wire Wound	60	25,000	1-1/2
29	2,000	1/3	61	50,000	1/3
30	20.000	1-1/2	62	300	1/3
31	50,000	1/3	63	5,000	1/3
32	1.000.000	1/3	64	20,000	1/3
32 33	100,000	1/3	65	35	1/3

С	0	N D	E	N	S	Ε	R	S	

NO.	CAPACITY	VOLTAGE	TYPE	NO.	CAPA	CITY	VOLTAGE	TYPE
1	60 mmf	Per Section	Air	31	50	mmf		Mica
2	15 mm f	Ant.Trimmer	Air	32	500	mm f		Mica
3	5 mmf	Alle till tilling t	3 Ceramicon	33	.05	mfd	400	Paper
4	.002 mfd		Mica	34	30	mfd	25	Electrolytic
5	300 mmf		Mica	35	30	mfd	25	Electrolytic
6	.002 mfd		Mica	36	. 05	mfd	400	Paper
7	10. mmf		Ceramicon	37	.05	mfd	400	Paper
8	io. mmf		Ceramicon	38	20	mfd		Electrolytic
9	300 mmf		Mica	39	.002	mfd		Mica
10	300 mmf		Mica	40	.05	mfd	400	Pa pe r
11	.01 mfd	600	Paper	41	.05	mfd	400	Paper
12	.001 mfd	000	міса	42	10.	mfd	350	Electrolytic
13	.02 mfd	400	Paper	43	30	mfd	350	Electrolytic
14	.02 mfd	400	Paper	44	10	mfd	400	Electrolytic
15	Ol mfd	600	Paper	45	300	mmf		Mica
16	.001 mfd	000	Mica	46	300	mmf		Mica
17	.02 mfd	400	Paper	47	300	mmf		Mica
18	.02 .mfd	400	Paper	48	10.	mfd	600	Paper
19	.01 mfd	600	Paper	49	.01	mfd	600	Paper
20	50 mmf	000	Mica	50	.01	mfd	600	Paper
21	.02 mfd	400	Paper	51	.01	mfd	600	Paper
22	.02 mfd	400	Paper	52	.002	mfd		Mica
23	.01 mfd	600	Paper	53	100	mmf		Mica
24	50 mmf	000	Mica	54	200	mm f		Ceramicon
25	.05 mfd	400	Paper	55	300	mm f		Mica
26	50 mmf	400	Mica	56	50	mm f		Ceramicon
27	100 mmf		Mica	57	. 001	mfd		Mica
28	500 mmf		Mica	58	450	mmf		Pad
29	25 mmf		Mica	59	2	mmf		Twisted Pair
30	.002 mfd		Mica	60	25	mmf	в.о.	Pitch Control Air

I.F. 5.25 MC.

Wave-Band Switch Position	Position of Dial Pointer	Generator Frequency	Generator Connection	See Note	Trimmers Adjusted (In order shown)	Trimmer Function
Broadcast	Max. Cap.	465 KC	Converter Grid	A,D	I_1, I_2, I_3, I_4	IF
7-22 MC	21	21 MC	Ant. (Brown)	В	0 ₅ ,A ₆	Osc.,Ant.
2.2-7 MC	6	6 MC	n w		0 ₇ ,A ₈	Osc.,Ant.
2.2-7 MC	2.2	2.2 MC	и и		P9	Osc.Pad.
Broadcast	1400	1400 KC			010, A11	Osc.,Ant.
Broadcast	600	600 KC	п	C	P12	Osc.Pad.

A--Each step of the alignment should be repeated in the original order for greater accuracy. Keep output from Signal Generator low. The I.F. trimmers are reached through the two holes on the top of each I.F. can.

B--When aligning the short wave bands, do not adjust to the IMAGE frequency. For example, if the adjustment is correctly made at 21 MC, then a weaker image will be heard at 21,000 KC less 930 KC, or about 20,070 KC on the dial.

C--When adjusting this pad, move the tuning hand back and forth and adjust padder until the peak of greatest intensity is obtained.

D-See that the tuning hand is set exactly on the last line above 540 when the condenser is at maximum capacity.

SOCKET VOLTAGES MODEL 765, 6 Volt

TUBE	FUNCTION	CATH- ODE	SCR. GRID	PLATE
68 A 7	Mixer	3	70	145
6 s 7G	IF	3	70	145
6 T7 G	Det.	х	х	50
6L5G	Aud1o	6 V. Bias	х	145
6 Z 7G	PP Output	х	х	140

Howard Radio

MODEL 7	65	
DWG. NO	. C83 - 715	9-5-40
DWN. BY.	CHCKD. BY.	APPVD. BY

59

The below layout shows the order of the drive cord for the tuning and Band Spread mechanisms should any servicing or replacement be necessary.

60

Trimmer Location for Models 765 and 780

Wave-Band Switch Position	Position of Dial Pointer	Generator Frequency	Generator Connection	See Note	Trimmers Adjusted (In order shown)	Trimmer Function
Broadcast	Max. Cap.	465 KC	Converter Grid	A,D	11,12,13,14	IF
7-22 MC	21	21 MC	Ant. (Brown)	В	05,A6	Osc.,Ant.
2.2-7 MC	6	6 MC	77 77		07,48	Osc., Ant.
2.2-7 MC	2.2	2.2 MC	# #		Pg	Osc.Pad.
Broadcast	1400	1400 KC	n n		010, A11	Osc.,Ant.
Broadcast	600	600 KC	и и	С	P ₁₂	Osc.Pad.

A-Each step of the alignment should be repeated in the original order for greater accuracy. Keep output from Signal Generator low. The I.F. trimmers are reached through the two holes on the top of each I.F. can. B-When aligning the short wave bands, do not adjust to the IMAGE frequency. For example, if the adjust-ment is correctly made at 21 MC, then a weaker image will be heard at 21,000 KC less 930 KC, or about 20,070 kG and the distance of the distance of

C--When adjusting this pad, move the tuning hand back and forth and adjust padder until the peak of greatest KC on the dial. D--See that the tuning hand is set exactly on the last line above 540 when the condenser is at maximum

intensity is obtained.

TUBE	FUNCTION	CATH-ODE	SCR. GRID	PLATE	OSC. PLATE
6 S K7	R.F. BC	8.5 2.5	110 98	260 210	
6 SA 7	Mixer		110	265	110
68 K 7	I.F. Amp.	2	110	230	
6SK7	I.F. Amp.	4	110	250	

TUBE	FUNCTION	CATH- ODE	SCR. GRID	PLATE	OSC. PLATE
6S Q 7	Diode-AVC			50	
6 V 6GT	Output	12.5	265	250	
80	Rect.				
6 U 5	Tuning Eye	265			

Voltage taken from ground with line voltage at - 120 V.

Woltage taken with 1,000 Ohm per volt meter.

Band Switch in BC position except R.F. Stage measurements.

Lafayette Radio Model E-114

BATTERY EQUIPMENT

The receiver is designed to use:

Two-1½ volt "A" batteries, such as Eveready No. 950 or equivalent flashlight size cylindrical battery.

One—67½ volt "B" battery, such as Eveready No. 467 or equivalent.

IMPORTANT: THE BATTERIES USED MUST BE OF THE CORRECT VOLTAGE AND SIZE.

Lafayette Radio

Model E-191.

output.

loop trimmer for maximum

While rocking gang condenser adjust 1400 K.

test

for

oscillator

ಳ

1600

Small Loop to couple oscillator to receiver 100p.

Small Loop to couple oscillator to receiver 100p.

Use

None

Exactly 1600 K.C. Approx.

> Approx. 1400 K.C.

N

Majestic Radio & Television Corporation

2600 West 50th Street

Chicago, Illinois, U. S. A.

COMPILED BY M. N. BEITMAN, SUPREME PUBLICATIONS

67

68

COMPILED BY M. N. BEITMAN, SUPREME PUBLICATIONS

69

MANUAL OF 1941 MOST POPULAR SERVICE DIAGRAMS MONTGOMERY WARD Model No. 04BR-513A and 04BR-514A

CHICAGO, U.S.A. Schematic Diagram Part Ref. No. No.

Description

RESISTORS

BE130314 2200 ohm-1/3 w. R1 50M ohm-1/3 w. R2 BE13094 R3 BE1309 200M ohm-1/3 w R4 BE130315 75 ohm-11/2 w. BE130203 40 ohm-1/3 w. R5 3 megohm—1/3 w. R6 **RE1304** R7 BE1301 25M ohm-1/3 w. BE130215 25 ohm-1/3 w. R8 BE101198 1 megohm volume control ρg

R10 BE130257 5 megohm-1/3 w. 500M ohm-1/3 w. R11 BE1303 R12 BE1303 500M ohm-1/3 w.

R13 BE130166 150 ohm-1/3 w. R14 BE130287 1200 ohm-1 w.

CONDENSERS

c BE102132 2 gang variable condenser .01 x 400 v. Cı BE10011 C2 BE10091 .15 x 400 v. C3 Oscillator trimmer on gang C4 Antenna trimmer on gang ,0002 mfd. mica BE12921 .05 x 200 v. BE1009 BE1001 .1 x 400 v. .05 x 200 v. C8 BE1009 BE1295 .0001 mfd. mica C9 .002 x 600 v. C10 BE10025 C11 BE12912 .00025 mfd. mica C12 BE100106 .004 x 600 v. 20 mfd. lytic x 150 w. v. C13 BE11992 40 mfd. lytic x 150 w. v. C14 BE11992 C15 BE10026 .02 x 400 v.

BOTTOM VIEW OF CHASSIS

[C] 2 VOLTS A.C. MEASURED ACROSS P.NS. 7 & 6 .
[D] 34 VOLTS A.C. MEASURED ACROSS PINS. 2 & 7

12 SA7

VOLTAGES MEASURED WITH 1000 OHM PER VOLT VOLTMETER BETWEN SCOKET TERM NASS & ATMINIMUM. [A] CANNOT BE MEASURED WITH VOLTMETER. [a] 2 NOTE ACL. MEASURED AMOSS PINS 24.7

12SQ7 [A] (A) (**)

(a) (a) (b)

35L6GT

OOO(0)

ЮŌ

35Z5GT

[a]Q

~ 6.20

500M ohm—½ w. 100M ohm—½ w. 100M ohm—½ w. 500M ohm—½ w. 500M ohm—½ w.

BE1303 500M ohm—½ BE130320 320 ohm—1 w.

R17 R18 R19 R20

BE130103 BE1303

MODEL 04BR-729A MODEL 04BR-730A

MONTGOMERY WARD

SENSITIVITY AND STAGE GAIN MEASUREMENTS

Average Microvolt Input *	Generator Set At	Generator Feeder Connected To	Dummy Antenna Capacity	Leak Resistance	Output Meter Reading **
2,800 420 510 8 2	262 K.C. 262 K.C. 600 K.C. 600 K.C. 600 K.C.	I.F. Grid Mod. Grid Mod. Grid R.F. Grid Ant. Lead	.1 Mfg. .1 Mfg. .1 Mfd. .1 Mfd. ***	.5 Meg. .5 Meg. .5 Meg. .5 Meg. None	1.74 1.74 1.74 1.74

Volume Control Set At Maximum * 1 Watt = 1.74 Volts

Tone Control Set At Voice
** Output meter connected across voice coil.
*** Use Special Dummy Part No. 1X26767 or
Booster Coil Part No. 24A26751 in series
with a 35 Mmf. Condenser.

ALIGNMENT CHART

Operations	Gang Condenser	Dummy	Generator	Adjust	Generator
In Order	Set At	Antenna	Connected To	Trimmers No.	Set At
1 2 3 4 5 6	Minimum 1600 K.C. 600 K.C. 1400 K.C. 1400 K.C. 600 K.C.	.1 Mfd. .1 Mfd. .1 Mfd. * *	OscMod. Grid OscMod. Grid OscMod. Grid To Special Dummy To Special Dummy To Special Dummy	1-2-3-4 5 6 7 8 9	262 K.C. 1600 K.C. 600 K.C. 1400 K.C. 1400 K.C. 600 K.C.

* Use Special Dummy Part No. 1X26767 or Booster Coil Part No. 24A26751 in series with a 35 Mmf. Condenser.

	VOLT	AGE CH	ART.	
TU	BE		SCREEN TO GND	
6 S D 7 G T	R.F. AMP	190 V.	125 V.	3 V.
65A7GT	OSC MOD	190 V	60 V.	3 V.
6 S K 7 G T	1, F. A MP	195 V.	60 V.	2.75 V.
6Q7GT	DET. AV.CA.F	130 V		6 · 5 V.
6K6GT	PWR.AMF	220 V	195 V.	0
6K6GT	PWR.AMP	220 V.	195 V.	0
6X5GT	RECT.	A,C.		225 V.

ALL VOLTAGES MEASURED WITH 100D OHM PER VOLT VOLTMETER

> Galvin Mfg. Corp. 4545 Augusta Blvd. Chicago, Illinois

MOTOROLA

Model 401

NOBLITT-SPARKS INDUSTRIES, INC. Columbus, Indiana

SAMPOL DESCRIPTION UNITS BARTING	DIAL LIGHT BULB MAZDA #47	ASSY	SPK SPEAKER ASSY				IE PEAK 455 K.C.	ON COMPANIES - ON COMPANIES AND TARREST	- CALAINCE 1400 SC CIECS At 000 SC	NOBELITT-SPARKS INDUSTRIES, INC.	ANAICH SI IAMI ICC		
TRANSFORMERS TYPE PART NO	I ANTENNA LOOP OO 6851	2 OSCII ATOR COII OO16852	3 FIRST IF COIL 29-6853	4 SECOND IF COIL 29:6854	5 OUTPUT TRANSF 00:6869								
C CAPACITY VOLT PARTING	TWO GANG	2 WARIABLE / 1054	253A 20MFD 150 3 1275	2538 10 MFD 150 17 437 3	92 .00025 60017-4273	195 .05 40017-4276	222 .2 40017-14317	229 02 40017:4327	223 002 400 7-143 8	193 05 20017 14274	197 000 60017 14278	230 0005 40017 4328	
R IOHMIW PART NO	28 M VC 17-16857	5 500Ki/4 7-2070	183 150 1417 4316	74/20K /4 7429	172 100 1/4/7-4289	Z 5 M /4 7-4288	9 I M 1/4 7-2080						

COMPILED BY M. N. BEITMAN, SUPREME PUBLICATIONS

87

NOBLITT-SPARKS INDUSTRIES. INC. Columbus, Indiana

Opera-	SIGNAL G	ENERATOR		RECEIVER			
tions in Order	Output Connections	Dummy Aerial	Dial Setting	Dial Setting	Control Setting*	Adjust Compressions	
1	1A7G (Grid)	.1 mmfd.	455 K. C.	540 K. C.	Vol. Max. Range Switch Brdcst.	15A, 15B 22A	
2	Aerial Connection Receiver	225 mmfd.	1500 K. C.	1500 K.C.	Vol. Max, Range Switch Brdcst.	Osc., R. F., aerial 6B, 6A, 2B	
3	Aerial Connection Receiver	225 mmfd.	580 K, C.	580 K.C.	Vol. Max, Range Switch Brdcst.	:98	
4	Aerial Connection Receiver	Recheck Operation No. 2					
5	Aerial Connection Receiver	400 Ohms	12 M. C.	12 M. C.	Range Switch S. W.	Osc., R. F., Ant. 19A, 13A, 2A	

Mode 1s Philco Radio

ALIGNING INSTRUMENTS CONNECTING

from this type of aligning meter is used, meter or speaker Adjust ď chassis. ls of termina . 2 35A5 tube 00

To use the vacuum tube voltmeter the voltmeter to any connections voltage can be obtained vacuum tube lowing οţ terminal oltmeter: indicator the chassis. meter to point in Connect Attach an B

the tuning conthe generator to through is connected section of j side adjusting generator or low antenna When the gnal Generator: Connect the ō side Signal mfd. den ser.

be adjusted in the cabinet or removed from padders a loop is made from a ç then placed close signal æ connected to signal generator When aligning the The receiver can oop of the radio. terminals; the of

position approximately the same when assembled. instruments outside ä placed After connecting When adjusting ě should the cabinet around or aerial

strength of the signal from adjusttabulation below. Locations of scale when shown in the schematic diagram. goes off the compensators, reduce the pointer the indicating meter pensators as shown compensators are

ng

the

RECEIVER SIGNAL GENERATOR Operations in Control Setting Adjust Compen-sators in Order Output Connections to Receiver Dial Setting Dial Order Setting 540 K. C. Tuning Cond. Closed Vol Max. Range Switch Brdcst. 37A, 31A, 31B, 25A, 25B 1 Ant. Section of tuning 455 K. C. Vol. Max. Range Switch Brdcst. Loop see above instructions 2 16Q0 K. C. 1600 K. C. 15 Vol. Max. Range Switch Brdcst. Loop see above instructions 6 3 1500 K. C. 1500 K.C. Loop see above instructions 12 M. C. 12 M. C. Range Switch "S. W." 15A, 8

	SIGNAL GENER	ATOR	RECEIVER				
Operations in Order	Output Connections to Receiver	Dial Setting	Dial Setting	Control Settings	Adjust Compen- sators In Order		
1	High side to No. 3 terminal loop panel	455 K. C.	580 K. C.	Vol. Max. Range Switch "S. W." Positions	15A, 15B 38A, 43A		
2	Use loop on generator	1500 K. C.	1500 K. C.	Vol. Max. Range Switch Broadcast	27, 7A		
3	Use loop on generator	580 K. C.	580 K. C.	Vol. Max. Range Switch Broadcast	25		
4	Use loop on generator	Perform operation No. 2 again					
5	Use loop on generator	12 M. C.	12 M, C.	Range Switch "SW-i"	27B, 8A		
6	Use loop on generator	18 M. C.	18 M. C.	Range Switch "SW-2"	27A, 8		

ELECTRIC PUSH-BUTTON TUNING: The automatic tuning mechanism of each model is identical and consists of eight (8) electric tuning push-buttons, seven (7) of the push-buttons are used for selecting broadcast stations, and one as the power control (On-Off switch).

When aligning the R.F. padders a loop is made from a few turns of wire and connected to the signal generator output terminals; the loop is then placed two or three feet from the loop in the cabinet. Do not remove the receiving loop from the cabinet. It is necessary when adjusting the padders, that the receiver be left in the cabinet.

After connecting the aligning indicator, adjust the compensators in the order shown in the tabulation below. Locations of the compensators are shown on the schematic diagram. If the output meter pointer goes off scale when adjusting the compensators, reduce the strength of the signal from the generator.

NOTE A—DIAL CALIBRATION: In order to adjust the receiver correctly, the dial must be aligned to track properly with the tuning condenser. To adjust the dial, proceed as follows: With the tuning condenser closed (maximum capacity), set the dial pointer on the extreme left index line at the low frequency end of the broadcast scale. The arrangement of the drive cable in this position is shown in the schematic.

Model 41-256, Code 121

100

Opera-	SIGNAL GENE	RATOR	RECEIVER				
tions in Order	Output Connections to Receiver	Dial Setting	Dial Setting	Control Settings	Adjust Compen- sators in order		
1	Ant. Section of Tuning Cond.	455 K. C.	540 K. C. Tuning Cond. Closed	Vol Max. Range Switch Brdcst.	16A, 16B, 22A, 22B, 25A		
2	Loop see above instructions	1600 K. C.	1600 K. C.	Vol Max. Range Switch Brdcst.	6B Tuning Condense		
3	Loop see above instructions	1500 K. C.	1500 K. C.	Vol Max. Range Switch Brdcst.	6A Tuning Condense		

MANUAL OF 1941 MOST POPULAR SERVICE DIAGRAMS PRILCO Models 41-260; 41-265

Models 41-260 and 41-265 are seven (7) tube alternating current (A. C.) operated superheterodyne radios incorporating electric push button in addition to manual tuning — and the new Philco built-in American and overseas loop aerial system. These models are also designed to receive the sound of a television program tuned in by special type Philco Television Radios.

In general, these models are similar with the exception of the tuning ranges and cabinet design. Model 41-260 has two (2) tuning ranges covering 540 to 1720 K. C. and 9.0 to 12.0 M. C. Model 41-265 consists of three (3) tuning ranges covering 540 to 1720 K. C., 2.0 to 7.0 M. C. and 9.0 to 12 M. C.

102

general circuit is also used in Models 41-280, and 41-290, with the exception of the 2nd detector, 1st audio A. V. C. wiring, Model 41-280 and the audio circuit, Model 41-290. The above diagram is the complete electrical circuit for the Models 41-285, 41-287.

103

Opera-	SIGNAL GENERATOR	RATOR		RECEIVER		SPECIAL
tions in Order	Output Connections to Receiver	Dial Setting	Dial Setting	Control Settings	Adjust Compen- sators in order	INSTRUCTIONS
-	High side to No. 4 terminal loop panel.	455 K. C.	580 K. C.	Vol. Max. Range Switch "S. W." Positions	32A, 32B 34A, 37D	
2	Use loop on generator	1500 K. C.	1500 K. C.	Vol. Max. Range Switch Broadcast	16, 10	Note A
3	Use loop on generator	580 K. C.	580 K. C.	Vol. Max. Range Switch Broadcast	17	Roll Tuning Condensers Note B
+	Use loop on generator		Perform	Perform operation No. 2 again		
s.	Use loop on generator	6 M. C.	6 M. C.	Range Switch "Police"	16A	
•	Use loop on generator	12 M. C.	12 M. C.	Range Switch "S. W."	17A, 2	Note C

NOTE A — DIAL CALIBRATION: In order to adjust the receiver correctly, the dial must be aligned to track properly with the tuning condenser. To adjust the dial, proceed as follows: With the tuning condenser closed (maximum capacity), set the dial pointer on the extreme left index line at the low frequency end of the broadcast scale. The arrangement of the drive cable in this position is shown in the schemation.

in the schematic.

NOTE B.— When adjusting the low frequency compensator of Range On Greadcast or the aerial padders of the high frequency tuning cange; the receiver Tuning Condenser must be adjusted (rolled) as follows: First tune the compensator for maximum output, then vary the compensator of the receiver for maximum output. Now turn the compensator slightly to the right or left and again vary the receiver tuning condenser for maximum output. This procedure of first calver tuning condenser for maximum output. This procedure of first

setting the compensator and then varying the tuning condense continued until maximum output reading is obtained.

NOTE C.—To accurately adjust the high frequency oscillator c

image signal, turn the oscil-

pensator to the fundamental

lator compensator (17A) to the maximum capacity position (clockwise). From this position slowly turn the compensator counter-clockwise until a first peak is obtained on the output meter. Adjust the compensator for maximum output at this first peak.

If the above procedure is correctly performed, the image signal will be found (much weaker) by turning the receiver dial 910 K. C. above the frequency being used on any high frequency rangs.

The aerial paddet (2) must be adjusted to maximum by rolling the tuning condenser. If two signal peaks occur when turning the paddet,

maximum output on the second signal peak from the tight

SECOND DETECTOR CIRCUIT — MADEL 41.280

RECOND DETECTOR CIRCUIT — MADEL 41.280

RECOND

Models 41-280, 41-285, 41-287, 41-290; Code 121

PHILCO

105

SCHEMATIC DIAGRAM -- MODEL 41-316, CODE 121

SCHEMATIC DIAGRAM -- MODEL 41-316, CODE 121

LIAGES INDICATED AT THE THE ELEMENTS AND WORK WITH A LOOD OHMS PER YOLT VOLTMET

AND MODEL MOTAL LINE WAS TAKEN THE A COMMON CHANNING STATION BEING BENEFINED

106

Opera-	SIGNAL GENE	RATOR		RECEIVER		SPECIAL INSTRUCTION
tions in Order	Output Connections to Receiver	Dial Setting	Dial Setting	Control Settings	Adjust Compen- sators in Order	
1	High side to No. 3 terminal loop Panel.	455 K. C.	580 K. C.	Vol. Max. Range Switch "S. W." Position	48D, 43A, 43B, 42A, 42B	
2	Use Loop on Generator	1500 K. C.	1500 K. C.	Vol. Max. Range Switch Broadcast	21, 10A	Note A
3	Use Loop on Generator	580 K. C.	580 K. C.	Vol. Max. Range Switch Broadcast	21 A	Roll Tuning Con Note B
4	Use Loop on Generator					
5	Use Loop on Generator	6 M. C.	6 M. C.	Range Switch "Police"	18B	Note C
6	Use Loop on Generator	12 M. C.	12 M. C.	Range Switch "S. W." 1	18A, 4A	Note D
7	Use Loop on Generator	18 M. C.	18 M. C.	Range Switch "S. W." 2	18, 4	Note E

Note A — DIAL CALIBRATION: In order to adjust the receiver correctly, the dial must be aligned to track properly with the tuning condenser. To adjust the dial, proceed as follows: With the tuning condenser closed (maximum capacity), set the dial pointer on the extreme left index line at the low frequency end of the broadcast scale. The arrangement of the drive cable in this position is shown in Fig. 6.

NOTE B — When adjusting the compensator, the receiver Tuning Condenser must be adjusted (rolled) as follows: First tune the compensator for maximum output, then vary the tuning condenser of the receiver for maximum output. Now turn the compensator slightly to the right or left and again vary the receiver tuning condenser for maximum output. This procedure of first setting the compensator and then varying the tuning condenser is continued until maximum output reading is obtained.

NOTE C - Adjust compensator (18B) to the SECOND signal peak from the tight (closed) position.

NOTE D — Adjust compensator (18A) to the FIRST signal peak from the tight (closed) position. If the compensator is correctly adjusted the image signal will be weakly heard by leaving the receiver dial at 12 M. C. and turn the signal generator to 11.090 M. C.

NOTE E—Adjust compensator (18) to the SECOND signal peak from the tight (closed) position. If the compensator is correctly adjusted the image signal will be weakly heard by leaving the receiver at 18 M. C. and turning the signal generator to 18.910 M. C. When adjusting compensator (4) roll the tuning condenser, See Note "B" on how to roll the condenser.

INTERNAL WIRING OF STEPPER UNIT NUMBERS CORRESPOND TO SCHEMATIC

CABLE WIRING FROM STEPPER ROTARY SWITCH TO PUSH-BUTTON SWITCH AND STATION LIGHTS

WIRELESS REMOTE CONTROL UNIT WIRING

INSTALLATION OF DRIVE CORDS POINTER AT LOW FREQUENCY END OF DIAL GANG CLOSED. PHILCO

Model 41-316

107

109

110

PHILCO Phonograph Model 41-620

To reproduce the sound from a record, the light beam of the reproducer must be carefully positioned on the light sensitive cell. If the light beam is not carefully set, the sound reproduction will be distorted, weak or, if the light beam is completely on or off the cell, the phonograph will be silent.

If any of these conditions exist, the following adjustment procedure should be made: —

NOTE — These adjustments should be made with the power line voltage at 118 volts A. C.

A.—ADJUSTING WIDTH OF LIGHT-BEAM

To make this adjustment push the lamp socket assembly into its holder until a clear image of the lamp filament appears on the light cell. The socket should then be slightly pushed in beyond this point until the rectangular spot of light is 5/3?" in width. The socket assembly is now rotated so that the spot light is vertical.

B.—POSITIONING THE LIGHT-BEAM

To position the light-beam on the light cell, turn the adjusting screw at the lower left side of the reproducer until the spot is half on the cell and half on the metal frame surrounding the cell.

C.—ADJUSTING INTENSITY OF LAMP

When shipped from the factory, the lamp of the reproducer is adjusted for best operating efficiency. The intensity of the light from the lamp is adjusted by compensator (22) located on the radio chassis. Under ordinary circumstances, an adjustment will not be necessary. When replacing the reproducer or lamp, however, there may be a tendency towards microphonic feedback. In this case the compensator is adjusted as follows:

- 1. Turn volume control on full and play a record.
- 2. While the record is playing, turn compensator in the direction necessary to eliminate microphonic feedback. By turning the compensator the strength of the pick-up output is increased or decreased.

D.—INSTALLING NEW LAMP

When installing a new lamp in the socket, there are two positions in which the lamp can be inserted. Ordinarily, either of these positions can be used. In some cases, however, due to the lamp filament being off center, the lamp must be inserted in the position that gives the best centering of the spot of light on the vibrating mirror.

SCHEMATIC	DIAGRAM	MODEL .41-851	RUNS	1 AND	2
-----------	---------	---------------	------	-------	---

1	Stator Plate Lug Loop Tuning Condenser	455 K. C.	540 K. C.	Vol. Max.	18A, 18B, 24A
2	Loop on Generator	1500 K. C.	1500 K. C.	Range Switch "Brdcst" Vol. Max.	3C, 3D
3	Loop on Generator	580 K. C.	580 K. C.	Range Switch "Brdcst" Vol. Max.	50
4			Rec	heck operation No. "2"	
5	Loop on Generator	6 M. C.	6 M. C.	Range Switch "S. W."	50A
6	Loop on Generator	15 M. C.	15 M. C.	Range Switch "S. W."	3B, 3A

Model 41-851, Code 121, Runs 1 and 2

Model 41-851, Code 121, Runs 1 and 2 is a five (5) tube portable A. C.-D. C. or battery operated superheterodyne radio with two tuning ranges, 540 to 1600 K. C. and 6 to 15 M. C. In addition this model includes: a Built-in Loop Aerlal: Beam Power Pentode Audla Output Stage; Highly Sensitive Permanent Magnet Speaker; PHILCO Super-efficient Loktal Tubes and an ON-OFF Indicator.

Production Runs 1 and 2 of this model are identical with the exception of the 2nd Detector, 1st Audio tube. The early production (Run 1) radios used a 1H5G tube and the later production radios (Run 2) contained a 1L5D tube.

PHICO TUBES USED: 1A7G, Oscillator Converter: 1N5G, 1. F. Amplifier; *1115G, (Run No. 1) 2nd Detector, 1st Audio A. V. C.: 35Q5G, Audio Output; 117Z6G, Rectifier; *11.5D, (Run No. 2).

C.; 35Q5G, Audio Output; 117Z6G, Rectifier; *1L5D, (Run No. 2).

INTERMEDIATE FREQUENCY: 455 K. C.

POWER SUPPLY: 115 volts, A. C.-D. C. and a Phileo Combination "A. B." buttery type P-841.

For portable battery operation wrap the power line cord around its holder clamp on the back of the cabinet back and insert the plug end into the slots provided on the chassis.

To operate on 115 volts A. C.-D. C. remove the power line cord plug from the slots on the chassis and insert into a power receptable.

- UNCERSICE OF CHASSIS PART LOCATIONS-MODEL 41-851, RUN 1

MODELS 41-842, 41-843, 41-844 These models may be adjusted when operated by battery or 115 volts A.C.-D.C. power.

SIGNAL GENERATOR				RECEIV	E R
Operations in Order	Output Connections to Receiver	Dial Setting	Dial Setting	Control Setting	Adjust Compensators
1	See Paragraph on Signal Generator above	455 K.C.	540 K.C.	Vol. Max.	26A, 25A, 25B, 15A, 15B
2	Use Loop on Generator as above	1500 K.C.	1500 K.C.	Vol. Max.	4B, 4A

PHILCO

Models 41-842,

41-843, 41-844

LOCATION OF PARTS - UNDERSIDE OF CHASSIS

MODEL BP-10 PERSONAL RADIO

Alignment Procedure

Output Meter Alignment.—If this method is used, connect the meter across the voice coil, and turn the receiver volume control to maximum.

Test-Oscillator.—For all alignment operations, keep the output as low as possible to avoid a v-c action.

	715	B: T		
	COMPANIED .	E.S Wheeley	-	
	NO.			י יוברו

Steps	Connect the high side of test-osc.	Tune test- osc. to-	Turn radio dial to—	Adjust the fol- lowing for max. peak output—			
1	Tuning condenser stator (ant.) in series with .01 mfd.	455 kc	Quiet point at 1,600 kc end of dial	L7, L6, L5, L4 (2nd and 1st I-F transformers)			
2	Radiated signal 1,620 kc	1,620 kc	Full clockwise (out of mesh)	C5 (oscillator) C2 (antenna)			
3	Radiated signal 1,300 kc		1,300 kc				
4	Radiated signal 600 kc	600 kc	600 kc	L2 (osc.)			
5	Repeat steps 2, 3 and 4.						

Power Supply Type Battery	Current Consumption	Approximate Life (Intermittent Duty)
"A"-1.5 volt Eveready No. 950	0.25 amperes	3-5 hours
"B"-67.5 volts Eveready No. 467	8.5 milliamperes	25 40 hours
POWER OUTPUT		0.03 watts
Maximum		0.12 watts

119

RCA

MODEL 15BP

Alignment Procedure

Output Meter Alignment.—If this method is used, connect the meter across the voice coil, and turn the receiver volume control to maximum.

Test-oscillator.—For all alignment operations, keep the output as low as possible to avoid a-v-c action.

Steps	Connect the high side of test- oscillator to—	Tune test-osc. to—	Turn radio dial to	Adjust the follow- ing for max, peak output—
1	1N5GT I-F grid cap, in series with .01 mfd.		Quiet point	L8, L7 (2nd transformer)
2	1A7GT 1st-Det. grid cap, in series with .01 mfd.	455 kc	at 1,600 kc end of dial	L4, L3 (1st I-F transformer)
3	radiated sig 1,720 kc			C22 (Osc. Trimmer)
4	radiated sig 1,400 kg		signal frequency	C20 (Ant. Trimmer)
5	radiated sig near 600 l			L6 (Rock in)
6	Repeat steps 3,	4 and 5 un	til aligned.	

Frequency Range. 540-1,720 kc Intermediate Frequency. 455 kc
RCA TUBE COMPLEMENT 1st.Det.—Osc. (1) RCA-1A7-GT. 1st.Det.—Osc. (2) RCA-1N5-GT. I.F Amplifier (3) RCA-1H5-GT. 2nd-Det., A-F, and A.V.C. (4) RCA-3Q5-GT. Output (5) RCA-35Z5-GT. Rectifier
LINE CURRENT SUPPLY 110 to 125 volts, AC 50 or 60 cycles, or DC
BATTERIES REQUIRED "A" one 1.5 volt dry plug-in type "A," (Eveready No. 743 or equivalent) "B" two 45 volt dry plug-in type "B," (Eveready No. 482 or equivalent)
CURRENT CONSUMPTION "A" 0.25 amperes "B" 11.5 milliamperes "B"
BATT INDICATOR WINDOW
OFF BATTERY

POWER

CONTROL

TUNING

CONTROL

VOLUME CONTROL

MODELS 15X, 16X-1, 16X-2 and 16X-3

Chassis Nos. RC-462,

RC-462A

and RC-46

Six-Tube, Single-Band, AC-DC, Superheterodyne Receivers

125

Alignment Procedure

Cathode-Ray Alignment is the preferable method. Connections for the oscillograph are shown in the schematic diagrams.

Output Meter Alignment.—If this method is used, connect the meter across the voice coil, and turn the receiver volume control to maximum.

Test-Oscillator.-For all alignment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the output as low as possible to avoid a v-c action.

Electronic Voltmeter.—The electronic voltmeter in the Chanalyst or Volt Ohmyst provides an unexcelled output indicator. It should be connected to the AVC bus, and the testoscillator output adjusted to produce several volts of AVC.

Calibration Scale.—The glass tuning dial may be easily removed from the cabinet and temporarily attached to the chassis for quick reference during alignment. In the event that only the chassis is returned for service, and the cabinet with its tuning dial is left in the customer's home, the calibration scale printed in this service note can be used in conjunction with an ordinary 12-inch ruler as an accurate and convenient substitute for the regular dial.

Each method is described below.

Using Tuning Dial.—

1. Slide out the flat spring clamp at each end of the dial, and remove the glass dial from the cabinet.

- 2. With gang in full mesh, move the dial pointer to the reference mark at the left hand end of the dial backing plate.
- 3. Place the glass dial under the pointer so that the extreme left scale graduations coincide with the pointer. Use scotch tape to hold the glass dial in this position.
- 4. After completion of alignment, replace the glass dial in cabinet, taking care that the fibre light shields are in correct position at ends of dial.

Using Calibration Scale.—

- 1. With gang in full mesh, move the dial pointer to the reference mark at the left-hand end of the dial backing plate.
- 2. Place a flat 12-inch ruler on the dial backing plate so the left end of ruler is at the reference mark at left end of back ing plate. Temporarily fasten the ruler with scotch tape to the backing plate.
- 3. Refer to calibration scale printed in this service note. This is a reduced reproduction of the dial with an inch-scale drawn at top and bottom. To find the correct pointer position in inches for any desired frequency, draw a vertical line through this frequency on the calibration scale. For example, 1,500 kc is approximately 4 inches from the reference mark.

Dial-Pointer Adjustment.—After the chassis is replaced in cabinet, move the dial pointer (if necessary) so that it is at the left hand graduation on the dial with the gang in full mesh.

Steps	Connect the high side of the test-osc. to—	Tune test- osc. to—	Turn radio dial to—	Adjust the follow- ing for maximum peak output—
1	I-F grid, in series with .01 mfd.	455 kc	"A" band, Quiet Point	L7 and L8 (2nd I.F. Trans.)
2	1st det. grid, in series with .01 mfd.	400 KC	at 1,500 kc end of dial	L5 and L6 (1st I.F. Trans.)
3	Antenna terminal, in series with 300 ohms (link open)	15.2 mc	15.2 mc "C" band	C11 (osc.)* C2 (ant.)
4		1,500 kc	1,500 kc "A" band	C29 (osc.) C3 (ant.)
5	Antenna terminal, in series with 200 mmfd. (link open)	600 kc	600 kc "A" band	L3 (in 16T2) L4 (in 16K and 16T2) Rock in
6		Repeat steps 4 and l	5.	

In case of instability during R-F alignment, connect a 27,000 ohm ¼ watt resistor across "D" and "F" of 2nd I-F trans-

* Use minimum capacity peak if two peaks can be obtained. Check to determine that the correct peak has been used, by tuning receiver to 14.29 mc, where a weaker signal should be received.

VICTROLA RADIO OFF. LOUD POWER-VOLUME VICTROLA RADIO TUNING RANGE CONTROL

> RCA Manufacturing Co. Camden, N. J.

Models 16K and 16T3

COMPILED BY M. N. BEITMAN, SUPREME PUBLICATIONS

RCA VICTROLA MODEL V-101

Chassis No. RC-540

COMPILED BY M. N. BEITMAN, SUPREME PUBLICATIONS

COMPILED BY M. N. BEITMAN, SUPREME PUBLICATIONS

Push Button Adjustment

The station push buttons connect to separate magnetite-core oscillator coils and separate antenna trimmers which must be adjusted for the desired stations. Use an insulated screwdriver or alignment tool such as RCA Stock No. 31031. Allow at least five minutes warm-up period before making adjustments.

In the event that the receiver is to be used with an external antenna use one or two feet of wire (as an antenna) to ensure sharp peaking during the final adjustment procedure. For loop operation, the link should be strapped across terminals on back of set. In either case the procedure is as follows:

- Make a list of the desired stations, arranged in order from low to high frequencies.
- 2. Turn the range selector to "A" band, and manually tune in the first station on the list.
- Turn range selector to "PB" position, push in station button No. 1 (extreme left). Then adjust the No. 1 oscillator core (L-14) to receive the station.

Cathode-Ray Alignment is the preferable method. Connections for the oscillograph are shown in the schematic diagram.

Output Meter Alignment.—If this method is used, connect the meter across the voice coil, and turn the receiver volume control to maximum

Test-Oscillator.—For all alignment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the output as low as possible to avoid a vc action.

Electronic Voltmeter.—The electronic voltmeter in the Chanalyst or Volt Ohmyst provides an unexcelled output indicator. It should be connected to the AVC bus, and the test-oscillator output adjusted to produce several volts of AVC.

Calibration for Alignment.—The dial calibration for alignment purposes can be set up in two ways:

- 1. The dial may be removed from the cabinet by sliding out the two spring pieces which clamp it in its mounting position. The condenser plates should then be turned into full mesh, the pointer adjusted to the scratch at the left end of the dial backing plate, and the dial placed on the frame so that its extreme left calibration mark coincides with the pointer. The dial may be held in place with scotch tape. In this manner the actual receiver dial is used for alignment. When alignment is finished, the scale should be replaced including the fibre light shields which are folded under the ends of the glass scale.
- A calibration scale is attached to the tuning drum. The correct setting of the gang, in degrees, for each alignment frequency is given in the alignment table. Check the position of the drum, making sure that the 0 degree scale mark is horizontal with the gang in full mesh.

Pointer for Calibration Scale.—1f method (2) is used, improvise a pointer for the calibration scale by fastening a piece of wire to the chassis, and bend the wire so that it points to the 0 degree mark on the calibration scale when the plates are fully meshed.

Spread-Band Alignment.—Make final adjustment of C56 and C50 during actual reception of a station of known frequency near 9.5 megacycles.

880 TO	740		610	TO	540 TO
Ø	Ø	4	i	Ø	TRIMMER
Ø	0	@	0	0	0 CORE

4. After oscillator core is set correctly, adjust C-8 for maximum output.

Clockwise adjustment of cores and trimmers tunes the circuits

5. Adjust for each of the remaining stations in the same manner.

Make a final careful adjustment of the oscillator cores and antenna trimmers.

Owing to the relatively high r-f gain, it may be found that a given station can be tuned in at several different settings of the magnetite-core oscillator push-button coils. In such cases, it is advisable to unscrew the loop push-button trimmers to minimum capacity before adjusting the magnetite cores.

On the 880 to 1,550 kc push-button, the higher frequency stations may be received with L-9 either in or out (oscillator frequency either 455 kc below or 455 kc above the station frequency). The adjustment with this core in its out position (oscillator frequency 455 kc above the station frequency) is the correct one.

Steps	Connect the high side of the test-osc, to—	Tune test osc. to-	Turn radio dial to—	Adjust the follow- ing for maximum peak output—		
1	I-F grid in series with .01 mfd.	455 kc	"C" Band Quiet Point at 18 mc end of dial	L21 and L22 (2nd I.F. Trans.)		
2	1st-det. grid in series with .01 mfd.	455 RC		L19 and L20 (1st I.F. Trans.)		
3	Antenna terminal (A), in series with 47 mmfd. (link closed)	15.2 mc	15.2 mc (149°) "C" band	C56 (osc.)* C50 (ant.)** Rock in		
4		9.5 mc	9.5 mc (65.5°) "31M" band	C55 (osc.)* C51 (ant.)** Rock in		
5		2.44 mc	2.44 mc (97°) "B" band	C27 (osc.)		
6	Stator of antenna section of gang, in series with 300 ohms	600 kc	600 kc (30.5°) ''A'' band	L28 (osc.)		
7	ov omis	1,500 kc	1,500 kc (158°) "A" band	C28 (osc.)		
8	Repeat steps 6	and 7.				
9	Fasten chassis in cabinet, see that link is closed on antenna terminal board, indicator at left end of dial scales with gang at maximum capacity.					
10	Radiation loop consisting of two turns of wire 18	1,500 kc	1,500 kc "A" band	C61 (ant.) (mounted on loop)		
11	inches in dia- meter located 4 to 6 feet from	600 kc	600 kc "A" band	L28 (osc.) Rock in		
12	receiver	Repeat steps 10 and 11				

* Use minimum capacity peak if two peaks can be obtained.
** Use maximum capacity peak if two peaks can be obtained.
NOTE: Oscillator tracks 455 kc above signal on all bands.

MODEL 110-K

COMPILED BY M. N. BEITMAN, SUPREME PUBLICATIONS

Sears, Roebuck & Co. Chicago.

Model R-111

COMPILED BY M. N. BEITMAN, SUPREME PUBLICATIONS

Sears, Roebuck & Co. Models 5732 and 5732-B Factory Nos. 109.371 and 109.371-1

These receivers are alike except that the early model C13 is .001 mfd. and C9 is .002 mfd. Also the connection from C13 was connected to the volume control side of C9.

M=1,000 x

141

COMPILED BY M. N. BEITMAN, SUPREME PUBLICATIONS

Model 248

148

MANUAL OF 1941 MOST POPULAR SERVICE DIAGRAMS STEWART-WARNER 11-6T and 11-6T-S CHASSIS

(Receiver Models 11-6T1 to 11-6T9 and 11-6T1-S to 11-6T9-S)

Diagram		ECTRICAL PARTS
	Number	
	83539	Condenser-mica 260 mmfd \$0.20
	98173	Condensor-mica 50 mmfd
4	. 88587	Condenser-mica 0042 mfd
	110510	Condenser—wire 3 mmid
	110552	Resister—carbon 47.000 ohms 1/4 watt12
	110553	Resistor—carbon 220,000 ohms 1/4 wott12
	. 110554	Resultor-carbon 1 megohm 14 watt .12
	.110559	Resistor-curbon 470,000 ohms 1/4 watt12
	110564	Resistor-carbon 100.000 ohms 14 watt12
	110565	Pesistorcarbon 22,000 ohms 14 watt12
15	110570	Resistor—carbon 2.2 meg. 14 watt15
16	110573	Resistor-carbon 2 200 ohms 1/4 watt 12
17	110578	Resistor-carbon 68,000 ohms 1/4 watt
	. 110584	Resistor carbon 330,000 ohms 1/4 watt. 12
	. 110829	Dial light 6 3 volt
21 .	112952	Resistor-carbon 3,300 ohms 14 wait. 10
22 .	114009	Condenser-electrolytic 4 mfd, 350 volt .72
23 24	114335	Resistor-wire wound 430 ohms 2 writs 20
24	U 115107	Speaker-dynamic 6' 6.10
25	.116050	Recistor-insulated 10 meg is watt
	116055	Resistor-carbon 22,000 ohms 1/2 watt 12
27-28	116062	Restator150 ohme '4 wort12
29-30	116625	Condenser mtd. 600 volt25
31-32 .	116819	Condenser05 mfd 600 volt20
33	116964	Switch-on-off for phone moler with
		escutcheon
		Business Eabout I must make maked 14

Diagram Number			Price
38A to 38C		Condensertrimmer3 section	
39-40-41-42		Condenser01 mld. 600 volt	.15
43		Switch-tone control	48
44-45	. 119414	Condenser-02 mfd 600 volt	.15
46	119416	Condenser 008 mid. 600 volt	.15
47	. 119757	Condenser-(metal clad) 01 mld. 600 volt	
48	119817	Condense: 004 mid. 600 volt	.15
48	. 119845	Condensor—trimmer (on loop)	.16
50 .	. 119934	Condenser-padder	.36
Sj	U-160028	Cone & voice ooil for U-115107 speaker.	1 60
52		Transformer—output for U-115107	
		apecket	1 55
53	160036	Molor (less turntable)	8,00
54 .	160038	Microphone Push hutton switch	12.50
55	. 160111	Push button switch	2.30
56A 56B .		Condenser-voriable tuning	2.40
57 .	160172	Tronsformer-power (50-60 cycles)	4 20
58A to 580	. 160174	Condenser-electrolytic	
		Section A-20 mfd. 400 volt	
			1.30
		Section C-10 mfd 25 volt	
59A 59B		Volume control-1 meg. (with switch) .	
60	160190	Coil-anienna (S.W.)	.44
61 .	160195	Coil—cecillator	.75
61 . 62	160279	Loop ontenna & cabinet back	
62	1	(complete) (Model 11-679)	1.40
	160763	Loop anienza & cabinet back	1.40
		(with trimmer) (Model 11-679)	
	160430	Condenser-001 mid. 500 volt	5.00
	161298	Crystal Pickup Cartridge	9.50
€S		Crystal Recorder Cartridge	3 20
PRI	ICES SUBJ	ECT TO CHANGE WITHOUT NOTICE.	

Part		Lu
Number	Description	Pric
117117	Cable-motor	\$0
114955	Clamp-tor dial cord	0
113019	Clip-dial scale retaining	. 1
117057	Cord-drive (supplied in 3 lt. lengths)	
160200	Digl scale	
119208	Escutcheon—digil	
119167	Knob	
119166	Knobpush button	
117769	Nome Plate (S.W.) (Mode) 11-678)	
117779	Name Plate (Olf-Vol.) (Model 11-6T8)	
117780	Name Plate (Tuning) (Model 11-678)	
161206	Name Plate (Tone) (Model 11-676)	- 3
161207	Name Plate (FB) (Model 11-6T8)	
160033	Needle cup	
160127	Phonograph needles Envelope of 10	
116883	Pointer	
81145	Retaining ring for drive shaft Per	
119218	Screw - escutcheon mounting	
119204	Shalt-juning	
111006	Socket-dial lamp	
160037	Socket-2 prong	
160171	Socket-4 prong	
160158	Socket-7 prong for speciker.	
119791	Socket-8 prong	
114876	Socket-octal	
160039	Socket for pick up	
113177	Spring—dial cord lension	
161245	Tobe 6 windows for recorder punh huttons	_ `
111456	Washer-spring washer Per	C :

SOCKET VOLTAGES

REAR OF CHASSIS

Use a high resistance voltmeter of 1000 oms per volt.

153

154

MANUAL OF 1941 MOST POPULAR SERVICE DIAGRAMS STROMBERG-CARLSON NO. 515 RADIO RECEIVERS

STROMBERG-CARLSON TELEPHONE MANUFACTURING COMPANY ROCHESTER, NEW YORK

B - VOLUME C - OFF-ON-TONE

Wiring and Schematic Diagram Amplitude Modulation

COMPILED BY M. N. BEITMAN, SUPREME PUBLICATIONS

Talk-A-Phone Mfg. Co.

158

DELCO MODELS R-1176 AND R-1181 CIRCUIT DIAGRAM

159

DELCO MODELS R-1186 AND R-1188 CIRCUIT DIAGRAM

UNITED MOTORS SERVICE INCORPORATED

GENERAL OFFICES-DETROIT

161

SERVICE INSTRUCTIONS -- DELCO MODEL R-1186 AND R-1188 COMBINATION RADIO AND PHONOGRAPH

ADJUSTMENTS FOR PUSH-BUTTON TUNING: The push buttons should be adjusted after the receiver has been operating for a brief warm-up period. Each button may be set up to any standard broadcast station. The preferable arrangement is to adjust for stations in the order of frequency, from low to high. Proceed as follows:

- 1. Press down on the first push button and hold it down. The screw in back of the push button is now accessible and should be loosened one or two turns with a screwdriver.
- 2. While still holding down the push button, tune in the first station with the tuning knob, by Dial Tuning. When the station is heard at its best, tighten up the screw in back of the push button. Now let go of the push button, turn the tuning knob in order to detune and again press down the button and let go. To check repeat action.
- 3. Proceed to set up the other five push buttons in a similar manner.

MANUAL OF 1941 MOST POPULAR SERVICE DIAGRAMS Truetone MODEL D-1175

Generator	Connection at Radio	Dummy Antenna	Range Switch	Dial	Trimmers to Tune	Sensitivity
I. F. 456 K.C.	Center Stator of Variable	.1 MFD.	A	H, F, End	I. F. Trans- formers	6570MV.
B. C. 1725 K. C.	Antenna	200 MMF.	A	H. F. Limit of Travel	B. C. Oscil- lator	
1400 K. C.	Antenna	200 MMF.	A	1400	B. C. Antenna and Loop	5-10 MV.
600 K. C.	Antenna	200 MMF.	A	Rock Rotor	Padder	10-15 MV.
P. B. 6.0 M. C.	Antenna	400 Ohm	В	6.0 M. C.	P. B. Osc. P. B. Ant.	25 MV.
2.2 M. C.	Antenna	400 Ohm	В	2.2 M. C.	Check	40 MV.
31M. 9.6 M.C.	Antenna	400 Ohm	С	9,6 M, C.	31M. Ant. 31M. Osc.	25 MV.
25M, 11.6 M.C.	Antenna	400 Ohm	D	11.6 M. C.	25M. Ant. 25M. Osc.	30 MV.
19M. 15.2 M. C.	Antenna	400 Ohm	E	15.2 M, C,	19M Ant. 19M. Osc.	40 MV.

Westinghouse Radio

Schematic Circuit Diagram Model WR-175

COMPILED BY M. N. BEITMAN, SUPREME PUBLICATIONS

TUBE & TRIMMER LOCATIONS

167

SWITCH ON

Westinghouse Radio Model WR-184

Westinghouse Radio

170

Chassis No. 10A3

ZENITH RADIO CORPORATION

CHICAGO . ILLINOIS

DIAG. Ng	PART	DESCRIPTION		DIAG. Nº	PART	DESCRIPTION	ON
C5 C6	22-127 22-182 22-829 22-827 22-1061	TUNING CONDENSER 25 MMFD00025 MFD05 MFDI MFD. [8 MFD. ELECTROLYTIC VEMFO05 MFD.	2001	R3 R4 R5	63-58/ 63-964 63-707 \$86// 14/-85	IMEGOHM 470 OHM 4700 OHM 4700 OHM OSC. COIL AS MOTOR GO A.C. SWITCH PICKUP	r)
RI	63-593	47M OHM	1/4 W.	1			

PHONOGRAPH OSCILLATOR ZENITH RADIO CORPORATION CHICAGO ILL.

MANUAL OF 1941 MOST POPULAR SERVICE DIAGRAMS FREQUENCY MODULATION

Broadcasting by the Frequency Modulation method has already proved to be the most satisfactory means of "Local" radio transmission with reduced noise and high fidelity. It is not generally understood that these two features of FM are due in a great measure to the wide frequency band which this method of modulation employs. The FM receiver must be accurately aligned because much of the FM system's noise reducing ability is lost if the FM IF and discriminator circuits are misaligned.

The alignment of FM receivers differs from the familiar AM receiver alignment procedure where a modulated signal from the generator is used and the output is measured with an A.C. voltmeter across the voice coil.

The signal generator for FM alignment must be capable of supplying an unmodulated signal of at least .5 volt at the IF frequencies (4 to 9 Mc.) and a moderate unmodulated signal at the FM RF frequencies (41.5 to 50.5 Mc.) A 50-0-50 microammeter, such as Triplett #321 or #521, makes an excellent output meter when used with our #S9614 four prong plug and cable assembly and a S.P.D.T. switch. (see fig. 1)

The output meter is connected across HALF the diode load resistor for gain alignment and is connected across the FULL diode load resistor for frequency settings. A polarized socket is provided (near the 7A6 tube) which accommodates the output meter plug to facilitate switching the meter across either FULL or HALF the diode load resistor.

IMPORTANT—The FM IF and discriminator alignment must be followed in a stage-by-stage sequence, beginning at the discriminator and working forward to the converter stage. This differs from the conventional AM IF alignment procedure where the signal is applied to the converter grid and all the IFs are aligned simultaneously.

The signal from the generator must be kept just below the point where the limiter action of the receiver begins. To explain further we should consider the purpose of the limiter. It does what its name implies; it limits the amount of signal applied to the discriminator circuit. When the input signal is strong the limiter cuts off, allowing only a portion of the signal to pass, while at low signal levels the limiter acts as an IF amplifier. Therefore, it is easy to understand why the signal input to the receiver and IFs must be held below the limiter operating range during alignment. The most practical way of determining the proper amount of input signal is to watch the output meter (connected across HALF the diode load) while the signal from the generator is increased. The meter will indicate the increase in signal until limiting action begins, from which point on no appreciable increase can be noted on the meter even though the generator signal has been increased considerably. The desired signal input level (from the generator) is just below the limiting point which may be determined by increasing the generator output while watching the output meter, then reducing the generator output slightly when the limiting point is reached.

IF AND DISCRIMINATOR ALIGNMENT

Holes have been placed at the top of all the FM IF transformer shields so that a signal generator may be connected across the transformer secondaries to facilitate alignment. (see fig. 2) A vey high input signal will be necessary to get an output indication for the discriminator alignment. Should the generator be unable to supply sufficient signal, the Discriminator input stage may be aligned first in order that its gain may be utilized to raise the input signal to the discriminator.

- 1. Connect the output meter across the FULL discriminator load. (fig. 1)
- ?. Feed an unmodulated signal, at the IF frequency, through the dummy antenna (fig. 2) to the 3rd IF transformer secondary. (The IF frequency is stamped on the IF transformer shields.) Adjust the slug B4 for resonance. Rotating the slug B4 through the resonance point will cause the output meter to swing through zero from positive to negative or vice versa. A zero reading on the meter indicates the desired resonance point.
- 3. Switch the output meter to HALF discriminator load (fig. 1). Adjust trimmer A4 for maximum output keeping the signal input below the point of limiting action.
- 4. (Meter at HALF load) Connect the generator to the 2nd IF transformer secondary and adjust the 3rd IF trimmers A3 and B3 for maximum output.
- 5. (Meter at HALF load) Connect the generator across the 1st IF transformer secondary and adjust the 2nd IF transformer trimmers A2 B2 for maximum output.
- 6. (Meter at HALF load) Connect the generator to the converter grid. A small socket is provided near the converter tube which will accommodate the side pin of the #S9615 Dummy Antenna assembly (Fig. 2) to facilitate this generator connection. Adjust the 1st IF transformer trimmers A1 B1 for maximum output.

FM OSCILLATOR AND RF ALIGNMENT

- 7a. (Meter at FULL load) Connect the generator, through a 100 ohm dummy antenna, to the FM antenna terminals. Set the generator at 50 Mc. and tune in the signal on the receiver. As the pointer passes the 50 Mc. calibration the output meter will swing from negative through zero to a positive reading or vice versa. The resonance point is again at the zero setting. Should the pointer be off calibration more than plus or minus .5 Mc., which is tolerable, the oscillator may be set by adjusting the two flexible green leads between the manual tuning oscillator coil and the band switch. If the pointer is below 50 Mc. it can be raised by bringing the two green leads together and in the same manner the pointer can be lowered by separating the leads.
- 7b. (Meter still at FULL load) Set the generator at 46 Mc. and check the dial calibration (zero on meter). 46 Mc. should be on scale unless the cam on the condenser shaft has been loosened. If the cam has to be adjusted to scale the oscillator at 46 Mc., the 50 Mc. oscillator adjustment must be repeated. The converter stage is aligned after the receiver has been adjusted to scale within the .5 Mc. limits.
- 8a. (Meter at FULL load) With generator connected to the FM antenna terminals through 100 ohm dummy, set the generator at 49 Mc. and tune in signal on receiver to get a zero output meter reading. Switch the meter to HALF load and adjust the generator to give an output just below the limiter action point. Adjust slug Pl for maximum output.
- 8b. (Meter at FULL load) Set generator at 46 Mc. and tune in on receiver. Switch meter to HALF load and adjust "Z" for maximum output.
- 8c. (Meter at FULL load) Set generator at 42.5 Mc. and tune in on receiver. Switch meter to HALF load and adjust P2 for maximum output.

There are no RF adjustments for the FM push buttons when the push buttons are used on automatic. Button #1 is checked at 50 Mc., buttons #2 and #3 checked at 49 Mc., buttons #5 and #6 checked at 42.5 Mc., and button #4 is the manual switch.

In conclusion we again wish to emphasize the importance of keeping the signal from the generator below the point where limiter action begins, that the output meter is connected across the FULL diode load resistor for frequency and calibration operations, and that the output meter is connected across HALF the diode load resistor for gain checks.

This information on alignment of Frequency Modulation circuits is presented with the permission of Zenith Radio Corp. of Chicago.

S9615 F.M. SIGNAL GENERATOR

002 MFD.

Fig. 2

TO

GENERATOR

COUPLING UNIT

FIG. 1

\$9614 F.M. OUTPUT METER LEAD & PLUG ASSEMBLY

COMPILED BY M. N. BEITMAN, SUPREME PUBLICATIONS

MANUAL OF 1941 MOST POPULAR SERVICE DIAGRAMS ALIGNMENT PROCEDURE

MANUAL OF 1941 MOST POPULAR SERVICE DIAGRAMS Models 10H571R, 10H573

Chassis No. 10A3R

All voltages measured with a 20,000 ohm per volt meter from chassis to socket contact indicated.

All voltages are positive D.C. unless marked otherwise.

Volume control full on.

Line voltage 117 A.C.

Power consumption 90 watts.

Power output 6.5 watts.

Tuning Ranges

540 Kc. to 1600 Kc.

1.5 Mc. to 5.2 Mc.

5.7 Mc. to 18.5 Mc.

41.5 Mc. to 50.5 Mc.

ALIGNMENT PROCEDURE

Opr.	Connect Test Oscillator to	Dummy Antenna	Input Signal Frequency	Band	Set Dial At	Trimmers	Purpose
1	Converter Grid	.5 mfd.	455 Kc.	BC	600 Kc.	A, B, C, D,	Align I. F.
2	R. F. Grid	"	455 Kc.	BC	600 Kc.	E	Adj. Wave Trap for Minimum
3	Antenna Z and G	400 ohms	i8 Mc.	sw	i8 Mc.	K	Sei Oscillator to Scale
4	"	"	i8 Mc.	sw	16 Mc.	М	Align Antenna
5	"	"	5.0 Mc.	Med.	5.0 Mc.	N	Set Oscillator to Scale
6		••	4.5 Mc.	Med.	4.5 Mc.	Q	Align Antenna
7	1 Turn Loop Made		1400 Kc.	BC	i400 Kc.	F	Set Oscillator to Scale
8	with Generator Leads to 10" dia.		1400 Kc.	BC	1400 Kc.	G	Align Antenna
9	9 See Note!		600 Kc.	BC	600 Kc.	I	Rock Gang to Track BC Padder

F. M. ALIGNMENT — See Pages 126-127

X — FM output meter across full discriminator load.

Y — FM output meter across half discriminator load.

10	7V7 2nd I.F. Grid	.5 mfd.	8,6 Mc.	Manual FM	8.6 Mc.	A 4	Align for Maximum deflection—Y
11	-	"	8.6 Mc.	"	8.6 Mc.	B 4	Align for Zero deflection—X
12	"	"	8.6 Mc.	"	8.6 Mc.	A 3 - B 3	Align for Maximum deflection-Y
13	7V7 ist L.F. Grid		8.8 Mc.	"	8.6 Mc.	A 2 - B 2	" — Y
14	Convertor Grid	••	8.6 Mc.	"	8.6 Mc.	A 1 - B i	" — Y
15	FM Ant. Terminals	i00 ohms	48. Mc.	"	46. Mc.	Adj. Cam on Gang Shaft to Scale Osc.	Align for Zero deflection—X
18	"	"	42.5 Mc.	.,	42.5 Mc.	Pi	Align for Maximum deflection-Y
17	**	"	49. Mc.		49. Mc.	P 2	" — Y
18			46. Mc.	•	46. Mc.	Z	" — Y

DIAG.	PART Nº	DESCRIPTION					
CI	22-1189	.00075 MFD.	630 V.				
1 2 3 4	(169-63 (169-64 85-191 58-85 85-228	WEBSTER AUTOMATIC RECORD PLAYER A.C. SWITCH A.C. PLUG PHONO-RADIO SW.	}{60~ 50~				

PHONO CIRCUIT DATA MODEL SPEAKER 10S599 49-442-14" CHASSIS Nº10A2R

Same as 10A2R with audio compensation revised to match new pickup.