用語集

用語	解説
A	
ABINIT-MP(X)	望月・中野らが開発している国産 FMO 計算用のプログラムシステム。 4体のフラグメント展開までが可能。
AFO	FMO 計算を 2 体展開の範囲内で固体系に適用するための技法の 1 つ。
Allreduce QR 法	QR 分解の手法の一種。高並列環境で高い並列性能を実現するために近年提案された新しい手法。
allreduce, allgather, alltoall	計算ノード間での集団通信の様式。接頭辞の all はすべてのノードに渡って結果を共有する事を示す。 allreduce は総和などリダクション型の演算を計算ノードにまたがって行うこと。 allgather はすべてのノードから部分データを集めて全体データを作ること。 alltoall は全体全通信によって、データの転置を行うこと。
AU	天文単位(Astronomical Unit)の略称。天文単位とは長さの単位であり、 地球と太陽間の距離に由来する。今日では 149,597,870,700 メートルと 定義される。
В	
Bi-CGSTAB 法	疎行列の連立一次方程式の解法の一つ。反復解法の一つである双共益 勾配法(BiCG 法)の残差を減少させ、安定化した手法。比較的高速・ 安定とされる手法で、偏微分方程式を解く多くの物理問題(熱流体・ 構造・電磁場など)の核となるソルバとして広く使用されている。
Bisection BW	バイセクションネットワークバンド幅のこと
BLAS	Basic Linear Algebra Subprograms (BLAS)。ベクトルと行列に関する基礎的な線型代数演算のサブプログラム集のこと。線形代数演算ライブラリ API のデファクトスタンダードでもあり、高度に最適化された実装がインテルなどの各ハードウェアベンダーなどから提供されている。
B中間子	ボトムクォークを含む中間子の総称。
С	
CP 対称性	C は荷電共役変換(粒子⇔反粒子)、P はパリティ変換(鏡映変換)を表す。これらの変換の組み合わせによって理論が不変であるとき、その理論は CP 対称性を持つという。
D	
DGEMM	倍精度汎用行列乗算のための BLAS のサブルーチンのひとつ。 LINPACK ベンチマーク内で多用されているため、DGEMM 実装の性能 はベンチマーク結果に大きな影響を与える。
DZP 基底関数	double zeta polarization 基底関数。1s, 2p などの原子基底の各成分を、二つの短縮ガウス型関数を用いて表現した基底を DZ(double zeta)基底と言い、それに分極関数を加えたもの。
Е	
EDA 標準技術	電子情報技術産業協会 EDA 標準技術専門委員会配下の EDA 標準化 小委員会において推進している国際標準化機構の活動に対応した EDA (Electronic Design Automation) の標準化活動のこと。
ESR	電子スピン共鳴の略。開殻系の電子状態に関する情報が得られる。
F	
Fermi-Pasta-Ulam の非線形励起	非線形なバネで互いにつながれた多数の粒子の運動において孤立した 波が生じる現象。ソリトンと呼ばれる
Finite-difference Time-domain 法	電磁場解析等で用いられる計算手法の一つ。空間を差分近似し陽的な 時間進行法を用いる。

用語	解説
FMO	フラグメント分子軌道法(FMO 法: Fragment Molecular Orbital Method) は、北浦和夫教授(現神戸大学)によって開発された量子化学理論。分子全体を小さなフラグメントに分割して計算をするため、通常の量子化学計算では不可能なタンパク質のような大規模分子系の量子化学計算が実行可能。また、分割した小規模のフラグメントごとに並列計算を実行することが可能なため、非常に効率よく並列計算を実行可能。多数の電子の振る舞いを平均化されたポテンシャル中を動く、一電子
Fock 行列 G	多数の電子の振る舞いを平均化されたボブンフャル中を動く、一電子 のシュレディンガー方程式を行列表現した行列のこと。
	米ゴードン研が DOE などの資金で開発を続けている汎用の分子軌道
gatherv	計算プログラム。10年ほど前からFMO計算機能が導入されている。 MPIのデータ転送関数 (MPI_GATHERV)。全てのプロセスから一つの
Gauss 関数の局所性	宛先プロセスにメッセージを転送する。 中心からの距離が大きくなるにつれて急速に値が減衰する Gauss 関数の性質。2電子クーロン反発積分などの計算で、これを利用したカットオフ、演算削減は大きな効果がある。
GCC	GNU Compiler Collection. 自由に使える C/C++言語などのプログラム言語のコンパイラ.
(gg gg)型積分	2電子クーロン反発積分は4つの基底関数中心を持つが、その4つの基底関数ともに全角運動量5のg軌道関数を含む2電子クーロン反発積分のこと。
GMRES 法	疎行列の連立一次方程式の解法の一つ。反復解法の一種で、比較的ロバストなクリロフ部分空間法の一つとして知られている解法。同時に使用する前処理法や計算条件によって、並列計算性能が高く、高速に収束解が得られるため、偏微分方程式を解く物理問題の一部で使用されている。
Gタンパク質共役受容体	細胞外の神経伝達物質やホルモンを受容してそのシグナルを細胞内に 伝える受容体。その際 G タンパク質と呼ばれる三量体タンパクを介し てシグナル伝達が行われる。多くの薬剤のターゲットになっている。
Н	
HF 交換相互作用	密度汎関数法において、交換相互作用を表現する汎関数に Hartree-Fock(HF)法の交換相互作用を使ったもの
High-radix 型	ある計算ノードからもう一つの計算ノードへの通信が、その他の計算 ノード同士の間の通信と同時に実行しやすいネットワーク。すなわち 他のノードに妨害されずに通信できる一ノードあたりのノード数が多 いネットワーク。
Hodgkin-Huxley formalism	イカ巨大軸索を対象に神経細胞における活動電位の発生メカニズムをゲート(後に実体としてこれに相当するイオンチャネルがあることが明らかにされた)の協同性を用いて電気回路として記述したモデルがHodgkin-Huxley モデルである。この形式をHodgkin-Huxley formalismと呼び、多くの種類のイオンチャネルやマルチコンパートメントモデルに対しても用いられる。
HPCI 戦略分野	スーパーコンピュータ「京」を中心とした HPCI(High Performance Computing Infrastructure)を最大限に活用することによって、戦略的に取り組むべき 5 つの研究分野
I	100 7 100 C 0 7 17 19 17 18 1
IACM	International Association for Computational Mechanics。 国際計算力学連
	合。計算力学に関するいくつかの国際学術講演会を運営する。
L	
L L1,L2 キャッシュ	CPU にはメモリとのデータ転送を節約するためのデータの一時的な保管場所があり、それをキャッシュという。キャッシュは演算装置とメモリとの間に多階層に配置されており、演算装置に近い順に L1, L2 と言う。
L L1,L2 キャッシュ L1 正則化法	CPU にはメモリとのデータ転送を節約するためのデータの一時的な保管場所があり、それをキャッシュという。キャッシュは演算装置とメモリとの間に多階層に配置されており、演算装置に近い順に L1, L2 と言う。 影響を与える因子の数を抑えることができる機械学習法
L L1,L2 キャッシュ L1 正則化法 Langevin 方程式	CPU にはメモリとのデータ転送を節約するためのデータの一時的な保管場所があり、それをキャッシュという。キャッシュは演算装置とメモリとの間に多階層に配置されており、演算装置に近い順に L1, L2 と言う。
L L1,L2 キャッシュ L1 正則化法	CPU にはメモリとのデータ転送を節約するためのデータの一時的な保管場所があり、それをキャッシュという。キャッシュは演算装置とメモリとの間に多階層に配置されており、演算装置に近い順に L1, L2 と言う。 影響を与える因子の数を抑えることができる機械学習法

用語	解説
LHC	大型ハドロン衝突型加速器(Large Hadron Collider)。欧州原子核研究機構(CERN)で稼働中の加速器の名称。ヒッグス粒子の発見と超対称性粒子などの新しい物理の探索を目指している。
logP	化合物の脂溶性を表す量
LPB	LSI Package Board の略。
M	
MIPS ピーク性能	MIPS (ミプス) 値、あるいは MIPS ピーク性能は、100 万命令毎秒 (million instructions per second) の略で、コンピュータの性能指標の 1 つ。
MPI	並列計算のためのプロセス間通信ライブラリの業界標準
N	
NMR 分光	原子核の磁気を測定する手法。分子構造に関するデータが得られる。
NP 完全問題	クラス NP に属する問題でかつ、クラス NP すべての問題から多項式時間帰着可能な問題。このクラスに属する問題は多項式時間で解を見つけるアルゴリズムが存在しないと予想されている。(P≠NP予想)
0	
on the fly	「実行中に」を意味し、プログラム中で繰り返し必要となるデータを、 その度ごとに計算して用いるアルゴリズムを指す。これと対極にある のは「あらかじめ計算して保存しておいたデータを、必要になる度に 記憶装置から参照して用いる」やり方である。
ONIOM 法	ONIOM 法は諸熊啓治教授(現京都大学)により考案された QM/MM 計算の代表的な方法。生体高分子などの巨大分子をいくつかのレイヤーに分け、レイヤーごとに量子化学計算や分子力学計算を行うことで、巨大分子の電子状態や分子構造の評価や反応機構の解析を行うことが可能。
P	
PDB 構造	Protein Data Bank(PDB)に登録されている NMR 解析や X 線構造解析などの実験的手法によって得られた蛋白質の構造。
pKa	化合物の酸性度を表す量
Q	
QueryDriven	データに対するクエリー(質問)を行いながら、対話的にデータを調べていく手法.
R	
RI(放射性同位元素)ビームファ クトリー	安定な原子核に含まれる中性子の数よりも、中性子の数がかけ離れた原子核をエキゾチック原子核という。このようなエキゾチック原子核は不安定なため天然には存在しない。しかし超新星爆発などの高エネルギー現象による重元素合成では、エキゾチック原子核が中性子過剰核として重元素合成の反応経路にあらわれ重要な役割を果たす。このようなエキゾチック原子核の性質を解明することは原子核理論のチャレンジであるが、実験的にも生成が難しい。このようなエキゾチック原子核の性質を調べることのできる実験設備が理研の所有するRIビームファクトリーである。エキゾチック原子核の生成率は低いため大強度のビームが必要である。理研RIビームファクトリーは2006年から稼働しており、世界最強のビーム強度を誇り、これまでさまざまな新しいエキゾチック原子核を発見している。米国および独国においてもそれぞれ2018年と2016年の稼働を目指してより大強度のRIビームファクトリーの計画がある。
r過程	宇宙における重元素生成過程は主に、星の内部で安定線上を時間をかけて進む中性子捕獲反応(s 過程)と、わずか数秒間の爆発的な過程で安定線から離れた原子核を作るr過程に分けられる。図 4.5.3.1 も参照。
S	
SPICE モデル	SPICE (Simulation Program with Integrated Circuit Emphasis)はカリフォルニア大学バークレー校で開発された回路シミュレータであり、SPICEモデルとはこの回路シミュレータで使用される、受動素子(抵抗、インダクタ、コンデンサ等)と能動素子(トランジスタ等)の等価回路モデルのこと。
STM	走査型トンネル顕微鏡。短針と固体側とのトンネル電流の観測により、 表面構造や電子状態を知ることが可能。原理は異なるが、原子間力顕 微鏡(AFM)なども表面解析に用いられる。

用語	■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
Structure-based drug design (SBDD)	タンパク質などの立体構造をもとにして薬剤のデザインをする方法
SU(3)群	ゲージ群の一つ。QCD は SU(3)ゲージ群のゲージ理論である。
SuperKEKB/BelleII 実験計画	B中間子の寿命やB中間子がどのような粒子にどのような割合で崩壊するかを精密に測定する実験。高エネルギー加速器研究機構で行われている。2021 年頃に高精度データが取得できるよう計画されている。B中間子に含まれるボトムクォークは、トップクォークに次ぐ質量を持つ重いクォークであり、ボトムクォークの性質を詳細に調べることで、素粒子標準理論に内在する階層性の起源や素粒子標準理論にない新しい物理を明らかにできる。
T	
tagSNP	ゲノムの特定の領域においてその領域中の他の SNP (一塩基多型) の 代表となりうる SNP
Thin node	少数の演算器、メモリによって構成される計算ノード。
U	
uds ハドロン	6種類のクォークのうち、軽い u,d,s の3種類のクォークから構成されるハドロン。
union-find アルゴリズム	グラフ構造の中から、連結クラスター(互いに辺でつながっている頂 点の集合)を見つけ出す際に用いられるアルゴリズム。
V	AND THE PROPERTY OF THE PROPER
VOF 関数	Volume Of Fluid の略。空間を計算要素に分割した際、その計算要素に 占める流体の体積比率を用いる手法を VOF 法と呼ぶ。このとき使用す る全計算要素の VOF 値の事を VOF 関数と呼ぶ。
X	
XFEL	X線自由電子レーザー(XFEL)は、波の位相がきれいにそろったレーザーの性質を持つ超高輝度のX線を発生させることのできる光源
あ	
アーティフィシャルニューラルネ ットワークモデル	複数の同種神経の平均としての活動量関数とシナプス伝達関数を定義 してネットワークを形成させるモデル。広義の McCulloch-Pitts Model
足場タンパク質複合体	細胞内情報伝達系において、複数の情報伝達タンパク質と結合して複 合体を形成する足場となるタンパク質の複合体
アパタイト	リン酸カルシウム (燐灰石) のことだが、生体では水酸基が入ったヒ ドロキシアパタイトとして歯や骨の主要構成要素となっている。
アルダー転移	剛体球の密度を上げると、ある密度を境に液体から固体(結晶)に相 転移すること。
アンサンブルシミュレーション	沢山のシミュレーションを行い、その統計的性質を研究する計算手法
アンジュレータ	加速された電子の直線軌道上に沿って、多数のN、Sの磁極からなる 磁石列を上下に配置して、その間を通り抜ける電子を周期的に小さく 蛇行させて、明るく特定の波長を持った光を作り出す装置。
V	
位相空間	燃料プラズマ粒子の3次元位置と3次元速度を座標とする6次元空間。 粒子間の衝突効果が十分に大きければ、局所的な熱力学的平衡を仮定 して3次元流体モデルでプラズマを記述できるが、衝突効果が小さい 高温プラズマに対しては6次元位相空間の粒子分布を記述する運動論 モデルが必要になる。ただし、磁場閉じ込め核融合プラズマのような 強磁場中の運動論モデルは5次元位相空間に簡約化できる。
位相空間密度	位相空間における密度。位相空間とは位置と速度(または運動量)を座標とした空間のことである。例えば、我々の世界ではそれぞれ3次元で合せて6次元の空間。
位相骨格	データを変化点の接続情報(スケルトン・骨格)により表し、大規模なデータを非常に小さなデータサイズで特徴付けることができる.
1 磁場散逸時間	磁場を作っている電流が電気抵抗により熱に変わること(ジュール散 逸)によって、磁場が指数関数的に減少する典型的時間。
一般相対性理論	アインシュタインによって提案された重力の理論。物質のエネルギーが時空の幾何学を決定する理論。時空の幾何学を重力とみなす。星の重力を決定するだけでなく、宇宙全体の幾何学をも決定でき、宇宙物理学における基礎となる理論。量子力学が重要となるミクロの世界での重力の振る舞いについては記述できない。
遺伝子プロモータ	特定の遺伝子の発現を促すタンパクなどの細胞内物質

用語	解説
イベント駆動型	現象や手順を有限の数の瞬間的に起きる事象(イベント)の連続として扱うやり方
陰解法	時間積分の一つ。時間微分の離散化において後退差分(現在と過去の値を使って離散化する)を用いて離散化を行う手法。元の偏微分方程式は未知変数の連立一次方程式にと離散化され、この連立一次方程式を解くことになる。
インフレーション	宇宙誕生直後における宇宙の指数関数的膨張のこと。
ð	Mandall II also as Personal and a second and
ウィーク・スケール	並列単位当たりの問題サイズを一定にして、並列数を増やしていく場合(つまり、問題サイズが並列数に比例して大きくなる)での、計算時間の変化
え	中間子(メソン)はクォークと反クォークから構成され、重粒子(バリオ
エキゾチックハドロン	中間で(メラン)はクォークと反クオークから構成され、重粒で(ハウオン)は3個のクォークから構成されると考える単純なクォークモデルからは予測できない異種のハドロン。
液体論	液体は気体に比べて原子、または分子間の相互作用が強く、また固体 とは違いこれらの粒子が動き回るためその取扱いは容易ではない。液 体そのものから溶媒としての性質等についても議論がされており、数 値シミュレーションによる研究も盛んである。
エネルギースケールの階層性	素粒子標準理論のパラメータには以下のような階層性がある。 (1) 弱い力の媒介粒子の質量が重い。(陽子の約80倍と約90倍) クォークやレプトンの質量はバラバラであるが、 (2) トップクォークは特に重い。(陽子の約170倍) (3) ニュートリノの質量が直接測定不可能なぐらい軽い。 質量はエネルギーと等価であるので、エネルギースケールの階層性という。このような階層性の起源を明らかにすることは現在の素粒子物理学の課題である。
エネルギー分散外挿法	通常、変分計算によって得られたエネルギー期待値は、真のエネルギー期待値の上限しか与えることができない。変分空間を徐々に広げて、エネルギー期待値をエネルギー分散期待値の関数として外挿することによって、精度よく真のエネルギー期待値を見積もる方法。
エピジェネティクス	DNA 塩基配列の変化を伴わないが、細胞分裂後も継承される遺伝子発現あるいは細胞表現型を研究する学問領域。
円偏光	光を始めとした電磁波は、進行方向と垂直に電場と磁場が振動する横波である。円偏光では、進行方向と直交する平面上で電場もしくは磁場の向きが円運動を描く。進行方向を手前に取って時計回り、反時計回りのものが存在する。
お	
オーダリング	主に、メモリ空間でのデータの連続性を改善するために、数値データ の格納順序を入れ替え、計算機による処理性能の向上を図ることを指 す。
カュ	
カーテシアン座標系	直交座標系の事。空間の位置を示すのに互いに直交する座標系を用いる。
カーネル最適化技術	プログラムにおいて主要なコストを占める逐次演算処理をカーネルと呼ぶ。プロセッサのアーキテクチャに依存して逐次演算処理の最適化 方法は異なるため、特に、メニーコアプロセッサを効率的に利用する には新たな最適化技術の開発が必要となる。
カーパリネロ法	電子状態計算により原子にかかる力を直接見積もりながら、分子動力 学計算を行う手法の1つ。電子状態に時間発展方程式を導入し、計算 の高速化を実現している。
階層的時ステップ	要素により計算時ステップ幅に幅がある場合に例えば2の整数乗など のあらかじめ決めた規則に沿って時ステップ幅を決定する事で同期を 容易にするやり方
カイラル凝縮	クォーク・反クォーク対が凝縮し、真空期待値を持つこと。
カイラルなゲージ対称性	フェルミオンの右巻き成分と左巻き成分が異なるゲージ対称性を持つ 場合の対称性のこと

用語	解説
	低エネルギー領域における物理現象を記述するために必要な自由度だ
カイラル有効場理論	けを取り入れた近似的な理論。
	質量ゼロのフェルミオンが持つ対称性の一つ。光速で運動するフェル
	ミオンはそのスピンが運動量に対して平行な場合(右巻き)と反平行
カイラル対称性	な場合(左巻き)の2つの独立な自由度に分かれる。理論が、右巻き
	粒子だけで(または左巻き粒子だけで)、粒子の入れ替え操作に対し 不変である場合にカイラル対称性があるという。標準理論は質量ゼロ
	小変 しめる場合にガイブル対称性がめるという。 標準理論は負重とロー
	原子核を構成する陽子と中性子の総称。大きさはおよそ 10 ⁻¹⁵ m。核子
核子	は3個のクォークが強い力で結合した粒子である。
	原子核は陽子と中性子から構成されている。陽子数・中性子数をそれ
	ぞれ縦軸・横軸にとってこれを平面的に図示したものが核図表(nuclear
核図表、安定線、エキゾチック核	chart)。この核図表上で、自然界に存在する安定な原子核は1次元の線
	のようになるため、安定線と呼ぶ。この安定線から離れた原子核は有
	限の寿命で崩壊するが、陽子数と中性子数が大きくことなる原子核も
	存在し、ここではこれらをエキゾチック核と呼んでいる。
 核変換テクノロジー	原子炉の廃棄物処理の一つとして、長い寿命をもつ放射性同位元素や 特に毒性の強く危険なものを、核反応を利用して短い寿命のものに変
核変換アクテロシー	換させ消滅させるために必要な技術、方法、基礎知識等。
	核子やバリオンの間に働く力。陽子と中性子を結び付けて原子核を形
	作る。湯川秀樹博士は核力をパイ中間子の交換による作用であると提
	唱し、実際にパイ中間子が発見された。核力は基礎的な力でなく強い
核力	力による副次的な力であり、複雑な様相を呈する。たとえば、3つの核
	子の間に働く核力(3体力)は2つの核子間に働く核力(2体力)の単
	純な重ね合わせではないことが挙げられる。核力の性質の理解には、
	強い力の深い理解が必要である。
過減衰極限	Langevin 方程式において慣性力を無視できるとした場合の特殊ケース
火成活動 一	マグマの発生や移動に伴って生じる諸現象の総称。 タンパク質の構造変化などにより変化可能な触媒を行う環境
· · · · · · · · · · · · · · · · · · ·	短距離の成分のみを取り扱う場合に、どの程度の長さまで扱うかとい
カットオフ半径	う距離。この距離より離れた成分は0と考える。
, , , , , , , , , , , , , , , , , , ,	高エネルギーのハドロンで、量子色力学で「色」をもつグルーオンが
カラーグラス凝縮	大量に生成されて高密度に凝縮した状態。
	陽子数と中性子数の和を質量数と呼び、原子核の質量はほぼ質量数に
 軽い原子核、重い原子核	比例する。「軽い」「重い」とは、この質量数の大きさを指している。
在(水)似(重(水)似	明確な線引きはできないが、質量数が10程度以下のものは軽い原子核、
	100 に近くなると重い原子核と呼ばれる。
	カルシウム感受性蛍光色素を標的細胞に導入して、蛍光観察を行う方
	法。一般にカルシウムの配位結合によるセンサー分子のコンフォメー ション変化は大きく蛍光変化も大きい。そのせいか蛍光プローブを使
	った神経活動観察法としてはカルシウムイメージングは主流でありつ
カルシウムイメージング	づけている。脳組織内の多点同時観察を見据えると蛍光プローブの導
	入法が重要で特定神経組織へのローカルインジェクションや特定の遺
	伝子プロモータを標的としたカルシウムセンサータンパク質の遺伝子
	導入が 2000 年代になって多く行われている。
き	I the who this you have been probable . It have been the library for your control of the second of t
	中緯度帯にみられる高低気圧等の総観規模現象に比べて長く、季節変
季節内振動現象	化より短い時間スケール(おおよそ 10 日~90 日周期)の現象を総称して 季節内振動現象と呼ぶ。有名な季節内振動現象として、地球規模の活
	発な積雲活動域が熱帯を東進していく Madden-Julian 振動や、アジアに
	おけるモンスーン活動が知られており、中長期予報を行う際の重要な
	現象と考えられている。
	電子雲を表現するために用いられる局在基底もしくは平面波基底間の
基底重なり	空間的なオーバラップ (重なり)のこと。異なった平面波基底間の重な
	りは全空間で積分をするとゼロとなるが、局在基底間では重なり積分
	はゼロでない場合がある。

	解説
/ 10 RM	無限に多くの基底関数を用い、基底関数展開による誤差がなくなる極
基底関数極限	限。デジタルカメラの画素数が上がり、アナログ写真との差がなくな
	った極限のような概念。
	配列の添字から対応する電子・スピンの状態を求めるためのテーブル。
逆引き用分割テーブル	部分系に分割したテーブルを組み合わせて用いることで、そのサイズ
	を大幅に小さくすることが可能となる。
ギャザー・スキャッタ機構	配列に対する間接インデックス参照を効率的に行うためのハードウェ
() / () / () / ()	ア組み込み機構。
	液体の流れの中で局所的に圧力が変化することにより短時間に泡の発
	生と消滅が起きる物理現象であり空洞現象とも言われる。キャビテー
キャビテーション	ションの発生は、発生する気泡により、ポンプなどの流体機器におけ
	る振動・騒音の発生や性能低下の原因となる。また同時に発生する圧力波がこれたの機器表表のエロージョン(標準)なおこして、効率な
	力波がこれらの機器表面のエロージョン(壊食)を起こして、効率を 下げたり破壊することがある。
	球面調和関数は完全性をもち、球面上の任意の連続関数を一意に展開
球面調和関数展開	できる。このため、球面上のスカラー場の表現に用いられる。
	流体の運動と構造体の変形を同時(連成問題)にシミュレーションす
境界埋込法	るときに用いる手法。流体をオイラー座標系で表現し、構造物をラグ
	ランジュ座標系で表現する。
	ある温度における統計力学的な平衡状態をあらわす式が、見た目上、
	通常の量子力学的な時間発展の式の「時間」のところに純虚数の値を
虚時間軸	入れた形になっており、「虚時間」と呼ばれます。単に見た目の問題
	というだけではなく、実時間⇔虚時間の対応を考えることにより理論
	的にも見通しが良くなることが多い。
強震動	明確な定義を持つ言葉ではないが、一般に、建築・土木構造物の被害
[五][五][五][五][五][五][五][五][五][五][五][五][五][に直接関与するような地表面での強い地震動のことをいう。
共発現解析	ある遺伝子の発現と相関の高い遺伝子を同定し特定の生物学的現象に
) () () () () () () () () () (互いに関係のある遺伝子群の機能などを解析する方法
共役勾配法	連立一次方程式を解くため、または制限付きの2次形式の極値を求め
	るための反復的アルゴリズムの一つ。
共溶媒濃度	溶液中の溶質および主なる溶媒のほかに含まれる第二の溶媒成分の濃 度
行列模型	及
117416. 工	量子力学的には電子は点ではなく雲のように広がっている。この広が
	りを表し電子の雲の状態を記述するために用いられる関数のこと。電
	子は周囲の環境により、電子雲の広がりかたの度合いはことなるが、
局在基底	特にその広がりが強くない場合に用いられる関数のことを局在基底と
	呼ぶ。分子・原子では、電子の広がりは限定的であるために、原子・
	分子中の電子雲の状態を記述するために局在基底はしばしば用いられ
	る。
	特定の原子あるいは結合領域に、空間的に局在した分子軌道のこと。
	分子の量子化学計算で得られる分子軌道は、通常、分子全体に広がっ
- 1. M.N.	た(非局在化)形状をしているが、これらの非局在分子軌道に特定の
局在軌道	コニタリー変換を施すことによって、局在軌道に変換することが出来
	る。空間的に離れた局在軌道どうしの積は無視できるほど小さくなる
	ことを利用して、計算コストの軽減をはかることができるほか、計算
	結果の物理化学的な解釈を手助けする目的にも用いられる。
局所準粒子乱雑位相近似	量子多体系において、非平衡状態の規準モード(近似的に独立な運動) を決定する方法。
	を伏たりる方伝。 外部からの磁場や電場や光照射などの刺激によって物質中の集団秩序
巨大応答	を変化させ、抵抗値などを劇的に変化させること。
	マルチスケール解析手法の一つ。材料の詳細ミクロ構造をマクロ解析
均質化法	に反映させるために、ミクロとマクロの連成解析を行う。
A P P - 11.11	燃料極における多孔質構造を変化させる金属原子の移動. 三相界面長
金属原子拡散	さの減少を通じて反応性を低下させる.
◇屋 無却ギュニ→仏衆	半導体と金属の界面において金属の電子状態が半導体にしみ出すこと
金属誘起ギャップ状態	で半導体ギャップ中に生成される新たな電子状態・準位。
<	

用語	解説
7 14 Min	アップ、ダウン、チャーム、ストレンジ、トップ、ボトム、と名付け
	られた質量の異なる6種類のフェルミオンの族名。電磁気力、弱い力、
	強い力を受ける。アップクォークとダウンクォークは強い力により東
クォーク	縛しあい、陽子や中性子、中間子などの粒子を形成する。クォークの
	名前の違いは質量によって決まっており、質量の軽い順にクォークを
	並べると、アップ、ダウン、ストレンジ、チャーム、ボトム、トップ
	となる。
 クォーク・グルーオン・プラズマ	通常、クォークはハドロンの中に閉じ込められているが、高エネルギー
	ー状態では自由に動き回れるようになる。クォークとグルーオンが電 離したプラズマ状態。
	クォークはハドロンの中に閉じ込められておらず、自由に動き回れる
クォーク・グルーオンプラズマ相	状態。
クォーク作用	クォークに対する作用。作用から運動方程式などが得られる。
	非周期条件の下で、固体側を有限の原子数のクラスターとして表現す
クラスターモデル	るモデル化。適宜水素終端化処理した上で、分子の吸着などを計算す
	る。
	結晶構造中に異分子が共有結合をすることなく内包されたもの。包摂
クラスレート	化合物。メタン分子が氷状結晶中に内包されたメタンハイドレートな
	どが知られる。
クラスレートハイドレート	複数の水分子で作るかご型の構造中に気体分子が取り込まれた結晶。 気体分子と水の混合物を加圧することにより生成する水和物
グラフェン	六角形二次元平面に周期的に配置された格子構造を持つ炭素結晶.
7 7 7 4 7	直交化とは、いくつかの「線形独立だが互いに非直交なベクトル(ま
	たは関数) の組 を、「互いに直交するベクトル(または関数)の組
グラムシュミット直交化	に変換する操作を指す。直交化を施すことで、数学的表現が簡素にな
	って取扱い易くなる。グラムシュミット直交化は、いくつか存在する
	直交化法の中でも概念的に最もシンプルなもの。
	主として金属材料が高温状態にさらされた際に呈する非線形挙動を応
クリープ構成則	力とひずみの関係として記述したもの。各種金属に固有の温度を超え
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ると、荷重が一定でもひずみが時々刻々変化する、いわゆるクリープ
	変形が顕著になる。その挙動を応力一ひずみ関係として記述したもの。 連立一次方程式の解を求める際に使用される行列解法の一つ。行列積
	建立一人力性式の解を求める际に使用される行列解伝の一つ。行列積 を直接計算する代わりにベクトルを利用した解法の総称で、ロシアの
クリロフ部分空間解法	数学者にちなんで名づけられた。現在最も主流の行列解法であり、具
	体例として Bi-CGSTAB 法、GMRES 法などがある。
グルーオン	強い力を媒介する粒子。
グルーボール、ハイブリッド粒子	グルーオンが複数個結合した複合粒子がグルーボール。これにクォー
	クもからむとハイブリッド粒子と呼ばれる。
	通常並列計算機は複数の計算機から構成される複合システムであり、
F - 318	個々の計算機間は別個のビュー、すなわち実行の状態(メモリ)をも
グローバルビュー	つ。グローバルビューは特別なソフトウェアもしくはハードウェアに より並列計算機全体で単一のビューを共有する方式であり、これによ
	って並列計算機のプログラミングが大幅に簡略化される。
	並列計算機のすべての計算ノードから参照可能な共有ファイルシステ
グローバルファイルシステム	ム。一般に利用者の恒久的なファイル置き場として使われ、ローカル
	ファイルシステムと比較して大容量かつ安定性を重視した構成となっ
	ている一方、読み書きの速度は限定的である。
lt was well	
形態学	細胞の形状と組織の広がりなどを調べる方法 オヴェの作用が入れた中央では、スペロ中等なます。 スのロ中等な 対して変数 変数
ゲージ群	力学系の作用が余分な自由度をもち、その自由度に対して変数変換しても作用が不恋な場合がある。このような恋嫌をゲージ恋嫌といい
	ても作用が不変な場合がある。このような変換をゲージ変換といい、 これは一般に群をなす。これをゲージ群という。ゲージ変換のもとで
	不変な理論をゲージ理論と呼ぶ。この場合余分な自由度は観測にかか
	らない。
ゲート	Hodgkin-Huxley モデルの中で電流の開閉を司るスイッチの役割を果た
7 F	す仮想概念

用語	解説
結合クラスター展開	無限次の摂動論に相当する電子相関理論。複雑なテンソル積和処理を伴う繰り返し計算が必要で、2次に比して精度は高まるが計算コストは
原子核殼模型計算	高い。 原子核の構造を計算する手法の一つ。陽子と中性子の多体系である原子核を、適切な1粒子状態を基礎にして核力に忠実に、多体相関を含みつつ量子力学的に計算する。量子化学における配置換相互作用計算と類似した手法である。計算は大次元行列の固有値問題に帰着する。その解法としては行列の対角化に基づく従来型の方法と、重要な多体状態の基底を探す方法の2種類がある。
原子軌道基底	分子軌道を表現するための関数群。原子軌道を表す関数の線形結合で 分子軌道を表現。
元素の起源	現在の宇宙の元素の組成は、ほぼ水素とヘリウムで構成されおり、そのほかの元素の量は無視できるほどである。宇宙誕生後の物質進化の過程を追うことで、さまざまな元素の組成比を理解することが元素の 起源を探ることである。
格子 QCD(格子量子色力学)	QCD はクォークとグルーオンの強い力の力学であるが、解析的に解くことはできていない。数値的に QCD を取り扱うことができるように、4 次元時空を格子に差分化した理論が格子 QCD である。100TFlops クラスの計算機が登場した 2008~2009 年に、クォークの複合粒子である陽子や中性子などの性質(質量やスピンなど)を計算で再現できるようになった。
格子気体法	流体問題を空間と流体の両方を離散化して解く計算手法
構造緩和	最初に仮定した物質の構造 (=原子の配置) を原子に働く力が小さく なる方向に原子を動かすことでもっとも安定な構造に近づけること
構造多型	タンパク質などの巨大分子が複数の安定な構造を持つ性質
-	タンパク質分子が機能を発現させるためにその構造を変化させること
拘束付平均場	ある量が決まった値になるように条件を付けながら計算をする平均場 理論。
高立体選択的合成反応	複数の立体異性体(配位子の付き方が立体的に異なる分子)の生成が考えられる化学反応において、触媒の利用などにより特定の立体異性体を選択的に多く作り出す反応のこと。
呼吸鎖	細胞の呼吸(ATPの生成)に関わるタンパク質群
骨格振動	2 重結合や芳香環などの分子構造に起因する特徴的な振動。赤外やラマンで分光測定することにより、対象分子系の分子構造を推定できる。
混雑物	分子混雑環境において溶存するタンパク質、DNA、RNA、糖をはじめ とする様々な分子
コンダクタンス	電気伝導度。すなわち抵抗の逆数
さ	
再帰現象	相互作用する多数の粒子の運動において以前と同じ状態が準周期的に 現れる現象
細胞環境	細胞内分子にとっての環境。分子が溶液中にあるときの環境と異なり、 多くの分子で混み合っている。
材料強度発現機構	材料の破壊を発生・進行させるメカニズム。その破壊挙動は、主に材料のの力学場と材料固有の強度との相関により決定される。
サブボリューム	並列計算において、1プロセッサが担当する部分領域. なお、シミュレーションセルを空間分割して個々の並列プロセッサに割り当てる手法を領域分割法と呼ぶ.
差分法	微分方程式を数値的に解く際に用いられる離散化手法のひとつ。ある 関数が2つの変数値に対してとる値の差を差分といい、この差分を変 数値の差で割って得られる商を差分商と言い、この差分商を用いても との微分の近似値とすることで偏微分方程式の離散化を実現する。
残基	タンパク質、核酸、多糖類などの重合体を構成している単量体
参照曲率	計算要素内で形状を表現する時に用いるパラメータの一つ。形状の曲 率の事。
三相界面	燃料極と固体電解質,空気極の三相が接する境界面. その長さが燃料 電池の反応性を左右する.

用語	解説
散乱・束縛状態	2 粒子以上の系において、各々の粒子の運動が有限の範囲に限定される ものを束縛状態、無限遠方まで許されるものを散乱状態という。
L	りのを未得代恩、無限逐分よく可でものものがを取出代恩という。
磁気回転不安定	差動回転(天体の各部分で異なる角速度を持つ回転)する磁気流体に起こる不安定性。通常の天体では内側の物質ほど角速度が大きい。内側の物質は角速度が大きいため、外側の物質に先行する。しかし、磁場を通して内側の物質と外側の物質はお互いを引っ張りあう。すると内側の物質は一旦減速し、外側の物質は一旦加速する。内側の物質は減速すると、天体の重力に引っ張られてさらに内側に落下する。内側ほど角速度は大きいため、内側の物質は結局減速前よりも大きい角速度を持つことになる。外側の物質はこれとは逆に加速前よりも小さい角速度を持つことになる。すなわちこの不安定は、内側と外側の物質の角速度差がどんどん大きくなる不安定である。
自己相関時間	系を時間発展させてサンプリングする際、ある時刻でのサンプルと、 それとは独立と考えられる次のサンプルを採取するまでに要する時間。
自己無撞着	セルフコンシステント(self-consistent)。
システムインパッケージ	英語で system in a package のことで、1つの Package の中に複数の半導体チップを集積することにより、システムレベルの高度な機能を実現して、実装密度の向上とコストダウンを実現する技術。
システム生物学	生命現象をシステムとして理解することを目指す学問分野
次世代シークエンサー	DNA を 100 塩基程度と非常に短く断片化し、それを並列に処理することにより高速に読み取ることのできる装置。 読み込んだ DNA は断片であるため部位の特定のため計算機を用いた参照配列との照合に多量の計算が必要である。
質量異常次元	エネルギースケールの変化に対する質量の振る舞いを記述し、相互作 用による効果を表す。
シナプス遅延	シナプス前末端でカルシウム濃度が閾値を超えてからシナプス後膜で シナプス後電位が発生するまでの遅延
自発的対称性の破れ	系が本来持つ対称性の一部が自ずと破れて、より対称性の低い状態に 系全体として落ち込むこと。この概念は相転移と密接に関連しており、 たとえば水(液体)から氷(固体)への変化は水分子の併進対称性が失わ れることとして理解される。
シフト型通信	各プロセスが隣接する他プロセスに対して、一斉に一定方向のデータ 送信をする通信形態をいう。
シミュレーションセル	シミュレーションの中で考慮する空間領域
重イオン	陽子、ヘリウムなどの軽い原子核を除く、重い原子核のことを指す。 電子をはぎ取った原子なのでイオンと呼ぶ。
重合脱重合化	同種の分子が結合してより大きな構造を取ったり結合を解くこと
重陽子	陽子と中性子の束縛状態。二重水素の原子核。
重力の量子化(量子重力)	素粒子標準理論の中の相互作用を記述する部分は、量子力学の原理に 則り量子化され、ミクロな世界での物理を矛盾なく記述できている。 一方で、重力理論であるアインシュタインの一般相対性理論を量子力 学の原理に則り量子化しようとすると、うまくいかない。一般相対性 理論や何らかの重力の理論を量子力学と矛盾なく量子化すること。宇宙そのものの誕生時を理解するためには、量子力学が必要なミクロな世界での重力を理解する必要があるため、重力の量子化は理論物理学の長年の夢であるがまだ実現していない。超弦理論がその候補とされている。
主殼	調和振動子ポテンシャルによる一粒子軌道によって空間を展開した際 に、縮退した一粒子軌道の集合を指す。
準粒子	相互作用している多体系を、近似的に自由に運動するある種の「粒子」 の集まりとして記述することができるとき、この「粒子」を準粒子と よぶ。
状態空間モデル	時系列観測データのモデル化の方法の一つでデータを状態モデルと観 測モデルに分離し記述する
状態方程式	物質の温度、圧力、エネルギー、密度、体積などの間に成り立つ関係 式。

用語	解説
	ゲノム DNA を断片化し読み取りそれを計算機を用いてつなぎ合わせ
ショットガン法	ることにより染色体の連続した DNA を読み取る方法
真空偏極	真空における粒子・反粒子の対生成・対消滅過程。
神経成長因子	特定の細胞の神経細胞への分化を促進する因子となる分子
震源過程	地震は、発生源で断層が破壊されることによって生じる。この断層の 破壊過程を、震源過程という。
信号情報処理のマルコフ過程	一個一個のイオンチャネルの挙動やレセプタとリガンドの結合はリガン度濃度や電圧などに対して確率的に挙動する
t	
水平乱流	流れが乱れた状態(流体の粘性力に対して流れの慣性力が大きい状態) を乱流と呼ぶ。二次元(水平)乱流とは、大気のように成層が強い場で、鉛直方向の運動が制限され、水平方向の運動が卓越する状態を指す。水平乱流場においては、物質は水平方向に拡散される。
数值求積法	非解析的、近似的に積分値を求める手法。ガウス求積などの積分区間を区切る手法や、乱数を用いるモンテカルロ積分などがある。方法によって求積点数と誤差の関係が異なる。
スーパーB ファクトリー	電子と陽電子を高頻度で衝突させることによってボトムクォークを含むハドロンを大量に生成し、その崩壊を詳細に調べることを目的とした加速器。従来のBファクトリーの数十倍のルミノシティを目指す。
スーパーセル	結晶中にとる事のできる周期セルのうち、基本セルよりも大きい物。 基本セルよりも大きな空間スケールの構造揺らぎの表現に用いる。
スカイライン形式	疎行列に対するメモリ格納形式の一つで、バンド形式をより精緻化し、 境界の輪郭線を行単位で正確になぞるようにしたもの。
スケール間相互作用	気象や気候現象に存在する複数の様々な時空間スケール(例えば、全球 スケールや温帯高低気圧のスケールなど)の現象が相互に影響を及ぼ しあっていること。
スタッガード型	格子上で定義されたクォーク作用の一つ。
ステップスケーリング	エネルギースケールを s 倍(典型的には s=2)ずつ不連続に変化させながら、結合定数などのエネルギー依存性を調べる数値計算手法。
ストークス力学	流れの状態を示すレイノルズ数が小さな場合に、流れを近似方程式で 示す事が出来、これをストークス方程式と呼ぶ。近似方程式では非線 形項である対流項を無視している。
ストレンジクオーク	標準模型に含まれる素粒子には6つの質量の異なるクォークがある。 粒子質量の軽い順からアップ、ダウン、ストレンジ、チャーム、ボトム、トップと名前が付けられている。標準模型では質量以外の性質は同じである。ストレンジクォークは3番目に軽いクォークである。
ストレンジネス	ストレンジクォークが関与する量子数。正確には、ストレンジクォー クの数とその反粒子の数の差。
ストロング・スケール	並列化の指標。計算量と cpu 数が両方増えて行く時の計算効率。
スパイク列	複数の活動電位が連続して出る様
スピン液体	量子力学的な揺らぎや幾何学的フラストレーションの効果により、磁 気モーメント間の集団的な秩序化が絶対零度まで妨げられた状態。
スピントロニクス	エレクトロニクスが物質中の電子が持つ電荷自由度だけを利用してい たのに対し、スピン自由度も工学的に応用する技術。
スペクトル法	物理現象を表す偏微分方程式の時間積分法の一つで、物理変数の時間 変化を直接計算するのではなく、周波数空間に置き換えて計算する手 法。一般に高精度な解が得られるため基礎的な物理計算によく用いら れるが、複雑な問題には対応が難しいとされている。
世	
正準化変換	Hartree-Fock 方程式を解く際に非直交基底関数の組を変換して規格直 交系を作る手法のひとつ。
静的縮約	連立一次方程式において、自由度の一部を削除することで、係数行列 のサイズを縮小する方法。スタティック・コンデンセーション。
世界線表示	量子力学に従う系は空間次元に加えてもう一つ虚時間と呼ばれる軸を 導入することで、計算機が扱いやすい複素数での計算が可能となる。 その際、系の状態が虚時間方向でどのように発展するかをグラフ的に 表現することを世界線表示と呼ぶ。

用語	解説
積分発火モデル	細胞外に抵抗と容量で接続された点として考え、シナプス後電流が複数の別の入力細胞からはいったとき、その時空間的統合としての細胞電位が閾値を超えたときに活動電位が起こり、結果過分極側に一定量電位がシフトすると考えるモデル。英語は Integrated-and-Fire model
零点振動	量子力学的に絶対零度でも不可避の量子の振動
0+状態	原子核の基底状態や励起状態は、角運動量 J とパリティ π で識別することができる。 $0+$ 状態とは、 $J=0$ でパリティが $\pi=+$ の状態。
線型応答理論	熱平衡状態にある系に、磁場や電場などの外場が加わった時、その外場による系の状態の変化(応答)を扱う理論。
2	
相対論的流体	相対性理論の枠組で扱う必要がある流体。速度が光速近くに達する流体や、中性子星のよう強重力場中の流体などがこれに対応する。
相変態	ここでは、固体電解質材における結晶構造の変化.
阻害活性	化合物が標的タンパク質の機能を阻害する性質
素過程	複雑な自然現象は、様々な物理(電磁気学,熱力学,流体力学等)が絡み合って生じている。しかし、少くない現象においては、関わる物理をいくつかの構成要素に分割し、その要素間の相互作用として記述することが可能である。そのような構成要素のうち、特に基本的な物理で比較的単純に数学的に表現することができるものを素過程という。たとえば、流体力学で支配される移流(力学)過程、放射伝達方程式で支配される放射過程などがそのような素過程である。
粗視化分子動力学法	複数原子からなる集団を一粒子とみなしその群としての運動をシミュレートする手法.計算量の減少を通じて大規模で長時間の分子シミュレーションを可能とする.
粗視化モデル	原子のグループをまとめて、一つの相互作用点として表し、相互作用数を大幅に減らしたモデル。たとえば、タンパク質のアミノ酸を一つの相互作用点を近似する粗視化モデルなどがある。
塑性加工解析	金属部品の成型プロセスにおける材料加工処理のシミュレーション。 この際に大変形弾塑性解析を行う必要がある。
袖領域	差分法等のステンシル計算では隣接する要素、格子上のデータを参照 する。このため、計算領域を分割して並列処理を行う際に、隣接ノー ドの境界データを保持する。この境界データを袖領域という。
ソフトウェアパイプライニング機 能	コンパイラの最適化機能の一つ。ループ内で繰り返される一連の CPU の処理命令を1サイクルに1つずつ実行するのではなく、複数の処理命令を並列実行することで処理速度を向上させる。
ソリッド要素	構造解析において、連続体をそのまま表現するための有限要素。形状 としては、四面体あるいは六面体などの形を有する。これとは別に、 梁やシェルなどを表現するための構造要素がある。
素粒子標準理論(または素粒子標 準模型)	自然界の物質を構成する素粒子の運動と、素粒子間の相互作用を記述する法則をまとめた理論。素粒子としては、クォークと呼ばれる6種類のスピン1/2のフェルミオンと、レプトンと呼ばれる6種類のスピン1/2のフェルミオンが含まれる。相互作用は電磁気力、弱い力、強い力の3つの相互作用を媒介する4種類のスピン1を持つボソンが含まれている。電磁気力と弱い力を分化させ、素粒子に質量を与えるヒッグス粒子と呼ばれるスピン0のボソンを含む。量子力学と矛盾しないように作られている。実験との比較でしか決まらない18(+α)個の独立パラメータが含まれる。重力はここには含まれない。
素粒子標準理論に内在するエネルギースケールの階層性	素粒子標準理論のパラメータには以下のような階層性がある。 (1) 弱い力の媒介粒子の質量が重い。 (陽子の約80倍と約90倍) クォークやレプトンの質量はバラバラであるが、 (2) トップクォークは特に重い。 (陽子の約170倍) (3) ニュートリノの質量が直接測定不可能なぐらい軽い。 質量はエネルギーと等価であるので、エネルギースケールの階層性という。このような階層性の起源を明らかにすることは現在の素粒子物理学の課題である。

用語	解説
ダークマター	暗黒物質とも呼ばれる電磁気力と強い力が作用しない仮説上の物質。電磁相互作用しないので、地上実験や天文観測では直接検出できない。ダークマターはエネルギーを持ち重力に影響を及ぼすことから、ダークマターによる重力レンズ効果や、銀河の回転運動の検証などで間接的にその存在が推定されている。シミュレーションにより、宇宙の大規模構造の生成にも重要な役割をしていることが分かっている。近年の WMAP (Wilkinson Microwave Anisotropy Probe) 衛星による観測から、ダークマターは宇宙全体のエネルギーの内、約 20%を占めていると考えられている。素粒子標準理論にはダークマターに該当する粒子はない。
第0近似的	実際の現象を細部まで捉えられてはいないが本質は捉えられている様子をいう。
大域構造	原子同士が直接触れ合うような短い距離でみられる構造ではなく、多数の原子の集団同士の関係が作り出す長い距離で特徴づけられる物質の構造のこと。
第一原理計算	電子シュレディンガー方程式を(半)経験的パラメータによる積分の近似を用いないで数値的に解く計算手法。化学では、非経験的計算とも呼ばれる。
第一原理ダウンフォールディング 法	第一原理計算を用いて対象とする物質の個性を残しつつ注目するエネルギースケールに応じた有効模型を構築すること。得られた模型をより精緻な計算手法で解析することで非経験的かつ高精度な物性値の計算が可能となる。
大規模連立線形方程式	ここでは変数の数が数千万から数十億程度の連立線形方程式を想定している。
対称正定値	行列が対称かつ、その固有値がすべて正値であること。この性質を有 する行列はより効率的に扱うことができる。
大振幅集団運動	多数の核子が一斉にある秩序を持って運動することを集団運動とよぶが、特にその運動の振幅が大きく、物理学で良く使われる調和近似などが適用できない集団運動を大振幅集団運動とよぶ。
対超流動	2つのボーズ粒子のペアからなるボーズ粒子の示す超流動現象。
大統一理論	自然界の4つの基本的な力である電磁力・弱い力・強い力・重力のうち、電磁力と弱い力の統合(電弱統一理論)に加えて強い力をも統合する理論。
ダイナミカル行列	結晶内の原子の相互作用を記述した行列。
タイリング	計算機上で、大規模なデータを配列の添え字ごとに細かく区切り、小さな部分配列 (=タイル) の集合として扱うこと。行列のような2次元のデータ配列をタイリングすると、四角形のタイルを敷き詰めたようなイメージになることから。
タイルドディスプレイ	高解像度の表示領域を確保するため、複数のモニタを並べて配置した デバイス. 通常、クラスタシステムなどで動作する.
多参照理論	電子の波動関数を表すために、複数の電子配置の重ね合わせを用いる 理論。分子の解離状態などでは、単一の Slater 行列式では良い波動関 数が表現できず、多参照理論が必要となる。
多次元効果	対称性(球対称や軸対称など)を仮定し次元を落としたシミュレーションでは現れない現象。例としては対流などがある。
多重格子法	ポアッソン方程式を格子で離散化して反復法で解くような場合には、 基本的に格子サイズ程度の短い波長の誤差が効率良く減衰する一方 で、長波長の誤差はなかなか減衰せず、これが反復回数増大の原因と なる。多重格子法は、格子サイズの異なる複数の格子を用意し、各波 長の誤差を一様に減衰させることで反復回数の増大をおさえる数値解 法である。
脱閉じ込め臨界現象	相転移でありながら、ランダウが提唱し相転移の標準的な起源として知られる「自発的対称性の破れ」の範疇に入らず、実在すれば教科書を書き換える発見になるとして注目されている、新しいタイプの臨界現象。

用語	解説
	主として金属材料の挙動を、応力とひずみの関係から記述する際の関係式を指す。金属材料は変形初期の段階では応力とひずみに線形関係
弾塑性構成則	がある、いわゆる線形弾性体であり、ある限界を超えると非線形な塑性挙動を呈するようになる。その限界値と、非線形挙動を応力一ひずみ関係として記述したものである。
タンパク質の折れたたみ	タンパク質がある一定の立体構造をとる過程
5	
チェックポイントファイル	計算の途中の状態を保存するファイル。万一計算が計算機の故障で中 断した場合、このファイルから計算を継続実行できる。
地磁気異常の縞模様	海洋底の地磁気を調べて標準より強く帯磁している所を黒く塗ると海 嶺と平行な縞模様が海嶺から両側に全く対称的に現れる。この縞模様 は、海洋底が海嶺から湧き出して冷却する時に記憶する地球磁場が、 その当時の地球磁場を反映して反転を繰り返しているためと説明され る。
チャネルロドプシン	緑藻植物のクラミドモナスなどがもつ色素たんぱく質で、光が当たる とイオンを透過する。
中間子	パイ中間子やオメガ中間子などがある。1 つのクォークと 1 つの反クォークが強い力で結合してできた粒子の総称。中間子にはいろいろな種類があるが、それらは 2 個のクォークの組合せによる違いや内部の状態の違いで理解されている。
中間子、パイ中間子、K中間子	ハドロンのうち、クォーク 2 個(クォーク・反クォーク対)からなるものが中間子(meson)。核力を媒介する粒子として湯川によって予言されたものがパイ中間子。 s クォークを含む中間子の 1 つが K 中間子。
中性子過剰核	陽子数に比べて過剰に多い中性子を含む原子核。不安定であり、安定 な原子核になるまで中性子から陽子へのβ崩壊を繰り返す。
超新星爆発	大質量恒星の進化(一生)の最後に起こる爆発的現象。太陽質量の10倍より重い質量の恒星は、熱核融合反応により恒星の中心部に鉄の芯が形成される。鉄は熱核融合を起こさないため重力による収縮が起こり、鉄コアの温度が上昇していく。ある温度で鉄原子核はヘリウムや核子に分解する吸熱反応を起こし、恒星外層部の物質が中心に向かって急速に落下(重力崩壊)し中性子の芯が形成される。外層部からさらに物質が中性子の芯へ落下してきて中性子の芯に跳ね返され衝撃波が生じる。この衝撃波が恒星外層部を吹き飛ばし、超新星爆発を引き起こすと考えられていた。しかし、これまでの計算機シミュレーションでは、この機構によって爆発をうまく再現できていない。爆発機構の解明は重要な課題である。
超対称性	ボゾンは整数スピンを持つ粒子であり、フェルミオンは半整数スピン を持つ粒子である。それらを入れ替えるような操作を超対称性変換と 呼び、その変換に対して理論が不変であるとき、その理論は超対称性 を持つという。
超対称性粒子	超対称性理論では、標準理論に登場するすべての素粒子に対してペアとなる超対称性粒子を置く。標準理論のボーズ粒子に対してはフェルミ粒子、逆に標準理論のフェルミ粒子に対してはボーズ粒子が追加される。
超流動核	核子(陽子・中性子)がクーパー対を作ることでボーズ凝縮し、低温の液体へリウムのように超流動性を示す原子核。低温の金属における超伝導と類似した現象。
超流動固体状態	固体秩序と超流動秩序が共存した状態
調和振動子	kx**2 のポテンシャルの中で運動する振り子、または量子。
つ	
通信マスク手法	非同期通信や通信用スレッドの実装によって演算処理の背後で通信処 理を同時に実行する手法。

用語	解説
強い力	素粒子標準理論では、すべてのクォーク間に平等に働く力。電磁気力に比べ 100 倍強い。クォークの間でグルーオンと呼ばれるボソンが交換されることで力が作用しあうと考える。強い力では、3 種類のクォークを強固に一つにまとめる場合と、1 種類のクォークと 1 種類の反クォークを強固に一つにまとめる場合がある。陽子や中性子は3 種類のクォークからなる複合粒子であり、パイ中間子はクォークと反クォークからなる複合粒子である。
て	
低次元構造体	一次元もしくは二次元の周期的な結晶格子構造を持つ原子構造体. 一次元の例としてはナノワイヤー,二次元の例としてはグラフェン等のナノシートが挙げられる.
低侵襲治療	手術などに伴う痛み、発熱、出血などをできるだけ少なくする医療
低レイテンシ	通信の際に、データ転送などを要求してから、実際に送られてくるまでの遅延時間のことをレイテンシ(遅延)と呼ぶが、その遅延時間が 短いこと
データ転置	多次元データの並列処理において並列化軸を切替える際に発生するデ ータ転送処理。
テクニカラー理論	標準理論を超えたモデルの一つで、ヒッグス粒子を複合粒子として考える。このモデルが妥当であるためにはQCDに似た性質を持ちつつも相互作用の強さの性質がQCDと違った特徴を持つ必要がある。
テクニ中間子	テクニカラー理論において予言される複合粒子の一種。
鉄よりも重い重元素の起源	恒星内部での熱核融合反応では、水素から始まる核融合反応は発熱反応であり、水素よりも安定な重い元素を合成する方向に進む。十分重い恒星では重力収縮と熱核融合反応の連鎖により、鉄原子核でできた恒星芯が形成される。しかし、鉄原子核まで合成が進むと鉄は最も安定な原子核であるので、発熱反応が終わり恒星芯での熱核融合反応は終了する。鉄よりも重い元素は恒星内部での熱核融合反応による元素合成では生成されず、中性子捕獲反応で生成されたと考えられる。超新星爆発は金やプラチナなどの、鉄よりも重い重元素の起源の一つと考えられている。
転位動力学法	結晶中の線状欠陥である転位の運動をシミュレートする手法. 塑性を 支配する,結晶すべり挙動の解析に用いられる. 転位に働く力をモデ ル化することで,古典分子動力学法に比して大規模かつ長時間のシミ ュレーションが可能となる.
展開係数	ある関数を基底関数の線形結合で表した際の、それぞれの基底関数の もつ重み。
電荷移動型ポテンシャル	分子動力学法で用いる、電荷の局所的な移動を考慮した原子間ポテンシャル.原子における電荷の偏りを取り入れることで、電気陰性度の異なる異種原子間の結合を高精度に表現できる.
電気生理	細胞の電位を測定することによって生理的な性質を知ろうとする体系
点欠陥	結晶中の不純物または空孔。
電源グラウンドバウンスノイズ	LSI内部の回路動作に伴う電流の時間変化に起因して発生するLSI内の電源及びグラウンド配線部分の電圧ノイズ。
電子捕獲	原子核が電子を捕獲することで、陽子を中性子に変換させる反応。ニ ュートリノが放出される。
電磁気力	電気力や磁気力による相互作用の総称。素粒子標準理論では、電荷を持つ粒子の間で光子(フォトン)が交換されることで力が作用しあうと考える。
転写因子	DNA に特異的に結合し、DNA の遺伝情報の RNA への転写を促進、あるいは逆に抑制するタンパク質
テンソル縮約	二つのテンソル量を掛け合わせて、新しいテンソル量を得る操作。行 列どうしの掛け算も、テンソル縮約の一つである。
テンソルカ、3 体力	核子(陽子・中性子)間に働く相互作用(核力)は、核子間の相対距離だけに依存する中心力とそれ以外の非中心力に分類できる。非中心力の代表がテンソル力(tensor force)。2 核子のスピンの向きと配置の向きに依存する。これら2 核子間の相互作用に加えて、原子核の定量的な記述には、3 核子に働く3 体力が不可欠であることが知られている。

用語	解説
	天体に向って落下する物質の流れと、天体から放出される物質の流れ。
天体降着流・噴出流	一般に中心天体に向かって円盤状に降着し、回転軸方向にビーム状に
des IIII des XV	放出される。
転置転送	行列の転置操作に用いられるデータ転送パターン。
٤	LSIの複数の外部出力信号がハイレベルからローレベルまたはその
同時スイッチングノイズ	LSIの複数の外部山力信号がハイレベルからローレベルまたはその 逆方向にほぼ同一のタイミングで変化する時にLSI内部の出力回路
Testing 2 (1) 2) 2 2 2 2 2 2 2 2	用の電源及びグラウンド配線に発生する電圧ノイズ。
	ドーナツ型の幾何形状。磁場閉じ込め核融合炉ではプラズマを磁力線
トーラス状	で覆い、かつ、端や磁場のゼロ点をもたないトーラス状の磁場を用い
	て高温の燃料プラズマを保持する。
	磁場閉じ込め核融合炉において最も有望な方式の一つ。トーラス状の
	磁場を発生するのに、トーラスに沿って並べたコイルとプラズマ中の
トカマク装置	電流を用いる。プラズマ中の電流を電磁誘導で駆動する場合にはパル ス運転となるが、中性粒子ビーム等が誘起する電流を用いる定常運転
「カマク表直	へ運転となるが、中性位于に一名等があ起する電池を用いる足事運転 も提案されている。トーラス断面形状が一様となる特徴(軸対称性)
	があり、核融合反応で発生する高エネルギーα粒子の閉じ込めに優れ
	る。
	複数の縮退した量子多体系の基底状態が局所的な情報だけからは互い
トポロジー励起	に区別がつかず、巻きつき数などのトポロジカルな量によってのみ区
7.50	別できる場合を、トポロジカルな状態という。また、このトポロジカ
トラジェクトリスナップショット	ルな量を変えるような非局所的な励起をトポロジー励起と呼ぶ。 分子動力学シミュレーションでの履歴(トラジェクトリ)中の1構造
トランエクトリステップショット 構造	ガナ動力子ンミュレーションでの履歴 (トランエクトリ) 中の1 構造 のこと
1件足	必要な薬物を必要な時間に必要な部位へと作用させるために、薬物の
ドラッグデリバリーシステム	体内分布を制御し、患部に薬剤を届ける仕組み(Drug Delivery System:
	DDS)
	一般的に大気や海洋の流れの影響を受けて、モデル内を移動する微量
トレーサ	気体成分、溶存成分や個体のことを(パッシブ)トレーサーと呼ぶ。海洋
	生態系モデルにおいては栄養塩、植物・動物プランクトンや魚類がト
	レーサにあたる。 量子がそのエネルギーより高いポテンシャルの山を越える、もしくは
トンネル効果	上 かってのエネルマーより同いホテンシャルの田を越える、もしては トンネルを抜けるようにくぐること。
K	1 1 1 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2
一次支調沖	入射電磁波と相互作用する物質中において、非線形光学効果により発
二次高調波	生する入射電磁波の2倍の周波数を持つ電磁波のこと。
	HF 計算では考慮されない電子相関(平均場からのずれ)を摂動論に従
2 次摂動論	って取り込む Post-HF 法の中で、2 電子励起だけを考慮する基本的なア
	プローチ。強相関系には適用できない。 電子の振る舞いを調べるにはシュレディンガー方程式を解く必要があ
	電子の振る舞いを調べるにはシュレティンガー万怪式を胜く必要があ るが、その中で2個以上の電子を扱うためには電子間の反発を表すク
4 扇フル しい 戸が付い	ーロン項を取り扱う必要がある。数値的計算では、2つの電子間の反発
2 電子クーロン反発積分	を積分表現を用いて表す。このときに必要となる積分を2電子クーロ
	ン反発積分と呼ぶ。量子化学計算では、2電子クーロン反発積分は数値
	計算の律速となるために、その取り扱いが重要となっている。
	素粒子でレプトン族の一種。電子ニュートリノ、ミューニュートリノ、
	タウニュートリノの3種類が確認されている。電磁気力を受けない中 性粒子で、弱い力と重力が作用する。このため検出は難しい。太陽中
	心付近での熱核融合反応で電子ニュートリノが発生し、地球には1平
	方センチ当たり毎秒660億個やってきているが、ほぼ地球をすり抜け
ニュートリノ	る。近年、質量がゼロではないことが分かったが、ほぼゼロであり詳
	しい質量は不明である。超新星爆発では中心部に中性子の芯が形成さ
	れる際に大量にニュートリノが発生し外部に放出される。1987年に大
	マゼラン星雲で超新星爆発(SN1987A)が起こり、超新星爆発由来のニュートリノが初めて地球上で観測された。日本の「カミオカンデ」ニュー
	ートリノ観測施設では詳細な観測が行われ、超新星爆発機構の理解に
	すがした。 「前献した。
	> \inv = . = 0

用語	解説
ニューロインフォマティックス	神経データベースや情報理論のような情報学的な手法を神経科学で手 用させる学問領域
ぬ	
ヌクレオソーム	真核生物の核における DNA とタンパク質の複合体であるクロマチン の構成単位
ね	
熱揺らぎ	原子・分子程度の微小な粒子の熱運動に由来する運動エネルギー程度 のエネルギー
0	
ノルム保存型擬ポテンシャル	結晶内の電子の波動関数を平面波で展開するために真のクーロン型ポテンシャルの代わりに用いられるのが擬ポテンシャル。そのうちカットオフ半径内の電価(ノルム)を変えないのがノルム保存型擬ポテンシャル。
ノンブロッキング通信	並列計算における通信方法の一つ。データの送受信を行う際に、送受 信の完了を待たず、他の処理を開始する通信方法。
は	
ハートリー項	2つ以上の電子が存在するときに、電子と電子との間にはクーロン的な反発する力が働くが、それに関係するポテンシャル(位置エネルギー) もしくはエネルギーのことを指す。
ハートリーフォック (HF) 計算	電子間の反発を平均場近似の下で記述し、系の分子軌道を変分的に求める手法。
ハートリーポテンシャル	電子密度の空間分布で決まる静電ポテンシャル
バイアスポテンシャル	自然状態では滅多に起こらないが重要な化学反応を人工的に高い頻度 でシミュレーション上発生させるために加える原子間ポテンシャルの こと。Metadynamics 法はバイアスポテンシャルを生成する。
バイオインフォマティクス	生物学的な問題をハイスループットデータなどとアルゴリズムを組み 合わせて計算機を用いて解決する研究手法
バイオミネラリゼーション	生物が結晶や無機鉱物を産生すること。骨や歯、貝殻などが身近な例。
バイオミメティック バイセクションネットワークバン ド幅	生物が持つ優れた機能を人工の物質で実現しようとする化学 通信網の性能の指標の一つ。通信網の中の計算ノードを2等分し、そ の分割された部分同士の間で単位時間あたりに通信できるデータ量の 事。
バイナップ	立体選択的合成反応において広く利用されている配位子。バイナップ- ルテニウム触媒を用いた不斉水素化反応を開発した野依良治は2001年 のノーベル化学賞を受賞した。
ハイパー核	ストレンジクォークを含むバリオンをハイペロンと呼ぶ。ハイパー核 とはハイペロンを含む原子核の総称。
ハイブリッド汎関数	実験値をより良く再現するために、従来の汎関数に HF 交換相互作用の要素を取り込んだ汎関数
ハイペロン	ストレンジ(s)クォークを含むバリオンはハイペロンと総称され、ラム ダ粒子、シグマ粒子、オメガ粒子などがある。
バタフライ演算	高速フーリエ変換などにあらわれる演算および通信パターン。
発火 ハドロン	スパイク様の活動電位が発生する様 強い力で結びついたクォークの複合粒子の総称。ハドロンはクォーク3 個からなるバリオンとクォーク・反クォーク対からなるメソンに分類 される。陽子や中性子はバリオンの一種である。
ハドロン、バリオン、ハイペロン、 ラムダ粒子、シグマ粒子、オメガ 粒子	強い力で結びついたクォークの複合粒子の総称がハドロン。ハドロンの中で、クォーク3個からなるものがバリオン。陽子・中性子もバリオンの一種で2種類のクォーク(u,d)から構成されている。ストレンジ(s)クォークを含むバリオンはハイペロンと総称され、ラムダ粒子、シグマ粒子、オメガ粒子などがある。
ハドロン共鳴	強い相互作用により様々なハドロンが形成されるが、その多くは短時間で崩壊するため、共鳴状態と呼ばれる。
ハドロン行列要素	相互作用を記述する演算子をハドロン状態で挟んだ行列要素。
ハドロン相	クォークはハドロン中に閉じ込められており、単独では取り出すこと ができない状態。
ハミルトニアン	系の(量子)力学を表現するもの。直接には系の時間発展を記述する。

用語	解説
	ハミルトニアン(系のエネルギーを表す量子力学的演算子)を行列表
ハミルトニアン行列	現したもの。
25.1 hat 111	入力パラメータを変更して多数のシミュレーションを実行し、設計パ
パラメータスキャン	ラメータ等に対する性能や機能の依存性を検証すること。
	クォーク3つから成る粒子の総称。陽子や中性子はバリオンである。
バリオン	一方クォーク1つとと反クォーク1つから成る粒子はメソン(中間子)
7.7%	という。バリオンやメソンは強い相互作用をする粒子であり、バリオ
	ンとメソンを総称してハドロンという。
パリティ	空間の反転に対して系が対称性をもつときの量子数。
バルクナノメタル	一般の金属よりも小さな結晶粒からなる金属材料、強度、延性、靱性
2 2 2 2 2 2	等の機械的性質の向上が見込まれる.
バルクひずみ	複数の材料が混ざった状態での計算要素内のトータルのひずみ量
	原子核の中の核子のうち、その構造の決定に特に重要な影響を与える
バレンス粒子、バレンス空間	ものをバレンス核子(粒子)と呼ぶ。近似的に、これらのバレンス粒子だけない。たまないでは、たまないでは、たまないでは、たまないでは、たまないでは、たいななっています。
	けを取り扱った計算ができ、量子力学の計算ではバレンス粒子の運動 を記述するヒルベルト空間を扱うため、これをバレンス空間と呼ぶ。
	電子が占有出来ない禁止帯のこと。最高占有軌道準位と最低非占有軌
バンドギャップ	電丁が百月山木ない宗正帝のこと。 取同百月軌道平位と 取似れ百月軌 道準位とのエネルギー差に対応する。
7)	世中世での二十八下(一定でA)がする。
	対向するレーザー光を用いてその中を運動する粒子に対して周期的な
 光格子	ポテンシャルを作り出す。その結果、粒子は結晶格子点に閉じ込めら
7010 1	れた粒子のように振舞い、そのような系のことを光格子と呼ぶ。
	化学的あるいは遺伝子光学的な光センサー分子や光による刺激素子の
光生理学	発展を背景に蛍光顕微鏡のような光学的な方法で生体の活動をしる学
/	問体系
11.60 TC W 产 M + + T * 与 4 + p · p	核スピン間の非線形相互作用に伴い生じる高調波を利用する核磁気共
非線形光学応答核磁気共鳴	鳴法
	複数の非線形振動子が結合されたシステム。非線形振動子とは、運動
非線形振動子系	が初期値に比例しない振動子(ばねのように振動する要素)のこと。
	カオスや同期など、様々な興味深い現象を示すことが知られている。
光分解	原子核が光(ガンマ線)を吸収して分解する反応。
非局所擬ポテンシャル	内殻電子などの及ぼす影響をポテンシャルに置き換えたもののうち、
7/ //3/2/13/2C-C- / / C	位置以外の要素(角運動量など)に依存するもの。
- 歪速度テンソル	速度場の空間的な変化を表す速度勾配テンソルから、回転を表す反対
	称成分を除いた対称成分で、変形の速度を表す。
	大気や海洋の支配方程式を考える際、水平方向に十分大きな現象(気
	象では数十キロ以上)に着目する場合は、重力と鉛直方向の気圧傾度
	力が釣り合っていると近似(静水圧近似または静水圧近似と呼ぶ)する ことができる。全球を対象とした多くの大気・海洋モデルでは、静水
非静水圧	正近似した方程式が用いられている。一方、より細かな現象に着目す
	る場合などは、静水圧近似が成り立たず、鉛直方向の運動方程式を陽
	に考慮する必要がある。このような方程式を、非静水圧の方程式と呼
	る。
	摂動的手法では解析が難しく、その本質を理解するためには非摂動的
非摂動ダイナミクス	手法を必要とする力学現象。
). 12 LH	素粒子が質量を持つ仕組みを説明する理論であるヒッグス機構におい
ヒッグス場	て導入されるスカラー場。
	標準理論において電弱相互作用から弱い相互作用と電磁相互作用を分
ヒッグス粒子	化させ、クォークやレプトンなどに質量を与える重要な役割を担って
	いる。
ビッグバン	現在広く受け入れられている学説によれば、宇宙は約137億年前に大
	きな爆発(ビッグバン)のように膨張して現在に至ったとされる。

用語	解説
71140	ビッグバン宇宙誕生直後に起こった原子核の合成を指す。宇宙誕生直
	後、宇宙全体は超高温高密度であった。宇宙誕生後ごく初期には物質
	はクォークの状態であったが、宇宙が膨張し冷えるとともにクォーク
	同士が結合し陽子や中性子を構成するようになる(宇宙開闢後約10^-6
	秒)。その後、温度が下がると、いくつかの陽子と中性子は結びつき、
	一部がヘリウム原子核などを形成する元素合成が始まる(宇宙開闢後
 ビッグバン原子核合成	約3分から約20分の間)。さらに温度が冷えると元素合成は終了し、
	軽原子核は安定な原子核に崩壊し元素比率が固定される。この過程で
	は無視できる量のリチウム7までの元素と水素1とヘリウム4が生成
	される。宇宙開闢後約3分から20分の間で生成された原子核を理論的
	に計算することができ、現在の宇宙の元素質量の割合が(水素1が約
	75%、ヘリウム4が約25%)であることを説明する。一方でビッグバン原子核合成ではわれわれになじみ深い炭素、鉄、金、銀などのリチ
	ウムより重い元素は全く生成できない。
	対スより量い元素は主く主成できない。 粒子の速度分布が熱的でない分布。熱的である分布とは、粒子同士が
	(衝突などの)相互作用を繰り返すことで達成される正規分布(マクス
非熱的分布	ウェル分布)のことである。非熱的分布は相互作用がない(または少な
31 Min. 920 M.	い)状況で存在しうる。非熱的分布の下では、熱的分布では存在しえな
	い高速な粒子が存在することがある。
	大気中で雲を構成する水滴・氷晶(雲粒)が、発生してから、雨・雪など
微物理過程	の降水現象として地表面に落下する、もしくは蒸発により消滅するま
	での一連の成長・消滅過程をさす。雲粒同士が大気中で衝突して併合
	する過程、雲粒が凍結・融解する過程などがある。
標準脳座標系	個体差を補償するように作られた脳内の標準座標系
	量子力学では、系の状態は抽象的なヒルベルト空間の中のベクトルに
	対応している。この空間は無限次元であるが、実際の数値計算ではこ
ヒルベルト空間、模型空間	れを有限の大きさの次元、しかもなるべく小さい次元の空間にする必
	要がある。このようにして計算に適した形に抜き出された空間を模型
\$	空間と呼ぶ。
<i>∞</i> ,	量子力学に基づいて素粒子反応の確率を計算する場合、絶対値の2乗
	が反応確率となる不変散乱振幅というものを計算する。通常普遍散乱
	振幅を解析的に厳密に計算することは困難であるため、摂動理論を用
ファインマン振幅	いて近似的に計算していく。摂動論では次数ごとにファインマン図形
	に基づく計算を行なう。この様な摂動計算による不変散乱振幅をファ
	インマン振幅という。これにより素粒子反応の散乱断面積(反応確率)
	を求めることができる。
	主に炭素繊維強化複合材料製の高圧容器を作製する際に用いられる製
	法。炭素繊維を数万本東ねた炭素繊維東を、ライナーと呼ばれる内容
フィラメントワインディング	器に巻き付けて成型する方法。炭素繊維強化複合材料製高圧容器は、
	燃料電池自動車用高圧水素容器として使用され、高信頼性と軽量化の
	両立が求められている。
フールマエード屈眼	両立が求められている。 時間微分を含む偏微分方程式を、正弦波の重ね合わせであるフーリエ
フーリエモード展開	両立が求められている。 時間微分を含む偏微分方程式を、正弦波の重ね合わせであるフーリエ 級数に変換すること。複雑な波動を単純な波の重ね合わせとして表現
	両立が求められている。 時間微分を含む偏微分方程式を、正弦波の重ね合わせであるフーリエ 級数に変換すること。複雑な波動を単純な波の重ね合わせとして表現 することができる。
フーリエモード展開フェムトスケール	両立が求められている。 時間微分を含む偏微分方程式を、正弦波の重ね合わせであるフーリエ 級数に変換すること。複雑な波動を単純な波の重ね合わせとして表現
	両立が求められている。 時間微分を含む偏微分方程式を、正弦波の重ね合わせであるフーリエ 級数に変換すること。複雑な波動を単純な波の重ね合わせとして表現 することができる。 ハドロンや原子核の大きさ程度のミクロな世界。fm(フェムトメート
	両立が求められている。 時間微分を含む偏微分方程式を、正弦波の重ね合わせであるフーリエ 級数に変換すること。複雑な波動を単純な波の重ね合わせとして表現 することができる。 ハドロンや原子核の大きさ程度のミクロな世界。fm (フェムトメート ル) は 10~15m。
フェムトスケール	両立が求められている。 時間微分を含む偏微分方程式を、正弦波の重ね合わせであるフーリエ級数に変換すること。複雑な波動を単純な波の重ね合わせとして表現することができる。 ハドロンや原子核の大きさ程度のミクロな世界。fm(フェムトメートル)は10^-15m。 1,000 兆分の1 秒が1 フェムト秒。1 フェムト秒は、光の速さ(秒速約30 万キロメートル)でも0.3 ミクロンしか進むことができないほどの極短時間。
フェムトスケールフェムト秒	両立が求められている。 時間微分を含む偏微分方程式を、正弦波の重ね合わせであるフーリエ級数に変換すること。複雑な波動を単純な波の重ね合わせとして表現することができる。 ハドロンや原子核の大きさ程度のミクロな世界。fm(フェムトメートル)は10~15m。 1,000 兆分の1 秒が1 フェムト秒。1 フェムト秒は、光の速さ(秒速約30 万キロメートル)でも0.3 ミクロンしか進むことができないほどの極短時間。 フェルミ粒子。スピン角運動量が半整数倍である。フェルミオンには、
フェムトスケール	両立が求められている。 時間微分を含む偏微分方程式を、正弦波の重ね合わせであるフーリエ級数に変換すること。複雑な波動を単純な波の重ね合わせとして表現することができる。 ハドロンや原子核の大きさ程度のミクロな世界。fm(フェムトメートル)は10~15m。 1,000 兆分の1 秒が1フェムト秒。1フェムト秒は、光の速さ(秒速約30 万キロメートル)でも0.3 ミクロンしか進むことができないほどの極短時間。 フェルミ粒子。スピン角運動量が半整数倍である。フェルミオンには、クォーク、電子、ニュートリノ、陽子、中性子などがある。
フェムトスケールフェムト秒	両立が求められている。 時間微分を含む偏微分方程式を、正弦波の重ね合わせであるフーリエ級数に変換すること。複雑な波動を単純な波の重ね合わせとして表現することができる。 ハドロンや原子核の大きさ程度のミクロな世界。fm (フェムトメートル)は10~15m。 1,000兆分の1秒が1フェムト秒。1フェムト秒は、光の速さ(秒速約30万キロメートル)でも0.3ミクロンしか進むことができないほどの極短時間。 フェルミ粒子。スピン角運動量が半整数倍である。フェルミオンには、クォーク、電子、ニュートリノ、陽子、中性子などがある。 結晶の格子振動を量子化したのがフォノン。そのエネルギと波数との
フェムトスケール フェムト秒 フェルミオン フォノン分散関係	両立が求められている。 時間微分を含む偏微分方程式を、正弦波の重ね合わせであるフーリエ級数に変換すること。複雑な波動を単純な波の重ね合わせとして表現することができる。 ハドロンや原子核の大きさ程度のミクロな世界。fm (フェムトメートル)は10~15m。 1,000兆分の1秒が1フェムト秒。1フェムト秒は、光の速さ(秒速約30万キロメートル)でも0.3ミクロンしか進むことができないほどの極短時間。 フェルミ粒子。スピン角運動量が半整数倍である。フェルミオンには、クォーク、電子、ニュートリノ、陽子、中性子などがある。 結晶の格子振動を量子化したのがフォノン。そのエネルギと波数との関係が分散関係。
フェムトスケール フェムト秒 フェルミオン フォノン分散関係 フォルトトレランス機構	両立が求められている。 時間微分を含む偏微分方程式を、正弦波の重ね合わせであるフーリエ級数に変換すること。複雑な波動を単純な波の重ね合わせとして表現することができる。 ハドロンや原子核の大きさ程度のミクロな世界。fm(フェムトメートル)は10^-15m。 1,000 兆分の1 秒が1 フェムト秒。1 フェムト秒は、光の速さ(秒速約30 万キロメートル)でも0.3 ミクロンしか進むことができないほどの極短時間。 フェルミ粒子。スピン角運動量が半整数倍である。フェルミオンには、クォーク、電子、ニュートリノ、陽子、中性子などがある。 結晶の格子振動を量子化したのがフォノン。そのエネルギと波数との関係が分散関係。 1 ノードが故障したとしても補完により計算が止まらない仕組み
フェムトスケール フェムト秒 フェルミオン フォノン分散関係 フォルトトレランス機構 フォンビルブランド因子	両立が求められている。 時間微分を含む偏微分方程式を、正弦波の重ね合わせであるフーリエ級数に変換すること。複雑な波動を単純な波の重ね合わせとして表現することができる。 ハドロンや原子核の大きさ程度のミクロな世界。fm (フェムトメートル)は10^-15m。 1,000 兆分の1 秒が1 フェムト秒。1 フェムト秒は、光の速さ(秒速約30 万キロメートル)でも0.3 ミクロンしか進むことができないほどの極短時間。 フェルミ粒子。スピン角運動量が半整数倍である。フェルミオンには、クォーク、電子、ニュートリノ、陽子、中性子などがある。結晶の格子振動を量子化したのがフォノン。そのエネルギと波数との関係が分散関係。 1 ノードが故障したとしても補完により計算が止まらない仕組み血中にある凝固因子のひとつ
フェムトスケール フェムト秒 フェルミオン フォノン分散関係 フォルトトレランス機構	両立が求められている。 時間微分を含む偏微分方程式を、正弦波の重ね合わせであるフーリエ級数に変換すること。複雑な波動を単純な波の重ね合わせとして表現することができる。 ハドロンや原子核の大きさ程度のミクロな世界。fm(フェムトメートル)は10^-15m。 1,000 兆分の1 秒が1 フェムト秒。1 フェムト秒は、光の速さ(秒速約30 万キロメートル)でも0.3 ミクロンしか進むことができないほどの極短時間。 フェルミ粒子。スピン角運動量が半整数倍である。フェルミオンには、クォーク、電子、ニュートリノ、陽子、中性子などがある。 結晶の格子振動を量子化したのがフォノン。そのエネルギと波数との関係が分散関係。 1 ノードが故障したとしても補完により計算が止まらない仕組み

用語	解説
不純物偏析	結晶中の不純物が表面や欠陥など何らかの構造の周辺に集まること。
	ここの文脈では、実験データの不足により、相互作用(力)の方程式
不定性	(またはその元となるポテンシャル)を、実験データから良く決める
	ことができないこと。
 部分空間対角化	占有電子軌道など注目している一体電子軌道を基底とした空間でハミ
	ルトニアンを表現しそれを対角化すること
フラグメント	フラグメント分子軌道法計算を行うために分子全体を部分系に分割し
	た際の構成単位のこと。 化合物設計プロセスにおいて化合物の部品(フラグメント)を探し出
フラグメント探索	化合物設計プロセスにおいて化合物の部品(ブラグメント)を採し出 すこと
	その中で独自のスクリプト言語を持つことにより多数の異なった現象
プラットホームシミュレータ	が扱われるようになったシミュレータ
	クォークとレプトンの種類を表す。たとえば、クォークにはアップ、
フレーバー	ダウンなどの種類があり、レプトンには電子、ミュー粒子などがある。
	配列のデータ処理をする際にデータ転送速度が高速なキャッシュやメ
ブロッキング	モリに保持可能なデータサイズを考慮して配列を区分することで、処
	理性能の向上を図る性能チューニング手法。
	分割統治法は大規模な問題を効率的に解くアルゴリズムの一つで、そ
1) that the VI. VI.	のままでは解決することが難しい大きな問題をいくつかの小さな問題
分割統治法	に分割して個別に解決していくことで最終的に大きな問題を解決する
	方式。量子化学計算のための分割統治法は Waitao Yang 教授(現デューク大学)より考案された。
	一ク人子/より与糸さ40/に。 細胞内のように、タンパク質をはじめとする様々な分子が高密度で存
分子混雑環境	在する込み合った環境。分子は溶媒中における孤立した環境下とは異
), 1 Ind. with 2000	なった性質を示す。
ハラギエルン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	原子間力に基づき、運動方程式を数値的に解き、分子の運動をシミュ
分子動力学シミュレーション	レーションする計算方法
分子モーター	生体内で ATP などのエネルギーを機械的な動きに変換する分子
分子モデリング	分子の立体構造を、計算機中で構築すること
	半導体のヘテロ接合面等において実現される2次元電子系に強い磁場
	をかけると、低温でホール抵抗の値が量子化される現象が起こる。こ
八彩見フナールが田	の値は e を電子の素電荷、h をプランク定数とすると(p/q)・(e^2/h)と表
分数量子ホール効果	される。ここで、pとqは整数であり、qが3以上の奇数でp/qが整数とならない場合を分数量子ホール効果と呼ぶ。これは物質中において
	分数電荷を持つ新たな素励起が生じるために起こる現象であり、発見
	者の Tsui, Stormer, Laughlin は 1998 年にノーベル物理学賞を受賞した。
~	
	希ガスの原子が特別に安定化するように、陽子・中性子数がある決ま
閉殻・開殻配位	った数(魔法数)になると原子核も安定化する。このような原子核の核子
71)及	は閉殻配位に対応すると称される。逆に陽子・中性子の数が魔法数か
	らずれたものを開殻配位と呼ぶ。
ベイジアンネットワーク	統計的因果モデルの一つで因子間の因果関係を点と有向枝からなるネットワークで表現した。の、バイオインフェスティクスでは夢伝ス発
	ットワークで表現したもの. バイオインフォマティクスでは遺伝子発 現制御ネットワークの推定・モデル化で用いられる
ベイジアンフィルタ	ベイズ統計に基づくデータの学習・分類法
	分子軌道を表現するための関数群。平面波を表す関数の線形結合で分
平面波基底	子軌道を表現。
ヘテロな構成の CPU	機能の異なるコアを組み合わせた CPU
~~	鉄イオンを含む化合物。しばしば、タンパク質に含まれ機能の発現に
	重要な寄与をする。
変形核	形状が球形からずれて変形した原子核。
ほ	
ポイントベースレンダリング	点群を基本とした画像生成手法。並列処理に向いた方法で、画像の品質なよる。
	質を点の数により調整できる. 多数のボース粒子が一つの量子状態を占めることで現れる物質の状
ボーズ・アインシュタイン凝縮	多級のホース粒子が一つの重子状態を占めることで現れる物質の状態。
	ぶ。 ボーズ粒子が互いの間に働く斥力相互作用によって絶縁体化するこ
ボーズ系モット転移	E.
	I

 用語	解説
	細胞にパッチ電極を接続して全体を電位固定できる状態にして測定す
ホールセルプランプ	る方法
	形に沿った線や面で形状を表現するのではなく、空間を直方体で分割
ボクセルデータ	しその直方体内部の分布情報で形状を表現する方法。二次元の映像を
	示すピクセル(Pixel)に対して三次元(Volume)を表すボクセル(Voxel)
	大規模集積回路は、スケーリング(比例縮小)にもとづきトランジスタの
2017年117日	微細化により高性能化と高集積化を同時に実現してきたが、今後は発力を対象により、大きなない。
ポストスケーリング時代	熱や消費電力により困難となると予想されている。スケーリングの限界以降(ポストスケーリング)では、全く新しい指導原理が必要とされ
	る。
	ボース粒子。スピン角運動量が整数倍である。ボソンには、素粒子間
ボソン	の相互作用を媒介する粒子である、光子やグルーオンなどがある。
ボゾン系	構成粒子がボーズ粒子である量子系
ボリュームレンダリング	ボリュームデータに対する画像生成手法の一つ. データの内部構造や
	全体の様子を透過的なイメージで表現することができる.
	任意のソレノイダル場は、トロイダルポテンシャルとポロイダルポテ
ポロイダル・トロイダル展開	ンシャルの二つのスカラー場で表現された二つの項の和として一意に
	分解できる。
t handred had	
マイクロカプセル	極小のカプセル内に薬剤等を内包した物
マイコプラズマ	真正細菌の一種でゲノムサイズが小さく、細胞サイズも小さい
	ウラン・トリウムに代表される重元素をアクチナイドと呼ぶが、自然 界に存在する安定な(寿命が非常に長い)ものの他に、原子炉などでは寿
マイナー・アクチナイド核	命の短いアイソトープが作られており、これらをマイナー・アクチナ
	イドと呼ぶ。
膜輸送体	生体膜を貫通し、膜を通して物質の輸送をするタンパク質の総称
	原子核は陽子と中性子から構成されているが、ある特定の数の陽子ま
魔法数	たは中性子を含むとき原子核は特に安定となる。この数のことを魔法
)	数と呼ぶ。古くからよく知られている魔法数として 2 (ヘリウム:⁴He)、
	8 (酸素: ¹⁶ O) 、20 (カルシウム: ⁴⁰ Ca) などがある。
	離散的な時系列を生成するための確率過程の一種で、ある時刻での状
マルコフ連鎖	態は直前の時刻での状態のみに依存して決まり、それ以前の履歴と無
	関係である性質(マルコフ性)を持つ。
	連立一次方程式の解法を使用する際、行列の収束性を向上するために 導入される前処理法の一種。疎・密の計算格子に対して順に解を求め、
マルチグリッド型前処理	「一つではいる。
(ルグラグラー主前定程	子を直接用いる方法、代数的に疎格子を表現する方法など、種々存在
	する。
-n.4-1/201	神経線維を多数のシリンダ-様のコンパートメントの連なりと考える
マルチコンパートメント	モデル
マルチスケール・マルチレゾリュ	幅広い時空間にまたがる対象に対し、それぞれの階層・解像度での計
ーション法	算を連成させるシミュレーション法
	強磁性と強誘電性など二つ以上の秩序状態が物質中に共存し、互いに
マルチフェロイクス	関係を持つ状態。これにより磁場(電場)をかけることで誘電性(磁性)を制御すること等が可能しなる
み	制御すること等が可能となる。
	疎水基と親水基を併せ持つ界面活性剤分子が、溶媒中において球状や
ミセル	
	強相関系の数値的計算手法のひとつ。特に1次元、または2次元的な
密度行列くりこみ群	電子構造を持つ低次元強相関系の研究に用いられる。
	系の電子エネルギーが電子密度の汎関数で与えられるコーンシャム方
密度汎関数(DFT)法	程式に基づき固体系や凝集系の電子状態を計算する手法。汎関数のバ
	リエーションは多数あるが、物理分野では BLYP がよく用いられる。

用語	解説 解説
ミューオン異常磁気能率	ミューオンはレプトン族のうち2番目に重い粒子。質量以外の性質は電子と同じ。質量は電子の約200倍である。ミューオンはスピン1/2で自転しているため小さな磁石となっている。磁石の強さを磁気能率(磁気モーメント)という。磁気能率は量子力学に基づく計算と量子力学を使わない計算で違いが生じるため、その差を異常磁気能率と呼ぶ。ミューオンの磁気能率は高精度(相対誤差約0.5×10 ⁶)で計測されている。素粒子標準理論を用いた理論計算が可能である。2012年現在、理論計算と実験値は相対的に約21×10 ⁶ ずれている。ずれの原因は、理論計算に含まれる精度不足である可能性と新しい物理の兆候である可能性がある。
(コー粒子)	レクトンの一性。电子と向し性質を行うが負星が共なる。
メソ降水系	水平スケールが 100km 程度(メソスケール)の積乱雲の集合体である。 単純な集合体ではなく、上昇・下降流域といった構造を持つ「系」で あるため、単一の積乱雲に比べて寿命が長い(6時間以上)。大気の状態や地域特性によって形態を変え、停滞すると同じ場所に多量の降水 をもたらす。
メタゲノム	特定の環境中の微生物群など単一種毎のゲノム解析が難しい場合に, その生物群内全体のゲノムの集合をひとつのゲノムとしてとらえる考 え方
メタマテリアル	自然界では見られない性質を示す人工的に作られた物質一般を指す言葉であるが、特に負の屈折率を持つ物質を指すことが多い。光の波長よりも小さな物質で特殊な高次構造を作ることによって実現できる。その極めて特殊な光学的性質を利用した応用科学的研究も盛んに行われている。
メッシュ/トーラス	計算ノード間の通信ネットワークの形態の一つ。多次元の格子状のも の。格子の端を周期的に結合した物はトーラスと言う。
メモリバランス型	エクサスケールシステム構成例の一つ。 演算性能 100PFLOPS/ メモリ帯域 100PB/s メモリ量 100PB がめどの構成
4	
モデル脊椎動物	線虫(神経数300)・ショウジョウバエ・カイコ等の昆虫(神経数10万)は遺伝子が同定され、ある程度生理実験も可能な無脊椎系のモデル生物であるが、同様な意味で、脊椎動物においては・ゼブラフィッシュ(神経数100万)・マウス(神経数1億)などが世代が短く遺伝子が同定されており、かつ生理実験も可能な比較的単純なシステムを持つモデル脊椎生物といえる。
ゆ	
ユークリッド時空	ユークリッド幾何学が成り立つ4次元時空。時間方向と空間方向の区別はない。
有限温度	非ゼロの温度を持つ物理系。
有限格子間隔効果有限フェルミ多体系	格子間隔が有限であることから生じる系統誤差 核子(陽子と中性子)はフェルミ粒子であり、地球上に存在する原子 核は最大でも数百個の核子から成っている。無限に近い粒子数の多体 系と区別するため、有限多体系とよび、数値的にも多くの特有の困難 がある。
有限密度	非ゼロの密度を持つ物理系。
有効媒質法	溶液分子の周りの溶媒の分布確率を表す分布関数を求める理論。様々な種類の分布関数理論があるが、特に 3D-RISM 法はタンパク質やナノチューブといった大きな分子の溶媒和を扱うことができる。
有効模型的アプローチ	特異性が強い核力を直接扱わずに、数値的に扱いやすい核力(有効相互作用)に変換する方法。上記の「カイラル有効場理論」と似た概念で、特定のエネルギー領域、制限されたヒルベルト空間における原子核多体問題で用いられる。
溶媒和エネルギー	孤立状態の溶質分子が溶媒中へと移行することに伴って変化する自由 エネルギー量
よ	

用語	解説.
7 14 HH	不安定原子核がβ崩壊する際に働く力。素粒子標準理論では、すべて
弱い力	のフェルミオンの間でWボソンやZボソンという粒子を交換されるこ
	とで力が作用しあうと考える。
4 中と 2 帝フハフ劫 芝建ハ	2電子クーロン反発積分のうち4つの分子軌道中心を持つ2電子クーロ
4 中心 2 電子分子軌道積分	ン反発積分のこと。
5	
ラジカル	電子が対になっていないことで不安定になっている化学物質
	エルミート行列を三重対角化する手法。数値計算において再帰計算に
ランチョス法	よる効率的な演算が可能であることから、固有方程式の解法等でよく
	用いられる。
	乱流で構成された境界層(粘性を有する流体中において粘性の影響を
	強く受ける領域で、一般には物体表面に見られる) 乱流境界層では
1 乱流境界層	流体の渦運動により運動量やエネルギーの交換が強く行われる。この
	ため、壁面近傍の流体へ運動量が供給されるので層流境界層よりも剥
	離しにくいが、壁面付近で急激に減少する速度分布を持つため摩擦抗
at Many	力が大きい。
乱流スケール	乱流における渦の大きさ
9	1. 生産順序の光が持ちのとし、3. 性加畑とオノレム b サガ加畑 ツーン
リオーダリング	計算順序の並べ替えのこと、計算処理を速くしたり、並列処理ができ
リガンド妹会	るように依存関係をなくすために行われる.
リガンド結合	受容体に特異的に結合する物質 (リガンド) が結合すること 細胞内の構造体で、遺伝情報からタンパク質へと変換する機構である
リボゾーム	神配内の構造体で、遺伝情報からタンハク質へと変換する機構である 翻訳が行われる場である。
	クォークとグルーオンの力学(強い力の力学)を量子力学的に記述す
量子色力学	る理論。素粒子標準理論の一部をなす。 (QCD: Quantum
至1口//1	Chromodynamics)
	量子多体計算において、変分計算によって得られた波動関数はハミル
E - W. A. E. E. M.	トニアンがもともと持っている対称性を自発的に破っていることが多
量子数射影法	い。この波動関数に射影演算子を作用させることによって、本来保つ
	べき対称性を回復させる方法。
リラクサー	特殊な強誘電体。誘電率の周波数依存性に特徴がある。
臨界終点	相図において一次相転移が終結し、熱力学変数が連続的に変化するよ
四田クトボミンボ	うになる (クロスオーバー) へと移行する点
 隣接通信	並列計算で領域分割法を用いる時に、隣り合う分割された領域間でデ
	ータの授受を行う通信の事。
<u></u>	
ループ	ファインマン図形において現れるループ構造。量子補正が高次になる
11.07 = 14	につれループの数が増える。
ルシフェラーゼ	蛍の蛍光タンパク質 ば、7、第2、10、10、10、10、10、10、10、10、10、10、10、10、10、
ルミノシティ	ビーム衝突型加速器実験において、ルミノシティ=単位時間あたりに起
1. The state of th	こる反応の回数÷断面積で定義される。
40	通常のシミュレーションでは滅多に発生しないが、科学的に重要な事
レアイベント探索アルゴリズム	要を探索するためのアルゴリズム。例えば分子動力学シミュレーショ
- / I V I JK/K / / P J / M	ンでは高い活性化障壁をもった化学反応はなかなか発生しない。
	光線追跡法、コンピュータグラフィクスの画像生成手法の一つで、光
レイトレーシング	が反射屈折する物理現象を模倣し、画像を作成する。
レオロジー	物質の流動と変形を取り扱う学問。
	CPU内のレジスタ上になるべくデータを集められるようにするための
レジスタブロッキング	コーディングテクニック。これにより命令実行効率が向上する。
	同じ原子から構成されるシステムを複数用意し、それぞれシミュレー
レプリカ法	ションの条件を変えながら、シミュレーションを行う方法。条件パラ
レノソル伝	メータをある一定の法則に従って交換しながら実行するレプリカ交換
	法などがある。
3	
	外部からガラス細管などで分子を脳の中の特定の領域に注入すること
ローカルインジェクション	さらに電圧を同時に付加することで特定領域の細胞内に分子を注入す
	るローカルエレクトロポレーションなども存在する。

用語	解説
ローカルファイルシステム	並列計算機の各計算ノードから独立して参照されるファイルシステム。各計算ノードで個別に使われるファイルを一時的に保存する場所として使われ、他の計算ノードからは参照できないためグローバルファイルシステムと比較して利便性に欠ける。一方でグローバルファイルシステムと比較して特に大規模なシステムにおいて高性能を達成しやすい構成である。