Zadanie 4

Miroslav Kurka
Dept. of Biophysics
Pavol Jozef Šafárik University in Košice
Slovakia

13. mája 2023

1 Úloha

Odhadnite hodnotu určitého integrálu

$$\int_0^1 \frac{\arcsin x}{x} dx = \frac{\pi}{2} * \ln 2 \tag{1}$$

pomocou MC integrovania.

a) Graficky vykreslite váš MC odhad hodnoty integralu ako aj chyby s použitím neskresleného odhadu štandardnej odchýlky. Pre generovanie postupnosti n uniformných náhodných čísel z intervalu [0,1] použite príkaz rand(1,n).

b) Preveďte numerický experiment ako priamo merať štandardnú odchýlku MC odhadu. Za týmto účelom, pre každé M odhadnite I Nseed-krát s použitím Nseed rôznych počiatočných hodnôt, tzv. seed (pomocou príkazu rand("seed", x), kde x sú rôzne hodnoty) generátora NČ (použite Nseed = 100). Vypočítajte štandardnú odchýlku σ_M týchto Nseed odhadov I1,I2 ... INseed

$$\sigma_M = \sqrt{\frac{1}{N_{\text{seed}}} \sum_{i=1}^{N_{\text{seed}}} (I_i)^2 - \left(\frac{1}{N_{\text{seed}}} \sum_{i=1}^{N_{\text{seed}}} I_i\right)^2}$$
(2)

Vykreslite vypočítané hodnoty $\log \sigma_M$ ako funkciu $\log 10 \mathrm{M}$ pre $M=10, 10^2, 10^3, 10^4 a 10^5$ spolu s jej neskresleným odhadom z úlohy a/. (sú si podobné?). Ak MC chyba klesá ako $\sigma_M = \frac{C}{\sqrt{M}}$, kde C je štandardná odchýlka celej populácie (viď prednášky), potom

$$\log \sigma_M = \log C - \frac{1}{2} \log M \tag{3}$$

takže môžete fitovať dáta priamkou so smernicou -0.5. Odovzdajte program a graf.

1.1 Teória

Výpočet integralú pomocou MC metódy je založený na náhodnom výbere bodov z oblasti, ktorú chceme integrovať[1]. V našom prípade je to oblasť [0, 1]. Výpočet je založený na nasledujúcom vzorci:

$$\int_{a}^{b} f(x)dx = (b-a)\frac{1}{N} \sum_{i=1}^{N} f(x_{i})$$
 (4)

kde x_i je náhodná premenná z oblasti [a,b], N je velkosť vzorky (počet náhodných bodov x_i). V našom prípade je to [0,1]. Výpočet je založený na tom, že náhodne vygenerované body z oblasti [0,1] sú rovnomerne rozložené. Preto je možné použiť vzorec (4) na výpočet integrálu.

1.2 Výsledky

Graf závislosti MC hodnot s chybami na počte vzoriek M (STD chyba) 1.1 1.09 1.08 1.07 1.05 1.04 0 1 2 3 4 5 6

Obr. 1: Riešenie integralu pre veľkosti vzoriek $M=10,10^2,10^3,10^4a10^5$ s neskresleným odhadom štandardnej odchýlky.

Graf 1 ukazuje hodnoty odhadu integralú z úlohy a) pre veľkosti vzoriek $M=10,10^2,10^3,10^4a10^5$ s neskresleným odhadom štandardnej odchýlky. Na osi x je logaritmus veľkosti vzorky M a na osi y je hodnota integralú. Ërror bar"zobrazuje hodnotu štandardnej odchýlky.

Obr. 2: Chyba σ_M v logaritmickej škále pre veľkosti vzoriek $M=10,10^2,10^3,10^4a10^5$ spolu s neskresleným odhadom (taktiež log škále) z úlohy a).

V Obr. 2 sú vynesené hodnoty logaritmu odchýlky σ_M ako funkcie logaritmu veľkosti vzorky M pre $M=10,10^2,10^3,10^4a10^5$ spolu s jej neskresleným odhadom z úlohy **a**). Hodnoty sú následne fitované priamkou so sklonom -0.5.

1.3 Záver a Diskusia

V grafe 1 je vidieť, že s vyššim počtom vzoriek M tj. nahodných bodov vyhodnotených sa odhad integrálu približuje reálnej hodnote integrálu $\frac{\pi}{2}*\ln 2.$ Taktiež je vidieť, že štandardná odchýlka sa znižuje s vyššim počtom vzoriek M

Graf 2 zobrazuje neskresleného odhadu chyby a hodnoty σ_M . Je zrejmé, že ich rozptyl je veľmi podobný. Chyby klesájú ako $\sigma_M = \frac{C}{\sqrt{M}}$, kde C je štandardná odchýlka celej populácie. Preto je možné fitovať dáta priamkou so smernicou -0.5.

Literatúra

[1] Žukovič, M. (2015) *Počítačová fyzika I* Dostupné z https://ufv.science.upjs.sk/zukovic/download/POF1/Literatura/Pocitacova% 20fyzika%20I.pdf