Data Terminology

After this video you will be able to...

- Describe what a feature is and how it relates to a sample
- Name some alternative terms for 'feature'
- Summarize how a categorical feature differs from a numerical feature

Terms to Describe Data

	Variables					
	ID	Date	MinTemp	MaxTemp	Rainfall	
	1	2010-06-17	55	75	0.1	
Samples 	2	2010-06-18	52	78	0.0	
Sam	3	2010-06-19	50	78	0.0	
	4	2010-06-20	54	77	0.0	

Terms to Describe Data

	Variables					
	ID	Date	MinTemp	MaxTemp	Rainfall	
\bigcap	1	2010-06-17	55	75	0.1	
Samples	2	2010-06-18	52	78	0.0	
Sam	3	2010-06-19	50	78	0.0	
	4	2010-06-20	54	77	0.0	

Terms to Describe Data

	Variables				
	ID	Date	MinTemp	MaxTemp	Rainfall
	1	2010-06-17	55	75	0.1
ples	2	2010-06-18	52	78	0.0
Samples 	3	2010-06-19	50	78	0.0
	4	2010-06-20	54	77	0.0

Other Names for 'Sample'

sample

row

instance

observation

record

				1
ID	Date	MinTemp	MaxTemp	Rainfall
1	2010-06-17	55	75	0.1
2	2010-06-18	52	78	0.0
3	2010-06-19	50	78	0.0
4	2010-06-20	54	77	0.0
	2	1 2010-06-17 2 2010-06-18 3 2010-06-19	1 2010-06-17 55 2 2010-06-18 52 3 2010-06-19 50	1 2010-06-17 55 75 2 2010-06-18 52 78 3 2010-06-19 50 78

Other Names for 'Variable'

variable

feature

dimension

column

attribute

field

	Variables					
					1	
	ID	Date	MinTemp	MaxTemp	Rainfall	
	1	2010-06-17	55	75	0.1	
:	2	2010-06-18	52	78	0.0	
;	3	2010-06-19	50	78	0.0	
ď	4	2010-06-20	54	77	0.0	

Data Types

Most common

Numeric Categorical

Others

String Date ...

Numeric Variables

- Values are numbers
- Also called 'quantitative'

Examples of Numeric Variables

- Height
- Score on an exam
- Number of transactions per hour
- Change in stock price

Categorical Variables

- Values are labels, names, or categories
- Also called 'qualitative' or 'nominal'

Examples of Categorical Variables

- Gender
- Marital status
- Type of customer
- Product categories
- Color of an item

Variable

Variables

- Feature
- Field
- Column
- ...

Sample

- Instance
- Record
- Row
- Observation
- ٠ ..

		Variables					
		ID	Date	MinTemp	MaxTemp	Rainfall	
		1	2010-06-17	55	75	0.1	
Samples 		2	2010-06-18	52	78	0.0	
Sam		3	2010-06-19	50	78	0.0	
	L	4	2010-06-20	54	77	0.0	

Numeric

Qualitative

Nominal

Quantitative

Data Exploration

After this video you will be able to...

- Explain why data exploration is necessary
- Articulate the objectives for data exploration
- List the categories of techniques for exploring data

Why Explore Data?

Goal: To understand your data

Exploratory Data Analysis (EDA)

Ways to Explore Data

Summary Statistics Visualization

Summary Statistics

 Information that summarizes dataset

Data Visualization

 Look at data graphically

Some Things to Look For

Correlations

Correlations

 Provide information about relationship between variables

Correlations

Trends

Indicate general characteristics of data

Outliers

Indicate potential problems with data

Data Exploration

Informed Analysis

Data Undertanding

Data Exploration

Exploring Data through Summary Statistics

After this video you will be able to...

- Define what a summary statistic is
- List three common summary statistics
- Explain how summary statistics are useful in exploring data

What are summary statistics?

- Quantities that summarize and describe a set of data values
- Measures of
 - Location: mean, median
 - Spread: standard deviation
 - Shape: skewness

Measures of Location

Describe central or typical value of dataset

Measures of Location - Example

Age
35
42
78
22
56
50
42
78
21
87

Age (sorted)
21
22
35
42
42
50
56
78
78
87

```
Mean = 51.1
```

Median =
$$(42+50)/2 = 46$$

$$Mode = 42 \& 78$$

Measures of Spread

Describe how dispersed or varied data is

minimum maximum standard variation deviation

Measures of Spread – Example

Age
35
42
78
22
56
50
42
78
21
87

Age (sorted)
21
22
35
42
42
50
56
78
78
87

```
Range = 87 - 21 = 66
```

Standard deviation = 23.426

Measures of Shape

Negatively skewed distribution or Skewed to the left Skewness < 0

Symmetrical Skewness = 0

Positively skewed distribution or Skewed to the right Skewness > 0

skewness

kurtosis

Measures of Shape – Example

Age

Skewness = 0.2995

Kurtosis = -1.2028

Measures of Dependence Describe relationship between variables

correlation

Measures of Dependence – Example

Height	Weight
180	68
153	70
204	84
133	44
208	81
142	53
122	40
168	50
175	64
200	72

Correlation = 0.8906

Statistics on Categorical Variables Describe number of categories and frequency of each category

Color/P et	White	Brown	Black	Orange	Total
Dog	34	44	32	0	110
Cat	25	2	43	0	70
Fish	1	0	5	33	39
Total	60	46	80	33	219

contingency table

Contingency Table - Example

Color/P et	White	Brown	Black	Orange	Total
Dog	34	44	32	0	110
Cat	25	2	43	0	70
Fish	1	0	5	33	39
Total	60	46	80	33	219

Check Dimensions

Check number of rows and columns

+# columns = # variables ?

ID	Date	MinTemp	MaxTemp	Rainfall
1	2010-06-17	56	75	0.1
2	2016-06-18	52	78	0.0
3	2010-06-19	50	78	0.0
4	2010-06-20	54	77	0.0

rows = # samples ?

Check Values

Check values in some samples

Should temperature values in F or C?

Is this correct?

ID	Date	MinTemp	MaxTemp	Rainfall
1	2010-06-17	56	24	0.1
2	2016-06-18	52	26	3,678.9
3	2010-06-19	50	26	0.0
4	2010-06-20	54	25	0.0

Is this date or timestamp?

Check Missing Values

ID	Date	MinTemp	MaxTemp	Rainfall
1	2010-06-17	56	75	🗲
2	2016-06-18	52	78	
3	2010-06-19	_K	78	0.1
4	2010-06-20	54	77	1

Does feature have mostly missing values?

How many samples have missing values?

Summary Statistics

- Measures of
 - Location, spread, shape, dependence
- Contingency table
 - For categorical variables
- Data validation
 - Dimensions, missing values

Exploring Data through Plots

After this video you will be able to...

- Discuss how plots can be useful in exploring data
- Describe how you would use a scatter plot
- Summarize what a boxplot shows

Visualizing Data

Types of Plots

- Histogram
- Line plot
- Scatter plot
- Bar plot
- Box plot
- others

Histogram

Shows
 distribution
 of numeric
 variable

Bins

What a Histogram Shows

Line Plot

Shows change in data over time

What a Line Plot Shows

Trend

Cyclical pattern

Compare variables

Scatter Plot

Shows relationship between two variables

What a Scatter Plot Shows

Positive Correlation

Negative Correlation

Non-Linear Correlation

No Correlation

Bar Plot

Shows
 distribution of
 categorical
 variable

What a Bar Plot Shows

Grouped Bar Chart

Stacked Bar Chart

Box Plot

Compares distributions of variables

Components of a Box Plot

The middle 50% of data are in this region

What a Box Plot Shows

What a Box Plot Shows

Data Visualization

- Provides intuitive way to look at data
- Should be used with summary statistics for data exploration
- Are also useful for communicating results

Data Preparation Overview

After this video you will be able to...

- Articulate the importance of data preparation
- Define the objectives of data preparation
- List some activities in preparing data

Preparing Data

Goal: Create data for analysis

Clean

Format

- Select features to use
- Transform data

Data Cleaning

Data quality issues

- Missing values
- Duplicate data
- Inconsistent data
- Noise
- Outliers

Addressing Data Quality Issues

- Some techniques:
 - Remove data with missing values
 - Merge duplicate records
 - Generate best estimate for invalid values

Cleaning Data

Data Cleaning

Data Cleansing

Getting Data in Shape

Data Munging

> Data Wrangling

Data Preprocessing

Data Wrangling

- Feature selection
 - Combing features
 - Adding/Removing features
- Feature transformation
 - Scaling
 - Dimensionality reduction

Always Remember!

Data preparation is very important for meaningful analysis.

Garbage in = Garbage out

Data Quality

After this video you will be able to...

- Describe three data quality issues
- Name three reasons for poor data quality
- Explain why data quality issues need to be addressed

Data Quality Issues

Real-world data is messy!

Missing Data

Name	Age	Income	
Angela	34	80	
Sidney		56 Missing	Values
Ratan	10		
Kiril	68		
Zhou	45	120	

Duplicate Data

Name	Address
Angela	430 Park Drive
Sidney	7800 West View Street
Sid	7800 West View Street
Ratan	12442 Maustain Avenue
Kiril	45 East 5 th St
Kiril	1220 Mill Avenue
Zhou	4345 Apple Latte

Invalid Data

Name	Zip Code
Angela	346412
Sidney	92618
Ratan	8033A
Kiril	11012
Zhou	59285

Noise

Name	Address
Angela	430 Park Drive
Sidney	780 ★❖◎◆ Vew Street
Ratan	12443 Mountain Avenue
Kiril	1220 Mill Avenue
ZhČou	4345 Apple Lane

Outliers

Why Address Data Quality Issues?

Poor
Data
Quality
Poor
Analysis
Results

Addressing Data Quality Issues

After this video you will be able to...

- Define what 'imputation' means
- Illustrate three ways to handle missing values
- Describe the role of domain knowledge in addressing data quality issues

Data Quality Issues

Missing values

Duplicate data

Noise

Invalid data

Outliers

Removing Missing Data

Name	Age	Income	
Angela	34	80	
Sidney		56	
Ratan	10		
Kiril	68		
Zhou	45	120	

Name	Age	Income
Angela	34	80
Sidney		<i>56</i>
Ratan	10	
Kiril	<i>68</i>	
Zhou	45	120

Imputing Missing Data

Name	Age	Income	
Angela	34	80	
Sidney		56	
Ratan	10		
Kiril	68		
Zhou	45	120	

Ways to Impute Missing Data

- Replace missing value with
 - Mean
 - Median
 - Most frequent
 - Sensible value based on application

Name	Address		
Sidney	7800 West View Street		
Sid	7800 West View Street		
Kiril	45 East 5 th St		
Kiril	1220 Mill Avenue		

Duplicate Data

- Delete older record.
- Merge duplicate records

Invalid Data

- Use external data source to get correct value
- Apply reasoning and domain knowledge to come up with reasonable value.

Name	Zip Code	Name	Zip Code
Angela	346412	Angela	34641 2
Ratan	8033A	Ratan	80331

Noise

- Filter out noise component.
- May also filter out part of data, so care must be taken.

Name	A	Address			
Sidney					
ZhČou	4345 App	Name		Address	
		Sidney	7800 ★◆○◆ View Street		
		Zh Č ou	4345	5 Apple Lane	

Outliers

- Remove outliers if they're not focus of analysis
- Analyze more closely if they are focus of analysis (e.g., fraud detection)

Domain Knowledge

 Required for addressing data quality issues effectively

Feature Selection

After this video you will be able to...

- Explain what feature selection involves
- Discuss the goal of feature selection
- List three approaches for selecting features

What is Feature Selection?

Characterize problem with smallest set of features

Expressiveness

Size

Feature Selection Methods

Adding Features

New features derived from existing features

Name	State
Angela	AK
Sidney	CA
Ratan	WA
Kiril	OR
Zhou	CA

Name	State	In-State
Angela	AK	F
Sidney	CA	T
Ratan	WA	F
Kiril	OR	F
Zhou	CA	T

Removing Features

- Features that are very correlated
- Features with a lot of missing values
- Irrelevant features: ID, row number, etc.

Combining Features

Name	Height	We	eight							
Angela	1.8	68	3				68			
Sidney	1.5	70								
Ratan	2.0	84								
Kiril	1.3	54				1				
Zhou	2.0	61	Nam		Height	Weight	BMI			
			Ange	la	180	68	21			
			Sidne	ЭУ	153	70	30			
		Ratar	1	204	84	20				
		Kiril		133	44	25				
		Zhou		208	81	19				

Recoding Features

Examples

- Discretization: re-format continuous feature as discrete
- Customer's age => {teenager, young adult, adult, senior}

Breaking Up Features

Address

430 Park Drive, CA, 97283

7800 W. View Street, FL, 34642

1243 Mountain Ave., CO, 80334

1220 Mill Avenue, IL 54622

4345 Apple Lane, V

Address	State	Zip
430 Park Drive	CA	97283
7800 W. View Street	FL	34642
1243 Mountain Ave.	CO	80334
1220 Mill Avenue	IL	54622
4345 Apple Lane	WA	98421

Feature Selection Summary

- Goal: Select smallest set of features that best captures data for application.
- Domain knowledge is important
- aka 'feature engineering'

Feature Transformation

After this video you will be able to...

- Articulate the purpose of feature transformation
- List three feature transformation operations
- Discuss when scaling is important

Feature Transformation

Scaling

Weight

Scaling to a Range

Zero-Normalization / Standardization

Filtering

Filter noise from audio signal

Remove grainy appearance in images

Aggregation

Avg Wind Speed (every 10 minutes)

Avg Wind Speed (every 60 minutes)

Feature Transformation

- What: Map feature values to new set of values
- Why: Have data in format suitable for analysis
- Caveat: Take care not to filter out important characteristics of data

Dimensionality Reduction

After this video you will be able to...

- Explain what dimensionality reduction is
- Discuss the benefits of dimensionality reduction
- Describe how PCA transforms your data

Dimensionality of Data

Curse of Dimensionality

Data gets increasingly sparse

Analysis results degrade

Dimensionality Reduction

3D

2D

Dimensionality Reduction

Principal Component Analysis

Principal Component Analysis

Principal Component Analysis

PCA for Dimensionality Reduction

PCA Main Points

- Finds a new coordinate system such that
 - PC1 captures greatest variance
 - PC2 captures second greatest variance, etc.
- First few PCs capture most of variance
 - Define lower-dimensional space for data.

PCA – To Note

- Original dimensions
 - Income, age, occupation, etc.
- New dimensions
 - PC1, PC2, PC3, etc.
- More difficult to interpret!