实验 6 悬臂梁应力测量实验

姓名: 邹佳驹

学号: 12012127

同组人: 刘鸿磊

1. 实验目的

测定悬臂梁上下表面的应力,验证梁的弯曲理论。

- 2. 实验仪器设备工具
- 1) 材料力学组合实验台中悬臂梁实验装置与部件:
- 2) 力&应变综合参数测试仪;
- 3) 游标卡尺、钢板尺。

3. 实验原理和方法

将试件固定在实验台架上,梁在纯弯曲时,同一截面上表面产生压应变,下表面产生拉应变,上下表面产生的拉压应变绝对值相等。此时,可得到不同横截面的最大正应力 σ ,计算公式:

$$\sigma = \frac{M}{W}$$

弯矩M = PL

抗弯截面矩量 $W = bh^2/6$

在梁的上下表面分别粘贴上应变片 R1、R2, 如图所示, 当对梁施加载荷 P 时, 梁产生弯曲变形, 在梁内引起应力。

图 1 悬臂梁尺寸及贴片图

实际实验中在梁的上下表面分布粘贴上应变片 R1 和 R2、R3 和 R4. 相对位置如图所示。

图 2 应变片实际位置

4. 实验步骤

1) 设计好本实验所需的各类数据表格;

试件测量表、实验数据记录表。

- 2) 测量悬臂梁的有关尺寸,确定试件有关参数;
- 3) 拟定加载方案。选取适当的初载荷 P_0 = 20%Pmax,安全系数设定为 <u>6</u>,估算最大载荷 Pmax <u> \leq 100</u>N),一般分 5 级加载。

$$F.S = \frac{\sigma_{fail}}{\sigma_{allow}} = \frac{\sigma_{fail}}{\frac{M}{W}} = \frac{\sigma_{fail}}{\frac{PL}{bh^2/6}} = 6$$

$$P_{max} = \frac{\sigma_{fail} \times bh^2}{6L \times F.S} = \frac{355 \times 10^6 \times 0.048 \times 0.008^2}{6 \times 0.3 \times 6} = 101N$$

- 4) 实验采用多点测量中半桥单臂公共补偿接线法。将悬臂梁上两点应变片按序号接到电阻应变仪测试通道上,温度补偿片接电阻应变仪公共补偿端。
- 5) 按实验要求接好线, 调整好仪器, 检查整个系统是否处于正常工作状态。
- 6) 实验加载。用均匀慢速加载至初载荷 P。记下各点应变片初读数, 然后逐级加载, 每增加一级载荷, 依次记录各点电阻应变仪读数, 直到最终载荷。实验至少重复三次。
- 7) 作完试验后, 卸掉载荷, 关闭电源, 整理好所用仪器设备, 清理实验现场将所用仪器设备复原, 实验资料交指导教师检查签字。

5. 实验数据记录与处理

1) 表 1 试件测量

梁的高度h(mm)	8.05
梁的宽度b(mm)	48.04
载荷作用点到测试点的距离L(mm)	250、300
弹性模量E	210GPa
泊松比μ	0.28

2) 表 2 实验数据

	P(N)	-20	-36	-52	-68	-84	-100
1/4电桥应变(με)	ε1	58	101	145	193	240	284
	ε2	48	84	121	161	200	237
	ε3	-60	-103	-147	-195	-240	-284
	ε4	-50	-87	-124	-164	-201	-239
1/2电桥应变(με)	ε1-2	9	16	23	23	39	46
	ε3-4	-9	-17	-24	-24	-39	-46

应变片位置如图所示

3) 实验结果处理

a) 应力 $\sigma = E\varepsilon$. 悬臂梁不同位置应力测量结果见表 3

	P(N)	-20	-36	-52	-68	-84	-100
1/4电桥应变(με)	σ1(MPa)	12.18	21.21	30.45	40.53	50.4	59.64
	σ2(MPa)	10.08	17.64	25.41	33.81	42	49.77
	σ3(MPa)	-12.6	-21.63	-30.87	-40.95	-50.4	-59.64
	σ4(MPa)	-10.5	-18.27	-26.04	-34.44	-42.21	-50.19

表 3 悬臂梁不同位置在不同载荷下的应力

b) 应力理论解见表 4

$$\sigma = \frac{M}{W} = \frac{PL}{bh^2/6}$$

L(mm)	P(N)	-20	-36	-52	-68	-84	-100
300	σ1(MPa)	11.56	20.82	30.07	39.32	48.57	57.82
250	σ2(MPa)	9.64	17.35	25.06	32.76	40.47	48.18
300	σ3(MPa)	-11.56	-20.82	-30.07	-39.32	-48.57	-57.82
250	σ4(MPa)	-9.64	-17.35	-25.06	-32.76	-40.47	-48.18

表 4 悬臂梁不同位置在不同载荷下的理论应力

c) 理论值与实验值比较

$$e = \frac{|\sigma_{li} - \sigma_{shi}|}{\sigma_{shi}} \times 100\%$$

P(N)	-20	-36	-52	-68	-84	-100
Error σ1	5.06%	1.86%	1.26%	2.99%	3.63%	3.05%
Error σ2	4.40%	1.67%	1.40%	3.09%	3.63%	3.19%
Error σ3	8.22%	3.77%	2.60%	3.99%	3.63%	3.05%
Error σ4	8.22%	5.06%	3.78%	4.86%	4.11%	4.00%

表 5 理论值与实验值偏差

d) 参照纯弯曲梁实验,验证"纯弯曲梁理论模型"是否可以用于本悬臂梁实验。

图 3 验证性实验经典误差分析方法数据处理流程图

表 6 判据值

P(N)	-20	-36	-52	-68	-84	-100
1	1.0533	1.0190	1.0128	1.0308	1.0377	1.0315
2	1.0460	1.0169	1.0142	1.0319	1.0377	1.0329
3	1.0896	1.0391	1.0267	1.0415	1.0377	1.0315
4	1.0896	1.0533	1.0393	1.0511	1.0429	1.0416

算数平均值 $\bar{c} = 1.0395$ 均方根误差 $\sigma = 0.019065$

使用 3S 准则检验,数据均属于 $(\bar{c}-3\sigma,\bar{c}+3\sigma)=(0.9823,1.0967)$,未发现异常数据

$$\sigma_{\bar{c}} = \frac{\sigma}{\sqrt{k}} = \frac{0.019065}{\sqrt{24}} = 0.003892$$

 $1 \notin (\bar{c} - 3\sigma_{\bar{c}}, \bar{c} + 3\sigma_{\bar{c}}) = (1.028, 1.051),$ "纯弯曲梁理论模型"不适用于本悬臂梁实验。

注意到该区间是整体大于 1 的,实验值与理论值相比也几乎都是偏大的,推测是实验数据中存在未消除的系统误差,导致实验结果整体比理论值偏大,进而导致最后计算所得区间整体大于 1。