

SEQUENCE LISTING

<110> Allen, Keith D.

<120> TRANSGENIC MICE CONTAINING INTESTINAL
ALKALINE PHOSPHATASE GENE DISRUPTIONS

<130> R-733

<140> US 09/900,708

<141> 2001-07-06

<150> US 60/216,476

<151> 2000-07-06

<150> US 60/221,489

<151> 2000-07-27

<160> 4

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 5293

<212> DNA

<213> Mus musculus

<400> 1

aagcttaatt gggggccaag tagacagcag gacattcagt gtgccttgc ttcccccgt 60
tttggctcca ggtatcagca agccaaacaa aggccccca tctaagctgt gttcttcagg 120
cctacctcca gcgccccagaa tgagcctatt ggccccccaca gctctcagga gcaagagtga 180
tgtacaggac attgtgagca agaagtgggt gctgcaaact gcataacccc cctccttaccg 240
gcaagacacc gagtgctcac acagagctta ctcgttaggac ttgccagctg gttaagacac 300
accctgccat tttctctaac aagcaggagt tcagttcagt tcacagggtt ggggtgggac 360
caggatggcc actttgatca catgggaggg gcgtgggtt gtgcagttag gaacaaagtc 420
tccccctatt taagtccagc gctctgtgct ttagttgatc cctgggtgtc cggtgtctttg 480
tctgctgctg tccccccacc agccccagcc atgcaggac cctgggtgtc gctgctgctg 540
ggcctcaggc tacagctgtc ctttagtgc attccaggta atgaggctcc ttccaatgaa 600
caccatccat ccaccatgg acccttcatg ctgacccttc ctctgttatt cccttggcca 660
gtggaggagg agaaccggc cttctggAAC aagaaggcag ccgaggccct ggatgctgcc 720
aagaagctgc agcccatca gacatcagct aagaacctca tcatcttcct gggtgacgg 780
gagtgtgtga gcgaggcctg ccaccctggg gcccttgc tccaagtacc cagggccact 840
ggtgggtacg gacaggcctc agggttcagt cctgacgagg ttctgtcttct tcaggaatgg 900
gggtaccaac agtgcacgac accaggatcc taaagggaca gttggaaaggcatctaggac 960
ctgagacacc cctagccatg gaccgcttcc catatatggc tctgttcaag gtgagttctt 1020
agccacatct gaaatgactg atgggatcca gggcaaggga ggcagagagg ctcgggtgaa 1080
gaaataaatg tctgtttga gcccagggttgg ggtgtctctg tccccagaca tacagtgtgg 1140
acagacaggt tccagacagt gcaagcacgg ccaccgcata cctgtgtggg gtcaagacca 1200
actacaagac catcggttgc agtgcagccg cgagattcga ccagtgcac accacattt 1260
gcaatgaggt ctttcgtgc atgtaccgtc ccaagaaaagc aggtgagttg gagccaggct 1320
cagctatggg gggcaaggct aggggactgg atgtctcacc ctgacccttgc ccgtcttcag 1380
gaaaatccgt aggtgtggc accaccacca gagtgcagca cgcctctccc tcgggcacat 1440
atgttcacac agtgaaccgc aattggatgc gggatgctga catgcctgcc tctgcgtgc 1500
gggaagggttgc caaggacatt gctacacaac tcatacataa catggacatt aatgtaaagg 1560
taagcatgtc aaagggagag ggtaaaggga gggagaggag gagaaggagg gggagggagg 1620
gggaggtcag ggggtcaag gggggaaagggttgc gcaaaaccttgc tagactgaac 1680
tccctggatc ttctgggttc tttgaggccc ggttagttca gttcccacat acctgggtgag 1740
gagcttaggaa ctggcaggaa aaggaggcag aagacaaccc aaagtccacc ttccttcatac 1800
ctctctgacc acaggtgtac cttgggtgggg ggcgaaaata catgtttcct gctggaaaccc 1860

cagaccccgat gatccaaat gatgctaatt agactggAAC cagattggat ggcaggaatc 1920
tggcaggat atggctgtca aagcaccagg tgaccgactg cagaatatta gtgatacagt 1980
ggagaccagg gaaggggctt gaaccttacc agttgcttat gtcctctag ggatcccagt 2040
atgtttggaa tcgtgaacaa ctcattcaga aggcccagga tccgtcagt acataccctca 2100
tggtaatgg ccccacactt cctgcactgg tacacctcac atggcaacca ctgatccct 2160
gtgtatatat gtaccgtac cccactgcca agcttggat tcaccagtat atatttttgt 2220
tttgcacccaggcctt gagcctgttag acacaaaatt tgatattcaa cgagatcccc 2280
tgatggaccc atctctgaag gatatgacag agacggccgt gaaagtgcA agcaggaacc 2340
ccaaaggcct ttatctctt gtggagggtg agtctccaag ctcccatgga aagaggggac 2400
aatggacagg gacaggctca agtcactgg cttcctgcag gggccgaat cgaccgttgt 2460
caccatctgg gcacagctta tctggcgctg actgaggctg tgatgttcga cttagccatc 2520
gagagggcca gccagctcac tagtgaacgc gacactctga ccatagtcac tgctgaccac 2580
tcccatgtct tctctttgg tggctacaca cttcgaggga cctccatctt cgtaggttc 2640
gggaacagtgcagggctgc aattacgtac agaataacttc tgagccatcg ttttctctgt 2700
ctgtaaaatg gacagaaaatg gcacctgcct tggtgggatc tagcaacgc tgaaccactg 2760
gccaggcaaa aggccccggc tcgtctaaggc atcattcttgcagggaaaaaa gtgtccctct 2820
tccccatgc agggctggct cccctcaatg ctctggacgg caagccctac acctccatcc 2880
tgtatggcaa cggcccgaggc tatgtcggtc cagggggaaag acccaacgtc accggcgctg 2940
aaagcagtga gtgcgggtgg gtggcttgcc tgaaggctgg gtagaggtga ctcagatcag 3000
agtccctctcc cttAACatct tgcccttacc aggtggctca tcgtaccgc ggcaggctgc 3060
tgtgcgggtg aagtccggaga cccacggcgg ggaggacgtg gcgatattcg cgcgtggccc 3120
gcaggcgcac ttgtgcacg ggggtgcagga gcagaactac atcgcgcacg tcatggccctc 3180
tgcaggctgc ctggagccct acaccgactg cggcttggca cccctgcag atgaaagcca 3240
gaccaccacg acaacccgccc agaccacccat caccaccacc accaccacca ccaccaccac 3300
aaccaccccg gtcataaca ggcggcagaag cctggggccca gccaccggccc cgctggctc 3360
ggcgctgtg gccggatgc tgatgctact actaggggct cctggggagt cttAAactcc 3420
agcacatcta ggctccaccc actaggtccc acgcctcac ctggcccttc cttccctga 3480
cctcagtgtct ccctgcattc tccctgcggg ctctacccca ggatcccttc tctgtcttc 3540
tgctactggc ctcatgtcta gccctacctt gcattgcagc ttccaggttc ctcctaccca 3600
ggcactcaca aaggccaatc acctctgagc tagcagccag ctcagacccc cacagagta 3660
cttctccca ggcagcatga ccaccaaggc ctggacccctc cggggcaat cggactctc 3720
cttttgcctt catccatcg cccctagaaa aagataggat cccgcaataa ttgtggagg 3780
accaaacatg cacctggccca ttggcacttc ctccgagctt gaatccatct tacaggctct 3840
gtaccaggat ctaaggcaca agagaacaca gagagggct gtctccac tactccctgg 3900
tctaattgtc tggcagggtgg caaggctacg gtgtggatc ccctagccag ctttgacat 3960
agttcttcct ctagtctct ggaccagctc cacattcaaa accatcatgg ctcagccata 4020
ccaaacccaca gagcgaagat tctgaaatcg ttccggccct tcatgtctat tgcccagcta 4080
ggagattcaa agagctgtac cccacccac tctcagggtca tctcagggtt cacctaaatt 4140
tctgaactga gaaaagtccc taacttccca ggtctgcatt cccctggggatc gagtcagtc 4200
aataataaaa gaatgttattc aatacaatag caatgtcat tttcttttc ttccggctcaa 4260
aaccagagcc tagtgcctgc taggaacgtg ctctgcccact gatccatagc cccatatcat 4320
ctcctccctt cccctctctt ctccctccccc tccctctctt atgactctgt 4380
agcccaagct ggcctcaat ttatgacagt ccacttgctc cagtctccca gatgctggat 4440
ttaagtgtg agccacactc ctagcatctt agtaggacct ttgcagaagg aaagcctgaa 4500
gtgtctggag cactgaggatc agatggggatc ggggtaatag tggagcctca gttggagaga 4560
gacagccagc tgagaagat cctgaatgtg gtgaaggcct gagccaaacac cacacagcag 4620
tgctaattccc ccacccccc ggcagcgt cagctggaaatc gttgcaacga ctgggtcaga 4680
gagggtggct gggacagagg atgcaaagat ggagctgcaaa ggagctgtgg gaggagagga 4740
agaactttaa aatccatggc agtgcgttca caagccttgc aataagaatt caggacgtgg 4800
tacttttctt attgcaggaa atatgcaatc tttccctt tttcctgtt tttttttcc 4860
atggggggatc ggaatgggtg ttagatatacg gagctggatc ggcaggggg agatgcagac 4920
cctaaccatc tctgacttgc attggaaactt ggtggagcact ccccccgtatgatcttgg 4980
ccctgtctca acctggccca tgaggacatt tgaaggaatt acgtaaaggt ggattaagct 5040
gtgtttctca gtaagtttg caacactaca aatttatctg tacattttagt aaggtacaaa 5100
aacacactt gctcccacta gtaatattag gaagattgaa tatgcacatctt tatttgctaa 5160
aatcttgatt taacactgtg aaacatcaat tcgaaatctt ggctctcgaa gtatgttatt 5220
tcaattccgg atttttagtgg ctgtcgagaa aatatggag ctgaatggaa aaaggccatc 5280
gttaacaaag ctt 5293

<210> 2

<211> 559

<212> PRT

<213> Mus musculus

<400> 2

Met Gln Gly Pro Trp Val Leu Leu Leu Gly Leu Arg Leu Gln Leu
1 5 10 15
Ser Leu Ser Val Ile Pro Val Glu Glu Asn Pro Ala Phe Trp Asn
20 25 30
Lys Lys Ala Ala Glu Ala Leu Asp Ala Ala Lys Lys Leu Gln Pro Ile
35 40 45
Gln Thr Ser Ala Lys Asn Leu Ile Ile Phe Leu Gly Asp Gly Met Gly
50 55 60
Val Pro Thr Val Thr Ala Thr Arg Ile Leu Lys Gly Gln Leu Glu Gly
65 70 75 80
His Leu Gly Pro Glu Thr Pro Leu Ala Met Asp Arg Phe Pro Tyr Met
85 90 95
Ala Leu Ser Lys Thr Tyr Ser Val Asp Arg Gln Val Pro Asp Ser Ala
100 105 110
Ser Thr Ala Thr Ala Tyr Leu Cys Gly Val Lys Thr Asn Tyr Lys Thr
115 120 125
Ile Gly Leu Ser Ala Ala Ala Arg Phe Asp Gln Cys Asn Thr Thr Phe
130 135 140
Gly Asn Glu Val Phe Ser Val Met Tyr Arg Ala Lys Lys Ala Gly Lys
145 150 155 160
Ser Val Gly Val Val Thr Thr Arg Val Gln His Ala Ser Pro Ser
165 170 175
Gly Thr Tyr Val His Thr Val Asn Arg Asn Trp Tyr Gly Asp Ala Asp
180 185 190
Met Pro Ala Ser Ala Leu Arg Glu Gly Cys Lys Asp Ile Ala Thr Gln
195 200 205
Leu Ile Ser Asn Met Asp Ile Asn Val Ile Leu Gly Gly Arg Lys
210 215 220
Tyr Met Phe Pro Ala Gly Thr Pro Asp Pro Glu Tyr Pro Asn Asp Ala
225 230 235 240
Asn Glu Thr Gly Thr Arg Leu Asp Gly Arg Asn Leu Val Gln Glu Trp
245 250 255
Leu Ser Lys His Gln Gly Ser Gln Tyr Val Trp Asn Arg Glu Gln Leu
260 265 270
Ile Gln Lys Ala Gln Asp Pro Ser Val Thr Tyr Leu Met Gly Leu Phe
275 280 285
Glu Pro Val Asp Thr Lys Phe Asp Ile Gln Arg Asp Pro Leu Met Asp
290 295 300
Pro Ser Leu Lys Asp Met Thr Glu Thr Ala Val Lys Val Leu Ser Arg
305 310 315 320
Asn Pro Lys Gly Phe Tyr Leu Phe Val Glu Gly Arg Ile Asp Arg
325 330 335
Gly His His Leu Gly Thr Ala Tyr Leu Ala Leu Thr Glu Ala Val Met
340 345 350
Phe Asp Leu Ala Ile Glu Arg Ala Ser Gln Leu Thr Ser Glu Arg Asp
355 360 365
Thr Leu Thr Ile Val Thr Ala Asp His Ser His Val Phe Ser Phe Gly
370 375 380
Gly Tyr Thr Leu Arg Gly Thr Ser Ile Phe Gly Leu Ala Pro Leu Asn
385 390 395 400
Ala Leu Asp Gly Lys Pro Tyr Thr Ser Ile Leu Tyr Gly Asn Gly Pro
405 410 415
Gly Tyr Val Gly Thr Gly Glu Arg Pro Asn Val Thr Ala Ala Glu Ser
420 425 430
Ser Gly Ser Ser Tyr Arg Arg Gln Ala Ala Val Pro Val Lys Ser Glu
435 440 445
Thr His Gly Gly Glu Asp Val Ala Ile Phe Ala Arg Gly Pro Gln Ala

450	455	460
His Leu Val His Gly Val Gln Glu Gln Asn Tyr Ile Ala His Val Met		
465	470	475
Ala Ser Ala Gly Cys Leu Glu Pro Tyr Thr Asp Cys Gly Leu Ala Pro		480
485	490	495
Pro Ala Asp Glu Ser Gln Thr Thr Thr Arg Gln Thr Thr Ile		
500	505	510
Thr Thr Thr Thr Thr Thr Thr Thr Pro Val His Asn		
515	520	525
Ser Ala Arg Ser Leu Gly Pro Ala Thr Ala Pro Leu Ala Leu Ala Leu		
530	535	540
Leu Ala Gly Met Leu Met Leu Leu Leu Gly Ala Pro Ala Glu Ser		
545	550	555

<210> 3

<211> 200

<212> DNA

<213> Artificial Sequence

<220>

<223> Targeting vector

<400> 3

cactttgatc catggggaggg gcgtgggtt gtgcagtttag gaacaaagtc tccccctatt	60
taagtccagg cactctgtgc tttagtttat ccctgggtgtc tcgtgtcttt gtctgctgt	120
gtcccgccac cagcccccagc catgcagggc acctgggtgc tgctgctgt gggcctcagg	180
ctacagctgt cccttagtgt	200

<210> 4

<211> 200

<212> DNA

<213> Artificial Sequence

<220>

<223> Targeting vector

<400> 4

gagaaccgg ccttctggaa caagaaggca gccgaggccc tggatgctgc caagaagctg	60
cagcccattc agacatcagc taagaacctc atcatcttcc tgggcacgg tgagtgtgt	120
agcgaggcct ggccaccctg gggcccttgt actccaagta cccagggcca ctgggtggta	180
cggacaggcc tcagggttca	200