

Оптоелектронни елементи

Полупроводникови елементи

Въведение

Оптоелектронните елементи излъчват, преобразуват или използват електромагнитни лъчения във видимия, инфрачервен или ултравиолетов спектър.

Класификация

Оптоелектронните елементи се разделят на:

- **Излъчватели** преобразуват електрическата енергия в лъчиста
- **Фотоприемници** преобразуват лъчистата енергия в електрическа
- Оптрони обединяват източник на лъчиста енергия, оптична среда и фотоприемник

Цели и предпоставки

Разглеждат се структурата, принципът на действие, характеристиите и параметрите на оптоелектронните елементи и основните им приложения.

Познавате

Разбирате

Анализирате

След изучаване на материала вие би трябвало да:

- Свойствата на светодиодите
- Видовете фотоприемници
- Предимствата на оптроните
- Основните приложения на оптоелектронните елементи
- Принципа на действие на светодиодите
- Принципа на действие на фотоприемниците
- Разликата между инфрачервени и индикаторни светодиоди
- Влиянието на широчината на забранената зона върху дължината на вълната на излъчваната светлина
- Токовете и напреженията в схеми със светодиоди

Предпоставки: полупроводници, изправителни диоди

Излъчватели

Изобретателите на сините светодиоди получиха Нобелова награда за физика за 2014 за нов енергоспестяващ и екологичен източник на светлина.

Професорите Исаму Акасаки, Хироши Амано и Шуджи Накамура са направили първите сини светодиоди в началото на 1990-те години.

Чрез комбиниране на синя светлина със съществуващите червени и зелени светодиоди те са разработили ново поколение ярки, енергийно ефективни бели осветителни тела.

Светодиоди

Светодиодите са ПП елементи, които преобразуват електрическата енергия в некохерентно светлинно лъчение. Те имат един *PN* преход.

Структура на светодиод

Принцип на действие

Принципът им на действие се основава на процесите на рекомбинация, протичащи в право включен *PN* преход.

Принцип на действие – илюстрация

- 🐤 При право включване започва инжекция на токоносители.
- Инжектираните електрони от *n*-областта рекомбинират с дупките от *p*-областта. Електроните имат по-високо енергийно ниво и при падането на нивата на дупките губят енергия.
- 🛮 Енергията се излъчва под формата на квантове светлина фотони.
- Явлението се нарича електролуминисценция.

Електролуминисценция

Дължина на вълната

$$hv = \frac{hc}{\lambda} = \Delta W$$

$$\lambda = \frac{hc}{\Delta W} = \frac{1200}{\Delta W}$$

 λ = 0.38 – 0.76 μm видима област

 $\Delta W = 1.6 - 3.1 \text{ eV (GaP, SiC, GaAlAs, GaAsP)}$

Колкото по-голяма е широчината на забранената зона, толкова по-голяма е енергията на излъчения фотон и толкова по-висока е честотата на излъчената светлина (респективно по-къса дължината на вълната й).

Типове светодиоди

Според спектъра на излъчената светлина светодиодите се делят на инфрачервени и индикаторни.

Индикаторните излъчват във видимия спектър ($\lambda = 380 - 760$ nm)

Цвят на излъчената светлина

Violet ~ 3.17eV
Blue ~ 2.73eV
Green ~ 2.52eV GalnN/ GaN
Yellow ~ 2.15eV
Orange ~ 2.08eV
Red ~ 1.62eV

∆W на полупроводника, за да излъчва тази дължина на вълната

Конструкция на светодиода

Специфичните свойства на диода се определят от неговата конструкция. Оптическата леща в корпуса формира пространствения ъгъл на излъчване и възпрепятства пълното вътрешното отражение на лъчите.

Конструкция на светодиод

Конструкция на светодиод

VA характеристика

Поради по-широката забранена зона на материалите, светодиодите имат значително по-голям пад в права посока от Ge и Si изправителни диоди.

$$I = I_S(e^{\frac{U}{m\phi_T}} - 1)$$

VA характеристика на червен и зелен светодиод

Светлинна характеристика

Представлява зависимостта на излъчения светлинен поток Φ от тока I_F , протичаш през диода.

Областта на насищане при големи стойности на тока се дължи на нарастване на относителния дял на безизлъчвателната рекомбинация при загряване на прехода.

Спектрална характеристика

Спектралната характеристика дава зависимостта на интензитета на излъчване на светодиода от дължината на вълната. Тя се определя от вида на полупроводниковия материал и легиращите примеси в него.

Чувствителност на човешкото око към спектъра на лъчението

Приложение на светодиодите

- Инфрачервените в дистанционни управления
- Индикаторните главно за визуално представяне на информация

- 7-сегментни индикатори,
- Светодиодни дисплеи
- Осветителни тела

Фотоприемници

Фотоприемниците преобразуват лъчистата енергия в електрическа

Действието им се основава на генериране на двойка токоносители под въздействие на светлинно лъчение с подходяща дължина на вълната.

Видове – фоторезистори, фотодиоди, фототранзистори, фототиристори

Фотоорезистори

Фоторезисторите са полупроводникови елементи, чието съпротивление намалява при увеличаване на осветеността върху повърхността му.

Типично приложение – светломер

VA характеристика

Фоторесизторът има линейна волтамперна характеристика.

$$I_{ph} = k\Phi U$$

k – специфична интегрална чувствителност, mA/V.In

Фотодиод

$$I_{ph} = k\Phi$$

Принципът на действие на фотодиода се основава на увеличаване на обратния ток на *pn* прехода при осветяването му.

Допълнителната енергия от облъчването довежда до разкъсване на ковалентни връзки, при което се генерират електрони и дупки, които увеличават обраятния ток.

VA характеристика

Фототокът е значително по-голям от топлинния ток на прехода, поради което при облъчване даже при напрежение нула през диода тече ток.

Фотодиодът се характеризира с **най-голямо бързодействие** от всички фотоприемници (10⁻⁹ – 10⁻¹¹ s).

Фотоелемент

Полупроводниковите фотоелементи преобразуват светлинната енергия в електрическа. Те са фотодиоди, работещи във фотогенераторен режим – без външен източник на напрежение.

При облъчване се генерират двойки токоносители. Полето на PN прехода ги разделя и те се натрупват в двата края на полупроводника, създавайки фото електродвижещо напрежение. При затваряне на веригата през нея протича ток.

Схема на свързване

Фото електродвижещо напрежение (е.д.н) = 0.5-0.55 V. к.п.д = 20% – 40-50%.

Фотоволтаичните модули се изграждат от свързването на множество индивидуални слънчеви клетки, за да се достигнат необходимите нива на напрежение и ток. Те директно преобразуват слънчевата светлина в електричество като ефективноста при преобразуването е 20% - 40-50%.

Приложения

Електрозахранване на космически станции

Електрозахранване на къщи от слънцето

Слънчевите клетки, които се използват в калкулаторите и спътниците, често се наричат фотоволтаични клетки. Името произтича от фото в смисъл на светлина и волт – в смисъл на електричество.

Фотоотранзистор

Фототранзисторът има отворена база, която се облъчва. Генерираните токоносители в прехода преминават в колектора и формират колекторния ток. Неговата големина зависи от интензитета на светлинния поток.

VA характеристика

$$I_C = (\beta + 1)(I_{ph} + I_{CBO}) \approx (\beta + 1)I_{ph}$$

Волтамперната характеристика на фототранзистора е като изходната характеристика на транзистор в схема ОЕ с тази разлика, че тук фототранзисторът се управлва от светлинен поток, а не от базовия ток.

Интегралната чувствителност на фототранзистора e (1+β) пъти по-голяма от тази на фотодиода.

Оптрони

Оптроните са полупроводникови елементи, които обхващат в една конструкция източник на светлина и фотоприемник.

- Източник инфрачервен светодиод (преобразува ел. сигнал в светлинен)
- Оптична среда въздушна междина, световод (предава светлинния сигнал)
- Фотоприемник фоторезистор, фотодиод, фототранзистор, фототиристор (преобразува обратно светлинния сигнал в електрически)

Принцип на действие

Времедиаграмите на входния и изходен електрически сигнали са идентични, независимо че входната и изходна амплкитуда често се различават.

Източникът (предавателят) използва електрически сигнал и го преобразува в лъч модулирана светлина във видимия или инфрачервен спектър. Този лъч се разпространява през прозрачна оптична среда – най-често въздушна междина. Лъчът попада при фотоприемника, който преобразува модулираната светлина обратно в електрически сигнал.

Оптрони – предимства

- 🐤 Липса на електрическа връзка между входа и изхода
- 💖 Възможност за галванично разделяне на електрически вериги
- Висока шумоустойчивост на оптичен канал
- Еднопосочност на потока информация и липса на обратно въздействие на фотоприемника върху източника на излъчване
- Широка лента на пропускане в честотен обхват (от 0 до10¹³ 10¹⁴ Hz)
- Възможност на директно управление от съвременните интегрални схеми