Jean-Pierre Florens'notes

Notations:

$$y_1 = \eta + \varphi(X_1) + U_1 \ y_2 = \eta + \varphi(X_2) + U_2$$

 $\to y = y_2 - y_1 = \varphi(X_2) - \varphi(X_1) + U$

Hypothèse d'échangrabilité

- (y_1, y_2, X_1, X_2) est distribué comme (y_2, y_1, X_2, X_1)
- X_1 et X_2 ont même loi marginale et L_X^2 est l'ensemble de fonctions de carré intégrable pour cette loi.

$$\varphi \in L^2_X$$

Minimisation:

 $\frac{\text{Proposition}}{\text{de }E(y\mid X_2=x)=\varphi(x)-E(\varphi(X_1)\mid X_2=x)}\text{ si et seulement si }\varphi\text{ est solution}$

(ou de manière équivalente de
$$E(y \mid X_1 = x) = E(\varphi(X_2) \mid X_i = x) - \varphi(x))$$

<u>Démontration</u>: La condition de premier ordre de la minimisation s'écrit:

$$E\left[(-\tilde{\varphi}(X_2) + \tilde{\varphi}(X_1))(y - \varphi(X_2) + \varphi(X_1)\right] = 0 \quad \forall \tilde{\varphi} \in L_X^2.$$

(On peut l'obtenir par dérivée de Gâteaux en remplacant φ par $\varphi + \alpha \tilde{\varphi}$. On dérivera par rapport à α et on fait $\alpha = 0$).

L'échangeabilité implique que

$$E[(-\hat{\varphi}(X_2)(y - \varphi(X_2) + \varphi(X_1))] = E(\hat{\varphi}(X_1)(y - \varphi(X_2) + \varphi(X_1)))$$

et donc on doit résoudre $E(\tilde{\varphi}(X_2)(y-\varphi(X_2)+\varphi(X_1))=0 \ \forall \tilde{\varphi}$

Soit
$$E(y \mid X_2) - \varphi(X_2) + E(\varphi(X_1) \mid (X_2)) = 0$$
 d'où la solution.

Cas sans échangeabilité

On suppose dans un premier temps que les deux fonctions sont différentes et on écrit $y = \varphi_2(X_2) - \varphi_1(X_1) + U$

 $(\varphi_2 \in L^2_{X_2}, \varphi_1 \in L^2_{X_1})$ et on minimise $E(y - \varphi_2(X_2) + \varphi_1(X_1)^2$ par rapport á φ_1 et φ_2 . On a les conditions du premier ordre

$$E(\hat{\varphi}_2(X_2)(y - \varphi_2(X_2) + \varphi_1(X_1)) = 0$$

$$E(\hat{\varphi}_1(X_1)(y - \varphi_2(X_2) + \varphi_1(X_1)) = 0$$

$$\Leftrightarrow E(y \mid X_2) = E(y(X_2) - \varphi_2(X_2) + E(\varphi_1(X_1) \mid X_2))$$

$$E(y \mid X_2) = E(y \mid X_1) - E(\varphi_2(X_2) \mid X_1) + \varphi_1(X_1)$$

Par substitution on a:

$$E(y \mid X_2) - E(E(y \mid X_1) \mid X_2) = \varphi_2(X_2) - E(E(\varphi_2(X_2) \mid X_1) \mid X_2)$$

avec $X_2 = x$

et

$$E(Y \mid X_1) - E(E(y \mid X_2) \mid X_1) = E(E(\varphi_1(X_1) \mid X_2) \mid X_1) - \varphi_1(X_1)$$

avec $X_1 = x$

De chaque équation on tire φ_1 et φ_2 par résolution d'une équation de type II et on peut ensuite estimer φ par $\frac{1}{2}(\varphi_1 + \varphi_2)$. On peut aussi empiler les deux équations avec $\varphi_1 = \varphi_2$ et résoudre en φ .