Dos ejercicios de cálculo

26 de septiembre de 2016

- 1. Comenzamos con el semicírculo de radio uno y centro el origen. Elegimos un ángulo $0 < \theta < \pi/2$ y representamos las rectas $x = sen(\theta)$ y $x = -cos(\theta)$ de forma que junto con el eje y = 0 y la circunferencia encierran una región que llamamos A. Llamamos B al complemento de A en el semicírculo. Determinar el valor máximo, cuando θ varía, del cociente $F(\theta) := Area(A)/Area(B)$.
 - a) Calculamos el área de A: la región es la unión de un sector circular y dos triángulos rectángulos. Los triángulos son iguales, y, por tanto, el ángulo del sector circular es $\pi/2$. Ahora es fácil ver que $Area(A) = \frac{\pi}{4} + sen(\theta)cos(\theta),$

$$Area(A) = \frac{\pi}{4} + sen(\theta)cos(\theta),$$

y, por tanto,

$$\begin{split} Area(B) &= \frac{\pi}{4} - sen(\theta)cos(\theta), \\ F(\theta) &= \frac{\frac{\pi}{4} + sen(\theta)cos(\theta)}{\frac{\pi}{4} - sen(\theta)cos(\theta)}. \end{split}$$

- b) Ahora el problema es que la derivada de $F(\theta)$ es complicada y, por tanto, tampoco va a ser fácil resolver la ecuación $F'(\theta)=0$.
- Si representamos gráficamente $F(\theta)$ vemos que debe tener un único máximo en $\pi/4$, y además la gráfica es simétrica respecto a la recta $x=\pi/4$. Para comprobar la simetría basta ver que $F(\theta)=F(\frac{\pi}{2}-\theta)$ para todo $0<\theta<\pi/2$.
- d) La función $F(\theta)$ es la composición de

$$t\!=\!sen(\theta)cos(\theta) \text{ y } g(t)\!=\!\frac{\frac{\pi}{4}\!+\!t}{\frac{\pi}{4}\!-\!t}.$$

Para terminar el ejercicio debes usar el estudio por separado de las dos funciones y, quizá, la regla de la cadena para concluir que $F(\theta)$ tiene un único máximo en el intervalo $(0,\pi/2)$ en el punto $\pi/4$.

¿Cómo se podría hacer el primer apartado usando Sage en lugar del argumento elemental dado?

- 2. Consideramos la parábola de ecuación $y=x^2$ y una circunferencia de centro (0,a) y tal que es tangente a la parábola en dos puntos distintos. Determinar los valores de a para los que tal circunferencia existe.
 - a) No nos dan el radio de la circunferencia, pero la condición de tangencia debería determinar el radio.
 - b) Solución Geométrica: Para que las dos curvas sean tangentes en un punto (x,x^2) debe ocurrir que la recta tangente a la parábola en ese punto debe ser perpendicular a la recta que une el centro (0,a) con el punto (x,x^2) . Esta condición permite determinar x en función de a, y, finalmente, obtenemos que la condición buscada es simplemente a>1/2.
 - c) SOLUCIÓN ALGEBRAICA: Consideramos una circunferencia arbitraria de centro (0,a) y radio R, e imponemos la condición de que el sistema de ecuaciones

$$y-x^2=0$$
; $x^2+(y-a)^2-R^2=0$,

 $y-x^2=0;\ x^2+(y-a)^2-R^2=0,$ tenga dos raíces reales dobles (¿por qué es esta la condición que hay que imponer?). La resolución del sistema, lleva al sustituir y por x^2 en la segunda ecuación, a una ecuación bicuadrada en x que es fácil de resolver. Una vez resuelte podemos discutir los casos que aparecen para llegar a la misma solución que usando geometría.

Para las dos soluciones propuestas todavía HAY ALGO DE TRABAJO QUE HACER.

En la hoja de Sage 27-Cavan-tangencias.sws puede verse una animación de la solución.

¹Dos curvas son tangentes en un punto en que se cortan si tienen la misma recta tangente en ese punto.