# Unofficial Beamer Theme for KUT LATEX Presentation in KUT Style

Yuki Yanai

Kochi University of Technology

June 12, 2018

#### **Outline**

- 1 Introduction
  - Beamer Theme for KUT
- 2 Basics
  - Blocks
  - Equations
- 3 Tables and Figures
  - Tables
  - Figures
- 4 Conclusion

#### Let's use KUT-Beamer!

- An unofficial Beamer Theme for KUT
- Uses the school color
- Dark theme (called tosayamada) is also available

Blocks

#### **Use blocks**

# Block

This is a block environment.

Blocks

#### **Use blocks**

#### Block

This is a block environment.

## Example

This is an example block environment.

#### **Use blocks**

#### Block

This is a block environment.

## Example

This is an example block environment.

#### **Alert**

This is an alert block environment.

# **Show equations**

Probability density function of Normal( $\mu$ ,  $\sigma^2$ ):

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]. \tag{1}$$

PDF of the Standard Normal Distribution: Normal(0,1)

$$f(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right). \tag{2}$$

#### Show the results with Tables

Table: Estimation by OLS: Vote share (%) is the outcome

|                       | Estimates |         |
|-----------------------|-----------|---------|
| Explanatory variables | Model 1   | Model 2 |
| Constant              | 7.91      | -2.07   |
|                       | (0.69)    | (0.72)  |
| Experience            | 18.10     | 45.91   |
|                       | (1.23)    | (1.58)  |
| Expense               | 1.85      | 4.87    |
|                       | (0.12)    | (0.16)  |
| Experience × Expense  |           | -4.76   |
|                       |           | (0.21)  |
| Observations (n)      | 1124      | 1124    |
| Adjusted $R^2$        | 0.56      | 0.70    |
| A/                    |           |         |

Note: Standard errors are in parentheses.

Figures

# **Explain things with figures**



Figure: Normal PDF

#### **Pictures**



**Thomas Bayes** 



Pierre-Simon Laplace

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)}$$

## Conclusion

With LATEX and KUT-Beamer, you can

- create awesome slides
- express KUT pride

#### With LATEX and KUT-Beamer, you can

- create awesome slides
- express KUT pride

Your feedback is highly appreciated!

Email: yanai.yuki@kochi-tech.ac.jp