Krzysztof Pszeniczny

nr albumu: 347208 str. 1/2 Seria: 7

Lemat 1. Jest \aleph_0 skończonych podzbiorów \mathbb{N} .

Dowód. Niech A oznacza rodzinę wszystkich skończonych podzbiorów \mathbb{N} . Łatwo widać, że $\aleph_0 \leqslant |A|$, gdyż można określić iniekcję $\varphi : \mathbb{N} \to A$ jako $\varphi(x) = \{x\}$.

Z drugiej strony, pokażemy iniekcję $\psi: A \to \{0, 1\}^*$. $\psi(X)$ definiujemy następująco: skoro X jest skończony, to ma element największy n. Teraz jednak łatwo zbiorowi X przyporządkować ciąg n+1 bitów: i-ty z nich (licząc od zera) mówi, czy $i \in A$. Trywialnie widać, że jest to iniekcja. Gdyby bowiem jakieś dwa zbiory X, Y miały przypisane takie same ciągi to dla każdego $i \in \mathbb{N}$ byłoby $i \in X \iff i \in Y$.

Jednak na wykładzie pokazaliśmy, że $|\{0,1\}^*| = \aleph_0$. Stąd na mocy tw. Cantora-Bernsteina, $|A| = \aleph_0$.

1 Zadanie

Zauważmy, że dla każdego $n \in \mathbb{N}$ dodatniego zachodzi $\aleph_0^n = \aleph_0$ (można to pokazać indukcyjnie używając faktu z wykładu, że $\aleph_0 \cdot \aleph_0 = \aleph_0$).

Zbiór tych funkcji częściowych o skończonej dziedzinie pogrupujmy ze względu na dziedzinę, uzyskując zbiory $\mathbb{N}^{\mathcal{A}}$ dla \mathcal{A} – skończonego podzbioru \mathbb{N} . Jednak na mocy powyższej uwagi, $|\mathbb{N}^{\mathcal{A}}| = \aleph_0$.

Jednak skończonych podzbiorów liczb naturalnych jest przeliczalnie wiele, skąd zbiór wszystkich skończonych multizbiorów zawiera się w sumie przeliczalnie wielu zbiorów przeliczalnych, a więc ma moc co najwyżej \aleph_0 . Jednak łatwo widać, że funkcje częściowe (de facto singletony) indeksowane liczbami naturalnymi c, dane jako $\lambda x.if x = 0$ then c else \bot , gdzie \bot oznacza nieokreślenie funkcji, są parami różne i jest ich \aleph_0 , a więc badany zbiór na mocy tw. Cantora-Bernsteina ma moc \aleph_0 .

2 Zadanie

Część a i b

Pokażę, że każda klasa abstrakcji \mathcal{A} ma moc \mathfrak{c} . W tym celu zauważmy, że każda taka klasa jest podzbiorem $\mathbb{Q}^{\mathbb{N}}$, więc $|\mathcal{A}| \leq |\mathbb{Q}^{\mathbb{N}}| = \mathfrak{c}$.

W drugą stronę zaś ustalmy $c \in \mathcal{A}$ i określmy funkcję $\nu : P(\mathbb{N}) \to \mathbb{Q}^{\mathbb{N}}$ jako:

$$\nu(X)(n) = \begin{cases} c(n) & \text{gdy } n \in X \\ c(n) \left(1 - \frac{1}{2^{n+1}}\right) & \text{gdy } n \notin X \end{cases}$$

Najpierw zaważmy, że dla każdego $X\subseteq\mathbb{N}$ mamy $\nu(X)\in U$. Istotnie, ciąg $\nu(X)$ nie ma wyrazów równych zero, zaś zachodzi $|\frac{c(n)}{2}|\leqslant |\nu(X)(n)|\leqslant |c(n)|$, skąd na mocy twierdzenia o trzech ciągach $\lim_{n\to\infty} |\nu(X)(n)|=0$, skąd i ciąg $\nu(X)$ dąży do 0.

Ponadto zauważmy, że $1 - \frac{1}{2^{n+1}} \leqslant \frac{\nu(X)(n)}{c(n)} \leqslant 1$, a więc na mocy twierdzenia o trzech ciągach $\lim \frac{\nu(X)(n)}{c(n)} = 1$, skąd istotnie $\nu(X)$ oraz c należą do jednej klasy abstrakcji.

Ponadto mamy, że ν jest różnowartościowe. Załóżmy bowiem, że $\nu(X) = \nu(Y)$. Wtedy dla każdego n mamy, że $\frac{\nu(X)(n)}{c(n)} = 1 \iff n \in X$ oraz $\frac{\nu(Y)(n)}{c(n)} = 1 \iff n \in Y$ skąd z równości $\nu(X)$ oraz $\nu(Y)$ uzyskujemy, że X = Y. Stąd mamy, że rzeczywiście klasa $\mathcal{A} = [c]$ jest mocy przynajmniej \mathfrak{c} , co na mocy twierdzenia Cantora-

Stąd mamy, że rzeczywiście klasa $\mathcal{A} = [c]$ jest mocy przynajmniej \mathfrak{c} , co na mocy twierdzenia Cantora-Bernsteina daje, że jest mocy \mathfrak{c} , skąd każde dwie klasy są równoliczne oraz każda klasa jest równoliczna z \mathbb{R} .

2.1 Część c

Niech q_1,q_2,\ldots będzie ciągiem wszystkich liczb wymiernych. Określmy funkcję: $\psi:\mathbb{R}\to\mathbb{Q}^\mathbb{N}$ jako:

$$\psi(r)(n) = \begin{cases} \frac{1}{n} & \text{gdy } q_n < r \\ \frac{2}{n} & \text{w p.p.} \end{cases}$$

Widzimy łatwo, że $\frac{1}{n} \leqslant \psi(r)(n) \leqslant \frac{2}{n}$, a więc z twierdzenia o trzech ciągach $\lim_{n \to \infty} \psi(r)(n) = 0$, ponadto nigdy $\psi(r)(n) = 0$, a więc $Rg(\psi) \subseteq U$.

Podstawy matematyki

Rozpatrzmy teraz pewne dwie liczby rzeczywiste $r_1 < r_2$ i popatrzmy na granicę $\lim_{n \to \infty} \frac{\psi(r_1)(n)}{\psi(r_2)(n)}$. Istnieje nieskończenie wiele liczb wymiernych mniejszych niż r_1 . Jeśli $q_n < r_1$, to także $q_n < r_2$, co daje, że $\frac{\psi(r_1)(n)}{\psi(r_2)(n)} = \frac{\frac{1}{n}}{\frac{1}{n}} = 1$, a więc badany ciąg posiada podciąg nieskończony stale równy 1.

Z drugiej strony, na mocy faktów dowodzonych na analizie I.1, istnieje nieskończenie wiele liczb wymiernych w przedziale (r_1,r_2) . Wtedy zaś dla $r_1 < q_n < r_2$ zachodzi $\frac{\psi(r_1)(n)}{\psi(r_2)(n)} = \frac{\frac{2}{n}}{\frac{1}{n}} = 2$. Stąd badany ciąg ma podciąg nieskończony stale równy 2. Stąd odpowiednia granica ilorazów nie istnieje.

Stąd jednak $\psi(r_1) \not\simeq \psi(r_2)$, skąd łatwo widać, że funkcja $\psi': \mathbb{R} \to U_{/\simeq}$ dana jako $\psi'(r) = [\psi(r)]_{\simeq}$ jest iniektywna. Co daje $\mathfrak{c} \leqslant |U_{/\simeq}|$.

Z drugiej strony, istnieje funkcja wyboru $\varphi:U_{/\simeq}\to U$, jednak $U\subseteq\mathbb{Q}^\mathbb{N}$, więc łatwo widać, że φ daje iniekcję z $U_{/\simeq}\to\mathbb{Q}^\mathbb{N}$ Stąd $\mathfrak{c}\geqslant |U_{/\simeq}|$, skąd twierdzenie Cantora-Bernsteina orzeka $|U_{/\simeq}|=\mathfrak{c}$.