Linear Algebra

Shan-Hung Wu shwu@cs.nthu.edu.tw

Department of Computer Science, National Tsing Hua University, Taiwan

Large-Scale ML, Fall 2016

Outline

- 1 Span & Linear Dependence
- 2 Norms
- 3 Eigendecomposition
- 4 Singular Value Decomposition
- 5 Traces and Determinant

Outline

- 1 Span & Linear Dependence
- 2 Norms
- 3 Eigendecomposition
- 4 Singular Value Decomposition
- 5 Traces and Determinant

Matrix Representation of Linear Functions

• A linear function (or map or transformation) $f: \mathbb{R}^n \to \mathbb{R}^m$ can be represented by a matrix A, $A \in \mathbb{R}^{m \times n}$, such that

$$f(\mathbf{x}) = A\mathbf{x} = \mathbf{y}, \forall \mathbf{x} \in \mathbb{R}^n, \mathbf{y} \in \mathbb{R}^m$$

Matrix Representation of Linear Functions

• A linear function (or map or transformation) $f: \mathbb{R}^n \to \mathbb{R}^m$ can be represented by a matrix A, $A \in \mathbb{R}^{m \times n}$, such that

$$f(\mathbf{x}) = A\mathbf{x} = \mathbf{y}, \forall \mathbf{x} \in \mathbb{R}^n, \mathbf{y} \in \mathbb{R}^m$$

- $span(A_{::1}, \dots, A_{::n})$ is called the **column space** of A
- $rank(\mathbf{A}) = dim(span(\mathbf{A}_{:,1}, \cdots, \mathbf{A}_{:,n}))$

• Given A and y, solve x in Ax = y

- Given A and y, solve x in Ax = y
- What kind of A that makes Ax = y always have a solution?

- Given A and y, solve x in Ax = y
- What kind of A that makes Ax = y always have a solution?
 - Since $Ax = \sum_i x_i A_{:,i}$, the column space of A must contain \mathbb{R}^m , i.e., $\mathbb{R}^m \subseteq span(A_{:,1}, \dots, A_{:,n})$
 - Implies $n \ge m$

- Given A and y, solve x in Ax = y
- What kind of A that makes Ax = y always have a solution?
 - Since $Ax = \sum_i x_i A_{:,i}$, the column space of A must contain \mathbb{R}^m , i.e., $\mathbb{R}^m \subseteq span(A_{:,1},\cdots,A_{:,n})$
 - Implies $n \ge m$
- When does Ax = y always have exactly one solution?

- Given A and y, solve x in Ax = y
- What kind of A that makes Ax = y always have a solution?
 - Since $Ax = \sum_i x_i A_{:,i}$, the column space of A must contain \mathbb{R}^m , i.e., $\mathbb{R}^m \subseteq span(A_{:,1}, \cdots, A_{:,n})$
 - Implies $n \ge m$
- When does Ax = y always have exactly one solution?
 - A has at most m columns; otherwise there is more than one x parametrizing each y
 - Implies n=m and the columns of \boldsymbol{A} are *linear independent* with each other

- Given A and y, solve x in Ax = y
- What kind of A that makes Ax = y always have a solution?
 - Since $Ax = \sum_i x_i A_{:,i}$, the column space of A must contain \mathbb{R}^m , i.e., $\mathbb{R}^m \subseteq span(A_{:,1}, \cdots, A_{:,n})$
 - Implies $n \ge m$
- When does Ax = y always have exactly one solution?
 - A has at most m columns; otherwise there is more than one x parametrizing each y
 - Implies n = m and the columns of A are *linear independent* with each other
 - A^{-1} exists at this time, and $x = A^{-1}y$

Outline

- 1 Span & Linear Dependence
- 2 Norms
- 3 Eigendecomposition
- 4 Singular Value Decomposition
- 5 Traces and Determinant

Vector Norms

- A *norm* of vectors is a function $\|\cdot\|$ that maps vectors to non-negative values satisfying
 - $||x|| = 0 \Rightarrow x = 0$
 - $||x+y|| \le ||x|| + ||y||$ (the triangle inequality)
 - $||c\mathbf{x}|| = |c| \cdot ||\mathbf{x}||, \forall c \in \mathbb{R}$

Vector Norms

- A *norm* of vectors is a function $\|\cdot\|$ that maps vectors to non-negative values satisfying
 - $||x|| = 0 \Rightarrow x = 0$
 - $||x+y|| \le ||x|| + ||y||$ (the triangle inequality)
 - $||c\mathbf{x}|| = |c| \cdot ||\mathbf{x}||, \forall c \in \mathbb{R}$
- \bullet E.g., the L^p norm

$$\|\boldsymbol{x}\|_p = \left(\sum_i |x_i|^p\right)^{1/p}$$

- L^2 (Euclidean) norm: $||x|| = (x^\top x)^{1/2}$
- \bullet L^1 norm: $||x||_1 = \sum_i |x_i|$
- Max norm: $||x||_{\infty} = \max_i |x_i|$

Vector Norms

- A *norm* of vectors is a function $\|\cdot\|$ that maps vectors to non-negative values satisfying
 - $||x|| = 0 \Rightarrow x = 0$
 - $||x+y|| \le ||x|| + ||y||$ (the triangle inequality)
 - $\bullet ||c\mathbf{x}|| = |c| \cdot ||\mathbf{x}||, \forall c \in \mathbb{R}$
- \bullet E.g., the L^p norm

$$\|\mathbf{x}\|_p = \left(\sum_i |x_i|^p\right)^{1/p}$$

- L^2 (Euclidean) norm: $||x|| = (x^\top x)^{1/2}$
- \bullet L^1 norm: $||x||_1 = \sum_i |x_i|$
- Max norm: $||x||_{\infty} = \max_i |x_i|$
- $x^{\top}y = ||x|| ||y|| \cos \theta$, where θ is the angle between x and y
 - x and y are **orthonormal** iff $x^{\top}y = 0$ (orthogonal) and ||x|| = ||y|| = 1 (unit vectors)

Matrix Norms

Frobenius norm

$$\|A\|_F = \sqrt{\sum_{i,j} A_{i,j}^2}$$

- Analogous to the L^2 norm of a vector
- An orthogonal matrix is a square matrix whose column (resp. rows) are mutually orthonormal, i.e.,

$$A^{\mathsf{T}}A = I = AA^{\mathsf{T}}$$

• Implies $A^{-1} = A^{\top}$

Outline

- 1 Span & Linear Dependence
- 2 Norms
- 3 Eigendecomposition
- 4 Singular Value Decomposition
- 5 Traces and Determinant

Decomposition

- Integers can be decomposed into prime factors
 - E.g., $12 = 2 \times 2 \times 3$
 - Helps identify useful properties, e.g., 12 is not divisible by 5

Decomposition

- Integers can be decomposed into prime factors
 - E.g., $12 = 2 \times 2 \times 3$
 - Helps identify useful properties, e.g., 12 is not divisible by 5
- Can we decompose matrices to identify information about their functional properties more easily?

Eigenvectors and Eigenvalues

• An eigenvector of a square matrix A is a non-zero vector v such that multiplication by A alters only the scale of v:

$$Av = \lambda v$$
,

where $\lambda \in \mathbb{R}$ is called the $\emph{eigenvalue}$ corresponding to this eigenvector

Eigenvectors and Eigenvalues

• An eigenvector of a square matrix A is a non-zero vector v such that multiplication by A alters only the scale of v:

$$Av = \lambda v$$
,

where $\lambda \in \mathbb{R}$ is called the $\emph{eigenvalue}$ corresponding to this eigenvector

- If v is an eigenvector, so is any its scaling $cv, c \in \mathbb{R}, c \neq 0$
 - cv has the same eigenvalue
 - Thus, we usually look for unit eigenvectors

Eigendecomposition I

• Every *real symmetric* matrix $A \in \mathbb{R}^{n \times n}$ can be decomposed into

$$\boldsymbol{A} = \boldsymbol{Q} \operatorname{diag}(\lambda) \boldsymbol{Q}^{\top}$$

- $\lambda \in \mathbb{R}^n$ consists of real-valued eigenvalues (usually sorted in descending order)
- $Q = [v^{(1)}, \dots, v^{(n)}]$ is an orthogonal matrix whose columns are corresponding eigenvectors

Eigendecomposition I

• Every *real symmetric* matrix $A \in \mathbb{R}^{n \times n}$ can be decomposed into

$$\boldsymbol{A} = \boldsymbol{Q} \operatorname{diag}(\lambda) \boldsymbol{Q}^{\top}$$

- $\lambda \in \mathbb{R}^n$ consists of real-valued eigenvalues (usually sorted in descending order)
- $\mathbf{Q} = [\mathbf{v}^{(1)}, \cdots, \mathbf{v}^{(n)}]$ is an orthogonal matrix whose columns are corresponding eigenvectors
- Eigendecomposition may not be unique
 - When any two or more eigenvectors share the same eigenvalue
 - Then any set of orthogonal vectors lying in their span are also eigenvectors with that eigenvalue

Eigendecomposition I

• Every *real symmetric* matrix $A \in \mathbb{R}^{n \times n}$ can be decomposed into

$$\boldsymbol{A} = \boldsymbol{Q} \operatorname{diag}(\lambda) \boldsymbol{Q}^{\top}$$

- $\lambda \in \mathbb{R}^n$ consists of real-valued eigenvalues (usually sorted in descending order)
- $Q = [v^{(1)}, \dots, v^{(n)}]$ is an orthogonal matrix whose columns are corresponding eigenvectors
- Eigendecomposition may not be unique
 - When any two or more eigenvectors share the same eigenvalue
 - Then any set of orthogonal vectors lying in their span are also eigenvectors with that eigenvalue
- What can we tell after decomposition?

Eigendecomposition II

• Because $Q = [v^{(1)}, \dots, v^{(n)}]$ is an orthogonal matrix, we can think of A as scaling space by λ_i in direction $v^{(i)}$

https://blog.csdn.net/jinshengtao/article/details/18448355

Rayleigh's Quotient

Theorem (Rayleigh's Quotient)

Given a symmetric matrix $A \in \mathbb{R}^{n \times n}$, then $\forall x \in \mathbb{R}^n$,

$$\lambda_{\min} \leq \frac{x^{\top}Ax}{x^{\top}x} \leq \lambda_{\max},$$

where λ_{min} and λ_{max} are the smallest and largest eigenvalues of A.

Singularity

$$ullet$$
 Suppose $m{A} = m{Q} {
m diag}(m{\lambda}) m{Q}^{ op}$, then $m{A}^{-1} = m{Q} {
m diag}(m{\lambda})^{-1} m{Q}^{ op}$

Singularity

- ullet Suppose $m{A} = m{Q} {
 m diag}(m{\lambda}) m{Q}^{ op}$, then $m{A}^{-1} = m{Q} {
 m diag}(m{\lambda})^{-1} m{Q}^{ op}$
- ullet A is non-singular (invertible) iff none of the eigenvalues is zero

Positive Definite Matrices I

- A is *positive semidefinite* (denoted as $A \succeq O$) iff its eigenvalues are all non-negative
 - \bullet $x^{\top}Ax > 0$ for any x
- A is **positive** definite (denoted as $A \succ O$) iff its eigenvalues are all positive
 - Further ensures that $x^{\top}Ax = 0 \Rightarrow x = 0$
- Why these matter?

Positive Definite Matrices II

• A function f is *quadratic* iff it can be written as $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top}A\mathbf{x} - \mathbf{b}^{\top}\mathbf{x} + c$, where A is symmetric

Positive Definite Matrices II

• A function f is quadratic iff it can be written as $f(x) = \frac{1}{2}x^{T}Ax - b^{T}x + c$, where A is symmetric • $x^{T}Ax$ is called the quadratic form

Positive Definite Matrices II

• A function f is quadratic iff it can be written as $f(x) = \frac{1}{2}x^{T}Ax - b^{T}x + c$, where A is symmetric • $x^{T}Ax$ is called the quadratic form

Figure: Graph of a quadratic form when A is a) positive definite; b) negative definite; c) positive semidefinite (singular); d) indefinite matrix.

Outline

- 1 Span & Linear Dependence
- 2 Norms
- 3 Eigendecomposition
- 4 Singular Value Decomposition
- 5 Traces and Determinant

Singular Value Decomposition (SVD)

ullet Eigendecomposition requires square matrices. What if A is not square?

Singular Value Decomposition (SVD)

- Eigendecomposition requires square matrices. What if *A* is not square?
- Every real matrix $A \in \mathbb{R}^{m \times n}$ has a **singular value decomposition**:

$$A = UDV^{\top},$$

where $U \in \mathbb{R}^{m \times m}$. $D \in \mathbb{R}^{m \times n}$. and $V \in \mathbb{R}^{n \times n}$

- U and V are orthogonal matrices, and their columns are called the leftand right-singular vectors respectively
- Elements along the diagonal of *D* are called the *singular values*

Singular Value Decomposition (SVD)

- ullet Eigendecomposition requires square matrices. What if A is not square?
- Every real matrix $A \in \mathbb{R}^{m \times n}$ has a **singular value decomposition**:

$$A = UDV^{\top},$$

where $U \in \mathbb{R}^{m \times m}$, $D \in \mathbb{R}^{m \times n}$, and $V \in \mathbb{R}^{n \times n}$

- U and V are orthogonal matrices, and their columns are called the leftand right-singular vectors respectively
- Elements along the diagonal of D are called the singular values
- Left-singular vectors of A are eigenvectors of AA^{\top}
- Right-singular vectors of A are eigenvectors of $A^{\top}A$
- Non-zero singular values of A are square roots of eigenvalues of AA^{\top} (or $A^{\top}A$)

• Matrix inversion is not defined for matrices that are not square

- Matrix inversion is not defined for matrices that are not square
- Suppose we want to make a left-inverse $B \in \mathbb{R}^{n \times m}$ of a matrix $A \in \mathbb{R}^{m \times n}$ so that we can solve a linear equation Ax = y by left-multiplying each side to obtain x = By

- Matrix inversion is not defined for matrices that are not square
- Suppose we want to make a left-inverse $B \in \mathbb{R}^{n \times m}$ of a matrix $A \in \mathbb{R}^{m \times n}$ so that we can solve a linear equation Ax = y by left-multiplying each side to obtain x = By
 - If m > n, then it is possible to have no such **B**
 - If m < n, then there could be multiple \boldsymbol{B} 's

- Matrix inversion is not defined for matrices that are not square
- Suppose we want to make a left-inverse $B \in \mathbb{R}^{n \times m}$ of a matrix $A \in \mathbb{R}^{m \times n}$ so that we can solve a linear equation Ax = y by left-multiplying each side to obtain x = By
 - If m > n, then it is possible to have no such **B**
 - If m < n, then there could be multiple **B**'s
- By letting $B = A^{\dagger}$ the *Moore-Penrose pseudoinverse*, we can make headway in these cases:
 - When m = n and A^{-1} exists, A^{\dagger} degenerates to A^{-1}

- Matrix inversion is not defined for matrices that are not square
- Suppose we want to make a left-inverse $B \in \mathbb{R}^{n \times m}$ of a matrix $A \in \mathbb{R}^{m \times n}$ so that we can solve a linear equation Ax = y by left-multiplying each side to obtain x = By
 - If m > n, then it is possible to have no such **B**
 - If m < n, then there could be multiple **B**'s
- By letting $B = A^{\dagger}$ the *Moore-Penrose pseudoinverse*, we can make headway in these cases:
 - When m = n and A^{-1} exists, A^{\dagger} degenerates to A^{-1}
 - When m>n, A^\dagger returns the x for which Ax is closest to y in terms of Euclidean norm $\|Ax-y\|$

- Matrix inversion is not defined for matrices that are not square
- Suppose we want to make a left-inverse $B \in \mathbb{R}^{n \times m}$ of a matrix $A \in \mathbb{R}^{m \times n}$ so that we can solve a linear equation Ax = y by left-multiplying each side to obtain x = By
 - If m > n, then it is possible to have no such **B**
 - If m < n, then there could be multiple **B**'s
- By letting $B = A^{\dagger}$ the *Moore-Penrose pseudoinverse*, we can make headway in these cases:
 - When m=n and A^{-1} exists, A^{\dagger} degenerates to A^{-1}
 - When m > n, A^{\dagger} returns the x for which Ax is closest to y in terms of Euclidean norm ||Ax y||
 - When m < n, A^{\dagger} returns the solution $x = A^{\dagger}y$ with minimal Euclidean norm ||x|| among all possible solutions

• The Moore-Penrose pseudoinverse is defined as:

$$\boldsymbol{A}^{\dagger} = \lim_{\alpha \searrow 0} (\boldsymbol{A}^{\top} \boldsymbol{A} + \alpha \boldsymbol{I}_n)^{-1} \boldsymbol{A}^{\top}$$

$$\bullet A^{\dagger}A = I$$

• The Moore-Penrose pseudoinverse is defined as:

$$\boldsymbol{A}^{\dagger} = \lim_{\alpha \searrow 0} (\boldsymbol{A}^{\top} \boldsymbol{A} + \alpha \boldsymbol{I}_n)^{-1} \boldsymbol{A}^{\top}$$

- $\bullet A^{\dagger}A = I$
- In practice, it is computed by $A^{\dagger} = VD^{\dagger}U^{\top}$, where $UDV^{\top} = A$
 - $D^{\dagger} \in \mathbb{R}^{n \times m}$ is obtained by taking the inverses of its non-zero elements then taking the transpose

Outline

- 1 Span & Linear Dependence
- 2 Norms
- 3 Eigendecomposition
- 4 Singular Value Decomposition
- 5 Traces and Determinant

Traces

$$r(A) = \sum_{i} A_{i,i}$$

Traces

•
$$\operatorname{tr}(A) = \sum_{i} A_{i,i}$$

$$\bullet$$
 tr(A) = tr(A^{\top})

•
$$\operatorname{tr}(a\mathbf{A} + b\mathbf{B}) = a\operatorname{tr}(\mathbf{A}) + b\operatorname{tr}(\mathbf{B})$$

$$\|A\|_E^2 = \operatorname{tr}(AA^\top) = \operatorname{tr}(A^\top A)$$

•
$$\operatorname{tr}(ABC) = \operatorname{tr}(BCA) = \operatorname{tr}(CAB)$$

Holds even if the products have different shapes

• Determinant $\det(\cdot)$ is a function that maps a square matrix $A \in \mathbb{R}^{n \times n}$ to a real value:

$$\det(\mathbf{A}) = \sum_{i} (-1)^{i+1} A_{1,i} \det(\mathbf{A}_{-1,-i}),$$

• Determinant $\det(\cdot)$ is a function that maps a square matrix $A \in \mathbb{R}^{n \times n}$ to a real value:

$$\det(\mathbf{A}) = \sum_{i} (-1)^{i+1} A_{1,i} \det(\mathbf{A}_{-1,-i}),$$

- \bullet $\det(\mathbf{A}^{\top}) = \det(\mathbf{A})$
- $det(A^{-1}) = 1/\det(A)$

• Determinant $\det(\cdot)$ is a function that maps a square matrix $A \in \mathbb{R}^{n \times n}$ to a real value:

$$\det(\mathbf{A}) = \sum_{i} (-1)^{i+1} A_{1,i} \det(\mathbf{A}_{-1,-i}),$$

- \bullet $\det(\mathbf{A}^{\top}) = \det(\mathbf{A})$
- $det(A^{-1}) = 1/\det(A)$
- $\det(A) = \prod_i \lambda_i$
- What does it mean?

• Determinant $\det(\cdot)$ is a function that maps a square matrix $A \in \mathbb{R}^{n \times n}$ to a real value:

$$\det(\mathbf{A}) = \sum_{i} (-1)^{i+1} A_{1,i} \det(\mathbf{A}_{-1,-i}),$$

- \bullet $\det(\mathbf{A}^{\top}) = \det(\mathbf{A})$
- $det(A^{-1}) = 1/\det(A)$
- $\det(A) = \prod_i \lambda_i$
- What does it mean? det(A) can be also regarded as the signed area
 of the image of the "unit square"

• Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, we have $[1,0]A = [a,b]$, $[0,1]A = [c,d]$, and $\det(A) = ad - bc$

Figure: The area of the parallelogram is the absolute value of the determinant of the matrix formed by the images of the standard basis vectors representing the parallelogram's sides.

• The absolute value of the determinant can be thought of as a measure of how much multiplication by the matrix expands or contracts space

- The absolute value of the determinant can be thought of as a measure of how much multiplication by the matrix expands or contracts space
- If $\det(A) = 0$, then space is contracted completely along at least one dimension
 - \bullet A is invertible iff $det(A) \neq 0$

- The absolute value of the determinant can be thought of as a measure of how much multiplication by the matrix expands or contracts space
- \bullet If $\det(\pmb{A})=0$, then space is contracted completely along at least one dimension
 - A is invertible iff $det(A) \neq 0$
- If det(A) = 1, then the transformation is volume-preserving