

Optimize Quantum Learning on Near-Term Noisy Quantum Computers

Presenter: Zhirui Hu

Email: zhu2@gmu.edu

George Mason University

Electrical and Computer Engineering

Introduction Why Quantum Computing?

Applications

Molecular Simulation

Cybersecurity

Drug / Electronic discovery

Financial modeling / forecasting

Traffic optimization

Algorithms

QML =

QFT

QNN

Grover's

VQE

QAOA

Method	Speedup
Bayesian inference [24,25] Online perceptron [26] Least-squares fitting [27] Classical Boltzmann machine [28] Quantum Boltzmann machine [29,30] Quantum PCA [22]	$O(\sqrt{N})$ $O(\sqrt{N})$ $O(\log N)$ $O(\log N)$ $O(\log N)$ $O(\log N)$
Quantum support vector machine [23] Quantum reinforcement learning [31]	$O(\log N)$ $O(\sqrt{N})$

Advantages of quantum computing

Parallelism

Entanglement

Background: Quantum Learning Basics & Property

Quantum Learning Basics

- 1. Define a learning problem and the loss function
- 2. Select a learning model
- 3. Training a model

Training on quantum computer:

- advantages:
- potential on qubit scalability
- disadvantages:
- difficult to optimize parameters
- training time

Training on noisy simulator:

- advantages:
- accurate gradient-based method
- disadvantages:
- limitation on qubit scalability
- difficult to simulate noise

Background: Noise on Quantum Device

Take superconducting quantum computer as a case study

Quantum Noise Source

Source:

Control

$$X = R_X(\pi)$$
$$\tilde{X} := R_X(\pi + \epsilon)$$

Environment

- Charge noise
- Magnetic flux noise
- Crosstalk
- ...

Quantum Noise Modeling

IBM, T1, T2 (Decoherent noise)

ibm_oslo OpenQASM 3

thermal relaxation time

dephasing time

Characterization of noise sources and how they impact a given quantum system.

(c) Pure dephasing

(d) Transverse relaxation

(b) Longitudinal relaxation

Relaxation $\Gamma_{1\downarrow}$

Transverse noise

Quantum Noise Modeling

IBM, Gate error and readout error

ibm_oslo OpenQASM 3

Fluctuating Quantum Noise

Fluctuating noise on quantum device

(a) Fluctuating quantum noise on real quantum computer (1-year long daily profiling)

Fluctuating accuracy

Quantum Noise heterogeneous

Temporal

Spatial

Quantum Neural Network Compression

Motivation

Why Compression in QNN?

From noise perspective:

- As the gates becomes more, the control error will be accumulated, and the result will be divergent.
- As time grows, the deconherent error will become severe.
- Even if noise can be learnt in the parameter, the noise is extremely random and varying, which will damage the accuracy.

Ref: Zlatko K. Minev, IBM Quantum.

Motivation

Why Compression in QNN?

From optimization perspective

Fig. 3. Noise-aware training may miss optimal solution: (a) Optimization surface of 2-parameter VQC under noise free environment. (b) Optimization surface of the same VQC under a noisy environment. (c) Difference between (a) and (b).

Technique: Classical Pruning

(a) Non-structured weight pruning and (b) two types of structured weight pruning.

ref: PatDNN: Achieving Real-Time DNN Execution on Mobile Devices with Pattern-based Weight Pruning

Technique: From Classical To Quantum

Pruning in Classical ML

(b) Classical NN with Pruning

Pruning in **Quantum ML**

Technique: From Classical To Quantum

• Quantization in Classical ML

• Quantization in Quantum ML

Compiler makes a difference!

Technique: LUT Construction

□ Compression-Level Lookup Table (LUT)

A combination of pruning/quantization level called as "compression level".

Table 1: circuit depth of compiled quantum gates on IBM quantum processors; parameters are in the range of $[0, 4\pi]$

Gate	0	π	2π	3π	4π	$\pi/2$	$3\pi/2$	$5\pi/2$	$7\pi/2$	others
RX	0	1	0	1	0	1	3	1	3	5
RY	0	2	0	2	0	3	3	3	3	4
CRX	0	8	5	9	0	11	11	11	11	11
CRY	0	8	6	8	0	10	10	10	10	10

- **Pruning:** Not only 0 can be pruned, but also 2π , 4π , etc.
- Quantization: Different quantization level may have different cost

How can we decide the compression level?

Technique: Compiler diversity

Logical
Gate
Opt. &Decomp.

Mapping & Routing

Physical
Gate
Decomp.& Opt

basic gates for decomp.

SU(4), SU(2)

RX, RY, RZ, CRX, CRY, CRZ

U3, RXX, RYY, RZZ, RZX

....

basic gate son quantum device.

CNOT,ID,SX,X,RZ

Rx, Ry, and XX

.....

Output pulse

Technique:

- Two objective:

 a.Maximize accuracy of classification
 b.Minimize circuit length
- Quantum NN ----limited number of parameters
- Decide compression level for each parameters:

A heuristic metric: $\mathcal{M}(\theta, G_i(\gamma_{i,k})) = acc(W(\theta^{i,k})) \cdot \tau(\theta^{i,k}, \theta)$ Select the compression level of max matric

Leverage ADMM for two-objective optimization

Technique: Admm-based framework

Three stages: 1. Preparation; 2. Compression; 3. Deployment

CompVQC Framework: Experiment Results

Results on Multiple IBM Quantum Computers

Dat	tasets	Syn-Dat	aset-4	Syn-Dataset-16		
Compress	ion Method	Acc. TCD		Acc.	TCD	
Compress	ion Method	(vs. Baseline)	(Speedup)	(vs. Baseline) (Speed		
Qiskit Aer	Vanilla VQC		23(0)	96%(0)	51(0)	
QISKII AEI	Comp-VQC	99%(5%)	11(2.09×)	98%(2%)	23(2.22×)	
IBM Q	Vanilla VQC	79%(-15%)	23(1.00×)	86%(-10%)	51(1.00×)	
	Comp-VQC	99%(5%)	11(2.09×)	98%(2%)	23(2.22×)	

Acc.(vs. Baseline)	ibm_lagos	ibm_perth	ibm_jakarta
Vanilla VQC(TCD=23)	79%(0)	86%(0)	92%(0)
CompVQC(TCD=11)	99%(20%)	98%(12%)	100%(8%)

• CompVQC can reduce circuit length by 2x while the accuracy is also higher in a noisy environment.

Circuit compression can make the QNN model more robust to the noise

Compression-Aided Framework to battle againt fluctuating noise

Fluctuating Quantum Noise

Fluctuating noise on quantum device

(a) Fluctuating quantum noise on real quantum computer (1-year long daily profiling)

Fluctuating accuracy

Fluctuating Quantum Noise

Observation: Fluctuating noise can collapse the model accuracy of a noise-aware trained QNN model Observation: Compression can boost the performance of QNN than noise-aware training.

The accuracy of QNN on 4-class MNIST from August 2021 to August 2022 on IBM backend belem using Qiskit Simulation.

Observation 1: Models Compressed on different noise levels (dates) have different performance on the same day

Observation 2: Models Compressed on one noise level have different performance on different days

1 Noise aware compression

Fig. 6. Noise-aware mask generation in ADMM process.

Model Repository Construction

The cost of noise-aware compression everyday is very large.

=> clustering

Model Repository Construction

correlatio

n								
Acc-model0	0.78	-0.09	0.42	-0.0077	-0.38	0.0063	-0.19	
Acc-model1	0.7	-0.11	0.49	0.16	-0.49	0.058	-0.35	
	T1-Q0	T1-Q1	T2-Q0	T2-Q1	RO-Q0	RO-Q1	CNOT-Q1	

$$\rho = \left| \frac{\operatorname{cov}(X,Y)}{\sigma_x \sigma_y} \right|$$

X: accuracy of days

Y: different noise data of days

$$W = [\rho_{\{T1-Q0\}}, \rho_{\{T1-Q1\}}, \dots]$$

- clustering
- $dist_{L1}^{w}(\mathbf{c_i}, \mathbf{c_j}) = dist_{L_1}(\mathbf{w} \cdot \mathbf{c_i}, \mathbf{w} \cdot \mathbf{c_j})$ distance:

Solution: Offline + Online

Offline:

Use historic data to construct a repository by clustering

Online:

- 1 Select a model to do inference
- 2 Maintain the repository: whether to generate new models into the model repository manager.

Fig. 5. Illustration of the proposed Compression-Aided Framework (QuCAD).

Main experiment results

Detect	Method	Mean	VS.	Variance	Days	VS.	Days	VS.	Days	VS.
Dataset	Metilod	Accuracy	Baseline	variance	over 0.8	Baseline	over 0.7	Baseline	over 0.5	Baseline
	Baseline	68.40%	0.00%	0.014	18	0	70	0	137	0
	Noise-aware Train Once [4]	68.85%	0.45%	0.014	19	1	78	8	137	0
Seismic	Noise-aware Train Everyday	68.28%	-0.11%	0.013	22	4	69	-1	138	1
Wave	One-time Compression [15]	78.99%	10.59%	0.007	80	62	130	60	144	7
	QuCAD w/o offline	82.34%	13.95%	0.001	110	92	145	75	146	9
	QuCAD (ours)	83.75%	15.36%	0.001	133	115	146	76	146	9

Runing on real backend

Fig. 8. On earthquake detection dataset, the performance of different approaches on the 7-qubit quantum device, ibm-jakarta.

Training Time

Fig. 7. The comparison of training time and accuracy.

Distance Metric:

COMPARISON OF DIFFERENT CLUSTER

Method	K	Mean Acc. of Clusters	Mean Acc. of Samples
K-Means with L2	6	72.94%	78.45%
Proposed K-Means with $dist_{L1}^w$	6	75.83%	80.68%

Conclusion

There are two ways to optimize variational quantum circuits in NISQ era.

- Build up a robust variational quantum circuits
- Efficient noise-aware adaptation

Thanks for your attention!

zhu2@gmu.edu

George Mason University College of Engineering and Computing

> 4511 Patriot Cir Fairfax, Virginia 22030