

Kevin Maguire

April 23, 2014

— Layout

Layout

- Introduction: Lorentz Transformations
- Strange Minkowskian Line Element
- Singular Lorentz transformation
- The Fractional Linear Transformation
- Infinitesimal Lorentz Transformation
- Pure Radiation conditions

-Layout

Layout

- Introduction: Lorentz Transformations
- Strange Minkowskian Line Element
- Singular Lorentz transformation
- \bigcirc $SL(2,\mathbb{C})$ Matrices of the Lorentz Transformation
- The Fractional Linear Transformation
- Infinitesimal Lorentz Transformation
- Pure Radiation conditions

2017 07 23

-Layout

Layout

Singular Lorentz transformation

- Introduction: Lorentz Transformations
- Strange Minkowskian Line Element
- Singular Lorentz transformation
- $SL(2,\mathbb{C})$ Matrices of the Lorentz Transformation
- The Fractional Linear Transformation
- Infinitesimal Lorentz Transformation
- Pure Radiation conditions

2014 04 23

-Layout

Layout

Strange Minkowskian Line Element

SL(2, C) Matrices of the Lorentz Transformation

- Introduction: Lorentz Transformations
- Strange Minkowskian Line Element
- Singular Lorentz transformation
- **3** $SL(2,\mathbb{C})$ Matrices of the Lorentz Transformation
- The Fractional Linear Transformation
- Infinitesimal Lorentz Transformation
- Pure Radiation conditions

2014 04 23

Layout

Layout

Strange Minkowskian Line Element

- Introduction: Lorentz Transformations
- Strange Minkowskian Line Element
- Singular Lorentz transformation
- **3** $SL(2,\mathbb{C})$ Matrices of the Lorentz Transformation
- **5** The Fractional Linear Transformation
- Infinitesimal Lorentz Transformation
- Pure Radiation conditions

2017 04 23

Layout

Layout

Strange Minkowskian Line Element

SL(2, C) Matrices of the Lorentz Transformation

- Introduction: Lorentz Transformations
- Strange Minkowskian Line Element
- Singular Lorentz transformation
- **3** $SL(2,\mathbb{C})$ Matrices of the Lorentz Transformation
- **5** The Fractional Linear Transformation
- Infinitesimal Lorentz Transformation
- Pure Radiation conditions

2014 04 23

-Layout

Layout

Strange Minkowskian Line Element

SL(2, C) Matrices of the Lorentz Transformation

- Introduction: Lorentz Transformations
- Strange Minkowskian Line Element
- Singular Lorentz transformation
- **3** $SL(2,\mathbb{C})$ Matrices of the Lorentz Transformation
- **5** The Fractional Linear Transformation
- Infinitesimal Lorentz Transformation
- Pure Radiation conditions

- -Proper is det 1 . preserves the orientation of spacial axes, preserves handedness
- $\bullet\,$ –orthochronous means time is always positive and the direction of time is preserved
- ullet -Think of the standard Lornetz transformation, always two null directions at $x\pm t$

Introduction: Lorentz Transformations

 A Lorentz transformation is defined by the preservation of the quadratic form

$$x'^2+y'^2+z'^2-t'^2=x^2+y^2+z^2-t^2$$
,

in the transformation $(x, y, z, t) \rightarrow (x', y', z', t')$

- Take the Proper Orthochronous Lorentz Transformations (POLTs) which form the restricted Lorentz
- In general lorentz transformations
 have two invariant null directions

troduction: Lorentz Transformations

Introduction: Lorentz Transformations

- Proper is det 1. preserves the orientation of spacial axes, preserves handedness
- –orthochronous means time is always positive and the direction of time is preserved
- Think of the standard Lornetz transformation, always two null directions at $x \pm t$

Introduction: Lorentz Transformations

 A Lorentz transformation is defined by the preservation of the quadratic form

$$x'^2+y'^2+z'^2-t'^2=x^2+y^2+z^2-t^2$$
,

in the transformation

$$(x,y,z,t) \rightarrow (x',y',z',t')$$

- Take the Proper Orthochronous Lorentz Transformations(POLTs) which form the restricted Lorentz group $SO^{+}(1,3)$
- In general lorentz transformations

Introduction. Lorentz Transformations w A Lurentz transformation is defined. For the supplier of the supplin

- -Proper is det 1 . preserves the orientation of spacial axes, preserves handedness
- -orthochronous means time is always positive and the direction of time is preserved
- ullet Think of the standard Lornetz transformation, always two null directions at $x\pm t$

Introduction: Lorentz Transformations

 A Lorentz transformation is defined by the preservation of the quadratic form

$$x'^2+y'^2+z'^2-t'^2=x^2+y^2+z^2-t^2$$
,

in the transformation $(x, y, z, t) \rightarrow (x', y', z', t')$

- which form the restricted Lorentz group $SO^+(1,3)$
- In general lorentz transformations have two invariant null directions

- -Proper is det 1 . preserves the orientation of spacial axes, preserves handedness
- -orthochronous means time is always positive and the direction of time is preserved
- ullet -Think of the standard Lornetz transformation, always two null directions at $x\pm t$

Introduction: Lorentz Transformations

 A Lorentz transformation is defined by the preservation of the quadratic form

$$x'^2+y'^2+z'^2-t'^2=x^2+y^2+z^2-t^2$$
,

in the transformation $(x, y, z, t) \rightarrow (x', y', z', t')$

- Take the Proper Orthochronous Lorentz Transformations(POLTs) which form the restricted Lorentz group $SO^+(1,3)$
- In general lorentz transformations have two invariant null directions

Introduction: Lorentz Transformations

- -Proper is det 1 . preserves the orientation of spacial axes, preserves handedness
- -orthochronous means time is always positive and the direction of time is preserved
- ullet -Think of the standard Lornetz transformation, always two null directions at $x\pm t$

Introduction: Lorentz Transformations

 A Lorentz transformation is defined by the preservation of the quadratic form

$$x'^{2}+y'^{2}+z'^{2}-t'^{2}=x^{2}+y^{2}+z^{2}-t^{2},$$

in the transformation $(x, y, z, t) \rightarrow (x', y', z', t')$

 In general lorentz transformations have two invariant null directions

Layout

Layout

- derive a strange minkowskian line element
- making a complicated transformation that keeps a single null geodesic fixed look trivial
- Introduction: Lorentz Transformations
- Strange Minkowskian Line Element
- Singular Lorentz transformation
- \bigcirc $SL(2,\mathbb{C})$ Matrices of the Lorentz Transformation
- The Fractional Linear Transformation
- Infinitesimal Lorentz Transformation
- Pure Radiation conditions

- First we are going to derive a strange form of the Minkowskian line element.. of the vacuum field equations, which will be familiar to most of us
- to remove the coordinate singularity in the Schwarzchild solution
- \bullet These transformations put the line element in a form where we can take the limit as the energy goes to 0
- It is easily shown with further coord transforms that this is Kasner, but it wont be

Strange Minkowskian Line Element

Start with the Schwarzschild solution

$$\epsilon \mathrm{d}s^2 = \left(1 - \frac{2m}{r}\right)^{-1} \mathrm{d}r^2 + r^2 (\mathrm{d}\theta^2 + \sin^2\theta \mathrm{d}\phi^2) - \left(1 - \frac{2m}{r}\right) \mathrm{d}t^2.$$

• Make the Eddington-Finkelstein coordinate transformation [2]

$$u=t-r-2m\ln(r-2m).$$

• Make further coordinate transformations to obtain

$$\epsilon ds^2 = \frac{r^2}{\cosh^2 \mu \xi} (d\xi^2 + d\eta^2) - 2dudr - \left(\mu^2 - \frac{2k}{r}\right) du^2.$$

• Taking the limit as the energy, $\mu \to 0$ gives The Kasner Solution

$$\epsilon ds^2 = r^2 (d\xi^2 + d\eta^2) - 2dudr - \frac{2k}{r} du^2$$

- First we are going to derive a strange form of the Minkowskian line element.. of the vacuum field equations, which will be familiar to most of us
- to remove the coordinate singularity in the Schwarzchild solution
- These transformations put the line element in a form where we can take the limit as the energy goes to 0
- It is easily shown with further coord transforms that this is Kasner, but it wont be done here

Start with the Schwarzschild solution

$$\epsilon \mathrm{d}s^2 = \left(1 - \frac{2m}{r}\right)^{-1} \mathrm{d}r^2 + r^2 (\mathrm{d}\theta^2 + \sin^2\theta \mathrm{d}\phi^2) - \left(1 - \frac{2m}{r}\right) \mathrm{d}t^2.$$

• Make the Eddington-Finkelstein coordinate transformation [2]

$$u = t - r - 2m \ln(r - 2m).$$

Make further coordinate transformations to obtain

$$\epsilon ds^{2} = \frac{r^{2}}{\cosh^{2} \mu \xi} (d\xi^{2} + d\eta^{2}) - 2dudr - \left(\mu^{2} - \frac{2k}{r}\right) du^{2}$$

• Taking the limit as the energy, $\mu \to 0$ gives The Kasner Solution

$$\epsilon ds^2 = r^2 (d\xi^2 + d\eta^2) - 2dudr - \frac{2k}{r} du^2$$

- First we are going to derive a strange form of the Minkowskian line element.. of the vacuum field equations, which will be familiar to most of us
- to remove the coordinate singularity in the Schwarzchild solution
- These transformations put the line element in a form where we can take the limit as the energy goes to 0
- It is easily shown with further coord transforms that this is Kasner, but it wont be done here

Strange Minkowskian Line Element

Start with the Schwarzschild solution

$$\epsilon \mathrm{d}s^2 = \left(1 - \frac{2m}{r}\right)^{-1} \mathrm{d}r^2 + r^2 (\mathrm{d}\theta^2 + \sin^2\theta \mathrm{d}\phi^2) - \left(1 - \frac{2m}{r}\right) \mathrm{d}t^2.$$

• Make the Eddington-Finkelstein coordinate transformation [2]

$$u = t - r - 2m \ln(r - 2m).$$

Make further coordinate transformations to obtain

$$\epsilon \mathrm{d}s^2 = \frac{r^2}{\cosh^2 \mu \xi} (\mathrm{d}\xi^2 + \mathrm{d}\eta^2) - 2\mathrm{d}u\mathrm{d}r - \left(\mu^2 - \frac{2k}{r}\right) \mathrm{d}u^2.$$

ullet Taking the limit as the energy, $\mu \to 0$ gives The Kasner Solution

$$\epsilon ds^2 = r^2 (d\xi^2 + d\eta^2) - 2dudr - \frac{2k}{r} du^2$$

- First we are going to derive a strange form of the Minkowskian line element.. of the vacuum field equations, which will be familiar to most of us
- to remove the coordinate singularity in the Schwarzchild solution
- These transformations put the line element in a form where we can take the limit as the energy goes to 0
- It is easily shown with further coord transforms that this is Kasner, but it wont be done here

Strange Minkowskian Line Element

Start with the Schwarzschild solution

$$\epsilon \mathrm{d} s^2 = \left(1 - \frac{2m}{r}\right)^{-1} \mathrm{d} r^2 + r^2 (\mathrm{d} \theta^2 + \sin^2 \theta \mathrm{d} \phi^2) - \left(1 - \frac{2m}{r}\right) \mathrm{d} t^2.$$

• Make the Eddington-Finkelstein coordinate transformation [2]

$$u = t - r - 2m \ln(r - 2m).$$

Make further coordinate transformations to obtain

$$\epsilon \mathrm{d}s^2 = \frac{r^2}{\cosh^2 \mu \xi} (\mathrm{d}\xi^2 + \mathrm{d}\eta^2) - 2\mathrm{d}u\mathrm{d}r - \left(\mu^2 - \frac{2k}{r}\right) \mathrm{d}u^2.$$

ullet Taking the limit as the energy, $\mu o 0$ gives The Kasner Solution

$$\epsilon ds^2 = r^2 (d\xi^2 + d\eta^2) - 2du dr - \frac{2k}{r} du^2.$$

Strange Minkowskian Line Element a tens with the Schwarzschild subsets $ckx^2 = \left(1 - \frac{2m}{r}\right)^2 dx^2 + r^2(dx^2 + arc^2 dx^2) - \left(1 - \frac{2m}{r}\right) dx^2$ a Make the Edispart Fermionies constraint tensor [2] w = t - r - 2m(t - 2n)which for constraints transformation as (2n - 2n)which for the constraint transformation (2n - 2n) $akx^2 - \frac{arc^2}{cax^2} (ak^2 + dx^2) - 2datx - \left(ax^2 - \frac{2n}{r}\right) dx^2.$ a Taking the limit as the energy $\mu = 0$ given The Kenner Scholens $akx^2 - x^2 (kx^2 + dx^2) - 2kakx - \frac{2n}{r} kx^2.$

- First we are going to derive a strange form of the Minkowskian line element.. of the vacuum field equations, which will be familiar to most of us
- to remove the coordinate singularity in the Schwarzchild solution
- These transformations put the line element in a form where we can take the limit as the energy goes to 0
- It is easily shown with further coord transforms that this is Kasner, but it wont be done here

Strange Minkowskian Line Element

Start with the Schwarzschild solution

$$\epsilon \mathrm{d} s^2 = \left(1 - \frac{2m}{r}\right)^{-1} \mathrm{d} r^2 + r^2 (\mathrm{d} \theta^2 + \sin^2 \theta \mathrm{d} \phi^2) - \left(1 - \frac{2m}{r}\right) \mathrm{d} t^2.$$

• Make the Eddington-Finkelstein coordinate transformation [2]

$$u = t - r - 2m \ln(r - 2m).$$

Make further coordinate transformations to obtain

$$\epsilon \mathrm{d}s^2 = \frac{r^2}{\cosh^2 \mu \xi} (\mathrm{d}\xi^2 + \mathrm{d}\eta^2) - 2\mathrm{d}u\mathrm{d}r - \left(\mu^2 - \frac{2k}{r}\right) \mathrm{d}u^2.$$

ullet Taking the limit as the energy, $\mu o 0$ gives The Kasner Solution

$$\epsilon ds^2 = r^2 (d\xi^2 + d\eta^2) - 2dudr - \frac{2k}{r} du^2.$$

. Then with m=0 the strange Minkowskian line element is obtained $eds^2=r^2(d\xi^2+dy^2)-2d\omega dr.$

Strange Minkowskian Line Element

 Its easily shown with suitable coordinate transforms that this is minkowskian line element

 This is best shown by calculating the geodesic equations after the Eddington-Finkelstein coord transforms, all zero if u is proper time along the geodesic • Then with m = 0 the strange Minkowskian line element is obtained

$$\epsilon ds^2 = r^2 (d\xi^2 + d\eta^2) - 2dudr.$$

• It is easily shown that r = 0 gives

$$\mathrm{cd}s^2=0$$
.

and thus is a null geodesic

- Its easily shown with suitable coordinate transforms that this is minkowskian line element
- This is best shown by calculating the geodesic equations after the Eddington-Finkelstein coord transforms, all zero if u is proper time along the geodesic

Strange Minkowskian Line Element

• Then with m = 0 the strange Minkowskian line element is obtained

$$\epsilon ds^2 = r^2 (d\xi^2 + d\eta^2) - 2dudr.$$

• It is easily shown that r = 0 gives

$$\epsilon \mathrm{d}s^2 = 0$$
,

and thus is a null geodesic.

- Its easily shown with suitable coordinate transforms that this is minkowskian line element
- This is best shown by calculating the geodesic equations after the Eddington-Finkelstein coord transforms, all zero if u is proper time along the geodesic

Strange Minkowskian Line Element

• Then with m = 0 the strange Minkowskian line element is obtained

$$\epsilon ds^2 = r^2 (d\xi^2 + d\eta^2) - 2dudr.$$

• It is easily shown that r = 0 gives

$$\epsilon \mathrm{d}s^2 = 0$$
,

and thus is a null geodesic.

Layout

2014 04 23

Introduction: Lorentz Transformations Strange Minkowskian Line Element Singular Lorentz transformation Layout

LTs that leave one null invariant direction are constructed

- Introduction: Lorentz Transformations
- Strange Minkowskian Line Element
- Singular Lorentz transformation
- \bigcirc $SL(2,\mathbb{C})$ Matrices of the Lorentz Transformation
- The Fractional Linear Transformation
- Infinitesimal Lorentz Transformation
- Pure Radiation conditions

Singular Lorentz Transformation

- This is what we want, An LT which leaves one null invariant.
- The use in the previous coord transforms was to make this transformation look trivial
- So this is what the seemingly trivial transformation looks like in cartesians
- Again its clear that r = 0 keeps one direction fixed, as then z=t
- but it doesn't work both ways, not all 2 parameter abelian subgroups are singular lorentz transformations.

Singular Lorentz Transformation

• Define an arbitrary complex parameter $\zeta := \xi + i \eta,$ to get the new line element[3]

$$\epsilon ds^2 = r^2 d\zeta d\bar{\zeta} - 2 du dr.$$

- The transformation $\zeta \to \zeta + w$, where $w \in \mathbb{C}$ is then trivial and leaves the single null geodesic r = 0 invariant.
- In Cartesian coordinates this transformation becomes

$$x' + iy' = x + iy + w(t - z),$$

$$z' - t' = -r = z - t,$$

$$z' + t' = z + t + w(x - iy) + w(x + iy) + w\bar{w}(t - z)$$

Singular Lorentz Transformation

ular Lorentz Transformation				
Define an arbitrary complex parameter $\zeta := \xi + i\eta$, to get the new line element 3.				
$\epsilon ds^2 = r^2 d\zeta d\overline{\zeta} - 2 ds dr.$				
The transformation $\zeta \to \zeta + w$, where $w \in \mathbb{C}$ is then trivial and leaves the ingle null geodesic $r = 0$ invariant.				

- This is what we want, An LT which leaves one null invariant.
- The use in the previous coord transforms was to make this transformation look trivial
- So this is what the seemingly trivial transformation looks like in cartesians
- Again its clear that r = 0 keeps one direction fixed, as then z=t
- but it doesn't work both ways, not all 2 parameter abelian subgroups are singular lorentz transformations.

Singular Lorentz Transformation

• Define an arbitrary complex parameter $\zeta := \xi + i\eta$, to get the new line element[3]

$$\epsilon ds^2 = r^2 d\zeta d\overline{\zeta} - 2dudr.$$

- The transformation $\zeta \to \zeta + w$, where $w \in \mathbb{C}$ is then trivial and leaves the single null geodesic r = 0 invariant.
- In Cartesian coordinates this transformation becomes

$$x' + iy' = x + iy + w(t - z),$$

 $z' - t' = -r = z - t,$
 $z' + t' = z + t + w(x - iy) + w(x + iy) + w\bar{w}(t - z)$

—Singular Lorentz Transformation

- This is what we want, An LT which leaves one null invariant.
- The use in the previous coord transforms was to make this transformation look trivial
- So this is what the seemingly trivial transformation looks like in cartesians
- Again its clear that r = 0 keeps one direction fixed, as then z=t
- but it doesn't work both ways, not all 2 parameter abelian subgroups are singular lorentz transformations.

Singular Lorentz Transformation

• Define an arbitrary complex parameter $\zeta := \xi + i\eta$, to get the new line element[3]

$$\epsilon ds^2 = r^2 d\zeta d\overline{\zeta} - 2dudr.$$

- The transformation $\zeta \to \zeta + w$, where $w \in \mathbb{C}$ is then trivial and leaves the single null geodesic r = 0 invariant.
- In Cartesian coordinates this transformation becomes

$$x' + iy' = x + iy + w(t - z),$$

 $z' - t' = -r = z - t,$
 $z' + t' = z + t + w(x - iy) + w(x + iy) + w\bar{w}(t - z).$

—Singular Lorentz Transformation

- This is what we want, An LT which leaves one null invariant.
- The use in the previous coord transforms was to make this transformation look trivial
- So this is what the seemingly trivial transformation looks like in cartesians
- Again its clear that r = 0 keeps one direction fixed, as then z=t
- but it doesn't work both ways, not all 2 parameter abelian subgroups are singular lorentz transformations

Singular Lorentz Transformation

• Define an arbitrary complex parameter $\zeta := \xi + i\eta$, to get the new line element[3]

$$\epsilon ds^2 = r^2 d\zeta d\overline{\zeta} - 2dudr.$$

- The transformation $\zeta \to \zeta + w$, where $w \in \mathbb{C}$ is then trivial and leaves the single null geodesic r = 0 invariant.
- In Cartesian coordinates this transformation becomes

$$x' + iy' = x + iy + w(t - z),$$

 $z' - t' = -r = z - t,$
 $z' + t' = z + t + w(x - iy) + w(x + iy) + w\bar{w}(t - z).$

—Singular Lorentz Transformation

- This is what we want, An LT which leaves one null invariant.
- The use in the previous coord transforms was to make this transformation look trivial
- So this is what the seemingly trivial transformation looks like in cartesians
- Again its clear that r = 0 keeps one direction fixed, as then z=t
- but it doesn't work both ways, not all 2 parameter abelian subgroups are singular lorentz transformations

Singular Lorentz Transformation

• Define an arbitrary complex parameter $\zeta := \xi + i\eta$, to get the new line element[3]

$$\epsilon ds^2 = r^2 d\zeta d\overline{\zeta} - 2dudr.$$

- The transformation $\zeta \to \zeta + w$, where $w \in \mathbb{C}$ is then trivial and leaves the single null geodesic r = 0 invariant.
- In Cartesian coordinates this transformation becomes

$$x' + iy' = x + iy + w(t - z),$$

 $z' - t' = -r = z - t,$
 $z' + t' = z + t + w(x - iy) + w(x + iy) + w\bar{w}(t - z).$

-Layout

• shown here that there is a 2 to 1 correspondence between SL(2,C) and POLTs

Layout

- Introduction: Lorentz Transformations
- Strange Minkowskian Line Element
- Singular Lorentz transformation
- **9** $SL(2,\mathbb{C})$ Matrices of the Lorentz Transformation
- The Fractional Linear Transformation
- Infinitesimal Lorentz Transformation
- Pure Radiation conditions

- Complex Hermitian matrices have 4 independant components, so the element of such a matrix can be used to represent points in Minkowskian space-time.
- where $\alpha, \beta, \gamma, \delta$ are complex its an element of the special linear group. This means it has determinant 1. **write it on the board**

$SL(2,\mathbb{C})$ Matrices of the POLT

- There is a one to one correspondence between points in Minkowskian space-time and Hermitian matrices
- Contruct the following matrix

$$A = \left(\begin{array}{cc} t - z & x + iy \\ x - iy & t + z \end{array}\right)$$

• This is useful as its determinant is the Lorentz quadratic form modulo a sign

$$\det(A(\vec{x})) = t^2 - x^2 - y^2 - z^2$$

• Construct the transformation $A(\vec{x}') = UA(\vec{x})U^{\dagger}$, where

$$U = \left(\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array}\right),$$

is an element of $\mathit{SL}(2,\mathbb{C})$

$-SL(2,\mathbb{C})$	Matrices	of the	POLT

- Complex Hermitian matrices have 4 independant components, so the element of such a matrix can be used to represent points in Minkowskian space-time.
- where $\alpha, \beta, \gamma, \delta$ are complex its an element of the special linear group. This means it has determinant 1. **write it on the board**

- There is a one to one correspondence between points in Minkowskian space-time and Hermitian matrices
- Contruct the following matrix

$$A = \left(\begin{array}{cc} t - z & x + iy \\ x - iy & t + z \end{array}\right),\,$$

• This is useful as its determinant is the Lorentz quadratic form modulo a sign

$$\det(A(\vec{x})) = t^2 - x^2 - y^2 - z^2.$$

• Construct the transformation $A(\vec{x}') = UA(\vec{x})U^{\dagger}$, where

$$U = \left(\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array}\right),$$

is an element of $SL(2,\mathbb{C})$

- Complex Hermitian matrices have 4 independant components, so the element of such a matrix can be used to represent points in Minkowskian space-time.
- where $\alpha, \beta, \gamma, \delta$ are complex its an element of the special linear group. This means it has determinant 1. **write it on the board**

$SL(2,\mathbb{C})$ Matrices of the POLT

- There is a one to one correspondence between points in Minkowskian space-time and Hermitian matrices
- Contruct the following matrix

$$A = \left(\begin{array}{cc} t - z & x + iy \\ x - iy & t + z \end{array}\right),\,$$

• This is useful as its determinant is the Lorentz quadratic form modulo a sign

$$\det(A(\vec{x})) = t^2 - x^2 - y^2 - z^2.$$

• Construct the transformation $A(\vec{x}') = UA(\vec{x})U^{\dagger}$, where

$$U = \left(\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array}\right),$$

is an element of $\mathit{SL}(2,\mathbb{C})$

- Complex Hermitian matrices have 4 independant components, so the element of such a matrix can be used to represent points in Minkowskian space-time.
- where $\alpha, \beta, \gamma, \delta$ are complex its an element of the special linear group. This means it has determinant 1. **write it on the board**

$SL(2,\mathbb{C})$ Matrices of the POLT

- There is a one to one correspondence between points in Minkowskian space-time and Hermitian matrices
- Contruct the following matrix

$$A = \left(\begin{array}{cc} t - z & x + iy \\ x - iy & t + z \end{array}\right),\,$$

• This is useful as its determinant is the Lorentz quadratic form modulo a sign

$$\det(A(\vec{x})) = t^2 - x^2 - y^2 - z^2.$$

• Construct the transformation $A(\vec{x}') = UA(\vec{x})U^{\dagger}$, where

$$U = \left(\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array}\right),$$

is an element of $SL(2,\mathbb{C})$

- Complex Hermitian matrices have 4 independant components, so the element of such a matrix can be used to represent points in Minkowskian space-time.
- where $\alpha, \beta, \gamma, \delta$ are complex its an element of the special linear group. This means it has determinant 1. **write it on the board**

$SL(2,\mathbb{C})$ Matrices of the POLT

- There is a one to one correspondence between points in Minkowskian space-time and Hermitian matrices
- Contruct the following matrix

$$A = \left(\begin{array}{cc} t - z & x + iy \\ x - iy & t + z \end{array}\right),\,$$

• This is useful as its determinant is the Lorentz quadratic form modulo a sign

$$\det(A(\vec{x})) = t^2 - x^2 - y^2 - z^2.$$

• Construct the transformation $A(\vec{x}') = UA(\vec{x})U^{\dagger}$, where

$$U = \left(\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array}\right),$$

is an element of $SL(2,\mathbb{C})$

- This is becasue the determinant of U is 1
- I want to show you an example calcualtion of U, to do this we write in component form

$SL(2,\mathbb{C})$ Matrices of the POLT

- $A(\vec{x}')$ and $A(\vec{x})$ have the same determinant so the above transformation preserves the Lorentz quadratic form, thus is a Lorentz transformation.
- Write this transformation component wise

$$\begin{pmatrix} t'-z' & x'+iy' \\ x'-iy' & t'+z' \end{pmatrix} = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} t-z & x+iy \\ x-iy & t+z \end{pmatrix} \begin{pmatrix} \bar{\alpha} & \bar{\gamma} \\ \bar{\beta} & \bar{\delta} \end{pmatrix}$$

$$= \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} (t-z)\bar{\alpha}+(x+iy)\bar{\beta} & (t-z)\bar{\gamma}+(x+iy)\bar{\delta} \\ (x-iy)\bar{\alpha}+(t+z)\bar{\beta} & (x-iy)\bar{\gamma}+(t+z)\bar{\delta} \end{pmatrix}.$$

• Thus the general relations

$$t' - z' = (t - z)\alpha\bar{\alpha} + (x + iy)\alpha\bar{\beta} + (x - iy)\beta\bar{\alpha} + (t + z)\beta\bar{\beta},$$

$$x' + iy' = (t - z)\alpha\bar{\gamma} + (x + iy)\alpha\bar{\delta} + (x - iy)\beta\bar{\gamma} + (t + z)\beta\bar{\delta},$$

$$t' + z' = (t - z)\gamma\bar{\gamma} + (x + iy)\gamma\bar{\delta} + (x - iy)\delta\bar{\gamma} + (t + z)\delta\bar{\delta}.$$

$\begin{array}{ll} (2,2,0) \ \ \text{Matrices of the POLT} \\ & \mathcal{A}(P) = dd \sqrt{3} \ \text{have the same distinctions at the share transformation} \\ & \mathcal{A}(P) = dd \sqrt{3} \ \text{have the transformation} \\ & \mathcal{A}(P) = dd \sqrt{3} \ \text{have the transformation} \\ & \mathcal{A}(P) = dd \sqrt{3} \ \text{have the transformation} \\ & \mathcal{A}(P) = dd \sqrt{3} \ \text{have the transformation} \\ & \mathcal{A}(P) = dd \sqrt{3} \ \text{have the transformation} \\ & \mathcal{A}(P) = dd \sqrt{3} \ \text{have the transformation} \\ & \mathcal{A}(P) = dd \sqrt{3} \ \text{have the transformation} \\ & \mathcal{A}(P) = dd \sqrt{3} \ \text{have the transformation} \\ & \mathcal{A}(P) = dd \sqrt{3} \ \text{have the transformation} \\ & \mathcal{A}(P) = dd \sqrt{3} \ \text{have the transformation} \\ & \mathcal{A}(P) = dd \sqrt{3} \ \text{have the transformation} \\ & \mathcal{A}(P) = dd \sqrt{3} \ \text{have the transformation} \\ & \mathcal{A}(P) = dd \sqrt{3} \ \text{have the transformation} \\ & \mathcal{A}(P) = dd \sqrt{3} \ \text{have the transformation} \\ & \mathcal{A}(P) = dd \sqrt{3} \ \text{have the transformation} \\ & \mathcal{A}(P) = dd \sqrt{3} \ \text{have the transformation} \\ & \mathcal{A}(P) = dd \sqrt{3} \ \text{have the transformation} \\ & \mathcal{A}(P) = dd \sqrt{3} \ \text{have the transformation} \\ & \mathcal{A}(P) = dd \sqrt{3} \ \text{have the transformation} \\ & \mathcal{A}(P) = dd \sqrt{3} \ \text{have the transformation} \\ & \mathcal{A}(P) = dd \sqrt{3} \ \text{have the transformation} \\ & \mathcal{A}(P) = dd \sqrt{3} \ \text{have the transformation} \\ & \mathcal{A}(P) = dd \sqrt{3} \ \text{have the transformation} \\ & \mathcal{A}(P) = dd \sqrt{3} \ \text{have the transformation} \\ & \mathcal{A}(P) = dd \sqrt{3} \ \text{have the transformation} \\ & \mathcal{A}(P) = dd \sqrt{3} \ \text{have the transformation} \\ & \mathcal{A}(P) = dd \sqrt{3} \ \text{have the transformation} \\ & \mathcal{A}(P) = dd \sqrt{3} \ \text{have the transformation} \\ & \mathcal{A}(P) = dd \sqrt{3} \ \text{have the transformation} \\ & \mathcal{A}(P) = dd \sqrt{3} \ \text{have the transformation} \\ & \mathcal{A}(P) = dd \sqrt{3} \ \text{have the transformation} \\ & \mathcal{A}(P) = dd \sqrt{3} \ \text{have the transformation} \\ & \mathcal{A}(P) = dd \sqrt{3} \ \text{have the transformation} \\ & \mathcal{A}(P) = dd \sqrt{3} \ \text{have the transformation} \\ & \mathcal{A}(P) = dd \sqrt{3} \ \text{have the transformation} \\ & \mathcal{A}(P) = dd \sqrt{3} \ \text{have the transformation} \\ & \mathcal{A}(P) = dd \sqrt{3} \ \text{have the transformation} \\ & \mathcal{A}(P) = dd \sqrt{3} \ \text{have th$

- This is becasue the determinant of U is 1
- I want to show you an example calcualtion of U, to do this we write in component form

$SL(2,\mathbb{C})$ Matrices of the POLT

- $A(\vec{x}')$ and $A(\vec{x})$ have the same determinant so the above transformation preserves the Lorentz quadratic form, thus is a Lorentz transformation.
- Write this transformation component wise

$$\begin{pmatrix} t'-z' & x'+iy' \\ x'-iy' & t'+z' \end{pmatrix} = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} t-z & x+iy \\ x-iy & t+z \end{pmatrix} \begin{pmatrix} \bar{\alpha} & \bar{\gamma} \\ \bar{\beta} & \bar{\delta} \end{pmatrix},$$

$$= \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} (t-z)\bar{\alpha} + (x+iy)\bar{\beta} & (t-z)\bar{\gamma} + (x+iy)\bar{\delta} \\ (x-iy)\bar{\alpha} + (t+z)\bar{\beta} & (x-iy)\bar{\gamma} + (t+z)\bar{\delta} \end{pmatrix}.$$

• Thus the general relations

$$t' - z' = (t - z)\alpha\bar{\alpha} + (x + iy)\alpha\bar{\beta} + (x - iy)\beta\bar{\alpha} + (t + z)\beta\bar{\beta},$$

$$x' + iy' = (t - z)\alpha\bar{\gamma} + (x + iy)\alpha\bar{\delta} + (x - iy)\beta\bar{\gamma} + (t + z)\beta\bar{\delta},$$

$$t' + z' = (t - z)\gamma\bar{\gamma} + (x + iy)\gamma\bar{\delta} + (x - iy)\delta\bar{\gamma} + (t + z)\delta\bar{\delta}.$$

 $-SL(2,\mathbb{C})$ Matrices of the POLT

- This is becasue the determinant of U is 1
- I want to show you an example calcualtion of U, to do this we write in component form

$SL(2,\mathbb{C})$ Matrices of the POLT

- $A(\vec{x}')$ and $A(\vec{x})$ have the same determinant so the above transformation preserves the Lorentz quadratic form, thus is a Lorentz transformation.
- Write this transformation component wise

$$\begin{pmatrix} t'-z' & x'+iy' \\ x'-iy' & t'+z' \end{pmatrix} = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} t-z & x+iy \\ x-iy & t+z \end{pmatrix} \begin{pmatrix} \bar{\alpha} & \bar{\gamma} \\ \bar{\beta} & \bar{\delta} \end{pmatrix},$$

$$= \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} (t-z)\bar{\alpha} + (x+iy)\bar{\beta} & (t-z)\bar{\gamma} + (x+iy)\bar{\delta} \\ (x-iy)\bar{\alpha} + (t+z)\bar{\beta} & (x-iy)\bar{\gamma} + (t+z)\bar{\delta} \end{pmatrix}.$$

• Thus the general relations

$$t' - z' = (t - z)\alpha\bar{\alpha} + (x + iy)\alpha\bar{\beta} + (x - iy)\beta\bar{\alpha} + (t + z)\beta\bar{\beta},$$

$$x' + iy' = (t - z)\alpha\bar{\gamma} + (x + iy)\alpha\bar{\delta} + (x - iy)\beta\bar{\gamma} + (t + z)\beta\bar{\delta},$$

$$t' + z' = (t - z)\gamma\bar{\gamma} + (x + iy)\gamma\bar{\delta} + (x - iy)\delta\bar{\gamma} + (t + z)\delta\bar{\delta}.$$

- Where we have also used det(U) = 1
- becasue the sign doesn't matter is still a solution Eqn(27)
- A,A' are points in Minkowskian space time, and $\pm U$ are POLTs

Example: Singular Lorentz transformation

• Take the singular Lorentz transformation from earlier

$$t' - z' = t - z,$$

 $x' + iy' = x + iy + w(t - z),$
 $t' + z' = t + z + w(x - iy) + \bar{w}(x + iy) + w\bar{w}(t - z).$

• Equate coefficients on the RHS of this equation with the RHS of the general relations on the previous slide to obtain

$$\alpha = \pm 1, \qquad \beta = 0$$
 $\gamma = \bar{w}\alpha, \qquad \delta = 0$

• So there are always two possible choices of U

$$U=\pm \left(\begin{array}{cc} 1 & 0 \\ \bar{w} & 1 \end{array}\right)$$

ullet Thus there is a 2 to 1 correspondence between elements of $SL(2,\mathbb{C})$ and POLTs

201

Example: Singular Lorentz transformation

Example. Singular Lorentz transformation \mathbf{v} . This this single Lorentz restrictions from earlier $(-1-\epsilon)$, (-1-

- ullet Where we have also used det(U)=1
- becasue the sign doesn't matter is still a solution Eqn(27)
- A,A' are points in Minkowskian space time, and $\pm U$ are POLTs

Example: Singular Lorentz transformation

• Take the singular Lorentz transformation from earlier

$$t' - z' = t - z,$$

 $x' + iy' = x + iy + w(t - z),$
 $t' + z' = t + z + w(x - iy) + \bar{w}(x + iy) + w\bar{w}(t - z).$

• Equate coefficients on the RHS of this equation with the RHS of the general relations on the previous slide to obtain

$$\alpha = \pm 1, \qquad \beta = 0,$$
 $\gamma = \bar{w}\alpha, \qquad \delta = \alpha.$

• So there are always two possible choices of U

$$U=\pm \left(egin{array}{cc} 1 & 0 \ ar{w} & 1 \end{array}
ight)$$

• Thus there is a 2 to 1 correspondence between elements of $SL(2,\mathbb{C})$ and POLTs

Kevin Maguire

12 / 25

20 10 1100

Example: Singular Lorentz transformation

xample: Singular Lorentz transformation

- ullet Where we have also used det(U)=1
- becasue the sign doesn't matter is still a solution Eqn(27)
- A,A' are points in Minkowskian space time, and $\pm U$ are POLTs

Example: Singular Lorentz transformation

• Take the singular Lorentz transformation from earlier

$$t' - z' = t - z,$$

 $x' + iy' = x + iy + w(t - z),$
 $t' + z' = t + z + w(x - iy) + \bar{w}(x + iy) + w\bar{w}(t - z).$

• Equate coefficients on the RHS of this equation with the RHS of the general relations on the previous slide to obtain

$$\alpha = \pm 1, \qquad \beta = 0,$$
 $\gamma = \bar{\mathbf{w}}\alpha, \qquad \delta = \alpha.$

• So there are always two possible choices of U

$$U=\pm\left(egin{array}{cc} 1 & 0 \ ar{w} & 1 \end{array}
ight)$$

• Thus there is a 2 to 1 correspondence between elements of $SL(2,\mathbb{C})$ and POLTs

20 40 4100

Example: Singular Lorentz transformation

- Where we have also used det(U) = 1
- becasue the sign doesn't matter is still a solution Eqn(27)
- A,A' are points in Minkowskian space time, and $\pm U$ are POLTs

Example: Singular Lorentz transformation

• Take the singular Lorentz transformation from earlier

$$t' - z' = t - z,$$

 $x' + iy' = x + iy + w(t - z),$
 $t' + z' = t + z + w(x - iy) + \bar{w}(x + iy) + w\bar{w}(t - z).$

• Equate coefficients on the RHS of this equation with the RHS of the general relations on the previous slide to obtain

$$\alpha = \pm 1, \qquad \beta = 0,$$
 $\gamma = \bar{w}\alpha, \qquad \delta = \alpha.$

• So there are always two possible choices of U

$$U=\pm\left(egin{array}{cc} 1 & 0 \ ar{w} & 1 \end{array}
ight)$$

ullet Thus there is a 2 to 1 correspondence between elements of $SL(2,\mathbb{C})$ and POLTs

20 40 4100

Example: Singular Lorentz transformation

- Where we have also used det(U) = 1
- becasue the sign doesn't matter is still a solution Eqn(27)
- A,A' are points in Minkowskian space time, and $\pm U$ are POLTs

Example: Singular Lorentz transformation

• Take the singular Lorentz transformation from earlier

$$t' - z' = t - z,$$

 $x' + iy' = x + iy + w(t - z),$
 $t' + z' = t + z + w(x - iy) + \bar{w}(x + iy) + w\bar{w}(t - z).$

• Equate coefficients on the RHS of this equation with the RHS of the general relations on the previous slide to obtain

$$\alpha = \pm 1, \qquad \beta = 0,$$
 $\gamma = \bar{w}\alpha, \qquad \delta = \alpha.$

• So there are always two possible choices of U

$$U=\pm\left(egin{array}{cc} 1 & 0 \ ar{w} & 1 \end{array}
ight)$$

ullet Thus there is a 2 to 1 correspondence between elements of $SL(2,\mathbb{C})$ and POLTs

-Layout

Layout

• Connect Minkoswkian space to the 2-sphere by stereographic projection, so we can use points on a 2 sphere to think about LTs

- Introduction: Lorentz Transformations
- Strange Minkowskian Line Element
- Singular Lorentz transformation
- **o** $SL(2,\mathbb{C})$ Matrices of the Lorentz Transformation
- **1** The Fractional Linear Transformation

- As we know, stereographic projection doesn't map the point N at the top of the circle, so thats why we map N to infinity and need to consider the extended complex plane
- ullet It can also be written in terms of heta and ϕ

Fractional Linear Transformation: Stereographic Projection

• Use Stereographic Projection to map \mathbb{S}^2 to the extended complex plane, $\hat{\mathbb{C}}=\mathbb{C}\cup\{\infty\}$

• The algebraic relation for a unit vector is

$$(x,y,z) = \left(\frac{\overline{\zeta} + \zeta}{\overline{\zeta}\zeta + 1}, i\frac{\overline{\zeta} - \zeta}{\overline{\zeta}\zeta + 1}, \frac{\overline{\zeta}\zeta - 1}{\overline{\zeta}\zeta + 1}\right)$$

- As we know, stereographic projection doesn't map the point N at the top of the circle, so thats why we map N to infinity and need to consider the extended complex plane
- It can also be written in terms of θ and ϕ

Fractional Linear Transformation: Stereographic Projection

• Use Stereographic Projection to map \mathbb{S}^2 to the extended complex plane, $\hat{\mathbb{C}}=\mathbb{C}\cup\{\infty\}$

• The algebraic relation for a unit vector is

$$(x,y,z) = \left(\frac{\overline{\zeta} + \zeta}{\overline{\zeta}\zeta + 1}, i\frac{\overline{\zeta} - \zeta}{\overline{\zeta}\zeta + 1}, \frac{\overline{\zeta}\zeta - 1}{\overline{\zeta}\zeta + 1}\right)$$

- As we know, stereographic projection doesn't map the point N at the top of the circle, so thats why we map N to infinity and need to consider the extended complex plane
- It can also be written in terms of θ and ϕ

Fractional Linear Transformation: Stereographic Projection

• Use Stereographic Projection to map \mathbb{S}^2 to the extended complex plane, $\hat{\mathbb{C}}=\mathbb{C}\cup\{\infty\}$

• The algebraic relation for a unit vector is

$$(x,y,z) = \left(\frac{\overline{\zeta} + \zeta}{\overline{\zeta}\zeta + 1}, i\frac{\overline{\zeta} - \zeta}{\overline{\zeta}\zeta + 1}, \frac{\overline{\zeta}\zeta - 1}{\overline{\zeta}\zeta + 1}\right),\,$$

- As we know, stereographic projection doesn't map the point N at the top of the circle, so thats why we map N to infinity and need to consider the extended complex plane
- It can also be written in terms of θ and ϕ

Fractional Linear Transformation: Stereographic Projection

• Use Stereographic Projection to map \mathbb{S}^2 to the extended complex plane, $\hat{\mathbb{C}}=\mathbb{C}\cup\{\infty\}$

• The algebraic relation for a unit vector is

$$(x,y,z) = \left(\frac{\overline{\zeta} + \zeta}{\overline{\zeta}\zeta + 1}, i\frac{\overline{\zeta} - \zeta}{\overline{\zeta}\zeta + 1}, \frac{\overline{\zeta}\zeta - 1}{\overline{\zeta}\zeta + 1}\right),\,$$

- all the points on the 2 sphere are generators of the future null cone in Minkowskian space time
- Can denote an LT by moving three arbitrary points along the surface of the sphere
 as the generators have dimension two, so to match the dim of the LT (it's 6) we
 need three of them
- Extra coord is becasue we take time into account now, now ζ has two parameters so x is in terms of two parameters, t just defines the direction

Fractional Linear Transformation: Stereographic Projection

- $(x, y, z, t) \leftrightarrow \mathbb{S}^2 \leftrightarrow \hat{\mathbb{C}}$
- So points in Minkowskian space-time can be written in the form

$$\vec{x} = t \left(\frac{\bar{\zeta} + \zeta}{\bar{\zeta}\zeta + 1}, i \frac{\bar{\zeta} - \zeta}{\bar{\zeta}\zeta + 1}, \frac{\bar{\zeta}\zeta - 1}{\bar{\zeta}\zeta + 1}, 1 \right)$$

- all the points on the 2 sphere are generators of the future null cone in Minkowskian space time
- Can denote an LT by moving three arbitrary points along the surface of the sphere
 as the generators have dimension two, so to match the dim of the LT (it's 6) we
 need three of them
- Extra coord is becasue we take time into account now, now ζ has two parameters so x is in terms of two parameters, t just defines the direction

- $(x, y, z, t) \leftrightarrow \mathbb{S}^2 \leftrightarrow \hat{\mathbb{C}}$
- So points in Minkowskian space-time can be written in the form

$$\vec{x} = t \left(\frac{\overline{\zeta} + \zeta}{\overline{\zeta}\zeta + 1}, i \frac{\overline{\zeta} - \zeta}{\overline{\zeta}\zeta + 1}, \frac{\overline{\zeta}\zeta - 1}{\overline{\zeta}\zeta + 1}, 1 \right).$$

- all the points on the 2 sphere are generators of the future null cone in Minkowskian space time
- Can denote an LT by moving three arbitrary points along the surface of the sphere
 as the generators have dimension two, so to match the dim of the LT (it's 6) we
 need three of them
- Extra coord is becasue we take time into account now, now ζ has two parameters so x is in terms of two parameters, t just defines the direction

- $(x, y, z, t) \leftrightarrow \mathbb{S}^2 \leftrightarrow \hat{\mathbb{C}}$
- So points in Minkowskian space-time can be written in the form

$$\vec{x} = t \left(\frac{\bar{\zeta} + \zeta}{\bar{\zeta}\zeta + 1}, i \frac{\bar{\zeta} - \zeta}{\bar{\zeta}\zeta + 1}, \frac{\bar{\zeta}\zeta - 1}{\bar{\zeta}\zeta + 1}, 1 \right).$$

- all the points on the 2 sphere are generators of the future null cone in Minkowskian space time
- Can denote an LT by moving three arbitrary points along the surface of the sphere
 as the generators have dimension two, so to match the dim of the LT (it's 6) we
 need three of them
- Extra coord is becasue we take time into account now, now ζ has two parameters so x is in terms of two parameters, t just defines the direction

- $(x, y, z, t) \leftrightarrow \mathbb{S}^2 \leftrightarrow \hat{\mathbb{C}}$
- So points in Minkowskian space-time can be written in the form

$$\vec{x} = t \left(\frac{\bar{\zeta} + \zeta}{\bar{\zeta}\zeta + 1}, i \frac{\bar{\zeta} - \zeta}{\bar{\zeta}\zeta + 1}, \frac{\bar{\zeta}\zeta - 1}{\bar{\zeta}\zeta + 1}, 1 \right).$$

- These are null directions
- Refer to eqn (27) which should be on the board
- AS we did in the previous example, determine U
- ullet Remember we had $\pm U$ now the signs will cancel in the denominator and numerator

Fractional Linear Transformation

• Make the transformation $\zeta \to \zeta'$ by constructing the matrix $A(\vec{x})$ and determining the matrix U.

$$A(\vec{x}) = \begin{pmatrix} \frac{2t}{\zeta\bar{\zeta}+1} & \frac{2t\zeta}{\zeta\bar{\zeta}+1} \\ \frac{2t\bar{\zeta}}{\zeta\bar{\zeta}+1} & \frac{2t\zeta\bar{\zeta}}{\zeta\bar{\zeta}+1} \end{pmatrix} = c_0 \begin{pmatrix} \frac{1}{\zeta} & \frac{\zeta}{\zeta\zeta} \end{pmatrix},$$

$$c_0{'}\left(\begin{array}{cc} 1 & \zeta' \\ \bar{\zeta'} & \bar{\zeta'}\zeta' \end{array}\right) = \left(\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array}\right) c_0 \left(\begin{array}{cc} 1 & \zeta \\ \bar{\zeta} & \bar{\zeta}\zeta \end{array}\right) \left(\begin{array}{cc} \bar{\alpha} & \bar{\beta} \\ \bar{\gamma} & \bar{\delta} \end{array}\right).$$

• Solve for ζ' to get the fractional linear transformation

$$\zeta' = \frac{(\bar{\gamma} + \bar{\delta}\zeta)}{(\bar{\alpha} + \bar{\beta}\zeta)}$$

• There is a one to one correspondence between POLTs and fractional linear transformations

Fractional Linear Transformation

- These are null directions
- Refer to eqn (27) which should be on the board
- AS we did in the previous example, determine U
- ullet Remember we had $\pm U$ now the signs will cancel in the denominator and numerator

Fractional Linear Transformation

• Make the transformation $\zeta \to \zeta'$ by constructing the matrix $A(\vec{x})$ and determining the matrix U.

$$A(\vec{x}) = \begin{pmatrix} \frac{2t}{\zeta\bar{\zeta}+1} & \frac{2t\zeta}{\zeta\bar{\zeta}+1} \\ \frac{2t\bar{\zeta}}{\zeta\bar{\zeta}+1} & \frac{2t\zeta\bar{\zeta}}{\zeta\bar{\zeta}+1} \end{pmatrix} = c_0 \begin{pmatrix} \frac{1}{\zeta} & \frac{\zeta}{\zeta\zeta} \end{pmatrix},$$

$$c_0{'}\left(egin{array}{cc} 1 & \zeta' \ ar{\zeta'} & ar{\zeta'}\zeta' \end{array}
ight) = \left(egin{array}{cc} lpha & eta \ \gamma & \delta \end{array}
ight) c_0 \left(egin{array}{cc} 1 & \zeta \ ar{\zeta} & ar{\zeta}\zeta \end{array}
ight) \left(egin{array}{cc} ar{lpha} & ar{eta} \ ar{\gamma} & ar{\delta} \end{array}
ight).$$

• Solve for ζ' to get the fractional linear transformation

$$\zeta' = \frac{(\bar{\gamma} + \bar{\delta}\zeta)}{(\bar{\alpha} + \bar{\beta}\zeta)}$$

• There is a one to one correspondence between POLTs and fractional linear transformations

—Fractional Linear Transformation

- These are null directions
- Refer to eqn (27) which should be on the board
- AS we did in the previous example, determine U
- \bullet Remember we had $\pm U$ now the signs will cancel in the denominator and numerator

Fractional Linear Transformation

• Make the transformation $\zeta \to \zeta'$ by constructing the matrix $A(\vec{x})$ and determining the matrix U.

$$A(\vec{x}) = \begin{pmatrix} \frac{2t}{\zeta\bar{\zeta}+1} & \frac{2t\zeta}{\zeta\bar{\zeta}+1} \\ \frac{2t\bar{\zeta}}{\zeta\bar{\zeta}+1} & \frac{2t\zeta\bar{\zeta}}{\zeta\bar{\zeta}+1} \end{pmatrix} = c_0 \begin{pmatrix} \frac{1}{\zeta} & \frac{\zeta}{\zeta\zeta} \end{pmatrix},$$

$$c_0{'}\left(egin{array}{cc} 1 & \zeta' \ ar{\zeta'} & ar{\zeta'}\zeta' \end{array}
ight) = \left(egin{array}{cc} lpha & eta \ \gamma & \delta \end{array}
ight) c_0 \left(egin{array}{cc} 1 & \zeta \ ar{\zeta} & ar{\zeta}\zeta \end{array}
ight) \left(egin{array}{cc} ar{lpha} & ar{eta} \ ar{\gamma} & ar{\delta} \end{array}
ight).$$

• Solve for ζ' to get the fractional linear transformation

$$\zeta' = \frac{(\bar{\gamma} + \bar{\delta}\zeta)}{(\bar{\alpha} + \bar{\beta}\zeta)},$$

 There is a one to one correspondence between POLTs and fractional linear transformations

Fractional Linear Transformation

- These are null directions
- Refer to eqn (27) which should be on the board
- ullet AS we did in the previous example, determine U
- ullet Remember we had $\pm U$ now the signs will cancel in the denominator and numerator

Fractional Linear Transformation

• Make the transformation $\zeta \to \zeta'$ by constructing the matrix $A(\vec{x})$ and determining the matrix U.

$$A(\vec{x}) = \begin{pmatrix} \frac{2t}{\zeta\bar{\zeta}+1} & \frac{2t\zeta}{\zeta\bar{\zeta}+1} \\ \frac{2t\bar{\zeta}}{\zeta\bar{\zeta}+1} & \frac{2t\zeta\bar{\zeta}}{\zeta\bar{\zeta}+1} \end{pmatrix} = c_0 \begin{pmatrix} \frac{1}{\zeta} & \frac{\zeta}{\zeta\zeta} \end{pmatrix},$$

$$c_0{'}\left(egin{array}{cc} 1 & \zeta' \ ar{\zeta'} & ar{\zeta'}\zeta' \end{array}
ight) = \left(egin{array}{cc} lpha & eta \ \gamma & \delta \end{array}
ight) c_0 \left(egin{array}{cc} 1 & \zeta \ ar{\zeta} & ar{\zeta}\zeta \end{array}
ight) \left(egin{array}{cc} ar{lpha} & ar{eta} \ ar{\gamma} & ar{\delta} \end{array}
ight).$$

• Solve for ζ' to get the fractional linear transformation

$$\zeta' = \frac{(\bar{\gamma} + \bar{\delta}\zeta)}{(\bar{\alpha} + \bar{\beta}\zeta)},$$

• There is a one to one correspondence between POLTs and fractional linear transformations

Fractional Linear Transformation

- These are null directions
- Refer to eqn (27) which should be on the board
- ullet AS we did in the previous example, determine U
- ullet Remember we had $\pm U$ now the signs will cancel in the denominator and numerator

Fractional Linear Transformation

• Make the transformation $\zeta \to \zeta'$ by constructing the matrix $A(\vec{x})$ and determining the matrix U.

$$A(\vec{x}) = \begin{pmatrix} \frac{2t}{\zeta\bar{\zeta}+1} & \frac{2t\zeta}{\zeta\bar{\zeta}+1} \\ \frac{2t\bar{\zeta}}{\zeta\bar{\zeta}+1} & \frac{2t\zeta\bar{\zeta}}{\zeta\bar{\zeta}+1} \end{pmatrix} = c_0 \begin{pmatrix} \frac{1}{\zeta} & \frac{\zeta}{\zeta\zeta} \end{pmatrix},$$

$$c_0{'}\left(egin{array}{cc} 1 & \zeta' \ ar{\zeta'} & ar{\zeta'}\zeta' \end{array}
ight) = \left(egin{array}{cc} lpha & eta \ \gamma & \delta \end{array}
ight) c_0 \left(egin{array}{cc} 1 & \zeta \ ar{\zeta} & ar{\zeta}\zeta \end{array}
ight) \left(egin{array}{cc} ar{lpha} & ar{eta} \ ar{\gamma} & ar{\delta} \end{array}
ight).$$

• Solve for ζ' to get the fractional linear transformation

$$\zeta' = \frac{(\bar{\gamma} + \bar{\delta}\zeta)}{(\bar{\alpha} + \bar{\beta}\zeta)},$$

• There is a one to one correspondence between POLTs and fractional linear transformations

Layout

temp

Layout

Strange Minkowskian Line Element

SL(2, C) Matrices of the Lorentz Transformation

- Introduction: Lorentz Transformations
- Strange Minkowskian Line Element
- Singular Lorentz transformation
- **3** $SL(2,\mathbb{C})$ Matrices of the Lorentz Transformation
- **5** The Fractional Linear Transformation
- Infinitesimal Lorentz Transformation
- Pure Radiation conditions

 $U = \pm \begin{pmatrix} 1 + \epsilon s & \epsilon b \\ \epsilon c & 1 + \epsilon f \end{pmatrix}$

Infinitesimal Lorentz Transformation

- This was done in a recent lecture(Relativistic QM) so I wont do it
- Where a,b,c,d are complex
- ullet Take many infinitesimal LT steps along a particles trajectory and let ϵ go to zero

Infinitesimal Lorentz Transformation

$$U=\pm\left(egin{array}{cc} 1+\epsilon \mathsf{a} & \epsilon \mathsf{b} \ \epsilon \mathsf{c} & 1+\epsilon \mathsf{f} \end{array}
ight),$$

$$\bar{x}^i = x^i + \epsilon L^i_{j} x^j + O(\epsilon^2),$$

here

$$L^{i}_{j} = \begin{pmatrix} 0 & -2a_{2} & (b_{1} - c_{1}) & (b_{1} + c_{1}) \\ 2a_{2} & 0 & (b_{2} + c_{2}) & (b_{2} - c_{2}) \\ -(b_{1} - c_{1}) & -(b_{2} + c_{2}) & 0 & -2a_{1} \\ (b_{1} + c_{1}) & (b_{2} - c_{2}) & -2a_{1} & 0 \end{pmatrix}$$

$$\frac{d^{2}x^{i}}{ds^{2}} = L^{i}_{j}(s)\frac{dx^{j}}{ds^{j}}.$$

 $U = \pm \begin{pmatrix} 1 + \epsilon s & \epsilon b \\ \epsilon c & 1 + \epsilon f \end{pmatrix}$ $\vec{x}^i = x^i + \epsilon L^i_i x^i + O(\epsilon^2),$

- This was done in a recent lecture(Relativistic QM) so I wont do it
- Where a,b,c,d are complex
- Take many infinitesimal LT steps along a particles trajectory and let ϵ go to zero

$$U = \pm \begin{pmatrix} 1 + \epsilon a & \epsilon b \\ \epsilon c & 1 + \epsilon f \end{pmatrix},$$
$$\bar{x}^i = x^i + \epsilon L^i_i x^j + O(\epsilon^2),$$

where

$$L^{i}_{j} = \begin{pmatrix} 0 & -2a_{2} & (b_{1} - c_{1}) & (b_{1} + c_{1}) \\ 2a_{2} & 0 & (b_{2} + c_{2}) & (b_{2} - c_{2}) \\ -(b_{1} - c_{1}) & -(b_{2} + c_{2}) & 0 & -2a_{1} \\ (b_{1} + c_{1}) & (b_{2} - c_{2}) & -2a_{1} & 0 \end{pmatrix}$$

$$\frac{d^{2}x^{i}}{ds^{2}} = L^{i}_{j}(s)\frac{dx^{j}}{ds}.$$

- This was done in a recent lecture(Relativistic QM) so I wont do it
- Where a,b,c,d are complex
- ullet Take many infinitesimal LT steps along a particles trajectory and let ϵ go to zero

Infinitesimal Lorentz Transformation

$$U = \pm \begin{pmatrix} 1 + \epsilon a & \epsilon b \\ \epsilon c & 1 + \epsilon f \end{pmatrix},$$
$$\bar{x}^i = x^i + \epsilon L^i_j x^j + O(\epsilon^2),$$

where

$$L^{i}_{j} = \begin{pmatrix} 0 & -2a_{2} & (b_{1} - c_{1}) & (b_{1} + c_{1}) \\ 2a_{2} & 0 & (b_{2} + c_{2}) & (b_{2} - c_{2}) \\ -(b_{1} - c_{1}) & -(b_{2} + c_{2}) & 0 & -2a_{1} \\ (b_{1} + c_{1}) & (b_{2} - c_{2}) & -2a_{1} & 0 \end{pmatrix}$$

$$\frac{d^{2}x^{i}}{ds^{2}} = L^{i}_{j}(s)\frac{dx^{j}}{ds}.$$

- This was done in a recent lecture(Relativistic QM) so I wont do it
- Where a,b,c,d are complex
- ullet Take many infinitesimal LT steps along a particles trajectory and let ϵ go to zero

Infinitesimal Lorentz Transformation

$$U = \pm \begin{pmatrix} 1 + \epsilon a & \epsilon b \\ \epsilon c & 1 + \epsilon f \end{pmatrix},$$
$$\bar{x}^i = x^i + \epsilon L^i_j x^j + O(\epsilon^2),$$

where

$$L^{i}_{j} = \begin{pmatrix} 0 & -2a_{2} & (b_{1} - c_{1}) & (b_{1} + c_{1}) \\ 2a_{2} & 0 & (b_{2} + c_{2}) & (b_{2} - c_{2}) \\ -(b_{1} - c_{1}) & -(b_{2} + c_{2}) & 0 & -2a_{1} \\ (b_{1} + c_{1}) & (b_{2} - c_{2}) & -2a_{1} & 0 \end{pmatrix}$$

$$\frac{d^{2}x^{i}}{ds^{2}} = L^{i}_{j}(s)\frac{dx^{j}}{ds}.$$

Infinitesimal Lorentz Transformation: Lorentz Force

temp

Infinitesimal Lorentz Transformation: Lorentz Force

• Can rewrite this equation in terms of the particles 3-velocity \vec{u} , in component form

$$\frac{d}{dt}(\gamma(u)u^{(1)}) = -2a_2u^{(2)} + (b_1 - c_1)u^{(3)} + b_1 + c_1,
\frac{d}{dt}(\gamma(u)u^{(2)}) = 2a_2u^{(1)} + (b_2 + c_2)u^{(3)} + b_2 - c_2,
\frac{d}{dt}(\gamma(u)u^{(3)}) = -(b_1 - c_1)u^{(1)} - (b_2 + c_2)u^{(2)} - 2a_1,
\frac{d\gamma(u)}{dt} = (b_1 + c_1)u^{(1)} + (b_2 - c_2)u^{(2)} - 2a_1u^{(3)}.$$

Define the 3-vectors

$$\vec{P} = (b_1 + c_1, b_2 - c_2, -2a_1),$$

 $\vec{Q} = (b_2 + c_2, -(b_1 - c_1), -2a_2)$

finitesimal Lorentz Transformation: Lorentz Force

 $\frac{d}{2}(\gamma(u)u^{(1)}) = -2a_2u^{(2)} + (b_1 - c_1)u^{(3)} + b_1 + c_1,$

 $\frac{d\gamma(u)}{c} = (b_1 + c_1)u^{(1)} + (b_2 - c_2)u^{(2)} - 2a_1u^{(3)}.$

temp

Infinitesimal Lorentz Transformation: Lorentz Force

$$\begin{split} \frac{d}{dt} \left[\gamma(a) u^{(k)} \right] &= -2 a_0 u^{(j)} + (b_1 - c_1) u^{(j)} + b_2 + c_1, \\ \frac{d}{dt} \left[\gamma(a) u^{(j)} \right] &= 2 a_0 u^{(j)} + (b_2 + c_2) u^{(j)} + b_2 - c_2, \\ \frac{d}{dt} \left[\gamma(a) u^{(j)} \right] &= -(b_1 - c_1) u^{(j)} - (b_2 + c_2) u^{(j)} - 2 a_1, \\ \frac{d^2}{dt} \left[\gamma(a) u^{(j)} \right] &= (b_1 - c_2) u^{(j)} - (b_2 - c_2) u^{(j)} - 2 a_1, \\ \frac{d^2}{dt} &= (b_1 + c_2) u^{(j)} + (b_2 - c_2) u^{(j)} - 2 a_1 u^{(j)}. \end{split}$$

 $\vec{P} = (b_1 + c_1, b_2 - c_2, -2a_1),$ $\vec{Q} = (b_2 + c_2, -(b_1 - c_1), -2a_2).$

Infinitesimal Lorentz Transformation: Lorentz Force

ullet Can rewrite this equation in terms of the particles 3-velocity $ec{u}$, in component form

$$\frac{d}{dt}(\gamma(u)u^{(1)}) = -2a_2u^{(2)} + (b_1 - c_1)u^{(3)} + b_1 + c_1,
\frac{d}{dt}(\gamma(u)u^{(2)}) = 2a_2u^{(1)} + (b_2 + c_2)u^{(3)} + b_2 - c_2,
\frac{d}{dt}(\gamma(u)u^{(3)}) = -(b_1 - c_1)u^{(1)} - (b_2 + c_2)u^{(2)} - 2a_1,
\frac{d\gamma(u)}{dt} = (b_1 + c_1)u^{(1)} + (b_2 - c_2)u^{(2)} - 2a_1u^{(3)}.$$

• Define the 3-vectors

$$\vec{P} = (b_1 + c_1, b_2 - c_2, -2a_1),$$

 $\vec{Q} = (b_2 + c_2, -(b_1 - c_1), -2a_2).$

Infinitesimal Lorentz Transformation: Lorentz Force

• temp

Infinitesimal Lorentz Transformation: Lorentz Force

• Writing the equations in terms of these

$$\frac{d}{dt}(\gamma(u)\vec{u}) = \vec{P} + \vec{u} \times \vec{Q},$$

- This is the same form as the Lorentz force
- Make the Identification

$$\vec{P} = \frac{q}{m}\vec{E}, \qquad \vec{Q} = \frac{q}{m}\vec{B},$$
 (1)

• To be compatible with special relativity the Lorentz force must depend on \vec{u} in this way. So the Lorentz force is a special case of a charged particle moving along a world line in minkowskian space-time generated by an infinitesimal Lorentz transformation.

nfinitesimal Lorentz Transformation: Lorentz Force

 $\frac{d}{dt}(\gamma(u)\vec{u}) = \vec{P} + \vec{u} \times \vec{Q},$

temp

nfinitesimal Lorentz Transformation: Lorentz Force

a Writing the equations in terms of these $\frac{d}{dt}(\gamma(u)\vec{u}) = \vec{P} + \vec{u} \times \vec{Q},$

This is the same form as the Lorentz force

Infinitesimal Lorentz Transformation: Lorentz Force

Writing the equations in terms of these

$$\frac{d}{dt}(\gamma(u)\vec{u}) = \vec{P} + \vec{u} \times \vec{Q},$$

- This is the same form as the Lorentz force
- Make the Identification

$$= -\frac{q}{m}\vec{E}, \qquad \vec{Q} = -\frac{q}{m}\vec{B}, \tag{1}$$

• To be compatible with special relativity the Lorentz force must depend on \vec{u}

Infinitesimal Lorentz Transformation: Lorentz Force

temp

Infinitesimal Lorentz Transformation: Lorentz Force

• Writing the equations in terms of these

$$\frac{d}{dt}(\gamma(u)\vec{u}) = \vec{P} + \vec{u} \times \vec{Q},$$

- This is the same form as the Lorentz force
- Make the Identification

$$\vec{P} = \frac{q}{m}\vec{E}, \qquad \vec{Q} = \frac{q}{m}\vec{B},$$
 (1)

• To be compatible with special relativity the Lorentz force must depend on \vec{u} in this way. So the Lorentz force is a special case of a charged particle moving along a world line in minkowskian space-time generated by an infinitesimal Lorentz transformation.

nfinitesimal Lorentz Transformation: Lorentz Force

 $\frac{d}{dt}(\gamma(u)\vec{u}) = \vec{P} + \vec{u} \times \vec{Q},$

 $\vec{P} = \frac{q}{-}\vec{E}, \quad \vec{Q} = \frac{q}{-}\vec{B},$

a Writing the equations in terms of these

. This is the same form as the Lorentz force

Make the Identification

Layout

temp

Layout

Strange Minkowskian Line Element

SL(2, C) Matrices of the Lorentz Transformation

- Introduction: Lorentz Transformations
- Strange Minkowskian Line Element
- Singular Lorentz transformation
- **3** $SL(2,\mathbb{C})$ Matrices of the Lorentz Transformation
- **1** The Fractional Linear Transformation
- Infinitesimal Lorentz Transformation
- Pure Radiation conditions

- This is one of the things I said I would show earlier
- THIS WILL BE VERY IMPORTANT, **write on the board**

Pure Radiation Conditions

• The fractional linear transformation of the infinitesimal transformation is

$$\zeta' = \frac{\zeta + \epsilon(\bar{c} - \bar{a}\zeta) + O(\epsilon^2)}{1 + \epsilon(\bar{a} + \bar{b}\zeta) + O(\epsilon^2)}.$$

- Fixed points of the system are given by $\zeta=\zeta'$ and correspond to null directions
- ullet With this condition solve the fractional linear transformation for ζ

$$\bar{\beta}\zeta^2 + (\bar{\alpha} - \bar{\delta})\zeta - \bar{\gamma} = 0$$

- A quadratic means it has two roots in general
- Interested in the singular root case so take the descriminant equal to zero to get

$$a^2 + bc = 0$$

- This is one of the things I said I would show earlier
- THIS WILL BE VERY IMPORTANT, **write on the board**

Pure Radiation Conditions

• The fractional linear transformation of the infinitesimal transformation is

$$\zeta' = \frac{\zeta + \epsilon(\bar{c} - \bar{a}\zeta) + O(\epsilon^2)}{1 + \epsilon(\bar{a} + \bar{b}\zeta) + O(\epsilon^2)}.$$

- \bullet Fixed points of the system are given by $\zeta=\zeta'$ and correspond to null directions
- ullet With this condition solve the fractional linear transformation for ζ

$$\bar{\beta}\zeta^2 + (\bar{\alpha} - \bar{\delta})\zeta - \bar{\gamma} = 0$$

- A quadratic means it has two roots in general
- Interested in the singular root case so take the descriminant equal to zero to get

$$a^2 + bc = 0$$
.

- This is one of the things I said I would show earlier
- THIS WILL BE VERY IMPORTANT, **write on the board**

Pure Radiation Conditions

• The fractional linear transformation of the infinitesimal transformation is

$$\zeta' = \frac{\zeta + \epsilon(\bar{c} - \bar{a}\zeta) + O(\epsilon^2)}{1 + \epsilon(\bar{a} + \bar{b}\zeta) + O(\epsilon^2)}.$$

- \bullet Fixed points of the system are given by $\zeta=\zeta'$ and correspond to null directions
- ullet With this condition solve the fractional linear transformation for ζ

$$\bar{\beta}\zeta^2 + (\bar{\alpha} - \bar{\delta})\zeta - \bar{\gamma} = 0.$$

- A quadratic means it has two roots in general
- Interested in the singular root case so take the descriminant equal to zero to get

$$a^2 + bc = 0$$
.

0.00

Pure Radiation Conditions

Pure Radiation Conditions			
a The fractional linear transformation of the infinitesimal transformation			
a The tractional linear transformation of the intrinsessmal transformation (
$\zeta' = \frac{\zeta + \epsilon(\bar{\epsilon} - \bar{a}\zeta) + O(\epsilon^2)}{1 + \epsilon(\bar{a} + \bar{b}\zeta) + O(\epsilon^2)}$.			
a Fixed points of the system are given by $\zeta=\zeta'$ and correspond to null directions			
${\bf a}$ With this condition solve the fractional linear transformation for ζ			
$\bar{\beta}\zeta^2 + (\bar{\alpha} - \bar{\delta})\zeta - \bar{\gamma} = 0.$			
A quadratic means it has two roots in general			

- This is one of the things I said I would show earlier
- THIS WILL BE VERY IMPORTANT, **write on the board**

Pure Radiation Conditions

• The fractional linear transformation of the infinitesimal transformation is

$$\zeta' = rac{\zeta + \epsilon(ar{c} - ar{a}\zeta) + O(\epsilon^2)}{1 + \epsilon(ar{a} + ar{b}\zeta) + O(\epsilon^2)}.$$

- \bullet Fixed points of the system are given by $\zeta=\zeta'$ and correspond to null directions
- ullet With this condition solve the fractional linear transformation for ζ

$$\bar{\beta}\zeta^2 + (\bar{\alpha} - \bar{\delta})\zeta - \bar{\gamma} = 0.$$

- A quadratic means it has two roots in general
- Interested in the singular root case so take the descriminant equal to zero to get

$$a^2 + bc = 0$$
.

20 10 100

Pure Radiation Conditions

a The fractio	nal linear transformation of the infinitesimal transformation is
	$\zeta' = \frac{\zeta + \epsilon(\bar{\epsilon} - \bar{a}\zeta) + O(\epsilon^2)}{1 + \epsilon(\bar{a} + \bar{b}\zeta) + O(\epsilon^2)}.$
Fixed point directions	s of the system are given by $\zeta=\zeta'$ and correspond to null
With this o	ondition solve the fractional linear transformation for ζ
	$\bar{\beta}\zeta^2 + (\bar{\alpha} - \bar{\delta})\zeta - \bar{\gamma} = 0.$
• A quadratio	means it has two roots in general
	n the singular root case so take the descriminant equal to ze
get	$a^2 + bc = 0$.
refer to this	as the quadratic condition.

- This is one of the things I said I would show earlier
- THIS WILL BE VERY IMPORTANT, **write on the board**

Pure Radiation Conditions

• The fractional linear transformation of the infinitesimal transformation is

$$\zeta' = \frac{\zeta + \epsilon(\bar{c} - \bar{a}\zeta) + O(\epsilon^2)}{1 + \epsilon(\bar{a} + \bar{b}\zeta) + O(\epsilon^2)}.$$

- \bullet Fixed points of the system are given by $\zeta=\zeta'$ and correspond to null directions
- ullet With this condition solve the fractional linear transformation for ζ

$$\bar{\beta}\zeta^2 + (\bar{\alpha} - \bar{\delta})\zeta - \bar{\gamma} = 0.$$

- A quadratic means it has two roots in general
- Interested in the singular root case so take the descriminant equal to zero to get

$$a^2 + bc = 0$$
.

20 10 100

Pure Radiation Conditions

a The fractio	nal linear transformation of the infinitesimal transformation is
	$\zeta' = \frac{\zeta + \epsilon(\bar{\epsilon} - \bar{a}\zeta) + O(\epsilon^2)}{1 + \epsilon(\bar{a} + \bar{b}\zeta) + O(\epsilon^2)}.$
Fixed point directions	s of the system are given by $\zeta=\zeta'$ and correspond to null
With this o	ondition solve the fractional linear transformation for ζ
	$\bar{\beta}\zeta^2 + (\bar{\alpha} - \bar{\delta})\zeta - \bar{\gamma} = 0.$
• A quadratio	means it has two roots in general
	n the singular root case so take the descriminant equal to ze
get	$a^2 + bc = 0$.
refer to this	as the quadratic condition.

- This is one of the things I said I would show earlier
- THIS WILL BE VERY IMPORTANT, **write on the board**

Pure Radiation Conditions

• The fractional linear transformation of the infinitesimal transformation is

$$\zeta' = \frac{\zeta + \epsilon(\bar{c} - \bar{a}\zeta) + O(\epsilon^2)}{1 + \epsilon(\bar{a} + \bar{b}\zeta) + O(\epsilon^2)}.$$

- \bullet Fixed points of the system are given by $\zeta=\zeta'$ and correspond to null directions
- ullet With this condition solve the fractional linear transformation for ζ

$$\bar{\beta}\zeta^2 + (\bar{\alpha} - \bar{\delta})\zeta - \bar{\gamma} = 0.$$

- A quadratic means it has two roots in general
- Interested in the singular root case so take the descriminant equal to zero to get

$$a^2 + bc = 0$$
.

• q/m factors suppresed for convenience

Pure Radiation Conditions

The a and b are related to $\mathcal E$ and $\mathcal B$ through the Lorentz force as $s_1=-\frac{1}{2}\mathcal E^1, \quad b_2=\frac{1}{2}(\mathcal E^2+\mathcal B^2), \quad c_1=\frac{1}{2}(\mathcal E^2+\mathcal B^2), \\ s_2=-\frac{1}{2}\mathcal B^1, \quad b_1=\frac{1}{2}(\mathcal E^2-\mathcal B^2), \quad c_2=\frac{1}{2}(\mathcal B^1-\mathcal E^2).$

Pure Radiation Conditions

ullet The a and b are related to $ec{E}$ and $ec{B}$ through the Lorentz force as

$$a_1 = -\frac{1}{2}E^3,$$
 $b_2 = \frac{1}{2}(E^2 + B^1),$ $c_1 = \frac{1}{2}(E^1 + B^2),$ $a_2 = -\frac{1}{2}B^3,$ $b_1 = \frac{1}{2}(E^1 - B^2),$ $c_2 = \frac{1}{2}(B^1 - E^2).$

 Then the real and imaginary parts of the quadratic condition give us the relations

$$|\vec{E}|^2 = |\vec{B}|^2$$

$$\vec{E} \cdot \vec{B} = 0.$$

• These are the familiar pure radiation conditions. Thus if the world line of a charged particle is generated by an infinitesimal Lorentz transformation then the particle is moving in a pure radiation EM field.

• q/m factors suppresed for convenience

Pure Radiation Conditions

$\sqrt{1}$ to s and b are obtaind to \bar{E} and \bar{B} through the Lorentz force as $\alpha_1=-\frac{1}{2}E^2, \quad b_1=\frac{1}{2}(E^2+B^2), \quad \alpha_2=\frac{1}{2}(E^2+B^2), \quad \alpha_3=\frac{1}{2}(E^2+B^2), \quad \alpha_4=\frac{1}{2}(E^2+B^2), \quad \alpha_5=\frac{1}{2}(E^2+B^2), \quad \alpha_5=\frac{1}{2}(E^2-B^2), \quad \alpha_5=\frac{1}{2}(E^2-B^2), \quad \alpha_5=\frac{1}{2}(E^2-B^2), \quad \alpha_5=\frac{1}{2}(E^2-B^2), \quad \alpha_5=\frac{1}{2}(E^2-B^2), \quad \alpha_5=\frac{1}{2}(E^2-B^2), \quad \beta_5=\frac{1}{2}(E^2-B^2), \quad \beta_5=\frac{1}{2}(E^2-B^2),$

Pure Radiation Conditions

• The a and b are related to \vec{E} and \vec{B} through the Lorentz force as

$$a_1 = -\frac{1}{2}E^3,$$
 $b_2 = \frac{1}{2}(E^2 + B^1),$ $c_1 = \frac{1}{2}(E^1 + B^2),$ $a_2 = -\frac{1}{2}B^3,$ $b_1 = \frac{1}{2}(E^1 - B^2),$ $c_2 = \frac{1}{2}(B^1 - E^2).$

 Then the real and imaginary parts of the quadratic condition give us the relations

$$|\vec{E}|^2 = |\vec{B}|^2,$$

$$\vec{E} \cdot \vec{B} = 0.$$

• These are the familiar pure radiation conditions. Thus if the world line of a charged particle is generated by an infinitesimal Lorentz transformation then the particle is moving in a pure radiation EM field.

q/m factors suppressed for convenience

Pure Radiation Conditions

ψ . The a and δ are related to \mathcal{E} and δ through the Lorentz force as $\alpha_1 = \frac{1}{2}\mathcal{E}^1, \quad b_1 = \frac{1}{2}(\mathcal{E}^1 + \mathcal{B}^1), \quad \alpha_2 = \frac{1}{2}(\mathcal{E}^1 + \mathcal{B}^2), \quad \alpha_3 = \frac{1}{2}(\mathcal{E}^1 + \mathcal{B}^2), \quad \alpha_4 = \frac{1}{2}(\mathcal{B}^1 - \mathcal{B}^2), \quad \alpha_5 =$

These are the familiar pure radiation conditions. Thus if the world line of a

Pure Radiation Conditions

• The a and b are related to \vec{E} and \vec{B} through the Lorentz force as

$$a_1 = -\frac{1}{2}E^3,$$
 $b_2 = \frac{1}{2}(E^2 + B^1),$ $c_1 = \frac{1}{2}(E^1 + B^2),$ $a_2 = -\frac{1}{2}B^3,$ $b_1 = \frac{1}{2}(E^1 - B^2),$ $c_2 = \frac{1}{2}(B^1 - E^2).$

 Then the real and imaginary parts of the quadratic condition give us the relations

$$|\vec{E}|^2 = |\vec{B}|^2,$$

$$\vec{F} \cdot \vec{B} = 0.$$

• These are the familiar pure radiation conditions. Thus if the world line of a charged particle is generated by an infinitesimal Lorentz transformation then the particle is moving in a pure radiation EM field.

Layout

• MAny other things can be shown, I will finally show one small lemma of this result

add in the contents

References

- D. Finkelstein "Past-Future Asymmetry of the Gravitational Field of a Poi Particle" - Phys. Rev. Vol 110. (1958)
- http://iournals.aps.org/pr/pdf/10.1103/PhysRev.110.965 P.A. Hogan, C.Barrabès - "Advanced General Relativity: Gravity Waves, I. Robinson "Spherical Gravitational Waves" - Phys. Rev. Lett. 4 (1960)
- http://iournals.aps.ors/prl/pdf/10.1103/PhysRevLett.4.431 P.A. Hogan, C. Barrabès - "Singular Null Hypersurfaces" - World Scientific
- 5 R. Penrose, W. Rindler "Spinors and Space-Time: Volume 1, Two-Spinor Calculus and Relativistic Fields" - Cambridge University Press, (Feb 1987)
- Various Authors "Space-Time and Geometry: The Alfred Schild Lectures"
- University of Texas Press (March 21, 2012)

References

- 1 J.L. Synge "Relativity: The Special Theory" North Holland Publishing Company (1965)
- 2 D. Finkelstein "Past-Future Asymmetry of the Gravitational Field of a Point Particle" - Phys.Rev.Vol 110, (1958) http://journals.aps.org/pr/pdf/10.1103/PhysRev.110.965
- 3 P.A. Hogan, C.Barrabès "Advanced General Relativity: Gravity Waves, Spinning Particles and Black Holes" - Oxford University Press (May 2013)
- 4 I. Robinson "Spherical Gravitational Waves" Phys.Rev.Lett. 4 (1960) 431-432
 - http://journals.aps.org/prl/pdf/10.1103/PhysRevLett.4.431
- 5 P.A Hogan, C. Barrabès "Singular Null Hypersurfaces" World Scientific Pub Co Inc (April 2004)
- 6 R. Penrose, W. Rindler "Spinors and Space-Time: Volume 1, Two-Spinor Calculus and Relativistic Fields" - Cambridge University Press, (Feb 1987)
- 7 Tristan Needham "Visual Complex Analysis" Clarendon Press, Oxford (1997)
- 8 Various Authors "Space-Time and Geometry: The Alfred Schild Lectures" -University of Texas Press (March 21, 2012)