21. Linear algebra III: Orthogonality and QR factorization

21. Linear algebra III: Orthogonality and QR factorization

Last time

- Solving linear equations
- Elimination / row reduction
- lacksquare LU factorization

Goals for today

- Geometry of Euclidean space
- Orthogonality
- Inner products
- Gram–Schmidt orthogonalization
- QR factorization

- Recall: Want to solve linear systems Ax = b
- Usually requires significant computational effort

- Recall: Want to solve linear systems Ax = b
- Usually requires significant computational effort

Are there situations where it might be easy?

- Recall: Want to solve linear systems Ax = b
- Usually requires significant computational effort

- Are there situations where it might be easy?
- lacksquare When A is diagonal

- Recall: Want to solve linear systems Ax = b
- Usually requires significant computational effort

- Are there situations where it might be easy?
- When A is diagonal
- Ease comes from strong kind of "independence" of columns:
 - orthogonal or perpendicular
- One column "does not affect" other columns

21. Linear algebra III: Orthogonality and QR factorization

Length

■ New concept: **length** in Euclidean space

Length

- New concept: **length** in Euclidean space
- lacktriangle Define **norm** (length) of vector $oldsymbol{ extstyle v} \in \mathbb{R}^n$ as

$$\|\mathbf{v}\|_2 := \sqrt{\sum_{i=1}^n v_i^2}$$

Length

- New concept: length in Euclidean space
- lacktriangle Define **norm** (length) of vector $oldsymbol{ extstyle v} \in \mathbb{R}^n$ as

$$\|\mathbf{v}\|_2 := \sqrt{\sum_{i=1}^n v_i^2}$$

- lacksquare Can write as $\|\mathbf{v}\|^2 = \mathbf{v}^T \mathbf{v}$
- Think of **v** as "column vector", $n \times 1$ matrix
- Think of \mathbf{v}^T as "row vector", $1 \times n$ matrix

Length

- New concept: **length** in Euclidean space
- lacksquare Define **norm** (length) of vector $oldsymbol{ extbf{v}} \in \mathbb{R}^n$ as

$$\|\mathbf{v}\|_2 := \sqrt{\sum_{i=1}^n v_i^2}$$

- \blacksquare Can write as $\|\mathbf{v}\|^2 = \mathbf{v}^T \mathbf{v}$
- Think of **v** as "column vector", $n \times 1$ matrix
- Think of \mathbf{v}^T as "row vector", $1 \times n$ matrix
- "Householder notation"

Unit vectors

lacktriangle Can now decompose vector v as

$$\mathbf{v} = \|\mathbf{v}\|\hat{\mathbf{v}}$$

 $\hat{\mathbf{v}}$ is unit vector – direction of $\hat{\mathbf{v}}$

Orthogonality

- Want to characterise key concept: orthogonality
- Several ways to approach this
- Let's think about projections

Projections

- lacksquare Let u and v be vectors in \mathbb{R}^2
- \blacksquare Call $P_u(v)$ the (orthogonal) projection of v onto u
- \blacksquare Gives vector in direction of u , with length $\alpha_u(v)$

Projections

- lacksquare Let u and v be vectors in \mathbb{R}^2
- \blacksquare Call $P_u(v)$ the (orthogonal) **projection** of v onto u
- \blacksquare Gives vector in direction of u, with length $\alpha_u(v)$
- lacksquare (Orthogonal) "shadow" of v on the direction of u
- \blacksquare For orthogonal unit vectors i and j impose $P_i(i)=1$ and $P_j(i)=0$

Projections II

- $\blacksquare \text{ For vector } u = u_1 i + u_2 j \text{ have } P_i(u) = u_1 i$
- Impose linearity:

$$P_u(v_1i + v_2j) = v_1P_u(i) + v_2P_u(j) = \|u\| \left[v_1P_{\hat{u}}(i) + v_2P_{\hat{u}}(j)\right]$$

- \blacksquare For two *unit* vectors, by symmetry $\alpha_i(\hat{u}) = \alpha_{\hat{u}}(i)$
- So $P_u(v) = (u_1v_1 + u_2v_2)\hat{u}$

Dot product and orthogonality

- \blacksquare Define dot product $u\cdot v:=\alpha_u(v)=u_1v_1+u_2v_2$
- \blacksquare In general $u \cdot v := \sum_{i=1^n} u_i v_i = u^T v$
- From above derivation $\hat{u}\cdot\hat{v}=\cos(\theta)$
- lacktriangle Where heta is **angle** between u and v

Dot product and orthogonality

- $\blacksquare \text{ Define dot product } u \cdot v := \alpha_u(v) = u_1 v_1 + u_2 v_2$
- \blacksquare In general $u \cdot v := \sum_{i=1^n} u_i v_i = u^T v$
- From above derivation $\hat{u} \cdot \hat{v} = \cos(\theta)$
- lacktriangle Where heta is **angle** between u and v
- lacksquare Say u and v are **orthogonal** if $u \cdot v = 0$

Orthogonal linear combinations

- \blacksquare Suppose v_1,\dots,v_n are all mutually orthogonal
- Suppose want to solve $x_1v_1 + \cdots + x_nv_n = b$

Orthogonal linear combinations

- \blacksquare Suppose v_1,\dots,v_n are all mutually orthogonal
- Suppose want to solve $x_1v_1 + \cdots + x_nv_n = b$
- It's now easy!:

$$x_i = b \cdot v_i$$

 \blacksquare Component in direction of v_i

Orthogonal linear combinations

- \blacksquare Suppose v_1,\dots,v_n are all mutually orthogonal
- \blacksquare Suppose want to solve $x_1v_1+\cdots+x_nv_n=b$
- It's now easy!:

$$x_i = b \cdot v_i$$

- lacksquare Component in direction of v_i
- Orthogonal decomposition: $b = (b \cdot v_1)v_1 + \dots + (b \cdot v_n)v_n$

- Alternative point of view: Preserve length
- lacktriangle Look for linear transformation Q preserving length
- $\blacksquare \text{ So } \|Q\mathbf{u}\| = \|\mathbf{u}\| \text{ for all } u$

- Alternative point of view: Preserve length
- lacktriangle Look for linear transformation Q preserving length
- \blacksquare So $\|Q\mathbf{u}\| = \|\mathbf{u}\|$ for all u
- $\blacksquare \ \mathrm{So} \ (Q\mathbf{u})^T (Q\mathbf{u}) = \mathbf{u}^T \mathbf{u}$

- Alternative point of view: Preserve length
- lacktriangle Look for linear transformation Q preserving length
- So $\|Q\mathbf{u}\| = \|\mathbf{u}\|$ for all u
- $\blacksquare \ \mathrm{So} \ (Q\mathbf{u})^T(Q\mathbf{u}) = \mathbf{u}^T\mathbf{u}$
- $\qquad \qquad \mathbf{So} \ \mathbf{u}^T Q^T Q \mathbf{u} = \mathbf{u}^T \mathbf{u}$

- Alternative point of view: Preserve length
- lacktriangle Look for linear transformation Q preserving length
- So $\|Q\mathbf{u}\| = \|\mathbf{u}\|$ for all u
- $\blacksquare \ \mathrm{So} \ (Q\mathbf{u})^T(Q\mathbf{u}) = \mathbf{u}^T\mathbf{u}$
- lacktriangle Hence $Q^TQ=I$, identity matrix
- \blacksquare So columns \mathbf{q}_i of Q satisfy $\mathbf{q}_i \cdot \mathbf{q}_j = \delta_{ij}$
- i.e. columns are orthonormal

Orthogonalization

- Suppose have set of linearly independent vectors
- Can we create an orthogonal set of vectors from them?

Orthogonalization

- Suppose have set of linearly independent vectors
- Can we create an orthogonal set of vectors from them?
- lacksquare For two vectors u and v, take u as one of the vectors

Orthogonalization

- Suppose have set of linearly independent vectors
- Can we create an orthogonal set of vectors from them?
- lacksquare For two vectors u and v, take u as one of the vectors
- lacktriangle Make an orthogonal decomposition of v as
 - v = (part of v in direction of u) + (the rest)

Orthogonalization II

- Define $q_1 := (v \cdot u)\hat{u}$ = part of v in direction of u
- $\blacksquare \text{ Define } q_2 := v a$
- Then

$$q_1\cdot q_2=q_1\cdot v-q_1\cdot q_1=(v\cdot u)(u\cdot v)-(v\cdot u)^2=0$$

Orthogonalization II

- \blacksquare Define $q_1:=(v\cdot u)\hat{u}$ = part of v in direction of u
- $\blacksquare \ \, \mathrm{Define} \ q_2 := v-a$
- Then $q_1\cdot q_2=q_1\cdot v-q_1\cdot q_1=(v\cdot u)(u\cdot v)-(v\cdot u)^2=0$
- lacksquare i.e. q_1 and q_2 are indeed orthogonal

Orthogonalization III

- Generalize to n vectors:
- Define $u_1=v_1$; $q_1:=\frac{u_1}{\|u_1\|}$
- $\qquad \qquad \text{Define } u_2 = v_2 (v_2 \cdot q_1)q_1; \quad q_2 := \frac{u_2}{\|u_2\|}$
- $\qquad \text{ Define } u_3 = v_3 (v_3 \cdot q_2) q_2 (v_3 \cdot q_1) q_1; \quad q_3 := \frac{u_3}{\|u_3\|}$

QR factorization

Above algorithm is Gram-Schmidt algorithm

QR factorization

- Above algorithm is Gram-Schmidt algorithm
- lacktriangle Produces a set of n orthogonal vectors q_i
- Now express columns of A in terms of q_i :

$$\begin{split} v_1 &= (v_1 \cdot q_1)q_1 \\ v_2 &= (v_2 \cdot q_1)q_1 + (v_2 \cdot q_2)q_2 \\ v_3 &= (v_3 \cdot q_1)q_1 + (v_3 \cdot q_2)q_2 + (v_3 \cdot q_3)q_3 \end{split}$$

- lacksquare Gives A=QR
- lacksquare With orthogonal Q and upper-triangular R

QR factorization

- Above algorithm is Gram-Schmidt algorithm
- lacktriangle Produces a set of n orthogonal vectors q_i
- Now express columns of A in terms of q_i:

$$\begin{split} v_1 &= (v_1 \cdot q_1)q_1 \\ v_2 &= (v_2 \cdot q_1)q_1 + (v_2 \cdot q_2)q_2 \\ v_3 &= (v_3 \cdot q_1)q_1 + (v_3 \cdot q_2)q_2 + (v_3 \cdot q_3)q_3 \end{split}$$

- lacksquare Gives A=QR
- lacktriangle With orthogonal Q and upper-triangular R
- However, not numerically stable

Solving linear equations

■ Gives another method to solve Ax = b:

Solving linear equations

- \blacksquare Gives another method to solve Ax=b:
- \blacksquare Factorize A=QR
- \blacksquare Solve Qy=b as $y_i=(b\cdot q_i)q_i$
- Then solve Rx = y by substitution

Summary

- Key concepts: length, angle, orthogonality
- lacktriangle Described by inner product $a \cdot b$
- Can orthogonalise set of vectors using Gram–Schmidt algorithm
- lacktriangle Gives QR factorization of a matrix