Statistical Machine Learning Approaches to Liver Disease Prediction

TEAM ID: PNT2022TMID48226

Team Leader: P.M.Priyadharshini

Team Member: N.N.Deepika

Team Member: T.G.Yamini

Team Member: S.S.Megha

Exploratory Data Analysis

The exploratory data analysis (EDA) notebook is designed to assist you with discovering patterns in data, checking data sanity, and summarizing the relevant data for predictive models.

The EDA notebook example was optimized with web-based data in mind and consists of two parts. Part one starts with using Query Service to view trends and data snapshots. Next, with a goal in mind for exploratory data analysis, the data is aggregated at the profile and visitor level.

Part two starts by performing descriptive analysis on aggregated data using Python libraries. This notebook showcases visualizations such as histograms, scatter plots, box plots, and a correlation matrix to derive actionable insights used to determine which features are most likely to be helpful in predicting a goal.

[4]:		Year	Month	Count_days	First_date	Last_date	Count_hits
	0	2020	1	1	31	31	117060
	1	2020	2	29	1	29	3503948

head(): To check the first five rows of the dataset, we have a function called **head()**.

Tail(): To check the last five rows of the dataset, we have a function called tail().

dat	data.tail()										
	Age	Gender	Total_Bilirubin	Direct_Bilirubin	Alkaline_Phosphotase	Alamine_Aminotransferase	Aspartate_Aminotransfer				
578	60	Male	0.5	0.1	500	20	34				
579	40	Male	0.6	0.1	98	35	31				
580	52	Male	0.8	0.2	245	48	49				
581	31	Male	1.3	0.5	184	29	32				
582	38	Male	1.0	0.3	216	21	24				

Will see how our dataset is, by using the info() method.

```
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 583 entries, 0 to 582
Data columns (total 11 columns):
 # Column
                              Non-Null Count Dtype
    Age
                              583 non-null
                              583 non-null object
 1 Gender
  2 Total_Bilirubin
                             583 non-null float64
     Direct_Bilirubin
                              583 non-null
                             583 non-null
    Alkaline_Phosphotase
                                             int64
    Alamine_Aminotransferase 583 non-null
                                             int64
    Aspartate_Aminotransferase 583 non-null
                                             int64
     Total_Protiens
                              583 non-null
                                             float64
    Albumin
                              583 non-null
                                             float64
    Albumin_and_Globulin_Ratio 579 non-null
                                             float64
                                             int64
dtypes: float64(5), int64(5), object(1)
 memory usage: 50.2+ KB
```

describe(): functions are used to compute values like count, mean, standard deviation and IQR(Inter Quantile Ranges) and give a summary of numeric type data.

data.describe()

data.	data.describe()								
	Age	Total_Bilirubin	Direct_Bilirubin	Alkaline_Phosphotase	Alamine_Aminotransferase	Aspartate_Aminotransfera			
count	583.000000	583.000000	583.000000	583.000000	583.000000	583.000000			
mean	44.746141	3.298799	1.486106	290.576329	80.713551	109.910806			
std	16.189833	6.209522	2.808498	242.937989	182.620356	288.918529			
min	4.000000	0.400000	0.100000	63.000000	10.000000	10.000000			
25%	33.000000	0.800000	0.200000	175.500000	23.000000	25.000000			
50%	45.000000	1.000000	0.300000	208.000000	35.000000	42.000000			
75%	58.000000	2.600000	1.300000	298.000000	60.500000	87.000000			
max	90.000000	75.000000	19.700000	2110.000000	2000.000000	4929.000000			