Real Analysis Qualifying Exam Questions

D. Zack Garza

Tuesday 11th August, 2020

Contents

1	Und	ergraduate Analysis: Uniform Convergence	4
	1.1	Fall 2018 # 1	4
	1.2	1	4
	1.3	Fall 2017 # 1	5
	1.4	Fall 2014 # 1	5
	1.5	Spring 2017 # 4	5
	1.6	Spring 2015 # 1	5
	1.7	Fall 2014 # 2	6
	1.8	Spring 2014 # 2	6
2	Gen	eral Analysis	6
	2.1	Spring 2020 # 1	6
	2.2	Fall 2019 # 1	8
		2.2.1 a	8
		2.2.2 b	9
	2.3	Fall 2018 # 4	10
	2.4	Fall 2017 # 4	11
	2.5	Spring 2017 # 3	12
	2.6	Fall 2016 # 1	12
	2.7	Fall 2016 # 5	12
	2.8	Fall 2016 # 6	12
	2.9	Spring 2016 # 1	13
	2.10	Fall 2015 # 1	13
3	Mea	y	13
	3.1	Spring 2020 # 2	13
		3.1.1 a	13
		3.1.2 b	13
		3.1.3 a	14
		3.1.4 b	15
	3.2	Fall 2019 # 3	16
		3.2.1 a	16
		3.2.2 b	16
		3.2.3 c	17

	3.3	Spring 2019 # 2
		3.3.1 a
		3.3.2 b
		3.3.3 a
		3.3.4 b
	3.4	Fall 2018 # 2
	0.1	3.4.1 Indirect Proof
		3.4.2 Direct Proof (Todo)
	3.5	Spring 2018 # 1
	3.6	Fall 2017 # 2
	3.7	Spring 2017 # 2
	3.8	Fall 2016 # 4
	3.9	Spring 2016 # 3
		Spring 2016 # 5
		Fall 2015 # 2
		Spring 2015 # 3
		Spring 2014 # 3
		<u> </u>
		Spring 2014 # 4
		Spring 2017 # 1
	3.10	Spring 2016 # 2
4	Mea	sure Theory: Functions 26
-	4.1	Fall 2016 # 2
	4.2	Spring 2016 # 4
5	Inte	grals: Convergence 27
	5.1	Fall 2019 # 2
	5.2	Spring 2020 # 5
	5.3	Spring 2019 # 3
	5.4	Fall 2018 # 6
	5.5	Fall 2018 # 3
	5.6	Spring 2018 # 5
	5.7	Spring 2018 # 2
		5.7.1 a
		5.7.2 b
	5.8	Fall 2016 # 3
	5.9	Fall 2015 # 3
	5.10	Fall 2015 # 4
		"
6	Inte	grals: Approximation 37
	6.1	Spring 2018 # 3
	6.2	Spring 2018 # 4
	6.3	Spring $2015 \# 2$
		6.3.1 Proof 1: Using Fourier Transforms
		6.3.2 Alternative Proof
	6.4	Fall 2014 # 4

Contents 2

7	L^1														41
	7.1	Spring 2020 $\#$ 3	 		 		 			 			 		 . 41
		7.1.1 a	 		 		 			 			 		 . 41
		7.1.2 b	 		 		 			 			 		 42
		7.1.3 c	 		 		 			 			 		 45
	7.2	Fall 2019 $\#$ 5	 		 		 			 			 		 45
		7.2.1 a	 		 		 			 			 		 45
		7.2.2 b	 		 		 			 			 		 45
	7.3	a	 		 		 			 			 		 45
	7.4	b	 		 		 			 			 		 46
	7.5	Fall 2017 # 3	 		 		 			 			 		 46
	7.6	Spring 2015 # 4													
	7.7	Fall 2014 # 3													
	7.8	Spring 2014 # 1													
	,	10 P0 -0 - 1 -		-					-		-		-	-	
8	Fubi	ni-Tonelli													47
	8.1	Spring 2020 # 4	 		 		 			 			 		 . 47
	8.2	Spring 2019 # 4	 		 		 			 			 		 49
		8.2.1 a	 		 		 			 			 		 49
		8.2.2 b	 		 		 			 			 		 49
	8.3	Fall 2018 # 5	 		 		 			 			 		 . 50
	8.4	Fall 2015 # 5	 		 		 			 			 		 . 51
	8.5	Spring 2014 # 5													
		1 0 ",													
9	L^2 a	nd Fourier Analys													52
	9.1	Spring 2020 $\#$ 6													
		9.1.1 a													
		9.1.2 b	 		 		 			 			 		 . 52
		9.1.3 a	 		 		 			 			 		 . 53
	9.2	Fall 2017 $\#$ 5	 		 		 			 			 		 . 54
	9.3	Spring 2017 # 5	 		 		 			 			 		 . 54
	9.4	Spring 2015 $\#$ 6	 		 		 			 			 		 . 55
	9.5	Fall 2014 $\#$ 5	 		 		 			 			 		 . 55
10		ctional Analysis: C													55
	10.1	Fall 2019 # 4													
		10.1.1 a													
		10.1.2 b													
		10.1.3 a	 		 		 			 			 		
		10.1.4 b	 		 		 						 		 . 56
	10.2	Spring 2019 $\#$ 5	 		 		 			 			 		 . 57
		10.2.1 a	 		 		 			 			 		 . 57
		10.2.2 b	 		 		 						 		 . 57
		10.2.3 a	 		 		 			 			 		 . 57
		10.2.4 b	 		 		 			 			 		 . 58
	10.3	Spring 2016 $\#$ 6	 		 		 			 			 		 . 59
	10.4	Spring 2015 # 5	 		 		 			 			 		 60
	10.5	Fall 2015 # 6	 		 		 			 			 		 60

Contents 3

	10.6 Fall $2014 \# 6 \dots \dots$		
11	11 Functional Analysis: Banach Space	es	
	11.1 Spring 2019 # 1		
	11.1.1 a		
	11.1.2 b		
	11.2 Spring 2017 # 5		
	11.3 Fall 2017 # 6		

1 Undergraduate Analysis: Uniform Convergence

1.1 Fall 2018 # 1

Let $f(x) = \frac{1}{x}$. Show that f is uniformly continuous on $(1, \infty)$ but not on $(0, \infty)$.

Solution.

1.2 1

Concepts used:

• Uniform continuity.

Show a stronger statement: $f(x) = \frac{1}{x}$ is uniformly continuous on any interval of the form (c, ∞) where c > 0.

• Note that

$$|x|, |y| > c > 0 \implies |xy| = |x||y| > c^2 \implies \frac{1}{|xy|} < \frac{1}{c^2}.$$

- Letting ε be arbitrary, choose $\delta < \varepsilon c^2$.
- Note that δ does not depend on x, y.
- Then

$$|f(x) - f(y)| = \left| \frac{1}{x} - \frac{1}{y} \right|$$

$$= \frac{|x - y|}{xy}$$

$$\leq \frac{\delta}{xy}$$

$$< \frac{\delta}{c^2}$$

$$< \varepsilon,$$

which shows uniform continuity.

To see that f is not uniformly continuous when c = 0:

Note: negating uniform continuity says $\exists \varepsilon > 0$ such that $\forall \delta(\varepsilon)$ there exist x, y such that $|x-y| < \delta \ and \ |f(x)-f(y)| > \varepsilon.$ • Let $\varepsilon < 1$.
• Let $x_n = \frac{1}{n}$ for $n \ge 1$.

- Choose n large enough such that $|x_n x_{n+1}| = \frac{1}{n} \frac{1}{n+1} < \delta$.
 - Why this can be done: by the archimedean property of \mathbb{R} , choose n such that $\frac{1}{n} < \varepsilon$.
 - Then

$$\frac{1}{n} - \frac{1}{n+1} = \frac{1}{n(n+1)} \le \frac{1}{n} < \varepsilon \quad \text{since } n+1 > 1.$$

• Note $f(x_n) = n$ and thus

$$|f(x_n) - f(x_{n+1})| = n - (n+1) = 1 > \varepsilon.$$

1.3 Fall 2017 # 1

Let

$$f(x) = s \sum_{n=0}^{\infty} \frac{x^n}{n!}.$$

Describe the intervals on which f does and does not converge uniformly.

1.4 Fall 2014 # 1

Let $\{f_n\}$ be a sequence of continuous functions such that $\sum f_n$ converges uniformly.

Prove that $\sum f_n$ is also continuous.

1.5 Spring 2017 # 4

Let f(x,y) on $[-1,1]^2$ be defined by

$$f(x,y) = \begin{cases} \frac{xy}{(x^2 + y^2)^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Determine if f is integrable.

1.6 Spring 2015 # 1

Let (X, d) and (Y, ρ) be metric spaces, $f: X \longrightarrow Y$, and $x_0 \in X$.

Prove that the following statements are equivalent:

- 1. For every $\varepsilon > 0$ $\exists \delta > 0$ such that $\rho(f(x), f(x_0)) < \varepsilon$ whenever $d(x, x_0) < \delta$.
- 2. The sequence $\{f(x_n)\}_{n=1}^{\infty} \longrightarrow f(x_0)$ for every sequence $\{x_n\} \longrightarrow x_0$ in X.

1.7 Fall 2014 # 2

Let I be an index set and $\alpha: I \longrightarrow (0, \infty)$.

1. Show that

$$\sum_{i \in I} a(i) := \sup_{\substack{J \subset I \\ I \text{ finite}}} \sum_{i \in J} a(i) < \infty \implies I \text{ is countable.}$$

2. Suppose $I=\mathbb{Q}$ and $\sum_{q\in\mathbb{Q}}a(q)<\infty.$ Define

$$f(x) := \sum_{\substack{q \in \mathbb{Q} \\ q \le x}} a(q).$$

Show that f is continuous at $x \iff x \notin \mathbb{Q}$.

1.8 Spring 2014 # 2

Let $\{a_n\}$ be a sequence of real numbers such that

$$\{b_n\} \in \ell^2(\mathbb{N}) \implies \sum a_n b_n < \infty.$$

Show that $\sum a_n^2 < \infty$.

Note: Assume a_n, b_n are all non-negative.

2 General Analysis

2.1 Spring 2020 # 1

Prove that if $f:[0,1]\longrightarrow \mathbb{R}$ is continuous then

$$\lim_{k \to \infty} \int_0^1 kx^{k-1} f(x) \, dx = f(1).$$

Solution.

Concepts used:

- DCT
- Weierstrass Approximation Theorem

Solution

• Suppose p is a polynomial, then

$$\lim_{k \to \infty} \int_0^1 kx^{k-1} p(x) \, dx = \lim_{k \to \infty} \int_0^1 \left(\frac{\partial}{\partial x} x^k \right) p(x) \, dx$$

$$= \lim_{k \to \infty} \left[x^k p(x) \Big|_0^1 - \int_0^1 x^k \left(\frac{\partial}{\partial x} p(x) \right) \, dx \right] \quad \text{integrating by parts}$$

$$= p(1) - \lim_{k \to \infty} \int_0^1 x^k \left(\frac{\partial}{\partial x} p(x) \right) \, dx,$$

• Thus it suffices to show that

$$\lim_{k \to \infty} \int_0^1 x^k \left(\frac{\partial}{\partial x} p(x) \right) dx = 0.$$

• Integrating by parts a second time yields

$$\lim_{k \to \infty} \int_0^1 x^k \left(\frac{\partial}{\partial x} p(x) \right) dx = \lim_{k \to \infty} \frac{x^{k+1}}{k+1} p'(x) \Big|_0^1 - \int_0^1 \frac{x^{k+1}}{k+1} \left(\frac{\partial^2}{\partial x^2} p(x) \right) dx$$

$$= -\lim_{k \to \infty} \int_0^1 \frac{x^{k+1}}{k+1} \left(\frac{\partial^2}{\partial x^2} p(x) \right) dx$$

$$= -\int_0^1 \lim_{k \to \infty} \frac{x^{k+1}}{k+1} \left(\frac{\partial^2}{\partial x^2} p(x) \right) dx \quad \text{by DCT}$$

$$= -\int_0^1 0 \left(\frac{\partial^2}{\partial x^2} p(x) \right) dx$$

$$= 0.$$

– The DCT can be applied here because f'' is continuous and [0,1] is compact, so f'' is bounded on [0,1] by a constant M and

$$\int_0^1 \left| x^k f''(x) \right| \le \int_0^1 1 \cdot M = M < \infty.$$

- Now use the Weierstrass approximation theorem:
 - If $f:[a,b] \longrightarrow \mathbb{R}$ is continuous, then for every $\varepsilon > 0$ there exists a polynomial $p_{\varepsilon}(x)$ such that $||f p_{\varepsilon}||_{\infty} < \varepsilon$.
- Thus

$$\left| \int_0^1 kx^{k-1} p_{\varepsilon}(x) \, dx - \int_0^1 kx^{k-1} f(x) \, dx \right| = \left| \int_0^1 kx^{k-1} (p_{\varepsilon}(x) - f(x)) \, dx \right|$$

$$\leq \left| \int_0^1 kx^{k-1} || p_{\varepsilon} - f ||_{\infty} \, dx \right|$$

$$= || p_{\varepsilon} - f ||_{\infty} \cdot \left| \int_0^1 kx^{k-1} \, dx \right|$$

$$= || p_{\varepsilon} - f ||_{\infty} \cdot x^k \right|_0^1$$

$$= || p_{\varepsilon} - f ||_{\infty} \xrightarrow{\varepsilon \longrightarrow 0} 0$$

and the integrals are equal.

• By the first argument,

$$\int_0^1 kx^{k-1} p_{\varepsilon}(x) dx = p_{\varepsilon}(1) \text{ for each } \varepsilon$$

• Since uniform convergence implies pointwise convergence, $p_{\varepsilon}(1) \stackrel{\varepsilon \longrightarrow 0}{\longrightarrow} f(1)$.

2.2 Fall 2019 # 1.

Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of real numbers.

a. Prove that if $\lim_{n \to \infty} a_n = 0$, then

$$\lim_{n \to \infty} \frac{a_1 + \dots + a_n}{n} = 0$$

b. Prove that if $\sum_{n=1}^{\infty} \frac{a_n}{n}$ converges, then

$$\lim_{n \to \infty} \frac{a_1 + \dots + a_n}{n} = 0$$

Solution.

Cesaro mean/summation. Break series apart into pieces that can be handled separately.

2.2.1 a

Prove a stronger result:

$$a_k \longrightarrow S \implies S_N \coloneqq \frac{1}{N} \sum_{k=1}^N a_k \longrightarrow S.$$

Idea: once N is large enough, $a_k \approx S$, and all smaller terms will die off as $N \longrightarrow \infty$. See this MSE answer. Use convergence $a_k \longrightarrow S$: choose M large enough such that

$$k \ge M + 1 \implies |a_k - S| < \varepsilon.$$

Then

$$\left| \left(\frac{1}{N} \sum_{k=1}^{N} a_k \right) - S \right| = \frac{1}{N} \left| \left(\sum_{k=1}^{N} a_k \right) - NS \right|$$

$$= \frac{1}{N} \left| \left(\sum_{k=1}^{N} a_k \right) - \sum_{k=1}^{N} S \right|$$

$$= \frac{1}{N} \left| \sum_{k=1}^{N} (a_k - S) \right|$$

$$\leq \frac{1}{N} \sum_{k=1}^{N} |a_k - S|$$

$$= \frac{1}{N} \sum_{k=1}^{M} |a_k - S| + \sum_{k=M+1}^{N} |a_k - S|$$

$$\leq \frac{1}{N} \sum_{k=1}^{M} |a_k - S| + \sum_{k=M+1}^{N} \frac{\varepsilon}{2}$$

$$= \frac{1}{N} \sum_{k=1}^{M} |a_k - S| + (N - M) \frac{\varepsilon}{2}$$

$$\stackrel{\varepsilon}{\Longrightarrow} \frac{1}{N} \sum_{k=1}^{M} |a_k - S| + 0$$

$$\stackrel{N \longrightarrow \infty}{\Longrightarrow} 0 + 0.$$

Note: M is fixed, so the last sum is some constant c, and $c/N \longrightarrow 0$ as $N \longrightarrow \infty$ for any constant. To be more careful, choose M first to get $\varepsilon/2$ for the tail, then choose N(M) > M for the remaining truncated part of the sum.

2.2.2 b

• Define

$$\Gamma_n := \sum_{k=n}^{\infty} \frac{a_k}{k}.$$

- $\Gamma_1 = \sum_{k=1}^n \frac{a_k}{k}$ is the original series and each Γ_n is a tail of Γ_1 , so by assumption $\Gamma_n \stackrel{n \longrightarrow \infty}{\longrightarrow} 0$.
- Compute

$$\frac{1}{n}\sum_{k=1}^{n}a_k=\frac{1}{n}(\Gamma_1+\Gamma_2+\cdots+\Gamma_n-\mathbf{\Gamma_{n+1}})$$

• This comes from consider the following summation:

$$\Gamma_1: \qquad a_1 + \frac{a_2}{2} + \frac{a_3}{3} + \cdots$$

$$\Gamma_2: \qquad \frac{a_2}{2} + \frac{a_3}{3} + \cdots$$

$$\Gamma_3: \qquad \frac{a_3}{3} + \cdots$$

$$\sum_{i=1}^n \Gamma_i: \qquad a_1 + a_2 + a_3 + \cdots + a_n + \frac{a_{n+1}}{n+1} + \cdots$$

- Use part (a): since $\Gamma_n \stackrel{n \longrightarrow \infty}{\longrightarrow} 0$, we have $\frac{1}{n} \sum_{k=1}^n \Gamma_k \stackrel{n \longrightarrow \infty}{\longrightarrow} 0$.
- Also a minor check: $\Gamma_n \longrightarrow 0 \implies \frac{1}{n}\Gamma_n \longrightarrow 0$.
- Then

$$\frac{1}{n} \sum_{k=1}^{n} a_k = \frac{1}{n} (\Gamma_1 + \Gamma_2 + \dots + \Gamma_n - \Gamma_{n+1})$$
$$= \left(\frac{1}{n} \sum_{k=0}^{n} \Gamma_k\right) - \left(\frac{1}{n} \Gamma_{n+1}\right)$$
$$\stackrel{n \to \infty}{\longrightarrow} 0.$$

2.3 Fall 2018 # 4

Let $f \in L^1([0,1])$. Prove that

$$\lim_{n \to \infty} \int_0^1 f(x) |\sin nx| \ dx = \frac{2}{\pi} \int_0^1 f(x) \ dx$$

Hint: Begin with the case that f is the characteristic function of an interval.

Solution.

Case of characteristic function

- First suppose $f(x) = \chi_{[0,1]}(x)$.
- Note that $\sin(nx)$ has a period of $2\pi/n$, and thus $\left|\frac{n}{2\pi}\right|$ full periods in [0,1].
- Taking the absolute value yields a new function with half the period, so a period of π/n and $\lfloor \pi/n \rfloor$ full periods in [0,1].
- We can compute the integral over one full period (which is independent of which period

is chosen), and since $\sin(x)$ is positive and agrees with $|\sin(nx)|$ on the first period, we have

$$\int_{\text{One Period}} |\sin(nx)| \, dx = \int_0^{\pi/n} \sin(nx) \, dx$$

$$= \frac{1}{n} \int_0^{\pi} \sin(u) \, du \quad u = nx$$

$$= \frac{1}{n} - \cos(u) \Big|_0^{\pi}$$

$$= \frac{2}{n}.$$

• Then break the integral up into integrals over periods P_1, P_2, \dots, P_N where $N := \lfloor n/\pi \rfloor$:

$$\int_{0}^{1} |\sin(nx)| dx = \left(\sum_{j=1}^{N} \int_{P_{j}} |\sin(nx)| dx\right) + \int_{N\lfloor \pi/n \rfloor}^{1} |\sin(nx)| dx$$

$$= \left(\sum_{j=1}^{N} \frac{2}{n}\right) + \int_{N\lfloor \pi/n \rfloor}^{1} |\sin(nx)| dx$$

$$= N\left(\frac{2}{n}\right) + \int_{N\lfloor \pi/n \rfloor}^{1} |\sin(nx)| dx$$

$$\coloneqq \left\lfloor \frac{n}{\pi} \right\rfloor \frac{2}{n} + \int_{N\lfloor \pi/n \rfloor}^{1} |\sin(nx)| dx$$

$$= \frac{2}{\pi} + \int_{N\lfloor \pi/n \rfloor}^{1} |\sin(nx)| dx$$

$$\coloneqq \frac{2}{\pi} + R(n)$$

so it suffices to show that $R(n) \xrightarrow{n \to \infty} 0$.

Need to justify removing floor function and cancellation

• Showing this: ???????????

No clue how to show this

General case

Not sure. Approximate f by simple functions...?

2.4 Fall 2017 # 4

Let

$$f_n(x) = nx(1-x)^n, \quad n \in \mathbb{N}.$$

1. Show that $f_n \longrightarrow 0$ pointwise but not uniformly on [0,1].

Hint: Consider the maximum of f_n .

2.

$$\lim_{n \to \infty} \int_0^1 n(1-x)^n \sin x \, dx = 0$$

2.5 Spring 2017 # 3

Let

$$f_n(x) = ae^{-nax} - be^{-nbx}$$
 where $0 < a < b$.

Show that

a.
$$\sum_{n=1}^{\infty} |f_n| \text{ is not in } L^1([0,\infty),m)$$

Hint: $f_n(x)$ has a root x_n .

b.

$$\sum_{n=1}^{\infty} f_n \text{ is in } L^1([0,\infty),m) \quad \text{and} \quad \int_0^{\infty} \sum_{n=1}^{\infty} f_n(x) \, dm = \ln \frac{b}{a}$$

2.6 Fall 2016 # 1

Define

$$f(x) = \sum_{n=1}^{\infty} \frac{1}{n^x}.$$

Show that f converges to a differentiable function on $(1, \infty)$ and that

$$f'(x) = \sum_{n=1}^{\infty} \left(\frac{1}{n^x}\right)'.$$

Hint:

$$\left(\frac{1}{n^x}\right)' = -\frac{1}{n^x} \ln n$$

2.7 Fall 2016 # 5

Let $\varphi \in L^{\infty}(\mathbb{R})$. Show that the following limit exists and satisfies the equality

$$\lim_{n \to \infty} \left(\int_{\mathbb{R}} \frac{|\varphi(x)|^n}{1+x^2} \, dx \right)^{\frac{1}{n}} = \|\varphi\|_{\infty}.$$

2.8 Fall 2016 # 6

Let $f, g \in L^2(\mathbb{R})$. Show that

$$\lim_{n \to \infty} \int_{\mathbb{R}} f(x)g(x+n) \, dx = 0$$

2.9 Spring 2016 # 1

For $n \in \mathbb{N}$, define

$$e_n = \left(1 + \frac{1}{n}\right)^n$$
 and $E_n = \left(1 + \frac{1}{n}\right)^{n+1}$

Show that $e_n < E_n$, and prove Bernoulli's inequality:

$$(1+x)^n \ge 1 + nx$$
 for $-1 < x < \infty$ and $n \in \mathbb{N}$

Use this to show the following:

- 1. The sequence e_n is increasing.
- 2. The sequence E_n is decreasing.
- 3. $2 < e_n < E_n < 4$.
- 4. $\lim_{n \to \infty} e_n = \lim_{n \to \infty} E_n.$

2.10 Fall 2015 # 1

Define

$$f(x) = c_0 + c_1 x^1 + c_2 x^2 + \ldots + c_n x^n$$
 with n even and $c_n > 0$.

Show that there is a number x_m such that $f(x_m) \leq f(x)$ for all $x \in \mathbb{R}$.

3 Measure Theory: Sets

3.1 Spring 2020 # 2

Let m_* denote the Lebesgue outer measure on \mathbb{R} .

3.1.1 a.

Prove that for every $E \subseteq \mathbb{R}$ there exists a Borel set B containing E such that

$$m_*(B) = m_*(E).$$

3.1.2 b.

Prove that if $E \subseteq \mathbb{R}$ has the property that

$$m_*(A) = m_*(A \cap E) + m_*(A \cap E^c)$$

for every set $A \subseteq \mathbb{R}$, then there exists a Borel set $B \subseteq \mathbb{R}$ such that $E = B \setminus N$ with $m_*(N) = 0$. Be sure to address the case when $m_*(E) = \infty$. Solution.

Concepts used:

- Definition of outer measure: $m_*(E) = \inf_{\{Q_i\} \rightrightarrows E} \sum |Q_j|$ where $\{Q_j\}$ is a countable collection of closed cubes.
- Break \mathbb{R} into $\coprod_{n\in\mathbb{Z}}[n,n+1)$, each with finite measure.
- Theorem: $m_*(Q) = |Q|$ for Q a closed cube (i.e. the outer measure equals the volume).

Proof (of Theorem) Statement: if Q is a closed cube, then $m_*(Q) = |Q|$, the usual volume.

- - Since $Q \subseteq Q$, $Q \rightrightarrows Q$ and $m_*(Q) \leq |Q|$ since m_* is an infimum over such
- $|Q| \le m_*(Q)$:
 - Fix $\varepsilon > 0$
 - Let $\{Q_i\}_{i=1}^{\infty} \rightrightarrows Q$ be arbitrary, it suffices to show that

$$|Q| \le \left(\sum_{i=1}^{\infty} |Q_i|\right) + \varepsilon.$$

- Pick open cubes S_i such that $Q_i \subseteq S_i$ and $|Q_i| \le |S_i| \le (1+\varepsilon)|Q_i|$.
- Then $\{S_i\} \rightrightarrows Q$, so by compactness of Q pick a finite subcover with N elements.
- Note

$$Q \subseteq \bigcup_{i=1}^{N} S_i \implies |Q| \le \sum_{i=1}^{N} |S_i| \le \sum_{i=1}^{N} (1+\varepsilon)|Q_j| \le (1+\varepsilon) \sum_{i=1}^{\infty} |Q_i|.$$

- Taking an infimum over coverings on the RHS preserves the inequality, so

$$|Q| \leq (1+\varepsilon)m_*(Q)$$

- Take $\varepsilon \longrightarrow 0$ to obtain final inequality.

3.1.3 a

- If $m_*(E) = \infty$, then take $B = \mathbb{R}^n$ since $m(\mathbb{R}^n) = \infty$.
- Suppose $N := m_*(E) < \infty$.
- Since $m_*(E)$ is an infimum, by definition, for every $\varepsilon > 0$ there exists a covering by closed cubes $\{Q_i(\varepsilon)\}_{i=1}^{\infty} \rightrightarrows E$ depending on ε such that

$$\sum_{i=1}^{\infty} |Q_i(\varepsilon)| < N + \varepsilon.$$

- For each fixed n, set $\varepsilon_n = \frac{1}{n}$ to produce such a covering $\{Q_i(\varepsilon_n)\}_{i=1}^{\infty}$ and set $B_n :=$ $\bigcup_{i=1}^{\infty}Q_i(\varepsilon_n).$ • The outer measure of cubes is equal to the sum of their volumes, so

$$m_*(B_n) = \sum_{i=1}^{\infty} |Q_i(\varepsilon_n)| < N + \varepsilon_n = N + \frac{1}{n}.$$

- Now set $B := \bigcap^{\infty} B_n$.
 - Since $E \subseteq B_n$ for every $n, E \subseteq B$
 - Since B is a countable intersection of countable unions of closed sets, B is Borel.
 - Since $B_n \subseteq B$ for every n, we can apply subadditivity to obtain the inequality

$$E \subseteq B \subseteq B_n \implies N \le m_*(B) \le m_*(B_n) < N + \frac{1}{n} \text{ for all } n \in \mathbb{Z}^{\ge 1}.$$

• This forces $m_*(E) = m_*(B)$.

3.1.4 b

Suppose $m_*(E) < \infty$.

- By (a), find a Borel set $B \supseteq E$ such that $m_*(B) = m_*(E)$
- Note that $E \subseteq B \implies B \cap E = E$ and $B \cap E^c = B \setminus E$.
- By assumption,

$$m_*(B) = m_*(B \cap E) + m_*(B \cap E^c)$$

$$m_*(E) = m_*(E) + m_*(B \setminus E)$$

$$m_*(E) - m_*(E) = m_*(B \setminus E) \quad \text{since } m_*(E) < \infty$$

$$\implies m_*(B \setminus E) = 0.$$

• So take $N = B \setminus E$; this shows $m_*(N) = 0$ and $E = B \setminus (B \setminus E) = B \setminus N$.

- Apply result to $E_R := E \bigcap [R, R+1)^n \subset \mathbb{R}^n$ for $R \in \mathbb{Z}$, so $E = \coprod_R E_R$
- Obtain B_R , N_R such that $E_R = B_R \setminus N_R$, $m_*(E_R) = m_*(B_R)$, and $m_*(N_R) = 0$.
- Note that
 - $-B := \bigcup B_R$ is a union of Borel sets and thus still Borel

$$-E = \bigcup_{R}^{R} E_{R}$$

$$-N := \stackrel{R}{B} \setminus E$$

- $-N' := \bigcup_{i=1}^{N} N_R$ is a union of null sets and thus still null
- Since $E_R \subset {}^R_B$ for every R, we have $E \subset B$
- We can compute

$$N = B \setminus E = \left(\bigcup_{R} B_{R}\right) \setminus \left(\bigcup_{R} E_{R}\right) \subseteq \bigcup_{R} \left(B_{R} \setminus E_{R}\right) = \bigcup_{R} N_{R} := N'$$

where $m_*(N') = 0$ since N' is null, and thus subadditivity forces $m_*(N) = 0$.

3.2 Fall 2019 # 3.

Let (X, \mathcal{B}, μ) be a measure space with $\mu(X) = 1$ and $\{B_n\}_{n=1}^{\infty}$ be a sequence of \mathcal{B} -measurable subsets of X, and

$$B := \left\{ x \in X \mid x \in B_n \text{ for infinitely many } n \right\}.$$

a. Argue that B is also a \mathcal{B} -measurable subset of X.

b. Prove that if
$$\sum_{n=1}^{\infty} \mu(B_n) < \infty$$
 then $\mu(B) = 0$.

c. Prove that if $\sum_{n=1}^{\infty} \mu(B_n) = \infty$ and the sequence of set complements $\{B_n^c\}_{n=1}^{\infty}$ satisfies

$$\mu\left(\bigcap_{n=k}^{K} B_{n}^{c}\right) = \prod_{n=k}^{K} \left(1 - \mu\left(B_{n}\right)\right)$$

for all positive integers k and K with k < K, then $\mu(B) = 1$.

Hint: Use the fact that $1 - x \le e^{-x}$ for all x.

Solution.

Concepts used:

• Borel-Cantelli: for a sequence of sets X_n ,

$$\limsup_{n} X_{n} = \left\{ x \mid x \in X_{n} \text{ for infinitely many } n \right\} = \bigcap_{m \in \mathbb{N}} \bigcup_{n \geq m} X_{n}$$

$$\liminf_{n} X_{n} = \left\{ x \mid x \in X_{n} \text{ for all but finitely many } n \right\} = \bigcup_{m \in \mathbb{N}} \bigcap_{n \geq m} X_{n}.$$

• Properties of logs and exponentials:

$$\prod_{n} e^{x_n} = e^{\sum_{n} x_n} \quad \text{and} \quad \sum_{n} \log(x_n) = \log\left(\prod_{n} x_n\right).$$

- Tails of convergent sums vanish.
- Continuity of measure: $B_n \searrow B$ and $\mu(B_0) < \infty$ implies $\lim_n \mu(B_n) = \mu(B)$, and $B_n \nearrow B \implies \lim_n \mu(B_n) = \mu(B)$.

3.2.1 a

- The Borel σ -algebra is closed under countable unions/intersections/complements,
- $B = \limsup_{n} B_n$ is an intersection of unions of measurable sets.

3.2.2 b

- Tails of convergent sums go to zero, so $\sum_{n\geq M} \mu(B_n) \xrightarrow{M\longrightarrow\infty} 0$,
- $B_M := \bigcap_{m=1}^M \bigcup_{n>m} B_n \searrow B$.

$$\mu(B_M) = \mu\left(\bigcap_{m \in \mathbb{N}} \bigcup_{n \ge m} B_n\right)$$

$$\leq \mu\left(\bigcup_{n \ge m} B_n\right) \quad \text{for all } m \in \mathbb{N} \text{ by countable subadditivity}$$

$$\longrightarrow 0,$$

• The result follows by continuity of measure.

3.2.3 c

• To show
$$\mu(B) = 1$$
, we'll show $\mu(B^c) = 0$.
• Let $B_k = \bigcap_{m=1}^{\infty} \bigcup_{n=m}^{K} B_n$. Then

$$\mu(B_K^c) = \mu\left(\bigcup_{m=1}^{\infty} \bigcap_{n=m}^K B_n^c\right)$$

$$\leq \sum_{m=1}^{\infty} \mu\left(\bigcap_{n=m}^K B_n^c\right) \quad \text{by subadditivity}$$

$$= \sum_{m=1}^{\infty} \prod_{n=m}^K \left(1 - \mu(B_n)\right) \quad \text{by assumption}$$

$$\leq \sum_{m=1}^{\infty} \prod_{n=m}^K e^{-\mu(B_n^c)} \quad \text{by hint}$$

$$= \sum_{m=1}^{\infty} \exp\left(-\sum_{n=m}^K \mu(B_n^c)\right)$$

$$K \longrightarrow \infty \quad 0$$

since
$$\sum_{n=m}^{K} \mu(B_n^c) \stackrel{K \longrightarrow \infty}{\longrightarrow} \infty$$
 by assumption

• We can apply continuity of measure since $B_K^c \xrightarrow{K \longrightarrow \infty} B^c$. Proving the hint: ?

3.3 Spring 2019 # 2

Let \mathcal{B} denote the set of all Borel subsets of \mathbb{R} and $\mu:\mathcal{B}\longrightarrow [0,\infty)$ denote a finite Borel measure on

3.3.1 a

Prove that if $\{F_k\}$ is a sequence of Borel sets for which $F_k \supseteq F_{k+1}$ for all k, then

$$\lim_{k \to \infty} \mu(F_k) = \mu\left(\bigcap_{k=1}^{\infty} F_k\right)$$

3.3.2 b

Suppose μ has the property that $\mu(E) = 0$ for every $E \in \mathcal{B}$ with Lebesgue measure m(E) = 0. Prove that for every $\varepsilon > 0$ there exists $\delta > 0$ so that if $E \in \mathcal{B}$ with $m(E) < \delta$, then $\mu(E) < \varepsilon$.

Solution.

3.3.3 a

See Folland p.26

- Lemma 1: $\mu(\coprod_{k=1}^{\infty} E_k) = \lim_{N \to \infty} \sum_{k=1}^{N} \mu(E_k)$.
- Suppose $F_0 \supseteq F_1 \supseteq \cdots$.
- Let $A_k = F_k \setminus F_{k+1}$, since the F_k are nested the A_k are disjoint

• Set
$$A := \coprod_{k=1}^{\infty} A_k$$
 and $F := \bigcap_{k=1}^{\infty} F_k$.

- Note $X = X \setminus Y \coprod X \cap Y$ for any two sets (just write $X \setminus Y := X \cap Y^c$)
- Note that A contains anything that was removed from F_0 when passing from any F_j to F_{j+1} , while F contains everything that is never removed at any stage, and these are disjoint possibilities.
- Thus $F_0 = F \coprod A$, so

$$\mu(F_0) = \mu(F) + \mu(A)$$

$$= \mu(F) + \mu(\coprod_{k=1}^{\infty} A_k)$$

$$= \mu(F) + \lim_{n \to \infty} \sum_{k=0}^{n} \mu(A_k) \text{ by countable additivity}$$

$$= \mu(F) + \lim_{n \to \infty} \sum_{k=0}^{n} \mu(F_k) - \mu(F_{k+1})$$

$$= \mu(F) + \lim_{n \to \infty} (\mu(F_1) - \mu(F_n)) \text{ (Telescoping)}$$

$$= \mu(F) + \mu(F_1) - \lim_{N \to \infty} \mu(F_n),$$

• Since μ is a finite measure, $\mu(F_1) < \infty$ and can be subtracted, yielding

$$\mu(F_1) = \mu(F) + \mu(F_1) - \lim_{n \to \infty} \mu(F_n)$$

$$\implies \mu(F) = \lim_{n \to \infty} \mu(F_n)$$

$$\implies \mu\left(\bigcap_{k=1}^{\infty} F_k\right) = \lim_{n \to \infty} \mu(F_n).$$

3.3.4 b

- Toward a contradiction, negate the implication: suppose there exists an $\varepsilon > 0$ such that for all δ , we have $m(E) < \delta$ but $\mu(E) > \varepsilon$.
- The sequence $\left\{\delta_n := \frac{1}{2^n}\right\}_{n \in \mathbb{N}}$ and produce sets $A_n \in \mathcal{B}$ such $m(A_n) < \frac{1}{2^n}$ but $\mu(A_n) > \varepsilon$.
- Define

$$F_n \coloneqq \bigcup_{j \ge n} A_j$$

$$C_m \coloneqq \bigcap_{k=1}^m F_k$$

$$A \coloneqq C_\infty \coloneqq \bigcap_{k=1}^\infty F_k.$$

- Note that $F_1 \supseteq F_2 \supseteq \cdots$, since each increase in index unions fewer sets.
- By continuity for the Lebesgue measure,

$$m(A) = m\left(\bigcap_{k=1}^{\infty} F_k\right) = \lim_{k \to \infty} m(F_k) = \lim_{k \to \infty} m\left(\bigcup_{j \ge k} A_j\right) \le \lim_{k \to \infty} \sum_{j \ge k} m(A_j) = \lim_{k \to \infty} \sum_{j \ge k} \frac{1}{2^n} = 0,$$

which follows because this is the tail of a convergent sum

- Thus m(A) = 0 and by assumption, this implies $\mu(A) = 0$
- However, by part (a),

$$\mu(A) = \lim_{n} \mu\left(\bigcup_{k=n}^{\infty} A_k\right) \ge \lim_{n} \mu(A_n) = \lim_{n} \varepsilon = \varepsilon > 0.$$

All messed up

3.4 Fall 2018 # 2

Let $E \subset \mathbb{R}$ be a Lebesgue measurable set. Show that there is a Borel set $B \subset E$ such that $m(E \setminus B) = 0$.

Solution.

Concepts used:

- Definition of measurability: there exists an open $O \supset E$ such that $m_*(O \setminus E) < \varepsilon$ for all $\varepsilon > 0$
- Theorem: E is Lebesgue measurable iff there exists a closed set $F \subseteq E$ such that $m_*(E \setminus F) < \varepsilon$ for all $\varepsilon > 0$.
- Every F_{σ} , G_{δ} is Borel.
- Claim: E is measurable \iff for every ε there exist $F_{\varepsilon} \subset E \subset G_{\varepsilon}$ with F_{ε} closed and G_{ε} open and $m(G_{\varepsilon} \setminus E) < \varepsilon$ and $m(E \setminus F_{\varepsilon}) < \varepsilon$.
 - Proof: existence of G_{ε} is the definition of measurability.
 - Existence of F_{ε} :?
- Claim: E is measurable \implies there exists an open $O \supseteq E$ such that $m(O \setminus E) = 0$.

- Since E is measurable, for each $n \in \mathbb{N}$ choose $G_n \supseteq E$ such that $m_*(G_n \setminus E) < \frac{1}{n}$.
- Set $O_N := \bigcap^N G_n$ and $O := \bigcap^\infty G_n$.
- Suppose E is bounded.
 - * Note $O_N \setminus O$ and $m_*(O_1) < \infty$ if E is bounded, since in this case

$$m_*(G_n \setminus E) = m_*(G_1) - m_*(E) < 1 \iff m_*(G_1) < m_*(E) + \frac{1}{n} < \infty.$$

- * Note $O_N \setminus E \searrow O \setminus E$ since $O_N \setminus E := O_N \cap E^c \supseteq O_{N+1} \cap E^c$ for all N, and again $m_*(O_1 \setminus E) < \infty$.
- * So it's valid to apply continuity of measure from above:

$$m_*(O \setminus E) = \lim_{N \to \infty} m_*(O_N \setminus E)$$

$$\leq \lim_{N \to \infty} m_*(G_N \setminus E)$$

$$= \lim_{N \to \infty} \frac{1}{N} = 0,$$

where the inequality uses subadditivity on $\bigcap_{n=1}^{N} G_n \subseteq G_N$

- Suppose E is unbounded.
 - * Write $E^k = E \cap [k, k+1]^d \subset \mathbb{R}^d$ as the intersection of E with an annulus, and
 - note that $E=\coprod_{k\in\mathbb{N}}E_k$. * Each E_k is bounded, so apply the previous case to obtain $O_k\supseteq E_k$ with $m(O_k \setminus E_k) = 0.$
 - * So write $O_k = E_k \prod N_k$ where $N_k := O_k \setminus E_k$ is a null set.
 - * Define $O = \bigcup O_k$, note that $E \subseteq O$.
 - * Now note

$$O \setminus E = \left(\coprod_{k} O_{k}\right) \setminus \left(\coprod_{K} E_{k}\right)$$

$$\subseteq \coprod_{k} (O_{k} \setminus E_{k})$$

$$\implies m_{*}(O \setminus E) \le m_{*}\left(\coprod (O_{k} \setminus E_{k})\right) = 0,$$

since any countable union of null sets is again null.

- So $O \supseteq E$ with $m(O \setminus E) = 0$.
- Theorem: since E is measurable, E^c is measurable
 - Proof: It suffices to write E^c as the union of two measurable sets, $E^c = S \bigcup (E^c S)$, where S is to be determined.
 - We'll produce an S such that $m_*(E^c S) = 0$ and use the fact that any subset of a null set is measurable.
 - Since E is measurable, for every $\varepsilon > 0$ there exists an open $\mathcal{O}_{\varepsilon} \supseteq E$ such that $m_*(\mathcal{O}_{\varepsilon} \setminus E) < \varepsilon.$
 - Take the sequence $\left\{ \varepsilon_n := \frac{1}{n} \right\}$ to produce a sequence of sets \mathcal{O}_n .

- Note that each \mathcal{O}_n^c is closed and

$$\mathcal{O}_n \supseteq E \iff \mathcal{O}_n^c \subseteq E^c.$$

- Set $S := \bigcup_{n} \mathcal{O}_{n}^{c}$, which is a union of closed sets, thus an F_{σ} set, thus Borel, thus measurable.
- Note that $S \subseteq E^c$ since each $\mathcal{O}_n \subseteq E^c$.
- Note that

$$E^{c} \setminus S := E^{c} \setminus \left(\bigcup_{n=1}^{\infty} \mathcal{O}_{n}^{c}\right)$$

$$:= E^{c} \cap \left(\bigcup_{n=1}^{\infty} \mathcal{O}_{n}^{c}\right)^{c} \quad \text{definition of set minus}$$

$$= E^{c} \cap \left(\bigcap_{n=1}^{\infty} \mathcal{O}_{n}\right)^{c} \quad \text{De Morgan's law}$$

$$= E^{c} \cup \left(\bigcap_{n=1}^{\infty} \mathcal{O}_{n}\right)$$

$$:= \left(\bigcap_{n=1}^{\infty} \mathcal{O}_{n}\right) \setminus E$$

$$\subseteq \mathcal{O}_{N} \setminus E \quad \text{for every } N \in \mathbb{N}.$$

- Then by subadditivity,

$$m_*(E^c \setminus S) \le m_*(\mathcal{O}_N \setminus E) \le \frac{1}{N} \quad \forall N \implies m_*(E^c \setminus S) = 0.$$

– Thus $E^c \setminus S$ is measurable.

3.4.1 Indirect Proof

- Since E is measurable, E^c is measurable.
- Since E^c is measurable exists an open $O \supseteq E^c$ such that $m(O \setminus E^c) = 0$.
- Set $B := O^c$, then $O \supseteq E^c \iff \mathcal{O}^c \subseteq E \iff B \subseteq E$.
- Computing measures yields

$$E \setminus B := E \setminus \mathcal{O}^c := E \bigcap (\mathcal{O}^c)^c = E \bigcap \mathcal{O} = \mathcal{O} \bigcap (E^c)^c := \mathcal{O} \setminus E^c,$$

thus $m(E \setminus B) = m(\mathcal{O} \setminus E^c) = 0$.

• Since \mathcal{O} is open, B is closed and thus Borel.

3.4.2 Direct Proof (Todo)

Try to construct the set

3.5 Spring 2018 # 1

Define

$$E := \left\{ x \in \mathbb{R} : \left| x - \frac{p}{q} \right| < q^{-3} \text{ for infinitely many } p, q \in \mathbb{N} \right\}.$$

Prove that m(E) = 0.

Solution.

Concepts used:

- Borel-Cantelli: If $\{E_k\}_{k\in\mathbb{Z}}\subset 2^{\mathbb{R}}$ is a countable collection of Lebesgue measurable sets with $\sum_{k\in\mathbb{Z}} m(E_k) < \infty$, then almost every $x\in\mathbb{R}$ is in at most finitely many E_k .
 - Equivalently (?), $m(\limsup_{k\to\infty} E_k) = 0$, where $\limsup_{k\to\infty} E_k = \bigcap_{k=1}^{\infty} \bigcup_{j\geq k} E_j$, the elements which are in E_k for infinitely many k.

Solution:

- Strategy: Borel-Cantelli.
- We'll show that $m(E) \cap [n, n+1] = 0$ for all $n \in \mathbb{Z}$; then the result follows from

$$m(E) = m\left(\bigcup_{n \in \mathbb{Z}} E \bigcap [n, n+1]\right) \le \sum_{n=1}^{\infty} m(E \bigcap [n, n+1]) = 0.$$

- By translation invariance of measure, it suffices to show $m(E \cap [0,1]) = 0$.
 - So WLOG, replace E with $E \cap [0,1]$.
- Define

$$E_j := \left\{ x \in [0, 1] \mid \exists p \in \mathbb{Z}^{\geq 0} \text{ s.t. } \left| x - \frac{p}{j} \right| < \frac{1}{j^3} \right\}.$$

- Note that $E_j \subseteq \coprod_{p \in \mathbb{Z}^{\geq 0}} B_{j^{-3}}\left(\frac{p}{j}\right)$, i.e. a union over integers p of intervals of radius $1/j^3$ around the points p/j. Since $1/j^3 < 1/j$, this union is in fact disjoint.
- Importantly, note that

$$\lim_{j \to \infty} \sup E_j := \bigcap_{n=1}^{\infty} \bigcup_{j=n}^{\infty} E_j = E$$

since

$$x \in \limsup_{j} E_{j} \iff x \in E_{j}$$
 for infinitely many j

$$\iff \text{ there are infinitely many } j \text{ for which there exist a } p \text{ such that } \left| x - \frac{p}{j} \right| < j^{-3}$$

$$\iff x \in E.$$

• Intersecting with [0,1], we can write E_i as a union of intervals:

$$E_{j} = (0, j^{-3}) \coprod B_{j^{-3}}(\frac{1}{j}) \coprod B_{j^{-3}}(\frac{2}{j}) \coprod \cdots \coprod B_{j^{-3}}(\frac{j-1}{j}) \coprod (1-j^{-3}, 1),$$

where we've separated out the "boundary" terms to emphasize that they are balls about 0 and 1 intersected with [0,1].

- Since E_j is a union of open sets, it is Borel and thus Lebesgue measurable.
- Computing the measure of E_i :
 - For a fixed j, there are exactly j+1 possible choices for a numerator $(0,1,\cdots,j)$, thus there are exactly j+1 sets appearing in the above decomposition.
 - The first and last intervals are length $\frac{1}{i^3}$
 - The remaining (j+1)-2=j-1 intervals are twice this length, $\frac{2}{i^3}$
 - Thus

$$m(E_j) = 2\left(\frac{1}{j^3}\right) + (j-1)\left(\frac{2}{j^3}\right) = \frac{2}{j^2}$$

• Note that

$$\sum_{j \in \mathbb{N}} m(E_j) = 2 \sum_{j \in \mathbb{N}} \frac{1}{j^2} < \infty,$$

which converges by the p-test for sums.

• But then

$$m(E) = m(\limsup_{j \in \mathbb{N}} \operatorname{E}_{j})$$

$$= m(\bigcap_{n \in \mathbb{N}} \bigcup_{j \geq n} E_{j})$$

$$\leq m(\bigcup_{j \geq N} E_{j}) \text{ for every } N$$

$$\leq \sum_{j \geq N} m(E_{j})$$

$$\stackrel{N \longrightarrow \infty}{\longrightarrow} 0$$

• Thus E is measurable as a subset of a null set and m(E) = 0.

3.6 Fall 2017 # 2

Let $f(x) = x^2$ and $E \subset [0, \infty) := \mathbb{R}^+$.

1. Show that

$$m^*(E) = 0 \iff m^*(f(E)) = 0.$$

2. Deduce that the map

$$\varphi: \mathcal{L}(\mathbb{R}^+) \longrightarrow \mathcal{L}(\mathbb{R}^+)$$

$$E \mapsto f(E)$$

is a bijection from the class of Lebesgue measurable sets of $[0, \infty)$ to itself.

3.7 Spring 2017 # 2

a. Let μ be a measure on a measurable space (X, \mathcal{M}) and f a positive measurable function. Define a measure λ by

$$\lambda(E) := \int_{E} f \ d\mu, \quad E \in \mathcal{M}$$

Show that for g any positive measurable function,

$$\int_X g \ d\lambda = \int_X fg \ d\mu$$

b. Let $E \subset \mathbb{R}$ be a measurable set such that

$$\int_E x^2 \ dm = 0.$$

Show that m(E) = 0.

3.8 Fall 2016 # 4

Let (X, \mathcal{M}, μ) be a measure space and suppose $\{E_n\} \subset \mathcal{M}$ satisfies

$$\lim_{n\to\infty}\mu\left(X\backslash E_n\right)=0.$$

Define

$$G := \{ x \in X \mid x \in E_n \text{ for only finitely many } n \}.$$

Show that $G \in \mathcal{M}$ and $\mu(G) = 0$.

3.9 Spring 2016 # 3

Let f be Lebesgue measurable on $\mathbb R$ and $E\subset\mathbb R$ be measurable such that

$$0 < A = \int_{E} f(x)dx < \infty.$$

Show that for every 0 < t < 1, there exists a measurable set $E_t \subset E$ such that

$$\int_{E_{+}} f(x)dx = tA.$$

3.10 Spring 2016 # 5

Let (X, \mathcal{M}, μ) be a measure space. For $f \in L^1(\mu)$ and $\lambda > 0$, define

$$\varphi(\lambda) = \mu(\{x \in X | f(x) > \lambda\})$$
 and $\psi(\lambda) = \mu(\{x \in X | f(x) < -\lambda\})$

Show that φ, ψ are Borel measurable and

$$\int_{X} |f| \ d\mu = \int_{0}^{\infty} [\varphi(\lambda) + \psi(\lambda)] \ d\lambda$$

3.11 Fall 2015 # 2

Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be Lebesgue measurable.

- 1. Show that there is a sequence of simple functions $s_n(x)$ such that $s_n(x) \longrightarrow f(x)$ for all $x \in \mathbb{R}$.
- 2. Show that there is a Borel measurable function g such that g = f almost everywhere.

3.12 Spring 2015 # 3

Let μ be a finite Borel measure on \mathbb{R} and $E \subset \mathbb{R}$ Borel. Prove that the following statements are equivalent:

1. $\forall \varepsilon > 0$ there exists G open and F closed such that

$$F \subseteq E \subseteq G$$
 and $\mu(G \setminus F) < \varepsilon$.

2. There exists a $V \in G_{\delta}$ and $H \in F_{\sigma}$ such that

$$H \subseteq E \subseteq V$$
 and $\mu(V \setminus H) = 0$

3.13 Spring 2014 # 3

Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ and suppose

$$\forall x \in \mathbb{R}, \quad f(x) \ge \limsup_{y \to x} f(y)$$

Prove that f is Borel measurable.

3.14 Spring 2014 # 4

Let (X, \mathcal{M}, μ) be a measure space and suppose f is a measurable function on X. Show that

$$\lim_{n \to \infty} \int_X f^n \ d\mu = \begin{cases} \infty & \text{or} \\ \mu(f^{-1}(1)), \end{cases}$$

and characterize the collection of functions of each type.

3.15 Spring 2017 # 1

Let K be the set of numbers in [0,1] whose decimal expansions do not use the digit 4.

We use the convention that when a decimal number ends with 4 but all other digits are different from 4, we replace the digit 4 with $399\cdots$. For example, $0.8754 = 0.8753999\cdots$.

Show that K is a compact, nowhere dense set without isolated points, and find the Lebesgue measure m(K).

3.16 Spring 2016 # 2

Let $0 < \lambda < 1$ and construct a Cantor set C_{λ} by successively removing middle intervals of length λ . Prove that $m(C_{\lambda}) = 0$.

4 Measure Theory: Functions

4.1 Fall 2016 # 2

Let $f, g : [a, b] \longrightarrow \mathbb{R}$ be measurable with

$$\int_a^b f(x) \ dx = \int_a^b g(x) \ dx.$$

Show that either

- 1. f(x) = g(x) almost everywhere, or
- 2. There exists a measurable set $E \subset [a, b]$ such that

$$\int_{E} f(x) \ dx > \int_{E} g(x) \ dx$$

4.2 Spring 2016 # 4

Let $E \subset \mathbb{R}$ be measurable with $m(E) < \infty$. Define

$$f(x) = m(E \cap (E + x)).$$

Show that

- 1. $f \in L^1(\mathbb{R})$.
- 2. f is uniformly continuous.
- $3. \lim_{|x| \to \infty} f(x) = 0.$

Hint:

$$\chi_{E\cap(E+x)}(y) = \chi_E(y)\chi_E(y-x)$$

5 Integrals: Convergence

5.1 Fall 2019 # 2.

Prove that

$$\left| \frac{d^n}{dx^n} \frac{\sin x}{x} \right| \le \frac{1}{n}$$

for all $x \neq 0$ and positive integers n.

Hint: Consider
$$\int_0^1 \cos(tx) dt$$

Solution.

Concepts used:

- DCT
- Bounding in the right place. Don't evaluate the actual integral!

Solution:

- By induction on the number of limits we can pass through the integral.
- For n=1 we first pass one derivative into the integral: let $x_n \longrightarrow x$ be any sequence converging to x, then

$$\frac{\partial}{\partial x} \frac{\sin(x)}{x} = \frac{\partial}{\partial x} \int_0^1 \cos(tx) dt$$

$$= \lim_{x_n \to x} \frac{1}{x_n - x} \left(\int_0^1 \cos(tx_n) dt - \int_0^1 \cos(tx) dt \right)$$

$$= \lim_{x_n \to x} \left(\int_0^1 \frac{\cos(tx_n) - \cos(tx)}{x_n - x} dt \right)$$

$$= \lim_{x_n \to x} \left(\int_0^1 \left(t \sin(tx) \Big|_{x = \xi_n} \right) dt \right) \quad \text{where} \quad \xi_n \in [x_n, x] \text{ by MVT}, \xi_n \to x$$

$$= \lim_{\xi_n \to x} \left(\int_0^1 t \sin(t\xi_n) dt \right)$$

$$= \text{DCT} \int_0^1 \lim_{\xi_n \to x} t \sin(t\xi_n) dt$$

$$= \int_0^1 t \sin(tx) dt$$

• Taking absolute values we obtain an upper bound

$$\left| \frac{\partial}{\partial x} \frac{\sin(x)}{x} \right| = \left| \int_0^1 t \sin(tx) dt \right|$$

$$\leq \int_0^1 |t \sin(tx)| dt$$

$$\leq \int_0^1 1 dt = 1,$$

since $t \in [0,1] \implies |t| < 1$, and $|\sin(xt)| \le 1$ for any x and t.

• Note that this bound also justifies the DCT, since the functions $f_n(t) = t \sin(t\xi_n)$ are uniformly dominated by g(t) = 1 on $L^1([0,1])$.

Note: integrating by parts here yields the actual formula:

$$\int_{0}^{1} t \sin(tx) dt =_{IBP} \left(\frac{-t \cos(tx)}{x} \right) \Big|_{t=0}^{t=1} - \int_{0}^{1} \frac{\cos(tx)}{x} dt$$
$$= \frac{-\cos(x)}{x} - \frac{\sin(x)}{x^{2}}$$
$$= \frac{x \cos(x) - \sin(x)}{x^{2}}.$$

• For the inductive step, we assume that we can pass n-1 limits through the integral and show we can pass the nth through as well.

$$\frac{\partial^n}{\partial x^n} \frac{\sin(x)}{x} = \frac{\partial^n}{\partial x^n} \int_0^1 \cos(tx) \, dt$$
$$= \frac{\partial}{\partial x} \int_0^1 \frac{\partial^{n-1}}{\partial x^{n-1}} \cos(tx) \, dt$$
$$= \frac{\partial}{\partial x} \int_0^1 t^{n-1} f_{n-1}(x, t) \, dt$$

- Note that $f_n(x,t) = \pm \sin(tx)$ when n is odd and $f_n(x,t) = \pm \cos(tx)$ when n is even, and a constant factor of t is multiplied when each derivative is taken.
- We continue as in the base case:

$$\frac{\partial}{\partial x} \int_0^1 t^{n-1} f_{n-1}(x,t) dt = \lim_{x_k \to x} \int_0^1 t^{n-1} \left(\frac{f_{n-1}(x_n,t) - f_{n-1}(x,t)}{x_n - x} \right) dt$$

$$=_{\text{IVT}} \lim_{x_k \to x} \int_0^1 t^{n-1} \frac{\partial f_{n-1}}{\partial x} \left(\xi_k, t \right) dt \quad \text{where } \xi_k \in [x_k, x], \, \xi_k \to x$$

$$=_{\text{DCT}} \int_0^1 \lim_{x_k \to x} t^{n-1} \frac{\partial f_{n-1}}{\partial x} \left(\xi_k, t \right) dt$$

$$\coloneqq \int_0^1 \lim_{x_k \to x} t^n f_n(\xi_k, t) dt$$

$$\coloneqq \int_0^1 t^n f_n(x, t) dt.$$

- We've used the fact that $f_0(x) = \cos(tx)$ is smooth as a function of x, and in particular continuous
- The DCT is justified because the functions $h_{n,k}(x,t) = t^n f_n(\xi_k,t)$ are again uniformly (in k) bounded by 1 since $t \leq 1 \implies t^n \leq 1$ and each f_n is a sin or cosine.

• Now take absolute values

$$\left| \frac{\partial^n}{\partial x^n} \frac{\sin(x)}{x} \right| = \left| \int_0^1 -t^n f_n(x,t) \, dt \right|$$

$$\leq \int_0^1 |t^n f_n(x,t)| \, dt$$

$$\leq \int_0^1 |t^n| |f_n(x,t)| \, dt$$

$$\leq \int_0^1 |t^n| \cdot 1 \, dt$$

$$\leq \int_0^1 t^n \, dt \quad \text{since } t \text{ is positive}$$

$$= \frac{1}{n+1}$$

$$< \frac{1}{n}.$$

- We've again used the fact that $f_n(x,t)$ is of the form $\pm \cos(tx)$ or $\pm \sin(tx)$, both of which are bounded by 1.

5.2 Spring 2020 # 5

Compute the following limit and justify your calculations:

$$\lim_{n \to \infty} \int_0^n \left(1 + \frac{x^2}{n} \right)^{-(n+1)} dx.$$

Not finished, flesh out.

Solution.

Concepts used:

- DCT
- Passing limits through products and quotients

Note that

$$\lim_{n} \left(1 + \frac{x^2}{n} \right)^{-(n+1)} = \frac{1}{\lim_{n} \left(1 + \frac{x^2}{n} \right)^1 \left(1 + \frac{x^2}{n} \right)^n}$$
$$= \frac{1}{1 \cdot e^{x^2}}$$
$$= e^{-x^2}.$$

If passing the limit through the integral is justified, we will have

$$\lim_{n \to \infty} \int_0^n \left(1 + \frac{x^2}{n} \right)^{-(n+1)} dx = \lim_{n \to \infty} \int_{\mathbb{R}} \chi_{[0,n]} \left(1 + \frac{x^2}{n} \right)^{-(n+1)} dx$$

$$= \int_{\mathbb{R}} \lim_{n \to \infty} \chi_{[0,n]} \left(1 + \frac{x^2}{n} \right)^{-(n+1)} dx \quad \text{by the DCT}$$

$$= \int_{\mathbb{R}} \lim_{n \to \infty} \left(1 + \frac{x^2}{n} \right)^{-(n+1)} dx$$

$$= \int_0^\infty e^{-x^2}$$

$$= \frac{\sqrt{\pi}}{2}.$$

Computing the last integral:

$$\left(\int_{\mathbb{R}} e^{-x^2} dx\right)^2 = \left(\int_{\mathbb{R}} e^{-x^2} dx\right) \left(\int_{\mathbb{R}} e^{-y^2} dx\right)$$

$$= \int_{\mathbb{R}} \int_{\mathbb{R}} e^{-(x+y)^2} dx$$

$$= \int_0^{2\pi} \int_0^{\infty} e^{-r^2} r dr d\theta \qquad u = r^2$$

$$= \frac{1}{2} \int_0^{2\pi} \int_0^{\infty} e^{-u} du d\theta$$

$$= \frac{1}{2} \int_0^{2\pi} 1$$

$$= \pi.$$

and now use the fact that the function is even so $\int_0^\infty f = \frac{1}{2} \int_{\mathbb{R}} f$. Justifying the DCT:

• Apply Bernoulli's inequality:

$$1 + \frac{x^2^{n+1}}{n} \ge 1 + \frac{x^2}{n} (1 + x^2) \ge 1 + x^2,$$

where the last inequality follows from the fact that $1 + \frac{x^2}{n} \ge 1$

5.3 Spring 2019 # 3

Let $\{f_k\}$ be any sequence of functions in $L^2([0,1])$ satisfying $\|f_k\|_2 \leq M$ for all $k \in \mathbb{N}$. Prove that if $f_k \longrightarrow f$ almost everywhere, then $f \in L^2([0,1])$ with $\|f\|_2 \leq M$ and

$$\lim_{k \to \infty} \int_0^1 f_k(x) dx = \int_0^1 f(x) dx$$

Hint: Try using Fatou's Lemma to show that $||f||_2 \leq M$ and then try applying Egorov's

Solution.

Concepts used:

- Definition of L^+ : space of measurable function $X \longrightarrow [0, \infty]$.
- Fatou: For any sequence of L^+ functions, $\int \liminf f_n \leq \liminf \int f_n$.
- Egorov's Theorem: If $E \subseteq \mathbb{R}^n$ is measurable, m(E) > 0, $f_k : E \longrightarrow \mathbb{R}$ a sequence of measurable functions where $\lim_{n \to \infty} f_n(x)$ exists and is finite a.e., then $f_n \to f$ almost uniformly: for every $\varepsilon > 0$ there exists a closed subset $F_{\varepsilon} \subseteq E$ with $m(E \setminus F) < \varepsilon$ and $f_n \longrightarrow f$ uniformly on F.

 L^2 bound:

- Since $f_k \longrightarrow f$ almost everywhere, $\liminf_n f_n(x) = f(x)$ a.e.
- $||f_n||_2 < \infty$ implies each f_n is measurable and thus $|f_n|^2 \in L^+$, so we can apply Fatou:

$$||f||_2^2 = \int |f(x)|^2$$

$$= \int \liminf_n |f_n(x)|^2$$

$$\leq \lim_n \inf \int |f_n(x)|^2$$

$$\leq \liminf_n M$$

$$= M.$$

• Thus $\|f\|_2 \le \sqrt{M} < \infty$ implying $f \in L^2$. What is the 'right' proof here that uses the first part?

Equality of Integrals:

- Take the sequence $\varepsilon_n = \frac{1}{n}$ Apply Egorov's theorem: obtain a set F_{ε} such that $f_n \longrightarrow f$ uniformly on F_{ε} and $m(I \setminus F_{\varepsilon}) < \varepsilon$

$$\begin{split} \lim_{n \longrightarrow \infty} \left| \int_0^1 f_n - f \right| &\leq \lim_{n \longrightarrow \infty} \int_0^1 |f_n - f| \\ &= \lim_{n \longrightarrow \infty} \left(\int_{F_{\varepsilon}} |f_n - f| + \int_{I \backslash F_{\varepsilon}} |f_n - f| \right) \\ &= \int_{F_{\varepsilon}} \lim_{n \longrightarrow \infty} |f_n - f| + \lim_{n \longrightarrow \infty} \int_{I \backslash F_{\varepsilon}} |f_n - f| \quad \text{by uniform convergence} \\ &= 0 + \lim_{n \longrightarrow \infty} \int_{I \backslash F_{\varepsilon}} |f_n - f|, \end{split}$$

so it suffices to show $\int_{I\setminus F_{\varepsilon}} |f_n - f| \stackrel{n\longrightarrow\infty}{\longrightarrow} 0.$

• We can obtain a bound using Holder's inequality with p = q = 2:

$$\int_{I \setminus F_{\varepsilon}} |f_n - f| \le \left(\int_{I \setminus F_{\varepsilon}} |f_n - f|^2 \right) \left(\int_{I \setminus F_{\varepsilon}} |1|^2 \right)$$

$$= \left(\int_{I \setminus F_{\varepsilon}} |f_n - f|^2 \right) \mu(F_{\varepsilon})$$

$$\le \|f_n - f\|_2 \mu(F_{\varepsilon})$$

$$\le (\|f_n\|_2 + \|f\|_2) \mu(F_{\varepsilon})$$

$$\le 2M \cdot \mu(F_{\varepsilon})$$

where M is now a constant not depending on ε or n.

• Now take a nested sequence of sets F_{ε} with $\mu(F_{\varepsilon}) \longrightarrow 0$ and applying continuity of measure yields the desired statement.

5.4 Fall 2018 # 6

Compute the following limit and justify your calculations:

$$\lim_{n \to \infty} \int_1^n \frac{dx}{\left(1 + \frac{x}{n}\right)^n \sqrt[n]{x}}$$

Solution. • Note that $x^{\frac{1}{n}} \stackrel{n \longrightarrow \infty}{\longrightarrow} 1$ for any $0 < x < \infty$.

- Thus the integrand converges to $\frac{1}{e^x}$, which is integrable on $(0,\infty)$ and integrates to 1.
- Break the integrand up:

$$\int_0^\infty \frac{1}{\left(1 + \frac{x}{n}\right)^n x^{\frac{1}{n}}} \, dx = \int_0^1 \frac{1}{\left(1 + \frac{x}{n}\right)^n x^{\frac{1}{n}}} \, dx = \int_1^\infty \frac{1}{\left(1 + \frac{x}{n}\right)^n x^{\frac{1}{n}}} \, dx.$$

5.5 Fall 2018 # 3

Suppose f(x) and xf(x) are integrable on \mathbb{R} . Define F by

$$F(t) := \int_{-\infty}^{\infty} f(x) \cos(xt) dx$$

Show that

$$F'(t) = -\int_{-\infty}^{\infty} x f(x) \sin(xt) dx.$$

Solution.

Concepts used:

- Mean Value Theorem
- DCT

$$\frac{\partial}{\partial t} F(t) = \frac{\partial}{\partial t} \int_{\mathbb{R}} f(x) \cos(xt) dx$$

$$\stackrel{DCT}{=} \int_{\mathbb{R}} f(x) \frac{\partial}{\partial t} \cos(xt) dx$$

$$= \int_{\mathbb{R}} x f(x) \cos(xt) dx,$$

so it only remains to justify the DCT.

- Fix t, then let $t_n \longrightarrow t$ be arbitrary.
- Define

$$h_n(x,t) = f(x) \left(\frac{\cos(tx) - \cos(t_n x)}{t_n - t} \right) \stackrel{n \to \infty}{\longrightarrow} \frac{\partial}{\partial t} \left(f(x) \cos(xt) \right)$$

since $\cos(tx)$ is differentiable in t and this is the limit definition of differentiability.

• Note that

$$\frac{\partial}{\partial t} \cos(tx) := \lim_{t_n \to t} \frac{\cos(tx) - \cos(t_n x)}{t_n - t}$$

$$\stackrel{MVT}{=} \frac{\partial}{\partial t} \cos(tx) \Big|_{t = \xi_n} \quad \text{for some } \xi_n \in [t, t_n] \text{ or } [t_n, t]$$

$$= x \sin(\xi_n x)$$

where $\xi_n \stackrel{n \longrightarrow \infty}{\longrightarrow} t$ since wlog $t_n \le \xi_n \le t$ and $t_n \nearrow t$.

We then have

$$|h_n(x)| = |f(x)x\sin(\xi_n x)| \le |xf(x)|$$
 since $|\sin(\xi_n x)| \le 1$

for every x and every n.

• Since $xf(x) \in L^1(\mathbb{R})$ by assumption, the DCT applies.

5.6 Spring 2018 # 5

Suppose that

- $f_n, f \in L^1$, $f_n \longrightarrow f$ almost everywhere, and $\int |f_n| \to \int |f|$.

Show that $\int f_n \to \int f$.

Solution.

• Fatou:

$$\int \liminf f_n \le \liminf \int f_n$$
$$\int \limsup f_n \ge \lim \sup \int f_n.$$

Solution:

• Since $\int |f_n| \stackrel{n \longrightarrow \infty}{\longrightarrow} \int |f|$, define $h_n = |f_n - f| \qquad \qquad \stackrel{n \longrightarrow \infty}{\longrightarrow} 0 \text{ or } g_n = |f_n| + |f| \qquad \qquad \stackrel{n \longrightarrow \infty}{\longrightarrow} 2|f| \text{ or } f$

- Note that $g_n - h_n \xrightarrow{n \to \infty} 2|f| - 0 = 2|f|$.

• Then

$$\int 2|f| = \int \liminf_n (g_n - h_n)$$

$$= \int \liminf_n (g_n) + \int \liminf_n (-h_n)$$

$$= \int \liminf_n (g_n) - \int \limsup_n (h_n)$$

$$= \int 2|f| - \int \limsup_n (h_n)$$

$$\leq \int 2|f| - \limsup_n \int h_n \quad \text{by Fatou,}$$

• Since $f \in L^1$, $\int 2|f| = 2||f||_1 < \infty$ and it makes sense to subtract it from both sides, thus

$$0 \le -\limsup_{n} \int h_{n}$$
$$:= -\limsup_{n} \int |f_{n} - f|.$$

which forces $\limsup_{n} \int |f_n - f| = 0$, since

- The integral of a nonnegative function is nonnegative, so $\int |f_n - f| \ge 0$.

$$- \operatorname{So}\left(-\int |f_n - f|\right) \le 0.$$

– But the above inequality shows $\left(-\int |f_n - f|\right) \ge 0$ as well.

• Since $\liminf_{n} \int h_n \leq \limsup_{n} \int h_n = 0$, $\lim_{n} \int h_n$ exists and is equal to zero.

• But then

$$\left| \int f_n - \int f \right| = \left| \int f_n - f \right| \le \int |f_n - f|,$$

and taking $\lim_{n\to\infty}$ on both sides yields

$$\lim_{n \to \infty} \left| \int f_n - \int f \right| \le \lim_{n \to \infty} \int |f_n - f| = 0,$$

so
$$\lim_{n \to \infty} \int f_n = \int f$$
.

5.7 Spring 2018 # 2

Let

$$f_n(x) := \frac{x}{1+x^n}, \quad x \ge 0.$$

- a. Show that this sequence converges pointwise and find its limit. Is the convergence uniform on $[0,\infty)$?
- b. Compute

$$\lim_{n \to \infty} \int_0^\infty f_n(x) dx$$

Solution.

5.7.1 a

Claim: f_n does not converge uniformly to its limit.

- Note each $f_n(x)$ is clearly continuous on $(0, \infty)$, since it is a quotient of continuous functions where the denominator is never zero.
- Note

$$x < 1 \implies x^n \stackrel{n \longrightarrow \infty}{\longrightarrow} 0$$
 and $x > 1 \implies x^n \stackrel{n \longrightarrow \infty}{\longrightarrow} \infty$.

• Thus

$$f_n(x) = \frac{x}{1+x^n} \xrightarrow{n \to \infty} f(x) := \begin{cases} x, & 0 \le x < 1 \\ \frac{1}{2}, & x = 1 \\ 0, & x > 1 \end{cases}.$$

- If $f_n \longrightarrow f$ uniformly on $[0, \infty)$, it would converge uniformly on every subset and thus uniformly on $(0, \infty)$.
 - Then f would be a uniform limit of continuous functions on $(0, \infty)$ and thus continuous on $(0, \infty)$.
 - By uniqueness of limits, f_n would converge to the pointwise limit f above, which is not continuous at x = 1, a contradiction.

5.7.2 b

• If the DCT applies, interchange the limit and integral:

$$\lim_{n \to \infty} \int_0^\infty f_n(x) \, dx = \int_0^\infty \lim_{n \to \infty} f_n(x) \, dx \quad \text{DCT}$$

$$= \int_0^\infty f(x) \, dx$$

$$= \int_0^1 x \, dx + \int_1^\infty 0 \, dx$$

$$= \frac{1}{2} x^2 \Big|_0^1$$

$$= \frac{1}{2}.$$

• To justify the DCT, write

$$\int_0^\infty f_n(x) = \int_0^1 f_n(x) + \int_1^\infty f_n(x).$$

• f_n restricted to (0,1) is uniformly bounded by $g_0(x) = 1$ in the first integral, since

$$x \in [0,1] \implies \frac{x}{1+x^n} < \frac{1}{1+x^n} < 1 := g(x)$$

so

$$\int_0^1 f_n(x) \, dx \le \int_0^1 1 \, dx = 1 < \infty.$$

Also note that $g_0 \cdot \chi_{(0,1)} \in L^1((0,\infty))$.

• The f_n restricted to $(1,\infty)$ are uniformly bounded by $g_1(x) = \frac{1}{x^2}$ on $[1,\infty)$, since

$$x \in (1, \infty) \implies \frac{x}{1 + x^n} \le \frac{x}{x^n} = \frac{1}{x^{n-1}} \le \frac{1}{x^2} \in L^1([1, \infty) \text{ when } n \ge 3,$$

by the p-test for integrals.

• So set

$$g \coloneqq g_0 \cdot \chi_{(0,1)} + g_1 \cdot \chi_{[1,\infty)},$$

then by the above arguments $g \in L^1((0,\infty))$ and $f_n \leq g$ everywhere, so the DCT applies.

5.8 Fall 2016 # 3

Let $f \in L^1(\mathbb{R})$. Show that

$$\lim_{x \to 0} \int_{\mathbb{D}} |f(y - x) - f(y)| \, dy = 0$$

5.9 Fall 2015 # 3

Compute the following limit:

$$\lim_{n \to \infty} \int_1^n \frac{ne^{-x}}{1 + nx^2} \sin\left(\frac{x}{n}\right) dx$$

5.10 Fall 2015 # 4

Let $f:[1,\infty)\longrightarrow \mathbb{R}$ such that f(1)=1 and

$$f'(x) = \frac{1}{x^2 + f(x)^2}$$

Show that the following limit exists and satisfies the equality

$$\lim_{x \to \infty} f(x) \le 1 + \frac{\pi}{4}$$

6 Integrals: Approximation

6.1 Spring 2018 # 3

Let f be a non-negative measurable function on [0, 1].

Show that

$$\lim_{p \to \infty} \left(\int_{[0,1]} f(x)^p dx \right)^{\frac{1}{p}} = \|f\|_{\infty}.$$

Solution.

Concepts used:

• $||f||_{\infty} := \inf_{t} \{t \mid m(\{x \in \mathbb{R}^n \mid f(x) > t\}) = 0\}$, i.e. this is the lowest upper bound that holds almost everywhere.

Solution:

- $\|f\|_p \le \|f\|_\infty$: - Note $|f(x)| \le \|f\|_\infty$ almost everywhere and taking pth powers preserves this

- Thus

$$|f(x)| \leq ||f||_{\infty} \quad \text{a.e. by definition}$$

$$\implies |f(x)|^p \leq ||f||_{\infty}^p \quad \text{for } p \geq 0$$

$$\implies ||f||_p^p = \int_X |f(x)|^p \, dx$$

$$\leq \int_X ||f||_{\infty}^p \, dx$$

$$= ||f||_{\infty}^p \int_X 1 \, dx$$

$$= ||f||_{\infty}^p \cdot m(X) \quad \text{since the norm doesn't depend on } x$$

$$= ||f||_{\infty}^p \quad \text{since } m(X) = 1.$$

- * Thus $\|f\|_p \leq \|f\|_{\infty}$ for all p and taking $\lim_{p \longrightarrow \infty}$ preserves this inequality.
- $||f||_p \ge ||f||_\infty$: Fix $\varepsilon > 0$.

 - Define

$$S_{\varepsilon} := \left\{ x \in \mathbb{R}^n \mid |f(x)| \ge ||f||_{\infty} - \varepsilon \right\}.$$

- * Note that $m(S_{\varepsilon}) > 0$; otherwise if $m(S_{\varepsilon}) = 0$, then $t := ||f||_{\infty} \varepsilon < ||f||_{\varepsilon}$. But this produces a smaller upper bound almost everywhere than $||f||_{\varepsilon}$, contradicting the definition of $||f||_{\varepsilon}$ as an infimum over such bounds.
- Then

$$\begin{split} \|f\|_p^p &= \int_X |f(x)|^p \ dx \\ &\geq \int_{S_\varepsilon} |f(x)|^p \ dx \quad \text{since } S_\varepsilon \subseteq X \\ &\geq \int_{S_\varepsilon} |\|f\|_\infty - \varepsilon|^p \ dx \quad \text{since on } S_\varepsilon, |f| \geq \|f\|_\infty - \varepsilon \\ &= |\|f\|_\infty - \varepsilon|^p \cdot m(S_\varepsilon) \quad \text{since the integrand is independent of } x \\ &\geq 0 \quad \text{since } m(S_\varepsilon) > 0 \end{split}$$

- Taking pth roots for $p \ge 1$ preserves the inequality, so

$$\implies \|f\|_p \ge \|\|f\|_{\infty} - \varepsilon\| \cdot m(S_{\varepsilon})^{\frac{1}{p}} \stackrel{p \longrightarrow \infty}{\longrightarrow} \|\|f\|_{\infty} - \varepsilon\| \stackrel{\varepsilon \longrightarrow 0}{\longrightarrow} \|f\|_{\infty}$$

where we've used the fact that above arguments work

- Thus $||f||_p \ge ||f||_{\infty}$.

6.2 Spring 2018 # 4

Let $f \in L^2([0,1])$ and suppose

$$\int_{[0,1]} f(x)x^n dx = 0 \text{ for all integers } n \ge 0.$$

Show that f = 0 almost everywhere.

6.3 Spring 2015 # 2

Let $f: \mathbb{R} \longrightarrow \mathbb{C}$ be continuous with period 1. Prove that

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(n\alpha) = \int_{0}^{1} f(t)dt \quad \forall \alpha \in \mathbb{R} \setminus \mathbb{Q}.$$

Hint: show this first for the functions $f(t) = e^{2\pi i kt}$ for $k \in \mathbb{Z}$.

Solution.

6.3.1 Proof 1: Using Fourier Transforms

Concepts used:

• Weierstrass Approximation: A uniformly continuous function on a compact set can be uniformly approximated by polynomials.

Solution:

- Fix $k \in \mathbb{Z}$.
- Since $e^{2\pi ikx}$ is continuous on the compact interval [0, 1], it is uniformly continuous.
- Thus there is a sequence of polynomials P_{ℓ} such that

$$P_{\ell,k} \stackrel{\ell \longrightarrow \infty}{\longrightarrow} e^{2\pi i k x}$$
 uniformly on [0, 1].

• Note applying linearity to the assumption $\int f(x) x^n$, we have

$$\int f(x)x^n dx = 0 \ \forall n \implies \int f(x)p(x) dx = 0$$

for any polynomial p(x), and in particular for $P_{\ell,k}(x)$ for every ℓ and every k.

• But then

$$\begin{split} \langle f,\ e_k \rangle &= \int_0^1 f(x) e^{-2\pi i k x}\ dx \\ &= \int_0^1 f(x) \lim_{\ell \to \infty} P_\ell(x) \\ &= \lim_{\ell \to \infty} \int_0^1 f(x) P_\ell(x) \quad \text{by uniform convergence on a compact interval} \\ &= \lim_{\ell \to \infty} 0 \quad \text{by assumption} \\ &= 0 \quad \forall k \in \mathbb{Z}, \end{split}$$

- so f is orthogonal to every e_k . Thus $f \in S^{\perp} := \operatorname{span}_{\mathbb{C}} \{e_k\}_{k \in \mathbb{Z}}^{\perp} \subseteq L^2([0,1])$, but since this is a basis, S is dense and thus $S^{\perp} = \{0\} \text{ in } L^2([0,1]).$
- Thus $f \equiv 0$ in $L^{2}([0,1])$, which implies that f is zero almost everywhere.

6.3.2 Alternative Proof

Concepts used

- $C^1([0,1])$ is dense in $L^2([0,1])$
- Polynomials are dense in $L^p(X, \mathcal{M}, \mu)$ for any $X \subseteq \mathbb{R}^n$ compact and μ a finite measure, for all $1 \le p < \infty$.
 - Use Weierstrass Approximation, then uniform convergence implies $L^p(\mu)$ convergence by DCT.

Solution:

- By density of polynomials, for $f \in L^2([0,1])$ choose $p_{\varepsilon}(x)$ such that $||f p_{\varepsilon}|| < \varepsilon$ by Weierstrass approximation.
- Then on one hand,

$$||f(f - p_{\varepsilon})||_1 = ||f^2||_1 - ||f \cdot p_{\varepsilon}||_1$$
$$= ||f^2||_1 - 0 \quad \text{by assumption}$$
$$= ||f||_2^2.$$

- Where we've used that $\left\|f^2\right\|_1 = \int \left|f^2\right| = \int |f|^2 = \|f\|_2^2$.
- On the other hand

$$\begin{split} \|f(f-p_{\varepsilon})\| &\leq \|f\|_{1} \|f-p_{\varepsilon}\|_{\infty} \quad \text{by Holder} \\ &\leq \varepsilon \|f\|_{1} \\ &\leq \varepsilon \|f\|_{2} \sqrt{m(X)} \\ &= \varepsilon \|f\|_{2} \quad \text{since } m(X) = 1. \end{split}$$

- Where we've used that $||fg||_1 = \int |fg| = \int |f||g| \le \int ||f||_{\infty} |g| = ||f||_{\infty} ||g||_1$.
- Combining these,

$$||f||_2^2 \le ||f||_2 \varepsilon \implies ||f||_2 < \varepsilon \longrightarrow 0,$$

so $||f||_2 = 0$, which implies f = 0 almost everywhere.

6.4 Fall 2014 # 4

Let $g \in L^{\infty}([0,1])$ Prove that

 $\int_{[0,1]} f(x)g(x)\,dx = 0 \quad \text{for all continuous } f:[0,1] \longrightarrow \mathbb{R} \implies g(x) = 0 \text{ almost everywhere}.$

7 L^{1}

7.1 Spring 2020 # 3

a. Prove that if $g \in L^1(\mathbb{R})$ then

$$\lim_{N \to \infty} \int_{|x| > N} |f(x)| \, dx = 0,$$

and demonstrate that it is not necessarily the case that $f(x) \longrightarrow 0$ as $|x| \longrightarrow \infty$.

b. Prove that if $f \in L^1([1,\infty])$ and is decreasing, then $\lim_{x \to \infty} f(x) = 0$ and in fact $\lim_{x \to \infty} x f(x) = 0$.

c. If $f:[1,\infty) \longrightarrow [0,\infty)$ is decreasing with $\lim_{x \to \infty} x f(x) = 0$, does this ensure that $f \in$ $L^{1}([1,\infty))$?

Solution.

Concepts used:

• Limits

• Cauchy Criterion for Integrals: $\int_a^\infty f(x) \, dx$ converges iff for every $\varepsilon > 0$ there exists an M_0 such that $A, B \ge M_0$ implies $\left| \int_A^B f \right| < \varepsilon$, i.e. $\left| \int_A^B f \right| \stackrel{A \longrightarrow \infty}{\longrightarrow} 0$.

• Integrals of L^1 functions have vanishing tails: $\int_N^\infty |f| \stackrel{N \longrightarrow \infty}{\longrightarrow} 0$.

• Mean Value Theorem for Integrals: $\int_a^b f(t) dt = (b-a)f(c)$ for some $c \in [a,b]$.

7.1.1 a

Stated integral equality:

• Let $\varepsilon > 0$

• $C_c(\mathbb{R}^n) \hookrightarrow L^1(\mathbb{R}^n)$ is dense so choose $\{f_n\} \longrightarrow f$ with $||f_n - f||_1 \longrightarrow 0$.

• Since $\{f_n\}$ are compactly supported, choose $N_0 \gg 1$ such that f_n is zero outside of $B_{N_0}(\mathbf{0}).$

• Then

$$N \ge N_0 \implies \int_{|x|>N} |f| = \int_{|x|>N} |f - f_n + f_n|$$

$$\le \int_{|x|>N} |f - f_n| + \int_{|x|>N} |f_n|$$

$$= \int_{|x|>N} |f - f_n|$$

$$\le \int_{|x|>N} ||f - f_n||_1$$

$$= ||f_n - f||_1 \left(\int_{|x|>N} 1 \right)$$

$$\stackrel{n \to \infty}{\longrightarrow} 0 \left(\int_{|x|>N} 1 \right)$$

$$= 0$$

$$\stackrel{N \to \infty}{\longrightarrow} 0.$$

To see that this doesn't force $f(x) \longrightarrow 0$ as $|x| \longrightarrow \infty$:

- Take f(x) to be a train of rectangles of height 1 and area $1/2^{j}$ centered on even integers.

$$\int_{|x|>N} |f| = \sum_{j=N}^{\infty} 1/2^j \stackrel{N \longrightarrow \infty}{\longrightarrow} 0$$

as the tail of a convergent sum.

• However f(x) = 1 for infinitely many even integers x > N, so $f(x) \not\longrightarrow 0$ as $|x| \longrightarrow \infty$.

7.1.2 b

Solution 1 ("Trick")

• Since f is decreasing on $[1, \infty)$, for any $t \in [x - n, x]$ we have

$$x - n < t < x \implies f(x) < f(t) < f(x - n).$$

• Integrate over [x, 2x], using monotonicity of the integral:

$$\int_{x}^{2x} f(x) dt \le \int_{x}^{2x} f(t) dt \le \int_{x}^{2x} f(x-n) dt$$

$$\implies f(x) \int_{x}^{2x} dt \le \int_{x}^{2x} f(t) dt \le f(x-n) \int_{x}^{2x} dt$$

$$\implies x f(x) \le \int_{x}^{2x} f(t) dt \le x f(x-n).$$

- By the Cauchy Criterion for integrals, $\lim_{x \to \infty} \int_{x}^{2x} f(t) dt = 0$.
- So the LHS term $xf(x) \stackrel{x \longrightarrow \infty}{\longrightarrow} 0$.
- Since x > 1, $|f(x)| \le |xf(x)|$ Thus $f(x) \xrightarrow{x \to \infty} 0$ as well.

Solution 2 (Variation on the Trick)

• Use mean value theorem for integrals:

$$\int_{x}^{2x} f(t) dt = x f(c_x) \quad \text{for some } c_x \in [x, 2x] \text{ depending on } x.$$

• Since f is decreasing,

$$x \le c_x \le 2x \implies f(2x) \le f(c_x) \le f(x)$$

$$\implies 2xf(2x) \le 2xf(c_x) \le 2xf(x)$$

$$\implies 2xf(2x) \le 2x \int_x^{2x} f(t) dt \le 2xf(x)$$

• By Cauchy Criterion, $\int_{x}^{2x} f \longrightarrow 0$.

• So $2xf(2x) \longrightarrow 0$, which by a change of variables gives $uf(u) \longrightarrow 0$.

• Since $u \ge 1$, $f(u) \le u f(u)$ so $f(u) \longrightarrow 0$ as well.

Solution 3 (Contradiction)

Just showing $f(x) \stackrel{x \longrightarrow \infty}{\longrightarrow} 0$:

• Toward a contradiction, suppose not.

• Since f is decreasing, it can not diverge to $+\infty$

• If $f(x) \longrightarrow -\infty$, then $f \notin L^1(\mathbb{R})$: choose $x_0 \gg 1$ so that $t \geq x_0 \implies f(t) < -1$, then

• Then $t \ge x_0 \implies |f(t)| \ge 1$, so

$$\int_{1}^{\infty} |f| \ge \int_{x_0}^{\infty} |f(t)| dt \ge \int_{x_0}^{\infty} 1 = \infty.$$

• Otherwise $f(x) \longrightarrow L \neq 0$, some finite limit.

• If L > 0:

- Fix $\varepsilon > 0$, choose $x_0 \gg 1$ such that $t \geq x_0 \implies L - \varepsilon \leq f(t) \leq L$

- Then

$$\int_{1}^{\infty} f \ge \int_{r_0}^{\infty} f \ge \int_{r_0}^{\infty} (L - \varepsilon) dt = \infty$$

• If L < 0:

- Fix $\varepsilon > 0$, choose $x_0 \gg 1$ such that $t \geq x_0 \implies L \leq f(t) \leq L + \varepsilon$.

- Then

$$\int_{1}^{\infty} f \ge \int_{x_0}^{\infty} f \ge \int_{x_0}^{\infty} (L) dt = \infty$$

Showing $xf(x) \stackrel{x \longrightarrow \infty}{\longrightarrow} 0$.

• Toward a contradiction, suppose not.

• (How to show that $xf(x) \leftrightarrow +\infty$?)

• If $xf(x) \longrightarrow -\infty$

- Choose a sequence $\Gamma = \{\hat{x}_i\}$ such that $x_i \longrightarrow \infty$ and $x_i f(x_i) \longrightarrow -\infty$.

- Choose a subsequence $\Gamma' = \{x_i\}$ such that $x_i f(x_i) \leq -1$ for all i and $x_i \leq x_{i+1}$.

7 L^1 43

- Choose a further subsequence $S = \{x_i \in \Gamma' \mid 2x_i < x_{i+1}\}.$
- Then since f is always decreasing, for $t \geq x_0$, |f| is increasing, and $|f(x_i)| \leq |f(2x_i)|$, so

$$\int_{1}^{\infty} |f| \ge \int_{x_0}^{\infty} |f| \ge \sum_{x_i \in S} \int_{x_i}^{2x_i} |f(t)| dt \ge \sum_{x_i \in S} \int_{x_i}^{2x_i} |f(x_i)| = \sum_{x_i \in S} x_i f(x_i) \longrightarrow \infty.$$

• If $xf(x) \longrightarrow L \neq 0$ for $0 < L < \infty$:

– Fix $\varepsilon > 0$, choose an infinite sequence $\{x_i\}$ such that $L - \varepsilon \leq x_i f(x_i) \leq L$ for all i.

$$\int_{1}^{\infty} |f| \ge \sum_{S} \int_{x_i}^{2x_i} |f(t)| dt \ge \sum_{S} \int_{x_i}^{2x_i} f(x_i) dt = \sum_{S} x_i f(x_i) \ge \sum_{S} (L - \varepsilon) \longrightarrow \infty.$$

• If $xf(x) \longrightarrow L \neq 0$ for $-\infty < L < 0$:

- Fix $\varepsilon > 0$, choose an infinite sequence $\{x_i\}$ such that $L \leq x_i f(x_i) \leq L + \varepsilon$ for all i.

$$\int_{1}^{\infty} |f| \ge \sum_{S} \int_{x_i}^{2x_i} |f(t)| dt \ge \sum_{S} \int_{x_i}^{2x_i} f(x_i) dt = \sum_{S} x_i f(x_i) \ge \sum_{S} (L) \longrightarrow \infty.$$

Solution 4 (Akos's Suggestion) For $x \ge 1$,

$$|xf(x)| = \left| \int_{x}^{2x} f(x) dt \right| \le \int_{x}^{2x} |f(x)| dt \le \int_{x}^{2x} |f(t)| dt \le \int_{x}^{\infty} |f(t)| dt \xrightarrow{x \to \infty} 0$$

where we've used

- Since f is decreasing and $\lim_{x \to \infty} f(x) = 0$ from part (a), f is non-negative.
- Since f is positive and decreasing, for every $t \in [a, b]$ we have $|f(a)| \le |f(t)|$.
- By part (a), the last integral goes to zero.

Solution 5 (Peter's)

• Toward a contradiction, produce a sequence $x_i \longrightarrow \infty$ with $x_i f(x_i) \longrightarrow \infty$ and $x_i f(x_i) > \varepsilon > 0$, then

$$\int f(x) dx \ge \sum_{i=1}^{\infty} \int_{x_i}^{x_{i+1}} f(x) dx$$

$$\ge \sum_{i=1}^{\infty} \int_{x_i}^{x_{i+1}} f(x_{i+1}) dx$$

$$= \sum_{i=1}^{\infty} f(x_{i+1}) \int_{x_i}^{x_{i+1}} dx$$

$$\ge \sum_{i=1}^{\infty} (x_{i+1} - x_i) f(x_{i+1})$$

$$\ge \sum_{i=1}^{\infty} (x_{i+1} - x_i) \frac{\varepsilon}{x_{i+1}}$$

$$= \varepsilon \sum_{i=1}^{\infty} \left(1 - \frac{x_{i-1}}{x_i} \right) \longrightarrow \infty$$

which can be ensured by passing to a subsequence where $\sum \frac{x_{i-1}}{x_i} < \infty$.

7 L^1 44

7.1.3 c

• No: take $f(x) = \frac{1}{x \ln x}$ • Then by a *u*-substitution,

$$\int_0^x f = \ln\left(\ln(x)\right) \stackrel{x \longrightarrow \infty}{\longrightarrow} \infty$$

is unbounded, so $f \notin L^1([1,\infty))$.

• But

$$xf(x) = \frac{1}{\ln(x)} \stackrel{x \to \infty}{\longrightarrow} 0.$$

7.2 Fall 2019 # 5.

7.2.1 a

Show that if f is continuous with compact support on \mathbb{R} , then

$$\lim_{y \to 0} \int_{\mathbb{R}} |f(x - y) - f(x)| dx = 0$$

7.2.2 b

Let $f \in L^1(\mathbb{R})$ and for each h > 0 let

$$\mathcal{A}_h f(x) := \frac{1}{2h} \int_{|y| \le h} f(x - y) dy$$

i. Prove that $\|\mathcal{A}_h f\|_1 \leq \|f\|_1$ for all h > 0.

ii. Prove that $\mathcal{A}_h f \longrightarrow f$ in $L^1(\mathbb{R})$ as $h \longrightarrow 0^+$.

Solution.

Continuity in L^1 (recall that DCT won't work! Notes 19.4, prove it for a dense subset

Lebesgue differentiation in 1-dimensional case. See HW 5.6.

7.3 a

Choose $g \in C_c^0$ such that $||f - g||_1 \longrightarrow 0$. By translation invariance, $||\tau_h f - \tau_h g||_1 \longrightarrow 0$.

Write

$$\|\tau f - f\|_{1} = \|\tau_{h} f - g + g - \tau_{h} g + \tau_{h} g - f\|_{1}$$

$$\leq \|\tau_{h} f - \tau_{h} g\| + \|g - f\| + \|\tau_{h} g - g\|$$

$$\longrightarrow \|\tau_{h} g - g\|,$$

so it suffices to show that $\|\tau_h g - g\| \longrightarrow 0$ for $g \in C_c^0$.

 $7 L^1$ 45 Fix $\varepsilon > 0$. Enlarge the support of g to K such that

$$|h| \le 1$$
 and $x \in K^c \implies |g(x-h) - g(x)| = 0$.

By uniform continuity of g, pick $\delta \leq 1$ small enough such that

$$x \in K, |h| \le \delta \implies |g(x-h) - g(x)| < \varepsilon,$$

then

$$\int_{K} |g(x-h) - g(x)| \le \int_{K} \varepsilon = \varepsilon \cdot m(K) \longrightarrow 0.$$

7.4 b

We have

$$\int_{\mathbb{R}} |A_h(f)(x)| \ dx = \int_{\mathbb{R}} \left| \frac{1}{2h} \int_{x-h}^{x+h} f(y) \ dy \right| \ dx$$

$$\leq \frac{1}{2h} \int_{\mathbb{R}} \int_{x-h}^{x+h} |f(y)| \ dy \ dx$$

$$=_{FT} \frac{1}{2h} \int_{\mathbb{R}} \int_{y-h}^{y+h} |f(y)| \ \mathbf{dx} \ \mathbf{dy}$$

$$= \int_{\mathbb{R}} |f(y)| \ dy$$

$$= ||f||_{1}.$$

and (rough sketch)

$$\int_{\mathbb{R}} |A_h(f)(x) - f(x)| \ dx = \int_{\mathbb{R}} \left| \left(\frac{1}{2h} \int_{B(h,x)} f(y) \ dy \right) - f(x) \right| \ dx$$

$$= \int_{\mathbb{R}} \left| \left(\frac{1}{2h} \int_{B(h,x)} f(y) \ dy \right) - \frac{1}{2h} \int_{B(h,x)} f(x) \ dy \right| \ dx$$

$$\leq_{FT} \frac{1}{2h} \int_{\mathbb{R}} \int_{B(h,x)} |f(y - x) - f(x)| \ \mathbf{dx} \ \mathbf{dy}$$

$$\leq \frac{1}{2h} \int_{\mathbb{R}} \|\tau_x f - f\|_1 \ dy$$

$$\longrightarrow 0 \quad \text{by (a)}.$$

7.5 Fall 2017 # 3

Let

$$S = \operatorname{span}_{\mathbb{C}} \left\{ \chi_{(a,b)} \mid a, b \in \mathbb{R} \right\},\,$$

the complex linear span of characteristic functions of intervals of the form (a, b).

7 L^1 46

Show that for every $f \in L^1(\mathbb{R})$, there exists a sequence of functions $\{f_n\} \subset S$ such that

$$\lim_{n\to\infty} \|f_n - f\|_1 = 0$$

7.6 Spring 2015 # 4

Define

$$f(x,y) := \begin{cases} \frac{x^{1/3}}{(1+xy)^{3/2}} & \text{if } 0 \le x \le y\\ 0 & \text{otherwise} \end{cases}$$

Carefully show that $f \in L^1(\mathbb{R}^2)$.

7.7 Fall 2014 # 3

Let $f \in L^1(\mathbb{R})$. Show that

$$\forall \varepsilon > 0 \exists \delta > 0 \text{ such that} \qquad m(E) < \delta \implies \int_E |f(x)| \, dx < \varepsilon$$

7.8 Spring 2014 # 1

- 1. Give an example of a continuous $f \in L^1(\mathbb{R})$ such that $f(x) \not\longrightarrow 0$ as $|x| \longrightarrow \infty$.
- 2. Show that if f is uniformly continuous, then

$$\lim_{|x| \to \infty} f(x) = 0.$$

8 Fubini-Tonelli

8.1 Spring 2020 # 4

Let $f, g \in L^1(\mathbb{R})$. Argue that H(x, y) := f(y)g(x - y) defines a function in $L^1(\mathbb{R}^2)$ and deduce from this fact that

$$(f * g)(x) \coloneqq \int_{\mathbb{R}} f(y)g(x - y) \, dy$$

defines a function in $L^1(\mathbb{R})$ that satisfies

$$\|f*g\|_1 \leq \|f\|_1 \|g\|_1.$$

Solution.

Relevant concepts:

- Tonelli: non-negative and measurable yields measurability of slices and equality of iterated integrals
- Fubini: $f(x,y) \in L^1$ yields integrable slices and equality of iterated integrals

• F/T: apply Tonelli to |f|; if finite, $f \in L^1$ and apply Fubini to f

$$\begin{split} \|H(x)\|_1 &= \int_{\mathbb{R}} |H(x,y)| \, dx \\ &= \int_{\mathbb{R}} \left| \int_{\mathbb{R}} f(y) g(x-y) \, dy \right| \, dx \\ &\leq \int_{\mathbb{R}} \left(\int_{\mathbb{R}} |f(y) g(x-y)| \, dy \right) \, dx \\ &= \int_{\mathbb{R}} \left(\int_{\mathbb{R}} |f(y) g(x-y)| \, dx \right) \, dy \quad \text{by Tonelli} \\ &= \int_{\mathbb{R}} \left(\int_{\mathbb{R}} |f(y) g(t)| \, dt \right) \, dy \quad \text{setting } t = x - y, \, dt = -dx \\ &= \int_{\mathbb{R}} \left(\int_{\mathbb{R}} |f(y)| \cdot |g(t)| \, dt \right) \, dy \\ &= \int_{\mathbb{R}} |f(y)| \cdot \left(\int_{\mathbb{R}} |g(t)| \, dt \right) \, dy \\ &= \int_{\mathbb{R}} |f(y)| \cdot \|g\|_1 \, dy \\ &= \|g\|_1 \int_{\mathbb{R}} |f(y)| \, dy \\ &\coloneqq \|g\|_1 \|f\|_1 \\ &< \infty \quad \text{by assumption} \quad . \end{split}$$

- H is measurable on \mathbb{R}^2 :
 - If we can show $\tilde{f}(x,y) := f(y)$ and $\tilde{g}(x,y) := g(x-y)$ are both measurable on \mathbb{R}^2 , then $H = \tilde{f} \cdot \tilde{g}$ is a product of measurable functions and thus measurable.
 - $-f \in L^1$, and L^1 functions are measurable by definition.
 - The function $(x,y) \mapsto g(x-y)$ is measurable on \mathbb{R}^2 :
 - * Let g be measurable on \mathbb{R} , then the cylinder function G(x,y)=g(x) on \mathbb{R}^2 is always measurable
 - * Define a linear transformation T := [1, -1; 0, 1] which sends $(x, y) \longrightarrow (x y, y)$, then $T \in GL(2, \mathbb{R})$ is linear and thus measurable.
 - * Then $(G \circ T)(x,y) = G(x-y,y) = \tilde{g}(x-y)$, so \tilde{g} is a composition of measurable functions and thus measurable.
- Apply **Tonelli** to |H|
 - -H measurable implies |H| is measurable
 - |H| is non-negative
 - So the iterated integrals are equal in the extended sense
 - The calculation shows the iterated integral is finite, to $\int |H|$ is finite and H is thus integrable on \mathbb{R}^2 .

Note: Fubini is not needed, since we're not calculating the actual integral, just showing H is integrable.

8.2 Spring 2019 # 4

Let f be a non-negative function on \mathbb{R}^n and $\mathcal{A} = \{(x,t) \in \mathbb{R}^n \times \mathbb{R} : 0 \le t \le f(x)\}.$

Prove the validity of the following two statements:

- a. f is a Lebesgue measurable function on $\mathbb{R}^n \iff \mathcal{A}$ is a Lebesgue measurable subset of \mathbb{R}^{n+1}
- b. If f is a Lebesgue measurable function on \mathbb{R}^n , then

$$m(\mathcal{A}) = \int_{\mathbb{R}^n} f(x)dx = \int_0^\infty m\left(\left\{x \in \mathbb{R}^n : f(x) \ge t\right\}\right)dt$$

Solution.

See S&S p.82.

8.2.1 a

 \Longrightarrow :

- Suppose f is a measurable function.
- Note that $A = \{f(x) t \ge 0\} \cap \{t \ge 0\}.$
- Define F(x,t) = f(x), G(x,t) = t, which are cylinders on measurable functions and thus measurable.
- Define H(x,y) = F(x,t) G(x,t), which are linear combinations of measurable functions and thus measurable.
- Then $A = \{H \ge 0\} \bigcap \{G \ge 0\}$ as a countable intersection of measurable sets, which is again measurable.

← :

- Suppose A is a measurable set.
- Then FT on $\chi_{\mathcal{A}}$ implies that for almost every $x \in \mathbb{R}^n$, the x-slices \mathcal{A}_x are measurable and \$

$$\mathcal{A}_x := \left\{ t \in \mathbb{R} \mid (x, t) \in \mathcal{A} \right\} = [0, f(x)] \implies m(\mathcal{A}_x) = f(x) - 0 = f(x)$$

• But $x \mapsto m(A_x)$ is a measurable function, and is exactly the function $x \mapsto f(x)$, so f is measurable.

8.2.2 b

• Note

$$\mathcal{A} = \left\{ (x, t) \in \mathbb{R}^n \times \mathbb{R} \mid 0 \le t \le f(x) \right\}$$
$$\mathcal{A}_t = \left\{ x \in \mathbb{R}^n \mid t \le f(x) \right\}.$$

• Then

$$\int_{\mathbb{R}^n} f(x) \ dx = \int_{\mathbb{R}^n} \int_0^{f(x)} 1 \ dt \ dx$$

$$= \int_{\mathbb{R}^n} \int_0^{\infty} \chi_{\mathcal{A}} \ dt \ dx$$

$$\stackrel{F.T.}{=} \int_0^{\infty} \int_{\mathbb{R}^n} \chi_{\mathcal{A}} \ dx \ dt$$

$$= \int_0^{\infty} m(\mathcal{A}_t) \ dt,$$

where we just use that $\int \int \chi_{\mathcal{A}} = m(\mathcal{A})$

• By F.T., all of these integrals are equal.

Why is FT justified

8.3 Fall 2018 # 5

Let $f \geq 0$ be a measurable function on \mathbb{R} . Show that

$$\int_{\mathbb{R}} f = \int_0^\infty m(\{x : f(x) > t\}) dt$$

Solution.

Concepts used:

• Claim: If $E \subseteq \mathbb{R}^a \times \mathbb{R}^b$ is a measurable set, then for almost every $y \in \mathbb{R}^b$, the slice E^y is measurable and

$$m(E) = \int_{\mathbb{D}^b} m(E^y) \, dy.$$

– Set $g = \chi_E$, which is non-negative and measurable, so apply Tonelli.

- Conclude that $g^y = \chi_{E^y}$ is measurable, the function $y \mapsto \int g^y(x) dx$ is measurable,

and
$$\int \int g^y(x) dx dy = \int g$$
.
- But $\int g = m(E)$ and $\int \int g^y(x) dx dy = \int m(E^y) dy$.

Solution

Note: f is a function $\mathbb{R} \longrightarrow \mathbb{R}$ in the original problem, but here I've assumed $f: \mathbb{R}^n \longrightarrow \mathbb{R}$.

• Since $f \geq 0$, set

$$E := \left\{ (x, t) \in \mathbb{R}^n \times \mathbb{R} \mid f(x) > t \right\} = \left\{ (x, t) \in \mathbb{R}^n \times \mathbb{R} \mid 0 \le t < f(x) \right\}.$$

• Claim: since f is measurable, E is measurable and thus m(E) makes sense.

- Since f is measurable, F(x,t) := t - f(x) is measurable on $\mathbb{R}^n \times \mathbb{R}$.

– Then write $E = \{F < 0\} \bigcap \{t \ge 0\}$ as an intersection of measurable sets.

• We have slices

$$E^{t} := \left\{ x \in \mathbb{R}^{n} \mid (x, t) \in E \right\} = \left\{ x \in \mathbb{R}^{n} \mid 0 \le t < f(x) \right\}$$
$$E^{x} := \left\{ t \in \mathbb{R} \mid (x, t) \in E \right\} = \left\{ t \in \mathbb{R} \mid 0 \le t \le f(x) \right\} = [0, f(x)].$$

- $-E_t$ is precisely the set that appears in the original RHS integrand.
- $-m(E^x)=f(x)$
- Claim: χ_E satisfies the conditions of Tonelli, and thus $m(E) = \int \chi_E$ is equal to any iterated integral.
 - Non-negative: clear since $0 \le \chi_E \le 1$
 - Measurable: characteristic functions of measurable sets are measurable.
- Conclude:
 - 1. For almost every x, E^x is a measurable set, $x \mapsto m(E^x)$ is a measurable function, and $m(E) = \int_{\mathbb{R}^n} m(E^x) dx$
 - 2. For almost every t, E^t is a measurable set, $t \mapsto m(E^t)$ is a measurable function, and $m(E) = \int_{\mathbb{D}} m(E^t) dt$
- On one hand,

$$\begin{split} m(E) &= \int_{\mathbb{R}^{n+1}} \chi_E(x,t) \\ &= \int_{\mathbb{R}} \int_{\mathbb{R}^n} \chi_E(x,t) \, dt \, dx \quad \text{by Tonelli} \\ &= \int_{\mathbb{R}^n} m(E^x) \, dx \quad \text{first conclusion} \\ &= \int_{\mathbb{R}^n} f(x) \, dx. \end{split}$$

• On the other hand,

$$m(E) = \int_{\mathbb{R}^{n+1}} \chi_E(x, t)$$

$$= \int_{\mathbb{R}} \int_{\mathbb{R}^n} \chi_E(x, t) dx dt \text{ by Tonelli}$$

$$= \int_{\mathbb{R}} m(E^t) dt \text{ second conclusion.}$$

• Thus

$$\int_{\mathbb{R}^n} f \, dx = m(E) = \int_{\mathbb{R}} m(E^t) \, dt = \int_{\mathbb{R}} m\left(\left\{x \mid f(x) > t\right\}\right).$$

8.4 Fall 2015 # 5

Let $f, g \in L^1(\mathbb{R})$ be Borel measurable.

- 1. Show that
- The function

$$F(x,y) \coloneqq f(x-y)g(y)$$

is Borel measurable on \mathbb{R}^2 , and

• For almost every $y \in \mathbb{R}$,

$$F_y(x) \coloneqq f(x-y)g(y)$$

is integrable with respect to y.

2. Show that $f * g \in L^1(\mathbb{R})$ and

$$||f * g||_1 \le ||f||_1 ||g||_1$$

8.5 Spring 2014 # 5

Let $f, g \in L^1([0,1])$ and for all $x \in [0,1]$ define

$$F(x) := \int_0^x f(y) \, dy$$
 and $G(x) := \int_0^x g(y) \, dy$.

Prove that

$$\int_0^1 F(x)g(x) \, dx = F(1)G(1) - \int_0^1 f(x)G(x) \, dx$$

9 L^2 and Fourier Analysis

9.1 Spring 2020 # 6

9.1.1 a

Show that

$$L^2([0,1]) \subseteq L^1([0,1])$$
 and $\ell^1(\mathbb{Z}) \subseteq \ell^2(\mathbb{Z})$.

9.1.2 b

For $f \in L^1([0,1])$ define

$$\widehat{f}(n) := \int_0^1 f(x)e^{-2\pi i nx} dx.$$

Prove that if $f \in L^1([0,1])$ and $\{\widehat{f}(n)\} \in \ell^1(\mathbb{Z})$ then

$$S_N f(x) := \sum_{|n| \le N} \widehat{f}(n) e^{2\pi i n x}.$$

converges uniformly on [0,1] to a continuous function g such that g=f almost everywhere.

 $\text{Hint: One approach is to argue that if } f \in L^1([0,1]) \text{ with } \left\{ \widehat{f}(n) \right\} \in \ell^1(\mathbb{Z}) \text{ then } f \in L^2([0,1]).$

Solution.

Concepts used: • For $e_n(x) := e^{2\pi i n x}$, the set $\{e_n\}$ is an orthonormal basis for $L^2([0,1])$.

• For any orthonormal sequence in a Hilbert space, we have Bessel's inequality:

$$\sum_{k=1}^{\infty} |\langle x, e_k \rangle|^2 \le ||x||^2.$$

- When $\{e_n\}$ is a basis, the above is an equality (Parseval)
- Arguing uniform convergence: since $\{\widehat{f}(n)\}\in \ell^1(\mathbb{Z})$, we should be able to apply the M test.

9.1.3 a

Claim: $\ell^1(\mathbb{Z}) \subseteq \ell^2(\mathbb{Z})$.

- Set $\mathbf{c} = \{c_k \mid k \in \mathbb{Z}\} \in \ell^1(\mathbb{Z}).$
- It suffices to show that if $\sum_{k\in\mathbb{Z}}|c_k|<\infty$ then $\sum_{k\in\mathbb{Z}}|c_k|^2<\infty$.
- Let $S = \{c_k \mid |c_k| \le 1\}$, then $c_k \in S \implies |c_k|^2 \le |c_k|$
- Claim: S^{c} can only contain finitely many elements, all of which are finite.
 - If not, either $S^c := \{c_j\}_{j=1}^{\infty}$ is infinite with every $|c_j| > 1$, which forces

$$\sum_{c_k \in S^c} |c_k| = \sum_{j=1}^{\infty} |c_j| > \sum_{j=1}^{\infty} 1 = \infty.$$

- If any
$$c_j = \infty$$
, then $\sum_{k \in \mathbb{Z}} |c_k| \ge c_j = \infty$.

- So S^c is a finite set of finite integers, let $N = \max\left\{|c_j|^2 \mid c_j \in S^c\right\} < \infty$.
- Rewrite the sum

$$\sum_{k \in \mathbb{Z}} |c_k|^2 = \sum_{c_k \in S} |c_k|^2 + \sum_{c_k \in S^c} |c_k|^2$$

$$\leq \sum_{c_k \in S} |c_k| + \sum_{c_k \in S^c} |c_k|^2$$

$$\leq \sum_{k \in \mathbb{Z}} |c_k| + \sum_{c_k \in S^c} |c_k|^2 \quad \text{since the } |c_k| \text{ are all positive}$$

$$= \|\mathbf{c}\|_{\ell^1} + \sum_{c_k \in S^c} |c_k|^2$$

$$\leq \|\mathbf{c}\|_{\ell^1} + |S^c| \cdot N$$

$$\leq \infty.$$

Claim: $L^2([0,1]) \subseteq L^1([0,1])$.

- It suffices to show that $\int |f|^2 < \infty \implies \int |f| < \infty$.
- Define $S = \{x \in [0,1] \mid |f(x)| \le 1\}$, then $x \in S^c \implies |f(x)|^2 \ge |f(x)|$.

• Break up the integral:

$$\begin{split} \int_{\mathbb{R}} |f| &= \int_{S} |f| + \int_{S^{c}} |f| \\ &\leq \int_{S} |f| + \int_{S^{c}} |f|^{2} \\ &\leq \int_{S} |f| + \|f\|_{2} \\ &\leq \sup_{x \in S} \{|f(x)|\} \cdot \mu(S) + \|f\|_{2} \\ &= 1 \cdot \mu(S) + \|f\|_{2} \quad \text{by definition of } S \\ &\leq 1 \cdot \mu([0,1]) + \|f\|_{2} \quad \text{since } S \subseteq [0,1] \\ &= 1 + \|f\|_{2} \\ &< \infty. \end{split}$$

Note: this proof shows $L^2(X) \subseteq L^1(X)$ whenever $\mu(X) < \infty$.

9.2 Fall 2017 # 5

Let φ be a compactly supported smooth function that vanishes outside of an interval [-N, N] such that $\int_{\mathbb{R}} \varphi(x) dx = 1$.

For $f \in L^1(\mathbb{R})$, define

$$K_j(x) := j\varphi(jx), \qquad f * K_j(x) := \int_{\mathbb{R}} f(x-y)K_j(y) \, dy$$

and prove the following:

1. Each $f * K_j$ is smooth and compactly supported.

2.

$$\lim_{j \to \infty} \|f * K_j - f\|_1 = 0$$

Hint:

$$\lim_{y \to 0} \int_{\mathbb{R}} |f(x - y) - f(x)| dy = 0$$

9.3 Spring 2017 # 5

Let $f, g \in L^2(\mathbb{R})$. Prove that the formula

$$h(x) := \int_{-\infty}^{\infty} f(t)g(x-t) dt$$

defines a uniformly continuous function h on \mathbb{R} .

9.4 Spring 2015 # 6

Let $f \in L^1(\mathbb{R})$ and g be a bounded measurable function on \mathbb{R} .

- 1. Show that the convolution f * g is well-defined, bounded, and uniformly continuous on \mathbb{R} .
- 2. Prove that one further assumes that $g \in C^1(\mathbb{R})$ with bounded derivative, then $f * g \in C^1(\mathbb{R})$ and

$$\frac{d}{dx}(f*g) = f*\left(\frac{d}{dx}g\right)$$

9.5 Fall 2014 # 5

1. Let $f \in C_c^0(\mathbb{R}^n)$, and show

$$\lim_{t \to 0} \int_{\mathbb{R}^n} |f(x+t) - f(x)| \, dx = 0.$$

2. Extend the above result to $f \in L^1(\mathbb{R}^n)$ and show that

$$f \in L^1(\mathbb{R}^n), \quad g \in L^\infty(\mathbb{R}^n) \implies f * g \text{ is bounded and uniformly continuous.}$$

10 Functional Analysis: General

10.1 Fall 2019 # 4.

Let $\{u_n\}_{n=1}^{\infty}$ be an orthonormal sequence in a Hilbert space \mathcal{H} .

10.1.1 a

Prove that for every $x \in \mathcal{H}$ one has

$$\sum_{n=1}^{\infty} |\langle x, u_n \rangle|^2 \le ||x||^2$$

10.1.2 b

Prove that for any sequence $\{a_n\}_{n=1}^{\infty} \in \ell^2(\mathbb{N})$ there exists an element $x \in \mathcal{H}$ such that

$$a_n = \langle x, u_n \rangle$$
 for all $n \in \mathbb{N}$

and

$$||x||^2 = \sum_{n=1}^{\infty} |\langle x, u_n \rangle|^2$$

Solution.

Concepts used:

• Bessel's Inequality

- Pythagoras
- Surjectivity of the Riesz map
- Parseval's Identity
- Trick remember to write out finite sum S_N , and consider $||x S_N||$.

10.1.3 a

Claim:

$$0 \le \left\| x - \sum_{n=1}^{N} \langle x, u_n \rangle u_n \right\|^2 = \|x\|^2 - \sum_{n=1}^{N} |\langle x, u_n \rangle|^2$$
$$\implies \sum_{n=1}^{\infty} |\langle x, u_n \rangle|^2 \le \|x\|^2.$$

Proof: Let
$$S_N = \sum_{n=1}^N \langle x, u_n \rangle u_n$$
. Then

$$0 \le \|x - S_N\|^2$$

$$= \langle x - S_n, x - S_N \rangle$$

$$= \|x\|^2 - \sum_{n=1}^N |\langle x, u_n \rangle|^2$$

$$\xrightarrow{N \longrightarrow \infty} \|x\|^2 - \sum_{n=1}^N |\langle x, u_n \rangle|^2.$$

10.1.4 b

- 1. Fix $\{a_n\} \in \ell^2$, then note that $\sum |a_n|^2 < \infty \implies$ the tails vanish.
- 2. Define

$$x := \lim_{N \to \infty} S_N = \lim_{N \to \infty} \sum_{k=1}^{N} a_k u_k$$

- 3. $\{S_N\}$ Cauchy (by 1) and H complete $\implies x \in H$.
- 4.

$$\langle x, u_n \rangle = \left\langle \sum_k a_k u_k, u_n \right\rangle = \sum_k a_k \langle u_k, u_n \rangle = a_n \quad \forall n \in \mathbb{N}$$

since the u_k are all orthogonal.

5.

$$||x||^2 = \left\| \sum_k a_k u_k \right\|^2 = \sum_k ||a_k u_k||^2 = \sum_k |a_k|^2$$

by Pythagoras since the u_k are normal.

Bonus: We didn't use completeness here, so the Fourier series may not actually converge to x. If $\{u_n\}$ is **complete** (so $x=0\iff \langle x,\ u_n\rangle=0\ \forall n$) then the Fourier series does

converge to
$$x$$
 and $\sum_{n=1}^{\infty} |\langle x, u_n \rangle|^2 = ||x||^2$ for all $x \in H$.

10.2 Spring 2019 # 5

10.2.1 a

Show that $L^2([0,1]) \subseteq L^1([0,1])$ and argue that $L^2([0,1])$ in fact forms a dense subset of $L^1([0,1])$.

10.2.2 b

Let Λ be a continuous linear functional on $L^1([0,1])$.

Prove the Riesz Representation Theorem for $L^1([0,1])$ by following the steps below:

i. Establish the existence of a function $g \in L^2([0,1])$ which represents Λ in the sense that

$$\Lambda(f) = f(x)g(x)dx$$
 for all $f \in L^2([0,1])$.

Hint: You may use, without proof, the Riesz Representation Theorem for $L^2([0,1])$.

ii. Argue that the g obtained above must in fact belong to $L^{\infty}([0,1])$ and represent Λ in the sense that

$$\Lambda(f) = \int_0^1 f(x)\overline{g(x)}dx \quad \text{ for all } f \in L^1([0,1])$$

with

$$||g||_{L^{\infty}([0,1])} = ||\Lambda||_{L^{1}([0,1])}$$

Solution.

Concepts used:

- Holders' inequality: $\|fg\|_1 \leq \|f\|_p \|f\|_q$ Riesz Representation for L^2 : If $\Lambda \in (L^2)^\vee$ then there exists a unique $g \in L^2$ such that $\Lambda(f) = \int fg.$
- $\bullet \ \ \|f\|_{L^{\infty}(X)} \coloneqq \inf \Big\{ t \geq 0 \ \Big| \ |f(x)| \leq t \text{ almost everywhere} \Big\}.$
- Lemma: $m(X) < \infty \implies L^p(X) \subset L^2(X)$.

Proof: Write Holder's inequality as $||fg||_1 \le ||f||_a ||g||_b$ where $\frac{1}{a} + \frac{1}{b} = 1$, then

$$||f||_p^p = |||f|^p||_1 \le |||f|^p||_a ||1||_b.$$

Now take $a = \frac{2}{n}$ and this reduces to

$$||f||_p^p \le ||f||_2^p \ m(X)^{\frac{1}{b}}$$

$$\implies ||f||_p \le ||f||_2 \cdot O(m(X)) < \infty.$$

10.2.3 a

• Note $X = [0, 1] \implies m(X) = 1$.

• By Holder's inequality with p = q = 2,

$$||f||_1 = ||f \cdot 1||_1 \le ||f||_2 \cdot ||1||_2 = ||f||_2 \cdot m(X)^{\frac{1}{2}} = ||f||_2,$$

- Thus $L^2(X) \subseteq L^1(X)$
- Since they share a common dense subset (simple functions) L^2 is dense in L^1

What theorem is this using?

10.2.4 b

Let $\Lambda \in L^1(X)^{\vee}$ be arbitrary.

(i): Existence of g Representing Λ .

- Let $f \in L^2 \subseteq L^1$ be arbitrary
- Claim: $\Lambda \in L^1(X)^{\vee} \implies \Lambda \in L^2(X)^{\vee}$.
 - Suffices to show that $\|\Gamma\|_{L^2(X)^{\vee}} := \sup_{\|f\|_2=1} |\Gamma(f)| < \infty$, since bounded implies continuous
 - By the lemma, $||f||_1 \le C||f||_2$ for some constant $C \approx m(X)$.
 - Note

$$\|\Lambda\|_{L^1(X)^{\vee}} \coloneqq \sup_{\|f\|_1 = 1} |\Lambda(f)|$$

- Define $\hat{f} = \frac{f}{\|f\|_1}$ so $\|\hat{f}\|_1 = 1$
- Since $\|\Lambda\|_{1^{\vee}}$ is a supremum over all $f \in L^1(X)$ with $\|f\|_1 = 1$,

$$\left|\Lambda(\widehat{f})\right| \le \|\Lambda\|_{(L^1(X))^\vee},$$

- Then

$$\begin{split} \frac{|\Lambda(f)|}{\|f\|_1} &= \left|\Lambda(\widehat{f})\right| \leq \|\Lambda\|_{L^1(X)^\vee} \\ \Longrightarrow & |\Lambda(f)| \leq \|\Lambda\|_{1^\vee} \cdot \|f\|_1 \\ &\leq \|\Lambda\|_{1^\vee} \cdot C\|f\|_2 < \infty \quad \text{by assumption,} \end{split}$$

- $\text{ So } \Lambda \in (L^2)^{\vee}.$
- Now apply Riesz Representation for L^2 : there is a $g \in L^2$ such that

$$f \in L^2 \implies \Lambda(f) = \langle f, g \rangle \coloneqq \int_0^1 f(x) \overline{g(x)} \, dx.$$

(ii): g is in L^{∞}

- It suffices to show $||g||_{L^{\infty}(X)} < \infty$.
- Since we're assuming $\|\Gamma\|_{L^1(X)^\vee} < \infty$, it suffices to show the stated equality.

Is this assumed..? Or did we show it...

- Claim: $\|\Lambda\|_{L^1(X)^{\vee}} = \|g\|_{L^{\infty}(X)}$
 - The result follows because Λ was assumed to be in $L^1(X)^{\vee}$, so $\|\Lambda\|_{L^1(X)^{\vee}} < \infty$.

- ≤:

$$\begin{split} \|\Lambda\|_{L^{1}(X)^{\vee}} &= \sup_{\|f\|_{1}=1} |\Lambda(f)| \\ &= \sup_{\|f\|_{1}=1} \left| \int_{X} f \bar{g} \right| \quad \text{by (i)} \\ &= \sup_{\|f\|_{1}=1} \int_{X} |f \bar{g}| \\ &\coloneqq \sup_{\|f\|_{1}=1} \|fg\|_{1} \\ &\leq \sup_{\|f\|_{1}=1} \|f\|_{1} \|g\|_{\infty} \quad \text{by Holder with } p=1, q=\infty \\ &= \|g\|_{\infty}, \end{split}$$

- >:

- * Suppose toward a contradiction that $\|g\|_{\infty} > \|\Lambda\|_{1^{\vee}}$.
- * Then there exists some $E \subseteq X$ with m(E) > 0 such that

$$x \in E \implies |g(x)| > ||\Lambda||_{L^1(X)^{\vee}}.$$

* Define

$$h = \frac{1}{m(E)} \frac{\overline{g}}{|g|} \chi_E.$$

- * Note $||h||_{L^1(X)} = 1$.
- * Then

$$\begin{split} \Lambda(h) &= \int_X hg \\ &\coloneqq \int_X \frac{1}{m(E)} \frac{g\overline{g}}{|g|} \chi_E \\ &= \frac{1}{m(E)} \int_E |g| \\ &\ge \frac{1}{m(E)} \|g\|_\infty m(E) \\ &= \|g\|_\infty \\ &> \|\Lambda\|_{L^1(X)^\vee}, \end{split}$$

a contradiction since $\|\Lambda\|_{L^1(X)^{\vee}}$ is the supremum over all h_{α} with $\|h_{\alpha}\|_{L^1(X)} = 1$.

10.3 Spring 2016 # 6

Without using the Riesz Representation Theorem, compute

$$\sup \left\{ \left| \int_0^1 f(x)e^x dx \right| \mid f \in L^2([0,1], m), \|f\|_2 \le 1 \right\}$$

10.4 Spring 2015 # 5

Let \mathcal{H} be a Hilbert space.

1. Let $x \in \mathcal{H}$ and $\{u_n\}_{n=1}^N$ be an orthonormal set. Prove that the best approximation to x in \mathcal{H} by an element in $\operatorname{span}_{\mathbb{C}} \{u_n\}$ is given by

$$\widehat{x} := \sum_{n=1}^{N} \langle x, u_n \rangle u_n.$$

2. Conclude that finite dimensional subspaces of \mathcal{H} are always closed

10.5 Fall 2015 # 6

Let $f:[0,1] \longrightarrow \mathbb{R}$ be continuous. Show that

$$\sup \left\{ \|fg\|_1 \mid g \in L^1[0,1], \|g\|_1 \le 1 \right\} = \|f\|_{\infty}$$

10.6 Fall 2014 # 6

Let $1 \leq p, q \leq \infty$ be conjugate exponents, and show that

$$f \in L^p(\mathbb{R}^n) \implies ||f||_p = \sup_{\|g\|_q = 1} \left| \int f(x)g(x)dx \right|$$

11 Functional Analysis: Banach Spaces

11.1 Spring 2019 # 1

Let C([0,1]) denote the space of all continuous real-valued functions on [0,1].

- a. Prove that C([0,1]) is complete under the uniform norm $||f||_u := \sup_{x \in [0,1]} |f(x)|$.
- b. Prove that C([0,1]) is not complete under the L^1 -norm $||f||_1 = \int_0^1 |f(x)| dx$.

Solution.

11.1.1 a

- Let $\{f_n\}$ be a Cauchy sequence in $C(I, \|\cdot\|_{\infty})$, so $\lim_{n \to \infty} \lim_{m \to \infty} \|f_m f_n\|_{\infty} = 0$, we will show it converges to some f in this space.
- For each fixed $x_0 \in [0,1]$, the sequence of real numbers $\{f_n(x_0)\}$ is Cauchy in \mathbb{R} since

$$x_0 \in I \implies |f_m(x_0) - f_n(x_0)| \le \sup_{x \in I} |f_m(x) - f_n(x)| := ||f_m - f_n||_{\infty} \xrightarrow{m > n \longrightarrow \infty} 0,$$

- Since \mathbb{R} is complete, this sequence converges and we can define $f(x) := \lim_{k \to \infty} f_n(x)$.
- Thus $f_n \longrightarrow f$ pointwise by construction Claim: $||f f_n|| \stackrel{n \longrightarrow \infty}{\longrightarrow} 0$, so f_n converges to f in $C([0, 1], ||\cdot||_{\infty})$.
 - * Fix $\varepsilon > 0$; we will show there exists an N such that $n \geq N \implies ||f_n f|| < \varepsilon$

* Fix an $x_0 \in I$. Since $f_n \longrightarrow f$ pointwise, choose N_1 large enough so that

$$n \ge N_1 \implies |f_n(x_0) - f(x_0)| < \varepsilon/2.$$

* Since $||f_n - f_m||_{\infty} \longrightarrow 0$, choose and N_2 large enough so that

$$n, m \geq N_2 \implies ||f_n - f_m||_{\infty} < \varepsilon/2.$$

* Then for $n, m \ge \max(N_1, N_2)$, we have

$$|f_n(x_0) - f(x_0)| = |f_n(x_0) - f(x_0) + f_m(x_0) - f_m(x_0)|$$

$$= |f_n(x_0) - f_m(x_0) + f_m(x_0) - f(x_0)|$$

$$\leq |f_n(x_0) - f_m(x_0)| + |f_m(x_0) - f(x_0)|$$

$$< |f_n(x_0) - f_m(x_0)| + \frac{\varepsilon}{2}$$

$$\leq \sup_{x \in I} |f_n(x) - f_m(x)| + \frac{\varepsilon}{2}$$

$$< ||f_n - f_m||_{\infty} + \frac{\varepsilon}{2}$$

$$\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$\implies |f_n(x_0) - f(x_0)| < \varepsilon$$

$$\implies \sup_{x \in I} |f_n(x_0) - f(x_0)| \leq \sup_{x \in I} \varepsilon \text{ by order limit laws}$$

$$\implies ||f_n - f|| \leq \varepsilon$$

• f is the uniform limit of continuous functions and thus continuous, so $f \in C([0,1])$.

11.1.2 b

- It suffices to produce a Cauchy sequence that does not converge to a continuous function.
- Take the following sequence of functions:
 - f_1 increases linearly from 0 to 1 on [0, 1/2] and is 1 on [1/2, 1]
 - $-f_2$ is 0 on [0,1/4] increases linearly from 0 to 1 on [1/4,1/2] and is 1 on [1/2,1]
 - $-f_3$ is 0 on [0,3/8] increases linearly from 0 to 1 on [3/8,1/2] and is 1 on [1/2,1]
 - f_3 is 0 on [0, (1/2 3/8)/2] increases linearly from 0 to 1 on [(1/2 3/8)/2, 1/2] and is 1 on [1/2, 1]

Idea: take sequence starting points for the triangles: $0, 0 + \frac{1}{4}, 0 + \frac{1}{4} + \frac{1}{8}, \cdots$ which converges to 1/2 since $\sum_{k=1}^{\infty} \frac{1}{2^k} = -\frac{1}{2} + \sum_{k=0}^{\infty} \frac{1}{2^k}$.

- Then each f_n is clearly integrable, since its graph is contained in the unit square.
- $\{f_n\}$ is Cauchy: geometrically subtracting areas yields a single triangle whose area tends to 0.
- But f_n converges to $\chi_{\left[\frac{1}{n},1\right]}$ which is discontinuous.

Todo: show that $\int_0^1 |f_n(x) - f_m(x)| dx \longrightarrow 0$ rigorously, show that no $g \in L^1([0,1])$ can converge to this indicator function.

11.2 Spring 2017 # 5

Show that the space $C^1([a,b])$ is a Banach space when equipped with the norm

$$||f|| := \sup_{x \in [a,b]} |f(x)| + \sup_{x \in [a,b]} |f'(x)|.$$

11.3 Fall 2017 # 6

Let X be a complete metric space and define a norm

$$||f|| := \max\{|f(x)| : x \in X\}.$$

Show that $(C^0(\mathbb{R}), \|\cdot\|)$ (the space of continuous functions $f: X \longrightarrow \mathbb{R}$) is complete.