线性规划、单纯形法

岳镝

2025年3月28日

线性规划的一般形式

考虑 n 个变量,m 个约束条件的线性规划问题

maximize
$$\sum_{j=1}^{n} c_{j}x_{j}$$
;
s.t. $\sum_{j=1}^{n} a_{ij}x_{j} \leq b_{i}, i = 1, 2, ..., m$;
 $x_{j} \geq 0, j = 1, 2, ..., n$. (1)

线性规划的一般形式

考虑 n 个变量,m 个约束条件的线性规划问题

maximize
$$\sum_{j=1}^{n} c_{j}x_{j}$$
;
s.t. $\sum_{j=1}^{n} a_{ij}x_{j} \leq b_{i}, i = 1, 2, ..., m$;
 $x_{j} \geq 0, j = 1, 2, ..., n$. (1)

等价地写成矩阵形式

maximize
$$\mathbf{c}^{\top} \mathbf{x}$$
;
s.t. $\mathbf{A} \mathbf{x} < \mathbf{b}, \quad \mathbf{x} > \mathbf{0}$.

其中
$$\mathbf{A} = (a_{ij})_{m \times n}$$
, $\mathbf{b} = (b_1, b_2, \dots, b_m)^{\top}$, $\mathbf{c} = (c_1, c_2, \dots, c_n)^{\top}$.

线性规划的一般形式

考虑 n 个变量, m 个约束条件的线性规划问题

maximize
$$\sum_{j=1}^{n} c_{j}x_{j}$$
;
s.t. $\sum_{j=1}^{n} a_{ij}x_{j} \leq b_{i}, i = 1, 2, ..., m$;
 $x_{j} \geq 0, j = 1, 2, ..., n$. (1)

等价地写成矩阵形式

maximize
$$\mathbf{c}^{\top} \mathbf{x}$$
;
s.t. $\mathbf{A} \mathbf{x} < \mathbf{b}, \quad \mathbf{x} > \mathbf{0}$.

其中
$$\mathbf{A} = (a_{ij})_{m \times n}$$
, $\mathbf{b} = (b_1, b_2, \dots, b_m)^{\top}$, $\mathbf{c} = (c_1, c_2, \dots, c_n)^{\top}$.

问题:一般的约束条件/目标函数怎样转化成(1)?

引入松弛变量

考虑 n 个变量, m 个约束条件的线性规划问题

maximize
$$\sum_{j=1}^{n} c_j x_j;$$
s.t.
$$\sum_{j=1}^{n} a_{ij} x_j \leq b_i, \ i = 1, 2, \dots, m;$$

$$x_j \geq 0, \ j = 1, 2, \dots, n.$$

对第 i 个约束条件引入松弛变量 x_{n+i} ,化成标准形

maximize
$$\sum_{j=1}^{n} c_j x_j;$$
s.t.
$$x_{n+i} + \sum_{j=1}^{n} a_{ij} x_j = b_i, i = 1, 2, \dots, m;$$

$$x_j \ge 0, j = 1, 2, \dots, n+m.$$

"猜"一个解

假设 $b_i \geq 0$ 。考虑线性规划标准形

maximize
$$\sum_{j=1}^{n} c_j x_j;$$
s.t.
$$x_{n+i} + \sum_{j=1}^{n} a_{ij} x_j = b_i, i = 1, 2, \dots, m;$$

$$x_j \ge 0, j = 1, 2, \dots, n + m.$$

"猜"一个解

假设 $b_i \geq 0$ 。考虑线性规划标准形

观察 1: $(x_1, x_2, ..., x_n, x_{n+1}, x_{n+2}, ..., x_{n+m}) = (0, 0, ..., 0, b_1, b_2, ..., b_m)$ 是一个可行解,对应目标值 y = 0。(问题:这是最优解吗?什么情况下是最优解?)

$$\frac{max}{-5x_1-7x_2-10x_3} \leq 0$$

"猜"一个解

假设 $b_i > 0$ 。考虑线性规划标准形

 $max \chi_1 + 2\chi_2 - \chi_2$

观察 1: $(x_1, x_2, ..., x_n, x_{n+1}, x_{n+2}, ..., x_{n+m}) = \Delta \delta \Delta \delta$ $(0, 0, ..., 0, b_1, b_2, ..., b_m)$ 是一个可行解,对应目标值 y = 0。(问题:这是最优解吗?什么情况下是最优解?)

观察 2: m 个约束方程,n+m 个变量 \Longrightarrow 变量之间可以相互表示,问题的解不变。

希望找到合适的表示,目标函数转化为

$$\underbrace{y - \lambda_1 x_{i_1} - \lambda_2 x_{i_2} - \dots - \lambda_n x_{i_n}}_{\bullet} \circ$$

单纯形法

maximize
$$3x_1 + x_2 + 2x_3$$
s.t. $x_1 + x_2 + 3x_3$ 30;
 $x_4 + 2x_2 + 5x_3$ 30;
 $4x_1 + x_2 + 2x_3$ 36.
 $x_1, x_2, x_3 \ge 0$.

单纯形法

maximize
$$3x_1 + x_2 + 2x_3$$

s.t. $x_1 + x_2 + 3x_3 \le 30$;
 $2x_1 + 2x_2 + 5x_3 \le 24$;
 $4x_1 + x_2 + 2x_3 \le 36$.
 $x_1, x_2, x_3 \ge 0$.

化成标准形

单纯形法

$$\max_{\chi_{4}=27} \frac{1}{4} \frac{1}{\chi_{2}} + \frac{1}{2} \chi_{3} - \frac{3}{4} \chi_{6}$$

$$\chi_{4} = 21 - \frac{3}{4} \chi_{2} - \frac{5}{2} \chi_{3} + \frac{1}{4} \chi_{6} \quad \chi_{2} \leq 28 \quad (\chi_{1}, \chi_{2}, \chi_{3}, \chi_{4}, \chi_{5}, \chi_{6})$$

$$\chi_{5} = 6 - \frac{3}{2} \chi_{2} - 4 \chi_{3} + \frac{1}{2} \chi_{6} \quad \chi_{2} \leq 4 \quad = (9 \ 0 \ 0 \ 21 \ 6 \ 0)$$

$$\chi_{1} = 9 - \frac{1}{4} \chi_{2} - \frac{1}{2} \chi_{3} - \frac{1}{4} \chi_{6} \quad \chi_{2} \leq 36 \quad y = 27$$

找不到初始可行解?

回忆:我们假设 $b_i \geq 0$, $\forall i$ 。当存在某个 $b_i < 0$ 时,我们的办法找不到初始可行解。甚至问题本身可能不存在可行解。

判断是否存在可行解

原问题 \mathcal{P}

maximize $4x_1 - x_2$

s.t.
$$2x_1 - x_2 \le 2$$

 $x_1 - 5x_2 \le -4$
 $x_1, x_2 \ge 0$.

辅助问题
$$\mathcal{P}_{\mathrm{aux}}$$

maximize
$$-x_0$$
 ≤ 0
s.t. $-x_0 + 2x_1 - x_2 \leq 2$ $\chi_1 = \chi$
 $-x_0 + x_1 - 5x_2 \leq 2$ $\chi_2 = \chi$
 $x_0, x_1, x_2 \geq 0$.

命题: \mathcal{P} 存在可行解 $\iff \mathcal{P}_{aux}$ 的最优值为 0.

y aur = 0

max
$$-\frac{4}{5} + \frac{19}{5} \chi_{1} - \frac{1}{5} \chi_{4}$$

 $\chi_{5} = \frac{14}{5} - \frac{9}{5} \chi_{1} + \frac{1}{5} \chi_{4}$
 $\chi_{2} = \frac{4}{5} + \frac{1}{5} \chi_{1} + \frac{1}{5} \chi_{4}$

总结

```
\begin{cases} \forall b_i \geq 0 \Rightarrow 找到初始可行解 \Rightarrow 单纯形 \\ \text{不存在最优值} \end{cases}  不存在最优值(无界) \exists b_i < 0 \Rightarrow  构造辅助问题 \Rightarrow \begin{cases} \text{不存在可行解} \\ \text{存在并找到一个初始可行解 } \Rightarrow \text{单纯形} \end{cases}
```