Categories tannakiennes

P. Deligne

November 17, 2024

1 Introduction

In [6], N. Saavedra described certain categories equipped with a tensor product, the Tannakian Categories, as the categories of representation of gerbes (in particular: representations of a group-scheme). His presentation is incomplete (cf. [2].3.15). Our goal is to complete it. I was not able to write a short presentation giving only the missing arguments: many ideas of the article are in [6], due to Saavedra and, through him, to A. Grothendieck

The paragraphs 2 to 5 do not claim to be orignal. They gather results which, in paragraph 6, allows us to complete Saavedra's presentation. In paragraph 7, we show that in characteristic 0, a tensor category (1.2), whose every object has dimension (7.1) an integer ≥ 0 is Tannakian. In paragraph 8, we apply the methods of paragraph 6 and 7 to tensor categories which are not necessarily Tannakian. As an application (8.19), we describe tensor categories on k, say perfect, equipped with an exact \otimes -functor with values in a supervector spaces over k (1.4).

Paragraph 9 gives an application of the formalism of Tannakian categories to Picard-Vessiot theory. Let $(K.\partial)$ be a differntial field with the field of constants $K_0 := \{x | \partial x = 0\}$ algebraically closed of characteristic 0 and $y^n + a_1 y^{n-1} + \cdots + a_n = 0$ be a linear differntial equation of order n with coefficients in K. We see that the the existence of an extension (E, ∂) of (K, ∂) , with the same field of constants, in which the equation admits n linearly independent solutions on the constants. This application is the result of discussions with D. Bertrand. The result is a version of E.R. Kolchin ([3 VI 6 prop. 13]). At the end of this introduction, after indicating some terminological conventions, we describe the main result 1.12 of paragraphs 2 to 6.

1.1 Terminology. A ring (or an algebra) always means a ring (algebra) with a unit and morphisms send units to units.

In the article, k will mean a commutative rings, often considered to be a field. We only consider the schemes over k. Often, we say schemes for schemes over k and morphism of schemes for morphism of schemes over k. We denote by $X \times Y$, the product over k, $X \times_{Spec} Y$ and Hom(X,Y) the be the set of morphisms of schemes over k of X to Y.

We identify a representable functor with the object it represents.

- **1.2.** Let k be a commutative field. In this article, we call simply a tensor category over k what in N. Saavedra [6] (resp. Deligne-Milne [2]) mean an abelian \otimes -category ACU (associative commutative unital) k-linear rigid, with $k \xrightarrow{\sim} End(1)$ (resp. an abelian tensor category, rigid, k-linear, with $k \xrightarrow{\sim} End(1)$). The axioms are recalled in 2.1. This is a k-linear abelian category \mathcal{T} equipped with a functor $\otimes: \mathcal{T} \times \mathcal{T} \to \mathcal{T}$ with the constraints of associativity and commutativity for \otimes (the functorial isomorphisms $(X \otimes Y) \otimes Z \xrightarrow{\sim} X \otimes (Y \otimes Z)$ and $X \otimes Y \xrightarrow{Y} \otimes X$) satisfying suitable axioms. Among the axioms is the existence of a unit object 1.
- **1.3 Example.** The category Vect(k) of vector spaces of finite dimension over k, equipped with the tensor product evidently satisfies the constraints of associativity and commutativity.
- **1.4 Example.** \mathcal{T} is the category of vector spaces of finite dimension over k, with a $\mathbb{Z}/2\mathbb{Z}$ -gradiling, \otimes the tensor product, with the obvious constraint of associativity and commutativity being given by the Koszul's rule: $a \otimes b \mapsto (-1)^{\deg a \deg b} b \otimes a$ for a and b homogeneous. This is the category of super vector spaces of finite dimension over k.
- **1.5 Example.** Let G be an affine group scheme over k. We denote by \mathcal{T} , the category Rep(G) of linear representations of finite dimension of G over k, with \otimes the tensor product of representations, with the usual constraints. When G is trivial, we recover example 1.3.

1.6. A generalisation of example 1.5 will play an essential role for use. Before

the generalisation, some preliminaries...

Let S be a scheme over k. Recall (SGA 3 V1) that a k-groupoid acting on S is a scheme G over k equipped with source and target morphisms: $b, s: G \to S$ and a composition law $\circ: G \underset{sSb}{\times} G \to G$ which is a morphism of scheme over $S \times S$, such that for every scheme T over k, S(T) := Hom(T, S), G(T) := Hom(T, G), $s, b: G(T) \to S(T)$, \circ defines a category (objects: S(T), arrows: G(T)) for which all arrows are invertible. This can also be expressed in tems of diagrams: associativity expressed by the equality of the compositions

$$G\underset{{}^sS^b}{\times} G\underset{{}^sS^b}{\times} G \xrightarrow[Id\times\circ]{\circ\times Id} G\underset{{}^sS^b}{\times} G \longrightarrow G,$$

the identity arrow is an $S \times S$ morphism $\epsilon : S \to G$ (S is an $S \times S$ schemes via the diagonal) such that the compositions

$$G = G \underset{{}^sS}{\times} S = S \underset{S^b}{\times} G \xrightarrow{\epsilon \times Id} G \underset{{}^sS^b}{\times} G \xrightarrow{\circ} G$$

are the identity morphism, the inverse by "-1": $G \to G$ with s"-1" = "-1"b,

b"-1"="-1"s, and the following diagrams commute

The terminology of SGA 3 V1 is that (S,G) is a (schemes over k)-groupoid. For $u: T \to S$, the pullback of G over $u \times u: T \times T \to S \times S$ is a k-groupoid over T: the induced groupoid G_T .

A representation of G is a quasi-coherent sheaf V over S equipped with an action ρ of G, i.e. every given k-scheme T and every $g \in G(T)$, there is a homomorphism $\rho(g): V_{s(g)} \to V_{b(g)}$ between the two images of V by s(g) and $b(g): T \to S$. We require $\rho(g)$ to be compatible under base change $T' \to T$, $\rho(gh) = \rho(g)\rho(h)$ (for s(g) = b(h)) and the for every g, the identity automorphism $\epsilon(s)$ for $s \in S(T)$, $\rho(g)$ is the identity automorphism of V_s . Since G is a groupoid, $\rho(g)$ is an isomorphism. An action ρ is determined by $\rho(g)$ in the universal case T = G, $g = Id_G: G \to G$, i.e. for every morphism $u: s^*V \to b^*V$ between quasi-coherent sheaves on G. This morphism must satisfy:

- 1. Over $G \underset{{}^sS^b}{\times} G$, the inverse image of u under $\circ: G \underset{{}^sS^b}{\times} G \to G$ is the composition $pr_1^*(u) \circ pr_2^*(u)$;
- 2. $epsilon^*(u)$ is identity.

We say that the groupoid G is transitive over S (in the fpqc sence) if the morphism $(b,s): G \to S \times S$ is a cover in the sence of fpqc, i.e. there exists a T faithfully flat quasi-compact over $S \times S$ with $Hom_{S \times S}(T,G) \neq \emptyset$. If G is transitive, then

- 1. G is flat, so faithfully flat over $S \times S$ (3.6);
- 2. if G acts on quasi-coherent V and the fibers V_s are vector spaces of finite rank n over the residue field k(s), so V is locally free of rank n(3.5).
- **1.7 Example.** Let G be a k-groupoid acting transitively over a non-empty S over k. We take T to be the category of locally free sheaves of finite rank over S equipped with an action of G and for the tensor product functor \otimes equipped with the obvious constraints. Notation: Rep(S:G).

When S is a point S = Spec(k), we recover 1.5.

1.8 Remark. Let G be a groupoid acting transitively on S, $u: T \to S$ and G_T is the induced groupoid (1.6). We verify (3.5) that if $T \neq \emptyset$, $u^*: Rep(S:G) \to Rep(T:G_T)$ is an equivalence of categories. In particular, if $S(k) \neq \emptyset$, so $x \in S(k)$ and G_x is an algebraic group over k over fixed x (the fiber of G over (x,x)), we have $Rep(S:G) \to Rep(G_x)$

1.9. Let \mathcal{T} be a tensor category over k and S be a k-scheme. A fiber functor of \mathcal{T} over S is a k-linear exact functor ω of \mathcal{T} to the category of quasi-coherent sheaves on S, equipped with a natural isomorphism $\omega(X) \otimes \omega(Y) \xrightarrow{\sim} \omega(X \otimes Y)$ ACU, i.e. compatible with the constraints of associativity, commutativity and having a unit (2.7). The axioms imposed on \mathcal{T} imply that ω takes values in locally free sheaves of finite rank (2.8). For S = Spec(B), ω is identified by a functor of \mathcal{T} to the category of finite-type projective B-modules. We again call ω a fiber functor over B.

Let ω_1 and ω_2 be two fiber functors over S. $A \otimes$ -isomorphism, or an isomorphism of fiber functors $u: \omega_1 \to \omega_2$ is an isomorphism of functors such that the diagram commutes

$$\omega_1(X) \otimes \omega_1(Y) \longrightarrow \omega_1(X \otimes Y)
\downarrow u \otimes u \qquad \qquad \downarrow u
\omega_2(X) \otimes \omega_2(Y) \longrightarrow \omega_1(X \otimes Y)$$

and such that $u: \omega_1(1) \to \omega_2(1)$ is the identity automorphism of \mathcal{O}_S .

1.10. In [6], Saavedra claims with insufficient demonstration (cf. [2] 3.15) that: (*) two fiber functors of \mathcal{T} over Spec(B) are locally isomorphic for the fpqc topology, i.e. there exists B' over B, faithfully flat, such that ω_1 and ω_2 after extension of scalars from B to B'.

Our first goal is the show that the assertion (*) is true (with the additional necessary hypothesis, $k \xrightarrow{\sim} End(1)$ that Saavedra had forgotten) and justify all the results of [6].

1.11. If ω_1 and ω_2 are two fiber functors over S, we denote by $\underline{Isom}_k^{\otimes}(\omega_1, \omega_2)$ the functor that takes T over $S: u: T \to S$ to the set of isomorphism of fiber functors $u^*\omega_1$ with $u^*\omega_2$. The functor is representable by an affine scheme over S. If ω_i is a fiber functor over S_i (i=1,2), we write

$$\underline{\mathit{Isom}}_k^{\otimes}(\omega_2,\omega_1) := \underline{\mathit{Isom}}_{S_1 \times S_2}^{\otimes}(\mathit{pr}_2^*\omega_2,\mathit{pr}_1^*\omega_1)$$

For a fiber functor ω over S, we write $\underline{Aut}_S^{\otimes}(\omega) = \underline{Isom}_S^{\otimes}(\omega, \omega)$ and

$$\underline{Aut}_{k}^{\otimes}(\omega) = \underline{Isom}_{k}^{\otimes}(\omega, \omega)$$

Following conventions (1.1), we identity the functors with the schemes they represent. The scheme $\underline{Aut}_k^{\otimes}(\omega)$ is a k-groupoid acting over S. The target morphism b (resp. source s) is the composition of pr_1 (resp. pr_2) with the projections over $S \times S$. We prove in 1.13(b), 6.8, 6,14 and 6.15 the following result.

- **1.12 Theorem.** Let \mathcal{T} be a tensor category over k and ω be a fiber functor of \mathcal{T} over a k-scheme $S \neq \emptyset$.
 - 1. The groupoid $\underline{Aut}_k^{\otimes}(\omega)$ is faithfully flat over $S \times S$;

2. ω induces an equivalence of \mathcal{T} with the category $Rep(S: \underline{Aut}_k^{\otimes}(\omega))$ of representations of the groupoid $\underline{Aut}_k^{\otimes}(\omega)$

Conversely, let G be a k-groupoid acting on affine $S \neq \emptyset$ and faithfully flat over $S \times S$ and ω is a fiber functor of Rep(S:G) over S "forgetting the action of G." We have

3.

$$G \xrightarrow{\sim} \underline{Aut}_k^{\otimes}(\omega)$$

The theorem provides a dictionary of tensor category over k equipped with a fiber functor over S and k-groupoids acting transitively over S and affine over $S \times S$.

- **1.13 Remark.** 1. If ω_1 and ω_2 are fiber functors over S_1 and S_2 , there exists a disjoint union $T := S_1 \coprod S_2$ and a fiber functor ω , unique upto a unique isomorphism, equipped with isomorphisms $\omega|S_j = \omega_j$ (j=1,2). We apply 1.12.1 to ω . The pullback over $S_2 \times S_1$ of the scheme $\underline{Aut}_k^{\otimes}(\omega)$ to $T \times T$ is $\underline{Isom}_k^{\otimes}(\omega_1, \omega_2)$. According to 1.12.1, $\underline{Isom}_k^{\otimes}(\omega_1, \omega_2)$ is faithfully flat over $S_2 \times S_1$.
 - For $S_1 = S_2 = S$, the restriction to the diagonal of $\underline{Isom}_k^{\otimes}(\omega_1, \omega_2)$ is $\underline{Isom}_S^{\otimes}(\omega_1, \omega_2)$. The S-scheme $\underline{Isom}_S^{\otimes}(\omega_1, \omega_2)$ is hence faithfully flat over S. This justifies 1.10(*).
 - 2. If 1.12 is true over affine S, then it is true in general. For the assertion 1, if S_i is an open affine covering of S, the pullback of $\underline{Aut}_k^{\otimes}(\omega)$ over $S_i \times S_j$ is $\underline{Isom}_k^{\otimes}(\omega|S_i,\omega|S_j)$ and, applying 1.13.1, we conclude that 1.12.1 applies to $S_i \coprod S_j$. For 2, observe that for U an non-empty affine open over S, we have by 1.8 $\operatorname{Rep}(S: \underline{Aut}_k^{\otimes}(\omega)) \xrightarrow{\sim} \operatorname{Rep}(U: \underline{Aut}_k^{\otimes}(\omega(U))$. We conclude by 1.12.2 for U. For 3. If U_1 and U_2 are non-empty open affine of S_x and that G_U is the induced groupoid over $U = U_1 \coprod U_2$, we have $\operatorname{Rep}(S:G) \xrightarrow{\sim} \operatorname{Rep}(U:G_U)$ and by 1.12.3 applied to U, the morphism $G \to \underline{Aut}_k(\omega)$ is an isomorphism by above on $U_1 \times U_2$.
- **1.14.** Let G be a groupoid acting on S = Spec(B). Suppose G is affine over $S \times S$, i.e. affine: G = Spec(L). Since (b,s) makes G a scheme over $S \times S := S \times S \ (1.1)$, L is a $B \otimes B$ -module, i.e. a B, B-bimodule such that the two structures induce coinciding k-modules. We write to the left (resp. to the right) the structure of B-module defined by b (resp. s).

The B, B-bimodule L is equipped with the following structure:

1. L is a commutative $B \underset{k}{\otimes} B$ -algebra, with the product

$$p:L\underset{B\otimes B}{\otimes}L\rightarrow L.$$

2. The law of composition $G \underset{{}^sS^b}{\times} G \to G$ corresponds to

$$c:L\to L\mathop{\otimes}_B L$$

and identity $\epsilon: S \to G$ to $e: L \to B$.

Let M be a B-module (= a quasi-coherent sheaf over S). An action of G over M is a morphism of L-modules

$$L \underset{{}^{s}B}{\otimes} M \to M \underset{{}^{B^{b}}}{\otimes} L$$

or, which again amounts to a morphism of B-modules

$$r:M\to M\underset{B^b}{\otimes} L$$

(to the right, the structure of B-module defined by the right structure on L), with the compatibility of the composition to the neutral elements. The compatibility translates by 1.14.1, the equality of the following compositions

$$M \xrightarrow{r} M \otimes L \xrightarrow[L \otimes c]{r \otimes L} M \otimes L \otimes L,$$

and the equality of the composition $M \xrightarrow{r} M \otimes L \xrightarrow{M \otimes e} M$ to the identity. We see that only structure (2) was used on L.

1.15. Inspired by this remark, for every ring B not necessarily commutative, we define a co-algebra L be be a bimodule over B equipped with a bimodule morphism $c: L \to L \underset{B}{\otimes} L$ satisfying the axioms of coassociativity: c equalizes the double arrow $(c \otimes 1, 1 \otimes c)$

$$L \xrightarrow{c} L \underset{B}{\otimes} L \xrightarrow{c \otimes 1} L \underset{B}{\otimes} L \underset{B}{\otimes} L$$

and admits a counit $e:L\to B$: a morphism of bimodules such the the compositions

$$L \xrightarrow{c} L \otimes L \xrightarrow{e \otimes 1} L$$

are identity. Note that if c admits a counit, then it is unique. We will need only the case in which B is commutative, but not assuming it helps in not mixing up the left and the right.

If B is commutative and that the two structures of B-module over L coincide, we retrieve the co-algebra over B, hence the terminology. If k is a commutative ring and B is a k-algebra, we define a k-co-algebra L to be a co-algebra L such that the two structures of k-modules induced by the structures of B-modules coincide.

A representation of L is a right B-module M equipped with a coaction of L, i.e. a morphism of right B-modules $r: M \to M \underset{B}{\otimes} L$ satisfying (1.14.1) (1.14.2). If L is a flat left B-module, the category of representations of L is abelian and the forgetful functor of the coaction is exact.

1.16. Let \mathcal{T} be a tensor category over k, S = Spec(B) be an affine scheme over k and ω be a fiber functor of \mathcal{T} over S. Imitating Saavedra, we begin by forgetting the tensor product and construct a k-co-algebra L acting on B such that ω factors through an equivalence of categories of \mathcal{T} and the category of locally free sheaves of finite rank over S equipped with a coaction of L. The proof (6.1, 6.2) is an application of the theorem of Barr-Beck (4.1). It is similar the theorem of faithfully flat descent SGA 1 VIII 1. The compatibility of ω with the tensor product equips L with a product and we verify that G := Spec(L) is the groupoid $\underline{Aut}_k(\omega)$ acting on S (6.3 - 6.6).

It remains to show that G is faithfully flat over $S \times S$. We construct a tensor category $\mathcal{T} \otimes \mathcal{T}$ with suitable properties - in particular that a fiber functor ω of \mathcal{T} defines a fiber functor $\omega \times \omega$ of $\mathcal{T} \otimes \mathcal{T}$ over $S \times S$. The $B \otimes B$ -module L will be faithfully flat as the image under $\omega \times \omega$ is an Ind-object containing 1 of $\mathcal{T} \otimes \mathcal{T}$.

We give two proofs of the existence of the tensor category $\mathcal{T} \otimes \mathcal{T}$. The first uses a theorem of passing to generic quotient (3.11) and the hypothesis End(1) = k for seeing the if \mathcal{T} is finitely \otimes -generated, there exists a fiber funtor ω_1 over the scheme S_1 , which is the spectrum of a finite extension of k with $G_1 = \underline{Aut}_k^{\otimes}(\omega_1)$ faithfully flat over $S_1 \times S_1$. From the structure theorem $\mathcal{T} \sim Rep(S_1 : G_1)$ we deduce the existence of the required tensor category $\mathcal{T} \otimes \mathcal{T}$ (5.21). The second proof relies on a direct construction. It only applies when k is perfect.

2 Reminders and complements: tensor categories

Let k be a commutative field.

2.1. The axioms of tensor categories over k (in our sense, see 1.2) are as follows.

(2.1.1) The category \mathcal{T} is equipped with a tensor product functor :make $\otimes: \mathcal{T} \times \mathcal{T} \to \mathcal{T}$, satisfying the constraints of associativity and commutativity compatible for \otimes ([4], [5] VII 7, where the terminology is "symmetric monoidal category", [6] I §1.2 or [2] §1 p.104) and there exists a unit object 1 ([6] I 1.3.2; the unit object is unique upto isomorphism; it is equipped with the constraint $X \otimes 1 \xrightarrow{\sim} X$ and $1 \otimes X \xrightarrow{\sim} X$).

These axioms allow us to define the product \otimes over a finite family $(X_i)_{i\in I}$ of object of \mathcal{T} .

(2.1.2) For every X, there exists X^{\vee} and morphism $ev: X \otimes X^{\vee} \to 1$ and $\delta: 1 \to X^{\vee} \otimes X$ such the the compositions

$$X^{\vee} \xrightarrow{-\delta \otimes X^{\vee}} X^{\vee} \otimes X \otimes X^{\vee} \xrightarrow{X^{\vee} \otimes \mathit{ev}} X^{\vee}$$

are identity.

(2.1.3) The category is abelian.

	(2.1.4)	An isomorphism $k \stackrel{\sim}{=}$	$\rightarrow End(1)$	of k	with the	$e \ endomorphism$	ring	of
1	is given.							

2.3 Proposition.	
Proof.	
2.4.	
2.5.	
2.6 Proposition.	
Proof.	
2.7.	
2.8.	
2.9.	
2.10 Corollary.	
Proof.	
2.11 Remark.	
2.12.	
2.13 Proposition.	
Proof.	
2.14 Proposition.	
Proof.	
2.15 Lemma.	
Proof.	
2.16.	
2.17 Corollary.	
2.18.	

2.19.

3 Reminders and complements: groupoids	
3.1.	
3.2.	
3.3 Proposition.	
Proof.	
3.4.	
3.5.	
3.6.	
3.7 Proposition.	
Proof.	
3.8 Corollary.	
3.9 Corollary.	
Proof.	
3.10.	
3.11 Proposition.	
Proof.	
4	
$oldsymbol{4}$	
4.1.	
4.2.	
4.3.	
4.4 Proposition.	
4.5 Proposition.	
Proof.	
4.6 Remark.	
4.7.	
4.8 Example.	
4.9.	
4.10.	
4.11.	
4.12.	
4.13 Proposition.	_
Proof.	

5 Tensor product of abelian categories	
5.1.	
5.2.	
5.3 Proposition.	
5.4 Corollary.	
Proof.	
5.5 Proposition.	
Proof.	
5.6.	
5.7 Proposition.	
Proof.	
5.8. This section is missing	
5.9 Lemma.	
Proof.	
5.10.	
5.11 Proposition.	
Proof.	
5.12.	
5.13 Proposition.	
5.14 Proposition.	
Proof.	
5.15.	
5.16.	
5.17 Proposition.	
Proof.	
5.18.	
5.19.	
5.20 Lemma.	
Proof.	
5.21 Lemma.	
Proof.	

6 The main theorem	
6.1.	
6.2 Proposition.	
6.3.	
6.4 Proposition.	
Proof.	
6.5.	
6.6 Proposition.	
Proof.	
6.7.	
6.8.	
6.9 Lemma.	
6.10.	
6.11 Lemma.	
Proof.	
6.12.	
6.13 Lemma.	
Proof.	
6.14.	
6.15.	
6.16.	
6.17 Lemma.	
6.18 Lemma.	
Proof.	
6.19 Proposition.	
Proof.	
6.20 Corollary.	
Proof.	
6.21.	