COMP0009 Logic Exercises 9: Relation Algebra.

Robin Hirsch

December 6, 2022

- 1. Let A_2 be relation algebra with two atoms $\{1',0'\}$ (so four elements 0,1',0' and 1=1'+0', the identity is 1', all elements are self-converse, composition defined by 0; x=x; 0=0 (all $x \in A_2$), 1'; x=x; 1'=x, 1; x=x; 1=1 for $x \in A_2 \setminus \{0\}$, and 0'; 0'=1'. Is A_2 representable as a proper relation algebra? If so, what possible sizes could the base be?
- 2. Let \mathcal{A}'_2 be exactly the same as \mathcal{A}_2 , except 0'; 0' = 1' + 0' (= 1). Is \mathcal{A}'_2 representable as a proper relation algebra? If so, what possible sizes could the base be?
- 3. RCC_5 (Region Connection Calculus). A region is a subset of \mathbb{R}^2 whose boundary is topologically equivalent to a circle. You can draw regions on paper. R is the set of all regions. The atomic relation that holds between region r and region s is either
 - identity (1')
 - disjoint (d)
 - \bullet overlapping (o)
 - properly contained in (\subset) , or
 - properly contains (\supset) .

 RCC_5 is the proper relation algebra whose base is R, with five atoms $At = \{1', d, o, \subset, \supset\}$, where e.g. $d = \{(r, s) : r, s \in R, r \text{ is disjoint from } s\}$.

- (a) For each atom, find the converse atom.
- (b) How many elements does the relation algebra RCC_5 have?
- (c) Define composition, by writing a composition table for the atoms.
- (d) Consider RCC5 as an abstract relation algebra. Take any representation of RCC_5 . What can be said about the size of the base of the representation?