A Package for Matrix Powers in R,

with Some Edifying Material on R

Norm Matloff and Jack Norman University of California at Davis

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

A Package for Matrix Powers in R,

with Some Edifying Material on R

Norm Matloff and Jack Norman University of California at Davis

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

Bay Area R Users Group, August 12, 2014

these slides:

heather.cs.ucdavis.edu/matpow/BARUGmatpow.pdf

Material on R

Norm Matloff and Jack Norman University of California at

Davis

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com Edifying Material on R

and Jack Norman University of California at Davis

Goals of this talk:

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

Goals of this talk:

 Show how useful matrix powers can be in in data science, especially for parallel computation

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

Goals of this talk:

- Show how useful matrix powers can be in in data science, especially for parallel computation
- Present a small R package that facilitates matrix power computation, including parallel approaches.

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

Goals of this talk:

- Show how useful matrix powers can be in in data science, especially for parallel computation
- Present a small R package that facilitates matrix power computation, including parallel approaches.
- Demonstrate a trick useful for accommodating varied data types.

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

Why Matrix Powers?

Why Matrix Powers?

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

Why Matrix Powers?

Why are matrix powers so important in data science?

Various apps (see below).

with Some Edifying Material on R

Norm Matloff and Jack Norman University of California at Davis

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

Why Matrix Powers?

- Various apps (see below).
- For very large problems, parallel computation is desirable.

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

Why Matrix Powers?

- Various apps (see below).
- For very large problems, parallel computation is desirable.
 - If we can recast a large problem in terms of matrix powers, this may yield good (if not optimal) speedup.

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

Why Matrix Powers?

- Various apps (see below).
- For very large problems, parallel computation is desirable.
 - If we can recast a large problem in terms of matrix powers, this may yield good (if not optimal) speedup.
 - Multiplication is easy to parallelize:

Why Matrix Powers?

- Various apps (see below).
- For very large problems, parallel computation is desirable.
 - If we can recast a large problem in terms of matrix powers, this may yield good (if not optimal) speedup.
 - Multiplication is easy to parallelize: Matrix multiplication is "embarrassingly parallel."

Why Matrix Powers?

- Various apps (see below).
- For very large problems, parallel computation is desirable.
 - If we can recast a large problem in terms of matrix powers, this may yield good (if not optimal) speedup.
 - Multiplication is easy to parallelize: Matrix multiplication is "embarrassingly parallel."
 - Mat. mult. works especially well on GPUs.

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

Why Matrix Powers?

- Various apps (see below).
- For very large problems, parallel computation is desirable.
 - If we can recast a large problem in terms of matrix powers, this may yield good (if not optimal) speedup.
 - Multiplication is easy to parallelize: Matrix multiplication is "embarrassingly parallel."
 - Mat. mult. works especially well on GPUs.
 - Ordinary matrix inversion (e.g. Gaussian elimination) and quasi-inversion (e.g. QR) are not embarrassingly parallel,

Why Matrix Powers?

- Various apps (see below).
- For very large problems, parallel computation is desirable.
 - If we can recast a large problem in terms of matrix powers, this may yield good (if not optimal) speedup.
 - Multiplication is easy to parallelize: Matrix multiplication is "embarrassingly parallel."
 - Mat. mult. works especially well on GPUs.
 - Ordinary matrix inversion (e.g. Gaussian elimination) and quasi-inversion (e.g. QR) are <u>not</u> embarrassingly parallel, so it's good to have embarrassingly parallel alternatives.

Why Matrix Powers?

- Various apps (see below).
- For very large problems, parallel computation is desirable.
 - If we can recast a large problem in terms of matrix powers, this may yield good (if not optimal) speedup.
 - Multiplication is easy to parallelize: Matrix multiplication is "embarrassingly parallel."
 - Mat. mult. works especially well on GPUs.
 - Ordinary matrix inversion (e.g. Gaussian elimination) and quasi-inversion (e.g. QR) are <u>not</u> embarrassingly parallel, so it's good to have embarrassingly parallel alternatives.
 - R has tons of ways of doing parallel matrix multiplication.

Why Matrix Powers?

- Various apps (see below).
- For very large problems, parallel computation is desirable.
 - If we can recast a large problem in terms of matrix powers, this may yield good (if not optimal) speedup.
 - Multiplication is easy to parallelize: Matrix multiplication is "embarrassingly parallel."
 - Mat. mult. works especially well on GPUs.
 - Ordinary matrix inversion (e.g. Gaussian elimination) and quasi-inversion (e.g. QR) are <u>not</u> embarrassingly parallel, so it's good to have embarrassingly parallel alternatives.
 - R has tons of ways of doing parallel matrix multiplication.
 - "Pretty Good Parallelism": If can obtain fairly good speedup very conveniently, we may not pursue optimal solutions.

A Package for Matrix Powers in R, with Some

with Some Edifying Material on R

Norm Matloff and Jack Norman University of California at Davis

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

Examples of Apps

with Some Edifying Material on R

Norm Matloff and Jack Norman University of California at Davis

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com Matrix powers have various applications, e.g.:

Davis

Examples of Apps

Matrix powers have various applications, e.g.:

determination of graph connectivity

Examples of Apps

Matrix powers have various applications, e.g.:

determination of graph connectivity

For adjacency matrix A, the graph is connected if and only if

for some k > 0, $\tilde{A}^k > 0$ elementwise where \tilde{A} is A with all 1s on the diagonal.

Examples of Apps

Matrix powers have various applications, e.g.:

determination of graph connectivity
 For adjacency matrix A, the graph is connected if and only if

for some k > 0, $\tilde{A}^k > 0$ elementwise

where \tilde{A} is A with all 1s on the diagonal. Moreover, the elements of \tilde{A}^k can give you the distance from each i to each j.

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com • (new app?) finding stationary distribution π of a finite, aperiodic Markov chain

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com • (new app?) finding stationary distribution π of a finite, aperiodic Markov chain

Exploit the fact that $\lim_{n\to\infty} P(X_n = j|X_0 = i) = \pi_j$. It implies that for transition matrix P, π vector is approximately

Could also adapt the graph-connect method to determine periodicity of a finite chain.

• (principal) eigenvector computation

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com (principal) eigenvector computation

For "most" square matrices A and initial guess vectors x,

$$\frac{A^k x}{||A^k x||}$$

converges to the principal eigenvector of A. So, set an initial x, then iterate $x \leftarrow Ax/\|Ax\|$.

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com • (principal) eigenvector computation

For "most" square matrices A and initial guess vectors x,

$$\frac{A^k x}{||A^k x||}$$

converges to the principal eigenvector of A. So, set an initial x, then iterate $x \leftarrow Ax/\|Ax\|$.

• computation of generalized matrix inverse Iterate $B \leftarrow B(2I - AB)$, starting with B a small multiple of A'.

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

with Some Edifying Material on R

Norm Matloff and Jack Norman University of California at Davis

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

R Package: matpow

 We have developed a small but convenient and general package for computation of matrix powers, matpow,

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

R Package: matpow

 We have developed a small but convenient and general package for computation of matrix powers, matpow, whether done serially or in parallel.

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

- We have developed a small but convenient and general package for computation of matrix powers, matpow, whether done serially or in parallel.
- Key feature: Allows callback functions after each iteration.

with Some Edifying Material on R

Norm Matloff and Jack Norman University of California at Davis

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

- We have developed a small but convenient and general package for computation of matrix powers, matpow, whether done serially or in parallel.
- Key feature: Allows callback functions after each iteration.
- E.g. graph connectivity app:

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

- We have developed a small but convenient and general package for computation of matrix powers, matpow, whether done serially or in parallel.
- Key feature: Allows callback functions after each iteration.
- E.g. graph connectivity app: Callback checks to see if all of \tilde{A}^i are already > 0, can stop iterating.

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

- We have developed a small but convenient and general package for computation of matrix powers, matpow, whether done serially or in parallel.
- Key feature: Allows callback functions after each iteration.
- E.g. graph connectivity app: Callback checks to see if all of \$\tilde{A}^i\$ are already > 0, can stop iterating.
 Or, an element changes from 0 to > 0, we know that is the shortest distance.
- Form of call (raise matrix m to power k):

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

- We have developed a small but convenient and general package for computation of matrix powers, matpow, whether done serially or in parallel.
- Key feature: Allows callback functions after each iteration.
- E.g. graph connectivity app: Callback checks to see if all of \$\widetilde{A}^i\$ are already > 0, can stop iterating.
 Or, an element changes from 0 to > 0, we know that is the shortest distance.
- Form of call (raise matrix m to power k):

```
matpow <- function(m, k=NULL, squaring=FALSE,
genmulcmd=NULL, dup=NULL, callback=NULL, ...)</pre>
```

A Package for Matrix Powers in R,

with Some Edifying Material on R

Norm Matloff and Jack Norman University of California at Davis

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

Powers by Squaring

• Say you want to find M^8 .

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

Powers by Squaring

• Say you want to find M^8 . You could square M,

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

Powers by Squaring

• Say you want to find M^8 . You could square M, then square the result,

Powers by Squaring

• Say you want to find M^8 . You could square M, then square the result, then square that result.

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

- Say you want to find M^8 . You could square M, then square the result, then square that result.
- Thus get M^k in about $\log_2 k$ steps.

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

- Say you want to find M^8 . You could square M, then square the result, then square <u>that</u> result.
- Thus get M^k in about $\log_2 k$ steps.
- Example: Good for determining matrix connectivity, but not for finding the minimum distances.

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

- Say you want to find M^8 . You could square M, then square the result, then square that result.
- Thus get M^k in about $\log_2 k$ steps.
- Example: Good for determining matrix connectivity, but not for finding the minimum distances.
- In call to matpow(), set squaring = TRUE.

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

Sharing Data

Sharing Data

Issue: How do we arrange TWO-WAY communication between **matpow()** and the callback function (if any)?

Sharing Data

Issue: How do we arrange TWO-WAY communication between **matpow()** and the callback function (if any)? Can NOT use an R list. E.g.

```
> | <- list(x=3,y=8)
> f
function(|st) {
    |$x[1] <- 88
}
> f(|)
> |$x
[1] 3 # didn't change!
```

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

Sharing Data

Issue: How do we arrange TWO-WAY communication between **matpow()** and the callback function (if any)?

Can NOT use an R list. E.g.

```
> | <- list(x=3,y=8)
> f
function(|st) {
    |$x[1] <- 88
}
> f(|)
> |$x
[1] 3 # didn't change!
```

R makes copies of arguments, if they are changed by the function.

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

Sharing Data

Issue: How do we arrange TWO-WAY communication between **matpow()** and the callback function (if any)? Can NOT use an R list. E.g.

```
> | <- list(x=3,y=8)
> f
function(|st) {
    |$x[1] <- 88
}
> f(|)
> |$x
[1] 3 # didn't change!
```

R makes copies of arguments, if they are changed by the function. The change to I was to the copy, not to the original.

A Package for

Norm Matloff and Jack Norman University of California at Davis

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

R Environments

R Environments

Like lists, but R doesn't copy them when used as arguments.

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

R Environments

Like lists, but R doesn't copy them when used as arguments. The function matpow() maintains an R environment ev, accessible to the callback function.

with Some Edifying Material on R

Norm Matloff and Jack Norman University of California at Davis

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

R Environments

Like lists, but R doesn't copy them when used as arguments. The function **matpow()** maintains an R environment **ev**, accessible to the callback function. **Most important:** The callback can change components of **ev**.

R Environments

Like lists, but R doesn't copy them when used as arguments. The function **matpow()** maintains an R environment **ev**, accessible to the callback function. **Most important:** The callback can change components of **ev**. (Could use R reference classes to be fancy.)

with Some Edifying Material on R

Norm Matloff and Jack Norman University of California at Davis

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

R Environments

Like lists, but R doesn't copy them when used as arguments. The function **matpow()** maintains an R environment **ev**, accessible to the callback function. **Most important:** The callback can change components of **ev**. (Could use R reference classes to be fancy.)

Contents of **ev**:

R Environments

Like lists, but R doesn't copy them when used as arguments. The function **matpow()** maintains an R environment **ev**, accessible to the callback function. **Most important:** The callback can change components of **ev**. (Could use R reference classes to be fancy.)

Contents of **ev**:

- the matrix m
- the target exponent k
- i, the current iteration number
- **stop**; TRUE means stop iterations
- squaring
- etc.
- app-specific data

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com The Key Role of Callbacks

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

The Key Role of Callbacks

Our goal is to provide a convenient general framework for diverse applications of matrix powers.

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

The Key Role of Callbacks

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

The Key Role of Callbacks

Our goal is to provide a convenient general framework for diverse applications of matrix powers. Key to this is the callback functions.

• **Example:** Graph connectivity and distance computation.

with Some Edifying Material on R

Norm Matloff and Jack Norman University of California at Davis

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

The Key Role of Callbacks

Our goal is to provide a convenient general framework for diverse applications of matrix powers. Key to this is the callback functions.

• **Example:** Graph connectivity and distance computation. The callback **cgraph()** does the following:

The Key Role of Callbacks

- **Example:** Graph connectivity and distance computation. The callback **cgraph()** does the following:
 - Checks to see if all elements > 0. If so, sets ev\$stop to TRUE, indicating graph found to be connected.

The Key Role of Callbacks

- **Example:** Graph connectivity and distance computation. The callback **cgraph()** does the following:
 - Checks to see if all elements > 0. If so, sets ev\$stop to TRUE, indicating graph found to be connected.
 - Optionally checks if product element (i,j) changed from 0 to nonzero in this iteration.

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

The Key Role of Callbacks

- **Example:** Graph connectivity and distance computation. The callback **cgraph()** does the following:
 - Checks to see if all elements > 0. If so, sets ev\$stop to TRUE, indicating graph found to be connected.
 - Optionally checks if product element (i,j) changed from 0 to nonzero in this iteration.
 - If so, then records that the distance from i to j is ev\$i + 1.

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

The Key Role of Callbacks

- **Example:** Graph connectivity and distance computation. The callback **cgraph()** does the following:
 - Checks to see if all elements > 0. If so, sets ev\$stop to TRUE, indicating graph found to be connected.
 - Optionally checks if product element (i,j) changed from 0 to nonzero in this iteration.
 If so, then records that the distance from i to j is ev\$i + 1.
- Example: Eigenvalue computation.

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

The Key Role of Callbacks

- **Example:** Graph connectivity and distance computation. The callback **cgraph()** does the following:
 - Checks to see if all elements > 0. If so, sets ev\$stop to TRUE, indicating graph found to be connected.
 - Optionally checks if product element (i,j) changed from 0 to nonzero in this iteration.
 If so, then records that the distance from i to j is ev\$i + 1.
- Example: Eigenvalue computation.
 - Updates **ev\$x**, via $x \leftarrow Ax/\|Ax\|$.

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

The Key Role of Callbacks

- **Example:** Graph connectivity and distance computation. The callback **cgraph()** does the following:
 - Checks to see if all elements > 0. If so, sets ev\$stop to TRUE, indicating graph found to be connected.
 - Optionally checks if product element (i,j) changed from 0 to nonzero in this iteration.
 If so, then records that the distance from i to j is ev\$i + 1.
- Example: Eigenvalue computation.
 - Updates **ev\$x**, via $x \leftarrow Ax/\|Ax\|$.
 - If convergence reached (< ϵ change), sets **ev\$stop** to TRUE.

A Package for Matrix Powers in R.

with Some Edifying Material on R

Norm Matloff and Jack Norman University of California at Davis

loff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

e-mail: mat-

Example Callback: Graph Connectivity

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

Example Callback: Graph Connectivity

```
matpow(m, k, callback=cgraph, mindist=TRUE)
cgraph <-
   function(ev,cbinit=FALSE,mindist=FALSE) {
   if (cbinit) {
      ev$dists <- ev$m
      return()
   if (all(ev\$prd > 0)) {
      ev$stop <- TRUE
      (mindist) {
      tmp \leftarrow ev\$prd > 0
      ev\$dists[tmp \& ev\$dists == 0] <- ev\$i+1
```

A Package for

Norm Matloff and Jack Norman University of California at Davis

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com Use of eval()

Davis

Use of eval()

Issue: Different matrix types use different syntax for multiplication.

Use of eval()

Issue: Different matrix types use different syntax for multiplication.

• plain R "matrix" class:

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com **Issue:** Different matrix types use different syntax for multiplication.

• plain R "matrix" class:

• bigmemory "big.matrix" class:

$$c[,] <- a[,] \% \% b[,]$$

Use of eval()

Issue: Different matrix types use different syntax for multiplication.

• plain R "matrix" class:

• bigmemory "big.matrix" class:

• gputools multiplication:

Norm Matloff and Jack Norman University of California at Davis

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com **Issue:** Different matrix types use different syntax for multiplication.

• plain R "matrix" class:

• bigmemory "big.matrix" class:

• gputools multiplication:

We want to be able to handle other matrix multiplication types too, including user-defined ones.

Norm Matloff and Jack Norman University of California at Davis

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com **Issue:** Different matrix types use different syntax for multiplication.

• plain R "matrix" class:

bigmemory "big.matrix" class:

• gputools multiplication:

We want to be able to handle other matrix multiplication types too, including user-defined ones. How?

A Package for Matrix Powers in R,

with Some Edifying Material on R

Norm Matloff and Jack Norman University of California at Davis

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

R's eval() function

```
with Some
Edifying
Material on R
```

e-mail: mat-

matloff.wordpress.com

loff@cs.ucdavis.edu R/stat blog:

```
> x <- 28
> s <- "x <- 16"
> eval(parse(text=s))
> x
[1] 16
```

Norm Matloff and Jack Norman University of California at Davis

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

```
> x <- 28
> s <- "x <- 16"
> eval(parse(text=s))
> x
[1] 16
```

So, we can embed the different types of matrix multiplication in strings!

Matrix Powers in R, with Some Edifying Material on R

A Package for

Norm Matloff and Jack Norman University of California at Davis

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

Recall form of call:

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com Recall form of call:

 $\label{eq:matpow} \begin{subarray}{ll} matpow &<- & function (m, k=NULL, squaring=FALSE, genmulcmd=NULL, dup=NULL, callback=NULL, . . .) & \\ \end{subarray}$

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com Recall form of call:

```
\label{eq:matpow} \begin{subarray}{ll} matpow &<- & function (m, k=NULL, squaring=FALSE, genmulcmd=NULL, dup=NULL, callback=NULL, . . . .) & \\ E.g. \end{subarray}
```

```
 \begin{array}{lll} \mbox{genmulcmd.gputools} & < & \mbox{function}(a,b,c) \\ \mbox{paste}(c," & < & \mbox{gpuMatMult}(",a,",",b,")") \end{array}
```

Norm Matloff and Jack Norman University of California at Davis

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com Recall form of call:

```
\label{eq:matpow} $$ \leftarrow $ function(m, k=NULL, squaring=FALSE, genmulcmd=NULL, dup=NULL, callback=NULL, \dots) $$ \{ E.g. $$
```

```
genmulcmd.gputools <- function(a,b,c)
   paste(c," <- gpuMatMult(",a,",",b,")")
So matpow() code can be general, e.g.
eval(parse(text=ev$genmulcmd(m,p1,p2))</pre>
```

Norm Matloff and Jack Norman University of California at Davis

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com Recall form of call:

```
matpow <- function(m, k=NULL, squaring=FALSE,
  genmulcmd=NULL, dup=NULL, callback=NULL,...) {
E.g.</pre>
```

So matpow() code can be general, e.g.

$$eval(parse(text=ev\$genmulcmd(m,p1,p2))$$

The function **genmulcmd()** is either sensed by matrix class or specified by user.

A Package for Matrix Powers in R,

with Some Edifying Material on R

Norm Matloff and Jack Norman University of California at Davis

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

Parallel Operation

Norm Matloff and Jack Norman University of California at Davis

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

Parallel Operation

We wish to emphasize: The package is useful for BOTH serial AND parallel computation.

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

Parallel Operation

We wish to emphasize: The package is useful for BOTH serial AND parallel computation. But let's talk about the parallel case.

Parallel Operation

We wish to emphasize: The package is useful for BOTH serial AND parallel computation.

But let's talk about the parallel case.

 The matpow() function handles whatever type of multiplication you give.

Parallel Operation

We wish to emphasize: The package is useful for BOTH serial AND parallel computation. But let's talk about the parallel case.

- The matpow() function handles whatever type of multiplication you give. So, if you give it a parallel multiplication, you compute matrix powers in parallel!
- Example: If you have configured R to use OpenBLAS, your multiplications will use all the cores.

Parallel Operation

We wish to emphasize: The package is useful for BOTH serial AND parallel computation. But let's talk about the parallel case.

- The matpow() function handles whatever type of multiplication you give. So, if you give it a parallel multiplication, you compute matrix powers in parallel!
- Example: If you have configured R to use OpenBLAS, your multiplications will use all the cores.
- Example: GPU, say with gputools.

A Package for Matrix Powers in R,

with Some Edifying Material on R

Norm Matloff and Jack Norman University of California at Davis

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com Brief Timing Experiment with gputools

Brief Timing Experiment with gputools

Modest hardware: Intel Core i7-2600K CPU, 3.40GHz, GeForce GTX 550 T

A Package for Matrix Powers in R,

with Some Edifying Material on R

Norm Matloff and Jack Norman University of California at Davis

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

Brief Timing Experiment with gputools

Modest hardware: Intel Core i7-2600K CPU, 3.40GHz, GeForce GTX 550 T

 $2000 \times 2000 \text{ matrix}$

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

Brief Timing Experiment with gputools

Modest hardware: Intel Core i7-2600K CPU, 3.40GHz, GeForce GTX 550 T

 $2000 \times 2000 \text{ matrix}$

k	CPU	GPU
2	6.134	1.836
3	12.626	0.620
4	18.981	0.930
5	25.222	1.235

A Package for Matrix Powers in R,

with Some Edifying Material on R

Norm Matloff and Jack Norman University of California at Davis

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

Brief Timing Experiment with gputools

Modest hardware: Intel Core i7-2600K CPU, 3.40GHz, GeForce GTX 550 T

 $2000 \times 2000 \text{ matrix}$

k	CPU	GPU
2	6.134	1.836
3	12.626	0.620
4	18.981	0.930
5	25.222	1.235

• About 20X speedup due to GPU.

Norm Matloff and Jack Norman University of California at Davis

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

Brief Timing Experiment with gputools

Modest hardware: Intel Core i7-2600K CPU, 3.40GHz, GeForce GTX 550 T

 $2000 \times 2000 \text{ matrix}$

k	CPU	GPU
2	6.134	1.836
3	12.626	0.620
4	18.981	0.930
5	25.222	1.235

- About 20X speedup due to GPU.
- Lots of overhead in the case k = 2.

Material on R

Norm Matloff and Jack Norman University of California at Davis

Norm Matloff and Jack Norman University of California at Davis

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com In gputools, the current power must be copied from CPU to GPU each time!

- In gputools, the current power must be copied from CPU to GPU each time!
- Would be faster to write a different interface to CUBLAS that leaves the power on the CPU at each iteration.

- In gputools, the current power must be copied from CPU to GPU each time!
- Would be faster to write a different interface to CUBLAS that leaves the power on the CPU at each iteration.
- Same for cluster use: The **genmulcmd()** function should be written to leave the powers at the cluster nodes.

- In gputools, the current power must be copied from CPU to GPU each time!
- Would be faster to write a different interface to CUBLAS that leaves the power on the CPU at each iteration.
- Same for cluster use: The genmulcmd() function should be written to leave the powers at the cluster nodes.
 Actually, should have each node maintain a chunk of rows of the current power.

e-mail: matloff@cs.ucdavis.edu R/stat blog: matloff.wordpress.com

Conclusions

• Matrix powers have lots of uses.

e-mail: matloff@cs.ucdavis.edu R/stat blog:

matloff.wordpress.com

Norman University of California at Davis

- Matrix powers have lots of uses.
- Especially useful in parallel contexts, due to fast matrix multiplication.

- Matrix powers have lots of uses.
- Especially useful in parallel contexts, due to fast matrix multiplication.
- Our matpow package provides a convenient tool for matrix powers apps (including serial computation).

- Matrix powers have lots of uses.
- Especially useful in parallel contexts, due to fast matrix multiplication.
- Our matpow package provides a convenient tool for matrix powers apps (including serial computation).
- Further work will be done to supply genmulcmd()
 functions for other types of matrix multiplication, e.g. for
 clusters.

Conclusions

- Matrix powers have lots of uses.
- Especially useful in parallel contexts, due to fast matrix multiplication.
- Our matpow package provides a convenient tool for matrix powers apps (including serial computation).
- Further work will be done to supply genmulcmd()
 functions for other types of matrix multiplication, e.g. for
 clusters.

Location of the code and these slides: http://heather.cs.ucdavis.edu/matpow/