

A Cluster Formation Algorithm for Fog Architectures Based on Mobility Parameters at a Geographically LAN Perspective

Victoria B. Martins, Douglas D. J. de Macedo, Laércio P. Jr., Roger Immich
Federal University of Santa Catarina - Brazil

- 1. Introduction
- 2. Related Works
- 3. Experimentation
 - 3.1 Environment
 - 3.2 Proposed Algorithm
- 4. Evaluation Results
- 5. Conclusions and Future Work

Introduction

- ▶ 1 trillion US\$ IoT
- Location systems heavily rely on mobility patterns, which involve a set of variables like speed, direction and orientation
- ► Fog based architectures have been used, since they can process, compute and deliver information within the network, costing considerably less than cloud-only approaches
- ► Clusters as regions in indoor systems: location awareness
- Problem of manually set clusters: stakeholders unreliability
- Is it possible to organize clusters based on geographical and location parameters?
- ▶ Contributions:
 - 1. implemented algorithm to set up clusters using geographical parameters
 - 2. customized dataset of user mobility based on EUA dataset

- 1. Introduction
- 2. Related Works
- 3. Experimentation
 - 3.1 Environment
 - 3.2 Proposed Algorithm
- 4. Evaluation Results
- 5. Conclusions and Future Work

Related Works

	MANET	VANET	User-walk	Fog	Adaptive clusters	Location-based formation	Urban scenario
[1]	X		X		X	X	
[2]	X	X			X	X	
[8]					X	X	
[11]		X			X	X	X
[14]		X			X	X	X
[15]				X		X	
Our proposal			X	X		X	X

Table 1: Comparison of the proposed to the related works

- 1. Introduction
- 2. Related Works
- 3. Experimentation
 - 3.1 Environment
 - 3.2 Proposed Algorithm
- 4. Evaluation Results
- 5. Conclusions and Future Work

Experimentation - Proposed Algorithm (Overview)

 Based on accepted node range (ANR) and maximum nodes per cluster (MAX)

Input

.csv file based on EUA dataset format ¹

ID	Latitude	Longitude	Block	Level	Parent	State	Details
0	-27.600469	-48.5182707	0	0	-1	VIC	cloud
1	-27.6004237	-48.5183383	1	1	0	VIC	proxy
8	-27.6004051	-48.5182962	1	2	1	VIC	gateway

Table 2: Sample of an input file

 $^{^{1} {\}rm https://github.com/swinedge/eua-dataset}$

Experimentation - Algorithm (Initialization)

The developed code is responsible to parse the input file to the arrays

Algorithm 1: Proposed cluster formation algorithm

Input: Array containing fog coordinates

Output: Array containing fog coordinates and regions $metersPerNode \leftarrow AREA/nodes;$ $range \leftarrow AREA/metersPerNode;$ $maxNodesPerCluster \leftarrow nodes/metersPerNode;$ $clusters \leftarrow null;$

Figure 1: Initialization part of the algorithm

Experimentation - Algorithm (Formation pt.1)

```
{FORMATION}
for node in nodes do
  if clusters.size() is null then
     adds node to clusters and sets responsible as 0
  else
     If responsible is null then
        tries to get responsible for node and breaks
     end if
     If responsible is still null then
        adds node to clusters
        sets responsible as clusters.size() - 1
        adds node to added array
     end if
  end if
```

Figure 2: First half of the Formation part of the algorithm

Experimentation - Algorithm (Formation pt.2)

```
for node in nodes do
     if nextNode is equal to current then
        continue;
     end if
     if added contains current then
        continue;
     end if
     If the size of clusters [responsible] is less or equal to the maxNodesPerCluster then
        If distance between current and nextNode is within range then
           adds nextNode to clusters[responsible]
           adds nextNode to added array
        end if
     else
        if distance between current and nextNode is within range then
           adds node and nextNode to clusters with node as responsible
           adds node and nextNode to added array
        end if
     end if
  end for
end for
```

Figure 3: Second half of the Formation part of the algorithm

Experimentation - Algorithm (Optimization)

```
{OPTIMIZATION}

for responsible in clusters do

if the size of clusters[responsible] has more than one node then
adds group to selected array
end if
end for
return selected
```

Figure 4: Optimization part of the algorithm

Experimentation - Algorithm - Output

Output

Array of fog coordinates and regions

ID	Latitude	Longitude	Block	Level	Parent	State	Details
0	-27.600469	-48.5182707	0	0	-1	VIC	Datacenter
1	-27.6004237	-48.5183383	1	1	0	VIC	Block 1 Proxy
8	-27.6004051	-48.5182962	1	2	1	VIC	GW 1

Table 3: Sample of an output file

Algorithm - Limitations

- Cluster omission
- Users still connected even distant than ANR
- User input dependency

Experimentation - Environment

- ▶ iFogSim v2
- ► 3-tiered cloud-fog-edge model
- ► Wi-fi based location system (WLAN)

Figure 5: Application modules

Figure 6: QR Code to the repository

Experimentation - Clusters

- ▶ 130 nodes
- ▶ 12 clusters

Figure 7: Original EUA clusters

- ► 128 nodes
- ▶ 28 clusters

Figure 8: Generated clusters

Experimentation - Datasets

Two edge resource mobility datasets: randomized and directional

Randomized dataset

- ► Generated by the simulator
- Preordained max. distance
- ▶ 1, 5, 10 and 50 users

Each experiment was ran 10 times

Directional dataset

- ► Street direction logic
- ► Real user walking
- ▶ 1, 5, 10 and 20 users

- 1. Introduction
- 2. Related Works
- 3. Experimentation
 - 3.1 Environment
 - 3.2 Proposed Algorithm
- 4. Evaluation Results
- 5. Conclusions and Future Work

Evaluation Results - Migration Time

Migration performance and specifically delayed by the application modules: mobility induced by user-walking

Figure 9: MT in original and generated clusters using directional dataset vs number of users

Figure 10: MT in original and generated clusters using randomized dataset vs number of users

Evaluation Results - Application Delay

► Performance time overall

Figure 11: ALD in original and generated clusters using directional dataset vs number of users

Figure 12: ALD in original and generated clusters using randomized dataset vs number of users

- 1. Introduction
- 2. Related Works
- 3. Experimentation
 - 3.1 Environment
 - 3.2 Proposed Algorithm
- 4. Evaluation Results
- 5. Conclusions and Future Work

Conclusions and Future Work

- Region-based approaches can enhance LBS increasing QoS and context-awareness, reducing computational and financial costs
- ► This study presented an algorithm that can help defining clusters through geographical parameters
- Using less nodes, our algorithm was capable of having similar performance when compared to the default dataset
- ► Future work: weight feature based on previous datasets to prioritize regions

References

- Akbari Torkestani, J., Meybodi, M.: A mobility-based cluster formation algorithm for wireless mobile ad-hoc networks. Clust. Comput. 14, 311–324 (2011). https:// doi.org/10.1007/s10586-011-0161-z
- Alazab, M., Lakshmanna, K., Reddy, G.T., Pham, Q.-V., Reddy Maddikunta, P.K.: Multi-objective cluster head selection using fitness averaged rider optimization algorithm for IoT networks in smart cities, Sustain. Energy Technol. Assess. 43, 100973 (2021). ISSN 2213-1388, https://doi.org/10.1016/j.seta.2020.100973
- Sun, Z., et al.: An energy-efficient cross-layer-sensing clustering method based on intelligent fog computing in WSNs. IEEE Access 7, 144165–144177 (2019). https:// doi.org/10.1109/ACCESS.2019.2944858

References

- Vergis, S., Tsoumanis, G., Oikonomou, K.: A proposed multi -head clustering algorithm for VANET environments. In: 2021 6th South-East Europe Design Automation, Computer Engineering, Computer Networks and Social Media Con- ference (SEEDA-CECNSM), pp. 1–8 (2021). https://doi.org/10.1109/SEEDA- CECNSM53056.2021.9566263
- Ren, M., Khoukhi, L., Labiod, H., Zhang, J., Veque, V.: A new mobility-based clustering algorithm for vehicular ad hoc networks (VANETs). NOMS 2016 2016 IEEE/IFIP Network Operations and Management Symposium, pp. 1203–1208 (2016). https://doi.org/10.1109/NOMS.2016.7502988
- ► Shamseddine, H., et al.: A novel federated fog architecture embedding intelligent formation. IEEE Netw. 35(3), 198–204 (2021). https://doi.org/10.1109/MNET. 011.2000505

Thank you

Contact:

