Intro to Big Data Science — Spring 2023-2024

Name:	 ID No.:	

Quiz 3

To receive credit, this worksheet MUST be handed in at the end of the class.

1. Suppose you want to predict a house's price as a function of its size. Your model is

$$f_{\theta}(x) = w_0 + w_1 * \text{size} + w_2 * \sqrt{\text{size}},$$

where $\theta = (w_0, w_1, w_2)$. Suppose size ranges from 1 to 1000 (feet²). You will implement this by fitting a model

$$f_{\theta}(x) = w_0 + w_1 x_1 + w_2 x_2.$$

Finally, suppose you want to use feature scaling (without mean normalization). Which of the following choices for x_1 and x_2 should you use?(Note: $\sqrt{1000} \approx 32$)

- (A) x_1 =size, $x_2 = 32\sqrt{\text{size}}$
- (B) $x_1=32$ size, $x_2=\sqrt{\text{size}}$
- (C) $x_1 = \text{size}/1000, x_2 = \sqrt{\text{size}}/32$
- (D) $x_1 = \text{size}/32$, $x_2 = \sqrt{\text{size}}$
- 2. Which of the following is not true for logistic regression?
 - (A) Logistic regression can deal with problems which are not linearly separable.
 - (B) MLE can be used to estimate the parameters in logistic regression.
 - (C) Logistic regression is used for classification.
 - (D) Logistic regression is used for regression.
- 3. For two-class classification problems, which of the following is correct about linear discriminant analysis (LDA)?
 - (A) LDA can do better than Bayes classifier.
 - (B) LDA assumes the different covariance matrix for two classes.
 - (C) LDA classifies samples based on their projection on the coordinate axis.
 - (D) LDA assumes the conditional Gaussian distributions for each class.
- 4. Suppose you have a classification problem. The misclassification error is defined as $\frac{1}{m}\sum_{i=1}^{n} \operatorname{err}(h_{\theta}(x^{(i)}), y^{(i)})$, and the cross validation misclassification error is similarly defined, using the CV examples $(x^{(1)}), y^{(1)}), \ldots, (x^{(n_{cv})}), y^{(n_{cv})}$. Suppose your training error is 0.10, and your CV error is 0.30. What problem is the algorithm most likely to be suffering from?
 - (A) High bias (overfitting)
 - (B) High bias (underfitting)
 - (C) High variance (overfitting)
 - (D) High variance (underfitting)
- 5. Please give the THREE BIG NAMES of scientists contributing greatly to deep learning.

- 6. Consider a two-layer neural network to learn a function $f: \mathbf{x} \mapsto y$ where $\mathbf{x} = (x_1, x_2)^T$ consists of two attributes. The weights w_1, \ldots, w_6 can be arbitrary. There are **three** units (namely, A, B and C) in this network. We have two possible choices for the function implemented by each unit in this network:
 - S: signed sigmoid function $S(a) = sign(\frac{1}{1 + exp(-a)} 0.5);$
 - L: linear function L(a) = ca with a given constant c.

- (a) Assign proper activation functions (**S** or **L**) to each unit in the following graph so this neural network simulates a linear regression: $y = \beta_1 x_1 + \beta_2 x_2$. And derive β_1 and β_2 in terms of w_1, \ldots, w_6 .
- (b) Assign proper activation functions (**S** or **L**) to each unit in the following graph so this neural network simulates a binary logistic regression classifier: $y = \arg\max_y P(Y = y|\mathbf{X} = \mathbf{x})$, where $P(Y = 1|\mathbf{X} = \mathbf{x}) = \frac{\exp(\beta_1 x_1 + \beta_2 x_2)}{1 + \exp(\beta_1 x_1 + \beta_2 x_2)}$ and $P(Y = -1|\mathbf{X} = \mathbf{x}) = \frac{1}{1 + \exp(\beta_1 x_1 + \beta_2 x_2)}$. And derive β_1 and β_2 in terms of w_1, \ldots, w_6 .
- (c) Assign proper activation functions (**S** or **L**) to each unit in the following graph so this neural network simulates a boosting classifier which combines two logistic regression classifiers, $f_1: \mathbf{x} \mapsto y_1$ and $f_2: \mathbf{x} \mapsto y_2$, to produce its final prediction: $y = \text{sign}(\alpha_1 y_1 + \alpha_2 y_2)$. Use the same definition in Step 2 for f_1 and f_2 . And derive α_1 and α_2 in terms of w_1, \ldots, w_6 .