Show all work clearly and in order. Please box your answers. 10 minutes.

- 1. Let $X = \{1, 2, 3\}, Y = \{1, 2, 3, 4\}, \text{ and } Z = \{1, 2\}$
 - (a) Define a function $f: X \to Y$ that is one-to-one but not onto.

(b) Define a function $g: X \to Z$ that is onto but not one-to-one.

(c) Define a function $h: X \to X$ that is neither one-to-one nor onto.

(d) Define a function $j:X\to X$ that is a one-to-one correspondence but is NOT the identity function on X.

- 2. Define $f: \mathbb{Z} \to \mathbb{Z}$ by f(n) = 1 2n, for all integers n.

Define
$$f: \mathbb{Z} \to \mathbb{Z}$$
 by $f(n) = 1 - 2n$, for all integers n .

(a) Is f one-to-one? Prove or give a counterexample.

Yes, f one-to-one? f one f one-to-one.

(b) Is f onto? Prove on give a counterexample.

Hence, f is one-to-one.

(b) Is f onto? Prove or give a counterexample.

The codomain.

NO consider 2E Z.

> If there were an NEZ 5.7. f(n) = 2than 1-2n=2 So -2n = 1 $N = -\frac{1}{2}$ but $-\frac{1}{2} \notin \mathbb{Z}$. Therefore, f is $\frac{NOT}{onto}$.