TIME SERIES ANALYSIS OF AAPL STOCK

Leon Zhu

UCLA Stats 418 – Tools in Data Science

Spring 2019

Attaining the dataset – Web Scrap


```
web soup = BeautifulSoup(web raw, 'html.parser')
web tables = web soup.find all('table')
web trs = web tables[0].find all('tr')
  web tds = web trs[row].find all('td')
```

Exploratory Analysis

Exploratory Analysis

Model Analysis

Date	Forecasted Difference	Forecasted Price
2018-12-17	4.924397	170.40439737
2018-12-18	-0.004446	170.39995174
2018-12-19	-0.004446	170.39550612
2018-12-20	-0.004446	170.39106049
2018-12-21	-0.004446	170.38661486
2018-12-24	-0.004446	170.38216924
2018-12-26	-0.004446	170.37772361
2018-12-27	-0.004446	170.37327799
2018-12-28	-0.004446	170.36883236
2018-12-31	-0.004446	170.36438673

RMSE: 5.0224385057219685

Deployment

aws

- Docker & Flask & AWS
- ♦ Input: Desired number of days to forecast (from 2018-12-14)
- Output: List of forecasted price for desired amount of days
- curl -H "Content-Type: application/json" -X POST -d '{"days":"10"}' http://54.193.125.41:5000/forecast_price
- { "forecast price": [170.40439737, 170.39995174, 170.39550612, 170.39106049, 170.38661486, 170.38216924, 170.37772361, 170.37327799, 170.36883236, 170.36438673] }