Correcting and Speeding-Up Bounds for Non-Uniform Graph Edit Distance

Freie Universität Bozen Libera Università di Bolzano Università Liedia de Bulsan

David B. Blumenthal and Johann Gamper | {david.blumenthal,gamper}@inf.unibz.it

MOTIVATION AND RESULTS

motivation

- approximation is important as exact computation is NP-hard
- uniform edit costs: many algorithms computing lower and upper bounds exist
- non-uniform edit costs: Bp [3, 4] is only algorithm that considers node and edge labels and allegedly computes lower and upper bounds

results

- Bp is incorrect: in general, it does not yield lower bound
- Branch, a corrected version of BP that runs in $O(n^5)$ time
- BranchFast, a speed-up of BP that runs in $O(n^4)$ time
- Branch and BranchFast are **Pareto optimal**: they outperform all competitors in terms of runtime or in terms of accuracy of lower bounds

GRAPH EDIT DISTANCE: BASIC DEFINITIONS

graph edit distance

- minimum cost c(P) of edit path P between graphs G and H
 edit path
- sequence $\langle op_1, \ldots, op_r \rangle$ of edit operations transforming G into a graph isomorphic to H
- cost of edit path $P = \langle op_1, ..., op_r \rangle$: $c(P) := \sum_{s=1}^r c(op_s)$

edit operations

- **inserting** isolated α -labelled node or α -labelled edge
- **deleting** isolated α -labelled node or α -labelled edge
- relabelling: changing node or edge label from α to $\beta \neq \alpha$
- costs c(op) of edit operations are defined via metrics on label alphabets, e. g., discrete metric, Euclidean distance, string edit distance

Induced Edit Paths, Minimum Linear Assignment, and a Strategy for Computing Bounds

metric edit costs

- can assume w.l. o. g. that $|V^G| = |V^H|$
- $\lambda(G,H)=$ minimum cost of edit path induced by permutation $\pi:V^G\to V^H$

strategy for computing bounds

- define edge costs \tilde{c} for **auxiliary bipartite graph** $(V^G \times V^H, \tilde{c})$ s. t. a minimum linear assignment π^* for $(V^G \times V^H, \tilde{c})$ induces cheap edit path P_{π^*}
- **upper bound:** is given as cost $c(P_{\pi^*})$ of P_{π^*}
- **lower bound:** can be obtained from $\tilde{c}(\pi^*)$

minimum linear assignment

(solvable in $O(n^3)$ time)

 $\pi^* = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$ is optimal assignment

THE ALGORITHMS BP, BRANCH, AND BRANCHFAST

common approach

- decompose graphs into branches rooted at the nodes, i. e., nodes with incident edges
- define auxiliary edge cost $\tilde{c}(i,k) := \tilde{c}_V(i,k) + \tilde{c}_E(i,k)$ as **branch transformation costs**
- define cost $\tilde{c}_V(i,k)$ of adjusting nodes of branches as cost for changing i's label into k's label

differences

- 1 how to define cost $\tilde{c}_E(i,k)$ of adjusting edges of branches?
- 2 how to **obtain lower bound** from assignment cost $\tilde{c}(\pi^*)$ of minimum linear assignment for $(V^G \times V^H, \tilde{c})$?

branches rooted at node 1 in G and at node 2 in H

Euclidean edit costs

- $\tilde{c}_{V}(1,2)=1$
- **BP**: $\tilde{c}_{E}(1,2) = 7$
- Branch: $\tilde{c}_{E}(1,2) = 7/2$
- BranchFast: $\tilde{c}_E(1,2) = 3$

BP

- 1 $\tilde{c}_E(i,k)$: min. cost of linear assignment between edge labels of branches rooted at i and k
- 2 lower bound: $\tilde{c}_V(\pi^*) + \tilde{c}_E(\pi^*)/2 \rightarrow is$ incorrect

Branch

- 1 $\tilde{c}_E(i,k)$: (min. cost of linear assignment between edge labels of branches rooted at i and k)/2
- 2 lower bound: $\tilde{c}_V(\pi^*) + \tilde{c}_E(\pi^*) \rightsquigarrow \text{runs in } \mathcal{O}(\mathfrak{n}^5)$

BranchFast

- 1 $\tilde{c}_E(i,k)$: (min. cost of linear assignment between edge labels of branches rooted at i and k, where distance between different labels is approximated by minimal distance)/2
- 2 lower bound: $\tilde{c}_V(\pi^*) + \tilde{c}_E(\pi^*) \rightsquigarrow \text{runs in } \mathcal{O}(\mathfrak{n}^4)$

Experiments

competitors

- **Node**: runs in $O(n^3)$, ignores edges [1]
- Lp: runs in $O(n^7)$, ignores edge labels [1]

experimental setup

- $err_{LB}(Alg) := (tightest LB)/LB(Alg);$ small values \sim tight lower bounds
- AIDS, PROTEIN: frequently used, publicly available datasets with naturally induced relabelling costs [2]
- randomly selected 100 model graphs from datasets
- randomly constructed size-constrained query groups containing 5 query graphs H that satisfy $5(i-1) < |V_H| \leqslant 5i$
- ran each algorithm for all pairs of model and query graphs

REFERENCES

- [1] D. Justice and A. Hero, "A Binary Linear Programming Formulation of the Graph Edit Distance," *IEEE Trans. Pattern Anal. Mach. Intell.*, vol. 28, no. 8, pp. 1200–1214, 2006.
- [2] K. Riesen and H. Bunke, "IAM Graph Database Repository for Graph Based Pattern Recognition and Machine Learning," in *SSPR'08*, 2008, pp. 287–297.
- [3] —, "Approximate Graph Edit Distance Computation by Means of Bipartite Graph Matching," *Image Vis. Comput.*, vol. 27, no. 7, pp. 950–959,
- [4] K. Riesen, A. Fischer, and H. Bunke, "Computing Upper and Lower Bounds of Graph Edit Distance in Cubic Time," in *ANNPR'14*, 2014, pp. 129–140.

presented at

33rd IEEE International Conference on Data Engineering, San Diego, USA, April 19–22, 2017.