

A.P. SHAH INSTITUTE OF TECHNOLOGY

Department of Computer Science and Engineering Data Science

S	emester: Subject: Academic Year: 20 - 20		
Que:	Explain Liang Bansky line dipping algorithm, what are its benefits over cohen Sutherland algorithm? clip the		
	line with co-ordinated (5, 10) and (35, 30) against the		
	window (xmin, ymin) = (10,10) and (xmax, ymax) = (20,2		
Arus:	Algorithm: -		
	Step 1: - Get the endpoints of line as (ny, y1) and (no, y)		
	Step 2: - Calculate . Ax Dy PK, &K		
	Step 3: - Assign -1=0, +2=1		
	@ If Px=0; line is parallel		
	If P 9x < 0; line lies outside window (Regict)		
	(b) If Px <0; kind +1		
,	+1 = max (0, 4x/PK)		
	else PX>0; kind +2		
4	$\pm 2 = \min(1, \frac{4\kappa}{Pk})$		
	(1) If 11>+2; line is completely outside (rejected)		
	(1) If 11>12; line is completely outside (rejected) else kind new value of x & y from the formula		
	$x = x, + \pm \Delta x$		
64	$y = y_1 + t\Delta y$		
-			
	$P_1 = -\Delta x$ $q_1 = x_1 = x_w min$		
	$P_2 = \Delta x$ $Q_2 = x \omega_{max} - x_1$		
į.	$P_3 = -\Delta y \qquad 43 = 41 - y \omega min$		
	P4 = Dy 94 = Ywmax - 4,		

A.P. SHAH INSTITUTE OF TECHNOLOGY

Department of Computer Science and Engineering Data Science

Semester :	Subject :	Academic Year: 20 - 20
SR. No	Cohen Sutherland Algo	Liang Banky Algo
	It is less efficient	It is more efficient
2.		In this algo , out
-	intersection requires buth	, // 0 /
	multiplication & a division	
3.	It follows the encoding 3)	It follows the
	cepproach of	ovanetic approach
4.	It repentedly calculates 4)	
	intersection along a line in	
- !	path even though the o	
	line may be completely he	
	outsid the clip window	<u> </u>
		It can be used for 1-D
		-D, 3-D line lipping and
	window Si	umetimes 4-D line dipping
umenico	Solution:	
Given	g :-	P1 =- Dx = -30
	unin = 10	$P_2 = \Delta x = 30$
	omex = 20	$P3 = -\Delta y = -20$
	Imin = 10	P4 = Dy = 20
~ .	men = 20	
_	o) => x1=5 . 41=10	No. (
N / 35	$30) \rightarrow \pi_2 = 35$ $y_2 = 30$	7.0
10 (0 0)		

Subject Incharge :_____ Page No.____

Department of CSE-Data Science | APSIT

A.P. SHAH INSTITUTE OF TECHNOLOGY

Department of Computer Science and Engineering Data Science

Semester : Subject :	Academic Year: 20 - 20			
$\Delta x = \chi_2 - \chi_1$	21 = x, - xwmin=5-10 = =5			
= 35-5 = 30	$92 = 2 \times 20 - 5 = 15$			
$\Delta y = y_2 - y_1$	43 = 41 - Yumin = 10-10 =0			
= 30 - 10 = 20	94 = ywmar - 4, = 20-10=10			
IL PK KO				
P1 P3				
$\frac{P_1 P_3}{+1 = man(0, -5/-30, 0/-20)}$				
max (0, 0.166, 0)				
-t1 = 0.168				
if PK>0				
P2 Py				
$\frac{1}{2} = \min\left(1, \frac{15}{30}, \frac{10}{20}\right)$				
= min (1,0.5,0.5)				
12 = pri 0.5				
As t12 to columete new x, y co-ordinates				
for t1	for t2			
x= x1++ bx	$x = x_1 + \pm \Delta x$			
= 5 + 0.166 (30)	= 5 + (o·5)(30)			
= 9.96	= 20			
y = y1 + + Dy	y = 9, ++ Dy			
= 10 + 0.166(20)	= 10 + (0.5)(20)			
= 13.32	= 20			
ew co-ordinate of M'N' M'	(9.98, 13.32)			
Subject Incharge : Page No	Department of CSE-Data Science APSIT			