BASIC

283 OX を始線, OP を角の動経とする.

(1)
$$640^{\circ} = 280^{\circ} + 360^{\circ} \times 1$$

または

$$640^{\circ} = -80^{\circ} + 360^{\circ} \times 2$$

$$(2)$$
 $-320^{\circ} = 40^{\circ} + 360^{\circ} \times (-1)$

(3) $500^{\circ} = 140^{\circ} + 360^{\circ} \times 1$

(4)
$$-1110^\circ = 330^\circ + 360^\circ \times (-4)$$
 または
$$-1110^\circ = -30^\circ + 360^\circ \times (-3)$$

(5)
$$2000^\circ = 200^\circ + 360^\circ \times 5$$
 または
$$2000^\circ = -160^\circ + 360^\circ \times 6$$

284 (1) 第2象限

(2) $580^{\circ} = 220^{\circ} + 360^{\circ} \times 1$ よって,第3象限

(3) $-740^{\circ} = -20^{\circ} + 360^{\circ} \times (-2)$ よって,第 4 象限

(4) $1450^\circ = 10^\circ + 360^\circ \times 4$ よって,第 1 象限

(5) $-631^{\circ} = -271^{\circ} + 360^{\circ} \times (-1)$

または

$$-631^{\circ} = 89^{\circ} + 360^{\circ} \times (-2)$$

よって,第1象限

285 (1) $630^{\circ} = 270^{\circ} + 360^{\circ} \times 1$

$$\sin 630^{\circ} = -1$$

$$(2)$$
 $570^{\circ} = 210^{\circ} + 360^{\circ} \times 1$

$$\cos 570^{\circ} = -\frac{\sqrt{5}}{2}$$

$$\tan 855^{\circ} = -1$$

$$(4) -660^{\circ} = 60^{\circ} + 360^{\circ} \times (-2)$$

$$\sin(-660^\circ) = \sin 60^\circ = \frac{\sqrt{3}}{2}$$

(5)

$$\cos(-225^\circ) = -\frac{1}{\sqrt{2}}$$

$$(6) -480^{\circ} = -120^{\circ} + 360^{\circ} \times (-1)$$

$$\tan(-480^{\circ}) = \tan(-120^{\circ}) = \sqrt{3}$$

286 (1)
$$36^\circ = \theta$$
(ラジアン)とすると
$$36:180 = \theta:\pi$$

$$180\theta = 36\pi$$
 よって, $\theta = \frac{36\pi}{180} = \frac{\pi}{5}$

$$36^{\circ} = 36^{\circ} \times \frac{\pi}{180^{\circ}}$$
$$= \frac{\pi}{5}$$

(2)
$$-45^\circ = \theta$$
(ラジアン)とすると $-45:180 = \theta:\pi$ $180\theta = -45\pi$ よって, $\theta = \frac{-45\pi}{180} = -\frac{\pi}{4}$ [別解]

$$-45^{\circ} = -45^{\circ} \times \frac{\pi}{180^{\circ}}$$
$$= -\frac{\pi}{4}$$

$$(\ 3\)$$
 $10^\circ = heta(\
eta ec{y} ec{y} ec{y} ec{y} ec{y} ec{z} ec$

$$(4)$$
 $-150^\circ = \theta$ (ラジアン)とすると $-150:180 = \theta:\pi$ $180\theta = -150\pi$ よって, $\theta = \frac{-150\pi}{180} = -\frac{5}{6}\pi$ (別解) $-150^\circ = -150^\circ \times \frac{\pi}{180^\circ}$ $= -\frac{5}{6}\pi$

287 (1)
$$\frac{\pi}{3} = \frac{\pi}{3} \times \frac{180^{\circ}}{\pi}$$

= 60°

(2)
$$-\frac{3}{4}\pi = -\frac{3}{4}\pi \times \frac{180^{\circ}}{\pi}$$

= -135°

(3)
$$\frac{2}{5}\pi = \frac{2}{5}\pi \times \frac{180^{\circ}}{\pi}$$

= **72**°

(4)
$$-\frac{\pi}{9} = -\frac{\pi}{9} \times \frac{180^{\circ}}{\pi}$$

= -20°

(5)
$$\frac{7}{3}\pi = \frac{7}{3}\pi \times \frac{180^{\circ}}{\pi}$$

= **420**°

288 扇形の中心角を heta , 弧の長さを l , 面積を S とする .

$$(1) l = r\theta$$

$$= 6 \cdot \frac{\pi}{6} = \pi$$

$$S = \frac{1}{2}rl$$

$$= \frac{1}{2} \cdot 6 \cdot \pi = 3\pi$$

$$(2)$$
 $l=r\theta$ より , $\theta=rac{l}{r}$ であるから $heta=rac{l}{r}=rac{oldsymbol{3}}{oldsymbol{2}}$ $S=rac{1}{2}rl$ $=rac{1}{2}\cdot 2\cdot 3=oldsymbol{3}$

289 (1)
$$\sin \frac{4}{3}\pi = \sin 240^{\circ}$$
 $= -\frac{\sqrt{3}}{2}$

(2)
$$\cos \frac{7}{4}\pi = \cos 315^{\circ}$$
$$= \frac{1}{\sqrt{2}}$$

(3)
$$\tan \frac{\pi}{6} = \tan 30^{\circ}$$
$$= \frac{1}{\sqrt{3}}$$

291
$$\sin^2 \theta = 1 - \cos^2 \theta$$
$$= 1 - \left(\frac{1}{3}\right)^2$$
$$= 1 - \frac{1}{9}$$
$$= \frac{8}{9}$$

$$\theta$$
 は第 4 象限の角なので, $\sin \theta < 0$ よって, $\sin \theta = -\sqrt{\frac{8}{9}} = -\frac{2\sqrt{2}}{3}$ また, $\tan \theta = \frac{\sin \theta}{\cos \theta}$
$$= \frac{-\frac{2\sqrt{2}}{3}}{\frac{1}{1}} = -2\sqrt{2}$$

$$292 \qquad \frac{1}{\cos^2 \theta} = 1 + \tan^2 \theta$$
$$= 1 + 3^2$$
$$= 10$$

したがって,
$$\cos^2 = \frac{1}{10}$$
 θ は第 3 象限の角なので, $\cos \theta < 0$
よって, $\cos \theta = -\frac{1}{\sqrt{10}}$
また, $\sin \theta = \tan \theta \cdot \cos \theta$

$$= 3 \cdot \frac{1}{\sqrt{10}}$$

$$= \frac{3}{\sqrt{10}}$$

293 (1) 与式 =
$$\tan \theta \cdot \cos \theta + (-\cos \theta) \cdot (-\tan \theta)$$

= $\frac{\sin \theta}{\cos \theta} \cdot \cos \theta + (-\cos \theta) \cdot (-\frac{\sin \theta}{\cos \theta})$
= $\sin \theta + \sin \theta$
= $2 \sin \theta$

(2) 与式 =
$$\sin \theta \sin \theta + \cos \theta \cos \theta$$

= $\sin^2 \theta + \cos^2 \theta$
= 1

(3) 与式 =
$$\cos \theta - (-\sin \theta) + (-\sin \theta) + (-\cos \theta)$$

= $\cos \theta + \sin \theta - \sin \theta - \cos \theta$
= $\mathbf{0}$

294 (1) この関数のグラフは , $y=\sin x$ のグラフを x 軸方向に 2 倍に拡大したものだから , 周期は $\frac{2\pi}{\frac{1}{2}}=4\pi$ であり , グラフ

は次のようになる.

(2) この関数のグラフは , $y=\cos x$ のグラフを y 軸方向に -1 倍したものだから , 周期は 2π であり , グラフは次のようになる .

(3) $y=\sin 2\left(x-\frac{\pi}{4}\right)$ であるから,この関数のグラフは, $y=\sin x$ のグラフを x 軸方向に $\frac{1}{2}$ 倍に縮小し, $\frac{\pi}{4}$ 平行移 動したものだから,周期は $\frac{2\pi}{2}=\pi$ であり,グラフは次のようになる.

(4) この関数のグラフは, $y=\cos x$ のグラフを y 軸方向に $\frac{\pi}{3}$ 平行移動したものだから,周期は 2π であり,x=0 のとき, $y=\cos\frac{\pi}{3}=\frac{1}{2}$ となるので,グラフは次のようになる.

295 (1) この関数のグラフは , $y=\tan x$ のグラフを x 軸方向に $\frac{1}{4}$ 倍したものだから , 周期は $\frac{\pi}{4}=\frac{1}{4}\pi$ であり , グラフは次のようになる .

(2) この関数のグラフは, $y=\tan x$ のグラフを x 軸方向に 3 倍し,y 軸方向に -1 倍(y 軸に関して対称移動)したものだから,周期は $\frac{\pi}{\frac{1}{3}}=3\pi$ であり,グラフは次のようになる.

296 (1)

$$x=\frac{\pi}{4},\ \frac{3}{4}\pi$$

(2)

(3)

 $0 \leq x < 2\pi$ において,角 x の動経が影をつけた部分にあ

ಕರಾಭ
$$0 \le x \le rac{4}{3}\pi, \ rac{5}{3}\pi \le x < 2\pi$$

(4)

 $0 \le x < 2\pi$ において , 角 x の動経が影をつけた部分にあ

ತರಿಸಿದ
$$rac{2}{3}\pi < x < rac{4}{3}\pi$$

297 (1)

$$x=rac{\pi}{4},\;rac{5}{4}\pi$$

(2)

$$x=\frac{2}{3}\pi,\ \frac{5}{3}\pi$$

298
$$a=\sinrac{5}{4}\pi=-rac{1}{\sqrt{2}}$$
 $\sin b=rac{1}{2}$, $rac{\pi}{2}< b<\pi$ であるから, $b=rac{5}{6}\pi$

CHECK

299 (1)
$$40^\circ = \theta$$
(ラジアン)とすると $40:180 = \theta:\pi$ $180\theta = 40\pi$ よって, $\theta = \frac{40\pi}{180} = \frac{\mathbf{2}}{\mathbf{9}}\pi$ [別解] $40^\circ = 40^\circ \times \frac{\pi}{180^\circ}$ $= \frac{\mathbf{2}}{\mathbf{9}}\pi$

(2)
$$-50^{\circ} = \theta$$
(ラジアン)とすると $-50:180 = \theta:\pi$

$$180\theta = -50\pi$$
 よって, $\theta = -\frac{50\pi}{180} = -\frac{5}{18}\pi$ (別解)
$$-50^\circ = -50^\circ \times \frac{\pi}{180^\circ}$$

$$= -\frac{5}{18}\pi$$

$$(3)$$
 $210^\circ = \theta (ラジアン) とすると $210:180 = \theta : \pi$ $180\theta = 210\pi$ よって, $\theta = \frac{210\pi}{180} = \frac{7}{6}\pi$ (別解) $210^\circ = 210^\circ \times \frac{\pi}{180^\circ}$ $= \frac{7}{6}\pi$$

300 (1)
$$\frac{2}{3}\pi = \frac{2}{3}\pi \times \frac{180^{\circ}}{\pi}$$

= 120°

(2)
$$-\frac{\pi}{4} = -\frac{\pi}{4} \times \frac{180^{\circ}}{\pi}$$

= -45°

(3)
$$\frac{7}{5}\pi = \frac{7}{5}\pi \times \frac{180^{\circ}}{\pi}$$

= **252**°

301 (1)
$$450^{\circ} = 90^{\circ} + 360^{\circ} \times 1$$

$$\sin 450^\circ = \sin 90^\circ = \mathbf{1}$$

(2)
$$-780^{\circ} = -60^{\circ} + 360^{\circ} \times (-2)$$

 $\cos(-780^{\circ}) = \cos(-60^{\circ}) = \frac{1}{2}$

(3)

$$\tan 225^{\circ} = 1$$

(4)
$$-\frac{17}{3}\pi = \frac{\pi}{3} + \left(-\frac{18}{3}\pi\right)$$
$$= \frac{\pi}{3} + (-6\pi)$$
$$= \frac{\pi}{3} + 2\pi \times (-3)$$

$$\sin\left(-\frac{17}{3}\pi\right) = \sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}$$

(5)
$$\frac{21}{4}\pi = -\frac{3}{4}\pi + \frac{24}{4}\pi$$
$$= -\frac{3}{4}\pi + 6\pi$$
$$= -\frac{3}{4}\pi + 2\pi \times 3$$

$$\cos\frac{21}{4}\pi = \cos\left(-\frac{3}{4}\pi\right) = -\frac{1}{\sqrt{2}}$$

(6)

$$\tan\frac{11}{6}\pi = -\frac{1}{\sqrt{3}}$$

302 扇形の中心角を heta , 弧の長さを l , 面積を S とする .

$$(1) l = r\theta$$

$$= 5 \cdot \frac{\pi}{10} = \frac{\pi}{2}$$

$$S = \frac{1}{2}rl$$

$$= \frac{1}{2} \cdot 5 \cdot \frac{\pi}{2} = \frac{5}{4}\pi$$

(2)
$$l=r\theta$$
 より, $\theta=\frac{l}{r}$ であるから $\theta=\frac{l}{r}=\frac{4}{3}$ $S=\frac{1}{2}rl$ $=\frac{1}{2}\cdot 3\cdot 4=6$

304
$$\cos^2 \theta = 1 - \sin^2 \theta$$
$$= 1 - \left(-\frac{1}{4}\right)^2$$
$$= 1 - \frac{1}{16}$$
$$= \frac{15}{16}$$

 θ は第 3 象限の角なので , $\cos \theta < 0$

よって,
$$\cos\theta=-\sqrt{\frac{15}{16}}=-\frac{\sqrt{15}}{4}$$
 また, $\tan\theta=\frac{\sin\theta}{\cos\theta}$

$$\sharp \hbar , \tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$= \frac{-\frac{1}{4}}{-\frac{\sqrt{15}}{4}} = \frac{1}{\sqrt{15}}$$

305 (1) この関数のグラフは, $y=\sin x$ のグラフを x 軸方向に $\frac{\pi}{3}$ 平行移動したものだから,周期は 2π であり,x=0 のとき, $y=\sin\left(-\frac{\pi}{3}\right)=-\frac{\sqrt{3}}{2}$ となるので,グラフは次のようになる.

(2) この関数のグラフは , $y=\cos x$ のグラフを x 軸方向に 2 倍に拡大したものだから , 周期は $\frac{2\pi}{\frac{1}{2}}=4\pi$ であり , グラフ

は次のようになる.

(3) この関数のグラフは , $y=\tan x$ のグラフを x 軸方向に $\frac{1}{3}$ 倍したものだから , 周期は $\frac{\pi}{3}=\frac{1}{3}\pi$ であり , グラフは次の

ようになる.

306 (1)

$$x = \frac{5}{4}\pi, \ \frac{7}{4}\pi$$

(2) $2\cos x + \sqrt{3} = 0$ より , $\cos x = -\frac{\sqrt{3}}{2}$

$$x = \frac{5}{6}\pi, \ \frac{7}{6}\pi$$

(3) $3\tan x + \sqrt{3} = 0$ より, $\tan x = -\frac{\sqrt{3}}{3} = -\frac{1}{\sqrt{3}}$

$$x=\frac{5}{6}\pi,\ \frac{11}{6}\pi$$

(4) $2\sin x - 1 < 0$ より, $\sin x < \frac{1}{2}$

 $0 \le x < 2\pi$ において , 角 x の動経が影をつけた部分にあ

$$0 \le x < \frac{\pi}{6}, \ \frac{5}{6}\pi < x < 2\pi$$

(5)

 $0 \le x < 2\pi$ において , 角 x の動経が影をつけた部分にあ

$$0 \le x \le \frac{\pi}{4}, \quad \frac{7}{4}\pi \le x < 2\pi$$

STEP UP

307 下の図で, $\widehat{AB} = 100$, $\angle AOB = 50^{\circ} = \frac{5}{18}\pi$

$$\mathrm{OA} = r$$
 とすると , $r \cdot \frac{5}{18}\pi = 100$ より $r = 100 \cdot \frac{18}{5\pi}$ $= \frac{360}{\pi}$ $= \frac{360}{3.14} = 114.64 \cdots$

よって,円弧の半径は,約115m

308 図のように, 2 つの円の中心を O, O', 2 つの円の交点を A, B とする.

 $\mathrm{OA} = \mathrm{OO'} = \mathrm{O'A}$ であるから, $\triangle \mathrm{AOO'}$ は正三角形である. よって , $\angle {
m AOO'} = \frac{\pi}{3}$, したがって , $\angle {
m AOB} = \frac{2}{3}\pi$

影をつけた弓形 ${
m ABO'}$ の面積は,求める面積の ${1\over 2}$ であり

弓形 ABO' = 扇形 OAO'B -
$$\triangle$$
OAB

$$= \frac{1}{2}a^2 \cdot \frac{2}{3}\pi - \frac{1}{2}a^2 \sin \frac{2}{3}\pi$$

$$= \frac{1}{3}\pi a^2 - \frac{1}{2}a^2 \cdot \frac{\sqrt{3}}{2}$$

$$= \frac{1}{3}\pi a^2 - \frac{\sqrt{3}}{4}a^2 = \frac{4\pi - 3\sqrt{3}}{12}a^2$$

よって,求める面積は
$$\frac{4\pi-3\sqrt{3}}{12}a^2\times 2=\frac{4\pi-3\sqrt{3}}{6}a^2$$

この直円錐台の側面の展開図にいおいて,下の図のように頂点を 定め , $\mathrm{OA} = a, \ \angle{\mathrm{AOA'}} = \theta$ とする .

$$\overrightarrow{AA'} = a\theta = 2\pi r_1 \cdots$$
① より
扇形 $\overrightarrow{OAA'} = \frac{1}{2}a^2\theta$
 $= \frac{1}{2}a \cdot a\theta$
 $= \frac{1}{2}a \cdot 2\pi r_1 = \pi a r_1$

$$\widehat{\mathrm{BB}}' = (a+l)\theta = 2\pi r_2 \cdots 2$$
 より
扇形 $\mathrm{OBB}' = \frac{1}{2}(a+l)^2\theta$
 $= \frac{1}{2}(a+l)\cdot(a+l)\theta$
 $= \frac{1}{2}(a+l)\cdot 2\pi r_2 = \pi(a+l)r_2$

また, $a \neq 0$ であるから,① より, $\theta = \frac{2\pi r_1}{a}$ a+l
eq 0 であるから , ② より , $heta = rac{2\pi r_2}{a+l}$ よって , $\frac{2\pi r_1}{a}=\frac{2\pi r_2}{a+l}$ $(a+l)r_1=ar_2$

$$a + t$$

$$(a+l)r_1 = ar_2$$

$$a(r_2 - r_1) = lr_1$$

$$a = \frac{r_1}{r_2 - r_1}l \cdots 3$$

また , 見取り図より , $r_1,\;r_2,\;r_0$ の関係 は , $(r_0-r_1):(r_2-r_1)=1:2$ となるの

$$2(r_0-r_1)=r_2-r_1$$
すなわち , $2r_0=r_1+r_2\cdots$ ④

以上より

$$S =$$
扇形 OBB' $-$ 扇形 OAA'
= $\pi(a+l)r_2 - \pi a r_1$
= $\pi\{(a+l)r_2 - a r_1\}$
= $\pi\{a(r_2 - r_1) + l r_2\}$

③ を代入して
$$S = \pi \left\{ \frac{r_1}{r_2 - r_1} l \cdot (r_2 - r_1) + l r_2 \right\}$$
$$= \pi (l r_1 + l r_2)$$
$$= \pi l (r_1 + r_2)$$
$$= \pi l \cdot 2r_0 \quad \text{(④より)}$$
$$= 2\pi r_0 l$$

この扇形の半径を $\,r$,面積を $\,S$ とすれば,弧の長さは $\,12-2r\,$ で あるから, $S = \frac{1}{2} r (12 - 2r) = -r^2 + 6r$,ただし,0 < r < 6

$$S = -(r^2 - 6r)$$

 $= -(r-3)^2 + 9$

よって,r=3,すなわち半径が $oldsymbol{3}$ のとき,S は最大値をとる.

$$\sin \theta + \cos \theta = \frac{1}{\sqrt{2}}$$
 の両辺を 2 乗すると
$$(\sin \theta + \cos \theta)^2 = \frac{1}{2}$$

$$\sin^2 \theta + 2 \sin \theta \cos \theta + \cos^2 \theta = \frac{1}{2}$$

$$2 \sin \theta \cos \theta + 1 = \frac{1}{2}$$

$$2 \sin \theta \cos \theta = -\frac{1}{2}$$

$$\sin \theta \cos \theta = -\frac{1}{4}$$

(2) 与式 =
$$(\sin \theta + \cos \theta)(\sin^2 \theta - \sin \theta \cos \theta + \cos^2 \theta)$$

= $(\sin \theta + \cos \theta)(1 - \sin \theta \cos \theta)$
= $\frac{1}{\sqrt{2}}\left(1 + \frac{1}{4}\right)$
= $\frac{1}{\sqrt{2}} \cdot \frac{5}{4} = \frac{5}{4\sqrt{2}} = \frac{5\sqrt{2}}{8}$

$$2$$
 次方程式の解と係数の関係より
$$\begin{cases} \sin\theta + \cos\theta = -\frac{-2}{3} = \frac{2}{3} & \cdots \\ \sin\theta \cos\theta = \frac{k}{3} & \cdots \\ \end{cases}$$

① の両辺を 2 乗すると

$$\sin^2 \theta + 2\sin \theta \cos \theta + \cos^2 \theta = \frac{4}{9}$$
$$2\sin \theta \cos \theta = \frac{4}{9} - 1 = -\frac{5}{9}$$

よって,
$$\sin\theta\cos\theta = -\frac{5}{18}$$

これを
$$②$$
 に代入して
$$-\frac{5}{18}=\frac{k}{3}$$
 したがって , $k=-\frac{5}{18}\cdot 3=-\frac{5}{6}$

313 (1)
$$y=\cos\left\{3\left(x-\frac{1}{4}\pi\right)\right\}$$
 であるから,この関数のグラフは, $y=\cos3x$ のグラフを x 軸方向に $\frac{\pi}{4}$ 平行移動したものである.周期は $2\pi\cdot\frac{1}{3}=\frac{2}{3}\pi$ であり, $x=0$ のとき, $y=\cos\left(-\frac{3}{4}\pi\right)=-\frac{1}{\sqrt{2}}$ となるので,グラフは次のように

(2) $y=3\sin\left\{2\left(x+rac{\pi}{6}
ight)
ight\}$ であるから , この関数のグラフ は, $y=3\sin 2x$ のグラフを x 軸方向に $-\frac{\pi}{6}$ 平行移動した ものである.周期は $2\pi\cdot \frac{1}{2}=\pi$ であり,x=0 のとき, $y=3\sin{\pi\over 3}={3\sqrt 3\over 2}$ となるので , グラフは次のようになる .

(3) この関数のグラフは , $y=2\cos x$ のグラフを x 軸方向に $rac{\pi}{3}$, y 軸方向に -1 平行移動したものである.周期は 2π で あり,x=0 のとき, $y=2\cos\left(-\frac{\pi}{3}\right)-1=2\cdot\frac{1}{2}-1=0$ となるので,グラフは次のようになる.

(4) この関数のグラフは, $y = \tan x$ のグラフをx 軸方向に $\frac{\pi}{4}$ 平行移動したものだから,周期は π であり,x=0のとき, $y= an\left(-rac{\pi}{4}
ight)=-1$ となるので,グラフは次のようにな る.

314 (1)
$$x+\frac{\pi}{3}=X$$
 とおくと, $2\cos X=\sqrt{3}$ すなわち, $\cos X=\frac{\sqrt{3}}{2}$ $0\leq x<2\pi$ より, $\frac{\pi}{3}\leq x+\frac{\pi}{3}<2\pi+\frac{\pi}{3}$ であるから $\frac{\pi}{3}\leq X<\frac{7}{3}\pi$ よって, $X=\frac{11}{6}\pi$, $\frac{13}{6}\pi$ $x=X-\frac{\pi}{3}$ であるから $X=\frac{11}{6}\pi$ のとき, $X=\frac{11}{6}\pi-\frac{\pi}{3}=\frac{3}{2}\pi$

$$X=rac{13}{6}\pi$$
 のとき, $x=rac{13}{6}\pi-rac{\pi}{3}=rac{11}{6}\pi$ したがって, $x=rac{3}{2}\pi,\;rac{11}{6}\pi$

(3)
$$2x - \frac{\pi}{6} = X$$
 とおくと, $2\sin X = 1$ すなわち, $\sin X = \frac{1}{2}$ $0 \le x < 2\pi$ より, $-\frac{\pi}{6} \le 2x - \frac{\pi}{6} < 4\pi - \frac{\pi}{6}$ であるから $-\frac{\pi}{6} \le X < \frac{23}{6}\pi$ よって, $X = \frac{\pi}{6}$, $\frac{5}{6}\pi$, $\frac{13}{6}\pi$, $\frac{17}{6}\pi$ $x = \frac{1}{2}X + \frac{\pi}{12}$ であるから $X = \frac{\pi}{6}$ のとき, $x = \frac{\pi}{12} + \frac{\pi}{12} = \frac{\pi}{6}$ $X = \frac{5}{6}\pi$ のとき, $x = \frac{5}{12}\pi + \frac{\pi}{12} = \frac{\pi}{2}$ $X = \frac{13}{6}\pi$ のとき, $x = \frac{13}{12}\pi + \frac{\pi}{12} = \frac{7}{6}\pi$ $X = \frac{17}{6}\pi$ のとき, $x = \frac{17}{12}\pi + \frac{\pi}{12} = \frac{3}{2}\pi$ したがって, $x = \frac{\pi}{6}$, $\frac{\pi}{2}$, $\frac{7}{6}\pi$, $\frac{3}{2}\pi$

315 (1)
$$\cos^2 x = 1 - \sin^2 x = 1 - t^2$$
 であるから,方程式は $2(1-t^2)+3t+3=0$ $2-2t^2+3t+3=0$ $2t^2-3t-5=0$

(2)
$$0 \le x < 2\pi$$
 より , $-1 \le \sin x \le 1$ すなわち , $-1 \le t \le 1 \cdots 1$ $2t^2 - 3t - 5 = 0$ を解くと $(2t - 5)(t + 1) = 0$ $t = \frac{5}{2}, -1$ ① より , $t = -1$ よって , $\sin x = -1$ であるから , $x = \frac{3}{2}\pi$

316 2 式を上から ①、② とする . (1) ① より ,
$$\tan x < -\frac{1}{\sqrt{3}}$$
 であるから

$$\frac{\pi}{2} < x < \frac{5}{6}\pi, \quad \frac{3}{2}\pi < x < \frac{11}{6}\pi \quad \cdots 3$$

② より ,
$$\sin x \ge \frac{\sqrt{2}}{2}$$
 であるから

$$\frac{\pi}{4} \le x \le \frac{3}{4}\pi \quad \cdots \quad \textcircled{4}$$

求める解は $③, \ ④$ の共通部分だから , $\dfrac{\pi}{2} < x \leq \dfrac{3}{4} \pi$

(2) 下のグラフを利用して ① を解くために , $\sin x = \cos x$ と なる x を求める .

 $\sin x = \cos x$ のとき, $\cos x \neq 0$ であるから $\frac{\sin x}{\cos x} = 1$,すなわち, $\tan x = 1$ よって, $0 \leq x < 2\pi$ において, $x = \frac{\pi}{4}$, $\frac{5}{4}\pi$ したがって,① の解は, $\frac{\pi}{4} < x < \frac{5}{4}\pi$ …③ ② より, $\sin x \geq \frac{1}{2}$ であるから

$$\frac{\pi}{6} \le x \le \frac{5}{6}\pi \quad \cdots \text{ (4)}$$

求める解は ③,④ の共通部分だから , $\dfrac{\pi}{4} < x \leq \dfrac{5}{6}\pi$

①の〔別解〕

i)
$$\cos x>0$$
 , すなわち $0\leq x<\frac{\pi}{2},\ \frac{3}{2}\pi< x<2\pi\cdots$ ⑤ のとき
$$\frac{\sin x}{\cos x}>1\ \text{であるから}\ ,\ \tan x>1$$
 これを解いて , $\frac{\pi}{4}< x<\frac{\pi}{2},\ \frac{5}{4}\pi< x<\frac{3}{2}\pi$ これと ⑤ より , $\frac{\pi}{4}< x<\frac{\pi}{2}\cdots$ ⑥

ii)
$$\cos x < 0$$
 , すなわち $\frac{\pi}{2} < x < \frac{3}{2}\pi \cdots$ ⑦ のとき $\frac{\sin x}{\cos x} < 1$ であるから , $\tan x < 1$ これを解いて , $0 \le x < \frac{\pi}{4}$, $\frac{\pi}{2} < x < \frac{5}{4}\pi$, $\frac{3}{2}\pi < x < 2\pi$ これと ⑦ より , $\frac{\pi}{2} < x < \frac{5}{4}\pi \cdots 8$

iii)
$$\cos x = 0$$
,すなわち $x = \frac{\pi}{2}, \ \frac{3}{2}\pi$ のとき

$$\sin x>0$$
 より , $0< x<\pi$ であるから , $x=\frac{\pi}{2}\cdots 9$ ⑥,⑧,⑨ より, $\frac{\pi}{4}< x<\frac{5}{4}\pi$

① の [別解] 三角関数の合成を利用

① より ,
$$\sin x - \cos x > 0$$

左辺 = $\sqrt{1^2 + (-1)^2} \sin(x + \alpha) = \sqrt{2} \sin(x + \alpha)$
ここで , $\cos \alpha = \frac{1}{\sqrt{2}}$, $\sin \alpha = -\frac{1}{\sqrt{2}}$ より , $\alpha = -\frac{\pi}{4}$ よって , $\sqrt{2} \sin\left(x - \frac{\pi}{4}\right) > 0$,すなわち $\sin\left(x - \frac{\pi}{4}\right) > 0$ こなる .

ここで,
$$x-\frac{\pi}{4}=X$$
 とおくと, $\sin X>0$ \cdots ①' $0 \le x < 2\pi$ より, $-\frac{\pi}{4} \le x-\frac{\pi}{4} < 2\pi-\frac{\pi}{4}$ であるから $-\frac{\pi}{4} \le X < \frac{7}{4}\pi$ よって,①' の解は, $0 < X < \pi$ となるので $0 < x-\frac{\pi}{4} < \pi$

よって,
$$(1)'$$
 の解は, $0 < X < \pi$ とた $0 < x - \frac{\pi}{4} < \pi$
$$\frac{\pi}{4} < x < \pi + \frac{\pi}{4}$$
 したがって, $\frac{\pi}{4} < x < \frac{5}{4}\pi$

- $\sin x = \tan x \cos x$ であるから $\tan x \cos x \le \tan x$ $\tan x \cos x \tan x \le 0$ $\tan x (\cos x 1) \le 0$ ここで, $\cos x \le 1$ より, $\cos x 1 \le 0$ よって, $\tan x \ge 0$ であるから $0 \le x < \frac{\pi}{2}, \quad \pi \le x < \frac{3}{2}\pi$
 - (2) $\cos^2 x = 1 \sin^2 x$ であるから $2(1 \sin^2 x) \sin x \le 1$ $2 2\sin^2 x \sin x \le 1$ $2 \sin^2 x + \sin x 1 \ge 0$ $(2\sin x 1)(\sin x + 1) \ge 0$ $\sin x \le -1, \quad \frac{1}{2} \le \sin x$ ここで, $-1 \le \sin x \le 1$ であるから, $\sin x = -1$ または, $\sin x \ge \frac{1}{2}$ よって, $x = \frac{3}{2}\pi, \quad \frac{\pi}{6} \le x < \frac{5}{6}\pi$
 - (3) $\sin^2 x = 1 \cos^2 x$ であるから $4(1-\cos^2 x) + 4\cos x < 1$ $4-4\cos^2 x + 4\cos x < 1$ $4\cos^2 x 4\cos x 3 > 0$ $(2\cos x + 1)(2\cos x 3) > 0$ $\cos x < -\frac{1}{2}, \ \frac{3}{2} < \cos x$ ここで,常に $2\cos x 3 < 0$ であるから, $2\cos x + 1 < 0$ よって, $\cos x < -\frac{1}{2}$ より, $\frac{2}{3}\pi < x < \frac{4}{3}\pi$
- 318 (1) $y=t^2-t-1$ ただし, $0 \le x < 2\pi$ より, $-1 \le \sin x \le 1$ であるから, $-1 \le t \le 1$ この式を標準形に変形すると $y=\left(x-\frac{1}{2}\right)^2-\frac{1}{4}-1$ $=\left(x-\frac{1}{2}\right)^2-\frac{5}{4}$ よって,グラフは図のようになる.

- (2) t=-1 のとき , y は最大値 1 をとる . このとき , $\sin x=-1$ $(0 \le x < 2\pi)$ であるから , $x=\frac{3}{2}\pi$ $t=\frac{1}{2}$ のとき , y は最小値 $-\frac{5}{4}$ をとる . このとき , $\sin x=\frac{1}{2}$ $(0 \le x < 2\pi)$ であるから , $x=\frac{\pi}{6}$, $\frac{5}{6}\pi$ 以上より 最大値 1 $\left(x=\frac{3}{2}\pi\right)$ 最小値 $-\frac{5}{4}$ $\left(x=\frac{\pi}{6},\frac{5}{6}\pi\right)$
- y = a y = a 0 t $-\frac{5}{4}$

 $y=t^2-t-1$ $(-1\le t\le 1)$ のグラフと , 直線 y=a のグラフが共有点をもてばよいので , $-\frac{5}{4}\le a\le 1$