Question 4.5

Α

The LDA will do better on the testing set since QDA might cause overfitting, however, since QDA is more flexible, it should do better on the training set.

В

QDA will do better in both traning and tetsing sets.

C ¶

QDA's prediction accuracy would improve relative to LDA. In QDA and other flexible models, the accuracy usually increases with the sample size, however, in LDA the model becomes more stable and accurate with smaller sample sizes.

D

FALSE, if the Bayes decision boundary is linear, there is a higher chance of overfitting the model when using QDA, therefore the error using LDA should be smaller in this scenario.

Question 4.12

Α

$$\hat{P}r(Y = orange | X = x) = \frac{exp(\beta^0 + \beta^1 1x)}{1 + exp(\beta^0 + \beta^1 1x)}$$

$$\log(\hat{P}r\frac{(Y=orange|X=x)}{1-Pr(Y=orange|X=x))} = \beta^0 + \beta^1 x$$

В

$$\hat{P}r(Y = orange | X = x) = \frac{exp(\hat{\alpha}_{orange0} + \hat{\alpha}_{orange1x})}{exp(\hat{\alpha}_{orange0} + \hat{\alpha}_{orange1x}) + exp(\hat{\alpha}_{apple0} + \hat{\alpha}_{apple1x})}$$

$$log(\hat{P}r\frac{(Y=orange|X=x)}{1-Pr(Y=orange|X=x)}) = (\hat{\alpha}_{orange0} + \hat{\alpha}_{orange1x}) - (\hat{\alpha}_{apple0} + \hat{\alpha}_{apple1x})$$

C

$$\hat{\beta}_0 = \hat{\alpha}_{orange0} - \hat{\alpha}_{apple0}$$
$$\hat{\beta}_1 x = \hat{\alpha}_{orange1} x - \hat{\alpha}_{apple1} x$$

D

$$\hat{\beta}_0 = \hat{\alpha}_{orange0} - \hat{\alpha}_{apple0} = 1.2 - 3 = -1.8$$

$$\hat{\beta}_1 x = \hat{\alpha}_{orange1} x - \hat{\alpha}_{apple1} x = -2 - 0.6 = -2.6$$

Ε

In []:

Question 4.14

```
In [414]: import pandas as pd
          import numpy as np
          import matplotlib.pyplot as plt
          import seaborn as sns
          import glm
          from sklearn.linear model import LogisticRegression
          from sklearn.metrics import accuracy score
          from sklearn.discriminant analysis import LinearDiscriminantAnalysis
          from sklearn.discriminant analysis import QuadraticDiscriminantAnalysis
          from sklearn.neighbors import KNeighborsClassifier
          from sklearn.metrics import confusion matrix, classification report, precis
          import statsmodels.formula.api as smf
          import statsmodels.api as sm
          from patsy import dmatrices
          import sklearn.linear model as skl lm
          from sklearn.metrics import mean squared error
          from sklearn.model selection import train test split, LeaveOneOut, KFold, c
          from sklearn.preprocessing import PolynomialFeatures
          import math
          from scipy.stats import ttest ind
          from scipy.stats import ttest 1samp
          import scipy.stats
          %matplotlib inline
```

```
In [51]: df = pd.read csv("desktop/Auto.csv")
```

In [343]: df

Out[343]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	year	origin	name	mpg0
0	18.0	8	307.0	130	3504	12.0	70	1	chevrolet chevelle malibu	
1	15.0	8	350.0	165	3693	11.5	70	1	buick skylark 320	
2	18.0	8	318.0	150	3436	11.0	70	1	plymouth satellite	
3	16.0	8	304.0	150	3433	12.0	70	1	amc rebel sst	
4	17.0	8	302.0	140	3449	10.5	70	1	ford torino	
387	27.0	4	140.0	86	2790	15.6	82	1	ford mustang gl	
388	44.0	4	97.0	52	2130	24.6	82	2	vw pickup	
389	32.0	4	135.0	84	2295	11.6	82	1	dodge rampage	
390	28.0	4	120.0	79	2625	18.6	82	1	ford ranger	
391	31.0	4	119.0	82	2720	19.4	82	1	chevy s- 10	

392 rows × 10 columns

```
In [53]: df.mpg.median()
```

Out[53]: 22.75

```
In [54]: df["mpg01"] = (df["mpg"] >= df["mpg"].median()).astype(int)
```

In [55]: df

O			
O11	т 1	וררו	
υu	_		

mpg	cylinders	displacement	horsepower	weight	acceleration	year	origin	name	mpg0
18.0	8	307.0	130	3504	12.0	70	1	chevrolet chevelle malibu	
15.0	8	350.0	165	3693	11.5	70	1	buick skylark 320	
18.0	8	318.0	150	3436	11.0	70	1	plymouth satellite	
16.0	8	304.0	150	3433	12.0	70	1	amc rebel sst	
17.0	8	302.0	140	3449	10.5	70	1	ford torino	
27.0	4	140.0	86	2790	15.6	82	1	ford mustang gl	
44.0	4	97.0	52	2130	24.6	82	2	vw pickup	
32.0	4	135.0	84	2295	11.6	82	1	dodge rampage	
28.0	4	120.0	79	2625	18.6	82	1	ford ranger	
31.0	4	119.0	82	2720	19.4	82	1	chevy s- 10	
	18.0 15.0 18.0 16.0 17.0 27.0 44.0 32.0 28.0	18.0 8 15.0 8 18.0 8 16.0 8 17.0 8 27.0 4 44.0 4 32.0 4	18.0 8 307.0 15.0 8 350.0 18.0 8 318.0 16.0 8 304.0 17.0 8 302.0 27.0 4 140.0 44.0 4 97.0 32.0 4 135.0 28.0 4 120.0	18.0 8 307.0 130 15.0 8 350.0 165 18.0 8 318.0 150 16.0 8 304.0 150 17.0 8 302.0 140 27.0 4 140.0 86 44.0 4 97.0 52 32.0 4 135.0 84 28.0 4 120.0 79	18.0 8 307.0 130 3504 15.0 8 350.0 165 3693 18.0 8 318.0 150 3436 16.0 8 304.0 150 3433 17.0 8 302.0 140 3449 27.0 4 140.0 86 2790 44.0 4 97.0 52 2130 32.0 4 135.0 84 2295 28.0 4 120.0 79 2625	18.0 8 307.0 130 3504 12.0 15.0 8 350.0 165 3693 11.5 18.0 8 318.0 150 3436 11.0 16.0 8 304.0 150 3433 12.0 17.0 8 302.0 140 3449 10.5 27.0 4 140.0 86 2790 15.6 44.0 4 97.0 52 2130 24.6 32.0 4 135.0 84 2295 11.6 28.0 4 120.0 79 2625 18.6	18.0 8 307.0 130 3504 12.0 70 15.0 8 350.0 165 3693 11.5 70 18.0 8 318.0 150 3436 11.0 70 16.0 8 304.0 150 3433 12.0 70 17.0 8 302.0 140 3449 10.5 70 27.0 4 140.0 86 2790 15.6 82 44.0 4 97.0 52 2130 24.6 82 32.0 4 135.0 84 2295 11.6 82 28.0 4 120.0 79 2625 18.6 82	18.0 8 307.0 130 3504 12.0 70 1 15.0 8 350.0 165 3693 11.5 70 1 18.0 8 318.0 150 3436 11.0 70 1 16.0 8 304.0 150 3433 12.0 70 1 17.0 8 302.0 140 3449 10.5 70 1 27.0 4 140.0 86 2790 15.6 82 1 44.0 4 97.0 52 2130 24.6 82 2 32.0 4 135.0 84 2295 11.6 82 1 28.0 4 120.0 79 2625 18.6 82 1	18.0 8 307.0 130 3504 12.0 70 1 chevrolet malibu 15.0 8 350.0 165 3693 11.5 70 1 skylark 320 18.0 8 318.0 150 3436 11.0 70 1 plymouth satellite 16.0 8 304.0 150 3433 12.0 70 1 amc rebel sst 17.0 8 302.0 140 3449 10.5 70 1 ford torino

392 rows × 10 columns

In [56]: df.corr()

Out[56]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	year	
mpg	1.000000	-0.777618	-0.805127	-0.778427	-0.832244	0.423329	0.580541	
cylinders	-0.777618	1.000000	0.950823	0.842983	0.897527	-0.504683	-0.345647	-
displacement	-0.805127	0.950823	1.000000	0.897257	0.932994	-0.543800	-0.369855	-
horsepower	-0.778427	0.842983	0.897257	1.000000	0.864538	-0.689196	-0.416361	-
weight	-0.832244	0.897527	0.932994	0.864538	1.000000	-0.416839	-0.309120	-
acceleration	0.423329	-0.504683	-0.543800	-0.689196	-0.416839	1.000000	0.290316	
year	0.580541	-0.345647	-0.369855	-0.416361	-0.309120	0.290316	1.000000	
origin	0.565209	-0.568932	-0.614535	-0.455171	-0.585005	0.212746	0.181528	
mpg01	0.836939	-0.759194	-0.753477	-0.667053	-0.757757	0.346822	0.429904	

In [57]: sns.pairplot(df);


```
In [58]: sns.boxplot(x='mpg01', y='horsepower', data=df);
```


In [59]: sns.boxplot(x='mpg01', y='weight', data=df);

In [60]: sns.boxplot(x='mpg01', y='acceleration', data=df);


```
In [61]: | sns.boxplot(x='mpg01', y='cylinders', data=df);
```


In [62]: sns.boxplot(x='mpg01', y='displacement', data=df);

In [63]: sns.boxplot(x='mpg01', y='year', data=df);

In [64]: sns.boxplot(x='mpg01', y='origin', data=df);

Based on the correlations, boxplots and pairplots, I will pick certain variables that seem to be good predictors for mpg01 and run a logistic model to check the significance.

```
In [65]: |y, X = dmatrices('mpg01 ~ weight + horsepower + cylinders + displacement '
       logit = sm.Logit(y, X)
       results logit = logit.fit()
       print(results_logit.summary())
       Optimization terminated successfully.
              Current function value: 0.264373
              Iterations 9
                            Logit Regression Results
       ______
       Dep. Variable:
                                       No. Observations:
                                mpg01
       392
       Model:
                                       Df Residuals:
                                Logit
       387
       Method:
                                  MLE
                                       Df Model:
       Date:
                       Wed, 13 Apr 2022
                                       Pseudo R-squ.:
       0.6186
       Time:
                              15:47:23
                                       Log-Likelihood:
                                                               -1
       03.63
                                 True
                                       LL-Null:
                                                               -2
       converged:
       71.71
       Covariance Type:
                            nonrobust
                                      LLR p-value:
                                                              1.70
       6e-71
       ______
                      coef std err
                                          Z
                                              P > |z| [0.025]
       0.9751
       Intercept 11.7966 1.709 6.902 0.000 8.447
       15.146
       weight
                   -0.0019
                            0.001
                                    -2.812
                                              0.005
                                                        -0.003
       -0.001
       horsepower
                   -0.0421 0.014
                                     -3.015
                                               0.003
                                                        -0.070
       -0.015
       cylinders
                -0.0129
                              0.346
                                     -0.037
                                               0.970
                                                        -0.691
       0.665
       displacement
                   -0.0130
                              0.008
                                      -1.579
                                               0.114
                                                        -0.029
       0.003
```

According to the p-values, horsepower and weight are the only statistically significant variables.

```
In [66]: #Partitioning the dataset
df_7076 = df[(df['year'] >=70) & (df['year'] <=76)]
df_7782 = df[(df['year'] >=77) & (df['year'] <=82)]</pre>
```

```
In [67]: #training set
         X1 = df_7076[['weight','horsepower']]
         lda = LinearDiscriminantAnalysis()
         lda.fit(X1,df_7076['mpg01'])
         LinearDiscriminantAnalysis(n_components=None, priors=None, shrinkage=None,
                       solver='svd', store covariance=False, tol=0.0001)
Out[67]: LinearDiscriminantAnalysis()
In [68]: # Testing Set
         X1_test = df_7782[['weight','horsepower']]
         # Confusion matrix
         conf_mat = confusion_matrix(df_7782['mpg01'], lda.predict(X1_test))
         print(conf mat)
         lda.score(X1_test, df_7782['mpg01'])
         print('Accuracy =', lda.score(X1_test, df_7782['mpg01']))
         [[ 50
                 4 ]
          [ 22 102]]
         Accuracy = 0.8539325842696629
In [69]: X1 = df_7076[['weight','horsepower']]
         qda = QuadraticDiscriminantAnalysis()
         qda.fit(X1,df_7076['mpg01'])
         QuadraticDiscriminantAnalysis(priors=None, reg param=0.0,
                        store covariance=False, tol=0.0001)
Out[69]: QuadraticDiscriminantAnalysis()
In [70]: # Testing Set
         X1 test = df 7782[['weight','horsepower']]
         # Confusion matrix
         conf_mat = confusion_matrix(df_7782['mpg01'], qda.predict(X1_test))
         print(conf mat)
         qda.score(X1 test, df 7782['mpg01'])
         print('Accuracy =', qda.score(X1_test, df_7782['mpg01']))
         [[52 2]
          [26 98]]
         Accuracy = 0.8426966292134831
In [71]: | X1 = df_7076[['weight','horsepower']]
         lr = LogisticRegression()
         mod = lr.fit(X1,df 7076['mpg01'])
```

```
In [72]: # Testing Set
         X1 test = df_7782[['weight','horsepower']]
         # Confusion matrix
         conf_mat = confusion_matrix(df_7782['mpg01'], lr.predict(X1_test))
         print(conf mat)
         #overall fraction of correct predictions
         lr.score(X1 test, df 7782['mpg01'])
         print('Accuracy =', lr.score(X1_test, df_7782['mpg01']))
         [[53 1]
          [37 87]]
         Accuracy = 0.7865168539325843
In [73]: # Training set
         X1 = df_7076[['weight','horsepower']]
         # Naive Bayes Fit
         from sklearn.naive_bayes import GaussianNB
         classifier = GaussianNB()
         classifier.fit(X1, df_7076['mpg01'])
Out[73]: GaussianNB()
In [74]: # Testing Set
         X1_test = df_7782[['weight','horsepower']]
         y pred = classifier.predict(X1 test)
         # Confusion matrix
         conf mat = confusion matrix(df 7782['mpg01'], y pred)
         print(conf mat)
         accuracy_score(df_7782['mpg01'], y_pred)
         print('Accuracy =', accuracy score(df 7782['mpg01'], y pred))
         [[ 53
                 1]
          [ 23 101]]
         Accuracy = 0.8651685393258427
In [75]: # Training set
         X1 = df_7076[['weight','horsepower']]
         # KNN Fit
         nbrs = KNeighborsClassifier(n neighbors=1)
         nbrs.fit(X1,df 7076['mpg01'])
         KNeighborsClassifier(algorithm='auto', leaf size=30, metric='minkowski',
                    metric params=None, n jobs=1, n neighbors=1, p=2,
                    weights='uniform')
Out[75]: KNeighborsClassifier(n jobs=1, n neighbors=1)
```

```
In [76]: # Testing Set
          X1_test = df_7782[['weight','horsepower']]
          # Confusion matrix
          conf_mat = confusion_matrix(df_7782['mpg01'], nbrs.predict(X1_test))
          print(conf mat)
          nbrs.score(X1_test, df_7782['mpg01'])
          print('Accuracy =', nbrs.score(X1 test, df 7782['mpg01']))
          [[50 4]
           [30 94]]
          Accuracy = 0.8089887640449438
In [77]: # Training set
          X1 = df 7076[['weight', 'horsepower']]
          # KNN Fit
          nbrs = KNeighborsClassifier(n neighbors=2)
          nbrs.fit(X1,df 7076['mpg01'])
          KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
                     metric params=None, n jobs=1, n neighbors=2, p=2,
                     weights='uniform')
Out[77]: KNeighborsClassifier(n_jobs=1, n_neighbors=2)
 In [78]: # Testing Set
          X1_test = df_7782[['weight','horsepower']]
          # Confusion matrix
          conf mat = confusion matrix(df 7782['mpg01'], nbrs.predict(X1 test))
          print(conf mat)
          nbrs.score(X1_test, df_7782['mpg01'])
          print('Accuracy =', nbrs.score(X1 test, df 7782['mpg01']))
          [[53 1]
           [48 76]]
          Accuracy = 0.7247191011235955
In [172]: # Training set
          X1 = df 7076[['weight','horsepower']]
          # KNN Fit
          nbrs = KNeighborsClassifier(n neighbors=4)
          nbrs.fit(X1,df_7076['mpg01'])
          KNeighborsClassifier(algorithm='auto', leaf size=30, metric='minkowski',
                     metric params=None, n jobs=1, n neighbors=4, p=2,
                     weights='uniform')
Out[172]: KNeighborsClassifier(n_jobs=1, n_neighbors=4)
```

```
In [173]: # Testing Set
X1_test = df_7782[['weight','horsepower']]

# Confusion matrix
conf_mat = confusion_matrix(df_7782['mpg01'], nbrs.predict(X1_test))
print(conf_mat)
nbrs.score(X1_test, df_7782['mpg01'])
print('Accuracy =', nbrs.score(X1_test, df_7782['mpg01']))

[[52 2]
[45 79]]
Accuracy = 0.7359550561797753
```

K=1 performed better compared to other values of K. Naive Bayes had the highest accuracy and lowest error compared to all other fits.

Question 4.16

```
In [81]: df1 = pd.read_csv("desktop/Boston.csv")
In [157]:
            df1
                          1 0.00632 18.0
                                                     0 0.538 6.575 65.199997 4.0900
                0
                                            2.31
                                                                                       1.0
                                                                                            296
                                                                                                   15.3 396.9
                            0.02731
                                       0.0
                                            7.07
                                                     0 0.469 6.421 78.900002
                                                                                4.9671
                                                                                       2.0
                                                                                            242
                                                                                                   17.8 396.9
                1
                          3 0.02729
                                       0.0
                                            7.07
                                                     0 0.469 7.185 61.099998 4.9671
                                                                                       2.0
                                                                                            242
                                                                                                   17.8 392.8
                2
                             0.03237
                                       0.0
                                            2.18
                                                     0 0.458 6.998 45.799999
                                                                                6.0622
                                                                                       3.0
                                                                                            222
                                                                                                   18.7 394.6
                3
                             0.06905
                                       0.0
                                            2.18
                                                        0.458 7.147
                                                                     54.200001
                                                                                6.0622
                                                                                       3.0
                                                                                            222
                                                                                                   18.7 396.9
                4
                        502 0.06263
                                       0.0
                                           11.93
                                                     0 0.573 6.593 69.099998 2.4786
                                                                                       1.0 273
                                                                                                   21.0 391.9
             501
                        503
                             0.04527
                                       0.0
                                           11.93
                                                     0 0.573 6.120 76.699997 2.2875
                                                                                            273
                                                                                                   21.0 396.9
             502
                        504 0.06076
                                       0.0 11.93
                                                     0 0.573 6.976 91.000000 2.1675
                                                                                       1.0
                                                                                           273
                                                                                                   21.0 396.9
             503
                        505 0.10959
                                       0.0
                                           11.93
                                                     0 0.573 6.794 89.300003 2.3889
                                                                                       1.0
                                                                                           273
                                                                                                   21.0 393.
             504
             505
                             0.04741
                                       0.0
                                          11.93
                                                       0.573 6.030 80.800003 2.5050
                                                                                                   21.0 396.9
```

506 rows × 16 columns

```
In [138]: df1["crim01"] = (df1["crim"] >= df1["crim"].median()).astype(int)
In [136]: df1['crim01'] = df1['crim01'].map({'df1["crim"] <= df1["crim"].median()':0,</pre>
```

In [344]: df1

Out[344]:

	Unnamed: 0	crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	bla
0	1	0.00632	18.0	2.31	0	0.538	6.575	65.199997	4.0900	1.0	296	15.3	396
1	2	0.02731	0.0	7.07	0	0.469	6.421	78.900002	4.9671	2.0	242	17.8	396
2	3	0.02729	0.0	7.07	0	0.469	7.185	61.099998	4.9671	2.0	242	17.8	392
3	4	0.03237	0.0	2.18	0	0.458	6.998	45.799999	6.0622	3.0	222	18.7	394
4	5	0.06905	0.0	2.18	0	0.458	7.147	54.200001	6.0622	3.0	222	18.7	396
501	502	0.06263	0.0	11.93	0	0.573	6.593	69.099998	2.4786	1.0	273	21.0	391
502	503	0.04527	0.0	11.93	0	0.573	6.120	76.699997	2.2875	1.0	273	21.0	396
503	504	0.06076	0.0	11.93	0	0.573	6.976	91.000000	2.1675	1.0	273	21.0	396
504	505	0.10959	0.0	11.93	0	0.573	6.794	89.300003	2.3889	1.0	273	21.0	393
505	506	0.04741	0.0	11.93	0	0.573	6.030	80.800003	2.5050	1.0	273	21.0	396

506 rows × 16 columns

In []: df1.

In [106]: df1.corr()

Out[106]:

	Unnamed: 0	crim	zn	indus	chas	nox	rm	age	
Unnamed: 0	1.000000	0.407407	-0.103393	0.399439	-0.003759	0.398736	-0.079971	0.203784	-1
crim	0.407407	1.000000	-0.200469	0.406583	-0.055892	0.420972	-0.219247	0.352734	-1
zn	-0.103393	-0.200469	1.000000	-0.533828	-0.042697	-0.516604	0.311991	-0.569537	(
indus	0.399439	0.406583	-0.533828	1.000000	0.062938	0.763651	-0.391676	0.644779	-(
chas	-0.003759	-0.055892	-0.042697	0.062938	1.000000	0.091203	0.091251	0.086518	-1
nox	0.398736	0.420972	-0.516604	0.763651	0.091203	1.000000	-0.302188	0.731470	-1
rm	-0.079971	-0.219247	0.311991	-0.391676	0.091251	-0.302188	1.000000	-0.240265	1
age	0.203784	0.352734	-0.569537	0.644779	0.086518	0.731470	-0.240265	1.000000	-1
dis	-0.302211	-0.379670	0.664408	-0.708027	-0.099176	-0.769230	0.205246	-0.747881	
rad	0.686002	0.625505	-0.311948	0.595129	-0.007368	0.611441	-0.209847	0.456022	-1
tax	0.666626	0.582764	-0.314563	0.720760	-0.035587	0.668023	-0.292048	0.506456	-1
ptratio	0.291074	0.289946	-0.391679	0.383248	-0.121515	0.188933	-0.355501	0.261515	-1
black	-0.295041	-0.385064	0.175520	-0.356977	0.048788	-0.380051	0.128069	-0.273534	1
Istat	0.258465	0.455621	-0.412995	0.603800	-0.053929	0.590879	-0.613808	0.602339	-1
medv	-0.226604	-0.388305	0.360445	-0.483725	0.175260	-0.427321	0.695360	-0.376955	ı
crim01	0.369430	0.409395	-0.436151	0.603260	0.070097	0.723235	-0.156372	0.613940	-1

In [111]: sns.pairplot(df1);

Based on high correlation and observable patterns with crim01, I chose the variables listen in the regression below.

Optimization terminated successfully.

Current function value: 0.244068

Iterations 10

Logit Regression Results

Logit Regression Results											
====											
Dep. Variab	le:	cri	m01 No. Ob	servations	:						
506		_									
Model: 499		Log	git Df Res	siduals:							
Method:		Ŋ	MLE Df Mod	del:							
6		•	122 21 1100								
Date:	Wee	d, 13 Apr 20)22 Pseudo	R-squ.:							
0.6479											
Time:		16:14:	:19 Log-Li	kelihood:		-1					
23.50		m-	TT N1	1.		2					
converged: 50.73		Ti	rue LL-Nul	- 1 :		-3					
Covariance	Type:	nonrobi	ıst LLR p-	-value:		5.36					
1e-95	71 -										
========	=========			:=======		=====					
====	_			_ 1 1							
0.975]	coef	std err	Z	P> z	[0.025						
-											
Intercept	-24.5694	3.733	-6.582	0.000	-31.886	-1					
7.253											
indus	-0.0583	0.043	-1.355	0.175	-0.143						
0.026 nox	43.9943	6 022	6.449	0.000	30.623	5					
7.365	43.9943	0.022	0.449	0.000	30.023	3					
dis	0.1562	0.146	1.073	0.283	-0.129						
0.442											
tax	-0.0072	0.002	-3.071	0.002	-0.012	_					
0.003											
lstat	0.0170	0.031	0.555	0.579	-0.043						
0.077 rad	0.6051	Λ 11Ω	5.141	0 000	0.374						
0.836	0.0051	0.110	J•141	0.000	0.5/4						
	========			:=======		=====					

=====

Possibly complete quasi-separation: A fraction 0.28 of observations can be e perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified.

Based on the p-values, I will continue with indus, nox, and rad.

```
In [113]: df1_50 = df1[(df1['age'] >=0) & (df1['age'] <=50)]</pre>
          df1_100 = df1[(df1['age'] >= 51) & (df1['age'] <= 100)]
In [115]: #training set
          X2 = df1_50[['nox','indus','rad']]
          lda = LinearDiscriminantAnalysis()
          lda.fit(X2,df1_50['crim01'])
          LinearDiscriminantAnalysis(n_components=None, priors=None, shrinkage=None,
                        solver='svd', store_covariance=False, tol=0.0001)
Out[115]: LinearDiscriminantAnalysis()
In [116]: # Testing Set
          X2_test = df1_100[['nox','indus','rad']]
          # Confusion matrix
          conf_mat = confusion_matrix(df1_100['crim01'], lda.predict(X2_test))
          print(conf_mat)
          lda.score(X2 test, df1 100['crim01'])
          print('Accuracy =', lda.score(X2_test, df1_100['crim01']))
          [[ 86 36]
           [ 40 197]]
          Accuracy = 0.7883008356545961
In [178]: # Training set
          X2 = df1 50[['nox','indus','rad']]
          # Naive Bayes Fit
          classifier = GaussianNB()
          classifier.fit(X2, df1 50['crim01'])
Out[178]: GaussianNB()
In [179]: # Testing Set
          X2 test = df1 100[['nox','indus','rad']]
          y1 pred = classifier.predict(X2 test)
          # Confusion matrix
          conf mat = confusion matrix(df1 100['crim01'], y1 pred)
          print(conf mat)
          accuracy score(df1 100['crim01'], y1 pred)
          print('Accuracy =', accuracy_score(df1_100['crim01'], y1_pred))
          [[ 86 36]
           [ 30 207]]
          Accuracy = 0.8161559888579387
In [186]: Specificity_NB = 207/(207+36)
In [187]: Specificity_NB
Out[187]: 0.8518518518518519
```

```
In [121]: | X2 = df1_50[['nox', 'indus', 'rad']]
          lr = LogisticRegression()
          mod1 = lr.fit(X2,df1_50['crim01'])
In [122]: # Testing Set
          X2_test = df1_100[['nox','indus','rad']]
          # Confusion matrix
          conf_mat = confusion_matrix(dfl_100['crim01'], lr.predict(X2_test))
          print(conf mat)
          lr.score(X2_test, df1_100['crim01'])
          print('Accuracy =', lr.score(X2_test, df1_100['crim01']))
          [[110 12]
           [ 63 174]]
          Accuracy = 0.7910863509749304
In [180]: # Training set
          X2 = df1_50[['nox','indus','rad']]
          # KNN Fit
          nbrs1 = KNeighborsClassifier(n_neighbors=1)
          nbrs1.fit(X2,df1_50['crim01'])
          KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
                     metric params=None, n jobs=1, n neighbors=1, p=2,
                     weights='uniform')
Out[180]: KNeighborsClassifier(n jobs=1, n neighbors=1)
In [181]:
          X2 test = df1 100[['nox','indus','rad']]
          conf mat = confusion matrix(dfl 100["crim01"], nbrs1.predict(X2 test))
          print(conf mat)
          nbrs1.score(X2 test, df1 100['crim01'])
          print('Accuracy =', nbrs1.score(X2 test, df1 100['crim01']))
          [[ 92 30]
           [ 58 179]]
          Accuracy = 0.754874651810585
In [182]: # Training set
          X2 = df1 50[['nox','indus','rad']]
          # KNN Fit
          nbrs2 = KNeighborsClassifier(n neighbors=2)
          nbrs2.fit(X2,df1 50['crim01'])
          KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
                     metric params=None, n jobs=1, n neighbors=2, p=2,
                     weights='uniform')
Out[182]: KNeighborsClassifier(n_jobs=1, n_neighbors=2)
```

```
In [183]: | X2_test = df1_100[['nox','indus','rad']]
          conf_mat = confusion_matrix(dfl_100["crim01"], nbrs2.predict(X2_test))
          print(conf mat)
          nbrs2.score(X2_test, df1_100['crim01'])
          print('Accuracy =', nbrs2.score(X2_test, df1_100['crim01']))
          [[118
                  4 ]
           [ 62 175]]
          Accuracy = 0.8161559888579387
In [184]: Specificity_KNN2 = 175/(175+4)
In [185]: Specificity_KNN2
Out[185]: 0.9776536312849162
In [174]: # Training set
          X2 = df1_50[['nox','indus','rad']]
          # KNN Fit
          nbrs3 = KNeighborsClassifier(n neighbors=3)
          nbrs3.fit(X2,df1_50['crim01'])
          KNeighborsClassifier(algorithm='auto', leaf size=30, metric='minkowski',
                     metric_params=None, n_jobs=1, n_neighbors=3, p=2,
                     weights='uniform')
Out[174]: KNeighborsClassifier(n jobs=1, n neighbors=3)
In [175]: | X2 test = df1 100[['nox','indus','rad']]
          conf mat = confusion matrix(dfl 100["crim01"], nbrs3.predict(X2 test))
          print(conf mat)
          nbrs3.score(X2_test, df1_100['crim01'])
          print('Accuracy =', nbrs3.score(X2_test, df1_100['crim01']))
          [[ 89 33]
           [ 59 178]]
          Accuracy = 0.7437325905292479
In [176]: # Training set
          X2 = df1_50[['nox','indus','rad']]
          # KNN Fit
          nbrs4 = KNeighborsClassifier(n neighbors=4)
          nbrs4.fit(X2,df1 50['crim01'])
          KNeighborsClassifier(algorithm='auto', leaf size=30, metric='minkowski',
                     metric params=None, n jobs=1, n neighbors=4, p=2,
                     weights='uniform')
Out[176]: KNeighborsClassifier(n jobs=1, n neighbors=4)
```

```
In [177]: X2_test = df1_100[['nox','indus','rad']]

conf_mat = confusion_matrix(df1_100["crim01"], nbrs4.predict(X2_test))
print(conf_mat)
nbrs4.score(X2_test, df1_100['crim01'])
print('Accuracy =', nbrs4.score(X2_test, df1_100['crim01']))

[[101 21]
[ 86 151]]
Accuracy = 0.7019498607242339
```

Since KNN with K=2 and the Naive Bayes models had the same exact accuracy, I decided choose a model based on specificity and therefore, I picked KNN with K=2.

Question 5.7

```
In [188]: df2 = pd.read_csv("desktop/Weekly.csv")
In [346]: df2['Direction'] = df2['Direction'].map({'Down':0, 'Up':1})
In [347]: df2
```

Out[347]:

	Year	Lag1	Lag2	Lag3	Lag4	Lag5	Volume	Today	Direction
0	1990	0.816	1.572	-3.936	-0.229	-3.484	0.154976	-0.270	0
1	1990	-0.270	0.816	1.572	-3.936	-0.229	0.148574	-2.576	0
2	1990	-2.576	-0.270	0.816	1.572	-3.936	0.159837	3.514	1
3	1990	3.514	-2.576	-0.270	0.816	1.572	0.161630	0.712	1
4	1990	0.712	3.514	-2.576	-0.270	0.816	0.153728	1.178	1
1084	2010	-0.861	0.043	-2.173	3.599	0.015	3.205160	2.969	1
1085	2010	2.969	-0.861	0.043	-2.173	3.599	4.242568	1.281	1
1086	2010	1.281	2.969	-0.861	0.043	-2.173	4.835082	0.283	1
1087	2010	0.283	1.281	2.969	-0.861	0.043	4.454044	1.034	1
1088	2010	1.034	0.283	1.281	2.969	-0.861	2.707105	0.069	1

1089 rows × 9 columns

```
In [348]: mod1 = smf.glm(formula='Direction ~ Lag1 + Lag2', data=df2, family=sm.famil
print(mod1.summary())
```

Generalized Linear Model Regression Results										
=====										
Dep. Variable:		Directi	ion	No. Ok	oservations:					
1089										
Model:		C	GLM	Df Res	siduals:					
1086		5		D.C. 14	1.7					
Model Family:		Binomi	Laı	DI MOC	del:					
-	ink Function: logi				•					
1.0000		109	J	Scale	•					
Method:		IF	RLS	Log-L	ikelihood:		-7			
44.11				_						
Date:	Thu	, 14 Apr 20)22	Deviar	nce:		1			
488.2										
Time:		10:55:	:53	Pearso	on chi2:		1.0			
9e+03 No. Iterations:			4							
Covariance Type:		nonrobu	=							
=======================================	.=======	========	=====	=====	========	=======	=====			
=====										
	coef	std err		z	P> z	[0.025				
0.975]										
Intercept 0) 2212	0 061	3	599	0.000	0 101				
0.342		0.001	J.		0.000	0.101				
	.0387	0.026	-1.	477	0.140	-0.090				
0.013										
Lag2	.0602	0.027	2.	270	0.023	0.008				
0.112										
	======		=====	=====		=======	:====			

```
In [349]: mod2 = smf.glm(formula='Direction ~ Lag1 + Lag2', data=df2.drop(0), family=
print(mod2.summary())
```

Generalized Linear Model Regression Results											
			=======	=======	========	=====					
Dep. Variable	e :	Direct	ion No. O	bservations:							
Model: 1085		(GLM Df Re	Df Residuals:							
Model Family	:	Binom	ial Df Mo	del:							
Link Function 1.0000	n:	log	git Scale	Scale:							
Method: 43.26		II	RLS Log-L	ikelihood:		- 7					
Date: 486.5	Thi	ı, 14 Apr 20		1							
Time: 9e+03		10:55	:55 Pears	on chi2:		1.0					
No. Iteration		nonrob				====					
0.975]				P> z	[0.025						
Intercept	0.2232	0.061	3.630	0.000	0.103						
Lag1 0.013	-0.0384	0.026	-1.466	0.143	-0.090						
Lag2 0.113	0.0608	0.027	2.291	0.022	0.009						
		=======		========		====					

```
In [382]: prediction = []
["Up" if x < 0.5 else "Down" for x in predictions]</pre>
```

```
In [388]: predictions_nominal = [ 0 if x < 0.5 else 1 for x in predictions]</pre>
           predictions nominal
            1,
            1,
            1,
            1,
            1,
            1,
            1,
            1,
            1,
            1,
            1,
            1,
            1,
            1,
            1,
            1,
            1,
            1,
            1,
In [389]: predictions_nominal[0]
Out[389]: 1
```

No, the observation was not correctly classified

```
In [410]: error = []

for i in range(0,len(df2)-1):
    mod3 = smf.glm(formula='Direction ~ Lag1 + Lag2', data=df2.drop(i), fam
    predictions_nominal[i] = [ 1 if mod3.predict()[i] > 0.5 else 0] #for i
    if (predictions_nominal[i]==df2.iloc[i, 8]):
        error.append(0)
    else:
        error.append(1)

#mod3.summary()
```

```
In [411]: error
             1
             1,
             0,
             1,
             1,
             1,
             0,
             1,
             1,
             1,
             1,
             1,
             0,
             1,
             1,
             1,
             1,
In [412]: np.mean(error)
```

Out[412]: 0.5045955882352942

```
In [*]: p_order = np.arange(1,11)
    r_state = np.arange(0,10)

mod3 = lr.fit(df2[["Lag1","Lag2"]],df2['Direction'])
    loo = LeaveOneOut()
    loo.get_n_splits(df2)
    scores = list()

for i in p_order:
    poly = PolynomialFeatures(i)
    X_poly = poly.fit_transform(df2[["Lag1","Lag2"]])
    score = cross_val_score(mod3, X_poly, df2.Direction, cv=loo, scoring='n scores.append(score)
```

```
/Users/youssefmahmoud/opt/anaconda3/lib/python3.8/site-packages/sklearn/l
inear_model/_logistic.py:763: ConvergenceWarning: lbfgs failed to converg
e (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown i
n:
    https://scikit-learn.org/stable/modules/preprocessing.html (https://s
cikit-learn.org/stable/modules/preprocessing.html)
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear_model.html#logistic-re
gression (https://scikit-learn.org/stable/modules/linear_model.html#logis
tic-regression)
    n_iter_i = _check_optimize_result(
/Users/youssefmahmoud/opt/anaconda3/lib/python3.8/site-packages/sklearn/l
inear_model/_logistic.py:763: ConvergenceWarning: lbfgs failed to converg
e (status=1):
```

Question 5.9

```
In [381]: df1
```

Out[381]:

	Unnamed: 0	crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	bla
0	1	0.00632	18.0	2.31	0	0.538	6.575	65.199997	4.0900	1.0	296	15.3	396
1	2	0.02731	0.0	7.07	0	0.469	6.421	78.900002	4.9671	2.0	242	17.8	396
2	3	0.02729	0.0	7.07	0	0.469	7.185	61.099998	4.9671	2.0	242	17.8	392
3	4	0.03237	0.0	2.18	0	0.458	6.998	45.799999	6.0622	3.0	222	18.7	394
4	5	0.06905	0.0	2.18	0	0.458	7.147	54.200001	6.0622	3.0	222	18.7	396
501	502	0.06263	0.0	11.93	0	0.573	6.593	69.099998	2.4786	1.0	273	21.0	391
502	503	0.04527	0.0	11.93	0	0.573	6.120	76.699997	2.2875	1.0	273	21.0	396
503	504	0.06076	0.0	11.93	0	0.573	6.976	91.000000	2.1675	1.0	273	21.0	396
504	505	0.10959	0.0	11.93	0	0.573	6.794	89.300003	2.3889	1.0	273	21.0	393
505	506	0.04741	0.0	11.93	0	0.573	6.030	80.800003	2.5050	1.0	273	21.0	396

506 rows × 16 columns

```
In [228]: mu_medv = df1.medv.mean()
In [229]: mu_medv
Out[229]: 22.532806324110698
In [235]: std_medv = df1.medv.std()
In [236]: std_medv
Out[236]: 9.19710408737982
In [237]: SE_medv = (std_medv/506**0.5)
In [238]: SE_medv
Out[238]: 0.4088611474975351
In [213]: medv = df1["medv"]
In [218]: T = 506
```

np.random.choice(medv, replace = True, size = T) Out[219]: array([16.7, 13.2, 24.6, 24.8, 27.5, 18.2, 20.6, 22.3, 15., 24.2, 29.1, 23.6, 15.7, 18.7, 13. , 19.9, 16.1, 23.1, 22.8, 48.5, 11.7, 30.8, 14.5, 50. , 11.7, 21.7, 25. , 16.8, 21. , 19.1, 26.6, 50. , 20.8, 30.3, 24.6, 50. , 20.8, 17.5, 17.1, 34.9, 11.9, 24.7, 31.6, 19. , 14.4, 10.4, 25.2, 27.5, 23. , 20. , 7. , 19.4, 23.9, 19.4, 17.9, 21.8, 35.4, 26.6, 13.1, 14.9, 20.6, 34.6, 23.6, 14.1, 13.4, 12.1, 19. , 22.9, 16.3, 24.5, 20.4, 20.8, 22.6, 16.1, 24.1, 42.8, 22.5, 19.8, 25., 22.2, 14.1, 19.9, 22.8, 34.9, 13.3, 14.1, 19.5, 21.5, 34.9, 19.3, 24.1, 16.7, 10.5, 48.3, 14.4, 13.1, 23.9, 24.7, 33. 15.6, 7.4, 31.5, 31.1, 11.7, 24.5, 13.1, 6.3, 34.7, 19.3, 10.9, 50. , 22.2, 11.7, 31.6, 18.9, 17.1, 15.1, 14.3, 15.2, 15.2, 7. , 22.3, 21. , 17.4, 30.3, 5. , 15.6, 13.8, 16.1, 19.1, 16.8, 7.4, 16.6, 48.8, 19.4, 17.5, 13.8, 13.6, 50. , 12. , 19.6, 19.1, 18.1, 7.4, 20.2, 22.9, 20.8, 44.8, 36.2, 20.6, 37.6, 18.6, 23.8, 24.4, 22.6, 13.1, 23.4, 50. , 23.8, 35.1, 17.7, 21.2, 18.7, 17.4, 22.6, 17.4, 11.9, 17.1, 22.8, 24.8, 21.9, 13.9, 5., 43.1, 13.8, 21.1, 32., 23.7, 33.3, 24.8, 30.5, 16.2, 28.7, 24.4, 32.4, 23.7, 20. , 25. , 14.5, 23.8, 23.8, 22.4, 31.7, 20.9, 24.3, 13.8, 19.7, 11.7, 29.8, 36.1, 29.1, 14.8, 16.2, 14.9, 50. , 10.4, 24.2, 28.5, 16.1, 34.7, 13.8, 39.8, 12.6, 20.8, 36.5, 22.2, 26.6, 16.8, 23.1, 18.8, 12.7, 10.9, 21.5, 17.8, 24.4, 13.1, 18.6, 24.7, 22.8, 18.7, 7.2, 10.2, 21.7, 13.8, 23.2, 10.4, 17.8, 31.1, 24.7, 24.4, 22.6, 5. , 17.8, 20.7, 11.7, 24.3, 14.1, 16.4, 12.8, 23.9, 17.1, 23.4, 7.4, 44., 23.2, 23.1, 37.9, 28.7, 14.9, 22., 15., 19.1, 16.1, 24.8, 15.2, 19.1, 24.7, 20. , 20.4, 20.2, 35.4, 10.9, 20.4, 23.6, 18.4, 19.5, 14.8, 50., 35.1, 20.9, 18.4, 23.2, 50., 50., 16.8, 35.4, 31.5, 21.4, 18.7, 24.5, 22.2, 10.5, 36.2, 16.1, 15.6, 21.4, 22.5, 21.8, 18.5, 27.5, 27.9, 23.7, 23.3, 26.5, 19.5, 36. 36.2, 20.4, 14.6, 21.7, 14.3, 8.4, 23.7, 13.2, 21.9, 16.4, 19.3, 8.3, 23.6, 20.1, 14.5, 17.6, 42.3, 50., 24.6, 18.6, 23.1, 5. , 16.7, 12.1, 26.2, 19.4, 18.9, 17.2, 19.8, 20.8, 18.8, 38.7, 50. , 11.8, 15.6, 9.7, 29.1, 10.2, 25.2, 23.9, 13.5, 15., 19.7, 25. , 50. , 19.5, 29. , 22. , 15. , 32.5, 21.2, 30.3, 22.2, 27.5, 13.3, 25.1, 17.1, 31.5, 13.8, 18.7, 19.9, 42.3, 25., 9.7, 24.8, 20. , 16.2, 12.8, 29.6, 23.1, 32.5, 20.1, 19.1, 24.1, 16.2, 24.7, 16.1, 39.8, 23.1, 28.4, 24.3, 32.2, 20., 20.8, 32., 31., 17.8, 48.8, 6.3, 24.5, 31.7, 43.8, 35.2, 15.7, 24.2, 15.1, 19.2, 36.1, 8.1, 23.3, 23.7, 27.5, 13.6, 14.5, 20.3, 35.4, 50. , 14.8, 29.9, 8.3, 17.4, 20.6, 22.2, 21.4, 23.2, 20.6, 32.9, 10.9, 17.7, 19.6, 23.4, 28.6, 22.1, 23.1, 22.1, 33.2, 21.4, 48.8, 14.5, 22.9, 23.7, 16.8, 48.5, 19.4, 24.8, 20.9, 14., 33.1, 19.8, 12.8, 23.1, 22.5, 19.7, 18.9, 31.2, 36.4, 16.2, 13.9, 21.7, 48.8, 12.7, 22. , 23. , 7.5, 25., 24.4, 17.9, 16.2, 19.9, 21.8, 10.5, 15.2, 21.4, 17.1, 20.6, 17.8, 20.9, 15., 29.8, 13.8, 20.3, 26.6, 8.8, 18.7, 15.1, 29. , 24.5, 20. , 19.6, 20.4, 13.8, 23.3, 19.6, 13.8, 34.9, 21.2,

33.1, 13.9, 23.3, 28.6, 25.3, 16.5, 7.4, 27.1, 33.2,

8.4, 19.81)

```
In [241]: np.random.seed(123) # for reproducible randomness
          B = 50000
          boot_samples = np.zeros((T, B))
          for i in range(B):
              boot_samples[:, i] = np.random.choice(medv, replace = True, size = T) #
          boot samples[:, 0:5] # first 5 bootstrap samples (first 5 columns of boot s
Out[241]: array([[27.5, 20.5, 31.6, 31.6, 10.2],
                 [11.3, 21.1, 11.9, 23.1, 20.1],
                 [20.4, 50., 45.4, 23.3, 35.1],
                 [30.1, 18.2, 32.9, 7.4, 32.],
                 [48.3, 19.7, 7.2, 20.9, 17.2],
                 [23., 18.5, 18.2, 14.5, 16.7]])
In [269]: mu_hat, SE_hat = np.mean(medv), (np.std(medv, ddof = 1))/math.sqrt(T)
          print("The sample mean and standard error are {:.4f} and {:.4f}, resp.".for
          # {} refers to a variable, and :.4f rounds the number off to 4 decimal place
          boot_means = np.mean(boot_samples, axis = 0) # apply function np.mean() to
          boot_SEs = (np.std(boot_samples, ddof = 1, axis = 0))/math.sqrt(T) # apply
          print('First 5 bootstrap sample means: ', np.round(boot_means[:5], 4)) # ro
          print('First 5 bootstrap sample standard errors: ', np.round(boot_SEs[:5],
          The sample mean and standard error are 22.5328 and 0.4089, resp.
          First 5 bootstrap sample means: [22.1239 22.8585 22.734 21.9553 22.603
          First 5 bootstrap sample standard errors: [0.3852 0.4117 0.4103 0.3888
          0.41611
          The sample SE calculated in part(b) is very close to the bootstrap Standard Errors.
In [249]: Medv confint = [mu medv-(2*SE medv), mu medv+(2*SE medv)]
In [250]: Medv confint
Out[250]: [21.715084029115626, 23.35052861910577]
In [264]: | t_test = ttest_1samp(medv, 22.538 )
In [265]: t_test.pvalue
Out[265]: 0.9898699319560071
          Based on the P-value, we fail to reject that 22.538 is the mean of medv, which is consistent with
```

our findings.

```
In [266]: |med_medv = df1.medv.median()
```

```
In [267]: med_medv
Out[267]: 21.2
In [272]: np.random.seed(123) # for reproducible randomness
         B = 50000
         boot_samples1 = np.zeros((T, B))
         for i in range(B):
             boot samples1[:, i] = np.random.choice(medv, replace = True, size = T)
         boot_samples1[:, 0:6] # first 5 bootstrap samples (first 5 columns of boot
Out[272]: array([[27.5, 20.5, 31.6, 31.6, 10.2, 33.8],
                [11.3, 21.1, 11.9, 23.1, 20.1, 15.6],
                [20.4, 50., 45.4, 23.3, 35.1, 13.8],
                [30.1, 18.2, 32.9, 7.4, 32., 36.1],
                [48.3, 19.7, 7.2, 20.9, 17.2, 30.1],
                [23. , 18.5, 18.2, 14.5, 16.7, 14.6]])
In [290]: | med_medv = np.median(medv)
         print("The sample median {:.4f}".format(med_medv))
         # {} refers to a variable, and :.4f rounds the number off to 4 decimal plac
         boot medians = np.median(boot samples1, axis = 0) # apply function np.mean(
         print('First 5 bootstrap sample medians: ', np.round(boot medians[:5], 4))
         The sample median 21.2000
         First 5 bootstrap sample medians: [20.8 21.7 21.7 21.15 21.
In [293]: Median SE = np.std(boot medians, ddof = 1)
In [294]: Median SE
Out[294]: 0.37793954673997743
In [288]: mu 10th = np.percentile(medv,10)
In [289]: mu 10th
Out[289]: 12.75
```