L'AXIOMA D'ELECCIÓ DE ZERMELO I EL LEMA DE ZORN-KURATOWSKI

ENRIC COSME LLÓPEZ CELIA SIFRE ARMENGOL

RESUM. En este document presentem l'equivalència entre l'Axioma d'Elecció de Zermelo i el Lema de Zorn-Kuratowski. Hem seguit prinicipalment les idees de Lewin en [2]. La demostració ací desenvolupada apareix en [3].

Lema de Zorn-Kuratowski Siga (P, \leq) un conjunt ordenat on $P \neq \emptyset$ i tota cadena no buida de (P, \leq) té suprem en (P, \leq) , aleshores (P, \leq) té un element maximal.

Definició 0.1 (Conjunt disjunt). Siga \mathcal{X} un conjunt, direm que \mathcal{X} és un conjunt disjunt i ho denotarem per $\mathrm{Disj}(\mathcal{X})$, si per a cada X,Y conjunts diferents en \mathcal{X} es té que $X \cap Y = \emptyset$.

Axioma d'Elecció de Zermelo Siga $\mathcal X$ un conjunt tal que $\varnothing \notin \mathcal X$ i Disj $(\mathcal X)$, aleshores existeix una aplicació

$$F \colon \mathcal{X} \longrightarrow \bigcup \mathcal{X}$$

tal que, per a cada $X \in \mathcal{X}$, es té que $F(X) \in X$. A l'aplicació F l'anomenem aplicació d'elecció per a F.

Teorema 0.2. L'Axioma d'Elecció de Zermelo i el Lema de Zorn-Kuratowski són equivalents.

Demostració. Suposem l'Axioma d'Elecció de Zermelo i demostrem el Lema de Zorn-Kuratowski.

Siga (P, \leq) un conjunt ordenat amb $P \neq \emptyset$ i on tota cadena no buida en (P, \leq) té suprem en (P, \leq) . Volem demostrar que (P, \leq) té un element maximal.

Introduïm els següents conjunts auxiliars. Si \mathcal{C} és una cadena no buida en (P, \leq) i x és un element en \mathcal{C} , definim el segment inicial d'x en \mathcal{C} com el conjunt

$$\mathcal{C}_{\downarrow x} = \{ y \in \mathcal{C} \mid y < x \}.$$

Notem que si \mathcal{C} és una cadena en (P, \leq) aleshores, per a tot $x \in \mathcal{C}$, el segment inicial d'x en \mathcal{C} també és una cadena.

Per altra banda, si \mathcal{C} és una cadena no buida en (P, \leq) , definim el conjunt de les fites superiors estrictes de \mathcal{C} com el conjunt

$$\mathrm{Upp}(\mathcal{C}) = \{ p \in P \mid \forall y \in \mathcal{C} (y < p) \}.$$

1

23 de juny de 2021

Anem a demostrar que (P, \leq) té un element maximal per reducció a l'absurd. Suposem que (P, \leq) no té cap element maximal.

Considerem un primer resultat.

Lema 0.3 (Lema A). Si \mathcal{C} és una cadena no buida en (P, \leq) , aleshores el conjunt $Upp(\mathcal{C})$ no és buit.

Demostració. Si suposem que Upp(\mathcal{C}) és buit, això vol dir que per a tot $p \in P$ existeix un $y \in \mathcal{C}$ tal que $p \leq y$. Siga x una fita superior de \mathcal{C} , aleshores $y \leq x$ per a tot $y \in \mathcal{C}$. Per la condició anterior concloem que $x \in \mathcal{C}$. Això vol dir que xés un element maximal de (P, \leq) , ja que si z és un element en P tal que $x \leq z$, aleshores existeix un y en \mathcal{C} tal que $x \leq z \leq y \leq x$. Per tant x = z. Açò ens dona una contradicció amb la suposició de que (P, \leq) no té elements maximals. Per tant $Upp(\mathcal{C})$ no pot ser buit.

Queda demostrat el Lema A.

Considerem el conjunt

$$C = \{ Upp(C) \mid C \text{ cadena no buida en } (P, \leq) \}.$$

Notem que Ø ∉ C pel Lema A. Per a poder emprar l'Axioma d'Elecció de Zermelo necessitem comprovar la condició de que C siga disjunt però, amb la forma que té C no sabem si açò és cert. Així, considerem en el seu lloc, el coproducte de C. És a dir,

$$\coprod \mathtt{C} = \coprod_{\mathcal{C}} \mathrm{Upp}(\mathcal{C}) = \bigcup_{\mathcal{C}} (\mathrm{Upp}(\mathcal{C}) \times \{\mathcal{C}\})$$

on, en l'anterior expressió, l'índex \mathcal{C} recorre totes les cadenes no buides en (P, \leq) . Pel Lema A $\emptyset \notin \prod C$ i, a més, es té que $Dis(\prod C)$ ja que cada membre en $\prod C$ està etiquetat amb la cadena corresponent.

Apliquem l'Axioma d'Elecció de Zermelo sobre [] C. Aleshores existeix una aplicació d'elecció

$$F\colon \coprod_{\mathcal{C}} \mathrm{Upp}(\mathcal{C}) \longrightarrow \bigcup \left(\coprod_{\mathcal{C}} \mathrm{Upp}(\mathcal{C})\right)$$
on, per a cada $\mathrm{Upp}(\mathcal{C}) \times \{\mathcal{C}\}$ en $\coprod \mathcal{C}$ la seua imatge per F satisfà que

$$F(\text{Upp}(\mathcal{C}) \times \{\mathcal{C}\}) \in \text{Upp}(\mathcal{C}) \times \{\mathcal{C}\}.$$

Aleshores si \mathcal{C} és una cadena no buida en (P, \leq) , tenim que $F(\mathrm{Upp}(\mathcal{C})$ és un element de la forma $(H(\mathrm{Upp}(\mathcal{C}), \mathcal{C}), \text{ on } H(\mathrm{Upp}(\mathcal{C}))$ és un element en $\mathrm{Upp}(\mathcal{C})$. En definitiva, per a cada cadena no buida C en (P, \leq) estem elegint una fita superior estricta $H(\mathrm{Upp}(\mathcal{C}))$ en $\mathrm{Upp}(\mathcal{C})$.

Per a continuar la demostració introduïm el concepte de conjunt conforme en (P, <).

Definició 0.4 (Conjunt conforme). Siga A un subconjunt no buit de P. Direm que A és conforme si

(1) L'ordre $\leq_{\uparrow A \times A}$ és un bon ordre, és a dir, el subconjunt (A, \leq) , ordenat per la restricció de \leq a A és tal que tot subconjunt no buit d'A té mínim. Notem, en particular, que A serà una cadena.

(2) Per a tot $x \in A$, $x = H(\text{Upp}(A_{\downarrow x}))$.

Considerem un lema auxiliar sobre conjunts conformes.

Lema 0.5 (Lema B). Si A i B són conjunts conformes i $A \setminus B \neq \emptyset$, aleshores existeix un $x \in A \setminus B$ tal que $B = A_{\downarrow x}$.

Demostració. Com $A \setminus B$ està inclós en A, $A \setminus B \neq \emptyset$ i $\leq_{\uparrow A \times A}$ és un bon ordre, aleshores podem considerar el següent element

$$x = \min(A \setminus B).$$

Anem a demostrar que $B = A_{\downarrow x}$.

Demostrem la inclusió $A_{\downarrow x} \subseteq B$. Siga y un conjunt en $A_{\downarrow x}$, aleshores $y \in A$ i y < x. Si suposem que $y \notin B$, aleshores $y \in A \setminus B$ i $y < x = \min(A \setminus B)$. És a dir, arribem a una contradicció. Per tant $y \in B$. És a dir $A_{\downarrow x} \subseteq B$.

Per a l'altra inclusió, suposem, per reducció a l'absurd, que $B \not\subseteq A_{\downarrow x}$, aleshores $B \setminus A_{\downarrow x}$ no és buit. Com B és conforme, $B \setminus A_{\downarrow x} \subseteq B$ i $B \setminus A_{\downarrow x}$ no és buit, aleshores podem prendre

$$y = \min(B \setminus A_{\downarrow x}).$$

Considerem un lema auxiliar.

Lema 0.6 (Lema B.1). Si u és un element en $B_{\downarrow y}$ i v és un element en A tal que v < u, aleshores $v \in B_{\downarrow y}$.

Demostració. La condició v < u < y és immediata. Només ens cal demostrar que $v \in B$. Suposem que no és el cas, és a dir, que $v \notin B$. Així, $v \in A \setminus B$. Recordem que $x = \min(A \setminus B)$. Per tant $x \le v$. Així estem en la situació $x \le v < u < y$. Com $v \notin B$ i ja hem vist que $A_{\downarrow x} \subseteq B$, aleshores $v \notin A_{\downarrow x}$. Com v < u, aleshores $v \notin A_{\downarrow x}$. Però com $v \in A_{\downarrow x}$. Així, $v \in A_{\downarrow x}$. Però com $v \in A_{\downarrow x}$ i $v \in A_{\downarrow x}$. Així, $v \in A_{\downarrow x}$ pertant $v \in A_{\downarrow x}$. Aleshores arribem a una contradicció. Per tant $v \in A_{\downarrow x}$.

Queda, així, demostrat el Lema B.1.

Continuem amb la demostració del Lema B.

Com $B_{\downarrow y} \subseteq B$, $A \setminus B \neq \emptyset$ i A és conforme, podem definir l'element

$$z = \min(A \setminus B_{\downarrow y}).$$

Considerem un altre lema auxiliar.

Lema 0.7 (Lema B.2). Es dóna la igualtat $A_{\downarrow z} = B_{\downarrow y}$.

Demostració. Demostrem les dos inclusions.

Siga $w \in A_{\downarrow z}$, així $z \in A$ i w < z. Suposem, per reducció a l'absurd, que $w \notin B_{\downarrow y}$. Així, $w \in A \setminus B_{\downarrow y}$ i $w < z = \min(A \setminus B_{\downarrow y})$. Per tant, arribem a una contradicció. Concloem que $w \in B_{\downarrow y}$. És a dir, es dona la inclusió $A_{\downarrow z} \subseteq B_{\downarrow y}$.

Per a l'altra inclusió, siga $t \in B_{\downarrow y}$. Aleshores $t \in B$ i t < y. Suposem, per reducció a l'absurd, que $t \notin A$. Per tant $t \in B \setminus A$. Com $A_{\downarrow x}$ és un suconjunt d'A,

 $B \setminus A \subseteq B \setminus A_{\downarrow x}$. Per tant $t \in B \setminus A_{\downarrow x}$ i $t < y = \min(B \setminus A_{\downarrow x})$. Arribem així a una contradicció. Per tant $t \in A$.

Només ens que da demostrar que t < z. Notem que t i z són elements d' A. A més, com A és conforme $\leq_{\restriction A \times A}$ és un bon ordre. Així, una de les següents opcions s'ha de donar t = z, z < t o t < z. Estudiem les diferents possibilitats.

El cas t = z no pot donar-se perquè $z \notin B_{\downarrow y}$ i $t \in B_{\downarrow y}$.

Si suposem que es dona el cas z < t, aleshores tenim que z < t < y. Notem que $z \in A$ i $t \in B_{\downarrow y}$. Pel Lema B.1, concloem que $z \in B_{\downarrow y}$ i açò és una contradicció. Per tant el cas z < t no pot ocòrrer.

Aleshores, necessàriament, t < z. És a dir, hem demostrat que $B_{\downarrow y} \subseteq A_{\downarrow z}$.

Concloem que $B_{\downarrow y} = A_{\downarrow z}$. Queda, així, demostrat el Lema B.2.

Com a conseqüència de la igualtat $B_{\downarrow y} = A_{\downarrow z}$ demostrada en el Lema B.2, del fet que $B_{\downarrow y} \subseteq B$, de que $z \in A$ i de que $x = \min(A \setminus B)$, concloem que $z \le x$.

Per altra banda, com A i B són conjunts conformes, la segona condició en la Definició 0.4 ens diu que

$$z = H(\operatorname{Upp}(A_{\downarrow z})) = H(\operatorname{Upp}(B_{\downarrow y})) = y.$$

En l'anterior igualtat estem emprant la igualtat $B_{\downarrow y} = A_{\downarrow z}$ del Lema B.2. Com $y \in B$, aleshores $z \neq x$. Així obtenim la desigualtat estricta z < x, per tant $y \in A_{\downarrow x}$ i arribem a una contradicció amb la definició de y.

Aquesta contradicció ve de suposar que $B \not\subseteq A_{\downarrow x}$. Per tant, concloem que $B \subseteq A_{\downarrow x}$.

Concloem que $B = A_{\downarrow x}$. Queda, així, demostrat el Lema B.

Per a continuar amb la demostració del Teorema 0.2, considerem un nou lema auxiliar sobre conjunts conformes. Aquest lema ens diu que la unió arbitrària de conjunts conformes és un conjunt conforme.

Lema 0.8 (Lema C). Siga $(A_i)_{i \in I}$ una família de conjunts conformes, aleshores $\bigcup_{i \in I} A_i$ és un conjunt conforme.

Demostració. Notem que la unió no és buida perquè en la Definició 0.4 demanem que els conjunts conformes no siguen buits.

Anem a demostrar que la restricció de l'ordre a $\bigcup_{i\in I} A_i$ és un bon ordre. Siga X un subconjunt no buit de $\bigcup_{i\in I} A_i$, aleshores per a tot $x\in X$, existeix un índex $i_x\in I$ tal que $x\in A_{i_x}$. Siguen x,y elements d'X tals que $x\neq y$. Si $A_{i_x}\neq A_{i_y}$, podem suposar sense pèrdua de generalitat que $A_{i_x}\setminus A_{i_y}\neq \emptyset$, aleshores pel Lema B, existeix un $z\in A_{i_x}\setminus A_{i_y}$ tal que $A_{i_y}=(A_{i_x})_{\downarrow z}$. Per tant

$$y \in A_{i_y} = (A_{i_x})_{\downarrow z} \subseteq A_{i_x}.$$

En definitiva, podem garantir l'existència d'un índex $i \in I$ per al què $X \subseteq A_i$. Com A_i és conforme $X \subseteq A_i$ i X no és buit, aleshores existeix $\min(X)$.

Per al segon ítem en la Definició 0.4 per al conjunt $\bigcup_{i \in I} A_i$, si x és un element en $\bigcup_{i \in I} A_i$, aleshores existeix un $i \in I$ tal que $x \in A_i$. Com A_i és conforme, aleshores $x = H(\operatorname{Upp}(A_i))$.

Concloem que $\bigcup_{i \in I} A_i$ és un conjunt conforme. Queda demostrat el Lema C. \square

Estem en condicions de finalitzar la primera implicació en la demostració del Teorema 0.2. Considerem el major conjunt conforme possible, és a dir,

$$\mathfrak{K} = \bigcup \{ A \mid A \text{ \'es un conjunt conforme } \}.$$

El Lema C ens garantitza que \mathfrak{K} és conforme. De fet, és el major conjunt conforme possible. En particular \mathfrak{K} és una cadena no buida i podem considerar l'element $H(\operatorname{Upp}(\mathfrak{K}))$, que recordem és un fita superior estricta de \mathfrak{K} .

No obstant, el conjunt

$$\mathfrak{K} \cup \{H(\mathrm{Upp}(\mathfrak{K}))\}$$

torna a ser conforme i arribem a una contradicció, ja que hauria d'ocòrrer que $H(\text{Upp}(\mathfrak{K}))$ és un element en \mathfrak{K} estrictament major que tots els elements en \mathfrak{K} .

Esta contradicció ve de suposar que (P, \leq) no tenia elements maximals. Per tant, concloem que (P, \leq) té almenys un element maximal.

Hem demostrat així, que l'Axioma d'Elecció de Zermelo implica el Lema de Zorn-Kuratowski.

Anem a demostrar l'altra implicació. Suposem el Lema de Zorn-Kuratowski i passem a demostrar l'Axioma d'Elecció de Zermelo. Considerem un conjunt $\mathcal X$ tal que \varnothing no hi pertany i tal que $\mathrm{Disj}(\mathcal X)$. Volem demostrar que existeix una aplicació $F\colon \mathcal X\longrightarrow \bigcup \mathcal X$ tal que, per a tot $X\in \mathcal X$ es tinga que $F[X]\in \mathcal X$.

Considerem el conjunt

$$P = \left\{ (\mathcal{Y}, G) \in \operatorname{Sub}(\mathcal{X}) \times \operatorname{Hom}\left(\mathcal{Y}, \bigcup \mathcal{Y}\right) \mid \forall Y \in \mathcal{Y} \left(G[Y] \in Y \right) \right\}.$$

Sobre aquest conjunt definim l'ordre $(\mathcal{Y},G) \leq (\mathcal{Z},H)$ si, i només si, $\mathcal{Y} \subseteq \mathcal{Z}$ i $H_{|\mathcal{Y}} = G$.

Siga X un element en \mathcal{X} , aleshores X no és buit per hipòtesi. Siga $x \in X$. Considerem l'aplicació

Aleshores $(\{X\}, J)$ és un element en P. Per tant P no és buit. Siga $\mathcal C$ una cadena en (P, \leq) , anem a demostrar que $\mathcal C$ té suprem en (P, \leq) . Per a aquesta cadena considerem el conjunt

$$\mathcal{Z} = \bigcup_{(\mathcal{Y},G) \in \mathcal{C}} \mathcal{Y}.$$

i l'aplicació

$$\begin{array}{cccc} H\colon & \mathcal{Z} & \longrightarrow & \bigcup \mathcal{Z} \\ & Z & \longmapsto & F[Z], & \text{amb } (\mathcal{Y},F) \in \mathcal{C} \text{ i } Z \in \mathcal{Y}. \end{array}$$

Notem que H està ben definida perquè si Z és un element en \mathcal{Z} , en particular $Z \neq \emptyset$. Així, si $z \in Z$, aleshores existeix un element $(\mathcal{Y}, F) \in \mathcal{C}$ i un conjunt

 $Y \in \mathcal{Y}$ per al què $z \in Y$. Com es té la condició $\operatorname{Disj}(\mathcal{X})$ aleshores Z = Y. A més, $F[Z] \in Z$. La condició de cadena i la de compatibilitat de les aplicaciones garantida en l'ordre, permet afirmar que si hi haguera un altre (\mathcal{Y}', F') tal que $Z \in \mathcal{Y}'$, aleshores F'[Z] = F[Z].

L'element (\mathcal{Z}, H) pertany a P i és el suprem de la cadena \mathcal{C} .

Pel Lema de Zorn-Kuratowski, existeix un element maximal en (P, \leq) . Anomenem-lo (\mathcal{X}', F) , on $\mathcal{X}' \subseteq \mathcal{X}$ i F és una aplicació d'elecció per a \mathcal{X} . Anem a demostrar que $\mathcal{X}' = \mathcal{X}$ per a concloure la demostració.

Suposem, per reducció a l'absurd que no és el cas, així existeix un $X \in \mathcal{X} \setminus \mathcal{X}'$ però aleshores $X \neq \emptyset$ i podem considerar $x \in X$. Considerem l'aplicació

$$G: \quad \mathcal{X}' \cup \{X\} \quad \longrightarrow \quad \bigcup (\mathcal{X}' \cup \{X\})$$

$$Z \qquad \longmapsto \quad \begin{cases} F[Z] & \text{si } Z \in \mathcal{X}'; \\ x & \text{si } Z = X \end{cases}$$

Notem que G està ben definida per la condició de $\mathrm{Disj}(\mathcal{X})$. A més G és una aplicació d'elecció que extén a F, a més, $\mathcal{X}' \subseteq \mathcal{X} \cup \{X\}$. Açò contradiu la maximalitat de \mathcal{X}' .

Per tant, concloem que $\mathcal{X} = \mathcal{X}'$ i F és una aplicació d'elecció per a \mathcal{X} .

Queda, així, demostrat el Teorema 0.2.

Referències

- [1] Climent Vidal, J., "Teoría de conjuntos", 2010.
- [2] Lewin, J. W., "A Simple Proof of Zorn's Lemma", The American Mathematical Monthly, 98(4), pp. 353-354, 1991.
- [3] Sifre Armengol, C., "Axiomàtica de Zermelo Fraenkel Skolem per a la teoria de conjunts", Treball fi de Grau, Universitat de València, 2021.