OSPF====open shortest path first 开放式最短路径优先

1.作用: 动态路由协议=====自动计算出到达目标路由的最短路径

描述一条路由:目标是谁+去往目标的下一站(下一跳)+出接口

路由表匹配原则: 最长掩码匹配 (最精确匹配)

形成路由的方式: 直连路由---自动出现----接口UP+地址====直连路由的下一跳是自己-----direct(华为)、connect(思科)----路由协议优先级为0(最优先)

: 静态路由----管理员指定路径----没有开销----逐跳配置,来回

路径-----默认路由0.0.0.0/0 (企业出口丢给运营上)

: 动态路由----管理员配置协议----自动基于协议算法去计算出

最优路由(自动换路)-----OSPF(企业), ISIS (ISP), EIGRP(思科, h3c, 瞻博), BGP(超大型协议)

2.LS型协议====链路状态====路由+拓扑====LSA ====OSPF+ISIS V协议(矢量协议)-----DV(距离矢量----EIGRP)

- 3.OSPF是如何形成RIB中最终的最优路径
- a。形成邻居关系-----接口会发送hello报文(建立邻居和维持邻居)

-----PV (路径矢量----BGP)

- b。邻居之间互相交互LSA=====LSDB(链路状态数据库---存放LSA的表项)同步 ======邻接关系(FULL)-----代表LSA完全同步
- c。基于算法去算出最优路径------SPF=====以自己为根,去计算出最优路径
- d。将最优路径放进全局路由表 (还要看路由协议优先级)

4.OSPF报文 (5个)

Hello包=====组播 (224.0.0.5)

====建立邻居

====维持邻居-------周期性发送hello包-----死亡时间

-----10s/40s (MA, P2P)

-----30s/120s (NBMA, P2MP)

===================状态为2-way

DD包===database description 数据库描述报文 LSDB-----通告自己的LSA信息

LSR包====LS request 请求包

LSU包====LS update LS 更新包 (回复包)

LSACK包====LS ACK LS确认包 (显示确认) ---针对收到的LSU做收到确认回复

5.OSPF的状态机		
	R1R2	
	down	
	R1>	R2会将R1认为是init状态
	<r2< td=""><td></td></r2<>	
R1会将R2认为是2-	-way状态	
	R1>	R2会将R1认为是2-way状态
init和2-way的状态	区别在于我收到的对端发送过来的	lhello包中是否存在我的R-ID
========	=======================================	=======================================
exstart (ex	change start) ====为了选举主	从(是为了确定谁作为主设备,由
	告自己的LSA信息,以及隐式确认)	
<u> </u>	R1>空的DD包	
	< 空的DD包	
	<	
evchange	---------- ==大范围交互DD报文	
exchange ===		
	-	
	< DD	
有可能讲入loading	=============================== g(发现缺少对端的某条LSA)	
13 3 130,000	LSR, LSU, LSACK	
========	=======================================	
	B完全同步,路由收敛完成)	
. e == (/8/3// H == =		
OSPF的最终状态是	是什么	
FULL======	======邻接	
2-way (两个DRot	ther之间)邻居	

6.OSPF的接口类型=====当时存在很多的物理链路介质类型 环回口:

思科:默认是loopback,学习到的一定是32位主机路由

华为:默认是P2P,学习到的一定是32位主机路由 Broadcast (MA)------以太网

10s/40s,组播建立邻居,存在DR/BDR,路由掩码正常

P2P---------点到点网络--------串口serial

10s/40s,组播建立邻居,无DR/BDR,路由掩码正常

NBMA-----非广播型以太网-----帧中继 (FR)

30s/120s, <mark>单播</mark>建立邻居,存在DR/BDR,路由掩码正常 P2MP------点到多点

30s/120s,组播建立邻居,无DR/BDR,所有路由都是32位 邻居关系及路由情况

hello时间一致则可以建立FULL邻居关系

同接口类型才可以互相学习路由

	broadcast	P2P	NBMA	P2MP
broadcast	FULL 路由正常学习	FULL 路由学习失败	邻居失败 路中学习失败	邻居失败 路由学习失败
P2P	FULL 路由学习失败	FULL 敗山正営学习	邻居失败	邻居失败
NBMA	邻居失败	が居失败 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	路由学习失败 FULL	路由学习失败 FULL
	路由学习失败		路由正常学习	路由学习失败
P2MP	邻居失败 路由学习失败	邻居失败 路由学习失败	FULL 路由学习失败	FULL 路由正常学习

- 7。OSPF配置思路---华为
- a。确定ospf进程号(本地有效,一般建议配置成一样)
- b。确定宣告区域=====同一条链路两端的接口必须属于同一个区域
- c。让接口能够发送ospf hello报文=====宣告----network

----宣告有两个作用: 让接口发送和响应OSPF报文 宣告该接口所在网段信息

OSPF配置思路---思科

- a。确定ospf进程号(本地有效,一般建议配置成一样)
- b。将接口宣告讲相应区域

8.区域???? ======为什么要有区域====减少LSA的泛洪范围及影响

骨干区域----区域0

非骨干区域---非0区域(区域1, 2, 3, 4.。。。)

原则: 所有的非骨干区域都必须和骨干区域挂钩 (接壤) ====花瓣型协议-----其他区域要

互相通信必须要由区域0进行中转

设备和区域之间如何界定====以接口为单位划分区域

9.R-ID 路由器ID---路由器标识符

作用:区分设备-----类似于IPv4地址的32位数值 1.1.1.1

自动形成 首先优选环回口地址最大的,其次优选物理口地址最大的(不需要此地址宣

告进ospf) ======注意: ENSP模拟器中优选第一个IP地址

手工指定 1.1.1.1

10.路由器优先级=====默认是1====0-255=====如果优先级设为0,则丧失选举能力,直接成为DRother

DR-----指定路由器

BDR-----备份指定路由器

Drother----其他普通路由器

目的:减少LSA交互次数-----只会出现在MA和NBMA网络中

优选优先级值大的----数值越大越优

其次优选R-ID大的

DR不具备抢占

10.OSPF邻居认证=====都是对邻居关系的认证=====认证不通过,则邻居建立失败接口认证(链路认证)=====将某个特定的接口下开启认证 区域认证======将属于这个区域的所有接口开启认证

虚链路认证=====

如果做了区域0认证,则必须做虚链路认证

思科认证

interface Ethernet0/0

ip address 11.1.1.254 255.255.255.0

ip ospf authentication message-digest

ip ospf message-digest-key 1 md5 cisco

11.不规则区域解决方法 虚链路解决

12. LSA类型 (IPv4环境需要掌握的6种LSA) Dis ospf lsdb

	15 03pt 150 作用	谁宣告的	宣告的内容	泛洪范围
1类 LSA	Router	每台设备	本路由器针对某个区域所产生的路由信息及拓扑信息 州信息 MA网络中1类LSA是不完整的,需要二类LSA的配合 LS ID:产生该LSA的R-ID Adv router:产生该LSA的R-ID	
2类 LSA	Networ k LSA	DR(只会出 现在MA或者 NBMA网络 中)	用于补充1类LSA MA网络的掩码 MA网络的路由器数量 LS id: DR接口的IP地址 ADV router: DR所在设备的R-ID	本区域
3类 LSA	SUM- network LSA	ABR(区域边 界路由器)	域间路由(用于在区域之间传递路由) LS-ID:域间路由的网络号(不包括掩码) ADV-Router: ABR的R-ID 在穿越不同区域是,由其他的ABR重新产生 (ADV-Router和cost值是变化的)	所有 OSPF区 域
4类 LSA	SUM- ASBR	区域的ABR	告诉其他区域设备怎么去往ASBR LS-ID: ASBR的R-ID	除了 ASBR所 在区域的 其他区域
5类 LSA	External	ASBR(自治 系统边界路由 器)	域外路由(用于整个OSPF中传递外部路由,原本不属于OSPF的路由) LS-ID:域外路由的网络号 ADV-Router: ASBR的R-ID 两种类型	整个 OSPF域

		Type1:叠加cost Type2(默认):不叠加cost,进来多少就是 多少:华为默认是1,思科默认是20 FA地址:转发地址,一般情况下都是 0.0.0.0(空)====告诉ospf域内的路由器 如何能够更加快捷的到达域外路由的下一跳地 址(有信息时就不找ASBR,避免次优路径以 及路由环路)	
7类 LSA	NSSA	域外路由 FA地址(默认7类LSA产生FA地址,5类LSA不产生FA地址7类转5类LSA携带FA地址) 7类LSA产生FA规则:默认为产生7类LSA的ASBR的最大环回口地址)	NSSA区 □域

<R1>dis ospf lsdb

OSPF Process 1 with Router ID 11.1.1.1 Link State Database

Area: 0.0.0.1

Type LinkState	e ID AdvRouter	Age Ler	n Sequence	e Metric
Router 23.1.1.2	23.1.1.2	1310 36 8	0000004	1
Router 11.1.1.1	11.1.1.1	1306 48 8	0000006	0
Network 12.1.1.	1 11.1.1.1	1306 32	80000002	0
Sum-Net 44.1.1	.1 23.1.1.2	1197 28	8000001	2
Sum-Net 23.1.1	.0 23.1.1.2	1300 28	8000001	1
Sum-Net 55.1.1	.1 23.1.1.2	367 28	80000001	3
Sum-Net 34.1.1	.0 23.1.1.2	1247 28	8000001	2
Sum-Net 22.1.1	.1 23.1.1.2	1307 28	8000001	0
Sum-Net 45.1.1	.0 23.1.1.2	367 28	80000001	3
Sum-Net 33.1.1	.1 23.1.1.2	1247 28	8000001	1

<R1>display ospf lsdb router

OSPF Process 1 with Router ID 11.1.1.1
Area: 0.0.0.1
Link State Database

Type : Router

Ls id : 23.1.1.2 ====R2的R-ID Adv rtr : 23.1.1.2 ====R2的R-ID

Ls age : 1531 ====秒, LSA被创建的时间, 新旧以及可靠性

Len : 36

Options: ABR E ====标志,特定信息及配置选项

ABR: 区域边界路由器

E: 外部, 允许路由引入

seq# : 80000004 chksum : 0xb148

Link count: 1

* Link ID: 12.1.1.1 --- DR

Data: 12.1.1.2

Link Type: TransNet =====4种

stubnet===末节网络---路由信息 (网络号++掩码)

transnet==传输网络(MA)----拓扑信息

p2p====点到点网络的拓扑信息

vlink===虚链路的拓扑信息

Metric: 1

Type : Router Ls id : 11.1.1.1 Adv rtr : 11.1.1.1 Ls age : 1527 Len : 48 Options : E

seq# : 80000006 chksum : 0xf6fe Link count: 2

* Link ID: 11.1.1.1

Data : 255.255.255 Link Type: StubNet

Metric: 0

Priority: Medium

* Link ID: 12.1.1.1 ------DR

Data: 12.1.1.1 Link Type: TransNet

Metric: 1

Type : Router Ls id : 11.1.1.1 Adv rtr : 11.1.1.1 Ls age : 20

Len : 60 Options : E

seq# : 8000000c chksum : 0x2c99

Link count: 3

* Link ID: 11.1.1.1

Data: 255.255.255.255

Link Type: StubNet Metric: 0 Priority: Medium * Link ID: 23.1.1.2 Data: 12.1.1.1 Link Type: P-2-P Metric: 1 * Link ID: 12.1.1.0 Data: 255.255.255.0 Link Type: StubNet Metric: 1 Priority: Low OSPF路由 OSPF域内路由------1类/2类-----OSPF-----O OSPF域间路由------3类-----OSPF------OIA OSPF域外路由------5类-----O-ASE-----OE 13.OSPF的特殊区域 末节区域=====过滤远端传过来的LSA, 精简路由表 STUB区域=====过滤了4/5类LSA ====同时生成了3类LSA的默认路由 Total STUB区域===在STUB区域的基础上只需要在ABR上配置即可 ====过滤了3/4/5类LSA ====同时生成了3类LSA的默认路由 ======缺点:无法进行路由引入 NSSA区域=====过滤了4/5类LSA ====同时生成了<mark>7</mark>类LSA的默认路由 Total NSSA区域===在NSSA区域的基础上只需要在ABR上配置即可 ====过滤了3/4/5类LSA

=====可以进行路由引入

====同时生成了3类LSA的默认路由

14.ospf的开销计算方式

SPF=====带宽=====10^8/带宽

我们只在乎最终值====cost

cost叠加是计算路由流向的入方向,数据流向的出方向

15.OSPF优化技术

a。slient接口(静默接口)=====只宣告路由,不发送ospf报文===适用于将环回口以及接PC的接口配置(因为这些接口不需要建立邻居)

b。OSPF路由汇总=====精简路由表

手动汇总====域内汇总====不支持

域间汇总===需要在路由所在区域的ABR上配置

域外汇总===需要在路由引入的ASBR上配置

自动汇总====OSPF不支持

c。OSPF下发默认路由

[R2-ospf-1]default-route-advertise always

Always====如果没有always,则本设备必须存在静态默认路由才会下发5类默认路由

====如果有always,则代表强制下发,哪怕本地没有静态默认路由