LES EQUILIBRES ACIDO-BASIQUES

Introduction:

Il est très important de comprendre les réactions acido-basiques pour bien saisir les processus physiologiques et biochimique dans l'organisme.

Les réactions acide-base sont basées sur un transfert de proton entre un acide et une base.

Selon Bronsted un acide est un donneur de proton et une base est un accepteur de proton, ainsi lors de la réaction de l'eau sur l'acide chlorhydrique :

$$HCI + H_2O \rightarrow H_3O^+ + CI^-$$

La molécule de HCl a cédé un proton à la molécule H_2O , c'est un acide. La molécule de H_2O a accepté un proton donc est une base.

I)Définitions :

1) Acide et base selon BRONSTED:

-Un acide est un donneur de protons : $AH + H_2O \rightarrow H_3O^+ + A^-$

-Un base est un accepteur de protons : $B + H_2O \rightarrow BH^+ + OH^-$

2)Acide et base selon Lewis:

- un acide est un corps capable d'accepter un doublet électronique :

$$H_2O$$
 $+$ H_3O

H⁺: acide de Lewis

- Une base est un corps capable de donner un doublet électronique :

$$NH_3$$
 + H^+ \longrightarrow NH_4^+

INH₃: base

3) Couple acide/base conjuguée

L'acide et la base sont dits "conjugués"; ils forment un couple acido-basique noté: acide / base.

Exemple: $CH_3COOH = H^+ + CH_3COO^-$ couple: CH_3COOH / CH_3COO^-

L'ion acétate CH₃COO¹ est la base conjuguée de l'acide acétique CH₃COOH.

 $NH_3 + H^+ = NH_4^+$: couple NH_3 / NH_4^+

L'ion ammonium NH₄⁺ est l'acide conjugué de la base NH₃

4) Ampholyte : Un ampholyte est un composé qui peut se comporter soit comme un acide, soit comme une base. Les solutions correspondantes sont dites "amphotères".

Exemple: Considérons les deux couples suivants:

couple 1 : H_2O/OH^- : $H_2O === H^+ + OH^-$

couple 2: H_2O/H_3O^+ : $H_2O + H^+ === H_3O^+$

H₂O est un ampholyte, car il joue le rôle d'un acide dans le couple H₂O/ OH⁻ et se comporte comme une base dans le couple H₂O /H₃O⁺

• Le caractère ampholyte de l'eau se traduit alors par la superposition des deux réactions :

$$H_2O + H_2O === H_3O^+ + OH$$

5. Réactions acido-basiques: Une réaction acido-basique implique deux couples acide-base conjugués qui échangent des protons :

-couple 1 : Acide(1) / Base(1) : $Acide(1) = Base(1) + H^+$

-couple 2 : Acide(2) / Base(2) : Base(2) + H^+ = Acide(2)

Acide(1) + Base(2) === Base(1) + Acide(2)Réaction acido-basique :

 $CH_3COOH + H_2O == CH_3COO^- + H_3O^+$ Exemples:

Base(2) + Acide(1) = Acide(2) + Base(1)

 $NH_3 + H_2O == NH_4^+ + OH^-$

- 6. Force des acides et des bases : Constante d'acidité et de basicité.
- Lorsqu'un acide AH est mis dans l'eau, il se produit une dissociation :

$$AH + H_2O == A^- + H_3O^+$$
 (couple AH/A^-)

-La constante d'équilibre de dissociation de l'acide HA, appelée « constante d'acidité» Ka, s'écrit :

$$K_a = [H_3O^+][A^-]/[AH]$$
 K_a - constante d'acidité

Plus un acide est fort, plus l'équilibre est déplacé dans le sens 1 et par conséquent plus K₁ est grand, plus pK_a est petit : acidité croissante $\langle - \rangle$ K_a \uparrow ; pK_a \downarrow

-Lorsqu'une base A est mise dans l'eau, il se produit une dissociation :

$$A^{-} + H_2O = AH + OH^{-} <=> K_b = [OH^{-}][AH]/[A^{-}]$$
 : K_b -constante de basicité

Plus une base est forte, plus l'équilibre est déplacé dans le sens 1 et par conséquent plus la constante K_b du couple acido-basique AH/A⁻ est fort, plus le pK_b est faible.

 \Rightarrow basicité croissante \iff K_b \uparrow ; pK_b \downarrow

On a le produit :
$$K_a.K_b = 10^{-14}$$
 alors : $pK_a + pK_b = 14$

On utilise uniquement le pKa pour comparer la force des acides et des bases.

- II) Auto-ionisation de l'eau et le pH (potentiel d'hydrogène) :
 - 1) Le produit ionique de l'eau :

^{*}Pour des raisons de simplicité dans les calculs on pose: $pK_a = - log K_a$

^{*}Pour des raisons de simplicité dans les calculs on pose: on pose pK_b= -logK_b

L'équilibre d'auto-ionisation de l'eau : $2 H_2O === H_3O^+ + OH^-$ est caractérisé par une constante d'équilibre K_e appelée "produit ionique" de l'eau.

$$K_e = [H_3O^+][OH^-] = 10^{-14} \text{ mol}^2/l^2$$
 à 25°C

Dans l'eau pure :

$$[H_3O^+] = [OH^-] = 10^{-7} \text{ mol/l}$$

donc le milieu est neutre.

*D'après le principe De Le Chatelier, si on ajoute des ions H_3O^+ l'équilibre d'auto-ionisation de l'eau se déplace vers la gauche sens 2. Par conséquent les ions OH^- diminue. Soit $[OH^-] < 10^{-7}$ mol/l; il en résulte que $[H_3O^+] > 10^{-7}$ mol/l alors le milieu est acide.

* D'après le principe De Le Chatelier, si on ajoute des ions OH^- l'équilibre d'auto-ionisation de l'eau se déplace vers la gauche sens 2. Par conséquent les ions H_3O^+ diminue. Soit $[H_3O^+] < 10^{-7}$ mol/l; il en résulte que $[OH^-] > 10^{-7}$ mol/l alors le milieu est basique..

2) Notion du pH:

Le pH est une grandeur sans unité. Un indice qui permet de mesurer l'activité de l'ion hydrogène H⁺ dans une solution.

Pour un milieu donné, le pH est fonction de la concentration en ions hydronium (H_3O^+), Il est donné par la relation suivante : $pH = -log [H_3O^+]$.

De même on peut définir le pOH d'une une solution basique :

$$pOH = - log[OH^{-}]$$

Puisque : $[H_3O^+][OH^-] = 10^{-14} mol^2/l^2 \Rightarrow alors : pH + pOH = 14$, alors le pH d'une base est :

⇒ pH = 14 − pOH

D'où:

Mesure du pH : Pour mesurer le pH d'une solution on utilise des pH-mètre ou des indicateurs colorés.

III) Calcul du pH des acides et des bases :

1) pH d'un acide fort : Un acide fort est un acide qui se dissocie totalement.

$$HA + H_2O = H_3O^+ + A^-$$

Si C_a est la concentration en ions H_3O^+ en mol /l alors :

$$pH = -\log [H_3O^+] = -\log C_a$$

2) pH d'une base forte : Une base forte est une base qui se dissocie totalement.

$$BH + H_2O=BH^+ + OH^-$$

Si C_B est la concentration en ions OH^- en mol /l alors: $pOH = -log [OH^-] = -log C_b$

Or: pH + pOH = 14
$$\Rightarrow$$
 pH= 14 + log C_b

^{*}une solution est acide si la concentration en ions $[H_3O^+] > 10^{-7} \text{ mol/l} \implies pH < 7$

^{*}une solution est basique si la concentration en ions $[H_3O^+] < 10^{-7} \text{ mol/l} \implies pH > 7$

^{*} une solution est neutre si les concentration en ions $[H_3O^+] = [OH^-] = 10^{-7} \text{ mol/l} \implies pH = 7$

3) pH d'un acide faible: Un acide faible est un acide qui se dissocie faiblement.

$$HA + H_2O = H_3O^+ + A^-$$
 et $H_2O + H_2O = H_3O^+ + OH^-$

Cette réaction est caractérisée par une constante d'acidité:

$$Ka = [H_3O^+][A^-]/[AH]$$

On considère les approximations suivantes :

-Neutralité électrique : il y a autant d'ions de charges positives que négatives

$$[H_3O^+] = [OH^-] + [A^-]$$
 milieu acide on néglige $[OH^-]$ devant $[H_3O^+]$

$$\Rightarrow$$
 [H₃O⁺] = [A⁻]

-Conservation de masse : C = [HA] + [A⁻]

HA est un acide faible donc se dissocie faiblement on considère que [HA] >>[A-] on peut négligé [A^{-}] devant [HA] \Rightarrow C = [HA].

Alors:
$$Ka = [H_3O^+]^2/C \Rightarrow [H_3O^+] = = (Ka.C)^{1/2} \Rightarrow pH = -\log[H_3O^+] = -\log(Ka.C)^{1/2}$$

Comme pKa = -logKa; alors le pH d'un acide faible est : pH = 1/2 (pKa – logCa)

$$pH = 1/2 (pKa - logC_a)$$

4) pH d'une base faible : Une base faible est une base qui se dissocie faiblement.

$$B + H_2O = BH^+ + OH^- \text{ et } H_2O + H_2O = H_3O^+ + OH^-$$

Cette réaction est caractérisée par une constante de basicité: $K_b = [BH^+][OH^-]/[B]$

On considère les approximations suivantes :

-Neutralité électrique : il y a autant d'ions de charges positives que négatives

$$[OH^-] = [H_3O^+] + [BH^+]$$
 milieu basique on néglige $[H_3O^+]$ devant $[OH^-] \Rightarrow [OH^-] = [BH^+]$

-Conservation de masse : C = [B] + [BH⁺]

B est une base faible donc se dissocie faiblement on considère que [B] >> [BH+]; on peut négligé [BH $^+$] devant [B] \Rightarrow C = [B].

Alors:
$$K_b = [OH^-]^2/C_b \Rightarrow [OH^-] = = (K_b, C_b)^{1/2} \Rightarrow pOH = -log[OH^-] = -log(K_b, C_b)^{1/2}$$

Comme
$$pK_b = -logK_b$$
; alors le pOH d'une base faible est : $pOH = 1/2$ ($pK_b - logC_b$)

Comme: pKa + pK_b = 14 et pH + pOH = 14 alors le pH d'une base faible est :

$$PH = 7 + 1/2pKa + 1/2logC_b$$

5) Coefficient de dissociation α :

En solution aqueuse certains composés se présente sous des ions, on les appelle des électrolyte. On distingue des électrolytes forts et des électrolytes faibles.

a- électrolyte fort : ce sont des substances qui se dissocient totalement dans l'eau

$$NaCl \xrightarrow{H_2O} Na^+_{aq.} + Cl^-_{aq.} ; \quad HCl + H_2O === H_3O^+ + Cl^-$$

b- électrolyte faible : ce sont des substances qui se dissocient faiblement dans l'eau

$$CH_3COOH + H_2O === CH_3COO^- + H_3O^+$$

La force d'un électrolyte peut être caractérisée par son coefficient de dissociation ionique ou (degré de dissociation) appelé α .

 α = n^{bre} de moles dissociés à l'équilibre / n^{bre} de moles dissoutes initialement : **0**< α <**1**

$$AH + H_2O === H_3O^+ + A^-$$

A t=0 C_0 0 C_0

A t=équilibre $C_0(1-\alpha)$ $C \alpha$ $C \alpha$

$$Ka = (C α)^2 / C(1-α) = C α^2 / 1-α ⇒ on néglige α devant 1 ⇒ $α = (Ka/C)^{1/2}$$$

Quand $C \downarrow$ alors $\alpha \uparrow \Rightarrow$ donc la dissociation augmente par la dilution \Rightarrow la loi de dilution d'Oswald.

Exercice: Quel est le pH:

- a) d'une solution de HCl 10^{-2} M. \Rightarrow HCl est un acide fort : pH = -logC_a = -log 10^{-2} =2.
- b) d'une solution de NaOH 0,03M. \Rightarrow NaOH est une base forte: pH =14 + logC_b . pH=14 + log0,03 = 12,48 .
- c) d'une solution de HF O,12M:(pka_{HF} = 3,10) \Rightarrow HF est acide faible : pH=1/2pka 1/2logc_a pH = 1/2(3,10 log0,12) = 2,05 .
- d) d'une solution de NH₃ 0,05M \Rightarrow NH₃ est une base faible : pkb_{NH3} = 4,76 .

pH = 7+1/2pka + 1/2logC_b = 7+1/2(14-pkb) + 1/2logC_b = 14 - 1/2.4,76 + 1/2log0,05 = 10,97 .

- e) d'une solution de NH_4F 0,4M on donne : (pka_{HF}=3,10 ; pkb_{NH3}=4,76) .
- ⇒ NH₄F est un sel formé d'un acide faible HF et d'une base faible NH₃ : .

pH = 1/2pka_{HF} + 1/2pka_{NH3} = 1/2.3,10 + 1/2(14-pKb_{NH3})= 6,17 .

f) d'une solution de NaCl O,5M. \Rightarrow NaCl est sel formé d'un acide fort HCl et d'une base forte

NaOH: \Rightarrow pH = 7 le milieu est neutre

IV) Les Solutions Tampons:

On appelle solution tampon, les solutions formées par un mélange d'acide faible et de sa base conjuguée et inversement.

Exemples: Couple 1: CH₃COOH /CH₃COONa Couple 2: NH₃/NH₄Cl

Soit l'équilibre suivant : $CH_3COOH + H_2O = CH_3COO^- + H_3O^+$

On a :Ka = $[H_3O^+][CH_3COO^-]/[CH_3COOH]$. On pose : $[CH_3COOH] = C_1$ et $[CH_3COO^-] = C_2$

On a alors : $[H_3O^+] = Ka \cdot [CH_3COOH] / [CH_3COO^-] = Ka \cdot C_1/C_2$

 $[H_3O^+]$ = Ka .[acide] / [base conjugué]

Si $C_1 = C_2 \Rightarrow [H_3O^+] = Ka \Rightarrow pH = pKa$

Si
$$C_1 \neq C_2 \Rightarrow [H_3O^+] = Ka \cdot C_1/C_2 \Rightarrow pH = pKa + log C_2/C_1$$

Donc le pH d'une solution tampon est :

pH =pKa + log [base conjugué] / [acide]

*Propriétés des solutions tampons :

- -Les solutions tampons sont indispensables pour la standardisation des pH-mètres. On les utilise en cinétique chimique, en chimie organique, chaque fois qu'il faut travailler dans un milieu de pH contrôlé.
- -Elles sont peu sensible à la dilution, leur pH n'est pas fonction de leur concentration.
- -Leur pH varie peu, sin on leur ajoute des quantités modérées d'acide ou de base.
- -Le rôle des solutions tampons est particulièrement important dans les milieux biologiques.

Par exemple elles maintiennent le pH du sang humain constant.

- *Quelques systèmes tampon garantissent le maintien de la stabilisation du pH sanguin
 - -le tampon formé par le couple : H_2CO_3 / HCO_3^- (pKa =6,1)
 - le tampon formé par le couple : $H_2PO_4^{-1}/HPO_4^{-2}$ (pKa =6,8)
 - le tampon formé par le couple : protéine / anion protéique (pKa =8,25)

L'équilibre acido-basique, ou homéostasie du pH est une fonction du corps humain qui vise à réguler le pH du plasma. Le pH plasmatique varie normalement de 7,38 à 7,42. On parle d'acidose en cas de diminution du pH et d'alcalose en cas d'augmentation de celuici. La régulation du pH fait appel à de nombreux systèmes (la fonction respiratoire, le rein, les protéines, etc).source : Wikpédia

VI) pH des solutions salines. Courbes de neutralisation

1. pH d'une solution d'un sel d'un acide fort d'une base forte

Exemple: NaCl (chlorure de sodium):

En solution aqueuse, il y a dissolution totale du sel : NaCl (solide) \rightarrow Na⁺(aq) + Cl⁻ (aq)

Cl⁻: base conjuguée (très faible) d'un acide fort (HCl); il ne participe à aucun équilibre chimique Na⁺: ion spectateur, acide conjugué (très faible) d'une base forte (NaOH); il ne participe à aucun équilibre chimique.

 \Rightarrow **pH = 7** Le milieu est neutre

initialement:

pH= - log a/va

a>b: pH= -log (a-b)/vt

a=b: pH = 7 (milieu

neutre)

b>a: 14 + log(b-a) / vt

Lorsque on est en présence des quantités d'acide et de base équivalente(a=b), le pH de la solution est alors égal à 7 (milieu neutre), le point E de la courbe est appelé le point d'équivalence (PE). Dans le domaine où l'acide est en excès (na>nb) ; le pH de la solution est déterminé par la concentration en ion H_3O^+ . Alors que dans le domaine où la base est en excès (na<nb), le pH de la solution est déterminé par la concentration en ion OH^- .

2. pH d'une solution d'un sel de base faible et d'un acide fort

Exemple: NH₄Cl (chlorure d'ammonium): HCl + NH₃ === NH₄Cl

V (mL)

acide fort base faible sel

• En solution aqueuse, il y a dissolution totale du sel : NH₄Cl_(s) = NH₄⁺(aq) + Cl⁻ (aq)

Cl⁻: ion spectateur, base conjuguée très faible d'un acide fort (HCl)

NH₄⁺ : acide conjugué (faible) de la base faible NH₃

 \Rightarrow Si [OH⁻] << [H₃O⁺] et [NH₃] << [NH₄⁺] (acide faiblement dissocié)

⇒ on a un pH d' un acide faible

 \Rightarrow pH = 1/2(pKa - log[NH₄⁺]) = 1/2 (pKa - log C_a)

Courbe de neutralisation d'une base faible par un acide fort

initialement:

$$b>a$$
: $pH=pKa + log (b-a)/Vt$

$$b = a/2$$
: $pH = pka$

$$a=b: pH = 1/2pKa - 1/2log a/Vt$$

$$a>b: pH = -log(a-b)/vt$$

Dans la courbe de neutralisation d'un base faible par un acide fort, le point d'équivalence correspondant (PE) correspond à (na =nb), le pH est celui d'un acide faible => pH = 1/2pKa -1/2 logc_a. Au point de demi-équivalence, lorsque la moitié de la base est neutralisé (na=nb/2), le pH de la solution est égale au pka. Dans le domaine où la base est en excès (nb>na) ; le pH de la solution est celui d'une solution tampon . Alors que dans le domaine où l'acide es en excès (nb<na), le pH de la solution est celui d'un acide faible .

3. pH d'une solution d'un sel

Courbe de neutralisation d'une base faible par un acide fort

Exemple: CH₃COONa (acétate

acide faible base forte sel eau

• En solution aqueuse, il y a dissolution totale du sel :

$$CH_3COONa \rightarrow CH_3COO^-(aq) + Na^+(aq)$$

Na⁺: ion spectateur, acide conjugué très faible d'une base forte (NaOH)

CH₃COO⁻: base conjuguée (faible) de l'acide faible CH₃COOH (pKa = 4,8)

Si [H₃O+] << [OH-] et [CH₃COOH] << [CH₃COO-] (base faiblement dissociée)

=> pH d' une base faible=> pH = 7 + 1/2 pKa $+1/2 \log[CH_3COO^-] = 7 + 1/2$ pKa $+ 1/2 \log C_b$

Courbe de neutralisation d'un acide faible par une base forte

initialement:

$$a = b/2$$
: $pH = pka$

$$b>a : pH = 14 + log b/vt$$

Dans la courbe de neutralisation d'un acide faible par unebase forte, le point d'équivalence correspondant (PE) correspond à (na =nb), le pH est celui d'unebase faible => pH = 7 + 1/2pKa+1/2 logc_b . Au point de demi-équivalence, lorsque la moitié de l'acide est neutralisé (nb=na/2), le pH de la solution est égale au pKa. Dans le domaine où l'acide est en excès(na>nb) ; le pH de la solution est celui d'une solution tampon . Alors que dans le domaine où la base est en excès (na<nb), le pH de la solution est celui d'unebase forte .

4. pH d'une solution d'un sel d'acide faible et de base faible.

• CH₃COOH + NH₃
$$\rightarrow$$
 CH₃COONH₄

 CH_3COONH_4 (acétate d'ammonium) de concentration ($C = [CH_3COONH_4]$). Or, le mélange d'un acide faible et d'une base faible donne une solution faiblement acide ou faiblement basique => pH est voisin de 7 => pH =1/2(pKa_{acide} + pKa_{base})

VI. EQUILIBRES DE SOLUBILITE

1. Solubilité et produit de solubilité.

•Certains composés chimiques sont peu solubles dans l'eau :

Exemples : AgCl; $PbCl_2$; $BaSO_4$; $Al(OH)_3$; $Ca(OH)_2$; Ag(OH) ... seul une très faible concentration passe à l'état dissous, on est en présence du solide en équilibre avec ses ions.

$$A_pB_q^-(s) = pA^{+q}_{(aq)} + _qB^{-p}_{(aq)}$$
 équilibre de dissociation

Loi d'action de masse : $K_{ps} = [A^{+q}]_{(aq)}[B^{-p}]_{(aq)} \implies K_{ps}$: produit de solubilité

Exemples:
$$Ag_2S = 2Ag^+ + S^{-2} \implies K_{ps} = [Ag^+]^2.[S^{-2}]$$

$$AgCI = Ag^+ + CI^- \Rightarrow K_{ps} = [Ag^+][CI^-]$$

La Solubilité **s** (en mol.L⁻¹) : est le nombre maximal de moles d'un sel pouvant être dissout dans un litre d'eau. On obtient alors une solution saturée, si on ajoute du solide : la solubilité reste inchangée.

2. Relation entre Kps et S

Exemple 1:
$$AgCl_{(solide)} = Ag^+_{(aq)} + Cl^-_{(aq)}$$

$$t = 0$$
 C_o 0 0

$$K_{ps} = [Ag^{+}]_{\text{éq.}}[Cl^{-}]_{\text{éq.}} = s^{2} \implies s = \sqrt{Kps}$$
 soit $s = 1,8.10^{-10} = 1,3.10^{-5} \text{mol.L}^{-1}$

Exemple2: Al(OH)_{3(solide)} =
$$Al^{3+}_{(aq)} + 3OH^{-}_{(aq)}$$

$$t = 0$$
 C_0 0 0

$$K_{ps} = [AI^{3+}]_{\text{\'eq.}}[3OH^{-}]^{3}_{\text{\'eq.}} = s(3s)^{3} = 27 \text{ s}^{4} = 3.10^{-34}$$

$$\Rightarrow$$
s= [K_{ps}/27]^{1/4}= [3.10⁻³⁴/27]^{1/4}= 1,8.10⁻⁹mol.L⁻¹

3. Effet de l'addition d'un ion commun sur la solubilité.

Soit un litre d'une solution saturée de AgCl : AgCl(s) === $Ag^{+}_{(aq)} + Cl^{-}_{(aq)}$

A cette solution on ajoute des ions Cl⁻ sous forme de NaCl solide (le volume reste 1 L). D'après le principe de modération de Le Châtelier, l'équilibre se déplace dans le sens 2, sens de la formation de AgCl(s), la solubilité de AgCl en présence de NaCl va DIMINUER.

Exemple: si on ajoute 10⁻² mole de NaCl solide

$$AgCI(s) = Ag^{+}_{(aq)} + CI^{-}_{(aq)}$$

$$t = 0$$
 C_o 0 10^{-2}

t. équilibre
$$(C_0 - s')$$
 s' $(10^{-2} + s')$

$$K_{ps} = [Ag^{+}]_{\acute{e}q}.[Cl^{-}]_{\acute{e}q}. = s'(s' + 10^{-2})$$

Or on a vu que dans l'eau la solubilité s de (AgCl) est égale à $s = 1,3.10^{-5} \text{mol.L}^{-1}$.

Puisque s' <s , on peut négliger s' devant 10⁻²

D'où:
$$K_{ps} = s'.10^{-2} \implies s' = K_{ps} / 10^{-2} = 1,8.10^{-10} / 10^{-2} \implies s' = 1,8.10^{-8} mol/l.$$

Donc: S' < S ====> l'addition d'un ion commun diminue la solubilité