5 Fractions

Compétences

— Représenter : Je passe d'une fraction à un nombre décimal;

— Représenter : Je passe d'une fraction à une autre égale à la première ;

— **Raisonner**: je compare des fractions;

— Raisonner : j'utilise l'égalité des produits en croix

I. Quotients et fractions

Définition

a et b sont deux nombres $(b \neq 0)$. Le **quotient** de a par b se note $a \div b$ ou $\frac{a}{b}$, en écriture fractionnaire.

Exemple:

Le quotient de 5 par 4 est $\frac{5}{4}$, c'est le nombre qui multiplié par 4 donne 5.

$$\frac{5}{4} \times 4 = 5$$

Définition

Si a et b sont entiers, alors $\frac{a}{b}$ est une fraction. a est le numérateur et b est le dénominateur

Exemple:

 $\frac{4,2}{2}$, $\frac{5}{2,4}$, $\frac{1,3}{3,7}$ et $\frac{2}{3}$ sont toutes des écritures fractionnaires, mais seule $\frac{2}{3}$ est une fraction.

1

II. Fractions égales et simplification

Propriété

Une fraction ne change pas quand on multiplie (ou on divise) le numérateur et le dénominateur par un même nombre non nul.

$$\frac{a}{b} = \frac{a \times k}{b \times k}$$

ou

$$\frac{a}{b} = \frac{a \div k}{b \div k}$$

Exemple:

$$\frac{7}{5} = \frac{7 \times 10}{5 \times 10} = \frac{70}{50}$$

$$\frac{12}{27} = \frac{12 \div 3}{27 \div 3} = \frac{4}{9}$$

Définition

Simplifier une fraction, c'est trouver une autre fraction **égale à la première** avec le numérateur et le dénominateur **les plus petits possibles**.

Exemple:

$$\frac{27}{72} = \frac{27 \div 9}{72 \div 9} = \frac{3}{8}$$

$$\frac{25}{100} = \frac{25 \div 25}{100 \div 25} = \frac{1}{4}$$

Méthode:

Je veux simplifier la fraction $\frac{105}{60}$

- a) Je cherche un diviseur commun au numérateur et au dénominateur : 105 et 60 sont divisibles par 5.
- **b)** Je calcule les divisions :

$$\frac{105}{60} = \frac{105 \div 5}{60 \div 5} = \frac{21}{12}$$

c) Je recommence si je peux, autant de fois que possible, le numérateur et le dénominateur sont divisibles par 3.

$$\frac{21}{12} = \frac{21 \div 3}{12 \div 3} = \frac{7}{4}$$

d) Si je ne peux pas continuer, j'ai terminé :

$$\frac{105}{60} = \frac{7}{4}$$

2

III. Comparaison de fractions

Propriétés

- Si deux fractions ont le même dénominateur, la plus grande est celle qui a le plus grand numérateur.
- Pour comparer deux fractions qui ont un dénominateur différent, on les écrit avec le même dénominateur.

Exemples:

— On veut comparer $\frac{3}{7}$ et $\frac{5}{7}$: 3 < 5; donc $\frac{3}{7} < \frac{5}{7}$

— On veut comparer $\frac{7}{3}$ et $\frac{13}{6}$:

— On peut écrire $\frac{7}{3} = \frac{7 \times 2}{3 \times 2} = \frac{14}{6}$

— On a 13 < 14 donc $\frac{13}{6}$ < $\frac{14}{6}$ en conclusion $\frac{13}{6}$ < $\frac{7}{3}$

Propriété

a et b désignent deux nombres (b > 0).

— Si a > b alors $\frac{a}{b} > 1$ — Si a < b alors $\frac{a}{b} < 1$ — Si a = b alors $\frac{a}{b} = 1$

3

Exemple:

On veut comparer 1; $\frac{3}{4}$ et $\frac{15}{12}$:

- 3 < 4 donc $\frac{3}{4}$ < 1; 15 > 12 donc $\frac{15}{12}$ > 1.

— On peut conclure que $\frac{3}{4} < 1 < \frac{15}{12}$.

IV. Égalité des produits en croix

Propriété

 $a,\,b,\,c$ et d sont des nombres entiers avec $b\neq 0$ et $d\neq 0$. $\frac{a}{b}=\frac{c}{d}$ signifie que $a\times d=b\times c$.

$$\frac{a}{b} = \frac{c}{d}$$
 signifie que $a \times d = b \times c$.

Exemples:

$$-\frac{34}{51} = \frac{2}{3} \text{ car } 34 \times 3 = 51 \times 2 = 102$$

— Je veux compléter
$$\frac{23}{15} = \frac{207}{?}$$

On a :

$$23 \times \dots = 15 \times 207$$

$$23 \times ... = 3105$$

Je calcule
$$3105 \div 23 = 135$$

Donc
$$\frac{23}{15} = \frac{207}{135}$$