Comprehensive Project Report: Cardiovascular Disease Prediction

Introduction

Cardiovascular disease (CVD) remains a leading cause of global mortality, accounting for approximately 28.1% of deaths worldwide in 2016. Early detection and intervention are critical to improving patient outcomes, and machine learning offers a powerful approach to identify at-risk individuals. This project leverages a dataset of 70,000 patient records to build a predictive model for cardiovascular disease, providing a decision-support tool for clinicians. The dataset, sourced from Kaggle (Kaggle Cardiovascular Dataset), includes features such as age, gender, blood pressure, cholesterol levels, and lifestyle factors to predict the presence of cardiovascular disease (target: 0 = no disease, 1 = yes).

The project follows a structured pipeline: data preprocessing, exploratory data analysis (EDA) and visualization, correlation analysis, machine learning model training, and the development of a prediction system with interpretable outputs. Several challenges, including data type errors and non-numeric columns in correlation calculations, were addressed to ensure a robust implementation. The final model, based on Random Forest, achieves reliable performance and provides actionable insights for clinical use, enhanced by visualizations such as the feature importance plot.

Dataset Overview

The dataset (cardio_train (1).csv) contains 70,000 records with 13 features, semicolon-separated with no header. The columns were explicitly defined as follows:

- id: Unique identifier for each patient (integer).
- age: Age in days (converted to years as age_years).
- gender: Categorical (1 = female, 2 = male).
- height: Height in cm (numerical).
- weight: Weight in kg (numerical).
- ap_hi: Systolic blood pressure (numerical).
- ap_lo: Diastolic blood pressure (numerical).
- **cholesterol**: Cholesterol levels (1-3, ordinal).
- gluc: Glucose levels (1-3, ordinal).
- smoke: Smoking status (0 = no, 1 = yes, binary).
- alco: Alcohol consumption (0 = no, 1 = yes, binary).
- active: Physical activity (0 = no, 1 = yes, binary).
- cardio: Target variable (0 = no disease, 1 = yes, binary).

The dataset is well-suited for binary classification, with the goal of predicting cardio based on the other features. However, it required preprocessing to handle data inconsistencies and errors.

Project Objectives

- Preprocess the Data: Clean and prepare the dataset for modeling, addressing data type inconsistencies and biologically implausible values.
- 2. **Perform Exploratory Data Analysis (EDA)**: Visualize feature distributions and relationships with the target to gain insights into risk factors.
- 3. **Analyze Correlations**: Identify features most strongly associated with cardiovascular disease.
- Train Machine Learning Models: Evaluate multiple models (SVM, KNN, Decision Trees, Logistic Regression, Random Forest) to select the best performer.
- 5. **Build a Prediction System**: Develop a practical system to predict heart disease risk for new patients, with interpretable outputs like feature importance, supported by visualizations.

Methodology

Step 1: Data Preprocessing

The dataset required careful preprocessing to ensure data quality and compatibility with machine learning models. Several challenges were encountered and resolved:

Error 1: TypeError: unsupported operand type(s) for /: 'str' and 'float'

- Cause: The age column was read as a string due to nonnumeric characters, causing division by 365.25 (to convert days to years) to fail.
- Solution: Removed non-numeric characters using str.replace('[^0-9]', '', regex=True), converted to numeric with pd.to_numeric(..., errors='coerce'), and imputed missing values with the mean. The age column was then converted to age_years and dropped.
- Error 2: TypeError: Encoders require their input argument must be uniformly strings or numbers. Got ['int', 'str']
 - Cause: Categorical columns like gender had mixed types (e.g., some values as strings, others as integers), causing issues with OneHotEncoder.
 - Solution: Converted all columns to numeric using pd.to_numeric(..., errors='coerce'), imputing missing values with the mean for numerical columns and mode for categorical columns.
- Error 3: ValueError: could not convert string to float: 'id'
 - Cause: The id column, a non-numeric identifier, was included in the correlation calculation with data.corr().
 - Solution: Excluded non-numeric columns by using data.select_dtypes(include=['float64', 'int64']) before calculating correlations.
- Additional Preprocessing:

- Removed biologically implausible records where ap_hi < ap_lo using data = data[data['ap_hi'] >= data['ap_lo']].
- Defined numerical (age_years, height, weight, ap_hi, ap_lo) and categorical (gender, cholesterol, gluc, smoke, alco, active) columns.
- Used a ColumnTransformer to scale numerical features
 (StandardScaler) and one-hot encode categorical features
 (OneHotEncoder(drop='first')).

Table 1: Preprocessing Steps

Task	Method	Purpose	
Load Dataset	pd.read_csv(sep=';')	Access data with	
		correct separator	
Clean age	Remove non-numeric,	Fix TypeError, ensure	
	convert to numeric	numeric data	
Handle Mixed	Convert to numeric, impute	Ensure consistent types	
Types	missing	for encoding	
Convert Age	Divide by 365.25	Improve interpretability	
Remove	Filter ap_hi >= ap_lo	Ensure biological	
Outliers		plausibility	
Encode	One-hot encode with	Convert to numerical	
Categorical	drop='first'	format	
Scale	StandardScaler	Normalize for model	
Numerical		compatibility	

Step 2: Exploratory Data Analysis (EDA) and Visualization

EDA was conducted to understand feature distributions and their relationships with the target variable (cardio). Visualizations were saved as images for inclusion in this report.

- Summary Statistics: Used data.describe() to examine numerical features (e.g., mean age_years ≈ 53, height ≈ 164 cm). value_counts() showed categorical distributions (e.g., gender: ~65% female).
- Histograms: Plotted for numerical features using sns.histplot,
 revealing distributions. For example, age_years is right-skewed, while
 weight is approximately normal. Saved as histogram_age_years.png.

- Box Plots: Used data.boxplot() to identify outliers in numerical features, particularly in ap_hi and ap_lo, though most were handled during preprocessing. Saved as boxplot_numerical.png.
- Bar Charts: Plotted for categorical features using sns.countplot, segmented by cardio. For example, higher cholesterol levels are linked to disease. Saved as barchart_cholesterol.png.

 Box Plots vs. Target: Used sns.boxplot to compare numerical feature distributions by cardio (e.g., higher ap_hi in diseased patients). Saved as boxplot_ap_hi_vs_cardio.png.

Key Insights:

- Older age, higher blood pressure (ap_hi, ap_lo), and elevated cholesterol levels are associated with increased risk of heart disease (see Figure 2: Bar Chart of Cholesterol Levels).
- Males (gender = 2) appear to have a higher prevalence of heart disease compared to females.
- Lifestyle factors like smoking (smoke) and alcohol consumption (alco) show weaker associations with the target.

Table 2: Visualization Types

Visualization	Features	Purpose	Saved As
Туре	Targeted		
Histogram	Numerical	Show	histogram_age_years.png
	(e.g.,	distribution	
	age_years)	and	
		skewness	
Box Plot	Numerical	Identify	boxplot_numerical.png
		outliers and	
		spread	
Bar Chart	Categorical	Show	barchart_cholesterol.png
	(e.g.,	frequency by	
	cholesterol)	target class	
Box Plot vs.	Numerical	Compare	boxplot_ap_hi_vs_cardio.png
Target	vs. cardio	distributions	
		by disease	
		status	

Step 3: Correlation Analysis

Correlation analysis identified features most strongly associated with the target, visualized as a heatmap.

Calculation:

- For preprocessed features: Computed using X_preprocessed_df.corr() (all features are numeric after encoding).
- For raw data: Computed using numeric_data.corr() after filtering numeric columns to exclude id.
- **Visualization**: Plotted a heatmap using sns.heatmap with a coolwarm colormap and annotations. Saved as correlation_heatmap.png.

```
plt.figure(figsize=(12, 8))

correlation_matrix = X_preprocessed_df.corr()

sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt='.2f')

plt.title('Correlation_Matrix of Features')

plt.savefig('correlation_heatmap.png')

plt.show()
```

Findings:

- Strong positive correlations between cardio and age_years
 (~0.24), ap_hi (~0.43), ap_lo (~0.34), and cholesterol (~0.22).
- Weak correlations with smoke (~0.05) and alco (~0.01),
 suggesting limited predictive power for these features.
- Considerations: Pearson correlation captures linear relationships;
 non-linear relationships may require further analysis (e.g.,
 Spearman's correlation).

Figure 3: Correlation Heatmap

The heatmap (saved as correlation_heatmap.png) visualizes the pairwise correlations between preprocessed features, highlighting strong associations between cardio and features like ap_hi and age_years. The coolwarm colormap effectively distinguishes positive (red) and negative (blue) correlations, with annotations providing exact values for clarity.

Table 3: Correlation Analysis

Method	Purpose	Notes	Saved As
Pearson	Measure	Used for	-
Correlation	linear	numerical and	
	relationships	encoded	
		features	
Heatmap	Visualize	Annotated for	correlation_heatmap.png
	correlations	clarity	
Target	Identify	Sorted to	-
Correlation	predictors	highlight	
		strong	
		correlations	

Step 4: Machine Learning Model Training

Five machine learning models were trained and evaluated: Support Vector Machines (SVM), K-Nearest Neighbors (KNN), Decision Trees (DT), Logistic Regression (LR), and Random Forest (RF).

 Data Splitting: Split into 80% training and 20% testing using train_test_split with random_state=42 for reproducibility.

- Preprocessing Pipeline: Applied ColumnTransformer to preprocess training and testing data consistently.
- Model Training: Trained each model on preprocessed training data with default parameters.

Evaluation Metrics:

- Accuracy: Overall correctness.
- Precision: Proportion of positive predictions correct.
- Recall: Proportion of actual positives identified (prioritized for medical applications to minimize false negatives).
- o **F1-Score**: Harmonic mean of precision and recall.

Results:

- Random Forest achieves the best performance: ~72% accuracy,
 ~73% recall, and ~72% F1-score.
- Logistic Regression performs well for interpretability: ~70% accuracy, ~71% recall.
- SVM and KNN are slower and slightly less accurate (~68-70% accuracy), while Decision Trees tend to overfit (~65% accuracy).
- Visualization: A bar plot compares model performance across all metrics, saved as model_performance_comparison.png.

Figure 4: Model Performance Comparison

The bar plot (saved as model_performance_comparison.png) compares the performance of five models across accuracy, precision, recall, and F1-score. Random Forest consistently outperforms other models, particularly in recall (~73%), which is critical for medical applications to minimize false negatives.

Table 4: Model Performance (Approximate)

Model	Accura	Precisio	Reca	F1-	Strengths	Weakness
	су	n	u	Scor		es
				е		

SVM	0.69	0.68	0.70	0.69	Handles	Slow on
					high-	large
					dimensiona	datasets
					l data	
KNN	0.68	0.67	0.69	0.68	Simple,	Slow,
					non-	sensitive to
					parametric	scaling
Decision	0.65	0.64	0.66	0.65	Interpretabl	Prone to
Tree					e, handles	overfitting
					mixed data	
Logistic	0.70	0.70	0.71	0.70	Interpretabl	Assumes
Regressi					e, fast	linear
on						relationshi
						ps
Random	0.72	0.71	0.73	0.72	Robust,	Less
Forest					handles	interpretab
					non-linear	le
					data	

Class Imbalance Check: The target variable (y.value_counts()) shows a near-balanced distribution (~49.9% no disease, ~50.1% disease), so no additional balancing techniques (e.g., SMOTE) were applied.

Step 5: Model Building and Prediction System

Random Forest was selected as the final model due to its superior performance and robustness to non-linear relationships.

Hyperparameter Tuning:

- Used GridSearchCV with 5-fold cross-validation to tune parameters: n_estimators (100, 200), max_depth (None, 10, 20), min_samples_split (2, 5).
- Scoring metric: F1-score, prioritizing balanced performance.
- Best parameters (example): {'max_depth': 20,'min_samples_split': 5, 'n_estimators': 200}.
- **Final Training**: Trained the optimized Random Forest model on the entire preprocessed dataset.

Prediction System:

- Developed a predict_heart_disease function to preprocess new input data, predict heart disease risk, and return probabilities.
- A helper function, shape_input_data, ensures input data is correctly formatted with appropriate types.
- Example input: {'age_years': 55, 'height': 170, 'weight': 70, 'ap_hi': 130, 'ap_lo': 80, 'cholesterol': 1, 'gluc': 1, 'smoke': 0, 'alco': 0, 'active': 1, 'gender': 2}.
- Example output: {'Prediction': 'Heart Disease', 'Probability':
 array([0.35, 0.65])} (65% probability of heart disease).

• Feature Importance:

- Computed using feature_importances_, sorted, and visualized as a bar plot (saved as feature_importance_plot.png).
- Top features: ap_hi (~0.25), age_years (~0.20), cholesterol_2
 (~0.15), ap_lo (~0.12).

Results and Discussion

Model Performance

- Random Forest: Achieved the best performance with ~72% accuracy,
 ~73% recall, and ~72% F1-score, making it suitable for medical applications where minimizing false negatives (missing a diseased patient) is critical (see Figure 4: Model Performance Comparison).
- Comparison: Random Forest outperforms other models due to its ability to handle non-linear relationships and feature interactions, which are common in medical datasets. Logistic Regression offers comparable performance with better interpretability but assumes linearity, which may limit its effectiveness.

Key Predictors (Based on Figure 1)

- Systolic Blood Pressure (ap_hi): The strongest predictor, with an importance score of ~0.25, aligning with medical knowledge that high blood pressure is a major risk factor for heart disease.
- Age (age_years): Second most important, with a score of ~0.20, consistent with epidemiological studies showing increased risk with age.

- Cholesterol (cholesterol): Higher levels (encoded as cholesterol_2, cholesterol_3) are significant predictors, with scores around 0.15.
- Diastolic Blood Pressure (ap_lo): Also important, with a score of
 ~0.12, reinforcing the need for blood pressure management.

Clinical Relevance

- The model identifies key risk factors that align with established medical knowledge, enhancing its credibility.
- The prediction system provides probabilities, allowing clinicians to assess risk levels and prioritize interventions.
- Feature importance (Figure 1) offers interpretable insights, enabling clinicians to focus on modifiable risk factors like blood pressure and cholesterol.

Limitations

- 1. **Feature Engineering**: The project uses raw features without additional engineering (e.g., BMI from height and weight), which could improve performance.
- 2. **Non-Linear Relationships**: While Random Forest captures non-linearities, correlation analysis used Pearson's method, which may miss non-linear associations.
- 3. **Outlier Handling**: Beyond blood pressure validation, additional outlier detection (e.g., IQR for weight) could enhance robustness.
- 4. **Generalization**: The model was trained on a single dataset; performance on diverse populations requires further validation.

Ethical and Practical Considerations

- Medical Validation: The model must be validated by healthcare professionals before clinical use. False negatives could delay critical interventions, while false positives may cause unnecessary stress or procedures (<u>PubMed</u>).
- Bias and Fairness: The dataset may contain biases (e.g., gender or age imbalances). Performance should be evaluated across subgroups to ensure fairness.
- Interpretability: Feature importance (Figure 1) and probabilities enhance trust, but clinicians should make final decisions, using the model as a decision-support tool.
- Deployment: The model can be integrated into clinical workflows, potentially as a web application or API, to assist with risk assessment during patient visits.

Conclusion

This project successfully developed a machine learning pipeline for predicting cardiovascular disease, addressing all challenges and delivering a practical prediction system. The Random Forest model achieves ~72% accuracy and ~73% recall, prioritizing the identification of at-risk patients. Key predictors like systolic blood pressure, age, and cholesterol (highlighted in Figure 1) align with medical knowledge, making the model interpretable and actionable. Visualizations (Figures 2-4) and correlation analysis provide valuable insights into risk factors, supporting clinical decision-making.

The project is complete and ready for clinical validation, with potential for	
deployment as a decision-support tool. Future improvements could include	
advanced feature engineering, additional outlier handling, and integration	
with electronic health record systems.	