CS771 Assignment-2

1 Group Members

Name	Roll No.	Email-ID	
Saksham Malhotra	210908	sakshmm21@iitk.ac.in	
Devansh Jain	210320	devanshj21@iitk.ac.in	
Akshat Tiwari	210095	akshatt21@iitk.ac.in	
Satyam Gupta	210942	sgupta21@iitk.in	

2 Contents

3	1 Solution		tion	3
4		1.1	Preprocessing	3
5		1.2	Eliminating Obfuscating Lines	3
6		1.3	Image Segmentation	3
7		1.4	Model Training and Evaluation	3

1 Solution

- 9 Our method performs image classification to determine if characters in the image have even or odd
- parity. It involves preprocessing the image, removing obfuscating lines, and segmenting the image
- into smaller segments. A convolutional neural network (CNN) model is trained using the segmented
- 12 image segments, and its performance is evaluated using metrics such as accuracy, precision, recall, and
- 13 F1 score. The model is trained with an Adam optimizer and uses the sparse categorical cross-entropy
- 14 loss. The method utilizes techniques such as color extraction, thresholding, contour extraction, and
- 15 CNNs to classify images based on the parity of characters present.

16 1.1 Preprocessing

17

18

19

21

22

24

25

27

28

30

31

32

34

- The background color of the image is extracted by taking the average color of the image's corners.
- The image is converted from BGR color space to HSV color space.

20 1.2 Eliminating Obfuscating Lines

• Obfuscating lines in the image are removed by creating a mask based on the background color and applying it to the image

23 1.3 Image Segmentation

- The image is converted to grayscale.
- A binary threshold is applied to create a binary image.
- Contours are extracted from the binary image.
 - Bounding rectangles are calculated for each contour, and segments larger than a threshold size are extracted.

29 1.4 Model Training and Evaluation

- The extracted image segments are used as training data.
 - The labels for the image segments are determined based on whether they contain characters with even or odd parity.
- The data is split into training and validation sets.
 - A convolutional neural network (CNN) model is defined using the Keras API.
- The model is compiled with the Adam optimizer and sparse categorical cross-entropy loss.
- The model is trained on the training data for a fixed number of epochs.
- The model's performance is evaluated on the validation data using metrics such as accuracy, precision, recall, and F1 score.