Paper reading for journal club of deep learning

Week 1 & 2: fMRI decoding of seen and imagined images

A series of paper from Dr. Yukiyasu Kamitani's group, inclGeneric decoding of seen and imagined objects using hierarchical visual features uding:

https://www.nature.com/articles/ncomms15037

- a) Hierarchical Neural Representation of Dreamed Objects Revealed by Brain Decoding with Deep Neural Network Features https://www.frontiersin.org/articles/10.3389/fncom.2017.00004/full
- b) Deep image reconstruction from human brain activity https://www.biorxiv.org/content/early/2017/12/28/240317
- c) End-to-end deep image reconstruction from human brain activity https://www.biorxiv.org/content/early/2018/02/27/272518

Week 3 & 4: Graph convolutional neural networks

First proposed by Defferrard and extended by Thomas Kipf A series of on-going papers including:

- a) Tutorial: http://tkipf.github.io/graph-convolutional-networks/
 Slides: https://www.dropbox.com/s/0nbeo7jin2l01us/talk_IPAM_07Feb18.pdf?dl=0
- b) <u>Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering</u> (NIPS 2016)

Codes: https://github.com/mdeff/cnn_graph Note: on the note: on the notion of a graph laplacian

- c) <u>Semi-Supervised Classification with Graph Convolutional Network</u> (ICLR 2017) Codes: https://github.com/tkipf/gcn
- d) <u>FastGCN: Fast Learning with Graph Convolutional Networks via Importance Sampling</u> (ICLR 2018)

Codes: https://github.com/matenure/FastGCN

- e) <u>Structured Sequence Modeling With Graph Convolutional Recurrent Networks</u> Codes: https://github.com/youngjoo-epfl/gconvRNN
- g) Convolutional neural networks for mesh-based parcellation of the cerebral cortex Note: Graph Attention Network (GAT) model

Future Reading Lists:

- a) How thalamic relays might orchestrate supervised deep training and symbolic computation in the brain
- b) <u>A Task-Optimized Neural Network Replicates Human Auditory Behavior, Predicts</u>
 <u>Brain Responses, and Reveals a Cortical Processing Hierarchy</u>
- c) <u>Transferring and generalizing deep-learning-based neural encoding models across subjects</u>