Thesis Simulation Single Run for Chapter 4

Dasha Asienga

2024-03-25

Contents

Logistic Regression	1
Reading in the Data	1
Fitting the Logistic Regression	1
Convergence	2
Accuracy	
Discrimination	
Seldonian Framework	3
Reading in the Data	3
Pre-Processing the Data	3
Fitting a Seldonian Algorithm	
Convergence	
Accuracy	
Discrimination	10
Results 1	13
Note 1	L4

This file is intended to run the simulation process on the parent simulation data set as a single run, before scaling it into multiple trials.

Logistic Regression

Reading in the Data

First, let's read in the parent simulation data set.

```
compas_sim_path <- "/home/dasienga24/Statistics-Senior-Honors-Thesis/Data Sets/COMPAS/compas_sim.csv"
compas_sim_parent <- read.csv(compas_sim_path)</pre>
```

Fitting the Logistic Regression

We'll want to run the logistic regression as our baseline model and obtain the 3 key performance measures: convergence, accuracy, and discrimination.

Convergence

Obtain convergence as an object. We would expect LR to always converge.

```
lr_converged <- lr[["converged"]]
lr_converged
## [1] TRUE</pre>
```

Accuracy

Conditional on convergence, obtain the accuracy as an object, which in this case is 60.76%.

```
lr_accuracy <- count(round(lr[["fitted.values"]]) == lr[["y"]])/nrow(compas_sim_parent)
lr_accuracy
## n_TRUE
## 0.6076</pre>
```

Discrimination

Conditional on convergence, obtain the discrimination statistic as an object, which in this case is 0.2784 or 27.84%.

```
preds <- predict(lr, newdata = compas_sim_parent, type="response")</pre>
compas_sim_parent <- compas_sim_parent %>%
 mutate(preds = preds,
         prediction = round(preds, 0),
         pred_risk = ifelse(prediction == 0, 'Low', 'High'))
discrimination <- compas_sim_parent %>%
  dplyr::select(race, pred_risk, is_recid) %>%
  group_by(race, is_recid) %>%
  mutate(total = n()) %>%
  group_by(pred_risk, race, total) %>%
  summarise("reoffended" = count(is_recid == 1),
            "did_not_reoffend" = count(is_recid == 0)) %>%
  pivot_longer(cols = c("reoffended", "did_not_reoffend"),
               names_to = "recidivism") %>%
  pivot_wider(
   id_cols = c("pred_risk", "recidivism", "total"),
   names from = "race",
   values_from = value
  ) %>%
  rename("Black" = `African-American`,
         "White" = `Caucasian`) %>%
  mutate(Black = round(100 * Black / total, 2),
```

The results from the logistic regression are now easily savable and retrievable, which will be useful when we scale the process.

Seldonian Framework

We also want to be able to easily retrieve the 3 key performance measures from the Seldonian algorithms we run before we scale the process, that is, convergence, accuracy, and discrimination.

Reading in the Data

First, let's read in the data.

```
# point to the data file
f_orig = "/home/dasienga24/Statistics-Senior-Honors-Thesis/Data Sets/COMPAS/compas_sim.csv"
columns_orig = ["race", "prior_offense", "age", "is_recid"]
df = pd.read_csv(f_orig, header=0, names=columns_orig)
```

Pre-Processing the Data

Let's also preprocess the data to prepare it for Seldonian modeling.

```
# select inputs to be transformed
X = df.drop(columns=["is_recid"])
y = df["is_recid"]

# one hot encode race, scale age using standard scaler
ct = ColumnTransformer([('c',OneHotEncoder(),['race']), ('n',StandardScaler(),['age'])])

# apply transformation
X_transformed = ct.fit_transform(X)

# get names after one-hot encoding
output_columns = ct.get_feature_names_out(ct.feature_names_in_)

# make an output dataframe to save transformed X and y
outdf = pd.DataFrame(X_transformed,columns=output_columns)
```

```
# change names of columns
outdf.rename(columns={'c__race_African-American':'Black', 'c__race_Caucasian':'White', 'n__age':'age'},
# re-index in order to concatenate columns
prior_offense = df["prior_offense"]
y.index = range(0, len(y))
prior_offense.index = range(0, len(prior_offense))

# add label column and `prior_offense` into final dataframe
outdf['prior_offense'] = prior_offense
outdf['is_recid'] = y
```

The data set is now clean and ready. Let's save it along with the JSON metadata file.

```
# save final dataframe
output_path_data="/home/dasienga24/Statistics-Senior-Honors-Thesis/Data Sets/COMPAS/Simulation Single R
outdf.to_csv(output_path_data,index=False,header=False)

# save metadata json file
output_path_metadata="/home/dasienga24/Statistics-Senior-Honors-Thesis/Data Sets/COMPAS/Simulation Sing
metadata_dict = {
    "regime":"supervised_learning",
    "sub_regime":"classification",
    "all_col_names":list(outdf.columns),
    "label_col_names":"is_recid",
    "sensitive_col_names":["Black", "White"]
}
with open(output_path_metadata,'w') as outfile:
    json.dump(metadata_dict,outfile,indent=2)
```

Fitting a Seldonian Algorithm

Varying $\epsilon = 0.2, 0.1, 0.05, \& 0.01$, let's fit a Seldonian algorithm such that

```
abs((FNR|[Black]) - (FNR|[White])) + abs((FPR|[Black]) - (FPR|[White])) \le \epsilon.
```

We will take $\delta = 0.05$ to ensure 95% confidence.

First, let's read in the data set and specify the regime.

```
import autograd.numpy as np

data_pth = output_path_data
metadata_pth = output_path_metadata
save_dir = "/home/dasienga24/Statistics-Senior-Honors-Thesis/Python/COMPAS Simulation/Single Run/"
os.makedirs(save_dir,exist_ok=True)

# create dataset from data and metadata file
```

```
regime='supervised_learning'
sub_regime='classification'

loader = DataSetLoader(regime=regime)

dataset = loader.load_supervised_dataset(
    filename=data_pth,
    metadata_filename=metadata_pth,
    file_type='csv')

sensitive_col_names = dataset.meta.sensitive_col_names

# use logistic regression model
model = LogisticRegressionModel()

# set the primary objective to be log loss
primary_objective = objectives.binary_logistic_loss
```

Next, let's create and save the specification files for each of the four levels of ϵ .

```
from seldonian.spec import createSupervisedSpec
# define behavioral constraints (epsilon = 0.2)
epsilon = 0.2
constraint_name = "equalized_odds"
if constraint_name == "equalized_odds":
  constraint_strs = [f'abs((FNR | [Black]) - (FNR | [White])) + abs((FPR | [Black]) - (FPR | [White]))
deltas = [0.05]
# create spec file
save_dir = "/home/dasienga24/Statistics-Senior-Honors-Thesis/Python/COMPAS Simulation/Single Run/equali.
os.makedirs(save_dir, exist_ok=True) #create folder
createSupervisedSpec(
            dataset=dataset,
            metadata_pth=metadata_pth,
            constraint_strs=constraint_strs,
            deltas=deltas,
            save_dir=save_dir,
            save=True,
           verbose=False)
```

<seldonian.spec.SupervisedSpec object at 0x7ffe8e022e10>

```
#-----#

# define behavioral constraints (epsilon = 0.1)
epsilon = 0.1
constraint_name = "equalized_odds"
if constraint_name == "equalized_odds":
    constraint_strs = [f'abs((FNR | [Black]) - (FNR | [White])) + abs((FPR | [Black]) - (FPR | [White]))
```

```
# create spec file
save_dir = "/home/dasienga24/Statistics-Senior-Honors-Thesis/Python/COMPAS Simulation/Single Run/equali.
os.makedirs(save_dir, exist_ok=True) #create folder
createSupervisedSpec(
            dataset=dataset,
            metadata_pth=metadata_pth,
            constraint_strs=constraint_strs,
            deltas=deltas,
            save_dir=save_dir,
            save=True,
            verbose=False)
## <seldonian.spec.SupervisedSpec object at 0x7ffe8d7f3510>
# define behavioral constraints (epsilon = 0.05)
epsilon = 0.05
constraint_name = "equalized_odds"
if constraint_name == "equalized_odds":
  constraint_strs = [f'abs((FNR | [Black]) - (FNR | [White])) + abs((FPR | [Black]) - (FPR | [White]))
deltas = [0.05]
# create spec file
save_dir = "/home/dasienga24/Statistics-Senior-Honors-Thesis/Python/COMPAS Simulation/Single Run/equali.
os.makedirs(save_dir, exist_ok=True) #create folder
createSupervisedSpec(
           dataset=dataset,
           metadata_pth=metadata_pth,
            constraint_strs=constraint_strs,
            deltas=deltas,
            save_dir=save_dir,
            save=True,
            verbose=False)
## <seldonian.spec.SupervisedSpec object at 0x7ffe8d8c2510>
# define behavioral constraints (epsilon = 0.01)
epsilon = 0.01
constraint_name = "equalized_odds"
if constraint name == "equalized odds":
  constraint_strs = [f'abs((FNR | [Black]) - (FNR | [White])) + abs((FPR | [Black]) - (FPR | [White]))
deltas = [0.05]
# create spec file
save_dir = "/home/dasienga24/Statistics-Senior-Honors-Thesis/Python/COMPAS Simulation/Single Run/equali
```

deltas = [0.05]

<seldonian.spec.SupervisedSpec object at 0x7ffe8d7f1310>

Finally, let's run the Seldonian engine for each of the four specification files.

```
from seldonian.seldonian_algorithm import SeldonianAlgorithm
from seldonian.utils.io_utils import load_pickle
# load the spec file (epsilon = 0.2)
specfile = '/home/dasienga24/Statistics-Senior-Honors-Thesis/Python/COMPAS Simulation/Single Run/equali
spec = load_pickle(specfile)
SA_02 = SeldonianAlgorithm(spec)
#----#
# load the spec file (epsilon = 0.1)
specfile = '/home/dasienga24/Statistics-Senior-Honors-Thesis/Python/COMPAS Simulation/Single Run/equali
spec = load_pickle(specfile)
SA_01 = SeldonianAlgorithm(spec)
#----#
# load the spec file (epsilon = 0.05)
specfile = '/home/dasienga24/Statistics-Senior-Honors-Thesis/Python/COMPAS Simulation/Single Run/equalis
spec = load_pickle(specfile)
SA_005 = SeldonianAlgorithm(spec)
#----#
# load the spec file (epsilon = 0.01)
specfile = '/home/dasienga24/Statistics-Senior-Honors-Thesis/Python/COMPAS Simulation/Single Run/equali
spec = load_pickle(specfile)
SA_001 = SeldonianAlgorithm(spec)
```

Convergence

Obtain and store convergence as an object.

```
epsilon = 0.2

passed_safety_02, solution_02 = SA_02.run(write_cs_logfile=True)
passed_safety_02
```

```
## True
epsilon = 0.1
passed_safety_01, solution_01 = SA_01.run(write_cs_logfile=True)
passed_safety_01
## True
epsilon = 0.05
passed_safety_005, solution_005 = SA_005.run(write_cs_logfile=True)
passed_safety_005
## True
epsilon = 0.01
passed_safety_001, solution_001 = SA_001.run(write_cs_logfile=True)
passed_safety_001
## True
Accuracy
Obtain and store accuracy as an object.
# separate the predictor variables from the sensitive variable and the response variable
X outdf = outdf.drop(columns = ['is recid', 'Black', 'White'])
X_sens = outdf[['Black', 'White']]
y_outdf = outdf['is_recid']
#----#
# get the solution & store coefficients (epsilon = 0.2)
coefficients = SA_02.cs_result["candidate_solution"]
# get the intercept
intercept = coefficients[0]
# compute the predictive values
linear_combination = np.dot(X_outdf, coefficients[1:]) + intercept
pred_probs_02 = 1 / (1 + np.exp(-linear_combination))
#----#
# get the solution & store coefficients (epsilon = 0.1)
coefficients = SA_01.cs_result["candidate_solution"]
# get the intercept
intercept = coefficients[0]
# compute the predictive values
```

linear_combination = np.dot(X_outdf, coefficients[1:]) + intercept

pred_probs_01 = 1 / (1 + np.exp(-linear_combination))

```
# get the solution & store coefficients (epsilon = 0.05)
coefficients = SA_005.cs_result["candidate_solution"]
# get the intercept
intercept = coefficients[0]
# compute the predictive values
linear_combination = np.dot(X_outdf, coefficients[1:]) + intercept
pred_probs_005 = 1 / (1 + np.exp(-linear_combination))
#----#
# get the solution & store coefficients (epsilon = 0.01)
coefficients = SA_001.cs_result["candidate_solution"]
# get the intercept
intercept = coefficients[0]
# compute the predictive values
linear_combination = np.dot(X_outdf, coefficients[1:]) + intercept
pred_probs_001 = 1 / (1 + np.exp(-linear_combination))
# store results
seldonian_results = pd.DataFrame({'is_recid': y_outdf, 'pred_0.2': pred_probs_02, 'pred_0.1': pred_prob
seldonian_results = pd.concat([X_outdf, X_sens, seldonian_results], axis = 1)
# define threshold
threshold = 0.5
# create risk columns
risk_02 = np.where(pred_probs_02 >= threshold, 1, 0)
risk_01 = np.where(pred_probs_01 >= threshold, 1, 0)
risk_005 = np.where(pred_probs_005 >= threshold, 1, 0)
risk_001 = np.where(pred_probs_001 >= threshold, 1, 0)
# add risk columns to dataframe
seldonian_results['risk_0.2'] = risk_02
seldonian_results['risk_0.1'] = risk_01
seldonian_results['risk_0.05'] = risk_005
seldonian_results['risk_0.01'] = risk_001
# write the dataframe to a CSV file
seldonian_results.to_csv("/home/dasienga24/Statistics-Senior-Honors-Thesis/Data Sets/COMPAS/Simulation
# read in the data
seldonian_results <- read.csv("/home/dasienga24/Statistics-Senior-Honors-Thesis/Data Sets/COMPAS/Simula
epsilon = 0.2
sa_0.2_accuracy <- count(seldonian_results\frac{1}{2} == seldonian_results\frac{1}{2} is_recid)/nrow(seldonian_results
sa_0.2_accuracy
## n_TRUE
```

```
## 0.611
epsilon = 0.1
sa_0.1_accuracy <- count(seldonian_results\risk_0.1 == seldonian_results\risk_recid)/nrow(seldonian_results
sa_0.1_accuracy
## n_TRUE
## 0.6124
epsilon = 0.05
sa_0.05_accuracy <- count(seldonian_results\risk_0.05 == seldonian_results\risk_is_recid)/nrow(seldonian_results
sa_0.05_accuracy
## n_TRUE
## 0.609
epsilon = 0.01
sa_0.01_accuracy <- count(seldonian_results\sis_risk_0.01 == seldonian_results\sis_recid)/nrow(seldonian_res
sa_0.01_accuracy
## n_TRUE
## 0.5092
Discrimination
Obtain and store the discrimination statistic as an object.
seldonian_results <- seldonian_results %>%
  mutate(race = ifelse(Black == 1, 'Black', 'White'),
         pred_risk_0.2 = ifelse(risk_0.2 == 0, 'Low', 'High'),
         pred_risk_0.1 = ifelse(risk_0.1 == 0, 'Low', 'High'),
         pred risk 0.05 = ifelse(risk 0.05 == 0, 'Low', 'High'),
         pred_risk_0.01 = ifelse(risk_0.01 == 0, 'Low', 'High'))
epsilon = 0.2
discrimination <- seldonian_results %>%
  dplyr::select(race, pred_risk_0.2, is_recid) %>%
  group_by(race, is_recid) %>%
  mutate(total = n()) %>%
  group_by(pred_risk_0.2, race, total) %>%
  summarise("reoffended" = count(is_recid == 1),
            "did_not_reoffend" = count(is_recid == 0)) %>%
  pivot_longer(cols = c("reoffended", "did_not_reoffend"),
               names_to = "recidivism") %>%
  pivot_wider(
    id_cols = c("pred_risk_0.2", "recidivism", "total"),
    names_from = "race",
```

values from = value

mutate(Black = round(100 * Black / total, 2),

) %>%

```
White = round(100 * White / total, 2)) %>%
  dplyr::select(-total) %>%
  group_by(pred_risk_0.2, recidivism) %>%
  summarize(Black = max(Black, na.rm = TRUE),
            White = max(White, na.rm = TRUE)) %>%
  filter((pred_risk_0.2 == "High" & recidivism == "did_not_reoffend") |
           (pred_risk_0.2 == "Low" & recidivism == "reoffended")
  )
sa_0.2_disc_stat <- sum(abs(discrimination$White - discrimination$Black))/100</pre>
sa_0.2_disc_stat
## [1] 0.276
epsilon = 0.1
discrimination <- seldonian_results %>%
  dplyr::select(race, pred_risk_0.1, is_recid) %>%
  group_by(race, is_recid) %>%
  mutate(total = n()) %>%
  group_by(pred_risk_0.1, race, total) %>%
  summarise("reoffended" = count(is recid == 1),
            "did_not_reoffend" = count(is_recid == 0)) %>%
  pivot_longer(cols = c("reoffended", "did_not_reoffend"),
               names_to = "recidivism") %>%
  pivot_wider(
   id_cols = c("pred_risk_0.1", "recidivism", "total"),
   names from = "race",
   values_from = value
  ) %>%
  mutate(Black = round(100 * Black / total, 2),
         White = round(100 * White / total, 2)) %>%
  dplyr::select(-total) %>%
  group_by(pred_risk_0.1, recidivism) %>%
  summarize(Black = max(Black, na.rm = TRUE),
            White = max(White, na.rm = TRUE)) %>%
  filter((pred_risk_0.1 == "High" & recidivism == "did_not_reoffend") |
           (pred_risk_0.1 == "Low" & recidivism == "reoffended")
  )
sa_0.1_disc_stat <- sum(abs(discrimination$White - discrimination$Black))/100
sa_0.1_disc_stat
## [1] 0.2176
epsilon = 0.05
discrimination <- seldonian results %>%
  dplyr::select(race, pred_risk_0.05, is_recid) %>%
  group_by(race, is_recid) %>%
 mutate(total = n()) %>%
  group_by(pred_risk_0.05, race, total) %>%
  summarise("reoffended" = count(is_recid == 1),
            "did_not_reoffend" = count(is_recid == 0)) %>%
```

```
pivot_longer(cols = c("reoffended", "did_not_reoffend"),
               names_to = "recidivism") %>%
  pivot_wider(
    id_cols = c("pred_risk_0.05", "recidivism", "total"),
   names_from = "race",
   values_from = value
  ) %>%
  mutate(Black = round(100 * Black / total, 2),
         White = round(100 * White / total, 2)) %>%
  dplyr::select(-total) %>%
  group_by(pred_risk_0.05, recidivism) %>%
  summarize(Black = max(Black, na.rm = TRUE),
            White = max(White, na.rm = TRUE)) %>%
  filter((pred_risk_0.05 == "High" & recidivism == "did_not_reoffend") |
           (pred_risk_0.05 == "Low" & recidivism == "reoffended")
  )
sa_0.05_disc_stat <- sum(abs(discrimination$White - discrimination$Black))/100</pre>
sa_0.05_disc_stat
## [1] 0.2072
epsilon = 0.01
discrimination <- seldonian_results %>%
  dplyr::select(race, pred_risk_0.01, is_recid) %>%
  group_by(race, is_recid) %>%
  mutate(total = n()) %>%
  group_by(pred_risk_0.01, race, total) %>%
  summarise("reoffended" = count(is_recid == 1),
            "did_not_reoffend" = count(is_recid == 0)) %>%
  pivot_longer(cols = c("reoffended", "did_not_reoffend"),
               names_to = "recidivism") %>%
  pivot wider(
   id_cols = c("pred_risk_0.01", "recidivism", "total"),
   names_from = "race",
   values_from = value
  ) %>%
  mutate(Black = round(100 * Black / total, 2),
         White = round(100 * White / total, 2)) %>%
  dplyr::select(-total) %>%
  group_by(pred_risk_0.01, recidivism) %>%
  summarize(Black = max(Black, na.rm = TRUE),
            White = max(White, na.rm = TRUE)) %>%
  filter((pred_risk_0.01 == "High" & recidivism == "did_not_reoffend") |
           (pred_risk_0.01 == "Low" & recidivism == "reoffended")
  )
sa_0.01_disc_stat <- sum(abs(discrimination$White - discrimination$Black))/100</pre>
sa 0.01 disc stat
```

[1] 0.0608

Results

Synthesize results for reporting.

```
# create a vector of accuracies
accuracy_vector <- c(lr_accuracy, sa_0.2_accuracy, sa_0.1_accuracy, sa_0.05_accuracy, sa_0.01_accuracy)
# transpose the vector to create a data frame with 5 columns
accuracy_df <- as.data.frame(t(accuracy_vector))

# name the columns of the data frame
colnames(accuracy_df) <- c("LR", "SA (0.2)", "SA (0.1)", "SA (0.05)", "SA (0.01)")
accuracy_df %>%
    kable(caption = "Model Accuracy")
```

Table 1: Model Accuracy

LR	SA (0.2)	SA (0.1)	SA (0.05)	SA (0.01)
0.6076	0.611	0.6124	0.609	0.5092

```
# create a vector of discrimination
disc_vector <- c(lr_disc_stat, sa_0.2_disc_stat, sa_0.1_disc_stat, sa_0.05_disc_stat, sa_0.01_disc_stat
# transpose the vector to create a data frame with 5 columns
disc_df <- as.data.frame(t(disc_vector))

# name the columns of the data frame
colnames(disc_df) <- c("LR", "SA (0.2)", "SA (0.1)", "SA (0.05)", "SA (0.01)")
disc_df %>%
    kable(caption = "Model Discrimination")
```

Table 2: Model Discrimination

LR	SA(0.2)	SA(0.1)	SA (0.05)	SA (0.01)
0.2784	0.276	0.2176	0.2072	0.0608

Accuracy and Discrimination of Logistic v Seldonian Algorithms

Note

Before scaling this process, I will need to separately handle and track instances where the Seldonian algorithm does not converge, in case such cases emerge.