# **Mental health Prediction**

Reem Abanmi - Norah Tamsan

#### **ABSTRACT**

Mental health is an integral and essential component, it's the foundation for individual well-being and the effective functioning of the community. Globally the mental health problems are rising the prevalence of mental disorders as per World Health Report is around 13%. with the increase in cases around the world, the need for psychological treatment has increased So we found it useful to provide a service to predict whether a patient should be treated of his/her mental illness or not by building a classification module.

### **DESIGN**

Using the data collected we will predict whether an individual should be treated of his/her mental illness or not by building a classification module and evaluate different methods of classification to find highest accuracy and apply this method to the Testing set. This classification module will help a lot of people and notify them to start psychotherapy sessions before there mental health gets worse.

### DATA

The dataset we are going to use to train our model is a survey done for 1259 people data set. This dataset contains 27 features most of it are categorical e.g. (yes, no, not sure), A few feature highlights include age, gender, and family history of mental illness.

#### **ALGORITHM**

- 1. We started by loading the data from the csv file
- 2. Preparing the data by cleaning it which include dealing with missing data and getting rid of unwanted features
- 3. Feature engineering:
  - 1. We start by Encoding data by creating a dictionary to map survey answers to numerical values
  - 2. Combining particular ranges of numeric features like Ranges of Age.
  - 3. Features Scaling where we scale age because it's extremely different from the other features

- 4. Models, we apply more than one classification model to find the best model and evaluate each of them
  - 1. Logistic Regression classifier





2. KNN classifier





3. Decision tree classifier





4. RandomForest classifier





## 5. Bagging classifier





## 6. Boosting classifier





### 7. Stacking classifier





### 8. Predicting with Neural Network (DNN)

deep neural network (DNN) is an artificial neural network (ANN) with multiple layers between the input and output layers, it gives us an accuracy = 90.93

5. Model evaluation and selection: the data was split into 70/30 and after applying all models we choose the DNN since it has highest accuracy as shown below.



# **TOOLS**

- 1. Seaborn
- 2. Pandas library
- 3. NumPy
- 4. TensorFlow
- 5. Matplotlib
- 6. Scikit-learn
- 7. SciPy