

CenterNet: Keypoint Triplets for Object Detection

harry 2020.3.6

目录

- 动机
- 方法

- 整体框架
- Cascade Pooling And Center Pooling
- 后处理
- 实验与结果

• CornerNet由于是根据角点来检测目标,缺少目标内部信息,容易产生假阳性。

新增一个分支用于预测目标的中心点用于预测增强识别信息与过 滤假样目标

边框对应的中心点: 若存在相应类别的响应,则保留。

Hourglass-52 or 104

top-left, bottom-right: Classes 2(reg) 1(embedding feature) Post-Processing

方法: Corner pooling Vs Cascade Corner Pooling

增强了边缘特性,同时减少了false posivite。

方法: 后处理

Remove Watermark Now

从tl-heatmap and br-heatmap 选取top-70个点,同时使用offset来 remap

通过embedding features来group

根据bbox中心位置的响应来决定其 是否保留,分数取三者平均

做NMS,取分数最高的前100个bbox,

当bbox的scale小于150时, n取3; 大于150时, n取5

$$\begin{cases} ctl_{x} = \frac{(n+1)tl_{x} + (n-1)br_{x}}{2n} \\ ctl_{y} = \frac{(n+1)tl_{y} + (n-1)br_{y}}{2n} \\ cbr_{x} = \frac{(n-1)tl_{x} + (n+1)br_{x}}{2n} \\ cbr_{y} = \frac{(n-1)tl_{y} + (n+1)br_{y}}{2n} \end{cases}$$

消融实验:

CRE: 加入center分支CTP: center pooling

CCP: cascade corner pooling

CRE	CTP	CCP	AP	AP_{50}	AP ₇₅	AP_{S}	AP_{M}	AP _L	AR ₁	AR ₁₀	AR ₁₀₀	AR_{S}	AR_{M}	AR_{L}
			37.6	53.3	40.0	18.5	39.6	52.2	33.7	52.2	56.7	37.2	60.0	74.0
		✓	38.3	54.2	40.5	18.6	40.5	52.2	34.0	53.0	57.9	36.6	60.8	75.8
√			39.9	57.7	42.3	23.1	42.3	52.3	33.8	54.2	58.5	38.7	62.4	74.4
✓	✓		40.8	58.6	43.6	23.6	43.6	53.6	33.9	54.5	59.0	39.0	63.2	74.7
√	✓	✓	41.3	59.2	43.9	23.6	43.8	55.8	34.5	55.0	59.2	39.1	63.5	75.1

Table 4: Ablation study on the major components of CenterNet511-52 on the MS-COCO validation dataset. The CRE denotes central region exploration, the CTP denotes center pooling, and the CCP denotes cascade corner pooling.

实验与结果

Remove V	

Method	Backbone	Train input	Test input	AP	AP_{50}	AP_{75}	$AP_{\rm S}$	AP_{M}	AP_{L}	AR_1	AR_{10}	AR_{100}	$AR_{\rm S}$	AR_{M}	AR _L ≡15
Mask R-CNN [12]	ResNeXt-101	~ 1300×800	~ 1300×800	39.8	62.3	43.4	22.1	43.2	51.2	-	-	-	-	-	-
Soft-NMS [2]	Aligned-Inception-ResNet	~ 1300×800	$\sim 1300 \times 800$	40.9	62.8	-	23.3	43.6	53.3	-	-	-	-	-	-
Fitness R-CNN 41	ResNet-101	512×512	1024×1024	41.8	60.9	44.9	21.5	45.0	57.5	-	-	-	-	-	-
Cascade R-CNN 4	ResNet-101	-	-	42.8	62.1	46.3	23.7	45.5	55.2	-	-	-	-	-	-
Grid R-CNN w/ FPN [28]	ResNeXt-101	~ 1300×800	$\sim 1300 \times 800$	43.2	63.0	46.6	25.1	46.5	55.2	-	-	-	-	-	-
D-RFCN + SNIP (multi-scale) [38]	DPN-98 [5]	$\sim 2000 \times 1200$	$\sim 2000 \times 1200$	45.7	67.3	51.1	29.3	48.8	57.1	-	-	-	-	-	-
PANet (multi-scale) 26	ResNeXt-101	~ 1400×840	$\sim 1400 \times 840$	47.4	67.2	51.8	30.1	51.7	60.0	-	-	-	-	-	-
CornerNet511 (multi-scale) 20	Hourglass-52	511×511	<1.5×	39.4	54.9	42.3	18.9	41.2	52.7	35.0	53.5	57.7	36.1	60.1	75.1
CornerNet511 (single-scale) 20	Hourglass-104	511×511	ori.	40.5	56.5	43.1	19.4	42.7	53.9	35.3	54.3	59.1	37.4	61.9	76.9
RefineDet512 (multi-scale) 45	ResNet-101	512×512	≤2.25×	41.8	62.9	45.7	25.6	45.1	54.1						
CornerNet511 (multi-scale) 20	Hourglass-104	511×511	≤1.5×	42.1	57.8	45.3	20.8	44.8	56.7	36.4	55.7	60.0	38.5	62.7	77.4
CenterNet511 (single-scale)	Hourglass-52	511×511	ori.	41.6	59.4	44.2	22.5	43.1	54.1	34.8	55.7	60.1	38.6	63.3	76.9
CenterNet511 (single-scale)	Hourglass-104	511×511	ori.	44.9	62.4	48.1	25.6	47.4	57.4	36.1	58.4	63.3	41.3	67.1	80.2
CenterNet511 (multi-scale)	Hourglass-52	511×511	≤1.8×	43.5	61.3	46.7	25.3	45.3	55.0	36.0	57.2	61.3	41.4	64.0	76.3
CenterNet511 (multi-scale)	Hourglass-104	511×511	≤1.8×	47.0	64.5	50.7	28.9	49.9	58.9	37.5	60.3	64.8	45.1	68.3	79.7

模型性能很好,几乎于二阶段持平(同样有很多trick);但是目前由于主干网络与Corner Pooling,速度很慢

将预测的Center Heatmap换成真实的Heatmap模型性能的提升。

Method	AP	AP ₅₀	AP ₇₅	AP_S	AP_{M}	AP_{L}
CenterNet511-52 w/o GT	41.3	59.2	43.9	23.6	43.8	55.8
CenterNet511-52 w/ GT	56.5	78.3	61.4	39.1	60.3	70.3
CenterNet511-104 w/o GT	44.8	62.4	48.2	25.9	48.9	58.8
CenterNet511-104 w/ GT	58.1	78.4	63.9	40.4	63.0	72.1

CenterNet: Objects as Points

目录

• 动机

方法

• 实验与结果

• CornerNet由于是根据角点来检测目标,后处理中会涉及配对操作, 处理流程复杂,效率低。

从tl-heatmap and br-heatmap 选取top-70个点,同时使用offset 来remap

通过embedding features来 group

做NMS,取分数最高的前100个bbox,

• CenterNet将检测任务分解成中心点检测与长宽回归。

因此网络最终输出categories+4(offsets, height, width)个heatmaps。同时没有NMS, 没有复杂的后处理。

后处理:保留比其8邻域大的响应。(使用maxpool就可以解决)

bdfele

$$r = argmax(iou>t)(t=0.7)$$

$$r = min(r1, r2, r3)$$

作者将模型泛化至3D检测,关键点检测。将任务分解成中心点与其属性。

目标检测:目标中心+尺寸

dfelement

3D检测:目标中心+尺寸+深度信息+方向

关键点检测:目标中心+k个节点的offset

1.使用不同backbone的结果(其他模型使用了预训练模型)

	AP	AP_{50}	AP_{75}	Time (ms)	FPS
	N.A. F M	S N.A. F MS	N.A. F MS	N.A. F MS	N.A. F MS
Hourglass-104	40.3 42.2 45.	1 59.1 61.1 63.5	44.0 46.0 49.3	71 129 672	14 7.8 1.4
DLA-34	37.4 39.2 41.	7 55.1 57.0 60.1	40.8 42.7 44.9	19 36 248	52 28 4
ResNet-101	34.6 36.2 39.	3 53.0 54.8 58.5	36.9 38.7 42.0	22 40 259	45 25 4
ResNet-18	28.1 30.0 33.	2 44.9 47.5 51.5	29.6 31.6 35.1	7 14 81	142 71 12

左为原始的DLA; 右为作者修改后的DLA。

1.其他消融实验

Resolution	AP	AP_{50}	AP_{75}	Time
Original	36.3	54.0	39.6	19
512	36.2	54.3	38.7	16
384	33.2	50.5	35.0	11

λ_{size}	AP	AP_{50}	$\overline{AP_{75}}$
$\overline{0.2}$	33.5	49.9	36.2
0.1	36.3	54.0	39.6
0.02	35.4	54.6	37.9

Loss	AP	AP_{50}	$\overline{AP_{75}}$
11	36.3	54.0	39.6
smooth 11	33.9	50.9	36.8

测试时输入尺寸的影响

平衡系数的影响

回归损失的对比

训练时长的影响

	YOLOV1	CenterNet	Diff
输入与输出 的设置	结果为7*7的Heatmaps 5*2+20 (x, y, w, h, c), 其中x,y是相对于cell左上点的。 w, h是相对于整张图的。	结果为128*128的Heatmaps 80+2+2	softmax vs sigmoid points and Gaussian map
网络与损失 的设置	相当于VGG19,没有BN	HourglassNet,点检测 领域的标配。	Cross entropy loss vs focal loss

错误分析

	AP AP_5	$\overline{_0 AP_{75}}$
	36.3 54.0	39.6
w/ gt size	41.9 56.6	45.4
w/ gt heatmap	54.2 82.6	58.1
w/ gt neatmap w/ gt heatmap+size w/ gt hm.+size+offse	83.1 97.9	90.1
w/ gt hm.+size+offse	t 99.5 99.7	99.6

- 中心点预测的很差。
- 中心点预测准的前提下,谈论size才更加具有意义。