Introduction to Machine Learning Multilayer Perceptron

Andres Mendez-Vazquez

January 26, 2023

Outline

- Introduction

 The XOR Problem
- Multi-Layer Perceptron
 - Architecture
 - Back-propagationGradient Descent
 - Hidden-to-Output Weights
 - Input-to-Hidden Weights
 - Total Training Error
 - About Stopping Criteria
 - Final Basic Batch Algorithm

Using Matrix Operations to Simplify

- Using Matrix Operations to Simplify the Pseudo-Code
- lacktriangle Generating the Output z_k
- Generating z_k
- Generating the Weights from Hidden to Output Layer
- Generating the Weights from Input to Hidden Layer
- Activation Functions

Heuristic for Multilayer Perceptron

- Maximizing information content
- Activation Function
- Target Values
- Normalizing the inputs
- Virtues and limitations of Back-Propagation Layer

Outline

- Introduction

 The XOR Problem
- Multi-Layer Perceptror
 - Architecture
 - Back-propagationGradient Descent
 - Hidden-to-Output Weights
 - Input-to-Hidden Weights
 - Total Training Error
 - About Stopping Criteria
 - Final Basic Batch Algorithm

Using Matrix Operations to Simplify

- Using Matrix Operations to Simplify the Pseudo-Code
- igcup Generating the Output z_k
- lacksquare Generating z_k
- Generating the Weights from Hidden to Output Layer
- Generating the Weights from Input to Hidden Layer
- Activation Functions

Heuristic for Multilayer Perceptron

- Maximizing information content
- Activation Function
- Target Values
- Normalizing the inputs
- Virtues and limitations of Back-Propagation Layer

Do you remember?

The Perceptron has the following problem

Given that the perceptron is a linear classifier

It will never be able to classify stuff that is not linearly separable

Do you remember?

The Perceptron has the following problem

Given that the perceptron is a linear classifier

It is clear that

It will never be able to classify stuff that is not linearly separable

Example: XOR Problem

The Perceptron cannot solve it

Because

The perceptron is a linear classifier!!!

Thu

Something needs to be done!!!!

. Ma

Add an extra laverIII

The Perceptron cannot solve it

Because

The perceptron is a linear classifier!!!

Thus

Something needs to be done!!!

Add an extra laver!!!

The Perceptron cannot solve it

Because

The perceptron is a linear classifier!!!

Thus

Something needs to be done!!!

Maybe

Add an extra layer!!!

A little bit of history

It was first cited by Vapnik

Vapnik cites (Bryson, A.E.; W.F. Denham; S.E. Dreyfus. Optimal programming problems with inequality constraints. I: Necessary conditions for extremal solutions. AIAA J. 1, 11 (1963) 2544-2550) as the first publication of the backpropagation algorithm in his book "Support Vector Machines."

A little bit of history

It was first cited by Vapnik

Vapnik cites (Bryson, A.E.; W.F. Denham; S.E. Dreyfus. Optimal programming problems with inequality constraints. I: Necessary conditions for extremal solutions. AIAA J. 1, 11 (1963) 2544-2550) as the first publication of the backpropagation algorithm in his book "Support Vector Machines."

It was first used by

Arthur E. Bryson and Yu-Chi Ho described it as a multi-stage dynamic system optimization method in 1969.

A little bit of history

It was first cited by Vapnik

Vapnik cites (Bryson, A.E.; W.F. Denham; S.E. Dreyfus. Optimal programming problems with inequality constraints. I: Necessary conditions for extremal solutions. AIAA J. 1, 11 (1963) 2544-2550) as the first publication of the backpropagation algorithm in his book "Support Vector Machines."

It was first used by

Arthur E. Bryson and Yu-Chi Ho described it as a multi-stage dynamic system optimization method in 1969.

However

It was not until 1974 and later, when applied in the context of neural networks and through the work of Paul Werbos, David E. Rumelhart, Geoffrey E. Hinton and Ronald J. Williams that it gained recognition.

Then

Something Notable

It led to a "renaissance" in the field of artificial neural network research.

Neverthel

During the 2000s it fell out of favour but has returned again in the 2010s now able to train much larger networks using huge modern computing power such as GPUs

Then

Something Notable

It led to a "renaissance" in the field of artificial neural network research.

Nevertheless

During the 2000s it fell out of favour but has returned again in the 2010s, now able to train much larger networks using huge modern computing power such as GPUs.

Outline

- Introduction
 The XOR Problem
- Multi-Layer Perceptron
 - Architecture
 - Back-propagation
 - Gradient Descent
 - Hidden-to-Output Weights
 - Input-to-Hidden Weights
 - Total Training Error
 - About Stopping Criteria
 - Final Basic Batch Algorithm
 - Using Matrix Operations to Simplify
 - Using Matrix Operations to Simplify the Pseudo-Code
 - lacksquare Generating the Output z_k
 - lacksquare Generating z_k
 - Generating the Weights from Hidden to Output Layer
 - Generating the Weights from Input to Hidden Layer
 - Activation Functions
 - Heuristic for Multilayer Perceptron
 - Maximizing information content
 - Activation Function
 - Target Values
 - Normalizing the inputs
 - Virtues and limitations of Back-Propagation Layer

Multi-Layer Perceptron (MLP)

Information Flow

Problems with Hidden Layers

- Increase complexity of Training
- It is necessary to think about "Long and Narrow" network vs "Shorttwork and Fat" network.

Intuition for a One Hidden Layer

- For every input case of region, that region can be delimited by hyperplanes on all sides using hidden units on the first hidden layer
- A hidden unit in the second layer than ANDs them together to bound the region.

It has been proven that an MLP with one hidden layer can learn any nonlinear function of the input

Problems with Hidden Layers

- Increase complexity of Training
- 2 It is necessary to think about "Long and Narrow" network vs "Short and Fat" network.

Intuition for a One Hidden Layer

For every input case of region, that region can be delimited by hyperplanes on all sides using hidden units on the first hidden layer.

It has been proven that an MLP with one hidden layer can learn any

Problems with Hidden Layers

- Increase complexity of Training
- ② It is necessary to think about "Long and Narrow" network vs "Short and Fat" network.

Intuition for a One Hidden Layer

For every input case of region, that region can be delimited by hyperplanes on all sides using hidden units on the first hidden layer.

Advantages

It has been proven that an MLP with one hidden layer can learn any nonlinear function of the input.

Problems with Hidden Layers

- Increase complexity of Training
- ② It is necessary to think about "Long and Narrow" network vs "Short and Fat" network.

Intuition for a One Hidden Layer

- For every input case of region, that region can be delimited by hyperplanes on all sides using hidden units on the first hidden layer.
- ② A hidden unit in the second layer than ANDs them together to bound the region.

Advantages

It has been proven that an MLP with one hidden layer can learn any nonlinear function of the input.

Problems with Hidden Layers

- Increase complexity of Training
- ② It is necessary to think about "Long and Narrow" network vs "Short and Fat" network.

Intuition for a One Hidden Layer

- For every input case of region, that region can be delimited by hyperplanes on all sides using hidden units on the first hidden layer.
- ② A hidden unit in the second layer than ANDs them together to bound the region.

Advantages

It has been proven that an MLP with one hidden layer can learn any nonlinear function of the input.

The Process

Outline

- Introduction
 The XOR Problem
 - Multi-Layer Perceptron

 Architecture
 - Back-propagation
 - Gradient Descent
 - Hidden-to-Output Weights
 - Input-to-Hidden Weights
 - Total Training Error
 - About Stopping Criteria
 - Final Basic Batch Algorithm
 - Using Matrix Operations to Simplify
 - Using Matrix Operations to Simplify the Pseudo-Code
 - igcup Generating the Output z_k
 - \bigcirc Generating z_k
 - Generating the Weights from Hidden to Output Layer
 - Generating the Weights from Input to Hidden Layer
 - Activation Functions
 - Heuristic for Multilayer Perceptron
 - Maximizing information content
 - Activation Function
 - Target Values
 - Normalizing the inputs
 - Virtues and limitations of Back-Propagation Layer

Remember!!! The Quadratic Learning Error function

Cost Function our well know error at ${\bf pattern}\ m$

$$J\left(m\right) = \frac{1}{2}e_{k}^{2}\left(m\right) \tag{1}$$

$$\Delta w_{kj}(m) = -\eta e_k(m) x_j(m)$$

$$w_{kj}(m+1) = w_{kj}(m) + \Delta w_{kj}(m)$$
 (3)

Remember!!! The Quadratic Learning Error function

Cost Function our well know error at pattern m

$$J\left(m\right) = \frac{1}{2}e_{k}^{2}\left(m\right) \tag{1}$$

Delta Rule or Widrow-Hoff Rule

$$\Delta w_{kj}(m) = -\eta e_k(m) x_j(m)$$
 (2)

 $w_{kj}\left(m+1\right) = w_{kj}\left(m\right) + \Delta w_{kj}\left(m\right)$

Remember!!! The Quadratic Learning Error function

Cost Function our well know error at pattern m

$$J(m) = \frac{1}{2}e_k^2(m) \tag{1}$$

Delta Rule or Widrow-Hoff Rule

$$\Delta w_{kj}(m) = -\eta e_k(m) x_j(m)$$
 (2)

Actually this is know as Gradient Descent

$$w_{kj}(m+1) = w_{kj}(m) + \Delta w_{kj}(m)$$

Back-propagation

Setup

Let t_k be the k-th target (or desired) output and z_k be the k-th computed output with $k = 1, \ldots, d$ and w represents all the weights of the network

Back-propagation

Setup

Let t_k be the k-th target (or desired) output and z_k be the k-th computed output with $k = 1, \ldots, d$ and w represents all the weights of the network

Training Error for a single Pattern or Sample!!!

$$J(\boldsymbol{w}) = \frac{1}{2} \sum_{k=1}^{c} (t_k - z_k)^2 = \frac{1}{2} \|\boldsymbol{t} - \boldsymbol{z}\|^2$$
 (4)

Outline

- Introduction
 The XOR Problem
- Multi-Layer Perceptron
 - ArchitectureBack-propagation
 - Gradient Descent
 - Hidden-to-Output Weights
 - Input-to-Hidden Weights
 - Total Training Error
 - About Stopping Criteria
 - Final Basic Batch Algorithm

Using Matrix Operations to Simplify

- Using Matrix Operations to Simplify the Pseudo-Code
- lacksquare Generating the Output z_k
- Generating z_k
- Generating the Weights from Hidden to Output Layer
- Generating the Weights from Input to Hidden Layer
- Activation Functions

Heuristic for Multilayer Perceptron

- Maximizing information content
- Activation Function
- Target Values
- Normalizing the inputs
- Virtues and limitations of Back-Propagation Layer

Gradient Descent

Gradient Descent

The back-propagation learning rule is based on gradient descent.

The weights are initialized with pseudo-random values and are changed in

 $\Delta w = -\eta \frac{\partial J}{\partial m}$

(5)

 η is the learning rate which indicates the relative size of the change in weights:

 $w\left(m+1\right) = w\left(m\right) + \Delta w\left(m\right)$

where m is the $m ext{-} ext{th}$ pattern presented

Gradient Descent

Gradient Descent

The back-propagation learning rule is based on gradient descent.

Reducing the Error

The weights are initialized with pseudo-random values and are changed in a direction that will reduce the error:

$$\Delta w = -\eta \frac{\partial J}{\partial w} \tag{5}$$

 η is the learning rate which indicates the relative size of the change in weights:

 $w\left(m+1\right) = w\left(m\right) + \Delta w\left(m\right)$

where m is the m-th pattern presented

Gradient Descent

Gradient Descent

The back-propagation learning rule is based on gradient descent.

Reducing the Error

The weights are initialized with pseudo-random values and are changed in a direction that will reduce the error:

$$\Delta \boldsymbol{w} = -\eta \frac{\partial J}{\partial \boldsymbol{w}} \tag{5}$$

Where

 η is the learning rate which indicates the relative size of the change in weights:

$$w(m+1) = w(m) + \Delta w(m)$$
(6)

where m is the m-th pattern presented

Outline

- Introduction
 The XOR Problem
- Multi-Layer Perceptron
 - ArchitectureBack-propagation
 - Gradient Descent
 - Hidden-to-Output Weights
 - Input-to-Hidden Weights
 - Total Training Error
 - About Stopping Criteria
 - Final Basic Batch Algorithm

Using Matrix Operations to Simplify

- Using Matrix Operations to Simplify the Pseudo-Code
- lacksquare Generating the Output z_k
- lacksquare Generating z_k
- Generating the Weights from Hidden to Output Layer
- Generating the Weights from Input to Hidden Layer
- Activation Functions

Heuristic for Multilayer Perceptron

- Maximizing information content
- Activation Function
- Target Values
- Normalizing the inputs
- Virtues and limitations of Back-Propagation Layer

Multilayer Architecture

Observation about the activation function

Hidden Output is equal to

$$y_j = f\left(\sum_{i=1}^d w_{ji} x_i\right)$$

$$z_k = f\left(\sum_{j=1}^n w_{kj} y_j\right)$$

Observation about the activation function

Hidden Output is equal to

$$y_j = f\left(\sum_{i=1}^d w_{ji} x_i\right)$$

Output is equal to

$$z_k = f\left(\sum_{j=1}^{y_{n_H}} w_{kj} y_j\right)$$

Error on the hidden—to-output weights

$$\frac{\partial J}{\partial w_{kj}} = \frac{\partial J}{\partial net_k} \cdot \frac{\partial net_k}{\partial w_{kj}} = -\delta_k \cdot \frac{\partial net_k}{\partial w_{kj}} \tag{7}$$

It describes how the overall error changes with the activation of the unit's net :

$$net_k = \sum_{j=1} w_{kj} y_j = oldsymbol{w}_k^t \cdot oldsymbol{y}$$

 $\delta_k = -\frac{\partial J}{\partial net_k} = -\frac{\partial J}{\partial z_k} \cdot \frac{\partial z_k}{\partial net_k} = (t_k - z_k) f'(net_k)$

Error on the hidden-to-output weights

$$\frac{\partial J}{\partial w_{kj}} = \frac{\partial J}{\partial net_k} \cdot \frac{\partial net_k}{\partial w_{kj}} = -\delta_k \cdot \frac{\partial net_k}{\partial w_{kj}} \tag{7}$$

net_k

It describes how the overall error changes with the activation of the unit's net:

$$net_k = \sum_{j=1}^{y_{n_H}} w_{kj} y_j = \boldsymbol{w}_k^T \cdot \boldsymbol{y}$$
 (8)

Error on the hidden-to-output weights

$$\frac{\partial J}{\partial w_{kj}} = \frac{\partial J}{\partial net_k} \cdot \frac{\partial net_k}{\partial w_{kj}} = -\delta_k \cdot \frac{\partial net_k}{\partial w_{kj}} \tag{7}$$

net_k

It describes how the overall error changes with the activation of the unit's net:

$$net_k = \sum_{j=1}^{y_{n_H}} w_{kj} y_j = \boldsymbol{w}_k^T \cdot \boldsymbol{y}$$
 (8)

Now

Now
$$\delta_k = -\frac{\partial J}{\partial net_k} = -\frac{\partial J}{\partial z_k} \cdot \frac{\partial z_k}{\partial net_k} = (t_k - z_k) f'(net_k)$$

(9)

$$z_k = f\left(net_k\right)$$

Thus

$$\frac{\partial z_k}{\partial net_k} = f'(net_k)$$

(11)

(10)

 $\frac{\partial net_k}{\partial w_{k+1}} = y$

$$z_k = f\left(net_k\right)$$

(10)

Thus

$$\frac{\partial z_k}{\partial net_k} = f'(net_k)$$

(11)

Since $net_k = \boldsymbol{w}_k^T \cdot \boldsymbol{y}$ therefore:

$$\frac{\partial net_k}{\partial w_{kj}} = y_j$$

(12)

Finally

The weight update (or learning rule) for the hidden-to-output weights is:

$$\Delta w_{kj} = \eta \delta_k y_j = \eta \left(t_k - z_k \right) f'(net_k) y_j \tag{13}$$

Outline

- Introduction
 The XOR Problem
- Multi-Layer Perceptron
 - Architecture
 - Back-propagationGradient Descent
 - Hidden-to-Output Weights
 - Input-to-Hidden Weights
 - Input-to-Hidden Weights
 - Total Training Error
 - About Stopping Criteria
 - Final Basic Batch Algorithm

Using Matrix Operations to Simplify

- Using Matrix Operations to Simplify the Pseudo-Code
- lacksquare Generating the Output z_k
- Generating z_k
- Generating the Weights from Hidden to Output Layer
- Generating the Weights from Input to Hidden Layer
- Activation Functions

Heuristic for Multilayer Perceptron

- Maximizing information content
- Activation Function
- Target Values
- Normalizing the inputs
- Virtues and limitations of Back-Propagation Layer

Multi-Layer Architecture

Multi-Layer Architecture: Input-to-Hidden weights

Input-to-Hidden Weights

Error on the Input-to-Hidden weights

$$\frac{\partial J}{\partial w_{ji}} = \frac{\partial J}{\partial y_j} \cdot \frac{\partial y_j}{\partial net_j} \cdot \frac{\partial net_j}{\partial w_{ji}} \tag{14}$$

Input-to-Hidden Weights

Error on the Input-to-Hidden weights

$$\frac{\partial J}{\partial w_{ji}} = \frac{\partial J}{\partial y_j} \cdot \frac{\partial y_j}{\partial net_j} \cdot \frac{\partial net_j}{\partial w_{ji}}$$
(14)

Thus

$$\frac{\partial J}{\partial y_j} = \frac{\partial}{\partial y_j} \left[\frac{1}{2} \sum_{k=1}^c (t_k - z_k)^2 \right]
= -\sum_{k=1}^c (t_k - z_k) \frac{\partial z_k}{\partial y_j}
= -\sum_{k=1}^c (t_k - z_k) \frac{\partial z_k}{\partial net_k} \cdot \frac{\partial net_k}{\partial y_j}
= -\sum_{k=1}^c (t_k - z_k) \frac{\partial f(net_k)}{\partial net_k} \cdot w_{kj}$$

Input-to-Hidden Weights

Finally

$$\frac{\partial J}{\partial y_j} = -\sum_{k=1}^c (t_k - z_k) f'(net_k) \cdot w_{kj}$$
(15)

Remember

$$\delta_k = -\frac{\partial J}{\partial net_k} = (t_k - z_k) f'(net_k)$$
(16)

28 / 94

What is $\frac{\partial y_j}{\partial net_j}$?

$$net_j = \sum_{i=1}^d w_{ji} x_i = \boldsymbol{w}_j^T \cdot \boldsymbol{x}$$
 (17)

$$y_j = f\left(net_j\right)$$

$$\frac{\partial y_j}{\partial net} = \frac{\partial f(net_j)}{\partial net} = f'(net_j)$$

What is $\frac{\partial y_j}{\partial net_i}$?

First

$$net_j = \sum_{i=1}^d w_{ji} x_i = \boldsymbol{w}_j^T \cdot \boldsymbol{x}$$
 (17)

Then

$$y_j = f\left(net_j\right)$$

$$\frac{\partial y_j}{\partial net_i} = \frac{\partial f(net_j)}{\partial net_i} = f'(net_j)$$

What is $\frac{\partial y_j}{\partial net_i}$?

First

$$net_j = \sum_{i=1}^{d} w_{ji} x_i = \boldsymbol{w}_j^T \cdot \boldsymbol{x}$$
 (17)

Then

$$y_j = f\left(net_j\right)$$

Then

$$\frac{\partial y_j}{\partial net_j} = \frac{\partial f\left(net_j\right)}{\partial net_j} = f'\left(net_j\right)$$

Then, we can define δ_j

By defying the sensitivity for a hidden unit

$$\delta_j = f'(net_j) \sum_{k=1}^c w_{kj} \delta_k \tag{18}$$

Which means than

"The sensitivity at a hidden unit is simply the sum of the individual sensitivities at the output units weighted by the **hidden-to-output** weights w_{t+1} ; all multiplied by $f'(net_1)$ "

Then, we can define δ_i

By defying the sensitivity for a hidden unit:

$$\delta_j = f'(net_j) \sum_{k=1}^{c} w_{kj} \delta_k \tag{18}$$

Which means than

"The sensitivity at a hidden unit is simply the sum of the individual sensitivities at the output units weighted by the **hidden-to-output** weights w_{kj} ; all multiplied by $f'(net_i)$ "

Then, we can define δ_i

By defying the sensitivity for a hidden unit:

$$\delta_j = f'(net_j) \sum_{k=1}^c w_{kj} \delta_k \tag{18}$$

Which means that:

"The sensitivity at a hidden unit is simply the sum of the individual sensitivities at the output units weighted by the **hidden-to-output** weights w_{kj} ; all multiplied by $f'(net_j)$ "

What about $\frac{\partial net_j}{\partial w_{ji}}$?

We have that

$$\frac{\partial net_j}{\partial w_{ji}} = \frac{\partial \boldsymbol{w}_j^T \cdot \boldsymbol{x}}{\partial w_{ji}} = \frac{\partial \sum_{i=1}^d w_{ji} x_i}{\partial w_{ji}} = x_i$$

Finally

The learning rule for the input-to-hidden weights is:

$$\Delta w_{ji} = \eta x_i \delta_j = \eta \left[\sum_{k=1}^c w_{kj} \delta_k \right] f'(net_j) x_i$$
 (19)

Initialization

Assuming that no prior information is available, pick the synaptic weights and thresholds

Compute the induced function signals of the network by proceeding forward through the network, layer by layer.

Compute the local gradients of the network.

Adjust the weights!!!

Initialization

Assuming that no prior information is available, pick the synaptic weights and thresholds

Forward Computation

Compute the induced function signals of the network by proceeding forward through the network, layer by layer.

Compute the local gradients of the network.

Adjust the weights!!!

Initialization

Assuming that no prior information is available, pick the synaptic weights and thresholds

Forward Computation

Compute the induced function signals of the network by proceeding forward through the network, layer by layer.

Backward Computation

Compute the local gradients of the network.

Initialization

Assuming that no prior information is available, pick the synaptic weights and thresholds

Forward Computation

Compute the induced function signals of the network by proceeding forward through the network, layer by layer.

Backward Computation

Compute the local gradients of the network.

Finally

Adjust the weights!!!

Outline

- Introduction
 The XOR Problem
- Multi-Layer Perceptron
 - Architecture
 - Back-propagationGradient Descent
 - Hidden-to-Output Weights
 - Input-to-Hidden Weights
 - Total Training Error
 - About Stopping Criteria
 - Final Basic Batch Algorithm
 - Using Matrix Operations to Simplify
 - Using Matrix Operations to Simplify the Pseudo-Code
 - lacksquare Generating the Output z_k
 - Generating z₁
 - Generating the Weights from Hidden to Output Layer
 - Generating the Weights from Input to Hidden Layer
 - Activation Functions
 - Heuristic for Multilayer Perceptron
 - Maximizing information content
 - Activation Function
 - Target Values
 - Normalizing the inputs
 - Virtues and limitations of Back-Propagation Layer

Now, Calculating Total Change

We have for that

The Total Training Error is the sum over the errors of ${\cal N}$ individual patterns

The Total Training Error

 $J = \sum_{p=1}^{N} J_p = \frac{1}{2} \sum_{p=1}^{N} \sum_{k=1}^{N} (t_k^p - z_k^p)^2 = \frac{1}{2} \sum_{p=1}^{N} ||t^p - z^p||^2$

Now, Calculating Total Change

We have for that

The Total Training Error is the sum over the errors of ${\cal N}$ individual patterns

The Total Training Error

$$J = \sum_{n=1}^{N} J_p = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{d} (t_k^p - z_k^p)^2 = \frac{1}{2} \sum_{n=1}^{n} ||t^p - z^p||^2$$
 (20)

About the Total Training Error

Remarks

• A weight update may reduce the error on the single pattern being presented but can increase the error on the full training set.

About the Total Training Error

Remarks

- A weight update may reduce the error on the single pattern being presented but can increase the error on the full training set.
- However, given a large number of such individual updates, the total error of equation (20) decreases.

Outline

- Introduction
 The XOR Problem
- Multi-Layer Perceptron
 - Architecture
 - Back-propagationGradient Descent
 - Hidden-to-Output Weights
 - Input-to-Hidden Weights
 - Total Training Error
 - About Stopping Criteria
 - Final Basic Batch Algorithm

Using Matrix Operations to Simplify

- Using Matrix Operations to Simplify the Pseudo-Code
 - lacksquare Generating the Output z_k
- Generating z_k
- Generating the Weights from Hidden to Output Layer
- Generating the Weights from Input to Hidden Layer
- Activation Functions

Heuristic for Multilayer Perceptron

- Maximizing information content
- Activation Function
- Target Values
- Normalizing the inputs
- Virtues and limitations of Back-Propagation Layer

Therefore

It is necessary to have a way to stop when the change of the weights is enough!!!

• The algorithm terminates when the change in the criterion function J(w) is smaller than some preset value Θ .

$$\Delta J(\boldsymbol{w}) = |J(\boldsymbol{w}(t+1)) - J(\boldsymbol{w}(t))|$$
 (21)

• There are other stopping criteria that lead to better performance than this one.

Therefore

It is necessary to have a way to stop when the change of the weights is enough!!!

A simple way to stop the training

• The algorithm terminates when the change in the criterion function $J(\boldsymbol{w})$ is smaller than some preset value Θ .

Therefore

It is necessary to have a way to stop when the change of the weights is enough!!!

A simple way to stop the training

• The algorithm terminates when the change in the criterion function $J(\boldsymbol{w})$ is smaller than some preset value Θ .

$$\Delta J(\boldsymbol{w}) = |J(\boldsymbol{w}(t+1)) - J(\boldsymbol{w}(t))|$$
 (21)

• There are other stopping criteria that lead to better performance that this one.

Therefore

It is necessary to have a way to stop when the change of the weights is enough!!!

A simple way to stop the training

• The algorithm terminates when the change in the criterion function $J(\boldsymbol{w})$ is smaller than some preset value Θ .

$$\Delta J(\boldsymbol{w}) = |J(\boldsymbol{w}(t+1)) - J(\boldsymbol{w}(t))|$$
 (21)

• There are other stopping criteria that lead to better performance than this one.

Other Stopping Criteria

Norm of the Gradient

The back-propagation algorithm is considered to have converged when the Euclidean norm of the gradient vector reaches a sufficiently small gradient threshold.

$$\|\nabla_{\boldsymbol{w}}J\left(m\right)\| < \Theta \tag{22}$$

The back-propagation algorithm is considered to have converged when the absolute rate of change in the average squared error per epoch is

sufficiently small.

$$\left| \frac{1}{N} \sum_{p=1}^{N} J_p \right| < \Theta$$

(23)

Other Stopping Criteria

Norm of the Gradient

The back-propagation algorithm is considered to have converged when the Euclidean norm of the gradient vector reaches a sufficiently small gradient threshold.

$$\|\nabla_{\boldsymbol{w}}J\left(m\right)\| < \Theta \tag{22}$$

Rate of change in the average error per epoch

The back-propagation algorithm is considered to have converged when the absolute rate of change in the average squared error per epoch is sufficiently small.

$$\left| \frac{1}{N} \sum_{p=1}^{N} J_p \right| < \Theta \tag{23}$$

Observations

 $\ensuremath{ \bullet}$ Before training starts, the error on the training set is high.

- Before training starts, the error on the training set is high.
 - ▶ Through the learning process, the error becomes smaller.

- Before training starts, the error on the training set is high.
 - ▶ Through the learning process, the error becomes smaller.
- ② The error per pattern depends on the amount of training data and the expressive power (such as the number of weights) in the network.

- Before training starts, the error on the training set is high.
 - ▶ Through the learning process, the error becomes smaller.
- The error per pattern depends on the amount of training data and the expressive power (such as the number of weights) in the network.
- The average error on an independent test set is always higher than on the training set, and it can decrease as well as increase.

- Before training starts, the error on the training set is high.
 - ▶ Through the learning process, the error becomes smaller.
- The error per pattern depends on the amount of training data and the expressive power (such as the number of weights) in the network.
- The average error on an independent test set is always higher than on the training set, and it can decrease as well as increase.
- A validation set is used in order to decide when to stop training.

- Before training starts, the error on the training set is high.
 - ▶ Through the learning process, the error becomes smaller.
- ② The error per pattern depends on the amount of training data and the expressive power (such as the number of weights) in the network.
- The average error on an independent test set is always higher than on the training set, and it can decrease as well as increase.
- A validation set is used in order to decide when to stop training.
 - ► We do not want to over-fit the network and decrease the power of the classifier generalization "we stop training at a minimum of the error on the validation set"

Some More Terminology

Epoch

As with other types of backpropagation, 'learning' is a supervised process that occurs with each cycle or 'epoch' through a forward activation flow of outputs, and the backwards error propagation of weight adjustments.

I am using the batch sum of all correcting weights to define that epoch

Some More Terminology

Epoch

As with other types of backpropagation, 'learning' is a supervised process that occurs with each cycle or 'epoch' through a forward activation flow of outputs, and the backwards error propagation of weight adjustments.

In our case

I am using the batch sum of all correcting weights to define that epoch.

Outline

- Introduction
 The XOR Problem
- Multi-Layer Perceptron
 - Architecture
 - Back-propagation
 - Gradient Descent
 - Hidden-to-Output WeightsInput-to-Hidden Weights
 - Total Training Error
 - About Stopping Criteria
 - Final Basic Batch Algorithm

Using Matrix Operations to Simplify

- Using Matrix Operations to Simplify the Pseudo-Code
- lacksquare Generating the Output z_k
- Generating z_k
- Generating the Weights from Hidden to Output Layer
- Generating the Weights from Input to Hidden Layer
- Activation Functions

Heuristic for Multilayer Perceptron

- Maximizing information content
- Activation Function
- Target Values
- Normalizing the inputs
- Virtues and limitations of Back-Propagation Layer

Perceptron(X)

Perceptron(X)

```
Initialize random w, number of hidden units n_H, number of outputs z, stopping criterion \Theta, learning rate \eta, epoch
m = 0
```

Perceptron(X)

do

```
Initialize random w, number of hidden units n_H, number of outputs z, stopping criterion \Theta, learning rate \eta, epoch m=0
```

- 0 m − m ± 1
- for s=1 to N
- $x\left(m
 ight) =X\left(:,s
 ight)$
- for k = 1 to c
- $\delta_k = \left(t_k z_k\right) f'\left(\boldsymbol{w}_k^T \cdot \boldsymbol{y}\right)$
 - for j=1 to n_H
 - $net_j = w_j^T \cdot x_i y_j = f\left(net_j
 ight)$
- for j=1 to n_H
 - $\delta_j = f'\left(net_j\right) \sum_{k=1}^c w_{kj} \delta_k$
- for i = 1 to d
 - $w_{ji}(m) = w_{ji}(m) + \eta \delta_j x_i(m)$
- until $\|\nabla_{\boldsymbol{w}}J(m)\| < \Theta$
 - $\|\nabla w J(m)\| < \Theta$

Perceptron(X)

- Initialize random w, number of hidden units n_H , number of outputs z, stopping criterion Θ , learning rate η , epoch m=0
 - 2 do
 - m = m + 1
 - for s = 1 to N
 - $\boldsymbol{x}\left(m\right) = \boldsymbol{X}\left(:,s\right)$
 - for k = 1 to c
 - $\delta_k = (t_k z_k) f'\left(oldsymbol{w}_k^T \cdot oldsymbol{y}\right)$
 - $\quad \text{for } j=1 \text{ to } n_H$
 - $net_j = oldsymbol{w}_j^T \cdot oldsymbol{x}; y_j = f\left(net_j
 ight)$
 - $w_{kj}\left(m
 ight)=w_{kj}\left(m
 ight)+\eta\delta_{k}y_{j}\left(m
 ight)$
 - for j=1 to n_H
 - $\delta_j = f'\left(net_j
 ight) \sum_{k=1}^c w_{kj} \delta_k$
 - for i = 1 to d
 - $w_{ji}(m) = w_{ji}(m) + \eta \delta_j x_i(m)$
- until $\|\nabla_{\boldsymbol{w}}J(m)\| < \Theta$

Perceptron(X)

Initialize random w, number of hidden units n_H , number of outputs z, stopping criterion Θ , learning rate η , epoch m=0

- do
- m = m + 1
- for s = 1 to N
- $\boldsymbol{x}\left(m\right) = \boldsymbol{X}\left(:,s\right)$
- for k=1 to c
 - $\delta_k = \left(t_k z_k\right) f'\left(oldsymbol{w}_k^T \cdot oldsymbol{y}
 ight)$
 - for j=1 to n_H
 - $net_j = w_j^1 \cdot x_i y_j = f\left(net_j
 ight)$
 - $w_{kj}(m) = w_{kj}(m) + \eta \delta_k y_j(m)$
 - for j=1 to n_H
 - $\delta_j = f'\left(net_j\right) \sum_{k=1}^c w_{kj} \delta_k$
 - for i = 1 to d
 - $w_{ii}(m) = w_{ii}(m) + \eta \delta_i x_i(m)$
- until $\|\nabla_{\boldsymbol{w}}J(m)\| < \Theta$

Perceptron(X)

Initialize random w, number of hidden units n_H , number of outputs z, stopping criterion Θ , learning rate η , epoch m=0

- do
- m = m + 1
- for s = 1 to N
- $\boldsymbol{x}\left(m\right) = \boldsymbol{X}\left(:,s\right)$
 - for k=1 to ϵ
 - $\delta_k = (t_k z_k) f' \left(w_k^T \cdot y \right)$
 - for j=1 to n_H
 - $net_j = oldsymbol{w}_j^T \cdot oldsymbol{x}; y_j = f\left(net_j
 ight)$
 - $w_{kj}(m) = w_{kj}(m) + \eta \delta_k y_j(m)$
 - for j=1 to n_H
 - $\delta_{j} = f'\left(net_{j}\right) \sum_{k=1}^{c} w_{kj} \delta_{k}$
 - for i = 1 to d
 - $w_{ii}(m) = w_{ii}(m) + \eta \delta_i x_i(m)$
- until $\|\nabla_{\boldsymbol{w}}J\left(m\right)\| < \Theta$

Perceptron(X)

Initialize random w, number of hidden units n_H , number of outputs z, stopping criterion Θ , learning rate η , epoch m=0

- do
- m = m + 1
- m=m+1
- for s = 1 to N
- $\mathbf{z}\left(m\right) = \mathbf{X}\left(:,s\right)$
- - $\delta_k = \left(t_k z_k\right) f'\left(oldsymbol{w}_k^T \cdot oldsymbol{y}
 ight)$
 - for j=1 to n_H
 - $net_j = oldsymbol{w}_j^T \cdot oldsymbol{x}_i y_j = f\left(net_j
 ight)$
 - $w_{kj}(m) = w_{kj}(m) + \eta \delta_k y_j(m)$
 - for j=1 to n_H
 - $\delta_j = f'\left(net_j\right) \sum_{k=1}^c w_{kj} \delta_k$
 - for i = 1 to d
 - $w_{ii}(m) = w_{ii}(m) + \eta \delta_i x_i(m)$
- until $\|
 abla_{m{w}}J(m)\|<\Theta$

Perceptron(X)

7

Initialize random w, number of hidden units n_H , number of outputs z, stopping criterion Θ , learning rate η , epoch m=0

$$m = m + 1$$

4 for
$$s = 1$$
 to N

$$x\left(m\right) = X\left(:,s\right)$$

$$x(m) = X(.,s)$$

for
$$k = 1$$
 to c

$$\delta_k = (t_k - z_k) f' \left(\boldsymbol{w}_k^T \cdot \boldsymbol{y} \right)$$

for
$$j = 1$$
 to n_H

$$net_j = \boldsymbol{w}_j^T \cdot \boldsymbol{x}; y_j = f\left(net_j\right)$$

$$w_{kj}(m) = w_{kj}(m) + \eta \delta_k y_j(m)$$

for
$$j=1$$
 to n_H

$$\delta_j = f'\left(net_j
ight)\sum_{k=1}^c w_{kj}\delta_k$$

for
$$i = 1$$
 to d

$$w_{ji}(m) = w_{ji}(m) + \eta \delta_j x_i(m)$$

Perceptron(X)

Initialize random w, number of hidden units n_H , number of outputs z, stopping criterion Θ , learning rate η , epoch m = 0

$$m = m + 1$$

for
$$s = 1$$
 to N

$$x(m) = X(:, s)$$

$$x(m) = X(:, s)$$
6 for $k = 1$ to c

for
$$k = 1$$
 to c

$$\delta_k = (t_k - z_k) f' \left(\boldsymbol{w}_k^T \cdot \boldsymbol{y} \right)$$

for
$$j = 1$$
 to n_H

$$net_j = oldsymbol{w}_j^T \cdot oldsymbol{x}; y_j = f\left(net_j
ight)$$

$$w_{kj}(m) = w_{kj}(m) + \eta \delta_k y_j(m)$$

$$\text{ for } j=1 \text{ to } n_H$$

$$\delta_j = f'\left(net_j
ight)\sum_{k=1}^c w_{kj}\delta_k$$

for
$$i = 1$$
 to d

$$w_{ji}(m) = w_{ji}(m) + \eta \delta_j x_i(m)$$

Perceptron(X)

Initialize random w, number of hidden units n_H , number of outputs z, stopping criterion Θ , learning rate η , epoch m = 0

$$m = m + 1$$

for
$$s = 1$$
 to N

$$\mathbf{x}\left(m\right) = \mathbf{X}\left(:,s\right)$$

for
$$k = 1$$
 to c

$$\delta_k = (t_k - z_k) f' \left(\boldsymbol{w}_k^T \cdot \boldsymbol{y} \right)$$

for
$$j = 1$$
 to n_H

$$net_j = \boldsymbol{w}_j^T \cdot \boldsymbol{x}; y_j = f\left(net_j\right)$$

$$\text{ for } j=1 \text{ to } n_H$$

for
$$i=1$$
 to d

Perceptron(X)

Initialize random w, number of hidden units n_H , number of outputs z, stopping criterion Θ , learning rate η , epoch m=0

6

10

$$m = m + 1$$

$$\mathbf{x}\left(m\right) = \mathbf{X}\left(:,s\right)$$

for
$$k = 1$$
 to c

$$\delta_k = (t_k - z_k) f' \left(\boldsymbol{w}_k^T \cdot \boldsymbol{y} \right)$$

for
$$j = 1$$
 to n_H

$$net_j = oldsymbol{w}_j^T \cdot oldsymbol{x}; y_j = f\left(net_j
ight)$$

$$net_{j} = \mathbf{w}_{j}^{-} \cdot \mathbf{x}; y_{j} = f \left(net_{j} \right)$$

$$w_{kj} \left(m \right) = w_{kj} \left(m \right) + \eta \delta_{k} y_{j} \left(m \right)$$

for
$$j=1$$
 to n_H

$$\delta_j = f'\left(net_j\right) \sum_{i=1}^{c} w_{kj} \delta_k$$

for
$$i = 1$$
 to d

 $w_{ji}(m) = w_{ji}(m) + \eta \delta_j x_i(m)$

Perceptron(X)

Initialize random w, number of hidden units n_H , number of outputs z, stopping criterion Θ , learning rate η , epoch m=0

6

7

10

•

$$m = m + 1$$

4 for
$$s = 1$$
 to N

$$\mathbf{z}\left(m\right) = \mathbf{X}\left(:,s\right)$$

$$\boldsymbol{x}\left(m\right)\equiv\boldsymbol{X}\left(:,s\right)$$

for
$$k = 1$$
 to c

$$\delta_k = (t_k - z_k) f' \left(\boldsymbol{w}_k^T \cdot \boldsymbol{y} \right)$$

for
$$j = 1$$
 to n_H

$$net_j = oldsymbol{w}_j^T \cdot oldsymbol{x}; \! y_j = f\left(net_j
ight)$$

$$w_{kj}(m) = w_{kj}(m) + \eta \delta_k y_j(m)$$

for
$$j = 1$$
 to n_H

 $\delta_j = f'\left(net_j\right) \sum_{k=1}^c w_{kj} \delta_k$

for
$$i = 1$$
 to d

 $w_{ji}\left(m\right) = w_{ji}\left(m\right) + \eta \delta_{j}x_{i}\left(m\right)$

Perceptron(X)

Initialize random w, number of hidden units n_H , number of outputs z, stopping criterion Θ , learning rate η , epoch m = 0

7

9

10

•

12

$$m = m + 1$$

$$\mathbf{q} \qquad \qquad \mathbf{for} \ s = 1 \ \mathbf{to} \ N$$

$$x\left(m\right) = X\left(:, s\right)$$

5
$$x(m) = X(:, s)$$

6 for $k = 1$ to c

for
$$k = 1$$
 to c

$$\delta_k = (t_k - z_k) f' \left(\boldsymbol{w}_k^T \cdot \boldsymbol{y} \right)$$

for
$$i = 1$$
 to n_H

$$net_j = \boldsymbol{w}_j^T \cdot \boldsymbol{x}; y_j = f\left(net_j\right)$$

$$w_{kj}(m) = w_{kj}(m) + \eta \delta_k y_j(m)$$

for
$$j = 1$$
 to n_H

$$\delta_j = f'\left(net_j\right) \sum\nolimits_{k=1}^c w_{kj} \delta_k$$

Perceptron(X)

Initialize random w, number of hidden units n_H , number of outputs z, stopping criterion Θ , learning rate η , epoch m = 0

6

7

8

9

10

•

B

$$m = m + 1$$

$$\mathbf{6} \qquad \qquad \mathbf{for} \ s = 1 \ \mathbf{to} \ N$$

$$\boldsymbol{x}\left(m\right) = \boldsymbol{X}\left(:,s\right)$$

for
$$k = 1$$
 to c

$$\delta_k = (t_k - z_k) f' \left(\boldsymbol{w}_k^T \cdot \boldsymbol{y} \right)$$

for
$$j = 1$$
 to n_H

$$net_j = oldsymbol{w}_j^T \cdot oldsymbol{x}; y_j = f\left(net_j
ight)$$

$$w_{kj}(m) = w_{kj}(m) + \eta \delta_k y_j(m)$$

for
$$j = 1$$
 to n_H

$$\delta_j = f'\left(net_j
ight)\sum_{k=1}^c w_{kj}\delta_k$$

for
$$i = 1$$
 to d

Perceptron(X)

7

8

9

10

•

12

B

14

Initialize random w, number of hidden units n_H , number of outputs z, stopping criterion Θ , learning rate η , epoch m = 0

$$m = m + 1$$

for
$$s = 1$$
 to N

$$\boldsymbol{z}\left(m\right) = \boldsymbol{X}\left(:,s\right)$$

for
$$k=1$$
 to c

$$\delta_k = (t_k - z_k) f' \left(\boldsymbol{w}_k^T \cdot \boldsymbol{y} \right)$$

for
$$j = 1$$
 to n_H

$$net_j = oldsymbol{w}_j^T \cdot oldsymbol{x}; y_j = f\left(net_j
ight)$$

$$w_{kj}(m) = w_{kj}(m) + \eta \delta_k y_j(m)$$

for
$$j = 1$$
 to n_H

$$\delta_j = f'\left(net_j\right) \sum_{k=1}^{c} w_{kj} \delta_k$$

for
$$i = 1$$
 to d

$$w_{ji}\left(m\right) = w_{ji}\left(m\right) + \eta \delta_{j}x_{i}\left(m\right)$$

Perceptron(X)

6

7

8

9

10

•

Initialize random w, number of hidden units n_H , number of outputs z, stopping criterion Θ , learning rate η , epoch m = 0do

$$m = m + 1$$

for
$$s = 1$$
 to N

$$\mathbf{z}\left(m\right) = \mathbf{X}\left(:,s\right)$$

for
$$k = 1$$
 to c

$$\delta_k = (t_k - z_k) f' \left(\boldsymbol{w}_k^T \cdot \boldsymbol{y} \right)$$

for
$$j = 1$$
 to n_H

$$net_j = \boldsymbol{w}_j^T \cdot \boldsymbol{x}; y_j = f\left(net_j\right)$$

$$w_{kj}(m) = w_{kj}(m) + \eta \delta_k y_j(m)$$

for
$$j=1$$
 to n_H

$$\delta_j = f'\left(net_j\right) \sum_{k=1}^c w_{kj} \delta_k$$
 for $i=1$ to d

for
$$i = 1$$
 to d

$$w_{ji}\left(m\right) = w_{ji}\left(m\right) + \eta \delta_{j} x_{i}\left(m\right)$$

until
$$\|\nabla_{\boldsymbol{w}} J(m)\| < \Theta$$

Perceptron(X)

do

6

7

8

9

10

•

B

```
Initialize random w, number of hidden units n_H, number of outputs z, stopping criterion \Theta, learning rate\eta, epoch
m = 0
```

$$m = m + 1$$

for
$$s = 1$$
 to N

$$\boldsymbol{x}\left(m\right) = \boldsymbol{X}\left(:,s\right)$$

for
$$k = 1$$
 to c

$$\delta_k = (t_k - z_k) f'\left(oldsymbol{w}_k^T \cdot oldsymbol{y}\right)$$

for
$$i = 1$$
 to n_H

$$net_j = \boldsymbol{w}_j^T \cdot \boldsymbol{x}; y_j = f\left(net_j\right)$$

$$w_{kj}\left(m\right) = w_{kj}\left(m\right) + \eta \delta_k y_j\left(m\right)$$

$$\quad \text{for } j=1 \text{ to } n_H$$

$$\delta_j = f'\left(net_j\right) \sum_{k=1}^c w_{kj} \delta_k$$

for
$$i = 1$$
 to d

$$w_{ji}(m) = w_{ji}(m) + \eta \delta_j x_i(m)$$

until
$$\|\nabla_{\boldsymbol{w}} J(m)\| < \Theta$$

$$\mathbf{0}$$
 return $\mathbf{w}(m)$

Perceptron(X)

do

6

7

8

9

10

•

B

```
Initialize random w, number of hidden units n_H, number of outputs z, stopping criterion \Theta, learning rate\eta, epoch
m = 0
```

$$m = m + 1$$

for
$$s = 1$$
 to N

$$\boldsymbol{x}\left(m\right) = \boldsymbol{X}\left(:,s\right)$$

for
$$k = 1$$
 to c

$$\delta_k = (t_k - z_k) f'\left(oldsymbol{w}_k^T \cdot oldsymbol{y}\right)$$

for
$$i = 1$$
 to n_H

$$net_j = \boldsymbol{w}_j^T \cdot \boldsymbol{x}; y_j = f\left(net_j\right)$$

$$w_{kj}\left(m\right) = w_{kj}\left(m\right) + \eta \delta_k y_j\left(m\right)$$

$$\quad \text{for } j=1 \text{ to } n_H$$

$$\delta_j = f'\left(net_j\right) \sum_{k=1}^c w_{kj} \delta_k$$

for
$$i = 1$$
 to d

$$w_{ji}(m) = w_{ji}(m) + \eta \delta_j x_i(m)$$

until
$$\|\nabla_{\boldsymbol{w}} J(m)\| < \Theta$$

$$\mathbf{0}$$
 return $\mathbf{w}(m)$

Outline

- Introduction
 The XOR Problem
- Multi-Layer Perceptron
 - Architecture
 - Back-propagationGradient Descent
 - Hidden-to-Output Weights
 - Input-to-Hidden Weights
 - Total Training Error
 - About Stopping Criteria
 - Final Basic Batch Algorithm

Using Matrix Operations to Simplify

- Using Matrix Operations to Simplify the Pseudo-Code
 - lacksquare Generating the Output z_k
 - Generating z_k
 - Generating the Weights from Hidden to Output Layer
 - Generating the Weights from Input to Hidden Layer
- Activation Functions

Heuristic for Multilayer Perceptron

- Maximizing information content
- Activation Function
- Target Values
- Normalizing the inputs
- Virtues and limitations of Back-Propagation Layer

Example of Architecture to be used

Given the following Architecture and assuming ${\cal N}$ samples

Outline

- Introduction

 The XOR Problem
- Multi-Layer Perceptron
 - ArchitectureBack-propagation
 - Back-propagation
 Gradient Descent
 - Hidden-to-Output Weights
 - Input-to-Hidden Weights
 - Total Training Error
 - About Stopping Criteria
 - Final Basic Batch Algorithm

Using Matrix Operations to Simplify

- Using Matrix Operations to Simplify the Pseudo-Code
- lacksquare Generating the Output z_k
- lacktriangle Generating z_k lacktriangle Generating the Weights from Hidden to Output Layer
- Generating the Weights from Input to Hidden Layer
- Activation Functions

Heuristic for Multilayer Perceptron

- Maximizing information content
- Activation Function
- Target Values
- Normalizing the inputs
- Virtues and limitations of Back-Propagation Layer

Generating the output z_k

Given the input

$$\boldsymbol{X} = \left[\begin{array}{cccc} \boldsymbol{x}_1 & \boldsymbol{x}_2 & \cdots & \boldsymbol{x}_N \end{array} \right]$$
 (24)

 $oldsymbol{x}_i$ is a vector of features

$$x_i = \begin{pmatrix} x_{1i} \\ x_{2i} \\ \vdots \\ x_{di} \end{pmatrix}$$

Generating the output z_k

Given the input

$$\boldsymbol{X} = \left[\begin{array}{cccc} \boldsymbol{x}_1 & \boldsymbol{x}_2 & \cdots & \boldsymbol{x}_N \end{array} \right]$$
 (24)

Where

 $oldsymbol{x}_i$ is a vector of features

$$m{x}_i = \left(egin{array}{c} x_{1i} \\ x_{2i} \\ \vdots \\ x_{di} \end{array}
ight)$$

(25)

Therefore

We must have the following matrix for the input to hidden inputs

$$W_{IH} = \begin{pmatrix} w_{11} & w_{12} & \cdots & w_{1d} \\ w_{21} & w_{22} & \cdots & w_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ w_{nH1} & w_{nH2} & \cdots & w_{nHd} \end{pmatrix} = \begin{pmatrix} w_1^T \\ w_2^T \\ \vdots \\ w_{nH}^T \end{pmatrix}$$
(26)

Given that
$$w_j = \left(egin{array}{c} w_{j2} \\ \vdots \\ w_{jd} \end{array}
ight)$$

We can create the net_i for all the inputs by simply

 $net_j = W_{IH} X = \left(egin{array}{cccc} w_1^{+} x_1 & w_1^{+} x_2 & \cdots & w_1^{+} x_N \ w_2^{+} x_1 & w_2^{+} x_2 & \cdots & w_2^{+} x_N \ & & & & & & & & \end{array}
ight)$

Therefore

We must have the following matrix for the input to hidden inputs

$$W_{IH} = \begin{pmatrix} w_{11} & w_{12} & \cdots & w_{1d} \\ w_{21} & w_{22} & \cdots & w_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ w_{nH1} & w_{nH2} & \cdots & w_{nHd} \end{pmatrix} = \begin{pmatrix} w_1^T \\ w_2^T \\ \vdots \\ w_{nH}^T \end{pmatrix}$$
(26)

Given that
$$oldsymbol{w}_j = \left(egin{array}{c} w_{j1} \\ w_{j2} \\ \vdots \\ w_{jd} \end{array}
ight)$$

Thus

We can create the net_j for all the inputs by simply

$$net_{j} = m{W}_{IH}m{X} = \left(egin{array}{ccccc} m{w}_{1}^{T}m{x}_{1} & m{w}_{1}^{T}m{x}_{2} & \cdots & m{w}_{1}^{T}m{x}_{N} \ m{w}_{2}^{T}m{x}_{1} & m{w}_{2}^{T}m{x}_{2} & \cdots & m{w}_{2}^{T}m{x}_{N} \ dots & dots & dots & dots \ m{w}_{nH}^{T}m{x}_{1} & m{w}_{nH}^{T}m{x}_{2} & \cdots & m{w}_{nH}^{T}m{x}_{N} \end{array}
ight)$$

Now, we need to generate the $oldsymbol{y}_k$

We apply the activation function element by element in $oldsymbol{net}_j$

$$\boldsymbol{y}_{1} = \begin{pmatrix} f\left(\boldsymbol{w}_{1}^{T}\boldsymbol{x}_{1}\right) & f\left(\boldsymbol{w}_{1}^{T}\boldsymbol{x}_{2}\right) & \cdots & f\left(\boldsymbol{w}_{1}^{T}\boldsymbol{x}_{N}\right) \\ f\left(\boldsymbol{w}_{2}^{T}\boldsymbol{x}_{1}\right) & f\left(\boldsymbol{w}_{2}^{T}\boldsymbol{x}_{2}\right) & \cdots & f\left(\boldsymbol{w}_{2}^{T}\boldsymbol{x}_{N}\right) \\ \vdots & \vdots & \ddots & \vdots \\ f\left(\boldsymbol{w}_{n_{H}}^{T}\boldsymbol{x}_{1}\right) & f\left(\boldsymbol{w}_{n_{H}}^{T}\boldsymbol{x}_{2}\right) & \cdots & f\left(\boldsymbol{w}_{n_{H}}^{T}\boldsymbol{x}_{N}\right) \end{pmatrix}$$
(28)

- MPURIANT about overflows!!!
- Be careful about the numeric stability of the activation function.
- I the case of python, we can use the ones provided by scipy.special

Now, we need to generate the $oldsymbol{y}_k$

We apply the activation function element by element in $oldsymbol{net}_j$

$$\boldsymbol{y}_{1} = \begin{pmatrix} f\left(\boldsymbol{w}_{1}^{T}\boldsymbol{x}_{1}\right) & f\left(\boldsymbol{w}_{1}^{T}\boldsymbol{x}_{2}\right) & \cdots & f\left(\boldsymbol{w}_{1}^{T}\boldsymbol{x}_{N}\right) \\ f\left(\boldsymbol{w}_{2}^{T}\boldsymbol{x}_{1}\right) & f\left(\boldsymbol{w}_{2}^{T}\boldsymbol{x}_{2}\right) & \cdots & f\left(\boldsymbol{w}_{2}^{T}\boldsymbol{x}_{N}\right) \\ \vdots & \vdots & \ddots & \vdots \\ f\left(\boldsymbol{w}_{n_{H}}^{T}\boldsymbol{x}_{1}\right) & f\left(\boldsymbol{w}_{n_{H}}^{T}\boldsymbol{x}_{2}\right) & \cdots & f\left(\boldsymbol{w}_{n_{H}}^{T}\boldsymbol{x}_{N}\right) \end{pmatrix}$$
(28)

IMPORTANT about overflows!!!

• Be careful about the numeric stability of the activation function.

Now, we need to generate the $oldsymbol{y}_k$

We apply the activation function element by element in $oldsymbol{net}_j$

$$\boldsymbol{y}_{1} = \begin{pmatrix} f\left(\boldsymbol{w}_{1}^{T}\boldsymbol{x}_{1}\right) & f\left(\boldsymbol{w}_{1}^{T}\boldsymbol{x}_{2}\right) & \cdots & f\left(\boldsymbol{w}_{1}^{T}\boldsymbol{x}_{N}\right) \\ f\left(\boldsymbol{w}_{2}^{T}\boldsymbol{x}_{1}\right) & f\left(\boldsymbol{w}_{2}^{T}\boldsymbol{x}_{2}\right) & \cdots & f\left(\boldsymbol{w}_{2}^{T}\boldsymbol{x}_{N}\right) \\ \vdots & \vdots & \ddots & \vdots \\ f\left(\boldsymbol{w}_{n_{H}}^{T}\boldsymbol{x}_{1}\right) & f\left(\boldsymbol{w}_{n_{H}}^{T}\boldsymbol{x}_{2}\right) & \cdots & f\left(\boldsymbol{w}_{n_{H}}^{T}\boldsymbol{x}_{N}\right) \end{pmatrix}$$
(28)

IMPORTANT about overflows!!!

- Be careful about the numeric stability of the activation function.
- \bullet I the case of python, we can use the ones provided by scipy.special

However, We can create a Sigmoid function

It is possible to use the following pseudo-code

 $\mathsf{Sigmoid}(x)$

2

return 0

However, We can create a Sigmoid function

It is possible to use the following pseudo-code

```
\mathsf{Sigmoid}(x)
```

- 2 return 0
- else if x > BIGREAL
- return 1
- else
- return $\frac{1.0}{1.0+\exp{\{-\alpha x\}}}$ < 1.0 refers to the floating point (Rationals

However, We can create a Sigmoid function

It is possible to use the following pseudo-code

```
\begin{array}{lll} {\bf Sigmoid}(x) & & & \\ {\bf 0} & & {\rm if} \ x < -BIGREAL \\ {\bf 2} & & {\rm return} \ 0 \\ {\bf 3} & & {\rm else} \ {\rm if} \ x > BIGREAL \\ {\bf 4} & & {\rm return} \ 1 \\ {\bf 5} & & {\rm else} \\ {\bf 5} & & {\rm return} \ \frac{1.0}{1.0 + \exp\{-\alpha x\}} \triangleleft \ 1.0 \ {\rm refers} \ {\rm to} \ {\rm the} \ {\rm floating} \ {\rm point} \ ({\rm Rationals} \ {\rm else} \ & \\ {\bf 5} & & {\rm return} \ \frac{1.0}{1.0 + \exp\{-\alpha x\}} \triangleleft \ 1.0 \ {\rm refers} \ {\rm to} \ {\rm the} \ {\rm floating} \ {\rm point} \ ({\rm Rationals} \ {\rm else} \ & \\ {\bf 5} & & {\bf 6} & {\bf 7} \ {\rm else} \ & \\ {\bf 5} & & {\bf 7} \ {\rm else} \ & \\ {\bf 5} & & {\bf 7} \ {\rm else} \ & \\ {\bf 5} & & {\bf 7} \ {\rm else} \ & \\ {\bf 5} & & {\bf 7} \ {\rm else} \ & \\ {\bf 5} & & {\bf 7} \ {\rm else} \ & \\ {\bf 5} & & {\bf 7} \ {\rm else} \ & \\ {\bf 5} & & {\bf 7} \ {\rm else} \ & \\ {\bf 5} & & {\bf 7} \ {\rm else} \ & \\ {\bf 5} & & {\bf 7} \ {\rm else} \ & \\ {\bf 5} & & {\bf 7} \ {\rm else} \ & \\ {\bf 5} & & {\bf 7} \ {\rm else} \ & \\ {\bf 5} & & {\bf 7} \ {\rm else} \ & \\ {\bf 5} & & {\bf 7} \ {\rm else} \ & \\ {\bf 5} & & {\bf 7} \ {\rm else} \ & \\ {\bf 7} & & {\bf 7} \ {\rm else} \ & \\ {\bf 7} & & {\bf 7} \ {\rm else} \ & \\ {\bf 7} & & {\bf 7} \ {\rm else} \ & \\ {\bf 8} & & {\bf 7} \ {\rm else} \ & \\ {\bf 8} & & {\bf 7} \ {\rm else} \ & \\ {\bf 9} & & {\bf 7} \ {\rm else} \ & \\ {\bf 9} & & {\bf 7} \ {\rm else} \ & \\ {\bf 9} & & {\bf 9} \ {\rm else} \ & \\ {\bf 9} & & {\bf 9} \ {\rm else} \ & \\ {\bf 9} & & {\bf 9} \ {\rm else} \ & \\ {\bf 9} & & {\bf 9} \ {\rm else} \ & \\ {\bf 9} & & {\bf 9} \ {\rm else} \ & \\ {\bf 9} & & {\bf 9} \ {\rm else} \ & \\ {\bf 9} & & {\bf 9} \ {\rm else} \ & \\ {\bf 9} & & {\bf 9} \ {\rm else} \ & \\ {\bf 9} & & {\bf 9} \ {\rm else} \ & \\ {\bf 9} & & {\bf 9} \ {\rm else} \ & \\ {\bf 9} & & {\bf 9} \ {\rm else} \ & \\ {\bf 9} & & {\bf 9} \ {\rm else} \ & \\ {\bf 9} & & {\bf 9} \ {\rm else} \ & \\ {\bf 9} & & {\bf 9} \ {\rm else} \ & \\ {\bf 9} & & {\bf 9} \ & \\ {\bf 9} & & {\bf 9} \ & \\ {\bf 9} & & {\bf 9} \ & \\ {\bf 9} & & {\bf 9} \ & \\ {\bf 9} & & {\bf 9} \ & \\ {\bf 9} & & {\bf 9} \ & \\ {\bf 9} & & {\bf 9} \ & \\ {\bf 9} & & {\bf 9} \ & \\ {\bf 9} & & {\bf 9} \ & \\ {\bf 9} & & {\bf 9} \ & \\ {\bf 9} & & {\bf 9} \ & \\ {\bf 9} & & {\bf 9} \ & \\ {\bf 9} & & {\bf 9} \ & \\ {\bf 9} & & {\bf 9} \ & \\ {\bf 9} & & {\bf 9} \ & \\ {\bf 9} & & {\bf 9} \ & \\ {\bf 9} & & {\bf 9} \ & \\
```

Outline

- Introduction
 The XOR Problem
- Multi-Layer Perceptron
 - ArchitectureBack-propagation
 - Gradient Descent
 - Hidden-to-Output Weights
 - Input-to-Hidden Weights
 - Total Training Error
 - About Stopping Criteria
 - Final Basic Batch Algorithm

Using Matrix Operations to Simplify

- Using Matrix Operations to Simplify the Pseudo-Code
 - Generating the Output z_k
- lacksquare Generating $oldsymbol{z}_k$
- Generating the Weights from Hidden to Output Layer
- Generating the Weights from Input to Hidden Layer
- Activation Functions

Heuristic for Multilayer Perceptron

- Maximizing information content
- Activation Function
- Target Values
- Normalizing the inputs
- Virtues and limitations of Back-Propagation Layer

For this, we get ${m net}_k$

For this, we obtain the $oldsymbol{W}_{HO}$

$$\mathbf{W}_{HO} = \begin{pmatrix} w_{11}^o & w_{12}^o & \cdots & w_{1n_H}^o \end{pmatrix} = \begin{pmatrix} \mathbf{w}_o^T \end{pmatrix}$$
 (29)

$$et_{R} = \begin{pmatrix} w_{11}^{T} & w_{12}^{T} & \cdots & w_{1n_{H}}^{T} \end{pmatrix} = \begin{pmatrix} f\left(w_{1}^{T}x_{1}\right) & f\left(w_{1}^{T}x_{2}\right) & \cdots & f\left(w_{1}^{T}x_{N}\right) \\ f\left(w_{2}^{T}x_{1}\right) & f\left(w_{2}^{T}x_{2}\right) & \cdots & f\left(w_{2}^{T}x_{N}\right) \\ \vdots & \vdots & \ddots & \vdots \\ f\left(w_{n_{H}}^{T}x_{1}\right) & f\left(w_{n_{H}}^{T}x_{2}\right) & \cdots & f\left(w_{n_{H}}^{T}x_{N}\right) \\ y_{k1} & y_{k2} & \cdots & y_{kN} \end{pmatrix}$$

For this, we get \boldsymbol{net}_k

For this, we obtain the $oldsymbol{W}_{HO}$

$$\boldsymbol{W}_{HO} = \begin{pmatrix} w_{11}^o & w_{12}^o & \cdots & w_{1n_H}^o \end{pmatrix} = \begin{pmatrix} \boldsymbol{w}_o^T \end{pmatrix}$$
 (29)

Thus

$$net_{k} = \begin{pmatrix} w_{11}^{o} & w_{12}^{o} & \cdots & w_{1n_{H}}^{o} \end{pmatrix} \begin{pmatrix} f\left(\mathbf{w}_{1}^{T}\mathbf{x}_{1}\right) & f\left(\mathbf{w}_{1}^{T}\mathbf{x}_{2}\right) & \cdots & f\left(\mathbf{w}_{1}^{T}\mathbf{x}_{N}\right) \\ f\left(\mathbf{w}_{2}^{T}\mathbf{x}_{1}\right) & f\left(\mathbf{w}_{2}^{T}\mathbf{x}_{2}\right) & \cdots & f\left(\mathbf{w}_{2}^{T}\mathbf{x}_{N}\right) \\ \vdots & \vdots & \ddots & \vdots \\ f\left(\mathbf{w}_{n_{H}}^{T}\mathbf{x}_{1}\right) & f\left(\mathbf{w}_{n_{H}}^{T}\mathbf{x}_{2}\right) & \cdots & f\left(\mathbf{w}_{n_{H}}^{T}\mathbf{x}_{N}\right) \\ \mathbf{y}_{k1} & \mathbf{y}_{k2} & \cdots & \mathbf{y}_{kN} \end{pmatrix}$$

$$(30)$$

For this, we get net_k

For this, we obtain the $oldsymbol{W}_{HO}$

$$\boldsymbol{W}_{HO} = \begin{pmatrix} w_{11}^o & w_{12}^o & \cdots & w_{1n_H}^o \end{pmatrix} = \begin{pmatrix} \boldsymbol{w}_o^T \end{pmatrix}$$
 (29)

Thus

$$net_{k} = \begin{pmatrix} w_{11}^{o} & w_{12}^{o} & \cdots & w_{1n_{H}}^{o} \end{pmatrix} \begin{pmatrix} f\left(w_{1}^{T}x_{1}\right) & f\left(w_{1}^{T}x_{2}\right) & \cdots & f\left(w_{1}^{T}x_{N}\right) \\ f\left(w_{2}^{T}x_{1}\right) & f\left(w_{2}^{T}x_{2}\right) & \cdots & f\left(w_{2}^{T}x_{N}\right) \\ \vdots & \vdots & \ddots & \vdots \\ f\left(w_{n_{H}}^{T}x_{1}\right) & \underbrace{f\left(w_{n_{H}}^{T}x_{2}\right) & \cdots & \underbrace{f\left(w_{n_{H}}^{T}x_{N}\right)}_{y_{kN}} \end{pmatrix}$$

$$\underbrace{y_{k1}} \qquad \underbrace{y_{k2}} \qquad \underbrace{y_{kN}} \qquad$$

In matrix notation

$$net_k = \begin{pmatrix} w_o^T y_{k1} & w_o^T y_{k2} & \cdots & w_o^T y_{kN} \end{pmatrix}$$
(31)

Outline

- Introduction

 The XOR Problem
- Multi-Layer Perceptron
 - ArchitectureBack-propagation
 - Gradient Descent
 - Hidden-to-Output Weights
 - Input-to-Hidden Weights
 - Total Training Error
 - About Stopping Criteria
 - Final Basic Batch Algorithm

Using Matrix Operations to Simplify

- Using Matrix Operations to Simplify the Pseudo-Code
- ullet Generating the Output z_k
- Generating z₁.
- Generating the Weights from Hidden to Output Layer
- Generating the Weights from Input to Hidden Layer
- Activation Functions

Heuristic for Multilayer Perceptron

- Maximizing information content
- Activation Function
- Target Values
- Normalizing the inputs
- Virtues and limitations of Back-Propagation Layer

Now, we have

Thus, we have z_k (In our case k=1, but it could be a range of values)

$$oldsymbol{z}_k = \left(f\left(oldsymbol{w}_o^T oldsymbol{y}_{k1} \right) \quad f\left(oldsymbol{w}_o^T oldsymbol{y}_{k2} \right) \quad \cdots \quad f\left(oldsymbol{w}_o^T oldsymbol{y}_{kN} \right) \right)$$
 (32)

 $d = t - z_k = \begin{pmatrix} t_1 - f(w_o^T y_{k1}) & t_2 - f(w_o^T y_{k2}) & \cdots & t_N - f(w_o^T y_{kN}) \end{pmatrix}$ (33) where $t = \begin{pmatrix} t_1 & t_2 & \cdots & t_N \end{pmatrix}$ is a row vector of desired outputs for each sample.

Now, we have

sample.

Thus, we have z_k (In our case k = 1, but it could be a range of values)

$$\boldsymbol{z}_{k} = \left(f\left(\boldsymbol{w}_{o}^{T}\boldsymbol{y}_{k1}\right) \quad f\left(\boldsymbol{w}_{o}^{T}\boldsymbol{y}_{k2}\right) \quad \cdots \quad f\left(\boldsymbol{w}_{o}^{T}\boldsymbol{y}_{kN}\right) \right)$$
 (32)

Thus, we generate a vector of differences

$$d = t - z_k = (t_1 - f(\mathbf{w}_o^T \mathbf{y}_{k1}) \quad t_2 - f(\mathbf{w}_o^T \mathbf{y}_{k2}) \quad \cdots \quad t_N - f(\mathbf{w}_o^T \mathbf{y}_{kN}))$$
 (33) where $\mathbf{t} = (t_1 \quad t_2 \quad \cdots \quad t_N)$ is a row vector of desired outputs for each

Now, we multiply element wise

We have the following vector of derivatives of net

$$\boldsymbol{D}_{f} = \left(\eta f' \left(\boldsymbol{w}_{o}^{T} \boldsymbol{y}_{k1} \right) \quad \eta f' \left(\boldsymbol{w}_{o}^{T} \boldsymbol{y}_{k2} \right) \quad \cdots \quad \eta f' \left(\boldsymbol{w}_{o}^{T} \boldsymbol{y}_{kN} \right) \right)$$
(34)

where η is the step rate.

 $d = \begin{pmatrix} \eta \left[t_1 - f\left(\mathbf{w}_o^T \mathbf{y}_{k1} \right) \right] f'\left(\mathbf{w}_o^T \mathbf{y}_{k1} \right) & \eta \left[t_2 - f\left(\mathbf{w}_o^T \mathbf{y}_{k2} \right) \right] f'\left(\mathbf{w}_o^T \mathbf{y}_{k2} \right) \\ \eta \left[t_N - f\left(\mathbf{w}_o^T \mathbf{y}_{k1} \right) \right] f'\left(\mathbf{w}_o^T \mathbf{y}_{k2} \right) \end{pmatrix}$

Now, we multiply element wise

We have the following vector of derivatives of net

$$\boldsymbol{D}_{f} = \begin{pmatrix} \eta f' \left(\boldsymbol{w}_{o}^{T} \boldsymbol{y}_{k1} \right) & \eta f' \left(\boldsymbol{w}_{o}^{T} \boldsymbol{y}_{k2} \right) & \cdots & \eta f' \left(\boldsymbol{w}_{o}^{T} \boldsymbol{y}_{kN} \right) \end{pmatrix}$$
 where η is the step rate.

Finally, by element wise multiplication (Hadamard Product)

$$d = (\eta [t_1 - f(\boldsymbol{w}_o^T \boldsymbol{y}_{k1})] f'(\boldsymbol{w}_o^T \boldsymbol{y}_{k1}) \eta [t_2 - f(\boldsymbol{w}_o^T \boldsymbol{y}_{k2})] f'(\boldsymbol{w}_o^T \boldsymbol{y}_{k2}) \cdots \eta [t_N - f(\boldsymbol{w}_o^T \boldsymbol{y}_{kN})] f'(\boldsymbol{w}_o^T \boldsymbol{y}_{kN}))$$

Tile d

Tile downward

$$egin{aligned} oldsymbol{d}_{tile} = n_H ext{ rows } \left\{ egin{aligned} oldsymbol{d} \ oldsymbol{d} \ oldsymbol{d} \ oldsymbol{d} \ oldsymbol{d} \ oldsymbol{d} \ \end{array}
ight. \end{aligned}
ight.$$

(35)

 $\Delta oldsymbol{w}_{1i}^{temp} = oldsymbol{y}_1 \circ oldsymbol{d}_{tile}$

(36)

Tile d

Tile downward

$$egin{aligned} oldsymbol{d}_{tile} = n_H ext{ rows } \left\{ \left(egin{array}{c} oldsymbol{d} \ dots \ oldsymbol{d} \end{array}
ight.
ight. \end{aligned}
ight.$$

Finally, we multiply element wise against $oldsymbol{y}_1$ (Hadamard Product)

$$\Delta oldsymbol{w}_{1i}^{temp} = oldsymbol{y}_1 \circ oldsymbol{d}_{tile}$$
 (36)

(35)

56 / 94

We obtain the total Δw_{1i}

We sum along the rows of Δw_{1i}^{temp}

$$\Delta w_{1j} = \begin{pmatrix} \eta \left[t_1 - f \left(\mathbf{w}_o^T \mathbf{y}_{k1} \right) \right] f' \left(\mathbf{w}_o^T \mathbf{y}_{k1} \right) y_{11} + \eta \left[t_1 - f \left(\mathbf{w}_o^T \mathbf{y}_{kN} \right) \right] f' \left(\mathbf{w}_o^T \mathbf{y}_{kN} \right) y_{1N} \\ \vdots \\ \eta \left[t_1 - f \left(\mathbf{w}_o^T \mathbf{y}_{k1} \right) \right] f' \left(\mathbf{w}_o^T \mathbf{y}_{k1} \right) y_{n_H 1} + \eta \left[t_1 - f \left(\mathbf{w}_o^T \mathbf{y}_{kN} \right) \right] f' \left(\mathbf{w}_o^T \mathbf{y}_{kN} \right) y_{n_H N} \end{pmatrix}$$
where $y_{hm} = f \left(\mathbf{w}_h^T \mathbf{x}_m \right)$ with $h = 1, 2, ..., n_H$ and $m = 1, 2, ..., N$.

Finally, we update the first weights

We have then

$$\boldsymbol{W}_{HO}\left(t+1\right) = \boldsymbol{W}_{HO}\left(t\right) + \Delta \boldsymbol{w}_{1j}^{T}\left(t\right)$$
 (38)

Outline

- Introduction
 The XOR Problem
- Multi-Layer Perceptron
 - Architecture
 - Back-propagationGradient Descent
 - Hidden-to-Output Weights
 - Input-to-Hidden Weights
 - Total Training Error
 - About Stopping Criteria
 - Final Basic Batch Algorithm

Using Matrix Operations to Simplify

- Using Matrix Operations to Simplify the Pseudo-Code
- igcup Generating the Output z_k
- Generating z_k
- Generating the Weights from Hidden to Output Layer
- Generating the Weights from Input to Hidden Layer
- Activation Functions

Heuristic for Multilayer Perceptron

- Maximizing information content
- Activation Function
- Target Values
- Normalizing the inputs
- Virtues and limitations of Back-Propagation Layer

First

We multiply element wise the $oldsymbol{W}_{HO}$ and $\Delta oldsymbol{w}_{1j}$

$$T = \Delta w_{1j}^T \circ W_{HO}^T \tag{39}$$

w, we obtain the element wise derivative of
$$net_j$$

$$Dnet_j = \begin{pmatrix} f'\left(\mathbf{w}_1^T \mathbf{x}_1\right) & f'\left(\mathbf{w}_1^T \mathbf{x}_2\right) & \cdots & f'\left(\mathbf{w}_1^T \mathbf{x}_N\right) \\ f'\left(\mathbf{w}_2^T \mathbf{x}_1\right) & f'\left(\mathbf{w}_2^T \mathbf{x}_2\right) & \cdots & f'\left(\mathbf{w}_2^T \mathbf{x}_N\right) \\ \vdots & \vdots & \ddots & \vdots \\ f'\left(\mathbf{w}_{nn}^T \mathbf{x}_1\right) & f'\left(\mathbf{w}_{nn}^T \mathbf{x}_2\right) & \cdots & f'\left(\mathbf{w}_{nn}^T \mathbf{x}_N\right) \end{pmatrix}$$

First

We multiply element wise the $oldsymbol{W}_{HO}$ and $\Delta oldsymbol{w}_{1j}$

$$T = \Delta \boldsymbol{w}_{1j}^T \circ \boldsymbol{W}_{HO}^T \tag{39}$$

Now, we obtain the element wise derivative of $m{net}_j$

$$\boldsymbol{Dnet}_{j} = \begin{pmatrix} f'\left(\boldsymbol{w}_{1}^{T}\boldsymbol{x}_{1}\right) & f'\left(\boldsymbol{w}_{1}^{T}\boldsymbol{x}_{2}\right) & \cdots & f'\left(\boldsymbol{w}_{1}^{T}\boldsymbol{x}_{N}\right) \\ f'\left(\boldsymbol{w}_{2}^{T}\boldsymbol{x}_{1}\right) & f'\left(\boldsymbol{w}_{2}^{T}\boldsymbol{x}_{2}\right) & \cdots & f'\left(\boldsymbol{w}_{2}^{T}\boldsymbol{x}_{N}\right) \\ \vdots & \vdots & \ddots & \vdots \\ f'\left(\boldsymbol{w}_{n_{H}}^{T}\boldsymbol{x}_{1}\right) & f'\left(\boldsymbol{w}_{n_{H}}^{T}\boldsymbol{x}_{2}\right) & \cdots & f'\left(\boldsymbol{w}_{n_{H}}^{T}\boldsymbol{x}_{N}\right) \end{pmatrix}$$
(40)

Thus

We tile to the right T

$$T_{tile} = \underbrace{\left(\begin{array}{ccc} T & T & \cdots & T \end{array}\right)}_{N \text{ Columns}}$$
 (41)

$$oldsymbol{P}_t = \eta \left(oldsymbol{Dnet}_j \circ oldsymbol{T}_{tile}
ight)$$

Thus

We tile to the right T

$$T_{tile} = \underbrace{\left(\begin{array}{ccc} T & T & \cdots & T \end{array}\right)}_{N \text{ Columns}} \tag{41}$$

Now, we multiply element wise together with η

$$\boldsymbol{P}_{t} = \eta \left(\boldsymbol{Dnet}_{j} \circ \boldsymbol{T}_{tile} \right) \tag{42}$$

where η is constant multiplied against the result the Hadamar Product (Result a $n_H \times N$ matrix)

Finally

We get use the transpose of
$${m X}$$
 which is a $N \times d$ matrix

$$oldsymbol{X}^T = \left(egin{array}{c} oldsymbol{x}_1^T \ oldsymbol{x}_2^T \ dots \ oldsymbol{x}_N^T \end{array}
ight)$$

(44)

 $oldsymbol{W}_{IH}\left(t+1
ight) = oldsymbol{W}_{HO}\left(t
ight) + \Delta oldsymbol{w}_{ij}^{T}\left(t
ight)$

Finally

We get use the transpose of \boldsymbol{X} which is a $N \times d$ matrix

$$oldsymbol{X}^T = \left(egin{array}{c} oldsymbol{x}_1^T \ oldsymbol{x}_2^T \ dots \ oldsymbol{x}_N^T \end{array}
ight)$$

Finally, we get a $n_H \times d$ matrix

 $\Delta \boldsymbol{w}_{ij} = \boldsymbol{P}_t \boldsymbol{X}^T \tag{4}$

(43)

Finally

We get use the transpose of
$$\boldsymbol{X}$$
 which is a $N \times d$ matrix

$$m{X}^T = \left(egin{array}{c} m{x}_1^T \ m{x}_2^T \ dots \ m{x}_N^T \end{array}
ight)$$

Finally, we get a $n_H \times d$ matrix

$$\Delta oldsymbol{w}_{ij} = oldsymbol{P}_t oldsymbol{X}^T$$

Thus, given $oldsymbol{W}_{IH}$

$$\boldsymbol{W}_{IH}\left(t+1\right) = \boldsymbol{W}_{HO}\left(t\right) + \Delta \boldsymbol{w}_{ij}^{T}\left(t\right)$$

(43)

(45)

62 / 94

Outline

- Introduction
 The XOR Problem
- Multi-Layer Perceptron
 - ArchitectureBack-propagation
 - Back-propagation
 Gradient Descent
 - Hidden-to-Output Weights
 - Input-to-Hidden Weights
 - Total Training Error
 - About Stopping Criteria
 - Final Basic Batch Algorithm

Using Matrix Operations to Simplify

- Using Matrix Operations to Simplify the Pseudo-Code
- ullet Generating the Output z_k
- \bigcirc Generating z_k
- Generating the Weights from Hidden to Output Layer
- Generating the Weights from Input to Hidden Layer
- Activation Functions

Heuristic for Multilayer Perceptron

- Maximizing information content
- Activation Function
- Target Values
- Normalizing the inputs
- Virtues and limitations of Back-Propagation Layer

We have different activation functions

The two most important

Sigmoid function.

Hyperbolic tangent function

We have different activation functions

The two most important

- Sigmoid function.
- Hyperbolic tangent function

Logistic Function

This non-linear function has the following definition for a neuron j

$$f_{j}\left(v_{j}\left(n\right)\right) = \frac{1}{1 + \exp\left\{-av_{j}\left(n\right)\right\}} \ a > 0 \text{ and } -\infty < v_{j}\left(n\right) < \infty \quad \text{(46)}$$

Logistic Function

This non-linear function has the following definition for a neuron \boldsymbol{j}

$$f_{j}(v_{j}(n)) = \frac{1}{1 + \exp\{-av_{j}(n)\}} \ a > 0 \text{ and } -\infty < v_{j}(n) < \infty$$
 (46)

Example

The differential of the sigmoid function

Now if we differentiate, we have

$$f'_{j}(v_{j}(n)) = \left[\frac{1}{1 + \exp\{-av_{j}(n)\}}\right] \left[1 - \frac{1}{1 + \exp\{-av_{j}(n)\}}\right]$$

The differential of the sigmoid function

Now if we differentiate, we have

$$f'_{j}(v_{j}(n)) = \left[\frac{1}{1 + \exp\{-av_{j}(n)\}}\right] \left[1 - \frac{1}{1 + \exp\{-av_{j}(n)\}}\right]$$
$$= \frac{\exp\{-av_{j}(n)\}}{(1 + \exp\{-av_{j}(n)\})^{2}}$$

The outputs finish as

For the output neurons

$$\delta_k = (t_k - z_k) f'(net_k)$$

For the hidden neurons

$$G_{j} = f_{j}\left(v_{j}\left(n\right)\right)\left(1 - f_{j}\left(v_{j}\left(n\right)\right)\right)\sum_{i=1}^{c}w_{kj}\delta_{i}$$

The outputs finish as

For the output neurons

$$\delta_{k} = (t_{k} - z_{k}) f'(net_{k})$$

$$= (t_{k} - f_{k}(v_{k}(n))) f_{k}(v_{k}(n)) (1 - f_{k}(v_{k}(n)))$$

For the hidden neurons

 $\delta_{j} = f_{j} \left(v_{j} \left(n \right) \right) \left(1 - f_{j} \left(v_{j} \left(n \right) \right) \right) \sum w_{kj} \delta_{k}$

The outputs finish as

For the output neurons

$$\delta_k = (t_k - z_k) f'(net_k) = (t_k - f_k(v_k(n))) f_k(v_k(n)) (1 - f_k(v_k(n)))$$

For the hidden neurons

$$\delta_{j} = f_{j}(v_{j}(n)) (1 - f_{j}(v_{j}(n))) \sum_{k=0}^{c} w_{kj} \delta_{k}$$

Hyperbolic tangent function

Another commonly used form of sigmoidal non linearity is the hyperbolic tangent function

$$f_{j}\left(v_{j}\left(n\right)\right) = a \tanh\left(b v_{j}\left(n\right)\right) \tag{47}$$

Example

Hyperbolic tangent function

Another commonly used form of sigmoidal non linearity is the hyperbolic tangent function

$$f_{j}\left(v_{j}\left(n\right)\right) = a \tanh\left(bv_{j}\left(n\right)\right) \tag{47}$$

Example

The differential of the hyperbolic tangent

We have

$$f_{j}\left(v_{j}\left(n\right)\right) = ab \operatorname{sech}^{2}\left(bv_{j}\left(n\right)\right)$$

 $=ab\left(1-\tanh^{2}\left(bv_{j}\left(n\right)\right)\right)$

BTW

I leave to you to figure out the outputs.

The differential of the hyperbolic tangent

We have

$$\begin{split} f_{j}\left(v_{j}\left(n\right)\right) = & ab \mathsf{sech}^{2}\left(bv_{j}\left(n\right)\right) \\ = & ab\left(1 - \tanh^{2}\left(bv_{j}\left(n\right)\right)\right) \end{split}$$

BTW

I leave to you to figure out the outputs.

The differential of the hyperbolic tangent

We have

$$\begin{split} f_{j}\left(v_{j}\left(n\right)\right) = & ab \mathsf{sech}^{2}\left(bv_{j}\left(n\right)\right) \\ = & ab\left(1 - \tanh^{2}\left(bv_{j}\left(n\right)\right)\right) \end{split}$$

BTW

I leave to you to figure out the outputs.

Outline

- Introduction
 The XOR Problem
- Multi-Layer Perceptron
 - Architecture
 - Back-propagationGradient Descent
 - Hidden-to-Output Weights
 - Input-to-Hidden Weights
 - Total Training Error
 - About Stopping Criteria
 - Final Basic Batch Algorithm

Using Matrix Operations to Simplify

- Using Matrix Operations to Simplify the Pseudo-Code
- lacksquare Generating the Output z_k
- \bigcirc Generating z_k
- Generating the Weights from Hidden to Output Layer
- Generating the Weights from Input to Hidden Layer
- Activation Functions

Heuristic for Multilayer Perceptron

- Maximizing information content
- Activation Function
- Target Values
- Normalizing the inputs
- Virtues and limitations of Back-Propagation Layer

Two ways of achieving this, LeCun 1993

- The use of an example that results in the largest training error.
- The use of an example that is radically different from all those previously used

For this

Randomized the samples presented to the multilayer perceptron when not doing batch training.

By using the error identify the difficult vs. easy patterns:

• Use them to train the neural network

Two ways of achieving this, LeCun 1993

- The use of an example that results in the largest training error.
- The use of an example that is radically different from all those previously used.

For this

Randomized the samples presented to the multilayer perceptron when not doing batch training.

By using the error identify the difficult vs. easy patterns:

• Use them to train the neural network

Two ways of achieving this, LeCun 1993

- The use of an example that results in the largest training error.
- The use of an example that is radically different from all those previously used.

For this

Randomized the samples presented to the multilayer perceptron when not doing batch training.

Or use an emphasizing scheme

By using the error identify the difficult vs. easy patterns:

Two ways of achieving this, LeCun 1993

- The use of an example that results in the largest training error.
- The use of an example that is radically different from all those previously used.

For this

Randomized the samples presented to the multilayer perceptron when not doing batch training.

Or use an emphasizing scheme

By using the error identify the difficult vs. easy patterns:

Two ways of achieving this, LeCun 1993

- The use of an example that results in the largest training error.
- The use of an example that is radically different from all those previously used.

For this

Randomized the samples presented to the multilayer perceptron when not doing batch training.

Or use an emphasizing scheme

By using the error identify the difficult vs. easy patterns:

• Use them to train the neural network

However

Be careful about emphasizing scheme

• The distribution of examples within an epoch presented to the network is distorted.

An outlier is an observation that lies outside the overall pattern of a distribution (Moore and McCabe 1999).

However

Be careful about emphasizing scheme

- The distribution of examples within an epoch presented to the network is distorted.
- The presence of an outlier or a mislabeled example can have a catastrophic consequence on the performance of the algorithm.

Definition of Outlier

An outlier is an observation that lies outside the overall pattern of a distribution (Moore and McCabe 1999).

However

Be careful about emphasizing scheme

- The distribution of examples within an epoch presented to the network is distorted.
- The presence of an outlier or a mislabeled example can have a catastrophic consequence on the performance of the algorithm.

Definition of Outlier

An outlier is an observation that lies outside the overall pattern of a distribution (Moore and McCabe 1999).

Outline

- Introduction
 The XOR Problem
- Multi-Layer Perceptron
 - ArchitectureBack-propagation
 - Back-propagation
 Gradient Descent
 - Hidden-to-Output Weights
 - Input-to-Hidden Weights
 - Total Training Error
 - About Stopping Criteria
 - Final Basic Batch Algorithm

Using Matrix Operations to Simplify

- Using Matrix Operations to Simplify the Pseudo-Code
- igcup Generating the Output z_k
- \bigcirc Generating z_k
- Generating the Weights from Hidden to Output Layer
- Generating the Weights from Input to Hidden Layer
 Activation Functions
- Heuristic for Multilayer Perceptron
- Maximizing information content
- Activation FunctionTarget Values
- Normalizing the inputs
- Virtues and limitations of Back-Propagation Layer

Activation Function

We say that

An activation function $f\left(v\right)$ is antisymmetric if $f\left(-v\right)=-f\left(v\right)$

That the multilayer perceptron learns faster using an antisymmetric function

Example: The hyperbolic tangent

Activation Function

We say that

An activation function $f\left(v\right)$ is antisymmetric if $f\left(-v\right)=-f\left(v\right)$

It seems to be

That the multilayer perceptron learns faster using an antisymmetric function.

Activation Function

We say that

An activation function $f\left(v\right)$ is antisymmetric if $f\left(-v\right)=-f\left(v\right)$

It seems to be

That the multilayer perceptron learns faster using an antisymmetric function.

Example: The hyperbolic tangent

Outline

- Introduction
 The XOR Problem
- Multi-Layer Perceptror
 - Architecture
 - Back-propagationGradient Descent
 - Hidden-to-Output Weights
 - Input-to-Hidden Weights
 - Total Training Error
 - About Stopping Criteria
 - Final Basic Batch Algorithm

Using Matrix Operations to Simplify

- Using Matrix Operations to Simplify the Pseudo-Code
- lacksquare Generating the Output z_k
- \bigcirc Generating z_k
- Generating the Weights from Hidden to Output Layer
- Generating the Weights from Input to Hidden Layer
 Activation Functions
- Activation I unctions
- Heuristic for Multilayer Perceptron
- Maximizing information content
- Activation Function
- Target Values
- Normalizing the inputs
- Virtues and limitations of Back-Propagation Layer

Target Values

Important

It is important that the target values be chosen within the range of the sigmoid activation function.

The desired response for neuron in the output layer of the multilayer ϵ

Target Values

Important

It is important that the target values be chosen within the range of the sigmoid activation function.

Specifically

The desired response for neuron in the output layer of the multilayer perceptron should be offset by some amount ϵ

For example

Given the a limiting value

We have then

- If we have a limiting value +a, we set $t=a-\epsilon$.
- If we have a limiting value -a, we set $t = -a + \epsilon$.

For example

Given the \boldsymbol{a} limiting value

We have then

• If we have a limiting value +a, we set $t=a-\epsilon$.

For example

Given the a limiting value

We have then

- If we have a limiting value +a, we set $t = a \epsilon$.
- If we have a limiting value -a, we set $t = -a + \epsilon$.

Outline

- Introduction
 The XOR Problem
- Multi-Layer Perceptron
 - ArchitectureBack-propagation
 - Back-propagation
 Gradient Descent
 - Hidden-to-Output Weights
 - Input-to-Hidden Weights
 - Total Training Error
 - About Stopping Criteria
 - Final Basic Batch Algorithm

Using Matrix Operations to Simplify

- Using Matrix Operations to Simplify the Pseudo-Code
- igcup Generating the Output z_k
- \bigcirc Generating z_k
- Generating the Weights from Hidden to Output Layer
- Generating the Weights from Input to Hidden Layer
- Activation Functions

Heuristic for Multilayer Perceptron

- Maximizing information content
- Activation Function
- Target Values
- Normalizing the inputs
- Virtues and limitations of Back-Propagation Layer

Something Important (LeCun, 1993)

Each input variable should be preprocessed so that:

Something Important (LeCun, 1993)

Each input variable should be preprocessed so that:

• The mean value, averaged over the entire training set, is close to zero.

Example

Something Important (LeCun, 1993)

Each input variable should be preprocessed so that:

- The mean value, averaged over the entire training set, is close to zero.
- Or it is smalll compared to its standard deviation.

Example

Something Important (LeCun, 1993)

Each input variable should be preprocessed so that:

- The mean value, averaged over the entire training set, is close to zero.
- Or it is smalll compared to its standard deviation.

The normalization must include two other measures

Uncorrelated

We can use the principal component analysis

The normalization must include two other measures

Uncorrelated

We can use the principal component analysis

In addition

Quite interesting

The decorrelated input variables should be scaled so that their covariances are The decorrelated approximately equal.

Ensuring that the different synaptic weights in the ely the same speed network learn at approximately the same speed.

In addition

Quite interesting

The decorrelated input variables should be scaled so that their covariances are The decorrelated approximately equal.

Why

Ensuring that the different synaptic weights in the ely the same speed network learn at approximately the same speed.

There are other heuristics

As

- Initialization
- Learning form hints
- learning rates
- e etc

There are other heuristics

As

- Initialization
- Learning form hints
- Learning rates
- a etc

There are other heuristics

As

- Initialization
- Learning form hints
- Learning rates

There are other heuristics

As

- Initialization
- Learning form hints
- Learning rates
- etc

In addition

In section 4.15, Simon Haykin

We have the following techniques:

In addition

In section 4.15, Simon Haykin

We have the following techniques:

- Network growing
 - ► You start with a small network and add neurons and layers to accomplish the learning task.

In addition

In section 4.15, Simon Haykin

We have the following techniques:

- Network growing
 - You start with a small network and add neurons and layers to accomplish the learning task.
- Network pruning
 - ► Start with a large network, then prune weights that are not necessary in an orderly fashion.

Outline

- Introduction

 The XOR Problem
- Multi-Layer Perceptror
 - ArchitectureBack-propagation
 - Gradient Descent
 - Hidden-to-Output Weights
 - Input-to-Hidden Weights
 - Total Training Error
 - About Stopping Criteria
 - Final Basic Batch Algorithm

Using Matrix Operations to Simplify

- Using Matrix Operations to Simplify the Pseudo-Code
- lacksquare Generating the Output z_k
- Generating z_k
- Generating the Weights from Hidden to Output Layer
- Generating the Weights from Input to Hidden Layer
- Activation Functions
- Heuristic for Multilayer Perceptron
- Maximizing information content
- Activation Function
- Target Values
- Normalizing the inputs
- Virtues and limitations of Back-Propagation Layer

Virtues and limitations of Back-Propagation Layer

Something Notable

The back-propagation algorithm has emerged as the most popular algorithm for the training of multilayer perceptrons.

It has two distinct prop

- It is simple to compute locally.
- It performs stochastic gradient descent in weight space when doing pattern-by-pattern training

Virtues and limitations of Back-Propagation Layer

Something Notable

The back-propagation algorithm has emerged as the most popular algorithm for the training of multilayer perceptrons.

It has two distinct properties

• It is simple to compute locally.

Virtues and limitations of Back-Propagation Layer

Something Notable

The back-propagation algorithm has emerged as the most popular algorithm for the training of multilayer perceptrons.

It has two distinct properties

- It is simple to compute locally.
- It performs stochastic gradient descent in weight space when doing pattern-by-pattern training

Connectionism

Back-propagation

t is an example of a connectionist paradigm that relies on local computations to discover the processing capabilities of neural networks.

It is known as the locality construction

Connectionism

Back-propagation

t is an example of a connectionist paradigm that relies on local computations to discover the processing capabilities of neural networks.

This form of restriction

It is known as the locality constraint

Why this is advocated in Artificial Neural Networks

First

Artificial neural networks that perform local computations are often held up as metaphors for biological neural networks.

The use of local computations permits a graceful degradation in performance due to hardware errors, and therefore provides the basis for a fault-tolerant network design.

Local computations favor the use of parallel architectures as an efficient method for the implementation of artificial neural networks

Why this is advocated in Artificial Neural Networks

First

Artificial neural networks that perform local computations are often held up as metaphors for biological neural networks.

Second

The use of local computations permits a graceful degradation in performance due to hardware errors, and therefore provides the basis for a fault-tolerant network design.

Local computations favor the use of parallel architectures as an efficient method for the implementation of artificial neural networks

Why this is advocated in Artificial Neural Networks

First

Artificial neural networks that perform local computations are often held up as metaphors for biological neural networks.

Second

The use of local computations permits a graceful degradation in performance due to hardware errors, and therefore provides the basis for a fault-tolerant network design.

Third

Local computations favor the use of parallel architectures as an efficient method for the implementation of artificial neural networks.

First

 The reciprocal synaptic connections between the neurons of a multilayer perceptron may assume weights that are excitatory or inhibitory.

n a multilayer perceptron, hormonal and other types of global communications are ignored.

First

- The reciprocal synaptic connections between the neurons of a multilayer perceptron may assume weights that are excitatory or inhibitory.
- In the real nervous system, neurons usually appear to be the one or the other.

Second

In a multilayer perceptron, hormonal and other types of global communications are ignored.

First

- The reciprocal synaptic connections between the neurons of a multilayer perceptron may assume weights that are excitatory or inhibitory.
- In the real nervous system, neurons usually appear to be the one or the other.

Second

In a multilayer perceptron, hormonal and other types of global communications are ignored.

Third

 In back-propagation learning, a synaptic weight is modified by a presynaptic activity and an error (learning) signal independent of postsynaptic activity.

- In a neurobiological sense, the implementation of back-propagation learning requires the rapid transmission of information backward along an axon.
- It appears highly unlikely that such an operation actually takes place in the brain

Third

- In back-propagation learning, a synaptic weight is modified by a presynaptic activity and an error (learning) signal independent of postsynaptic activity.
- There is evidence from neurobiology to suggest otherwise.

Fourth

• In a neurobiological sense, the implementation of back-propagation learning requires the rapid transmission of information backward along an axon.

Third

- In back-propagation learning, a synaptic weight is modified by a presynaptic activity and an error (learning) signal independent of postsynaptic activity.
- There is evidence from neurobiology to suggest otherwise.

Fourth

• In a neurobiological sense, the implementation of back-propagation learning requires the rapid transmission of information backward along an axon.

Third

- In back-propagation learning, a synaptic weight is modified by a presynaptic activity and an error (learning) signal independent of postsynaptic activity.
- There is evidence from neurobiology to suggest otherwise.

Fourth

- In a neurobiological sense, the implementation of back-propagation learning requires the rapid transmission of information backward along an axon.
- It appears highly unlikely that such an operation actually takes place in the brain.

Fifth

Back-propagation learning implies the existence of a "teacher," which
in the con text of the brain would presumably be another set of
neurons with novel properties.

Fifth

- Back-propagation learning implies the existence of a "teacher," which
 in the con text of the brain would presumably be another set of
 neurons with novel properties.
- The existence of such neurons is biologically implausible.

Something Notable

The computational complexity of an algorithm is usually measured in terms of the number of multiplications, additions, and storage involved in its implementation.

This is the electrical engineering approach!!!

Something Notable

The computational complexity of an algorithm is usually measured in terms of the number of multiplications, additions, and storage involved in its implementation.

• This is the electrical engineering approach!!!

Taking in account the total number of synapses, \boldsymbol{W} including biases

We have $\triangle w_{kj} = \eta \delta_k y_j = \eta \left(t_k - z_k\right) f'\left(net_k\right) y_j$ (Backward Pass)

- lacktriangle We need to calculate net_k linear in the number of weights.
- We need to calculate $y_j = f(net_j)$ which is linear in the number of weights.

Something Notable

The computational complexity of an algorithm is usually measured in terms of the number of multiplications, additions, and storage involved in its implementation.

• This is the electrical engineering approach!!!

Taking in account the total number of synapses, \boldsymbol{W} including biases

We have $\triangle w_{kj} = \eta \delta_k y_j = \eta (t_k - z_k) f'(net_k) y_j$ (Backward Pass)

We have that for this step

- $oldsymbol{0}$ We need to calculate net_k linear in the number of weights.
- ② We need to calculate $y_j = f\left(net_j\right)$ which is linear in the number of weights.

Now the Forward Pass

$$\Delta w_{ji} = \eta x_i \delta_j = \eta f'(net_j) \left[\sum_{k=1}^c w_{kj} \delta_k \right] x_i$$

 $[\sum_{k=1}^c w_{kj} \delta_k]$ takes, because of the previous calculations of δ_k 's, linear on the number of weights

In addition the calculation of the derivatives of the activation functions,

Now the Forward Pass

$$\Delta w_{ji} = \eta x_i \delta_j = \eta f'(net_j) \left| \sum_{k=1}^{c} w_{kj} \delta_k \right| x_i$$

We have that for this step

 $[\sum_{k=1}^{c} w_{kj} \delta_k]$ takes, because of the previous calculations of δ_k 's, linear on the number of weights

In addition the calculation of the derivatives of the activation functions,

Now the Forward Pass

$$\Delta w_{ji} = \eta x_i \delta_j = \eta f'(net_j) \left| \sum_{k=1}^{c} w_{kj} \delta_k \right| x_i$$

We have that for this step

 $[\sum_{k=1}^{c} w_{kj} \delta_k]$ takes, because of the previous calculations of δ_k 's, linear on the number of weights

Clearly all this takes to have memory

In addition the calculation of the derivatives of the activation functions, but assuming a constant time.

We have that

The Complexity of the multi-layer perceptron is

 $O\left(W\right)$ Complexity

Exercises

We have from NN by Haykin

4.2, 4.3, 4.6, 4.8, 4.16, 4.17, 3.7