EE3331C/EE3331E Feedback Control Systems L3: Laplace Transform & Transfer Functions

Arthur TAY

ECE, NUS

Outline I

```
Definition
   Motivations
   Definition
   Laplace transform pairs
Laplace transform properties
   Linearity
   Derivatives
   Integral
   Multiplication by time
   Time delay
   Shift in frequency
   Final value theorem
   Convolution
Inverse Laplace transform
```

Finding the Laplace transform

Outline Definition LT properties Inverse LT Finding LT Transfer Functions Summary

Outline II

Transfer Functions

Definition Examples

Non-zero initial conditions

Convolution

Summary
Summary
Practice Problems

Motivations

- ► Laplace Transform converts integral and differential equations into algebraic equations, allows us to analyze
 - ▶ linear constant coefficient ordinary differential equations
 - complicated circuits with sources, Ls, Rs, and Cs
 - complicated systems with integrators, differentiators, gains.
 - ▶ system behaviour without having to solve differential equations

Definition

▶ The Laplace Transform of a signal (function) f is the function $F = \mathcal{L}(f)$ defined by

$$F(s) = \int_{0^{-}}^{\infty} f(t)e^{-st}dt$$

for those $s \in \mathbf{C}$ for which the integral make sense.

- ightharpoonup F is a complex-valued function of complex numbers
- ▶ s is called the (complex) frequency variable, with units sec^{-1} ; t is called the time variable (in sec); st is unitless
- ► Common notation: lower case letter denotes signal; capital letter denotes its Laplace transform.

Outline **Definition** LT properties Inverse LT Finding LT Transfer Functions Summary Motivations **Definition** Laplace transform pairs

▶ Example: what is the LT of a unit step? i.e. f(t) = 1 for $t \ge 0$

$$F(s) = \int_0^\infty e^{-st} dt = -\frac{1}{s} e^{-st} \Big|_0^\infty = \frac{1}{s}$$

provided we can say $e^{-st}\to 0$ as $t\to \infty,$ which is true for $\Re s>0$ since

$$\left|e^{-st}\right| = \underbrace{\left|e^{-j(\Im s)t}\right|}_{-1} \left|e^{-(\Re s)t}\right| = e^{-(\Re s)t}$$

- ▶ the integral defining F make sense for all s with $\Re s > 0$
- lacktriangle but the resulting formula for F make sense for all s except s=0
- ► Gets complicated for other signals, instead we will make use of Laplace Transform properties and common LT pairs to solve more complicated problems.

Common Laplace transform pairs

f(t)	\Leftrightarrow	F(s)	f(t)	\Leftrightarrow	F(s)
$\delta(t)$		1	$\sin(at)$		$\frac{a}{s^2+a^2}$
U(t)		$\frac{1}{s}$	$\cos(at)$		$\frac{s}{s^2+a^2}$
t		$\frac{1}{s^2}$	$e^{-at}\sin(bt)$		$\frac{b}{(s+a)^2+b^2}$
t^k		$\frac{k!}{s^{k+1}}$	$e^{-at}\cos(bt)$		$\frac{s+a}{(s+a)^2+b^2}$
e^{-at}		$\frac{1}{s+a}$, ,
te^{-at}		$\frac{1}{(s+a)^2}$			
$\frac{1}{(k-1)!}t^{k-1}e^{-at}$		$\frac{1}{(s+a)^k}$			

Table 3.1 : Laplace transform pairs

Linearity Derivatives Integral Multiplication by time Time delay Shift in frequency Final value theorem Convolution

Laplace transform properties

▶ Linearity: if f and g are any signals and α and β are any scalar, we have

$$\mathcal{L}\left\{\alpha f(t) + \beta g(t)\right\} = \alpha F(s) + \beta G(s)$$

i.e. homogeneity and superposition hold.

▶ example:

$$\mathcal{L}(2\delta(t) - 3e^{-t}) = 2\mathcal{L}(\delta(t)) - 3\mathcal{L}(e^{-t}) = 2 - 3\frac{1}{s+1} = \frac{2s-1}{s+1}$$

Outline Definition LT properties Inverse LT Finding LT Transfer Functions Summary

Linearity Derivatives Integral Multiplication by time Time delay Shift in frequency Final value theorem Convolution

Laplace transform properties

▶ Linearity: if f and g are any signals and α and β are any scalar, we have

$$\mathcal{L}\left\{\alpha f(t) + \beta g(t)\right\} = \alpha F(s) + \beta G(s)$$

i.e. homogeneity and superposition hold.

▶ example:

$$\mathcal{L}(2\delta(t) - 3e^{-t}) = 2\mathcal{L}(\delta(t)) - 3\mathcal{L}(e^{-t}) = 2 - 3\frac{1}{s+1} = \frac{2s-1}{s+1}$$

▶ Derivative: if a signal f is continous at t = 0, then

$$\mathcal{L}(f'(t)) = sF(s) - f(0^{-})$$

- time-domain differentiation becomes multiplication by frequency variable s
- ▶ plus a term that includes initial condition (i.e., $-f(0^-)$)

► higher-order derivatives

$$\mathcal{L}(f^n(t)) = s^n F(s) - \sum_{k=0}^{n-1} s^{n-1-k} f^k(0^-)$$

- ► example:
 - f(t) is unit ramp, so f'(t) is unit step

$$\mathcal{L}(f'(t)) = s\left(\frac{1}{s^2}\right) - 0 = \frac{1}{s}$$

• $f(t) = e^{-at}$, so $f'(t) = -ae^{-at}$

$$\mathcal{L}(f'(t)) = -a \frac{1}{s+a} = \frac{-a}{s+a}$$

using the formula

$$\mathcal{L}(f'(t)) = sF(s) - f(0^{-}) = s\frac{1}{s+a} - 1 = \frac{-a}{s+a}$$

► Integral: if

$$g(t) = \int_0^t f(\tau)d\tau$$

then

$$G(s) = \frac{1}{s}F(s)$$

- i.e. time-domain integral becomes division by frequency variable s.
 - lacktriangle example: if f(t) is an impulse, F(s)=1; then g(t) is the unit step

$$G(s) = 1/s$$

• example: if f(t) is unit step function, what is G(s)?

► Derivative of Transform (Multiplication by time):

$$F'(s) = \mathcal{L}\{-tf(t)\}$$
 and
$$\frac{d^n}{ds^n}F(s) = (-1)^n\mathcal{L}\{t^nf(t)\}$$

i.e. differentiation in the frequency domain corresponds to multiplication by time

• if $f(t) = \sin \omega t$, then

$$\mathcal{L}\{t\sin\omega t\} = -\frac{d}{ds}\left\{\frac{\omega}{s^2 + \omega^2}\right\} = \frac{2\omega s}{(s^2 + \omega^2)^2}$$

► Derivative of Transform (Multiplication by time):

$$F'(s) = \mathcal{L}\{-tf(t)\}$$
 and
$$\frac{d^n}{ds^n}F(s) = (-1)^n\mathcal{L}\{t^nf(t)\}$$

i.e. differentiation in the frequency domain corresponds to multiplication by time

• if $f(t) = \sin \omega t$, then

$$\mathcal{L}\{t\sin\omega t\} = -\frac{d}{ds}\left\{\frac{\omega}{s^2 + \omega^2}\right\} = \frac{2\omega s}{(s^2 + \omega^2)^2}$$

► Time delay (shift in time-domain): if a function f(t) is delayed by t_0 unit of time

$$g(t) = \begin{cases} 0, & 0 \le t < t_0 \\ f(t - t_0), & t \ge t_0 \end{cases}$$

i.e. g is delayed version of f by t_0 seconds and 'zero-padded' up to t_0 .

► Its Laplace transform is then given by

$$G(s) = e^{-st_0} F(s)$$

► Shift in frequency (shift in s-domain): multiplication of a signal f(t) by an exponential expression in the time domain corresponds to a shift in frequency

$$\mathcal{L}(e^{-at}f(t)) = F(s+a)$$

► example: since

$$\mathcal{L}(\cos t) = \frac{s}{s^2 + 1}$$

hence

$$\mathcal{L}(e^{-2t}\cos t) = \frac{s+2}{(s+2)^2+1} = \frac{s+2}{s^2+4s+5}$$

► Final value theorem:

$$\lim_{s\to 0} sF(s) = \lim_{t\to \infty} f(t)$$

- ► Allows us to compute the constant steady-state value of a time function given its Laplace transform without having to solve the differential equation or perform inverse laplace transform.
- ▶ Note: the final value theorem is only applicable to stable system.
- ► Example: given

$$Y(s) = \frac{3(s+2)}{s(s^2+2s+10)}$$

applying FVT, we have

$$y(\infty) = sY(s)|_{s=0} = s \frac{3(s+2)}{s(s^2+2s+10)}\Big|_{s=0} = \frac{3\cdot 2}{10} = 0.6$$

► Convolution:

► The convolution of two signals f(t) and g(t) (denoted by h = f * g) is given by

$$h(t) = \int_0^t f(\tau)g(t-\tau)d\tau \tag{3.1}$$

same as

$$h(t) = \int_0^t f(t - \tau)g(\tau)d\tau \tag{3.2}$$

► It can be shown that the Laplace transform of Equations (3.1) or (3.2) is given by

$$H(s) = F(s)G(s)$$

Laplace transform turns convolution into multiplication! More on this later.

Linearity Derivatives Integral Multiplication by time Time delay Shift in frequency Final value theorem Convolution

Properties of Laplace transform

	Time Function	Laplace Transform	Comments	
-	f(t)	F(s)	Transform pairs	
1	$\alpha f(t) + \beta g(t)$	$\alpha F(s) + \beta G(s)$	Superposition	
2	$f(t-t_0)$	$e^{-st_0}F(s)$	Time delay ($t_0 \ge 0$)	
3	f(at)	$\frac{1}{ a }F\left(\frac{s}{a}\right)$	Time scaling	
4	$e^{-at}f(t)$	F(s+a)	Shift in frequency	
5	$\int f^n(t)$	$s^{n}F(s) - \sum_{k=0}^{n-1} s^{n-1-k} f^{k}(0^{-})$	Differentiation	
6	$\int_0^t f(\tau)d\tau$	$\frac{1}{s}F(s)$	Integration	
7	f(t) * g(t)	F(s)G(s)	Convolution	
8	tf(t)	$-\frac{d}{ds}F(s)$	Multiplication by time	
9	$f(0^+)$	$\lim_{s \to \infty} sF(s)$	Initial value theorem	
10	$\lim_{t \to \infty} f(t)$	$\lim_{s \to 0} sF(s)$	Final value theorem	

Inverse Laplace transform

- ▶ Used to transform the s-domain solution back to the original domain
- ▶ In principle, we can recover f(t) from F(s) via

$$f(t) = \frac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma + j\infty} F(s)e^{st}ds$$

where σ is large enough that F(s) is defined for $\Re s \geq \sigma$

- ► As expected, this formula is not really useful!
- ▶ Instead, the easiest way to find f(t) from F(s), if F(s) is rational, is to expand F(s) as a sum of simpler terms that can be found in the tables (see Laplace Transform table).
- ► The basic tool to perform this operation is called **partial-fraction expansion**.

- ▶ Procedure for computing f(t)
 - Simplify complicated functions using partial fractions expansion. 3 basic cases,
 - distinct linear factors

$$\frac{k(s)}{(s+\alpha_1)\cdots(s+\alpha_n)} = \frac{A_1}{s+\alpha_1} + \cdots + \frac{A_n}{s+\alpha_n}$$

repeated linear factors

$$\frac{k(s)}{(s+\alpha)^n} = \frac{A_1}{s+\alpha} + \dots + \frac{A_n}{(s+\alpha)^n}$$

► quadratic factor

$$\frac{k(s)}{(\alpha_1 s^2 + \beta_1 s + \gamma_1)(\alpha_2 s^2 + \beta_2 s + \gamma_2)} = \frac{As + B}{(\alpha_1 s^2 + \beta_1 s + \gamma_1)} + \frac{Cs + D}{(\alpha_2 s^2 + \beta_2 s + \gamma_2)}$$

2. Obtain the inverse Laplace transform, f(t) using the LT table.

► Example1: distinct real roots

$$Y(s) = \frac{(s+2)(s+4)}{s(s+1)(s+3)}$$

find y(t).

► Example 2: given

$$Y(s) = \frac{3}{s(s-2)}$$

applying FVT, we have

$$y(\infty) = sY(s)|_{s=0} = -\frac{3}{2}$$

is this right? Inverse laplace transform (from table), we have

$$y(t) = \left(-\frac{3}{2} + \frac{3}{2}e^{2t}\right)$$

as $t \to \infty$, $y(\infty) \to \infty$, it is unbounded!!

Finding the Laplace transform

- You should know the Laplace Transform of some basic signals, e.g.
 - ▶ unit step and impulse
 - exponential
 - sinusoidal

these combined with a table of Laplace transforms and the properties given above (linearity, time delay, ...) will get you pretty far; and of course you can always integrate, using the formula.

- ► example: circuit analysis
 - ▶ initial voltage: $v_c(0)$
 - ► KVL yield:

$$RC\frac{dv_c(t)}{dt} + v_c(t) = V \cdot U(t)$$

▶ take Laplace transform, we have

$$RC\left(sV_c(s) - v_c(0)\right) + V_c(s) = \frac{V}{s}$$

solve for V_c

$$V_c(s) = \frac{RCv_c(0)}{sRC+1} + \frac{V}{s(sRC+1)}$$

in the time domain (applying inverse Laplace transform):

$$v_c(t) = \mathcal{L}^{-1} \left\{ \frac{RCv_c(0)}{sRC + 1} + \frac{V}{s(sRC + 1)} \right\}$$

$$= \mathcal{L}^{-1} \left\{ \frac{v_c(0)}{s + 1/RC} \right\} + \mathcal{L}^{-1} \left\{ \frac{V}{s} - \frac{V}{s + 1/RC} \right\}$$

$$= (v_c(0) - V)e^{-\frac{t}{RC}} + V$$

lacktriangledown as $t \to \infty$, $v_c(\infty) = V$, show that FVT gives the same answer.

A final note

- ► Some interesting patterns between
 - ▶ time domain (i.e. signals) and
 - ► frequency domain (i.e. their Laplace transforms)
- ► differentiation in one domain corresponds to multiplication by the variable in the other domain
- multiplication by an exponential in one domain corresponds to a shift (or delay) in the other domain we'll see these patterns (and others) throughout the course

Definition

- ▶ The transfer function, G(s), of a system is the transfer gain from input, U(s), to output, Y(s).
- ► It is the ratio of the Laplace transform of the output to the Laplace transform of the input,

$$G(s) = \frac{Y(s)}{U(s)}$$

Key assumption: all initial conditions on the system are zero.

• if u(t) is an unit impulse, then U(s)=1, we have Y(s)=G(s), i.e. the transfer function G(s) is the Laplace transform of the unit impulse response h(t).

$$U(s)$$
 $G(s)$ $Y(s)$

Many systems can be described by a linear constant coefficient ordinary differential equation:

$$a_n y^n + \dots + a_1 y' + a_0 y = b_m u^m + \dots + b_2 u'' + b_1 u' + b_0 u$$

$$\sum_{n=0}^{N} a_n \frac{d^n y(t)}{dt^n} = \sum_{m=0}^{M} b_m \frac{d^m u(t)}{dt^m}$$

- n is called the order of the system, the largest power of s in the denominator
- $b_0, \ldots, b_m, a_0, \ldots, a_n$ are the coefficients of the system

Notice that the above formula gives an implicit description of a system, using Laplace transform, we can explicitly express y in terms of u.

Definition Examples Non-zero initial conditions Convolution

► Example: find the transfer function of

$$a_2\ddot{y}(t) + a_1\dot{y}(t) + a_0y(t) = b_0u(t)$$

Taking LT on both side,

$$a_2[s^2Y(s) - sy(0^-) - \dot{y}(0^-)] + a_1[sY(s) - y(0^-)] + a_0Y(s) = b_0U(s)$$

Assuming zero initial conditions, i.e., $y(0^-) = \dot{y}(0^-) = 0$,

$$[a_2s^2 + a_1s + a_0] Y(s) = b_0 U(s)$$

$$\frac{Y(s)}{U(s)} = \frac{b_0}{a_2s^2 + a_1s + a_0}$$

 \blacktriangleright For a general N^{th} -order system with zero initial conditions:

$$\sum_{n=0}^{N} a_n \mathcal{L} \left\{ \frac{d^n y(t)}{dt^n} \right\} = \sum_{m=0}^{M} b_m \mathcal{L} \left\{ \frac{d^m u(t)}{dt^m} \right\}$$

$$\frac{Y(s)}{U(s)} = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0}$$

Examples

► Example 1:

► Resistor:
$$v(t) = Ri(t) \Rightarrow G(s) = \frac{V(s)}{I(s)} = R$$

► Capacitor: $v_c(t) = \frac{1}{C} \int_0^t i(\tau) d\tau$ Applying Integral rule,

$$G(s) = \frac{V_c(s)}{I(s)} = \frac{1}{Cs}; \quad v_c(0) = 0$$

▶ Inductor: $v_L(t) = L \frac{di(t)}{dt}$ Applying Derivative rule, what is G(s)?

- ► Example 2: RC circuit examples, previously we have
 - ▶ initial voltage: $v_c(0)$
 - KVL yield:

$$RC\frac{dv_c(t)}{dt} + v_c(t) = v(t)$$

Laplace transform gives

$$RC(sV_c(s) - v_c(0)) + V_c(s) = V(s)$$

 $(sRC + 1)V_c(s) = V(s) + RCv_c(0)$

Assuming that the initial voltage, $v_c(0)$ is zero, we have

$$G(s) = \frac{V_c(s)}{V(s)} = \frac{1}{sRC + 1}$$

► Given v(t) = VU(t), find $v_c(t)$

$$V_c(s) = \frac{1}{sRC + 1} \frac{V}{s}$$

Partial fraction expansion gives

$$V_c(s) = \frac{1}{s} - \frac{RC}{sRC + 1}$$

Taking inverse LT, we have

$$v_c(t) = \mathcal{L}^{-1} \left\{ \frac{V}{s} - \frac{RCV}{sRC + 1} \right\}$$
$$= V - Ve^{-\frac{t}{RC}}$$

Non-zero initial conditions

- ► Most real-world problems do not satisfy the zero-initial conditions assumption which is key to derivation of the transfer function.
 - ightharpoonup example, consider building a model for controlling our room temperature, y(t); since the ambient room temperature is not zero, $y(0^-) \neq 0$.
- ▶ It is possible to relax the zero initial condition assumption. Output signal may be derived from transfer functions as long as system is initially at rest, i.e., $\left(y(0) \neq 0; \quad \frac{d^n y}{dt^n} = 0\right)$
- ► For systems with non-zero initial conditions, we introduce the following dummy output and input variables:

$$\tilde{y}(t) = y(t) - y(0)
\tilde{u}(t) = u(t) - u(0)$$

where y(0) and u(0) are the output and input signals initial conditions. We now have $\tilde{y}(0) = \tilde{u}(0) = 0$.

► Example: the input-output relationship of a thermometer can be modelled by the following transfer function:

$$5\frac{dy(t)}{dt} + y(t) = 0.99u(t)$$

where u(t) is the temperature of the environment in which the thermometer is placed, y(t) is the measured temperature. Given that the measured temperature is $24.75^{o}\mathrm{C}$ at time, t=0. Find the transfer function of the thermometer.

Given that $y(0)=24.75^o\mathrm{C}$, we can see that the actual temperature is given by $u(0)=y(0)/0.99=25^o\mathrm{C}$. It is also clear that for zero initial condition u(0)=y(0)=0, the transfer function is given by

$$\frac{Y(s)}{U(s)} = \frac{0.99}{5s+1}$$

Definition Examples Non-zero initial conditions Convolution

▶ In the problem, the i.c. are $y(0) = 24.75^{\circ}\text{C}$ and $u(0) = 25^{\circ}\text{C}$, so the transfer function cannot be used directly. To match the zero i.c. assumption, define the following new variables:

$$\tilde{y}(t) = y(t) - y(0)$$

and

$$\tilde{u}(t) = u(t) - u(0).$$

▶ We then have

$$\tilde{y}(0) = y(0) - y(0) = 0$$

and

$$\tilde{u}(0) = u(0) - u(0) = 0$$

► Substituting the new variables, the new differential equation is

$$5\frac{d\tilde{y}(t)}{dt} + \tilde{y}(t) + y(0) = 0.99(\tilde{u}(t) + u(0))$$

$$\Rightarrow 5\frac{d\tilde{y}(t)}{dt} + \tilde{y}(t) = 0.99\tilde{u}(t)$$

► Taking Laplace transform,

$$(5s+1)\tilde{Y}(s) = 0.99\tilde{U}(s)$$

$$\Rightarrow \frac{\tilde{Y}(s)}{\tilde{U}(s)} = \frac{0.99}{5s+1}$$

If the actual temperature is u(t)=(25+t)1(t), we then have $\tilde{u}(t)=u(t)-u(0)=t$ for $t\geq 0$. Laplace transform gives $\tilde{U(s)}=\frac{1}{s^2}$ and we have

$$\tilde{Y}(s) = \frac{0.99}{5s+1}\tilde{U}(s) = \frac{0.99}{s^2(5s+1)}$$

► We then have (after partial fraction expansion)

$$\tilde{Y}(s) = -\frac{4.95}{s} + \frac{0.99}{s^2} + \frac{24.75}{5s+1}$$

inverse Laplace transform gives

$$\tilde{y}(t) = -4.95 + 0.99t + 4.95e^{-t/5}, \quad t \ge 0$$

change of variable gives

$$y(t) = \tilde{y}(t) + y(0) = 19.8 + 0.99t + 4.95e^{-t/5}, \quad t \ge 0$$

► Using Matlab for partial fraction expansion,

$$num = 0.99;$$
 % numerator $den = [5 \ 1 \ 0 \ 0];$ % denominator $[r,p,k] = residue(num,den);$ % compute the residues

which results in the desired answer as hand calculation:

$$\begin{split} r &= [4.9500 \text{ } -4.9500 \text{ } 0.9900], \\ p &= [-0.2 \text{ } 0 \text{ } 0] \text{ } \text{and} \\ k &= []. \end{split}$$

Convolution systems

▶ Convolution system with input u (u(t) = 0, t < 0) and output y:

$$y(t) = \int_0^t h(\tau)u(t-\tau)d\tau = \int_0^t h(t-\tau)u(\tau)d\tau$$
 (3.3)

abbreviated as: y = h * u.

In the frequency domain, we have Y(s) = H(s)U(s).

▶ Example: given that $u(t) = \delta(t)$, we have U(s) = 1, and Y(s) = H(s)! or

$$y(t) = \int_0^t \delta(\tau)h(t-\tau)d\tau = h(t)$$

- ► *h* is called the **impulse response** of the system
- ightharpoonup H is the **transfer function** of the system

- ► Any convolution system is *linear-time-invariant* (LTI) and causal; any LTI causal system can also be represented by a convolution system.
- ► Convolution/transfer function representation gives universal description for LTI causal system.
- ► Composition of convolution systems corresponds to <u>multiplication</u> of transfer functions (note algebra reverse)

- can manipulate block diagrams with transfer functions as if they were simple gains
- ► convolution systems commute with each other

► Example: feedback connection

in time domain, we have the convolution integral equation

$$y(t) = \int_0^t h(t - \tau)(u(\tau) - y(\tau))d\tau$$

not easy to understand and solve...

in frequency domain, we have
$$Y(s)=H(s)(U(s)-Y(s))$$
, solving for $Y(s)$ gives $Y(s)=\mathcal{H}(s)U(s)$, where $\mathcal{H}(s)=\frac{H(s)}{1+H(s)}$

- ► More examples:
 - ▶ RC circuit: assume zero initial condition for capacitor

▶ its transfer function and impulse response

$$H(s) = \frac{1}{sRC + 1}$$

$$h(t) = \mathcal{L}^{-1}(H) = \frac{1}{RC}e^{-t/(RC)}$$

$$y(t) = \frac{1}{RC}\int_0^t e^{-\tau/(RC)}u(t - \tau)d\tau$$

Summary

- ► Laplace transform is the primary tool to determine the behavior of linear systems.
- ► The derivative rule is key to finding the transfer function of a system.
- ▶ Inverse transform can be found from Laplace transform table.
- ► Final value theorem is useful in computing the steady-state errors of stable system.

Review Questions

- ► How do you find the transfer function of a linear ODE?
- ▶ What are the key steps in finding the output response y(t) if the input u(t) is sent to the system G(s)?

Reading: FPE section 3.1

Practice Problems

- 1. Given the Laplace transform of f(t) is F(s), find the Laplace transform of (a). $g(t) = f(t) \cos t$ and (b). $g(t) = \int_0^t \int_0^{t_1} f(\tau) d\tau dt_1$.
- 2. Solve the following ode using Laplace transform:

$$\ddot{y}(t) + \dot{y}(t) + 3y(t) = 0; y(0) = 1, \dot{y}(0) = 2$$
 $\ddot{y}(t) + y(t) = t; y(0) = 1, \dot{y}(0) = -1$

- 3. Find f(t) using partial fraction for
 - $F(s) = \frac{3s+2}{s^2+4s+20}$
 - ► $F(s) = \frac{1}{s(s+2)^2}$.
- 4. Write the dyanmic equations describing the circuit below. Assuming a zero input, solve the differential equation for y(t) using Laplace transform given the following initial conditions: $y(0) = 1V, \dot{y}(0) = 0$.

Practice Problems

- 5. Convolution and Laplace transform.
 - ▶ Evaluate $h(t) = e^{-t} * e^{-2t}$ using direct integration for $t \ge 0$ (i.e. from the definition of convolution).
 - \blacktriangleright Find H, using the expression for h found above.
 - ▶ Verify that H is the product of the Laplace transforms of e^{-t} and e^{-2t} .
- 6. DC motor. (more on this in the lab)
 - A simplified electrical model of the motor can be described by an inductor L in series with a resistance R, so the motor current i(t) satisfies $L\frac{di}{dt}+Ri=v$ where v(t) is the voltage applied to the motor.
 - ▶ The motor shaft angle, $\theta(t)$, and the shaft angular velocity, $\omega(t)$, are related by $\omega = \frac{d\theta}{dt}$.
 - ▶ The motor current puts a torque on the shaft equal to ki(t), where k is the motor constant. The shaft rotational inertia is J and the damping coefficient is b. Newton's equation then gives $J^{\frac{d\omega}{dt}} = ki b\omega$.
 - Assuming that i(0) = 0, $\theta(0) = 0$, and $\omega(0) = 0$, find the transfer function relating θ in terms of v.