VLSI for DSP

Yuan-Ho Chen

Department of Electronic Engineering
Chang Guan University
chenyh@mail.cgu.edu.tw

VLSI DSP Yuan-Ho Chen

Xilinx PYNQ-Z2 FPGA

Lab2

Lab2

VLSI for DSP

Vivado Design Flow Getting Started

Department of Electronic Engineering
Chang Guan University
chenyh@mail.cgu.edu.tw

VLSI DSP Yuan-Ho Chen

Create a Vivado Project using IDE

- Launch Vivado and create an empty project.
 - Open Vivado by selecting Start > Xilinx Design Tools > Vivado
 2018.2
 - 2. Click **Create New Project** to start the wizard. You will see *Create A New Vivado Project* dialog box. Click **Next**.
 - 3. Click the Browse button of the *Project location* field of the **New Project** form, browse to **C:\xilinx_works**, and click **Select**.
 - 4. Enter **lab2** in the *Project name* field. Make sure that the *Create Project Subdirectory* box is checked. Click **Next**.

Create a Vivado Project using IDE

Create a Vivado Project using IDE

5. Select **RTL Project** option in the *Project Type* form, and click **Next**.

Create a Vivado Project

- 7. In the *Default Part* form, use the **Parts** option and various drop-down fields of the **Filter** section. Select the **XC7Z020clg400-1**.
- 8. Click **Finish** to create the Vivado project.

Create a Vivado Project

Create a Vivado Project

Create Lab2.v

Create RCA4.v

Create RCA4.v

Add HA.v and FA.v

VLSI for DSP

Simulate the Design using the Vivado Simulator

Department of Electronic Engineering
Chang Guan University
chenyh@mail.cgu.edu.tw

VLSI DSP Yuan-Ho Chen

Add the TM_RCA4.v testbench file

1. Click **Add Sources** under the *Project Manager* tasks of the *Flow Navigator* pane.

Add the testbench file

2. Select the Add or Create Simulation Sources option and click Next.

Add the testbench file

- 3. In the Add Sources Files form, click the Blue Plus button and then Add Files....
- 4. Select *TM_RCA4.v* and click **OK**.
- Click Finish.
- 6. Select the Sources tab and expand the Simulation Sources group.

Simulate the design

7. Click on **Simulation > Run Simulation > Run Behavioral Simulation** under the *Project Manager* tasks of the *Flow Navigator* pane.

Close Simulation

VLSI for DSP

Synthesize the Design

Department of Electronic Engineering
Chang Guan University
chenyh@mail.cgu.edu.tw

VLSI DSP Yuan-Ho Chen

Synthesize the design

- 1. Click on **Run Synthesis** under the *SYNTHESIS* tasks of the *Flow Navigator* pane.
- 2. Select the *Open Synthesized Design* option and click **OK** as we want to look at the synthesis output before progressing to the implementation stage.
 - Click Yes to close the elaborated design if the dialog box is displayed.
- 3. Select the **Project Summary** tab and understand the various windows.
 - If you don't see the Project Summary tab then select Window > Project
 Summary or click the Project Summary icon

Synthesize the design

VLSI for DSP

Implement the Design

Department of Electronic Engineering
Chang Guan University
chenyh@mail.cgu.edu.tw

VLSI DSP Yuan-Ho Chen

I/O Planning

Layout → I/O Planning

I/O Planning

I/O Planning

FPGA pins

Signal Name	PL PIN
BTN0	D19
BTN1	D20
BTN2	L20
BTN3	L19

Table 9 Push Button PL pin mapping

Signal Name	PL PIN
SW0	M20
SW1	M19

Table 10 Dip switch PL pin mapping

Signal Name	PL PIN
LED0	R14
LED1	P14
LED2	N16
LED3	M14

Table 11 LED PL pin mapping

Modify

```
RCA4.v
                                                                                                                     ? _ D Z X
E:/vivado_work/Lab2/Lab2.srcs/sources_1/new/RCA4.v
                                                                                                                                 \times
      □ ► → X □ □ X // □ □
                                                                                                                                Ф
                                                                                                                                \wedge
22
23 🖨 module RCA4(a, b, cout, s);
24
25
          input [3:0] a:
26
                 [1:0]
                         b;
          input
27
         output
                 [3:0]
28
         output
                         cout;
29
 30
          wire
                 [3:0] c, bb;
         assign bb[3] = \sim b[1];
31
         assign bb[2] = \sim b[0];
 32
         assign bb[1] = b[1];
33 i
34
         assign bb[0] = b[0];
 35
                 U1_{HA}(.a(a[0]), .b(bb[0]), .cout(c[0]), .sum(s[0]));
 36
         HA
                 U2_FA(.a(a[1]), .b(bb[1]), .c(c[0]), .cout(c[1]), .sum(s[1]));
         FA
 37
                 U3_{FA}(.a(a[2]), .b(bb[2]), .c(c[1]), .cout(c[2]), .sum(s[2]));
 38
         FA
                 U4_{FA}(.a(a[3]), .b(bb[3]), .c(c[2]), .cout(c[3]), .sum(s[3]));
 39 !
40
         assign cout = c[3];
41
42
43 ♠ endmodule
44
45
```

FPGA pins

a[3:0]

Signal Name	PL PIN
BTN0	D19
BTN1	D20
BTN2	L20
BTN3	L19

Table 9 Push Button PL pin mapping

b[1:0]

Signal Name	PL PIN
SW0	M20
SW1	M19

Table 10 Dip switch PL pin mapping

s[3:0]

Signal Name	PL PIN
LED0	R14
LED1	P14
LED2	N16
LED3	M14

Table 11 LED PL pin mapping

FPGA pins

xdc file

```
RCA4.xdc *
                                                                                                                                        _ D Z X
E:/vivado_work/Lab2/Lab2.srcs/constrs_1/new/RCA4.xdc
                                         ■ 0
                  X □ □ X //
                                                                                                                                               *
    set property -dict { PACKAGE PIN D19
                                   IOSTANDARD LVCMOS33 } [get_ports { a[0] }];
    set property -dict { PACKAGE PIN D20
                                   IOSTANDARD LVCMOS33 } [get ports { a[1] }];
    set_property -dict { PACKAGE_PIN L20
                                   IOSTANDARD LVCMOS33 } [get_ports { a[2] }];
    set_property -dict { PACKAGE_PIN L19
                                   IOSTANDARD LVCMOS33 } [get_ports { a[3] }];
    set_property -dict { PACKAGE_PIN M19
                                   IOSTANDARD LVCMOS33 } [get_ports { b[0] }];
    set_property -dict { PACKAGE_PIN M20
                                   IOSTANDARD LVCMOS33 } [get_ports { b[1] }];
    set property -dict { PACKAGE PIN R14
14 !
                                   IOSTANDARD LVCMOS33 } [get_ports { s[0] }];
    set_property -dict { PACKAGE_PIN P14
                                   IOSTANDARD LVCMOS33 } [get_ports { s[1] }];
                                   IOSTANDARD LVCMOS33 } [get_ports { s[2] }];
    set_property -dict { PACKAGE_PIN N16
```

Implement the design

- Click on Run Implementation under the Implementation tasks of the Flow Navigator pane.
 - The implementation process will be run on the synthesized design. When the
 process is completed an *Implementation Completed* dialog box with three
 options will be displayed.
- Select Generate Bitstream and click OK.

VLSI for DSP

Generate the Bitstream and Verify Functionality

Department of Electronic Engineering
Chang Guan University
chenyh@mail.cgu.edu.tw

VLSI DSP Yuan-Ho Chen

Generate the Bitstream

- Connect the board and power it ON. Generate the bitstream, open a hardware session, and program the FPGA.
- Make sure that the Micro-USB cable is connected to the JTAG PROG connector.
- 2. The PYNQ-Z2 can be powered through USB power via the JTAG PROG.
 - Make sure that the board is set to use USB power.

Generate the Bitstream

- 3. Power **ON** the board.
- 4. Click on the **Generate Bitstream** entry under the *PROGRAM AND DEBUG* tasks of the *Flow Navigator* pane.
 - The bitstream generation process will be run on the implemented design.
 When the process is completed a *Bitstream Generation Completed* dialog box with three options will be displayed.

Generate the Bitstream

- 5. Select the *Open Hardware Manager* option and click **OK**.
 - The Hardware Manager window will open indicating "unconnected" status.
- 6. Click on the **Open target** link.

HARDWARE MANAGER - unconnected

No hardware target is open. Open target

- 7. From the dropdown menu, click **Auto Connect.**
 - The Hardware Session status changes from Unconnected to the server name and the device is highlighted. Also notice that the Status indicates that it is not programmed.

 Select the device and verify that the lab2.bit is selected as the programming file in the General tab.

Hardware Device P	Properties	? _ 🗆 🖺 X
xc7z020_1		← → •
Name:	xc7z020_1	
Part:	xc7z020	
ID code:	23727093	
IR length:	6	
Status:	Not programmed	
Programming file:	zynq_labs/lab1/lab1.runs/impl_1/lab1.bit	
Probes file:		
User chain count: 4		
General Proper	ties	

8. Click on the *Program device* link in the green information bar to program the target FPGA device. Another way is to right click on the device and select *Program Device*.

HARDWARE MANAGER - localhost/xilinx_tcf/Xilinx/1234-tulA

1 There are no debug cores. Program device Refresh device

Selecting to program the FPGA

- 9. Click **Program** to program the FPGA.
 - The DONE LED will lit when the device is programmed. You may see some other LEDs lit depending on switch positions.
- 10. Verify the functionality by flipping the switches and observing the output on the LEDs (Refer to the earlier logic diagram).
- 11. When satisfied, power **OFF** the board.
- 12. Close the hardware session by selecting **File > Close Hardware Manager.**
- 13. Click **OK** to close the session.
- 14. Close the **Vivado** program by selecting **File > Exit** and click **OK**.