# Машинное обучение

Лекция 4

Построение ансамблей, Random Forest и Gradient Boosting

Виктор Кантор

### План

- I. Обзор методов построения композиций
- II. Ансамбли решающих деревьев

# I. Обзор методов построения композиций

### Bagging

Bagging = Bootstrap aggregation

# Бутстреп

Выборка из некоторого распределения:

| Nº | значение |
|----|----------|
| 1  |          |
| 2  |          |
| 3  |          |
|    |          |
|    |          |
|    |          |
| N  |          |

### Бутстреп

Выборка из некоторого распределения:

| Nº | значение |
|----|----------|
| 1  |          |
| 2  |          |
| 3  |          |
|    |          |
|    |          |
|    |          |
| N  |          |



Хотим вычислить какуюто величину X по данным наблюдениями.

Было бы здорово вычислить X на многих выборках из распределения, а потом усреднить, но их у нас нет

### Бутстреп

# Выборка из некоторого распределения:

|    | -        |
|----|----------|
| Nº | значение |
| 1  |          |
| 2  |          |
| 3  |          |
|    |          |
|    |          |
|    |          |
| N  |          |



Хотим вычислить какуюто величину X по данным наблюдениями.

Было бы здорово вычислить X на многих выборках из распределения, а потом усреднить, но их у нас нет

#### Решение:

- 1. Выбираем наугад одно наблюдение из имеющихся.
- 2. Повторяем пункт 1 столько раз, сколько у нас есть наблюдений. При этом некоторые из них мы можем выбрать повторно
- 3. Считаем интересующие нас величины по новой выборке. Запоминаем результат.
- 4. Повторяем пункты 1-3 много раз и усредняем

### Bagging

Bagging = Bootstrap aggregation

По схеме выбора с возвращением, генерируем М обучающих выборок такого же размера, обучаем на них модели и усредняем

# Bagging



### Бэггинг в классификации



### Вариации: Pasting, RSM

- RSM Random Subspace Method, выбираем не объекты, а признаки
- Pasting выбираем объекты без возвращения







#### Обучающая выборка:



Обучаем М базовых алгоритмов на выборке А

#### Обучающая выборка:



Обучаем М Считаем их прогнозы на выборке А выборке В





#### Обучающая выборка:



Обучаем М базовых алгоритмов на выборке А



Считаем их прогнозы на выборке В



B1 B2

**₹** 

$$a(x) = \sum_{t=1}^{T} \alpha_t b_t(x)$$



Обучаем другую модель (например, линейную регрессию с  $w_0 = 0$ )

Смесь нескольких сильных классификаторов:

$$a(x) = \sum_{t=1}^{I} \alpha_t b_t(x)$$

+ веса неотрицательны и дают в сумме единицу

Смесь нескольких сильных классификаторов:

$$a(x) = \sum_{t=1}^{I} \alpha_t b_t(x)$$

+ веса неотрицательны и дают в сумме единицу

Преимущества и недостатки:

• Очень прост идейно, хорошо работает, логичен

Смесь нескольких сильных классификаторов:

$$a(x) = \sum_{t=1}^{I} \alpha_t b_t(x)$$

+ веса неотрицательны и дают в сумме единицу

Преимущества и недостатки:

- Очень прост идейно, хорошо работает, логичен
- Иногда надо перебирать веса или использовать дискретную оптимизацию

Смесь нескольких сильных классификаторов:

$$a(x) = \sum_{t=1}^{I} \alpha_t b_t(x)$$

+ веса неотрицательны и дают в сумме единицу

#### Преимущества и недостатки:

- Очень прост идейно, хорошо работает, логичен
- Иногда надо перебирать веса или использовать дискретную оптимизацию
- Не всегда композиция в виде взвешенной суммы то, что надо. Иногда нужна более сложная композиция





$$a(x) = \sum_{t=1}^{T} \beta_t h_t(x)$$



### «Слабые» алгоритмы

 $h_k(x)$  – как правило, решающие деревья небольшой глубины или линейные модели



# Пример: бустинг над линейными классификаторами



### Алгоритмы бустинга

- Основные алгоритмы:
  - Градиентный бустинг
  - Адаптивный бустинг (AdaBoost)
- Вариации AdaBoost:
  - AnyBoost (произвольная функция потерь)
  - BrownBoost
  - GentleBoost
  - LogitBoost

**—** ....

# Бэггинг и бустинг

Bagged Decision Rule



#### **Boosted Decision Rule**



# Бэггинг и бустинг: переобучение



### Преимущества и недостатки бустинга

- Позволяет очень точно приблизить восстанавливаемую функцию или разделяющую поверхность классов
- Плохо интерпретируем
- Композиции могут содержать десятки тысяч базовых моделей и долго обучаться
- Переобучение на выбросах при избыточном количестве классификаторов

# II. Ансамбли решающих деревьев

### Леса решающих деревьев

### Random Forest



- 1. Бэггинг над деревьями
- 2. Рандомизированные разбиения в деревьях: выбираем k случайных признаков и ищем наиболее информативное разбиение по ним

#### **Extreemly Randomized Trees**



- 1. Бэггинг над «сильно рандомизированными» деревьями
- 2. При разбиении в дереве выбираем k случайных признаков и случайные пороги по ним, затем ищем наиболее информативное из этих разбиений

### Extreemly Randomized Trees



- 1. Бэггинг над «сильно рандомизированными» деревьями
- 2. При разбиении в дереве выбираем k случайных признаков и случайные пороги по ним, затем ищем наиболее информативное из этих разбиений

# Нестандартные применения случайного леса

- Метрика и поиск похожих объектов
- Преобразование признаков

# Может ли \*\*\* работать лучше RF

#### Random Forest Classifier



#### 3-Nearest Neighbors





## Идея Gradient Boosted Decision Trees (с прошлой лекции)

$$a_n(x) = h_1(x) + \dots + h_n(x)$$



## Аналогия с численной оптимизацией

Нам нужно минимизировать ошибку:

$$Q(\hat{y}, y) = \sum_{i=1}^{t} (\hat{y}_i - y_i)^2 \to min \qquad \hat{y}_i = a(x_i)$$

# Аналогия с численной оптимизацией

Нам нужно минимизировать ошибку:

$$Q(\hat{y}, y) = \sum_{i=1}^{t} (\hat{y}_i - y_i)^2 \to min \qquad \hat{y}_i = a(x_i)$$

Если бы мы подбирали ответы  $\hat{y}$  итеративно, можно было бы это делать градиентным спуском

# Аналогия с численной оптимизацией

Нам нужно минимизировать ошибку:

$$Q(\hat{y}, y) = \sum_{i=1}^{t} (\hat{y}_i - y_i)^2 \to min \qquad \hat{y}_i = a(x_i)$$

Если бы мы подбирали ответы  $\hat{y}$  итеративно, можно было бы это делать градиентным спуском

Но нам нужно подобрать не ответы, а функцию a(x)

### Градиентный бустинг и градиент

В бустинге 
$$a(x) = \sum_{t=1}^{T} \beta_t h_t(x)$$

**Идея:** будем каждый следующий алгоритм выбирать так, чтобы он приближал антиградиент ошибки

$$h_t(x) \approx -\frac{\partial Q(\hat{y}, y)}{\partial \hat{y}}$$

### Градиентный бустинг и градиент

Если 
$$h_t(x) \approx -\frac{\partial Q(\hat{y},y)}{\partial \hat{y}}$$
 и  $Q(\hat{y},y) = \sum_{i=1}^l (\hat{y}_i - y_i)^2$ 

$$h_t(x_i) \approx -\frac{\partial Q(\hat{y}_i, y_i)}{\partial \hat{y}_i} = -2(\hat{y}_i - y_i) \propto y_i - \hat{y}_i$$

#### GBM с квадратичными потерями

- 1. Обучаем первый базовый алгоритм  $h_1$ ,  $\beta_1 = 1$
- 2. Повторяем в цикле по t от 2 до T:

обучаем  $h_t$  на ответы  $y_i - a_{t-1}(x_i)$ 

выбираем  $\beta_t$ 

#### GBM с квадратичными потерями

- 1. Обучаем первый базовый алгоритм  $h_1$ ,  $\beta_1 = 1$
- 2. Повторяем в цикле по t от 2 до T:

обучаем  $h_t$  на ответы  $y_i - a_{t-1}(x_i)$ 

выбираем  $\beta_t$ 

#### Стратегии выбора $\beta_t$ :

- всегда равен небольшой константе
- как в методе наискорейшего спуска
- ullet уменьшая с ростом t

#### GBM с произвольными потерями

- 1. Обучаем первый базовый алгоритм  $h_1$ ,  $\beta_1 = 1$
- 2. Повторяем в цикле по t от 2 до T:

обучаем 
$$h_t$$
 на  $-\frac{\partial Q(\hat{y}_i, y_i)}{\partial \hat{y}_i} = -\frac{\partial L(\hat{y}_i, y_i)}{\partial \hat{y}_i}$ 

выбираем  $\beta_t$ 

Здесь 
$$Q(\hat{y}, y) = \sum_{i=1}^{l} L(\hat{y}_i, y_i)$$
  $\hat{y}_i = a_{t-1}(x_i)$ 

#### GBM в наиболее общем виде

- 1. Обучаем первый базовый алгоритм  $h_1$ ,  $\beta_1 = 1$
- 2. Повторяем в цикле по t от 2 до T:

$$h_t = \underset{h}{\operatorname{argmin}} \sum_{i=1}^{l} \tilde{L}\left(h(x_i), -\frac{\partial L(\hat{y}_i, y_i)}{\partial \hat{y}_i}\right)$$

выбираем  $\beta_t$ 

Здесь 
$$Q(\hat{y}, y) = \sum_{i=1}^{l} L(\hat{y}_i, y_i)$$
  $\hat{y}_i = a_{t-1}(x_i)$ 

#### Bagging, Random Forest, GBDT

#### **Spam Data**



#### GTBM u RF

#### **California Housing Data**



#### Распараллеливание

#### Вопрос для обсуждения:

Какой из ансамблей деревьев больше подходит для распараллеливания? Как это делать в одном и в другом случае?

#### Резюме

- I. Обзор методов построения композиций
  - Bagging
  - Stacking
  - Blending
  - Boosting
- II. Ансамбли решающих деревьев
  - Random Forest
  - Gradient Boosted Decision Trees