

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
12. Juli 2001 (12.07.2001)

PCT

(10) Internationale Veröffentlichungsnummer
WO 01/50171 A1

- (51) Internationale Patentklassifikation⁷: **G02B 13/14, 13/18, G03F 7/20**
- (21) Internationales Aktenzeichen: PCT/EP00/13148
- (22) Internationales Anmelde datum:
22. Dezember 2000 (22.12.2000)
- (25) Einreichungssprache: Deutsch
- (26) Veröffentlichungssprache: Deutsch
- (30) Angaben zur Priorität:
60/173,523 29. Dezember 1999 (29.12.1999) US
100 02 626.5 22. Januar 2000 (22.01.2000) DE
100 21 739.7 4. Mai 2000 (04.05.2000) DE
- (71) Anmelder (nur für AT, BE, CH, CY, DE, DK, ES, FI, FR, GR, IT, LU, MC, NL, PT, SE, TR): **CARL ZEISS [DE/DE]; 89518 Heidenheim (Brenz) (DE).**
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): **SHAFER, David, R. [US/US]; 56 Drake Lane, Fairfield, CT 06430 (US). SCHUSTER, Karl-Heinz [DE/DE]; Rechbergstrasse 24, 89551 Königsbronn (DE). BEIERL, Helmut [DE/DE]; Robert-Koch-Strasse 53, 89522 Heidenheim (DE).**
- (81) Bestimmungsstaaten (national): JP, KR, US.
- (84) Bestimmungsstaaten (regional): europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).
- Veröffentlicht:
— Mit internationalem Recherchenbericht.

[Fortsetzung auf der nächsten Seite]

(54) Title: PROJECTION LENS COMPRISING ADJACENT ASPHERIC LENS SURFACES

(54) Bezeichnung: PROJEKTIONSOBJEKTIV MIT BENACHBART ANGEORDNETEN ASPHÄRISCHEN LINSENOBERFLÄCHEN

A1

WO 01/50171

(57) Abstract: The invention relates to a projection lens comprising at least five groups of lenses G1 - G5 and several lens surfaces, in which at least two of the lens surfaces lie adjacent to one another. Said adjacent lens surfaces are referred to as a double aspheric lens. The double aspheric lens or lenses (21) are positioned at a minimum distance from an image plane O', said distance being greater than the maximum lens diameter (D2) of the lens.

(57) Zusammenfassung: Projektionsobjektiv mit mindestens fünf Linsengruppen G1-G5 und mit mehreren Linsenoberflächen, wobei mindestens zwei asphärische Linsenoberflächen benachbart zueinander angeordnet sind. Diese benachbart zueinander angeordneten Linsenoberflächen werden mit Doppelaspähre bezeichnet. Diese mindestens eine Doppelaspähre (21) ist in einem Mindestabstand von einer Bildebene O' angeordnet, der grösser als der maximale Linsendurchmesser (D2) des Objektives ist.

Vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen

Zur Erklärung der Zweibuchstaben-Codes, und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Beschreibung:

Projektionsobjektiv mit benachbart angeordneten asphärischen Linsenoberflächen

- 5 Die Erfindung betrifft ein Projektionsobjektiv gemäß dem Oberbegriff des Patentanspruchs 1.

Aus der WO 99/52004 sind katadioptische Projektionsobjektive bekannt, die eine Vielzahl von asphärischen Linsenoberflächen umfassen. So weist beispielsweise das in Figur 4
10 dargestellte Projektionsobjektiv bei 15 Linsen 12 asphärische Linsenoberflächen auf. Da die Herstellungskosten von asphärischen Linsenoberflächen mit der in der Mikrolithographie geforderten Genauigkeit sehr hoch sind, dürften diese Objektive aufgrund der vielen erforderlichen asphärischen Linsenoberflächen für den Markt weniger interessant sein.

15 Aus der EP 322 201 B1 ist ein optisches Projektionssystem insbesondere für die Photolithographie bekannt. Die aus dieser Schrift bekannten Projektionsobjektive umfassen fünf Linsengruppen, wobei die erste, zweite, dritte und fünfte Linsengruppe jeweils nur eine Linse aufweisen. Zum Teil sind die Linsen mit asphärischen Linsenoberflächen
20 versehen, wobei auf einer in der vierten Linsengruppe bildseitig angeordnete asphärische Linsenoberfläche eine asphärische objektseitig angeordnete Linsenoberfläche der fünften Linsengruppe folgt.

Aus der EP 851 304 A2 ist die benachbarte Anordnung von asphärischen
25 Linsenoberflächen in einem Projektionsobjektiv bekannt. Diese asphärischen Linsen sind in radialer Richtung verschiebbar gelagert. Durch die relative Bewegung der Linsen wird das Projektionsobjektiv abgestimmt. Aufgrund der Möglichkeit die Asphären in radialer Richtung gegeneinander zu verschieben sind die asphärischen Linsenoberflächen insbesondere rotationsunsymmetrisch. Aufgrund der beweglichen Lagerung der
30 asphärischen Linsen, dürfte diese Anordnung nicht für jedes Projektionsobjektiv geeignet sein, da insbesondere für kurze Wellenlängen ausgelegte Projektionsobjektive sehr

empfindlich aus kleinste Positionsänderungen der einzelnen Linsen reagieren. Es ist davon auszugehen, daß die durch die spezielle Lagerung der Linsen erreichbare Lagestabilität nicht ausreichend ist, um zuverlässig eine gute Abbildungsqualität gewährleisten zu können.

5

Aus der DE 198 18 444 A1 ist eine Projektionsoptikvorrichtung mit einem rein refraktivem Projektionsobjektiv bekannt, das sechs Linsengruppen G1 bis G6 umfaßt. Bei diesem Projektionsobjektiv weisen die Linsengruppen G1, G3 und G5 positive Brechkraft auf. Die Linsengruppen G2, und G4 weisen negative Brechkraft auf. Für die Korrektur von 10 Abbildungsfehlern weisen einige Linsen, insbesondere in der vierten und fünften Linsengruppe, asphärische Linsenoberflächen auf.

Aus der DE 199 42 281.8 sind weitere Projektionsbelichtungsobjektive, die sechs Linsengruppen aufweisen, wobei die zweite Linsengruppe und die vierte Linsengruppe 15 negative Brechkraft aufweisen, bekannt. Bei den aus dieser Schrift bekannten Projektionsobjektiven sind Linsen mit asphärischen Linsenoberflächen vorzugsweise in den ersten drei Linsengruppen angeordnet, wobei zwischen den asphärischen Linsenoberflächen eine Mindestzahl von sphärischen Linsenoberflächen angeordnete sind. Dieser Mindestabstand zwischen den asphärischen Linsenoberflächen erschien erforderlich, damit die eingesetzten asphärischen Linsen optimale Wirkung entfalten.

Aus der US 4,871,237 ist es bereits bekannt, in Abhängigkeit vom barometrischen Druck ein Objektiv abzustimmen und zwar über den Brechungsindex eines Füllgases in Linsenzwischenräumen. Durch eine geeignete Kombination von Zwischenräumen können 25 zum Beispiel sphärische Aberration, Koma und andere Bildfehler korrigiert werden.

Aus der US 5,559,584 ist es bekannt, bei einer Projektionsbelichtungsanlage zur Herstellung mikrostrukturierter Bauteile in den Zwischenräumen zwischen einem Wafer und/oder einem Retikel und dem Projektionsobjektiv Schutzgas einzubringen.

30

Der Erfindung liegt die Aufgabe zugrunde ein Projektionsobjektiv und eine Projektionsbelichtungsanlage sowie ein Verfahren zur Herstellung von mikrostrukturierten Bauteile bereitzustellen, wobei diese im Hinblick auf die Abbildungsqualität und das Auflösungsvermögen verbessert sind. Weiterhin lag der Erfindung die Aufgabe zugrunde die Herstellungskosten zu reduzieren.

Die Aufgabe der Erfindung wird durch die im Patentanspruch 1, 2, 3, 17 und 18 gegebenen Merkmale gelöst.

- 10 Durch die Maßnahme bei einem Projektionsobjektiv mit einer Mehrzahl an Linsen, wobei mindestens zwei benachbart zueinander angeordnete Linsenoberflächen asphärisch sind, die im folgenden mit Doppelaspäre bezeichnet werden, die Doppelaspäre in einem Abstand von mindestens dem maximalen Linsendurchmesser des Objektives entfernt von der Bildebene, insbesondere Waferebene beabstandet anzutreffen wobei der Abstand 15 zwischen den asphärischen Linsenoberflächen der Doppelaspäre maximal dem halben Linsendurchmesser des mittleren Durchmessers der Doppelaspäre wurden die Abbildungsqualitäten eines Projektionsobjektives im Vergleich zu einem Projektionsobjektiv ohne solche Doppelaspären, verbessert werden. Insbesondere konnte bei einem refraktiven Projektionsobjektiv durch den Einsatz von mindestens einer 20 Doppelaspäre die numerische Apertur gesteigert werden, indem der erste Bauch verkürzt wurde, so daß bei konstanter Länge des Projektionsobjektives der dritte Bauch eine Steigerung der numerischen Apertur von etwa 0,03 bis 0,05 erfährt.

Insbesondere bei rein refraktiven Projektionsobjektiven hat sich der Einsatz von 25 Doppelaspären mit einer Anordnung in den ersten drei Linsengruppen als besonders vorteilhaft herausgestellt.

In Lithographieobjektiven gibt es ausgezeichnete Stellen, die auf schwer beherrschbare Aberrationen besonders gut wirken, wenn sie asphärisiert werden. Gerade dort ist es sinnvoll die Wirksamkeit an der entsprechenden Stelle durch eine komplexe 30 Asphärenfunktion besonders effektiv zu nutzen. Prädestiniert ist der Bereich der ersten Taille und das Ende des zweiten Bauches sowie Bereiche hinter der Blende. Da der

technischen Realisierung von komplexen Asphären technisch Grenzen gesetzt sind, können die komplexen Asphärenfunktionen mittels Doppelashären realisiert werden. Dadurch wird eine noch weitergehende Korrektur möglich, wobei die Asphären der Doppelashäre technisch realisierbar sind.

- 5
- Weiterhin hat sich als vorteilhaft herausgestellt, als asphärische Linsenoberflächen der Doppelashäre asphärische Linsenoberflächen vorzusehen, deren Radius der bestpassendsten sphärischen Linsenoberfläche, mit Hüllradius bezeichnet, sich nur wenig unterscheiden. Vorzugsweise weichen die Kehrwerte der Hüllradien oder Radien der
10 Doppelashären weniger als 30% voneinander ab. Als Bezugswert wird der Kehrwert des betragmäßig größeren Radius herangezogen.

- Es hat sich insbesondere als vorteilhaft herausgestellt, daß sich die Scheitelradien der asphärischen Linsenoberflächen der Doppelashären in bezug auf den betragmäßig
15 größeren Scheitelradius um weniger als 30% unterscheiden.

- Auf dem Gebiet der Mikrolithographie wird in der Entwicklung das Bestreben verfolgt die Auflösung zu erhöhen. Die Auflösung kann zum einen durch Steigerung der numerischen Apertur, Verwendung von immer kleiner werden Wellenlängen und auch durch Korrektur
20 von auftretenden Abbildungsfehlern gesteigert werden. Für eine Steigerung der bildseitigen numerischen Apertur ist der bildseitig angeordnete letzte Bauch des Objektives zu vergrößern. Problematisch ist jedoch, daß für das Objektiv nur ein fest vorgegebener Bauraum zur Verfügung gestellt werden kann. Um also eine größere numerische Apertur bereitstellen zu können, ist es somit erforderlich in anderen Bereichen des Objektives
25 Bauraum einzusparen.

- Es hat sich nun als vorteilhaft herausgestellt, den für die Steigerung der numerischen Apertur erforderlichen Bauraum durch Verkürzung des ersten Bauches bereitzustellen, wobei durch den ersten Bauch insbesondere die Eingangstelezentrie und die
30 Verzeichnung korrigiert wird. Durch die Maßnahme Doppelashären einzusetzen, ist es möglich, die Eingangstelezentrie sowie die Verzeichnung mit geringen Mitteln und auf

kurzer Distanz korrigieren zu können. Durch die Doppelaspähere wird eine variable Einstellung des Ortes auf kurzer Distanz bereitgestellt, wobei durch die Möglichkeit den Ort variieren zu können, die Verzeichnung korrigiert werden kann. Durch die flexible Beeinflussbarkeit des Winkels kann insbesondere die Eingangstelezentrie korrigiert werden.

5

Insbesondere durch den Einsatz einer Doppelaspähere bei einem refraktiven Projektionsobjektiv im Bereich der ersten beiden Linsengruppen, also bis einschließlich zur ersten Linsengruppe negativer Brechkraft, werden bereits Korrekturmittel im Eingangsbereich des Objektives bereitgestellt, so daß die in dem dritten Bauch 10 erforderlichen Korrekturmittel für die Gewährleistung einer gleichbleibenden Abbildungsqualität reduziert sind.

Weiterhin kann durch Vorsehen einer Doppelaspähere im vorderen Bereich des Objektives, insbesondere bis zur 2. Taille, die Anzahl der Linsen reduziert werden. Dies wirkt sich 15 vorteilhaft auf die Herstellungskosten aus.

Es hat sich zur Verbesserung der Abbildungsqualität bei rein refraktiven Projektionsobjektiven als vorteilhaft herausgestellt asphärischen Linsenoberflächen im vorderen Bereich des Objektives vor der zweiten Taille vorzusehen. So kann 20 beispielsweise bei einer numerischen Apertur von 0,83 die Abweichung von der Wellenfront einer Kugelwelle auf weniger als $6 \text{ m}\lambda$ bei einem Feld von $8 \times 26 \text{ mm}^2$ bezogen auf 248nm reduziert werden.

Durch Druckschwankungen des atmosphärischen Druckes können die 25 Abbildungseigenschaften des Objektives verändert werden. Um solche Druckschwankungen zu kompensieren hat es sich als vorteilhaft herausgestellt, einen Zwischenraum zwischen zwei Linsenoberflächen gezielt mit Druck zu beaufschlagen, so daß Druckänderungen insbesondere des atmosphärischen Druckes ausgeglichen werden können. Weiterhin kann die gezielte Druckbeaufschlagung zur weiteren Verminderung von 30 Abbildungsfehlern genutzt werden.

Weiterhin hat es sich als vorteilhaft herausgestellt, mindestens eine der Abschlußplatten mit einem Druckmanipulator zu versehen, so daß durch beidseitige Druckbeaufschlagung der jeweiligen Linse bzw. der jeweiligen Platte eine Wölbung der Platte bzw. Linse erzeugt werden kann. So kann bei einer Dreipunktlagerung der Abschlußplatte und

5 Druckbeaufschlagung des Gasraumes gezielt mittels der Durchbiegung der Abschlußplatte die Dreiwelligkeit während des Betriebes korrigiert werden. Mit einer n-Punktlagerung ist somit eine n-Welligkeit korrigierbar.

Durch koaxial angeordnete Aktuatoren, insbesondere Piezos, kann eine in Z-Richtung gerichtete Kraft zur Wölbung der Linse eingeleitet werden, wobei die von den Aktuatoren
10 eingeleitete Kraft auf den Linsenmittelpunkt gerichtet ist.

Weitere vorteilhafte Maßnahmen sind in weiteren Unteransprüchen beschrieben.

Anhand der folgenden Ausführungsbeispiele wird die Erfindung näher erläutert.

15 Es zeigt:

Figur 1: Projektionsbelichtungsanlage;

Figur 2: Projektionsobjektiv für die Wellenlänge 157 nm mit einer numerischen
20 Apertur von 0,8;

Figur 3: Projektionsobjektiv für die Wellenlänge 248 nm mit einer numerischen
Apertur von 0,83;

25 Figur 4: Projektionsobjektiv für die Wellenlänge 248 nm mit einer numerischen
Apertur von 0,9;

Figur 5: Projektionsobjektiv für die Wellenlänge 193 nm mit der numerischen
Apertur 0,85;

Figur 6: Projektionsobjektiv für die Wellenlänge 193 nm mit einer numerischen Apertur von 0,9;

5 Figur 7: Projektionsobjektiv für die Wellenlänge 157nm mit einer numerischen Apertur von 0,9;

Figur 8: Projektionsobjektiv für die Wellenlänge 193 nm mit einer numerischen Apertur von 0,9; und

10 Figur 9: Katadioptrisches Projektionsobjektiv mit Doppelaspäre für die Wellenlänge von 157 nm und mit einer numerischen Apertur von 0,8

Anhand von Figur 1 wird zunächst der prinzipielle Aufbau einer Projektionsbelichtungsanlage beschrieben. Die Projektionsbelichtungsanlage 1, weist eine Beleuchtungseinrichtung 3 und Projektionsobjektiv 5 auf. Das Projektionsobjektiv 5 umfaßt eine Linsenanordnung 19 mit einer Aperturlende AP, wobei durch die Linsenanordnung 19 eine optische Achse 7 definiert wird. Verschiedene Linsenanordnungen werden nachfolgend anhand der Figuren 2 bis 6 näher erläutert. Zwischen Beleuchtungseinrichtung 3 und Projektionsobjektiv 5 ist eine Maske 9 angeordnet, die mittels eines Maskenhalters 11 im Strahlengang gehalten wird. Solche in 20 der Mikrolithographie verwendete Masken 9 weisen eine Mikrometer-Nanometer Struktur auf, die mittels des Projektionsobjektives 5 bis zu einem Faktor von 10, insbesondere von um den Faktor 4, verkleinert auf eine Bildebene 13 abgebildet wird. In der Bildebene 13 wird ein durch einen Substrathalter 17 positionierte Substrat 15, bzw. ein Wafer, gehalten.

25 Die noch auflösbaren minimalen Strukturen hängen von der Wellenlänge λ des für die Beleuchtung verwendeten Lichtes sowie von der bildseitigen numerischen Apertur des Projektionsobjektives 5 ab, wobei die maximal erreichbare Auflösung der Projektionsbelichtungsanlage 1 mit abnehmender Wellenlänge λ der Beleuchtungseinrichtung 3 und mit zunehmender bildseitiger numerischer Apertur des 30 Projektionsobjektives 5 steigt.

Das in Figur 2 dargestellte Projektionsobjektiv 19 umfaßt sechs Linsengruppen G1 bis G6. Dieses Projektionsobjektiv ist für die Wellenlänge 157 nm ausgelegt. Die erste Linsengruppe G1 wird durch die Linsen L101 bis L103, welche alle Bikonvexlinsen sind, gebildet. Diese erste Linsengruppe weist positive Brechkraft auf. Die letzte Linsenoberfläche dieser Linsengruppe G1, die bildseitig angeordnete ist, ist asphärisiert. Diese Linsenoberfläche wird mit AS1 bezeichnet. Bei der letzten Linse dieser Linsengruppe G1 handelt es sich um eine bikonvexe Linse, die somit eindeutig der ersten Linsengruppe zuzuordnen ist.

10

Die sich an die Linsengruppe G1 anschließende Linsengruppe G2 umfaßt die drei Linsen L104 bis L106, wobei diese Linsengruppe G2 negative Brechkraft aufweist und eine Taille darstellt. Eine objektseitig angeordnete Linsenoberfläche AS2 der Linse L104 ist asphärisch. Weiterhin ist die bildseitig angeordnete Linsenoberfläche der Linse L 106 asphärisch. Durch die beiden Linsenoberflächen AS1 und AS2 wird eine Doppelaspähre gebildet.

15

Die Linsengruppe G3, die positive Brechkraft aufweist, wird durch die Linsen L107 bis L111 gebildet, wobei die letzte Linsenoberfläche dieser Linsengruppe der Linse L111, die bildseitig angeordnet ist, asphärisiert ist.

20

An diese Linsengruppe schließt sich die zweite Linsengruppe G4 negativer Brechkraft an. Diese Linsengruppe G4 wird durch die Linsen L112 bis L115 gebildet.

25 Die fünfte Linsengruppe G5 mit den Linsen L116 bis L125, die positive Brechkraft aufweist, umfaßt eine Aperturlinse AP, die zwischen der Linse L119 und der Linse L120 angeordnet ist.

Die sechste Linsengruppe G6 wird durch die Linsen bzw. Platten L126 und L127 gebildet.
30 Bei diesem für die Wellenlänge 157 nm mit einer spektrale Bandbreite der Beleuchtungsquelle von 1,5 pm ausgelegte Objektiv sind die Linsen L 113 bis L115 und

L119 aus Natriumfluorid. Durch den Einsatz von einem zweiten Material, hier Natriumfluorid, können insbesondere chromatische Fehler korrigiert werden. Durch den Einsatz von NaF in der ersten Taille wird der Farbquerfehler wesentlich verringert verringert. Auch der Farblängsfehler wird etwas verringert, wobei durch den Einsatz von 5 NaF in der Linsengruppe G5 der größte Einzelbeitrag zur Korrektur der Farblängsfehler erzielt wird.

Die sich an die Linsengruppe G4 anschließenden positiven Linsen L116 bis L118 der Linsengruppe G5 sind aus Lithiumfluorid. Durch den Einsatz von Lithiumfluorid an dieser 10 Stelle im Objektiv wird insbesondere die monochromatische Korrektur erleichtert, da durch den größeren Dispersionsabstand von Lithium- und Natriumfluorid als von Kalzium- und Natriumfluorid nur kleine Einzelbrechkräfte zur Achromatisierung benötigt werden. Der grundsätzliche Aufbau unterscheidet sich aufgrund der speziellen Materialauswahl nicht so bedeutsam von einem chromatischen Objektiv.

15 Die beiden nach der Blende angeordneten positiven Linsen sind ebenfalls aus Lithiumfluorid und leisten ebenfalls, wie schon anhand der vor der Blende angeordneten Lithiumlinsen erörtert, einen wichtigen Beitrag zur Korrektur des Farblängsfehlers.

20 Die Linse L122, deren beide Oberflächen nahezu im konstantem Abstand zueinander verlaufen, besteht aus Kalziumfluorid. Diese Linse ist sehr bedeutsam für die monochromatische Korrektur und hat nur geringen Einfluß auf den chromatischen Längsfehler.

25 Die letzten drei Linsen der fünften Linsengruppe G5 L123 bis L125 sind aus Lithiumfluorid. Diese Linsen liefern zwar einen kleineren aber dennoch sehr wertvollen Beitrag zur Korrektur des Farblängsfehlers.

30 Die sechste Linsengruppe umfaßt die Linsen bzw. Planplatten L126 und L127, die aus Kalziumfluorid bestehen.

Dieses Objektiv ist für die Beleuchtung eines Feldes von 8 x 26 mm ausgelegt. Die Baulänge betrat von 0 zu 0' 1000mm. Die numerische Apertur beträgt 0.8. Die genauen Linsendaten sind der Tabelle 1 zu entnehmen.

- 5 Die asphärischen Flächen werden in allen Ausführungsbeispielen durch die Gleichung:

$$P(h) = \frac{\delta \cdot h \cdot h}{1 + \sqrt{1 - (1 + K) \cdot \delta \cdot \delta \cdot h \cdot h}} + C_1 h^4 + \dots + C_n h^{2n+2} \quad \delta = 1/R$$

- beschrieben, wobei P die Pfeilhöhe als Funktion des Radius h (Höhe zur optischen Achse
10 7) mit den in den Tabellen angegebenen asphärischen Konstanten C_1 bis C_n ist. R ist der in den Tabellen angegebene Scheitelradius.

Das in Figur 3 dargestellte Projektionsobjektiv umfaßt sechs Linsengruppen G1 bis G6 mit den Linsen L201 bis L225 und einer geteilten Abschlußplatte L226, L227. Dieses Objektiv ist für die Beleuchtungswellenlänge 248nm ausgelegt. Der für dieses Projektionsobjektiv 15 erforderliche Bauraum beträgt von Objektebene 0 bis Bildebene 0' genau 1000 mm. Bildseitig weist dieses Objektiv 19 eine numerische Apertur von 0,83 auf. Das mittels dieses Projektionsobjektives belichtbare Feld beträgt 8 x 26 mm.

- 20 Die erste Linsengruppe G1 umfaßt die Linsen L201 bis L204, wobei es sich bei den Linsen L201 bis 203 um Bikonvexlinsen handelt.

Die erste Linse L204 der Linsengruppe G1 weist auf der bildseitigen Linsenoberfläche eine asphärische Form auf. Diese Asphäre wird mit AS1 bezeichnet.

- 25 Die zweite Linsengruppe G2 umfaßt die drei Linsen L205 bis L207. Diese Linsen weisen bikonkav Form auf, wobei die jeweils zur angrenzenden Linsengruppe gewandte Linsenoberfläche der Linsen L205 und L207 asphärisch sind. Die asphärischen Linsenoberfläche der Linsen L205 wird mit AS2 bezeichnet. Damit wird durch die beiden

zueinander gewandten asphärischen Linsenoberflächen AS1 und AS2 eine Doppelaspähre gebildet. Die letzte Linse der Linsengruppe G2 ist waferseitig asphärisiert.

Die dritte Linsengruppe umfaßt die Linsen L208 bis L212. Durch diese Linsengruppe G3 wird ein Bauch gebildet. Die Linse L211 ist auf der bildseitigen Linsenoberfläche asphärisiert.

Die vierte Linsengruppe G4 wird durch die Linsen L213 bis L215 gebildet, die alle bikonkav ausgebildet sind. Diese Linsengruppe G4 ist die zweite Linsengruppe negativer Brechkraft. Durch diese Linsengruppe wird eine Taille gebildet.

Die Linsengruppe G5 umfaßt die Linsen L216 bis L225. Zwischen den Linsen L218 und L219 ist eine Aperturblende angeordnet. Die Blendenkrümmung beträgt zwischen Randstrahl an der Blende bei einer numerischen Apertur von 0,83 und dem Schnittpunkt des Hauptstrahls mit der optischen Achse 30,9 mm. Durch diese Linsengruppe wird ein Bauch gebildet.

Die sechste Linsengruppe G6 umfaßt die als Planplatten ausgebildeten Linsen L226 und L227.

Die genauen Linsendaten dieses Projektionsobjektives 19 sind der Tabelle 2 zu entnehmen. Gegenüber Figur 2 ist die Apertur bei gleichbleibender Baulänge des Objektives von 00' von 1000mm weiter auf 0,83 bei ausgezeichneter Korrektur gesteigert worden.

Das in Figur 4 gezeigte Projektionsobjektiv umfaßt sechs Linsengruppen mit den Linsen L301 bis L327. Dieses Objektiv ist für die Beleuchtungswellenlänge 248nm ausgelegt und weist eine numerische Apertur von 0,9 auf.

Die erste Linsengruppe G1 weist die Linsen L302 bis L303 auf. Diese Linsengruppe weist positive Brechkraft auf, wobei die Brechkraft insbesondere der Linsen L302 bis L303 sehr gering ist. Die Brennweite dieser Linsen beträgt bei L302 1077,874mm und bei L303 -92397,86mm.

An diese Linsengruppe schließt sich eine Linsengruppe negativer Brechkraft G2 an, die durch die drei Linsen L305 bis L307 gebildet wird. Die erste Linsenoberfläche dieser Linsengruppe G2, die bildseitig angeordnete ist, ist asphärisiert und wird mit AS1 bezeichnet. Die der Linsenoberfläche AS1 zugewandte Linsenoberfläche der Linse L305 ist asphärisiert, so daß durch die Linsenoberflächen AS1 und AS2 eine Doppelaspähre gebildet wird. Zwischen diesen asphärischen Linsenoberflächen AS1 und AS2 ist im Gegensatz zum vorangegangenen Ausführungsbeispiel ein deutlich erkennbarer Abstand vorgesehen. Bei dieser Doppelaspähre wird etwas die äquidistante Anordnung der Flächen AS1 und AS2 verlassen und die Doppelaspähre öffnet sich etwas nach außen.

Die darauffolgende Linsengruppe G3, die positive Brechkraft aufweist, umfaßt die Linsen L308 bis L311. Diese Linsengruppe G3 beinhaltet eine asphärische Linsenoberfläche, wobei diese asphärische Linsenoberfläche bildseitig auf der Linse L311 angeordnet ist.

Die zweite Linsengruppe negativer Brechkraft G4 umfaßt die Linsen L312 bis L315, wobei die bildseitig angeordnete Linsenoberfläche der Linse L314 asphärisiert ist.

Die sich anschließende Linsengruppe G5, die positive Brechkraft aufweist, umfaßt die Linsen L316 bis L325. Zwischen den Linsen L319 und L320 ist die Blende AP angeordnet. Die beiden zueinander gewandten Linsenoberflächen der Linsen L321 und L322 sind asphärisch und werden mit AS3 und AS4 bezeichnet. Durch diese Asphären AS3 und AS4 wird eine Doppelaspähre gebildet, wobei durch die Flächen AS1 und AS2 ein Luftraum eingeschlossen wird. Durch diese Doppelaspähre ist insbesondere die sphärische Abberation und die Sinusbedingung bei hohen Aperturen besser entkoppelt und gut zu korrigieren.

Die sechste Linsengruppe umfaßt die als dicke Planplatten ausgebildeten Linsen L326 und L327. Der durch diese Planplatten gebildete Zwischenraum ist mit Über- und Unterdruck und/oder mit einem Gas zur Kompensation von Schwankungen des atmosphärischen Druckes beaufschlagbar. Für weitergehende Korrekturmöglichkeiten kann es vorgesehen

sein, daß mindestens eine der Planplatten mit oder ohne Brechkraft, also auch als Linse deutlich dünner, unter Druckvariation und Punktlagerung n-Welligkeiten kompensiert. Es könnten auch für eine gezielte Deformation der Linse am Außenumfang angreifende Piezoaktoren vorgesehen sein.

5

Die Baulänge dieses Objektives beträgt von Objektebene 0 zu Bildebene 0' 1139,8mm. Die numerische Apertur beträgt bildseitig 0,9 bei einem belichtbaren Feld von 27,2 mm in der Diagonalen. Die genauen Linsendaten sind der Tabelle 3 zu entnehmen.

- 10 Das in Figur 5 dargestellt Projektionsobjektiv 19 umfaßt sechs Linsengruppen G1 bis G6. Dieses Projektionsobjektiv ist für die Wellenlänge 193nm ausgelegt. Die erste Linsengruppe G1 umfaßt die Linsen L401 bis L404. Bereits die erste, objektseitig angeordnete Linsenoberfläche der Linse L401 ist asphärisiert. Diese Asphäre wirkt sich insbesondere positiv auf Schalenverläufe und Verzeichnung bei guter Eingangstelezentrie aus, weil diese Asphäre an dem Ort angeordnet ist, an dem noch die beste Büscheltrennung bei dem hochaperturigen Lithographieobjektiv existiert.
- 15

- 20 Die objektseitig angeordnete Linsenoberfläche der Linse L404 ist asphärisch und wird mit AS1 bezeichnet. Durch diese Linsenoberfläche wird zusammen mit der bildseitig angeordneten Linsenoberfläche der Linse L405, die ebenfalls asphärisch ist und die mit AS2 bezeichnet ist, eine Doppelaspähre gebildet. Diese Doppelaspähre wirkt sich insbesondere positiv auf die Schalenverläufe bei gleichzeitiger guter Korrektur der durch die hohe Apertur bedingten Bildfehler aus. Die Flächen AS1 und AS2 der Doppelaspähre weisen mit zunehmendem radialem Abstand von der optischen Achse einen zunehmenden Abstand in Richtung der optischen Achse auf. Diese sich nach außen öffnende Doppelaspähre stellt ein komplexes Korrekturmittel bei mittlerer Büscheltrennung dar.
- 25

Die Linse L404 gehört bereits der zweiten Linsengruppe, die die Linsen L405 bis L407 umfaßt, an. Diese zweite Linsengruppe weist negative Brechkraft auf.

30

Die ersten Linsen L402 bis L405 weisen eine besonders geringe Brechkraft
 $f_{L402} = 1397,664\text{mm}$, $f_{L403} = 509,911\text{mm}$, $f_{L404} = 1371,145\text{mm}$ und $f_{L405} = -342,044\text{mm}$ auf.
Eine weitere asphärische Linsenoberfläche ist bildseitig auf der Linse L407 vorgesehen.

- 5 Die darauffolgende Linsengruppe G3, die positive Brechkraft aufweist, umfaßt die Linsen
L408 bis L413. Die Linsen L409 weist objektseitig eine asphärische Linsenoberfläche auf
und die Linsen L413 ist bildseitig mit einer asphärischen Linsenoberfläche versehen. Die
Asphäre L413 hat einen positiven Einfluß auf die Koma höherer Ordnung und auf die 45°
Strukturen. Der zwischen den Linsen L411 und 412 vorgesehenen Luftraum ist nahezu
10 äquidistant.

Die Linsengruppe G4, die negative Brechkraft aufweist, wird durch die Linsen L414 bis
L416 gebildet, wobei die Linse L415 bildseitig eine asphärische Linsenoberfläche aufweist.
Diese asphärische Linsenoberfläche wirkt in einer guten Mischung auf apertur- und
15 feldabhängige Bildfehler, insbesondere bei Objektiven mit einer hohen Apertur.

- Die darauffolgende Linsengruppe G5 wird durch die Linsen L417 bis L427 gebildet.
Zwischen den Linsen L420 bis L421 ist eine Blende AP angeordnet. Die auf die Blende AP
folgende Linsenoberfläche der Linse L422 ist asphärisiert. Mit dieser Asphäre wird es
20 möglich die Korrektur der sphärischen Aberration, ohne andere Bildfehler zu beeinflussen,
durchgeführt. Dazu ist es aber notwendig bei Anwesenheit von deutlicher
Blendenkrümmung, daß die asphärische Fläche in den Bereich einer Schiebeblende
hineinragt.
- 25 Weiterhin sind die zueinander gewandten Linsenoberflächen der Linsen L423 und L424 die
mit AS3 und AS4 bezeichnet werden, asphärisiert. Durch diese nachfolgende
Doppelaspäre ist insbesondere eine gute aplanatische Korrektur für höchste numerische
Apertur möglich. Es ist also die gleichzeitige Korrektur der sphärischen Aberration und der
Erfüllung der Sinusbedingung möglich.

Die Linsengruppe G6 wird durch die Linsen L428 bis L429, die als Planplatten ausgebildet sind, gebildet. Es kann wiederum vorgesehen sein, daß der Zwischenraum zwischen den planparallelen Platten 428 und 429 mit einem Fluid beaufschlagbar ist.

- 5 Als Linsenmaterial ist Quarzglas vorgesehen, wobei es zur Verminderung der chromatischen Aberration vorgesehen sein kann, daß die Linsen L408 und L409 sowie L413 aus Kalziumflourid bestehen. Zur Verminderung des Compaction-Effektes aufgrund der hohen Strahlungsbelastung kann es vorgesehen sein, für die kleinere oder für beide planparallelen Platten L428 und L429 als Material Kalziumflourid vorzusehen. Auffällig
10 ist weiterhin bei diesem Projektionsobjektiv, daß der maximale Durchmesser der Linsengruppe G3 einen größeren maximalen Durchmesser als die Linsengruppe G5 mit 398mm aufweist. Dieses Objektiv ist sehr gut korrigiert und die Abweichung von der Wellenfront einer idealen Kugelwelle ist $>= 1,2 \text{ m}\lambda$ bezogen auf 193nm. Der Abstand zwischen Objektebene 0 und Bildebene 0' beträgt 1188,1 mm und das belichtbare Feld
15 beträgt 8 x 26 mm. Die genauen Linsendaten sind der Tabelle 4 zu entnehmen.

- Das in Figur 6 dargestellte Projektionsobjektiv umfaßt die Linsengruppen G1 bis G6 mit den Linsen L501 bis L530, wobei für L529 und 530 Planplatten vorgesehen sind. Dieses Projektionsobjektiv ist für die Wellenlänge 193nm ausgelegt und weist eine numerische
20 Apertur von 0,9 auf. Der Abstand zwischen Objektebene 0 und Bildebene 0' beträgt 1174,6 mm. Das belichtbare Feld umfaßt eine Größe von 8 x 26 mm. Makroskopisch betrachtet unterscheidet sich dieses Projektionsobjektiv von dem anhand von Figur 5 beschriebenen Projektionsobjektiv nicht. Wiederum weisen insbesondere die Linsen L502 und L503 geringe Brechkraft auf. Die Linse L510 ist hier, wie auch in dem vorangegangenen anhand
25 von Figur 5 beschriebenen Projektionsobjektivs, insbesondere für die Quadratenkorrektur vorgesehen.

- Abgesehen von den planparallelen Platten L529 und L530 bestehen alle Linsen L501 bis L528 aus Quarzglas. Auch dieses Projektionsobjektiv ist sehr gut korrigiert und die
30 Abweichung von der idealen Wellenfront einer Kugelwelle ist $<$ als $3,0 \text{ m}\lambda$ bezogen auf

193nm. Die Linsen L510, L515, L522 weisen eine geringe Brechkraft auf. Die genauen Linsendaten sind der Tabelle 5 zu entnehmen. Die Wirkung der asphärischen Flächen entsprechen prinzipiell den anhand von Fig.5 beschriebenen Wirkungen, wobei die Wirkungen aufgrund der höheren numerischen Apertur von 0,9 noch stärker sind.

5

Das in Figur 7 für die Wellenlänge 157nm dargestellte Projektionsobjektiv umfaßt sechs Linsengruppen mit den Linsen L601 bis L630 mit den planparallelen Platten L629 und L630. Die Baulänge dieses Projektionsobjektives beträgt von Objektebene 0 bis zur Bildebene 0' 997,8 mm, wobei ein Feld von 7 x 22 mm belichtbar ist. Die numerische 10 Apertur dieses Objektives beträgt 0,9. Als Linsenmaterial ist Kalziumflourid vorgesehen. Eine weitere Korrektur von Farbfehlern ist durch den Einsatz von Bariumflourid als Linsenmaterial für die Linsen L614 bis L617 erreichbar. Die Abweichung von der Wellenfront einer idealen Kugelwelle ist < 1,8 mλ bezogen auf 157nm. Da makroskopisch betrachtet der Aufbau des in Figur 7 dargestellten Projektionsobjektives sich von den 15 anhand von Figur 5 und Figur 6 beschriebenen Projektionsobjektiven nur geringfügig unterscheidet wird, auf die Beschreibung insbesondere auf die Beschreibung zu Figur 5 verwiesen. Die exakten Linsendaten sind der Tabelle 6 zu entnehmen.

Das in Figur 8 dargestellte Projektionsobjektiv umfaßt 6 Linsengruppe G1 – G6. Die erste 20 Linsengruppe umfaßt die Linsen L701 – L704, wobei die Linse L701 objektseitig und die Linse L704 bildseitig eine asphärische Linsenoberfläche aufweisen. Diese erste Linsengruppe weist nur Linsen positiver Brechkraft auf, die annähernd identischen Durchmessers sind.

25 Die darauf folgende zweite Linsengruppe G2, die negative Brechkraft aufweist, umfaßt die Linsen L705 – L708. Die Linse L705 weist auf der der Linse L704 zugewandten Seite eine asphärische Linsenoberfläche auf, mit AS2 bezeichnet. Durch die beiden asphärischen Linsenoberflächen AS1 und AS2 wird eine Doppelaspäre 21 gebildet. Diese Doppelaspäre ist zum Wafer durchgebogen und öffnet sich schwach in radialer Richtung. 30 Weiterhin weist die Linse L708 bildseitig eine asphärische Linsenoberfläche auf.

Die dritte Linsengruppe G3 mit den Linsen L709 – L714 weist positive Brechkraft auf. Diese Linsengruppe umfaßt zwei asphärische Linsen L710 und L714. Der zwischen den Linsen L712 und L713 ausgebildete Luftspalt weist nahezu konstante Dicke auf.

- 5 Die vierte Linsengruppe G4 umfaßt nur zwei Negativlinsen L715 und L716, durch die eine Taille gebildet wird. Die Linse L715 ist bildseitig mit einer asphärischen Linsenoberfläche versehen.

Die fünfte Linsengruppe mit den Linsen L717 – L727 weist positive Brechkraft auf.

- 10 Zwischen der Linse L720 und L721 ist die Blende AP angeordnet. In dieser Linsengruppe ist eine weitere Doppelaspähre 21 vorgesehen, die durch die beiden asphärischen Linsenoberflächen AS3 und AS4 der Linsen L723 und L724 gebildet wird. Weitere asphärische Linsenoberflächen sind auf der Linse L721 objektseitig und auf der Linse L727 bildseitig angeordnet.

15

An diese Linsengruppe schließt sich die letzte Linsengruppe G6, die durch die beiden planparallelen Platten L728 und L729 gebildet wird, an. Durch die zueinander gewandten Oberflächen der Planplatten L728 und L729 wird ein Zwischenraum 25, der mit Druck beaufschlagbar ist, gebildet.

20

Dieses Projektionsobjektiv ist für die Wellenlänge 193 nm ausgelegt und weist eine numerische Apertur von 0,9 auf. Der Abstand zwischen Objektebene 0 und Bildebene 0 – beträgt 1209,6 mm. Mit diesem Projektionsobjektiv ist ein Feld von 10,5 x 26 mm belichtbar. Die maximale Abweichung von der idealen Wellenfront einer Kugelwelle 25 beträgt $3,0 \text{ m}\lambda$ bezogen auf 193nm. Diese Abweichung wurde mittels dem Programmcode CODE V ermittelt. Die genauen Linsendaten sind der Tabelle 7 zu entnehmen.

- In Figur 9 ist ein katadioptrisches Projektionsobjektiv das für die Wellenlänge 157 nm ausgelegt ist, dargestellt. Mit diesem Projektionsobjektiv ist ein Feld von 22 x 7 mm belichtbar. Die numerische Apertur beträgt 0,8. Bei diesem Projektionsobjektiv bestehen alle Linsen als Kalziumfluorid. Die erste Linse L801 ist bildseitig mit einer asphärischen

Linsenoberfläche versehen. Diese Asphäre liefert insbesondere einen wertvollen Beitrag zur Korrektur der Verzeichnung.

- Über den Spiegel SP 1 wird die Strahlung umgelenkt und trifft auf die Linse negativer Brechkraft L802. Die darauffolgende Linse L803 ist auf der im Strahlengang bildseitig angeordneten Linsenseite mit einer asphärischen Linsenoberfläche versehen. Diese Asphäre liefert einen besonders wertvollen Beitrag zur Korrektur von der sphärischen Aberration.
- 10 Die von der Linse L803 ausbreitende Strahlung wird an dem Spiegel SP 2 zurückreflektiert und passiert die Linsen L803 und L802 in umgekehrter Reihenfolge, bevor sie durch Reflektion am Spiegel SP 3 zur Linse L804, die auf einer mit der Linse L801 gemeinsamen optischen Achse angeordnet ist, zugeführt wird. Zwischen dem Spiegel SP 3 und L804 entsteht ein Zwischenbild Z1. Die darauffolgenden Linsen L805 und L806 weisen an den 15 zueinander gewandten Oberflächen asphärische Linsenoberflächen AS1 und AS2 auf. Durch diese Asphären wird eine Doppelaspähre gebildet. Weiterhin umfaßt das Objektiv die Linsen L807 – L818 wobei die Linsen L812, L814, L816 und L818 bildseitig mit einer asphärischen Linsenoberfläche versehen sind und die Linse L817 objektseitig mit einer asphärischen Linsenoberfläche versehen ist. Durch die asphärischen Linsenoberflächen der 20 Linsen L816 und L817 wird eine Doppelaspähre gebildet.

25

30

Bezugszeichenliste

1. Projektionsbelichtungsanlage
- 5 3. Belichtungseinrichtung
- 5 5. Projektionsobjektiv
7. Optische Achse 9 Maske
11. Maskenhalter
13. Bildebene
- 10 15. Substrat, Wafer
17. Substrathalter AP = Aperturblende 19 Linsenanordnung L = Linsen
19. Maximaler Radius
21. Doppelaspären
23. Abstand zwischen asphärischen Linsenoberflächen der Doppelaspären
- 15 25. Zwischenraum

20

25

30

TABELLE 1

M1197a

5	LINSEN	RADIEN	DICKEN	GLÄSER	BRECHZAHL BEI 157 nm	1/2 FREIER DURCHMESSER
10	0	unendlich	32.000000000	N2	1.00000320	54.410
		unendlich	3.386300000	N2	1.00000320	61.189
10	L101	331.163350000	17.963900000	CaF2	1.55840983	63.195
		-319.616060000	1.476400000	N2	1.00000320	63.531
10	L102	766.337390000	17.162600000	CaF2	1.55840983	63.346
		-447.357070000	0.750000000	N2	1.00000320	62.932
15	L103	308.080750000	26.167800000	CaF2	1.55840983	61.274
		-256.921560000AS	0.781900000	N2	1.00000320	59.279
15	104	-199.459070000AS	7.000000000	CaF2	1.55840983	59.017
		115.459900000	26.055700000	N2	1.00000320	53.978
15	L105	-155.555940000	7.000000000	CaF2	1.55840983	54.017
20		181.538670000	32.685400000	N2	1.00000320	57.637
20	L106	-105.047550000	7.623100000	CaF2	1.55840983	59.819
		-6182.626690000AS	16.767300000	N2	1.00000320	74.788
20	L107	-441.263450000	27.098000000	CaF2	1.55840983	83.940
		-151.990780000	2.318200000	N2	1.00000320	88.568
25	L108	-613.725250000	45.372400000	CaF2	1.55840983	103.501
		-150.623730000	2.560000000	N2	1.00000320	107.663
25	L109	1648.391330000	42.538400000	CaF2	1.55840983	119.260
		-255.166800000	2.852600000	N2	1.00000320	120.183
25	L110	154.432580000	47.915200000	CaF2	1.55840983	110.475
30		1162.400830000	0.929300000	N2	1.00000320	107.883
30	L111	261.100680000	20.383600000	CaF2	1.55840983	98.431
		614.726380000AS	0.867900000	N2	1.00000320	93.917
30	L112	359.575500000	7.168800000	CaF2	1.55840983	89.668
35		126.930570000	40.754900000	N2	1.00000320	76.782
35	L113	-253.190760000	7.000000000	NAF	1.46483148	74.969
		132.038930000	28.180300000	N2	1.00000320	67.606
35	L114	-338.990070000	7.611900000	NAF	1.46483148	67.535
		222.374240000	39.202700000	N2	1.00000320	68.722
35	L115	-109.896940000	7.095700000	NAF	1.46483148	69.544
40		705.107390000	19.428900000	N2	1.00000320	84.312
40	L116	-706.158480000	29.677100000	LIF	1.47810153	90.890
		-180.715990000	5.740400000	N2	1.00000320	95.248
40	L117	1725.475600000	35.904100000	LIF	1.47810153	112.495
45		-263.017160000	0.750000000	N2	1.00000320	114.191
45	L118	619.827930000	64.044600000	LIF	1.47810153	121.296
		-197.026470000	0.750100000	N2	1.00000320	121.844
45	L119	-195.861770000	7.000000000	NAF	1.46483148	121.626
		-469.620100000	0.750000000	N2	1.00000320	123.300
50		unendlich	0.750600000	N2	1.00000320	122.405
50	L120	640.893310000	25.458500000	LIF	1.47810153	123.549
		-1089.937900000	0.980400000	N2	1.00000320	123.525
50	L121	322.108140000	34.102200000	LIF	1.47810153	121.602
		-1728.500990000	31.928200000	N2	1.00000320	120.573
55	L122	-234.494140000	46.273400000	CaF2	1.55840983	119.587
		-251.236960000	0.974700000	N2	1.00000320	121.785
55	L123	171.211410000	29.502800000	LIF	1.47810153	103.953
		452.301450000	0.887100000	N2	1.00000320	101.542
55	L124	126.180740000	28.831400000	LIF	1.47810153	88.565
		223.894010000	0.796800000	N2	1.00000320	83.098
60	L125	132.333150000	25.819300000	LIF	1.47810153	76.140
		477.745080000	6.457300000	N2	1.00000320	70.847
60	L126	unendlich	59.682500000	CaF2	1.55840983	69.261
		Unendlich	0.838600000	N2	1.00000320	33.343
65	L127	unendlich	4.000000000	CaF2	1.55840983	32.211
		Unendlich	12.000810000	N2	1.00000320	29.804
65	L128	unendlich	0.000000000			13.603

ASPHÄRISCHE KONSTANTEN

Asphäre der Linse L103

5	K	-0.8141
	C1	-1.93290250e-007
	C2	1.16659320e-011
	C3	-1.77865250e-015
10	C4	3.28605790e-019
	C5	-1.03537910e-022
	C6	1.34743010e-026
	C7	0.00010000e+000
	C8	0.00000000e+000
15	C9	0.00000000e+000

Asphäre der Linse L104

20	K	-1.0887
	C1	1.57414160e-008
	C2	1.63059500e-011
	C3	-4.65048550e-015
	C4	9.48501060e-019
25	C5	-2.37915310e-022
	C6	3.60631720e-026
	C7	0.00000000e+000
	C8	0.00000000e+000
30	C9	0.00000000e+000

Asphäre der Linse L106

35	K	4235.0115
	C1	1.16160120e-007
	C2	-1.37360280e-011
	C3	-1.75181710e-016
	C4	1.56917750e-019
	C5	-1.57135270e-023
40	C6	5.89614270e-026
	C7	0.00000000e+000
	C8	0.00000000e+000
	C9	0.00000000e+000

Asphäre der Linse L111

50	K	0.0000
	C1	1.35782560e-009
	C2	-2.31506660e-013
	C3	2.14831120e-017
	C4	-7.84495330e-022
	C5	-4.23732680e-026
55	C6	1.17366430e-031
	C7	0.00000000e+000
	C8	0.00000000e+000
	C9	0.00000000e+000

60 Brechzahl und Wellenlänge sind gegenüber Luft angegeben.

TABELLE 2

	M1159a	LINSEN	RADIEN	DICKEN	GLÄSER	BRECHZAHL BEI 248.38 nm	1/2 FREIER DURCHMESSER
5		0	unendlich	32.000000000	Luft	0.99998200	54.410
			unendlich	0.750000000	Luft	0.99998200	61.498
10	L201	359.203085922	16.544139898	SIO2	1.50837298	62.894	
		-367.814285018	0.750000000	Luft	0.99998200	63.342	
	L202	376.906582229	16.424149202	SIO2	1.50837298	63.744	
		-370.266896435	0.750000000	Luft	0.99998200	63.552	
15	L203	623.868133301	12.000921336	SIO2	1.50837298	62.201	
		-558.943539628	4.488271401	Luft	0.99998200	61.489	
	L204	-593.881163796	10.597937240	SIO2	1.50837298	60.233	
		-258.275165583AS	1.300130829	Luft	0.99998200	59.503	
	L205	-195.528496730AS	7.000000000	SIO2	1.50837298	59.067	
20	L206	114.970814112	27.465616009	Luft	0.99998200	54.855	
		-150.593037892	7.000000000	SIO2	1.50837298	55.023	
		203.788990073	29.227930343	Luft	0.99998200	59.359	
	L207	-116.847756998	7.000000015	SIO2	1.50837298	60.888	
		-1029423.850607139AS	26.431412586	Luft	0.99998200	74.043	
25	L208	-433.333706324	29.900058462	SIO2	1.50837298	89.733	
		-145.855178517	0.750000000	Luft	0.99998200	93.351	
	L209	-740.439232493AS	44.983538148	SIO2	1.50837298	108.655	
		-155.998681446	0.750000000	Luft	0.99998200	111.280	
	L210	730.369450038	38.596890643	SIO2	1.50837298	120.834	
30	L211	-339.830855552	0.750000000	Luft	0.99998200	121.150	
		159.417768241	52.577878183	SIO2	1.50837298	112.765	
		457732.591606731AS	0.780542469	Luft	0.99998200	110.299	
	L212	190.812012094	23.738591831	SIO2	1.50837298	94.787	
		115.677643950	40.245663292	Luft	0.99998200	77.717	
35	L213	-412.140976525	7.000000000	SIO2	1.50837298	76.256	
		151.701098214	27.102188582	Luft	0.99998200	69.619	
	L214	-319.487543080	7.000000000	SIO2	1.50837298	69.443	
		236.707933198	42.112032397	Luft	0.99998200	70.193	
	L215	-105.934259216	8.769693914	SIO2	1.50837298	71.068	
40	L216	680.231460994	17.681829203	Luft	0.99998200	88.650	
		-517.056865132	36.235608441	SIO2	1.50837298	91.923	
		-185.2717135391	0.764865888	Luft	0.99998200	100.651	
	L217	2262.402798068	44.431825566	SIO2	1.50837298	119.658	
		-267.329724617	8.198939895	Luft	0.99998200	123.247	
45	L218	1103.186796189	40.827914599	SIO2	1.50837298	133.839	
		-364.593909045	8.280602730	Luft	0.99998200	134.570	
		unendlich	-3.250000000	Luft	0.99998200	133.180	
	L219	620.770366318	25.036239346	SIO2	1.50837298	134.241	
		-1858.943929157	0.750000000	Luft	0.99998200	134.164	
50	L220	329.635686681	40.854820783	SIO2	1.50837298	132.227	
		-1181.581276955	31.972595866	Luft	0.99998200	131.156	
	L221	-249.799136729	10.000000000	SIO2	1.50837298	130.229	
		6484.262988004	5.619260320	Luft	0.99998200	130.672	
	L222	-2574.687141000	38.775298966	SIO2	1.50837298	130.696	
55	L223	-254.665255526	0.750000000	Luft	0.99998200	130.891	
		203.341746230	25.409827006	SIO2	1.50837298	110.728	
		463.496973555	0.750000000	Luft	0.99998200	108.517	
	L224	118.263098967	37.247858671	SIO2	1.50837298	92.529	
		191.067427473	0.753637388	Luft	0.99998200	84.037	
60	L225	137.671384625	24.859589811	SIO2	1.50837298	78.934	
		507.533271700	6.693359054	Luft	0.99998200	74.624	
	L226	unendlich	55.768369688	SIO2	1.50837298	72.833	
		unendlich	0.800000000	Luft	0.99998200	35.729	
	L227	unendlich	4.000000000	SIO2	1.50837298	34.512	
65	L228	unendlich	11.999970000	Luft	0.99998200	31.851	
		unendlich	0.000000000		1.000000000	13.602	

ASPHÄERISCHE KONSTANTEN

Asphäre der Linse L204

5 K -0.7780
 C1 -1.91000417e-007
 C2 4.02870297e-011
 C3 -5.55434626e-015
10 C4 1.68245178e-019
 C5 2.20604311e-023
 C6 8.09599744e-027
 C7 0.00000000e+000
 C8 0.00000000e+000
15 C9 0.00000000e+000

Asphäre der Linse L205

20 K -0.4166
 C1 5.25344324e-008
 C2 1.26756433e-011
 C3 -5.25489404e-015
 C4 7.04023970e-019
25 C5 -1.04520766e-022
 C6 2.06454806e-026
 C7 0.00000000e+000
 C8 0.00000000e+000
 C9 0.00000000e+000
30

Asphäre der Linse L207

K -2116959451.7820
35 C1 1.25171476e-007
 C2 -1.53794245e-011
 C3 -3.12532578e-016
 C4 2.00967035e-019
 C5 -2.05026124e-023
40 C6 7.81326379e-028

Asphäre der Linse L211

45 K 0.0000
 C1 2.78321477e-009
 C2 5.89866335e-014
 C3 1.19811527e-017
 C4 -7.81165149e-022
 C5 1.66111023e-026
50 C6 -1.60965484e-031

Brechzahl und Wellenlänge sind in Luft bestimmt worden.

TABELLE 3

M1222a

5	LINSEN	RADIEN	DICKEN	GLÄSER	BRECHZAHL BEI 248.380nm	1/2 FREIER DURCHMESSER
	0	unendlich	32.000000000	L710		54.410
		unendlich	0.750000000	L710		62.206
10	L301	1244.588C54076	17.524945114	SIO2	1.50837298	62.427
		-167.739C69307	0.765384867	L710	0.99998200	63.213
	L302	1231.845295516	8.943027554	SIO2	1.50837298	63.724
		-1004.036633539	0.757676170	L710	0.99998200	63.750
	L303	135.865591780	9.298971429	SIO2	1.50837298	63.464
		331.166626620	24.888929767	L710	0.99998200	62.457
15	L304	-149.81658631	11.307968350	SIO2	1.50837298	62.393
		-106.676715042AS	11.531057240	L710	0.99998200	63.087
	L305	-111.4-17619AS	7.000000000	SIO2	1.50837298	60.496
		114.111111e4	11.820516442	L710	0.99998200	61.104
	L306	-1611.11415e-74	7.000000000	SIO2	1.50837298	61.565
20		210.731111e17	38.103480975	L710	0.99998200	63.842
	L307	-93.471111e4	7.004909948	SIO2	1.50837298	64.855
		10625158.10411797AS	25.183324680	L710	0.99998200	84.949
	L308	-313.331111e13	37.921288357	SIO2	1.50837298	94.853
		-140.716421777	2.422311655	L710	0.99998200	102.129
25	L309	-893.714069478AS	62.983288381	SIO2	1.50837298	129.319
		-162.433.90249	0.750000000	L710	0.99998200	131.820
	L310	372.954340358	61.566328910	SIO2	1.50837298	148.956
		-44e.211011694	0.750000000	L710	0.99998200	148.766
	L311	159.626559845	68.423222152	SIO2	1.50837298	126.219
30		6881.817380351AS	0.754846049	L710	0.99998200	121.302
	L312	1035.236561792	11.490813397	SIO2	1.50837298	116.908
		181.491627420	22.008897360	L710	0.99998200	97.838
	L313	508.638145e34	7.024491847	SIO2	1.50837298	96.444
		144.727315074	42.480962349	L710	0.99998200	85.818
35	L314	-315.769131147	7.000000000	SIO2	1.50837298	85.132
		168.042482066AS	60.840114041	L710	0.99998200	82.384
	L315	-110.641059959	7.000000000	SIO2	1.50837298	82.821
		460.993264759	26.383956624	L710	0.99998200	108.073
40	L316	-573.887503383	33.664255268	SIO2	1.50837298	111.503
		-189.203245467	0.750000000	L710	0.99998200	115.508
	L317	-4374.531790298	33.200388364	SIO2	1.50837298	144.129
		-365.840916972	0.750000000	L710	0.99998200	146.400
	L318	5367.437754044	32.001020330	SIO2	1.50837298	162.024
		-556.194479444	0.857496674	L710	0.99998200	163.414
45	L319	1425.923295786	68.540751990	SIO2	1.50837298	172.847
		-318.608860176	8.280602730	L710	0.99998200	173.674
		unendlich	-3.250000000	L710	0.99998200	165.236
	L320	524.088179104	18.000000000	SIO2	1.50837298	164.278
		896.107746530	0.750000000	L710	0.99998200	163.371
50	L321	447.468508944	50.493798307	SIO2	1.50837298	161.574
		-849.886554129	37.700767601	L710	0.99998200	160.560
	L322	-277.232722440	15.000000000	SIO2	1.50837298	159.396
		-359.067701243AS	13.800352685	L710	0.99998200	159.582
55	L323	-283.705002828AS	20.143173981	SIO2	1.50837298	158.903
		-264.293409160	0.750000000	L710	0.99998200	159.923
	L324	182.924856302	28.086938401	SIO2	1.50837298	124.917
		293.542915952	0.750000000	L710	0.99998200	122.142
	L325	138.051507251	29.667601165	SIO2	1.50837298	107.973
		206.495592035	4.518697859	L710	0.99998200	103.815
60	L326	137.608373914	37.703252491	SIO2	1.50837298	93.164
		2008.206929102AS	6.230615100	L710	0.99998200	88.838
	L327	79833.713358573	27.734587521	SIO2	1.50837298	83.516
		unendlich	5.000000000	L710	0.99998200	62.961
65	L328	unendlich	25.000000000	SIO2	1.50837298	52.694
		unendlich	10.000000000	L710	0.99998200	34.137
	L329	unendlich	0.000000000			13.605

L710 = Luft bei 710 Torr = 950 mbar

ASPHÄERISCHE KONSTANTEN

5

Asphäre der Linse L304

	K	-1.5058
10	C1	-1.86740544e-007
	C2	3.71500406e-011
	C3	-8.38153156e-015
	C4	1.06034402e-018
	C5	-7.88993246e-023
15	C6	2.81358334e-027
	C7	0.00000000e+000
	C8	0.00000000e+000
	C9	0.00000000e+000

20 Asphäre der Linse L305

	K	-1.3497
25	C1	9.59200710e-008
	C2	3.31187872e-011
	C3	-1.02270060e-014
	C4	1.45048880e-018
	C5	-1.18276835e-022
	C6	5.49446108e-027
30	C7	0.00000000e+000
	C8	0.00000000e+000
	C9	0.00000000e+000

35	Asphäre der Linse L307	
	K	-234276718577673550000000000000.0000
	C1	1.13856265e-007
	C2	-9.18910043e-012
	C3	-2.09482944e-016
40	C4	8.75414269e-020
	C5	-6.71659158e-024
	C6	1.94896163e-028
	C7	0.00000000e+000
	C8	0.00000000e+000
45	C9	0.00000000e+000

50	Asphäre der Linse L311	
	K	0.0000
	C1	1.36987424e-008
	C2	-6.69820602e-013
	C3	2.24912373e-017
	C4	-5.16548278e-022
55	C5	4.05832389e-027
	C6	3.25008659e-032
	C7	0.00000000e+000
	C8	0.00000000e+000
60	C9	0.00000000e+000

Asphäre der Linse L314

5 K 0.0000
 C1 -3.81602557e-009
 C2 -1.32998252e-012
 C3 0.00000000e+000
 C4 -3.24422613e-021
 C5 3.55600124e-025
 C6 -2.11130790e-029
 C7 0.00000000e+000
 10 C8 0.00000000e+000
 C9 0.00000000e+000

15 Asphäre der Linse L322
 K 0.0000
 C1 2.20018047e-011
 C2 -6.06720907e-016
 C3 -1.85544385e-019
 20 C4 1.99332533e-023
 C5 -1.25615823e-028
 C6 5.72017494e-033
 C7 0.00000000e+000
 C8 0.00000000e+000
 25 C9 0.00000000e+000

30 Asphäre der Linse L323
 K 0.0000
 C1 2.59747415e-011
 C2 1.15845870e-015
 C3 2.93792021e-019
 C4 -5.20753147e-024
 35 C5 5.15087863e-028
 C6 -3.68361393e-033
 C7 0.00000000e+000
 C8 0.00000000e+000
 C9 0.00000000e+000
 40

45 Asphäre der Linse L326
 K 0.0000
 C1 2.53574810e-008
 C2 1.14136997e-012
 C3 -2.09898773e-016
 C4 1.80771983e-020
 C5 -8.70458993e-025
 50 C6 1.83743606e-029
 C7 0.00000000e+000
 C8 0.00000000e+000
 C9 0.00000000e+000

55

60

M1450a

TABELLE 4

	LINSEN	RADIEN	DICKEN	GLÄSER	BRECHZAHL BEI 193.304nm	1/2 FREIER DURCHMESSER
5	0	unendlich	32.000000000	L710	0.99998200	54.410
		unendlich	0.700000000	L710	0.99998200	61.369
L401	1072.135967906AS	17.638366552	SIO2	1.56028895	62.176	
	-274.850778792	10.038841436	HE	0.99971200	62.804	
L402	-195.160258125	9.677862773	SIO2	1.56028895	62.822	
10	-159.034954419	15.411706951	HE	0.99971200	63.649	
L403	-409.040910955	11.634800854	SIO2	1.56028895	62.424	
	-184.929247238	18.878098976	HE	0.99971200	62.549	
L404	-86.928681017	9.000000000	SIO2	1.56028895	61.870	
	-81.003682870AS	3.559685814	HE	0.99971200	63.469	
15	L405	-105.055795110AS	6.000000000	SIO2	1.56028895	60.375
	-237.059668556	7.135710642	HE	0.99971200	61.325	
L406	-170.390902140	6.000000000	SIO2	1.56028895	61.152	
	179.617978310	40.187039625	HE	0.99971200	64.312	
L407	-108.910057000	6.000000000	SIO2	1.56028895	66.769	
20	10000.000000000AS	23.032466424	HE	0.99971200	84.010	
L408	-482.423484275	35.657870541	SIO2	1.56028895	98.271	
	-166.024534852	0.712083613	HE	0.99971200	104.636	
L409	-5301.825985682AS	59.184134830	SIO2	1.56028895	129.868	
	-219.603781546	1.964238192	HE	0.99971200	135.616	
25	L410	-407.514819861	25.000000000	SIO2	1.56028895	141.192
	-275.650807138	2.073256156	HE	0.99971200	143.933	
L411	812.482278880	41.728126549	SIO2	1.56028895	150.437	
	2085.321083022	11.867512800	HE	0.99971200	150.588	
L412	1989.395979432	66.189720990	SIO2	1.56028895	151.170	
30	-336.825131023	2.208063283	HE	0.99971200	151.249	
L413	161.751335222	66.140524993	SIO2	1.56028895	121.860	
	-7743.125302019AS	0.732008617	HE	0.99971200	115.257	
L414	2700.830058670	8.000000000	SIO2	1.56028895	112.928	
	175.482298866	18.681794864	HE	0.99971200	94.204	
35	L415	330.479176880	8.000000000	SIO2	1.56028895	91.933
	215.492418517	37.734500801	HE	0.99971200	86.259	
L416	-263.077268094	6.000000000	SIO2	1.56028895	83.596	
	119.453498304AS	66.406324570	HE	0.99971200	77.915	
L417	-126.431526615	6.000000000	SIO2	1.56028895	80.395	
40	1627.715124622	24.178532080	HE	0.99971200	96.410	
L418	-517.066851877	30.987035837	SIO2	1.56028895	105.371	
	-242.666474401	0.700000000	HE	0.99971200	113.249	
L419	-737.673536297	30.292644418	SIO2	1.56028895	124.350	
	-270.925750340	0.700000000	HE	0.99971200	128.112	
45	L420	-1051.979110054	27.301344542	SIO2	1.56028895	137.231
	-363.545320262	0.711035404	HE	0.99971200	139.644	
L421	914.456821676	50.497126159	SIO2	1.56028895	148.531	
	-500.741001160	10.000000000	HE	0.99971200	149.700	
L422	unendlich	-5.000000000	HE	0.99971200	146.693	
50	353.826401507AS	22.748234242	SIO2	1.56028895	147.721	
L423	529.864238000	1.376970242	HE	0.99971200	146.294	
	422.718681400	57.709521396	SIO2	1.56028895	146.003	
L424	-733.506899438	37.321473463	HE	0.99971200	143.238	
	-261.264462802	15.000000000	SIO2	1.56028895	138.711	
55	L425	-292.145870649AS	18.942285163	HE	0.99971200	139.089
	-225.638240671AS	19.098948274	SIO2	1.56028895	136.464	
L426	-230.537827019	0.700000000	HE	0.99971200	138.299	
	246.284141218	23.038665896	SIO2	1.56028895	114.892	
L427	400.381469987	0.704537226	HE	0.99971200	110.931	
60	131.458744675	28.653621426	SIO2	1.56028895	98.090	
L428	200.500973816	0.708148286	HE	0.99971200	93.130	
	139.428371855	36.540725215	SIO2	1.56028895	87.103	
L429	1188.104646109AS	8.107454155	HE	0.99971200	79.764	
	unendlich	25.934594077	CaF2	1.50143563	72.791	
65	L430	unendlich	5.000000000	L710	0.99998200	54.980
	unendlich	25.000000000	CAF2HL	1.50143563	46.911	
L431	unendlich	10.000000000	L710	0.99998200	29.741	
	unendlich	0.000000000			13.603	

L710 = Luft bei 710 Torr

ASPHÄERISCHE KONSTANTEN

5

Asphäre der Linse L401

10	K	0.0000
	C1	7.64628377e-008
	C2	6.87967706e-013
	C3	6.32367166e-017
	C4	4.65534082e-020
	C5	-1.74760583e-023
15	C6	3.25143184e-027
	C7	-2.97366674e-031
	C8	0.00000000e+000
	C9	0.00000000e+000

20

Asphäre der Linse L404

25	K	-1.3306
	C1	-2.46704917e-007
	C2	1.00943626e-011
	C3	-6.88338440e-015
	C4	1.00927351e-018
	C5	-1.37371749e-022
	C6	9.94732480e-027
30	C7	-6.46127195e-031
	C8	0.00000000e+000
	C9	0.00000000e+000

35 Asphäre der Linse L405

40	K	-1.1682
	C1	8.44108642e-008
	C2	6.67934072e-012
	C3	-5.16053049e-015
	C4	8.51835178e-019
	C5	-9.37525700e-023
	C6	3.80738193e-027
45	C7	-7.58518933e-035
	C8	0.00000000e+000
	C9	0.00000000e+000

50 Asphäre der Linse L407

55	K	0.0000
	C1	8.18369639e-008
	C2	-9.75131236e-012
	C3	3.85197305e-016
	C4	1.05024918e-020
	C5	-3.84907914e-024
	C6	3.28329458e-028
	C7	-1.16692413e-032
	C8	0.00000000e+000
60	C9	0.00000000e+000

Asphäre der Linse L409

	K	0.0000
	C1	4.21547093e-009
5	C2	-2.05810358e-013
	C3	-2.19266732e-018
	C4	-7.83959176e-023
	C5	6.55613544e-027
	C6	-7.33103571e-032
10	C7	-2.15461419e-036
	C8	0.00000000e+000
	C9	0.00000000e+000

15 Asphäre der Linse L413

	K	0.0000
	C1	1.39800416e-008
	C2	-1.91505190e-013
20	C3	-1.26782008e-017
	C4	9.93778200e-022
	C5	-5.55824342e-026
	C6	1.85230750e-030
	C7	-2.83026055e-035
25	C8	0.00000000e+000
	C9	0.00000000e+000

Asphäre der Linse L416

30	K	0.0000
	C1	-1.87949694e-008
	C2	-4.87119675e-012
	C3	-5.90009367e-017
35	C4	-5.76749530e-021
	C5	-3.07189672e-025
	C6	4.51160541e-029
	C7	-5.02037364e-033
	C8	0.00000000e+000
40	C9	0.00000000e+000

Asphäre der Linse L421

45	K	-0.0073
	C1	1.63581145e-010
	C2	-7.80915457e-015
	C3	6.72460331e-021
	C4	5.33479719e-025
50	C5	2.82144185e-028
	C6	-6.16219372e-033
	C7	2.37157562e-037
	C8	0.00000000e+000
	C9	0.00000000e+000

55

60

Asphäre der Linse L424

5 K 0.0000
 C1 1.28367898e-010
 C2 -1.18938455e-014
 C3 -1.84714219e-019
 C4 4.28587779e-023
 C5 -1.39213579e-027
 C6 2.04883718e-032
10 C7 -3.36201584e-037
 C8 0.00000000e+000
 C9 0.00000000e+000

15 Asphäre der Linse L425

20 K 0.0000
 C1 -2.31584329e-010
 C2 2.47013162e-014
 C3 1.13928751e-018
 C4 -1.24997826e-023
 C5 -9.59653919e-028
 C6 1.46403755e-032
 C7 -1.23684921e-037
25 C8 0.00000000e+000
 C9 0.00000000e+000

30 Asphäre der Linse L428

30 K 0.0000
 C1 2.79193914e-008
 C2 5.72325985e-013
 C3 -1.69156262e-016
 C4 1.45062961e-020
 C5 -7.24157687e-025
 C6 1.59130857e-029
 C7 9.07975701e-035
 C8 0.00000000e+000
40 C9 0.00000000e+000

45

50

55

60

30

M1558a

TABELLE 5

	LINSEN	RADIEN	DICKEN	GLÄSER	BRECHZAHL BEI 193.304nm	1/2 FREIER DURCHMESSER
5	0	unendlich	32.000000000	L710	0.99998200	54.410
		unendlich	0.700000000	L710	0.99998200	61.800
	L501	1062.826934956AS	17.734965551	SIO2	1.56028895	62.680
		-280.649155373	9.921059017	HE	0.99971200	63.358
10	L502	-198.612797944	9.733545477	SIO2	1.56028895	63.454
		-157.546275141	15.417407860	HE	0.99971200	64.281
	L503	-400.277413338	11.803054495	SIO2	1.56028895	63.163
		-182.515287485	19.059582585	HE	0.99971200	63.316
	L504	-86.486413985	9.000000000	SIO2	1.56028895	62.723
		-79.976798205AS	3.314115561	HE	0.99971200	64.356
15	L505	-102.262183494AS	6.000000000	SIO2	1.56028895	61.260
		-275.242312561	7.844485351	HE	0.99971200	62.494
	L506	-191.274205909	6.000000000	SIO2	1.56028895	62.450
		180.723494008	40.175681177	HE	0.99971200	65.811
	L507	-108.539011643	6.000000000	SIO2	1.56028895	67.752
20		10000.000000000AS	23.009626916	HE	0.99971200	86.379
	L508	-481.040730284	35.657298256	SIO2	1.56028895	100.931
		-165.828518942	0.700000000	HE	0.99971200	106.719
	L509	-5243.952853546AS	59.233771719	SIO2	1.56028895	134.666
25	L510	-218.541408733	2.123657562	HE	0.99971200	139.441
		-402.136827778	25.000000000	SIO2	1.56028895	145.856
		-276.854279724	1.637353303	HE	0.99971200	148.618
	L511	796.304534481	36.805305429	SIO2	1.56028895	156.741
		2360.950907095	10.808883416	HE	0.99971200	157.059
30	L512	2256.926430541	60.789786196	SIO2	1.56028895	157.684
		-336.450738373	0.801676910	HE	0.99971200	157.856
	L513	161.617552542	66.152351274	SIO2	1.56028895	125.624
		-6835.350709889AS	0.744366824	HE	0.99971200	121.362
	L514	2851.162473443	8.000000000	SIO2	1.56028895	118.726
		173.208226906	18.750820117	HE	0.99971200	97.559
35	L515	318.351302869	8.000000000	SIO2	1.56028895	95.703
		214.643166184	38.151364608	HE	0.99971200	89.760
	L516	-261.549915460	6.000000000	SIO2	1.56028895	88.331
		119.510683982AS	66.550546342	HE	0.99971200	82.116
	L517	-126.322271364	6.000000000	SIO2	1.56028895	83.464
40		1722.207555551	24.185704173	HE	0.99971200	102.415
	L518	-506.819064828	30.988960270	SIO2	1.56028895	111.113
		-242.042046428	0.700000000	HE	0.99971200	118.861
	L519	-728.789614455	30.297084361	SIO2	1.56028895	132.704
		-269.518093553	0.700000000	HE	0.99971200	135.576
45	L520	-1024.754284774	27.306923440	SIO2	1.56028895	147.201
		-361.037355343	0.700000000	HE	0.99971200	149.061
	L521	929.096482269	49.082091976	SIO2	1.56028895	161.109
		-497.886578908	15.000000000	HE	0.99971200	161.854
		unendlich	-10.000000000	HE	0.99971200	158.597
50	L522	352.973470359AS	22.735479730	SIO2	1.56028895	159.957
		529.864238000	1.119499649	HE	0.99971200	158.688
	L523	422.718681400	57.532074113	SIO2	1.56028895	158.278
		-733.230538894	37.317449332	HE	0.99971200	156.533
55	L524	-261.165349728	15.000000000	SIO2	1.56028895	155.119
		-292.119447959AS	18.962883498	HE	0.99971200	156.043
	L525	-226.263316842AS	19.009003051	SIO2	1.56028895	155.000
		-231.163515914	0.700000000	HE	0.99971200	157.710
	L526	245.306778718	23.024380018	SIO2	1.56028895	124.547
		403.694577141	0.700000000	HE	0.99971200	121.262
60	L527	132.188567375	28.647981266	SIO2	1.56028895	104.696
		199.679919884	0.700019350	HE	0.99971200	101.254
	L528	138.967602414	36.537553325	SIO2	1.56028895	93.617
		1194.093826692AS	8.108769689	HE	0.99971200	89.148
65	L529	unendlich	25.923824338	CaF2	1.50143563	82.715
		unendlich	5.000000000	L710	0.99998200	63.301
	L530	unendlich	25.000000000	CaF2	1.50143563	52.976
		unendlich	10.000000000	L710	0.99998200	34.253
	L531	unendlich	0.000000000			13.603

L710 = Luft bei 710 Torr

ASPHAERISCHE KONSTANTEN

5

Asphäre der Linse L501

10	K	0.0000
	C1	7.79889739e-008
	C2	5.96475035e-013
	C3	5.73397945e-017
	C4	5.38600405e-020
	C5	-2.08145188e-023
15	C6	4.05094979e-027
	C7	-3.79132983e-031
	C8	0.00000000e+000
	C9	0.00000000e+000

20 Asphäre der Linse L504

25	K	-1.3308
	C1	-2.46633450e-007
	C2	1.00446806e-011
	C3	-7.00686898e-015
	C4	9.90840734e-019
	C5	-1.31781718e-022
	C6	9.28901869e-027
30	C7	-6.52628587e-031
	C8	0.00000000e+000
	C9	0.00000000e+000

35 Asphäre der Linse L505

40	K	-1.1513
	C1	8.27765089e-008
	C2	7.00992841e-012
	C3	-5.19825762e-015
	C4	8.12467102e-019
	C5	-8.31805913e-023
	C6	2.18925711e-027
45	C7	1.11778799e-031
	C8	0.00000000e+000
	C9	0.00000000e+000

Asphäre der Linse L507

50	K	0.0000
	C1	8.22829380e-008
	C2	-9.72735758e-012
	C3	3.85643753e-016
55	C4	1.01114314e-020
	C5	-3.91221853e-024
	C6	3.39732781e-028
	C7	-1.20135313e-032
	C8	0.00000000e+000
60	C9	0.00000000e+000

Asphäre der Linse L509

	K	0.0000
	C1	4.14637283e-009
5	C2	-2.13253257e-013
	C3	-2.08003643e-018
	C4	-7.83152213e-023
	C5	5.30015388e-027
	C6	-2.59321154e-033
10	C7	-3.37000758e-036
	C8	0.00000000e+000
	C9	0.00000000e+000

15 Asphäre der Linse L513

	K	0.0000
	C1	1.39567662e-008
	C2	-2.05760928e-013
20	C3	-1.29919990e-017
	C4	1.00302455e-021
	C5	-5.58828742e-026
	C6	1.79594589e-030
	C7	-2.49374487e-035
25	C8	0.00000000e+000
	C9	0.00000000e+000

Asphäre der Linse L516

30	K	0.0000
	C1	-1.82058286e-008
	C2	-4.87410470e-012
	C3	-5.89919068e-017
35	C4	-4.04061992e-021
	C5	-6.60202054e-025
	C6	9.31855676e-029
	C7	-7.48573635e-033
	C8	0.00000000e+000
40	C9	0.00000000e+000

Asphäre der Linse L522

45	K	-0.0071
	C1	1.64455895e-010
	C2	-7.76483415e-015
	C3	8.29256873e-021
	C4	-5.46990406e-025
50	C5	3.42070772e-028
	C6	-8.24545949e-033
	C7	2.57783363e-037
	C8	0.00000000e+000
	C9	0.00000000e+000

55

60

Asphäre der Linse L524

5 K 0.0000
 C1 1.18780021e-010
 C2 -1.18823445e-014
 C3 -1.80162246e-019
 C4 4.08343213e-023
 C5 -1.42735407e-027
 C6 2.34804331e-032
10 C7 -3.79018523e-037
 C8 0.00000000e+000
 C9 0.00000000e+000

15 Asphäre der Linse L525

20 K 0.0000
 C1 -2.15560895e-010
 C2 2.44929281e-014
 C3 1.12359306e-018
 C4 -1.29749910e-023
 C5 -1.00106399e-027
 C6 1.88165471e-032
 C7 -2.01557723e-037
25 C8 0.00000000e+000
 C9 0.00000000e+000

Asphäre der Linse L528

30 K 0.0000
 C1 2.73896476e-008
 C2 6.17281255e-013
 C3 -1.75474902e-016
35 C4 1.56329449e-020
 C5 -8.82259694e-025
 C6 2.92948124e-029
 C7 -4.01055770e-034
 C8 0.00000000e+000
40 C9 0.00000000e+000

45

50

55

60

M1587a

TABELLE 6

	LINSEN	RADIEN	DICKEN	GLÄSER	BRECHZAHL BEI 157.629nm	1/2 FREIER DURCHMESSER
5	0	unendlich	27.171475840	N2	1.00031429	46.200
		unendlich	0.602670797	N2	1.00031429	52.673
	L601	900.198243311AS	15.151284556	CaF2	1.55929035	53.454
		-235.121108435	9.531971079	N2	1.00031429	54.049
10	L602	-167.185917779	8.294716452	CaF2	1.55929035	54.178
		-132.673519510	14.020355779	N2	1.00031429	54.901
	L603	-333.194588652	9.893809820	CaF2	1.55929035	53.988
		-155.450516203	15.930502944	N2	1.00031429	54.132
	L604	-73.572316296	7.641977580	CaF2	1.55929035	53.748
		-68.248613899AS	2.881720302	N2	1.00031429	55.167
15	L605	-86.993585564AS	5.094651720	CaF2	1.55929035	52.580
		-238.150965327	5.379130780	N2	1.00031429	53.729
	L606	-165.613920870	5.094651720	CaF2	1.55929035	53.730
		153.417884485	34.150169591	N2	1.00031429	56.762
20	L607	-92.061009990	5.094651720	CaF2	1.55929035	58.081
		8491.086261873AS	19.673523795	N2	1.00031429	74.689
	L608	-407.131300451	30.380807138	CaF2	1.55929035	87.291
		-140.620317156	0.761662684	N2	1.00031429	91.858
	L609	-4831.804853654AS	50.269660218	CaF2	1.55929035	117.436
		-192.197373609	1.688916911	N2	1.00031429	121.408
25	L610	-367.718684892	21.227715500	CaF2	1.55929035	127.704
		-233.628547894	2.224071019	N2	1.00031429	129.305
	L611	709.585855080	28.736922725	CaF2	1.55929035	137.016
		1238.859445357	9.120684720	N2	1.00031429	137.428
30	L612	1205.457051945	49.281218258	CaF2	1.55929035	138.288
		-285.321880705	1.625271224	N2	1.00031429	138.379
	L613	137.549591710	56.718543740	CaF2	1.55929035	108.652
		-4380.301012978AS	0.623523902	N2	1.00031429	106.138
	L614	2663.880214408	6.792868960	CaF2	1.55929035	103.602
		149.184979730	15.779049257	N2	1.00031429	84.589
35	L615	281.093108064	6.792868960	CaF2	1.55929035	83.373
		184.030288413	32.341552355	N2	1.00031429	77.968
	L616	-222.157416308	5.094651720	CaF2	1.55929035	77.463
		101.254238115AS	56.792834221	N2	1.00031429	71.826
	L617	-106.980638018	5.094651720	CaF2	1.55929035	72.237
40		1612.305471130	20.581065398	N2	1.00031429	89.760
	L618	-415.596135628	26.398111993	CaF2	1.55929035	96.803
		-204.680044631	0.713343960	N2	1.00031429	103.409
	L619	-646.696622394	25.867340760	CaF2	1.55929035	116.636
		-231.917626896	0.766268682	N2	1.00031429	118.569
45	L620	-790.657607677	23.400482872	CaF2	1.55929035	128.806
		-294.872053725	0.721402031	N2	1.00031429	130.074
	L621	786.625567756	40.932308205	CaF2	1.55929035	141.705
		-431.247283013	12.736629300	N2	1.00031429	142.089
		unendlich	-8.491086200	N2	1.00031429	134.586
50	L622	295.022653593AS	20.185109438	CaF2	1.55929035	139.341
		449.912291916	0.619840486	N2	1.00031429	137.916
	L623	358.934076212	48.662890509	CaF2	1.55929035	136.936
		-622.662988878	30.955714157	N2	1.00031429	135.288
	L624	-224.404889753	12.736629300	CaF2	1.55929035	134.760
55		-251.154571510AS	16.079850229	N2	1.00031429	134.853
	L625	-193.582989843AS	16.510083506	CaF2	1.55929035	134.101
		-198.077570749	0.880353872	N2	1.00031429	136.109
	L626	206.241795157	19.927993542	CaF2	1.55929035	101.240
		338.140581666	0.925956949	N2	1.00031429	97.594
60	L627	111.017549581	24.580089962	CaF2	1.55929035	85.023
		169.576109839	0.777849447	N2	1.00031429	81.164
	L628	117.982165264	31.161065630	CaF2	1.55929035	75.464
		921.219058213AS	6.934980174	N2	1.00031429	69.501
65	L629	unendlich	22.260797322	CaF2	1.55929035	63.637
		unendlich	4.245543100	N2	1.00031429	48.606
	L630	unendlich	21.227715500	CaF2	1.55929035	41.032
		unendlich	8.491086200	N2	1.00031429	26.698
		unendlich	0.000000000		1.000000000	11.550

Wellenlänge und Brechzahl sind gegenüber Vakuum angegeben.

ASPHÄERISCHE KONSTANTEN

5

Asphäre der Linse L601

	K	0.0000
10	C1	1.08594437e-007
	C2	8.50731636e-013
	C3	1.16378620e-016
	C4	2.08014275e-019
	C5	-1.10102712e-022
15	C6	3.30616179e-026
	C7	-4.16323378e-030
	C8	0.0000 010e+000
	C9	0.00000000e+000

20

Asphäre der Linse L604

	K	-1.3312
25	C1	-4.0355456e-007
	C2	2.2577658e-011
	C3	-2.19259878e-014
	C4	4.32573397e-018
	C5	-7.92477159e-022
30	C6	7.57618874e-026
	C7	-7.14962797e-030
	C8	0.00000000e+000
	C9	0.00000000e+000

Asphäre der Linse L605

	K	-1.1417
40	C1	1.33637337e-007
	C2	1.56787758e-011
	C3	-1.64362484e-014
	C4	3.59793726e-018
	C5	-5.11312568e-022
	C6	1.70636633e-026
45	C7	1.82384731e-030
	C8	0.00000000e+000
	C9	0.00000000e+000

Asphäre der Linse L607

50	K	0.0000
	C1	1.34745120e-007
	C2	-2.19807543e-011
55	C3	1.20275891e-015
	C4	4.39597377e-020
	C5	-2.37132819e-023
	C6	2.87510939e-027
	C7	-1.42065162e-031
	C8	0.00000000e+000
60	C9	0.00000000e+000

Asphäre der Linse L609

	K	0.0000
5	C1	6.85760526e-009
	C2	-4.84524868e-013
	C3	-6.28751350e-018
	C4	-3.72607209e-022
	C5	3.25276841e-026
	C6	-4.05509974e-033
10	C7	-3.98843079e-035
	C8	0.00000000e+000
	C9	0.00000000e+000

15 Asphäre der Linse L613

	K	0.0000
20	C1	2.24737416e-008
	C2	-4.45043770e-013
	C3	-4.10272049e-017
	C4	4.31632628e-021
	C5	-3.27538237e-025
	C6	1.44053025e-029
	C7	-2.76858490e-034
25	C8	0.00000000e+000
	C9	0.00000000e+000

Asphäre der Linse L616

30	K	0.0000
	C1	-2.83553693e-008
	C2	-1.12122261e-011
	C3	-2.05192812e-016
35	C4	-1.55525080e-020
	C5	-4.77093112e-024
	C6	8.39331135e-028
	C7	-8.97313681e-032
	C8	0.00000000e+000
40	C9	0.00000000e+000

Asphäre der Linse L622

45	K	0.0421
	C1	7.07310826e-010
	C2	-2.00157185e-014
	C3	-9.33825109e-020
	C4	1.27125854e-024
50	C5	1.94008709e-027
	C6	-6.11989858e-032
	C7	2.92367322e-036
	C8	0.00000000e+000
	C9	0.00000000e+000

55

60

Asphäre der Linse L624

5 K 0.0000
C1 3.02835805e-010
C2 -2.40484062e-014
C3 -3.22339189e-019
C4 1.64516979e-022
C5 -8.51268614e-027
C6 2.09276792e-031
10 C7 -4.74605669e-036
C8 0.00000000e+000
C9 0.00000000e+000

15 Asphäre der Linse L625

K 0.0000
C1 -3.99248993e-010
C2 5.79276562e-014
20 C3 3.53241478e-018
C4 -4.57872308e-023
C5 -6.29695208e-027
C6 1.57844931e-031
C7 -2.19266130e-036
25 C8 0.00000000e+000
C9 0.00000000e+000

Asphäre der Linse L628

30 K 0.0000
C1 4.40737732e-008
C2 1.52385268e-012
C3 -5.44510329e-016
35 C4 6.32549789e-020
C5 -4.58358203e-024
C6 1.92230388e-028
C7 -3.11311258e-033
C8 0.00000000e+000
40 C9 0.00000000e+000

M1630a

TABELLE 7

	LINSEN	RADIEN	DICKEN	GLÄSER	BRECHZAHL BEI 193.304nm	1/2 FREIER DURCHMESSER
5	0	unendlich unendlich	32.989007360 2.050119724	L710 L710	0.99998200 0.99998200	56.080 63.700
	L701	1292.577885893AS -320.912994055	17.083079028 6.356545111	SIO2 HE	1.56028895 0.99971200	64.846 65.549
10	L702	-222.076099367 -173.186007383	9.996105426 14.918724377	SIO2 HE	1.56028895 0.99971200	65.651 66.515
	L703	-465.289541055 -190.575077708	12.849128877 24.825544140	SIO2 HE	1.56028895 0.99971200	65.892 66.089
15	L704	-88.003869940 -80.342454766AS	9.278158320 3.110021891	SIO2 HE	1.56028895 0.99971200	64.773 66.529
	L705	-104.692897461AS 687.929853355	6.185438880 8.052826671	SIO2 HE	1.56028895 0.99971200	63.593 65.986
	L706	-4211.039282601 191.063416206	6.185438880 42.178241931	SIO2 HE	1.56028895 0.99971200	66.833 69.389
20	L707	-115.620656932 10919.608812170AS	6.185438880 23.544585745	SIO2 HE	1.56028895 0.99971200	71.596 91.649
	L708	-462.245785462 -166.710127403	36.857934334 0.922637637	SIO2 HE	1.56028895 0.99971200	105.419 110.921
25	L709	-2362.175430424AS -209.701792909	61.803635845 1.020714627	SIO2 HE	1.56028895 0.99971200	140.744 144.651
	L710	-389.602200799 -307.008965979	25.772662000 0.721634536	SIO2 HE	1.56028895 0.99971200	151.693 156.014
	L711	629.229001456 -859.369679090	46.511934207 24.151857437	SIO2 HE	1.56028895 0.99971200	167.044 167.077
30	L712	-877.205712077 -357.572652646	30.754166393 4.953800031	SIO2 HE	1.56028895 0.99971200	164.429 164.440
	L713	168.111512940 unendlich	68.382989629 0.000000000	SIO2 HE	1.56028895 0.99971200	129.450 125.021
	L714	149.672876100AS unendlich	23.428435757 8.247251840	SIO2 HE	1.56028895 0.99971200	98.364 125.021
35	L715	167.316121704 167.316121704	0.000000000 46.368104843	SIO2 HE	1.56028895 0.99971200	92.117 92.117
	L716	-276.014955570 122.032488640AS	6.185438880 68.057116286	SIO2 HE	1.56028895 0.99971200	90.583 84.260
40	L717	-131.026926440 1443.442379280	6.185438880 24.936997937	SIO2 HE	1.56028895 0.99971200	85.665 105.177
	L718	-570.720178737 -251.966065824	31.985422479 0.742435413	SIO2 HE	1.56028895 0.99971200	114.725 122.318
45	L719	-792.022948046 -284.699402375	31.395737994 0.732480789	SIO2 HE	1.56028895 0.99971200	136.726 139.887
	L720	-1399.942577177 -405.074653331	28.528105133 0.721634536	SIO2 HE	1.56028895 0.99971200	152.678 154.617
	L721	969.181518515 -498.113891823	52.876050649 15.463597200	SIO2 HE	1.56028895 0.99971200	166.429 167.335
50	L722	unendlich	-10.309064800	HE	0.99971200	163.661
	L722	369.9127971108AS	22.457291722	SIO2	1.56028895	164.702
	L723	546.240476474	0.759815621	HE	0.99971200	163.421
	L723	435.783427872	59.712335014	SIO2	1.56028895	163.043
55	L724	-757.138748183 -268.662949002	38.604277894 15.463597200	HE	0.99971200	161.173 159.696
	L725	-299.983850179AS	20.130367113	HE	0.99971200	160.684
	L725	-232.880394011AS	19.892839003	SIO2	1.56028895	159.263
	L726	-238.077482924 238.488298578	0.721634536 23.631362631	HE	0.99971200	162.099 127.621
60	L726	378.766536032	0.721634536	SIO2	1.56028895	124.291
	L727	136.105324171 205.107042559	29.608483074 0.785819222	HE	0.99971200	108.001 104.429
	L728	143.303538802 1247.979376087AS	37.757018324 8.449273703	SIO2 HE	1.56028895 0.99971200	96.584 91.946
65	L729	unendlich	26.717587971	CaF2	1.50143563	85.145
	L730	unendlich	5.154532400	L710	0.99998200	65.152
	L730	unendlich	25.772662000	CaF2	1.50143563	54.537
		unendlich	10.309064800	L710	0.99998200	35.251

L731 unendlich 0.000000000
 L710 = Luft bei 710 Torr 14.020

5 ASPHAERISCHE KONSTANTEN

Asphäre der Linse L701

10 K 0.0000
 C1 6.70377274e-008
 C2 6.84099199e-013
 C3 1.05733405e-016
 C4 3.37349453e-020
 15 C5 -7.15705547e-024
 C6 5.09786203e-028
 C7 -6.46970874e-033
 C8 0.00000000e+000
 C9 0.00000000e+000
 20

Asphäre der Linse L704

25 K -1.3610
 C1 -2.19369509e-007
 C2 7.67800088e-012
 C3 -6.07796875e-015
 C4 7.90645856e-019
 C5 -9.11112500e-023
 30 C6 5.68885354e-027
 C7 -4.26463481e-031
 C8 0.00000000e+000
 C9 0.00000000e+000
 35

Asphäre der Linse L705

K -1.2060
 C1 8.09444891e-008
 40 C2 4.80824558e-012
 C3 -4.20373603e-015
 C4 5.60648644e-019
 C5 -4.51520330e-023
 C6 1.54505188e-027
 45 C7 5.00741161e-032
 C8 0.00000000e+000
 C9 0.00000000e+000

50 Asphäre der Linse L707

K 0.0000
 C1 7.63455153e-008
 C2 -8.56292259e-012
 55 C3 3.01669569e-016
 C4 9.61573017e-021
 C5 -2.67588216e-024
 C6 2.05728418e-028
 C7 -6.45595651e-033
 60 C8 0.00000000e+000
 C9 0.00000000e+000

Asphäre der Linse L709

5 K 0.0000
 C1 3.23214391e-009
 C2 -1.67326019e-013
 C3 -4.26702152e-019
 C4 -5.66712884e-023
 C5 -1.24256704e-028
 10 C6 1.64124726e-031
 C7 -4.41379927e-036
 C8 0.00000000e+000
 C9 0.00000000e+000

15 Asphäre der Linse L714

20 K 0.0000
 C1 -1.63753926e-009
 C2 2.54837542e-013
 C3 8.79430055e-018
 C4 9.19127213e-022
 C5 -7.01950932e-026
 C6 1.17918461e-029
 25 C7 -8.74308763e-034
 C8 0.00000000e+000
 C9 0.00000000e+000

30 Asphäre der Linse L716

35 K 0.0000
 C1 -1.54725313e-008
 C2 -4.26275476e-012
 C3 -1.01484275e-016
 C4 8.37843426e-022
 C5 -1.29202167e-024
 C6 1.71820044e-028
 C7 -1.05335330e-032
 40 C8 0.00000000e+000
 C9 0.00000000e+000

45 Asphäre der Linse L722

50 K -0.0331
 C1 2.56540619e-011
 C2 -6.98183157e-015
 C3 7.92101859e-021
 C4 -5.85807569e-025
 C5 2.42288782e-028
 C6 -5.79467899e-033
 C7 1.63689132e-037
 C8 0.00000000e+000
 55 C9 0.00000000e+000

Asphäre der Linse L724

5 K 0.0000
C1 8.90820785e-011
C2 -1.06772804e-014
C3 -1.68281363e-019
C4 3.04828021e-023
C5 -1.01185483e-027
10 C6 1.61617917e-032
C7 -2.40582729e-037
C8 0.00000000e+000
C9 0.00000000e+000

15 Asphäre der Linse L725

20 K 0.0000
C1 -1.97757640e-010
C2 2.05110497e-014
C3 8.96864099e-019
C4 -9.85543257e-024
C5 -7.12993590e-028
C6 1.30146671e-032
25 C7 -1.36102788e-037
C8 0.00000000e+000
C9 0.00000000e+000

30 Asphäre der Linse L728

35 K 0.0000
C1 2.55097376e-008
C2 5.47467657e-013
C3 -1.43568713e-016
C4 1.17677649e-020
C5 -5.95320448e-025
C6 1.71763367e-029
C7 -1.94556007e-034
40 C8 0.00000000e+000
C9 0.00000000e+000

45

50

55

60

TABELLE 8

	L61	LINSEN	RADIEN	DICKEN	GLÄSER	BRECHZAHL BEI 157.13 nm	1/2 FREIER DURCHMESSER
5							
10	L801	0	unendlich unendlich	34.000000000 0.100000000		1.00000000 1.00000000	82.150 87.654
		276.724757380	1413.944109416AS	40.000000000 95.000000000	CaF2	1.55970990 1.00000000	90.112 89.442
	<u>SP1</u>		unendlich unendlich	11.000000000 433.237005445		1.00000000 1.00000000	90.034 90.104
15	L802	-195.924336384	-467.658808527	17.295305525 40.841112468	CaF2	1.55970990 1.00000000	92.746 98.732
	L803	-241.385736441	-857.211727400AS	15.977235467 21.649331094	CaF2	1.55970990 1.00000000	105.512 118.786
	SP2	unendlich	253.074839896	0.000010000 21.649331094		1.00000000 1.00000000	139.325 119.350
20	L803	857.211727400AS	241.385736441	15.977235467 40.841112468	CaF2	1.55970990 1.00000000	118.986 108.546
	L802	467.658808527	195.924336384	17.295305525 419.981357165	CaF2	1.55970990 1.00000000	102.615 95.689
25	SP3	unendlich	z1	6.255658280 42.609155219		1.00000000 1.00000000	76.370 76.064
	L804	432.544479547	unendlich	67.449547115	CaF2	1.55970990 1.00000000	90.274 73.981
	L805	-522.188532471	L804	37.784311058		1.55970990 1.00000000	92.507
30	L805	-263.167605725	-291.940616829AS	33.768525968 14.536591424	CaF2	1.55970990 1.00000000	100.053 106.516
	L806	589.642961222AS	-5539.698828792	20.449887046 443.944079795	CaF2	1.55970990 1.00000000	110.482 110.523
	L807	221.780582003	153.071443064	9.000000000 22.790060084	CaF2	1.55970990 1.00000000	108.311 104.062
35	L808	309.446967518	-2660.227900099	38.542735318 0.100022286	CaF2	1.55970990 1.00000000	104.062 104.098
	L809	23655.354584194	-1473.189213176	12.899131182 9.318886362	CaF2	1.55970990 1.00000000	104.054 103.931
40	L810	-652.136459374	-446.489459129	16.359499814 0.100000000	CaF2	1.55970990 1.00000000	103.644 103.877
	L811	174.593507050	L810	25.900313780	CaF2	1.55970990 1.00000000	99.267 96.610
	L812	392.239615259AS	unendlich	14.064505431 2.045119392		1.00000000 1.00000000	96.552
45	L812	7497.306838492	318.210831711	16.759051656 8.891640764	CaF2	1.55970990 1.00000000	96.383 94.998
	L813	428.724465129	3290.097860119AS	41.295806263 7.377912006	CaF2	1.55970990 1.00000000	95.548 95.040
	L814	721.012739719	-272.650872353	33.927118706 6.871397517	CaF2	1.55970990 1.00000000	95.443 95.207
50	L815	131.257556743	632.112566477AS	38.826450065 4.409527396	CaF2	1.55970990 1.00000000	81.345 74.847
	L816	342.127616157AS	449.261078744	37.346293509 4.859754445	CaF2	1.55970990 1.00000000	70.394 54.895
55	L817	144.034814702	-751.263321098AS	34.792179308 11.999872684	CaF2	1.55970990 1.00000000	48.040 33.475
	0'	unendlich	0	0.000127776		1.00000000	16.430

ASPHAERISCHE KONSTANTEN

5 Asphäre der Linse L801

	K	0.0000
	C1	4.90231706e-009
	C2	3.08634889e-014
10	C3	-9.53005325e-019
	C4	-6.06316417e-024
	C5	6.11462814e-028
	C6	-8.64346302e-032
	C7	0.00000000e+000
15	C8	0.00000000e+000
	C9	0.00000000e+000

Asphäre der Linse L803

20	K	0.0000
	C1	-5.33460884e-009
	C2	9.73867225e-014
	C3	-3.28422058e-018
25	C4	1.50550421e-022
	C5	0.00000000e+000
	C6	0.00000000e+000
	C7	0.00000000e+000
	C8	0.00000000e+000
30	C9	0.00000000e+000

Asphäre der Linse L803

35	K	0.0000
	C1	5.33460884e-009
	C2	-9.73867225e-014
	C3	3.28422058e-018
	C4	-1.50550421e-022
40	C5	0.00000000e+000
	C6	0.00000000e+000
	C7	0.00000000e+000
	C8	0.00000000e+000
	C9	0.00000000e+000
45		

Asphäre der Linse L805

50	K	0.0000
	C1	2.42569449e-009
	C2	3.96137865e-014
	C3	-2.47855149e-018
	C4	7.95092779e-023
	C5	0.00000000e+000
55	C6	0.00000000e+000
	C7	0.00000000e+000
	C8	0.00000000e+000
	C9	0.00000000e+000

60

Asphäre der Linse L806

	K	0.0000
5	C1	-6.74111232e-009
	C2	-2.57289693e-014
	C3	-2.81309020e-018
	C4	6.70057831e-023
	C5	5.06272344e-028
10	C6	-4.81282974e-032
	C7	0.00000000e+000
	C8	0.00000000e+000
	C9	0.00000000e+000

15 Asphäre der Linse L811

	K	0.0000
20	C1	2.28889624e-008
	C2	-1.88390559e-014
	C3	2.86010656e-017
	C4	-3.18575336e-021
	C5	1.45886017e-025
	C6	-1.08492931e-029
25	C7	0.00000000e+000
	C8	0.00000000e+000
	C9	0.00000000e+000

30 Asphäre der Linse L813

	K	0.0000
35	C1	3.40212872e-008
	C2	-1.08008877e-012
	C3	4.33814531e-017
	C4	-7.40125614e-021
	C5	5.66856812e-025
	C6	0.00000000e+000
	C7	0.00000000e+000
40	C8	0.00000000e+000
	C9	0.00000000e+000

45 Asphäre der Linse L815

45	K	0.0000
	C1	-3.15395039e-008
	C2	4.30010133e-012
	C3	3.11663337e-016
50	C4	-3.64089769e-020
	C5	1.06073268e-024
	C6	0.00000000e+000
	C7	0.00000000e+000
	C8	0.00000000e+000
55	C9	0.00000000e+000

60

Asphäre der Linse L816

5 K 0.0000
 C1 -2.16574623e-008
 C2 -6.67182801e-013
 C3 4.46519932e-016
 C4 -3.71571535e-020
 C5 0.00000000e+000
10 C6 0.00000000e+000
 C7 0.00000000e+000
 C8 0.00000000e+000
 C9 0.00000000e+000

15 Asphäre der Linse L817

20 K 0.0000
 C1 2.15121397e-008
 C2 -1.65301726e-011
 C3 -5.03883747e-015
 C4 1.03441815e-017
 C5 -6.29122773e-021
 C6 1.44097714e-024
25 C7 0.00000000e+000
 C8 0.00000000e+000
 C9 0.00000000e+000

30

Patentansprüche:

1. Projektionsobjektiv mit einer Objektebene 0 und mit einer Bildebene 0' mit einer Mehrzahl an Linsen, wobei mindestens zwei benachbart zueinander angeordneten Linsenoberflächen asphärisch sind, die im folgenden mit Doppelaspäre bezeichnet werden, dadurch gekennzeichnet, daß die Doppelaspäre in einem Abstand von mindestens dem maximalen Linsendurchmesser (D2) des Objektives von der Bildebene 0' beabstandet angeordnet ist und, wobei der Abstand (23) zwischen den asphärischen Linsenoberflächen (151, 152, 153, 154) der Doppelaspäre (21) kleiner als der halbe Linsendurchmesser des gemittelten Linsendurchmessers der Doppelaspäre (21) ist.
10
2. Refraktives Projektionsobjektiv mit mindestens fünf Linsengruppen G1 – G5 und mit mehreren Linsenoberflächen, wobei mindestens zwei asphärische Linsenoberflächen benachbart zueinander, im folgenden mit Doppelaspäre bezeichnet, angeordnet sind, dadurch gekennzeichnet, daß die Doppelaspäre (21) mindestens in einem Abstand des maximalen Linsendurchmessers (D2) des Objektives beabstandet von einer Bildebene 0' angeordnet ist.
15
3. Refraktives Projektionsobjektiv nach dem Oberbegriff des Anspruchs 1 oder 2, dadurch gekennzeichnet, daß das Projektionsobjektiv (5) mindestens zwei Taillen (G2, G4) aufweist.
20
4. Refraktives Projektionsobjektiv mit zwei Linsengruppen negativer Brechkraft, dadurch gekennzeichnet, daß mindestens eine der Linsengruppen negativer Brechkraft nur zwei Linsen negativer Brechkraft umfaßt.
25
5. Refraktives Projektionsobjektiv nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, daß die zweite Linsengruppe negativer Brechkraft maximal zwei Linsen negativer Brechkraft aufweist.

6. Refraktives Projektionsobjektiv nach Anspruch 5, dadurch gekennzeichnet, daß in der zweiten Taille eine asphärische Linsenoberfläche angeordnet ist.
7. Refraktives Projektionsobjektiv nach Anspruch 5 oder 6 , dadurch gekennzeichnet, daß 5 in einer Linsengruppe (G5) positiver Brechkraft, in der eine Blende (AP) angeordnet ist, mindestens eine Linse (L720, L722, L723) mit einer asphärischen Linsenoberfläche vorgesehen ist.
8. Refraktives Projektionsobjektiv nach einem der Ansprüche 4 bis 6, dadurch 10 gekennzeichnet, daß das Projektionsobjektiv mindestens eine Doppelaspähre nach Anspruch 2 aufweist.
9. Projektionsobjektiv mindestens nach Anspruch 2 oder 8 , dadurch gekennzeichnet, daß die asphärische Linsenoberflächen (AS1 und AS2, AS3 und AS4) auf verschiedenen 15 Linsen (L) angeordnet sind.
10. Refraktives Projektionsobjektiv nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß alle asphärischen Linsen (L104, L105, L107,L111, L203, L204, L206, L211) vor der zweiten Taille (G4) angeordnet sind. 20
11. Refraktives Projektionsobjektiv mindestens nach Anspruch 2 oder 9, dadurch gekennzeichnet, daß zwischen den asphärischen Linsenoberflächen (AS1 und AS4, AS3 und AS4) der Doppelaspähre (21) ein Abstand (23) von maximal ihrem mittleren halben Linsendurchmesser, gemessen auf der optischen Achse (7) vorgesehen ist. 25
12. Refraktives Projektionsobjektiv nach Anspruch 11, dadurch gekennzeichnet, daß zwischen den asphärischen Linsenoberflächen der Doppelaspähre (AS1 – AS4) ein Luftspalt (23) gemessen auf der optischen Achse (7) von maximal 20 % ihres gemittelten Radiusses vorgesehen ist. 30

13. Projektionsobjektiv mindestens nach Anspruch 1,2 oder 9, dadurch gekennzeichnet, daß die benachbart angeordneten asphärischen Linsenoberflächen (AS1-AS4) in einem äquidistanten Abstand voneinander angeordnet sind.
- 5 14. Refraktives Projektionsobjektiv nach mindestens einem der vorangegangenen Ansprüche 2 – 13, dadurch gekennzeichnet, daß in den ersten drei Linsengruppen (G1 bis G3) mindestens eine Doppelaspäre (21) angeordnet ist.
- 10 15. Projektionsobjektiv mindestens nach Anspruch 1, 2 oder 9, dadurch gekennzeichnet, daß sich die Radien der am besten passenden sphärischen Linsenoberflächen einer Doppelaspäre, die der jeweiligen asphärischen Linsenoberfläche (AS1 bis AS4) zugeordnet ist, um weniger als 30 % voneinander unterscheiden, wobei von dem vom Betrag größeren Radius ausgegangen wird.
- 15
16. Projektionsobjektiv mindestens nach Anspruch 1,2 oder 9, dadurch gekennzeichnet, daß sich die Scheitelradien der am besten passenden sphärischen Linsenoberflächen einer Doppelaspäre, die der jeweiligen asphärischen Linsenoberfläche (AS1 bis AS4) zugeordnet ist, um weniger als 30 % voneinander unterscheiden, wobei von dem vom Betrag größeren Radius ausgegangen wird.
- 20
17. Projektionsobjektiv nach mindestens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß sich die Durchmesser der ersten 13 Linsenoberflächen nahezu nicht, vorzugsweise um weniger als 10 %, unterscheiden.
- 25
18. Refraktives Projektionsobjektiv mindestens nach Anspruch 2 oder 9, dadurch gekennzeichnet, daß die ersten 13 Linsenoberflächen einen Durchmesser (D1) aufweisen, der kleiner als 40 % des maximalen Durchmessers (D2) von Linsen des Objektives (5) ist.
- 30

19. Projektionsobjektiv nach mindestens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß mittels der Doppelaspären (21) eine numerische Apertur von mindestens 0,8, insbesondere von 0,9, bereitgestellt wird.
- 5 20. Projektionsobjektiv nach mindestens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß durch zwei Linsenoberflächen ein mit Fluid beaufschlagbarer Zwischenraum gebildet wird.
- 10 21. Projektionsobjektiv mindestens nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß mindestens 40 % der Linsen, vorzugsweise 60% der Linsen, sphärisch sind.
22. Refraktives Projektionsobjektiv nach Anspruch 2, dadurch gekennzeichnet, daß mindestens 60 % der Linsen sphärisch sind.
- 15 23. Projektionsbelichtungsanlage der Mikrolithographie, dadurch gekennzeichnet, daß sie ein Projektionsobjektiv (5) nach mindestens einem der Ansprüche 1 bis 22 enthält.
- 20 24. Verfahren zur Herstellung mikrostrukturierter Bauteile bei dem ein mit einer lichtempfindlichen Schicht versehenes Substrat (15) mittels einer Maske (9) und einer Projektionsbelichtungsanlage (1) mit einer Linsenanordnung (19) nach mindestens einem der Ansprüche 1 bis 22 durch ultraviolettes Laserlicht belichtet wird und gegebenenfalls nach Entwickeln der lichtempfindlichen Schicht entsprechend einem auf der Maske enthaltenen Muster strukturiert wird.
- 25

1/9

FIG. 1

F/G.2

3/9

FIG.3

ERSATZBLATT (REGEL 26)

F/G. 4

4/9

ERSATZBLATT (REGEL 26)

5/9

FIG. 5

ERSATZBLATT (REGEL 26)

FIG. 6

ERSATZBLATT (REGEL 26)

7/9

FIG. 7

ERSATZBLATT (REGEL 26)

FIG. 8

ERSATZBLATT (REGEL 26)

9/9

FIG. 9

INTERNATIONAL SEARCH REPORT

International	Application No
PCT/EP 00/13148	

A. CLASSIFICATION OF SUBJECT MATTER		
IPC 7	G02B13/14	G02B13/18
		G03F7/20

According to International Patent Classification (IPC) or to both national classification and fIPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7	G02B	G03F
-------	------	------

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

WPI Data, EPO-Internal, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP 1 079 253 A (NIPPON KOGAKU KK) 28 February 2001 (2001-02-28) cited in the application figures 4A,4B,7A,7B; tables 1,2	2
A	-& WO 99 52004 A (NIPPON KOGAKU KK) 14 October 1999 (1999-10-14) ---	1,3-24
X	PATENT ABSTRACTS OF JAPAN vol. 1999, no. 13, 30 November 1999 (1999-11-30) -& JP 11 231219 A (RICOH OPT IND CO LTD), 27 August 1999 (1999-08-27) abstract; figures --- ---	4

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the International filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the International filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

25 May 2001

01/06/2001

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Ward, S

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 00/13148

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	PATENT ABSTRACTS OF JAPAN vol. 1999, no. 03, 31 March 1999 (1999-03-31) -& JP 10 325922 A (NIKON CORP), 8 December 1998 (1998-12-08) abstract; figures 1,3,7 ---	1-24
A	US 4 757 354 A (KAWATA KOICHI ET AL) 12 July 1988 (1988-07-12) column 7, line 11 - line 25 figures 6,7 ---	1-24
A	US 5 990 926 A (MERCADO ROMEO I) 23 November 1999 (1999-11-23) abstract; figures ---	1-24
A	US 5 835 285 A (MATSUZAWA HITOSHI ET AL) 10 November 1998 (1998-11-10) abstract; figures ---	4
A	US 4 861 148 A (KAWATA KOICHI ET AL) 29 August 1989 (1989-08-29) column 5, line 30 - line 45 figures 5,6 ---	1-24
A	EP 0 816 892 A (NIPPON KOGAKU KK) 7 January 1998 (1998-01-07) figures 1,3 ---	1-24
A	US 5 724 121 A (BURGESS JOHN R ET AL) 3 March 1998 (1998-03-03) column 9, line 10 - line 20; figures ---	1-24
A	EP 0 851 304 A (CANON KK) 1 July 1998 (1998-07-01) cited in the application abstract; figures ---	1-24
A	DE 198 18 444 A (NIPPON KOGAKU KK) 29 October 1998 (1998-10-29) cited in the application abstract; figures ---	1-24
A	EP 0 332 201 A (MATSUSHITA ELECTRIC IND CO LTD) 13 September 1989 (1989-09-13) cited in the application abstract; figures ---	1-24

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP 00/13148

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP 1079253	A 28-02-2001	JP 2000195772 A JP 11354436 A WO 9952004 A		14-07-2000 24-12-1999 14-10-1999
JP 11231219	A 27-08-1999	NONE		
JP 10325922	A 08-12-1998	NONE		
US 4757354	A 12-07-1988	JP 62258414 A JP 63014112 A DE 3784963 A DE 3784963 T EP 0243950 A		10-11-1987 21-01-1988 29-04-1993 15-07-1993 04-11-1987
US 5990926	A 23-11-1999	JP 11097347 A		09-04-1999
US 5835285	A 10-11-1998	JP 8190047 A EP 0721150 A		23-07-1996 10-07-1996
US 4861148	A 29-08-1989	JP 62210415 A JP 63014113 A DE 3787035 A DE 3787035 T EP 0237041 A		16-09-1987 21-01-1988 23-09-1993 10-03-1994 16-09-1987
EP 0816892	A 07-01-1998	JP 10003039 A		06-01-1998
US 5724121	A 03-03-1998	NONE		
EP 0851304	A 01-07-1998	JP 10242048 A US 6104472 A		11-09-1998 15-08-2000
DE 19818444	A 29-10-1998	JP 11006957 A US 6008884 A		12-01-1999 28-12-1999
EP 0332201	A 13-09-1989	JP 2220015 A JP 1315709 A JP 2012132 C JP 7048089 B DE 68916451 D DE 68916451 T US 4948238 A		03-09-1990 20-12-1989 02-02-1996 24-05-1995 04-08-1994 17-11-1994 14-08-1990

INTERNATIONALER RECHERCHENBERICHT

Internat. Patentzeichen
PCT/EP 00/13148

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 G02B13/14 G02B13/18 G03F7/20

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 G02B G03F

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

WPI Data, EPO-Internal, PAJ

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Beitr. Anspruch Nr.
X	EP 1 079 253 A (NIPPON KOGAKU KK) 28. Februar 2001 (2001-02-28) in der Anmeldung erwähnt Abbildungen 4A,4B,7A,7B; Tabellen 1,2	2
A	-& WO 99 52004 A (NIPPON KOGAKU KK) 14. Oktober 1999 (1999-10-14)	1,3-24
X	PATENT ABSTRACTS OF JAPAN vol. 1999, no. 13, 30. November 1999 (1999-11-30) -& JP 11 231219 A (RICOH OPT IND CO LTD), 27. August 1999 (1999-08-27) Zusammenfassung; Abbildungen	4
	-/-	

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- *A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- *E* älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- *O* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- *P* Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

- *T* Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- *X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden
- *Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Absendedatum des Internationalen Recherchenberichts

25. Mai 2001

01/06/2001

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Ward, S

INTERNATIONALER RECHERCHENBERICHT

Internatio	Aktenzeichen
PCT/EP 00/13148	

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	PATENT ABSTRACTS OF JAPAN vol. 1999, no. 03, 31. März 1999 (1999-03-31) -& JP 10 325922 A (NIKON CORP), 8. Dezember 1998 (1998-12-08) Zusammenfassung; Abbildungen 1,3,7	1-24
A	US 4 757 354 A (KAWATA KOICHI ET AL) 12. Juli 1988 (1988-07-12) Spalte 7, Zeile 11 – Zeile 25 Abbildungen 6,7	1-24
A	US 5 990 926 A (MERCADO ROMEO I) 23. November 1999 (1999-11-23) Zusammenfassung; Abbildungen	1-24
A	US 5 835 285 A (MATSUZAWA HITOSHI ET AL) 10. November 1998 (1998-11-10) Zusammenfassung; Abbildungen	4
A	US 4 861 148 A (KAWATA KOICHI ET AL) 29. August 1989 (1989-08-29) Spalte 5, Zeile 30 – Zeile 45 Abbildungen 5,6	1-24
A	EP 0 816 892 A (NIPPON KOGAKU KK) 7. Januar 1998 (1998-01-07) Abbildungen 1,3	1-24
A	US 5 724 121 A (BURGESS JOHN R ET AL) 3. März 1998 (1998-03-03) Spalte 9, Zeile 10 – Zeile 20; Abbildungen	1-24
A	EP 0 851 304 A (CANON KK) 1. Juli 1998 (1998-07-01) in der Anmeldung erwähnt Zusammenfassung; Abbildungen	1-24
A	DE 198 18 444 A (NIPPON KOGAKU KK) 29. Oktober 1998 (1998-10-29) in der Anmeldung erwähnt Zusammenfassung; Abbildungen	1-24
A	EP 0 332 201 A (MATSUSHITA ELECTRIC IND CO LTD) 13. September 1989 (1989-09-13) in der Anmeldung erwähnt Zusammenfassung; Abbildungen	1-24

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internatio. PCT/EP	tenzeichen 00/13148
-----------------------	------------------------

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
EP 1079253 A	28-02-2001	JP 2000195772 A JP 11354436 A WO 9952004 A	14-07-2000 24-12-1999 14-10-1999
JP 11231219 A	27-08-1999	KEINE	
JP 10325922 A	08-12-1998	KEINE	
US 4757354 A	12-07-1988	JP 62258414 A JP 63014112 A DE 3784963 A DE 3784963 T EP 0243950 A	10-11-1987 21-01-1988 29-04-1993 15-07-1993 04-11-1987
US 5990926 A	23-11-1999	JP 11097347 A	09-04-1999
US 5835285 A	10-11-1998	JP 8190047 A EP 0721150 A	23-07-1996 10-07-1996
US 4861148 A	29-08-1989	JP 62210415 A JP 63014113 A DE 3787035 A DE 3787035 T EP 0237041 A	16-09-1987 21-01-1988 23-09-1993 10-03-1994 16-09-1987
EP 0816892 A	07-01-1998	JP 10003039 A	06-01-1998
US 5724121 A	03-03-1998	KEINE	
EP 0851304 A	01-07-1998	JP 10242048 A US 6104472 A	11-09-1998 15-08-2000
DE 19818444 A	29-10-1998	JP 11006957 A US 6008884 A	12-01-1999 28-12-1999
EP 0332201 A	13-09-1989	JP 2220015 A JP 1315709 A JP 2012132 C JP 7048089 B DE 68916451 D DE 68916451 T US 4948238 A	03-09-1990 20-12-1989 02-02-1996 24-05-1995 04-08-1994 17-11-1994 14-08-1990