

Question Number	Scheme	Marks		
	$S_n = \frac{n}{2} \left(2a + (n-1)d \right)$			
	$\sum = \frac{n}{2} \left(2 + (n-1) \times 1 \right) \text{or} S_n = \frac{n}{2} \left(a + l \right)$	M1		
	$\sum = \frac{n}{2}(1+n) * \qquad \qquad \frac{n}{2}(1+n)$	A1 cso (2)		
(b)	$\sum_{1}^{100} r = 50(100+1) = 5050$	M1(either sum using result in (a))		
	Multiples of 7 $S_{14} = \frac{14}{2} (7 + 98) = 735$	A1(both sums correct)		
	Reqd sum $= 5050 - 735 = 4315$	A1cso (3) [5]		

(a) M1 This is a "show" question, so the formula used must be quoted first if using $S_n = \frac{n}{2}(a+l)$. For $S_n = \frac{n}{2}(2a+(n-1)d)$, the unsimplified substitution is sufficient.

A1cso Obtain the GIVEN result

(b) M1 Attempt the sum of all integers up to 100 (100 terms) or the multiples of 7 (14 terms)
 A1 Both sums correct

A1cso Subtract to obtain 4315

List the terms needed and add: Question says "Hence", so the result must be used at least once, probably seen in the sum of all the integers up to 100. The multiples of 7 may be listed and added before subtracting from the sum up to 100.

2. (a)	Missing values: 7, 5.09, 3.5, 3.46	B1(any 2) B1(all corr.)	
(b)	Plot points Smooth curve through points plotted	B1ft	(2) (2)
(c)	$x - 3 + \frac{3}{x^2} = 0$		
	$x + \frac{6}{x^2} = 6 - x$	M1A1	
	Draw $y = 6 - x$	dM1	
	x = 1.3 or 1.4, 2.5 or 2.6		4) 8]

(a) **B1** Any 2 values correct

B1 Remaining 2 values correct

(b) B1ft Plot *their* points correctly

B1 Draw a smooth curve through *their* plotted points.

(c) M1 Attempt to re-arrange the given equation to the form $x + \frac{6}{x^2} = ax + b$ (a,b to be numbers now or later)

A1 Correct RHS

dM1 Draw *their* line Must be of form y = ax + b with $a \ne 0$

A1 x = 1.3 or 1.4, 2.5 or 2.6 Must be 1 dp unless more figures are shown and a mark has been lost in (a) because of failing to round

4PM0/02: Q2 GRAPH PLOT

Points of intersection:

$$x = 1.347$$
 $y = 4.653$ (4sf)

$$x = 2.532$$
 $y = 3.468$ (4sf)

3. (a)	$ar^2 - ar^3 = 2ar^4$ (or $ar^3 - ar^2 = 2ar^4$)	M1	
	$ar^2\left(2r^2+r-1\right)=0$		
	$ar^2(2r-1)(r+1)=0$	dM1	
	$ar^{2} - ar^{3} = 2ar^{4}$ (or $ar^{3} - ar^{2} = 2ar^{4}$) $ar^{2}(2r^{2} + r - 1) = 0$ $ar^{2}(2r - 1)(r + 1) = 0$ $r = \frac{1}{2}$ * $400 = \frac{a}{1 - \frac{1}{2}}$ a = 200	A1 cso	(3)
(b)	$400 = \frac{a}{1 - \frac{1}{2}}$	M1	
	a = 200	A1	(2)
(c)	$S_{10} = \frac{a(1-r^n)}{1-r} = 400 \times \left(1 - \left(\frac{1}{2}\right)^{10}\right)$	M1	
	$=399.609375$ or $\frac{25575}{64}$ or $399\frac{39}{64}$	A1cao	(2)
	g.		[7]

(a) M1 Attempt to form an equation connecting the 3rd, 4th and 5th terms

depM1 Attempt to factorise their quadratic (usual rules). May divide by ar^2 first.

A1cso Obtain the GIVEN answer from correct working. Both solutions for the quadratic must be shown and r = -1 rejected

- **(b) M1** Use the formula for the sum to infinity with $r = \frac{1}{2}$
 - **A1** Obtain the correct value of *a*
- (c) M1 Use the formula for the sum of the first 10 terms, $r = \frac{1}{2}$ and their a
- **A1cao** Obtain the correct sum (min 3 decimal places or exact answer)
 - (a) If done by verification: Scores M1M0A0 (max) as $r = \frac{1}{2}$ not shown to be the **only** solution.

4(a)	$\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP}$	M1
	$\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP}$ $= \mathbf{i} - 8\mathbf{j}$	A1 (2)
(b)	$\left \overrightarrow{PQ} \right = \sqrt{1^2 + 8^2} = \sqrt{65}$	M1
	Unit vector $=\pm \frac{1}{\sqrt{65}} (\mathbf{i} - 8\mathbf{j})$ oe	$ \begin{array}{c} A1ft(on \ \overrightarrow{PQ}) \\ (2) \end{array} $
(c)	$\left \overrightarrow{OP} \right = \sqrt{3^2 + 6^2} = \sqrt{45}$	M1either length
	$\left \overrightarrow{OP} \right = \sqrt{3^2 + 6^2} = \sqrt{45}$ $\left \overrightarrow{OQ} \right = \sqrt{4^2 + 2^2} = \sqrt{20}$ $\left \overrightarrow{OP} \right ^2 + \left \overrightarrow{OQ} \right ^2 = \left \overrightarrow{PQ} \right ^2$	A1 (both corr.)
	$\left \left \overrightarrow{OP} \right ^2 + \left \overrightarrow{OQ} \right ^2 = \left \overrightarrow{PQ} \right ^2$	M1
	∴ right angle at <i>O</i> ALT: Use gradients	A1 cso (4) [8]

Vector arrows may be missing and \mathbf{i} and \mathbf{j} need not be made bold/underlined. Column vectors allowed apart from (a)

(a) M1 A correct statement as shown, or equivalent to that

A1 For i-8j

(b) M1 Attempting the modulus of *their* \overrightarrow{PQ} Pythagoras statement must have a + sign

A1ft Giving a unit vector, follow through their \overrightarrow{PQ} . Can be in direction P to Q or reverse.

(c) M1 Attempting the length of either \overrightarrow{OP} or \overrightarrow{OQ} numbers to be added in the Pythagoras statement

A1 Both lengths correct, as given or equivalent exact answers

M1 Attempt to show their lengths fit Pythagoras

A1cso A correct solution and a concluding statement. (Accept eg "shown" or an appropriate symbol

ALT using gradients:

M1 Attempting the gradient of either vector (numbers needed)

A1 Both gradients correct grad OP = 2; grad $OQ = -\frac{1}{2}$

M1 Forming the product of their gradients

A1cso Product to be -1 and a concluding statement given

Special case: If both gradients are found as $\frac{"x"}{"y"}$, award M1A1M1A0 (max)

If one gradient found as $\frac{\|x\|}{\|y\|}$ and the other as $\frac{\|y\|}{\|x\|}$ only M marks are available

By Scalar Product: M1A1Correct product M1 Multiply out A1 All correct and a conclusion

5(a)	$t^3 - 5t^2 + 6t = 0 t^2 - 5t + 6 = 0$	M1
	(t-3)(t-2)=0	dM1
	$t = 2, \ t = 3$	A1 (3)
(b)	$t^{3} - 5t^{2} + 6t = 0 t^{2} - 5t + 6 = 0$ $(t - 3)(t - 2) = 0$ $t = 2, t = 3$ $v = \frac{ds}{dt} = 3t^{2} - 10t + 6$	M1A1
	$t=1$ $v=3\times1^2-10\times1+6=-1$, v or speed =1 m/s	A1,A1ft
(c)	$\frac{\mathrm{d}v}{\mathrm{d}t} = 6t - 10$	(4) M1
	$t = 2$ $a = 6 \times 2 - 10 = 2$ m/s ²	M1 (A1 on ePEN)
	ft on values of t $t=3$ $a=6\times3-10=8$ m/s ²	A1 (3) [10]

(a) M1 Equate the given expression to zero and divide by (or take out) the common factor t

dM1 Factorise *their* resulting quadratic or use another method to solve (usual rules).

A1 Both (correct) values of t. Ignore t = 0 if included.

(b) M1 Attempt to differentiate the given expression

A1 Correct differentiation

A1 Obtain v = -1 by substituting t = 1 in a correct expression for v

A1ft Change a negative answer to a *positive* one. Follow through their v

(c) M1 Differentiate again to obtain an expression for the acceleration

M1 Substitute one of *their* answers from (a) in their expression for the acceleration

A1 For 2 and 8 (Ignore $a = \pm 10$ from t = 0)

	$S = \frac{1}{2} \times 10^2 \theta - \frac{1}{2} \times 6^2 \theta$	M1A1
	= 32 <i>\theta</i> *	A1cso (3)
(b)	$= 32\theta *$ $\frac{dS}{dt} = 32 \frac{d\theta}{dt}$ $\frac{dS}{dt} = 32 \times 0.2 = 6.4$ $20 = 32\theta$	M1
	$\frac{\mathrm{d}S}{\mathrm{d}t} = 32 \times 0.2 = 6.4$	A1 (2)
(c)	$20 = 32\theta$	M1
	$\theta = \frac{20}{32} \text{oe inc } 0.625$	A1
	Perim = $10 \times \frac{20}{32} + 6 \times \frac{20}{32} + 2 \times 4$	M1A1ft (their θ)
	=18 cm	A1 (5) [10]
	ALT : Perim = $10\theta + 6\theta + 8 = 16\theta + 8 = \frac{1}{2}S + 8 = 18$	

Can be worked in degrees but final answers must be exact and correct.

- (a) M1 Using Area = $\frac{1}{2}r^2\theta$ to obtain an expression for S by subtracting 2 areas
 - **A1** Correct numbers in the expression
- **A1cso** Obtaining the GIVEN answer from correct working
- (b) M1 Differentiate $S = 32\theta$ with respect to t (inc use of chain rule) Evidence of differentiation needed. $32 \times 0.2 = 6.4$ alone is **not** sufficient
 - A1 Substitute $\frac{d\theta}{dt} = 0.2$ and obtain $\frac{dS}{dt} = 6.4$
- (c) M1 Form an equation for θ
 - A1 Solve the equation to obtain the value of θ (any equivalent fraction)
 - M1 Forming an expression for the perimeter of the shaded area. Must have 2 arcs and 2 straight lines all added. Award with θ or their value.
- **A1ft** All numbers correct, follow through their value for θ
- A1 Correct perimeter

ALT:

- M1 Form an expression for the perimeter in terms of θ Must be evidence of all 4 parts.
- **A1** Collect terms (may be awarded by implication)
- M1 Substitute $\theta = \frac{S}{32}$ to obtain an expression for the perimeter in terms of S
- **A1** Correct expression
- A1 Substitute S = 20 to obtain the correct perimeter.

7(a)	$\frac{1}{3} \times h \times 48 + 48h = 256$	M1	
	$\begin{vmatrix} \frac{1}{3} \times h \times 48 + 48h = 256 \\ h = 4 & * \end{vmatrix}$	A1 ((2)
(b)	$FH = 10$ or $\frac{1}{2}FH = 5$	B1	
	$VF^2 = 8^2 + \left(\frac{1}{2} \text{ their } FH\right)^2$	M1	
	VF = 9.43 cm	A1	(3)
(c)	$\tan A = \frac{4}{5}$	M1A1	
	$A = 38.7^{\circ}$	A1	(3)
(d)	$\tan \phi = \frac{4}{3} \qquad \tan \theta = \frac{4}{6}$ $\phi = 53.13$	M1 (either	r)
	$\phi = 53.13$	A1	
	$\theta = 33.69$	A1	
	Reqd angle $= 86.8^{\circ}$	A1 cao	(4) 12]

- (a) M1 Forming an equation for the volume of the solid by adding the volumes of the two parts and equating to 256
 - **A1** Solving to get the GIVEN answer
- **ALT** Form an expression for the volume and substitute h = 4 (M1) obtain 256 (A1)
- (b) **B1** Correct length of the diagonal or half-diagonal of the base (or top) of the cuboid
 - M1 Using Pythagoras (with height 8 and their $\frac{1}{2}FH$ and a + sign) to find VF^2
 - **A1** Correct value for *VF* **must** be 3 sf
- (c) M1 Finding an expression for the tan of the **required** angle (or cos or sin)
 - A1 Correct numbers in their chosen trig function
 - A1 Obtain $A = 38.7^{\circ}$ must be to nearest 0.1°
- (d) M1 Obtaining a trig function for either of the two angles needed
 - A1 Correct value for either angle
 - **A1** Correct value for the other angle

These two marks can be awarded by implication if all work done on a calculator and final answer is correct

A1cao Correct result when their angles are added. **must** be to nearest 0.1° unless penalised in (c)

ALT M1 Use cosine rule either form in the correct triangle. Lengths must be found A1,A1 Deduct 1 per error ie A1A0 for 1 error seen A1 correct answer

Correct cosine rule: $\cos \theta = \frac{5^2 + 52 - 73}{2 \times 5\sqrt{52}}$ oe

8(a)
$$x = 0 \Rightarrow y = 0 : 0 = 0 + 0 + 0 + c$$
 B1 (1)
(b) $[f(2)] = 0 = 8 + 4a + 2b \quad [f(4)] = 0 = 64 + 16a + 4b$ M1 A1 A1 (3)
 $a = -6, b = 8$ A1 A1 (3)
 ALT : Use factors and multiply out $a = -6, b = 8$ B1 M1 A1, A1 (6)
(c) $x = 3 \quad y = 3^3 - 6 \times 3^2 + 8 \times 3 = -3$ B1 M1 M1 $\frac{dy}{dx} = 3x^2 - 12x + 8$ M1 M1 $x = 3 \quad \frac{dy}{dx} = 3x^2 - 12x + 8 = -1$ $\therefore l$ is the tangent at P A1 cso (4)
(d) Eqn of l : $y = -x$ Area $= \int (f(x) - (-x)) dx = \int (x^3 - 6x^2 + 8x + x) dx$ M1 $= \left[\frac{1}{4}x^4 - 2x^3 + \frac{9}{2}x^2\right]_0^3$ M1 A1ft $= \frac{1}{4} \times 3^4 - 2 \times 3^3 + \frac{9}{2} \times 3^2$ (-0) dM1 $= 6\frac{3}{4}$ (accept 6.75 or $\frac{27}{4}$) A1cao (5)[13]

- (a) B1 Show c = 0 by substituting x = 0 in the curve equation or state $x = 0 \Rightarrow y = 0$ Or x(x-2)(x-4)=0 (Must be evidence for c = 0)
- **(b) M1** Either use the factor theorem with x = 2 and x = 4 and attempt to solve the resulting equations Or use factors (x-2)(x-4) and multiply out
 - **A1** Either *a* or *b* correct
 - A1 Other value correct If factor method used values need not be shown explicitly. $y = x^3 - 6x^2 + 8x$ scores A1A1
- (c) **B1** Correct value for y coordinate of P obtained using the equation of C
 - M1 Attempt the gradient or equation of l or equation of tangent
 - **M1** Differentiate *their* curve equation
- **A1cso** Substitute x = 3 in the derivative to obtain the correct gradient of the tangent at P and give a concluding statement "shown" is sufficient.
- **ALT** B1 y coordinate M1 Equation of l M1 Solve with C A1 $x(x-3)^2 = 0$ and conclusion
- (d) M1 Attempting the area integral, $\pm (C-l)$, with their equation of l Correct limits are needed.
 - M1 Attempting the integration. Limits not needed. Integrand need not be simplified
- **A1ft** Correct integration, ignore limits. No simplification needed. ft their equation of l
- dM1 Correct use of limits for their method. Dependent on both M marks above.
- **A1** Correct answer, any form. Must be positive.

NB: If the area is split into parts, 3 integrals are needed (*C* 0 to 2, 2 to 3 and *l*) or 2 integrals and a triangle. Award M1 if an appropriate expression using these 3 parts is seen Correct limits are needed. M1 Integrate **both** functions in separate integrals or integrate *C* and find the area of the triangle. Rest as above

9 (a)	(6,6)	B1B1	(2)
(b)	$AB^2 = 8^2 + 6^2$	M1	
	$AB = \sqrt{100} = 10$	A1	(2)
(c)	$Grad AB = -\frac{6}{8}$	M1	
	Grad $\perp = \frac{8}{6}$ oe	A1	
	Eqn \perp bisector: $y-6=\frac{4}{3}(x-6)$	M1	
	3y = 4x - 6 or any integer multiple of this	A1	(4)
(d)	$y = 2 \qquad 6 = 4d - 6$ $d = 3$	M1	
		A1	(2)
(e)	(12,14)	B1B1	(2)
(f)	$DE = \sqrt{9^2 + 12^2} = 15$	M1	
	Area = $\frac{1}{2} \times AB \times DE = \frac{1}{2} \times 10 \times 15$	M1A1ft (their len	ngths)
	$=75 \text{ (units}^2)$	A1 (4)	[16]
ALT	Area = $\frac{1}{2}\begin{vmatrix} 2 & 3 & 10 & 12 & 2 \\ 9 & 2 & 3 & 14 & 9 \end{vmatrix} = 75 \text{ units}^2$	M2A1ft(coords)	`

(a) B1B1 B1B1 Both coords correct; B1B0 One correct, or recognisable method but neither correct

(b) M1 Attempt Pythagoras with + sign

A1 Correct length

(c) M1 Attempt the gradient of AB Must be $\frac{"y"}{"x"}$.

A1 Correct gradient of the perpendicular

M1 Attempt the equation of the perp bisector with their coordinates of M. Gradient must be $\frac{-1}{their \operatorname{grad} AB}.$

A1 Correct equation, **must** be in the required form

(d) M1 Substitute y = 2 in *their* equation for l

A1 Obtain d = 3 or x = 3

(e) **B1B1** B1B1 Both coords correct; B1B0 One correct.

(f) M1 Attempt the length of *DE*. Numbers to be added in Pythagoras. (Or *DM* and *ME* if using triangles *ABE* and *ADE*)

M1 Any complete method for the area of the kite - kite formula or by triangles

A1ft Correct lengths substituted follow through their lengths

A1cao Area = $75 \text{ (units}^2\text{)}$

ALT: M2 for a correct "determinant" with $\frac{1}{2}$ and 4 different pairs of coordinates, first repeated as fifth;

A1ft *their* coords used correctly (ie clockwise or anticlockwise round the kite from any vertex) A1 correct area

10(a)	$\log_3 9 = 2$	B1	(1)
(b)	$\log_9 4 = \frac{\log_3 4}{\log_3 9}$ $= \frac{1}{2} \log_3 4 k = \frac{1}{2}$	M1	
	$=\frac{1}{2}\log_3 4 k=\frac{1}{2}$	A1	(2)
(c)	$2x\log_3 x - 3\log_3 x - 4x\log_9 4 + 6\log_9 4 = (2x - 3)\log_3 x - 2(2x - 3)\log_9 4$	M1	
	$= (2x-3)(\log_3 x - 2\log_9 4)$	A1	
	$= (2x-3)(\log_3 x - \log_3 4)$	M1	
	$= (2x-3)(\log_3 x - 2\log_9 4)$ $= (2x-3)(\log_3 x - \log_3 4)$ $= (2x-3)\log_3 \left(\frac{x}{4}\right)$	M1	
	$= \log_3 \left(\frac{x}{4}\right)^{(2x-3)} *$ $\log_3 \left(\frac{x}{4}\right)^{(2x-3)} = 0$ $2x-3=0 \text{ or } \frac{x}{4}=1$ $x = \frac{3}{2}, x = 4$	A1	cso (5)
(d)	$\log_3\left(\frac{x}{4}\right)^{(2x-3)} = 0$		
	$2x-3=0 \text{ or } \frac{x}{4}=1$	M1	(either)
	$x = \frac{3}{2}, x = 4$	A1A	1 (3)
			[11]

- (a) **B1** Correct answer
- (b) M1 Use change of base formula. (Can change both sides to any consistent base)

A1 Obtain $k = \frac{1}{2}$

- (c) M1 Attempt to move to two log terms $\pm 2(2x-3)$ or $\pm (4x-6)$ with $\log_9 4$
 - **A1** Complete to two correct brackets
 - M1 Change base of $\log_9 4$ to 3 Use their value of k from (b) for this
 - M1 Combine the two logs to form a single log
 - A1 Obtain the GIVEN answer brackets not needed in the index May work in reverse:

M1 Bring down power; A1 obtain 2 logs from the single log, must be a difference; M1 change $\log_3 4$ to integer $\times \log_3 4$; M1 Multiply out brackets; A1 GIVEN answer

There are variations on this - look for the 3 M marks and award the first A mark after first M mark and second A mark at end if all correct.

- (d) M1 Obtain either of the two linear equations shown
 - **A1** One correct answer
 - **A1** Second correct answer