Variants

position and possible consequences

everything what can go wrong, will go wrong

tinyurl.com/ Avans201904b

Johan den Dunnen

based on lecture Jan Traeger-Synodinos VEPTC Prague 2017

Human & Clinical Genetics

(Leiden University Medical Center)

• Genetic Disease

neuromuscular disorders http://www.DMD.nl diagnosis treatment / therapy exon skipping DMD

Genome Technology try and apply facilitate

Leiden Genome Technology Center http://www.LGTC.nl/

Subjects

Variants

- basic types

All possibilities & examples

- DNA
- RNA
- protein

Use your imagination which variants did you find / can you think of?

Variant <> phenotype

combination should make sense

gene function should "explain" phenotype gene expressed in affected tissue for analysis use affected tissue RNA, protein analysis

do not give up

check options you can not exclude did you detect ALL possible variants did you consider all variant to problem options

Terminology

prevent confusion

mutation meaning, ...

-biology: change

-medical: disease-causing change

polymorphism, meaning ...

-biology: change in >1% population

-medical: not disease causing change

use neutral terms

sequence variant alteration

CNV (Copy Number Variant)

SNV (not SNP)

would you like to be a mutant?

Variant types?

Variant types?

• error in sequence

too much / too little

wrong position place, time

Variant types

change in sequence

ACATCAGGAGAAGATGTTC GAGACTTTGCCA
ACATCAGGAGAAGATGTTT GAGACTTTGCCA
ACATCAGGAGAAGATGTTT GAGACTTTGCCA
ACATCAGGAGAAGATGTTCCGAGACTTTGCCA

change in amount (Copy Number Variation)

change in position

Variants

• small changes

larger changes

Variants

- Small changes substitution few nucleotide changes deletion, duplication, insertion, "indel"
- Iarger changes
 structural variants (SV)
 translocation
 insertion
 transposition
 copy number variant (CNV)
 deletion
 duplication (insertion)
 inversion
 conversion
 complex

protein coding variant "easy" to explain, others often difficult to proof

MLPA result

result of an MLPA what did the assay detect?

the assay detects an extra copy

where the extra copy is remains to be determined, could be anywhere in the genome

some genes are dosage sensitive, some are not

deletions are more likely to be deleterious then duplications determining the exact break point is <u>critical</u> (incl. RNA analysis) the <u>amount</u> of product can also be deleterious

Origin of variants

- Ouring cell cycle DNA replication (copying information) meiosis / mitosis (dividing information) different rates in female / male large rearrangements / SNVs
- damage
 environmental
 radiation, chemicals (smoke), UV, ...
 ~100,000 per cell daily

consequence?

Germline (inherited)	Somatic (acquired)
present from birth	acquired during life
present in every cell	limited to certain cells
can be transmitted	non transmitted

De novo variants

genome sequencing78 mother-father-child trios

ARTICLE

23 AUGUST 2012 | VOL 488 | NATURE 471

Rate of *de novo* mutations and the importance of father's age to disease risk

Augustine Kong¹. Michael L. Frigge¹, Gisli Masson¹. Soren Besenbacher^{1,2}, Patrick Sulem¹, Gisli Magnusson¹, Sigurjon A. Gudjonsson¹, Asgari Sigurdsson¹, Asjaug Jonasdottir¹, Adalbjorg Jonasdottir¹, Wendy S. W. Wong³, Gunnar Sigurdsson¹, G. Bragi Walters¹, Stacy Steinberg¹, Hannes Helgason¹, Gudmar Thorleifsson¹, Daniel F. Gudbjartsson¹, Agnar Helgason^{1,4}, Olafur Th. Magnusson¹, Unnur Thorsteinsdottr^{1,5} & Kari Stefansson^{1,5}

Kong et al. 2012 Nature 488: 471

de novo variants

~60 small scale changes

~15 maternal

~45 paternal

stable over time variable with age

effect paternal age

20y > 25 variants

40y > 65 variants

2 extra variants / year

How many

based on 1000 Genomes Project Consortium

4.1-5.0 million small changes

SNVs, short indels

2,100-2,500 other variants

1,000 large deletions
160 CNVs
915 Alu / 128 L1 insertions
51 composite SINE/VNTR/Alu insertions
4 nuclear mitochondrial DNA variants
10 inversions

(includes upto 30 Mb's of sequence present in you not your neighbour)

Long-read sequencing

http://www.pacb.com/wp-content/uploads/2017-EMEA-UGM-A-Hoischen-Long-read-Sequencing.pdf

small SVs

~25,000 SVs per genome

A. Hoischen (Nijmegen)

Radboudumc

large SVs

AGAATCTGGGATGGATGGGGTGGATGGGGGGATGGGGGGTGTTTTCGGGGGAGATTCTCTTCCAGGGGATCACAGCTTCTCATTTGGAGAATCCTCTTCCTCTTCCTTCCGTCAACGACCTCACTTGCGTTGTCACTGGCTCCACCAGCGGCATTGGGCTGAAACCGCGAGGCAGCTTGCAGAAGCTGGTGCTCATGTTGTGATGGCCGTAA CLAAAGGLGGCTCAGGAGCTGATACTGCAATGGCAGAACGAATGGCTCTGGTAAAGGTCTCCCACTCAATATTGAGGCAATGTGCATGTTCTGATTAACAATGCTGG

wodern approach

TTAGCTCCAGCGCGGTTTTGTTGATGTTTAGTAGCA GATCTATCCAGG

 $ATTCTTCAAGCTC\overline{T}TTACGCAGTGATACCTTATTTCATATTTTCACCCCAAGAAGGTTGTAGAAGTTCTCTATTCTCGGCCACAGATCCTCAGAT$ TCCAGAGTACTGGGAAACACTAAAAAACGATGATTGGCCTGTTTGCCCATTCATCTCTCAAGATTGCCGCCCTGCAAATCCTTCCGAAGAAGCAC|ACAACACAGAAACTGCACAGAGAGTGTGGAAAAAGACGTTAGAGCTGGTGGGTCTTCCTCTCGATGCAGTTGAGAAGCTCATAGAAGGGGAAAAT*GGATAAAAGTCAAGCTTTA GAGCTTCCAGGAGTTGAGG*

TTGTGAAGCCATAGATATTACGAAACGACGTCATCTCCGAGATTCTCTTCCAGAGGA

CTGCTTTCAGTAC

CCCGGATGACATG

TTCTTTTCAAAAA

sequence, everytnii

ATGGAGCAGTGTTTTCGGGGCGTTGTCACTGGCTCCAC $CAGCGGCATTGGGCTGAAA\overline{CCGCGAGGCAGCTTGCAGAAGCTGGTGCTCATGTTGTGATGGCCGTAAGGAACACAAAGGCGGCTCAGGAGCTGAT$

GAG

AAGAAGAAGATGAGTG

ACTGCAATGGCAGAACGAATGGTCTGGTAAAGGTCTCCCACTCAATATTGAGGCAATGGAGATTGATCTACTCTCACTGGATTCTGTCGCGAGAT

TTGCTGAGGCTTTCAACGCTCGGTTAGGACCTTTGCATGTTCTGATTAACAATGGAAGGATATGAGCAGCACATGCAAGTGAATCATTTAGCTCCAGCGTTGCTTTCA|AATCATTAATGTGAATTCCGTTATGCATAGTGTCGGTTTTTGTTGACCCGGATGATAGGATACTCAAGCAGCAAGCTTGCCCAGATTATGTTTAGTAGCATTCTTTTCATCCCCTGGTGTTGTCCTAACAAATGTTGCCAGGGATCTATCCAGGATTCTTCAAAGAAGGTTGTAGAAGTTCTCTATTCTCGGCCACAGATCCTCAGATTCCAGAGTAGGTCTTCCTCTCGATGCAGTTGAGAAGCTCATAGAAGGGGAAAATATCCAATGC AGGTTAAGTGACCCATTACAGATCAAAGGGTAGGTAATTGAGAAAATATCTTTTATGAATCCCCCAGGCATGTAGTTTGCTTGAGAATGTTTGATTGTTGGATAAAAG GGCCGGCCCATTATATATATTATCCGGAGCTTCCAGGAGTTGAGGTTGTGAAGCGTGCAACGTCATAGATCTAACTCCGGAAGAAGAAGAAGATGAGTGACGAAACGACTGGGATGGATGGATGAGGGGGATGGAGCAGTGTTTTCGGGGAGATTCTCTCTTCCTTCCGTCAACGACCTCACTTGCGTTGTCACTGGCTCCACCAGCGGCATTGTTGTGATGGCCGTAAGGAACACAAAGGCGGCTCAGGAGCTGATACTGCAATG

AGGCAATGGAGATTGATCTACTCTCACTGGATTCTGTCGCGAGATTTGCTGAGGAAC GCTTTCAGTACTTCTTTTGCCGTCTCTGATCCGAGGCTCTCCTAGCCGAATCATTAATGTGAATTCCGTTATGCATAGTGTCGGTTTTTGTTGACCCGGATGACATGAATGTTGTTTCTGGTAGACGTAAGTACTCAAGCCTTATAGGATACTCAAGCAGCAAGCTTGCCCAGATTATGTTTAGTAGCATTCTT

TTCAAAAAGCTTCCTCTGGAAACAGGAGTCAGCGTCGTATGTCTATCCCCTGGTGTTGTCCTAACAAATGTTGCCAGGGATCTATCCAGGATTCT

NGS: one fits all?

NGS fails to detect...

NGS: one fits all?

- targeted assays remain valuable clear cause: cost effective direct assay why sequence everything? protein coding variants "easy", others difficult to proof
- NGS fails to detect
 most structural variants (SV)
 incl. deletions / duplications
 variants in repeated/variable length sequences
 MUC genes
 variants in highly variable regions
 HLA
 repeat expansions
 trinucleotide expansions
 rearrangements covering more then read length

Repeat expansions

unmapped too many mismatches

Reference genome 5'-GTTCAT-(TTTTA), TTA(TTTTA), TTTGA

F6906 (II-6) 5'-GTTCAT-(TTTTA)2TTTTTTA(TTTTA)104TTTA(TTTTA)3TTTA(TTTTA)10(TTTTA)10(TTTTA)10(TTTTA)104TTTA(TTTTA)3TTTA(TTTTA)10(TTTTA)104TTTA(TTTTA)3TTA(TTTTA)3TTTA(TTTTA)3TTA(TTTA)3TTA(TTTA)3TTA(TTTTA)3TTA(TTTTA)3TTA(TTTA)3TTA(TTTA)3TTA(TTTA)3TTA(TTTA)3TTA(TTTA)3TTA(TTTA)3TTA(TTTA)3TTA(TTTA)3TTA(TTTA)3TTA(TTTA)3TTA(TTTA)3TTA(TTTTA)3TTA(TTTTA)3TTA(TTTTA)3TTA(TTTTA)3TTA(TTTTA)3TTA(TTTTA)3TTTTA(TTTTA)3TTA(TTTTA)3TTTA(TTTTA)3TTTA(TTTTTA)3TTA(TTTTA)3TTTTA(TTTTA)3T

F6115 (I-2) 5'-GTTCAT-(TTTTA)₃TTTTTTTA(TTTTA)₅₀ (TTTCA)₆₁(TTTTA)₇₃TTTATTTTA-TTTGA

SCA1

Protein/RNA gain-of-function

Human genome

version 27 (Jan.2017, freeze hg38)
- Ensembl 90

• 58,288 genes

19,836 protein coding 15,788 long non-coding RNA 7,269 small non-coding RNA 14,694 pseudogenes 644 immunoglobulin / T-cell receptor gene segments

5-10% genes is present in multiple copies

not all genes are critical

Information

c b oct y nnen

Translation variants

- silent no amino acid change
- substitution amino acids changes to another amino acid
- nonsense amino acids changes to stop codon
- frame shift translation shifts to another reading frame change
- in-frame deletion, duplication, insertion
- other
 extension (upstream initiation, no stop),
 ATG codon, ...

Transcription

a gene

required?

a transcript

Transcription

a gene

promoter

- transcription initiation site (cap site)
 transcription termination
- polyA-addition site, polyA-addition signal
- splice donor / splice acceptor site
- exonic splice enhancer / silencer (ESE / ESS)
- intronic splice enhancer / silencer (ISE / ISS)

. . .

Consequences: RNA

globin genes

(see HbVar for details)

Translation

mRNA

required?

protein

http://ib.bioninja.com.au/higher-level/topic-7-nucleic-acids/73-translation/protein-structure.html

Translation

mRNA

translation initiation site (start codon, Kozak sequence) translation termination site (stop codon)

uORF

codon usage > translation speed > protein folding RNA/protein binding > stability, amount of protein

. . .

uORF

Human Molecular Genetics, 2015, Vol. 24, No. 4 doi:10.1093/hmg/ddu501 Advance Access published on September 30, 2014

CFTR mRNA expression is regulated by an upstream open reading frame and RNA secondary structure in its 5' untranslated region

Samuel W. Lukowski^{1,2,†,*}, Joseph A. Rothnagel¹ and Ann E. O. Trezise^{1,2}

influence process > increase protein expression

> treat CF-patients

Consequences: protein

others signals present in protein?

Consequences: protein

- protein folding secondary, tertiary, protein-protein interaction
- amount too much / little stability (protein turnover) degration speed of protein

...expression

- place expression in wrong tissue
- timing
 expression at the wrong time
 during development
 responding to incorrect trigger
- •••

T-sensitive

HUMAN MUTATION 24:130-139 (2004)

low T: dampens high T: exaggerates

RESEARCH ARTICLE

Identification of the Molecular Defect in Patients With Peroxisomal Mosaicism Using a Novel Method Involving Culturing of Cells at 40°C: Implications for Other Inborn Errors of Metabolism

Jeannette Gootjes,¹ Frank Schmohl,¹ Petra A.W. Mooijer,² Conny Dekker,² Hanna Mandel,³ Meral Topcu, Martina Huemer, M. von Schütz, Thorsten Marquardt, Jan A. Smeitink, Meral Topcu, A. Hans R. Waterham, and Ronald J.A. Wanders^{1,2*}

temprature change impacts slicing

Consequences: DNA

signals present in DNA? destroyed or created

Consequences: DNA

- replication origin
- TAD topologically active domain (expression control)
- expression enhancer (LCR), transcription factor binding, ...
- protein binding required for any process
- DNA modification (methylation) X-inactivation, imprinting, gene expression

LCR

expression LCR - locus control region regulatory elements often kb's to sometimes Mb's upstream

HBA gene cluster

New promoter

expression new promoter

SNV creates TFB site, activating transcription, silencing downstream genes

HBA genes

Indirect silencing

expression
gene silencing
read-through silences downstream gene

Ligtenberg, Nature Genet. (2009) 41:112.

EPCAM gene

MSH2 gene

deletion 3'end EPCAM > transcription continues into MSH2

fusion transcript (out-frame), silencing MSH2 promoter > no MSH2

Non-coding genes

variants in non-coding genes probably many still unknown

Genomic Element	Name	Disorder
MIR	MIR96	DFNA50 (Autosomal Dominant deafness 50)
	MIR184	EDICT syndrome
	MIR17HG	Feingold syndrome 2
Long ncRNA	TERC	AD dyskeratosis congenita; susceptibility to aplastic anemia
	RMRP	CHH (cartilage hair hypoplasia) syndrome; anauxetic dysplasia; metaphyseal dysplasia without hypotrichosis
	CISTR-ACT IncRNA	Type E polydactyly
	HELLP lincRNA	HELLP (Hemolysis, Elevated Liver enzymes, Low Platelets) syndrome
	ATXN8/ATXN8OS	Spinocerebellar ataxia 8 (SCA8)
Small ncRNA	snRNA RNU4ATAC	Microcephalic Osteodysplastic Primordial Dwarfism, type I (MOPD I)

Makrythanasis and Antonarakis, Clin.Genet. (2013)

Where to find

Listing variants

• be specific

list per level: DNA, RNA, protein

where to list a DNA substitution, altering RNA splicing (insertion), resulting in a frame shift

SO

DNA

substitution, deletion, duplication, insertion, delins, inversion, ... (large deletion, duplication, insertion, ...)

RNA

substitution, deletion, duplication, insertion, delins, ... (splice deletion or insertion)

protein

missense, nonsense, frame shift, in frame, deletion / duplication / insertion / delins

Female DMD

- muscle biopsy no dystrophin staining
- MLPA
 deletion exons 48-53
 in-frame
- sequencing no deleterious variants
- X-inactivation random

patient control

please explain

Is my conclusion right?

Female DMD

• RNA analysis

Available online at www.sciencedirect.com

ScienceDirect

Neuromuscular Disorders 27 (2017) 569-573

Case report

Duchenne muscular dystrophy in a female with compound heterozygous contiguous exon deletions

Eri Takeshita ^{a,*}, Narihiro Minami ^{b,c}, Kumiko Minami ^c, Mikiya Suzuki ^d, Takeya Awashima ^a, Akihiko Ishiyama ^a, Hirofumi Komaki ^a, Ichizo Nishino ^{c,c}, Masayuki Sasaki ^a

RNA analysis

two different deletions, both frame shifting

Your example

•••

Acknowledgement

Presentation prepared by: Johan den Dunnen

Human Genetics & Clinical Genetics Leiden University Medical Center Leiden, Nederland

date: April 2019

based on lecture Jan Traeger-Synodinos VEPTC Prague 2017

