# Höhere Mathematik

Jil Zerndt, Lucien Perret May 2024

### Rechnerarithmetik

Zahlendarstellung

Maschinenzahlen Eine maschinendarstellbare Zahl zur Basis B ist ein Element der Menge:

$$M = \{x \in \mathbb{R} \mid x = \pm 0.m_1 m_2 m_3 \dots m_n \cdot B^{\pm e_1 e_2 \dots e_l} \} \cup \{0\}$$

Mit:

- $m_1 \neq 0$  (Normalisierungsbedingung)
- $m_i, e_i \in \{0, 1, \dots, B-1\}$  für  $i \neq 0$
- $B \in \mathbb{N}, B > 1$  (Basis)

**Zahlenwert** Der Wert  $\hat{\omega}$  einer Maschinenzahl berechnet sich durch:

$$\hat{\omega} = \sum_{i=1}^{n} m_i B^{\hat{e}-i}, \quad \text{mit} \quad \hat{e} = \sum_{i=1}^{l} e_i B^{l-i}$$

Werteberechnung Berechnung einer vierstelligen Zahl zur Basis 4:

$$\underbrace{0.3211}_{n=4} \cdot \underbrace{4^{12}}_{l=2}$$

- 1. Exponent:  $\hat{e} = 1 \cdot 4^1 + 2 \cdot 4^0 = 6$
- 2. Wert:  $\hat{\omega} = 3 \cdot 4^5 + 2 \cdot 4^4 + 1 \cdot 4^3 + 1 \cdot 4^2 = 3664$

#### IEEE-754 Standard

Der IEEE-754 Standard definiert zwei wichtige Gleitpunktformate:

- Vorzeichen (V): 1 Bit
- Exponent (E): 8 Bit (Bias 127)
- Mantisse (M): 23 Bit + 1 hidden bit

- Vorzeichen (V): 1 Bit
- Exponent (E): 11 Bit (Bias 1023)
- Mantisse (M): 52 Bit + 1 hidden bit

Darstellungsbereich Für jedes Gleitpunktsystem existieren:

- Grösste darstellbare Zahl:  $x_{\text{max}} = (1 B^{-n}) \cdot B^{e_{\text{max}}}$
- Kleinste darstellbare positive Zahl:  $x_{\min} = B^{e_{\min}-1}$

Approximations- und Rundungsfehler -

Fehlerarten Sei  $\tilde{x}$  eine Näherung des exakten Wertes x:

Absoluter Fehler:

Relativer Fehler:

$$|\tilde{x} - x|$$

$$\left|\frac{\tilde{x}-x}{x}\right| \ \text{bzw.} \ \frac{\left|\tilde{x}-x\right|}{|x|} \ \text{für} \ x \neq 0$$

Maschinengenauigkeit eps ist die kleinste positive Zahl, für die gilt:

Allgemein:

Dezimal:

$$eps := \frac{B}{2} \cdot B^{-n}$$

$$\operatorname{eps}_{10} := 5 \cdot 10^{-n}$$

 ${\rm eps}:=\frac{B}{2}\cdot B^{-n} \qquad \qquad {\rm eps}_{10}:=5\cdot 10^{-n}$  Sie begrenzt den maximalen relativen Rundungsfehler:

$$\left| \frac{rd(x) - x}{x} \right| \le \text{eps}$$

**Rundungseigenschaften** Für alle  $x \in \mathbb{R}$  mit  $|x| > x_{\min}$  gilt:

Absoluter Fehler:

Relativer Fehler:

$$|rd(x) - x| \le \frac{B}{2} \cdot B^{e-n-1}$$
  $\left| \frac{rd(x) - x}{x} \right| \le \text{eps}$ 

$$\left| \frac{rd(x) - x}{x} \right| \le \text{eps}$$

## Fehlerfortpflanzung —

### Konditionierung

Die Konditionszahl K beschreibt die relative Fehlervergrösserung bei Funktionsauswertungen:

$$K := \frac{|f'(x)| \cdot |x|}{|f(x)|}$$

- K < 1: gut konditioniert
- K > 1: schlecht konditioniert
- $K \gg 1$ : sehr schlecht konditioniert

#### **Fehlerfortpflanzung**

Für eine differenzierbare Funktion f gilt näherungsweise:

Absoluter Fehler:

Relativer Fehler:

$$|f(\tilde{x}) - f(x)| \approx |f'(x)| \cdot |\tilde{x} - x|$$
 
$$\frac{|f(\tilde{x}) - f(x)|}{|f(x)|} \approx K \cdot \frac{|\tilde{x} - x|}{|x|}$$

## Fehleranalyse einer Funktion

So analysieren Sie die Fehlerfortpflanzung einer Funktion:

- 1. Berechnen Sie f'(x)
- 2. Bestimmen Sie die Konditionszahl K
- 3. Schätzen Sie den absoluten Fehler ab
- 4. Schätzen Sie den relativen Fehler ab
- 5. Beurteilen Sie die Konditionierung anhand von K

$$\underbrace{\left|f(\tilde{x}) - f(x)\right|}_{\text{bsoluter Fehler von } f(x)} \approx \left|f'(x)\right| \cdot \underbrace{\left|\tilde{x} - x\right|}_{\text{absoluter Fehler von}}$$

$$\underbrace{\frac{\left|f(\tilde{x}) - f(x)\right|}{\left|f(x)\right|}}_{\text{time Fehler von }} \approx \underbrace{\frac{\left|f'(x)\right| \cdot |x|}{\left|f(x)\right|}}_{\text{Kondition grahl }K} \cdot \underbrace{\frac{\left|\tilde{x} - x\right|}{\left|x\right|}}_{\text{relativer Fehler von }}$$

Fehleranalyse Beispiel: Fehleranalyse von  $f(x) = \sin(x)$ 

- 1.  $f'(x) = \cos(x)$
- 2.  $K = \frac{|x \cos(x)|}{|\sin(x)|}$
- 3. Für  $x \to 0$ :  $K \to 1$  (gut konditioniert)
- 4. Für  $x \to \pi$ :  $K \to \infty$  (schlecht konditioniert)
- 5. Der absolute Fehler wird nicht vergrössert, da  $|\cos(x)| < 1$

Auslöschung Besonders problematisch: Auslöschung

Bei der Subtraktion fast gleich großer Zahlen können signifikante Stellen verloren gehen. Beispiel:

- 1.234567 1.234566 = 0.000001
- Aus 7 signifikanten Stellen wird 1 signifikante Stelle

## Praktische Fehlerquellen ---

# Kritische Operationen

Die häufigsten Quellen für numerische Fehler sind:

- Auslöschung bei Subtraktion ähnlich großer Zahlen
- Überlauf (overflow) bei zu großen Zahlen
- Unterlauf (underflow) bei zu kleinen Zahlen
- Verlust signifikanter Stellen durch Rundung

Auslöschung bei der Berechnung von  $\sqrt{x^2+1}-1$ :

Für kleine x führt die direkte Berechnung zu Auslöschung:

- Für  $x = 10^{-8}$ :
- $\sqrt{10^{-16}+1}-1\approx 1.000000000-1=0$
- Korrekte Lösung durch Umformung:
- $\sqrt{x^2+1}-1=\frac{x^2}{\sqrt{x^2+1}+1}$

## Vermeidung von Auslöschung

So vermeiden Sie Auslöschungseffekte:

- 1. Identifizieren Sie Subtraktionen ähnlich großer Zahlen
- 2. Suchen Sie nach algebraischen Umformungen
- 3. Prüfen Sie alternative Berechnungswege
- 4. Verwenden Sie Taylorentwicklungen für kleine Werte

# Analyse von Algorithmen —

#### Fehlerakkumulation

Bei n aufeinanderfolgenden Operationen mit relativen Fehlern  $< \varepsilon$ gilt für den Gesamtfehler:

- Best case:  $\mathcal{O}(n\varepsilon)$  bei gleichverteilten Fehlern
- Worst case:  $\mathcal{O}(2^n \varepsilon)$  bei systematischen Fehlern

#### Numerische Stabilität

Ein Algorithmus heißt numerisch stabil, wenn:

- Kleine Eingabefehler zu kleinen Ausgabefehlern führen
- Rundungsfehler sich nicht übermäßig akkumulieren
- Die Konditionszahl des Problems nicht künstlich verschlechtert wird

Instabilität Instabiles Verhalten bei rekursiver Berechnung: Berechnung der Fibonacci-Zahlen:

```
def fib(n):
    if n <= 1:
        return n
    return fib(n-1) + fib(n-2)
```

Problem: Exponentielles Wachstum der Operationen und Fehlerfortpflanzung.

#### Stabilitätsanalyse

Schritte zur Analyse der numerischen Stabilität:

- 1. Bestimmen Sie kritische Operationen
- 2. Schätzen Sie Rundungsfehler pro Operation ab
- 3. Analysieren Sie die Fehlerfortpflanzung
- 4. Berechnen Sie die worst-case Fehlerschranke
- 5. Vergleichen Sie alternative Implementierungen

## Praktische Implementierungen

### Implementierungsgenauigkeit

Die Implementierungsgenauigkeit eines Algorithmus beschreibt:

- Relative Genauigkeit der Ausgabe
- Maximale Anzahl korrekter Dezimalstellen
- Stabilität gegenüber Eingabefehlern

#### **Robuste Implementierung**

So implementieren Sie numerisch robuste Algorithmen:

- 1. Verwenden Sie stabile Grundoperationen
- 2. Vermeiden Sie Differenzen ähnlich großer Zahlen
- 3. Prüfen Sie auf Über- und Unterlauf
- 4. Implementieren Sie Fehlerkontrollen
- 5. Dokumentieren Sie numerische Einschränkungen

Robuste Implementation Beispiel: Quadratische Gleichung

```
def quadratic_stable(a, b, c):
   \# ax^2 + bx + c = 0
   if a == 0:
       return [-c/b] if b != 0 else []
   # Calculate discriminant
   disc = b*b - 4*a*c
   if disc < 0:
       return []
   # Choose numerically stable formula
   if b \ge 0:
       q = -0.5*(b + sqrt(disc))
       q = -0.5*(b - sqrt(disc))
   x2 = c/(q)
   return sorted([x1, x2])
```

Numerische Bibliotheken Verwendung spezialisierter Bibliotheken Für kritische numerische Berechnungen:

- NumPy: Optimierte Array-Operationen
- SciPy: Wissenschaftliches Rechnen
- Mpmath: Beliebige Präzision
- Decimal: Dezimalarithmetik

Bibliotheksverwendung Beispiel: Präzise Berechnung mit Decimal

```
from decimal import Decimal, getcontext
# Set precision
getcontext().prec = 40
# Precise calculation
x = Decimal('1.0') / Decimal('7.0')
print(x) # 0.1428571428571428571428571428571428571428
```

## Numerische Lösung von Nullstellenproblemen

#### Fixpunktgleichung

Eine Gleichung der Form F(x) = x heisst Fixpunktgleichung. Die Lösungen  $\bar{x}$ , für die  $F(\bar{x}) = \bar{x}$  erfüllt ist, heissen Fixpunkte.

### Fixpunktiteration -

### Grundprinzip der Fixpunktiteration

Gegeben sei  $F:[a,b]\to\mathbb{R}$  mit  $x_0\in[a,b]$ . Die rekursive Folge

$$x_{n+1} \equiv F(x_n), \quad n = 0, 1, 2, \dots$$

heisst Fixpunktiteration von F zum Startwert  $x_0$ .

#### Konvergenzverhalten

Sei  $F:[a,b]\to\mathbb{R}$  mit stetiger Ableitung F' und  $\bar{x}\in[a,b]$  ein Fixpunkt von F. Dann gilt für die Fixpunktiteration  $x_{n+1} = F(x_n)$ :

## Anziehender Fixpunkt:

Abstossender Fixpunkt:  $|F'(\bar{x})| > 1$ 

 $x_n$  konvergiert gegen  $\bar{x}$ , falls  $x_0$  nahe genug bei  $\bar{x}$   $x_n$  konvergiert für keinen Startwert  $x_0 \neq \bar{x}$ 

#### Banachscher Fixpunktsatz

Sei  $F: [a,b] \to [a,b]$  und es existiere eine Konstante  $\alpha$  mit:

- $0 < \alpha < 1$  (Lipschitz-Konstante)
- $|F(x) F(y)| < \alpha |x y|$  für alle  $x, y \in [a, b]$

### Dann gilt:

 $|F'(\bar{x})| < 1$ 

- F hat genau einen Fixpunkt  $\bar{x}$  in [a, b]
- Die Fixpunktiteration konvergiert gegen  $\bar{x}$  für alle  $x_0 \in [a, b]$
- Fehlerabschätzungen:

  - remerabschazungen.

     a-priori:  $|x_n \bar{x}| \le \frac{\alpha^n}{1-\alpha} \cdot |x_1 x_0|$  a-posteriori:  $|x_n \bar{x}| \le \frac{\alpha}{1-\alpha} \cdot |x_n x_{n-1}|$

### Konvergenznachweis für Fixpunktiteration

So überprüfen Sie, ob eine Fixpunktiteration konvergiert:

- 1. Prüfen Sie, ob  $F:[a,b] \to [a,b]$  gilt: F(a) > a und F(b) < b
- 2. Bestimmen Sie  $\alpha = \max_{x \in [a,b]} |F'(x)|$
- 3. Prüfen Sie, ob  $\alpha < 1$
- 4. Berechnen Sie die nötigen Iterationen für Toleranz tol:

$$n \ge \frac{\ln(\frac{tol \cdot (1-\alpha)}{|x_1 - x_0|})}{\ln \alpha}$$

Fixpunktiteration Nullstellen von  $p(x) = x^3 - x + 0.3$ 

Fixpunktgleichung:  $x_{n+1} = F(x_n) = x_n^3 + 0.3$ 

- 1.  $F'(x) = 3x^2$  steigt monoton
- 2. Für I = [0, 0.5]: F(0) = 0.3 > 0, F(0.5) = 0.425 < 0.5
- 3.  $\alpha = \max_{x \in [0,0.5]} |3x^2| = 0.75 < 1$ 4. Konvergenz für Startwerte in [0,0.5] gesichert

#### Newton-Verfahren -

### **Grundprinzip Newton-Verfahren**

Approximation der Nullstelle durch sukzessive Tangentenberechnung:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Konvergiert, wenn für alle x im relevanten Intervall gilt:

$$\left| \frac{f(x) \cdot f''(x)}{[f'(x)]^2} \right| < 1$$

### Newton-Verfahren anwenden

So finden Sie eine Nullstelle mit dem Newton-Verfahren:

- 1. Funktion f(x) und Ableitung f'(x) aufstellen
- 2. Geeigneten Startwert  $x_0$  nahe der Nullstelle wählen
- 3. Iterieren bis zur gewünschten Genauigkeit:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

4. Konvergenz prüfen durch Vergleich aufeinanderfolgender Werte

#### Vereinfachtes Newton-Verfahren

Alternative Variante mit konstanter Ableitung:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_0)}$$

Konvergiert langsamer, aber benötigt weniger Rechenaufwand.

#### Sekantenverfahren

Alternative zum Newton-Verfahren ohne Ableitungsberechnung. Verwendet zwei Punkte  $(x_{n-1}, f(x_{n-1}))$  und  $(x_n, f(x_n))$ :

$$x_{n+1} = x_n - \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} \cdot f(x_n)$$

Benötigt zwei Startwerte  $x_0$  und  $x_1$ .

## Konvergenzverhalten -

#### Konvergenzordnung

Sei  $(x_n)$  eine gegen  $\bar{x}$  konvergierende Folge. Die Konvergenzordnung q > 1 ist definiert durch:

$$|x_{n+1} - \bar{x}| \le c \cdot |x_n - \bar{x}|^q$$

wobei c > 0 eine Konstante ist. Für q = 1 muss zusätzlich c < 1gelten.

### Konvergenzordnungen der Verfahren

Die verschiedenen Verfahren zeigen folgende Konvergenzgeschwindigkeiten:

| Newton-      |      | Vereinfachtes      | Sekantenverfahren:                       |  |
|--------------|------|--------------------|------------------------------------------|--|
| Verfahren:   |      | Newton:            | Superlineare Kon-                        |  |
| Quadratische | Kon- | Lineare Konvergenz | vergenz                                  |  |
| vergenz      |      | q = 1              | $q = \frac{1+\sqrt{5}}{2} \approx 1.618$ |  |
| q = 2        |      |                    | 1 2                                      |  |

Konvergenzgeschwindigkeit Vergleich der Verfahren Startwert  $x_0 =$ 1, Funktion  $f(x) = x^2 - 2$ , Ziel:  $\sqrt{2}$ 

| n | Newton    | Vereinfacht | Sekanten  |
|---|-----------|-------------|-----------|
| 1 | 1.5000000 | 1.5000000   | 1.5000000 |
| 2 | 1.4166667 | 1.4500000   | 1.4545455 |
| 3 | 1.4142157 | 1.4250000   | 1.4142857 |
| 4 | 1.4142136 | 1.4125000   | 1.4142136 |

## Fehlerabschätzung

#### Nullstellensatz von Bolzano

Sei  $f:[a,b]\to\mathbb{R}$  stetig. Falls  $f(a)\cdot f(b)<0$ , dann existiert mindestens eine Nullstelle  $\xi \in (a, b)$ .

#### Fehlerabschätzung für Nullstellen

So schätzen Sie den Fehler einer Näherungslösung ab:

- 1. Sei  $x_n$  der aktuelle Näherungswert
- 2. Wähle Toleranz  $\epsilon > 0$
- 3. Prüfe Vorzeichenwechsel:  $f(x_n \epsilon) \cdot f(x_n + \epsilon) < 0$
- 4. Falls ja: Nullstelle liegt in  $(x_n \epsilon, x_n + \epsilon)$
- 5. Damit gilt:  $|x_n \xi| < \epsilon$

Praktische Fehlerabschätzung Fehlerbestimmung bei  $f(x) = x^2 - 2$ 

- 1. Näherungswert:  $x_3 = 1.4142157$
- 2. Mit  $\epsilon = 10^{-5}$ :
- 3.  $f(x_3 \epsilon) = 1.4142057^2 2 < 0$
- 4.  $f(x_3 + \epsilon) = 1.4142257^2 2 > 0$
- 5. Also:  $|x_3 \sqrt{2}| < 10^{-5}$

#### Abbruchkriterien Praktische Implementierung

In der Praxis verwendet man meist mehrere Abbruchkriterien:

- Absolute Änderung:  $|x_n x_{n-1}| < \epsilon_1$
- Funktionswert:  $|f(x_n)| < \epsilon_2$
- Maximale Iterationszahl:  $n < n_{max}$
- Kombination dieser Kriterien

# Numerische Lösung linearer Gleichungssysteme

## Grundlagen -

## Lineares Gleichungssystem

Ein lineares Gleichungssystem der Form Ax = b besteht aus:

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix} \in \mathbb{R}^{n \times n}, \quad x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n, \quad b = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$

## Der Gauss-Algorithmus -

### **Grundidee Gauss-Elimination**

Transformation des Gleichungssystems Ax = b in ein äquivalentes System  $\tilde{A}x = \tilde{b}$ , wobei  $\tilde{A}$  eine obere Dreiecksmatrix ist. Erlaubte Operationen:

- $z_i := z_i \lambda z_i$  für i < j und  $\lambda \in \mathbb{R}$
- $z_i \rightarrow z_i$  (Vertauschen von Zeilen)

#### **Gauss-Algorithmus**

So lösen Sie ein lineares Gleichungssystem mit dem Gauss-Algorithmus:

- 1. Für i = 1, ..., n 1:
- Für j = i + 1, ..., n:
- Berechne  $\lambda_{ii} = a_{ii}/a_{ii}$ 
  - $z_i := z_i \lambda_{ii} z_i$

4.

$$x_i = \frac{b_i - \sum_{j=i+1}^n a_{ij} x_j}{a_{ii}}, \quad i = n, n-1, \dots, 1$$

Gauss-Elimination Lösung eines 3×3 Systems Gegebenes System:

$$A = \begin{pmatrix} 2 & 1 & -1 \\ 4 & -1 & 3 \\ -2 & 2 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix}$$

1. Elimination der ersten Spalte:

$$\begin{pmatrix}
2 & 1 & -1 & | & 3 \\
0 & -3 & 5 & | & -5 \\
0 & 3 & -1 & | & 7
\end{pmatrix}$$

2. Elimination der zweiten Spalte:

$$\begin{pmatrix} 2 & 1 & -1 & | & 3 \\ 0 & -3 & 5 & | & -5 \\ 0 & 0 & 4 & | & 2 \end{pmatrix}$$

3. Rückwärtseinsetzen:

$$x_3 = \frac{2}{4} = \frac{1}{2}$$

$$x_2 = \frac{-5 - 5(\frac{1}{2})}{-3} = -2$$

$$x_1 = \frac{3 - 1(-2) - (-1)(\frac{1}{2})}{2} = 1$$

## Pivotisierung -

#### **Spaltenpivotisierung**

Strategie zur numerischen Stabilisierung des Gauss-Algorithmus durch Auswahl des betragsmäßig größten Elements als Pivotelement. Vor jedem Eliminationsschritt in Spalte i:

- Suche k mit  $|a_{ki}| = \max\{|a_{ii}| | j = i, ..., n\}$
- Falls  $a_{ki} \neq 0$ : Vertausche Zeilen i und k
- Falls  $a_{ki} = 0$ : Matrix ist singulär

### Gauss mit Pivotisierung

Erweiterter Gauss-Algorithmus mit Spaltenpivotisierung:

- 1. Für  $i = 1, \ldots, n-1$ :
- 2. Finde  $k \ge i$  mit  $|a_{ki}| = \max\{|a_{ii}| \mid j = i, ..., n\}$
- 3. Falls  $a_{ki} = 0$ : Stop (Matrix singulär)
- 4. Vertausche Zeilen i und k
- 5. Für j = i + 1, ..., n: 6.  $z_j := z_j \frac{a_{ji}}{a_{ii}} z_i$

Pivotisierung Gauss-Elimination mit Pivotisierung System:

$$\begin{pmatrix} 1 & 2 & -1 \\ 4 & 8 & -3 \\ 9 & 18 & -8 \end{pmatrix} x = \begin{pmatrix} 1 \\ 4 \\ 9 \end{pmatrix}$$

- 1. Erste Spalte: Pivot  $|9| \rightarrow$  Tausche Zeilen 1 und 3
- 2. Nach Elimination der ersten Spalte:

$$\begin{pmatrix} 9 & 18 & -8 & | & 9 \\ 0 & 0 & 0.89 & | & 0 \\ 0 & 0 & 0.89 & | & 0 \end{pmatrix}$$

3. System ist schlecht konditioniert (identische Zeilen)

Matrix-Zerlegungen -

### Dreieckszerlegung

Eine Matrix  $A \in \mathbb{R}^{n \times n}$  kann zerlegt werden in:

Untere Dreiecksmatrix L: Obere Dreiecksmatrix R:  $r_{ij} = 0$  für i > j $l_{ij} = 0$  für j > iDiagonale meist normiert Diagonalelemente  $\neq 0$  $(l_{ii} = 1)$ 

### LR-Zerlegung

Jede reguläre Matrix A, für die der Gauss-Algorithmus ohne Zeilenvertauschungen durchführbar ist, lässt sich zerlegen in:

$$A = LR$$

wobei L eine normierte untere und R eine obere Dreiecksmatrix ist.

### Berechnung der LR-Zerlegung

So berechnen Sie die LR-Zerlegung:

- 1. Führen Sie Gauss-Elimination durch
- 2. R ist die resultierende obere Dreiecksmatrix 3. Die Eliminationsfaktoren  $-\frac{a_{ji}}{a_{ii}}$  bilden L
- 4. Lösen Sie dann nacheinander:
  - Ly = b (Vorwärtseinsetzen)
  - Rx = y (Rückwärtseinsetzen)

LR-Zerlegung Berechnung einer LR-Zerlegung Matrix:

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 4 & -1 & 0 \\ -2 & 3 & 1 \end{pmatrix}$$

Schrittweise Elimination führt zu:

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 2 & 1 \end{pmatrix}, \quad R = \begin{pmatrix} 2 & 1 & 1 \\ 0 & -3 & -2 \\ 0 & 0 & -2 \end{pmatrix}$$

