Finite limits, properties of limits

October 3rd, 2024

Here are some	key ideas	s from	sections	2.3	and	2.4.
---------------	-----------	--------	----------	-----	-----	------

• We write $\lim_{x\to a} f(x) = L$ to mean the function $f(x)$ approaches as x approaches	
--	--

• If $\lim_{x\to a} f(x) = L$, then f(x) [has to/might not] equal L.

• We write
$$\lim_{x\to a^+} f(x) = L$$
 to mean $f(x)$ approaches L from Likewise, $\lim_{x\to a^-} f(x) = L$ means $f(x)$ approaches L from

ullet The line x=a is a vertical asymptote if

• If $f(x) \leq g(x)$ when x is near a, and if the limits both exist as x approaches a, then $\lim_{x \to a} f(x)$ $\lim_{x \to a} g(x)$.

• Squeeze theorem: If $f(x) \leq g(x) \leq h(x)$ when x is near a, and $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$, then $\lim_{x \to a} g(x) = \dots$

• Important limit that you should know: $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} =$ _____.

.....

Midterm practice:

(a) For what values of m are the vectors [-6, m, 2] and $[m, m^2, m]$ orthogonal?

(b) Find two unit vectors that make an angle of 60° with $\mathbf{v} = [3, 4]$.

My Attempt: Solution:

Problem 1: (Stewart 2.3) For the given graph of the function f, state the value of each quantity if it exists. If it does not, explain why.

a)
$$\lim_{x\to 2^-} f(x)$$
 b) $\lim_{x\to 2^+} f(x)$ c) $\lim_{x\to 2} f(x)$

b)
$$\lim_{x\to 2^+} f(x)$$

c)
$$\lim_{x\to 2} f(x)$$

d)
$$f(2)$$

e)
$$\lim_{x\to 4} f(x)$$

f)
$$f(4)$$

My Attempt:

Solution:

Problem 2: (Stewart 2.3) Determine

$$\lim_{x \to -3^+} \frac{x+2}{x+3}.$$

Hint: plug in values to see which infinity it approaches.

My Attempt:

Solution:

Problem 3: (Stewart 2.3) Find $\lim_{x\to 3^+} \ln(x^2-9)$.

My Attempt:

Solution:

Problem 4: (Stewart 2.3) Find $\lim_{x\to 2\pi^-} x \csc x$. *Hint:* $\csc(x)$ *is the cosecant function, which is* $1/\sin(x)$.

My Attempt:

Solution:

Problem 5: (Stewart 2.4) Find

$$\lim_{x \to 2^{-}} \frac{x^2 - 2x}{x^2 - 4x + 4}.$$

My Attempt:

Solution:

Problem 6: (Stewart 2.4) Evaluate

$$\lim_{t\to 0} \left(\frac{1}{t\sqrt{1+t}} - \frac{1}{t}\right).$$

My Attempt:

Solution:

Problem 7: (Stewart 2.4) Find

$$\lim_{x \to 0} \frac{\sin 4x}{\sin 6x}.$$

My Attempt:

Solution:

Challenge problem: (Stewart 2.4) Show that $\lim_{x\to 0} x^4 \cos \frac{2}{x} = 0$.