1-ma'ruzaga testlar

t/r	Qiyinlik darajasi	Javoblar Masala va mashqlar sharti	A	В	C	D
1.	1	Tajriba avval tanga tashlash va undan keyin o`yin soqqasini tashlashdan iborat. Shu tajribaga mos keluvchi elementar hodisalar to`plami nechta elementdan iborat?	12 ta	8 ta	24 ta	36 ta
2.	1	Qutida1 dan 6 gacha nomerlangan 6 ta bir xil sharlar bor. Tavakkaliga ikkita shar olinadi. Chiqishi mumkin bo`lgan barcha natijalar soni nechta?	15 ta	30 ta	10 ta	25 ta
3.	1	Javonda 10 ta kitob bo`lib, ulardan uchtasi matematikaga oiddir. Tavakkaliga olingan uchta kitobning hammasi matematikaga oid bo`lish ehtimolini toping?	$P = \frac{C_{3}^{3}}{C_{10}^{3}} ;$	$P = \frac{3}{10} \; ;$	$P = \frac{{c_3}^A}{C_{3}};$	$P=\frac{3}{7};$
4.	1	3 ta o`yin soqqasi birvarakayiga tashlandi, shu tajribaga mos keluvchi elementar hodisalar to`plami nechta elementdan iborat?	216 ta	84 ta	42 ta	72 ta
5.	2	Radiuslari r <i>va R</i> (<i>r</i> < <i>R</i>) bo`lgan ikkita doira umumiy markazga ega. Doira ichiga tavakkaliga tashlangan nuqtaning kichik doira ichiga tushish	$\frac{r^2}{P = R^2}$	P = R - r	P = rR	$\frac{r}{-}$ $P = R$;

	ehtimolini toping?				
6.	Ma'lum bir <i>S</i> shartlar asosida albatta ro'y beradigan hodisa	muqarrar hodisa	mumkin bo'lmagan hodisa	tasodifiy hodisa	birgalikda bo'lgan hodisa
7.	1 Ma'lum bir S shartlar asosida hech qachon ro'y bermaydigan hodisa	mumkin bo'lmagan hodisa	muqarrar hodisa		birgalikda bo'lgan hodisa
8.	Ma'lum bir <i>S</i> shartlar asosida yoki 1 ro'yberadigan, yoki ro'y bermaydigan hodisa	tasodifiy hodisa	birgalikda bo'lgan hodisa	mumkin bo'lmagan hodisa	muqarrar hodisa
9.	Bitta tajribada biror tayin hodisaning ro'y berishi qolgan hodisalarning ro'y berishini yo'qqa chiqarsa, bunday hodisalar	birgalikda bo'lmagan hodisalar	birgalikda bo'lgan hodisalar	bog'liq bo'lgan hodisalar	bog'liq bo'lmagan hodisalar
10.	Agar tajriba natijasida bir nechta hodisalardan bittasi va faqat bittasiing ro'y berishi muqarrar hodisa bo'lsa, u holda bu hodisa	yagona mumkin bo'lgan hodisa	birgalikda bo'lgan hodisa	mumkin bo'lmagan hodisa	muqarrar hodisa
11.	Agar bir nechta hodisalardan birining ro'y berish imkoniyati boshqalariga nisbatan yuqoriroq deyishga asos bo'lmasa, ular	teng imkoniyatli hodisalar	birgalikda bo'lgan hodisalar	bog'liq bo'lgan hodisalar	bog'liq bo'lmagan hodisalar
12.	1 Muqarrar hodisaning ehtimoli	birga teng	nolga teng	nol va bir orasida yotuvchi sondir	o'zgarmas son
13.	1 Mumkin bo'lmagan hodisaning	nolga teng	nol va bir orasida yotuvchi sondir	o'zgarmas son	birga teng
14.	1 Tasodifiy hodisaning ehtimoli	nol va bir orasida yotuvchi sondir	nolga teng	o'zgarmas son	birga teng
15.	n ta turli elementni k tadan 1 o'rinlashtirish (qaytarilmaydigan) tanlashlar soni	$A_{n} = n (n-1)(n-2)(n-(k-1))$	$C_{k} = \frac{n!}{k!(n-k)!}$	P = n! = n(n-1)(n-2)1	n
16.	o'rin almashtirishlar (faqat tartibi 1 bilan farq qiladigan kombinatsiyalar) soni	$P_n = n! = n(n-1)(n-2)1$	$A_n^k = n (n-1)(n-2)(n-(k-1))$	$C_n^k = \frac{n!}{k!(n-k)!}$	k

17.	1	Agar o'rinlashtirishda kombinatsiyalar hech bo'lmaganda bitta elementi bilan farq qilsa, ularni <i>n</i> ta elementni <i>k</i> tadan <i>gruppalash</i> deyiladi va ularning soni	$C_{k} = \frac{n!}{k!(n-k)!}$	$P_n = n! = n(n-1)(n-2)1$	$a^{k} = n (n-1)(n-2)(n-(k-1))$	n-k
18.	2	n taelementniktadan o'rinlashtirishda tanlashlar qaytariladigan bo'lsa, tanlab olishlar soni	$N = n_k$	$C^{k}_{n} = \frac{n!}{k!(n-k)!}$	P = n! = n(n-1)(n-2)1	$A_n^k = n (n-1)(n-2)(n-(k-1))$
19.	2	n ta element ichida i element n_i $(i = \overline{1, k})$ marta takrorlansa, u holda o'rin almashtirishlar soni bu erda $n = n_1 + n_2 + + n_k$.	$P(n, n,, n) = n!$ $n \mid 1 \mid 2 \mid k \mid \frac{n! n! n!}{1 \mid 2 \mid k}$	P = n! = n(n-1)(n-2)	1 $A_{n}^{k} = n (n-1)(n-2)(n-(k-1))$	$C_{k} = \frac{n!}{k!(n-k)!}$
20.	1	1, 2, 3, 4 raqamlaridan foydalanib har bir raqam bir marta qatnashadigan nechta to'rt xonali son tuzish mumkin.		600	2300	2500
21.	2	25 ta xodimdan boshliq va uning o'rinbosarini necha xil usulda saylash mumkin	600	24	600	700
22.	1	25 ta talabadan 3 ta delegatni necha xil usulda saylash mumkin.	2300	2500	24	500
23.	1	Noyabr oyining 6, 7, 11, 12, 17, 21, 24-kunlarida yomg'ir yoqqan bo'lsa, noyabr oyi uchun yomg'ir yog'ish nisbiy chastotasi:	$W(A) = \frac{7}{30}$	$W(A) = \frac{5}{6}$	$W(A) = \frac{k}{n}$	24
24.	1	Nishonga otilgan 18 ta o'qdan 15 tasi nishonga tekkan bo'lsa, o'qlarning	$W(A) = \frac{5}{6}$	$W(A) = \frac{k}{n}$	$W(A) = -\frac{7}{30}$	500
25.	1	nishonga tegish nisbiy chastotasi Tanga 12000 marta tashlandi. Gerb tushishlar soni 6007 ta. Gerb	6007/12000	607/1200	67/230	65/132

		tushishlar sonini nisbiy chastotasini toping.				
26.	2	O'yin soqqasi ketma-ket 50 marta tashlanganda faqat toq ochkolar tushgan bo`lsa, 51-tashlashda ham toq ochko tushish ehtimoli nimaga teng?	_1 2	<u>50</u> 51	$(\frac{1}{2})^{51}$	1- 50/51
27.	1 •	Korxona uchun sifatli mahsulot tayyorlash nisbiy chastotasi 0.98 kanligi aniqlangan. Agar partiyada 1000 ta mahsulot bo`lsa undagi sifatsiz mahsulotlar soni qancha?	20	980	98	200
28.	2	Radiusi 2 sm. bo`lgan doiraga nuqta tashlanadi. Tashlangan nuqtaning doiraga ichki chizilgan kvadrat ichiga tushish ehtimoli qanday?	$\frac{2}{\pi}$	$\frac{3}{\pi}$	$\frac{3}{4\pi}$	$\frac{3}{2\pi}$
29.	2	Telefonda raqamini terayotgan abonent ohirgi ikki raqamni unutib qoʻyadi va faqat bu raqamlar turlicha ekanligini eslab qolgan holda ularni tavakkaliga teradi. Kerakli raqamlar terilgan boʻlish ehtimolini toping.	1/90	7/90	5/90	11/90
30.	2	Qurilma 5 ta elementdan iborat boʻlib, ularning 2 tasi eskirgan. Qurilma ishga tushirilganda tasodifiy ravishda 2 ta element ulanadi. Ishga tushirishda eskirmagan elemetlar ulangan boʻlishi ehtimolini toping.	0,3	0,4	0,5	0,6
31.	1	1, 2, 3, 4, 5 raqamlaridan foydalanib har bir raqam bir marta qatnashadigan nechta besh xonali son tuzish mumkin.	120	600	2300	2500
32.	2	Telefonda raqamini terayotgan abonent ohirgi uchta raqamni unutib	1/720	7/790	5/90	11/90

		as tradition for act by magamlan triplishs				
		qoʻyadi va faqat bu raqamlar turlicha				
		ekanligini eslab qolgan holda ularni				
		tavakkaliga teradi. Kerakli raqamlar				
		terilgan boʻlish ehtimolini toping.				
		Tanga 12002 marta tashlandi. Gerb				
33.	1	tushishlar soni 6007 ta. Gerb	6007/12002	607/12002	67/230	65/132
		tushishlar sonini nisbiy chastotasini toping.				
		Noyabr oyining 6, 7, 11, 12, 17, 24-			_	
24	1	kunlarida yomg'ir yoqqan bo'lsa,	1/5	$W(A) = \frac{5}{4}$	$W(A) = \frac{k}{-}$	24
34.		noyabr oyi uchun yomg'ir yog'ish	1,0	6	n	
		nisbiy chastotasi:				
		O`yin soqqasi ketma-ket 60 marta		~ 0	1	. 50
25	1	tashlanganda faqat toq ochkolar tushgan	_1	_50	$(\frac{1}{2})^{51}$	l —
35.		bo`lsa, 61-tashlashda ham toq ochko tushish ehtimoli nimaga teng?	2	51	`2'	51
		20 ta xodimdan boshliq va uning				
36.	1 o	rinbosarini necha xil usulda saylash	380	24	600	700
		mumkin				
		Javonda 10 ta kitob bo`lib, ulardan	_ 2 3	2	C_A	
	1	uchtasi tarixga oiddir. Tavakkaliga	$P = \frac{C_3^3}{3};$	P = 3;	$P=\frac{3}{};$	$P=\frac{3}{7}$;
37.			\overline{C}^{3}	$\overline{10}$	$C_{10}{}^{3}$	7 ,
		olingan uchta kitobning hammasi	10		- 10	
		olingan uchta kitobning hammasi tarixga oid bo`lish ehtimolini toping? Qutida 7 ta oq, 3 ta qora shar bor.				
38.	1 U	Indan tavakkaliga olingan sharning oq	0,7	0,3	0,5	0,4
		boʻlishi ehtimolini toping. Nishonga				
		20 ta oʻq uzilgan boʻlib,				
	1	ulardan 18 ta oʻq nishonga tekkanligi	0,9	0,3	0,5	0,4
39.		qayd qilingan (A hodisa). Nishonga tegishlar nisbiy chastotasini toping.	0,2	0,5	0,5	
		Texnik nazorat boʻlimi				
40.	1	tasodifiyravishda ajratib olingan 100 ta	0,05	0,9	0,3	0,5
	-	kitobdan iborat partiyada 5 ta	·	•		

		yaroqsiz kitob topdi (<i>A</i> hodisa). Yaroqsiz kitoblar sonining nisbiy chastotasini toping.				
41.	2	[0; 2] kesmadan tavakkaliga ikkita x va y sonlari tanlangan. Bu sonlar $y \le x$ x $y \ge \frac{1}{4}x^2$ tengsizliklarni qanoatlantirishi ehtimolini toping.	1/3	1/4	1/5	1/6
42.	1	2 ta o`yin soqqasi birvarakayiga tashlandi, shu tajribaga mos keluvchi elementar hodisalar to`plami nechta elementdan iborat?	36 ta	84 ta	42 ta	72 ta
43.	1	20 ta talabadan 3 ta delegatni necha xil usulda saylash mumkin.	1140	2500	24	500
44.	2	Qutida 7 ta oq, 3 ta qora shar bor. Undan tavakkaliga olingan ikkita sharning oq boʻlishi ehtimolini toping.	7/15	8/15	11/15	2/15
45.	2	Qutida 7 ta oq, 3 ta qora shar bor. Undan tavakkaliga olingan ikkita sharning qora boʻlishi ehtimolini toping.	1/15	8/15	11/15	2/15
46.	1	10 ta talabadan 3 ta delegatni necha xil usulda saylash mumkin.	120	250	24	500
47.	1	Nishonga 10 ta oʻq uzilgan boʻlib, ulardan 8 ta oʻq nishonga tekkanligi qayd qilingan (<i>A</i> hodisa). Nishonga tegishlar nisbiy chastotasini toping.	0,8	0,3	0,5	0,4
48.	1	Noyabr oyining 6, 7, 11, 12, 24-kunlarida yomg'ir yoqqan bo'lsa, noyabr oyi uchun yomg'ir yog'ish	1/6	$W(A) = \frac{5}{6}$	$W(A) = \frac{k}{n}$	24

		nisbiy chastotasi:				
49.	2	Qutida 5 ta oq, 2 ta qora shar bor. Undan tavakkaliga olingan ikkita sharning qora boʻlishi ehtimolini toping.	1/21	8/15	11/15	2/15
50.	2	Qutida 5 ta oq, 2 ta qora shar bor. Undan tavakkaliga olingan ikkita sharning oq boʻlishi ehtimolini toping.	10/21	8/15	11/15	2/15
51.	1	Nishonga 15 ta oʻq uzilgan boʻlib, ulardan 12 ta oʻq nishonga tekkanligi qayd qilingan (<i>A</i> hodisa). Nishonga tegishlar nisbiy chastotasini toping.	0,8	0,3	0,5	0,4
52.	1	Texnik nazorat boʻlimi tasodifiyravishda ajratib olingan 100 ta kitobdan iborat partiyada 7 ta yaroqsiz kitob topdi (A hodisa). Yaroqsiz kitoblar sonining nisbiy	0,07	0,09	0,3	0,5
53.	2	chastotasini toping. 3 ta elementni 2 tadan o'rinlashtirishda tanlashlar qaytariladigan bo'lsa, tanlab olishlar	9	$C_n^k = \frac{n!}{k!(n-k)!}$	P = n! = n(n-1)(n-2)1	$A_{k} = n(n-1)(n-2)(n-(k-1))$
54.	1	soni 10 ta turli elementni 2 tadan o'rinlashtirish (qaytarilmaydigan) tanlashlar soni	90	$C_{k} = n!$ $\frac{k!(n-k)!}{n!}$	$P_n = n! = n(n-1)(n-2)1$	100
55.	_1	12 ta talabadan 3 ta delegatni necha xil usulda saylash mumkin.	220	2500	24	500
56.	1	O'yin soqqasi ketma-ket 70 marta tashlanganda faqat toq ochkolar tushgan bo'lsa, 71-tashlashda ham toq ochko	$\frac{1}{2}$	<u>50</u> 51	$(\frac{1}{2})^{51}$	$1 - \frac{50}{51}$
57.	2	tushish ehtimoli nimaga teng? Qurilma 5 ta elementdan iborat	0,3	0,4	0,5	0,6

	boʻlib, ularning 2 tasi eskirgan. Qurilma ishga tushirilganda tasodifiy ravishda 2 ta element ulanadi. Ishga tushirishda eskirmagan elementlar ulangan boʻlishi ehtimolini toping.				
58.	5 ta turli elementni 2 tadan 1 o'rinlashtirish (qaytarilmaydigan) tanlashlar soni	20	$C_n^k = \frac{n!}{k!(n-k)!}$	$P_n = n! = n(n-1)(n-2)1$	100
59.	Qutida 7 ta oq, 3 ta qora shar bor. Undan tavakkaliga olingan ikkita sharning qora boʻlishi ehtimolini toping.	1/15	8/15	11/15	2/15
60.	Texnik nazorat boʻlimi tasodifiyravishda ajratib olingan 100 1 ta kitobdan iborat partiyada 9 ta yaroqsiz kitob topdi (A hodisa). Yaroqsiz kitoblar sonining nisbiy chastotasini toping.	0,09	0,07	0,3	0,5
61.	Oʻyin kubigi (soqqasi) 1 marta 1 tashlandi. Juft ochko chiqish ehtimoli topilsin.	$\frac{1}{2}$	$\frac{2}{3}$	<u>5</u> 6	$\frac{3}{4}$
62.	1 Oʻyin kubigi bir marta tashlandi. 2 ochko chiqish ehtimoli topilsin.	<u>1</u> 6	$\frac{2}{5}$	$\frac{1}{3}$	$\frac{1}{2}$
63.	Oʻyin kubigi (soqqasi) 1 marta tashlandi. 5 dan kam boʻlmagan 2 (ya'ni 5 yoki 5 dan katta ochko chiqish) ochko chiqish ehtimoli topilsin.	$\frac{1}{3}$	$\frac{2}{3}$	<u>5</u>	3 5
64.	Oʻyin kubigi (soqqasi) bir marta 2 tashlandi. Koʻpi bilan 5 ochko chiqish (ya'ni 5 yoki 5 dan kam ochko chiqish) ehtimoli topilsin.	<u>5</u>	3 5	<u>1</u> 6	$\frac{2}{3}$

65.	Oʻyin kubigi ikki marta tashlandi. Chiqqan ochkolar yigʻindisi 8 boʻlishi ehtimoli topilsin.	<u>5</u> 36	$\frac{1}{6}$	7 36	$\frac{1}{12}$
66.	Ish yurituvchi 3 xonali sonning oxirgi raqamini esidan chiqarib 2 qoʻydi. Tavakkalliga olingan raqamning (0 dan 9 gacha) kerakli raqam boʻlish ehtimolini toping. Yashikda faqat	1/10	<u>9</u> 10	1 900	9 100
67.	ranglari bilan farqlanuvchi 5 ta oq, 10 ta qizil va 25 ta qora shar bor. Yashikdan tavakkaliga bitta shar olindi. Olingan sharning oq shar boʻlish ehtimolini toping.	0,125	0,375	0,5	0,4
68.	Ikkita oʻyin kubigi tashlangan. 2 Ochkolar yigʻindisi 6 ga teng boʻlish ehtimolini toping.	_1 _6	$\frac{2}{3}$	$\frac{1}{4}$	$\frac{1}{2}$
69.	Qutichada rangidan boshqa hech farq qilmaydigan 10 ta qalam boʻlib, 2 ulardan 7 tasi qora va 3 tasi qizil. Tavakkaliga olingan qalamning qizil boʻlish ehtimoli topilsin.	3 10	<u>1</u> 16	$\frac{2}{36}$	10 9
70.	Ikkita oʻyin kubigi tashlanganda ochkolar yigʻindisi 10 dan kam 3 boʻlmaslik (ya'ni ochkolar yigʻindisi 10 yoki 11 yoki 12 ga teng boʻlishi) ehtimoli topilsin.	<u>1</u> 6	<u>5</u> 36	1/18	<u>2</u> 9
71.	Soliq inspeksiyasi tasodifiy tanlangan doʻkonlarda aniqlagan savdo qoidalari buzilishining nisbiy chastotasi 0,35 ga teng. Jami 140 ta doʻkon tekshirilgan holda savdo qoidalari buzilgan doʻkonlar sonini	49	400	91	100

		toping.				
72.	3	Bir yil davomida ob'ektlarning birida o'tkazilgan tekshiruvlarda qayd etilgan qonunchilikning buzilishlarining soni 60 ga, nisbiy chastotasi esa 0,25 ga tengdir. Jami tekshiruvlar sonini toping.	240	15	80	45
73.	3	Tomoni ikkiga teng kvadratga ichki doira chizilgan. Kvadratga tavakkaliga tashlangan nuqtaning doiraga tushish ehtimolini toping.	$\frac{\pi}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{\pi}{8}$
74.	3 te	8 ta teng sektorga boʻlingan, navbati bilan oq va qora ranglarga boʻyalgan z aylanuvchi diskka qarata oʻq uzilgan. Oʻqning qora sektorlarga tegish ehtimolini toping.	$\frac{1}{2}$	$\frac{2}{3}$	$\frac{3}{4}$	1/8
75.	3	Idishda 12 ta oq va 8 ta qora sharlar bor. Idishdan tavakkaliga olingan 2 ta shar har xil rangda boʻlish ehtimolini toping.	$\frac{96}{190}$	69 190	<u>69</u> 90	<u>60</u> 90
76.	3	Radiusi $2\sqrt{2}$ ga teng boʻlgan doiraga kvadrat ichki chizilgan. Tavakkaliga tashlangan nuqtaning kvadrat ichiga tushish ehtimolini toping.	$\frac{2}{\pi}$	$\frac{9}{\pi}$	$\frac{4}{\pi}$	$\frac{6}{\pi}$
77.	1 ta	Oʻyin kubigi (soqqasi) 1 marta shlandi. Juft ochko chiqish ehtimoli topilsin.	$\frac{1}{2}$	$\frac{2}{3}$	$\frac{5}{6}$	$\frac{3}{4}$
78.	1 k	Qutida 36 karta bor. Tavakkaliga 1 ta arta olindi. Bu karta TUZ boʻlish ehtimolini toping.	1 9	$\frac{1}{6}$	$\frac{2}{3}$	$\frac{1}{18}$

79.	Oʻyin kubigi bir marta tashlandi. To ochko tushish ehtimolini toping.	$-\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{4}$	$\frac{1}{5}$
80.	Oʻyin kubigi bir marta tashlandi. 2 ochko chiqish ehtimoli topilsin.	$-\frac{1}{6}$	$\frac{2}{5}$	$\frac{1}{3}$	$\frac{1}{2}$
81.	Хамма ёғи бўялган куб 1000 та б хил ўлчамли кубчаларга бўлинга з ваяхшилабаралаштирилган. Таваккалига олинган кубчанинг учта ёғи бўялган бўлиш эхтимолини топинг.		0,006	0.012	0,064
82.	Хамма ёғи бўялган куб 1000 та хил ўлчамли кубчаларга бўлинга ваяхшилабаралаштирилган. З Таваккалига олинган кубчанинг иккита ёғи бўялган бўлиш эхтимолини топинг.	*	0,006	0.012	0,064
83.	Хамма ёғи бўялган куб 1000 та бохил ўлчамли кубчаларга бўлинга ва яхшилаб аралаштирилі 3 Таваккалига олинган кубчанин битта ёғи бўялган бўлиш эхтимолини топинг.	н сан. 0,384	0,006	0.012	0,064
84.1		аси — 6 иди. итта инг	$\frac{2}{5}$	$\frac{1}{3}$	1/2

85.	2	Корхона ишлаб чиқарган маҳсулотларнинг 15% и олий нав, 25% и биринчи нав, 40% и иккинчи нав, қолганлари эса сифатсиз. Таваккалига танланган маҳсулотнинг сифатсиз бўлмаслиги эҳтимолини топинг.	0.8	0.2	0,4	0,9
-----	---	---	-----	-----	-----	-----

2-ma'ruzaga testlar

t/r	Qiyinlik	Javoblar Masala va mashqlar sharti	A	В	C	D
1.	1	беришини билдирувчи ходисага	A ва B ходисаларнинг $A+B$ -йиғиндиси (бирлашмаси) дейилади	АваВ ходисаларнинг АВ - кўпайтмаси(кесишма си) дейилади	А ва В ходисаларнинг айирмаси дейилади	А ва В ходисаларнинг бўлинмаси дейилади
2.	1	А ва В ходисаларнинг биргаликда (бир пайтда) рўй беришини билдирувчи ходисага	$A_{ m Ba}~B_{ m \chi O ДИ C a Л a p H U H \Gamma} \ A B \ m k reve{y} п a reve{y} т a c u (кес u ш м a c u) де reve{y} u л a д u$	$A_{Ba}B$ ходисаларнинг $A+B$ -йиғиндиси (бирлашмаси) дейилади	А ва В ҳодисаларнинг бўлинмаси дейилади	А ва В ходисаларнинг айирмаси дейилади
3.	1	Мерган нишонга қарата иккита ўқ узди: A -биринчи ўқнинг нишонга тегиши, B -иккинчи ўқнинг нишонга тегиши бўлса, $A+B$ -	биринчи ўкнинг, ёки иккинчи ўкнинг, ёки иккала ўкнинг хам нишонга тегиши	биринчи ўқнинг нишонга тегиши	иккинчи ўқнинг нишонга тегиши	иккала ўқнинг ҳам нишонга тегиши
4.	1	Агар A ва B ходисалар биргаликда бўлмаса, у холда $A+B$ ходисанинг рўй бериш эхтимоли	P(A+B) = P(A) + P(B)	P = rR	$P_{A}(B) = \frac{P(AB)}{P(A)}$,	P(AB) = P(A)P(B)

5.	2	Агар A ва B эркли (боғлиқмас) ходисалар бўлса, у холда AB кўпайтманинг рўй бериш эхтимоли	P(AB) = P(A)P(B)	P(A+B) = P(A) + P(B)	P = rR	$P(B) = \frac{P(AB)}{P(A)},$
6.	1	I ва II тўплардан отилган ўкларнинг нишонга тегиш эхтимоллари мос равишда $p_1 = 0.8$ ва $p_2 = 0.9$ бўлсин. Агар нишон йўк бўлиши учун иккала ўкнинг унга тегиши шарт бўлса, нишоннинг йўк бўлиш эхтимолини топинг.	0.72	0.98	0.76	0.74
7.	1	Кутида 4 та оқ, 3 та қора шар бор. Кутидан қайтарилмасдан иккита шар олинди. Агар биринчи олинган шар (<i>A</i> -ҳодиса) қора бўлса, иккинчи олинган шарнинг (<i>B</i> -ҳодиса) оқ бўлиш эҳтимолини топинг.	2/3	2/5	2/7	2/9
8.	2	В ходисанинг А шарт асосида рўй бериш эхтимоли	$P(B) = \frac{P(AB)}{P(A)} ,$ $(P(A) > 0)$	$P(B) = \frac{P(AB)}{P(A)} ,$	1/2	5/6
9.	1	A гар A B B X ОДИСАЛАР УЧУН $P_A(B) = P(B)$ ёки $P_B(A) = P(A)$ бўлса	АваВ эркли ҳодисалар	A ва B боғлиқ ҳодисалар	АваВ шартли эркли ҳодисалар	АваВ шартли боғлиқ ҳодисалар
10.	1	I ва II тўплардан ўқ отишда нишонга теккизиш эхтимоллари мос равишда $p_1 = 0.8$ ва $p_2 = 0.9$. Бир йўла отишда тўплардан камида бирининг нишонга	0.98	0.72	0.76	0.74

		теккизиш эхтимолини топинг.				
11.	1	Агар тажриба натижасида A_1 , A_2 , A_n -ходисалар тўпламидан хеч бўлмаганда биттаси рўй берса ва улар жуфтжуфти билан биргаликда бўлмаса, у холда бу ходисалар тўплами	тўла группа	ярим группа	чала группа	шартли группа
12.	1	Тўла группа ташкил этувчи A_1 , A_2 , , A_n -ходисалар эхтимолларининг йиғиндиси	birga teng	nolga teng	nol va bir orasida yotuvchi sondir	o'zgarmas son
13.	1	Агар иккита ходиса тўла группа ташкил этса, у холда бу ходисалар	қарама-қарши ҳодисалар	тескари ходисалар	биргаликда ходисалар	тескари бўлмаган ҳодисалар
14.	2	Агар A ходиса тўла группа ташкил этувчи, биргаликда бўлмаган B_1 , B_2 ,, B_n - ходисалардан биттасининг амалга ошиш шарти билан рўй берса, у холда A ходисанинг рўй бериш эхтимоли	Тўла эхтимол формуласи ёрдамида топилади.	Байес формуласи ёрдамида топилади.	Бернулли формуласи ёрдамида топилади.	Пуассон формуласи ёрдамида топилади.
15.	2	P(B) = P(B) P(A), $P(B) = P(B) P(A),$ $P(B) P(A)$ $P(B) P(A)$ $(k = 1, 2,, n)$	Байес формулалари	Лаплас формулалари	Бернулли формулалари Г	Іуассон формулалари
16.	1	Агар A ходисанинг рўй бериши B ходисанинг рўйбериш эхтимолини ўзгартирмасава аксинча бўлса, A ва B ходисалар	Эркли (боғлиқмас) ҳодисалар дейилади	боғлиқ ҳодисалар дейилади	биргаликда ходисалар дейилади	Биргаликда бўлмаган ҳодисалар дейилади
17.	1	Agar o'rinlashtirishda kombinatsiyalar hech bo'lmaganda bitta elementi bilan farq qilsa, ularni <i>n</i> ta elementni <i>k</i> tadan <i>gruppalash</i> deyiladi va ularning	$C_n^{\ k} = \frac{n!}{k!(n-k)!}$	$P_n = n! = n(n-1)(n-2)$.1 $A_n^k = n (n-1)(n-2)(n-(k-1)$)) n-k

		soni				
18.	2	n ta elementni k tadan o'rinlashtirishda tanlashlar qaytariladigan bo'lsa, tanlab olishlar soni		$C_k = n! \frac{k!(n-k)!}{n}$	P = n ! = n(n-1)(n-2)1	A = n (n-1)(n-2)(n-(k-1))
19.	2	n ta element ichida i element n_i $(i = 1, k)$ marta takrorlansa, u holda o'rin almashtirishlar soni bu erda $n = n_1 + n_2 + + n_k$.	$P_{n \ 1 \ 2} (n, n,, n) = \frac{n!}{\frac{n!}{1 \ 2 \ k}}$	$P_n = n! = n(n-1)(n-2)$	$\int_{A}^{k} = n (n-1)(n-2)(n-(k-1))$	$C_{k} = \frac{n!}{k!(n-k)!}$
20.	1	I ва II тўплардан отилган ўкларнинг нишонга тегиш эхтимоллари мос равишда ва $p_2 = 0.9$ бўлсин. Агар нишон йўк бўлиши учун иккала ўкнинг унга тегиши шарт бўлса, нишоннинг йўк бўлиш эхтимолини топинг.	0.63	0.98	0.76	0.74
21.	1	P(A+B)=P(A)+P(B)-P(AB)	биргаликда бўлган иккита ходисадан камида биттасининг рўй бериш эхтимоли	боғлиқ бўлган иккита ҳодисадан камида биттасининг рўй бериш эҳтимоли	боғлиқ бўлмаган бўлган иккита ҳодисадан камида биттасининг рўй бериш эҳтимоли	тасодифий бўлган иккита ходисадан камида биттасининг рўй бериш эхтимоли
22.	2	A va B hodisalar to`la gruppa tashkil etadi. Agar $P(A) = \frac{12}{17}$ bo`lsa, $P(B)$	5 17	14 17	7 17	$\frac{13}{17}$;
23.	1	ehtimolni toping. A va B ixtiyoriy tasodifiy hodisalar bo`lsin. Shu hodisalardan kamida bittasining ro`y berish ehtimolini ifodalovchi formulani ko`rsatng:	P(A+B)=P(A)+P(B)- $P(AB)$	P(A+B)=P(A)+P(B)- $P(A)P(B)$	P(A+B)=P(A)+P(B)	P(A+B)=P(A)·P(B)

		A,B va C hodisalar to`la gruppa tashkil	1	1	1	0
24.	2	etadi. $P(A) = \frac{2}{3}$; $P(B) = \frac{1}{6}$ bo`lsa,	$\frac{-}{6}$;	9	3	
25.	1	P(C) ehtimolni toping. A,B va C hodisalar to'la gruppa tashkil etadi. Agar P(A)=P(B)=0,3 bo'lsa, P(C) ehtimollik nimaga teng?	0,4;	0,6;	0,3;	0,2
26.	2	Guruxda 15 nafar talaba boʻlib ulardan 5 tasi a'lochi. Tavakkaliga ajratilgan ikki talabadan 1 tasi a'lochi boʻlish ehtimoli topilsin.	10 21	12 21	11 21	13 21
27.	2	Qutida 36 karta bor. Tavakkaliga bittadan 2 ta karta olindi. Ikkalasining ham TUZ chiqish ehtimolini toping.	1/105	1/120	1/110	1/100
28.	2	Oʻquv zalida ehtimollar nazariyasidan 6 ta darslik bor, ulardan 3 tasi muqovali. Kutubxonachi tavakkaliga ketma- ket ikkita darslikni olib, ularni ikkita talabaga berdi. Ikkala darslik muqovali boʻlishining ehtimolini toping.	_1 _5	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{2}{3}$
29.	2	Oilada 3 ta farzand bor. Agar qiz va oʻgʻil bola tugʻilish ehtimollarini teng deb olsak, u holda oilada uchala farzand ham qiz boʻlish ehtimoli topilsin.	0,125	0,15	0,25	0,12
30.	2	Idishda 10 ta qizil va 4 ta koʻk rangli sharlar bor. Tavakkaliga shu idishdan ketma-ket 2 ta shar olindi. Olingan ikkala sharning ham qizil boʻlish	<u>45</u> 91	<u>5</u> 9	<u>4</u> 90	$\frac{2}{5}$

		ehtimoli topilsin.				
31.	2	O'qning nishonga tegish ehtimoli <i>p</i> = 0, 9 bo'lsa, 3 ta o'q uzilganda, uchchalasining ham nishonga tekkan bo'lish ehtimoli topilsin.	0,729	0,361	0,216	0,512
32.	2	Tanga 2 marta tashlangan. Ikki martada ham «Gerb» chiqish ehtimolini toping.	$\frac{1}{4}$	1/2	$\frac{1}{3}$	$\frac{3}{4}$
33.	2	Talaba 50 savoldan 30 tasiga tayyorlandi. Agar biletda 3 ta savol boʻlsa, uning 3 ta savolga ham javob berish ehtimolini toping.	$P = \frac{30}{50} \cdot \frac{29}{49} \cdot \frac{28}{48}$	$P = \frac{1}{2}$	P=5 ³	P=5 ²
34.	2	Bir marta oʻq uzishda nishonga tekizish ehtimoli 0,5. Mergan 3 marta oʻq uzdi. 3 ta oʻqning ham nishonga tegish ehtimolini toping.	0,125	0,875	0,25	0,5
35.	2	Oʻyin soqqasi va tanga tashlandi. GERB va juft ochko tushish ehtimolini toping.	$\frac{1}{4}$	<u>3</u> <u>4</u>	$\frac{1}{2}$	$\frac{1}{3}$
36.	2	Tanga va oʻyin soqqasi tashlandi. "Gerb" va "6 ochko" tushish ehtimolini toping.	<u>1</u> 12	<u>1</u>	$\frac{1}{2}$	$\frac{1}{4}$
37.	2	Talaba dasturdagi 30 ta savoldan 20 tasini biladi. Talaba imtihon oluvchi taklif etgan uchta savolga javob berish ehtimoli topilsin.	$\frac{171}{203}$	5 <u>0</u> 74	$\frac{42}{264}$	25 114
38.	2	Idishda 10 ta qizil rangli va 4 ta koʻk rangli sharlar bor. Tavakkaliga shu idishdan ketma-ket 2 ta shar olindi. Olingan ikkala sharning ham koʻk rangli boʻlish ehtimoli topilsin.	<u>6</u> 91	<u>5</u> 91	<u>4</u> 91	<u>2</u> 91
39.	2	Uchta mergan nishonga qarata oʻq uzdi. Birinchi, ikkinchi va uchinchi	0,504	0,506	0,508	0,509

	merganlarning nishonga tegish ehtimollari mos ravishda 0,7; 0,8 va 0,9 boʻlsa, uchchala merganning nishonga tegish ehtimolini toping.				
40.	20 ta mahsulot orasida 5 ta yaroqsiz mahsulot bor. Tekshirish uchun 3 tavakkaliga 2 ta mahsulot tanlandi. Shular orasida 1 tasi yaroqsiz boʻlish ehtimoli topilsin.	15 38	16 37	17 38	18 37
41.	Ikkita idishdan birida 6 ta oq 4 ta qora, ikkinchisida esa 8 ta oq, 6 ta qora sharlar bor. Tavakkaliga ikkita idishdan bittadan shar olindi. Chiqqan ikkala sharning ham oq rangli boʻlish ehtimoli topilsin.	12 35	23 35	13 35	17 35
42.	Ikkita oʻyin kubigi birgalikda 3 tashlandi. Ikkalasida ham bir xil ochko tushishi ehtimolini toping.	$\frac{1}{6}$	<u>1</u> 36	$\frac{1}{18}$	$\frac{1}{12}$
43.	Yashikdagi 10 ta detaldan 6 tasi ranglangan. Yigʻuvchi tavakkaliga 4 3 ta detal oldi. Olingan detallarning barchasi rangli boʻlish ehtimolini toping.	1/14	<u>2</u> 15	$\frac{3}{6}$	$\frac{1}{6}$
44.	Yashikda 5 ta oq, 4 ta qora, 3 ta koʻk shar bor. Yashikdan birinchi olingan shar oq, ikkinchisi qora, uchinchisi koʻk rangli boʻlish ehtimolini toping. Olingan sharlar yashikka qaytarilmaydi.	$\frac{1}{22}$	<u>5</u> 12	4 11	2 5
45.	Talaba 50 ta savoldan 40 tasini oʻzlashtirdi. Imtihon bileti 3 ta savoldan iborat boʻlsa, talabaning hamma savolga javob berishi	147 490	739 1470	$\frac{737}{1470}$	743 1470

		ehtimolini toping.			1	1
46.	1	Toʻla ehtimollik formulasini koʻrsating	$P(A) = \sum_{i=1}^{n} P(B_i) \cdot P_{Bi}(A)$	P(B)+P(B)+. $+P(B)=1$	$P(B_1)+P(B_2)+.$ + P(B ₁) = P(A)	$P(B) = i \frac{P(B)P_{\mu_{i}}(A)}{P(A)}$
47.	1	Beyes formulasini koʻrsating	$P(B) = P(A) P_{i}(A)$ $P(A) = P(A)$	P(A)+P(B)P A	$P(A) = \prod_{i=1}^{n} P(B) \cdot P_{i}^{B}(A)$	$P(B_1)+P(B_2)+$ + P(B_n) = 1
48.	2	1-qutida 25 ta shar boʻlib, ulardan 10 tasi oq; 2-qutidagi 15 ta shardan 9 tasi oq. Tavakkaliga tanlangan qutidan tavakkaliga olingan sharning oq boʻlish ehtimolini toping.	0,5	0,4	0,6	0,1
49.	3	Sportchilar orasida 15 ta changʻichi va 5 ta velosipedchi sportchilar bor. Agar normativni bajara olish ehtimoli changʻichi uchun 0,8 ga, velosipedchi uchun 0,7 ga teng boʻlsa, tavakkaliga tanlangan sportchining normativni bajara olish	0,775	0,7	0,4	0,6
50.	3 cl	ehtimolini toping. Korxonaning 1-sexida jami mahsulotning 40 %i, 2-sexida 60 %i ishlab chiqariladi. 1- va 2-sexlarda yaroqli mahsulot ishlab hiqarilishining ehtimolliklari mos ravishda 0,9 va 0,7 ga teng. Korxonaning tavakkaliga olingan mahsuloti yaroqsiz boʻlib chiqish ehtimolini toping.		0,5	0,4	0,2

3-ma'ruzaga testlar

t/r	Qiyinlik darajasi	Javoblar Masala va mashqlar sharti	A	В	C	D
1.	1	X дискрет тасодифий микдор кабул килиши мумкин бўлган кийматларининг мос эхтимолларига кўпайтмалари йиғиндиси	кутилмаси деб	унинг дисперсияси деб айтилади.	унинг ўртача математик кутилмаси деб айтилади.	унинг ўртача квадратик четланиши деб айтилади.
2.	1	$P(k) = C^{k} p^{k} q^{n-k}$	Бернулли (биномиал) формуласи (схемаси)	Пуассон (биномиал) формуласи (схемаси)	Байес (биномиал) формуласи (схемаси)	Лаплас (биномиал) формуласи (схемаси)
3.	1	Тақсимот қонуни $X: 1 2 3 4 5 6$ $p: \frac{1}{6} \frac{1}{6} \frac{1}{6} \frac{1}{6} \frac{1}{6} \frac{1}{6}$ кўринишда бўлган тасодифий микдорнинг математик кутилмасини топинг	3.5	4	4.5	5
4.	1	Пуассон қонуни бўйича	$M(X)=\lambda$	$M(X)=\lambda_2$	$M(X)=\lambda_3$	$M(X)=\lambda_4$
5.	2	ўзгармас микдорнинг математик кутилмаси	ўзгармаснинг ўзига	ўзгармаснинг квадратига тенг:	ўзгармаснинг кубига	ўзгармаснинг илдизига тенг:

			тенг:			
6.	1	Математик кутилма учун қайси бири тўғри?	M(CX) = CM(X)	$M(CX) = C$ 2 $M(X)$	M(CX) = C M(X)	$M(CX) = \sqrt{C}M(X)$
7.	1	Чекли сондаги тасодифий микдорлар йигиндисининг математик кутилмаси	M(X + X + X + X) = M(X) + M(X) + M(X)	$M(X_1 + X_2 + \dots + X_n) =$ $M(X_2) + M(X_n) + \dots + M(X_n)$	$M(X + X + X + X) = M(X) + M(X^{2}) + M(X)$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
8.	2	B ходисанинг A шарт асосида рўй бериш эхтимоли	$P_{A}(B) = \frac{P(AB)}{P(A)},$ $(P(A) > 0)$	$P(B) = \frac{P(AB)}{P(A)},$	1/2	5/6
9.	1	Чекли сондаги боғлиқмас тасодифий микдорлар кўпайтмасининг математик кутилмаси	$M\left(XX_{2}X_{n}\right) = \\ = M(X \qquad)M(X)M(X $ $1 \qquad 2 \qquad n$	$M(X_1 X_2 X_n) = M(X_2) + M(X_1) + M(X_2)$	$M(X_1 + X_2 + \dots + X_n) = M(X_1) + M(X_2) + \dots + M(X_n)$	$ \begin{array}{c c} M\left(XX & X\right) = \\ & & \\ M(X) & & \\$
10.	3	n та боғлиқмас тажрибаларда A ҳодиса рўй беришининг математик кутилмаси:	M(X) = np	M(X) = npq	$M(X) = np^2$	$M(X) = npq^2$
11.	1	Тасодифий микдор четланишининг математик кутилмаси		M(X-M(X))=1.		M(X-M(X))=0.3. D(X)=M(X-M(X))
12.	1	X тасодифий микдорнинг $D(X)$ -дисперсияси	D(X) = M(X - M(X))	D X = M X - M X	D(X)=M(X-M(X))	$\frac{D(A)-M(A-M(A))}{4}$
13.	2	Агар A ходисанинг рўй бериш эхтимоли p га тенг бўлса, у холда A ходисанинг битта синовда рўй беришсонинингматематик кутилмасини топинг.	p	pq	\sqrt{pq}	p^2

14.	3 A	Агар <i>А</i> ходисанинг рўй бериш эхтимоли <i>р</i> га тенг бўлса, у холда ходисанинг битта синовда рўй бериш сонининг дисперсиясини топинг.	pq	\sqrt{pq}	<i>p</i> ²	p
15.	3 A	Агар <i>А</i> ҳодисанинг рўй бериш эҳтимоли <i>р</i> га тенг бўлса, у ҳолда ҳодисанинг битта синовда рўй бериш сонининг ўртача квадратик четланишини топинг.	\sqrt{pq}	p	pq	p ²
16.	1	Ўзгармас миқдорнинг дисперсияси	D(C)=0 .	D(C)=1	D(C)=2.	D C = 3
17.	1 1	X va Y – ixtiyoriy tasodifiy miqdorlar bo`lsin. Matematik kutilish uchun yozilgan noto`g`ri xossalarni ko`rsating) M(C)=0 2) M(CX)=CM(X) 3) M(X-Y)=M(X)+M(Y) 4) M(XY)=M(X)M(Y)	1),3) va 4);	1) va 3);	2),3) va 4);	2) va 3)
18.	1 2	Dispersiya uchun yozilgan xato formulalarni ko`rsating; 1) D(X)=M X-M(X)) D(X)=M(X-M(X)) ₂ 3) D(X)=M ² (X)-M(X ²) 4) D(X)= M(X ²) -M ² (X)	1);3);	1);2);	Hammasi xato;	1);4)
19.	1	A va B ixtiyoriy tasodifiy hodisalar bo`lsin. Shu hodisalardan kamida bittasining ro`y berish ehtimolini ifodalovchi formulani ko`rsatng:	P(A+B)=P(A)+P(B)- P(AB)	P(A+B)=P(A)+P(B)- $P(A)P(B)$	P(A+B)=P(A)+P(B)	P(A+B)=P(A)·P(B)
20.	1	Танга 5 марта ташланди. "Герб"нинг 2 марта тушиш эхтимоли қанчага тенг?	5/16	25/28	17/28	19/28

21.	2	P(A+B)=P(A)+P(B)-P(AB)	биргаликда бўлган иккита ходисадан камида биттасининг рўй бериш эхтимоли	боғлиқ бўлган иккита ходисадан камида биттасининг рўй бериш эхтимоли	боғлиқ бўлмаган бўлган иккита ҳодисадан камида биттасининг рўй бериш эҳтимоли	тасодифий бўлган иккита ходисадан камида биттасининг рўй бериш эхтимоли
22.	1	A va B hodisalar to`la gruppa tashkil etadi. Agar $P(A) = \frac{12}{17}$ bo`lsa, $P(B)$	$\frac{5}{17}$	14 17		$\frac{13}{17}$;
		ehtimolni toping. n ta elementni k tadan				
23.	2	o'rinlashtirishda tanlashlar qaytariladigan bo'lsa, tanlab olishlar soni	$N = n_k$	$C^{k}_{n} = \frac{n!}{k!(n-k)!}$	P = n! = n(n-1)(n-2)1	$\int_{A}^{k} = n (n-1)(n-2)(n-(k-1))$
24.	1	A,B va C hodisalar to`la gruppa tashkil etadi. $P(A) = \frac{2}{3}$; $P(B) = \frac{1}{6}$ bo`lsa,	$\frac{1}{6}$;	<u>_1</u>	1/3	0
		P(C) ehtimolni toping.				
25.	3	n ta element ichida i element n_i $(i = \overline{1, k})$ marta takrorlansa, u holda o'rin almashtirishlar soni bu erda $n = n_1 + n_2 + + n_k$.	$P(n, n, n,, n) = \frac{n!}{n! n! \dots n!}$	P = n ! = n(n-1)(n-2)	$ 1 $ $ \int_{a}^{k} = n (n-1)(n-2)(n-(k-1)) $	$C_{k} = \frac{n!}{k!(n-k)!}$
26.	1	bu erda $n = n_1 + n_2 + + n_k$. 10 X: -4 6 taqsimot qonuni P: 0,2 0,3 0,5 bilan berilgan diskret tasodifiy miqdorning matematik kutilishini toping.	6	4	3	7
27.	2	X: 2 3 5 P: 0,1 0,6 0,3 taqsimot qonuni bilan berilgan diskret tasodifiy miqdorning matematik kutilishini	3,5	3	2,5	2

		toping.				
28.	2	X: 3 7 10 14 taqsimot $P:$ 0,2 0,2 0,3 0,3 qonuni bilan berilgan X diskret tasodifiy miqdorning matematik kutilishini toping.	9,2	9,4	9,6	9,8
29.	2	X: -2 0 3 7 taqsimot $P: 0,1 0,3 0,3 0,3$ qonuni bilan berilgan X diskret tasodifiy miqdorning matematik kutilishini toping.	2,8	2,10	2,6	2,4
30.	2	X: 4 5 7 9 taqsimot P: 0,1 0,4 0,3 0,2 qonuni bilan berilgan X diskret tasodifiy miqdorning matematik kutilishini toping.	6,3	6,5	6,7	6,1
31.	2	X: 1 3 8 10 P: 0,2 0,4 0,2 0,2 taqsimot qonuni bilan berilgan X diskret tasodifiy miqdorning matematik kutilishini toping.	5	9	7	11
32.	2	X: 5 7 10 12 taqsimot $P:$ 0,3 0,2 0,3 0,2 qonuni bilan berilgan X diskret tasodifiy miqdorning matematik kutilishini toping.	8,3	8,4	8,2	8,1
33.	2	X: 2 3 5 7 taqsimot P: 0,2 0,5 0,2 0,1 qonuni bilan berilgan X diskret tasodifiy miqdorning matematik kutilishini toping.	3,6	3,4	3,2	3,8

34.	2	X: 1 3 4 7 taqsimot $P:$ 0,2 0,3 0,4 0,1 qonuni bilan berilgan X diskret tasodifiy miqdorning matematik kutilishini toping.	3,5	3,9	3,7	3,11
35.	3	X diskret tasodifiy miqdorning taqsimot qonuni $X: 1 3 5$ $P: 0,4 0,3 0,3$ koʻrinishda berilgan va $Y=2X+3$ boʻlsa, $M(Y)$ ni toping.	8,6	8,4	8,2	8
36.	3	X diskret tasodifiy miqdorning $X: 1 2 4$ taqsimot qonuni $P: 0,4 0,3 0,3$ koʻrinishda berilgan va $Y=3X+2 boʻlsa, M(Y) ni$ toping.	1,6	1,2	1,4	1,5
37.	3	X diskret tasodifiy miqdorning taqsimot qonuni $X: 0 2 5$ $P: 0,3 0,4 0,3$ koʻrinishda berilgan va $Y = 2X - 3$ boʻlsa, $M(Y)$ ni toping.	8,6	8,5	8,4	8,2
38.	3	X diskret tasodifiy miqdorning $X: 1 2 6$ taqsimot qonuni $P: 0,4 0,3 0,3$ koʻrinishda berilgan va $Y=3X-2 boʻlsa, M(Y) ni$ toping.	6,4	6,8	6,6	6,2
39.	1	Ikkita tasodifiy miqdor yigʻindisining matematik kutilishi	M(X)+M(Y)	$M(X)\cdot M(Y)$	M(X)– $M(Y)$	M(X)/M(Y)

		qanday topiladi?				
40.	1	Ikkita tasodifiy miqdor ayirmasining	M(X)– $M(Y)$	$M(X)\cdot M(Y)$	M(X)+M(Y)	M(X)/M(Y)
40.	1	matematik kutilishi qanday topiladi?				

4-ma'ruzaga testlar

t/r	Qiyinlik darajasi	Javoblar Masala va mashqlar sharti	A	В	C	D
1.	1	микдорларнинг мумкин бўлган кийматлари айрим ва ажралган	унинг мумкин бўлган кийматларининг сони чекли, ёки санокли бўлади.	•	унинг мумкин бўлган кийматларининг сони ё аноксиз, ёки санокли бўлади.	унинг мумкин оулган
2.	1	Агар тасодифий микдор қабул киладиган қийматларни чекли ёки саноқли кетма-кетлик кўринишда ёзиш мумкин бўлса, бундай тасодифий микдорга	дискрет тасодифий микдор дейилади	узлуксиз тасодифий микдор дейилади	сингуляр тасодифий микдор дейилади	боғлиқ тасодифий миқдор дейилади
3.	2	Javonda 10 ta kitob bo`lib, ulardan uchtasi matematikaga oiddir. Tavakkaliga olingan uchta kitobning hammasi matematikaga oid bo`lish ehtimolini toping?	$P = \frac{C_3^{3}}{C_{10}^{3}}$	$P = \frac{3}{10} ;$	$P = \frac{C_{\frac{3}{3}}}{C_{10}}$	$P = \frac{3}{7} :$
4.	1	Тажриба натижасида мумкин бўлган, олдиндан номаълум ва тасодифий сабабларга боғлик бўлган кийматлардан биттасини ва фақат биттасини тайин эҳтимол	тасодифий микдор дейилади	биргаликда бўлган тасодифий микдор дейилади	боғлиқ тасодифий миқдор дейилади	сингуляр тасодифий микдор дейилади
5.	1	билан қабул қиладиган катталикка Дискет тасодифий микдорнинг т мумкин бўлган қийматлари ва м	-	тасодифий микдорнинг	тасодифий микдорнинг тескариси деб аталади.	тасодифий микдорнинг интеграли

		уларнинг эхтимоллари орасида мосликни	қонуни деб аталади.	функцияси деб аталади.		деб аталади.
6.	1	Агар тасодифий микдорнинг $F(x)$ -таксимот функцияси узлуксиз ва дифференциалланувчи бўлса	бу тасодифий микдор узлуксиз тасодифий микдор дейилади.	бу тасодифий микдор сингуляр тасодифий микдор дейилади.	бу тасодифий микдор дискрет тасодифий микдор дейилади.	бу тасодифий микдор боғлиқ бўлмаган тасодифий микдор дейилади.
7.	1	Агар тасодифий микдорнинг $F(x)$ -таксимот функцияси чекли ёки санокли сондаги I тур узилишларга эга бўлса	бу тасодифий микдор дискрет тасодифий микдор дейилади.	бу тасодифий микдор сингуляр тасодифий микдор дейилади.	*	бу тасодифий микдор боғлиқ бўлмаган тасодифий микдор дейилади
8.	1	Тақсимот функция учун қайси бири тўғри?	Тақсимот функциянинг кийматлари [0;1] кесмага тегишли	Тақсимот функциянинг кийматлари [0;2] кесмага тегишли	Тақсимот функциянинг кийматлари [-1;1] кесмага тегишли	Тақсимот функциянинг кийматлари [-2;1] кесмага тегишли
9.	1	Тақсимот функция учун қайси бири тўғри?	Тақсимот функцияси камаймайдиган функциядир	Тақсимот функцияси қатъий ўсувчи функциядир	Тақсимот функцияси қатъий камаювчи функциядир	Тақсимот функцияси камаювчи функциядир
10.	1	X узлуксиз тасодифий микдорнинг факат битта аник кийматни кабул килиши эхтимоли		P(X=x)=1	P(X=x) = 0.5	P(X=x) = 0.1
11.	2	Агар тасодифий микдорнинг мумкин бўлган кийматлари (<i>a</i> ; <i>b</i>) интервалга тегишли бўлса, у холда	$\lim_{\substack{x \to a - 0 \\ \lim F(x) = 1 \\ x \to b - 0}} F(x) = 0,$	$\lim_{\substack{x \to -\infty \\ \lim F(x) = 1 \\ x \to \infty}} F(x) = 0,$	$\lim_{x \to a \to 0} F(x) = 0,$ $\lim_{x \to b \to 0} F(x) = 0$	$\lim_{x \to a \to 0} F(x) = 1,$ $\lim_{x \to a \to 0} F(x) = 1$ $\lim_{x \to b \to 0} F(x) = 1$
12.	2	Агар тасодифий микдорнинг мумкин бўлган кийматлари бутун Ох ўкда жойлашган бўлса, у холда	$\lim_{x \to -\infty} F(x) = 0,$ $\lim_{x \to \infty} F(x) = 1$	$\lim_{x \to a \to 0} F(x) = 0,$ $\lim_{x \to b \to 0} F(x) = 1$	$\lim_{x \to a \to 0} F(x) = 1, \lim_{x \to b \to 0} F(x) = 1$	$\lim_{x \to a \to 0} F(x) = 0,$ $\lim_{x \to b \to 0} F(x) = 0$

13.	1	Diskret tasidifiy miqdorning taqsimot funksiyasi quyidagicha ifodalanadi:	$F(x) = \sum_{\substack{x < x \\ i}} p$	$F(x) = \sum_{i} p$	$F(x) = \sum_{i} p$	$F(x) = \sum_{i} p$
14.	3	X тасодифий микдор $ \begin{bmatrix} 0, & arap & x < \\ 0, & arap & x < \\ 1 & 1 \\ 4 & 4 \end{bmatrix}, arap & -1 \le x < \\ 1, & arap & x \ge \end{bmatrix} $ таксимот функция билан берилган бўлсин. Синаш натижасида X тасодифий микдор $(0; 2)$ интервалга тегишли қийматларни қабул қилиш эхтимолини топинг.	< 3 бўлса,	1/3	1/8	1/4
15.	3	X дискрет тасодифий микдор куйидаги X : 1 4 8 p : 0, 3 0,1 0, 6 таксимот конуни билан берилган булсин. Унинг таксимот функциясини топинг.	$F(x) = \begin{cases} 0, & a = x \le 1 \\ 0, & a = a = p \le 4 \end{cases}$ $\begin{cases} 0, & a = a = p \le 4 \\ 0, & a = a = p \le 4 \le 8 \end{cases}$	$F(x) = \begin{cases} 0, & a \neq x \leq 3 \\ 0, & a \neq x \leq 4 \\ 0, & 4 \neq x \leq 4 \end{cases}$		$F(x) = \begin{cases} 0, & a \neq x \leq 0 \\ 0, & a \neq x \leq 4 \\ 0, & 4 \neq x \leq 8 \end{cases}$
16.	3	Кутида 7 та шар бўлиб уларнинг 4 таси қора. Тасодифий равишда 3 та шар олинган. Агар <i>х</i> тасодифий микдор олинган шарлар орасидаги оқ шарлар сонидан иборат бўлса, унинг таксимот қонунини тузинг.	$X: 0 1 2 3$ $p: \frac{4}{35} \frac{18}{35} \frac{12}{35} \frac{1}{35}$	$X: 0 1 2 3$ $p: \frac{1}{35} \frac{18}{35} \frac{12}{35} \frac{4}{35}$	$X:0$ 1 2 3 $p:\frac{4}{35} \frac{12}{35} \frac{18}{35} \frac{1}{35}$	$X: \begin{array}{cccccccccccccccccccccccccccccccccccc$
17.		Laplasning integral teoremasi qaysi holda qo`llaniladi? 1). Erkli sinashlar soni n yetarlicha katta				

		bo`lib, A hodisaning ehtimoli sinashlarda				
		o`zgaruvchan bo`lsa; 2). Sinashlar soni n≥30 bo`lib, sinashdan	3);	1), 2);	1);	1) va 3)
		sinashga o`tganda A hodisaning ehtimoli				
		o`zgaruvchan bo`lsa;				
		3). erkli sinashlar soni katta bo`lib, har				
		bir sinashda P(A) ehtimollik o`zgarmas va 0 bilan 1 dan farqli bo`lsa.				
		10. X – diskret tasodifiy miqdor 4 ta	0.28	0.35;	0.55;	0.7;
		mumkin bo`lgan qiymatni qabul qilishi mumkin.				
18.	_	mumkin. X: X1 X2 X3 X4				
10.	•	P: 0,2 p ₂ 0,16 0,36				
		Jadvaldagi p2 ni toping.		Mumkin bo`lgan		
			Mumkin bo`lgan	qiymatlari ayrim		
19.	2	Diskret tasodifiy miqdorlar haqidagi	qiymatlari faqat butun	ajralgan sonlardan	C	Mumkin bo`lgan
1).	_	qaysi fikr to`g`ri?	sonlardan iborat	iborat va soni yoki	± *	qiymatlari doimo chekli
				chekli, yoki sanoqli bo'ladi.		
		Har bir x qiymati uchun X tasodifiy				
20	1	miqdorning x dan kichik qiymat qabul				
20.	1	qilish ehtimolini aniqlovchi $F(x)$ funksiyaga qanday funksiya deyiladi?	Taqsimot funksiyasi	Zichlik funksiyasi	Uzluksiz funksiya	Singulyar funksiya
		runksiyaga qanday runksiya deynadi:				
21.		Berilgan javoblarning qaysi biri taqsimot	kamaymaydigan funksiya	kamayuvchi funksiya	ham usuvchi ham	na usuvchi na kamayuvchi
۷1.		funksiyasi uchun to`g`ri? Qutida 7 ta oq, 3 ta qora shar bor.			kamayuvchi	funksiya
		Undan tavakkaliga olingan ikkita				
22.	2	sharning oq boʻlishi ehtimolini		8/15	11/15	2/15
		toping.				
23.	1	Qurilma 5 ta elementdan iborat	0,3	0,4	0,5	0,6

		boʻlib, ularning 2 tasi eskirgan. Qurilma ishga tushirilganda tasodifiy ravishda 2 ta element ulanadi. Ishga tushirishda eskirmagan elementlar ulangan boʻlishi ehtimolini toping.				
24.	1	Texnik nazorat boʻlimi tasodifiyravishda ajratib olingan 100 ta kitobdan iborat partiyada 9 ta yaroqsiz kitob topdi (A hodisa). Yaroqsiz kitoblar sonining nisbiy chastotasini toping.		0,07	0,3	0,5
25.	1	Qutida 5 ta oq, 2 ta qora shar bor. Undan tavakkaliga olingan ikkita sharning qora boʻlishi ehtimolini toping.	1/21	8/15	11/15	2/15
26.	2	Zichlik funksiyasi $f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$ koʻrinishda boʻlgan normal taqsimotning oʻrtacha kvadratik chetlanishini toping.	1	3	4	2
27.	2	P(X < x) ehtimollik X tasodifiy migdor uchun nimani bildiradi?	taqsimot funksiyasi	xarakteristik funksiya	zichlik funksiyasi	lokal funksiya
28.	3	X tasodifiy miqdorning taqsimot funksiyasi berilgan: $ \begin{cases} 0, & x \le 0 \\ F(x) = \begin{cases} Cx & 3 \\ 1, & x > 1 \end{cases} $ C ni toping.	C=1	C=5	$C=\frac{2}{6}$	C=2
29.	3	X tasodifiy miqdorning taqsimot funksiyasi berilgan:	C=1	C=5	$C = 6^2 -$	C=3

		$F(x) = \begin{cases} 0, & x \le 0 \\ \frac{2}{C}, & 0 < x \le 1 \text{ O'zgarmas} \\ 0, & x > 1 \end{cases}$ C ni toping.				
30.	2	Zichlik funksiyasi $f(x) = \frac{1}{3\sqrt{2\pi}} e^{-\frac{x^2}{18}} \text{ ko'rinishda}$ bo'lgan normal taqsimotning o'rtacha kvadratik chetlanishini toping.	3	18	4	2

5-ma'ruzaga testlar

t/r	Qiyinlik darajasi	Javoblar Masala va mashqlar sharti	A	В	C	D
1.	1	X дискрет тасодифий микдор кабул килиши мумкин бўлган кийматларининг мос эхтимолларига кўпайтмалари йиғиндиси	унинг математик кутилмаси деб айтилади.	унинг писперсияси	унинг ўртача математик кутилмаси деб айтилади.	унинг ўртача квадратик четланиши деб айтилади.
2.	1	$P(k) = C_{n}^{k} p^{k} q^{n-k}$	Бернулли (биномиал) формуласи (схемаси)	Пуассон (биномиал) формуласи (схемаси)	Байес (биномиал) формуласи (схемаси)	Лаплас (биномиал) формуласи (схемаси)
3.	2	Тақсимот қонуни $X: 1 2 3 4 5 6$ $p: -\frac{1}{6} \frac{1}{6} \frac{1}{6} -\frac{1}{6} \frac{1}{6} \frac{1}{6} 6$ кўринишда бўлган тасодифий микдорнинг математик кутилмасини топинг	3.5	4	4.5	5
4.	2		$M(X)=\lambda$	$M(X)=\lambda$	$M(X)=\lambda$	$M(X)=\lambda$
5.	2	Ўзгармас миқдорнинг математик кутилмаси	ўзгармаснинг ўзига	ўзгармаснинг квадратига тенг:	ўзгармаснинг кубига тенг:	ўзгармаснинг илдизига тенг:

			тенг:			
6.	1	Математик кутилма учун қайси бири тўғри?	M(CX) = CM(X)	$M(CX) = C$ 2 $M(X)$	M(CX) = C M(X)	$M(CX) = \sqrt{CM}(X)$
7.	1	Чекли сондаги тасодифий микдорлар йигиндисининг математик кутилмаси	M(X + X + X) = M(X) + M(X) + M(X)	$M(X_{2} + X_{2}) = M(X_{2}) + M(X_{2}) + M(X_{3})$	$M(X_{1} + X_{2} + + X_{n}) = M(X_{1}) + M(X_{2}) + M(X_{n})$	$M(X_1 + X_2 + + X_n) =$ $M(X_1) + M(X_2) + +$ $M(X_n^2)$
8.	2	B ходисанинг A шарт асосида рўй бериш эхтимоли	$P_{A}(B) = \frac{P(AB)}{P(A)},$ $(P(A) > 0)$	$P_A(B) = \frac{P(AB)}{P(A)},$	1/2	5/6
9.	2	Чекли сондаги боғлиқмас тасодифий микдорлар кўпайтмасининг математик кутилмаси	$M\left(XX_{2}X_{n}\right) = \\ = M(X)M(X)M(X \\ 1 2 n$	$M(X_1 X_2 X_n) = M(X_2) + M(X_2) + M(X_2)$	$M(X_1 + X_2 + \dots + X_n) = M(X_1) + M(X_2) + \dots + M(X_n)$	M(XX X) = +M(X) $1 1 2$
10.	2	n та боғлиқмас тажрибаларда A ходиса рўй беришининг математик кутилмаси:	M(X) = np	M(X) = npq	$M(X) = np_{2}$	$M(X) = npq^2$
11.	1	Тасодифий микдор четланишининг математик кутилмаси	M(X-M(X))=0.	M(X-M(X))=1.	M(X-M(X))=0.5.	M(X-M(X))=0.3.
12.	1	$_X$ тасодифий микдорнинг $_{D(X)}$ -дисперсияси	D(X)=M(X-M(X))	$ \begin{pmatrix} () & () \\ D & X = M & X - M & X \end{pmatrix} $	$D(X) = M(X - M(X))_{3}$	$D(X) = M(X - M(X))_{4}$
13.	1	Агар A ходисанинг рўй бериш эхтимоли p га тенг бўлса, у холда A ходисанинг битта синовда рўй беришсонинингматематик кутилмасини топинг.	p	pq	\sqrt{pq}	p^2

14.	Агар <i>А</i> ходисанинг рўй бериш эхтимоли <i>р</i> га тенг бўлса, у холда 2 <i>А</i> ходисанинг битта синовда рўй бериш сонининг дисперсиясини топинг.	pq	\sqrt{pq}	p ²	p
15.	Агар <i>А</i> ҳодисанинг рўй бериш эҳтимоли <i>р</i> га тенг бўлса, у ҳолда 2 <i>A</i> ҳодисанинг битта синовда рўй бериш сонининг ўртача квадратик четланишини топинг.	\sqrt{pq}	p	pq	p ²
16.	1 Ўзгармас микдорнинг дисперсияси	D(C)=0 .	$ \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} $	D C = 2	$\begin{pmatrix} C \\ D \\ C \end{pmatrix} = 3$
17.	X va Y – ixtiyoriy tasodifiy miqdorlar bo`lsin. Matematik kutilish uchun yozilgan noto`g`ri xossalarni ko`rsating 1 1) M(C)=0 2) M(CX)=CM(X) 3) M(X-Y)=M(X)+M(Y) 4) M(XY)=M(X)M(Y)	1),3) va 4);	1) va 3);	2),3) va 4);	2) va 3)
18.	Dispersiya uchun yozilgan xato formulalarni ko`rsating; 1) D(X)=M X-M(X) 2) D(X)=M(X-M(X)) ₂ 3) D(X)=M ² (X)-M(X ²) 4) D(X)= M(X ²) -M ² (X)	1);3);	1);2);	Hammasi xato;	1);4)
19.	Геометрик тақсимот қонуни 2 бўйича тақсимланган X дискрет тасодифий микдорнинг математик кутилмасини топинг	$\frac{1}{p}$	$\frac{p}{q^2}$	$\frac{\int p}{q}$	p
20.	Геометриктақсимотқонуни 3 бўйича тақсимланган <i>X</i> дискрет тасодифий микдорнинг	$\frac{p}{q_2}$	$\frac{1}{p}$	p	$\frac{\sqrt{p}}{q}$

		дисперсиясини топинг				
21.	3	Геометрик таксимот конуни бўйича таксимланган <i>X</i> дискрет тасодифий микдорнинг ўртача квадратик четланишини топинг	$\frac{\sqrt{p}}{q}$	p	$\frac{p}{q^{\frac{2}{3}}}$	$\frac{1}{p}$
22.	1	X uzluksiz tasodifiy miqdorning matematik kutilishi uchun yozilgan to`g`ri formulani toping; 1) $M(X) = \int_{0}^{\infty} xf(x)dx$ 2) $M(X) = \int_{0}^{\infty} X_{2}f(x)dx$ 3) $M(X) = \sum_{0}^{\infty} x_{0}^{2}f(x_{0})$	1);	2);	3);	1),2)
23.	2	Matematik kutilish uchun qaysi xossa to`g`ri?	$M(CX)=C^2M(X)$	$M(X_1+X_2++X_n)=$ $M(X_1)+M(X_2)++M($ $X_n)$	$M(CX)=(CM(X))^2$	$M(X_1X_2X_3)=$ $M(X_1)M(X_2)M(X_n)$
24.	1	Tasodifiy miqdorning o`rtacha qiymatini xarakterlovchi kattalik	Matematik kutilish	O`rtacha kvadratik chetlanish	Tuzatilgan o`rtacha kvadratik chetlanish	Dispersiya
25.	2	X va X+3 tasodifiy miqdorlarning dispersiyalari haqida nima deya olasiz?	D(X)=D(X+3)	D(X)=D(X)+3;	D(X)>D(X+3);	D(X) <d(x+3);< td=""></d(x+3);<>
26.	2	Tasodifiy miqdor $F(x)$ -taqsimot funksiyasi uchun to'g'ri munosabatni ko'rsating.	0≤F(x)≤1;	F(x) < 0)	F(x) > 1	-1 < F(x) < 1
27.	1	F(x) – taqsimot funksiya uchun to'g'ri xossani ko'rsating.	Kamaymaydigan funksiya.	Doim toq funksiya.	Davriy funksiya.	Doim juft funksiya.
28.	1	Ehtimollar taqsimotining zichlik funksiyasi nima?	Taqsimot funksiyasidan olingan birinchi tartibli hosila.	O'zgarmas son	Taqsimot funksiyasidan olingan ikkinchi tartibli hosila.	Cheksizlikka intiluvchi funksiya.
29.	2	Zichlik funksiya uchun to'g'ri bo'lgan tasdiqni ko'rsating.	Mumkin bo'lgan qiymatlari manfiy emas.	Doim kamayuvchi.	Doim o'suvchi.	Doim o'zgarmas funksiya.

		Taqsimot qonuni qanday shakllarda	Jadval;	son	raqam	Sonlar
30.	1	berilishi mumkin	Grafik;			
			Formula;			

6-ma'ruzaga testlar

t/r	Qiyinl dara ik jasi	Javoblar Masala va mashqlar sharti	A	В	C	D
1.	2	Биномиал тақсимот қонуни бўйича тақсимланган <i>X</i> дискрет тасодифий миқдорнинг математик кутилмасини топинг	M(X) = np	M(X) = npq	$M\left(X\right) = \sqrt{npq}$	$M(X) = np^{2}$
2.	2	Биномиал тақсимот қонуни бўйича тақсимланган <i>X</i> дискрет тасодифий миқдорнинг дисперсиясини топинг	$\mathcal{J}(X) = npq$	$ \mathcal{L}(X) = \sqrt{npq} $	$\mathcal{J}(X) = np^{-2}$	$\mathcal{J}(X) = np$
3.	2	Биномиал таксимот конуни бўйича тасодифий микдорнинг ўртача	$\sigma(X) = \sqrt{npq}$	$\sigma(X) = np_{2}$	$\sigma(X) = np$	$\sigma(X) = npq$
4.	1	квадратик четланишини топинг Пуассон конуни бўйича таксимланган X дискрет тасодифий микдорнинг математик	$M(X)=\lambda$	$M(X)=\lambda_2$	$M(X)=\lambda$	$M(X)=\lambda_4$
5.	2	кутилмасини топинг Пуассон қонуни бўйича тақсимланган <i>х</i> дискрет тасодифий миқдорнинг		$ \mathcal{L}(X) = \sqrt{npq} $	$\mathcal{J}(X) = np^{-2}$	$\mathcal{J}(X) = np$
6.	2	дисперсиясини топинг Пуассон конуни бўйича таксимланган X дискрет	$\sigma(x) = x$		$\sigma(X) = np$	$\sigma(X) = npq$

σ	(X)	= np
	$\overline{}$	

		тасодифий микдорнинг ўртача квадратик четланишини топинг		2		
7.	1	$\mathcal{J}(X)$ =1, 5. Дисперсия хоссасидан фойдаланиб, $\mathcal{J}(2X+5)$ ни топинг.	6	3	9	7
8.	2	M(X)=1,5. Математик кутилиш хоссасидан фойдаланиб, $M(2X+5)$ ни топинг.	8	3	9	7
9.	1	M(X)=5. $M(Y)=5$. Математик кутилиш хоссасидан фойдаланиб, $M(2X-3Y)$ ни топинг.	4	3	9	7
10.	1	$XeaY$ боғлиқ бўлмаган тасодифий микдорлар. $\mathcal{A}(X)=5$. $\mathcal{A}(Y)=2$. Дисперсия хоссасидан фойдаланиб, $\mathcal{A}(2X+3Y)$ ни топинг.	38	36	93	37
11.	1	Геометрик тақсимот қонуни бўйича тақсимланган <i>X</i> дискрет тасодифий миқдорнинг математик кутилмасини топинг	$\frac{1}{p}$	$\frac{p}{q^2}$	$\frac{\sqrt{p}}{q}$	p
12.	2	Геометрик тақсимот қонуни бўйича тақсимланган <i>х</i> дискрет тасодифий миқдорнинг дисперсиясини топинг	$\frac{p}{q^2}$	$\frac{1}{p}$	p	$\frac{\sqrt{p}}{q}$
13.	2	Геометрик тақсимот қонуни бўйича тақсимланган <i>х</i> дискрет тасодифий микдорнинг ўртача квадратик четланишини топинг	$\frac{\sqrt{p}}{q}$	p	$\frac{p}{q^2}$	$\frac{1}{p}$

14.	1	(a; b) ораликда текис таксимланган тасодифий микдорнинг математик кутилмаси кайси бири?	$\frac{a+b}{2}$	$\frac{a+b}{3}$	$\frac{a+b}{4}$	$\frac{a+b}{5}$
15.	3	(a;b) ораликда текис таксимланган тасодифий микдорнинг ўртача квадратик четланиши қайси бири ?	$\frac{(b-a)}{\sqrt{12}}$	$\frac{(b-a)}{\sqrt{2}}$	$\frac{(b-a)}{\sqrt{23}}$	$\frac{(b-a)}{\sqrt{7}}$
16.	3	(a;b) ораликда текис таксимланган тасодифий микдорнинг дисперсияси кайси бири?	$\frac{(b-a)_2}{12} .$	$\frac{(b-a)_2}{10} .$	$\frac{(b-a)^{2}}{11}$	$\frac{(b-a)^{2}}{32}.$
17.	1	X узлуксиз тасодифий микдор нормал конун бўйича таксимланган дейилади, агар унинг зичлик функцияси кайси бири?	$f(x) = \frac{1}{\sigma \cdot \sqrt{2\pi}} e^{-\frac{(x-a)^2}{2\sigma^2}}$	$f(x) = \frac{1}{\sigma \cdot \sqrt{2\pi}} e^{-\frac{x}{2\sigma^2}}$	$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-a)^2}{2\sigma^2}}$	$f(x) = \frac{1}{\sigma\sqrt{2}} e^{\frac{(x-a)^2}{2\sigma^2}}$
18.	1	a ва σ > 0 параметрлар бўйича нормал таксимот	$N\left(a,\sigma ight)$ орқали белгиланади	$K(a, \sigma)$ оркали белгиланали	$C(a, \sigma)$ орқали белгиланади	$\mathrm{D}(a,\sigma)_{_{_{_{_{_{_{_{_{0}}}}}}}}}$ белгиланади
19.	2	$X \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\frac{1}{\sigma \cdot \sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(t-a)^2}{2\sigma^2}} dt.$	7.7	, ,	$\frac{1}{\sigma \cdot \sqrt{2}} \int_{-\infty}^{x} e^{-\frac{(t-a)^{-2}}{2\sigma^{-2}}} dt.$
20.	1	$X \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	M(X) = a	$M(X) = a_2$	$M(X)=\lambda_3$	$M(X)=\lambda_4$
21.	1	$X \ \boxed{N(a, \sigma)}$ нормал тасодифий	$\mathcal{I}(X) = \sigma_2$			$\mathcal{J}(X) = np$

		микдорнинг дисперсияси қайси бири?		$A(X) = \sqrt{npq}$	$\mathcal{J}(X) = np_2$	
22.		X $N(a, \sigma)$ нормал тасодифий микдорнинг ўртача квадратик четланиши қайси бири ?	$\sigma(X) = \sigma$	$\sigma(X) = np^2$	$\sigma(X) = np$	$\sigma(X) = npq$
23.	2	Стандарт нормал таксимотнинг зичлик функцияси куйидаги кўринишга эга: Қайси бири ?	$\varphi(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{x^2}{2}}.$	$\varphi(x) = \frac{1}{\sqrt{2}} \cdot e^{-\frac{x^2}{2}}.$	$\varphi(x) = \frac{1}{\sqrt{\pi}} \cdot e^{-\frac{x^2}{2}}.$	$\varphi(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{x}{2}} .$
24.	2	Хисоблашларни соддалаштириш учун махсус функция киритилади ва у Лаплас функцияси дейилади. Қайси бири?	$\Phi_0(x) = \frac{1}{\sqrt{2\pi}} \int_0^x e^{-t} \frac{2^2}{2^2} dt$	$\Phi_0(x) = \int_0^x e^{-t^2} dt$	$\Phi_0(x) = \frac{1}{\sqrt{2}} \int_0^x e^{-t^2 x} dt$	$\Phi_0(x) = \frac{1}{\sqrt{\pi}} \int_0^x e^{-x^2/2} dt$
25.	2	Қайси бири Пуассон интеграли ?	$\int_{-\infty}^{+\infty} e^{-t^2} dt = \sqrt{\blacksquare}$	$\int_{-\infty}^{+\infty} 2e^{-t^2} dt = \sqrt{2\pi}$	$\int_{-\infty}^{+\infty} e^{-t} dt = \sqrt{1}$	$\int_{-\infty}^{+\infty} 3e^{-t^2} dt = \sqrt{3\pi}$
26.	2	Кўрсаткичли тақсимот қонунига бўйсунувчи тасодифий микдорнинг тақсимот функцияси кайси бири?	$F(x) = 1 - e^{-\lambda x}, x > 0$	$F(x) = -e^{-\lambda x}, x > 0$	$F(x) = 1 - e^{\lambda x}, x > 0$	$F(x) = 1 + e^{-\lambda x}, x > 0$
27.	2	Кўрсаткичли таксимот конунига бўйсунувчи тасодифий микдорнинг зичлик функцияси кайси бири?	$f(x) = \lambda e^{-\lambda x}, x > 0, \lambda > 0$	$f(x) = -\lambda e^{-\lambda x}$	$f(x) = 5\lambda e_{-\lambda x}$	$f(x) = 6\lambda e_{-\lambda x}$
28.	1	Кўрсаткичли таксимот конунига	1	$M\left(X\right)=a_{2}$	$M(X)=\lambda_3$	$M(X)=\lambda_4$
		микдорнинг математик кутилмаси	$M(X) = \frac{1}{\lambda}$			
29.	2	Кўрсаткичли тақсимот қонунига бўйсунувчи тасодифий	$\mathcal{A}(X) = \frac{1}{\lambda_2}$	$\mathcal{A}(X) = \sqrt{npq}$	$\mathcal{J}(X) = np_2$	$\mathcal{J}(X) = np$
30.	2	микдорнинг зичлик функцияси Кўрсаткичли таксимот конунига бўйсунувчи тасодифий	$\sigma(X) = \frac{1}{\lambda}$		$\sigma(X) = np$	$\sigma(X) = npq$

ТУЗУВЧИ ДОЦЕНТ Т.Х.АДИРОВ $\sigma(X) = np$

		микдорнинг зичлик функцияси		2		
31.	1 :	Matematik kutilma qanday xarakteristika?	O'rtacha qiymat xarakteristikasi.	Eng kichik qiymat xarakteristikasi.	Eng katta qiymat xarakteristikasi.	Eng katta va eng kichik qiymatlar orasidagi farq xarakteristikasi.
32.	2 Disp	ersiya nimani xarakterlaydi?	Tasodifiy miqdor qiymatlarining oʻrta qiymat atrofidagi tarqoqlik darajasini.	Tasodifiy miqdor qiymatlarining sonini.	Tasodifiy miqdor qiymatlarining oʻrtachasini.	Tasodifiy miqdor qiymatlarining eng kattasini.
33.	1	O'rtacha kvadratik chetlanish qanday xarakteristika?	Tarqoqlik xarakteristikasi	Eng kichik qiymat xarakteristikasi.	Eng katta qiymat xarakteristikasi.	O'rta qiymat xarakteristikasi.
34.	1	X uzluksiz tasodifiy miqdorning (a;b) oraliqda yotgan qiymatini qabul qilish ehtimolini topish formulasini koʻrsating.	p = F(b) - F(a)	$p = \int_{a}^{b} F(x)dx;$	$p = \int_{a}^{5} F(x) dx$	$p = \int_{5}^{b} F(x) dx$
35.	2	X va Y bog`liqsiz tasodifiy miqdorlar, D(X)=3,D(Y)=5,D(5X- 3Y)=?	120.	16;	98;	34;

7-ma'ruzaga testlar

t/r	Qiyinlik	Javoblar Masala va mashqlar sharti	A	В	C	D
1.	1	$X_1, X_2,, X_n$ лар тасодифий микдорлар бўлса, $X = (X_1, X_2,, X_n)$ векторга	1 1	-	тасодифий микдор дейилади.	тасодифий характеристика дейилади.
2.		$F_{x_1,X_2,,X_n}(x_1,x_2,,x_n) =$ $= P\{X_1 < x_1, X_2 < x_2,, X_n < x_n\}$ n ўлчовли функцияга	$X = (X_1, X_2,, X_n)$ тасодифий векторнинг таксимот функцияси ёки $X_1, X_2,, X_n$ тасодифий микдорларнинг биргаликдаги таксимот функцияси дейилади.	тасодифий микдорларнинг биргаликдаги зичлик функцияси дейилади.	$X = (X_1, X_2,, X_n)$ тасодифий векторнинг сингуляр функцияси дейилади.	X, X,, X 1 2 n
3.	2	$X = (X_1, X_2,, X_n)$ тасодифий векторнинг таксимот функцияси	$\forall x : 0 \le F(x, x,, x)$	$-1 \le F(x_1, x_2,, x_n) \le 1$	$-3 \le F(x_1, x_2,, x_n) \le 1$	$-2 \le F(x_1, x_2,, x_n) \le 1$
4.	2		1 0		$F(x_1, x_2,, x_n)$ функция ҳар қайси аргументи бўйича камаювчи ва чапдан	$F(x_1, x_2,, x_n)$ функция хар кайси аргументи бўйича доимо ўсувчи ва

			чапдан узлуксиз.	узлуксиз.	узлуксиз.	чапдан узлуксиз.
5.	2	$X = (X_1, X_2,, X_n)$ тасодифий векторнинг таксимот функцияси учун қайси бири доимо ўринли?	Агар бирор $x_i \to -\infty$ бўлса, у холда $\lim_{x_i \to -\infty} F(x_1, x_2,, x_n) = 0$	Агар бирор $x_i \to -\infty$ бўлса, у холда $\lim_{x_i \to -\infty} F(x_1, x_2,, x_n)$ =1	Агар бирор $x_i \to -\infty$ бўлса, у холда $= \lim_{x_i \to -\infty} F(x_1, x_2,, x_n) = x_i \to -\infty$ $= -1$	Агар бирор $x_i \to -\infty$ бўлса, у холда $\lim_{x_i \to -\infty} F(x_1, x_2,, x_n) = -2$
6.	1	$X = (X_1, X_2,, X_n)$ тасодифий векторнинг таксимот функцияси учун қайси бири доимо ўринли?	$\lim_{\substack{x \to +\infty \\ j \to +\infty}} F(x, x,, x) = \\ = F(x,, x, x,, x)$	$\lim_{\substack{x \to +\infty \\ i}} F(x, x,, x) = 1$	$\lim_{\substack{x \to +\infty \\ i}} F(x, x, \dots, x) = -1$	$\lim_{\substack{x \to +\infty \\ i}} F(x, x,, x) = 2$
7.	2	$X = (X, X_1)_{1,2} (n=2)$ икки ўлчовли тасодифий векторнинг маргинал таксимот функциялари куйидагилардир:	F(x) = P(X < x); $F(x) = P(X < x);$ $F(x) = P(X < x)$	F(x) = 2P(X < x); $F(x) = P(X < x);$ $F(x) = P(X < x);$	F(x) = P(X < x); $F(x) = 2 P(X < x)$ $2 = 2 P(X < x)$	F(x) = 3P(X < x); $F(x) = 3P(X < x);$ $F(x) = 3P(X < x)$
8.	2	X,Y) икки ўлчовли т.м. таксимот конунини куйидаги формула ёрдамида берилади:	$p = P\{X = x, Y = y\};$ $i = \overline{1, n, j} = \overline{1, m}$	$p_{ij} = P\{Y = y_{j}\};$ $i = \overline{1, n}, j = \overline{1, m}$	$p_{ij} = P\{X = x_{ij}\};$ $i = \overline{1, n}, j = \overline{1, m}$	$p_i = P\{Y = y_j\};$
9.	3	Ичида 2 та оқ, 1 та қора, 1 та кўк шар бўлган идишдан таваккалига иккита шар олинади. Олинган шарлар ичида қора шарлар сони <i>X</i> т.м. ва кўк рангдаги шарлар сони <i>Y</i> т.м. бўлсин. (<i>X</i> , <i>Y</i>) икки ўлчовли т.м.нинг биргаликдаги тақсимот қонунини тузинг.	$ \begin{array}{c cccc} Y & 0 & 1 \\ \hline 0 & \frac{1}{6} & \frac{2}{6} \\ \hline 1 & \frac{2}{6} & \frac{1}{6} \end{array} $	$ \begin{array}{c cccc} Y & 0 & 2 \\ \hline 0 & \frac{1}{6} & \frac{2}{6} \\ \hline 2 & \frac{2}{6} & \frac{1}{6} \end{array} $	$ \begin{array}{c cccc} Y & 1 & 2 \\ \hline 1 & \frac{1}{6} & \frac{2}{6} \\ \hline 2 & \frac{2}{6} & \frac{1}{6} \end{array} $	$ \begin{array}{c cccc} $

10.	2	X,Y)иккиўлчовлидискрет тасодифий микдорнинг таксимот функцияси куйидагича аникланади:	$F(x,y) = \sum_{\substack{x \in xy \\ i}} \sum_{j} p_{ij}$	$F(x,y) = \sum_{i=1}^{n}$	$F(x) = \sum_{x \in S} \sum_{j} p_{ij}$	$F(y) = \sum_{i \in \mathcal{I}} \sum_{j} p_{ij}$
11.	1	Икки ўлчовли тасодифий микдорнинг таксимот функцияси учун қайси бири доимо тўғри?	гаксимот шункпия	$F(x, y)$ таксимот функция чегараланган: $-1 \le F(x, y) \le 1$.	$F(x, y)$ таксимот функция чегараланган: $-2 \le F(x, y) \le 1$.	$F(x, y)$ таксимот функция чегараланган: $-3 \le F(x, y) \le 1$.
12.	2	микдорнинг таксимот функцияси учун қайси бири доимо тўғри?	агар $x_2 > x_1$ бўлса, $F(x_2, y) \ge F(x_1, y)$,	nolga teng	birga teng	ikkiga teng
13.	2	Икки ўлчовли тасодифий микдорнинг таксимот функцияси учун кайси бири доимо тўғри?	агар $_{2}$ 1 бўлса, $F(x, y) \ge F(x, y)$	ikkiga teng	nolga teng	birga teng
14.	3	Икки ўлчовли тасодифий микдорнинг таксимот функцияси учун қайси бири доимо тўғри?	$F(x, y)$ функциянинг бирор аргументи $-\infty$ бўлса(лимит маъносида), у холда $F(x, y)$ функция нолга тенг, $F(x, -\infty) = F(-\infty, y) = F(-\infty, -\infty) = 0$.	$F(x, y)$ таксимот функция чегараланган: $-1 \le F(x, y) \le 1$.	$F(x, y)$ таксимот функция чегараланган: $-2 \le F(x, y) \le 1$.	$F(x, y)$ таксимот функция чегараланган: $-3 \le F(x, y) \le 1$.

15.	3	•	10	$F(x, y)$ таксимот функция чегараланган: $-1 \le F(x, y) \le 1$.	$F(x, y)$ таксимот функция чегараланган: $-2 \le F(x, y) \le 1$.	$F(x, y)$ таксимот функция чегараланган: $-3 \le F(x, y) \le 1$.
16.	3	Икки ўлчовли тасодифий микдорнинг таксимот функцияси учун қайси бири доимо тўғри?	аргументи +∞	$F(x, y)$ таксимот функция чегараланган: $-1 \le F(x, y) \le 1$.	$F(x, y)$ таксимот функция чегараланган: $-2 \le F(x, y) \le 1$.	$F(x, y)$ таксимот функция чегараланган: $-3 \le F(x, y) \le 1$.
17.	2	Икки ўлчовли тасодифий микдорнинг таксимот функцияси учун қайси бири доимо тўғри?	бўлса(лимит	$F(x, y)$ таксимот функция чегараланган: $-1 \le F(x, y) \le 1$.	$F(x, y)$ таксимот функция чегараланган: $-2 \le F(x, y) \le 1$.	$F(x, y)$ таксимот функция чегараланган: $-3 \le F(x, y) \le 1$.
18.	2	Икки ўлчовли тасодифий микдорнинг таксимот функцияси учун қайси бири доимо тўғри?		$F(x, y)$ тақсимот функция чегараланган: $-3 \le F(x, y) \le 1$.	$F(x, y)$ таксимот функция чегараланган: $-1 \le F(x, y) \le 1$.	$F(x, y)$ таксимот функция чегараланган: $-2 \le F(x, y) \le 1$.

			$\lim_{y \to y \to 0} F(x, y) =$ $= F(x, y)$			
19.	2 y ³	Икки ўлчовлик тасодифий микдор луксиз дейилади, агар унинг таксимот функцияси $F\left(x,y ight)$:	1. узлуксиз бўлса; 2. ҳар бир аргументи бўйича дифференциалланувч и; 3. F_{xy} (x, y) иккинчих тартибли аалаш ҳосила мавжуд бўлса.	$Ba - 1 \le F(x, y) \le 1$	1. узлуксиз бўлса; 2. ҳар бир аргументи бўйича дифференциалланувчи ва $-1 \le F(x, y) \le 1$	$-1 \le F(x, y) \le 1$
20.	2 қ	Икки ўлчовли (Х,Ү) тасодифий микдорнинг зичлик функцияси уйидагилардан қайси бирида тўғри ёзилган?	$f(x, y) = \frac{\partial^2 F(x, y)}{\partial x \partial y} =$ $= F''(x, y)$	$f(x,y) = \frac{\partial F(x,y)}{\partial x} =$ $= F_{x}(x,y)$	$f(x,y) = \frac{\partial F(x,y)}{\partial y} = $ $= F(x,y) = \frac{\partial F(x,y)}{\partial y} = $	$f(x, y) = \underline{\partial F(z, y)} = \frac{\partial F(z, y)}{\partial x \partial y} = F''(x, y)$
21.	2	Икки ўлчовли тасодифий микдорнинг зичлик функцияси учун қайси бири доимо тўғри?	$f(x,y) \ge 0$	$f(x,y) = \frac{\partial F(x,y)}{\partial x} =$ $= F_{xy}(x,y)$	$f(x,y) = \frac{\partial F(x,y)}{\partial y} =$ $= F_{xy}(x,y)$	$f(x, y) = \underline{\partial F(z, y)} = \frac{\partial F(z, y)}{\partial x \partial y} = F''(x, y)$
22.	3	Икки ўлчовли тасодифий микдорнинг зичлик функцияси учун қайси бири доимо тўғри?	$P\{(X,Y) \in D\} = $ $= \iint_{D} f(x,y) dxdy$	$f(x,y) = \frac{\partial F(z,y)}{\partial x \partial y} =$ $= F''(x,y)$ _{xy}	$f(x,y) = \frac{\partial F(x,y)}{\partial x} = F_{xy}''(x,y)$	$f(x,y) = \frac{\partial F(x,y)}{\partial y} =$ $= F_{xy}''(x,y)$

23.	2	Икки ўлчовли тасодифий микдорнинг таксимот функцияси учун қайси бири доимо тўғри?	$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u, v) du dv$	$F(x, y)$ таксимот функция чегараланган: $-3 \le F(x, y) \le 1$.	$F(x, y)$ таксимот функция чегараланган: $-1 \le F(x, y) \le 1$.	$F(x, y)$ таксимот функция чегараланган: $-2 \le F(x, y) \le 1$.
24.	2	Икки ўлчовли тасодифий микдорнинг зичлик функцияси учун қайси бири доимо тўғри?	$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dxdy = 1$	$f(x,y) = \underline{\partial F(x,y)} = \partial y$ $= F''(x,y)$	$f(x, y) = \underline{\partial F(z, y)} = \\ \partial x \partial y$ $= F''(x, y)$	$f(x, y) = \underline{\partial F(x, y)} = \frac{\partial F(x, y)}{\partial x} = F''(x, y)$
25.	2	Икки ўлчовли тасодифий микдорнинг таксимот функцияси учун қайси бири доимо тўғри?	$F(+\infty,+\infty) = 1$ ва $x = y = +\infty$ деб олсак(лимит маъносида), $F(+\infty,+\infty) = \int_{-\infty}^{+\infty} f(x,y) dx dy = 1$.	$F(x, y)$ таксимот функция чегараланган: $-3 \le F(x, y) \le 1$.	$F(x, y)$ тақсимот функция чегараланган: $-1 \le F(x, y) \le 1$.	$F(x, y)$ таксимот функция чегараланган: $-2 \le F(x, y) \le 1$.

8-ma'ruzaga testlar

	jasi		1	1		
t/r	Qiyinlik dara <u>j</u> asi	Javoblar Masala va mashqlar sharti	A	В	C	D
1.	1	Chebishev tengsizligi qaysi birida toʻgʻri yozilgan?		1 1	$P\left(\left M\left(X\right)\right\rangle\right) \qquad \frac{D\left(X\right)}{2}$	$P\left(\left X-M\left(X\right)\right 5\right) \frac{D(X)}{2}$
2.	1	Chebishev tengsizligi qaysi birida toʻgʻri yozilgan?	$P \left(\left X - M \left(X \right) \right \right)$ $1 - \frac{D(X)}{2}$	$ \begin{array}{c c} P\left(\left X\right \right) \\ 1 & -\frac{D(X)}{2} \end{array} $	$P\left(\left M\left(X\right)\right \right)$ $1 - \frac{D(X)}{2}$	$P\left(\left X-M\left(X\right)\right 6\right)$ $1-\frac{D(X)}{2}$
3.	2	(Bernulli teoremasi) Agar _n ta erkli sinashning har birida _A hodisaning roʻy berish ehtimoli _p oʻzgarmas va sinashlar soni yetarlicha katta boʻlsa, qaysi biri toʻgʻri yozilgan?	$ \begin{vmatrix} 1 & \text{im } P & \\ n & \end{vmatrix} = 1 $	$P \left \frac{n}{n} - p \right = 1$	$ \begin{vmatrix} 1 & \text{im } P & & -p \\ & & & \\ & & & \\ \end{matrix} $ $ \begin{vmatrix} & & & \\ & & & \\ \end{matrix} $	$ \begin{vmatrix} 1 & \text{im } P & & -p \\ & & & \\ & & & \\ \end{matrix} $ $ \begin{vmatrix} & & & \\ & & & \\ \end{matrix} $ $ \begin{vmatrix} & & & \\ & & & \\ \end{matrix} $ $ \begin{vmatrix} & & & \\ & & & \\ \end{matrix} $
4.	2	X - diskret tasodifiy miqdor quyidagi taqsimot bilan berilgan. $X: 0,1 = 0,4 = 0,6$ $p: 0,2 = 0,3 = 0,5$ Chebishev tengsizligidan foydalanib, $P\left(X - M(X) \mid \sqrt{0,4}\right)$ ehtimolni baholang.	0,99	0,89	0,79	0,69

		Bogʻliq boʻlmagan n tasodifiy	Ixtiyoriy	Ixtiyoriy	Ixtiyoriy0	Ixtiyoriy
		miqdorlar ketma-ketligi uchun	0 uchun $n \rightarrow$	0 uchun	a uchun $a \rightarrow a$	0 uchun $n \rightarrow$
		$E_{k} = a_{k}, D_{k} = \int_{k}^{2} \text{bo'lsin.}$	da,	$n \rightarrow da$	$L_n() =$	da
		$A_n = a_k, B_n^2 = b_{k=1}^n$	$L_{n} () = \frac{1}{B_{n}^{2}} $ $(x - a_{k})^{2} dF_{k} (x)$	L_n () =	$\left(a_{k}\right)^{2}dF_{k}\left(x\right)$	$L_n()=$
5.	3	$S_n = {}_1 +_2 + \dots +_n ,$	D n	$(x-a_k)^2 dF_k(x)$	k n	$(x)^{2}_{dF_{k}}(x)$
		$=\frac{S_n-A_n}{B_n},$	$ (x-a_k)^2 dF_k (x) $ $ _{x-a _{B_n}}$	$x-ak$ B_n		$x - a kB_n$
		$F_{k}\left(x\right) = P\left(\begin{array}{cc} x \\ \end{array}\right)$	$\rightarrow 0$			
		Lindeberg sharti toʻgʻri yozilgan holatni koʻrsating.				
		agar _n tasodifiy miqdorlar ketma-ketligi bir xil taqsimlangan	$L_n() = \frac{1}{2}$	L_{n} ()=	L _n ()=	L _n ()=
6.	3	agar _n tasodifiy miqdorlar ketma-ketligi bir xil taqsimlangan boʻlsa, $B_n^2 = {}^2 n$, 0 va $n \rightarrow$ da ixtiyoriy 0 uchun Lindeberg sharti toʻgʻri yozilgan	$ (x-a)^{2} dF(x) $ $ x-a \sqrt{n} $ $ \to 0 $	$ (x-a)^{2} dF(x) $ $ $	$ \left(x\right)^{2} dF(x) $ $ \left -a \sqrt{n} \right $	$ \left(\begin{array}{c} \left(a \right)^{2} dF(x) \\ \left \begin{array}{c} 1 \\ -a \end{array} \right ^{2} n \end{array} $
		holatni koʻrsating.	$\rightarrow 0$			
7.	2	Agar $D(X)=0.001$ boʻlsa, X-M(X) <0.1 ning ehtimolini				
'		Chebishev tengsizligi boʻyicha baholang.	0.9	0.4	0.5	0.6
		Berilgan: $P(/X-M(X)/<) \ge 0.9$,				
8.	2	D(X)=0.004. Chebishev	0.2			
		tengsizligidan foydalanib, ni	0.2	0.4	0.5	0.6

		toping.				
9.	3	Biror punktda shamolning oʻrtacha tezligi 16 km/s. Bitta kuzatishda shamolning tezligi 80 km/s dan oshmasligi ehtimolini baholang.	0.2	0.4	0.5	0.6
10.	2	Toshkent shahrining bitta rayonida elektrenergiyaning oʻrtacha sarfi may oyida 360000 kw/s. May oyida elektrenergiya sarfining 1000000 kw/s dan oshmasligi ehtimolini baholang.	0.64	0.44	0.56	0.68
11.	2	Aholi punktida 1 kunda suvning oʻrtacha sarfi 50000 litr. Bir kunda suv sarfining 150000 litrdan oshmasligi ehtimolini baholang.	$-\frac{2}{3}$	<u>1</u> 3	<u>2</u> 5	<u>2</u> 7
12.	2	X tasodifiy miqdor uchun $M(X)=1$ va $(X) = 0.2$ ga teng. Chebishev tengsizligidan foydalanib, $0.5 < X < 1.5$ tengsizlik ehtimolini baholang.	0.84	0.44	0.56	0.68
13.	2/2	Agar $D(X)=0.004$ boʻlsa, Chebishev tengsizligidan foydalanib, $X-M(X)/<0.2$ ning ehtimolini baholang.	0.9	0.4	0.5	0.6

14.	3	Erkli tasodifiy miqdorlar ketma- ketligi quyidagi X , X , X taqsimot qonuni bilan berilgan: $X_n : -n = 0 = n$ $P : = \frac{1}{2n^2} = 1 - \frac{1}{n^2} = \frac{1}{2n^2}$ Bu ketma-ketlikka katta sonlar haqidagi Chebishev teoremasini qoʻllash mumkin-mi?	Qo'llash mumkin	Qo'llash mumkin emas	Qo'llash mumkin emas,shartlar kam	Qo'llash mumkin emas,kamchiligi bor.
15.	3	Erkli tasodifiy miqdorlar ketma- ketligi quyidagi X , X , X taqsimot qonuni bilan berilgan: X_n : a - a P : $\frac{n}{2n+1}$ $\frac{n+1}{2n+1}$ Bu ketma-ketlikka katta sonlar haqidagi Chebishev teoremasini qoʻllash mumkin-mi?	Qo'llash mumkin	Qo'llash mumkin emas	Qo'llash mumkin emas,shartlar kam	Qo'llash mumkin emas,kamchiligi bor.

намуна

t/r	Qiyinlik darajasi	Javoblar Masala va mashqlar sharti	A	В	С	D
1.	3	n ta element ichida i element n_i ($i = 1, k$) marta takrorlansa, u holda o'rin almashtirishlar soni bu erda $n = n_1 + n_2 + + n_k$.	$P_n = n! = n (n-1)(n-2)1$	$P(n, n,, n) = \frac{n!}{n! n! n!}$	$A_n^k = n(n-1)(n-2)(n-(k-1))$	$C_{k} = \frac{n!}{k!(n-k)!}$
2.	2	A,B va C hodisalar to`la gruppa tashkil etadi. $P(A) = -\frac{2}{3}$; $P(B) = -\frac{1}{6}$ bo`lsa, P(C) ehtimolni toping.	0	$\frac{1}{9}$	$\frac{1}{3}$	$\frac{1}{6}$
3.	2	Muavr-Laplasning integral formulasidagi funksiya Φ() qanday aniqlanadi?	φ()= 2 	Φ() +∞	Φ()= 0 2 1	Φ()=
4.	3	Qutida 7 ta shar boʻlib ularning 4 tasi qora. Tasodifiy ravishda 3 ta shar olingan. Agar <i>X</i> tasodifiy miqdor olingan sharlar orasidagi oq sharlar sonidan iborat boʻlsa, uning taqsimot qonunini tuzing.	$A \cdot O \cdot I = 2 \cdot S$	$X: 0 1 2 3$ $p: \frac{1}{35} \frac{18}{35} \frac{12}{35} \frac{4}{35}$	$X: 0 1 2 3$ $p: \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	X: 0 1 2 3 $p: -4 18 12 4$ $35 35 35 35$

5.	2	Agar <i>A</i> hodisaning ro'y berish ehtimoli <i>p</i> ga teng bo'lsa, u holda <i>A</i> hodisaning bitta sinovda ro'y berish sonining o'rtacha kvadratik chetlanishini toping.(Bernulli taqsimoti)	pq	p	\sqrt{pq}	p ²
6.	1	X uzluksiz tasodifiy miqdor a va parametrli normal qonun boʻyicha taqsimlangan deyiladi, agar uning zichlik funksiyasi qanday koʻrinishda boʻlsa?	$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-a)^2}{2\sigma^2}}$	$f(x) = \frac{1}{\sigma \cdot \sqrt{2\pi}} e^{-\frac{x}{2\sigma}}$	$f(x) = \frac{1}{\sigma \cdot \sqrt{2\pi}} e^{-\frac{(x-a)^2}{2\sigma^2}}$	$f(x) = \frac{1}{\sigma\sqrt{2}} e^{\frac{(x-a)^2}{2\sigma^2}}$
7.	2	Икки ўлчовли тасодифий микдорнинг таксимот функцияси учун қайси бири доимо тўғри?	$F(x, y)$ таксимот функция чегараланган: $-3 \le F(x, y) \le 1$	$F(x, y)$ функция хар кайси аргументи бўйича чапдан узлуксиз, яъни $\lim_{x \to x \to 0} F(x, y) = F(x, y)$ $\lim_{y \to y \to 0} F(x, y) = F(x, y)$	$F(x, y)$ таксимот функция чегараланган: $-4 \le F(x, y) \le 1$.	$F(x, y)$ таксимот функция чегараланган: $-2 \le F(x, y) \le 1$.
8.	3	$egin{array}{c cccc} x_i & n_i & & & & \\ \hline 2 & 8 & & & & & \\ \hline 3 & 16 & & & & & & \\ \hline 4 & 12 & & & & & \\ \hline 5 & 14 & & & & & \\ \hline & 50 & & & & & \\ \hline \end{array}$	1,053	1,051	1,054	1,052

9.	3	"tuzatilgan" ("toʻgʻrilangan") oʻrtacha kvadratik chetlanish qaysi birida toʻgʻri yozilgan?	S ² -tanlanma dispersiya	5-2 -tanlanma dispersiya	$\frac{\overline{S}^2}{\overline{S}^2}$ -tanlanma dispersiya	$\sqrt{\frac{n+1}{2}}$ $\sqrt{\frac{n+1}{2}}$ -tanlanma dispersiya
10.	2	II tur xatolikka yoʻl qoʻyish ehtimoli β boʻlsa	u holda kriteriy quvvati $1 - 3\beta$ ga teng boʻladi.	u holda kriteriy quvvati $1 - 2\beta$ ga teng boʻladi.	u holda kriteriy quvvati $1-\beta$ ga teng boʻladi.	u holda kriteriy quvvati $1 - 4\beta$ ga teng boʻladi.