Name: Caleb McWhorter — Solutions
MATH 101
Fall 2022
HW 10: Due 10/24

"VIP is always better, Vivian."

-Anna Delvey (Sorokin), Inventing
Anna

Problem 1. (10pt) A function f(x) has a table of values given below. Using this table, explain why $f^{-1}(x)$ cannot exist.

x	1	2	3	4	5
f(x)	6	3	9	6	1

Solution. Because f(1)=6, we know that $f^{-1}(6)=1$. But we also have f(4)=6, so that $f^{-1}(6)=4$. But we cannot have both $f^{-1}(6)=1$ and $f^{-1}(6)=4$. Therefore, $f^{-1}(6)$ is not well defined so that $f^{-1}(x)$ does not exist.

Problem 2. (10pt) Let f(x) = 4x + 3 and $g(x) = \frac{1}{4}(x - 3)$. Show that g(x) is the inverse of f(x) by showing that $(f \circ g)(x) = f(g(x)) = x$ and $(g \circ f)(x) = x$.

Solution. We have...

$$(f \circ g)(x) = f(g(x)) \qquad (g \circ f)(x) = g(f(x))$$

$$= f\left(\frac{1}{4}(x-3)\right) \qquad = g(4x+3)$$

$$= 4 \cdot \frac{1}{4}(x-3) + 3 \qquad = \frac{1}{4}((4x+3)-3)$$

$$= (x-3) + 3 \qquad = \frac{1}{4} \cdot 4x$$

$$= x \qquad = x$$

Therefore, because $(f \circ g)(x) = x$ and $(g \circ f)(x) = x$, we know that $g(x) = f^{-1}(x)$.

Problem 3. (10pt) Let $y = \frac{1}{3}x + 5$.

- (a) By interchanging the roles of y and x, find the inverse to the function $f(x) = \frac{1}{3}x + 5$.
- (b) Use the answer from (a) to find $f^{-1}(-2)$.

Solution.

(a) We can write $f(x) = \frac{1}{3}x + 5$ as $y = \frac{1}{3}x + 5$. Interchanging the roles of x and y, we have $x = \frac{1}{3}y + 5$. But then...

$$x = \frac{1}{3}y + 5$$

$$x - 5 = \frac{1}{3}y$$

$$y = 3(x - 5)$$

But then we have $f^{-1}(x) = 3(x - 5)$.

(b) We have...

$$f^{-1}(-2) = 3(-2-5) = 3(-7) = -21$$