目录

第0章	绪论
第1章	流体流动3
第2章	流体输送机械10
第3章	颗粒流体力学与机械分离14
第4章	传热及换热器17
第6章	气体吸收 24
第7章	液体蒸馏
第8章	塔设备 33
第 10 章	固体干燥35

第0章 绪论

1) 广义地说,凡工业生产的关键环节是	_,这类生产便归属化工生产范畴。
(答:改变物质组成)	
2) 为了便于管理及技术交流,很多行业从化工中划分出	
一员。这些 行业有等。(答:石油化工	,塑料工业,制药工业,硅酸盐工
业)	
3) 生产工艺学是。(答: 研究某一	
4) 化学工程是。(答:研究化工	
5) 化工生产中虽然化学反应是核心,但前、后对物料的	处理大都为物理加工过程。这些对
物料的物理加工过程称为。(答:单元操作)	
6) 介绍主要单元操作的原理、方法及设备的课程叫	。(答:化工原理)
7) 物理量=×(答:数,单位)
8) 基本单位: 长度,质量,时间	。(答: m, kg, s)
9) 导出单位:力,功或能,功率	,压强(答: N, J, W, Pa)
10) 有的单位前面有"字首",这些字首的意思是:k	,c,m,μ。
(答: 10³,10⁻²,10⁻³,10⁻⁶)	
11)查得 30℃水的粘度μ×10⁵/Pa·S 为 80.12,表明 μ=	。(答: 80.12×10 ⁻⁵ Pa.s)
12) 量纲是。如长度单位有 m, cm, mm,	
—— 普遍化单位,L)	
13) 物料衡算是对、而言的。[答	: 一定的时间间隔,一定的空间范
 围(控制体)]	
14) 总的物料衡算式为。(答: ∑M	$_{i}-\Sigma M_{o}=M_{a}$,各种 M 的单位均为
质量单位,如 kg)	- -
15) 若无化学反应,对任一组分 j,物料衡算式为	。(答: ∑M _{i, i} -∑M _{o, i} = M _{a, i})
16) 若进、出控制体的物料均为连续流股,各流股的质量	
任一位置物料的所有参量—如温度、压强、组成、流速等	
于过程。(答:定态或称定常态或稳定态)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
17) 流体粘度的单位换算关系是: cP(厘泊)=0.001Pa·S,	则 3.5 cP= Pa·S .0.005 Pa·S
=cP。(答: 3.5×10 ⁻³ , 5.0)	
【分析】3.5cP=3.5cP × (0.001Pa.S/1cP) =3.5×10 ⁻³ Pa.S	
0.005 Pa.S=0.005 Pa.S×(1cP/ 0.001Pa.S)=5.0cP	
式中(0.001Pa.S/1cP 及(1cP/ 0.001Pa.S)称为"转换因子"	. 用于物理量的单位转换。
18)任一物理方程式中各物理量必然单位。以	
He=36-0.02V ² (单位 He— m , V m ³ /h),则式中 36	
。(答:和谐,m,m/(m³/h²))	的午匝是
。< G: 44個,M, III/(III/II)/ 19) 某管路特性方程为 He'=8.0+8.07×10 ⁵ V²(式中 He'—m	W m ³ /o)当以V?[m ³ /h] 麸化W
则该公式改为。(答: He'=8.0+0.06227	-
[分析] 因为 1[m³/h]= (1/3600) [m³/s]	, 別 以 He =8.0+8.0/×10 ² [V [*] ×
(1/3600)] ² =8.0+0.06227(V') ²	的河 炒 油 库 1. 熔 - 4 4 4 1 2 / 1
20) 圆球固体颗粒在流体中作自由重力沉降,在 stokes 区的 /(18u) _ 式中 u— 沉降速度 _ m/s g— 重力加速度 _ g—9 81	
// LATE: TO BE 11/11 D第7架 1号 . 111/19 0	111/82 (111)

密度, kg/m^3 ; μ —流体粘度, $Pa\cdot S$ 。当以 u_t '[cm/s], μ '[cP]分别替代 u_t 与 μ ,则该公式为 ______。[答: u_t '= 10^{-5} g dp²(ρ_s - ρ)/(18μ ')] 分析: u_t = $100u_t$ ',cm/s], μ = 1000μ ',所以: u_t '= 10^{-5} g dp²(ρ_s - ρ)/(18μ ')

第1章 流体流动

- 1) 温度升高,液体粘度______, ,气体粘度____。(答:下降,增大)
- 2)流体的粘度可通过流体粘性定律 $\tau=\mu(dv/dy)=\mu(\Delta V/\Delta y)[N/m^2](y$ 的取向: 令 dv/dy 为正) 求得。试分析下列情况的 τ 值。图中 A 为薄平板或圆筒面的面积(m^2)。 (答: F/A, $G.\sin\alpha/A$, $G/(\pi DH)$)

- 3) 理想流体是______的流体。(答: μ=0, $\sum h_f=0$, $\triangle V=0$)
- 4) 2.04ml 某液体的质量为 2.10g, 其密度为_____kg/m³。(答: 1029)
- 5) 1atm=_____Pa=____mmHg=____mH₂O 1at=______kgf/cm²=_____Pa=____mmHg=_____mmH₂O (答: 1.013×10^5 , 760, 10.33, 1, 9.81×10^4 , 735.6, 10)
- 6) 外界大气压是 753mmHg(绝压)某容器内气体的真空度为 7.34×10⁴Pa, 其绝压为____Pa, 表压为 Pa。(答: 2.70×10⁴, -7.34×10⁴)
- 7) 1.60at(绝压),35.0℃的 N_2 (分子量 M=28.0)的密度为_____ kg/m^3 (答: 1.72) 【分析】根据题给的条件可按理想气体计算密度。 ρ =pM/(RT),R=8314J/(kmol.K),不要用 T=273+t。
- 8) 水面压强 p_0 =1atm,水深 64m 处的压强 p=_____Pa (p_0 ,p 皆为绝压) (答: 7.29×10⁵) 9)如右图,U 形压差计读数 R=_____m, ρ_{Hg} =13.6×10³ kg/m^3 ,不计两液面大气压 P 的差异。(答: 0.119)

10)修正压强 p_m= ____。在重力场中静止的恒密度流体,只要流体是连通的,则处处 流体的 $p_m =$ 。(答: $p + \rho gh$, 常数) 11)流体在圆管内流动,通常讲的"管流"指的是____。(答:流体充满管内且流动) 【分析】如无说明,流体在管内的流动皆为管流。 12) $Φ57 \times 3.5$ mm 的圆直钢管,管内充满流动的水,则水的流动截面积 A= m^2 (答: 1.96×10^{-3} 【分析】Φ57×3.5mm,表示钢管外直径为57mm,管子壁厚为3.5mm,其内径为50mm。 13) ρ=940 kg/m³ 的液体,以 8.60m³/h 的流量流过 12) 题的管内,其平均流速 u=____m/s, 质量流速 G= (kg/s·m) (答: 1.22, 1146) 14) 水在 $Φ60 \times 3$ mm 钢管内流过,流量 V=2.75×10⁻³m³/h,水的粘度 μ=1.005cP,则 Re= , 流型为 。(答: 6.45×10⁴, 湍流) 【分析】Re=duρ/μ,当流体流过管内,Re=4Vρ/(πdμ)。前者出现 u,后者出现 V,此 题用后者算比较好。 15)圆直管内流体层流的点流速分布侧型为______,令管子内半径为 R,轴心线处点流速 为 v_{max} ,,则任一点与轴心线距离为 r 处的点流速 v=______。且平均流速 u=_____ v_{max} 。 (答: 抛物线, $\nu_{\text{max}} [1-(r/R)^2], 1/2)$ 16) 流体在圆、直管内湍流的点流速分布规律 $v=v_{max}$ (____) n ,常见的 n 值为_____。 (答: 1-r/R,1/7) 17) 均匀流遇到与其流线平行的静止固体壁面时,与壁面接触的流层质点被固体吸着而流 而流速降为零的流体层逐渐增厚。若均匀流流速为 u₀,则,v<0.99 u₀的减速部分称为 。(答:无滑动,边界层) 18)湍流边界层紧邻壁面处存在着____。(答:层流内层) 19)均匀流体流入圆管内,随着流进圆管内距离的增加,边界层不断增大的管段称为 _____,在边界层厚度达到管内半径以后的管段称为_____,管流的 Re 及流速侧型都是 指_____而言的。(答:进口段,稳定段,稳定段) 20) $u^2/2$ 表示每 流体具有的机械能, $u^2/(2g)$ 表示每 流体具有的机械能。 21) 流体从 1 截面流至 2 截面的过程中,由于流体有 ,导致部分流体机械能转变为 内能,每 kg 流体由此损耗的机械能以____表示。(答: kg, N) 22) 某液体, ρ =880 kg/m³, μ =24 cP,在 Φ57×3mm 圆直管内流过,流速 u=0.802m/s,则流

过 20m 管子的阻力为_____J/kg。(答: 5.38) 【分析】Re=du ρ/μ =0.051×0.802×880/(240×0.001)=1500.层流,层流阻力可按海根.泊稷叶 公式计算。 $\Sigma h = 32 \mu \text{ ul/}(\rho \text{ d}^2) = 32 \times 24 \times 0.001 \times 0.802 \times 20/(880 \times 0.051^2) = 5.38 \text{ J/kg}$ 23) 流体在一圆直管内流动, Re=700, 若流量加倍, 对同一管段来说, 阻力消耗的功率 为原来的 _____倍。(答: 4) 【分析】原来是层流,流量加倍后,Re=1400,仍属层流。层流: $N=\sum h_f.(V
ho)[w]$,所以 $N'/N=(\sum h_{f'}/\sum h_{f})(V'/V)=(u'/u)^{2}=2^{2}=4$ 24) 量纲分析法是一种指导_____的方法。其依据是任一物理方程必然量纲_ 通过量纲分析,可把 间一般不定函数式转变成特征数间一般不定函数式。根据∏定理, "特征数"数="物理量"数一""数。(答:实验,和谐,物理量,基本量纲) 25) 量纲分析法的好处是: ①减少 , 大大减轻实验工作量。②在满足流体各物性 值均为恒值的条件下,通过实验得到的特征数间的定量关系式可推广应用于其它工质及其它 ___的不同尺寸的设备。(答:变量,几何相似) 26) 雷诺数表示 力与 力之比。(答:惯性,粘性) 27) 由量纲分析法指导实验得到的公式是一种_____公式。(答: 半理论半经验) 28) 工业上常用的粗糙管有_____, _____等。(答: 水煤气管, 无缝钢管, 铸 铁管) 29) 工业上常用的光滑管有_____, _____等。(答:玻璃管,塑料管,黄铜管) 30)计算直管沿程阻力的范宁公式为____。(答: $\Sigma h_f = \lambda (l/d) u^2/2 \ J/kg$) 31) 在湍流区(包括过渡流区), 当 ϵ/d 一定, 随 Re 增大, λ 值先_____, 然后达到常数。 λ=常数的区域称为 区。(答:下降,阻力平方或高度湍流) 32) 在高度湍流区摩擦系数 λ 取决于______,与____无关。若流体在某粗糙管内高 度湍流, 当流量加倍, 对同一直管段来说, 阻力将增至原来的 倍。(答: ɛ/d, Re, 33) 在湍流区 (包括过渡流区),当 Re 一定,随着 ϵ/d 减小, λ 值 。 ϵ/d 的极限为 光滑管。光滑管, 当 Re=3000, λ= , 此公式称为_____公式。(答:减少, 0.3164/Re^{0.25}, 布拉修斯) _-现象。 计算局部阻力的公式有两种,即 hf =_____u² /2 J/kg 及 hf =λ (_____) u² /2 J/kg。(答: 弯头, 三通, 阀门, 边界层分离, ζ, le/d) 35) 通过管道,将地面管内的水输到敞口水塔水面上方。已知出水口距地面高 20m,水流 速 1.20m/s,管长及局部阻力当量管长 $l+\Sigma$ le 为 40m,管内径 38mm,摩擦系数 $\lambda=0.028$ 输 入端管内的表压 $p_1 = ____at$ 。(答: 2.216)

【分析】 $p_1/1000=(9.81\times20)+(0.028\times40/0.038)$ ×(1.20)²/2

所以, p₁=2.174×10⁵ Pa(表压)=2.216 at (表压)

36) 水由 A 水库通过长管道流入 B 水库,如下图所示管内径为 d_1 ,输入量为 V_1 。现欲加 大流量,要求 V₂=2.4V₁,设管长不变,布拉修斯公式可用,局部阻力不计,采用增大管内 径方法解决,则 d₂/d₁ =____。(答: 1.38)

【分析】 $E_A - E_B = \sum h_f$ (E通常表示每千克流体的总机械能。)

因前后情况 E_A 和 E_B 都没有改变,故 $\Sigma h_{f,1} = \Sigma h_{f,2}$,

 $\Sigma\,h_f{=}\,8\,\,\lambda\,\,l\,\,V^{^2}\,/\,\,(\,\pi^{^2}\,d^{^5})\,=\,8\,\times\,0\,.\,3\,\,1\,\,6\,\,4\,\,l\,\,V^{^2}\,/\,\,\{[\,4\,V\,\rho\,\,/\,\,\pi\,\,d\,\,\mu\,\,]^{^{\,0.\,\,2\,\,5}}\,\pi^{^2}\,d^{^5}\}\,\propto\,(V^{^{1}\cdot^{7\,5}}\,/\,\,d^{^{\,4.\,\,7\,5}})$

 $V_1^{1.75}$ / $d_1^{4.75} = V_2^{1.75}$ / $d_2^{4.75}$ 所以 d_2 / $d_1 = (V_2/V_1)^{(1.75/4.75)} = 1.38$

32) 如下图所示,水由 A-A 截面经向上倾斜异径管流至 B-B 截面。A、B 截面处均流 线平行,由 A、B 截面到 U 形管的连接管内及 U 形压差计内指示液上方均为与管内相同的 水。已知 R=68mm,则 $p_{m,A}-p_{m,B}=$ ________Pa。(答: 8.405×10^3)

【分析】在重力场中流体恒密度条件下,静止流体的 Pm 为恒值,由此可导出下式: $p_{m,A} - p_{m,B} = p_{m,3} - p_{m,4} = p_3 - p_4 = (\rho_{Hg} - \rho) gR = (13.6-1) \times 10^3 \times 9.81 \times 0.068 = 8.405 \times 10^3 Pa$

38) 承 37 题,若流量不变把管子水平放置,则会发生如下变化: $(p_{m,A} - p_{m,B})$ ______ 读 R______。(答: 不变,不变,减小)

【分析】

根据

$$\begin{split} &\sqrt{\frac{\left(\rho_{f}-\rho_{I}\right)\rho_{f\bar{b}}}{\rho_{I}\left(\rho_{f}-\rho_{f\bar{b}}\right)}} = 3.80\sqrt{\frac{\left(2800-840\right)\times1000}{840\times\left(2800-1000\right)}} = 4.33m^{3}/h \\ & \text{A阅门开大} \xrightarrow{\text{经验}} \text{V} \uparrow \rightarrow \sum hf,_{_{1-4}} \uparrow \xrightarrow{\text{E1恒定}} \text{E}_{_{4}} \downarrow \rightarrow \text{P}_{_{4}} \downarrow \rightarrow \text{E}_{_{5}} \downarrow \rightarrow \text{V}_{_{3}} \downarrow \\ &\left(1+\sum l_{e}\right)_{_{I}} - (1+\sum l_{e}) = 30/20 = \\ &\left\{ \begin{array}{c} \text{V1} = 8.14m^{3}/h \\ H_{e,1} = 41.3m \end{array} \right\} \end{split}$$

 $p_{\scriptscriptstyle m,A}/\rho + u_{\scriptscriptstyle A}^2/2 = p_{\scriptscriptstyle m,B}/\rho + u_{\scriptscriptstyle B}^2 + \sum h_{\scriptscriptstyle f} \;,\; \sum h_{\scriptscriptstyle f} \; 与管子倾斜角度无关,所以(<math>p_{\scriptscriptstyle m,A}$ - $p_{\scriptscriptstyle m,B}$)不变,亦即 R 不变。

$$p_{\scriptscriptstyle m,A}$$
- $p_{\scriptscriptstyle m,B}$ = $(p_{\scriptscriptstyle A}+\rho gz_{\scriptscriptstyle A})$ - $(p_{\scriptscriptstyle B}+\rho gz_{\scriptscriptstyle B})$ =常量

$$p_A - p_B = 常量+\rho g(z_B - z_A)$$

当管子由倾斜向上改为水平, (z_B-z_A) 减小, (p_A-p_B) 减小。

$$\triangle p_1$$
、 $\triangle p_2$ 、 $\triangle p_3$ 的关系是______。(答: $R_1 = R_2 = R_3$, $\square p_2 > \square p_1 > \square p_3$)

【分析】::
$$\Box p_{m,1} = \Box p_{m,2} = \Box p_{m,3}$$
, $\therefore R_1 = R_2 = R_3$

$$\therefore p_A - p_B =$$
常量+ $\rho g (z_B - z_A)$, $\therefore \square p_2 > \square p_1 > \square p_3$

- 40) 某套管,外管内直径为 d_2 ,内管外直径为 d_1 ,此套管的当量直径 d_e =____。 (答: d_2 - d_1)
- 41)有时把流体流过一段管路的阻力 $^{\Sigma h_f}$ 改用摩擦压降 $^{-\Delta p_f}$ 形式表示,二者关系是_____。(答: $\sum h_f = -\Box p_f \,/\,
 ho$)

(1)

:
$$p_{m,1}/\rho = p_{m,2}/\rho + \sum h_f = p_{m,2}/\rho + \lambda(l/d)u^2/2$$

: $(p_{m,1} - p_{m,2})d/l = \lambda \bullet \rho u^2/2$

② 参看右图,沿管轴线向作1长管段的力的衡算:

$$(\pi/4)d^{2}(p_{1}-p_{2})-(\pi/4)d^{2}l\rho g\sin\alpha=\tau_{w}\cdot\pi dl$$

其中, $l\sin\alpha = z_2 - z_1$,可整理得 ∴ $(p_{m,1} - p_{m,2})d/l = 4\tau_w$

- ③ 因此, $\tau_w = \lambda \rho u^2 / 8 = 0.026 \times 10^3 \times (1.2)^2 / 8 = 4.68 N / m^2$
- ④ 无论层流或湍流的管流,剪应力 τ 均与该流层距轴心线的距离 r 成正比,故 $\tau = \tau_w (r/R) = 4.68 \times 0.5 = 2.34 N/m^2$
- 43) 如右图所示, $d_{A}>> d_{B}$ 。当水流向为 A→B,U 形压差计读数为 R_{1} 。当流向为 B→A,读数为 R_{2} 。两者流量相同,均不计 AB 段直管阻力,只计截面突变阻力,则 $\left|R_{1}\right|_{---}\left|R_{2}\right|_{---}$ (答:>)
 - 【分析】当 $d_A>>d_B$,由 $A\to B$, $\zeta=0.5$,由 $B\to A$, $\zeta=1$,局部阻力均按 ζ $u_A^2/2$ 计。

A
$$\rightarrow$$
 B: $p_A/\rho + u_A^2/2 = p_B/\rho + u_B^2/2 + 0.5u_B^2/2$

$$\therefore (p_A - p_B)/\rho = 1.5u_B^2/2 - u_A^2/2$$

B
$$\rightarrow$$
 A: $p_B/\rho + u_B^2/2 = p_A/\rho + u_A^2/2 + u_B^2/2$
 $\therefore (p_B-p_A)/\rho = u_A^2/2$

44)45℃的水蒸汽压 $P_{V}=9.586$ kPa, $P_{O}=1$ atm, $u_{2}=0.60$ $\sqrt{2gH_{o}}m/s$, $H_{o}=1.5m$,则如图所示的能正常虹吸操作的 $H_{\max}=$ _____m(计算 H_{\max} 时可忽略阻力)。(答:8.81)

【分析】 $u_2 = 0.60\sqrt{2 \times 9.81 \times 1.5} = 3.25 m/s = u_3$ 虹吸管正常操作应该管内的水不汽化。 令 $P_3 = P_v$ 时的 H 为 H_{max} ,排 1-3 截面的伯努利方程,得: $1.013 \times 10^5/1000 = 9.81 H_{max} + 9.586 \times 10^3/1000 + (3.25)^2/2$ $\therefore H_{max} = 8.81 m$

45)两管并联,管 1 的管长(包括局部阻力的当量管长)、管内径及摩擦系数为 l_1 、 d_1 和 λ_1 , 管 2 的 相 应 值 为 l_2 、 d_2 和 λ_2 , 则 流 量 比 V_1/V_2 = _____ 。(答: $\sqrt{d_1^5/(\lambda_1 l_1)}/\sqrt{d_2^5/(\lambda_2 l_2)}$)

【分析】
$$V_1 = V_{\text{ff}} \sqrt{\frac{\left(\rho_f - \rho_I\right)\rho_{\text{ff}}}{\rho_I\left(\rho_f - \rho_{\text{ff}}\right)}} = 3.80 \sqrt{\frac{\left(2800 - 840\right) \times 1000}{840 \times \left(2800 - 1000\right)}} = 4.33 m^3 / h$$

47)以孔板流量计测量某液体流量,用 U 形压差计作为测压仪器。若流量加倍且流量改变前后孔流系数 C_0 为不变的常数,则加大流量后 U 形压差计读数 R' 为原流量时读数 R 的 倍。(答:4)

- 48) 以下是两道判断题。在分析=时,可用 E 表示某截面每 kg 液体的总机械能,可略去液体动能。各水槽液位假设不变。
- ①当阀 **A** 关小,**P**₃_____,**P**₄_____。(答: 升高,降低) [分析]

$$\triangle \text{ Mix} \qquad \qquad \boxed{ \qquad \qquad } \text{E2 mix} \qquad \qquad \boxed{ \qquad } \text{E4} \qquad \boxed{ \qquad } \text{P4} \qquad \boxed{ }$$

②原来 A, B 阀均部分开启, 当 A 阀开大, B 阀不变, 则 V___, P₄____, V₃___。(答:增大,下降,减少)

[分析] A阀门开大—^{经验}
$$\rightarrow$$
 $V \uparrow \rightarrow \sum hf,_{1-4} \uparrow \xrightarrow{E1 \text{ 恒定}} E_4 \downarrow \rightarrow P_4 \downarrow \rightarrow E_5 \downarrow \rightarrow V_3 \downarrow$

第2章 流体输送机械

1)	流体输送机械依结构及运	行方式不同,	可分为4种类	类型,即	式、	式、
	式及式	。(答: 离心,	往复,旋转,	,流体作用)	
2)	离心泵均采用	_叶片,其泵	壳侧形为	形,	引水道渐扩,	是为了使
	。(答: 后弯	蜗壳,流体	动能转化为静	爭压能)		
3)	离心泵的三条特性曲线是	<u> </u>	_,	和	曲线	。这些曲线
是_	和和	条件下,目	H	测得的。	(答: He~V,	Na~V, η
~V	,一定的流体工质,一定转	专速,实验)				
4)	离心泵铭牌上写的参量是		时的参量。(答	ទ: η _{max})		
5)	离心泵启动前要盘车、灌	液,灌液是为	了防止]	现象发生。(答	· 气缚)
6)	离心泵停泵要前先关小出	口阀,以避免	发生易损坏的	國门和管道的	的	观象。(答 :
	水锤)					
7)	离心泵在长期正常操	作后虽工作	F条件未变,	却发生	气蚀,其原	因一般是
	· (2	答:汲入管内	壁因污垢沉积	是造成流体流	充动阻力增加)	1
8)	液体容器绕中心轴等角边	度 ω 旋转,	如附图所示。	液面任一点	京高度 z 与该,	点对轴心线

【分析】旋转液体中任一点都满足的方程是: $p+\rho$ gz- ρ $\omega^2 r^2/2=$ 常量 c, 如图,取 o 点为柱 坐标原点,在 o 点处,r=0,z=0, $p=p_0$,所以 $c=p_0$,于是,上式可改成 $p+\rho$ gz- ρ $\omega^2 r^2/2=p_0$,在液面上, $p=p_0$,即 ρ gz= ρ $\omega^2 r^2/2$,则 $z=\omega^2 r^2/2$ g

的距离 r 之间的数量关系是 z=_____。(答: $\omega^2 r^2/2g$)

9) 如下图,用离心泵将水由水槽输入塔内,塔内压强 p_2 =0.2at(表压),汲入及压出管总长及局部阻力当量管长 $1+\sum l_e$ =20mm,摩擦系数 λ =0.024,则输送每 N 水所需的外加功 H_e 3与流量 V 的数量关系式为______。(答: H_e 3=10.24+4.06×10 6 V²)

【分析】排 1-2 截面间伯努利方程:
$$H_{e} = H + \frac{p_2 - p_0}{\rho g} + \frac{8\lambda(1 + \sum le)}{\pi^2 g d^5} V^2 =$$

$$8.2 + \frac{0.2 \times 9.81 \times 10^4}{1000 \times 9.81} + \frac{8 \times 0.024 \times 24}{\pi^2 9.81 (0.025)^5} V^2 = 10.2 + 4.06 \times 10^6 V^2$$

11) 承 9) 题的管路特性方程可改写成 H_e '=10.2+0.313 V^2 [m](式中: V— m^3 /h)。如选用的泵的" H_e ~V"关系可表达为 H_e =42-0.01 V^2 [m],则工作点为_____。

(答: V=9.92m³/h,He=41m)

【分析】泵: He=42-0.01V², H_e'=10.2+0.313V²

令 $He= H_e$ ',得 $V=9.92 \text{m}^3/\text{h}$,He=41 m

注意: V 的单位只能统一才能联立求解。

12)承 11)题,若略关小出口阀,使 $1+\sum l_e=30m$,设 λ 不变,则新工作点为_____。(答: $V_1=8.14m^3/h$, $H_{e,\ 1}=41.3m$)

【分析】出口阀关小后,与原来的相比, $(1+\sum l_e)_1/(1+\sum l_e)=30/20=1.5$,所以

 K_1 =1.5K=1.5 \times 0.313=0.47,新的管路特性方程为 H_e' =10.2+0.47 V^2

$$\left\{ egin{aligned} ar{\Re} \colon H_e = 42 - 0.01 \mathrm{V} \ & \oplus H_e' = 10.2 + 0.47 \mathrm{V}^2 \end{aligned} \right.$$
,令 $H_e = H_e'$,所以 $\left\{ V_1 = 8.14 \mathrm{m}^3 / \mathrm{h}, H_{\mathrm{e.} \ 1} = 41.3 \mathrm{m} \right.$

13) 承 12) 题,已知在出口阀关小后 V_1 =8.14 m^3/h 时泵的效率 η=0.62,与原来的 V=9.92 m^3/h 相比,因关小阀而多消耗在阀上的轴功率 ΔN_a =_____。(答:372W)

【分析】参照附图, 当阀关小 V_1 =8.14 m^3 /h 时, 若按原来的管路特性曲线计, 只需

 $H_e^{'}$ =10.2+0.313×(8.14)²=30.9m,但因阀关小增加阀的阻力,实际 $H_{\rm e,1}$ =41.3m,所以因阀关小而多耗的轴功率

$$\begin{split} \Delta N_a &= \Delta H_e \cdot V \, \rho g \, / \, \eta = (41.3 - 30.9) \times 8.14 \times 10^3 \times 9.81 / \left(3600 \times 0.62\right) = 372W \\ n' \, / \, n &= V' \, / \, V = 8.14 / \, 9.92 = 0.822 \left(42 - 0.01 (V \, / \, 2)^2\right) H_e' = 6.2 + 0.0854 V^2 m \left(V - m^3 \, / \, h\right) \sum H_f = K V^2 \\ H_{\rm gmax} &= \left(p_1 - p_{\rm v}\right) / \left(\rho g\right) - \Delta h_{\rm fi} - \sum H_{\rm f. \ W} = 0 - 2.4 - 3.3 = -5.7 \text{mu}_2^2 \rho_1 \, / \, 2V', H_{\rm T}' \, / \, \rho' \end{split}$$

 $\Delta N_a = \Delta H_e \cdot V \rho g / \eta = (41.3 - 30.9) \times 8.14 \times 10^3 \times 9.81 / (3600 \times 0.62) = 372W$

14) 承 13) 题,若管路及阀门开启度均保持原来情况不变,用减小泵转速的方法使流量降至 $8.14 \text{m}^3/\text{h}$,则调节后的转速与原转速之比 n'n=______。(答: 0.82)

【分析】n'/n=V'/V=8.14/9.92=0.82

15)已知单台离心泵的性能为 $H_{e-42}-0.01V^2$ (V— m^3/h),则两台相同的上述的泵串联或并联,其综合的性能分别为 $H_{e-\#}=$ _____, $H_{e-\#}=$ ____。[答: $2\left(42-0.01V^2\right)$, $42-0.01(V/2)^2$]

16)如图,当泵出口阀全开,V=25 m³/h 时管路阻力 \sum H_f=53.4mH₂O,则阀全开时的管路特性方程为_____。(答: $H_e^{\;\prime}=6.2+0.0854V^2m\left(V-m^3/h\right)$)

【分析】阀全开, $\sum H_f = KV^2$,即 53.4=K(25)²,所以 K=0.0854m/(m^3/h)² 故阀全开时管路特性方程为 $H_e'=6.2+0.0854V^2m\left(V-m^3/h\right)$

- 17) 单项选择题: 离心泵的安装高度与____。(答: D)
- (A) 泵的结构无关 (B) 液量流量无关 (C) 汲入管阻力无关 (D) 液体密度有关 【分析】当离心泵从低位液槽汲液,液槽的液面压强为 P_1 (绝压),该液体在工作温度下的蒸汽压为 P_v ,则泵的最大安装高度为

$$H_{g \max} = (p_1 - p_v)/(\rho g) - \Delta h_{\text{ft}} - \sum H_{f, \text{ iff}}$$

其中允许汽蚀余量 Δh_{α} 与泵的类型,尺寸,转速,流量有关。

18)某离心泵在高原使用,外界大气压 p_0 =8.6 mH_2O (绝压),输 15℃的水,水的蒸汽压 p_0 =1.707kPa。由工作点查得 Δh $_{\pi}$ =3.5m,可算得汲入管阻力为 2.3 mH_2O ,则最大安装高度为______m。(答: 2.63)

【分析】
$$H_{gmax} = p_0/(\rho g) - p_v/(\rho g) - \Delta h_{\text{允}} - \sum H_{f, \%}$$

= $8.6 - 1.707 \times 10^3/(1000 \times 9.81) - 3.5 - 2.3 = 2.63 m$

19)以离心泵由 A 槽把饱和液体输至 B 槽。要求流量为 $16~m^3/h$ 。查得该泵在该流量时 Δh $_{\text{$\hbar = 2.4m}}$,可算得汲入管阻力为 3.3m。可判断此泵在该流量时

_____发生气蚀。(答: 不会)

【分析】饱和液体,即工作温度下液体的蒸汽压 pv 等于外压 p1,于是

$$H_{gmax} = (p_1 - p_v)/(\rho g) - \Delta h_{fc} - \sum H_{f, W} = 0 - 2.4 - 3.3 = -5.7 m$$

从附图见, $H_g = -8m$,因此 $H_g < H_{gmax}$,故不会产生气蚀。

- 20)使用离心泵从此泵的位置更低的液槽汲液,不应在汲入管上装阀以调节流量,原因是____。(答:当阀关小时会造成气蚀)
- 成气蚀) 21)往复泵属于____类型的流体输送机械,常用于流量

- 22) 在风机样本中,离心式风机的性能曲线是在一定转速下,规定进口气体密度 ρ=_____kg/m³条件下测得的。性能曲线共有 4 条,即_____、___、____、___和_____曲线。(答: 1.2,H_T~V,H _θ~V,N_a~V,η ~V)
- 23)若以下标"1"、"2"表示风机的进、出口截面,风机全风压 H_T 为_____。(答:按风机进口截面处气体密度计的每立方米气体流过风机所提高的机械能, J/m^3 或 Pa)
- 24) 在全风压中,往往略去 项。(答:位能)
- 25) 若风机操作时进风口压强为 p_1 ,出风口压强为 p_2 (全为绝压),进风口气体密度为 ρ_1 ,

出风口气速为 \mathbf{u}_2 ,则风机的静压强 \mathbf{H} #=_____,出口动能为____。(答: P_2 - P_1 , $\mathbf{u}_2^2 \rho_1 / 2$)

26) 若风机在工作时进风口气体密度为 ρ' ,按此密度计的风机流量为 V',实测得风机全风压为 H_T ,为了从风机样本中选择风机型号,须做参量转换。转换关系为: $V_{\# *} = 1$

第3章 颗粒流体力学与机械分离

	正圆柱体颗粒,高 h=2mm,底圆直径 d=2mm,其等体积当量直径 $d_{e,v}$ =mm,形状系 Ψ =。(答: 2.29,0.874)
2)	对某号筛,穿过筛孔的颗粒质量称为,留在该号筛面上的称为。(答: 筛过量,筛余量)
3)	某颗粒群,依颗粒大小的差异,可粗分为三部分,其平均粒径 $d_{p,i}$ 为 1.08 , 1.52 及 2.24 mm 的部分的质量分数 x_i 相应为 0.31 , 0.55 及 0.14 ,设所有颗粒形状系数相同,则按比表面积相等原则算出的颗粒群的平均粒径为mm。(答: 1.41)
	[分析] $d_m = 1/\sum (x_i/d_{p,i})$
4)	由固体颗粒堆积成的固定床,其空隙率 ε=。[答: (床层体积-颗粒体积)/床层体积]
5)	对于颗粒乱堆的固定床,若颗粒足够小,可认为床层各向同性,即床层内处处值相等,且床层内任一平截面上空隙面积与界面总面积之比(自由截面率)在数值上等于。(答: ɛ, ɛ)
6)	当流体通过多孔介质,或称流体对固定床的渗流,当雷诺数 $Re' < 2$,流动阻力属粘性阻力时可用柯士尼公示计算流动阻力,该公式可表达为- $\Delta p_m = A$
7)	当流体通过多孔介质,在更宽的雷诺数范围内,亦即流动阻力可包含粘性阻力及涡流阻力时,可用欧根公式计算流动阻力。该公式可表示为- $\Delta p_m/L=A$ +BPa.(式中 A,B 为固定床的不同的结构参量,对一定的固定床,A,B 均为常量) (答: μ , μ , ρ , μ)
8) 9)	为了固、液分离,常用的机械分离方法是
10)	若过滤面积为 Am^2 ,经过一段时间的过滤后,得滤液量 Vm^3 ,同时生成厚度为 Lm 的滤饼,
	滤饼空隙率为 ϵ ,固体颗粒的密度为 $\rho_p \mathrm{kg/m^3}$,即可判断截留的固体质量为kg,
	与之对应的液体体积为 $_{m^3}$ 。当过滤前悬浮液的浓度以 Φ kg \mathbb{D}/m^3 清夜表示,则
	Φ=。[答: $LA(1-\varepsilon)\rho_p$, $V+LA\varepsilon$, $LA(1-\varepsilon)\rho_p/(V+LA\varepsilon)$]
Í	推导液体流过滤饼(固定床)的过滤基本方程式的基本假设是:液体在多孔介质中流型属
12)	在过滤速率方程中,对于液体流过过滤介质的阻力的处理方法是,按等阻力原则将其折合成一层虚拟的厚度为 L_e 的附加滤饼层,该虚拟滤饼层的结构与操作中生成的滤饼的相同。当过滤面积为 A ,则滤布阻力可用 L_e 或 q_e 表示, L_e 是

液量)

13) 以叶滤机恒压过滤某悬浮液,已知过滤时间 τ_1 =5min,单位过滤面积通过滤液量 q_1 =0.112m³/m²,滤饼厚度 L_1 =2.0mm,当过滤累积时间 τ_2 =10min,累积的 q_2 =0.162 m³/m²,则过滤总共时间 τ_3 =25min 时,滤饼厚度 L_3 = mm。(答:4.66)

[分析]恒压过滤,通式为 $q^2 + 2qq_e = K\tau$,代入 τ_1 , τ_2 两时刻的值,得

$$\begin{cases} (0.112)^2 + 2 \times 0.112 q_e = K \times 5 \\ (0.162)^2 + 2 \times 0.162 q_e = K \times 10 \end{cases}$$

两式联立,解得 $K = 2.93 \times 10^{-3} m^2 / \text{min}$, $q_e = 9.32 \times 10^{-3} m^3 / m^2$

对于
$$\tau_3, q_3^2 + 2 \times 9.32 \times 10^{-3} q_3 = 2.93 \times 10^{-3} \times 25$$
 ∴ $q_3 = 0.261 m^3 / m^2$

$$L \propto q$$
, $L_3 = L_1 q_3 / q_1 = 2.0 \times 0.261 / 0.112 = 4.66 mm$

14) 承 13) 题, 若过滤 25min 便停止过滤, 则过滤终了时的瞬时过滤速率 dq/dr=_____m³/(min·m²)。(答: 5.42 ×10⁻³)

[分析]
$$\frac{d_q}{d_\tau} = \frac{K}{2(q+q_e)} = \frac{2.93 \times 10^{-3}}{2(0.261 + 9.32 \times 10^{-3})} = 5.42 \times 10^{-3} m^3 / \min m^2$$

15) 承 14) 题,若过滤停止后,即洗涤滤饼,洗涤液与滤液粘度相同,洗涤压差与过滤压差相同,洗涤液量为总滤液量的 0.12,则洗涤时间 τw=____min。(答: 5.78)

[分析]对叶滤机, 当
$$\mu_{w} = \mu, -\Delta p_{m,w} = -\Delta p_{m,E}$$
, 则

$$(dq/d\tau)_{w} = (dq/d\tau)_{E}, \therefore \tau_{w} = 0.12 \times 0.261/(5.42 \times 10^{-3}) = 5.78 \,\text{min}$$

16) 一个过滤周期包含着过滤、滤饼洗涤及清理三个阶段,三段操作时间依次为 τ_F , τ_W 和 τ_R 三者之和为 Σ τ ,其中过滤阶段得滤液量 v,则过滤机得生产能力 G=_____m³/s.若为恒 压过滤且过滤介质阻力不计,洗涤时 $\mu_W = \mu, \Delta P_{m,W} = \Delta P_{m,E}$,则当 τ_R =_____时,生产

能力最大。(答:
$$v/\sum \tau, \tau_{\scriptscriptstyle F} + \tau_{\scriptscriptstyle W}$$
)

- 17) 在一台板框压滤机中滤框有_____种结构类型,滤板有_____种结构类型。(答:一,二)
- 18) 某板框压滤机对某料浆进行恒压过滤,滤饼充满滤框需 22min,现框数加一倍,操作压力及物性不变,则滤饼充满滤框的时间是____min。(答: B)

- 19) 板 框 压 滤 机 , 若 滤 饼 洗 涤 时 , $\mu_W = \mu, \Delta P_{m,W} = \Delta P_{m,E}$, 则 $(dV/d\tau)_{w} = \underline{\qquad} (dV/d\tau)_{E}.$ (答: 1/4)
- 20) 以板框压滤机恒压过滤某悬浮液,若滤布阻力不计,悬浮液浓度不变,滤液粘度不变,仅是操作压差增加一倍,已知滤饼的压缩性指数 S=0.35,则对于同一 V 值,增压后的滤液流率 $dV/d\tau$ 为原来的______倍。(答:1.57)

[分析]
$$dV/d\tau = KA^2/[2(V+V_a)], K = 2\Delta p_{w}^{1-s}/(\mu r_a \Phi)$$

21)	板框压滤机恒压过滤某料浆,若料浆浓度 Φ 减小为原来的 $1/2$,设滤布阻力可略,滤饼比阻系数及其他操作条件不变,可略去滤饼中滤液量,则滤饼充满滤框的时间为原来条件下充满滤框时间的倍。(答: 2)
	[分析] $L=\Phi q/[ho_p(1-arepsilon)]$,滤饼充满框时,L=0.5 框厚=定值,当 Φ 值減半,必然 q
	值加倍。又, $K=2\Delta p_m^{1-s}/(\mu r_o\Phi$, Φ 值減半,则 K 值加。由 $q^2=K\tau$ 即可判断, Φ 減
	半,则 τ 加倍
22)	回转真空过滤机在滤布阻力不计条件下的生产能力 $G=m^3/s$ 。(答: $\sqrt{nA^2\Psi K}$)
23)	回转真空过滤机若增大转速,优点是,缺点是。(答:增大生产能力,卸滤饼处因滤饼变薄,刮刀易损坏滤布)
24)	自由沉降是指颗粒在沉降过程中没有同其他颗粒碰撞,而且不受与影响的沉降。(答:器壁,器底)
25)	重力自由沉降速度 ut 是颗粒在重力场中,在流体中自由沉降且颗粒受到的、与平衡时的恒定速度。(答:重力,浮力,曳力)
26)	$ρ_p$ =2600 kg/m³,d _p =0.120mm 的光滑圆球在 20℃水中自由重力沉降速度 \mathbf{u}_t =m/s,水
	的 μ = 1.0cp. (答: 1.26×10 ⁻²) [分析]设颗粒沉降属斯托克区
	$ad^{2}(\alpha - \alpha) = 0.91 \times (0.120 \times 10^{-3})^{2} (2600 - 1000)$
	$u_{t} = \frac{gd_{p}^{2}(\rho_{s} - \rho)}{18\mu} = \frac{9.81 \times (0.120 \times 10^{-3})^{2} (2600 - 1000)}{18 \times 0.001} = 1.26 \times 10^{-2} \text{m/s}$
	$u_{t} = \frac{gu_{p}(\rho_{s} - \rho)}{18\mu} = \frac{9.81 \times (0.120 \times 10^{-3}) (2000 - 1000)}{18 \times 0.001} = 1.26 \times 10^{-2} m/s$ 校核 Re, $_{p} = \frac{d_{p}u_{t}\rho}{\mu} = \frac{0.120 \times 10^{-3} \times 1.26 \times 10^{-2} \times 1000}{0.001} = 1.51 < 2$, 计算有效
27)	校核 $\operatorname{Re}_{,p} = \frac{d_p u_t \rho}{\mu} = \frac{0.120 \times 10^{-3} \times 1.26 \times 10^{-2} \times 1000}{0.001} = 1.51 < 2$,计算有效以重力沉降室分离某悬浮系的固体颗粒,若要求大于某指定粒径的颗粒全部沉至器底,
ĺ	校核 Re, $_{p} = \frac{d_{p}u_{t}\rho}{\mu} = \frac{0.120 \times 10^{-3} \times 1.26 \times 10^{-2} \times 1000}{0.001} = 1.51 < 2$, 计算有效
ĺ	校核 $\operatorname{Re}_{,p} = \frac{d_p u_t \rho}{\mu} = \frac{0.120 \times 10^{-3} \times 1.26 \times 10^{-2} \times 1000}{0.001} = 1.51 < 2$, 计算有效 以重力沉降室分离某悬浮系的固体颗粒,若要求大于某指定粒径的颗粒全部沉至器底,其处理能力与设备的
28)	校核 $\operatorname{Re}_{,p} = \frac{d_p u_t \rho}{\mu} = \frac{0.120 \times 10^{-3} \times 1.26 \times 10^{-2} \times 1000}{0.001} = 1.51 < 2$, 计算有效 以重力沉降室分离某悬浮系的固体颗粒,若要求大于某指定粒径的颗粒全部沉至器底,其处理能力与设备的
28) 29) 30)	校核 $\operatorname{Re}_{,p} = \frac{d_p u_t \rho}{\mu} = \frac{0.120 \times 10^{-3} \times 1.26 \times 10^{-2} \times 1000}{0.001} = 1.51 < 2$,计算有效 以重力沉降室分离某悬浮系的固体颗粒,若要求大于某指定粒径的颗粒全部沉至器底,其处理能力与设备的
28) 29) 30)	校核 $\operatorname{Re}_{,p} = \frac{d_p u_t \rho}{\mu} = \frac{0.120 \times 10^{-3} \times 1.26 \times 10^{-2} \times 1000}{0.001} = 1.51 < 2$,计算有效 以重力沉降室分离某悬浮系的固体颗粒,若要求大于某指定粒径的颗粒全部沉至器底,其处理能力与设备的
28) 29) 30) 31) 32)	校核 $\operatorname{Re}_{,p} = \frac{d_p u_t \rho}{\mu} = \frac{0.120 \times 10^{-3} \times 1.26 \times 10^{-2} \times 1000}{0.001} = 1.51 < 2$,计算有效 以重力沉降室分离某悬浮系的固体颗粒,若要求大于某指定粒径的颗粒全部沉至器底,其处理能力与设备的有关,与无关。(答:水平面积,高度) 某悬浮系水平流过一重力沉降室,设进沉降室时悬浮系中颗粒分布均匀。当悬浮系离开沉降室时粒径为 $\operatorname{dpc}_{,c}$ 的颗粒正好沉降至器底,此粒径颗粒的自由沉降速度为 $\operatorname{ut}_{,c}$,则 $\operatorname{dpc}_{,c}$ 且自由沉降速度为 $\operatorname{ut}_{,c}$ 即称的收尘效率为。(答: $\operatorname{ut}_{,c}$ 评价旋风分离器的主要性能指标是与。(答:粒级效率,压降) 含尘气体通过旋风分离器收尘,为表示其性能,常用的术语"粒级效率"是,"分割粒径 $\operatorname{dso}_{,c}$ "是。(答:对某指定粒径的颗粒的收尘效率,粒级效率为 50%的颗粒粒径) 据早期对旋风分离器的除尘机理研究,认为圆筒部分外旋流是唯一的除尘区,由此导出的"临界粒径 $\operatorname{dc}_{,c}$ "是。(答:能全部收下的颗粒中的最小粒径) 在散式流化作中,流化床的压降 $\operatorname{\Delta pm}_{,c}$ 等于单位床层横截面积上悬浮颗粒的。流体空速增大,床层高度,床层空隙率,压降。(答:净重,增加,

第4章 传热及换热器

1)传热是以为推动力的能量传递过程。(答:温度差)
2) 传热的基本方式有、、、、三种。(答:导热,对流传热,热辐
射)
3) 热冷流体热交换的类型有三种,即式、式及式。(答:间壁,
直接接触,蓄热)
4) 常见的加热剂有、、及等。常用的冷却剂有、、
及等。(答:水蒸气,热水,矿物油,冷水,空气,冷冻盐水)
5)对某换热设备,单位时间热冷流体间传递的热量称为,常以 Q 表示,单位为
${\bf W}$ 。单位时间、单位传热面积传递的热量称为
传热热率或热负荷,传热通量)
6)某传热过程测得控制体内某一点位置的温度随时间而变,即可判断该传热过程为
过程。(答:非定态)
7)定态、一维导热、傅里叶定律的表达式是 $dQ=$ (答: $-\lambda \cdot dA \cdot dt / dn$)
8)导热系数λ的单位是。使用此单位时,普通碳钢、不锈钢、空气在常温、常
压下的 λ 值分别为、、、。(答: W/(m • °C), 45, 16,
0.02)
9) 对于大多数物质, 导热系数 λ 与温度 \mathfrak{t} (\mathbb{C}) 的关系为 λ =。(答: $\lambda_o(1+at)$)
10) 温度升高金属的导热系数 λ 值, 液体的 λ 值, 空气的 λ 值
。(答:减小,减小,增大)
11) 面积 A=0.05m², 壁厚为 3.0mm 的金属平壁, 其导热系数 λ=45W/(m·℃)。若壁的两侧面
温度分别为 104℃和 103.6℃,则传热速率 Q=W。(答:300)
[分析] $Q = \lambda \cdot A \cdot \Delta t / \delta = 45 * 0.050 * (104 - 103.6) / (3.0 * 10^{-3}) = 300W$
12)Φ48×3.5mm 钢管外包以 8mm 厚的保温层, 保温层的导热系数 λ=0.12W/(m· ℃), 管内壁
及保温层外侧温度分别为 120° 及 60° ,则每米管长的散热速率 $Q/L=$ W/m。(答:
157)
[分析]
$\frac{Q}{L} = \frac{2\pi(t_1 - t_3)}{(1/\lambda)\ln(d_2/d_1) + (1/\lambda_2)\ln(d_3/d_2)} = \frac{2\pi(120 - 60)}{(1/45)\ln(48/41) + (1/0.12)\ln(64/48)} = 157W/m$
$L = (1/\lambda) \ln(a_2/a_1) + (1/\lambda_2) \ln(a_3/a_2) = (1/45) \ln(48/41) + (1/0.12) \ln(64/48)$
13) 对流给热共分为四种类型即、、、和给热。(答:强制
对流、自然对流、液体沸腾、蒸汽冷凝)
14) 对于无相变的对流给热, 以特征数表示的一般函数式为 Nu=f(,,). (答:
Re, Gr, Pr)
15) $Gr=$,表示热过程的影响。(答: $gl^3\beta\Delta t/v^2$,自然对流运动)
16) Pr=,表示对给热过程的影响。(答: $C_p \bullet \mu / \lambda$,流体物性)

 $\alpha = 0.023(\lambda/d) \operatorname{Re}^{0.8} \operatorname{Pr}^{0.4} = 0.023(0.634/0.053)(1.44 \times 10^5)^{0.8}(4.32)^{0.4} = 6.613 \times 10^3$ $W/(m^2 \cdot ^{\circ}\mathbb{C})$

[分析] $\alpha = 0.023(\lambda/d)(du\rho/\mu)^{0.8} \text{ Pr}^{0.4} \propto u^{0.8}$

$$\therefore \alpha' = \alpha (u'/u)^{0.8} = 6.613 \times 10^3 \times 1.5^{0.8} = 9.147 \times 10^3 \text{ W/(m}^2 \cdot ^{\circ}\text{C})$$

20) 承 19 题, 若水流量不变, 改用 Φ 68×3mm 钢管, 物性数据不变, 则 α "=_____ W/(m²· ℃). (答: 4.986×10³)

[分析]
$$\alpha = 0.023 \frac{\lambda}{d} (\frac{4v\rho}{\pi d\mu})^{0.8} \text{ Pr}^{0.4} \propto (\frac{1}{d})^{1.8}$$

$$\alpha'' = \alpha (d/d'')^{1.8} = 6.613 \times 10^3 (53/62)^{1.8} = 4.986 \times 10^3 \text{ W/(m}^2 \cdot ^{\circ}\text{C})$$

- 21)某流体经过一直管后流入同一内径的弯管,则 $\alpha_{\tilde{n}}>\alpha_{\tilde{n}}$ 的原因是_____。(答:在弯管内流体有附加扰流)

[分析]这是有内热源的导热与对流给热串联传热的问题。令导线直径为 d_1 ,绝热层外直径为 d_2 ,导线外侧温度为 t_1 ,绝热层外侧温度为 t_2 ,大气温度为 t_0 ,可建立如下传热速率式:

$$\begin{split} Q = & \frac{2\pi\lambda L(t_1 - t_2)}{\ln(d_2/d_1)} = \alpha(\pi d_2 L)(t_2 - t_0) \\ = & \frac{t_1 - t_2}{2\pi\lambda L} = \frac{t_2 - t_0}{\frac{1}{\alpha\pi d_2 L}} = \frac{t_1 - t_0}{\frac{1}{2\pi\lambda L} \ln\frac{d_2}{d_1} + \frac{1}{\alpha\pi d_2 L}} \\ \mathbb{R}I \cdot 1.6^2 \times 0.16 = & \frac{t_2 - t_0}{\frac{1}{2\pi\times 0.16} \ln\frac{2.10}{0.50} + \frac{1}{12\pi\times 2.1\times 10^{-3}}} \end{split}$$

 \dot{L}_{23} 表 \dot{C}_{23} 表 \dot{C}_{23} 表 \dot{C}_{23} 表 \dot{C}_{23} 表 \dot{C}_{23} 表 \dot{C}_{23} 的 \dot{C}_{23} $\dot{C}_$

去保温层导热系数 λ 值随温度的变化,则内保温层热阻_____于外包保温层热阻。(答: 大)

[分析]
$$Q = \frac{\Delta t}{(\delta/2)(\lambda A_{m,b}) + (\delta/2) (\lambda A_{m,b})}$$

因 A_{m,内}<Am,外, 故内层热阻大于外层热阻

- 24) 某钢管外壁温度高于外界空气温度,为减少散热,拟在管外包厚度均为 δ 的两层保温层。现有导热系数分别为 λ₁ 和 λ₂ 的两种绝热材料,λ₂>λ₁ 则把 λ₁ 的绝热材料包在______层的保温效果好。(答:内)
- 25)某小口径钢管,外半径为 r_1 ,外壁温度为 T,外界空气温度为 t_0 ,空气给热系数为 α 。 $T>t_0$ 为减小散热,拟在管外包导热系数为 λ 的保温层,保温层厚 δ ,保温层外半径为 r_2 。设 T、 λ 均为恒值。在实践中发现,单位管长散热速率 Q/L 随 δ 的增大出现先升后降的现象,如附图所示,Q/L 最大时的 δ 为临界保温层厚 δc ,可推得,Q/L 最大时保温层外半径 r_2 . c=______。(答: λ/α)

[分析]
$$Q/L = \frac{Q/L - t_0}{\frac{1}{2\pi\lambda} \ln \frac{r_2}{r_1} + \frac{1}{2\pi r_2 \alpha}} = \frac{ 总温差\Delta t}{ 总热阻R}$$

可见,随 \mathbf{r}_2 增大,保温层的热阻增大,而空气的给热热阻减小,二者对 \mathbf{Q}/\mathbf{L} 的影响相反。可通过 \mathbf{R} 对 \mathbf{r}_2 极值以求出 \mathbf{r}_2 。

$$\Leftrightarrow \frac{\mathrm{d}\mathbf{R}}{dr_2} = 0, \exists \mathbb{I} \frac{d}{dr_2} \left(\frac{1}{2\pi\gamma} \ln \frac{r_2}{r_1} + \frac{1}{2\pi r_2 \alpha} \right) = 0$$

$$\frac{1}{2\pi r_{2,c}} + \frac{1}{2\pi \alpha} \right) \left(-\frac{1}{r_{2,c}^2} \right) = 0$$
即
$$\frac{1}{\lambda r_{2,c}} = \frac{1}{\alpha r_{2,c}^2}$$
∴ $r_{2,c} = \lambda / \alpha$

此极限是极大还是极小值,须以二阶导数判定。

$$\frac{d^2R}{dr_2^2} = \frac{d}{dr_2} \left(\frac{1}{2\pi\lambda r_2} - \frac{1}{2\pi\alpha r_2^2} \right) = \frac{-1}{2\pi\lambda r_2^2} + \frac{2}{2\pi\alpha r_2^3}$$

当
$$r_{2,c}=\lambda/\alpha$$
 ,则 $\frac{d^2R}{dr_2^2}|_{r_{2,c}}=\frac{\alpha^2}{2\pi\lambda^3}>0$,即当 $\delta=\delta_c$ 时,R 为极小亦即 Q/L 为极大。

27) 承 26 题, _____给热状况是不允许发生的, 若发生则属生产事故, 故正常操作的过热 度必须严控在 以下。(答: 膜状沸腾、临界过热度) 28) 液体沸腾的必要条件是 和 。(答:液体过热、有汽化核心) 29) 蒸汽冷凝分膜状与滴状冷凝两种类型。于同一蒸汽同一冷凝温度 t_s,滴状冷凝 α 值常取 为 W/(m·℃). (答: 大、膜、10000) 30) 水蒸汽冷凝, 若水蒸汽中混有 1%的空气 (不凝性气体), 其 α 值会比纯水蒸汽 α 值下 降 % (答: 60) 31) 蒸汽膜状冷凝凝液在壁面层流流下, 若蒸汽饱和温度与壁温之差(t_s—t_w) 增大, 则 α 值____。(答:减小) [分析] $\alpha = 1.13 \left[\frac{g \rho^2 \lambda^3 r}{\mu L(t_s - t_w)} \right]^{\frac{1}{4}}$,此公式不必记,但 α 与 $(t_s - t_w)$ 得关系应知道 33) 靠自然抽风的烟囱,在烟囱内烟气与烟囱壁间的给热是自然对流还是强制对流给热? 答: _____。(答: 强制对流给热) 34) 黑体是_____。黑体的辐射能力 $E_b = C_0 (_____)^4 \, W/m^2$,其中 C_0 是黑体的辐射系数,其 值为 $W/(m^2 \cdot K^4)$. (答: 吸收率 a=1 的物体, T/100.5.67) 35) 某种物体在某温度下对任一波长的单色辐射能力与同温同一波长的黑体单色辐射能力 之比 $E_{\lambda}/E_{\lambda\lambda}=\epsilon$.若 ϵ 值不随波长而变,该物体称为 , ϵ 称为该物体的 。(答: 灰体,黑度) 36) 空间有面积分别为 A_1 及 A_2 的两平面,其间相对位置是任意的。角系数 ϕ_{12} 表示 $A_1\phi_{12}$ $A_2\phi_{21}$ 。(答: 黑体或灰体的 A_1 平面发出的辐射能中到大 A_2 的平面的分率, =黑度。对于很大的物体 2 包住凸面物体 1,则上式中 ε_ε=____。(答: $A_1\varphi_{12},[(T_1/100)^4-(T_2/100)^4],\varepsilon_1$ 38) 设有温度分别为 T_A 和 T_B 两平行平面, $T_A > T_B$,为减少辐射传热,在两平板间设置几块平 行遮热板,所有板的黑度相等,各板面积相同,间距很小,则设置遮热板后的辐射传热 速率为未装遮热板时____。(答: 1/(n+1)) [分析]两平行板间: $q_{1-2} = c_0 \cdot \varepsilon_s [(\frac{T_1}{100})^4 - (\frac{T_2}{100})^4]$ 本题条件下, $\varepsilon_s = \left[\frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_2} - 1\right]^{-1} = 常数$ 未装遮热板 $q_{A-B} = c_0 \cdot \varepsilon_s [(\frac{T_A}{100})^4 - (\frac{T_B}{100})^4]$ $q_{A-1} = c_0 \cdot \varepsilon_s [(\frac{T_A}{100})^4 - (\frac{T_1}{100})^4]$ 装遮热板后 $q_{1-2} = c_0 \cdot \varepsilon_s \left[\left(\frac{T_1}{100} \right)^4 - \left(\frac{T_2}{100} \right)^4 \right]$

$$q_{A-1} + q_{1-2} + \dots + q_{nB} = (n+1)q_{A-1} = q_{A-B}$$

 $Q_{n-B} = c_0 \cdot \varepsilon_s [(\frac{T_n}{100})^4 - (\frac{T_B}{100})^4]$

$$\therefore q_{A-1} = q_{A-R} / (n+1)$$

38) 用热电偶测量某管道内流动气体的温度。由仪表中读得热电偶温度为 780℃。热电偶的 黑度为 0.06, 输气管管壁温度为 600℃。气体的给热系数为 65W/(m².℃)若把热电偶温度视为气体温度,按绝对温度计算的相对误差是____。减小测温误差的方法有____。(答: -24.4%,热电偶外装遮热罩及减少输气管的散热速率等)

[分析]管内传热情况为: 气体 — ^{给热}→热电偶 — ^{辐射}→管壁。在过程定态,即热电偶温度

恒定条件下,令气体、热电偶及管壁温度分别为 Tg,T1,Tw,热电偶的黑度为 ε_1 ,则下士

成立:
$$\alpha(T_g - T_1) = \varepsilon_1 c_0 [(T_1 / 100)^4 - (T_w / 100)^4]$$

$$\mathbb{E}[65[T_g - (273.2 + 780)] = 0.60*5.67[(273.2 + 780/100)^4 - (273.2 + 600/100)^4]$$

∴T_g=1392.9K=1120°C

故测温相对误差=(780+273.2-1392.9)、1392.9=-24.4%

- 39) 常见的间壁式换热器有以下类型: _____式, ____式及____式等。(答: 套管, 列管, 板, 螺旋板, 热管…任写三种)
- 40) 用套管换热器以冷水使饱和甲苯蒸汽冷凝为饱和液体。甲苯走环隙,温度 T=100℃,流量 W_h=2200kg/h,其冷凝潜热 r_h =363kJ/h,冷凝水走内管内,进出口水温分别是 t_1 =15℃, t_2 =43℃,水的比热 Cp.c=4.174kJ/(kg.℃)。则该换热器的热负荷 Q=____kJ/h,Wc =____kJ/h,平均传热温差 $\triangle t_m$ =____℃。(答:7.986×10⁵,6.833×10³,70.07)

[分析]Q=Wh×rh=2200×363=7.986×105kJ/h

又 Q=Wc • C_{p, c} (t_1 - t_2) 即 7.986×10⁵=Wc×4.174 (43-15)

所以 Wc=6.833×103kg/h

因为△t₁=100-15=85℃,△t₂=100-43=57℃

所以 $\triangle t_m = (\triangle t_1 - \triangle t_2) / Ln (\triangle t_1 / \triangle t_2) = (85-57) / Ln (85/57) = 70.07$ °C

41) 承 40) 题,已知内管规格为 Φ 57×3.5mm,内管内冷凝水给热系数 α_i =3738W/(m².℃),环隙中甲苯冷凝的给热系数 α_0 =5200W/(m².℃),若略去管壁及污垢热阻,则以内管壁面为基准的传热系数 K_i =______W/(m².℃),该换热器的长度 L=_______m。(答:2292,7.68)

[分析]
$$\frac{1}{K_i} = \frac{1}{\alpha_i} + \frac{d_i}{\alpha_o d_o}$$
,即 $\frac{1}{K_i} = \frac{1}{3738} + \frac{50}{5200 \times 57}$

所以 K_i=2292 W/(m².℃)

$$\mathbb{Z}Q = K_{i}(\pi d_{i}L) \cdot \Delta t_{m}$$
, $\mathbb{P}7.986 \times 10^{5}(1000/3600) = 2292(\pi \times 0.050L) \times 70.07$

所以 L=8.8m

42) 承 41) 题, 若其它条件不变,只是因气候变化,冷水进口温度为 20℃,设物性数据不变,则冷水出口温度 t_2 '=_____℃。(答: 46.5)

[分析]对于热流体侧为蒸汽冷凝,有相变且热流体温度 T 保持不变,而冷流体侧则无相变,有温度变化的情况,可运用如下等式:

$$\begin{split} W_c \cdot C_{p,c}(t_2 - t_1) &= K_i A_i [(T - t_1) - (T - t_2)] / \ln \frac{T - t_1}{T - t_2} \\ &= K_i A_i (t_2 - t_1) / \ln \frac{T - t_1}{T - t_2} \end{split}$$

所以
$$W_c \cdot C_{p,c} \ln \frac{T - t_1}{T - t_2} = K_i A_i$$

原来:
$$W_c \cdot C_{p,c} \ln \frac{100-15}{100-43} = K_i A_i$$
 W_c , $C_{p,c}$, K_i , A_i 均前后不变

后来:
$$W_c \cdot C_{p,c} \ln \frac{100-20}{100-t_2} = K_i A_i$$

前后情况对比,得
$$\frac{100-15}{100-43} = \frac{100-20}{100-t_2}$$
,所以 $t_2 = 46.4$ °C

- 43) 列管换热器有三种类型,即:_____式,____式及____式。(答:固定管板,U形管,浮头)
- 44) 列管换热器内设置折流板的目的是_____。(答:增大壳程流体流速,使尽量多的壳程流体可垂直流过管束,使其给热系数增大)
- 45) 折流板有两种形式,即____式和___式。(答:圆缺形,盘环形)
- 46) 某单管程,单壳程列管换热器,壳程为水蒸汽冷凝,蒸汽温度为 T=140℃,管程走空气,由 $t_1=20$ ℃升至 $t_2=90$ ℃。若将此换热器改为双管程,空气流量不变,设空气物性不变,空气原来在管内湍流,管壁及污垢热阻均可略去,改为双管程后换热管数不变,则改为双管程后空气出口温度 t_2 '=______℃。(答:113.9℃)

[分析]原来:
$$W_c \cdot C_{p,c} \ln \frac{T - t_1}{T - t_2} = K_i A_i$$

后来:
$$W_c \cdot C_{p,c} \ln \frac{T - t_1}{T - t_2} = K_i \cdot A$$

两式相除,得 $\frac{\ln \frac{T-t_1}{T-t_2'}}{\ln \frac{T-t_1}{T-t_2}} = \frac{K_i^{'}}{K_i}$,由于水蒸气冷凝 α_h 》空气 α_c ,且管壁及污垢热阻不计,故

 $\frac{K_{i}^{'}}{K_{i}} = \frac{\alpha_{c}^{'}}{\alpha_{c}}$,又由于空气在管内均为湍流,且改成双管程后,空气在管内的流速为单管程的

2倍,故
$$\frac{\alpha_c}{\alpha_c} = 2^{0.8}$$

因此,
$$\frac{\ln\frac{140-20}{140-t_2'}}{\ln\frac{140-20}{140-90}} = 2^{0.8} \, , \quad \therefore t_2' = 113.9 \, \%$$

47) 螺旋板换热管的特点是____。(答: 因是弯曲通道,比起直通道,在其他条件相近时,传热系数较大,热冷流体逆流换热,平均温差大,紧凑,不易堵塞,但坏了不能修) 48) 如下图,当 Wc 下降,其他不变,则_____(答: A)

 t_2

又 Q= $W_c \cdot C_{p,c}(t_2-t_1)$, 可判断, t_2 必然上升

$$\downarrow$$
 \downarrow \uparrow

(幅度小) (幅度大)

49)有一加热釜,内有 Wkg 比热为 C_p 的液体。用蛇管加热器加热液体,蛇管内通温度为 T 的饱和蒸汽,凝液为饱和水。釜内有搅拌器,故液体温度均匀。蒸汽与釜液之间传热系数为 K_1 ,蛇管换热器面积为 A_1 。外界空气温度为 t_0 ,釜液与外界空气的传热系数为 K_2 ,釜液温度升至 t_{max} 时,便维持恒温。写出釜液升温阶段有 t_1 升至 t_2 所需时间的计算式及计算 t_{max} 的计算式。(答:①在釜液升温的非定态过程,在 t_1 时间内)

$$dQ_i - dQ_0 = dQ_a$$

$$\mathbb{H} K_1 A_1(T-t) d\tau - K_2 A_2(t-t_0) d\tau = W \cdot C_p \cdot dt$$

或
$$[K_1A_1(T-t)-K_2A_2(t-t_0)]d\tau = W \cdot C_p \cdot dt$$

所以
$$\tau = \int\limits_0^\tau d\tau = W \cdot C_p \int\limits_{t_1}^{t_2} \frac{dt}{(K_1 A_1 T + K_2 A_2 t_0) - (K_1 A_1 + K_2 A_2)t}$$

②釜液温度为 t_{max} 时,过程定态, $Q_i = Q_0$

则
$$K_1 A_1 (T - t_{\text{max}}) = K_2 A_2 (t_{\text{max}} - t_0)$$

第6章 气体吸收

以下讨论只限于单组分吸收或解吸,即气相中只含有溶质气体 A 及惰性气体 B。气相
中 A 的摩尔分数以 y 表示,液相中 A 的摩尔分数以 x 表示。设惰气完全不溶于液相,吸收
剂完全不挥发。
1) 吸收是的过程。(答:气体溶解于液体)
2) 吸收最广泛的用途是通过适当的吸收剂以。(答: 分离气体混合物的
组分)
3)对吸收剂的要求主要是。(答:对欲吸收的溶质气体溶解度大,选择性
好,溶解度对温度改变的变化大,挥发度小,无毒,价廉,易得)
4) 二元气相物系,分子扩散系数 D _{AB} 与 D _{BA} 的关系是: D _{AB} D _{BA} 。(答: =)
5) 气相分子扩散系数 D_{AB} 值正比于绝对温度 T 的次方,反比于绝对压强 P 的
次方。(答: 1.5, 1)
6)液相分子扩散系数 D _{AB} 值正比于绝对温度 T的次方,反比于液相粘度 μ的
次方。(答: 1, 1)
7)以 J_A,J_B 表示组分 A,B 的分子扩散通量,以 N_A,N_B 表示 A,B 的传质通量。在精馏操作中,
$ J_A _{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_$
8)在吸收过程,存在着流动, N_A J_A , $ J_A $ $ J_B $ 。(答:主体,>,=)
[分析]理想气体恒温恒压意味着单位体积气体的摩尔数恒定。当二元气体物系在恒温恒压下
A、B 分子相向扩散,必然是彼此填补对方移动腾出的空间。这好比一个公共汽车内车尾的
乘客在下一站就要下车前,在向中门移动过程中同不下车的乘客"调一调"位置,彼此相向
移动,但摩尔密度不变。这就是 $ J_A = J_B $ 。无论是吸收或精馏,只要是二元物系满足上述条
件, $ J_A = J_B $ 的结论都成立。如果公共汽车正面对红灯停车,则 $ J_A =N_A$,如精馏过程;如果
公共汽车正在缓缓向前行驶靠站,使站台上等车的乘客认为B并无位移,这就如吸收过程。
显然,站台上的人看到 A 的位移通量比 A 相对于公共汽车的位移通量大,即 $N_{A>}J_A$,以上
仅是个比喻,很粗略,仅适合二元物系
9) 在气相中进行着组分 A 由 1 截面至 2 截面的分子扩散,组分 A 在 1,2 截面的摩尔分数
分别是 y ₁ 与 y ₂ .则"漂流因子"之值=。(答: 1/(1-y) _{1,m} , 1/(1-y) _{1,m} 是(1-y ₁)与
1, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
$(1-y_2)$ 的对数平均值)
10)对一定气液体系,温度升高,溶质气体的溶解度,相平衡常数 m=。(答:
下降,增大)
11) 己知亨利系数 E,总压 P, 两者单位相同,则相平衡常数 m=。(答: E/p)
12) 以水吸收空气 SO。混合物中的 SO。 已知 m-20.17 v-0.030 v-4.13×10.4 当以 A v

14)在吸收过程中,当气相阻力>液相阻力,(气相阻力/总阻力)可用_____或___表示。 当液相阻力>气相阻力,(液相阻力/总阻力)可用____或___表示。(答:

 $K_y/k_y,(y-y_i)/(y-y^*),K_x/k_x,(x_i-x)/(x^*-x)$

- 15) 双膜理论的要点是: ①临近界面的气液流动必为层流; ②可把层流适当延伸, 使之包含了湍流及过度流的传质阻力。这种延伸的层流层称为"虚拟层流膜"。可认为界面上气液处于平衡态。于是, 吸收阻力全在于气液两层"虚拟层流膜"上。③_____。(答: 若操作条件固定,则设备内进行着定态传质)
- 16)某逆流填料吸收塔,塔截面积为 0.8m^2 ,在常压,27℃下处理混合气流量为 $1200\text{m}^2/\text{h}$,则气体的摩尔通量 G=_____kmol/($\text{h}\cdot\text{m}^2$)。(答:60.91)

[分析]根据 pv=nRT 公式,把 v 的单位看成 m³/h,n 的单位看成 kmol/h

- 17) 低浓度气体吸收的特点是: _____。(答①全塔气液摩尔通量 G、L 均为常量; ②全塔等温吸收; ③ky,kx 在全塔均为常量)
- 18) 在填料吸收塔或解吸塔中,操作线表示____。(答:同一塔的横截面上气相浓度 y 与液相浓度 x 之间的数量关系)
- 19)某吸收操作情况如附图所示。已知 y*=1.5x,则(L/G)与(L/G)min 的比值 β=____。(答:1.278)

[分析]当 y_1 , y_2 , x_2 , m 以及 G 已定的条件下,液体喷淋通量 L 愈小,则 x_1 愈大。L 为最小极限值 Lmin 时, x_1 增大到愈 y_1 在塔底平衡的 x_1 *,此题,

$$(L/G)_{\min} = (y_1 - y_2)/(y_1/m) = (0.020 - 0.0040)/(0.020/1.5) = 1.20$$
,

$$L/G = (0.02 - 0.004)/0.0090 = 1.78$$
, $\therefore \beta = 1.48$

20) 在常压逆流填料吸收塔中,以清水吸收空气与某可溶组分 A 的混合气中的 A, y_1 =0.03,吸收率 η =0.95,已知解吸因数为 0.80,物系服从亨利定律,与入塔气体成平衡的液相浓度为 0.030,则 x_1 = 。(答:0.0228)

[分析]一般相平衡常数 m 值是可查的,是已知值,但此题却以"与入塔气体成平衡的液相浓度为 0.030"间接给出了 m,一般(mG/L)值是 m 与 L/G 均已知后算得得,但此题却把(mG/L)作为已知值给出。像这样的考察基本概念及解题技巧的题并不多见。 : $m=y_1/x_1*=0.030/0.030=1.0$,mG/L=0.80, \therefore L/G=1.25,又, $y_2=y_1(1-\eta)=0.030\times(1-0.95)=1.5$

 $\times 10^{-3}$, $\boxplus L/G = (0.030 - 0.0015) /x_1 = 1.25$, $\therefore x_1 = 0.0228$

21) 在逆流填料吸收塔中,以纯溶剂吸收某气体混合物中的溶质气体,已知气相摩尔通量 G=60.91kmol/($h\cdot m^2$),气相体积总传质系数 $K_{ya}=100$ kmol/($h\cdot m^3$),填料层高 4.0m,体系符合 亨利定律且吸收因数为 1.20,则吸收率 $\eta=_____$ 。(答:0.9226)

[分析]此题 H=4.0m, H_{OG} =G/ K_{ya} =60.91/100=0.6091m,所以 N_{OG} =4.0/0.6091=6.567,接下去就是以 N_{OG} 求 η 。计算 N_{OG} 的吸收因数法比对数平均浓度差法用得更多。下列公式应熟记:

$$\begin{split} N_{oG} &= \frac{1}{1 - mG/L} \ln[(1 - mG/L) \frac{y_1 - mx_2}{y_2 - mx_2} + mG/L] & (x_2 \neq 0) \\ N_{oG} &= \frac{1}{1 - mG/L} \ln[(1 - mG/L) \frac{1}{1 - \eta} + mG/L] & (x_2 = 0) \end{split}$$

代入数据后,可解出 $\eta=0.9226$

22) 某厂使用填料塔,以清水逆流吸收混合气中的有害组分 A,已知填料层高 8.0m, y_1 =0.060, y_2 =0.0080, x_1 =0.020, y^* =2.5x。该厂要求尾气排放浓度降至 0.0050,准备另加一个塔径、填料与原塔相同的填料塔,二塔串联操作(气液均串联),气液流量及进塔浓度均不变,则新加塔的填料层高度为______m。(答:4.66)

[分析]原塔,L/G=(0.060-0.0080)/0.020=2.60,mG/L=0.9615, η =0.8667,由吸收因数法算得 N_{OG} =5.80.两塔串联后的操作从效果上看相当于在原塔基础上增加填料层高度。因前、后情况的 H_{OG} 相等,故 $H'/H=N_{OG}'/N_{OG}$ 。在后来情况 mG/L=0.9615, η '=0.9617,由吸收因数法算得, N_{OG}' =9.175,则 H'=H'(N_{OG}'/N_{OG})=8.0×9.175/5.80=12.66m,新增塔的填料层需 4.66m 23) 在气相控制的逆流吸收塔中,若气、液流量保持原比例不变且同时增大,其他条件不变,则 η 。(答:减小)

[分析]所谓气相控制,一方面表示 $1/k_y$ 》 m/k_x , $K_y=k_y$,另一方面表示 $k_y \sim G^m$, k_y 与 L 无关。因 $k_y \sim G^m$ 中的 m 恒小于 1,故随着 G 增大, H_{OG} 增大。所谓其他条件不变,指仍未原塔 H_{OG} m, y_1 , x_2 均不变。又因此题规定 L/G 不变,故前后操作线平行,而且操作线的两端点都在 $y=y_1$ 和 $x=x_2$ 两条直线上。因后来情况 N_{OG} 减小,其操作线只能比原来更远离平衡线,使 y_2 增加,故 η 减小。如果此题改为液相控制,分析方法一样,得出的结论也一样。所不同的是,

是采用了 $H=H_{OL}\cdot N_{OL}$ 公式, K_x 等于 k_x , k_x \propto L^n ,n<1,kx 与 G 无关。L 增大, H_{OL} 增大,

[分析]m=E/P,P 增大则 m 变小,若 y²'=y²,又 L/G 不变,则操作线不变。显然,在 p 增大后,此操作线与平衡线间的距离拉开了,Nog'减小了。再考察 p 对 Hog 的影响。Hog=G/Kya, $1/K_{ya}=1/k_{ya}+m/k_{xa}$,又,p 对 ky、kx 均无影响。可见,只有 m 受 p 影响。但在气相控制情况下,液相阻力可略,因而可判断,Hog与 p 无关。既然 H,Hog 在增压后均不变,则 Nog 亦不变,要满足这条件,只可能是上述操作线向下平移的结果,即 y²'<y², x¹'>x¹。本题是考察平衡线改变对操作效果的影响。不仅 p 改变影响平衡线,操作温度改变亦影响平衡线。不过,温度改变一般只局限于对平衡线的影响,假设温度对气液物性无影响。

25) 某液相控制逆流吸收塔,若气流量增大,其他操作线条件不变,则塔底液相 x_1 _____, 塔顶气相 y_2 。(答:减小,减小)

[分析]此题情况,塔顶进液浓度 x_2 不变,塔底进气浓度 y_1 不变,故操作线的两点必在 $x=x_2$ 及 $y=y_1$ 两直线上。当 G 增大,L 不变,设 x_1 '= x_1 ,由于 L/G 变小,操作线成"a 线",显

然 N_{OL} ' $< N_{OL}$ 但根据题给条件, N_{OL} ' $= N_{OL}$,所以 a 线必须平移向上,故 x_1 ' $< x_1$ 。同理,设 y_2 ' $= y_2$,操作线变成 b 线,因 N_{OL} ' $> N_{OL}$,b 线必须平移向下,故 y_2 ' $< y_2$ 。

- 26)某逆流填料吸收塔,液相控制,若 y_1 增大,其它操作条件不变,则 y_2 _____, x_1 ____。(答:增大,增大)
- 27)某逆流填料吸收塔,气相控制,若 G 增大,其它操作条件不变,则 y_2 _____, x_1 ____。(答:升高,升高)
- 28) 逆流吸收, A=0.5, 若填料层无限高,则必会在塔 平衡。(答:底)

[分析]A=(L/G)/m,表示操作线斜率与平衡线斜率之比,A=0.5,则(L/G)<m。当操作线平移向平衡线靠拢,首先两线接触的必为塔底

29)某填料塔,用纯的洗油逆流吸收空气中的苯,已知 y_1 =6.0%, y_2 =0.50%, x_1 =0.20,y*=0.20x,为了改善填料润湿情况,拟采用吸收剂循环流程,设气体处理量 G 及纯洗油用量 L 不变,吸收率不变,其他操作条件不变,令 θ 为循环液与纯洗油的摩尔流量之比,则最大的 θ 值为。(答:0.143)

[分析]依题意,最大循环液量时相当于塔顶平衡,即混合后进塔液体浓度 x_0 与 y_2 平衡,故 $x_0=y_2/m=0.0050/0.20=0.025$

混合: θ x₁+ x₂=(1+ θ) x₀ ,即 0.20 θ +0=(1+ θ)×0.025 所以最大 θ =0.143 30)以洗油吸收苯的吸收与解吸联合流程如附图所示。已知吸收塔内 y*=0.125x,L/G=0.18,气相控制,解吸塔内,G/L=0.40,y*=3.16x,液相控制,则 x₁=_____,吸收塔 N_{OG}=_____,解吸塔 N_{OL}=_____。(答: 0.106,5.519,7.180)

[分析]吸收塔内: $L/G=0.18=(0.020-0.0020)/(x_1-0.0060)$, $\therefore x_1=0.106$, mG/L=0.6944

$$N_{OG} = \frac{1}{1 - mG/L} \ln[(1 - mG/L) \frac{y_1 - mx_2}{y_2 - mx_2} + mG/L]$$

$$= \frac{1}{1 - 0.6944} \ln[(1 - 0.6944) \frac{0.020 - 0.125 \times 0.0060}{0.0020 - 0.125 \times 0.0060} + 0.6944]$$

$$= 5.519$$

解吸塔内: A=L/(mG)=0.7911

$$N_{OL} = \frac{1}{1 - A} \ln[(1 - A) \frac{x_4 - y_3 / m}{x_3 - y_3 / m} + A]$$

$$= \frac{1}{1 - 0.7911} \ln[(1 - 0.7911) \frac{0.106}{0.0060} + 0.7911]$$

$$= 7.180$$

31) 承 30) 题,含苯煤气及过热蒸气流量均不变,把液体循环量增加一倍,其他操作条件不变,已知解吸塔内 $K_{xa} \propto L^{0.66}$,则 \mathbf{x}_{2} =_____, \mathbf{x}_{1} =_____, \mathbf{y}_{2} =_____。(答: 0.02733,

 $0.07256, 3.717 \times 10^{-3}$

[分析]液体循环量增大后, x_1,x_2,y_2,y_4 均未知,须有 4 个独立方程才能解出,按题意, y_4 不必求,则需排出 3 个方程,以下是 3 个方程式:

a)吸收塔

$$N_{oG} = 5.519 = \frac{1}{1 - 0.3472} \ln[(1 - 0.3472) \frac{0.020 - 0.125 x_2}{y_2 - 0.125 x_2} + 0.3472] \dots2$$

b)解吸塔: A=1.582

$$H_{OL}$$
 $'/H_{OL} = N_{OL} / N_{OL} = (L'/L)^{0.34} = 2^{0.34} = 7.180 / N_{OL}$ $\therefore N_{OL} = 5.672$ (以下去掉"'?)

$$N_{OL} = 5.672 = \frac{1}{1 - 1.582} \ln[(1 - 1.582) \frac{x_1}{x_2} + 1.582]$$

将(4)式代入(2)式, 得
$$x_2=0.02733$$
, 由此可得, $x_1=0.07256$, $y_2=3.717\times10^{-3}$

第7章 液体蒸馏

本章只讨论 A、B 二元体系, 汽相中易挥发组分 A 的摩尔分数以 y 表示, 液相中则以 x
表示。在精馏操作中,进料、塔顶产品及塔底产品摩尔流量分别以 F、D 和 W 表示,回流
比以 R 表示。A 对 B 的相对挥发度以 α 表示。
1)蒸馏分离的依据是。(答:不同组分挥发能力存在差异)
2) 以汽液平衡时的 y、x 表示 A 对 B 的相对挥发度,则 α _{AB=} 。(答:
[y/(1-y)]/[x/(1-x)]
3) 精馏操作的特点是。(答: 塔顶有液相回流)
4) 精馏操作时,在塔板上汽液接触的泡沫层中,液相进行着,汽相进行着。
(答: 部分汽化, 部分冷凝)
5)精馏操作对于非加料、非出料板,恒摩尔流假设的基本条件是。(答:绝热,
饱和液体及饱和蒸汽流进塔板,A,B两组份的摩尔汽化潜热相近,饱和液体的摩尔焓与组
成无关)
6) 精馏段操作线方程的推导,须以为控制体,并对组分 A 作求得。(答:
精馏段上面部分塔段与冷凝器,物料衡算)
7) 对于板式塔,操作线方程表示。(答: 一块塔板的上侧或下侧的 y 与 x 间
的数量关系)
8) $A \times B$ 混合物 j 的热状态参数 q 的定义是 q =(以 $I \times i$ 分别表示饱和蒸汽与
饱和液体的摩尔焓,以 i _j 表示该混合物的摩尔焓)(答: (I-i _j)/(I-i))
9) 过冷液体 q_1, 过热液体 q_1 (答: >, <)
10) 对于单股进料,无侧线出料的精馏塔, q 线表示。(答:在 Z_f , q , x_w , x_D 已
定的条件下,随 R 的改变,精馏段与提馏段操作线交点的移动轨迹)
11) "苯-甲苯"精馏分离操作,已知 $x_f=0.35,q=1,x_D=0.88,x_W=0.0442,R=1.96$,泡点回流,则精馏
段操作线方程为,提馏段操作线方程为。(答: y_{n+1} =0.662 x_n +0.297,
$y_{m+1}=1.585x_m-0.00259$
12) 已知某精馏塔操作为饱和蒸汽进料,泡点回流,其操作线方程如下:精馏段
y=0.7143x+0.2714 , 提 馏 段 y=1.25x-0.01 , 则 其
$R=$, $x_D=$ $x_W=$ 。(答: 2.5, 0.95, 0.04, 0.6466)

[分析]对精馏段操作线方程,由 R/(1+R)=0.7143 可解出 R,由 $x_D/(R+1)=0.2714$ 可解出 x_D 。 对提馏段操作线方程,因通过 (x_w, x_w) 这一点,可解出 x_w 。此外,两操作线交点 (x_q, y_q) 必与 q 线 $y=y_f$ 相交,可解出 y_f 。

- 13)某精馏塔,F=100 kmol/h, $X_f=0.41, X_D=0.95$, $X_W=0.05$,则 $D=____k \text{mol/h}$ (答: 40) [分析] $D/F=(x_f-x_w)/(x_D-x_w)$ 。这是杠杆规则对全塔的一种应用,杠杆规则只用于一分为二的情况。
- 14)某二元物料精馏分离,已知 F=100kmol/h, x_f =0.40, x_D =0.90, x_W =0.010,泡点回流,V=130kmol/h,则 R=____。(答: 1.967)

- 16) 理论板是____。(答:一种假想的塔板,离开该塔板的汽液相达到平衡)
- 18) 理论板的概念不仅适用于非加料、非出料板。而且适用于_____板。(答:加料或出料)
- 19) 全回流操作的特点是_____。(答: F=0,D=0,W=0, 塔顶全凝器的冷凝液全部回流进塔,操作线即 y-x 图的对角线,不分精馏段与提馏段,分离程度最大)
- 20)某二元混合物进行全回流精馏操作,塔板均为理论板,已知 α =3.0, x_n =0.3, y_{n-1} =____。(答: 0.794)

[分析]参看右图,因为是理论版,所以 y_n 与 x_n 平衡, y_{n-1} 与 x_{n-1} 平衡,又因为是全回流操作,操作线为 y_n = x_{n-1} 。根据此两重关系,即可由 x_n 算出 y_{n-1} 。

21) "苯-甲苯"混合液,组成 $x_f=0.44$,经闪蒸分成组成分别为 y 与 x 的平衡汽、液相,汽、液相摩尔流量比为 1/2,已知 $\alpha=2.50$,则 x= 。(答: 0.365)

[分析]在经闪蒸后生成的汽液混合物中,令 q 表示液相占汽液混合物的摩尔分数,此 q 值与该汽液混合物的热状态参数 q 在数值上是相等的。

由 $x_f=qx+(1-q)y$,可得 $y=qx/(q-1)-x_f/(q-1)$ 。此式与 q 线方程是相同的,根据 y=2.50x/(1+1.50x)

$$y = \frac{2/3}{2/3 - 1}x - \frac{0.44}{2/3 - 1} = -2x + 1.32$$

联立,可解得 x=0.365。

- 22)"苯-甲苯"物系进行精馏操作,进料 Z_f =0.44。进料为汽液混合物,其中汽/液(摩尔比)=1/2,要求 x_D =0.96,已知 α =2.50,则 R_{min} =____。(答: 1.64)
- [分析]这是求最小回流比的基本题,只需求出进料 q 线与平衡线的交点 (x_e,y_e) ,再由 (x_D,x_D) 与 (x_e,y_e) 两点,由 R_{min} = $(x_D-y_e)/(y_e-x_e)$ 即可算出 R_{min} 。
- 23)某二元体系精馏塔采用分凝器,如附图所示,

已 知 α =2.0 , y_1 =0.96 , x_0 =0.95 , 则 x_D =______。(答: 0.9744,1.44)

[分析]分凝器相当于一块理论塔板,故 x_D 与 x_0 平衡,则 $x_D=2.0\times0.95/(1+0.95)=0.9744$

V 分成 D 与 L,参看右图,L/D 可由杠杆规则求得。

24) 某二元混合物采用带分凝器的精馏流程,如附图所示。已知: α =2.0,L=V/2, x_D =0.90,

D,XD

则 $y_1 = ____y_2 = ____$ (答: 0.8591, 0.8265)

[分析]已知 $x_D \xrightarrow{\alpha} x_0 = 0.8182$

已知 x_D , x_0 以及 D/L=1 , 有杠杆规则算得 $y_1=0.8591$,

已知 $y_1 \xrightarrow{\alpha} x_1, x_1 = 0.7530$ 带分凝器的精馏段操作线方

程同样是 $y_{n+1} = Rx/(R+1) + x_D/(R+1)$, 由于 R=1, xp=0.90,

[分析]这本是基本型精馏的很普通的求 R 的问题,常见的方法是先求出 R_{min} ,再根据题给出的 R/R_{min} 值来确定 R,但本题偏偏要求先求出 V'_{min} .根据 V'/V'_{min} =1.5,确定 V',再算出 R,绕了一个圈子,属少见的题型。此题的解题步骤如下:

- a: 己知 F, y_f , x_D , $x_W \rightarrow D=4.706$ kmol/s,W=5.29kmol/s
- b: 己知 α , y_f , $q \rightarrow x_e = 0.3333$, $y_e = 0.50$
- c: 己知 x_e , y_e , $x_D \rightarrow R_{min} = 2.70$
- d: 在精馏设计计算中,为完成题给的分离任务,回流比 R 以及精馏段的液流量 L 是可变因素,有其最小的极限值。在 R 或 L 取最小值,因操作线与平衡线相交,需无穷多塔板,故在此情况下操作以实现题给分离任务是不可能的。但由此提出的极限状态却有分析价值。当回流比为 R_{min} ,必然塔内液流量为 L_{min} 及 L'_{min} (因进料为饱和蒸汽,故 L_{min} H 应的,V' 亦取其最小值 V'_{min} — $W=R_{min}$ D-W=2.70*4.706-5.294=7.412kmol/s

e: 因为 V=(1+R)D=V'+F 即(1+R)*4.706=11.12+10

所以 R=3.488

26)"苯-甲苯"混合物精馏操作,饱和液体进料,D=75kmol/h,泡点回流,精馏段操作线方程为 y=0.72x+0.25,蒸馏釜采用间接蒸汽加热。汽化潜热以 r 表示,釜液 r=41900kj/kmol,加热蒸汽 $r_0=2140$ kj/kg,则加热蒸汽耗量为_____kg/h。(答: 5243)

[分析]精馏段, $R/(R+1) = 0.72 \Rightarrow R = 2.571$

因 进 料 q=1 , 则 V'=V=(1+R)D , 故 V'=267.8kmol/h , 水 蒸 汽 用 量

 $=V'r/r_0 = 267.8*41900/2140 = 5243*10^3 kg/h$

27)在某二元混合物精馏操作基础上,当 R 增大,保持 D/W 不变,则 x_D 的变化趋势是 _____。(答:增大)

[分析]既要分析 x_D 在新条件下的变化趋势,一般设 $x'_{D}=x_D$ 。通过讨论,检验此假设是否成

立,并判断欲满足新条件, xp 的变化的必然趋向。

当 $x_D = x'$ $_D$,由于 Z_f 不变,D/W 不变,故 $x_w = x'$ $_w$,由于 R 增大,操作线更靠近对角线,离平衡线更远,于是,在精馏段操作线上跨越原定的梯级数后,不考虑最佳加料板位置原则,便跨入提馏段操作线,必然 N' $_m < N_m$ 这说明 $x_D = x'$ $_D$ 的假设不成立,同时可判定,要满足总理论板数及加料位置与原来的相同,只有一种可能,即 x' $_D > x_D$ 。

本题虽主要考察只改变 R 对操作线的影响,但约束条件如"D/W 不变"是不能缺的。假如只考虑 R 增大,没有任何其他的约束条件,则此题无实解。这一点可有如下分析得出,当 R 增大时,假设一个 x' D,必然能找到一个相应的 x' w,使得按前述方法作梯级可同时满足理论板数及加料版位置的要求。因 x' D 的假设有随意性,答案便有无限个。常见的约束条件为 D/W 不变,也有其他的,如 v' 不变,如下面一个来自英文版教材的题目所示。28)附图所示为使用 5 块理论板的定态双组分物系精馏的 M-T 图。若回流比由原来的恶 R 提高至 1.5R 且维持原 Q_b 值不变, Q_c 值则调节到保证蒸汽恰好完全冷凝,试求重新建立的定态操作的 D 及 W 值。解释确定 x_D 与 x_W 的定性方法。

[分析]原来操作: 已知 F_tX_f , x_D , $x_W \rightarrow D$, D=30mol/s

R=(0.90-0.65)/(0.65-0.40)=1.0

因为进料 q=1,所以 V'=V=(1+R)D=(1+1.0)*30=60mol/s

后来操作: R'=1.5,V'=60mol/s, 所以 60=(1+1.5)D' ⇒ D'=24mol/s 则 W'=81kmol/s D'/W'=0.2963

设 $x'_D = x_D = 0.90$,由杠杆规则知 $x'_w = 0.2519$ 。因 $x'_D = x_D$, $x'_w > x_w$,R'>R,即可判断 $N'_m < N_m$, x'_D 的变化趋向只能是 $x_D > x_D$ 。从极端情况看,设 $x'_D = 1$,按 D'/W' = 0.2519,可算出 $x'_w = 0.2222$,可见,必然 $x'_w > x_w$ 。

- 31) 萃取精馏的特点是_____。(答:加入某高沸点组分 C (萃取剂),在液相中 C 与原组分 A 或 B 结合而降低其挥发能力,使另一未结合的组分易于从塔顶蒸出) 32) 恒沸精馏的特点是 。(答:加入某组分 C (挟带剂), C 与原组分

A 或 B 或 A 同 B 结合生成低沸点恒沸物从塔顶蒸出,令较纯的 A 或 B 成为塔底产品)

第8章 塔设备

1)	塔器分两大类,即
2)	对塔器的一般要求是。(答:分离效率高,生产能力
	大,操作弹性大,气体流动阻力小与结构简单、维修方便)
3)	常用的板式塔类型有。(任写两种)(答:筛板塔,浮
	阀塔)
4)	有降液管的板式塔,气液的相对流向,对全塔而言为流,对每块塔板而言为
5)	常用的塔填料种类有。(答:拉西环,鲍尔环,阶梯环)
6)	2 吋以下填料在塔内的堆放方式是。(答: 乱堆)
7)	令塔内径为 D,填料尺寸为 d,为使塔内各处空隙率较均匀且气流阻力不至太大,一般
	D/d=。(答: 8~15)
8)	对一定的液体喷淋密度,气体的载点气速指。(答:必须考虑上升气
	流对向下膜状流动的液体产生曳力的最小速度)
9)	对一定的液体喷淋密度,气体的泛点气速指。(答:向下流动的液膜增
	厚到刚把气体通道封闭,形成液相连续,气相分散时的气速)
10)	通常填料塔的泛速是依据经验关联图算出的,其中体现不同尺寸的各种填料
操作	作特性的参量是。(答:Eckert,泛点填料因子 ϕ)
11)	轴向混合——气流把液滴往上带及液流把气泡往下带—对汽液逆流传质过程是
利因	因素。(答:不)
12)	HETP 是指。(答: 一块理论板相当的填料层高)
\	
13)	今 uf 为气体泛谏, u 为气体操作气谏(二者均为空谏), 一般推荐 u= uf。(答:

0.5~0.8)
14) 筛板塔的孔径 d ₀ 一般为mm。(答: 3~8)
15) 筛板塔上筛孔的排列方式常用。(答:正三角形)
16) 筛板塔上液流的型式有 3 种,即。(答:单流型,双流
型及 U 形流型)
17) 令塔的内径为 D,溢流堰长为 lw,推荐的 lw/D=。(答: 0.6~0.8)
18) 当液体从降液管流出,刚进入筛板时,板上设计有一窄长的不开孔区,其目的是。(答:倾向性漏液)
19) 当液体横向流过塔板,在流进降液管前,板上设计有一窄长的不开孔区,其目的是。(答:减少流入降液管的液体中夹带的气泡量)
20)限定筛板塔正常操作气、液流量的有 5 条线,即(作简图示意)
V m3/s 1 正常操作区 2
(答: 1.液流量下限线, 2.液流量上限线, 3.漏液线, 4.过量
液沫夹带线,5.溢流液泛线)
21) 若液流量小于液流下限,会发生。确定液流量下限线的依
据是(答: 塔板上液体偏流,溢流堰顶液厚度 how=6mm)
22) 若液流量大于液流上限,会发生。确定液流量上限线的依
据是。(答:液体在降液管内停留时间不足,未能充分分离其中的
气泡,造成气体轴向混合,H _T A _f /L _s =规定的停留时间)
23)漏液线是依据
。(答: Davies 的"板上液层厚 h _l ~干板阻力 h _c "气体流过塔
板的阻力=干板阻力+液层阻力,当干板阻力/液层阻力≤某特定值时便漏液)
24) 过量液沫夹带是指每 kg 干气夹带的液滴的 kg 数 ev 大于等于的情况。(答:
0.1)
25)溢流液泛指,对一定结构的塔板,溢流液泛一般发生在
的情况。(答:由于降液管内的页面升高到上层塔板的溢流堰顶而导致淹塔,
气液负荷皆大)
26) 若液流量在正常操作范围内,但气相流量过大,可能发生。(答:过
量液沫夹带或溢流液泛)
27) 气相默弗里效率 E _{m,v} =(y _n -y _{n+1})/(y* _n -y _{n+1}),其中 y* _n 是与平衡的气
相组成。(答: x _n)
28) 液相默弗里效率 $E_{m,l}=(x_{n-1}-x_n)/(x_{n-1}-x_n^*)$,其中 x_n^* 是与平衡的液相组成。
(答: y _n)

第10章 固体干燥

本章所指的湿空气为约(绝压)。湿物料的湿分均为		蒸汽的混合物,湿	空气的总压,如为	无说明,均指 1atm
1)湿物料去湿方法有		注片	注	(
化学)	14\	1Д¬]	140	
2) 干燥的特点是		。(答: 诵讨对	湿物料输入热管	龙 , 使湿分汽化,
并将湿分蒸汽移走)			EEE 1934 1 111147 CWW 13	B) (XIII.) (111)
3) 根据热能输入方式的不同],干燥操作的	的类型有	式、	式、
式和式。(答:				
4) 对流干燥的特点是				同时反向进行)
5) 湿空气,H=0.018kg/kg =				
6) 已知水在 22.72℃的蒸汽	压为 2850Pa,	则第5题所述湿	空气的露点 ta 为	ı℃。(答 :
22.72)				
7)H=0.018kg/kg,t=40℃的湿	是空气,已知办	x在 40℃的蒸汽压	为 7377Pa,该选	显空气的相对湿度
φ=。(答 : 0.2	386)			
[分析] $\phi = p_w / p_s(t) = 285$	50/7377 = 0.3	86。这是用第	5)题数据计	一算的, 亦可按
$H = 0.622 \phi p_{s}(t) / [p - \phi p_{s}(t)]$)]算。			
8) H=0.018,t=120℃湿空气,	总压为 1atm	(绝压), 其 φ=		。(答: 0.0281)
9) H=0.018,t=40℃湿空气的炉	含 I=	kJ/kg 干空气。	(答: 86.75)	
[分析] $I = (1.01 + 1.88H)t + 2$				
10) 第9题所述湿空气的比	体积 V _{H=}	$_{m^3/kg}$	气。(答: 0.911))
[分析] $V_H = (0.722 + 1.244 H)$	$I(T/T_0)(p_0/p_0)$	p)		
11) 某湿空气的湿球温度 tw	, 是		,(答:与大量词	亥湿空气接触的少
量水的稳定的表面温度)				
12) 某湿空气的绝热饱和温	度 tas 是		,(答 : 该湿空 ^点	气经等焓的降温增
湿过程,直到 $\phi=1$ 时的温度	麦)			
13) 某湿空气,t=60℃,tw=30	0℃,则其 H=_	kg/kg。(答: 0.0150)	
[分析]湿空气的 t_w 值有重要 [算较繁;湿空气的 t_{as} 值在实"水一空气"体系 $t_w \approx t_{as}$,	深际干燥过程机 所以,可兼取[及少应用,但关联 两方面的长处,即	t、H、t _{as} 的关系 J指物理意义上及	系却较简单。由于 及实际应用上常提
设原来湿空气状态点为 A,	由 A 经等焓降	峰温过程直到	l 时状态为 B。ā	在B点t _B =30℃,
$\phi_B = 1$, $\hat{a} \neq p_{s,B} = 4.24$	7kPa,则 B	$H_B = 0.622 \times 4.24$	7/(101.3 – 4.24	47) = 0.02722 ,

 $I_{B} = (1.01 + 1.88 \times 0.02722) \times 30 + 250 \times 0.02722 = 99.89 kJ/kg$ 干气。在A点, $I_{A} = I_{B}99.89 kJ/kg$

于气, t_A =60°C,由99.89 = 1.01×60 + (2500 + 1.88×60) H_A 解得 H_A = 0.0150

- 14) 在测量湿空气湿球温度时,空气流速应大于______m/s,目的是_____。 (答: 5,减少热辐射影响)
- 15) 湿空气 p, H 一定, t 升高, 则 φ_____。(答: 减小)
- 16) 湿空气 p, H 一定, t 升高,则 I_____。(答:增大)
- 17) 湿空气 φ=0.85, 则 t__tw__td,当 φ=1,则 t__tw__td 。(答: >, >; =, =)

18)某连续干燥器令新鲜空气(H_A=0.015, t_A=20℃)与出干燥器的部分废气(H_B=0.040, t_B=60℃)

混合后进预热器混合比为 2kg 干气(B)/kg 干气(A),则混合气的温度 $t_m = ___$ \mathbb{C} 。(答: 47.05) [分析]湿空气的湿度有加和性,两气体混合前后符合杠杆规则,即

$$L_A/L_B = (H_m - H_A)/(H_B - H_m)$$
,可算得 H_m=0.03167

同样,湿空气的焓有加和性,可算出 $I_A=58.26kJ/kg,I_B=165.1kJ/kg$ 干气,由

 $I_m = 129.5 = (1.01 + 1.88 \times 0.03167)t_m + 2500 \times 0.03167$ 得 $t_m = 47.05$ °C。注意,温度没有加和性。

19)某常压定态干燥过程的流程及参量,如附图所示,则循环干空气量 L=____kg/h(答: 66.0)

[分析]关键是要能判断 $\phi_A = 1$

A: $t_{\scriptscriptstyle A}=14$ °C, $\phi_{\scriptscriptstyle A}=1$, 查得 14°C的 ps=1611Pa, 可算得 Ha=0.01005

B: H_B =0.01005, t_B = 83 °C,可算得, I_B = 110.5kJ/kg干气

C: $I_C = 110.5kJ/kg$ 干气, $t_C = 45$ °C, 可算得 $H_C = 0.0252$

间壁式冷凝器: $L(H_C - H_A) = 1$, 所以 L = 1/(0.0252 - 0.01005) = 66.0 kg/h

冷凝水 kg/h

20) 某常压连续干燥流程及参量如附图所示,绝十物料比热 $C_s=1.76kJ/(kg\cdot ℃)$, 热损 $Q_L'=500kJ/kg$ 汽化水,则空气流量 $L=___kg$ 干气/s. [分析]①干燥器的物料衡算

除水量
$$w = G_c(x_1 - x_2) = L(H_2 - H_1)$$
 (1)

$$x_1 = 1.50/(100 - 1.50) = 0.01523, x_2 = 0.30/(100 - 0.30) = 0.301\%,$$

$$G_c = G_1(1 - w_1) = 2.50(1 - 0.015) = 2.463kg/s$$
,所以 w=0.0301kg/s

②干燥器的热量衡算

$$Q_L = w \bullet Q_L' = 0.0301 \times 500 = 15.05 kJ/s$$

$$I_1' = (1.76 + 4.187 \times 0.1523) \times 20 = 36.48kJ/kg$$
绝干物

$$I_2' = (1.76 + 4.187 \times 0.00301) \times 33 = 58.50 kJ / kg$$
绝干物

所以
$$G_c(I_2'-I_1')=2.463(58.50-36.48)=54.24kJ/s$$

以下计算有两种方法:

A) 对于干燥器作焓衡算

$$Q_D = L(I_2 - I_1) + G_c(I_2' - I_1') + Q_L \cdots (2)$$

$$\mathbb{H} L(I_2 - I_1) = Q_D - G_c(I_2 - I_1) - Q_L$$

令
$$\Delta = Q_D - G_c(I_2 - I_1) - Q_I$$
,并代入(1)式,得

$$\frac{I_2 - I_1}{H_2 - H_1} = \frac{\Delta}{w}$$
 (3)

可见,(3) 式是对干燥器作物料衡算,所得的综合式,由于 I 取决于 t 及 H,当 H_2 未知,

使用 (3) 式还不太方便,因此把 I "拆" 成 f(t)与 ϕ (H) 两部分,设 $C_{H,1} \approx C_{H,2}$,可整理,得

下式
$$\frac{t_2 - t_1}{H_2 - H_1} = (\frac{\Delta}{w} - r_0) \frac{1}{C_{H,1}}$$
 (式中 $C_{H,1}$ 也可换为 $C_{H,2}$)

对本题, $\Delta = 0 - 54.24 - 15.05 = -69.29kJ/s$,则

$$\frac{60-92}{\mathrm{H}_2-0.016} = (\frac{-69.29}{0.0301}-2500)\frac{1}{1.01+1.88\times0.016}$$
所以 $H_2 = 0.02293$

所以
$$L = w/(H_2 - H_1)0.0301/(0.02293 - 0.016) = 4.343kg/s$$

B) 剖析法

此法与前述方法不同之处在于,不是等到焓 I 出现后再"拆" I,而是作干燥器热量衡算时,就 把 湿 物 料 " 拆 " 成 两 流 股 ,也 把 废 气 " 拆 " 成 两 流 股 ,如 附 图 所 示 ,于 是

$$Q_D = L(1.01 + 1.88H_1)(t_2 - t_1) + w(2500 + 1.88t_2 - 4.187\theta_1) + G_c \bullet c_{m,2}(\theta_2 - \theta_1) + Q_L$$

代入本题数据

 $0 = L(1.01 + 1.88 \times 0.016)(60 - 92) + 0.0301(2500 + 1.8860 - 4.187 \times 20) + 2.643 \times (1.76 + 4.187 \times 0.00301(33 - 20) + 15.05$

所以 L=4.445kg/s

两种算法得的 L 值有 2.3%的误差,焓衡算作了 $C_{H,1} \approx C_{H,2}$ 的假设,且计算步骤较多,误差累积较大,而剖析法没作近似假设,算法简洁,故剖析法较准确,干燥设计中多采用剖析法。

21)干燥器的热效率指_____。(答:湿度为 H₀的湿空气在干燥器中放出的热 量与其在预热器中得到的热量之比) 22) 干燥效率指_____。(答: 湿度为 H₀的湿空气在干燥器中放出的热量 中,用于水分蒸发的热量所占的分数) [分析]21)22)题中均用到剖析法的概念 23) 干燥器中实现理想干燥过程须满足的条件是____。(答: $Q_D = 0, I_2' = I_1', Q_I = 0$ 24) 理想干燥器由于△=0, 因而湿空气在干燥器内经历了等_____过程。(答:焓) 25) 恒定干燥条件是指湿空气____、___、___及____不变。(答: 温度、湿度、流速,与物料接触方式) 26) 恒速干燥阶段,湿物料表面的水分情况是_____, 其表面水分温度是湿空气的 充分湿润, tw, 外, 无) 27) 降速干燥阶段,湿物料表面的水分情况是 ,其表面湿度 ,此阶段干 燥速率受_____控制,干燥速率与_____有关。(答:局部或全部水分消失,高于湿 空气的 tw, 物料内部分水分扩散速率, 物料结构及水分含量)

[分析]恒速干燥阶段:
$$\tau_1 = \frac{G_c(X_1 - X_0)}{A \square u_0} (u_0$$
 一恒速干燥速率)

降速干燥阶段:
$$u = K_x(X_1 - X^*), \tau_2 = \frac{G_c}{A \square K_x} \ln \frac{X_0 - X^*}{X_2 - X^*}, \quad \mathbb{Z}u_0 = K_x(X_0 - X^*)$$

$$\frac{\tau_1}{\tau_2} = \frac{X_1 - X_0}{(X_0 - X^*) \ln \frac{X_0 - X^*}{X_2 - X^*}}, \text{ 代入本题数据,得} \frac{\tau_1}{\tau_2} = \frac{0.40_1 - 0.175}{0.175 \ln \frac{0.175}{0.040}} = 0.871$$

所以 $\tau_2 = 2.87h$