Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра Систем Управления и Информатики Группа Р3340

Лабораторная работа №11 "Исследование математической модели пьезоэлектрического исполнительного устройства" Вариант - 5

Выполнил			
	(фамилия, и.о.)	(подпись)	
Прородия		(HOTHWAY)	
Проверил	(фамилия, и.о.)	(подпись)	
"" 20r.	Санкт-Петербург,	20 <u> </u> r.	
Работа выполнена с оценкой			
Дата защиты "" :	20г.		

Цель работы. Изучение математических моделей и исследование характеристик исполнительного устройства, построенного на основе пьезоэлектрического двигателя микроперемещений.

Исходные данные: Представлены в таблице 1

Таблица 1 – Исходные данные

Ср, Н/м	m, кг	K ₀ , H/B	K_d , Нс/м	T_u , MC	$F_{\scriptscriptstyle m B}$
0.6 ·108	0.5	8.2	900	0.05	50

Рассчет необходимых параметров модели:

$$K_u = \frac{U_{Pm}}{U_m} = \frac{300}{10} = 30$$

Коэффициенты передачи измерительных устройств:

$$K_V = 28.6$$

$$K_F = 0.0067$$

$$K_X = 1.45 \cdot 10^5$$

1 Исследование системы без возмущения

Схема моделирования представлена на рисунке 1

Рисунок 1 - Схема моделирования

Графики переходных процессов при U=10 и $F_{\scriptscriptstyle \rm B}=0$ для каждого из исследуемых значений представлены на рисунке 2

Рисунок 2 – Переходные процессы: a) динамическое усилие, b) скорость, c) напряжение, d) перемещение

2 Исследование влияния массы нагрузки m на вид переходных процессов

Графики переходных процессов при различных m для каждого из исследуемых значений представлены на рисунке 3

Рисунок 3 – Переходные процессы: a) динамическое усилие, b) скорость, c) напряжение, d) перемещение

Рассчитаем значения времени переходного процесса $t_{\rm n}$, установившееся значение x_y и перерегулирование σ при различных m для x. Результаты представлены в таблице 2

Таблица 2 – Данные моделирования

m, кг	$t_{\scriptscriptstyle \Pi} \cdot 10^4,$ c	$x_y \cdot K_x$,м	σ(%)
0.25	15	6	53
0.425	27	6	64
0.6	39	6	69
0.75	57	6	70

3 Исследование влияния постоянной времени ВУ T_u на вид переходных процессов

Графики переходных процессов при различных T_u для каждого из исследуемых значений представлены на рисунке 4

Рисунок 4 – Переходные процессы: a) динамическое усилие, b) скорость, c) напряжение, d) перемещение

Рассчитаем значения времени переходного процесса $t_{\rm n}$, установившееся значение x_y и перерегулирование σ при различных T_u для x. Результаты представлены в таблице 3

Таблица 3 – Данные моделирования

$T_u \cdot 10^4$,c	$t_{\scriptscriptstyle \Pi} \cdot 10^4,$ c	$x_y \cdot K_x$, M	σ(%)
0.5	30	6	67
1	27	6	49
2	16	6	14
3	14	6	5

Корни характеристического уравнения (1) при $m=0.5,\ C_p=0.6\cdot 10^8,\ K_d=900$ и различных T_u :

$$(T_u s + 1)(ms^2 + K_d + C_p) = 0 (1)$$

• При
$$T_u = 0.5 \cdot 10^{-4} : s_1 = -2 \cdot 10^4; \ s_{2,3} = -900 \pm 10917.42i$$

• При
$$T_u = 1 \cdot 10^{-4} \ : s_1 = -10^4; \ s_{2,3} = -900 \pm 10917.42i$$

• При
$$T_u = 2 \cdot 10^{-4} \; : s_1 = -0.5 \cdot 10^4; \; s_{2,3} = -900 \pm 10917.42i$$

$$ullet$$
 При $T_u=3\cdot 10^{-4}\ : s_1=-0.33\cdot 10^4;\ s_{2,3}=-900\pm 10917.42i$

4 Исследование переходных процессов по возмущению

Графики переходных процессов V и x при $F_{\scriptscriptstyle \rm B}$ и U=0 для различных значений коэффициента упругости C_p представлены на рисунках 5 и 6 соответственно

Рисунок 5 — Переходные процессы для V

Рисунок 6 – Переходные процессы для

5 Асимптотическая ЛАЧХ исполнительного устройтсва

По схеме моделирования составим выражение для передаточной функции системы:

$$U \cdot \frac{K_u}{T_u s + 1} \cdot K_o - (x \cdot C_p + x \cdot s \cdot K_d) - F_{\mathsf{B}} = m \cdot s^2 \cdot x \tag{2}$$

$$x \cdot (m \cdot s^2 + C_p + s \cdot K_d) = \frac{K_u \cdot K_o}{T_{cs} + 1} \cdot U \tag{3}$$

Так как в данном случае входной величиной является U, а выходной - x, то передаточная функция будет равна:

$$W(s) = \frac{K_u \cdot K_o}{(T_u s + 1)(ms^2 + K_d s + C_p)}$$
(4)

Чтобы получить модуль частотной характеристики нужно взять отношение модулей числителя и знаменателя. В последнем в качестве второго множителя для приближенного анализа можно оставить только C_p . В итоге:

$$A(w) = \frac{K_u \cdot K_o}{C_p \cdot \sqrt{T_u^2 w^2 + 1}} \tag{5}$$

Асимптотическая ЛАЧХ представлена на рисунке 7

Рисунок 7 – ЛАЧХ исполнительного устройства

Сопрягающая частота $\omega_c = \frac{1}{T_u} = 2 \cdot 10^4$

Вывод

В данной работе была исследована математическая модель пьезоэлектрического исполнительного устройства. Были исследованы переходные характеристики некоторых величин и их зависимость от параметров системы.

Было выявлено, что при увеличении массы нагрузки перерегулирование и время переходного процесса перемещения x механизма. А при увеличении постоянной времени T_u - наоборот. Установившееся значение остается неизменным.

Также были найдены значения корней характеристического многочлена при различных значениях Tu, которые подтверждают характер переходного процесса - система устойчива (все 3 корня имеют отрицательную вещественную часть) и имеет склонность к колебаниям, так как есть пара комплексно-сопряженных корней.

При возмущающем воздействии увеличение коэффициента упругости C_p ведет к снижению амплитуды колебаний и уменьшению установившегося значения x.