

Micromort

A **micromort** (from <u>micro-</u> and <u>mortality</u>) is a unit of <u>risk</u> defined as a one-in-a-million chance of <u>death</u>. Micromorts can be used to measure the riskiness of various day-to-day activities. A **microprobability** is a one-in-a million chance of some event; thus, a micromort is the microprobability of death. The micromort concept was introduced by <u>Ronald A. Howard</u> who pioneered the modern practice of <u>decision analysis</u>.

Micromorts for future activities can only be rough assessments, as specific circumstances will always have an impact. However, past historical rates of events can be used to provide a rough estimate.

Sample values

Baseline

Death from	Context	Time period	N deaths	N population	Micromorts per unit of exposure	Reference
All causes	England and Wales	2012	499,331	56,567,000	24 per day 8,800 per year	ONS Deaths ^[4] Table 5.
All causes	Canada	2011	242,074	33,476,688	20 per day 7,200 per year	Statistics Canada ^[5]
All causes	US	2010	2,468,435	308,500,000	22 per day 8,000 per year	CDC Deaths ^[6] Table 18.
Non-natural cause	England and Wales	2012	17,462	56,567,000	0.8 per day 300 per year	ONS Deaths ^[4] Table 5.19.
Non-natural cause	US	2010	180,000	308,500,000	1.6 per day 580 per year	CDC Deaths ^[6] Table
Non-natural cause (excluding suicide)	England and Wales	2012	12,955	56,567,000	0.6 per day 230 per year	ONS Suicides ^[7]
Non-natural cause (excluding suicide)	US	2010	142,000	308,500,000	1.3 per day 460 per year	CDC Deaths ^[6] Table 18.
All causes – first day of life	England and Wales	2007			430 per first day of life	Walker, 2014 ^[8]
All causes – first year of life	US	2013			16.7 per day 6100 per year	CDC Life Tables ^[9] Blastland & Spiegelhalter, 2014 ^[10]
Murder/homicide	England and Wales	2012/13	551	56,567,000	10 per year	ONS Crime ^[11]
Homicide	Canada	2011	527	33,476,688	15 per year	Statistics Canada ^[12]
Murder and non-negligent manslaughter	US	2012	14,173	292,000,000	48 per year	FBI ^[13] Table 16

Leisure and sport

Death from	Context	Time period	N deaths	N exposure	Micromorts per unit of exposure	Reference
Scuba diving	UK: BSAC members	1998– 2009	75	14,000,000 dives	5 per dive	BSAC ^[14]
Scuba diving	UK: non-BSAC	1998– 2009	122	12,000,000 dives	10 per dive	BSAC ^[14]

Scuba diving	US – insured members of DAN	2000– 2006	187	1,131,367 members	164 per year as member of DAN 5 per dive	DAN ^[15] p75
Paragliding	Turkey	2004– 2011	18	242,355 jumps	74 per jump	Canbek 2015 ^[16]
Skiing	US	2008/9	39	57,000,000 days skiing	0.7 per day	Ski- injury.com ^[17]
Skydiving	US	2000– 2016	413	48,600,000 jumps	8 per jump	USPA ^[18]
Skydiving	UK	1994– 2013	41	4,864,268 jumps	8 per jump	BPA ^[19]
BASE jumping	Kjerag Massif, Norway	1995– 2005	9	20,850 jumps	430 per jump	Soreide 2007 ^[20]
Mountaineering	Ascent to Matterhorn	1981– 2011	213	about 75,000 ascents (about 2500 per year)	about 2,840 per ascent attempt	Bachmann 2012 ^[21]
Mountaineering	Ascent to Mt. Everest	1922– 2012	223	5,656 successful ascents	37,932 per successful ascent	NASA 2013 ^[22]

Travel

Activities that increase the death risk by roughly one micromort, and their associated cause of death:

- Travelling 6 miles (9.7 km) by motorcycle (collision)[23]
- Travelling 17 miles (27 km) by walking (collision)[23]
- Travelling 10 miles (16 km)^[24] or 20 miles (32 km)^[23] by bicycle (collision)^[a]
- Travelling 230 miles (370 km) by car (collision) (or 250 miles)^[23]
- Travelling 1,000 miles (1,600 km) by jet (collision)[24]
- Travelling 6,000 miles (9,656 km) by train (collision)[23]

Other

Increase in death risk for other activities on a per-event basis:

- Hang gliding 8 micromorts per trip^[23]
- Ecstasy (MDMA) 0.5 micromorts per tablet, rising to 13 if using other drugs [26][27]
- Giving birth (vaginal) 120 micromorts^[28]
- Giving birth (caesarean) 170 micromorts^[28]
- AstraZeneca vaccination against COVID-19 2.9 micromorts^[29]
- COVID-19 infection at age 10 20 micromorts
- COVID-19 infection at age 25 100 micromorts
- COVID-19 infection at age 55 4,000 micromorts
- COVID-19 infection at age 65 14,000 micromorts
- COVID-19 infection at age 75 46,000 micromorts

■ COVID-19 infection at age 85 – 150,000 micromorts (As of December 2020)^[30]

Value of a micromort

Willingness to pay

An application of micromorts is measuring the value that humans place on risk. For example, a person can consider the amount of money they would be willing to pay to avoid a one-in-a-million chance of death (or conversely, the amount of money they would receive to accept a one-in-a-million chance of death). When offered this situation, people claim a high number. However, when looking at their day-to-day actions (e.g., how much they are willing to pay for safety features on cars), a typical value for a micromort is around \$50 (in 2009). [31][32] This is not to say the \$50 valuation should be taken to mean that a human life (1 million micromorts) is valued at \$50,000,000. Rather, people are less inclined to spend money after a certain point to increase their safety. This means that analyzing risk using the micromort is more useful when using small risks, not necessarily large ones. [32]

Value of a statistical life

Government agencies use a nominal <u>Value of a Statistical Life</u> (VSL) – or <u>Value for Preventing a Fatality</u> (VPF) – to evaluate the cost-effectiveness of expenditure on safeguards. For example, in the UK, the VSL stands at £1.6 million for road improvements. Since road improvements have the effect of lowering the risk of large numbers of people by a small amount, the <u>UK Department for Transport</u> essentially prices a reduction of 1 micromort at £1.60. The <u>US Department of Transportation</u> uses a VSL of US\$6.2 million, pricing a micromort at US\$6.20. $\frac{[34]}{}$

Chronic risks

Micromorts are best used to measure the size of *acute* risks, i.e. immediate deaths. Risks from lifestyle, exposure to air pollution, and so on are *chronic* risks, in that they do not kill straight away, but reduce life expectancy. Ron Howard included such risks in his original 1979 work, [24] for example, an additional one micromort from:

- Drinking 0.5 liter of wine (cirrhosis of the liver)^[24]
- Smoking 1.4 cigarettes (cancer, heart disease)^[24]
- Spending 1 hour in a coal mine (black lung disease)^[24]
- Spending 3 hours in a coal mine (accident)^[24]
- Living 2 days in New York or Boston in 1979 (air pollution)[24]
- Living 2 months with a smoker (cancer, heart disease)^[24]
- Drinking Miami water for 1 year (cancer from chloroform)^[24]
- Eating 100 charcoal-broiled steaks (cancer from benzopyrene)^[24]
- Traveling 6000 miles (10,000 km) by jet (cancer due to increased background radiation)[35]

Such risks are better expressed using the related concept of a microlife.

See also

- <u>Decision analysis</u> Discipline covering formal decision making
- <u>Decision theory</u> Branch of applied probability theory
- Ellsberg paradox Paradox in decision theory
- List of unusual units of measurement Units of measurement that are not part of a coherent system
- Microlife Unit of risk half an hour of life expectancy

- Pascal's Wager Argument that posits human beings bet with their lives that God either exists or does not
- Precautionary principle Risk management strategy
- Risk of ruin Concept in gambling, insurance, and finance

Notes

a. however due to the <u>health effects of cycling</u> the net effect of cycling on <u>life expectancy</u> is likely positive in most cases^[25]

References

- 1. Fry, A.M.; Harrison, A.; Daigneault, M. (February 2016). "Micromorts what is the risk?". *British Journal of Oral and Maxillofacial Surgery*. **54** (2): 230–231. doi:10.1016/j.bjoms.2015.11.023 (https://doi.org/10.1016%2 Fj.bjoms.2015.11.023). PMID 26747014 (https://pubmed.ncbi.nlm.nih.gov/26747014).
- Walker, KF; Cohen, AL; Walker, SS; Allen, KM; Baines, DL; Thornton, Jg (May 2014). "The dangers of the day of birth". BJOG. 121 (6): 714–718. doi:10.1111/1471-0528.12544 (https://doi.org/10.1111%2F1471-0528.12544). PMID 24521517 (https://pubmed.ncbi.nlm.nih.gov/24521517). S2CID 24808758 (https://api.seman ticscholar.org/CorpusID:24808758).
- 3. <u>Howard, R. A.</u> (1980). J. Richard; C. Schwing; Walter A. Albers (eds.). *On making life and death decisions*. Societal Risk Assessment: How Safe Is Safe Enough? General Motors Research Laboratories. New York: Plenum Press. **ISBN 0306405547**.
- "Deaths Registered in England and Wales (Series DR), 2012" (http://www.ons.gov.uk/ons/dcp171778_33156 5.pdf) (PDF). Office for National Statistics. 22 October 2013. Archived (https://web.archive.org/web/2014060 6215559/http://www.ons.gov.uk/ons/dcp171778_331565.pdf) (PDF) from the original on 6 June 2014. Retrieved 3 June 2014.
- 5. "Leading causes of death, by sex (Both sexes)" (http://www.statcan.gc.ca/tables-tableaux/sum-som/l01/cst0 1/hlth36a-eng.htm). Statistics Canada. Archived (https://web.archive.org/web/20150924130923/http://www.statcan.gc.ca/tables-tableaux/sum-som/l01/cst01/hlth36a-eng.htm) from the original on 24 September 2015. Retrieved 14 August 2015.
- 6. SL Murphy; J Xu & KD Kochanek (8 May 2013). "Deaths: Final Data for 2010" (https://www.cdc.gov/nchs/data/nvsr/nvsr61/nvsr61_04.pdf) (PDF). US: Centers for Disease Control and Prevention. Archived (https://web.archive.org/web/20150511223214/http://www.cdc.gov/nchs/data/nvsr/nvsr61/nvsr61_04.pdf) (PDF) from the original on 11 May 2015. Retrieved 3 June 2014.
- 7. "Suicides in the United Kingdom, 2012 Registrations" (http://www.ons.gov.uk/ons/rel/subnational-health4/suicides-in-the-united-kingdom/2012/stb-uk-suicides-2012.html#tab-Suicides-in-England-and-Wales). Office for National Statistics. 18 February 2014. Archived (https://web.archive.org/web/20140513052104/http://www.ons.gov.uk/ons/rel/subnational-health4/suicides-in-the-united-kingdom/2012/stb-uk-suicides-2012.html#tab-Suicides-in-England-and-Wales) from the original on 13 May 2014. Retrieved 11 June 2014.
- 8. KF Walker; AL Cohen; SH Walker; KM Allen; DL Baines; JG Thornton (13 February 2014). "The dangers of the day of birth". *British Journal of Obstetrics and Gynaecology*. **121** (6): 714–8. doi:10.1111/1471-0528.12544 (https://doi.org/10.1111%2F1471-0528.12544). PMID 24521517 (https://pubmed.ncbi.nlm.nih.gov/24521517). S2CID 24808758 (https://api.semanticscholar.org/CorpusID:24808758).
- 9. "Life Tables" (https://www.cdc.gov/nchs/products/life_tables.htm). cdc.gov. US: Centers for Disease Control and Prevention. 2013. Archived (https://web.archive.org/web/20131126224714/http://www.cdc.gov/nchs/products/life tables.htm) from the original on 26 November 2013. Retrieved 24 November 2013.
- 10. Blastland, Michael; Spiegelhalter, David (2014). *The Norm Chronicles: Stories and Numbers About Danger and Death* (1 ed.). Basic Books. p. 14. ISBN 9780465085705.

- 11. Office for National Statistics (13 February 2014). "Crime Statistics, Focus on Violent Crime and Sexual Offences, 2012/13 ONS" (http://www.ons.gov.uk/ons/rel/crime-stats/crime-statistics/focus-on-violent-crime-and-sexual-offences--2012-13/index.html). Archived (https://web.archive.org/web/20140408220732/http://www.ons.gov.uk/ons/rel/crime-stats/crime-statistics/focus-on-violent-crime-and-sexual-offences--2012-13/index.html) from the original on 8 April 2014. Retrieved 12 June 2014.
- 12. "Leading causes of death, total population, by age group and sex, Canada" (http://www5.statcan.gc.ca/cansim/a26?lang=eng&retrLang=eng&id=1020561&paSer=&pattern=&stByVal=1&p1=1&p2=37&tabMode=dataTable&csid=). Statistics Canada. 26 November 2020. Archived (https://web.archive.org/web/20130703044031/http://www5.statcan.gc.ca/cansim/a26?lang=eng&retrLang=eng&id=1020561&paSer=&pattern=&stByVal=1&p1=1&p2=37&tabMode=dataTable&csid=) from the original on 3 July 2013. Retrieved 14 August 2015.
- 13. Federal Bureau of Investigation. "Crime in the United States, 2012: Table 16" (https://www.fbi.gov/about-us/cj is/ucr/crime-in-the-u.s/2012/crime-in-the-u.s.-2012/tables/16tabledatadecpdf/table_16_rate_by_population_g roup_2012.xls). FBI. Archived (https://web.archive.org/web/20160529074718/https://www.fbi.gov/about-us/cji s/ucr/crime-in-the-u.s/2012/crime-in-the-u.s.-2012/tables/16tabledatadecpdf/table_16_rate_by_population_gr oup_2012.xls/) from the original on 29 May 2016. Retrieved 12 June 2014.
- 14. British Sub-Aqua Club. "UK Diving Fatalities Review" (https://web.archive.org/web/20140728111842/http://www.bsac.com/page.asp?section=3780§ionTitle=UK+Diving+Fatalities+Review). Archived from the original (http://www.bsac.com/page.asp?section=3780§ionTitle=UK+Diving+Fatalities+Review) on 28 July 2014. Retrieved 12 June 2014.
- 15. Divers Alert Network (DAN). "Fatalities_Proceedings.pdf" (http://www.diversalertnetwork.org/files/Fatalities_Proceedings.pdf) (PDF). Archived (https://web.archive.org/web/20150116220829/http://www.diversalertnetwork.org/files/Fatalities_Proceedings.pdf) (PDF) from the original on 16 January 2015. Retrieved 12 June 2014.
- 16. Canbek, Umut; Ahmet İmerci; Ulaş Akgün; Murat Yeşil; Ali Aydin; Yasemin Balci (1 September 2015). "Characteristics of injuries caused by paragliding accidents: A cross-sectional study" (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4566014). World Journal of Emergency Medicine. 6 (3): 221–224. doi:10.5847/wjem.j.1920-8642.2015.03.011 (https://doi.org/10.5847%2Fwjem.j.1920-8642.2015.03.011). PMC 4566014 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4566014). PMID 26401185 (https://pubmed.ncbi.nlm.nih.gov/26401185).
- 17. Ski-injury.com. "Ski Injury" (https://web.archive.org/web/20140528075539/http://www.ski-injury.com/intro). Archived from the original (http://www.ski-injury.com/intro) on 28 May 2014. Retrieved 12 June 2014.
- 18. United States Parachute Association. "Skydiving Safety" (https://uspa.org/Find/FAQs/Safety). Archived (https://web.archive.org/web/20180822014822/https://uspa.org/Find/FAQs/Safety) from the original on 22 August 2018. Retrieved 10 April 2018.
- 19. British Parachute Association (2012). "How Safe" (https://web.archive.org/web/20140727093743/http://www.bpa.org.uk/staysafe/how-safe/). Archived from the original (http://www.bpa.org.uk/staysafe/how-safe/) on 27 July 2014. Retrieved 12 June 2014.
- 20. Soreide, Kjetil; Ellingsen, Christian Lycke; Knutson, Vibeke (May 2007). "How Dangerous is BASE Jumping? An Analysis of Adverse Events in 20,850 Jumps From the Kjerag Massif, Norway". *The Journal of Trauma: Injury, Infection, and Critical Care.* **62** (5): 1113–1117. doi:10.1097/01.ta.0000239815.73858.88 (https://doi.org/10.1097%2F01.ta.0000239815.73858.88). PMID 17495709 (https://pubmed.ncbi.nlm.nih.gov/17495709).
- 21. 2,31 MB "Tod am Matterhorn" (http://www.beobachter.ch/fileadmin/dateien/pdf/Infografiken/Fokus_Matterhorn n N 07-12.pdf;). Beobachter (in German). {{cite web}}: Check | url=value (help)
- 22. "The World's Tallest Mountain" (http://earthobservatory.nasa.gov/IOTD/view.php?id=82578). *Earth Observatory*. NASA. 2 January 2014. Archived (https://web.archive.org/web/20141025063724/http://earthobservatory.nasa.gov/IOTD/view.php?id=82578) from the original on 25 October 2014. Retrieved 25 October 2014.
- 23. "Understanding Uncertainty" (https://plus.maths.org/content/os/issue55/features/risk/index). Plus Magazine. 12 July 2010. Archived (https://web.archive.org/web/20200804110023/https://plus.maths.org/content/os/issue55/features/risk/index) from the original on 4 August 2020. Retrieved 22 July 2020.
- 24. * Howard, Ron Risky Decisions (https://archive.today/20120714164305/http://stanford-online.stanford.edu/sd rmda61w/session10b/slides/sld031.htm) (Slide show), Stanford University

- 25. de Hartog, Jeroen Johan; Boogaard, Hanna; Nijland, Hans; Hoek, Gerard (August 2010). "Do the Health Benefits of Cycling Outweigh the Risks?" (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2920084). Environmental Health Perspectives. 118 (8): 1109–1116. doi:10.1289/ehp.0901747 (https://doi.org/10.1289/ehp.0901747). PMC 2920084 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2920084). PMID 20587380 (https://pubmed.ncbi.nlm.nih.gov/20587380).
- 26. Advisory Council on the Misuse of Drugs. MDMA ('ecstasy'): a review of its harms and classification under the Misuse of Drugs Act 1971. London: UK Home Office, 2009: p 18.

 http://www.homeoffice.gov.uk/publications/agencies-public-bodies/acmd1/mdma-report Archived (https://web.archive.org/web/20121005073938/http://www.homeoffice.gov.uk/publications/agencies-public-bodies/acmd1/mdma-report) 5 October 2012 at the Wayback Machine
- 27. Blastland, Michael; Spiegelhalter, David (2014). *The Norm Chronicles: Stories and Numbers About Danger and Death* (1 ed.). Basic Books. p. 8. ISBN 9780465085705.
- 28. Spiegelhalter, David; Blastland, Michael (30 May 2013). *The Norm Chronicles: Stories and numbers about danger* (Main ed.). London: Profile Books. ISBN 9781846686207.
- 29. Nina Weber, DER SPIEGEL. "Coronaimpfung und Risikoabwägung: Einmal impfen ist weniger riskant als eine Woche Skiurlaub" (https://www.spiegel.de/gesundheit/diagnose/corona-impfung-und-risikoabwaegung-e inmal-impfen-ist-weniger-riskant-als-eine-woche-skiurlaub-a-6438059e-06e0-4340-add3-cc9b07a5f501) (in German). Archived (https://web.archive.org/web/20220218102607/https://www.spiegel.de/gesundheit/diagnose/corona-impfung-und-risikoabwaegung-einmal-impfen-ist-weniger-riskant-als-eine-woche-skiurlaub-a-6438059e-06e0-4340-add3-cc9b07a5f501) from the original on 18 February 2022. Retrieved 11 June 2021.
- 30. Levin AT, Hanage WP, Owusu-Boaitey N, Cochran KB, Walsh SP, Meyerowitz-Katz G (December 2020). "Assessing the age specificity of infection fatality rates for COVID-19: systematic review, meta-analysis, and public policy implications" (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7721859). European Journal of Epidemiology. 35 (12): 1123–1138. doi:10.1007/s10654-020-00698-1 (https://doi.org/10.1007%2Fs10654-020-00698-1). PMC 7721859 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7721859). PMID 33289900 (https://pubmed.ncbi.nlm.nih.gov/33289900). Text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) Archived (https://web.archive.org/web/20171016050101/https://creativecommons.org/licenses/by/4.0/) 16 October 2017 at the Wayback Machine.
- 31. Howard, R. A. (1989). "Microrisks for Medical Decision Analysis". *International Journal of Technology Assessment in Health Care.* **5** (3): 357–370. doi:10.1017/S026646230000742X (https://doi.org/10.1017%2F_S026646230000742X). PMID 10295520 (https://pubmed.ncbi.nlm.nih.gov/10295520). S2CID 37558060 (https://api.semanticscholar.org/CorpusID:37558060).
- 32. Russell, Stuart; Norvig, Peter (2009). *Artificial Intelligence* (3rd ed.). Prentice Hall. p. 616. <u>ISBN</u> <u>978-0-13-604259-4</u>.
- 33. Department for Transport GMH, United Kingdom, "TAG Unit 3.4: The Safety Objective", Transport Analysis Guidance—WebTAG http://www.dft.gov.uk/webtag/documents/expert/unit3.4.1.php Archived (https://web.archive.org/web/20140326045715/http://www.dft.gov.uk/webtag/documents/expert/unit3.4.1.php) 26 March 2014 at the Wayback Machine
- 34. US Department of Transportation, "Treatment of the Economic Value of a Statistical Life in Departmental Analyses—2011 Interim Adjustment", 2011, http://www.dot.gov/policy/transportation-policy/treatment-economic-value-statistical-life) 2 November 2014 at the Wayback Machine
- 35. "Radiation dose issues and risk" (https://web.archive.org/web/20140219020315/http://www.myesr.org/html/img/pool/15_Loose_Reinhard_Radiation_Dose_Issues_and_Risk.pdf) (PDF). European Society of Radiology. Archived from the original (http://www.myesr.org/html/img/pool/15_Loose_Reinhard_Radiation_Dose_Issues_and_Risk.pdf) (PDF) on 19 February 2014. Retrieved 18 November 2013.

Further reading

Ronald A. Howard (1984). "On Fates Comparable to Death". *Management Science*. 30 (4): 407–422. doi:10.1287/mnsc.30.4.407 (https://doi.org/10.1287%2Fmnsc.30.4.407).

• Center for the Study & Improvement of Regulation. "What is a MicroMort?" (https://archive.today/201304151 23624/http://micromorts.org/tutorial2.aspx?AspxAutoDetectCookieSupport=1). Archived from the original (http://micromorts.org/tutorial2.aspx) on 15 April 2013.

External links

Micromorts - We are all going to die (https://micromorts.rip/)

Retrieved from "https://en.wikipedia.org/w/index.php?title=Micromort&oldid=1194346363"

_