Basic Statistical Notation

Notation	Meaning	Remark
y	random variable	it takes different values with probabilities
$\mu = E(y) = \Sigma_j y_j f(y_j)$	population mean	the center of a distribution
		weighted average of possible values (y_j)
		weight is probability $(f(y_j))$
$\sigma^2 = \text{var}(y) = E(y - \mu)^2$	population variance	the dispersion of the distribution
		distribution is wide if $var(y)$ is big
$\sigma = \sqrt{\operatorname{var}(y)}$	standard deviation (sd)	another measure of dispersion
$\{y_1, y_2, \dots, y_n\}$	sample	we get a random or i.i.d sample if
		$E(y_i) = \mu, var(y_i) = \sigma^2, cov(y_i, y_j) = 0, \forall i, j$
$\bar{y} = \frac{\sum_{i=1}^{n} y_i}{n}$	sample mean	estimate for population mean
		it is a random variable
		$E(\bar{y}) = \mu$ if we use random sample
		$\operatorname{var}(\bar{y}) = \frac{\sigma^2}{n}$ if we use random sample
		$\frac{\sigma}{\sqrt{n}}$ is standard error (se) of \bar{y}
$\bar{y} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$	central limit theorem	it holds when n is big
	t value	standardized \bar{y}
V		$t \sim N(0,1)$ when n is big
		big t value rejects a hypothesis
2Pr(T > t)	p-value for two-tailed test	small p value rejects a hypothesis
$s^2 = \frac{\sum (y_i - \bar{y})^2}{n - 1}$ $s = \sqrt{s^2}$	sample variance	estimate for population variance
$s = \sqrt{s^2}$	sample standard deviation	
cov(x,y)	population covariance	measure of association
$= E((x - \mu_x)(y - \mu_y))$		x and y are positively correlated if $cov > 0$
		\mathbf{x} and \mathbf{y} are negatively correlated if $\mathbf{cov} < 0$
$\rho = \frac{\text{cov}(x,y)}{\sqrt{\text{var}(x)\text{var}(y)}}$	correlation (coefficient)	$-1 \le \rho \le 1$
$y = \beta_0 + \beta_1 x + u$	simple regression	y is dependent variable
		x is independent variable (regressor)
		u is error term (other factors)
$E(y x) = \beta_0 + \beta_1 x$	PRF	we assume $E(u x) = 0$ which implies
$\beta_0 = E(y x=0)$	intercept (constant) term	cov(x, u) = 0 (exogeneity, ceteris paribus)
$\beta_1 = \frac{dE(y x)}{dx}$	slope	$\Delta E(y x) = \beta_1 \text{ when } \Delta x = 1$

Some Useful Intuitions

Let c denotes a constant number, and x and y denote two random variables

- 1. The expectation or mean value $(E \text{ or } \mu)$ means "average". It measures the central tendency of the distribution of a random variable.
- 2. By definition, variance is the average squared deviation:

$$var(x) = E[(x - \mu_x)^2].$$

Variance is big when x varies a lot. Variance cannot be negative.

- 3. Since a constant has zero variation, we have var(c) = 0
- 4. Since variance is average squared something, we have $var(cx) = c^2 var(x)$
- 5. We have $(a + b)^2 = a^2 + b^2 + 2ab$. Similarly we can show

$$var(x+y) = var(x) + var(y) + 2cov(x, y).$$

Do not forget the cross product or covariance.

- 6. Covariance measures (linear) co-movement. Since c stays constant no matter how x moves, we have cov(x,c) = 0.
- 7. Formally, covariance is the average product of deviation of x from its mean and deviation of y from its mean:

$$cov(x,y) = E[(x - \mu_x)(y - \mu_y)].$$

The covariance is positive if both x and y move up beyond their mean values, or both move below their mean values. The covariance is negative if one moves up, while the other moves down. In short, covariance is <u>positive</u> if two variables move in the <u>same</u> direction, while negative when they move in opposite direction.

- 8. Two variables are uncorrelated if covariance is zero.
- 9. For example, from eco201, we know price and quantity demanded are negatively correlated, while price and quantity supplied are positively correlated.

- 10. The link between variance and covariance is that cov(x,x) = var(x)
- 11. Variance and covariance are <u>not</u> unit-free, i.e., they can be manipulated by changing the units. For example, we have $var(cx) = c^2 var(x)$ and cov(cx, y) = ccov(x, y)
- 12. By contrast, the <u>correlation coefficient</u> (ρ or corr) cannot be manipulated since it stays the same after we multiply x by c:

$$\rho_{cx,y} = \frac{\text{cov}(cx,y)}{\sqrt{\text{var}(cx)}\sqrt{\text{var}(y)}} = \frac{c\text{cov}(x,y)}{\sqrt{c^2\text{var}(x)}\sqrt{\text{var}(y)}} = \rho_{x,y}$$

- 13. In a similar fashion we can show the OLS estimator $\hat{\beta} = \frac{S_{xy}}{S_x^2}$ is not unit-free, so can be manipulated, while the t-value is unit-free and cannot be manipulated. That is why we want to pay more attention to the correlation coefficient and t-value.
- 14. We have $-\sqrt{a^2}\sqrt{b^2} \le ab \le \sqrt{a^2}\sqrt{b^2}$, Similarly we can show or $-\sqrt{\operatorname{var}(x)}\sqrt{\operatorname{var}(y)} \le \operatorname{cov}(x,y) \le \sqrt{\operatorname{var}(x)}\sqrt{\operatorname{var}(y)}$, or by using the absolute value $|\operatorname{cov}(x,y)| \le \sqrt{\operatorname{var}(x)}\sqrt{\operatorname{var}(y)}$. This implies that

$$-1 \le \rho_{x,y} \le 1$$

So the correlation coefficient is unit-free, moreover, it is also bounded between minus one and one.

- 15. The equality holds $(\rho = 1 \text{ or } -1)$ only when x and y have <u>perfect linear</u> relationship y = a + bx. In general, the relationship is not perfectly linear so we need to add the error term: y = a + bx + u, then we have $-1 < \rho_{x,y} < 1$. In short, the correlation coefficient measures the degree to which two variables are linearly related.
- 16. The sample mean is in the middle of sample in the sense that positive deviation cancels out negative deviation. As a result,

$$\sum (x_i - \bar{x}) = 0$$

17. Treat \bar{x} as constant (since it has no subscript i) when it appears in the sigma notation (summation). For instance,

$$\sum \bar{x} = n\bar{x}; \quad \sum \bar{x}x_i = \bar{x} \sum x_i$$