

DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models

Zhihong Shao 1,2*† , Peiyi Wang 1,3*† , Qihao Zhu 1,3*† , Runxin Xu 1 , Junxiao Song 1 Xiao Bi 1 , Haowei Zhang 1 , Mingchuan Zhang 1 , Y.K. Li 1 , Y. Wu 1 , Daya Guo 1*

¹DeepSeek-AI, ²Tsinghua University, ³Peking University

{zhihongshao,wangpeiyi,zhuqh,guoday}@deepseek.com https://github.com/deepseek-ai/DeepSeek-Math

Abstract

Mathematical reasoning poses a significant challenge for language models due to its complex and structured nature. In this paper, we introduce DeepSeekMath 7B, which continues pretraining DeepSeek-Coder-Base-v1.5 7B with 120B math-related tokens sourced from Common Crawl, together with natural language and code data. DeepSeekMath 7B has achieved an impressive score of 51.7% on the competition-level MATH benchmark without relying on external toolkits and voting techniques, approaching the performance level of Gemini-Ultra and GPT-4. Self-consistency over 64 samples from DeepSeekMath 7B achieves 60.9% on MATH. The mathematical reasoning capability of DeepSeekMath is attributed to two key factors: First, we harness the significant potential of publicly available web data through a meticulously engineered data selection pipeline. Second, we introduce Group Relative Policy Optimization (GRPO), a variant of Proximal Policy Optimization (PPO), that enhances mathematical reasoning abilities while concurrently optimizing the memory usage of PPO.

Figure 1 | Top1 accuracy of open-source models on the competition-level MATH benchmark (Hendrycks et al., 2021) without the use of external toolkits and voting techniques.

^{*} Core contributors.

[†] Work done during internship at DeepSeek-AI.