165/

Nom		•		
Prénor	m		**************************************	
Group	e B2		Note	9,5
	Algorithmi INFO-SPÉ - Contrôle nº 3 23 octobre : Feuilles de ré	S3 3 (C3) 2023	1 2 3 3 5 4 2	6
$R\'eponses$	8 1 (Haches et graphes 6 po	ints)		
1. Don	nez une méthode de hachage indirect	1 (1) A		
b	achage coalescent	PIC		
2. Le p	problème qui apparait avec le hachage	coalescent est :		
C	ela peut provoquen	des collis	Sons secon	dauhes fil
3. Une	collision primaire est :			
M	e collision entre d	eux elenest	s ac et	4
	listancts avec v=			
		5	PIX	
-	dre d'un graphe non orienté est :			
	on nombre de	sommets	P1	
5. Un s	sommet isolé est :			(6)
W	1 sommet de dega	é 0 (210	
6. Le ta	ableau des demi-degrés extérieurs des	sommets de G :		
	$\frac{1}{2}$ mi-degrés extérieurs $\frac{2}{2}$	3 4 5 3 2 O	6 7 2 3 2	8 9 2
7. Le g	raphe G est-il fortement connexe?	OUI NO	N) PF	
8. Si N	ON, combien possède t-il de composa	ntes fortement connexe	3? 2	1
9. S'ils	existent, les sommets de G de degré d	ifférent de 4 sont :	1,5,9	PIC
10. S'ils	existent, les sommets de G de demi-de	egré intérieur égal à 0 so	ont :	0

Réponses 2 (Level from x - 5 points)

Spécifications:

keys_after(T:Tree, x:int) retourne la liste des clés dans l'arbre T après la première valeur x trouvée sur le même niveau que x. Elle retourne une liste vide si x n'est pas dans T ou s'il n'y a pas de nœud après.

Réponses 3 (Average subtrees - 6 points)

Spécifications:

average_subtrees(B:TreeAsBin) vérifie si aucun nœud de l'arbre B n'a un sous-arbre dont la moyenne des clés est strictement supérieure à la clé de ce nœud.

	* Verifie se aucus popud de Bétree AsBon > Pa un sous aspæ
	dont la moyenne des clés est strèctement superieur à
	Si ce d'ent par vertie alors la fanction
	retourse (-1, -1) sonon elle retoure la somme
0.0	des réglés (d'in) sous-orbre et le nombre de revent
	2 das celui-ci. Paranotre: B (Tree ASBin)
ague!	perun (int, int)
yacı	
1	
	det _aux_average_Slub (B: Tree As Bon): (C = B.child
	*
	C = B.child
	$(nb, k) = (0, 0) \odot$
	while C!= None: (Ka, nb2)= aux-average_sub(C)
	(Na nb2)= - aux auerage sub (C)
	if nb2==-1 on Ka/nb2 > B. Key:
	K+=Ka
	nb+=nb2
	C-C. Sibling init?
	return (KC+B. Key, nb(+1))
()	
2/	def average subtrees (B: Tree As Bix):
	if B!= Vone: ton jour vou
16	(ka nt2) = _aux overage sub(B)
	if nb2 == -1:
	return False
	1 agrich of Trade

$R\'{e}ponses$ 4 (B-arbre : insertions et suppression – 3 points)

1. L'arbre B1 après insertions des valeurs 21, 42 et 8 :

2. Arbre B2 après suppression de la valeur 80 :

