iClicker Poll (not graded)

A. I want to keep HW due Tuesdays and Fridays.

B. I want to *change* HW to be due Tuesdays and Thursdays, starting next week.

Last Time

• We found the fields of:

Two Infinite Planes

SUPERPOSITION:

iClicker

Today

- Electric field of a hollow sphere
 - Inside the sphere
 - Outside the sphere
- Electric field of a solid sphere
 - Inside the sphere
 - Outside the sphere

Finding E from a Hollow Sphere*

- Like before:
 - Break up the sphere into point charges
 - Calculate the electric field due to the point charges
 - Sum to get the total field
 - Sanity Check!
- Use symmetry of the sphere

* **Insulating** Hollow Sphere: Charges uniformly distributed, but cannot move.

Hollow Sphere


```
Total Charge = Q
Area = 4\pi R^2
Charge Density = Q/(4\pi R^2)
```

(How did I know to use area, and not volume?)

FINE PRINT: (Void in New Hampshire)

- Up close ($< 10^{-7}$ m) we can see discrete charges on the surface
- Approximate: uniform, continuous charge density

Symmetries of a sphere

- What direction do you expect for E?
 - → Watch this animated rotation closely:

In physics, if you can't tell the difference, there is no difference!

Electric field from far away

 From far away, every charged object looks like a point charge

Hollow Sphere: Looks *EXACTLY* like a point charge

Field outside

- We could do integration, but it's complicated
- We would find that E_{outside} is the same as for a point charge located at the center, with charge Q

$$\bullet \quad \vec{E} = \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2} \hat{r}$$

iClicker question

E inside the Hollow Sphere

Complete Cancellation Everywhere Inside!

- What is the field inside now?
- What force is on the negative charge?
- What if the sphere were conducting?

Two different situations

Why are these so different?

E at a Charged Surface

 Electric field can change suddenly when you pass through a charged surface

Electric field of a solid sphere

- How can we build a solid sphere out of hollow spheres?
 - → Build it out of several concentric hollow spheres
 - → Add up their fields

Charge Density of Solid Sphere

Total charge on entire sphere: Q

• Volume: $V = \frac{4}{3}\pi R^3$

Charge density of a SOLID sphere of radius R

$$\frac{Q}{(4/3)\pi R^3}$$

Integrating the Spheres

- Charge on an object = Charge density * Volume
 (For a uniform charge density, otherwise, you must integrate)
- Volume of a spherical shell is approximately $4\pi r_s^2 \Delta r_s$ Surface area of the shell * thickness
- This approximation becomes better as $\Delta r_s \rightarrow 0$
- When integrating, $\Delta r \rightarrow dr_s$

iClicker

E from each Spherical Shell

E of a
$$\vec{E}=rac{q}{4\pi\epsilon_o|r|^2}\hat{r}$$

Charge on
$$q_{
m shell} = rac{3Qr_s^2}{R^3} dr_s$$
 each shell

$$\Delta E_{\text{shell}} = \frac{3}{4\pi\epsilon_o} \frac{Qr_s^2}{R^3|r|^2} \hat{r} dr_s$$

E Outside the Solid Sphere

$$\Delta E_{\text{shell}} = \frac{3}{4\pi\epsilon_o} \frac{Qr_s^2}{R^3|r|^2} \hat{r} dr_s$$

Add up (Integrate) all spheres

$$\begin{split} \vec{E}_{\text{total}} &= \sum_{\text{shells}} \Delta E_{\text{shell}} \\ &\to \frac{3}{4\pi\epsilon_o} \frac{Q}{R^3 |r|^2} \hat{r} \int_0^R r_s^2 dr_s \\ &= \frac{3}{4\pi\epsilon_o} \frac{Q}{R^3 |r|^2} \hat{r} \frac{1}{3} R^3 \end{split}$$

$$ec{E} = rac{Q}{4\pi\epsilon_o|r|^2}\hat{r}$$
 Outside the sphere

E Inside the Solid Sphere

$$\Delta E_{\text{shell}} = \frac{3}{4\pi\epsilon_o} \frac{Qr_s^2}{R^3|r|^2} \hat{r} dr_s$$

Add up (Integrate) the inner spheres

What is the field at **r** due to the grey shells?

→ Zero

Now, integrate from 0 to r.

$$\vec{E}_{\text{total}} = \sum_{\text{shells}} \Delta E_{\text{shell}} \rightarrow \frac{3}{4\pi\epsilon_o} \frac{Q}{R^3 |r|^2} \hat{r} \int_0^r r_s^2 dr_s$$

$$= \frac{3}{4\pi\epsilon_o} \frac{Q}{R^3 |r|^2} \hat{r} \frac{1}{3} |r|^3$$

$$\vec{E} = \frac{Q|r|}{4\pi\epsilon_o R^3}\hat{r}$$

INSIDE THE SPHERE

What We Did Today

Electric field of a hollow sphere

Electric field of a solid sphere

$$\vec{E} = \frac{Q|r|}{4\pi\epsilon_o R^3} \hat{r}$$

INSIDE THE SPHERE

$$\vec{E} = \frac{Q}{4\pi\epsilon_o|r|^2}\hat{r}$$

OUTSIDE THE SPHERE