1. Operadores Elípticos de Segundo Orden

Comenzamos a estudiar el problema con condición de borde

$$\begin{cases} Lu = f &, \text{ en } \Omega \\ u = 0 &, \text{ en } \partial \Omega \end{cases}$$
 (1)

donde $\Omega \subset \mathbb{R}^n$ es abierto y acotado, $u \colon \overline{\Omega} \to \mathbb{R}$ es la función incógnita, $f \colon \Omega \to \mathbb{R}$ es dada y L denota un operador diferencial de segundo orden que tiene una de las siguientes formas:

$$Lu = -\sum_{i,j}^{n} (a^{ij}(x)u_{x_i})_{x_j} + \sum_{i=1}^{n} b^{i}(x)u_{x_i} + c(x)u$$
(2)

$$Lu = -\sum_{i,j}^{n} a^{ij}(x) u_{x_i x_j} + \sum_{i=1}^{n} b^{i}(x) u_{x_i} + c(x)u$$
(3)

Si L es de la forma (2), diremos que está en forma de divergencia. En el otro caso (3) diremos que está en forma de no-divergencia. En ambos casos, las funciones coeficientes (a^{ij}, b^i, c) satisfacen que:

- 1. están en $L^{\infty}(\Omega)$.
- 2. $a^{ij} = a^{ji}$.
- 3. existe $\Theta > 0$ tal que

$$\sum_{i,j}^{n} a^{ij}(x) \xi_i \xi_j \ge \Theta |\xi|^2 \quad \text{c.t.p. en } \Omega, \forall \xi \in \mathbb{R}^n$$

Si L satisface las propiedades listadas arribas, diremos que es uniformemente elíptico.

1.1. Soluciones Débiles

Vamos a estudiar el problema (1) en el caso que L está en forma de divergencia (2) y $f \in L^2(\Omega)$. Momentáneamente supongamos que $u \in \mathscr{C}_C^{\infty}(\Omega)$. Al multiplicar por una función test e integrar por partes (el primer sumando) tendremos que

$$\sum_{i,j}^{n} \int_{\Omega} a^{ij} u_{x_i} v_j + \sum_{i=1}^{n} \int_{\Omega} b^i u_{x_i} v + \int_{\Omega} cv = \int_{\Omega} fv \quad \forall v \in \mathscr{C}_C^{\infty}(\Omega).$$
 (4)

Más aún, el resultado sigue valiendo para $v \in H_0^1(\Omega)$, pues podemos aproximar por funciones suaves con soporte compacto.

Por otro lado, la ecuación (4) hace sentido incluso para $u \in H^1(\Omega)$. No obstante, nos restringiremos a trabajar sobre $H^1_0(\Omega)$ pues necesitamos que se satisfaga la condición de borde.

Definición 1: Forma Bilineal Asociada a L

La forma bilineal (lineal en ambas entradas) asociada al operador lineal diferencial L en forma de divergencia (2) está definida por

$$B(u,v) := \sum_{i,j}^{n} \int_{\Omega} a^{ij} u_{x_i} v_j + \sum_{i=1}^{n} \int_{\Omega} b^i u_{x_i} v + \int_{\Omega} c v, \quad u,v \in H_0^1(\Omega). \tag{**_B}$$

Definición 2: Solución Débil, $f \in L^2(\Omega)$

Diremos que $u \in H_0^1(\Omega)$ es una solución débil de (1) para $f \in L^2(\Omega)$ si

$$B(u,v) = \langle f, v \rangle_{L^2(\Omega)} \quad \forall v \in H_0^1(\Omega),$$

donde el lado derecho es el producto interno en $L^2(\Omega)$. Esto se conoce como la formulación variacional de (1).

Definición 3: Solución Débil, $f \in H^{-1}(\Omega)$

Diremos que $u \in H_0^1(\Omega)$ es una solución débil de (1) para $f \in H^{-1}(\Omega)$ si

$$B(u,v) = \langle f, v \rangle_{H^{-1}(\Omega) \times H_0^1(\Omega)} \quad \forall v \in H_0^1(\Omega),$$

donde el lado derecho es el producto dualidad entre $H^{-1} \times H_0^1$.

El concepto de solución débil para condiciones de borde no nulas se puede transformar en uno con condiciones de borde nulas de la siguiente manera: supongamos que tenemos el problema

$$\begin{cases} Lu = f &, \Omega \\ u = g &, \partial \Omega, \end{cases}$$

donde $f\in H^{-1}(\Omega),\ g\in T(H^1(\Omega))$ y Ω tiene ahora frontera \mathscr{C}^1 . Poniendo u'=u-w, donde T(w)=g reduce el problema a

$$\begin{cases} Lu' = f' &, \Omega \\ u' = 0 &, \partial \Omega, \end{cases}$$

donde $f' = f - Lw \in H^{-1}(\Omega)$.

1.2. Existencia de Soluciones Débiles

En esta parte H denotará un espacio de Hilbert, con producto interno $\langle \cdot, \cdot \rangle$ y norma $\|\cdot\|$. H' denota el dual de H y $\langle \cdot, \cdot \rangle_{\times}$ denota el producto dual entre H' y H.

Teorema 1: Lax-Milgram

Sea $B: H \times H \to \mathbb{R}$ una forma bilineal tal que existen constantes $\alpha, \beta > 0$ que satisfacen

$$|B(u,v)| \le \alpha ||u|| ||v|| \quad \forall u, v \in H$$
(B.1)

$$\beta \|u\|^2 \le B(u, u) \qquad \forall u \in H$$
 (B.2)

entonces para $f \in H'$ existe un único $u \in H$ tal que

$$B(u,v) = \langle f, v \rangle_{\times}.$$

La condición (B.1) hace referencia a la continuidad del operador B, mientras que la condición (B.2) se le conoce como coercividad.