Section 1.3 – Rational Functions

A function f is a *rational function* if $f(x) = \frac{g(x)}{h(x)}$,

Where g(x) and h(x) are polynomials. The domain of f consists of all real numbers *except* the zeros of the denominator h(x).

Notation	Terminology	
$x \rightarrow a^{-}$	x approaches a from the left (through values $less$ than a)	
$x \rightarrow a^+$	x approaches a from the right (through values greater than a)	
$f(x) \to \infty$	f(x) increases without bound (can be made as large positive as desired)	
$f(x) \to -\infty$	f(x) decreases without bound (can be made as large negative as desired)	

The Domain of a Rational Function

Example

Consider: $f(x) = \frac{1}{x-3}$

Find the domain and graph f.

Solution

$$x-3=0 \implies \boxed{x=3}$$

Thus the domain is: $\{x | x \neq 3\}$ or $(-\infty, 3) \cup (3, \infty)$

Function		Domain
$f\left(x\right) = \frac{1}{x}$	$\left\{x\big x\neq0\right\}$	$(-\infty, 0) \cup (0, \infty)$
$f(x) = \frac{1}{x^2}$	$\left\{x\big x\neq0\right\}$	$(-\infty, 0) \cup (0, \infty)$
$f(x) = \frac{x-3}{x^2 + x - 2}$	$\left\{x \middle x \neq -2 \text{ and } x \neq 1\right\}$	$(-\infty, -2) \cup (-2, 1) \cup (1, \infty)$
$f(x) = \frac{2x+5}{2x-6} = \frac{2x+5}{2(x-3)}$	$\left\{ x \middle x \neq 3 \right\}$	$(-\infty, 3) \cup (3, \infty)$

Asymptotes

Vertical Asymptote (VA) - Think Domain

The line x = a is a *vertical asymptote* for the graph of a function f if

$$f(x) \rightarrow \infty$$
 or $f(x) \rightarrow -\infty$

As x approaches a from either the left or the right

Horizontal Asymptote (HA)

The line y = c is a **horizontal asymptote** for the graph of a function f if

$$f(x) \rightarrow c$$
 as $x \rightarrow -\infty$ or $x \rightarrow -\infty$

Let
$$f(x) = \frac{p(x)}{q(x)} = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0} = \frac{a_n x^n}{b_m x^m}$$
 be a rational function.

1. If the degree of numerator is less than of denominator $(n < m) \Rightarrow y = 0$

$$y = \frac{2x+1}{4x^2+5} \implies y = 0$$

2. If the degree of numerator is equal of denominator $(n = m) \Rightarrow y = \frac{a_n}{b_m}$

$$y = \frac{2x^2 + 1}{4x^2 + 5} \implies \left| \underline{y} = \frac{2}{4} = \frac{1}{2} \right|$$

3. If the degree of numerator is greater than of denominator $(n > m) \Rightarrow$ No horizontal asymptote

$$y = \frac{2x^3 + 1}{4x^2 + 5} \implies No \ HA$$

Find the vertical asymptote of $f(x) = \frac{1}{x-2}$, and sketch the graph.

Solution

VA: x = 2

HA: y=0

 $f(x) \to \infty$ as $x \to 2^+$

 $f(x) \to -\infty$ as $x \to 2^-$

Hole

Example

Sketch the graph of g if $g(x) = \frac{3x^2 + x - 4}{2x^2 - 7x + 5}$

Solution

$$g(x) = \frac{(3x+4)(x-1)}{(2x-5)(x-1)} = \frac{3x+4}{2x-5} = f(x)$$

g has a hole at $x = 1 \rightarrow f(1) = -\frac{7}{3}$

VA: $x = \frac{5}{2}$

HA: y = 0

Hole: $(1, -\frac{7}{3})$

Slant or Oblique Asymptotes

When the degree of the numerator is one greater than the degree of the numerator, the graph has a slant or oblique asymptote and it is a line y = ax + b, $a \ne 0$. To find the slant asymptote, divide the fraction using long division. The quotient (not remainder) is the slant asymptote.

$$y = \frac{3x^2 - 1}{x + 2}$$

$$x + 2\sqrt{3x^2 + 0x - 1}$$

$$\frac{3x^2 + 6x}{-6x - 1}$$

$$\frac{-6x - 12}{R} = 11$$

$$y = \frac{3x^2 - 1}{x + 2} = (3x - 6) + \frac{11}{x + 2}$$

The *oblique asymptote* is the line y = 3x - 6

Example

Find all the asymptotes and sketch the graph of f if $f(x) = \frac{x^2 - 9}{2x - 4}$

Solution

Find all asymptotes for the graph of f, if it exists

a)
$$f(x) = \frac{3x-1}{x^2-x-6}$$

$$b) \quad f(x) = \frac{5x^2 + 1}{3x^2 - 4}$$

a)
$$f(x) = \frac{3x-1}{x^2-x-6}$$
 b) $f(x) = \frac{5x^2+1}{3x^2-4}$ c) $f(x) = \frac{2x^4-3x^2+5}{x^2+1}$

Solution

a)
$$f(x) = \frac{3x-1}{x^2-x-6}$$

VA: x = -2, x = 3 HA: y = 0

Hole: n/a

Oblique asymptote: n/a

$$f(x) = \frac{5x^2 + 1}{3x^2 - 4}$$

$$3x^2 - 4 = 0 \rightarrow 3x^2 = 4 \rightarrow x^2 = \frac{4}{3} \rightarrow x = \pm \frac{2}{\sqrt{3}}$$

VA: $x = \pm \frac{2}{\sqrt{3}}$ $HA: y = \frac{5}{3}$

Hole: n/a

Oblique asymptote: n/a

c)
$$f(x) = \frac{2x^4 - 3x^2 + 5}{x^2 + 1}$$

VA: n/a

HA: n/a

Hole: n/a

Oblique asymptote: $y = 2x^2 - 5$

$$x^2 + 1 \overline{\smash{\big)}\ 2x^4 - 3x^2 + 5}$$

$$\frac{-2x^4 - 2x^2}{-5x^2 + 5}$$

Sketch the graph of f if $f(x) = \frac{3x+4}{2x-5}$

Solution

VA: $x = \frac{5}{2}$

HA: $y = -\frac{5}{3}$

Hole: n/a

Oblique asymptote: n/a

x	y
0	$-\frac{4}{5}$
$-\frac{4}{3}$	0
4	5.3

Sketch the graph of f if $f(x) = \frac{x^2}{x^2 - x - 2}$

Solution

VA: x = -1, 2

HA: y=1

Hole: n/a

Oblique asymptote: n/a

x	у
0	0
-4	0.88
-2	1
3	<u>9</u> 4

Sketch the graph of f if $f(x) = \frac{x-1}{x^2 - x - 6}$

Solution

VA: x = -2, 3

HA: y=0

Hole: n/a

Oblique asymptote: n/a

x	y
-4	36
-3	67
0	$\frac{1}{6}$
1	0
4	.5
5	$\frac{2}{7}$

Exercises Section 1.3 – Rational Functions

(1-21) Determine all asymptotes of the function

$$1. \qquad y = \frac{3x}{1-x}$$

8.
$$y = \frac{x-3}{x^2-9}$$

15.
$$f(x) = \frac{3-x}{(x-4)(x+6)}$$

2.
$$y = \frac{x^2}{x^2 + 9}$$

$$9. \qquad y = \frac{6}{\sqrt{x^2 - 4x}}$$

16.
$$f(x) = \frac{x^3}{2x^3 - x^2 - 3x}$$

$$3. \qquad y = \frac{x-2}{x^2 - 4x + 3}$$

10.
$$y = \frac{5x-1}{1-3x}$$

17.
$$f(x) = \frac{3x^2 + 5}{4x^2 - 3}$$

4.
$$y = \frac{3}{x-5}$$

11.
$$f(x) = \frac{2x - 11}{x^2 + 2x - 8}$$

18.
$$f(x) = \frac{x+6}{x^3+2x^2}$$

$$5. y = \frac{x^3 - 1}{x^2 + 1}$$

12.
$$f(x) = \frac{x^2 - 4x}{x^3 - x}$$

19.
$$f(x) = \frac{x^2 + 4x - 1}{x + 3}$$

6.
$$y = \frac{3x^2 - 27}{(x+3)(2x+1)}$$

13.
$$f(x) = \frac{x-2}{x^3 - 5x}$$

20.
$$f(x) = \frac{x^2 - 6x}{x - 5}$$

7.
$$y = \frac{x^3 + 3x^2 - 2}{x^2 - 4}$$

14.
$$f(x) = \frac{4x}{x^2 + 10x}$$

21.
$$f(x) = \frac{x^3 - x^2 + x - 4}{x^2 + 2x - 1}$$

(22-53) Determine all asymptotes (if any) (*Vertical Asymptote, Horizontal Asymptote*; *Hole*; *Oblique Asymptote*) and sketch the graph of

22.
$$f(x) = \frac{-3x}{x+2}$$

29.
$$f(x) = \frac{x-1}{1-x^2}$$

36.
$$f(x) = \frac{1}{x-3}$$

23.
$$f(x) = \frac{x+1}{x^2 + 2x - 3}$$

30.
$$f(x) = \frac{x^2 + x - 2}{x + 2}$$

37.
$$f(x) = \frac{-2}{x+3}$$

24.
$$f(x) = \frac{2x^2 - 2x - 4}{x^2 + x - 12}$$

31.
$$f(x) = \frac{x^3 - 2x^2 - 4x + 8}{x - 2}$$

$$38. \quad f(x) = \frac{x}{x+2}$$

25.
$$f(x) = \frac{-2x^2 + 10x - 12}{x^2 + x}$$

32.
$$f(x) = \frac{2x^2 - 3x - 1}{x - 2}$$

39.
$$f(x) = \frac{x-5}{x+4}$$

26.
$$f(x) = \frac{x^2 - x - 6}{x + 1}$$

33.
$$f(x) = \frac{2x+3}{3x^2+7x-6}$$

40.
$$f(x) = \frac{2x^2 - 2}{x^2 - 9}$$

27.
$$f(x) = \frac{x^3 + 1}{x - 2}$$

34.
$$f(x) = \frac{x^2 - 1}{x^2 + x - 6}$$

41.
$$f(x) = \frac{x^2 - 3}{x^2 + 4}$$

28.
$$f(x) = \frac{2x^2 + x - 6}{x^2 + 3x + 2}$$

35.
$$f(x) = \frac{-2x^2 - x + 15}{x^2 - x - 12}$$

42.
$$f(x) = \frac{x^2 + 4}{x^2 - 3}$$

43.
$$f(x) = \frac{x^2}{x^2 - 6x + 9}$$

47.
$$f(x) = \frac{x-3}{x^2 - 3x + 2}$$

51.
$$f(x) = \frac{x^2 - 2x}{x - 2}$$

44.
$$f(x) = \frac{x^2 + x + 4}{x^2 + 2x - 1}$$

44.
$$f(x) = \frac{x^2 + x + 4}{x^2 + 2x - 1}$$
 48. $f(x) = \frac{x^2 + 2}{x^2 + 3x + 2}$

52.
$$f(x) = \frac{x^2 - 3x}{x + 3}$$

45.
$$f(x) = \frac{2x^2 + 14}{x^2 - 6x + 5}$$

49.
$$f(x) = \frac{x-2}{x^2 - 3x + 2}$$

53.
$$f(x) = \frac{x^3 + 3x^2 - 4x + 6}{x + 2}$$

46.
$$f(x) = \frac{x^2 - 4x - 5}{2x + 5}$$

50.
$$f(x) = \frac{x^2 + x}{x + 1}$$

(54-59) Find an equation of a rational function f that satisfies the given conditions

54.
$$\begin{cases} vertical \ asymptote: \ x = 4 \\ horizontal \ asymptote: \ y = -1 \\ x - intercept: \ 3 \end{cases}$$

57.
$$\begin{cases} vertical \ asymptote: \ x = -2, \ x = 0 \\ horizontal \ asymptote: \ y = 0 \\ x - intercept: \ 2, \quad f(3) = 1 \end{cases}$$

55.
$$\begin{cases} vertical \ asymptote: \ x = -4, x = 5 \\ horizontal \ asymptote: \ y = \frac{3}{2} \\ x - intercept: -2 \end{cases}$$

58.
$$\begin{cases} vertical \ asymptote: \ x = -3, \ x = 1 \\ horizontal \ asymptote: \ y = 0 \\ x - intercept: \ -1, \ f(0) = -2 \\ hole \ at \ x = 2 \end{cases}$$

56.
$$\begin{cases} vertical \ asymptote: \ x = 5 \\ horizontal \ asymptote: \ y = -1 \\ x - intercept: \ 2 \end{cases}$$

59.
$$\begin{cases} vertical \ asymptote: \ x = -1, \ x = 3 \\ horizontal \ asymptote: \ y = 2 \\ x - intercept: \ -2, \ 1 \\ hole: \ x = 0 \end{cases}$$