Linear Algebra-A

Assignments - Week 6

Please write down your answers to the assignments from the textbook and supplementary problems on different answer sheets because they will go to different graders.

Assignments from the Textbook (Hardcover)

Section 2.2: 24.

Section 2.4: 3,6,18,25,27,33,35,38.

Note: In Ex. 35, u,v,w,z are column vectors.

Section 2.6: 1,3,5,6,15,19,33,45,48.

Supplementary Problem Set

1. Let $E = \{u_1, u_2, u_3\}$ and $F = \{b_1, b_2\}$, where

$$u_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, u_2 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, u_3 = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$$

and
$$\boldsymbol{b}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
, $\boldsymbol{b}_2 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$.

For each of the following linear transformations $L: \mathbb{R}^3 \to \mathbb{R}^2$, find the matrix representing L with respect to the ordered bases E and F:

- (a) $L(x) = (x_3, x_1)^T$;
- (b) $L(\mathbf{x}) = (x_1 + x_2, x_1 x_3)^{\mathrm{T}};$ (c) $L(\mathbf{x}) = (2x_2, -x_1)^{\mathrm{T}}.$
- 2. Let $\mathbb{R}^{2\times 2}$ be the vector space of all 2×2 real matrices, and define

$$T: \mathbb{R}^{2 \times 2} \to \mathbb{R}^{2 \times 2}$$

by
$$T(\mathbf{A}) = \mathbf{A} + \mathbf{A}^{\mathrm{T}}$$
, where $\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.

- (a) Show that T is a linear transformation.
- (b) Find its matrix with respect to the basis $\left\{ \boldsymbol{b}_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \boldsymbol{b}_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \boldsymbol{b}_3 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \right\}$

$$\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \boldsymbol{b}_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \}.$$

- 3. Prove that:
 - (a) $rank(A + B) \le rank(A) + rank(B)$, where A and B are matrices of same
 - (b) If **A** is a square matrix of order n, and $A^2 I = 0$, then rank(A I) +rank(A + I) = n. (*Hint*: Apply (a) and the result of problem 38 in Section 2.4.)
- 4. Prove that: If **P** and **Q** are $m \times m$ and $n \times n$ invertible matrices respectively, and \mathbf{A} is an $m \times n$ matrix, then rank($\mathbf{P}\mathbf{A}\mathbf{Q}$) = rank(\mathbf{A}).
- 5. Let $\mathbf{A} = \begin{bmatrix} 1 & 2 & 1 & 0 & 0 \\ 1 & 2 & 2 & 2 & 3 \\ -1 & -2 & 0 & 2 & 3 \end{bmatrix}$.

 (a) Find the complete solution to $\mathbf{A}\mathbf{x} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$.
- (b) Find the complete solution to $Ax = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$.
- (c) Find the rank of A and dimensions of the four fundamental subspaces of A.
- (d) Find bases of the four fundamental subspaces of A.