University of Birmingham School of Mathematics

1SAS Sequences and Series Autumn 2024

Problem Sheet 1

(Issued Week 1)

Q1. Recall the following definition from the lectures:

Definition. A sequence of real numbers (a_n) tends to infinity if given any real number A > 0 there exists $N \in \mathbb{N}$ such that

$$a_n > A$$
 for all $n > N$.

(i) Using the definition prove that the sequence (a_n) given by

$$a_n = \sqrt{n}$$

tends to infinity.

(ii) Using the definition prove that the sequence (b_n) given by

$$b_n = \frac{n^4 + n^2 + 4}{3n^3 + 2n + 1}$$

tends to infinity.

Q2. Recall the following definition from the lectures:

Definition. A sequence (a_n) of real numbers converges to a real number ℓ if given any $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that

$$|a_n - \ell| < \varepsilon \quad for \ all \quad n > N.$$

A sequence (a_n) converges if it converges to ℓ for some real number ℓ .

(i) Using the definition prove that the sequence (a_n) given by

$$a_n = \frac{n+2}{n+1}$$

converges to 1.

(ii) Using the definition prove that the sequence (b_n) given by

$$b_n = \frac{n + (-1)^n}{2n + (-1)^n}$$

converges.

Q3. Prove (using the definition) that the sequence (a_n) tends to infinity in each of the

(i)
$$a_n = n^{1/4}$$
; (ii) $a_n = \frac{n^4 + 4n^3 + 1}{n^3 + 2}$; (iii) $a_n = (2 + (-1)^n)n$; (iv) $a_n = \left(n + \frac{1}{n}\right)^3 - n^3$.

1

Q4. For each of the following sequences (a_n) and values of ℓ , prove (using the definition) that $a_n \to \ell$:

(i)
$$a_n = \frac{1 + (-1)^n}{n}, \quad \ell = 0;$$

$$\begin{array}{ll} \text{(i)} & a_n = \frac{1+(-1)^n}{n}, \quad \ell = 0; \\ \text{(ii)} & a_n = \frac{n^2+4\sin(n)}{2n^2+3}, \quad \quad \ell = \frac{1}{2}. \end{array}$$

(i) Prove that if x, y > 0 then **Q5**.

$$\sqrt{x} - \sqrt{y} = \frac{x - y}{\sqrt{x} + \sqrt{y}}.$$

(ii) Using the definition of convergence, prove that the sequence (a_n) given by

$$a_n = \sqrt{n+1} - \sqrt{n}$$

converges to 0.

(iii) Does the sequence (b_n) given by

$$b_n = \sqrt{n^2 + n} - n$$

converge? If so, what does it converge to? Justify your assertions.

EXTRA QUESTIONS

These are some additional questions that you may find helpful, either now or at a later date.

EQ1. Consider the sequence

$$1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \frac{1}{5}, \cdots,$$

 $1,-\frac{1}{2},\frac{1}{3},-\frac{1}{4},\frac{1}{5},\cdots,$ which has nth term $a_n=\frac{(-1)^{n+1}}{n}$. (i) Find a natural number N for which a_n ∈ (-1/10, 1/10) for all n > N.

[Here (-1/10, 1/10) denotes the interval {x ∈ ℝ : -1/10 < x < 1/10}}.]
(ii) Find a natural number N for which a_n ∈ (-1/1000, 1/1000) for all n > N.
(iii) Let ε be any positive real number. Find a natural number N for which

 $a_n \in (-\varepsilon, \varepsilon)$ for all n > N. What does this prove?

EQ2. Let the sequence (a_n) be given by

$$a_n = \sum_{k=1}^n \frac{1}{\sqrt{n+k}}.$$

(i) Show that $a_n \geq \sqrt{\frac{n}{2}}$ for all $n \in \mathbb{N}$. (ii) By appealing to the appropriate definition, deduce that $a_n \to \infty$.

EQ3. Suppose that $\ell > 0$ and that $a_n \to \ell$. Prove that there exists $N \in \mathbb{N}$ such that $a_n > 0$ for all n > N.

EQ4. Prove that if $a_n \to \infty$ and $b_n \to \infty$ then (a) $a_n + b_n \to \infty$, and (b) $a_n b_n \to \infty$.

EQ5. Suppose that $N_0 \in \mathbb{N}$ and that $a_n \geq b_n$ for all $n > N_0$. Prove that if $b_n \to \infty$ then $a_n \to \infty$.

EQ6. Give explicit examples of sequences (a_n) and (b_n) , satisfying $a_n \to \infty$ and $b_n \to 0$, for which

- (i) $a_n b_n \to 1$.
- (ii) $a_n b_n \to 0$.
- (iii) $a_n b_n \to \infty$.
- (iv) $a_n b_n \to -\infty$.
- (v) the sequence $(a_n b_n)$ neither converges nor tends to $\pm \infty$.
- (vi) $b_n > 0$ for all $n \in \mathbb{N}$, and the sequence $(a_n b_n)$ neither converges nor tends to $\pm \infty$.

[Here $(a_n b_n)$ is the sequence whose nth term is the product $a_n b_n$.]

EQ7. Give explicit examples of sequences (a_n) and (b_n) , satisfying $a_n \to \infty$ and $b_n \to \infty$, for which

- (i) $a_n b_n \to 0$,
- (ii) $a_n b_n \to 1$,
- (iii) $a_n b_n \to \infty$,
- (iv) $a_n b_n \to -\infty$,
- (v) the sequence $(a_n b_n)$ neither converges nor tends to $\pm \infty$.

[Here $(a_n - b_n)$ is the sequence whose nth term is the difference $a_n - b_n$.]

EQ8. Suppose that (a_n) is a sequence of positive real numbers converging to $\ell > 0$.

(i) Prove that

$$|\sqrt{a_n} - \sqrt{\ell}| \le \frac{|a_n - \ell|}{\sqrt{\ell}}$$

for all $n \in \mathbb{N}$.

- (ii) Using Part (i), or otherwise, prove that $\sqrt{a_n} \to \sqrt{\ell}$ as $n \to \infty$.
- (iii) Deduce that

$$\frac{\sqrt{n^4+4n}}{n^2+1} \to 1,$$

justifying any assertions that you make.

EQ9. (i) For which values of $n \in \mathbb{N}$ is it true that $2^n \ge n$? Prove your assertion. Using your result, or otherwise, prove that

$$2^n \to \infty$$
.

(ii) For which values of $n \in \mathbb{N}$ is it true that $2^n \ge n^2$? Prove your assertion. Using your result, or otherwise, prove that

$$\frac{2^n}{n}\to\infty.$$

(iii) Outline a potential strategy for proving that

$$\frac{2^n}{n^k} \to \infty$$

for all $k = 0, 1, 2, 3, \dots$