and defined on generators by

$$\left(\bigwedge^{p} f\right)(u_1 \wedge \cdots \wedge u_p) = f(u_1) \wedge \cdots \wedge f(u_p).$$

Combining \bigwedge^p and duality, we get a linear map $\bigwedge^p f^\top \colon \bigwedge^p F^* \to \bigwedge^p E^*$ defined on generators by

$$\left(\bigwedge^{p} f^{\top}\right)(v_1^* \wedge \dots \wedge v_p^*) = f^{\top}(v_1^*) \wedge \dots \wedge f^{\top}(v_p^*).$$

Proposition 34.11. If $f: E \to F$ is any linear map between two finite-dimensional vector spaces E and F, then

$$\mu\Big(\Big(\bigwedge^p f^{\top}\Big)(\omega)\Big)(u_1,\ldots,u_p) = \mu(\omega)(f(u_1),\ldots,f(u_p)), \qquad \omega \in \bigwedge^p F^*, \ u_1,\ldots,u_p \in E.$$

Proof. It is enough to prove the formula on generators. By definition of μ , we have

$$\mu\Big(\Big(\bigwedge^{p} f^{\top}\Big)(v_{1}^{*} \wedge \cdots \wedge v_{p}^{*})\Big)(u_{1}, \dots, u_{p}) = \mu(f^{\top}(v_{1}^{*}) \wedge \cdots \wedge f^{\top}(v_{p}^{*}))(u_{1}, \dots, u_{p})$$

$$= \det(f^{\top}(v_{j}^{*})(u_{i}))$$

$$= \det(v_{j}^{*}(f(u_{i})))$$

$$= \mu(v_{1}^{*} \wedge \cdots \wedge v_{p}^{*})(f(u_{1}), \dots, f(u_{p})),$$

as claimed.

Remark: The map $\bigwedge^p f^{\top}$ is often denoted f^* , although this is an ambiguous notation since p is dropped. Proposition 34.11 gives us the behavior of $\bigwedge^p f^{\top}$ under the identification of $\bigwedge^p E^*$ and $\mathrm{Alt}^p(E;K)$ via the isomorphism μ .

As in the case of symmetric powers, the map from E^n to $\bigwedge^n(E)$ given by $(u_1, \ldots, u_n) \mapsto u_1 \wedge \cdots \wedge u_n$ yields a surjection $\pi \colon E^{\otimes n} \to \bigwedge^n(E)$. Now this map has some section, so there is some injection $\eta \colon \bigwedge^n(E) \to E^{\otimes n}$ with $\pi \circ \eta = \mathrm{id}$. As we saw in Proposition 34.10 there is a canonical isomorphism

$$(\bigwedge^n(E))^* \cong \bigwedge^n(E^*)$$

for any field K, even of positive characteristic. However, if our field K has characteristic 0, then there is a special section having a natural definition involving an antisymmetrization process.

Recall, from Section 33.10 that we have a left action of the symmetric group \mathfrak{S}_n on $E^{\otimes n}$. The tensors $z \in E^{\otimes n}$ such that

$$\sigma \cdot z = \operatorname{sgn}(\sigma) z$$
, for all $\sigma \in \mathfrak{S}_n$

are called antisymmetrized tensors. We define the map $\eta\colon E^n\to E^{\otimes n}$ by

$$\eta(u_1,\ldots,u_n) = \frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_n} \operatorname{sgn}(\sigma) u_{\sigma(1)} \otimes \cdots \otimes u_{\sigma(n)}^{-1}.$$

¹It is the division by n! that requires the field to have characteristic zero.