

ENG TECH 1PR3 Programming Principles

Arrays

Lab 06

Be sure to assign all input to appropriate variables. Do NOT use the control name directly in the calculations. Instead, assign the value of a control to a variable and use the variable in the calculations. Assign the result of the calculations to an appropriate form control. Ensure the forms are well-behaved. A form must contain an Exit button, sensible tabbing and alt-shortcuts where appropriate.

- 1. Write a VB program that will find the minimum and maximum value in an array of size **N**. When the user clicks **btnGenerate** button, the program should
 - a. ask the user to enter the size of array, i.e. the value of N
 - b. randomly generate N integers satisfying $1 \le \text{num} \le 1000$ and store into an array
 - c. display maximum 10 numbers per line in a label control
 - d. call a sub procedure to find the minimum and maximum value in the array (determine both values in the same procedure)
 - e. display the minimum and maximum value within **btnGenerate** click event procedure.
- 2. The magnitude \mathbf{F} (in N) of the force required to stretch an object of length $\mathbf{L_0}$ (in m) and cross-sectional area \mathbf{A} (in m²) by an amount $\Delta \mathbf{L}$ (in m) is given by

$$F = (Y \times 10^{10}) \left(\frac{\Delta L}{L_0}\right) A$$
, where **Y** (N/m²) is a constant called Young's modulus

Stretching Force F

Write a VB program that will calculate the value of F for given user input (A, L_0 , and ΔL) satisfying the following conditions:

$$0.01 \le A \le 0.2$$
, $10 \le L_0 \le 20$ and $0 < \Delta L \le 1.5 \times 10^{-3}$

Your program should include a listbox control containing material's name and initialize a 1-D array with the values of Young's Modulus given in the table. When the user clicks calculate button, your program should collect user input from textboxes and the value of Y for the selected material. Finally, your program should display input values (as entered) and the value of F (in exponential form) format to 3 decimal places in a label control.

Values of the Young's Modulus of solid materials (10¹⁰ is adjusted in formula)

Material	Y
Aluminium	6.9
Brass	9.0
Copper	11.0
Nylon	0.37
Steel	21.0
Teflon	0.037

Submitting the Lab

In order for your Lab/Assignment to be eligible for grading you must submit the following:

- The code must contain your Full Name and Student ID in a comment block at the top of each form module.
- A .zip compressed file containing the entire VB.NET project to AVENUE. Use .zip compression only (no RAR, TAR etc). If there is more than one project, create a separate .zip file for each individual project. Be sure to add all project files and folders to the .zip file. If the compressed file is missing files/folders such that the project will not open or run, the lab/assignment will receive a grade of 0.
- A Word .doc (or .docx) file containing:
 - o A cover page that includes your name, Student ID, and MAC ID
 - The form code (event and other subprocedures and functions) including programmer's block
 - o Screen captures of the form showing sample input and output.

Upload the Word file and .zip file(s) **separately** to the appropriate assignment drop-box on AVENUE.

Labs and assignments will not be accepted for evaluation if any of the above items are omitted and will result in a grade of 0.