Gestion de Portefeuille

Ex 7: Risk Parity and Risk Budgeting

Version: 30 janv. 2023

1 Données

On utilisera les données de l'article de Litterman et He.

```
spl <- function (</pre>
        # input string
 delim = ',' # delimiter
) {
  unlist(strsplit(s,delim))
data =
'1,0.4880,0.4780,0.5150,0.4390,0.5120,0.4910
0.4880,1,0.6640,0.6550,0.3100,0.6080,0.7790
0.4780,0.6640,1,0.8610,0.3550,0.7830,0.6680
0.5150,0.6550,0.8610,1,0.3540,0.7770,0.6530
 0.4390,0.3100,0.3550,0.3540,1,0.4050,0.3060
 0.5120,0.6080,0.7830,0.7770,0.4050,1,0.6520
 0.4910,0.7790,0.6680,0.6530,0.3060,0.6520,1
  Corrmat = matrix( as.double(spl( gsub('\n', ',', data), ',')),
                    nrow = length(spl(data, '\n')), byrow=TRUE)
  stdevs = c(16.0, 20.3, 24.8, 27.1, 21.0, 20.0, 18.7)/100
  w.eq = c(1.6, 2.2, 5.2, 5.5, 11.6, 12.4, 61.5)/100
  # Prior covariance of returns
  Sigma = Corrmat * (stdevs %*% t(stdevs))
```

Rendements d'équilibre

```
# risk aversion parameter
delta = 2.5
Pi = delta * Sigma %*% w.eq
```

Std Dev	Weq	PΙ
16	1.6	3.9
20.3	2.2	6.9
24.8	5.2	8.4
27.1	5.5	9
21	11.6	4.3
20	12.4	6.8
18.7	61.5	7.6
	16 20.3 24.8 27.1 21	16 1.6 20.3 2.2 24.8 5.2 27.1 5.5 21 11.6 20 12.4

2 Questions

2.1 Calculer une allocation telle que les contributions au risque du portefeuille sont idfentiques pour tous les titres (optimisation non-linéaire).

Formulez le problème d'optimisation non-linéaire correspondant. Définissez la fonction objectif et la matrice de contraintes, puis utilisez solnl pour obtenir la solution.

2.2 Exprimer les conditions d'optimalité du problème précédent, et résoudre directement ces équations par la méthode de Newton.

La condition du premier ordre pour la parité risque est:

$$w_i \frac{\partial \sigma_P}{\partial w_i} = w_j \frac{\partial \sigma_P}{\partial w_j} = \lambda$$

Ecrire le système d'équations non-linéaires à résoudre, et utiliser la fonction nlegsly pour obtenir une solution.