Perimeter

Time limit: 1 sec

You are a commander in an army. During a field exercise, you would like to set up several outposts around your base. There are **n** possible locations for the outposts, each are numbered from **1** to **n**. These locations may have a road connecting them. There are **e** such road, each of which directly connects a pair of locations. These roads have similar distance. Hence, you define the distance to the location as a smallest number of roads that you must walk pass from your base to reach that location.

You want each outpost to be exactly at distance \mathbf{k} , meaning that you can travel from your base to that outpost over \mathbf{k} roads. How many locations that you have to setup the outpost.

Input

- The first line of input contains three integers \mathbf{n} , \mathbf{e} and \mathbf{k} where $1 \le k \le n \le 1,000$ and $0 \le \mathbf{e} \le 10,000$.
- The next **e** lines describe the roads, one road per line.
 - Each line contains two integer **a** and **b** indicating that there is a road connecting location **a** and **b**. The road can be used both way. Be noted that 0 ≤ a,b ≤ n, i.e., there are **n+1** possible value for **a** and **b**.
 - The base is numbered as **0**.

Output

There must be **1** line showing the number of location that has a distance of exactly k.

Example

Input	Output
3 4 1	2
0 1	
1 2	
1 3	
0 3	
5 0 1	0
3 4 2	2
0 1	
1 2	
2 3	
1 3	