UNIVERSIDADE FEDERAL DE GOIÁS ESCOLA DE ENGENHARIA ELÉTRICA, MECÂNICA E DE COMPUTAÇÃO INTRODUÇÃO À ENGENHARIA DE COMPUTAÇÃO

PROF. DR. ADRIANO CÉSAR SANTANA adriano@ufg.br

INTRODUÇÃO AO ARDUINO - AULA 4

- Visualizar aplicabilidades para diferentes módulos;
- Entender o funcionamento do Sensor Ultrassônico;

Aplicar vários módulos em uma só solução.

Sensor Ultrassônico HC-SR04

Média de preço: R\$ 16,00

Utilidade: Medir distâncias

Sensor de Umidade e Temperatura

 Sensor de Umidade e Temperatura DHT11

Média de preço: R\$ 10,00

Utilidade: Medir temperatura e

umidade

Módulo Relé 5V - 1 Canal
 Média de preço: R\$ 10,00

Utilidade: Acionamento de circuitos

Módulo Bluetooth - HC-05
 Média de preço: R\$50,00

Utilidade: Conexão com arduino através do BT

Sensor de Estacionamento

Componentes Necessários

- Sensor Ultrassônico HC-SR04
- Buzzer 5V;
- Resistores;
- Arduino e Protoboard.

Montagem de circuito

GND 5V PORTA 13 PORTA 10 PORTA 2

Conecte o Arduino ao computador utilizando o cabo de conexão USB e passe a programação "sensor_estacionamento"

• Partes mais importantes

```
#include <Ultrasonic.h> //Carrega a biblioteca Ultrasonic
                                                                         Bibliotecas
#include <NewTone.h> //Carrega a biblioteca Newtone
Ultrasonic ultrasonic(13, 10);
                                                                      Função da biblioteca
//Le os dados do sensor, com o tempo de retorno do sinal
long microsec = ultrasonic.timing();
                                                                       Função da biblioteca
//Calcula a distancia em centimetros
                                                                         Função da biblioteca
cmMsec = ultrasonic.convert(microsec, Ultrasonic::CM);
 //Ajusta o atraso de acordo com a distância
 if (cmMsec > 80)
                                                                     Calcula delay
  atraso = 2000;
```


Mude a programação para o arquivo "buzzer.ino" e faça a compilação

l'm your father!

• LCD 16x2 para Arduino

Componentes Necessários

- LCD 16x2;
- Potenciômetro;
- Arduino e Protoboard.

Montagem de circuito

GND
5V
PORTA 12
PORTA 5
PORTA 11
PORTA 4
PORTA 3
PORTA 2

Tabela de ligações dos pinos do LCD 16x2

Conexões LCD 16x2 - HD44780		
Pino LCD	Função	Ligação
1	Vss	GND
2	Vdd	Vcc 5V
3	V0	Pino central potenciômetro
4	RS	Pino 12 Arduino
5	RW	GND
6	E	Pino 11 Arduino
7	D0	Não conectado
8	D1	Não conectado
9	D2	Não conectado
10	D3	Não conectado
11	D4	Pino 5 Arduino
12	D5	Pino 4 Arduino
13	D6	Pino 3 Arduino
14	D7	Pino 2 Arduino
15	Α	Vcc 5V
16	K	GND

Conecte o Arduino ao computador utilizando o cabo de conexão USB e passe a programação "lcd_16x2"

• Partes mais importantes

#include <LiquidCrystal.h>

LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

lcd.begin(16, 2);

lcd.clear();
lcd.setCursor(3, 0);
lcd.print("MONITORIA");
lcd.setCursor(3, 1);
lcd.print(" IEC ");

Bibliotecas

Função da biblioteca

Email para contato e repositório GIT

https://github.com/ufglec/Arduino