

Autodesk Fusion 360/EAGLEで プリント基板&ケース 設計ワークショップ

2020/8/21@SWEST22オンライン

(株)オーバス(デンソー) グループマネージャ

大栄 豊

自己紹介(1)

大栄 豊(おおえ ゆたか)

https://www.facebook.com/yutaka.ohe

- 日本中でも、少し珍しい「苗字」
 - 名字由来netで、【全国順位】 14,915位 【全国人数】 およそ380人 ⇒実は、戸籍上の「大榮」で調べると、

【全国順位】 54,732位 【全国人数】およそ30人

- · IoT ALGYAN本会運営委員
 - 。「IoT ALGYAN(あるじゃん)Ⅰ周年記念・IoT祭り2016!」で、「破」免状認定
 - 。「IoT ALGYAN3周年「IoT祭り2018」」で、「離」免状認定

自己紹介(2)

大栄 豊(おおえ ゆたか)

https://www.facebook.com/yutaka.ohe

。(株)オーバス勤務((株)デンソーより出向中)

http://www.aubass.co.jp

- ◦8月下旬に下呂温泉で3泊4日の合宿研修(学生・新人社会人向け)
- 組み込みソフトウェア開発の基礎を学ぶ場

https://swest.toppers.jp/LED-Camp/

本日の目標

Autodeskの「EAGLE」を使って 回路図を書けるようになる プリント基板のパターン設計が出来 るようになる

Fusion 360と連携し、3Dモデル(外観)を確認できるようになる

誠に申し訳ありません

当初目標のFusion 360連携において、エラーが発生し本ハンズオンでのレクチャーが出来なくなってしまいました。

代わりにFusion 360でのP板設計の簡易デモを行います。

設計する回路

ESP32-DevKitC相当回路の設計については、 ESP32-DevKitC、ESPr Developer 32の回路図を参考にしています

http://akizukidenshi.com/download/ds/espressifsystems/esp32_devkitc_v4-sch-20180607a.pdf
https://s3-ap-northeast-l.amazonaws.com/switch-science.public/schematic/ESPr_Developer_32.pdf

- •ESP32-DevkitC相当の回路+
 - LED X 3
 - ・ブザー
 - ・ CdSセル
 - ・プッシュSW
 - ・外部電源用コネクタ
 - サーボモータ用コネクタ
 - DRV8835モータドライバ
 - Grove(I2C)コネクタ×2

かなり実用的な プリント基板です!

部品表

使用する部品はチップ部品もありますが、できるだけ 手はんだ付けが出来るサイズの部品を選定しています

No.	部品名	種類	型番・値	個数	オンライン販売URL	備考
1	ESP32-WR00M-32	UI		ı	http://akizukidenshi.com/catalog/g/gM-11647/	-32DでもOK
2	チップ抵抗(2012)	R3、R4、R5、R10、R11、E12	lkΩ	6	https://www.sengoku.co.jp/mod/sgk_cart/detail.php?code=EEHD-57BZ	千石通商
3	チップ抵抗(2012)	RI、R2、R6、R7、R8、R9	I0kΩ	6	http://akizukidenshi.com/catalog/g/gR-11797/	
4	チップコンデンサ(1608)	C4、C6	0.01uF	3	http://akizukidenshi.com/catalog/g/gP-13387/	
5	チップコンデンサ(2012)	C3、C5	0. luF	2	http://akizukidenshi.com/catalog/g/gP-13372/	
6	チップコンデンサ(3216)	C1、C2	22uF	2	http://akizukidenshi.com/catalog/g/gP-06038/	
7	チップLED(赤色)	PWR、TXD、RED、LEDI、LED2、LED3	0SR50805C1C	6	http://akizukidenshi.com/catalog/g/gI-06419/	別色でもOK
8	チップトランジスタ	T1、T2	2SC2712	2	http://akizukidenshi.com/catalog/g/gI-00761/	
9	三端子レギュレータ	U2	NJM2845DL1	1	http://akizukidenshi.com/catalog/g/gI-10978/	
10	USBシリアルIC	U3	FT231XS-R	1	http://akizukidenshi.com/catalog/g/gI-06713/	
11	モータードライバーモジュール	U4	DRV8835	1	http://akizukidenshi.com/catalog/g/gK-09848/	
12	チップタクトSW	SWI, SW2, SW3	TVAF06-A020B	3	http://akizukidenshi.com/catalog/g/gP-14888/	
13	CdSセル	CDSI	GL5528	1	http://akizukidenshi.com/catalog/g/gI-05886/	
14	チップダイオード	DI	RB751S	1	http://akizukidenshi.com/catalog/g/gI-01370/	
15	microUSBコネクタ	CnI	ZX62-B-5PA(33)	1	http://akizukidenshi.com/catalog/g/gC-11183/	
16	ESP32-Devki+C	U5		1	http://akizukidenshi.com/catalog/g/gM-11819/	ESP32-DevkitC相当回路 部品と片方を使用
17	電子ブザー	BZI	UGCM1205XP	ı	http://akizukidenshi.com/catalog/g/gP-09800/	
18	ピンヘッダ(40pin)	CN2、CN3、CN4		7pin	http://akizukidenshi.com/catalog/g/gC-00167/	40pinを2,3,4pinに分割
19	Groveコネクタ(I2C)	CN5、CN6	Female Header (4-pin/2mm)	2	https://www.seeedstudio.com/Grove-Universal-4-pin-connector.html	Seeed Studio

ESP32ピンアサイン

ESP32 Dev Board PINMAP

引用元:https://github.com/espressif/arduino-esp32

1. EAGLEで回路図(基本操作)

新規プロジェクト作成~回路図作成

- ・図面枠の配置
- •使用する部品の選択&配置
- ○部品情報の設定
- ・回路の結線

任意の順に実施も 可能です

1-1 新規プロジェクト作成

プロジェクト名:swest22-esp32-01

1-2 新規回路図作成

1-3-1 回路部品を配置

1-3-2 主な標準ライブラリと部品

•con-xxxxx:各種コネクター

•frames: 各種回路図面枠 ex) A3L-LOC: A3横図面枠

•rcl、resister: 各種抵抗、コンデンサ、コイルex) R-US_R2012:チップ抵抗(2012)

•pinhead:各種ピンヘッダー ex) PINHD-1x4:4pin縦型ピンヘッダ

*supply1、supply2:各種電源記号、GND記号 ex)+5V、GND:5V電源、GND

1-3-3 カスタムライブラリの追加

1-4 部品の情報設定

1-5 結線

1-6 その他

頻繁に使う機能一覧

機能	アイコン	機能概略
		部品や結線の移動
		部品の左右反転
編集	•	部品や結線の左90度回転
柳木		コピー:選択した部品や配線などをコピー
	Ē	ペースト:選択した部品や配線などを貼り付け
		削除:選択した部品や配線などを削除
部品選択	⇔ *	部品の選択
时四迭八		回路ブロックの選択
結線	7	結線
水口形水	AB	ラベル付け
部品情報	R2 10k	Name の編集
対・日にロロコロ	R2 10k	Value の編集

1-7 回路図の保存

一通り、回路図が描けたところで、 図面を保存しましょう

もしくは

1. EAGLEで回路図まとめ

新規プロジェクト作成~回路図作成

- ・図面枠の配置
 - ※図面枠はしっかり活用しよう!
- 使用する部品の選択&配置
 - ※P板の完成時の部品配置に近づけるといいよ!
 - ※部品同士はあまり近づけないで!
 - ※電源とGNDもパーツで配置しよう! (ライブラリのメンテは省略します)
- ◦部品情報の設定
 - ※NameとValueはちゃんと設定しよう!
- ・回路の結線
 - ※出来るだけ綺麗に繋ごう!

2. 本番回路図の作成

今回のプリント基板用にカスタムライブラリを準備しています。

以下のURLからダウンロードして、カスタムライブラリの追加を行って下さい。

https://1drv.ms/u/s!AkLB2eZss6Sqg-VmehpbjdQQke8GDA?e=T2fZUX

続いて、今回のハンズオンセッションの時間内に回路図を全て描くこと は時間的に難しいです。

従いESP32 DevKitC相当の回路部分を作成済みのプロジェクトを事前に準備しました。

以下のURLからダウンロードして、残りの回路部分を描いてみて下さい。 https://ldrv.ms/u/s!AkLB2eZss6Sqg-Vpr65C0hoc3jEsiw?e=HpFxBv

> ※)上記データのダウンロードは、2020/8/31で終了しました。 必要な方は、個別に連絡下さい。

2-1 追加して描く回路部分

質疑応答&休憩

3. **EAGLEでプリント基板(P板)その**I

P板外形作成~部品配置~パターン設計

- ・回路図からP板図を作成
- 。P板外形を編集
- •部品をP板内部に配置
- ・パターンの自動配線&手修正
- •回路チェックと配線チェック

3-1 回路図からP板図を作成

ボタンクリックひとつで、 P板図が出来上がります。 また、回路図上の部品も 結線情報付きで全て仮置きされます。

3-1-1 P板外形を編集(基本設定)

- 描画のレイヤーを外形用レイヤー (20 Dimension)に変更します
- ・ Gridの設定を行いグリッドライン のサイズを設定し、表示をONに します(描画の範囲に合わせて 都度設定を調整します)

3-1-2 P板外形を編集

頻繁に使う機能一覧

機能	アイコン	機能概略
		部品やパターン・外形線などの移動
編集		部品やパターン・外形線などの左右反転
柳木	•	部品やパターン・外形線などの左90度回転
		削除:選択した部品やパターンなどを削除
	/	直線(連続直線)の描画
外形線	0	円の描画
編集		長方形の描画
		縁故の描画
結線	•7,	パターンの配線
ボロ 形 状	7	自動配線
その他	 →	寸法線の描画
	DRC	配線チェック

3-2 P板外形を編集

右のP板は配線まで完成させてみた事例です。

今回の回路部品の載せるには、 大体80mm x 50mm = 4000mm² 程度のサイズが あれば配線できるようです。

このサイズを目安に自由な外形形状のP板を描いてみましょう。

なお、EAGLEのフリー版で作成できるP板の 最大サイズは、100mm×160mmです。

P板の外形はルーター加工で製造するため非常に柔軟な形状にすることが出来ます。

3-3 部品をP板内部に配置

P板外部に仮配置されている部品をP板内部に移動させて配置していきます。

配置する場合に回路の結線(Net)が長くならないように並べていきます。

P板のサイズに余裕があると、比較的に楽に配置できます。

部品だけでなく、「Name」も部品の下に隠れたり重なったりしないように配置します。

回路図で設定した「Value」はP板では不要なので、削除してOKです。

3-4-1パターンの自動配線(事前設定)

パターンの自動配線を行うには、まず配線のルールを設定します。

ルール設定は配線チェック(♥) の機能と同じダイアログで行い ます。

デフォルトのままでもOKです。

しかしデフォルトではパターンの幅やギャップが6mil≒0.15mm なので、少しでも広めにしてお くことを推奨します。

推奨値:10mil~20mil

3-4-2 パターンの自動配線(配線禁止エリア設定)

ビス締め穴などがある場合、 ビスによる配線ショートが発 生しないように、ビス穴の周 りに配線禁止エリアを設定し ます。

配線禁止エリア設定には、レイヤーを

部品面: 41 tRestrict

はんだ面: 42 bRestrict

に変更した上で。外形線と同

じように描きます。

3-4-2 パターンの自動配線と手修正

Autorouterの機能で、パターン の自動配線を行います。

1回で100%に達しないときは、 Autorouterを繰り返すことで、 自動配線率が向上する場合が あります。

繰り返しても配線率が向上しない場合は、配線を手動で修 正して完成させます。

すべて配線が完了したら、 DRC(♥)機能でチェックし、エ ラーがないことを確認して完 成です。

3. EAGLEでプリント基板(P板)その1まとめ

P板外形作成~部品配置~パターン設計

- ・回路図からP板図を作成
 - ※部品と回路結線が自動で連携できます!
- 。P板外形を編集、部品をP板内部に配置
 - ※寸法単位(mmとinch)に注意し、グリッドサイズを 使い分けます!
- ・パターンの自動配線&手修正
 - ※自動配線用のパラメータを設定しよう!
- •回路チェックと配線チェック

4. EAGLEでプリント基板(P板)その2

P板発注用のガーバーデータ作成

•P板発注用のガーバーデータの作成

• ガーバーデータのチェック

- △Fusion 360と連携させ、3Dモデルで確認
- Fusion 360でのP板設計簡易デモ

4-1 P板発注用のガーバーデータの作成

P板の発注先は、Seeed Fusion PCBとして、 ガーバーデータを作成します。

Seeed Fusion PCBは、P 板製造において安く早 くでき、さらにオンラ イン発注の出来るメー カーです。

また、Autodesk EAGLE には、Seeed Fusion PCB用のガーバーデータ 作成パラメータなどが 標準で設定されていま す。

4-2 ガーバーデータのチェック

ガーバーデータのチェックは、発注先の Seeed Fusion PCBのサイトにガーバーデー タをアップロードし、ガーバービュー ワーで確認を行います。

https://www.fusionpcb.jp/fusion_pcb.html

EAGLEでプリント基板(P板)その2

- P板発注用のガーバーデータ作成
- •P板発注メーカーの決定とガーバーデータの作成
 - ※いくつかのメジャーなP板メーカーは組み込まれています!
- ガーバーデータのチェック
 - ※発注前にガーバービューワーを使ってチェックしよう!
- □Fusion 360と連携させ、3Dモデルで確認
 - ※部品に3Dデークがあると、実装済み状態を確認できます!

Fusion 360でP板設計簡易デモ

最後にFusion 360で 簡易デモを実施します!

Fin

ご清聴ご参加ありがとうございました!

補足

EAGLE用の電子部品ライブラリは各メーカーや有志によりいろいろ整備されています。

これらを活用することで、簡単にP板の設計を行うことが出来ます。

また、現在Autodesk EAGLEは、Fusion 360 に内包されました。

これにより、P板設計だけでなく、3Dモデルまでの設計が容易になっています。