Formelsammlung

PS Investition und Finanzierung

Institut für Banken und Finanzen, Universität Innsbruck Wintersemester 2023/2024

$K_n = K_0 \cdot (1+r)^n$
$K_n = K_0 \cdot \left(1 + \frac{r_{\text{nom}}}{m}\right)^{m \cdot n}$
$K_n = K_0 \cdot e^{r_{\text{nom}} \cdot n}$
$r_{\mathrm{konf},m} = m \cdot \left(\sqrt[m]{1 + r_{\mathrm{reff}}} - 1 \right)$
$r_{\mathrm{konf},\infty} = \ln(1 + r_{\mathrm{eff}})$
$r_{ ext{eff}} = \sqrt[n]{rac{K_n}{K_0}} - 1$ bei $n > 0$
$RBW = R \cdot \frac{q^n - 1}{q^n \cdot (q - 1)} \text{ mit } q = \left(1 + \frac{r_{\text{nom}}}{m}\right)^m$
$RBW = \frac{R}{q-1} \text{ mit } q = (1 + \frac{r_{\text{nom}}}{m})^m$
$RBW = R_1 \cdot \frac{q^n - (1+g)^n}{q^n \cdot (q-1-g)}$ mit $q = (1 + \frac{r_{nom}}{m})^m$
$RBW = \frac{R_1}{q-1-g} \text{ mit } q = \left(1 + \frac{r_{nom}}{m}\right)^m$
$r_{XN} = \sqrt[N-X]{\frac{(1+r_N)^N}{(1+r_X)^X}} - 1$
$r_{XN} = \frac{N \cdot r_N - X \cdot r_X}{N - X}$
$B_0 = \frac{Kup}{r} + \frac{TK - \frac{Kup}{r}}{(1+r)^n} \text{ mit } n \in \mathbb{N}$
$K_m = \frac{n \cdot K_a + m \cdot K_j}{n + m}$
$BR = K_a - K_m$
$d = \frac{\text{TK-EmK}}{\text{TK}}$
$d = \frac{\text{EmK-TK}}{\text{TK}}$
$C_T = \max(S_T - X, 0)$
$P_T = \max(X - S_T, 0)$