

pydls

A Package for Bayesian Inferrence of Particle Size Distributions in Dynamic Light Scattering Experiments

Thy Doan Mai Le Advisor: Jerome Fung

Date: August 5, 2019

Contents

1 Dynamic Light Scattering			2
	1.1	Theoretical Background	2
	1.2	Proposed Algortihm	2
2 Development			2
	2.1	From Data to Distribution	2
	2.2	Single Exponential Fit	2
	2.3	Unimodal Distribution Tests	2
	2.4	Bimodal Distribution Tests	2
	2.5	Experimental Data Tests	2
3	Con	nclusion	2

1 Dynamic Light Scattering

Dynamic ligh scattering (DLS) is a technique used to determine the size distribution of a sample of particles suspended in an optically transparent medium, also known as a colloidal sample. When incident light is directed towards a colloidal sample, each particle within the sample scatters the incident light independently and this same process repeats for all of the particles within the sample.

- 1.1 Theoretical Background
- 1.2 Proposed Algorihhm
- 2 Development
- 2.1 From Data to Distribution
- 2.2 Single Exponential Fit
- 2.3 Unimodal Distribution Tests
- 2.4 Bimodal Distribution Tests
- 2.5 Experimental Data Tests
- 3 Conclusion