C04 – Weakest Precondition calculus & Separation Logic

Program Verification

FMI · Denisa Diaconescu · Spring 2022

Overview

Weakest Precondition calculus (cont.)

 ${\sf Separation\ Logic}$

Weakest Precondition calculus

(cont.)

Weakest precondition calculus (WP)

WP is about evaluating a function:

- Given some code $\mathbb C$ and postcondition Q, find the unique P which is the weakest precondition such that Q holds after $\mathbb C$.
- $P = wp(\mathbb{C}, Q)$
- WP respects Hoare logic: $\{wp(\mathbb{C},Q)\}$ \mathbb{C} $\{Q\}$ is true in Hoare logic.

WP is about total correctness.

Total correctness = Termination + Partial correctness

Weakest precondition rules

Rule for Assignment $wp(x := \mathbb{E}, Q) \equiv Q[x/\mathbb{E}]$

(Q is an assertion involving a variable x and $Q[x/\mathbb{E}]$ indicates the same assertion with all occurrences of x replaced by the expression \mathbb{E})

Rule for sequencing
$$wp(\mathbb{C}_1; \mathbb{C}_2, Q) \equiv wp(\mathbb{C}_1, wp(\mathbb{C}_2, Q))$$

Rules for conditionals (equivalent)

$$\mathit{wp}(\mathsf{if}\ \mathbb{B}\ \mathsf{then}\ \mathbb{C}_1\ \mathsf{else}\ \mathbb{C}_2, \mathit{Q})\ \equiv\ (\mathbb{B} \to \mathit{wp}(\mathbb{C}_1, \mathit{Q})) \land (\lnot\mathbb{B} \to \mathit{wp}(\mathbb{C}_2, \mathit{Q}))$$

$$\mathit{wp}(\mathtt{if}\ \mathbb{B}\ \mathtt{then}\ \mathbb{C}_1\ \mathtt{else}\ \mathbb{C}_2, Q)\ \equiv\ (\mathbb{B}\wedge \mathit{wp}(\mathbb{C}_1, Q)) \vee (\neg \mathbb{B}\wedge \mathit{wp}(\mathbb{C}_2, Q))$$

Loops

Suppose we have a while loop and some postcondition Q.

The precondition P that we seek is the weakest that:

- establishes Q
- guarantees termination

Loops

Suppose we have a while loop and some postcondition Q.

The precondition P that we seek is the weakest that:

- establishes Q
- guarantees termination

We can take hints for the corresponding rule for Hoare Logic. That is, think in terms of loop invariants.

Loops

Suppose we have a while loop and some postcondition Q.

The precondition P that we seek is the weakest that:

- establishes Q
- guarantees termination

We can take hints for the corresponding rule for Hoare Logic. That is, think in terms of loop invariants.

But termination is a bigger problem!

An undecidable problem

Determining if a program terminates or not on a given input is an **undecidable problem**!

An undecidable problem

Determining if a program terminates or not on a given input is an **undecidable problem!**

So there's no algorithm to compute $wp(\text{while }\mathbb{B}\text{ do }\mathbb{C},Q)$ in all cases.

But that doesn't mean there are no techniques to tackle this problem that at least work some of the time!

The precondition P we seek is the weakest that establishes Q and guarantees termination.

How can a loop terminate?

The precondition P we seek is the weakest that establishes Q and guarantees termination.

How can a loop terminate?

- If the loop body is never entered, then the postcondition Q must already be true and the loop condition $\mathbb B$ false.
 - We will call this precondition P_0 .
 - $P_0 \equiv \neg \mathbb{B} \land Q$ i.e, $\{\neg \mathbb{B} \land Q\}$ do nothing $\{Q\}$

The precondition P we seek is the weakest that establishes Q and guarantees termination.

How can a loop terminate?

- If the loop body is never entered, then the postcondition Q must already be true and the loop condition $\mathbb B$ false.
 - We will call this precondition P_0 .
 - $P_0 \equiv \neg \mathbb{B} \wedge Q$ i.e, $\{\neg \mathbb{B} \wedge Q\}$ do nothing $\{Q\}$
- Suppose the loop body executes exactly once. In this case:
 - \mathbb{B} must be true initially
 - after the first time through the loop body, P_0 must become true (so that the loop terminates next time through).
 - $P_1 \equiv \mathbb{B} \land wp(\mathbb{C}, P_0)$ i.e., $\{\mathbb{B} \land wp(\mathbb{C}, P_0)\} \subset \{P_0\}$

$$P_0 \equiv \neg \mathbb{B} \wedge Q$$
 i.e, $\{\neg \mathbb{B} \wedge Q\}$ do nothing $\{Q\}$

$$P_1 \equiv \mathbb{B} \wedge wp(\mathbb{C}, P_0)$$
 i.e., $\{\mathbb{B} \wedge wp(\mathbb{C}, P_0)\} \subset \{P_0\}$

$P_0 \equiv \neg \mathbb{B} \wedge Q$	i.e, $\{\neg \mathbb{B} \land Q\}$ do nothing $\{Q\}$
$P_1 \equiv \mathbb{B} \wedge \textit{wp}(\mathbb{C}, P_0)$	i.e., $\{\mathbb{B} \wedge wp(\mathbb{C}, P_0)\} \mathbb{C} \{P_0\}$
$P_2 \equiv \mathbb{B} \wedge wp(\mathbb{C}, P_1)$	i.e., $\{\mathbb{B} \wedge wp(\mathbb{C}, P_1)\} \mathbb{C} \{P_1\}$

$P_0 \equiv \neg \mathbb{B} \wedge Q$	i.e, $\{\neg \mathbb{B} \land Q\}$ do nothing $\{Q\}$
$P_1 \equiv \mathbb{B} \wedge wp(\mathbb{C}, P_0)$	i.e., $\{\mathbb{B} \wedge wp(\mathbb{C}, P_0)\} \subset \{P_0\}$
$P_2 \equiv \mathbb{B} \wedge wp(\mathbb{C}, P_1)$	i.e., $\{\mathbb{B} \wedge \textit{wp}(\mathbb{C}, P_1)\} \ \mathbb{C} \ \{P_1\}$
$P_3 \equiv \mathbb{B} \wedge wp(\mathbb{C}, P_2)$	i.e., $\{\mathbb{B} \wedge \textit{wp}(\mathbb{C}, P_2)\} \ \mathbb{C} \ \{P_2\}$
• • •	

7

```
P_{0} \equiv \neg \mathbb{B} \land Q  i.e, \{\neg \mathbb{B} \land Q\} do nothing \{Q\}
P_{1} \equiv \mathbb{B} \land wp(\mathbb{C}, P_{0})  i.e., \{\mathbb{B} \land wp(\mathbb{C}, P_{0})\} \subset \{P_{0}\}
P_{2} \equiv \mathbb{B} \land wp(\mathbb{C}, P_{1})  i.e., \{\mathbb{B} \land wp(\mathbb{C}, P_{1})\} \subset \{P_{1}\}
P_{3} \equiv \mathbb{B} \land wp(\mathbb{C}, P_{2})  i.e., \{\mathbb{B} \land wp(\mathbb{C}, P_{2})\} \subset \{P_{2}\}
...
```

 P_k – the weakest precondition under which the loop terminates with postcondition Q after exactly k iterations.

We can capture the definition of P_k with an inductive definition.

An inductive definition

$$\begin{array}{rcl} P_0 & \equiv & \neg \mathbb{B} \wedge Q \\ \\ P_{k+1} & \equiv & \mathbb{B} \wedge wp(\mathbb{C}, P_k) \end{array}$$

An inductive definition

$$P_0 \equiv \neg \mathbb{B} \wedge Q$$

$$P_{k+1} \equiv \mathbb{B} \wedge wp(\mathbb{C}, P_k)$$

If any of the P_k is true in the initial state, then we are guaranteed that the loop will terminate and establish the postcondition Q,

i.e.
$$\{P_0 \vee P_1 \vee \ldots\}$$
 while $\mathbb B$ do $\mathbb C$ $\{Q\}$ is true.

The weakest precondition for while loops (rule 4/4)

$$\mathit{wp}(exttt{while} \ \mathbb{B} \ exttt{do} \ \mathbb{C}, \mathit{Q}) \equiv \exists k \ (k \geq 0 \land \mathit{P}_k)$$

where P_k is defined inductively:

$$\begin{array}{rcl} P_0 & \equiv & \neg \mathbb{B} \wedge Q \\ \\ P_{k+1} & \equiv & \mathbb{B} \wedge wp(\mathbb{C}, P_k) \end{array}$$

The weakest precondition for while loops (rule 4/4)

$$\mathit{wp}(exttt{while } \mathbb{B} ext{ do } \mathbb{C}, \mathit{Q}) \equiv \exists k \; (k \geq 0 \wedge \mathit{P}_k)$$

where P_k is defined inductively:

$$P_0 \equiv \neg \mathbb{B} \wedge Q$$

$$P_{k+1} \equiv \mathbb{B} \wedge wp(\mathbb{C}, P_k)$$

Interpretation:

- P_k is the weakest precondition that ensures that the body $\mathbb C$ executes exactly k times and terminates in a state in which the postcondition Q holds.
- \bullet If our loop is to terminate with postcondition Q, some P_k must hold before we enter the loop
 - i.e. $\{P_0 \vee P_1 \vee \ldots\}$ while $\mathbb B$ do $\mathbb C$ $\{Q\}$ is true.

Applying the *wp* function to a while loop and postcondition will produce an assertion of the form

$$\exists k \ (k \geq 0 \land P_k)$$

 P_k may be different for each k, so wp may produce an infinitely long assertion! Such an assertion is unsuitable for further manipulation.

Applying the *wp* function to a while loop and postcondition will produce an assertion of the form

$$\exists k \ (k \geq 0 \land P_k)$$

 P_k may be different for each k, so wp may produce an infinitely long assertion! Such an assertion is unsuitable for further manipulation.

We can simplify matters by expressing P_k as a single, finite formula that is parameterised by k.

Applying the *wp* function to a while loop and postcondition will produce an assertion of the form

$$\exists k \ (k \geq 0 \land P_k)$$

 P_k may be different for each k, so wp may produce an infinitely long assertion! Such an assertion is unsuitable for further manipulation.

We can simplify matters by expressing P_k as a single, finite formula that is parameterised by k.

Example

If
$$P_0 \equiv (n = 0)$$
, $P_1 \equiv (n = 1)$, $P_2 \equiv (n = 2)$, ..., then $P_k \equiv (n = k)$.

Applying the *wp* function to a while loop and postcondition will produce an assertion of the form

$$\exists k \ (k \geq 0 \land P_k)$$

 P_k may be different for each k, so wp may produce an infinitely long assertion! Such an assertion is unsuitable for further manipulation.

We can simplify matters by expressing P_k as a single, finite formula that is parameterised by k.

Example

If
$$P_0 \equiv (n = 0)$$
, $P_1 \equiv (n = 1)$, $P_2 \equiv (n = 2)$, ..., then $P_k \equiv (n = k)$.

We must prove correctness of P_k by induction!

$$wp(ext{while } \mathbb{B} ext{ do } \mathbb{C}, Q) \equiv \exists k \ (k \geq 0 \wedge P_k)$$

$$P_0 \equiv \neg \mathbb{B} \wedge Q$$

$$P_{k+1} \equiv \mathbb{B} \wedge wp(\mathbb{C}, P_k)$$

Example

Suppose we want to find:

$$wp(while n > 0 do n := n-1, n = 0)$$

$$\begin{array}{ccc} \textit{wp}(\texttt{while} \;\; \mathbb{B} \;\; \texttt{do} \;\; \mathbb{C}, Q) \equiv \exists \textit{k} \;\; (\textit{k} \geq \textit{0} \land \textit{P}_\textit{k}) \\ \\ P_0 & \equiv & \neg \mathbb{B} \land Q \\ \\ P_{k+1} & \equiv & \mathbb{B} \land \textit{wp}(\mathbb{C}, \textit{P}_\textit{k}) \end{array}$$

Example

Suppose we want to find:

$$wp(while n > 0 do n := n-1, n = 0)$$

$$wp(ext{while } \mathbb{B} ext{ do } \mathbb{C}, Q) \equiv \exists k \ (k \geq 0 \wedge P_k)$$

$$P_0 \equiv \neg \mathbb{B} \wedge Q$$

$$P_{k+1} \equiv \mathbb{B} \wedge wp(\mathbb{C}, P_k)$$

Example

Suppose we want to find:

$$wp(while n > 0 do n := n-1, n = 0)$$

•
$$P_0 \equiv \neg (n > 0) \land (n = 0) \equiv (n = 0)$$
 i.e., $\neg \mathbb{B} \land Q$

$$wp(ext{while } \mathbb{B} ext{ do } \mathbb{C}, Q) \equiv \exists k \ (k \geq 0 \wedge P_k)$$
 $P_0 \equiv \neg \mathbb{B} \wedge Q$ $P_{k+1} \equiv \mathbb{B} \wedge wp(\mathbb{C}, P_k)$

Example

Suppose we want to find:

$$wp(while n > 0 do n := n-1, n = 0)$$

•
$$P_0 \equiv \neg (n > 0) \land (n = 0) \equiv (n = 0)$$
 i.e., $\neg \mathbb{B} \land Q$

•
$$P_1 \equiv (n > 0) \land wp(n := n - 1, n = 0) \equiv (n = 1)$$
 i.e., $\mathbb{B} \land wp(\mathbb{C}, P_0)$

$$wp(ext{while } \mathbb{B} ext{ do } \mathbb{C}, Q) \equiv \exists k \ (k \geq 0 \wedge P_k)$$

$$P_0 \equiv \neg \mathbb{B} \wedge Q$$

$$P_{k+1} \equiv \mathbb{B} \wedge wp(\mathbb{C}, P_k)$$

Example

Suppose we want to find:

$$wp(while n > 0 do n := n-1, n = 0)$$

•
$$P_0 \equiv \neg (n > 0) \land (n = 0) \equiv (n = 0)$$
 i.e., $\neg \mathbb{B} \land Q$

•
$$P_1 \equiv (n > 0) \land wp(n := n - 1, n = 0) \equiv (n = 1)$$
 i.e., $\mathbb{B} \land wp(\mathbb{C}, P_0)$

•
$$P_2 \equiv (n > 0) \land wp(n := n - 1, n = 1) \equiv (n = 2)$$
 i.e., $\mathbb{B} \land wp(\mathbb{C}, P_1)$

$$wp(ext{while } \mathbb{B} ext{ do } \mathbb{C}, Q) \equiv \exists k \ (k \geq 0 \wedge P_k)$$
 $P_0 \equiv \neg \mathbb{B} \wedge Q$ $P_{k+1} \equiv \mathbb{B} \wedge wp(\mathbb{C}, P_k)$

Example

Suppose we want to find:

$$wp(while n > 0 do n := n-1, n = 0)$$

We start by generating some of the P_k sequence:

- $P_0 \equiv \neg (n > 0) \land (n = 0) \equiv (n = 0)$ i.e., $\neg \mathbb{B} \land Q$
- $P_1 \equiv (n > 0) \land wp(n := n 1, n = 0) \equiv (n = 1)$ i.e., $\mathbb{B} \land wp(\mathbb{C}, P_0)$
- $P_2 \equiv (n > 0) \land wp(n := n 1, n = 1) \equiv (n = 2)$ i.e., $\mathbb{B} \land wp(\mathbb{C}, P_1)$
- ...

so it looks pretty likely that $P_k \equiv (n = k)$

Example

Suppose we want to find:

$$wp(while n > 0 do n := n-1, n = 0)$$

We prove by induction that $P_k \equiv (n = k)$:

Example

Suppose we want to find:

$$wp(while n > 0 do n := n-1, n = 0)$$

We prove by induction that $P_k \equiv (n = k)$:

• We already checked the base case:

$$P_0 \equiv \neg(n>0) \land (n=0) \equiv (n=0)$$

Example

Suppose we want to find:

$$wp(while n > 0 do n := n-1, n = 0)$$

We prove by induction that $P_k \equiv (n = k)$:

• We already checked the base case:

$$P_0 \equiv \neg(n>0) \land (n=0) \equiv (n=0)$$

• Now for our induction step:

We assume
$$P_i \equiv (n = i)$$
 for some $i \geq 0$.

Recall that $P_{i+1} \equiv \mathbb{B} \wedge wp(\mathbb{C}, P_i)$.

Example

Suppose we want to find:

$$wp(while n > 0 do n := n-1, n = 0)$$

We prove by induction that $P_k \equiv (n = k)$:

• We already checked the base case:

$$P_0 \equiv \neg(n>0) \land (n=0) \equiv (n=0)$$

Now for our induction step:

We assume
$$P_i \equiv (n = i)$$
 for some $i \ge 0$.

Recall that
$$P_{i+1} \equiv \mathbb{B} \wedge wp(\mathbb{C}, P_i)$$
.

$$P_{i+1} \equiv (n > 0) \land wp(n := n - 1, n = i)$$

$$\equiv (n > 0) \land (n - 1 = i)$$

$$\equiv (n > 0) \land (n = i + 1)$$

$$\equiv (n = i + 1)$$

Example

Therefore we have

$$wp(\text{while n} > 0 \text{ do n} := \text{n-1}, n = 0) \equiv \exists k \ (k \geq 0 \land n = k)$$

The weakest precondition for while loops

Example

Therefore we have

$$wp(\text{while n} > 0 \text{ do n} := \text{n-1}, n = 0) \equiv \exists k \ (k \geq 0 \land n = k)$$

We can still simplify it further!

Useful trick:
$$\exists k \ ((k \ge 0) \land P_k) \equiv P_0 \lor P_1 \lor P_2 \lor \dots$$

In this example we have $(n = 0) \lor (n = 1) \lor (n = 2) \lor \dots$

The weakest precondition for while loops

Example

Therefore we have

$$wp(\text{while n} > 0 \text{ do n} := n-1, n = 0) \equiv \exists k \ (k \geq 0 \land n = k)$$

We can still simplify it further!

Useful trick:
$$\exists k \ ((k \ge 0) \land P_k) \equiv P_0 \lor P_1 \lor P_2 \lor \dots$$

In this example we have $(n = 0) \lor (n = 1) \lor (n = 2) \lor \dots$

We can compress this infinite disjunction into a finite final result:

$$wp(\text{while n} > 0 \text{ do n} := n-1, n = 0) \equiv (n \ge 0)$$

Example

We want to find

$$wp(while n \neq 0 do n := n-1, n = 0)$$

Example

We want to find

$$wp(while n \neq 0 do n := n-1, n = 0)$$

Step 1 - finding the P_k :

- $P_0 \equiv \neg (n \neq 0) \land (n = 0) \equiv (n = 0)$ i.e., $\neg \mathbb{B} \land Q$
- $P_1 \equiv (n \neq 0) \land wp(n := n 1, n = 0) \equiv (n = 1)$ i.e., $\mathbb{B} \land wp(\mathbb{C}, P_0)$
- ...
- $P_k \equiv (n = k)$ (induction omitted)

Example

Step 2 - finding the weakest precondition:

$$\exists k \ ((k \ge 0) \land P_k) \equiv \exists k \ ((k \ge 0 \land (n = k)))$$
$$\equiv (n \ge 0)$$

Thus,

$$wp(\text{while } n \neq 0 \text{ do } n := n-1, n = 0) \equiv (n \geq 0)$$

Example

Step 2 - finding the weakest precondition:

$$\exists k \ ((k \ge 0) \land P_k) \equiv \exists k \ ((k \ge 0 \land (n = k)))$$
$$\equiv (n \ge 0)$$

Thus,

$$wp(\text{while n} \neq 0 \text{ do n} := n-1, n = 0) \equiv (n \geq 0)$$

This is not really any different than the previous example.

But what is the trap in this while-loop?

Example

Step 2 - finding the weakest precondition:

$$\exists k \ ((k \ge 0) \land P_k) \equiv \exists k \ ((k \ge 0 \land (n = k)))$$
$$\equiv (n \ge 0)$$

Thus,

$$wp(\text{while n} \neq 0 \text{ do n} := n-1, n = 0) \equiv (n \geq 0)$$

This is not really any different than the previous example.

But what is the trap in this while-loop?

We have automatically found that the while-loop will not terminate for initial values of n less than 0.

WP rules

- Rule for Assignment: $wp(x := \mathbb{E}, Q) \equiv Q[x/\mathbb{E}]$ (Q is an assertion involving a variable x and $Q[x/\mathbb{E}]$ indicates the same assertion with all occurrences of x replaced by the expression \mathbb{E})
- Rule for Sequencing: $wp(\mathbb{C}_1; \mathbb{C}_2, Q) \equiv wp(\mathbb{C}_1, wp(\mathbb{C}_2, Q))$
- Rule for Conditionals: $wp(\text{if } \mathbb{B} \text{ then } \mathbb{C}_1 \text{ else } \mathbb{C}_2, Q) \equiv (\mathbb{B} \to wp(\mathbb{C}_1, Q)) \wedge (\neg \mathbb{B} \to wp(\mathbb{C}_2, Q))$
- There is no algorithm to compute $wp(\text{while } \mathbb{B} \text{ do } \mathbb{C}, Q)$ in all cases!
 - But that doesn't mean there are no techniques to tackle this problem that at least work some of the time!
 - Inductive definition.

Separation Logic

We extend our programming language with:

- Memory reads: $x := [\mathbb{E}]$ (dereferencing)
 Memory writes: $[\mathbb{E}_1] := \mathbb{E}_2$ (update heap)
- Memory allocation: $x := cons(\mathbb{E}_1, ... \mathbb{E}_n)$
- ullet Memory deallocation: dispose ${\mathbb E}$

We extend our programming language with:

- Memory reads: $x := [\mathbb{E}]$ (dereferencing)
 Memory writes: $[\mathbb{E}_1] := \mathbb{E}_2$ (update heap)
- Memory allocation: $x := cons(\mathbb{E}_1, ... \mathbb{E}_n)$
- ullet Memory deallocation: dispose ${\mathbb E}$

The state is now represented by a pair of type $Store \times Heap$, denoted (σ, h) , where

$$\sigma \in Store$$
, where $Store \triangleq Var \rightarrow Val$
 $h \in Heap$, where $Heap \triangleq Loc \rightarrow Val$

where $Loc \subseteq Val$.

Memory reads: $x := [\mathbb{E}]$

- ullet evaluate expression ${\mathbb E}$ to get location I
- fault if location / is not in the current heap
- otherwise variable x is assigned the content of location /

Memory reads: $x := [\mathbb{E}]$

- ullet evaluate expression $\mathbb E$ to get location I
- fault if location / is not in the current heap
- otherwise variable x is assigned the content of location /

Example (x := [y+1])

n	
0xAB	1
0xAC	2

$$x := [y+1]$$

	U
у	0×AB
X	2

11	
0xAB	1
0×AC	2

Memory writes: $[\mathbb{E}_1] := \mathbb{E}_2$

- ullet evaluate expression \mathbb{E}_1 to get location I
- fault if location / is not in the current heap
- ullet otherwise make the content of location / the value of expression \mathbb{E}_2

Memory writes: $[\mathbb{E}_1] := \mathbb{E}_2$

- ullet evaluate expression \mathbb{E}_1 to get location I
- fault if location / is not in the current heap
- ullet otherwise make the content of location / the value of expression \mathbb{E}_2

h	
0xAB	1
0×AC	2

	σ
у	0xAB

h	
0xAB	1
0×AC	5

Memory allocation: $x := cons(\mathbb{E}_1, ... \mathbb{E}_n)$

- extend the heap with n consecutive new locations l, l+1, ..., l+n-1
- put values of $\mathbb{E}_1, ..., \mathbb{E}_n$ into locations l, l+1, ..., l+n-1 respectively
- extend the stack by assigning x the value I
- never fault

```
Memory allocation: x := cons(\mathbb{E}_1, ... \mathbb{E}_n)
```

- extend the heap with n consecutive new locations l, l+1, ..., l+n-1
- put values of $\mathbb{E}_1,...,\mathbb{E}_n$ into locations l,l+1,...,l+n-1 respectively
- extend the stack by assigning x the value I
- never fault

Memory deallocation: dispose $\,\mathbb{E}\,$

- ullet evaluate expression $\mathbb E$ to get location I
- fault if location / is not in the current heap
- otherwise remove location / from the heap

Memory deallocation: dispose ${\mathbb E}$

- ullet evaluate expression $\mathbb E$ to get location I
- fault if location / is not in the current heap
- otherwise remove location / from the heap

Example (dispose p+1)

h	
0xAB	5
0×AC	6

dispose p+1

h

x := cons(3,3)

 σ

h

Х	0xAB
---	------

0xAB	3
0×AC	3

```
x := cons(3,3); y := cons(4,4);
```

x 0xAB y 0xDD

 σ

0xAB	3
0×AC	3
0xDD	4
0×DE	4

```
x := cons(3,3); y := cons(4,4); [x+1] := y;
```

 σ

(0×AB
,	0xDD

0xAB	3
0×AC	0xDD
0xDD	4
0×DE	4

h

```
x := cons(3,3) ; y := cons(4,4); [x+1] := y; [y+1] := x; 
 \sigma h
```

Х	0xAB
у	0×DD

0xAB	3
0xAC	0xDD
0×DD	4
0×DE	0xAB

$$x := cons(3,3)$$
; $y := cons(4,4)$; $[x+1] := y$; $[y+1] := x$;

 σ

Х	0xAB
у	0×DD

 0xAB
 3

 0xAC
 0xDD

 0xDD
 4

 0xDE
 0xAB

h

Can you suggest a precondition such that this triple holds?

```
{???}
[y] := 4; [z] := 5;
\{(\exists y, z)(y \mapsto y \land z \mapsto z \land y \neq z)\}
```

Can you suggest a precondition such that this triple holds?

We need to assume that the locations pointed by y and z are different (aliasing).

Note that, for example, y is used to denote program variables, while y is used to denote logical variables.

And now?

```
[y] := 4; [z] := 5; 
\{(\exists y, z)(y \mapsto y \land z \mapsto z \land y \neq z \land x \mapsto 3)\}
```

We need to assume that the locations pointed by y and z are different (aliasing).

We also need to know when things stay the same.

And now?

```
\{y \neq z \land x \neq y \land x \neq z \land y \mapsto \_ \land z \mapsto \_ \land x \mapsto 3\}
[y] := 4; [z] := 5;
\{(\exists y, z)(y \mapsto y \land z \mapsto z \land y \neq z \land x \mapsto 3)\}
```

We need to assume that the locations pointed by y and z are different (aliasing).

We also need to know when things stay the same.

Framing

We want a general concept of things not being affected.

$$\frac{\{P\} \mathbb{C} \{Q\}}{\{x \mapsto 3 \land P\} \mathbb{C} \{Q \land x \mapsto 3\}}$$

What are the conditions on \mathbb{C} and $x \mapsto 3$?

These are very hard to define if reasoning about a heap and aliasing.

Framing

We want a general concept of things not being affected.

$$\frac{\{P\} \mathbb{C} \{Q\}}{\{x \mapsto 3 \land P\} \mathbb{C} \{Q \land x \mapsto 3\}}$$

What are the conditions on \mathbb{C} and $x \mapsto 3$?

These are very hard to define if reasoning about a heap and aliasing.

This is where separation logic comes in:

$$\frac{\{P\}\;\mathbb{C}\;\{Q\}}{\{R*P\}\;\mathbb{C}\;\{Q*R\}}$$

The new connective * ("sep" operator) is used to separate the heap.

Reasoning about pointers

For Hoare logic, we assumed no aliasing of variables!

In most real languages we can have multiple names for the same piece of memory.

How is aliasing a problem?

From Hoare logic to separation logic

- Robert W. Floyd 1967: gave some rules to reason about programs.
- Sometimes, our Hoare Logic is called Floyd-Hoare Logic in recognition.
- Many attempts made to extend Floyd-Hoare Logic to handle pointers.

- Only really solved around 2000 by Reynolds, O'Hearn and Yang using a connective * called separating conjunction.
- To make the presentation less scary, we need to first extend Hoare Logic with an axiom due to Floyd.

Hoare Logic

$\begin{array}{c} Syntax \\ \neg \land \lor \rightarrow \forall \exists \end{array}$	Semantics FOL	Calculus N/A
= +- ≥≤	Arithmetics	N/A
<pre>:= ; while if then else</pre>	State maps variables to values (no pointers)	N/A
{ <i>P</i> } ℂ { <i>Q</i> }	If initial state satisfies P and $\mathbb C$ terminates then final state satisfies Q	6 Inference Rules

Hoare axiom:
$$\{Q[x/\mathbb{E}]\}$$
 x := \mathbb{E} $\{Q\}$

(backward driven)

```
Hoare axiom: \{Q[x/\mathbb{E}]\}\ x := \mathbb{E}\ \{Q\} (backward driven)
Floyd axiom: \{x = v\}\ x := \mathbb{E}\ \{x = \mathbb{E}[x/v]\} (forward driven)
```

- equivalent to Hoare axiom
- ullet v is an auxiliary variable which does not occur in ${\mathbb E}$
- ullet $\mathbb{E}[x/v]$ means replace all occurrences of x in \mathbb{E} by v

```
Hoare axiom: \{Q[x/\mathbb{E}]\}\ x := \mathbb{E}\ \{Q\} (backward driven)
Floyd axiom: \{x = v\}\ x := \mathbb{E}\ \{x = \mathbb{E}[x/v]\} (forward driven)
```

- equivalent to Hoare axiom
- ullet v is an auxiliary variable which does not occur in ${\mathbb E}$
- ullet $\mathbb{E}[x/v]$ means replace all occurrences of x in \mathbb{E} by v

Example

```
Hoare instance: \{x + 1 = 5\} x := x+1 \{x = 5\}
```

- Hoare axiom: $\{Q[x/\mathbb{E}]\}\ x := \mathbb{E}\ \{Q\}$ (backward driven) Floyd axiom: $\{x = v\}\ x := \mathbb{E}\ \{x = \mathbb{E}[x/v]\}$ (forward driven)
 - equivalent to Hoare axiom
 - ullet v is an auxiliary variable which does not occur in $\mathbb E$
 - ullet $\mathbb{E}[x/v]$ means replace all occurrences of x in \mathbb{E} by v

Example

Hoare instance: $\{x + 1 = 5\}$ x := x+1 $\{x = 5\}$

Floyd instance: $\{x = v\}$ x := x+1 $\{x = v + 1\}$

Hoare axiom: $\{Q[x/\mathbb{E}]\}\ x := \mathbb{E}\ \{Q\}$ (backward driven) Floyd axiom: $\{x = v\}\ x := \mathbb{E}\ \{x = \mathbb{E}[x/v]\}$ (forward driven)

- equivalent to Hoare axiom
- ullet v is an auxiliary variable which does not occur in $\mathbb E$
- ullet $\mathbb{E}[x/v]$ means replace all occurrences of x in \mathbb{E} by v

Example

Hoare instance: $\{x + 1 = 5\}$ x := x+1 $\{x = 5\}$ Floyd instance: $\{x = v\}$ x := x+1 $\{x = v + 1\}$

• If we want the postcondition x=5 then instantiate v to be 4 $\{x=4\}$ x := x+1 $\{x=5\}$

Note: does not solve the problem with pointers!

Quiz time!

https://www.questionpro.com/t/AT4NiZrf20

References

- Lecture Notes on "Formal Methods for Software Engineering", Australian National University, Rajeev Goré.
- Mike Gordon, "Specification and Verification I", chapters 1 and 2.
- Michael Huth, Mark Ryan, "Logic in Computer Science: Modeling and Reasoning about Systems", 2nd edition, Cambridge University Press, 2004.
- Krzysztof R. Apt, Frank S. de Boer, Ernst-Rüdiger Olderog, "Verification of Sequential and Concurrent Programs", 3rd edition, Springer.