PLANO DE LA INSTALACIÓN DE LOS SENSORES EN UNA CASA DE 3 AMBIENTES

COMPONENTES UTILIZADOS:

LM35 y sus características principales

Resolución: 10mV por cada grado centígrado.

Voltaje de alimentación. Por ejemplo, esté sensor se puede alimentar desde 4Vdc hasta 20Vdc.

Tipo de medición. Salida analógica.

Numero de pines: 3 pines, GND, VCC y VSalida.

No requiere calibración.

Tiene una precisión de ±1/4°C.

Esta calibrado para medir °C.

Consumo de corriente: 60 µA

Empaquetados comunes: TO-CAN; TO-220; TO-92; SOIC8.

Microcontrolador ESP 32

ESP32 es la denominación de una familia de chips SoC de bajo coste y consumo de energía, con tecnología Wi-Fi y Bluetooth de modo dual integrada. El ESP32 emplea un microprocesador Tensilica Xtensa LX6 en sus variantes de simple y doble núcleo e incluye interruptores de antena, balun de radiofrecuencia, amplificador de potencia, amplificador receptor de bajo ruido, filtros, y módulos de administración de energía. El ESP32 fue creado y desarrollado por Espressif Systems y es fabricado por TSMC utilizando su proceso de 40 nm.1 Es un sucesor de otro SoC, el ESP8266.

Las características del ESP32 incluyen:

Procesador:

- CPU: microprocesador de 32-bit Xtensa LX6 de doble núcleo (o de un solo núcleo), operando a 160 o 240 MHz y rindiendo hasta 600 DMIPS
- Co-procesador de ultra baja energía (ULP)
 Memoria: 520 KiB SRAM

Conectividad inalámbrica:

Wi-Fi: 802.11 b/g/n

Bluetooth: v4.2 BR/EDR y BLE

Interfaces periféricas:

- 12-bit SAR ADC de hasta 18 canales
- 2 x 8-bit DACs
- 10 x sensores de tacto (sensores capacitivos GPIOs)
- 4 x SPI
- 2 x interfaces I²S
- 2 x interfaces I²C
- 3 x UART
- Controlador host SD/SDIO/CE-ATA/MMC/eMMC
- Controlador esclavo SDIO/SPI
- Interfaz Ethernet MAC con DMA dedicado y soporte para el protocolo IEEE 1588 Precision Time Protocol
- Bus CAN 2.0
- Controlador remoto infrarrojo (TX/RX, hasta 8 canales)
- Motor PWM
- LED PWM (hasta 16 canales)
- Sensor de efecto Hall
- Pre-amplificador analógico de ultra baja potencia

Seguridad:

- Soporta todas las características de seguridad estándar de IEEE 802.11, incluyendo WFA, WPA/WPA2 y WAPI
- Arranque seguro

- Cifrado flash
- 1024-bit OTP, hasta 768-bit para clientes
- Criptografía acelerada por hardware: AES, SHA-2, RSA, criptografía de curva elíptica (ECC), generador de números aleatorios (RNG)

Administración de energía:

- Regulador interno de baja caída
- Dominio de poder individual para RTC
- Corriente de 5µA en modo de suspensión profundo
- Despierta por interrupción de GPIO, temporizador, medidas de ADC, interrupción por sensor de tacto capacitivo

CIRCUITO PARA SU USO

La simple del circuito hace que sea muy fácil ser utilizado en alguna aplicación embebida. Entonces sólo basta alimentarlo con digamos 5VDC, conectar la tierra GND a la tierra del circuito digital y la salida de voltaje a la entrada del ADC.

PRUEBA

La prueba más sencilla que se puede realizar en para un sensor LM35 es usando un multímetro. Entonces para comenzar se harán las siguientes conexiones:

VCC a 5VDC.

GND a GND de la fuente de alimentación y al negativo del multímetro.

Vsalida al positivo del multímetro.

Posteriormente se pondrá en multímetro en auto rango o en la escala de volts. Por ejemplo voltaje resultante corresponde a una medida directa de la temperatura. Finalmente, tome el caso de la siguiente imagen, en este experimento el voltaje de salida da: 230.3mV, si la resolución del sensor es de 10mV/°C, entonces se estaría midiendo 23.03 °C.