Section 1.5: Solution Sets of Linear Solutions

Note: Here we will give explicit & geometric descriptions of solution sets of linear systems.

Homogeneous Linear Systems

A system of linear equations is said to be

'Homogeneous' if it can be written in the Form:

 $A\vec{x} = \vec{0}$, where:

*A -> mxn matrix

* 0 -> zero vector in IRM

* The Trivial Solution:

• $A\vec{x} = \vec{0}$ always has (a least 1 solution; $\vec{x} = \vec{0}$)
(i.e. The zero vector :)

*The Nontrivial Solution:

- We are more concorned ψ determining if \vec{J} a non-zero vector \vec{x} st $A\vec{x} = \vec{0}$
- As a result of the Existence & Uniqueness Thm (Section 1.2)
- The homogeneous eq. $A\vec{x} = \vec{0}$ has a nontrivial solution IFF the eq. has at least one free variable :

*Strategy For Determining if a Homogeneous Eq. AX=0 (8/or Nonhamogeneous Eq. AX=b) has a Free Variable -AND- Describing Solution Sets:

Given a Linear System => Convert to Matrix Eq. Form.

1) Check the System For the existence of Free Variable(s).

Row-reduce the equivalent augmented matrix to echelen Form: (1) IF NO FreeVariables: => Trivial Solution Only.

(ii) Free Variable(s)]:
NonTrivial Solution]:
* Proceed to Step 2.

2) Find a Description For the Solution Set:

- (i) Raw-reduce the aug. matrix to row-reduced echelon form.
- (ii) Solve For the Basic Variable(s) in terms of the Free Variable(s).
 - (iii) Write the general solution of the Homogeneous &. A \vec{x} = (as a vector (\vec{x})

3 Use the Column Picture of \vec{x} & its corresponding. Geometric Interpretation to describe the solution set of the given linear system.

We rely heavily on our understanding of linear combinations of vectors here & how the vector(s) "spans" the m-dimensional space we are working in .

* Writing a Solution Set (of a Consistent System) in

Parametric Vector Form:

[A | d]

- 1) Row reduce the augmented matrix, [A; b], to reduced echelon Form.
- a) Express each Bosic Variable in terms of any Free Variables that appear in the equation.
- 3) Write a typical solution \$\overline{\pi}\$ as a vector whose entries depend on the Free Variable(s), if any 3.
- Decompose & into a linear combination of vectors (w/ numerical entries) using the Free Variables as parameters

Example: Determine if the system has a nontrivial

Solution:
$$\begin{cases} 8\chi_1 - 8\chi_2 + 23\chi_3 = 0 \\ -8\chi_1 - 4\chi_2 - 14\chi_3 = 0 \end{cases}$$

$$[6\chi_1 + 8\chi_2 + 28\chi_3 = 0]$$

Answer:

*Write the system Ax = o as an augmented matrix:

$$[A; \vec{0}] = \begin{bmatrix} 8 & -8 & 23 & 0 \\ -8 & -4 & -14 & 0 \\ 16 & 8 & 28 & 0 \end{bmatrix}$$

klow reduce the augmented matrix:

Monthivial Solutions 3 7

Determine if the Following homogeneous system has a nontrivial salution, and then describe the solution set:

$$\begin{cases} 3x_1 + 5x_2 - 4x_3 = 0 \\ -3x_1 - 2x_2 + 4x_3 = 0 \\ 6x_1 + x_2 - 8x_3 = 0 \end{cases}$$

Answer:

*First convert the linear system $A\vec{x} = \vec{0}$ to its aug. matrix form $[A:\vec{0}]$ & then row reduce to echelon form:

$$[A:\vec{0}] = \begin{bmatrix} 3 & 5 & -4 & 0 \\ -3 & -2 & 4 & 0 \\ 6 & 1 & -8 & 0 \end{bmatrix}$$

: Note: You can leave the pivot as "3" here, but since we need ref.:

Example Continued ...

$$\begin{array}{c}
-R_2 \\
+R_3 \\
\text{new } R_3
\end{array}$$

$$\begin{array}{c}
3 \quad 5 \quad -4 \quad | \quad 0 \\
0 \quad 1 \quad 0 \quad | \quad 0 \\
\text{o} \quad 1 \quad 0 \quad | \quad 0
\end{array}$$

$$\begin{array}{c}
\times \text{So } \chi_3 = \text{free} \\
\text{variable} \\
\text{variable} \\
\text{sol. } 3$$

Since $X_3 =$ free variable, then $A\vec{x} = \vec{0}$ has nontrivial solutions (IoW: one solution per choice of X_3)

*Next, to describe the solution set, we row reduce the augmented matrix to reduced exhelpen form:

$$\begin{array}{c} -5R_{z} \rightarrow \begin{bmatrix} 3 & 0 & -4 & 0 \\ -4 & 0 & 0 \\ + R_{1} & 0 & 0 & 0 \end{bmatrix} & \begin{bmatrix} 3 & 0 & -4 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} & \begin{bmatrix} 0 & -\frac{4}{3} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} & \\ NEW R_{1} & \begin{bmatrix} 0 & 0 & -4 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} & \begin{bmatrix} 0 & 0 & -\frac{4}{3} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} & \\ \end{array}$$

* Solve the Associated System For the Basic Variables to obtain the General Solution ?

$$\chi_1 - \frac{4}{3}\chi_3 = 0$$

$$\chi_2 = 0$$

$$0 = 0$$

$$\Rightarrow \begin{cases} \chi_1 = \frac{4}{3}\chi_3 \\ \chi_2 = 0 \\ \chi_3 \text{ is free} \end{cases}$$

Notes: * χ_1 & $\chi_2 \rightarrow$ "Basic Variables" * $\chi_3 \rightarrow$ "Free Variable"

Example Continued...

*Write the General Solution For AX = 0 as a vector:

$$\overrightarrow{\chi} = \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix} = \begin{bmatrix} \frac{4}{3}\chi_3 \\ 0 \\ \chi_3 \end{bmatrix} = \chi_3 \begin{bmatrix} \frac{4}{3} \\ 0 \\ 1 \end{bmatrix}$$

$$\vec{\chi} = \chi_3 \vec{V}$$
, where $\vec{V} = \begin{bmatrix} 4/3 \\ 0 \\ 1 \end{bmatrix}$
*parametric vector equation

General Solution

Vector For

Nontrivial Solutions

(in parametric vector Form)

Notes:

- · X3 is factored out of the general solution vector
- ⇒ Iow: Every solution of $A\vec{x} = \vec{0}$ (in this case) is a scalar multiple of \vec{V} .
- Nonthivial Solutions CAN have zero entries ST NOT ALL entries are zero:

* Invial Solution? Let $\chi_3 = 0 : \rightarrow |\vec{\chi} = 0\vec{V} = \vec{0}|$

Example: Write the solution set of the given homogeneous system in parametric vector Form:

$$\begin{cases} 2x_1 + 2x_2 + 4x_3 = 0 \\ -6x_1 - 6x_2 - 12x_3 = 0 \end{cases}$$
where: the solution set is $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$

Answer:

*Write the given system as an augmented matrix:

$$[A \mid \vec{0}] = \begin{bmatrix} 2 & 2 & 4 & 1 & 0 \\ -6 & -6 & -12 & 1 & 0 \\ 0 & -7 & 7 & 1 & 0 \end{bmatrix} \xrightarrow{\frac{1}{2}} \begin{bmatrix} R_1 & 1 & 1 & 2 & 1 & 0 \\ R_2 & 1 & 1 & 2 & 1 & 0 \\ 0 & -7 & 7 & 1 & 0 \end{bmatrix} \xrightarrow{\frac{1}{2}} \begin{bmatrix} R_2 & 1 & 1 & 2 & 1 & 0 \\ 0 & 1 & -1 & 1 & 0 \end{bmatrix}$$

KROW reduce [A; o] to reduced-echelon form:

$$\frac{-R_1}{+R_2} \longrightarrow \begin{bmatrix} 1 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} * Nontrivial Solutions $\exists \ \ \vdots$ new R_2 $\begin{bmatrix} 0 & 1 & -1 & 0 \end{bmatrix}$$$

$$\begin{array}{c} \text{Switch} \\ \text{R}_2 & \text{R}_3 \end{array} \longrightarrow \begin{array}{c} \begin{bmatrix} 1 & 1 & 2 & 1 & 0 \\ 0 & 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Example Continued...

* Solving For the Basic Variables:

$$\Rightarrow \begin{cases} \chi_1 = -3\chi_3 \\ \chi_2 = \chi_3 \\ \chi_3 \text{ is free} \end{cases}$$

*Write the General Solution as a Vector:

$$\overrightarrow{\chi} = \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix} = \begin{bmatrix} -3\chi_3 \\ \chi_3 \\ \chi_3 \end{bmatrix} = \chi_3 \begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix}$$

Parametric Vector Form:
$$\overline{X} = X_3 \begin{bmatrix} -3 \\ 1 \end{bmatrix}$$

Example: Write the solution set of the given homogeneous system in parametric vector Form:

$$\begin{cases} \chi_1 + \lambda \chi_2 + 3\chi_3 = 0 \\ 2\chi_1 + \chi_2 + 3\chi_3 = 0 \end{cases}, \text{ where: } \chi = \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix} \text{ is the } \\ -\chi_1 + \chi_2 = 0 \end{cases}$$

Answer.

*Write the given system as an augmented matrix:

KWrite [A'd] in reduced echelon Form:

$$\begin{array}{c} R_{1} \\ + R_{3} \\ \hline NEWR_{3} \end{array} \longrightarrow \begin{bmatrix} 1 & 2 & 3 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 3 & 3 & 1 & 0 \end{bmatrix} \begin{array}{c} 1 & 2 & 3 & 1 & 0 \\ 3 & N_{1} & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ \end{array}$$

$$\begin{array}{c} -R_2 \\ +R_3 \\ \hline \text{new } R_3 \end{array} \longrightarrow \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} * \chi_3 \text{ is a Free variable} \end{array}$$

-> Nonthirial Solution(s) 3

Example Controved...

So,
$$\begin{cases} \chi_1 = -\chi_3 \\ \chi_2 = -\chi_3 \end{cases} \Rightarrow \vec{\chi} = \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix} = \begin{bmatrix} -\chi_3 \\ -\chi_3 \\ \chi_3 \end{bmatrix} = \chi_3 \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$$

.. General Solution in Parametric Vector Form:

$$\vec{\chi} = \chi_3 \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$
Answer

Example: Describe all solutions of $A\vec{x} = \vec{o}$ in parametric rector form, where A is now equivalent to the given matrix:

$$A = \begin{bmatrix} 1 & -4 & -2 & 2 & 0 & 4 \\ 0 & 0 & 1 & 0 & 0 & 7 \\ 0 & 0 & 0 & 1 & 0 & 5 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

*Write the augmented matrix [+;0]:

· X2, X5, X0 -> Free Variables

*Write [A; o] in reduced-echelon Form:

$$\begin{array}{c}
 2R_{2} \\
 + R_{1} \\
 \hline
 New R_{1}
\end{array}$$

$$\begin{array}{c}
 1 - 4 & 0 & 2 & 0 & 18 & 0 \\
 0 & 0 & 1 & 0 & 0 & 7 & 10 \\
 0 & 0 & 0 & 1 & 0 & 5 & 10 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}$$

Example Continued...

So,
$$X_1 = 4X_2 - 8X_6$$

 X_2 is free
 $X_3 = -7X_6$
 $X_4 = -5X_6$
 X_5 is free
 X_6 is free

*Write the General Solution as a Vector, 7:

$$\vec{\chi} = \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \\ \chi_4 \\ \chi_5 \\ \chi_6 \end{bmatrix} = \begin{bmatrix} 4\chi_2 - 8\chi_6 \\ \chi_2 \\ -7\chi_6 \\ -5\chi_6 \\ \chi_5 \\ \chi_6 \end{bmatrix} = \begin{bmatrix} 4\chi_2 \\ \chi_2 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} -8\chi_6 \\ 0 \\ -7\chi_6 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 4\chi_2 \\ \chi_2 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} -8\chi_6 \\ 0 \\ -7\chi_6 \\ 0 \\ 0 \end{bmatrix}$$

$$\vec{X} = \chi_{2} \begin{bmatrix} 4 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \chi_{5} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \chi_{6} \begin{bmatrix} -8 \\ 0 \\ -7 \\ -5 \\ 0 \\ 1 \end{bmatrix}$$

* Parametric Vector Form of the Solution I

Example 2 (Homogeneous Linear System):

Describe all solutions of the homogeneous system: $10x_1 - 3x_2 - 2x_3 = 0$

Answer:

Note: Since the system consists of a single linear equation, no matrix needed :

*Solve this "simple system" for the basic variable, X, to obtain the General Solution:

$$10x_1 - 3x_2 - 2x_3 = 0$$
 $\sim 10x_1 = 3x_2 + 2x_3$

$$\frac{1}{10}E_{\ell}, \sim \begin{cases} \chi_1 = \frac{3}{10}\chi_2 + \frac{1}{5}\chi_3 \\ \chi_2 \text{ is Free} \end{cases}$$

$$\chi_3 \text{ is Free}$$

*Write the General Solution For A= 0 as a vector:

$$\vec{\chi} = \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix} = \begin{bmatrix} \frac{3}{10}\chi_2 + \frac{1}{5}\chi_3 \\ \chi_2 \\ \chi_3 \end{bmatrix} = \begin{bmatrix} \frac{3}{10}\chi_2 \\ \chi_2 \\ \chi_3 \end{bmatrix} + \begin{bmatrix} \frac{1}{5}\chi_3 \\ \chi_3 \\ \chi_3 \end{bmatrix}$$

$$= \chi_2 \begin{bmatrix} 3/10 \\ 1 \\ 0 \end{bmatrix} + \chi_3 \begin{bmatrix} .1/5 \\ 0 \\ 1 \end{bmatrix}$$

Example Continued...

$$\vec{\chi} = \chi_2 \vec{u} + \chi_3 \vec{v}$$
, where: $\vec{u} = \begin{bmatrix} 3/10 \\ 1 \\ 0 \end{bmatrix} & \vec{v} = \begin{bmatrix} 1/5 \\ 0 \\ 1 \end{bmatrix}$

General Solution Vector For Nonthivial Solutions (in "Parametric Vector Form" :)

*Notes:

- · Every solution of the given system is a linear combination of the vectors \vec{u} & \vec{v}
 - ⇒ Iow: The Solution Set is Span { \vec{u}, \vec{v}}
- · il & v are NOT scalar multiples.

- * Generalizations About Homogeneous Equations *
- The Solution Set of a Homogeneous Equation $A\vec{x} = \vec{0}$ can always be expressed explicitly

OS: Span $\{\vec{V}_1, \vec{V}_2, \dots, \vec{V}_p\}$

For suitable vectors $\vec{V_1}, \vec{V_2}, \dots, \vec{V_p}$

- If the only solution is trivial (zero vector, o)

 then the solution set is: Span { o}
- TF the eq. $A\vec{x} = \vec{0}$ has one free variable, then the geometric representation of the solution set is:

 A line through the origin (Ex^{1})
- IF the eq. $4\vec{x} = \vec{0}$ has two (or more) free variables, then the geometric representation of the solution set is (similar to):

A plane through the origin (Ex.2)

*Note: A similar geometric rep. I can be used to visualize Span { \vec{u} , \vec{v} } even if \vec{u} d \vec{v} are Not solutions to $A\vec{x} = \vec{0}$ > Past be mindful of what you are considering:

*Solutions of Nonhamageneous Systems *

A nonhamageneous linear system is defined:

 $A\vec{x} = \vec{b}$, where: * $\vec{b} \rightarrow \alpha$ vector in R^m (nonzero vector)

When a nonhamogeneous linear system has MANY solutions, the General Solution can be written in Parametric Vector Form as:

" (One Vector)" + "(In arbitrary linear combo. of vectors)"

that satisfy the corresponding homogeneous system:

Example: Describe & compare the solution sets of
$$\chi_1 + 6\chi_2 - 7\chi_3 = 0$$
 and $\chi_1 + 6\chi_2 - 7\chi_3 = -4$.

Answer:

*System 1:
$$\chi_1 + 6\chi_2 - 7\chi_3 = 0$$
 (A $\vec{x} = \vec{0}$)

$$\Rightarrow \begin{cases} \chi_1 = -6\chi_2 + 7\chi_3 \\ \chi_2 \text{ is Free} \\ \chi_3 \text{ is free} \end{cases}$$

Pavametric Vector Form:

$$\overrightarrow{\chi} = \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix} = \begin{bmatrix} -6\chi_2 + 7\chi_3 \\ \chi_2 \\ \chi_3 \end{bmatrix} = \begin{bmatrix} \chi_2 \\ \chi_2 \\ \chi_3 \end{bmatrix} = \begin{bmatrix} -6\chi_2 + 7\chi_3 \\ \chi_2 \\ \chi_3 \end{bmatrix} = \begin{bmatrix} -6\chi_2 + 7\chi_3 \\ \chi_3 \end{bmatrix} = \begin{bmatrix} -6\chi_$$

*System 2:
$$\chi_1 + 6\chi_2 - 7\chi_3 = -4$$
 (A $\vec{x} = \vec{b}$)

Note: The Solution Set of Ax = b is the plane through

 \vec{P} , parallel to the solution set of $A\vec{x} = \vec{O}$

ION: The Solution Set of System 2 is the Sel. Set of System 1 translated by \vec{p} ST $\vec{p} = \begin{bmatrix} 4 \\ 0 \end{bmatrix}$:

$$\begin{vmatrix} \overrightarrow{\chi} = \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{vmatrix} = \begin{bmatrix} -4 - 6\chi_2 + 7\chi_3 \\ \chi_2 \\ \chi_3 \end{vmatrix} = \begin{bmatrix} -4 \\ 0 \\ 0 \end{bmatrix} + \chi_2 \begin{bmatrix} -6 \\ 0 \\ 1 \end{bmatrix}$$

Describe all solutions of $A\vec{x} = \vec{b}$, where:

$$A = \begin{bmatrix} 3 & 5 & -4 \\ -3 & -2 & 4 \\ 6 & 1 & -8 \end{bmatrix} \qquad A \qquad \vec{b} = \begin{bmatrix} 7 \\ -1 \\ -4 \end{bmatrix}$$

Answer:

*Write the linear system, $A\vec{x} = \vec{b}$, in its augmented matrix form, $[A \mid \vec{b}]$:

$$[A \mid \vec{b}] = \begin{bmatrix} 3 & 5 & -4 & 7 \\ -3 & -2 & 4 & -1 \\ 6 & 1 & -8 & -4 \end{bmatrix}$$

*To describe the solution set, use now operations to write [A; B] in its reduced echelon Form:

example Continued...

$$\frac{1}{3}R_{1} \sim \begin{bmatrix} 1 & 0 & -4/3 & | & -1 \\ 0 & 1 & 0 & | & 2 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \iff \begin{cases} \chi_{1} - \frac{4}{3}\chi_{3} = -1 \\ \chi_{2} = 2 \\ 0 = 0 \end{cases}$$

* Solving For the Bosic Variables, we obtain:

$$\begin{cases} \chi_1 = \frac{4}{3}\chi_3 - 1 \\ \chi_2 = 2 \end{cases} * \chi_1 \not\exists \chi_2 \rightarrow \text{The Basic Variables} \\ \chi_3 \text{ is free} \end{cases}$$

*Write the General Solution of AX = B as a Vector:

$$\overrightarrow{\chi} = \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix} = \begin{bmatrix} 4/_3 \chi_3 - 1 \\ 2 \\ \chi_3 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix} + \begin{bmatrix} 4/_3 \chi_3 \\ 0 \\ \chi_3 \end{bmatrix}$$

$$= \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix} + \chi_3 \begin{bmatrix} 4/3 \\ 0 \\ 1 \end{bmatrix}$$

$$\overrightarrow{X} = \overrightarrow{p} + \chi_3 \overrightarrow{V}, \text{ where: } \overrightarrow{p} = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix} \not\exists \overrightarrow{V} = \begin{bmatrix} 4/3 \\ 0 \\ 1 \end{bmatrix}$$

Armer:

*The Solution Set of Ax = b in Parametric Vector Form?

Note: For a general parameter "t", we can also write

$$\Rightarrow \neq = \vec{p} + t \vec{\nabla}$$
, where $t \in \mathbb{R}$

Conclusion

The solutions of $A\vec{x} = \vec{b}$ are obtained by adding \vec{p} to the solutions of the homogeneous system $A\vec{x} = \vec{o}$.

>*The vector \vec{p} is just one particular salution of $\vec{x} = \vec{p} + 0\vec{v} = \vec{p} = \vec{v}$)

*Geometric Representation of AX = 5 *

To describe the solution set of $A\vec{x} = \vec{b}$ geometrically, we consider the addition $(cf\vec{p})$ as a translation.

DIllustration: (Adding p to v)

\$ \$ \$ \$ \$ p are two vectors in \$R^2 (or \$R^3 :).

• The effect of "Adding p to v" is:

→To move v in a direction parallel to the line through

· Defined as:

· Graphically:

DIllustration: (Translated Line)

If each point on a line L (in \mathbb{R}^2 or \mathbb{R}^3) is translated by \vec{p} , the result is a new line parallel to L

· Graphically:

3 Illustration: Parallel Solution Sets of Ax = b & Ax = o

- *Suppose \mathcal{L} is a line described by the solution set For $A\vec{x} = \vec{0} \implies \boxed{\vec{x}} = t\vec{V}$ IOW: \mathcal{L} passes through \vec{V} & $\vec{0}$.
- *Adding \vec{p} to each point on \vec{L} produces the translated line described by the salution set for $A\vec{x} = \vec{b}$ $\Rightarrow |\vec{x} = \vec{p} + t\vec{v}|$
 - * Called: The Eq. of the line passing through p' & parallel to v'
- *Therefore: The solution set of $A\vec{x} = \vec{b}$ is the line through \vec{p} , parallel to the solution set of $A\vec{x} = \vec{b}$

*Graphically:

$$A\vec{x} = \vec{b} \quad (\vec{x} = \vec{p} + t\vec{v})$$
 $A\vec{x} = \vec{o} \quad (\vec{x} = t\vec{v})$

The above geometric representation J generalizes to any insistent equation $J = \vec{b}$ (at least I sol. 3)

* Note: Solution Set will be larger For 2+ Free variables :

Note: The previous illustration (#3) can be generalized by the Following theorem.

* Theorem:

\$ the equation $A\vec{x} = \vec{b}$ is consistent For some given

b, and let \vec{p} be a solution to the system.

Then, the solution set of $A\overrightarrow{x} = \overrightarrow{b}$ is the set of all vectors of the Form:

 $\overrightarrow{W} = \overrightarrow{p} + \overrightarrow{V_h}$, where: $\overrightarrow{V_h} \rightarrow \overrightarrow{ANY}$ solution of $\overrightarrow{Ax} = \overrightarrow{o}$

*ION: Putting this into "easier to understand" terms 2 "IF $A\vec{x} = \vec{b}$ has a solution, then the solution set is obtained by translating the solution set of AX = 0, using any particular Solution \vec{p} of $A\vec{x} = \vec{b}$."

C(Like we saw in the 1st example For Nonhamogeneous Sys.)

Caution:

This theorem only applies to equations $A\vec{x} = \vec{b}$ that have at least one nenzero solution \vec{p} !

*When $A\vec{x} = \vec{b}$ has NO solution, the solution set is empty.

Example: Find a parametric equation of the line M

through \$\beta\$ and \$\beta\$ for the given values.

Hint: Mis parallel to the vector $\vec{g} - \vec{p}$ a shown in the

Figure below. * Figure is NOT to scale *
$$\chi_2$$

$$\vec{p} = \begin{bmatrix} -6 \\ 3 \end{bmatrix}, \quad \vec{q} = \begin{bmatrix} 0 \\ -5 \end{bmatrix}$$

Answer:

Recall: The solution set of AX = B (Line M) is the line through \vec{p} , parallel to the line that is the solution set of $A\vec{x} = \vec{o}$ (i.e. Line possing through \vec{o} & $(\vec{e} - \vec{p})$).

*Let L be the line described by the selution set

For
$$A\vec{x} = \vec{0}$$
 $\Rightarrow \vec{x} = t\vec{v}$, where $\vec{v} = \vec{v} = \vec{v} = \vec{v}$

$$\vec{V} = \vec{\varrho} - \vec{p} = \begin{bmatrix} 0 - (-6) \\ -5 - 3 \end{bmatrix} = \begin{bmatrix} 6 \\ -8 \end{bmatrix}$$

$$\therefore \underline{\text{Line 1}} = \left[\overrightarrow{x} = t \begin{bmatrix} 6 \\ -8 \end{bmatrix} \right]$$

* Add p to each point on I to produce the translated Line "M" described by the Solution Set For Ati = b.

$$\therefore \text{ Line } M: \left[\overrightarrow{X} = \overrightarrow{p} + t \begin{bmatrix} 6 \\ -8 \end{bmatrix} = \begin{bmatrix} -6 \\ 3 \end{bmatrix} + t \begin{bmatrix} 6 \\ -8 \end{bmatrix}$$

<u>Juestion</u>: Describe the solutions of the first system of equations below in parametric vector Form. Provide a geometric comparison w/ the solution set of the second system of equations below:

$$\begin{cases} 2\chi_1 + 2\chi_2 + 4\chi_3 = 8 \\ -6\chi_1 - 6\chi_2 - 12\chi_3 = -24 \\ -5\chi_2 - 5\chi_3 = 15 \end{cases}$$
*5d. Set 1 *

$$\begin{cases} 2x_1 + 2x_2 + 4x_3 = 0 \\ -6x_1 - 6x_2 - 12x_3 = 0 \\ -5x_2 - 5x_3 = 15 \end{cases}$$
Scl. Set 2

Answer:

*Write the first system as an augmented matrix:

$$[A \mid \vec{b}] = \begin{bmatrix} 2 & 2 & 4 & |8| \\ -6 & -6 & -12 & |-24| \\ 0 & -5 & -5 & |15| \\ -\frac{1}{5}R_3 & 0 & |1| \\ -3 \end{bmatrix}$$

* Find the reduced-echelon Form:

Question Continued...

* Solving For the Basic Variables:

$$\Rightarrow \begin{cases} \chi_1 = 7 - \chi_3 \\ \chi_2 = -3 - \chi_3 \\ \chi_3 \text{ is free} \end{cases}$$

*The General Solution as a Vector:

$$\overrightarrow{\chi} = \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix} = \begin{bmatrix} 7 - \chi_3 \\ -3 - \chi_3 \end{bmatrix} = \begin{bmatrix} 7 \\ -3 \\ 0 \end{bmatrix} + \chi_3 \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

*Solution of 1st System in Parametric Vector Form *

* Geometric Comparison of Systems 1 & 2*

- The first system of eq. $(A\vec{x}=\vec{b})$ has one free variable (line)
- · The second system of eq. (Ax = 0).

*Recall: The solutions of $\pm \vec{x} = \vec{b}$ are obtained by adding \vec{p} to the solutions of $\pm \vec{x} = \vec{o}$ (Parallel Lines)

in the solution set of the first system
$$4\vec{x} = \vec{b}$$
 is the line through \vec{p} , parallel to the traduction set of the second system $4\vec{x} = \vec{0}$; $\vec{p} = \begin{bmatrix} -7 \\ -3 \end{bmatrix}$

Example: Describe the solution set of the first system of equations below in parametric Form. Provide a géametric comparison w/ the solution set of the second system of equations shown below:

$$\begin{cases} \chi_{1} - \chi_{2} + 3\chi_{3} = 3 & \chi_{1} - \chi_{2} + 3\chi_{3} = 0 \\ 2\chi_{1} + \chi_{2} + 3\chi_{3} = 3 & 2\chi_{1} + \chi_{2} + 3\chi_{3} = 0 \\ -\chi_{1} - 2\chi_{2} = 0 & -\chi_{1} - 2\chi_{2} = 0 \end{cases}$$

Answer.

Note: · System 1 has the nonhomogeneous eq \Rightarrow $\pm\vec{x} = \vec{b}$ · System 2 has the homogeneous eq \Rightarrow $\pm\vec{x} = \vec{o}$

*Write the 1st system of Eq. IX= B as an augmented matrix:

$$[A;b] = \begin{bmatrix} 1 & -1 & 3 & 3 \\ 2 & 1 & 3 & 1 & 3 \\ -1 & -2 & 0 & 1 & 0 \end{bmatrix}$$

KFind the reduced-echelon Form:

$$\begin{array}{c} \cdot R_{1} \\ + R_{3} \\ \hline \text{New } R_{3} \end{array} \longrightarrow \begin{bmatrix} 1 & -1 & 3 & | & 3 \\ 0 & 1 & -1 & | & -1 \\ 0 & -3 & 3 & | & 3 \end{bmatrix} \xrightarrow{\frac{1}{3}} R_{3} \begin{bmatrix} 1 & -1 & 3 & | & 3 \\ 0 & 1 & -1 & | & -1 \\ 0 & 1 & -1 & | & -1 \end{bmatrix}$$

•
$$R_2$$

+ R_1
New R_1 $\begin{bmatrix} 1 & 0 & 2 & | & 2 \\ 0 & 1 & -1 & | & -1 & | & -1 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$ \Leftrightarrow $\begin{cases} x_1 + 2x_3 = 2 \\ x_2 - x_3 = -1 \\ 0 = 0 \end{cases}$

*Solve For the Basic Variables 4 then write the Gen. Solution

$$\Rightarrow \begin{cases} \chi_1 = \lambda - \lambda \chi_3 \\ \chi_2 = -1 + \chi_3 \\ \chi_3 \text{ is free} \end{cases}$$

$$\overrightarrow{\chi} = \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix} = \begin{bmatrix} 2 - 2\chi_3 \\ -1 + \chi_3 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} + \chi_3 \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$$
Formula in the following part of the property of

* Geometric Comparison:

Recall: The solutions of $\pm \vec{x} = \vec{b}$ are obtained by adding

 \vec{p} to the solutions of $\pm x = 0$; I free variable \Rightarrow Lines

The solution set of the 1st system
$$(A\vec{x}=\vec{b})$$
 is a Line passing through $\vec{p}=\begin{bmatrix}21\\0\end{bmatrix}$ at parallel to the Line that is the solution of the 2^{nd} system $(A\vec{x}=\vec{o})$ Line that is the solution of the 2^{nd} system $(A\vec{x}=\vec{o})$

* Monto: 2nd Sustem's solution: $\vec{\chi} = \chi_3 \begin{bmatrix} -2 \\ 1 \end{bmatrix}$

Notes to Self:

0\$ A is a 3×3 matrix W/ 3 pivot positions

- · Does the eq. $4\vec{x} = \vec{0}$ have a nontrivial solution?
 - No. $A\vec{x} = \vec{0}$ must have a free variable for nonthivial solutions to \vec{J} ; 3 pivots prevents this.
- Does the eq. $t\vec{x} = \vec{b}$ have @ least one solution Y b?

Yes. Matrix A has 3 rows & 3 pivots (Ipivot/row)

: Since A has a pivot in each row, Y bell?,

the eq. $t\bar{x}=\bar{b}$ has a solution.

2\$ A is a 2×5 matrix w/2 pivot pesitions

- · Dow the eq. tx=0 have a nontrivial solution?
- Yos. Matrix A has 2 rows w/ 5 columns.

 2 proofs => 2 Basic Variables & 3 Free Variables

 : Nontrivial Sol. can 31
- · Does the eq. Ax = To have @ least one Scl. 4 6?
 - Yes. Matrix A has 2 rows & 2 pivots (1 pnot/nw)

 ⇒ :: Since A has a pivot in each row, 4

 be R², the eq. IX=5 has a solution.