Analysis:

For this project I have been tasked with extracting audio features from a set of audio files and classifying these features with data mining algorithms. The GUI program *audioGUI.py* uses the functions provided by *audio.py* to extract features, plot the audio file's waveform and FFT graph, and classify the extracted features.

Design:

The algorithms used for feature extraction were taken from *Content Analysis* for *Audio Classification and Segmentation*. After building the functions and testing them on a single audio file, I made a loop to traverse the directory and create the training set and testing set feature files. With this completed I added the data mining functions to output the results in a file. In testing I would plot the waveform and FFT, and decided to leave these functions available to the user.

The GUI program uses audio.py's methods to conveniently display the information to the screen.

Usage:

You will need to install the libraries AudioLab and Orange for python.

Orange - http://orange.biolab.si/
AudioLab - http://www.ar.media.kyoto-

u.ac.jp/members/david/softwares/audiolab/sphi

nx/index.html

Afterwards you may execute the file with "python audioGUI.py" in your terminal. The directory structure is as follows:

/data - Audio files, feature files, and results.

/data/test/ - Testing audio files
/data/train/ - Training audio files

/data/results - Data mining results file
 /data/audioTest.tab - Testing set features file
 /data/audioTrain.tab - Training set features file
 /images/ - Folder to hold plot images

/audio.py - Function class for audio tasks /audioGUI.py - GUI program to display the data

Screenshots:

Results Window:

```
Bayes Classifier:

    music (originally music)

music (originally music)
music (originally music)
music (originally music)
5: music (originally music)
6: music (originally music)
7: speech (originally music)
8: speech (originally speech)
9: speech (originally speech)
10: speech (originally speech)
11: speech (originally speech)
12: speech (originally speech)
13: speech (originally speech)
14: speech (originally speech)
        Tree Classifier:
1: music (originally music)
2: music (originally music)
```

Main Window:

Waveform Plot:

FFT Plot:

Works Cited

Lu, L., Zhang, H.J., & Jiang, H. (2002). Content Analysis for Audio Classification and Segmentation. IEEE Transactions on Speech and Audio Processing, 10(7), 504-516.