Đề thi thử cuối kỳ môn Giải tích 2 - Học kỳ: 20202 Nhóm ngành 1 - Thời gian: 60 phút (Đề thi gồm 40 câu hỏi trắc nghiêm)

Câu 01. Tìm vecto pháp tuyến đơn vị của S là phía trên mặt phẳng x + 2y + 4z = 8

(A)
$$\frac{1}{\sqrt{19}}(1, -2, -4)$$
 (B) $\frac{1}{\sqrt{31}}(1, -2, 4)$ (C) $\frac{1}{\sqrt{26}}(1, 2, -4)$ (D) $\frac{1}{\sqrt{21}}(1, 2, 4)$ (E) $\frac{1}{\sqrt{23}}(-1, 2, 4)$

Câu 02. Viết phương trình tiếp tuyến của đường cong y = ln(4x + 1) tại điểm A(0;0)

$$A y - x = 0$$

$$B 2x - y = 0$$

$$\bigcirc y - 5x = 0$$

$$(D) y - 4x = 0$$

 $T inh \lim_{t \to 0} \int_{0}^{\infty} \frac{\sin(x+t^2)dx}{(x-t^2)} dx$

(A) 2

(C) 4

 (\mathbf{D}) 5

Tính tích phân $\int_{0}^{1} dx \int_{0}^{\infty} dz \int_{0}^{\infty} (y+z)dy$

(A) 1

Cho tích phân $I = \iint_{\mathbb{R}} f(x;y) dxdy$ và $I_1 = \iint_{\mathbb{R}} f(x;y) dxdy$ với D đối xứng qua trục Ox và

f(x;y) là chẵn theo $y; D_1: \begin{cases} D \\ y > 0 \end{cases}$

Chọn đáp án đúng:

 $(\mathbf{A}) \mathbf{I} = \mathbf{I}_1$

 \mathbf{B} I=2I₁

(C) I=4I₁

 (\mathbf{D}) I=3I₁

Tính độ cong phương trình trong hệ tọa độ cực là $r = \sin 2\varphi$ tại điểm $M\left(\frac{\sqrt{2}}{2}; \frac{\sqrt{2}}{2}\right)$

(A) 1

Giả sử mặt S có phương trình z = f(x, y), với $(x,y) \in D \subset R^2$. Trong trường hợp nào sau đây

Câu 08. Tính khối lượng bản phẳng có hàm khối lượng là $\rho(x,y) = \sin x \cdot \cos x$, nằm trong miền giới hạn bởi $x = 0, y = 0, y = \cos x$

 $\mathbb{E} \frac{1}{3}$

Câu 09. $I = \iint_D f(x,y) dx dy$ với miền $D \begin{cases} 2x \le x^2 + y^2 \le 1 \\ 0 \le x \le y \end{cases}$. Tính I bằng cách đổi biến trong hệ tọađộ cực với $\begin{cases} x = r\cos\varphi \\ y = r\sin\varphi \end{cases}$ Miền D trở thành miền $D' \begin{cases} 2\cos\varphi \le r \le 1 \\ a\pi \le \varphi \le b\pi \end{cases}$ Tính tổng a+b(A) $\frac{1}{3}$ (B) $\frac{7}{12}$ (C) $\frac{5}{6}$ (D) $\frac{1}{4}$

Câu 10. Tính $\int_{A_{P}} 2ydx + 3xdy$ với A(0;0); B(1;1)

(A) 3

Tính tích phân I = $\iint_D xy dxdy \text{ với miền } D: x^2 + y^2 \le 1; y \ge -x; y \le 0$

 $\frac{-1}{16}$

Vật được né<mark>m xiên một</mark> góc α (tha<mark>y đổi) từ m</mark>ặt đất <mark>với vận tốc v_o (khôn</mark>g đổi). Trong hệ tọa độ Descaster, phương trình chuyến động của đạn phụ thuộc vào α theo thời gian là:

$$\begin{cases} x = v_0 \cos \alpha t \\ y = v_0 \sin \alpha t - g \frac{t^2}{2} \end{cases}$$

Tìm hình bao của họ quỹ đạo các viên đạn

(A) $y = \frac{v_o^2}{2g} - \frac{g}{2v_o^2}x^2$ (B) $y = \frac{v_o^2}{gx} - \frac{g}{v_o^2}x$ (C) $y = \frac{v_o^2}{gx} - \frac{g}{v_o^2}x^2$ $y = \frac{v_o^2}{2\sigma x} - \frac{g}{2v^2} x$

Tính góc giữa hai vector \overrightarrow{gradu} (đơn vị: radian) của các trường vô hướng sau: $z_1 = \sqrt{x^2 + y^2}$, $z_2 = x - 3y + \sqrt{3xy}$ tại M(3, 1)(Chọn đáp án gần đúng nhất)

(A) 2

(B) 1

 \bigcirc 3

D 4

Câu 14. Đối thứ tự tích phân

$$I = \int_{0}^{\frac{\sqrt{2}}{2}} \int_{0}^{1-\sqrt{1-x^2}} f(x,y)dydx + \int_{\frac{\sqrt{2}}{2}}^{1} \int_{0}^{\sqrt{1-x^2}} f(x,y)dydx$$

 $A I = \int_{0}^{\frac{\sqrt{2}}{2}} \int_{1-\sqrt{1-y^2}}^{\sqrt{1-y^2}} f(x,y) dx dy$

 $I = \int_{0}^{1} \int_{1}^{\sqrt{2y-y^2}} f(x,y) dx dy$

 $\mathbf{B} I = \int_{0}^{\frac{\sqrt{2}}{2}} \int_{\sqrt{2y-y^2}}^{\sqrt{1-y^2}} f(x,y) dx dy$

Câu 15. Tính diện tích $z = 2x^2 + 2y^2 + 2$ nằm trong $x^2 + y^2 = 4$

$$\mathbf{A} \int_{-\pi}^{\pi} d\varphi \int_{0}^{1} \sqrt{1 + 4r^2} \mathrm{dr}$$

$$\int_{0}^{2\pi} d\varphi \int_{0}^{1} r\sqrt{1+4r^2} dr$$

$$\int_{-\pi}^{\pi} d\varphi \int_{0}^{1} r\sqrt{1+4r^2} dr$$

Câu 16. Cho $f(y) = \int_{-\infty}^{\infty} \sqrt{\cos^2 2x + y^2 \sin^2 2x} \, dx$. Tính f'(1)

Câu 17. Biết $\overrightarrow{F} = (3x^2 + yz)\overrightarrow{i} + (6y^2 + xz)\overrightarrow{j} + (z^2 + xy + e^z)\overrightarrow{k}$ là trường thế, tìm hàm thế vị.

(A)
$$u = x^3 + 2y^3 + \frac{z^3}{3} + e^z + xyz + C$$

(B) $u = x^3 + 2y^3 + \frac{z^3}{3} + e^z + xy + C$
(C) $u = x^3 + 2y^3 + \frac{z^3}{3} + e^z + xyz + C$
(D) $u = x^3 + 3y^3 + \frac{z^3}{3} + e^z + xyz + C$

B
$$u = x^3 + 2y^3 + \frac{z^3}{3} + e^z + xy + C$$

$$D u = x^3 + 3y^3 + \frac{z^3}{3} + e^z + xyz + C$$

Câu 18. Cho tích phân $I=\iiint\limits_V z \mathrm{d}x\mathrm{d}y\mathrm{d}z$ với V: $\begin{cases} y=1-x\\ z=1-x^2\\ x,y,z\geq 0 \end{cases}$. Biết $I=\frac{a}{b}$, a,b là 2 số nguyên tố cùng

nhau. Nhận định nào sau đâu đúng?

$$A a - b \le 0$$

$$\bigcirc$$
 $ab \leq 200$

$$\frac{a}{h} \geq 1$$

(A)
$$a - b \le 0$$
 (B) $ab \le 200$ (C) $\frac{a}{b} \ge 1$ (D) $a + b \ge 100$

Câu 19. Tích phân $I = \int_{a}^{+\infty} x^6 \cdot e^{-x^2} dx = \frac{1}{a} \cdot \Gamma\left(\frac{b}{c}\right)$. Tính a + b + c

Tính $\int_C (x^2 + y tan^2 x) dx + (tanx + y^2) dy$ với C là đường tròn $x^2 + y^2 = 2x$ hướng ngược chiều

kim đồng hồ

- $\mathbf{A} 4\pi$
- \mathbf{B} 2π
- \mathbf{C} 3π
- \bigcirc 5π

Tính $\iint\limits_D \left(y^3+x^2+y+1\right) dx dy$. Trong đó D là miền $\begin{cases} -x \leq y \leq 2-x \\ y \leq x \leq 2+y \end{cases}$ B $\frac{13}{3}$ C $\frac{7}{3}$ D 4

Câu 22. Tính tích phân I trên mặt S là phần mặt nón $z^2 = x^2 + y^2$ với $0 \le z \le 1$ của hàm số f(x, y, z) = x + y + z

 $\frac{\pi\sqrt{2}}{2}$

- $\frac{2\pi\sqrt{2}}{2}$
- $\pi\sqrt{2}$

 $\bigcirc \frac{4\pi\sqrt{2}}{2}$

CLB Hỗ Trợ Học Tập **Câu 23.** Tính công của lực $\overrightarrow{F} = (5x + 3y)\overrightarrow{i} + (2x + 3y)\overrightarrow{j}$ làm di chuyển 1 chất điểm dọc theo 1 đoạn thắng từ A(1;2) đến B(3;6)**E** 105 (A) 106 (B) 108 **(C)** 110 D 120 Câu 24. Tinh tích phân $\iiint z dx dy dz$ trên miền V xác định bởi mặt $(x+2y)^2+4z^2=1$ trong góc phần tám thứ nhất và các mặt phẳng toạ độ $\frac{1}{64}$ D 32 (A) 64 Câu 25. Tìm a để Pdx + Qdy là vi phân toàn phần của hàm u(x;y) với $P = \frac{1-y^2}{(1+xy)^a}$; $Q = \frac{1-x^2}{(1+xy)^a}$ **A** 2 Câu 26. Tính $I = \int_{OBCO} x\sqrt{x^2 + y^2}dx + y\sqrt{x^2 + y^2}dy$ với O(0;0), B(1;0), C(0;1)**A** 8 Câu 27. Tính $\iint_{S} z(x^2 + y^2) dxdy$ trong đó S là nửa mặt cầu $x^2 + y^2 + z^2 = 1, z \le 0$ hướng ra phía ngoài mặt cầu. $\frac{\mathbf{C}}{15}$ $\frac{\mathbf{B}}{15}$ Tính $\oint_C y^2 z^2 dx + z^2 x^2 dy + x^2 y^2 dz$ với C là đường khép kín: $x = a \cos t, y = a \cos 2t, z = a \cos 3t$ theo chiêu t<mark>ăn</mark>g c<mark>ủa</mark> t **D** 2 (A) 3 Câu 29. Tính $I = \iint_{D} (x^3 - 2xy + y^3) dx dy$ với $D \begin{cases} y \le 0 \le x \\ 0 \le x^2 + y^2 \le 4 \end{cases}$ **A** 4 **Câu 30.** Cho S là mặt biên phía trong của V giới hạn bởi $x^2 + y^2 \le 4$, $0 \le z \le x^2 + y^2$. Tính tích phân $I = \iint y dy dz + xy dz dx + z dx dy$ $(\mathbf{C}) 2\pi$ $(\mathbf{A}) \pi$ (\mathbf{D}) 16 π (E) 4π

Tính $\int_{L} \frac{(3x^3 - 4y^2)dx + (6x^3 - 2y^2)dy}{\sqrt{x^2 + y^2}}$ với L là đường $y = 2\sqrt{1 - x^2}$ đi từ A(1;0) đến B(-1;0)

(A) $\frac{5}{7}\pi + \frac{31}{15}$ (B) $\frac{4}{3}\pi + \frac{21}{15}$ (C) $\frac{9}{4}\pi + \frac{151}{15}$ (D) $\frac{3}{2}\pi$ $\mathbb{E} \frac{3}{2}\pi + 1$

Tính diện tích miền giới hạn bởi $\left(x^2+y^2\right)^2=a^2\left(x^2-y^2\right)$

 $(\mathbf{A}) \pi$

Giá trị cực tiểu của hàm số $f(a;b) = \int_{a}^{b} (x^2 - ax + b)^2 dx$ bằng:

- $\frac{1}{00}$

Câu 34. Gọi α là góc giữa mặt phẳng Oxy và tiếp tuyến của đường cong x = at, $y = a \sin t \cos t$, $z = \sin t$ $(a \neq 0)$. Hỏi α đạt giá trị lớn nhất khi t nằm trong khoảng nào dưới dây:

- (A) $\left(0; \frac{\pi}{6}\right)$ (B) $\left(\frac{\pi}{3}; \frac{\pi}{2}\right)$ (C) $\left(\frac{\pi}{4}; \frac{\pi}{3}\right)$ (D) $\left(\frac{\pi}{5}; \frac{\pi}{4}\right)$ (E) $\left(\frac{\pi}{6}; \frac{\pi}{5}\right)$

Câu 35. Tính thông lượng Φ của trường vector: $\overrightarrow{F} = (x - y + z) \overrightarrow{i} + (y - z + x) \overrightarrow{j} + (z - x + y) \overrightarrow{k}$ qua phía ngoài mặt S: |x - y + z| + |y - z + x| + |z - x + y| = 1Hỏi trong các đáp án sau, đáp án nào đúng:

- **A** $1 < \Phi < 2$
- **B** $0 \le \Phi < 1$ **C** $-2 \le \Phi < -1$ **D** $-1 \le \Phi < 0$

Tính $I = \int_{0}^{1} dx \int_{0}^{\sqrt{1-x^2}} dy \int_{0}^{\sqrt{1-x^2-y^2}} \left(\frac{y^2+z^2}{x^2+2y^2+z^2}\right) dz$ $\textcircled{B} \frac{\pi}{6} \qquad \textcircled{C} \frac{\pi}{12} \qquad \textcircled{D} \frac{\pi}{8}$

Tính tích phân kép $\iint_D (x+y)^2 dxdy$ với miền $D: 5x^2 + 6xy + 5y^2 \le 4$

Cho $I = \iiint\limits_{V} \left[(x+y+z)^2 + (xy+yz+zx) + 2 \right] dxdydz$

Với miền $V: (x^2 + y^2 + z^2) + (xy + yz + zx) - 2 \le 0$. Biết $I = \frac{a\pi}{b}$ tính |a - b|

- A 29

- \mathbf{E} 0

Câu 39. Tính lưu số của trường vector: $\overrightarrow{F} = (y^2 + z^2) \overrightarrow{i} + (z^2 + x^2) \overrightarrow{j} + (x^2 + y^2) \overrightarrow{k}$ dọc theo đường cong C: $x^2 + y^2 + z^2 = 4x$, $x^2 + y^2 = 2x$ $(z \ge 0)$, hướng dương. Kết quả cần tìm là m. Hỏi trong các đáp án sau, đáp án nào đúng:

- (A) $8 \le m \le 11$
- **B** 4 < m < 7
- (c) 0 < m < 3
- \bigcirc 12< m < 15

Tính tích phân $\iiint\limits_V \frac{|xyz|}{x^2+y^2}$ với V là miền giới hạn bởi $(x^2+y^2+z^2)^2=x^2-y^2$

- $\mathbb{C} \frac{1}{36}$ $\mathbb{D} \frac{\pi}{16}$ $\mathbb{E} \frac{3}{35}$