Regressão para pesquisas sociais

Dia 2 - Exercício: RLS e RLM

Thiago Cordeiro Almeida

September 17, 2025

1. Introdução

Vamos trabalhar neste documento com dados do Censo Demográfico de 2010 e Cadastro Único.

Estamos interessados em responder à seguinte pergunta: Quais os fatores associados ao acesso ao esgotamento sanitário de populações vulneráveis no Brasil?

Vamos seguir as etapas descritas nos slides para cada modelo a ser estimado.

2. Importação dos dados

Ao longo dessas análises, usaremos a gramática de programação tidyverse. Caso você ainda não esteja familiarizado/a com essa forma de programação, sugiro a leitura do material da Curso-R que deixei nas referências do curso, há um capítulo sobre isso. Eles, com certeza, te convencerão sobre a potencialidade dessa forma de programção.

Dentro do tidyverse, há distintas bibliotecas. Usaremos duas chamadas dplyr – para manipulação dos dados – e ggplot2 – para gráficos.

```
# ajustes gerais
options(scipen = 9999999)
rm(list = ls())

## pacotes necessarios
# instalando pacote de gerenciador de pacotes, pacman
ifelse(!require(pacman),install.packages("pacman"),require(pacman))
```

[1] TRUE

```
p_load(tidyverse, here, skimr) # importando pacote que usaremos, tidyverse
# importando dados
# setwd() # CONFIGURE O SEU DIRETORIO DE TRABALHO
# o comando 'here()' faz com que trabalhemos onde esta o nosso codigo ou projeto
diretorio <- file.path(here(), "dia 2", "pratica")
# diretorio <- file.path(here())

dados <- read_csv2(file.path(diretorio, "dados_acesso_esgoto.csv"))</pre>
```

3. Exploratória da base de dados

Vamos fazer uma breve exploração dos dados, para compreender como a nossa base de dados está organizada.

A começar, vamos usar o pacote que o Guilherme nos recomendou na última aula, chamado skimr¹.

```
dados |>
   skim()
```

Table 1: Data summary

Name	dados
Number of rows	10410
Number of columns	9
Column type frequency:	
character	3
numeric	6
Group variables	None

Variable type: character

skim_variable	n_missing	complete_rate	min	max	empty	n_unique	whitespace
regiao	0	1	3	12	0	5	0
pop_faixas	0	1	9	19	0	6	0
$municipio_rural$	0	1	5	6	0	2	0

Variable type: numeric

¹Para mais informações sobre ele, você pode acessar esse texto da Curso-R.

skim_variable	_missingon	nplete_	_ramean	sd	p0	p25	p50	p75	p100 his	st
ano	0	1	2016.51	1.11	2015.0	02016.00	02017.00	2017.0	02018	
em	0	1	32.15	12.89	0.00	22.73	31.15	40.54	100	
acesso_esgoto	0	1	34.09	32.37	0.03	3.37	23.99	60.63	100	
pbf	0	1	64.08	18.10	0.00	49.81	67.53	79.20	100	
desocupados	0	1	78.57	9.73	16.79	72.52	78.50	84.89	100	
in formal idade	0	1	58.12	20.96	0.00	45.60	60.00	72.77	100	

Com base no que este código nos retorna, podemos ter uma visão geral da distribuição das variáveis, segundo algumas informações principais, como medidas de tendência central e dispersão, para variáveis categorizadas como contínuas, valores mínimos e máximos, número de casos ausentes, etc.

4. Modelos

5. Modelo 1 - PBF

O nosso modelo 1 consiste em incluir somente PBF como variável explicativa. Pode ser descrito em sua forma populacional como:

$$AcessoEsgoto = \beta_0 + \beta_1 \cdot PBF + \epsilon$$

Para estimar, basta rodar:

```
modelo1 <- lm(
  acesso_esgoto ~ pbf,
  data = dados
)</pre>
```

Para obter seus resultados, temos:

```
summary(modelo1)
```

```
Call:
```

```
lm(formula = acesso_esgoto ~ pbf, data = dados)
```

Residuals:

```
Min 1Q Median 3Q Max -76.830 -20.134 -7.137 23.807 83.405
```

Coefficients:

Estimate Std. Error t value Pr(>|t|)

Podemos observar que um aumento em 1% do percentual de famílias que recebem bolsa família reduziria, em média, em 0.84% o percentual de famílias com acesso à rede de esgoto.

6. Modelo 2 - Informalidade

O nosso modelo 2 consiste em incluir a Informalidade, para além do PBF como variável explicativa. Pode ser descrito em sua forma populacional como:

```
AcessoEsgoto = \beta_0 + \beta_1 \cdot PBF + \beta_2 \cdot Informalidade + \epsilon
```

Para estimar, basta rodar:

```
modelo2 <- lm(
  acesso_esgoto ~ pbf + informalidade,
  data = dados
)</pre>
```

Para obter seus resultados, temos:

```
summary(modelo2)
```

```
Call:
```

```
lm(formula = acesso_esgoto ~ pbf + informalidade, data = dados)
```

Residuals:

```
Min 1Q Median 3Q Max -76.908 -20.132 -7.205 23.797 84.304
```

Coefficients:


```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 28.54 on 10407 degrees of freedom Multiple R-squared: 0.2231, Adjusted R-squared: 0.2229

F-statistic: 1494 on 2 and 10407 DF, p-value: < 0.00000000000000022

Neste caso, o que obtemos é uma relação negativa em que, aumentando a informalidade entre os jovens em 1%, haveria uma redução do percentual de famílias com acesso ao esgotamento sanitário em 0.05%. Para o PBF, parece manter o mesmo sentido e intensidade.

7. Modelo 3 - Ensino Médio

O nosso modelo 3 consiste em incluir somente frequência ao Ensino Médio, para além de PBF, como variável explicativa. Pode ser descrito em sua forma populacional como:

$$AcessoEsgoto = \beta_0 + \beta_1 \cdot PBF + \beta_2 \cdot EnsinoMedio + \epsilon$$

Para estimar, basta rodar:

```
modelo3 <- lm(
  acesso_esgoto ~ pbf + em,
  data = dados
)</pre>
```

Para obter seus resultados, temos:

```
summary(modelo3)
```

```
Call:
```

```
lm(formula = acesso_esgoto ~ pbf + em, data = dados)
```

Residuals:

```
Min 1Q Median 3Q Max -72.79 -20.27 -6.87 23.68 81.82
```

Coefficients:

Neste caso, o que obtemos é uma relação positiva em que, aumentando a frequência média dos jovens ao Ensino Médio em 1%, haveria um aumento do percentual de famílias com acesso ao esgotamento sanitário em 0.16%. Por outro lado, a associação do PBF mantém a mesma.

8. Modelo 4 - PBF, Informalidade e Ensino Médio

O nosso modelo 4 consiste em incluir todas as variáveis explicativas do acesso ao esgotamento sanitário. Pode ser descrito em sua forma populacional como:

```
AcessoEsgoto = \beta_0 + \beta_1 \cdot PBF + \beta_2 \cdot Informalidade + \beta_3 \cdot EnsinoMedio + \epsilon
```

Para estimar, basta rodar:

```
# modelo 4 - todos juntos

modelo4 <- lm(
   acesso_esgoto ~ pbf + informalidade + em,
   data = dados
)</pre>
```

Para obter seus resultados, temos:

```
summary(modelo4)
```

```
Call:
```

```
lm(formula = acesso_esgoto ~ pbf + informalidade + em, data = dados)
```

Residuals:

```
Min 1Q Median 3Q Max -73.676 -20.199 -6.888 23.703 81.620
```

Coefficients:


```
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 28.46 on 10406 degrees of freedom Multiple R-squared: 0.2272, Adjusted R-squared: 0.227

F-statistic: 1020 on 3 and 10406 DF, p-value: < 0.0000000000000022

Os resultados parecem se manter semelhantes aos anteriores!

