BIOINFORMATICALLY DETECTABLE GROUP OF NOVEL REGULATORY OLIGONUCLEOTIDES ASSOCIATED WITH ALZHEIMER'S DISEASE AND USES THEREOF

Abstract

The present invention relates to a first group of novel oligonucleotides, here identified as genomic address messenger or GAM oligonucleotides, and a second group of novel operon-like polynucleotides, here identified as genomic record or GR polynucleotides. GAM oligonucleotides selectively inhibit translation of known target genes, many of which are known to be involved in various diseases. Nucleic acid molecules are provided respectively encoding 1708 GAM oligonucleotides, and 246 GR polynucleotides as are vectors and probes both comprising the nucleic acid molecules, and methods and systems for detecting GAM oligonucleotides and GR polynucleotide and specific functions and utilities thereof, for detecting expression of GAM oligonucleotides and GR polynucleotides and for selectively enhancing and selec-

tively inhibiting translation of the respective ta	rget genes thereof .