

CLAIMS

1 1. A ligand profile which is characteristic for a
2 given cell, the ligand profile comprising a representation
3 of at least ten different polypeptide ligands, all of which
4 bind to a single type of multi-ligand binding receptor,
5 wherein the representation characterizes each individual
6 ligand based upon at least three physical or chemical
7 attributes; provided that, if the multi-ligand binding
8 receptor is an MHC class I or class II receptor, at least
9 500 polypeptide ligands are represented in the ligand
10 profile; and further provided that the ligand profile is a
11 reproducible characteristic of the cell.

1 2. A ligand profile which is characteristic for a
2 given cell, the ligand profile comprising a representation
3 of at least ten different polypeptide ligands, all of which
4 bind to a single type of multi-ligand binding receptor,
5 wherein the representation characterizes each individual
6 ligand based upon at least two physical or chemical
7 attributes, one of said attributes being mass or mass-to-
8 charge ratio; provided that, if the multi-ligand binding
9 receptor is an MHC class I or class II receptor, at least
10 500 polypeptide ligands are represented in the ligand
11 profile; and further provided that the ligand profile is a
12 reproducible characteristic of the cell.

1 3. A ligand profile which is characteristic for a
2 given cell, the ligand profile comprising a representation
3 of at least ten different polypeptide ligands, all of which
4 bind to a single type of multi-ligand binding receptor,
5 wherein the representation characterizes each individual
6 ligand based upon at least one physical or chemical
7 attribute, the at least one physical or chemical attribute

8 comprising amino acid sequence; provided that, if the multi-
9 ligand binding receptor is an MHC class I or class II
10 receptor, at least 50 polypeptide ligands are represented in
11 the ligand profile; and further provided that the ligand
12 profile is a reproducible characteristic of the cell.

1 4. A ligand profile which is characteristic for a /
2 given cell, the ligand profile comprising ion fragmentation
3 patterns for at least ten different polypeptide ligands, all
4 of which polypeptide ligands bind to a single type of multi-
5 ligand binding receptor; provided that, if the multi-ligand
6 binding receptor is an MHC class I or class II receptor, at
7 least 100 polypeptide ligands are represented in the ligand
8 profile; and further provided that the ligand profile is a
9 reproducible characteristic of the cell.

1 5. A ligand profile which is characteristic for a /
2 given cell, the ligand profile comprising amino acid
3 sequences of at least ten different polypeptide ligands
4 having distinct core peptides, all of which ligands bind to
5 a single type of multi-ligand binding receptor; provided
6 that, if the multi-ligand binding receptor is an MHC class I
7 or class II receptor, at least 100 polypeptide ligands are
8 represented in the ligand profile; and further provided that
9 the ligand profile is a reproducible characteristic of the
10 cell.

1 6. The ligand profile of claim 1, wherein the
2 multi-ligand binding receptor is an MHC class I or MHC class
3 II receptor.

1 SBD 3)
1 7. The ligand profile of claim 1, wherein the
2 multi-ligand binding receptor is not an MHC class I or MHC
3 class II receptor.

1 SBD 3)
1 8. The ligand profile of claim 1, wherein the
2 multi-ligand binding receptor is a chaperone, a chaperonin,
3 a calnexin, a calreticulin, a mannosidase, a N-glycanase, a
4 BIP, a grp94, a grp96, hsp60, hsp65, hsp70, hsp90, hsp25, an
5 E2 ubiquitin carrier protein, an E3 ubiquitin ligase, an
6 unfoldase, hsp100, a proteasome, a trafficking protein, or a
7 retention protein.

1 SBD 3)
1 9. The ligand profile of claim 1, combined with a
2 second ligand profile, the second ligand profile (a) also
3 being a reproducible characteristic of the given cell, and
4 (b) comprising a representation of at least ten additional
5 polypeptide ligands, all of which bind to a second type of
6 multi-ligand binding receptor different from the first type
7 of receptor.

1 SBD 3)
1 10. A method of generating a reproducible ligand
2 profile for a given cell type, which cell type comprises a
3 selected type of multi-ligand binding receptor, the method
4 comprising:

- 5 (a) providing a first sample of the given cell
6 type, wherein the first sample comprises a first plurality
7 of polypeptide ligands bound to the selected type of multi-
8 ligand binding receptor;
- 9 (b) isolating the selected type of multi-ligand
10 binding receptor from the first sample;
- 11 (c) separating the first plurality of ligands from
12 the selected type of multi-ligand binding receptor;
- 13 (d) fractionating the first plurality of ligands;

14 (e) generating a first profile distinguishing among
15 the first plurality of ligands on the basis of at least one
16 chemical or physical attribute;
17 (f) providing a second sample of the given cell
18 type, the second sample being essentially identical to the
19 first sample, wherein the second sample comprises a second
20 plurality of polypeptide ligands bound to the selected type
21 of multi-ligand binding receptor;
22 (g) isolating the selected type of multi-ligand
23 binding receptor from the second sample;
24 (h) separating the second plurality of ligands from
25 the selected type of multi-ligand binding receptor;
26 (i) fractionating the second plurality of ligands;
27 (j) generating a second profile distinguishing
28 among the second plurality of ligands on the basis of the at
29 least one chemical or physical attribute; and
30 (k) confirming that the first profile and the
31 second profile are essentially identical, and together
32 represent a reproducible ligand profile for the given cell
33 type.

1 11. The method of claim 10, wherein a second
2 chemical or physical attribute of each ligand is determined
3 subsequent to the fractionation steps, and is represented in
4 the profiles.

1 12. The method of claim 11, wherein a third
2 chemical or physical attribute of each ligand is determined
3 subsequent to the fractionation steps, and is represented in
4 the profiles.

1 13. The method of claim 10, wherein the isolating
2 and separating steps are accomplished using appropriate
3 columns arranged in an in-line system.

1 14. A method of generating a ligand profile for a ✓
2 given type of cell, comprising:

3 (a) providing a sample of lysate of the given type
4 of cell, wherein the sample comprises a first plurality of
5 polypeptide ligands bound to a first type of multi-ligand
6 binding receptor and a second plurality of polypeptide
7 ligands bound to a second type of multi-ligand binding
8 receptor;

9 (b) isolating the first and second types of multi-
10 ligand binding receptors from the sample;

11 (c) separating the first plurality of ligands from
12 the first type of multi-ligand binding receptor and the
13 second plurality of ligands from the second type of multi-
14 ligand binding receptor;

15 (d) fractionating the first plurality of ligands
16 and the second plurality of ligands; and

17 (e) generating a first profile distinguishing among
18 the first plurality of ligands on the basis of at least one
19 chemical or physical attribute and a second profile
20 distinguishing among the second plurality of ligands on the
21 basis of the same at least one chemical or physical
22 attribute.

1 15. A method of generating a subtraction profile of ✓
2 polypeptide ligands, comprising:

3 (a) producing a first ligand profile by a method
4 comprising:

5 (i) providing a first sample comprising a
6 first cell of interest, wherein the first cell of interest

7 comprises a given type of multi-ligand binding receptor
8 bound to a first set of polypeptide ligands;
9 (ii) isolating the given type of multi-ligand
10 binding receptor and the first set of ligands from the first
11 sample;
12 (iii) separating the first set of ligands from
13 the given type of multi-ligand binding receptor;
14 (iv) generating a first profile distinguishing
15 among the first set of ligands on the basis of at least one
16 chemical or physical attribute;
17 (b) producing a second profile of ligands by a
18 method comprising:
19 (i) providing a second sample comprising a
20 second cell of interest, wherein the second cell of interest
21 comprises the given type of multi-ligand binding receptor,
22 bound to a second set of polypeptide ligands;
23 (ii) isolating the given type of multi-ligand
24 binding receptor and the second set of ligands from the
25 second sample;
26 (iii) separating the second set of ligands from
27 the given type of multi-ligand binding receptor;
28 (iv) generating a second profile
29 distinguishing among the second set of ligands on the basis
30 of the same at least one chemical or physical attribute;
31 (c) comparing the first profile and the second
32 profile to identify differentially expressed ligands,
33 thereby forming a subtraction profile of ligands.

1 16. A subtraction profile generated by the method
2 of claim 15.

1 Sub^b 17. A method of comparing a first cell sample to a
2 reference cell sample, comprising:

1 18. The method of claim 17, wherein the reference
2 cell sample consists essentially of healthy cells of an
3 animal and the first cell sample comprises cells suspected
4 of being diseased.

1 19. The method of claim 17, wherein the first cell
2 sample comprises cells cultured in the presence of a test
3 compound, and the reference cell sample does not.

1 20. The method of claim 17, wherein the reference
2 cell sample comprises cells cultured in the presence of a
3 test compound, and the first cell sample does not.

1 21. A set of ligand profiles, comprising
2 (a) a first ligand profile comprising a first
3 representation of a first plurality of polypeptide ligands,
4 all of which bind to at least one multi-ligand binding
5 receptor of a first cell, wherein the first representation
6 distinguishes among the members of the first plurality of
7 ligands based upon at least one physical or chemical
8 attribute; and
9 (b) a second ligand profile comprising a second
10 representation of a second plurality of polypeptide ligands,
11 all of which bind to the at least one type of multi-ligand
12 binding receptor of a second cell, wherein the second
13 representation distinguishes among the second plurality of
14 ligands based upon the at least one physical or chemical
15 attribute;
16 provided that (i) the first cell differs from the second
17 cell in a parameter selected from the group consisting of
18 genetic background, culture conditions, genetic background
19 plus culture conditions, *in vivo* exposure to a test
20 compound, and genetic background plus *in vivo* exposure to a
21 test compound; and (ii) any significant difference between
22 the first and the second ligand profiles is attributable to
23 that parameter.

1 22. A method of detecting a difference between the
2 set of proteins expressed in a first cell and the set of
3 proteins expressed in a second cell, comprising
4 (a) providing a first ligand profile made by a
5 method comprising

1 23. The method of claim 22, comprising the further
2 step of
3 (d) generating a differential profile which sets
4 forth at least some of the differences between the set of
5 proteins expressed in the first cell and the set of proteins
6 expressed in the second cell.

1 24. A differential profile generated by the method
2 of claim 23.

1 25. The method of claim 22, comprising the further
2 steps of selecting a ligand which is represented in one
3 profile but not in the other, and identifying the amino acid
4 sequence of the ligand.

1 26. A database, stored on a machine-readable
2 medium, comprising
3 three categories of data respectively representing
4 (a) ligand profiles, (b) cell sources, and (c) receptor
5 types, and
6 associations among instances of the three categories
7 of data,
8 wherein the database configures a computer to enable
9 finding instances of data of one of the categories based on
10 their associations with instances of data of another one of
11 the categories.

1 27. The database of claim 26 in which data
2 representing the cell sources comprise data identifying at
3 least one type of cell.

1 28. The database of claim 26 in which data
2 representing the cell sources comprise data identifying at
3 least one cell condition.

1 29. The database of claim 26 in which data
2 representing the cell sources comprise data identifying at
3 least one individual animal.

1 30. The database of claim 26 in which data
2 representing the cell sources comprise data identifying at
3 least one state of perturbation.

1 31. The database of claim 26 in which data
2 representing the cell sources comprise data identifying at
3 least one developmental state.

1 32. The database of claim 26 in which the ligand
2 profiles comprise information that uniquely identifies
3 protein fragments.

1 33. The database of claim 26 in which the ligand
2 profiles comprise mass spectral data.

1 34. The database of claim 26 in which the database
2 configures the computer to enable finding at least one
3 instance of the ligand profiles that is associated with a
4 selected one or more instances of the cell sources and a
5 selected one or more instances of the receptor types.

1 35. A machine-implemented method comprising
2 forming a query for searching a database, the
3 database comprising three categories of data respectively
4 representing (a) ligand profiles, (b) cell sources, and (c)

5 receptor types, the database defining associations among
6 instances of the three categories of data, the query
7 comprising one or more instances of one of the three
8 categories of data, and

9 applying the query to the database to find instances
10 of another one of the three categories of data.

1 36. The method of claim 35 in which the found
2 instances comprise two ligand profiles.

1 37. The method of claim 36 further comprising
2 comparing the two ligand profiles to determine a
3 difference between them.

1 38. The method of claim 36 in which the query
2 comprises instances of a selected cell source comprising a
3 selected cell condition.

1 39. A machine-based method comprising
2 performing an experiment on cells,
3 identifying a ligand profile associated with said
4 cells, and
5 based on the ligand profile, querying a database
6 that contains at least two categories of data, including
7 ligand profiles and cell sources, to derive a cell source or
8 a ligand profile and an associated cell source.

1 40. The method of claim 39 in which
2 the feature of the experiment comprises treatment of
3 the cells using a candidate drug regimen, and
4 a cell source identified as a result of the query
5 represents a different treatment of cells.

1 41. A machine-assisted method of investigation
2 comprising
3 identifying a cell source, a receptor type, or a
4 ligand profile of interest, and
5 based on the identified cell source, receptor type,
6 or ligand profile, querying a database that contains three
7 associated categories of data respectively representing (a)
8 ligand profiles, (b) cell sources, and (c) receptor types,
9 to derive information about cell sources, receptor types, or
10 ligand profiles that relates to the cell source, receptor
11 type, or ligand profile of interest.

1 42. A machine-assisted method comprising
2 providing cells of a cell source,
3 generating a ligand profile from the cells, and
4 based on the ligand profile and the cell source,
5 querying a database that contains three associated
6 categories of data respectively representing (a) ligand
7 profiles, (b) cell sources, and (c) receptor types, to
8 derive information about cell sources, receptor types, or
9 ligand profiles that relates to the provided cell source and
10 the generated ligand profile.

SEARCHED INDEXED SERIALIZED FILED

Gold R1

Gold R2