mpi* - lycée montaigne informatique

Colle d'informatique 5

Programme

Révisions

- · Langages formels et automates finis
- Grammaires hors contextes.
- Décidabilité, classes de complexité
- Algorithmes d'apprentissage
- Algorithmes probabilistes
- Algorithmes d'approximation

Algorithmique pour l'étude des jeux

- Jeux d'accessibilité à deux joueurs, modélisation par un graphe, partie, graphe biparti, arène, condition de victoire, stratégie gagnante, position gagnante, attrac-
- · Algorithme min-max, arbre, score des nœuds, stratégie optimale, algorithme avec heuristique
- Élagage $\alpha \beta$

Prévisionnel

Ce programme court pour les deux semaines à venir. Après les congés, on ajoute le chapitre sur la déduction naturelle.

Extraits du programme officiel

Algorithmique pour l'étude des jeux

Notions	Commentaires
Jeux d'accessibilité à deux joueurs sur un graphe.	On considère des jeux à deux joueurs $(J_1 \text{ et } J_2)$ modélisés par des
Stratégie. Stratégie gagnante. Position gagnante.	graphes bipartis (l'ensemble des états contrôlés par J_1 et l'ensemble
Détermination des positions gagnantes par le	des états contrôlés par J_2). Il y a trois types d'états finals : les états
calcul des attracteurs. Construction de stratégies	gagnants pour J_1 , les états gagnants pour J_2 et les états de match
gagnantes.	nul.
	On ne considère que les stratégies sans mémoire.
Notion d'heuristique. Algorithme min-max avec	
une heuristique. Élagage alpha-beta.	
Graphe d'états. Recherche informée : algorithme	On souligne l'importance de l'admissibilité de l'heuristique, ainsi
A*.	que le cas où l'heuristique est également monotone.
Mise en œuvre	

La connaissance des théories sous-jacentes aux algorithmes de cette section n'est pas un attendu du programme. Les étudiants acquièrent une familiarité avec les idées qu'ils peuvent réinvestir dans des situations où les modélisations et les recommandations d'implémentation sont guidées.