Übungsblatt 13 zur Algebra I

Abgabe bis 15. Juli 2013, 17:00 Uhr

Aufgabe 1. Konstruierbare n-Ecke

- a) Für welche $n \in \{1, \dots, 100\}$ ist ein regelmäßiges n-Eck mit Zirkel und Lineal konstruierbar?
- b) Gib eine Konstruktionsvorschrift für das regelmäßige 15-Eck an.

Aufgabe 2. Fermatsche und Mersennesche Primzahlen

- a) Zeige für alle natürlichen Zahlen $n \ge 0$: $F_{n+1} = 2 + F_n F_{n-1} \cdots F_0$.
- b) Zeige, dass F_m und F_n für $m \neq n$ teilerfremd sind. Folgere daraus, dass es unendlich viele Primzahlen gibt.
- c) Eine Mersennesche Zahl ist eine Zahl der Form $M_n = 2^n 1$. Zeige, dass M_n höchstens dann eine Primzahl ist, wenn n eine Primzahl ist.
- d) Zeige allgemeiner, dass M_n von M_d geteilt wird, wenn d ein positiver Teiler von n ist.

Aufgabe 3. Hauptsatz der Galoistheorie

Bestimme alle Untergruppen der galoisschen Gruppe der Nullstellen des Polynoms $X^4 + 1$ und die zugehörigen Zwischenerweiterungen.

Aufgabe 4. Relative galoissch Konjugierte

- a) Finde zwei algebraische Zahlen, die über \mathbb{Q} galoissch konjugiert sind, über $\mathbb{Q}(\sqrt{3})$ aber nicht.
- b) Seien K und L Koeffizientenbereiche mit $L \supseteq K \supseteq \mathbb{Q}$ und x eine algebraische Zahl. Zeige, dass ein galoissch Konjugiertes von x über L auch ein galoissch Konjugiertes von x über K ist.

Aufgabe 5. Relative Galoisgruppen

- a) Finde ein normiertes separables Polynom mit rationalen Koeffizienten, sodass die galoissche Gruppe seiner Nullstellen über \mathbb{Q} gleich der über $\mathbb{Q}(\sqrt[3]{5})$ ist.
- b) Sei $f \in K[X]$ ein normiertes separables Polynom und x_1, \ldots, x_n seine Nullstellen. Sei $y \in K(x_1, \ldots, x_n)$. Zeige:

$$\operatorname{Gal}_{K(y)}(x_1,\ldots,x_n) = \{ \sigma \in \operatorname{Gal}_K(x_1,\ldots,x_n) \mid \sigma \cdot y = y \}.$$

Aufgabe 6. Zentrum einer Galoisgruppe

Sei p eine Primzahl und x eine algebraische Zahl vom Grad p^n . Seien alle galoissch Konjugierten $x_1 = x, x_2, \ldots, x_{p^n}$ von x in x rational.

- a) Zeige, dass das Zentrum der galoisschen Gruppe der x_1, \ldots, x_{p^n} ein Element σ der Ordnung p enthält.
- b) Sei σ eine Permutation wie in a) und y ein primitives Element zu den Zahlen $e_i(x_1, \sigma \cdot x_1, \dots, \sigma^{p-1} \cdot x_1), i = 1, \dots, p$. Zeige, dass y vom Grad p^{n-1} ist.