

SOM Sheet 3 : Complex stresses – 2 minute questions

Q1. On an element shown in the figure, the stresses are (in MPa)

$$\sigma_x = 110 MPa$$

$$\sigma_y = 30MPa$$

$$\tau_{xy} = 30$$

The radius of Mohr's circle and the principal stresses σ_1 , σ_2 are

	Radius	σ_1	σ_2
(a)	50	20 MPa	120 MPa
(b)	55	110 MPa	30 MPa
(c)	60	20 MPa	140 MPa
(d)	70	0	140 MPa

Answer: a

Q2. Sets of principal stresses acting at any point in a stressed body are given below:

- I. $\{\sigma, 0\}$
- II. $\{\sigma, \sigma\}$
- III. $\{\sigma, -\sigma\}$
- IV. $\left\{\sigma, \frac{\sigma}{2}\right\}$

The correct sequence of the ascending order of intensity of the maximum shear stress induced by the above sets will be:

- (a) I, IV, III, II
- (b) II, I, IV, III
- (c) I, III, IV, II
- (d) II, IV, I, II

Answer: d

Q3. Principal stress at a point in a plane stressed element are:

$$\sigma_x = \sigma_y = 500 \, kg/cm^2$$

Normal stress on the plane inclined at 45° to the x-axis will be _____ kg/cm².

Answer: 500

Q4. At a point in a strained material, if two mutually perpendicular tensile stresses of 2000 kg/cm² and 1000 kg/cm² are acting, then the intensity of tangential stress, then the intensity of tangential stress on a plane inclined at 15° to the axis of the minor stress will be _____ kg/cm².

Answer: 250

Q5. At a point in a steel member, the major principal stress is 200 MPa (tensile) and the minor principal stress is compressive. If the uniaxial tensile yield stress is 250 MPa, then according to the maximum shear stress theory, the magnitude of the minor principal stress (compressive) at which yielding will commence is _____ MPa.

Answer: 50

Q6. The state of stress at a point in a stressed element is shown in the given figure. The maximum tensile stress in the element will be _____ MPa.

Answer: 10