Практическое занятие 6. Двумерные ДСВ и НСВ.

	ванятие 6. Двумерные ДСВ и НСВ.
ДСВ	НСВ
Ряд распределения	Двумерная плотность распределения:
$\begin{bmatrix} \xi \\ \eta \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \dots \begin{bmatrix} x_m \\ \end{bmatrix}$	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = 1$
y_1 p_{11} p_{12} p_{1m}	Плотность распределения вероятности компонент
	$f_1(x) = \int_{-\infty}^{\infty} f(x, y) dy$
	$f_2(y) = \int_{-\infty}^{\infty} f(x, y) dx$
$ y_n \qquad p_{n1} \qquad p_{n2} \qquad \dots \qquad p_{nm} $ $ \sum_{i=1}^n \sum_{j=1}^m p_{i,j} = 1 $	
C	Вероятность
Смотрим по таблице	$P((\xi,\eta) \in D) = \iint_D f(x,y) dx dy$
Условн	ые законы распределения
$P(x_i / y_j) = \frac{p_{ij}}{p(y = y_j)}$	$f(x/y) = \frac{f(x,y)}{f_2(y)}$ $f(y/x) = \frac{f(x,y)}{f_1(x)}$
$P(x_i / y_j) = \frac{p_{ij}}{p(y = y_j)}$ $P(y_j / x_i) = \frac{p_{ij}}{p(x = x_i)}$	$f(y/x) = \frac{f(x, y)}{f_1(x)}$
Д.	ля независимых СВ
$p_{ij} = p(\xi = x_i, \eta = y_j) =$ $= p(\xi = x_i) \cdot p(\eta = y_j)$	$f(x, y) = f_1(x) \cdot f_2(y)$
Мате	ематические ожидания
$M_{\xi} = \sum_{i=1}^{n} \sum_{j=1}^{m} x_i p_{ij}$	$M_{\xi} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xf(x, y)dxdy = \int_{-\infty}^{\infty} xf_1(x)dx$
$M_{\eta} = \sum_{i=1}^{n} \sum_{j=1}^{m} y_j p_{ij}$	$M_{\eta} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} yf(x, y) dx dy = \int_{-\infty}^{\infty} yf_2(y) dy$
Точка с координа	атами (M_{ξ}, M_{η}) - центр рассеяния
	Дисперсии
$D_{\xi} = \sum_{i=1}^{n} \sum_{j=1}^{m} x_i^2 p_{ij} - M_{\xi}^2$	$D_{\xi} = \int_{-\infty}^{\infty} x^2 f_1(x) dx - M_{\xi}^2$ $D_{\eta} = \int_{-\infty}^{\infty} y^2 f_2(y) dx - M_{\eta}^2$
$D_{\eta} = \sum_{i=1}^{n} \sum_{j=1}^{m} y_{j}^{2} p_{ij} - M_{\eta}^{2}$	$-\infty$
СКО	$\sigma_{\mathcal{\xi}} = \sqrt{D_{\mathcal{\xi}}} \sigma_{\eta} = \sqrt{D_{\eta}}$

Корреляционный момент (ковариация)			
$K_{\xi\eta} = \text{cov}(\xi,\eta) = \sum_{i=1}^n \sum_{j=1}^m x_i y_j p_{ij} - m_1 m_2$. где $m_1 = M_{\xi}$, $m_2 = M_{\eta}$.	$K_{\xi\eta}=\mathrm{cov}(\xi,\eta)=\int\limits_{-\infty}^{\infty}\int\limits_{-\infty}^{\infty}xyf(x,y)dxdy-m_{1}m_{2}$ где $m_{1}=M_{\xi},\ m_{2}=M_{\eta}$		
коэффициент корреляции $r_{\xi\eta}=rac{K_{\xi\eta}}{\sqrt{D_{\xi}D_{\eta}}}$			
Матрица ковариации			

Примеры.

Пример 6.1. Двумерная случайная величина (ξ, η) имеет равномерное распределение вероятностей в треугольной области АВС, то есть

 $K = \begin{pmatrix} D_{\xi} & K_{\xi\eta} \\ K_{\xi\eta} & D_{\eta} \end{pmatrix}$

$$f(x,y) = \begin{cases} c, & (x,y) \in ABC, \\ 0, & (x,y) \notin ABC. \end{cases}$$

Найти постоянную ${\it C}$, одномерные плотности $f_1(x)$, $f_2(y)$ случайных величин ξ и η , коэффициент корреляции r, условную плотность f(y/x) и условное математическое ожидание $M(\eta/x)$.

T. A(0,0), T. B(1,0), T. C(0,1).

1) Постоянную с найдем из условия нормировки

$$1 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} c \cdot dx dy = c \cdot S_{\Delta} = c \cdot 1/2, \quad c = 2,$$

где S – площадь треугольника ABC. Обозначим область, ограниченную треугольником ABC через D

$$f(x,y) = \begin{cases} 2, & (x,y) \in D, \\ 0, & (x,y) \notin D. \end{cases}$$

2) Уравнение прямой BC: y = 1 - x. Тогда область D можно задать аналитически следующим образом:

2

$$D = \begin{cases} 0 \le x \le 1 \\ 0 \le y \le 1 - x \end{cases}$$
или
$$D = \begin{cases} 0 \le y \le 1 \\ 0 \le x \le 1 - y \end{cases}.$$

3)
$$f_1(x) = \int_{-\infty}^{\infty} f(x, y) dy = \begin{cases} 2\int_{-\infty}^{1-x} dy & 0 \le x \le 1 \\ 0 & 0 & x \le 0, x > 1 \end{cases} = \begin{cases} 2(1-x), & 0 < x < 1, \\ 0, & x < 0, x > 1, \end{cases}$$

$$f_2(y) = \int_{-\infty}^{\infty} f(x, y) dx = \begin{cases} 2(1-y), & 0 < y < 1, \\ 0, & y < 0, & y > 1. \end{cases}$$

$$M\xi = \int_{-\infty}^{\infty} x f_1(x) dx = \int_{0}^{1} x \cdot 2(1-x) dx = 1/3.$$

$$M\xi = \int_{-\infty}^{\infty} x f_1(x) dx = \int_{0}^{1} x \cdot 2(1-x) dx = 1/3.$$

$$\begin{split} M\eta &= \int\limits_{-\infty}^{\infty} y f_2(y) dy = \int\limits_{0}^{1} y \cdot 2(1-y) dy = 1/3 \,. \\ D\xi &= \int\limits_{-\infty}^{\infty} x^2 f_1(x) dx - m_x^2 = \int\limits_{0}^{1} x^2 \cdot 2(1-x) dx - \frac{1}{9} = 0,055 \,. \\ D\eta &= \int\limits_{-\infty}^{\infty} y^2 f_2(y) dy - m_y^2 = 0,055 \,. \end{split}$$

4)
$$K_{xy} = \iint_D xyf(x, y)dxdy - m_x m_y = 2 \int_0^1 dx \int_0^{1-x} dy - \frac{1}{9} \approx -0.0278.$$

$$r = \frac{K_{xy}}{\sigma_x \sigma_y} \approx \frac{-0.0278}{(0.055)} \approx -0.5.$$

5)
$$f(y/x) = \frac{f(x,y)}{f_1(x)} = \begin{cases} \frac{1}{1-x}, & 0 < x < 1, & 0 < y < 1-x, \\ 0, & (x,y) \notin D. \end{cases}$$

$$M(\eta/x) = \int_{-\infty}^{\infty} y f(y/x) dy = \begin{cases} 1 - x & 1 \\ \int_{0}^{1} y \frac{1}{1 - x} dy, & 0 < x < 1, \\ 0, & x < 0, & x \ge 1. \end{cases}$$

$$\int_{0}^{1-x} y \frac{1}{1-x} dy = \frac{1}{1-x} \cdot \frac{y^{2}}{2} \Big|_{0}^{1-x} = \frac{1-x}{2}.$$

$$M(\eta/x) = \begin{cases} \frac{1-x}{2}, & 0 < x < 1, \\ 0, & x \le 0, \ x \ge 1. \end{cases}$$

Пример 6.2. Дискретная двумерная случайная величина (ξ, η) распределена по закону, приведенному в таблице

ηξ	-1	0	2
-1	0,2	0,1	0,3
1	0,1	0,1	0,2

Определить:

- 1) Законы распределения составляющих ξ и η ;
- 2) Условный закон распределения случайной величины ξ при условии, что $\eta = -1$;
- 3) $M(\xi/\eta = -1)$;
- 4) Коэффициент корреляции $r_{\xi,\eta}$.
- 5) $P(\xi < 1; \eta < 2)$

Решение. Имеем

$$M\xi = -1.0,6 + 1.0,4 = -0.2$$
, $M\eta = -1.0,3 + 2.0,5 = 0.7$,
 $D\xi = (-1)^2 0.6 + 1^2 \cdot 0.4 \cdot (-0.2)^2 = 0.96$.

$$D\eta = (-1)^2 \cdot 0.3 + 2^2 \cdot 0.5 - (0.7)^2 = 1.81$$
.

$$P(\xi = -1/\eta = -1) = \frac{P(\xi = -1, \eta = -1)}{P(\eta = -1)} = \frac{0.2}{0.3} = 2/3. \quad P(\xi = 1/\eta = -1) = \frac{P(\xi = 1, \eta = -1)}{P(\eta = -1)} = \frac{0.1}{0.3} = 1/3$$

$$M(\xi/\eta = -1) = -1 \cdot \frac{2}{3} + 1 \cdot \frac{1}{3} = -\frac{1}{3};$$

$$K(\xi,\eta) = \sum_{i,j} P_{ij} x_i y_i - m_1 \cdot m_2 = (-1) \cdot (-1) \cdot 0.2 + (-1) \cdot 2 \cdot 0.3 + 1 \cdot (-1) \cdot 0.1 + (-1) \cdot 0.2 + (-1) \cdot 0.3 + (-1) \cdot$$

$$+1 \cdot 2 \cdot 0.2 + 0.2 \cdot 0.7 = 0.2 - 0.6 - 0.1 + 0.4 + 0.14 = 0.04$$
.

$$r_{\xi,\eta} = \frac{K_{\xi,\eta}}{\sigma_{\xi}\sigma_{\eta}} = \frac{0.04}{\sqrt{0.96} \cdot \sqrt{1.81}} = \frac{0.04}{0.98 \cdot 1.345} = \frac{0.04}{1.32} = 0.03.$$

5) По таблице находим $P(\xi < 1; \eta < 2) = 0.3$

Пример 6.3. Пара случайных величин ξ и η имеет совместное нормальное распределение с вектором математических ожиданий $\{-2,-1\}$ и ковариационной матрицей K

$$K[\xi,\eta] = \sigma^2 \begin{bmatrix} 2 & 3 \\ 3 & 7 \end{bmatrix}.$$

Известно, что $P\{\xi - 2\eta < 3\} = 0,65$. Найти $D\xi$, $D\eta$.

Решение. Совместная нормальность пары случайных величин ξ и η обеспечивает нормальность каждой из них и любой их линейной комбинации, в частности величина $\zeta = \xi - 2\eta$ нормальна с параметрами

$$M\zeta = M\xi - 2M\eta = -2 - 2(-1) = 0$$
, $D\zeta = D\xi + 4D\eta - 4\text{cov}(\xi, \eta)$.

Подставляя в последнее соотношение элементы ковариационной матрицы:

$$D\xi = 2\sigma^2$$
, $D\eta = 7\sigma^2$, $\operatorname{cov}(\xi, \eta) = 3\sigma^2$,

получим

$$D\zeta = 2\sigma^2 + 4 \cdot 7\sigma^2 - 4 \cdot 3\sigma^2 = 18\sigma^2.$$

По условию $P\{\zeta < 3\} = 0.65$, откуда, используя нормальность ζ ,

$$F\left(\frac{3}{\sigma\sqrt{18}}\right) = 0.65 \Rightarrow \frac{3}{\sigma\sqrt{18}} = 0.385 \Rightarrow \sigma \approx 1.837.$$

Искомые дисперсии равны, соответственно,

$$D\xi = 2\sigma^2 \approx 6,747$$
, $D\eta = 7\sigma^2 \approx 23,622$.

Задачи для самостоятельного решения

6.1. Задана таблица распределения вероятностей двумерной случайной величины:

x_i	2	5	8
0.4	5a	10a	0.35
0.8	0.05	4a	a

Найти: а, частные распределения компонент, числовые характеристики; вероятность, что $\xi < 5$; $\eta > 0.5$; распределения условных случайных величин: ξ/η =0.4 η/ξ =5 и их условные математические ожидания

6.2. . Двумерная случайная величина задана таблицей распределения:

_		1 7 1			- 1		<u>' 1 1 ''</u>
		0	1	2	3	4	5
	x_i						

y_j						
0	0.202	0.174	0.113	0.062	0.049	0.027
1	0	0.099	0.064	0.040	0.031	0.025
2	0	0	0.031	0.025	0.021	0.018
3	0	0	0	0.012	0.005	0.002

a)Найти математические ожидания и дисперсии компонент; δ)построить ковариационную матрицу и определить значение коэффициента линейной корреляции.

- **6.3.** В двух ящиках находится по 6 шаров. В 1-м ящике: один шар с номером 1, 2 шара с номером 2, 3 шара с номером 3; во втором ящике: 2 шара с номером 1, три шара с номером 2, один шар с номером 3. Пусть ξ номер шара, вынутого из первого ящика, η номер шара, вынутого из второго. Из каждого ящика вынули по шару. Составить таблицу закона распределения системы случайных величин (ξ, η) . Найти m_{ξ} ; m_{η} ; D_{ξ} ; D_{η} ; $r_{\xi\eta}$;
- **6.4.** Два стрелка производят по два выстрела, причем каждый стреляет по своей мишени. Построить таблицу распределения случайной величины $\mathbf{Z} = (\xi, \eta)$, где ξ число попаданий первого, а η число попаданий второго стрелка, если вероятности попаданий при каждом выстреле у них одинаковы и равны p. а)Определить частные распределения компонент ξ и η и их числовые характеристики. δ) Чему равна вероятность того, что у стрелков будет равное число попаданий?
- **6.5.** Распределение случайного вектора $(\xi_1; \xi_2)$ задается таблицей

$\xi_2 \setminus \xi_1$	$\xi_1 = 0$	$\xi_1 = 1$	$\xi_1 = 2$
$\xi_2 = 0$	0,1	0,1	0
$\xi_2 = 1$	0,1	0,1	0,6

Найдите $F_{\xi_1}(x_1)$, $f_{\xi_1}(x_1)$, $M(\xi_1)$, $D(\xi_1)$.

6.6. Распределение случайного вектора $(\xi_1; \xi_2)$ задается таблицей

	$\xi_2 \setminus \xi_1$	$\xi_1 = 0$	$\xi_1 = 1$	$\xi_1 = 2$	
I	$\xi_2 = 0$	0,1	0,1	0	
Ī	$\xi_2 = 1$	0,1	0,1	0,6	

Найдите $F_{\xi_2}(x_2), f_{\xi_2}(x_2), M(\xi_2), D(\xi_2).$

6.7: Случайный вектор (ξ, η) , имеет плотность распределения вероятности $f(x,y) = \begin{cases} C, (x,y) \in D \\ 0, (x,y) \notin D \end{cases}$,

Найдите C, $f_1(x)$, $f_2(y)$, f(x/y), все числовые характеристики, вероятность попадания в квадрат с вершинами в точках (0.5; 0.5), (1,1), (0,5,1), (1,0,5).

Область D - треугольник с вершинами в точках (0,0), (1,1), (1,0).

6.8: Случайный вектор (ξ, η) , имеет плотность распределения вероятности $f(x,y) = \begin{cases} C, (x,y) \in D \\ 0, (x,y) \notin D \end{cases}$,

Найдите C, $f_1(x)$, $f_2(y)$, f(x/y), все числовые характеристики, вероятность попадания в область D^* Область D - треугольник с вершинами в точках (0,0), (-2,0), (0,1).

Область D^* задана неравенством: y<x+1.

6.9.Двумерная случайная величина распределена по равномерному закону в круге радиуса R, с центром в точке (0,0). Найти плотность распределения этой случайной величины и одномерные плотности.

$$f(x,y) = \begin{cases} 0, x^2 + y^2 \ge R^2 \\ C, x^2 + y^2 \le R^2 \end{cases}$$

6.10. Координаты случайного вектора =(ξ , η) являются независимыми случайными величинами, заданными их плотностями распределения:

$$f_1(x) = \begin{cases} c, & x \in [0;1] \\ 0, & x \notin [0;1] \end{cases}; \qquad f_2(y) = \begin{cases} k, & y \in [0;2] \\ 0, & x \notin [0;2] \end{cases}$$
 Найдите k, c, координаты центра рассеяния, вероятность попадания случайной точки $(X;Y)$ в

область $D: \{x \ge 0, y \ge 0, x + y - 1 \le 0\}$

6.11. Вычислить коэффициент корреляции компонент случайного вектора (ξ, η) , заданного законом распределения. Результат округлите до десятых.

ξ η	3	4
1	0,2	0,3
-2	0,1	0,4

6.12. Плотность совместного распределения случайных величин (ξ , η), задана формулой

$$\varphi(x,y) = \begin{cases} c(1-xy^3), & -1 \le x \le 1, & -1 \le y \le 1 \\ 0 \text{ в остальных случаях} \end{cases}.$$

Найти: 1) коэффициент c; 2) безусловные и условные плотности распределения ξ , η 3) $m_{\xi}, m_{\eta}, D_{\xi}; D_{\eta}; r_{\xi\eta}, c = 0, 25.$

6.13. Координаты случайного вектора (ξ, η) , являются независимыми случайными величинами,

заданными их плотностями распределения:
$$f(x) = \begin{cases} \frac{1}{4}, & x \in [-7; -3], \\ 0, & x \notin [-7; -3], \end{cases}$$
 $f(y) = \begin{cases} \frac{1}{3}, & y \in [-4; -1], \\ 0, & y \notin [-4; -1]. \end{cases}$

Найдите вероятность попадания случайной точки (X;Y) в область $D:\{x \le 0, y < 0, 3x - 2y + 10 \ge 0\}$

6.14. Случайный вектор ($\xi_1; \xi_2$) имеет плотность распределения

$$f(x_1,x_2) = \begin{cases} \frac{1}{2}x_1 + cx_2, & \text{если } 0 \le x_1 \le 1, 0 \le x_2 \le 3, \\ 0, & \text{в остальных точках.} \end{cases}$$

Найдите константу c, $f_{\xi_1}(x_1)$, $M(\xi_1)$, и $P(\xi_1 + \xi_2 > 1)$.

6.15. Случайный вектор $(\xi_1; \xi_2)$ имеет плотность распределения

$$f(x_1,x_2) = \begin{cases} cx_1x_2, & \text{если } x_1 \geq 0, x_2 \geq 0, \ 2x_1 + x_2 \leq 5, \\ 0, & \text{в остальных точках.} \end{cases}$$

Найдите константу $c, f_{\xi_2}(x_2), M(\xi_2),$ и $P(\xi_1 + \xi_2 < 1).$

6.16. Случайный вектор ($\xi_1; \xi_2$) имеет плотность распределения

$$f(x_1,x_2) = \begin{cases} c(x_1+x_2), & \text{ если } x_1 \geq 0, x_2 \geq 0, & 2x_1+5x_2 \leq 10, \\ 0, & \text{в остальных точках.} \end{cases}$$

Найдите константу c, $f_{\xi_1}(x_1)$, $M(\xi_1)$, и $P(\frac{3}{\xi}\xi_1 + 2\xi_2 < 1)$.

6.17. Случайный вектор ($\xi_1; \xi_2$) имеет плотность распределения

$$f(x_1, x_2) = \begin{cases} ce^{-2x_1 - 2x_2}, & \text{если } 0 \le x_1, x_2 < +\infty, \\ 0, & \text{в остальных точках.} \end{cases}$$

6

Найдите константу $c, f_{\xi_1}(x_1), M(\xi_1),$ и $P(\xi_1 > 1).$

6.18. Случайный вектор $(\xi_1; \xi_2)$ имеет плотность распределения

$$f(x_1,x_2) = \begin{cases} cx_1x_2(2-x_1), & \text{если } 0 \leq x_1,x_2 \leq 2, \\ 0, & \text{в остальных точках.} \end{cases}$$

Найдите константу $c, f_{\xi_2}(x_2), M(\xi_2)$ и $P(\xi_2 < 1)$.