Przykładowe architektury komputera

Alan Klas & Filip Młodzik

Plan prezentacji

- 1. Wprowadzenie do architektur komputera
- 2. Porównanie x86 i ARM
- 3. Wzmianka o RISC-V

Wprowadzenie do architektur komputera

- Architektura komputera to sposób, w jaki komputer jest zaprojektowany i zorganizowany
- Obejmuje zestaw reguł i metod, które opisują funkcjonowanie, organizację i implementację systemu komputerowego
- Dwie główne architektury: x86 (Intel, AMD) i ARM (Apple, Qualcomm, Samsung)

Porównanie x86 i ARM

x86

- Opracowany przez firmę Intel w latach 70.
- Architektura CISC (Complex Instruction Set Computing)
- Większa ilość instrukcji, bardziej złożone
- Wyższa wydajność w niektórych zastosowaniach (np. gry, aplikacje biurowe)

Porównanie x86 i ARM

ARM

- Opracowany przez firmę ARM Holdings w latach 80.
- Architektura RISC (Reduced Instruction Set Computing)
- Mniejsza ilość instrukcji, prostsze
- Lepsza wydajność energetyczna, idealna dla urządzeń mobilnych i wbudowanych

Porównanie x86 i ARM

Cecha	x86	ARM
Тур	CISC	RISC
Instrukcje	Więcej, złożone	Mniej, proste
Wydajność	Wyższa	Niższa
Energooszcz.	Niższa	Wyższa
Zastosowania	PC, serwery	Mobilne, IoT

Wzmianka o RISC-V

- Otwarta architektura RISC opracowana na Uniwersytecie Kalifornijskim w Berkeley
- Celem jest stworzenie wolnej i otwartej architektury dostępnej dla wszystkich
- W przeciwieństwie do x86 i ARM, RISC-V nie jest kontrolowany przez jedną firmę
- RISC-V może być przyszłością architektur komputerowych, ale na razie jest we wczesnym etapie rozwoju

Podsumowanie

- x86 i ARM to dwie dominujące architektury komputera
- Różnią się pod względem wydajności, energooszczędności i zastosowań
- RISC-V to interesująca alternatywa, ale na razie we wczesnym etapie rozwoju