$(W,S) \quad \text{Coxeter system}$ $T \quad \text{reflections} \iff \text{palindromic mords}$ $T: W \to S_T^B$ $W \mapsto T_W \qquad T_W(t) = \pm w t w^{-1} \qquad (\text{in book}, n_W(t))$ $= (1) \qquad \text{for any } w = S_1 \cdots S_K$

Next goal:

Use this signed permit rep'n to understand the different words for an element weW

Parity. O All words for w have the same Length parity. Call w even or odd.

* Even words form the "afternating subgroup"

Length The length l(w) is the min k for which we can unite

W=S1S2...SK

A word of min length is a reduced

word

Properties: · l(sw)= l(w)=1 for ses (Read off W into o l(uv) ≤ l(u)+l(v) from TI:W -> STB) $\circ l(w^{-1}) = l(w)$ Theorem l(w) = {teT/l(tw) < l(w)} TH of reflections that sharten w = | {tet | sgn (w1, 6) = -131 Lemmal WEW, LET 1(tw)<1(w) => sgn(w-1,t)=-1 Let w= ≤1... Sd reduced, w= ≤3... ≤1 t appear an odd number of thmes as £= S1 -- Si -- S1 > 6 = 5, ... 5, 5, 5, -- 50 = Si... Si-1 Sin -- Sd shorter V \Rightarrow $l(tw) < l(w) = l(ttw) \Rightarrow sgn((tw)^{-1}, t) = 1$ -> T(+w)-1 (t) = (tw)-1 + tw = TIWHTLE (t) = W tw thur (-t) = Witw -> sgn(w,t)=-1

Lennma. 2 These que equivalent:

If $w = S_1 S_2 ... S_K$ (a) l(tw) < l(w)reduced (k min) (b) $tw = S_1 ... S_1$

 $(a) \Rightarrow l(tw) < l(w) \Rightarrow sgn(w,t) = -1$ $\Rightarrow t = s_1 \cdot s_2 \cdot s_3$

=> tw=5,..5i..5x=>(b)

windo (6) (= (d)

(b) 2) (c): Compt.

1

For theorem, it remains to show $S_1 \cdots S_i \cdots S_j \neq S_1 \cdots S_i S_{in1} \cdots S_j \cdots S_{in5} \cdots S_i$ $e \neq S_i \cdots S_j \cdots S_{in5} \cdots S_{in5$

Sin. Sj. + Si... Sj Ok by reducedness!

Two important properties

- DEchange property:

 If w=5,...5x, seS and l(sw)<l(w)

 then sw=5,...\$i.-5x for some i.
- 1) Strong exchange property:

 Some with teT instead of ses
- 2) Deletion property:

 If w= si...sk and l(w) < k

 then w= si...si...si...sk for some 4j.
- 1 follows from proof of Lemma 2
- (1) >) (1) v
- (1) → Q: Take Si... Sk not reduced, i max → l(Si... sk) < l(Son... sk) → Si... Sk = Son... Sj... Sk ✓