TEA013 Matemática Aplicada II
Curso de Engenharia Ambiental
Departamento de Engenharia Ambiental, UFPR
P04B, 15 fev 2023

()

Prof. Nelson Luís Dias Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO \underline{A} .

1 [25] Calcule a transformada de Fourier de

$$f(x) = \begin{cases} 0, & |x| > 1, \\ x+1 & -1 \le x \le 0, \\ 1-x & 0 < x \le 1. \end{cases}$$

SOLUÇÃO DA QUESTÃO: Note que f é par.

$$\mathscr{F}\left\{f(x)\right\} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} f(x) e^{-ikx} dx$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} f(x) \left[\cos(kx) - i\sin(kx)\right] dx$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} f(x) \cos(kx) dx$$

$$= \frac{1}{\pi} \int_{0}^{1} f(x) \cos(kx) dx = \frac{1 - \cos k}{\pi k^{2}} \blacksquare$$

SOLUÇÃO DA QUESTÃO:

$$\mathscr{F}[\delta(x)] = \widehat{\delta}(k) = \frac{1}{2\pi} \int_{x=-\infty}^{+\infty} \delta(x) e^{-ikx} dx = \frac{1}{2\pi} \blacksquare$$

$$y'' + \lambda y = 0,$$

$$y(0) = 0,$$

$$y(1) = 0,$$

obtenha todos os autovalores λ .

SOLUÇÃO DA QUESTÃO:

Estudamos os sinais de λ :

Caso I: $\lambda = -k^2 < 0$:

$$y'' - k^2 y = 0,$$

 $r^2 - k^2 = 0,$
 $r = \pm k,$
 $y(x) = A \cosh(kx) + B \sinh(kx),$
 $y'(x) = k [A \sinh(x) + B \cosh(kx)],$
 $y(0) = A = 0,$
 $y'(1) = kB \cosh(k) = 0 \Rightarrow B = 0.$

Portanto, A=0, B=0 e $\lambda < 0$ não pode ser autovalor.

Caso II: $\lambda = 0$:

$$y'' = 0,$$

 $y(x) = Ax + B,$
 $y'(x) = A,$
 $y(0) = B = 0,$
 $y'(1) = A = 0.$

Portanto, A = 0, B = 0, e $\lambda = 0$ não pode ser autovalor. Caso III: $\lambda = k^2 > 0$:

$$y'' + k^{2}y = 0,$$

$$r^{2} + k^{2} = 0,$$

$$r^{2} = -k^{2},$$

$$r = \pm i,$$

$$y(x) = A\cos(kx) + B\sin(kx),$$

$$y'(x) = k [-A\sin(kx) + B\cos(kx)],$$

$$y(0) = A = 0,$$

$$y'(1) = kB\cos(k) = 0;$$

Devemos ter

$$\cos(k) = 0,$$

$$k_n = \frac{\pi}{2} + n\pi, \qquad n = 0, 1, 2, \dots$$

$$\lambda_n = -\left[\frac{\pi}{2} + n\pi\right]^2, \qquad n = 0, 1, 2, \dots \blacksquare$$

4 [25] Considere a equação diferencial parcial

$$\frac{\partial^2 \phi}{\partial x^2} - \frac{1}{\alpha^2} \frac{\partial \phi}{\partial t} = -kx,$$

$$\phi(0, t) = \phi(L, t) = 0,$$

$$\phi(x, 0) = 0.$$

Obtenha uma solução da forma

$$\phi(x,t) = \psi(x,t) + u(x),$$

onde ψ é uma solução da equação da difusão homogênea (sem o termo -kx) com $\psi(0,t)=\psi(L,t)=0$, e u(x) uma solução de regime permanente com u(0)=u(L)=0, que não depende de t.

Você pode deixar a solução indicada em termos de integrais envolvendo u(x).

SOLUÇÃO DA QUESTÃO:

A solução u(x), independente do tempo, deve atender a

$$\frac{d^2u}{dx^2} + kx = 0,$$
 $u(0) = u(L) = 0.$

A solução é

$$\frac{\mathrm{d}u}{\mathrm{d}x} = -\frac{kx^2}{2} + A,$$

$$u(x) = -\frac{kx^3}{6} + Ax + B$$

A CC u(0) = 0 leva a B = 0; a CC u(L) = 0 leva a

$$0 = -\frac{kL^3}{6} + AL,$$

$$A = \frac{kL^2}{6},$$

$$u(x) = \frac{k}{6} \left[x(L^2 - x^2) \right].$$

Como fica o problema em ψ ?

$$\frac{\partial^{2} [\psi + u]}{\partial x^{2}} - \frac{1}{\alpha^{2}} \frac{\partial [\psi + u]}{\partial t} + kx = 0,$$

$$\underbrace{\left[\frac{\mathrm{d}^{2} u}{\mathrm{d}x^{2}} + kx\right]}_{=0} + \frac{\partial^{2} \psi}{\partial x^{2}} - \frac{1}{c^{2}} \frac{\partial^{2} \psi}{\partial t^{2}} = 0.$$

Restou, portanto, a equação clássica da difusão em uma dimensão. As condições de contorno e iniciais em ψ são:

$$\begin{aligned} 0 &= \phi(0,t) = \psi(0,t) + u(0) & \Rightarrow & \psi(0,t) = 0, \\ 0 &= \phi(L,t) = \psi(0,t) + u(L) & \Rightarrow & \psi(L,t) = 0, \\ 0 &= \psi(x,0) + \frac{k}{6} \left[x(L^2 - x^2) \right] & \Rightarrow & \psi(x,0) = -\frac{k}{6} \left[x(L^2 - x^2) \right]. \end{aligned}$$

Este portanto é um problema de valor de contorno e inicial (a equação da onda) perfeitamente bem especificado. Separando as variáveis em ψ :

$$X''T = \frac{1}{\alpha^2}XT'$$
$$\frac{X''}{X} = \frac{1}{\alpha^2}\frac{T'}{T} = \lambda$$

Existe agora um problema de Sturm-Liouville em x clássico, e após a usual discussão de sinais obtém-se

$$\lambda_n = -\frac{n^2\pi^2}{L^2}, \qquad X_n(x) = \operatorname{sen}\frac{n\pi x}{L}.$$

As soluções para ψ , portanto, deverão ser do tipo

$$\psi(x,t) = \sum_{n=1}^{\infty} A_n \exp\left[-\frac{\alpha^2 n^2 \pi^2}{L^2}\right] \operatorname{sen} \frac{n\pi x}{L}.$$

Agora,

$$\psi(x,0) = -\frac{k}{6} \left[x(L^2 - x^2) \right],$$

$$-\frac{k}{6} \left[x(L^2 - x^2) \right] = \sum_{n=1}^{\infty} A_n \operatorname{sen} \frac{n\pi x}{L} \Rightarrow$$

$$-\int_0^L \frac{k}{6} \left[x(L^2 - x^2) \right] \operatorname{sen} \frac{m\pi x}{L} dx = A_m \frac{L}{2},$$

$$A_m = \frac{2k(-1)^m L^3}{m^3 \pi^3}.$$

A solução completa portanto é

$$\phi(x,t) = \frac{k}{6}x(L^2 - x^2) + \sum_{n=1}^{\infty} \frac{2k(-1)^n L^3}{n^3 \pi^3} \exp\left[-\frac{\alpha^2 n^2 \pi^2}{L^2}\right] \sin\left(\frac{n\pi x}{L}\right) \blacksquare$$