- 1. If \vec{a} , \vec{b} and \vec{c} are the position vectors of the points A(2,3,-4), B(3,-4,5) and C(3,2,-3) respectively then $|\vec{a}+\vec{b}+\vec{c}|$ is equal to
 - (A) $\sqrt{113}$
 - (B) $\sqrt{185}$
 - (C) $\sqrt{203}$
 - (D) $\sqrt{209}$
- 2. Find the distance of the point (a, b, c) from the x-axis. .
- 3. (a) If $\vec{a} = 2\hat{i} \hat{j} + 2\hat{k}$ and $\vec{b} = 5\hat{i} 3\hat{j} 4\hat{k}$, then find the ratio $\frac{projectionof vector\vec{b}onvector\vec{b}}{projectionof vector\vec{b}onvector\vec{a}}$
 - (b) Let \hat{a} and \hat{b} be two unit vectors. If the vectors $\vec{c} = \hat{a} + 2\hat{b}$ and $\vec{d} = 5\hat{a} 4\hat{b}$ are perpendicular to each other, then find the angle between the vectors \vec{a} and \vec{b} .
- 4. Show that $|\vec{a}|\vec{b} + |\vec{b}|\vec{a}$ is perpendicular to $|\vec{a}|\vec{b} |\vec{b}|\vec{a}$, for any two non-zero vectors \vec{a} and \vec{b} .
- 5. If A(-2,1), B(2,3) and C(-2,-4) are three points and Θ is the angle between the lines BC and BA, then tan Θ is equal to
 - (A) $\frac{1}{2}$
 - (B) $\frac{1}{3}$
 - (C) $\frac{2}{3}$
 - (D) $\frac{3}{4}$