EAFIT UNIVERSITY DEPARTMENT OF INFORMATICS AND SYSTEMS PROJECT CHOICE

Second Report

April 5, 2022

Course

Numerical analysis

Teacher

Edwar Samir Posada Murillo

Semester

2022-1

Project's name

Numerical Algorithms

Repository

This project has a GitHub repository where the evidence related with it will be. https://github.com/DanielHernandezO/NumericalMethodsProject

Members

- 1. Jose Miguel Blanco Velez
- 2. Neller Pellegrino Baquero
- 3. Samuel David Villegas Bedoya
- 4. Daniel Andres Hernandez Oyola

Project's description

Webpage used to calculate data using different types of numerical methods with the option of visualising them in a 2d graph.

Added values

- 1. The project will be done in english
- 2. The project will have its documentation in latex
- 3. The numerical algorithms can be found in multiple programming languages
- 4. The project will have extra numerical methods

1 Incremental Search - JavaScript

Input data

$$f(x) = \ln(\sin(x)^2 + 1) - (1/2)$$

x0 = -3 delta = 0.5iterations = 100

There is at	There is at least one root between -2.5 and -2										
(index)	0	1	2	3	3 4						
0 1	'iteration' 1	'x0' -3	'x1' -2.5	'fx0' -0.4802808500361744	'fx1' -0.19386259916617415	'fx0*fx1' 0.09310849391775228					
2 3	2 0	-2.5 0	-2 0	-0.19386259916617415 0	0.10257774140337728 0	-0.019885987565054396 0					
4 5	0	0	0	0 0	0 0	0 0					
6	0	0	0	0	0	0					

2 Incremental Search - Matlab

Input data

$$f(x) = \ln(\sin(x)^2 + 1) - (1/2)$$

x0 = -3 delta = 0.5iterations = 100

answer =

"There is at least one root between -2.5 and -2"

matrix =

3×6 **string** array

"iteration" "x0" "x1" "fx0" "fx1" "fx0*fx1" "1" "-3.5" "-0.48028" "-0.19386" "0.093108" "2" "-2.5" "-2" "-0.19386" "0.10258" "-0.019886"

3 Bisection - JavaScript

Input data

$$f(x) = \ln(\sin(x)^2 + 1) - (1/2)$$

a = 0b=1

 $\begin{aligned} \text{Tolerance} &= 1\text{e--7} \\ \text{iterations} &= 100 \end{aligned}$

	,		,			
(index)	0	1	2	3	4	5
0	'iteration'	'left'	'right'	'mid'	'f(mid)'	'error'
1	1	0	Ĭ	0.5	-0.2931087267313766	'1e-71'
2	2	0.5	1	0.75	-0.11839639385347844	0.25
3	3	0.75	1	0.875	-0.036817690757380395	0.125
4	4	0.875	1	0.9375	0.0006339161592386899	0.0625
5	5	0.875	0.9375	0.90625	-0.017772289226861138	0.03125
6	6	0.90625	0.9375	0.921875	-0.008486582211768012	0.015625
7	7	0.921875	0.9375	0.9296875	-0.0039053586270640928	0.0078125
8	8	0.9296875	0.9375	0.93359375	-0.0016304381170096915	0.00390625
9	9	0.93359375	0.9375	0.935546875	-0.0004969353153195244	0.001953125
10	10	0.935546875	0.9375	0.9365234375	0.00006882244496264622	0.0009765625
11	11	0.935546875	0.9365234375	0.93603515625	-0.00021397350516394464	0.00048828125
12	12	0.93603515625	0.9365234375	0.936279296875	-0.00007255478812051575	0.000244140625
13	13	0.936279296875	0.9365234375	0.9364013671875	-0.0000018609849000705836	0.0001220703125
14	14	0.9364013671875	0.9365234375	0.93646240234375	0.00003348202684883006	0.00006103515625
15	15	0.9364013671875	0.93646240234375	0.936431884765625	0.000015810845160335596	0.000030517578125
16	16	0.9364013671875	0.936431884765625	0.9364166259765625	0.000006975011174192858	0.0000152587890625
17	17	0.9364013671875	0.9364166259765625	0.9364089965820312	0.000002557033397687647	0.0000076293945312
18	18	0.9364013671875	0.9364089965820312	0.9364051818847656	3.4802931392352576e-7	0.00000381469726562
19	19	0.9364013671875	0.9364051818847656	0.9364032745361328	-7.56476526753147e-7	0.00000190734863281
20	20	0.9364032745361328	0.9364051818847656	0.9364042282104492	-2.0422328983471516e-7	9.5367431640625e-7
21	21	0.9364042282104492	0.9364051818847656	0.9364047050476074	7.190309125881811e-8	4.76837158203125e-
22	22	0.9364042282104492	0.9364047050476074	0.9364044666290283	-6.616007947046754e-8	2.384185791015625e-
23	23	0.9364044666290283	0.9364047050476074	0.9364045858383179	2.8715108069121698e-9	1.1920928955078125e
24	24	0.9364044666290283	0.9364045858383179	0.9364045262336731	-3.164428308277678e-8	5.960464477539063e-8
25	0	0	0	ρ	ρ	0

4 Bisection - Matlab

Input data

$$f(x) = \ln(\sin(x)^2 + 1) - (1/2)$$

 $\begin{array}{l} a=0 \\ b{=}1 \end{array}$

 ${\rm Tolerance} = 1\text{e-}7$

matrix =

25×6	string	array
------	--------	-------

"counter"	"left"	"right"	"xmid"	"fXmid"	"error"
"1"	"0"	"1"	"0.5"	"-0.29311"	"1"
"2"	"0.5"	"1"	"0.75"	"-0.1184"	"0.25"
"3"	"0.75"	"1"	"0.875"	"-0.036818"	"0.125"
"4"	"0.875"	"1"	"0.9375"	"0.00063392"	"0.0625"
"5"	"0.875"	"0.9375"	"0.90625"	"-0.017772"	"0.03125"
"6"	"0.90625"	"0.9375"	"0.92188"	"-0.0084866"	"0.015625"
"7"	"0.92188"	"0.9375"	"0.92969"	"-0.0039054"	"0.0078125"
"8"	"0.92969"	"0.9375"	"0.93359"	"-0.0016304"	"0.0039062"
"9"	"0.93359"	"0.9375"	"0.93555"	"-0.00049694"	"0.0019531"
"10"	"0.93555"	"0.9375"	"0.93652"	"6.8822e-05"	"0.00097656"
"11"	"0.935547"	"0.936523"	"0.936035"	"-0.000213974"	"0.000488281"
"12"	"0.936035"	"0.936523"	"0.936279"	"-7.25548e-05"	"0.000244141"
"13"	"0.936279"	"0.936523"	"0.936401"	"-1.86098e-06"	"0.00012207"
"14"	"0.936401"	"0.936523"	"0.936462"	"3.3482e-05"	"6.10352e-05"
"15"	"0.936401"	"0.936462"	"0.936432"	"1.58108e-05"	"3.05176e-05"
"16"	"0.936401"	"0.936432"	"0.936417"	"6.97501e-06"	"1.52588e-05"
"17"	"0.936401"	"0.936417"	"0.936409"	"2.55703e-06"	"7.62939e-06"
"18"	"0.936401"	"0.936409"	"0.936405"	"3.48029e-07"	"3.8147e-06"
"19"	"0.936401"	"0.936405"	"0.936403"	"-7.56477e-07"	"1.90735e-06"
"20"	"0.936403"	"0.936405"	"0.936404"	"-2.04223e-07"	"9.53674e-07"
"21"	"0.936404"	"0.936405"	"0.936405"	"7.19031e-08"	"4.76837e-07"
"22"	"0.936404"	"0.936405"	"0.936404"	"-6.61601e-08"	"2.38419e-07"
"23"	"0.936404"	"0.936405"	"0.936405"	"2.87151e-09"	"1.19209e-07"
"24"	"0.936404"	"0.936405"	"0.936405"	"-3.16443e-08"	"5.96046e-08"

5 Newton - JavaScript

Input data

$$f(x) = \ln(\sin(x)^2 + 1) - (1/2)$$

$$f'(x) = 2(\sin(x)^2 + 1)^{-1}\sin(x) * \cos(x)$$

x0 = 0.5

 ${\rm Tolerance} = 1\text{e-}7$

iterations = 100

	.9364045808795621 is a root approximation with tolerance 1e-7 esult table:							
(index)	0	1	2	3	4			
0	'iteration'	'xn'	'f(xn)'	"f'(n)"	'error'			
1	1	0.5	-0.2931087267313766	0.6842068330717285	1.0000001			
2	2	0.9283919899125719	-0.004662157097372055	0.5846147284064961	0.4283919899125719			
3	3	0.9363667412673313	-0.000021912619882713535	0.5791052537949999	0.007974751354759446			
j 4	4	0.9364045800189902	-4.98339092214195e-10	0.5790789133390186	0.00003783875165885853			
5	5	0.9364045808795621	-1.1102230246251565e-16	0.5790789127399327	8.605719470367035e-10			
6	0	0	0	0	0			

6 Newton - Matlab

Input data

$$f(x) = \ln(\sin(x)^2 + 1) - (1/2)$$

$$f'(x) = 2(\sin(x)^2 + 1)^{-1}\sin(x) * \cos(x)$$

 $\mathbf{x}0{=}0.5$

```
Tolerance = 1e-7 iterations = 100 answer = "0.9364 is
```

"0.9364 is a root approximation with tolerance 1e-07"

matrix =

6×5 **string** array

"iteration"	"xn"	"f(xn)"	"f'(xn)"	"erro"
"1"	"0 . 5"	"-0.29311"	"0.68421"	"1"
"2"	"0.92839"	"-0.0046622"	"0.58461"	"0.42839"
"3"	"0.93637"	"-2.1913e-05"	"0.57911"	"0.0079748"
"4"	"0.9364"	"-4.9834e-10"	"0.57908"	"3.7839e-05"
"5"	"0.9364"	"-1.1102e-16"	"0.57908"	"8.6057e-10"

7 Trisection - JavaScript

Input data

$$f(x) = \ln(\sin(x)^2 + 1) - (1/2)$$

a = 0 b=1 Tolerance = 1e-7 iterations = 100

8 Trisection - Matlab

Input data

$$f(x) = \ln(\sin(x)^2 + 1) - (1/2)$$

a = 0 b=1

 ${\rm Tolerance} = 1\text{e-}7$

answer =

"0.9364 is an approximation with tolerance 1e-07"

matrix =

16×9 **string** array

"iteration"	"left"	"right"	"xmid1"	"xmid2"	"f(xmid1)"	"f(xmid2)"	"error1"	"error2"
"1"	"0"	"1"	"0.33333"	"0.66667"	"-0.3983"	"-0.17619"	"1"	"1"
"2"	"0.66667"	"1"	"0.77778"	"0.88889"	"-0.099628"	"-0.028277"	"0.44444"	"0.22222"
"3"	"0.88889"	"1"	"0.92593"	"0.96296"	"-0.0061059"	"0.01513"	"0.14815"	"0.074074"
"4"	"0.92593"	"0.96296"	"0.93827"	"0.95062"	"0.0010799"	"0.0081593"	"0.012346"	"0.012346"
"5"	"0.92593"	"0.93827"	"0.93004"	"0.93416"	"-0.003699"	"-0.0013036"	"0.0082305"	"0.016461"
"6"	"0.93416"	"0.93827"	"0.93553"	"0.9369"	"-0.00050781"	"0.00028672"	"0.005487"	"0.0027435"
"7"	"0.93553"	"0.9369"	"0.93599"	"0.93644"	"-0.00024282"	"2.2025e-05"	"0.00045725"	"0.00045725"
"8"	"0.93599"	"0.93644"	"0.93614"	"0.93629"	"-0.00015452"	"-6.624e-05"	"0.00015242"	"0.00015242"
"9"	"0.93629"	"0.93644"	"0.93634"	"0.93639"	"-3.6817e-05"	"-7.3953e-06"	"0.00020322"	"0.00010161"
"10"	"0.93639"	"0.93644"	"0.93641"	"0.93643"	"2.4115e-06"	"1.2218e-05"	"6.774e-05"	"3.387e-05"
"11"	"0.936392"	"0.936409"	"0.936397"	"0.936403"	"-4.12634e-06"	"-8.57402e-07"	"1.12901e-05"	"2.25801e-05"
"12"	"0.936403"	"0.936409"	"0.936405"	"0.936407"	"2.32238e-07"	"1.32188e-06"	"7.52671e-06"	"3.76335e-06"
"13"	"0.936403"	"0.936405"	"0.936404"	"0.936404"	"-4.94189e-07"	"-1.30975e-07"	"1.25445e-06"	"2.5089e-06"
"14"	"0.936404"	"0.936405"	"0.936405"	"0.936405"	"-9.90421e-09"	"1.11167e-07"	"8.36301e-07"	"4.1815e-07"
"15"	"0.936405"	"0.936405"	"0.936405"	"0.936405"	"3.04528e-08"	"7.08098e-08"	"6.96917e-08"	"6.96917e-08"

9 Fixed Point - Javascript

Input data

$$log((sin(x)^2) + 1) - x - 1/2$$

$$log((sin(x)^2) + 1) - 1/2$$

x0 = -0.5Tolerance = 10e-7

iterations = 100

(index)	x1	fx1	error
0	-0.2931087267313766	-0.12671281687488078	0.2068912732686234
1	-0.41982154360625734	0.07351702442859231	0.12671281687488073
2	-0.3463045191776651	-0.0446539373646444	0.07351702442859226
3	-0.3909584565423095	0.026553421648170206	0.0446539373646444
4	-0.3644050348941392	-0.016021268273817058	0.02655342164817026
5	-0.3804263031679563	0.009589507887747373	0.016021268273817058
6	-0.37083679528020885	-0.005768850083372357	0.009589507887747428
7	-0.3766056453635812	0.003460227756392209	0.005768850083372357
8	-0.373145417607189	-0.002079223579867173	0.003460227756392209
9	-0.3752246411870562	0.0012480551387465955	0.002079223579867173
10	-0.37397658604830963	-0.0007496296601224861	0.00124805513874654
11	-0.3747262157084321	0.00045008239797827976	0.0007496296601224861
12	-0.3742761333104539	-0.0002702951476383775	0.00045008239797822425
13	-0.3745464284580923	0.00016230202324751808	0.0002702951476383775
14	-0.3743841264348447	-0.00009746439711039168	0.0001623020232475736
15	-0.3744815908319551	0.000058525648058083135	0.00009746439711039168
16	-0.37442306518389706	-0.00003514467880871841	0.000058525648058027624
17	-0.37445820986270584	0.00002110401325028377	0.00003514467880877392
18	-0.3744371058494556	-0.000012672877957364825	0.00002110401325022826
19	-0.37444977872741303	0.000007609964212673681	0.000012672877957420337
20	-0.37444216876320036	-0.0000045697420043566694	0.000007609964212673681
21	-0.3744467385052047	0.0000027440986793969557	0.000004569742004356669
22	-0.37444399440652526	-0.000001647814738270359	0.000002744098679452467
23	-0.37444564222126353	9.895019896788426e-7	0.000001647814738270359
24	-0.37444465271927385	-5.941897863737111e-7	9.895019896788426e-7

6

10 Fixed Point - Matlab

Input data

$$log((sin(x)^2) + 1) - x - 1/2$$

$$log((sin(x)^2) + 1) - 1/2$$

x0 = -0.5

Tolerance = 10e-7

iterations = 100

x17 = -0.3744

x1 =

-0.3745

x18 = -0.3745

x1 =

-0.3744

x19 = -0.3744

x1 =

-0.3744

 $\times 20 = -0.3744$

x1 =

-0.3744

 $\times 21 = -0.3744$

x1 =

-0.3744

x22 = -0.3744

x1 =

-0.3744

x23 = -0.3744

x1 =

-0.3744

x24 = -0.3744

x1 =

-0.3744

x25 = -0.3744

11 gaussSimple - Javascript

Input data

$$A = \begin{pmatrix} 2 & -1 & 0 & 3\\ 1 & 0.5 & 3 & 8\\ 0 & 13 & -2 & 11\\ 14 & 5 & -2 & 3 \end{pmatrix}$$
$$b = \begin{pmatrix} 1\\ 1\\ 1\\ 1 \end{pmatrix}$$

12 gaussSimple - Matlab

Input data

$$A = \begin{pmatrix} 2 & -1 & 0 & 3 \\ 1 & 0.5 & 3 & 8 \\ 0 & 13 & -2 & 11 \\ 14 & 5 & -2 & 3 \end{pmatrix}$$
$$b = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

n = 4

Etapa 1

-1.0000 3.0000 2.0000 1.0000 0 6.5000 0.5000 3.0000 1.0000 -2.0000 0 13.0000 11.0000 1.0000 0 12.0000 -2.0000 -18.0000 -6.0000

Etapa 2

-1.0000 3.0000 2.0000 1.0000 0 1.0000 6.5000 3.0000 0.5000 0 -41.0000 -73.5000 -5.5000 0 0 0 -38.0000 -96.0000 -12.0000

Etapa 3

2.0000 -1.0000 0 3.0000 1.0000 1.0000 3.0000 6.5000 0.5000 0 -41.0000 -73.5000 -5.5000 0 -27.8780 0 0 0 -6.9024

ans =

0.0385 -0.1802 -0.3097 0.2476

13 gaussPartialPivot - Javascript

Input data

$$A = \begin{pmatrix} 2 & -1 & 0 & 3 \\ 1 & 0.5 & 3 & 8 \\ 0 & 13 & -2 & 11 \\ 14 & 5 & -2 & 3 \end{pmatrix}$$
$$b = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

(index)	0	1			3		
0 1 2 3	14 0 0 0	5 0.1428571428571429 13 -1.7142857142857142	-2 3.142857142857143 -2 0.2857142857142857		3 785714285714286 11 5714285714285716	1 0.9285714285714286 1 0.8571428571428572	
(index)	0	1					
0 1 2 3	14 0 0 0	5 13 0 2.220446049250313e-16	-2 -2 3.16483516483516 0.021978021978021		3 11 7.66483516483516 4.02197802197802		
(index)	0	1					
	14 0 0 0	5 13 0 2.220446049250313e-16	-2 -2 3.164835164835164	7	3 11 7.664835164835164 3.96875	1 1 0.9175824175824177 0.9826388888888889	
3.908/5 0.982638888888889 0.03849518810148731, -0.18022747156605426, -0.30971128608923887, 0.24759405074365706							

14 gaussPartialPivot - Matlab

Input data

$$A = \begin{pmatrix} 2 & -1 & 0 & 3 \\ 1 & 0.5 & 3 & 8 \\ 0 & 13 & -2 & 11 \\ 14 & 5 & -2 & 3 \end{pmatrix}$$
$$b = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

Etapa 0				
2.0000	-1.0000	0	3.0000	1.0000
1.0000	0.5000	3.0000	8.0000	1.0000
0	13.0000	-2.0000	11.0000	1.0000
14.0000	5.0000	-2.0000	3.0000	1.0000
Etapa 1				
14.0000	5.0000	-2.0000	3.0000	1.0000
0	0.1429	3.1429	7.7857	0.9286
0	13.0000	-2.0000	11.0000	1.0000
0	-1.7143	0.2857	2.5714	0.8571
Etapa 2				
14.0000	5.0000	-2.0000	3.0000	1.0000
0	13.0000	-2.0000	11.0000	1.0000
0	0	3.1648	7.6648	0.9176
0	0.0000	0.0220	4.0220	0.9890
Etapa 3				
14.0000	5.0000	-2.0000	3.0000	1.0000
0	13.0000	-2.0000	11.0000	1.0000
0	0	3.1648	7.6648	0.9176
0	0.0000	0	3.9688	0.9826
ans =				
0.0385	-0.1802	-0.3097	0.2476	

15 gaussTotalPivot - Javascript

Input data

$$A = \begin{pmatrix} 2 & -1 & 0 & 3 \\ 1 & 0.5 & 3 & 8 \\ 0 & 13 & -2 & 11 \\ 14 & 5 & -2 & 3 \end{pmatrix}$$
$$b = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

(index)	0	1			3		4
	14 0 0 0	5 0.1428571428571429 13 -1.7142857142857142	-2 3.142857142857143 -2 0.2857142857142857		3 785714285714286 11 5714285714285716		1 .9285714285714286 1 .8571428571428572
(index)	0	1			3		4
	14 0 0 0	5 13 0 2.220446049250313e-16	-2 -2 3.164835164835164 0.0219780219780219		3 11 7.66483516483516 4.02197802197802		1 1 0.917582417582417 0.989010989010989
(index)	0	1					
	14 0 0 0	5 13 0 2.220446049250313e-16	3 11 7.664835164835164 0		-2 -2 .1648351648351647 1.638709677419355		1 1 3.9175824175824177 3.5075268817204301
3 0 2.220446049250313e-16 0 -1.638709677419355 0.5075268817204301 C: 0.03849518810148732, -0.18022747156605423, -0.3097112860892388, 0.24759405074365703							

16 gaussTotalPivot - Matlab

Input data

$$A = \begin{pmatrix} 2 & -1 & 0 & 3 \\ 1 & 0.5 & 3 & 8 \\ 0 & 13 & -2 & 11 \\ 14 & 5 & -2 & 3 \end{pmatrix}$$
$$b = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

n = 4Etapa 0 2.0000 -1.0000 0 3.0000 1.0000 1.0000 0.5000 1.0000 3.0000 8.0000 13.0000 -2.0000 11.0000 1.0000 0 5.0000 -2.0000 3.0000 1.0000 14.0000 Etapa 1 14.0000 5.0000 -2.0000 3.0000 1.0000 0 0.1429 3.1429 7.7857 0.9286 13.0000 -2.0000 11.0000 1.0000 -1.7143 0.2857 2.5714 0.8571 Etapa 2 5.0000 -2.0000 14.0000 3.0000 1.0000 -2.0000 11.0000 13.0000 1.0000 0 3.1648 7.6648 0.9176 0.0000 0.0220 4.0220 0.9890 Etapa 3 14.0000 3.0000 5.0000 -2.0000 1.0000 0 13.0000 11.0000 -2.0000 1.0000 0 7.6648 3.1648 0.9176 0 0.0000 0 -1.6387 0.5075 ans = 0.0385 -0.1802 -0.3097 0.2476

17 multiple roots - Javascript

Input data

$$h(x) = e^x - x - 1$$

$$h'(x) = e^x - 1$$

$$h''(x) = e^x$$

x0 = 1

 $\begin{aligned} \text{Tolerance} &= 10\text{e-}7\\ \text{iterations} &= 100 \end{aligned}$

(index)		xi			f2xi	
		1 -0.23421061355351425 -0.00845827991076109 -0.000011890183808588653 -4.218590698935789e-11	0.7182818284590451 0.025405775475345838 0.00003567060801401567 7.068789997788372e-11 0	1.718281828459045 -0.20880483807816852 -0.008422609302746964 -0.000011890113120638368 -4.218592142279931e-11	2.718281828459045 0.7911951619218315 0.991577390697253 0.9999881098868794 0.999999999578141	1.2342106135535142 0.22575233364275316 0.008446389726952502 0.000011890141622681664
c: -4.21859069	98935789e-:					

18 multiple roots - Matlab

Input data

$$h(x) = e^x - x - 1$$

$$h'(x) = e^x - 1$$

$$h''(x) = e^x$$

x0 = 1

 ${\rm Tolerance} = 10\text{e-}7$

Counter	Xi	Fxi	Error
0	1.00000000000000000	0.718281828459045	1.0000010000000000
1.0000000000000000000000000000000000000	-0.234210613553514	0.025405775475346	1.234210613553514
2.000000000000000000	-0.008458279910761	0.000035670608014	0.225752333642753
3.000000000000000000	-0.000011890183809	0.000000000070688	0.008446389726953
4.00000000000000000	-0.0000000000042186	0	0.000011890141623

The root has been found and it is: -4.21859069894e-11

ans =

-4.218590698935789e-11

19 Aitken - Javascript

Input data

$$f_1(x) = log((sin(x)^2) + 1) - x - 1/2$$

$$g(x) = \log((\sin(x)^2) + 1) - 1/2$$

x0 = -0.5

Tolerance = 10e-7

20 Aitken - Matlab

Input data

$$f_1(x) = log((sin(x)^2) + 1) - x - 1/2$$

$$g(x) = log((sin(x)^2) + 1) - 1/2$$

x0 = -0.5

 ${\rm Tolerance} = 10 \text{e-} 7$

Counter	Xi	Fxi	Error
(-0.373297263344318	-0.001836369003158	1.0000010000000000
1.0000000000000000000000000000000000000	-0.374084817774315	-0.000576447277707	0.000787554429996
2.00000000000000000	-0.374306879464707	-0.000221090520728	0.000222061690392
3.0000000000000000000000000000000000000	-0.374397344705265	-0.000076309307582	0.000090465240558
4.000000000000000000	-0.374427419045340	-0.000028176431394	0.000030074340075
5.000000000000000000	-0.374438771056640	-0.000010007735404	0.000011352011300
6.000000000000000000	-0.374442749402845	-0.000003640433321	0.000003978346205
7.00000000000000000	-0.374444208174354	-0.000001305680868	0.000001458771509
8.00000000000000000	-0.374444728864431	-0.000000472319969	0.000000520690077

An approximation has been found and is: -0.374444728864

W

21 steffensen - Javascript

Input data

$$f_1(x) = log((sin(x)^2) + 1) - x - 1/2$$

$$g(x) = log((sin(x)^2) + 1) - 1/2$$

x0 = -0.5

 $\begin{aligned} \text{Tolerance} &= 10\text{e-}7\\ \text{iterations} &= 100 \end{aligned}$

22 steffensen - Matlab

Input data

$$f_1(x) = log((sin(x)^2) + 1) - x - 1/2$$

$$g(x) = log((sin(x)^2) + 1) - 1/2$$

x0 = -0.5

 $\begin{aligned} \text{Tolerance} &= 10\text{e-}7\\ \text{iterations} &= 100 \end{aligned}$

Counter	Xi	Fxi	Ennon
0	-0.371692223748517	-0.004402295146407	1.8080818080808088
1,00000000000000000000	-0.3744437000022266	-0.000002119006566	0.002751476253749
2,0000000000000000000	-0.374445023973078	-0.00000000000000490	0.000001323970812
3,000000000000000000	-0.374445023973384	-0,00000000000000000	0.00000000000000306

An approximation has been found and is: -0.374445023973

23 muller - Javascript

Input data

$$f(x) = \ln(\sin(x)^2 + 1) - (1/2)$$

$$\begin{aligned} &x0 = 0.5\\ &x1 = 1\\ &Tolerance = 10e-7\\ &iterations = 100 \end{aligned}$$

24 muller - Matlab

Input data

$$f(x) = \ln(\sin(x)^2 + 1) - (1/2)$$

x0 = 0.5

x1 = 1

Tolerance = 10e-7

Counter	Xi	FXI	Enron
0	0.943053242083067	0.003834649600493	1.00000100000000000
1.0000000000000000000000000000000000000	0.937383832824002	0.000566730167487	0.005669409259065
2.000000000000000000	0.936398251869595	-0.000003665010153	0.000985580954407
3.00000000000000000	0.936404589938110	0.0000000005245614	0.000006338068515
4,000000000000000000	0.936404580879631	0.00000000000000040	0.0000000009058479

An approximation has been found and is: 0.93640458088

25 secant method - Mathlab

Input data

$$log((sin(x)^2) + 1) - x - 1/2$$

$$\log((\sin(x)^2)+1)-1/2$$

 $\begin{array}{l} x0=0.5 \\ x1=1 \end{array}$

Tolerance = 10e-7

SOLUCION: 0.936405 es una aproximacion a una raiz con una tolerancia 1e-07 TABLA interaciones у1 Xn Error relativo 1.00000000000000000 0.035366079380240 1.000000100000000 0.946166222306525 0.056896744382019 1.00000000000000000 0.005619392737864 2.00000000000000000 0.935996580791173 -0.000236322174701 0.010865041308972 3.0000000000000000 0.936407002376704 0.000001402235891 0.000438294015839 0.936404581473120 0.000000000343716 0.000002585317962 4.00000000000000000 5.0000000000000000 0.936404580879561 -0.0000000000000000 0.000000000633869

26 secant method - JavaScript

Input data

$$log((sin(x)^2) + 1) - x - 1/2$$

$$log((sin(x)^2) + 1) - 1/2$$

$$x0 = 0.5$$

 $x1 = 1$
Tolerance = 10e-7
iterations = 100

(index)	counter	xi	fxi	error
		0.5	-0.2931087267313766	1.000001
		1	0.03536607938024017	1.000001
		0.946166222306525	0.005619392737863826	0.05383377769347497
	2	0.9359965807911726	-0.00023632217470059835	0.010169641515352379
		0.9364070023767039	0.0000014022358910681376	0.00041042158553128427
	4	0.9364045814731196	3.4371649970665885e-10	0.0000024209035843769655
		0.9364045808795615	-4.996003610813204e-16	5.935580915661376e-10

27 false position - Mathlab

Input data

$$log((sin(x)^2) + 1) - x - 1/2$$

$$\log((\sin(x)^2)+1)-1/2$$

a = 0 b = 1Tolerane

Tolerance = 10e-7iterations = 100

```
SOLUCION:
0.936405 es una aproximacion a una raiz con una tolerancia 1e-07
Iteraciones
                                                                                                            Error Absoluto
   1.0000000000000000
                                           1.0000000000000000
                                                               0.933940380718216
                                                                                  -0.001429076703686
                                                                                                        1.000000100000000
   2.00000000000000000
                       0.933940380718216
                                           1.00000000000000000
                                                               0.936506051665625
                                                                                   0.000058756008358
                                                                                                        0.002739620254291
   3.000000000000000
                       0.933940380718216
                                           0.936506051665625
                                                               0.936404730742641
                                                                                   0.000000086782541
                                                                                                        0.000108202062268
   4.00000000000000000
                       0.933940380718216
                                           0.936404730742641
                                                               0.936404581100869
                                                                                   0.000000000128154
                                                                                                        0.000000159804614
   5.0000000000000000
                      0.933940380718216
                                           0.936404581100869
                                                               0.936404580879889
                                                                                   0.000000000000189
                                                                                                        0.000000000235987
```

28 false position - JavaScript

Input data

$$log((sin(x)^2) + 1) - x - 1/2$$

$$log((sin(x)^2) + 1) - 1/2$$

 $\begin{aligned} \mathbf{a} &= 0 \\ \mathbf{b} &= 1 \\ \text{Tolerance} &= 10\text{e-}7 \\ \text{iterations} &= 100 \end{aligned}$

(index)	counter	xi	fxi	
0	0	0.5	-0.2931087267313766	1.000001
		1	0.03536607938024017	1.000001
		0.946166222306525	0.005619392737863826	0.05383377769347497
	2	0.9359965807911726	-0.00023632217470059835	0.010169641515352379
		0.9364070023767039	0.0000014022358910681376	0.00041042158553128427
	4	0.9364045814731196	3.4371649970665885e-10	0.0000024209035843769655
		0.9364045808795615	-4.996003610813204e-16	5.935580915661376e-10

29 gaussian elimination for tridiagonal matrices - Mathlab

Input data

a = [0,3,2,1]

b = [1,4,3,3]

c = [4,1,4,0]

d = [1,1,1,1]

```
1.00000000000000000
 0.25000000000000000
 1.00000000000000000
 1.00000000000000000
D:
 1.00000000000000000
 0.2500000000000000
 0.153846153846154
 1.00000000000000000
D:
 1.00000000000000000
 0.25000000000000000
 0.153846153846154
 0.478260869565217
 0.217391304347826 0.195652173913043 -0.434782608695652 0.478260869565217
х:
 0.217391304347826 0.195652173913043 -0.434782608695652 0.478260869565217
```

30 gaussian elimination for tridiagonal matrices-JavaScript

```
Input data a = [0,3,2,1] b = [1,4,3,3] c = [4,1,4,0] d = [1,1,1,1] d: 1,0.25,1,1 d: 1,0.25,0.15384615384615385,1 d: 1,0.25,0.15384615384615385,0.4782608695652174 d: 1,0.25,0.15384615384615385,0.4782608695652174 d: 1,0.25,0.15384615384615385,0.4782608695652174 d: 1,0.19565217391304346,-0.4347826086956522,0.4782608695652174 d: 0.21739130434782616,0.19565217391304346,-0.4347826086956522,0.4782608695652174 [0.21739130434782616,0.19565217391304346,-0.4347826086956522,0.4782608695652174]
```

Members signatures

Jose Miguel Daniel Hernandez Neller Pellegrino Samuel Villegas