CasADi for solution of a Nonlinear Program Lecture 01C CasADi and the Himmelblau Optimization Problem

John Bagterp Jørgensen

Department of Applied Mathematics and Computer Science Technical University of Denmark

02612 Constrained Optimization

The Himmelblau Optimization Problem

$$\min_{x} \quad f(x) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$$
 (1a)

$$c_1(x) = (x_1 + 2)^2 - x_2 \ge 0$$
 (1b)

$$c_2(x) = -4x_1 + 10x_2 \ge 0 \tag{1c}$$

The Himmelblau Optimization Problem

► Himmelblau's optimization problem

$$\min_{x} \quad f(x) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$$
 (2a)

$$c_1(x) = (x_1 + 2)^2 - x_2 \ge 0$$
 (2b)

$$c_2(x) = -4x_1 + 10x_2 \ge 0 (2c)$$

► CasADi interface (ipopt interface)

$$\min_{x} \quad f(x) \tag{3a}$$

$$s.t. x_{lb} \le x \le x_{ub} (3b)$$

$$g_{lb} \le g(x) \le g_{ub} \tag{3c}$$

CasADi script

```
% example 4 casadi
   import casadi.*
3
  % Symbols/expressions
  x1 = MX.svm('x1');
   x2 = MX.sym('x2');
9 t1 = x1*x1 + x2 - 11;
10 t2 = x1 + x2*x2 - 7;
11
   f = t1*t1 + t2*t2;
12
13
14 c1 = (x1+2)^2 - x2;
15 c2 = -4 \times x1 + 10 \times x2;
16
  q = [c1; c2];
17
18 nlp = struct; % NLP declaration
19 nlp.x = [x1; x2]; % decision vars
20 nlp.f = f;
                         % objective
21
   nlp.q = q;
                         % constraints
22
23 % Create solver instance
24
   F = nlpsol('F', 'ipopt', nlp);
25
26
   % Solve the problem using a guess
27
   res = F('x0', [0.0 \ 0.0], 'ubg', 1e8, 'lbg', 0, 'lbx', [-5; -5], 'ubx', [5; 5])
28
29
   res.x
```