ESO 208A: Computational Methods in Engineering

Tutorial 11

Numerical differentiation

1. The location of an object at various times was measured as follows:

Time (<i>t</i> ; s)	0	1	2	3	4	5	6	7	8	9
Distance										
(x; m)	1	1.55	2.32	3.58	5.79	9.68	16.49	28.22	48.2	81.92

Estimate the speed and acceleration of the object at 5 seconds by using - (i) Forward difference, $O(h^2)$ (ii) Backward difference, $O(h^2)$ (iii) Central difference, $O(h^2)$ and (iv) Richardson extrapolation, $O(h^6)$ using three central differences of $O(h^2)$. Estimate the true percentage error if the object location is given by $x = e^{0.5t} - 0.1t^2$.

2. For the function $f(x) = \frac{\sin x}{x^3}$, obtain finite difference approximations of f' with first order backward difference, second order central difference and 4^{th} order central difference. Evaluate f' by the three methods at 20 equally spaced points in the interval $[1,2\pi]$. Also evaluate the true value of f' at the same points. Plot f' vs. x and graphically compare the true values with the three approximations you have obtained, all in the same plot. Show them by different styles of lines.