

概述

CL4064M是一款性能优异的单节锂离子电池恒流/恒压线性充电器。CL4064M采用SOT23-5L封装配合较少的外围原件使其非常适用于便携式产品,并且适合给USB电源以及适配器电源供电。

基于特殊的内部MOSFET架构以及防倒充电路, CL4064M不需要外接检测电阻和隔离二极管。当外部环境温度过高或者在大功率应用时, 热反馈可以调节充电电流以降低芯片温度。充电电压固定在4.24V, 而充电电流则可以通过一个电阻器进行外部设置。当充电电流在达到最终浮充电压之后降至设定值的3/10. 芯片将终止充电循环。

当输入电压断开时,CL4064M进入睡眠状态,电池漏电流将降到1uA以下。CL4064M还可以被设置于停机模式,此时芯片静态电流降至35uA。

CL4064M还包括其他特性:欠压锁定,自动再充电和充电状态标志。

与常规6V工作的CL4054相比, CL4064M工作电压更高:可稳定工作在12V, Surge承受电压达到16V

特性

- ◆最高 工作电压: 12V
- ◆Surge 承受电压: 16V
- ◆可编程充电电流: 400mA
- ◆无需外接MOSFET, 检测电阻以及隔离二极管
- ◆用于单节锂电池、采用SOT23-5L封装的完整线性充电器
- ◆恒定电流/恒定电压操作,并具有可在无过热危险的情况 下实现充电速率最大化的热调节功能。
- ◆精度达到±1%的4.24V预充电电压
- ◆用于电池电量检测的充电电流监控器输出
- ◆3/10充电终止, 自动再充电
- ◆充电状态输出显示
- ◆待机模式下的静态电流为35uA
- ◆2.9V涓流充电
- ◆软启动限制浪涌电流

应用范围

- ◆移动电话、PDA
- ◆MP3、MP4播放器
- ◆充电器
- ◆数码相机
- ◆电子词典
- ◆蓝牙、GPS导航仪
- ◆便携式设备

CL4064M采用SOT23-5L和DFN2*2-6L封装

典型应用

2

管脚分布

SOT23-5L

管脚图	丝印字符	丝印字符说明
左示意图	MZ	系列号
	XX	生产周期

管脚描述

SOT23-5L

管脚号	管脚名	描述
1	CHRG	电池充电指示端
2	GND	地端
3	BAT	电池端
4	VCC	电源端
5	PROG	可编程恒流充电电流设置端

DFN2*2-6

管脚号	管脚名	描述
1	PROG	可编程恒流充电电流设置端
2	STDBY	电池充满指示端
3	VCC	电源端
4	BAT	电池端
5	GND	地端
6	CHARG	电池充电指示端

最大额定值 (注)

参数	范围	单位
VCC端电压	-0.3 to 14	V
PROG端电压	-0.3 to 6.5	V
BAT端电压	-0.3 to 6.5	V
CHRG端电压	-0.3 to 14	V
BAT端电流	600 mA	mA
PROG端电流	500 uA	uA
最大功耗	400	mW
	800(增加PCB散热) ⁽¹⁾	
工作环境温度	-40 ~ 85	°C
最低/最高存储温度Tstg	-65 to 125	°C

注释(1): 增加PCB散热参数仅供参考, 具体以实际为准

ESD与Latch-up等级

人体模型ESD级别	> 5000V
机器模型ESD级别	> 300 V
Latch-up 级别	> 500mA

电气特性

(如果没有特殊说明,环境温度=25℃,输入电压=5V)

符号	参数	测试条件	最小值	典型值.	最大值	单位
VCC	输入电源电压		4.0		12	V
		充电模式(RPROG=10K) ⁽¹⁾		240	500	uA
ICC 輸入电源电流	待机模式 (充电终止)		50	100	uA	
		停机模式(RPROG未连接, VCC <vbat,vcc<vuvlo)< td=""><td></td><td>35</td><td>70</td><td>uA</td></vbat,vcc<vuvlo)<>		35	70	uA
VFLOAT	输出浮充电压	0°C≤T≤85°C, IBAT=40mA	4.198	4.24	4.282	V
		恒流模式,R _{PROG} =10K	93	100	107	mA
		恒流模式,R _{PROG} =5K	186	200	214	mA
IBAT	BAT端充电电流	待机模式,VBAT=4.2V	0	-2.5	-6	uA
IDAT	Ditt single a a since	停机模式		1	2	uA
		电池反接模式,VBAT=-4V		0.7		mA
		睡眠模式,VCC=0V		0	1	uA
İTRIKL	涓流充电电流	VBAT < VTRIKL,	20	25	30	mA
VTRIKL	涓流充电门限电压	VBAT上升	2.7	2.9	3.1	V
VTRHYS	涓流充电迟滞电压	VBAT下降	60	80	100	mV
VUVLO	VCC欠压锁定电压	VCC上升	3.6	3.8	4.0	V
Vuvhys	VCC欠压锁定迟滞电压	VCC下降	150	200	300	mV
VOVP	VCC过压保护电压	VCC上升	9.1	9.5	9.9	V
VOVHYS	VCC过压释放迟滞电压	VCC下降	160	240	360	mV
VMSD	手动关断阈值电压	VPROG上升	1.15	1.21	1.30	V
VIVIOD	7 77 77 77 11 12 12	VPROG下降	0.9	1.0	1.1	V
VASD	VCC -VBAT锁闭电压	VCC上升	100	145	200	mV
VACE	V00 VD/(()/()/()/()/()/()/()/()/()/(VCC下降	50	80	120	mV
ITERM	充电截止电流	RPROG=10K	24	30	36	mA
VPROG	PROG引脚电压	恒流模式,RPROG=10K	0.93	1.0	1.07	V
VCHRG	CHRG端输出低电平	ICHRG=5mA		0.35	0.6	V
ΔVRECHG	再充电电池门限电压	VFLOAT-VRECHG		100	200	mV
trechg	再充电延时时间	VBAT由高到低	0.8	1.8	4	ms
t TERM	充电终止延时时间	IBAT降至截止电流以下	0.63	1.4	3	ms
IPROG	PROG端上拉电流			2.0		uA

注释(1): 这时处于充电状态, ICC= IVCC- IBAT

www.chiplink-tech.com

400mA线性锂离子电池充电器

使用说明

CL4064M是一款专门为锂离子电池设计的线性充电器,利用芯片内部的功率MOSFET对电池进行恒流/恒压充电。充电电流可以由外部电阻编程决定,最大充电电流可以达到500mA。CL4064M有个漏极开路输出的状态指示输出端,充电状态指示端CHRG。芯片内部的功率管电路在芯片的结温超过135℃时自动降低充电电流,这个功能可以使用户最大限度利用芯片充电,不用担心芯片过热而损坏芯片或者外部元器件。

●工作原理

当输入电压大于UVLO检测阈值和芯片使能输入端接高电平时,CL4064M开始对电池充电。如果电池电压低于2.9V,充电器用小电流对电池进行预充电。当电池电压超过2.9V时,充电器采用恒流模式对电池充电,充电电流由PROG端和GND端之间的电阻决定。当电池电压接近4.24V时,充电电流逐渐减小,CL4064M进入恒压充电模式。当充电电流减小到充电结束阈值时,充电周期结束。

充电结束阈值是恒流充电电流的3/10。当电池电压降到再充电阈值以下时,自动开始新的充电周期。芯片内部的高精度的电压基准源,误差放大器和电阻分压网络确保BAT端调制电压的精度在1%以内,满足锂离子和锂聚合物电池的要求。当输入电压掉电或者输入电压低于电池电压时,充电器进入待机模式,电池端消耗的电流小于2uA,从而增加待机时间。

•充电终止

当充电电流在达到最终浮充电压之后降至设定值的3/10,充电循环被终止。该条件是通过采用一个内部滤波比较器对PROG端进行监控来检测的。当PROG端电压降至300mV以下的时间超过1.8ms时,充电终止,CL4064M进入待机模式,此时的输入电源电流降至约45uA。

充电时,BAT端上的瞬变负载会使PROG端电压在DC充电电流降至设定值的3/10之间短暂地降至300mV以下,比较器的1.8ms延时时间确保了这种性质的瞬变负载不会导致充电循环过早终止。一旦平均充电电流降至设定值的3/10以下,CL4064M集中式充电循环并停止通过BAT端提供任何电流。在这种状态下,BAT端上所有负载都必须由电池供电。

•充电电流的设定

充电电流是采用一个连接在PROG引脚与地之间的电阻器来设定的。电流充电电流是PROG引脚输出电流的1000倍。设定电阻器和充电电流采用下列公式来计算:

$$R_{_{PROG}} = \frac{1000V}{I_{_{CHG}}}, I_{_{CHG}} = \frac{1000V}{R_{_{PROG}}}$$

从BAT引脚输出的充电电流可通过监视PROG引脚电压随时确定,公式如下:

$$I_{BAT} = \frac{V_{PROG}}{R_{PROG}} \bullet 1000$$

RPROG与充电电流的关系确定可残空下表:

RPROG(K)	Іват(mA)
1.4	600
2	500
2.2	400
3	300
5	200
10	100

•充电状态指示

CL4064M有一个漏极开路状态指示输出端CHRG。当充电器处于充电状态时,CHRG被拉到低电平,在其他状态CHRG为高阻态。

●热限制

如果芯片温度升至135°C以上时,一个内部热反馈环路将减小设定的充电电流。该功能可防止CL4064M过热,并允许用户提高给定电路板功率处理能力的上限而减小损坏CL4064M的风险。

●欠压锁闭

CL4064M拥有一个内部欠压锁定电路对输入电压进行监控,在VCC升至欠压锁定门限电压之前使芯片保持在停机工作模式。当VCC电压升高至3.8V之后,芯片退出UVLO,开始正常工作。VCC下降时的UVLO迟滞电压为200mV。

•自动充电循环

电池电压达到浮充电压,充电循环被终止之后,CL4064M立即对BAT端电压进行监控。当BAT端电压低于4.1V时,充电循环重新开始。确保了电池被维持在一个接近满电的状态,同时免除了进行周期性充电循环启动的需要。

封装说明: SOT23-5L

Symbol	Dimensions In Millimeters		Dimensions In Inches	
,	Min	Max	Min	Max
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950 (BSC)		0.037	(BSC)
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
r	0°	8°	0°	8°

CL4064M

400mA线性锂离子电池充电器

- 此处描述的信息有可能有所修改, 恕不另行通知
- 智浦芯联不对由电路或图表描述引起的与的工业标准,专利或第三方权利相关的问题负有责任。应用 电路图仅作为典型应用的示例用途,并不保证其对专门的大规模生产的实用性。
- 当该产品及衍生产品与瓦圣纳协议或其他国际协议冲突时,其出口可能会需相关政府的授权。
- 未经智浦芯联刊印许可的任何对此处描述信息用于其他用途的复制或拷贝都是被严厉禁止的。
- 此处描述的信息若智浦芯联无书面许可不能被用于任何与人体有关的设备,例如运动器械,医疗设备, 安全系统,燃气设备,或任何安装于飞机或其他运输工具。
- 虽然智浦芯联尽力去完善产品的品质和可靠性,当半导体产品的失效和故障仍在所难免。因此采用该产品的客户必须要进行仔细的安全设计,包括冗余设计,防火设计,失效保护以防止任何次生性意外、火灾或相关损毁。