

Optimization of Parameters for Semiempirical Methods II. Applications

JAMES J. P. STEWART, Frank J. Seiler Research Laboratory, United States Air Force Academy, Colorado Springs, Colorado 80840

Reprinted from Journal of Computational Chemistry, Vol. 10, No. 2, 1989

Optimization of Parameters for Semiempirical Methods II. Applications

James J. P. Stewart

Frank J. Seiler Research Laboratory, United States Air Force Academy, Colorado Springs, Colorado 80840

Received 13 June 1988; accepted 2 November 1988

MNDO/AM1-type parameters for twelve elements have been optimized using a newly developed method for optimizing parameters for semiempirical methods. With the new method, MNDO-PM3, the average difference between the predicted heats of formation and experimental values for 657 compounds is 7.8 kcal/mol, and for 106 hypervalent compounds, 13.6 kcal/mol. For MNDO the equivalent differences are 13.9 and 75.8 kcal/mol, while those for AM1, in which MNDO parameters are used for aluminum, phosphorus, and sulfur, are 12.7 and 83.1 kcal/mol, respectively. Average errors for ionization potentials, bond angles, and dipole moments are intermediate between those for MNDO and AM1, while errors in bond lengths are slightly reduced.

INTRODUCTION

The set of approximations developed by Dewar and Thiel used in the modified neglect of diatomic overlap (MNDO) method forms an excellent theoretical framework for modeling molecular systems. Earlier optimizations were limited by available computational power. Thus, the "optimized" parameters did not fully reflect the power of the theoretical model. Even the current parameters, while more completely optimized, are limited in that any errors in experimental data are reflected in the values of the parameters. Further, the large number of almost zero eigenvalues resulting from diagonalization of the parameter Hessian matrix indicate that insufficient constraints have been imposed to unambiguously define the global minimum in parameter space. Two avenues are open for resolving this problem. A systematic survey of physical phenomena such as hyperpolarizabilities, vibrational frequencies, higher ionization potentials (IP), activation barriers, etc. might reveal deficiencies in the parameters which could be rectified by reparameterization. Alternatively, the functional form of the parameters could be studied to determine if simpler functions, namely ones with fewer parameters, could be used. This may be relevant in the case of hydrogen, for example, in which the radii of the two gaussians are almost identical.

Nevertheless, as a member of the MNDO/AM1 family, the current parameter set is likely to prove a useful research tool. In order to allow future discussion of the parameter sets it is proposed that the new set be called MNDO-PM3, for modified neglect of diatomic overlap, parametric method 3, the first two being MNDO itself, and AM1, a reparameterized MNDO with modified corecore interaction terms.

APPLICATION TO SYSTEMS

Various sets of parameters were obtained using the new procedure for optimizing parameters for semiempirical methods (see the preceding article). In order to adequately assess the predictive power of these parameter sets, a large number of systems were examined, sampling as wide a range of chemistry as possible. As with MNDO¹, MINDO/3², and AM1³, the parameters were optimized to reproduce four gas-phase molecular properties: heats of formation, dipole moments. ionization potentials, and molecular geometries; only these quantities will be surveyed here. In most instances, calculated results will be compared with experiment; however, in a few cases, mostly involving geometries, the results of high-level ab initio calculations will be used. As the current parameter sets are derived for the MNDO theoretical method, of which AM1 is a de-

Journal of Computational Chemistry, Vol. 10, No. 2, 221–264 (1989) © 1989 by John Wiley & Sons, Inc.

rivative, results from MNDO and AM1 calculations are presented for comparison. For the MNDO calculation, standard MNDO parameter sets were used for H¹, C¹, N¹, O¹, F^4 , Al^5 , Si^6 , P^6 , S^7 , Cl^8 , Br^9 , and I^{10} , while for the AM1 calculation, only the AM1 parameter sets for H³, C³, N³, O³, F¹¹, Si¹², Cl¹¹, Br¹¹, and I11 were used. For systems involving Al, P, and S, mixed parameter sets were used in the AM1 calculations. MNDO parameters were used for Al, P, and S, and AM1 parameters were used for all other elements. The resulting AM1 errors for compounds containing Al, P, or S were similar to those for MNDO. This allowed a full comparison of the new parameters with those of both MNDO and AM1. The assumption will be made that the experimental data are completely accurate, although, as we will see in the discussion, this assumption is questionable for a limited number of systems.

As a large amount of data is presented in the tables, they are structured to permit rapid location of any given compound. The position within any table involving individual compounds of a specific compound is determined only by its empirical formula in a manner similar to that in Cox and Pilcher. The occurrence and precedence of each element within the empirical formula is in the order $H > C > O > N > S > F > Cl > Br > I > Al > Si > P. Thus, <math>C_3H_8$ will occur before C_4H_6 , and CH_4S (thiomethane) will occur before HCl. The order of occurrence of a compound within a set having the same empirical formula is random.

CHOICE OF SURVEY MOLECULES

The choice of molecules to use in comparing parameter sets or methods is by no means obvious. MNDO was parameterized using 34 molecules for the C—H—N—O set¹ and up to a few tens of molecules for the other elements⁴-¹⁰, while for AM1 slightly over a hundred molecules were used in the parameterization of the C—H—N—O set.³ No hypervalent compounds were used for either MNDO or AM1. In the current parameterization, several hundred compounds were used at different times in the optimization. In general, any compound for which the properties were badly reproduced using the emerging parameter set was used in the

next stage of the optimization. In other words, the procedure for optimizing the parameters was designed so as to minimize errors for systems with large errors. As a result, differences between calculated and observed ΔH_f and errors in dipoles, IPs, and geometries using the new parameters could be expected to be lower than those for MNDO or AM1.

No valid conclusions regarding the "value" of any parameter set or method may be drawn from a knowledge of which molecules and ions were used in the parameterization and surveys. However, when a survey is carried out with only a small number of compounds, and the compounds used in the survey were also those used in the parameterization, the applicability of the parameters to a wider range of systems is suspect. This was not the case for the parameterization of MNDO, AM1, or the current MNDO-PM3. The value of any semiempirical method depends only on the ability of that method to reproduce experimental observations in a survey, not on the particular set of molecules used for optimizing the parameters. If the survey shows that the method achieves a certain level of accuracy, then it follows logically that the method will also be predictive.

Clearly, any survey cannot be exhaustive. In the ΔH_f survey presented here, for example, the homologous series of the alkanes is truncated at nonane. However, the predicted values for properties of many compounds not contained in the survey, among them decane and undecane, may reasonably be inferred by extrapolation from those represented here. Conversely, at present, very little may be inferred as to the predictive power of the new parameters when applied to any systems which are not represented in the survey. This is not true for MNDO, for which a large body of knowledge has been accumulated over the past several years.

All results presented here are for optimized geometries for which either the ΔH_f did not drop by more than 0.000001 kcal/mol over 10 cycles of optimization or the gradient norm had dropped below 0.02 kcal/mol/Å. In about 20% of the compounds surveyed the molecular geometries were defined using symmetry relations between bond lengths, bond angles, and torsion angles. Invoking symmetry relationships may unwittingly

constrain the geometry at an arbitrary point on the energy surface. To prevent this potential error, in each case in which symmetry was used the magnitude of the residual forces acting on all atoms was calculated. A prerequisite for symmetry to be used in the definition of any molecular geometry was that the scalar of the residual forces vector had to be below an arbitrarily defined preset limit.

HEATS OF FORMATION

Experimental and calculated values for the ΔH_{ℓ} of gas-phase compounds are presented in Tables I and II and a statistical analysis is presented in Table III. For all elements except phosphorus, the standard state used is the most stable allotrope at 298 K. Because red phosphorus is not well characterized, recent compendia of thermochemical data, such as the NBS¹⁴ and JANAF¹⁵ tables, are now based on the white allotrope. To allow facile comparison of phosphorus data, the standard state for phosphorus used in this work is the white allotrope. This redefinition lowers the observed heats of formation by approximately 4.2 kcal/mol per phosphorus atom in the compound.

Many calculated heats of formation have been reported in the literature for MNDO¹⁶ and AM13; however, in order to maintain internal consistency, all MNDO and AM1 results reported here were obtained by direct calculation using a modified version of MOPAC 4.00.17 Earlier calculated heats of formation were deemed unsuitable for two reasons. First, triangular conditions for the p-p two-electron one-center and $\pi-\pi$ twoelectron two-center integrals were not imposed. This was corrected¹⁷ in 1983 by use of the expressions:

$$\langle pp'|pp'\rangle = 1/2(\langle pp|pp\rangle - \langle pp|p'p'\rangle)$$
 and

$$\langle \pi \pi' | \pi \pi' \rangle = 1/2(\langle \pi \pi | \pi \pi \rangle - \langle \pi \pi | \pi' \pi' \rangle)$$

which introduced changes in calculated ΔH_i of about 1 kcal/mol. Secondly, the Davidon-Fletcher-Powell optimization technique^{18, 19} sometimes fails to locate stationary points on the potential energy hypersurface. To a large measure this has been corrected by the BFGS method.²⁰ The heat of association of water in forming the dimer was reported³ using the DFP optimizer as -3.5 kcal/mol,

with the BFGS optimizer a heat of dimerization of -5.5 kcal/mol is obtained. Ab initio calculations indicate that the heat of dimerization of water is about -5.5 kcal/mol.²¹

Ideally, in order for the standard deviation to be a useful guide to the probable difference between the experimental and calculated ΔH_f to be expected for a new molecule, the incidence of differences between calculated and experimental ΔH_f should fall on a normal distribution. This may be quantified by calculating the ratio of χ^2 (the significance) for the actual distribution to the average value expected by chance. For the new method, MNDO, and AM1 these ratios are 3.1, 8.5, and 9.7, respectively, indicating that the difference distribution obtained using the new method is significantly nearer to a normal distribution that those for either MNDO or AM1. For all three methods the majority of the large differences are positive, as can be seen in Figure 1.

SPECIFIC COMPOUNDS

While differences between calculated and observed ΔH_f for normal valent compounds are only slightly reduced, there is a dramatic reduction in the hypervalent compounds. This is most vividly demonstrated in the heats of formation of sulfuric acid and for the halogen pentafluorides. These results are obtained using the MNDO basis set, which does not include any "d" orbitalz.

One phosphorus compound, P₄O₆, is of particular interest. There have been two very different experimental values reported for $\Delta H_f(P_4O_6)$: -512 ±8 kcal/mol,²² and -378 ± 6 kcal/mol, 23 based on red phosphorus, and -529.2 and -398.7 kcal/mol, based on white phosphorus. From mass spectral studies of the phosphorus oxides a value²⁴ of -405 ± 17 kcal/mol for $\Delta H_f(P_4O_6)$ was indicated. AM1 calculations indicate that the -398.7 kcal/mol value is more likely to be correct, while the new parameter set indicates the -529.2 kcal/mol value. The SINDO1 method,²⁵ which uses d orbitals, predicts $\Delta H_f(P_4O_6)$ to be -554.1 kcal/mol at 0 K. When the phosphorus parameters were optimized using -398.7 kcal/mol as the ΔH_f of P₄O₆, the value of the error function, S, remained very high. To obtain a lower S the or other experimental value had to be used.

Ø

Table I. Comparison of experimental and calculated heats of formation for normal-valent molecules.

Empirical		Hea form:	at of ation		Differer	ice	
formula	Chemical name	Exp.	Calc.	MNDO-PM3	MNDO	AM1	Footnote
Н	Hydrogen (+)	365.7	353.6	-12.1	-39.0	-50.8	a
H_2	Hydrogen	0.0	-13.4	-13.4	0.7	-5.2	b
CH	Methylidyne	142.4	146.8	4.4	1.2	2.6	c
CH ₂	Methylene, triplet	92.3	75.6	-16.7	-15.0	-11.5	ď
CH ₂ CH ₃	Methylene, singlet Methyl radical	99.8 34.8	113.2 29.8	13.4 -5.0	7.6	11.1	d
CH ₃	Methyl (+)	261.0	256.5	-5.0 -4.5	-9.0 -17.1	-3.5 -8.6	d e
CH ₄	Methane	-17.9	-13.0	4.9	5.9	9.1	f
C_2H_2	Acetylene	54.2	50.7	-3.5	3.7	0.6	ď
C_2H_3	Vinyl	59.6	63.3	3.7	4.2	5.2	h
C_2H_3	Vinyl (+) Ethylene	266.0	263.9	-2.1	-0.3	-4.5	h
C ₂ H ₄	Ethylene	12.4	16.6	4.2	2.9	4.0	f
C_2H_4	Ethylene, radical cation	257.0	248.7	-8.3	-18.7	-13.1	i
C_2H_4 C_2H_5	Methylmethylene Ethyl radical	90.3 25.0	88.6 17.3	-1.7 -7.7	$-1.9 \\ -12.2$	-2.6	j
C_2H_5	Ethyl (+) (classical)	216.0	222.5	6.5	-12.2 3.7	-6.9 0.8	k I
C_2H_5	Ethyl (+) (nonclassical)	216.0	232.1	16.1	18.7	10.3	ì
C_2H_6	Ethane	-20.2	-18.1	2.1	0.5	2.8	f
C_3	Carbon, trimer	196.0	206.6	10.6	24.3	16.4	ď
C_3H_3	Propynyl (+)	281.0	275.3	-5.7	-15.6	-7.3	i
C_3H_3	Cyclopropenyl (+)	257.0	269.8	12.8	15.5	19.4	i
C₃H₄	Allene	45.6	47.1	1.5	-1.7	0.5	${f f}$
C ₃ H ₄	Cyclopropene	66.2	68.2	2.0	2.1	8.6	m
C_3H_4 C_3H_5	Propyne Allyl (+)	44.4 226.0	40.2 232.7	-4.2	-3.0	-1.0	f :
C_3H_5	Allyl	40.0	39.6	6.7 -0.4	-4.6 -4.6	$0.2 \\ -1.4$	i h
C_3H_5	Propenyl (+)	237.0	238.2	1.2	3.1	-3.3	i
C_3H_5	Cyclopropyl (+)	235.0	261.8	26.8	23.2	25.6	i
C_3H_6	Cyclopropane	12.7	16.3	3.5	-1.5	5.0	ĥ
C_3H_6	Propene	4.9	6.4	1.5	0.1	1.7	f
C ₃ H ₇	Propyl (+)	208.0	214.4	6.4	4.4	-0.2	i
C ₃ H ₇	2-Propyl (+)	192.0	197.3	5.3	8.7	-0.1	1
C ₃ H ₇ C ₃ H ₈	i-Propyl radical Propane	$16.8 \\ -24.8$	5.5	-11.3	-15.4	-10.0	k
C_4H_2	Diacetylene	-24.8 113.0	-23.6 102.5	$1.2 \\ -10.5$	-0.1 -9.8	0.5 -6.9	f
C ₄ H ₄	Vinylacetylene	72.8	66.4	-6.4	-7.2	-4.9	n n
C ₄ H ₆	1-Methylcycloprop-1-ene	58.2	57.4	-0.8	-4.5	6.5	f
C ₄ H ₆	Bicyclobutane	51.9	69.2	17.3	12.2	26.2	f
C_4H_6	1,2-Butadiene	38.8	38.0	-0.8	-5.3	-1.7	f
C₄H ₆	1-Butyne	39.5	35.7	-3.8	-3.3	-2.0	f
C ₄ H ₆	2-Butyne	34.7	29.8	-4.9	-9.8	-2.7	f
C ₄ H ₆	Cyclobutene Methylenecyclopropane	37.5	37.7	0.2	-6.5	8.3	m
C₄H ₆ C₄H ₆	1,3-Butadiene	47.9 26.0	44.5 31.0	$-3.4 \\ 5.0$	-10.0	-0.2	f
C ₄ H ₇	2-Butenyl (+)	200.0	212.6	12.6	3.0 7.0	3.9 6.3	f i
C ₄ H ₇	Cyclobutyl (+)	213.0	225.6	12.6	8.4	13.2	i
C ₄ H ₈	1-Butene	-0.2	1.8	2.0	0.6	0.6	f
C ₄ H ₈	cis-2-Butene	-1.9	-2.5	-0.6	-2.4	-0.3	f
C ₄ H ₈	Cyclobutane	6.8	-3.8	-10.6	-18.7	-7.8	f
C ₄ H ₈	Isobutene	-4.3	-3.3	1.0	2.3	3.1	f
C ₄ H ₈	trans-2-Butene	-3.0	-3.8	-0.8	-2.1	-0.3	f
C₄H ₉ C₄H ₉	<i>n</i> -Butyl (+) 1-Methyl propyl (+)	201.0	208.0	7.0	5.8	-1.1	i :
C ₄ H ₉	Isobutyl	183.0 4.5	190.8 -5.9	7.8 -10.4	11.0 -11.7	1.0 -7.4	i k
C ₄ H ₉	Isobutyl (+)	176.0	178.7	-10.4 2.7	12.0	$-7.4 \\ -1.2$	i i
C ₄ H ₁₀	n-Butane	-30.4	-29.1	1.3	0.7	-0.8	f
C ₄ H ₁₀	Isobutane	-32.4	-29.5	2.9	5.6	3.0	ŕ
C ₅ H ₅	Cyclopentadienyl (-)	21.3	15.9	-5.4	-2.4	3.9	0
C ₅ H ₆	Cyclopentadiene	32.1	31.8	-0.3	0.0	5.0	m
C ₅ H ₈	1,2-Dimethylcyclopropene	46.4	46.7	0.3	-7.2	8.2	p
C ₅ H ₈	Methylene cyclobutane	29.1	19.7	-9.4	-18.2	-4.0	q
C ₅ H ₈ C ₅ H ₈	1,cis-3-Pentadiene Cyclopentene	19.1 8.3	21.1	2.0 -5.3	0.6	1.8	f
	Oyciopentene		3.0	-5.3	-8.6	-5.3	m

Table I. (continued)

		Hea form	it of ation		Differer	ıce	
Empirical formula	Chemical name	Exp.	Calc.	MNDO-PM3	MNDO	AM1	Footnote
C ₅ H ₈	Bicyclo(2.1.0)-pentane	37.3	37.8	0.5	-7.1	8.8	p
C ₅ H ₈	1,4-Pentadiene	25.3	26.6	1.3	-0.7	~0.5	p f
C_5H_8	Spiropentane	44.3	43.1	-1.2	-10.6	6.2	f
C ₅ H ₈	1,trans-3-Pentadiene	18.1	21.3	3.2	1.0	2.5	f
C ₅ H ₉	Cyclopentyl (+)	188.0	193.5	5.5	6.2	-2.1	r
C_5H_{10}	1-Pentene	~5.3	$-4.0 \\ -7.9$	1.3 0.7	$0.3 \\ 2.1$	-1.4 1.8	f f
C_5H_{10}	2-Methyl-1-butene 2-Methyl-2-butene	-0.0 -10.1	$-7.9 \\ -12.2$	-2.1	-0.4	0.1	f
$C_5H_{10} \\ C_5H_{10}$	3-Methyl-1-butene	-10.1 -6.6	-3.9	2.7	4.3	2.2	f
C_5H_{10}	aic 2 Pontono	-6.6 -7.0	-7.7	-0.7	-2.3	-1.9	f
C_5H_{10}	cis-Dimethylcyclopropane Cyclopentane trans-2-Pentene	1.3	1.4	0.1	-3.4	3.5	p
C ₅ H ₁₀	Cyclopentane	-18.3	-23.9	-5.6	-12.2	-10.5	m
C ₅ H ₁₀	trans-2-Pentene	-7.9	-8.7	-0.8	-2.4	-1.8	f
C ₅ H ₁₁	1-Pentyl (+)	194.0	202.4	8.4	7.9	-1.2	i
C_5H_{11}	1-Pentyl (+) 2-Pentyl (+)	173.0	184.6	11.6	15.5	3.4	i
C_5H_{11}	2 Fthyligopropyl (+)	156.0	171.9	15.9	25.6	10.5	i
C_5H_{11}	Neopentyl (+) 2-Methylbutane	188.0	171.8	-16.2	-6.4	-21.5	ţ
C_5H_{12}	2-Methylbutane	-36.8	-34.4	2.4	6.8	1.4	f
C5H12	Neopentane n-Pentane	-40.3	-35.8	4.5	15.7	7.5	f
C ₅ H ₁₂		-35.1	-34.5	0.6	0.7	-2.9	f
C ₆ H ₆	Benzene	19.8	23.5	3.6	1.5	2.2	f
C_6H_6	Fulvene	47.5	56.2 20.4	8.7	6.2	15.2 -7.9	f f
C ₆ H ₈	1,3-Cyclohexadiene	25.4 10.8	20.4 14.0	$-5.0 \\ 3.2$	$-10.9 \\ 4.3$	6.6	f
C_6H_{10} C_6H_{10}	2,3-Dimethyl-1,3-butadiene Cyclohexene	-1.1	-4.9	-3.8	-8.8	-9.0	f
C_6H_{10}	1,5-Hexadiene	20.1	21.1	1.0	-0.5	-2.3	f
C_6H_{10}	1,2-Dimethylcyclobutene	19.8	16.2	-3.6	-13.4	7.2	
C ₆ H ₁₀	Bicyclopropyl	30.9	36.1	5.2	-2.2	8.6	p f
C ₆ H ₁₁	1-Methylcyclopentyl (+)	165.0	174.5	9.5	13.6	2,4	i
C ₆ H ₁₁	Cyclohexyl (+)	177.0	185.1	9.1	9.9	-2.8	r
C_6H_{12}	Cyclohexane	-29.5	-31.0	-1.5	-5.3	-9.0	m
C ₆ H ₁₄	n-Hexane	-39.9	-39.9	0.0	0.8	-4.9	f
C_7H_7	Benzyl (+)	216.0	227.4	11.4	2.0	6.1	u
C ₇ H ₇	Tropylium (+)	209.0	221.0	12.0	-1.3	1.4	v
C ₇ H ₈	Cycloheptatriene Norbornadiene	43.2	42.5	-0.7	-9.4	-4.9	m
C_7H_8	Norbornadiene	59.7	58.8	$-0.9 \\ 2.1$	3.2	8.0	p f
C ₇ H ₈	Toluene	12.0 182.0	14.1 208.5	26.5	1.6 31.1	$\frac{2.4}{21.0}$	i
$C_7H_{11} \\ C_7H_{12}$	2-Norbornyl (+) Norbornane	-12.4	-13.7	-1.3	2.0	-2.0	v W
C ₇ H ₁₂ C ₇ H ₁₆	n-Heptane	-44.9	-45.3	-0.5	1.0	-6.8	f
C_8H_8	Cubane	148.7	113.8	-34.9	- 49 .6	2.5	f
C ₈ H ₈	Styrene	35.3	39.2	3.9	2.3	3.4	ŕ
C ₈ H ₁₀	Ethylbenzene	7.2	9.5	2.3	1.6	1.5	f
C ₈ H ₁₄	Bicyclo(2.2.2)-octane	-24.1	-27.8	-3.7	-2.2	-11.9	w
C ₈ H ₁₈	n-Octane	~49.9	-50.8	-0.8	1.4	-8.6	f
C ₉ H ₂₀	<i>n</i> -Nonane	-54.7	-56.2	-1.5	1.5	-10.7	f
$C_{10}H_8$	Azulene	73.5	81.3	7.8	-1.4	10.9	f
$C_{10}H_{8}$	Naphthalene	36.1	40.7	4.6	2.2	4.5	f
C ₁₀ H ₁₆	Adamantane	-31.9	-34.6	-2.7	5.5	-11.3	X
C14H10	Anthracene	55.2	61.7	6.5	3.6	7.7	f
C ₁₄ H ₁₀	Phenanthrene	49.5	55.0	5.5	6.2	7.9	f
HO	Hydroxide (-)	-33.2	-17.5	15.7 -6.5	27.4 9.0	19.1 -8.6	0
HO H₂O	Hydroxyl radical Water	9.5 -57.8	3.0 -53.4	-6.5 4.4	-3.1	-6.6 -1.4	d d
H ₂ O H ₃ O	Hydronium (+)	138.9	159.1	20.2	-3.1 -4.7	4.6	ď
CO	Carbon monoxide	-26.4	-19.7	6.7	20.5	20.7	ď
СНО	HCO	10.4	-9.3	-19.7	-10.8	-11.4	ď
CHO	HCO (+)	199.0	176.9	-22.1	-14.1	-11.5	ÿ.
CH ₂ O	Formaldehyde	-26.0	-34.1	-8.1	-6.9	-5.5	ť
CH ₂ O	Hydroxymethylene (trans)	53.2	50.5	-2.8	-6.8	-5.0	
CH ₂ O	Hydroxymethylene (cis)	58.5	50.1	-8.4	-12.2	-11.3	j j
CH ₃ O	Methoxy (-)	-36.0	-37.9	-1.9	-3.7	-2.5	0
CH ₃ O	Methoxy	-0.5	-6.8	-6.3	0.3	-3.2	k

Table I. (continued)

Empirical			at of nation		Differe	nce	
formula	Chemical name	Exp.	Calc.	MNDO-PM3	MNDO	AM1	Footnote
CH ₃ O	CH ₂ OH (+)	168.0	166.3	-1.7	-12.4	-6.7	i
CH₄O	Methanol	-48.1	~51.9	-3.8	-9.3	-8.9	f
C ₂ H ₂ O	Ketene	-11.4	-9.2	2.2	4.6	5.7	f
C ₂ H ₂ O	НССОН	36.0	23.2	-12.8	-16.7	-11.5	j
C_2H_4O C_2H_4O	Acetaldehyde Ethylene oxide	$-39.7 \\ -12.6$	-44.2	-4.5	-2.5	-1.8	f
C_2H_5O	Ethoxy (-)	-12.6 -47.5	-8.1 -44.8	4.5 2.8	$-2.9 \\ 2.2$	3.6	f
C ₂ H ₆ O	Ethanol	-56.2	-56.8	-0.6	-6.8	$\begin{array}{c} 2.0 \\ -6.5 \end{array}$	o f
C ₂ H ₆ O	Dimethyl ether	-44.0	-48.3	-4.3	-7.2	-9.2	f
C_3H_6O	Acetone	-51.9	-53.3	-1.4	2.5	2.7	f
C_3H_6O	Propanal	-45.5	-49.3	-3.8	-2.5	-2.8	f
C₃H ₆ O	Trimethylene oxide	-19.3	-26.7	-7.5	-17.9	-6.3	f
C₃H ₈ O	Isopropanol	-65.1	-64.0	1.1	-0.3	-2.9	f
C ₃ H ₈ O	Propanol		-63.6	-2.4	-6.3	-9.4	f
C₄H₄O C₄H ₆ O	Furan 2-Butenal	-8.3	-4.0	4.3	-0.3	11.3	f
C ₄ H ₆ O	Divinyl ether	$-24.0 \\ -3.3$	$^{-27.1}_{-0.7}$	$\begin{array}{c} -3.1 \\ 2.5 \end{array}$	-3.4	-1.6	f
C_4H_8O	2-Butanone CH ₃ eclipsed	−3.3 −57.0	-0.7 -57.4	2.5 -0.4	$0.5 \\ 2.9$	4.1 1.9	f
C ₄ H ₈ O	Butanal	-48.9	-54.7	-5.8	-3.9	-6.2	z f
C ₄ H ₈ O	Tetrahydrofuran	-44.0	-51.3	-7.3	-15.3	-14.4	f
$C_4H_{10}O$	Diethyl ether	-60.3	-59.6	0.7	0.1	-4.7	f
$C_4H_{10}O$	t-Butanol	-74.7	-71.3	3.4	10.4	3.1	$ar{\mathbf{f}}$
C ₅ H ₈ O	Cyclopentanone	-46.0	-37.2	8.8	9.6	9.9	f
$C_5H_{10}O$	Tetrahydropyran		-57.4	-4.0	-8.6	-13.7	f
C ₅ H ₁₂ O	3-Pentanol	-75.2	-73.8	1.4	1.7	-5.5	f
C ₆ H ₅ O C ₆ H ₆ O	Phenoxy (-) Phenol	-40.5	-44.1	-3.6	-1.7	-0.5	0
$C_6H_{10}O$	Cyclohexanone	$-23.0 \\ -54.0$	$-21.7 \\ -60.2$	1.4 -6.1	-3.6 -6.1	0.8	f
C ₇ H ₆ O	Benzaldehyde	-34.0 -8.8	-10.6	-6.1 -1.8	-0.1 -0.8	-9.3 -0.1	f f
C ₇ H ₈ O	Anisole	17.3	-14.6	2.7	-0.6 -0.4	1.4	f
$C_{10}H_8O$	1-Naphthol	-5.1	-4.1	1.0	-1.7	2.9	f
$C_{10}H_8O$	2-Naphthol	-10.1	-4.6	5.5	0.4	6.3	f
O_2	Oxygen (singlet)	22.0	18.4	-3.6	-9.9	-21.3	aa
O_2	Oxygen (triplet)		-4.2	-4.2	-15.3	-27.0	Ъ
H_2O_2 CO_2	Hydrogen peroxide Carbon dioxide	-32.5	-40.8	-8.3	-5.7	-2.8	ď
CHO ₂	Carbon dioxide Formic acid anion	$-94.1 \\ -106.6$	-85.0 -110.9	9.0	19.0	14.2	d
CH ₂ O ₂	Formic acid	-100.0 -90.5	-110. 9 -94.4	-4.3 -3.9	$ \begin{array}{r} 5.0 \\ -2.1 \end{array} $	-2.8 -6.9	0
$C_2H_2O_2$	trans Glyoxal	-50.7	-64.3	-13.6	-2.1 -10.7	-8.0	c f
$C_2H_3O_2$	Acetic acid anion Acetic acid	-122.5	-119.7	2.8	12.5	7.1	0
$C_2H_4O_2$	Acetic acid	-103.3	-102.0	1.3	2.2	0.3	f
$C_2H_4O_2$	Metnyi iormate	-83.6	-87.0	-3.4	-1.9	-7.5	n
$C_2H_6O_2$	Dimethyl peroxide	-30.1	-34.1	-4.0	1.8	3.1	${f f}$
$C_2H_6O_2$	Ethylene glycol	-93.9	-95.2	-1.3	-12.2	-13.6	f
C₃O₂ C₃H₄O₂	Carbon suboxide	-22.4	-24.0	-1.6	-1.1	7.8	f
$C_3H_6O_2$	beta-Propiolactone Propionic acid	-67.6	-70.6	-3.0	-3.3	-3.4	f
$C_3H_6O_2$	Methyl acetate	$-108.4 \\ -97.9$	-106.4 -94.1	2.0 3.8	2.1	-0.7	f
$C_3H_8O_2$	Dimethoxymethane	-83.3	-87.4	-4.1	4.3 -11.1	1.5 -20.0	n f
C ₄ H ₆ O ₂	Diacetyl	-78.2	-83.4	-5.2	-0.6	3.3	f
$C_4H_{10}O_2$	Diethyl peroxide	-46.1	-40.0	6.1	7.0	7.7	f
$C_5H_8O_2$	Acetylacetone	-90.5	-91.6	-1.1	6.3	4.8	f
C ₆ H ₄ O ₂	p-Benzoquinone	-29.3	-31.5	-2.3	-3.5	4.2	f
$C_7H_6O_2$	Benzoic acid	-70.1	-66.2	3.9	2.4	2.1	f
0 ₃	Ozone	34.1	51.1	17.0	14.4	3.7	d
C ₄ H ₂ O ₃ C ₄ H ₆ O ₃	Malaic anhydride	-95.2	-90.1	5.1	6.7	18.8	f
$C_2H_2O_4$	Acetic anhydride Oxalic acid	-137.1 -175.0	-135.0 -174.0	2.1	4.5	5.4	f
H_2N	Amidogen	~175.0 45.5	-174.0 35.4	1.0 -10.1	-0.1 -85	2.6	f
H ₃ N	Ammonia	-11.0	-3.1	-10.1 7.9	-8.5 4.6	$-7.1 \\ 3.7$	d d
H ₄ N	Ammonium (+)	155.0	-3.1 153.4	-1.6	4.6 9.6	3.1 -4.4	a bb
CN CHN	Cyanide Hydrogen cyanide	104.0	128.0	24.0	25.3	10.4	d

Table I. (continued)

Franciscol			at of ation		Differer	nce	
Empirical formula	Chemical name	Exp.	Calc.	MNDO-PM3	MNDO	AM1	Footnote
CH ₄ N	Methyl amine anion	30.5	21.7	-8.8	-7.0	2.6	0
CH ₄ N	CH ₃ —NH		27.3	-9.7	-4.3	-2.9	k
CH ₄ N	$CH_2 - NH_2(+)$	178.0	185.3	7.3	8.8	-1.7	k
CH ₅ N	Methylamine	-5.5	-5.2	0.3	-2.1	-1.9	f
C_2H_3N C_2H_3N	Acetonitrile	20.9 35.6	23.3	2.4	-1.7	-1.6	cc
C_2H_3N	Methyl isocyanide Ethyleneimine (Azirane)		54.7 31.6	19.1 1.4	$24.8 \\ -5.1$	$\begin{array}{c} 14.8 \\ 2.9 \end{array}$	cc f
C_2H_6N	Me_2N (-)	24.7	7.8	-16.9	-3.1 -16.2	-2.3	0
C_2H_7N	Ethylamine	-11.4	-12.5	-1.1	-1.8	-3.8	f
C_2H_7N	Dimethylamine	-6.6	-7.9	-1.3	0.0	1.0	f
C_3H_3N	Acrylonitrile	44.1	50.2	6.1	-0.3	0.9	f
C_3H_5N	Ethyl cyanide		18.5	6.4	1.7	0.9	n
C₃H ₉ N	Isopropylamine	-20.0	-18.8	1.3	3.7	0.7	f
C₃H ₉ N	Trimethylamine	-6.6	-10.9	-4.3	3.8	4.9	f
C_3H_9N	n-Propylamine	-16.8	-17.9	-1.1	-1.4	-5.3	f
C ₄ H ₅ N	Pyrrole Pyrrolidine	25.9	27.1	1.2	6.6	14.0	f
C_4H_9N $C_4H_{11}N$	t-Butylamine	$-0.8 \\ -28.9$	-12.0 -25.2	$-11.2 \\ 3.7$	-15.0 13.4	-9.6 7.7	f f
C_5H_5N	Pyridine	34.6	-25.2 30.4	-4.2	-5.8	-2.6	f
C_6H_7N	Aniline	20.8	21.3	0.5	0.9	-0.3	f
C_7H_5N	Phenyl cyanide	51.5	58.5	7.0	0.5	1.9	f
NO	Nitrogen oxide	21.6	14.8	-6.8	-21.7	-20.4	ď
NO	NO(+)	237.0	238.2	1.2	-6.4	-8.8	d
CNO	NCO	38.1	32.4	-5.7	-1.0	0.8	d
CHNO	Hydrogen isocyanate	-24.3	-15.3	9.0	13.5	9.1	d
CH ₃ NO	Formamide	-44.5	-41.8	2.7	4.3	-0.3	dd
C ₃ H ₇ NO	Dimethylformamide	-45.8	-44.6	1.2	8.4	8.9	f
NO ₂	Nitrogen dioxide Nitrogen dioxide (+)	7.9 233.0	-1.0	-8.9	-12.5	-22.9	d la
NO ₂ HNO ₂	Nitrogen dioxide (+) Nitrous acid, trans	-18.8	208.4 -14.9	$-24.6 \\ 3.9$	$7.6 \\ -21.9$	-11.9 -20.6	k d
CH ₃ NO ₂	Nitrous acid, trans Nitromethane	-17.9	-14.9	2.0	$\frac{-21.9}{21.2}$	8.0	f
CH ₃ NO ₂	Methyl nitrite		-9.1	6.7	-20.9	-16.0	ŕ
C ₂ H ₅ NO ₂	Nitroethane	-23.5	-20.9	2.6	20.2	6.6	$ar{\mathbf{f}}$
$C_2H_5NO_2$	Glycine	-93.7	-96.0	-2.3	-2.0	-7.8	f
$C_3H_7NO_2$	1-Nitropropane	-30.0	-26.8	3.2	21.9	6.2	${f f}$
$C_3H_7NO_2$	2-Nitropropane	-33.2	-27.1	6.1	26.9	11.6	f
C ₃ H ₇ NO ₂	Alanine		-101.1	10.3	12.7	6.4	f
C ₄ H ₉ NO ₂	1-Nitrobutane	-34.4	-32.1	2.3	21.6	4.0	f
C ₄ H ₉ NO ₂	2-Nitrobutane	-39.1	-31.9	7.2	29.0	10.9	f
$C_6H_5NO_2$ $C_7H_7NO_2$	Nitrobenzene 2-Nitrotoluene	15.4 9.3	14.5 4.7	-0.9 -4.6	$\frac{20.4}{20.6}$	9.9 7.9	n
NO_3	Nitrate anion	-74.7	-93.3	-18.6	20.0 7.7	-14.2	ee ff
NO_3	Nitrate radical	17.0	22.9	5.9	27.9	16.2	ď
HNO ₃	Nitric acid	-32.1	-38.0	-5.9	14.6	-5.4	ď
CH ₃ NO ₃	Methyl nitrate	-29.1	-32.4	-3.3	16.7	-2.2	f
C ₂ H ₅ NO ₃	Ethyl nitrate	-36.8	-36.4	0.5	18.9	-0.4	f
C ₂ H ₅ NO ₃	Nitroethanol	-75.1	-61.4	13.7	29.0	10.5	gg
N_2	Nitrogen	0.0	17.6	17.6	8.3	11.2	b
H_2N_2	Diazene	36.0	37.8	1.8	-4.1	-4.5	hh
H ₄ N ₂	Hydrazine	22.8	20.6	-2.1	-8.6	-9.1	ď
CH_2N_2 CH_2N_2	Diazomethane $N = N - CH_2$	71.0 79.0	61.0 91.7	$-10.0 \\ 12.7$	−3.7 −6.6	$-8.4 \\ 7.8$	f ii
CH_2N_2 CH_6N_2	$N = N - CH_2$ Methylhydrazine	79.0 22.6	17.9	-4.7	-6.6 -8.2	-5.3	f
C_2N_2	Cyanogen	73.8	77.5	3.7	-7.2	-5.9	f
$C_2H_8N_2$	1,1-Dimethylhydrazine	20.0	15.1	-4.9	1. 9	4.0	ŕ
$C_2H_8N_2$	1,2-Dimethylhydrazine	22.0	15.6	-6.4	-7.0	-0.5	f
C_4N_2	Dicyanoacetylene	126.5	128.1	1.6	-15.1	-6.7	f
$C_4H_2N_2$	Fumaronitrile	81.3	86.0	4.7	-6.6	-5.3	f
C ₄ H ₄ N ₂	Pyridazine	66.5	56.0	-10.5	-22.9	-11.2	f
C ₄ H ₄ N ₂	Pyrimidine	47.0	38.0	-9.0	-12.0	-3.1	f
C ₄ H ₄ N ₂	Pyrazine	46.9	39.3	-7.6	-9.1	-2.7	f ::
$C_6H_{14}N_2$	azo-n-Propane	8.6 10.6	5.8	-2.8 5.9	-6.0	4.3	jj d
N_2O	Nitrous oxide	19.6	25.4	5.8	11.4	8.9	u

Table I. (continued)

Empirical		Hea form:		Difference				
Empirical formula	Chemical name	Exp.	Calc.	MNDO-PM3	MNDO	AM1	Footnote	
$C_2H_6N_2O_2$	n-Nitrodimethylamine	-3.2	1.3	4.5	25.5	24.9	n	
$C_6H_6N_2O_2$	Para nitroaniline	16.2	10.7	-5.5	19.4	5.3	f	
N_2O_3	Dinitrogen trioxide	19.8	23.7	3.9	-6.1	2.1	d	
N_2O_4	Dinitrogen tetroxide	2.2	8.3	6.2	27.8	22.9	d	
CH ₂ N ₂ O ₄	Dinitromethane	-13.3 -24.1	-11.9	1.4	41.2	16.2	gg	
$C_2H_4N_2O_4$ $C_2H_4N_2O_4$	1,2-Dinitroethane	$-24.1 \\ -22.9$	-17.4 -19.6	6.7 3.3	47.3 42.9	$21.5 \\ 12.9$	gg	
$C_{3}H_{6}N_{2}O_{4}$	1,1-Dinitropropane	-22.9 -25.9	-22.0	3.9	42.9 45.3	12.9 16.7	gg f	
$C_3H_6N_2O_4$	1,3-Dinitropropane	-31.6	-26.6	5.0	44.5	12.8	gg	
$C_3H_6N_2O_4$	2,2-Dinitropropane	-27.0	-23.0	4.0	50.2	21.5	gg	
$C_4H_8N_2O_4$	1,1-Dinitrobutane	-34.1	-27.2	6.9	48.9	18.1	gg	
$C_4H_8N_2O_4$	1,4-Dinitrobutane	-38.9	-32.7	6.2	45.8	11.2	gg	
$C_6H_4N_2O_4$	m-Dinitrobenzene	11.3	9.2	-2.1	43.9	21.8	f	
N_2O_5	Dinitrogen pentoxide	2.7	-19.0	-21.7	31.5	3.0	d	
N_3	Azide		106.0	7.0	3.4	8.4	y	
HN ₃	Hydrazoic acid	70.3	75.3	5.0	2.8	5.5	cc	
CHN ₃ O ₆ C ₂ H ₃ N ₃ O ₆	Trinitromethane	$-3.2 \\ -12.4$	-4.7	-1.5	61.9	28.2	kk	
$C_{2}H_{3}N_{3}O_{6}$ $C_{3}H_{5}N_{3}O_{6}$	1,1,1-Trinitroethane 1,1,1-Trinitropropane	-12.4 -18.4	$-10.0 \\ -8.1$	$\begin{array}{c} 2.4 \\ 10.3 \end{array}$	68.8 76.0	33.5 36.9	gg	
$C_7H_5N_3O_6$	2,4,6-Trinitrotoluene		$\frac{-6.1}{3.3}$	-9.6	61.8	28.4	gg f	
$C_3H_5N_3O_9$	Glycerol trinitrate	-88.6	-76.6	12.0	80.2	17.4	f	
CH ₂ N ₄	[1 - H]Tetrazole	79.9	86.3	6.3	-26.1	29.7	f	
CN ₄ O ₈	Tetranitromethane	18.5	6.4	-12.1	76.5	34.6	gg	
$C_5H_8N_4O_{12}$	Pentaerythritol tetranitrate	-92.5	-98.2	-5.7	102.9	-2.8	f	
S	S (-)	16.8	20.7	3.9	29.8	29.8	d	
HS	HS (-) Ion	-17.1	-15.9	1.2	24.0	25.6	11	
HS ⁻	Hydrogen sulfide	33.3	38.2	4.9	4.0	5.0	ď	
H_2S	Hydrogen sulfide	-4.9	-0.9	4.0	8.7	8.9	ď	
CS CH S	Carbon sulfide	67.0	97.3	30.3	37.5	32.9	ď	
CH₄S C₂H₄S	Thiomethanol Thiirane	-5.4 19.7	-5.5 28.8	$-0.1 \\ 9.1$	-1.9 -0.9	$\begin{array}{c} 2.1 \\ 12.6 \end{array}$	f f	
C_2H_6S	Thioethanol	~11.0	-8.7	2.3	-0.9 -2.4	2.4	f	
C_2H_6S	Dimethyl thioether	-8.9	-11.0	-2.1	-8.1	~0.9	f	
C_3H_6S	Thietane	14.6	7.5	-7.1	-19.7	~6.6	f	
C_3H_8S	Isopropanthiol	~18.1	-13.3	4.8	1.9	5.2	d	
C_3H_8S	1-Propanthiol		-14.1	2.1	-1.9	0.8	f	
C ₄ H ₄ S	Thiophene	27.6	30.7	3.1	-1.1	9.1	f	
C₄H ₈ S	Tetrahydrothiophene	-8.1	-10.4	-2.3	-16.0	~7.9	f	
C ₄ H ₁₀ S	Butanethiol	-21.1	-19.5	1.6	-1.8	~1.1	ď	
C_6H_0S	Thiophenol	26.9	27.7	0.8	-3.5	2.8	f	
C ₆ H ₁₂ S SO	CyclohexanethiolSulfur monoxide (triplet)	$-23.0 \\ 1.2$	-20.6	2.4 _14.9	-2.7	~4.2	m	
CSO	Carbon oxysulfide	-33.8	-13.6 -23.8	$-14.8 \\ 10.1$	3.0 11.0	$20.8 \\ 20.1$	d f	
C₂H₄SO	Thiolacetic acid	-43.5	-38.9	4.6	2.1	9.0	ii	
CHNS	Hydrogen isothiocyanate	30.0	39.5	9.5	13.4	12.0	ď	
C ₂ H ₃ NS	Methyl isothiocyanate	38.3	36.1	-2.2	-1.4	4.3	cc	
C₂H₃NS	Methyl thiocyanate	27.1	28.3	1.2	-4.0	2.9	cc	
S_2	Sulfur dimer	30.8	28.7	-2.1	4.0	4.0	d	
H_2S_2	Hydrogen disulfide	3.7	8.6	4.9	2.8	1.2	cc	
CS_2	Carbon disulfide	28.0	36.9	8.9	8.9	18.7	d	
$C_2H_6S_2$	Ethanedithiol-1,2	-2.2	1.2	3.4	-4.1	2.9	ď	
$C_2H_6S_2$	2,3-Dithiabutane	-5.6	-4.8	0.8	-9.2	-1.7	f	
$C_2N_2S_2$ H_2S_3	S ₂ (CN) ₂ Hydrogen trisulfide	82.3 7.3	78.5 26.4	-3.8 19.1	-11.7	-3.9	f	
$C_2H_6S_3$	2,3,4-Trithiapentane	0.0	-6.9	-6.9	1.1 -13.2	~0.7 ~6.0	cc mm	
$C_3H_4S_3$	1,3-Dithiolan-2-thione	22.7	40.4	17.7	-13.2 -11.3	15.8	q mm	
S ₄	Sulfur tetramer	34.8	55.2	20.4	11.0	11.0	ď	
H₂S₄	Hydrogen tetrasulfide	10.6	-0.3	-10.9	0.0	-1.7	cc	
H_2S_5	Hydrogen pentasulfide	13.8	2.0	-11.9	66.2	-0.7	cc	
S_8	S_8	24.0	18.2	-5.8	-0.7	-0.7	d	
F	Fluoride (-)	-61.0	-31.2	29.8	43.9	64.4	ď	
HF CE	Hydrogen fluoride	-65.1	-62.8	2.4	5.4	-9.1	ď	
CF	Fluoromethylidyne	61.0	54.0	-7.0	-22.4	-23.0	ď	

Table I. (continued)

		Hea form			Differer	nce	
Empirical formula	Chemical name	Exp.	Calc.	MNDO-PM3	MNDO	AM1	Footnote
CH ₂ F	Fluoromethyl (+)	200.3	200.3	0.0	-17.5	-19.9	nn
CH ₃ F	Fluoromethane	-56.8	-53.8	3.0	-4.1	-4.2	00
CH ₃ F	Trifluoromethane (+)	233.3	228.2	-5.1	-10.1	-29.3	nn
C_2HF	Fluoroacetylene	30.0	18.1	-11.9	-14.3	-14.8	d
C_2H_3F	Fluoroethylene	-32.5	-28.6	3.9	-2.0	-1.5	pp
C_2H_4F	$CH_3CHF(+)$	166.0	172.9	6.9	-1.3	-8.9	ðd
C_2H_5F	Fluoroethane	-62.9	-60.2	2.7	-2.2	-3.4	f
C_3H_7F	2-Fluoropropane	-69.4	-66.8	2.6	2.8	-0.4	f
C_6H_5F	Fluorobenzene	-27.8	-20.2	7.5	2.5	4.4	f —
OF	FO	26.1	21.2	-4.9	-4.4 4.9	$-3.5 \\ 0.9$	rr ss
HOF	Hypofluorous acid	-23.5	-29.2 -55.0	−5.7 −12.7	-7.7	-13.6	
COF	COF	-42.3 -90.0	-55.0 -88.8	1.2	1.2	-2.9	g d
CHOF	HCOF Acetyl fluoride	-90.0 -106.4	-98.7	7.7	9.9	7.6	f
C ₂ H ₃ OF	p-Fluorobenzoic acid	-100.4	-108.9	9.5	5.3	6.4	f
C ₇ H ₅ O ₂ F CNF	Cyanogen fluoride	8.6	6.5	-2.1	-10.9	-13.0	ď
NOF	Nitrosyl fluoride	-15.7	~3.3	12.4	-9.1	-10.8	ď
SF	SF	-4.1	-11.6	-7.5	4.8	12.5	ď
\mathbf{F}_2	Fluorine	0.0	-21.7	-21.7	7.3	-22.5	b
$\overset{\mathbf{r}_{2}}{CF_{2}}$	Difluoromethylene	-45.0	-49.1	-4.1	-20.2	-23.0	g
CHF ₂	Difluoromethylene Difluoromethyl (+)	142.4	145.5	3.1	-10.0	-20.5	nn
CH_2F_2	Difluoromethane	-108.1	-103.8	4.4	-3.6	-8.0	f
CH_2F_2	Difluoromethane (+)	185.2	180.4	-4.8	-6.8	-33.6	nn
C_2F_2	Difluoroscetylene	5.0	-11.6	-16.6	-26.0	-24.6	ď
$C_2H_2F_2$	gem-Difluoroethylene	-80.5 107.0	-73.0	7.5	-3.1	-2.2	f
$C_2H_3F_2$	$CH_3CF_2(+)$	107.0	122.2	15.2	9.6	-1.7	qq
$C_2H_4F_2$	1,1-Difluoroethane	-118.8	-111.9	6.9	5.4	0.2	f
$C_6H_4F_2$	o-Difluorobenzene	-70.3	-63.1	7.2	-0.3	3.9	f
$C_6H_4F_2$	m-Difluorobenzene	-74.0	-63.3	10.7	3.1	6.1	f
$C_6H_4F_2$		-73.3	-63.3	10.0	2.3	5.3	f
OF_2	Difluorine oxide	5.9	-4.8	-10.7	12.3	4.6	ď
COF_2	Carbonyl fluoride	-152.7	-141.6	11.1	14.1	6.4	f
NF_2	NF ₂ (-) NF ₂	-29.5	-31.0	-1.5	-14.1	4.3	uu d
NF_2	NF ₂	10.1	11.9	1.8	-24.9 -18.6	-16.5 4.4	d
N_2F_2	cis-Difluorodiazene	16.4 19.4 -70.9	28.0	11.6 9.8	-17.0	11.9	ď
N_2F_2	trans-Difluorodiazene Sulfur difluoride	-70.9	29.2 -91.9	-21.0	18.0	28.4	ď
SF ₂		10.0	-73.8	6.6	39.1	49.7	ď
S_2F_2	FSSF SSF ₂	-00.4 -05.0	-56.1	39.8	111.4	110.0	ď
S_2F_2	Trifluoromethyl (-)	-163.4	-178.8	-15.4	-15.4	-15.4	uu
CF ₃	Trifluoromethyl			-19.7		-30.4	ď
CF ₃ CF ₃	Trifluoromethyl (+)	99.3	99.6	0.3	1.6	-17.2	nn
CHF-	Trifluoromethane	-166.3	-162.0	4.3	2.5	-6.2	f
CHF ₃	Tritluoromethane (+)	151.9	149.4	-2.5	6.8	-30.7	nn
C_2HF_3	Trifluoroethylene	-117.3	-121.5	-4.2	-13.8	-13.3	f
$C_2H_2F_3$	CF ₃ CH ₂ .	-123.6	-131.2	-7.6	-6.0	-7.8	vv
$C_2H_2F_3$	$CF_3CH_2(+)$	114.0	122.3	8.3	7.2	0.4	qq
$C_2H_2F_3$	$CH_2F.CF_2$ (+)	81.0	92.7	11.7	1.4	-11.9	qq
$C_2H_3F_3$	1,1,1-Trifluoroethane	-178.0	-172.3	5.7	13.6	5.4	f
$C_7H_5F_3$	Trifluoromethylbenzene	-143.2	- 134.9	8.3	15.7	8.8	f
$C_2HO_2F_3$	Trifluoroacetic acid	-255.0	-244.0	11.0	16.9	12.3	f
NF_3	Nitrogen trifluoride	-31.6	-24.4	7.2	-2.6	-8.4	d
C_2NF_3	Trifluoroacetonitrile	-118.4	-115.1	3.3	5.2	-1.1	d d
H ₄ F ₄	Hydrogen fluoride tetramer	-282.9	-280.2	2.7 _1.9	38.6	$-30.2 \\ -2.4$	a f
CF ₄	Carbon tetrafluoride	-223.3	-225.1	$-1.8 \\ -10.3$	9.1 -17.0	-2.4 -16.9	f
C₂F₄	Tetrafluoroethylene	-157.9 -182.8	-168.2 -187.3	-10.3 -4.5	19.5	5.1	ď
COF.	Trifluoromethyl hypofluorite	-182.8 -2.0	-167.5	-4.5 1.5	-17.7	7.8	ď
N ₂ F ₄	Tetrafluorohydrazine Pentafluorobenzene	-192.5	-188.6	3.9	-9.2	0.5	f
C ₆ HF ₅	Hexafluoroethane	-321.2	-317.8	3.4	21.6	8.0	d
$egin{array}{c} \mathbf{C_2F_6} \\ \mathbf{C_6F_6} \end{array}$	Hexafluorobenzene	-228.5	-229.3	-0.8	-14.9	-2.6	f
C ₃ OF ₆	Perfluoroacetone	-325.2	-340.0	-14.8	3.3	-6.4	ww
0301 g							

Table I. (continued)

Empirical		_	at of ation		Differe	nce	
formula	Chemical name	Exp.	Calc.	MNDO-PM3	MNDO	AM1	Footnote
SF ₆	Sulfur hexafluoride	-291.4	-304.6	-13.2	320.7	294.0	d
C ₄ F ₈	Perfluc. cyclobutane	-369.5	-379.2	~9.7	5.8	2.3	f
Cl	Chloride (-)		-51.2	4.7	1.2	18.2	d
HCl	Hydrogen chloride	-22.1	-20.5	1.6	6.8	-2.5	d
CCl CHCl	onloromethylidyne Chloromethylene	111.3	105.3	-6.1	- 3.9	~10.2	g d
CH-Cl	Methyl chloride	$80.0 \\ -20.0$	$83.2 \\ -14.7$	3.2 5.3	0.9	-2.3	
C ₂ HCl	Chloroacetylene		46.6	-4.5	$-2.5 \\ 1.5$	1.0 -3.3	d d
C_2H_3Cl	Chloroethylene	8.6	9.7	1.1	-3.7	-2.7	d
C ₂ H ₅ Cl	Chloroethane	-26.8	-22.1	4.7	-2.0	0.6	ff
HŌČl	Hypochlorous acid	17.8	-34.3	-16.5	2.1	-4.0	ď
COCI	COCI	-15.0	-16.1	-1.1	-0.6	-0.4	ď
C ₇ H ₅ OCl	Benzoyl chloride	-26.1	-18.4	7.7	2.7	10.4	f
CNCI	Cyanogen chloride	31.6	31.6	0.0	1.7	-7.0	d
NOCI	Nitrosyl chloride	12.4	4.5	-7.9	-16.6	-7.7	ď
SCI	SCI	41.8	28.6	-13.2	-25.3	-25.9	g
FC1	Chlorine fluoride	-12.1	-21.7	-9.6	20.3	1.6	ď
HFCl	Hydrogen chloride fluoride (-).		-137.0	5.0	15.8	15.9	XX
CH₂FCl COFCl	Fluorochloromethane	-62.6	-57.5	5.0	-5.4	-2.7	ď
CHF2Ci	Carbonyl fluoride chloride Difluorochloromethane		-93.6	8.4	9.8	10.0	ď
CF ₃ Cl	Trifluorochloromethane	-115.6 -169.2	-109.7 -169.3	$\begin{array}{c} {f 5.9} \\ {-0.1} \end{array}$	1.2	1.4	f
	Chlorine	0.0	-109.5 -11.6	-0.1 -11.6	$\begin{array}{c} 9.6 \\ -10.7 \end{array}$	$6.6 \\ -14.2$	d b
$H\tilde{C}l_2$	Hydrogen dichloride (-)		-111.0	31.0	$-10.7 \\ 47.2$	47.6	XX
CCL	Dichloromethylene	57.0	57.5	0.5	0.6	-8.5	ď
CH ₂ Cl ₂	Dichloromethane	-23.0	-17.1	5.8	-5.1	-2.9	f
C ₂ H ₂ Cl ₂	gem-Dichloroethylene	0.6	4.0	3.4	-3.2	-3.9	ď
$\mathbf{C}_2\mathbf{H}_2\mathbf{Cl}_2$	cis-Dichloroethylene	1.0	4.0	3.0	-3.6	-4.3	d
C ₂ H ₂ Cl ₂	trans-Dichloroethylene	1.2	3.6	2.4	-4.9	-4.6	ď
C ₂ H ₄ Cl ₂	1,1-Dichloroethane	-30.9	-26.5	4.4	-1.6	-0.2	ff
C ₂ H ₄ Cl ₂	1,2-Dichloroethane	-31.0	-24.7	6.3	-5.4	-2.8	ff
C.H.Cl.	o-Dichlorobenzene	7.1	11.1	4.0	1.5	2.1	f
C ₆ H ₄ Cl ₂ C ₆ H ₄ Cl ₂	<i>m</i> -Dichlorobenzene <i>p</i> -Dichlorobenzene	6.1	10.2	4.1	0.5	2.1	f
	Chlorine monoxide	$\begin{array}{c} 5.3 \\ 25.0 \end{array}$	10.1 -16.2	4.8	1.1	2.7	f
COCl ₂	Carbonyl chloride	-52.6	-49.1	$-41.2 \\ 3.5$	6.3 0.0	-5.5	d
SCl ₂	Sulfur dichloride	-4.2	-10.9	-6.7	19.7	5.3 - 20.7	d d
S_2Cl_2	CISSCI	-4.0	-7.7	-3.7	-16.8	-20.7	ď
CHFCl ₂	Fluorodichloromethane	~67.7	-62.0	5.7	-1.5	2.5	dd
CF_2Cl_2	Difluorodichloromethane	-117.5	-116.1	1.4	7.3	10.5	ď
CCl_3	Trichloromethyl	21.0	1.6	-19.4	-20.5	-25.7	
CHCl ₃	Chloroform	-24.7	-20.9	3.8	-4.3	-4.3	g dd
C ₂ HCl ₃	Trichloroethylene	-2.0	-2.3	-0.3	-4.4	-6.4	d
C ₂ H ₃ Cl ₃	1,1,1-Trichloroethane	-35.5	-31.9	3.6	4.0	3.6	f
CFCl ₃	Fluorotrichloromethane	~69.0	-67.3	1.7	3.8	8.1	d
CCI,	Carbon tetrachloride	-22.9	-26.0	-3.1	-2.6	-5.2	d
C2Cl4 C2Cl6	Tetrachloroethylene	-2.7	-8.1	-5.4	-5.3	-9.7	f
C ₆ Cl ₆	Hexachloroethane Hexachlorobenzene	~34.5	-36.5	-2.0	7.1	-1.3	f
Br	Bromide (~)	-8.6 -52.3	-9.1 -56.2	−0.5 −3.9	6.0	0.8	f
HBr	Hydrogen bromide	-32.3 -8.7	5.3	14.0	14.8 12.4	$31.9 \\ -1.8$	d d
HBr	HBr (+)	261.1	274.7	13.6	16.8	-1.8	
CBr	Bromomethylidyne	125.9	138.4	12.5	1.6	0.9	уу
CH ₃ Br	Bromomethane	-9.1	-2.0	7.1	-1.3	2.9	g f
C_2H_3Br	Bromoethylene	18.7	23.8	5.1	-2.9	-0.8	f
C ₂ H ₅ Br	Bromoethane	-15.2	-11.4	3.8	-1.8	2.1	f
C_3H_5Br	3-Bromopropene	10.9	15.3	4.4	-2.1	1.5	zz
C₃H ₇ Br	1-Bromopropane	-20.5	-16.7	3.8	-1.5	0.6	f
C ₃ H ₇ Br	2-Bromopropane	~23.5	-20.9	2.6	2.8	5.6	aaa
C ₆ H ₅ Br	Bromobenzene	25.2	31.0	5.8	-1.3	1.5	f
HOBr	Hypobromous acid	-20.0	-33.9	-13.9	-2.7	-4.7	bbb
COBr	COBR	20.5	-10.2	-30.7	-28.8	-25.6	g

Table I. (continued)

		Hea form	at of ation		Differer	nce	
Empirical formula	Chemical name	Exp.	Calc.	MNDO-PM3	MNDO	AM1	Footnote
C_2H_3OBr	Acetyl bromide	-45.6	-43.5	2.1	2.4	11.3	f
C ₇ H ₅ OBr	Benzoyl bromide		~7.7	4.0	0.7	12.9	f
CNBr	Cyanogen bromide	43.3	53.7	10.4	- 2.3	-10.8	f
NOBr	Nitrosyl bromide	19.6	6.6	-13.0	-17.8	1.7	d
SBr	SBr	56.1	48.3	-7.8	-26.7	-28.0	g
FBr CF ₃ Br	Bromine fluoride Bromotrifluoromethane	$-14.0 \\ -155.1$	$-21.3 \\ -157.9$	$-7.3 \\ -2.8$	8.2 8.5	6.8 10.5	d d
ClBr	Bromine chloride	3.5	-3.2	~6.7	-13.0	-14.1	d
ClBr	Bromine chloride (+)	261.0	247.6	-13.4	4.8	-14.6	ff
CCl_3Br	Trichlorobromomethane	-9.3	-14.1	-4.8	-5.8	-5.4	f
Br_2	Bromine	7.4	4.9	-2.5	-9.1	-12.7	ď
\mathbf{Br}_2	Bromine (+)	253.5	263.0	9.5	12.5	-7.7	уy
CBr ₂	Dibromomethylene	84.3	104.9	20.6	7.8	5.7	g
CH ₂ Br ₂	Dibromomethane	-3.5	7.9	11.4	-1.6	2.5	ccc
$ \begin{array}{c} \text{COBr}_2\\ \text{SBr}_2 \end{array} $	Carbonyl bromide Sulfur dibromide	$-20.1 \\ 48.0$	$-25.3 \\ 24.9$	$-5.2 \\ -23.1$	-11.5 -48.2	$\begin{array}{r} 2.3 \\ -48.5 \end{array}$	f
S_2Br_2	S_2Br_2	25.1	21.8	-3.3	-23.6	-23.5	g g
$C_2F_4Br_2$	1,2-Dibromotetrafluoroethane		-191.3	-2.3	18.6	$\frac{23.8}{27.8}$	aaa
CBr ₃	Tribromomethyl	64.7	64.2	-0.5	-35.8	-37.8	g
$CHBr_2$	Bromoform	4.4	17.5	13.1	-1.3	2.0	ccc
CBr ₄	Carbon tetrabromide	35.1	32.9	-2.2	-21.3	-19.2	g d
I	Iodide (-)	-46.5	-64.6	-18.1	40.1	44.3	
HI_	Hydrogen iodide	6.3	28.8	22.5	9.4	1.6	ď
CI	Iodomethylidyne	144.8	145.5	0.7	7.1	6.2	g f
CH_3I C_2H_5I	Methyl iodide Iodoethane	$\begin{array}{r} 3.4 \\ -2.0 \end{array}$	$\frac{9.4}{2.1}$	$6.0 \\ 4.1$	$-1.5 \\ -2.5$	$\frac{2.3}{0.9}$	f
$C_{3}H_{5}I$	Allyl iodide	22.8	30.2	7.4	-3.3	-0.4	f
C_3H_5I	E-1-Iodo-1-propene	22.3	25.4	3.2	-7.8	-2.6	m
C_3H_5I	Z-1-Iodo-1-propene	20.7	29.2	8.6	-5.4	-0.2	m
C_3H_7I	1-Iodopropane	-7.1	-3.0	4.2	-2.2	-0.7	f
$\mathbf{C}_{3}\mathbf{H}_{7}\mathbf{I}$	2-Iodopropane	-9.8	-5.3	4.5	2.3	4.1	f
C₄H ₉ I	1-Butyl iodide	-12.0	-8.3	3.7	-2.0	-2.7	f
C ₄ H ₉ I	2-Iodo-2-methylpropane	-17.2	-12.5	4.7	10.7 -6.9	$8.9 \\ -1.3$	m
C_6H_5I $C_6H_{11}I$	Iodobenzene Iodocyclohexane	39.4 -11.9	44.7 -11.7	$\begin{array}{c} 5.3 \\ 0.2 \end{array}$	$-6.9 \\ -5.0$	$-1.3 \\ -8.1$	m m
	o-Iodotoluene	31.7	38.8	7.1	-4.7	0.1	m
C_7H_7I	m-Iodotoluene	31.9	35.3	3.4	-7.1	-1.4	m
C_7H_7I	p-Iodotoluene		35.3	6.2	-4.4	1.3	f
C ₇ H ₇ I	Benzyl iodide	25.1	37.6	12.5	3.6	5.8	f
COI	COI	63.5	-2.9	-66.4	-62.5	-58.8	g
C ₂ H ₃ OI	Acetyl iodide	-30.2	-29.9	0.3	3.3	9.5	m
C ₃ H ₅ OI	1-Iodo-2-propanone	-31.2	-26.5	4.7	-1.6	0.2	m
C7H5OI CNI	Benzoyl iodide	$2.5 \\ 53.7$	8.0 63.5	5.5 9.8	$2.6 \\ -14.1$	11.6 -11.1	m
NOI	Cyanogen iodide Nitrosyl iodide	26.8	18.2	-8.6	-14.1 -5.9	5.5	m d
SI	SI	73.1	58.0	-15.1	-26.4	-28.2	g
FI	Iodine fluoride	-22.6	-8.0	14.6	13.4	13.5	ď
$\mathbf{CF_3I}$	Trifluoroiodomethane	-140.5	-137.9	2.5	12.3	7.9	m
CH	Iodine chloride	4.6	10.8	6.2	-11.4	-9.2	dd
BrI	Iodine bromide	9.8	15.6	5.9	-2.5	-3.8	d
	Iodine	14.9	20.7	5.8	6.3	4.9	d
CI ₂	Diiodomethylene	120.4	121.6	1.2	-15.5	1.2	g
CH_2I_2 $C_2H_2I_2$	Diiodomethane E-1.2-Diiodoethene	27.0 49.6	33.5 55.0	6.5 5.4	-10.2 -14.3	-5.5 -5.5	уу m
$C_2H_2I_2$	z-1,2-Diiodoethene	49.6	60.5	11.0	-14.5	-6.1	m
$C_2H_4I_2$	1,2-Diiodoethane	16.0	23.3	7.4	-4.4	-0.2	m
$C_3H_6I_2$	1,2-Diiodopropane	8.5	20.8	12.3	-1.2	1.2	f
$C_4H_8I_2$	1,2-Diiodobutane	2.7	16.1	13.4	3.7	3.5	f
$C_6H_4I_2$	o-Diiodobenzene	60.2	73.8	13.7	-15.4	-6.1	m
COI_2	Carbonyl iodide	9.6	-1.5	-11.1	-15.1	-3.0	g
SI_2	Sulfur diiodide	81.9	51.6	-30.3	-52.4	-55.9	g
S_2I_2	S ₂ I ₂	59.0	46.3	-12.7	-26.7	-30.1	g
CI ₃	Triiodomethyl	117.3	105.7	-11.6	-68.0	-52.7	g

Table I. (continued)

Empirical			at of ation	Difference				
formula	Chemical name	Exp.	Calc.	MNDO-PM3	MNDO	AM1	Footnote	
CHI ₃	Iodoform	50.4	60.6	10.2	-18.4	-12.6	ccc	
CI ₄	Carbon tetraiodide	108.2	102.7	-5.5	-61.3	-54.0	g d	
Al	Al (+)	218.1	279.8	61.7	-24.2	-24.2		
HAl C ₃ H ₉ Al	AlH	62.0	70.1	8.1	-16.0	-7.4	ď	
AlO	Trimethylaluminum AlO (-)	-20.9 -64.4	$-5.7 \\ -50.9$	15.2 13.5	-19.2	21.8	f	
AlO	AlO	16.0	-30.9 -7.8	-23.9	8.6 -17.8	34.8 9.1	d d	
AlO	AlO (+)	237.3	202.4	-34.9	-14.2	11.3	ď	
HAIO	AlOH (-)	-55.0	105.7	-50.7	13.9	32.0	ď	
HAlO	Al-O-H	-43.0	-33.4	9.6	-18.1	8.3	ď	
HAIO		130.0	129.3	-0.7	59.2	60.7	d	
HAIO	H-Al=0	-8.0	2.2	10.2	-13.7	15.3	d	
AlO ₂	AlO_2 (-) ion	-116.0	-117.1	-1.1	25.5	59.3	ď	
AlO ₂ HAlO ₂	AlO ₂	-20.6	-37.4	-16.8	6.2	47.9	ď	
AlN	AlO ₂ H Aluminum nitride	-110.0	-105.1 75.5	4.9 -49.5	16.2	57.5	ď	
AlF	Aluminum fluoride	-63.5	-50.1	13.4	$15.9 \\ -20.1$	$\frac{30.0}{4.8}$	d d	
AlF	AlF (+)	165.4	160.4	-5.0	-20.1 -50.6	-27.1	d	
AlOF	AlFO	-139.0	-124.7	14.3	25.4	71.2	ď	
AlF_2	AlF_2 (-) ion	-217.0	-229.6	-12.6	7.4	56.8	ď	
AlF_2	AlF ₂	-166.0	-162.7	3.3	-5.1	42.6	ď	
AlF_2	$AlF_2(+)$	22.0	29.0	7.0	-7.8	37.7	d	
AlOF ₂	AlF_2O (-) Ion	-311.6	-286.0	25.6	53.7	118.1	d	
AlOF ₂	AlF ₂ O	-265.0	-208.5	56.5	62.5	124.6	ď	
AIF ₃	Aluminum trifluoride AlF ₄ (-) Ion	-289.0	-291.5	-2.5	-2.3	71.3	ď	
AlF ₄ AlCl	Alleriness shleride	-476.0 19.3	-469.2	6.8	35.4	135.9	ď	
AlCl	Aluminum chloride (+)	-12.3 206.0	-5.5 198.7	$^{6.8}_{-7.3}$	$-15.5 \\ -31.2$	$-13.4 \\ -33.8$	ď	
AlOCI	AlCiO	-83 2	-72.4	10.8	-31.2 14.5	-33.6 38.0	d d	
AlFCl	Aluminum chloride Aluminum chloride (+) AlClO AlClF	-117.0	-116.0	1.0	-7.7	17.9	ď	
AlFCl	Aluminum chloride fluoride	66.0	74.9	8.9	-2.5	17.4	ď	
AlF ₂ Cl	AlClF ₂	-238.8	-234.6	4.2	-2.8	46.1	ď	
AlCl ₂	$AlCl_2(-)$ ion	-115.0	-145.0	-30.0	-15.6	-5.0	ď	
AlCl ₂	Aluminum dichloride		-68.2	-1.2	-7.6	-6.1	d	
AlCl ₂ AlFCl ₂	AlCl ₂ (+) AlCl ₂ F	115.0	124.3	9.3	3.9	-4.4	ď	
AlCl ₃	Aluminum trichloride	-189.0 -139.7	$-178.0 \\ -122.1$	11.0	-2.4	21.8	ď	
AlBr ₃	Aluminum tribromide	-139.7 -98.1	-122.1 -85.8	17.6 12.3	-0.6 37.8	$-2.3 \\ 8.7$	d d	
AlI	AlI	16.2	49.3	33.1	15.0	14.9	ď	
AlI_3	Aluminum triiodide	-46.2	-39.9	6.3	57.8	51.1	ď	
Al ₂	Al ₂	116.4	79.6	-36.8	14.9	14.9	ď	
Al ₂ O	Al_2O	-34.7	-28.6	6.1	-37.0	16.1	ď	
Al ₂ O	$Al_2O(+)$	155.9	168.4	12.6	-46.8	2.3	d	
Al ₂ O ₂	Al_2O_2	-94.3	-87.6	6.8	-13.5	60.9	d	
Al_2F_6 Al_2Cl_6	Al ₂ F ₆	-629.5	-631.4	-1.9	-2.1	148.9	ď	
Al_2Ol_6 Al_2Br_6	Al ₂ Cl ₆ Al ₂ Br ₈	-309.7 -224.0	$-311.2 \\ -224.9$	-1.5	14.4	7.9	ď	
Al_2I_6	Al_2I_6	-224.0 -117.0	-224.9 -117.4	$-0.9 \\ -0.4$	91.4 124.4	$\begin{array}{c} 26.7 \\ 107.2 \end{array}$	d d	
HSi	SiH	86.3	94.6	8.3	3.9	3.5	ff	
H ₂ Si	Silylene (singlet)	61.1	72.8	11.7	3.2	6.7	ddd	
H ₂ Si	Silvlene (triplet)	6.5	-2.9	-9.4	-2.7	-30.7	eee	
H₃Si	Silyl (-)	14.0	-2.8	-16.8	32.5	-15.8	fff	
H₃Si	Silyl	46.4	42.9	-3.5	-9.5	-20.1	ggg	
H₃Si	Silyl (+)	234.1	223.3	-10.8	-43.3	-11.2	fff	
H₄Si CH₅Si	Silane Mothylailyl	8.2	12.5	4.3	-7.0	-4.1	d	
CH ₆ Si	Methylsilyl Methylsilane	30.5 -7.8	23.3 ~3.6	-7.2	-11.5	-21.5	ggg	
C₁1 ₆ Si C₂H ₆ Si	Vinylsilane	-1.8	~3.6 19.7	4.2 21.6	-5.8 8.2	-3.0 13.3	m ff	
C_2H_7Si	Dimethylsilyl	14.3	3.9	-10.4	-13.6	-21.8		
C ₂ H ₈ Si	Ethylsilane	-15.0	-10.2	4.8	-6.7	-1.5	ggg hhh	
C ₂ H ₈ Si	Dimethylsilane	-20.0	-20.8	-0.8	-9.2	-5.6	m	
C₃H₃Si	Trimethylsilyl	-0.8	-14.9	-14.1	-16.9	-22.1	ggg	
C₃H₁₀Si	Trimethylsilane	-37.4	-37.3	0.1	-6.9	-1.9	m	

Table I. (continued)

			at of ation		Differer	nce	
Empirical formula	Chemical name	Exp.	Calc.	MNDO-PM3	MNDO	AM1	Footnote
C ₄ H ₁₂ Si	Diethylsilane	-43.6	-32.6	11.0	-0.5	7.3	iii
$C_4H_{12}Si$	Tetramethylsilane	-55.7	-53.7	2.0	-3.4	3.6	Ж
C ₅ H ₁₂ Si	1,1-Dimethylsilacyclobutane	-33.7	-35.6	-1.9	-14.7	-3.5	m
$C_6H_{16}Si$	Triethylsilane	-39.5	-55.4	-15.9	-24.5	-15.2	iii
C ₈ H ₂₀ Si	Tetraethylsilane	-64.4	-77.9	-13.5	-17.8	-7.4	iii
SiO	Silicon monoxide	-23.9	-26.0	-2.1	1.3	21.8	g f
$C_3H_{10}SiO$	Trimethylsilicon hydroxide	-119.4	-115.4	4.0	-2.5	8.9	f
SiO_2	Silicon dioxide	-73.0	-88.9	-15.9	50.1	5.5	ď
SiF	Silicon fluoride	1.7	-20.9	-22.6	-30.5	-27.8	ff
H ₃ SiF	Fluorosilane	-90.0	-77.4	12.6	-6.4	4.2	kkk
SiOF	SiOF	-136.1	-107.5	28.6	56.1	30.1	g.
SiF ₂	Silicon difluoride	-141.2	-154.9	-13.7	-23.7	-13.4	kkk
H_2SiF_2	Difluorosilane	-189.0	-175.2	13.8	-3.5	7.5	kkk
SiOF ₂	SiOF ₂		-229.4	1.6	42.4	10.3	d
SiF ₃	Trifluorosilyl	-245.0	-260.3	-15.3	-3.9	-22.8	ggg
HSiF ₃	Trifluorosilane Silicon tetrafluoride	-287.0	-280.2	6.8	1.9	6.1	d,
SiF ₄	Silicon tetrafluoride	-386.0	-390.6	-4.6	15.6	4.0	kkk
SiCl	Silicon chloride	45.3	29.8	-15.5	-15.6	-18.0	ff
H ₃ SiCl	Chlorosilane		-27.6	4.8	-11.5	-5.3	kkk
C ₂ H ₇ SiCl	Chlorodimethylsilane	-69.9	-63.7	6.2	-3.1	-0.1	iii
C ₃ H ₉ SiCl	Chlorotrimethylsilane	-84.6	-81.6	3.0	-2.8	-0.2	f
SiOCI	SiOCI	-86.7	-59.0	27.7	44.2	28.6	g
SiCl ₂	Silicon dichloride	-40.6	-49.4	-8.8	-5.7	-6.1	kkk
H ₂ SiCl ₂	Dichlorosilane		-69.5	5.8	-8.2	-5.4	kkk
CH ₄ SiCl ₂	Dichloromethylsilane	-96.0	-88.9	7.1	$-1.4 \\ -1.8$	-2.5 -5.8	f
C ₂ H ₆ SiCl ₂	Dichlorodimethylsilane	-109.5 -167.7	$-108.1 \\ -121.2$	1.4 46.5	-1.8 73.6		m
SiOCl ₂ SiCl ₃	SiOCl ₂ Trichlorosilyl	-167.7 -76.0	-121.2 -94.8	46.5 -18.8	-13.5	49.4 -40.0	g
HSiCl ₃	Trichlorosilane	-119.3	-94.6 -112.7	6.6	1.4	-5.8	ggg kkk
CH ₃ SiCl ₃	Trichloromethylsilane	-119.3 -131.2	-112.7 -132.9	-1.7	0.6	-12.4	
SiCl ₄	Silicon tetrachloride	-151.2 -158.4	-152.9 -156.4	2.0	10.8	-12.4 -12.5	m d
SiBr	Silicon bromide	50.0	41.0	-9.0	7.8	-3.0	ff
H ₃ SiBr	Bromosilane	-15.3	-16.0	-0.7	-2.7	-5.8	in
C ₃ H ₉ SiBr	Trimethylbromosilane	-70.0	-68.5	1.5	7.7	3.6	f
SiOBr	SiOBr	-71.4	-47.1	24.3	42.8	31.1	g
SiBr ₂	Silicon dibromide	-9.6	-27.4	-17.8	20.8	3.6	kkk
H ₂ SiBr ₂	Dibromosilane	-43.2	-47.2	-4.0	11.2	-2.6	kkk
SiOBr ₂	SiOBr ₂	-137.4	-94.1	43.3	86.0	60.0	g
SiBr ₃	Silicon tribromide	-56.1	-60.8	-4.7	41.1	-9.6	g
HSiBr ₃	Tribromosilane	-72.5	-79.6	-7.1	30.1	2.3	រីរា
SiBr ₄	Silicon tetrabromide		-107.9	-8.6	48.9	4.8	ff
SiI	Silicon iodide	76.4	71.0	-5.4	15.5	4.1	
H ₃ SiI	Iodosilane	-0.5	0.9	1.4	11.5	5.4	g kkk
SiOI	SiOI	-53.3	-47.9	5.4	37.7	43.3	g
SiI_2	Silicon diiodide	22.0	24.0	2.0	60.1	35.5	kkk
H_2SiI_2	Diiodosilane	-9.1	-12.4	-3.3	32.1	14.1	d
SiOI ₂	$SiOI_2$	-99.4	-50.2	49.2	89.7	80.7	g
SiI ₃	Silicon triiodide	0.5	4.7	4.2	44.9	11.9	g
$HSiI_3$	Triiodosilane	-17.8	-9.0	8.8	51.9	21.7	kkk
SiI4	Silicon tetraiodide	-26.4	-14.2	12.2	68.8	28.0	ď
Si ₂	Silicon dimer	140.9	135.7	-5.2	74.4	-1.4	g
H ₆ Si ₂	Disilane	17.1	17.9	0.8	5.3	-0.9	mmm
$C_6H_{18}Si_2$	Hexamethyldisilane	-85.8	-83.2	2.7	12.1	19.7	m
C ₆ H ₁₈ Si ₂ O	Hexamethyldisiloxane	-185.8	-182.8	3.0	-8.8	18.1	f
C ₆ H ₁₉ Si ₂ N	Hexamethyldisilazane	-113.9	-120.8	-6.9	-9.7	-4.1	f
Si ₂ Cl ₆	Hexachlorodisilane	-243.5	-229.7	13.8	30.8	1.9	mmm
Si ₂ Br ₆	Hexabromodisilane	-182.8	-164.7	18.1	116.9	38.9	g
Si ₃	Silicon trimer	152.2	152.8	0.6	15.0	32.7	g
H ₈ Si ₃	Si_3H_8	28.9	21.7	-7.2	2.9	-4.3	ff
HP	Phosphinidene	60.6	73.4	12.8	27.9	31.4	d
H_2P	Phosphino	30.1	29.3	-0.8	1.3	6.8	d

Table I. (continued)

Empirical			at of ation	Difference				
Empirical formula	Chemical name	Exp.	Calc.	MNDO-PM3	MNDO	AM1	Footnote	
H_3P	Phosphine	1.3	0.2	-1.1	2.6	8.3	d	
CP	Carbon phosphide	107.5	119.6	12.1	22.1	28.7	d	
CHP	Methinophosphine	35.8	46.5	10.7	6.4	14.9	d	
CH₅P	Methylphosphine	-7.0	-9.5	-2.5	-7.7	2.0	nnn	
C_2H_7P	Ethylphosphine	-12.0	-11.7	0.3	-9.1	-0.2	nnn	
C_2H_7P	Dimethylphosphine	-15.0	-19.6	-4.6	-17.1	-3.2	nnn	
C_3H_9P	Trimethylphosphine	-22.5	-29.8	-7.3	-25.7	-8.1	f	
$C_4H_{11}P$	Diethylphosphine	-25.0	-23.3	1.7	-20.0	-6.5	nnn	
$C_6H_{15}P$	Triethylphosphine	-11.8	-36.7	-24.9	-53.0	-37.1	f	
PO		-2.9	-19.5	-16.6	-18.1	7.6	g	
NP	Phosphorus nitride	25.0	32.9	7.9	8. 9	25.3	ď	
PF		-20.8	-20.4	0.4	10.9	0.0	g	
POF	POF.	-111.8	-124.0	-12.2	-2.4	31.8	g	
PF_2	Phosphorus difluoride	-119.0	-144.4	-25.4	-19.0	11.2	g	
PF_3	Phosphorus trifluoride	-229.1	-252.2	-23.1	-0.2	40.5	d d	
PCĬ	Phosphorus chloride	25.6	28.9	3.3	10.8	7.3	g	
POC ₁	POCĪ	-64.7	-76.4	-11.7	-10.1	14.2	g	
PCl ₂	Phosphorus dichloride	-21.3	-40.1	-18.8	-28.1	-31.5	g	
PCl ₃	Phosphorus trichloride	-69.0	-88.5	-19.5	-27.4	-31.5	g d	
PBr	Phosphorus bromide	43.0	34.9	-8.1	-13.6	-17.7	dd	
POBr	POBr	-50.2	-59.9	-9.7	-3.7	23.0	g	
PBr_2	Phosphorus dibromide	6.7	0.4	-6.3	-16.0	-20.4	ğ	
PBr_3	Phosphorus tribromide	~34.9	-28.2	6.7	-3.2	-4.9	ď	
PI	PI, triplet	54.6	51.0	-3.6	-3.1	12.6	g	
POI	PÓI	-33.4	-43.6	-10.2	8.8	31.9	g	
PI_2	Phosphorus diiodide	41.3	36.6	-4.7	-4.8	-8.6	ğ	
PI_3	Phosphorus triiodide	25.1	31.3	6.2	-0.3	-7.4	g	
P_2	Phosphorus dimer	42.8	32.0	-10.8	-1.7	-1.7	g	
H_4P_2	P_2H_4	5.0	-3.7	-8.7	-7.9	-5.3	g ff	
P_4	Phosphorus tetramer		42.9	11.8	5.1	5.1		
P_4O_6	Phosphorus trioxide	-529.2	-511.0	18.2	8.1	162.8	g d	

^aR. C. Weast, (Ed.), CRC Handbook of Chemistry and Physics, 60th Edition, CRC Press, Boca Raton, FL, 1980. ^bElement in its standard state.

R. D. Levin and S. G. Lias, "Ionization Potentials and Appearance Potential Measurements," 1971-1981, Natl. Stand. Ref. Data Ser., Natl. Bur. Stand. 71, (1982), Cat. No. C13.48:71.

^dM. W. Chase, C. A. Davies, J. R. Downey, D. R. Frurip, R. A. McDonald, and A. N. Syverud, JANAF Thermochemical Tables, Third Edition, J. Phys. Chem. Ref. Data, 14, Suppl. 1 (1985).

eM. T. Bowers, Gas Phase Ion Chemistry, Vol. 2, Academic Press, New York, 1979.

⁴J.O. Cox and G. Pilcher, Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970.

⁸G. Ditter, U. Niemann, and Philips J., Research, 37, 1 (1982).

^hF. P. Lossing, Can. J. Chem., 49, 357 (1971).

¹H. Halim, N. Heinrich, W. Koch, J. Schmidt, and G. Frenking, J. Comp. Chem., 7, 93 (1986), reference therein. ¹S. Schroder and W. Thiel, J. Am. Chem. Soc., 107, 4422 (1985). "BEST" ab-initio involving at least MP2 correction to 6-31G* wavefunctions.

^kJ. L. Franklin, J. G. Dillard, H. M. Rosenstock, J. T. Herron, K. Draxl, and F. H. Field, Natl. Stand. Ref. Data Ser., Natl. Bur. Stand., No. 26 (1969).

J. C. Traeger and R. G. McLoughlin, J. Am. Chem. Soc., 103, 3647 (1981).

^mJ. B. Pedley and B. S. Iseard, "CATCH Tables of Silicon Compounds," University of Sussex, 1972.

ⁿD. R. Stull, E. F. Westrum, Jr., and G. C. Sinke, *The Chemical Thermodynamics of Organic Compounds*, Wiley, New York, 1969.

^oJ. E. Bartmess and R. T. McIver, Gas Phase Ion Chemistry, Academic Press, New York, 1979, Vol. II.

^PR. B. Turner, P. Goebel, B. J. Mallon, W. von E. Doering, J. F. Coburn, and M. Pomerantz, J. Am. Chem. Soc., 90, 4315, 1968.

^qW. D. Good, R. T. Moore, A. G. Osborn, and D. R. Douslin, J. Chem. Thermodyn., 6, 303 (1974).

'J. M. Harris, S. G. Shafer, and S. D. Worley, J. Comput. Chem., 3, 208 (1982).

D. H. Aue and M. T. Bowers, Gas Phase Ion Chemistry, M. D. Bowers, (Ed.), Academic Press, New York, 1979.

^tF. P. Lossing and A. Maccol, Can. J. Chem., 54, 990 (1976).

"J. L. Abboud, W. J. Hehre, and R. W. Taft, J. Am. Chem. Soc., 94, 6072 (1972).

G. Vincow, H.J. Dauben, F.R. Hunter, and W.V. Volland, J. Am. Chem. Soc., 91, 2823 (1969).

"P. v. R. Schleyer, J. E. Williams, and K. R. Blanchard, J. Am. Chem. Soc., 92, 3277, (1970).

*Average value from two determinations: M. Mansson, N. Rapport, and E. F. Westrum, J. Am. Chem. Soc., 92, 7296 (1970); R. S. Butler, A. S. Carson, P. G. Laye, and W. V. Steele, J. Chem. Thermodyn., 3, 277 (1971).

⁵M. W. Chase, J. L. Curnutt, A. T. Hu, H. Prophet, A. N. Syverud, and L. C. Walker, J. Phys. Chem. Ref. Data, 3, 311, (1974).

²J. Chao and B. J. Zwolinski, J. Phys. Chem. Ref. Data, 5, 319 (1976).

- **G. Herzberg, Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules, 2nd ed, Van Nostrand, New York, 1950.
- D. Kebarle, R. Tamdagni, H. Kirooka, and T. B. McMahon, Int. J. Mass Spectrom. Ion Phys., 19, 71 (1976).
- "D. D. Wagman, W. H. Evans, V. B. Parker, T. Hawlow, S. M. Bailey, and R. H. Schumm, Natl. Bur. Stand. (U.S.), Tech. Note, No 270-3 (1968) and "Errata in NBS Technical Note 270-8" (1981).

ddD. R. Stull and H. Prophet, Natl. Stand., Ref. Data Ser. (U.S., Natl. Bur. Stand.) NSRDS-NBS 37, 1971.

^{ee}J. F. T. Berliner and O. E. May, J. Am. Chem. Soc., 48, 2630 (1926).

^{ff}D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney, and R. L. Nuttall, *J. Phys. Chem. Ref. Data Suppl.*, 11, 2, 1982.

88B. I. Istomin and V. Palm, Reakts. Sposobnosi Org. Soedin., 10, 583 (1973).

- hhC. Willis, F.P. Lossing, and R.A. Back, Can. J. Chem., 54, 1 (1967). Note: S.N. Foner and R.L. Hudson, J. Chem. Phys., 68, 3162 (1978) give the heat of formation of diazine as 50.7 ±2 kcals/mol.
- "S. W. Benson, F. R. Cruickshank, D. M. Golden, G. R. Haugen, H. E. O'Neal, A. S. Rodgers, R. Shaw, and R. Walsh, Chem. Rev., 69, 279 (1969).

¹¹P. S. Engel, J. L. Wood, J. A. Sweet, and M. L. Margrave, J. Am. Chem. Soc., 96, 2381 (1974).

kkG. A. Carpenter, M. F. Zimmer, E. E. Baroody, and R. A. Robb, J. Chem. Eng. Data, 15, 553 (1970).

mmB. G. Hobrock, and R. W. Kiser, J. Phys. Chem., 67, 1283 (1963).

ⁿⁿR. J. Blint, T. B. McMahon, and J. L. Beauchamp, J. Am. Chem. Soc., 96, 1269 (1974).

[∞]A. S. Rodgers, J. Chao, R. C. Wilhoit, and B. J. Zwolinski, J. Phys. Chem. Ref. Data, 3, 117 (1974).

ppR. F. Lake and H. Thompson, Proc. R. Soc. London, Ser. A, 315, 323 (1970).

^{qq}D. P. Ridge, J. Am. Chem. Soc., 97, 5670 (1975).

"J. Berkowitz, P.M. Dehmer, and W.A. Chupka, J. Chem. Phys., 59, 925 (1973).

- **M. W. Chase, J. L. Curnutt, H. Prophet, R. A. McDonald, and A. N. Syverud, J. Phys. Chem. Ref. Data, 4, 1 (1975).
 - ¹¹J. Vogt and J. L. Beauchamp, J. Am. Chem. Soc., 97, 6682 (1975).
 - uuP. W. Harland and J. L. Franklin, J. Chem. Phys., 61, 1621 (1974).

"E. C. Wu and A. S. Rodgers, J. Phys. Chem., 78, 2315 (1974).

wwA.S. Gordon, Int. J. Chem. Kinet., 4, 541 (1972).

xxJ. W. Larson and T. B. McMahon, J. Am. Chem. Soc., 107, 766 (1985).

yyNBS Technical Note 270-3, Jan. (1968).

²D. C. Frost, C. A. McDowell, and D. A. Vroom, J. Chem. Phys., 46, 4255 (1967). W. J. Pietro, M. M. Francl, W. J. Hehre, D. J. DeFrees, J. A. Pople, and J. S. Binkley, J. Am. Chem. Soc., 104, 5039 (1982).

aaa Natl. Bur. Stand. Selected Values of Chemical and Thermodynamic Properties, Rossini, 1st Feb. (1952).

bbb R. L. De Kock, B. R. Higginson, D. R. Lloyd, A. Breeze, D. W. J. Cruickshank, and D. R. Armstrong, Mol. Phys., 24, 1059 (1972).

^{ccc}S. A. Kudchadker and A. P. Kudchadker, J. Phys. Chem. Ref. Data, 4, 457 (1975).

ddd A. J. Vanderwielen, M. A. Ring, and H. E. O'Neal, J. Am. Chem. Soc., 97, 993 (1975).

eee M. M. Heaton, J. Chem. Phys., 67, 5396 (1977)

ffM. R. Nimlos and G. B. Ellison, J. Am. Chem. Soc., 108, 6522-6529 (1986).

gggR. Walsh, Acc. Chem. Res., 14, 246 (1981).

hhh W. C. Steele, L. D. Nichols, and F. G. A. Stone, J. Am. Chem. Soc., 84, 4441 (1962).

iii J. B. Pedley and G. Rylance, "Sussex-N.P.L. Computer Analysed Thermochemical Data: Organic and Organometallic Compounds," Sussex University, 1977.

W.C. Steele, J. Chem. Thermodyn., 15, 595 (1983).

kkk R. Walsh, J. Chem. Soc.; Faraday I, 79, 2233 (1983).

IIIM. Farber and R. D. Srivastava, Chem. Phys. Lett., 60, 216 (1979).

mmP. Potzinger, A. Ritter, and J. Krause, Z. Naturforsch., Teil A, 30, 347, (1975).

ⁿⁿⁿY. Wada and R. W. Kiser, J. Phys., Chem., 68, 2290 (1964).

While this cannot be construed as proof, it indicated that the -529.2 value is likely to be more correct. Unfortunately, we see from this that different semiempirical methods can give very different results when applied to even relatively simple systems. This problem will not be resolved until accurate values for heats of formation are available from either high-level ab initio calculations²⁶ or new experimental measurements.

As we have seen, in a few instances very large differences between experimental and calculated ΔH_f were obtained using MNDO-PM3. In attempting to identify the source of these large differences it is useful to do a comparative analysis with similar compounds. However, in certain of these instances there are no closely related compounds available for comparison. In such cases it is informative to investigate hypothetical reactions of

Table II. Comparison of experimental and calculated heats of formation for hypervalent molecules.

Empirical			at of nation		Differe	ence	
formula	Chemical name	Ехр.	Calc.	MNDO-PM3	MNDO	AM1	Footnote
C_2H_6SO	Dimethyl sulfoxide	-36.1	-38.8	-2.7	40.0	41.2	a
$C_4H_{10}SO$	Diethyl sulfoxide	-49.1	~46.6	2.5	41.5	42.1	a
	Sulfur dioxide Dimethyl sulfone Diethyl sulfone Sulfur trioxide Dimethyl sulfite	-71.0	-50.8	20.2	75.4	98.0	b
C ₂ H ₆ SO ₂	Dimethyl sulfone	-89.1	-76.3	12.8	142.8	142.1	а
$C_4H_{10}SO_2$ SO_3	Dietnyi suitone	-102.5	~80.8	21.7	143.1	142.0	а
$C_2H_6SO_3$	Dimethyl sulfite	-94.6 -115.5	-104.8	-10.2	153.1	177.7	b
H_2SO_4	Dillioning i Dullioc	110.0	-130.0 -181.4	−14.5 −5.8	50.4	56.4	a
C ₂ H ₆ SO ₄	Dimethyl sulfate	-164.1	-161.4 -172.1		$172.2 \\ 158.6$	177.7	b
O_2F	Sulfuric acid Dimethyl sulfate Fluorine dioxide	3.0	12.9	9.9	21.1	162.7 6.0	a b
NO₂F	Fluorine nitrite	3.0 -26.0	-25.6	0.4	26.7	4.7	b
NO_3F	Fluorine nitrite Fluorine nitrateSOF	2.5	-6.1	-8.6	25.5	11.2	b
SOF	SOF	-63.3	-74.4	-11.1	35.0	51.7	c
SO_2F	SO_2F	-113.2	-102.5	10.7	127.2	143.8	c
SOF_2	Thionyl fluoride	-130.0	-138.2	-8.2	84.3	96.1	b
SO_2F_2	Sulfuryl fluoride	-181.3	-184.3	-3.0	203.3	211.4	b
NOF ₃	F ₃ NO	-39.0	-26.6	12.4	61.8	24.4	b
SF_3 SOF_3	Sulfur trifluoride	-130.0	-134.3	-4.3	89.9	97.1	c
SF ₄	SOF ₃	-185.1	-176.5	8.6	180.2	183.5	c
SOF ₄	Sulfur tetrafluoride SOF4	$-182.4 \\ -235.5$	-185.3	-2.9	135.9	138.9	b
SF ₅	Sulfur pentafluoride (-)	-233.3 -201.0	$-236.3 \\ -303.0$	-0.8	269.1	255.4	c
SF ₅	Sulfur pentafluoride	-231.0 -217.1	-303.0 -232.5	$-12.0 \\ -15.4$	$159.4 \\ 208.2$	169.0	d 1
O₂Ĉl	Chlorine dioxide	25.0	1.5	-13.4 -23.5	208.2 111.0	198.7	b L
NO ₂ Cl	Sulfur pentafluoride (-) Sulfur pentafluoride Chlorine dioxide Nitryl chloride SOCI	2.9	-13.0	-15.9	14.4	80.9 11.7	b b
SOČI	SOCI	-17.4	-31.1	-13.7	1.5	17.6	c
SO ₂ Cl	50°01	-nn.4	-57.3	9.1	92.3	111.4	c
O ₃ FCI	Perchloryl fluoride Chlorine trifluoride	-5.1	14.6	19.7	328.4	251.6	b
F ₃ Cl	Chlorine trifluoride	-38.0	-22.1	15.9	116.7	58.2	b
F ₅ Cl	Chlorine pentafluoride	-54.0	-54.0	0.0	258.8	144.5	b
SOCI ₂	imonyi cinorige	-50.8	-47.6	3.2	28.6	43.1	$oldsymbol{e}$
SO ₂ Cl ₂ SCl ₃	Sulfuryl chloride Sulfur trichloride	-86.2	-62.3	23.9	79.9	99.0	b
SOCI ₃	SOCl ₃	8.8	-19.1	-27.9	-41.3	-37.5	c
SCl ₄	Sulfur tetrachloride	-47.5 -0.7	-46.5	1.0	49.9	60.8	c
SOC1 ₄	SOC14	-55.7	$-19.8 \\ -59.3$	−19.1 −3.6	-32.6	-25.5	c
SCl ₅	Sulfur pentachloride	-86	9.2	17.8	$22.7 \\ 4.3$	33.6 11.4	C
SCl ₆	Sulfur hexachloride	-19.8	10.3	30.1	138.1	132.8	c c
OBr	BrO	30.1	10.3 20.8	-9.3	5.3	5.6	f
SOBr	SOBr	-4.3	-16.2	-11.9	2.2	21.1	c
SO_2Br	SO_2Br	-52.8	-42.9	9.9	89.5	112.7	c
F₃Br	Bromine trifluoride	-61.1	-47.1	14.0	84.0	82.6	b
F ₅ Br	Bromine pentafluoride	-102.5	-75.8	26.7	207.4	183.7	b
SOBr ₂	Thionyl bromide	-11.5	-18.6	-7.1	16.1	37.7	c
SO ₂ Br ₂ SBr ₃	Sulfuryl bromide	-59.5	-46.2	13.3	127.9	149.5	c
SOBr ₃	Sulfur tribromide SOBr ₃	50.2 -8.6	16.4	-33.8	-51.3	-48.4	c
SBr ₄	Sulfur tetrabromide	-6.6 53.0	-10.0 18.8	-1.4	41.4	59.5	c
SOBr.	SOBr ₄	-3.3	-20.7	−34.2 −17.4	-42.9 26.6	-34.1	C
SBr ₅	Sulfur pentabromide	55.9	44.0	-11.9	23.5	38.3 28.1	C
SBr ₆	Sulfur hexabromide	58.8	78.1	19.3	107.6	104.6	c c
OI	IO	41.8	31.0	-10.9	4.8	-4.9	f
SOI	SOI	12.7	-0.4	-13.1	7.0	20.6	c
I₂Og	SO ₂ I	-34.9	-32.0	2.9	64.5	86.7	c
F ₅ I	Iodine pentafluoride	~200.8	-202.9	-2.1	298.8	267.9	b
F ₇ I	Iodine heptafluoride	-229.7	-225.4	4.3	334.9	274.1	b
SOI ₂	Thionyl iodide	21.5	11.1	-10.4	26.6	34.9	c
SO ₂ I ₂ SI ₃	Sulfuryl iodide	-26.0	-30.0	-4.0	51.7	72.8	С
SOI ₃	Sulfur triiodide SOI ₃	100.3	54.7	-45.6	-60.0	-64.9	c
SI ₄	Sulfur tetraiodide	40.4	23.8	-16.6	1.7	0.1	c
SOI.	SOI4	120.2 60.0	83.8 27.6	-36.4 -32.4	-38.0	-42.0	C
SI ₅	Sulfur pentaiodide	130.9	27.6 129.6	-32.4 -1.3	-17.0	-17.8	C
			140.0	-1.0	-1.0	-12.2	C

Table II. (continued)

T			it of ation	Difference				
Empirical formula	Chemical name	Exp.	Calc.	MNDO-PM3	MNDO	AM1	Footnote	
SI ₆	Sulfur hexaiodide	158.9	167.0	8.1	48.7	32.2	С	
C ₄ H ₁₂ SiF	$SiMe_4F(-)C_{3v}$ symmetry	-147.5	-122.4	25.1	33.5	23.5	d	
SiF ₅	$SiF_5(-)$	-507.1	-504.4	2.7	17.7	3.6	ď	
SiF ₄ Cl	SiF ₄ Cl (-)	-465.3	-465.2	0.1	17.5	8.0	d	
SiCl ₅	SiCl ₅ (-)	-237.2	-254.6	-17.4	-19.3	-30.4	d	
C_3H_9PO	Trimethylphosphine oxide	-102.2	-82.7	19.5	59.3	78.9	а	
PO ₂	Phosphorus dioxide	-71.0	-76.7	-5.7	24.0	61.8	c	
CH ₅ PO ₃	Methylphosphonic acid	-240.5	-213.3	27.2	25.2	51.5	a	
$C_2H_7PO_3$	Ethylphosphonic acid	-239.4	-218.5	20.9	19.9	43.4	a	
$C_3H_9PO_3$	Trimethyl phosphite		-192.2	-23.9	-38.0	-3.5	a	
$C_6H_{15}PO_3$	Triethyl phosphite	-195.9	-208.5	-12.6	-27.5	3.3	a	
$C_6H_{15}PO_4$	Triethyl phosphate	-284.5	-252.9	31.6	75.0	104.8	a	
$C_2H_6PO_2F$	Methyl methylphosphono-	204.0	202.5	01.0	10.0	104.0	a	
C21161 O21	fluoridate	-197.3	-207.6	-10.3	51.4	80.5	**	
CHDOF		-191.0	-207.0	-10.5	31.4	80.5	g	
$C_3H_8PO_2F$	Ethyl methylphosphono-	-205.8	010.0	C =	50.0	00 C	_	
O II DO E	fluoridate	~200.0	-212.3	-6.5	53.9	82.6	g	
$C_4H_{10}PO_2F$	n-Propyl methylphosphono-	0100	015.4	~ 0	50.0	0 0 5		
0 II D0 D	fluoridate	-210.2	-217.4	-7.2	53.9	80.7	g	
$C_4H_{10}PO_2F$	i-Propyl methylphosphono-	24.4						
	fluoridate	-214.6	-216.7	-2.1	60.8	87.2	g	
$C_5H_{12}PO_2F$	i-Propyl ethylphosphono-							
	fluoridate	-219.8	-217.5	2.2	59.4	85.2	g	
$C_5H_{12}PO_2F$	s-Butyl methylphosphono-							
	fluoridate	-220.1	-221.2	-1.1	63.2	86.8	g	
$C_5H_{12}PO_2F$	n-Butyl methylphosphono-							
	fluoridate	-215.1	-222.9	-7.8	53.8	78.4	g	
$C_6H_{14}PO_2F$	Neopentyl methylphosphono-						_	
	fluoridate	-224.2	-226.6	-2.4	70.4	87.8	g	
POF_2	POF_2	-213.6	-188.9	24.7	61.7	99.0	č	
CH ₃ POF ₂	Methylphosphonodifluoride	-233.2	-225.3	7.9	86.1	119.8	g	
POF_3	Phosphorus oxyfluoride	-289.5	-297.7	-8.2	90.0	132.2	ĥ	
PF ₄	Phosphorus tetrafluoride (-)	-325.0	-332.1	-7.1	22.8	66.2	ď	
PF ₄	Phosphorus tetrafluoride	-287.9	-303.9	-16.0	53.3	93.9	c	
PF ₅	Phosphorus pentafluoride	-381.1	-386.9	-5.8	132.3	166.3	Ď	
PF ₆	Phosphorus hexafluoride (-)	-522.0	-508.5	13.5	152.4	194.3	ď	
POCl ₂	POCl ₂	-109.9	-94.8	15.1	33.9	51.2	c	
CH ₃ POCl ₂	Methylphosphonodichloride	-124.1	-128.9	-4.8	48.7	62.9		
POCl ₃	Phosphorus oxychloride	-132.8	-120.9	-4.6 -7.4	53.2	58.7	g h	
							b	
PSCl ₃	Phosphorus thiochloride		-60.2	30.8	62.6	53.6		
PCl₄	Phosphorus tetrachloride	-80.5	-102.8	-22.3	-22.7	-30.8	C	
PCl₅	Phosphorus pentachloride	-89.6	-111.6	-22.0	47.7	36.1	h	
POBr ₂	POBr ₂	-78.3	-50.8	27.5	26.4	70.1	c	
POBr ₃	Phosphorus oxybromide	-97.0	-80.2	16.8	68.3	84.6	þ	
PSBr ₃	Phosphorus thiobromide	-67.2	-7.8	59.4	85.7	83.3	b	
PBr₄	Phosphorus tetrabromide	-17.4	-17.4	0.0	-11.9	-10.7	c	
PBr ₅	Phosphorus pentabromide	-11.0	-27.1	-16.1	42.8	73.3	С	
POI ₂	POI ₂	-40.1	-35.2	4.9	19.5	42.8	С	
POI_3	Phosphorus oxyiodide	-39.7	~8.3	31.4	71.3	79.3	c	
PI ₄	Phosphorus tetraiodide	60.2	44.7	-15.5	-36.1	-47.1	c	
PI ₅	Phosphorus pentaiodide	97.7	88.5	-9.2	-16.0	-36.1	c	
			-712.6	-18.5	262.4	444.7	b	

^aJ. O. Cox and G. Pilcher, Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970.

^bM. W. Chase, C. A. Davies, J. R. Downey, D. R. Frurip, R. A. McDonald, and A. N. Syverud, JANAF Thermochemical Tables, Third Edition, *J. Phys. Chem. Ref. Data* 14, Suppl. 1 (1985).

G. Ditter and U. Niemann, Philips J. Res., 37, 1 (1982).

^dJ. W. Larson and T. B. McMahon, J. Am. Chem. Soc., 107, 766 (1985).

^eD. D. Wagman, W. H. Evans, V. B. Parker, T. Hawlow, S. M. Bailey, and R. H. Schumm, Natl. Bur. Stand. (U.S.), Tech. Note, No 270-3 (1968) and "Errata in NBS Technical Note 270-8" (1981).

^{&#}x27;NBS Technical Note 270-3, Jan. 1968.

⁸E. C. Penski and E. S. Domalski, CRDEC-TR-87063 (1987).

^hD. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney, and R. L. Nuttall, J. Phys. Chem. Ref. Data Suppl. 11, 2, 1982.

Table III. Statistical analysis of difference between experimental and calculated heats of formation.

// · · · · · · · · · · · · · · · · · ·	NTC	Aver	ages (unsi	gned)	Average (signed)			Root mean square		
Type of compounds	No. of compounds	РМЗ	MNDO	AM1	PM3	MNDO	AM1	РМ3	MNDO	AM1
Hydrogen	465	6.3	12.9	11.2	1.5	4.8	5.0	8.6	24.1	23.5
Carbon	463	6.2	12.8	11.1	1.1	3.4	3.9	8.8	23.1	22.1
Nitrogen	118	6.9	18.8	9.9	0.2	10.1	4.1	9.4	26.9	12.9
Oxygen	255	9.7	31.7	33.5	0.1	25.0	28.8	13.9	54.7	61.3
Fluorine	148	8.9	41.9	46.6	1.5	34.1	38.4	12.0	80.3	79.7
Aluminum	46	14.7	23.9	38.6	2.6	6.7	33.2	21.2	34.2	53.3
Silicon	78	10.1	22.4	14.5	1.9	13.0	3.6	14.2	32.9	20.8
Phosphorus	71	12.5	37.3	53.6	-0.5	23.8	44.8	16.1	55.1	83.0
Sulfur	101	12.0	50.3	53.5	-1.4	36.9	41.5	16.2	79.8	81.7
Chlorine	105	9.6	23.0	22.3	0.2	12.8	10.6	13.3	51.1	41.4
Bromine	70	11.5	28.8	27.1	1.1	17.1	14.9	15.7	47.1	44.7
Iodine	77	10.7	30.3	27.3	0.2	12.9	11.8	15.9	61.1	54.0
Set of Compounds used in Refs. 3 and 16	138	4.4	6.2	5.5	0.0	-1.4	0.7	6.3	9.1	7.3
Compounds of C, H, N, O, only	276	5.7	11.2	7.5	0.4	3.8	1.4	7.9	18.5	10.5
Nitro compounds	29	5.2	39.6	15.7	2.5	38.1	14.5	6.2	44.1	18.5
Organophosphorus-V compounds	15	10.9	53.9	75.6	3.6	50.2	75.6	14.3	56.7	80.1
Normal valent compounds	657	7.8	13.9	12.7	0.7	3.3	3.7	11.4	25.1	24.3
Hypervalent	106	13.6	75.8	83.1	-0.8	67.2	74.7	17.3	104.5	110.0
All compounds	763	8.6	22.5	22.4	0.5	12.1	13.6	12.4	45.5	46.8
All compounds except Al, P, and S	547	7.1	15.5	11.5	0.9	6.6	2.9	10.1	35.1	26.5

these compounds involving reactants or products having accurately determined ΔH_f 's. These may be illustrated by reactions involving the radicals resulting from addition of a halide radical to carbon monoxide.

All three methods predict COBr and COI to be considerably more stable than that observed experimentally. As the ΔH_f of CO and heat of atomization of the halogens²⁷ (F: 18.9, Cl: 29.0, Br: 26.7, I: 25.5 kcal/mol) are known, the heats of the reactions

$$CO + X = COX$$
 and $COX + X = COX_2$

can be estimated (F: -34.8, -129.3; Cl: -17.6, -66.6; Br: 20.2, -67.3; I: 64.4, -79.4). For iodine this indicates that the two C—I bonds differ in strength by 143.8 kcal/mol. Computationally, these bonds are predicted to be of comparable strength. As with P_4O_6 , further work will be required to resolve this conflict.

The differences between the experimental and calculated values of ΔH_f for three of the oxyhalides of silicon are large and positive. This difference is vividly illustrated by investigating the metathetical reaction

$$SiX_4 + SiO_2 = SiOX_2 + SiOX_2$$

for which the calculated and experimental ΔH_r and ΔH_r are presented in Table IV. As these reactions are metathetic it is unlikely that the heats of reaction would be very large. As a result of the unexpectedly large value for the observed ΔH_r , and the small predicted ΔH_r , we postulate that the experimental ΔH_f for SiOCl₂, SiOBr₂, and SiOI₂ are incorrect, and that the correct values lie nearer to -121.2, -94.1, and -50.2 kcal/mol, respectively.

In certain cases involving homologous series the accuracy of prediction of related compounds are of interest. Thus, all the ΔH_f of the alkyl phosphines are reproduced accurately with the exception of triethylphosphine (Table V).

Large errors have been reported for the calculated MNDO and AM1 ΔH_f of nitro and polynitro organics. For 26 nitro-organic compounds and three organic nitrates, the average calculated differences in ΔH_f for PM3, MNDO, and AM1, respectively, are 5.2, 39.6, and 15.7 kcal/mol. It should be noted that for MNDO and AM1 the errors were systematic, and that by subtracting a constant for each nitro group a considerably improved result could be obtained.

Figure 1. Calculated and experimental heats of formation for all compounds surveyed.

HEATS OF HYDRATION

Most reactions of biochemical interest occur in aqueous media; therefore, the ability of a computational model to simulate condensed phase reactions is of interest. Experimental values for the successive heats of hydration of an ammonium ion are known.²⁹ A comparison with calculated results is given in Table VI. From this we see that

AM1 is significantly more accurate at modeling ammonium ion hydration than either MNDO or PM3.

HEATS OF ASSOCIATION AND HYDROGEN BONDING

The intermolecular stabilization due to molecules associating has proved difficult to accurately model using semiempirical meth-

Figure 1. (continued)

ods. The model must avoid the Scylla of having everything bind together so energetically that gases become stable relative to condensation at only extremely high temperatures, and the Charybdis of having such weak intermolecular forces that almost everything is predicted to be gaseous at 298 K.

Calculated values for the heat of association for various pairs of molecules are given in Table VII. For all three methods the heat of association of systems which are gaseous at 298 K is less than 0.1 kcal/mol. MNDO underestimates all intermolecular forces, while AM1 slightly overestimates the ozonewater bond, predicting it to be slightly more stable than the water dimer. Large basis set ab initio calculations indicate²¹ that in the water dimer the hydrogen bond is linear, that is, the O—H—O angle is 180°. Of the three semiempirical models the new method

is the only one to predict a water dimer to have an almost linear O—H—O bond. The various geometries predicted are shown in Figure 2.

GEOMETRIES

Molecular geometries are presented in Table VIII. A statistical analysis is given in Tables IX-XII. In general, errors in bond lengths are reduced, while some errors in bond angles are increased. There are too few dihedral data to generalize, but a superficial indication is that the dihedral error is intermediate between MNDO and AM1. In certain important cases, errors in interatomic distances are significantly decreased.

Many force constants for torsional bending are very low compared to bond length stretching. This implies that very large

Table IV. Heats of formation and reaction for silicon oxyhalide synthesis.

		$\Delta H_f(\mathrm{Exp})^a$		$\Delta H_r(\mathbf{Exp})$	$\Delta H_f(\mathrm{Calc})$			$\Delta H_r(\mathrm{Calc})$
X F Cl Br I	SiX ₄ -386.0 -158.4 -99.3 -26.4	SiO ₂ -73.0 -73.0 -73.0 -73.0 -73.0	SiOX ₂ -231.0 -167.7 -137.4 -99.4	-3.0 -104.0 -102.5 -99.4	SiX ₄ -390.6 -156.4 -107.9 -14.2	SiO ₂ -88.9 -88.9 -88.9 -88.9	SiOX ₂ -229.4 -121.2 -94.1 -50.2	20.7 2.9 8.6 2.7

For references, see Table I.

Table V. Heats of formation of methyl and ethyl phosphines (kcal/mol).

Compound	$\Delta H_f(\mathrm{Exp})^a$	$\Delta H_f(\mathrm{Calc})$	Difference
PH ₃	1.3	0.2	-1.1
CH ₃ PH ₂	-7.0	-9.5	-2.5
(CH ₃) ₂ PH	-15.0	-19.6	-4.6
$(CH_3)_3P$	-22.5	-29.8	-7.3
C ₂ H ₅ PH ₂	-12.0	-11.7	+0.3
$(C_2H_5)_2PH$	-25.0	-23.3	+1.7
$(C_2H_5)_3P$	-11.8	-36.7	-24.9

^{*}For references, see Table I.

changes in torsional angle can result from very small changes in energy. In consequence, it is likely that the largest errors in geometry will be in torsional angles. However, it is unlikely that any phenomena of chemical interest will be seriously affected by these errors: even if the torsion angles were accurately reproduced, from the low force constants, we may infer that the molecular geometry would (a) be subject to large librations or internal rotations at room temperature, and (b) in the course of a chemical reaction local forces could easily change the dihedral from its equilibrium position. The former consideration is important in studies of electronic phenomena such as ultraviolet (UV) visible absorption, where Boltzmann weighting of various conformations would be necessary.

Intramolecular hydrogen bonding distances in salicylaldoximes (Fig. 3), are poorly reproduced³⁰ by MNDO and AM1. Using the new parameter set, these distances are more accurately reproduced, as is shown in Table VIII.

The geometry of the amino group in paranitroaniline (PNA) is of interest. It is well established that the amino group in crystalline PNA is planar, while the geometry of gas-phase PNA has not yet been reported. The magnitude of the interaction of the NO₂ and NH₂ groups may be estimated by reference to the metathetic reaction

Table VI. Heats of hydration of ammonium ion.⁸

	Heat of h	ydration	Error			
Hydration reaction	Ехр.	Calc.	РМ3	MNDO	AM1	
$NH_4(+) + H_2O = NH_4(+)H_2O$	-17.3	-13.5	3.8	8.8	2.0	
$NH_4(+)H_2O + H_2O = NH_4(+)(H_2O)_2$	-14.7	-9.3	5.4	6.8	1.6	
$NH_4(+)(H_2O)_2 + H_2O = NH_4(+)(H_2O)_3$	-13.4	-9.3	4.1	6.0	-1.5	

^{*}Source: P. Kebarle, Environmental Effects on Molecular Structure and Properties, B. Pullman, (Ed.), D. Reidel, Dodrecht, The Netherlands, 1976, p. 81.

Table VII. Heats of association.

A	Heat o	f association	n (kcal)
Associating molecules	РМ3	MNDO	AM1
CO_2-CO_2	0.0	0.0	0.0
NH_3-H_2	0.0	0.0	0.0
$O_2 - O_2$	0.0	0.0	0.0
$H_2 - N_2$	0.0	0.0	0.0
$H_2 - CO_2$	0.0	0.0	0.0
$H_2O - H_2O$	-3.5	-1.0	-5.5
NH_3-NH_3	-0.9	-0.8	-2.4
$H_2O - H_2O (C_2v)$	-2.0	-1.0	-5.0
Benzene — Benzene	-3.8	0.0	-0.4
H_2O-H_2	-0.9	0.0	-1.1
H_2O-CH_4	-1.2	0.0	-1.2
$CH_2O - H_2O$	-1.6	-0.7	-3.7
H_2O-CH_2O	-1.6	-1.0	-4.0
H ₂ O—CH ₃ OH	-1.9	-0.9	-4.8
$CH_3OH - H_2O$	-1.5	-0.7	-2.7
CH ₂ O—CH ₂ O	-1.0	-0.8	-2.4
HCOOH—CH₄	-2.3	0.1	~0.8
H_2O-CO_2	-0.9	-0.8	-2.7
H ₂ O—HCOOH	-5.3	-1.0	-7.4
H_2O-O_3	-1.8	-1.1	-6.8
нсоон—нсоон	-8.6	-1.7	-6.4
H_2O-NH_3	-1.1	-0.5	-2.7
$H_2O-C_5H_5N$	-1.7	-1.1	-3.1
NH_3-CO_2	-0.5	-0.4	-1.8
HCOOH—NH ₃	-5.3	-0.9	-4.1
NH ₂ CHO—NH ₂ CHO	-4.7	-2.1	-8.1
NH ₂ COOH—NH ₂ COOH	-1.9	-3.3	-9.0

		Nitro-		Para-	
	Aniline +	benzene =	Benzene	+ nitroaniline	ΔH_r
 Ехр.*	20.8	15.4	19.8	16.2	-0.2
Calc	21.3	14.5	23.5	10.7	-1.6

^{*}For references, see Table I.

For aniline, the out-of-plane angle, or the angle between the $\mathrm{NH_2}$ and $\mathrm{C_6H_5N}$ planes, is $37.5^{\circ} \pm 2^{\circ}.^{31}$ This, together with the fact that the calculated barrier to inversion of an — $\mathrm{NH_2}$ group in ammonia and methylamine is 5.4 and 5.7 kcal/mol at the MP3/6-31G*//3-21G* level³², and the very small experimental ΔH_r indicates that in the gas phase PNA is nonplanar. As molecular calculations are currently limited to gas-phase systems, the geometry of crystalline PNA cannot be

Figure 2. Calculated structures for water dimers.

calculated. However, in gas-phase PNA the —NH₂ group is predicted to be pyramidal.

STRUCTURE OF IODINE HEPTAFLUORIDE

The geometry of IF_7 is currently not known. It has been assumed, however, to be a bicapped pentagonal pyramid¹⁵. Attempts to obtain a stable structure of point group D_{5h} resulted both in very high energies and in the loss of the two axial fluorine atoms. The only stable geometry predicted for IF_7 is a distorted trigonal bipyramid in which a F_2 moiety is loosely associated at a distance of 2.8 Å from the iodine, as shown in Figure 4. As the geometry of IF_5 and the heats of formation of IF_5 and IF_7 (but not F_2)

are all reproduced accurately, we predict that the geometry of IF₇ is not a bicapped pentagonal pyramid, and it is likely that iodine is strongly coordinated to five fluorine atoms in a distorted trigonal bipyramid arrangement and weakly bound to a fluorine molecule.

DIPOLE MOMENTS

Dipole moments for 125 compounds are presented in Table XIII. The average difference between experimental and observed dipole moments is 0.38 Debye for PM3, and 0.45 and 0.35 Debye for MNDO and AM1, respectively. The dipole moment in hydrocarbons is due mainly to the atomic charges: only a small fraction is due to lone-pairs. It

Table VIII. Comparison of experimental and calculated molecular geometries.

Empirical		Geometric				Errors		
formula	Chemical name	variable	Exp.	Calc.	PM3	MNDO	AM1	Footnote
${\sf H}_2$	Hydrogen	НН	0.741	0.699	-0.042	-0.078	-0.064	a
CH_2	Methylene, singlet	CH	1.110	1.092	-0.018	-0.019	-0.007	а
711	Madhala a dainle	НСН	102.4	103.7	1.3	8.7	8.1	
CH_2	Methylene, triplet	CH HCH	1.029 144.7	1.064 144.7	$0.035 \\ 0.0$	0.024 4.9	0.034 3.6	a
CH.	Methane	CH	1.094	1.087	-0.007	0.010	0.018	b
\mathbb{S}_2	Carbon, dimer	CC	1.242	1.189	-0.053	-0.073	-0.078	a
$\mathbb{C}_2^{-}\mathbf{H}_2$	Acetylene	CC	1.203	1.190	-0.013	-0.008	-0.008	b
^ TT	m.i i	CH	1.060	1.064	0.004	-0.009	0.001	
$C_2\mathbf{H}_4$	Ethylene	CC CH	1.339 1.086	1.322 1.086	-0.017 0.000	-0.004 0.003	-0.013 0.012	b
		HCC	121.2	123.1	1.9	2.0	1.5	
C_2H_6	Ethane	CC	1.536	1.504	-0.032	-0.015	-0.036	b
•		CH	1.091	1.098	0.007	0.018	0.026	
		HCC	110.9	111.6	0.7	0.3	-0.2	
C_3H_4	Allene	CC	1.308	1.297	-0.011	-0.002	-0.010	С
		CH HCC	1.087 120.9	1.086 122.3	-0.001 1.4	$0.003 \\ 2.0$	0.013 1.4	
$\mathbb{C}_3\mathbf{H}_4$	Cyclopropene	C_2C_3	1.509	1.484	-0.025	0.003	-0.020	d
>4	оу сторгоромо	$\tilde{\mathbf{C}}_{1}^{2}\tilde{\mathbf{C}}_{2}^{3}$	1.296	1.314	0.018	0.032	0.022	_
		C_1H	1.072	1.073	0.001	-0.010	-0.003	
~ ••		HC_1C_2	149.9	151.5	1.6	1.7	2.0	
C_3H_4	Propyne	C_2C_1	1.206	1.191	-0.015	-0.009	-0.009	е
		$egin{array}{ccc} \mathbf{C_1H} \\ \mathbf{C_3C_3} \end{array}$	1.056 1.459	1.064 1.433	0.008 -0.026	-0.005 -0.014	0.004 -0.032	
		C_3U_3 C_3H	1.105	1.098	-0.020	0.006	0.016	
		HCC	111.0	110.7	-0.3	0.0	-0.5	
C_3H_6	Cyclopropane	CC	1.510	1.499	-0.011	0.016	-0.009	f
~	-	CH	1.089	1.095	0.006	0.007	0.015	
C_3H_6	Propene	C = C	1.336	1.328	-0.008	0.004	-0.005	g
		$^{\mathrm{CCC}}_{\mathrm{C}}$	1.501 124.3	1.480 123.4	-0.021 -0.9	$-0.005 \\ 2.6$	-0.025	
		C_3H	1.085	1.098	0.013	0.024	0.033	
		HC_3C_2	111.2	112.9	1.7	1.8	0.7	
		C_2H	1.090	1.097	0.007	0.006	0.013	
		HC_2C_1	119.0	120.8	1.8	0.3	1.9	
		HC ₁	1.091	1.087	-0.004	-0.002	0.007	
C_3H_8	Propane	$egin{array}{c} \mathbf{HC_1C_2} \\ \mathbf{CC} \end{array}$	121.5 1.526	$122.7 \\ 1.512$	1.2 -0.014	0.8 0.004	0.8 - 0.019	g
Эзги	Tropane	ccc	112.4	111.7	-0.7	3.0	-0.6	5
		C_2H	1.115	1.108	-0.007	0.000	0.007	
		HC_2C_1	109.5	109.9	0.4	-0.7	0.0	
		$C_{i}H$	1.096	1.097	0.001	0.014	0.021	
~ II	Diacetylene	HC_1C_2	111.8 1.205	111.4 1.193	-0.4 -0.012	$-1.5 \\ -0.006$	-1.4 -0.006	h
C_4H_2	Diacetylene	$egin{array}{c} \mathbf{C_1C_2} \\ \mathbf{C_2C_3} \end{array}$	1.203	1.193	-0.012	-0.008	-0.000	11
		CH ³	1.046	1.065	0.019	0.004	0.014	
C ₄ H ₄	$CH_2=C=C=C$							
	$=CH_2$	CH	1.083	1.087	0.004	0.007	0.017	i
		C_1C_2	1.318	1.301	-0.017	-0.007	-0.016	
o u	Vinylacetylene	C_2C_3	1.283	1.267	-0.016	-0.013 0.004	-0.017 -0.005	
C ₄ H ₄	vinylacetylene	C_3C_4 C_2C_3	1.341 1.431	1.332 1.414	-0.009 -0.017	-0.004	-0.005	j
		$C_2C_3C_4$	123.1	122.5	-0.6	2.3	1.0	
		C_1C_2	1.208	1.193	-0.015	-0.010	-0.010	
C_4H_6	Bicyclobutane	$\mathbf{C_1C_2}$	1.498	1.507	0.009	0.029	0.012	k
		C_1C_3	1.497	1.481	-0.016	0.039	-0.002	
		$C_2C_3C_4C_4$	121.7	120.0	-1.7	0.9 0.003	0.3 0.008	
		C₁H C₂H	1.071 1.093	1.083 1.095	$0.012 \\ 0.002$	0.003	0.008	
C_4H_6	2-Butyne	C_2C_3	1.213	1.193	-0.002	-0.013	-0.012	j
		C_1C_2	1.467	1.432	-0.035	-0.023	-0.042	•
		СН	1.115	1.098	-0.017	-0.004	0.006	
		HCC	110.7	110.7	0.0	0.3	-0.1	

Table VIII. (continued)

Empirical		Geometric				Errors		
formula	Chemical name	variable	Exp.	Calc.	РМ3	MNDO	AM1	Footnote
C ₄ H ₆	1,3-Butadiene	C_1C_2	1.344	1.331	-0.013	0.000	-0.009	1
, ,		C_2C_3	1.467	1.456	-0.011	-0.002	-0.016	
	_	CCC	122.9	122.3	-0.6	2.8	0.5	
C_4H_8	1-Butene	C_2C_3	1.347	1.328	~0.019	-0.006	-0.016	m
		C_1C_2	1.508	1.489	-0.019	-0.003	-0.024	
CII	Coolebates	CCC	123.8	122.6	-1.2 -0.006	1.6	-0.4	-
C_4H_8	Cyclobutane	CC CH	1.548 1.105	1.542 1.100	-0.006	0.001 0.000	-0.005 0.005	n
C_4H_8	Isobutene	C_1C_2	1.330	1.333	0.003	0.000	0.006	0
C4118	isobutene	C_1C_2 C_2C_3	1.507	1.487	-0.020	0.013	-0.023	U
		$C_1C_2C_3$	122.4	122.1	-0.3	-0.5	0.0	
C_4H_{10}	n-Butane	C_1C_2	1.533	1.512	-0.021	-0.002	-0.026	e
- 410		C_2C_3	1.533	1.521	-0.012	0.007	-0.019	
		CCC	112.8	111.6	-1.2	2.0	-1.2	
C_4H_{10}	Isobutane	CC	1.525	1.520	-0.005	0.016	-0.011	р
C_5H_8	1,4-Pentadiene Cl	C = C	1.339	1.328	-0.011	0.001	-0.008	q
		C-C	1.511	1.489	-0.022	-0.005	-0.027	
		C-C=C	115.5	123.1	7.6	11.1	8.4	
		C-C-C	113.1	114.4	1.3	-0.5	1.2	
		$C_1 - C_2 - C_3 - C_4$		-127.5	-10.6	9.6	-13.8	
G 11	1 4 D 4 1' 00	$C_2-C_3-C_4-C_5$		14.2	18.5	110.0	16.2	
C_5H_8	1,4-Pentadiene C2	C = C	1.339	1.328	-0.011	0.001	~0.008	q
		CC	1.511	1.490	-0.021	-0.005	-0.025	
		C-C=C $C-C-C$	115.5 108.9	123.1 110.8	7.6 1.9	$\begin{array}{c} 11.2 \\ 3.8 \end{array}$	$\begin{array}{c} 8.3 \\ 2.9 \end{array}$	
		$C_1-C_2-C_3-C_4$	_100.5 _199.9	-129.3	-7.1	15.1	-11.9	
C ₅ H ₈	1,4-Pentadiene Cs	C = C	1.339	1.328	-0.011	0.001	~0.008	q
Cilla	1,4-1 cittadicite (is	c-c	1.511	1.490	-0.021	-0.005	-0.025	ч
		$\ddot{C} - \ddot{C} = C$	115.5	123.0	7.5	11.1	8.3	
		$\ddot{c} - \ddot{c} - \ddot{c}$	108.9	111.1	2.2	3.7	3.0	
		$C_1-C_2-C_3-C_4$		-132.2	-3.6	22.1	-5.3	
C_5H_{12}	Neopentane	CC	1.539	1.527	-0.012	0.015	-0.018	f
	•	СН	1.120	1.098	-0.022	-0.011	-0.004	
		HCC	110.0	111.3	1.3	1.7	0.3	
C_6H_6	Benzene	CC	1.399	1.391	-0.008	0.008	-0.004	r
		CH	1.084	1.095	0.011	0.006	0.016	
C_6H_6	Fulvene	C_3C_4	1.476	1.471	-0.005	0.000	0.000	s
		C_2C_3	1.355	1.355	0.000	0.011	0.008	
		C_1C_2	1.470	1.478	0.008	0.021	0.013	
CH	Caralahamana	C_1C_6	1.349 1.335	1.331 1.334	-0.018 -0.001	-0.004 0.011	-0.017 0.002	t
C_6H_{10}	Cyclohexene	C_1C_2	1.504	1.487	-0.001	0.000	-0.002	ı
		C_2C_3 C_3C_4	1.515	1.521	0.006	0.026	0.002	
		C_4C_5	1.550	1.519	-0.031	-0.011	-0.036	
		$C_5C_4C_2C_1$	21.8	27.8	6.0	-0.8	5.4	
C_6H_{12}	Cyclohexane	CC	1.536	1.521	-0.015	0.002	-0.021	u
- 1112	- 3	CCC	111.4	111.0	-0.4	2.7	-0.1	
		CCCC	46.3	56.0	9.7	0.0	8.9	
		СН	1.121	1.107	-0.014	-0.007	0.000	
		CH'	1.121	1.108	-0.013	-0.007	0.001	
H_2O	Water	OH	0.957	0.951	-0.006	-0.014	0.004	b
		нон	104.5	107.7	3.2	2.3	-1.0	
CO	Carbon monoxide	CO	1.128	1.135	0.007	0.035	0.043	v
CH ₂ O	Formaldehyde	CO	1.208	1.202	-0.006	0.008	0.019	w
		CH	1.116	1.091	-0.025	-0.010	-0.006	
CILC	Mathanal	HCO	121.8	121.8	0.0	1.7	0.4	
CH₄O	Methanol	CO	1.425	1.395	-0.030	-0.034	-0.015	X
		CH HCO	1.094 108.5	1.097 112.2	0.003 3.7	0.025 3.8	0.025 2.4	
		OH	0.945	0.949	0.004	0.002	0.019	

Table VIII. (continued)

Empirical		Geometric				Errors		
formula	Chemical name	variable	Exp.	Calc.	РМ3	MNDO	AM1	Footnote
C_2H_2O	Ketene	CO	1.161	1.175	0.014	0.023	0.032	у
		CC	1.314	1.308	-0.006	0.005	-0.007	-
		CH	1.083	1.084	0.001	0.002	0.012	
		HCC	118.7	122.0	3.3	3.0	2.7	
C_2H_6O	Dimethyl ether	CC	1.410	1.406	-0.004	-0.014	0.007	Z
~ • • •		COC	111.3	114.1	2.8	8.7	1.6	
C_3H_4O	Acrolein	C_3C_2	1.335	1.330	-0.005	0.008	-0.001	aa
		C_2C_1	1.478	1.479	0.001	0.007	-0.010	
		CCC	121.0	123.6	2.6	6.3	2.2	
		OCC	1.208	1.211	0.003	0.016	0.026	
CHO	Furan	CO	$124.0 \\ 1.362$	$124.0 \\ 1.378$	0.0 0.016	$\frac{1.5}{0.005}$	0.0 0.033	bb
C ₄ H ₄ O	ruran	cco	106.6	106.9	0.010	1.0	0.033	OD
		C_3C_2	1.361	1.373	0.012	0.029	0.019	
		CCC	110.7	110.2	-0.512	-0.4	-0.6	
O_2	Oxygen, triplet state	00	1.216	1.169	-0.047	-0.082	-0.130	v
H_2O_2	Hydrogen peroxide	00	1.475	1.482	0.007	-0.179	-0.175	cc
11202	Hydrogen peroxide	OH	0.950	0.945	-0.005	0.011	0.033	CC
		HOO	94.8	96.5	1.7	12.2	11.2	
		НООН	119.8	180.0	60.2	60.5	8.1	
H_4O_2	Water dimer	00	3.000	2.769	-0.231	0.905	-0.383	
CO ₂	Carbon dioxide	CO	1.162	1.181	0.019	0.024	0.027	b
CH ₂ O ₂	Formic acid	C=0	1.202	1.211	0.009	0.025	0.028	dd
• •		C-O	1.343	1.344	0.001	0.011	0.014	
		OCO	124.9	117.1	-7.8	-4.3	-7.3	
		OH	0.972	0.953	-0.019	-0.023	-0.001	
		HOC	106.3	111.6	5.3	9.9	4.3	
		CH	1.097	1.095	-0.002	0.008	0.006	
		HC—O	124.1	130.4	6.3	2.7	6.0	
$C_2H_2O_2$	trans Glyoxal	CO	1.207	1.207	0.000	0.013	0.022	aa
		CC	1.525	1.526	0.001	0.004	-0.017	
~ • • •		cco	121.2	120.5	-0.7	0.8	-0.2	
$C_6H_4O_2$	p-Benzoquinone	C_1C_2	1.477	1.487	0.010	0.024	0.002	ee
		C_2C_3	1.322	1.335	0.013	0.027	0.016	
		CCC	121.1	121.6	0.5	1.0	0.8	
11 31	A	CO	1.222	1.217	-0.005	0.004	0.014	
H_3N	Ammonia	NH	1.012	0.999	-0.013	-0.005	-0.014	a
CN	C:1-	HNH CN	$106.7 \\ 1.175$	108.1	1.4 -0.018	$-1.4 \\ -0.022$	$2.4 \\ -0.027$	_
CN	Cyanide (+)	CN	1.173	1.157 1.355	0.065	-0.022 -0.149	-0.027	a
CN CHN	Cyanide (+) Hydrogen cyanide	CN	1.154	1.156	0.003	0.006	0.006	a ff
CIII	Hydrogen cyamde	CH	1.063	1.070	0.002	-0.008	0.006	11
CH ₅ N	Methylamine	CN	1.474	1.469	-0.005	-0.014	-0.042	gg
CII5II	Methylamme	NH	1.011	0.999	-0.012	-0.003	-0.011	55
		HNC	112.0	109.8	-2.2	-2.2	-0.7	
		HNH	105.9	108.7	2.8	-0.4	3.1	
C_2H_3N	Acetonitrile	CC	1.458	1.440	-0.018	-0.006	-0.019	hh
22232		CH	1.104	1.098	-0.006	0.006	0.016	
		HCC	109.5	110.4	0.9	1.1	0.6	
		CN	1.157	1.159	0.002	0.005	0.006	
C_2H_3N	Methyl isocyanide	CN-	1.424	1.433	0.009	0.000	-0.029	hh
		CH	1.101	1.097	-0.004	0.014	0.024	
		HCN	109.1	109.7	0.6	1.1	1.0	
		-CN	1.166	1.181	0.015	0.025	0.015	
C_3H_9N	Trimethylamine	CN	1.451	1.480	0.029	0.013	-0.006	ii
		CNC	110.9	112.3	1.4	5.1	2.1	_
C ₄ H ₅ N	Pyrrole	CN	1.370	1.397	0.027	0.028	0.022	1
		CNC	107.7	109.7	20	2.0	1.1	
		C_3C_2	1.382	1.390	0.008	0.013	0.020	
		CCC	109.8	107.0	-2.8	-2.4	-1.4	
NO	N*:4	C ₄ C ₃	1.417	1.390	-0.027	-0.022	-0.015	_
NO	Nitrogen oxide	NO	1.151	1.127	-0.024	-0.028	-0.036	а

Table VIII. (continued)

Empirical		Geometric				Errors		
formula	Chemical name	variable	Ехр.	Calc.	РМ3	MNDO	AM1	Footnote
CHNO	Hydrogen isocyanate	NH	0.987	0.985	-0.002	0.011	-0.002	a
		CN	1.207	1.251	0.044	0.042	0.025	
		CNH	128.1	123.7	-4.4	-7.9	-0.9	
		CO OCN	1.171	1.181	0.010	0.014	0.031	
CH ₃ NO	Formamide	CN	180.0 1.376	168.7 1.413	-11.3 0.037	-12.5 0.033	-13.3 -0.009	;;
0113110	1 of mannac	NH	1.002	0.994	-0.008	-0.002	-0.005	ij
		CH	1.102	1.102	0.000	0.006	0.012	
		CO	1.193	1.217	0.024	0.032	0.050	
		OCN	123.8	118.5	-5.3	-2.7	-1.9	
NO_2	Nitrogen dioxide	NO	1.197	1.181	-0.016	-0.023	-0.038	а
нио	Mitana and (air)	ONO	136.0	137.8	1.8	-2.8	0.4	
HNO_2	Nitrous acid (cis)	$ \begin{array}{c} N-0\\ N=0 \end{array} $	1.460	1.339	-0.121	-0.163	-0.169	а
		ONO	1.200 114.0	1.175 113.3	-0.025 -0.7	-0.031 3.1	-0.038 2.6	
		OH	0.980	0.960	-0.020	-0.017	0.003	
		HON	103.0	109.9	6.9	16.7	12.5	
HNO ₂	Nitrous acid (trans)	N-0	1.460	1.383	-0.077	-0.148	-0.141	а
		N=0	1.200	1.167	-0.033	-0.034	-0.042	
		ONO	118.0	109.1	-8.9	-4.7	-5.2	
		OH	0.980	0.950	-0.030	-0.022	-0.005	
$C_7H_7NO_2$	Salianlaldanima	HON	105.0	104.6	-0.4	5.0	2.0	
$C_7\Pi_7\Pi O_2$	Salicylaldoxime	N(14)H(17) O(10)N(14)	$1.834 \\ 2.626$	1.847 2.684	0.013 0.058	0.940 0.781	0.302 0.298	kk
HNO_3	Nitric acid	N=0	1.206	1.203	-0.003	0.005	-0.011	а
		0=N=0	130.0	132.7	2.7	-3.5	-1.0	а
		N-O	1.405	1.410	0.005	-0.065	-0.072	
		ОН	0.960	0.953	-0.007	0.002	0.022	
	•••	NOH	102.0	109.0	7.0	12.0	7.7	
N ₂	Nitrogen	NN	1.094	1.098	0.004	0.010	0.012	v
H_4N_2	Hydrazine	NN NU	1.449	1.440	-0.009	-0.052	-0.071	а
		NH HNN	$1.022 \\ 112.0$	1.001 106.5	-0.021 -5.5	-0.001 -4.8	-0.008 -4.6	
		HNNH	90.0	180.3	90.3	90.2	90.2	
C_2N_2	Cyanogen	CN	1.154	1.159	0.005	0.008	0.008	b
		CC	1.389	1.382	-0.007	-0.011	-0.005	~
$C_2H_6N_2$	Dimethyldiazene	NN	1.254	1.228	-0.026	-0.032	-0.030	b
		CN	1.474	1.467	-0.007	0.000	-0.022	
N O	N7:4	CNN	111.9	119.3	7.4	5.0	7.9	
N_2O	Nitrous oxide	NN NO	1.128	1.124	-0.004	0.000	0.000	а
$H_2N_2O_2$	NH ₂ —NO ₂	NO NN	1.184 1.427	1.197 1.431	$0.013 \\ 0.004$	-0.003	-0.009	11
11211202	11112-11102	NO	1.206	1.211	0.004	-0.020 0.003	-0.060 -0.002	11
		NH	1.005	1.000	-0.005	0.003	-0.002	
		ONO	130.1	127.2	-2.9	-6.0	-6.1	
N_2O_3	Dinitrogen trioxide	NN	2.080	1.409	-0.671	-0.706	-0.728	а
		NO	1.100	1.172	0.072	0.063	0.061	
		NNO	110.0	118.2	8.2	11.0	12.8	
		NO'	1.180	1.268	0.088	0.079	0.101	
N_2O_4	Dinitrogen tetroxide	O'NO' NN	134.0	150.4	16.4	14.8	13.5	_
11204	Diminogen terroxide	NO	1.750 1.180	1.759 1.195	0.009 0.015	-0.135 0.009	$0.068 \\ -0.008$	а
		ONN	113.2	114.6	1.4	2.1	1.0	
N_3	Azide	NN	1.181	1.174	-0.007	-0.007	-0.004	а
	s-Triazine	CN	1.338	1.358	0.020	0.019	0.026	mm
		NCN	126.8	121.6	-5.2	-3.4	-1.1	
H_2S	Hydrogen sulfide	HS	1.328	1.290	-0.038	-0.028	-0.011	а
30	a	HSH	92.2	93.5	1.3	5.9	6.6	
	Carbon sulfide	CS	1.534	1.447	-0.087	-0.050	-0.064	nn
	Thioformaldehyde	CS	1.611	1.539	-0.072	-0.074	-0.088	jj
CH₂S		CH	1.093	1.095	0.002	-0.001	0.006	

Table VIII. (continued)

Empirical		Geometric				Errors		
formula	Chemical name	variable	Ехр.	Calc.	РМ3	MNDO	AM1	Footnote
CH ₄ S	Thiomethanol	CS	1.818	1.801	-0.017	-0.101	-0.104	00
		SH	1.329	1.306	-0.023	-0.027	-0.009	
		HSC	100.3	100.0	-0.3	2.1	1.0	
		HCSH	180.0	179.9	-0.1	-0.2	-0.1	
C_4H_4S	Thiophene	CS	1.714	1.725	0.011	-0.035	-0.037	qq
		CCS	92.2	91.4	-0.8	1.4	2.0	
		C_3C_2	1.370	1.366	-0.004	0.004	-0.003	
CSO	Ch	CCC	111.5 1.159	$112.1 \\ 1.176$	$0.6 \\ 0.017$	$\begin{array}{c} 0.4 \\ 0.022 \end{array}$	-0.4	
CSO	Carbon oxysulfide	CS	1.159	1.504	-0.055	-0.049	0.034 -0.065	rr
SO_2	Sulfur dioxide	SO	1.432	1.442	0.010	0.043	0.003	а
502	Sulful dioxide	OSO	119.5	106.1	~13.4	-12.7	-16.6	u
SO_3	Sulfur trioxide	SO	1.430	1.384	-0.046	0.061	0.113	а
H ₂ SO ₄	Sulfuric acid	S-0	1.550	1.668	0.118	0.078	0.157	a
2 - 4		OH	0.970	0.947	-0.023	-0.023	-0.006	
		SOH	105.0	117.7	12.7	12.2	1.5	
		S=0	1.420	1.668	0.248	0.209	0.287	
NS	Sulfur nitride	SN	1.495	1.452	-0.043	-0.055	-0.054	а
C_2H_3NS	Methyl isothiocyanate	CS	1.597	1.498	-0.099	-0.088	-0.095	SS
		C = N	1.192	1.231	0.039	0.027	0.025	
		C-N	1.479	1.440	-0.039	-0.042	-0.072	
0.11.0	0.10 1: .1	C-N=C	141.6	139.4	-2.2	-0.3	-1.0	
C_2N_2S	Sulfur dicyanide	CN	1.157	1.164	0.007	0.007	0.007	tt
		CS	1.701	1.664	-0.037	-0.071	-0.067	
		NCS CSC	170.0 98.4	176.5 101.5	$\begin{array}{c} 6.5 \\ 3.1 \end{array}$	7.0 5.1	7.4	
S_2	Sulfur dimer	SS	1.889	1.857	-0.032	-0.114	3.4 - 0.114	а
H_2S_2	H ₂ S ₂	SS	2.055	2.034	-0.032	-0.114	-0.114	u u
11202	11202	SH	1.327	1.311	-0.016	-0.023	-0.005	uu
		HSS	91.3	103.2	11.9	11.2	9.9	
		HSSH	90.5	93.4	2.9	9.1	21.7	
CS_2	Carbon disulfide	CS	1.553	1.481	-0.072	-0.061	-0.070	pp
$C_2H_6S_2$	2,3-Dithiabutane	CS	1.810	1.804	-0.006	-0.085	-0.089	vv
		SS	2.038	2.021	-0.017	-0.103	-0.108	
		CSS	102.8	109.2	6.4	5.2	3.4	
		CSSC	84.7	88.0	3.3	19.8	10.0	
_	_	SSC	102.8	109.2	6.4	5.1	3.4	
S_6	S_6	SS	2.057	2.048	-0.009	-0.110	-0.110	ww
		SSS	102.2	107.5	5.3	2.9	2.9	
G	C	SSSS	74.5	64.6	-9.9 0.075	-5.1	-5.0	
S_8	S_8	SS SSS	2.048 107.9	1.973 116.0	-0.075 8.1	-0.113 0.4	-0.113 0.4	XX
		SSSS	98.6	87.6	-11.0	-0.2	-0.2	
HF	Hydrogen fluoride	HF	0.917	0.938	0.021	0.039	-0.2	3/3/
CF	Fluoromethylidyne	CF	1.266	1.259	-0.021	-0.003	-0.007	уу a
CHF	Fluoromethylene	CH	1.121	1.100	-0.021	-0.001	0.006	a
~~~	2.40.0	CF	1.314	1.284	-0.030	-0.029	-0.023	_
		FCH	101.6	105.6	4.0	9.5	9.0	
CH_3F	Fluoromethane	CH	1.098	1.092	-0.006	0.020	0.023	ZZ
Ü		CF	1.382	1.351	-0.031	-0.035	-0.007	
		FCH	108.5	108.6	0.1	2.1	1.0	
C_2H_3F	Fluoroethylene	CC	1.333	1.333	0.000	0.018	0.007	aaa
		CH(g)	1.076	1.093	0.017	0.023	0.028	
		CCH(g)	127.7	126.2	-1.5	-4.7	-3.8	
		CH(t)	1.085	1.085	0.000	0.002	0.011	
		CCH(t)	123.9	121.2	-2.7	~3.0	-3.1	
		CH(c)	1.090	1.086	-0.004	-0.003	0.006	
		CCH(c)	121.4	123.8	2.4	3.1	1.6	
		CF	1.348	1.338	-0.010	-0.024	0.003	
		FCC	121.0	122.0	1.0	2.3	2.2	

Table VIII. (continued)

Empirical		Geometric				Errors		
formula	Chemical name	variable	Ехр.	Calc.	PM3	MNDO	AM1	Footnote
C_3H_3F	Fluoroallene	C_1C_2	1.301	1.310	0.009	0.019	0.012	bbb
		C_1H	1.083	1.094	0.011	0.016	0.022	
		HC ₁ C ₂	124.3 1.360	124.8 1.340	$0.5 \\ -0.020$	$-1.4 \\ -0.035$	-1.4	
		$\mathbf{C_1F}$ $\mathbf{FC_1C_2}$	121.9	122.2	0.3	1.0	-0.008 1.8	
		C_2C_3	1.309	1.294	-0.015	-0.006	-0.014	
		C_3H	1.086	1.087	0.001	0.005	0.015	
ONE	C	HC_3C_2	120.8	122.3	1.5	2.1	1.5	
CNF	Cyanogen fluoride	CN CF	1.159 1.262	1.159 1.297	0.000 0.035	0.001 0.011	0.006 0.045	ccc
NOF	Nitrosyl fluoride	NF	1.520	1.367	-0.153	-0.215	-0.153	а
		NO	1.130	1.162	0.032	0.031	0.018	
_		FNO	110.2	111.6	1.4	3.7	2.1	
\mathbf{F}_2	Fluorine	FF	1.412	1.350	-0.062	-0.146	0.015	а
H_2F_2	Hydrogen fluoride dimer	HF	0.920	0.939	0.019	0.036	-0.093	а
	umer	H'F	1.870	1.743	-0.127	1.093	0.033	а
		H'FH	108.0	147.0	39.0	71.5	-18.1	
CF_2	Difluoromethylene	CF	1.300	1.298	-0.002	0.004	0.012	а
~=	7 .0	FCF	104.9	106.3	1.4	3.4	1.1	
OF_2	F_2O	OF	1.412	1.378	-0.034	-0.131	-0.058	а
COF_2	Carbonyl difluoride	FOF CO	$103.2 \\ 1.174$	100.9 1.199	$-2.3 \\ 0.025$	5.9 0.045	-0.7 0.046	а
COr ₂	Carbonyi umuoride	CF	1.312	1.322	0.023	0.004	0.046	a
		FCO	126.0	124.6	-1.4	-1.9	-1.5	
SF_2	Sulfur difluoride	SF	1.592	1.560	-0.032	-0.020	0.031	а
222	mn: 1 1	FSF	98.2	96.5	-1.7	1.3	-1.3	
CSF ₂	Thiocarbonyl	CO	1 500	1 600	0.011	0.014	0.090	
	difluoride	CS CF	1.589 1.315	1.600 1.338	0.011 0.023	-0.014 0.006	-0.030 0.027	pp
		FCS	126.5	128.9	2.4	-0.5	1.1	
SOF_2	Thionyl fluoride	SO	1.412	1.467	0.055	0.068	0.132	а
_	·	SF	1.585	1.574	-0.011	0.023	0.058	
		FSO	106.8	101.0	-5.8	-3.9	-7.0	
CO E	Cultural fluorida	FSF	92.8	93.9	1.1	4.2	2.0	_
SO_2F_2	Sulfuryl fluoride	SF FSF	1.530 96.1	1.547 95.3	$0.017 \\ -0.8$	0.080 1.7	0,111 1,1	а
		SO	1.405	1.400	-0.005	0.103	0.171	
		OSO	124.0	126.4	2.4	0.8	3.5	
S_2F_2	FSSF	SF	1.635	1.584	-0.051	-0.063	-0.006	а
		SS	1.888	2.008	0.120	0.078	0.060	
		FSS FSSF	108.3 87.9	112.0 87.4	$3.7 \\ -0.5$	-1.8 -1.3	-2.1 -0.8	
S_2F_2	SSF_2	SS	1.860	1.919	0.059	0.035	0.019	а
-2- 2	200 2	SF	1.598	1.592	-0.006	0.003	0.054	-
		FSS	107.5	114.5	7.0	1.4	1.3	
OTTEN	70 · 6 41	FSF	92.5	90.8	-1.7	3.9	0.2	
CHF ₃	Trifluoromethane	CH CF	1.098 1.333	1.110 1.346	$0.012 \\ 0.013$	0.038 0.020	0.032 0.035	a
		FCH	110.3	113.1	2.8	1.2	2.7	
NF_3	Nitrogen trifluoride	NF	1.371	1.354	-0.017	-0.056	-0.011	а
-	J	FNF	102.2	105.0	2.8	4.0	0.4	
C_2NF_3	Trifluoroacetonitrile	CC	1.461	1.487	0.026	0.037	0.025	а
		CF	1.335	1.350	0.015	0.020	0.036	
		CCF CN	111.4 1.153	113.4 1.155	2.0 0.002	0.5 0.006	2.1 0.006	
CF ₄	Carbon tetrafluoride	CF	1.321	1.337	0.002	0.026	0.000	ddd
C_2F_4	Tetrafluoroethylene	CC	1.311	1.355	0.044	0.070	0.057	888
	•	CF	1.319	1.326	0.007	-0.001	0.021	
an.	0.10	FCC	123.8	125.1	1.3	0.4	1.6	
SF ₄	Sulfur tetrafluoride	SF	1.545	1.633	0.088	0.061	0.112	8
		FSF SF'	101.6 1.646	81.0 1.591	-20.6 -0.055	-13.0 -0.005	-18.6 0.022	
		FSF'	87.8	81.0	-6.8	0.9	-4.8	

Table VIII. (continued)

Empirical		Geometric				Errors		
formula	Chemical name	variable	Exp.	Calc.	PM3	MNDO	AM1	Footnote
C_2F_6	Hexafluoroethane	CC	1.560	1.608	0.048	0.114	0.061	a
		CF	1.320	1.341	0.021	0.026	0.043	
SF_6	Sulfur hexafluoride	FCC SF	109.5 1.564	111.4 1.560	$1.9 \\ -0.004$	$\frac{1.2}{0.091}$	2.6 0.110	•
HCl	Hydrogen chloride	HCl	1.275	1.268	-0.004 -0.007	0.091	0.009	a a
CHCl	Chloromethylene	CH	1.120	1.100	-0.020	-0.020	-0.010	a
		CCl	1.689	1.554	-0.135	0.050	-0.042	
		CICH	103.4	115.5	12.1	6.0	7.7	
CH_3Cl	Chloromethane	CCI	1.781	1.764	-0.017	0.014	-0.040	а
		CH HCCl	1.096 110.9	1.094 109.9	-0.002 -1.0	$0.006 \\ -2.8$	0.016 -2.6	
OCl	Chlorine monoxide	ClO	1.546	1.548	0.002	0.073	0.090	а
NOCI	NOCI	ClN	1.950	1.764	-0.186	-0.167	-0.219	a
		NO	1.170	1.156	-0.014	-0.033	-0.033	
		CNCI	114.0	118.9	4.9	3.5	5.4	
NO ₂ Cl	NO ₂ Cl	CIN	1.830	1.818	-0.012	-0.020	-0.059	а
ECI	Ohlanina Avanida	NOC1 CIF	1.210	1.197	-0.013	-0.019	-0.024	_
FCl O₃FCl	Chlorine fluoride ClO ₃ F	ClF	1.628 1.630	1.582 1.690	-0.046 0.060	$0.022 \\ 0.105$	0.019 0.051	a a
O ₃ r O ₁	CiO ₃ r	ClO	1.460	1.453	-0.007	0.103	0.328	а
		OCIF	95.2	102.8	7.6	11.0	3.0	
CHF ₂ Cl	Chlorodifluoromethane	CH	1.090	1.108	0.018	0.036	0.037	eee
		CCl	1.740	1.822	0.082	0.099	0.069	
		CICH	107.0	109.9	2.9	-2.2	-1.8	
		CF	1.350	1.346	-0.004	-0.008	0.019	
		FCCI FCCIH	$110.5 \\ 120.0$	110.1 122.6	$-0.4 \\ 2.6$	$-0.4 \\ 1.0$	$\frac{1.9}{2.0}$	
F ₃ Cl	Chlorine trifluoride	rccm	120.0	122.0	2.0	1.0	2.0	
1 301	C2v	ClF	1.598	1.671	0.073	0.101	0.085	а
		ClF'	1.698	1.671	-0.027	0.001	-0.015	
		FClF'	87.5	120.0	32.5	32.5	32.5	
Cl ₂	Chlorine	CICI	1.986	2.035	0.049	0.010	-0.068	a
CH_2Cl_2	Dichloromethane	CCI	1.772	1.758	~0.014	0.014	-0.031	ddd
		ClCCl CH	111.8 1,103	107.9 1.102	-3.9 -0.001	$-0.6 \\ 0.000$	1.2 0.010	
OCl_2	Cl_2O	ClO	1.701	1.700	-0.001	-0.018	0.010	а
0012	0.20	ClOCI	110.8	109.2	-1.6	2.1	0.3	•
COCl ₂	Carbonyl chloride	CO	1.166	1.198	0.032	0.034	0.056	а
,	·	CCI	1.746	1.737	-0.009	0.014	-0.027	
		CICO	124.4	124.2	-0.2	-0.5	-1.1	
SCl ₂	Sulfur dichloride	SCl	2.015	2.031	0.016	-0.043	-0.090	а
SOCl ₂	Thionyl chloride	CISCI SO	$102.7 \\ 1.443$	101.6 1.479	-1.1 0.036	3.6 0.026	3.1 0.110	fff
30012	Thionyi chioride	SC1	2.076	2.080	0.004	-0.028	-0.110	111
		CISO	106.3	104.7	-1.6	0.3	-0.2	
S_2Cl_2	CISSCI	SCI	2.057	2.044	-0.013	-0.081	-0.131	а
		SS	1.931	1.965	0.034	-0.011	-0.004	
		CISSCI	108.2	113.1	4.9	0.0	-0.3	
CF_2Cl_2	Dichlorofluoromethane		1.770	1.808	0.038	0.055	0.037	а
		CICCI CF	108.5 1.330	106.6 1.345	$-1.9 \\ 0.015$	$-1.7 \\ 0.007$	-1.8 0.040	
		FCCI	109.8	111.4	1.6	0.8	2.1	
CHCl ₃	Chloroform	CCI	1.782	1.753	-0.029	0.000	-0.034	ddd
-		CICH	107.5	110.4	2.9	1.1	0.2	
CFCl ₃	Trichlorofluoro-							
•	methane	CF	1.330	1.349	0.019	-0.003	0.046	а
001	a	CCI	1.760	1.779	0.019	0.046	0.026	,
CCl.	Carbon tetrachloride	CCI	1.760	1.747	-0.013	0.022	0.000	ddd
	Hexachloroethane	CC	1.550	1.512	-0.038	0.016	0.007	а
C ₂ Cl ₆		CCI						
C ₂ Cl ₆		CCI CICC	1.740 109.0	1.754 110.2	$0.014 \\ 1.2$	$0.050 \\ 2.4$	0.020 0.7	

Table VIII. (continued)

Empirical		Geometric				Errors		
formula	Chemical name	variable	Ехр.	Calc.	РМ3	MNDO	AM1	Footnote
CH_3Br	Bromomethane	CBr	1.933	1.951	0.018	-0.055	-0.028	pp
		CH	1.086	1.090	0.004	0.016	0.024	••
C_2H_3OBr	Acetyl bromide	HCBr CC	107.7	108.4	0.7	0.8	1.1	
C2113OD1	Acetyl bronnide	CBr	1.516 1.973	1.477 1.966	-0.039 -0.007	-0.001	-0.026	pp
		BrCC	111.0	106.3	-0.007 -4.7	-0.086 2.0	-0.026 2.3	
		CO	1.183	1.185	0.002	0.026	0.042	
ONE		CCO	127.1	134.3	7.2	0.2	-3.0	
CNBr	Cyanogen bromide	BrC	1.789	1.796	0.007	-0.046	-0.029	a
NOBr	BrNO	CN BrN	1.158	1.155	-0.003	0.003	0.006	
110D1	DINO	NO	$2.140 \\ 1.146$	1.888 1.147	-0.252 0.001	-0.271 -0.007	-0.218	pp
		BrNO	114.5	120.8	6.3	-0.007 4.4	-0.011 8.0	
FBr	BrF	BrF	1.755	1.774	0.019	-0.029	0.022	а
F_3Br	Bromine trifluoride	BrF	1.721	1.786	0.065	0.036	0.087	a
		BrF'	1.806	1.786	-0.020	-0.049	0.010	_
OP D	m : a 1	FBrF'	86.2	120.0	33.8	33.8	-4.8	
CF ₃ Br	Trifluorobromo-	CD	1.000					
	methane	CBr CF	1.909 1.328	1.960	0.051	0.029	0.134	а
		FCBr	110.3	1.335 110.8	0.007 0.5	0.019	0.039	
F_5Br	Bromine pentafluoride	BrF(ax)	1.680	1.755	0.5 0.075	0.8 0.086	3.4 0.134	_
	poiluitable	BrF(eq)	1.790	1.774	-0.016	-0.019	0.134	а
ClBr	Bromine chloride	BrCl	2.136	2.176	0.040	-0.056	-0.072	a
Br ₂	Bromine	BrBr	2.283	2.443	0.160	-0.115	-0.099	a
CH_2Br_2	Dibromomethane	CH	1.079	1.095	0.016	0.023	0.031	pр
		HCH	113.6	111.4	-2.2	-2.7	-3.3	••
		CBr	1.927	1.912	-0.015	-0.059	-0.025	
C_2Br_4	Tetrabromoethylene	BrCH CC	$106.5 \\ 1.362$	112.5	6.0	2.0	1.7	
O2D14	1611 abi omoetiiyiene	CBr	1.881	1.450 1.865	0.088 -0.016	-0.020 -0.060	-0.018	pp
		BrCC	122.4	111.9	-10.5	1.3	-0.024 0.0	
HI	Hydrogen iodide	HI	1.609	1.677	0.068	-0.042	-0.022	ggg
CH_3I	Iodomethane	CH	1.084	1.093	0.009	0.020	0.025	рр
		CI	2.132	2.028	-0.104	-0.117	-0.082	FF
ONT	0 111	нсн	111.2	109.9	-1.3	-2.8	-1.4	
CNI	Cyanogen iodide	CN	1.159	1.155	-0.004	0.005	0.003	а
FI	Iodine fluoride	CI IF	1.994	1.908	-0.086	-0.103	~0.067	
CF₃I	Trifluoroiodomethane	CI	1.906 2.130	1.889 2.052	-0.017 -0.078	-0.004 -0.005	~0.025	a
,-	······································	CF	1.332	1.340	0.008	0.022	$0.045 \\ 0.037$	а
		FCI	110.6	112.1	1.5	1.9	3.5	
F_5I	Iodine pentafluoride	IF(ax)	1.844	1.867	0.023	0.139	0.087	hhh
		IF(eq)	1.869	1.882	0.013	0.088	0.029	44444
D T	1.4: . h 6 1	F(ax)IF(eq)	81.9	102.6	20.7	-3.8	-4.6	
F ₇ I	lodine heptafluoride	IF(ax)	1.760	2.698	0.938	0.731	0.866	iii
ClI	lodine chloride	IF(eq) ICl	$\frac{1.860}{2.327}$	1.913	0.053	0.218	0.114	
	Iodine bromide	IBr	2.485	$2.192 \\ 2.561$	-0.135 0.076	-0.065 -0.135	-0.109	a
	Iodine	II	2.666	2.668	0.002	-0.155	-0.131 -0.128	a
HAI	AIH	AlH	1.648	1.663	0.015	-0.222	-0.180	a a
AlO	AlO	AlO	1.618	1.533	-0.085	-0.143	-0.053	a
AlF	Aluminum fluoride	AlF	1.654	1.652	-0.002	-0.094	-0.077	a
	Aluminum trifluoride	AlF	1.630	1.644	0.014	-0.038	-0.014	a
	AlF ₄ (-)	AlC	1.690	1.688	-0.002	-0.041	-0.023	a
	Aluminum chloride Aluminum trichloride	AlCl AlCl	2.130	1.947	-0.183	-0.055	-0.145	a
	Aluminum bromide	AlBr	2.060 2.295	1.966 2.292	-0.094 -0.003	0.005	-0.064	a
	Aluminum tribromide	AlBr	2.293	2.292 1.875	-0.003 -0.395	-0.093 -0.095	-0.201 -0.161	a.
AlI ₃	Aluminum triiodide	AlI	2.499	2.487	-0.012	-0.053 -0.174	-0.161	a a
Al ₂	Al ₂	AlAl	2.467	2.554	0.087	-0.175	-0.175	a a
	Al ₂ O	AlO	1.730	1.677	-0.053	-0.124	-0.012	a
H_2S_i	Silylene (singlet)	SiH	1.519	1.513	-0.006	-0.139	-0.062	jjj
		HSiH	92.1	94.9	2.8	5.2	8.9	

Table VIII. (continued)

Empirical		Geometric				Errors		
formula	Chemical name	variable	Exp.	Calc.	PM3	MNDO	AM1	Footnote
H ₄ Si	Silane	SiH	1.481	1.488	0.007	-0.105	-0.020	
C ₄ H ₁₂ Si	Tetramethylsilane	SiC	1.879	1.890	0.011	-0.064	-0.050	pр
SiN	Silicon nitride	SiN	1.572	1.464	-0.108	-0.021	-0.087	a
SiF_2	Difluorosilylene	SiF	1.591	1.575	-0.016	-0.013	0.021	a
		FSiF	101.0	95.3	-5.7	-4.1	-3.9	~
HSiF ₃	Trifluorosilane	SiH	1.447	1.507	0.060	-0.072	-0.007	а
		SiF	1.562	1.590	0.028	0.031	0.047	_
		FSiH	110.6	112.6	2.0	3.0	1.2	
SiF ₄	Tetrafluorosilane	SiF	1.552	1.580	0.028	0.032	0.052	а
SiCl	Chlorosilylidyne	SiCl	2.063	1.946	-0.117	0.009	-0.077	a
SiCl ₂	Dichlorosilylene	ClSiCl	109.7	101.9	-7.8	-4.2	-5.3	kkk
SiCl ₄	Silicon tetrachloride	SiCl	2.017	2.041	0.024	0.063	0.022	a
H ₃ SiBr	Bromosilane	SiBr	2.210	1.901	-0.309	0.008	0.030	
1135111	Diomostratie	SiH	1.481	1.491	0.010	-0.113	-0.016	рp
		HSiBr	107.9	108.3	0.010	-1.0	2.4	
SiBr ₄	Silicon tetrabromide	SiBr	2.150	1.796	-0.354	0.040	0.093	_
								а
H_3SiI	Iodosilane	SiI	2.437	2.012	-0.425	-0.051	-0.003	а
		SiE.	1.486	1.492	0.006	-0.116	-0.020	
0.1	~···	HSiI	108.5	108.0	-0.5	-0.1	1.3	
SiI₄	Silicon tetraiodide	SiI	2.430	2.467	0.037	-0.097	-0.005	а
Si ₂	Silicon dimer	SiSi	2.246	2.297	0.051	-0.259	-0.019	a
H_6Si_2	Disilane	SiSi	2.331	2.396	0.065	-0.158	0.086	111
		SiH	1.492	1.487	-0.005	-0.113	-0.026	
		HSiSi	110.3	109.7	-0.6	0.9	-0.7	
H_3P	Phosphine	PH	1.420	1.324	-0.096	-0.080	-0.054	а
		HPH	93.8	97.1	3.3	2.3	2.8	
CP	Carbon phosphide	CP	1.562	1.389	-0.173	-0.145	-0.151	а
CHP	Methinophosphide	CP	1.542	1.409	-0.133	-0.114	-0.123	а
		HC	1.067	1.068	0.001	-0.010	-0.003	
C ₃ H ₉ P	Trimethylphosphine	CP	1.843	1.872	0.029	-0.081	-0.079	pp
	• • •	CPC	98.9	100.6	1.7	7.9	2.2	
PO	Phosphorus oxide	PO	1.476	1.459	-0.017	-0.053	-0.004	а
NP	Phosphorus nitride	PN	1.491	1.414	-0.077	-0.093	-0.091	а
PF_3	Phosphorus trifluoride		1.570	1.558	-0.012	-0.014	0.024	а
3		FPF	97.8	95.8	-2.0	1.1	-1.3	
POF_3	Phosphoryl fluoride	PF	1.520	1.529	0.009	0.034	0.071	а
	i nospiloty: naoriac	FPF	102.5	99.8	-2.7	-0.6	-0.9	-
		PO	1.450	1.452	0.002	0.036	0.096	
PSF ₃	Thiophosphoryl	10	1.100	1.102	0.002	0.000	0.000	
1 01 3	fluoride	PF	1.530	1.539	0.009	0.027	0.071	а
	nuoride	FPF	100.3	95.1	-5.2	-1.0	-3.0	4
		PS	1.870	1.934	0.064	0.105	0.063	
PF ₅	Phosphorus	10	1.010	1.504	0.004	0.100	0.000	
FF5		DE()	1 577	1 550	-0.024	0.025	0.044	_
	pentafluoride	PF(ax)	1.577	1.553			0.044	а
DOL	Dheart ama trial lavid	PF(eq)	1.534	1.528	-0.006	0.039	0.071	_
PCl_3	Phosphorus trichloride		2.039	2.064	0.025	-0.050	-0.100	а
DO!	DI 1	CIPCI	100.3	99.7	-0.6	4.9	4.4	
PCl ₅	Phosphorus	DOL .	0.100	0.000	0.005	0.050	0.40-	
	pentachloride	PCl(ax)	2.190	2.093	-0.097	-0.078	-0.101	а
		PCl(eq)	2.040	2.052	0.012	-0.007	-0.054	
PBr_3	Phosphorus tribromide		2.220	2.150	-0.070	-0.131	-0.134	рp
_		BrPBr	101.0	101.3	0.3	4.7	6.2	
P_2	Phosphorus dimer	PP	1.894	1.715	-0.179	-0.200	-0.200	a
P ₄	Phosphorus tetramer	PP	2.210	2.197	-0.013	-0.158	-0.158	а
P ₄ O ₆	Phosphorus trioxide	PO	1.650	1.708	0.058	-0.046	0.031	a
	-	OPO	99.0	96.5	-2.5	-3.0	-1.9	

⁸M. W. Chase, C. A. Davies, J. R. Downey, D. R. Frurip, R. A. McDonald, and A. N. Syverud, JANAF Thermochemical Tables, Third Edition, J. Phys. Chem. Ref. Data, 14, Suppl. 1 (1985).

bG. Herzberg, Molecular Spectra and Molecular Structure III. Electronic Spectra and Electronic Structure of Polyatomic Molecules, Van Nostrand, New York, 1966.

cA. G. Maki and R. A. Toth, J. Mol. Spectr., 17, 136 (1965).

dW. M. Stigliani, V. W. Laurie, and J. C. Li, J. Chem. Phys., 62, 1890 (1975).

eR. A. Bonham, L. S. Bartell, J. Am. Chem. Soc., 81, 3491 (1959).

O. Bastiansen, F. N. Fritsch, and K. Hedberg, Acta Crystallogr., 17, 538 (1964). ⁸D. R. Lide and D. Christensen, J. Chem. Phys., 35, 1374 (1961). ^hJ. H. Callomon and B. P. Stoicheff, Can. J. Phys., 35, 373 (1957).

'A. Almenningen, O. Bastiansen, and M. Traetteberg, Acta Chem. Scand., 15, 1557 (1961). T. Fukuyama, K. Kuchitsu, and Y. Morino, Bull. Chem. Soc. Jap., 42, 379 (1969). ^kK. W. Cox, M. D. Harmony, G. Nelson, and K. B. Wiberg, J. Chem. Phys., 50, 1976 (1969). W. Haugen and M. Traetteberg, Acta Chem. Scand., 20, 1226 (1966). ^mA. Almenningen, I.M. Anfinsen, and A. Haaland, Acta Chem. Scand., 24, 43 (1970). ⁿS. Meiboom and L. C. Snyder, J. Chem. Phys., **52**, 3857 (1970). °L. R. H. Scharpen and V. W. Laurie, J. Chem. Phys., 39, 1972 (1963). ^pD. R. Lide, J. Chem. Phys., 33, 1519 (1960). ^qB. W. McCelland and K. Hedberg, J. Am. Chem. Soc., 109, 7304 (1987). K. Tamagawa, T. Iijima, and M. Kimura, J. Mol. Struct., 30, 243 (1976). P. A. Baron, R. D. Brown, F. R. Burden, P. J. Domaille, and J. E. Kent, J. Mol. Spectrosc., 43, 401 (1970). ^tJ.F. Chiang and S.H. Bauer, J. Am. Chem. Soc., 91, 1898 (1969). O. Bastiansen, L. Fernholt, H. M. Seip, H. Kambara, and K. Kuchitsu, J. Mol. Struct., 18, 163 (1973). G. Herzberg, Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules, 2nd ed, Van Nostrand, New York, 1950. WK. Takagi and T. Oka, J. Phys. Soc. Jap., 18, 1174 (1963). *R. M. Lees and J. G. Baker, J. Chem. Phys., 48, 5299 (1968). A. P. Cox, L. F. Thomas, and J. Sheridan, Spectrochim. Acta, 15, 542 (1959). ²U. Blukis, P. H. Kasai, and R. J. Myers, J. Chem. Phys., 38, 2753 (1963). ^{aa}K. Kuchitsu, T. Fukuyama, and Y. Marino, J. Mol. Struct., 1, 463 (1968). bbB. Bak, D. Christensen, W.B. Dixon, L. Hansen-Nygarrd, J. Rastrup-Anderson, and M. Shottlander, J. Mol. Spectrosc., 9, 124 (1962). "W. C. Oelfke and W. Gordy, J. Chem. Phys., 51, 5336 (1969). ^{dd}G. H. Kwei and R. F. Curl, J. Chem. Phys., 32, 1592 (1960). ed J. Trotter, Acta Crystallagr., 13, 86 (1960). ^{ff}D. G. Lister, J. K. Tyler, J. H. Hog, and N. W. Larson, J. Mol. Struct., 23, 253 (1974). ggD. R. Lide, J. Chem. Phys., 27, 343 (1957). hhC. C. Costain, J. Chem. Phys., 29, 864 (1958). "J. E. Wollrab and V. W. Laurie, J. Chem. Phys., 51, 1580 (1969). ¹D. R. Johnson, F.J. Lovas, and W. H. Kirchhoff, J. Phys. Chem. Ref. Data, 1, 1011 (1972). kkJ. O. Morley, J. Chem. Soc. Perkin Trans. II, (1987) (in press). ¹¹J. K. Tyler, J. Mol. Spectrosc., 11, 39 (1963). mm J. E. Lancaster and B. J. Stoicheff, Can. J. Phys., 34, 1016 (1965). ⁿⁿL. E. Sutton, "Tables of Interatomic Distances and Configurations in Molecules and Ions," Special Publication No. 11 + 18, Chem. Soc., London (1958), (1965). ^{oo}R. W. Kilb, J. Chem. Phys., 23, 1736 (1955). PPJ. H. Callomon, E. Hirota, K. Kuchitsu, W. J. Lafferty, A. G. Maki, and C. S. Pote, Structure Data on Free Polyatomic Molecules, Landolt-Bornstein, New Series, Group II, Vol. 7, Springer, Berlin, 1976. ^{qq}B. Bak, D. Christensen, L. Hansen-Nygarrd, and J. Rastrup-Anderson, J. Mol. Spectrosc., 7, 58 (1961). "J. K. G. Watson, J. Mol. Spectrosc., 48, 479 (1973). ⁵⁵D. W. W. Anderson, D. W. H. Rankin, and A. Robertson, J. Mol. Struct., 14, 385 (1972). "P. Rosmus, H. Stafast, and H. Bock, Chem. Phys. Lett., 34, 275 (1975). uuG. Winnewisser, M. Winnewisser, and W. Gordy, J. Chem. Phys., 49, 3465 (1968). vvR. Sutter, H. Driezler, and F.Z. Rudolph, Naturforschung A, 20, 1676 (1965). wwJ. Donohue, A. Caron, and E. Goldish, J. Am. Chem. Soc., 83, 3748 (1961). xx A. Caron and J. Donohue, Acta Crystallogr., 18, 562 (1965). yyG. A. Kuipers, D. F. Smith, and A. N. Nielsen, J. Chem. Phys., 25, 275 (1956). ²²J. L. Duncan, J. Mol. Struct., 6, 447 (1970). asa J. L. Carlos, R. R. Karl, and S. H. Bauer, J. Chem. Soc., Faraday Trans., 2, 177 (1974). bbbT. Ogata, K. Fujii, M. Yoshikawa, and F. Hirota, J. Am. Chem. Soc., 109, 7639 (1987). ^{ccc}J. K. Tyler and J. Sheridan, *Trans. Faraday Soc.*, **59**, 2661 (1963). dddA. S. Rodgers, J. Chao, R. C. Wilhoit, and B. J. Zwolinski, *J. Phys. Chem. Ref. Data*, **3**, 117 (1974). ere S. S. Chen, A. C. Wilhoit, and B. J. Zwolinski, J. Phys. Chem. Ref. Data, 5, 571 (1975). ^mI. Hargittai, Acta Chem. (Budapest), **49**, 351 (1969). KRRK. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure, IV. Constants for Diatomic Molecules, Van Nostrand, Reinhold, New York, 1979. hhhN. N. Greenwood and A. Earnshaw, Chemistry of the Elements, Pergamon Press, Oxford, 1984, p. 976. "D. R. Stull and H. Prophet, Natl. Stand., Ref. Data Ser. (U.S., Natl. Bur. Stand.) NSRDS-NBS 37, 1971. ¹¹J. H. Meadows and H. F. Schaefer III, J. Am. Chem. Soc., 98, 4383 (1976). kkk R. W. Davis and M. C. L. Gerry, J. Mol. Spectrosc., 60, 117 (1976). ^{III}K. C. Shotton, A. G. Lee, and W. J. Jones, J. Raman Spectrosc., 1, 243 (1973).

is curious that in order to reproduce the observed dipole for propyne (0.78D) the atomic charges would have to be markedly larger than that predicted by current semiempiri-

cal methods. Whether the charges should in fact be larger, or some limitation of semiempirical methods is resulting in an incorrect calculation of the dipole based on the charge

Table IX. Unsigned average errors in bond lengths in angstroms.

		H	C	N	0	F	Al	Si	P	S	Cl	Br	I
	Н	1						- 1					
(PM3)		0.042											
(MNDO)	1	0.078											
(AM1)		0.064											
	C	51	72										
(PM3)		0.009	0.017										
(MNDO)	1	0.010	0.014										
(AM1)		0.014	0.017										
	N	7	21	8									
(PM3)		0.011	0.018	0.092									
(MNDO)	ı	0.139	0.022	0.120									
(AM1)		0.051	0.025	0.122									
(2-2-2-7	0	8	18	18	3								
(PM3)	•	0.014	0.012	0.034	0.095								
(MNDO)		0.014	0.021	0.085	0.389								
(AM1)		0.012	0.030	0.062	0.229								
(11111)	F	3	19	2	1	1							
(PM3)	•	0.056	0.015	0.085	0.034	0.062							
(MNDO)		0.389	0.016	0.135	0.131	0.146							
(AM1)		0.200	0.016	0.133	0.151	0.015							
(MIII)	Al	0.200	0.020	0.002	2	3	1						
(PM3)	ΛI	0.015			0.069	0.006	0.087						
(MNDO)		0.013 0.222			0.009	0.008	0.037						
(MNDO)		0.222			0.133	0.038	0.175						
(MIII)	Si	6	1	1	0.055	3	0.175	2					
(PM3)	SI.	0.016	0.011	0.108		0.024		0.058					
(MNDO)		0.010	0.064	0.108		0.024		0.008					
			0.050	0.021		0.025		0.209					
(AM1)	P	$0.025 \\ 1$	3	1	3	5		0.002	a				
(PM3)	Г	0.096	0.112	0.077	0.026	0.012			$\begin{array}{c} 2 \\ 0.096 \end{array}$				
						0.012							
(MNDO)		0.080	0.113	0.093	0.045				0.179				
(AM1)	S	0.054	0.118	0.091	0.044	0.056			0.179				
(DMa)	3	3	10	1	7	8			1	8			
(PM3)		0.026	0.047	0.043	0.074	0.033			0.064	0.046			
(MNDO)		0.026	0.063	0.055	0.084	0.043			0.105	0.087			
(AM1)	01	0.008	0.071	0.054	0.152	0.063	•	•	0.063	0.083			
(D3.60)	Cl	1	10	2	3	4	2	2	3	3	1		
(PM3)		0.007	0.037	0.099	0.003	0.052	0.138	0.070	0.045	0.011	0.049		
(MNDO)		0.073	0.036	0.093	0.120	0.057	0.030	0.036	0.045	0.054	0.010		
(AM1)	n	0.009	0.033	0.139	0.150	0.042	0.105	0.049	0.085	0.108	0.068		
(D3.50)	Br	1	6	1		5	2	2	1		1	1	
(PM3)		0.056	0.019	0.252		0.039	0.199	0.332	0.070		0.040	0.160	
(MNDO)		0.025	0.056	0.271		0.044	0.094	0.029	0.131		0.056	0.115	
(AM1)		0.006	0.044	0.218		0.053	0.181	0.061	0.134		0.072	0.099	_
(D3.50)	I	1	3			5	1	2			1	1	1
(PM3)		0.068	0.089			0.209	0.012	0.231			0.135	0.076	0.002
(MNDO)		0.042	0.075			0.236	0.174	0.074			0.065	0.135	0.151
(AM1)		0.022	0.065			0.224	0.190	0.004			0.109	0.131	0.128

distribution is not clear. Whatever the reason, it appears that any charge distribution which would give rise to the experimentally observed dipole would be unacceptable, and more "realistic" charges would be preferable to those which would accurately reproduce the observed dipole moment. In consequence, the dipoles of nonconjugated hydrocarbons are too low, on average.

IONIZATION POTENTIALS

Table XIV lists the calculated and observed first ionization potentials for 256 compounds. In this report, only first ionization

potentials will be considered. The average differences in IPs between experimental and calculated values are 0.57, 0.78, and 0.61 eV for PM3, MNDO, and AM1, respectively. IPs for doublet and other open shell systems are not reported, but differences for these systems are likely to be of the same order as for closed-shell systems.

DISCUSSION

Bonding in Hypervalent Compounds

A more complete optimization of the parameters involved in MNDO/AM1 has re-

Table X. Signed average errors in bond lengths in angstroms.

	Н	C	N	0	F	Al	Si	P	S	Cl	Br	I
H	1											
(PM3)	-0.04											
(MNDO)	-0.08											
(AM1)	-0.06											
C	51	72										
(PM3)	0.00	-0.01										
(MNDO)	0.01	0.00										
(AM1)	0.01	-0.01										
N	7	21	8									
(PM3)	-0.01	0.01	-0.09									
(MNDO)	0.14	0.00	-0.12									
(AM1)	0.04	-0.01	-0.10									
O	8	18	18	3								
(PM3)	-0.01	0.01	0.00	-0.09								
(MNDO)	-0.01	0.02	0.02	0.21								
(AM1)	0.01	0.03	-0.01	-0.23								
F	3	19	2	1	1							
(PM3)	-0.03	0.00	-0.08	-0.03	-0.06							
(MNDO)	0.39	0.00	-0.14	-0.13	-0.15							
(AM1)	0.08	0.02	-0.08	-0.06	0.01							
Al	1			2	3	1						
(PM3)	0.02			-0.07	0.00	0.09						
(MNDO)	-0.22			-0.13	-0.06	-0.18						
(AM1)	-0.18			-0.03	-0.04	-0.18						
Si	6	1	1		3		2					
(PM3)	0.01	0.01	-0.11		0.01		0.06					
(MNDO)	-0.11	-0.06	-0.02		0.02		-0.21					
(AM1)	-0.03	-0.05	-0.09		0.04		0.03					
P	1	3	1	3	5			2				
(PM3)	-0.10	-0.09	-0.08	0.01	0.00			-0.10				
(MNDO)	-0.08	-0.11	-0.09	-0.02	0.02			-0.18				
(AM1)	-0.05	-0.12	-0.09	0.04	0.06			-0.18	_			
S	3	10	1	7	8			1	8			
(PM3)	-0.03	-0.04	-0.04	0.06	-0.01			0.06	0.01			
(MNDO)	-0.03	-0.06	-0.05	0.08	0.02			0.11	-0.06			
(AM1)	-0.01	~0.07	-0.05	0.15	0.06	_	_	0.06	-0.06	_		
Cl	1	10	2	3	4	2	2	3	3	1		
(PM3)	-0.01	-0.01	-0.10	0.00	0.01	-0.14	-0.05	-0.02	0.00	0.05		
(MNDO)	0.07	0.04	-0.09	0.11	0.06	-0.02	0.04	-0.05	-0.05	0.01		
(AM1)	0.01	0.00	-0.14	0.15	0.03	-0.10	-0.03	-0.08	-0.11	-0.07	_	
Br	1	6	1		5	2	2	1		1	1	
(PM3)	0.06	0.01	-0.25		0.02	-0.20	-0.33	-0.07		0.04	0.16	
(MNDO)	0.02	-0.05	-0.27		0.00	-0.09	0.03	-0.13		-0.06	-0.11	
(AM1)	0.01	0.00	-0.22		0.05	~0.18	0.06	-0.13		-0.07	-0.10	_
I I	1	3			5	1	2			1	1	1
(PM3)	0.07	-0.09			0.20	-0.01	-0.19			-0.14	0.08	0.00
(MNDO)	-0.04	~0.08			0.23	-0.17	-0.07			-0.07	-0.14	-0.15
(AM1)	-0.02	-0.03			0.21	-0.19	0.00			-0.11	-0.13	-0.13

sulted in a greater than 50% reduction in the differences between experimental and calculated values of ΔH_f . Most of the improvement is due to better prediction of hypervalent compounds, for example, SF₆ and $\rm H_2SO_4$. No hypervalent compounds were used in the parameterization of MNDO and only a few were used in parameterizing AM1. Hitherto, no purely 's-p' basis set model has proven successful in describing the bonding in hypervalent systems; "d" orbitals are normally considered essen-

tial. 6,25,33 Using the new parameter set, ΔH_f and geometries are reproduced with chemically useful accuracy. Thus we conclude that d orbitals are not essential for a description of the bonding in hypervalent compounds. This conclusion cannot be used to refute the assertion that d-orbital participation is important, only that within the MNDO framework s and p atomic orbitals are sufficient.

For the hypervalent compounds surveyed, no geometric quantities can be identified as resulting from the angular properties of d

Table XI. Average errors in calculated bond lengths.

In bonds		Av	erage error	(A)
involving	No.	PM3	MNDO	AM1
Hydrogen	84	0.005	0.014	0.008
Carbon	214	0.002	0.002	0.002
Nitrogen	62	0.013	0.017	0.015
Oxygen	63	0.006	0.016	0.012
Fluorine	59	0.011	0.022	0.015
Aluminum	12	0.044	0.074	0.075
Silicon	19	0.045	0.030	0.019
Phosphorus	20	0.030	0.041	0.041
Sulfur	41	0.008	0.013	0.015
Chlorine	33	0.021	0.020	0.029
Bromine	21	0.059	0.046	0.048
Iodine	15	0.055	0.063	0.058

orbitals; the only reason for invoking them is to explain the increased valency. The parameters for the s and p atomic orbitals in MNDO are adjusted to optimally reproduce experimental results. As a result, the s and p orbitals cannot be simply identified with a given principal quantum number (although an integer PQN is used as part of the definition of the Slater atomic orbitals). Rather, the s and p orbitals represent not only the assumed atomic orbitals but also all higher atomic orbitals including those of different angular quantum number right up to the continuum. In this respect, semiempirical methods differ from ab initio. Using ab initio methods d orbitals would be essential for describing the hypervalents; the s-p basis functions, being ab initio, could not perform the double duty of representing d orbitals.

Very few data are available for gas-phase organophosphorus V compounds, so the validity of the new parameters for the study of such compounds cannot be confirmed. In addition, all systems studied are gas phase, whereas reactions of biochemical interest occur mainly in the aqueous phase, although thas been postulated³⁴ that during the course of a biochemical reaction the reactive site may behave as if it were in the gas phase. Nevertheless, the available data are reproduced with sufficient accuracy to warrant consideration of using these parameters for the study of biochemically important systems.

Figure 3. Intermolecular distances in salicylaldoxime. All distances in Angstroms. Observed distance in parentheses.

CONCLUSION

The parameter set here has three limitations: in the limit, it is only as good as the reference data used; it cannot overcome any limitations in the algebraic form of the Hamiltonian (here MNDO/AM1); and it should be used with caution when applied to the prediction of any properties not used either in the parameterization or in subsequent surveys. In particular, when venturing into a new field of application, frequent comparison of calculated and experimental results is imperative.

Using the new optimization procedure described in the previous report, the task of optimizing parameters is relatively straight-

Figure 4. Calculated geometry for IF7.

Table XII. Average errors in molecular geometries.

Geometric parameter	No.	РМ3	MNDO	AM1
Bond lengths (angstroms)	372	0.036	0.054	0.050
Angles (degrees)	158	3.932	4.342	3.281
Torsion angles (degrees)	16	14.875	21.619	12.494

Table XIII. Comparison of experimental and calculated dipole moments.

170		Dipole	moment		Errors			
Empirical formula	Chemical name	Exp.	Calc.	РМ3	MNDO	AM1	Footnote	
C_3H_4	Cyclopropene	0.45	0.39	-0.06	0.03	-0.09	a	
C_3H_4	Propyne	0.78	0.36	-0.42	-0.66	-0.38	а	
C_3H_6	Propene	0.37	0.23	-0.14	-0.33	-0.14	а	
C_3H_8	Propane	0.08	0.01	-0.07	-0.08	-0.08	а	
C ₄ H ₆	Bicyclobutane	0.68	0.43	-0.25	-0.27	-0.26	а	
C₄H _€	Cyclobutene	0.13	0.15	0.02	-0.05	0.04	а	
C ₅ H ₆	Cyclopentadiene	0.42	0.53	0.11	~0.24	0.11	а	
C ₅ H ₈	Cyclopentene	0.20	0.15	-0.05	~0.15	-0.03	a	
C_6H_6	Fulvene Toluene	$0.42 \\ 0.36$	0.66	0.24	0.27	0.27	b	
C ₇ H ₈ H ₂ O	Water	1.85	$0.26 \\ 1.74$	-0.10 -0.11	~0.30 ~0.07	$-0.10 \\ 0.01$	a a	
CO CO	Carbon monoxide	0.11	0.18	0.07	0.09	-0.05	a	
CH₂O	Formaldehyde	2.33	2.16	-0.17	-0.17	-0.01	a	
CH ₄ O	Methanol	1.70	1.49	-0.21	-0.22	-0.08	a	
C_2H_2O	Ketene	1.42	1.06	-0.36	-0.38	-0.07	a	
C_2H_4O	Acetaldehyde	2.69	2.54	-0.15	-0.31	0.00	a	
C ₂ H ₄ O	Ethylene oxide	1.89	1.77	-0.12	0.03	0.02	a	
C ₂ H ₆ O	Ethanol	1.69	1.45	-0.24	-0.29	-0.14	a	
C_2H_6O	Dimethyl ether	1.30	1.25	~0.05	-0.03	0.13	а	
C_3H_6O	Acetone	2.88	2.78	-0.10	-0.37	0.04	а	
C ₄ H ₄ O	Furan	0.66	0.22	-0.44	-0.24	-0.17	а	
$C_4H_{10}O$	Diethyl ether	1.15	1.33	0.18	0.21	0.30	а	
C_6H_6O	Phenol	1.45	1.14	~0.31	-0.29	-0.22	а	
C_7H_8O	Anisole	1.38	1.08	-0.30	-0.31	-0.13	a	
CH_2O_2	Formic acid	1.41	1.51	0.10	0.08	0.07	а	
$C_2H_4O_2$	Acetic acid	1.74	1.83	0.09	-0.06	0.12	а	
$C_2H_4O_2$	Methyl formate	1.77	1.59	-0.18	-0.15	-0.26	а	
$C_3H_6O_2$	Propionic acid	1.75	1.81	0.06	-0.04	0.08	а	
C ₃ H ₆ O ₂	Methyl acetate	1.72	1.82	0.10	0.03	0.02	а	
O_3	Ozone	0.53	1.71	1.18	0.65	0.67	а	
H ₃ N	Ammonia	1.47	1.55	0.08	0.28	0.38	а	
CHN	Hydrogen cyanide	$\frac{2.98}{1.31}$	$2.70 \\ 1.40$	$-0.28 \\ 0.09$	$-0.48 \\ 0.17$	$-0.62 \\ 0.18$	a	
CH ₅ N C ₂ H ₃ N	Methylamine Acetonitrile	3.92	3.21	-0.71	-1.29	-1.03	a a	
C_2H_3N	Methyl isocyanide	3.85	3.69	-0.11	-1.23 -1.68	-1.03	a a	
C_2H_5N	Ethyleneimine (Azirane)	1.90	1.69	-0.21	-0.15	-0.15	a	
C_2H_7N	Ethylamine (Tantane)	1.22	1.43	0.21	0.30	0.33	a	
C_2H_7N	Dimethylamine	1.03	1.27	0.24	0.14	0.20	a	
C_3H_3N	Acrylonitrilo	3.87	3.25	-0.62	-0.90	-0.87	a	
C_3H_9N	Trimethylamine	0.61	1.15	0.54	0.14	0.41	a	
C₄H₅N	Pyrrole	1.74	2.18	0.44	0.07	0.21	c	
C ₅ H ₅ N	Pyridine	2.22	1.94	-0.28	-0.26	-0.25	d	
C ₆ H ₇ N	Aniline	1.53	1.30	-0.23	-0.07	0.01	а	
CH ₃ NO	Formamide	3.73	3.12	-0.61	-0.62	-0.03	а	
C ₃ H ₇ NO	Dimethylformamide	3.82	3.06	-0.76	-0.65	-0.27	а	
HNO ₂	Nitrous acid, trans	1.86	2.08	0.22	0.42	0.45	e	
HNO ₃	Nitric acid	2.17	2.32	0.15	0.61	0.40	а	
CH_2N_2	Diazomethane	1.50	1.92	0.42	-0.25	-0.17	а	
CH ₂ N ₂	$N = N - CH_2 -$	1.59	1.87	0.28	-0.04	0.04	a	
CH ₆ N ₂	Methylhydrazine	1.66	0.32	-1.34	-1.42	-0.89	f	
N ₂ O	Nitrous oxide	0.17	0.26	0.09	0.59	0.47	a	
CH ₄ S	Thiomethanol	1.52	1.95	0.43	0.15	0.44	g	
C ₂ H ₆ S	Thioethanol	1.52	1.98	0.46	0.11	0.44	g h	
C ₂ H ₆ S	Dimethyl thioether Thiophene	1.50 0.53	1.96 0.67	0.46 0.14	0.22 0.36	$0.32 \\ 0.32$		
C₄H₄S CSO	Carbon oxysulfide	0.53	0.38	-0.14	0.36	-0.32	g h	
SO ₂	Sulfur dioxide	1.57	3.63	-0.33 2.06	1.90	2.06		
$C_2H_6S_2$	2,3-Dithiabutane	1.98	2.57	0.59	-0.02	0.26	g	
HF	Hydrogen fluoride	1.83	1.40	-0.43	0.16	-0.09	g	
CH₃F	Fluoromethane	1.86	1.44	-0.42	-0.10	-0.24	j	
C ₂ HF	Fluoroacetylene	0.70	1.11	0.41	0.88	0.36	k k	
C ₂ H ₃ F	Fluoroethylene	1.43	1.37	-0.06	0.27	-0.05	ĥ	
C ₂ H ₅ F	Fluoroethane	1.96	1.58	-0.38	-0.09	-0.27	ĥ	
C ₆ H ₅ F	Fluorobenzene	1.66	1.60	-0.06	0.30	-0.08	ĥ	

Table XIII. (continued)

Emminical		Dipole	moment		Errors		
Empirical formula	Chemical name	Exp.	Calc.	PM3	MNDO	AM1	Footnote
HOF	Hypofluorous acid	2.23	1.68	-0.55	-0.42	-0.63	l
CHOF	HCOF	2.02	2.46	0.44	0.48	0.55	h
CNF	Cyanogen fluoride	2.17	1.63	-0.54	-1.28	-0.96	k
NOF	Nitrosyl fluoride	1.81	0.26	- 1.55	-1.30	-1.43	h
NO_2F	Fluorine nitrite	0.47	0.89	0.42	0.19	0.35	g
CH_2F_2	Difluoromethane	1.96	1.81	-0.15	0.26	0.08	h
$C_2H_4F_2$	1,1-Difluoroethane	2.30	2.12	-0.18	0.20	-0.03	h
$C_6H_4F_2$	o-Difluorobenzene	2.59	2.74	0.15	0.77	0.09	m
OF ₂	Difluorine oxide	0.30	0.38	0.08	0.02	-0.19	h
COF ₂	Carbonyl fluoride	0.95	1.08	0.13	-0.14	0.33	g
N_2F_2	cis-Difluorodiazene	0.16	0.63	0.47	-0.14	0.50	g
CHF ₃	Trifluoromethane	1.65	1.88	0.23	0.58	0.43	j
C ₂ HF ₃	Trifluoroethylene	1.30	1.49	0.19	0.52	0.13	n
$C_2H_3\tilde{F}_3$	1,1,1-Trifluoroethane	2.32	2.40	0.08	0.55	0.27	h 1
C ₂ HO ₂ F ₃	Trifluoroacetic acid	2.28	1.96	-0.32	0.17	-0.42	h
NF ₃	Nitrogen trifluoride	0.24	0.26	0.02	-0.04	-0.20	h
C ₂ NF ₃	Trifluoroacetonitrile	1.26	0.32	-0.94	-0.90	-1.23	0
COF ₄	Trifluoromethyl hypofluorite	0.33	0.28	-0.05	-0.24	0.02	p
HCl	Hydrogen chloride	1.12	1.38	0.26	0.36	0.26	q
C ₂ HCl	Chloria Guarida	0.44	0.14	-0.30	0.34	-0.17	r
FCI	Chlorine fluoride Sulfur dichloride	0.88	1.42	0.54	0.59	0.03	8
SCl ₂ HBr		0.36	0.59	0.23	0.40	-0.30	g
	Hydrogen bromide	0.83	1.27	0.44	0.24	0.55	a
CH ₃ Br	Bromomethane	1.82	1.55	-0.27	-0.26	-0.34	a
C ₂ H ₃ Br	Bromoethylene	$\frac{1.42}{2.03}$	1.33	-0.09	-0.11	-0.12	S
C ₂ H ₅ Br	Bromoethane	2.03	1.85	-0.18 -0.37	$-0.37 \\ -0.47$	-0.37	a
C ₃ H ₇ Br	1-BromopropaneBromobenzene	1.70	1.81			-0.48	a
C ₆ H ₅ Br OBr	BrO	1.61	1.18	$-0.52 \\ 1.71$	-0.28	$-0.25 \\ 0.75$	a
C_2H_3OBr	Acetyl bromide	$\frac{1.01}{2.43}$	$\frac{3.32}{2.95}$	0.52	$\begin{array}{c} 0.38 \\ 0.02 \end{array}$	0.75	t
FBr	Bromine fluoride	$\frac{2.43}{1.42}$	$\frac{2.95}{2.25}$	0.83	0.68	0.16	S
CF ₃ Br	Bromotrifluoromethane	0.65	0.90	0.85	0.53	$0.04 \\ 0.37$	s u
ClBr	Bromine chloride	0.52	0.96	-0.46	0.33	-0.07	u V
CH ₂ Br ₂	Dibromomethane	1.43	1.45	0.02	-0.26	-0.11	s
CHBr ₃	Bromoform	0.99	0.96	-0.03	-0.08	-0.08	s
HI	Hydrogen iodide	0.44	0.97	0.53	0.57	0.83	a
CH ₃ I	Methyl iodide	1.65	1.44	-0.21	-0.28	-0.30	a
C_2H_5I	Iodoethane	1.91	1.83	-0.08	-0.50	-0.41	a
C_3H_7I	1-Iodopropane	2.04	1.78	-0.26	-0.57	-0.50	a
C_6H_5I	Iodobenzene	1.70	0.81	-0.89	-0.10	-0.27	a
CF ₃ I	Trifluoroiodomethane	1.00	1.55	0.55	1.13	0.67	w
Brľ	Iodine bromide	0.74	0.53	-0.21	-0.02	-0.11	v
CH ₂ I ₂	Diiodomethane	1.62	1.20	-0.42	-0.47	-0.50	a.
AlF	Aluminum fluoride	1.53	3.29	1.76	-1.22	-1.09	x
C ₂ H ₆ Si	Vinylsilane	0.66	0.24	-0.42	-0.12	-0.11	a
C ₂ H ₈ Si	Ethylsilane	0.81	0.37	0.44	-0.71	-0.45	g
C ₂ H ₈ Si	Dimethylsilane	0.75	0.46	-0.29	-0.57	-0.30	ā
$C_3H_{10}Si$	Trimethylsilane	0.52	0.37	-0.15	-0.35	-0.13	a
H ₂ SiF ₂	Difluorosilane	1.54	1.41	-0.13	0.69	0.03	a
HSiF ₃	Trifluorosilane	1.27	1.51	0.24	1.53	0.28	a
H ₂ SiČl ₂	Dichlorosilane	1.18	2.68	1.50	2.29	0.58	a
HSiCl ₃	Trichlorosilane	0.86	2.38	1.52	1.87	0.56	a
H ₂ SiBr ₂	Dibromosilane	1.43	3.09	1.66	1.90	0.38	8
C ₆ H ₁₉ Si ₂ N	Hexamethyldisilazane	0.37	0.35	-0.02	-0.10	0.24	a
H_3P	Phosphine	0.58	1.18	0.60	0.77	1.61	a
CH₅P	Methylphosphine	1.10	1.15	0.05	0.51	0.93	h
C_2H_7P	Dimethylphosphine	1.23	1.16	-0.07	0.58	0.67	h
C_3H_9P	Trimethylphosphine	1.19	1.08	-0.11	0.74	0.56	h
PF_3	Phosphorus trifluoride	1.03	2.25	1.22	1.41	1.06	a
POF ₃	Phosphorus oxyfluoride	1.76	2.04	0.28	-0.56	0.18	a
* Or 3	1 1100 p1101 d0 011, 11 d011 d0						

- ^aR. D. Nelson, D. R. Lide, and A. A. Maryott, Nat. Stand. Ref. Data Set., Natl. Bur. Stand. No. 10 (1967).
- ^bP. A. Baron, R. D. Brown, F. R. Burden, P. J. Domaille, and J. E. Kent, J. Mol. Spectrosc., 43, 401 (1970).
- L. Nygaard, J. T. Nielsen, J. Kirchheimer, G. Maltesen, J. Rastrup-Andersen, and G. O. Sorensen, J. Mol Struct., 3, 491 (1969).
 - ^dG. O. Sorensen, L. Mahler, and J. Rastrup-Andersen, J. Mol. Struct., 20, 119 (1974).
 - A. P. Cox, A. H. Brittain, and D. J. Finnigan, Trans. Faraday Soc., 67, 2179 (1971).
 - R. P. Lattimer and M. D. Harmony, J. Phys. Chem., 53, 4575 (1970).
 - A. L. McClellan, Tables of Experimental Dipole Moments, Vol. 2, Rahara Enterprises, El Cerrito, 1974.
 - ^hA. L. McClellan, Tables of Experimental Dipole Moments, Freeman, San Francisco, 1963.
 - J. S. Muenter and W. Klemperer, J. Chem. Phys., 52, 6033 (1970).
 - ¹C.S. Wofsy, J.S. Muenter, and W. Klemperer, J. Chem. Phys., 55, 2014 (1971).
 - ^kJ. K. Tyler and J. Sheridan, Trans. Faraday Soc., 59, 2661 (1963).
 - S. L. Rock, E. F. Pearson, E. H. Appleman, C. L. Norris, and W. H. Flygare, J. Chem. Phys., 59, 3940 (1973).
- ^mL. Nygaard, E. R. Hansen, R. Hansen, J. Rastrup-Anderson, and G. O. Sorensen, Spectrochim. Acta, Part A, 23, 2813 (1967).
 - ⁿA. Bhaumik, W. V. F. Brooks, and S. C. Dass, J. Mol. Struct., 16, 29 (1973).
 - P. B. Foreman, K. R. Chien, J. R. Williams, and S. G. Kukolich, J. Mol. Spectrosc., 52, 251 (1974).
 - P. Buckley and J. P. Weber, Can. J. Chem., 52, 942 (1974).
 - ^qG. Hojer and S. Meza, Acta Chem. Scand., 26, 3723 (1972).
 - P. Scharffenberg, Theo. Chim. Acta, 49, 115 (1978).
 - *CRC Handbook of Chemistry and Physics, 60th Edition, R.C. Weast, (Ed.), CRC Press, Boca Raton, FL, 1980.
 - ^cC. R. Byfleet, A. Carrington, and D. K. Russell, Mol. Phys., 10, 271 (1971).
 - ^uA. P. Cox, G. Duxbury, J. A. Hardy, and Y. Kawashima, J. Chem. Soc. Faraday 2, 76, 339 (1980).
 - ^vK. P. R. Nair, Kemiai Kozl., 52, 431 (1979).
- *K. H. Hellwege and A. M. Hellwege, Molecular Constants from Microwave Spectroscopy, Landolt-Bornstein, New Series II, Springer-Verlag, Berlin, Vol. 4, 1967.
 - *F. J. Lovas and E. Tiemann, J. Phys. Chem. Ref. Data, 3, 609 (1974).
 - ^yJ. R. Durig, L. Carreira, and J. M. Odom, J. Am. Chem. Soc., 96, 2688 (1974).

forward. Once the onerous task of assembling a database of experimental results has been done, a full optimization of all parameters for an element requires only about 2–10 h on a VAX 11-780.

For many of the properties studied, the new parameter sets are significantly better than the original MNDO/AM1. In particular, differences between experimental and calculated ΔH_f for P(V), S(IV), S(VI), I(V), and I(VII) are considerably reduced. The energy of the hydrogen bond in water dimer is less than that obtained using AM1, but the geometry is more realistic.

Calculations made using these parameters should be useful in identifying potentially incorrect thermochemical data. Thus the reported experimental ΔH_f , -11.8 kcal/mol, of triethylphosphine is predicted to be inconsistent with the heats of formation of related systems. For this system the predicted ΔH_f is -36.7 kcal/mol.

In other instances related homologues are absent. Nonetheless, the high internal consistency of the computational model can be used to identify potentially incorrect experimental data. For several systems, such as $SiOX_2$ and COX, X = Cl, Br, or I, the experimental ΔH_f reported is predicted to be incorrect by a few tens of kcals/mol. Although the new parameters were derived from ex-

perimental data, and consequently are subject to inaccuracies in those data, they are internally consistent, and thus the prediction is made that the experimental ΔH_f of COI is too positive and that of three of the oxyhalides of silicon too negative.

As limitations in the generality of the method become apparent—limitations not revealed by the surveys presented here the parameters can more readily be reoptimized in an attempt to remove these limitations. The parameters may be reoptimized as significant amounts of new or improved experimental data become available or if significant improvements to the algebraic form of the Hamiltonian are developed. Although, as we have seen, optimization is now a more straightforward task, it should not be attempted lightly — a proliferation of parameter sets differing only slightly one from another would be undesirable. Rather, only when a significant increase in accuracy could be obtained, such as a drop in the average error of more than 30%, should a new parameter set be released for general use.

It is unlikely that any computational method will be able to reduce the average error to below about 4 kcal/mol for the set of compounds surveyed here; current experimental data are simply not accurate enough. Unfortunately, determination of the accu-

Table XIV. Comparison of experimental and calculated ionization potentials.

Empirical		Ionization	n potential		Errors		
Empirical formula	Chemical name	Exp.	Calc.	PM3	MNDO	AM1	Footnote
$\overline{H_2}$	Hydrogen	15.40	16.11	0.71	0.35	-0.48	a
CH₄	Methane	13.60	13.64	0.04	0.27	-0.29	b
C_2H_2	Acetylene	11.40	11.61	0.21	-0.39	0.10	а
C_2H_4	Ethylene	10.51	10.64	0.13	-0.34	0.04	а
C_2H_6	Ethane	12.00	11.98	-0.02	0.70	-0.23	а
C_3	Carbon, trimer	11.10	11.75	0.65	-0.06	0.23	а
C₃H₄	Allene	10.07	10.18	0.11	-0.05	0.07	а
C_3H_4	Cyclopropene	9.86	9.88	0.02	0.02	-0.04	c
C ₃ H ₄	Propyne	10.37	10.89	0.52	0.35	0.37	b
C_3H_6	Cyclopropane	11.00 9.88	11.78	0.78	0.43	0.48	b
C_3H_6	Propene	11.50	10.10 11.51	$0.22 \\ 0.01$	$0.08 \\ 0.84$	$0.11 \\ -0.18$	d
C_3H_8 C_4H_2	Propane Diacetylene	10.17	10.47	0.30	-0.18	0.20	e a
C_4H_6	1,2-Butadiene	9.15	9.72	0.57	0.69	0.52	a a
C_4H_6	1-Butyne	10.20	10.77	0.57	0.48	0.32	a
C_4H_6	2-Butyne	9.60	10.34	0.74	0.43	0.42	a
C_4H_6	Cyclobutene	9.43	9.82	0.39	0.34	0.29	a
C_4H_6	1,3-Butadiene	9.08	9.47	0.39	0.06	0.25	b
C_4H_8	1-Butene	9.70	10.03	0.33	0.24	0.23	a
C₄H ₈	Cyclobutane	10.70	11.02	0.32	1.11	0.29	a
C_4H_{10}	n-Butane	11.20	11.35	0.15	1.01	-0.03	a
C_4H_{10}	Isobutane	11.40	11.59	0.19	0.72	-0.11	e
C_5H_6	Cyclopentadiene	8.57	9.23	0.66	0.47	0.51	a
C_5H_8	Cyclopentene	9.18	9.52	0.34	0.54	0.26	а
C_5H_{10}	1-Pentene	7.90	10.15	2.25	2.07	2.09	а
C_5H_{10}	2-Methyl-1-butene	7.40	9.85	2.45	2.41	2.30	а
C_5H_{10}	2-Methyl-2-butene	8.70	9.39	0.69	0.94	0.55	а
C_5H_{10}	3-Methyl-1-butene	9.60	10.26	0.66	0.38	0.49	а
C_5H_{10}	Cyclopentane	10.50	11.07	0.57	1.56	0.47	а
C_5H_{12}	2-Methylbutane	10.30	11.44	1.14	1.70	0.90	а
C_5H_{12}	Neopentane	11.30	12.06	0.76	0.82	0.23	e
C ₅ H ₁₂	n-Pentane	10.30	11.30	1.00	1.86	0.81	а
C ₆ H ₆	Benzene	9.25	9.75	0.50	0.14	0.40	а
C_6H_{10}	Cyclohexene	10.30	9.59	-0.71	-0.55	-0.81	а
C ₆ H ₁₂	Cyclohexane	10.30	11.29 8.95	0.99	$\frac{1.44}{0.22}$	0.64	a
C_7H_8 C_7H_8	Cyclopheptatriene Toluene	8.50 8.82	9.44	$0.45 \\ 0.62$	0.46	$0.25 \\ 0.51$	a b
C_8H_{10}	Ethylbenzene	8.80	9.52	$0.02 \\ 0.72$	0.48	0.51	a
C_8H_{14}	Bicyclo(2.2.2)-octane	9.45	10.94	1.49	1.95	1.11	а 8
$C_{10}H_8$	Naphthalene	8.15	8.84	0.69	0.42	0.56	a a
$C_{10}H_{16}$	Adamantane	9.60	10.85	1.25	1.67	0.83	a
C ₁₄ H ₁₀	Anthracene	8.16	8.25	0.09	-0.11	-0.04	a
H ₂ O	Water	12.62	12.32	-0.30	-0.43	-0.16	b
CO	Carbon monoxide	14.01	13.03	-0.98	-0.58	-0.70	a
CH ₂ O	Formaldehyde	10.10	10.63	0.53	0.94	0.68	а
CH ₄ O	Methanol	10.96	11.14	0.18	0.46	0.17	а
C_2H_2O	Ketene	9.64	9.46	-0.18	-0.35	-0.04	а
C_2H_4O	Acetaldehyde	10.21	10.71	0.50	0.67	0.51	а
C_2H_4O	Ethylene oxide	10.57	11.34	0.77	0.92	0.76	b
C_2H_6O	Ethanol	10.60	10.90	0.30	0.70	0.28	а
C_2H_6O	Dimethyl ether	10.04	10.69	0.65	1.00	0.57	а
C ₃ H ₆ O	Acetone	9.72	10.77	1.05	1.04	0.95	а
C ₃ H ₆ O	Propanol	10.00	10.62	0.62	0.81	0.59	а
C4H4O	Furan	8.88	9.38	0.50	0.26	0.44	а
C ₄ H ₆ O	2-Butenal	9.90	10.50	0.60	0.49	0.57	8
C ₄ H ₈ O	Butanal	9.83	10.63	0.80	0.97	0.76	8
C ₄ H ₁₀ O	Diethyl ether	9.60	10.79	1.19	1.18	0.96	a
C ₅ H ₁₂ O	3-Pentanol	10.16	10.92	0.76	0.93 0.04	0.65 0.30	8
C ₇ H ₆ O C ₇ H ₈ O	Benzaldehyde Anisole	9.70 8.40	10.05 9.11	$0.35 \\ 0.71$	0.04	0.60	a a
	1-Napthol	5.40 7.80	9.11 8.59	0.71	0.44	0.69	a a
C ₁₀ H ₈ O C ₁₀ H ₈ O	2-Napthol	7.90 7.90	8.72	0.19	0.54	0.74	a 8
CO ₂	Carbon dioxide	13.78	12.73	-1.05	-0.99	-0.57	b
CH ₂ O ₂	Formic acid	11.51	11.56	0.05	0.23	0.31	a
CH ₂ O ₂	rormic acia	11.01	06.11	0.00	0.23	0.31	a

Table XIV. (continued)

Empirical		Ionization	potential		Errors		
formula	Chemical name	Ехр.	Calc.	РМ3	MNDO	AM1	Footnote
$C_2H_2O_2$	trans Glyoxal	10.59	10.57	-0.02	0.16	0.07	a
$C_2H_4O_2$	Acetic acid	10.80	11.44	0.64	0.77	0.82	а
$C_2H_4O_2$	Methyl formate	11.02	11.35	0.33	0.59	0.55	f
$C_2H_6O_2$	Dimethyl peroxide	10.60	10.77	0.17	0.09	0.29	a
C_3O_2	Carbon suboxide	10.60	10.22	-0.38	-0.53	-0.10	а
$C_3H_4O_2$	beta-Propiolactone	10.60	9.96	-0.64	-0.73	-0.54	а
$C_3H_6O_2$	Propionic acid	10.50	11.34	0.84	1.00	0.99	а
$C_3H_6O_2$	Methyl acetate	10.60	11.27	0.67	0.86	0.80	а
$C_5H_8O_2$	Acetylacetone	8.38	10.89	2.51	2.40	2.36	а
$C_7H_6O_2$	Benzoic acid	9.80	10.13	0.33	-0.03	0.28	а
O_3	Ozone	12.75	12.69	-0.06	-0.05	0.35	g
C ₄ H ₂ O ₃	Malaic anhydride	10.84	11.71	0.87	0.86	1.18	а
C ₂ H ₂ O ₄	Oxalic acid	11.20	11.67	0.47	0.59	0.76	a
H ₃ N	Ammonia	10.85	9.70	-1.15	0.34	-0.43	b
CHN	Hydrogen cyanide	13.60	12.60	-1.00	-0.19	0.08	b
CH ₅ N	Methylamine	9.60	9.40	-0.20	0.96	0.15	а
C ₂ H ₃ N	Acetonitrile		12.33	0.12	0.58	0.25	а
C ₂ H ₃ N	Methyl isocyanide	11.32	11.70	0.38	0.92	0.67	а
C_2H_5N	Ethyleneimine (Azirane)	9.90	9.92	0.02	0.78	0.41	а
C_2H_7N	Ethylamine	9.50	9.50	0.00	1.01	0.39	a
C ₂ H ₇ N	Dimethylamine	8.93	9.22	0.29	1.11	0.46	h
C_3H_3N	Acrylonitrile		10.89	-0.02	-0.30	-0.05	а
C_3H_5N	Ethyl cyanide	11.90	12.01	0.11	0.69	0.09	a
C_3H_9N	Trimethylamine	8.54	9.07	0.53	1.05	0.58	h
C₄H₅N	Pyrrole	8.21	8.93	0.72	0.35	0.45	а
C_5H_5N	Pyridine	9.67	10.10	0.43	0.02	0.26	a
C_6H_7N	Aniline	7.70	8.61	0.91	1.05	0.82	a
C_7H_5N	Phenyl cyanide	9.70	10.10	0.40	0.11	0.32	а
CHNO	Hydrogen isocyanate	11.60	10.5 9	-1.01	-0.50	-0.36	а
CH ₃ NO ₂	Nitromethane	11.30	12.17	0.87	0.24	0.68	а
CH_3NO_2	Methyl nitrite	11.00	10.64	-0.36	0.42	0.19	a
$C_3H_7NO_2$	Alanine	8.10	9.88	1.78	2.71	2.27	а
C ₆ H ₅ NO ₂	Nitrobenzene	9.90	10.60	0.70	0.41	0.66	a
N_2	Nitrogen	15.60	13.80	-1.80	-0.73	-1.28	а
CH_2N_2	Diazomethane	9.00	9.22	0.22	-0.33	-0.18	a
CH ₆ N ₂	Methylhydrazine	9.30	8.92	-0.38	0.36	-0.34	а
C_2N_2	Cyanogen	13.36	12.87	-0.49	-0.16	-0.05	а
$C_4H_4N_2$		9.30	9.94	0.64	1.19	1.37	a
$C_4H_4N_2$	Pyrimidine	9.73	10.29	0.56	0.65	0.85	a
$C_4H_4N_2$	Pyrazine	9.90	10.16	0.26	0.12	0.35	а
N_2O_4	Dinitrogen tetroxide	11.40	11.61	0.21	0.65	-0.19	а
N_2O_5	Dinitrogen pentoxide	12.30	12.38	0.08	0.88	1.32	а
HS	Hydrogen sulfide	10.40	9.79	-0.61	0.20	0.16	i
H ₂ S	Hydrogen sulfide	10.43	9.63	-0.80	0.21	0.13	j
CS	Carbon sulfide	11.30	10.60	-0.70	0.26	0.48	а
CH ₄ S	Thiomethanol	9.44	9.21	-0.23	0.88	0.56	j j k
C ₂ H ₄ S	Thiirane	8.87	9.23	0.36	1.29	1.01	j
C_2H_6S	Thioethanol	9.21	9.19	-0.02	1.07	0.72	
C₂H ₆ S	Dimethyl thioether	8.65	8.88	0.23	1.42	0.94	j l
C ₃ H ₆ S	Thiethane	8.65	8.95	0.30	1.36	0.93	1
C ₃ H ₈ S	Isopropanthiol	9.14	9.22	0.08	1.12	0.78	a
C ₃ H ₈ S	1-Propanthiol	9.19	9.19	0.00	1.08	0.74	а
C ₄ H ₄ S	Thiophene	8.95	9.54	0.59	0.56	0.72	j
C₄H ₈ S	Tetrahydrothiophene	8.60	8.79	0.19	1.32	0.80	a
C4H10S	Butanethiol	9.15	9.19	0.04	1.12	0.78	а
C ₆ H ₆ S	Thiophenol	8.47	8.78	0.31	0.59	0.65	l
CSO	Carbon oxysulfide	11.20	10.71	-0.49	-0.14	0.03	а
C₂H₄SO	Thiolacetic acid	9.70	10.05	0.35	1.32	1.20	а
C ₂ H ₆ SO	Dimethyl sulfoxide	9.01	9.35	0.34	0.82	0.94	a
SO ₂	Sulfur dioxide	12.30	10.55	-1.75	-0.51	-0.32	j
SO_3	Sulfur trioxide	11.00	12.91	1.91	2.06	2.25	j j
CHNS	Hydrogen isothiocyanate	9.94	9.38	-0.56	0.25	0.09	a
C ₂ H ₃ NS	Methyl isothiocyanate	9.37	9.17	-0.20	0.51	0.34	а

Table XIV. (continued)

Empirical formula	Chemical name	Ionization potential		Errors			
		Exp.	Calc.	РМ3	MNDO	AM1	Footnot
H_2S_2	Hydrogen disulfide	10.01	9.86	-0.15	0.72	0.34	m
CS_2	Carbon disulfide	10.08	9.83	-0.25	0.50	0.44	j
$C_2H_6S_2$	1,2-Ethanedithiol	9.00	9.32	0.32	1.43	1.13	а
$C_2H_6S_2$	Ethanedithiol-1,2	9.30	9.32	0.02	1.13	0.83	I
$C_2H_6S_2$	2,3-Dithiabutane	8.71	9.40	0.69	1.50	1.28	j
$C_2N_2S_2$	S2(CN)2	11.05	10.56	-0.49	0.66	0.43	а
$C_3H_4S_3$	1,3-Dithiolan-2-thione	8.40	9.25	0.85	1.59	1.42	а
S ₈	\$8	9.04	9.09	0.05	1.98	1.98	j
HF	Hydrogen fluoride	16.06	16.14	0.08	-1.24	-1.97	n
CH₃F	Fluoromethane	13.31	12.92	-0.39	-0.26	-1.21	o
C ₂ HF	Fluoroacetylene	11.30	11.56	0.26	-0.24	-0.15	а
C ₂ H ₃ F	Fluoroethylene	10.58	10.60	0.02	-0.41	-0.34	а
C ₂ H ₅ F	Fluoroethane	12.43	12.07	-0.36	$0.18 \\ 1.25$	-0.85	a
C ₃ H ₇ F	Fluoroethane 2-Fluoropropane Fluorobenzene	11.08 9.19	12.10 9.81	$\frac{1.02}{0.62}$	0.28	0.44 0.35	a
C₅H₅F C₁H₅O₂F	p-Fluorobenzoic acid	9.90	10.16	0.82	-0.28	0.05	a
NOF	Nitrosyl fluoride	12.94	11.54	-1.40	-0.01	-0.42	a
NO ₂ F	Fluorine nitrite	13.51	13.37	-0.14	-0.51	-0.42 -0.12	p
SF	SF	10.00	9.75	-0.14 -0.25	-0.52 0.79	0.62	p
CH ₂ F ₂	Difluoromethane	13.17	12.86	-0.23	-0.08	-1.15	a o
$C_1 F_2$ $C_2 F_2$	Difluoroacetylene	11.20	11.54	0.31	-0.03	-0.27	a
$C_2H_2F_2$	gem-Difluoroethylene	10.72	10.54	-0.18	-0.54	-0.73	a
$C_2H_4F_2$	1,1-Difluoroethane	12.80	12.82	0.13	-0.07	-0.87	a
$C_6H_4F_2$	o-Difluorobenzene	9.68	9.98	0.30	0.01	-0.05	a
$C_6H_4F_2$	m-Difluorobenzene		10.02	0.34	0.05	-0.03	a a
$C_6H_4F_2$	p-Difluorobenzene	9.30	9.87	0.57	0.05	0.19	a
OF ₂	Difluorine oxide	13.26	13.47	0.37	0.26	-0.13	
N_2F_2	trans-Difluorodiazene	13.40	11.91	-1.49	-0.40	-0.36	q q
SF ₂	Sulfur difluoride	10.20	9.81	-0.39	1.07	0.72	a
SOF ₂	Thionyl fluoride	12.58	11.03	-1.55	0.09	-0.36	a
SO_2F_2	Sulfuryl fluoride	13.04	13.10	0.06	0.77	0.40	a
S_2F_2	FSSF	10.68	10.47	-0.21	1.03	0.73	a
ČHF₃	Trifluoromethane	14.80	14.36	-0.44	-0.23	-1.49	a
C ₂ HF ₃	Trifluoroethylene	10.54	10.68	0.14	-0.08	-0.45	a
$C_2H_3F_3$	1,1,1-Trifluoroethane	13.80	14.38	0.58	0.21	-0.68	a
$C_7H_5F_3$	Trifluoromethylbenzene	9.68	10.34	0.66	0.39	0.57	a
$C_2HO_2F_3$	Trifluoroacetic acid	12.00	12.47	0.47	0.73	0.49	a
NF ₃	Nitrogen trifluoride	13.73	12.24	-1.49	0.20	-0.55	a
CF ₄	Carbon tetrafluoride	16.23	16.79	0.56	0.58	-0.91	а
$C_2\dot{F}_4$	Tetrafluoroethylene		10.84	0.34	0.42	-0.22	a
COF₄	Trifluoromethyl hypofluorite	13.60	14.18	0.58	0.63	0.07	a
N_2F_4	Tetrafluorohydrazine	12.00	12.46	0.46	1.04	0.47	а
SF₄	Sulfur tetrafluoride	12.05	10.41	-1.64	1.01	0.00	а
C ₅ HF ₅	Pentafluorobenzene	9.75	10.55	0.80	0.65	0.32	а
C_2F_6	Hexafluoroethane	14.60	14.48	-0.12	-0.10	-1.37	а
C_6F_6	Hexafluorobenzene	10.90	10.85	-0.05	-0.13	-0.53	а
C ₃ OF ₆	Perfluoroacetone	12.10	12.71	0.61	0.90	0.24	а
SF ₆	Sulfur hexafluoride	15.70	16.39	0.69	0.19	-1.39	а
HCl	Hydrogen chloride	12.75	11.06	-1.69	0.25	-0.42	n
CH ₃ Cl	Methyl chloride	11.30	10.48	-0.82	0.94	0.04	а
C7H5OCl	Benzoyl chloride	9.90	10.29	0.39	0.12	0.34	а
NOCI	Nitrosyl chloride	10.90	10.59	-0.31	1.07	0.66	а
NO₂Cl	Nitryl chloride	11.40	12.42	1.02	1.61	1.54	a
FCl	Chlorine fluoride	12.02	11.13	-0.89	1.35	0.37	r
CH₂FCl	Fluorochloromethane	11.74	10.85	-0.89	0.80	-0.16	а
CHF ₂ Cl	Difluorochloromethane	12.60	11.36	-1.24	0.63	-0.32	а
CF₃Cl	Trifluorochloromethane	10.30	11.88	1.58	3.83	2.94	а
CH ₂ Cl ₂	Dichloromethane	11.30	10.58	-0.72	1.19	0.09	а
COCl ₂	Carbonyl chloride	11.84	11.23	-0.61	0.86	0.53	а
SCl ₂	Sulfur dichloride	9.70	9.60	-0.10	1.34	0.88	а
SOCl ₂	Thionyl chloride	11.10	10.65	-0.45	1.45	0.91	а
SO ₂ Cl ₂	Sulfuryl chloride	12.40	10.55	-1.85	-0.62	-0.64	a
S_2Cl_2	CISSCI	9.40	9.96	0.56	2.04	1.63	8
CHFC12	Fluorodichloromethane	12.00	10.99	-1.01	0.96	0.03	a
CF ₂ Cl ₂	Difluorodichloromethane	12.30	11.33	-0.97	1.06	0.21	a

Table XIV. (continued)

Empirical formula	Chemical name	Ionization potential		Errors			
		Exp.	Calc.	РМ3	MNDO	AM1	Footnote
CHCl ₃	Chloroform	11.48	10.84	-0.64	1.43	0.29	8
CFCl ₃	Fluorotrichloromethane	11.90	11.16	-0.74	1.39	0.55	а
C ₂ Cl ₆	Hexachloroethane	11.20	10.84	-0.36	1.88	0.98	а
HBr CH ₃ Br	Hydrogen bromide	11.71	12.13	0.42	0.39	-0.25	n
Cn ₃ Br C ₂ H ₃ Br	Bromomethane Bromoethylene	10.53 9.90	11.01 10.44	0.48 0.54	1.03	0.27	a
C_2H_3Br	Bromoethane	10.28	10.44	0.63	0.35 1.20	$0.25 \\ 0.41$	a
C_3H_7Br	1-Bromopropane	10.18	10.93	0.75	1.29	0.41	a a
C_6H_5Br	Bromobenzene	9.25	9.81	0.16	0.30	0.35	a
C ₂ H ₃ OBr	Acetyl bromide	10.55	11.20	0.65	0.88	0.63	8
CF₃Br	Bromotrifluoromethane	12.10	12.23	0.13	1.15	0.23	a
Br_2	Bromine	10.70	11.24	0.54	0.96	0.24	a
CH_2Br_2	Dibromomethane	10.50	10.59	0.09	1.20	0.46	a
$C_2F_4Br_2$	1,2-Dibromotetrafluoroethane	14.44	12.00	-2.44	-1.65	-2.53	a
CHBr ₃	Bromoform	10.50	10.84	0.34	1.37	0.57	а
CBr ₄	Carbon tetrabromide	10.30	11.22	0.92	1.73	0.92	а
HI	Hydrogen iodide	10.39	9.97	-0.42	0.82	0.52	t
CH₃I	Methyl iodide	9.50	9.47	-0.03	1.35	1.01	а
C ₂ H ₅ I	Iodoethane	9.34	9.44	0.10	1.48	1.09	а
C ₃ H ₅ I	3-Iodo-propene	9.30	9.44	0.14	0.99	0.93	а
C_3H_7I	1-Iodopropane	9.27	9.45	0.18	1.53	1.16	а
C ₃ H ₇ I C ₄ H ₉ I	2-Iodopropane 1-Butyl iodide	9.40 9.20	9.43	0.03	1.39	1.00	а
C_6H_5I	Iodobenzene	9.20 8.70	9.45 9.05	0.25	1.60	1.23	a
$C_6H_{11}I$	Iodocyclohexane	8.91	9.42	0.35 0.51	0.85 1.86	$0.95 \\ 1.47$	a
C_7H_7I	o-Iodotoluene	8.53	9.02	0.31	0.98	0.99	a
C_7H_7I	m-Iodotoluene	8.55	9.01	0.46	0.96	0.97	a a
C_7H_7I	p-Iodotoluene	8.38	8.94	0.56	1.07	1.03	a 8
C_7H_7I	Benzyl iodide	8.91	9.35	0.44	0.55	0.60	a
CF₃I	Trifluoroiodomethane	10.45	10.28	-0.17	2.03	1.52	a
ClI	Iodine chloride	10.10	9.74	-0.36	1.48	1.02	u
BrI	Iodine bromide	9.85	9.84	-0.01	1.43	0.99	u
I_2	Iodine	9.34	9.53	0.19	1.53	1.33	v
CH_2I_2	Diiodomethane	9.46	8.98	-0.48	1.41	1.10	а
C ₂ H ₄ I ₂	1,2-Diiodoethane	9.50	9.66	0.16	1.52	1.21	а
C ₃ H ₉ Al	Trimethylaluminum	9.76	10.12	0.36	0.92	0.43	w
C ₂ H ₆ Si	Vinylsilane	10.40	10.01	-0.39	-0.17	-0.01	a
C ₂ H ₈ Si	Ethylsilane	10.95	10.64	-0.31	0.19	0.12	j
C ₂ H ₈ Si C ₃ H ₁₀ Si	Dimethylsilane Trimethylsilane	11.20	10.65	-0.55	0.27	-0.03	а
C ₄ H ₁₂ Si	Tetramethylsilane	10.80 10.40	10.51 10.42	$-0.29 \\ 0.02$	0.60	0.15	а
H_2SiF_2	Difluorosilane	10.40 12.85	10.42	-2.03	0. 94 -0. 63	0.52	a
SiF ₄	Silicon tetrafluoride	15.81	15.19	-2.03 -0.62	0.02	-1.24 -1.09	X
H ₂ SiCl ₂	Dichlorosilane	11.70	10.27	-0.02	0.82	-0.14	у
C ₂ H ₆ SiCl ₂	Dichlorodimethylsilane	10.79	10.27	-0.52	1.43	0.70	x a
SiCl ₄	Silicon tetrachloride	11.79	11.23	-0.56	2.02	1.19	a S
$C_6H_{19}Si_2N$	Hexamethyldisilazane	8.66	8.38	-0.28	1.03	0.83	Z
H₃P ື	Phosphine	9.98	8.67	-1.31	1.36	0.92	ť
CP	Carbon phosphide	10.50	10.90	0.40	1.06	1.31	a
CHP	Methinophosphine	10.79	10.74	-0.05	0.44	0.63	a
CH₅P	Methylphosphine	9.72	8.66	-1.06	1.07	0.68	а
C ₂ H ₇ P	Dimethylphosphine	9.10	8.68	-0.42	1.14	0.91	а
C ₃ H ₉ P	Trimethylphosphine	8.60	8.81	0.21	1.25	1.16	j
C ₃ H ₉ PO ₃	Trimethyl phosphite	9.22	9.69	0.47	1.69	1.88	aa
PF ₃	Phosphorus trifluoride	9.71	10.70	0.99	3.42	2.75	t
POF ₃	Phosphorus oxyfluoride	12.77	12.05	-0.72	0.40	-0.05	а
PCl ₃	Phosphorus trichloride	10.50	10.42	-0.08	1.67	0.92	8
POČl ₃ PCl ₅	Phosphorus oxychloride	11.85	12.29 11.86	0.44	0.93	0.18	a
PBr ₃	Dhoonhomia		II XK	1.06	1.49	0.61	а
	Phosphorus pentachloride	10.80					
	Phosphorus tribromide	10.00	10.84	0.84	1.44	0.76	a
PI_3	Phosphorus tribromide Phosphorus triiodide	10.00 9.15	10.84 9.97	0.84 0.82	1.44 1.29	0.76 1.02	a a
	Phosphorus tribromide	10.00	10.84	0.84	1.44	0.76	a

*R. D. Levin and S. G. Lias, "Ionization Potentials and Appearance Potential Measurements," 1971-1981, Natl. Stand. Ref. Data Ser., Natl. Bur. Stand. 71, (1982), Cat. No. C13.48:71.

^bD. W. Turner, C. Baker, A. D. Baker, and C. R. Brundle, Molecular Photoelectron Spectroscopy, Wiley-Interscience, London, 1970.

^cP. Bischof and E. Heilbronner, Helv. Chim. Acta, 53, 1677 (1970).

^dA. Katrib and J. W. Rabalais, J. Phys. Chem., 77, 2358 (1973). ⁴J. N. Murrell and W. Schmidt, J. Chem. Soc., Faraday Trans. 2, 68, 1709 (1972).

^fD. A. Sweigart and D. W. Turner, J. Am. Chem. Soc., **94**, 5592 (1972).

⁸C. R. Brundle, Chem. Phys. Lett., 26, 25, (1974).

^hJ. P. Maier and D. W. Turner, J. Chem. Soc., Faraday Trans. 2, 69, 521 (1973).

M. W. Chase, C. A. Davies, J. R. Downey, D. R. Frurip, R. A. McDonald, and A. N. Syverud, JANAF Thermochemical Tables, Third Edition, J. Phys. Chem. Ref. Data 14, Suppl. 1 (1985).

H. M. Rosenstock, K. Draxel, B. W. Steiner, and J. T. Herron, "Energetics of Gaseous Ions," J. Phys. Ref. Data, 6, Suppl. 1 (1977)

I. Omura, K. Higasi, and H. Baba, Bull. Chem. Soc. Japan, 29, 504 (1956).

G. Gleiter and J. Spanget-Larsen, Topics in Current Chemistry, 86, 139 (1979).

^mB. Solouki and H. Bock, Inorg. Chem., 16, 665 (1977).

D. C. Frost, C. A. McDowell, and D. A. Vroom, J. Chem. Phys., 46, 4255 (1967). W. J. Pietro, M. M. Francl, W. J. Hehre, D.J. DeFrees, J.A. Pople, and J.S. Binkley, J. Am. Chem. Soc., 104, 5039 (1982).

°M. S. Banna, B. E. Mills, D. W. Davis, and D. A. Shirley, J. Chem. Phys., 61, 4780 (1974).

PD. C. Frost, S. T. Lee, C. A. McDowell, and N. P. C. Westwood, J. Electron Spectrosc. Relat. Phenom., 7, 331 (1975)

⁹C. F. Brundle, M. B. Robin, N. A. Kuebler, and H. Basch, J. Am. Chem. Soc., 94, 1451 (1972).

C. P. Anderson, G. Mamantov, W. E. Bull, F. A. Grimm, J. C. Carver, and T. A. Carlson, Chem. Phys. Lett., 12, 137 (1971).

J. C. Green, M. L. H. Green, P. J. Joachim, A. F. Orchard, and D. W. Turner, Philos. Trans. R. Soc. London, Ser. A, 111. A268 (1970).

*CRC Handbook of Chemistry and Physics, 60th Edition, R.C. Weast, (Ed.), CRC Press, Boca Raton, FL, 1980. "K. H. Hellwege and A. M. Hellwege, (Eds.), Molecular Constants from Microwave Spectroscopy, Landolt-Born-

stein, New Series II, Springer-Verlag, Berlin, Vol. 4, 1967. A. B. Cornforth, D. C. Frost, C. A. McDowell, J. L. Ragle, and I. A. Stonehouse, J. Chem. Phys., 54, 2651 (1971).

"G. K. Baker, M. F. Lappert, J. B. Pedley, G. J. Sharp, and N. P. C. Westwood, J. Chem. Soc. Dalton Trans., 1765,

*D. C. Frost, F. G. Herring, A. Katrib, R. A. N. McLean, J. E. Drake, and N. P. C. Westwood, Can. J. Chem., 49, 4033 (1971).

^yP. J. Bassett and D. R. Lloyd, J. Chem. Soc. A, 641 (1971). ²J. B. Pedley and G. Rylance, "Sussex-N.P.L. Computer Analysed Thermochemical Data: Organic and Organometallic Compounds," Sussex University, 1977.

racy of any given computational method, requires accurate thermochemical data as standards. Even more unfortunate, little effort appears to be committed to increasing the accuracy of existing thermochemical data, as is indicated by the dates of the latest determinations reported in recent thermochemical tables. 15, 16 With the steady advance in the accuracy of ab initio methods, there is a significant probability that within a few years the heats of formation calculated using such methods will become more accurate than experimental, and that semiempirical methods will be parameterized against high-level ab initio calculations rather than experimental values. Even now good ab initio calculations of molecular geometries are of an accuracy comparable with microwave data and significantly better than many single molecule geometries obtained from x-ray determinations.

Several deficiencies in the prediction of geometric variables have been corrected.

Even so, some problems still remain intractable. Cyclobutane, for example, is still persistently D_{4h} , in variance with experiment. However, as the purpose of this work has been to develop and demenstrate a rapid optimization procedure for semiempirical methods, sporadic deficiencies in the results are not too serious. It is possible that modification of the Hamiltonian, a relatively easy operation now that reparameterization is rapid, will allow correction of these faults.

Note added in proof. A recent article by K. Szalewicz, S.J. Cole, W. Kolos, and R.J. Bartlett, J. Chem. Phys. 89, 3662 (1988) on "Supermolecular Many-Body Perturbation Theory and Coupled-Cluster Calculations Including Triple Excitations" indicates that for the water dimer, the total interaction energy is -4.7 ± 0.35 kcal/mol.

The author wishes to thank Lt. Col. Chester J. Dymek of the Frank J. Seiler Research Laboratory, and Maj. Donn M. Storch of the Faculty of Chemistry, United States Air Force Academy for their enthusiastic suggestions and advice during the preparation of this article. Appreciation is also expressed for the critical evaluation of the parameter sets by the research laboratories of Eastman Kodak and Prof. M.J.S. Dewar.

References

- M.J.S. Dewar and W. Thiel, J. Am. Chem. Soc., 99, 4899 (1977).
- R. C. Bingham, M. J. S. Dewar, and D. H. Lo, J. Am. Chem. Soc., 97, 1294 (1975).
- M.J.S. Dewar, E.G. Zoebisch, E.F. Healy, and J.J.P. Stewart, J. Am. Chem. Soc., 107, 3902 (1985).
- M. J. S. Dewar and H. S. Rzepa, J. Am. Chem. Soc., 100, 58, (1987).
- L. P. Davis, R. M. Guidry, J. R. Williams, and M. J. S. Dewar, J. Comput. Chem., 4, 443 (1981).
- M.J.S. Dewar, J. Friedheim, G. Grady, E.F. Healy, and J.J.P. Stewart, Organometallics, 5, 375 (1986).
- M. J. S. Dewar and C. H. Reynolds, J. Comp. Chem., 7, 140 (1986).
- M.J.S. Dewar and H.S. Rzepa, J. Comp. Chem., 4, 158 (1983).
- M. J. S. Dewar and E. F. Healy, J. Comp. Chem., 4, 542 (1983).
- M.J.S. Dewar, E.F. Healy, and J.J.P. Stewart, J. Comp. Chem., 5, 358 (1984).
- 11. M.J.S. Dewar and E.G. Zoebisch, J. Mol. Struct., Theochem. (in press).
- 12. M.J.S. Dewar and C.X. Jie, Organometallics, 6, 1486 (1987).
- J. D. Cox and G. Pilcher, Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970.
- D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney, and R. L. Nuttall, The NBS Tables of Chemical Thermodynamic Properties, Vol. 11, Natl. Bur. Std. (1982)
- M. W. Chase, Jr., C. A. Davies, J. R. Downey, D.J. Frurip, R. A. McDonald, and A. N. Syverud,

- JANAF Thermochemical Tables Third Edition, Vol. 14, Natl. Bur. Std. (1985).
- M. J. S. Dewar and W. Thiel, J. Am. Chem. Soc., 99, 4907 (1977).
- 17. J.J.P. Stewart, MOPAC, A Semi-Empirical Molecular Orbital Program, QCPE 455 (1983).
- R. Fletcher and M. J. D. Powell, Comput. J., 6, 163 (1963).
- 19. W.C. Davidon, Comput. J., 10, 406 (1968).
- C. G. Broyden, J. Inst. Math. App., 6, 222 (1970);
 R. Fletcher, Comp. J., 13, 317 (1970);
 D. Goldfarb, Math. Comput., 24, 23 (1970);
 D. F. Shanno, Math. Comput., 24, 647 (1970).
- P. Hobza, G. Schneider, P. Carsky, and R. Zahradnik, J. Mol. Struct. (Theochem), 138, 377 (1986).
- S. B. Hartley and J. C. McCoubrey, *Nature (Lond.)* 198, 476 (1963).
- W. E. Koerner and F. Daniels, J. Chem. Phys., 20, 113 (1952).
- D.W. Muenow, O. M. Uy, and J. L. Margrave, J. Inorg. Nucl. Chem., 32, 3459 (1970).
- K. Jug and J. Schulz, J. Comp. Chem., 9, 40 (1987).
- For example, 6-31G** with 2nd or 4th order Møller-Plesset corrections.
- R. C. Weast (Ed.), CRC Handbook of Chemistry and Physics, CRC Press, Inc., Boca Raton, FL, 1980, p. F-230.
- L. P. Davis, D. M. Storch, and R. M. Guidry, J. Energ. Mater., 5, 89 (1987).
- 29. P. Kebarle, Environmental Effects on Molecular Structure and Properties, B. Pullman, (Ed.), D. Reidel, Dodrecht, 1976, p. 81.
- 30. J.O. Morley, J. Chem. Soc. Perkin Trans. II (in press).
- D. G. Lister, J. K. Tyler, J. H. Hog, N. Larsen, J. Mol. Struct., 23, 253-264 (1974).
- 32. S. Yabushita and M. S. Gordon, Chem. Phys. Lett., 117, 321-325 (1985).
- M. J. S. Dewar, D. H. Lo, and C. A. Ramsden, J. Am. Chem. Soc., 97, 1311 (1975).
- 34. M.J.S. Dewar and D.M. Storch, *Proc. Natl. Acad. Sci.*, **82**, 2225 (1985).