Skriftlig eksamen i Dynamiske Modeller Vinteren 2014 - 2015

VALGFAG

Torsdag den 19. februar 2015

Dette sæt omfatter 3 sider med 4 opgaver ud over denne forside

Alle sædvanlige hjælpemidler må medbringes og anvendes, dog må man ikke medbringe eller anvende lommeregnere eller andre elektroniske hjælpemidler

Københavns Universitet. Økonomisk Institut

2. årsprøve 2015 V-2DM rx

Skriftlig eksamen i Dynamiske Modeller

Torsdag den 19. februar 2015

Opgavesæt bestående af 3 sider med i alt 4 opgaver.

Løsningstid: 3 timer

Alle sædvanlige hjælpemidler må benyttes, dog ikke medbragte lommeregnere eller nogen form for cas-værktøjer.

Opgave 1. For ethvert $a \in \mathbf{R}$ betragter vi tredjegradspolynomiet $P : \mathbf{C} \to \mathbf{C}$, som er givet ved forskriften

$$\forall z \in \mathbf{C} : P(z) = z^3 + (2+a)z^2 + (2+2a)z + 2a.$$

Desuden betragter vi differentialligningerne

(*)
$$\frac{d^3x}{dt^3} + (2+a)\frac{d^2x}{dt^2} + (2+2a)\frac{dx}{dt} + 2ax = 0$$

og

$$(**) \frac{d^3x}{dt^3} + 3\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 2x = 14e^{-t}.$$

- (1) Vis, at z = -a er en rod i polynomiet P, og bestem dernæst de øvrige rødder i P.
- (2) Bestem den fuldstændige løsning til differentialligningen (*).
- (3) For hvilke $a \in \mathbf{R}$ er differentialligningen (*) globalt asymptotisk stabil.
- (4) Bestem den fuldstændige løsning til differentialligningen (**).
- (5) Bestem den løsning $\tilde{x} = \tilde{x}(t)$ til differentialligningen (**), så betingelserne $\tilde{x}(0) = 0, \tilde{x}'(0) = 0$ og $\tilde{x}''(0) = 0$ er opfyldt.

Opgave 2. Vi betragter 3×3 matricen

$$A = \left(\begin{array}{rrr} 1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{array}\right)$$

og vektordifferentialligningerne

$$\frac{d\mathbf{z}}{dt} = A\mathbf{z}$$

og

(§§)
$$\frac{d\mathbf{z}}{dt} = B(v)\mathbf{z},$$

hvor

$$B(v) = \left(\begin{array}{ccc} v & 1 & 1\\ 1 & v & 3\\ 1 & 3 & 0 \end{array}\right)$$

for $v \in \mathbf{R}$.

- (1) Bestem egenværdierne og egenrummene for matricen A.
- (2) Bestem den fuldstændige løsning for vektordifferentialligningen (§).
- (3) Bestem resolventen P(0,t) for differentialligningen (§).
- (4) Er vektordifferentialligningen (§§) globalt asymptotisk stabil for visse værdier af parameteren $v \in \mathbf{R}$?

Opgave 3. Lad mængden K_1 være en kompakt delmængde af \mathbf{R}^n , mængden K_2 en kompakt delmængde af \mathbf{R}^m og mængden K_3 en kompakt delmængde af \mathbf{R}^l .

(1) Vis, at mængden

$$K = K_1 \times K_2 = \{(x, y) \in \mathbf{R}^n \times \mathbf{R}^m \mid x \in K_1 \land y \in K_2\}$$

er en kompakt delmængde af $\mathbf{R}^n \times \mathbf{R}^m$.

(2) Vis, at mængden

$$C = K_1 \times K_2 \times K_3 = \{(x, y, z) \in \mathbf{R}^n \times \mathbf{R}^m \times \mathbf{R}^l \mid x \in K_1 \land y \in K_2 \land z \in K_3\}$$
er en kompakt delmængde af $\mathbf{R}^n \times \mathbf{R}^m \times \mathbf{R}^l$.

Opgave 4. Vi betragter integralet

$$I(x) = \int_0^{\pi} \left((e^t + \sin t)x + 2\dot{x}^2 \right) dt = \int_0^{\pi} \left((e^t + \sin t)x + 2\left(\frac{dx}{dt}\right)^2 \right) dt$$

og den funktion $F: \mathbf{R}^2 \to \mathbf{R}$, som har forskriften

$$\forall (x,y) \in \mathbf{R}^2 : F(x,y) = (e^t + \sin t)x + 2y^2.$$

- (1) Vis, at funktionen F er konveks overalt på definitionsmængden \mathbb{R}^2 .
- (2) Bestem den funktion $x^* = x^*(t)$, der minimerer integralet I(x), idet betingelserne $x^*(0) = \frac{1}{4}$ og $x^*(\pi) = \frac{1}{2}e^{\pi}$ er opfyldt.