Mathematical Foundations of Computing Propositional Calculus: 3

N Geetha
AM & CS
PSG College of Technology

Propositional Equivalences: Introduction

- In order to manipulate a set of statements for the sake of mathematical argumentation, an important step is to replace
 - one statement with
 - another equivalent statement
 - (i.e., with the same truth value)
- Let us discuss
 - Terminology
 - Establishing logical equivalences using truth tables
 - Establishing logical equivalences using known laws (of logical equivalences)

Logical Equivalences: Definition

- **Definition**: Propositions p and q are logically equivalent if $p \leftrightarrow q$ is a tautology.
- Informally, p and q are equivalent if whenever p is true, q is true, and vice versa
- Notation: $p \equiv q$ (p is equivalent to q), $p \leftrightarrow q$, and $p \Leftrightarrow q$
- Alert:
 is not a logical connective \$\equiv\$

An equivalent for implication

Is there an expression that is equivalent to $p \rightarrow q$ but uses only the operators \neg , Λ , \vee ?

Consider the proposition $\neg p \lor q$

	Implication							
	р		(7	p –	→ q		
	F		F	-	Т			
	F		Т		Т			
	T		F	-	F	-		
J			JΤ		F			
n c		y Y	_	מי	¬n	Vq		
Ρ	р		q		¬p		7 9	
F	FF		F		Γ	•	Τ	
F T		Т		Т		Т		
T F		. .		-	F			
ТТ		_	F		Т			

Logical Equivalences: Example 1

Show that

(Exercise 25 from Rosen)

p	q	r	$p \rightarrow r$	$q \rightarrow r$	$(p \rightarrow r) \lor (q \rightarrow r)$	$p \wedge q$	$(p \wedge q) \rightarrow r$
0	0	0					
0	0	1					
0	1	0					
0	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1					

Equivalence Laws

Equivalence	Name of Identity
$p \wedge T \equiv p$	Identity Laws
$p \lor F \equiv p$	
$p \wedge F \equiv F$	Domination Laws
$p \lor T \equiv T$	
$p \land p \equiv p$	Idempotent Laws
$\mathbf{p} \vee p \equiv p$	
$\neg(\neg p) \equiv p$	Double Negation Law
$p \land q \equiv q \land p$	Commutative Laws
$p \vee q \equiv q \vee p$	
$(p \land q) \land r \equiv p \land (q \land r)$	Associative Laws
$(p \lor q) \lor r \equiv p \lor (q \lor r)$	
$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Ditributive Laws
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	
$\neg (p \land q) \equiv \neg p \lor \neg q$	De Morgan's Laws
$\neg (p \lor q) \equiv \neg p \land \neg q$	
$p \land (p \lor q) \equiv p$	Absorption Laws
$p \lor (p \land q) \equiv p$	
$p \land \neg p \equiv F$	Negation Laws
$p \vee \neg p \equiv T$	

Conditional Equivalence laws

- Contrapositive: $P \rightarrow Q \equiv \neg Q \rightarrow \neg P$
- Conditional : $P \rightarrow Q \equiv P \vee Q$
- Biconditional:

•
$$P \leftarrow \rightarrow Q \equiv (P \rightarrow Q) \land (Q \rightarrow P)$$

Construct a truth table

- Eg2.
- $P \leftrightarrow (QVR)$

\boldsymbol{P}	\boldsymbol{Q}	\boldsymbol{R}	$Q \lor R$	$P \Leftrightarrow (Q \vee R)$
T	T	T	T	T
T	T	\boldsymbol{F}	T	T
T	\boldsymbol{F}	T	T	T
T	\boldsymbol{F}	\boldsymbol{F}	\boldsymbol{F}	F
\boldsymbol{F}	T	T	T	F
\boldsymbol{F}	T	\boldsymbol{F}	T	F
\boldsymbol{F}	\boldsymbol{F}	T	T	F
\boldsymbol{F}	\boldsymbol{F}	\boldsymbol{F}	F	T