The Containment Problem for Unambiguous Register Automata

Antoine Mottet, Karin Quaas

QuantLA Workshop 2018

ightharpoonup Extension of finite automata to infinite alphabets $(\Sigma \times \mathbb{N})$

ightharpoonup Extension of finite automata to infinite alphabets $(\Sigma \times \mathbb{N})$

 \blacktriangleright Extension of finite automata to infinite alphabets ($\Sigma \times \mathbb{N}$)

 \blacktriangleright Extension of finite automata to infinite alphabets ($\Sigma \times \mathbb{N}$)

ightharpoonup Extension of finite automata to infinite alphabets ($\Sigma \times \mathbb{N}$)

Recognizers of orbits:

$$\begin{pmatrix} a \\ 0 \end{pmatrix} \begin{pmatrix} a \\ 1 \end{pmatrix} \begin{pmatrix} a \\ 3 \end{pmatrix} \begin{pmatrix} a \\ 0 \end{pmatrix} \sim \begin{pmatrix} a \\ 4 \end{pmatrix} \begin{pmatrix} a \\ 3 \end{pmatrix} \begin{pmatrix} a \\ 1 \end{pmatrix} \begin{pmatrix} a \\ 4 \end{pmatrix}.$$

▶ Projection of $L \subseteq (\Sigma \times \mathbb{N})^*$ onto Σ^* : set of words $w \in \Sigma^*$ such that $(w_1, d_1) \dots (w_n, d_n) \in L$ for some $d_1, \dots, d_n \in \mathbb{N}$.

The Containment Problem for Unambiguous Register Automata

- ▶ Projection of $L \subseteq (\Sigma \times \mathbb{N})^*$ onto Σ^* : set of words $w \in \Sigma^*$ such that $(w_1, d_1) \dots (w_n, d_n) \in L$ for some $d_1, \dots, d_n \in \mathbb{N}$.
- ▶ Projection of recognizable L is regular (rec. by orbit automaton).

- ▶ Projection of $L \subseteq (\Sigma \times \mathbb{N})^*$ onto Σ^* : set of words $w \in \Sigma^*$ such that $(w_1, d_1) \dots (w_n, d_n) \in L$ for some $d_1, \dots, d_n \in \mathbb{N}$.
- ▶ Projection of recognizable L is regular (rec. by orbit automaton).

- ▶ Projection of $L \subseteq (\Sigma \times \mathbb{N})^*$ onto Σ^* : set of words $w \in \Sigma^*$ such that $(w_1, d_1) \dots (w_n, d_n) \in L$ for some $d_1, \dots, d_n \in \mathbb{N}$.
- ▶ Projection of recognizable L is regular (rec. by orbit automaton).

- ▶ Projection of $L \subseteq (\Sigma \times \mathbb{N})^*$ onto Σ^* : set of words $w \in \Sigma^*$ such that $(w_1, d_1) \dots (w_n, d_n) \in L$ for some $d_1, \dots, d_n \in \mathbb{N}$.
- ▶ Projection of recognizable *L* is regular (rec. by orbit automaton).
- ▶ Emptiness of *L* is decidable: $L = \emptyset \Leftrightarrow$ its projection is empty.

An automaton is unambiguous if every word has at most 1 accepting run.

An automaton is unambiguous if every word has at most 1 accepting run.

Deterministic \subseteq Unambiguous \subseteq Non-deterministic,

The Containment Problem for Unambiguous Register Automata

An automaton is unambiguous if every word has at most ${\bf 1}$ accepting run.

- ightharpoonup Deterministic \subseteq Unambiguous \subseteq Non-deterministic,
- ► Ambiguity as a resource (STAA?),

An automaton is unambiguous if every word has at most ${\bf 1}$ accepting run.

- ightharpoonup Deterministic \subseteq Unambiguous \subseteq Non-deterministic,
- ► Ambiguity as a resource (STAA?),
- Collapses and non-collapses depending on model of computation,

An automaton is unambiguous if every word has at most ${\bf 1}$ accepting run.

- ightharpoonup Deterministic \subseteq Unambiguous \subseteq Non-deterministic,
- Ambiguity as a resource (STAA?),
- Collapses and non-collapses depending on model of computation,
- Succinctness,

An automaton is unambiguous if every word has at most ${\bf 1}$ accepting run.

- ightharpoonup Deterministic \subseteq Unambiguous \subseteq Non-deterministic,
- ► Ambiguity as a resource (STAA?),
- Collapses and non-collapses depending on model of computation,
- Succinctness,
- ▶ Important problems related to unambiguity (parity games in $UP \setminus P$?).

Given a RA A, decide if A is unambiguous:

Given a RA A, decide if A is unambiguous:

▶
$$L = \{d_1 \dots d_n \in \mathbb{N}^* \mid \exists i \in \{1, \dots, n-1\} : d_i = d_n\}$$

 $ightharpoonup \overline{L}$ not recognizable (even by nondeterministic RA):

- $ightharpoonup \overline{L}$ not recognizable (even by nondeterministic RA):
 - ightharpoonup say A is a k-register RA recognizing \overline{L} ,

- $ightharpoonup \overline{L}$ not recognizable (even by nondeterministic RA):
 - \triangleright say \mathcal{A} is a k-register RA recognizing \overline{L} ,
 - ▶ $(0)(1)...(k)(k+1)(k+2) \in \overline{L}$, so \exists accepting run of A.

- $ightharpoonup \overline{L}$ not recognizable (even by nondeterministic RA):
 - ightharpoonup say \mathcal{A} is a k-register RA recognizing \overline{L} ,
 - ▶ $(0)(1)...(k)(k+1)(k+2) \in \overline{L}$, so \exists accepting run of A.
 - Let $d \in \{1, \dots, k+1\}$ be one of the forgotten values.

- $ightharpoonup \overline{L}$ not recognizable (even by nondeterministic RA):
 - \triangleright say \mathcal{A} is a k-register RA recognizing \overline{L} ,
 - ▶ $(0)(1)...(k)(k+1)(k+2) \in \overline{L}$, so \exists accepting run of A.
 - Let $d \in \{1, \dots, k+1\}$ be one of the forgotten values.
 - ▶ $(0)(1)...(k)(k+1)(d) \notin \overline{L}$ has the same accepting run.

- $ightharpoonup \overline{L}$ not recognizable (even by nondeterministic RA):
 - \triangleright say \mathcal{A} is a k-register RA recognizing \overline{L} ,
 - ▶ $(0)(1)...(k)(k+1)(k+2) \in \overline{L}$, so \exists accepting run of A.
 - Let $d \in \{1, \dots, k+1\}$ be one of the forgotten values.
 - ▶ $(0)(1)...(k)(k+1)(d) \notin \overline{L}$ has the same accepting run.
- ▶ In particular *L* not recognizable by deterministic RA.

$$\{d_1 \cdots d_n \in \mathbb{N}^* \mid \#\{d_1, \dots, d_n\} \geq 3\}$$

$$\{d_1 \cdots d_n \in \mathbb{N}^* \mid \#\{d_1, \dots, d_n\} \geq 3\}$$

► Recognizable by deterministic RA:

$$\{d_1 \cdots d_n \in \mathbb{N}^* \mid \#\{d_1, \dots, d_n\} \geq 3\}$$

► Recognizable by deterministic RA:

▶ Needs 2 registers.

$$\{d_1 \cdots d_n \in \mathbb{N}^* \mid \#\{d_1, \dots, d_n\} \geq 3\}$$

Recognizable by deterministic RA:

- ► Needs 2 registers.
- Exists a 1-register unambiguous RA.

\mathcal{B}	DRA	URA	NRA
1 register	NL-complete	?	Ackermann-complete
\geq 2 registers	NL-complete	?	Undecidable
*	PSPACE-complete	?	Undecidable

\mathcal{B}	DRA	URA	NRA
1 register	NL-complete	?	Ackermann-complete
\geq 2 registers	NL-complete	?	Undecidable
*	PSPACE-complete	?	Undecidable

▶ Containment: Given A, B, determine if $L(A) \subseteq L(B)$.

\mathcal{B}	DRA	URA	NRA
1 register	PSPACE-complete	?	Ackermann-complete
*	PSPACE-complete	?	Undecidable

\mathcal{B}	DRA	URA	NRA
1 register	NL-complete	?	Ackermann-complete
\geq 2 registers	NL-complete	?	Undecidable
*	PSPACE-complete	?	Undecidable

▶ Containment: Given A, B, determine if $L(A) \subseteq L(B)$.

\mathcal{B}	DRA	URA	NRA
1 register	PSPACE-complete	?	Ackermann-complete
*	PSPACE-complete	?	Undecidable

$$L(\mathcal{A}) \subseteq L(\mathcal{B}) \Leftrightarrow L(\mathcal{A}) \cap \overline{L(\mathcal{B})} = \emptyset$$

\mathcal{B}	DRA	URA	NRA
1 register	NL-complete	?	Ackermann-complete
\geq 2 registers	NL-complete	?	Undecidable
*	PSPACE-complete	?	Undecidable

▶ Containment: Given A, B, determine if $L(A) \subseteq L(B)$.

\mathcal{B}	DRA	URA	NRA
1 register	PSPACE-complete	?	Ackermann-complete
*	PSPACE-complete	?	Undecidable

► $L(A) \subseteq L(B) \Leftrightarrow L(A) \cap \overline{L(B)} = \emptyset$ \leadsto "on-the-fly" complementation. ▶ Configuration *C* of *n*-register \mathcal{B} : set of tuples $(\ell^{\mathcal{B}}, d_1, \ldots, d_n)$.

- ▶ Configuration *C* of *n*-register \mathcal{B} : set of tuples $(\ell^{\mathcal{B}}, d_1, \ldots, d_n)$.
- ▶ Synchronized configuration of \mathcal{A} and \mathcal{B} : $((\ell^{\mathcal{A}}, d_1, \ldots, d_m), C)$.

- ▶ Configuration *C* of *n*-register \mathcal{B} : set of tuples $(\ell^{\mathcal{B}}, d_1, \ldots, d_n)$.
- ▶ Synchronized configuration of \mathcal{A} and \mathcal{B} : $((\ell^{\mathcal{A}}, d_1, \dots, d_m), C)$.
- ▶ (Infinitely branching) transition system $(\mathbb{S}, \rightarrow)$ on synchronized configurations:

- ▶ Configuration *C* of *n*-register \mathcal{B} : set of tuples $(\ell^{\mathcal{B}}, d_1, \ldots, d_n)$.
- ▶ Synchronized configuration of \mathcal{A} and \mathcal{B} : $((\ell^{\mathcal{A}}, d_1, \dots, d_m), C)$.
- ▶ (Infinitely branching) transition system $(\mathbb{S}, \rightarrow)$ on synchronized configurations:

$$((\ell^{\mathcal{A}}, d_1, \ldots, d_m), C) \rightarrow ((\ell'^{\mathcal{A}}, e_1, \ldots, e_m), C')$$

$$\begin{array}{l} \text{if } (\ell^{\mathcal{A}}, d_1, \ldots, d_m) \xrightarrow{\binom{\sigma}{d}} (\ell'^{\mathcal{A}}, e_1, \ldots, e_m) \text{ and } C \xrightarrow{\binom{\sigma}{d}} C' \text{ for some } (\sigma, d) \in \Sigma \times \mathbb{N}. \end{array}$$

- ▶ Configuration C of n-register \mathcal{B} : set of tuples $(\ell^{\mathcal{B}}, d_1, \ldots, d_n)$.
- ▶ Synchronized configuration of A and B: $((\ell^A, d_1, ..., d_m), C)$.
- ▶ (Infinitely branching) transition system $(\mathbb{S}, \rightarrow)$ on synchronized configurations:

$$((\ell^{\mathcal{A}}, d_1, \ldots, d_m), C) \rightarrow ((\ell'^{\mathcal{A}}, e_1, \ldots, e_m), C')$$

if
$$(\ell^{\mathcal{A}}, d_1, \dots, d_m) \xrightarrow{\binom{\sigma}{d}} (\ell'^{\mathcal{A}}, e_1, \dots, e_m)$$
 and $C \xrightarrow{\binom{\sigma}{d}} C'$ for some $(\sigma, d) \in \Sigma \times \mathbb{N}$.

lacksquare $((\ell^{\mathcal{A}}, d_1, \dots, d_m), C)$ bad if $\ell^{\mathcal{A}}$ accepting and C not accepting.

- ▶ Configuration C of n-register \mathcal{B} : set of tuples $(\ell^{\mathcal{B}}, d_1, \ldots, d_n)$.
- ▶ Synchronized configuration of A and B: $((\ell^A, d_1, ..., d_m), C)$.
- (Infinitely branching) transition system (\mathbb{S}, \to) on synchronized configurations:

$$((\ell^{\mathcal{A}}, d_1, \ldots, d_m), C) \rightarrow ((\ell'^{\mathcal{A}}, e_1, \ldots, e_m), C')$$

if
$$(\ell^{\mathcal{A}}, d_1, \dots, d_m) \xrightarrow{\binom{\sigma}{d}} (\ell'^{\mathcal{A}}, e_1, \dots, e_m)$$
 and $C \xrightarrow{\binom{\sigma}{d}} C'$ for some $(\sigma, d) \in \Sigma \times \mathbb{N}$.

- \blacktriangleright $((\ell^A, d_1, \ldots, d_m), C)$ bad if ℓ^A accepting and C not accepting.
- ▶ $L(A) \nsubseteq L(B) \Leftrightarrow \exists bad reachable configuration in (S, <math>\rightarrow$).

Dealing with infinities

Containment

Antoine Mottet

► Infinite branching: only consider "essentially different" successors.

- ► Infinite branching: only consider "essentially different" successors.
- ► Infinite depth: ...

- Infinite branching: only consider "essentially different" successors.
- ► Infinite depth: ...
 - $ightharpoonup \preceq$ is a well-quasi-order if for every infinite sequence S_0, S_1, \ldots , there exist i < j such that $S_i \preceq S_j$.
 - For 1 register: define a WQO $S \leq S'$ on synchronized configurations such that if S' reaches a bad configuration in k steps, then S reaches bad in k steps.

- Infinite branching: only consider "essentially different" successors.
- ► Infinite depth: ...
 - $ightharpoonup \preceq$ is a well-quasi-order if for every infinite sequence S_0, S_1, \ldots , there exist i < j such that $S_i \preceq S_i$.
 - For 1 register: define a WQO $S \leq S'$ on synchronized configurations such that if S' reaches a bad configuration in k steps, then S reaches bad in k steps.
 - For ≥ 2 registers: no such WQO exists (because of undecidability).

- Infinite branching: only consider "essentially different" successors.
- ► Infinite depth: ...
 - $ightharpoonup \preceq$ is a well-quasi-order if for every infinite sequence S_0, S_1, \ldots , there exist i < j such that $S_i \preceq S_i$.
 - For 1 register: define a WQO $S \leq S'$ on synchronized configurations such that if S' reaches a bad configuration in k steps, then S reaches bad in k steps.
 - For ≥ 2 registers: no such WQO exists (because of undecidability).

The unambiguous case: try to bound size of configurations.

An *n*-type is a satisfiable conjunction $\varphi(x_1,\ldots,x_n)$ of = and \neq that is maximal (any formula containing φ is equivalent to φ or insatisfiable).

 \blacktriangleright $x_1 = x_2$ and $x_1 \neq x_2$ are the only 2-types,

- \blacktriangleright $x_1 = x_2$ and $x_1 \neq x_2$ are the only 2-types,
- \blacktriangleright $x_1=x_2 \land x_2 \neq x_3$ and $x_1 \neq x_2 \land x_1=x_3$ are 3-types (there are 5 in total),

- $ightharpoonup x_1 = x_2$ and $x_1 \neq x_2$ are the only 2-types,
- ▶ $x_1 = x_2 \land x_2 \neq x_3$ and $x_1 \neq x_2 \land x_1 = x_3$ are 3-types (there are 5 in total),
- ▶ In general, there are at most $n^n = O(2^{n^2})$ types with n variables (Bell numbers).

- \blacktriangleright $x_1 = x_2$ and $x_1 \neq x_2$ are the only 2-types,
- ▶ $x_1 = x_2 \land x_2 \neq x_3$ and $x_1 \neq x_2 \land x_1 = x_3$ are 3-types (there are 5 in total),
- ▶ In general, there are at most $n^n = O(2^{n^2})$ types with n variables (Bell numbers).
- ightharpoonup Every tuple $(d_1,\ldots,d_n)\in\mathbb{N}^n$ has a type $\operatorname{tp}(d_1,\ldots,d_n)$.

- \blacktriangleright $x_1 = x_2$ and $x_1 \neq x_2$ are the only 2-types,
- \blacktriangleright $x_1=x_2 \land x_2 \neq x_3$ and $x_1 \neq x_2 \land x_1=x_3$ are 3-types (there are 5 in total),
- ▶ In general, there are at most $n^n = O(2^{n^2})$ types with n variables (Bell numbers).
- ▶ Every tuple $(d_1, ..., d_n) \in \mathbb{N}^n$ has a type $\operatorname{tp}(d_1, ..., d_n)$.
- ▶ $\mathsf{tp}(d_1,\ldots,d_n) = \mathsf{tp}(e_1,\ldots,e_n) \Leftrightarrow$ $\exists \mathsf{ permutation } \alpha \mathsf{ of } \mathbb{N} \mathsf{ s.t. } \alpha(d_i) = e_i.$

$$C = \{(\ell, 1, 2), (\ell'', 1, 2), (\ell', 3, 4), (\ell', 2, 5), (\ell'', 4, 5), (\ell, 1, 3), (\ell'', 1, 3)\}$$

$$C = \{(\ell, 1, 2), (\ell'', 1, 2), (\ell', 3, 4), (\ell', 2, 5), (\ell'', 4, 5), (\ell, 1, 3), (\ell'', 1, 3)\}$$

• Pick $\varphi(x_1, x_2, x_3, x_4)$ a 4-type.

$$C = \{(\ell, 1, 2), (\ell'', 1, 2), (\ell', 3, 4), (\ell', 2, 5), (\ell'', 4, 5), (\ell, 1, 3), (\ell'', 1, 3)\}$$

- Pick $\varphi(x_1, x_2, x_3, x_4)$ a 4-type.
- For (d_1, d_2) , compute

$$L_{\varphi}(d_1,d_2) := \{\ell \mid \exists e_1,e_2 : (\ell,e_1,e_2) \in C \text{ and } \mathbb{N} \models \varphi(d_1,d_2,e_1,e_2)\}.$$

$$C = \{(\ell, 1, 2), (\ell'', 1, 2), (\ell', 3, 4), (\ell', 2, 5), (\ell'', 4, 5), (\ell, 1, 3), (\ell'', 1, 3)\}$$

- Pick $\varphi(x_1, x_2, x_3, x_4)$ a 4-type.
- For (d_1, d_2) , compute

$$L_{\varphi}(d_1,d_2):=\{\ell\mid \exists e_1,e_2: (\ell,e_1,e_2)\in \textit{C} \text{ and } \mathbb{N}\models \varphi(d_1,d_2,e_1,e_2)\}.$$

$$\varphi := (x_1 = x_3 \neq x_2 = x_4)$$
 $\psi := \{x_2, x_3\}, \{x_1\}, \{x_4\}$

$$L_{\psi}(1,2) = \{\ell'\}$$

$$L_{\varphi}(1,2) = \{\ell,\ell''\}$$

$$L_{\psi}(2,5) = \emptyset,$$

$$L_{\omega}(2,5) = \{\ell'\},\$$

$$L_{\psi}(2,3) = \emptyset,$$

►
$$L_{\varphi}(3,4) = \{\ell'\},$$

►
$$L_{\psi}(3,4) = \{\ell''\}$$
,

►
$$L_{\varphi}(1,3) = \{\ell,\ell''\}.$$

►
$$L_{\psi}(1,3) = \{\ell'\}.$$

$$C = \{(\ell, 1, 2), (\ell'', 1, 2), (\ell', 3, 4), (\ell', 2, 5), (\ell'', 4, 5), (\ell, 1, 3), (\ell'', 1, 3)\}$$

- Pick $\varphi(x_1, x_2, x_3, x_4)$ a 4-type.
- For (d_1, d_2) , compute

$$L_{\varphi}(d_1,d_2) := \{\ell \mid \exists e_1,e_2 : (\ell,e_1,e_2) \in C \text{ and } \mathbb{N} \models \varphi(d_1,d_2,e_1,e_2)\}.$$

- $\varphi := (x_1 = x_3 \neq x_2 = x_4)$ $\psi := \{x_2, x_3\}, \{x_1\}, \{x_4\}$

- $L_{\omega}(3,4) = \{\ell'\},$ $L_{\psi}(3,4) = \{\ell''\},$
- ▶ $\overline{d} \equiv_C \overline{e}$ if for every 2*n*-type φ , $L_{\varphi}(\overline{d}) = L_{\varphi}(\overline{e})$.

$$C = \{(\ell, 1, 2), (\ell'', 1, 2), (\ell', 3, 4), (\ell', 2, 5), (\ell'', 4, 5), (\ell, 1, 3), (\ell'', 1, 3)\}$$

- Pick $\varphi(x_1, x_2, x_3, x_4)$ a 4-type.
- For (d_1, d_2) , compute

$$L_{\varphi}(d_1,d_2) := \{\ell \mid \exists e_1,e_2 : (\ell,e_1,e_2) \in C \text{ and } \mathbb{N} \models \varphi(d_1,d_2,e_1,e_2)\}.$$

- $\phi := (x_1 = x_3 \neq x_2 = x_4)$ $\psi := \{x_2, x_3\}, \{x_1\}, \{x_4\}$

- $L_{0}(1,2) = \{\ell,\ell''\}$
- $L_{\psi}(1,2) = \{\ell'\}$ ► $L_{\psi}(2,5) = \emptyset$,
- $L_{\omega}(2,5) = \{\ell'\},\$

- $L_{\omega}(3,4) = \{\ell'\},\$
- $\blacktriangleright L_{\psi}(3,4) = \{\ell''\},$
- $L_{\varphi}(1,3) = \{\ell,\ell''\}.$
- $\blacktriangleright L_{\psi}(1,3) = \{\ell'\}.$
- $ightharpoonup \overline{d} \equiv_C \overline{e}$ if for every 2n-type φ , $L_{\omega}(\overline{d}) = L_{\omega}(\overline{e})$.
- \blacktriangleright (1, 2) \equiv_C (1, 3).

$$C = \{(\ell, 1, 2), (\ell'', 1, 2), (\ell', 3, 4), (\ell', 2, 5), (\ell'', 4, 5), (\ell, 1, 3), (\ell'', 1, 3)\}$$

- Pick $\varphi(x_1, x_2, x_3, x_4)$ a 4-type.
- \triangleright For (d_1, d_2) , compute

$$L_{\varphi}(d_1,d_2) := \{\ell \mid \exists e_1,e_2 : (\ell,e_1,e_2) \in C \text{ and } \mathbb{N} \models \varphi(d_1,d_2,e_1,e_2)\}.$$

- $\phi := (x_1 = x_3 \neq x_2 = x_4)$ $\psi := \{x_2, x_3\}, \{x_1\}, \{x_4\}$

- $L_{0}(1,2) = \{\ell,\ell''\}$
- $\blacktriangleright L_{\psi}(1,2) = \{\ell'\}$ ► $L_{\psi}(2,5) = \emptyset$,
- $L_{\omega}(2,5) = \{\ell'\},\$

- $L_{\omega}(3,4) = \{\ell'\},\$
- $ightharpoonup L_{\eta}(3,4) = \{\ell''\},$
- $L_{\varphi}(1,3) = \{\ell,\ell''\}.$
- $\blacktriangleright L_{\psi}(1,3) = \{\ell'\}.$
- $ightharpoonup \overline{d} \equiv_C \overline{e}$ if for every 2n-type φ , $L_{\omega}(\overline{d}) = L_{\omega}(\overline{e})$.
- ightharpoonup (1, 2) \equiv_C (1, 3).
- Generalize \equiv_C to synchronized configurations.

Proposition (M-Quaas '18)

C reachable. $\overline{a}, \overline{b}$ such that $\overline{a} \equiv_C \overline{b}$.

Let $C' = C \setminus \{(\ell, \overline{b}) \in C\}.$

C reaches a bad configuration in k steps iff

C' reaches a bad configuration in k steps.

ightharpoonup C coverable if $\exists C' \supseteq C$ reachable.

Proposition (M-Quaas '18)

C coverable configuration. $\overline{a}, \overline{b}$ such that $\overline{a} \equiv_C \overline{b}$.

Let $C' = C \setminus \{(\ell, \overline{b}) \in C\}.$

C reaches a bad configuration in k steps iff

C' reaches a bad configuration in k steps.

ightharpoonup C coverable if $\exists C' \supset C$ reachable.

Proposition (M-Quaas '18)

C coverable configuration. $\overline{a}, \overline{b}$ such that $\overline{a} \equiv_C \overline{b}$.

Let $C' = C \setminus \{(\ell, \overline{b}) \in C\}.$

C reaches a bad configuration in k steps iff C' reaches a bad configuration in k steps.

ightharpoonup If C is coverable, C' is coverable.

▶ *C* coverable if $\exists C' \supset C$ reachable.

Proposition (M-Quaas '18)

C coverable configuration. $\overline{a}, \overline{b}$ such that $\overline{a} \equiv_C \overline{b}$.

Let
$$C' = C \setminus \{(\ell, \overline{b}) \in C\}.$$

 ${\it C}$ reaches a bad configuration in ${\it k}$ steps iff

C' reaches a bad configuration in k steps.

- ▶ If C is coverable, C' is coverable.
- ► Given *C* coverable, one can decide in exponential time if the proposition applies.

▶ *C* coverable if $\exists C' \supset C$ reachable.

Proposition (M-Quaas '18)

C coverable configuration. $\overline{a}, \overline{b}$ such that $\overline{a} \equiv_C \overline{b}$.

Let
$$C' = C \setminus \{(\ell, \overline{b}) \in C\}.$$

C reaches a bad configuration in k steps iff C' reaches a bad configuration in k steps.

- ▶ If C is coverable. C' is coverable.
- ► Given *C* coverable, one can decide in exponential time if the proposition applies.
- ▶ If collapsing does not apply to C, number of data in $C \le 2^{|\mathcal{B}| \times B_{2n+m}} \le 2^{|\mathcal{B}| \times 2^{(2n+m)^2}}$.

▶ *C* coverable if $\exists C' \supset C$ reachable.

Proposition (M-Quaas '18)

C coverable configuration. $\overline{a}, \overline{b}$ such that $\overline{a} \equiv_C \overline{b}$.

Let
$$C' = C \setminus \{(\ell, \overline{b}) \in C\}.$$

C reaches a bad configuration in k steps iff

C' reaches a bad configuration in k steps.

- ▶ If *C* is coverable, *C'* is coverable.
- ► Given *C* coverable, one can decide in exponential time if the proposition applies.
- ▶ If collapsing does not apply to C, number of data in $C \le 2^{|\mathcal{B}| \times B_{2n+m}} \le 2^{|\mathcal{B}| \times 2^{(2n+m)^2}}$.
- $\blacktriangleright \leadsto$ number of collapsed configurations $\leq 2^{2^{2^{poly}(|\mathcal{A}|,|\mathcal{B}|)}}$

► Start exploring reachable synchronized configurations, starting from $((\ell_{in}^{\mathcal{A}}, \perp), \{(\ell_{in}^{\mathcal{B}}, \perp)\}).$

The Containment Problem for Unambiguous Register Automata

- Start exploring reachable synchronized configurations, starting from $((\ell_{in}^{\mathcal{A}}, \perp), \{(\ell_{in}^{\mathcal{B}}, \perp)\})$.
- ▶ When reaching S and S can be collapsed to S', pretend we reached S'. If S' is bad, reject.

- Start exploring reachable synchronized configurations, starting from $((\ell_{in}^A, \bot), \{(\ell_{in}^B, \bot)\})$.
- ▶ When reaching S and S can be collapsed to S', pretend we reached S'. If S' is bad, reject.
- ▶ When everything has been reached, accept.

- ▶ Start exploring reachable synchronized configurations, starting from $((\ell_{in}^{\mathcal{A}}, \bot), \{(\ell_{in}^{\mathcal{B}}, \bot)\})$.
- ▶ When reaching S and S can be collapsed to S', pretend we reached S'. If S' is bad, reject.
- When everything has been reached, accept.
- ► At most $2^{2^{2^{poly}(|\mathcal{A}|,|\mathcal{B}|)}}$ collapsed configurations. ~> 2-EXPSPACE algorithm.

- ▶ Start exploring reachable synchronized configurations, starting from $((\ell_{in}^{\mathcal{A}}, \bot), \{(\ell_{in}^{\mathcal{B}}, \bot)\})$.
- ▶ When reaching S and S can be collapsed to S', pretend we reached S'. If S' is bad, reject.
- When everything has been reached, accept.
- ► At most $2^{2^{2^{poly}(|\mathcal{A}|,|\mathcal{B}|)}}$ collapsed configurations. ~ 2-EXPSPACE algorithm.

\mathcal{B}	DRA	URA	NRA
1 register	PSPACE-comp.	EXPSPACE	Ackermann-comp.
*	PSPACE-comp.	2-EXPSPACE	Undecidable

- ► For register automata:
 - Lower bounds,
 - ▶ Length of shortest witnesses for $L(A) \nsubseteq L(B)$?
 - ▶ Minimal number of data in witness for $L(A) \nsubseteq L(B)$?
 - Bounded amount of ambiguity?

- ► For register automata:
 - Lower bounds,
 - ▶ Length of shortest witnesses for $L(A) \nsubseteq L(B)$?
 - ▶ Minimal number of data in witness for $L(A) \nsubseteq L(B)$?
 - ▶ Bounded amount of ambiguity?
- ▶ For RAs over ordered domain: decidability for \geq 2 registers?

- ► For register automata:
 - Lower bounds,
 - ▶ Length of shortest witnesses for $L(A) \nsubseteq L(B)$?
 - ▶ Minimal number of data in witness for $L(A) \nsubseteq L(B)$?
 - ▶ Bounded amount of ambiguity?
- ▶ For RAs over ordered domain: decidability for \geq 2 registers?
- ▶ Timed automata: decidability for \geq 2 clocks?