

AI-Based Retinal Disease Detection Using Deep Learning

By Vidish Kumar

Introduction to Diabetic Retinopathy Detection

Global Challenge

DR causes avoidable blindness worldwide

Al Advantage

Deep learning enables faster, accurate analysis

Current Limitations

manual detection slow, needs specialists

Early Detection Importance

Crucial to prevent vision loss

Project Objectives

Multi-class Classification

5 DR severity levels predicted

Automation

Reduce manual screening reliance

Early Diagnosis

Prevent blindness through timely detection

· stræepatthy rgllucome/

System Workflow

Image Upload

Preprocessing

CNN Model (ResNet50V2)

DR Level Output

Dataset & Preprocessing

Dataset

20,000 retinal images categorized into 5 severity classes.

Preprocessing

- Normalization for consistent brightness
- Augmentation: rotation, zoom, flip, shear, brightness
- Data split: 60% train, 25% validation, 15% test

Input Layer

Model Architecture: ResNet50V2 Transfer Learning

Base Model

Pretrained on ImageNet

Fine-Tuning

Last 50 layers unfrozen for training

Added Layers

Pooling, BatchNorm, Dense, Dropout, Softmax

Training & Evaluation

Training Setup

Adam optimizer with learning rate 1e-4, 10 epochs on augmented data.

Results

Validation accuracy stable at 75.91%, test accuracy 75.40%.

Loss function: categorical crossentropy with final loss 0.7561.

Applications, Benefits & Future Work

Clinical & Remote Use

Fast, accessible screening reduces specialist workload.

Future Improvements

- Boost accuracy beyond 85%
- Detect additional eye diseases
- Optimize for mobile and edge devices
- Expand clinical trials and telemedicine support

