第7章 气体动理论

一 气体分子微观量与宏观量之间的关系

1. 平动动能

气体内部含有大量作无规则运动的分子,速度不一,只能得到统计出的平均动能

分子平均平动动能

 $\overline{\mathbf{\varepsilon}_{\mathrm{t}}} = \frac{1}{2} \mu \overline{v^2}$

· µ: 气体分子质量

 $\overline{v^2}$: 气体分子运动速率平方的统计平均值(先平方,再平均)

2. 温度与压强

温度	压强	
$\overline{\epsilon_{t}} = \frac{3}{2}kT$	$p = \frac{2}{3}n\overline{\varepsilon_{t}}$	

- · k: 玻尔兹曼常量,1.38×10⁻²³ J/K; n: 单位体积内的分子数 N/V
- · 由此可推导出

理想气体状态方程

pV = νRT

其中**摩尔气体常量** $R=k\cdot N_{\rm A}=8.31\,{\rm J/(mol\cdot K^{-1})}$,摩尔质量 $M=N_{\rm A}\cdot \mu$ 并注意**物质的量的符号是** ν (化学中是用n的), $N_{\rm A}$ 为阿伏伽德罗常数

3. 自由度

① 自由度:确定物体空间位置所需的独立坐标数目

分子类型	平动自由度	转动自由度	自由度
单原子分子	3	0	3
刚性双原子分子	3	2	5
刚性多原子分子	3	3	6

② 分子平均能量

③ 内能: 所有理想气体分子的动能之和

分子平均能量

 $\overline{\varepsilon} = \frac{i}{2}kT$

内能

$$E = \nu \frac{i}{2}RT$$

核心思路 找到题目中出现的参数,根据以上公式将它们关联起来

例 1 (18—19, 10)2g 氧气(可视为刚性的双原子分子)与 2g 氦气分别装在两个容积相同的封闭容器内,温度也相同。则氧气与氦气的(1)分子平均平动动能之比 $\epsilon_{t O_2}$ / $\epsilon_{t He}$ = _______;

- \mathbf{p} (1) 锁定参数: 平动动能、温度,两者存在关系: $\frac{1}{\epsilon_t} = \frac{3}{2}kT$ 因此若温度相同,平均平动动能也相同,所以之比为 1:1
 - (2) 锁定参数:内能、温度,两者存在关系: $E = \frac{i}{2} \nu RT$ 由于温度相同,因此 $E_{O_2} / E_{He} = \frac{i_{O_2} \nu_{O_2}}{i_{He} \nu_{He}} = \frac{i_{O_2} m_{O_2} / M_{O_2}}{i_{He} m_{He} / M_{He}} = \frac{i_{O_2} M_{He}}{i_{He} M_{O}}$

He 为单原子分子, 自由度为 3, 摩尔质量为 4g/mol

O₂为刚性双原子分子,自由度为 5,摩尔质量为 32g/mol

因此
$$E_{O_2}/E_{He} = \frac{5\times4}{3\times32} = \frac{5}{24}$$

- **例 2** (16–17, 7) 三个容器 A、B、C 中装有同种理想气体,其分子数密度 n 相同,而方均根速率之比 为 $(\overline{v_{\rm A}^2})^{1/2}:(\overline{v_{\rm B}^2})^{1/2}:(\overline{v_{\rm C}^2})^{1/2}=1:2:4$,则压强之比 $p_{\rm A}:p_{\rm B}:p_{\rm C}$ 为______。
- 解 锁定参数: n、方均根速率、压强,由于 $p = \frac{2}{3}n\overline{\epsilon_{_{\rm t}}}$, $\overline{\epsilon_{_{\rm t}}} = \frac{1}{2}\mu\overline{v^2}$, 因此 $p = \frac{1}{3}n\mu\overline{v^2}$ 由于n相同, μ 相同(同种理想气体),因此 $p_{_{\rm A}}$: $p_{_{\rm B}}$: $p_{_{\rm C}} = \overline{v_{_{\rm A}}^2}$: $\overline{v_{_{\rm B}}^2}$: $\overline{v_{_{\rm C}}^2} = 1^2$: 2^2 : $4^2 = 1$: 4:16

二 气体分子速率分布律

1. 速率分布函数

速率分布函数

$$\frac{\mathrm{d}N}{N} = f(v)\,\mathrm{d}v$$

- ·理解: f(v)dv 为速率在(v,v+dv) 区间内的分子数占总分子数的比例, 类似于概率密度函数
- · 特点: ① 归一化(全范围积分为1)
- ② 速率区间[v₁,v₂]内分子比例

月一化
$$\int_{0}^{+\infty} f(v) dv = 1$$

$$\frac{\Delta N}{N} = \int_{v_1}^{v_2} f(v) \, \mathrm{d}v$$

内能

· 三种特征速率

题型:根据给定速率分布求特征数

- ① 若速率分布中有待定参数:根据归一化特点求出该参数
- ② 求特征数:按照要求代入公式即可,注意积分区间不一定是整个区间

例3 (20-21/09-10, 3) 设由 N 个气体分子组成一热力学系统, 其速率分布函数为

$$f(v) = \begin{cases} -k(v - v_0)v & 0 \le v \le v_0 \\ 0 & v > v_0 \end{cases}$$

求: (1) 用 v_0 表示常量k; (2) 气体分子的方均根速率 $\sqrt{v^2}$; (3) 速率在 $0 \sim v_0/3$ 之间的气体分子数占总分子数的百分比; (4) 求最概然速率 v_0

解 (1) 由归一化:
$$\int_0^{+\infty} f(v) dv = \int_0^{v_0} -k(v - v_0) v dv = k \frac{1}{6} v_0^3 = 1, \quad \text{解得 } k = \frac{6}{v^3}$$

(2)
$$\sqrt{\overline{v^2}} = \sqrt{\int_0^{+\infty} v^2 f(v) dv} = \sqrt{\int_0^{v_0} -kv^3 (v - v_0) dv} = \sqrt{\frac{6}{v_0^3} \frac{1}{20} v_0^5} = \sqrt{\frac{3}{10}} v_0$$

(3)
$$\frac{\Delta N}{N} = \int_{0}^{v_0/3} -k(v - v_0)v \, dv = \int_{0}^{v_0/3} -\frac{6}{v_0^3} (v - v_0)v \, dv = \frac{7}{27} = 25.9\%$$

(4)
$$f'(v) = -k(2v - v_0) = 0 \Rightarrow v_p = v_0 / 2$$

2. 麦克斯韦速率分布律

· 处于平衡态的理想气体分子速率分布规律

麦克斯韦速率分布律(不用记)

$$f(v) = 4\pi \left(\frac{\mu}{2\pi kT}\right)^{3/2} e^{-\frac{\mu v^2}{2kT}} v^2$$

· 记住以下统计速率即可

最概然速率
$$v_{\mathrm{p}} = \sqrt{\frac{2kT}{\mu}} = \sqrt{\frac{2RT}{M}}$$

平均速率
$$\overline{\overline{v}} = \sqrt{\frac{8kT}{\pi\mu}} = \sqrt{\frac{8RT}{\pi M}}$$

方均根速率
$$\sqrt{\overline{v^2}} = \sqrt{\frac{3kT}{\mu}} = \sqrt{\frac{3RT}{M}}$$

- **例 4** (17–18, 11) 假定氧气的热力学温度提高一倍,氧分子全部离解为氧原子,并且氧气和氧原子的速率分布遵循麦克斯韦速率分布,则这些氧原子的方均根速率是原来氧分子方均根速率的_____倍。
- \mathbf{R} 方均根速率和温度的关系为 $\sqrt{v^2} = \sqrt{\frac{3RT}{M}}$

温度提高一倍 $\rightarrow T'=2T$ 氧分子变成氧原子 $\rightarrow M'=M/2$

因此
$$\sqrt{\overline{v^2}}' = \sqrt{\frac{3RT'}{M'}} = 2\sqrt{\frac{3RT}{M}} = 2\sqrt{\overline{v^2}}$$
, 2倍

例 5 (14–15, 9)如图所示的两条 $f(v) \sim v$ 曲线分别表示氢气和氧气在同一温度下的麦克斯韦速率分布曲线。由此可得:

氢气分子的最概然速率为_____;

氧气分子的最概然速率为。

解 图中只告诉我们其中一个答案是 2000m/s

根据麦克斯韦分布的最概然速率 $v_p = \sqrt{\frac{2RT}{M}}$, 温度相同, M越大, v_p 越小 因此 2000 m/s 应该是氢气的最概然速率,氧气则是 $v_{\text{p}}' = \sqrt{\frac{2RT}{M'}} = \sqrt{\frac{2RT}{16M}} = \frac{1}{4}v_{\text{p}} = 500 \text{m/s}$

自由程

1. 平均碰撞频率

· 单位时间内一个分子于其他分子碰撞次数的统计平均值

平均碰撞频率

$$\overline{Z} = \sqrt{2}\pi d^2 n \overline{v}$$

· d: 分子直径

2. 平均自由程

· 一个分子在两次连续碰撞之间走过的路程的统计平均值

平均自由程
$$\overline{\lambda} = \frac{\overline{v}}{\overline{Z}} = \frac{1}{\sqrt{2}\pi d^2 n} = \frac{kT}{\sqrt{2}\pi d^2 p}$$

例 6 (20-21, 8) 在一个体积不变的容器中,储有一定量的理想气体,温度为Ta时,气体分子的平均 速率为 \overline{v}_0 ,分子平均碰撞频率为 \overline{Z}_0 ,平均自由程 $\overline{\lambda}_0$ 。当气体温度升高为 $4T_0$ 时,气体分子的平均 速率为______,平均碰撞频率为_____,平均自由程为_____

解 第一空: 平均速率
$$\overline{v} = \sqrt{\frac{8RT}{\pi M}}$$
, 因此 $\overline{v} = \sqrt{\frac{8RT}{\pi M}} = \sqrt{\frac{8R4T_0}{\pi M}} = 2\sqrt{\frac{8RT_0}{\pi M}} = 2\overline{v}_0$

第二空: 平均碰撞频率 $\overline{Z}=\sqrt{2\pi}d^2n\overline{v}=\sqrt{2\pi}d^2n\overline{v}=\sqrt{2\pi}d^22\overline{v}_0=2\overline{Z}_0$ (体积不变,因此 n 不变)

第三空: 平均自由程
$$\overline{\lambda} = \frac{\overline{v}}{\overline{Z}} = \frac{2\overline{v}_0}{2\overline{Z}_0} = \overline{\lambda}_0$$