ECS7024 Statistics for Artificial Intelligence and Data Science

Course Review

William Marsh

Main Themes of the Module

- Categorical and continuous variables
 - Distributions: bar charts and histograms
- Probability
 - Laws, Joint and Conditional
 - Cross-tabulation (contingency table)
- Probability distributions
 - Binomial
 - Normal: mean and variance
- Correlation
 - Scatter plots
 - Mutual information

- Sampling
- Regression
 - Continuous and logistic
 - Correlation and causes
- Hypothesis tests
 - T-test, chi-squared
 - CI and p-values
- Bootstrap
- Time series
- Bayesian statistics
 - Likelihood and prior
- Linear algebra

Sampling and Statistical Tests

Devices for Generating Random Events

Two sequences 10 (generated with a real coin):

- H, H, T, T, H, T, T, H, H (5H, 5T)
- T, T, T, H, H, T, T, T, H, H (4H, 6T)

Sampled from

Population and Sample

Population size N

- Sample from a population
- Measure the sample (e.g. political preference)
- Statistical inference about population

Confidence Intervals

alpha is the significance threshold – choose it

Some Issues

- You have to know
 - The test statistics
 - The correct distribution
 - The assumptions
- Cls and p-value can be mis-understood
 - p-value is not the probability you want
- Hypothesis testing does not consider effect size

Sampling and Statistical Tests

Student's t-Distribution and Test

Sampling distribution similar to normal, for use when variance unknown

Student's t-Distribution

- Parameter: 'degrees of freedom' df ≥ 0
 - Shift or scaled with mean and standard deviation
- Normal with 'fat tails'

Confidence Intervals for a Mean

- Sample statistics
 - N values
 - Mean \bar{x}
 - Standard deviation s
- If 95% confidence
 - $-\alpha$ is 2.5%
- Large sample –
 can use normal

Student's t-distribution

- N-1 degrees of freedom
- Mean \bar{x}
- Deviation $\frac{s}{\sqrt{N}}$ (standard error of mean)

Confidence Intervals for a Mean

- Sample of data
 - From a normal
- Sample statistics
 - Mean
 - Standard deviation

- Cl from
 - Student's tdistribution
 - Required p-value

Sampling and Statistical Tests

Testing Proportions in a Contingency Table

Test statistics New distribution - χ^2

Test Statistic

Observed

	Α	В	O	D
White collar	90	60	104	95
Blue collar	30	50	51	20
No collar	30	40	45	35

Expected

Assuming null hypothesis

	Α	В	С	D
White collar	80.5	80.5	107.4	80.5
Blue collar	34.8	34.8	46.5	34.8
No collar	34.6	34.6	46.2	34.6

$$\sum_{All \ cells} \frac{(Observed - Expected)^2}{Expected}$$

Chi-Squared Distribution

- Parameter: degrees of freedom
 - (number of rows 1) * (number of columns 1)

Sampling and Statistical Tests

Bootstrap

CI without a Sample Distribution from Theory

Bootstrap

 In a simulation we repeated sample a known population In a bootstrap, we resample the sample

Sampling with Replacement

- Re-sample from the 'observed sample' with replacement
- Bootstrap sample
 - Same size as original
 - Some records omitted
 - Some records repeated

Related Terms

- 'Bootstrap aggregation' or 'bagging'
- Resampling (with or w/o replacement)
- Permutation test

Bootstrap Steps

- 1. Resample from the sample
- 2. Calculate the statistic (e.g. mean) of interest for each new sample
- 3. Consider (i.e. plot) the distribution of the statistic
 - Use the quantiles to create a CI on the statistic

Understanding Statistical Tests

Using Bayes theorem to understand p-values

Bayes Theorem

 $p(\theta \mid data) \propto p(data \mid \theta). p(\theta)$

- θ is the parameter or parameters
- $p(\theta \mid data)$: posterior, how data changes our understanding
- $p(\theta)$ is the prior
- p(data $\mid \theta$) is the likelihood; how probability of data varies with changes to θ
- Classical / frequentist statistics only has likelihood

Frequentist statistics only has likelihood

$$p(\theta \mid data) \propto p(data \mid \theta). p(\theta)$$

A p-value of 5% says:

Given the data, there is 5% probability that the null hypothesis is correct

Frequentist statistics only has likelihood

$$p(\theta \mid data) \propto p(data \mid \theta). p(\theta)$$

A p-value of 5% says:

Given the data, there is 5% probability that the null hypothesis is correct

- This is a statement about the probability of a parameter, given data
- Only possible in Bayesian statistics

Frequentist statistics only has likelihood

$$p(\theta \mid data) \propto p(data \mid \theta). p(\theta)$$

A p-value of 5% says:

There is 5% probability of getting this data if the null hypothesis is correct

Frequentist statistics only has likelihood

$$p(\theta \mid data) \propto p(data \mid \theta). p(\theta)$$

A p-value of 5% says:

There is 5% probability of getting this data if the null hypothesis is correct

- This is a statement about the probability of the data given the parameter (i.e. the hypothesis)
- However, probability of the data is small

Frequentist statistics only has likelihood

$$p(\theta \mid data) \propto p(data \mid \theta). p(\theta)$$

There is 5% probability of getting data **this extreme** if the null hypothesis is correct

- Probability relates to repeating the sampling process
- Requires a single 'distance' statistic e.g. test statistic in chi-square
- No probabilities for model parameters or hypotheses

C/W 4

Overview

I: Paper Review

Storks Deliver Babies (p = 0.008)

KEYWORDS:

Teaching; Correlation; Significance; p-values.

Robert Matthews

Aston University, Birmingham, England. e-mail: rajm@compuserve.com

Summary

This article shows that a highly statistically significant correlation exists between stork populations and human birth rates across Europe. While storks may not deliver babies, unthinking interpretation of correlation and *p*-values can certainly deliver unreliable conclusions.

- Naive / incorrect interpretation of p-values
- Short written answer
- Includes a causal diagram

2: Re-Analysis of Data

- Regression
- Bootstrap

Finding the programming difficult? Please ask for help.

What Makes Statistics Difficult?

Is Statistic Relevant to data Science

Menti code: 1351 2465

Is Statistics Relevant to Data Science?

Reflections not answers

What is Data

• Is this data?

Another example is text

- What is it distribution?
- Can you sample from it?
- Can you visualise its distribution?

Dimensionality

Each variable is a dimension

Variable	Meaning
Age	The person's age in years
Sex	1 = male, 0 = female
ChestPain	The chest pain experienced
RestBP	The person's resting blood pressure (mm Hg on admission to the hospital)
Chol	The person's cholesterol measurement in mg/dl
Bsugar	The person's fasting blood sugar (> 120 mg/dl, 1 = true; 0 = false)
RestECG	Resting electrocardiographic measurement

- Individual located in 'N-dimensional space'
 - We looked at single variables or pairs of variables
- Challenge of high-dimensionality

Statistical Modelling

- Model: one (or some) variables determined from other
- Example: why do some students fail?
 - Statistics: what factor explain failure(in a data set)
 - ML: Can we predict failure (given a data set)?

Statistics

- Aim is explanation
 - Which variables?
 - Contribution of variables
- Performance: good fit
- Population

(Supervised) Machine Learning

- Aim is prediction
 - Which variables?
 - Which algorithm?
- Performance: accuracy
- Individual

Statistical Modelling & Performance

- Model: one (or some) variables determined from other
- Example: why do some students fail?
 - Statistics: what factor explain failure
 - ML: Can we predict failure?

Independent variables,
Factors or Predictors

Height ??

Self-belief

Model

Pass / Fail

Outcome, target or dependent variable

missing

Modelling: Prediction and Explanation

Linear Regression

Equation of a Line (1 Independent Variable)

- Two parameters
 - Intercept: Y when X = 0
 - Slope: increase in Y when X increases by 1

Linear Regression Assumptions

 Can have multiple independent variables (predictors)

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3$$

- Each independent variable X_i
 - Adds or subtracts to Y in independently of other X_i
 - Has it's own 'coefficient' β_i
 - Linear: the same change in X_i gives same change in Y
- Cannot be true if X_i and X_j are correlated

Explaining using Linear Regression

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3$$

- Each β shows the importance of its predictor
- β can be +ve or –ve
- If β very 'small' then predictor not important
 - Size is relative to other predictors
 - Standardise range of Xs
- What about missing predictors?

Regression Line for Data Points

Points are not exactly on a line

$$y_i = \beta_0 + \beta_1 x_{1i} + e_i$$
 error

Minimise Residual Sum of Squares

Residuals (Errors)

Prediction – if the point on the line

Residuals (errors)

$$e_i = y_i - \widehat{y}_{i_i}$$

'Best' Fit and Distribution of Errors

- Theory assumes that distribution of residuals (errors) is normal
- You can check this
 - Plot the distribution
 - QQplot for normality
- If distribution of residuals skewed, then the parameters may not be 'best'

Goodness of Fit: R²

- R² is popular: coefficient of determination
- Range 0 to 1
- Proportion of the variance of Y that is predictable from X
 - Rest of the variance due to errors
 - i.e. missing predictors

Goodness of Fit: R²

Proportion of the variance Y that is predictable from X

$$R^{2} = \frac{\text{Explained sum of squares}}{\text{Total sum of squares}} = \frac{\sum (\hat{y_{i}} - \bar{y})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$

- Perfect prediction the $R^2 = 1$
- If we always predict \bar{y} then $R^2 = 0$
- Note: this is not the most general definition, but it applies in linear regression

Goodness of Fit: RMSE

RMSE: root mean squared error

• RMSE =
$$\sqrt{\frac{1}{N}\sum_{i}e_{i}^{2}} = \sqrt{\frac{1}{N}\sum_{i}(y_{i} - \widehat{y}_{i})^{2}}$$

- Instead of N, sometimes N p 1 (for p predictors) as number of degrees of freedom
- More common in ML
 - Accuracy of predictor for continuous variable

Issues for Regression

- Issue 1: Enough Data?
 - Each has β to be estimated from data
 - A statistical model can be too complex for the data
 - Most statistical models have more parameters
- Issue 2: co-linearity
 - Remember assumption: predictor independent
 - Always check correlation of predictors
- Stepwise regression
 - Algorithm for choosing best set of predictors

Modelling: Prediction and Explanation Logistic Regression

Problem: Regression with Binary Target

 How to use a linear regression for target with 2 values?

Logistic Regression: Key Ideas

- 1. Predict a probability
 - Advantage: it's a number; use it to choose class
 - Problem: range 0 to 1
 - $p = f(\beta_0 + \beta_1 x_1 + \beta_2 x_2) \text{choose a suitable } f()$
- 2. Predict odds p(Y=true) / p(Y=false)
 - Advantage: range is 0 upwards
 - Problem: not linear; cannot be negative
- 3. Predict the log of the odds
 - Solution: range over -∞ to +∞

Logit: Log Odds

Maps probability p to range -∞ to +∞

Log of odds ratio:
$$logit(p(x)) = ln(\frac{p(x)}{1-p(x)})$$

Not the only possible conversion

Getting the Probability & Class

- Logit regression
 - Linear regression on log odds
 - $logit(p(x)) = \beta_0 + \beta_1 \cdot x_1 + \beta_2 \cdot x_2$
- Odds
 - Reverse the log: $\frac{p(x)}{1-p(x)} = e^{\beta_0 + \beta_1 \cdot x_1 + \beta_2 \cdot x_2}$
- Probability
 - Reverse the odds: $p(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 \cdot x_1 + \beta_2 \cdot x_2)}}$
- Class: y is True if p > 50% (a possible threshold)

Modelling: Prediction and Explanation

Accuracy, Confusion Matrix and AUC

Applies to any binary classifier

Confusion Matrix

Compare actual and predicted

Predicted Disease Status

		Positive	Negative
True Disease Status	Positive	True positive (TP)	False negative (FN)
	Negative	False positive (FP)	True negative (TN)

- Classification depends on probability threshold
- Are both types of error equal?

ROC: Sensitivity v Specificity

- Y axis
 - TPR (Sensitivity)
- X axis
 - FPR (1 Specificity)
- Curve
 - Possible operating points
 - Given by threshold
- AUC: measure of performance

Time Series Analysis

Meanings of Time

- Timestamp
 - A specific instance
 - Python type 'datetime'; Pandas 'Timestamp'
- Interval or Period
 - The time between two instances
 - 'A week later' or a 'month later'
- Duration
 - How long it takes to …
 - Time as data (cf. time as the index)

Our concern here is with 'time as an index'

Selecting a Range: 3 Months

Rolling Average: Daily

Modelling Time Series Data

- Combined elements of
 - Trend
 - Auto-regression
 - Multiple time series

Trend: Time as a Predictor

Regression of the form

$$y_t = \beta_0 + \beta_1 t + \epsilon$$

Combined with other terms

Auto-Regression: Earlier Values Predict

 Use an earlier value (lagged value) to predict later value

$$y_t = \beta_0 + \beta_1 y_{t-T} + \epsilon$$

Used for prediction

Regression with Multiple Time Series

Values of some time series predict another time series

$$y_t = \beta_0 + \beta_1 x_{1t} + \beta_2 x_{2t} + \epsilon$$

- Without lag, not a prediction
- Used to understand causal patterns

Auto Correlation

- Generalise correlation
 - Correlation as a function of lag

- Does not 'see' other periodicity
 - 'Partial auto-correlation'
 - Frequency decomposition

Summary

Is Statistics Relevant to Data Science/ML?

- Disciplines developed separately
 - Slowly converging
- Two aims: both relevant
 - Prediction
 - Explanation
- Sampling and uncertainty
 - Increasing depends to 'explain' prediction
 - Understand the performance of models
- Model building
 - All statistics involves model building
 - Statistical validity versus validity of model
 - ML offers new models

Summary

- I am not a statistician!
- Trying to present statistics in a way that is relevant to data science
 - Work in progress
- Classical statistical tests not very relevant
- Bootstrap brilliant
- Bayesian thinking increasingly important
- Linear models remain surprisingly relevant