APMOPS: Sample Questions

Q1 There are 4 cards labeled with letters M, A, T and H respectively. A single-digit number is written at the back of each card. They are then placed side by side, as shown below, so that a four-digit number is obtained. Peter discovered that regardless of the number written behind the "A" card, the difference between the four-digit number and hundred times of the sum of its digits is always 4212. Find the numbers written behind the cards labeled M, T and H respectively.

Q2 Given that $S = 1+11+111+1111+...+ \underbrace{111...1}_{100 \ of \ 1's}$

find the sum of the digits of S.

Q3 The diagram shows a 5 by 5 grid comprising 25 squares. Each square is filled with number 1, 2, 3, 4 or 5 in such a way that no row, column or the two main diagonal lines contain the same number more than once. Find the value of *m*.

	1			
			m	
	2	3		
4				
			5	

Q4 The diagram shows a square made up of nine rectangles. Rectangle E is also a square. Given that the areas of rectangles A, B and C are 7 cm², 21 cm² and 2 cm² respectively, find the perimeter of the rectangle labeled D.

$oxedsymbol{A}$		В
	E	
C		D

Q5 Given that

$$\left(1+\frac{1}{2}\right)\times\left(1+\frac{1}{2^2}\right)\times\left(1+\frac{1}{2^4}\right)\times\left(1+\frac{1}{2^8}\right)\times...\times\left(1+\frac{1}{2^{2^{2009}}}\right)=2\left(1-\frac{1}{2^{2^n}}\right),$$

find the value of n.

Q6 The diagram shows an isosceles triangle ABC where AC = BC and $\Box BAC = 80^{\circ}$.

Given that AB = CD, find the value of $\Box BDC$.

Solutions to this question by accurate drawing will not be accepted.

End of Paper

Answers:

Q1
$$M = 5$$
, $T = 1$ and $H = 2$

Q3

APMOPS: Sample Questions

5	1	2	3	4
3	4	5	1	2
1	2	3	4	5
4	5	1	2	3
2	3	4	5	1

Q4
$$11\frac{2}{3} cm^2$$