Useful Results in Calculus

Introduction

- Topics covered:
 - Implicit Function Theorem
 - Taylor's Theorem
 - L'Hôpital's Rule
 - Integration by Parts
 - Fundamental Theorem of Calculus
 - Rules of Differentiation of Integrals

A.5.1 Implicit Function Theorem

Understanding the Relationship between Variables in Equations

What is the Implicit Function Theorem?

- The Implicit Function Theorem relates to a bivariate function $f(x_1, x_2)$ in the real space, assumed to be twice continuously differentiable.
- It describes how the equation $\phi(x_1, x_2) = 0$ implicitly defines x_2 as a function of x_1 .

Slope of the Implicit Function

- For the equation $\phi(x_1, x_2) = f(x_1, x_2) a = 0$, where a is a constant:
- The slope of the implicit function $x_2 = x_2(x_1)$ is:
- $dx_2/dx_1 = -[\partial f(x_1, x_2)/\partial x_1] / [\partial f(x_1, x_2)/\partial x_2]$

$$\frac{d\tilde{x}_2}{dx_1} = -\frac{\partial f(x_1, x_2)/\partial x_1}{\partial f(x_1, x_2)/\partial x_2}$$

Applying the Theorem to a Simple Function

- Consider $f(x_1, x_2) = 3x_1^2 x_2$ with the equation $\phi(x_1, x_2) = 3x_1^2 x_2 1 = 0$.
- Explicitly, x_2 can be written as $\tilde{x}_2(x_1) = 3x_1^2 1$
- Using the implicit function theorem:
- $dx_2/dx_1 = -[6x_1]/[-1] = 6x_1$ $d\tilde{x}_2/dx_1 = -(6x_1)/(-1) = 6x_1$

Conclusion: The slope is 6x₁.

Applying the Theorem to a More Complex Function

- Consider $f(x_1, x_2) = log(x_1) + 3x_1^2x_2 + e^{x^2}$ with the equation
- $\phi(x_1, x_2) = \log(x_1) + 3x_1^2x_2 + e^{x^2} 17 = 0$.
- Here, x₂ cannot be explicitly solved.
- Using the implicit function theorem:

$$d\tilde{x}_2/dx_1 = -[(1/x_1) + 6x_1x_2]/[3 \cdot (x_1)^2 + e^{x_2}]$$

 Conclusion: The theorem allows computation of derivatives even when explicit solutions are not possible.

Multivariate Implicit Function Theorem

- Extends to functions $f(x_1, ..., x_n)$ in real space, assumed to be twice continuously differentiable.
- For $\phi(x_1, ..., x_n) = 0$, where $x_n = x_n(x_1, ..., x_{n-1})$, the derivatives are given by:
- $\partial x_n/\partial x_i = -[\partial f(x_1, ..., x_n)/\partial x_i] / [\partial f(x_1, ..., x_n)/\partial x_n]$, for i = 1, ..., n-1

$$\frac{\partial \tilde{x}_n}{\partial x_i} = -\frac{\partial f(\bullet)/\partial x_i}{\partial f(\bullet)/\partial x_n}, \quad i = 1, \dots, n-1$$

Where is it Applied?

- Widely used in economics, engineering, and physics where equations often relate multiple variables implicitly.
- Example in economics: Determining equilibrium conditions where one variable is not easily solved in terms of another.

Key Takeaways

- The Implicit Function Theorem is a powerful tool for analyzing relationships between variables when explicit functions are difficult to derive.
- Understanding the partial derivatives is crucial for applying the theorem.
- Provides a method to assess how changes in one variable affect another in complex systems.

A.5.2 Taylor's Theorem

Approximating Functions with Polynomials

What is Taylor's Theorem?

- Taylor's Theorem allows the approximation of a function f(x) around a point x* using a polynomial of degree n.
- The approximation improves as the degree n increases.

Taylor Series Expansion Formula

The Taylor series expansion of f(x) around x* is given by:

$$f(x) = f(x^*) + (df/dx)|_{x^*} \cdot (x - x^*) + (d^2f/dx^2)|_{x^*} \cdot (x - x^*)^2 \cdot (1/2!)$$

$$+ (d^3f/dx^3)|_{x^*} \cdot (x - x^*)^3 \cdot (1/3!) + \cdots$$

$$+ (d^nf/dx^n)|_{x^*} \cdot (x - x^*)^n \cdot (1/n!) + R_n$$

• Here, R_n is the residual that accounts for the error in approximation.

Taylor Series for x^3 Around $x^* = 1$

• Approximate x^3 around $x^* = 1$ using a third-degree polynomial:

$$x^{3} = 1^{3} + (3 \cdot 1^{2}) \cdot (x - 1) + (6 \cdot 1) \cdot (x - 1)^{2} / 2 + 6 \cdot (x - 1)^{3} / 6 + R_{3}$$

$$= 1 + (3x - 3) + 3 \cdot (x^{2} - 2x + 1) + (x^{3} - 3x^{2} + 3x - 1) + R_{3}$$

$$= x^{3}$$

- Simplifying, we get: $x^3 = x^3$
- Conclusion: The residual R₃ is 0, meaning the approximation is exact for this case.

Taylor Series for e^x Around $x^* = 0$

• Approximate e^x around $x^* = 0$ using a fourth-degree polynomial:

$$e^{x} = e^{0} + e^{0} \cdot x + e^{0} \cdot (x^{2}/2) + e^{0} \cdot (x^{3}/6) + e^{0} \cdot (x^{4}/24) + R_{4}$$
$$= 1 + x + x^{2}/2 + x^{3}/6 + x^{4}/24 + R_{4}$$

• Conclusion: As the degree n increases, the approximation becomes more accurate.

Linearizing a Function

- Using a first-order Taylor expansion to approximate a function around x*.
- Example: Approximate f(x) = log(x) around $x^* = 1$:
- $\log(x) \approx \log(1) + 1/1*(x 1) = x 1$
- Conclusion: This linear approximation is useful in many empirical analyses.

Extending to Multiple Variables

- Taylor's Theorem can be extended to functions of two or more variables.
- Example: Approximate $f(x_1, x_2)$ around (x_1^*, x_2^*) using a second-order expansion:

$$f(x_1, x_2) = f(x_1^*, x_2^*) + f_{x_1}(\bullet) \cdot (x_1 - x_1^*) + f_{x_2}(\bullet) \cdot (x_2 - x_2^*)$$

$$+ (1/2) \cdot [f_{x_1 x_2}(\bullet) \cdot (x_1 - x_1^*)^2 + 2 \cdot f_{x_1 x_2}(\bullet) \cdot (x_1 - x_1^*) \cdot (x_2 - x_2^*)$$

$$+ f_{x_2 x_2}(\bullet) \cdot (x_2 - x_2^*)^2] + R_2$$

Include higher-order terms as necessary.

Applications of Taylor's Theorem

- Widely used in economics, physics, and engineering for approximating nonlinear functions.
- Example: Linearizing complex models to simplify analysis in economic theory.

Key Takeaways

- Taylor's Theorem provides a powerful tool for approximating functions using polynomials.
- The accuracy of the approximation increases with the degree of the polynomial.
- It is particularly useful in simplifying complex models for analysis.

A.5.3 L'Hôpital's Rule

L'Hôpital's Rule is a method in calculus for finding limits of indeterminate forms.

L'Hôpital's Rule Overview

- L'Hôpital's Rule is a method in calculus for finding limits of indeterminate forms.
- Purpose: Helps evaluate limits that result in forms like 0/0 or ∞/∞.
- Conditions:
- 1. Functions f(x) and g(x) are real functions, both twice continuously differentiable.
- 2. $\lim_{x \to x^*} [f(x)] = \lim_{x \to x^*} [g(x)] = 0$

L'Hôpital's Rule Statement

Formulation:

$$\lim_{x \to x^*} \left(\frac{f(x)}{g(x)} \right) = \lim_{x \to x^*} \left(\frac{f'(x)}{g'(x)} \right)$$

provided the limit on the right-hand side exists.

Repeat Application: If the limit still results in 0/0 or ∞/∞, L'Hôpital's Rule can be applied repeatedly.

Applying L'Hôpital's Rule

Step-by-Step Application:

- 1. Identify Indeterminate Form: Check if the limit is 0/0 or ∞/∞ .
- 2. Differentiate Numerator and Denominator: Differentiate f(x) and g(x) with respect to x.
- 3. Evaluate the Limit: Substitute and evaluate the limit using the derivatives.

As an example, consider f(x) = 2x and g(x) = x. The limit of the ratio f(x)/g(x) as x tends to 0 is

$$\lim_{x \to x^*} \left(\frac{f(x)}{g(x)} \right) = \frac{0}{0} = \lim_{x \to x^*} \left(\frac{f'(x)}{g'(x)} \right) = \frac{2}{1} = 2$$

Summary of L'Hôpital's Rule

Key Takeaways:

- 1. L'Hôpital's Rule is a powerful tool for solving limits of indeterminate forms.
- 2. Ensure that functions are differentiable and limits of derivatives exist.
- 3. Practice with different examples to master its application.

A.5.4 Integration by Parts

a technique used to integrate products of functions

Integration by Parts 25

Introduction to Integration by Parts

 Integration by Parts is a technique used to integrate products of functions.

• Formula:
$$\int v_2 \cdot dv_1 = v_1 v_2 - \int v_1 \cdot dv_2$$

• Purpose: Simplifies the integration of products by reducing the integral into a simpler form.

Derivation of the Formula

- Start with the Product Rule:
- The derivative of a product of two functions $v_1(t)$ and $v_2(t)$:

$$d[v_1v_2] = v_2 \cdot dv_1 + v_1 \cdot dv_2$$

where $dv_1 = v_1'(t) \cdot dt$ and $dv_2 = v_2'(t) \cdot dt$.

• Integrate Both Sides:

$$v_1v_2 = \int v_2 \cdot dv_1 + \int v_1 \cdot dv_2$$

• Rearrange to Obtain:

$$\int v_2 \cdot dv_1 = v_1 v_2 - \int v_1 \cdot dv_2$$

Example Calculation

• Problem:

$$\int te^t dt$$

Solution Steps:

- 1. Choose $v_1 = t$ and $dv_2 = e^t dv$
- 2. Compute derivatives and integrals:

$$- dv_1 = dt$$

 $- v_2 = e^t$

3. Apply the formula:

$$\int te^t dt = te^t - \int e^t dt = e^t \cdot (t - 1)$$

Summary and Recap

Key Points:

- 1. Integration by Parts is useful for integrating products of functions.
- 2. The formula rearranges the integral into a simpler form.
- 3. Practice and experience help in choosing the appropriate v_1 and dv_2 .

Integration by Parts 29

A.5.5 Fundamental Theorem of Calculus

FTC links the concept of differentiation and integration.

Introduction to the Fundamental Theorem of Calculus

 The Fundamental Theorem of Calculus (FTC) links the concept of differentiation and integration.

Let f(t) be continuous in $a \le t \le b$. If $F(t) = \int f(t) \cdot dt$ is the indefinite integral of f(t) so that F'(t) = f(t)

The definite integral is

$$\int_{a}^{b} f(t) dt = \int_{a}^{b} F'(t) dt = F(b) - F(a)$$

Statement of the Fundamental Theorem of Calculus

Interpretation: The definite integral $\int_a^b f(t) dt$ represents the area under the curve of f(t) from t = a to t = b.

Applications in Real-World Problems

• Economics: Find the total accumulated profit or cost over time.

Summary and Key Points

Key Points:

- 1. The Fundamental Theorem of Calculus connects differentiation and integration.
- 2. It simplifies the computation of definite integrals.
- 3. The theorem has wide-ranging applications in various fields.

A.5.6 Differentiation of Integrals

Differentiation w.r.t. Variable of Integration

• Rule: The condition F'(t) = f(t) implies that the derivative of an indefinite integral with respect to the variable of integration, t, is the function f(t) itself:

$$\frac{\partial}{\partial t} \left(\int f(t) \, dt \right) = \frac{\partial}{\partial t} [F(t)] = F'(t) = f(t)$$

• Implication: This expresses that the integral and differentiation are inverse operations.