МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

ОПРЕДЕЛЕНИЕ
$$\binom{C_P}{C_V}$$
 ПО СКОРОСТИ ЗВУКА В ГАЗЕ

Выполнил:

Деревянченко Михаил

Группа:

Б03-106

Оглавление

1. Аннотация	
2. Теоретические сведения	
3. Методика измерений	
4. Результаты измерений и обработка данных	
5. Обсуждение результатов	
6. Вывод	

1. Аннотация

Целью данной работы являются:

- 1. Измерение частоты колебаний и длины волны при резонансе звуковых колебаний в газе, заполняющем трубу.
- 2. Определение показателя адиабаты с помощью уравнения состояния идеального газа.

В работе используются 2 метода измерения скорости звука и, соответственно, 2 установки: на одной проводятся измерения зависимости скорости звука от длины трубы, на другой — скорости звука от температуры/частоты. Установление частоты происходит с использованием осциллографа.

2. Теоретические сведения

Скорость распространения звуковой волны в газах зависит от показателя адиабаты γ . На измерение скорости звука основан один из наиболее точных методов определения показателя адиабаты.

Скорость звука в газах определяется формулой:

$$c = \sqrt{\gamma \frac{RT}{\mu}}$$

где R - газовая постоянная, T - температура газа, а μ его молярная масса. Выразим показатель адиабаты:

$$\gamma = \frac{\mu}{RT}c^2$$

Таким образом, для определения показателя адиабаты достаточно измерить температуру газа и скорость распространения звука.

Звуковая волна, распространяющаяся вдоль трубы, испытывает многократные отражения от торцов. Звуковые колебания в трубе являются наложением всех отраженных волн и,

вообще говоря, очень сложны. Картина упрощается, если длина трубы L равна целому числу полуволн, то есть когда

$$L=n\frac{\lambda}{2}$$

где λ — длина волны звука в трубе, а n — любое целое число. Если это условие выполнено, то волна, отраженная от торца трубы, вернувшаяся к ее началу и вновь отраженная, совпадает по фазе с падающей. Совпадающие по фазе волны усиливают друг друга. Амплитуда звуковых колебаний при этом резко возрастает — наступает резонанс.

При звуковых колебаниях слои газа, прилегающие к торцам трубы, не испытывают смещения. Узлы смещения повторяются по всей длине трубы через $\lambda/2$. Между узлами находятся максимумы смещения.

Скорость звука с связана с его частотой f и длиной волны λ соотношением:

$$c = \lambda f$$

Подбор условий, при которых возникает резонанс, можно производить двояко:

1. При неизменной частоте f звукового генератора (а следовательно, и неизменной длине звуковой волны λ) можно изменять длину трубы L. Для этого применяется раздвижная

труба. Длина раздвижной трубы постепенно увеличивается, и наблюдается ряд последовательных резонансов. Возникновение резонанса легко наблюдать на осциллографе по резкому увеличению амплитуды колебаний. Для последовательных резонансов имеем

$$L_n = n\frac{\lambda}{2}$$
 $L_{n+k} = n\frac{\lambda}{2} + k\frac{\lambda}{2}$

т.е. $\lambda/2$ равно угловому коэффициенту графика, изображающего зависимость длины трубы L от номера резонанса k.

2. При постоянной длине трубы можно изменять частоту звуковых колебаний. В этом случае следует плавно изменять частоту f звукового генератора, а следовательно, и длину звуковой волны λ . Для последовательных резонансов получим

$$L = (n+k)\frac{\lambda_{k+1}}{2}$$

Тогда получаем:

$$f_{k+1} = f_1 + k \frac{c}{2} L$$

Скорость звука, деленная на 2L, определяется, таким образом, по угловому коэффициенту графика зависимости частоты от номера резонанса.

3. Методика измерений

• Экспериментальная установка:

1 установка

Рис. 1. Установка для измерения скорости звука при помощи раздвижной трубы

Методика измерений на 1 установке:

- 1. Расчет диапазон частот, в котором следует вести измерения.
- 2. Измерение зависимости номера резонанса от длины трубы.

- 3. По графику зависимости k(номер последовательного резонанса) от L найти длину полуволны и, соответственно, скорость звука.
- 4. Проделать п.1-3 для углекислого газа.

2 установка

Рис. 2. Установка для изучения зависимости скорости звука от температуры

Методика измерений на 2 установке:

- 1. Увеличивая частоту генератора, отмечаем резонансные частоты.
- 2. По графику зависимости k от частоты генератора вычисляем значение скорости звука.

- 3. Включить термостат и проделать п.1-2 еще при трех значениях температуры в интервале от комнатной до 80°C.
- 4. Вычисление значение ү.

4. Результаты измерений

и обработка данных

 $T_{\kappa} = 22$ °C.

1 Метод:

 $L0 = 570 \pm 5$ MM

Воздух

	Длины при различных частотах, см					
k∖f	3490Гц	3750Гц	4000Гц	4500Гц	5000Гц	
1	2,7	3,0	3,5	4,4	1,7	
2	7,4	7,7	7,7	8,2	5,2	
3	12,4	12,1	12,0	12,0	8,6	
4	17,2	16,8	16,3	15,8	12,0	
5	22,2	21,2	20,5	19,6	15,4	

	ΔL, см (Разность длин между k-м и 1-м резонансом)						
k∖f	3490Гц	3750Гц	4000Гц	4500Гц	5000Гц		
1	4,7	4,7	4,2	3,8	3,5		
2	9,7	9,1	8,5	7,6	6,9		
3	14,5	13,8	12,8	11,4	10,3		
4	19,5	18,2	17,0	15,2	13,7		

Угол наклона графика $\Delta L(k)$ и погрешность его значения считаем по МНК:

$$\frac{\lambda}{2} = \frac{\langle \Delta L * k \rangle - \langle \Delta L \rangle \langle k \rangle}{\langle k^2 \rangle - \langle k \rangle^2}$$

$$\sigma_{\frac{\lambda}{2}}^{cn} = \sqrt{\frac{1}{4}} \sqrt{\frac{\langle \Delta L^2 \rangle - \langle \Delta L \rangle^2}{\langle k^2 \rangle - \langle k \rangle^2} - (\frac{\lambda}{2})^2}$$

$$\sigma_{\frac{\lambda}{2}} = \sqrt{\sigma_{\frac{\lambda}{2}}^{cn2} + \sigma_L^2}$$

Относительная погрешность измерения скорости звука:

$$E_c = \sqrt{E_{\lambda}^2 + E_f^2} ,$$

причем $\Delta f = 0.5 \Gamma$ ц.

Относительная погрешность измерения показателя адиабаты:

$$E_{\gamma} = \sqrt{4E_c^2 + E_T^2} ,$$

причем $E_T = 1\%$

f, Гц	3490Гц	3750Гц	4000Гц	4500Гц	5000Гц
λ/2, см	$4,92 \pm 0,08$	$4,52 \pm 0,07$	$4,27 \pm 0,07$	$3,8 \pm 0,07$	$3,4 \pm 0,06$
с, м/с	$343,4 \pm 8,1$	$339,0 \pm 7,8$	$341,6 \pm 8,0$	$342,0 \pm 7,9$	$340,0 \pm 7,7$
γ	1,39±0,09	1,35±0,08	1,38±0,08	1,38±0,09	1,37±0,08

$$\gamma_{cp} = 1,37$$

Погрешность уср:

$$\sigma_{\gamma}^{omo} = \sqrt{\frac{1}{4} \sum_{i=1}^{5} (\gamma_i - \gamma_{cp})^2}$$

$$\sigma_{\gamma} = \sqrt{\sigma_{\gamma}^{omo2} + (E_{\gamma}^{cp} * \gamma_{cp})^2}$$

$$\sigma_{\gamma} = 0.08$$

$$\gamma_{cp} = 1,37 \pm 0,08$$

Углекислый газ(СО2)

	Длины при различных частотах, см						
k\f	3490Гц	3000Гц	2700Гц	3250Гц	2850Гц		
1	1,1	1,2	2,9	1,8	0,5		
2	4,9	5,7	7,9	5,9	5,2		
3	8,7	10,2	12,9	10,1	9,8		
4	12,5	14,7	17,9	14,3	14,6		
5	16,6	19,0	22,9	16,3	19,3		

	ΔL, см (Разность длин между k-м и 1-м резонансом)					
k∖f	3490Гц	3000Гц	2700Гц	3250Гц	2850Гц	
1	3,8	4,5	5,0	4,1	4,7	
2	7,6	9,0	10,0	8,3	9,3	
3	11,4	13,5	15,0	12,5	14,1	
4	15,5	17,8	20,0	16,5	18,8	

Зависимость удлинения трубы от номера резонанса k для углекислого газа

Все погрешности считаем аналогично предыдущим формулам при исследовании воздуха.

f, Гц	3490Гц	3000Гц	2700Гц	3250Гц	2850Гц
λ/2, cm	$4,01 \pm 0,07$	$4,44 \pm 0,08$	$5,01 \pm 0,09$	$4,14 \pm 0,07$	$4,71 \pm 0.08$
с, м/с	$271,5 \pm 6,1$	$266,4 \pm 6,3$	$270,0 \pm 6,7$	$269,1 \pm 6,3$	$268,47 \pm 6,6$
γ	1,32±0,08	1,28±0,07	1,31±0,08	1,30±0,07	1,29±0,08

$$\gamma_{cp}=1{,}30{\pm}0{,}08$$

2 Метод:

 $L = 740 \pm 1$ mm. $\Delta L = 1$ mm.

	Частоты при различных температурах, Гц						
k∖T	296,1К	301,1К	306,1К	311,1К	316,1К	321,1К	326,1К
1	250	253	257	257	260	261	263
2	476	480	484	488	492	496	500
3	703	709	715	720	726	732	737
4	932	940	947	955	962	970	977
5	1161	1171	1180	1190	1199	1208	1218

	Разность частот(і-й и 1-й) при различных температурах, Гц						
k∖T	296,1К	301,1К	306,1К	311,1К	316,1К	321,1К	326,1К
1	226	227	227	231	232	235	237
2	453	456	458	463	466	471	474
3	682	687	690	698	702	709	714
4	911	918	923	933	939	947	955

Расчет погрешностей проводим аналогично методу 1.

Угол наклона графика $\Delta f(k)$ и погрешность его значения считаем по МНК:

$$\frac{c}{2L} = \frac{\langle \Delta f * k \rangle - \langle \Delta f \rangle \langle k \rangle}{\langle k^2 \rangle - \langle k \rangle^2}$$

$$\sigma_{\frac{c}{2L}} = \sqrt{\frac{1}{4}} \sqrt{\frac{\langle \Delta f^2 \rangle - \langle \Delta f \rangle^2}{\langle k^2 \rangle - \langle k \rangle^2} - (\frac{c}{2L})^2}$$

Систематическая погрешность частоты меньше 0.5% и много меньше случайной — пренебрегаем ею.

Относительная погрешность измерения скорости звука:

$$E_c = \sqrt{E_{\frac{c}{2L}}^2 + E_l^2}$$

Относительная погрешность измерения показателя адиабаты:

$$E_{\gamma} = \sqrt{4E_c^2 + E_T^2}$$
,

T, K	296,1K	301,1K	306,1K	311,1K
c/2L, c ⁻¹	$228,40 \pm 0,24$	$230,40 \pm 0,24$	$232,00 \pm 0,22$	$234,10 \pm 0,37$
с, м/с	$338,0 \pm 1,6$	$341,0 \pm 1,6$	$343,4 \pm 1,6$	$346,5 \pm 1,6$
γ	$1,347 \pm 0,017$	$1,348 \pm 0,017$	$1,344 \pm 0,017$	$1,346 \pm 0,017$

T, K	316,1K	321,1K	326,1K
c/2L, c ⁻¹	$235,70 \pm 0,34$	$237,40 \pm 0,24$	$239,40 \pm 0,46$
с, м/с	348.8 ± 1.6	$351,3 \pm 1,6$	$354,3 \pm 1,6$
γ	$1,343 \pm 0,017$	$1,341 \pm 0,017$	$1,343 \pm 0,017$

$$\gamma_{cp} = 1,344$$

Погрешность γ_{cp} :

$$\sigma_{\gamma}^{om\delta} = \sqrt{\frac{1}{6} \sum_{i=1}^{7} (\gamma_i - \gamma_{cp})^2}$$

$$\sigma_{\gamma} = \sqrt{\sigma_{\gamma}^{om\partial 2} + (E_{\gamma}^{cp} * \gamma_{cp})^{2}}$$

$$\sigma_{\gamma} = 0.026$$

$$\gamma_{cp} = 1,344 \pm 0,026$$

5. Обсуждение результатов

В ходе работы показатель адиабаты для воздуха был измерен двумя разными способами. Сначала измерения проводились при фиксированной частоте звукового сигнала и переменной длины трубы. В ходе таких измерения было получено:

$$\gamma_{\rm cp} = 1,37 \pm 0,08$$

Затем измерения проводились на второй установке, на которой длина трубы оставалась постоянной на протяжении всего опыта, а резонанса мы добивались при помощи изменения частоты звукового сигнала. В ходе этих измерений также исследовалась зависимость коэффициента адиабаты γ от температуры газа. Было получено, что показатель адиабаты не зависит от температуры в диапазоне температур 23 – 53°С и равняется

$$\gamma_{cp} = 1,344 \pm 0,026.$$

Сравнивая полученные значения с табличными данными

$$\gamma_T = 1,4$$

можно заметить, что результат 1-го измерения в пределах погрешности совпадает с табличным значением, в то время как результат 2-го измерения немного отличается от него. Это может

быть недостаточной точностью связано c И мощностью калориметра(в результате OH $\mathbf{MO}\Gamma$ поддерживать чего не постоянную температуру длительное время), недостаточной используемой точностью частоты генератора (возможно, следовало бы измерять частоты с точностью до десятых, но тогда погрешность измерений уменьшилась бы в разы и табличное значение не обязательно бы входило в предел погрешности 2 измерения).

Также в ходе работы был измерен показатель адиабаты для углекислого газа. Измерения проводились на первой установке. В итоге получили

$$\gamma_{cp} = 1,30 \pm 0,08$$

Сравнивая с табличным значением

$$\gamma_{\rm T} = 1,3$$

можно заметить, что эти значение совпадают с большой точностью. Одной из причин является большая погрешность, которая обусловлена погрешностью измерений длины и трудностями, связанными с определением резонанса на осциллографе).

В итоге, в данной работе следует использовать 1 метод измерений при исправной работе всех компонентов установки.

6. Вывод

В данной работе были успешно экспериментально измерены 2-мя способами показатели адиабаты для воздуха и для углекислого газа(1-м способом). Было установлено, что в измеряемом промежутке температур показатель адиабаты не зависит от этого параметра, а также вычислены скорости звука в системе, в зависимости от ее параметров.