Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

(currently amended) A process for the preparation of compounds of formula

$$\begin{array}{c}
H & OR^1 \\
OHO & H
\end{array}$$
(1)

diastereoisomers, enantiomers, and mixtures thereof, wherein R¹ is hydrogen, comprising:

a) treating a compound of formula (XII)

wherein:

R⁶ is halogen, -OR⁷, or -NR⁸R⁹;

 R^7 is hydrogen, C_{1-6} alkyl, C_{3-8} cycloalkyl, C_{6-14} aryl, or C_{6-14} aryl C_{1-6} alkyl;

 R^{8} and R^{9} are independently selected from hydrogen, $C_{\text{1-6}}\text{alkyl},\,C_{\text{3-8}}\text{cycloalkyl},$

 $C_{6\text{-}14}$ aryl, and $C_{6\text{-}14}$ aryl $C_{1\text{-}6}$ alkyl;

with a first reducing agent to form an alcohol of formula (III)

b) treating the alcohol of <u>formula (III)</u> with bromine, iodine, iodine monochloride, an N-fluoro bis sulfonamide or a compound of formula (XIII)

$$R^{10}$$
 R^{10}
 R^{12}
 R^{12}
 R^{12}
 R^{12}

wherein:

R¹⁰ is chlorine, bromine, or iodine; and

 R^{11} and R^{12} are independently selected from C_{1-6} alkyl, $-C_{3-8}$ cycloalkyl, C_{6-14} aryl, and C_{6-14} aryl C_{1-6} alkyl, or R^{11} and R^{12} together with the atoms to which they are attached form a 5–8 5-membered ring; to form a compound of formula (II)

wherein R³ is halogen, and R⁴ is hydrogen; and

- c) treating a compound of formula (II) with a second reducing agent to afford a compound of formula (I), wherein R¹ is hydrogen.
- 2. (originally presented) A process for the preparation of compounds of formula (I) according to claim 1, wherein said first reducing agent is selected from the group consisting of di-*iso*butylaluminum hydride (DIBAL), sodium borohydride, and lithium aluminum hydride, R^6 in the compound of formula (XII) is $-OR^7$ wherein R^7 is C_{1-6} alkyl, the compound of formula (XIII) is N-bromosuccinimide, and the second reducing agent is palladium on carbon in combination with hydrogen.
- 3. (currently amended) A process for the preparation of compounds of formula (I)

$$\begin{array}{c}
H \\
O \\
O \\
H
\end{array}$$
(I)

diastereoisomers, enantiomers, and mixtures thereof, wherein R^1 is $-C(O)R^2$; and R^2 is C_{1-6} alkyl, C_{3-8} eycloalkyl, C_{6-14} aryl, or C_{6-14} aryl, comprising:

a) treating a compound of formula (XII)

wherein:

R⁶ is halogen, -OR⁷, or -NR⁸R⁹;

 R^7 is hydrogen, C_{1-6} alkyl, C_{3-8} cycloalkyl, C_{6-14} aryl, or C_{6-14} aryl C_{1-6} alkyl; and R^8 and R^9 are independently selected from hydrogen, C_{1-6} alkyl, C_{3-8} cycloalkyl, C_{6-14} aryl, and C_{6-14} aryl C_{1-6} alkyl;

with a first reducing agent to form an alcohol of formula (III)

b) treating the alcohol <u>of formula (III)</u> with bromine, iodine, iodine monochloride, an N-fluoro bis sulfonamide or a compound of formula (XIII)

$$R^{10}$$
 R^{10}
 R^{12}
 R^{12}
 R^{12}

wherein:

R¹⁰ is chlorine, bromine, or iodine; and

 R^{11} and R^{12} are independently selected from C_{1-6} alkyl, $-C_{3-8}$ cycloalkyl, $-C_{6-14}$ aryl, and $-C_{6-14}$ aryl $-C_{1-6}$ alkyl, or $-C_{1-6}$ and $-C_{1-6}$ alkyl, or $-C_{1-6}$ and $-C_{1-6}$ alkyl, or $-C_{1-6}$ alkyl, and $-C_{1-6}$ alkyl, and $-C_{1-6}$ alkyl, and $-C_{1-6}$ alkyl, or $-C_{1-6}$ alkyl, and $-C_{1-6$

wherein R³ is halogen, and R⁴ is hydrogen;

- c) treating a compound of formula (II) with a second reducing agent to afford a compound of formula (I), wherein R¹ is hydrogen; and
- d) resolving to form a compound of formula (I), wherein R¹ is -C(O)R² and R² is C₁₋₆alkyl, C₃₋₈cycloalkyl, C₆₋₁₄aryl, or C₆₋₁₄arylC₁₋₆alkyl.
- d) reacting a compound of formula (I) wherein R¹ is hydrogen with an esterifying agent in an aprotic solvent in the presence of a base to form a compound of formula (I) wherein R¹ is –C(O)R²; and R² is C₁₋₆alkyl.
- 4. (cancelled)
- 5. (originally presented) A process for the preparation of compounds of formula (I)

wherein R¹ is hydrogen, comprising treating a compound of formula (III)

(III)

with an acid selected from the group consisting of hydrochloric acid, hydrobromic acid, hydroiodic acid, acetic acid, sulfuric acid, and sulfonic acid.

6. (currently amended) A process for the preparation of a compound of formula (V)

substantially free from other diastereoisomers, comprising:

a) treating a compound of formula (XII)

wherein:

R⁶ is halogen, -OR⁷, or -NR⁸R⁹;

 R^7 is hydrogen, C_{1-6} alkyl, C_{3-8} cycloalkyl, C_{6-14} aryl, or C_{6-14} aryl C_{1-6} alkyl; and R^8 and R^9 are independently selected from hydrogen, C_{1-6} alkyl, C_{3-8} cycloalkyl, C_{6-14} aryl, and C_{6-14} aryl C_{1-6} alkyl;

with a first reducing agent to form an alcohol of formula (III)

b) treating the alcohol <u>of formula (III)</u> with bromine, iodine, iodine monochloride, an N-fluoro bis sulfonamide or a compound of formula (XIII)

$$R^{10}$$
 R^{10}
 R^{12}
 R^{12}
 R^{12}

wherein:

R¹⁰ is chlorine, bromine, or iodine; and

 R^{11} and R^{12} are independently selected from C_{1-6} alkyl, C_{3-8} cycloalkyl, C_{6-1} 44aryl, and C_{6-14} aryl C_{1-6} alkyl, or R^{11} and R^{12} together with the atoms to which they are attached form a 5–8 <u>5-</u>membered ring; to form a compound of formula (II)

wherein R³ is halogen and R⁴ is hydrogen;

c) treating a compound of formula (II) with a second reducing agent to afford a compound of formula (I)

wherein R¹ is hydrogen; and

c) reacting a compound of formula (II) with an acylating agent to form a compound of formula (XVI);

$$\begin{array}{c|c}
& O \\
&$$

d) resolving to form a compound of formula (I), wherein R¹ is hydrogen or – C(O)R² and R² is C₁₋₆alkyl, C₃₋₈cycloalkyl, C₆₋₁₄aryl, or C₆₋₁₄arylC₁₋₆alkyl.

d) resolving a compound of formula (XIV) to form a compound of formula (XIX);

e) reducing and deprotecting a compound of formula (XIX) to form a compound of formula (V)

containing from about 0 to 10% of other enantiomers and diastereoisomers.

7. (originally presented) A compound of formula (II)

$$R^3$$
 OR^4 OR^4 OR^4 OR^4

wherein:

R³ is halogen;

 R^4 is hydrogen or $-C(O)R^5$;

 R^5 is hydrogen, C_{1-6} alkyl, C_{3-8} cycloalkyl, C_{6-14} aryl, or C_{6-14} aryl C_{1-6} alkyl; and diastereoisomers, enantiomers, and mixtures thereof.

- 8. (originally presented) A compound of formula (II) according to claim 7 wherein R³ is bromine and R⁴ is hydrogen.
- 9. (originally presented) A compound of formula (II) according to claim 7 wherein R^3 is bromine, R^4 is $-C(O)R^5$ and R^5 is C_{1-6} alkyl.

10. (originally presented) A compound of formula (II) according to claim 7 wherein R^3 is bromine, R^4 is $-C(O)R^{5}$, and R^5 is $-CH_3$.

11. (cancelled)

12. (originally presented) A compound of formula (XIX)

13. (currently amended) A process for the preparation of a compound of formula (XIX)

comprising:

a) treating a compound of formula (XII)

wherein:

R⁶ is halogen, -OR⁷, or -NR⁸R⁹;

 R^7 is hydrogen, C_{1-6} alkyl, C_{3-8} cycloalkyl, C_{6-14} aryl, or C_{6-14} aryl C_{1-6} alkyl; and R^8 and R^9 are independently selected from hydrogen, C_{1-6} alkyl, C_{3-8} cycloalkyl, C_{6-14} aryl, and C_{6-14} aryl C_{1-6} alkyl;

with a reducing agent to form an alcohol of formula (III)

b) treating said alcohol with bromine, iodine, iodine monochloride, an N-fluoro bis sulfonamide or a compound of formula (XIII)

$$R^{10}$$
 R^{10}
 R^{12}
 R^{12}
 R^{12}

wherein:

R¹⁰ is chlorine, bromine, or iodine; and

 R^{11} and R^{12} are independently selected from C_{1-6} alkyl, C_{3-8} eyclealkyl, C_{6-4} aryl, and C_{6-14} aryl C_{1-6} alkyl, or R^{11} and R^{12} together with the atoms to which they are attached form a 5–8 <u>5</u>-membered ring; and <u>to form a compound of formula XIV</u>;

- c) optionally resolving to yield a compound of formula (XIX).
- c) treating a compound of formula (XIV) with an acylating agent to form a compound of formula (XVI); and

d) resolving a compound of formula (XVI) to form a compound of formula (XIX).

14. (originally presented) A compound of formula (XX)

15. (originally presented) A process for the preparation of a compound of formula (XX)

comprising:

a) treating a compound of formula (XII)

wherein:

R⁶ is halogen, -OR⁷, or -NR⁸R⁹;

 R^7 is hydrogen, C_{1-6} alkyl, C_{3-8} cycloalkyl, C_{6-14} aryl, or C_{6-14} aryl C_{1-6} alkyl; and R^8 and R^9 are independently selected from hydrogen, C_{1-6} alkyl, C_{3-8} cycloalkyl, C_{6-14} aryl, and C_{6-14} aryl C_{1-6} alkyl;

with a reducing agent to form an alcohol of formula (III)

b) treating said alcohol with N-bromosuccinimide to form a compound of formula (XX); and

- c) optionally resolving to yield diastereoisomers of compounds of formula (XX).
- 16. (originally presented) A compound of formula (III)

- 17. (cancelled)
- 18. (originally presented) A process for the preparation of compound (III)

comprising treating a compound of formula (XII)

wherein R^6 is halogen, $-OR^7$, or $-NR^8R^9$; where R^7 is hydrogen, C_{1-6} alkyl, C_{3-8} cycloalkyl, C_{6-14} aryl, or C_{6-14} aryl C_{1-6} alkyl; and R^8 and R^9 are independently selected from hydrogen, C_{1-6} alkyl, C_{3-8} cycloalkyl, C_{6-14} aryl, and C_{6-14} aryl C_{1-6} alkyl; with a reducing agent.

- 19. (originally presented) A process according to claim 18 wherein the reducing agent is selected from the group consisting of di-*iso*butylaluminium hydride (DIBAL), sodium borohydride, and lithium aluminum hydride.
- 20. (cancelled)
- 21. (cancelled)

- 22. (previously presented) A process for the preparation of compounds of formula I according to claim 3 wherein the first reducing agent is selected from the group consisting of di-*iso*butylaluminium hydride (DIBAL), sodium borohydride, and lithium aluminum hydride, wherein R^6 in the compound of formula (XII) is $-OR^7$ where R^7 is C_{1-6} alkyl, wherein the compound of formula (XIII) is N-bromosuccinimide, and the second reducing agent is palladium on carbon in combination with hydrogen.
- 23. (previously presented) A process for the preparation of compounds of formula V according to claim 6 wherein the first reducing agent is selected from the group consisting of di-*iso*butylaluminium hydride (DIBAL), sodium borohydride, and lithium aluminum hydride, wherein R^6 in the compound of formula (XII) is $-OR^7$ where R^7 is C_{1-6} alkyl, wherein the compound of formula (XIII) is N-bromosuccinimide, and the second reducing agent is palladium on carbon in combination with hydrogen.
- 24. (cancelled)
- 25. (cancelled)
- 26. (cancelled)
- 27. (cancelled)
- 28. (cancelled).
- 29. (cancelled)