

Transformação entre Bases Numéricas

Disciplina: Introdução à Arquitetura de Computadores

Luciano Moraes Da Luz Brum

Universidade Federal do Pampa – Unipampa – Campus Bagé

Email: <u>lucianobrum18@gmail.com</u>

- > Representação dos números;
- > Transformações entre bases;
 - Método polinomial;
 - Método de subtrações;
 - Método das divisões;
 - Método da substituição direta;
- Números fracionários;
- > Resumo;

Representação dos Números

Os sistemas de numeração formam os números através da seguinte fórmula:

$$a = \sum_{i=-m}^{n-1} (x_i.b^i)$$

> Onde:

- > O 'a' representa o número propriamente dito;
- \triangleright O 'b' representa a base do sistema de numeração (b >= 2);
- \triangleright O ' x_i ' representa os algarismos ($0 \le x_i < b$);
- ➤ O intervalo (-m, n-1) representa o número de posições;

Representação dos Números

> Exemplo:

$$>$$
 $\mathbf{a} = \sum_{i=-m}^{n-1} (x_i. b^i)$

Número 321 na base 10;

$$>321 = 3_2 * 10^2 + 2_1 * 10^1 + 1_0 * 10^0$$

➤ Número 12,56 na base 10;

- ➤ Representação dos números;
- > Transformações entre bases;
 - ➤ Método polinomial;
 - Método de subtrações;
 - Método das divisões;
 - Método da substituição direta;
- Números fracionários;
- > Resumo;

Transformação entre bases

➢ Os computadores atuais utilizam somente o sistema de numeração binário (B = 2), com os algarismos 0 e 1;

➤ Todos computadores utilizam internamente o sistema binário para armazenamento e manipulação de dados e instruções;

➤ Para o tratamento de números representados em outras bases são efetuadas rotinas de codificação e decodificação;

Transformação entre bases

- > As bases 8 (sistema octal) e 16 (sistema hexadecimal), por exemplo, compactam significativamente a representação de números binários.
- \triangleright Ex: 1100 0000 0000 0000₂ = 14000₈ = $A000_{16}$
- A base 2 é útil por conta dos circuitos lógicos, porém documentar números grandes apenas com 0 e 1s é complicado;
- As bases 8 (sistema octal) e 16 (sistema hexadecimal) compactam significativamente a representação de números binários.

- > Representação dos números;
- ➤ Transformações entre bases;
 - **►** <u>Método polinomial</u>;
 - Método de subtrações;
 - Método das divisões;
 - Método da substituição direta;
- Números fracionários;
- > Resumo;

Método Polinomial

So números são representados como polinômios e para passar de uma base para outra basta interpretar esse número como polinômio usando a aritmética da base destino $(\sum_{i=-m}^{n-1}(x_i,b^i))$.

Exercício: Qual o valor do número 100 nas bases 2, 8, 10 e 16?

Número	Posição 2	Posição 1	Posição 0	Resultado (base = 10)
1002	1 * 2 ² (4) +	0 * 21 (0) +	$0 * 2^0 (0) =$	4
1008	1 * 8 ² (64) +	0 * 81 (0) +	$0 * 8^0 (0) =$	64
100 ₁₀	1 * 10 ² (100) +	0 * 10 ¹ (0) +	$0 * 10^{0} (0) =$	100
100 ₁₆	1 * 16 ² (256) +	0 * 16 ¹ (0) +	$0 * 16^0 (0) =$	256

- > Representação dos números;
- > Transformações entre bases;
 - Método polinomial;
 - > Método de subtrações;
 - Método das divisões;
 - Método da substituição direta;
- Números fracionários;
- > Resumo;

Método de Subtrações

Selecionamos a maior potência elevada na base destino que podemos subtrair do número e multiplicamos pelo maior valor do algarismo da base de destino;

Com o número resultante efetuamos o mesmo processo até obtermos o número zero como resposta;

 O resultado são todos os algarismos multiplicados pela base destino em cada subtração, de cima para baixo, da direita para esquerda;

- Exercício: Qual o valor do número 681 nas bases 2 e 8?
 - Resposta na Base 2: 1010101001.

681	681 – 1*2 ⁹	681 - 512	169
169	169- 0*2 ⁸	169 – 0.256	169
169	169 – 1*2 ⁷	169 – 128	41
41	41 – 0 *2 ⁶	41 – 0.64	41
41	41 - 1*2 ⁵	41 - 32	9
9	$9 - 0*2^4$	9 – 0.16	9
9	$9-1*2^3$	9 - 8	1
1	$1 - 0*2^2$	1 – 0.4	1
1	1 - 0*2 ¹	1 – 0.2	1
1	$1 - 1*2^0$	1 - 1	0

Método de Subtrações

- Exercício: Qual o valor do número 681 nas bases 2 e 8?
 - Resposta na Base 8: 1251.

681	681 – 1*8 ³	681 - 512	169
169	169– 2 *8 ²	169 – 128	41
41	41 – 5*8 ¹	41 – 40	1
1	1 - 1*8 ⁰	1 – 1	0

- > Representação dos números;
- > Transformações entre bases;
 - Método polinomial;
 - Método de subtrações;
 - > Método das divisões;
 - Método da substituição direta;
- Números fracionários;
- > Resumo;

Método de Divisões

O número a ser convertido é dividido pela nova base (na aritmética da base origem);

O resto da divisão forma o algarismo mais a direita do número convertido;

➤ O quociente é novamente dividido até o quociente ser zero. A sequência de todos os restos forma o novo número;

Método de Divisões

- Exercício: Qual o valor dos números: 53 na base 2 e 56 na base 16?
 - ightharpoonup Resposta na Base 2: $53_{10} = 110101_2$.

53/2	26	Resta 1
26/2	13	Resta 0
13/2	6	Resta 1
6/2	3	Resta 0
3/2	1	Resta 1
1/2	0	Resta 1

Método de Divisões

- Exercício: Qual o valor dos números: 53 na base 2 e 56 na base 16?
 - ightharpoonup Resposta na Base 16: $56_{10} = 38_{16}$.

56/16	3	Resta 8
3/16	0	Resta 3

- > Representação dos números;
- > Transformações entre bases;
 - Método polinomial;
 - Método de subtrações;
 - Método das divisões;
 - > Método da substituição direta;
- Números fracionários;
- > Resumo;

BASE 10	BASE 2	BASE 8	BASE 16
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

Método de Substituição Direta

BAS E 10	BASE 2	BAS E 8	BAS E 16
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

Funciona somente entre bases que são potências inteiras entre si (octal para binário e vice-versa e hexadecimal para binário e vice-versa);

- > Seja B1 = $B2^m$:
 - ➤ Para converter de B1 para B2 (B1 > B2), cada algarismo de B1 é substituído por 'm' algarismos equivalentes de B2;
- > Exemplo:

$$\gt 517_8 => B1 = B2^m => 8 = 2^3 => 101001111_2$$

$$> 70 C_{16} = > B1 = B2^m = > 16 = 2^4 = > 0111 0000 1100_2$$

Método de Substituição Direta

➢ Para converter de B1 para B2 (B1 < B2), agrupam-se 'm' algarismos de B1 e este é transformado em um novo algarismo da base B2;

Exemplo:

$$> 1111 \ 0001 \ 1000_2 = F \ 18_{16}$$

$$> 101\ 100_{16} = 5\ 4_8$$

BASE 10	BASE 2	BASE 8	BASE 16
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

Método de Substituição Direta

Obs: Pode-se converter da base octal para hexadecimal e vice-versa, usando a base binária como terceira base;

Exemplo:

$$> 5 17_8 = 1010011111_2 = 14F_{16}$$

$$\succ$$
 7 0 $C_{16} = 011\ 100\ 001\ 100_2 = 3414_8$

,			
BASE 10	BASE 2	BASE 8	BASE 16
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

- > Representação dos números;
- > Transformações entre bases;
 - Método polinomial;
 - Método de subtrações;
 - Método das divisões;
 - Método da substituição direta;
- > Números Fracionários;
- > Resumo;

Exercício: Qual o valor do número 10,11 nas bases 2, 8, 10 e 16?

Número	Posição 1	Posição 0	Posição -1	Posição -2	Resultado
10 , 11 ₂	1 * 2 ¹ (2)	0 * 2 ⁰ (0)	1 * 2 ⁻¹ (0,5)	1 * 2 ⁻² (0,25)	2,75
10 , 11 ₈	1 * 8 ¹ (8)	0 * 8 ⁰ (0)	1 * 8 ⁻¹ (0,125)	1 * 8 ⁻² (0,015625)	8,140625
10, 11 ₁₀	1 * 10 ¹ (10)	0 * 10 ⁰ (0)	1 * 10 ⁻¹ (0,1)	1 * 10 ⁻² (0,01)	10,11
10 , 11 ₁₆	1 * 16 ¹ (16)	0 * 16 ⁰ (0)	1 * 16 ⁻¹ (0,0625)	1 * 16 ⁻² (0,00390625)	16,06640625

> Lembrando:
$$x^{-1} = \frac{1}{x} e y^{-2} = \frac{1}{y^2}$$

Exercício: Qual o valor do número 6,125 na base 2?

Resposta na Base 2: 110,001.

6,125	6,125 - 1*2 ²	6,125 – 1.4	2,125
2,125	2,125 – 1 *2 ¹	2,125 – 1.2	0,125
0,125	$0,125 - 0*2^{0}$	0,125 – 0	0,125
0,125	$0,125 - 0*2^{-1}$	0,125 - 0 . 0,5	0,125
0,125	$0,125 - 0*2^{-2}$	0,125 - 0. 0,25	0,125
0,125	$0,125 - 1*2^{-3}$	0,125 - 0,125	0

Exercício: Qual o valor do número 6,8125 na base 8?

Resposta na Base 8: 6,64.

6,8	8125	$6,8125 - 6*8^{\circ}$	6,8125 – 6	0,8125
0,8	8125	$0,8125 - 6 * 8^{-1}$	0,8125 - 0,75	0,0625
0,0	0625	$0,0625 - 4 * 8^{-2}$	0,0625 - 4.0,015625	0,125

- Exercício: Qual o valor do número 0,828125 da base 10 para a base 2?
 - \triangleright Resposta na Base 2: 0,828125₁₀ = 0,110101₂.

0,828125 * 2	1,65625	Parte Inteira = 1	Fração = 0,1
0,65625 * 2	1,3125	Parte Inteira = 1	Fração = 0,11
0,3125 * 2	0,625	Parte Inteira = 0	Fração = 0,110
0,625 * 2	1,25	Parte Inteira = 1	Fração = 0,1101
0,25 * 2	0,5	Parte Inteira = 0	Fração = 0,11010
0,5 * 2	1	Parte Inteira = 1	Fração = 0,110101

- > Representação dos números;
- > Transformações entre bases;
 - Método polinomial;
 - Método de subtrações;
 - Método das divisões;
 - Método da substituição direta;
- Números fracionários;
- **Resumo**;

Resumo

Foi apresentada a fórmula geral que forma os sistemas de numeração atuais;

➤ Foram apresentados os quatro processos de transformações entre bases numéricas;

➤ Foram apresentadas as transformações entre bases numéricas com valores fracionários;

Sugestões de Leitura

Canal de Ensino do prof. Dr. Sandro Camargo:
https://www.youtube.com/user/scamargo10/videos

➤ Leitura do capítulo 1 do livro Fundamentos de Arquitetura de Computadores (Raul Fernando Weber).

Dúvidas ?