9_	April 2018: Turing Maca	ines
A	formal definition of "algorithm" aquivalent to every other definition	that has been proposed.
	Turing machine consists of a with a finite and of interval on an infinite tape that	
		0 1 0 WWW. To marinty
Л	Turing machine is specified by 1) An alphabet: a finite set 2 2) A state set: a finite set K 3) A transition function (i.e. "	
	8: K × Z -> (Ku	Shalt, yes, no 3) × Z × {<, -> -} xt state symbol direction to write to move.
Thr	ee special states of halt, yes, no ? re program could terminate. Tyes, no ? for answering decisions. I halt ? for answering problems	present 3 ways a
	wither on the tape lahary numbers.	, e.g. adding two
Hou	n a Juring Machine works, in run an infinite loop, starting tape in state s. Every lather function & to decide	plain English: ont Left edge of op iteration uses on next state,
	tape in state s. Every la the function & to decide what symbol to write, v until state is Shalt, yes,	mot direction to move, no? Then terminate.

How a Juring machine works, in math. Let Σ^* denote the set of all finite length strings over Σ . For $x \in \Sigma^*$ let |x| denote length of x, i.e. # of symbols. A configuration of a TM is a triple (x,q,k)where $x \in \mathbb{Z}^*$ (type contents) $g \in K$ (current state) ke IN 0 < K < [x] (position on tape) A transition of a TM is a pair of configs that could occur consecutively during its operation. $(x,q,k) \xrightarrow{M} (x',q',k')$ is a transition of M if $\chi'_{k} = \sigma$ where $S(g, \chi_{k}) = (g, \sigma, d)$. $g'' = \{\chi_{-1} : f \ d = \{\chi_{+1} : f$ Exceptions for k=0, $x_k=D$, we constrain a TM program by saying that S(q,D)=(q',D,d) where $q' \in Ku\{hal-1,yes,no\}$, $d=\{-,-\}$. Exception for k = |X| - 1, the transition $(x,g,k) \xrightarrow{\Lambda} (x',g',k')$ opposeds an extra blank symbol to x', i.e. |x'| = |x| + 1 = k + 2, |x'| = |x| + 1 = k + 2. A composation of a TM is a sequence of transitions starting with (x, s, \emptyset) s.t. $X_0 = D$ and either ends with (y, g, k) s.t. $S(g, y, k) \in \{kalt, yes, not or consisting of an intinite sequence of transitions.$ These are my conventions for TMs. Other people use different conventions that differ from these in insignificant ways.