FIR Workbook (lab_3)

SOC Design

Function specification

- Same as course-lab_2(FIRN11stream)
- $y[t] = \Sigma (h[i] * x[t i])$

Design specification

- Data_Width 32
- Tape Num 11
- Data_Num_TBD Based on size of data file
- Interface
 - data_in stream (Xn)
 - data out: stream (Yn)
 - coef[Tape_Num-1:0] axilite
 - · len: axilite
 - ap_start: axilite
 - ap_done: axilite
- Using one Multiplier and one Adder
- Shift register implemented with SRAM (Shift_RAM, size = 10 DW) size = 10 DW
- Tap coefficient implemented with SRAM (Tap_RAM = 11 DW) and initialized by axilite write
- Operation
 - ap_start to initiate FIR engine (ap_start valid for one clock cycle)
 - Stream-in Xn. The rate is depending on the FIR processing speed. Use axi-stream valid/ready for flow control
 - Stream out Yn, the output rate depends on FIR processing speed.

Deliver module header

- The I/O signals are listed in fir.v.
- You are requested to use simplified AXI-lite and AXI-stream protocol.

Configuration Register Address map

```
0x00 – [0] - ap start -> set when ap start signal asserts
                        -> reset, when start data transfer, i.e. 1<sup>st</sup> axi-
                           stream data come in
       [1] – ap done -> when FIR process all the dataset, i.e. receive
                          tlast, and last Y is generated
       [2] – ap idle -> indicate FIR is actively processing data
0x10-14 - data-length
0x20-FF – Tap parameters, (e.g., 0x20-24 Tap0, in sequence ...)
```

FIR module interface

- For your reference:
 - AXI-lite:
 - https://www.realdigital.org/doc/a9fee931f7a172423e1ba73f66ca4081
 - https://docs.xilinx.com/r/en-US/pg202-mipi-dphy/AXI4-Lite-Interface
 - AXI-stream:
 - https://developer.arm.com/documentation/ihi0051/latest/
 - https://docs.xilinx.com/r/en-US/pg256-sdfec-integrated-block/AXI4-Stream-Interface

Testbench

- fir_tb(Please name your top module same as fir for simulation)
- The testbench should keep in the same directory with Makefile
- Block-level Protocol (ap_start, ap_done):

AP_CTRL_HS (Sequential Executed Kernel)

- Host and Kernel Synchronization by
 - ap_start
 - ap_done
- Kernel can only be restarted (ap_start), after it completes the current execution (ap_done)
- Serving one execution request a time

Test dataset

- Samples_triangular_wave.dat
- out_gold.dat

Submission (1/2)

- Hierarchy:
 - StudentID_lab3/
 - Waveform
 - Simulation.log
 - Report.pdf
 - Synthesis report
 - Github link
- Your Github link should attach the file
 - Design, Synthesis report(Including FF, LUT, Bram), Waveform, simulation.log, makefile,...etc.
 - Report
- Location of design (If use vivado to design)
 - hostproject/hostproject.srcs/sources_1/new/

What is included in the report

- Block Diagram
 - Datapath dataflow
 - Control signals
- Describe operation, e.g.
 - How to receive data-in and tap parameters and place into SRAM
 - How to access shiftram and tapRAM to do computation
 - How ap done is generated.
 -
- Resource usage: including FF, LUT, BRAM
- Timing Report
 - Try to synthesize the design with maximum frequency
 - Report timing on longest path, slack
- Simulation Waveform, show
 - Coefficient program, and read back
 - Data-in stream-in
 - Data-out stream-out
 - Bram access control
 - FSM

Submission (2/2)

- Compress all above files in a single zip file named
 - StudentID_lab3.zip (e.g., 111061545_lab3.zip)
- Submit to NTHU eeclass
- Deadline:
 - 20% off for the late submission penalty within 3 days