ANALISIS PERENCANAAN PERSEDIAAN MATERIAL PROYEK DENGAN METODE MATERIAL REQUIREMENT PLANNING (MRP)

Ida Ayu Rai Widhiawati, Anak Agung Diah Parami Dewi, dan Komang Aji Sangkara Program Studi Teknik Sipil, Universitas Udayana, Jl. Raya Kampus Unud Jimbaran, Bali Email: darawidhia@unud.ac.id

ABSTRAK: Kekosongan persediaan material pada saat pelaksanaan proyek dapat mengakibatkan penyelesaian suatu pekerjaan menjadi terhambat sehingga akan mempengaruhi total waktu pelaksanaan serta biaya proyek. Apabila persediaan terlalu banyak maka akan membutuhkan ruang penyimpanan dan terjadi penyusutan yang akan berdampak meningkatkan biaya. Untuk menghindari hal tersebut maka perlu dibuat suatu perencanaan persediaan material yang efektif dan efisien dengan mempergunakan metode Material Requirement Planning (MRP). Pada penelitian ini objek yang diambil adalah proyek pembangunan Gedung G RSUD Mangusada. Metode MRP tersusun dari 4 langkah mendasar yaitu explosion, netting, lotting, dan offsetting, Pada bagian lotting digunakan 4 teknik lot size yaitu teknik Lot for Lot (L4L), Economic Order Quantity (EOQ), Period Order Quantity (POQ), dan Part Period Balancing (PPB). Hasil analisa menunjukkan bahwa lot sizing dengan biaya total persediaan minimum adalah teknik PPB. Biaya persediaan minimum pada beberapa jenis material lainnya juga diketahui dari teknik POO yaitu material floordeck 0,75 mm, besi tulangan Ø10, besi tulangan D10, besi tulangan D13, besi besi tulangan D22, dan wiremesh M10. Total dari biaya persediaan minimum untuk material plywood 9 mm Rp. 287.881.419,84; kayu meranti 5/7 Rp. 751.779.089; kayu meranti 6/12 Rp. 322.666.416; besi tulangan Ø10 Rp.439.697.676; besi tulangan D10 Rp. 7.331.078; besi tulangan D13 Rp.9.064.629; besi tulangan D16 Rp. 161.894.134; besi tulangan D19 Rp. 398.662.264; besi tulangan D22 Rp. 331.879.350; floordeck 0,75 mm Rp. 178.601.663; wiremesh M10 Rp. 234.037.572; wiremesh M8 Rp. 351.353.969; beton ready mix K-300 Rp. 1.412.180.000; beton ready mix K-250 Rp. 37.267.500; dan scaffolding Rp. 480.000.000.

Kata Kunci: Metode MRP, Material, Lot Size

ANALYSIS OF MATERIAL INVENTORY PLANNING IN THE CONSTRUCTION PROJECT WITH THE MATERIAL REQUIREMENT PLANNING (MRP) METHOD

Abstract: The vacancy of material supplies at the time of implementation of the project can be hampered by the completion of the work so that it will affect the overall time of implementation and costs of the project. If the inventory is too much, it will require storage space and there will be depreciation which will have an impact on increasing costs. To avoid this, it is necessary to make an effective and efficient planning, inventory using the Material Requirement Planning (MRP) method. In this study, the object is the construction project of Building G of Mangusada Hospital. The method used is MRP. This method is composed of 4 basic steps namely explosion, netting, lotting and offsetting. In the lotting part is used 4 lot size techniques namely Lot for Lot (L4L), Economic Order Quantity (EOQ), Period Order Quantity (POQ) and Part Period Balancing (PPB). The results showed that lot sizing with minimum total inventory cost is PPB technique. Minimum inventory costs on several other types of materials are also obtained from POQ techniques such as floordeck material 0.75 mm, rebar Ø10, rebar D10, rebar D13, rebar D22, and wiremesh M10. Total minimum inventory cost for plywood material 9 mm Rp. 287,881,419; meranti wood 5/7 Rp. 751,779,089; meranti wood 6/12 Rp. 322,666,416; rebar Ø10 Rp.439,697,676; rebar D10 Rp. 7,331,078; rebar D13 Rp.9,064,629; rebar D16 Rp. 161,894,134; rebar D19 Rp. 398,662,264; rebar D22 Rp. 331,879,350; Floordeck 0.75 mm Rp. 178.601.663; wiremesh M10 Rp. 234,037,572; wiremesh M8 Rp. 351,353,969; ready mix concrete K-300 Rp. 1.412.180.000; ready mix concrete K-250 Rp. 37.267.500; and scaffolding Rp. 480.000.000

Keywords: MRP Method, Material, Lot Size

E-ISSN: 2541-5484

PENDAHULUAN

Material merupakan unsur penting dalam suatu proyek konstruksi. Keberadaannya dalam kelancaran aktivitas pada suatu proyek sangatlah menentukan sehingga penyedia jasa perlu lebih memperhatikan proses dalam pengadaan persediaan material. Kekosongan persediaan material akan mengakibatkan suatu pekerjaan menjadi terhambat sehingga waktu pelaksanaan proyek menjadi lebih panjang serta total biaya yang dikerluarkan akan lebih tinggi. Selain itu kerugian juga muncul akibat dari membayar sewa peralatan dan upah pekerja karena tertundanya suatu pekerjaan. Sedangkan apabila persediaan di banyak gudang terlalu maka mengakitbatkan biaya penyimpanan dan biaya kerusakan atau penyusutan meningkat. Untuk menghindari kerugian dari masalahmasalah tersebut maka perlu dibuat suatu perencanaan persediaan material yang efektif dan efisien dengan menggunakan metode Material Requirement **Planning** (MRP)(Astana, 2007).

Objek yang diambil dalam penelitian ini adalah proyek pembangunan Gedung G RSUD Mangusada. Metode yang dipakai adalah MRP. Metode ini tersusun dari 4 langkah mendasar yaitu *explosion*, *netting*, *lotting* dan offsetting. Pada bagian *lotting* menggunakan 4 teknik *lot sizing* yaitu teknik LFL, EOQ, POQ, dan PPB guna mendapatkan jumlah pesanan yang ideal dan biaya total persediaan paling murah.

Penelitian ini dilakukan untuk mendapatkan Teknik *lot sizing* yang paling efektif dan efisien diantara 4 teknik yang digunakan tersebut dalam menentukan jumlah pesanan yang ideal dan biaya total persediaan paling murah dari masing-masing material sehingga dapat digunakan oleh penyedia jasa dalam melakukan perencanaan pembelian material.

MATERI DAN METODE Material Requirement Planning

MRP adalah sistem yang digunakan dalam menentukan jumlah kebutuhan material dan waktu tersedia dalam proses membuat suatu barang. Sistem ini digunakan untuk perencanaan dan pengendalian item barang/komponen, dapat menentukan waktu pemesanan secara tepat dengan jumlah pemesanan yang ideal dalam memproduksi

suatu barang jadi (Irawan dan Syaichu, 2017). Manajemen pengadaan material meliputi kegiatan pemilihan pemasok, pemesanan, pengiriman dan penerimaan, penyimpanan, penggunaan, dan pemeriksaan material (Limbong et al., 2013).

Teknik Dalam Menentukan Ukuran Lot

Ada sejumlah teknik yang bisa dipakai dalam menentukan jumlah pesanan diantaranya yaitu (Bunga & Rinawati, 2019):

1. Economic Order Quantity (EOQ)
Jumlah pesanan pada teknik ini adalah
konstan. Rumus yang dipakai adalah
sebagai berikut:

$$EOQ = \sqrt{\frac{2\overline{D}k}{h}} \tag{1}$$

Substitusi dapat dilakukan untuk mengoptimalkan biaya persediaan (Mokhtari, 2018).

2. Period Order Quantity (POQ)
Teknik ini mengacu pada interval pesanan ekonomi (EOI). EOI dihitung berdasarkan rata-rata tingkat biaya permintaan. Perumusan yang dipakai adalah sebagai berikut:

$$EOI = \frac{EOQ}{R} \tag{2}$$

EOQ dan POQ dapat memberikan keuntungan yang lebih baik (Setiawan, 2014)

3. Lot For Lot (LFL)

Dalam teknik ini. Ongkos simpan adalah nol. Teknik ini terbilang yang paling mudah diantara semua teknik lot sizing yang ada. Kuantitas pemesanan sama dengan jumlah kebutuhan bersih untuk tiap periode (Wibawanti, 2019).

4. Part Period Balancing (PPB)
Ukuran lot pada teknik ini didapat dengan menyeimbangkan biaya pesan dan biaya simpan. Caranya adalah dengan melakukan perhitungan Economic Part Period (EPP). EPP dihitung berdasarkan hasil bagi antara biaya pesan dengan biaya simpan.

$$EPP = \frac{S}{H} \tag{3}$$

Aplikasi POM-QM for Windows

Aplikasi POM-QM for windows adalah program komputer yang terdiri dari beberapa

metode yang digunakan dalam memecahkan suatu permasalahan yang berhubungan dengan manajemen operasi. Salah satu dari beberapa metode yang tersedia adalah Lot sizing. Program POM-QM for windows ini digunakan untuk membantu dalam tahapan proses lotting (Hartawan, 2011).

Metode Penelitian

Penelitian ini berfokus pada perencanaan persediaan material. Objek vang ditinjau adalah struktur atas yang terdiri dari lantai basement, lantai 1, lantai 2, lantai 3, dan tangga pada Gedung G RSUD Mangusada. Metode vang dipakai adalah metode MRP. Material yang diperhitungkan persediaannya penyusun adalah material bekisting, pembesian dan beton pada item pekerjaan kolom, balok dan pelat. Perhitungan jumlah pesanan akan dilakukan dengan 4 teknik lot sizing dan dibantu dengan program komputer yaitu POM-QM for Windows. Lead time pada proses offsetting diasumsikan 1 hari. Masingmasing teknik akan menghasilkan ukuran pemesanan dan biaya persediaan yang berbeda. Dari hasil tersebut akan dipilih mana yang menghasilkan ukuran pemesanan yang ideal dengan biaya total persediaan paling murah untuk setiap materialnya.

HASIL DAN PEMBAHASAN Jadwal Pelaksanaan Provek

Berdasarkan time schedule, pekerjaan struktur atas Gedung G dimulai pada tanggal 22 april 2019 sampai dengan 13 Oktober 2019. Untuk jadwal pelaksanaan pekerjaan struktur atas gedung G lebih jelasnya dapat dilihat pada Tabel 1.

Tabel 1. Jadwal Pelaksanaan Pekerjaan

Pekerjaan	Durasi	Schedule		
	(hari)	Start	Finish	
Basement & tangga	49	22-Apr-19 9-Juni-1		
Lantai 1& tangga	42	10-Juni-19	21-Juli-19	
Lantai 2 & tangga	42	22-Juli-19	1-Sep-19	
Lantai 3	42	02-Sep-19	13-Oct-19	

Jenis Material

Jenis material yang akan diperhitungkan adalah jenis material penyusun bekisting, pembesian, dan pengecoran pada item pekerjaan balok, kolom, dan pelat. Jenis material tesrebut akan disajikan pada Tabel 2.

Tiga proses input dalam konsep MRP meliputi jadwal induk produksi, catatan persediaan, dan struktur produk (Sofyan, 2013).

Jadwal Induk Produksi (JIP)

Perencanaan persediaan material akan dilakukan per masing-masing lantai sehingga jadwal induk produksinya akan dibentuk berdasarkan tiap lantainya. JIP adalah besarnya bobot yang harus diselesaikan dalam suatu periode tertentu pada proses produksi. Data yang diperlukan untuk menyusun sebuah jadwal induk produksi ini adalah jadwal pekerjaan struktur dan Bill of Ouantity (BOO). Jadwal pekeriaan struktur berfungsi untuk mengetahui lamanya durasi dari setiap item pekerjaan. Sedangkan BOO digunakan untuk mengetahui volume dari item pekerjaan tersebut. Berikut adalah contoh hasil perhitungan JIP pada struktur lantai basement yang dapat dilihat pada Tabel

Tabel 2. Jenis Material

No	Pekerjaan	Jenis Material
1	Bekisting	Plywood 9 mm
		Kayu Meranti 5/7
		Kayu Meranti 6/12
		Floordeck 0,75 mm
		Scaffolding
2	Besi Tulangan	Ø10
		D10
		D13
		D16
		D19
		D22
		Wiremesh M8
		Wiremesh M10
3	Beton	Beton K-300
		Beton K-250

T1	D-1	Volume	G-4	Durasi			N	Minggu Ke-			
Uraian Pekerjaan		Pekerjaan	Sat	(hari)	22	23	24	25	26	27	28
DELAT	Wiremesh M10	22.246,84	kg	41	3.798,2	3.798,2	3.798,2	3.798,2	3.798,2	3.255,6	
PELAT	Beton K-300	261,73	m^3	2					130,86	130,86	
В	Bekisting Kayu	532,82	m^2	15			106,6	248,6	177,6		
A	Besi Tulangan										
L O	Ø10	2.853,75	kg	15				951,2	1.331,7	570,7	
K	D16	2.262,56	kg	15				754,2	1.055,9	452,5	
	D19	16.605,67	kg	15				5.535,2	7.749,3	3.321,1	
	Beton K-300	79,92	m^3	2					39,96	39,96	
K	Bekisting Kayu	648,00	m^2	20					226,8	226,8	194,4
O	Besi Tulangan										
L O	D22	14.320,00	kg	20				5.012,0	5.012,0	4.296,0	
M	Ø10	10.826,42	kg	20				3.789,2	3.789,2	3.247,9	
	Beton K-300	97.20	m^3	2					48.6		48,6

Tabel 3. Jadwal Induk Produksi Struktur Lantai Basement

Analisa Kebutuhan Material

Analisa kebutuhan material dihitung berdasarkan hasil perhitungan JIP dan analisa bahan. JIP digunakan untuk mengetahui volume pekerjaan setiap material per periode, sedangkan data analisa bahan digunakan untuk mengetahui koefisien indeks dari masing-masing material tersebut. Perhitungan analisa kebutuhan materal dilakukan dengan mengalikan volume pekerjaan dari masing-masing jenis material dengan koefisien indeksnya kemudian dibagi dengan satuan pembelian. Hasil perhitungan analisa kebutuhan material pada struktur atas Gedung G RSUD Mangusada disajikan pada Tabel 4.

Perhitungan Kebutuhan Kotor dan Bersih

Kebutuhan kotor material adalah jumlah kebutuhan setiap item material. Kebutuhan material untuk satu periode adalah hasil penjumlahan kebutuhan material dari semua item pekerjaan yang menggunakan jenis material yang sama pada periode yang sama. Data yang diperlukan dalam perhitungan kebutuhan kotor adalah jadwal pekerjaan struktur dan analisa kebutuhan material per periodenya. Hasil dari perhitungan total kebutuhan kotor setiap material pada struktur atas Gedung G di seluruh periode dapat dilihat pada Tabel 5.

Kebutuhan bersih didapat dari selisih antara kebutuhan kotor dengan persediaan yang dimiliki. Karena persediaan saat ini adalah 0, maka untuk Kebutuhan bersihnya adalah sama dengan kebutuhan kotor (Winarsih et.al, 2013).

Biava Persediaan

Biaya yang akan diperhitungkan adalah biaya pembelian,pengadaan dan penyimpanan (Handoko, 2011).

1. Biaya Pembelian

Harga setiap material didapat dari HPS RSUD Mangusada. Total biaya pembelian didapat dengan mengalikan total jumlah kebutuhan per material dengan harga satuan material.

2. Biaya Pengadaan

Biaya yang dihitung adalah biaya pemesanan yang terdiri dari biaya telepon dan administrasi. Total biaya pemesanan didapat dengan menjumlahkan biaya telepon dengan biaya administrasi.

3. Biaya penyimpanan

Biaya yang dihitung yaitu biaya penyusutan dan *inventory cost*. *Inventory cost* dihitung berdasarkan suku bunga bank yaitu sebesar 6% dari harga material per tahun (berdasarkan suku bunga Bank Indonesia). Biaya penyusutan untuk material kayu diasumsikan 2% dan 0,5% untuk material besi. Satu tahun terdiri dari 365 hari sehingga:

Material kayu :
$$\frac{\left(6\% + 2\%\right)}{365} \text{ x harga material}$$
Material besi:
$$\frac{\left(6\% + 0,5\%\right)}{365} \text{ x harga material}$$

Total biaya persediaan untuk setiap material disajikan pada Tabel 6.

Lotting dan Offsetting

Proses lotting menggunakan 4 teknik lot size yaitu LFL, EOQ, POQ dan PPB. Lead time pada proses offsetting diasumsikan 1 hari. Maksud dari besarnya asumsi lead time selama 1 hari adalah jika material dipesan pada hari ke-2, maka material akan datang dan sudah siap digunakan pada hari ke-3. Proses lotting dibantu dengan program komputer yang bernama POM QM for Windows. Input yang diperlukan ada 4, yaitu

- 1. Kebutuhan material per periode
- 2. Biaya simpan
- 3. Biaya pesan dan
- 4. Lead time

Perhitungan dilakukan per masing-masing material dengan durasi pekerjaan struktur atas Gedung G adalah 25 periode (dimuai dari minggu ke-22 sampai dengan minggu ke-46). Contoh gambaran hasil output POM-QM V.3.0 pada material plywood 9 mm di 3 periode dengan teknik POQ dapat dilihat pada Tabel 7.

Tabel 4. Analisa Kebutuhan Material Struktur Atas Gedung G

NI.	Tania Madanial	C-4	X7-1	V	Berat	Vol.	4
No	Jenis Material	Sat	Vol	Koef	/lonjor	akhir	sat
I	PEKERJAAN PELAT						
1	Bekisting	m^2					
	Plywood 9 mm	m^2	169,8	0,35	-	60	lmbr
	Kayu Meranti 5/7	m^2	169,8	0,03	0,014	364	btg
	Kayu meranti 6/12	m^2	169,8	0,015	0,029	88	btg
	Floordeck 0,75 mm	m^2	4.726	1,03	4	1.217	lmbr
2	Besi Tulangan	kg					
	D13	kg	1.791,3	1,05	12,5	151	lnjr
	D10	kg	904,3	1,05	7,4	129	lnjr
	Wiremesh M10	kg	22.246,8	1,05	96,54	242	lmbr
	Wiremesh M8	kg	30.932,5	1,05	61,79	526	lmbr
3	Beton	m^3					
	Beton K-300	m^3	730,2	1,025	-	749	m3
	Beton K-250	m^3	22,6	1,025	-	24	m3
II	PEKERJAAN BALOK						
1	Bekisting	m^2					
	Plywood 9 mm	m^2	4.262,9	0,35	-	1.493	lmbr
	Kayu Meranti 5/7	m^2	4.262,9	0,04	0,014	12.180	btg
	Kayu meranti 6/12	m^2	4.262,9	0,018	0,029	2.646	btg
	Scaffolding	m^3	8.640	-	3,6	2.400	set
2	Besi Tulangan	kg					
	Ø10	kg	20.761	1,05	7,4	2.946	lnjr
	D13	kg	204,2	1,05	12,5	18	lnjr
	D16	kg	41.721,9	1,05	18,96	2.311	lnjr
	D19	kg	94.812,1	1,05	26,76	3.721	lnjr
3	Beton	m^3					
	Beton K-300	m^3	512,5	1,025	-	526	m3
	Beton K-250	m^3	18,7	1,025	-	20	m3
III	PEKERJAAN KOLOM						
1	Bekisting	m^2					
	Plywood 9 mm	m^2	2.352,2	0,35	-	824	lmbr
	Kayu Meranti 5/7	m^2	2.352,2	0,04	0,014	6.721	btg
	Kayu meranti 6/12	m^2	2.352,2	0,015	0,029	1.217	btg
2	Besi Tulangan	kg					
	Ø10	kg	41.612,6	1,05	7,4	5.905	lnjr
	D19	kg	13.058,9	1,05	26,76	513	lnjr
	D22	kg	41.170	1,05	35,8	1.208	lnjr
3	Beton	m^3					
	Beton K-300	m^3	348,4	1,025	-	358	m3

Tabel 5. Total Kebutuhan Kotor Tiap Material

Jenis Material	Total Kebutuhan	Satuan
Plywood 9 mm	2459	lmbr
Kayu Meranti 5/7	19270	btg
Kayu Meranti 6/12	4031	btg
Floordeck 0,75 mm	1230	lmbr
Besi Tulangan Ø10	8917	lonjr
Besi Tulangan D10	132	lonjr
Besi Tulangan D13	184	lonjr
Besi Tulangan D16	2340	lonjr
Besi Tulangan D19	4288	lonjr
Besi Tulangan D22	1212	lonjr
Wiremesh M8	540	lmbr
Wiremesh M10	246	lmbr
Beton K-250	46	m^3
Beton K-300	1642	m^3
Scaffolding	2400	set

Tabel 6 Total Biava Persediaan

Jenis Material	Satuan	Biaya Pembelian (Rp)	Biaya Pemesanan (Rp)	Biaya Penyimpanan (Rp)	Biaya Sewa (Rp)
Plywood 9 mm	lmbr	117.000	2.500	25,64	-
Kayu Meranti 5/7	btg	39.000	2.500	8,55	-
Kayu Meranti 6/12	btg	80.000	2.500	17,53	-
Floordeck 0,75 mm	lmbr	145.000	36.250	25,82	-
Besi Tulangan Ø10	lonjr	49.200	36.250	8,76	-
Besi Tulangan D10	lonjr	54.700	36.250	9,74	-
Wiremesh M10	lmbr	950.000	36.250	169,18	-
Wiremesh M8	lmbr	650.000	36.250	115,75	-
Beton K-300	m^3	860.000	2.500	-	-
Beton K-250	m^3	810.000	2.500	-	-
Scaffolding	Set	-	-	-	480.000.000

Tabel 7. Hasil Output POM-QM Plywood 9mm Dengan Teknik POQ 3 Periode

Period	Demand	Order Receipt	Order Release	Inventory	Holding Cost Rp. 25,64	Setup Cost Rp. 2500,00
5	13	65		52	1333,28	2500
6	13			39	999,96	
7	13			26	666,64	
1 Minggu ke-25	13			13	333,32	
2	13		65	0		
3	13	65		52	1333,28	2500
4	13			39	999,96	
5	13			26	666,64	
6	13			13	333,32	
7	13		125	0		
1 Minggu ke-26	25	125		100	2564	2500
2	25			75	1923	
3	25			50	1282	
4	25			25	641	
5	25		60	0		
6	12	60		48	1230,72	2500
7	12			36	923,04	
1 Minggu ke-27	12			24	615,36	
2	12			12	307,68	
3	12		60	0		
4	12	60		48	1230,72	2500
5	12			36	923,04	
6	12			24	615,36	

12 12 307,68

Perhitungan Biaya Total Persediaan

persediaan Biaya total dihitung berdasarkan hasil output dari program bantu komputer POM-QM V.3.0. Perhitungan dilakukan dengan menjumlahkan seluruh biaya pembelian, biaya penyimpanan, biaya pemesanan, dan biaya sewa peralatan pada masing-masing material. Hasil dari perhitungan biaya total persediaan material menggunakan 4 teknik lot size yang berbeda pada struktur atas Gedung G yang dapat dilihat pada Tabel 8, Tabel 9, Tabel 10, dan Tabel 11.

Rekapitulasi Biaya Total Persediaan

Untuk mempermudah dalam melihat perbandingan biaya setiap material dengan empat teknik yang telah digunakan maka dibuatlah rekapitulasi biaya dari keempat teknik tersebut yang kemudian disajikan pada Tabel 12.

Tabel 8. Total Biaya Persediaan Dengan Teknik LFL

Jenis Material	Total Biaya Pembelian (Rp)	Total Biaya Sewa (Rp)	Total Biaya Pesan (Rp)	Total Biaya Simpan (Rp)	Total Biaya Persediaan (Rp)
Plywood 9 mm	287.703.000	-	352.500	-	288.055.500
Kayu Meranti 5/7	751.530.000	-	352.500	-	751.882.500
Kayu Meranti 6/12	322.480.000	-	352.500	-	322.832.500
Floordeck 0,75 mm	178.350.000	-	1.087.500	-	179.437.500
Besi Tulangan Ø10	438.716.400	-	5.183.750	-	443.900.150
Besi Tulangan D10	7.220.400	-	435.000	-	7.655.400
Besi Tulangan D13	8.879.840	-	978.750	-	9.858.590
Besi Tulangan D16	161.389.800	-	3.262.500	-	164.652.300
Besi Tulangan D19	397.990.720	-	3.335.000	-	401.325.720
Besi Tulangan D22	331.360.800	-	2.320.000	-	333.680.800
Wiremesh M8	351.000.000	-	1.087.500	-	352.087.500
Wiremesh M10	233.700.000	-	1.486.250	-	235.186.250
Beton K-250	37.260.000	-	7.500	-	37.267.500
Beton K-300	1.412.120.000	-	60.000	-	1.412.180.000
Scaffolding	-	480.000.000	-	-	480.000.000
	Jumlah To	tal Biaya Persediaan			5.420.002.210

Tabel 9. Total Biaya Persediaan Dengan Teknik EOQ

Jenis Material	Total Biaya Pembelian (Rp)	Total Biaya Sewa (Rp)	Total Biaya Pesan (Rp)	Total Biaya Simpan (Rp)	Total Biaya Persediaan (Rp)
Plywood 9 mm	290.511.000	-	132.500	111.739,12	290.755.239,12
Kayu Meranti 5/7	753.129.000	-	210.000	239.451,30	753.578.451,30
Kayu Meranti 6/12	325.440.000	-	140.000	126.934,73	325.706.934,73
Floordeck 0,75 mm	187.630.000	-	290.000	288.331,94	188.208.331,94
Besi Tulangan Ø10	471.778.800	-	580.000	493.100,40	472.851.900,40
Besi Tulangan D10	7.439.200	-	36.250	59.394,52	7.534.844,52
Besi Tulangan D13	11.196.320	-	72.500	89.559,34	11.358.379,34
Besi Tulangan D16	172.218.090	-	362.500	316.750,32	172.897.340,32
Besi Tulangan D19	421.287.285	-	507.500	450.954,93	422.245.739,93
Besi Tulangan D22	343.390.400	-	398.750	329.923,44	344.119.073,44
Wiremesh M8	365.300.000	-	398.750	315.303,00	366.014.053
Wiremesh M10	256.500.000	-	217.500	186.267,18	256.903.767,18
Beton K-250	37.260.000	-	7.500	-	37.267.500
Beton K-300	1.412.120.000	-	60.000	-	1.412.180.000
Scaffolding	-	480.000.000	-	-	480.000.000
	Jumlah To	tal Biaya Persediaan			5.541.621.555,22

ISSN: 1411-1292 E-ISSN: 2541-5484

Tabel 10. Total Biaya Persediaan Dengan Teknik POQ

Jenis Material	Total Biaya Pembelian (Rp)	Total Biaya Sewa (Rp)	Total Biaya Pesan (Rp)	Total Biaya Simpan (Rp)	Total Biaya Persediaan (Rp)
Plywood 9 mm	287.703.000	-	82.500	106.713,68	287.892.213,68
Kayu Meranti 5/7	751.530.000	-	152.500	107.909,55	751.790.409,55
Kayu Meranti 6/12	322.480.000	-	92.500	98.395,89	322.670.895,89
Floordeck 0,75 mm	178.350.000	-	108.750	142.913,70	178.601.663,70
Besi Tulangan Ø10	438.716.400	-	543.750	437.526,96	439.697.676,96
Besi Tulangan D10	7.220.400	-	108.750	1.928,52	7.331.078,52
Besi Tulangan D13	8.879.840	-	181.250	3.539,08	9.064.629,08
Besi Tulangan D16	161.389.800	-	362.500	234.670,80	161.986.970,80
Besi Tulangan D19	397.990.720	-	326.250	387.215,25	398.704.185,25
Besi Tulangan D22	331.360.800	-	217.500	301.050,27	331.879.350,27
Wiremesh M8	351.000.000	-	108.750	281.272,50	351.390.022,50
Wiremesh M10	233.700.000	-	181.250	156.322,32	234.037.572,32
Beton K-250	37.260.000	-	7.500	-	37.267.500
Beton K-300	1.412.120.000	-	60.000	-	1.412.180.000
Scaffolding	-	480.000.000	-	-	480.000.000
	Jumlah To	tal Biaya Persediaan			5.404.494.168,52

Tabel 11. Total Biaya Persediaan Dengan Teknik PPB

Jenis Material	Total Biaya Pembelian (Rp)	Total Biaya Sewa (Rp)	Total Biaya Pesan (Rp)	Total Biaya Simpan (Rp)	Total Biaya Persediaan (Rp)
Plywood 9 mm	287.703.000	-	97.500	80.919,84	287.881.419,84
Kayu Meranti 5/7	751.530.000	-	140.000	109.089,45	751.779.089,45
Kayu Meranti 6/12	322.480.000	-	102.500	83.916,11	322.666.416,11
Floordeck 0,75 mm	178.350.000	-	217.500	106.378,40	178.673.878,40
Besi Tulangan Ø10	438.716.400	-	616.250	394.576,68	439.727.226,68
Besi Tulangan D10	7.220.400	-	108.750	1.928,52	7.331.078,52
Besi Tulangan D13	8.879.840	-	181.250	3.539,08	9.064.629,08
Besi Tulangan D16	161.389.800	-	362.500	141.834	161.894.134
Besi Tulangan D19	397.990.720	-	362.500	309.044,88	398.662.264,88
Besi Tulangan D22	331.360.800	-	326.250	234.150,21	331.921.200,21
Wiremesh M8	351.000.000	-	217.500	136.469,25	351.353.969,25
Wiremesh M10	233.700.000	-	181.250	156.322,32	234.037.572,32
Beton K-250	37.260.000	-	7.500	-	37.267.500
Beton K-300	1.412.120.000	-	60.000	-	1.412.180.000
Scaffolding	-	480.000.000	-	-	480.000.000
	Jumlah To	tal Biava Persediaan			5.404.440.378,74

Tabel 12. Rekapitulasi Biaya Total Persediaan

Jenis Material		Total Biaya	Persediaan	
Jems Materiai	LFL (Rp)	EOQ (Rp)	POQ (Rp)	PPB (Rp)
Plywood 9 mm	288.055.500	290.755.239	287.892.214	287.881.420
Kayu Meranti 5/7	751.882.500	753.578.451	751.790.410	751.779.089
Kayu Meranti 6/12	322.832.500	325.706.935	322.670.896	322.666.416
Floordeck 0,75 mm	179.437.500	188.208.332	178.601.664	178.673.878
Besi Tulangan Ø10	443.900.150	472.851.900	439.697.677	439.727.227
Besi Tulangan D10	7.655.400	7.534.845	7.331.079	7.331.079
Besi Tulangan D13	9.858.590	11.358.379	9.064.629	9.064.629
Besi Tulangan D16	164.652.300	172.897.340	161.986.971	161.894.134
Besi Tulangan D19	401.325.720	422.245.740	398.704.185	398.662.265
Besi Tulangan D22	333.680.800	344.119.073	331.879.350	331.921.200
Wiremesh M8	352.087.500	366.014.053	351.390.023	351.353.969
Wiremesh M10	235.186.250	256.903.767	234.037.572	234.037.572
Beton K-250	1.412.180.000	1.412.180.000	1.412.180.000	1.412.180.000
Beton K-300	37.267.500	37.267.500	37.267.500	37.267.500
Scaffolding	480.000.000	480.000.000	480.000.000	480.000.000

5.420.002.210 5.541.621.555 5.404.494.169 5.404.440.379 Total

SIMPULAN

Berdasarkan hasil analisa, dapat ditarik simpulan sebagai berikut:

- 1. Teknik dengan jumlah pesanan yang ideal serta biaya total persediaan paling murah di setiap jenis materialnya yaitu:
 - a. Teknik PPB untuk material plywood 9 mm, kayu meranti 5/7, kayu meranti 6/12, besi tulangan D10, besi tulangan D13, besi tulangan D16, besi tulangan D19, wiremesh M8 dan wiremesh M10.
 - b. Teknik POQ untuk material floordeck 0.75mm, besi tulangan Ø10, besi tulangan D10, besi tulangan D13, besi tulangan D22 dan wiremesh M10
 - c. Teknik LFL untuk scaffolding, beton readymix K-250 dan K-300
- 2. Biaya total persediaan minimum untuk semua jenis material adalah 5.404.296.764.38

DAFTAR PUSTAKA

- Astana, N.Y. 2007. Perencanaan Persediaan Bahan Baku Berdasarkan Metode MRP (Material Requirement Planning) I. Jurnal Ilmiah Teknik Sipil.
- Bunga, W.A.Y., dan Rinawati, D.I. 2019. Perencanaan Persediaan Bahan Baku Semen Dengan Menggunakan Metode Material Requirement Planning (MRP) Pada PT Indocement Tunggal Prakarsa Tbk. Plant Cirebon. Industrial Engineering Online Journal.
- Handoko, T.H. 2011. Dasar-dasar Manajemen Produksi dan Operasi (I). Yogyakarta: BPFF UGM.
- Hartawan, Z. 2011. Modul POM-QM for Windows versi 3.0: Praktikum LP & Simplex.
- Irawan, P. A., dan Syaichu, A. 2017. Pengendalian Persediaan Bahan Baku Dengan Metode Material Requirement Planning (MRP) Pada PT. Semen Indonesia (PERSERO), Tbk. Journal Knowledge Industrial Engineering (JKIE) PENGENDALIAN.
- Limbong, I., Tarore, H., Tjakra, J., dan Walangitan, D.R.O. 2013. Manajemen Pengadaan Material Bangunan dengan Menggunakan Metode MRP (Material Requirement Planning) Studi Kasus:

- Revitalisasi Gedung Kantor BPS Propinsi Sulawesi Utara. Jurnal Sipil Statik.
- Mokhtari, H. 2018. Economic order quantity for joint complementary and substitutable items. Mathematics and Computers in Simulation. 154. https://doi.org/10.1016/j.matcom.2018.06 .004
- Setiawan, A. 2014. Analisis Perbandingan Metode Perusahaan, Economic Order Quantity dan Period Order Quantity dalam **Optimalisasi** Pengendalian Persediaan Bahan Baku. **Fakultas** Pendidikan Matematika Dan Ilmu Pengetahuan Alam Universitas Pendidikan Indonesia.
- Sofvan. D.K. 2013. Perencanaan Pengendalian Produksi (I). Yogyakarta: Graha Ilmu.
- Wibawanti, Y. 2019. Analisis Perencanaan Kebutuhan Material Proyek dengan Metode Material Requirement Planning. STRING (Satuan Tulisan Riset Dan Inovasi Teknologi), 3(3). https://doi.org/10.30998/string.v3i3.3601
- Winarsih, N., Ontopianti, Y., Yurista, V., Agushinta R., D., dan Senjaya, R. 2013. Penerapan Software POM-OM Dalam Pengadaan Material Proyek Dengan Teknik PPB. Proceeding PESAT.