

Redundância Temporal

Sistemas Críticos

Introdução

- Redundância temporal:
 - "Executar a acção pretendida em instantes de tempo diferentes"
- Principal objectivo
 - Tolerar falhas transitórias
 - Mas também é possível adapta-la a falhas permanentes
- Exemplo: TDMA (Time Division Multiplexing)

FEUP Universidade do Porto Faculdade de Engenharia

Tolerância a falhas transitórias Repetir as acções em diferentes instantes do tempo Comparar resultados É necessário garantir a consistência dos dados de entrada Falhas permanentes podem não ser detectadas (produzem o mesmo resultado)

Tolerância a falhas permanentes • É possível utilizar esta abordagem para detectar falhas permanentes • Princípio: - Executar as acções de forma diferente em instantes diferentes - Utilizar uma forma de codificação para executar a 2ª acção - Existem várias abordagens Time • Data X Computation Result Result Result Pacode Result Result Pacode Result Result Pacode Result Result Pacode Result

Redundância de Informação

Conceitos

- Alguns conceitos:
 - Código: forma de representar a informação utilizando regras bem definidas
 - » Ex: código ASCII : 'A' → 65
 - » Vamos focar a nossa discussão em códigos digitais
 - Code word (palavra de código): colecção de símbolos (ou dígitos no caso numérico) utilizados para representar os dados codificados
 - » Ex: BCD : code word de 4 bits para cada dígito
 - Processo:
 - » Codificação : Informação \rightarrow Code word
 - » Descodificação: Code word → Informação

9

Sistemas Críticos

Introdução (cont.)

- Conceitos (cont.):
 - Distância da Hamming: número de bits em que duas code words diferem
 - » d(101, 110) = 2
 - » d(101, 111) = 1
- A introdução de redundância (bits adicionais) permite definir como válidas apenas um determinado sub-conjunto de todas as palavras de código possíveis...
 - Exemplo: bit de paridade

Paridade Par vs. Ímpar

FEUP Universidade do Porto Faculdade de Engenharia

Introdução (cont.)

- Conceitos (cont.):
 - Distância do código: distância de Hamming mínima entre duas code words válidas

- Distância de Hamming = 4

 » Ex. se a distância for de 2, então 1 bit errado numa code word transforma-a numa code word inválida (i.e. susceptível de ser facilmente detectada)
- » Para permitir a correcção (para além de apenas a detecção) de erros, torna-se necessário utilizar distâncias de Hamming maiores

Sistemas Críticos

Introdução (cont.)

- Conceitos (cont.):
 - Em termos gerais um código pode corrigir até c erros (bits errados) e detectar até d erros se a sua distância de Hamming (Hd) respeitar a seguinte relação:

$$H_d \ge 2c + d + 1$$

- » Para detectar d erros : Hd ≥ d + 1
- » Para corrigir c erros : Hd ≥ 2c + 1
- » Combinando ambas as expressões obtêm-se a expressão anterior

» Ex: códigos com Hd =2 não podem ser utilizados para corrigir erros, mas podem detectar erros simples (1 bit)

FEUP Universidade do Porto

Códigos de Detecção de Erros

Sistemas Críticos

Códigos de paridade

- Conceito: acrescentar bits que representam a paridade dos dados.
- Caso mais simples: 1 bit
 - Par: número par de 1s
 - Ímpar: número ímpar de 1s
 - Distância de Hamming de 2: apenas um número ímpar de erros (1, 3, ..) é detectado

Decimal digit	BCD	BCD odd parity	BCD even parity
0	0000	0000 1	0000
1	0001	0001 0	0001 1
2	0010	0010 0	0010 1
3	0011	0011 1	0011 0
4	0100	0100 0	0100 1
5	0101	0101 1	0101 0
6	0110	0110 1	0110 0
7	0111	0111 0	0111 1
8	1000	1000 0	1000 1
9	1001	1001 1	1001 0
		' <u>-</u> -'	' <u></u> '
		Parity	Parity
		bit	bit

FEUP Universidade do Porto Faculdade de Engenharia

Códigos m-of-n

- Todas as code words têm comprimento <u>n</u> e contêm exactamente <u>m</u> 1s (<u>m</u> bits concatenados aos dados)
- Distância de Hamming de 2 (1 erro implica que o número de 1s: +1 ou -1)
 - Mas podem detectar múltiplos erros em situações especiais (ex: vários 1 passarem a 0)
- Processo de codificação / descodificação podem ser complexos
- Overhead elevado

TABLE 3.5 3-of-6 code for representing three bits of information

Original information	3-of-6 code	
000	000	111
001	001	110
010	010	101
011	011	100
100	100	011
101	101	010
110	110	001
111	111	000
		; —
	Original information	Appended information

FEUP Universidade do Porto Faculdade de Engenharia

2

Sistemas Críticos

Códigos de duplicação

- Duplicar a informação (overhead elevado)
- Informação complementada (duplicação complementada)
- Existem outras variantes (ex: swap and compare)

 $\textbf{Fig. 3.33} \ \ \textbf{Example of complemented duplication for error detection in a communication system.}$

FEUP Universidade do Porto Faculdade de Engenharia

Códigos cíclicos

- Cyclic Redundancy Codes (CRC)
 - Os bits de paridade não são adequados à detecção de burts de erros, ou implicam overheards elevados para a sua detecção de
- Os CRC são baseados em cálculos matemáticos realizados sobre os dados (mensagem): divisão polinomial, cujo resto tem que ser 0
- Princípio:
 - Mensagem M com k bits
 - O emissor gera uma sequência de n bits denominada FCS (Frame Check Sequence), por forma que a concatenação de M com o FCS (k+n bits) seja divisível G (divisível = resto 0)
 - G é denominado polinómio gerador (n+1 bits)
 - A mensagem transmitida T é obtida como: multiplicando M por 2n (shift 2n x) e adicionando (módulo-2 = XOR) o FCS

$$T = 2^n \cdot M + F$$

FEUP Universidade do Porto Faculdade de Engenharia

CRC (discussão)

• Dividindo 2ⁿM por G obtêm-se um quociente Q e um resto R

$$\frac{2^n \cdot M}{G} = Q + \frac{R}{G}$$

• Utilizando como R o valor do FCS temos

$$T = 2^n \cdot M + R$$

• No receptor, realizando a divisão por G temos

$$\frac{T}{G} = \frac{2^n \cdot M + R}{G} = Q + \frac{R}{G} + \frac{R}{G} = Q$$

• Isto é, o resto é 0!

28

Sistemas Críticos

Discussão (2)

- Se o resto da divisão for 0 então não há erro na transmissão:
 - Prova: assumir que a mensagem recebida é a 'soma' (XOR) da mensagem original T com um erro E (ex. 0000010000)

$$\frac{T+E}{G} = \frac{T}{G} + \frac{E}{G}$$

- Dado que **E/G** não dá resto zero (não devia dar...), é porque ocorreu um erro na transmissão.
- Resumo:
 - Emissor: dividir **2**ⁿ**M** por **G** obter o resto (**FCS**), adicionar a **M** e obter T
 - Receptor : dividir T por G (se resto = 0 não há erros)
- Pergunta : como escolher o **G** (polinómio gerador)?

Sistemas Críticos Discussão (3) • Uma unidade de dados com n bits de informação é representada por um polinómio **D(x)** de grau **n-1** : o valor de cada bit é o coeficiente de um termo do polinómio $-D = 110011 : D(x) = X^5 + X^4 + X + 1$ • Divisão (exemplo): Quotient 11011 111001010000 -M(x) = 11100101Generator 11011 01111 Polynomial Message -G(x) = 1101100000 11110 11011 - Aritmética de módulo-2 (XOR) Remainder FEUP Universidade do Porto

Códigos de Correcção de Erros

Sistemas Críticos

Códigos de Hamming

- Derivados dos códigos de sobreposição de paridade:
 - Os dados (bits) a transmitir são agrupados e para cada grupo é obtida a respectiva paridade
 - Os grupos não são mutuamente exclusivos (daí a sobreposição)
 - Para k bits de dados utiliza c bits de paridade, respeitando a seguinte condição:

$$2^c \ge c + k + 1$$

- A code word tem dimensão n = c + k
- Princípio:
 - A ocorrência de erros 'gera' uma code word única que permite identificar (dentro de certas condições) os bits errados e assim permitir a sua correcção
 - Esta code word é denominada síndrome

Bibliografia

• Principal:

- "Design and Analysis of Fault-Tolerant Digital Systems", Barry Johnson (nos conteúdos):
 - » Capitulo 3 : Design Techniques to Achieve Fault Tolerance

• Complementar

- "Reliability of Computer Systems and Networks Fault Tolerance, Analysis and Design", Martin Shooman, Wiley, (na biblioteca):
 - » Capitulo 2 : Coding Techniques

