Sitzung 13

Bildmodelle und Zufallsvariablen (3)

Sitzung Mathematik für Ingenieure C4: INF vom 8. Juni 2020

Wigand Rathmann

Lehrstuhl für Angewandte Analysis Department Mathematik Friedrich-Alexander-Universität Erlangen-Nünrberg (FAU)

Bildmodelle und Zufallsvariablen

Ziel dieses Themas

- 1. Sie erkennen den Nutzen des Begriffs Zufallsvariable.
- Sie lernen verschiedenen Verteilungen kennen und wissen, welche Situationen diese Verteilungen angewendet werden können.
- 3. Sie können erklären, wie die Verteilungen in den Bildmodellen entstehen.
- Sie kennen die Möglichkeiten, die Binomialverteilung zu approximieren.
 Sie können mit den Begriffen gemeinsame Verteilung und
- Randverteilung arbeiten und den Zusammenhang zur stochastischen Unabhängigkeit herstellen.
- Sie wissen, wie Summen von Zufallsvariablen gebildet werden und können die entstehenden Verteilungen mit Hilfe der Faltung berechnen.

Definition 6.5

Ist (Ω, \mathcal{A}, P) ein W-Raum, Ω' eine (nicht leere) Menge, \mathcal{A}' ein Ereignissystem über Ω' und $X:\Omega\to\Omega'$ eine Zufallsvariable, dann ist die Zuordnung

$$A' \mapsto P^X(A') := P(X^{-1}(A')) = P(X \in A')$$
 (1)

mit $A' \in A'$ ein W-Maß über (Ω', A') . P^X heißt **Bildmaß von** P unter **X** oder **Verteilung von)**

 P^X heißt **Bildmaß von** P **unter X** oder **Verteilung von X** (bzgl. P). $(\Omega', \mathcal{A}', P^X)$ ist das **Bildmodell** von (Ω, \mathcal{A}, P) unter X.

Satz 6.14

Es sei P^X eine Verteilung über (\mathbb{R}, \mathbb{B}) und die Zufallsvariable Y = a + bX eine lineare Funktion von X mit $a, b \in \mathbb{R}$, $b \neq 0$, hier b > 0.

1. Besitzt P^X die VF F^X , dann besitzt P^Y die Verteilungsfunktion

2. Besitzt P^X die R-Dichte f^X , dann besitzt P^Y die R-Dichte

$$f^{Y}(y) = \frac{1}{b}f^{X}\left(\frac{y-a}{b}\right), \ y \in \mathbb{R}.$$
 (3)

3. Ist P^X die Standardnormalverteilung $\mathcal{N}(0,1)$ mit $VF \oplus$ und R-Dichte ϕ , dann hat Y=a+bX die VF

$$F^{Y}(y) = \Phi\left(\frac{y-a}{b}\right)$$
und die R-Dichte

$$f^{Y}(y) = \frac{1}{b}\phi\left(\frac{y-a}{b}\right).$$

Y entspricht der Normalverteilung $\mathcal{N}(a, b^2)$.

Visualisierung

https://www.studon.fau.de/pg730938_2897784.html

Folgerung 6.15

1. Ist X eine Zufallsvariable mit Werten in \mathbb{R} und der VF F^X , dann besitzt $Y = X^2$ die Verteilungsfunktion

$$F^{Y}(y) = F^{X^{2}}(y) = (F^{X}(\sqrt{y}) - F^{X}((-\sqrt{y}) -)) 1_{[0,\infty)}, y \in \mathbb{R},$$
 (4)

2. Besitzt X eine R-Dichte f^X , dann hat $Y = X^2$ die R-Dichte

$$f^{Y}(y) = \frac{1}{2\sqrt{y}} \left(f^{X} \left(-\sqrt{y} \right) + f^{X} (\sqrt{y}) \right) 1_{[0,\infty)}(y), \quad y \in \mathbb{R}.$$
 (5)

linksseitiger grenzwert, wegen evtl. sp

Transformationen von ZV (Y = g(X))

Besitzt die ZV X eine stetige Verteilung über \mathbb{R}^2 mit R-Dichte f^X und ist $g: \mathbb{R}^2 \to \mathbb{R}$ eine Abbildung. Dann gilt für die VF F^Y der $\overline{ZV} = g(X)$

$$F^{Y}(y) = P(Y \leqslant y) = \int_{B_{y}} f^{X}(x_{1}, x_{2}) dx_{1} dx_{2}, \ y \in \mathbb{R},$$

(8)

mit $B_y := \{(x_1, x_2) \in \mathbb{R}^2 : g(x_1, x_2) \leq y\}$. Dies lässt sich auf mehr als zwei Dimensionen übertragen.

$$\frac{\text{häufig: Z = x_1+x_2}}{\text{häufig: Z = x_1+x_2}}$$

gekoppelte stetige Modelle

support

 $f(x_2) = int \wedge infty_-infty f^[X_1, X_2] (x_1, x_2) dx_1 v$

Beispiel 6.25

Verteilung für die Auftragsarten 1,2,3 und die Auftragsdauer d = 5, 10, 15, 20:

t	<i>d</i> = 5	d = 10	d = 15	d=20	$\sum = f^T(t)$
1	0,06	0,12	0,02	0,00	0,2
2	0,10	0,20	0,15	0,05	0,50
3	0,03	0,09	0,12	0,06	0,30 🖖
$\sum = f^D(d)$	0,19	0,41	0,29	0,11	$\sum = 1$

Die Produktdichte für das Beispiel 6.8

	$f(t,d) = f_1(t)f_2^1(t;d)$						
t	<i>d</i> = 5	d = 10	d = 15	<i>d</i> = 20			
1	0,2 <mark>.0,3</mark>	0,2.0,6	0,2.0,1	0,2.0,0			
2	0,5 <mark>.0,2</mark>	0,5.0,4	0,5.0,3	0,5.0,1			
3	0,3· <mark>0,1</mark>	0,3.0,3	0,3.0,4	0,3.0,2			

2 stufiges problem: erste stufe t, zweite djedes t

Definition 6.27

Die Übergangsdichten

$$f_i^{i-1}(y_1,\ldots,y_{i-1};y_i)=P(Y_i=y_1|Y_1=y_1,\ldots,Y_{i-1}=y_{i-1})$$

heißen **bedingte Dichten.** Die zugehörigen Übergangs-W-Maße heißen **bedingte Verteilungen**. Es wird auch $f^{Y_i|(Y_1,\ldots,Y_{i-1})}$ bzw. $P^{Y_i|(Y_1,\ldots,Y_{i-1})}$ geschrieben.

Definition 6.28

Die Zufallsvariablen Y_1, \ldots, Y_n mit $Y_i : \Omega \to \Omega_i$ heißen **stochastisch unabhängig** wenn für die gemeinsame Verteilung die Produktformel

$$P^{Y_1,\ldots,Y_n}\left(A_1\times\cdots\times A_n\right)=P^{Y_1}\left(A_1\right)\cdots P^{Y_n}\left(A_n\right) \tag{9}$$

für beliebige Ereignisse $A_i \in \Omega_i$ gilt.

Folgerung 6.29

Besitzen die Zufallsvariablen Y_1, \ldots, Y_n mit $Y_i : \Omega \to \Omega_i$ R-Dichten, dann ist die stochastische Unabhängigkeit äquivalent dazu, dass die gemeinsame Verteilung eine Produktdichte besitzt.

Selbststudium

Quellen

- Kopien Buch: Hübner, G. Stochastik. Vieweg. Kapitel 5.8-5.10
- Skript Kapitel 6.4-6.6
 (https://www.studon.fau.de/file2897817_download.html)

Fragen

1. Wie können aus einer gegebenen gemeinsamen Dichte $f^{(Y_1,\ldots,Y_n)}$ rekursiv die Übergangsdichten

$$f_i^{i-1}(y_1,\ldots,y_{i-1};y_i) \quad (i=1,\ldots,n)$$

berechnet werden.

2. Gegeben sei die gemeinsame Dichte $f^{(Z_1,Z_2)}$ zweier stochastisch unabhängiger Zufallsvariablen Z_1 und Z_2 . Was können Sie daraus über den Träger supp $(f^{(Z_1,Z_2)})$ von $f^{(Z_1,Z_2)}$ schließen.

Hinweis: $supp(f) := \{x \in D_f | f(x) \neq 0\}.$

Ihre Fragen

... stellen, Fragen haben keine Pause.

- in den Online-Sitzungen (Vorlesungen, Übungen),
- per Mail an wigand.rathmann@fau.de oder marius.yamakou@fau.de,
- im Forum https://www.studon.fau.de/frm2897793.html, Die Fragen, die bis Donnerstag gestellt wurden, werden am Freitag in der Online-Runde diskutiert.
- per Telefon (zu den Sprechzeiten sind wir auch im Büro)

```
Wigand Rathmann 09131/85-67129 Mi 11-12 Uhr
Marius Yamakou 09131/85-67127 Di 14-15 Uhr
```

Sprechstunde zur Mathematik für Ingenieure

Wann: dienstags 09:00 - 16:30 Uhr und donnerstags 09:00-17:00 Uhr, Wo:

```
https://webconf.vc.dfn.de/ssim/ (Adobe Connect) und
https://fau.zoom.us/j/91308761442 (Zoom)
```