## PHYS 632: Quantum Mechanics II (Winter 2021) Exercises 15 February 2021 (Monday, Week 7) Due Monday, 22 February 2021

**Exercise 1.** Go through the Ramsey interferometry method (the basic method used in atomic clocks) mathematically for a spin-1/2 system, to show that the output state reflects the internal evolving phase of the atom, using the following steps:

- 1. Start in the  $|+\rangle$  state.
- 2. Apply a  $\pi/2$ -pulse (i.e., Hadamard gate, like the beam splitter from lecture), which puts the spin in a superpositions state (which you should calculate).
- 3. Allow free evolution for time T, assuming the energy difference between  $|\pm\rangle$  is  $\hbar\omega$ . To be definite, assume  $E_{+} = \hbar\omega$  and  $E_{-} = 0$ .
- 4. Apply another  $\pi/2$ -pulse.
- 5. In the final state, show that the probability of measuring the spin to be in, say, the  $|+\rangle$  state is an oscillating function of  $\omega T$  ("interference fringes" or "Ramsey fringes").