1.9 EXERCISES 1-13 odd, 17-27 odd

In Exercises 1–10, assume that T is a linear transformation. Find the standard matrix of T.

- the standard $T(\mathbf{e}_2) = (-5, 2, 0, 0),$ 1. $T: \mathbb{R}^2 \to \mathbb{R}^4, T(\mathbf{e}_1) = (3, 1, 3, 1) \text{ and } T(\mathbf{e}_2) = (-5, 2, 0, 0),$ where $\mathbf{e}_1 = (1, 0)$ and $\mathbf{e}_2 = (0, 1).$
 - 2. $T: \mathbb{R}^3 \to \mathbb{R}^2$, $T(\mathbf{e}_1) = (1,3)$, $T(\mathbf{e}_2) = (4,-7)$, and $T(\mathbf{e}_3) = (-5,4)$, where \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 are the columns of the 3×3 identity matrix.
- 3. $T: \mathbb{R}^2 \to \mathbb{R}^2$ rotates points (about the origin) through $3\pi/2$ radians (counterclockwise).
- 4. $T: \mathbb{R}^2 \to \mathbb{R}^2$ rotates points (about the origin) through $-\pi/4$ radians (clockwise). [Hint: $T(\mathbf{e}_1) = (1/\sqrt{2}, -1/\sqrt{2})$.]
- 5. $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a vertical shear transformation that maps \mathbf{e}_1 into $\mathbf{e}_1 2\mathbf{e}_2$ but leaves the vector \mathbf{e}_2 unchanged.
- 6. $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a horizontal shear transformation that leaves \mathbf{e}_1 unchanged and maps \mathbf{e}_2 into $\mathbf{e}_2 + 3\mathbf{e}_1$.
- 7. $T: \mathbb{R}^2 \to \mathbb{R}^2$ first rotates points through $-3\pi/4$ radian (clockwise) and then reflects points through the horizontal x_1 -axis. [Hint: $T(\mathbf{e}_1) = (-1/\sqrt{2}, 1/\sqrt{2})$.]
 - 8. $T: \mathbb{R}^2 \to \mathbb{R}^2$ first reflects points through the horizontal x_1 -axis and then reflects points through the line $x_2 = x_1$.
- 9. $T: \mathbb{R}^2 \to \mathbb{R}^2$ first performs a horizontal shear that transforms \mathbf{e}_2 into $\mathbf{e}_2 2\mathbf{e}_1$ (leaving \mathbf{e}_1 unchanged) and then reflects points through the line $x_2 = -x_1$.
- 10. $T: \mathbb{R}^2 \to \mathbb{R}^2$ first reflects points through the vertical x_2 -axis and then rotates points $\pi/2$ radians.
- 11. A linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ first reflects points through the x_1 -axis and then reflects points through the x_2 -axis. Show that T can also be described as a linear transformation that rotates points about the origin. What is the angle of that rotation?
- 12. Show that the transformation in Exercise 8 is merely a rotation about the origin. What is the angle of the rotation?
- 13. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation such that $T(\mathbf{e}_1)$ and $T(\mathbf{e}_2)$ are the vectors shown in the figure. Using the figure, sketch the vector T(2, 1).

14. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation with standard figure. Using the figure, draw the image of $\begin{bmatrix} -1 \\ 3 \end{bmatrix}$ under the

transformation T.

In Exercises 15 and 16, fill in the missing entries of the matrix, assuming that the equation holds for all values of the variables.

15.
$$\begin{bmatrix} ? & ? & ? \\ ? & ? & ? \\ ? & ? & ? \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3x_1 - 2x_3 \\ 4x_1 \\ x_1 - x_2 + x_3 \end{bmatrix}$$

16.
$$\begin{bmatrix} ? & ? \\ ? & ? \\ ? & ? \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 - x_2 \\ -2x_1 + x_2 \\ x_1 \end{bmatrix}$$

In Exercises 17–20, show that T is a linear transformation by finding a matrix that implements the mapping. Note that x_1, x_2, \ldots are not vectors but are entries in vectors.

- **17.** $T(x_1, x_2, x_3, x_4) = (0, x_1 + x_2, x_2 + x_3, x_3 + x_4)$
- **18.** $T(x_1, x_2) = (2x_2 3x_1, x_1 4x_2, 0, x_2)$
- **19.** $T(x_1, x_2, x_3) = (x_1 5x_2 + 4x_3, x_2 6x_3)$
- **20.** $T(x_1, x_2, x_3, x_4) = 2x_1 + 3x_3 4x_4$ $(T : \mathbb{R}^4 \to \mathbb{R})$
- **21.** Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation such that $T(x_1, x_2) = (x_1 + x_2, 4x_1 + 5x_2)$. Find **x** such that $T(\mathbf{x}) = (3, 8)$.
- **22.** Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation such that $T(x_1, x_2) = (x_1 2x_2, -x_1 + 3x_2, 3x_1 2x_2)$. Find **x** such that $T(\mathbf{x}) = (-1, 4, 9)$.

In Exercises 23 and 24, mark each statement True or False. Justify each answer.

- **23.** a. A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is completely determined by its effect on the columns of the $n \times n$ identity matrix.
 - b. If $T: \mathbb{R}^2 \to \mathbb{R}^2$ rotates vectors about the origin through an angle φ , then T is a linear transformation.
 - c. When two linear transformations are performed one after another, the combined effect may not always be a linear transformation.
 - d. A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is onto \mathbb{R}^m if every vector \mathbf{x} in \mathbb{R}^n maps onto some vector in \mathbb{R}^m .
 - e. If A is a 3×2 matrix, then the transformation $\mathbf{x} \mapsto A\mathbf{x}$ cannot be one-to-one.
- **24.** a. Not every linear transformation from \mathbb{R}^n to \mathbb{R}^m is a matrix transformation.
 - b. The columns of the standard matrix for a linear transformation from \mathbb{R}^n to \mathbb{R}^m are the images of the columns of the $n \times n$ identity matrix.

- c. The standard matrix of a linear transformation from \mathbb{R}^2 to \mathbb{R}^2 that reflects points through the horizontal axis, the vertical axis, or the origin has the form $\begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix}$, where a and d are ± 1 .
- d. A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one if each vector in \mathbb{R}^n maps onto a unique vector in \mathbb{R}^m .
- e. If A is a 3×2 matrix, then the transformation $\mathbf{x} \mapsto A\mathbf{x}$ cannot map \mathbb{R}^2 onto \mathbb{R}^3 .

In Exercises 25–28, determine if the specified linear transformation is (a) one-to-one and (b) onto. Justify each answer.

- 25. The transformation in Exercise 17
- 26. The transformation in Exercise 2
- 27. The transformation in Exercise 19
- 28. The transformation in Exercise 14

In Exercises 29 and 30, describe the possible echelon forms of the standard matrix for a linear transformation T: Use the notation of Example 1 in Section 1.2.

- **29.** $T: \mathbb{R}^3 \to \mathbb{R}^4$ is one-to-one.
- **30.** $T: \mathbb{R}^4 \to \mathbb{R}^3$ is onto.
- 31. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation, with A its standard matrix. Complete the following statement to make it true: "T is one-to-one if and only if A has _____ pivot columns." Explain why the statement is true. [*Hint:* Look in the exercises for Section 1.7.]
- 32. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation, with A its standard matrix. Complete the following statement to make it true: "T maps \mathbb{R}^n onto \mathbb{R}^m if and only if A has ____ pivot columns." Find some theorems that explain why the statement is true.
- 33. Verify the uniqueness of A in Theorem 10. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation such that $T(\mathbf{x}) = B\mathbf{x}$ for some

- $m \times n$ matrix B. Show that if A is the standard matrix for T, then A = B. [Hint: Show that A and B have the same columns.]
- **34.** Why is the question "Is the linear transformation T onto?" an existence question?
- **35.** If a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ maps \mathbb{R}^n onto \mathbb{R}^m , can you give a relation between m and n? If T is one-to-one, what can you say about m and n?
- **36.** Let $S: \mathbb{R}^p \to \mathbb{R}^n$ and $T: \mathbb{R}^n \to \mathbb{R}^m$ be linear transformations. Show that the mapping $\mathbf{x} \mapsto T(S(\mathbf{x}))$ is a linear transformation (from \mathbb{R}^p to \mathbb{R}^m). [Hint: Compute $T(S(c\mathbf{u} + d\mathbf{v}))$ for \mathbf{u}, \mathbf{v} in \mathbb{R}^p and scalars c and d. Justify each step of the computation, and explain why this computation gives the desired conclusion.]

[M] In Exercises 37–40, let T be the linear transformation whose standard matrix is given. In Exercises 37 and 38, decide if T is a one-to-one mapping. In Exercises 39 and 40, decide if T maps \mathbb{R}^5 onto \mathbb{R}^5 . Justify your answers.

0

Reflection through the x_2 -axis

37.
$$\begin{bmatrix} -5 & 10 & -5 & 4 \\ 8 & 3 & -4 & 7 \\ 4 & -9 & 5 & -3 \\ -3 & -2 & 5 & 4 \end{bmatrix}$$
 38.
$$\begin{bmatrix} 7 \\ 10 \\ 12 \\ -8 & -8 \end{bmatrix}$$

39.
$$\begin{bmatrix} 4 & -7 & 3 & 7 & 5 \\ 6 & -8 & 5 & 12 & -8 \\ -7 & 10 & -8 & -9 & 14 \\ 3 & -5 & 4 & 2 & -6 \\ -5 & 6 & -6 & -7 & 3 \end{bmatrix}$$

40.
$$\begin{bmatrix} 9 & 13 & 5 & 6 & -1 \\ 14 & 15 & -7 & -6 & 4 \\ -8 & -9 & 12 & -5 & -9 \\ -5 & -6 & -8 & 9 & 8 \\ 13 & 14 & 15 & 2 & 11 \end{bmatrix}$$

SOLUTION TO PRACTICE PROBLEMS

WEB

1. Follow what happens to \mathbf{e}_1 and \mathbf{e}_2 . See Figure 5. First, \mathbf{e}_1 is unaffected by the shear and then is reflected into $-\mathbf{e}_1$. So $T(\mathbf{e}_1) = -\mathbf{e}_1$. Second, \mathbf{e}_2 goes to $\mathbf{e}_2 - .5\mathbf{e}_1$ by the shear transformation. Since reflection through the x_2 -axis changes \mathbf{e}_1 into $-\mathbf{e}_1$ and

FIGURE 5 The composition of two transformations

4.2 EXERCISES

1. Determine if
$$\mathbf{w} = \begin{bmatrix} 1 \\ 3 \\ -4 \end{bmatrix}$$
 is in Nul A, where

$$A = \begin{bmatrix} 3 & -5 & -3 \\ 6 & -2 & 0 \\ -8 & 4 & 1 \end{bmatrix}.$$

2. Determine if
$$\mathbf{w} = \begin{bmatrix} 5 \\ -3 \\ 2 \end{bmatrix}$$
 is in Nul A, where

$$A = \begin{bmatrix} 5 & 21 & 19 \\ 13 & 23 & 2 \\ 8 & 14 & 1 \end{bmatrix}.$$

In Exercises 3-6, find an explicit description of Nul A by listing vectors that span the null space.

3.
$$A = \begin{bmatrix} 1 & 3 & 5 & 0 \\ 0 & 1 & 4 & -2 \end{bmatrix}$$

4.
$$A = \begin{bmatrix} 1 & -6 & 4 & 0 \\ 0 & 0 & 2 & 0 \end{bmatrix}$$

5.
$$A = \begin{bmatrix} 1 & -2 & 0 & 4 & 0 \\ 0 & 0 & 1 & -9 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 5 & -4 & -3 & 1 \\ 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

In Exercises 7–14, either use an appropriate theorem to show that the given set, W, is a vector space, or find a specific example to the contrary.

7.
$$\left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} : a+b+c=2 \right\}$$
 8.
$$\left\{ \begin{bmatrix} r \\ s \\ t \end{bmatrix} : 5r-1=s+2t \right\}$$

8.
$$\left\{ \begin{bmatrix} r \\ s \\ t \end{bmatrix} : 5r - 1 = s + 2t \right\}$$

9.
$$\left\{ \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} : \begin{array}{l} a-2b=4c \\ 2a=c+3d \end{array} \right\}$$
 10.
$$\left\{ \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} : \begin{array}{l} a+3b=c \\ b+c+a=d \end{array} \right\}$$

10.
$$\left\{ \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} : a + 3b = c \\ b + c + a = d \right.$$

11.
$$\left\{ \begin{bmatrix} b-2d \\ 5+d \\ b+3d \\ d \end{bmatrix} : b,d \text{ real} \right\}$$
 12.
$$\left\{ \begin{bmatrix} b-5d \\ 2b \\ 2d+1 \\ d \end{bmatrix} : b,d \text{ real} \right\}$$

12.
$$\left\{ \begin{bmatrix} b - 5d \\ 2b \\ 2d + 1 \\ d \end{bmatrix} : b, d \text{ real} \right\}$$

13.
$$\left\{ \begin{bmatrix} c - 6d \\ d \\ c \end{bmatrix} : c, d \text{ real} \right\}$$

13.
$$\left\{ \begin{bmatrix} c - 6d \\ d \\ c \end{bmatrix} : c, d \text{ real} \right\}$$
 14.
$$\left\{ \begin{bmatrix} -a + 2b \\ a - 2b \\ 3a - 6b \end{bmatrix} : a, b \text{ real} \right\}$$

In Exercises 15 and 16, find A such that the given set is Col A.

15.
$$\left\{ \begin{bmatrix} 2s+3t\\ r+s-2t\\ 4r+s\\ 3r-s-t \end{bmatrix} : r, s, t \text{ real} \right\}$$

16.
$$\left\{ \begin{bmatrix} b-c \\ 2b+c+d \\ 5c-4d \\ d \end{bmatrix} : b, c, d \text{ real} \right\}$$

For the matrices in Exercises 17–20, (a) find k such that Nul A is a subspace of \mathbb{R}^k , and (b) find k such that Col A is a subspace of

17.
$$A = \begin{bmatrix} 2 & -6 \\ -1 & 3 \\ -4 & 12 \\ 3 & -9 \end{bmatrix}$$

17.
$$A = \begin{bmatrix} 2 & -6 \\ -1 & 3 \\ -4 & 12 \\ 3 & -9 \end{bmatrix}$$
 18. $A = \begin{bmatrix} 7 & -2 & 0 \\ -2 & 0 & -5 \\ 0 & -5 & 7 \\ -5 & 7 & -2 \end{bmatrix}$

19.
$$A = \begin{bmatrix} 4 & 5 & -2 & 6 & 0 \\ 1 & 1 & 0 & 1 & 0 \end{bmatrix}$$

20.
$$A = \begin{bmatrix} 1 & -3 & 9 & 0 & -5 \end{bmatrix}$$

- 21. With A as in Exercise 17, find a nonzero vector in $\operatorname{Nul}_{A_{a_{n_d}}}$
- 22. With A as in Exercise 3, find a nonzero vector in $\operatorname{Nul}_{A \text{ and}}$

23. Let
$$A = \begin{bmatrix} -6 & 12 \\ -3 & 6 \end{bmatrix}$$
 and $\mathbf{w} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. Determine if \mathbf{w} is $\mathbf{i}_{\bar{\mathbf{h}}}$ Col A . Is \mathbf{w} in Nul A ?

24. Let
$$A = \begin{bmatrix} -8 & -2 & -9 \\ 6 & 4 & 8 \\ 4 & 0 & 4 \end{bmatrix}$$
 and $\mathbf{w} = \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}$. Determine if \mathbf{w} is in Col A . Is \mathbf{w} in Nul A ?

In Exercises 25 and 26, A denotes an $m \times n$ matrix. Mark e_{ach} statement True or False. Justify each answer.

- 25. a. The null space of A is the solution set of the equation
 - b. The null space of an $m \times n$ matrix is in \mathbb{R}^m .
 - c. The column space of A is the range of the mapping $\mathbf{x} \mapsto A\mathbf{x}$.
 - d. If the equation $A\mathbf{x} = \mathbf{b}$ is consistent, then Col A is \mathbb{R}^m
 - e. The kernel of a linear transformation is a vector space.
 - Col A is the set of all vectors that can be written as Ax for some x.
- 26. a. A null space is a vector space.
 - b. The column space of an $m \times n$ matrix is in \mathbb{R}^m .
 - c. Col A is the set of all solutions of $A\mathbf{x} = \mathbf{b}$.
 - d. Nul A is the kernel of the mapping $\mathbf{x} \mapsto A\mathbf{x}$.
 - e. The range of a linear transformation is a vector space.
 - f. The set of all solutions of a homogeneous linear differential equation is the kernel of a linear transformation.
- 27. It can be shown that a solution of the system below is $x_1 = 3$, $x_2 = 2$, and $x_3 = -1$. Use this fact and the theory from this section to explain why another solution is $x_1 = 30, x_2 = 20$, and $x_3 = -10$. (Observe how the solutions are related, but make no other calculations.)

$$x_1 - 3x_2 - 3x_3 = 0$$
$$-2x_1 + 4x_2 + 2x_3 = 0$$

$$-x_1 + 5x_2 + 7x_3 = 0$$

28. Consider the following two systems of equations:

$$5x_1 + x_2 - 3x_3 = 0 \qquad 5x_1 + x_2 - 3x_3 = 0$$

$$-9x_1 + 2x_2 + 5x_3 = 1$$

$$4x_1 + x_2 - 6x_3 = 9$$

$$-9x_1 + 2x_2 + 5x_3 = 5$$

$$4x_1 + x_2 - 6x_3 = 45$$

It can be shown that the first system has a solution. Use this fact and the theory from this section to explain why the second system must also have a solution. (Make no row operations.)

- 29. Prove Theorem 3 as follows: Given an $m \times n$ matrix A, an element in Col A has the form Ax for some x in \mathbb{R}^n . Let Axand A**w** represent any two vectors in Col A.
 - a. Explain why the zero vector is in Col A.
 - b. Show that the vector $A\mathbf{x} + A\mathbf{w}$ is in Col A.
 - c. Given a scalar c, show that $c(A\mathbf{x})$ is in Col A.
- 30. Let $T: V \to W$ be a linear transformation from a vector space V into a vector space W. Prove that the range of T is a subspace of W. [Hint: Typical elements of the range have the form $T(\mathbf{x})$ and $T(\mathbf{w})$ for some \mathbf{x} , \mathbf{w} in V.]
- 31. Define $T: \mathbb{P}_2 \to \mathbb{R}^2$ by $T(\mathbf{p}) = \begin{bmatrix} \mathbf{p}(0) \\ \mathbf{p}(1) \end{bmatrix}$. For instance, if $\mathbf{p}(t) = 3 + 5t + 7t^2, \text{ then } T(\mathbf{p}) = \begin{bmatrix} 3 \\ 15 \end{bmatrix}.$
 - a. Show that T is a linear transformation. [Hint: For arbitrary polynomials \mathbf{p} , \mathbf{q} in \mathbb{P}_2 , compute $T(\mathbf{p} + \mathbf{q})$ and $T(c\mathbf{p})$.]
 - b. Find a polynomial \mathbf{p} in \mathbb{P}_2 that spans the kernel of T, and describe the range of T.
- 32. Define a linear transformation $T: \mathbb{P}_2 \to \mathbb{R}^2$ by $T(\mathbf{p}) = \begin{bmatrix} \mathbf{p}(0) \\ \mathbf{p}(0) \end{bmatrix}$. Find polynomials \mathbf{p}_1 and \mathbf{p}_2 in \mathbb{P}_2 that span the kernel of T, and describe the range of T.
- 33. Let $M_{2\times 2}$ be the vector space of all 2×2 matrices, and define $T: M_{2\times 2} \to M_{2\times 2}$ by $T(A) = A + A^T$, where
 - a. Show that T is a linear transformation.
 - b. Let B be any element of $M_{2\times 2}$ such that $B^T = B$. Find an A in $M_{2\times 2}$ such that T(A) = B.
 - c. Show that the range of T is the set of B in $M_{2\times 2}$ with the property that $B^T = B$.
 - d. Describe the kernel of T.
- **34.** (Calculus required) Define $T: C[0,1] \to C[0,1]$ as follows: For f in C[0,1], let T(f) be the antiderivative F of f such that $\mathbf{F}(0) = 0$. Show that T is a linear transformation, and describe the kernel of T. (See the notation in Exercise 20 of Section 4.1.)

- **35.** Let V and W be vector spaces, and let $T: V \to W$ be a linear transformation. Given a subspace U of V, let T(U) denote the set of all images of the form $T(\mathbf{x})$, where \mathbf{x} is in U. Show that T(U) is a subspace of W.
- **36.** Given $T: V \to W$ as in Exercise 35, and given a subspace Z of W, let U be the set of all \mathbf{x} in V such that $T(\mathbf{x})$ is in Z. Show that U is a subspace of V.
- 37. [M] Determine whether w is in the column space of A, the null space of A, or both, where

$$\mathbf{w} = \begin{bmatrix} 1\\1\\-1\\-3 \end{bmatrix}, \quad A = \begin{bmatrix} 7 & 6 & -4 & 1\\-5 & -1 & 0 & -2\\9 & -11 & 7 & -3\\19 & -9 & 7 & 1 \end{bmatrix}$$

38. [M] Determine whether w is in the column space of A, the null space of A, or both, where

$$\mathbf{w} = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 0 \end{bmatrix}, \quad A = \begin{bmatrix} -8 & 5 & -2 & 0 \\ -5 & 2 & 1 & -2 \\ 10 & -8 & 6 & -3 \\ 3 & -2 & 1 & 0 \end{bmatrix}$$

39. [M] Let $\mathbf{a}_1, \dots, \mathbf{a}_5$ denote the columns of the matrix A, where

$$A = \begin{bmatrix} 5 & 1 & 2 & 2 & 0 \\ 3 & 3 & 2 & -1 & -12 \\ 8 & 4 & 4 & -5 & 12 \\ 2 & 1 & 1 & 0 & -2 \end{bmatrix}, \quad B = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_4 \end{bmatrix}$$

- a. Explain why \mathbf{a}_3 and \mathbf{a}_5 are in the column space of B.
- b. Find a set of vectors that spans Nul A.
- c. Let $T: \mathbb{R}^5 \to \mathbb{R}^4$ be defined by $T(\mathbf{x}) = A\mathbf{x}$. Explain why T is neither one-to-one nor onto.
- **40.** [M] Let $H = \operatorname{Span} \{\mathbf{v}_1, \mathbf{v}_2\}$ and $K = \operatorname{Span} \{\mathbf{v}_3, \mathbf{v}_4\}$, where

$$\mathbf{v}_1 = \begin{bmatrix} 5 \\ 3 \\ 8 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 2 \\ -1 \\ 5 \end{bmatrix}, \mathbf{v}_4 = \begin{bmatrix} 0 \\ -12 \\ -28 \end{bmatrix}.$$

Then H and K are subspaces of \mathbb{R}^3 . In fact, H and Kare planes in $\ensuremath{\mathbb{R}}^3$ through the origin, and they intersect in a line through $\mathbf{0}$. Find a nonzero vector \mathbf{w} that generates that line. [Hint: \mathbf{w} can be written as $c_1\mathbf{v}_1 + c_2\mathbf{v}_2$ and also as c_3 **v**₃ + c_4 **v**₄. To build **w**, solve the equation $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 = c_3\mathbf{v}_3 + c_4\mathbf{v}_4$ for the unknown c_j 's.]

Mastering: Vector Space, Subspace, Col A, and Nul A 4-6

SG