	CCT – Departamento de Matemática					
	Componente Curricular: Cálculo Diferencial e Integral II	Profa: Joselma				
UEPB	Aluno(a):					

Lista de Exercícios (Unidade II) Algumas Aplicações da Integral Definida

1 – Encontrar a área da região limitada pelas curvas dadas:

a) $y = 5 - x^2 e \ y = x + 3$	b) $y = e^x, x = 0, x = 1 \ e \ y = 0$
$c) x = y^3 e x = y$	d) $y = senx \ e \ y = -senx, \ x \in [0,2\pi]$
e) $y = 4 - x^2$ $e^{-y} = x^2 - 14$	f) $y = 2^x$, $y = 2^{-x}$, $y = 4$

2 - Se em 1970, foram utilizados 20,3 bilhões de barris de petróleo no mundo todo e se a demanda mundial de petróleo cresce exponencialmente a uma taxa de 9% ao ano, então a demanda anual A(t) de petróleo no tempo t é A(t) = 20,3. $e^{0,09t}$ (t = 0 em 1970). Se a demanda continua crescendo a uma taxa de 9% ao ano, qual será a quantidade de petróleo consumida entre os anos de 1970 e 2022?

3 – Encontrar a área das regiões entre as curvas dadas nos gráficos abaixo

4 – Determinar o volume do sólido de revolução gerado pelas regiões indicadas, ao redor dos eixos dados:

a)
$$y = x + 1$$
, $x = 0$, $x = 2$ $e y = 0$, ao redor do eixo x .

b)
$$y = cosx$$
, $y = senx$, $x = 0$ $ex = \frac{\pi}{4}$, ao redor do eixo x.

c)
$$y = x^3, x = -1, x = 1$$
 e $y = 0,$ ao redor do eixo x .

d)
$$x = y + 1$$
, $x = \frac{1}{2}$, $y = -2$ e $y = 2$, ao redor do eixo y.

e)
$$y^2 = 2x$$
, $x = 0$, $y = 0$ e $y = 2$, ao redor do eixo y.

f)
$$y = 2x^2$$
, $x = 1$, $x = 2$ e $y = 2$, ao redor da reta $y = 2$.

g)
$$y = 1 - x^2$$
, $x = -2$, $x = 2$ e $y = 2$, ao redor da reta $y = 2$.

5 – Encontrar o comprimento de arco da curva dada

a)
$$y = x^{\frac{2}{3}} - 1$$
, $1 \le x \le 2$

b)
$$y = 4\sqrt{x^3} + 2$$
, $de\ A(0,2)$ até $B(1,6)$

c)
$$x = \frac{1}{3}y^3 + \frac{1}{4y}$$
, $1 \le y \le 3$

GABARITO

UADAMIO									
1)a) $\frac{9}{2}u.a.$	b) $e - 1u.a.$	$c)\frac{1}{2}u.a.$	d) 8u. a	e) 72 <i>u</i> . <i>a</i> .		f) $2\left[8 - \frac{3}{\ln 2}\right]u.a.$			
2) 24.083,06									
$4)a)\frac{26\pi}{3}u.v.$	$\frac{b)}{\frac{2\pi}{7}}u.v.$	c) $\frac{\pi}{2}u.v.$	d) $\frac{397\pi}{15}u.v.$	$\frac{e)}{\frac{8\pi}{5}}u.v.$	f) $\frac{152\pi}{15}$	<u>u.v.</u>	$g)\frac{412\pi}{15}u.v.$		
$5a)\frac{1}{27}(9.2^{\frac{2}{3}}+4)^{3/2}-13\sqrt{3}\ u.\ c.$			b) $\frac{1}{54} (37\sqrt{37} - 1)u.c.$		c) $\frac{53}{6}u.c.$				

Referências:

FLEMMING, D. M. e GONÇALVES, M. B. Cálculo A. Editora McGraw Hill.

CLARK, Marcondes Rodrigues. Cálculo de funções de uma variável real/ Marcondes Rodrigues Clark, Osmundo Alves de Lima. – Teresina: EDUFPI, 2012.