Cálculo Numérico

Ajuste de Curvas

Caso Não Linear

Alessandro Alves Santana

Universidade Federal de Uberlândia Faculdade de Matemática

Fundamentos

Quando se ajusta uma curva via MMQ uma função f(x) com valores tabelados por uma função

$$g(x) = \alpha_1 \phi_1(x) + \alpha_2 \phi_2(x) + \alpha_3 \phi_3(x) + \cdots + \alpha_m \phi_m(x)$$

dizemos estamos lidando com um caso linear pois os parâmetros α_i , i = 1, 2, ..., m, a serem estimados aparecem linearmente na expressão de g(x) e $\phi_i(x)$, i = 1, 2, ..., m, só depende da variável independente x. Agora, quando o $\phi_i(x)$, i = 1, 2, ..., m, depende também do parâmetro a ser estimado, dizemos que o caso é não-linear.

Por exemplo, se os dados de uma função f(x) tabelada é melhor ajustada por uma função da forma

$$g(x) = \alpha_1 \phi_1(\alpha_2 x) + \alpha_3 \phi_2(\alpha_4 x)$$

estamos diante de um caso não linear pois $\phi_1(x)$ e $\phi_2(x)$ dependem, respectivamente, dos parâmetros α_2 e α_4 que precisam serem estimados. Nessa situação, para aplicar o MMQ é necessário antes linearizar a função de ajuste.

Processo de Linearização

A linearlização é um processo baseado em manipulação analítica da expressão da função que se tem interesse em utilizar para fazer o ajuste dos dados da tabela. Existem funções em que é possível fazer a linearilização e existem outras que não. O que será apresentado a seguir é um conjunto de exemplos para ajudar a orientá-los no processo de linearização. Uma vez que a função tenha sido linearizada, isto é, transformado em uma expressão da forma

$$g(x) = \alpha_1 \phi_1(x) + \alpha_2 \phi_2(x) + \alpha_3 \phi_3(x) + \cdots + \alpha_m \phi_m(x)$$

o resto processo para obtenção dos parâmetros α_i , $i=1,\ldots,m$, é o mesmo processo que foi utilizado no caso discreto. Mas lembre-se sempre de no final voltar aos parâmetros originais, aqueles que eram o alvo do processo de ajuste.

$$f(x) = ae^{bx}$$

$$f(x) = ae^{bx} \Rightarrow$$

$$f(x) = ae^{bx} \Rightarrow \ln[f(x)] = \ln(ae^{bx})$$

$$f(x) = ae^{bx} \Rightarrow \ln[f(x)] = \ln(ae^{bx}) \Rightarrow$$

$$f(x) = ae^{bx} \Rightarrow \ln[f(x)] = \ln(ae^{bx}) \Rightarrow \underbrace{\ln[f(x)]}_{F(x)} = \underbrace{\ln(a)}_{\phi_1(x)} \underbrace{\frac{\alpha_1}{b}}_{\phi_2(x)} \underbrace{\frac{\alpha_2}{b}}_{\phi_2(x)}$$

$$f(x) = ae^{bx} \Rightarrow \ln[f(x)] = \ln(ae^{bx}) \Rightarrow \underbrace{\ln[f(x)]}_{F(x)} = \underbrace{\ln(a)}_{\phi_1(x)} \underbrace{\frac{\alpha_1}{b}}_{\phi_2(x)} \underbrace{\frac{\alpha_2}{b}}_{\phi_2(x)}$$

$$F(x) = \alpha_1 \phi_1(x) + \alpha_2 \phi_2(x)$$

$$f(x) = ae^{bx} \Rightarrow \ln[f(x)] = \ln(ae^{bx}) \Rightarrow \underbrace{\ln[f(x)]}_{F(x)} = \underbrace{\ln(a)}_{\phi_1(x)} \underbrace{\frac{\alpha_1}{\beta_1(x)}}_{\phi_2(x)} \underbrace{\frac{\alpha_2}{\beta_2(x)}}_{\phi_2(x)}$$

$$F(x) = \alpha_1 \phi_1(x) + \alpha_2 \phi_2(x) \quad \text{onde}$$

$$f(x) = ae^{bx} \Rightarrow \ln[f(x)] = \ln(ae^{bx}) \Rightarrow \underbrace{\ln[f(x)]}_{F(x)} = \underbrace{\ln(a)}_{\phi_1(x)} \underbrace{+ \underbrace{b}_{\phi_2(x)}}_{\phi_2(x)}$$

$$F(x) = \alpha_1 \phi_1(x) + \alpha_2 \phi_2(x)$$
 onde

$$F(x) = \alpha_1 \phi_1(x) + \alpha_2 \phi_2(x) \quad \text{onde} \quad \begin{aligned} F(x) &= \ln[f(x)] \\ \alpha_1 &= \ln(\alpha) \\ \alpha_2 &= b \end{aligned} \quad \phi_1(x) = 1 \\ \alpha_2 &= b \end{aligned}$$

$$f(x) = ae^{bx} \Rightarrow \ln[f(x)] = \ln(ae^{bx}) \Rightarrow \underbrace{\ln[f(x)]}_{F(x)} = \underbrace{\ln(a)}_{\phi_1(x)} \underbrace{+ \underbrace{b}_{\phi_2(x)}}_{\phi_2(x)}$$

$$F(x) = \alpha_1 \phi_1(x) + \alpha_2 \phi_2(x)$$
 onde

$$F(x) = \alpha_1 \phi_1(x) + \alpha_2 \phi_2(x) \quad \text{onde} \quad \begin{aligned} F(x) &= \ln[f(x)] \\ \alpha_1 &= \ln(\alpha) \\ \alpha_2 &= b \end{aligned} \quad \phi_1(x) = 1 \\ \alpha_2 &= b \end{aligned}$$

$$f(x) = ab^x$$

$$f(x) = ae^{bx} \Rightarrow \ln[f(x)] = \ln(ae^{bx}) \Rightarrow \underbrace{\ln[f(x)]}_{F(x)} = \underbrace{\ln(a)}_{\phi_1(x)} \underbrace{+ \underbrace{b}_{\phi_2(x)}}_{\phi_2(x)}$$

$$F(x) = \alpha_1 \phi_1(x) + \alpha_2 \phi_2(x)$$
 onde

$$F(x) = \alpha_1 \phi_1(x) + \alpha_2 \phi_2(x) \quad \text{onde} \quad \begin{aligned} F(x) &= \ln[f(x)] \\ \alpha_1 &= \ln(\alpha) \\ \alpha_2 &= b \end{aligned} \quad \phi_1(x) = 1 \\ \alpha_2 &= b \end{aligned}$$

$$f(x) = ab^x \Rightarrow$$

$$f(x) = ae^{bx} \Rightarrow \ln[f(x)] = \ln(ae^{bx}) \Rightarrow \underbrace{\ln[f(x)]}_{F(x)} = \underbrace{\ln(a)}_{\phi_1(x)} \underbrace{\frac{\alpha_1}{b}}_{\phi_2(x)} \underbrace{\frac{\alpha_2}{b}}_{\phi_2(x)}$$

$$F(x) = \alpha_1 \phi_1(x) + \alpha_2 \phi_2(x) \quad \text{onde} \quad \begin{aligned} F(x) &= \ln[f(x)] \\ \alpha_1 &= \ln(\alpha) \\ \alpha_2 &= b \end{aligned} \quad \phi_1(x) = 1$$

$$f(x) = ab^x \Rightarrow \ln[f(x)] = \ln(ab^x)$$

$$f(x) = ae^{bx} \Rightarrow \ln[f(x)] = \ln(ae^{bx}) \Rightarrow \underbrace{\ln[f(x)]}_{F(x)} = \underbrace{\ln(a)}_{\phi_1(x)} \underbrace{\frac{\alpha_1}{b}}_{\phi_2(x)} \underbrace{\frac{\alpha_2}{b}}_{\phi_2(x)}$$

$$F(x) = \alpha_1 \phi_1(x) + \alpha_2 \phi_2(x) \quad \text{onde} \quad \begin{aligned} F(x) &= \ln[f(x)] \\ \alpha_1 &= \ln(\alpha) \\ \alpha_2 &= b \end{aligned} \quad \phi_1(x) = 1$$

$$f(x) = ab^x \Rightarrow \ln[f(x)] = \ln(ab^x) \Rightarrow$$

$$f(x) = ae^{bx} \Rightarrow \ln[f(x)] = \ln(ae^{bx}) \Rightarrow \underbrace{\ln[f(x)]}_{F(x)} = \underbrace{\ln(a)}_{\phi_1(x)} \underbrace{\frac{\alpha_1}{b}}_{\phi_2(x)} \underbrace{\frac{\alpha_2}{b}}_{\phi_2(x)}$$

$$F(x) = \alpha_1 \phi_1(x) + \alpha_2 \phi_2(x) \quad \text{onde} \quad \begin{aligned} F(x) &= \ln[f(x)] \\ \alpha_1 &= \ln(\alpha) \\ \alpha_2 &= b \end{aligned} \quad \phi_1(x) = 1$$

$$f(x) = ab^{x} \Rightarrow \ln[f(x)] = \ln(ab^{x}) \Rightarrow \underbrace{\ln[f(x)]}_{F(x)} = \underbrace{\ln(a)}_{x} \underbrace{1}_{x} + \underbrace{\ln(b)}_{x} \underbrace{1}_{x}$$

$$f(x) = ae^{bx} \Rightarrow \ln[f(x)] = \ln(ae^{bx}) \Rightarrow \underbrace{\ln[f(x)]}_{F(x)} = \underbrace{\ln(a)}_{\phi_1(x)} \underbrace{\frac{\alpha_1}{b}}_{\phi_2(x)} \underbrace{\frac{\alpha_2}{b}}_{\phi_2(x)}$$

$$F(x) = \alpha_1 \phi_1(x) + \alpha_2 \phi_2(x) \quad \text{onde} \quad \begin{aligned} F(x) &= \ln[f(x)] \\ \alpha_1 &= \ln(\alpha) \\ \alpha_2 &= b \end{aligned} \quad \phi_1(x) = 1 \\ \alpha_2 &= b \end{aligned}$$

$$f(x) = ab^{x} \Rightarrow \ln[f(x)] = \ln(ab^{x}) \Rightarrow \underbrace{\ln[f(x)]}_{F(x)} = \underbrace{\ln(a)}_{f(x)} \underbrace{1}_{f(x)} + \underbrace{\ln(b)}_{f(x)} \underbrace{x}_{f(x)}$$

$$F(x) = \alpha_1 \phi_1(x) + \alpha_2 \phi_2(x)$$

$$f(x) = ae^{bx} \Rightarrow \ln[f(x)] = \ln(ae^{bx}) \Rightarrow \underbrace{\ln[f(x)]}_{F(x)} = \underbrace{\ln(a)}_{\phi_1(x)} \underbrace{\frac{\alpha_1}{b}}_{\phi_2(x)} \underbrace{\frac{\alpha_2}{b}}_{\phi_2(x)}$$

$$F(x) = \alpha_1 \phi_1(x) + \alpha_2 \phi_2(x) \quad \text{onde} \quad \begin{aligned} F(x) &= \ln[f(x)] \\ \alpha_1 &= \ln(\alpha) \\ \alpha_2 &= b \end{aligned} \quad \phi_1(x) = 1$$

$$f(x) = ab^{x} \Rightarrow \ln[f(x)] = \ln(ab^{x}) \Rightarrow \underbrace{\ln[f(x)]}_{F(x)} = \underbrace{\ln(a)}_{x} \underbrace{1}_{x} + \underbrace{\ln(b)}_{x} \underbrace{1}_{x}$$

$$F(x) = \alpha_1 \phi_1(x) + \alpha_2 \phi_2(x)$$
 onde

$$f(x) = ae^{bx} \Rightarrow \ln[f(x)] = \ln(ae^{bx}) \Rightarrow \underbrace{\ln[f(x)]}_{F(x)} = \underbrace{\ln(a)}_{\phi_1(x)} \underbrace{+ \underbrace{b}_{\phi_2(x)}}_{\phi_2(x)}$$

$$F(x) = \alpha_1 \phi_1(x) + \alpha_2 \phi_2(x) \quad \text{onde} \quad \begin{aligned} F(x) &= \ln[f(x)] \\ \alpha_1 &= \ln(\alpha) \\ \alpha_2 &= b \end{aligned} \quad \phi_1(x) = 1 \\ \alpha_2 &= b \end{aligned}$$

$$f(x) = ab^{x} \Rightarrow \ln[f(x)] = \ln(ab^{x}) \Rightarrow \underbrace{\ln[f(x)]}_{F(x)} = \underbrace{\ln(a) \cdot 1}_{\phi_{1}(x)} + \underbrace{\ln(b) \cdot x}_{\phi_{2}(x)}$$

$$F(x) = \alpha_1 \phi_1(x) + \alpha_2 \phi_2(x) \quad \text{onde} \quad \begin{aligned} F(x) &= \ln[f(x)] \\ \alpha_1 &= \ln(a) \\ \alpha_2 &= \ln(b) \end{aligned} \quad \phi_1(x) = 1$$

$$f(x) = \sqrt{a + bx}$$

$$f(x) = \sqrt{a + bx} \Rightarrow$$

$$f(x) = \sqrt{a + bx} \Rightarrow [f(x)]^2 = a + bx$$

$$f(x) = \sqrt{a + bx} \Rightarrow [f(x)]^2 = a + bx \Rightarrow$$

$$f(x) = \sqrt{a + bx} \Rightarrow [f(x)]^2 = a + bx \Rightarrow \overbrace{[f(x)]^2}^{F(x)} = \overbrace{a}^{\alpha_1} \cdot \overbrace{1}^{\phi_1(x)} + \overbrace{b}^{\alpha_2} \cdot \overbrace{x}^{\phi_2(x)}$$

$$f(x) = \sqrt{a + bx} \Rightarrow [f(x)]^2 = a + bx \Rightarrow \overbrace{[f(x)]^2}^{F(x)} = \overbrace{a}^{\alpha_1} \cdot \overbrace{1}^{\phi_1(x)} + \overbrace{b}^{\alpha_2} \cdot \overbrace{x}^{\phi_2(x)}$$

$$F(x) = \alpha_1 \phi_1(x) + \alpha_2 \phi_2(x)$$

$$f(x) = \sqrt{a + bx} \Rightarrow [f(x)]^2 = a + bx \Rightarrow \overbrace{[f(x)]^2}^{F(x)} = \overbrace{a}^{\alpha_1} \cdot \overbrace{1}^{\phi_1(x)} + \overbrace{b}^{\alpha_2} \cdot \overbrace{x}^{\phi_2(x)}$$

$$F(x) = \alpha_1 \phi_1(x) + \alpha_2 \phi_2(x) \quad \text{onde}$$

$$f(x) = \sqrt{a + bx} \Rightarrow [f(x)]^2 = a + bx \Rightarrow \overbrace{[f(x)]^2}^{F(x)} = \overbrace{a}^{\alpha_1} \cdot \overbrace{1}^{\phi_1(x)} + \overbrace{b}^{\alpha_2} \cdot \overbrace{x}^{\phi_2(x)}$$

$$F(x) = \alpha_1 \phi_1(x) + \alpha_2 \phi_2(x)$$
 onde

$$F(x) = \alpha_1 \phi_1(x) + \alpha_2 \phi_2(x) \quad \text{onde} \quad \alpha_1 = \alpha \qquad \phi_1(x) = 1$$

$$\alpha_2 = b \qquad \phi_2(x) = x$$

4º Exemplo:
$$f(x) = \frac{a + bx}{c + x^2}$$
:

$$f(x) = \sqrt{a + bx} \Rightarrow [f(x)]^2 = a + bx \Rightarrow \overbrace{[f(x)]^2}^{F(x)} = \overbrace{a}^{\alpha_1} \underbrace{\phi_1(x)}^{\phi_1(x)} + \overbrace{b}^{\alpha_2} \underbrace{\phi_2(x)}^{\phi_2(x)}$$

$$F(x) = \alpha_1 \phi_1(x) + \alpha_2 \phi_2(x) \quad \text{onde} \quad \begin{aligned} F(x) &= [f(x)]^2 \\ \alpha_1 &= \alpha \qquad \phi_1(x) = 1 \\ \alpha_2 &= b \qquad \phi_2(x) = x \end{aligned}$$

4º Exemplo:
$$f(x) = \frac{a + bx}{c + x^2}$$
:

$$f(x) = \frac{a + bx}{c + x^2}$$

$$f(x) = \sqrt{a + bx} \Rightarrow [f(x)]^2 = a + bx \Rightarrow \overbrace{[f(x)]^2}^{F(x)} = \overbrace{a}^{\alpha_1} \underbrace{\phi_1(x)}^{\phi_1(x)} + \overbrace{b}^{\alpha_2} \underbrace{\phi_2(x)}^{\phi_2(x)}$$

$$F(x) = \alpha_1 \phi_1(x) + \alpha_2 \phi_2(x) \quad \text{onde} \quad \begin{aligned} F(x) &= [f(x)]^2 \\ \alpha_1 &= \alpha \qquad \phi_1(x) = 1 \\ \alpha_2 &= b \qquad \phi_2(x) = x \end{aligned}$$

4º Exemplo:
$$f(x) = \frac{a + bx}{c + x^2}$$
:

$$f(x) = \frac{a + bx}{c + x^2} \Rightarrow$$

$$f(x) = \sqrt{a + bx} \Rightarrow [f(x)]^2 = a + bx \Rightarrow \overbrace{[f(x)]^2}^{F(x)} = \overbrace{a}^{\alpha_1} \underbrace{\phi_1(x)}^{\phi_1(x)} \underbrace{\alpha_2}^{\alpha_2} \underbrace{\phi_2(x)}^{\phi_2(x)}$$

$$F(x) = [f(x)]^2$$

$$F(x) = \alpha_1 \phi_1(x) + \alpha_2 \phi_2(x) \quad \text{onde} \quad \alpha_1 = \alpha \quad \phi_1(x) = 1$$

$$\alpha_2 = b \quad \phi_2(x) = x$$

4º Exemplo:
$$f(x) = \frac{a + bx}{c + x^2}$$
:

$$f(x) = \frac{a + bx}{c + x^2} \Rightarrow cf(x) + x^2 f(x) = a + bx$$

$$f(x) = \sqrt{a + bx} \Rightarrow [f(x)]^2 = a + bx \Rightarrow \overbrace{[f(x)]^2}^{F(x)} = \overbrace{a}^{\alpha_1} \underbrace{\phi_1(x)}^{\phi_1(x)} \underbrace{\alpha_2}^{\alpha_2} \underbrace{\phi_2(x)}^{\phi_2(x)}$$

$$F(x) = \alpha_1 \phi_1(x) + \alpha_2 \phi_2(x) \quad \text{onde} \quad \begin{aligned} F(x) &= [f(x)]^2 \\ \alpha_1 &= \alpha \qquad \phi_1(x) = 1 \\ \alpha_2 &= b \qquad \phi_2(x) = x \end{aligned}$$

4º Exemplo:
$$f(x) = \frac{a + bx}{c + x^2}$$
:

$$f(x) = \frac{a + bx}{c + x^2} \Rightarrow cf(x) + x^2 f(x) = a + bx \Rightarrow$$

$$f(x) = \sqrt{a + bx} \Rightarrow [f(x)]^2 = a + bx \Rightarrow \overbrace{[f(x)]^2}^{F(x)} = \overbrace{a}^{\alpha_1} \cdot \overbrace{1}^{\phi_1(x)} + \overbrace{b}^{\alpha_2} \cdot \overbrace{x}^{\phi_2(x)}$$

$$F(x) = \alpha_1 \phi_1(x) + \alpha_2 \phi_2(x) \quad \text{onde} \quad \begin{aligned} F(x) &= [f(x)]^2 \\ \alpha_1 &= \alpha \qquad \phi_1(x) = 1 \\ \alpha_2 &= b \qquad \phi_2(x) = x \end{aligned}$$

4º Exemplo:
$$f(x) = \frac{a + bx}{c + x^2}$$
:

$$f(x) = \frac{a + bx}{c + x^2} \Rightarrow cf(x) + x^2 f(x) = a + bx \Rightarrow \overbrace{x^2 f(x)}^{F(x)} = \overbrace{a}^{\alpha_1} \underbrace{\phi_1(x)}_{\phi_1(x)} \underbrace{\phi_2(x)}_{\phi_2(x)} \underbrace{\phi_2(x)}_{\phi_3(x)} \underbrace{\phi_3(x)}_{\phi_3(x)}$$

$$f(x) = \sqrt{a + bx} \Rightarrow [f(x)]^2 = a + bx \Rightarrow \overbrace{[f(x)]^2}^{F(x)} = \overbrace{a}^{\alpha_1} \underbrace{\phi_1(x)}^{\phi_1(x)} \underbrace{\alpha_2}^{\alpha_2} \underbrace{\phi_2(x)}^{\phi_2(x)}$$

$$F(x) = \alpha_1 \phi_1(x) + \alpha_2 \phi_2(x) \quad \text{onde} \quad \begin{aligned} F(x) &= [f(x)]^2 \\ \alpha_1 &= \alpha \qquad \phi_1(x) = 1 \\ \alpha_2 &= b \qquad \phi_2(x) = x \end{aligned}$$

4º Exemplo:
$$f(x) = \frac{a + bx}{c + x^2}$$
:

$$f(x) = \frac{a + bx}{c + x^2} \Rightarrow cf(x) + x^2 f(x) = a + bx \Rightarrow \overbrace{x^2 f(x)}^{F(x)} = \overbrace{a}^{\alpha_1} \underbrace{\phi_1(x)}_{\phi_1(x)} \underbrace{\phi_2(x)}_{\phi_2(x)} \underbrace{\phi_2(x)}_{\phi_3(x)} \underbrace{\phi_3(x)}_{\phi_3(x)}$$

$$F(x) = \alpha_1 \phi_1(x) + \alpha_2 \phi_2(x) + \alpha_3 \phi_3(x)$$
 onde
$$\alpha_1 = \alpha \qquad \phi_1(x) = 1$$

$$\alpha_2 = b \qquad \phi_2(x) = x^2$$

$$\alpha_3 = -c \qquad \phi_3(x) = f(x)$$

Observação 1

- ► Dependendo da função, pode ser que exista mais de uma forma de linearização, mas os parâmetros da função original no final são os mesmos.
- ► Tome cuidado!!! Após obter os parâmetros da função linearizada, deve se voltar aos parâmetros da função original. Para ilustrar isso, no exemplo 1, depois de obter α_1 e α_2 , deve se obter α e b da função original. Naquele exemplo, temos que $a = e^{\alpha_1}$ e $b = \alpha_2$.

Exemplo 1

Ajuste os dados da tabela abaixo

X	0.15	0.55	0.66	0.70	0.79	1.26	3.24	4.82
f(x)	0.34611	0.65147	0.70619	0.72289	0.75454	0.81391	0.55051	0.39790

por uma função da forma

$$f(x) = \frac{a + x}{1 + bx^2}$$

Resolução: É um caso não linear e portanto é necessário antes linearizar para aplicar o MMQ. Linearizando, temos que

Observação 1

- ► Dependendo da função, pode ser que exista mais de uma forma de linearização, mas os parâmetros da função original no final são os mesmos.
- ► Tome cuidado!!! Após obter os parâmetros da função linearizada, deve se voltar aos parâmetros da função original. Para ilustrar isso, no exemplo 1, depois de obter α_1 e α_2 , deve se obter α e b da função original. Naquele exemplo, temos que $a = e^{\alpha_1}$ e $b = \alpha_2$.

Exemplo 1

Ajuste os dados da tabela abaixo

X	0.15	0.55	0.66	0.70	0.79	1.26	3.24	4.82
f(x)	0.34611	0.65147	0.70619	0.72289	0.75454	0.81391	0.55051	0.39790

por uma função da forma

$$f(x) = \frac{a + x}{1 + bx^2}$$

Resolução: É um caso não linear e portanto é necessário antes linearizar para aplicar o MMQ. Linearizando, temos que

$$f(x) = \frac{a + x}{1 + bx^2}$$

- ► Dependendo da função, pode ser que exista mais de uma forma de linearização, mas os parâmetros da função original no final são os mesmos.
- ► Tome cuidado!!! Após obter os parâmetros da função linearizada, deve se voltar aos parâmetros da função original. Para ilustrar isso, no exemplo 1, depois de obter α_1 e α_2 , deve se obter α e b da função original. Naquele exemplo, temos que $a = e^{\alpha_1}$ e $b = \alpha_2$.

Exemplo 1

Ajuste os dados da tabela abaixo

X	0.15	0.55	0.66	0.70	0.79	1.26	3.24	4.82
f(x)	0.34611	0.65147	0.70619	0.72289	0.75454	0.81391	0.55051	0.39790

por uma função da forma

$$f(x) = \frac{a + x}{1 + bx^2}$$

$$f(x) = \frac{a + x}{1 + bx^2} \Rightarrow$$

- ► Dependendo da função, pode ser que exista mais de uma forma de linearização, mas os parâmetros da função original no final são os mesmos.
- ► Tome cuidado!!! Após obter os parâmetros da função linearizada, deve se voltar aos parâmetros da função original. Para ilustrar isso, no exemplo 1, depois de obter α_1 e α_2 , deve se obter α e b da função original. Naquele exemplo, temos que $a = e^{\alpha_1}$ e $b = \alpha_2$.

Exemplo 1

Ajuste os dados da tabela abaixo

X	0.15	0.55	0.66	0.70	0.79	1.26	3.24	4.82
f(x)	0.34611	0.65147	0.70619	0.72289	0.75454	0.81391	0.55051	0.39790

por uma função da forma

$$f(x) = \frac{a+x}{1+bx^2}.$$

$$f(x) = \frac{a+x}{1+bx^2} \Rightarrow f(x) + bx^2 f(x) = a+x$$

- ► Dependendo da função, pode ser que exista mais de uma forma de linearização, mas os parâmetros da função original no final são os mesmos.
- ► Tome cuidado!!! Após obter os parâmetros da função linearizada, deve se voltar aos parâmetros da função original. Para ilustrar isso, no exemplo 1, depois de obter α_1 e α_2 , deve se obter α e b da função original. Naquele exemplo, temos que $a = e^{\alpha_1}$ e $b = \alpha_2$.

Exemplo 1

Ajuste os dados da tabela abaixo

X	0.15	0.55	0.66	0.70	0.79	1.26	3.24	4.82
f(x)	0.34611	0.65147	0.70619	0.72289	0.75454	0.81391	0.55051	0.39790

por uma função da forma

$$f(x) = \frac{a+x}{1+bx^2}.$$

$$f(x) = \frac{a+x}{1+bx^2} \Rightarrow f(x) + bx^2 f(x) = a+x \Rightarrow$$

- ► Dependendo da função, pode ser que exista mais de uma forma de linearização, mas os parâmetros da função original no final são os mesmos.
- ► Tome cuidado!!! Após obter os parâmetros da função linearizada, deve se voltar aos parâmetros da função original. Para ilustrar isso, no exemplo 1, depois de obter α_1 e α_2 , deve se obter α e b da função original. Naquele exemplo, temos que $a = e^{\alpha_1}$ e $b = \alpha_2$.

Exemplo 1

Ajuste os dados da tabela abaixo

X	0.15	0.55	0.66	0.70	0.79	1.26	3.24	4.82
f(x)	0.34611	0.65147	0.70619	0.72289	0.75454	0.81391	0.55051	0.39790

por uma função da forma

$$f(x) = \frac{a+x}{1+bx^2}.$$

$$f(x) = \frac{a+x}{1+bx^2} \Rightarrow f(x) + bx^2 f(x) = a+x \Rightarrow \underbrace{f(x) - x}_{F(x)} = \underbrace{a}_{\alpha_1} \cdot \underbrace{1}_{\phi_1(x)} + \underbrace{(-b)}_{\alpha_2} \underbrace{x^2 f(x)}_{\phi_2(x)}$$

- ► Dependendo da função, pode ser que exista mais de uma forma de linearização, mas os parâmetros da função original no final são os mesmos.
- ► Tome cuidado!!! Após obter os parâmetros da função linearizada, deve se voltar aos parâmetros da função original. Para ilustrar isso, no exemplo 1, depois de obter α_1 e α_2 , deve se obter α e b da função original. Naquele exemplo, temos que $a = e^{\alpha_1}$ e $b = \alpha_2$.

Exemplo 1

Ajuste os dados da tabela abaixo

X	0.15	0.55	0.66	0.70	0.79	1.26	3.24	4.82
f(x)	0.34611	0.65147	0.70619	0.72289	0.75454	0.81391	0.55051	0.39790

por uma função da forma

$$f(x) = \frac{a+x}{1+bx^2}.$$

$$f(x) = \frac{a+x}{1+bx^2} \Rightarrow f(x) + bx^2 f(x) = a+x \Rightarrow \underbrace{f(x) - x}_{F(x)} = \underbrace{a}_{\alpha_1} \cdot \underbrace{1}_{\phi_1(x)} + \underbrace{(-b)}_{\alpha_2} \underbrace{x^2 f(x)}_{\phi_2(x)} \Rightarrow$$

- ► Dependendo da função, pode ser que exista mais de uma forma de linearização, mas os parâmetros da função original no final são os mesmos.
- ► Tome cuidado!!! Após obter os parâmetros da função linearizada, deve se voltar aos parâmetros da função original. Para ilustrar isso, no exemplo 1, depois de obter α_1 e α_2 , deve se obter α e b da função original. Naquele exemplo, temos que $a = e^{\alpha_1}$ e $b = \alpha_2$.

Exemplo 1

Ajuste os dados da tabela abaixo

X	0.15	0.55	0.66	0.70	0.79	1.26	3.24	4.82
f(x)	0.34611	0.65147	0.70619	0.72289	0.75454	0.81391	0.55051	0.39790

por uma função da forma

$$f(x) = \frac{a+x}{1+bx^2}.$$

$$f(x) = \frac{a+x}{1+bx^2} \Rightarrow f(x) + bx^2 f(x) = a+x \Rightarrow \underbrace{f(x) - x}_{F(x)} = \underbrace{a}_{\alpha_1} \cdot \underbrace{1}_{\phi_1(x)} + \underbrace{(-b)}_{\alpha_2} \underbrace{x^2 f(x)}_{\phi_2(x)} \Rightarrow F(x) = \alpha_1 \phi_1(x) + \alpha_2 \phi_2(x)$$

- ► Dependendo da função, pode ser que exista mais de uma forma de linearização, mas os parâmetros da função original no final são os mesmos.
- ► Tome cuidado!!! Após obter os parâmetros da função linearizada, deve se voltar aos parâmetros da função original. Para ilustrar isso, no exemplo 1, depois de obter α_1 e α_2 , deve se obter α e b da função original. Naquele exemplo, temos que $a = e^{\alpha_1}$ e $b = \alpha_2$.

Exemplo 1

Ajuste os dados da tabela abaixo

X	0.15	0.55	0.66	0.70	0.79	1.26	3.24	4.82
f(x)	0.34611	0.65147	0.70619	0.72289	0.75454	0.81391	0.55051	0.39790

por uma função da forma

$$f(x) = \frac{a+x}{1+bx^2}.$$

$$f(x) = \frac{a+x}{1+bx^2} \Rightarrow f(x) + bx^2 f(x) = a+x \Rightarrow \underbrace{f(x) - x}_{F(x)} = \underbrace{\alpha}_{\alpha_1} \cdot \underbrace{1}_{\phi_1(x)} + \underbrace{(-b)}_{\alpha_2} \underbrace{x^2 f(x)}_{\phi_2(x)} \Rightarrow F(x) = \alpha_1 \phi_1(x) + \alpha_2 \phi_2(x) \Rightarrow$$

- ► Dependendo da função, pode ser que exista mais de uma forma de linearização, mas os parâmetros da função original no final são os mesmos.
- ► Tome cuidado!!! Após obter os parâmetros da função linearizada, deve se voltar aos parâmetros da função original. Para ilustrar isso, no exemplo 1, depois de obter α_1 e α_2 , deve se obter α e b da função original. Naquele exemplo, temos que $a = e^{\alpha_1}$ e $b = \alpha_2$.

Exemplo 1

Ajuste os dados da tabela abaixo

X	0.15	0.55	0.66	0.70	0.79	1.26	3.24	4.82
f(x)	0.34611	0.65147	0.70619	0.72289	0.75454	0.81391	0.55051	0.39790

por uma função da forma

$$f(x) = \frac{a + x}{1 + bx^2}.$$

Resolução: É um caso não linear e portanto é necessário antes linearizar para aplicar o MMQ. Linearizando, temos que

$$f(x) = \frac{a+x}{1+bx^2} \Rightarrow f(x) + bx^2 f(x) = a+x \Rightarrow \underbrace{f(x) - x}_{F(x)} = \underbrace{\alpha}_{\alpha_1} \cdot \underbrace{1}_{\phi_1(x)} + \underbrace{(-b)}_{\alpha_2} \underbrace{x^2 f(x)}_{\phi_2(x)} \Rightarrow F(x) = \alpha_1 \phi_1(x) + \alpha_2 \phi_2(x) \Rightarrow \begin{cases} F(x) = f(x) - x \\ \phi_1(x) = 1 \\ \phi_2(x) = x^2 f(x) \end{cases}.$$

É um problema com dois parâmetros para serem estimados e portanto o sistema linear a ser montando para obter esses parâmetros é um sistema com duas equações e duas incógnitas. Esse sistema linear pode ser obtido via Regra de Cramer, como apresentado a seguir.

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \Rightarrow$$

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \Rightarrow \begin{cases} \alpha_1 = \frac{b_1 a_{22} - b_2 a_{12}}{a_{11} a_{22} - a_{12}^2} \\ \alpha_2 = \frac{b_2 a_{11} - b_1 a_{12}}{a_{11} a_{22} - a_{12}^2} \end{cases}$$

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \Rightarrow \begin{cases} \alpha_1 = \frac{b_1 a_{22} - b_2 a_{12}}{a_{11} a_{22} - a_{12}^2} \\ \alpha_2 = \frac{b_2 a_{11} - b_1 a_{12}}{a_{11} a_{22} - a_{12}^2} \end{cases}$$

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \Rightarrow \begin{cases} \alpha_1 = \frac{b_1 a_{22} - b_2 a_{12}}{a_{11} a_{22} - a_{12}^2} \\ \alpha_2 = \frac{b_2 a_{11} - b_1 a_{12}}{a_{11} a_{22} - a_{12}^2} \end{cases}$$

$$a_{11} = \sum_{k=1}^{8} \phi_1(x_k) \phi_1(x_k) = \sum_{k=1}^{8} 1 = 8$$

$$a_{21} = a_{12} = 17.65296$$

$$b_1 = \sum_{k=1}^{8} \phi_1(x_k) F(x_k) = \sum_{k=1}^{8} [f(x_k) - x_k] = -7.22647$$

$$a_{12} = \sum_{k=1}^{8} \phi_1(x_k) \phi_2(x_k) = \sum_{k=1}^{8} x_k^2 f(x_k) = 17.65296$$

$$a_{22} = \sum_{k=1}^{8} \phi_2(x_k) \phi_2(x_k) = \sum_{k=1}^{8} \left[x_k^2 f(x_k) \right]^2 = 121.00236$$

$$b_2 = \sum_{k=1}^{8} \phi_2(x_k) F(x_k) = \sum_{k=1}^{8} x_k^2 f(x_k) [f(x_k) - x_k] = -56.97059$$

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \Rightarrow \begin{cases} \alpha_1 = \frac{b_1 a_{22} - b_2 a_{12}}{a_{11} a_{22} - a_{12}^2} \\ \alpha_2 = \frac{b_2 a_{11} - b_1 a_{12}}{a_{11} a_{22} - a_{12}^2} \end{cases}$$

$$a_{11} = \sum_{k=1}^{8} \phi_1(x_k) \phi_1(x_k) = \sum_{k=1}^{8} 1 = 8$$

$$a_{21} = a_{12} = 17.65296$$

$$b_1 = \sum_{k=1}^{8} \phi_1(x_k) F(x_k) = \sum_{k=1}^{8} [f(x_k) - x_k] = -7.22647$$

$$a_{12} = \sum_{k=1}^{8} \phi_1(x_k) \phi_2(x_k) = \sum_{k=1}^{8} x_k^2 f(x_k) = 17.65296$$

$$a_{22} = \sum_{k=1}^{8} \phi_2(x_k) \phi_2(x_k) = \sum_{k=1}^{8} \left[x_k^2 f(x_k) \right]^2 = 121.00236$$

$$b_2 = \sum_{k=1}^{8} \phi_2(x_k) F(x_k) = \sum_{k=1}^{8} x_k^2 f(x_k) [f(x_k) - x_k] = -56.97059$$

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \Rightarrow \begin{cases} \alpha_1 = \frac{b_1 a_{22} - b_2 a_{12}}{a_{11} a_{22} - a_{12}^2} \\ \alpha_2 = \frac{b_2 a_{11} - b_1 a_{12}}{a_{11} a_{22} - a_{12}^2} \end{cases}$$

$$a_{11} = \sum_{k=1}^{8} \phi_1(x_k)\phi_1(x_k) = \sum_{k=1}^{8} 1 = 8$$

$$a_{12} = \sum_{k=1}^{8} \phi_1(x_k)\phi_2(x_k) = \sum_{k=1}^{8} x_k^2 f(x_k) = 17.65296$$

$$a_{21} = a_{12} = 17.65296$$

$$a_{22} = \sum_{k=1}^{8} \phi_2(x_k)\phi_2(x_k) = \sum_{k=1}^{8} \left[x_k^2 f(x_k)\right]^2 = 121.00236$$

$$b_1 = \sum_{k=1}^{8} \phi_1(x_k)F(x_k) = \sum_{k=1}^{8} \left[f(x_k) - x_k\right] = -7.22647$$

$$b_2 = \sum_{k=1}^{8} \phi_2(x_k)F(x_k) = \sum_{k=1}^{8} x_k^2 f(x_k)[f(x_k) - x_k] = -56.97059$$

$$\begin{bmatrix} 8 & 17.65296 \\ 17.65296 & 121.00236 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} -7.22647 \\ -56.97059 \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \Rightarrow \begin{cases} \alpha_1 = \frac{b_1 a_{22} - b_2 a_{12}}{a_{11} a_{22} - a_{12}^2} \\ \alpha_2 = \frac{b_2 a_{11} - b_1 a_{12}}{a_{11} a_{22} - a_{12}^2} \end{cases}$$

$$a_{11} = \sum_{k=1}^{8} \phi_1(x_k)\phi_1(x_k) = \sum_{k=1}^{8} 1 = 8$$

$$a_{12} = \sum_{k=1}^{8} \phi_1(x_k)\phi_2(x_k) = \sum_{k=1}^{8} x_k^2 f(x_k) = 17.65296$$

$$a_{21} = a_{12} = 17.65296$$

$$a_{22} = \sum_{k=1}^{8} \phi_2(x_k)\phi_2(x_k) = \sum_{k=1}^{8} \left[x_k^2 f(x_k)\right]^2 = 121.00236$$

$$b_1 = \sum_{k=1}^{8} \phi_1(x_k)F(x_k) = \sum_{k=1}^{8} \left[f(x_k) - x_k\right] = -7.22647$$

$$b_2 = \sum_{k=1}^{8} \phi_2(x_k)F(x_k) = \sum_{k=1}^{8} x_k^2 f(x_k)[f(x_k) - x_k] = -56.97059$$

$$\begin{bmatrix} 8 & 17.65296 \\ 17.65296 & 121.00236 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} -7.22647 \\ -56.97059 \end{bmatrix} \Rightarrow$$

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \Rightarrow \begin{cases} \alpha_1 = \frac{b_1 a_{22} - b_2 a_{12}}{a_{11} a_{22} - a_{12}^2} \\ \alpha_2 = \frac{b_2 a_{11} - b_1 a_{12}}{a_{11} a_{22} - a_{12}^2} \end{cases}$$

$$a_{11} = \sum_{k=1}^{8} \phi_1(x_k)\phi_1(x_k) = \sum_{k=1}^{8} 1 = 8$$

$$a_{12} = \sum_{k=1}^{8} \phi_1(x_k)\phi_2(x_k) = \sum_{k=1}^{8} x_k^2 f(x_k) = 17.65296$$

$$a_{21} = a_{12} = 17.65296$$

$$a_{22} = \sum_{k=1}^{8} \phi_2(x_k)\phi_2(x_k) = \sum_{k=1}^{8} \left[x_k^2 f(x_k)\right]^2 = 121.00236$$

$$b_1 = \sum_{k=1}^{8} \phi_1(x_k)F(x_k) = \sum_{k=1}^{8} \left[f(x_k) - x_k\right] = -7.22647$$

$$b_2 = \sum_{k=1}^{8} \phi_2(x_k)F(x_k) = \sum_{k=1}^{8} x_k^2 f(x_k)[f(x_k) - x_k] = -56.97059$$

$$\begin{bmatrix} 8 & 17.65296 \\ 17.65296 & 121.00236 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} -7.22647 \\ -56.97059 \end{bmatrix} \Rightarrow \begin{cases} \alpha_1 = \frac{(-7.22647)(121.00236) - (-56.97059)(17.65296)}{656.391944} = 0.20000 \\ \alpha_2 = \frac{(-56.97059)(8) - (-7.22647)(17.65296)}{656.391944} = -0.50000 \end{cases}$$

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \Rightarrow \begin{cases} \alpha_1 = \frac{b_1 a_{22} - b_2 a_{12}}{a_{11} a_{22} - a_{12}^2} \\ \alpha_2 = \frac{b_2 a_{11} - b_1 a_{12}}{a_{11} a_{22} - a_{12}^2} \end{cases}$$

$$a_{11} = \sum_{k=1}^{8} \phi_1(x_k)\phi_1(x_k) = \sum_{k=1}^{8} 1 = 8$$

$$a_{12} = \sum_{k=1}^{8} \phi_1(x_k)\phi_2(x_k) = \sum_{k=1}^{8} x_k^2 f(x_k) = 17.65296$$

$$a_{21} = a_{12} = 17.65296$$

$$a_{22} = \sum_{k=1}^{8} \phi_2(x_k)\phi_2(x_k) = \sum_{k=1}^{8} \left[x_k^2 f(x_k)\right]^2 = 121.00236$$

$$b_1 = \sum_{k=1}^{8} \phi_1(x_k)F(x_k) = \sum_{k=1}^{8} \left[f(x_k) - x_k\right] = -7.22647$$

$$b_2 = \sum_{k=1}^{8} \phi_2(x_k)F(x_k) = \sum_{k=1}^{8} x_k^2 f(x_k)[f(x_k) - x_k] = -56.97059$$

$$\begin{bmatrix} 8 & 17.65296 \\ 17.65296 & 121.00236 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} -7.22647 \\ -56.97059 \end{bmatrix} \Rightarrow \begin{cases} \alpha_1 = \frac{(-7.22647)(121.00236) - (-56.97059)(17.65296)}{656.391944} = 0.20000 \\ \alpha_2 = \frac{(-56.97059)(8) - (-7.22647)(17.65296)}{656.391944} = -0.50000 \end{cases}$$

Como $\alpha_1 = a \Rightarrow a = 0.2$ e $\alpha_2 = -b \Rightarrow b = 0.5$. Logo, a função de ajuste para os dados tabelados é $f(x) = \frac{0.2 + x}{1 + 0.5x^2}$.

Regra de Cramer para Sistemas Lineares 3 × 3

Se o sistema linear no processo de ajuste envolver 3 equações e 3 incógnitas, a aplicação da Regra de Cramer é dada pelo processo a seguir.

$$\underbrace{\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix}}_{a} = \underbrace{\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}}_{b}$$

$$A_1 = \begin{bmatrix} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \end{bmatrix}$$

$$A_2 = \begin{bmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \end{bmatrix}$$

$$A_3 = \begin{bmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ a_{31} & a_{32} & b_3 \end{bmatrix}$$

$$A_1 = \begin{bmatrix} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \end{bmatrix}$$

$$A_2 = \begin{bmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \end{bmatrix}$$

$$A_3 = \begin{bmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ a_{31} & a_{32} & b_3 \end{bmatrix}$$

$$\alpha_1 = \frac{\det(A_1)}{\det(A)}$$

$$\alpha_2 = \frac{\det(A_2)}{\det(A)}$$

$$\alpha_3 = \frac{\det(A_3)}{\det(A)}$$

Regra de Cramer para Sistemas Lineares 3 × 3

Se o sistema linear no processo de ajuste envolver 3 equações e 3 incógnitas, a aplicação da Regra de Cramer é dada pelo processo a seguir.

$$\underbrace{\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix}}_{\alpha} = \underbrace{\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}}_{b}$$

$$A_1 = \begin{bmatrix} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \end{bmatrix}$$

$$A_2 = \begin{bmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \end{bmatrix}$$

$$A_3 = \begin{bmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ a_{31} & a_{32} & b_3 \end{bmatrix}$$

$$A_1 = \begin{bmatrix} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \end{bmatrix}$$

$$A_2 = \begin{bmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \end{bmatrix}$$

$$A_3 = \begin{bmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ a_{31} & a_{32} & b_3 \end{bmatrix}$$

$$\alpha_1 = \frac{\det(A_1)}{\det(A)}$$

$$\alpha_2 = \frac{\det(A_2)}{\det(A)}$$

$$\alpha_1 = \frac{\det(A_1)}{\det(A)}$$

$$\alpha_2 = \frac{\det(A_2)}{\det(A)}$$

$$\alpha_3 = \frac{\det(A_3)}{\det(A)}$$

Nesse processo é necessário calcular os determinantes de 4 matrizes para obter as componentes do vetor solução do sistema linear. Para obter a solução é necessário ter cuidados nos calculos. Deve-se ficar atento na montagem das matrizes A_1 , A_2 e A_3 , bem como no cálculo dos determinantes dessas matrizes e da matriz dos coeficientes.

Teste de Alinhamento

O teste do alinhamento é uma estratégia para verificar se a função de ajuste f(x) escolhida é a melhor escolha. Esse teste consiste em, uma vez feito a linearização da forma escolhida para f(x), montar o gráfico de dispersão $(x_k, F(x_k))$, k = 1, 2, ..., n, onde F(x) é obtida no processo de linearização. Quanto mais alinhado estiver os pontos do gráfico de dispersão melhor é a escolha. Por exemplo, considere a seguinte função f(x) na tabela a seguir.

Regra de Cramer para Sistemas Lineares 3 × 3

Se o sistema linear no processo de ajuste envolver 3 equações e 3 incógnitas, a aplicação da Regra de Cramer é dada pelo processo a seguir.

$$\underbrace{\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix}}_{\alpha} = \underbrace{\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}}_{b}$$

$$A_1 = \begin{bmatrix} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \end{bmatrix}$$

$$A_2 = \begin{bmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \end{bmatrix}$$

$$A_3 = \begin{bmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ a_{31} & a_{32} & b_3 \end{bmatrix}$$

$$A_1 = \begin{bmatrix} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \end{bmatrix}$$

$$A_2 = \begin{bmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \end{bmatrix}$$

$$A_3 = \begin{bmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ a_{31} & a_{32} & b_3 \end{bmatrix}$$

$$\alpha_1 = \frac{\det(A_1)}{\det(A)}$$

$$\alpha_2 = \frac{\det(A_2)}{\det(A)}$$

$$\alpha_1 = \frac{\det(A_1)}{\det(A)}$$

$$\alpha_2 = \frac{\det(A_2)}{\det(A)}$$

$$\alpha_3 = \frac{\det(A_3)}{\det(A)}$$

Nesse processo é necessário calcular os determinantes de 4 matrizes para obter as componentes do vetor solução do sistema linear. Para obter a solução é necessário ter cuidados nos calculos. Deve-se ficar atento na montagem das matrizes A_1 , A_2 e A_3 , bem como no cálculo dos determinantes dessas matrizes e da matriz dos coeficientes.

Teste de Alinhamento

O teste do alinhamento é uma estratégia para verificar se a função de ajuste f(x) escolhida é a melhor escolha. Esse teste consiste em, uma vez feito a linearização da forma escolhida para f(x), montar o gráfico de dispersão $(x_k, F(x_k))$, k = 1, 2, ..., n, onde F(x) é obtida no processo de linearização. Quanto mais alinhado estiver os pontos do gráfico de dispersão melhor é a escolha. Por exemplo, considere a seguinte função f(x) na tabela a seguir.

X	1.19	2.01	4.62	6.76	6.79	7.62	8.25	9.75
f(x)	1.0285	0.8737	0.4244	0.2808	0.2384	0.2302	0.1596	0.1434

X	1.19	2.01	4.62	6.76	6.79	7.62	8.25	9.75
f(x)	1.0285	0.8737	0.4244	0.2808	0.2384	0.2302	0.1596	0.1434

$$f_1(x) = ae^{-bx}$$
 e $f_2(x) = \frac{1}{a+bx}$

qual é melhor a melhor escolha para ajustar os dados da tabela?

X	1.19	2.01	4.62	6.76	6.79	7.62	8.25	9.75
f(x)	1.0285	0.8737	0.4244	0.2808	0.2384	0.2302	0.1596	0.1434

$$f_1(x) = ae^{-bx}$$
 e $f_2(x) = \frac{1}{a+bx}$

qual é melhor a melhor escolha para ajustar os dados da tabela?

Fazendo a linearização para $f_1(x)$, tem-se que

$$F_1(x) = \alpha_1 \phi_1(x) + \alpha_2 \phi_2(x)$$

onde $F_1(x) = \ln[f(x)]$, $\alpha_1 = \ln(\alpha)$, $\phi_1(x) = 1$, $\alpha_2 = b$ e $\phi_2(x) = -x$. Para a outra função $f_2(x)$, tem-se que

$$F_2(x) = \alpha_1 \phi_1(x) + \alpha_2 \phi_2(x)$$

onde $F_2(x) = \frac{1}{f(x)}$, $\alpha_1 = \alpha$, $\phi_1(x) = 1$, $\alpha_2 = b$ e $\phi_2(x) = x$. Fazendo os ajustes via MMQ como já anteriormente foi apresentado temos que $F_1(x) = 0.335236 - 0.247853x$ e $F_2(x) = 0.357795 + 0.477078x$. Construindo agora uma tabela de valores para essas funções.

X	1.19	2.01	4.62	6.76	6.79	7.62	8.25	9.75
f(x)	1.0285	0.8737	0.4244	0.2808	0.2384	0.2302	0.1596	0.1434

$$f_1(x) = ae^{-bx}$$
 e $f_2(x) = \frac{1}{a+bx}$

qual é melhor a melhor escolha para ajustar os dados da tabela?

Fazendo a linearização para $f_1(x)$, tem-se que

$$F_1(x) = \alpha_1 \phi_1(x) + \alpha_2 \phi_2(x)$$

onde $F_1(x) = \ln[f(x)]$, $\alpha_1 = \ln(\alpha)$, $\phi_1(x) = 1$, $\alpha_2 = b$ e $\phi_2(x) = -x$. Para a outra função $f_2(x)$, tem-se que

$$F_2(x) = \alpha_1 \phi_1(x) + \alpha_2 \phi_2(x)$$

onde $F_2(x) = \frac{1}{f(x)}$, $\alpha_1 = \alpha$, $\phi_1(x) = 1$, $\alpha_2 = b$ e $\phi_2(x) = x$. Fazendo os ajustes via MMQ como já anteriormente foi apresentado temos que $F_1(x) = 0.335236 - 0.247853x$ e $F_2(x) = 0.357795 + 0.477078x$. Construindo agora uma tabela de valores para essas funções.

X	$f_{\text{tab}}(x)$	$F_1(x)$	$F_2(x)$
1.19	1.0285	0.028101	0.972290
2.01	0.8737	-0.135018	1.144558
4.62	0.4244	-0.857079	2.356268
6.76	0.2808	-1.270113	3.561254
6.79	0.2384	-1.433805	4.194631
7.62	0.2302	-1.468807	4.344049
8.25	0.1596	-1.835085	6.265664
9.75	0.1434	-1.942117	6.973501

X	1.19	2.01	4.62	6.76	6.79	7.62	8.25	9.75
f(x)	1.0285	0.8737	0.4244	0.2808	0.2384	0.2302	0.1596	0.1434

$$f_1(x) = ae^{-bx}$$
 e $f_2(x) = \frac{1}{a+bx}$

qual é melhor a melhor escolha para ajustar os dados da tabela?

Fazendo a linearização para $f_1(x)$, tem-se que

$$F_1(x) = \alpha_1 \phi_1(x) + \alpha_2 \phi_2(x)$$

onde $F_1(x) = \ln[f(x)]$, $\alpha_1 = \ln(\alpha)$, $\phi_1(x) = 1$, $\alpha_2 = b$ e $\phi_2(x) = -x$. Para a outra função $f_2(x)$, tem-se que

$$F_2(x) = \alpha_1 \phi_1(x) + \alpha_2 \phi_2(x)$$

onde $F_2(x) = \frac{1}{f(x)}$, $\alpha_1 = \alpha$, $\phi_1(x) = 1$, $\alpha_2 = b$ e $\phi_2(x) = x$. Fazendo os ajustes via MMQ como já anteriormente foi apresentado temos que $F_1(x) = 0.335236 - 0.247853x$ e $F_2(x) = 0.357795 + 0.477078x$. Construindo agora uma tabela de valores para essas funções.

X	$f_{\text{tab}}(x)$	$F_1(x)$	$F_2(x)$
1.19	1.0285	0.028101	0.972290
2.01	0.8737	-0.135018	1.144558
4.62	0.4244	-0.857079	2.356268
6.76	0.2808	-1.270113	3.561254
6.79	0.2384	-1.433805	4.194631
7.62	0.2302	-1.468807	4.344049
8.25	0.1596	-1.835085	6.265664
9.75	0.1434	-1.942117	6.973501

Note que o gráfico de dispersão para $F_1(x)$ (**Figura 1**) os pontos estão mais alinhados do que $F_2(x)$ (**Figura 2**). Assim sendo, a melhor escolha é $f_1(x) = \alpha e^{-bx}$.

Figura 1: Teste de alinhamento - função $f_1(x) = \alpha e^{-bx}$.

Figura 2: Teste de alinhamento - função $f_2(x) = \frac{1}{a+bx}$.

Note que o gráfico de dispersão para $F_1(x)$ (**Figura 1**) os pontos estão mais alinhados do que $F_2(x)$ (**Figura 2**). Assim sendo, a melhor escolha é $f_1(x) = \alpha e^{-bx}$.

Figura 1: Teste de alinhamento - função $f_1(x) = \alpha e^{-bx}$.

Figura 2: Teste de alinhamento - função $f_2(x) = \frac{1}{a+bx}$.

Um outro modo de verificar que $f_1(x)$ é a melhor ajuste, basta calcular o resíduo. O cálculo do resíduo

$$r = \sum_{k=1}^{n} [f_{tab}(x_k) - f(x_k)]^2$$

Note que o gráfico de dispersão para $F_1(x)$ (**Figura 1**) os pontos estão mais alinhados do que $F_2(x)$ (**Figura 2**). Assim sendo, a melhor escolha é $f_1(x) = \alpha e^{-bx}$.

Figura 1: Teste de alinhamento - função $f_1(x) = \alpha e^{-bx}$.

Figura 2: Teste de alinhamento - função $f_2(x) = \frac{1}{a+bx}$.

Um outro modo de verificar que $f_1(x)$ é a melhor ajuste, basta calcular o resíduo. O cálculo do resíduo

$$r = \sum_{k=1}^{n} [f_{tab}(x_k) - f(x_k)]^2$$

pode mostrar que de fato o ajuste usando $f_1(x) = \alpha e^{-bx}$ é melhor que usando $f_2(x) = \frac{1}{\alpha + bx}$. No caso em questão, o ajuste dos dados da tabela produz $f_1(x) = 1.39827e^{-0.247853x}$ e $f_2(x) = (0.357804 + 0.477072x)^{-1}$. Calculando o resíduo para usando $f_1(x)$, temos que $r_1 = 0.0031327$ e usando $f_2(x)$ temos o resíduo é $r_2 = 0.0274268$. Pode-se notar que $r_1 < r_2$, confirmando o que o teste de alinhamento mostrou com relação a melhor função para o ajuste.

O gráfico abaixo mostra as funções $f_1(x)$ e $f_2(x)$ juntamente com os pontos da tabela. Pode se notar, pelo grau de proximidade entre a função de ajuste e os pontos, que $f_1(x)$ é a melhor função de ajuste para a função tabelada.

Figura 3: Gráficos das funções de ajuste $f_1(x)$ e $f_2(x)$.