Министерство науки и высшего образования Российской Федерации Муромский институт (филиал) Федерального государственного бюджетного образовательного учреждения высшего образования «Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых»

Факультет	ИТР		
Кафедра	ПИн		

ЛАБОРАТОРНАЯ РАБОТА №6

l lo	Цифровая обработка информации				
Тема	РАСПОЗНАВАНИЕ ОБЪЕКТОВ НА ИЗОБРАЖЕНИИ				
_					
	Руководитель				
	Белякова А.С.				
	(фамилия, инициалы)				
	(подпись) (дата)				
	Студент <u>ПИН - 121</u> (группа)				
	Ермилов М.В. (фамилия, инициалы)				
	(подпись) (дата)				

Лабораторная работа №6

Цель работы: изучение различных признаков объектов на изображении, используемых для классификации и распознавания.

Ход работы:

1. Исходный код Python:

```
import cv2
import numpy as np
from matplotlib import pyplot as plt
def calculate_features(image_path):
  # Загрузка изображения
 image = cv2.imread(image_path)
 if image is None:
   print("Ошибка: не удалось загрузить изображение. Проверьте путь:", image_path)
   return
  # Перевод изображения в градации серого
 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
  # Бинаризация изображения
 _, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
  # Нахождение контуров объекта
 contours, _ = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
  if not contours:
   print("Ошибка: контуры не найдены на изображении.")
  contour = max(contours, key=cv2.contourArea)
  # Вычисление площади и периметра
  area = cv2.contourArea(contour)
  perimeter = cv2.arcLength(contour, True)
  # Определение ограничивающего прямоугольника
 x, y, w, h = cv2.boundingRect(contour)
  # Определение вписанной и описанной окружности
 (cx, cy), radius = cv2.minEnclosingCircle(contour)
  _, radius_inscribed = cv2.minEnclosingCircle(np.array([[[x, y]], [[x+w, y]], [[x, y+h]], [[x+w, y+h]]]))
  # Вывод результатов
  print("Площадь:", area)
 print("Периметр:", perimeter)
 print("Ограничивающий прямоугольник: ширина =", w, ", высота =", h)
  print("Радиус описанной окружности:", radius)
 print("Радиус вписанной окружности:", radius_inscribed)
```

					МИВУ 09.03.04 - 10.006			
Изм.	Лист	№ докум.	Подпись	Дата				
Разра	іб.	Ермилов М.В.			РАСПОЗНАВАНИЕ	Лит.	Лист	Листов
Пров	ер.	Белякова А.С.					2	3
Реценз. Н. Контр.					ОБЪЕКТОВ НА			
					ИЗОБРАЖЕНИИ	МИ ВлГУ ПИН-121		ІИН-121
Утве	рд.							

```
# Визуализация
output = image.copy()
cv2.drawContours(output, [contour], -1, (0, 255, 0), 2)
cv2.rectangle(output, (x, y), (x + w, y + h), (255, 0, 0), 2)
cv2.circle(output, (int(cx), int(cy)), int(radius), (0, 0, 255), 2)

plt.imshow(cv2.cvtColor(output, cv2.COLOR_BGR2RGB))
plt.title("Выделение признаков")
plt.show()

image_path = 'apple.png'
calculate_features(image_path)
```

Площадь: 1460454.0 Периметр: 4850.0

Ограничивающий прямоугольник: ширина = 1115 , высота = 1312

Радиус описанной окружности: 860.1915283203125 Радиус вписанной окружности: 860.8963012695312

Вывод: в ходе лабораторной работы было изучены различные признаки объектов на изображении, используемые для классификации и распознавания.

Изм.	Лист	№ докум.	Подпись	Дата