Labor 2

1) a) Man schätze durch wiederholte Simulationen die Wahrscheinlichkeit von dem Ereignis

A: in einer Gruppe von k = 23 Personen mindestens zwei Personen haben den gleichen Geburtstag.

Annahme: Das Jahr hat n = 365 Tage.

b) Man berechne (in Python) die theoretische Wahrscheinlichkeit P(A)?

Hinweis: numpy.random.randint(low=..., high=..., size=...)

.....

Geometrische Wahrscheinlichkeit:

Maß \longrightarrow Länge in \mathbb{R} ; Flächeninhalt in \mathbb{R}^2 ; Volumen in \mathbb{R}^3 . Sei $M \subset D \subset \mathbb{R}^n$, D hat endliches Maß. Man wählt zufällig $A \in D$. Mit welcher Wahrscheinlichkeit gilt $A \in M$?

$$P(A \in M) = \frac{\operatorname{MaB}(M)}{\operatorname{MaB}(D)}.$$

Programm-Beispiel zufällige Punkte zeichnen:

```
import numpy
from matplotlib.pyplot import axis, plot, figure, show, legend
fig = figure()
axis("square")
axis((0, 1, 0, 1))
X=numpy.random.random(25)
Y=numpy.random.random(25)
plot (X, Y, "bo")
fig.suptitle("Beispiel 1 ", fontweight = "bold")
show()
fig = figure()
axis("square")
axis((0, 1, 0, 1))
plot(X, numpy.square(X), "g*") # zufallige Punkte auf dem Bild der Funktion f(x) = x^2
plot(X[-1], numpy.square(X[-1]), "q*", label="$f(x)=x^2$") #Beispiel fur label
legend(loc="upper left")
fig.suptitle("Beispiel 2 ", fontweight = "bold")
show()
```

2) Man möchte die Wahrscheinlichkeit schätzen, dass ein zufällig gewählter Punkt im Quadrat $[0,1] \times [0,1]$ sich auch in dem eingeschriebenen Kreis befindet (siehe Bild).

- (2a) Man simuliere N zufällige Punkte im Quadrat und man zähle wie viele im Kreisinneren sind; sei k diese Zahl. Man zeichne auf demselben Bild die zufälligen Punkte mit verschiedenen Farben: diejenigen die im bzw. die außhalb des Kreisinneren sind. Hinweis: für die euklidische Distanz zwischen zwei Punkten $P_1(x_1,y_1), P_2(x_2,y_2)$ kann man math. dist benutzen oder die Formel $dist(P_1,P_2)=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$.
- (2b) Welche ist die theoretische Wahrscheinlichkeit, dass der Punkt im Kreisinneren ist?
- (2c) Anhand von (2a) und (2b) gebe man verschiedene Approximationen von π an. [Hinweis: $\pi \approx 4 \cdot \frac{k}{N}$]

- **3**) Im Inneren eines Quadrates mit Seitenlänge 1 wählt man zufällig einen Punkt A. Man verbindet A mit den Spitzen des Quadrates und man erhält vier Dreiecke mit gemeinsamer Spitze in A. Anhand von Simulationen beantworte man folgende Fragen:
- (1) Welche ist die Wahrscheinlichkeit, dass genau ein Winkel in A stumpf ist?
- (2) Welche ist die Wahrscheinlichkeit, dass genau zwei Winkel in A stumpf sind?

Man zeichne auf demselben Bild die zufälligen Punkte (entsprechend den Fällen (1), (2)) mit verschiedenen Farben.

Stumpfer Winkel ist ein Winkel dessen Maß größer als 90° ist. Spitzer Winkel ist ein Winkel dessen Maß kleiner als 90° ist.

4) Man schreibe ein Programm (in Python), in welchem ein Bild mit N=500 roten zufälligen Punkten generiert wird \longrightarrow wie im unteren Bild. Man schätze die Wahrscheinlichkeit, dass ein zufällig gewählter Punkt aus dem Quadrat sich im Inneren des unteren oder oberen Dreieckes befindet (wie im Bild).

Hinweis 1: Um zu überprüfen, ob ein Punkt A(x,y) über oder unter dem Graphen einer Funktion f liegt: Der Punkt A liegt über dem Graphen von f, wenn y > f(x), bzw. unter dem Graphen von f, wenn y < f(x).

```
#Hinweis 2
import numpy
from matplotlib.pyplot import axis,plot,figure,show,legend
fig = figure()
axis("square")
axis((0, 1, 0, 1))
X=numpy.linspace(0, 1, 100)
plot(X,X,"k-")
plot(X,1-X,"b-")
#legend(loc="center left")
show()
```