Decrease-and-Conquer CS3230: Design and Analysis of Algorithms

Roger Zimmermann

National University of Singapore Spring 2017

Some slides © Chionh Eng Wee

Chapter 5: Decrease-and-Conquer

Topics: What we will cover today

- Insertion sort
- Depth-first search and Breadth-first search
- Topological sorting
- Algorithms for generating combinatorial objects
- Decrease-by-a-constant-factor algorithms
- Variable-size-decrease algorithms

The Decrease-and-Conquer Design Strategy

- The decrease-and-conquer technique exploits the relationship between a solution to a problem instance and a solution to a smaller instance of the same problem.
- The relationship may be exploited top-down with recursion or bottom-up with iteration. We may refer to the latter as increase-and-conquer.
- The three major variations are:
 - decrease by a constant (often 1),
 - decrease by a constant factor (often half), and
 - variable size decrease.

Insertion Sort

- To sort the keys given in the array A[0..n-1], we first sort the prefix A[0..n-2], and then insert A[n-1] into A[0..n-2] at the right place.
- There are three ways to find the right place
 - 1. scan from A[0] to A[n-2] until the first A[i] with $A[i] \ge A[n-1]$ or the prefix is exhausted;
 - 2. scan from A[n-2] to A[0] until the first $A[i] \leq A[n-1]$ or the prefix is exhausted;
 - 3. use binary search.

An Insertion Sort Algorithm

```
INSERTIONSORT ( A[0..n-1] )
  // Input: n keys in A[0..n-1]
   for i \leftarrow 1 to n-1 do
      // Insert A[i] to A[0..i-1]
      v \leftarrow A[i]
      j \leftarrow i - 1
      while j \geq 0 and A[j] > v do
         A[j+1] \leftarrow A[j]
         j \leftarrow j - 1
      od
      A[j+1] \leftarrow v
```

Insertion Sort: An Example

89	45	68	90	29	34	17
45	89	68	90	29	34	17
45	68	89	90	29	34	17
45	68	89	90	29	34	17
29	45	68	89	90	34	17
29	34	45	68	89	90	17
17	29	34	45	68	89	90

An Analysis of the Insertion Sort Algorithm

- Let C(n) be the key comparison count.
- For the worst case (i.e., the input is already sorted reversely):

$$C(n) = \sum_{i=1}^{n-1} \sum_{j=0}^{i-1} = \frac{(n-1)n}{2} \in \Theta(n^2).$$

• For the best case (i.e., the input is already sorted):

$$C(n) = \sum_{i=1}^{n-1} 1 = n - 1 \in \Theta(n).$$

An Analysis of the Insertion Sort Algorithm

For the average case, it is known that

$$C(n) \approx \frac{n^2}{4} \in \Theta(n^2).$$

- Space efficiency: in-place (O(1))
- Stability: yes
- Variation: binary insertion sort

High Level "Visualizing" of Sorting Algorithms

- To understand the differences between the different sorting algorithms we can divide the data array into a "prefix" and a "suffix".
- Then we can describe at a high level how a sorting algorithm does its work on the prefix and the suffix.

"Visualizing" Selection Sort

```
\begin{aligned} & \text{prefix} \leftarrow \text{null}; \quad \text{suffix} \leftarrow A[0..n-1] \\ & \text{while suffix} \neq \text{null do} \\ & \text{swap the first element of suffix with} \\ & \text{a minimum element of suffix}; \\ & \text{make the first element of suffix to become} \\ & \text{the last element of prefix} \\ & \text{od} \end{aligned}
```

"Visualizing" Bubble Sort

```
\begin{aligned} & \text{prefix} \leftarrow A[0..n-1]; \quad \text{suffix} \leftarrow \text{null} \\ & \text{while prefix} \neq \text{null do} \\ & \text{sort every pair of adjacent prefix elements} \\ & \text{from left to right;} \\ & \text{make the last element of prefix to become} \\ & \text{the first element of suffix} \\ & \text{od} \end{aligned}
```

"Visualizing" Insertion Sort

```
prefix \leftarrow A[0]; suffix \leftarrow A[1..n-1] while suffix \neq null do remove the first element of suffix and insert it into the prefix od
```

Graph Algorithms

- Graph notations and terms:
 - Set of vertices V, number of vertices |V|.
 - Set of edges E, number of edges |E|.
 - Graph G = (V, E).
 - Types of graphs: undirected, directed, and weighted.
 - Representations: adjacency matrix and adjacency lists.
 - Tree edge: direct edge between a parent and a child vertex.
 - Back edge in DFS: connects a vertex to an ancestor, other than the parent.
 - Cross edge in BFS: connects a vertex to a visited vertex other than its immediate predecessor.

Graph Traversal

- Many problems require processing of all graph vertices (and edges in a systematic fashion.
- Graph traversal algorithms:
 - There are two systematic ways to visit all the vertices of a graph: depth-first search (DFS) and breadth-first search (BFS).

Depth-First Search

- For each connected component, visit a given vertex. On the next search, visit an unvisited vertex adjacent to the vertex it has just visited; if there is no such vertex, back up to where it came from and re-start the search.
- Uses a stack:
 - A vertex is pushed onto the stack when it is reached for the first time.
 - A vertex is popped off the stack when it becomes a dead end, i.e., when there is no adjacent, unvisited vertex.
- "Redraws" graph in a tree-like fashion (with tree edges and back edges for undirected graph).

A Depth-First Search Algorithm

```
\mathsf{DFS}(G)
                     // G = (V, E), |V| = n
  for each vertex v in V mark v as unvisited
  for each vertex v in V
     if v is unvisited then dfs(v)
end
dfs(v)
  mark v as visited
  for each vertex w adjacent to v
     if w is unvisited then dfs(w)
end
```

// Initialization

A Depth-First Search Example

Dashed lines: back edges.

Notes on Depth-First Search

- DFS can be implemented with graphs represented as adjacency matrices and adjacency lists.
- It yields two distinct orderings of vertices.
 - Order in which vertices are first encountered (pushed onto stack).
 - Order in which vertices become dead-ends (popped off stack).
- Applications
 - Checking connectivity, finding connected components
 - Checking acyclicity
 - Searching state-space of problems for solution (AI)

An Analysis of the Depth-First Search Algorithm

- The cost is clearly proportional to the size of the data structures used to represent the graph.
- For the adjacency matrix representation, every adjacency row has |V| entries. Thus the traversal time is in $\Theta(|V|^2)$.
- For the adjacency lists representation, the total number of adjacency lists entries is 2|E|. Thus the traversal time is $\Theta(|V| + |E|)$.

Breadth First Search

- While depth first search tries to go as far as possible, breadth first search tries to stay as near as possible.
- It first visits the start vertex.
- It then visits all the vertices 1-edge away, then visits all the vertices 2-edge away, etc., until all the vertices in the component have been visited.
- While depth first search is greatly facilitated by the function call stack, breadth first is greatly facilitated by a queue.

A Breadth-First Search Algorithm (Initialization)

A Breadth-First Search Algorithm (Iteration)

```
bfs(v)
  mark v as visited; init_queue(); enqueue(v)
  while queue ≠ empty do
     u \leftarrow dequeue()
     for each vertex w adjacent to u do
        if w is unvisited then
          mark w as visited; enqueue(w)
     od
end
```

A Breadth-First Search Example

• Dashed lines: cross edges.

An Analysis of the Breadth-First Search Algorithm

- Similar to depth first search, breadth-first search also has to check all the adjacent vertices of each vertex.
- The all cases time efficiency is also $\Theta(|V|^2)$ with adjacency matrices and $\Theta(|V|+|E|)$ with adjacency lists.
- It yields a single ordering of vertices (i.e., order added/deleted from queue is the same).
- Applications: same as DFS; but it can also find paths from a vertex to all other vertices with the smallest number of edges.

Topological Sorting

- A directed graph without cycles is a directed acyclic graph (dag).
- The vertices of a dag can be sorted topologically.
- A permutation of the *n* vertices v_1, \dots, v_n of the dag G = (V, E)

$$v_{i_1}, \cdots, v_{i_n}$$

is a topological sort of the dag if (v_{i_p}, v_{i_q}) is not an edge whenever p > q.

That is,

$$E \subseteq \{(v_{i_p}, v_{i_q}) : p < q\}.$$

Topological Sorting by Depth-First-Search

- Observe that when the function dfs(v) returns, all vertices that can be reached from v must have been visited.
- Thus the reverse order of the return of dfs(v) gives a topological sort.

A Topological Sorting Example

Example:

A student needs to take 5 required courses: $\{C1, C2, C3, C4, C5\}$. The following pre-requisites need to be met: C1 and C2 have none; C3 requires C1 and C2; C4 requires C3; and C5 requires C3 and C4.

The student can only take one course per semester.

A Topological Sorting Example

The popping-off order:

C5, C4, C3, C1, C2

The topologically sorted list:

$$C2 \quad C1 \rightarrow C3 \rightarrow C4 \rightarrow C5$$

A Topological Sort Algorithm by Depth-First-Search

```
// Produce a reverse topological sort
TS DFS( G ) // G = (V, E)
  for each vertex v in V mark v as unvisited
  for each vertex v in V
     if v is unvisited then dfs(v)
end
dfs(v)
  mark v as visited
  for each vertex w adjacent to v
     if w is unvisited then dfs(w)
  print v
end
```

Algorithms for Generating Combinatorial Objects

- Given a set of n objects, the most important types of combinatorial objects are
 - 1. the n! permutations,
 - 2. the $\binom{n}{k}$ k-combinations,
 - 3. the 2^n subsets.
- Note that

$$\binom{n}{0} + \dots + \binom{n}{n} = (1+1)^n = 2^n.$$

Generating Permutations

- Consider the problem of finding the n! permutations of the sequence $1 \ 2 \cdots n$.
- There are at least three methods: decrease by 1 (actually should be increase by 1), the Johnson-Trotter algorithm, and the lexicographic order method.
- The increase-by-1 algorithm enjoys the minimal-change property: each permutation can be obtained from its immediate predecessor by exchanging two adjacent digits.

An Illustration of the Increase-By-1 Algorithm: 3!

- Generate 1.
- Insert 2 to 1 from right to left: 12, 21.
- Insert 3 to 12 from right to left: 123, 132, 312.
- Insert 3 to 21 from left to right: 321, 231, 213.
- Observe the minimal-change property of the permutations

123, 132, 312, 321, 231, 213.

An Illustration of the Increase-By-1 Algorithm: 4!

- Insert 4 to 123 from right to left: 1234, 1243, 1423, 4123.
- Insert 4 to 132 from left to right: 4132, 1432, 1342, 1324.
- Insert 4 to 312 from right to left: 3124, 3142, 3412, 4312.
- Insert 4 to 321 from left to right: 4321, 3421, 3241, 3214.
- Insert 4 to 231 from right to left: 2314, 2341, 2431, 4231.
- Insert 4 to 213 from left to right: 4213, 2413, 2143, 2134.

Observe Minimal-Change Property of the Permutations

1234, 1243, 1423, 4123, 4132, 1432, 1342, 1324, 3214, 3241, 3412, 4312,

4321, 3421, 3241, 3214, 2314, 2341, 2431, 4231, 4213, 2413, 2143, 2134.

Mobile Digits of the Johnson-Trotter Algoritm

- Each element e in a permutation is given a left-to-right direction
 e. or a right-to-left direction .e.
- An element in a permutation is mobile if its direction points at a smaller element.
- For example, in the permutation 3..24..1, the digits 3 and 4 are mobile, the digits 1 and 2 are not.

The Johnson-Trotter Permutation Generation Algorithm

```
JOHNSONTROTTER( n ) // n is a positive integer initialize the first permutation with 1.2\ldots n while previous permutation has a mobile element do find the largest mobile element k swap k with the element it is pointing to reverse direction of all elements larger than k add the new permutation to the list od end
```

The Johnson-Trotter Algorithm: Illustration

 .1.2.3.4
 .1.2.4.3
 .1.4.2.3
 .4.1.2.3
 4..1.3.2
 .14..3.2
 .1.34..2
 .1.3.24

 .3.1.2.4
 .3.1.4.2
 .3.4.1.2
 .4.3.1.2
 4.3..2.1
 3.4..2.1
 3..24..1
 3..2.14

 $.23..1.4 \quad .23..4.1 \quad .2.43..1 \quad .4.23..1 \quad 4..2.13. \quad .24..13. \quad .2.14.3. \quad .2.13.4.$

Lexicographic Ordering of Permutations

 Recall that we assume the n objects of permutation are numbers

$$1, \cdots, n$$
.

• By treating a permutation as a base n+1 positional number, we can order the n! permutations $12 \cdots n, \cdots, n \cdots 21$ numerically, or lexicographically.

The Immediate Successor of a Permutation

- In lexicographic ordering, the immediate successor of the permutation $a_1 \cdots a_i \cdots a_n$ is $b_1 \cdots b_i \cdots b_n$ if and only if the following holds.
- $a_1 = b_1, \dots, a_{i-1} = b_{i-1}$.
- The subscript i is the largest i such that $a_i < a_{i+1}$. That is,

$$a_i < a_{i+1} > a_{i+2} > \dots > a_n$$
.

- $b_i = \min\{a_k : k > i, a_k > a_i\}.$
- The sequence $b_{i+1} \cdots b_n$ is an increasing sort of the numbers $\{a_i, \cdots, a_n\} \setminus \{b_i\}$.

Lexicographically Ordered Permutations: Illustration

1234 1243 1324 1342 1423 1432 2134 2143

2314 2341 2413 2431 3124 3142 3214 3241

3412 3421 4123 4132 4213 4231 4312 4321

Generating Subsets

• There are at least three ways to generate the power set (the set of all subsets) of the set $\{1, 2, \dots, n\}$: decrease-by-1, bit-vector, and binary reflected Gray node.

Generating Subsets: Decrease-By-One

- Let P(n) be the power set of $\{1, \dots, n\}$.
- The decrease-by-1 method is based on the observation that

$$P(n) = P(n-1) \cup \{S \cup \{n\} : S \in P(n-1)\}.$$

Generating Subsets: Bit Vectors

- The members of the set $S_n = \{1, \dots, n\}$ may be represented by the bits of a n-bit vector: bit position i represents member i+1.
- Thus each of the 2^n values $0..2^n 1$, when written as n-bit base-2 numbers, gives a subset of S_n .
- Illustration:

_	0	1	2	3	4	5	6	7
_	000	001	010	011	100	101	110	111
•	{}	{1}	{2}	$\boxed{\{1,2\}}$	{3}	$\boxed{\{1,3\}}$	$\{2,3\}$	$\{1, 2, 3\}$

Generating Subsets: Binary Reflected Gray Code

 The binary reflected Gray code generates bit vectors that enjoys the minimal change property.

Decrease-by-a-Constant Factor Algorithms

- Fake-coin identification problem
- Russian peasant method
- Josephus problem

Fake-Coin Identification Problem

- Among n identically looking coins, one is fake and is known to be lighter.
- Use an uncalibrated scale, identify the fake coin.

Fake-Coin Identification Problem

- One algorithm is to divide the n coins into at most three sets: $\lfloor n/2 \rfloor$ coins, $\lfloor n/2 \rfloor$ coins, and $\lceil n/2 \rceil \lfloor n/2 \rfloor$ coin.
- If *n* is even, weigh the only two sets and the lighter set contains the fake coin.
- If *n* is odd, weigh the first two sets. If they weigh the same, the third set contains the fake coin; else the lighter set contains the fake coin.
- The problem size is now reduced by about half and the same procedure can be applied again.

An Analysis of the Fake-Coin Identification Algorithm

• The recurrence for the number of weighings W(n) is

$$W(n) = W(|n/2|) + 1, n > 1; W(1) = 0$$

- and the solution is $W(n) = \lfloor \log_2 n \rfloor$.
- It is known that a better algorithm with $W(n) \approx \log_3 n$ if the coins are divided into three sets of size about n/3.

The Russian Peasant Multiplication Method

 The product of two positive integers n and m can be found with halving, doubling, and adding:

$$nm = \begin{cases} \frac{n}{2} \times 2m, & n \text{ even;} \\ \frac{n-1}{2} \times 2m + m & n \text{ odd.} \end{cases}$$

 The operations of halving and doubling are simply 1-bit right-shift and 1-bit left-shift respectively.

The Russian Peasant Multiplication Method: Illustration

n	m	
50	65	
25	130	130
12	260	
6	520	
3	1040	1040
1	2080	2080
		3250

The Josephus Problem

- There are n persons numbered 1 to n standing in a circle.
- If *n* is even, eliminate all even-numbered persons;
- If n is odd, eliminate all even-numbered persons and the person numbered 1. The survivor who was numbered 3 becomes number 1.
- Repeat this process until a lone survivor is left.
- Who is the final survivor?

The Solution to the Josephus Problem

- Let J(n) be the number of the final survivor.
- It can be verified that

$$J(2k) = 2J(k) - 1$$
, and $J(2k+1) = 2J(k) + 1$,

with the initial condition J(1) = 1.

It turns out that

$$J(n) = 1$$
-bit left cyclic shift of n .

Variable-Size-Decrease Algorithms

- Computing a median and the selection problem
- Interpolation search
- Searching and insertion in a binary search tree
- The game of NIM

The Median and the Selection Problem

- The selection problem is about finding the k^{th} smallest element among n numbers.
- This number is called the k^{th} order statistic.
- When $k = \lceil n/2 \rceil$, the number is called the median of the given n numbers.
- For k = 1 or k = n, we simply scan the list to find the minimum or maximum value respectively.
- To sort the entire list to find the k^{th} order statistics is doing too much work.

Solving the Selection Problem by Partitioning

- An efficient algorithm (on average) is to use some partitioning algorithm like the one used in quicksort.
- Given an input array A[1..n] (note that index starts at 1), let A[s] be the pivot element.
- If s = k, A[s] is the required answer.
- If s > k, then find the k^{th} smallest element among the s-1 elements of the left partition A[1..s-1].
- If s < k, then find the $k s^{th}$ smallest element among the n s elements of the right partition A[s+1..n].

An Analysis of the Selection by Partitioning Algorithm

- It is known that the average case efficiency is the same as if the size of array is reduced by about half in each iteration.
- If so the recurrence

$$C(n) = C(n/2) + \Theta(n)$$

and the solution is $\Theta(n)$.

• The worst case efficiency is the same as quicksort: $\Theta(n^2)$.

Interpolation Search

- Recall that binary search looks for the key y among the partial array A[l..r] by comparing y with the array element indexed by $\lfloor \frac{l+r}{2} \rfloor$.
- Interpolation search assumes the keys are uniformly distributed so it looks for the key y among the partial array A[l..r] by comparing y with the array element indexed by

$$\lfloor x \rfloor = \left| l + \frac{(y - A[l])(r - l)}{A[r] - A[l]} \right|.$$

• The index $\lfloor x \rfloor$ is obtained by assuming that the points (l, A[l]), (x, y), (r, A[r]) lie on a (straight) line.

Interpolation Search

- If $y \neq A[x]$, the next iteration of the interpolation search narrows the search to A[l..x-1] when y < A[x] or to A[x+1..r] when A[x] < y.
- Empirically interpolation search performs better than binary search when the range of search is large.

Searching and Insertion in a Binary Search Tree

- Recall that a binary search tree is either empty or the root key is larger than the keys in the left subtree but the smaller that the keys in the right subtree.
- The worst case time efficiency is $\Theta(n)$ when the tree is badly balanced but the average case time efficiency is $\Theta(\log n)$ as on the average the tree is reasonably balanced.

Searching and Insertion in a Binary Search Tree

The search is done recursively:

```
\begin{aligned} &\mathsf{BS}(\ key, T\ ) & \text{ } /\!\!/ \ \mathsf{looking} \ \mathsf{for} \ \mathsf{key} \ \mathsf{in} \ T \\ &\mathsf{if} \ T = \mathsf{empty} \ \mathsf{then} \ \mathsf{return} \ -1 \ \mathsf{fi} \\ &\mathsf{if} \ key = T.root \ \mathsf{then} \ \mathsf{return} \ T \\ &\mathsf{else} \\ &\mathsf{if} \ key < T.root \ \mathsf{then} \ \mathsf{return} \ \mathsf{BS}(key, T.left) \\ &\mathsf{else} \\ &\mathsf{return} \ \mathsf{BS}(key, T.right) \\ &\mathsf{fi} \\ &\mathsf{fi} \\ &\mathsf{end} \end{aligned}
```

The Game of Nim: Rules

- Consider the game Nim when two players take turn to remove chips from 2 or more piles of chips.
- Each time a player must remove at least one chip but at most all the chips of a pile.
- The player who removes the last pile of chips wins the game.

The Game of Nim: A Fated Game

- It turns out that the winner is completely determined by the opening chip configurations and who moves first.
- To see this, assume there are k > 1 piles of chips and the number of chips are n_1, \dots, n_k with the following binary representations:

$$n_1 = b_{1,l} \cdots b_{1,0}$$

$$\vdots = \vdots \cdots \vdots$$

$$n_k = b_{k,l} \cdots b_{k,0}$$

$$\oplus = b_l \cdots b_0$$

where "

"denotes the bit-wise exclusively-or operation."

The Game of Nim: A Fated Game

- If all the bits b_1, \dots, b_0 are zero, the player who moves next will lose; otherwise, the player who moves next will win.
- When some of the bits b_1, \dots, b_0 are not zero, from which pile and how many chips should the player remove?
- Let the left-most 1-bit be b_i .
- There must be at least a $b_{i,i} = 1$ for some pile with n_i chips.
- For each of the bits b_1, \dots, b_0 that is 1, flip the corresponding bits in n_j to obtain the number n'_j .
- Clearly, $n'_j < n_j$.
- The player should remove $n_j n'_j$ chips from pile j.

Take Away Message on Decrease-and-Conquer

- The decrease-and-conquer technique exploits the relationship between a solution to a problem instance and a solution to a smaller instance of the same problem.
- The relationship may be exploited top-down with recursion or bottom-up with iteration. We may refer to the latter as increase-and-conquer.
- The three major variations are:
 - decrease by a constant (often 1),
 - decrease by a constant factor (often half), and
 - variable size decrease.