Week 10: Relational Databases and SQL

LSE MY472: Data for Data Scientists https://lse-my472.github.io/

Autumn Term 2024

Ryan Hübert

Outline

- → Relational vs non-relational databases
- → Structured Query Language
- → Coding session

Relational vs non-relational databases

Databases

- → **Database system**: An organized collection of data that is stored and accessed via a computer
- → Relational databases: Data stored in multiple tables to avoid redundancy. Tables are linked based on common keys
- → Non-relational databases: Data stored in a way that is not based on tabular relations (e.g. MongoDB uses JSON like documents)

Relational vs non-relational databases

NON-RELATIONAL

From: Codewave Insights

Relational databases

→ Relational Database Management Systems (RDBMS):

- → The underlying software system used to maintain relational databases
- → Examples: MySQL, PostgreSQL, SQLite, MariaDB, etc.

→ Online Transaction Processing (OLTP) Services:

- → High frequency (many transactions per minute), fast response, many write operations
- → Examples: Amazon RDS, Google Cloud SQL, Azure SQL Database

→ Online Analytical Processing (OLAP) Services:

- → Large volume (petabytes of data), lower frequency (few transactions), slower response, mostly read operations
- → Examples: Amazon RedShift, Google BigQuery, Microsoft Azure SQL Server, Snowflake

Relational databases in action

Customer			
cust_id	fname	Iname	
1	George	Blake	
2	Sue	Smith	

	Account				
ac	count_id	product_cd	cust_id	balance	
	103	CHK	1	\$75.00	
	104	SAV	1	\$250.00	
	105	CHK	2	\$783.64	
	106	MM	2	\$500.00	
	107	LOC	2	0	

Product product_cd	name	
CHK	Checking	
SAV	Savings	7
MM	Money market	١
LOC	Line of credit	1

Transac	ction				
txn_id	txn_type_cd	account_id	amount	date	
978	DBT	103	\$100.00	2004-01-22	1
979	CDT	103	\$25.00	2004-02-05	
980	DBT	104	\$250.00	2004-03-09	/
981	DBT	105	\$1000.00	2004-03-25	(
982	CDT	105	\$138.50	2004-04-02	1
983	CDT	105	\$77.86	2004-04-04	
984	DBT	106	\$500.00	2004-03-27	/
				_	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Some vocabulary

Relational database term	SQL term
Relation	Table
Tuple, record	Row
Attribute, field	Column

(Excerpt from: https://en.wikipedia.org/wiki/Relational_database)

Keys

- → Keys are **critical**, allowing the rows of different tables to be connected
- → Primary key: A column or set of columns (composite key) which uniquely identifies each row/record in the table
- → Foreign key: A primary key of another table

Entity relationship diagrams (ERDs)

From: Lucidchart

Structured Query Language

SQL: Structured Query Language

- → Language designed to define, control access to, manipulate, and query relational databases
- → Initially written SEQUEL (Structured English Query Language), but later changed to SQL because of trademark issues
- → Pronounced both S-Q-L and SEQUEL today
- → It is a nonprocedural/declarative language: User defines what to do, inputs, and outputs, but not the control flow; how the statement is executed, is left to the optimizer
- → How long SQL queries depends on optimization that is opaque to user
- → Performance will vary, but generally faster than standard data frame manipulation in R (and much more scalable)

Some common components of SQL queries

- → The result of a SQL query is a table
- → **SELECT** columns
- → FROM a table in a database
- → WHERE rows meet a condition
- → GROUP BY values of a column
- → ORDER BY values of a column when displaying results
- → **LIMIT** to only X number of rows in resulting table
- → Always required: **SELECT** and **FROM**; rest are optional
- → SELECT can be combined with operators such as SUM, COUNT, AVG...

Some more components of SQL queries

- → To merge multiple tables, use **JOIN**
 - → Variety of _____ JOIN types: INNER, RIGHT, LEFT FULL OUTER
 - → For anti-joins, use **RIGHT** or **LEFT** and a **WHERE** clause
 - → When handling multiple tables, use aliases (e.g. FROM table AS t)
- → More complex ways of combining tables include (non-exhaustive):
 - → CROSS JOIN: Produce all combinations of the two ids
 - → UNION: De-duped vertical combination of both tables (add ALL for dupes)
- → SQL also supports common table expressions (CTEs):
 - → Lets you build multiple sub-tables within a single query
 - → Connect these together with a subsequent **SELECT** statement

SQL query examples

SQL JOINs

From: https:

//upload.wikimedia.org/wikipedia/commons/9/9d/SQL_Joins.svg

SQL JOIN examples

```
SELECT client.name, account.balance
FROM client JOIN account
ON client.account_id = account.id;
WITH
cte_one AS (
 SELECT * FROM client WHERE gender = 'F'
 ),
cte_two AS (
 SELECT * FROM sales
SELECT co.account_id, ct.sales_count, ct.sales_revenue
FROM cte_one AS co
INNER JOIN cte_two AS ct
ON co.account_id = ct.acc_id;
```


Coding session

Download from moodle:

→ public Facebook data (individual csv files)

Code:

- → 01-sql-intro.Rmd
- → 02-sql-join-and-aggregation.Rmd

General information on how to connect to SQL databases with R: https://solutions.rstudio.com/db/