Записки по ДИС2 - Лекция 9

26.04.2023

Степенни редове.

$$\sum_{n=0}^{\infty} a_n (x-a)^n \leftarrow \text{ степенен ред}$$

$$a_0 + a_1 (x-a) + a_2 (x-a)^2 + \dots$$

$$D = \left\{ x \in \mathbb{R} : \sum_{n=0}^{\infty} a_n (x-a)^n \text{ е сходящ} \right\} - \text{ област на сходимост}$$

Канонични примери за степенни редове

1) Геометрична прогресия

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \dots = \frac{1}{1-x} \ x \in (-1,1) \leftarrow \text{област на сходимост}$$

$$(2) \sum_{n=0}^{\infty} \frac{x^n}{n!} \to x \in (-\infty, +\infty)$$
 - област на сходимост в $\mathbb R$

$$\sum_{n=0}^{\infty} \left| \frac{x^n}{n!} \right| - x \text{ е параметър. Прилагаме критерия на Даламбер: } \frac{\left| \frac{x^{n+1}}{(n+1)!} \right|}{\left| \frac{x^n}{n!} \right|} = \frac{|x|}{n+1} \xrightarrow[n \to \infty]{} 0$$

3)
$$\sum_{n=1}^{\infty} \frac{x^n}{n} \longrightarrow x \in [-1,1)$$
 $\sum_{n=1}^{\infty} \frac{x^n}{n} = |x| \cdot \frac{n}{n+1} \xrightarrow[n \to \infty]{} |x|$

Критерия на Даламбер ни дава: |x| < 1 - абсолютно сходящ |x| > 1 - разходящ

Сега разглеждаме в краищата на интервала: при x=1 имаме хармоничния ред, който е разходящ; при x=-1 редът е сходящ.

N.B. Областта на сходимост е винаги с център точката a. (степенни редове)

Def. 1 $R \in [0, +\infty]$ се нарича радиус на сходимост на реда $\sup_{n=0}^{\infty} a_n(x-a)^n$, ако $\sum_{n=0}^{\infty} a_n(x-a)^n$ е сходящ за всяко $x \in \mathbb{R}$ с |x-a| > R. Ако , то областта на сходимост има един от следните видове:

$$(a - R, a + R)$$

 $[a - R, a + R)$
 $(a - R, a + R]$
 $[a - R, a + R]$

В комплексната равнина в областта на сходимост са точките във вътрешността на окръжност с радиус а. Във всички точки извън окръжността степенният ред е разходящ. В граничните точки не се знае дали е сходящ или разходящ.

Lemma 1 Нека $\sum_{n=0}^{\infty} a_n (\xi - a)^n$ е сходящ. Тогава $\sum_{n=0}^{\infty} a_n (x - a)^n$ е абсолютно сходящ за всяко $x \in \mathbb{R}$, за което $|x - a| < |\xi - a|$.

Доказателство: $|x - a| < |\xi - a|$

$$\sum_{n=0}^{\infty} |a_n(x-a)^n| = \sum_{n=0}^{\infty} \underbrace{|a_n(\xi-a)^n|}_{\leq M} \left| \frac{x-a}{\xi-a} \right|^n$$
 (1)

$$\sum_{n=0}^{\infty} a_n (\xi - a)^n - \text{сходящ} \Rightarrow a_n (\xi - a)^n \underset{n \to \infty}{\longrightarrow} 0 \Rightarrow \exists M \in \mathbb{R} \ \forall n \in \mathbb{N} \cup \{0\} : |a_n (\xi - a)^n| \leq M$$

$$(1) \leq \sum_{n=0}^{\infty} M.q^n, \quad q = \left| \frac{x-a}{\xi-a} \right| \in [0,1) \Rightarrow$$
 редът е сходящ от пр. за сравнение.

Th. 1 Всеки степенен ред има радиус на сходимост. При това $\sum_{n=0}^{\infty} a_n (x-a)^n$ е абсолютно сходящ.

$$R:=\sup \left\{\underbrace{|x-a|: \sum_{n=0}^{\infty} a_n (x-a)^n \mathrm{e} \, \mathrm{cxoдящ}}_{\infty}\right\} \quad R\in [0,+\infty]$$

$$x \in \mathbb{R}, |x-a| > R \Rightarrow \sum_{n=0}^{\infty} a_n (x-a)^n$$
 - разходящ.

$$x \in \mathbb{R}, |x-a| < R \Rightarrow \exists \xi \in \mathbb{R} : |x-a| < |\xi-a|$$
 и $\sum_{n=0}^{\infty} a_n (x-a)^n$ - е сходящ.

Като приложим лемата, получаваме, че: $\sum_{n=0}^{\infty} a_n (x-a)^n$ е абсолютно сходящ.

Th. 2 Формула на Kowu-Адамар

$$Paduyczm$$
 на $cxodumocm$ на $\sum_{n=0}^{\infty}a_n(x-a)^n$ е $R=rac{1}{\limsup\sqrt[n]{|a_n|}}$

(със съглашението $\frac{1}{0} = +\infty$, $\frac{1}{+\infty} = 0$) Припомняме дефиницията на $\limsup \{b_n\}_{n=1}^{\infty} \to l = \limsup b_n$, ако l е точка на сгъстяване на $\{b_n\}_{n=1}^{\infty}$ и $\forall \varepsilon > 0 \; \exists n_0 \in \mathbb{N} \; \forall n \geq n_0 : b_n < l + \varepsilon$

Доказателство:
$$l = \limsup \sqrt[n]{|a_n|}, R = \frac{1}{l}$$

(a)
$$|x - a| < \frac{1}{l}$$
 $l|x - a| < 1 \rightarrow \exists q : l|x - a| < q < 1$

$$\sum_{n=0}^{\infty} |a_n(x-a)^n| - \text{Прилагаме Критерия на Коши: } \sqrt[n]{|a_n(x-a)^n|} = \sqrt[n]{|a_n|}.|x-a|$$

Дава сходимост за
$$q<1$$
. $\limsup \sqrt[n]{|a_n|}=l<rac{q}{|x-a|}\Rightarrow \exists n_0\in\mathbb{N}\ \forall n\geq n_0:\sqrt[n]{|a_n|}<$

$$\frac{q}{|x-a|} \Rightarrow \sqrt[n]{|a_n(x-a)^n|} < q \ \forall n \geq n_0 \Rightarrow \sum_{n=0}^{\infty} |a_n(x-a)^n|$$
 е сходящ по крит. на Коши.

(б)
$$|x-a| > \frac{1}{l} \to l > \frac{1}{|x-a|}$$
. $\sqrt[n]{|a_n|} > \frac{1}{x-a}$ за безброй много $n \in \mathbb{N}$. $\sqrt[n_k]{|a_{n_k}(x-a)^{n_k}|} > \frac{1}{|a_{n_k}(x-a)^{n_k}|}$

$$1 \ \forall k \in \mathbb{N} \Rightarrow \lim_{k \to \infty} a_{n_k} (x-a)^{n_k} \neq 0, \lim_{n \to \infty} a_n (x-a)^n \neq 0 \Rightarrow \sum_{n=0}^{\infty} a_n (x-a)^n$$
е разходящ. \blacksquare