BJT OPERATION

2. BJT OPERATION

- To operate the transistor properly, the two pn junction must be correctly biased with external dc voltages.
- The figure shows the proper bias arrangement for both *npn* and *pnp* transistor for its operation as an amplifier.

2. BJT OPERATION

- Transistor is made of 3 separate semiconductor materials that joined together to form two pn junction.
- Point at which emitter and base are joined forms a single pn junction → base-emitter junction
- Collector-base junction → point where base and collector meet.

2. Operation of the npn Transistor in the Active Mode

2. BJT OPERATION

- · Cutoff region
- Both transistor junctions are reverse biased.
- With large depletion region between C-B and E-B, very small amount of reverse current, I_{CEO} passes from emitter to collector and can be neglected.
- So, $V_{CE} = V_{CC}$

• Saturation region $I_{C} = \frac{V_{CC}}{R_{C}}$ $I_{C} = \frac{V_{CC}}{R_{C}}$ $I_{C} = \frac{V_{CC}}{R_{C}}$

- Active region
- •*BE* junction is forward biased an d the *BC* junction is reverse biase d.
- •All terminal currents have some measurable value.
- •The magnitude of $I_{\mathcal{C}}$ depends on the values of β and $I_{\mathcal{B}^*}$
- • V_{CE} is approximately near to 0.7 V and V_{CE} falls in ranges $V_{BE}{<}V_{CE}$ ${<}V_{CC}$.

2. BJT OPERATION

Transistor Operating Regions:

- 1.Cutoff region:
- Both transistor junctions are reverse biased
- •All terminal current are approximately equal to zero. Since I_{CEO} neglected, V_{CE} = V_{CC}

2.Active region:

- •The *BE* junction is forward biased and the *BC* junction is reverse biased
- •All terminal currents have some measurable value
- •The magnitude of Ic depends on the values of β and IB
- •Vce is approximately near to 0.7V and Vce falls in ranges Vbe<Vce<Vcc

3. Saturation:

- •Both transistor junctions are forward biased
- Ic reaches its maximum values- determine by the component in the CE circuit, and independent of the values of β and Ib
- •VBE is approximately 0.7V and VCE < VBE

3. BJT CHARACTERISTICS & PARA METERS

3. BJT CHARACTERISTICS & PARAMETERS

DC Beta ($eta_{\scriptscriptstyle DC}$) and DC Alpha ($lpha_{\scriptscriptstyle DC}$):

 \succ The ratio of the dc collector current (Ic) to the dc base current (IB) is the dc beta

 (β_{DC}) = dc current gain of transistor

> Range value : 20< β_{DC} < 200

>Usually designed as an equivalent hybrid () parameter, $h_{\it FE}$ on transistor data sheet – $h_{\it FE}=\beta_{\it DC}$

$$\beta_{DC} = \frac{I_C}{I_B}$$

>The ratio of the dc collector current (Ic) to the dc emitter current (IE) is the dc alpha ($\alpha_{\rm DC}$) – less used parameter in transistor circuits

>Range value-> 0.95< α_{DC} <0.99 or greater , but << 1 (Ic< IE)

$$\alpha_{DC} = \frac{I_C}{I_E}$$

Current and Voltage Analysis:> When the *BE* junction is forward-biased, like a forward biased diode and the voltage drop is $V_{BE} \cong 0.7V$ > Since the emitter is at ground (0V), by Kirchhoff's voltage law, the voltage across R_B is: $V_{R_B} = V_{BB} - V_{BE}$(1) > Also, by Ohm's law: > $V_{R_B} = I_B R_B$(2) > From (1) ->(2): $V_{CD} = I_B R_B$

3. BJT CHARACTERISTICS & PARAMETERS

3. BJT CHARACTERISTICS & PARAMETERS

Current and Voltage Analysis:

>The voltage at the collector with respect to the grounded emitter is: $V_{CE} = V_{CC} - V_{R_C}$

 \succ Since the drop across $R_{\scriptscriptstyle C}$ is: $V_{\scriptscriptstyle RC} = I_{\scriptscriptstyle C} R_{\scriptscriptstyle C}$

>The dc voltage at the collector with respect to the emitter is:

$$V_{CE} = V_{CC} - I_C R_C$$

where

$$I_C = \beta_{DC} I_B$$

>The dc voltage at the collector with respect to the base is:

$$V_{CB} = V_{CE} - V_{BE}$$

Example 1

• Determine $I_{\text{B}},~I_{\text{C}},~I_{\text{E}},~V_{\text{CE}}$ and V_{CB} in the circuit below. The transistor has a $\beta_{\text{DC}}{=}150.$

Solution Example 1

When BE junction is FB, act as normal diode. So, V_{BE} =0.7V. The base current,

$$I_{B} = \frac{V_{BB} - V_{BE}}{R_{B}} = \frac{5 - 0.7}{10k\Omega} = 430 \,\mu A$$

Collector current, $I_C = \beta_{DC} I_B = 150 (430 \ \mu A) = 64.5 \ mA$

Emitter current, $I_E = I_C + I_B = 64.5 mA + 430 \mu A = 64.9 mA$

Solve for V_{CE} and V_{CB} .

$$V_{CE} = V_{CC} - I_C R_C = 10V - (64.5 \text{mA})(100\Omega) = 3.55V$$

$$V_{CB} = V_{CE} - V_{BE} = 3.55 - 0.7 = 2.85V$$