```
In [5]:
```

```
import pandas as pd
from sklearn import linear_model
import matplotlib.pyplot as plt
```

In [4]:

```
data = pd.read_csv("per_capita_income.csv")
data.head()
```

Out[4]:

year per capita income (US\$)

		•	•	
0	1970			3399.299037
1	1971			3768.297935
2	1972			4251.175484
3	1973			4804.463248
4	1974			5576.514583

In [20]:

```
plt.scatter(data.year, data['per capita income (US$)'])
plt.xlabel("year")
plt.ylabel("per capita income (US$)")
plt.title("Training Data")
plt.savefig("training_data.png")
```


In [10]:

```
lin_reg_model = linear_model.LinearRegression()
```

In [11]:

```
lin_reg_model.fit(data[['year']], data['per capita income (US$)'])
```

Out[11]

LinearRegression(copy X=True, fit intercept=True, n jobs=None, normalize=False)

In [12]:

```
lin_reg_model.coef_
```

Out[12]:

```
array([828.46507522])
```

```
In [14]:
lin reg model.intercept
Out[14]:
-1632210.7578554575
In [15]:
lin_reg_model.predict([[2020]])
Out[15]:
array([41288.69409442])
In [21]:
plt.scatter(data.year, data['per capita income (US$)'])
plt.xlabel("year")
plt.ylabel("per capita income (US$)")
plt.plot(data.year, lin_reg_model.predict(data[['year']]))
plt.title("Showing Regression Line")
plt.savefig("lin reg.png")
                  Showing Regression Line
  40000
```

