Описание аппаратуры КАМАК

- Назначение и состав аппаратуры КАМАК
- Логический стандарт
- Описание отдельных модулей

Назначение и состав аппаратуры КАМАК

КАМАК представляет собой систему, предназначенную для связи измерительных устройств с цифровой аппаратурой обработки данных. Система построена по модульному (блочному) принципу. Наименьшая конструктивная единица системы - функциональный модуль (или станция) представляет собой вставную кассету. Кассеты размещаются в каркасе-крейте (см. рис. 2).

Рис. 2. Вид передней панели крейта КАМАК

Структура измерительной системы на основе аппаратуры КАМАК иллюстрируется рисунком.

Рис. 3. Структура измерительной системы на основе аппаратуры КАМАК

Логический стандарт

Модули крейта КАМАК управляются определенным набором команд. Команды делятся на:

- адресуемые (предназначенные конкретному модулю) и
- неадресуемые (общие).

Все адресуемые команды имеют форму NAF, где N - "адрес" - номер станции, на которой расположен модуль (может принимать значения от 1 до 23), A - "субадрес" - номер адреса устройства (регистра) внутри модуля, принимает значения от 0 до 15, F - код операции (функции), которую должен выполнить модуль. Для кодирования операции отводится 5 двоичных разрядов, т. е., это может число от 0 до 31. Каждый модуль может выполнять ограниченное число операций, и, приступая к работе с конкретным модулем, надо по его описанию ознакомиться со списком его функций и соответствующими кодами (см. подраздел Описание отдельных модулей). Однако существуют общепринятые коды для типичных операций. Они приведены в таблице 1.

Таблица 1. Коды операций системы КАМАК

Код команды (F)	Подгруппа операций	Комментарии
0 - 7	Чтение	F (2) - чтение и сброс содержимого регистра
8 - 15		F (8) - поверка L-запроса; F (9) - сброс L-запроса
16 - 23	Запись	-
24 - 31		F (24) - блокирование; F (25) - исполнение; F (26) - деблокирование; F (27) - проверка состояния

Безадресные команды, действующие на все станции крейта:

- "подготовка" (Z) устанавливает все матрицы в исходное состояние;
- "запрет" (I) на время действия сигнала выполнение команд прекращается;

• "сброс" (С) - устанавливает в исходное состояние отдельные регистры модулей.

Адресуемые и неадресуемые команды генерируются контроллером и воспринимаются модулями. Кроме этого, есть ряд сигналов, генерируемых модулями. К ним относятся:

- запрос на обслуживание (L-запрос);
- ответ блока (Q-сигнал) (как правило, возникает по выполнению определенной команды);
- сигнал занятости линии (В-сигнал);
- сигнал "команда принята" (Х-сигнал) (указывает на то, что команда принята и правильно декодирована модулем).

Текущее состояние аппаратуры КАМАК отображается соответствующими индикаторами на передней панели крейта. Программное управление и определение состояния аппаратуры осуществляется через регистр управления и состояния - РУС (CSR). Назначение битов этого регистра иллюстрируется таблицей 2.

Таблица 2. Назначение битов регистра CSR

Номер бита	Обозначение	Назначение
0	F1	Код операции
1	F2	- // -
2	F4	- // -
3	F8	- // -
4	F16	- // -
5	I	Управляет сигналом "запрет" - все действия на магистрали запрещены (устанавливается программно)
6	Dp	Разрешение прерываний (устанавливается программно). Установка значения "1" разрешает контроллеру генерировать запрос на прерывание при появлении хотя бы одного L-запроса
7	D	Устанавливается контроллером и свидетельствует о том, что какой-то из модулей выставил L-запрос
8	С	Генерация сигнала "сброс" (устанавливается программно). Установка значения "1" приводит к однократной генерации цикла сброса
9	Z	Генерация сигнала "подготовка" (устанавливается программно). Установка значения "1" приводит к однократной генерации цикла подготовки
10	Хр	Разрешение генерации запроса на прерывание по X-ответу модуля (т.е. по X=0)
11	S	Генерация укороченного цикла магистрали
12	I*	Индикация состояния линии запрета (устанавливается контроллером)
13	-	-
14	X	Отражает состояние линии X (устанавливается контроллером)

15

0

Отражает состояние линии Q (устанавливается контроллером)

Описание отдельных модулей

В этом разделе кратко описаны некоторые модули КАМАК (<u>счетчик импульсов</u>, <u>ЦАП</u>, <u>АЦП</u>), которые можно использовать при выполнении практических упражнений (см. подраздел <u>Рекомендуемые упражнения</u>).

Счетчик

Счетчик (модель Сч 6 2/10 ШЛЗ.056.101) предназначен для подсчета числа импульсов источника, вывода подсчитанного числа на магистраль КАМАК, записи числа с магистрали КАМАК и индикации содержимого счетчика на передней панели.

Максимальная частота считаемых импульсов 10 MГц, емкость счетчика $6 \text{ десятичных разрядов, т.е. } 10^6 - 1.$

При записи числа с магистрали КАМАК или чтении содержимого счетчика на магистраль число преобразуется в двоично-десятичный код, т.е. каждому десятичному разряду отводиться 4 двоичных, которые и кодируют соответствующую цифру.

В момент переполнения счетчик выставляет L-запрос и сбрасывает свое содержимое на 0. Это свойство можно использовать при работе в программном режиме. Если надо прервать выполнение программы, когда от какого-либо устройства поступит Р импульсов, то записываем в счетчик число 1000000-P, затем начинается счет импульсов и проверка L-запроса, как только L-запрос появился -это значит, что требуемое число импульсов поступило на вход счетчика.

Цифро-аналоговый преобразователь - ЦАП (DAC)

Модуль ЦАП (модель 2ЦАП10 ШЛ3.036.046) предназначен для преобразования цифровых кодов в напряжение. При этом число M, поданное на модуль в двоичном коде преобразуется в напряжение U = (M * d) B, где d - шаг дискретизации или разрешающая способность преобразователя. Максимальное напряжение, которое можно получить на выходе ЦАП определяется его разрядностью $m: M_{max} = 2^m - 1$.

В модуле 2ЦАП10 содержится два десятиразрядных преобразователя (с субадресами A = 0 и A = 1), соответственно он имеет два выхода, которые можно использовать, например, для управления графопостроителем, самописцем, осциллографом.

Технические характеристики модуля:

- максимальное напряжение 5,115 В;
- шаг дискретизации 5*10⁻³ В;
- сопротивление нагрузки 2 кОм;
- время преобразования 10 мкс;
- погрешность преобразования: e = +/- (0.5 + 0.2 (Um/Ux 1))%, где Um = 5,115 B; Ux получаемое в результате преобразования напряжение.

Модуль управляется следующими КАМАК-командами (табл. 3).

Таблица 3. Команды управления модулем ЦАП

Субадрес (А) и код команды (F)	Назначение команды

A(0) F(16)	Запись кода в регистр первого преобразователя (на выходе DAC-1 возникает напряжение (0,005 *M) вольт, где $M = C1 + C2*2 + + C\kappa*2^{\kappa-1}$,
	к = 10, Ск = 0 или 1 - сигнал на к-ой шине)
A(1) F(16)	То же для преобразователя DAC-2
A(0) F(17)	Код записывается в оба регистра, сигналы появляются одновременно на выходах DAC-1 и DAC-2
A(0) F(18)	Код записывается в регистр первого преобразователя и на выходе появляется напряжение (0,005 *M) вольт, а в регистр второго добавляется 1 и ранее установленное на выходе DAC-2 напряжение увеличивается на 0,005 В
A(0) F(26)	Разрешение L-запроса
A(0) F(24)	Запрещение L-запросаЭта команда может быть использована при одновременной работе нескольких модулей, из которых каждый может выставить L-запрос. Если нас интересует наличие запроса от конкретного модуля, тогда другим модулям L-запрос запрещают
A(0) F(8)	Проверка L-запроса (после этой команды, если запрос был ранее выставлен, появляется сигнал Q)
A(0) F(10)	Сброс L-запроса

Аналого-цифровой преобразователь - АЦП (ADC)

Модуль-преобразователь аналог-код (модель АЦП-14 ШЛ3.036.049) предназначен для преобразования значения напряжения U, действующего на его входе в течение времени выборки в двоичный код, с выводом кода на шины чтения (R) магистрали КАМАК. Значения коэффициентов Ск - сигналов на к-ой шине, кодирующих преобразованное напряжение, определяется следующими соотношениями:

M = целая часть (U/d), где d - шаг дискретности преобразования.

 $M = C1 + C2*2 + ... + Cк*2^{K-1}$ (1) (Ск = 0 или 1 - сигнал на к-ой шине),

Технические характеристики АЦП-14:

- диапазон входного сигнала +/- 7 В;
- среднее значение дискретности $d = 10^{-3} B$;
- время преобразования 2 мс;
- входное сопротивление 1МОм;
- погрешность преобразования е = +/- 0,06%;
- потребляемая мощность 8 Вт;
- время прогрева 30 мин;
- время непрерывной работы 8 час.;
- напряжение питания 6 +/- 24 В.

Максимальное число двоичных разрядов в модуле m = 14. В четырнадцатом разряде кодируется знак напряжения: C14 = 1, если входное напряжение отрицательно и C14 = 0, если оно положительно.

Если C14 = 1, то для получения значения U напряжения на входе АЦП надо по формуле (1) определить число M (κ = 14), кодирующее напряжение (т.к. C14 = 1, то это будет число, большое, чем 2^{13} = 8192), и найти значение напряжения по формуле U = d*(8192-M) (оно будет отрицательным)

Модуль управляется командами (табл. 4).

Таблица 4. Команды управления модулем АЦП

Код команды (F)	Назначение	
25	Пуск преобразователя	
0	Вывод результата преобразования на шины чтения	
8	Проверка L-запроса	
10	Сброс L-запроса	
26	Разрешение L-запроса	
24	Запрещение L-запроса	
Z, C	Установка модуля в исходное положение.	