Empty page for rough work			

MCQ Paper - test

Generated Question Paper

MCQ Examination

Name:	
Class:	Section:
Roll no.:	

Instructions:

- Fill OMR sheet with blue/black pen.
- Fill circles completely.
- No stray marks.
- Enter Name, Class, Section.

SET A

Questions: **9**Duration: **120min**

Calculus: Differentiation and Integration

This section covers fundamental and advanced topics in differential and integral calculus.

1. Evaluate the definite integral: $\int_0^{\pi} (\pi/2) \sin^2(x) dx$

A. 1 **B.** π/2 **C.** $\pi/4$ **D.** 0

2. Consider the function of two variables provided below:

Let f(x, y) be a differentiable function defined as $f(x, y) = e^{x}(xy) + cos(x^2 + y^2)$.

What is the value of the partial derivative $\partial f/\partial x$ at the point (0, 0)?

A. e **B.** -1 **C.** 1 **D.** 0

3. The Fundamental Theorem of Calculus connects the concepts of differentiation and integration.

Statement I:

If F'(x) = f(x) for all x in [a, b], then $\int f(x) dx = F(b) - F(a)$.

Statement II:

If f is continuous on [a, b], then the function $G(x) = \int_{-\infty}^{x} f(t) dt$ is differentiable on (a, b) and G'(x) = f(x).

Which of the statements above are considered parts of the Fundamental Theorem of Calculus?

- A. Statement II only
- B. Neither statement is correct
- c. Statement I only
- D. Both Statement I and Statement II

Linear Algebra: Matrices and Vector Spaces

This section tests knowledge of matrix properties, linear transformations, and vector spaces.

4. Match each type of matrix in Column A with its defining property in Column

Column A: Matrix Type	-	Column B: Property
1. Orthogonal	-	a. A = A
2. Symmetric	-	b. $A^2 = A$
3.	-	c. $A = -A$
Skew-Symmetr		
ic		
4. Idempotent	-	d. $A^{-1} = A$

Which option represents the correct matching?

- **A.** 1-b, 2-a, 3-d, 4-c **B.** 1-a, 2-d, 3-b, 4-c
- c. 1-d, 2-c, 3-a, 4-b
- **D.** 1-d, 2-a, 3-c, 4-b
- **5.** For any two $n \times n$ matrices A and B. which of the following properties is NOT always true?
 - i. det(A) = det(A)
 - ii. det(AB) = det(A)det(B)
 - iii. det(A + B) = det(A) + det(B)
 - iv. If A is invertible, $det(A^{-1}) =$ 1/det(A)
 - A. Property iv
- **B.** Property iii
- c. Property ii
- **D.** Property i

Let T: $\mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation defined by the rule T(x, y, z) = (x + 2y - z, 3x + y + 4z).

Based on the transformation T, evaluate the following statements:

Statement I:

The kernel (null space) of T has a dimension greater than zero.

Statement II:

The transformation T is surjective (onto).

Which assessment of the statements is correct?

- A. Both statements are false
- **B.** Statement I is true. Statement II is false
- c. Both statements are true
- **D.** Statement I is false, Statement II is true

Complex Analysis and Series

Questions on complex numbers, Euler's formula, and the convergence of infinite series.

7. For a complex number z = a + ib, where $i^2 = -1$, consider the following statements:

Assertion (A):

The modulus |z| is given by the formula $\sqrt{(a^2 + b^2)}$.

Reason (R):

|z| geometrically represents the distance of the point (a, b) from the origin in the Argand (complex) plane.

Which of the following is true regarding statements (A) and (R)?

- A. Both (A) and (R) are true, and (R) is the correct explanation of (A).
- **B.** (A) is false but (R) is true.
- c. (A) is true but (R) is false.
- **D.** Both (A) and (R) are true, but (R) is not the correct explanation of (A).

- Consider the infinite series S = $\Sigma_{n=1 \text{ to } \infty} ((-1)^n * n) / (n^2 + 1).$ Determine the nature of the convergence of the series S.
 - **A.** Absolutely convergent
 - B. The series does not converge or diverge
 - c. Divergent
 - **D.** Conditionally convergent
- Euler's formula states that $e^{(i\theta)} =$ $cos(\theta) + i sin(\theta)$, linking complex exponentials with trigonometric functions.

Using this formula, which step in the following simplification of $e^{(i\pi)} + 1$ contains an error?

Step 1: Substitute $\theta = \pi$ into the formula, yielding $e^{(i\pi)} = cos(\pi) + i$ $sin(\pi)$.

Step 2: Evaluate the trigonometric functions: $cos(\pi) = -1$ and $sin(\pi) =$

Step 3: Conclude that $e^{(i\pi)} = -1 +$ i(0) = -1.

Step 4: Perform the final addition: $e^{(i\pi)} + 1 = 1 + 1 = 2$.

- A. Step 3
- B. Step 1
- c. Step 4
- D. Step 2

END * * * *