

Trade-off Model of Fog Cloud Computing for Space Information Networks

Jarred M. Carter

Husnu S. Narman

Ozlem Cosgun

Jinwei Liu

Weisberg Division of Computer Science

Marshall University

narman@marshall.edu

https://hsnarman.github.io/

October 2020

Outline

- Introduction
- Risks and Vulnerabilities
- Solutions
- Proposed Model
- Drawbacks
- Conclusion

Introduction

- Fog computing is the choice to process data wherever most necessary
- Cloud computing emerged as a business opportunity with virtualized services
- A steadily-growing request for internet-based services has led to an increase in complexity and number of clients within the client/server model
- Directly proportional relationship with cybersecurity concerns

Objective

To investigate the existing works for eliminating/mitigating vulnerabilities in fog-cloud computing and space information networks to allow for the creation of a model using various types of layered encryption and appropriately allocated physical hardware for risk mitigation.

Risks + Vulnerabilities

- Cloud computing is typically delivered in a pay-as-you-go manner, requiring data centers and services to be readily available
- Prevalence of cloud computing ensures minimal overhead
- Low latency is a benefit of fog nodes being at the edge of a network, but what about the consequences?
- Issues with fog and cloud computing negatively affect space information networks
- Satellite processing systems must be split to protect data from unauthorized access
- Key management centers present an issue within high-latency systems

Background

- Satellite processing systems must be split to protect data from unauthorized access
- Key management centers present an issue within high-latency systems

Programmatic Solutions

The authors of *Coding* for Distributed Fog Computing discuss coding concepts of minimum bandwidth codes and minimum latency codes to illustrate their impacts on fog computing.

Image: Comparison of the communication load of minimum bandwidth codes with that of an uncoded scheme.

Retireved from Coding for Distributed Fog Computing, Li, Ali, et.al, 2017.

Other Solutions

NASA's Space Communications and Navigation (SCaN) Program has been working on 100 Gbps space and ground terminals for LEO Direct-to-Earth communication.

Image: Near Earth Network (NEN) AS-2 Antenna Declared Operational by NASA, Jan. 10, 2018. Retrieved from https://www.nasa.gov/directorates/heo/scan/images/history/October2017

Proposed Model

- Stream-like CTR asymmetric encryption scheme with a derivable public key
 - E(seed, public key)
- ID-based cryptography for handshake duration reduction
- Decentralized key management
- Satellites possess an extra processor not to be accessed by any other entity
- Implementation of Secure Socket Proxy for business use
 - \$81 for five
 - \$895 for 90

Drawbacks of Proposed Model

- Shared keys within asymmetric encryption must be distributed
- High burst error rates
- Propagation delays are eminent
- Quality of Service and price are directly proportional
- Cost and number of users are directly proportional

Conclusion

We first identified existing problems within space information networks and proposed a model of fog-cloud integrated space information network.

The most important issues surrounding the trade-off between fog and cloud computing involve encryption scheme, key management schemes, and long/variable propagation latency.

Further testing in a cloud simulation environment is required to determine runtime and a numerical estimate of feasibility of such a model for space information networks.

Thank You!

narman@marshall.edu

https://hsnarman.github.io/

https://linkedin.com/in/jarred-carter

This research was made possible by NASA West Virginia Space Grant Consortium Training Grant #NNX15AI01H