Mathematics for Computer Scientists COMP1046 Tutorial 1 Solutions

1. Construct truth tables.

p	q	r	$q \vee r$	$p \to (q \lor r)$	$\neg q$	$p \land \neg q$	$(p \land \neg q) \to r$	$(p \to (q \lor r)) \leftrightarrow ((p \land \neg q) \to r)$
Τ	Т	Т	Т	T	F	F	T	T
T	\mathbf{T}	\mathbf{F}	Т	${ m T}$	F	F	m T	T
T	\mathbf{F}	${ m T}$	Т	${ m T}$	Т	Τ	${ m T}$	${ m T}$
T	\mathbf{F}	\mathbf{F}	F	F	T	Τ	F	${ m T}$
F	${ m T}$	${ m T}$	T	${ m T}$	F	F	T	${ m T}$
F	${ m T}$	\mathbf{F}	Т	${ m T}$	F	F	T	${ m T}$
F	\mathbf{F}	\mathbf{T}	Γ	${ m T}$	Т	F	${ m T}$	m T
F	\mathbf{F}	\mathbf{F}	F	${ m T}$	Т	F	${ m T}$	${ m T}$

p	q	r	$q \rightarrow r$	$p \to (q \to r)$	$p \wedge q$	$(p \land q) \to r$	$(p \to (q \to r)) \leftrightarrow ((p \land q) \to r)$
T	Τ	Τ	T	T	T	T	T
T	Τ	\mathbf{F}	F	F	Γ	F	Γ
T	\mathbf{F}	${ m T}$	T	${ m T}$	F	Γ	${ m T}$
T	\mathbf{F}	\mathbf{F}	T	${ m T}$	F	Γ	Γ
F	${ m T}$	${ m T}$	T	${ m T}$	F	Γ	Γ
F	${\rm T}$	\mathbf{F}	F	${ m T}$	F	Γ	${ m T}$
F	\mathbf{F}	${ m T}$	T	Γ	F	T	Γ
F	F	F	T	T	F	brack	Γ

2. Using tables of logical equivalences from the lectures:

$$\begin{array}{ll} (p \to r) \vee (q \to r) \\ \equiv & (\neg p \vee r) \vee (\neg q \vee r) & \text{by rule (20)} \\ \equiv & (\neg p \vee \neg q) \vee (r \vee r) & \text{by rules (8) and (10)} \\ \equiv & (\neg p \vee \neg q) \vee r & \text{by rule (5)} \\ \equiv & \neg (\neg p \vee \neg q) \to r & \text{by rule (22)} \\ \equiv & (p \wedge q) \to r & \text{by rule (15)} \end{array}$$

(2).

(3). To be logically equivalent, two propositions must always take the same truth value.

Provide counterexample: $p \equiv F, q \equiv F, r \equiv F$, then $(p \to q) \to r$ is F and $p \to (q \to r)$ is T.

Therefore they are not logically equivalent.

- 3. This is one solution, others are possible:
 - (a) $\neg \exists x (P(x) \land Q(x))$
 - (b) $\forall x (Q(x) \to R(x))$
 - (c) $\neg \exists x (P(x) \land R(x))$
 - (d) No, because an individual c with $P(c), \neg Q(c), R(c)$ is true of (a) and (b) but makes (c) false.