Diffusion Models

From Foundations to Implementation

Generative Models - Overview

Learn to estimate data distribution q(X):

- Implicitly
- Explicitly

So we can generate samples that are similar to the data distribution.

Generative Models - Overview (cont)

https://lilianweng.githu b.io/posts/2021-07-11 -diffusion-models/

Generative Models - GANs Family

Trying to estimate the data distribution through **Adversarial Training** recipe

- Pros
 - Easy to design (just generator and discriminator)
- Cons
 - Hard to train, not stable cuz the nature of the optimization (2-players optimization), no grantee to converge.
 - Learn the data distribution implicitly.
 - Failed in representation learning (pre-training in ssl, energy-based models).

https://lilianweng.github.io/posts/ 2021-07-11-diffusion-models/

Generative Models - VAE Family, WHY?

https://lilianweng.github.io/posts/2018-08-12-vae/

Generative Models - VAE Family

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Generative Models - VAE Family (cont)

Trying to estimate the data distribution through **Variational Inference** recipe

- Pros
 - Easy to design (just encoder and decoder)
 - Easy to train convex loss function
- Cons
 - Learn the data distribution implicitly.
 - Need prior knowledge about the latent distribution.

Generative Models - Flow-Based Models

Trying to estimate the data distribution through Change of Variable

- Pros
 - Learn the data distribution Explicitly.
- Cons
 - Constraint in the design network.

$$egin{aligned} m{p}_x(m{x}) &= m{p}_z(m{z}) \left| \det J_f(m{z})
ight|^{-1}, & J_f(m{z}) = rac{\partial f(m{z})}{\partial m{z}} = egin{bmatrix} rac{\partial z_1}{arphi} & \cdots & rac{\partial z_d}{\partial z_d} \ draveright| & \ddots & draveright| \ rac{\partial f_d}{\partial z_1} & \cdots & rac{\partial f_d}{\partial z_d} \end{pmatrix}. \end{aligned}$$

Generative Models - Diffusion Models

Diffusion models:Gradually add Gaussian noise and then reverse

Trying to estimate the data distribution through **forward and backward** markovian process.

- Pros
 - Easy to design
 - Easy to train very stable.
- Cons
 - Long time for sampling

Diffusion Models - Main Idea

Diffusion Models - Forward Process

$$q(\mathbf{x}_t|\mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1-eta_t}\mathbf{x}_{t-1}, eta_t\mathbf{I}) \quad q(\mathbf{x}_{1:T}|\mathbf{x}_0) = \prod_{t=1}^t q(\mathbf{x}_t|\mathbf{x}_{t-1})$$

Diffusion Models - Forward Process

$$q(\mathbf{x}_t|\mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1-eta_t}\mathbf{x}_{t-1}, eta_t\mathbf{I}) \quad q(\mathbf{x}_{1:T}|\mathbf{x}_0) = \prod_{t=1}^{T} q(\mathbf{x}_t|\mathbf{x}_{t-1})$$

And now the question becomes, How can we reverse the process?

It's should be straight forward, just flip the conditional probability -> Useful ?

Unfortunately, we can not do this!

$$q(\mathbf{x}_{t-1}|\mathbf{x}_t) = \frac{q(\mathbf{x}_t|\mathbf{x}_{t-1})q(\mathbf{x}_{t-1})}{q(\mathbf{x}_t)}$$

So what we can do, is learn a distribution that approximates the data distribution.

Here p(X) comes into play!

$$egin{aligned} L_{ ext{CE}} &= -\mathbb{E}_{q(\mathbf{x}_0)} \log p_{ heta}(\mathbf{x}_0) \ &= -\mathbb{E}_{q(\mathbf{x}_0)} \log \left(\int p_{ heta}(\mathbf{x}_{0:T}) d\mathbf{x}_{1:T}
ight) \ &= -\mathbb{E}_{q(\mathbf{x}_0)} \log \left(\int q(\mathbf{x}_{1:T}|\mathbf{x}_0) rac{p_{ heta}(\mathbf{x}_{0:T})}{q(\mathbf{x}_{1:T}|\mathbf{x}_0)} d\mathbf{x}_{1:T}
ight) \ &= -\mathbb{E}_{q(\mathbf{x}_0)} \log \left(\mathbb{E}_{q(\mathbf{x}_{1:T}|\mathbf{x}_0)} rac{p_{ heta}(\mathbf{x}_{0:T})}{q(\mathbf{x}_{1:T}|\mathbf{x}_0)}
ight) \ &\leq -\mathbb{E}_{q(\mathbf{x}_{0:T})} \log rac{p_{ heta}(\mathbf{x}_{0:T})}{q(\mathbf{x}_{1:T}|\mathbf{x}_0)} \ &= \mathbb{E}_{q(\mathbf{x}_{0:T})} \left[\log rac{q(\mathbf{x}_{1:T}|\mathbf{x}_0)}{p_{ heta}(\mathbf{x}_{0:T})}
ight] = L_{ ext{VLB}} \end{aligned}$$

$$\begin{split} L_{\text{VLB}} &= \mathbb{E}_{q(\mathbf{x}_{0:T})} \Big[\log \frac{q(\mathbf{x}_{1:T}|\mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{0:T})} \Big] \\ &= \mathbb{E}_{q} \Big[\log \frac{\prod_{t=1}^{T} q(\mathbf{x}_{t}|\mathbf{x}_{t-1})}{p_{\theta}(\mathbf{x}_{T}) \prod_{t=1}^{T} p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})} \Big] \\ &= \mathbb{E}_{q} \Big[-\log p_{\theta}(\mathbf{x}_{T}) + \sum_{t=1}^{T} \log \frac{q(\mathbf{x}_{t}|\mathbf{x}_{t-1})}{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})} \Big] \\ &= \mathbb{E}_{q} \Big[-\log p_{\theta}(\mathbf{x}_{T}) + \sum_{t=2}^{T} \log \frac{q(\mathbf{x}_{t}|\mathbf{x}_{t-1})}{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})} + \log \frac{q(\mathbf{x}_{1}|\mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{0}|\mathbf{x}_{1})} \Big] \\ &= \mathbb{E}_{q} \Big[-\log p_{\theta}(\mathbf{x}_{T}) + \sum_{t=2}^{T} \log \left(\frac{q(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{0})} + \log \frac{q(\mathbf{x}_{1}|\mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{0})} + \log \frac{q(\mathbf{x}_{1}|\mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{0}|\mathbf{x}_{1})} \Big] \\ &= \mathbb{E}_{q} \Big[-\log p_{\theta}(\mathbf{x}_{T}) + \sum_{t=2}^{T} \log \frac{q(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{0})} + \sum_{t=2}^{T} \log \frac{q(\mathbf{x}_{1}|\mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{0}|\mathbf{x}_{1})} \Big] \\ &= \mathbb{E}_{q} \Big[-\log p_{\theta}(\mathbf{x}_{T}) + \sum_{t=2}^{T} \log \frac{q(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{0})} + \log \frac{q(\mathbf{x}_{1}|\mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{0}|\mathbf{x}_{1})} \Big] \\ &= \mathbb{E}_{q} \Big[\log \frac{q(\mathbf{x}_{T}|\mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{T})} + \sum_{t=2}^{T} \log \frac{q(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{0})} - \log p_{\theta}(\mathbf{x}_{0}|\mathbf{x}_{1}) \Big] \\ &= \mathbb{E}_{q} \Big[\log \frac{p(\mathbf{x}_{T}|\mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{T})} + \sum_{t=2}^{T} \log \frac{p(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})} - \log p_{\theta}(\mathbf{x}_{0}|\mathbf{x}_{1}) \Big] \\ &= \mathbb{E}_{q} \Big[\log \frac{p(\mathbf{x}_{T}|\mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{T})} + \sum_{t=2}^{T} \log \frac{p(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})} - \log p_{\theta}(\mathbf{x}_{0}|\mathbf{x}_{1}) \Big] \\ &= \mathbb{E}_{q} \Big[\log \frac{p(\mathbf{x}_{T}|\mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{T})} + \sum_{t=2}^{T} \log \frac{p(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})} - \log p_{\theta}(\mathbf{x}_{0}|\mathbf{x}_{1}) \Big] \\ &= \mathbb{E}_{q} \Big[\log \frac{p(\mathbf{x}_{T}|\mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{T})} + \sum_{t=2}^{T} \log \frac{p(\mathbf{x}_{T}|\mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{T}|\mathbf{x}_{0},\mathbf{x}_{0})} - \log p_{\theta}(\mathbf{x}_{0}|\mathbf{x}_{0}) \Big] \\ &= \mathbb{E}_{q} \Big[\log \frac{p(\mathbf{x}_{T}|\mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{T})} + \sum_{t=2}^{T} \log \frac{p(\mathbf{x}_{T}|\mathbf{x}_{0})}{p$$

Diffusion Models - Loss Function

$$\|\boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta}(\sqrt{\bar{\alpha}_{t}}\mathbf{x}_{0} + \sqrt{1 - \bar{\alpha}_{t}}\boldsymbol{\epsilon}, t)\|^{2}$$

predicted_noise = model(x_t, t)
loss = mse(noise, predicted_noise)

All these equations = single line of code!
(The Beauty of The Mathematics)

Diffusion Models - Training

Let
$$lpha_t = 1 - eta_t$$
 and $ar{lpha}_t = \prod_{i=1}^t lpha_i$:

Algorithm 1 Training

- 1: repeat
- 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$
- 3: $t \sim \text{Uniform}(\{1, \dots, T\})$
- 4: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 5: Take gradient descent step on

$$\nabla_{\theta} \left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \right\|^2$$

6: until converged

Diffusion Models - Sampling

Algorithm 2 Sampling

- 1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 2: **for** t = T, ..., 1 **do**
- 3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if t > 1, else $\mathbf{z} = \mathbf{0}$
- 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$
- 5: end for
- 6: return \mathbf{x}_0

Diffusion Models - Sampling

Algorithm 2 Sampling

- 1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 2: **for** t = T, ..., 1 **do**
- 3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if t > 1, else $\mathbf{z} = \mathbf{0}$
- 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$
- 5: end for
- 6: return \mathbf{x}_0

problem?

Diffusion Models - Sampling

And then the question becomes, can we do the sampling process on a small sized image and still have the same output?

Latent Diffusion Models

Thanks!