Introduction

- Data analysis:
 - Exploratory
 - * Hypothesis creation
 - Confirmatory
 - * Decision-making

Data Analysis

Grouping of data:

- Is there a correlation between data patterns?
- Which data patterns are similar?
 - * Which words are similar?
 - * What kind of constructions are similar?

Cluster Analysis

• Tryon [3]

- Unsupervised classification of observed data into groups (clusters).
- Use:
 - * No a priori hypothesis.
 - * Grouping of Objects or Individuals.
 - * Grouping of Variables.

Application of Clustering

- Wide area e.g.:
 - medicine
 - chemistry
 - psychiatry
 - linguistics
- Development of taxonomies.
- Dissection of a population.

Clustering Objectives

- Everitt [1, 3-4]
 - Typology detection or identification.
 - Model Fitting.
 - Prediction based on groups.
 - Hypothesis testing.
 - Data exploration.
 - Hypothesis generating.
 - Data reduction.

Names for Cluster Analysis

- Different names used in the literature:
 - Q-analysis
 - Typology
 - Grouping
 - Clumping
 - Numerical taxonomy
 - Unsupervised pattern recognition

Clustering vs. Classification

• Classification:

- Grouping on the basis of a priori labels
- Discriminant analysis = supervised classification
- Given a set of labeled patterns, label an unlabeled pattern

- Labeling of unlabeled data sets or patterns
 - -Data-driven, not taxonomy driven = unsupervised
 - Labels are related to clusters
 - Cluster labels are obtained solely from data

Jain et al. [2]

Prerequisites for Clustering

- Representation of data (pattern and features)
- Data or pattern proximity measure (domain dependent)
- Clustering algorithm

Data Representation for Clustering

- Representation of data: pattern and features
 - Number of classes
 - Available and expected patterns
 - Features: number, type, scale
- May partially be opaque or unknown

Features for Clustering

Feature selection

 Identification of the subset of features that is most efficient for clustering.

Feature extraction

 Transformation of input features and creation of new salient features.

Clustering Process

- Input: Data selection and preparation
- Input: Feature selection and/or extraction
- Evaluation: Proximity measures
- Evaluation: Clustering algorithm
- Output: Taxonomy, Grouping, Clusters

Proximity Measures for Clustering

- The choice of pattern proximity measures is:
 - Domain or data dependent
 - Distance function defined on pairs of patterns
 - * e.g. Euclidean distance etc.

Grouping

- Hierarchical algorithms with nested groups
- Overlapping groups
- etc.

Data Abstraction for Clustering

- Extraction of data sets that are:
 - simple
 - compact
- Machine oriented: efficiency
- Human oriented: intuitive and comprehensible

Clustering Evaluation

- Pre-clustering evaluation: Cluster tendency
- Post-clustering evaluation: Cluster validity
 - Rather subjective
 - Valid: if clusters are not the result of an artifact or randomly chosen.

- Evaluation: Cluster validity
 - External assessment:
 - * Compare recovered structure to some a priori structure
 - * Automatically compare taxonomies, hierarchical trees, distance of centroids etc.

- Evaluation: Cluster validity
 - Internal assessment:
 - * Are resulting clusters intrinsically appropriate for the data.

- Evaluation: Cluster validity
 - Relative test:
 - * Compare two resulting clusters and measure relative merit.

- Clustering algorithms
 - Vast number
 - Selection on the basis of:
 - * Way in forming clusters
 - * Data-structure
 - * Robustness (changes, data types)

• Further criteria

- Data normalization
- Choice of similarity measure
- Data amount (small, large)
- Use of domain knowledge or heuristics

- Types of algorithms and techniques:
 - Hierarchical
 - Optimization
 - Density or mode-seeking
 - Clumping
 - K-means Clustering
 - Expectation Maximization (EM)

• Formalization:

- Feature Vector, Datum, Pattern: With d measurements: $\mathbf{x} = (x_1, x_2, ..., x_d)$
- $-x_1, x_2, \ldots$, in general: x_i is a feature or attribute of \mathbf{x}
- -d = dimension of pattern or pattern space

• Formalization:

- Pattern set: $\mathscr{X} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$
- The i^{th} pattern in \mathscr{X} : $\mathbf{x}_i = (x_{i,1}, x_{i,2}, \dots, x_{i,d})$
- or

Feature Matrix for Clustering

$$\mathscr{X} = \left[egin{array}{cccccc} \mathbf{x}_{1,1} & \mathbf{x}_{1,2} & \cdots & \mathbf{x}_{1,d} \ \mathbf{x}_{2,1} & \mathbf{x}_{2,2} & \cdots & \mathbf{x}_{2,d} \ \vdots & & & & & \\ \mathbf{x}_{k,1} & \mathbf{x}_{k,2} & \cdots & \mathbf{x}_{k,d} \end{array}
ight]$$

Class:

- Refers to the state of nature that governs the pattern generation process.
- Clustering techniques group patterns to classes.

- Hard clustering techniques:
 - Assign a label l_i to each pattern \mathbf{x}_i identifying its class.
 - For a set of patterns \mathscr{Z} the set of labels is $\mathscr{L} = \{l_1, l_2, \ldots, l_n\}$ with $l_i \in \{1, \ldots, k\}$, with k the number of clusters

• Fuzzy clustering:

– Assign each pattern \mathbf{x}_i a fractional degree of membership f_{ij} in each output cluster j.

• Distance measure:

- Specialization of a proximity measure
- Metric on the feature space for quantifying the similarity of patterns.

- Pattern and feature selection:
 - No theoretical guidelines
 - Depending on experiment, data, user
 - Deep understanding of features and possible transformations can lead to better results in clustering.

Objects:

- Physical object (e.g. door)
- Abstract notion (e.g. language style)
- Representation:
 - * Multidimensional vectors
 - * Each dimension is a feature
 - * Features are: quantitative or qualitative

- Quantitative features:
 - Continuous values (e.g. length)
 - Discrete values (e.g. number of vowels)
 - Interval values (e.g. duration of vowels)

Qualitative features:

- Nominal or unordered (e. g. lexical or morpho-syntactic category)
- Ordinal (e.g. sound intensity "quiet" "loud"; speed "slow" "fast")

• Structured features:

- Tree structure (e.g. ontology or thesaurus)
- Mapping structured features to linked values and features
- $\rightarrow symbolic \ objects$

• Strategy:

- Isolate most descriptive and discriminatory features
 - \rightarrow Feature selection
 - → Feature extraction
- Goals
 - * improve classification performance
 - * improve computational efficiency

- Similarity measures:
 - Essential to most clustering techniques
 - Most common calculation:
 - * Dissimilarity
 - * For continuous features: $Euclidean\ distance$

$$d_2(\mathbf{x}_i, \mathbf{x}_j) = \left(\sum_{k=1}^d (x_{i,k} - x_{j,k})^2\right)^{1/2} = \|\mathbf{x}_i - \mathbf{x}_j\|_2$$

• Euclidean distance

- Proximity evaluation in 2D or 3D space
- Good for compact or isolated clusters
- Tendency of largest-scaled feature to dominate others
 - * Solution: normalization

• Mahalanobis Metric

$$d_M(\mathbf{x}_i, \mathbf{x}_j) = (\mathbf{x}_i - \mathbf{x}_j)C_x^{-1}(\mathbf{x}_i - \mathbf{x}_j)^T$$

Covariance:

- variance = average of the squared deviation of a feature from its mean
- covariance = average of the products of the deviations
 of feature values from their means

Covariance of two features

- Measures their tendency to vary together, i. e. co-vary.
- Variance is the average of the squared deviation of a feature from its mean.
- Covariance is the average of the products of the deviations of feature values from their means.

- Covariance of two features
 - Feature i and Feature j:
 - * Let $\{x_{1,i}, x_{2,i}, \ldots, x_{n,i}\}$ be a set of n examples of Feature i,
 - * Let $\{x_{1,j}, x_{2,j}, \dots, x_{n,j}\}$ be a corresponding set of n examples of Feature j
 - * $x_{k,i}$ and $x_{k,j}$ are features of the same pattern k

Covariance of two features

- Let m_i be the mean of Feature i, and m_j be the mean of Feature j
- Then the covariance $c_{i,j}$ of Feature i and Feature j is:

$$\{[x_{1,i}-m_i][x_{1,j}-m_j]+\ldots+[x_{n,i}-m_i][x_{n,j}-m_j]\}/(n-1)$$

- Covariance matrix
 - Collection of all covariances in covariance matrix C:

$$C = \left[egin{array}{cccc} \mathbf{c}_{1,1} & \mathbf{c}_{1,2} & \cdots & \mathbf{c}_{1,d} \ \mathbf{c}_{2,1} & \mathbf{c}_{2,2} & \cdots & \mathbf{c}_{2,d} \ \vdots & & & & \ \mathbf{c}_{d,1} & \mathbf{c}_{d,2} & \cdots & \mathbf{c}_{d,d} \ \end{array}
ight]$$

Covariance properties

- If Feature i and Feature j tend to increase together, then $c_{i,j} > 0$
- If Feature i tends to decrease when Feature j increases, then $c_{i,j} < 0$
- If Feature i and Feature j are independent, then $c_{i,j}=0$

Covariance properties

- $-\left|c_{i,j}
 ight|<=s_{i}s_{j}$, where s_{i} is the standard deviation of
 - Feature i

$$-c_{i,i} = s_i^2 = v_i$$

- Covariance properties
 - Covariance $c_{i,j}$ is a number between $-s_i s_j$ and $+s_i s_j$ that measures the dependence between Feature i and Feature j, with $c_{i,j} = 0$ if there is no dependence.

• Mahalanobis Metric

- With uncorrelated features and same variance in all directions this corresponds to $Euclidean\ distance$.
- Automatically accounts for scaling of the coordinate axes.
- Corrects for correlation between different features.

• Mahalanobis Metric

- Problems:
 - * Potentially hard to determine covariance matrices accurately
 - * Memory and time requirements grow quadratically rather than linearly with the number of features, significant when the number of features becomes large.

Distance Matrix for Clustering

- Store distance between all vectors in a matrix
- Distance is commutative: $D(x_i, x_j) = D(x_j, x_i)$
- Distance $D(x_i, x_i) = 0$

Distance Matrix for Clustering

$\times 1$					
$\times 2$	4				
x3	3	6			
×4	5	7	9		
x5	1	2	8	11	
	x1	x2	x3	x4	x5

Clustering Methods

- Agglomerative or divisive clustering
 - Agglomerative
 - * Merge least distant elements to one cluster
 - Divisive
 - * Split cluster in sub-cluster

- Agglomerative Hierarchical Clustering
 - Nearest Neighbor or Single Link Method
 - * The distance between groups is the distance between their nearest neighbors
 - Furthest Neighbor or Complete Link Method
 - * The distance between groups is the distance between their most remote pair of individuals

- Agglomerative Hierarchical Clustering: Single Link Method
 - Given features and statistics, calculate distance matrix
 - Single link: search for minimal value and merge the corresponding two elements together (new cluster)
 - Recalculate the distance matrix, min(new cluster, other cluster) distance
 - Repeat until only one cell remains

- Agglomerative Hierarchical Clustering: Complete Link Method
 - Given features and statistics, calculate distance matrix
 - Single link: search for minimal value and merge the corresponding two elements together (new cluster)
 - Recalculate the distance matrix, max(new cluster, other cluster) distance
 - Repeat until only one cell remains

• Example:

- Cluster 1 & 5

×1						
x 2	4					
x 3	3	6				
x4	5	7	9			
x5	1	2	8	11		
	x1	x2	x3	x4	x5	

Example:

- Single link: cluster x1+5 & 2
- Complete link: cluster x1+5 & 2

Example:

- Single link: cluster $\times (1+5)+2 \& 3$
- Complete link: cluster $\times (1+5)+2 \& 3$

- Example: Elghamry (2003)
 - Clustering of words
 - * Hypothesis:

Bifurcation of lexicon (open vs. closed class) can be accomplished using simple features of words available in the input.

Observations:

- Frequency difference
- Predictability from context
- Learning patterns
- Information load or semantic properties
- Size and shape

- Roberts (2002)
 - Clustering for tagger development
 - Clustering of content words given a set of function words

- Parameters (Roberts, 2002):
 - Contextual patterns (pos. in clause, bigram size)
 - Distance metric (distance in vector space)
 - Clustering method
 - Corpus size

- Procedure (Roberts, 2002):
 - Selected set of 50 most frequent function words
 - Specification of a window (left and right of function word)
 - For all function words and all other words measure the position of other word in the window

• Roberts (2002)

• Translation into a vector (Roberts, 2002):

Relative Position	Frequency		
-4	317		
-3	288		
-2	341		
-1	0		
0	0		
1	1457		
2	146		
3	350		
4	510		

317

- Vector concatenation for every substantive in all its functional contexts (Roberts, 2002) to create single vectors
- Vector normalization
- Clustering on the basis of vectors

 Manipulation of parameters: distance metric, clustering algorithm, number of function words (vector length)

- Results (Roberts, 2002):
 - Number of function words correlates with clustering accuracy
 - For some word classes 100% accuracy was reached (nouns, name prefixes etc.)

References

- [1] Brian Everitt. *Cluster analysis*. Heinemann Educational for the Social Science Research Council, London, 1974.
- [2] Anil K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review. *ACM Computing Surveys*, 31(3):264–323, 1999.
- [3] Robert Choate Tryon. *Cluster analysis*. Edward Brothers, Ann Arbor, 1939.

Optimization Clustering

- Given a clustering criterion
 - How to find a partition into n groups that optimizes the criterion?
- Find all possible partitions and calculate their value of the given criterion.
- Choose the partition with the optimal value.

Optimization Clustering

• Complexity:

- Number of possible partitions given n objects into g groups (Liu, 1968):

$$N(n,g) = \frac{1}{g!} \sum_{m=1}^{g} (-1)^{g-m} {g \choose m} m^n$$

• Example:

$$-N(50,4) = 5.3 \times 10^{28} \text{ or } N(100,5) = 6.6 \times 10^{67}$$

- Complexity solution
 - Programming strategies
 - * Dynamic programming
 - * Branch and bound algorithms
- Hill-climbing algorithms
 - Iterative search for optimum value of clustering criteria
 via rearrangement of existing partitions

- K-means generates
 - -k number of disjoint clusters (non-hierarchical)
 - globular clusters (spherical, elliptical, convex)
- properties:
 - numerical
 - unsupervised
 - iterative

- K-means
 - k clusters
 - At least one element per cluster
 - No overlapping clusters
 - Non-hierarchical

- K-means
 - Every member of a cluster is closer to its cluster than to any other cluster
 - Procedure

K-means

- Initial partitioning of data set into k clusters
- For each data point: calculate distance to each cluster
- If one data point is closer to another cluster, relocate it
- Repeat until no further relocations possible

- K-means advantages
 - For large number of variables it is faster than hierarchical algorithms (for small k's)
 - Tighter clusters than hierarchical clustering, if cluster are globular

- K-means disadvantages
 - Initial set of k clusters can affect the result
 - Does not work well with non-globular clusters

• K-means example

Individual	Variable 1	Variable 2
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5

• Initial 2 clusters on the basis of the most distant individuals:

	Individual	Mean Vector
Group 1	1	(1.0, 1.0)
Group 2	4	(5.0, 7.0)

- Initial clustering of all remaining individuals:
 - For every other individual:
 - * Calculate Euclidean distance to the centroid of every cluster
 - * Assign individual to cluster
 - * Recalculate centroid for every cluster

• Mean vector or centroid (with coordinate x_i) with equal weight coordinates:

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

• Initial clustering of all remaining individuals:

	Group 1		Group 2	
	Individual	Mean Vector	Individual	Mean Vector
Step 1	1	(1.0, 1.0)	4	(5.0, 7.0)
Step 2	1, 2	(1.3, 1.5)	4	(5.0, 7.0)
Step 3	1, 2, 3	(1.8, 2.3)	4	(5.0, 7.0)
Step 4	1, 2, 3	(1.8, 2.3)	4, 5	(4.3, 6.0)
Step 5	1, 2, 3	(1.8, 2.3)	4, 5, 6	(4.3, 5.7)
Step 6	1, 2, 3	(1.8, 2.3)	4, 5, 6, 7	(4.1, 5.4)

Initial partitions and clustering criterion:

	Individual	Mean Vector	Sum of SQR error
Group 1	1, 2, 3	(1.8, 2.3)	6.84
Group 2	4, 5, 6, 7	(4.1, 5.4)	5.38
total			12.22

- Error = for every point distance to centroid
 - Criterion: the smaller the sum of square errors, the better the cluster

- Optimization Iteration:
 - Compare each individual's distance to its own mean with distance to the opposite group mean.
 - If distance to the mean in opposite group is smaller, relocate the individual.
 - Calculate the sum of square errors, if smaller than before, this is an improvement.

• Distance to means:

Individual	distance to mean 1	distance to mean 2
1	1.5	5.4
2	0.4	4.3
3	2.1	1.8
4	5.7	1.8
5	3.2	0.7
6	3.8	8.0
7	2.8	1.1

Subsequent partitions and new clustering criterion:

	Individual	Mean Vector	Sum of SQR error
Group 1	1, 2	(1.3, 1.5)	0.63
Group 2	3, 4, 5, 6, 7	(3.9, 5.1)	7.9
total			8.53

• Decrease of clustering criterion (from 12.22 to 8.53).

- Search and optimization techniques
 - Randomized!
- Components:
 - Objective or fitness function
 - Search space parameters encoded in a string = chro-mosomes
 - A collection of such strings = population

- Survival of the fittest:
 - Selection of a set of strings (mating pool)
 - Subject to operations:
 - * Crossover
 - * Mutation

- Iteration:
 - Selection & Crossover & Mutation
- Termination:
 - Fixed number of iterations
 - Specific termination condition

• Given:

- Fixed number K of clusters (cluster centres)
- Set of n unlabeled points
- Clustering metric *M*
 - Sum of Euclidean distance of the points from their respective cluster center

$$- \mathcal{M}(C_1, C_2, \dots, C_K) = \sum_{i=1}^K \sum_{x_j \in C_i} ||X_j - Z_i||$$

- Task:
 - Search cluster centres Z_1, Z_2, \ldots, Z_K such that \mathscr{M} is minimized
- String representation:
 - Sequence of real numbers representing K cluster centres
 - Length for N-dimensions = $N*K = X_1 Y_1 X_2 Y_2 \dots$

- Population initialization:
 - Random choice of K points from the population
- Crossover:
 - Generate crossover point randomly ([1, l-1])
 - Exchange right of crossover point
 - From two parents produce two offsprings

Mutation:

- Flipping value of a binary gene
- Real numbers:

Generate δ in the range of [0,1]

For gene value v:

$$v \pm 2 * \delta * v, v \neq 0$$

$$v \pm 2 + \delta, v = 0$$

- Fitness computation:
 - Initialization: random choice of centroids
 - Subsequent assignment of the points to centroids,
 where distance to centroid is the minimal
 - Recalculation of centroid
 - Replacement of chromosome by new centroids
- Fitness function: $1/\mathcal{M}$

Next Readings

- Déjean [1] (French!)
- Nakov [3]
- Maulik [2] (Everybody for next week!)

Term Projects

- Proposals
- Possibilities

References

- [1] Hervé Déjean. Concepts et algorithmes pour la découverte des structures formelles des langues. doctoral dissertation, Université de Caen Basse Normandie, 1998.
- [2] Ujjwal Maulik and Sanghamitra Bandyopadhyay. Genetic algorithm-based clustering techniques. *Pattern Recognition*, 33:1455–1465, 2000.
- [3] Preslav Nakov. Recognition and Morphological Clas-

sification of Unknown Words for German. diploma, Sofia University, 2001.

- [4] Andrew Roberts. Automatic acquisition of word classification using distributional analysis of content words with respect to function words. Technical report, University of Leeds, School of Computing, 2002.
- [5] Marcin Olof Szummer. Learning from Partially Labeled Data. doctoral dissertation, MIT, 2002.