Группоиды, кольца, поля

Александра Игоревна Кононова

ТЕИМ

8 июля 2024 г.— актуальную версию можно найти на https://gitlab.com/illinc/otik

Алгебра — множество G (носитель) с заданным на нём набором операций, удовлетворяющим некоторой системе аксиом.

Группоид — алгебра $\mathcal{G}=(G,\cdot)$, сигнатура которой состоит из одной бинарной операции $:G\times G\to G.$

3 / 11

Полугруппа — группоид, операция ассоциативна — $\forall a,b,c \in G$: $a\cdot (b\cdot c)=(a\cdot b)\cdot c$

Моноид — полугруппа с единицей: $\exists {f 1}: \forall a \in G \ a\cdot {f 1}={f 1}\cdot a=a$, ${f 1}$ — нейтральный элемент (единица) моноида

Группа — моноид, в котором для каждого элемента существует обратный.

Группа

Множество G с операцией \cdot — группа, если:

- lacktriangle операция \cdot в G ассоциативна: $a\cdot (b\cdot c)=(a\cdot b)\cdot c \ \ \forall a,b,c\in G;$
- ② в G существует единица (нейтральный элемент) 1: $a \cdot 1 = 1 \cdot a = a \ \forall a \in G$;
- f 3 для каждого $a \in G$ существует обратный: $a^{-1} \in G\colon a \cdot a^{-1} = a^{-1} \cdot a = 1.$

Если · коммутативна, то полугруппа (группа, группоид) называется коммутативной, или абелевой.

 $\exists {f 0}: \forall a \ a\cdot {f 0} = {f 0} \cdot a = {f 0}$ — полугруппа называется полугруппой **с** нулём (и не может быть группой).

Если все элементы полугруппы (группы, группоида) являются некоторыми целыми степенями $a \in G$ — полугруппа называется моногенной (циклической), a — примитивным (порождающим, образующим).

Трёхмерные вектора с векторным умножением —

 $\mathbb N$ с возведением в степень —

Арифметика с насыщением ([-N,N],+) —

$$(\mathbb{N},+)$$
 — (\mathbb{N},\cdot) —

$$\left(\mathbb{N}\cup\left\{ 0\right\} ,+\right) -$$

$$(\mathbb{N} \cup \{0\}, \cdot)$$
 —

$$(\mathbb{Z},+)$$
 —

$$(\mathbb{Z},\cdot)$$
 —

 $\mathbb N$ с возведением в степень —

Арифметика с насыщением ([-N,N],+) —

$$\begin{array}{l} (\mathbb{N},+) - \\ (\mathbb{N},\cdot) - \\ (\mathbb{N} \cup \{0\}\,,+) - \\ (\mathbb{N} \cup \{0\}\,,\cdot) - \\ (\mathbb{Z},+) - \end{array}$$

 \mathbb{N} с возведением в степень — н/а группоид $((2^2)^3 \neq 2^{(2^3)})$.

Арифметика с насыщением ([-N,N],+) —

$$(\mathbb{N},+)$$
 —

$$(\mathbb{N},\cdot)$$
 —

$$(\mathbb{N} \cup \{0\}, +) -$$

$$(\mathbb{N} \cup \{0\}, \cdot)$$
 —

$$(\mathbb{Z},+)$$
 —

$$(\mathbb{Z},\cdot)$$
 —

Группоиды, кольца, поля

 \mathbb{N} с возведением в степень — н/а группоид $((2^2)^3 \neq 2^{(2^3)})$.

Арифметика с насыщением ([-N, N], +) — н/а группоид.

$$(\mathbb{N},+)$$
 —

$$(\mathbb{N},\cdot)$$
 —

$$(\mathbb{N} \cup \{0\}, +) -$$

$$(\mathbb{N} \cup \{0\}, \cdot)$$
 —

$$(\mathbb{Z},+)$$
 —

$$(\mathbb{Z},\cdot)$$
 —

 \mathbb{N} с возведением в степень — н/а группоид $((2^2)^3 \neq 2^{(2^3)})$.

Арифметика с насыщением ([-N, N], +) — н/а группоид.

 $(\mathbb{N}, +)$ — полугруппа (ассоц. группоид), коммутативная циклическая;

$$(\mathbb{N} \cup \{0\}, +) -$$

$$(\mathbb{N} \cup \{0\}, \cdot)$$
 —

$$(\mathbb{Z},+)$$
 —

$$(\mathbb{Z},\cdot)$$
 —

 \mathbb{N} с возведением в степень — н/а группоид $((2^2)^3 \neq 2^{(2^3)})$.

Арифметика с насыщением ([-N, N], +) — н/а группоид.

 $(\mathbb{N},+)$ — полугруппа (ассоц. группоид), коммутативная циклическая;

 (\mathbb{N},\cdot) — моноид (полугруппа с единицей), коммутативный.

$$(\mathbb{N} \cup \{0\}, +) -$$

$$(\mathbb{N} \cup \{0\}, \cdot)$$
 —

$$(\mathbb{Z},+)$$
 —

$$(\mathbb{Z},\cdot)$$
 —

 \mathbb{N} с возведением в степень — н/а группоид $((2^2)^3 \neq 2^{(2^3)})$.

Арифметика с насыщением ([-N,N],+) — н/а группоид.

 $(\mathbb{N},+)$ — полугруппа (ассоц. группоид), коммутативная циклическая;

 (\mathbb{N},\cdot) — моноид (полугруппа с единицей), коммутативный.

 $(\mathbb{N} \cup \{0\}\,, +)$ — циклический коммутативный моноид;

 $(\mathbb{N} \cup \{0\}, \cdot) -$

 $(\mathbb{Z},+)$ —

 \mathbb{N} с возведением в степень — н/а группоид $((2^2)^3 \neq 2^{\left(2^3\right)})$.

Арифметика с насыщением ([-N,N],+) — н/а группоид.

 $(\mathbb{N},+)$ — полугруппа (ассоц. группоид), коммутативная циклическая;

 (\mathbb{N},\cdot) — моноид (полугруппа с единицей), коммутативный.

 $(\mathbb{N} \cup \{0\}\,, +)$ — циклический коммутативный моноид;

 $(\mathbb{N} \cup \{0\}\,,\cdot)$ — коммутативный моноид с нулём.

 $(\mathbb{Z},+)$ —

 \mathbb{N} с возведением в степень — н/а группоид $((2^2)^3 \neq 2^{(2^3)})$.

Арифметика с насыщением ([-N, N], +) — н/а группоид.

 $(\mathbb{N}, +)$ — полугруппа (ассоц. группоид), коммутативная циклическая;

 (\mathbb{N},\cdot) — моноид (полугруппа с единицей), коммутативный.

 $(\mathbb{N} \cup \{0\}, +)$ — циклический коммутативный моноид;

 $(\mathbb{N} \cup \{0\}, \cdot)$ — коммутативный моноид с нулём.

 $(\mathbb{Z},+)$ — циклическая коммутативная группа;

Группоиды, кольца, поля

 \mathbb{N} с возведением в степень — н/а группоид $((2^2)^3 \neq 2^{(2^3)})$.

Арифметика с насыщением ([-N, N], +) — н/а группоид.

 $(\mathbb{N}, +)$ — полугруппа (ассоц. группоид), коммутативная циклическая;

 (\mathbb{N},\cdot) — моноид (полугруппа с единицей), коммутативный.

 $(\mathbb{N} \cup \{0\}, +)$ — циклический коммутативный моноид;

 $(\mathbb{N} \cup \{0\}, \cdot)$ — коммутативный моноид с нулём.

 $(\mathbb{Z},+)$ — циклическая коммутативная группа;

 (\mathbb{Z},\cdot) — коммутативный моноид.

Аксиомы кольца

 $\mathcal{K}=(\mathbb{K},+,\cdot,\mathbf{0},\mathbf{1})$, причём для любых $a,b,c\in\mathbb{K}$:

- a + (b+c) = (a+b) + c;
- **2** a + b = b + a;
- **3** a + 0 = a;
- $oldsymbol{0}$ для каждого $a\in\mathbb{K}$ существует элемент (-a), такой, что $a+(-a)=oldsymbol{0}$;
- **6** $a \cdot 1 = 1 \cdot a = a$;

По Б. Л. ван дер Вардену, кольцо — $\mathcal{K} = (\mathbb{K}, +, \cdot)$: ①, ②, ③, ② и разрешимость a+x=b — может не иметь единицы (③ и ④ доказываются). Множество чётных чисел — не кольцо по ⑤, но кольцо без единицы по ван дер Вардену.

Поле есть алгебра $\mathcal{F}=(\mathbb{F},+,\cdot,\mathbf{0},\mathbf{1}),\mathbf{0}\neq\mathbf{1},$ причём:

- a + b = b + a;
- **3** a + 0 = a;
- $oldsymbol{0}$ для каждого $a\in \mathbb{F}$ существует элемент (-a), такой, что $a+(-a)=\mathbf{0};$

- f 0 для каждого $a\in \mathbb F$, отличного от f 0, существует элемент a^{-1} , такой, что $a\cdot a^{-1}={f 1}$;

Поле = кольцо + $(\mathbf{0} \neq \mathbf{1}) + \mathbf{0} + \mathbf{0}$

Некоммутативное поле (без 6) — тело.

Кольцо с 6 — коммутативное кольцо.

Кольцо с ${\color{red} {0}}$ — тело либо нулевое кольцо (единственный элемент ${\color{red} {0}}=1$).

$$\mathbb{Z} \mathbb{Z}_k=ig(\{0,1,\dots,k-1\},\oplus_k,\odot_k,0,1ig)$$
 с операциями сложения и умножения по модулю $k-$

 $\mathbb H$ с операциями сложения и умножения кватернионов — $\mathbb Q$, $\mathbb R$, $\mathbb C$ — $\mathbb Z_p$ (p — простое) —

$$(\{a+b\cdot\sqrt{2}\},+,\cdot,0,1),\ a,b\in\mathbb{Q}$$

$$\mathbb{Z}_k = ig(\{0,\!1,\ldots,\!k-1\},\oplus_k,\odot_k,0,\!1ig)$$
 с операциями сложения и умножения по модулю $k-$

 $\mathbb H$ с операциями сложения и умножения кватернионов —

$$\mathbb{Q}$$
, \mathbb{R} , \mathbb{C} —

$$\mathbb{Z}_p \ (p-\text{простое}) - \\ \left(\{a+b\cdot\sqrt{2}\},+,\cdot,0,1\right), \ a,b\in\mathbb{Q} - \\$$

 $\mathbb{Z}_k = \big(\{0,1,\dots,k-1\}, \oplus_k, \odot_k, 0,1\big)$ с операциями сложения и умножения по модулю k — коммутативное кольцо (кольцо классов вычетов по модулю k).

Ш с операциями сложения и умножения кватернионов —

$$\mathbb{Q}$$
, \mathbb{R} , \mathbb{C} —

$$\mathbb{Z}_p$$
 $(p-$ простое $)$ — $(\{a+b\cdot\sqrt{2}\},+,\cdot,0,1),\ a,b\in\mathbb{Q}$ —

 $\mathbb{Z}_k = \big(\{0,1,\dots,k-1\}, \oplus_k, \odot_k, 0,1\big)$ с операциями сложения и умножения по модулю k — коммутативное кольцо (кольцо классов вычетов по модулю k).

 $\mathbb H$ с операциями сложения и умножения кватернионов — тело.

$$\mathbb{Q}$$
, \mathbb{R} , \mathbb{C} —

$$\mathbb{Z}_p \ (p-\text{простое}) - \ ig(\{a+b\cdot\sqrt{2}\},+,\cdot,0,1ig), \ a,b\in\mathbb{Q}- \ ig(a+b\cdot\sqrt{2}\}$$

 $\mathbb{Z}_k = \big(\{0,1,\dots,k-1\}, \oplus_k, \odot_k, 0,1\big)$ с операциями сложения и умножения по модулю k — коммутативное кольцо (кольцо классов вычетов по модулю k).

 $\mathbb H$ с операциями сложения и умножения кватернионов — тело.

$$\mathbb{Q}$$
, \mathbb{R} , \mathbb{C} — поля.

$$\mathbb{Z}_p \ (p-$$
 простое $)$ — $\left(\{a+b\cdot\sqrt{2}\},+,\cdot,0,1\right),\ a,b\in\mathbb{Q}$ —

 $\mathbb{Z}_k = \big(\{0,1,\dots,k-1\}, \oplus_k, \odot_k, 0,1\big)$ с операциями сложения и умножения по модулю k — коммутативное кольцо (кольцо классов вычетов по модулю k).

 $\mathbb H$ с операциями сложения и умножения кватернионов — тело.

 \mathbb{Q} , \mathbb{R} , \mathbb{C} — поля.

 \mathbb{Z}_p (p — простое) — поле.

$$({a+b\cdot\sqrt{2}},+,\cdot,0,1), a,b\in\mathbb{Q}$$

 $\mathbb{Z}_k = \big(\{0,1,\dots,k-1\}, \oplus_k, \odot_k, 0,1\big)$ с операциями сложения и умножения по модулю k — коммутативное кольцо (кольцо классов вычетов по модулю k).

 $\mathbb H$ с операциями сложения и умножения кватернионов — тело.

 \mathbb{Q} , \mathbb{R} , \mathbb{C} — поля.

 \mathbb{Z}_p (p — простое) — поле.

 $\left(\{a+b\cdot\sqrt{2}\},+,\cdot,0,1\right)$, $a,b\in\mathbb{Q}$ — поле.

Конечное поле или поле Галуа

Поле, состоящее из конечного числа элементов. \mathbb{F}_q или $\mathrm{GF}(q)$, где q — число элементов (мощность).

 $q=p^n$, где p — простое число (характеристика поля), $n\in\mathbb{N}.$ С точностью до изоморфизма:

для
$$q=p$$
 $\operatorname{GF}(q)=\mathbb{Z}_p$ для $q=p^n$ $\operatorname{GF}(q)$ — расширение поля \mathbb{Z}_p

ТЄИМ

www.miet.ru

Александра Игоревна Кононова illinc@mail.ru gitlab.com/illinc/raspisanie