МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ΓΟCT 34.12— 2018

Информационная технология КРИПТОГРАФИЧЕСКАЯ ЗАЩИТА ИНФОРМАЦИИ Блочные шифры

Издание официальное

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0—2015 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2—2015 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

Сведения о стандарте

- 1 РАЗРАБОТАН Центром защиты информации и специальной связи ФСБ России с участием Открытого акционерного общества «Информационные технологии и коммуникационные системы» (ОАО «ИнфоТеКС»)
- 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 26 «Криптографическая защита информации»
- 3 ПРИНЯТ Межгосударственным советом по метрологии, стандартизации и сертификации (протокол от 29 ноября 2018 г. № 54)

За принятие проголосовали:

Краткое наименование страны	Код страны по МК	Сокращенное наименование национального органа
по МК (ИСО 3166) 004—97	(ИСО 3166) 004—97	по стандартизации
Армения	AM	Минэкономики Республики Армения
Киргизия	KG	Кыргызстандарт
Россия	RU	Росстандарт
Таджикистан	TJ	Таджикстандарт

- 4 Приказом Федерального агентства по техническому регулированию и метрологии от 4 декабря 2018 г. № 1061-ст межгосударственный стандарт ГОСТ 34.12—2018 введен в действие в качестве национального стандарта Российской Федерации с 1 июня 2019 г.
 - 5 Настоящий стандарт подготовлен на основе применения ГОСТ Р 34.12—2015
- 6 B3AMEH ГОСТ 28147—89 в части раздела 1 «Структурная схема алгоритма криптографического преобразования»

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

© Стандартинформ, оформление, 2018

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

П

Содержание

1 Область применения
2 Термины, определения и обозначения
2.1 Термины и определения
2.2 Обозначения
3 Общие положения
4 Алгоритм блочного шифрования с длиной блока <i>n</i> = 128 бит
4.1 Значения параметров
4.2 Преобразования
4.3 Алгоритм развертывания ключа
4.4 Базовый алгоритм шифрования
5 Алгоритм блочного шифрования с длиной блока <i>п</i> = 64 бит
5.1 Значения параметров
5.2 Преобразования
5.3 Алгоритм развертывания ключа
5.4 Базовый алгоритм шифрования
Приложение А (справочное) Контрольные примеры

Введение

Настоящий стандарт содержит описание алгоритмов блочного шифрования, которые применяются в криптографических методах защиты информации.

Необходимость разработки стандарта вызвана потребностью в создании блочных шифров с различными длинами блока, соответствующих современным требованиям к криптографической стойкости и эксплуатационным качествам.

Настоящий стандарт терминологически и концептуально увязан с международными стандартами ИСО/МЭК 10116 [1] и стандартами серии ИСО/МЭК 18033 [2], [3].

Примечание — Основная часть стандарта дополнена приложением А «Контрольные примеры».

Поправка к ГОСТ 34.12—2018 Информационная технология. Криптографическая защита информации. Блочные шифры

В каком месте	Напечатано	Должно быть	
Пункт 5.1.1. Строка π_1'	$\pi'_1 = (6, 8, 2, 3, 9, 10, 5, 12, 1, 14, 4, 7, 1, 13, 0, 15);$	$\pi'_1 = (6, 8, 2, 3, 9, 10, 5, 12, 1, 14, 4, 7, 11, 13, 0, 15);$	

(ИУС № 4 2019 г.)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Информационная технология

КРИПТОГРАФИЧЕСКАЯ ЗАЩИТА ИНФОРМАЦИИ

Блочные шифры

Information technology. Cryptographic data security.

Block ciphers

Дата введения — 2019—06—01

1 Область применения

Настоящий стандарт определяет алгоритмы базовых блочных шифров, которые применяются в криптографических методах обработки и защиты информации, в том числе для обеспечения конфиденциальности, аутентичности и целостности информации при ее передаче, обработке и хранении в автоматизированных системах.

Определенные в настоящем стандарте алгоритмы криптографического преобразования предназначены для аппаратной или программной реализации, удовлетворяют современным криптографическим требованиям и по своим возможностям не накладывают ограничений на степень секретности защищаемой информации.

Стандарт рекомендуется использовать при создании, эксплуатации и модернизации систем обработки информации различного назначения.

2 Термины, определения и обозначения

2.1 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

2.1.1 **алгоритм зашифрования** (encryption algorithm): Алгоритм, реализующий зашифрование, т. е. преобразующий открытый текст в шифртекст.

Примечание — Адаптировано из ИСО/МЭК 18033-1 [2].

2.1.2 **алгоритм расшифрования** (decryption algorithm): Алгоритм, реализующий расшифрование, т. е. преобразующий шифртекст в открытый текст.

Примечание — Адаптировано из ИСО/МЭК 18033-1 [2].

- 2.1.3 **базовый блочный шифр** (basic block cipher): Блочный шифр, реализующий при каждом фиксированном значении ключа одно обратимое отображение множества блоков открытого текста фиксированной длины в блоки шифртекста такой же длины.
 - 2.1.4 **блок** (block): Строка бит определенной длины.

Примечание — Адаптировано из ИСО/МЭК 18033-1 [2].

2.1.5 **блочный шифр** (block cipher): Шифр из класса симметричных криптографических методов, в котором алгоритм зашифрования применяется к блокам открытого текста для получения блоков шифртекста.

Примечания

- 1 Адаптировано из ИСО/МЭК 18033-1 [2].
- 2 В настоящем стандарте установлено, что термины «блочный шифр» и «алгоритм блочного шифрования» являются синонимами.

Издание официальное

2.1.6 зашифрование (encryption): Обратимое преобразование данных с помощью шифра, которое формирует шифртекст из открытого текста.

Примечание — Адаптировано из ИСО/МЭК 18033-1 [2].

- 2.1.7 итерационный ключ (round key): Последовательность символов, вычисляемая в процессе развертывания ключа шифра и определяющая преобразование на одной итерации блочного шифра.
- 2.1.8 **ключ** (key): Изменяемый параметр в виде последовательности символов, определяющий криптографическое преобразование.

Примечания

- 1 Адаптировано из ИСО/МЭК 18033-1 [2].
- 2 В настоящем стандарте рассматриваются ключи только в виде последовательности двоичных символов (битов).
- 2.1.9 открытый текст (plaintext): Незашифрованная информация.

Примечание — Адаптировано из ИСО/МЭК 10116 [1].

- 2.1.10 развертывание ключа (key schedule): Вычисление итерационных ключей из ключа шифра.
- 2.1.11 расшифрование (decryption): Операция, обратная к зашифрованию.

Примечания

- 1 Адаптировано из ИСО/МЭК 18033-1 [2].
- 2 В настоящем стандарте в целях сохранения терминологической преемственности по отношению к нормативным документам, действующим на территории государства, принявшего настоящий стандарт, и опубликованным ранее на русском языке научно-техническим изданиям применяется термин «шифрование», объединяющий операции, определенные терминами «зашифрование» и «расшифрование». Конкретное значение термина «шифрование» определяется в зависимости от контекста упоминания.
- 2.1.12 симметричный криптографический метод (symmetric cryptographic technique): Криптографический метод, использующий один и тот же ключ для преобразования, осуществляемого отправителем, и преобразования, осуществляемого получателем.

Примечание — Адаптировано из ИСО/МЭК 18033-1 [2].

2.1.13 **шифр** (cipher): Криптографический метод, используемый для обеспечения конфиденциальности данных, включающий алгоритм зашифрования и алгоритм расшифрования.

Примечание — Адаптировано из ИСО/МЭК 18033-1 [2].

2.1.14 **шифртекст** (ciphertext): Данные, полученные в результате зашифрования открытого текста в целях скрытия его содержания.

Примечание — Адаптировано из ИСО/МЭК 10116 [1].

2.2 Обозначения

В настоящем стандарте применены следующие обозначения:

- V^* множество всех двоичных строк конечной длины, включая пустую строку;
- V_s множество всех двоичных строк длины s, где s целое неотрицательное число; нумерация подстрок и компонент строки осуществляется справа налево, начиная с нуля;
- $U \times W$ прямое (декартово) произведение множества U и множества W;
- |A| число компонент (длина) строки $A ∈ V^*$ (если A пустая строка, то |A| = 0);
- A||B> конкатенация строк $A, B\in V^*$, т. е. строка из $V_{|A|+|B|}$, в которой подстрока с бо́льшими номерами компонент из $V_{|B|}$ совпадает со строкой A, а подстрока с меньшими номерами компонент из $V_{|B|}$ совпадает со строкой B;
- $A\ll_{11}$ циклический сдвиг строки $A\in V_{32}$ на 11 компонент в сторону компонент, имеющих бо́льшие номера;
- операция покомпонентного сложения по модулю 2 двух двоичных строк одинаковой длины;
- $\mathbb{Z}_{2^{S}}$ кольцо вычетов по модулю 2^{S} ;
- \blacksquare операция сложения в кольце \mathbb{Z}_{232} ;
- \mathbb{F} конечное поле GF(2)[x]/p(x), где $p(x)=x^8+x^7+x^6+x+1\in GF(2)[x]$; элементы поля \mathbb{F} представляются целыми числами, причем элементу $\mathbf{z}_0+\mathbf{z}_1\cdot\theta+\ldots+\mathbf{z}_7\cdot\theta^7\in\mathbb{F}$ соответствует число $\mathbf{z}_0+2\cdot\mathbf{z}_1+\ldots+2^7\cdot\mathbf{z}_7$, где $\mathbf{z}_i\in\{0,1\},\ i=0,1,\ldots,7,\$ и θ обозначает класс вычетов по модулю p(x), содержащий x;

- $\operatorname{Vec}_s:\mathbb{Z}_{2^s} o V_s$ биективное отображение, сопоставляющее элементу кольца \mathbb{Z}_{2^s} его двоичное представление, т. е. для любого элемента $z \in \mathbb{Z}_{2S}$, представленного в виде $z=z_0+2\cdot z_1+\ldots+2^{s-1}\cdot z_{s-1},$ где $z_i\in\{0,1\},\ i=0,1,\ldots,s-1,$ выполнено равенство $\operatorname{Vec}_{s}(z) = z_{s-1} \| ... \| z_{1} \| z_{0};$
- $\operatorname{Int}_s: V_s \to \mathbb{Z}_{2^s}$ отображение, обратное к отображению Vec_s , т. е. $\operatorname{Int}_s = \operatorname{Vec}_s^{-1}$;
- $\Delta: V_8 \to \mathbb{F}$ биективное отображение, сопоставляющее двоичной строке из V_8 элемент поля \mathbb{F} следующим образом: строке $z_7 \| ... \| z_1 \| z_0$, $z_i \in \{0, 1\}$, i = 0, 1, ..., 7 соответствует элемент $z_0 + z_1 \cdot \theta + ... + z_7 \cdot \theta^7 \in \mathbb{F};$
- $\nabla : \mathbb{F} \rightarrow V_8$ отображение, обратное к отображению Δ , т. е. $\nabla = \Delta^{-1}$;
- композиция отображений, при которой отображение Ψ действует первым; композиция отображений Φ^{s-1} и Φ , причем $\Phi^1 = \Phi$.

3 Общие положения

В настоящем стандарте приведено описание двух базовых блочных шифров с длинами блоков n = 128 бит и n = 64 бит и длинами ключей k = 256 бит.

Примечания

- 1 На описанный в настоящем стандарте шифр с длиной блока n = 128 бит можно ссылаться как на блочный шифр «Кузнечик» («Kuznechik»).
- 2 На описанный в настоящем стандарте шифр с длиной блока n=64 бит можно ссылаться как на блочный шифр «Магма» («Мадта»).

4 Алгоритм блочного шифрования с длиной блока *n* = 128 бит

4.1 Значения параметров

4.1.1 Нелинейное биективное преобразование

нелинейного биективного преобразования выступает подстановка $\pi = \text{Vec}_8\pi' \text{Int}_8 : V_8 \to V_8$, где $\pi' : \mathbb{Z}_{28} \to \mathbb{Z}_{28}$. Значения подстановки π' записаны ниже в виде массива $\pi' = (\pi'(0), \pi'(1), ..., \pi'(255))$:

 π' = (252, 238, 221, 17, 207, 110, 49, 22, 251, 196, 250, 218, 35, 197, 4, 77, 233, 119, 240, 219, 147, 46, 153, 186, 23, 54, 241, 187, 20, 205, 95, 193, 249, 24, 101, 90, 226, 92, 239, 33, 129, 28, 60, 66, 139, 1, 142, 79, 5, 132, 2, 174, 227, 106, 143, 160, 6, 11, 237, 152, 127, 212, 211, 31, 235, 52, 44, 81, 234, 200, 72, 171, 242, 42, 104, 162, 253, 58, 206, 204, 181, 112, 14, 86, 8, 12, 118, 18, 191, 114, 19, 71, 156, 183, 93, 135, 21, 161, 150, 41, 16, 123, 154, 199, 243, 145, 120, 111, 157, 158, 178, 177, 50, 117, 25, 61, 255, 53, 138, 126, 109, 84, 198, 128, 195, 189, 13, 87, 223, 245, 36, 169, 62, 168, 67, 201, 215, 121, 214, 246, 124, 34, 185, 3, 224, 15, 236, 222, 122, 148, 176, 188, 220, 232, 40, 80, 78, 51, 10, 74, 167, 151, 96, 115, 30, 0, 98, 68, 26, 184, 56, 130, 100, 159, 38, 65, 173, 69, 70, 146, 39, 94, 85, 47, 140, 163, 165, 125, 105, 213, 149, 59, 7, 88, 179, 64, 134, 172, 29, 247, 48, 55, 107, 228, 136, 217, 231, 137, 225, 27, 131, 73, 76, 63, 248, 254, 141, 83, 170, 144, 202, 216, 133, 97, 32, 113, 103, 164, 45, 43, 9, 91, 203, 155, 37, 208, 190, 229, 108, 82, 89, 166, 116, 210, 230, 244, 180, 192, 209, 102, 175, 194, 57, 75, 99, 182).

4.1.2 Линейное преобразование

Линейное преобразование задается отображением $l: V_8^{16} \to V_8$, которое определяется следующим образом:

$$l(a_{15}, ..., a_0) = \nabla(148 \cdot \Delta(a_{15}) + 32 \cdot \Delta(a_{14}) + 133 \cdot \Delta(a_{13}) + 16 \cdot \Delta(a_{12}) + 194 \cdot \Delta(a_{11}) + 192 \cdot \Delta(a_{10}) + 1 \cdot \Delta(a_{9}) + 251 \cdot \Delta(a_{8}) + 1 \cdot \Delta(a_{7}) + 192 \cdot \Delta(a_{6}) + 194 \cdot \Delta(a_{5}) + 16 \cdot \Delta(a_{4}) + 133 \cdot \Delta(a_{3}) + 32 \cdot \Delta(a_{2}) + 148 \cdot \Delta(a_{1}) + 1 \cdot \Delta(a_{0})$$
(1)

для любых $a_i \in V_8$, i=0,1,...,15, где операции сложения и умножения осуществляются в поле $\mathbb F$, а константы являются элементами поля в указанном ранее смысле.

4.2 Преобразования

При реализации алгоритмов зашифрования и расшифрования используются следующие преобразования:

$$X[k]: V_{128} \to V_{128}$$
 $X[k](a) = k \oplus a,$ (2)

где $k, a \in V_{128}$;

$$S: V_{128} \to V_{128} \qquad S(a) = S(a_{15} \| ... \| a_0) = \pi(a_{15}) \| ... \| \pi(a_0), \tag{3}$$

где
$$a = a_{15} \| ... \| a_0 \in V_{128}, \ a_i \in V_8, \ i = 0, 1, ..., 15;$$

 $S^{-1}: V_{128} \to V_{128}$ преобразование, обратное к преобразованию S, которое может быть вычислено, например, следующим образом:

$$S^{-1}(a) = S^{-1}(a_{15} \| ... \| a_0) = \pi^{-1}(a_{15}) \| ... \| \pi^{-1}(a_0), \tag{4}$$

где $a=a_{15}\|...\|a_0\!\in\!V_{128},\ a_i\!\in\!V_8,\ i=0,1,...,15,$

 π^{-1} — подстановка, обратная к подстановке π ;

$$R: V_{128} \to V_{128}$$
 $R(a) = R(a_{15} \| ... \| a_0) = l(a_{15}, ..., a_0) \| a_{15} \| ... \| a_1,$ (5)

где
$$a = a_{15} \| ... \| a_0 \in V_{128}, \ a_i \in V_8, \ i = 0, 1, ..., 15;$$

$$L: V_{128} \to V_{128}$$
 $L(a) = R^{16}(a),$ (6)

где *a* ∈ *V*₁₂₈;

 $R^{-1}: V_{128} \to V_{128}$ преобразование, обратное к преобразованию R, которое может быть вычислено, например, следующим образом:

$$R^{-1}(a) = R^{-1}(a_{15} \| ... \| a_0) = a_{14} \| a_{13} \| ... \| a_0 \| l(a_{14}, a_{13}, ..., a_0, a_{15}), \tag{7}$$

где $a = a_{15} \| ... \| a_0 \in V_{128}, \ a_i \in V_8, \ i = 0, 1, ..., 15;$

$$L^{-1}: V_{128} \to V_{128}$$
 $L^{-1}(a) = (R^{-1})^{16}(a),$ (8)

где $a \in V_{128}$;

$$F[k]: V_{128} \times V_{128} \rightarrow F[k](a_1, a_0) = (LSX[k](a_1) \oplus a_0, a_1),$$
 (9)

 $V_{128} \times V_{128}$ где $k, a_0, a_1 \in V_{128}$.

4.3 Алгоритм развертывания ключа

Алгоритм развертывания ключа использует итерационные константы $C_i \in V_{128}, i=1,2,...,32$, которые определены следующим образом:

$$C_i = L(\text{Vec}_{128}(i)), i = 1, 2, ..., 32.$$
 (10)

Итерационные ключи $K_j \in V_{128}, i=1, 2, ..., 10$, вырабатываются на основе ключа $K = k_{255} \|...\| k_0 \in V_{256}, k_j \in V_1, i=0,1,..., 255$, и определяются равенствами:

$$K_{1} = k_{255} \| ... \| k_{128};$$

$$K_{2} = k_{127} \| ... \| k_{0};$$

$$(K_{2i+1}, K_{2i+2}) = F[C_{8(i-1)+8}] ... F[C_{8(i-1)+1}] (K_{2i-1}, K_{2i}), i = 1, 2, 3, 4.$$
(11)

4.4 Базовый алгоритм шифрования

4.4.1 Алгоритм зашифрования

Алгоритм зашифрования в зависимости от значений итерационных ключей $K_i \in V_{128}, i=1,2,...,10,$ реализует подстановку $E_{K_1,...,K_{10}}$, заданную на множестве V_{128} в соответствии с равенством

$$E_{K_1, \dots, K_{10}}(a) = X[K_{10}]LSX[K_9]\dots LSX[K_2]LSX[K_1](a),$$
 (12)

где $a \in V_{128}$.

4.4.2 Алгоритм расшифрования

Алгоритм расшифрования в зависимости от значений итерационных ключей $K_i \in V_{128}, i=1,2,...,10$, реализует подстановку $D_{K_1,...,K_{10}}$, заданную на множестве V_{128} в соответствии с равенством

$$D_{K_1, \dots, K_{10}}(a) = X[K_1] S^{-1} L^{-1} X[K_2] \dots S^{-1} L^{-1} X[K_9] S^{-1} L^{-1} X[K_{10}](a), \tag{13}$$

где $a ∈ V_{128}$.

5 Алгоритм блочного шифрования с длиной блока n = 64 бит

5.1 Значения параметров

5.1.1 Нелинейное биективное преобразование

В качестве нелинейного биективного преобразования выступают подстановки $\pi_i = \text{Vec}_4\pi_i' \text{Int}_4: V_4 \rightarrow V_4$, где $\pi_i': \mathbb{Z}_{2^4} \rightarrow \mathbb{Z}_{2^4}$, i = 0, 1, ..., 7. Значения подстановок π_i' записаны ниже в виде массивов $\pi_i' = (\pi_i'(0), \pi_i'(1), ..., \pi_i'(15)), i = 0, 1, ..., 7$:

$$\pi'_0 = (12, 4, 6, 2, 10, 5, 11, 9, 14, 8, 13, 7, 0, 3, 15, 1);$$

$$\pi'_1 = (6, 8, 2, 3, 9, 10, 5, 12, 1, 14, 4, 7, 1, 13, 0, 15);$$

$$\pi'_2 = (11, 3, 5, 8, 2, 15, 10, 13, 14, 1, 7, 4, 12, 9, 6, 0);$$

$$\pi'_3 = (12, 8, 2, 1, 13, 4, 15, 6, 7, 0, 10, 5, 3, 14, 9, 11);$$

$$\pi'_4 = (7, 15, 5, 10, 8, 1, 6, 13, 0, 9, 3, 14, 11, 4, 2, 12);$$

$$\pi'_5 = (5, 13, 15, 6, 9, 2, 12, 10, 11, 7, 8, 1, 4, 3, 14, 0);$$

$$\pi'_6 = (8, 14, 2, 5, 6, 9, 1, 12, 15, 4, 11, 0, 13, 10, 3, 7);$$

$$\pi'_7 = (1, 7, 14, 13, 0, 5, 8, 3, 4, 15, 10, 6, 9, 12, 11, 2).$$

5.2 Преобразования

При реализации алгоритмов зашифрования и расшифрования используются следующие преобразования:

$$t(a) = t(a_7 \| ... \| a_0) = \pi_7(a_7) \| ... \| \pi_0(a_0),$$
где $a = a_7 \| ... \| a_0 \in V_{32}, \ a_i \in V_4, \ i = 0,1,...,7;$

$$g[k]: V_{32} \to V_{32}$$

$$g[k](a) = (t(\text{Vec}_{32}(\text{Int}_{32}(a) \boxplus \text{Int}_{32}(k)))) \ll_{11},$$
где $k, a \in V_{32};$

$$G[k]: V_{32} \times V_{32} \to V_{32} \times V_{32}$$

$$G[k](a_1, a_0) = (a_0, g[k](a_0) \oplus a_1),$$
где $k, a_0, a_1 \in V_{32};$

$$G^*[k]: V_{32} \times V_{32} \to V_{64}$$

$$G^*[k](a_1, a_0) = (g[k](a_0) \oplus a_1) \| a_0,$$
где $k, a_0, a_1 \in V_{32}.$

$$(17)$$

5.3 Алгоритм развертывания ключа

Итерационные ключи $K_i \in V_{32}$, i = 1, 2, ..., 32, вырабатываются на основе ключа $K = k_{255} \parallel ... \parallel k_0 \in V_{256}$, $k_i \in V_1$, i = 0, 1, ..., 255, и определяются равенствами:

$$K_{1} = k_{255} \| \dots \| k_{224};$$

$$K_{2} = k_{223} \| \dots \| k_{192};$$

$$K_{3} = k_{191} \| \dots \| k_{160};$$

$$K_{4} = k_{159} \| \dots \| k_{128};$$

$$K_{5} = k_{127} \| \dots \| k_{96};$$

$$K_{6} = k_{95} \| \dots \| k_{64};$$
(18)

$$K_7 = k_{63} \|... \| k_{32};$$

$$K_8 = k_{31} \|... \| k_0;$$

$$K_{i+8} = K_i, i = 1, 2, ..., 8;$$

$$K_{i+16} = K_i, i = 1, 2, ..., 8;$$

$$K_{i+24} = K_{9-i}, i = 1, 2, ..., 8.$$

5.4 Базовый алгоритм шифрования

5.4.1 Алгоритм зашифрования

Алгоритм зашифрования в зависимости от значений итерационных ключей $K_i \in V_{32}, i=1,2,...,32$, реализует подстановку $E_{K_1,...,K_{32}}$, заданную на множестве V_{64} в соответствии с равенством

$$E_{K_1, \dots, K_{32}}(a) = G^*[K_{32}]G[K_{31}] \dots G[K_2]G[K_1](a_1, a_0), \tag{19}$$

где $a = a_1 \| a_0 \in V_{64}, a_0, a_1 \in V_{32}.$

5.4.2 Алгоритм расшифрования

Алгоритм расшифрования в зависимости от значений итерационных ключей $K_i \in V_{32}, i=1,2,...,32,$ реализует подстановку $D_{K_1,...,K_{32}}$, заданную на множестве V_{64} в соответствии с равенством

$$D_{K_1, \dots, K_{32}}(a) = G^*[K_1]G[K_2] \dots G[K_{31}]G[K_{32}](a_1, a_0),$$
(20)

где $a = a_1 \| a_0 \in V_{64}, a_0, a_1 \in V_{32}.$

Приложение A (справочное)

Контрольные примеры

А.1 Общие положения

Настоящее приложение носит справочный характер и не является частью нормативных положений настоящего стандарта.

В настоящем приложении двоичные строки из V^* , длина которых кратна 4, записываются в шестнадцатеричном виде, а символ конкатенации ("||") опускается, т. е. строка $a \in V_{Ar}$ будет представлена в виде

$$a_{r-1}a_{r-2}...a_0$$
,

где $a_i \in \{0, 1, ..., 9, a, b, c, d, e, f\}$, i = 0, 1, ..., r - 1. Соответствие между двоичными строками длины 4 и шестнадцатеричными строками длины 1 задается естественным образом (см. таблицу А.1). Преобразование, ставящее в соответствие двоичной строке длины 4r шестнадцатеричную строку длины r, и соответствующее обратное преобразование для простоты записи опускаются.

Таблица А.1 — Соответствие между двоичными и шестнадцатеричными строками

Двоичное число	Шестнадца- теричное число	Двоичное число	Шестнадца- теричное число	Двоичное число	Шестнадца- теричное число	Двоичное число	Шестнадца- теричное число
0000	0	0100	4	1000	8	1100	С
0001	1	0101	5	1001	9	1101	d
0010	2	0110	6	1010	а	1110	е
0011	3	0111	7	1011	b	1111	f

А.2 Алгоритм блочного шифрования с длиной блока n=128 бит

А.2.1 Преобразование S

S(ffeeddccbbaa99881122334455667700) = b66cd8887d38e8d77765aeea0c9a7efc,

S(b66cd8887d38e8d77765aeea0c9a7efc) = 559d8dd7bd06cbfe7e7b262523280d39,

S(559d8dd7bd06cbfe7e7b262523280d39) = 0c3322fed531e4630d80ef5c5a81c50b,

S(0c3322fed531e4630d80ef5c5a81c50b) = 23ae65633f842d29c5df529c13f5acda.

А.2.2 Преобразование R

А.2.3 Преобразование L

L(d456584dd0e3e84cc3166e4b7fa2890d) = 79d26221b87b584cd42fbc4ffea5de9a

L(79d26221b87b584cd42fbc4ffea5de9a) = 0e93691a0cfc60408b7b68f66b513c13,

L(0e93691a0cfc60408b7b68f66b513c13) = e6a8094fee0aa204fd97bcb0b44b8580.

А.2.4 Алгоритм развертывания ключа

В настоящем контрольном примере ключ имеет значение:

K = 8899aabbccddeeff0011223344556677fedcba98765432100123456789abcdef.

 $K_1 = 8899$ aabbccddeeff0011223344556677,

 $K_2 = \text{fedcba}98765432100123456789abcdef}.$

FOCT 34.12—2018

```
C_4 = 6ea276726c487ab85d27bd10dd849401,
      X[C_1](K_1) = e63bdcc9a09594475d369f2399d1f276,
      SX[C_1](K_1) = 0998ca37a7947aabb78f4a5ae81b748a,
      LSX[C_4](K_4) = 3d0940999db75d6a9257071d5e6144a6
      F[C_1](K_1, K_2) = (c3d5fa01ebe36f7a9374427ad7ca8949, 8899aabbccddeeff0011223344556677).
      C_2 = dc87ece4d890f4b3ba4eb92079cbeb02,
      F[C_2]F[C_1](K_1, K_2) = (37777748e56453377d5e262d90903f87, c3d5fa01ebe36f7a9374427ad7ca8949).
      C_3 = b2259a96b4d88e0be7690430a44f7f03
      F[C_3] \dots F[C_1](K_1, K_2) = (f9eae5f29b2815e31f11ac5d9c29fb01, 37777748e56453377d5e262d90903f87).
      C_A = 7bcd1b0b73e32ba5b79cb140f2551504,
      F[C_4] \dots F[C_1](K_1, K_2) = (e980089683d00d4be37dd3434699b98f, f9eae5f29b2815e31f11ac5d9c29fb01).
      C_5 = 156f6d791fab511deabb0c502fd18105,
      F[C_5] \dots F[C_4](K_1, K_2) = (b7bd70acea4460714f4ebe13835cf004, e980089683d00d4be37dd3434699b98f).
      C_6 = a74af7efab73df160dd208608b9efe06,
      F[C_6] \dots F[C_1](K_1, K_2) = (1a46ea1cf6ccd236467287df93fdf974, b7bd70acea4460714f4ebe13835cf004).
      C_7 = c9e8819dc73ba5ae50f5b570561a6a07
      F[C_7] \dots F[C_1](K_1, K_2) = (3d4553d8e9cfec6815ebadc40a9ffd04, 1a46ea1cf6ccd236467287df93fdf974).
      C_8 = 6593616e6055689adfba18027aa2a08,
      (K_3, K_4) = F[C_8] \dots F[C_1](K_1, K_2) =
      (db31485315694343228d6aef8cc78c44,3d4553d8e9cfec6815ebadc40a9ffd04).
     Итерационные ключи K_i, i = 1, 2, ..., 10, принимают следующие значения:
      K_1 = 8899aabbccddeeff0011223344556677,
      K_2 = \text{fedcba}98765432100123456789abcdef},
      K_3 = db31485315694343228d6aef8cc78c44,
      K_A = 3d4553d8e9cfec6815ebadc40a9ffd04,
      K_5 = 57646468c44a5e28d3e59246f429f1ac,
      K_6 = bd079435165c6432b532e82834da581b,
      K_7 = 51e640757e8745de705727265a0098b1,
      K_8 = 5a7925017b9fdd3ed72a91a22286f984,
      K_9 = bb44e25378c73123a5f32f73cdb6e517,
      K_{10} = 72e9dd7416bcf45b755dbaa88e4a4043.
     А.2.5 Алгоритм зашифрования
     В настоящем контрольном примере зашифрование проводится при значениях итерационных ключей из А.2.4.
Пусть открытый текст, подлежащий зашифрованию, равен
                                  a = 1122334455667700ffeeddccbbaa9988.
тогда
      SX[K_1](a) = e87 de8b6e87 de8b6b6b6b6b6b6b6b6b6b6
      LSX[K_4](a) = e297b686e355b0a1cf4a2f9249140830,
```

 $LSX[K_2]LSX[K_4](a) = 285e497a0862d596b36f4258a1c69072,$

Результатом зашифрования является шифртекст

$$b = X[K_{10}]LSX[K_{0}]...LSX[K_{4}](a) = 7f679d90bebc24305a468d42b9d4edcd.$$

А.2.6 Алгоритм расшифрования

В настоящем контрольном примере расшифрование проводится при значениях итерационных ключей из А.2.4. Пусть шифртекст, подлежащий расшифрованию, равен шифртексту, полученному в А.2.5:

b = 7f679d90bebc24305a468d42b9d4edcd

тогда

Результатом расшифрования является открытый текст

$$a = X[K_1]S^{-1}L^{-1}X[K_2]...S^{-1}L^{-1}X[K_{10}](b) = 1122334455667700$$
ffeeddccbbaa9988.

А.3 Алгоритм блочного шифрования с длиной блока n = 64 бит

A.3.1 Преобразование t

```
t(\text{fdb97531}) = 2a196f34,

t(2a196f34) = \text{ebd9f03a},

t(\text{ebd9f03a}) = \text{b039bb3d},

t(\text{b039bb3d}) = 68695433.
```

А.3.2 Преобразование д

```
g[87654321](fedcba98) = fdcbc20c,

g[fdcbc20c](87654321) = 7e791a4b,

g[7e791a4b](fdcbc20c) = c76549ec,

g[c76549ec](7e791a4b) = 9791c849.
```

А.3.3 Алгоритм развертывания ключа

В настоящем контрольном примере ключ имеет значение:

K = ffeeddccbbaa99887766554433221100f0f1f2f3f4f5f6f7f8f9fafbfcfdfeff.

Итерационные ключи K_i , i = 1, 2, ..., 32, принимают следующие значения:

K_1 = ffeeddcc,	K_9 = ffeeddcc,	K_{17} = ffeeddcc,	K_{25} = fcfdfeff,
$K_2 = bbaa9988,$	κ ₁₀ = bbaa9988,	K ₁₈ = bbaa9988,	K_{26} = f8f9fafb,
$K_3 = 77665544$,	$K_{11} = 77665544,$	$K_{19} = 77665544,$	$K_{27} = f4f5f6f7,$
$K_4 = 33221100,$	$K_{12} = 33221100,$	$K_{20} = 33221100,$	$K_{28} = \text{f0f1f2f3},$
$K_5 = \text{f0f1f2f3},$	$K_{13} = \text{f0f1f2f3},$	K_{21} = f0f1f2f3,	$K_{29} = 33221100,$
$K_6 = f4f5f6f7$,	K_{14} = f4f5f6f7,	$K_{22} = f4f5f6f7,$	$K_{30} = 77665544,$
K_7 = f8f9fafb,	K_{15} = f8f9fafb,	K_{23} = f8f9fafb,	K ₃₁ = bbaa9988,
K_8 = fcfdfeff,	K_{16} = fcfdfeff,	$K_{24} = \text{fcfdfeff},$	K_{32} = ffeeddcc.

А.3.4 Алгоритм зашифрования

В настоящем контрольном примере зашифрование проводится при значениях итерационных ключей из А.З.З. Пусть открытый текст, подлежащий зашифрованию, равен

a = fedcba9876543210.

тогда

```
(a_1, a_0) = (fedcba98, 76543210),
G[K_1](a_1, a_0) = (76543210, 28da3b14),
G[K_2]G[K_1](a_1, a_0) = (28da3b14, b14337a5),
G[K_3] \dots G[K_1](a_1, a_0) = (b14337a5, 633a7c68),
G[K_4]...G[K_1](a_1, a_0) = (633a7c68, ea89c02c),
G[K_5]...G[K_1](a_1, a_0) = (ea89c02c, 11fe726d),
G[K_6]...G[K_1](a_1, a_0) = (11fe726d, ad0310a4),
G[K_7]...G[K_1](a_1, a_0) = (ad0310a4, 37d97f25),
G[K_8]...G[K_4](a_4, a_0) = (37d97f25, 46324615),
G[K_0]...G[K_1](a_1, a_0) = (46324615, ce995f2a),
G[K_{10}]...G[K_1](a_1, a_0) = (ce995f2a, 93c1f449),
G[K_{11}]...G[K_1](a_1, a_0) = (93c1f449, 4811c7ad),
G[K_{12}]...G[K_1](a_1, a_0) = (4811c7ad, c4b3edca),
G[K_{13}]...G[K_1](a_1, a_0) = (c4b3edca, 44ca5ce1),
G[K_{14}]...G[K_1](a_1, a_0) = (44ca5ce1, fef51b68),
G[K_{15}]...G[K_1](a_1, a_0) = (\text{fef51b68}, 2098cd86),
G[K_{16}]...G[K_1](a_1, a_0) = (2098cd86, 4f15b0bb),
G[K_{17}]...G[K_1](a_1, a_0) = (4f15b0bb, e32805bc),
G[K_{18}]...G[K_1](a_1, a_0) = (e32805bc, e7116722),
G[K_{19}]...G[K_1](a_1, a_0) = (e7116722, 89cadf21),
G[K_{20}]...G[K_1](a_1, a_0) = (89 \text{cad} f 21, \text{bac} 8444 \text{d}),
G[K_{21}]...G[K_1](a_1, a_0) = (bac8444d, 11263a21),
G[K_{22}]...G[K_1](a_1, a_0) = (11263a21, 625434c3),
G[K_{23}]...G[K_1](a_1, a_0) = (625434c3, 8025c0a5),
G[K_{24}]...G[K_1](a_1, a_0) = (8025c0a5, b0d66514),
G[K_{25}]...G[K_1](a_1, a_0) = (b0d66514, 47b1d5f4),
G[K_{26}]...G[K_1](a_1, a_0) = (47b1d5f4, c78e6d50),
G[K_{27}]...G[K_1](a_1, a_0) = (c78e6d50, 80251e99),
G[K_{28}]...G[K_4](a_4, a_0) = (80251e99, 2b96eca6),
```

```
\begin{split} &G^{\star}[K_{29}]...G[K_{1}](a_{1},a_{0}) = (2b96eca6,05ef4401),\\ &G[K_{30}]...G[K_{1}](a_{1},a_{0}) = (05ef4401,239a4577),\\ &G[K_{31}]...G[K_{1}](a_{1},a_{0}) = (239a4577,c2d8ca3d). \end{split}
```

Результатом зашифрования является шифртекст

$$b=G^*[K_{32}]G[K_{34}]...G[K_1](a_1,a_0) = 4ee901e5c2d8ca3d.$$

А.3.5 Алгоритм расшифрования

 $(b_1, b_0) = (4ee901e5, c2d8ca3d),$

В настоящем контрольном примере расшифрование проводится при значениях итерационных ключей из А.З.З. Пусть шифртекст, подлежащий расшифрованию, равен шифртексту, полученному в предыдущем пункте:

b = 4ee901e5c2d8ca3d

тогда

```
G[K_{22}](b_1, b_0) = (c2d8ca3d, 239a4577),
G[K_{34}]G[K_{32}](b_4, b_0) = (239a4577, 05ef4401),
G[K_{30}]...G[K_{32}](b_4, b_0) = (05ef4401, 2b96eca6),
G[K_{29}]...G[K_{32}](b_1, b_0) = (2b96eca6, 80251e99),
G[K_{28}]...G[K_{32}](b_1, b_0) = (80251e99, c78e6d50),
G[K_{27}]...G[K_{32}](b_1, b_0) = (c78e6d50, 47b1d5f4),
G[K_{26}]...G[K_{32}](b_1, b_0) = (47b1d5f4, b0d66514),
G[K_{25}]...G[K_{32}](b_1, b_0) = (b0d66514, 8025c0a5),
G[K_{24}]...G[K_{32}](b_1, b_0) = (8025c0a5, 625434c3),
G[K_{23}]...G[K_{32}](b_1, b_0) = (625434c3, 11263a21),
G[K_{22}]...G[K_{32}](b_1, b_0) = (11263a21, bac8444d),
G[K_{24}]...G[K_{32}](b_4, b_0) = (bac8444d, 89cadf21),
G[K_{20}]...G[K_{32}](b_1, b_0) = (89cadf21, e7116722),
G[K_{19}]...G[K_{32}](b_1, b_0) = (e7116722, e32805bc),
G[K_{18}]...G[K_{32}](b_1, b_0) = (e32805bc, 4f15b0bb),
G[K_{17}]...G[K_{32}](b_1, b_0) = (4f15b0bb, 2098cd86),
G[K_{16}]...G[K_{32}](b_1, b_0) = (2098cd86, fef51b68),
G[K_{15}]...G[K_{32}](b_1, b_0) = (fef51b68, 44ca5ce1),
G[K_{14}]...G[K_{32}](b_1, b_0) = (44ca5ce1, c4b3edca),
G[K_{13}]...G[K_{32}](b_1, b_0) = (c4b3edca, 4811c7ad),
G[K_{12}]...G[K_{32}](b_1, b_0) = (4811c7ad, 93c1f449),
G[K_{11}]...G[K_{32}](b_1, b_0) = (93c1f449, ce995f2a),
G[K_{10}]...G[K_{32}](b_1, b_0) = (ce995f2a, 46324615),
G[K_9]...G[K_{32}](b_1, b_0) = (46324615, 37d97f25),
G[K_8]...G[K_{32}](b_1, b_0) = (37d97f25, ad0310a4),
G[K_7]...G[K_{32}](b_1, b_0) = (ad0310a4, 11fe726d),
G[K_6] \dots G[K_{32}](b_1, b_0) = (11 \text{fe} 726 \text{d}, ea89 \text{c} 02 \text{c}),
G[K_5]...G[K_{32}](b_1, b_0) = (ea89c02c, 633a7c68),
G[K_A]...G[K_{32}](b_1, b_0) = (633a7c68, b14337a5),
G[K_3]...G[K_{32}](b_1, b_0) = (b14337a5, 28da3b14),
G[K_2]...G[K_{32}](b_1,b_0) = (28da3b14, 76543210).
```

Результатом расшифрования является открытый текст

$$a = G^*[K_1]G[K_2]...G[K_{32}](b_1,b_0) = \text{fedcba}9876543210.$$

Библиография

Примечание — Оригиналы международных стандартов ИСО/МЭК находятся в национальных (государственных) органах по стандартизации* государств, принявших настоящий стандарт.

[1]	ИСО/МЭК 10116:2017 (ISO/IEC 10116:2017)	Информационная технология. Методы и средства обеспечения безопасности. Режимы работы при использовании алгоритмов кодирования для режима n -разрядного блочного шифрования (Information technology — Security techniques — Modes of operation for an n -bit block cipher)
[2]	ИСО/МЭК 18033-1:2015 (ISO/IEC 18033-1:2015)	Информационные технологии. Методы и средства обеспечения безопасности. Алгоритмы шифрования. Часть 1. Общие положения (Information technology — Security techniques — Encryption algorithms — Part 1: General)
[3]	ИСО/МЭК 18033-3:2010 (ISO/IEC 18033-3:2010)	Информационные технологии. Методы и средства обеспечения безопасности. Алгоритмы шифрования. Часть 3. Блочные шифры (Information technology — Security techniques — Encryption algorithms — Part 3: Block ciphers)

^{*} В Российской Федерации оригиналы международных стандартов ИСО/МЭК находятся в Федеральном информационном фонде стандартов.

УДК 681.3.06:006.354 MKC 35.040

Ключевые слова: информационная технология, криптографическая защита информации, симметричный криптографический метод, зашифрование, расшифрование, блочный шифр, ключ

БЗ 1-2019/63

Редактор *Л.В. Коретникова* Технический редактор *В.Н. Прусакова* Корректор *Е.Р. Ароян* Компьютерная верстка *Ю.В. Поповой*

Сдано в набор 05.12.2018. Подписано в печать 09.01.2019. Формат $60 \times 84^{1}/_{8}$. Гарнитура Ариал. Усл. печ. л. 1,86. Уч.-изд. л. 1,49.

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

ИД «Юриспруденция», 115419, Москва, ул. Орджоникидзе, 11. www.jurisizdat.ru y-book@mail.ru

Создано в единичном исполнении ФГУП «СТАНДАРТИНФОРМ» для комплектования Федерального информационного фонда стандартов, 117418 Москва, Нахимовский пр-т, д. 31, к. 2. www.gostinfo.ru info@gostinfo.ru