CARMA: Novel Bayesian model for fine-mapping in meta-analysis studies

Zikun Yang, Ph.D

Department of Biostatistics, Columbia University

Self introduction

- Graduated from the Department of Statistics in Indiana University (Hoosiers!).
- Thesis advisor: Andrew Womack, Ph.D.
- Doctor thesis: Model selection in high-dimensional regime with Bayesian statistics.
- Currently working in the Department of Biostatistics in Columbia University
- PI: Iuliana Ionita-Laza, Ph.D.
- Researches: statistical genetics with applications on genomic data, e.g. GWAS, MPRA etc..

Bayesian statistics

- Proposed a new Bayesian shrinkage prior, Heavy-tailed Horseshoe prior.
 Comparing to HS, HS+, D-L priors, showed better MSE, better KL risk bounds, better posterior concentration, also the asymptotically minimax risk rate in L2 norm.
- Showed posterior model selection consistency under the scenario of growing true model with Zellner-Siow and Poisson prior.

Bayesian statistical genetics

- Proposed CARMA fine-mapping method.
- Proposed PO-EN model, which is tailored to the data structure of the massively parallel reporter assays (MPRAs). Using positive and unlabeled/background data together with epigenetic features to build presence-only prediction models of regulatory effects of variants.

Content of today's talk

Content

- Briefly review the background story of genetics research (GWAS)
- Motivate for the fine-mapping methods
- Challenges of the new method and how we address the challenges
- Simulation and real-data analysis
- **Remark:** More focusing on the features and challenges of genetic data instead of statistical properties or details of the newly proposed model.

Genome-wide association studies (GWAS)

From genome-wide associations to candidate causal variants

- Common complex human traits, quantitative traits (BMI) or diseases (T2D), often result from multiple environmental and genetic causes.
- GWAS have been widely used to identify the genomic regions on chromosomes that harbour genetic determinants of complex traits.
- Many putative loci (genomic regions) of genetic disease has discovered based on GWAS
- The natural next step is to identify putative causal genetic variants, i.e. single-nucleotide polymorphisms (SNPs), at these loci.

Figure: GWAS study and chips.

GWAS

- Recruit subjects.
- Collect trait (binary or quantitative)
- Collect covariates of subjects, e.g. age, gender etc.
- Collect genotypes (imputed) through genotyping techniques (chips)

Figure: GWAS study and chips.

GWAS

- Recruit subjects.
- Collect trait (binary or quantitative)
- Collect covariates of subjects, e.g. age, gender etc.
- Collect genotypes (imputed) through genotyping techniques (chips)

Marginal association of SNPs

- Run linear mixed models or generalized mixed models
- The result of LMM is the marginal association of testing SNP to the complex trait.

Figure: Manhattan figure of Alzheimer's disease study[Jansen et al., 2019]. The y axis is $-\log_{10}(\text{P-values})$, and the commonly-used genome-wide statistical significance threshold of P value is $<5\times10^{-8}$ for a reliable GWAS results.

GWAS

 Collect trait and genotypes (imputed)

Marginal association of SNPs

- Run linear mixed models or generalized mixed models
- Summarize results in Manhattan plot

Figure: Manhattan figure of Alzheimer's disease study[Jansen et al., 2019]. The y axis is $-\log_{10}(\text{P-values})$, and the commonly-used genome-wide statistical significance threshold of P value is $<5\times10^{-8}$ for a reliable GWAS results.

GWAS

 Collect trait and genotypes (imputed)

Marginal association of SNPs

- Run linear mixed models or generalized mixed models
- Summarize results in Manhattan plot

Investigate on independent genomic region (locus)

- List of associated SNPs
- Explore each independent regions

Figure: This figure illustrates the patterns of association of each SNP with the lead SNP, as well as the annotation of genes in the region. Source: [Schaid et al., 2018]

GWAS

 Collect trait and genotypes (imputed)

Marginal association of SNPs

- Run linear mixed models or generalized mixed models
- Summarize results in Manhattan plot

Investigate on independent locus

- List of associated SNPs
- Explore each independent regions

Linkage disequilibrium (LD)

- The leading SNPs are correlated to neighboring SNPs through LD
- Association does not imply
 causation

Figure: This figure illustrates the patterns of association of each SNP with the lead SNP. Source: [Schaid et al., 2018]

Goal of Bayesian fine-mapping

Fine-mapping methods utilize the results of the marginal association test (between individual genotypes and phenotype) to select and prioritize genetic variants accounting for the complex LD structure among variants.

GWAS

 Collect trait and genotypes (imputed)

Marginal association of SNPs

- Run linear mixed models or generalized mixed models
- Summarize results in Manhattan plot

Investigate on independent locus

- List of associated SNPs
- Explore each independent regions

Linkage disequilibrium (LD)

- The leading SNPs are correlated to neighboring SNPs through LD
- Association does not imply
 causation

Data structure of fine-mapping methods

Due to logistic concerns and the availability of meta-analysis, researchers use and share summary statistics and LD matrix instead of directly using phenotype and genotype (large file size).

The marginal association test

- ullet In a given genomic region (Locus), there are p variants and n subjects.
- Let Z denote a p-dimensional vector, where Z_i is the summary statistics of the marginal test between the ith variant, $i=1,\ldots,p$ and the phenotype (y).
- ullet The sampling distribution of Z can be written as:

$$oldsymbol{Z} | oldsymbol{\lambda}, \sigma_y^2, oldsymbol{\Sigma} \sim \mathsf{MVN}(oldsymbol{\Sigma}oldsymbol{\lambda}, \sigma_y^2oldsymbol{\Sigma}),$$

where Σ is the LD correlation matrix of the variants in the given region.

ullet We assume $oldsymbol{\lambda}$ is a sparse vector, and want to identify non-zero entries of $oldsymbol{\lambda}$ associated with the causal variants.

Challenges of genetic data

Complex LD structure

High and complex correlations among variants (i.e., high linkage disequilibrium (LD)).

Figure: The SNP (•) is not causal but moderately correlated to the causal SNPs (•). [Wang et al., 2020]

Challenges of genetic data

Complex LD structure

High and complex correlations among variants (i.e., high linkage disequilibrium (LD)).

Figure: The SNP (•) is not causal but moderately correlated to the causal SNPs (•). [Wang et al., 2020]

Highly correlated variants

The causal variants could be highly correlated up to tens or even hundreds of other variants with very similar Z-scores. How to distinguish causal SNP from other highly correlated ones.

Challenges of genetic data

Complex LD structure

High and complex correlations among variants (i.e., high linkage disequilibrium (LD)).

Figure: The SNP (•) is not causal but moderately correlated to the causal SNPs (•). [Wang et al., 2020]

Highly correlated variants

The causal variants could be highly correlated up to tens or even hundreds of other variants with very similar Z-scores. How to distinguish causal SNP from other highly correlated ones.

Mismatch between $Z/{\sf LD}$ due to meta-analysis

- Z To increase power, Z is often generated by the meta-analysis, where the sample size of generating individual Z-score can be dramatically different.
- Σ To avoid transform the in-sample LD matrix of very large file size, Σ is usually extracted from reference panels, e.g., 1000G Genomes.
 - This creates inconsistencies between $Z/{
 m LD}$.

 Zikun Yang, Ph.D (CU)

CARMA

Prior on effect size (coefficient)

The sampling distribution of $oldsymbol{Z}$ is:

$$Z|\lambda, \sigma_y^2, \Sigma \sim \mathsf{MVN}(\Sigma\lambda, \sigma_y^2\Sigma).$$

- Let $\gamma' = \{0,1\}^p$ denote an indicator vector, such that $\gamma_i = 1$ iff $\lambda_i \neq 0$.
- Let S denote an index set such that $i \in S$ if $\gamma_i = 1$.
- ullet γ_S and M_S uniquely define a candidate model.
- ullet Given S, the prior distribution of the assumed non-zero effect sizes $oldsymbol{\lambda_{\gamma_S}}$ that is associated with $oldsymbol{\gamma_S}$ is

$$\begin{split} \boldsymbol{\lambda}_{\boldsymbol{\gamma}_S} | \sigma_y^2, \tau, \boldsymbol{\gamma}_S &\sim & \text{MVN}(0, \frac{\sigma_y^2}{\tau} \boldsymbol{\Sigma}_{\boldsymbol{\gamma}_S}^{-1}), \\ \tau &\sim & \text{Gamma}(\frac{1}{2}, \frac{1}{2}), \\ \sigma_y^2 &\sim & \frac{1}{\sigma_y^2}. \\ \boldsymbol{\lambda}_i &= & 0 \text{ if } \gamma_i = 0. \end{split}$$

Remark: CARMA is the first model introduce heavy-tailed prior distribution on the effect size (coefficients) in the fine-mapping setting, higher the power and smaller the size of the identified causal variants.

PIP

We are interested in the posterior inclusion probability (PIP), i.e. $\Pr\left(\gamma_i=1|m{Z}, m{\Sigma}\right)$.

Dimensional penalization

Model space

- Fine-mapping is intrinsically a model selection problem in an ultra-sparse scenario.
- Require dimensional penalization from the model space to control FDR.
- Surprisingly, it has not been formally addressed by the previous fine-mapping methods, i.e. using the naive prior $\Pr{(\gamma_i = 1) = \frac{1}{n}}$.

Dimensional penalization

Model space

- Fine-mapping is intrinsically a model selection problem in an ultra-sparse scenario.
- Require dimensional penalization from the model space to control FDR.
- Surprisingly, it has not been formally addressed by the previous fine-mapping methods, i.e. using the naive prior $\Pr{(\gamma_i = 1) = \frac{1}{p}}$.

Prior on Model space in CARMA

- We introduce a prior distribution on model space to control the total number of causal SNPs that any candidate model assumes
- ullet For a given model M_S , let $|S|=\sum_{\gamma_i\inm{\gamma}_S}\gamma_i$ denote the total number of causal SNPs for a given $m{\gamma}_S$ (dimension of M_S), we assign

$$|S||\eta \sim \mathsf{Truncated} \ \mathsf{Poisson}(\eta), \ \mathsf{for} \ |S| \in \{0,\dots,p\},$$

which is first proposed in [Womack et al., 2015].

ullet Then, for a specific model $oldsymbol{\gamma}_S$ or M_S , the prior probability of $oldsymbol{\gamma}_S$ is

$$\Pr\left(\boldsymbol{\gamma}_{S}|\boldsymbol{\eta}\right) = \frac{\Pr\left(|S||\boldsymbol{\eta}\right)}{\binom{p}{|S|}}.$$

• Another goal is to identify the true model $(\gamma_T \text{ or } M_T)$ that generated the summary statistics, through posterior inference within a Bayesian paradigm. The model selection consistency is shown in [Castillo et al., 2012, Womack et al., 2015].

Computation of PIP

- ullet Let ${\mathcal M}$ denote the model set that contains all candidate models.
- Then
 - ullet the posterior probability of any non-null model $oldsymbol{\gamma}_S$
 - the posterior probability of γ_i being equal to 1 (PIP) can be computed as

$$\Pr\left(\boldsymbol{\gamma}_{S}|\boldsymbol{Z}\right) = \frac{PO_{\boldsymbol{\gamma}_{S}:\boldsymbol{\gamma}_{0}}}{\sum_{\boldsymbol{\gamma}_{A}\in\mathcal{M}}PO_{\boldsymbol{\gamma}_{A}:\boldsymbol{\gamma}_{0}}},$$
$$\Pr\left(\boldsymbol{\gamma}_{i}=1|\boldsymbol{Z}\right) = \sum_{\boldsymbol{\gamma}_{S}:i\in S}\Pr\left(\boldsymbol{\gamma}_{S}|\boldsymbol{Z}\right),$$

where the posterior odds $(PO_{\gamma_S:\gamma_0})$ is defined as the product of the Bayes factor $\left(\frac{f(\mathbf{Z}|\gamma_S)}{f(\mathbf{Z}|\gamma_0)}\right)$ and the prior odds $\left(\frac{\Pr(\gamma_S|\eta)}{\Pr(\gamma_0|\eta)}\right)$:

$$\begin{split} PO_{\boldsymbol{\gamma}_S:\boldsymbol{\gamma}_0} &= \frac{f(\boldsymbol{Z}|\boldsymbol{\gamma}_S)}{f(\boldsymbol{Z}|\boldsymbol{\gamma}_0)} \frac{\Pr{(\boldsymbol{\gamma}_S|\boldsymbol{\eta})}}{\Pr{(\boldsymbol{\gamma}_0|\boldsymbol{\eta})}} \\ &= \frac{\eta^{|S|}(p-|S|)!}{p!} \int_0^\infty \left[1 - \frac{\boldsymbol{Z}_S'\boldsymbol{\Sigma}_{\boldsymbol{\gamma}_S}^{-1}\boldsymbol{Z}_S}{\boldsymbol{Z}'\boldsymbol{\Sigma}^{-1}\boldsymbol{Z}\left(1+\tau\right)}\right]^{-\frac{p}{2}} \left(\frac{1+\tau}{\tau}\right)^{-\frac{|S|}{2}} f(\tau) \mathrm{d}\tau. \end{split}$$

Computation algorithm

Drawbacks of previous methods

- ullet There are 2^p candidate models. Impossible to going over all models.
- Exhaustively screening $\Pr\left(\mathbf{Z}|\Sigma, \boldsymbol{\gamma}\right)$ for all $\{\boldsymbol{\gamma}; \sum \boldsymbol{\gamma} < \#\}$ with a restriction on # (e.g.#=2) is very slow and restrictive.
- Stochastic search (MCMC) is also slow and requiring restriction on $\sum \gamma$, and exploring posterior model space unevenly for highly correlated variants.

Shotgun algorithm [?]

• Given a specific model denoted by an index set S, say $S = \{1, 2, 3\}$, the Shotgun algorithm is an iterative procedure that exhaustively examines the neighborhood of the current model, defined as:

$$\Gamma_-(S) := \{A: A \subset S, |S|-|A|=1\} \text{ (one less variable than } S),$$

$$\Gamma_+(S) := \{A: A \supset A, |A|-|S|=1\} \text{ (one more variable than } S),$$

$$\Gamma_{\Leftrightarrow}(S):=\{A:|S|-|A\cap S|=1, |A|=|S|\} \, (\text{models that replaces one variable in } S).$$

• To update the current model, the algorithm selects one candidate model from $\Gamma_{-}(S)$, $\Gamma_{+}(S)$, and $\Gamma_{\Leftrightarrow}(S)$ according to the corresponding posterior probabilities, i.e. $\Pr\left(M_{A}|\mathbf{Z}\right)$.

Advantages of Shotgun

- Semi-exhaustive searching, evenly exploring the group of highly correlated variables.
- Stochastically moves towards the high posterior area in the model space.

Zikun Yang, Ph.D (CU) UNL (05/09/2022) 13/34

Incorporating functional annotations

Motivation

- There are abundant information of the causality of SNPs from the external resource, i.e. functional annotations (gene expression (eQTL)).
- We want to use annotations to distinguish causal variants from highly correlated non-causal variants.

Strategy of EM-algorithm

By adding the functional annotations, the likelihood can be written as:

$$L(\boldsymbol{\theta}; \boldsymbol{Z}, \boldsymbol{\gamma}, W) = f(\boldsymbol{Z}|\boldsymbol{\gamma}) \Pr(\boldsymbol{\gamma}|W, \boldsymbol{\theta}),$$

where W is the matrix of annotations and θ is the corresponding coefficients.

- ullet Using EM algorithm to maximize likelihood, which associates γ and W with a Poisson regression.
- Feature selection on functional annotations. By introducing the elastic net penalty, CARMA can perform variable selection on the potentially high-dimensional functional annotation data.
- Multiplicity control. CARMA associates the Poisson regression to the Poisson prior on model space.

Outliers motivation

Outliers in fine-mapping

Outlier detection

- Let $ilde{Z} = \left\{Z_1, \dots, Z_{|D|}\right\}'$ denote a group of highly correlated SNPs with $\operatorname{cor}(Z_i, Z_j) \geq r_{\operatorname{outlier}}$ ($r_{\operatorname{outlier}} > 0.9$), for $\forall i, j \in D$
- ullet We can assume that the random variable vector $ilde{m{Z}}$ follow a MVN $ig(\mathbf{1}_{|D|}eta, m{\Sigma}_D ig).$
- ullet In a loop algorithm, we test whether Z_i is generated by a different distribution, i.e. N(eta,c):

$$H_0: c=1; \ Z_i$$
 is not an outlier $H_1: c \neq 1; \ Z_i$ is an outlier.

- ullet We assume $ilde{m{Z}}_{-i}$ are not outliers and follow a MVN $\Big(\mathbf{1}_{|D|-i}eta, m{\Sigma}_{D-i} \Big).$
- \bullet Computing the Bayes factor between the two hypothesis and dropping the variants if reject $H_0.$

Credible set and credible model

Credible set

• In [Wang et al., 2020] the authors define a credible set, and can be simplified as

Definition

Given $\rho=0.99$ and a correlation threshold $r,\,S$ is a credible set of variants if

- $\sum_{i \in S} \Pr(\gamma_i | \boldsymbol{Z}) \ge \rho$
- $\bullet \ \min \left\{ cor(i,j) \geq r \right\}, \ \text{for all} \ i,j \in S$
- \bullet |S| is minimal.
- Credible sets can identify groups of highly correlated variants for further experimental validations.

Credible Model

- Instead of credible set, we propose the concept of credible model.
- Let $\gamma_{(b)}$, $b=1,\ldots,B$, denote the ranked candidate models, such as $\gamma_{(1)}$ receives the largest marginal likelihood.
- ullet We use $\gamma_{(1)}$ as the reference model to select all other candidate models.
- Including any candidate models into the credible model such as

$$\mathsf{PO}_{\boldsymbol{\gamma}_{\left(1\right)}:\boldsymbol{\gamma}_{\left(b\right)}} = \frac{\Pr\left(\boldsymbol{\gamma}_{\left(1\right)}|\boldsymbol{Z},\boldsymbol{\eta}\right)}{\Pr\left(\boldsymbol{\gamma}_{\left(b\right)}|\boldsymbol{Z},\boldsymbol{\eta}\right)} = \frac{\Pr\left(\boldsymbol{Z}|\boldsymbol{\gamma}_{\left(1\right)}\right)\Pr\left(\boldsymbol{\gamma}_{\left(1\right)}|\boldsymbol{\eta}\right)}{\Pr\left(\boldsymbol{Z}|\boldsymbol{\gamma}_{\left(b\right)}\right)\Pr\left(\boldsymbol{\gamma}_{\left(b\right)}|\boldsymbol{\eta}\right)} < 10.$$

Simulating genotype based on real data

Simulation settings

- We use the R package 'sim1000G' [Dimitromanolakis et al., 2019] to simulate genotypes based on the 1000 Genomes Project data.
- We focus on 94 loci identified as risk regions in a recent GWAS on breast cancer [Fachal et al., 2020].
- The number of variants in each region ranges between $\sim 1,500-4,000$.
- ullet We simulate genotype data for n=10,000 individuals.

Prior probability

- We use functional annotations (randomly select 200 chromatin features out of 919 DeepSEA chromatin features [Zhou and Troyanskaya, 2015]) to determine the causalities of variants, such as $\Pr\left(\gamma_i=1|\pmb{\theta},\pmb{w}_i\right)=\frac{\exp\left\{\pmb{w}_i'\pmb{\theta}\right\}}{1+\exp\left\{\pmb{w}_i'\pmb{\theta}\right\}}$
- Let T denote the index set of the true causals selected, and |T|=3.

Phenotype and summary statistics

- For each $i \in T$, $\gamma_i = 1$ and $\beta_i \sim N(0, 0.5^2)$.
- The phenotypic variance σ_y^2 is computed such that $\phi=0.0075$, where $\phi=\frac{\mathsf{Var}(\boldsymbol{X}\boldsymbol{\beta})}{\sigma_y^2+\mathsf{Var}(\boldsymbol{X}\boldsymbol{\beta})}$.
- ullet Then we sample $m{y}$ such that $m{y} = m{X}m{eta} + m{\epsilon}; \ m{\epsilon} \sim \mathsf{N}(0,\ \sigma_n^2 I_{n \times n}).$
- ullet Compute Z and Σ .
- Two other very popular testing fine-mapping models, SuSiE[Wang et al., 2020] and fastPAINTOR[Kichaev et al., 2017].
- We assume two scenarios (1) no functional annotation and (2) with functional annotations (919 DeepSEA chromatin features).

Simulation results (no outlier)

 $\hfill \square$ No Annotations $\hfill \square$ Including Annotations $\hfill \square$ CARMA $\hfill \square$ SuSiE $\hfill \square$ fastPAINTOR Figure: AUROC and AUPR of the testing models

Simulation results (no outlier)

Simulation results (no outlier)

21 / 34

Simulation results (with outlier)

Real data (AD study [Jansen et al., 2019])

Data process

- We present fine-mapping results at 30 GWAS loci identified in a large meta-analysis of clinically diagnosed AD and AD-by-proxy with 71,880 cases and 383,378 controls of European ancestry [Jansen et al., 2019].
- For the CARMA model, we include 924 functional annotations including DeepSEA [Zhou and Troyanskaya, 2015], CADD [Kircher et al., 2014], PO-EN [Yang et al., 2021], and PolyFun [Weissbrod et al., 2020].
- For each model, we consider two scenarios:
 - 1 no functional annotation
 - 2 including functional annotations

Challenges

- The sample sizes can vary from 9,703 to 444,006 depending on which datasets are included in the meta-analyses.
- The LD matrix is extracted from AD-by-proxy dataset (UK Biobank).
- Severe discrepancies between Z/LD.

Real data (AD study [Jansen et al., 2019])

Real data (AD study [Jansen et al., 2019])

Future researches

CARMA

- The paper has been submitted to NATURE Genetics, under review now.
- The R package is on GitHub with user manual.
- The authors are Zikun Yang, Chen Wang, Atlas Khan, Badri Vardarajan, Richard Mayeux, Krzysztof Kiryluk, Iuliana Ionita-Laza.

Statistical genetics

- Currently, I am working on a better solution of the outlier detection with extra information of the meta-analysis.
- Working on developing multi-ethnics fine-mapping method, i.e. combining European, African, East Asian, etc.. Considering structure of variational Bayes that I am totally not familiar with:).
- Working on a real data of Alzheimer's disease based on the subjects from Dominican, Mexican, Peru, and ethnics associated with Caribbean are. Largest datasets of such cohorts to date.

Bayesian Statistic

- Working on the Heavy-tailed Horseshoe prior, finishing paper.
- Trying to replace LMM model in genetics with Horseshoe prior.

Special thank

Special thanks to

- Dr. Ionita-Laza
- Dr. Womack

Thank you all!

THANK YOU!

- Castillo, I., van der Vaart, A., et al. (2012). Needles and straw in a haystack: Posterior concentration for possibly sparse sequences.
- Dimitromanolakis, A., Xu, J., Krol, A., and Briollais, L. (2019). sim1000g: a user-friendly genetic variant simulator in r for unrelated individuals and family-based designs.
 - BMC bioinformatics, 20(1):26.

The Annals of Statistics, 40(4):2069-2101.

- Fachal, L., Aschard, H., Beesley, J., Barnes, D. R., Allen, J., Kar, S., Pooley, K. A., Dennis, J., Michailidou, K., Turman, C., et al. (2020).
 - Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes. *Nature genetics*, 52(1):56–73.
- Jansen, I. E., Savage, J. E., Watanabe, K., Bryois, J., Williams, D. M., Steinberg, S., Sealock, J., Karlsson, I. K., Hägg, S., Athanasiu, L., et al. (2019).
 - Genome-wide meta-analysis identifies new loci and functional pathways influencing alzheimer's disease risk.
 - Nature genetics, 51(3):404-413.
- Kichaev, G., Roytman, M., Johnson, R., Eskin, E., Lindstroem, S., Kraft, P., and Pasaniuc, B. (2017).
- Improved methods for multi-trait fine mapping of pleiotropic risk loci. Bioinformatics, 33(2):248-255.
- Kircher, M., Witten, D. M., Jain, P., O'roak, B. J., Cooper, G. M., and Shendure, J. (2014). A general framework for estimating the relative pathogenicity of human genetic variants. *Nature genetics*, 46(3):310–315.

EM-algorithm

Details of EM-algorithm

- ullet Suppose that the truncated model space Γ of the top B models with the largest posterior probabilities.
- Let $G' = \{G_1, \dots, G_p\}$ denote the count vector associated with Γ , where $G_i \in \{0, 1, \dots, B\}$ is the count of $\gamma_i = 1$ appearing in Γ .
- ullet G is the missing value. In EM algorithm, we use Poisson regression to model it.
- Let $g_i^{(s)}$ denote the actual count of γ_i appearing in $\Gamma^{(s)}$ after running Shotgun algorithm at step (s) of the EM algorithm.
- We approximate $\mathbf{E}\left[G_i|m{Z},m{w}_i,m{ heta}^{(s)}
 ight]$ by $g_i^{(s)}$ in EM algorithm.

EM-algorithm

Input: Summary statistics ${\pmb Z}$, functional annotations W, hyperparameter η of the Poisson prior distribution, and B. Initialization: Run Shotgun algorithm with the prior distribution Poisson (η) to generate $\Gamma^{(0)}$ and ${\pmb g}^{(0)}$. for $s=0,1,\ldots$ do

- EM

E-step Replace G_i by $\mathbf{E}\left[G_i|\mathbf{Z},\mathbf{w}_i,\boldsymbol{\theta}^{(s)}\right]$, which is approximated by $g_i^{(s)}$, $i=1,\ldots,p$. **M-step** Maximize the penalized log-likelihood as.

$$\boldsymbol{\theta}^{(s+1)} := \underset{\boldsymbol{\theta} \in R^{q+1}}{\operatorname{argmax}} \sum_{i=1}^{p} \left[g_i^{(s)} \boldsymbol{w}_i' \boldsymbol{\theta} - \exp \left\{ \boldsymbol{w}_i' \boldsymbol{\theta} \right\} \right] - \frac{(1-\alpha)}{2} ||\boldsymbol{\theta}||^2 - \alpha ||\boldsymbol{\theta}||.$$

Adjust the prior probability to introduce the multiplicity control (see details below),

$$\hat{\theta}_1^{(s+1)} = \log \left(\frac{\eta B^{(s)}}{\eta + p} \right).$$

31/34

Then, compute the prior probability of the (s+1) step:

$$\hat{\Pr}\left(\gamma_i = 1 | \boldsymbol{w}_i, \boldsymbol{\theta}^{(s+1)}\right) = \frac{\exp\left\{\boldsymbol{w}_i' \boldsymbol{\theta}^{(s+1)}\right\}}{B^{(s)}},$$

where $B^{(s)}$ is the minimum between B and the total number of models visited by the Shotgun algorithm in step (s).

Shotgun

Initiate Shotgun algorithm with the estimated prior probability vector $\left\{\hat{\mathsf{Pr}}(\gamma_1),\dots,\hat{\mathsf{Pr}}(\gamma_p)\right\}'$. After running Shotgun algorithm, acquire $\Gamma^{(s+1)}$ and $\mathbf{q}^{(s+1)}$, which depends on \mathbf{Z},W , and $\boldsymbol{\theta}^{(s+1)}$.

end

Algorithm 1: EM algorithm with functional annotations.

Simulation results (with outlier)

Simulation results (with outlier)

Outlier algorithm

```
At any step of the Shotgun algorithm, suppose that the current model is \gamma_S .
```

Input: The index set $S = \left\{s_1, \dots, s_{|S|}\right\}$ for the current model γ_S , the threshold on the Bayes factor δ , and the threshold on the correlation ρ_{outlier} .

for $s = 1, \ldots, |S|$ do - Given $s_s \in S$, identify the group of highly correlated SNPs indicated by the index set $D = \{i; \operatorname{cor}(Z_{s_s}, Z_i) \geq r_{\operatorname{outlier}} \text{ for } \forall i \in \{1, \dots, p\}\}.$ - Define $\tilde{m{Z}} = \left\{ Z_1, \dots, Z_{|D|} \right\}'$ as the summary statistics vector of the set D . repeat for $d=1,\ldots,|D|$ do - Define the hypothesis test for Z_d , such that $\begin{array}{ll} H_0: Z_d \sim N(\beta,1); & Z_d \text{ is not an out} \\ H_1: Z_d \sim N(\beta,c), \ c \neq 1; & Z_d \text{ is an outlier}. \end{array}$ Z_d is not an outlier - Compute the corresponding Bayes factor \hat{B}_d conditional on $\tilde{Z}_{D_{-d}}$ and $\Sigma_{D_{-d}}$. if $\exists d \in \{1, \ldots, |D|\}$, $\hat{B}_d < \delta$ then - Drop Z_d , where $\hat{B}_d = \min\left(\left\{\hat{B}_1,\ldots,\hat{B}_{|D|}\right\}\right)$, from the fine-mapping computation. - Drop Z_d from \tilde{Z} , i.e., $\tilde{Z} = \{Z_1, \dots, Z_{d-1}, Z_{d+1}, \dots, Z_{|D|}\}'$.

until $\hat{B}_d \geq \delta$, for $\forall d \in \{1, \dots, |D|\}$;

- Drop dth index from the index set D

Algorithm 2: The outlier detection procedure implemented in Shotgun algorithm.

Zikun Yang, Ph.D (CU)

end