1

实验五《综合实验》

学生姓名: ______ 姜永鹏______

学生学号: _____2019010465

在校班级: ______ 自 93

实验日期: ____2021年5月27日__

报告日期: ____2021年5月30日

学生邮箱: jyp19@mails.tsinghua.edu.cn

目录

- 1 实验目的
- 2 预习计算及仿真
- 3 实验数据处理与分析
- 4 实验问题记录与分析
- 5 思考题

1 实验目的

- (1) 以数字化测量电路为例,熟悉小型电子系统的设计和实现;
- (2) 体会模块化设计思路,学习单元电路的合理选择;
- (3) 熟练掌握基于 Multisim 的电路设计和电路功能、性能仿真;
- (4) 初步掌握小型电子系统的安装和调试方法;
- (5) 体会电子系统性能指标的评估及改善方法。

2 预习计算及仿真

2.1 运放 LF347N 数据手册

此实验所用 LF347N 运放集成 4 块 OpAmp ,引脚分布如下所示

其中xIN+、xIN-、xOUT分别为运放同相、反相输入端及输出端。查阅数据手册知

V _{CC+}	Supply voltage		18	V
V _{CC} -	Supply voltage		-18	V
VID	Differential input voltage	-30	30	V
VI	Input voltage (2)	-15	15	V

供电电压最大 $\left|V_{CC}\right|=18V$,最大差模输入电压 $V_{ID}=\pm30V$,输入电压范围 $-15V\sim+15V$ 。

2.2 模拟电路部分设计实现

模拟电路部分接受峰一峰值 $V_{pp}=1V\sim 5V$,频率 $f=20\sim 200$ Hz 的正弦输入电压,要求输入阻抗 $R_i\geq 10M\Omega$,输出与 V_{pp} 成正比的脉冲波。特别地,期望 V_{pp} 与脉冲波频率 f_{pls} 间比例系数约为100。即当 $V_{pp}=1V$ 时,输出脉冲波频率 $f_{pls}=100$ Hz 。

电路结构如下所示。

电路框图如下

电子技术实验(2)实验报告:综合实验

具体实现上,输入阻抗变换电路采用电压跟随器,提供高输入电阻,输出波形 $u_{O1}\approx U_i$ 。精密整流电路采用经典设计, $u_{O2}=\left|u_{O1}\right|$ 。滤波电路采用VCVS 二阶低通滤波电路,中心频率 $f_0\leq 10Hz$,以获得截止频率处陡峭的幅频特性,有效衰减波形的高频分量。V-F 转换电路采用锯齿波一脉冲波发生电路改装设计,以输入 u_{O3} 充当参考电压,输出 U_f 为负脉冲波。

各部分电路设计及参数选取如下分析。

输入阻抗变换——电压跟随器

将运放接成下图左电压跟随器,输入正弦波接至运放同相输入端,运放输出与反相输入端间连入 $R_1=20k\Omega$ 用于限流。运放输出作为阻抗变化级输出 u_{O1}

在 Multisim 中使用示波器两通道分别观测输入波形 $U_i(V_1)$ 及跟随器输出 V_2 ,接线如上图右,波形如下图所示。

可见 V_2 与 V_1 波形相仿,测得最大值相对误差

$$\beta = \frac{999.977 - 999.988}{999.988} \times 100\% \approx -0.0011\%$$

同理最小值相对误差

$$\beta = \frac{-999.972 - (-999.990)}{-999.990} \approx -0.0018\%$$

可见跟随器输入输出成理想的相等关系。

精密整流电路

构建全波精密整流电路如下所示

盒中 $10k\Omega$ 、 $20k\Omega$ 电阻较多,故元件参考电阻取 $R=10k\Omega$,理论运放同相端平衡电阻应取

$$R_4 = R_2 // R_3 \approx 6.67 k\Omega$$
 $R_7 = R_5 // R_6 // R_8 = \frac{10}{3} k\Omega$

考虑到元件盒中电阻值、数量,故尝试使用 $R_4=R_7=10k\Omega$ 代替上述平衡电阻。仿真时,示波器两通道分别与输入 V_2 及整流波形 V_{10} 相连,波形如下

正向峰值处变换误差

$$\beta = \frac{999.876 - 999.977}{999.977} \times 100\% \approx -0.0101\%$$

负向峰值处变换误差

$$\beta = \frac{999.955 - 999.972}{999.972} \times 100\% \approx -0.0017\%$$

可见此精密整流电路对输入端电阻平衡性要求不高,波形整流较精密,实现了对输入波形取绝对值的运算。

低通滤波电路——二阶 VCVS 低通滤波电路

采用教材经典设计, 闭环放大倍数

$$\dot{A}_{up} = \frac{R_1 + R_2}{R_1} = 2 < 3$$

电子技术实验(2)实验报告:综合实验

使电路稳定工作。取定特征频率

$$f_0 = \frac{1}{2\pi RC} = \frac{1}{2\pi \times 10k\Omega \times 1\mu F} \approx 15.915Hz < 40Hz$$

注意全波整流后波形频率翻倍,其最小值为 $20 \times 2 = 40$ Hz,故将 f_0 与 $40k\Omega$ 相比。特别地,

 $f=f_0$ 时, $\left|\dot{A}_u\right|=\dfrac{\left|\dot{A}_{up}\right|}{\left|3-\dot{A}_{up}\right|}=2$,此后幅频特性将迅速衰减,因此能较好滤除输入信号中正

余弦频率分量,得到与正弦波幅值成正比的直流电压。

调节同反相输入端电阻平衡, R_{11} // $R_{12}=R_9+R_{10}=20k\Omega$,不妨令 $R_{11}=R_{12}$ 故其电阻值为 $40k\Omega$ 。

使用示波器检测整流电路输出及滤波后的直流电平,波形如下图所示,可看到输出直流电平欠阻尼振荡并达到稳定的过程,输入正弦波峰峰值 2V,所得直流电平约并非常值,最大、最小值分别为 $u_{omax}=1.279V$, $u_{omin}=1.268V$,平均值 $u_{o}=1.2735V$ 。

而计算峰峰值 $V_m = E = 2V$ 、频率为f的输入波形直流分量

$$V_{DC} = \frac{1}{T} \int_{t}^{t+T} \frac{E}{2} \sin(2\pi f t) = 2f \frac{E}{2} \frac{1}{2\pi f} \times 4 = \frac{2E}{\pi} = \frac{4}{\pi} \approx 1.2732V$$

与实测直流接近。事实上,由于低通滤波器对频率 f 的输入波形增益并非为 0,将示波器幅值放大可看到直流电平 u_o 上驮载了正弦分量,如下图右所示。

可见正弦分量峰值 5.612mV,约占直流电平1.273V 的 0.441%,远低于实验电路对测量精度的要求,因此认为此VCVS 低通滤波电路性能优良。

压频转换电路

 压对管 D_4 、 D_5 ,输出端(标号19)理论幅值 $U_Z + U_{on} = 5.1 + 0.7 = 5.8V$ 。由于输出直流电平 $u_I > 0$,故将二极管正极连接至积分电路运放的反相输入端。

输出频率计算式为

$$f = \frac{R_2}{2R_1R_wCU_z}|u_I|$$

使用元件盒里常见电阻、电容值确定有关参数。选取 $R_{15}=R_{17}=10k\Omega$,此时积分电路与滞回比较器连接处阈值 $U_T=u_o=\pm 5.8V$ 。选取电容 $C=0.1\mu F$ 。输出端电阻取 $R_{18}=3.3k\Omega$ 。

为保证 $u_I=1.273V$ 时,输出频率f=100Hz,电位器阻值应调节至

$$R_{w} = \frac{R_{2}|u_{I}|}{2R_{1}Cfu_{o}} = \frac{1.273}{2\times0.1\mu F\times100\times5.8} \approx 10.97k\Omega$$

实际仿真时,调节 $R_{13}=15k\Omega$ 时,输出周期T=10.050ms,频率

$$f = \frac{1}{T} = \frac{1}{10.050 \times 10^{-3}} \approx 99.50 Hz \approx 100 Hz$$

相对误差达到

$$\beta = \frac{99.50 - 100}{100} \times 100\% \approx 0.50\% \le 8\%$$

满足要求。

整体正弦信号峰峰值测量电路

将上述各级电路按信号流从左至右依次串接,得到总体电路如下。

电子技术实验(2)实验报告:综合实验

姜永鹏 2019010465

其中 V_1 为输入正弦信号,点 23 为输出负脉冲波。运放采用 $\pm 12V$ 供电。

2.3 仿真测量

选取 20Hz、100Hz、200Hz 三组频率下电容量程两端及中点值 $V_{pp}=1,3,5V$ 的输入正弦波进行仿真测量,数据记录如下所示。

$u_{I,pp}(V)$	f(Hz)	脉冲频率 $f_p(Hz)$	$u_{I,pp}(V)$	f(Hz)	脉冲频率 $f_p(Hz)$
1	20	49.140	1	100	50.536
3	20	156.446	3	100	145.645
5	20	242.718	5	100	231.481
1	200	50.218	0.1	20	5.118
3	200	144.071	0.5	20	25.838
5	200	234.192	0.9	20	46.434
0.1	100	5.151	0.1	200	5.135
0.5	100	25.510	0.5	200	25.510
0.9	100	45.382	0.9	200	46.434

2.4 面包板布局布线规划

如上图所示,在 fritzing 中将 6 个运放所使用的三块 LF347N 芯片如图布局,仅使用芯片单侧运放 $2\times3=6$ 个。运放上端引出电源线接 $V_{EE}=-12V$,下端引出电源线接 $V_{CC}=+12V$ 。

其余主要元件如 1 个 $50k\Omega$ 电位器,3 个二极管 1N4148,3 个稳压管 $U_Z=5.1V$,2 个 $1\mu F$ 电容及 1 个 $0.1\mu F$ 电容布局同样如图。其余元件如定值电阻及导线在空余处连接,尽量少使用飞线。

测量各运放输出波形的探头位置用绿线标示。

2.3 测量原始数据记录(实测值分析见第 3 节)

必做测量, $V_{pp} = 1 \sim 5V$,正弦波

$u_{I,pp}(V)$	f(Hz)	脉冲频率f _p (Hz) (理论值)	$u_{I,pp}(V)$	f(Hz)	脉冲频率 $f_p(Hz)$	$u_{I,pp}(V)$	f(Hz)	脉冲频率 $f_p(Hz)$
1.00	20	52.230(50)	1.00	100	52.171	1.00	200	52.045

1.70	20	87.49(85)	1.70	100	87.58	1.70	200	87.64
2.30	20	117.15(115)	2.30	100	117.04	2.30	200	117.21
3.00	20	150.60(150)	3.00	100	150.88	3.00	200	150.56
3.70	20	183.15(185)	3.70	100	183.08	3.70	200	183.35
4.30	20	210.3(215)	4.30	100	210.1	4.30	200	210.0
5.00	20	240.9(250)	5.00	100	240.6	5.00	200	240.5

<u>备注</u>:获得上述数据时,电路中滤波模块采用二阶VCVS设计,经测量电位器阻值 $R_w=7.60k\Omega$,由于提高了电容C值, R_w 与仿真有差异。第三列数据中括号内为设计的输出频率理论值。

选做测量, $V_{pp} = 0.1 \sim 1V$, 正弦波

$u_{I,pp}(V)$	f(Hz)	脉冲频率f _p (Hz) (理论值)	$u_{I,pp}(V)$	f(Hz)	脉冲频率 $f_p(Hz)$	$u_{I,pp}(V)$	f(Hz)	脉冲频率 $f_p(Hz)$
0.10	20	5.0135(5)	0.10	100	5.001	0.10	200	5.0125
0.20	20	10.436(10)	0.20	100	9.881	0.20	200	10.578
0.30	20	15.689(15)	0.30	100	14.65	0.30	200	16.199
0.40	20	21.43(20)	0.40	100	19.46	0.40	200	21.65
0.50	20	25.96(25)	0.50	100	24.32	0.50	200	27.16
0.60	20	33.81(30)	0.60	100	29.17	0.60	200	32.51
0.70	20	38.34(35)	0.70	100	34.01	0.70	200	37.97
0.80	20	43.40(40)	0.80	100	38.17	0.80	200	43.33
0.90	20	46.73(45)	0.90	100	43.7	0.90	200	48.78

<u>备注</u>: 获得上述数据时,滤波模块采用一阶低通设计,且电容 $C=1\mu F$ (二阶 VCVS 中我使用 $C=10\mu F$),经测量电位器阻值 $R_w=14.47k\Omega$ 。

$u_{I,pp}(V)$	f(Hz)	脉冲频率f _p (Hz) (理论值)	$u_{I,pp}(V)$	f(Hz)	脉冲频率 $f_p(Hz)$	$u_{I,pp}(V)$	f(Hz)	脉冲频率 $f_p(Hz)$
0.10	20	5.0015(5)	0.10	100	4.9995	0.10	200	5.0125
0.20	20	10.322(10)	0.20	100	10.322	0.20	200	10.331
0.30	20	15.630(15)	0.30	100	15.635	0.30	200	15.630
0.40	20	20.93(20)	0.40	100	20.96	0.40	200	20.93
0.50	20	26.22(25)	0.50	100	26.22	0.50	200	26.22
0.60	20	31.33(30)	0.60	100	31.37	0.60	200	31.35
0.70	20	36.52(35)	0.70	100	36.52	0.70	200	36.50
0.80	20	41.47(40)	0.80	100	41.74	0.80	200	41.70
0.90	20	46.86(45)	0.90	100	46.95	0.90	200	46.82

<u>备注</u>: 获得上述数据时,滤波模块改进为 $C=10\mu F$ 的VCVS二阶低通,经测量电位器阻值 $R_{w}=7.53k\Omega$ 。

3 实验数据处理与分析

完成调试、测量并通过验收的实验电路如下图所示。由左至右排列三片 *LF* 347 N ,利电子技术实验(2)实验报告:综合实验 姜永鹏 2019010465

用上侧6个运放搭建电路。由左至右6个运放实现的功能分别为:

- ①阻抗变换(输入级,跟随器,特征为蓝色横线与信号发生器相连);
- ②半波整流(精密整流前级,特征为两1N4148二极管);
- ③比例求和(精密整流后级,反相求和);
- ④低通滤波(二阶VCVS,特征为两 $10\mu F$ 点解电容);
- ⑤积分电路(V-F 转换电路前级,特征为 $-1\mu F$ 陶瓷电容和-1N4148 二极管);
- ⑥滞回比较器(V-F转换电路后级);

此外,电路输出级明显标志为三个 $U_Z=5.1V$ 的稳压管,下方蓝、绿线串联为负脉冲波输出,接示波器。

此外,右侧引出的三根 + V_{CC} 电源线(红)、 $-V_{CC}$ 电源线(黄)及 GND (橙)。左上方两根向上引出的蓝线为示波器地,与信号发生器及电源共地。

3.1 电路调试与模块输出波形分析

本实验电路采用模块化设计,各部分功能明确。且各模块由运放组成,前后级影响较弱。调试时按信号流向依次检查各部分输出波形,分级调试即可保证电路功能正常。实验时我测试了输入及6个运放的输出波形如下,通道1始终检测输入测试信号。

如下为跟随器,通道 1 接输入正弦测试信号,通道 2 接跟随器输出。可见两信号峰值 3.10V/3.10V

一致, 频率

20.011Hz/20.009Hz

接近,由波形看出无失真、无相移,说明电路跟随特性好,实现了输入阻抗变换。

如下通道 2 为精密整流电路前级的半波整流电路,可见波形只保留负半周,另半周期幅电子技术实验(2)实验报告:综合实验 姜永鹏 2019010465

值接近0V,且在负半周接近0V处发生交越失真,即二极管压降低于 U_{on} 而截止。事实上,信号正半周时,由于二极管有微弱反向电流,可看出波形不是平直0V,而是有一定弧度。

如下通道 2 为全波精密整流输出,峰值 $V_p=1.55V=rac{V_{pp}}{2}$,频率 $f=39.765\approx 2f_i=2\times 19.986=39.972 Hz$ 半周接近 0V 处转折特性良好。

如下通道 2 为低通滤波电路输出,可见输出直流电平平直,未驼载可见的高频信号(通道 2 峰峰值 100mV 是垂直标度的最小分度,仅表示上下波动幅度 $\leq 100mV$,实际的波动是远小于此值的,因为 100mV 的波动占竖直 1/5 大格,应该可辨)

实验测得压频转换电路前级积分器输出为锯齿波,上升阈值电压 $U_T=\pm 4.61V$ 约是稳压管稳压值 U_Z (滞回比较器同相端虚断,构成比例 $U_T=-U_Z$),下图为压频转换电路滞回比较器运放输出,可见由于正反馈,达到了正负向饱和电压 $\pm 10.85V$ 左右,峰峰值 21.7V 。

下图通道 2 为整个测量电路输出,可见峰峰值 4.54V 接近稳压管稳压值,输出脉冲波转折处陡峭,显示稳定,各下降沿目视等间距,可见稳压管限幅电路工作理想,整个测量电路状态正常。在 $V_m=3.00V$ (信号发生器示值)的测试正弦波下,输出负脉冲频率

$$f_n = 150.69 Hz \approx 50 \times 3$$

比例调节正常。

3.2 (必做测量) $V_{pp} = 1 \sim 5V$ 数据处理与精度分析

测量时发现,示波器自动得出的正弦波峰值与信号发生器显示有 $0\sim0.1V$ 的偏差,以示波器为准,则之前通过 $V_{pp}=3V$, $f_p=150Hz$ 的标定,实际为 $V_{pp}=3.10V$, $f_p=150Hz$ 。由于 3.00V<3.10V ,因此可能出现测量误差同负的情形。

接 $V_p \sim f_p(1:100)$ 的比率得到各峰峰值下应当测得的 f_p 如下表。如 $u_{I,pp} = 1.09V$ 时

$$f_p = 1.09V \times 50 \, Hz / V = 54.5 Hz$$

$u_{I,pp}(V)$	1.09	1.81	2.37	3.10	3.74	4.34	5.03
$f_p(Hz)$	54.5	90.5	118.5	155.0	187.0	217.0	251.5

实际测量数据及误差记录如下。

1.09	20	52.230	-4.17	1.09	100	52.171	-4.27	1.09	200	52.045	-4.50
1.81	20	87.49	-3.33	1.81	100	87.58	-3.23	1.81	200	87.64	-3.16
2.37	20	117.15	-1.14	2.37	100	117.04	-1.23	2.37	200	117.21	-1.09
3.10	20	150.60	-2.84	3.10	100	150.88	-2.66	3.10	200	150.56	-2.86
3.74	20	183.15	-2.06	3.74	100	183.08	-2.10	3.74	200	183.35	-1.95
4.34	20	210.3	-3.09	4.34	100	210.1	-3.18	4.34	200	210.0	-3.23
5.03	20	240.9	-4.21	5.03	100	240.6	-4.33	5.03	200	240.5	-4.37

如 $V_{pp} = 1.09V$, f = 20Hz 时量测结果相对误差

$$\eta = \frac{f_{p,\text{9}} - f_{p,\text{9}}}{f_{p,\text{9}}} \times 100\% = \frac{52.230 - 54.500}{54.500} \times 100\% \approx -4.17\%$$

可见峰峰值 V_{pp} 一定但频率 f=20/100/200 Hz 变化时,测得的输出负脉冲波基本一致,说明电路滤波环节特性好,高频分量对测量结果影响微弱。 $V_{pp}=1.09\sim5.03V$ 间时,测量误差基本均为负,这是因为标定示数,确定 R_w 的过程中,由于信号发生器与示波器示数差异,实际给出了峰峰值 $V_{pp}=3.10V>3.00V$ 的正弦波,实际应调出 $f_p=155$ Hz 但在调节时被设置成150 Hz ,偏小,因此各峰峰值测量均出现了负的相对误差。

下图分别展示 f=20/100/200Hz 的测试信号下输出脉冲波频率与测试信号峰峰值的关系,相应地在图中给出误差曲线。可见测试结果 R^2 均在 0.9993 以上,线性度较好。误差随 $u_{I,pp}$ 波动不明显,测量较为稳定。

对 f = 200Hz 的 7 组测量数据,保留示波器波形如下图所示。

电子技术实验(2)实验报告:综合实验

姜永鹏 2019010465

 $V_{pp} = \overline{3.74V}$ $V_{pp} = \overline{4.34V}$ $V_{pp} = 3.10V$

 $V_{pp} = \overline{5.03V}$

3.3 (选做测量) $V_{pp} = 0.1 \sim 0.9V$ 数据处理与精度分析

理论上当被测信号峰值较低时,通过低通滤波电路,直流成分与各谐波分量按同样比例 减小,应该对测量结果无明显影响。但考虑到小信号的直流分量与谐波峰值都较小,使用示 波器测量时,小信号可能造成额外的误差。但事实上,由于使用了二阶VCVS电路设计,系 统精度已较好,为探究电路结构不同对测量精度的影响,我将滤波模块电容改小,并去掉一 级 RC 使用一阶低通滤波设计, 预期精度降低, 与二阶 VCVS 对比, 显示"优化电路"降低 误差的效果。

如下为一阶低通滤波下的测量误差分析。首先将各 $u_{I,pp}(V)$ 取值的理论 f_p 列入下表。如 $u_{I,pp} = 0.107V$ 时

 $f_p = 50 \times 0.107 = 5.35$ *Hz*

$u_{I,pp}(V)$	0.107	0.205	0.310	0.406	0.503	0.610	0.710	0.800	0.910
$f_p(Hz)$	5.35	10.25	15.50	20.30	25.15	30.50	35.50	40.00	45.50

下表展示不同频率及峰峰值下的测量误差。

$u_{I,pp}(V)$	f(Hz)	$f_p(Hz)$	误差%	$u_{I,pp}(V)$	f(Hz)	$f_p(Hz)$	误差%	$u_{I,pp}(V)$	f(Hz)	$f_p(Hz)$	误差%
0.107	20	5.0135	-6.29	0.107	100	5.001	-6.52	0.107	200	5.0125	-6.31
0.205	20	10.436	1.81	0.205	100	9.881	-3.60	0.205	200	10.578	3.20
0.310	20	15.689	1.22	0.310	100	14.65	-5.48	0.310	200	16.199	4.51
0.406	20	21.43	5.57	0.406	100	19.46	-4.14	0.406	200	21.65	6.65
0.503	20	25.96	3.22	0.503	100	24.32	-3.30	0.503	200	27.16	7.99
0.610	20	33.81	10.85	0.610	100	29.17	-4.36	0.610	200	32.51	6.59

0.710	20	38.34	8.00	0.710	100	34.01	-4.20	0.710	200	37.97	6.96
0.800	20	43.40	8.50	0.800	100	38.17	-4.58	0.800	200	43.33	8.33
0.910	20	46.73	2.70	0.910	100	43.7	-3.96	0.910	200	48.78	7.21

将三种频率下 $f_p \sim V_{pp}$ 变化曲线及测量误差绘制如下。

能够看出:

其一: 改进前电路误差较大, f=20Hz 组 $V_{pp}=0.610V$ 、0.710V、0.800V 时数据, f=200Hz 组 $V_{pp}=0.800V$ 、0.503V 时误差达到或接近 8% 的要求;

其二:测量的可重复性差,同样 $V_{pp}=0.610V$ 时,在三种频率下测得 $f_p=33.81/29.17/32.51Hz$

相差较大,甚至 f = 20/200Hz 组整体表现正的误差,但 f = 100Hz 组整体表现负的误差,可见此电路对小信号测量受频率影响显著;

其三:测量线性度不好,尤其 f = 20Hz 数据拟合结果 $R^2 = 0.996$ 低于其他情形,从图像也可看出测量点与拟合曲线有明显偏移。这可能是因为谐波频率较低,对一阶滤波而言衰减不充分,影响测量,可通过提高滤波阶数,引入反馈改善。

实验时电路展示如下,基本与二阶VCVS时一致。注意中间运放上方有一根灰色飞线,将第三个运放的输出与 $10k\Omega$ 电阻串联,这代替了原来的一级RC,及仿真电路中 R_9C_1 。同时 C_2 由 $1\mu F$ 电解电容改为 $10\mu F$ 陶瓷电容。

误差可能源于滤波器阶数降低和中心频率减小,使滤出的直流电平驼载了幅值较大的正弦分量。如下图分别可见滤波电路输出的波形有几十至百mV幅值的正弦分量,导致V - F转换电路输入有波动,同样可以看到输出的负脉冲波周期时疏时密,有波动。

电子技术实验(2)实验报告:综合实验

姜永鹏 2019010465

对 f = 200Hz 的 7 组测量数据,保留示波器波形如下图所示。

为做对比,将滤波电容改为 $10\mu F$,同时改为二阶VCVS,观察到滤除直流电平几乎无电子技术实验(2)实验报告:综合实验 姜永鹏 2019010465

正弦分量波动,且输出的脉冲波周期均一稳定。

相关测量数据及误差记录如下表

$u_{I,pp}(V)$	f(Hz)	$f_p(Hz)$	误差%	$u_{I,pp}(V)$	f(Hz)	$f_p(Hz)$	误差%	$u_{I,pp}(V)$	f(Hz)	$f_p(Hz)$	误差%
0.107	20	5.0015	-6.51	0.107	100	4.9995	-6.55	0.107	200	5.0125	-6.31
0.205	20	10.322	0.70	0.205	100	10.322	0.70	0.205	200	10.331	0.79
0.310	20	15.63	0.84	0.310	100	15.635	0.87	0.310	200	15.63	0.84
0.406	20	20.93	3.10	0.406	100	20.96	3.25	0.406	200	20.93	3.10
0.503	20	26.22	4.25	0.503	100	26.22	4.25	0.503	200	26.22	4.25
0.610	20	31.33	2.72	0.610	100	31.37	2.85	0.610	200	31.35	2.79
0.710	20	36.52	2.87	0.710	100	36.52	2.87	0.710	200	36.5	2.82
0.800	20	41.47	3.68	0.800	100	41.74	4.35	0.800	200	41.7	4.25
0.910	20	46.86	2.99	0.910	100	46.95	3.19	0.910	200	46.82	2.90
	· ·							·			

数据绘图如下。

可以看出改进结构后电路精度提高,之前的若干误差得到解决。

其一: 电路误差减小, $u_{I,pp}=0.107V$ 时最大相对误差-6.55%,所有相对误差均在8% 以内;

其二:测量的可重复性增强,保持 V_{pp} 不变,三种频率下测得的 f_p 最多只有十分位 3 位以内的波动。 $V_{pp}=0.503V$ 时,甚至在三中频率下测得的 f_p 无差别。另外,各组相对误差的正负、趋势一致。可见改进电路降低了频率对测量结果的影响;

其三:测量线性度较好,各组拟合得到 R^2 均在 0.9997 及以上,由图像看出 $f_p \sim V_{pp}$ 关系基本为一条直线。

可见改进电路从多方面提升性能。

电子技术实验(2)实验报告:综合实验

姜永鹏 2019010465

4 实验问题记录与分析

(1) 输出脉冲波形频率较大且不可调。

问题:最初调试时,加以 $V_{pp}=3V$ 的正弦测试信号,将 R_w 调节至仿真值(约15 $k\Omega$)理论输出脉冲波频率约为150Hz,但实际测量结果却在600Hz以上,改变测试信号峰峰值,发现脉冲波频率无明显变化。

分析解决: 输出脉冲波频率与滤波电路得到的直流电平成正比,频率过高说明直流电平偏大 4 倍以上。联想到前级滤波电路运放引入正反馈,分析可能输出饱和,万用表测量滤波电路输出为 10.15V,接近 12V 的 V_{CC} ,验证猜测。另一方面,改变 V_{pp} ,输出的 f_p 无变化,说明输入到输出的电通路有断路。用示波器逆信号流向检测各级电路输出,发现无信号。最终在输入级发现信号发生器接线脱落,导致输入端悬空无信号。高频噪声影响下可能滤波电路正反馈通路形成,从而输出达到了饱和。将信号发生器稳定接入电路,问题解决。

(2) 输出脉冲波形频率变化较大,且波形晃动剧烈。

问题:起初滤波电路电容选用 $1\mu F$,调节 $R_w=15k\Omega$ 为仿真值。在 $V_{pp}=3V$ 的测试信号下,输出脉冲波频率在150Hz上下几十Hz范围内波动(较多情况下会偏小)。这已经超出8%的允差范围,因此断定电路存在问题。

分析解决:①按"运行/停止"键,观察到脉冲波形的周期不稳定(间距不均匀)。检查压频转换电路连线正确。考虑到脉冲波周期/频率近似与输入电压信号成正比,判断输入电压不稳定,使用示波器监测得到输入信号不是理想的直流电平,而是有正弦样波动,波动幅度 400mV-600mV 不等,且直流电平值也略低于仿真。起初我认为是滤波电路中心频率过高,导致高频衰减不充分。调大 C 至 $10\mu F$,问题无明显改善;

②于是检查滤波电路接线。(对照仿真电路图)发现第一级 R_9C_1 接错位置,从整流电路输出串联 R_9 、 C_1 再连 R_{10} ,这实际构成一个高通滤波器,且 VCVS 结构被破坏。直流成分衰减地更明显,且高频分量没有被有效滤除,因此出现相应问题。按电路正确接线,问题解决,滤波电路输出几乎是直线了,即使电容 C 换回 $1\mu F$,波动也没有 400mV 这样剧烈,大概不到 200mV。输出的负脉冲波已经能够稳定显示了,且周期宽度没有可见的波动。

(3) 示波器屏幕上,输出脉冲波形不停滚动,不能稳定显示和读数。

问题:示波器2通道接脉冲波输出,发现屏幕上波形一直滚动,无法看清,按"开始/暂停"能观察到正常的负脉冲波。虽然"测量"功能结果可能较稳定,但由于无法看清波形,很难保证结果正确。

分析解决:由于V-F转换电路输入有波动,负脉冲周期宽度会有微弱变化,不是严格的恒定周期波形。而1通道正弦波周期固定,因此以1通道做触发源,每次触发时2通道未必对应同一点,则波形会在屏幕上滚动。为测量输出负脉冲波周期,应保证通道2波形稳定显示,故选通道1为触发源。但由于相邻两次触发时,1通道正弦波又不处于同一位置,所以波形同样会滚动,但不影响脉冲波测量。

5 实验思考题

问: $\mu - F$ 转换电路的转换误差取决于哪些因素,为什么?

答: $\mu - F$ 转换电路频率 f 随 $|u_1|$ 变化的关系式如下

电子技术实验(2)实验报告:综合实验

$$f = \frac{R_2}{2R_1R_wCU_z}|u_I| \qquad (*)$$

注意该式成立需要 $R_{16} << R_{\scriptscriptstyle W}$ (对照仿真电路+教材 p386 图 7.4.10(b))。若该近似条件不满足,那么 $u_{\scriptscriptstyle O}=U_{\scriptscriptstyle Z}$ 时会通过级间反馈支路的二极管向电容 C 充电。运放 $A_{\scriptscriptstyle I}$ 反相输入端等效电源

$$u_I' = u_I + \frac{u_O - u_I}{R_w + R_3} R_w = \frac{R_3}{R_3 + R_w} u_I + \frac{R_w}{R_3 + R_w} U_Z$$

等效内阻

$$R'_{w} = R_{w} // R_{3} = \frac{R_{w} R_{3}}{R_{w} + R_{3}}$$

此充电过程满足

$$C\frac{du_C}{dt} = -\frac{u_I'}{R_W'}$$

电容电压变化仍为 $2U_T$,此时电路输出负脉冲宽

$$T_1 = 2U_T / \left(\frac{u_I'}{R_w'C}\right) = 2CU_T / \left(\frac{u_I}{R_w} + \frac{U_Z}{R_3}\right)$$

同时由正脉冲宽

$$T_2 = \frac{R_2}{2R_1 R_w C U_z u_I}$$

可见 $f=\frac{1}{T_1+T_2}$,由于 T_1 分母包含 $\frac{U_Z}{R_3}$ 的缘故,并非与 u_I 成正比。除非 $R_3 << R_w$ 使 $\frac{U_Z}{R_3}$ 项 可忽略。实验时 $\frac{R_w}{R_3}$ 大概在 10 左右, $R_3 << R_w$ 的条件并非严格成立,这是输出频率与正弦 波峰峰值线性度不好的主要原因。

此外,式中其他参数若在实验时有不稳定,则也会导致 $f-u_I$ 线性度不好,但影响不如 $R_3 << R_w$ 这一条件明显。另外,若这些参数标称与实际值有差别,也会导致理论计算和实验结果的偏差。