ECG Graph Monitoring with 3 Lead Placement

โดย

นายกลวัชร อินทร์แป้น รหัสนักศึกษา 65010039 นายณัฐดนัย สังข์โพธิ์ รหัสนักศึกษา 65010297 นายณัฐวุฒิ ฉายอ่วม รหัสนักศึกษา 65010329

รายงานฉบับนี้เป็นส่วนหนึ่งของการศึกษาในรายวิชา 01076107 Circuits and Electronics

สาขาวิศวกรรมคอมพิวเตอร์

ภาควิชาวิศวกรรมคอมพิวเตอร์

คณะวิศวกรรมศาสตร์

สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง

ปีการศึกษา 2565

1. ภาพรวมโครงงาน

1.1 ที่มาและความสำคัญ

กลุ่มของเราเล็งเห็นถึงความสำคัญของปัญหาโรคหัวใจ สถิติสาธารณสุขของประเทศไทยในปี 2564 พบว่า "โรคหัวใจขาดเลือด" เป็นสาเหตุการเสียชีวิตของคนไทยมากเป็นอันดับ 4 รองจากโรคมะเร็ง โรคหลอดเลือดใน สมอง และปอดบวม โดยโรคหัวใจขาดเลือด คร่าชีวิตคนไทยปีละประมาณ 20,000 คน หรือราว 33 คน ต่อ ประชากร 1 แสนคน

นอกจากนี้ในช่วง 16 ปี วิทยาลัยการแพทย์อเมริกัน ได้ทำการศึกษา (2000- 2016) สัดส่วนของคนอายุ น้อยที่หัวใจวาย เพิ่มจำนวนขึ้น 2% ต่อปีในช่วง 10 ปีหลัง

นี่คือแรงบันดาลใจของพวกเราในการจะสร้างนวัตกรรมที่เกี่ยวกับคลื่นหัวใจ ซึ่งมันน่าจะดีไม่น้อยทีเดียว หากว่าเรานั้นสามารถเช็คดูคลื่นหัวใจของตนเองนั้นได้ตลอดเวลา นั่นเป็นเหตุผลที่เพียงพอแล้วที่เราจะสร้าง นวัตกรรมที่มีชื่อว่า ECG Graph Monitoring with 3 Lead Placement

1.2 .วงจรสำหรับโปรเจ<mark>ค</mark>

1.3.อุปกรณ์

- บอร์ด ESP 8266	1 ตัว
- เซนเซอร์ Electrode Pad	1 ตัว
- AD620	1 ตัว
- TL072ACD	8 ตัว
- 5.6 kΩ Resistor	1 ตัว
- 33 kΩ Resistor	1 ตัว
- 10 kΩ Resistor	1 ตัว
- 499.9 kΩ Resistor	1 ตัว
- 20 kΩ Resistor	2 ตัว
- 100 kΩ Resistor	1 ตัว
- 39 kΩ Resistor	4 ตัว
- 9.1 kΩ Resistor	2 ตัว
- 10 uF Capacitor	2 ตัว
- 0.1 uF Capacitor	2 ตัว
- 100 nF Capacitor	6 ตัว

1.4. การออกแบบวงจร

การออกแบบวงจรนั้น จะออกแบบในเว็บที่มีชื่อว่า Tinkercard เพื่อช่วยให้วงจรก่อนจะต่อจริงนั้น มี ความเป็นระเบียบเรียบร้อย และลดข้อผิดพลาดได้ดียิ่งขึ้นอีกด้วย โดยวงจรที่ได้ออกแบบไว้มีรูปแบบดังรูป

1.5 ขั้นตอนการทำงานของระบบ

1.5.1 Input : โดยส่วนของ Input นั้น จะรับค่าจากเซนเซอร์ที่มีชื่อ Electrode Pad ซึ่งค่าที่ได้จะเป็นกราฟ คลื่นไฟฟ้า (ECG) นั่นเอง

1.5.2 Process : จะนำกราฟ (ECG) ที่ได้นั้นมาผ่านวงจรที่ได้ออกแบบไว้ ซึ่งในวงจรนั้นจะเป็นวงจร Op-amp ซึ่ง
ทำหน้าที่ขยายรูปกราฟและกรองความถี่ ทำให้เรานั้นสามารถนำข้อมูลไปใช้งานและตรวจสอบ
ข้อมูลต่างๆได้ง่ายขึ้นและมีความแม่นยำอีกด้วย

- กราฟที่ได้รับจาก ECG

- กราฟที่ผ่านวงจรที่เราได้ออกแบบไว้

1.5.3 Output : หลังจากเราได้รูปกราฟที่ผ่านวงจรที่เราออกแบบไว้แล้วนั้น เราจะนำข้อมูลต่างๆ นำมา plot เพื่อนำข้อมูลมาใช้ประโยชน์ต่อไป

1.6 ประโยชน์และผลลัพท์ที่จะได้

ประโยชน์ที่จะได้นั้น เราจะสามารถตรวจสอบคลื่นไฟฟ้าหัวใจ (ECG) ได้ตลอดทุกที่ทุกเวลาตามที่ต้องการ ซึ่งจะลดเวลาการเดินทางไปโรงพยาบาลรวมทั้งค่าใช้จ่ายต่างๆได้อีกด้วย แต่ถึงอย่างไรนั้นเราควรมีความรู้เกี่ยวกับ การอ่านกราฟ ECG ด้วยเพื่อให้ผลลัพท์นั้นตรงตามความต้องการของผู้ใช้งานให้มีประสิทธิภาพสูงสุดด้วยเช่นกัน

- กราฟ ECG

- ECG ของคนโดยทั่วไป (เมื่อผ่านวงจรที่เราออกแบบไว้แล้ว)

- ECG ของวงจร กับ ตำแหน่งกราฟและข้อมูลต่างๆ

- ECG กับการวินิฉัยโรคต่างๆ เบื้องต้น

รูปกราฟ	การวินิฉัยเบื้องต้น
ช่วงเวลา QT สั้น	แคลเซียมสูงในเลือดเนื่องจากยาบางชนิด, ความผิดปกติทาง
	พันธุกรรมบางอย่าง, ภาวะโพแทสเซียมสูง
ช่วงเวลา QT ยาว	แคลเซียมสูงในเลือด, ยาบางชนิด, ความผิดปกติทางพันธุกรรมบางอย่าง
คลื่น T แบนหรือคว่ำ	หัวใจขาดเลือด, ภาวะโพแทสเซียมสูง, หัวใจห้องล่างซ้ายโตเกิน, ผลกระทบ
	จากยาพวก
	<u>ดิจอกซิน</u> (Digoxin), ยาบางชนิด
คลื่น T เฉียบพลันสุดขีด	อาจเป็นอาการแรกของกล้ามเนื้อหัวใจตายเฉียบพลัน, เมื่อคลื่น T กลายเป็น
	ที่โดดเด่นมากขึ้น, สมมาตร, และแหลม
คลื่น T ขึ้นสูงสุด, คลื่น QRS	ภาวะโพแทสเซียมสูง, รักษาด้วย calcium chloride, กลูโคสและอินซูลิน
กว้าง, คลื่น PR ยาว, คลื่น	หรือการล้างไต
QT สั้น	
คลื่น U โดดเด่น	ภาวะโพแทสเซียมสูง

จากข้อมูลข้างต้นทำให้เราเห็นถึงประโยชน์ของกราฟ คลื่นหัวใจไฟฟ้ามากขึ้นทำให้เรานั้นสามารถนำประโยชน์ มาประยุกต์ใช้กับคนทั่วไปที่มีความสนใจได้อีกด้วย

2.การวิเคราะห์วงจร

เนื่องจากวงจรของเรานั้นใช้ Op-amp จำนวน 9 ตัว เพื่อกรองความถี่รวมทั้งเพิ่มอัตราขยายกราฟให้ดูง่าย ยิ่งขึ้นโดยใช้ Op-amp จำนวน 2 ชนิด แบ่งเป็น

- AD620 1 ตัว (ตัวที่ 1)

Function: Low Drift, Low Power Instrumentation Amp with Set Gains of 1 to 10000

- TL072 8 ตัว (ตัวที่ 2 ถึง 9)

Function: Dual Low-Noise JFET-Input Operational Amplifier

3.การเชื่อมต่อกับวงจรไมโครคอนโทรลเลอร์

3.1 การเชื่อมต่อกับวงจรที่ออกแบบไว้

3.2 การเชื่อมต่อกับวงจรจริง

4.ผลการทดสอบ

5.โปสเตอร์

ECG Graph monitoring with 3 Lead Placement

แนวคิด

กลุ่มของเราเล็งเห็นถึงความสำคัญของปัญหาโรคหัวใจ สถิติสาธารณสุขของ ประเทศไทยในปี 2564 พบว่า "โรคหัวใจขาดเลือด" เป็นสาเหตุการเสียชีวิตของ คนไทยมากเป็นอันดับ 4 รองจากโรคมะเร็ง โรคหลอดเลือดในสมอง และปอด บวม โดยโรคหัวใจขาดเลือด กร่าชีวิตคนใหยปีละประมาณ 20,000 คน หรือราว 33 คน ค่อประชากร 1 แสนคน นอกจากนี้ในช่วง 16 ปี วิทยาลัยการแพทย์ อเมริกัน ได้ทำการศึกษา (2000- 2016) สัดส่วนของคนอายุน้อยที่หัวใจวาย เพิ่ม จำนวนขึ้น 2% ค่อปีในช่วง 10 ปีหลัง นั้นเป็นเหตุผลที่เราจะสร้างนวัดกรรมที่มี ชื่อว่า ECG Graph Monitoring with 3 Lend Placement

ภาพรวม

โครงงานที่กลุ่มของพวกเราทำเป็นการวัด คลื่นไฟฟ้าหัวใจ โดยเราจะใช้แผ่น 3 จุด ติด ไว้ตรงบริเวณไหล่ซ้าย/ขวา และสะโพกขวา โดยจะให้ส่งคลื่นไฟฟ้ามายังวงจร และ แสดงผลออกมาทางหน้าจอ ผล

วงจร

สรุป

จากผลการทดลอง พบว่า กลุ่มของพวกเรา ไม่ได้ผลตามที่คาดหวังไว้ กราฟที่ได้ออกมา มีลักษณะต่างจากกราฟจริง แต่ยังสามารถ เห็นเป็นรูปร่างได้

- 1. 65010039 กลวัชร อินทร์แป็น
- 2. 65010297 ณัฐคนัย สังข์ไพธิ์
- 3. 65010329 ณัฐวุฒิ ถายอ่วม

6.Source Code

6.1 Arduino

```
sketch_apr29a.ino

int ecgValue = 0, count = 0;

void setup() {
    // initialize the serial communication:
    Serial.begin(115200);

    void loop() {
        ecgValue = analogRead(A0);
        // send the value of analog input 0:
        ecgValue = map(ecgValue, 250, 400, 0, 100); //to flatten the ecg values a bit

    Serial.println(ecgValue);

    delay(20);
    }
}
```

7.ค่าใช้จ่ายในการทำโครงงาน

รวมเป็นเงินทั้งสิ้น : 971.50 บาท