TEORIA DEI SISTEMI E DEL CONTROLLO (10 CFU)

DOCENTE

Giancarlo ZINI Dipartimento di Sistemi Elettrici e Automazione

Tel.: 050565313 Email: zini@cibernet.it

ORARIO RICEVIMENTO

Contattare il docente.

OBIETTIVI DEL CORSO

L'insegnamento ha lo scopo di illustrare le metodologie di analisi e controllo dei sistemi dinamici multivariabili, a tempo continuo e discreto, nello spazio di stato; in particolare verranno trattati i problemi di osservazione dello stato, assegnamento dei poli, controllo ottimo, filtraggio di Kalman. L'insegnamento prevede una attività integrata pari ad un CFU di laboratorio tecnico-pratico.

PREREQUISITI

Laurea triennale in Ingegneria Informatica, Meccanica, Elettrica.

COMPETENZE MINIME PER IL SUPERAMENTO DELL'ESAME

Definite dal docente a lezione.

MODALITA' DI VERIFICA

Prova orale.

CONTENUTI E ARTICOLAZIONE TEMPORALE

Richiami sui sistemi T.C. e T.D. Sistemi causali e non causali, stazionari, tempoinvarianti. Equilibri e linearizzazione di sistemi nonlineari. Passaggio dal continuo al discreto.

Stabilità. Teoremi di stabilità (Liapunov) e di instabilità (Cetaev). Equazioni di Liapunov per sistemi continui e discreti. Tecniche di soluzione delle equazioni di Liapunov.

Raggiungibilità e controllabilità. Grahamiani. Elissoide di raggiungibilità con ingresso limitato in potenza. Sottospazi di raggiungibilità e controllabilità. Decomposizione di Kalman Criteri di raggiungibilità e di controllabilità. Assegnamento dei poli. (il tutto per sistemi continui e discreti)

Osservabilità e ricostruibilità. Grahamiani. Elissoide di osservabilità. Sottospazi invarianti di non osservabilità e non ricostruibilità. Decomposizione di Kalman. Criteri di osservabilità. Stimatore dello stato identità e stimatori ridotti. Dualità tra raggiungibilità e osservabilità. (il tutto per sistemi continui e discreti)

Il problema LQR. Cenno su tecniche variazionali di ottimo. Lagrangiano e hamiltoniano. Equazioni canoniche. Principio di Bellmann, Equazione differenziale ed algebrica di Riccati. La reazione ottima. Luogo doppio delle radici ((il tutto per sistemi continui e discreti). Il controllo in "bangbang". Principio di Pontrjagin.

Il problema LQG. Impostazione del problema. Equazioni canoniche. L'osservatore ottimo. Dualità tra problemi LQR e LQG. Il regolatore ottimo. Proprietà di decomposizione. (il tutto per sistemi continui e discreti).

TESTI DI RIFERIMENTO

Fornasini Marchesini "Appunti di teoria dei sistemi" Edizioni Libreria Progetto Padova Appunti del docente.

TESTI COMPLEMENTARI ED ALTRO MATERIALE

H. Kwakernaak R. Sivan "Linear optimal control systems" Wiley Interscience.