Devoir Sur Table n°3 – Corrigé

Exercice 1 : Alea Iacta, Victoria Certa! ("Le sort en est jeté, la victoire est certaine")

1. (a) Avec du dénombrement par exemple...

On peut modéliser un résultat de cette expérience aléatoire par :

$$(x_1, x_2, \dots, x_N)$$
 avec $\forall i \in [1, N], x_i \in [1, N].$

 $(x_i \text{ donnant le numéro obtenu au lancer numéro } i)$ Autrement dit, $\Omega = [1, N]^N$.

Nous sommes en situation d'équiprobabilité.

En notant A l'évènement "Obtenir 1 au moins une fois", on a :

$$\begin{split} P(A) &= 1 - P(\overline{A}) = 1 - P(\text{"ne jamais obtenir 1"}) \\ &= 1 - \frac{\text{Nb de résultats sans 1}}{\text{Nb total de résultats}} \\ &= 1 - \frac{(N-1)^N}{N^N} \\ &= 1 - \left(\frac{N-1}{N}\right)^N. \end{split}$$

Ainsi la probabilité voulue est $P(A) = 1 - \left(1 - \frac{1}{N}\right)^N$.

(b) On choisit N = 1 million = 10^6 ici.

Si les chances de succès à chaque épreuve sont de $1/10^6$ (comme obtenir un 1 sur un dé à 10^6 faces), alors en répétant 10^6 fois l'expérience, la probabilité d'être vainqueur (au moins une fois) est $1-(1-\frac{1}{10^6})^{10^6}$ comme on vient de le voir.

 \bullet Développement personnel à deux sous : Si tes chances de succès sont d'une sur un million, essaye un million de fois et tu seras forcément vainqueur!

C'est évidemment faux puisque
$$1-(1-\frac{1}{10^6})^{10^6} \neq 1$$

• "Règle des 63%" : Si tes chances de succès sont d'une sur un million, essaye un million de fois et tu auras environ 63% de chance d'être vainqueur...

C'est vrai : pour le voir on peut considérer que $N=10^6$ est très grand et donc regarder le cas où $N\to +\infty$:

$$\lim_{N\to +\infty} \left(1-\frac{1}{N}\right)^N = \lim_{N\to +\infty} \exp\left(N\ln\left(1-\frac{1}{N}\right)\right) = \exp(-1) = e^{-1}$$

$$\operatorname{car} \lim_{N \to +\infty} N \ln \left(1 - \frac{1}{N} \right) = -\lim_{N \to +\infty} \frac{\ln \left(1 - 1/N \right)}{-1/N} = -\lim_{x \to 0} \frac{\ln (1+x)}{x} = -1 \text{ par limite usuelle.}$$

Ainsi, quand $N \to +\infty$ la probabilité de voir obtenir au moins un succès converge :

$$1 - \left(1 - \frac{1}{N}\right)^N \xrightarrow[N \to +\infty]{} 1 - e^{-1} \simeq 1 - 0,37 \simeq 0,63.$$

Quand N est grand, cette probabilité est donc effectivement proche de 63%

2. (a) Soit $n \in \mathbb{N}^*$. On peut écrire $P(B_n) = 1 - P(\overline{B_n})$.

Or, $\overline{B_n}$ = "Ne pas obtenir de succès au cours des n premières épreuves" = $\bigcap_{k=1}^n \overline{A_k}$.

Les évènements $\overline{A_k}$ étant mutuellement indépendants, on en déduit

$$P(\overline{B_n}) = \prod_{k=1}^n P(\overline{A_k}) \prod_{k=1}^n (1 - P(A_k)) = \prod_{k=1}^n (1 - p_k).$$

On obtient donc
$$P(B_n) = 1 - \prod_{k=1}^{n} (1 - p_k)$$
.

(b) Pour tout $n \in \mathbb{N}^*$, si l'évènement C est réalisé, alors en particulier on n'a pas obtenu de succès au cours des n premières épreuves (puisqu'on n'a jamais obtenu de succès).

La réalisation de C implique donc celle de $\overline{B_n}$: on a $C \subset \overline{B_n}$

On en déduit que
$$P(C) \leq P(\overline{B_n})$$
, c'est à dire $P(C) \leq \prod_{k=1}^n (1-p_k)$.

3. On suppose l'hypothèse (\mathcal{H}_1) . Dans ce cas, la majoration précédente donne :

$$\forall n \in \mathbb{N}^*, \ P(C) \leqslant \prod_{k=1}^n (1-p_k) = \prod_{k=1}^n (1-p) = (1-p)^n.$$

Evidemment, une probabilité est positive, on a donc : $\forall n \in \mathbb{N}^*, \ 0 \leq P(C) \leq (1-p)^n$. Puisque $1 - p \in]0, 1[$, on a $\lim_{n \to +\infty} (1 - p)^n = 0$.

En passant à la limite dans notre inégalité, on déduit donc que P(C) = 0

(a) Supposons que la suite $(p_k)_{k\in\mathbb{N}^*}$ satisfait (\mathcal{H}_1) et montrons qu'elle satisfait alors (\mathcal{H}_2) . On suppose donc qu'il existe $p \in]0,1[$ tel que $\forall k \in \mathbb{N}^*, \ p_k = p.$

Il en résulte que pour tout $n \in \mathbb{N}^*$, $\sum_{k=1}^n p_k = \sum_{k=1}^n p = np \xrightarrow[n \to +\infty]{} +\infty$.

On a donc
$$\lim_{n\to+\infty}\sum_{k=1}^n p_k = +\infty$$
, d'où (\mathcal{H}_2) .

(b) • Considérons $\forall k \in \mathbb{N}^*, \ p_k = 1 - \frac{1}{2^k}$.

Cette suite n'est pas constante donc ne satisfait pas (\mathcal{H}_1) . En revanche :

$$\lim_{n \to +\infty} \sum_{k=1}^{n} p_k = \lim_{n \to +\infty} \sum_{k=1}^{n} (1 - \frac{1}{2^k}) = \lim_{n \to +\infty} \left(n - \sum_{k=1}^{n} \left(\frac{1}{2} \right)^n \right)$$
$$= \lim_{n \to +\infty} \left(n - \frac{\frac{1}{2} - \left(\frac{1}{2} \right)^{n+1}}{1 - \frac{1}{2}} \right) = \lim_{n \to +\infty} \left(n - 1 + \frac{1}{2^n} \right) = +\infty.$$

Cette suite satisfait (\mathcal{H}_2)

• Considérons $\forall k \in \mathbb{N}^*, \ p_k = \ln(1 + \frac{1}{k}).$

Cette suite n'est pas constante donc ne satisfait pas (\mathcal{H}_1) . En revanche :

$$\lim_{n \to +\infty} \sum_{k=1}^{n} p_k = \lim_{n \to +\infty} \sum_{k=1}^{n} \ln\left(1 + \frac{1}{k}\right) = \lim_{n \to +\infty} \sum_{k=1}^{n} \ln\left(\frac{k+1}{k}\right)$$
$$= \lim_{n \to +\infty} \sum_{k=1}^{n} \left(\ln(k+1) - \ln(k)\right) = \lim_{n \to +\infty} \left(\ln(n+1) - \ln(1)\right) = +\infty.$$

Cette suite satisfait (\mathcal{H}_2)

(c) • Pour montrer que $\forall x \in]-1, +\infty[$, $\ln(1+x) \leq x$ on introduit $g: x \mapsto \ln(1+x) - x$ et on vérifie que $g \leq 0$ sur $]-1, +\infty[$.

La fonction g est dérivable sur $]-1,+\infty[$ et $\forall x\in]-1,+\infty[,\ g'(x)=\frac{1}{1+x}-1.$

On a ensuite facilement $g'(x) \ge 0 \iff -1 < x \le 0$, d'où le tableau de variations :

x	-1	0	$+\infty$
g'(x)		+	_
g(x)	$-\infty$	0.	$-\infty$

On en lit bien sur ce tableau que $\forall x \in]-1,+\infty[,\ g(x)\leqslant 0,\ |\ d'où\ l'inégalité voulue$

• Ensuite, grâce à cete inégalité, pour tout $n \in \mathbb{N}^*$,

$$\ln(P(\overline{B_n})) = \ln\left(\prod_{k=1}^n (1 - p_k)\right) = \sum_{k=1}^n \underbrace{\ln(1 - p_k)}_{\leq -p_k} \leqslant \sum_{k=1}^n -p_k,$$

d'où
$$\ln(P(\overline{B_n})) \leqslant -\sum_{k=1}^n p_k$$
.

(d) Rappelons qu'on a vu que $\forall n \in \mathbb{N}^*, \ 0 \leqslant P(C) \leqslant P(\overline{B_n}).$

Or, si on suppose l'hypothèse
$$(\mathcal{H}_2)$$
, on a : $\ln(P(\overline{B_n})) \leqslant -\sum_{k=1}^n p_k \xrightarrow[n \to +\infty]{} -\infty$

Par comparaison, on en déduit que $\lim_{n\to +\infty} \ln(P(\overline{B_n})) = -\infty$

puis que
$$\lim_{n\to+\infty} P(\overline{B_n}) = 0$$
 (car bien-sûr $P(\overline{B_n}) = e^{\ln(P(\overline{B_n}))}$).

En passant à la limite dans l'inégalité $0 \leq P(C) \leq P(\overline{B_n})$, on en déduit que P(C) = 0

5. Pour finir, on considère les probabilités de succès : $\forall k \in \mathbb{N}^*, \ p_k = \frac{1}{(k+1)^2}$. (a) Pour tout $n \in \mathbb{N}^*$,

$$\sum_{k=1}^{n} p_k = \sum_{k=1}^{n} \frac{1}{(k+1)^2} \leqslant \sum_{k=1}^{n} \frac{1}{k(k+1)}.$$

Or
$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \sum_{k=1}^{n} \frac{(k+1)-1}{k(k+1)} = \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1}\right) = 1 - \frac{1}{n+1}$$
.

Ainsi on a $\sum_{k=1}^{n} p_k \le 1 - \frac{1}{n+1} \le 1$. Il est donc impossible que $\lim_{n \to +\infty} \sum_{k=1}^{n} p_k = +\infty$.

La suite $(p_k)_{k\in\mathbb{N}^*}$ ne satisfait donc pas l'hypothèse (\mathcal{H}_2)

(b) Soit $n \in \mathbb{N}^*$. Rappelons qu'on a vu que $P(B_n) = 1 - \prod_{k=1}^{n} (1 - p_k)$.

Avec ici $p_k = \frac{1}{(k+1)^2}$, on obtient :

$$\begin{split} \prod_{k=1}^{n} (1-p_k) &= \prod_{k=1}^{n} \left(1 - \frac{1}{(k+1)^2}\right) = \prod_{k=1}^{n} \frac{(k+1)^2 - 1}{(k+1)^2} \\ &= \prod_{k=1}^{n} \frac{(k+1-1)(k+1+1)}{(k+1)^2} = \prod_{k=1}^{n} \frac{k(k+2)}{(k+1)^2} \\ &= \prod_{k=1}^{n} \frac{k}{k+1} \times \prod_{k=1}^{n} \frac{k+2}{k+1} = \frac{1}{n+1} \times \frac{n+2}{2} \quad \text{par t\'el\'escopage.} \end{split}$$

On obtient donc l'expression : $P(B_n) = 1 - \frac{n+2}{2(n+1)} = \frac{n}{2(n+1)}.$

En admettant que $P(C) = \lim_{n \to +\infty} P(\overline{B_n})$, on a ici

$$P(C) = \lim_{n \to +\infty} \frac{n+2}{2(n+1)} = \lim_{n \to +\infty} \frac{1+\frac{2}{n}}{2(1+\frac{1}{n})} = \frac{1}{2}.$$

On a donc $P(C) = \frac{1}{2} \neq 0$.

Ainsi cette fois, bien que chaque épreuve soit indépendante et que la probabilité d'obtenir une succès soit strictement positive à chaque épreuve, il est possible (il y a même carrément une chance sur deux!) de ne jamais obtenir de succès au cours de la succession infinie d'épreuve.

Exercice 2 : Etude de deux suites implicites

1. (a) Pour $\alpha \in \mathbb{R}^*$ et $x \in \mathbb{R}_+^*$, on rappelle que $x^\alpha = e^{\alpha \ln(x)}$

On sait bien-sûr que $\lim_{x\to 0^+} \ln(x) = -\infty$ et $\lim_{xto+\infty} \ln(x) = +\infty$. On distingue donc deux cas :

•
$$\underline{\text{Si } \alpha > 0}$$
, $\lim_{x \to 0^+} \alpha \ln(x) = -\infty$ et $\lim_{x \to +\infty} \alpha \ln(x) = +\infty$, et donc $\lim_{x \to 0^+} x^{\alpha} = 0$ et $\lim_{x \to +\infty} x^{\alpha} = +\infty$.

•
$$\underline{\text{Si }\alpha < 0}$$
, $\lim_{x \to 0^+} \alpha \ln(x) = +\infty$ et $\lim_{xto + \infty} \alpha \ln(x) = -\infty$, et $\text{donc} \left[\lim_{x \to 0^+} x^{\alpha} = +\infty \text{ et } \lim_{x \to +\infty} x^{\alpha} = 0 \right]$.

- (b) f_{α} est-elle prolongeable par continuité en 0 si et seulement si $\lim_{x\to 0^+} e^{(1-x^{\alpha})\ln(x)}$ existe et est finie.
 - $\underline{\text{Si } \alpha > 0}$, $\lim_{x \to 0^+} (1 x^{\alpha}) = 1 \text{ donc } \lim_{x \to 0^+} (1 x^{\alpha}) \ln(x) = -\infty$

et donc $\lim_{x\to 0^+} e^{(1-x^{\alpha})\ln(x)} = 0$. f_{α} est donc prolongeable par continuité en 0 (en posant $f_{\alpha}(0) = 0$).

 $\begin{array}{ll} \bullet \ \underline{\mathrm{Si} \ \alpha < 0}, & \lim_{x \to 0^+} (1 - x^\alpha) = -\infty \ \mathrm{donc} \ \lim_{x \to 0^+} (1 - x^\alpha) \ln(x) = +\infty \\ \mathrm{et} \ \mathrm{donc} \ \lim_{x \to 0^+} e^{(1 - x^\alpha) \ln(x)} = +\infty. & f_\alpha \ \mathrm{n'est} \ \mathrm{donc} \ \mathrm{pas} \ \mathrm{prolongeable} \ \mathrm{par} \ \mathrm{continuit\'e} \ \mathrm{en} \ 0. \end{array}$

Conclusion : f_{α} est prolongeable par continuité en 0 si et seulement si $\alpha>0$

- (c) \bullet $\underline{\text{Si }\alpha > 0}$, $\lim_{x \to +\infty} (1 x^{\alpha}) = -\infty$ donc $\lim_{x \to +\infty} (1 x^{\alpha}) \ln(x) = -\infty$ donc $\lim_{x \to +\infty} f_{\alpha}(x) = 0$.
 - $\underline{\text{Si }\alpha < 0}$, $\lim_{x \to +\infty} (1 x^{\alpha}) = 1 \text{ donc } \lim_{x \to +\infty} (1 x^{\alpha}) \ln(x) = +\infty \text{ donc } \left[\lim_{x \to +\infty} f_{\alpha}(x) = +\infty \right]$.
- 2. On suppose $\alpha < 0$. Pour tout x > 0,

$$\frac{f_{\alpha}(x) - x}{x^{\alpha+1} \ln(x)} = \frac{x^{1-x^{\alpha}} - x}{x^{\alpha+1} \ln(x)} = \frac{x(x^{-x^{\alpha}} - 1)}{x^{\alpha+1} \ln(x)} = \frac{x^{-x^{\alpha}} - 1}{x^{\alpha} \ln(x)}$$
$$= \frac{e^{-x^{\alpha} \ln(x)} - 1}{x^{\alpha} \ln(x)} = -\left(\frac{e^{-x^{\alpha} \ln(x)} - 1}{-x^{\alpha} \ln(x)}\right).$$

Puisque $\alpha < 0$, on a ici $\lim_{x \to +\infty} x^{\alpha} \ln(x) = \lim_{x \to +\infty} \frac{\ln(x)}{x^{-|\alpha|}} = 0$ par croissances comparées.

En posant alors le changement de variable $y = -x^{\alpha} \ln(x)$, on en déduit :

$$\lim_{x \to +\infty} \frac{f_{\alpha}(x) - x}{x^{\alpha+1} \ln(x)} = -\lim_{x \to +\infty} \frac{e^{-x^{\alpha} \ln(x)} - 1}{-x^{\alpha} \ln(x)}. = -\lim_{y \to 0} \frac{e^{y} - 1}{y} = \boxed{-1}.$$

(a) Soit $n \in \mathbb{N}^*$. Puisque $f_n(x) = e^{(1-x^n)\ln(x)}$ et que la fonction exp est strictement croissante, le sens de variation de f_n est le même que celui de la fonction $h_n: x \mapsto (1-x^n)\ln(x)$.

Etudions donc celle-ci. h_n est dérivable sur \mathbb{R}_+^* (comme produit de fonctions usuelles) et

$$\forall x > 0, \ h'_n(x) = -nx^{n-1} \times \ln(x) + (1 - x^n) \times \frac{1}{x}.$$

Si $x \in]0,1[$, les deux morceaux de la somme sont positifs donc $h'_n(x) > 0$.

Si x > 1, les deux morceaux de la somme sont négatifs donc $h'_n(x) < 0$.

Ainsi h_n , et donc f_n , est strictement croissante sur]0,1[, strictement décroissante sur $]1,+\infty[$.

Précisément, avec $f_n(1) = 1$ et les valeurs des limites déjà calcuées dans les questions précédentes, on a le tableau de variations suivant :

- (b) Soit $n \in \mathbb{N}^*$.
 - f_n est <u>continue et strictement croissante</u> sur]0,1], $\lim_{x\to 0^+} f_n(x) = 0 < \frac{1}{2}$ et $f_n(1) = 1 > \frac{1}{2}$.

D'après le TVI avec stricte monotonie, il existe un unique $u_n \in]0,1[$ tel que $f_n(u_n)=\frac{1}{2}$.

• f_n est continue et strictement décroissante sur $[1, +\infty]$, $f_n(1) = 1 > \frac{1}{2}$ et $\lim_{x \to +\infty} f_n(x) = 0 < \frac{1}{2}$.

D'après le TVI avec stricte monotonie, il existe un unique $v_n \in]1, +\infty[$ tel que $f_n(u_n) = \frac{1}{2}$.

(Le cadre du TVI évoqué dans le cours se cantonne en principe à un segment [a,b] et à l'étude des valeurs f(a) et f(b), mais il n'y a pas de difficulté à l'étendre avec des "limites" dans le cas qui nous intéresse ici... Il est clair que f_n prend des valeurs plus petites et plus grandes que $\frac{1}{2}$ sur]0,1[et $]1,+\infty[$, donc atteindra nécessairement la valeur $\frac{1}{2}$ par continuité.)

4. (a) Notez qu'on définit ici $f_n(0) = 0$: c'est le prolongement par continuité en 0 de la fonction f_n étudié dans la question 1.(b)!

```
import numpy as np
def f(n,x):
    if x < 0:
        print('Erreur !')
    elif x == 0:
        return 0
    else:
        return np.exp( (1-x**n) * np.log(x) )</pre>
```

(b) Rappelons que u_n est l'unique solution de l'équation $f_n(x) = \frac{1}{2}$ sur le segment [0,1] (si on a prolongé f_n en 0...)

On applique donc ici l'algorithme de dichotomie à f_n sur [0,1] pour approcher cette solution.

```
def approx_u(n) :
    a = 0 ; b = 1 ; eps = 10**(-2)
    while b-a > eps :
        c = (a+b)/2
        if f(n,c) < 1/2 :
            a = c
        else :
            b = c
    return (a,b)</pre>
```

Comme f_n est <u>croissante</u> sur [0,1], c'est le cas classique (on peut le vérifier sur un dessin) : si $f_n(c) < 1/2$ alors il faut "décaler a", et si $f_n(c) > 1/2$ il faut "décaler b".

(c) Cete fois, v_n est l'unique solution de l'équation $f_n(x) = \frac{1}{2}$ sur l'intervalle $[1, +\infty[$. Evidemment, ce n'est pas un segment, mais on peut raisonnablement se placer sur le segment [1,100] par exemple pour la dichotomie (on aura $f_n(1) > \frac{1}{2}$ et $f_n(100) < \frac{1}{2}$ vraisemblablement). On applique l'algorithme de dichotomie à f_n sur [1,100] pour approcher cette solution.

```
def approx_u(n) :
    a = 1 ; b = 100 ; eps = 10**(-2)
    while b-a > eps :
        c = (a+b)/2
        if f(n,c) < 1/2 :
            b = c
        else :
            a = c
    return (a,b)</pre>
```

Attention, cette fois f_n est <u>décroissante</u> sur [1, 100]! Du coup dans ce ças : si $f_n(c) < 1/2$ alors il faut "décaler b", et si $f_n(c) > 1/2$ il faut "décaler a". (faire un dessin pour s'en convaincre)

Valeurs numériques :

L'instruction approx_u(300) renvoie le couple : (0.4990234375, 0.5)

L'instruction approx_v(300) renvoie le couple : (1.0087890625, 1.017578125)

(Avec ces valeurs numériques, on peut conjecturer que $\lim_{n\to+\infty}u_n=\frac{1}{2}$ et $\lim_{n\to+\infty}v_n=1...$)

5. (a) Soit $n \in \mathbb{N}^*$. Pour tout $x \in \mathbb{R}_+^*$, on a par exemple :

$$\frac{f_{n+1}(x)}{f_n(x)} = \frac{e^{(1-x^{n+1})\ln(x)}}{e^{(1-x^n)\ln(x)}} = e^{(x^n - x^{n+1})\ln(x)} = e^{(1-x)x^n\ln(x)}.$$

- Si $x \le 1$, on a $(1-x) \ge 0$, $x^n \ge 0$ et $\ln(x) \le 0$. Ainsi $(1-x)x^n \ln(x) \le 0$ et donc $\frac{f_{n+1}(x)}{f_n(x)} \le 1$. • Si $x \ge 1$, on a $(1-x) \le 0$, $x^n \ge 0$ et $\ln(x) \ge 0$.
- Si $x \ge 1$, on a $(1-x) \le 0$, $x^n \ge 0$ et $\ln(x) \ge 0$. Ainsi à nouveau $(1-x)x^n \ln(x) \le 0$ et donc $\frac{f_{n+1}(x)}{f_n(x)} \le 1$.

Dans tous les cas, on a bien : $\forall x \in \mathbb{R}_+^*, f_{n+1}(x) \leqslant f_n(x)$.

- (b) Soit $n \in \mathbb{N}^*$. Voici une possibilité de rédaction :
 - En évaluant l'inégalité précédente en $x = u_{n+1}$, on obtient :

$$f_{n+1}(u_{n+1}) \leqslant f_n(u_{n+1})$$
 c'est à dire $\frac{1}{2} \leqslant f_n(u_{n+1})$.

Or, rappelons que f_n est strictement croissante sur]0,1[et passe par $\frac{1}{2}$ au point u_n :

$$\forall x \in]0, u_n[, f_n(x) < \frac{1}{2}, \quad f_n(u_n) = \frac{1}{2}, \quad \forall x \in]u_n, 1[, f_n(x) > \frac{1}{2},$$

Puisqu'on sait que $f_n(u_{n+1}) \ge \frac{1}{2}$, c'est donc forcément que $u_{n+1} \in [u_n, 1[$, c'est à dire que $u_{n+1} \ge u_n$. La suite $(u_n)_{n \in \mathbb{N}^*}$ est donc croissante.

• En évaluant l'inégalité précédente en $x = v_{n+1}$, on obtient :

$$f_{n+1}(v_{n+1}) \leqslant f_n(v_{n+1})$$
 c'est à dire $\frac{1}{2} \leqslant f_n(v_{n+1})$.

Or, rappelons que f_n est strictement décroissante sur $]1,+\infty[$ et passe par $\frac{1}{2}$ au point v_n :

$$\forall x \in]1, v_n[, f_n(x) > \frac{1}{2}, \quad f_n(v_n) = \frac{1}{2}, \quad \forall x \in]v_n, +\infty[, f_n(x) < \frac{1}{2},$$

Puisqu'on sait que $f_n(v_{n+1}) \ge \frac{1}{2}$, c'est donc forcément que $v_{n+1} \in]1, v_n]$, c'est à dire que $v_{n+1} \le v_n$. La suite $(v_n)_{n \in \mathbb{N}^*}$ est donc décroissante.

- Quant à la nature de ces suites : $(u_n)_{n\in\mathbb{N}^*}$ est croissante et majorée par 1, donc converge , $(v_n)_{n\in\mathbb{N}^*}$ est décroissante et minorée par 1, donc converge .
- 6. (a) Soit $n \in \mathbb{N}^*$. Pour montrer que $u_n \in]0, \frac{1}{2}[$, il suffit de justifier que $f_n(\frac{1}{2}) > \frac{1}{2}$ (car alors, d'après le TVI, f_n atteindra forcément la valeur $\frac{1}{2}$ entre les abscisses 0 et $\frac{1}{2}$) On calcule :

$$f_n\left(\frac{1}{2}\right) = e^{\left(1 - \left(\frac{1}{2}\right)^n\right)\ln\left(\frac{1}{2}\right)} > e^{\ln\left(\frac{1}{2}\right)} = \frac{1}{2}.$$

car $1 - \left(\frac{1}{2}\right)^n < 1$ et $\ln\left(\frac{1}{2}\right) < 0$, donc $\left(1 - \left(\frac{1}{2}\right)^n\right) \ln\left(\frac{1}{2}\right) > \ln\left(\frac{1}{2}\right)$. Ainsi $u_n \in]0, \frac{1}{2}[$. (b) Pour tout $n \in \mathbb{N}^*$, on a $0 \leqslant u_n \leqslant \frac{1}{2}$ donc $0 \leqslant (u_n)^n \leqslant \left(\frac{1}{2}\right)^n$.

Puisque $\lim_{n\to+\infty} \left(\frac{1}{2}\right)^n = 0$, d'après le théorème des gendarmes on obtient $\lim_{n\to+\infty} (u_n)^n = 0$.

On a déjà dit que la suite $(u_n)_{n\in\mathbb{N}^*}$ est croissante et majorée, donc converge vers un $\ell\in]0,1]$. Pour déterminer cette limite, on se rappelle que pour tout $n\in\mathbb{N}^*$,

$$f_n(u_n) = \frac{1}{2}$$
 c'est à dire $e^{(1-(u_n)^n)\ln(u_n)} = \frac{1}{2}$.

En passant à la limite quand $n \to +\infty$, puisque $\lim_{n \to +\infty} (1 - (u_n)^n) = 1$ et $\lim_{n \to +\infty} \ln(u_n) = \ln(\ell)$,

on obtient : $e^{\ln(\ell)} = \frac{1}{2}$, c'est à dire $\ell = \frac{1}{2}$. On a ainsi montré que $\lim_{n \to +\infty} u_n = \frac{1}{2}$.

7. On a déjà dit que la suite $(v_n)_{n\in\mathbb{N}^*}$ est décroissante et minorée par 1, donc converge vers un $\ell' \geqslant 1$. On souhaite montrer qu'en fait $\ell' = 1$. Raisonnons par l'absurde en supposant que $\ell' > 1$.

Dans ce cas, puisque la suite décroit vers ℓ' , on aura : $\forall n \in \mathbb{N}^*$, $v_n \geqslant \ell'$ donc $\forall n \in \mathbb{N}^*$, $(v_n)^n \geqslant (\ell')^n$. Puisque $\lim_{n \to +\infty} (\ell')^n = +\infty$ (car $\ell' > 1$), on en déduit que $\lim_{n \to +\infty} (v_n)^n = +\infty$.

Ceci pose problème, car en passant à la limite dans $f_n(v_n) = \frac{1}{2}$, c'est à dire

$$e^{(1-(v_n)^n)\ln(v_n)} = \frac{1}{2},$$

on a $\lim_{n\to+\infty} (1-(v_n)^n) = -\infty$ et $\lim_{n\to+\infty} \ln(v_n) = \ln(\ell') > 0$ (car $\ell' > 1$), donc on obtient :

$$0 = \frac{1}{2}$$
, ce qui, bien-sûr, est absurde!

Conclusion : on a nécessairement $\ell'=1$, c'est à dire $\lim_{n\to+\infty}v_n=1$.

Exercice 3: Le jeu du Double-Face

- 1. (a) Il faut faire au moins 2 lances pour espérer gagner au jeu du Double-Face. Il n'est évidemment pas possible de gagner dès le premier lancer! Ainsi $G_1 = \emptyset$ et $P(G_1) = 0$. $\boxed{G_2 = F_1 \cap F_2} \text{ donc par indépendance, } P(G_2) = P(F_1) \times P(F_2) \text{ c'est à dire} \boxed{P(G_2) = (1-p)^2}$ $\boxed{G_3 = \overline{F_1} \cap F_2 \cap F_3} \text{ donc par indépendance, } P(G_2) = P(\overline{F_1})P(F_2)P(F_3) \text{ i.e } \boxed{P(G_2) = p(1-p)^2}$
 - (b) La famille de 3 évènements $(\overline{F_1}, F_1 \cap F_2, F_1 \cap \overline{F_2})$ forme un système complet d'événements, car quelle que soit l'issue des lancers de pièces, on est forcément dans l'un de ces trois cas :
 - Soit on obtient Pile au 1er lancer (F_1 est réalisé)
 - Soit on obtient Face au 1er lancer puis Face au deuxième $(F_1 \cap F_2 \text{ est réalisé})$
 - Soit on obtient Face au 1er lancer puis Pile au deuxième $(F_1 \cap \overline{F_2} \text{ est r\'ealis\'e})$.
 - (c) Soit $n \in \mathbb{N}^*$.

On applique la formule des probabilités totales avec le S.C.E $(\overline{F_1},\ F_1\cap F_2,\ F_1\cap \overline{F_2})$:

$$P(G_{n+2} = P(\overline{F_1}) \times P_{\overline{F_1}}(G_{n+2}) + P(F1 \cap F_2) \times P_{F_1 \cap F_2}(G_{n+2}) + P(F_1 \cap \overline{F_2}) \times P_{F_1 \cap \overline{F_2}}(G_{n+2}).$$

On remplace avec $P(\overline{F_1}) = p$, $P(F_1 \cap F_2) = (1-p)^2$, $P(F_1 \cap \overline{F_2}) = (1-p)p$:

$$P(G_{n+2} = (1-p)P_{\overline{F_1}}(G_{n+2}) + (1-p)^2 \times P_{F_1 \cap F_2}(G_{n+2}) + p(1-p)P_{F_1 \cap \overline{F_2}}(G_{n+2}).$$

Détaillons maintenant les probabilités conditionnelles :

• Si on a obtenu Pile au premier lancer, c'est comme si on reprenait le jeu à zéro à partir de là : la probabilité qu'un joueur gagne le jeu du Double-Face en n+2 lancers sachant qu'il a commencé par Pile est la même que la probabilité qu'un joueur gagne le joue du Double-Face en seulement n+1 lancers. Ainsi, $P_{\overline{F_1}}(G_{n+2}) = P(G_{n+1})$.

- Si on a obtenu Face au deux premiers lancers, alors le joueur a déjà gagné le jeu du Double-Face au deuxième lancer! Puisque le jeu s'arrête après une victoire, il est impossible de gagner également au lancer numéro n+2>2... Ainsi, $P_{F_1\cap F_2}(G_{n+2})=0$.
- \bullet Si on a obtenu Face puis Pile au deux premiers lancers, à nouveau, c'est comme si on reprenait le jeu à zéro à partir de là : il reste n lancers pour gagner le jeu du Double-Face.

Ainsi,
$$P_{F_1 \cap \overline{F_2}}(G_{n+2}) = P(G_n)$$
.

En remplaçant, on obtient finalement : $P(G_{n+2}) = p P(G_{n+1}) + p(1-p) P(G_n)$

```
2. (a)
def valeur(p,n):
    u = 0; v = (1-p)**2 # valeurs de P(G_1) et P(G_2)
    for k in range(n): # n passages
        w = p * v + p * (1-p) * u
        u = v
        v = w
    return u
```

```
(b)

def vecteur(p,n):

U = np.zeros(n); U[0] = 0; U[1] = (1-p)**2

for k in range(2,n): # k = 2, 3, ..., n-1

U[k] = p * U[k-1] + p*(1-p) * U[k-2]

return U
```

- 3. On introduit la fonction polynomiale définie par : $\forall x \in \mathbb{R}, \ f(x) = x^2 px p(1-p)$.
 - (a) f est une fonction continue sur \mathbb{R} (c'est un polynôme). On calcule (rappelons que $p \in]0,1[)$:

$$f(-1) = 1 + p - p(1 - p) = 1 + p^{2} > 0,$$

$$f(0) = -p(1 - p) < 0,$$

$$f(1) = 1 - p - p(1 - p) = (1 - p)(1 - p) = (1 - p)^{2} > 0.$$

D'après le TVI, on en déduit que f s'annule en un point $r_1 \in]-1,0[$ et en un point $r_2 \in]0,1[$. Puisque c'est un polynôme de degré 2, il ne peut pas admettre plus de deux racines! f admet donc deux racines réelles r_1, r_2 avec : $-1 < r_1 < 0 < r_2 < 1$.

(b) Puisque f admet deux racines distinctes r_1 et r_2 , on a la factorisation:

$$\forall x \in \mathbb{R}, f(x) = (x - r_1)(x - r_2)$$
 (Le coeff. dominant de f est 1).

En évaluant en x = 1, on obtient $f(1) = (1 - r_1)(1 - r_2)$, c'est à dire $(1 - r_1)(1 - r_2) = (1 - p)^2$.

4. (a) Pour simplifier les notations, notons $\forall n \in \mathbb{N}^*, u_n = P(G_n)$.

La relation du 1.(c) s'écrit : $\forall n \in \mathbb{N}^*, u_{n+2} = pu_{n+1} + p(1-p)u_n$.

On reconnait une relation de récurrence linéaire d'ordre 2, on peut donc appliquer la méthode de l'équation caractéristique. Cette équation caractéristique est :

$$x^{2} = px + p(1-p) \iff x^{2} - px - p(1-p) = 0 \iff f(x) = 0.$$

On a vu que cette équation admet deux solutions distinctes $r_1 < r_2$.

On sait donc que la forme générale de u_n sera :

$$\forall n \in \mathbb{N}^*, \ u_n = \lambda(r_1)^n + \mu(r_2)^n \text{ avec } \lambda, \mu \in \mathbb{R} \text{ à déterminer.}$$

Enfin, $u_1 = P(G_1) = 0$ et $u_2 = P(G_2) = (1 - p)^2$, ce qui donne le système :

$$\begin{cases} \lambda r_1 + \mu r_2 &= 0 \\ \lambda (r_1)^2 + \mu (r_2)^2 &= (1-p)^2. \end{cases} \iff \begin{cases} \mu &= -\frac{r_1}{r_2} \lambda \\ \lambda (r_1)^2 - \lambda r_1 r_2 &= (1-p)^2. \end{cases}$$

$$\begin{cases} \mu &= -\frac{r_1}{r_2} \lambda \\ \lambda r_1 (r_1 - r_2) &= (1-p)^2. \end{cases} \iff \begin{cases} \mu &= -\frac{r_1}{r_2} \lambda \\ \lambda &= \frac{(1-p)^2}{r_1 (r_1 - r_2)}. \end{cases} \iff \begin{cases} \mu &= -\frac{(1-p)^2}{r_2 (r_1 - r_2)}. \end{cases}$$

En remplaçant, on obtient ainsi:

$$\forall n \in \mathbb{N}^*, \ u_n = \frac{(1-p)^2}{r_1 - r_2} (r_1)^{n-1} - \frac{(1-p)^2}{r_1 - r_2} (r_2)^{n-1} = \frac{(1-p)^2}{r_2 - r_1} \left((r_2)^{n-1} - (r_1)^{n-1} \right).$$

On a bien montré que pour tout $n \in \mathbb{N}^*$, $P(G_n) = \frac{(1-p)^2}{r_2 - r_1} \left((r_2)^{n-1} - (r_1)^{n-1} \right).$

(b) On suppose dans cette question que $p = \frac{1}{2}$. Cherchons les solutions de l'équation :

$$f(x) = 0 \iff x^2 - \frac{1}{2}x - \frac{1}{4} = 0$$

Discriminant : $\Delta = \frac{1}{4} + 4 \times \frac{1}{4} = \frac{5}{4} > 0$. On a donc les deux racines $r_{1,2} = \frac{\frac{1}{2} \pm \frac{\sqrt{5}}{2}}{2}$, soit $r_1 = \frac{1 - \sqrt{5}}{4}$ et $r_2 = \frac{1 + \sqrt{5}}{4}$.

En remplaçant dans la formule précédente, on obtient pour tout $n \in \mathbb{N}^*$:

$$P(G_n) = \frac{\frac{1}{4}}{\frac{\sqrt{5}}{2}} \left(\left(\frac{1 + \sqrt{5}}{4} \right)^{n-1} - \left(\frac{1 - \sqrt{5}}{4} \right)^{n-1} \right)$$

c'est à dire
$$P(G_n) = \frac{1}{2\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{4} \right)^{n-1} - \left(\frac{1-\sqrt{5}}{4} \right)^{n-1} \right)$$
. (ou bien $\frac{1}{2\sqrt{5}} = \frac{\sqrt{5}}{10}...$)

- 5. On note C l'évènement "Le jeu du Double-Face ne prend jamais fin".
 - (a) Certains résultats de l'expérience conduisent à la réalisation de C: par exemple si on obtient constamment Pile à chaque lancer, ou bien si on obtient une alternance Pile-Face-Pile-Face à l'infini... On n'a donc pas $C = \emptyset$.
 - (b) Soit $n \in \mathbb{N}^*$. Si le joueur gagne le jeu au cours des n premier lancers, alors celui-ci s'arrête.

La réalisation de $\bigcup_{k=1}^n G_k$ implique donc celle de \overline{C} . Autrement dit, $\overline{\bigcup_{k=1}^n G_k} \subset \overline{C}$.

On en déduit que

$$P\left(\bigcup_{k=1}^{n} G_k\right) \leqslant 1 - P(C) \iff P(C) \leqslant 1 - P\left(\bigcup_{k=1}^{n} G_k\right).$$

Cette union étant disjointe (les évènements G_k sont 2 à 2 incompatibles), on obtient :

$$P(C) \leqslant 1 - \sum_{k=1}^{n} P(G_k)$$

(c) Pour tout $n \in \mathbb{N}^*$, en utilisant la formule du 4.(a) :

$$\sum_{k=1}^{n} P(G_k) = \sum_{k=1}^{n} \frac{(1-p)^2}{r_2 - r_1} \left((r_2)^{k-1} - (r_1)^{k-1} \right)$$

$$= \frac{(1-p)^2}{r_2 - r_1} \left(\sum_{k=1}^{n} (r_2)^{k-1} - \sum_{k=1}^{n} (r_1)^{k-1} \right)$$

$$= \frac{(1-p)^2}{r_2 - r_1} \left(\sum_{j=0}^{n-1} (r_2)^j - \sum_{j=0}^{n-1} (r_1)^j \right)$$

$$= \frac{(1-p)^2}{r_2 - r_1} \left(\frac{1 - (r_2)^n}{1 - r_2} - \frac{1 - (r_1)^n}{1 - r_1} \right)$$

$$= \frac{(1-p)^2}{r_2 - r_1} \times \frac{(1 - (r_2)^n)(1 - r_1) - (1 - (r_1)^n)(1 - r_2)}{(1 - r_1)(1 - r_2)}.$$

D'après 3.(b), $(1 - r_1)(1 - r_2) = (1 - p)^2$ donc :

$$\sum_{k=1}^{n} P(G_k) = \frac{1}{r_2 - r_1} \times \left((1 - (r_2)^n)(1 - r_1) - (1 - (r_1)^n)(1 - r_2) \right)$$
$$= \frac{1}{r_2 - r_1} \times \left(r_2 - r_1 - (r_2)^n (1 - r_1) + (r_2)^n (1 - r_1) \right)$$

d'où finalement :
$$\sum_{k=1}^{n} P(G_k) = 1 - \frac{(r_2)^n (1 - r_1) - (r_1)^n (1 - r_2)}{r_2 - r_1}.$$

(d) D'après 5.(b), on a pour tout $n \in \mathbb{N}^*$:

$$0 \le P(C) \le 1 - \sum_{k=1}^{n} P(G_k) = \frac{(r_2)^n (1 - r_1) - (r_1)^n (1 - r_2)}{r_2 - r_1}.$$

Puisque $r_1 \in]-1,0[$ et $r_2 \in]0,1[$, on a $\lim_{n \to +\infty} (r_1)^n = \lim_{n \to +\infty} (r_2)^n = 0,$ et donc

$$\lim_{n \to +\infty} \frac{(r_2)^n (1 - r_1) - (r_1)^n (1 - r_2)}{r_2 - r_1} = 0.$$

En passant à la limite dans l'encadrement, on on obtient bien P(C) = 0.