

ML Success Tactics Minimizing Data Uncertainty

IDARE®

Types of Trouble you may face in Data

- Missing Value, Null Value, Blank Value, inf value, NA value
 - Removing is the easy option, however in many cases those values means major cause of the target.
 - Replace with either 0 or avg or other statistical parameters will be wise
- Anomalous Data or Outlier
 - Sudden picks and valleys in the data
 - Use anomaly detector to detect or isolate
 - Talk to domain expert or use your knowledge to understand
 - That anomaly is the part of a process or means something. Twik the anomaly detector to isolate right anomalies
 - Or simply data error
 - If those anomalies mean something, categories them based on their recognized category, if not remove them
 - Removing anomalies for a variable will lead to removing other variables from that point so be careful

No. of Observations

Twiking Anomaly parameter shows lesser anomalies

No. of Observations

Anomaly Detection Example

Anomaly	×					
Anomaly	Detect					
Period	Enter Period					
		Detect				
Anomaly Delete						
Colums	value 🕲	× ×				
		Detect				

ML Success Tactics Variable Selection (Feature Engineering)

Right use of Correlation & Causation in variable selection in training

Variable Selection Defines success of an Al Solution

Most Important Process in Solution Creation is to determine the right predictor variables or features

- Variable that doesn't have any affect on the target
- that cause the target
- The relationship between the selected variables i.e. correlation coefficient
- Check Feature Importance after each analysis
- Create science driven variables
- Perform extensive parametric study
- Try to stick to One Algorithm during Variable selection

Start your analysis unselecting these variables

- Try keeping these variables under any circumstances unless there are compelling reasons
- If p-value < 0.05 try keep the variable

If Pearson correlations coefficient

- high w.r.t target try keeping these variables
- high w.r.t other predictor variable, try not to use one of the two

Recommended Practice for being successful in variable selection process

Key practices

- Brainstorm to understand the problem and study the target
- Utilize your Domain expertise
- Gather domain knowledge
 - Do extensive literature survey
 - Talk to domain experts
- Use critical and analytical skills to determine

Correlation and Causation

Right use of Correlation & Causation in variable selection in training

Correlation & Causation for Variable Selection

Causation:

- Variable that directly comes from domain expertized are used or not
- Variables that are low p-values considered or not
- High P-values are avoided or not unless domain experts recommends that
- IF p-values are 0 check t-value, high t-value suggest high significance with the target

Correlation:

- If variables are highly correlated or high coefficient with respect to TARGET should be used
- If variables within themselves are highly correlated should be avoided unless domain knowledge suggested or parametric study suggested

Variable Statistics			Compare KPI		
Variables	Data Type	Missing Values Count	p value	t value	Pearson Correlation
Lever_Pos	float	0	0.4	0.84	0
Ship_Speed	int	0	0	11.33	0
GT_Shft_torq	float	0	0	106.99	0
GT_RPM	float	0	0	61.11	0
Gas_Genrtr_RPM	float	0	0	100.25	0.01
Strbrd_Proplr_Trq	float	0	0	-139.25	0
Port_Proplr_Trq	float	0	0	-139.25	0
HP_Trbin_exit_temp	float	0	0	-96.02	-0.04
GT_Comprsr_inlet_air_Temp	int	0	0.04	2.11	
GT_Comprsr_outlet_air_Temp	float	0	0	16.55	-0.02
HP_Trbin_exit_press	float	0	0	24.18	0
GT_Comprsr_inlet_air_Press	float	0	0.04	2.11	
GT_Comprsr_outlet_air_Press	float	0	0	-177.8	-0.02
HP_Trbin_exahst_gas_press	float	0	0	12.86	0.01
Trbin_Injecton_Cntrl	float	0	0	-36.89	-0.02
Fuel_flow	float	0	0	82.69	-0.02
GT Trbin deay coeff	float	0			1

Cross Validation for Variable Selection

Right use of cross validation in training

Cross Validation with Data Split

Train Data: Data Sample ML will Learn From
Test Data: Unseen data or Out of Sample data
potentially you will see when in production
Validation Data: Part of Train data kept unseen for
cross validation

Kinds

- 3-fold
- 5-fold
- 10-fold

Error Check with Cross-Validation

Error to Look at

- Train Error (Bias)
- **Cross Validation Error**
- Test Error (Variance)
- Variation of Error between folds

Cross Validation

Error Fold 3

Avg. Error

Standard

Deviation

Fundamentals

Performance Check: Regression

- The zeroth law: Compare actual versus predicted line chart for Test data
- Check whether predicted line captures the pattern of the actual or now
- If pattern doesn't matches, major work will be needed in variable selection

Captures the pattern But error will be high. BIAS is ok though variances are high

All prediction captures the pattern except one

Captures the pattern, the pattern shifted

Performance Check Classification

- The zeroth law: check confusion matrix
- check true positive, false positive, true negative and false negative
- Reduce false positive or false negative based on the problem

Understanding Model Stability or Prediction Consistency

Model Stability or Consistence

Remember Bias and Variance?

- Low bias: over complicated model or too many variable used
- High bias: over simplified model or too less variable used
- Sum of Squared Error for each predicted points with training data set
- 5. Variance: Measures the differences between actual and predictions.
 - Sum of Squared Error for each predicted points with test data set

The Blue Dots are the training set...

Training data set trains with 2 algorithm

Error for Training Data sets

Error for Test Data sets

Overfitting Underfitting

Overfitting: Training error low ,testing error high \rightarrow Model Low Bias high variance

• Extra unrelated variables cause reduce bias and cause more error later, leads to instable and inconsistent result

Underfitting: Training error high, testing error high → Model high Bias, high variance

 Missing important variable increase bias and also cause more error later leads to highly instable and inconsistent prediction

Good Balance: Training error low, testing error low→ Optimal Bias, low variance

 Good variable selection and science driven AI reduces chances of overfitting or underfitting

Total Error = Bias^2 + Variance + Irreducible Error

Total Error Scale on the order of Bias squared, which in most cases is substantially big, downplays testing error. Best way to understand a stable model is to do a eye check.

- Minimum difference between training and testing error
- Both error are low
- Standard deviations of cross validation data sets are low

Error Metrices

Error metrices for Regression

Residual = Observed - Predicted

SSR = Sum of Squared Residuals

$$SSR = \sum_{i=1}^{n} (Observed_i - Predicted_i)^2$$

Mean Squared Error (MSE) =
$$\frac{SSR}{n}$$

...where n is the sample size

$$R^2 = \frac{SSR(mean) - SSR(fitted line)}{SSR(mean)}$$

$$RMSE = \sqrt{MSE}$$

$$MAE = rac{1}{n} \sum_{i=1}^n |\hat{y}_i - y_i|$$

$$MAPE = \frac{100\%}{n} \sum_{i=1}^{n} \left| \frac{\hat{y}_i - y_i}{y_i} \right|$$

MAEP = Sum of absolute Error / Sum of Actuals

Error metrices for Classification

false negatives true negatives true positives false positives

$$egin{aligned} ext{Precision} &= rac{tp}{tp + fp} \ ext{Recall} &= rac{tp}{tp + fn} \ ext{Accuracy} &= rac{TP + TN}{TP + TN + FP + FN} \end{aligned}$$

$$F = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}}$$

Hyper Parameter (HP) Tuning for ML Algorithm

Hyper parameters are variables specific to machine learning algorithms that helps the ML learning process.

Hyper parameters has no influence on the performance of the model but affect the speed and quality of the learning process.

The HP tuning process is little expensive, costs computation time as it runs many time to find best models

Following are some key parameters applicable for many ML algorithm

- No. of Iteration: how many times the algorithm search for best results
- No. of Trees or Layers: no. of Paths and combinations of path to reach the outcome
- **Depth:** How many elements or parameters of a tree or paths to consider
- Learning Rate: How small the step of the learning
- Bootstrap: Way of data sampling, combinations of rows or variables etc
- **Solver:** Algorithm to tune the hyperparameter

Hyperparameters for different Algorithm

Random Forest (RF)

- **Criterion:** Criterion is a loss function to measure the quality of a split inside a tree.
 - Mean Squared Error and Mean Absolute Error
- The maximum number of features: The number of features to consider when looking for the best split.
 Decreasing the maximum number of features helps control overfitting.
 - All, Square Root, Logarithm: Use the logarithm (base 2) of the total number of features
- Maximum depth of each tree: The deeper the tree, the more branches it has and it captures more information about the data.
- Bootstrap: It's a sampling technique
- The number of trees in the forest: The default value for this parameter is 100, which means that 100 different decision trees will be constructed in the random forest. A higher number of trees give you better performance but makes the training slower.

XG Boost

- Maximum depth of each tree: Same as RF
- The number of trees in the forest: Same as RF
- Learning Rate: Lower learning rate means the model is more robust to overfitting but makes the training slower.

Neural Network

- 1. Hidden Layers and Neurons: Hidden Layers Similar like Trees
- 2. **Activation Function:** decides whether a neuron's input to the network is important or not in the process of prediction
- 3. **Solver:** Solver is an algorithm to optimize the weights of the neural network.

Stochastic Gradient Descent & Adam:

- 4. Initial Learning Rate: How small the step of the learning
- 5. **The number of epochs**: no. of iterations.

Hyperparameter Examples

Final Selection of Model and Variables

Decide the best ML models and Variables based on

- Check which ML model's Variable Importance most consistent with the physical understanding of the target
- Select your model by setting 1 error metric.
- The changes of errors based on ML models and different selected variables are very similar for between the error metrices
- Consider minimum difference between training and testing error
- Consider when Both error are the lowest
- Consider when all the cross-validation errors are similar or Standard deviations of cross validation data sets are the lowest
- Use your judgement

