[320] Unsupervised ML Recap

Department of Computer Sciences University of Wisconsin-Madison

Hierarchical Clustering

(for example, AgglomerativeClustering)

Non-Hierarchical Clustering

(for example, KMeans)

	Α	В	С	D
	50	50	110	90
-		 	 	
hundreds of rows				

Centroids

	Α	В	С	D	
-	250	0	15	12	
	45	45	100	102	
	0	95	24	80	

Decomposition

(for example, PCA)

Α	¦В	С	D
50	50	110	90
	;	 	 !
hundreds of rows			

Component Rows

50	Α	¦ B	С	D
	1	1	2	2
0	0	0	1	-1

Hierarchical Clustering

(for example, AgglomerativeClustering)

Non-Hierarchical Clustering

(for example, KMeans)

Centroids

Decomposition (fan averala PCA)

(for example, PCA)

50

10

Component Rows

Preprocessing: Clustering or Decomposition?

Preprocessing: Clustering or Decomposition?

x1	x2	У
10	5	TRUE
•••	 	

```
model = Pipeline([
     ????,
     ("lr", LogisticRegression())
])
```


AgglomerativeClustering can show us that the two big clusters contain sub clusters.

After identifying some clusters from initial data, we will need to look at new data points and find what cluster is the best match

Use **KMeans**, because it can do fit and predict on separate datasets. AgglomerativeClustering can only do fit_predict on a single dataset.

Non-hierarchical clusters cannot contain other custers (example: KMeans)

Hierarchical clusters can contain other custers (example: AgglomerativeClustering)

Hierarchical clusters: AgglomerativeClustering

option:linkage

linkage="single"

OR...

linkage="complete"

OR...

linkage="????"

From docs: https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html

- •ward minimizes the variance of the clusters being merged.
- •average uses the average of the distances of each observation of the two sets.
- •complete or maximum linkage uses the maximum distances between all observations of the two sets.
- •single uses the minimum of the distances between all observations of the two sets.

option:n_clusters or distance_threshold

n_clusters=3

each cluster is it's own tree!

distance_threshold=10

Node Representation

Linkage Matrix

Hierarchical Clusters with Dendrograms

https://www.researchgate.net/figure/A-Dendrogram-depicting-the-relationships-among-human-and-non-human-primate-EDNs-and_fig1_13459488

Hierarchical Clusters with Dendrograms

https://www.researchgate.net/figure/A-Dendrogram-depicting-the-relationships-among-human-and-non-human-primate-EDNs-and_fig1_13459488

We'll represent hierarchies as special binary trees.

Demos...