

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE ENGENHARIA MECÂNICA

DETERMINAÇÃO DOS PONTOS DE MÁXIMO E MÍNIMMO DE UMA FUNÇÃO MULTI-MODAL POR MEIO DA AVALIAÇÃO DAS CONDIÇÕES DE OTIMALIDADE

ARTHUR HENRIQUE IASBECK

UBERLÂNDIA 12 DE SETEMBRO DE 2019

1. INTRODUÇÃO

O objetivo do presente trabalho foi avaliar a influência dos palpites inicias na obtenção da solução de um problema de otimização multi-modal. Para tal, os pontos de máximo, mínimo, e sela da função $f(x_1, x_2)$, Eq. 1, foram obtidos por meio da avaliação das condições de otimalidade, levando-se em consideração uma série de palpites iniciais distintos.

$$f(x_1, x_2) = x_1 sen(x_1) - x_1 cos^2(x_2) - x_1$$
(1)

CONDIÇÕES DE OTIMALIDADE

Neste caso as condições necessárias de otimalidade, Eqs. 2 e 3, formam um sistema a partir do qual podem ser determinados x_1^* e x_2^* .

$$\frac{\partial f}{\partial x_1} = F_1 = sen(x_1) + x_1 cos(x_1) - cos^2(x_2) - 1 = 0$$

$$\frac{\partial f}{\partial x_2} = F_2 = 2x_1 cos(x_2) sen(x_2) = 0$$
(2)

$$\frac{\partial f}{\partial x_2} = F_2 = 2x_1 cos(x_2) sen(x_2) = 0 \tag{3}$$

A solução deste sistema não linear foi obtida a partir da implementação de uma rotina do Matlab® denominada fsolve. A utilização da mesma exige que as Eqs. 2 e 3 sejam definidas em um arquivo .m da seguinte forma (MathWorks, 2019a).

```
function F = firstDevSystem(x)
    F(1) = \sin(x(1)) + x(1) \cdot \cos(x(1)) - (\cos(x(2)))^2 - 1;
    F(2) = 2 * x(1) * cos(x(2)) * sin(x(2));
end
```

A rotina fsolve implementa internamente um método recursivo para solução de sistemas não lineares, o que implica que é necessário que lhe seja fornecido uma estimativa inicial para solução, neste caso representado por $x_0 = \begin{bmatrix} x_{1,0} & x_{2,0} \end{bmatrix}$ (MathWorks, 2019a). Para obtenção de $x=\begin{bmatrix}x_1^* & x_2^*\end{bmatrix}$ e subsequente computação de $f(x_1^*,x_2^*)$ foi implementado o algoritmo introduzido abaixo.

```
x0 = [x01, x02];
x = fsolve(@firstDevSystem, x0);
f = x(1) * sin(x(1)) - x(1) * (cos(x(2)))^2 - x(1);
```

Uma vez determinados x_1^* e x_2^* , é preciso que a condição suficiente de otimalidade seja avaliada a partir da computação dos autovalores da matriz Hessiana H, Eq. 4. Para tal foi empregada a função eig (MathWorks, 2019b).

$$H = \begin{vmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} \end{vmatrix}_{x=x^*}$$
(4)

Caso os autovalores da matriz Hessiana sejam todos positivos, é possível afirmar que (x_1^*, x_2^*) é um ponto de mínimo. Caso sejam todos negativos, (x_1^*, x_2^*) consiste num ponto de máximo. Caso outra configuração seja obtida para os autovalores da matriz Hessiana, é possível concluir que (x_1^*, x_2^*) é um ponto de sela.

Para que seja possível computar a matriz Hessiana, é necessário que as derivadas introduzidas em sua definição sejam elaboradas, Eqs. 5 a 8.

$$\frac{\partial^2 f}{\partial x_1^2} = 2\cos(x_1) - x_1 \operatorname{sen}(x_1) \tag{5}$$

$$\frac{\partial^2 f}{\partial x_2^2} = 2x_1(\cos^2(x_2) - \sin^2(x_2)) \tag{6}$$

$$\frac{\partial^2 f}{\partial x_1 \partial x_2} = 2\cos(x_2) \sin(x_2) \tag{7}$$

$$\frac{\partial^2 f}{\partial x_2 \partial x_1} = 2\cos(x_2)\sin(x_2) \tag{8}$$

3. COMPUTAÇÃO DE $x_1^* \to x_2^*$

Resumidamente, a computação das Eqs. 2 e 3 através da implementação da função fsolve, possibilita a determinação do ponto (x_1^*, x_2^*) , enquanto a avaliação dos autovalores da matriz Hessiana, Eq. 4, indica se (x_1^*, x_2^*) é um ponto de máximo, mínimo, ou sela. No entanto, como discutido anteriormente, o emprego da rotina fsolve exige que seja proposta uma estimativa inicial para a solução do problema de otimização.

Para que fosse possível avaliar a influência de $x_0 = [x_{1,0} \ x_{2,0}]$ na solução do problema de otimização, foi proposta uma discretização dos domínios de x_1 e x_2 . As análises introduzidas no presente trabalho foram realizadas considerando-se $0 \le x_1, x_2 \le 15$. Para garantir que $x_{1,0}$ e $x_{2,0}$ assumissem valores distribuídos ao longo de todo o domínio, foi adotada uma discretização do mesmo em n elementos para que em seguida fossem implementadas todas as combinações possíveis entre $x_{1,0}$ e $x_{2,0}$.

Os dados introduzidos na Tab. 1 foram obtidos considerando-se n=5. À última coluna da tabela foram atribuídos os valores -1, 0 e 1, indicando que (x_1^*, x_2^*) é um ponto de mínimo, de sela, ou de máximo respectivamente. Neste caso, $\begin{bmatrix} 0 & 3.75 & 7.5 & 11.25 & 15 \end{bmatrix}$ são os valores que podem ser atribuídos a $x_{1,0}$ e $x_{2,0}$. Como todas as combinações possíveis entre estas variáveis foram adotadas, há 25 configurações distintas para x_0 . Os dados obtidos para n=20 são introduzidos no Anexo A, Tab. 2.

Table 1: Avaliação das soluções obtidas quando n = 5.

$x_{1,0}$	$x_{2,0}$	x_1^*	x_2^*	$f(x_1^*, x_2^*)$	$H(x_1^*, x_2^*)$
0,00	0,00	1,0769	0,0000	-1,2056	-1
0,00	3,75	0,5560	4,7124	-0,2625	0
0,00	7,50	0,5560	7,8540	-0,2625	0
0,00	11,25	0,5560	10,9956	-0,2625	0
0,00	15,00	0,5560	14,1372	-0,2625	0
3,75	0,00	5,2808	0,0000	-15,0120	-1
3,75	3,75	5,2808	3,1416	-15,0120	-1
3,75	7,50	5,0997	7,8540	-9,8217	0
3,75	11,25	5,0997	10,9956	-9,8217	0
3,75	15,00	1,5708	14,1372	0,0000	1
7,50	0,00	7,7230	0,0000	-7,7892	0
7,50	3,75	7,7230	3,1416	-7,7892	0
7,50	7,50	7,8540	7,8540	0,0000	1
7,50	11,25	7,8540	10,9956	0,0000	1
7,50	15,00	7,7230	15,7080	-7,7892	0
11,25	0,00	11,2620	0,0000	-33,3887	-1
11,25	3,75	11,2620	3,1416	-33,3887	-1
11,25	7,50	11,1741	7,8540	-22,1706	0
11,25	11,25	11,1741	10,9956	-22,1706	0
11,25	15,00	11,2620	15,7080	-33,3887	-1
15,00	0,00	14,0658	0,0000	-14,1016	0
15,00	3,75	14,0658	3,1416	-14,1016	0
15,00	7,50	14,1372	7,8540	0,0000	1
15,00	11,25	14,1372	10,9956	0,0000	1
15,00	15,00	14,0658	15,7080	-14,1016	0

Avaliando os dados introduzidos na Tab. 1, fica clara a influência dos palpites iniciais na determinação dos pontos ótimos. Os resultados indicam que o método empregado pela função fsolve para determinação de x_1^* e x_2^* converge, na maioria das vezes, para o ponto ótimo mais próximo de $(x_{1,0},\ x_{2,0})$. Além disso, a avaliação da última coluna da tabela indica que o atendimento das condições necessárias de otimalidade não garante a obtenção de um ponto de mínimo e nem de máximo, como já era esperado.

Nas Figs. 1, 2 e 3 são reproduzidos graficamente tanto a função $f(x_1,x_2)$, quanto os pontos (x_1^*, x_2^*) de máximo, mínimo, e de sela, apresentados respectivamente em vermelho, preto e amarelo. Neste caso assumiu-se n=20 e todos os pontos ótimos contidos no intervalo adotado foram determinados.

Figure 1: Representação gráfica (vista frontal) dos pontos ótimos determinados a partir da avaliação das condições necessárias de otimalidade considerando-se n=20. Os pontos de máximo, mínimo e de sela estão representados respectivamente em vermelho, preto e amarelo.

Figure 2: Representação (vista lateral) gráfica dos pontos ótimos determinados a partir da avaliação das condições necessárias de otimalidade considerando-se n=20. Os pontos de máximo, mínimo e de sela estão representados respectivamente em vermelho, preto e amarelo.

Figure 3: Representação gráfica (vista inferior) dos pontos ótimos determinados a partir da avaliação das condições necessárias de otimalidade considerando-se n=20. Os pontos de máximo, mínimo e de sela estão representados respectivamente em vermelho, preto e amarelo.

4. CONCLUSÕES

No presente trabalho as condições suficientes e necessárias de otimalidade foram empregadas na determinação dos pontos ótimos da função $f(x_1,x_2)$ para que fosse possível avaliar a influência de x_0 na computação de x^* . Dentro do intervalo adotado nesta análise foram determinados todos os pontos de mínimo, máximo e sela presentes, a partir do emprego da função fsolve e da variação dos valores atribuídos a x_0 . Foi possível concluir por meio da análise dos resultados obtidos que os valores de x_1^* e x_2^* dependem diretamente de $x_{1,0}$ e $x_{2,0}$.

REFERÊNCIAS

LOBATO, Fran Sérgio. *Notas de aula: Otimização Clássica*. 12 de Agosto de 2019.

MATHWORKS. Solve system of nonlinear equations - MATLAB fsolve. Disponível em: https://www.mathworks.com/help/optim/ug/fsolve.html. Acesso em: 4 de Setembro de 2019.

MATHWORKS. *Eigenvalues and eigenvectors - MATLAB eig.* Disponível em: https://www.mathworks.com/help/matlab/ref/eig.html. Acesso em: 4 de Setembro de 2019.

ANEXO A

Table 2: Resultados obtidos para n=20.

$\overline{x_0(1)}$	$x_0(2)$	x(1)	x(2)	f	\overline{H}
0,0000	0,0000	1,0769	0,0000	-1,2056	-1
0,0000	0,7895	0,5560	1,5708	-0,2625	0
0,0000	1,5789	0,5560	1,5708	-0,2625	0
0,0000	2,3684	0,5560	1,5708	-0,2625	0
0,0000	3,1579	1,0769	3,1416	-1,2056	0
0,0000	3,9474	0,5560	4,7124	-0,2625	0
0,0000	4,7368	0,5560	4,7124	-0,2625	0
0,0000	5,5263	0,5560	4,7124	-0,2625	0
0,0000	6,3158	1,0769	6,2832	-1,2056	-1
0,0000	7,1053	0,5560	7,8540	-0,2625	0
0,0000	7,8947	0,5560	7,8540	-0,2625	0
0,0000	8,6842	0,5560	7,8540	-0,2625	0
0,0000	9,4737	1,0769	9,4248	-1,2056	0
0,0000	10,2632	0,5560	10,9956	-0,2625	0
0,0000	11,0526	0,5560	10,9956	-0,2625	0
0,0000	11,8421	0,5560	10,9956	-0,2625	0
0,0000	12,6316	1,0769	12,5664	-1,2056	-1
0,0000	13,4211	0,5560	14,1372	-0,2625	0
0,0000	14,2105	0,5560	14,1372	-0,2625	0
0,0000	15,0000	0,5560	14,1372	-0,2625	0
0,7895	0,0000	1,0769	0,0000	-1,2056	0
0,7895	0,7895	0,5560	1,5708	-0,2625	0
0,7895	1,5789	0,5560	1,5708	-0,2625	0
0,7895	2,3684	0,5560	1,5708	-0,2625	0
0,7895	3,1579	1,0769	3,1416	-1,2056	0
0,7895	3,9474	0,5560	4,7124	-0,2625	0
0,7895	4,7368	0,5560	4,7124	-0,2625	0
0,7895	5,5263	0,5560	4,7124	-0,2625	0
0,7895	6,3158	1,0769	6,2832	-1,2056	-1
0,7895	7,1053	0,5560	7,8540	-0,2625	0
0,7895	7,8947	0,5560	7,8540	-0,2625	0
0,7895	8,6842	0,5560	7,8540	-0,2625	0
0,7895	9,4737	1,0769	9,4248	-1,2056	-1
0,7895	10,2632	0,5560	10,9956	-0,2625	0
0,7895	11,0526	0,5560	10,9956	-0,2625	0
0,7895	11,8421	0,5560	10,9956	-0,2625	0
0,7895	12,6316	1,0769	12,5664	-1,2056	0
0,7895	13,4211	0,5560	14,1372	-0,2625	0
0,7895	14,2105	0,5560	14,1372	-0,2625	0

Table 2: Resultados obtidos para n=20.

$\frac{1}{x_{-}(1)}$	$x_{-}(2)$	x(1)	x(2)	f	<u>Н</u>
$\frac{x_0(1)}{2.7005}$	$x_0(2)$	$\frac{x(1)}{2.5560}$			
0,7895	15,0000	0,5560	14,1372	-0,2625	0
1,5789	0,0000	1,0769	0,0000	-1,2056	0
1,5789	0,7895	1,0769	0,0000	-1,2056	-1
1,5789	1,5789	1,5708	1,5708	0,0000	1
1,5789	2,3684	1,0769	3,1416	-1,2056	-1
1,5789	3,1579	1,0769	3,1416	-1,2056	-1
1,5789	3,9474	1,0769	3,1416	-1,2056	-1
1,5789	4,7368	1,5708	4,7124	0,0000	1
1,5789	5,5263	1,0769	6,2832	-1,2056	0
1,5789	6,3158	1,0769	6,2832	-1,2056	-1
1,5789	7,1053	1,0769	6,2832	-1,2056	0
1,5789	7,8947	1,5708	7,8540	0,0000	1
1,5789	8,6842	1,0769	9,4248	-1,2056	0
1,5789	9,4737	1,0769	9,4248	-1,2056	-1
1,5789	10,2632	1,0769	9,4248	-1,2056	0
1,5789	11,0526	1,5708	10,9956	0,0000	1
1,5789	11,8421	1,0769	12,5664	-1,2056	-1
1,5789	12,6316	1,0769	12,5664	-1,2056	0
1,5789	13,4211	1,0769	12,5664	-1,2056	-1
1,5789	14,2105	1,5708	14,1372	0,0000	1
1,5789	15,0000	1,0769	15,7080	-1,2056	0
2,3684	0,0000	1,0769	0,0000	-1,2056	-1
2,3684	0,7895	1,0769	0,0000	-1,2056	-1
2,3684	1,5789	1,5708	1,5708	0,0000	1
2,3684	2,3684	1,0769	3,1416	-1,2056	-1
2,3684	3,1579	1,0769	3,1416	-1,2056	-1
2,3684	3,9474	1,0769	3,1416	-1,2056	0
2,3684	4,7368	1,5708	4,7124	0,0000	1
2,3684	5,5263	1,0769	6,2832	-1,2056	0
2,3684	6,3158	1,0769	6,2832	-1,2056	0
2,3684	7,1053	1,5708	7,8540	0,0000	1
2,3684	7,8947	1,5708	7,8540	0,0000	1
2,3684	8,6842	1,0769	9,4248	-1,2056	-1
2,3684	9,4737	1,0769	9,4248	-1,2056	0
2,3684	10,2632	1,5708	10,9956	0,0000	1
2,3684	11,0526	1,5708	10,9956	0,0000	1
2,3684	11,8421	1,0769	12,5664	-1,2056	-1
2,3684	12,6316	1,0769	12,5664	-1,2056	-1
2,3684	13,4211	1,5708	14,1372	0,0000	1
2,3684	14,2105	1,5708	14,1372	0,0000	1
2,3684	15,0000	1,0769	15,7080	-1,2056	-1
3,1579	0,0000	1,0769	0,0000	-1,2056	0

Table 2: Resultados obtidos para n=20.

$x_0(1)$	$x_0(2)$	x(1)	x(2)	f	H
3,1579	0,7895	1,5708	1,5708	0,0000	1
3,1579	1,5789	1,5708	1,5708	0,0000	1
3,1579	2,3684	1,5708	1,5708	0,0000	1
3,1579	3,1579	1,0769	3,1416	-1,2056	0
3,1579	3,9474	1,5708	4,7124	0,0000	1
3,1579	4,7368	1,5708	4,7124	0,0000	1
3,1579	5,5263	1,5708	4,7124	0,0000	1
3,1579	6,3158	1,0769	6,2832	-1,2056	-1
3,1579	7,1053	1,5708	7,8540	0,0000	1
3,1579	7,8947	1,5708	7,8540	0,0000	1
3,1579	8,6842	1,5708	7,8540	0,0000	1
3,1579	9,4737	1,0769	9,4248	-1,2056	0
3,1579	10,2632	1,5708	10,9956	0,0000	1
3,1579	11,0526	1,5708	10,9956	0,0000	1
3,1579	11,8421	1,5708	10,9956	0,0000	1
3,1579	12,6316	1,0769	12,5664	-1,2056	-1
3,1579	13,4211	1,5708	14,1372	0,0000	1
3,1579	14,2105	1,5708	14,1372	0,0000	1
3,1579	15,0000	1,5708	14,1372	0,0000	1
3,9474	0,0000	5,2808	0,000	-15,0120	-1
3,9474	0,7895	5,0997	1,5708	-9,8217	0
3,9474	1,5789	5,0997	1,5708	-9,8217	0
3,9474	2,3684	5,0997	1,5708	-9,8217	0
3,9474	3,1579	5,2808	3,1416	-15,0120	-1
3,9474	3,9474	5,0997	4,7124	-9,8217	0
3,9474	4,7368	5,0997	4,7124	-9,8217	0
3,9474	5,5263	5,0997	4,7124	-9,8217	0
3,9474	6,3158	5,2808	6,2832	-15,0120	-1
3,9474	7,1053	5,0997	7,8540	-9,8217	0
3,9474	7,8947	5,0997	7,8540	-9,8217	0
3,9474	8,6842	5,2808	6,2832	-15,0120	-1
3,9474	9,4737	5,2808	9,4248	-15,0120	-1
3,9474	10,2632	5,0997	10,9956	-9,8217	0
3,9474	11,0526	5,0997	10,9956	-9,8217	0
3,9474	11,8421	5,0997	14,1372	-9,8217	0
3,9474	12,6316	5,2808	12,5664	-15,0120	-1
3,9474	13,4211	5,0997	14,1372	-9,8217	0
3,9474	14,2105	5,0997	14,1372	-9,8217	0
3,9474	15,0000	5,0997	17,2788	-9,8217	0
4,7368	0,0000	5,2808	0,0000	-15,0120	-1
4,7368	0,7895	5,0997	1,5708	-9,8217	0
4,7368	1,5789	5,0997	1,5708	-9,8217	0
, 50	, ,-	- ,	, 50	- ,	-

Table 2: Resultados obtidos para n=20.

$x_0(1)$	$x_0(2)$	x(1)	x(2)	f	\overline{H}
4,7368	2,3684	5,2808	3,1416	-15,0120	-1
4,7368	3,1579	5,2808	3,1416	-15,0120	-1
4,7368	3,9474	5,0997	4,7124	-9,8217	0
4,7368	4,7368	5,0997	4,7124	-9,8217	0
4,7368	5,5263	5,2808	6,2832	-15,0120	-1
4,7368	6,3158	5,2808	6,2832	-15,0120	-1
4,7368	7,1053	5,0997	7,8540	-9,8217	0
4,7368	7,8947	5,0997	7,8540	-9,8217	0
4,7368	8,6842	5,2808	9,4248	-15,0120	-1
4,7368	9,4737	5,2808	9,4248	-15,0120	-1
4,7368	10,2632	5,0997	10,9956	-9,8217	0
4,7368	11,0526	5,0997	10,9956	-9,8217	0
4,7368	11,8421	5,2808	12,5664	-15,0120	-1
4,7368	12,6316	5,2808	12,5664	-15,0120	-1
4,7368	13,4211	5,0997	14,1372	-9,8217	0
4,7368	14,2105	5,0997	14,1372	-9,8217	0
4,7368	15,0000	5,2808	15,7080	-15,0120	-1
5,5263	0,0000	5,2808	0,0000	-15,0120	-1
5,5263	0,7895	5,0997	1,5708	-9,8217	0
5,5263	1,5789	5,0997	1,5708	-9,8217	0
5,5263	2,3684	5,2808	3,1416	-15,0120	-1
5,5263	3,1579	5,2808	3,1416	-15,0120	-1
5,5263	3,9474	5,0997	4,7124	-9,8217	0
5,5263	4,7368	5,0997	4,7124	-9,8217	0
5,5263	5,5263	5,2808	6,2832	-15,0120	-1
5,5263	6,3158	5,2808	6,2832	-15,0120	-1
5,5263	7,1053	5,0997	7,8540	-9,8217	0
5,5263	7,8947	5,0997	7,8540	-9,8217	0
5,5263	8,6842	5,2808	9,4248	-15,0120	-1
5,5263	9,4737	5,2808	9,4248	-15,0120	-1
5,5263	10,2632	5,0997	10,9956	-9,8217	0
5,5263	11,0526	5,0997	10,9956	-9,8217	0
5,5263	11,8421	5,2808	12,5664	-15,0120	-1
5,5263	12,6316	5,2808	12,5664	-15,0120	-1
5,5263	13,4211	5,0997	14,1372	-9,8217	0
5,5263	14,2105	5,0997	14,1372	-9,8217	0
5,5263	15,0000	5,2808	15,7080	-15,0120	-1
6,3158	0,0000	5,2808	0,0000	-15,0120	-1
6,3158	0,7895	5,2808	0,0000	-15,0120	-1
6,3158	1,5789	5,0997	1,5708	-9,8217	0
6,3158	2,3684	5,2808	3,1416	-15,0120	-1
6,3158	3,1579	5,2808	3,1416	-15,0120	-1
				•	

Table 2: Resultados obtidos para n=20.

$x_0(1)$	$x_0(2)$	x(1)	x(2)	f	\overline{H}
6,3158	3,9474	5,0997	1,5708	-9,8217	0
6,3158	4,7368	5,0997	4,7124	-9,8217	0
6,3158	5,5263	5,2808	6,2832	-15,0120	-1
6,3158	6,3158	5,2808	6,2832	-15,0120	-1
6,3158	7,1053	5,2808	9,4248	-15,0120	-1
6,3158	7,8947	5,0997	7,8540	-9,8217	0
6,3158	8,6842	5,2808	9,4248	-15,0120	-1
6,3158	9,4737	5,2808	9,4248	-15,0120	-1
6,3158	10,2632	5,0997	10,9956	-9,8217	0
6,3158	11,0526	5,0997	10,9956	-9,8217	0
6,3158	11,8421	5,2808	12,5664	-15,0120	-1
6,3158	12,6316	5,2808	12,5664	-15,0120	-1
6,3158	13,4211	5,0997	14,1372	-9,8217	0
6,3158	14,2105	5,0997	14,1372	-9,8217	0
6,3158	15,0000	5,2808	15,7080	-15,0120	-1
7,1053	0,0000	7,7230	0,0000	-7,7892	0
7,1053	0,7895	7,7230	0,0000	-7,7892	0
7,1053	1,5789	7,8540	1,5708	0,0000	1
7,1053	2,3684	7,7230	3,1416	-7,7892	0
7,1053	3,1579	7,7230	3,1416	-7,7892	0
7,1053	3,9474	7,8540	4,7124	0,0000	1
7,1053	4,7368	7,8540	4,7124	0,0000	1
7,1053	5,5263	7,7230	6,2832	-7,7892	0
7,1053	6,3158	7,7230	6,2832	-7,7892	0
7,1053	7,1053	7,8540	7,8540	0,0000	1
7,1053	7,8947	7,8540	7,8540	0,0000	1
7,1053	8,6842	7,7230	9,4248	-7,7892	0
7,1053	9,4737	7,7230	9,4248	-7,7892	0
7,1053	10,2632	7,8540	10,9956	0,0000	1
7,1053	11,0526	7,8540	10,9956	0,0000	1
7,1053	11,8421	7,7230	12,5664	-7,7892	0
7,1053	12,6316	7,7230	12,5664	-7,7892	0
7,1053	13,4211	7,8540	14,1372	0,0000	1
7,1053	14,2105	7,8540	14,1372	0,0000	1
7,1053	15,0000	7,7230	15,7080	-7,7892	0
7,8947	0,0000	7,7230	0,0000	-7,7892	0
7,8947	0,7895	7,8540	1,5708	0,0000	1
7,8947	1,5789	7,8540	1,5708	0,0000	1
7,8947	2,3684	7,7230	3,1416	-7,7892	0
7,8947	3,1579	7,7230	3,1416	-7,7892	0
7,8947	3,9474	7,8540	4,7124	0,0000	1
7,8947	4,7368	7,8540	4,7124	0,0000	1

Table 2: Resultados obtidos para n=20.

$x_0(1)$	$x_0(2)$	x(1)	x(2)	f	\overline{H}
7,8947	5,5263	7,7230	6,2832	-7,7892	0
7,8947	6,3158	7,7230	6,2832	-7,7892	0
7,8947	7,1053	7,8540	7,8540	0,0000	1
7,8947	7,8947	7,8540	7,8540	0,0000	1
7,8947	8,6842	7,7230	9,4248	-7,7892	0
7,8947	9,4737	7,7230	9,4248	-7,7892	0
7,8947	10,2632	7,8540	10,9956	0,0000	1
7,8947	11,0526	7,8540	10,9956	0,0000	1
7,8947	11,8421	7,7230	12,5664	-7,7892	0
7,8947	12,6316	7,7230	12,5664	-7,7892	0
7,8947	13,4211	7,8540	14,1372	0,0000	1
7,8947	14,2105	7,8540	14,1372	0,0000	1
7,8947	15,0000	7,7230	15,7080	-7,7892	0
8,6842	0,0000	7,7230	0,0000	-7,7892	0
8,6842	0,7895	7,7230	3,1416	-7,7892	0
8,6842	1,5789	7,8540	1,5708	0,0000	1
8,6842	2,3684	7,7230	0,0000	-7,7892	0
8,6842	3,1579	7,7230	3,1416	-7,7892	0
8,6842	3,9474	7,8540	4,7124	0,0000	1
8,6842	4,7368	7,8540	4,7124	0,0000	1
8,6842	5,5263	7,8540	7,8540	0,0000	1
8,6842	6,3158	7,7230	6,2832	-7,7892	0
8,6842	7,1053	7,8540	7,8540	0,0000	1
8,6842	7,8947	7,8540	7,8540	0,0000	1
8,6842	8,6842	7,8540	10,9956	0,0000	1
8,6842	9,4737	7,7230	9,4248	-7,7892	0
8,6842	10,2632	7,8540	10,9956	0,0000	1
8,6842	11,0526	7,8540	10,9956	0,0000	1
8,6842	11,8421	7,7230	12,5664	-7,7892	0
8,6842	12,6316	7,7230	12,5664	-7,7892	0
8,6842	13,4211	7,8540	14,1372	0,0000	1
8,6842	14,2105	7,8540	14,1372	0,0000	1
8,6842	15,0000	7,7230	15,7080	-7,7892	0
9,4737	0,0000	7,7230	0,0000	-7,7892	0
9,4737	0,7895	7,8540	1,5708	0,0000	1
9,4737	1,5789	7,8540	1,5708	0,0000	1
9,4737	2,3684	7,8540	1,5708	0,0000	1
9,4737	3,1579	7,7230	3,1416	-7,7892	0
9,4737	3,9474	7,8540	4,7124	0,0000	1
9,4737	4,7368	7,8540	4,7124	0,0000	1
9,4737	5,5263	7,8540	7,8540	0,0000	1
9,4737	6,3158	7,7230	6,2832	-7,7892	0

Table 2: Resultados obtidos para n=20.

<u> </u>	m (2)	m(1)	m(2)	f	
$\frac{x_0(1)}{}$	$x_0(2)$	x(1)	x(2)	f	<i>H</i>
9,4737	7,1053	7,8540	7,8540	0,0000	1
9,4737	7,8947	7,8540	7,8540	0,0000	1
9,4737	8,6842	7,7230	9,4248	-7,7892	0
9,4737	9,4737	7,7230	9,4248	-7,7892	0
9,4737	10,2632	7,8540	10,9956	0,0000	1
9,4737	11,0526	7,8540	10,9956	0,0000	1
9,4737	11,8421	7,7230	12,5664	-7,7892	0
9,4737	12,6316	7,7230	12,5664	-7,7892	0
9,4737	13,4211	7,8540	14,1372	0,0000	1
9,4737	14,2105	7,8540	14,1372	0,0000	1
9,4737	15,0000	7,7230	15,7080	-7,7892	0
10,2632	0,0000	11,2620	0,0000	-33,3887	-1
10,2632	0,7895	11,1741	1,5708	-22,1706	0
10,2632	1,5789	11,1741	1,5708	-22,1706	0
10,2632	2,3684	11,2620	0,0000	-33,3887	-1
10,2632	3,1579	11,2620	3,1416	-33,3887	-1
10,2632	3,9474	11,1741	4,7124	-22,1706	0
10,2632	4,7368	11,1741	4,7124	-22,1706	0
10,2632	5,5263	11,1741	7,8540	-22,1706	0
10,2632	6,3158	11,2620	6,2832	-33,3887	-1
10,2632	7,1053	11,1741	7,8540	-22,1706	0
10,2632	7,8947	11,1741	7,8540	-22,1706	0
10,2632	8,6842	11,2620	9,4248	-33,3887	-1
10,2632	9,4737	11,2620	9,4248	-33,3887	-1
10,2632	10,2632	11,1741	10,9956	-22,1706	0
10,2632	11,0526	11,1741	10,9956	-22,1706	0
10,2632	11,8421	11,2620	12,5664	-33,3887	-1
10,2632	12,6316	11,2620	12,5664	-33,3887	-1
10,2632	13,4211	11,1741	14,1372	-22,1706	0
10,2632	14,2105	11,1741	14,1372	-22,1706	0
10,2632	15,0000	11,2620	15,7080	-33,3887	-1
11,0526	0,0000	11,2620	0,0000	-33,3887	-1
11,0526	0,7895	11,1741	1,5708	-22,1706	0
11,0526	1,5789	11,1741	1,5708	-22,1706	0
11,0526	2,3684	11,2620	3,1416	-33,3887	-1
11,0526	3,1579	11,2620	3,1416	-33,3887	-1
11,0526	3,9474	11,1741	4,7124	-22,1706	0
11,0526	4,7368	11,1741	4,7124	-22,1706	0
11,0526	5,5263	11,2620	6,2832	-33,3887	-1
11,0526	6,3158	11,2620	6,2832	-33,3887	-1
11,0526	7,1053	11,1741	7,8540	-22,1706	0
11,0526	7,8947	11,1741	7,8540	-22,1706	0

Table 2: Resultados obtidos para n=20.

$\overline{x_0(1)}$	$x_0(2)$	x(1)	x(2)	f	Н
11,0526	8,6842	11,2620	9,4248	-33,3887	-1
11,0526	9,4737	11,2620	9,4248	-33,3887	-1
11,0526	10,2632	11,1741	10,9956	-22,1706	0
11,0526	11,0526	11,1741	10,9956	-22,1706	0
11,0526	11,8421	11,2620	12,5664	-33,3887	-1
11,0526	12,6316	11,2620	12,5664	-33,3887	-1
11,0526	13,4211	11,1741	14,1372	-22,1706	0
11,0526	14,2105	11,1741	14,1372	-22,1706	0
11,0526	15,0000	11,2620	15,7080	-33,3887	-1
11,8421	0,0000	11,2620	0,0000	-33,3887	-1
11,8421	0,7895	11,1741	1,5708	-22,1706	0
11,8421	1,5789	11,1741	1,5708	-22,1706	0
11,8421	2,3684	11,2620	3,1416	-33,3887	-1
11,8421	3,1579	11,2620	3,1416	-33,3887	-1
11,8421	3,9474	11,1741	4,7124	-22,1706	0
11,8421	4,7368	11,1741	4,7124	-22,1706	0
11,8421	5,5263	11,2620	6,2832	-33,3887	-1
11,8421	6,3158	11,2620	6,2832	-33,3887	-1
11,8421	7,1053	11,1741	7,8540	-22,1706	0
11,8421	7,8947	11,1741	7,8540	-22,1706	0
11,8421	8,6842	11,2620	9,4248	-33,3887	-1
11,8421	9,4737	11,2620	9,4248	-33,3887	-1
11,8421	10,2632	11,1741	10,9956	-22,1706	0
11,8421	11,0526	11,1741	10,9956	-22,1706	0
11,8421	11,8421	11,2620	12,5664	-33,3887	-1
11,8421	12,6316	11,2620	12,5664	-33,3887	-1
11,8421	13,4211	11,1741	14,1372	-22,1706	0
11,8421	14,2105	11,1741	14,1372	-22,1706	0
11,8421	15,0000	11,2620	15,7080	-33,3887	-1
12,6316	0,0000	11,2620	0,0000	-33,3887	-1
12,6316	0,7895	11,2620	0,0000	-33,3887	-1
12,6316	1,5789	11,1741	1,5708	-22,1706	0
12,6316	2,3684	11,2620	3,1416	-33,3887	-1
12,6316	3,1579	11,2620	3,1416	-33,3887	-1
12,6316	3,9474	11,2620	6,2832	-33,3887	-1
12,6316	4,7368	11,1741	4,7124	-22,1706	0
12,6316	5,5263	11,2620	6,2832	-33,3887	-1
12,6316	6,3158	11,2620	6,2832	-33,3887	-1
12,6316	7,1053	11,1741	7,8540	-22,1706	0
12,6316	7,8947	11,1741	7,8540	-22,1706	0
12,6316	8,6842	11,2620	9,4248	-33,3887	-1
12,6316	9,4737	11,2620	9,4248	-33,3887	-1

Table 2: Resultados obtidos para n=20.

$x_0(1)$	$x_0(2)$	x(1)	x(2)	f	H
12,6316	10,2632	11,1741	10,9956	-22,1706	0
12,6316	11,0526	11,1741	10,9956	-22,1706	0
12,6316	11,8421	11,2620	12,5664	-33,3887	-1
12,6316	12,6316	11,2620	12,5664	-33,3887	-1
12,6316	13,4211	11,1741	14,1372	-22,1706	0
12,6316	14,2105	11,1741	14,1372	-22,1706	0
12,6316	15,0000	11,2620	15,7080	-33,3887	-1
13,4211	0,0000	14,0658	0,0000	-14,1016	0
13,4211	0,7895	14,1372	1,5708	0,0000	1
13,4211	1,5789	14,1372	1,5708	0,0000	1
13,4211	2,3684	14,0658	3,1416	-14,1016	0
13,4211	3,1579	14,0658	3,1416	-14,1016	0
13,4211	3,9474	14,1372	4,7124	0,0000	1
13,4211	4,7368	14,1372	4,7124	0,0000	1
13,4211	5,5263	14,0658	6,2832	-14,1016	0
13,4211	6,3158	14,0658	6,2832	-14,1016	0
13,4211	7,1053	14,1372	7,8540	0,0000	1
13,4211	7,8947	14,1372	7,8540	0,0000	1
13,4211	8,6842	14,0658	9,4248	-14,1016	0
13,4211	9,4737	14,0658	9,4248	-14,1016	0
13,4211	10,2632	14,1372	10,9956	0,0000	1
13,4211	11,0526	14,1372	10,9956	0,0000	1
13,4211	11,8421	14,0658	12,5664	-14,1016	0
13,4211	12,6316	14,0658	12,5664	-14,1016	0
13,4211	13,4211	14,1372	14,1372	0,0000	1
13,4211	14,2105	14,1372	14,1372	0,0000	1
13,4211	15,0000	14,0658	15,7080	-14,1016	0
14,2105	0,0000	14,0658	0,0000	-14,1016	0
14,2105	0,7895	14,1372	1,5708	0,0000	1
14,2105	1,5789	14,1372	1,5708	0,0000	1
14,2105	2,3684	14,0658	3,1416	-14,1016	0
14,2105	3,1579	14,0658	3,1416	-14,1016	0
14,2105	3,9474	14,1372	4,7124	0,0000	1
14,2105	4,7368	14,1372	4,7124	0,0000	1
14,2105	5,5263	14,0658	6,2832	-14,1016	0
14,2105	6,3158	14,0658	6,2832	-14,1016	0
14,2105	7,1053	14,1372	7,8540	0,0000	1
14,2105	7,8947	14,1372	7,8540	0,0000	1
14,2105	8,6842	14,0658	9,4248	-14,1016	0
14,2105	9,4737	14,0658	9,4248	-14,1016	0
14,2105	10,2632	14,1372	10,9956	0,0000	1
14,2105	11,0526	14,1372	10,9956	0,0000	1

Table 2: Resultados obtidos para n=20.

$x_0(1)$	$x_0(2)$	x(1)	x(2)	f	\overline{H}
14,2105	11,8421	14,0658	12,5664	-14,1016	0
14,2105	12,6316	14,0658	12,5664	-14,1016	0
14,2105	13,4211	14,1372	14,1372	0,0000	1
14,2105	14,2105	14,1372	14,1372	0,000	1
14,2105	15,0000	14,0658	15,7080	-14,1016	0
15,0000	0,0000	14,0658	0,0000	-14,1016	0
15,0000	0,7895	14,0658	3,1416	-14,1016	0
15,0000	1,5789	14,1372	1,5708	0,0000	1
15,0000	2,3684	14,1372	4,7124	0,000	1
15,0000	3,1579	14,0658	3,1416	-14,1016	0
15,0000	3,9474	14,1372	4,7124	0,0000	1
15,0000	4,7368	14,1372	4,7124	0,0000	1
15,0000	5,5263	14,1372	7,8540	0,0000	1
15,0000	6,3158	14,0658	6,2832	-14,1016	0
15,0000	7,1053	14,1372	7,8540	0,0000	1
15,0000	7,8947	14,1372	7,8540	0,0000	1
15,0000	8,6842	14,0658	9,4248	-14,1016	0
15,0000	9,4737	14,0658	9,4248	-14,1016	0
15,0000	10,2632	14,1372	10,9956	0,0000	1
15,0000	11,0526	14,1372	10,9956	0,0000	1
15,0000	11,8421	14,0658	12,5664	-14,1016	0
15,0000	12,6316	14,0658	12,5664	-14,1016	0
15,0000	13,4211	14,1372	14,1372	0,0000	1
15,0000	14,2105	14,1372	14,1372	0,0000	1
15,0000	15,0000	14,0658	15,7080	-14,1016	0

5. ANEXO B

Código utilizado na computação de x_1^* e x_2^* .

```
clc; clear; close all;
nData = 20;
results = zeros(nData^2,5);
x0Values = linspace(0,15,nData);
fValues = zeros(nData);
x1Values = zeros(nData);
x2Values = zeros(nData);
maxValues = zeros(nData);
minValues = zeros(nData);
noneValues = zeros(nData);
H = zeros(2);
k = 1;
opt = optimoptions('fsolve', 'Display', 'off');
for i = 1:nData
    for j = 1:nData
        x0 = [x0Values(i), x0Values(j)];
        x = fsolve(@firstDevSystem, x0, opt);
        f = x(1) * sin(x(1)) - x(1) * (cos(x(2)))^2 - x(1);
        H(1,1) = 2*\cos(x(1)) - x(1)*\sin(x(1));
        H(1,2) = 2*cos(x(2))*sin(x(2));
        H(2,1) = H(1,2);
        H(2,2) = 2*x(1)*((cos(x(2)))^2 - (sin(x(2)))^2);
        lambda = eig(H);
        results(k,1) = x0Values(i);
        results(k,2) = x0Values(j);
        results(k,3) = x(1);
        results(k, 4) = x(2);
        results(k, 5) = f;
        if all(all(lambda > 0))
            results(k,6) = -1;
            minValues(i,j) = f;
            maxValues(i,j) = 1;
            noneValues(i, j) = 1;
        elseif all(all(lambda < 0))</pre>
            results (k, 6) = 1;
            minValues(i,j) = 1;
            maxValues(i,j) = f;
            noneValues(i,j) = 1;
            results (k, 6) = 0;
            minValues(i,j) = 1;
```

```
maxValues(i,j) = 1;
            noneValues(i,j) = f;
        end
        fValues(i,j) = f;
        x1Values(i,j) = x(1);
        x2Values(i,j) = x(2);
        k = k + 1;
    end
end
응응
close all; clc;
% Apresentando grafico de f no intevalor adotado 0 < x1, x2 < 15
h = figure;
x = linspace(0, 15, 200);
y = linspace(0, 15, 200);
[X,Y] = meshgrid(x, y);
Z = X.*sin(X) - X.*(cos(Y)).^2 - X;
s = surf(X, Y, Z);
s.EdgeColor = 'none';
sizeAxis = axis;
hold on;
plot3(x1Values, x2Values, minValues, '.k', 'MarkerSize', 40);
plot3(x1Values, x2Values, maxValues, '.r', 'MarkerSize', 40);
plot3(x1Values, x2Values, noneValues, '.y', 'MarkerSize', 40);
colormap winter;
fullScreen;
sizeAxis(1:4) = [0 15 0 15];
axis(sizeAxis);
set(gca, 'FontSize', 25);
set(gca, 'TickLabelInterpreter', 'latex');
xlabel('x_1');
ylabel('x_2');
zlabel('f(x_1, x_2)');
printI('3d1');
% Salvando os dados da execucao em um arquivo excel
x01 = results(:,1);
x02 = results(:,2);
x1 = results(:,3);
x2 = results(:,4);
f = results(:,5);
H = results(:, 6);
resultsTable = table(x01, x02, x1, x2, f, H);
excelFile = 'tabelas/results.xlsx';
writetable(resultsTable, excelFile);
```

```
function F = firstDevSystem(x)
    F(1) = \sin(x(1)) + x(1) * \cos(x(1)) - (\cos(x(2)))^2 - 1;
    F(2) = 2*x(1)*\cos(x(2))*\sin(x(2));
end
```