Penyelesaian Latihan

- 1. Diketahui $f(x) = \frac{\sin(0.5\sqrt{x})}{x}$. Tentukan turunan pertama dari f di x=1 dan h=0.2. Gunakan metode:
 - (a) Selisih maju:

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$
 Di $x = 1$:
$$f'(1) \approx \frac{f(1.2) - f(1)}{0.2}$$

$$f(1) = \frac{\sin(0.5\sqrt{1})}{1} = \sin(0.5) \approx 0.4794$$

$$f(1.2) = \frac{\sin(0.5\sqrt{1.2})}{1.2} \approx \frac{\sin(0.5477)}{1.2} \approx \frac{0.5201}{1.2} \approx 0.4334$$

$$f'(1) \approx \frac{0.4334 - 0.4794}{0.2} \approx -0.230$$

(b) Selisih mundur:

$$f'(x) \approx \frac{f(x) - f(x - h)}{h}$$

Di x = 1:

$$f'(1) \approx \frac{f(1) - f(0.8)}{0.2}$$

$$f(0.8) = \frac{\sin(0.5\sqrt{0.8})}{0.8} \approx \frac{\sin(0.4472)}{0.8} \approx \frac{0.4326}{0.8} \approx 0.5408$$
$$f'(1) \approx \frac{0.4794 - 0.5408}{0.2} \approx -0.307$$

(c) Selisih pusat:

$$f'(x) \approx \frac{f(x+h) - f(x-h)}{2h}$$

Di x = 1:

$$f'(1) \approx \frac{f(1.2) - f(0.8)}{0.4} \approx \frac{0.4334 - 0.5408}{0.4} \approx -0.2685$$

- 2. Diketahui $f(x) = x^2 \cos x$. Tentukan turunan kedua dari f di x = 0.4 dan h = 0.1. Gunakan metode:
 - (a) Selisih maju:

$$f''(x) \approx \frac{f(x+2h) - 2f(x+h) + f(x)}{h^2}$$

Di x = 0.4:

$$f''(0.4) \approx \frac{f(0.6) - 2f(0.5) + f(0.4)}{0.01}$$

$$f(0.4) = (0.4)^2 \cos(0.4) \approx 0.16 \times 0.9211 \approx 0.1474$$

$$f(0.5) = (0.5)^2 \cos(0.5) \approx 0.25 \times 0.8776 \approx 0.2194$$

$$f(0.6) = (0.6)^2 \cos(0.6) \approx 0.36 \times 0.8253 \approx 0.2971$$

$$f''(0.4) \approx \frac{0.2971 - 2(0.2194) + 0.1474}{0.01} \approx \frac{0.2971 - 0.4388 + 0.1474}{0.01} \approx \frac{0.0057}{0.01} \approx -0.94$$

(b) Selisih mundur:

$$f''(x) \approx \frac{f(x) - 2f(x - h) + f(x - 2h)}{h^2}$$
 Di $x = 0.4$:
$$f''(0.4) \approx \frac{f(0.4) - 2f(0.3) + f(0.2)}{0.01}$$

$$f(0.3) = (0.3)^2 \cos(0.3) \approx 0.09 \times 0.9553 \approx 0.0860$$

$$f(0.2) = (0.2)^2 \cos(0.2) \approx 0.04 \times 0.9801 \approx 0.0392$$

$$f''(0.4) \approx \frac{0.1474 - 2(0.0860) + 0.0392}{0.01} \approx \frac{0.1474 - 0.1720 + 0.0392}{0.01} \approx \frac{0.0146}{0.01} \approx 1.46$$

(c) Selisih pusat:

$$f''(x) \approx \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$
 Di $x = 0.4$:
$$f''(0.4) \approx \frac{f(0.5) - 2f(0.4) + f(0.3)}{0.01}$$

$$f''(0.4) \approx \frac{0.2194 - 2(0.1474) + 0.0860}{0.01} \approx \frac{0.2194 - 0.2948 + 0.0860}{0.01} \approx \frac{0.0106}{0.01} \approx 1.06$$

3. Diketahui data jarak tempuh suatu kendaraan sebagai berikut:

t (s)	y (km)
0	0
25	32
50	58
75	78
100	92
125	100

Gunakan turunan numerik untuk mengestimasi kecepatan dan percepatan kendaraan tersebut setiap waktu.

Estimasi kecepatan (v) tiap waktu:

$$v(t) \approx \frac{y_{i+1} - y_i}{t_{i+1} - t_i}$$

t (s)	y (km)	v (km/s)
0	0	_
25	32	$\frac{32-0}{25-0} = 1.28$ $\frac{58-32}{5} = 1.04$
50	58	$\frac{58-32}{50-25} = 1.04$
75	78	$\frac{78-58}{75-50} = 0.80$
100	92	$\frac{92-78}{100-75} = 0.56$
125	100	$\frac{100-92}{125-100} = 0.32$

Estimasi percepatan (a) tiap waktu:

$$a(t) \approx \frac{v_{i+1} - v_i}{t_{i+1} - t_i}$$

t (s)	v (km/s)	$a (km/s^2)$
0	_	_
25	1.28	_
50	1.04	$\frac{1.04-1.28}{25} = -0.0096$
75	0.80	$\begin{array}{c} 25 \\ 0.80 - 1.04 \\ \hline 25 \end{array} = -0.0096$
100	0.56	$\begin{array}{c} 25 \\ 0.56 - 0.80 \\ \hline 25 \end{array} = -0.0096$
125	0.32	$\frac{25}{0.32 - 0.56} = -0.0096$ $\frac{0.32 - 0.56}{25} = -0.0096$