MATH 2418: Linear Algebra

Assignment# 1

Due: 08/31 Wednesday Term Fall, 2016

Recommended Text Book Problems (do not turn in): [Sec 1.1: # 1, 2, 3, 5, 11, 19]; [Sec 1.2: # 1, 2, 6, 7, 13, 14, 29, 31];

1. Write down the 12 vectors that go from hour 9:00 of a clock to hours 1:00, 2:00,, 12:00. (For example: Hour 9:00 is (0,0), hour 3:00 is (2,0)). Also, find the sum of these 12 vectors.

- 2. Given vectors \mathbf{v} and \mathbf{w} in diagram below, shade in all linear combinations $c\mathbf{v} + d\mathbf{w}$ for
 - (a) $0 \le c \le 1$ and $0 \le d \le 1$
 - (b) $0 \le c \le 1$ and $d \ge 1$
 - (c) $0 \le d \le 1$ and $c \ge 1$.

(You can use different shading styles in same picture for all three parts or can graph them separaetly in three different pictures)

- 3. Given $\mathbf{u} = (3, 1, 4)$ and $\mathbf{v} = (2, 2, -4)$,
 - (a) Calculate $\mathbf{u} \cdot \mathbf{v}$, $\|\mathbf{u}\|$, $\|\mathbf{v}\|$
 - (b) Find the angle θ between ${\bf u}$ and ${\bf v}$
 - (c) Find the unit vectors $\hat{\mathbf{u}}$ and $\hat{\mathbf{v}}$ in the direction of \mathbf{u} and \mathbf{v} respectively.

- 4. (a) Use the triangle inequality: $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$ to prove that
 - $(i) \ \|\mathbf{u} \mathbf{v}\| \leq \|\mathbf{u}\| + \|\mathbf{v}\|$
 - (ii) $\|\mathbf{u}\| \|\mathbf{v}\| \le \|\mathbf{u} \mathbf{v}\|$
 - (b) If $\|\mathbf{u}\| = 5$ and $\|\mathbf{v}\| = 3$, what are the smallest and largest possible values of $\|\mathbf{u} \mathbf{v}\|$ and $\|\mathbf{v} \mathbf{u}\|$?

5. Given any two nonzero vectors \mathbf{u} and \mathbf{v} , determine the scalar c so that \mathbf{u}	$-c\mathbf{v}$ is perpendicular to \mathbf{v} . Let
$\mathbf{v} = (3, 1, -2)$, find a non zero vector that is perpendicular to \mathbf{v} .	