

ARTIFICIAL INTELLIGENCE (CSE 3013)

FALL SEMESTER (2020-21)

J COMPONENT REPORT

TRAFFIC SIGN AND SIGNAL DETECTION USING CONVOLUTIONAL NEURAL NETWORK

TEAM MEMBERS:

ADITYA ROHILLA (18BCE0929) KHWAAB THAREJA (18BCE0930) RAHUL ANAND (18BCE0953)

SUBMITTED TO: PROF. TAPAN KUMAR DAS

ABSTRACT

Traffic sign and signal recognition (TSSR) represents an important feature of advanced driver assistance systems, contributing to the safety of the drivers, pedestrians and vehicles as well. Developing TSSR systems requires the use of computer vision techniques, which could be considered fundamental in the field of pattern recognition in general. Despite all the previous works and research that has been achieved, traffic sign detection and recognition still remain a very challenging problem, precisely if we want to provide a real time processing solution. We propose an approach for traffic sign and light detection based on Convolutional Neural Networks (CNN). We first transform the original image into the gray scale image by using support vector machines, then use convolutional neural networks with fixed and learnable layers for detection and recognition. The fixed layer can reduce the amount of interest areas to detect, and crop the boundaries very close to the borders of traffic signs. The learnable layers can increase the accuracy of detection significantly.

INDEX

T	opic	Page No.
1.	Introduction	4
2.	Literature Survey	5
3.	Overview of the Work	10
	3.1.Problem description	
	3.2.Software Requirements	
	3.3.Hardware Requirements	
4.	System Design	11
	4.1 Flow Diagram	
	4.2 Design and Implementation Constraints	
5.	Implementation	13
	5.1.Description of Modules/Programs	
	5.2.Source Code	
	5.3 Execution snapshots	
6.	Results	31
7.	Conclusion and Future Directions	32
8.	References	33

1.Introduction

We propose an approach for traffic sign and signal detection based on Convolutional Neural Networks (CNN). We first transform the original image into the gray scale image by using support vector machines, then use convolutional neural networks with fixed and learnable layers for detection and recognition. The fixed layer can reduce the amount of interest areas to detect, and crop the boundaries very close to the borders of traffic signs. The learnable layers can increase the accuracy of detection significantly. The objective of an automatic road sign and traffic light signal recognition system is to detect and classify one or more road signs and light signals from within live colour images captured by a camera. It attempts to develop an on-board warning system to alert the driver of the warning signs and light signals. Developing a reliable road sign and signal recognition system is considered a challenging task in compute vision.

2.Literature Survey

S	Title of the	Authors	Year of	Dataset	Methodology /	Performan	Drawbacks
1	paper		publication	used	Technology	ce metrics	
n							
О							
1	A study on	Y. Aoya	22nd	Traffic	Genetic	Among the	Image pattern
	traffic sign	gi, T. As	International	sign	algorithms and	24 patterns	recognition has been
	recognitio	akura	Conference	from a	Neural	other than	chiefly researched
	n in scene		on Industrial	video	networks	the speed	only
	image		Electronics,	image		sign, it was	for an individual
	using		Control, and			recognized	object.
	genetic		Instrumentat			that only	However, it is an
	algorithms		ion,			one pattern	advanced direction to
	and neural		IEEE, Augu			was not a	recognize the object
	networks		st (1996)			sign	which becomes a
							target
							from a scene image,
							with the development
							of the visual system
							of
							the robot
2	Real time	TT le,	Asian	12132	Color and	This	(i)The selective
	traffic sign	ST Tran,	Conference	images	shape-based	proved	extraction of
	detection	S Mita,	on	from	features	toyield a	windows
	using color	TD	Intelligent	the eight		speed of 2	of interest, followed
	and	Nguyen	, 2010 -	cameras		fps at a	by
	shape-		Springer			level of	their classification
	based					96%	(ii) Exhaustive sliding
	features					detection	window based
						rate and 2	classification
						false	

		Т	Γ	T	.	Γ	
						positives	
						per image	
3	Road	SH Hsu,	Image and	(a)30	Matching	Triangular	Edges are tested at
	sign detect	CL	Vision	triangular	pursuit method	road	different levels of
	ion and	Huang	Computing,	road signs;		signs:94%	resolution by using
	recognitio		2001 -	and		Circular	so-
	n using		Elsevier	(b) 10		road	called a Hierarchical
	matching			circular		signs:91%	Structure Code. It is
	pursuit			road			assumed that closed
	method			signs			edgecontours are
							available at one of
							these levels of
							resolution, and
							failures
							happen when the
							outline of the traffic
							sign merges with the
							background.
							-
4	Traffic	Yingyin	2001	Swedish	Fully	average	color-based methods,
	Sign	g Zhu,		Traffic	Convolutional	precision	shape-based methods
	Detection	Chengq		Signs	Network	of 98.67%	and sliding window
	and	uan		Dataset	Guided		based methods.
	Recognitio	Zhang,		(STSD)	Proposals		
	n using	Duoyou		,	_		
	Fully	Zhou,					
	Convolutio	Xinggan					
	nal	g Wang,					
	Network	Xiang					

	Guided	Bai,					
	Proposals	WenyuL					
		iu,elsvie					
		r.					
5	Generalize	Y Tsai,	Journal of	LADOTD	Neural	images	proprietary
	d traffic	P Kim,	Computing	roadway	networks	with sign	algorithms
	sign	Z Wang	in	video log		in them	use specific color
	detection		Civil	image		83.67%	filters
	model for		Engineering,	sets.(images	and the features of
	developing		2009	37,640		with no	specific shapes to
	a sign			video		sign in	distinguish a specific
	inventory			log		them=	type of traffic sign.but
	-			images)		80.19%	they can detect only
							stop signs
6	Image	JF	2011 -	121	Genetic	88.88%	object detection has
	segmentati	Khan,	ieeexplore.ie	different	algorithms and		been image feature
	on and	SMA	ee.org	road-sign	Neural		clustering. Bahlmann
	shape	Bhuiyan		images	networks		et
	analysis						al. [26] detected signs
	for road-						using a set of color-
	sign						sensitive Haar
	detection						wavelet
							features obtained
							from
							AdaBoost training
							and
							temporal information
							propagation.
7	Efficient	С	Journal of	The images	Fully	The	First, the image is
	algorithm	Souani,	real-	were taken	Convolutional	recognition	color
	for	Н	time image	at different	Network	rate	segmented. Second,
	automatic	Faiedh,	processing,	light	Guided	achieved	the
	road sign	K		conditions	Proposals	by the	
				<u> </u>			

	recognitio	Besbes	2014 -			system was	shape is extracted,
	n and its		Springer			around 82	and
	hardware					%	finally, the traffic sign
	implement						is recognized by
	ation						processing the local
							region.
8	Traffic	Z Cai,	Journal of	60 000	algorithm	95.39% at	1) Edge detection in
	sign	M Gu	Central	traffic sign	based on shape	the peak	gray image.
	recognitio		South	images	signature and		2) Clustering and
	n		University,	from	dual-tree		intelligent feature
	algorithm		2013 -	several	complex		analysis.
	based on		Springer	traffic	wavelet		3) Image
	shape			video	transform		segmentation
	signature			sequences			by threshold in
	and dual-						specific
	tree						color space, then
	complex						analysis with
	wavelet						geometrical edge
	transform						
9	Fast traffic	S Yin, P	2015 -	GTSRB	Fully	1)HOG+A	traffic sign detection
	sign	Ouyang,	mdpi.com	and	Convolutional	NN=	and recognition can
	recognitio	L Liu, Y		STS	Network	95.41%	be
	n with a	Guo, S			Guided	2)SIFT+A	divided into three
	rotation	Wei			Proposals	NN=97.10	categories. First, pre-
	invariant					%	processing methods
	binary						are
	pattern						researched to locate
	based						and
	feature						recognize the traffic
	- Sensors,						signs. Second, pre-
L	<u> </u>		I .	I .	<u> </u>	<u> </u>	1

processing methods combining with classification are adopted to achieve robust traffic signs recognition. Third, specific design features combing with the classifiers are used to achieve the robust and computing efficient recognition. 1 Traffic J Jin, K IEEE 12 630 test computing efficient recognition. 2 Transactions images neural networks not limited in a couracy of number of the processing methods combining with the classifiers are used to achieve the robust and computing efficient recognition. 2 Transactions images neural networks neural networks neural networks neural networks neural networks networks neural								
classification are adopted to achieve robust traffic signs recognition. Third, specific design features combing with the classifiers are used to achieve the robust and computing efficient recognition. 1 Traffic J Jin, K IEEE 12 630 test Transactions images on Intelligent with hinge loss trained convolution all neural networks 1 Traffic J Jin, K IEEE 12 630 test Transactions images on neural p3.65% boosting, tree classifiers , and support vector machines (SVMs). These methods, from today's point of view, are considered using hand-coded features such as a circle detector in , a Haar wavelet [6] in , and a histogram of oriented gradient (HOG) or scale-								processing methods
adopted to achieve robust traffic signs recognition. Third, specific design features combing with the classifiers are used to achieve the robust and computing efficient recognition. Traffic or sign or recognition Transactions or recognition The companies or recognition or recognition The companies or recognition or recognition The companies or recognition or recognition or recognition or recognition The companies or recognition or recognition. The companies or recognition or recognition or recognition or recognition. The companies of re								combining with
robust traffic signs recognition. Third, specific design features combing with the classifiers are used to achieve the robust and computing efficient recognition. Traffic J Jin, K IEEE 12 630 test recognition Sign Fu, C Transactions images neural 93.65% boosting, tree classifiers, and support with hinge loss trained convolution nal neural networks Trained convolution national networks Trained convolution networks Trained convolutio								classification are
recognition. Third, specific design features combing with the classifiers are used to achieve the robust and computing efficient recognition. Traffic J Jin, K IEEE 12 630 test of sign Fu, C Transactions images neural process of sign Fu, C Transactions images neural process of sign Ruth hinge networks ieeexplore.ie trained convolution nal neural networks networ								adopted to achieve
specific design features combing with the classifiers are used to achieve the robust and computing efficient recognition. 1 Traffic J Jin, K IEEE 12 630 test of sign Fu, C Transactions images neural precognition. 2 I Traffic J Jin, K IEEE 12 630 test of sign Fu, C Transactions images neural precognition. 3 Intelligent of support vector machines (SVMs). These methods, from today's point of view, are considered using hand-coded features such as a circle detector in a Haar wavelet [6] in , and a histogram of oriented gradient (HOG) or scale-								robust traffic signs
features combing with the classifiers are used to achieve the robust and computing efficient recognition. 1 Traffic J Jin, K IEEE 12 630 test computing efficient recognition. 2 Sign Fu, C Transactions on Intelligent with hinge loss ieeexplore.ie trained convolution nal neural networks 1 Intelligent ieeexplore.ie ee.org 1 Intelligent ieeexplore.ie eroord ieeexplore.ie eroord in today's point of view, are considered using hand-coded features such as a circle detector in , a Haar wavelet [6] in , and a histogram of oriented gradient (HOG) or scale-								recognition. Third,
combing with the classifiers are used to achieve the robust and computing efficient recognition. Traffic J Jin, K IEEE 12 630 test on neural sign Fu, C Transactions on Intelligent with hinge loss trained convolution nal neural networks Trained convolution neural networks Trained convolution networks Trained convolution neural networks Trained convolution								specific design
classifiers are used to achieve the robust and computing efficient recognition. 1 Traffic J Jin, K IEEE 12 630 test recognition. 2 Sign Fu, C Transactions images networks neural 93.65% boosting, tree classifiers, and support vector machines (SVMs). These methods, from today's point of view, are considered using hand-coded features such as a circle detector in, a Haar wavelet [6] in, and a histogram of oriented gradient (HOG) or scale-								features
achieve the robust and computing efficient recognition. 1 Traffic Sign Fu, C Transactions images networks 1 Traffic Osign Fu, C Transactions images networks 1 Traffic Osign Fu, C Transactions images networks 1 Traffic Osign Fu, C Transactions images networks 2 Transactions images networks 2 Intelligent, 2014 - ieeexplore.ie ee.org 3 Transactions images networks 4 Intelligent vector machines (SVMs). These methods, from today's point of view, are considered using hand-coded features such as a circle detector in , a Haar wavelet [6] in , and a histogram of oriented gradient (HOG) or scale-								combing with the
Traffic J Jin, K lee 12 630 test convolutional accuracy of recognition. Traffic J Jin, K lee 12 630 test images neural 93.65% boosting, tree classifiers, and support vector machines (SVMs). These trained convolutio nal neural networks networks leexplore.ie ee.org Transactions on Intelligent, 2014 - ieeexplore.ie ee.org Intelligent, 2014 - ieeexplore.ie ee.org Transactions images neural 93.65% boosting, tree classifiers, and support vector machines (SVMs). These methods, from today's point of view, are considered using hand-coded features such as a circle detector in , a Haar wavelet [6] in , and a histogram of oriented gradient (HOG) or scale-								classifiers are used to
Traffic J Jin, K IEEE 12 630 test Convolutional accuracy of sign Fu, C Transactions images networks 93.65% boosting, tree classifiers, and n Intelligent , 2014 -								achieve the robust
Traffic J Jin, K IEEE 12 630 test Convolutional accuracy of recognition. 1 Traffic J Jin, K IEEE 12 630 test oneural sign on retworks position. 2 Transactions images neural p3.65% boosting, tree classifiers, and support vector machines (SVMs). These methods, from today's point of view, are considered using hand-coded features such as a circle detector in , a Haar wavelet [6] in , and a histogram of oriented gradient (HOG) or scale-								and
Traffic J Jin, K IEEE 12 630 test Convolutional accuracy of Bayesian classifiers boosting tree classifiers and support vector machines (SVMs) These trained convolution nal neural networks ee.org								computing efficient
o sign Fu, C Transactions on Intelligent with hinge loss trained convolutio nal neural networks networks Fu, C Transactions images neural networks Intelligent on Intelligent vector machines (SVMs). These methods, from today's point of view, are considered using hand-coded features such as a circle detector in , a Haar wavelet [6] in , and a histogram of oriented gradient (HOG) or scale-								recognition.
recognitio	1	Traffic	J Jin, K	IEEE	12 630 test	Convolutional	accuracy of	Bayesian classifiers,
n Intelligent, 2014 - loss ieeexplore.ie ee.org (SVMs). These methods, from today's point of view, are considered using hand-coded features such as a circle detector in , a Haar wavelet [6] in , and a histogram of oriented gradient (HOG) or scale-	0	sign	Fu, C	Transactions	images	neural	93.65%	boosting, tree
with hinge loss ieeexplore.ie ieeexplore.ie ee.org (SVMs). These methods, from today's point of view, are considered using hand-coded features such as a circle detector in , a Haar wavelet [6] in , and a histogram of oriented gradient (HOG) or scale-		recognitio	Zhang	on		networks		classifiers , and
loss trained convolutio nal neural networks ieeexplore.ie ee.org (SVMs) . These methods, from today's point of view, are considered using hand- coded features such as a circle detector in , a Haar wavelet [6] in , and a histogram of oriented gradient (HOG) or scale-		n		Intelligent				support
trained convolutio nal neural networks ee.org methods, from today's point of view, are considered using hand- coded features such as a circle detector in , a Haar wavelet [6] in , and a histogram of oriented gradient (HOG) or scale-		with hinge		, 2014 -				vector machines
convolutio nal neural networks today's point of view, are considered using hand- coded features such as a circle detector in , a Haar wavelet [6] in , and a histogram of oriented gradient (HOG) or scale-		loss		ieeexplore.ie				(SVMs) . These
nal neural networks point of view, are considered using hand- coded features such as a circle detector in , a Haar wavelet [6] in , and a histogram of oriented gradient (HOG) or scale-		trained		ee.org				methods, from
networks considered using hand- coded features such as a circle detector in , a Haar wavelet [6] in , and a histogram of oriented gradient (HOG) or scale-		convolutio						today's
hand- coded features such as a circle detector in , a Haar wavelet [6] in , and a histogram of oriented gradient (HOG) or scale-		nal neural						point of view, are
coded features such as a circle detector in , a Haar wavelet [6] in , and a histogram of oriented gradient (HOG) or scale-		networks						considered using
as a circle detector in , a Haar wavelet [6] in , and a histogram of oriented gradient (HOG) or scale-								hand-
a circle detector in , a Haar wavelet [6] in , and a histogram of oriented gradient (HOG) or scale-								coded features such
Haar wavelet [6] in , and a histogram of oriented gradient (HOG) or scale-								as
and a histogram of oriented gradient (HOG) or scale-								a circle detector in, a
oriented gradient (HOG) or scale-								Haar wavelet [6] in,
(HOG) or scale-								and a histogram of
								oriented gradient
invariant feature								(HOG) or scale-
								invariant feature

			transform (SIFT)

3.Overview of the Work

3.1 Problem description

The objective of an automatic road sign and traffic signal recognition system is to detect and classify one or more road signs or light signals from within live colour images captured by a camera. It attempts to develop an on-board warning system to alert the driver of the warning signs by giving speech output.

Developing a reliable road sign and signal recognition system is considered a challenging task in computer vision.

3.2 Software Requirements

Python 3.7.2

Microsoft Excel 2016

Packages used

- o Random
- o Matplotlib
- Tensorflow
- o Pandas
- o Numpy

- o Sci-kit
- o Pickle

3.3 Hardware Requirements

- 400 MB Disk Space
- 8 GB RAM
- i7 Processer

4. System Design

4.1 The architecture proposed is inspired from Yann Le Cun's paper on classification of traffic signs. We added a few tweaks and created a modular codebase which allows us to try out different filter sizes, depth, and number of convolution layers, as well as the dimensions of fully connected layers. In homage to Le Cun, and with a touch of cheekiness, we called such network *EdLeNet*:).

We mainly tried 5x5 and 3x3 filter (aka kernel) sizes, and start with depth of 32 for our first convolutional layer. *EdLeNet*'s 3x3 architecture is shown below:

The network is composed of 3 convolutional layers—kernel size is 3x3, with depth doubling at next layer—using ReLU as the activation function, each followed by a 2x2 max pooling operation. The last 3 layers are fully connected, with the final layer producing 43 results (the total number of possible labels) computed using the SoftMax activation function. The network is trained using mini-batch stochastic gradient descent with the Adam optimizer. We build a highly modular coding infrastructure that enables us to *dynamically* create our models like in the following snippets:

The ModelConfig contains information about the model such as:

- The model function (e.g. EdLeNet)
- the model name
- input format (e.g. [32, 32, 1] for grayscale),
- convolutional layers config [filter size, start depth, number of layers],
- fully connected layers dimensions (e.g. [120, 84])
- number of classes
- dropout keep percentage values [p-conv, p-fc]

4.2 Design and Implementation Constraints

- **4.2.1** There are some areas that can create an issue for running the program. In this case, python libraries have been configured in this laptop. If another PC isn't configured according to the program it may cause problem.
- **4.2.2** For Hardware there are no specific issues but processor may be the reason to effect the computation of the program

5.Implementation

5.1Description of Modules/Programs

FLOWCHART:

Step 0: Load The Data

Step 1: Dataset Summary & Exploration

The pickled data is a dictionary with 4 key/value pairs:

- 'features' is a 4D array containing raw pixel data of the traffic sign images, (num examples, width, height, channels).
- 'labels' is a 1D array containing the label/class id of the traffic sign.
 The file signnames.csv contains id -> name mappings for each id.
- 'sizes' is a list containing tuples, (width, height) representing the original width and height the image.
- 'coords' is a list containing tuples, (x1, y1, x2, y2) representing coordinates of a bounding box around the sign in the image. THESE COORDINATES ASSUME THE ORIGINAL

IMAGE. THE PICKLED DATA CONTAINS RESIZED VERSIONS (32 by 32) OF THESE IMAGES

Distribution

Now we are going to explore the distribution and take look at the distribution of classes in the training, validation and test set.

Step 2: Design and Test a Model Architecture

Design and implement a deep learning model that learns to recognize traffic signs. Train and test your model on the German Traffic Sign Dataset.

With the LeNet-5 solution, you should expect a validation set accuracy of about 0.89. To meet specifications, the validation set accuracy will need to be at least 0.93. It is possible to get an even higher accuracy.

There are various aspects to consider when thinking about this problem:

- Neural network architecture
- Play around preprocessing techniques (normalization, RGB to grayscale, etc.)
- Number of examples per label (some have more than others).
- Generate fake data.

Step 2.1:Pre-process the Data Set (normalization, grayscale, etc.)

- Minimally, the image data should be normalized so that the data has
 mean zero and equal variance. For image data, (pixel 128)/ 128 is a
 quick way to approximately normalize the data and can be used in this
 project.
- Other pre-processing steps are optional. You can try different techniques to see if it improves performance.
- Use the code cell (or multiple code cells, if necessary) to implement the first step of your project.

Step 2.2:Data augmentation

The first thing we tried is to augment the data replicating the class labels which are rare in the dataset, so it can reduce *high variance of our model*.

Note: We realized that data augmentation cannot make drastic improvements to the performance of our model, and the augmentation step was omitted due to slowing down the entire training procedure

Step 2.3 Train, Validate and Test the Model

A validation set can be used to assess how well the model is performing. A low accuracy on the training and validation sets imply under fitting. A high accuracy on the training set but low accuracy on the validation set implies overfitting.

Step 3: Test a Model on New Images

To give yourself more insight into how your model is working, download at least five pictures of German traffic signs and normal Light signals from the web and use your model to predict the traffic sign or the light signal type.

You may find signnames.csv useful as it contains mappings from the class id (integer) to the actual sign name and light name along with their meaning.

Output Top 5 Softmax Probabilities For Each Image Found on the Web

For each of the new images, print out the model's softmax probabilities to show the **certainty** of the model's predictions (limit the output to the top 5 probabilities for each image). tf.nn.top_k could prove helpful here.

The example below demonstrates how tf.nn.top_k can be used to find the top k predictions for each image.

tf.nn.top_k will return the values and indices (class ids) of the top k predictions. So if k=3, for each sign, it'll return the 3 largest probabilities (out of a possible 43) and the corresponding class ids.

Take this numpy array as an example. The values in the array represent predictions. The array contains softmax probabilities for five candidate images with six possible classes. tf.nn.top_k is used to choose the three classes with the highest probability:

```
# (5, 6) array
    a = \text{np.array}([[\ 0.24879643,\ 0.07032244,\ 0.12641572,\ 0.34763842,\ 0.07893])
    497.
          0.12789202],
        [0.28086119, 0.27569815, 0.08594638, 0.0178669, 0.18063401,
          0.15899337],
        [0.26076848, 0.23664738, 0.08020603, 0.07001922, 0.1134371,
          0.23892179],
        [\ 0.11943333,\ 0.29198961,\ 0.02605103,\ 0.26234032,\ 0.1351348\ ,
          0.16505091],
        [0.09561176, 0.34396535, 0.0643941, 0.16240774, 0.24206137,
          0.09155967]])
Running it through sess.run(tf.nn.top_k(tf.constant(a), k=3)) produces:
    TopKV2(values=array([[ 0.34763842, 0.24879643, 0.12789202],
        [0.28086119, 0.27569815, 0.18063401],
        [0.26076848, 0.23892179, 0.23664738],
        [0.29198961, 0.26234032, 0.16505091],
        [ 0.34396535, 0.24206137, 0.16240774]]), indices=array([[3, 0, 5],
        [0, 1, 4],
        [0, 5, 1],
        [1, 3, 5],
        [1, 4, 3], d type=int32))
```

Looking just at the first row we get [0.34763842, 0.24879643, 0.12789202], you can confirm these are the 3 largest probabilities in a. You'll also notice [3, 0, 5] are the corresponding indices.

Step 4 : Visualize the Neural Network's State with Test Images

While neural networks can be a great learning device they are often referred to as a black box. We can understand what the weights of a neural network look like better by plotting their feature maps. After successfully training your neural network you can see what it's feature maps look like by plotting the output of the network's weight layers in response to a test stimuli image. From these plotted feature maps, it's possible to see what characteristics of an image the network finds interesting. For a sign, maybe the inner network feature maps react with high activation to the sign's boundary outline or to the contrast in the sign's painted symbol.

5.2 Source Code

MODEL TRAINING

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import cv2
import tensorflow as tf
from PIL import Image
from sklearn.model_selection import train_test_split
from keras.utils import to_categorical
from keras.models import Sequential, load_model
from keras.layers import Conv2D, MaxPool2D, Dense, Flatten, Dropout
from sklearn.metrics import accuracy_score
data = []
labels = []
classes = 46
cur path = os.getcwd()
for i in range(classes):
    path = os.path.join(cur_path, 'train', str(i))
    images = os.listdir(path)
    for a in images:
        try:
            image = Image.open(path + '\\'+ a)
            image = image.resize((30,30))
            image = np.array(image)
            data.append(image)
            labels.append(i)
        except:
           print("Error loading image")
data = np.array(data)
labels = np.array(labels)
print(data.shape, labels.shape)
```

```
X_train, X_test, y_train, y_test = train_test_split(data, labels, test_size=0.2, random_state=42)
print(X_train.shape, X_test.shape, y_train.shape, y_test.shape)
y_train = to_categorical(y_train, 46)
y_test = to_categorical(y_test, 46)
model = Sequential()
model.add(Conv2D(filters=32, kernel_size=(5,5), activation='relu', input_shape=X_train.shape[1:]))
model.add(Conv2D(filters=32, kernel_size=(5,5), activation='relu'))
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Dropout(rate=0.25))
model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu'))
model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu'))
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Dropout(rate=0.25))
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dropout(rate=0.5))
model.add(Dense(46, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
epochs = 15
history = model.fit(X_train, y_train, batch_size=32, epochs=epochs, validation_data=(X_test, y_test))
y_test = pd.read_csv('Test.csv')
labels = y_test["ClassId"].values
imgs = y_test["Path"].values
data=[]
for img in imgs:
    image = Image.open(img)
    image = image.resize((30,30))
   data.append(np.array(image))
X_test=np.array(data)
pred = model.predict_classes(X_test)
from sklearn.metrics import accuracy_score
print(accuracy_score(labels, pred))
model.save('traffic_classifier.h5')
```

MAIN CODE

```
import tkinter as tk
from tkinter import filedialog
from tkinter import *
from PIL import ImageTk, Image
import numpy
import pyttsx3
engine = pyttsx3.init()
from keras.models import load_model
model = load_model('traffic_classifier.h5')
classes = { 1:'Speed limit (20km/h)',
            2: 'Speed limit (30km/h)',
            3:'Speed limit (50km/h)',
            4: Speed limit (60km/h),
            5: 'Speed limit (70km/h)',
            6: 'Speed limit (80km/h)',
            7: 'End of speed limit (80km/h)',
            8: 'Speed limit (100km/h)',
            9: 'Speed limit (120km/h)',
            10: 'No passing',
            11: No passing veh over 3.5 tons',
            12: 'Right-of-way at intersection',
            13: 'Priority road',
            14: 'Yield',
            15:'Stop',
            16: 'No vehicles',
            17: 'Veh > 3.5 tons prohibited',
            18: 'No entry',
            19: 'General caution',
            20: 'Dangerous curve left',
            21: 'Dangerous curve right',
            22: 'Double curve',
            23: 'Bumpy road',
            24: 'Slippery road',
            25: 'Road narrows on the right',
```

```
26: 'Road work',
            27: 'Traffic signals',
            28: 'Pedestrians',
            29: 'Children crossing',
            30: 'Bicycles crossing',
            31: Beware of ice/snow',
            32: 'Wild animals crossing',
            33: 'End speed + passing limits',
            34: 'Turn right ahead',
            35: 'Turn left ahead',
            36: 'Ahead only',
            37: 'Go straight or right',
            38: 'Go straight or left',
            39: 'Keep right',
            40: 'Keep left',
            41: 'Roundabout mandatory',
            42: 'End of no passing',
            43:'Other',
            44: 'Red',
            45: 'Yellow',
            46: 'Green'}
top=tk.Tk()
top.geometry('800x600')
top.title('Traffic sign classification')
top.configure(background='#CDCDCD')
label=Label(top,background='#CDCDCD', font=('arial',15,'bold'))
sign_image = Label(top)
def classify(file_path):
    global label_packed
    image = Image.open(file_path)
    image = image.resize((30,30))
    image = numpy.expand_dims(image, axis=0)
    image = numpy.array(image)
    pred = model.predict_classes([image])[0]
    sign = classes[pred+1]
```

```
if pred in range(43,46)
         print(sign+" Light")
         if pred == 43:
              engine.say("The traffic light is "+sign+" please stop your vehicle")
         elif pred == 44:
              engine.say("The traffic light is "+sign+" please prepare to leave")
         elif pred == 45:
              engine.say("The traffic light is "+sign+" you can move ahead")
         engine.runAndWait()
         print(sign)
         engine.say(sign)
         engine.runAndWait()
label.configure(foreground='#011638', text=sign)
def show_classify_button(file_path):
     classify_b=Button(top,text="Classify Image",command=lambda: classify(file_path),padx=10,pady=5)
    classify_b.configure(background='#364156', foreground='white',font=('arial',10,'bold'))
    classify_b.place(relx=0.79,rely=0.46)
def upload_image():
     try:
         file_path=filedialog.askopenfilename()
         uploaded=Image.open(file_path)
         uploaded.thumbnail(((top.winfo_width()/2.25),(top.winfo_height()/2.25)))
         im=ImageTk.PhotoImage(uploaded)
         sign_image.configure(image=im)
         sign_image.image=im
         label.configure(text='')
         show_classify_button(file_path)
         pass
upload=Button(top,text="Upload an image",command=upload_image,padx=10,pady=5)
upload.configure(background='#364156', foreground='white',font=('arial',10,'bold'))
upload.pack(side=BOTTOM,pady=50)
sign_image.pack(side=BOTTOM,expand=True)
label.pack(side=BOTTOM, expand=True)
heading = Label(top, text="Traffic Sign Detection",pady=20, font=('arial',20,'bold'))
heading.configure(background='#CDCDCD',foreground='#364156')
heading.pack()
top.mainloop()
```

10.3 Execution snapshots

```
TensorFlow backe
(46528, 30, 30, 3) (46528,)
(32422, 30, 30, 3) (8106, 30, 30, 3) (32422,) (8106,)
(32422, 30, 30, 3) (8106, 30, 30, 3) (32422,) (8106,)
(32422, 30, 30, 3) (8106, 30, 30, 3) (32422,) (8106,)
(32422, 30, 30, 3) (8106, 30, 30, 30, 3) (32422,) (8106,)
rain on 32422 samples, validate on 8106 samples
poch 2/15
2422/32422 [=
       2422/32422 [========================] - 61s 2ms/step - loss: 0.6760 - accuracy: 0.7940 - val_loss: 0.2619 - val_accuracy: 0.9297
32422/32422 [=======================] - 61s 2ms/step - loss: 0.3404 - accuracy: 0.9023 - val_loss: 0.0907 - val_accuracy: 0.9782
2422/32422 [=
          ========] - 625 2ms/step - loss: 0.2893 - accuracy: 0.9160 - val_loss: 0.0994 - val_accuracy: 0.9697
=======] - 69s 2ms/step - loss: 0.2522 - accuracy: 0.9306 - val_loss: 0.0747 - val_accuracy: 0.9785
32422/32422 [=
ooch 9/15
poch 10/15
2422/32422 [=
            ooch 12/15
32422/32422 [==
           poch 13/15
32422/32422 [======================] - 63s 2ms/step - loss: 0.2463 - accuracy: 0.9349 - val_loss: 0.0691 - val_accuracy: 0.9820
2422/32422 [=
            ========] - 64s 2ms/step - loss: 0.2404 - accuracy: 0.9380 - val_loss: 0.0791 - val_accuracy: 0.9788
9566112430720507
```


Wrong Detections:

6.Results:

Number of Training Images	49724
Number of Validation Images	10000
Number of Testing Images	10000
Number of Different Sign and Signals	46
Number of Detections	35

We probably don't have enough examples of such images in our test set for our model's predictions to improve. Additionally, while 91% test accuracy is very good

7. Conclusion and Future Directions

We covered how deep learning can be used to classify traffic signs and Traffic light signals with high accuracy, employing a variety of pre-processing and regularization techniques (e.g. dropout), and trying different model architectures. We built highly configurable code and developed a flexible way of evaluating multiple architectures. Our model reached close to close to 95% accuracy on the test set, achieving 98% on the validation set.

Exiting efficient traffic sign and traffic light signal detection method where locations of traffic signs are estimated together with their precise boundaries. To this end, generalized the object bounding box detection problem and formulated an object pose estimation problem, and the problem is effectively modeled using CNN based on the recent advances in object detection networks. The estimated pose of traffic signs is used to transform the boundary of traffic sign templates into the input image plane, providing precise boundaries with high accuracy. Since the base network is a dominant factor in speed-accuracy trade off, developing the base network specialized for traffic sign detection.

7. References

- [1] Zeng, Yujun, et al. "Traffic sign recognition using deep convolutional networks and extreme learning machine." International Conference on Intelligent Science and Big Data Engineering. Springer, Cham, 2015.
- [2] Jin, Junqi, Kun Fu, and Changshui Zhang. " Traffic sign recognition with hinge loss trained convolutional neural networks. " IEEE Transactions on Intelligent Transportation Systems 15.5 (2014): 1991-2000.
- [3] Neha Agrawal, Rahul Kumar Chaurasiya, Ensemble of SVM for Accurate Traffic Sign Detection and Recognition, Proceedings of the International Conference on Graphics and Signal Processing, June 24-27, 2017, Singapore, Singapore
- [4] Sermanet, Pierre, and Yann LeCun. " Traffic sign recognition with multi-scale convolutional networks. " Neural Networks (IJCNN), The 2011 International Joint Conference on IEEE, 2011.
- [5] De la Escalera, Arturo, J. Ma Armingol, and Mario Mata. " Traffic sign recognition and analysis for intelligent vehicles. " Image and vision computing 21.3 (2003): 247-258.
- [6] Garcia-Garrido, Miguel Angel, Miguel Angel Sotelo, and Ernesto Martin-Gorostiza.; Fast traffic sign detection and recognition under changing lighting conditions. & quot; Intelligent Transportation Systems Conference, 2006. ITSC & #39;06. IEEE. IEEE, 2006.
- [7] Sermanet, Pierre, and Yann LeCun. " Traffic sign recognition with multi-scale convolutional networks. " Neural Networks (IJCNN), The 2011 International Joint Conference on. IEEE, 2011.
- [8] Wu, Y., Liu, Y., Li, J., Liu, H., & Eamp; Hu, X. (2013, August). Traffic sign detection based on convolutional neural networks. In Neural Networks (IJCNN), The 2013 International Joint Conference on (pp. 1-7). IEEE.

- [9] Zhu, Y., Zhang, C., Zhou, D., Wang, X., Bai, X., & Diu, W. (2016). Traffic sign detection and recognition using fully convolutional network guided proposals. Neurocomputing, 214, 758-766.
- [10] Zhu, Yingying, et al. "Traffic sign detection and recognition using fully convolutional network guided proposals; Neurocomputing 214 (2016): 758-766.