1 Reducible and Irreducible Polynomials

The idea behind a reducible or irreducible polynomial is very similar in nature to factoring and finding zeros of a polynomial.

1.1 Definition

Definition 1.1

Let D be an integral domain. A polynomial f(x) from D[x] that is neither the zero polynomial nor a unit in D[x] is said to be **irreducible** over D if, whenever f(x) is expressed as a product

$$f(x) = g(x)h(x)$$

with $g(x), h(x) \in D[x]$, then g(x) or h(x) is a unit in D[x]. A non-zero, non-unit element of D[x] that is not irreducible over D is called **reducible** over D.

Fact: If F is a field, $f(x) \in F[x]$ is irreducible if and only if f(x) = g(x)h(x) implies that one of g(x) or h(x) have degree 0.

We can try to make a similar definition for the integers to get a better idea of what this means. We can define an "irreducible" integer $n \in \mathbb{Z}$ is one such that

$$n = ab \implies a \in \{\pm 1\} \text{ or } b \in \{\pm 1\}$$

So, in the integers, the only set of "irreducible" integers are $\pm p$ for primes p.

1.1.1 Example 1: Polynomial

Consider the polynomial $f(x) = 2x^2 + 4$.

- This is **reducible** over \mathbb{Z} since $2x^2 + 4 = 2(x^2 + 2)$ and neither 2 nor $x^2 + 2$ is a unit in $\mathbb{Z}[x]$.
- This is **irreducible** over \mathbb{Q} . If we use the same factorization described above, then note that 2 has a unit in Q[x].
- This is **reducible** over $\mathbb C$ since $2x^2+4=2(x-i\sqrt{2})(x+i\sqrt{2})$. Here, if $g(x)=2(x-i\sqrt{2})$ and $h(x)=x+i\sqrt{2}$, then none of g or h are units.

1.2 Reducibility Test for Degrees 2 and 3

Theorem 1.1

Let F be a field. If $f(x) \in F[x]$ and deg f(x) is 2 or 3, then f(x) is reducible over F if and only if f(x) has a zero in F.

Proof. We will prove the contrapositive; that is, f(x) is reducible if and only if f(x) has a root in F.

- <u>Backwards Direction:</u> Suppose $a \in F$ with f(a) = 0. This implies that (x a)|f(a) which implies that f(x) = (x a)g(x). Thus, $\deg g(x) = \deg f(x) 1 \ge 1$. But, we found a factorization, so f(x) is reducible.
- Forward Direction: If f(x) is reducible, then f(x) = g(x)h(x) with $\deg g(x), \deg h(x) \neq 0$. The only options are

$$\deg f(x) = \deg g(x) + \deg h(x)$$

So, we can brute-force the possible degrees:

$$-2 = 1 + 1$$

 $-3 = 1 + 2 \text{ or } 3 = 2 + 1$

Thus, there exists $ax + b \in F[x]$, $a \neq 0$, with (ax + b)|f(x) which implies that f(x) = (ax + b)q(x). This further implies that $f\left(-\frac{b}{a}\right) = 0 \cdot q\left(-\frac{b}{a}\right) = 0$. So, f(x) has a root $-\frac{b}{a} \in F$.

This concludes the proof.

1.2.1 Example 2: Polynomial

Consider the polynomial $f(x) = 2x^3 + 4$.

• Is f(x) irreducible over \mathbb{Q} ? Using the theorem above, we have

$$2x^{3} + 4 = 0 \implies 2x^{3} = -4 \implies x^{3} = -\sqrt{2} \implies x = -\sqrt[3]{2}$$

But, $-\sqrt[3]{2} \notin \mathbb{Q}$ so this is **irreducible**.

• This is **reducible** over \mathbb{R} .

1.2.2 Example 3: Polynomial

Consider the field $\mathbb{F}_2[x]$. Are the polynomials with coefficients in this field reducible?

- Degree 0:
 - 0: Reducible.
 - 1: Irreducible¹.
- Degree 1:
 - -x: Irreducible².
 - -x+1: Irreducible³.
- Degree 2:
 - $-x^2 = xx$: Reducible.
 - $-x^2+1$: Reducible⁴.
 - $-x^2 + x = x(x+1)$: Reducible.
 - $-x^2+x+1$: Irreducible.
- Degree 3:
 - Left as an exercise.

1.3 Relation Between Integer Coefficient and Rational Coefficient Polynomials

Theorem 1.2

Let $f(x) \in \mathbb{Z}[x]$. f(x) is reducible over $\mathbb{Q} \implies f(x)$ is reducible over \mathbb{Z} .

Remark: The contrapositive of this theorem is important. In particular, f(x) is irreducible over $\mathbb{Z} \implies f(x)$ is irreducible over \mathbb{Q} .

¹This can be generalized to any non-zero constant polynomial.

²Cannot be factored since it is linear.

³Cannot be factored since it is linear. In general, a degree 1 polynomial with coefficients in a field are always irreducible.

⁴Using the theorem, note that $1 \in F_3$ and $1^2 + 1 = 2 \equiv 0$.

Warning: The *converse* of this theorem is not true. For an example, see $f(x) = 2x^2 + 4$.

Definition 1.2: Content

The **content** of a non-zero polynomial $a_0 + a_1x + \cdots + a_nx^n \in \mathbb{Z}[x]$ is $gcd(a_0, a_1, \dots, a_n)$.

Definition 1.3: Primitive Polynomial

A **primitive polynomial** is an element of $\mathbb{Z}[x]$ with content 1.