C

Chapter 7: Forecasting

Statistics, Data Analysis, and Decision Modeling, Fifth Edition James R. Evans

Forecasting Techniques

- Qualitative and judgmental
- Statistical time series models
- Explanatory/causal models

Qualitative and Judgmental Methods

- Historical analogy comparative analysis with a previous situation
- Delphi Method response to a sequence of questionnaires by a panel of experts

Indicators and Indexes

- Indicators measures believed to influence the behavior of a variable we wish to forecast
 - Leading indicators
 - Lagging indicators
- Index a weighted combination of indicators
- Indicators and indexes are often used in economic forecasting

Example Dept. of Commerce Index of Leading Indicators

- Average weekly hours, manufacturing
- Average weekly initial claims, unemployment insurance
- New orders, consumer goods and materials
- Vendor performance—slower deliveries
- New orders, nondefense capital goods
- Building permits, private housing
- Stock prices, 500 common stocks (Standard & Poor)
- Money supply
- Interest rate spread
- Index of consumer expectations (University of Michigan)

Time Series

- A time series is a stream of historical data
- Components of time series
 - Trend
 - Short-term seasonal effects
 - Longer-term cyclical effects

Examples of Time Series

Statistical Forecasting Methods

- Moving average
- Exponential smoothing
- Regression analysis

Simple Moving Average

- Average random fluctuations in a time series to infer short-term changes in direction
- Assumption: future observations will be similar to recent past
- Moving average for next period = average of most recent k observations

	С	D	Е	F
1	After Citiz	en-Police Program	Moving Average	
2	Month	Monthly burglaries	Forecast	
3	42	88		
4	43	44		
5	44	60		Forecast for month 45
6	45	56	64.00 ←	=AVERAGE(D3:D5)
7	46	70	53.33	` '
8	47	91	62.00	
9	48	54	72.33	
10	49	60	71.67	
11	50	48	68.33	
12	51	35	54.00	
13	52	49	47.67	
14	53	44	44.00	
15	54	61	42.67	
16	55	68	51.33	
17	56	82	57.67	
18	57	71	70.33	5
19	58	50	73.67	Forecast for month 59
20	59		67.67	=AVERAGE(D17:D19)
21				

Time Series Data and Moving Averages

Alternative Moving Average Models

	Α	В	С	D	Е	F	G	Н
1	After Citiz	en-Police Program					3 Period	
2	Month	Monthly burglaries	k = 2	Error	k = 3	Error	Weighted	Error
3	42	88						
4	43	44						
5	44	60	66.00	-6.00				
6	45	56	52.00	4.00	64.00	-8.00	58.00	-2.00
7	46	70	58.00	12.00	53.33	16.67	56.00	14.00
8	47	91	63.00	28.00	62.00	29.00	64.80	26.20
9	48	54	80.50	-26.50	72.33	-18.33	81.20	-27.20
10	49	60	72.50	-12.50	71.67	-11.67	66.70	-6.70
11	50	48	57.00	-9.00	68.33	-20.33	61.30	-13.30
12	51	35	54.00	-19.00	54.00	-19.00	52.20	-17.20
13	52	49	41.50	7.50	47.67	1.33	41.40	7.60
14	53	44	42.00	2.00	44.00	0.00	44.70	-0.70
15	54	61	46.50	14.50	42.67	18.33	44.60	16.40
16	55	68	52.50	15.50	51.33	16.67	54.70	13.30
17	56	82	64.50	17.50	57.67	24.33	63.50	18.50
18	57	71	75.00	-4.00	70.33	0.67	75.70	-4.70
19	58	50	76.50	-26.50	73.67	-23.67	74.00	-24.00
20	59		60.50		67.67		59.50	

Mean absolute deviation (MAD)

$$MAD = \frac{\sum_{i=1}^{n} |A_t - F_t|}{n}$$

Mean square error (MSE)

$$MSE = \frac{\sum_{i=1}^{n} (A_t - F_t)^2}{n}$$

Mean absolute percentage error (MAPE)

$$MAPE = \frac{\sum_{i=1}^{n} \left| \frac{A_t - F_t}{A_t} \right|}{n}$$

Summary of Error Metrics for Burglary Data

TABLE 7.2	Error Metrics for Moving Average Models of Burglary Data								
	k = 2	k = 3	Three-Period Weighted						
MAD	13.63	14.86	13.70						
MSE	254.38	299.84	256.31						
RMSE	15.95	17.32	16.01						
MAPE	23.63%	26.53%	24.46%						

Exponential Smoothing

Exponential smoothing model:

$$F_{t+1} = (1 - \alpha)F_t + \alpha A_t$$
$$= F_t + \alpha (A_t - F_t)$$

- F_{t+1} is the forecast for time period t+1,
- F_t is the forecast for period t,
- A_t is the observed value in period t, and
- ullet α is a constant between 0 and 1, called the smoothing constant.

Exponential Smoothing Example

					_	1.1	1	- 1	IZ.	- 1	
	С	D	Е	F	G	Н		J	K	L	М
1		en-Police Program		ing Cons							
2	Month	Monthly burglaries	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
3	42	88	88.00	88.00	88.00		88.00	88.00	88.00	88.00	88.00
4	43	44	88.00	88.00	88.00	88.00	88.00	88.00	88.00	88.00	88.00
5	44	60	83.60	79.20	74.80	70.40	66.00	61.60	57.20	52.80	48.40
6	45	56	81.24	75.36	70.36	66.24	63.00	60.64	59.16	58.56	58.84
7	46	70	78.72	71.49	66.05	62.14	59.50	57.86	56.95	56.51	56.28
8	47	91	77.84	71.19	67.24	65.29	64.75	65.14	66.08	67.30	68.63
9	48	54	79.16	75.15	74.37	75.57	77.88	80.66	83.53	86.26	88.76
10	49	60	76.64	70.92	68.26	66.94	65.94	64.66	62.86	60.45	57.48
11	50	48	74.98	68.74	65.78	64.17	62.97	61.87	60.86	60.09	59.75
12	51	35	72.28	64.59	60.45	57.70	55.48	53.55	51.86	50.42	49.17
13	52	49	68.55	58.67	52.81	48.62	45.24	42.42	40.06	38.08	36.42
14	53	44	66.60	56.74	51.67	48.77	47.12	46.37	46.32	46.82	47.74
15	54	61	64.34	54.19	49.37	46.86	45.56	44.95	44.70	44.56	44.37
16	55	68	64.00	55.55	52.86	52.52	53.28	54.58	56.11	57.71	59.34
17	56	82	64.40	58.04	57.40	58.71	60.64	62.63	64.43	65.94	67.13
18	57	71	66.16	62.83	64.78	68.03	71.32	74.25	76.73	78.79	80.51
19	58	50	66.65	64.47	66.65	69.22	71.16	72.30	72.72	72.56	71.95
20	59		64.98	61.57	61.65	61.53	60.58	58.92	56.82	54.51	52.20
21		MAD	19.33	17.16	16.15	15.36	14.93	14.71	14.72	14.88	15.36
22		MSE	496.07	390.84	359.18	346.56	340.77	338.41	339.03	343.32	352.38
23		RMSE	22.273	19.77	18.952	18.616	18.46	18.396	18.413	18.529	18.772
24		MAPE	38.28%	32.71%	30.12%	28.36%	27.54%	27.09%	27.09%	27.38%	28.23%

Forecasting Models With Linear Trends

- Double Moving Average
- Double Exponential Smoothing
- Based on the linear trend equation

$$F_{t+k} = a_t + b_t k$$

Regression-Based Forecasting

A forecast for 2008 would be:

Tons = 416,896,322.7 + 16,685,398.57 * (49) = 1,234,480,853

Autocorrelated Data

Autoregressive Models

First-order autoregressive model

$$Y_i = a_0 + a_1 Y_{i-1} + \delta_i$$

Second-order autoregressive model

$$Y_i = a_0 + a_1 Y_{i-1} + a_2 Y_{i-2} + \delta_i$$

Portion of Coal Production File for Autoregessive Modeling

	Α	В	С	D	E
1	Coal Prod	uction			
2					
3	Year	Total Tons	Year - 1	Year - 2	Year - 3
4	1960	434,329,000			
5	1961	420,423,000	434,329,000		
6	1962	439,043,000	420,423,000	434,329,000	
7	1963	477,195,000	439,043,000	420,423,000	434,329,000
8	1964	504,182,000	477,195,000	439,043,000	420,423,000
9	1965	526,954,000	504,182,000	477,195,000	439,043,000
10	1966	546,822,000	526,954,000	504,182,000	477,195,000

Third-Order Autoregressive Model

	А	В	С	D	Е	F	G
1	SUMMARY OUTPUT						
2							
3	Regressio	n Statistics					
4	Multiple R	0.988073439					
5	R Square	0.97628912					
6	Adjusted R Square	0.974554178					
7	Standard Error	35247696.59					
8	Observations	45					
9							
10	ANOVA						
11		df	SS	MS	F	Significance F	
12	Regression	3	2.09738E+18	6.99125E+17	562.721337	2.49811E-33	
13	Residual	41	5.09384E+16	1.2424E+15			
14	Total	44	2.14831E+18				
15							
16		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
17	Intercept	50332718.33	20917609.66	2.406236618	0.020709694	8088749.075	92576687.59
18	Year - 1	0.565292456	0.154196228	3.666058917	0.000700825	0.25388686	0.876698052
19	Year - 2	0.247260179	0.174243467	1.41904993	0.163442473	-0.104631637	0.599151996
20	Year - 3	0.156914847	0.151580327	1.035192694	0.306646344	-0.14920783	0.463037525

Second-Order Autogressive Model

		_		_	_	_	
	А	В	С	D	E	F	G
1	SUMMARY OUTPUT						
2							
3	Regressio	n Statistics					
4	Multiple R	0.988567258					
5	R Square	0.977265224					
6	Adjusted R Square	0.976207792					
7	Standard Error	34986337.08					
8	Observations	46					
9							
10	ANOVA						
11		df	SS	MS	F	Significance F	
12	Regression	2	2.26249E+18	1.13125E+18	924.1877675	4.66498E-36	
13	Residual	43	5.26339E+16	1.22404E+15			
14	Total	45	2.31513E+18				
15							
16		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
17	Intercept	43087157.38	19471726.51	2.212806213	0.032269724	3818678.935	82355635.83
18	Year - 1	0.63224491	0.142019472	4.451818489	5.95528E-05	0.345835353	0.918654467
19	Year - 2	0.341258327	0.141128508	2.418067984	0.019912562	0.056645569	0.625871085
13	rear - Z	0.341230327	0.141120300	2.410007304	0.017712302	0.030043303	0.0230710

Forecasting Models With Seasonality

Additive model

$$F_{t+k} = a_t + S_{t-s+k}$$

Multiplicative model

$$F_{t+k} = a_t S_{t-s+k}$$

Incorporating Seasonality into Regression Models

Use dummy variables. Example:

Gas usage = $\beta_0 + \beta_1$ Time + β_2 February + β_3 March + β_4 April + β_5 May + β_6 June + β_7 July + β_8 August + β_9 September + β_{10} October + β_{11} November + β_{12} December

Data Matrix

A	Α	В	С	D	Е	F	G	Н		J	K	L	M	N
3	Month	Gas Use	Time				May		Jul	Aug		Oct	Nov	
4	Jan	244	1	0	0	. 0	0	0	0	0	0	0	0	0
5	Feb	228	2	1	0	0	0	0	0	0	0	0	0	0
6	Mar	153	3	0	1	0	0	0	0	0	0	0	0	0
7	Apr	140	4	0	0	1	0	0	0	0	0	0	0	0
8	May	55	5	0	0	0	1	0	0	0	0	0	0	0
9	Jun	34	6	0	0	0	0	1	0	0	0	0	0	0
10	Jul	30	7	0	0	0	0	0	1	0	0	0	0	0
11	Aug	28	8	0	0	0	0	0	0	1	0	0	0	0
12	Sep	29	9	0	0	0	0	0	0	0	1	0	0	0
13	Oct	41	10	0	0	0	0	0	0	0	0	1	0	0
14	Nov	88	11	0	0	0	0	0	0	0	0	0	1	0
15	Dec	199	12	0	0	0	0	0	0	0	0	0	0	1
16	Jan	230	13	0	0	0	0	0	0	0	0	0	0	0
17	Feb	245	14	1	0	0	0	0	0	0	0	0	0	0
18	Mar	247	15	0	1	0	0	0	0	0	0	0	0	0
19	Apr	135	16	0	0	1	0	0	0	0	0	0	0	0
20	May	34	17	0	0	0	1	0	0	0	0	0	0	0
21	Jun	33	18	0	0	0	0	1	0	0	0	0	0	0
22	Jul	27	19	0	0	0	0	0	1	0	0	0	0	0
23	Aug	26	20	0	0	0	0	0	0	1	0	0	0	0
24	Sep	28	21	0	0	0	0	0	0	0	1	0	0	0
25	Oct	39	22	0	0	0	0	0	0	0	0	1	0	0
26	Nov	86	23	0	0	0	0	0	0	0	0	0	1	0
27	Dec	188	24	0	0	0	0	0	0	0	0	0	0	1

Regression Model Results

	Α	В	С	D	E	F	G
1	SUMMARY OUTPUT		_	_	_		_
2							
3	Regression	Statistics					
4	Multiple R	0.985480895					
5	R Square	0.971172595					
6	Adjusted R Square	0.948997667					
7	Standard Error	19.54432831					
8	Observations	24					
9							
10	ANOVA						
11		df	SS	MS	F	Significance F	
12	Regression	10	167292.2083	16729.22083	43.79597661	2.33344E-08	
13	Residual	13	4965.75	381.9807692			
14	Total	23	172257.9583				
15							
16		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
17	Intercept	236.75	9.772164157	24.22697738	3.33921E-12	215.6385229	257.8614771
18	Mar	-36.75	16.92588482	-2.171230656	0.04901621	-73.31615098	-0.183849024
19	Apr	-99.25	16.92588482	-5.863799799	5.55744E-05	-135.816151	-62.68384902
20	May	-192.25	16.92588482	-11.35834268	4.02824E-08	-228.816151	-155.683849
21	Jun	-203.25	16.92588482	-12.00823485	2.07264E-08	-239.816151	-166.683849
22	Jul	-208.25	16.92588482	-12.30364038	1.54767E-08	-244.816151	-171.683849
23	Aug	-209.75	16.92588482	-12.39226204	1.41949E-08	-246.316151	-173.183849
24	Sep	-208.25	16.92588482	-12.30364038	1.54767E-08	-244.816151	-171.683849
25	Oct	-196.75	16.92588482	-11.62420766	3.05791E-08	-233.316151	-160.183849
26	Nov	-149.75	16.92588482	-8.847395666	7.30451E-07	-186.316151	-113.183849
27	Dec	-43.25	16.92588482	-2.555257847	0.023953114	-79.81615098	-6.683849024

Model

```
Gas Usage = 236.75 - 36.75 March - 99.25 April - 192.25 May - 203.25 June - 208.25 July - 209.75 August - 208.25 September - 196.75 October - 149.75 November - 43.25 December
```


Models for Trend and Seasonality

Holt-Winters Additive Model

$$F_{t+1} = a_t + b_t + S_{t-s+1}$$

Holt-Winters Multiplicative Model

$$F_{t+1} = (a_t + b_t) S_{t-s+1}$$

Model Choice

TABLE 7.3	TABLE 7.3 Forecasting Model Choice									
	No Seasonality	Seasonality								
No Trend	Single moving average or single exponential smoothing	Seasonal additive or seasonal multiplicative model								
Trend	Double moving average or double exponential smoothing	Holt–Winters additive or Holt–Winters multiplicative model								

Regression Forecasting With Causal Variables

Sales (week 11) = 4790.1 + 812.00(11) = 13,733 gallons

4

Causal Model

- Sales = β_0 + β_1 Week + β_2 Price/Gallon
- Sales = 72333.08 + 508.67 Week 16463.20 Price/Gallon

4	Α	В	С	D	E	F	G
1	SUMMARY OUTPUT						
2							
3	Regressi	on Statistics					
4	Multiple R	0.930528528					
5	R Square	0.865883342					
6	Adjusted R Square	0.827564297					
7	Standard Error	1235.400329					
8	Observations	10					
9							
10	ANOVA						
11		df	SS	MS	F	Significance F	
12	Regression	2	68974748.7	34487374.35	22.59668368	0.000883465	
13	Residual	7	10683497.8	1526213.972			
14	Total	9	79658246.5				
15							
16		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
17	Intercept	72333.08447	21969.92267	3.292368642	0.013259225	20382.47253	124283.6964
18	Week	508.6681395	168.1770861	3.024598364	0.019260863	110.9925233	906.3437558
19	Price/Gallon	-16463.19901	5351.082403	-3.076611005	0.017900405	-29116.49823	-3809.899789

Sales (week 11) = 72333.08 + 508.67(11) - 16463.2(3.80) = 13,733 gallons

CB Predictor

- Excel add-in for forecasting
- Integrated with Crystal Ball software
- Example: Burglary Data

Input Data Dialog

Data Attributes Dialog

Methods Dialog

Options Dialog

CB Predictor Results for Forecasting Burglaries

CB Predictor Table View

CB Predictor Results for Gas Use Example

CB Predictor Results for Electric Use Example

CB Predictor Seasonality Dialog

Autocorrelations in *CB Predictor*

CB Predictor ARIMA Model for Coal Production

