Locomotion Without a Brain:

Physical Reservoir Computing in Tensegrity Structures

K. Caluwaerts (Ghent Univ.) *et αl.* Artificial Life 2013

Presented by Bongjun Kim

2021-11-14

Computer Graphics (a) Korea University

Index

- Introduction
- Related Work
- Tensegrity Structure
- Central Pattern Generators (CPG)
- Physical Reservoir Computing
- Outsourcing Motor Pattern Generation
- Experiment Result
- Discussion and Conclusion

Introduction

Introduction Robotics

stiff body (classic robotics)

https://www.youtube.com/

partially compliant body (compliant quadrupeds)

highly dynamic compliant body (mass-spring nets)

Introduction Tensegrity Structure

- Structure Components
 - String
 - Only resisting tensile forces, not compression
 - Mass properties neglected.
 - Bar
 - Resisting compressive and tensile force
 - Assumed infinitely thin.
 - Inertia moment exist only perpendicular to the longitudinal axis.
- Benefits
 - High Strength to Weight Structure
 - Passive Global Force Distribution
 - Minimized Points of Local Weakness

http://www.tensegriteit.nl/e-simple.html

Introduction Central Pattern Generators (CPG)

- Biological neural circuits, typically found in the spine of vertebrates.
- Generate rhythmic activation patterns, source of the rhythmic motions. (e.g. walking, breathing)
- Sustained activity without sensory feedback or higher-level control input.

(Leech heartbeat rhythm-generating network)

(Rate based CPG signal model)

Introduction Reservoir Computing

- Modify only readout weights, much simpler to train such recurrent neural networks.
- Reservoir computing, originally applied only to neural networks, has since been extended to other nonlinear dynamical systems, called PRC.

"Generating Coherent Patterns of Activity from Chaotic Neural Networks" [David Sussillo (Columbia Univ..) and L.F. Abbott / Neuron, 2009]

Abstract

- Studying tensegrity structure, one of highly dynamic body structures.
- Show tensegrity structures can maintain complex gaits.
 - Demonstrate the existence of a spectrum of choices of how to implement control in the body-brain composition.

Contribution

- Show compliant robots have real computational power.
- Using tensegrity structures, provide an implementation of the general principle of PRC.

Over View

Fig. 15

Related Work

Related Work Tensegrity Structure

- Investigating equilibrium and stiffness of frames.
 - "Buckminster Fuller's tensegrity structures and Clerk Maxwell's rules for the construction of stiff frames"
 - [C. R. Calladine (Cambridge Univ.) / International Journal of Solids and Structures, 1978]
 - "The stiffness of tensegrity structures"
 - [S. D. Guest (Cambridge Univ.) / IMA Journal of Applied Mathematics, 2011]
- Investigated the linearized dynamics.
 - "Linear dynamics of tensegrity structures"
 - [Cornel Sultan (Harvard Univ.) et al. / Engineering Structures, 2002]

Related Work Tensegrity Robot Control

- Gait obtained by genetic algorithm, through actuating black springs.
 - "Gait Production in a Tensegrity Based Robot"

• [Chandana Paul (Cornell Univ.) et al. / International Conference on

Advanced Robotics, 2005]

- ANN, 15 bar, 30 sensor and actuator at each end of each bar
 - "Morphological communication: exploiting coupled dynamics in a complex mechanical structure to achieve locomotion"

• [John A. Rieffel (Cornell Univ.) et al. / Journal of the Royal Society

Interface, 2010]

Tensegrity Structure

Tensegrity Structure **Dynamics** (1/2)

- n = 2b (n is number of nodes, b is number of bars)
- r is fixed to the center of mass of the bar
- b is a unit vector along the longitudinal axis of the bar

• $\mathbf{N} = \begin{bmatrix} x_1 & \cdots & x_n \\ y_1 & \cdots & y_n \\ z_1 & \cdots & z_m \end{bmatrix} = \mathbf{Q} \mathbf{\Psi}^T$ (nodes position in cartesian coordinates)

•
$$Q = [r_1 \quad \cdots \quad r_b \quad b_1 \quad \cdots \quad b_b], \Psi = \begin{bmatrix} \mathbf{I} & \mathbf{L}/2 \\ \mathbf{I} & -\mathbf{L}/2 \end{bmatrix}$$

L contains the lenghts of the bars

http://www.tensegriteit.nl/ e-simple.html

Tensegrity Structure **Dynamics** (2/2)

- $\mathbf{F}_q = (\mathbf{W} \mathbf{N}\mathbf{C}^T diag(\lambda)\mathbf{C})\mathbf{\Psi} = (\mathbf{W} \mathbf{Q}\mathbf{\Psi}^T\mathbf{C}^T diag(\lambda)\mathbf{C})\mathbf{\Psi}$
- **W** contains the external forces acting on the nodes
 - $\mathbf{C} \in \{0, 1, -1\}^{s \times n}$ called the connectivity matrix
 - *s* is number of springs at least $\frac{3n}{2}$ (each node is connected to at least three springs)

•
$$\lambda = \max\left(k\left(1 - \frac{l_0}{\|\mathbf{n}_i - \mathbf{n}_j\|}\right), 0\right)$$

- $\mathbf{W} = \mathbf{W}_{ext} + \dot{\mathbf{N}}\mathbf{R}$
 - damping along the springs $\mathbf{R} = \zeta \mathbf{C}^T \mathbf{C}$
 - uniform damping coefficient ζ

- $\mathbf{F}_q = \mathbf{M}(\ddot{\mathbf{Q}} + \mathbf{\Xi}\mathbf{Q})$
 - mass matrix $\mathbf{M} = diag([m_1 \cdots m_b \ j_1 \cdots j_b])$ (j_i are the moments of inertia of the bars)
 - describing the rotational equation $\mathbf{\Xi} = diag([0 \quad \cdots \quad 0 \quad \xi_1 \quad \cdots \quad \xi_b])$
 - *lagrange multipliers* $\xi_i = \frac{\dot{b}_i^T \dot{b}_i + j_i^{-1} b_i^T \mathbf{F}_{q,(b+i)}}{\dot{b}_i^T \dot{b}_i} (\mathbf{F}_{q,(b+i)} \text{ is } b + i \text{th column of } \mathbf{F}_q)$

Central Pattern Generator

Central Pattern Generators (CPG) Matsuoka Oscillators (1/2)

•
$$\dot{x}^{osc} = \frac{-x^{osc} - Ay^{osc} + \gamma - \iota v^{osc}}{\tau_1}$$
, $\dot{v}^{osc} = \frac{y^{osc} - v^{osc}}{\tau_2}$, $y^{osc} = \max(x, 0)$

- x^{osc} = signal of neuron
- y^{osc} = output of the oscillator
- v^{osc} = term of models fatigue (generate relaxation)
- A = matrix, how the neurons are connected
- $\tau_1 = 0.5, \tau_2 = 5$ (time constants)
- $\iota = 1$ (the steady state firing rate of the neuron)
- $\gamma = 1$ (impulse rate of the tonic or slowly varing input)

Central Pattern Generators (CPG) Matsuoka Oscillators (2/2)

- $b \in [0,1]^n$, $\mathbf{A} = \mathbf{C}^T diag(b)\mathbf{C} diag(diag(\mathbf{C}^T diag(b)\mathbf{C}))$
 - **C** = connectivity matrix of spring
- $y^{target} = W^{target}y^{osc}$
 - y^{target} = target motor signal
 - W^{target} = bias matrix for CPG signal to motor signal

Physical Reservoir Computing

Physical Reservoir Computing **Dynamics**

- $x[d+1] = \tanh(\mathbf{W}_{res}x[d] + \mathbf{W}_{in}u[d+1])$
- $y[d+1] = W_{out}x[d+1]$
 - \mathbf{W}_{out} = readout matrix
 - \mathbf{W}_{res} = fade out(based on the spectral radius) and connectivity matrix
 - \mathbf{W}_{in} = input weight matrix
- Implement functions that fading memory property, not necessary
 - $x[d+1] = \tanh(\mathbf{W}_{res}x[d] + \mathbf{W}_{in}u[d+1] + \mathbf{W}_{fb}y[d])$
 - $y[d+1] = W_{out}x[d+1]$
 - \mathbf{W}_{fb} = feedback weight matrix, typically chosen at random

Physical Reservoir Computing Apply to Tensegrity Structure (1/2)

• system state defined
$$\mathbf{x}(t) = vec \begin{pmatrix} \mathbf{f}(t) & \dot{\mathbf{f}}(t) \\ \mathbf{f}(t-\Delta) & \dot{\mathbf{f}}(t-\Delta) \\ \vdots & \vdots \\ \mathbf{f}(t-k\Delta) & \dot{\mathbf{f}}(t-k\Delta) \end{pmatrix}$$

- Δ = time step
- k =the number of delay steps
- spring forces measured at time t, f(t)
 - can be written as $f_e(t) = \max(k_e(\|\mathbf{n}_i \mathbf{n}_j\| l_{0,e}(t)), 0)$
- the equilibrium lenghts explicitly use the time index $l_{0,e}(t)$

Physical Reservoir Computing Apply to Tensegrity Structure (2/2)

- $\boldsymbol{l}_0^{act}(t) = l_{max}g(\boldsymbol{y}(t)) + \boldsymbol{l}_0^{act}(0)$
 - l_0^{act} = subset of actuated spring, l_0^{pas} = subset of passive spring
 - l_{max} = maximum change of springs about equilibrium length
 - $g: \mathbb{R}^a \to [-1,1]^a$
 - a = the number of actuated springs
- $y(t) = \mathbf{W}x(t)$
 - y(t) = signal to motor about length
 - W = constant bias input (study to optimized)
 - x(t) = force sensor measurements from the tensegrity structure

Outsourcing Motor Pattern Generation

Outsourcing Motor Pattern Generation Recursive Least-Squares Approach (1/2)

- Training algorithm to learn target signal.
- By RLS, same samples compute the same weights as batch linear regression.
- Advantage of RLS
 - Gradually transition from a completely teacher-forced structure(the desired signals are fed into the system) to a system generating its own control signals.
- Disadvantage of RLS
 - Needs to update the covariances matrix of all the input variables, does not scale well
 - Have to know explicit target signal

Outsourcing Motor Pattern Generation Recursive Least-Squares Approach (2/2)

•
$$y_i(t) = \alpha_{rls} y_i^{target}(t) + (1 - \alpha_{rls}) \sum_j W_{i,j}^{rls}(t) x_j(t)$$

•
$$\alpha_{rls} = \frac{1}{1 + \tau_{rls}t}$$
 if $t < \text{train time}$, else 0

- τ_{rls} = teacher forcing decay time constant
- \mathbf{W}^{rls} = weights, updated at each time step by RLS equations

•
$$\mathbf{W}^{rls}(t) = \mathbf{W}^{rls}(t - \Delta t) + \mathbf{L}^{rls}(t)\mathbf{e}^{rls}(t)$$

•
$$\mathbf{L}^{rls}(t) = \frac{\mathbf{P}^{rls}(t)x(t)}{1+x^{T}(t)\mathbf{P}^{rls}(t)x(t)}$$

• \mathbf{P}^{rls} = covariance matrix, initialized to identity matrix

$$\mathbf{P}^{rls}(t + \Delta t) = \mathbf{P}^{rls}(t) - \frac{\mathbf{P}^{rls}(t)x(t)x^{T}(t)\mathbf{P}^{rls}(t)}{1 + x^{T}(t)\mathbf{P}^{rls}(t)x(t)}$$

•
$$e^{rls}(t) = y^{target}(t) - W^{rls}(t - \Delta t)x(t)$$

Outsourcing Motor Pattern Generation Gradient Descent Approach

- To overcome the disadvantage of the RLS algorithm, needs to update the covariances matrix of all the input variables each time steps.
- Gradient descent rule converges slower in practice than the RLS rule, because of the learning rate α^{gd} has to be chosen small enough to prevent instability.
- $\mathbf{W}^{gd}(t) = \mathbf{W}^{gd}(t \Delta t) \alpha^{gd} e^{rls}(t) \mathbf{x}^{T}(t)$
 - Equation is obtained easily by differentiating the quadratic error at a time step, replace the update of \mathbf{W}^{rls}

Outsourcing Motor Pattern Generation Reward-Modulated Hebbian Approach(1/2)

- Use reward signal instead of error signal
- Reward signal is large when the error is small, and vice versa.
- Hebbian rule
 - $\Delta W \propto y(\text{output})x(\text{input})$
- The reward-modulated Hebbian rule(RMH) we used is given by
- $\mathbf{y}(t) = \mathbf{W}^{rmh}(t \Delta t)\mathbf{x}(t) + \mathbf{v}(t)$
- $\mathbf{W}^{rmh}(t) = \mathbf{W}^{rmh}(t \Delta t) \alpha^{rmh} \mathbf{v}(t) (R(t) \bar{R}(t)) \mathbf{x}^{T}(t)$
 - R(t) = reward signal
 - $\bar{R}(t)$ = average of reward signal during the last 100 ms

Outsourcing Motor Pattern Generation Reward-Modulated Hebbian Approach(2/2)

•
$$\mathbf{W}^{rmh}(t) = \mathbf{W}^{rmh}(t - \Delta t) - \alpha^{rmh}(\mathbf{y}(t) - \overline{\mathbf{y}}(t))(R(t) - \overline{R}(t))\mathbf{x}^{T}(t)$$

- $y(t) \overline{y}(t)$ = approximated v(t), when y(t) varies smoothly.
- $\overline{y}(t)$ = average of reward signal during the last 100 ms

•
$$R(t) = -\sum_{i} |y_i(t) - y_i^{target}(t)|$$

•
$$\mathbf{W}^{rmh}(t) = \mathbf{W}^{rmh}(t - \Delta t) - \alpha^{rmh}(\mathbf{y}(t) - \Delta t)$$

•
$$R(t) = -\max_{i} |y_i(t) - y_i^{target}(t)|^2 y_{2,0.4}$$

Experiment Result

Experiment Result Gait Optimization (1/3)

- Step
 - 1. Optimize \mathbf{W}_{target} , for a given basic CPG, by CMA-ES, to generate target signal.
 - CMA-ES
 - population size = 50
 - iterations time = 10
 - evaluation period = 30 s
 - only 4 h exploration time needed on real robot.
 - for four actuators
 - 2. Optimize \mathbf{W}_{rls} , for sensor input signal, by RLS, to generate motor signal.

target

Experiment Result Gait Optimization (2/3)

Experiment Result Gait Optimization (3/3)

Result of ground reaction forces on the endpoints.

- The sample is taken from beginning of the training(almost teacher forced) and end of testing(free run).
- The relative phase between the ground contacts is identical during training and testing.

Experiment Result End-Effector Control

- Apply same technique to gait optimization.
- Simulation condition
 - Used 30-dimensional CPG, based on a connection pattern from a stacked tensegrity prism.
 - Simulated the system for 100 s
 - Mean Squared error over the last 80 s
 - RLS training in 75 s

Fig. 19

Figure 20. Trajectory of the end effector during testing after 75 s of training.

Experiment Result The Importance of Complex Dynamics

• NMSE =
$$\frac{(x-y)^T(x-y)}{N\sigma(y)}$$

- NMSE=normalized mean squared error
- N=the number of samples
- x=the vectorized output
- y=the vectorized target signal
- $\sigma(y)$ = activity function

- Better performance obtained by increasing the frequency or the maximum spring equilibrium offset.
- Lager deformations of the structure cause the error to decrease.

Discussion and Conclusion

Discussion and Conclusion **Discussions**

- Compliance offers multiple advantages over classic, stiff robotics.
 - Safer robot-human interactions
 - Increased energy efficiency
 - Robustness against external perturbations
 - Simplification of the control
- Remarkable points
 - Do not need exact dynamics of the system to learning algorithm.
 - Historically tensegrity structures have been used to model a plethora of complex systems.
- Understanding cognition in biological organisms.
 - Allow to quantify the nature of the computation
 - Applicable to many of the interactions between the body, sensory inputs, but probably not enough to capabilities of human-level intelligence.
- The idea, principle of PRC, any size of system performs the same amount of computation, simply realizing different external perturbations.

Discussion and Conclusion Conclusions

- Simple linear learning rules to be able to learn complex locomotion patterns or desired end-effector trajectories.
- This provides a number of advantages from a robotic standpoint
 - The control complexity can be highly reduced
 - Very uninformative reward signals can be used to train complex pattern generators
 - The learned control law is robust to perturbations and can easily synchronize with environmental interactions.
- In conceptual point of view, the conclusion are more profound.
 - "dynamic bodies" only require "extremely simple brains" to implement computations
 - Opened up a whole spectrum of potential tradeoffs, between brainbased computation and body-based computation.
 - The results from the field of reservoir computing, implemented by the physical body, can be quantified