#### Содержание

| 1. Задания к самостоятельной работе           |   |
|-----------------------------------------------|---|
| (расчетно-графической работе) «Анализ         |   |
| функционирования линейной непрерывной         |   |
| системы автоматического управления»           | 3 |
| 1.1. Исходные данные                          | 3 |
| 1.2. Обыкновенные дифференциальные уравнения, |   |
| описывающие функционирование динамических     |   |
| звеньев САУ                                   | 4 |
| 2. Порядок выполнения работы                  | 5 |
| 3. Пример выполнения работы                   | 5 |

1.Задания к самостоятельной работе (расчетно-графической работе) «Анализ функционирования линейной непрерывной системы автоматического управления»

#### 1.1. Исходные данные

### 1.1.1. Структура и параметры исходной системы автоматического управления (САУ).

Структурные алгебраические уравнения САУ

Таблица 1

| Номер варианта | Структурные ал        | гебраические урав | нения связей межд | у звеньями САУ          |
|----------------|-----------------------|-------------------|-------------------|-------------------------|
| 1              | $x_3 = v - y$         | $x_4 = y_3$       | $x_2 = y_4$       | $x_1 = y_2 - f$         |
| 2              | $x_3 = v - y$         | $x_4 = v - y$     | $x_2 = y_4 + y_3$ | $x_1 = y_2 - f$         |
| 3              | $x_3 = v - y$         | $x_4 = y_3$       | $x_2 = y_4 + y_3$ | $x_1 = y_2 - f$         |
| 4              | $x_3 = v - y$         | $x_4 = v - y$     | $x_2 = y_3$       | $x_1 = (y_2 + y_4) - f$ |
| 5              | $x_3 = v - y$         | $x_4 = x_2 = y_3$ | $x_4 = x_2 = y_3$ | $x_1 = (y_2 + y_4) - f$ |
| 6              | $x_3 = v - y$         | $x_4 = y_2$       | $x_2 = y_3 - y_4$ | $x_1 = y_2 - f$         |
| 7              | $x_3 = (v - y) - y_4$ | $x_4 = y_2$       | $x_2 = y_3$       | $x_1 = y_2 - f$         |
| 8              | $x_3 = v - y$         | $x_4 = y_3 - y_2$ | $x_2 = y_4$       | $x_1 = y_2 - f$         |
| 9              | $x_3 = v - y$         | $x_4 = y_3 - y_4$ | $x_2 = y_4$       | $x_1 = y_2 - f$         |
| 10             | $x_3 = (v - y) - y_4$ | $x_4 = x_2 = y_3$ | $x_4 = x_2 = y_3$ | $x_1 = y_2 - f$         |
| 11             | $x_3 = (v - y) - y_4$ | $x_4 = y_2$       | $x_2 = y_4 + y_3$ | $x_I = y_2 - f$         |
| 12             | $x_3 = v - y$         | $x_4 = y_3$       | $x_2 = y_3 - y_4$ | $x_1 = (y_2 + y_4) - f$ |

| № п/п    | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| $k_{I}$  | 1,3 | 1,5 | 1,3 | 1,2 | 1,8 | 1,2 | 1,2 | 1,8 | 1,7 | 1,5 | 1,3 | 1,2 |
| $\tau_1$ | 1,0 | 1,0 | 1,0 | 1,0 | 0,5 | 1,0 | 1,0 | 1,0 | 1,0 | 1,0 | 1,0 | 1,0 |
| $T_{I}$  | 0,4 | 1,1 | 0,6 | 0,7 | 0,6 | 0,6 | 0,5 | 1,2 | 0,9 | 0,9 | 0,6 | 0,5 |
| $k_{01}$ | 0,0 | 1,0 | 0,0 | 0,0 | 1,0 | 0,0 | 0,0 | 1,0 | 0,0 | 0,0 | 0,0 | 0,0 |
| $k_2$    | 0,5 | 1,0 | 1,5 | 1,8 | 1,2 | 1,5 | 1,0 | 1,3 | 1,0 | 1,8 | 1,5 | 1,0 |
| $\tau_2$ | 1,0 | 1,0 | 0,5 | 0,5 | 1,0 | 0,4 | 0,0 | 1,0 | 0,7 | 0,8 | 0,5 | 0,0 |
| $T_2$    | 0,2 | 0,0 | 0,2 | 0,1 | 0,0 | 0,0 | 0,0 | 0,1 | 0,1 | 0,0 | 0,2 | 0,0 |
| $k_{02}$ | 0,0 | 0,0 | 1,0 | 1,0 | 0,0 | 1,0 | 1,0 | 0,0 | 1,0 | 1,0 | 1,0 | 1,0 |
| $k_3$    | 0,5 | 1,5 | 1,9 | 1,4 | 1,5 | 1,4 | 1,6 | 1,3 | 1,2 | 1,0 | 1,9 | 1,6 |
| $T_3$    | 0,0 | 0,2 | 0,0 | 0,0 | 0,1 | 0,1 | 0,0 | 0,0 | 0,0 | 0,2 | 0,0 | 0,0 |
| $k_4$    | 0,5 | 0,8 | 0,5 | 0,7 | 1,0 | 1,0 | 1,0 | 0,8 | 0,9 | 0,6 | 0,5 | 1,0 |
| $	au_4$  | 0,4 | 0,0 | 0,0 | 0,0 | 0,0 | 0,0 | 0,4 | 0,0 | 0,0 | 0,0 | 0,0 | 0,4 |
| $T_4$    | 0,3 | 0,0 | 0,0 | 0,2 | 0,0 | 0,0 | 0,1 | 0,0 | 0,0 | 0,3 | 0,0 | 0,1 |

*Примечание*: v – задающее воздействие; f - возмущающее воздействие;  $x_i$  - входная переменная (сигнал) i - ого звена;  $y_i$  - выходная/управляемая переменная (сигнал) i - ого звена; y - выходная/управляемая переменная (сигнал) САУ.

Варианты заданий из таблиц 1 и 2 студентам выдаются преподавателем.

1.1.2. Обыкновенные дифференциальные уравнения, описывающие функционирование динамических звеньев САУ.

$$T_{1}\frac{d^{2}y_{1}}{dt^{2}} + \frac{dy_{1}}{dt} = k_{1}\left(\tau_{1}\frac{dx_{1}}{dt} + k_{01}x_{1}\right). \tag{1}$$

$$T_2 \frac{d^2 y_2}{dt^2} + \frac{dy_2}{dt} = k_2 \left( \tau_2 \frac{dx_2}{dt} + k_{02} x_2 \right). \tag{2}$$

$$T_3 \frac{dy_3}{dt} + y_3 = k_3 x_3. {3}$$

$$T_4 \frac{dy_4}{dt} + y_4 = k_4 \left( \tau_4 \frac{dx_4}{dt} + x_4 \right). \tag{4}$$

- 2. Порядок выполнения работы.
- 2.1. В соответствии с таблицей 1 составить структурную схему системы автоматического управления.
- 2.2. Дифференциальные уравнения (1-4) записать в операторной форме с учетом численных значений таблицы 2.
- 2.3. Получить передаточные функции в операторной форме звеньев составленной структурной схемы САУ (п. 2.1).

#### 3. Пример выполнения работы.

#### 1. ИСХОДНЫЕ ДАННЫЕ

#### 1.1. Структура и параметры исходной нескорректированной САУ

Табл. 1.1

#### Алгебраические уравнения исходной САУ

| $x_3 = v-y$ | $x_4 = y_3 - y_4$ | x <sub>2</sub> =y <sub>4</sub> | $x_1 = y_2 - f$ |
|-------------|-------------------|--------------------------------|-----------------|
|             |                   |                                |                 |

Табл. 1.2

#### Параметры динамических звеньев исходной САУ

| $k_1$ | $\phi_{I}$ | $T_{I}$ | $k_{01}$ | $k_2$ | $\phi_2$ | $T_2$ | $k_{02}$ | $k_3$ | $T_3$ | $k_4$ | $\phi_{\scriptscriptstyle 4}$ | $T_4$ |
|-------|------------|---------|----------|-------|----------|-------|----------|-------|-------|-------|-------------------------------|-------|
| 1,3   | 1,0        | 0,6     | 0,0      | 1,5   | 0,5      | 0,2   | 1,0      | 1,9   | 0,0   | 0,5   | 0,0                           | 0,0   |

*v* - задающее воздействие,

f – возмущающее воздействие,

 $x_{i}$  – входная переменная і-го звена,

 $y_i$  – выходная переменная і-го звена,

 $y = y_i$  – выходная (управляемая) переменная САУ.

1.2. Система обыкновенных дифференциальных уравнений,

описывающих динамику звеньев исходной САУ

$$T_1 \frac{d^2 y_1}{dt^2} + \frac{dy_1}{dt} = k_1 \left( \tau_1 \frac{dx_1}{dt} + k_{01} x_1 \right),$$

$$T_2 \frac{d^2 y_2}{dt^2} + \frac{dy_2}{dt} = k_2 \left( \tau_2 \frac{dx_2}{dt} + k_{02} x_2 \right),$$

$$T_3 \frac{dy_3}{dt} + y_3 = k_3 x_3,$$

$$T_4 \frac{dy_4}{dt} + y_4 = k_4 \left( \tau_4 \frac{dx_4}{dt} + x_4 \right).$$

#### 2. АНАЛИЗ НЕПРЕРЫВНОЙ ЛИНЕЙНОЙ САУ

2.1. В соответствии с табл. 1.1 составить структурную схему линейной нескорректированной САУ



Рис. 2.1 Структурная схема САУ

# 2.2. На основании уравнений записать уравнения в операторной форме записи в общем виде и с учетом численных значений.

Табл. 2.1 Дифференциальные уравнения в операторной форме записи

| No        | Оператор                                                | оная форма                                   |
|-----------|---------------------------------------------------------|----------------------------------------------|
| исходного | Общий вид                                               | С учетом численных значений                  |
| уравнения |                                                         |                                              |
| 1.1       | $T_1 p^2 y_1 + p y_1 = k_1 (\tau_1 p x_1 + k_{01} x_1)$ | $0.6 p^2 y_1 + p y_1 = 1.3 p x_1$            |
| 1.2       | $T_2 p^2 y_2 + p y_2 = k_2 (\tau_2 p x_2 + k_{02} x_2)$ | $0.2 p^2 y_2 + p y_2 = 1.5(0.5 p x_2 + x_2)$ |
| 1.3       | $T_3 p y_3 + y_3 = k_3 x_3$                             | $y_3 = 1.9x_3$                               |
| 1.4       | $T_4 p y_4 + y_4 = k_4 (\tau_4 p x_4 + x_4)$            | $y_4 = 0.5x_4$                               |

## 2.3. Получить передаточные функции типовых звеньев структурной схемы

Передаточные функции звеньев

Табл. 2.2

| No    | Передаточн                                           | ая функция                    |
|-------|------------------------------------------------------|-------------------------------|
| звена | Общий вид                                            | С учетом численных            |
|       |                                                      | значений                      |
| 1     | $W_1(p) = k_1 \frac{\tau_1 p + k_{01}}{T_1 p^2 + p}$ | $W_1(p) = \frac{1,3}{0,6p+1}$ |

| 2 | $W_2(p) = k_2 \frac{\tau_2 p + k_{02}}{T_2 p^2 + p}$ | $W_2(p) = \frac{0.75(p+2)}{p(0.2p+1)}$ |
|---|------------------------------------------------------|----------------------------------------|
| 3 | $W_3(p) = \frac{k_3}{T_3 p + 1}$                     | $W_3(p) = 1,9$                         |
| 4 | $W_4(p) = k_4 \frac{\tau_4 p + 1}{T_4 p + 1}$        | $W_4(p) = 0.5$                         |