Package 'colorscience'

July 25, 2018

Chromatic Adaptation	13
chromaticity.diagram	14
chromaticity.diagram.color	14
CIE.Whiteness	15
CIE1931xy2CIE1960uv	16
CIE1931xy2CIE1976uv	17
CIE1931XYZ2CIE1931xyz	18
CIE1931XYZ2CIE1960uv	19
CIE1931XYZ2CIE1976uv	20
	21
	22
•	23
	23
ϵ	24
	25
	26
	27
	28
	28
	20 29
•	29 30
	31
	32
	32
	33
1 1	34
	35
	36
1	37
	38
	39
	40
	41
	42
	43
DIN6167.YellownessIndex	44
DIN99toCIELab	45
dkl2dklCart	46
dkl2rgb	47
DominantWavelength	48
emittanceblackbodyPlanck	49
footcandle2candela.steradian.sqmeter	50
footcandle2lux	51
footcandle2watt.sqcentimeter	51
GanzGrieser.Tint	52
	53
	54
HSL2RGB	55

HSV2RGB	
Hue.2.RGB	
huedegree	58
huedegreemunsell	58
Hunter60.WhitenessIndex	59
HunterLab2XYZ	60
illuminantA	61
illuminantD65	62
illuminants	63
ISObrightnessReflectometerRSD	64
kelvin2xy	65
Lab2LCHab	66
LAB2LUV	67
Lab2XYZ	67
LCHab2Lab	
LCHuv2Luv	
LEF2RGB	
LMS2DKL	
LMS2RGB	72
LMS2XYZ	73
LSLM2RGB	74
LUV2LAB	75
Luv2LCHuv	75
Luv2XYZ	76
Luv2Yuv	
makeChromaticAdaptationMatrix	
MaterialReferenceData	79
MaxChromaFromExtrapRenotationData	81
MaxChromasForStandardMunsellHuesAndValues	82
Maxwell.triangle	
Munsell100hues55	
Munsell100hues55FM100	
MunsellHues	
MunsellNeutrals2sRGB	
MunsellSpecToHVC	
MunsellSpectral	
MunsellV2relativeLuminanceY	
Munsell V2Y	90
NickersonColorDifference	
PhotoYCC2RGB	
PreucilAngle	
PreucilPercentGreyness	
PreucilPercentHueError	
RGB2CMY	
rgb2dklV	
RGB2HSL	
RGB2HSV	
RGB2hue	99

RGB2LEF	. 99
RGB2LMS	. 100
RGB2LSLM	. 101
RGB2PhotoYCC	
RGB2XYZ	. 103
RGB2YCbCr	. 104
RGB2YIQ	. 105
RGB2YPbPr	
RGB2YUV	
RxRyRz2XYZ	
saturationCIECAM02	
saturationCIELABEvaLubbe	
saturationCIELUV	
SmithPokorny2degConeFundamentals1975	
spectra2CCT	
spectra2CRIGAIFSCI	
spectra2ISObrightness	
spectra2lux	
spectra2XYZ	
sprague	
StearnsStearnscorrection	
Stensby68.Whiteness	
StockmanMacLeodJohnson10degConeFundamentals1993	
StockmanMacLeodJohnson2degCIEadjConeFundamentals1993	
StockmanMacLeodJohnson2degStilesBurchConeFundamentals1993	
StockmanSharpe10degCMFS2000	
StockmanSharpe2degCMFadj2000	
SystemISCCNBS	. 123
Taube60.Whiteness	
TCSdata	. 125
tristimulusMunsell	. 126
VosEstevezWalraven2degConeFundamentals1990	
VosWalraven2degConeFundamentals1971	. 128
WestlandBlacknessIndex	
whitepointsilluminants	
whitepointsRGB	
wlnm2XYZ	
xFit 1931	
xy2CCT.HernandezAndres	
xy2CCT.McCamy	
xyChromaticitiesVos1978	
xyY2XYZ	
XYZ2BVR	
XYZ2CCT.Robertson	
XYZ2HunterLab	
XYZ2LMS	
XYZ2Luv	. 141

Index		159
	Yxy2Yuv	158
	Yxy2CIE1960UCS	157
	Yuv2XYZ	
	Yuv2xy	155
	YUV2RGB	154
	Yuv2Luv	154
	YPbPr2RGB	153
	YIQ2RGB	152
	YCbCr2RGB	151
	Y2MunsellVtable1D1535	150
	Y2MunsellV	150
	XYZtoRGB	149
	XYZTannenbaum1974	148
	XYZperfectreflectingdiffuser	147
	XYZMoonSpencer1945	146
	XYZ2Yuv	145
	XYZ2xyY	144
	XYZ2RxRyRz	143
	XYZ2RGB	142

ASTM.D1925.YellownessIndex

ASTM D 1925 Yellowness Index for Plastics

Description

ASTM.D1925.YellownessIndex was developed for the definition of the Yellowness of homogeneous, non-fluorescent, almost neutral-transparent, white-scattering or opaque plastics as they will be reviewed under daylight condition.

Usage

ASTM.D1925.YellownessIndex(XYZmatrix)

Arguments

XYZmatrix tri-stimulus values for the calculated for illuminant C

Author(s)

Jose Gama

Source

Xrite, 2012 Color iQC and Color iMatch Color Calculations Guide Version 8.0 30 July 2012 Revision 1.0

6 ASTM.E313.Whiteness

References

Xrite, 2012 Color iQC and Color iMatch Color Calculations Guide Version 8.0 30 July 2012 Revision 1.0

Examples

```
XYZ<-c(0.1146538, 0.08391198, 0.08222077)
ASTM.D1925.YellownessIndex(XYZ)
```

ASTM.E313.Whiteness

ASTM E313 Whiteness

Description

ASTM.E313.Whiteness ASTM E313 Whiteness.

Usage

```
ASTM.E313.Whiteness(XYZmatrix)
```

Arguments

XYZmatrix

tri-stimulus values for the calculated for illuminant C

Author(s)

Jose Gama

Source

Xrite, 2012 Color iQC and Color iMatch Color Calculations Guide Version $8.0\ 30\ \mathrm{July}\ 2012\ \mathrm{Revision}\ 1.0$

References

Xrite, 2012 Color iQC and Color iMatch Color Calculations Guide Version $8.0\ 30\ \mathrm{July}\ 2012\ \mathrm{Revision}\ 1.0$

```
XYZ<-c(0.1146538, 0.08391198, 0.08222077)
ASTM.E313.Whiteness(XYZ)
```

ASTM.E313.YellownessIndex

ASTM E313 Yellowness

Description

ASTM.E313.YellownessIndex ASTM E313 has successfully been used for a variety of white or near white materials.

Usage

```
ASTM.E313.YellownessIndex(XYZmatrix)
```

Arguments

XYZmatrix

tri-stimulus values for the calculated for illuminant C

Author(s)

Jose Gama

Source

Xrite, 2012 Color iQC and Color iMatch Color Calculations Guide Version 8.0 30 July 2012 Revision 1.0

References

Xrite, 2012 Color iQC and Color iMatch Color Calculations Guide Version $8.0\ 30\ \mathrm{July}\ 2012\ \mathrm{Revision}\ 1.0$

Examples

```
XYZ<-c(0.1146538, 0.08391198, 0.08222077)
ASTM.E313.YellownessIndex(XYZ)
```

 ${\tt Berger 59.Whiteness}$

Berger (59) Whiteness

Description

Berger 59. Whiteness formula was developed by A. Berger (formerly employee of Bayer AG, Germany and was presented in 1959.

8 BVR2XYZ

Usage

Arguments

xyYmatrix CIE values for illuminant C

illuminant illuminant observer observer

RefWhite White Reference

Author(s)

Jose Gama

Source

Xrite, 2012 Color iQC and Color iMatch Color Calculations Guide Version 8.0 30 July 2012 Revision 1.0

References

Xrite, 2012 Color iQC and Color iMatch Color Calculations Guide Version 8.0 30 July 2012 Revision 1.0

Examples

```
xyY \leftarrow c(0.4083308, 0.2988462, 0.08391198)
Berger59.Whiteness(xyY)
```

BVR2XYZ

convert from BVR coordinates to XYZ temperature (Robertson)

Description

BVR2XYZ convert from BVR coordinates to XYZ.

Usage

BVR2XYZ(BVRmatrix)

Arguments

BVRmatrix BVR coordinates

Value

XYZ coordinates

cccie31

Author(s)

Jose Gama

Source

Bruce Justin Lindbloom, 2014 http://www.brucelindbloom.com/index.html?Eqn_XYZ_to_T.html

References

Bruce Justin Lindbloom, 2014 http://www.brucelindbloom.com/index.html?Eqn_XYZ_to_T.html

cccie31

CIE (1931) 2-deg chromaticity coordinates

Description

cccie31 is a table with CIE (1931) 2-deg chromaticity coordinates.

Usage

cccie31

Format

This data frame contains the following data:

wlnm wavelength (nm)

- x x chromaticity coordinate
- \mathbf{y} y chromaticity coordinate
- z z chromaticity coordinate

Author(s)

Jose Gama

Source

Commission Internationale de l'Eclairage Proceedings, 1931 Cambridge: Cambridge University Press.

References

Commission Internationale de l'Eclairage Proceedings, 1931 Cambridge: Cambridge University Press.

10 cccie64

Examples

```
data(cccie31)
cccie31
```

cccie64

CIE (1964) 10-deg chromaticity coordinates

Description

cccie64 is a table with CIE (1964) 10-deg chromaticity coordinates.

Usage

cccie64

Format

This data frame contains the following data:

wlnm wavelength (nm)

- x x chromaticity coordinate
- y y chromaticity coordinate
- z z chromaticity coordinate

Author(s)

Jose Gama

Source

Wyszecki, G., & Stiles, W. S., 1982 Color Science: concepts and methods, quantitative data and formulae (2nd ed.). New York: Wiley.

References

Wyszecki, G., & Stiles, W. S., 1982 Color Science: concepts and methods, quantitative data and formulae (2nd ed.). New York: Wiley.

```
data(cccie64)
cccie64
```

CCT2XYZ

CCT2XYZ

Convert CCT to XYZ

Description

CCT2XYZ Converts correlated color temperature (CCT) to CIE tristimulus XYZ.

Usage

```
CCT2XYZ(CCTmatrix)
```

Arguments

CCTmatrix

CCT values

Value

CIE tristimulus XYZ

Author(s)

Jose Gama

Source

Bruce Justin Lindbloom, 2013 Color Calculator www.brucelindbloom.com

References

Bruce Justin Lindbloom, 2013 Color Calculator www.brucelindbloom.com

Examples

```
CCT2XYZ(c(0.310897, 0.306510, 74.613450))
```

 ${\tt CentralsISCCNBS}$

Central notations for the revised ISCC-NBS

Description

CentralsISCCNBS is a table with Central notations for the revised ISCC-NBS Color-Name Blocks.

Usage

CentralsISCCNBS

12 CheckColorLookup

Format

This data frame contains the following data:

Number notation number

Name notation name

MunsellSpec Munsell specification

Author(s)

Glenn Davis

References

Kelly, Kenneth Low, 1910 Central notations for the revised ISCC-NBS Color-Name Blocks Journal of Research of the National Bureau of Standards Research Paper 2911, Vol. 61 No. 5, November 1958

Examples

data(CentralsISCCNBS)
CentralsISCCNBS

CheckColorLookup

Check that the color block number is correct

Description

CheckColorLookup Checks that the color block number is correct.

Usage

CheckColorLookup(DataISCCNBS)

Arguments

DataISCCNBS data.frame with columns MunsellSpec and Number

Value

logic

Author(s)

Glenn Davis

Chromatic Adaptation 13

ChromaticAdaptation

Chromatic adaptation algorithms

Description

ChromaticAdaptation chromatic adaptation algorithms implemented as a linear transformation (XYZ Scaling, Bradford and Von Kries).

Usage

ChromaticAdaptation

Format

This array frame contains the following dimensions:

- 1 rows transformation matrix 3x3
- 2 columns transformation matrix 3x3
- 3 linear transformation (XYZ Scaling, Bradford or Von Kries)
- 4 transformation "direct" or "inverse"

Author(s)

Jose Gama

Source

Bruce Justin Lindbloom, 2013 Color Calculator www.brucelindbloom.com

References

Bruce Justin Lindbloom, 2013 Color Calculator www.brucelindbloom.com

Examples

data(ChromaticAdaptation)
ChromaticAdaptation

chromaticity.diagram Plot the chromaticity diagram

Description

chromaticity.diagram Plots the chromaticity diagram AKA "horse shoe".

Usage

```
chromaticity.diagram(chromaticityCoordinates=get("cccie31", envir = environment()),
conversionFunction=NULL,...)
```

Arguments

Value

none

Author(s)

Jose Gama

Examples

```
\label{lem:chromaticity.diagram} $$ x<-y<-0:1$    chromaticity.diagram(xlim=xl,ylim=yl)    chromaticity.diagram(conversionFunction=CIE1931XYZ2CIE1976uv, xlim=xl,ylim=yl,xlab="u'",ylab="v'")
```

chromaticity.diagram.color

Plot the chromaticity diagram line with color

Description

chromaticity.diagram.color Plots the chromaticity diagram AKA "horse shoe", as a black line, a color line or a polygon.

CIE. Whiteness 15

Usage

```
chromaticity.diagram.color(chromaticityCoordinates=get("cccie31", envir = environment()),
conversionFunction=NULL, granularity=10, ...)
```

Arguments

Value

none

Author(s)

Jose Gama

Examples

```
\label{lem:chromaticity.diagram.color} $$x<-y<-0:1$$ chromaticity.diagram.color(xlim=xl,ylim=yl)$$ chromaticity.diagram.color(conversionFunction=CIE1931XYZ2CIE1976uv, xlim=xl,ylim=yl,xlab="u'",ylab="v'")$
```

CIE.Whiteness

CIE Whiteness

Description

 ${\tt CIE.Whiteness}$ The CIE Whiteness index is widely used in the industry for D65 for 2 or 10 deg observer.

Usage

Arguments

xyYmatrix xyY data illuminant illuminant observer observer

RefWhite Reference White

Author(s)

Jose Gama

Source

Xrite, 2012 Color iQC and Color iMatch Color Calculations Guide Version $8.0\ 30\ \mathrm{July}\ 2012\ \mathrm{Revision}\ 1.0$

References

Xrite, 2012 Color iQC and Color iMatch Color Calculations Guide Version 8.0 30 July 2012 Revision 1.0

Examples

```
xyY <- c(0.4083308, 0.2988462, 0.08391198)
CIE.Whiteness(xyY)
```

CIE1931xy2CIE1960uv

Convert CIE 1931 xy color space to CIE 1960 uv color space

Description

CIE1931xy2CIE1960uv Converts CIE 1931 xy color space to CIE 1960 uv color space.

Usage

```
CIE1931xy2CIE1960uv(xymatrix)
```

Arguments

xymatrix

xy coordinates

Value

CIE 1960 uv coordinates

Author(s)

Jose Gama

Source

 $Wikipedia, 2014\ CIE\ 1931\ color\ space\ http://en.wikipedia.org/wiki/CIE_1931_color_space\#\ CIE_xy_chromaticity_diagram_and_the_CIE_xyY_color_space$

CIE1931xy2CIE1976uv

References

Wikipedia, 2014 CIE 1931 color space http://en.wikipedia.org/wiki/CIE_1931_color_space# CIE_xy_chromaticity_diagram_and_the_CIE_xyY_color_space

Examples

```
xyY <- cbind(0.4083308, 0.2988462, 0.08391198)
CIE1931xy2CIE1960uv(xyY)</pre>
```

CIE1931xy2CIE1976uv

Convert CIE 1931 xy color space to CIE 1976 uv color space

Description

CIE1931xy2CIE1976uv Converts CIE 1931 xy color space to CIE 1976 uv color space.

Usage

```
CIE1931xy2CIE1976uv(xymatrix)
```

Arguments

xymatrix

xy coordinates

Value

CIE 1976 uv coordinates

Author(s)

Jose Gama

Source

 $Wikipedia, 2014\ CIE\ 1931\ color\ space\ http://en.wikipedia.org/wiki/CIE_1931_color_space\#\ CIE_xy_chromaticity_diagram_and_the_CIE_xyY_color_space$

References

Wikipedia, 2014 CIE 1931 color space http://en.wikipedia.org/wiki/CIE_1931_color_space# CIE_xy_chromaticity_diagram_and_the_CIE_xyY_color_space

```
xyY <- cbind(0.4083308, 0.2988462, 0.08391198)
CIE1931xy2CIE1976uv(xyY)
```

CIE1931XYZ2CIE1931xyz Convert CIE 1931 XYZ color space to CIE 1931 xyz color space

Description

CIE1931XYZ2CIE1931xyz Converts CIE 1931 XYZ color space to CIE 1931 xyz color space.

Usage

```
CIE1931XYZ2CIE1931xyz(XYZmatrix)
```

Arguments

XYZmatrix XYZ coordinates

Value

CIE 1931 xyz coordinates

Author(s)

Jose Gama

Source

 $Wikipedia, 2014\ CIE\ 1931\ color\ space\ http://en.wikipedia.org/wiki/CIE_1931_color_space\#\ CIE_xy_chromaticity_diagram_and_the_CIE_xyY_color_space$

References

Wikipedia, 2014 CIE 1931 color space http://en.wikipedia.org/wiki/CIE_1931_color_space# CIE_xy_chromaticity_diagram_and_the_CIE_xyY_color_space

```
XYZ<-c(0.11465380, 0.08391198, 0.08222077)
CIE1931XYZ2CIE1931xyz(XYZ)
```

CIE1931XYZ2CIE1960uv Convert CIE 1931 XYZ color space to CIE 1960 uv color space

Description

CIE1931XYZ2CIE1960uv Converts CIE 1931 XYZ color space to CIE 1960 uv color space.

Usage

CIE1931XYZ2CIE1960uv(XYZmatrix)

Arguments

XYZmatrix XYZ coordinates

Value

CIE 1960 uv coordinates

Author(s)

Jose Gama

Source

 $Wikipedia, 2014\ CIE\ 1931\ color\ space\ http://en.wikipedia.org/wiki/CIE_1931_color_space\#\ CIE_xy_chromaticity_diagram_and_the_CIE_xyY_color_space$

References

Wikipedia, 2014 CIE 1931 color space http://en.wikipedia.org/wiki/CIE_1931_color_space# CIE_xy_chromaticity_diagram_and_the_CIE_xyY_color_space

```
XYZ<-c(0.11465380, 0.08391198, 0.08222077)
CIE1931XYZ2CIE1960uv(XYZ)
```

CIE1931XYZ2CIE1976uv Convert CIE 1931 XYZ color space to CIE 1976 uv color space

Description

CIE1931XYZ2CIE1976uv Converts CIE 1931 XYZ color space to CIE 1976 uv color space.

Usage

```
CIE1931XYZ2CIE1976uv(XYZmatrix)
```

Arguments

XYZmatrix XYZ coordinates

Value

CIE 1976 uv coordinates

Author(s)

Jose Gama

Source

 $Wikipedia, 2014\ CIE\ 1931\ color\ space\ http://en.wikipedia.org/wiki/CIE_1931_color_space\#\ CIE_xy_chromaticity_diagram_and_the_CIE_xyY_color_space$

References

Wikipedia, 2014 CIE 1931 color space http://en.wikipedia.org/wiki/CIE_1931_color_space# CIE_xy_chromaticity_diagram_and_the_CIE_xyY_color_space

```
XYZ<-c(0.11465380, 0.08391198, 0.08222077)
CIE1931XYZ2CIE1976uv(XYZ)
```

CIE1960UCS2CIE1964 21

CIE1960UCS2CIE1964

Convert CIE 1960 UCS color space to CIE 1964 color space

Description

CIE1960UCS2CIE1964 Converts CIE 1960 UCS color space to CIE 1964 color space.

Usage

Arguments

uvYmatrix uvY data
illuminant illuminant
observer observer

RefWhite Reference White

Value

CIE 1976 uv coordinates

Author(s)

Jose Gama

Source

 $Wikipedia, 2014\ CIE\ 1964\ color\ space\ http://en.wikipedia.org/wiki/CIE_1931_color_space\#\ CIE_xy_chromaticity_diagram_and_the_CIE_xyY_color_space$

References

Wikipedia, 2014 CIE 1931 color space http://en.wikipedia.org/wiki/CIE_1931_color_space# CIE_xy_chromaticity_diagram_and_the_CIE_xyY_color_space

```
CIE1960UCS2CIE1964(c(0.1633789, 1.322222, 0.08391198))
```

22 CIE1960UCS2xy

CIE1960UCS2xy

Convert CIE 1960 UCS color space to 1960 xy color space

Description

CIE1960UCS2xy Converts CIE 1960 UCS color space to 1960 xy color space.

Usage

```
CIE1960UCS2xy(uvMatrix)
```

Arguments

uvMatrix uv coordinates

Value

CIE 1960 xy coordinates

Author(s)

Jose Gama

Source

 $Wikipedia, 2014\ CIE\ 1964\ color\ space\ http://en.wikipedia.org/wiki/CIE_1931_color_space\#\ CIE_xy_chromaticity_diagram_and_the_CIE_xyY_color_space$

References

 $Wikipedia, 2014\ CIE\ 1931\ color\ space\ http://en.wikipedia.org/wiki/CIE_1931_color_space\#\ CIE_xy_chromaticity_diagram_and_the_CIE_xyY_color_space$

```
CIE1960UCS2xy(c(0.1633789, 1.322222 ))
```

CIE1976chroma 23

CIE1976chroma

CIE 1976 chroma formula for CIELab and CIELuv

Description

CIE1976chroma CIE 1976 chroma formula for CIELab and CIELuv.

Usage

```
CIE1976chroma(CIELMatrix)
```

Arguments

CIELMatrix

CIELab or CIELuv data

Author(s)

Jose Gama

Source

R. W. G. Hunt, M. R. Pointer, 2011 Measuring Colour Volume 23 of The Wiley-IS&T Series in Imaging Science and Technology John Wiley & Sons

References

R. W. G. Hunt, M. R. Pointer, 2011 Measuring Colour Volume 23 of The Wiley-IS&T Series in Imaging Science and Technology John Wiley & Sons

Examples

```
CIELMatrix<-c(34.78467, 28.15159, 3.024663)
CIE1976chroma(CIELMatrix)
```

CIE1976hueangle

CIE 1976 hue angle formula for CIELab and CIELuv

Description

CIE1976hueangle CIE 1976 hue angle formula for CIELab and CIELuv.

Usage

```
CIE1976hueangle(CIELMatrix)
```

Arguments

CIELMatrix CIELab or CIELuv data

Author(s)

Jose Gama

Source

R. W. G. Hunt, M. R. Pointer, 2011 Measuring Colour Volume 23 of The Wiley-IS&T Series in Imaging Science and Technology John Wiley & Sons

References

R. W. G. Hunt, M. R. Pointer, 2011 Measuring Colour Volume 23 of The Wiley-IS&T Series in Imaging Science and Technology John Wiley & Sons

Examples

```
CIELMatrix<-c(34.78467, 28.15159, 3.024663)
CIE1976hueangle(CIELMatrix)
```

CIE1976uv2CIE1931xy

CIE-1976 u'v' to CIE-1931 xy

Description

CIE1976uv2CIE1931xy CIE-1976 u'v' to CIE-1931 xy.

Usage

CIE1976uv2CIE1931xy(uvmatrix)

Arguments

uvmatrix

CIE-1976 u'v' data

Author(s)

Jose Gama

Source

Paul Schils, 2014 Color theory phenomena http://www.color-theory-phenomena.nl/10.03.htm

CIE1976uv2CIE1960uv 25

References

Paul Schils, 2014 Color theory phenomena http://www.color-theory-phenomena.nl/10.03.htm

Examples

```
CIE1976uv2CIE1931xy(c(0.2830965, 0.4661789))
```

CIE1976uv2CIE1960uv

CIE-1976 u'v' to CIE-1960 uv

Description

CIE1976uv2CIE1960uv CIE-1976 u'v' to CIE-1960 uv.

Usage

CIE1976uv2CIE1960uv(uvmatrix)

Arguments

uvmatrix

CIE-1976 u'v' data

Author(s)

Jose Gama

Source

Paul Schils, 2014 Color theory phenomena http://www.color-theory-phenomena.nl/10.03.htm

References

Paul Schils, 2014 Color theory phenomena http://www.color-theory-phenomena.nl/10.03.

```
CIE1976uv2CIE1960uv(c(0.2830965, 0.4661789))
```

26 CIE1976uvSaturation

CIE1976uvSaturation CIE 1976 uv Saturation

Description

CIE1976uvSaturation CIE 1976 uv Saturation.

Usage

CIE1976uvSaturation(uvMatrix, whitepoint)

Arguments

uvMatrix CIELuv data
whitepoint white point

Author(s)

Jose Gama

Source

R. W. G. Hunt, M. R. Pointer, 2011 Measuring Colour Volume 23 of The Wiley-IS&T Series in Imaging Science and Technology John Wiley & Sons

References

R. W. G. Hunt, M. R. Pointer, 2011 Measuring Colour Volume 23 of The Wiley-IS&T Series in Imaging Science and Technology John Wiley & Sons

```
CIE1976uvSaturation(cbind(34.78467, 28.15159, 3.024663), as.numeric(
get("XYZperfectreflectingdiffuser",
envir = environment())[which(get("XYZperfectreflectingdiffuser",
envir = environment())[["Illuminant"]]=='C'),c('X2','Y2')]))
```

CIELabtoDIN99 27

CIELabtoDIN99

Conversion from CIELAB color space to DIN99 coordinates

Description

CIELabtoDIN99 Converts from CIELAB color space to DIN99 coordinates.

Usage

```
CIELabtoDIN99(Lab)
```

Arguments

Lab

CIELAB

Value

DIN99

Author(s)

Jose Gama

Source

```
CIELAB\ to\ DIN 99\ coordinates,\ 2014\ http://de.wikipedia.org/w/index.php?title=Diskussion:\ DIN 99-Farbraum
```

References

 $CIELAB\ to\ DIN 99\ coordinates,\ 2014\ http://de.wikipedia.org/w/index.php?title=Diskussion:\ DIN 99-Farbraum$

```
CIELabtoDIN99(c(0.310897, 0.306510, 74.613450))
```

28 CIETint

CIEluminanceY2NCSblackness

approximated NCS blackness s by the CIE luminance factor Y

Description

CIEluminanceY2NCSblackness approximated NCS blackness s by the CIE luminance factor Y.

Usage

```
CIEluminanceY2NCSblackness(Y)
```

Arguments

Υ

CIE values for illuminant C

Author(s)

Jose Gama

Source

Hsien-Che Lee, 2005 Introduction to Color Imaging Science Cambridge University Press pp. 366

References

Hsien-Che Lee, 2005 Introduction to Color Imaging Science Cambridge University Press pp. 366

Examples

```
xyY <- c(0.4083308, 0.2988462, 0.08391198)
CIEluminanceY2NCSblackness(xyY[3])</pre>
```

CIETint

Tint indices: CIE Tint and ASTM E313 Tint

Description

CIETINT Tint indices: CIE Tint and ASTM E313 Tint.

Usage

```
CIETint(xymatrix,illuminant='D65',observer=2)
```

ciexyz31 29

Arguments

xymatrix matrix with xy data

illuminant illuminant observer observer

Value

Tint

Author(s)

Jose Gama

Source

CIE, 2004 CIE Publication 15:2004, "Colorimetry" ASTM E313, "Standard Practice for Calculating Yellowness and Whiteness Indices from Instrumentally Measured Color Coordinates"

References

CIE, 2004 CIE Publication 15:2004, "Colorimetry" ASTM E313, "Standard Practice for Calculating Yellowness and Whiteness Indices from Instrumentally Measured Color Coordinates"

Examples

```
xyY <- c(0.4083308, 0.2988462, 0.08391198)
CIETint(xyY)
```

ciexyz31

CIE 1931 2-deg, XYZ CMFs

Description

ciexyz31 is a table with CIE 1931 2-deg, XYZ color matching functions.

Usage

ciexyz31

Format

This data frame contains the following data:

```
wlnm wavelength (nm)xbar x CMFybar y CMFzbar z CMF
```

30 ciexyz64

Author(s)

Jose Gama

Source

Wyszecki, G., & Stiles, W. S., 1982 Color Science: concepts and methods, quantitative data and formulae (2nd ed.). New York: Wiley.

References

Wyszecki, G., & Stiles, W. S., 1982 Color Science: concepts and methods, quantitative data and formulae (2nd ed.). New York: Wiley.

Examples

```
data(ciexyz31)
ciexyz31
```

ciexyz64

CIE 1964 10-deg, XYZ CMFs

Description

ciexyz64 is a table with CIE 1964 10-deg, XYZ color matching functions.

Usage

ciexyz64

Format

This data frame contains the following data:

```
wlnm wavelength (nm)
xbar x CMF
ybar y CMF
zbar z CMF
```

Author(s)

Jose Gama

Source

Wyszecki, G., & Stiles, W. S., 1982 Color Science: concepts and methods, quantitative data and formulae (2nd ed.). New York: Wiley.

CMY2CMYK 31

References

Wyszecki, G., & Stiles, W. S., 1982 Color Science: concepts and methods, quantitative data and formulae (2nd ed.). New York: Wiley.

Examples

```
data(ciexyz64)
ciexyz64
```

CMY2CMYK

Convert CMY coordinates to CMYK

Description

CMY2CMYK Converts CMY coordinates to CMYK.

Usage

```
CMY2CMYK(CMYmatrix)
```

Arguments

CMYmatrix

CMY coordinates

Value

CMYK coordinates

Author(s)

Jose Gama

Source

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

References

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

```
CMY2CMYK(c(0.59072, 0.85570, 0.80283))
```

32 CMYK2CMY

CMY2RGB

Convert CMYK coordinates to RGB

Description

CMY2RGB Converts CMYK coordinates to RGB.

Usage

CMY2RGB(CMYmatrix)

Arguments

CMYmatrix

CMY coordinates

Value

RGB coordinates

Author(s)

Jose Gama

Source

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

References

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

Examples

CMY2RGB(c(0.310897, 0.306510, 74.613450))

CMYK2CMY

Convert CMYK coordinates to CMY

Description

CMYK2CMY Converts CMYK coordinates to CMY.

Usage

CMYK2CMY(CMYKmatrix)

ColorBlockFromMunsell 33

Arguments

CMYKmatrix CMYK coordinates

Value

CMY coordinates

Author(s)

Jose Gama

Source

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

References

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

Examples

```
CMYK2CMY(c(.342, .768, .683, .378))
```

ColorBlockFromMunsell Get HVC, ISCC-NBS Number and ISCC-NBS Name from Munsell notation

Description

ColorBlockFromMunsell Get HVC, ISCC-NBS Number and ISCC-NBS Name from Munsell notation.

Usage

ColorBlockFromMunsell(HVC)

Arguments

HVC

Munsell hue, value and chroma

Format

HVC[1] Munsell hue, on the ASTM D1535 100 point circular scale. All values are valid.

HVC[2] Munsell value, must be between 0 and 10

HVC[3] Munsell chroma, must be non-negative

Value

HVC, ISCC-NBS Number, ISCC-NBS Name

Author(s)

Glenn Davis

compuphaseDifferenceRGB

compuphase Difference RGB

Description

 ${\tt compuphaseDifferenceRGB}\ compuphase\ Difference\ RGB.$

Usage

compuphaseDifferenceRGB(RGB1, RGB2)

Arguments

RGB1 RGB color sample
RGB2 RGB color reference

Value

Delta E

Author(s)

Jose Gama

Source

Thiadmer Riemersma, 2012 CompuPhase http://www.compuphase.com/cmetric.htm

References

Thiadmer Riemersma, 2012 CompuPhase http://www.compuphase.com/cmetric.htm

Examples

compuphaseDifferenceRGB(c(124,63,78),c(241,65,78))

conversionIlluminance 35

conversionIlluminance Conversion Factors for Units of Illuminance

Description

conversionIlluminance is a table of conversion factors for units of Illuminance

Usage

conversionIlluminance

Format

This data frame contains the following columns:

```
footcandles foot-candles
lux lm/m2 = lux
phot phot
milliphot milliphot
units units
```

Author(s)

Jose Gama

Source

J. Meyer-Arendt, "Radiometry and Photometry: Units and Conversion Factors," Appl. Opt. 7, 2081-2081 (1968).

References

J. Meyer-Arendt, "Radiometry and Photometry: Units and Conversion Factors," Appl. Opt. 7, 2081-2081 (1968).

```
data(conversionIlluminance)
conversionIlluminance
```

36 conversionLuminance

 ${\tt conversionLuminance}$

Conversion Factors for Units of Luminance

Description

conversionLuminance is a table of conversion factors for units of Luminance

Usage

conversionLuminance

Format

This data frame contains the following columns:

```
cd.m.2 cd/m^2 = nit
cd.cm.2 cd/cm^2 = stilb
cd.ft.2 cd/ft^2
cd.in.2 cd/in^2
apostilb apostilb = blondel
millilambert millilambert
footlambert foot-lambert
```

Author(s)

Jose Gama

Source

J. Meyer-Arendt, "Radiometry and Photometry: Units and Conversion Factors," Appl. Opt. 7, 2081-2081 (1968).

References

J. Meyer-Arendt, "Radiometry and Photometry: Units and Conversion Factors," Appl. Opt. 7, 2081-2081 (1968).

```
data(conversionLuminance)
conversionLuminance
```

createIsoTempLinesTable

table of isotemperature lines for use with the Robertson Method

Description

createIsoTempLinesTable table of isotemperature lines for use with the Robertson Method (Robertson, 1968) to interpolate isotemperature lines from the CIE 1960 UCS.

Usage

```
createIsoTempLinesTable(SPD=NA,CIETable = get("ciexyz31", envir = environment()),
TCS = get("TCSdata", envir = environment()))
```

Arguments

SPD light source spd
CIETable reference data values

TCS spectral reflectance data of 14 color test samples for CRI

Value

Iso temperature lines table

Author(s)

Jose Gama

Source

Rensselaer Polytechnic Institute Light Sources and Color Q & A Appendix B: MATLAB script for calculating measures of light source color: CCT, CRI, GA, and FSI http://www.lrc.rpi.edu/programs/nlpip/lightinganswers/lightsources/appendixb1.asp

References

Rensselaer Polytechnic Institute Light Sources and Color Q & A Appendix B: MATLAB script for calculating measures of light source color: CCT, CRI, GA, and FSI http://www.lrc.rpi.edu/programs/nlpip/lightinganswers/lightsources/appendixb1.asp

```
# illuminant A
SPD = illuminants[1:51*2-1,c('wlnm','A')] # every 10 nm
isoTempLinesTable <- createIsoTempLinesTable(SPD)</pre>
```

38 daylightcomponents

daylightcomponents

daylight components

Description

daylightcomponents table with the mean relative spectral radiant power distribution and first two eigenvectors for the CIE method of calculating daylight.

Format

This data frame contains the following columns:

wlnm wavelength in nm

S0 mean relative spectral radiant power distribution

S1 first eigenvector

S2 second eigenvector

Author(s)

Jose Gama

Source

Wyszecki, G. and Stiles, W.S., 1982 Color Science: Concepts and Methods, Quantitative data and formulae. John Wiley & Sons.

References

Wyszecki, G. and Stiles, W.S., 1982 Color Science: Concepts and Methods, Quantitative data and formulae. John Wiley & Sons.

```
data(daylightcomponents)
str(daylightcomponents)
```

deltaE1976 39

deltaE1976

Delta E (CIE 1976)

Description

```
deltaE1976 The color difference Delta E (CIE 1976).
```

Usage

```
deltaE1976(Lab1, Lab2)
```

Arguments

Lab1 CIE Lab color sample
Lab2 CIE Lab color reference

Value

Delta E

Author(s)

Jose Gama

Source

Bruce Justin Lindbloom, 2013 Color Calculator www.brucelindbloom.com

References

Bruce Justin Lindbloom, 2013 Color Calculator www.brucelindbloom.com

```
RGB1<-c(124,63,78)
RGB2<-c(95,213,184)
deltaE1976(RGB1,RGB2)
```

40 deltaE1994

deltaE1994

Delta E (CIE 1994)

Description

```
deltaE1994 The color difference Delta E (CIE 1994).
```

Usage

```
deltaE1994(Lab1, Lab2, textiles = FALSE)
```

Arguments

Lab1 CIE Lab color sample
Lab2 CIE Lab color reference

textiles boolean, TRUE = version for textiles

Value

Delta E

Author(s)

Jose Gama

Source

Bruce Justin Lindbloom, 2013 Color Calculator www.brucelindbloom.com

References

Bruce Justin Lindbloom, 2013 Color Calculator www.brucelindbloom.com

```
RGB1<-c(124,63,78)
RGB2<-c(95,213,184)
deltaE1994(RGB1,RGB2)
```

deltaE2000 41

deltaE2000

Delta E (CIE 2000)

Description

```
deltaE2000 The color difference Delta E (CIE 2000).
```

Usage

```
deltaE2000(Lab1, Lab2)
```

Arguments

Lab1 CIE Lab color sample
Lab2 CIE Lab color reference

Value

Delta E

Author(s)

Jose Gama

Source

Bruce Justin Lindbloom, 2013 Color Calculator www.brucelindbloom.com

References

Bruce Justin Lindbloom, 2013 Color Calculator www.brucelindbloom.com

```
RGB1<-c(124,63,78)
RGB2<-c(95,213,184)
deltaE2000(RGB1,RGB2)
```

42 deltaECMC

deltaECMC

Delta E CMC

Description

deltaECMC The color difference method of the Color Measurement Committee (the CMC) .

Usage

```
deltaECMC(Lab1, Lab2, L, C)
```

Arguments

Lab1 CIE Lab color sample
Lab2 CIE Lab color reference
L parameter L
C parameter C

Value

Delta E

Author(s)

Jose Gama

Source

Bruce Justin Lindbloom, 2013 Color Calculator www.brucelindbloom.com

References

Bruce Justin Lindbloom, 2013 Color Calculator www.brucelindbloom.com

```
RGB1<-c(124,63,78)
RGB2<-c(95,213,184)
deltaECMC(RGB1,RGB2)
```

DeMarcoPokornySmith2degConeFundamentals1992

DeMarco, Pokorny & Smith (1992) versions of the Smith-Pokorny 2deg fundamentals

Description

DeMarcoPokornySmith2degConeFundamentals1992 DeMarco, Pokorny & Smith (1992) versions of the Smith-Pokorny 2-deg fundamentals based on the CIE Judd-Vos 2-deg CMFs.

Usage

DeMarcoPokornySmith2degConeFundamentals1992

Format

This data frame contains the following data:

wlnm wavelength (nm)

L2 L-cone spectral sensitivity, L2(lambda)

M2 M-cone spectral sensitivity, M2(lambda)

S2 S-cone spectral sensitivity, S2(lambda)

Author(s)

Jose Gama

Source

The Colour & Vision Research laboratory(CVRL) Institute of Ophthalmology, University College London www.cvrl.org

References

The Colour & Vision Research laboratory(CVRL) Institute of Ophthalmology, University College London www.cvrl.org

Examples

data(DeMarcoPokornySmith2degConeFundamentals1992)
DeMarcoPokornySmith2degConeFundamentals1992

DIN6167.YellownessIndex

CIE Whiteness

Description

DIN6167. YellownessIndex The CIE Whiteness index is widely used in the industry for D65 for 2 or 10 deg observer.

Usage

Arguments

XYZmatrix CIE values for illuminant C

illuminant illuminant observer observer

RefWhite Reference White

Author(s)

Jose Gama

Source

Scandinavian Pulp, paper and board, 2003 Basic equations for optical properties SCAN-G 5:03 Revised 2003

References

Scandinavian Pulp, paper and board, 2003 Basic equations for optical properties SCAN-G 5:03 Revised 2003

```
XYZ<-c(0.11465380, 0.08391198, 0.08222077)
DIN6167.YellownessIndex(XYZ)
```

DIN99toCIELab 45

DIN99toCIELab

Conversion from DIN99 coordinates to CIELAB color space

Description

DIN99toCIELab Conversion from DIN99 coordinates to CIELAB color space.

Usage

```
DIN99toCIELab(Lab99o)
```

Arguments

Lab99o

Lab99o coordinates

Value

CIELAB coordinates

Author(s)

Jose Gama

Source

DIN99 coordinates to CIELAB color space http://de.wikipedia.org/w/index.php?title=Diskussion:DIN99-Farbraum

References

DIN99 coordinates to CIELAB color space http://de.wikipedia.org/w/index.php?title=Diskussion:DIN99-Farbraum

```
DIN99toCIELab(c(0.59072, 0.85570, 0.80283))
```

46 dkl2dklCart

dkl2dklCart

converts between spherical and cartesian coordinates for DKL

Description

 ${\tt dkl2dklCart\ Converts\ DKL, from\ spherical\ coordinates\ to\ cartesian.\ dklCart2rgb\ Converts\ DKL, from\ cartesian\ to\ spherical\ coordinates.}$

Usage

```
dkl2dklCart(dklMatrix)
```

Arguments

dklMatrix

DKL coordinates

Value

DKL coordinates

Author(s)

Jose Gama

Source

Package psychopy for Python

Graph-Based Visual Saliency (MATLAB source code) Jonathan Harel California Institute of Technology

References

Package psychopy for Python

Graph-Based Visual Saliency (MATLAB source code) Jonathan Harel California Institute of Technology

```
RGB<-c(124,63,78)
d <- rgb2dklCart(RGB)
dklCart2dkl(d)
dkl2dklCart(c(1.647176, 60.8308, 91.45825))
d</pre>
```

dkl2rgb 47

dkl2rgb

convert RGB to DKL

Description

 ${\tt dkl2rgb\ Converts\ DKL,\ spherical\ coords\ coordinates\ to\ sRGB.\ dklCart2rgb\ Converts\ DKL,\ cartesian\ coords\ coordinates\ to\ sRGB.}$

Usage

```
dkl2rgb(dklMatrix, conversionMatrix = NA)
```

Arguments

```
dklMatrix DKL coordinates conversionMatrix conversion matrix
```

Value

RGB coordinates

Author(s)

Jose Gama

Source

Package psychopy for Python

Graph-Based Visual Saliency (MATLAB source code) Jonathan Harel California Institute of Technology

References

Package psychopy for Python

Graph-Based Visual Saliency (MATLAB source code) Jonathan Harel California Institute of Technology

```
dklC <- rgb2dklCart(c(54,75,121))
dklCart2dkl(dklC)</pre>
```

48 DominantWavelength

DominantWavelength

Convert CMY coordinates to CMYK

Description

DominantWavelength Converts CMY coordinates to CMYK.

Usage

```
DominantWavelength(xyYmatrix, illuminant='D65',observer=2,
RefWhiteIllum=get("XYZperfectreflectingdiffuser", envir = environment()))
```

Arguments

xyYmatrix xyY matrix illuminant illuminant observer observer

RefWhiteIllum Reference White

Value

Dominant Wavelength

Author(s)

Jose Gama

Source

Bruce Justin Lindbloom, 2013 www.brucelindbloom.com/index.html?ColorCalculator.html

References

Bruce Justin Lindbloom, 2013 www.brucelindbloom.com/index.html?ColorCalculator.html

```
DominantWavelength(c(0.59072, 0.85570, 0.80283))
```

 ${\tt emittanceblackbodyPlanck}$

emittance of a black body of temperature T at a given wavelength

Description

 ${\sf emittanceblackbodyPlanck}$ emittance of a black body of temperature T at a given wavelength (in metres).

Usage

```
emittanceblackbodyPlanck(wlnm, T)
```

Arguments

wlnm wavelength in nm
T temperature in Kelvin

Value

emittance

Author(s)

Jose Gama

Source

Planck's radiation law https://en.wikipedia.org/wiki/Planck%27s_law

References

Planck's radiation law https://en.wikipedia.org/wiki/Planck%27s_law

Examples

emittanceblackbodyPlanck(555,2000)

footcandle2candela.steradian.sqmeter

converts foot candle to candela steradian / square meter

Description

 $footcandle 2 candela.steradian.sqmeter\ converts\ foot\ candle\ to\ candela\ steradian\ /\ square\ meter\ [cd*sr/m^2].$

Usage

footcandle2candela.steradian.sqmeter(ftcl)

Arguments

ftcl

foot candle

Value

watts / square centimeter

Author(s)

Jose Gama

Source

Translators cafe http://www.translatorscafe.com/cafe/EN/units-converter/illumination

References

Translators cafe http://www.translatorscafe.com/cafe/EN/units-converter/illumination

Examples

footcandle2candela.steradian.sqmeter(5)

footcandle2lux 51

footcandle2lux

convert foot candle to Lumens/lux

Description

footcandle2lux converts foot candle to Lumens/lux.

Usage

```
footcandle2lux(ftcl)
```

Arguments

ftcl

foot candle

Value

Lumens/lux

Author(s)

Jose Gama

Source

Translators cafe http://www.translatorscafe.com/cafe/EN/units-converter/illumination

References

Translators cafe http://www.translatorscafe.com/cafe/EN/units-converter/illumination

Examples

footcandle2lux(5)

footcandle2watt.sqcentimeter

converts foot candle to watts / square centimeter

Description

footcandle2watt.sqcentimeter converts foot candle to watts / square centimeter [w/cm 2] (at 555 nm).

Usage

footcandle2watt.sqcentimeter(ftcl)

52 GanzGrieser, Tint

Arguments

ftcl foot candle

Value

watts / square centimeter

Author(s)

Jose Gama

Source

Translators cafe http://www.translatorscafe.com/cafe/EN/units-converter/illumination

References

Translators cafe http://www.translatorscafe.com/cafe/EN/units-converter/illumination

Examples

footcandle2watt.sqcentimeter(5)

GanzGrieser.Tint

Ganz and Grieser Tint

Description

GanzGrieser. Tint Ganz Grieser Tint Method.

Usage

```
GanzGrieser.Tint(xyYmatrix)
```

Arguments

xyYmatrix

CIE xyY values for illuminant C

Author(s)

Jose Gama

Source

Xrite, 2012 Color iQC and Color iMatch Color Calculations Guide Version $8.0\ 30\ July\ 2012$ Revision 1.0

GanzGrieser.Whiteness 53

References

Xrite, 2012 Color iQC and Color iMatch Color Calculations Guide Version 8.0 30 July 2012 Revision 1.0

Examples

```
xyY <- c(0.4083308, 0.2988462, 0.08391198)
GanzGrieser.Tint(xyY)
```

GanzGrieser. Whiteness Ganz and Grieser Whiteness

Description

GanzGrieser.Whiteness Dr. E. Ganz (formerly employee of Ciba AG, Switzerland) and Mr.R. Griesser (formerly employee of J.R.Geigy) developed the Ganz Grieser Whiteness Method.

Usage

```
GanzGrieser.Whiteness(xyYmatrix)
```

Arguments

xyYmatrix

CIE xyY values for illuminant C

Author(s)

Jose Gama

Source

Xrite, 2012 Color iQC and Color iMatch Color Calculations Guide Version 8.0 30 July 2012 Revision 1.0

References

Xrite, 2012 Color iQC and Color iMatch Color Calculations Guide Version $8.0\ 30\ July\ 2012\ Revision\ 1.0$

```
xyY <- c(0.4083308, 0.2988462, 0.08391198)
GanzGrieser.Whiteness(xyY)
```

54 heuristic.wlnm2RGB

heuristic.wlnm2RGB

Approximations from wavelengths to RGB

Description

heuristic.wlnm2RGB Approximations from wavelengths to RGB.

Usage

```
heuristic.wlnm2RGB(wavelength, Gamma = 0.8, IntensityMax = 1)
```

Arguments

wavelength wavelenght data

Gamma Gamma

IntensityMax maximum intensity

Value

XYZ coordinates

Author(s)

Jose Gama

Source

 $Dan\ Bruton's, 2004\ www.physics.sfasu.edu/astro/color.html\ Earl\ F.\ Glynn\ 2006\ Delphi\ conversion\ http://www.efg2.com/Lab/ScienceAndEngineering/Spectra.htm$

References

 $Dan\ Bruton's, 2004\ www.physics.sfasu.edu/astro/color.html\ Earl\ F.\ Glynn\ 2006\ Delphi\ conversion\ http://www.efg2.com/Lab/ScienceAndEngineering/Spectra.htm$

```
heuristic.wlnm2RGB(555)
```

HSL2RGB 55

HSL2RGB

Convert HSL coordinates to RGB

Description

HSL2RGB Converts HSL coordinates to RGB.

Usage

```
HSL2RGB(HSLmatrix)
```

Arguments

HSLmatrix HSL coordinates

Value

RGB coordinates

Author(s)

Jose Gama

Source

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

References

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

```
HSL<-c(0.9590164, 0.3262032, 0.3666667)
HSL2RGB(HSL)
HSL2RGB(rbind(HSL,HSL,HSL,HSL,HSL,HSL))</pre>
```

56 HSV2RGB

HSV2RGB

Convert HSV coordinates to RGB

Description

HSV2RGB Converts HSV coordinates to RGB.

Usage

```
HSV2RGB(HSVmatrix)
```

Arguments

HSVmatrix

HSV coordinates

Value

RGB coordinates

Author(s)

Jose Gama

Source

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

References

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

```
HSV<-c(0.9590164, 0.4919355, 0.4862745)
HSV2RGB(HSV)
```

Hue.2.RGB 57

Hue.	2	RGR		
Huc.		NGD		

Convert Hue to RGB

Description

Hue.2.RGB Converts Hue to RGB for HSL conversion.

Usage

```
Hue.2.RGB(v1, v2, vH)
```

Arguments

v1	value 1
v2	value 2
νH	value of hue

Value

RGB coordinates

Author(s)

Jose Gama

Source

 $Paul\ Centore\ 2014\ The\ Munsell\ and\ Kubelka-Munk\ Toolbox\ http://www.99main.com/~centore/MunsellAndKubelkaMunkToolbox/MunsellAndKubelkaMunkToolbox.html$

References

Paul Centore 2014 The Munsell and Kubelka-Munk Toolbox http://www.99main.com/~centore/MunsellAndKubelkaMunkToolbox/MunsellAndKubelkaMunkToolbox.html

```
Hue.2.RGB(1,2,3)
```

58 huedegreemunsell

huedegree

convert Munsell hue to degree

Description

huedegree convert Munsell hue to degree.

Usage

huedegree(MunIn)

Arguments

MunIn

Munsell hue color

Value

Munsell hue degree

Author(s)

Jose Gama

Source

Takahiro Onodera, 2010 Color-Model-Munsell-Util http://annocpan.org/dist/Color-Model-Munsell-Util

References

 $Takahiro\ Onodera,\ 2010\ Color-Model-Munsell-Util\ http://annocpan.org/dist/Color-Model-Munsell-Util\ http://annocpan.org/dist/Color-Munsell-Util\ http://annocpan.org/dist/Color-Munsell-Util\ http://annocpan.org/dist/Color-Munsell-Util\ http://annocpan.org/dist/Color-Munsell-Util\ http://annocpan.org/dist/Color-Munsell-Util\ http://annocpan.org/dist/Color-Mu$

Examples

huedegree('1P')

huedegreemunsell

Table with Munsell hue degrees

Description

huedegreemunsell table with Munsell hue degrees.

Usage

huedegreemunsell

Hunter60.WhitenessIndex 59

Format

This data frame contains the following columns:

HueDegree hue degree

HueMunsell hue in Munsell H

Author(s)

Jose Gama

Source

Paul Centore 2014 The Munsell and Kubelka-Munk Toolbox http://www.99main.com/~centore/MunsellAndKubelkaMunkToolbox/MunsellAndKubelkaMunkToolbox.html

James D. Foley, Andries van Dam, Steven K. Feiner, & John F. Hughes, 1990 Computer Graphics: Principles and Practice, 2nd ed., Addison-Wesley Publishing Company.

Gunter Wyszecki & W. S. Stiles, 1982 Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd edition, John Wiley and Sons

References

Paul Centore 2014 The Munsell and Kubelka-Munk Toolbox http://www.99main.com/~centore/MunsellAndKubelkaMunkToolbox/MunsellAndKubelkaMunkToolbox.html

James D. Foley, Andries van Dam, Steven K. Feiner, & John F. Hughes, 1990 Computer Graphics: Principles and Practice, 2nd ed., Addison-Wesley Publishing Company.

Gunter Wyszecki & W. S. Stiles, 1982 Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd edition, John Wiley and Sons

Examples

data(huedegreemunsell)
huedegreemunsell

Hunter60.WhitenessIndex

Hunter 60 Whiteness Index

Description

Hunter60. Whiteness Index Hunter 60 Whiteness Index.

Usage

Hunter60.WhitenessIndex(LabHunterMatrix)

60 HunterLab2XYZ

Arguments

LabHunterMatrix

Lab Hunter values for illuminant C

Author(s)

Jose Gama

Source

Xrite, 2012 Color iQC and Color iMatch Color Calculations Guide Version 8.0 30 July 2012 Revision 1.0

References

Xrite, 2012 Color iQC and Color iMatch Color Calculations Guide Version $8.0\ 30\ \mathrm{July}\ 2012\ \mathrm{Revision}\ 1.0$

Examples

```
HunterLab<-c(28.96756, 2.363884, 0.4821515)
Hunter60.WhitenessIndex(HunterLab)</pre>
```

HunterLab2XYZ

Convert HunterLab coordinates to XYZ

Description

HunterLab2XYZ Converts HunterLab coordinates to XYZ.

Usage

Arguments

HunterLabmatrix

HunterLab coordinates

illuminant illuminant observer observer

RefWhite Reference White

Value

XYZ coordinates

illuminantA 61

Author(s)

Jose Gama

Source

```
Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/
```

References

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

Examples

```
HunterLab2XYZ(c(0.310897, 0.306510, 74.613450))
```

illuminantA

Relative spectral power distributions of CIE illuminant A at 1 nm interval

Description

illuminantA is a table with Relative spectral power distributions of CIE illuminant A at 1 nm interval.

Usage

illuminantA

Format

This data frame contains the following data:

```
wlnm wavelength (nm)
```

intensity Relative spectral power

Author(s)

Jose Gama

Source

Wyszecki, G., & Stiles, W. S., 1982 Color Science: concepts and methods, quantitative data and formulae (2nd ed.). New York: Wiley.

References

Wyszecki, G., & Stiles, W. S., 1982 Color Science: concepts and methods, quantitative data and formulae (2nd ed.). New York: Wiley.

62 illuminantD65

Examples

data(illuminantA)
illuminantA

illuminantD65

Relative spectral power distributions of CIE illuminant D65 at 1 nm interval

Description

illuminantD65 is a table with Relative spectral power distributions of CIE illuminant D65 at 1 nm interval.

Usage

illuminantD65

Format

This data frame contains the following data:

wlnm wavelength (nm)

intensity Relative spectral power

Author(s)

Jose Gama

Source

Wyszecki, G., & Stiles, W. S., 1982 Color Science: concepts and methods, quantitative data and formulae (2nd ed.). New York: Wiley.

References

Wyszecki, G., & Stiles, W. S., 1982 Color Science: concepts and methods, quantitative data and formulae (2nd ed.). New York: Wiley.

Examples

data(illuminantD65)
illuminantD65

illuminants 63

illuminants	Relative spectral power distributions of CIE illuminants at 5 nm interval
-------------	---

Description

illuminants is a table with Relative spectral power distributions of CIE illuminants at 5 nm interval.

Usage

illuminants

Format

This data frame contains the following data:

wlnm wavelength (nm)

A illuminant A

B illuminant B

C illuminant C

D50 illuminant D50

D55 illuminant D55

D65 illuminant D65

D75 illuminant D75

D93 illuminant D93

E illuminant E

Natural illuminant Natural

PlusWhite illuminant PlusWhite

TL84 illuminant TL84

Polylux3000 illuminant Polylux3000 **Polylux4000** illuminant Polylux4000

KolorRite illuminant KolorRite

FL1 illuminant FL1

FL2 illuminant FL2

FL3 illuminant FL3

FL4 illuminant FL4

FL5 illuminant FL5

FL6 illuminant FL6

FL7 illuminant FL7

FL8 illuminant FL8

FL9 illuminant FL9

FL10 illuminant FL10

FL11 illuminant FL11

FL12 illuminant FL12

Author(s)

Jose Gama

Source

Wyszecki, G., & Stiles, W. S., 1982 Color Science: concepts and methods, quantitative data and formulae (2nd ed.). New York: Wiley.

References

Wyszecki, G., & Stiles, W. S., 1982 Color Science: concepts and methods, quantitative data and formulae (2nd ed.). New York: Wiley.

Examples

data(illuminants)
illuminants

 ${\tt ISObrightnessReflectometerRSD}$

Weighting factors for the calculation of ISO brightness

Description

ISObrightnessReflectometerRSD is a table with the weighting factors for the calculation of ISO brightness.

Usage

 ${\tt ISObrightnessReflectometerRSD}$

Format

This data frame contains the following data:

wln wavelength

F factor

weights weight

kelvin2xy 65

Author(s)

Jose Gama

Source

Scandinavian Pulp, paper and board, 2003 Basic equations for optical properties SCAN-G 5:03 Revised 2003

References

Scandinavian Pulp, paper and board, 2003 Basic equations for optical properties SCAN-G 5:03 Revised 2003

Examples

data(ISObrightnessReflectometerRSD)
ISObrightnessReflectometerRSD

kelvin2xy

Blackbody radiator color temperature to CIE 1931 x,y chromaticity approximation function

Description

kelvin2xy Blackbody radiator color temperature to CIE 1931 x,y chromaticity approximation function

Usage

kelvin2xy(T)

Arguments

Τ

temperature in Kelvin

Value

color temperature

Author(s)

Jose Gama

Source

Kim et al., 2002 "Design of Advanced Color - Temperature Control System for HDTV Applications" http://fcam.garage.maemo.org/apiDocs/namespace_f_cam.html

66 Lab2LCHab

References

Kim et al., 2002 "Design of Advanced Color - Temperature Control System for HDTV Applications" http://fcam.garage.maemo.org/apiDocs/namespace_f_cam.html

Examples

kelvin2xy(300)

Lab2LCHab

Convert CIE Lab coordinates to LCHab

Description

Lab2LCHab Converts CIE Lab coordinates to LCHab.

Usage

```
Lab2LCHab(LabMatrix)
```

Arguments

LabMatrix

CIE Lab coordinates

Value

LCHab coordinates

Author(s)

Jose Gama

Source

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

References

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

```
Lab2LCHab(c(0.310897, 0.306510, 74.613450))
```

LAB2LUV 67

LAB2LUV

Convert CIE Lab coordinates to CIE Luv

Description

LAB2LUV Converts CIE Lab coordinates to CIE Luv.

Usage

```
LAB2LUV(Labmatrix)
```

Arguments

Labmatrix

CIE Lab coordinates

Value

XYZ coordinates

Author(s)

Jose Gama

Examples

```
LAB2LUV(c(0.310897, 0.306510, 74.613450))
```

Lab2XYZ

Convert CIE Lab coordinates to XYZ

Description

Lab2XYZ Converts CIE Lab coordinates to XYZ.

Usage

Arguments

Labmatrix CIE Lab coordinates

illuminant illuminant observer observer

RefWhite Reference White

68 LCHab2Lab

Value

XYZ coordinates

Author(s)

Jose Gama

Source

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

References

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

Examples

Lab2XYZ(c(0.310897, 0.306510, 74.613450))

LCHab2Lab

Convert LCHab coordinates to CIE Lab

Description

LCHab2Lab Converts LCHab coordinates to CIE Lab.

Usage

LCHab2Lab(LCHabmatrix)

Arguments

LCHabmatrix LCHab coordinates

Value

CIE Lab coordinates

Author(s)

Jose Gama

Source

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

References

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

LCHuv2Luv 69

Examples

```
LCHab2Lab(c(0.310897, 0.306510, 74.613450))
```

LCHuv2Luv

Convert LCHuv coordinates to CIE Luv

Description

LCHuv2Luv Converts LCHuv coordinates to CIE Luv.

Usage

```
LCHuv2Luv(LCHuvmatrix)
```

Arguments

LCHuvmatrix LCHuv coordinates

Value

CIE Luv coordinates

Author(s)

Jose Gama

Source

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

References

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

```
LCHuv2Luv(c(0.310897, 0.306510, 74.613450))
```

70 LEF2RGB

LEF2RGB

Convert LEF coordinates to RGB

Description

LEF2RGB Converts LEF coordinates to RGB.

Usage

```
LEF2RGB(LEFmatrix)
```

Arguments

LEFmatrix

LEF coordinates

Value

RGB coordinates

Author(s)

Jose Gama

Source

Kang, Henry R, 2006 Computational color technology Spie Press Bellingham

References

Kang, Henry R, 2006 Computational color technology Spie Press Bellingham

```
LEF<-c(176.66667, 53.50000, -12.99038)
LEF2RGB(LEF)
```

LMS2DKL 71

LMS2DKL

Convert LMS coordinates to DKL

Description

LMS2DKL Converts LMS coordinates to DKL.

Usage

```
LMS2DKL(bg, diffcone.coords, DKL2LMS = FALSE)
```

Arguments

bg LMS coordinates

diffcone.coords

LMS coordinates

DKL2LMS boolean, FALSE = DKL to LMS, TRUE = LMS to DKL

Value

DKL coordinates

Author(s)

Jose Gama

Source

David H. Brainard Cone Contrast and Opponent Modulation Color Spaces pp. 563 PART IV: CONE CONTRAST AND OPPONENT MODULATION COLOR SPACES

References

David H. Brainard Cone Contrast and Opponent Modulation Color Spaces pp. 563 PART IV: CONE CONTRAST AND OPPONENT MODULATION COLOR SPACES

```
#LMS<-c(3.822394, 10.17498, 1.130049)
#LMS2DKL(LMS)
```

72 LMS2RGB

LMS2RGB

Convert LMS coordinates to RGB

Description

LMS2RGB Converts LMS coordinates to RGB.

Usage

LMS2RGB(LMSmatrix)

Arguments

LMSmatrix

LMS coordinates

Value

RGB coordinates

Author(s)

Jose Gama

Source

Francoise Vienot, Hans Brettel, John D. Mollon, 1999 Digital Video Colourmaps for Checking the Legibility of Displays by Dichromats Color Research & Application John Wiley & Sons, Inc.

References

Francoise Vienot, Hans Brettel, John D. Mollon, 1999 Digital Video Colourmaps for Checking the Legibility of Displays by Dichromats Color Research & Application John Wiley & Sons, Inc.

```
LMS<-c(3.822394, 10.17498, 1.130049)
LMS2RGB(LMS)
```

LMS2XYZ 73

LMS2XYZ

Convert LMS coordinates to XYZ

Description

LMS2XYZ Converts LMS coordinates to XYZ.

Usage

LMS2XYZ(LMSmatrix)

Arguments

LMSmatrix

LMS coordinates

Value

XYZ coordinates

Author(s)

Jose Gama

Source

Francoise Vienot, Hans Brettel, John D. Mollon, 1999 Digital Video Colourmaps for Checking the Legibility of Displays by Dichromats Color Research & Application John Wiley & Sons, Inc.

References

Francoise Vienot, Hans Brettel, John D. Mollon, 1999 Digital Video Colourmaps for Checking the Legibility of Displays by Dichromats Color Research & Application John Wiley & Sons, Inc.

```
LMS<-c(3.822394, 10.17498, 1.130049)
LMS2XYZ(LMS)
```

74 LSLM2RGB

LSLM2RGB

Convert LSLM coordinates to RGB

Description

LSLM2RGB Converts LSLM coordinates to RGB.

Usage

LSLM2RGB(LSLMmatrix)

Arguments

LSLMmatrix LSLM coordinates

Value

RGB coordinates

Author(s)

Jose Gama

Source

Francoise Vienot, Hans Brettel, John D. Mollon, 1999 Digital Video Colourmaps for Checking the Legibility of Displays by Dichromats Color Research & Application John Wiley & Sons, Inc.

References

Francoise Vienot, Hans Brettel, John D. Mollon, 1999 Digital Video Colourmaps for Checking the Legibility of Displays by Dichromats Color Research & Application John Wiley & Sons, Inc.

```
LSLM<-c(-0.4186083, 0.007563981, 0.4918533)
LSLM2RGB(LSLM)
```

LUV2LAB 75

LUV2LAB

Convert CIE Luv coordinates to CIE Lab

Description

LUV2LAB Converts CIE Luv coordinates to CIE Lab.

Usage

LUV2LAB(Luvmatrix)

Arguments

Luvmatrix

Luv matrix

Value

XYZ coordinates

Author(s)

Jose Gama

Examples

LUV2LAB(c(0.310897, 0.306510, 74.613450))

Luv2LCHuv

Convert CIE Luv coordinates to LCHuv

Description

Luv2LCHuv Converts CIE Luv coordinates to LCHuv.

Usage

Luv2LCHuv(LuvMatrix)

Arguments

LuvMatrix

Luv coordinates

Value

LCHuv coordinates

76 Luv2XYZ

Author(s)

Jose Gama

Source

```
Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/
```

References

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

Examples

```
Luv2LCHuv(c(0.310897, 0.306510, 74.613450))
```

Luv2XYZ

Convert CIE Luv coordinates to XYZ

Description

Luv2XYZ Converts CIE Luv coordinates to XYZ.

Usage

Arguments

Luvmatrix Luv matrix illuminant observer observer

RefWhite Reference White

Value

XYZ coordinates

Author(s)

Jose Gama

Source

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

Luv2Yuv 77

References

```
Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/
```

Examples

```
Luv2XYZ(c(0.310897, 0.306510, 74.613450))
```

Luv2Yuv

Convert CIE Luv coordinates to Yuv

Description

Luv2Yuv Converts CIE Luv coordinates to Yuv.

Usage

```
Luv2Yuv(Luvmatrix,illuminant='D65',observer=2,RefWhite=
get("XYZperfectreflectingdiffuser", envir = environment()))
```

Arguments

Luvmatrix CIE Luv coordinates

illuminant illuminant observer observer

RefWhite Reference White

Value

Yuv coordinates

Author(s)

Jose Gama

Source

```
Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/
```

References

```
Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/
```

```
Luv2Yuv(c(0.310897, 0.306510, 74.613450))
```

makeChromaticAdaptationMatrix

Generate a Chromatic Adaptation matrix

Description

makeChromaticAdaptationMatrix Generates a Chromatic Adaptation matrix.

Usage

Arguments

ChromaticAdaptationAlgorithm

Chromatic adaptation algorithm

illuminantSource

illuminant source

illuminantDestination

illuminant destination

observer observer ChromaticAdaptationArray

Chromatic adaptation array

referenceWhiteArray

reference white

Value

Chromatic Adaptation matrix

Author(s)

Jose Gama

Source

```
Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/
```

References

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

MaterialReferenceData 79

MaterialReferenceData Material Reference Data from Principles of Digital Image Synthesis

Description

MaterialReferenceData Material Reference Data from Principles of Digital Image Synthesis, Appendix G Andrew S. Glassner 16 August 1994.

Usage

MaterialReferenceData

Format

This data frame contains the following data:

wavelength wavelength (nm)
DarkSkin spectra of: dark skin
LightSkin spectra of: light skin
BlueSky spectra of: blue sky
Foliage spectra of: foliage

BlueFlower spectra of: blue flower **BluishGreen** spectra of: bluish green

Orange spectra of: orange

PurplishBlue spectra of: purplish blue **ModerateRed** spectra of: moderate red

Purple spectra of: purple

YellowGreen spectra of: yellow green
OrangeYellow spectra of: orange yellow

Blue spectra of: blue
Green spectra of: green
Red spectra of: red
Yellow spectra of: yellow

Magenta spectra of: magenta

Cyan spectra of: cyanWhite spectra of: whiteNeutral spectra of: neutral

Neutral6.5 spectra of: neutral 6.5 Neutral5 spectra of: neutral 5 Neutral3.5 spectra of: neutral 3.5 80 MaterialReferenceData

Black spectra of: black

PineNeedles spectra of: pine needles

SilverMapleLeaf spectra of: silver maple leaf

DarkGreenMapleLeaf spectra of: dark green maple leaf

RedMapleLeaf spectra of: red maple leaf

Grass spectra of: grass **Soil** spectra of: soil

VineLeaf spectra of: vine leaf Alphalt spectra of: alphalt

DaisyWhitePetals spectra of: daisy white petals
 DaisyYellowCenter spectra of: daisy yellow center
 MarigoldOrange spectra of: marigold orange
 MarigoldYellow spectra of: marigold yellow
 DarkBlueJeans spectra of: dark blue jeans

FadedJeans spectra of: faded jeans

DarkBlueSweatPants spectra of: dark blue sweat pants

Denim spectra of: denim

WheatBread spectra of: wheat bread

WheatBreadCrust spectra of: wheat bread crust

Pancake spectra of: pancake

SwissArmyKnife spectra of: swiss army knife

PineWood spectra of: pine wood

MapleWood spectra of: maple wood

OakWood spectra of: oak wood

Bamboo spectra of: bamboo

Redwood spectra of: redwood

WalnutWood spectra of: walnut wood YellowBanana spectra of: yellow banana

RipeBrownBanana spectra of: ripe brown banana

Cucumber spectra of: cucumber CornKernel spectra of: corn kernel CornHusk spectra of: corn husk

YellowDeliciousApple spectra of: yellow delicious apple

GreenPepper spectra of: green pepper **LemonSkin** spectra of: lemon skin

Lettuce spectra of: lettuce **Carrot** spectra of: carrot

BarleySeeds spectra of: barley seeds **LentilSeeds** spectra of: lentil seeds

BrownRiceSeeds spectra of: brown rice seeds

Sand spectra of: sand

Author(s)

Jose Gama

Source

Andrew S. Glassner, 1995 Principles of Digital Image Synthesis The Morgan Kaufmann Series in Computer Graphics and Geometric Modeling

References

Andrew S. Glassner, 1995 Principles of Digital Image Synthesis The Morgan Kaufmann Series in Computer Graphics and Geometric Modeling

Examples

```
data(MaterialReferenceData)
str(MaterialReferenceData)
```

 ${\tt MaxChromaFromExtrapRenotationData}$

Table with maximum chroma for which extrapolated renotation data is available

Description

MaxChromaFromExtrapRenotationData table with maximum chroma for which extrapolated renotation data is available.

Usage

 ${\tt MaxChromaFromExtrapRenotationData}$

Format

This data frame contains the following columns:

H Hue

V Value

MaximumChroma Maximum Chroma

Author(s)

Jose Gama

Source

Paul Centore 2014 The Munsell and Kubelka-Munk Toolbox http://www.99main.com/~centore/MunsellAndKubelkaMunkToolbox/MunsellAndKubelkaMunkToolbox.html

James D. Foley, Andries van Dam, Steven K. Feiner, & John F. Hughes, 1990 Computer Graphics: Principles and Practice, 2nd ed., Addison-Wesley Publishing Company.

Gunter Wyszecki & W. S. Stiles, 1982 Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd edition, John Wiley and Sons

References

Paul Centore 2014 The Munsell and Kubelka-Munk Toolbox http://www.99main.com/~centore/MunsellAndKubelkaMunkToolbox/MunsellAndKubelkaMunkToolbox.html

James D. Foley, Andries van Dam, Steven K. Feiner, & John F. Hughes, 1990 Computer Graphics: Principles and Practice, 2nd ed., Addison-Wesley Publishing Company.

Gunter Wyszecki & W. S. Stiles, 1982 Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd edition, John Wiley and Sons

Examples

data(MaxChromaFromExtrapRenotationData)
MaxChromaFromExtrapRenotationData

MaxChromasForStandardMunsellHuesAndValues

Table with maximum Munsell chroma, for a given Munsell hue and value, for which an extrapolated renotation value is available

Description

MaxChromasForStandardMunsellHuesAndValues table with maximum Munsell chroma, for a given Munsell hue and value, for which an extrapolated renotation value is available.

Usage

MaxChromasForStandardMunsellHuesAndValues

Format

This data frame contains the following columns:

H Hue

V Value

MaximumChroma Maximum Chroma (MacAdam limit)

Maxwell.triangle 83

Author(s)

Jose Gama

Source

Paul Centore 2014 The Munsell and Kubelka-Munk Toolbox http://www.99main.com/~centore/MunsellAndKubelkaMunkToolbox/MunsellAndKubelkaMunkToolbox.html

James D. Foley, Andries van Dam, Steven K. Feiner, & John F. Hughes, 1990 Computer Graphics: Principles and Practice, 2nd ed., Addison-Wesley Publishing Company.

Gunter Wyszecki & W. S. Stiles, 1982 Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd edition, John Wiley and Sons

References

Paul Centore 2014 The Munsell and Kubelka-Munk Toolbox http://www.99main.com/~centore/MunsellAndKubelkaMunkToolbox/MunsellAndKubelkaMunkToolbox.html

James D. Foley, Andries van Dam, Steven K. Feiner, & John F. Hughes, 1990 Computer Graphics: Principles and Practice, 2nd ed., Addison-Wesley Publishing Company.

Gunter Wyszecki & W. S. Stiles, 1982 Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd edition, John Wiley and Sons

Examples

data(MaxChromasForStandardMunsellHuesAndValues)
MaxChromasForStandardMunsellHuesAndValues

Maxwell.triangle

Plot the Maxwell triangle

Description

Maxwell.triangle Plots the Maxwell triangle, as a black line, a color line or a polygon.

Usage

```
Maxwell.triangle(primariesRGB=get("whitepointsRGB", envir = environment()),
conversionFunction=NULL,...)
```

Arguments

```
primariesRGB primarie valuess for RGB color spaces
conversionFunction
optional function to perform the coordinate conversion
optional parameters for the plot command
```

84 Munsell100hues55

Value

none

Author(s)

Jose Gama

Examples

```
Maxwell.triangle()
xl<-yl<-0:1
Maxwell.triangle(xlim=xl,ylim=yl)
Maxwell.triangle(conversionFunction=CIE1931XYZ2CIE1976uv,
xlim=xl,ylim=yl,xlab="u'",ylab="v'")</pre>
```

Munsell100hues55

Chromaticity diagram showing values for x and y for Illuminant A for 100 hues at 5/5

Description

Munsell100hues55 Chromaticity diagram showing Tristimulus Values and Trilinear Coordinates for Illuminant A for 100 hues at 5/5.

Usage

Munsell100hues55

Format

This data frame contains the following columns:

BookNotation Munsell color notation from the Munsell book

MunsellProductionNo

- X Tristimulus Value X
- Y Tristimulus Value Y
- **Z** Tristimulus Value Z
- x Trilinear Coordinate x
- y Trilinear Coordinate y
- z Trilinear Coordinate z

Author(s)

Jose Gama

Source

Hermann VON Schelling, Dean Farnsworth, 1949 Trichromatic Specifications of the Munsell 100 Hues at 5/5 for Illuminant a Defense Technical Information Center NAVAL MEDICAL RESEARCH LAB NEW LONDON CONN.

References

Hermann VON Schelling, Dean Farnsworth, 1949 Trichromatic Specifications of the Munsell 100 Hues at 5/5 for Illuminant a Defense Technical Information Center NAVAL MEDICAL RESEARCH LAB NEW LONDON CONN.

Examples

data(Munsell100hues55) Munsell100hues55

Munsell100hues55FM100 Munsell 100-Hues at 5/5, production numbers 101 to 200 and Farnsworth-Munsell 100 Hue test

Description

Munsell 100 Hues 55FM100 Munsell 100-Hues at 5/5, production numbers 101 to 200 and Farnsworth-Munsell 100 Hue test.

Usage

Munsell100hues55FM100

Format

This data frame contains the following columns:

FMtest Farnsworth-Munsell 100 Hue test value

MunsellNumber Munsell 100-Hues at 5/5, production number

Author(s)

Jose Gama

Source

Hermann VON Schelling, Dean Farnsworth, 1949 Trichromatic Specifications of the Munsell 100 Hues at 5/5 for Illuminant a Defense Technical Information Center NAVAL MEDICAL RESEARCH LAB NEW LONDON CONN.

86 MunsellHues

References

Hermann VON Schelling, Dean Farnsworth, 1949 Trichromatic Specifications of the Munsell 100 Hues at 5/5 for Illuminant a Defense Technical Information Center NAVAL MEDICAL RESEARCH LAB NEW LONDON CONN.

Examples

data(Munsell100hues55FM100) Munsell100hues55FM100

MunsellHues

Table with Munsell Hues

Description

Munsell Hues table with Munsell Hues.

Usage

MunsellHues

Author(s)

Jose Gama

Source

Paul Centore 2014 The Munsell and Kubelka-Munk Toolbox http://www.99main.com/~centore/MunsellAndKubelkaMunkToolbox/MunsellAndKubelkaMunkToolbox.html

James D. Foley, Andries van Dam, Steven K. Feiner, & John F. Hughes, 1990 Computer Graphics: Principles and Practice, 2nd ed., Addison-Wesley Publishing Company.

Gunter Wyszecki & W. S. Stiles, 1982 Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd edition, John Wiley and Sons

References

Paul Centore 2014 The Munsell and Kubelka-Munk Toolbox http://www.99main.com/~centore/MunsellAndKubelkaMunkToolbox/MunsellAndKubelkaMunkToolbox.html

James D. Foley, Andries van Dam, Steven K. Feiner, & John F. Hughes, 1990 Computer Graphics: Principles and Practice, 2nd ed., Addison-Wesley Publishing Company.

Gunter Wyszecki & W. S. Stiles, 1982 Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd edition, John Wiley and Sons

Examples

data(MunsellHues)
MunsellHues

MunsellNeutrals2sRGB 87

MunsellNeutrals2sRGB Table with Munsell Neutrals and corresponding sRGB

Description

MunsellNeutrals2sRGB table with Munsell Neutrals and corresponding sRGB.

Usage

MunsellNeutrals2sRGB

Format

This data frame contains the following columns:

MunsellNeutral Munsell N

R sRGBR

G sRGB G

B sRGB B

Author(s)

Jose Gama

Source

Paul Centore 2014 The Munsell and Kubelka-Munk Toolbox http://www.99main.com/~centore/MunsellAndKubelkaMunkToolbox/MunsellAndKubelkaMunkToolbox.html

James D. Foley, Andries van Dam, Steven K. Feiner, & John F. Hughes, 1990 Computer Graphics: Principles and Practice, 2nd ed., Addison-Wesley Publishing Company.

Gunter Wyszecki & W. S. Stiles, 1982 Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd edition, John Wiley and Sons

References

Paul Centore 2014 The Munsell and Kubelka-Munk Toolbox http://www.99main.com/~centore/MunsellAndKubelkaMunkToolbox/MunsellAndKubelkaMunkToolbox.html

James D. Foley, Andries van Dam, Steven K. Feiner, & John F. Hughes, 1990 Computer Graphics: Principles and Practice, 2nd ed., Addison-Wesley Publishing Company.

Gunter Wyszecki & W. S. Stiles, 1982 Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd edition, John Wiley and Sons

Examples

data(MunsellNeutrals2sRGB)
MunsellNeutrals2sRGB

88 MunsellSpectral

MunsellSpecToHVC

convert Munsell notation to numeric HVC

Description

MunsellSpecToHVC Converts convert Munsell notation to numeric Hue, Value, Chroma.

Usage

MunsellSpecToHVC(MunsellSpecString)

Arguments

MunsellSpecString

string with the Munsell hue, value and chroma.

Value

numeric Hue, Value, Chroma

Author(s)

Glenn Davis

MunsellSpectral

Table with Munsell spectral data

Description

MunsellSpectral table for 1250 matt Munsell color chips with Munsell notation values, XYZ, xyY, RGB, CIE Lab, CIE Luv and spectral data.

Usage

MunsellSpectral

Author(s)

Jose Gama

Source

Spectral Color Research group, 1989 University of Kuopio, Finland School of Computing and the Department of Physics and Mathematics Database - Munsell Colors Matt (AOTF) http://cs.joensuu.fi/~spectral/databases/download/munsell_aotf.htm

Parkkinen, J. P. S., Hallikainen, J. and Jaaskelainen, 1989 "Characteristic spectra of Munsell colors," Journal of the Optical Society of America Vol. 6, No. 2, February 1989, pp. 318-322.

References

Spectral Color Research group, 1989 University of Kuopio, Finland School of Computing and the Department of Physics and Mathematics Database - Munsell Colors Matt (AOTF) http://cs.joensuu.fi/~spectral/databases/download/munsell_aotf.htm

Parkkinen, J. P. S., Hallikainen, J. and Jaaskelainen, 1989 "Characteristic spectra of Munsell colors," Journal of the Optical Society of America Vol. 6, No. 2, February 1989, pp. 318-322.

Examples

```
## Not run:
data(MunsellSpectral)
MunsellSpectral
## End(Not run)
```

MunsellV2relativeLuminanceY

Munsell value V to relative luminance Y

Description

MunsellV2relativeLuminanceY Munsell value V to relative luminance Y.

Usage

MunsellV2relativeLuminanceY(V)

Arguments

٧

Munsell value

Value

CIE XYZ "Y"

Author(s)

Jose Gama

Source

Mark D. Fairchild, 2013 Color Appearance Models, 3rd Ed. Wiley-IS&T

References

Mark D. Fairchild, 2013 Color Appearance Models, 3rd Ed. Wiley-IS&T

90 MunsellV2Y

Examples

MunsellV2relativeLuminanceY(5)

MunsellV2Y

Munsell value to CIE XYZ "Y"

Description

Munsel1V2Y Munsell value to CIE XYZ "Y".

Usage

MunsellV2Y(V)

Arguments

٧

Munsell value

Value

CIE XYZ "Y"

Author(s)

Jose Gama

Source

ASTM, 2008 ASTM Standard D1535-08

References

ASTM, 2008 ASTM Standard D1535-08

Examples

MunsellV2Y(5)

NickersonColorDifference 91

NickersonColorDifference

Nickerson Color Difference

Description

NickersonColorDifference Nickerson's Color Difference.

Usage

NickersonColorDifference(MunsellHVC1, MunsellHVC2)

Arguments

MunsellHVC1 Munsell HVC 1
MunsellHVC2 Munsell HVC 2

Value

Delta E

Author(s)

Jose Gama

Source

Bruce Justin Lindbloom, 2013 Color Calculator www.brucelindbloom.com

References

Bruce Justin Lindbloom, 2013 Color Calculator www.brucelindbloom.com

```
NickersonColorDifference('10B 5/6','5B 5/4')
```

92 Photo YCC2RGB

PhotoYCC2RGB

Convert PhotoYCC to RGB

Description

PhotoYCC2RGB Converts PhotoYCC to RGB.

Usage

PhotoYCC2RGB(PhotoYCCmatrix)

Arguments

PhotoYCCmatrix PhotoYCC coordinates

Value

RGB coordinates

Author(s)

Jose Gama

Source

Alex Izvorski, Copyright 2003-2005 (Portions Copyright 2001-2003 by Alfred Reibenschuh) Graphics/ColorObject version $0.5.0 \, \text{http://www.poynton.com/notes/colour_and_gamma/ColorFAQ.}$ txt

References

Alex Izvorski, Copyright 2003-2005 (Portions Copyright 2001-2003 by Alfred Reibenschuh) Graphics/ColorObject version 0.5.0 http://www.poynton.com/notes/colour_and_gamma/ColorFAQ.

```
p <- c(0.4560569, 155.9415709, 137.3026467)
PhotoYCC2RGB(p)
```

PreucilAngle 93

PreucilAngle

Preucil Angle

Description

PreucilAngle Preucil Angle.

Usage

PreucilAngle(RGBmatrix)

Arguments

RGBmatrix

RGB coordinates

Value

Angle

Author(s)

Jose Gama

Source

Robert William Gainer Hunt, 1987 The Reproduction of Colour Fountain Press Edition 4, illustrated

References

Robert William Gainer Hunt, 1987 The Reproduction of Colour Fountain Press Edition 4, illustrated

Examples

```
PreucilAngle(c(24,72,44))
```

PreucilPercentGreyness

Preucil Percentage of Greyness

Description

PreucilPercentGreyness Preucil Percentage of Greyness.

Usage

PreucilPercentGreyness(RGBmatrix)

94 PreucilPercentHueError

Arguments

RGBmatrix RGB coordinates

Value

Percentage of Greyness

Author(s)

Jose Gama

Source

Robert William Gainer Hunt, 1987 The Reproduction of Colour Fountain Press Edition 4, illustrated

References

Robert William Gainer Hunt, 1987 The Reproduction of Colour Fountain Press Edition 4, illustrated

Examples

PreucilPercentGreyness(c(24,72,44))

PreucilPercentHueError

Preucil Percentage of Greyness

Description

PreucilPercentHueError Preucil Percentage of Hue Error.

Usage

PreucilPercentHueError(RGBmatrix)

Arguments

RGBmatrix RGB coordinates

Value

Percentage of HueError

Author(s)

Jose Gama

RGB2CMY 95

Source

Robert William Gainer Hunt, 1987 The Reproduction of Colour Fountain Press Edition 4, illustrated

References

Robert William Gainer Hunt, 1987 The Reproduction of Colour Fountain Press Edition 4, illustrated

Examples

```
PreucilPercentHueError(c(24,72,44))
```

RGB2CMY

Convert sRGB coordinates to CMY

Description

RGB2CMY Converts sRGB coordinates to CMY.

Usage

```
RGB2CMY(RGBmatrix)
```

Arguments

RGBmatrix

sRGB coordinates

Value

CMY coordinates

Author(s)

Jose Gama

Source

```
Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/
```

References

```
Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/
```

```
RGB2CMY(c(0.310897, 0.306510, 74.613450))
```

96 rgb2dkIV

rgb2dk1V

convert RGB to DKL

Description

rgb2dk1V Converts sRGB coordinates to DKL, spherical coords, sames as Graph-Based Visual Saliency. rgb2dk1Cart Converts sRGB coordinates to DKL, cartesian coords.

Usage

```
rgb2dk1V(RGB)
```

Arguments

RGB

sRGB coordinates

Value

DKL coordinates

Author(s)

Jose Gama

Source

Package psychopy for Python

Graph-Based Visual Saliency (MATLAB source code) Jonathan Harel California Institute of Technology

References

Package psychopy for Python

Graph-Based Visual Saliency (MATLAB source code) Jonathan Harel California Institute of Technology

```
rgb2dklCart(c(54,75,121))
```

RGB2HSL 97

RGB2HSL

Convert RGB coordinates to HSL

Description

RGB2HSL Converts RGB coordinates to HSL.

Usage

```
RGB2HSL(RGBmatrix)
```

Arguments

RGBmatrix

RGB coordinates

Value

HSL coordinates

Author(s)

Jose Gama

Source

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

References

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

```
RGB<-c(124,63,78)
RGB2HSL(RGB)
```

98 RGB2HSV

RGB2HSV

Convert RGB coordinates to HSV

Description

RGB2HSV Converts RGB coordinates to HSV.

Usage

```
RGB2HSV(RGBmatrix)
```

Arguments

RGBmatrix

RGB coordinates

Value

HSV coordinates

Author(s)

Jose Gama

Source

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

References

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

```
RGB<-c(124,63,78)
RGB2HSV(RGB)
```

RGB2hue 99

RGB2hue

Convert sRGB coordinates to hue

Description

RGB2hue Converts sRGB coordinates to hue.

Usage

RGB2hue(RGBmatrix)

Arguments

RGBmatrix

sRGB coordinates

Value

hue

Author(s)

Jose Gama

Examples

RGB2hue(c(0.310897, 0.306510, 74.613450))

RGB2LEF

Convert RGB coordinates to LEF

Description

RGB2LEF Converts RGB coordinates to LEF.

Usage

RGB2LEF(RGBmatrix)

Arguments

RGBmatrix

RGB coordinates

Value

LEF coordinates

100 RGB2LMS

Author(s)

Jose Gama

Source

Kang, Henry R, 2006 Computational color technology Spie Press Bellingham

References

Kang, Henry R, 2006 Computational color technology Spie Press Bellingham

Examples

```
RGB<-c(124,63,78)
RGB2LEF(RGB)
```

RGB2LMS

Convert RGB coordinates to LMS

Description

RGB2LMS Converts RGB coordinates to LMS.

Usage

RGB2LMS(RGBmatrix)

Arguments

RGBmatrix

RGB coordinates

Value

LMS coordinates

Author(s)

Jose Gama

Source

Francoise Vienot, Hans Brettel, John D. Mollon, 1999 Digital Video Colourmaps for Checking the Legibility of Displays by Dichromats Color Research & Application John Wiley & Sons, Inc.

References

Francoise Vienot, Hans Brettel, John D. Mollon, 1999 Digital Video Colourmaps for Checking the Legibility of Displays by Dichromats Color Research & Application John Wiley & Sons, Inc.

RGB2LSLM 101

Examples

RGB<-c(124,63,78) RGB2LMS(RGB)

RGB2LSLM

Convert RGB coordinates to LSLM

Description

RGB2LSLM Converts RGB coordinates to LSLM.

Usage

RGB2LSLM(RGBmatrix)

Arguments

RGBmatrix

RGB coordinates

Value

LSLM coordinates

Author(s)

Jose Gama

Source

Francoise Vienot, Hans Brettel, John D. Mollon, 1999 Digital Video Colourmaps for Checking the Legibility of Displays by Dichromats Color Research & Application John Wiley & Sons, Inc.

References

Francoise Vienot, Hans Brettel, John D. Mollon, 1999 Digital Video Colourmaps for Checking the Legibility of Displays by Dichromats Color Research & Application John Wiley & Sons, Inc.

Examples

RGB<-c(124,63,78) RGB2LSLM(RGB) 102 RGB2PhotoYCC

RGB2PhotoYCC

Convert RGB coordinates to PhotoYCC

Description

RGB2PhotoYCC Converts RGB coordinates to PhotoYCC.

Usage

RGB2PhotoYCC(RGBmatrix)

Arguments

RGBmatrix RGB coordinates

Value

PhotoYCC coordinates

Author(s)

Jose Gama

Source

Alex Izvorski, Copyright 2003-2005 (Portions Copyright 2001-2003 by Alfred Reibenschuh) Graphics/ColorObject version $0.5.0 \, \text{http://www.poynton.com/notes/colour_and_gamma/ColorFAQ.}$ txt

References

Alex Izvorski, Copyright 2003-2005 (Portions Copyright 2001-2003 by Alfred Reibenschuh) Graphics/ColorObject version 0.5.0 http://www.poynton.com/notes/colour_and_gamma/ColorFAQ.

Examples

RGB<-c(124,63,78) RGB2PhotoYCC(RGB) RGB2XYZ 103

RGB2XYZ

Convert sRGB coordinates to XYZ

Description

RGB2XYZ Converts sRGB coordinates to XYZ.

Usage

Arguments

RGBmatrix sRGB coordinates

illuminant illuminant observer observer

RefWhite White Reference RGBModel RGB Model

RefWhiteRGB White Reference RGB

gamma gamma

RefWhiteIllum White Reference illuminant
CAT Chromatic Adaptation algorithm
CATarray Chromatic Adaptation data

Value

CIE XYZ coordinates

Author(s)

Jose Gama

Source

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

References

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

104 RGB2YCbCr

Examples

```
RGB2XYZ(c(0.310897, 0.306510, 74.613450))
```

RGB2YCbCr

Convert RGB coordinates to YCbCr

Description

RGB2YCbCr Converts RGB coordinates to YCbCr.

Usage

```
RGB2YCbCr(RGBmatrix)
```

Arguments

RGBmatrix

RGB coordinates

Value

YCbCr coordinates

Author(s)

Jose Gama

Source

Alex Izvorski, Copyright 2003-2005 (Portions Copyright 2001-2003 by Alfred Reibenschuh) Graphics/ColorObject version $0.5.0 \, \text{http://www.poynton.com/notes/colour_and_gamma/ColorFAQ.}$ txt

References

Alex Izvorski, Copyright 2003-2005 (Portions Copyright 2001-2003 by Alfred Reibenschuh) Graphics/ColorObject version $0.5.0\,http://www.poynton.com/notes/colour_and_gamma/ColorFAQ.txt$

```
RGB<-c(124,63,78)
RGB2YCbCr(RGB)
```

RGB2YIQ 105

RGB2YIQ

Convert RGB coordinates to YIQ

Description

RGB2YIQ Converts RGB coordinates to YIQ.

Usage

RGB2YIQ(RGBmatrix)

Arguments

RGBmatrix RGB coordinates

Value

YIQ coordinates

Author(s)

Jose Gama

Source

Alex Izvorski, Copyright 2003-2005 (Portions Copyright 2001-2003 by Alfred Reibenschuh) Graphics/ColorObject version $0.5.0 \, \text{http://www.poynton.com/notes/colour_and_gamma/ColorFAQ.txt}$

References

Alex Izvorski, Copyright 2003-2005 (Portions Copyright 2001-2003 by Alfred Reibenschuh) Graphics/ColorObject version $0.5.0 \, \text{http://www.poynton.com/notes/colour_and_gamma/ColorFAQ.txt}$

```
RGB<-c(124,63,78)
RGB2YIQ(RGB)
```

106 RGB2YPbPr

RGB2YPbPr

Convert RGB coordinates to YPbPr

Description

RGB2YPbPr Converts RGB coordinates to YPbPr.

Usage

RGB2YPbPr(RGBmatrix)

Arguments

RGBmatrix RGB coordinates

Value

YPbPr coordinates

Author(s)

Jose Gama

Source

Alex Izvorski, Copyright 2003-2005 (Portions Copyright 2001-2003 by Alfred Reibenschuh) Graphics/ColorObject version $0.5.0 \, \text{http://www.poynton.com/notes/colour_and_gamma/ColorFAQ.}$ txt

References

Alex Izvorski, Copyright 2003-2005 (Portions Copyright 2001-2003 by Alfred Reibenschuh) Graphics/ColorObject version 0.5.0 http://www.poynton.com/notes/colour_and_gamma/ColorFAQ.txt

```
RGB<-c(124,63,78)
RGB2YPbPr(RGB)
```

RGB2YUV 107

RGB2YUV

Convert RGB coordinates to YUV

Description

RGB2YUV Converts RGB coordinates to YUV.

Usage

RGB2YUV(RGBmatrix)

Arguments

RGBmatrix

RGB coordinates

Value

YUV coordinates

Author(s)

Jose Gama

Examples

RGB<-c(124,63,78) RGB2YUV(RGB)

RxRyRz2XYZ

convert from three filter measurements (reflectance factors) to XYZ

Description

RxRyRz2XYZ convert from three filter measurements (reflectance factors) to XYZ.

Usage

```
RxRyRz2XYZ(RxRyRzmatrix=NA,illuminant='C', observer=2,
RefWhite=get("XYZperfectreflectingdiffuser", envir = environment()))
```

Arguments

RxRyRzmatrix reflectance factors coordinates

illuminant illuminant observer observer

RefWhite White Reference

108 saturationCIECAM02

Value

CIE XYZ coordinates

Author(s)

Jose Gama

Examples

```
RxRyRz2XYZ(c(7.90393, 8.391198, 9.721126))
```

saturationCIECAM02

saturation CIECAM 2002

Description

saturationCIECAM02 saturation CIECAM 2002.

Usage

```
saturationCIECAM02(M, Q)
```

Arguments

M colorfulness Q brightness

Value

saturation

Author(s)

Jose Gama

Source

```
Color by Wikipedians http://www.easyrgb.com/
```

References

```
Color by Wikipedians http://www.easyrgb.com/
```

saturationCIELABEvaLubbe

CIELAB saturation (Eva Lubbe)

Description

saturationCIELABEvaLubbe CIELAB saturation (chroma normalized by lightness).

Usage

```
saturationCIELABEvaLubbe(L,a,b)
```

Arguments

- L CIELAB L
 a CIELAB a
 b CIELAB b
- Value

saturation

Author(s)

Jose Gama

Source

```
Color by Wikipedians http://www.easyrgb.com/
```

References

```
Color by Wikipedians http://www.easyrgb.com/
```

```
saturationCIELABEvaLubbe(34.78467, 28.15159, 3.024663)
```

saturationCIELUV

CIELUV/CIELAB saturation

Description

saturationCIELUV CIELUV/CIELAB saturation.

Usage

```
saturationCIELUV(u, v, un, vn)
```

Arguments

u CIELAB u v CIELAB v

un CIELAB u neutral vn CIELAB v neutral

Value

saturation

Author(s)

Jose Gama

Source

Color by Wikipedians http://www.easyrgb.com/

References

Color by Wikipedians http://www.easyrgb.com/

SmithPokorny2degConeFundamentals1975

Smith & Pokorny (1975) 2-deg cone fundamentals

Description

 ${\tt SmithPokorny2degConeFundamentals1975~Smith~\&~Pokorny~(1975)~2-deg~cone~fundamentals~based~on~the~CIE~Judd-Vos~2-deg~CMFs.}$

Usage

 ${\tt SmithPokorny2degConeFundamentals1975}$

spectra2CCT 111

Format

This data frame contains the following data:

```
wlnm wavelength (nm)
```

L2 L-cone spectral sensitivity, L2(lambda)

M2 M-cone spectral sensitivity, M2(lambda)

S2 S-cone spectral sensitivity, S2(lambda)

Author(s)

Jose Gama

Source

The Colour & Vision Research laboratory(CVRL) Institute of Ophthalmology, University College London www.cvrl.org

References

The Colour & Vision Research laboratory(CVRL) Institute of Ophthalmology, University College London www.cvrl.org

Examples

```
data(SmithPokorny2degConeFundamentals1975)
SmithPokorny2degConeFundamentals1975
```

spectra2CCT

Correlated Color Temperature (CCT) from spectra

Description

spectra2CCT Correlated Color Temperature (CCT) from spectra.

Usage

```
spectra2CCT(SPD=NA, isoTempLinesTable=NA,
CIETable = get("ciexyz31", envir = environment()), TCS = get("TCSdata",
envir = environment()))
```

Arguments

SPD light source spd

 $iso {\sf TempLinesTable}$

Iso temperature lines table

CIETable reference data values

TCS spectral reflectance data of 14 color test samples for CRI

Value

Correlated Color Temperature (CCT)

Author(s)

Jose Gama

Source

Rensselaer Polytechnic Institute Light Sources and Color Q & A Appendix B: MATLAB script for calculating measures of light source color: CCT, CRI, GA, and FSI http://www.lrc.rpi.edu/programs/nlpip/lightinganswers/lightsources/appendixb1.asp

References

Rensselaer Polytechnic Institute Light Sources and Color Q & A Appendix B: MATLAB script for calculating measures of light source color: CCT, CRI, GA, and FSI http://www.lrc.rpi.edu/programs/nlpip/lightinganswers/lightsources/appendixb1.asp

Examples

```
# illuminant A
SPD = illuminants[1:51*2-1,c('wlnm','A')] # every 10 nm
CCT <- spectra2CCT(SPD)
CCT</pre>
```

spectra2CRIGAIFSCI

CRI, GAI and FSCI from spectra

Description

spectra2CRIGAIFSCI Color Rendering Index (CRI), Gamut Area Index (GAI) and full spectrum index (FSCI) from spectra.

Usage

```
spectra2CRIGAIFSCI(SPD=NA, isoTempLinesTable=NA, CCT=NA,
CIETable = get("ciexyz31", envir = environment()), TCS = get("TCSdata",
envir = environment()))
```

Arguments

SPD light source spd isoTempLinesTable

Iso temperature lines table

CCT Correlated Color Temperature (CCT)

CIETable reference data values

TCS spectral reflectance data of 14 color test samples for CRI

spectra2ISObrightness 113

Value

CRI, GAI and FSCI

Author(s)

Jose Gama

Source

Rensselaer Polytechnic Institute Light Sources and Color Q & A Appendix B: MATLAB script for calculating measures of light source color: CCT, CRI, GA, and FSI http://www.lrc.rpi.edu/programs/nlpip/lightinganswers/lightsources/appendixb1.asp

References

Rensselaer Polytechnic Institute Light Sources and Color Q & A Appendix B: MATLAB script for calculating measures of light source color: CCT, CRI, GA, and FSI http://www.lrc.rpi.edu/programs/nlpip/lightinganswers/lightsources/appendixb1.asp

Examples

```
# illuminant A
## Not run:
SPD = illuminants[1:51*2-1,c('wlnm','A')] # every 10 nm
isoTempLinesTable <- createIsoTempLinesTable(SPD)
CCT <- spectra2CCT(SPD)
spectra2CRIGAIFSCI(SPD, isoTempLinesTable, CCT)
spectra2CRIGAIFSCI(SPD, isoTempLinesTable)
spectra2CRIGAIFSCI(SPD)
## End(Not run)</pre>
```

spectra2ISObrightness Diffuse blue reflectance factor (ISO brightness)

Description

spectra2ISObrightness Diffuse blue reflectance factor (ISO brightness), R457, ISO 2470.

Usage

```
spectra2ISObrightness(spectraIn=NA, wlIn=NA,
RSDmatrix=get("ISObrightnessReflectometerRSD", envir = environment()))
```

Arguments

```
spectraIn spectral data
wlIn wavelength range
RSDmatrix ISO brightness data
```

114 spectra2lux

Value

LCHuv coordinates

Author(s)

Jose Gama

Source

ISO board, 2009 ISO 2470-1: 2009 PAPER, BOARD AND PULPS MEASUREMENT OF DIFFUSE BLUE REFLECTANCE FACTOR PART 1 INDOOR DAYLIGHT CONDITIONS (ISO BRIGHTNESS)

References

ISO board, 2009 ISO 2470-1: 2009 PAPER, BOARD AND PULPS MEASUREMENT OF DIFFUSE BLUE REFLECTANCE FACTOR PART 1 INDOOR DAYLIGHT CONDITIONS (ISO BRIGHTNESS)

Examples

```
spectra2ISObrightness(MaterialReferenceData[,c( 'BlueSky')],
MaterialReferenceData[,c('wavelength' )])
```

spectra2lux

Illuminance (Lux) from spectra

Description

spectra2lux Illuminance (Lux) from spectra.

Usage

```
spectra2lux(spectraIn=NA, ciexyzIn=NA,wlIn=NA, wlInterval=NA)
```

Arguments

spectraIn light source spd ciexyzIn reference data values

wlIn range of output wavelengths

wlInterval arbitrary wavelength interval to be applied to all series through interpolation

Value

Correlated Color Temperature (CCT)

spectra2XYZ 115

Author(s)

Jose Gama

Source

Rensselaer Polytechnic Institute Light Sources and Color Q & A Appendix B: MATLAB script for calculating measures of light source color: CCT, CRI, GA, and FSI http://www.lrc.rpi.edu/programs/nlpip/lightinganswers/lightsources/appendixb1.asp

References

Rensselaer Polytechnic Institute Light Sources and Color Q & A Appendix B: MATLAB script for calculating measures of light source color: CCT, CRI, GA, and FSI http://www.lrc.rpi.edu/programs/nlpip/lightinganswers/lightsources/appendixb1.asp

Examples

```
spectra2lux(MaterialReferenceData[,c('wavelength','BlueSky')])
```

spectra2XYZ

convert spectral data to tristimulus values

Description

spectra2XYZ convert spectral data to tristimulus values.

Usage

```
spectra2XYZ(spectraIn=NA, illuminantIn=NA, ciexyzIn=NA,wlIn=NA, wlInterval=NA)
```

Arguments

spectraIn spectral data
illuminantIn illuminant

ciexyzIn range of illuminant wavelengths wlIn range of spectral wavelengths

wlInterval arbitrary wavelength interval to be applied to all series through interpolation

Value

XYZ coordinates

Author(s)

Jose Gama

sprague sprague

Source

Andrew S. Glassner, 1995 Principles of digital image synthesis: Vol. 1 Kaufmann

References

Andrew S. Glassner, 1995 Principles of digital image synthesis: Vol. 1 Kaufmann

Examples

```
spectra2XYZ(MaterialReferenceData[,c('wavelength','BlueSky')])
```

sprague

Interpolates an n by w matrix of spectra, sprague

Description

sprague Interpolates an n by w matrix of spectra, sprague.

Usage

```
sprague(spectra, f)
```

Arguments

spectral spectral data

f range of wavelenghts

Value

Interpolated spectral data

Author(s)

Jose Gama

Source

Stephen Westland, 2014 http://www.mathworks.com/matlabcentral/fileexchange/40640-computational-colour-content/sprague.m

References

 $Stephen\ Westland, 2014\ http://www.mathworks.com/matlabcentral/fileexchange/40640-computational-colour-content/sprague.m$

StearnsStearnscorrection 117

StearnsStearnscorrection

Stearns and Stearns correction

Description

StearnsStearnscorrection Stearns and Stearns correction.

Usage

StearnsStearnscorrection(P)

Arguments

Р

XYZ coordinates

Value

RGB coordinates

Author(s)

Jose Gama

Source

Stephen Westland and Caterina Ripamonti, 2004 Computational Colour Science using MATLAB John Wiley & Sons Ltd, pp.35

References

Stephen Westland and Caterina Ripamonti, 2004 Computational Colour Science using MATLAB John Wiley & Sons Ltd, pp.35

Stensby68.Whiteness

Stensby Whiteness

Description

Stensby68. Whiteness formula was developed by Mr. P. Stensby (formerly employee of J.R. Geigy AG in US.)

Usage

Stensby68.Whiteness(LabHunterMatrix)

Arguments

LabHunterMatrix

Lab Hunter values for illuminant C

Author(s)

Jose Gama

Source

Xrite, 2012 Color iQC and Color iMatch Color Calculations Guide Version $8.0\ 30\ July\ 2012$ Revision 1.0

References

Xrite, 2012 Color iQC and Color iMatch Color Calculations Guide Version 8.0 30 July 2012 Revision 1.0

Examples

Stensby68.Whiteness(c(0.310897, 0.306510, 74.613450))

StockmanMacLeodJohnson10degConeFundamentals1993

Stockman & Sharpe (2000) 10-deg cone fundamentals

Description

StockmanMacLeodJohnson10degConeFundamentals1993 Stockman, MacLeod & Johnson (1993) 2-deg cone fundamentals based on the CIE 10-deg CMFs (adjusted to 2-deg).

Usage

 ${\tt Stock man MacLeod Johnson 10 deg Cone Fundamentals 1993}$

Format

This data frame contains the following data:

wlnm wavelength (nm)

L10 L-cone spectral sensitivity, L10(lambda)

M10 M-cone spectral sensitivity, M10(lambda)

S10 S-cone spectral sensitivity, S10(lambda)

Author(s)

Jose Gama

Source

The Colour & Vision Research laboratory(CVRL) Institute of Ophthalmology, University College London www.cvrl.org

References

The Colour & Vision Research laboratory(CVRL) Institute of Ophthalmology, University College London www.cvrl.org

Examples

data(StockmanMacLeodJohnson10degConeFundamentals1993)
StockmanMacLeodJohnson10degConeFundamentals1993

StockmanMacLeodJohnson2degCIEadjConeFundamentals1993

Stockman, MacLeod & Johnson (1993) 2-deg cone fundamentals

Description

StockmanMacLeodJohnson2degCIEadjConeFundamentals1993 Stockman, MacLeod & Johnson (1993) 2-deg cone fundamentals based on the CIE 10-deg CMFs (adjusted to 2-deg).

Usage

StockmanMacLeodJohnson2degCIEadjConeFundamentals1993

Format

This data frame contains the following data:

wlnm wavelength (nm)

L2 L-cone spectral sensitivity, L2(lambda)

M2 M-cone spectral sensitivity, M2(lambda)

S2 S-cone spectral sensitivity, S2(lambda)

Author(s)

Jose Gama

Source

The Colour & Vision Research laboratory(CVRL) Institute of Ophthalmology, University College London www.cvrl.org

References

The Colour & Vision Research laboratory(CVRL) Institute of Ophthalmology, University College London www.cvrl.org

Examples

data(StockmanMacLeodJohnson2degCIEadjConeFundamentals1993)
StockmanMacLeodJohnson2degCIEadjConeFundamentals1993

StockmanMacLeodJohnson2degStilesBurchConeFundamentals1993

Stockman, MacLeod & Johnson (1993) 2-deg fundamentals

Description

StockmanMacLeodJohnson2degStilesBurchConeFundamentals1993 Stockman, MacLeod & Johnson (1993) 2-deg fundamentals based on the Stiles & Burch 2-deg CMFs.

Usage

Stock man Mac Leod Johnson 2 deg Stiles Burch Cone Fundamentals 1993

Format

This data frame contains the following data:

wlnm wavelength (nm)

L2 L-cone spectral sensitivity, L2(lambda)

M2 M-cone spectral sensitivity, M2(lambda)

S2 S-cone spectral sensitivity, S2(lambda)

Author(s)

Jose Gama

Source

The Colour & Vision Research laboratory(CVRL) Institute of Ophthalmology, University College London www.cvrl.org

References

The Colour & Vision Research laboratory(CVRL) Institute of Ophthalmology, University College London www.cvrl.org

Examples

data(StockmanMacLeodJohnson2degStilesBurchConeFundamentals1993)
StockmanMacLeodJohnson2degStilesBurchConeFundamentals1993

StockmanSharpe10degCMFS2000

Stockman & Sharpe (2000) 10-deg cone fundamentals

Description

 ${\tt StockmanSharpe10degCMFS2000~Stockman~\&~Sharpe~(2000)~10-deg~cone~fundamentals~based~on~the~Stiles~\&~Burch~10-deg~CMFs~linear~5nm.}$

Usage

StockmanSharpe10degCMFS2000

Format

This data frame contains the following data:

wlnm wavelength (nm)

L10 L-cone spectral sensitivity, L10(lambda)

M10 M-cone spectral sensitivity, M10(lambda)

S10 S-cone spectral sensitivity, S10(lambda)

Author(s)

Jose Gama

Source

The Colour & Vision Research laboratory(CVRL) Institute of Ophthalmology, University College London www.cvrl.org

References

The Colour & Vision Research laboratory(CVRL) Institute of Ophthalmology, University College London www.cvrl.org

Examples

data(StockmanSharpe10degCMFS2000)
StockmanSharpe10degCMFS2000

StockmanSharpe2degCMFadj2000

Stockman & Sharpe (2000) 2-deg cone fundamentals

Description

 $Stockman Sharpe 2 deg CMF adj 2000\ Stockman\ \&\ Sharpe\ (2000)\ 2-deg\ cone\ fundamentals\ based\ on\ the\ Stiles\ \&\ Burch\ 10-deg\ CMFs\ (adjusted\ to\ 2-deg)\ linear\ 5nm.$

Usage

StockmanSharpe2degCMFadj2000

Format

This data frame contains the following data:

wlnm wavelength (nm)

L2 L-cone spectral sensitivity, L2(lambda)

M2 M-cone spectral sensitivity, M2(lambda)

S2 S-cone spectral sensitivity, S2(lambda)

Author(s)

Jose Gama

Source

The Colour & Vision Research laboratory(CVRL) Institute of Ophthalmology, University College London www.cvrl.org

References

The Colour & Vision Research laboratory(CVRL) Institute of Ophthalmology, University College London www.cvrl.org

Examples

data(StockmanSharpe2degCMFadj2000)
StockmanSharpe2degCMFadj2000

SystemISCCNBS 123

SystemISCCNBS

ISCC-NBS System

Description

SystemISCCNBS is a table with the ISCC-NBS System data.

Usage

SystemISCCNBS

Format

This data frame contains the following data:

HueInterval interval of hues in the hue chart defining the elementary block

Hmin minimum ASTM D1535 Hue for the elementary block

Hmax maximum ASTM D1535 Hue for the elementary block

Vmin minimum Value for the elementary block

Vmax maximum Value for the elementary block

Cmin minimum Chroma for the elementary block

Cmax maximum Chroma for the elementary block. Cmax=Inf for some elementary blocks.

Number color number of the elementary block, from 1 to 267

Author(s)

Glenn Davis

References

Color: Universal Language and Dictionary of Names ISCC-NBS Method of Designating Colors and a Dictionary of Color Names Kelly, Kenneth Low Judd, Deane Brewster NBS Special Publication 440 December 1976 Section 13: Color Name Charts, pp. 16-31

Examples

data(SystemISCCNBS)
SystemISCCNBS

124 Taube 60. Whiteness

Taube60.Whiteness

Taube Whiteness

Description

Taube 60. Whiteness developed by Mr. Taube (formerly an employee of BASF AG, Germany). It was presented in 1960 and has found it's application mainly in the plastic sector.

Usage

Arguments

XYZmatrix CIE tristimulus values for illuminant C

illuminant illuminant observer observer

RefWhite White reference

Author(s)

Jose Gama

Source

Xrite, 2012 Color iQC and Color iMatch Color Calculations Guide Version 8.0 30 July 2012 Revision 1.0

References

Xrite, 2012 Color iQC and Color iMatch Color Calculations Guide Version $8.0\ 30\ \mathrm{July}\ 2012\ \mathrm{Revision}\ 1.0$

```
XYZ<-c(0.11465380, 0.08391198, 0.08222077)
Taube60.Whiteness(XYZ)
```

TCSdata 125

TCSdata

The spectral reflectance data of 14 color test samples for CRI

Description

TCSdata is a table with the spectral reflectance data of 14 color test samples for CRI.

Usage

TCSdata

Format

This data frame contains the following data:

wavelength wavelength (nm)

TCS1 spectral reflectance data for sample 1

TCS2 spectral reflectance data for sample 2

TCS3 spectral reflectance data for sample 3

TCS4 spectral reflectance data for sample 4

TCS5 spectral reflectance data for sample 5

TCS6 spectral reflectance data for sample 6

TCS7 spectral reflectance data for sample 7

TCS8 spectral reflectance data for sample 8

TCS9 spectral reflectance data for sample 9

TCS10 spectral reflectance data for sample 10

TCS11 spectral reflectance data for sample 11

TCS12 spectral reflectance data for sample 12

TCS13 spectral reflectance data for sample 13

TCS14 spectral reflectance data for sample 14

Author(s)

Jose Gama

Source

Rensselaer Polytechnic Institute Light Sources and Color Q & A Appendix B: MATLAB script for calculating measures of light source color: CCT, CRI, GA, and FSI http://www.lrc.rpi.edu/programs/nlpip/lightinganswers/lightsources/appendixb1.asp

126 tristimulusMunsell

References

Rensselaer Polytechnic Institute Light Sources and Color Q & A Appendix B: MATLAB script for calculating measures of light source color: CCT, CRI, GA, and FSI http://www.lrc.rpi.edu/programs/nlpip/lightinganswers/lightsources/appendixb1.asp

Examples

data(TCSdata) TCSdata

tristimulusMunsell

434 Munsell colors with tristimulus and CMFs for a few illuminants

Description

tristimulusMunsell is a table with 434 Munsell colors with tristimulus and Color matching functions for illuminants A, C D and S.

Usage

tristimulusMunsell

Format

This data frame contains the following data:

Munsell Color notation

X.A tristimulus X for illuminant A

Y.A tristimulus Y for illuminant A

Z.A tristimulus Z for illuminant A

x.A CMF x for illuminant A

y.A CMF y for illuminant A

X.C tristimulus X for illuminant C

Y.C tristimulus Y for illuminant C

Z.C tristimulus Z for illuminant C

x.C CMF x for illuminant C

y.C CMF y for illuminant C

X.D tristimulus X for illuminant D

Y.D tristimulus Y for illuminant D

Z.D tristimulus Z for illuminant D

x.D CMF x for illuminant D

y.D CMF y for illuminant D

- X.S tristimulus for X illuminant S
- Y.S tristimulus for Y illuminant S
- **Z.S** tristimulus for Z illuminant S
- x.S CMF x for illuminant S
- y.S CMF y for illuminant S
- X Munsell painting number

Author(s)

Jose Gama

Source

K. L. Kelley, K. S. Gibson, and D. Nickerson, 1943 "Tristimulus specification of the Munsell Book of Color from spectrophotometric measurements," J. Opt. Soc. Am. 33, 355–376

References

K. L. Kelley, K. S. Gibson, and D. Nickerson, 1943 "Tristimulus specification of the Munsell Book of Color from spectrophotometric measurements," J. Opt. Soc. Am. 33, 355–376

Examples

data(tristimulusMunsell)
tristimulusMunsell

VosEstevezWalraven2degConeFundamentals1990

Vos, Estévez & Walraven (1990) 2-deg cone fundamentals

Description

VosEstevezWalraven2degConeFundamentals1990 Vos, Estévez & Walraven (1990) 2-deg fundamentals based on the Stiles & Burch 2-deg CMFs.

Usage

VosEstevezWalraven2degConeFundamentals1990

Format

This data frame contains the following data:

wlnm wavelength (nm)

L2 L-cone spectral sensitivity, L2(lambda)

M2 M-cone spectral sensitivity, M2(lambda)

S2 S-cone spectral sensitivity, S2(lambda)

Author(s)

Jose Gama

Source

The Colour & Vision Research laboratory(CVRL) Institute of Ophthalmology, University College London www.cvrl.org

References

The Colour & Vision Research laboratory(CVRL) Institute of Ophthalmology, University College London www.cvrl.org

Examples

data(VosEstevezWalraven2degConeFundamentals1990) VosEstevezWalraven2degConeFundamentals1990

VosWalraven2degConeFundamentals1971

Vos & Walraven(1971) 2-deg cone fundamentals

Description

 $VosWalraven 2 deg ConeFundamentals 1971\ Vos\ \&\ Walraven (1971)\ 2-deg\ cone\ fundamentals\ based\ on\ the\ CIE\ Judd-Vos\ 2-deg\ CMFs.$

Usage

VosWalraven2degConeFundamentals1971

Format

This data frame contains the following data:

wlnm wavelength (nm)

L2 L-cone spectral sensitivity, L2(lambda)

M2 M-cone spectral sensitivity, M2(lambda)

S2 S-cone spectral sensitivity, S2(lambda)

Author(s)

Jose Gama

Source

The Colour & Vision Research laboratory(CVRL) Institute of Ophthalmology, University College London www.cvrl.org

WestlandBlacknessIndex 129

References

The Colour & Vision Research laboratory(CVRL) Institute of Ophthalmology, University College London www.cvrl.org

Examples

```
data(VosWalraven2degConeFundamentals1971)
VosWalraven2degConeFundamentals1971
```

WestlandBlacknessIndex

Westland, et al. blackness index

Description

WestlandBlacknessIndex (Westland, et al., 2006) blackness index.

Usage

WestlandBlacknessIndex(CIELabMatrix)

Arguments

CIELabMatrix CIELab coordinates

Value

blackness index

Author(s)

Jose Gama

Source

Westland, S.; Cheung, T. L. V.; Lozman, O. R., 2006. A metric for predicting perceptual blackness. 14th Color Imaging Conference Final Program and Proceedings, 14-17.

References

Westland, S.; Cheung, T. L. V.; Lozman, O. R., 2006. A metric for predicting perceptual blackness. 14th Color Imaging Conference Final Program and Proceedings, 14-17.

```
CIELab<-c(34.78467, 28.15159, 3.024663)
WestlandBlacknessIndex(CIELab)
```

whitepointsilluminants

```
whitepointsilluminants
```

White points of standard illuminants

Description

whitepointsilluminants is a table with White points of standard illuminants.

Usage

```
whitepointsilluminants
```

Format

This data frame contains the following data:

```
illuminant illuminant
```

description description

x2 x2

y2 y2

x10 x10

y10 y10

CCT CCT

Author(s)

Jose Gama

Source

Wikipedia, 2014 White points of standard illuminants http://en.wikipedia.org/wiki/Standard_illuminant

References

Wikipedia, 2014 White points of standard illuminants http://en.wikipedia.org/wiki/Standard_illuminant

```
data(whitepointsilluminants)
whitepointsilluminants
```

whitepointsRGB 131

white points RGB

Primaries for RGB color spaces

Description

whitepointsRGB is a table with primaries for RGB color spaces.

Usage

whitepointsRGB

Format

This data frame contains the following data:

```
xRed Primary red x
yRed Primary red y
xGreen Primary green x
yGreen Primary green y
xBlue Primary blue x
yBlue Primary blue y
whitepointilluminant illuminant
gamma gamma
description Color space name
```

Author(s)

Jose Gama

Source

```
Wikipedia, 2014 RGB color space http://en.wikipedia.org/wiki/RGB_color_space
```

References

```
Wikipedia, 2014 RGB color space http://en.wikipedia.org/wiki/RGB_color_space
```

```
data(whitepointsRGB)
whitepointsRGB
```

132 xFit_1931

wlnm2XYZ

Approximates wavelength to CIE tristimulus XYZ

Description

wlnm2XYZ Approximates wavelength to CIE tristimulus XYZ, by interpolation. wlnm2xyz Approximates wavelength to CIE xyz, by interpolation.

Usage

```
wlnm2XYZ(wavelength)
```

Arguments

wavelength

wavelength

Value

CIE XYZ

Author(s)

Jose Gama

Examples

wlnm2XYZ(555)

xFit_1931

Approximations from wavelengths to XYZ by Wyman et al

Description

xFit_1931 Approximations from wavelengths to XYZ by Wyman et al.

Usage

```
xFit_1931(wave)
```

Arguments

wave

wavelenght data

Value

XYZ X, Y or Z coordinate

Author(s)

Jose Gama

Source

Chris Wyman Peter-Pike Sloan Peter Shirley, 2013 Simple Analytic Approximations to the CIE XYZ Color Matching Functions Journal of Computer Graphics Techniques Vol. 2, No. 2

References

Chris Wyman Peter-Pike Sloan Peter Shirley, 2013 Simple Analytic Approximations to the CIE XYZ Color Matching Functions Journal of Computer Graphics Techniques Vol. 2, No. 2

Examples

```
xFit_1931(555)
yFit_1931(555)
zFit_1931(555)
```

xy2CCT.HernandezAndres

convert from chromaticity coordinates to correlated color temperature (Hernandez Andres)

Description

xy2CCT.HernandezAndres convert from chromaticity coordinates to correlated color temperature (approximation) by Hernandez Andres.

Usage

```
xy2CCT.HernandezAndres(x,y)
```

Arguments

```
x x coordinates
y y coordinates
```

Value

CCT (Hernandez Andres)

Author(s)

Jose Gama

134 xy2CCT.McCamy

Source

Hernandez-Andres, et al. 1999 "Calculating correlated color temperatures across the entire gamut of daylight and skylight chromaticities" http://en.wikipedia.org/wiki/Color_temperature

References

Hernandez-Andres, et al. 1999 "Calculating correlated color temperatures across the entire gamut of daylight and skylight chromaticities" http://en.wikipedia.org/wiki/Color_temperature

Examples

```
xyY <- c(0.4083308, 0.2988462, 0.08391198)
xy2CCT.HernandezAndres(xyY[1],xyY[2])</pre>
```

xy2CCT.McCamy

convert from chromaticity coordinates to correlated color temperature

Description

xy2CCT. McCamy convert from chromaticity coordinates to correlated color temperature (approximation).

Usage

```
xy2CCT.McCamy(x,y)
```

Arguments

x x coordinatesy y coordinates

Value

CCT McCamy

Author(s)

Jose Gama

Source

C. S. McCamy, 1992 "Correlated color temperature as an explicit function of chromaticity coordinates" Color Research & Application Volume 17, Issue 2, pages 142–144

References

C. S. McCamy, 1992 "Correlated color temperature as an explicit function of chromaticity coordinates" Color Research & Application Volume 17, Issue 2, pages 142–144

Examples

```
xyY \leftarrow c(0.4083308, 0.2988462, 0.08391198)
xy2CCT.McCamy(xyY[1],xyY[2])
```

xyChromaticitiesVos1978

x, y coordinates transformed to Judd (1951) x', y' system

Description

xyChromaticitiesVos1978 x, y coordinates transformed to Judd (1951) x', y' system.

Usage

```
xyChromaticitiesVos1978(x,y)
```

Arguments

x x coordinate

y y coordinate

Value

x', y' coordinates

Author(s)

Jose Gama

Source

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

References

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

```
xyY <- c(0.4083308, 0.2988462, 0.08391198)
xyChromaticitiesVos1978(xyY[1],xyY[2])</pre>
```

XYZ2BVR

xyY2XYZ

Convert CIE CMF to XYZ

Description

xyY2XYZ Converts CIE CMF to XYZ.

Usage

```
xyY2XYZ(xyYmatrix)
```

Arguments

xyYmatrix

CIE CMFs

Value

XYZ coordinates

Author(s)

Jose Gama

Source

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

References

Logicol S.r.l., 2014 EasyRGB color search engine http://www.easyrgb.com/

Examples

```
xyY2XYZ(c(0.310897, 0.306510, 74.613450))
```

XYZ2BVR

convert from XYZ coordinates to BVR

Description

XYZ2BVR convert from XYZ coordinates to BVR.

Usage

XYZ2BVR(XYZmatrix)

XYZ2CCT.Robertson 137

Arguments

XYZmatrix XYZ coordinates

Value

BVR coordinates

Author(s)

Jose Gama

Source

Bruce Justin Lindbloom, 2014 http://www.brucelindbloom.com/index.html?Eqn_XYZ_to_T.html

References

 $Bruce\ Justin\ Lindbloom,\ 2014\ http://www.brucelindbloom.com/index.html? Eqn_XYZ_to_T.\ html$

Examples

```
XYZ<-c(0.11465380, 0.08391198, 0.08222077)
XYZ2BVR(XYZ)
```

XYZ2CCT.Robertson

convert from chromaticity coordinates to correlated color temperature (Robertson)

Description

XYZ2CCT.Robertson convert from chromaticity coordinates to correlated color temperature (approximation) by Robertson.

Usage

```
XYZ2CCT.Robertson(X, Y, Z)
```

Arguments

Χ	X coordinates
Υ	Y coordinates
7	Z coordinates

Value

CCT (Robertson)

138 XYZ2HunterLab

Author(s)

Jose Gama

Source

```
Bruce Justin Lindbloom, 2014 http://www.brucelindbloom.com/index.html?Eqn_XYZ_to_T.html
```

References

```
Bruce Justin Lindbloom, 2014 http://www.brucelindbloom.com/index.html?Eqn_XYZ_to_T.html
```

Examples

```
XYZ2CCT.Robertson( 0.11465380, 0.08391198, 0.08222077 )
```

XYZ2HunterLab

convert from XYZ coordinates to Hunter Lab coordinates

Description

XYZ2HunterLab convert from XYZ coordinates to Hunter Lab coordinates.

Usage

```
XYZ2HunterLab(XYZmatrix,illuminant='D65',observer=2,
RefWhite=get("XYZperfectreflectingdiffuser", envir = environment()))
```

Arguments

XYZmatrix XYZ coordinates

illuminant illuminant observer observer

RefWhite Reference White

Value

Hunter Lab coordinates

Author(s)

Jose Gama

Source

```
Bruce Justin Lindbloom, 2014 http://www.brucelindbloom.com/index.html?Eqn_XYZ_to_T.html
```

XYZ2Lab 139

References

Bruce Justin Lindbloom, 2014 http://www.brucelindbloom.com/index.html?Eqn_XYZ_to_T.html

Examples

```
XYZ<-c(0.11465380, 0.08391198, 0.08222077)
XYZ2HunterLab(XYZ)
```

XYZ2Lab

convert from XYZ coordinates to CIE Lab coordinates

Description

XYZ2Lab convert from XYZ coordinates to CIE Lab coordinates.

Usage

```
XYZ2Lab(XYZmatrix,illuminant='D65',observer=2,
    RefWhite=get("XYZperfectreflectingdiffuser", envir = environment()))
```

Arguments

XYZmatrix XYZ coordinates

illuminant illuminant observer observer

RefWhite Reference White

Value

CIE Lab coordinates

Author(s)

Jose Gama

Source

 $Bruce\ Justin\ Lindbloom,\ 2014\ http://www.brucelindbloom.com/index.html? Eqn_XYZ_to_T.\ html$

References

Bruce Justin Lindbloom, 2014 http://www.brucelindbloom.com/index.html?Eqn_XYZ_to_T.html

140 XYZ2LMS

Examples

```
XYZ<-c(0.11465380, 0.08391198, 0.08222077)
CIELMatrix<-XYZ2Lab(XYZ*100)
```

XYZ2LMS

Convert XYZ coordinates to LMS

Description

XYZ2LMS Converts XYZ coordinates to LMS.

Usage

XYZ2LMS(XYZmatrix)

Arguments

XYZmatrix

XYZ coordinates

Value

LMS coordinates

Author(s)

Jose Gama

Source

Francoise Vienot, Hans Brettel, John D. Mollon, 1999 Digital Video Colourmaps for Checking the Legibility of Displays by Dichromats Color Research & Application John Wiley & Sons, Inc.

References

Francoise Vienot, Hans Brettel, John D. Mollon, 1999 Digital Video Colourmaps for Checking the Legibility of Displays by Dichromats Color Research & Application John Wiley & Sons, Inc.

```
XYZ<-c(21.43162, -3.20673, 120.6259)
XYZ2LMS(XYZ)
```

XYZ2Luv 141

XYZ2Luv

convert from XYZ coordinates to CIE Luv coordinates

Description

XYZ2Luv convert from XYZ coordinates to CIE Luv coordinates.

Usage

```
XYZ2Luv(XYZmatrix,illuminant='D65',observer=2,
RefWhite=get("XYZperfectreflectingdiffuser", envir = environment()))
```

Arguments

XYZmatrix XYZ coordinates

illuminant illuminant observer observer

RefWhite Reference White

Value

CIE Luv coordinates

Author(s)

Jose Gama

Source

Bruce Justin Lindbloom, 2014 http://www.brucelindbloom.com/index.html?Eqn_XYZ_to_T.html

References

Bruce Justin Lindbloom, 2014 $http://www.brucelindbloom.com/index.html?Eqn_XYZ_to_T.html$

```
XYZ<-c(0.11465380, 0.08391198, 0.08222077)
CIELuvMatrix<-XYZ2Luv(XYZ*100)
```

142 XYZ2RGB

XYZ2RGB

convert from XYZ coordinates to CIE RGB coordinates

Description

XYZ2RGB convert from XYZ coordinates to CIE RGB coordinates.

Usage

Arguments

XYZmatrix XYZ coordinates

illuminant illuminant observer observer

RefWhite Reference White RGBModel RGB model

RefWhiteRGB white points for RGB model

gamma gamma

RefWhiteIllum Reference perfect reflecting diffuser

CAT CAT

CATarray Chromatic Adaptation

Value

CIE RGB coordinates

Author(s)

Jose Gama

Source

Bruce Justin Lindbloom, 2014 http://www.brucelindbloom.com/index.html?Eqn_XYZ_to_T.html

XYZ2RxRyRz 143

References

Bruce Justin Lindbloom, 2014 $http://www.brucelindbloom.com/index.html?Eqn_XYZ_to_T.html$

Examples

```
XYZ<-c(0.11465380, 0.08391198, 0.08222077)
XYZ2RGB(XYZ)
```

XYZ2RxRyRz

convert from XYZ to three filter measurements (reflectance factors)

Description

XYZ2RxRyRz convert from XYZ to three filter measurements (reflectance factors).

Usage

```
XYZ2RxRyRz(XYZmatrix=NA,illuminant='C', observer=2,
RefWhite=get("XYZperfectreflectingdiffuser", envir = environment()))
```

Arguments

XYZmatrix XYZ matrix illuminant observer observer

RefWhite White Reference

Value

CIE XYZ coordinates

Author(s)

Jose Gama

```
XYZ<-c(0.11465380, 0.08391198, 0.08222077)
XYZ2RxRyRz(XYZ)
```

XYZ2xyY

XYZ2xyY

convert from XYZ coordinates to xyY coordinates

Description

XYZ2xyY convert from XYZ coordinates to xyY coordinates.

Usage

```
XYZ2xyY(XYZmatrix,illuminant='D65',observer=2,
RefWhite=get("XYZperfectreflectingdiffuser", envir = environment()))
```

Arguments

XYZmatrix XYZ coordinates

illuminant illuminant observer observer

RefWhite Reference White

Value

xyY coordinates

Author(s)

Jose Gama

Source

 $Bruce\ Justin\ Lindbloom,\ 2014\ http://www.brucelindbloom.com/index.html? Eqn_XYZ_to_T.\ html$

References

Bruce Justin Lindbloom, 2014 $http://www.brucelindbloom.com/index.html?Eqn_XYZ_to_T.html$

```
XYZ<-c(0.11465380, 0.08391198, 0.08222077)
XYZ2xyY(XYZ)
```

XYZ2Yuv 145

XYZ2Yuv

convert from XYZ coordinates to Yuv coordinates

Description

XYZ2Yuv convert from XYZ coordinates to Yuv coordinates.

Usage

```
XYZ2Yuv(XYZmatrix)
```

Arguments

XYZmatrix

XYZ coordinates

Value

Yuv coordinates

Author(s)

Jose Gama

Source

 $Bruce\ Justin\ Lindbloom,\ 2014\ http://www.brucelindbloom.com/index.html? Eqn_XYZ_to_T.\ html$

References

 $Bruce\ Justin\ Lindbloom,\ 2014\ http://www.brucelindbloom.com/index.html? Eqn_XYZ_to_T.\ html$

```
XYZ<-c(0.11465380, 0.08391198, 0.08222077)
XYZ2Yuv(XYZ)
```

XYZMoonSpencer1945

Approximations from wavelengths to XYZ by Moon & Spencer

Description

XYZMoonSpencer1945 Approximations from wavelengths to XYZ by Moon & Spencer.

Usage

XYZMoonSpencer1945(wavelen)

Arguments

wavelen

wavelenght data

Value

XYZ coordinates

Author(s)

Jose Gama

Source

Chris Wyman Peter-Pike Sloan Peter Shirley, 2013 Simple Analytic Approximations to the CIE XYZ Color Matching Functions Journal of Computer Graphics Techniques Vol. 2, No. 2

References

Chris Wyman Peter-Pike Sloan Peter Shirley, 2013 Simple Analytic Approximations to the CIE XYZ Color Matching Functions Journal of Computer Graphics Techniques Vol. 2, No. 2

Examples

XYZMoonSpencer1945(555)

 ${\it XYZ} perfect reflecting diffuser\\$

Perfect reflecting diffuser data

Description

XYZperfectreflectingdiffuser table with perfect reflecting diffuser data.

Format

This data frame contains the following columns:

Illuminant Illuminant

- X2 CIE tristimulus X 2 deg observer
- Y2 CIE tristimulus Y 2 deg observer
- **Z2** CIE tristimulus Z 2 deg observer
- X10 CIE tristimulus X 10 deg observer
- Y10 CIE tristimulus Y 10 deg observer
- **Z10** CIE tristimulus Z 10 deg observer

Author(s)

Jose Gama

Source

Wyszecki, G. and Stiles, W.S., 1982 Color Science: Concepts and Methods, Quantitative data and formulae. John Wiley & Sons.

References

Wyszecki, G. and Stiles, W.S., 1982 Color Science: Concepts and Methods, Quantitative data and formulae. John Wiley & Sons.

```
data(XYZperfectreflectingdiffuser)
str(XYZperfectreflectingdiffuser)
```

148 XYZTannenbaum1974

XYZTannenbaum1974

Approximations from wavelengths to XYZ by Tannenbaum 1974

Description

XYZTannenbaum1974 Approximations from wavelengths to XYZ by Tannenbaum 1974.

Usage

XYZTannenbaum1974(wavelen)

Arguments

wavelen

wavelenght data

Value

XYZ coordinates

Author(s)

Jose Gama

Source

Chris Wyman Peter-Pike Sloan Peter Shirley, 2013 Simple Analytic Approximations to the CIE XYZ Color Matching Functions Journal of Computer Graphics Techniques Vol. 2, No. 2

References

Chris Wyman Peter-Pike Sloan Peter Shirley, 2013 Simple Analytic Approximations to the CIE XYZ Color Matching Functions Journal of Computer Graphics Techniques Vol. 2, No. 2

Examples

XYZTannenbaum1974(555)

XYZtoRGB 149

	·- ·		_	_	_
٧١	/Zt	^	u	<i>1</i> :	ĸ
Λ	- L	·U	ľ	u	ப

convert from XYZ coordinates to RGB

Description

XYZtoRGB convert from XYZ coordinates to RGB.

Usage

```
XYZtoRGB(xc, yc, zc, ColorSystem = c(0.67, 0.33, 0.21, 0.71, 0.14, 0.08, 0.31, 0.316))
```

Arguments

xc	XYZ X coordinates
ус	XYZ Y coordinates
zc	XYZ Z coordinates
ColorSystem	RGB Color System data

Value

RGB coordinates

Author(s)

Jose Gama

Source

Bruce Justin Lindbloom, 2014 $http://www.brucelindbloom.com/index.html?Eqn_XYZ_to_T.html$

References

 $Bruce\ Justin\ Lindbloom,\ 2014\ http://www.brucelindbloom.com/index.html? Eqn_XYZ_to_T.\ html$

```
XYZtoRGB(0.11465380, 0.08391198, 0.08222077)
```

150 Y2MunsellVtable1D1535

Y2MunsellV

CIE XYZ "Y" to Munsell value

Description

Y2Munsel1V CIE XYZ "Y" to Munsell value.

Usage

Y2MunsellV(Y)

Arguments

Υ

Y data

Value

Munsell value

Author(s)

Jose Gama

Source

ASTM, 2008 ASTM Standard D1535-08

References

ASTM, 2008 ASTM Standard D1535-08

Examples

Y2MunsellV(5)

Y2MunsellVtable1D1535 CIE~XYZ~"Y" to Munsell value formula, based on the ASTM Standard D1535-08

Description

Y2MunsellVtable1D1535 NLSQ regression for obtaining similar results to table 1 from ASTM Standard D1535-08.

Usage

Y2MunsellVtable1D1535(Y)

YCbCr2RGB 151

Arguments

Y Y data

Value

Munsell value

Author(s)

Jose Gama

Source

ASTM, 2008 ASTM Standard D1535-08

References

ASTM, 2008 ASTM Standard D1535-08

Examples

Y2MunsellVtable1D1535(5)

YCbCr2RGB

Convert YCbCr coordinates to RGB

Description

YCbCr2RGB Converts YCbCr coordinates to RGB.

Usage

YCbCr2RGB(YPbPrmatrix)

Arguments

YPbPrmatrix YPbPr coordinates

Value

RGB coordinates

Author(s)

Jose Gama

152 YIQ2RGB

Source

Alex Izvorski, Copyright 2003-2005 (Portions Copyright 2001-2003 by Alfred Reibenschuh) Graphics/ColorObject version $0.5.0 \, \text{http://www.poynton.com/notes/colour_and_gamma/ColorFAQ.}$ txt

References

Alex Izvorski, Copyright 2003-2005 (Portions Copyright 2001-2003 by Alfred Reibenschuh) Graphics/ColorObject version $0.5.0 \, \text{http://www.poynton.com/notes/colour_and_gamma/ColorFAQ.}$ txt

Examples

```
YCbCr2RGB(c(18165.831, -625.617, 6558.790))
```

YIQ2RGB

Convert YIQ coordinates to RGB

Description

YIQ2RGB Converts YIQ coordinates to RGB.

Usage

YIQ2RGB(YIQmatrix)

Arguments

YIQmatrix YIQ coordinates

Value

RGB coordinates

Author(s)

Jose Gama

Source

Alex Izvorski, Copyright 2003-2005 (Portions Copyright 2001-2003 by Alfred Reibenschuh) Graphics/ColorObject version $0.5.0 \, \text{http://www.poynton.com/notes/colour_and_gamma/ColorFAQ.txt}$

References

Alex Izvorski, Copyright 2003-2005 (Portions Copyright 2001-2003 by Alfred Reibenschuh) Graphics/ColorObject version $0.5.0 \, \text{http://www.poynton.com/notes/colour_and_gamma/ColorFAQ.}$ txt

YPbPr2RGB 153

Examples

YIQ2RGB(c(82.949, 31.51965, 17.58261))

YPbPr2RGB

Convert YCbCr coordinates to RGB

Description

YPbPr2RGB Converts YCbCr coordinates to RGB.

Usage

YPbPr2RGB(YPbPrmatrix)

Arguments

YPbPrmatrix YPbPr coordinates

Value

RGB coordinates

Author(s)

Jose Gama

Source

Alex Izvorski, Copyright 2003-2005 (Portions Copyright 2001-2003 by Alfred Reibenschuh) Graphics/ColorObject version $0.5.0 \, \text{http://www.poynton.com/notes/colour_and_gamma/ColorFAQ.}$ txt

References

Alex Izvorski, Copyright 2003-2005 (Portions Copyright 2001-2003 by Alfred Reibenschuh) Graphics/ColorObject version 0.5.0 http://www.poynton.com/notes/colour_and_gamma/ColorFAQ.

```
YPbPr2RGB(c(82.949000, -2.792896, 29.280320))
```

154 YUV2RGB

Yuv2Luv

Convert Yuv coordinates to Luv

Description

Yuv2Luv Converts Yuv coordinates to Luv.

Usage

Arguments

Yu.v.matrix Yuv matrix illuminant observer observer

RefWhite Reference White

Value

Luv coordinates

Author(s)

Jose Gama

Examples

```
Yuv <- c(0.08391198, 0.2830965, 0.4661789)
Yuv2Luv(Yuv)
```

YUV2RGB

Convert YUV coordinates to RGB

Description

YUV2RGB Converts YUV coordinates to RGB.

Usage

```
YUV2RGB(YUVmatrix)
```

Arguments

YUVmatrix YUV coordinates

Yuv2xy 155

Value

RGB coordinates

Author(s)

Jose Gama

Examples

```
YUV2RGB(c(164.898, -5.584651, 58.53939))
```

Yuv2xy

convert from Yuv coordinates to xy coordinates

Description

Yuv2xy convert from Yuv coordinates to xy coordinates.

Usage

```
Yuv2xy(Yu.v.matrix)
```

Arguments

Yu.v.matrix Yuv coordinates

Value

xy coordinates

Author(s)

Jose Gama

Source

Bruce Justin Lindbloom, 2014 http://www.brucelindbloom.com/index.html?Eqn_XYZ_to_T.html

References

 $Bruce\ Justin\ Lindbloom,\ 2014\ http://www.brucelindbloom.com/index.html? Eqn_XYZ_to_T.\ html$

```
Yuv <- c(0.08391198, 0.2830965, 0.4661789)
Yuv2xy(Yuv)
```

156 Yuv2XYZ

Yuv2XYZ

convert from Yuv coordinates to XYZ coordinates

Description

Yuv2XYZ convert from Yuv coordinates to XYZ coordinates.

Usage

```
Yuv2XYZ(Yu.v.matrix)
```

Arguments

```
Yu.v.matrix Yuv coordinates
```

Value

XYZ coordinates

Author(s)

Jose Gama

Source

 $Bruce\ Justin\ Lindbloom,\ 2014\ http://www.brucelindbloom.com/index.html? Eqn_XYZ_to_T.\ html$

References

 $Bruce\ Justin\ Lindbloom,\ 2014\ http://www.brucelindbloom.com/index.html? Eqn_XYZ_to_T.\ html$

```
Yuv <- c(0.08391198, 0.2830965, 0.4661789)
Yuv2XYZ(Yuv)
```

Yxy2CIE1960UCS 157

Yxy2CIE1960UCS

convert from Yxy coordinates to CIE 1960 UCS

Description

Yxy2CIE1960UCS convert from Yxy coordinates to CIE 1960 UCS.

Usage

```
Yxy2CIE1960UCS(Yxymatrix)
```

Arguments

Yxymatrix Yxy coordinates

Value

CIE 1960 UCS

Author(s)

Jose Gama

Source

 $Bruce\ Justin\ Lindbloom,\ 2014\ http://www.brucelindbloom.com/index.html? Eqn_XYZ_to_T.\ html$

References

 $Bruce\ Justin\ Lindbloom,\ 2014\ http://www.brucelindbloom.com/index.html? Eqn_XYZ_to_T.\ html$

```
xyY \leftarrow c(0.4083308, 0.2988462, 0.08391198)

Yxy2CIE1960UCS(xyY[c(3,1,2)])
```

158 Yxy2Yuv

Yxy2Yuv

convert from Yxy coordinates to Yuv coordinates

Description

Yxy2Yuv convert from Yxy coordinates to Yuv coordinates.

Usage

```
Yxy2Yuv(Yxymatrix)
```

Arguments

Yxymatrix Yxy coordinates

Value

Yuv coordinates

Author(s)

Jose Gama

Source

Bruce Justin Lindbloom, 2014 http://www.brucelindbloom.com/index.html?Eqn_XYZ_to_T.html

References

Bruce Justin Lindbloom, 2014 http://www.brucelindbloom.com/index.html?Eqn_XYZ_to_T.html

```
xyY \leftarrow c(0.4083308, 0.2988462, 0.08391198)

Yxy2Yuv(xyY[c(3,1,2)])
```

Index

*Topic datasets	<pre>createIsoTempLinesTable, 37</pre>		
ASTM.D1925.YellownessIndex, 5	daylightcomponents, 38		
ASTM.E313.Whiteness, 6	deltaE1976, 39		
ASTM.E313.YellownessIndex, 7	deltaE1994, 40		
Berger59.Whiteness, 7	deltaE2000,41		
BVR2XYZ, 8	deltaECMC, 42		
cccie31,9	DeMarcoPokornySmith2degConeFundamentals1992,		
cccie64, 10	43		
CCT2XYZ, 11	DIN6167.YellownessIndex, 44		
CentralsISCCNBS, 11	DIN99toCIELab, 45		
CheckColorLookup, 12	dkl2dklCart, 46		
ChromaticAdaptation, 13	dkl2rgb, 47		
chromaticity.diagram, 14	DominantWavelength, 48		
chromaticity.diagram.color,14	emittanceblackbodyPlanck,49		
CIE.Whiteness, 15	footcandle2candela.steradian.sqmeter,		
CIE1931xy2CIE1960uv, 16	50		
CIE1931xy2CIE1976uv, 17	footcandle2lux, 51		
CIE1931XYZ2CIE1931xyz, 18	footcandle2watt.sqcentimeter, 51		
CIE1931XYZ2CIE1960uv, 19	GanzGrieser.Tint, 52		
CIE1931XYZ2CIE1976uv, 20	GanzGrieser.Whiteness, 53		
CIE1960UCS2CIE1964, 21	heuristic.wlnm2RGB, 54		
CIE1960UCS2xy, 22	HSL2RGB, 55		
CIE1976chroma, 23	HSV2RGB, 56		
CIE1976hueangle, 23	Hue.2.RGB, 57		
CIE1976uv2CIE1931xy, 24	huedegree, 58		
CIE1976uv2CIE1960uv, 25	huedegreemunsell, 58		
CIE1976uvSaturation, 26	Hunter60.WhitenessIndex, 59		
CIELabtoDIN99, 27	HunterLab2XYZ, 60		
CIEluminanceY2NCSblackness, 28	illuminantA, 61		
CIETint, 28	illuminantD65, 62		
ciexyz31, 29	illuminants, 63		
ciexyz64, 30	ISObrightnessReflectometerRSD, 64		
CMY2CMYK, 31	kelvin2xy, 65		
CMY2RGB, 32	Lab2LCHab, 66		
CMYK2CMY, 32	LAB2LUV, 67		
ColorBlockFromMunsell, 33	Lab2XYZ, 67		
compuphaseDifferenceRGB, 34	LCHab2Lab, 68		
conversionIlluminance, 35	LCHuv2Luv, 69		
conversionLuminance, 36	LEF2RGB, 70		

LMS2DKL, 71	spectra2CCT, 111
LMS2RGB, 72	spectra2CRIGAIFSCI, 112
LMS2XYZ, 73	spectra2ISObrightness, 113
LSLM2RGB, 74	spectra2lux, 114
LUV2LAB, 75	spectra2XYZ, 115
Luv2LCHuv, 75	sprague, 116
Luv2XYZ, 76	StearnsStearnscorrection, 117
Luv2Yuv, 77	Stensby68.Whiteness, 117
makeChromaticAdaptationMatrix, 78	StockmanMacLeodJohnson10degConeFundamentals1993,
MaterialReferenceData, 79	118
MaxChromaFromExtrapRenotationData,	StockmanMacLeodJohnson2degCIEadjConeFundamentals1993,
81	119
${\tt MaxChromasForStandardMunsellHuesAndValues}, \\ 82$	StockmanMacLeodJohnson2degStilesBurchConeFundamentals1
Maxwell.triangle, 83	StockmanSharpe10degCMFS2000, 121
Munsell100hues55, 84	StockmanSharpe2degCMFadj2000, 122
Munsell100hues55FM100, 85	SystemISCCNBS, 123
MunsellHues, 86	Taube60.Whiteness, 124
MunsellNeutrals2sRGB, 87	TCSdata, 125
MunsellSpecToHVC, 88	tristimulusMunsell, 126
MunsellSpectral, 88	VosEstevezWalraven2degConeFundamentals1990,
MunsellV2relativeLuminanceY, 89	127
MunsellV2Y, 90	VosWalraven2degConeFundamentals1971,
NickersonColorDifference, 91	128
PhotoYCC2RGB, 92	WestlandBlacknessIndex, 129
PreucilAngle, 93	whitepointsilluminants, 130
PreucilPercentGreyness, 93	whitepointsRGB, 131
PreucilPercentHueError, 94	wlnm2XYZ, 132
RGB2CMY, 95	xFit_1931, 132
rgb2dk1V, 96	xy2CCT.HernandezAndres, 133
RGB2HSL, 97	xy2CCT.McCamy, 134
RGB2HSV, 98	xyChromaticitiesVos1978, 135
RGB2hue, 99	xyY2XYZ, 136
RGB2LEF, 99	XYZ2BVR, 136
RGB2LMS, 100	XYZ2CCT.Robertson, 137
RGB2LSLM, 101	XYZ2HunterLab, 138
RGB2PhotoYCC, 102	XYZ2Lab, 139
RGB2XYZ, 103	XYZ2LMS, 140
RGB2YCbCr, 104	XYZ2Luv, 141
RGB2YIQ, 105	XYZ2RGB, 142
RGB2YPbPr, 106	XYZ2RxRyRz, 143
RGB2YUV, 107	XYZ2xyY, 144
RxRyRz2XYZ, 107	XYZ2Yuv, 145
saturationCIECAM02, 108	XYZMoonSpencer1945, 146
saturationCIELABEvaLubbe, 109	XYZperfectreflectingdiffuser, 147
saturationCIELUV, 110	XYZTannenbaum1974, 148
SmithPokorny2degConeFundamentals1975,	XYZtoRGB, 149
110	Y2MunsellV, 150

Y2MunsellVtable1D1535, 150	conversionIlluminance, 35		
YCbCr2RGB, 151	conversionLuminance, 36		
YIQ2RGB, 152	<pre>createIsoTempLinesTable, 37</pre>		
YPbPr2RGB, 153			
Yuv2Luv, 154	daylightcomponents, 38		
YUV2RGB, 154	deltaE1976, 39		
Yuv2xy, 155	deltaE1994,40		
Yuv2XYZ, 156	deltaE2000,41		
Yxy2CIE1960UCS, 157	deltaECMC, 42		
Yxy2Yuv, 158	DeMarcoPokornySmith2degConeFundamentals1992, 43		
ASTM.D1925.YellownessIndex, 5	DIN6167.YellownessIndex,44		
ASTM.E313.Whiteness, 6	DIN99toCIELab, 45		
ASTM.E313.YellownessIndex, 7	dkl2dklCart,46		
	dk12rgb, 47		
Berger59.Whiteness, 7	dklCart2dkl (dkl2dklCart), 46		
BVR2XYZ, 8	dklCart2rgb (dkl2rgb), 47		
	DominantWavelength, 48		
cccie31,9	3 /		
cccie64, 10	emittanceblackbodyPlanck, 49		
CCT2XYZ, 11			
CentralsISCCNBS, 11	footcandle2candela.steradian.sqmeter,		
CheckColorLookup, 12	50		
ChromaticAdaptation, 13	footcandle2lux, 51		
chromaticity.diagram, 14	<pre>footcandle2watt.sqcentimeter,51</pre>		
chromaticity.diagram.color, 14			
CIE.Whiteness, 15	GanzGrieser.Tint, 52		
CIE1931xy2CIE1960uv, 16	GanzGrieser.Whiteness, 53		
CIE1931xy2CIE1976uv, 17			
CIE1931XYZ2CIE1931xyz, 18	heuristic.wlnm2RGB, 54		
CIE1931XYZ2CIE1960uv, 19	HSL2RGB, 55		
CIE1931XYZ2CIE1976uv, 20	HSV2RGB, 56		
CIE1960UCS2CIE1964, 21	Hue.2.RGB, 57		
CIE1960UCS2xy, 22	huedegree, 58		
CIE1976chroma, 23	huedegreemunsell, 58		
CIE1976hueangle, 23	Hunter60.WhitenessIndex, 59		
CIE1976IIdealig1e, 23 CIE1976uv2CIE1931xy, 24	HunterLab2XYZ, 60		
CIE1976uv2CIE1951xy, 24 CIE1976uv2CIE1960uv, 25			
	illuminantA, <mark>61</mark>		
CIE1976uvSaturation, 26 CIELabtoDIN99, 27	illuminantD65, 62		
	illuminants, 63		
CIEluminanceY2NCSblackness, 28	ISObrightnessReflectometerRSD, 64		
CIETint, 28			
ciexyz31, 29	kelvin2xy, 65		
ciexyz64, 30	Laborousk ((
CMY2CMYK, 31	Lab2LCHab, 66		
CMY2RGB, 32	LAB2LUV, 67		
CMYK2CMY, 32	Lab2XYZ, 67		
ColorBlockFromMunsell, 33	LCHab2Lab, 68		
compuphaseDifferenceRGB.34	LCHuv2Luv. 69		

50	
LEF2RGB, 70	saturationCIELAB (saturationCIELUV), 110
LMS2DKL, 71	saturationCIELABEvaLubbe, 109
LMS2RGB, 72	saturationCIELUV, 110
LMS2XYZ, 73	SmithPokorny2degConeFundamentals1975,
LSLM2RGB, 74	110
LUV2LAB, 75	spectra2CCT, 111
Luv2LCHuv, 75	spectra2CRIGAIFSCI, 112
Luv2XYZ, 76	spectra2ISObrightness, 113
Luv2Yuv, 77	spectra2lux, 114
	spectra2XYZ, 115
makeChromaticAdaptationMatrix, 78	sprague, 116
MaterialReferenceData, 79	StearnsStearnscorrection, 117
MaxChromaFromExtrapRenotationData, 81	Stensby68.Whiteness, 117
MaxChromasForStandardMunsellHuesAndValues,	StockmanMacLeodJohnson10degConeFundamentals1993,
82	118
Maxwell.triangle, 83	StockmanMacLeodJohnson2degCIEadjConeFundamentals1993,
Munsell100hues55, 84	119
Munsell100hues55FM100, 85	
MunsellHues, 86	StockmanMacLeodJohnson2degStilesBurchConeFundamentals1993,
MunsellNeutrals2sRGB, 87	120
MunsellSpecToHVC, 88	StockmanSharpe10degCMFS2000, 121
MunsellSpectral, 88	StockmanSharpe2degCMFadj2000, 122
MunsellV2relativeLuminanceY, 89	SystemISCCNBS, 123
MunsellV2Y, 90	= 1 as white
riunsettyzt, 90	Taube60.Whiteness, 124
NickersonColorDifference, 91	TCSdata, 125
	tristimulusMunsell, 126
PhotoYCC2RGB, 92	
PreucilAngle, 93	VosEstevezWalraven2degConeFundamentals1990,
PreucilPercentGreyness, 93	127
PreucilPercentHueError, 94	VosWalraven2degConeFundamentals1971,
	128
RGB2CMY, 95	
rgb2dklCart (rgb2dklV), 96	WestlandBlacknessIndex, 129
rgb2dk1V, 96	whitepointsilluminants, 130
RGB2HSL, 97	whitepointsRGB, 131
RGB2HSV, 98	wlnm2XYZ, 132
RGB2hue, 99	wlnm2xyz (wlnm2XYZ), 132
RGB2LEF, 99	
RGB2LMS, 100	xFit_1931, 132
RGB2LSLM, 101	xy2CCT.HernandezAndres, 133
RGB2PhotoYCC, 102	xy2CCT.McCamy, 134
RGB2XYZ, 103	xyChromaticitiesVos1978, 135
	xyY2XYZ, 136
RGB2YCbCr, 104	XYZ2BVR, 136
RGB2YIQ, 105	XYZ2CCT.Robertson, 137
RGB2YPbPr, 106	XYZ2HunterLab, 138
RGB2YUV, 107	XYZ2Lab, 139
RxRyRz2XYZ, 107	XYZ2LMS, 140
saturationCIECAM02, 108	XYZ2Luv, 141
Saturationici LCAROZ, 100	1122LUV, 171

```
XYZ2RGB, 142
XYZ2RxRyRz, 143
XYZ2xyY, 144
XYZ2Yuv, 145
XYZMoonSpencer1945, 146
{\it XYZperfect} reflecting diffuser, 147\\
XYZTannenbaum1974, 148
XYZtoRGB, 149
Y2MunsellV, 150
Y2MunsellVtable1D1535, 150
YCbCr2RGB, 151
yFit_1931 (xFit_1931), 132
YIQ2RGB, 152
YPbPr2RGB, 153
Yuv2Luv, 154
YUV2RGB, 154
Yuv2xy, 155
Yuv2XYZ, 156
Yxy2CIE1960UCS, 157
Yxy2Yuv, 158
zFit_1931 (xFit_1931), 132
```