Reg. No.							

B.Tech. DEGREE EXAMINATION, NOVEMBER 2023

Sixth Semester

18BMC306J - MEDICAL IMAGE PROCESSING

(For the candidates admitted from the academic year 2020-2021 to 2021-2022)

Note: (i) (ii)	Part - A should be answered in OMR so over to hall invigilator at the end of 40 th in Part - B & Part - C should be answered	minut	e.	t should	d be	han	ded
	3 hours			Мах. М	1ark	s: 1	00
				Marks	BL	CO	PO
	$PART - A (20 \times 1)$						
1	Answer ALL Q	-		I	1	1	1
1.	Match the number of grey levels prese		256				
	(A) 128 (C) 512	` /	1024				
	(C) 512	(D)	1024				
2.	Find the number of bit required to stor	re im	age of size 128×128 with 64 gray	1	1	1	2
	levels (A) 4096	(B)	8192				
	(A) 4090 (C) 12288	. ,	98304				
	(C) 12266	(D)	70304				
3	Choose the range of intensity levels to	whic	ch the human eve can adapt	1	3	1	1
٥.	(A) 10^{-6} to 10^{-4}	(B)	10 ⁴ to 10 ⁶				
	(C) 10^{-6} to 10^4		10^{-5} to 10^{5}				
	(6) 10 10 1						
4.	Interpret the output of single imaging s	senso	or ·	1	3	1	1
	(A) Unidirectional waveform	(B)	Alternating waveform				
	(C) Voltage waveform	(D)	Square waveform				
					1	2	,
5.	Identify the general form of representa			1	1	2	1
	$(A) S = C \log 10 \left(1 + r\right)$	(B)	$S = C \log 10 (1/r)$				
	(C) $S = C \log 10(1 * r)$	(D)	$S = C \log 10(1-r)$				
			,				
6.	Relate which of the following reprintensity level	esen	t smallest discernible change in	1	3	2	1
	(A) Contour	(B)	Intensity resolution				
	(C) Saturation	(D)	Contrast				
	(0)	()					
7.	Identify the equation used for obtaining	g R v	value in terms of HIS components?	1	1	2	1
	(A) $R = 1[1 - (S\cos H)/\cos(60^{\circ} - H)]$	(B)	$R = 1[1 + (S\cos H) / \cos(120^{\circ} - H)]$				
	(C) $R = 1[1 + (S\cos H)/\cos(60^{\circ} - H)]$	(D)	$R = 1 \left[1 + \left(S \cos H \right) / \cos \left(30^{\circ} - H \right) \right]$				
	· · · · · · · · · · · · · · · · · · ·	. /					
8.	Assess the process of subtracting the b	lurre	d image from the original image is	1	3	2	1
	called						

(B) High pass filtering

(D) High boost filtering

(C) Low pass filtering

(A) Unsharp masking

9.	t many	(B)	s to reduce artifacts Filter back projection Polar coordinate	1	3	3	1
10.		(B)	Graph partitioning method Neural network segmentation	1	1	4	1
11.	Compare the advantage of iterative reco	onstrı	action technique versus filter back	1	4	3	1
	projection (A) Better depiction of bone detail		Does not require specification of reconstruction kernel				
	(C) Slower reconstruction		Faster reconstruction				
12.		ne in (B) (D)	DCT	1	3	3	3
13.		(B)	ed by modern CT scanner Iterative method Filter back projection	1	3	3	3
14.	Match the type of operator used to extredge, when there is gradual change in it (A) Sobel operator	ract then tens (B)	ne most appropriate location of an	1	1	4	1
15.			nere are two types of light object Global thresholding	1	1	4	1
	(C) Adaptive thresholding	(D)	Multiple thresholding				
16.		(B)	Laplacian operator Laplacian of Gaussian operator	1	3	4	3
17.		(B)	works well Intensity Coordinates	1	3	5	1
18.			Quantization Normalization	1	1	5	1
19.		(B)	$1 + \left(\frac{1}{C}\right)$	1	2	5	1
	$(C) 1 - \left(-\frac{1}{C}\right)$	(D)	1/ _C				

20.	Match the formula P _v =n/MN the (A) Coding redundancy (B) Spatial redundancy (C) Temporal redundancy (D) Irrelevant info	1		ŭ	
	PART – B (5 × 4 = 20 Marks) Answer ANY FIVE Questions	Marks	BL	CO	PO
21.	Define Weber's ratio. Demonstrate with example.	4	1	1	1
22.	Demonstrate optical illusion and simultaneous contrast with example.	4	3	1	1
23.	Compute contrast stretching and intensity level slicing for a 3 bit image of size 3×3 where u=[7 5 2; 3 4 2; 6 2 1] with a=2 and b=5?	4	3	2	2
24.	Give an example of various frequencies domain filters used in image enhancement.	4	2	2	1
25.	Define radon transform and explain with example.	4	1	3	1
26.	Explain optimum global thresholding using Otsu method.	4	2	4	1
27.	Describe wavelet transform based image fusion.	4	2	5	1
28. a.	$PART-C \ (5\times 12=60 \ Marks)$ Answer ALL Questions Illustrate in detail fundament steps in digital image processing with neat diagram.	Marks		co	PO 1
1.	(OR)	12	3	1	2
	Compute Haar transform for N=8. Estimate the histogram equalization for an image of size M×N (64×64) with	12	2	2	2
	gray level L=8. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
b.	(OR) Explain in detail about the following (i) Conversion of RGB to HSI model	6	2	2	1
	(ii) Conversion of HIS to RGB model	O	2	3	1
30. a.	Discuss the following in detail. (i) Inverse fillering (ii) Minimum mean square fillering (OR)	6			
b.	Describe in detail about fourier reconstruction of MRI image projection geomentry mode.	12	2	3	1

31. a.	Explain in detail about the following (i) Marr-Hildreth edge detector (ii) Canny edge detector	6	2	4	1
	(OR)				
b.	Demonstrate in detail about segmentation using morphological watersheds dam construction algorithm.	12	3	4	1
32. a.	Determine the Huffman coding for the word WELCOME.	12	3	5	1
b.	(OR) Explain various types of image registration algorithm with neat diagram.	12	2	5	1

* * * * *