

Features

- Split Gate Trench MOSFET technology
- Excellent package for heat dissipation
- High density cell design for low RDS(ON)

Product Summary

BVDSS	RDSON	ID
100V	20 mΩ	40A

Applications

- DC-DC Converters
- Power management functions
- Synchronous-rectification applications

TO252-3L Pin Configuration

Absolute Maximum Ratings $T_C=25^{\circ}C$ unless otherwise specified

Symbol	Parameter	Max.	Units	
V _{DSS}	Drain-Source Voltage		100	V
V _{GSS}	Gate-Source Voltage		± 20	V
I _D	Continuous Drain Current note5	Tc = 25℃	40	Α
ID	Continuous Drain Current note5	Tc = 100°C	16	Α
I _{DM}	Pulsed Drain Current note3		100	Α
P _D	Power Dissipation note2		27	W
I _{AS}	Avalanche Current note3,6		8	А
Eas	Single Pulse Avalanche Energy note3,6		16	mJ
Rejc	Thermal Resistance, Junction to Case	4.65	°C/W	
R ₀ JA	Thermal Resistance, Junction to Ambi	62	°C/W	
TJ, Tstg	Operating and Storage Temperature R	-55 to +150	$^{\circ}$	

Electrical Characteristics Tc=25°C unless otherwise specified

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units		
Off Characteristic								
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} = 0V, I _D = 250μA	100	-	-	V		
I _{DSS}	Drain-Source Leakage Current	V _{DS} = 80V, V _{GS} = 0V	-	-	1	μA		
Igss	Gate to Body Leakage Current	V _{DS} = 0V, V _{GS} = ±20V	-	-	±100	nA		
On Charact	eristics							
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1.2	1.8	2.6	V		
D	Statia Drain Sauras On Besistanes	V _{GS} = 10V, I _D = 15A	-	20	23 mΩ			
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 4.5V, I _D = 10A -		-	33	mΩ		
g fs	Forward Threshold Voltage	V _{DS} = 10V, I _D = 20A	-	22	-	S		
Rg	Gate Resistance	$V_{DS} = V_{GS} = 0V$, $f = 1.0MHz$	-	1.62	-	Ω		
Dynamic Cl	haracteristics							
Ciss	Input Capacitance	\/ F0\/\/ 0\/	-	822	-	pF		
Coss	Output Capacitance	$V_{DS} = 50V, V_{GS} = 0V,$	-	310	-	pF		
C _{rss}	Reverse Transfer Capacitance	f = 1.0MHz	-	23.5	-	pF		
Switching (Characteristics	,		•	•			
Qg	Total Gate Charge	\/ 50\/ L 00A	-	22.7	-			
Qgs	Gate-Source Charge	V _{DS} = 50V, I _D = 20A,	-	6.2	-	nC		
Q _{gd}	Gate-Drain("Miller") Charge	- V _{GS} = 10V	-	5.3	-			
t _{d(on)}	Turn-On Delay Time	.,	-	15	-			
t _r	Turn-On Rise Time	$V_{DS} = 50V, I_D = 20A,$	-	3.2	-	- ns		
t _{d(off)}	Turn-Off Delay Time	$R_G = 3\Omega$, $V_{GS}=10V$	-	30	-			
t _f	Turn-Off Fall Time	1	-	7.6	-			
Diode Char	acteristics			•	•			
Is	Continuous Source Current			-	40	Α		
V _{SD}	Diode Forward Voltage	Is=20A . V _{GS} = 0V	-	0.88	1.0	V		
t _{rr}	Reverse Recovery Time	I _{SD} =20A,	-	45	-	ns		
Qrr	Reverse Recovery Charge	dl _{SD} /dt=100A/µs	-	59	-	nC		

Notes:

- 1. The value of $R_{\theta JC}$ is measured in a still air environment with TA =25°C and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design.
- 2. The power dissipation P_D is based on $T_{J(MAX)}$ =150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.
- 3. Single pulse width limited by junction temperature $T_{\text{J(MAX)}}\!\!=\!\!150^{\circ}\text{C}.$
- 4. The R_{BJA} is the sum of the thermal impedance from junction to case R_{BJC} and case to ambient.
- 5. The maximum current rating is package limited.
- 6. The EAS data shows Max. rating. The test condition is V_{DS} =50V, V_{GS} =10V,L=0.5mH

Typical Performance Characteristics

Figure 1. Output Characteristics

Figure 3. Drain-to-Source On Resistance
vs Drain Current

Figure 5. Capacitance Characteristics

Figure 2. Transfer Characteristics

Figure 4. Body Diode Forward Voltage vs Source Current and Temperature

Figure 6. Gate Charge Characteristics

Figure 7. Normalized Breakdown Voltage vs Junction Temperature

Figure 9. Maximum Continuous Drain Current vs Case Temperature

Figure 11. Drain-to-Source On Resistance vs Gate

Figure 8. Normalized On Resistance vs

Junction Temperature

Figure 10. Maximum Power Dissipation vs Case Temperature

Figure 12. Maximum Safe Operating Area

Figure 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Package Mechanical Data TO252-3L

	Dimensions						
Ref.	Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α	2.10		2.50	0.083		0.098	
A2	0		0.10	0		0.004	
В	0.66		0.86	0.026		0.034	
B2	5.18		5.48	0.202		0.216	
С	0.40		0.60	0.016		0.024	
C2	0.44		0.58	0.017		0.023	
D	5.90		6.30	0.232		0.248	
D1	5.30REF			0.209REF			
E	6.40		6.80	0.252		0.268	
E1	4.63			0.182			
G	4.47		4.67	0.176		0.184	
Н	9.50		10.70	0.374		0.421	
L	1.09		1.21	0.043		0.048	
L2	1.35		1.65	0.053		0.065	
V1		7°			7°		
V2	0°		6°	0°		6°	

Reel Spectification-TO252-3L

	Dimensions						
Ref.	Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
W	15.90	16.00	16.10	0.626	0.630	0.634	
E	1.65	1.75	1.85	0.065	0.069	0.073	
F	7.40	7.50	7.60	0.291	0.295	0.299	
D0	1.40	1.50	1.60	0.055	0.059	0.063	
D1	1.40	1.50	1.60	0.055	0.059	0.063	
P0	3.90	4.00	4.10	0.154	0.157	0.161	
P1	7.90	8.00	8.10	0.311	0.315	0.319	
P2	1.90	2.00	2.10	0.075	0.079	0.083	
A0	6.85	6.90	7.00	0.270	0.271	0.276	
В0	10.45	10.50	10.60	0.411	0.413	0.417	
K0	2.68	2.78	2.88	0.105	0.109	0.113	
Т	0.24		0.27	0.009		0.011	
t1	0.10			0.004			
10P0	39.80	40.00	40.20	1.567	1.575	1.583	