Scientific Paper Categorizer: Methodology, Experiments, Results & Analysis

Introduction

This project presents a robust NLP-based system for automatic classification of scientific paper abstracts into multiple scientific domains. The system leverages both traditional (TF-IDF) and modern (SBERT) feature extraction methods, and supports multiple machine learning models. It is designed for high accuracy, interpretability, and production-readiness.

Methodology

Data Collection & Preprocessing

- Data Source: Abstracts are fetched from the arXiv API, covering categories such as Computer Science, Physics, Biology, Mathematics, etc.
- Preprocessing:
 - Lowercasing, punctuation and digit removal
 - Stopword removal (NLTK)
 - Lemmatization (spaCy)
 - Augmentation for underrepresented classes (synonym replacement)
- Features Extraction :
 - o TF-IDF:
 - Bag-of-words with ngrams (1-2)
 - Max features: 10,000
 - Dimensionality reduction (SVD) for SVM models
 - SBERT:
 - Sentence-BERT embeddings (all-MiniLM-L6-v2)
 - 384-dimensional dense vectors
- Model Architectures :
 - TF-IDF Models:
 - Logistic Regression (OneVsRest)
 - Linear SVM (OneVsRest, with SVD + StandardScaler)
 - SBERT Models:
 - Logistic Regression (OneVsRest)
 - Multi-layer Perceptron (OneVsRest, 256 hidden units)

Training & Evaluation

- Multi-label Binarization: For multi-label classification
- Cross-validation: 5-fold for robust evaluation
- Metrics:
 - Hamming loss (lower is better)
 - Exact Match Accuracy
 - o Macro / Micro Precision, Recall, F1
 - Per-class metrics

Experiments

Experimental Setup

- Training Data: Balanced across 9+ arXiv categories, with augmentation for minority classes.
- Feature Methods: Both TF-IDF and SBERT pipelines evaluated.
- Model Selection: Logistic Regression, SVM and MLP compared.
- Evaluation: Performed on held-out test set and via cross-validation.

Experimental Pipeline

- Data Loading: Fetch and preprocess abstracts.
- Feature Extraction: Generate TF-IDF or SBERT features.
- Model Training: Train selected model(s) with cross-validation.
- Evaluation: Compute all metrics and generate confusion metrices.
- Explainability: Generate SHAP explanations for prediction

Results

Experimental Setup

Model	Exact Match Accuracy	Macro F1	Hamming Loss
SBERT MLP	93.48%	95.61%	0.0096
TF-IDF SVM	82.38%	91.41%	-
TF-IDF Logistic Reg.	79.15%	89.92%	-

Category Highlights:

Signal Processing (eess.SP): 99.26% F1

• **Biology (q-bio.BM):** 97.81% F1

Physics (physics.gen-ph): 97.32% F1Mathematics (math.ST): 95.11% F1

Model Comparison

- SBERT MLP outperforms all other models in both accuracy and F1-score.
- **TF-IDF SVM** is a strong traditional baseline, especially for interpretable explanations.

Visualizations

• Performance Summary:

• Model Comparison :

• SBERT MLP Heatmaps:

• TF-IDF SVM Heatmaps :

• TF-IDF Logistic Regression Heatmaps:

• SBERT Logistic Regression Heatmaps:

Explainability & Interpretability

TF-IDF Models:

- SHAP explanations are word-based and human-interpretable.
- Example:
 - Positive features:

cosmology: 0.12 scalar: 0.09

- Negative features:

quantum:-0.07 neural:-0.06

SBERT Models:

- **Production Solution:** LIME is used to provide word-level explanations for SBERT models, ensuring interpretability for all model choices.
- Example: For a given abstract, LIME highlights the most influential words for the predicted category.

Analysis

- SBERT models provide superior performance, especially for nuanced, semantic distinctions.
- **TF-IDF models** are faster and more interpretable, making them suitable for scenarios where the transparency is critical.
- **Explainability:** The system ensures that all model choices provide human-interpretable explanations, critical for client-facing and production deployments

Conclusion

This system delivers robust, accurate, and interpretable scientific paper classification. It is ready for production deployment, with strong performance, comprehensive evaluation, and human-friendly explanations for all model choices

References

- arXiv API
- Sentence Transformers (SBERT)
- scikit-learn
- LIME, SHAP
- spaCy, NLTK