

Um número qualquer

- 127,8254
- Mantissa → 1278254 (7 algarismos)
- Expoente -4 (no caso da base 10)
- Podemos escrever

$$s \times b^e$$

Bases

• Base 10:	• Base 16:	• Base 2:
1	1 16	1
2	2 17	10
3	3 18	11
4	4 19	100
5	5 1A	101
6	6 1B	110
7	7 1C	111
8	8 1D	1000
9	9 1E	1001
10	A 1F	1010
11	B 20	1011
12	$oldsymbol{\cap}$	1100
13	D	1101
14	E	1110
	F	
15 16		1111
16	10	10000
17	11	10001
18	12	10010
19	13	10011

Spin e Memória

1 bit

Qual o intervalo de inteiros representáveis por N bits?

- $N=1 \rightarrow 0,1$
- $N=2 \rightarrow 00, 01, 10, 11$
- N=3 \rightarrow 000, 001 010, 011, 100, 101, 110, 111
- ...
- Em geral → [0, 2^N-1]
- → ERRADO!!!
- Usa-se um bit para representar o sinal
- Conclusão: [-2^{N-1}+1, 2^{N-1}-1]

- Normalmente usa-se 8 bits para se representar um caractere, como "a" ou "b";
- 8 bits = 1 B = 1 byte
- 1KB = 1024 B
- 1MB = 1024 KB
- 1GB = 1024 MB
- 1 TB = 1024 GB, ...

- Computadores antigos utilizavam 8 bits para um inteiro: máximo inteiro representável =127;
- Hoje, a maioria dos computadores utiliza 64 bits: máximo inteiro = 2⁶³-1≈10¹⁹;
- Bom o suficiente?
- Razão tamanho do universo/tamanho de um próton = 10⁴¹

Quem gosta de números decimais?

Quem gosta de números binários?

Conversão da base 10 para a base 2

- Converter 25₁₀ para base binária:
- Divide por 2 → resultado=12, resto 1;
- Divide por 2 → resultado=6, resto 0;
- Divide por 2 → resultado=3, resto 0;
- Divide por 2 → resultado=1, resto 1;
- Divide por 2 → resultado=0, resto 1;

$$25_{10} = 11001_{2}$$

Conversão da base 2 para a base 10

$$11001_{2} = 1*2^{4} + 1*2^{3} + 0*2^{2} + 0*2^{1} + 1*2^{0}$$

$$= 16_{10} + 8_{10} + 1_{10} = 25_{10}$$

$$= (((((0*2+1)*2+1)*2+0)*2+0)*2+1)$$

Conversão da base 10 para a base 2: números menores que a unidade

- Começa com 0,
- Multiplica o número por 2 a cada passo
- Resultado maior (menor) que 1: adiciona 1 (0)
- A cada passo despreze a parcela maior que 1 do resultado;
- Exemplo:

•
$$(1/5)*2=2/5<1 \rightarrow 0$$

•
$$(2/5)*2=4/5<1 \rightarrow 0$$

•
$$(4/5)*2=8/5>1 \rightarrow 1$$

•
$$(3/5)*2=6/5>1 \rightarrow 1$$

•
$$(1/5)*2=2/5<1 \rightarrow 0$$

•

$$(1/5)_{10} = (0,001100110011...)_2$$

•
$$(1/8)*2=1/4<1 \rightarrow 0$$

•
$$(1/4)*2=1/2<1 \rightarrow 0$$

•
$$(1/2)*2=1/1=1 \rightarrow 1$$

•
$$(0)*2=0<1 \rightarrow 0$$

$$(1/8)_{10} = (0,001)_2$$

•
$$(1/10)*2=1/5<1 \rightarrow 0$$

•
$$(2/5)*2=4/5<1 \rightarrow 0$$

•
$$(4/5)*2=8/5>1 \rightarrow 1$$

•
$$(3/5)*2=6/5>1 \rightarrow 1$$

•
$$(1/5)*2=2/5<1 \rightarrow 0$$

•
$$(2/5)*2=4/5<1 \rightarrow 0$$

•
$$(4/5)*2=8/5<1 \rightarrow 1$$

• ...

$$(1/10)_{10} = (0.00110011001100...)_{2}$$

Representando Números reais

$$x = (-1)^{s} \times 1, f \times 2^{e-bias}$$
Single precision \rightarrow 32 bits=4B

1 bit

8 bits=1B

23 bits

Qual a precisão da mantissa?

- 23 bits?
- Outra resposta?
- Resposta correta: precisão de 24 bits!!!!!
- Por quê?

Representando Números reais

$$x = (-1)^s \times 1$$
Phantom Bit

Number name	Values of s, e, and f	Value of single
Normal	0 < e < 255	$(-1)^s \times 2^{e-127} \times 1.f$
Subnormal	$e = 0, f \neq 0$	$(-1)^s \times 2^{-126} \times 0.f$
Signed Zero (± 0)	e = 0, f = 0	$(-1)^{s} \times 0.0$
$+\infty$	s = 0, $e = 255$, $f = 0$	+INF
$-\infty$	s = 1, $e = 255$, $f = 0$	-INF
Not a number	$s = u$, $e = 255$, $f \neq 0$	NaN

 $1,4\times 10^{-45} \leq single precision \leq 3.4\times 10^{38}$

Representando Números reais

$$x = (-1)^s \times 1, f \times 2^{e-bias}$$
Double precision \rightarrow 64 bits=8B

1 bit

10 bits

53 bits

Qual a precisão da mantissa?

- 53 bits?
- Outra resposta?
- Resposta correta: precisão de 54 bits!!!!!
- Por quê?

Number name	Values of s , e , and f	Value of double
Normal	$0 \le e \le 2047$	$(-1)^s \times 2^{e-1023} \times 1.f$
Subnormal	$e = 0, f \neq 0$	$(-1)^s \times 2^{-1022} \times 0.f$
Signed zero	e = 0, f = 0	$(-1)^{s} \times 0.0$
$+\infty$	s = 0, $e = 2047$, $f = 0$	+INF
$-\infty$	s = 1, $e = 2047$, $f = 0$	-INF
Not a number	$s = u$, $e = 2047$, $f \neq 0$	NaN

 $4,9\times 10^{-324} \leq double precision \leq 1.8\times 10^{308}$

Overflow e underflow

- Para singles:
 - Overflow: x é maior que 2128;
 - Underflow: x é menor que 2⁻¹²⁸;
- Resultado de overflow é normalmente um NAN, mas isso depende da máquina;
- Normalmente um underflow é convertido para o valor zero.

Terminações

- $(1/10)_{10}=0,1$
- $(1/3)_{10}=0,3333...$
- $(1/2)_2 = 0.1$
- $(1/4)_2 = 0.01$
- $(1/8)_2 = 0.001$
- $(1/10)_2 = 0.001100110011...$

Caso do 1/10

- Convertendo (0,1)₁₀ para binário será:
- $(1/10)_2$ =0,0011001100110011001100...
- Mas no caso single precision, o computador trunca para:
- $(1/10)_2$ =0,0011001100110011001100
- Que quando transformado de volta para decimal fica:
- $(1/10)_{10}$ =0.100000001490116119384765625

Caso do (1/10) ao quadrado

- Para você: x=0,1
- Para o PC: x=0.100000001490116119384765625
- Se VOCÊ quadrar o último resultado, obterá exatamente:
 - x*x=0,0100000002980232260973991742503130 80847263336181640625
- O PC truncará para:
 - x*x=0.010000000707805156707763671875
- Mas o número representável mais próximo de 0,01 é 0.009999999776482582092285156250

Precisão da máquina

$$1_c + \epsilon_m = 1_c$$

Singles possuem erro na sexta casa decimal Doubles possuem erro na décima quinta casa decimal

Exemplo: 7+10⁻⁷

Erros

- Teoria ruim e vacilos...
 - Erros tipográficos
 - Utilizar o arquivo errado ou dados errados
 - Teoria com "furos"
- Erros aleatórios
 - Flutuações na rede elétrica
 - Raios cósmicos ou alguém puxando a tomada

Erros

- Erros de aproximação
 - Truncando uma série
 - elementos finitos
 - Trocar variáveis por constantes
- Erros de arredondamento
 - O computador é discreto, enquanto o mundo é (muitas vezes) contínuo

Modelo para o desastre

$$x_c = x(1 + \epsilon_x)$$

 $a=b-c \rightarrow b e c próximos$

$$\frac{a_c}{a} = 1 + \frac{b}{a} MAX(|\epsilon_b|, |\epsilon_c|)$$

Acumulação de erros

$$\frac{a_c}{a} \approx 1 + \epsilon_b + \epsilon_c$$

Para várias operações seguidas, argumentos estatísticos podem mostrar que:

$$\epsilon_{round\ off} \approx \sqrt{N}$$

- Um computador rápido realiza cerca de 10¹⁰ operações por segundo;
- Em três horas teremos 10¹⁴ operações;
- O erro será de cerca de $10^7 \epsilon_{m}$
- Então o erro tem de ser bem menor que 10-7;
- Moral da história: use doubles.

Minimizando erros

- Conhecimento da análise numérica;
- Cuidado com o compilador;
- Binários podem descrever uma vasta coleção de escalas, mas pode falhar em dar resultados decimais exatos;
- Cuidado com operações iterativas (matrizes);
- Aspirações de matemáticos pode ser frustradas pelo computador;
- Evite o teste "se x=y".

Alguns passos rumo ao sucesso

- 1: Testar;
- 2: Testar;
- 3: Testar;
- 4: Testar;
- 5: Testar;
- 6: Testar;
- 7: Testar;
- ...