Numerical Optimisation: Trust Region Methods Assignment Project Exam Help

https://eduassistpro.github.

Add Over Medica Proble University College Lo

Assignment 3

2D Subspace Method

Recall the constraint minimisation problem for the trust region

Assignment Project Exam Help
$$\min m(p) = f(x_k) + g^T p + -p^T B p$$
 s.t. $p \Delta$

Let until the strain of the st

We can take of out of this basis via: edu_assist_processination of this basis via:

$$p = Va$$

Now consider the minimisation problem in terms of this basis:

$$\min m_v(a) = f(x_k) + g_v^T a + \frac{1}{2} a^T B_v a \quad \text{ s.t. } ||a|| \leq \Delta,$$

Sweepen the fitting $e \in I$. As xrain his element full rank $(g \text{ and } B^{-1}g \text{ are not collinear})$, if $B \text{ is s.p.d. so is } B_v$. Note t

To sohttps://eduassistpro.github. of Theorem 4.1 Nocedal Wiright. From this theor have that a minimizes m_v s.t. $||a|| \le \text{Add}$ $\text{VeChat}_{(B_v + \lambda I)} = -g$ λ (1) $(B_v + \lambda I)$ is s.p.d.

$$(B_{v} + \lambda I) a = -g \quad \lambda$$

$$\lambda(\Delta - ||a||) = 0,$$

$$(B_{v} + \lambda I) \text{ is s.p.d.}$$

$$(1)$$

This gives two cases:

• $\lambda=0$ and $||a||<\Delta$. The unconstraint solution is inside the trust region. Then the first equation becomes:

Assignment Project Exam Help

• λ 0 and $a = \Delta$. The constraint is active. Then we can

https://eduassistpro.github.

The additional equation is provided by the c

Add WeChat edu_assist_pr

To solve this system we make use of eigendecomposition of B_v :

$$B_{\nu} = Q^{T}DQ$$
 with Q orthonormal

Then we have:

$$Qa = -(D + \lambda I)^{-1}Qg_{\nu}$$

and realise that $(Qa)^T(Qa) = a^TQ^TQa = a^Ta$. We denote Assignment Project Exam Help

with https://eduassistpro.github. Q_a i || a|| a1 a2.

Add W^2 Chatedu_assist_property

which we can transform to a 4th degree polynomial in λ assuming that $d_i + \lambda > 0$.

