Càrrega elèctrica

$$F = qE$$

$$F = qv \times B$$

$$E = k \frac{q}{r^2} u$$

$$dB = \frac{\mu_0 I}{4\pi} \frac{dl \times r}{r^3}$$

$$Q = (N_p - N_e)e$$

Corrent elèctric

$$I = \frac{dq}{dt}$$

$$N_e = \frac{Q}{e} = \frac{It}{e}$$

Diferència de potencial

$$W_{A \to B} = (U_A - U_B)$$

$$V_{A \to B} = (V_A - V_B)$$

$$(U_A - U_B) = q(V_A - V_B)$$

$$V_A - V_B = Ed$$

Potència

$$P = VI$$

Resistència

$$V = V_A - V_B = RI \rightarrow R = \frac{V}{I}$$

$$P_{diss} = VI = RI^2 = \frac{V^2}{R}$$

$$R = \rho \frac{l}{S}$$

$$S = \pi r^2 = \pi \left(\frac{d}{2}\right)^2$$

$$\sigma = \frac{1}{\rho}$$

$$R_{s\`{e}rie} = R_1 + R_2 + \dots + R_n$$

$$R_{paral \cdot lel} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$$

Fonts de tensió

 $V_A - V_B = \varepsilon - rI \rightarrow del \ pol \ positiu \ al \ negatiu$ $V_A - V_B = \varepsilon + rI \rightarrow del \ pol \ negatiu \ al \ positiu$

$$I = \frac{\varepsilon}{R+r}$$

$$U = Q\varepsilon \to P = \frac{U}{\Delta t} \to \Delta t = \frac{U}{P} = \frac{Q\varepsilon}{I\varepsilon} = \frac{Q}{I}$$

$$I_c = \frac{\varepsilon}{r}$$

Thevenin

$$R = R_{Th}$$

$$I = \frac{\varepsilon_{Th}}{R + R_{Th}}$$

$$P_{diss} = (R + R_{Th})I^{2}$$

Condensadors

$$C = \frac{Q}{V}$$

$$U = \frac{1}{2}CV^{2}$$

$$C = \varepsilon_{0}\varepsilon_{r}\frac{A}{d}$$

$$E = \frac{V}{d} = \frac{V_{+} - V_{-}}{d}$$

$$C_{serie} = \frac{1}{C_{1}} + \frac{1}{C_{2}} + \dots + \frac{1}{C_{n}}$$

$$C_{paral \cdot lel} = C_{1} + C_{2} + \dots + C_{n}$$

$$\varepsilon_0 = 8.85 \times 10^{-12} \frac{C^2}{Nm^2} o \frac{F}{m}$$

$$1 Ah = 3600C$$

$$q_e = 1.602 \times 10^{-19} C$$

q = Càrrega (C)
E = Camp elèctric (N/C)
v = velocitat (m/s)
B = Camp Magnètic (T)
Q = Càrrega d'un objecte
N_p = quantitat de protons
N_e = quantitat d'electrons

$$e$$
 = unitat fonamental de càrrega

I = Intensitat elèctrica (A)

t = temps (s)

F = Força (N)

 $W_{A \rightarrow B}$ = diferència o variació d'energia potencial (J)

 $V_{A \rightarrow B}$ = diferencia de potencial (V)

d = distància entre els dos punts A i B (m)

V = potencial elèctric (V)P = Potència (W)

R = Resistència (Ω)

 P_{diss} = Potència dissipada (Ω)

 ρ = resistivitat (Ωm)

l = longitut

S = Secció

 σ = conductivitat elèctrica $(\Omega m)^{-1}$

 ε = fem (V)

r = resistència interna (Ω)

 I_c = Corrent de curtoircuit

C = capacitat (F)

U = Energia total acumulada (C)

 $A = \text{Àrea}(m^2)$

 ε_r = constant dialèctica relativa

 ε_0 = permitivitat elèctrica del buit

E = resistència dialèctica