Written Problems

1.

a. The logical functions that can be expressed as a linear classifier of the form $f(x; w) = sign(w_1x_1 + w_2x_2 + b)$ are AND (x_1, x_2) and OR (x_1, x_2) . The w_1 , w_2 , and bias b that mimic AND are: $w_1 = 1$, $w_2 = 1$ and b = -1. The w_1 , w_2 , and bias b that mimic OR are: $w_1 = 1$, $w_2 = 1$ and b = 1.

XOR does not work, because for any value of w and b not all the conditions can be satisfied.

b. The weight vectors and biases that satisfies the XOR logical functions are:

$$W_1 = [1 \ 1] \ W_2 = [1 \ 1] \ W_{out} = [-1 \ 3]$$

 $b_1 = -1 \ b_2 = 1 \ b_{out} = -3$

for
$$x_1 = 1$$
 and $x_2 = -1$, $X = [1 -1]$:
 $h_1 = W_1X + b_1 = -1$ so $sign(h_1) = -1$
 $h_2 = W_2X + b_2 = 1$ so $sign(h_2) = 1$
so $H = [-1 \ 1]$, therefore $f(X;W)$ is:
 $sign(W_{out}H + b_{out}) = sign(4-3) = +1$

for
$$x_1 = -1$$
 and $x_2 = 1$, $X = [-1 \ 1]$:
 $h_1 = W_1X + b_1 = -1$ so $sign(h_1) = -1$
 $h_2 = W_2X + b_2 = 1$ so $sign(h_2) = 1$
so $H = [-1 \ 1]$, therefore $f(X;W)$ is:
 $sign(W_{out}H + b_{out}) = sign(4-3) = +1$

for
$$x_1 = -1$$
 and $x_2 = -1$, $X = [-1 \ -1]$:
 $h_1 = W_1X + b_1 = -3$ so $sign(h_1) = -1$
 $h_2 = W_2X + b_2 = -1$ so $sign(h_2) = -1$
so $H = [-1 \ -1]$, therefore $f(X;W)$ is:
 $sign(W_{out}H + b_{out}) = sign(-2-3) = -1$

for
$$x_1 = 1$$
 and $x_2 = 1$, $X = [1 \ 1]$:
 $h_1 = W_1X + b_1 = 1$ so $sign(h_1) = 1$
 $h_2 = W_2X + b_2 = 3$ so $sign(h_2) = 1$
so $H = [1 \ 1]$, therefore $f(X;W)$ is:
 $sign(W_{out}H + b_{out}) = sign(2-3) = -1$

so it does satisfy XOR conditions.