Codifica binaria

September 15, 2018

Outline

Rappresentazione dei numeri nel calcolatore

Introduzione

• La rappresentazione numerica consiste nell'utilizzare un insieme di simboli b_i (chiamati cifre o caratteri) per specificare un numero:

$$b_n \dots b_0$$

· Useremo la notazione

$$[\![b_n \ldots b_0]\!]_B$$

per indicare il numero corrispondente se interpretiamo la serie di cifre in base *B*.

Introduzione

- Un sistema di rappresentazione numerica può essere posizionale o non posizionale.
- Nel primo caso (tra cui troviamo il sistema decimale), ogni cifra assume un peso diverso a seconda della posizione in cui è scritta. Nel secondo no.
- La rappresentazione unaria è un esempio di rappresentazione non posizionale:

Cifra	Valore
unaria	decimale
- 1	1
П	2
III	3
Ш	4
###	5
 	6

3

Rappresentazione decimale

 Il sistema decimale è posizionale; ad esempio questi due rappresentazioni sono differenti:

$$[123]_{10} = 1 \cdot 10^2 + 2 \cdot 10^1 + 3 \cdot 10^0$$

 $[321]_{10} = 3 \cdot 10^2 + 2 \cdot 10^1 + 1 \cdot 10^0$

Rappresentazione decimale

- · Nelle notazioni posizionali, distinguiamo la base e le cifre.
- Nella rappresentazione decimale, la base è il numero 10, e le cifre possono essere da 0 a 9:

$$[\![b_n ...b_0]\!]_{10} = b_{N-1}10^{N-1} + \dots + b_010^0 = \sum_{i=0}^{N-1} b_i \cdot 10^i.$$

dove i pesi sono calcolati come potenze della base, in questo caso dieci.

5

Rappresentazione in base arbitraria

E' possibile usare una qualsiasi base K (e.g., K=8 oppure K=16)

$$[\![\mathbf{b}_n \dots \mathbf{b}_0]\!]_K = b_{N-1}K^{N-1} + \dots + b_0K^0 = \sum_{i=0}^{N-1} b_i \cdot K^i.$$

esempio

$$[10]_{16} = 1 * 16 + 0 * 1 = 16$$

 $[24]_{8} = 2 * 8 + 4 = 20$

Rappresentazione esadecimale (K=16)

<u>Codifica molto frequente</u> nelle applicazioni informatiche; le cifre di base sono 16:

quindi possiamo avere codifiche di questo tipo

$$[1A]_{16} = 1 * 16 + 10 * 1 = 26$$

Codifica binaria naturale

Rappresentazione binaria

 Nella rappresentazione binaria naturale, la base è il numero 2 e le cifre (bit) possono essere 0 oppure 1:

$$[\![b_n ...b_0]\!]_2 = b_{N-1}2^{N-1} + \dots + b_02^0 = \sum_{i=0}^{N-1} b_i \cdot 2^i.$$

dove N è il numero di bit della cifra binaria.

· Ad esempio, avremmo

$$[\![\mathbf{101101}]\!]_2 = 1 \cdot 2^5 + 0 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = [\![\mathbf{45}]\!]_{10}$$

8

Conversione in codifica binaria - Metodo dei resti

Sia m=44 il valore che vogliamo convertire in binario. Il metodo dei resti permette di calcolare la codifica binaria dividendo iterativamente per due:

Valore	Divisone per due	Risultato	Resto	nota
44	44/2	22	0	cifra più a destra
22	22/2	11	0	
11	11/2	5	1	
5	5/2	2	1	
2	2/2	1	0	
1	1/2	0	1	cifra più a sinistra

Codifica di 44: 101100

Notazione abbreviata

```
2^{24} = 2^{4+20} = 16 Mega (leggi "16 milioni")

2^{35} = 2^{5+30} = 32 Giga (leggi "32 miliardi")

2^{48} = 2^{8+40} = 256 Tera (leggi "256 bilioni")
```

Cambio del numero dei bit

 premettendo in modo progressivo un bit 0 a sinistra, il valore del numero non muta

$$\llbracket \mathbf{100} \rrbracket_2 = \llbracket \mathbf{0100} \rrbracket_2 = \llbracket \mathbf{00100} \rrbracket_2 = ... \llbracket \mathbf{000000000100} \rrbracket_2 = \llbracket \mathbf{4} \rrbracket_{\mathbf{10}}$$

 cancellando in modo progressivo un bit 0 a sinistra, il valore del numero non muta, ma bisogna arrestarsi quando si trova un bit 1!

$$\mathbf{7} = [\![\mathbf{00111}]\!]_2 = [\![\mathbf{0111}]\!]_2 = [\![\mathbf{111}]\!]_2 - - - STOP!$$

Somma di numeri binari

La somma si esegue colonna per colonna come per le somme decimali. Attenzione che si ha un riporto già per 1 + 1 = 10!

```
riporto 1 - - - - 2 4 (decimale) (0) 1 0 0 3 7 (decimale) (0) 1 1 1 1 - - - - 5 11 (decimale) 1 0 1 1
```

Se avessi avuto a disposizione solo 3 bit per codificare il numero, questo sarebbe stato un errore di overflow.

Codifica binaria dei numeri con

segno

Codifica modulo e segno

- il primo bit a sinistra rappresenta il segno del numero (bit di segno),
- i bit rimanenti rappresentano il valore:
 - · 0 per il segno positivo
 - 1 per il segno negativo
- esempi con n = 9 (8 bit + 1 bit per il segno)
 - $[[0000000000]_2 = [[0]_{10}]$
 - $[000001000]_2 = +1 \times 2^3 = [8]_{10}$
 - $[100001000]_2 = -1 \times 2^3 = [-8]_{10}$

Svantaggi del modulo e segno

- Il bit di segno è applicato al numero rappresentato, ma non fa propriamente parte del numero in quanto tale
- E' inefficiente: due codifiche per lo 0 ed è complesso da implementare

Codifica complemento a due

- Il C₂ è un sistema di rappresentazione simile al sistema binario naturale, ma il primo bit (quello a sinistra, il più significativo) ha peso negativo.
- Il bit più a sinistra è ancora chiamato bit di segno ma questa volta ha un significato numerico poiché il valore è calcolato tramite una espressione che lo comprende:

$$-1 \cdot b_{N-1} 2^{N-1} + b_{N-2} 2^{N-2} + \dots + b_0 2^0 = -1 \cdot b_{N-1} 2^{N-1} + \sum_{i=0}^{N-2} b_i \cdot 2^i.$$

Esempi di numeri in complemento a due

binario	formula per il calcolo del valore	decimale
[[000]] ₂	$-0\times2^{2} + 0\times2^{1} + 0\times2^{0}$	[+0] ₁₀
$[\![001]\!]_2$	$-0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$	[[+1]] ₁₀
$[\![010]\!]_2$	$-0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$	[[+2]] ₁₀
$[\![011]\!]_2$	$-0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$	[[+3]] ₁₀
$[\![100]\!]_2$	$-1 \times 2^2 + 0 \times 2^1 + 0 \times 2^0$	[-4] ₁₀
$[\![101]\!]_2$	$-1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$	[-3] ₁₀
$[\![110]\!]_2$	$-1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$	[-2] ₁₀
$[\![111]\!]_2$	$-1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$	$[\![-1]\!]_{10}$

Come si ottiene un numero in complemento a due

- L'inverso additivo (o opposto) di un numero rappresentato in C2 si ottiene:
 - · Invertendo (negando) ogni bit del numero
 - · Sommando 1 alla posizione meno significativa

Esempio

Calcolare il valore in C2 di $[-11]_{10}$:

- Parto da $[11]_{10}$ in complemento a 2: $[01011]_2$
- Ne inverto i bit: $[10100]_2$
- Aggiungo 1: $[10100]_2 + [1]_2 = [10101]_2 = [-11]_{10}$

Confronto rappresentazioni:

Dec	M & S	C2
127	01111111	01111111
126	01111110	01111110
		• • •
2	00000010	00000010
1	00000001	00000001
+0	00000000	0000000
0	10000000	-
-1	10000001	11111111
-2	10000010	11111110
		• • •
-126	11111110	10000010
-127	11111111	10000001
-128	-	10000000

Confronto rappresentazioni

- Binario naturale (n bit): [0, 2ⁿ)
- Modulo e segno (*n* bit): (-2ⁿ⁻¹, 2ⁿ⁻¹)
- Complemento a 2 (*n* bit): [-2ⁿ⁻¹, 2ⁿ⁻¹)

Addizione e sottrazione di interi

Addizione di numeri naturali - no overflow

```
      1
      riporto
      1
      1
      1
      1
      1
      2
      77 (decimale)
      0
      1
      0
      0
      1
      1
      0
      1
      +
      4
      1
      0
      0
      1
      1
      1
      0
      0
      0
      1
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
```

Addizione di numeri naturali - con overflow

```
riporto
                 perduto
2
3
         riporto
                   1 1 1 1 1 1
4
                       0 \ 1 \ 1 \ 1 \ 1 \ 1 \ 0 \ 1 \ +
   125 (decimale)
5
   156 (decimale)
                       1 0 0 1 1 1 0 0 =
    25 (decimale) (1) 0 0 0 1 1 0 0 1
9
               avrei bisogno di
10
              un altro bit..
11
```

Addizione di numeri in C2

Addizione di numeri in C2 con overflow

Regole

- · Si può avere overflow senza "riporto perduto"
 - Capita quando da due addendi positivi otteniamo un risultato negativo, come nell'esempio precedente
- · Si può avere un "riporto perduto" senza overflow
 - · Può essere un innocuo effetto collaterale
 - Capita quando due addendi discordi generano un risultato positivo (si provi a sommare +12 e -7)
 - · Se gli addendi sono discordi, non si ha mai overflow