Réactions responsables de la libération de l'énergie emmagasinée dans la matière organique

Les végétaux utilisent le CO₂ atmosphérique (autotrophes) et l'énergie lumineuse (phototrophes) pour produire leur matière organique. Pour cela l'énergie lumineuse est transformée en énergie chimique pour la production d'ATP. Tandis que les cellules des hétérotrophes, sans pouvoir d'utiliser l'énergie lumineuse doivent extraire leur énergie (ATP) à partir des nutriments.

Quels sont les réactions et les mécanismes permettant la libération de l'énergie emmagasinée dans la matière organique chez les hétérotrophes ?

I. Deux voies métaboliques utilisent le glucose :

- 1. Une voie aérobie et une voie anaérobie
 - a. Données expérimentales

Document 1

Dans le but de rechercher les caractéristiques des deux types de métabolisme permettant la libération de l'énergie emmagasinée dans la matière organique. On propose l'étude des données suivantes:

Expérience 1:

On place dans le bioréacteur du dispositif EXAO (figure 1) une solution de levures bien oxygénées de concentration connue (10 g.L⁻¹) et deux sondes : une sonde à dioxygène et une sonde à dioxyde de carbone. On ferme le bioréacteur. On met en route l'agitateur de façon que la solution soit toujours bien homogène et oxygénée. On relie chaque sonde à son interface et les deux interfaces à un ordinateur. On démarre les mesures puis, au bout de 3 min (à t₁), on injecte un millilitre de solution de glucose à 5 g.L⁻¹. la figure 2 donne les résultats obtenus dans un milieu aérobie alors que la figure 3 représente les résultats obtenus chez des levures privées de dioxygène en utilisant le même protocole expérimentale

Fig1. Montage ExAO pour l'étude des échanges gazeux

- 1. Après avoir analysé les résultats, montrer les caractéristiques mises en évidence ici de chacun des types de métabolisme.
- Aide « Analyser les résultats » signifie indiquer comment évoluent les concentrations de dioxygène et de dioxyde de carbone dans les deux cas. Mettre en relation les conditions dans lesquelles sont placées les levures et les échanges gazeux qui s'opèrent entre les levures et le milieu extérieur.

- → Au niveau de la culture bien oxygénée du montage 1, après injection d'un millilitre de solution glucosée, la concentration de dioxygène diminue et la concentration de dioxyde de carbone augmente.
 - ▶ Dans un milieu aérobie, les levures absorbent du dioxygène et rejettent du dioxyde de carbone. Ces échanges gazeux caractérisent le métabolisme de **la respiration**.
- Au niveau de la culture non oxygénée du montage 2, après injection de 1ml de solution glucosée, la concentration en dioxygène diminue et devient nulle très rapidement. Au cours de ce bref moment, la concentration de dioxyde de carbone augmente légèrement. Puis, à partir du moment où il n'y a plus de dioxygène dans le milieu, la concentration de dioxyde de carbone augmente rapidement.
 - ▶ Dans un milieu anaérobie, les levures rejettent du dioxyde de carbone. Ces échanges gazeux caractérisent le métabolisme de la fermentation.

n	^	^,		m	_	n	4	1
.,	()	ľ	ш		-			_/

On souhaite ensuite voir comment évoluent les populations de levures et certains paramètres du milieu en aérobiose et en anaérobiose.

Pour cela, des levures ont été placées dans un milieu de culture contenant le glucose en présence ou en absence d'oxygène. Le tableau ci-dessous représente les conditions et les résultats de l'expérience

	Poids de levures	Glucose (g)		Test à l'alcool	
	formées (g)	initial	consommé	début	Fin
aérobie	1,970	150	150	22	121
anaérobie	0,255	150	45	-	+

1. Indiquez les informations que l'on peut tirer de ces résultats.

On observe des cellules de levure cultivées sur un milieu nutritif riche en O_2 : milieu aérobie, et sur un milieu nutritif dépourvu d' O_2 : milieu anaérobie. Les schémas ci-dessous représentent les électronographies de cette observation

- 2. Comparez les deux cellules et déduisez la relation entre le type de métabolisme et la présence de mitochondries
- 3. Sous forme d'un tableau, **réalisez** un bilan de l'ensemble des phénomènes qui caractérise d'une part le métabolisme de la respiration et d'autre part celui de la fermentation.

proposez une hypothèse sur le rôle des mitochondries dans la cellule.

- 1. En milieu aérobie, la multiplication cellulaire (poids de levures) ainsi que la consommation du glucose sont beaucoup plus importantes qu'en milieu anaérobie. Sachant que la multiplication cellulaire nécessite de l'énergie, On pourrait admettre que la production d'énergie (à partir de la dégradation du glucose) est moindre en mode « fermentation » qu'en mode « respiration ».
 - De plus, la dégradation du glucose en anaérobiose est incomplète et il se forme de l'alcool éthylique ou éthanol.
- 2. Les deux levures présentent un noyau et des vacuoles. Par contre, seule la levure provenant du milieu oxygéné présente des **mitochondries** bien développées.

La respiration et la présence de mitochondries sont liées. Le mode fermentation ne nécessite pas de mitochondries. **Ces derniers sont des organites cellulaires impliqués dans la respiration cellulaire.**

3. Bilan

Respiration	Fermentation
■ Milieu aérobie	■ Milieu anaérobie
■ Absorption de dioxygène	■ Rejet de dioxyde de carbone, et de molécules
■ Rejet de dioxyde de carbone	organiques (éthanol dans le cas des levures)
 Consommation (dégradation) du glucose 	■ Consommation (dégradation) du glucose
■ Beaucoup d'énergie produite	■ Peu d'énergie produite
 Nécessite la présence de mitochondrie 	■ Se déroule dans l'hyaloplasme

2. Notion de respiration et de fermentation

Deux types de réactions chimiques permettent d'extraire l'énergie responsable du fonctionnement cellulaire :

La respiration cellulaire : c'est une oxydation complète de matière organique (glucose) en milieu aérobie, elle nécessite l'intervention des mitochondries et produit une quantité importante d'énergie.

La fermentation : c'est une oxydation incomplète (partielle) de matière organique en milieu anaérobie, elle se déroule dans l'hyaloplasme et produit une faible quantité d'énergie et des molécules organiques contenant encore une énergie potentielle.

Moussa JAOUANI 2 moussa.svt@gmail.com

Comment le glucose est-il transformé en énergie utilisable par la cellule au cours de la respiration et au cours de la fermentation ?

Bien qu'utilisant qu'un même substrat organique, la respiration permet de produire plus d'énergie que la fermentation. Pourquoi ?

Quel est le rôle des mitochondries dans la respiration cellulaire?

- II. La respiration : la conversion d'énergie chimique en énergie utilisable par la cellule en milieu aérobie
 - 1. Les mitochondries, organites clés de la respiration cellulaire
 - a. Ultrastructure et composition chimique de la mitochondrie

But : Rechercher les structures cellulaires liées au métabolisme respiratoire

1. Décrivez l'ultrastructure de la mitochondrie.

Faites un dessin d'observation du document ci-contre en y plaçant les annotations suivantes : membrane externe, membrane interne, replis de la membrane interne ou crêtes, matrice (intérieur de la mitochondrie).

2.Que suggère la présence de nombreuses enzymes dans la mitochondrie?

La présence de nombreuses enzymes suggère l'existence de réactions chimiques

4.L'absence de glucose dans la mitochondrie est-elle en accord avec les conclusions des activités précédentes ? Justifier la réponse.

L'absence de glucose pose problème car, au cours de la respiration, la cellule consomme du glucose (vu précédemment). Or on ne retrouve pas de glucose dans la mitochondrie qui serait l'organite de la respiration!

Les **mitochondries** sont des organites clos délimités par deux membranes : la membrane externe et la membrane interne qui présente des replis appelés **crêtes mitochondriales**. Entre ces deux membranes se **trouve l'espace intermembranaire**. La membrane interne limite la matrice à l'intérieur.

La membrane interne est caractérisée par sa richesse en enzymes et porte des sphères pédonculées tournées vers la matrice

Moussa JAOUANI 3 moussa.svt@gmail.com

2. La glycolyse: oxydation partielle de glucose en pyruvate dans le cytosol

Pb: Les mitochondries sont des organites cellulaires essentiels à la respiration. Pourtant, on n'observe pas la présence de glucose dans les mitochondries. Comment expliquer ce paradoxe?

50

25

Ajout de glucose

Temps en minutes

Ajout de pyruvate

a. Le devenir du glucose absorbé par la cellule

2. Émettre une hypothèse permettant d'expliquer le paradoxe observé, à savoir l'absence de glucose dans les mitochondries

- du pyruvate (désigné par la lettre P)
- du dioxyde de carbone.

Tamas	Milieu	Milieu cellulaire			
Temps	externe	Hyaloplasme	Matrice mitochondriale		
t ₀	G***				
t ₁	G*	G**			
t ₂		P**	P*		
t ₃	CO ₂ *		P**		
t ₄	CO ₂ **				

*radioactivité faible

** radioactivité moyenne

*** radioactivité forte.

3. Utiliser les résultats obtenus afin d'éprouver votre hypothèse.

4.Sur un schéma simplifié représentant une mitochondrie dans le cytosol d'une cellule eucaryote, représenter les relations mises en évidence entre le glucose, le pyruvate et le CO₂.

Aide Comparez les résultats obtenus avant et après l'addition du glucose. Quelle conclusion pouvez émettre

- 1. La concentration du dioxygène reste constante avant et après l'ajout du glucose, les mitochondries ne respirent pas. L'ajout de pyruvate provoque une diminution de la concentration de dioxygène dans le milieu, les mitochondries respirent. ▶On déduit que les mitochondries utilisent l'acide pyruvique comme métabolite énergétique et non pas le glucose.
- 2. hypothèse : La cellule absorberait le glucose et le transformerait en pyruvate dans le cytosol. Seul le pyruvate serait absorbé par la mitochondrie.
- 3. On observe dans le document qu'il n'y a que du glucose dans le milieu externe au temps t₀, le taux de glucose du milieu extérieur diminue et on en voit apparaître dans l'hyaloplasme. Cela signifie que le glucose est entré dans les cellules. Au temps t₂, il n'y a plus de glucose dans l'hyaloplasme, la radioactivité se retrouve dans les molécules de pyruvate. Le glucose a été transformé en pyruvate dans l'hyaloplasme (la glycolyse). Puis on observe qu'il apparait, progressivement, du pyruvate dans la matrice mitochondriale. L'hypothèse précédente est confirmée.

Au temps t₃ et t₄, la radioactivité est retrouvée dans les molécules de dioxyde de carbone émises dans le milieu extérieur.

4.

Moussa JAOUANI 4 moussa.svt@gmail.com b. Du glucose à l'acide pyruvique : la glycolyse

- 1. Dans quel compartiment cellulaire se déroule la glycolyse ?
- 2. Déterminez à partir du document les étapes de la glycolyse
- 3. Quel est le bilan de la glycolyse pour une molécule de glucose consommée
- Justifiez la qualification de "la glycolyse" de "dégradation anaérobie".
- A partir des réponses précédentes, proposer une définition et une équation bilan de la glycolyse.

- 1. La glycolyse se déroule dans l'hyaloplasme
- 2. La glycolyse se réalise essentiellement en deux étapes successives :
- ▶ Dégradation du glucose en trioses : cette conversion est couplée à une consommation d'ATP. Le clivage de la molécule de fructose biphosphate formée donne deux trioses phosphates.
- ▶Oxydation de chaque triose phosphate en acide pyruvique : cette oxydation qui correspond à une déshydrogénation en présence d'un transporteur oxydé (NAD+), régénère deux molécules d'ATP par molécule de triose-P et produit 2 ATP à partir d'ADP et Pi.
- 3. Pour une molécule de glucose consommée, il y a formation de :
 - ☐ deux molécules de pyruvate ;
 - □ deux molécules d'ATP;
 - □ deux molécules de coenzymes réduits NADH,H⁺
- **4.** La transformation de glucose en pyruvate ne nécessite pas de dioxygène c'est pourquoi la glycolyse est un phénomène anaérobie
- **5.** La **glycolyse** est une suite de réactions qui dégrade une molécule de glucose en deux molécules d'acide pyruvique. Elle a lieu dans l'hyaloplasme de la cellule. C'est une étape commune à la respiration et à la fermentation.

L'équation globale de la glycolyse :

$C_6H_{12}O_6 + 2ADP + 2Pi + 2NAD^+ \rightarrow 2CH_3-CO-COOH + 2ATP + 2NADH,H^+$

Rq: Cette oxydation est incomplète: le pyruvate contient encore de l'énergie potentielle

Que devient le pyruvate dans la matrice mitochondriale? Quelles sont les réactions chimiques qui s'y déroulent?

Moussa JAOUANI 5 moussa.svt@gmail.com

3. L'oxydation du pyruvate dans la matrice mitochondriale

- Décrivez l'ensemble de réactions chimiques que subit l'acide pyruvique dans la matrice mitochondriale.
- 2. Donnez l'équation bilan de cycle de Krebs
- 3. Quel est le bilan chimique de l'oxydation totale d'une molécule de pyruvate dans la matrice

- 1. Dans la matrice, le pyruvate issu de la glycolyse va subir un ensemble de réactions chimiques qu'on peut résumer en deux étapes :
 - Etape 1 : l'acide pyruvique subit une décarboxylation (enlèvement de CO₂) et une déshydrogénation (enlèvement de H⁺) dont le résultat est un groupement acétyle CH₃CO qui se fixe sur un composé appelé coenzyme A pour donner l'acétyle coenzyme A
 - Étape 2 : l'acétyle coenzyme A se fixe sur un corps en C4 pour donner un composé en C6. Ce dernier subit un ensemble de réactions de décarboxylation et de déshydrogénation constituant le cycle de KREBS.
- 2. Equation bilan de cycle de Krebs :

 CH_3 -CO-CoA + $3NAD^+$ + FAD + ADP + Pi + $3H_2O$ \rightarrow $2CO_2$ + 3NADH, H^+ + $FADH_2$ + ATP + CoA-H

- 3. Pour une molécule d'acide pyruvique consommée, il y a eu production de
 - 4NADH,H⁺
 - 1FADH₂
 - 1ATP
 - 3CO₂

 CH_3 -CO- $COOH + 4NAD^+ + FAD + ADP + Pi <math>\rightarrow 3CO_2 + 4NADH, H^+ + FADH_2 + ATP$

Comment sont réoxydés les coenzymes réduits pour que le phénomène perdure ?

- 4. La réoxydation des transporteurs réduits et la production d'ATP dans la chaîne respiratoire de la membrane interne mitochondriale
 - a. Notion de chaine respiratoire

Dans les systèmes biologiques, les réactions d'oxydoréduction impliquent le plus souvent des échanges de protons et d'électrons À un couple redox est associé un potentiel d'oxydoréduction mesuré en volts. La connaissance du potentiel d'oxydoréduction des couples redox impliqués dans une réaction d'oxydoréduction permet de prévoir si le transfert d'électrons se fera spontanément ou nécessite un apport d'énergie. La mesure du potentiel redox de certains transporteurs d'électrons localisés au niveau des mitochondries a donnée les résultats représentés par la figure a Potentiel redox (V) Potentiel redox (V) Figure b Potentiel redox (V) Complexe C₁ O 30

Document 7

molécule	localisation	Potentiel redox (V)	Potentiel redox (V) Figure b
Complexe C _I		- 0,30	-0,2
Complexe C _{III}	Membrane	+ 0,22	0
Complexe C _{IV}	interne de la	+ 0,4	+0,2
Transporteur C	mitochondrie	+ 0,25	+0,4
Transporteur Q		+ 0,04	+0.6
O ₂		+ 0,81	+0.8
NADH,H ⁺	matrice	- 0,32	

- 1. Placer les transporteurs d'électrons représentés par la figure a dans leurs places de la figure b
- 2. Montrer par des flèches le sens de flux spontané des électrons sachant que le transfert d'électrons ne s'effectue spontanément que dans le sens des potentiels redox croissant.
- 3. Quel est le donneur et l'accepteur final des électrons dans cette chaine de réactions redox.

Les électrons sont transportés dans la membrane interne le long d'une chaine de transporteurs (la chaine respiratoire) Le donneur d'électrons est le NADH,H+ qui subit une oxydation selon la réaction :

$$NADH,H^+ \rightarrow NAD^+ + 2H^+ + 2e$$

L'accepteur final des électrons est l'O2 qui subit une réduction selon la réaction :

$$\frac{1}{2}$$
 O₂ + 2H⁺ + 2e \rightarrow H₂O

Bilan:

Chaîne respiratoire : ensemble de diverses des transporteurs d'électrons situés dans la **membrane interne mitochondriale**, assurant par oxydoréductions successives le transfert des électrons des composés réduits (NADH,H⁺, FADH₂) jusqu'au dioxygène qui se trouve alors réduit se forme d'H₂O

b. Les conditions permettant la réoxydation des coenzymes et la synthèse d'ATP

1.Expliqez les résultats obtenus

Analyse des résultats

Avant l'injection d'O₂, on observe que la concentration en H⁺ du milieu extérieur est nulle Juste après l'injection d'O₂, on observe une augmentation rapide suivie d'une diminution lente de la concentration en H⁺ **Explication :**

Moussa JAOUANI 7 moussa.svt@gmail.com

Quand la respiration est activée par la présence de dioxygène, il y a oxydation des coenzymes réduits et les protons sont d'abord transférés de la matrice vers l'espace intermembranaire puis le milieu d'incubation ce qui explique la forte augmentation de la concentration en H⁺. Dans un second temps, ils retournent dans la matrice.

Document 9

Pour identifier les conditions permettant la synthèse d'ATP, on traite des mitochondries aux ultrasons. Ce traitement aux ultrasons fragmente la membrane interne des mitochondries et des particules submitochondriales, petites vésicules de 100 nm de diamètre, se forment. On observe que cette membrane interne est recouverte de sphères pédonculées. Ces dernières ne sont plus au contact de la matrice mais au contact d'un milieu expérimental qui contient du dioxygène, des coenzymes réduits RH₂, de l'ADP et du phosphate inorganique Pi.

On fait varier le pH du milieu extérieur (pH_e) des vésicules mitochondriales et on mesure la quantité d'ATP synthétisé. Les résultats sont représentés par le tableau ci-dessous.

pH intravésiculaire (pH _i)	Variations expérimentales du pH du tube à essai	Phosphory lation (augmentation de la concentration d'ATP)
6	4	Non
6	6	Non
6	9	Oui

Remarque: si l'on met des vésicules obtenus en présence de protéase (enzyme catalysant l'hydrolyse de protéines), les sphères se séparent des pédoncules qui restent attachés à la membrane interne. On constate alors que, placées dans les mêmes conditions que dans la 3^{eme} expérience, les vésicules portant les pédoncules uniquement sont incapables de phosphoryler l'ADP en ATP

1. A partir des résultats expérimentaux, identifiez les conditions permettant la synthèse d'ATP

Les conditions permettant la synthèse d'ATP:

- La présence d'ADP et de Pi
- Un pH extravésiculaire plus important que le pH de l'intérieur des vésicules (pHi < pHe). Or le pH dépend de la concentration de protons du milieu (plus la concentration de protons est faible, plus le pH est élevé). Dans notre cas, [H⁺]i > [H⁺]e. Il y aura donc une tendance des protons à sortir des vésicules.
- La présence des sphères pédonculées

Bilan:

Dans les conditions cellulaires, les sphères pédonculées de la membrane interne des mitochondries catalysent la synthèse d'ATP dans la matrice. L'énergie nécessaire à cette synthèse vient d'un flux de protons.

Les protons, présents en concentration plus importante dans l'espace intermembranaire que dans la matrice (gradient de \mathbf{H}^+), gagnent la matrice en passant par les sphères pédonculées.

c. Chaine respiratoire et phosphorylation oxydative

1.Compléter le schéma bilan

2.Exploiter l'ensemble des documents afin de montrer dans un texte correctement rédigé comment sont réoxydés les transporteurs de protons et d'électrons (NADH,H⁺ et FADH₂) produits lors de la glycolyse et l'oxydation du pyruvate au cours du cycle de Krebs ainsi que l'origine de l'ATP produit lors de cette phase.

- → Les coenzymes réduits (NADH,H+ et FADH2) subissent une oxydation par les complexes de la chaine respiratoire
- → Les électrons arrachés aux composés réduits sont transférés via des transporteurs jusqu'à l'accepteur final l'O₂ qui sera réduit en H₂O

Moussa JAOUANI 8 moussa.svt@gmail.com

- Les protons sont expulsés vers l'espace intermembranaire, auxquels s'ajoutent d'autres protons transportés lors du transfert des électrons. Il se forme un gradient de protons transmembranaire
- Les protons rejoignent la matrice en activant les sphères pédonculées, ce qui est à l'origine d'une synthèse d'ATP à partir d'ADP et de Pi.

Le couplage de réactions d'oxydoréduction et de phosphorylation donne à cette phase le nom de **phosphorylation oxydative.**

Remarque:

L'oxydation d'une molécule de NADH,H⁺ permet la synthèse 3ATP L'oxydation d'une molécule de FADH₂ permet la synthèse 2ATP

d. Bilan énergétique de la respiration

- 1. En exploitant le document ci-dessus, calculez le nombre de moles d'ATP produites après l'oxydation complète d'une molécule de glucose lors de la respiration cellulaire.
- 2. Résumez cette oxydation sous forme d'une équation bilan

Equation bilan de la respiration cellulaire

 $C_6H_{12}O_6 + 6O_2 + 38ADP + 38Pi \rightarrow 6CO_2 + 6H_2O + 38ATP$

Remarque:

Systèmes de navettes pour expliquer 36/38 ATP

III. La fermentation : une autre voie de production d'ATP

1. La fermentation alcoolique

Document 12

Des levures mises en culture dans un milieu glucosé. Le flacon, complètement rempli, est bouché et le tube à dégagement ne permet pas un renouvellement en dioxygène à partir de l'aire ambiant (montage ci-dessous). Très rapidement, le dioxygène présent initialement est épuisé et on constate les modifications suivantes par comparaison avec un montage témoin (solution de glucose stérile):

- → L'analyse de milieu de culture à l'aide de bandelettes utilisées pour mesurer la glycémie montre une disparition progressive du glucose.
- → L'alcootest du milieu de culture montre un résultat positif (présence d'éthanol), alors qu'il est négatif au début de l'expérience.
- → Le gaz recueilli dans le tube à dégagement trouble l'eau de chaux
- → Légère élévation de la température dans le flacon

- 1. En exploitant les résultats de l'expérience, déterminez les caractéristiques de la fermentation alcoolique.
- 2.Sachant que la fermentation débute dans le l'hyaloplasme par la glycolyse. Ecrivez l'équation équilibrée de la formation d'éthanol (on donne la formule d'éthanol : CH3-CH2-OH).
- 3.Quel est le bilan énergétique de la fermentation alcoolique.

- **1.**La fermentation alcoolique :
 - Réaction anaérobie
 - Produit du CO₂,
 - Produit un alcool, l'éthanol

2.

La fermentation débute dans le cytoplasme par la glycolyse, dans le cas de la fermentation alcoolique, l'acide pyruvique est décarboxylé puis réduit en éthanol avec régénération du transporteur. L'équation bilan de la fermentation est :

$$C_6H_{12}O_6 + 2ADP + 2Pi \rightarrow 2CH_3-CH_2-OH + 2CO_2 + 2ATP$$

3. Seule la glycolyse produit de l'ATP lors de la fermentation. Le bilan en ATP de la fermentation alcoolique est donc de 2 moles d'ATP par mole de glucose oxydé

2. La fermentation lactique

Certaines cellules, les **bactéries lactiques** mais aussi les **cellules musculaires** sont capables de réaliser une fermentation dite lactique. Dans ce cas, la dégradation du glucose produit de l'acide lactique (CH₃-CHOH-COOH)

L'équation bilan de la fermentation est

 $C_6H_{12}O_6 + 2ADP + 2Pi \rightarrow 2CH_3$ -CHOH-COOH + 2ATP

3. Comparaison du rendement énergétique de la respiration et de la fermentation

Document 13

La valeur énergétique des molécules organiques peut être déterminée très précisément avec un calorimètre: grâce à cet appareil, on peut mesurer la quantité de chaleur dégagée par la combustion complète d'une quantité de matière. Ainsi, il est établi que la combustion complète d'une mole de glucose libère 28940 kJ.

1. Calculez le rendement énergétique de la respiration cellulaire et de la fermentation dans le cas de l'oxydation d'une molécule de glucose. Sachant que l'hydrolyse d'une molécule d'ATP en ADP + Pi libère 30,5 kJ.

2. en vous aidant du document cicontre expliquez cette différence de rendement

1.

	Respiration cellulaire	fermentation
Nombre de molécules d'ATP	38	2
formées par molécule de glucose	38	2
Quantité d'énergie extraite à partir	$38 \times 30,5 = 1159 \text{kJ}$	$2 \times 30.5 = 61 \text{kJ}$
d'une molécule de glucose (kJ)	36 X 30,3 = 1139KJ	2 x 30,3 = 01KJ
Rendement énergétique (%)	1159×100	61×100
Rendement energetique (%)	${2840}$ = 40,8%	${2840}$ = 2,24%

Rendement (%) =
$$\frac{\text{quantit\'e } d\text{\'e} \text{nergie sous forme } d\text{\'ATP}}{\text{quantit\'e } d\text{\'e} \text{nergie chimique potentielle du glucose}} \times 100$$

2. Le rendement de conversion énergétique est plus élevé dans le cas de la respiration (environ 40 %) que dans celui de la fermentation (environ 2 %), mais reste cependant relativement faible, une grande partie de l'énergie chimique des métabolites étant perdue sous forme de chaleur ou de déchets organiques (contenant encore une énergie potentielle).

Moussa JAOUANI 11 moussa.svt@gmail.com

Table des matières

Table des matieres	
I. Deux voies métaboliques utilisent le glucose :	1
1. Une voie aérobie et une voie anaérobie	1
a. Données expérimentales	1
2. Notion de respiration et de fermentation	2
II. La respiration : la conversion d'énergie chimique en énergie utilisable par la cellule en milieu	aérobie3
1. Les mitochondries, organites clés de la respiration cellulaire	3
a. Ultrastructure et composition chimique de la mitochondrie	3
2. La glycolyse : oxydation partielle de glucose en pyruvate dans le cytosol	4
a. Le devenir du glucose absorbé par la cellule	4
b. Du glucose à l'acide pyruvique : la glycolyse	5
3. L'oxydation du pyruvate dans la matrice mitochondriale	6
4. La réoxydation des transporteurs réduits et la production d'ATP dans la chaîne respiratoir interne mitochondriale	
a. Notion de chaine respiratoire	7
b. Les conditions permettant la réoxydation des coenzymes et la synthèse d'ATP	7
c. Chaine respiratoire et phosphorylation oxydative	8
d. Bilan énergétique de la respiration	9
III. La fermentation : une autre voie de production d'ATP	10
1. La fermentation alcoolique	10
2. La fermentation lactique	10
3 Comparaison du rendement énergétique de la respiration et de la fermentation	11