MATH 211

Online Asynchronous Survey in Calculus and Analytical Geometry

Dr. Ahmed Kaffel

Department of Mathematical Sciences University of Wisconsin Milwaukee

Spring 2023

Mathematical Models

A **mathematical model** is a mathematical description of a real-world phenomenon.

- Formulate
 Identify independent & dependent variables, simplify and obtain equations (possibly guessing from measurements).
- Solve Apply mathematics such as calculus to derive conclusions.
- 3. Interpret Interpret the model conclusions to predict the real-world.
- Test
 Compare predictions with reality (revise model if needed).

Linear Functions

A **linear function** is a function *f* that can be written in the form:

$$f(x) = mx + b$$

where *m* is the **slope** and *b* is the *y***-intercept**.

The graph of a linear function is a line:

Linear Functions: Example

When dry air moves upward it expands and cools.

- ground temperature is 20°
- ► temperature in height of 1km is 10°

Express the temperature as a linear function of the height *h*. What is the temperature in 2.5km height?

Since we are looking for a linear function:

$$T(h) = mh + b$$

We know that:

$$T(0) = m \cdot 0 + b = 20 \implies b = 20$$
 $T(1) = m \cdot 1 + b = m \cdot 1 + 20 = 10 \implies m = 10 - 20 = 10$
Thus $T(h) = -10m + 20$, and $T(2.5) = -5^{\circ}$.

Polynomials

A function P is called **polynomial** if

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_2 x^2 + a_1 x + a_0$$

where

- n is a non-negative integer, and
- $ightharpoonup a_0, a_1, \ldots, a_n$ are constants, called **coefficients**.

If $a_n \neq 0$ then *n* is the **degree** of the polynomial.

 $x^4 - 3x^2 + x$

 $3x^5 - 25x^3 + 60x$

Polynomials of Degree 1: Linear Functions

A polynomial of degree 1 is a **linear function**:

$$f(x)=mx+b$$

Find equations for the functions f, g and h:

- for f: $f(x) = \frac{1}{2}x 1$
- for g: f(x) = 2x + 1
- for h: $f(x) = -\frac{1}{4}x + 3$

Polynomials of Degree 2: Quadratic Functions

A polynomial of degree 2 is a **quadratic function**:

$$f(x) = ax^2 + bx + c$$

The graph of is always a shifting of the parabola ax^2 . It open upwards if a > 0, and downwards if a < 0.

Polynomials of Degree 3: Cubic Functions

A polynomial of degree 3 is a **cubic function**:

$$f(x) = ax^3 + bx^2 + cx + d$$

Power Functions

A function of the form

$$f(x) = x^a$$

where *a* is a constant, is called a **power function**.

We consider x^n with n a positive integer.

We consider x^n with n a positive integer.

- For even *n* the graph similar to the parabola x^2 .
- For odd *n* the graph looks similar to x^3 .

If *n* increases, then the graph of x^n becomes flatter near 0, and steeper for $|x| \ge 1$.

We consider $x^{\frac{1}{n}}$ where *n* is a positive integer:

• $f(x) = x^{\frac{1}{n}} = \sqrt[n]{x}$ is a **root function** (square root for n = 2)

- ▶ For even *n* the domain is $[0, \infty)$, the graph is similar to \sqrt{x} .
- ▶ For odd *n* the domain is \mathbb{R} , the graph is similar to $\sqrt[3]{x}$.

The power function $f(x) = x^{-1} = \frac{1}{x}$ is the **reciprocal function**.

This function arises in physics and chemistry. E.g. Boyle's law says that, when the temperature is constant, then the volume V of a gas is inversely proportional to the pressure P:

$$V=\frac{C}{P}$$

where C is a constant

Power Function: Applications

Power functions are used for modeling:

- the illumination as a function of the distance from a light source
- the period of the revolution of a planet as a function of the distance from the sun

Rational Functions

A **rational function** *f* is ratio of two polynomials:

$$f(x) = \frac{P(x)}{Q(x)}$$
 where P and Q are polynomials

▶ the domain of $\frac{P(x)}{Q(x)}$ is $\{x \mid Q(x) \neq 0\}$

$$f(x) = \frac{2x^4 - x^2 + 1}{10x^2 - 40}$$

Algebraic Functions

A function f is called **algebraic function** if it can be constructed using algebraic operations (addition, subtraction, multiplication, division and taking roots) starting with polynomials.

$$f(x) = \sqrt{x^2 + 1}$$

$$g(x) = \frac{x^2 - 16x^2}{x + \sqrt{x}} + (x - 2)\sqrt[3]{x + 1}$$

Algebraic Functions: Real-wold Example

The following algebraic function occurs in the theory of relativity. The mass of an object with velocity v is:

$$m = f(v) = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$

where

- $ightharpoonup m_0$ is the rest mass of the object
- $c \approx 3.0 \cdot 10^5 \frac{\text{km}}{\text{h}}$ is the speed of light (in vacuum)

Angles

Angles can be measured in **degrees** (°) or in **radians** (rad):

- ▶ $180^{\circ} = \pi \text{ rad}$
- $360^{\circ} = 2\pi$ rad is a full revolution

From
$$180^\circ = \pi$$
 rad we conclude
$$1^\circ = \frac{\pi}{180} \text{ rad} \qquad \text{and} \qquad x^\circ = \frac{x \cdot \pi}{180} \text{ rad}$$

$$1 \text{ rad} = \left(\frac{180}{\pi}\right)^\circ \qquad \text{and} \qquad x \text{ rad} = \left(\frac{x \cdot 180}{\pi}\right)^\circ$$

Angles: Radian

In Calculus, the default measurement for angles is radian.

Historical note on radians:

- consider a circle with radius 1, and
- an sector of this circle with angle α (radians)

Then the arc of the sector has length α (equal to the angle).

Trigonometric Functions

Trigonometric Functions

Properties of sin and cos:

- ▶ domain = $(-\infty, \infty)$
- ▶ range = [-1, 1]

sin x

cos x

- $ightharpoonup \sin(-\alpha) = -\sin \alpha$ and $\cos(-\alpha) = \cos \alpha$
- $ightharpoonup \sin(\alpha + 2\pi) = \sin \alpha$ and $\cos(\alpha + 2\pi) = \cos \alpha$
- \triangleright cos $\alpha = \sin(\alpha \pm ?)$

- Important identities:
 - $ightharpoonup \sin(-\alpha) = -\sin \alpha$ and $\cos(-\alpha) = \cos \alpha$
 - $ightharpoonup \sin(\alpha + 2\pi) = \sin \alpha$ and $\cos(\alpha + 2\pi) = \cos \alpha$
 - $ightharpoonup \cos \alpha = \sin(\alpha + \frac{\pi}{2})$
 - $\rightarrow \sin^2 \alpha + \cos^2 \alpha = 1$ (follows form the Pythagorean theorem)

α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$	2π
$\sin \alpha$	0	1/2	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	1/2	0	-1	0
cos α	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	1/2	0	$-\frac{1}{2}$	$-\frac{1}{\sqrt{2}}$	$-\frac{\sqrt{3}}{2}$	-1	0	1

Trigonometric Functions: Tangent and Cotangent

The tangent and cotangent are defined as:

$$\tan\alpha = \frac{\sin\alpha}{\cos\alpha}$$

$$\cot \alpha = \frac{\cos \alpha}{\sin \alpha}$$

- ▶ range = $(-\infty, \infty)$
- ▶ domain of tan = $\{x \mid \cos x \neq 0\} = \mathbb{R} \setminus \{\pi/2 + z\pi \mid z \in \mathbb{Z}\}$
- ▶ domain of cot = $\{x \mid \sin x \neq 0\} = \mathbb{R} \setminus \{z\pi \mid z \in \mathbb{Z}\}$

Exponential Functions

An **exponential function** is a function of the form

$$f(x) = a^x$$

where the **base** a is positive real number (a > 0).

$$f(x) = 2^x$$

 $f(x) = 0.5^{x}$

These functions are called exponential since the variable x is in the exponent. Do not confuse them with power functions x^a !

Exponential Functions

How is a^x defined for $x \in \mathbb{R}$?

For x = 0 we have $a^0 = 1$.

For positive integers $x = n \in \mathbb{N}$ we have

$$a^n = \underbrace{a \cdot a \cdot \cdots \cdot a}_{n \cdot times}$$

For negative integers x = -n we have

$$a^{-n}=\frac{1}{a^n}$$

For rational numbers $x = \frac{p}{q}$ with p, q integers we have

$$a^{x}=a^{\frac{p}{q}}=\sqrt[q]{a^{p}}=(\sqrt[q]{a})^{p}$$

$$4^{\frac{3}{2}} = (\sqrt[2]{4})^3 = 2^3 = 8$$

Exponential Functions: Irrational Numbers

But what about irrational numbers? What is $2^{\sqrt{3}}$ or 5^{π} ?

Roughly, one can imagine the situation like in this figure:

We have have defined the function for all rational points, and now want to close the gaps.

Clearly, the result should be an increasing function...

Exponential Functions: Irrational Numbers

But what about irrational numbers? What is $2^{\sqrt{3}}$ or 5^{π} ?

By increasingness we know:

There is exactly one number that fulfills all conditions on the right.

E.g., $2^{1.73205} < 2^{\sqrt{3}} < 2^{1.73206}$ determines the first 6 digits:

$$2^{\sqrt{3}}\approx 3.321997$$

Exponential Functions: Examples

Properties:

- ▶ All exponential functions pass through (0,1) (since $a^0 = 1$)
- Larger base a yields more rapid growth for x > 0.

Exponential Functions: Three Types

 $f(x) = a^x \text{ with } 0 < a < 1$

 $f(x) = a^x$ with a > 1

$$f(x) = 1^x$$

- ▶ constant for a = 1
- ▶ increasing for a > 1
- ▶ decreasing for 0 < a < 1</p>
- ▶ domain = $(-\infty, \infty)$
- ▶ range = $(0, \infty)$ if $a \neq 1$

Laws of Exponents

Laws of Exponents

If a and b are positive real numbers, then:

- 1. $a^{x+y} = a^x \cdot a^y$
- 2. $a^{x-y} = \frac{a^x}{a^y}$
- 3. $(a^x)^y = a^{xy}$
- 4. $(ab)^{x} = a^{x}b^{x}$
- 1. $a^{3+4} = a \cdot a = (a \cdot a \cdot a) \cdot (a \cdot a \cdot a \cdot a) = a^3 \cdot a^4$
- 2. $a^{5-2} = a \cdot a \cdot a = \frac{(a \cdot a \cdot a) \cdot (a \cdot a)}{a \cdot a} = \frac{a^5}{a^2}$
- 3. $(a^2)^3 = (a \cdot a)^3 = (a \cdot a) \cdot (a \cdot a) \cdot (a \cdot a) = a^6 = a^{2 \cdot 3}$
- 4. $(ab)^3 = (ab) \cdot (ab) \cdot (ab) = (a \cdot a \cdot a) \cdot (b \cdot b \cdot b) = a^3b^3$

Exponential Functions vs. Power Functions

Which functions grows quicker when *x* is large:

$$f(x) = x^2 g(x) = 2^x$$

For large x, the function 2^x grows much much faster than x^2 .

Exponential Functions vs. Power Functions

Which functions grows quicker when *x* is large:

$$f(x) = 10 \cdot x^5$$

$$g(x) = 1.1^{x}$$

Exponential Functions vs. Power Functions

Which functions grows quicker when *x* is large:

$$f(x) = 10 \cdot x^5 \qquad \qquad g(x) = 1.1^x$$

For any 1 < a, the **exponential function** $f(x) = a^x$ grows for large x much faster than any polynomial.

Exponential Functions: Applications

We consider a population of bacteria:

- suppose the population doubles every hour
- \blacktriangleright we write p(t) for the population after t hours
- ▶ initial population is p(0) = 1000

We have:

$$p(1) = 2 \cdot p(0) = 2 \cdot 1000$$

 $p(2) = 2 \cdot p(1) = 2^2 \cdot 1000$
 $p(3) = 2 \cdot p(2) = 2^3 \cdot 1000$
 \vdots

Thus in general

$$p(t) = 1000 \cdot 2^t$$

Under ideal conditions such rapid growth occurs in nature.

Exponential Functions: The Number e

The number

is a very special base for exponential functions.

tangent has slope $1 = e^0$

tangent has slope $e = e^1$

The slope of the function e^x at point (x, e^x) is e^x .

One-To-One Functions

A **one-to-one function** is a function that never takes the same value twice, that is:

$$f(x) \neq f(y)$$
 whenever $x \neq y$

Which of these function is one-to-one? The function g.

One-To-One Functions

How can we see from a graph if the function is one-to-one?

Horizontal Line Test

A function is one-to-one if and only if no horizontal line intersects its graph more than once.

One-To-One Functions: Examples

Which of the following functions is one-to-one?

- ► x³ ? Yes
- $\rightarrow x^2$? No
- ▶ 4^x ? Yes
- ► $x x^3$? No
- ▶ $x + 4^x$? Yes
- $-x-x^3$? Yes

Inverse Functions

A function g is the inverse of a function f if $g(f(x)) = x \quad \text{for all } x \text{ in the domain of } f$ (and the domain of g is the range of f).

A function *f* has an inverse if and only if *f* is one-to-one.

Inverse Functions

The inverse of a one-to-one function can be defined as follows.

Let f be a one-to-one function with domain A and range B.

Then its **inverse function** f^{-1} is defined by:

$$f^{-1}(y) = x \iff f(x) = y$$

and has domain B and range A.

The inverse function of $f(x) = x^3$ is $f^{-1}(y) = y^{\frac{1}{3}}$:

$$f^{-1}(f(x)) = f^{-1}(x^3) = (x^3)^{\frac{1}{3}} = x$$

We have the following cancellation equations:

$$f^{-1}(f(x)) = x$$
 for all $x \in A$
 $f(f^{-1}(y)) = y$ for all $y \in B$

Inverse Functions

To find the inverse function of *f*:

▶ solve the equation y = f(x) for x in terms of y

Find the inverse function of $f(x) = x^3 + 2$.

$$y = x^{3} + 2$$

$$\implies x^{3} = y - 2$$

$$\implies x = \sqrt[3]{y - 2}$$

Therefore the inverse function of f is $f^{-1}(y) = \sqrt[3]{y-2}$

Inverse Functions: Graphs

We have
$$f(x) = y \iff f^{-1}(y) = x$$
 and hence point (x, y) in the graph of f point (y, x) in the graph of f^{-1}

reflected about the line y = x

Logarithmic Functions

The logarithmic functions

$$f(x) = \log_a x$$

where a > 0 and $a \neq 1$.

The function $\log_a x$ is the inverse of the exponential function a^x :

$$\log_a y = x \iff a^x = y$$

The logarithm $\log_a b$ gives us the exponent for a to get b.

For example: $\log_{10} 0.001 = -3$ since $10^{-3} = 0.001$.

The logarithmic functions log_a x have:

- ▶ domain = $(0, \infty)$
- ▶ range = \mathbb{R}

Logarithmic Functions

We have the following cancellation equations:

$$\log_a(a^x) = x$$
 for every $x \in \mathbb{R}$
 $a^{\log_a x} = x$ for every $x > 0$

$$\log_{10}(10^{23}) = 23$$

$$5^{log_57}=7$$

Logarithmic Functions

For a > 1, $f(x) = a^x$ grows very fast.

As a consequence:

For a > 1, $f(x) = \log_a x$ grows very slow.

Logarithmic Functions: Laws of Logarithm

If x, y > 0, then

1.
$$\log_a(xy) = \log_a(x) + \log_a(y)$$

$$2. \log_a(\frac{x}{y}) = \log_a(x) - \log_a(y)$$

$$3. \log_a(x^r) = r \log_a x$$

$$\log_2 80 - \log_2 5 = \log_2(\frac{80}{5}) = \log_2 16 = 4$$

We can proof the laws from the laws for exponents.

1.
$$\log_a(xy) = z \iff a^z = xy$$

and $a^{\log_a(x) + \log_a(y)} = a^{\log_a(x)} \cdot a^{\log_a(y)} = xy$

3.
$$\log_a(x^r) = z \iff a^z = x^r$$

and $a^{r \log_a(x)} = (a^{\log_a(x)})^r = x^r$

Logarithmic Functions: Base Conversion

If we want to compute $\log_a x$ but have only \log_b then we can:

Base Conversion

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Compute log₄ 16 using log₂.

$$\log_4 16 = \frac{\log_2 16}{\log_2 4} = \frac{4}{2} = 2$$

Natural Logarithm

The **natural logarithm** In is a special logarithm with base *e*:

$$\ln x = \log_e x$$

Solve the equation $e^{5-3x} = 10$.

$$\ln(e^{5-3x}) = \ln 10$$
 apply natural logarithm on both sides $5-3x = \ln 10$ $3x = 5 - \ln 10$ $x = \frac{5-\ln 10}{3}$

Express $\ln a + \frac{1}{2} \ln b$ in a single logarithm.

$$\ln a + \frac{1}{2} \ln b = \ln a + \ln b^{\frac{1}{2}} = \ln a + \ln \sqrt{b} = \ln(a\sqrt{b})$$

Inverse Trigonometric Functions

We are interested in inverse functions of:

Problem: these functions are not one-to-one!

Solution: we restrict their domain

- for sin we restrict the domain to $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
- for cos we restrict the domain to $[0, \pi]$

Inverse Trigonometric Functions

 $\sin x$ restricted to $[-\frac{\pi}{2}, \frac{\pi}{2}]$

 $\cos x$ restricted to $[0, \pi]$

From
$$f^{-1}(y) = x \iff f(x) = y$$
 we get: $\sin^{-1}(y) = x \iff \sin(x) = y \text{ and } -\frac{\pi}{2} \le x \le \frac{\pi}{2}$ $\cos^{-1}(y) = x \iff \cos(x) = y \text{ and } 0 \le x \le \pi$

The **inverse sine function** sin⁻¹ is also denoted by arcsin. The **inverse cosine function** sin⁻¹ is denoted by arccos.

Inverse Trigonometric

The domain of arcsin and arccos is [-1, 1]. The range of arcsin is $[-\frac{\pi}{2}, \frac{\pi}{2}]$ and of arccos is $[0, \pi]$.

Inverse Trigonometric: Cancellation Equations

The cancellation equations are:

$$\arcsin(\sin x) = x$$
 for $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$
 $\sin(\arcsin x) = x$ for $-1 \le x \le 1$

$$arccos(cos x) = x$$
 for $0 \le x \le \pi$
 $cos(arccos x) = x$ for $-1 \le x \le 1$

Inverse Trigonometric: Examples

α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$	2π
$\sin \alpha$	0	1/2	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	<u>1</u>	0	-1	0
cos α	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	1 2	0	$-\frac{1}{2}$	$-\frac{1}{\sqrt{2}}$	$-\frac{\sqrt{3}}{2}$	-1	0	1

$$\sin^{-1}(y) = x \iff \sin(x) = y \text{ and } -\frac{\pi}{2} \le x \le \frac{\pi}{2}$$

 $\cos^{-1}(y) = x \iff \cos(x) = y \text{ and } 0 \le x \le \pi$

Evaluate the following:

$$ightharpoonup \sin^{-1}(\frac{1}{2}) = \frac{\pi}{6}$$

►
$$tan(arcsin(\frac{1}{3})) = \frac{sin(arcsin(\frac{1}{3}))}{cos(arcsin(\frac{1}{3}))} = \frac{\frac{1}{3}}{\frac{2}{3}\sqrt{2}} = \frac{1}{3} \cdot \frac{3}{2} \cdot \frac{1}{\sqrt{2}} = \frac{1}{2\sqrt{2}}$$

Trigonometric Functions: Inverse Tangent

 $\tan x$ restricted to $(-\frac{\pi}{2}, \frac{\pi}{2})$

$$\tan^{-1} y = x \iff \tan x = y \text{ and } -\frac{\pi}{2} < x < \frac{\pi}{2}$$

The function arctan has domain $(-\infty, \infty)$ and range $(-\frac{\pi}{2}, \frac{\pi}{2})$.

Trigonometric Functions: Inverse Cotangent

 $\cot x$ restricted to $(0,\pi)$

$$\cot^{-1} y = x \iff \cot x = y \text{ and } 0 < x < \pi$$

The function \cot^{-1} has domain $(-\infty, \infty)$ and range $(0, \pi)$.

Classify the following functions as one of the types that we have discussed:

- 1. $f(x) = 5^x$ is an exponential function
- 2. $g(x) = x^5$ is a power function, a polynomial of degree 5, a rational function and an algebraic function.
- 3. $h(x) = \frac{1+x}{1-\sqrt{x}}$ is an algebraic function.
- 4. $u(t) = 1 t + 5t^4$ is a polynomial of degree 4, a rational function and an algebraic function.
- 5. $v(x) = x^{-3}$ is a power function, a rational function and an algebraic function.
- 6. $p(x) = x^{-\frac{1}{3}}$ is a power function, and an algebraic function.
- 7. $z(x) = \frac{1+x}{3+x^2}$ is a rational function, and algebraic function.

Assume that a ball is dropped, and we have the following measurements:

- ► height at time 0s is 490m
- ▶ height at time 2s is 472m
- ▶ height at time 4s is 414m

Find a quadratic function for the height of the ball after time t. When does the ball hit the ground?

We look for a function of the form:

$$h(t) = at^2 + bt + c$$

We know

$$h(0) = c = 490$$

 $h(2) = 2^{2}a + 2b + 490 = 472$
 $h(4) = 4^{2}a + 4b + 490 = 414$

We know c = 490 and

(1)
$$h(2) = 2^2a + 2b + 490 = 472$$

(2)
$$h(4) = 4^2a + 4b + 490 = 414$$

We simplify

$$(1) \quad 4a + 2b + 18 = 0$$

$$(2) \quad 16a + 4b + 76 = 0$$

We solve by taking $(2) - 2 \cdot (1)$:

$$h(2) = 8a + 40 = 0 \implies 8a = -40 \implies a = -5$$

We get b by plugging a = -5 in (1):

$$4 \cdot (-5) + 2b + 18 = 0 \implies 2b = 2 \implies b = 1$$

Thus $h(t) = -5t^2 + t + 490$.

Formula for the height:

$$h(t) = -5t^2 + t + 490$$

When does the ball hit the ground? When the height is 0:

$$-5t^2 + t + 490 = 0 \implies t^2 - \frac{t}{5} - 98 = 0$$

Solving the quadratic formula:

$$t = \frac{1}{10} \pm \sqrt{(\frac{1}{10})^2 + 98} = \frac{1}{10} \pm \sqrt{\frac{1}{100} + \frac{9800}{100}} = \frac{1}{10} \pm \frac{\sqrt{9801}}{10}$$

We know $100^2 = 10000$ and $(100 - n)^2 = 10000 - 200n + n^2$. Thus $\sqrt{9801} = 99$.

$$t = \frac{1}{10} \pm \frac{99}{10}$$
 \implies $t = 10$ or $t = -\frac{98}{10}$

Thus the ball hits the ground after 10 seconds.