

基于边界曲线的拟可展曲面构造方法及在船体造型中的应用

Research Background

Developable Surface Construction

[Aumann G. 1991]

[Pottmann and Wallner. 1999]

[Tang et al. 2016]

Developable Mesh Construction

[Chen and Tang. 2013]

Research in Ship Hull Design

[Konesky B. 2005]

[Pérez and Suárez. 2007]

System Overview

Input Output

Key Idea

Parameterization of boundary curves driven by developability

Algorithm Overview

Algorithm Overview

Algorithm Overview

Boundary Construction

Initial Ruled Surface Construction

$$\theta((F_i - E_0) \times T_1(E_0), (F_i - E_0) \times T_2(F_i))$$
 Metal $\leq 6^{\circ}$ [Rolf et al. 2002]

Quasi-developable Surface Construction

Optimization

Optimization-Boundary Constraint

$$F_{dist} = \sum_{D_1, D_2} \sum_{i=0}^{n} \left(\alpha_i (d_i^*)^2 + (1 - \alpha_i) (d_i^1)^2 \right)$$

$$\alpha_i = \cos\theta = \left| \frac{X_i - F_i}{|X_i - F_i|} \cdot T_i \right|$$

$$d_i = \alpha_i (d_i^*)^2 + (1 - \alpha_i) (d_i^1)^2$$

Optimization-Developability Constraint

$$N_{i}(u_{j}) = \frac{L(u_{j}) \times T_{i}(u_{j})}{|L(u_{j}) \times T_{i}(u_{j})|}, i = 1,2$$

$$N_1(u_j) - N_2(u_j) = 0$$

Nonlinear Constraint

$$\begin{cases} N(u_j) \cdot T_1(u_j) = 0 \\ N(u_j) \cdot T_2(u_j) = 0 \\ N(u_j) \cdot L_1(u_j) = 0 \end{cases}$$

Linear Constraint

Continuous Projection

Finite Rulings

Traditional

Infinite Rulings

Ours

Error Controllable Data Point Modification

Result-Hard Chine

Result-UBC Fishing Vessel

Limitation

Efficiency

	Surface	Time
Hard chine	2	7.65s
UBC fishing vessel	4	66.4s

Difficult to converge

Gaussian Curvature

Strict boundary interpolation

Thank you

