Notes

September 10, 2014

2.6.3 the nested intervals lemma

 I_n 's need to be closed:

$$I_n = (0, \frac{1}{n})$$

this is not closed

2.6.I

Let $\{a_n\}_{n=1}^{\infty}$ be a bounded sequence. we define $b_n = \sup_{k \geq n} \{a_k\}$. $b_1 = \sup_{i \geq 1} \{a_i\}, b_2 = \sup_{i \geq 2} \{a_i\}, \ldots$. Let X, Y be sets, $X \subseteq Y$. $\sup X \leq \sup Y$, $\inf X \geq \inf Y$. Because $\{a_n\}_{n=1}^{\infty}$ is bounded, $\{b_n\}_{n=1}^{\infty}$ is bounded. b_n is a decreasing sequence. $\lim_{n \to \infty} b_n = \inf b_n$.

definition: the limsup of a bounded sequence $\{a_n\}$ is $\inf_{n\in\mathbb{N}} \left(\sup_{k\geq n} \{a_k\}\right) = \lim_{n\to\infty\left(\sup_{k\geq n} \{a_k\}\right)}$ and it always exists.

example

let $a_n=(-1)^n$. $b_n=1 \forall n$ and $\lim_{n\to\infty}b_n=1$. $\limsup_{n\to\infty}(-1)^n=1$ definition: the $\liminf_{n\to\infty}a_n=\sup_{n\in\mathbb{N}}(\inf_{k\geq n}a_n)$ always exists. we can extend this concept to unbounded sequences and allow the values $\pm\infty$ for \limsup and \liminf increasing sequence of supremum negative infinity: all negative infinity

proposition

let $\{a_n\}_{n=1}^{\infty}$ be a sequence. then $\lim_{n\to\infty} a_n$ exists $\Leftrightarrow \liminf_{n\to\infty} a_n$ we are assuming that $\lim_{n\to\infty} a_n = L \in \mathbb{R}, |a_n - L| < \epsilon \forall \epsilon > 0$. for $\epsilon > 0 \exists N, a_n \in (L - \epsilon, L + \epsilon)$ if $n \geq N$