Package 'PoissonPCA'

October 12, 2022

200001 12, 2022
Title Poisson-Noise Corrected PCA
Version 1.0.3
Description For a multivariate dataset with independent Poisson measurement error, calculates principal components of transformed latent Poisson means. T. Kenney, T. Huang, H. Gu (2019) arXiv:1904.11745 >.
Depends R (>= $3.2.3$)
License GPL-3
Encoding UTF-8
Imports
NeedsCompilation yes
Author Toby Kenney [aut, cre], Tianshu Huang [aut]
Maintainer Toby Kenney <tkenney@mathstat.dal.ca></tkenney@mathstat.dal.ca>
Repository CRAN
Date/Publication 2021-08-17 15:20:02 UTC
R topics documented:
The same and the s
get_scores LinearCorrectedVariance makelogtransformation make_compositional_variance Poisson_Corrected_PCA polynomial_transformation
Index 12

2 get_scores

get_scores	Calculates principal scores for Poisson-noise corrected PCA

Description

This function is based on principal component analysis of a transformation of latent Poisson means of a sample. Given the estimated principal components of the latent Poisson means, this function estimates scores using a combination of likelihood and mean squared error.

Usage

```
get_scores(X,V,d,k,transformation,mu)
get_scores_log(X,V,d,k,mu)
```

Arguments

X	The data matrix
٧	Vector of all principal components of the transformed latent means
d	Eigenvalues corresponding to the principal components
k	Number of principal components to project onto
transformation	The transformation to be applied to the latent means
mu	The mean of the transformed latent means

Details

This function estimates the latent transformed Poisson means in order to minimise a combination of the log-likelihood plus the squared residuals of the projection of these latent means onto the first k principal components. Note that for transformed Poisson PCA, the scores are not nested, so the choice of k will have an impact on the projection. The get_scores_log function deals with the special case where the transformation is the log function.

Value

scores The principal scores

means The corresponding estimated latent Poisson means

Author(s)

Toby Kenney <tkenney@mathstat.dal.ca> and Tianshu Huang <>

get_scores 3

Examples

```
n<-20 #20 observations
p<-5 #5 dimensions
r<-2 #rank 2
mean < -10 * c(1,3,2,1,1)
set.seed(12345)
Z<-rnorm(n*r)</pre>
dim(Z) < -c(n,r)
U<-rnorm(p*r)
dim(U) < -c(r,p)
Latent<-Z%*%U+rep(1,n)%*%t(mean)
X<-rpois(n*p,as.vector(Latent))</pre>
dim(X) < -c(n,p)
Sigma<-LinearCorrectedVariance(X[-n,])</pre>
eig<-eigen(Sigma)
get_scores(X[n,],eig$vectors,eig$values,r,"linear",colMeans(X[-n,]))
Xlog<-rpois(n*p,exp(as.vector(Latent)+3))</pre>
dim(Xlog)<-c(n,p)</pre>
logtrans<-makelogtransformation(3,4)</pre>
Sigmalog < -Transformed Variance ECV(X[-n,], log trans\$g, log trans\$ECVar)
eiglog<-eigen(Sigmalog)</pre>
gX<-X[-n,]
if(!is.null(logtrans)){
    for(i in 1:(n-1)){
        for(j in 1:p){
             gX[i,j]<-logtrans$g(X[i,j])</pre>
        }
    }
}
mu<-colMeans(gX)</pre>
get_scores_log(X[n,],eiglog$vectors,eiglog$values,r,mu)
```

4 LinearCorrectedVariance

LinearCorrectedVariance

Estimates variance of a transformation of latent Poisson means

Description

Given a data matrix X[i,j] which follows a Poisson distribution with mean Lambda[i,j], this function estimates the covariance matrix of a transformation f of the latent Lambda.

Usage

LinearCorrectedVariance(X)
LinearCorrectedVarianceSeqDepth(X)
TransformedVariance(X,g,CVar)
TransformedVarianceECV(X,g,ECVar)

Arguments

V	tha	data	matrix
^	uie	uata	maura

g an estimator of the transformation function f(Lambda). That is, if X~Poisson(Lambda),

g(X) should be an estimator of f(Lambda).

CVar an estimator of the conditional variance of g(X) conditional on Lambda. ECVar an estimator of the conditional variance of g(X) conditional on Lambda.

Details

LinearCorrectedVariance merely estimates the covariance matrix of the latent Poisson means without transformation. LinearCorrectedVarianceSegDepth deals with the common case in microbiome and other analysis, where the Poisson means are subject to large multiplicative noise not associated with the parameters of interest. In these cases, we would like to estimate the covariance of the compositional form of Lambda. That is, we want to scale the rows of Lambda to all have sum 1, and estimate the covariance matrix of the resultant matrix. This method uses the actual row sums of X as estimates of the scaling to be performed. TransformedVariance estimates the variance of a function of Lambda. It takes two additional parameters: g and CVar which are functions of X. g should be an estimator for the desired transformation f(Lambda) from an observation X. For example, if $f(Lambda)=Lambda^2$, then the unbiassed estimator is $X^*(X-1)$. CVar is an estimator for the conditional variance of g(X) given Lambda. For example, if f(Lambda)=Lambda^2, and we use the unbiassed $g(X)=X^*(X-1)$, then the variance of g(X) is $4*Lambda^3+3*Lambda^2$, so an unbiassed estimator for this is CVar(X)=4*X*(X-1)*(X-2)+3*X*(X-1)=X*(X-1)*(4*X-5). The function polynomial_transformation will compute the unbiassed estimators for a given polynomial. The function makelogtransformation compute estimators for the log function. TransformedVarianceECV is the same as TransformedVariance, except that the third parameter estimates the average conditional variance from a sample of values of X, rather than a single value.

Value

An estimated covariance matrix for the transformed latent means.

makelogtransformation 5

Author(s)

Toby Kenney <tkenney@mathstat.dal.ca> and Tianshu Huang <>

Examples

```
n<-20 #20 observations
p<-5 #5 dimensions
r<-2 #rank 2
mean<-10*c(1,3,2,1,1)
Z<-rnorm(n*r)</pre>
dim(Z) < -c(n,r)
U<-rnorm(p*r)
dim(U) < -c(r,p)
Latent<-Z%*%U+rep(1,n)%*%t(mean)
X<-rpois(n*p,as.vector(Latent))</pre>
dim(X) < -c(n,p)
LinearCorrectedVariance(X)
seqdepth<-exp(rnorm(n)+2)</pre>
Xseqdep<-rpois(n*p,as.vector(diag(seqdepth)%*%Latent))</pre>
dim(Xseqdep) < -c(n,p)
LinearCorrectedVarianceSeqDepth(Xseqdep)
squaretransform < -polynomial\_transformation(c(1,0))
Xsq<-rpois(n*p,as.vector(diag(seqdepth)%*%Latent)^2)</pre>
dim(Xsq) < -c(n,p)
TransformedVariance(Xsq,squaretransform$g,squaretransform$CVar)
Xexp<-rpois(n*p,as.vector(diag(seqdepth)%*%exp(Latent)))</pre>
logtrans<-makelogtransformation(3,4)</pre>
TransformedVarianceECV(X,logtrans$g,logtrans$ECVar)
```

makelogtransformation constructs a log transformation for use with functions from the Poissoncorrected PCA package.

Description

When we are dealing with a transformation of the latent Poisson mean Lambda, we need various useful functions. This function computes the necessary functions for the log transformation, and returns a list of the required functions.

Usage

makelogtransformation(a,N,uselog=6,unbiassed=TRUE)

Arguments

a The point about which to expand the Taylor series (see details)

N The number of terms in the Taylor series to expand (see details)

uselog Value above which we use the logarithm to approximate g(x). Typically should

not be larger than 2a.

unbiassed Indicates that the recommended unbiassed method should be used.

Details

The logarithmic transformation is fundamentally unestimable. There is no estimator which is an unbiassed estimator for $\log(\text{Lambda})$. This is because the logarithm function has a singularity at zero, so has no globally convergent Taylor series expansion. Instead, we aim to use an approximately unbiassed estimator. For large enough X, $g(X)=\log(X)$ is a reasonable estimator. For smaller X, we need to compute a Taylor series for $\exp(-\text{Lambda})\log(\text{Lambda})$. We do this from the equation $\log(x)=\log(a)+\log(x/a)$ and the Taylor expansion $\log(1+y)=y-y^2/2+y^3/3-...$ where y=x/a-1. This has radius of convergence 1, so will converge provided 0< x< 2a. However, if we try to convert it to a polynomial in x, the coefficients will diverge. Instead, we truncate this Taylor series in y at a chosen number N terms. If the x is close to a, this truncated Taylor series should give an approximately unbiassed estimator for $\log(\text{Lambda})$. Choice of N can have some effect. Larger values of N reduce the bias of g(X) but increase the variance. Experimentally, a=3 and b=3 and b=4 seem to produce reasonable results, with $g(X)=\log(X)$ for x>6.

Value

type ="log"

f function which evaluates the transformation

g an estimator for the transformation of a latent Poisson mean

solve function which computes the inverse transformation (often used for simulations)

ECVar an estimator for the average conditional variance of g(X)

Author(s)

Toby Kenney <tkenney@mathstat.dal.ca> and Tianshu Huang

Examples

```
logtrans<-makelogtransformation(5,6)
X<-rpois(100,exp(1.4))
gX<-X
for(i in 1:100){
gX[i]<-logtrans$g(X[i])
}
mean(gX)
var(gX)
logtrans$ECVar(X)</pre>
```

make_compositional_variance

Converts a covariance matrix to compositional form

Description

Given a covariance matrix, removes multiplicative noise

Usage

```
make_compositional_variance(Sigma)
make_compositional_min_var(Sigma)
```

Arguments

Sigma

the uncorrected covariance matrix

Details

The two functions use different methods. make_compositional_variance calculates the variance of compositional data that agrees with Sigma (viewed as a bilinear form) on compositional vectors.

That is, the return value Sigma_c is a symmetric matrix which satisfies t(u)%*%Sigma_c%*%v=t(u)%*%Sigma%*%v for any compositional vectors u and v, and also rowSums(Sigma_c)=0.

Value

The compositionally corrected covariance matrix.

Author(s)

Toby Kenney <tkenney@mathstat.dal.ca> and Tianshu Huang <>

Examples

```
n<-10
p<-5

X<-rnorm(n*p)

dim(X)<-c(n,p)
Sigma<-t(X)%*%X/(n-1)

SigmaComp<-make_compositional_variance(Sigma)
SigmaCompMin<-make_compositional_min_var(Sigma)</pre>
```

Poisson_Corrected_PCA PCA with Poisson measurement error

Description

Estimates the principal components of the latent Poisson means (possibly with transformation) of high-dimensional data with independent Poisson measurement error.

Usage

 $Poisson_Corrected_PCA(X,k=dim(X)[2]-1,transformation=NULL,seqdepth=FALSE)$

Arguments

X Matrix or data frame of count variables

k Number of principal components to calculate.

transformation For estimating the principal components of a transformation of the Poisson

mean.

seqdepth Indicates what sort of sequencing depth correction should be used (if any).

Details

The options for the transformation parameter are:

NULL or "linear" - these perform no transformation.

"log" - this performs a logarithmic transformation

a list of the following functions:

f(x) - evaluates the function deriv(x) - evaluates the derivative of the function solvefunction(target) - evaluates the inverse of the function g(x) - an estimator for f(lambda) from a Poisson observation x with mean lambda CVar(x) - an estimator for the conditional variance of g(x) conditional on lambda from the observed value x

the function polynomial_transformation creates such a list in the case where f is a polynomial using unbiassed estimators for g and CVar. The function makelogtransformation creates an estimator for the logarithmic transformation. The "log" option uses this function with parameters a=3 and N=4, which from experiments appear to produce reasonable results in most situations.

The options for the seqdepth parameter are:

FALSE - indicating no sequencing depth correction

TRUE - indicating standard sequencing depth correction for linear PCA

"minvar" - uses the minimum covariance estimator for the corrected variance. This subtracts the largest constant from all entries of the matrix, such that the matrix is still non-negative definite.

"compositional" - uses the best compositional variance approximation to the estimated covariance matrix.

The package estimates latent principal components using the methods in http://arxiv.org/abs/1904.11745

Value

An object of type "princomp" and "transformed princomp" that has the following components:

sdev The standard deviation associated to each principal component	sdev	The standard deviation	associated to each	principal component
--	------	------------------------	--------------------	---------------------

loadings The principal component vectors
center The mean of the transformed data
scale A vector of ones of length n

n.obs The number of observations

scores The principal scores. For the linear transformation, these are just the projec-

tion of the data onto the principal component space. For transformed principal components, these use a combination of likelihood and mean squared error.

means The corresponding estimated untransformed Poisson means. This provides a

useful diagnostic of the performance in simulation studies. These means should

be closer to the true Lambda than the original X data.

variance The corrected covariance matrix for the transformed latent Sigma.

non_compositional_variance

The corrected covariance matrix without sequencing depth correction.

call The function call used

Author(s)

Toby Kenney <tkenney@mathstat.dal.ca> and Tianshu Huang <>

Examples

```
set.seed(12345)
n<-20 #20 observations
p<-5 #5 dimensions
r<-2 #rank 2</pre>
```

```
mean < -10 * c(1,3,2,1,1)
Z<-rnorm(n*r)</pre>
dim(Z) < -c(n,r)
U<-rnorm(p*r)
dim(U) < -c(r,p)
Latent<-Z%*%U+rep(1,n)%*%t(mean)
X<-rpois(n*p,as.vector(Latent))</pre>
dim(X) < -c(n,p)
Poisson_Corrected_PCA(X,k=2,transformation=NULL,seqdepth=FALSE)
seqdepth<-exp(rnorm(n)+2)</pre>
Xseqdep<-rpois(n*p,as.vector(diag(seqdepth)%*%Latent))</pre>
dim(Xseqdep)<-c(n,p)</pre>
Poisson_Corrected_PCA(Xseqdep,k=2,transformation=NULL,seqdepth=TRUE)
squaretransform < -polynomial\_transformation(c(1,0))
Xexp<-rpois(n*p,as.vector(diag(seqdepth)%*%exp(Latent)))</pre>
Poisson_Corrected_PCA(Xseqdep,k=2,transformation="log",seqdepth="minvar")
```

polynomial_transformation

constructs a polynomial transformation for use with functions from the Poissoncorrected PCA package.

Description

When we are dealing with a transformation of the latent Poisson mean Lambda, we need various useful functions. This function computes the necessary functions for a polynomial, and returns a list of the required functions.

Usage

```
polynomial_transformation(coeffs)
```

Arguments

coeffs

A vector of coefficents of the polynomial. The constant term should not be included.

Details

The coefficients of the polynomial should be given in order of decreasing degree, and should not include the constant term. For example "coeffs"=c(1,2,3) refers to the polynomial X^3+2*X^2+3*X . This function returns a list of functions for dealing with this transformation.

Value

f	evaluates the transformation
g	an estimator for the transformation of a latent Poisson mean
solve	computes the inverse transformation (often used for simulations)
CVar	an estimator for the conditional variance of $g(X)$

Author(s)

Toby Kenney <tkenney@mathstat.dal.ca> and Tianshu Huang <>

Examples

```
cubic<-polynomial_transformation(c(1,0,0))

X<-rpois(100,1.8^3)

gX<-X
varX<-X
for(i in 1:100){
 gX[i]<-cubic$g(X[i])
varX[i]<-cubic$CVar(X)
}
mean(gX)
var(gX)
mean(varX)</pre>
```

Index

```
* PCA
    get_scores, 2
    LinearCorrectedVariance, 4
    make_compositional_variance, 7
    makelogtransformation, 5
    Poisson_Corrected_PCA, 8
    polynomial_transformation, 10
* Poisson measurement error
    Poisson_Corrected_PCA, 8
get_scores, 2
get_scores_log (get_scores), 2
LinearCorrectedVariance, 4
LinearCorrectedVarianceSeqDepth
        (LinearCorrectedVariance), 4
make_compositional_min_var
        (make_compositional_variance),
make_compositional_variance, 7
makelogtransformation, 5
Poisson_Corrected_PCA, 8
polynomial_transformation, 10
TransformedVariance
        (LinearCorrectedVariance), 4
TransformedVarianceECV
        (LinearCorrectedVariance), 4
```