Resultados dos Problemas de Otimização - Método Descida por Coordenadas Otimizada (Descida Aleatória por Coordenadas (RCD))

Análise Computacional

16 de setembro de 2025

1 Problemas de Otimização

A tabela 1 apresenta os problemas de otimização não-linear resolvidos usando o método Descida por Coordenadas Otimizada (Descida Aleatória por Coordenadas (RCD)) e o número de variáveis de cada problema.

Tabela 1: Problemas de otimização e número de variáveis

Problema	Número de Variáveis
ROSENBROCK	100
PENALTY	100
TRIGONOMETRIC	100
EXTENDED ROSENBROCK	100
EXTENDED POWELL	100
QOR	50
GOR	50
PSP	50
TRIDIAGONAL	100
ENGGVAL1	100
LINEAR MINIMUM SURFACE	36
SQUARE ROOT 1	36
SQUARE ROOT 2	36
FREUDENTHAL ROTH	100
SPARSE MATRIX SQRT	16
ULTS0	64

2 Resultados de Convergência

A tabela 2 apresenta os resultados de convergência para cada problema, incluindo o número de iterações necessárias, o valor mínimo da função objetivo encontrado e a precisão da solução (norma do gradiente).

Tabela 2: Resultados de convergência dos problemas de otimização

Problema	Iterações	Valor Mínimo	Precisão ($ \nabla f(x^*) $)	Tempo (s)
ROSENBROCK	1	1.000e+00	2.000e+00	0.000s
PENALTY	72	4.940e + 01	1.372e + 01	1.757s
TRIGONOMETRIC	3	5.346e-25	5.379e-13	0.000s
EXTENDED ROSENBROCK	1	5.000e + 01	1.414e + 01	0.019s
EXTENDED POWELL	1	0.000e+00	0.000e+00	0.010s
QOR	13	1.781e + 03	1.208e + 02	0.220s
GOR	75	1.941e + 03	1.158e + 02	2.042s
PSP	27	2.176e + 05	1.271e + 03	0.533s
TRIDIAGONAL	15	9.458e + 01	2.090e+01	0.296s
ENGGVAL1	1	2.970e + 02	3.980e + 01	0.038s
LINEAR MINIMUM SURFACE	3	3.955e + 01	1.054e + 00	0.031s
SQUARE ROOT 1	85	7.125e + 00	7.645e + 00	0.195s
SQUARE ROOT 2	39	1.092e + 01	1.252e + 01	0.111s
FREUDENTHAL ROTH	500	3.546e + 06	1.451e + 06	53.245s
SPARSE MATRIX SQRT	7	1.251e + 01	4.975e + 00	0.034s
ULTS0	38	1.039e + 05	4.156e + 05	1.365s

3 Soluções Encontradas (Primeiras 5 Variáveis)

A tabela 3 apresenta as primeiras 5 variáveis da solução encontrada para cada problema. Para problemas com menos de 5 variáveis, apenas as variáveis disponíveis são mostradas.

Tabela 3: Primeiras 5 variáveis das soluções encontradas

Problema	x1	x2	x 3	x4	x 5
ROSENBROCK	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00
PENALTY	0.000000e+00	9.573979e-01	9.502327e-01	0.000000e+00	0.000000e+00
TRIGONOMETRIC	7.311388e-13				
EXTENDED ROSENBROCK	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00
EXTENDED POWELL	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00
QOR	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00
GOR	-6.147317e-01	-1.275760e+00	-3.123617e+00	4.452429 e-01	5.348506e+00
PSP	0.000000e+00	1.541841e + 01	3.165973e+00	0.000000e+00	0.000000e+00
TRIDIAGONAL	1.000000e+00	1.000000e+00	1.0000000e+00	1.000000e+00	7.999467e-01
ENGGVAL1	0.0000000e+00	0.000000e+00	0.0000000e+00	0.000000e+00	0.000000e+00
LINEAR MINIMUM SURFACE	1.000000e+00	2.600000e+00	4.200000e+00	5.800000e+00	7.400000e+00
SQUARE ROOT 1	3.128303e-01	1.595723 e-01	-1.153450e+00	6.369724 e-01	4.267974e-01
SQUARE ROOT 2	9.778888e-02	-1.513605e-01	-6.976493e-01	1.035503 e-01	-3.042584e-01
FREUDENTHAL ROTH	1.512970e-03	1.776605e+00	-1.457515e+00	-1.562569e+00	-6.151620e-01
SPARSE MATRIX SQRT	-2.027859e-01	1.754015e+00	8.242370e-02	-5.758066e-02	-2.647035e -02
ULTS0	4.967142e-02	-1.382643e-02	6.376649e-02	1.523030e-01	-2.341534e-02

4 Observações

- O método L-BFGS-B foi configurado com tolerância de convergência de 10^{-6} .
- Para problemas que falharam, verifique a mensagem de erro específica.
- \bullet A precisão é medida pela norma do gradiente (|| $\nabla f(x^*)$ ||) calculada numericamente.
- Valores de precisão menores indicam soluções mais próximas de pontos estacionários.
- Para problemas irrestritos, $||\nabla f(x^*)|| \approx 0$ indica convergência para um mínimo local.
- Problemas que falharam são marcados com --"nas colunas de resultados.
- A terceira tabela mostra as primeiras 5 variáveis da solução encontrada.
- Para problemas com menos de 5 variáveis, as colunas extras são marcadas como ---".
- A terceira tabela é apresentada em formato paisagem para melhor visualização.