EKSAMENDATABLAD VIR DIE FISIESE WETENSKAPPE (CHEMIE)

TABEL 1 FISIESE KONSTANTES

NAAM	SIMBOOL	WAARDE
Grootte van lading op 'n elektron	е	$1,6 \times 10^{-19}\mathrm{C}$
Massa van 'n elektron	m _e	$9,1 \times 10^{-31} \text{ kg}$
Standaarddruk	$p^{\scriptscriptstyle{\theta}}$	1,01 × 10 ⁵ Pa
Molêre gasvolume by STD	V_{m}	22,4 dm³⋅mol ⁻¹
Standaardtemperatuur	$T^{\scriptscriptstyle{\theta}}$	273 K
Avogadro se konstante	NA	$6,02 \times 10^{23} \text{ mol}^{-1}$
Faraday se konstante	F	96 500 C·mol ⁻¹

TABEL 2 CHEMIEFORMULES

$n = \frac{m}{M}$		$n = \frac{N}{N_A}$	$n = \frac{V}{V_m}$				
$c = \frac{n}{V}$ OF $c = \frac{m}{MV}$	7	$K_w = [H_3O^+] \cdot [OH^-] = 1 \times 10^{-14}$ by 25 °C (298 K)					
q = It $q = nF$	$\mathit{E}_{se}^{ heta}$	$E_{sel}^{ heta} = E_{kato}^{ heta}$ $E_{oksideermidd}^{ heta}$	de $^{-}$ $E^{ heta}_{anode}$ lel $^{-}$ $E^{ heta}_{reduseermiddel}$				

TABEL 3 PERIODIEKE TABEL

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 2,1 H 1					om- ıl (Z)	1	2,1 -	Elek negati									He
2	3 1,0 Li 7	4 1,5 Be 9			į		1 tiewe massa	a					5 2,0 B 10,8	6 2,5 C 12	7 3,0 N 14	8 3,5 O 16	9 4,0 F 19	Ne 20
3	11 0,9 Na 23	Mg 24,3											13 1,5 Al 27	Si 28	P 31	S	Cℓ 35,5	Ar
4	19 0,8 K 39	20 1,0 Ca	21 1,3 Sc 45	22 1,5 Ti 48	23 1,6 V 51	24 1,6 Cr 52	25 1,5 Mn 55	26 1,8 Fe 56	27 1,8 Co 59	28 1,8 Ni 59	29 1,9 Cu 63,5	30 1,6 Zn 65,4	31 1,6 Ga	32 1,8 Ge 72,6	33 2,0 As 75	Se	35 2,8 Br 80	36 Kr 84
5	37 0,8 Rb 85,5					42 1,8 Mo 96					47 1,9 Ag		49 1,7 In 115	50 1,8 Sn 119			53 2,5 I 127	
6	55 Cs 133	56 Ba 137,3		72 Hf 178,5	73 Ta 181	74 W 184	75 Re 186	76 Os 190	77 Ir 192	78 Pt 195	79 Au 197	80 Hg 200,6	81 T£ 204,4	82 Pb 207	83 Bi 209	84 Po -	85 At -	86 Rn -
7	87 Fr	88 Ra																

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lw
7.0		١. ٣				/	J		O .		• • • •			

Toenemende oksideervermoë

TABEL 4 STANDAARDELEKTRODEPOTENSIALE

Half	E°/volt		
Li+ + e-	\rightleftharpoons	Li	-3,05
K+ + e-	\rightleftharpoons	K	-2,93
Cs+ + e-	\rightleftharpoons	Cs	-2,92
Ba ²⁺ + 2e ⁻	\rightleftharpoons	Ba	-2,90
Sr ²⁺ + 2e ⁻	\rightleftharpoons	Sr	-2,89
Ca ²⁺ + 2e ⁻	\rightleftharpoons	Ca	-2,87
Na+ + e-	\rightleftharpoons	Na	-2,71
Mg ²⁺ + 2e ⁻	\rightleftharpoons	Mg	-2,37
$A\ell^{3+} + 3e^{-}$	\rightleftharpoons	Αℓ	-1,66
Mn ²⁺ + 2e ⁻	\rightleftharpoons	Mn	-1,18
2H ₂ O + 2e ⁻	\rightleftharpoons	$H_2(g) + 2OH^-$	-0,83
Zn ²⁺ + 2e ⁻	\rightleftharpoons	Zn	-0,76
Cr ³⁺ + 3e ⁻	\rightleftharpoons	Cr	-0,74
Fe ²⁺ + 2e ⁻	\rightleftharpoons	Fe	-0,44
Cd ²⁺ + 2e ⁻	\rightleftharpoons	Cd	-0,40
Co ²⁺ + 2e ⁻	\rightleftharpoons	Co	-0,28
Ni ²⁺ + 2e ⁻	\rightleftharpoons	Ni	-0,25
Sn ²⁺ + 2e ⁻	\rightleftharpoons	Sn	-0,14
Pb ²⁺ + 2e ⁻	\rightleftharpoons	Pb	-0,13
Fe ³⁺ + 3e ⁻	\rightleftharpoons	Fe	-0,04
2H+ + 2e-	\rightleftharpoons	$H_2(g)$	0,00
S + 2H+ + 2e-	\rightleftharpoons	$H_2S(g)$	+0,14
Sn ⁴⁺ + 2e ⁻	\rightleftharpoons	Sn ²⁺	+0,15
SO ₄ ²⁻ + 4H ⁺ + 2e ⁻	\rightleftharpoons	$SO_2(g) + 2H_2O$	+0,17
Cu ²⁺ + 2e ⁻	\rightleftharpoons	Cu	+0,34
2H ₂ O + O ₂ + 4e ⁻	\rightleftharpoons	40H ⁻	+0,40
SO ₂ + 4H ⁺ + 4e ⁻	\rightleftharpoons	$S + 2H_2O$	+0,45
l ₂ + 2e ⁻	\rightleftharpoons	2l ⁻	+0,54
(Ο)	\rightleftharpoons	H_2O_2	+0,68
Fe ³⁺ + e ⁻	\rightleftharpoons	Fe ²⁺	+0,77
Hg ²⁺ + 2e ⁻	\rightleftharpoons	Hg	+0,79
NO ₃ ⁻ + 2H ⁺ + e ⁻	\rightleftharpoons	$NO_2(g) + H_2O$	+0,80
Ag+ + e-	\rightleftharpoons	Ag	+0,80
NO ₃ - + 4H+ + 3e-	\rightleftharpoons	$NO(g) + 2H_2O$	+0,96
Br ₂ + 2e ⁻		2Br	+1,09
Pt ²⁺ + 2e ⁻	\rightleftharpoons	Pt	+1,20
MnO ₂ + 4H ⁺ + 2e ⁻	\rightleftharpoons	$Mn^{2+} + 2H_2O$	+1,21
O ₂ + 4H ⁺ + 4e ⁻	\rightleftharpoons	2H ₂ O	+1,23
Cr ₂ O ₇ ²⁻ + 14H ⁺ + 6e ⁻	\rightleftharpoons	$2Cr^{3+} + 7H_2O$	+1,33
$C\ell_2(g) + 2e^-$		2Cℓ ⁻	+1,36
Au ³⁺ + 3e ⁻		Au	+1,42
MnO ₄ ⁻ + 8H ⁺ + 5e ⁻	\rightleftharpoons	$Mn^{2+} + 4H_2O$	+1,51
H ₂ O ₂ + 2H ⁺ + 2e ⁻	\rightleftharpoons	2H ₂ O	+1,77
F ₂ (g) + 2e ⁻	=	2F-	+2,87

Toenemende reduseervermoë