Ricerca di particelle esotiche di carica 5/3 a CMS

Matteo Abis matteo.abis@cern.ch

Università di Padova

23 settembre 2012

Il problema della gerarchia

Problema di naturalezza

La massa del bosone di Higgs riceve grandi contributi da diagrammi con un *loop*. Per avere una massa piccola è necessaria una incredibile calibrazione fine dei parametri del modello standard.

Partner del quark top

Una possibile estensione del modello standard

- accoppiamento con quark di terza generazione
- soluzione al problema della gerarchia
 - Contino, Servant, JHEP 0806:026 (2008)
 - Mrazek, Wulzer, Phys. Rev. D81, 075006 (2010)
- \bullet produzione di coppie di ${\rm T_{5/3}}$ nei dati di CMS del 2011 a $\sqrt{s}=7\,{\rm TeV}$
- firma sperimentale: due elettroni o muoni isolati, di alta energia e stessa carica, insieme a molti *jet*.

Fondi strumentali e di modello standard

Due leptoni isolati, di alta energia e dello stesso segno possono essere dati da:

- processi rari del modello standard con lo stesso stato finale.
- 2 errata misura della carica di stati finali con leptoni di segno opposto.

Processi rari del modello standard

Produzione di top insieme a un bosone vettore, o di più bosoni vettori contemporaneamente: $t\bar{t}Z$, $t\bar{t}W$, WW, WZ, ZZ e WWW. Simulati con tecniche Monte Carlo

Errata misura della carica elettrica

Contributo stimato dai dati

Selezione di candidati Z: coppie di leptoni con massa invariante tra 76 GeV e 106 GeV.

Campione dominato al 99% da Z: le coppie con leptoni dello stesso segno vengono da una misura errata.

Figura: Distribuzione della massa invariante degli elettroni di segno opposto (blu) o dello stesso segno (rosso)

Leptoni dello stesso segno da decadimenti secondari Stima dai dati con il metodo *tight-loose*

- si definisce una categoria di leptoni con selezioni più lasche
- si misura la probabilità che un leptone che passa questa selezione passi erroneamente anche quella, più stringente, dell'analisi
- dalla probabilità si stima il numero di eventi che contaminano il campione finale

Figura: Distribuzione della massa invariante dei due leptoni dello stesso segno in eventi con almeno due iet.

Le variabili *razor*

Versione originale

Due particelle pesanti prodotte in coppia decadono in una particella visibile e una invisibile.

Prima approssimazione

$$M_R = \sqrt{(a^0 - b^0)^2 - (a^z + b^z)^2}$$
 $M_R^T = \sqrt{\frac{|\vec{m}|}{2}(|\vec{a}_T| + |\vec{b}_T|) - \frac{\vec{m}}{2} \cdot (\vec{a} + \vec{b})}$
 $R = M_R^T/M_R$

Notazione:

- a^{μ} e b^{μ} quadrivettori delle particelle visibili
- ullet $ec{m}$ è l'energia mancante nel piano trasverso $E_{
 m T}^{
 m miss}$
- \vec{v}_T è un vettore con le componenti trasverse $(v_x, v_y, 0)$

Proprietà delle variabili razor

- M_R indipendente da *boost* lungo l'asse z, correlata con la massa dell'oggetto originale
 - R altra misura indipendente della scala di energia del processo, che utilizza le misure sul piano trasverso

Correzioni aggiuntive

Le formule sono corrette per il boost complessivo del sistema applicando una trasformazione di Lorentz con parametro $\vec{\beta} = \vec{a} + \vec{b} + \vec{m}$.

Il sottosistema razor

La topologia del decadimento del partner del top è asimmetrica

Il sottosistema razor

La topologia del decadimento del partner del top è asimmetrica

(c) Esempio standard dalla super- (d) Evento con partner del top simmetria

Massa invariante adronica

La parte più semplice

Massa della somma dei quadrimomenti dei jet

 M_R Indicatore della massa della particella massiva

Picco previsto intorno a $M(T_{5/3})/2$.

R

Una variabile dimensionale correlata con la $E_{ m T}^{ m miss}$

In teoria:

- picco vicino a 1/2 per il segnale
- decade esponenzialmente per i fondi dopo aver raggiunto un massimo

Un miglior rapporto segnale-rumore

Selezione finale ottimizzata per $S/(a+\sqrt{B})$.

- ullet massa adronica $> 350\,\mathrm{GeV}$
- $M_R > 200 \, {\rm GeV}$
- R > 0.2

Limite

Non si osserva un eccesso di eventi rispetto ai fondi del modello standard:

Monte Carlo	carica	secondari	totale	osservati
2.12±0.73	0.15±0.03	0.76 ± 0.56	3.03±0.92	4

limite osservato (atteso) 633 (658) GeV

Backup slides

Signal MC Fall11 production

mass (GeV)	$\sigma \times BR(pb)$	events
400	0.295	86205
450	0.139	86211
500	0.069	86684
550	0.036	86724
600	0.019	86965
650	0.011	87592
700	0.006	88145
750	0.004	88410

Tabella: Signal Monte Carlo samples. The branching ratio is 0.21.

Background MC

Summer11 production

process	MC generator	$\sigma(pb)$	events
WZ+Jets	MADGRAPH	0.879	1221134
ZZ+Jets	MADGRAPH	0.076	1185188
$\mathrm{W^{+}W^{+}} + Jets$	MADGRAPH	0.165	130000
$\mathrm{W^-W^-}{+}Jets$	MADGRAPH	0.055	160000
WWW+Jets	MADGRAPH	0.038	1201777
${ m tar{t}W}$	MADGRAPH	0.169	1029608
$t\overline{t}Z$	MADGRAPH	0.139	793155

Tabella: Details of the background Monte Carlo samples used for the analysis.

Dataset	Run range
/DoubleMuon/Run2011A-May10ReReco-v1/AOD	160329-163869
/DoubleMuon/Run2011A-PromptReco-v4/AOD	165071-168437
/DoubleMuon/Run2011A-05AugReReco-v1/AOD	170053-172619
/DoubleMuon/Run2011A-PromptReco-v6/AOD	172620-175770
/DoubleMuon/Run2011B-PromptReco-v1/AOD	175832-180296
/DoubleElectron/Run2011A-May10ReReco-v1/AOD	160329-163869
/DoubleElectron/Run2011A-PromptReco-v4/AOD	165071-168437
/DoubleElectron/Run2011A-05AugReReco-v1/AOD	170053-172619
/DoubleElectron/Run2011A-PromptReco-v6/AOD	172620-175770
/DoubleElectron/Run2011B-PromptReco-v1/AOD	175832-180296
/MuEG/Run2011A-May10ReReco-v1/AOD	160329-163869
/MuEG/Run2011A-PromptReco-v4/AOD	165071-168437
/MuEG/Run2011A-05AugReReco-v1/AOD	170053-172619
/MuEG/Run2011A-PromptReco-v6/AOD	172620-175770
/MuEG/Run2011B-PromptReco-v1/AOD	175832-180296 ¹⁹ /

Triggers

```
HLT_DoubleMu7_v1,2 or
HLT_Mu13_Mu8_v2,3,4,6,7 or
HLT_Mu17_Mu8_v10,11

HLT_Ele17_CaloldL_CalolsoVL_Ele8_CaloldL_CalolsoVL_v1,2,3,4,5,6 or
HLT_Ele17_CCTT_Ele8_CCTT_v6,7,8,9,10

HLT_Mu10_Ele10_CaloldVL_v2,3,4,or
HLT_Mu17_Ele8_CaloldVL_v1,2,3,4,5,6,8 or
HLT_Mu17_Ele8_CaloldT_CalolsoVL_v4,7,8 or
HLT_Mu8_Ele17_CaloldL_v1,2,3,4,5,6 or
HLT_Mu8_Ele17_CaloldT_CalolsoVL_v3,4,7,8
```

Tabella: List of triggers used in the analysis for the three decay channels: $\mu\mu$, ee, e μ . CCTT is short for CaloIdL_CaloIsoVL_TrkIdVL_TrkIsoVL.

Event cleanup

Standard from TLBSM recipes

scraping

• at least 25% of the tracks must be high-purity for events with at least ten tracks

good primary vertex

- at least 4 degrees of freedom
- less than 25 cm from interaction point in z
- less than 2 cm radially

HBHE noise filter

Electrons

Standard top selection, plus charge consistency

- $p_{\rm T} > 30 \, {\rm GeV}$
- $|\eta| <$ 2.4, except EBEE gap
- HyperTight1MC electron identification
- relative isolation < 0.15
- conversion rejection
- ullet transverse impact parameter $< 0.02\,\mathrm{cm}$
- GSF, CFT, ScPix charge consistency

Muons

Standard top selection

- $p_{\rm T} > 30 \, {\rm GeV}$
- $|\eta| < 2.4$
- Global and Tracker muon
- relative isolation < 0.20
- $\chi^2/\text{NDF} < 10$
- at least one muon hit
- at least one pixel hit
- at least eleven silicon hits
- at least two chambers with matching segments

Jets

Standard top selection

- anti-k_T particle flow jets
- $p_{\rm T} > 30 \, {\rm GeV}$
- $|\eta| < 2.4$
- Charged hadron subtractions, L1FastJets corrections, L2L3 jet energy scale corrections
- loose particle flow identification
- $\Delta R(\text{lepton, jet}) > 0.3$