Assignment Project Exam Help Data Reshaping

https://powcoder.com

Faculty of Information Technology, Monash University, Australia

Add WeChat powcoder

Assissing the Project Exam Help Transformation by generating new features

- Nominal to Numeric Transformation
- https://powcoder.com
- Feat Aedidin Wing Prats proling coder
- Summary

Data loading & extracting Assignment Project Exam Help Data Data cleaning integration https://powcoder.com Data profiling Add WeChat powcoder enrichment Data storing

Outline

Assignment Project Exam Help

- Transformation by generating new features
- https://powcoder.com
- Feat Add WeChat powcoder
- Summary

5 / 43

 Why: Raw attributes are usually not good enough to obtain accurate predictive model.

Assignment to contribute equally of Eccitea Eismannure Help

$$d(\mathbf{p}, \mathbf{q}) = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2 + \dots + (p_n - q_n)^2} = \sqrt{\sum_i (p_i - q_i)^2}$$
• Idstitute Ssion, Spin parents to be a fet of single you are using

Indistrict regression,/SVMs, pevcentrons he fall networks etc. if you are using gradient descent/ascent-based optimisation, otherwise some weights will update much faster than others

Add WeChat¹powcoder

so that $w_i := w_i + \Delta w_i$

▶ linear discriminant analysis, principal component analysis, kernel principal component analysis since you want to find directions of maximising the variance (under the constraints that those directions/eigenvectors/principal components are orthogonal); you want to have features on the same scale since you'd emphasise variables on "larger measurement scales" more.

- Data transformation
- A series of manipulation steps to transform the original attributer or to 1 S S 1 series of the waith letter properties that with lift the relictive power of the model.
 - To achieve properties that enhance the modelling and analysis (linearity, statistical or visual interpretability).
 - https://spowcoder.com
 - Transformation by generating new features (i.e., variables or attributes)

Add WeChat powcoder

Outline

Assignmento Project Exam Help

- Nominal to Numeric Transformation https://powcoder.com
- Feat Add WeChat powcoder
- Summary

Data Transformation — Normalisation

There are two types of data normalisation:

- Standardisation (z-score normalisation): where the focus is on shifting the Soft in the fact of lavering of the detartary density of the
 - Scaling: where the focus is on rescaling data value range to a specific interval.

 - Min-Max normalisation Powcoder.com

Add WeChat powcoder

(Monash) FIT5196 8 / 43

Data Normalisation — Standardisation

Z-score Normalisation

Assignment to wood earlies of a second the properties of a second the prope

$$\mu=0~\&~\sigma=1.0$$

• How?https://poweoder.com

where

Add WeChat, powcoder

$$\sigma = \sqrt{\frac{1}{n} \sum_{i} (x_i - \mu)^2}$$

(Monash) FIT5196 9 / 43

Data Normalisation — Standardisation

Z-score Normalisation

Alcohol

Data Normalisation — Standardisation

Z-score Normalisation

(Monash) FIT5196 9 / 43

Data Normalisation — Min-Max Scaling

Min-Max Scaling

Assignment Project Exam Help

 $X_{scaled} = \frac{X - X_{min}}{X_{max} - X_{min}} (X'_{max} - X'_{min}) + X'_{min}$ If the fittings is (0,1 powcoder.com

$$Add \ \, \ \, \begin{matrix} x_{scaled} = \frac{X - X_{min}}{X_{max} - X_{min}} \\ Add \ \, \ \, \ \, \end{matrix}$$

Data Normalisation — Min-Max Scaling

Min-Max Scaling

We will end up with smaller standard deviations, which can suppress the effect of outliers

Data Normalisation — Min-Max Scaling

Min-Max Scaling

MONASH University

Data Normalisation — Standardisation vs Min-Max

-2.5

0.0

2.5

5.0

Alcohol

7.5

"Standardisation or Min-Max scaling?": depends on the application

10.0

12.5

15.0

MONASH University

Data Normalisation — Standardisation vs Min-Max

MONASH University

Data Normalisation — Standardisation vs Min-Max

Data Normalisation — Decimal Scaling

Shift the decimal place of a numeric value such that the maximum absolute

stagement Project Exam Help

- where c is the smallest/integer such that max(|x'|) < 1.

 Example 10 S : // DOWCOGET. COM
 - $-500 < x < 45 \Rightarrow -0.500 < x < 0.045$
 - How to convert?

Add WeChat powcoder

Data Normalisation — Decimal Scaling

Shift the decimal place of a numeric value such that the maximum absolute

staline will be always less, the Project Exam Help

- where c is the smallest/integer such that max(|x'|) < 1. Fxambettns://powcoder.com
 - $-500 < x < 45 \Rightarrow -0.500 < x < 0.045$
 - How to convert?

13 / 43 (Monash) FIT5196

Outline

Assignment Project Exam Help

- Transformation by generating new features
- Nominal to Numeric Transformation https://powcoder.com
- Feat Add WeChat powcoder
- Summary

Data Transformation is a process of re-expressing data in a form that is more suitable for analysis.

ment Project Exam Help

- Enhance data visualisation
- Better interpretability
- orbit the some activities for the control of the co
- Methods: different mathematical formulas from statistical analysis
 - linear transformation
 - eChat powcoder

 - Box-Cox Transformation
 - others: Quadratic transformation, (non-)polynomial approximation of transformation, rank transformation

Linear Transformation

- A Salegate transformation preserves the linear relationship between the features.

 Help
 - Linear transformation function: Given a subset of the complete set of attributes, X_1, X_2, \ldots, X_m ,

- Examples: dd.hreWiteChat powcoder
 - Miles to Kilometers
 - Inches to Centimeters

Log transformation makes highly skewed distributions less skewed

Log transformation makes highly skewed distributions less skewed

Power Transformation

Tukey and Mosteller's Bulging Rule: The idea is that it might be interesting $X_i^q = \beta_0 + \beta_1 X_i^p + \eta_i$

Power Transformation

Assignment Project Exam Help

$$Y_i^q = \beta_0 + \beta_1 X_i^p + \eta_i$$

More information can be found https://www.r-bloggers.com/tukey-and-mostellers-bulging-rule-and-ladder-of-powers/

Power Transformation

Х

X^1

MONASH University

Data Transformation

Power Transformation

Power Transformation

ullet Seek optimal transformations: learnt p and q with L-BFGS

(Monash) FIT5196 21 / 43

(Monash)

The Box-Cox Transformation: transforms a continuous variable into an almost normal distribution.

Assignment Project Exam Help

Figure: Examples of the Box-Cox transformation x'_{λ} versus x for $\lambda = -1, 0, 1$. In the second row, x_1' is plotted against log(x). The red point is at (1,0).

The Box-Cox Transformation: transforms a continuous variable into an almost normal distribution.

Assignment Project Exam Help

(Monash) FIT5196 22 / 43

The Box-Cox Transformation: transforms a continuous variable into an almost normal distribution. λ

Assignment, Project Exam Help

The Box-Cox Transformation: transforms a continuous variable into an almost normal distribution.

Assignment Project Exam Help

The Box-Cox Transformation: transforms a continuous variable into an almost normal distribution.

Assignment Project Exam Help

(Monash) FIT5196 22 / 43

ONASH University

Data Transformation

The Box-Cox Transformation: transforms a continuous variable into an almost normal distribution.

Assignment Project Exam Help

$$https://powcoder.com$$

where

- ▶ A parameter c: offset the negative values
- g: scale the resulting values often considered as the geometric mean of the detail o
- λ : greedily search λ so that the resulting attribute is as close as possible to the normal distribution.

Outline

Assignment Project Exam Help

- Transformation by generating new features
- Nominal to Numeric, Transformation https://powcoder.com
- Feat Add WeChat powcoder
- Summary

Nominal to Numeric Transformation

Why?

Assimilation elarning assorithms only accept numeric value, white in many Help

- ▶ Integer substitution: map each nominal value in the domain to numeric value
- Fxample: assume we have a color attribute with Red, Green, Blue and Yellow Press.//powcoder.com
 - Green \Rightarrow 2
 - Blue ⇒ 3

eChat powcoder

- Implies a sort of ranking that doesn?t actually exists in the original data.
- The outcome of the mining algorithms would be sensitive to the numeric values we choose to use.

Nominal to Numeric Transformation

Why?

Assimilation of the normal disperithms only accept numeric value, while in many the Help

- ▶ Integer substitution: map each nominal value in the domain to numeric value
- Fxample: assume we have a color attribute with Red, Green, Blue and Yellow Pttps://powcoder.com

One-hot encoding

	Colour	Red	Green	Blue	Yellow
A	Yellow	We(Chat p	$\mathbf{O}^{\circ}\mathbf{W}$	coder
	Red	1	0	0	0
	Yellow	0	0	0	1
	Green	0	1	0	0
	Red	1	0	0	0

Assignment Project Exam Help

- Data Discretisation https://powcoder.com
 Feature Engineering & Data Sampling
- SumAdd WeChat powcoder

Data Discretisation

• The process of converting or partitioning continuous variables to discretised or nominal variables.

Control 100 Control 100

Full Colors to Debres matter the Categorie Which a elalequate the Dearning task retaining as much information in the original continuous attribute as possible

Effects of discretisation

https://powcoder.com

- Reduce data size
- Enable specific methods using nominal data

Data Discretisation

Methods

Assignment Project Exam Help

https://powcoder.com

As splits ordered data into prefered number of birst Assignment Project Exam Help

- Equal-width binning
 - Given a range of values, $[x_{min}, x_{max}]$, we divide the value range into intervals

https://powcoder.com

where n is the number of bins. Or you can specify the value of w

- Equal-depth binning.

 A [No des the value man in eval, each of this way opposite the samples.]
- Binning with
 - mean value
 - median values
 - bin boundaries

• Task: discretise {34, 64, 88, 55, 94, 59, 10, 25, 44, 48, 69, 15}

Assignment Project Exam Help

▶ Equal-width binning with n = 4

https://powcoder.com4}

- mean value

Add WeChat powcoder 101,91}

{15, 15, 15}, {44, 44, 44}, {61.5, 61.5, 61.5, 61.5}, {91, 91}

boundaries

{10, 10, 25}, {34, 48, 48}, {55, 55, 69, 69}, {88, 94}

• Task: discretise {34, 64, 88, 55, 94, 59, 10, 25, 44, 48, 69, 15}

Assignment Project Exam Help

▶ Equal-depth binning with n = 4

https://powcoder:com4}

- mean value

Add 6, WeChat powcoder 83.6}

{15, 15, 15}, {44, 44, 44}, {59, 59, 59}, {88, 88, 88}

boundaries

{10, 10, 25}, {34, 48, 48}, {55, 55, 64}, {69, 94, 94}

Advantage/disadvantage of each method:

- Assignment Project Exam Help
 - Equal-depth binning
 - Scales well by keeping the distribution of the data https://powcoder.com

Entropy

Assignment Project Exam Help

- Coin toss: p(head) = p(tail) = 1/2• Coin toss: p(head) = p(tail) = 1/2• Coin toss: p(head) = p(tail) = 1/2• Coin toss: p(head) = p(tail) = 1/2
- Coin toss: p(head) = 0.7 and p(tail) = 0.3

Add We Chat poweder

• Entropy discretisation: a method takes into account the class labels in discretisation.

 Entropy discretisation: a method takes into account the class labels in discretisation.

ment Project Exam Help Entropy,

- Partitioning should not be too fine-grained, to avoid over-fitting.
- ps://powcoder.com
 - 2. For each potential split in your data...
 - Calculate Entropy in each potential bin

at powcoder

- 3. Select the split with the highest entropy gain
- 4. Recursively (or iteratively in some cases) perform the partition on each split until a termination criteria is met
 - Terminate once you reach a specified number of bins
 - Terminate once entropy gain falls below a certain threshold.

Figure is adapted from http://kevinmeurer.com/a-simple-guide-to-entropy-based-discretization/

Assignment Project Exam Help

https://powcoder.com

• Entropy of the data: We Chat powcoder $H(X) = -\frac{3}{5}\log_2(\frac{3}{5}) - \frac{2}{5}\log_2(\frac{2}{5}) = 0.529 + 0.442 = 0.971$

Hours Studied

A on Test

Assignment Project Exam Help

https://powcoder.com/

Split at 4.5

Hours Studied

A on Test

Assignment Project Exam Help

https://powcoder.com/

Split at 6.5

$H(X) = -\frac{1}{3} \log_2(\frac{2}{3}) - \frac{1}{3} \log_2(\frac{1}{3}) = 0.918$

$$H(X > 6.5) = -\frac{2}{3}\log_2(\frac{2}{3}) - \frac{1}{3}\log_2(\frac{1}{3}) = 0.918$$

$$H(X_{new}) = H(X \le 6.5) + H(X > 6.5) = \frac{2}{5}1 + \frac{3}{5}0.917 = 0.951$$

$$G(X_{new}) = 0.971 - 0.951 = 0.02$$

Hours Studied

A on Test

Assignment Project Exam Help

https://powcoder.com/

• Split at 10

$\begin{array}{cccc} H(X) & \text{Hold} &$

$$H(X_{new}) = H(X \le 10) + H(X > 10) = \frac{3}{5}0.917 + \frac{2}{5}0 = 0.551$$

$$G(X_{new}) = 0.971 - 0.551 = 0.42$$

Hours Studied

A on Test

Assignment Project Exam Help

https://powcoder.com/

• Split at 13.5

HAdd WeChatopewcoder

$$H(X > 13.5) = -\frac{1}{1}\log_2(\frac{1}{1}) - \frac{0}{1}\log_2(\frac{0}{1}) = 0$$

$$H(X_{new}) = H(X <= 13.5) + H(X > 13.5) = \frac{4}{5}1.0 + \frac{1}{5}0 = 0.8$$

$$G(X_{new}) = 0.971 - 0.8 = 0.171$$

Assignment Project Exam Help

A on Test

https://powcoder.com

- Split at 4.5; G(X_n) = 0.322 hat powcoder
- Split at 10: $G(X_{new}) = 0.42$

Hours Studied

• Split at 13.5: $G(X_{new}) = 0.171$

Assignment Project Exam Help

A on Test

https://powcoder.com

When to stop the algorithm

Hours Studied

- Teninate when information gain falls blow a certain threshold.

Concept Hierarchy for numerical data

A simple 3-4-5 rule can be used to segment numeric data (attribute values) into relatively uniform, "natural" intervals.

SSI genment 7 Protectes Etx ansguilded partition the range into 3 equi-width.

- If it covers 2, 4, or 8 distinct values at the most significant digit, partition
- the range into 4 intervals intervals of the root significant ligit, partition the range into 5 intervals

Count

Segmentation by natural partitioning

https://pow.co.der.com

(-\$1,000,000...\$0] (\$0...\$1,000,000]

TOON ONGS

Add WeChat powcoder

(\$1,000,000...\$2,000,0001

FIT5196

Outline

Assignment Project Exam Help

- https://powcoder.com
 Feature Engineering & Data Sampling
- SumAdd WeChat powcoder

Feature Engineering

• Feature extraction (or generation)
• Feature selection
• Set the selection of the selecti Goals

- Goals
 - Produce more meaning-

full descriptive discriminant CODET Increase predictive accuracy of extres . / DOWCODET larged helds

- Remove irrelevant data
- Improve learning efficiency
- Reduce the model complexity and increase its interpretability

Feature Subset Selection

Feature subset selection reduces the data set size by removing irrelevant or redundant features.

Assa: enhancement Partible of the X raum probably p distribution of the data classes is as close as possible to the original distribution obtained using all attributes

- Methods
 - https://powcoder.com
 - Stepwise backward elimination.
 - Combination of forward selection and backward elimination
 - Add WeChat powcoder

Feature Subset Selection

Figure is from "Data mining: know it all"

Data Sampling Methods

Sampling methods are used to choose a representative subset of the data

Assignment Project Exam Help

- Fix imbalance distribution
- Creating training, validation, testing sets.

https://powcoder.com

Data Sampling Methods

• Methods: Suppose that a large dataset, D, contains N tuples, the ways we can used to do data reduction:

Signification of the N tuples from D (s < N), where the probability of drawing and tuple in D is 1/N

Simple random sample with replacement (SRSWR) of size s.

1 Simple to SRWCD screenthate the legis drawn it is placed back in D

Figure is from "Data mining: know it all"

Data Sampling Methods

• Methods: Suppose that a large dataset, D, contains N tuples, the ways we can used to do data reduction:

If D is divided into mutually disjoint parts called strata, a stratified sample D is generated by obtaining an SRS at each stratum

Figure is from "Data mining: know it all"

Summary

- Data transformation:
- Assignance In general Description of the Exam Help
 - Data Discretization
 - Feature selection and data sampling coder.com