叩

电子科技大学研究生试卷

(考试时间: ____至___, 共__2_小时)

课程名称 图论及其应用 教师 学时 60 学分

教学方式_讲授_考核日期_2010_年__月__日 成绩

考核方式: _____(学生填写)

一. 填空题(每题 2 分, 共 20 分)

- 1. 若自补图 G 的顶点数是 n , 则 G 的边数 $m(G) = \frac{n(n-1)}{4}$;
- 2. 若图 $G_1=(n_1,m_1)$, $G_2=(n_2,m_2)$,则它们的联图 $G=G_1\vee G_2$ 的顶点数= $\underline{n_1+n_2}$; 边数= $\underline{m_1 + m_2 + n_1 n_2}$;
- 3. 下图 G₁中 u 与 v 间的最短路的长度为_6_;

4. 设 $A = (a_{ij})_{n \times n}$ 是图 G 的推广的邻接矩阵,则 $A^k = (a_{ij}^{(k)})_{n \times n}$ (k 是 整数)

的 $a_{ij}^{(k)}$ 表示的意义为_ $\underline{\text{h v}_{i}}$ <u>列 v_{i} 的长度为 n 的通道数目</u>;

5. 设 $G = K_n$,则 G 的谱 $SpecA(G) = \begin{pmatrix} -1 & n-1 \\ n-1 & 1 \end{pmatrix}$;

6. 设 8 阶图 G 中没有三角形,则 G 能够含有的最多边数为_

- 7. 三角形图的生成树的棵数为___3__;
- 8. G₂的点连通度与边连通度分别为__3和3__;

9. n=5 的度极大非 H 图族为C1.5. C2.5;

10. n 方体(n≥1)的点色数为_ __<u>2</u>__;边色数为___<u>n</u>__。

二. 单项选择(每题3分,共12分)

批注 [xjia1]: 1+2+1+2

批注 [xjia2]: 教材 P21

- 1. 下面命题正确的是(**D**)
 - (A) 任意一个非负整数序列均是某图的度序列;
 - (B) 设非负整数序列 $\pi = (d_1, d_2, \dots, d_n)$, 则 π 是图序列当且仅当 $\sum_{i=1}^n d_i$ 为偶数;
- (C) 若非负整数序列 $\pi = (d_1, d_2, \dots, d_n)$ 是图序列,则 π 对应的不同构的图一定唯一;
- (D) n 阶图 G 和它的补图 \bar{G} 有相同的频序列.
- 2. 下列有向图中是强连通图的是(A)

- 3. 关于欧拉图与哈密尔顿图的关系,下面说法正确的是(C)
- (A) 欧拉图一定是哈密尔顿图;
- (B) 哈密尔顿图一定是欧拉图;
- (C) 存在既不是欧拉图又不是哈密尔顿图的图;
- (D) 欧拉图与哈密尔顿图都可以进行圈分解。
- 4. 下列说法中正确的是(B)
- (A) 任意一个图均存在完美匹配;
- (B) k(k ≥ 1)正则偶图一定存在完美匹配;
- (C) 匈牙利算法不能求出偶图的最大匹配,只能用它求偶图的完美匹配;
- (D) 图 G 的一个完美匹配实际上就是它的一个 1 因子。
- 三、 (10 分) 若阶为 25 且边数为 62 的图 G 的每个顶点的度只可能为 3 ,4 ,5 或 6 ,且有两个度为 4 的顶点,11 个度为 6 的顶点,求 G 中 5 度顶点的个数。
- 解:设5度顶点的个数为x,则

$$2*4+11*6+5x+3(25-11-4-x)=2*62$$
解得, $x=?$, 所以……

- 四, $(8 \, \mathcal{H})$ 求下图的最小生成树(不要求中间过程,只要求画出最小生成树,并给出T的权和)。
- **解:** T=1+1+1+1+1+4+3=12

五. (8分)求下图的 k 色多项式。

解:该图的补图 \bar{G} 如下图所示:

它有两个分支,对于 $h(K_1,x) = x + x^2$

对于 H_2 : $N_4(G) = 1$, $N_3(G) = 4$, $N_2(G) = 2$, $N_1(G) = 0$,

$$h(K_2, x) = 2x^2 + 4x^3 + x^4$$

所以

$$h(\bar{G}, x) = (2x^2 + 4x^3 + x^4)(x + x^2)$$

= 2x³ + 6x⁴ + 5x⁵ + x⁶

于是G的色多项式

$$P_k(G) = 2[k]_3 + 6[k]_4 + 5[k]_5 + [k]_6$$

六. (8分) 设 G 是一个边赋权完全图。如何求出 G 的最优哈密尔顿圈的权值的一个下界? 为什么?

解: 参考教材 P88

七、(8, 9) 求证,设G 县赋权完全偶图G = K 的正行顶占标号+对应的相等子图。

若 M 是 G, 的完美匹配, 则它必为 G 的最优匹配。

八. (8分) 求证: 若 n 为偶数,且 $\delta(G) \ge \frac{n}{2} + 1$,则 G 中存在 3 因子。

证明: 因 δ (G) \geqslant n/2+1,由狄拉克定理: n 阶图 G 有 H 圈 C.又因 n 为偶数,所以 C 为 偶圈。于是由 C 可得到 G 的两个 1 因子。设其中一个为 F_1 。考虑 G_1 = G_1 = G_1 0 G_2 0 G_3 0 G_4 1 G_4 2 G_5 1 G_5 2 G_7 2 G_7 3 G_7 4 G_7 5 G_7 5 G_7 6 G_7 7 G_7 7 G_7 7 G_7 7 G_7 8 G_7 9 G_7

九、 $(10\ eta)$ 一家公司计划建造一个动物园,他们打算饲养下面这些动物: 狒狒(b)、狐狸(f)、山羊(g)、土狼(h)、非洲大羚羊(k)、狮子(1)、豪猪(p)、兔子(r)、鼩鼱(s)、羚羊(w)和斑马(z)。根据经验,动物的饮食习惯为: 狒狒喜欢吃山羊、非洲大羚羊(幼年)、兔子和鼩鼱; 狐狸喜欢吃山羊、豪猪、兔子和鼩鼱; 土狼喜欢吃山羊、非洲大羚羊、羚羊和斑马; 狮子喜欢吃山羊、非洲大羚羊、羚羊和斑马; 豪猪喜欢吃鼩鼱和兔子; 而其余的则喜欢吃虫子、蚯蚓、草或其它植物。公司将饲养这些动物,希望它们能自由活动但不能相互捕食。求这些动物的一个分组,使得需要的围栏数最少。(要求用图论方法求解)

解: 略

十. (8分) 求证,每个5连通简单可平面图至少有12个顶点。

证明: 设 G 是 S 连通图,则: $k(G) \ge S$ 由惠特尼定理得: $\delta(G) \ge k(G) \ge S$

所以 $2m = \sum_{v \in V(G)} d(v) \ge 5n$

另一方面: $G \ge 5$ 连通简单可平面图,所以有 $m \le 3n - 6$, 联立两个不等式得, $2.5n \le m \le 3n - 6$ 所以 $n \ge 12$