班级	01	学号	2022040906023	姓名	梁书恺	成绩				

- 一、选择题(每个小题5分,共40分)
- 1. 无向图 G有 16 条边, 度为 4 的顶点有 3 个, 度为 3 的顶点有 4 个, 其余顶点的度均小于
- 3,则图 G 至少有(B)个顶点。

A 10

B 11

C 12

D 13

2. 无向图的邻接矩阵是一个(C),有向图的邻接矩阵是一个(D)

A上三角矩阵

B 下三角矩阵 C 对称矩阵 D 无规律矩阵

3. 具有 n 个顶点的无向图,其邻接表最多有(B) 个边结点。

 $A n^2$

B n(n-1) C n(n+1)

D n(n-1)/2

4. G是一个非连通无向图, 共有 28 条边, 则该图至少有(C) 个顶点。

B. 8

C. 9

D. 10

5. 用邻接表表示图进行广度优先遍历时,通常借助(B)来实现算法;深度优先遍历时, 通常借助(A)来实现算法。

A. 栈

B. 队列

C. 树

D. 二叉树

6. 假设一个有向图具有 n 个顶点 e 条边,该有向图采用邻接表存储,则删除与顶点 i 相关 联的所有边的时间复杂度是(C)。

A O(n)

B O(e)

C O(n+e)

D $O(n^*e)$

7. 无向图 G=(V, E),其中 $V=\{a, b, c, d, e, f\}$, $E=\{(a, b), (a, e), (a, c), (b, e), (c, f), (f, d), (e, f), (f, f), (f,$ d)},对该图进行深度优先遍历,得到的顶点序列正确的是(D)。

A abecdf

B acfebd

C aebcfd

D aedfcb

8. 下面(B) 方法可以判断出一个有向图是否有环。

A. 深度优先遍历 B. 拓扑排序 C. 求最短路径 D. 求关键路径

- 二、简答题(共40分)
- 1. 已知图的邻接矩阵如图 6-1 所示,写出从顶点 v₀ 出发深度优先遍历和广度优先遍历的所 有可能结果。导致遍历序列不唯一的因素有哪些?
- $v_0 \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 0 & 1 \end{bmatrix}$
- $v_1 \mid 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1$ $v_2 \mid 1 \quad 0 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0$
- $v_3 | 1 1 0 0 1 1 0$
- $v_4 \mid 1 \mid 0 \mid 1 \mid 1 \mid 0 \mid 1 \mid 0$
- $v_5 \mid 0 \mid 0 \mid 0 \mid 1 \mid 1 \mid 0 \mid 1$
- $v_6 \begin{vmatrix} 1 & 1 & 0 & 0 & 0 & 1 & 0 \end{vmatrix}$

图 6-1

图如下:

深度优先: 0134256、0134562、0165432、0165342、0245361、0245613、0243561、 0316542 \, 0342561 \, 0345612 \, 0425316 \, 0425613 \, 0453162 \, 0456132 \, 0613452 \, 0613425、0613542、0653421、0653142、0654231、0654312

广度优先: 0123465...0643215

只需第一位为0,最后一位为5,其余位任意排列

不唯一因素:一些顶点邻接的顶点数大于一

2. 已知如图 6-2 所示的无向网,请给出:① 邻接矩阵;② 邻接表;③ 最小生成树

邻接矩阵:

邻接表:

最小生成树:

3. 已知无向图 G 的邻接表如图 6-3 所示,请画出对应的图,并写出从顶点 1 出发的深度遍历和广度遍历序列。

图 6-3 无向图的邻接表存储

深度优先: 103425 广度优先: 102345

4. 有向网如图 6-4 所示,试用迪杰斯特拉算法求出从顶点 a 到其他各顶点间的最短路径,用表格写出过程。

E	ই 6-4					
终点	i=1	i=2	i=3	i=4	i=5	i=6
b	15	15	15	15	15	15
	(a,b)	(a,b)	(a,b)	(a,b)	(a,b)	(a,b)
С	2					
	(a,c)					
d	12	12	11	11		
	(a,d)	(a,d)	(a,c,f,d)	(a,c,f,d)		
e	∞	10	10			
		(a,c,e)	(a,c,e)			
f	∞	6				
		(a,c,f)				
g	8	∞	16	16	14	
			(a,c,f,g)	(a,c,f,g)	(a,c,f,d,g)	
S	{a,c}	{a,c,f}	{a,c,f,e}	{a,c,f,e,d}	{a,c,f,e,d,g}	{a,c,f,e,d,g,b}

三、写出算法思路(20分)

1. 判断以邻接表存储的有向图中是否存在由顶点 v_i 到顶点 v_j 的路径($i \neq j$)。

```
void existPath(int d, int z)
{
    G->visited[d] = 1;
    ArcNode *p = G->adjlist[d].Arc;
    if (d == z) connect = 1;
    while (p != NULL)
    {
        if (p->ajdVex == z) connect = 1;
        if (!G->visited[p->ajdVex]) existPath(p->ajdVex, z);
        p = p->next;
    }
}
```