CSE 31 Computer Organization

Lecture 24 – CPU Design (3)

Announcement

- No lab this week
 - Project #1/2 grading during lab
- HW #7 at zyBooks
 - Due Monday(12/10) at 11:59pm
- Project #2
 - Due Monday (12/3)
 - Don't start late, you won't have time!
- Course evaluation online
 - Fill out by 12/6 (Thursday)
- Reading assignment
 - Chapter 5.7 5.11 of zyBooks (Reading Assignment #6)
 - Make sure to do the Participation Activities
 - Due Wednesday (12/5)

Announcement

- zyBooks assignment Re-dos
 - Re-submit at most 5 reading assignments or HW (zyBooks only)
 - Email to me (not your TAs)
 - Include your name, assignment numbers
 - (Monday) 12/10 at 11:59pm, no extension
 - Fill out online evaluation by 12/6, tomorrow (70% of class)
- Final Exam
 - 12/11 (Tuesday), 11:30 2:30pm
 - Cover all
 - Practice exam in CatCourses
 - Closed book
 - 2 sheet of note (8.5" x 11")
 - MIPS reference sheet will be provided
 - Review: 12/10 (Monday) 1-3pm, COB 113

Single Cycle Datapath

The Add Instruction

add rd, rs, rt

- MEM[PC] Fetch the instruction from memory
- R[rd] = R[rs] + R[rt] The actual operation
- PC = PC + 4 Calculate the next instruction's address

Instruction Fetch Unit start of Add

▶ Fetch the instruction from Instruction memory:

The Single Cycle Datapath during Add

Instruction Fetch Unit end of Add

- PC = PC + 4
 - This is the same for all instructions except: Branch and Jump

Single Cycle Datapath for Ori

Single Cycle Datapath for Ori

Single Cycle Datapath for LW

R[rt] = Data Memory {R[rs] + SignExt[imm16]}

Single Cycle Datapath for LW

R[rt] = Data Memory {R[rs] + SignExt[imm16]}

Single Cycle Datapath for SW

Data Memory {R[rs] + SignExt[imm16]} = R[rt]

Single Cycle Datapath for SW

Data Memory {R[rs] + SignExt[imm16]} = R[rt]

Single Cycle Datapath for Branch

if (R[rs] - R[rt] == 0) then Zero = 1; else Zero = 0

Single Cycle Datapath for Branch

if (R[rs] - R[rt] == 0) then Zero = 1; else Zero = 0

Instruction Fetch Unit end of Branch

if (Zero == 1) then PC = PC + 4 + SignExt[imm16]*4; else PC = PC + 4

→ Instruction<31:0>

- What is encoding of nPC_sel?
 - Direct MUX select?
 - Branch inst. / not branch
- Let's pick 2nd option

 nPC_sel
 zero?
 MUX

 0
 x
 0

 1
 0
 0

 1
 1
 1

Q: What logic gate?

The Single Cycle Datapath during Jump

New PC = { PC[31..28], target address, 00 }

The Single Cycle Datapath during Jump

New PC = { PC[31..28], target address, 00 }

Instruction Fetch Unit at the End of Jump

Instruction Fetch Unit at the End of Jump

Quiz

- 1) MemToReg='x' & ALUctr='sub'. SUB or BEQ?
- 2) ALUctr='add'. Which 1 signal is different for all 3 of: ADD, LW, & SW? RegDst or ExtOp?

12

a) SR

b) SE

c) BR

d) BE

Quiz

- MemToReg='x' & ALUctr='sub'. <u>SUB</u> or <u>BEQ</u>?
- 2) ALUctr='add'. Which 1 signal is different for all 3 of: ADD, LW, & SW? RegDst or ExtOp?

12

a) SR

b) SE

c) BR

d) BE

Summary: Single-cycle Processor

- 5 steps to design a processor
 - 1. Analyze instruction set → datapath <u>requirements</u>
 - 2. Select set of datapath components & establish clock methodology
 - 3. Assemble datapath meeting the requirements
 - 4. Analyze implementation of each instruction to determine setting of control points that effects the register

transfer.

- . 5. Assemble the control logic
 - Formulate Logic Equations
 - Design Circuits

