COM1006 Devices and Networks (Autumn) COM1090 Computer Architectures

Lecture #5

Dr Dirk Sudholt Department of Computer Science University of Sheffield

d.sudholt@sheffield.ac.uk
http://staffwww.dcs.shef.ac.uk/~dirk/campus_only/com1006/
Based on Section 2.5 in Clements, Principles of Computer Hardware

Aims of this lecture

- To introduce Boolean algebra
- To show how Boolean algebra can be used design and simplify logic circuits
- To introduce Karnaugh maps as a visual aid in simplifying logic circuits
- To show how digital circuits can be implemented in NAND and NOR logic only

► Boolean algebra

- George Boole (1815-1864) was an English mathematician and philosopher.
- He developed a logical calculus of truth values, which at the time was a relatively obscure work.
- Subsequently Claude Shannon and others showed how Boolean algebra could be used to implement logic in electrical switches.

Laws of Boolean algebra

• Commutative law: AND and OR operators are commutative so the order of the variables in a sum or product group doesn't matter:

$$A+B=B+A$$

$$A \cdot B = B \cdot A$$

 Associative law: AND and OR are associative so the order in which subexpressions are evaluated doesn't matter:

$$(A \cdot B) \cdot C = A \cdot (B \cdot C)$$

$$A+(B+C)=(A+B)+C$$

 Distributive law: AND behaves like multiplication and OR behaves like addition. In an expression containing both AND and OR operators, AND takes precedence over OR:

$$A \cdot (B+C) = A \cdot B + A \cdot C$$

$$(A \cdot B) + C = (A + C) \cdot (B + C)$$

▶ Boolean identities

AND	OR	NOT
$0 \cdot X = 0$	0+X=X	$\overline{\overline{X}} = X$
$1 \cdot X = X$	1+X=1	
$X \cdot X = X$	X+X=X	
$X \cdot \overline{X} = 0$	$X + \overline{X} = 1$	

Combining minterms

For every Boolean formulas X and Y we have

$$XY + X\overline{Y}$$

= $X(Y + \overline{Y})$ (distributive law)
= $X \cdot 1$ (as $Y + \overline{Y} = 1$)
= X (as $X \cdot 1 = X$)

- This is a useful tool for simplifying an S-of-P expression.
- Example: $F = \overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$ from the majority circuit.
- Different ways of applying this rule repeatedly can yield different results.

- Systematic and visual method for combining minterms.
 - Invented by Edward Veitch in 1952
 - Refined by Maurice Karnaugh in 1953
- Idea:
 - map all minterms on a 2D grid
 - neighbourhoods in the grid indicate which terms can be combined.
- Works well for 2, 3 or 4 variables.
- More variables: use algorithm by Quine/McCluskey (out of the scope of this module)

(b) Two-variable Karnaugh map.

(c) Three-variable Karnaugh map.

BA	0	1
0	ĀB	ΑB
1	ĀB	АВ

(b) Two-variable Karnaugh map.

(b) Two-variable Karnaugh map.

CDAE	00	01	11	10
00	ĀĒCŌ	ĀBCD	ABCD	ABCD
01	ĀBCD	ĀBCD	ABCD	ABCD
11	ĀĒCD	ĀBCD	ABCD	ABCD
10	ĀĒCĪ	ĀBCD	ABCD	ABCD

(b) Four-variable Karnaugh map.

Structure of Karnaugh maps

, AE)		55	100
CD	00	01	11	10
00	ĀĒĆŌ	ĀBCD	ABCD	ABCD
01	ĀBCD	ĀBCD	ABCD	ABCD
11	ĀĒCD	ĀBCD	ABCD	ABCD
10	ĀĒCŌ	ĀBCŌ	ABCŪ	ABCD

Subsequent labels for columns/rows differ in exactly 1 bit:

$$00 \to 01 \to 11 \to 10 \to 00$$

• As a result, neighbouring cells differ in exactly one bit, i.e. minterms only differ in one negation (e.g. ABC vs. ABC).

- A Karnaugh map works like a truth table.
- Typically truth values 1 are written down, empty cells are read as 0.
- Neighbouring 1s can be combined to give a simpler formula.

► Karnaugh maps: rectangles

- Also works for larger rectangles if side lengths are 1,2, or 4.
- Larger rectangles have less variables.

► How to use Karnaugh maps

- 1. Enter all 1s according to the function to be simplified.
- 2. Draw rectangles with side lengths 1, 2, or 4 as to:
 - cover all 1s and no empty cells (0s) (to represent the function)
 - using as few rectangles as possible (→ few sums)
 - make rectangles as large as possible (→ small products)
- 3. Read off product terms and simplified formula.
- Recall: side lengths1, 2, or 4 are OK; 3 isn't!
- Rectangles may overlap.

Wrapping around

• Caution: neighbourhoods "wrap around" on all sides.

$$F = \overline{A}\overline{D} + A\overline{C}D$$

$$F = \overline{B}\overline{D} + AB\overline{C}D + \overline{A}C\overline{D}$$

Example: Majority circuit

Use a Karnaugh map to simplify

$$F = \overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$$

▶ De Morgan's theorem

• Two further rules of Boolean algebra are collectively known as De Morgan's theorem:

$$\overline{A+B} = \overline{A} \cdot \overline{B}$$
$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

- In other words, to apply De Morgan's theorem to a Boolean function we change ANDs into ORs, change ORs into ANDs, and variables/literals are complemented.
- Example: Apply De Morgan's theorem to

$$F = \overline{X \cdot Y + X \cdot Z}$$

$$= \overline{X \cdot Y} \cdot \overline{X \cdot Z}$$

$$= (\overline{X} + \overline{Y}) \cdot (\overline{X} + \overline{Z})$$

Implementing in NAND and NOR only

- De Morgan's theorem is important because it allows:
 - an AND gate to be implemented by an OR gate and an inverter;
 - an OR gate to be implemented by an AND gate and an inverter.
- Hence any device that can be made from a combination of ANDs, ORs and NOTs can be made using a combination of NANDs (or NORs) only.
- This is of practical value because NAND gates operate at higher speed than AND gates, and require fewer components at the chip level.

Example: implementing in NAND/NOR

- Recall the majority device
 F = AB + BC + AC
- We note that

$$F = \overline{F} = \overline{\overline{AB + BC + AC}}$$

Now apply De Morgan:

$$F = \overline{\overline{AB} \cdot \overline{BC} \cdot \overline{AC}}$$

O Exercise: use a truth table to verify that the two circuits are equivalent

▶Summary

- Boolean algebra provides a powerful means of describing and simplifying logic devices.
- Karnaugh maps visualise terms that can be grouped, leading to Boolean formulas with less and shorter terms than the canonical S-of-P form.
- De Morgan's theorem is important because it suggests a means by which any digital circuit can be implemented in NAND and NOR logic only.