

Pediatric Neuromotor Wearable

Carl Demolder
Date 8/03/2020

Outline

- Project management
 - Introduction
 - Project requirements
- Project proposal
 - Block diagram
 - Schematic
 - PCB design
 - Firmware
- Schedule
 - Gantt chart

PROJECT MANAGEMENT

Introduction

Purpose:

 Design a wearable with sensors to measure temperature, pressure, strain, and movement. This data will be wirelessly transmitted via BLE to a UI band

Project requirements

- Requirements:
 - Design a flexible circuit to use sensors to wirelessly communicate biophysical data to a UI band
 - Flexible circuit must include the following functionality:
 - Wireless charging
 - Battery management
 - RTT data logging
 - Use the nRF52832 MCU/SoC
 - BLE connectivity and BLE GATT database
 - Temperature sensing
 - Motion sensing
 - Pressure sensing
 - Strain sensing

Schedule overview

- Electronics development
 - Date range: 8/11-8/23
 - Estimated hours to produce hardware: 24 hours
 - Estimated hours to test/debug/qualify hardware: TBD
- Firmware development
 - Date range: 8/23-9/20
 - Estimated hours to produce firmware: 39 hours
 - Estimated hours to test/debug/qualify firmware: TBD

PROJECT PROPOSAL

Electronics development: schematic

- Schematic generation
 - nRF52 with supporting circuitry (2 hours)
 - BLE antenna and impedance matching circuit (2 hours)
 - Wireless charging (5 hours)
 - Lithium battery charging (2 hours)
 - Biosensors: temperature, IMU (4 hours)
 - Biosensors: pressure, strain (4 hours)
 - Test points (1 hours)
 - Project creation (3 hours)
- Estimated time: 8 hours
- Actual time spent: TBD

REUSING DESIGN FROM PREVIOUS PROJECTS

Electronics development: PCB design

- PCB design
 - Major component layout (4 hours)
 - BLE antenna and impedance matching circuit (3 hours)
 - Wireless charging (2 hours)
 - Lithium battery charging (1 hours)
 - Overall board construction(1 hour)
 - Biosensors: temperature, IMU, pressure, strain (3 hours)
 - Test points (1 hours)
 - Gerber file generation (2 hours)
 - BOM generation (2 hours)
- Estimated time: 16 hours
- Actual time spent: TBD

REUSING LAYOUT FROM PREVIOUS PROJECTS

Firmware development

- Firmware
 - Project and BLE stack (5 hours)
 - Sensor drivers
 - I²C driver (4 hours)
 - Temperature driver (2 hours)
 - Analog driver (3 hours)
 - IMU driver (3 hours)
 - RTT data logging (3 hours)
 - BLE GATT database and data transfer (31 hours)

REUSING CODE FROM PREVIOUS PROJECTS

SCHEDULE

Schedule Gantt chart

Task	8/2- 8/9	8/9- 8/16	8/16- 8/23	8/23- 8/30	8/30- 9/6	9/6- 9/13	9/13- 9/20
ELECTRONICS DEVELOPMENT							
-SCHEMATIC GENERATION							
-PCB LAYOUT AND ROUTING							
-HARDWARE DEBUGGING							
FIRMWARE DEVELOPMENT							
-PROJECT STACK ORGANIZATION							
-SENSOR DRIVERS							
-BLE GATT & BLE DATA TRANSFER							
-FIRMWARE DEBUGGING							

PATH FORWARD

Path forward (8/02/20 - 8/09/20)

- Schematic generation
 - Wheatstone bridge
- PCB layout

APPENDIX

Component selection: MCU/BLE

- MCU/BLE: nRF52832
 - 6 pin, 2.00 mm x 2.00 mm, WSON-6
 - ±0.1°C from -20°C to +50°C
 - 2.4 GHz BLE
 - Power = 4 dBm
 - Sensitivity = -96 dBm
 - RAM = 64 kB, flash = 512 kB
 - Serial interfaces: I²C, UART, SPI
 - Supply voltage: 1.7V ~ 3.6V
 - \$5.46 [X1], 1490-1067-1-ND, LINK

nRF52832

Component selection: clocks

- HF clock: US3200005Z
 - 4 pin, 1.60 mm x 1.20 mm, 4-SMD
 - 32.00 MHz, 8 pF, ±10 ppm
 - \$1.45 [X1], US3200005ZCT-ND, LINK
- LF clock: ECX-1210
 - 1210 package, 1.20 mm x 1.00 mm, 2-SMD
 - 32.7680 kHz, 9 pF, ±20 ppm
 - \$1.52 [X1], XC2283CT-ND, LINK

US3200005Z

ECX-1210

Component selection: Bio-sensors

- Temperature: TI TMP117
 - 6 pin, 2.00 mm x 2.00 mm, WSON-6
 - ±0.1°C from -20°C to +50°C
 - 16-bit resolution: 0.0078 °C, I²C
 - \$8.02 [X1], 296-51834-1-ND, LINK
- IMU: TI BQ27621-G1
 - 14 pin, 2.5 mm x 3.0 mm, 14-LGA
 - I²C communication
 - 9-axis, 16-bit resolution
 - Full operation mode = 925 uA
 - \$4.98 [X1], 828-1057-1-ND, <u>LINK</u>

TMP117

BMI160

Component selection: Bio-sensors

- Pressure & Strain: LMV981
 - 6 pin, 1.5 mm x 1.3 mm, 6-DSPGA
 - Differential Amplifier, I²C
 - \$1.63 [X2], LMV981, LINK

LMV981

Component selection: wireless charging

- Wireless charging IC: TI BQ51003
 - 28 pin, 1.90 mm x 3.00 mm
 - QI v1.2 communication protocol
 - 93% AC-DC efficiency
 - \$3.00 [X1], 296-39952-1-ND, LINK
- LiPo battery charger IC: TI BQ25100
 - 6 pin, 1.6 mm x 0.90 mm, 4.2V 1 cell
 - 1% Charge voltage accuracy
 - 10 mA to 250 mA charging current
 - \$2.24 [X1], 296-38373-1-ND, LINK

BQ51003

BQ25100

Component selection: power circuit

- Reed Switch: ABLIC S-5712A
 - 4 pin, 1.90 mm x 3.00 mm, SNT-4A
 - Non-contact 'power switch'
 - High accuracy hall effect switch IC
 - \$1.07 [X1], 1662-1617-1-ND, LINK

S-5712A

- Linear Regulator: Analog Devices ADP172
 - 4 pin, 0.95 mm x 1.03 mm, 4-WLCSP
 - 0.1V dropout voltage
 - 300 mA max current
 - \$1.09 [X1], ADP172ACBZ-3.0-R7CT-ND, LINK

ADP172

Component selection: power circuit

- Charging coil: Wurth 760308101219
 - 1 coil, 1 layer, D=15 mm, H=0.6 mm
 - 11.8 uH, 750 m Ω , t = ±10%
 - \$7.43 [X1], 732-9675-ND, LINK

