

200

University of Rhode Island

Division of Engineering Research and Development

Department of Mechanical Engineering

EXPERIMENTAL DETERMINATION OF THE HYDRODYNAMIC

MASS OF VARIOUS BODIES

Robert R. Miller

Research Assistant

and

Warren M./ Hagist

Associate Professor of Mechanical Engineering

by

U.S. Navy Underwater Sound Laboratory Sponsor: New London, Connecticut

Date: Januar this document has been approved 'or public release and sale; its listribution is unlimited.

INTRODUCTION

This report gives the results of an experimental determination of the hydrodynamic mass coefficient and damping coefficient for three towed body shapes. It also discusses the results of tests to determine the effect of boundaries near the test body. The work is a continuation of that reported by Hagist (1)* and Miller and Hagist (2).

The towed body shapes were the circular configuration, billboard configuration, and the "Y" configuration. The tests were performed with the bodies oscillating in translation in a vertical plane in a direction perpendicular to the direction of towing. A sphere was used as the test body in the boundary effect tests.

* Numbers in parentheses designate references at the end

of the report.

ACCESSION for.

NIS Wile Section []

one

DISTRIBUTION/AVAILABILITY CODES

SPECIAL

EXPERIMENTAL INVESTIGATION

A. Instrumentation

The hydrodynamic mass data for the bodies were obtained using the forced oscillation method. The apparatus was the same as that used for the work reported in reference (2) with some modifications.

The force dynamometer used for the work reported in reference (2) was not sensitive enough to respond to the small forces produced during low frequency, low amplitude operation, so a new dynamometer was built. The new dynamometer consisted of a single stainless-steel octagonal ring instrumented with Kulite semiconductor gages with a gage factor of 58 and temperature compensated. The gages were installed at the U.S. Navy Underwater Sound Laboratory. This dynamometer has sufficient sensitivity and holds its calibration over a long period of time.

During the previous work the force and acceleration were recorded by a two channel strip chart recorder. The date needed for the computation of the hydrodynamic mass consisted of the maximum force exerted on the body, the acceleration, and the phase angle between the force and the acceleration. The force and the phase angle were determined from the recorder traces and the acceleration was computed. Reading the recorder traces was very time

consuming, and if the force and acceleration were small, determination of the phase angle was particularly difficult. The instrumentation was changed to make it read out the maximum force and the phase angle directly.

The read-out of the maximum force was accomplished by letting the output of the force dynamometer charge a low-leakage capacitor and reading the voltage across the capacitor with a standard vacuum tube voltmeter. The read-out of the phase angle was accomplished by measuring the time interval between zero crossings of the force dynamometer and accelerometer signals. The time interval is measured by a Beckman electronic counter. The counter measured the time interval between the zero crossing on the positive slope of the force signal and the zero crossing on the positive slope of the accelerometer signal. To make the zero crossings easy for the counter to see and to be sure that the counter triggered, each signal was put through an amplifier circuit and greatly amplified so that each appeared to the counter as a square wave. A schematic diagram of the instrumentation is shown in Figure 1.

B. Test Bodies

Four test bodies were used. All were constructed of soft pine wood. Drawings of the three towed-body shapes are shown in Figs. 2, 3, and 4. The fourth body was a six inch diameter sphere.

FIGURE 1 Schematic Diagram of Instrumentation

FIGURE 2 BILLBOARD ARRAY

FIGURE 3

FIGURE 4 CIRCULAR ARRAY

TEST RESULTS

A. Hydrodynamic Mass Data

For the billboard array, Fig. 2, the hydrodynamic mass coefficient K is related to the hydrodynamic mass, $\mathbf{M}_{\mathbf{h}}$, by the equation

$$M_h = K \rho lwh$$

in which 1, w, and h are the length, width, and height of the body and ho is the fluid density. The quantity

ho lwh is the reference mass of the billboard. length, 1, is the dimension in the towing direction. the tests the body was oscillated in the heave mode. This is in the direction of h, the body height. the billboard is very thin in this direction the hydrodynamic mass and, hence K, is quite small. The measured force and the phase angle between the force and acceleration were quite small. The largest measured force was 10 pounds and in most runs it was less than five pounds. The phase angle was, in most runs, less than five degrees. It is in this range of operation that experimental apparatus, in its present form, is least accurate. result there was considerable scatter in the values of K calculated from the data. The billboard data are tabulated in Table I. The best that can be said is that the hydrodynamic mass coefficient for the billboard in the heave

mode is of the order of 0.25 in the Stokes Number range of from 3.5×10^6 to 1.9×10^7 .

Table I

Data for the Billboard Array

Nomenclature:

R = amplitude of oscillation, inches

OMEGA = oscillation frequency, ω radians per second

PHIABS = phase angle ϕ , degrees

F = measured force, pounds

 $FI = F \cos \phi$

 $FD = F \sin \phi$

HYDM = hydrodynamic mass

HYDMK = hydrodynamic mass coefficient

AMPLR = ratio of body length to amplitude of oscillation

STO NO = Stokes Number = $\omega 1^2/\nu$

HYDRODYNAMIC MASS CALCULATION FOR BILLBOARD ARRAY

PROM COPY FURNISHOUS TO DUG PRACTICABLE

EL = 30.50000 INCHES

REFM = - 2.90300 POUNDS

EMASS = 5.97000 POUNDS

STO NO AMPLR HYDMK HYDM FD F ш OMEGA PHIABS ~

	0	07	0	0	0	0	CJ	0	0	0	C	0	0	0	06	08	C	08	0	0.8	08	90	08	080	OB	0.0	08	08	08
	0.35179510E	.39422830E	0.43632210F	320F	.52653780F	.57342310E	380E	305102099	370F	76794530E	81944880E	87109950E	.92244860E	.97386520F	BE	.10871042F	.11378283E	.11941673E	.12508395F	.1307575E	OF	.14203147E	.14777638E	399	BROIE	.16465762E	ш	8064E	0.18114768E
	40.6667	40.6667	40.6667	40.6667	40.6667	40.6667	40.6667	40.6667	40.6667	40.6667	40.6667	40.6667	40.6667	40.6667	40.6667	40.6667	40.6667	40.6667	40.6667	40.6667	40.5667	40.6667	40.6667	40.6667	40.6667	40.6667	40.6667	40.6667	40.6667
	0.158431	.18513	-0.000294	0.057365	.16699	.183	0.171536	01	0.212627	0.236805	0.237123	0.181628	0.104404	-0.003307	-0.060842	-0.052022	0.018122	0.032691	0.031188	0.017825	0	• 05	0	0.103198	.181	0.208118	.16920	-1.826653	.74617
	0.459925	-0.537455	-0.000853	0.166532	0.484771			0.611194		_	_	_		ĭ	ĭ	-0.151020	_		_			_	_	_	-	0	0	1	-5.069142
	0.0	0.0	0.0	0.00010	0.0	0		O	0.0	0	0	0	0	0	0		0	0	C		0	0	0	0	0.36087	0.24513	0.35064	0.02495	•
	0.45631	. 48	5	.81	1.02615	.22	1.42166	1.69001	1.95353	2.25134	2.56380	2.82708	3.06032	3.24149	3.51159	3.90712	4.47105	4.95936	5.43733	5.90375	6.48844	7.08474	7.59888	8.45602	.44!1	.22	10.742	1.18353	C
	.4563	•	•	•	•	•	•	1.69024	•	•	•	•	•	•	•	•	•	•	•	5.90487	•	•	•	8.45789	•	35	.7484	1.18380	0
	0.0	0.0	0.0	0.64255	0.0	.4	0.28590	C.	1.14746	-	-	4.	•		7.	0.0	6.81294	4.75630	1.65254	1.11652	1.00462	1.05334	0.20657	1.20274	2.13896	1.37390	1.86945	1.20782	•
	066.			8.175900		9.764071	C	11.394958	2	3	3	4	10	\$	~	œ	6	0	-	2	3	+	2	0	~	8.03738	8.9948Z	0.948	30.845261
	•				0.75000		.75000		.75000		.75000	.75000	.75000	.75000	.75000	.75000	.75000	.75000		.75000		.75000	.75000	.75000.	.75000		.75000		0.75000
-	-			-	-	-																							

	90	0	0	0	0	10	10	10	0	10	10	10	10	10	10	10	10	LC	10	0	10	0	0	0	0	C	C	0	0	0	0	0	0	0	C	0	0	0	0	0	0	0	0	C	à.
STO NO	.18645664E	72E	.57440500E	.71887350E	.87109950E	.57440500E	.72098040E	-87336770E	.57333410E	.72027650E	.87316090E	.57449440E	.71957450E	. 871711690F	.57395800E	.71943420E	.87254140E	.57377960E	.71971480E	.87254140F	.57395800E	71957450E	.87274780F	.57351220E	-71957450F	.87192290F	.57431560F	.71057450E	.87233530E	.57360120E	.71901340E	.87336770E	.57342310F	.71957450F	.87192250E	.57360120E	.71957450F	.87212890F	.57360120E	71887350E	87151120F	57404740F	.71873360F	7316090	
																										1	M	MM	CO	PX	FU	KN.	ISI	T Q	T	0 1	DO	1		_					
AMPLR	99.0	9	44.00	44.00	44.00	62.66	62.66	62.66	22.00	22.00	00.2	97.60	09.7	7.60	1.33	1.33	1.33	17.6	9.71	1.11	00.1	1.00	1.00	4.22	4.23	4.22	3.80	8.80	8.80	4.36	4.36	4.36	99.0	99.0	99.0	7.53	7.53	1.53	4.85	4.85	4.8 S	.53	.53	2.53	
HYDMK	3	1.43249	.06279	13645	35498	12905	30973	37751	19773	32848	.38508	17805	.23473	.28178	16931	25001	27143	17226	20915	27715	28100	0.259865	.33629	.22350	.25335	.29511	.17545	.24006	.32209	.22214	.25570	.31294	.24245	.27012	.30673	.27822	.27711	.28470	.26525	.29720	25135	33142	28551	.21234	
HYDM	44478	-	.18228	39613	.03052	.37465	41668	.09593	57401	95359	11789	.51690	68142	81801	49151	,72578	.78798	.50009	60717	80458	81835	5438	.97627	.64883	.73549	.85671	.50934	209699	.93504	.64489	.74231	.90848	.70383	.78413	.89046	.80770	.30446	.82648	.17002	.86277	. 72968	.9621	.8288	.6164	
FD	0.0		0					C	.0701	.0676	.0304	.0361	.0533	.0639	.0576	11181	1001	.0454	.0724	.0838	.0956	0.12251	.1633	.1067	.1571	.2111	.1619	.1933	.2448	.1898	.2371	.2932	.1336	.1693	.2205	.0230	.0730	.1301	.0801	1497	1790	1050	287	3148	
H	.0405	3.82066	.1911	3098	5002	2961	5051	7624	4063	.6785	0208	.5062	.8144	.2197	.6049	.9849	4621	.7073	1312	.7126	198	3232	.0107	321	4866	2222	0182	6447	5035	1423	.8213	.7538	.2583	0053	1066.	.3873	1822	2159	4878	3691	4141	6445	2	615	
Ŀ	.0405		.1911	.3098	.5002	.2961	.5051	.7624	.4123	.6819	.0212	.5075	8161	. 2214	.6076	6166.	.4656	.7087	.1335	.7146	8552	.3289	.0174	9382	.4949	.2322	.0310	.6560	.5154	.1579	.8367	. 1693	.7654	.0125	.9988	.3874	.1834	.2186	0065.	.3738	.4188	.6560	. 5447	.6287	
PHIABS	0.0	0.74014	0.0		0.0	0.0			.7934	6969.	.7068	.0781	3.74573	.0029	.4455	. 8383	.9183	.6758	.6628	.8019	.4212	C	.6449	.5356	0321	.4270	.0354	43	.5851	.4344	.4181	.0775	.0629	.8276	.2179	.9502	.9174	. 3169	.0813	10	.9846	.7623	6.49174	14	
OMEGA	.7492	2.65686	.78078	24075	4.83281	.78078	.27662	.87143	.76255	2.26464	.86791	.78231	2526	4.84332	.77318	.25030	.85736	.77014	2.25508	5736	.77318	12.252680	4.86088	.7655	2.25268	.84683	.77926	2.25268	.85385	9.76710	.24313	.87143	.76407	2.25268	.84683	.76710	2.25268	.85034	.76710	4012	.83981	470		6	
æ	2000	.75000	.125	.12500	.12500	.187	.18750	.18750	.250	.25000	.25000	.312	0.31250	.31250	.375	.37500	.375	.437	.43750	.43750	.500	.5000	.5000	25	-562	. 5625	.6250	.6250	.6250	.6875	.6875	.6875	.7500	• 75	.7500	.8125	.8125	.8125	.8750	.8750	.875	.9375	.93	9375	

	10	07	10	120	10	10	10	20	10	10	10	10	07	10	10
STO NO	0.57369060E	0.718174006	0.87378120F							0.57476290E			0.57485230F	0.71901340E	0.87089380E
AMPLR	30.5000	30.5000	30.5000	24.4000	24.4000	24.4000	20.3333	20.3333	20.3333	17.4286	17.4286	17.4286	15.2500	15.2500	15.2500
HY DWK	0.388118	0.290806	0.223390	0.421708	0.235733	0.176885	0.347565	0.314267	0.240336	0.264433	0.241227	0.363221	0.350177	0.320782	0.331686
HYDM	1.126706	0.844209	0.648500	1.224219	0.684334	0.513497	1.008981	0.912316	0.697695	0.767650	0.700283	1.054431	1.016564	0.931230	0.962885
FD	0.24112	0.35034	0.35509	19604.0	0.40012	0.48213	0.46558	0.67376	0.66398	0.54765	0.73943	0.85442	0.70867	0.84413	1.02267
FI	1.79620	-2.70282	3.88605	2.29361	3.33140	4.75681	2.68042	4.14076	5.91544	3.04773	4.72365	7.29855	3.63357	5.61510	8.27564
压	1.81231	2.72544	3.90224	2.32991	3.35534	4.78118	2.72055	4.19522	5.95259	3.09654	4.78118	7.34840	3.70203	5.67820	8.33859
PHIABS	7.64552	7.38543	5.22101	10.12689	6.84882	5.78754	9.85372	9.24185	6.40434	10.18692	8.89671	6.67705	11.03614	8.54941	7.04465
OMEGA	9.768624	12.228843	14.878473	9.177745	12.252689	14.832813	9.768624	12.226463	14.846833	9.786383	12.245526	14.832813	9.788408	12.243139	2.00000 14.829312
æ	1.00000	1.00000	1.00000	1.25000	1.25000	1.25000	1.50000	1.50000	1.50000	1.75000	1.75300	1.75000	2.00000	2.00000	2.00000

For the winged array (Fig. 3) the reference mass used was determined by taking the sum of ρ lwh for the fuselage and ρ lwh for the two wings. Like the bill-board the winged array was thin in the heave direction and as a result the measured forces were small. The results are tabulated in Table II. As plot of K vs. Stokes Number for an amplitude ratio of 36.8 is shown in Fig. 5. At the present time the authors have no explanation for the behavior of K shown by this curve. One might conclude that in the Stokes Number range from 2×10^6 to 9×10^6 the hydrodynamic mass factor for the winged array approximately 0.25.

Table II

Data for Winged Array

HYDRODYNAMIC MASS CALCULATION FOR WINGED ARRAY

			HYDMK
			HYDM
			FD
			FI
			Ľ
CHES	S GN/NO	POUNDS	PHIABS
23.00000 INCHES	10.97000 POUNDS	6.08000 POUNDS	R NMEGA
EL =	REFM =	EMASS =	

STO ND

AMPLR

. 32694900E	2.6	0.019291	.21162	.2313	0.29422	4.7	9	3
0.10311344E 08	36.8000	-0.266889	2	0.36075	4.53804	•	. 4	0.8755
.10001712E	6.8	-0.335605	.68158	.3467	'n	3.55188	0	9.94842
- 90787740E	6.8	-0.385060	.22411	.3332	2	2.58312	.4133	.93144
.93676700E	6.8	-0.428762	.70351	873	-	1.8 C273	.1732	8.0458
. 90446470E	6.8	0.278863	.05912	. R286	=	11.16600	∞	7.08265
.87286150E	5.6	0.252538	.77034	.9976	10	10.45020	1.0204	6.13635
. 84035160E	6.8	0.268563	. +	.8880	C	9.57931	3670	2
. 80830450E	6.8	0.265943	• 61136	.3370	α	8.97088	5.1006	4
.77344080E	6.8	0.269716	.95878	.1930	αï	8.36286	5.3155	'n
- 74409880E	6.8	0.281707	.09032	.0848	~	7.76595	5.5723	22.280777
.71179030E	6.8	0.293888	.22395	.0063	9	7.22910	6.1133	
. 68018110E	6.8	0.297241	.26073	.8580	9	6.63260	6.2685	0
.64724160E	6.8	0.304055	.33548	.6315	5	6.03610	5.6816	Ç.
.61752750E	6.8	0.310472	.40588	0555	3	5.52311	5.2102	8
. 58498960E	6.8	0.315248	.45826	.2235	7	4.96240	4.2739	-
. 55556190E	6.8	0.338717	.71572	.0259	4	4.57121	5.8685	9
. 52432700E	6.8	0.327845	.59646	.7210	3	3.98525	0.4233	15.700100
.49536320E	6.8	0.255418	80193	.2189	3	3.21862	.5008	4
.40577760E	6.8	0.223436	.45109	1690	2	2.72544	.4540	3
0.43852860E	6.8	0.176610	.93741	.1442	2	2.27620	.6322	2
0.40927610E	6.8	0.152331	.67107	.2872	-	1.93439	.5401	2
0.37993080E	6.8	0.150718	.65337	.3679	-	1.68536	2.6112	1.3
0.35248750E	6.8	0.167880	.84164	.3631	÷	1.48492	4.0593	0.55464
.32568020E	6.8	0.181457	.99957	.3331		1.30448	4.1954	54
.29933790E	6.8	0.180641	98162	.3123	÷	1.10916	6.3564	8.963165
.27329500E	6.8	0.181833	02466.	.2693	C	0.92849	6.8604	35
0.24756470E 07	6.8	0.208047	~	.2554	0.75511	1797.	\sim	7.412906
. 22408770E	6.8	0.150141	•64704	1784	•	. 5588	7.3359	3
-19965360E	0	0.165511	.81565					

æ	OMEGA	PHIABS	Œ,	FI	FD	HY DM	HY DMK	AMPLR	STO NO
.1875	2.26464	•	.5134	.5054	-0.09048	.R0620	.07349	22.666	.40959560E
0.18750	α	0.0	1.25565	1.25565	0	5.578372	.5085	122.6667	.496
.2500	. 15497	•	.4578	4774.	-0.14102	.62052	.14772	2.000	32578150E
.250	2.26225	0.0	6892	.6892	0	.95543	.08709	2.000	.40951580E
.250	.86088	•	P255.	.5974	0.0	.02227	.45781	2.000	.49630050E
.312	9.17926		.6306	.6306	0.0	.00500	.18277	3.600	.3205928CE
.31	2.25986	0.0	361	.8756	0.0	.09568	.09988	3.600	.40943580E
.312	.85258		6600.	5506.	0.0	.47859	.40825	3.600	.49735930E
.375	9.79298		1590	.7590	0.0	16566.	.18185	1.333	.32705090E
.375	2.26225		.0749	.0749	0.0	.71384	.11065	1.333	.4095158UE
.375	.85439		.1785	.1785	0.0	.97927	.36274	1.333	.49641790E
.437	9.78535	1155.	5805	. 5077	.0468	.19793	.20035	2.571	-32679610E
.437	.25986		.2654	.2654	0.00316	.27140	.11589	2.571	.40943580E
.437	4.89552		.4764	.4764	0.0	.67892	.33536	2.571	.49712360E
.500	.80368	*695	.0359	.0334	.0717	.12317	.19354	0000-9	.32740800E
.500	2.26704	*	.4363	.4358	0.03571	.19973	.10936	0000.9	.4096755UE
.500	.86088		.7107	.7107	0.0	.28448	.29940	00009	.49030050E
.562	9.78688	.4953	.2068	.1990	.1365	39705	.21851	0.888	32684710E
.562	2.25268	557	.7643	.7031	0.07607	.60223	.14605	0.888	
.562	86088	•	.0281	.0281	0.0	.20495	.29215	0.888	.496300
00	.78535	.5303	.2800	.2690	1677	.98510	18095	6.800	- 32679610E
.62	2.26225	248	.8660	.8630	.1049	.46017	.13310	6.800	51580E
.625	.85791	. £788	.2674	.2670	.0501	.91394	.26562	6.800	.49053550E
.687	9.78383	.3829	.4216	.3983	.2562	.99002	.18140	3.454	. 32674530E
	2	4.07883	2.13459	2.12918	0.15183	727	0.157436	33.4545	0.40991560E 07
.687	.85736	.0746	.6190	.6138	.1941	.96368	.27016	3.454	-49618310E
.750	9.76862	.1507	.5584	. 5289	.3013	.02166	.18429	0.666	. 32623730E
.750	.25586	• 1066	.3299	.3220	.1911	.73161	.15785	0.666	.40943580E
.750	4.87143	1555.	.9608	.9460	.3424	.94176	.26816	0.666	.49065300E
.812	9.78840	7351	.7146	.6656	.4071	.02205	.18432	8.307	.32689800E
.812	.24552	. 9254	. 5545	. 5364	.3035	.80334	.16438	8.307	-40895700E
.812	4.84683	.9187	-2782	.2374	.5894	.87938	.26247	8.307	.49583140E
.875	9.80215	. 5793	.8757	. 7978	.5352	.00584	.18284	6.285	. 32755690E
.875	.25986	.1461	.8275	. 7920	.4405	.94735	.17751	6.285	.40943580E
.875	4.87495	0.0483	.7225	.6501	. 9239	.00196	.27365	6.285	. 49677040E
.937	50561.	9.2982	.0418	. 9270	.6747	.00274	.18256	4.533	. 32725480E
.937	.25986	1.2353	.1258	.0659	0609.	.13524	19464	4.533	.4094358GE
.937	4.85385	2.7808	.2964	.1652	.1716	.34841	.30523	4.533	.49606600E
000	.77470	2.5149	.1883	.0156	.8520	.87368	.17080	3.000	.3264403UE
0	.25268	385	.4041	.3095	. 1969	.23147	.20341	3.000	.40919630E
000.	4.84683	4.7226	.7617	.5725	.4642	.45132	.31461	3.000	.49583140E
	THIS PAGE	IS BEST OHALTEN	DDAGG						

THIS PAG	E IS BEST	QUALITY P	RACTICABLE
		LED TO DDC	

NIESPANI (minture	MANAGEM	en installe	and subtrees	MANAGE STA	minima.	TO USE SE	NAME OF THE OWNER, OWNE
	07	6		0	07	07	07
ON OLS	0.32623730F	0.40919630F	0.4954800F	0.32735690F	0.409116601	0.49594860F	0.32633880F
AMPLR	20.4444	20.4444	20.4444	18.4000	18.4000	18.4000	16.7273
HY DMK	0.174451	0.223883	0.351894	0.173619	0.227658	0.370174	0.171034
HY DM	1.913723	2.455999	3.860275	1.904598	2.497413	4.060811	1.876238
FD	1.00930	1.10189	2.00338	1.22792	1.43898	2.63379	1.46424
FI	2.28276	3.83497	6.56018	2.55832	4.29249	7.45769	2.79480
Ĕ4	2.49593	3.99013	6.85927	2.83774	4.52726	7.90911	3.15514
PHIABS	23.85222	16.03087	16.59192	25.63965	18.53281	19.45142	27.65088
OMEGA	1.12500 9.768624	12.252689	14.850341	9.802152	12.250300	14.850341	9.771564
œ	1.12500	1.12500	1.12500				1.37500

For the circular array (Fig. 4) the hydrodynamic mass is given by the equation

$$M_{h} = K\pi \frac{\rho}{4} (b^{2} - a^{2})h$$

in which b is the outer diameter, a the inner diameter and h the height. For the model used in these tests the reference mass was 11.86 pounds. The data are tabulated in Table III. Figure 6 indicates that the hydrodynamic mass coefficient K is approximately 0.82 over the Stokes number range 1.5×10^6 to 8×10^6 .

Table III

Data for Circular Array

Hydrodynamic Mass Calculation for Circular Array EL = 18.75 inches

spunod	spunod
REFM = 11.86 p	EMASS = 4.29

STO NOx10-	16.49	21.7	27.2	32.94	38.97	43.12	42.34	51.6	55.95	60.21	24.49	95.89	72.6	21.72	27.25	33.03	11.82	
м	992.	.816	.837	962.	.853	698.	.826	.788	848	.809	.807	.816	477.	.819	.819	.787	.860	
M n	9.08	89.6	9.93	44.6	10.11	10.31	9.80	9.35	10.06	65.6	9.57	89.6	9.18	9.71	9.71	9.33	10.20	
FI	484.	928.	1.40	1.98	2.91	3.60	4.20	4.83	5.94	69.9	7.66	8.73	9.44	1.32	2.08	2.97	.542	
E4	.485	.88	1.41	1.99	2.93	3.62	4.23	4.86	5.98	6.74	7.71	8.79	9.51	1.34	2.11	3.02	.545	
PHIABS	3.6	4.3	4.3	4.7	5.5	6.1	2.9	0.9	5.6	4.9	2.9	6.5	6.5	10.2	10.5	10.4	5.6	
OMEGA	7.431	9.781	12.26	14.84	17.56	19.43	21.33	23.25	25.21	27.13	29.05	30.89	32.71	9.786	12.28	14.88	5.327	
æ	.25	.25	.25	.25	.25	.25	.25	.25	.25	.25	.25	.25	.25	.375	.375	.375	.500	

STO NOx10-5				8	m	7		2	80		2	80	=	10	_	٧٥		10	m	-+	m
STO	16.5	21.7	27.2	31.03	34.93	38.97	43.1	47.27	51.58	55.9	60.17	64.48	68.54	21.75	27.17	32.96	11.77	16.45	21.63	27.14	30.98
×	.843	.836	.810	.814	.829	.803	.823	.852	1.09	926.	.873	.838	.801	.834	.818	.735	.870	.793	.836	.901	.938
Ā	10.00	9.91	9.61	9.62	9.84	9.52	9.76	10.11	12.91	11.58	10.35	9.94	9.50	68.6	9.70	8.72	10.32	14.6	9.95	10.69	11.12
FI	1.04	1.79	2.75	3.59	4.61	5.61	6.98	8.61	12.17	13.28	14.18	15.82	17.34	2.25	3.46	46.4	.963	1.83	3.26	5.36	7.16
ĒΨ	1.06	1.85	2.83	3.68	4.73	5.78	7.21	8.79	12.97	14.28	15.12	16.72	18.4	2.38	3.65	5.20	1.01	1.97	3.50	5.70	7.62
PHIABS	13.2	14.5	13.5	12.9	13.1	14.0	14.5	11.1	20.1	21.5	20.1	18.8	17.7	18.75	18.8	18.1	17.8	21.5	21.2	19.9	20.0
OMEGA	7.434	9.782	12.25	13.98	15.74	17.56	19.45	21.30	23.24	25.19	27.11	29.05	30,88	9.801	12.24	14.85	5.302	7.411	9,746	12.23	13.96
æ	.500	.500	.500	.500	.500	.500	.500	.500	.500	.500	.500	.500	.500	.625	.625	.625	.750	.750	.750	.750	.750

STO NO×10-5	34.89	38.99	43.1	47.2	51.56	21.7	27.2	32.94	21.7	27.1	32.94	21.7	27.2	32.94	21.76	27.12	32.96	21.74	27.14	32.9	21.7
Ж	966.	1.013	1.017	.842	.763	.85	246.	1.15	.843	.978	966.	998.	.879	176.	.841	1.092	.924	.825	1.035	846.	.832
я ц	11.82	12.02	12.06	66.6	9.05	10.08	11.23	13.65	10.00	11.60	11.81	9.56	10.43	11.52	76.6	12.95	10.96	62.6	12.28	11.25	78.6
FI	9.45	11.88	14.56	15.60	17.6	3.88	24.9	10.24	4.43	7.52	11.25	4.59	7.56	11.79	5.01	9.12	12.15	5.23	9.34	13.01	5.53
E4	86.6	12.80	15.98	18.27	21.93	4.41	7.29	11.70	5.43	9.03	13.43	5.70	9.18	14.41	6.37	11.3	15.25	6.79	11.68	16.62	7.26
PHIABS	19.2	21.9	24.3	31.4	36.2	28.7	27.8	59.0	35.4	33.6	33.1	36.3	34.6	35.1	38.1	36.2	37.1	39.6	36.9	38.5	40.4
OMEGA	15.72	17.57	19.42	21.27	23.23	9.781	12.24	14.84	9.785	12.20	14.84	9.779	12.24	14.84	9.805	12.22	14.85	9.796	12.23	14.83	9.788
м	.75	.75	.75	.75	.75	.875	.875	.875	1.00	1.00	1.00	1.0625	1.0625	1.0625	1.125	1.125	1.125	1.1875	1.1875	1.1875	1.250

STO NO×10-5	27.14	32.85	21.68	27.2	32.9	21.69	27.1	32.94	21.64	27.17	32.87	21.64	27.17	32.85	21.65	27.14	32.89	21.66	27.1	32.85	21.64
м	1.005	.961	.988	1.008	.961	. 778.	. 993	.912		1.04	.981	.956	.927	.924	2 246.	.934	940	1.02 8	.895	.929	.800
$^{\rm M}_{\rm h}$	11.92	11.40	11.72	11.95	11.40	10.40	11.78	10.82	11.47	12.30	11.63	11.34	11.00	10.96	11.23	11.08	11.15	12.21	10.62	11.02	67.6
FI	29.67	13.77	6.08	10.14	14.54	6.27	10.58	14.80	6.93	11.37	16.12	7.19	11.12	16.24	7.46	11.64	17.14	8.19	11.80	17.69	7.32
ᄕ	12.35	17.65	7.88	13.20	18.88	8.45	14.03	19.4	9.12	14.86	20.8	84.6	14.58	21.4	9.95	15.2	22.4	11.0	15.9	23.55	10.10
PHIABS	38.5	38.8	39.5	39.9	39.7	42.1	41.1 1	40.3	40.5	40.1	39.2	40.7	40.3	40.6	41.4	40.0	40.1	41.8	42.1 1	41.3 2.	43.6
	23	80	692.6	22	83	9.773	23	84	9.752	54	81	750	54	80	9.755	23	82	9.760	22	80	9.750
OMEGA	12.23	-						-			5 14.81									0 14.80	
æ	1.250	1.250	1.3125	1.312	1.312	1.3750	1.375	1.375	1.437	1.437	1.437	1.500	1.500	1.500	1.5625	1.562	1.5625	1.6250	1.625	1.6250	1.6875

STO NO ×10-5			7.	Ž.	6	7.	cu	77	9	Ž.			9
STO	27.2	32.8	21.74	27.25	32.89	21.64	27.12	21.64	27.19	21.65	27.1	21.6	27.23
×	.885	.923	.852	.938	.936	.864	.932	.856	.951	.933	.983	.926	.995
м	10.50	10.94	10.11	11.12	11.10	10.25	11.05	10.15	11.28	11.07	11.66	10.98	11.80
FI	12.26	18.28	7.95	13.22	19.22	8.24	13.53	8.49	14.26	9.26	14.95	67.6	15.73
ርጓ	16.8	24.27	10.85	17.40	25.8	11.43	18.51	11.88	19.35	13.00	20.45	13.46	21.55
PHIABS	43.2	41.2	45.9	40.5	41.9	43.9	43.0	44.4	42.5	9.44	43.0	45.2	43.1
OMEGA	12.26	14.79	9.795	12.28	14.82	9.752	12.22	9.752	12.25	9.758	12.21	07.6	12.27
æ	1.6875	1.6875	1.750	1.750	1.750	1.8125	1.8125	1.8750	1.8750	1.9375	1.9375	2.000	2.000

Mar LOGARITHMIC 46 7080

B. Effect of Boundaries

A series of experiments was run to determine the effect of the nearness of the bottom boundary on the hydrodynamic mass. A six inch diameter sphere was used as the test body. The results obtained concur with those of Bayse and Young (3). As long as the ratio of the depth of the water to the depth of submergence of the body was between 2 and 7 there was no noticeable effect on the hydrodynamic mass. No tests were made to determine the effect of the side boundaries.

References

- 1. Hagist, W.M., Experimental Determination of the

 Hydrodynamic Mass of Various Bodies, Final Report
 to U.S. Navy Underwater Sound Laboratory on Contract
 N70024-1024, March 1965.
- 2. Miller, R.R. and Hagist, W.M., Experimental Determination of the Hydrodynamic Mass, Final Report to U.S.Navy Underwater Sound Laboratory on Contract N70024-1162, September 1965.
- Bayse, C.B. and Young, D.V., "Oscillations of a Sphere in a Cylindrical Tube Containing a Viscous Liquid",
 A.S.M.E. preprint No. 66-WA/UNT-5, 1966.