Rolling the Dice with ABM - A systematic study of microsimulation variability

Gaurav Vyas, Mehedi Hasnat (Bentley Systems)
Rajib Sikder, Peter Xin (City of Edmonton)

Edmonton Person Travel Model

Disaggregate tour-based travel demand model

Key features:

- Explicit work from home
- Data-driven tour-pattern model
- Detailed segmentation for accessibility impacts
- Enhanced walk and bike modes
- Peak spreading

Software:

• Re-platformed from custom python code to OpenPaths AGENT demand modelling platform

Randomness inherent in disaggregate models

Conventional discrete choice model produces fractional probabilities

Microsimulation requires discretizing of fractional probabilities

Conversion of fractional probabilities can be done in many ways, Monte-Carlo being the most common

How to chose the method? What are the desired properties?

Desired properties of discretizing

		<u>Aggregate</u>	<u>Disaggregate</u>
Unbiasedness		Aggregate shares approximate probabilities	N/A
Repeatability	With same inputs	Replication of shares	Replication of individual choices
Logical elasticity	When inputs change	Shares change in the same direction as probabilities	Logical switches at individual level
Continuity	Small change in inputs produces weak response	Small variations in shares	Small change in individual switches i.e. almost diagonal switching matrix

Choice methods

Monte-Carlo with a fixed random seed for each individual choice

Random utility simulation with controlled random number

Monte-Carlo base choice

Monte-Carlo after rail improvement

Illogical switch from car to bus due to rail improvement despite preservation of random number

Random utility simulation – base choice

Car chosen by the greatest total utility

Random utility simulation – after rail improvement

Rail chosen by the greatest total utility

If random utility terms are preserved, switch can only happen to the improved alternative; no need to calculate probabilities

Model runtimes

1.2 million people

1,700 TAZs

Runtime for 1 iteration of demand model for a 100% population:

Monte-Carlo: 25 minutes

Random Utility: 24 minutes

Machine: Intel® 2.8GHz, 20 cores, 32 GB RAM

Experimental design (1)

Improvement in the bike condition in downtown Edmonton

6 hypothetical bike conditions scenarios

- Base
- Improvement of 1.2x
- Improvement of 1.4x
- Improvement of 1.6x
- Improvement of 1.8x
- Improvement of 2x

Two choice methods

- Monte-Carlo with fixed random seed
- Random utility with fixed random seed

Impact on the tour mode choice is analyzed: Controlled test, no change in tour characteristics prior to mode choice

Result analysis: Logical elasticity, aggregate level

Result analysis: Logical elasticity, disaggregate level, 1.2x improvement

- Illogical switches to nearby alternatives
- No switch to Bike from auto modes Random utility:
- Switching to Bike only
- No switch to Bike from PnR

Result analysis: Continuity, aggregate level

At the aggregate level, both methods showed a logical continuity

Result analysis: Continuity, disaggregate level

Monte-Carlo shows bigger impact of a smaller change, attributing to so-called Monte-Carlo variability

Conclusions (1)

Random utility Monte-Carlo **Aggregate** <u>Disaggregate</u> <u>Disaggregate</u> <u>Aggregate</u> Unbiasedness N/A N/A Repeatability With same inputs When inputs change Logical elasticity X Small change in inputs Continuity produces weak response

Experimental design (2)

Impact of change in input over a sequence of choice models

Increase in parking cost in downtown Edmonton

Two choice methods

- Monte-Carlo with fixed random seed
- Random utility with fixed random seed

Impact on destinations

Monte-Carlo

Random Utility

Darker red → Reduction in number of trips destined in the zone

Person's modality

Tour and activity patterns change due to a change in parking cost

Analysis at individual tour/trip level is non-trivial

Individual analysis is possible at person level by classifying modality of each person

A person is categorized into one of five modality:

- Transit oriented: If any tour was by transit
- Taxi oriented: If not transit oriented and at least one tour by taxi
- Bike oriented: Neither transit nor taxi oriented and at least one tour by bike
- Walk oriented: Neither transit nor taxi not bike oriented, and at least one tour by walk
- Auto oriented: All tours are by auto mode

Comparison of individual modality: All persons

Conclusions (2)

Monte-Carlo's failure to meet continuity test creates stochastic variation affecting the convergence of travel models

Monte-Carlo cannot ensure logical elasticity at disaggregate level:

Switches shows adjacency bias

Random Utility is more stable than Monte-Carlo

Further research

Non-trivial to compare individual tours/trips when tours/trips are changed in the scenario

Further research is needed to allow comparing individual tours/trips between scenarios

Gaurav Vyas Gaurav.vyas@bentley.com

