Lecture 28: Penalized Regression

Pratheepa Jeganathan

12/02/2019

Recap

- ▶ What is a regression model?
- Descriptive statistics graphical
- Descriptive statistics numerical
- Inference about a population mean
- Difference between two population means
- Some tips on R
- Simple linear regression (covariance, correlation, estimation, geometry of least squares)
 - ► Inference on simple linear regression model
 - ► Goodness of fit of regression: analysis of variance.
 - F-statistics.
 - Residuals.
 - Diagnostic plots for simple linear regression (graphical methods).

Recap

- Multiple linear regression
 - Specifying the model.
 - Fitting the model: least squares.
 - Interpretation of the coefficients.
 - Matrix formulation of multiple linear regression
 - Inference for multiple linear regression
 - T-statistics revisited.
 - More F statistics.
 - ▶ Tests involving more than one β .
- Diagnostics more on graphical methods and numerical methods
 - Different types of residuals
 - Influence
 - Outlier detection
 - Multiple comparison (Bonferroni correction)
 - Residual plots:
 - partial regression (added variable) plot,
 - partial residual (residual plus component) plot.

Recap

- Adding qualitative predictors
 - Qualitative variables as predictors to the regression model.
 - Adding interactions to the linear regression model.
 - Testing for equality of regression relationship in various subsets of a population
- ANOVA
 - All qualitative predictors.
 - One-way layout
 - Two-way layout
- Transformation
 - Achieving linearity
 - Stabilize variance
 - Weighted least squares
- Correlated Errors
 - Generalized least squares
- ► Bootstrapping linear regression
- Selection

Outline

- Collinearity
- ► Bias-variance trade-off
- Penalized Regression
 - Ridge
 - ► LASSO
 - ► Elastic net

Collinearity

- Existence of strong linear relationships among the predictor variables (collinear data, collinearity, or multicollinearity)
- Consequences
 - impossible to estimate the unique effects of individual variables in the regression equation.
 - regression coefficients have large sampling errors
- ► Not a modeling error
- ▶ Detecting collinearity (**CH** Chapter 9.4)
 - Large values of pairwise correlation coefficient, the regression results do not conform to prior expectations
 - Variance inflation factors, condition indices

Standardization (CH Chapter 3.6)

If collinearity is present due to different units of measurements of variables, we can use standardization to reduce the problem

Principal components regression (CH Chapter 10.2, 10.3)

- Use principal components method to transform X_1, X_2, \dots, X_p to a set of p orthogonal variables C_1, C_2, \dots, C_p .
- ▶ Regressing Y on to C_1, C_2, \dots, C_p .

Penalization

- ▶ Impose contstraints on the regression coefficients
 - For example, $\beta_1 + \beta_2 = 1$ and use ordinary least squares (OLS) method to estimate the regression coefficients.
- Compute biased estimators but tend to have more precision than the OLS estimators.
 - produce more precision in the estimated coefficients and smaller prediction error: sum of squares residuals is not small.
 - predictions are generated using data other than those used for estimation.

Bias-variance tradeoff

- ▶ One goal of a regression analysis is to "build" a model that predicts well: AIC or C_p or Cross-validation selection criteria based on this.
- This is slightly different than the goal of making inferences about β that we've focused on so far.
- ▶ What does "predict well" mean?

$$\begin{aligned} \mathit{MSE}_{pop}(\mathcal{M}) &= \mathbb{E}\left((Y_{new} - \widehat{Y}_{new,\mathcal{M}}(X_{new}))^2\right) \\ &= \mathsf{Var}(Y_{new}) + \mathsf{Var}(\widehat{Y}_{new,\mathcal{M}}) + \\ &\quad \mathsf{Bias}(\widehat{Y}_{new,\mathcal{M}})^2. \end{aligned}$$

Can we take an estimator for a model M and make it better in terms of MSE?

Shrinkage estimators: one sample problem

- 1. Generate $Y_{100\times 1} \sim N(\mu \cdot 1, 5^2 I_{100\times 100})$, with $\mu = 0.5$.
- 2. For $0 \le \alpha \le 1$, set $\hat{Y}(\alpha) = \alpha \bar{Y}$.
- 3. Compute $MSE(\hat{Y}(\alpha)) = \frac{1}{100} \sum_{i=1}^{100} (\hat{Y}_{\alpha} 0.5)^2$
- 4. Repeat 1000 times, plot average of $MSE(\hat{Y}(\alpha))$.

For what value of α is $\hat{Y}(\alpha)$ unbiased?

Is this the best estimate of μ in terms of MSE?

```
mu = 0.5
sigma = 5
nsample = 100
ntrial = 1000

MSE = function(mu.hat, mu) {
  return(sum((mu.hat - mu)^2) / length(mu))
}
```

```
alpha = seq(0, 1, length=20)
mse = numeric(length(alpha))
bias = (1 - alpha) * mu
variance = alpha^2 * 25 / 100
for (i in 1:ntrial) {
  Z = rnorm(nsample) * sigma + mu
  for (j in 1:length(alpha)) {
    mse[i] = mse[i] +
      MSE(alpha[j] * mean(Z) * rep(1, nsample),
          mu * rep(1, nsample))
mse = mse / ntrial
```

```
plot(alpha, mse, type='l', lwd=2, col='red',
     ylim=c(0, max(mse)),
     xlab=expression(paste('Shrinkage factor,', alpha)),
     ylab=expression(paste('MSE(', alpha, ')')),
     cex.lab=1.2)
MSE(\alpha)
        0.0
                  0.2
                            0.4
                                      0.6
                                               8.0
                                                         1.0
```

Shrinkage factor,α

```
plot(alpha, mse, type='l', lwd=2, col='red',
    ylim=c(0, max(mse)),
    xlab=expression(paste('Shrinkage factor,', alpha)),
    ylab=expression(paste('MSE(', alpha, ')')),
    cex.lab=1.2)
lines(alpha, bias^2, col='green', lwd=2)
lines(alpha, variance, col='blue', lwd=2)
```


Shrinkage & Penalties

- Shrinkage can be thought of as "constrained" or "penalized" minimization.
- Constrained form:

minimize
$$_{\mu}\sum_{i=1}^{n}(Y_{i}-\mu)^{2}$$
 subject to $\mu^{2}\leq C$

Lagrange multiplier form: equivalent to

$$\widehat{\mu}_{\lambda} = \operatorname{argmin}_{\mu} \sum_{i=1}^{n} (Y_i - \mu)^2 + \lambda \cdot \mu^2$$

for some $\lambda = \lambda_C$.

lacktriangle As we vary λ we solve all versions of the constrained form.

Solving for $\widehat{\mu}_{\lambda}$

- ▶ Differentiating: $-2\sum_{i=1}^{n}(Y_i \hat{\mu}_{\lambda}) + 2\lambda \hat{\mu}_{\lambda} = 0$
- Solving $\widehat{\mu}_{\lambda} = \frac{\sum_{i=1}^{n} \overline{Y_{i}}}{n+\lambda} = \frac{n}{n+\lambda} \overline{Y}$.
- ightharpoonup As $\lambda o 0$, $\widehat{\mu}_{\lambda} o \overline{\overline{Y}}$.
- As $\lambda \to \infty$ $\widehat{\mu}_{\lambda} \to 0$.

We see that $\widehat{\mu}_{\lambda} = \overline{Y} \cdot \left(\frac{n}{n+\lambda} \right)$.

In other words, considering all penalized estimators traces out the MSE curve above.

Solving for $\widehat{\mu}_{\lambda}$

```
lam = nsample / alpha - nsample
plot(lam, mse, type='l', lwd=2, col='red',
     ylim=c(0, max(mse)),
     xlab=expression(paste('Penalty parameter,', lambda))
     ylab=expression(paste('MSE(', lambda, ')')))
MSE(\lambda)
    0.00
                      500
                                    1000
                                                  1500
                            Penalty parameter, \lambda
```

Solving for $\hat{\mu}_{\lambda}$

```
plot(lam, mse, type='l', lwd=2, col='red',
     ylim=c(0, max(mse)),
     xlab=expression(paste('Penalty parameter,', lambda))
     ylab=expression(paste('MSE(', lambda, ')')))
lines(lam, bias^2, col='green', lwd=2)
lines(lam, variance, col='blue', lwd=2)
MSE(\lambda)
    0.00
```

500

Penalty parameter,λ

1000

1500

How much to shrink?

► In our one-sample example,

$$egin{aligned} \mathit{MSE}_{\mathit{pop}}(lpha) &= \mathsf{Var}(lpha ar{Y}) + \mathsf{Bias}(lpha ar{Y})^2 + \mathsf{Var}(Y_{\mathit{new}}) \\ &= rac{lpha^2 \sigma^2}{n} + \mu^2 (1 - lpha)^2 + \mathsf{Var}(Y_{\mathit{new}}) \end{aligned}$$

▶ Differentiating and solving:

$$0 = -2\mu^{2}(1 - \alpha^{*}) + 2\frac{\alpha^{*}\sigma^{2}}{n}$$

$$\alpha^{*} = \frac{\mu^{2}}{\mu^{2} + \sigma^{2}/n} = \frac{(\mu/(\sigma/\sqrt{n}))^{2}}{(\mu/(\sigma/\sqrt{n}))^{2} + 1}$$

$$= \frac{0.5^{2}}{0.5^{2} + 25/100} = 0.5$$

We see that the optimal α depends on the unknown $SNR = \mu/(\sigma/\sqrt{n})$. Value is 1/8.

In practice we might hope to estimate MSE with cross-validation.

Let's see how our theoretical choice of α matches the MSE on our 100 sample.

```
plot(alpha, mse, type='1', lwd=2, col='red',
    ylim=c(0, max(mse)),
    xlab=expression(paste('Shrinkage parameter ', alpha))
    ylab=expression(paste('MSE(', alpha, ')')))
abline(v=mu^2/(mu^2+sigma^2/nsample), col='blue', lty=2)
```


Penalties & Priors

Minimizing $\sum_{i=1}^{n} (Y_i - \mu)^2 + \lambda \mu^2$ is similar to computing "MLE" of μ if the likelihood was proportional to

$$\exp\left(-\frac{1}{2\sigma^2}\left(\|\mathbf{Y}-\boldsymbol{\mu}\|_2^2+\lambda\boldsymbol{\mu}^2\right)\right).$$

- If $\lambda = m$, an integer, then $\widehat{\mu}_{\lambda}$ is the sample mean of $(Y_1, \ldots, Y_n, 0, \ldots, 0) \in \mathbb{R}^{n+m}$.
- ▶ This is equivalent to adding some data with Y = 0.
- To a Bayesian, this extra data is a prior distribution and we are computing the so-called Maximum A Posteriori (MAP) or posterior mode.

AIC as penalized regression

- ▶ Model selection with C_p (or AIC with σ^2 assumed known) is a version of penalized regression.
- The best subsets version of AIC (which is not exactly equivalent to step)

$$\hat{\beta}_{AIC} = \operatorname{argmin}_{\beta} \frac{1}{\sigma^2} \|Y - X\beta\|_2^2 + 2\|\beta\|_0$$

where

$$\|\beta\|_0 = \#\{j : \beta_j \neq 0\}$$

is called the ℓ_0 norm.

The ℓ_0 penalty can be thought of as a measure of *complexity* of the model. Most penalties are similar versions of *complexity*.

Penalized regression in general

- Not all biased models are better we need a way to find "good" biased models.
- Inference (F, χ^2 tests, etc) is not quite exact for biased models. Though, there has been some recent work to address the issue of post-selection inference, at least for some penalized regression problems.
- ▶ Heuristically, "large β " (measured by some norm) is interpreted as "complex model".
 - ▶ Goal is really to penalize "complex" models, i.e. Occam's razor.
- ▶ If truth really is complex, this may not work! (But, it will then be hard to build a good model anyways . . . (statistical lore))

Ridge regression

- Assume that columns $(X_j)_{1 \le j \le p}$ have zero mean, and standard deviation (SD) 1 and Y has zero mean.
- ▶ This is called the standardized model.
- ► The ridge estimator is

$$\begin{split} \hat{\beta}_{\lambda} &= \operatorname{argmin}_{\beta} \frac{1}{2n} \|Y - X\beta\|_{2}^{2} + \frac{\lambda}{2} \|\beta\|_{2}^{2} \\ &= \operatorname{argmin}_{\beta} MSE_{\lambda}(\beta) \end{split}$$

- ► Corresponds (through Lagrange multiplier) to a quadratic constraint on β 's.
- ► This is the natural generalization of the penalized version of our shrinkage estimator.

Solving the normal equations

Normal equations

$$\frac{\partial}{\partial \beta_{I}} MSE_{\lambda}(\beta) = -\frac{1}{n} (Y - X\beta)^{T} X_{I} + \lambda \beta_{I}$$

$$-\frac{1}{n}(Y - X\widehat{\beta}_{\lambda})^{\mathsf{T}}X_{l} + \lambda\widehat{\beta}_{l,\lambda} = 0, \qquad 1 \le l \le p$$

In matrix form

$$-\frac{X^TY}{n} + \left(\frac{X^TX}{n} + \lambda I\right)\widehat{\beta}_{\lambda} = 0.$$

$$\widehat{\beta}_{\lambda} = \left(\frac{X^T X}{n} + \lambda I\right)^{-1} \frac{X^T Y}{n}.$$

Ridge regression

```
library(lars)
data(diabetes)
library (MASS)
diabetes.ridge = lm.ridge(diabetes$y ~ diabetes$x,
                              lambda=seq(0, 100, 0.5))
plot(diabetes.ridge, lwd=3)
    20
t(x$coef)
    0
    -20
                  20
                            40
                                                          100
                                       60
                                                 80
```

x\$lambda

Choosing λ

- If we knew $E[MSE_{\lambda}]$ as a function of λ then we would simply choose the λ that minimizes it.
- ▶ To do this, we need to estimate it.
- ▶ A popular method is cross-validation as a function of λ . Breaks the data up into smaller groups and uses part of the data to predict the rest.
- We saw this in diagnostics (Cook's distance measured the fit with and without each point in the data set) and model selection.

K-fold cross-validation for penalized model

- Fix a model (i.e. fix λ). Break data set into K approximately equal sized groups (G_1, \ldots, G_K) .
- ▶ for (i in 1:K)
 - Use all groups except G_i to fit model, predict outcome in group G_i based on this model $\widehat{Y}_{j(i),\lambda}, j \in G_i$.
- ► Estimate $CV(\lambda) = \frac{1}{n} \sum_{i=1}^{K} \sum_{j \in G_i} (Y_j \widehat{Y}_{j(i),\lambda})^2$.

K-fold cross-validation for penalized model

- Here is a function to estimate the CV for our one parameter example.
- ▶ In practice, we only have one sample to form the CV curve.
- ▶ In this example below, we will compute the average CV error for 500 trials to show that it is roughly comparable in shape to the MSE curve.

K-fold cross-validation for penalized model

```
CV = function(Z, alpha, K=5) {
    cve = numeric(K)
    n = length(Z)
    for (i in 1:K) {
        g = seq(as.integer((i-1)*n/K)+1,
                as.integer((i*n/K)))
        mu.hat = mean(Z[-g]) * alpha
        cve[i] = sum((Z[g]-mu.hat)^2)
    }
    return(c(sum(cve)/n, sd(cve)/sqrt(n)))
```

► Let's see how the parameter chosen by 5-fold CV compares to our theoretical choice.

```
alpha = seq(0.0,1,length=20)
mse = numeric(length(alpha))
avg.cv = numeric(length(alpha))
for (i in 1:ntrial) {
     Z = rnorm(nsample) * sigma + mu
     for (j in 1:length(alpha)) {
         current cv = CV(Z, alpha[j])
         avg.cv[j] = avg.cv[j] + current_cv[1]
avg.cv = avg.cv/ntrial
```


► The curve above shows what would happen if we could repeat this and average over many samples. In reality, we only get one sample.

- Let's see what one curve looks like on our sample.
- ▶ This is the result we might get in practice on a given data set.

```
cv = numeric(length(alpha))
cv.sd = numeric(length(alpha))
nsample = 1000
Z = rnorm(nsample) * sigma + mu
for (j in 1:length(alpha)) {
    current_cv = CV(Z, alpha[j])
    cv[j] = current_cv[1]
    cv.sd[j] = current_cv[2]
}
```


Generalized Cross Validation

- ► A computational shortcut for *n*-fold cross-validation (also known as leave-one out cross-validation).
- Let $S_{\lambda} = X(X^TX + n\lambda I)^{-1}X^T$ be the matrix in ridge regression that computes \hat{Y}_{λ}
- ▶ Then $GCV(\lambda) = \frac{\|Y S_{\lambda}Y\|^2}{n \text{Tr}(S_{\lambda})}$.
- ▶ The quantity $Tr(S_{\lambda})$ can be thought of as the *effective degrees* of freedom for this choice of λ .

GCV for Ridge regression

GCV for Ridge regression

ightharpoonup Find λ

```
select(diabetes.ridge)
```

```
## modified HKB estimator is 5.462251
## modified L-W estimator is 7.641667
## smallest value of GCV at 3
```

Least Absolute Shrinkage and Selection Operator (LASSO)

LASSO

- Another popular penalized regression technique.
- Use the standardized model.
- ► The LASSO estimate is

$$\hat{\beta}_{\lambda} = \operatorname{argmin}_{\beta} \frac{1}{2n} \|Y - X\beta\|_{2}^{2} + \lambda \|\beta\|_{1}$$

where

$$\|\beta\|_1 = \sum_{j=1}^p |\beta_j|$$

is the ℓ_1 norm.

▶ Corresponds (through Lagrange multiplier) to an ℓ_1 constraint on β 's.

LASSO

- ▶ In theory and practice, it works well when many β_j 's are 0 and gives "sparse" solutions unlike ridge.
- It is a (computable) approximation to the best subsets AIC model.
- ▶ It is computable because the minimization problem is a convex problem.

Why do we get sparse solutions with the LASSO?

Example (LASSO)

diabetes data frame has Y a numeric response and \mathbf{X} has 10 predictor variables.

Example (LASSO)

Cross-validation for the LASSO

The lars package has a built in function to estimate CV.

```
par(cex.lab=1.5)
cv.lars(diabetes$x, diabetes$y, K=10, type='lasso')
```


glmnet

```
library(glmnet)
G = glmnet(diabetes$x, diabetes$y)
```


plot(cv.glmnet(diabetes\$x, diabetes\$y))

10 10 10 9 10 10 8 8 8 8 7 7 7 6 5 4 4 3 2 2

cv.glmnet(diabetes\$x, diabetes\$y)\$lambda.1se

[1] 5.314486

HIV example

HIV example

```
library(glmnet)
G = glmnet(X_HIV, Y_HIV)
plot(G)
          0
                         9
                                        22
                                                       58
                                                                      86
Coefficients
    က
    N
                         5
                                        10
                                                       15
                                                                      20
                                     L1 Norm
```

HIV example

```
CV = cv.glmnet(X_HIV, Y_HIV)
plot(CV)
              85 79 70 67 54 43 29 21
                                              15 12
     2
Mean-Squared Error
     က
     \alpha
                   -6
                                          Log(\lambda)
```

Extracting coefficients from glmnet

V8

V9 ## V10 ## V11 ## V12

```
beta.hat = coef(G, s=CV$lambda.1se)
beta.hat # might want to use as.numeric(beta.hat) instead
## 92 x 1 sparse Matrix of class "dgCMatrix"
##
## (Intercept) 0.670844817
## V1
## V2
## V3
## V4
## V5
## V6
## V7
```

0.004062047

Extracting coefficients from glmnet

▶ Number of non-zero coefficients

```
sum(abs(beta.hat[,1]) >0)
## [1] 17
```


Elastic Net

- ▶ Mix between LASSO and ridge regression.
- Sometimes a more stable estimator than LASSO.
- ► The ENET estimator is

$$\hat{\beta}_{\lambda,\alpha} = \operatorname{argmin}_{\beta} \frac{1}{2n} \|Y - X\beta\|_2^2 + \lambda \left(\alpha \|\beta\|_1 + (1-\alpha)\|\beta\|_2^2\right).$$

Elastic Net (Example)

▶ Coefficient path for $\alpha = 0.25$

Enet = glmnet(X_HIV, Y_HIV, alpha=0.25) plot(Enet) 12 63 0 28 86 က Coefficients $^{\circ}$ 0 5 10 15 20

L1 Norm

Elastic Net (Example)

V7 ## V8

V9 ## V10 ## V11

```
CV = cv.glmnet(X_HIV, Y_HIV, alpha=0.25)
beta.hat = coef(Enet, s=CV$lambda.1se)
beta.hat
## 92 x 1 sparse Matrix of class "dgCMatrix"
##
## (Intercept) 0.780910769
## V1
## V2
## V3
## V4
## V5
## V6
```

0.066467999

Extracting coefficients from glmnet

► Number of non-zero coefficients

```
sum(abs(beta.hat[,1]) > 0)
```

```
## [1] 21
```

Ridge regression (glmnet)

Reference

- ► More on the penalized regression: An Introduction to Statistical Learning
- ► CH Chapter 9 and 10.
- ► Lecture notes of Jonathan Taylor .