

Beschreibung

Ankopplungsstruktur für zylinderförmige Resonatoren

5 Die vorliegende Erfindung betrifft ein Filterelement geeignet zur Filterung elektromagnetischer Wellen, insbesondere Bandpassfilter oder Bandsperrenfilter, auch ausgeführt als Reflexionsfilter oder dergleichen, umfassend einen dielektrischen, zylinderförmigen Resonator sowie eine oder mehrere Leitungen, 10 welche elektromagnetische Wellen an den dielektrischen Resonator heran- bzw. abführen, wobei die Leitungen in einer geeigneten Ankontaktierungsstruktur enden. Die vorliegende Erfindung betrifft auch einen aus einem derartigen Filterelement aufgebauten Oszillatort.

15 Handelsübliche Resonatoren, also schwingungsfähige Systeme, dessen einzelne Elemente auf eine gewünschte (Eigen-)Frequenz abgestimmt sind, so dass bei Anregung der Resonator mit dieser Frequenz ausschwingt, finden sowohl in der Niederfrequenztechnik als auch in der Hochfrequenztechnik vielfach Anwendung. Je nach Aufbau, Material und Form eignen sie sich beispielsweise als einfaches (schmalbandiges) Filter, als frequenzbestimmendes Element eines Oszillators, für die Messung von Materialeigenschaften im HF-Feld oder als kurzzeitiger Speicher von elektromagnetischer Energie (eingesetzt in Teilchenbeschleunigern).

30 Im Bereich der Hochfrequenztechnik finden je nach Anwendung Mikrostreifenleitungsresonatoren, Hohlraumresonatoren oder sog. dielektrische, d.h. zumeist aus einem keramischen Material ausgebildete, Resonatoren Verwendung. Letztere werden in zylinderförmiger Gestalt häufig als elektrische bzw. elektromagnetische Filter und damit auch als Filter zur Schwingungs-

erzeugung in Resonatorschaltkreisen eingesetzt. Die dabei erzielbaren Eigenschaften derartiger Filter und folglich auch der damit hergestellten Oszillatoren (so z.B. deren Leistungspegel und Rauscheigenschaften) sind jedoch entscheidend 5 von der Ankopplung des dielektrischen Resonators an die Zu- bzw. Ableitungen abhängig.

Zylinderförmige dielektrische Resonatoren werden gegenwärtig vorwiegend mit einer ihrer plan ausgebildeten Stirnflächen in 10 einem gewissen Abstand zur Oberseite einer Leiterplatte auf diese aufgebracht. Auf der Leiterplattenoberseite befinden sich eine oder mehrere Leitungen, welche elektromagnetische Wellen an den dielektrischen Resonator heran- bzw. abführen. Ein typischer Aufbau, welcher in Produkten wie z.B. Lokaloszillatoren und Filter für Radaranlagen, Satellitenempfänger, drahtlose Verteildienste für digitales Fernsehen wie local 15 multipoint distribution services (LMDS) oder dergleichen vielfach Verwendung findet, ist in Fig. 8 skizziert.

20 Der in Fig. 8 gezeigte Aufbau kann bei zunehmenden Betriebsfrequenzen, insbesondere im sog. K-Band, d.h. im Mikrowellenbereich von 18-26,5 GHz, zu erheblichen Problemen bei der Herstellung von Oszillatoren führen. Die von erster Leitung in die zweite Leitung übergekoppelte Energie reicht hier in 25 den meisten Fällen nicht aus, um ein Anschwingen von Oszillatorschaltungen zu ermöglichen. Daher werden in den meisten praktischen Anwendungen mit solchen keramischen Resonatoren nur Oszillatoren mit Betriebsfrequenzen kleiner 18 GHz hergestellt.

30

Der Erfindung liegt die Aufgabe zugrunde, eine Resonatorschaltung für ein Filterelement zur Filterung elektromagnetischer Wellen bereitzustellen, welches die eingangs genannten

Nachteile vermeidet. Diesbezüglich soll eine verbesserte Ankopplung der Leitung(en) an zylinderförmige, dielektrische Resonatoren, insbesondere für Oszillatoren, angegeben werden, vorzugsweise für Betriebsfrequenzen über 18 GHz.

5

Diese Aufgabe wird durch ein Filterelement zur Filterung elektromagnetischer Wellen mit den Merkmalen gemäß Patentanspruch 1 sowie durch einen Oszillator mit den Merkmalen gemäß Patentanspruch 14 gelöst. Vorteilhafte Aus- und Weiterbildungen, welche einzeln oder in Kombination miteinander eingesetzt werden können, sind Gegenstand der abhängigen Ansprüche.

Die Erfindung baut auf gattungsgemäßen Filterelementen zur Filterung elektromagnetischer Wellen, umfassend einen dielektrischen, zylinderförmigen Resonator sowie eine oder mehrere Leitungen, welche in einer Ankontaktierungsstruktur enden und elektromagnetische Wellen an den dielektrischen Resonator heran- bzw. abführen, zunächst dadurch auf, dass der Resonator zu den Leitungen variabel beabstandet angeordnet ist, wobei Beabstandungen sowohl in negativer als auch alternativ in positiver Längserstreckung (z-Achse) des Resonators denkbar sind.

25 Im erst genannten Fall - also einer Beabstandung in negativer Längserstreckung des Resonators - sind die Leitungen nebst ihrer Ankontaktierung vorzugsweise Teil einer Leiterplatte; welche den Resonator hält; wobei erfindungsgemäß in der Leiterplatte eine Ausnehmung vorgesehen ist, in welcher der Resonator mittels eines geeigneten Befestigungsmittels angeordnet ist.

Im alternativ genannten Fall - also einer Beabstandung in positiver Längserstreckung des Resonators - ist in der näheren Umgebung zur Ankontaktierungsstruktur ein beliebiger Gegenstand oder auch einer Vorrichtung angeordnet, beispielsweise 5 eine Haltefläche, eine Abdeckung oder dergleichen mehr; welche den Resonator hält; wobei erfindungsgemäß in der Haltefläche bzw. Abdeckung etc. eine Ausnehmung vorgesehen ist, in welcher der Resonator mittels eines geeigneten Befestigungsmittels angeordnet ist.

10

Durch die erfindungsgemäß variabel beabstandete Ankontaktierung des Resonators wird die transmittierbare Signalleistung im Vergleich zu bisherigen Strukturen, z.B. gemäß Fig. 8, in vorteilhafter Weise wesentlich erhöht. Damit kann ein sicheres 15 Anschwingen und ein stabiler Betrieb eines Oszillators, welcher mit einem derartigen Filterelement hergestellt ist, bei praktischen Betriebsbedingungen, insbesondere über einen großen Temperaturbereich, erreicht werden.

20 Darüber hinaus kann eine Haltefläche bzw. Abdeckung etc. mit einer den Resonator stirnseitig halternden Ausnehmung auch dann vorgesehen sein, wenn kumulativ dazu der Resonator teilweise in einer Ausnehmung der Leiterplatte „versenkt“ ist - also zu den in einer Ankontaktierungsstruktur endenden Leitungen 25 in negativer Längserstreckung beabstandet angeordnet ist. Ein derartiger Aufbau erleichtert einerseits die Montage von Leiterplatte und Abdeckung etc. und führt vorteilhaft zu sog. baukleinsten Einheiten, wie sie insb. in der Automobilindustrie stets von Interesse sind.

30

Vorzugsweise ist die Ausnehmung in der Leiterplatte bzw. in der zuvor bereits erwähnten Vorrichtung (Flächenbauteil, Abdeckung, etc.) dergestalt dimensioniert, dass eine selbst-

zentrierende Bestückung bzw. Montage des Resonators ermöglicht ist, beispielsweise wenigstens eintrittsseitig leicht konisch ausgebildet oder mit einer Abkantung bzw. Fase versehen.

5

Bevorzugt wird ein Kleber oder Silicon oder dergleichen als Befestigungsmittel für den Resonator verwendet.

Vorzugsweise endet jede Leitung jeweils in einer separat ausgebildeten Ankontaktierungsstruktur. Alternativ hierzu können zwei oder mehr Leitungen auch in einer gemeinsam ausgebildeten Ankontaktierungsstruktur enden.

Die Ankontaktierungsstruktur kann vorzugsweise wenigstens abschnittsweise sichelförmig ausgebildet sein, womit in vorteilhafter Weise eine gewisse gewünschte Filtercharakteristik erreicht werden kann. Wie eingangs bereits erwähnt ist für den Betrieb derartiger Filterelemente bzw. damit aufgebauter Oszillatoren entscheidend, dass eine ausreichende Signalleistung von der bzw. den Leitungen abgegeben oder transmittiert wird.

Alternativ hierzu kann die Ankontaktierungsstruktur vorzugsweise als Kreisring von 360° oder – wiederum alternativ – als Kreisbogensegment mit einem variablen Öffnungswinkel kleiner 360° ausgebildet sein. Insbesondere im zuletzt genannten Fall lässt sich über eine geschickte Auswahl des Öffnungswinkels α in vorteilhafter Weise der Kopplungswirkungsgrad zwischen der bzw. den Leitungen und dem Resonator anpassen sowie unerwünschtes Phasenrauschen minimieren. So haben sich beispielsweise bei zwei Leitungen Ankontaktierungsstrukturen mit einem Öffnungswinkel α von etwa 160° bewährt, bei drei Leitungen Ankontaktierungsstrukturen mit einem Öffnungswinkel von etwa

110° und bei vier Leitungen Ankontaktierungsstrukturen mit einem Öffnungswinkel von z.B. etwa 75°; wobei es sich bei den vorstehenden Winkelangaben nur um Beispiele möglicher Ausgestaltungen handelt.

5

In einer Weiterbildung der Erfindung weist die Ankontaktierungsstruktur größere Abmaße als der zylinderförmige Resonator auf. Zwecks Baugrößenminimierung und/oder Effizienzsteigerung der Überkopplung kann – alternativ hierzu und soweit 10 der Resonator an der Haltefläche bzw. der Abdeckung etc. angeordnet ist – die Ankontaktierungsstruktur auch kleinere Abmaße als der zylinderförmige Resonator aufweisen.

Zweckmäßiger Weise ist der Resonator im Wesentlichen zentriert bzw. mittig zur Ankontaktierungsstruktur ausgerichtet, 15 wobei bei Ankontaktierungen gemäß vorliegender Erfindung in vorteilhafter Weise gröbere Abweichtoleranzen bei dessen Positionierung erlauben, als dies bei herkömmlichen Schaltungen der Fall ist, wo schon verhältnismäßig geringe Abweichungen 20 zur Funktionsuntüchtigkeit der Resonatorschaltung und damit zum Ausschuss führen können.

Die vorliegende Erfindung eignet sich insbesondere für dielektrische, zylinderförmige Resonatoren eines Filterelements 25 mit Betriebsfrequenzen größer 18 GHz. Sie besteht weiterhin in einem Oszillator, insbesondere für Radaranlagen, LMDS-Verteildienste, Satellitenempfänger oder dergleichen mehr, umfassend ein zuvor beschriebenes Filterelement zur Filterung elektromagnetischer Wellen. Auf diese Weise kommen die Vorteile 30 der Erfindung auch im Rahmen eines Gesamtsystems zur Geltung.

Die Erfindung wird nun mit Bezug auf die begleitenden Zeichnungen anhand bevorzugter Ausführungsformen beispielhaft erläutert.

5 Darin zeigen schematisch:

- Fig. 1 in einer Draufsicht einen ersten Aufbau eines Filterelements umfassend einen zylinderförmigen Resonator, an welchem eine Leitung herangeführt ist, an
10 deren Ende eine sichelförmige Ankontaktierungsstruktur ausgebildet ist;
- Fig. 2 in einer Draufsicht einen zweiten Aufbau eines Filterelements umfassend einen zylinderförmigen Resonator, an welchem eine Leitung herangeführt ist, an
15 deren Ende eine kreisringförmige Ankontaktierungsstruktur ausgebildet ist;
- Fig. 3 in einer Draufsicht einen dritten Aufbau eines Filterelements umfassend einen zylinderförmigen Resonator, an welchem zwei Leitungen herangeführt sind, an
20 deren Ende jeweils eine separate sichelförmige Ankontaktierungsstruktur ausgebildet ist;
- 25 Fig. 4 in einer Draufsicht einen vierten Aufbau eines Filterelements umfassend einen zylinderförmigen Resonator, an welchem zwei Leitungen herangeführt sind, welche in einer gemeinsamen sichelförmigen Ankontaktierungsstruktur enden;
- 30 Fig. 5 in einer Seitenansicht den Aufbau eines Filterelements nach einem der vorherigen Figuren 1 bis 4 oder 8 mit einem erfindungsgemäß zur Ankontaktie-

rungsstruktur in positiver z-Achse variabel beab-
standeten, an einer Abdeckung angeordneten Resona-
tor;

5 Fig. 6 in einer Seitenansicht den Aufbau eines Oszillators
nach einem der vorherigen Figuren 1 bis 4 oder 8
mit einem herkömmlicherweise auf der Ankontaktie-
rungsstruktur angeordneten Resonator;

10 Fig. 7 in einer Seitenansicht den Aufbau eines Filterele-
ments nach einem der vorherigen Figuren 1 bis 4
oder 8 mit einem erfindungsgemäß zur Ankontaktie-
rungsstruktur in negativer z-Achse variabel beab-
standeten, in einer Ausnehmung der Leiterplatte an-
geordneten Resonator; und

15 Fig. 8 in einer Draufsicht einen herkömmlichen Aufbau ei-
nes Filterelements umfassend einen zylinderförmigen
Resonator, an welchem zwei Zuleitungen herangeführt
20 sind.

Bei der nachfolgenden Beschreibung der bevorzugten Ausfüh-
rungsformen der vorliegenden Erfindung bezeichnen gleiche Be-
zugszeichen gleiche oder vergleichbare Komponenten.

25 Fig. 1 zeigt in einer Draufsicht einen ersten Aufbau eines
Filterelements umfassend einen zylinderförmigen, dielektri-
schen Resonator 1, an welchem eine Zuleitung 2 herangeführt
ist, an deren Ende eine sichelförmige Ankontaktierungsstruk-
30 tur 4 ausgebildet ist. Die sichelförmige Ankontaktierungs-
struktur 4 besteht aus einem Kreisbogensegment mit einem va-
riablen Öffnungswinkel α , an welchem eine gewöhnliche Leitung
2 angeschlossen ist. Der Öffnungswinkel α beträgt für das in

Fig. 1 gezeigte Beispiel etwa 160° . Die Breite der Leitung 2 und der sichelförmigen Ankontaktierungsstruktur 4 kann an die entsprechenden Verhältnisse angepasst werden und ist als variierbar zu betrachten. Insbesondere können eine (vgl. Fig. 5 4), zwei (vgl. Fig. 3) oder mehrere (nicht dargestellt) Ankontaktierungen 4, 4a, 4b an den dielektrischen, keramischen Resonator 1 angebracht werden. Hierzu brauchen lediglich die Öffnungswinkel α der einzelnen Ankontaktierungsstrukturen entsprechend angepasst werden.

10

Die sichelförmige Ankontaktierungsstruktur 4, 4a, 4b kann insb. bei der in Fig. 5 dargestellten Anordnung des Resonators zur Ankontaktierungsstruktur - auch Abmaße annehmen, welche kleiner sind als die Abmaße des zylinderförmigen Resonators 1. In diesem Fall überdeckt der zylinderförmige Resonator 1 die metallischen Ankontaktierungsstrukturen 4, 4a, 4b wenigstens teilweise.

Fig. 2 zeigt in einer Draufsicht einen zweiten Aufbau eines Filterelements umfassend einen zylinderförmigen Resonator 1, an welchem eine Leitung 2 herangeführt ist, an deren Ende eine kreisringförmige Ankontaktierungsstruktur 4 ausgebildet ist.

Fig. 3 zeigt in einer Draufsicht einen dritten Aufbau eines Filterelements umfassend einen zylinderförmigen Resonator 1, an welchem zwei Leitungen 2, 3 herangeführt sind, an deren Enden jeweils eine separate sichelförmige Ankontaktierungsstruktur 4a, 4b ausgebildet ist, wobei beide Ankontaktierungsstrukturen 4a, 4b voneinander galvanisch getrennt sind. Derartige Ankontaktierungsstrukturen eignen sich insb. bei Rückkoppelschaltungen für die Herstellung von Oszillatoren: bei diesen Schaltungen wird der zylinderförmige Resonator 1

als schmalbandiger Bandpass verwendet, welcher beispielsweise in einem definierten Modi nur für eine bestimmte Frequenz durchlässig ist, weshalb man diesbezüglich auch von einem mehrmodigen Bandpassfilter spricht, weil z.B. der Grundmodus 5 oder Moden höherer Ordnung verwendet werden können. Der Resonator 1 wird dazu, wie in Fig. 3 gezeigt, mit zwei Leitungen 2, 3 ankontaktiert. Entscheidend für den Oszillatorkreisbetrieb ist, dass eine ausreichende Signalleistung von der ersten Leitung 2 an die zweite Leitung 3 abgegeben oder transmitiert wird. Dies wird durch die sichelförmigen Ankontaktierungsstrukturen 4a, 4b gewährleistet.

Fig. 4 zeigt in einer Draufsicht einen vierten Aufbau eines Filterelements umfassend einen zylinderförmigen Resonator 1, 15 an welchem zwei Leitungen 2, 3 herangeführt sind, welche in einer gemeinsamen sichelförmigen Ankontaktierungsstruktur 4 enden. Derartige Aufbauten, wo sich die Zuleitungen 2, 3 eine sichelförmige Ankontaktierungsstruktur 4, 4a, 4b teilen, eignen sich insbesondere als Bandsperrfilter.

20

Fig. 5 zeigt in einer Seitenansicht den Aufbau eines Filterelements nach einem der vorherigen Figuren 1 bis 4 oder 8 mit einem erfindungsgemäß zur Ankontaktierungsstruktur 4, 4a, 4b in positiver Richtung der z-Achse variabel beabstandeten, 25 beispielsweise an einer Abdeckung 5 angeordneten Resonator 1.

Fig. 6 zeigt in einer Seitenansicht den Aufbau eines Filterelements nach einem der vorherigen Figuren 1 bis 4 oder 8 mit einem herkömmlicherweise auf der Ankontaktierungsstruktur 4, 30 4a, 4b angeordneten, insbesondere aufgeklebten, Resonators 1.

Fig. 7 schließlich zeigt in einer Seitenansicht den Aufbau eines Filterelements nach einem der vorherigen Figuren 1 bis

4 oder 8 mit einem erfindungsgemäß zur Ankontaktierungsstruktur 4, 4a, 4b in negativer Richtung der z-Achse variabel beabstandeten, in einer Ausnehmung 8 der Leiterplatte 6 angeordneten Resonator 1.

5

Die Höhe des zylinderförmigen keramischen Resonators 1, welcher übrigens mitunter auch als Pille bezeichnet wird, über der Oberfläche einer Leiterplatte 6 muss erfindungsgemäß also nicht festgesetzt werden, sie ist variabel. Damit kann das
10 elektrische bzw. elektromagnetische Verhalten des Aufbaus zusätzlich abgestimmt werden.

Die mechanische Befestigung des zylinderförmigen Resonators 1 kann dabei mit Hilfe eines geeigneten Befestigungsmaterials,
15 insbesondere eines Klebers 7 oder dergleichen, auf einem beliebigen Gegenstand 5, welcher beispielsweise eine einfache Haltefläche sein kann, die sich in der näheren Umgebung zur Oberfläche der Leiterplatte 6 befindet, angebracht werden (vgl. Fig. 5). Vorteilhafter Weise ist der Gegenstand 5 eine
20 Abdeckung, wie sie bei der Ausgestaltung von Oszillatorschaltungen oder elektrischen bzw. elektromagnetischen Filtern in fast allen praktischen Fällen oberhalb der Pille (d.h. in positiver z-Richtung) auszubilden ist. Diese Abdeckung kann beispielsweise aus Metall oder absorptiven Materialien, wie
25 z.B. Kunststoff, ausgebildet werden.

Alternativ - oder ggf. kumulativ (nicht dargestellt) - hierzu kann der zylinderförmige keramische Resonator 1 erfindungsgemäß sogar im negativen Wertebereich zur Ankontaktierungsstruktur 4, 4a, 4b angeordnet werden, insbesondere - wie in Fig. 7 gezeigt - wenn in der Leiterplatte 6 eine Ausnehmung 8 für den Resonator 1 ausgebildet ist. Besonders vorteilhaft dabei sind Ausgestaltungen von Ausnehmungen 8, welche eine

Art selbstzentrierende Montage des Resonators 1 zur Ankontaktierungsstruktur 4, 4a, 4b erlauben. Lediglich ergänzend sei wiederum erwähnt, dass bei der Ausgestaltung von Oszillatorschaltungen eine Abdeckung (nicht dargestellt) oberhalb der 5 Pille (d.h. in positiver z-Richtung) derartiger Filterelemente auszubilden ist.

- Die Erfindung beinhaltet die variabel beabstandete Anordnung eines Resonators 1 zu einer Ankontaktierungsstruktur 4, 4a, 10 4b, welche eine, zwei oder mehr Zu- bzw. Ableitungen 2, 3 umfasst. Mit der vorliegenden Erfindung lässt sich in vorteilhafter Weise die transmittierte Signalleistung im Vergleich zu konventionellen Ankopplungsstrukturen (vgl. noch einmal den in Fig. 8 dargestellten Bandpassfilter) wesentlich erhöhen. Damit kann ein sicheres Anschwingen und ein stabiler Betrieb eines mit dieser Filterstruktur aufgebauten Oszillators 15 bei praktischen Betriebsbedingungen (z.B. über einen großen Temperaturbereich) erreicht werden.
- 20 Die Positioniergenauigkeit des zylinderförmigen Resonators 1 ist sehr gering. Dies ermöglicht eine einfache und kostengünstige Fertigung, bei welcher der Resonator 1 nur in die vorzugsweise selbstzentrierende Mitte wenigstens einer von der Ankontaktierungsstruktur 4, 4a, 4b umgebenen Ausnehmung 8 25 geklebt werden muss.

Die vorliegende Erfindung wurde anhand eines Filterelements mit einem zylinderförmigen, dielektrischen Resonator 1 beschrieben. Sie ist jedoch nicht auf diese Art Resonatoren beschränkt. Insbesondere können jedwede Art rotationssymmetrischer Resonatoren – gleich ob massiv ("disk-type") oder als Hohl- bzw. Teilhohlkörper ("cylinder-type") ausgebildet – Gegenstand erfindungsgemäßer Ankontaktierungen sein.

Die vorliegende Erfindung eignet sich insbesondere für den Einsatz in Oszillatorschaltungen mit Betriebsfrequenzen größer 18 GHz, wie sie typischerweise in Außenraumsystemen eines Kraftfahrzeuges wie Lane Departure Warning (LDW), Blind Spot Detection (BSD) oder Rear View Detection etc. zunehmend Verwendung finden.

Patentansprüche

1. Filterelement geeignet zur Filterung elektromagnetischer Wellen, insbesondere Bandpassfilter oder Bandsperrfilter, auch ausgeführt als Reflektionsfilter oder dergleichen; umfassend
 - einen dielektrischen, zylinderförmigen Resonator (1); sowie
 - eine oder mehrere Leitungen (2, 3), welche elektromagnetische Wellen an den dielektrischen Resonator (1) heran- bzw. abführen;
 - wobei die Leitungen (2, 3) in einer Ankontaktierungsstruktur (4, 4a, 4b) enden;
dadurch gekennzeichnet,
 - dass die Leitungen (2, 3) nebst ihrer Ankontaktierung (4, 4a, 4b) Teil einer Leiterplattenstruktur sind;
 - dass der Resonator (1) durch die Leiterplatte (6) gehalten ist; und
 - dass der Resonator (1) zur Ankontaktierungsstruktur (4, 4a, 4b) beabstandet angeordnet ist;
 - wobei in der Leiterplatte (6) eine Ausnehmung (8) vorgesehen ist, in welcher der Resonator (1) mittels eines geeigneten Befestigungsmittels (7) angeordnet ist.
2. Filterelement, ggf. nach Anspruch 1, geeignet zur Filterung elektromagnetischer Wellen, insbesondere Bandpassfilter oder Bandsperrfilter, auch ausgeführt als Reflektionsfilter oder dergleichen; umfassend
 - einen dielektrischen, zylinderförmigen Resonator (1); sowie

- eine oder mehrere Leitungen (2, 3), welche elektromagnetische Wellen an den dielektrischen Resonator (1) heran- bzw. abführen;
- wobei die Leitungen (2, 3) in einer Ankontaktierungsstruktur (4, 4a, 4b) enden;
5 durch gekennzeichnet,
 - dass in der näheren Umgebung zur Ankontaktierungsstruktur (4, 4a, 4b) eine Haltefläche oder eine Abdeckung (5) vorgesehen ist;
 - dass der Resonator (1) durch die Haltefläche bzw. 10 Abdeckung (5) gehalten ist; und
 - dass der Resonator (1) zur Ankontaktierungsstruktur (4, 4a, 4b) variabel beabstandet angeordnet ist;
 - wobei in der Haltefläche bzw. der Abdeckung (5) eine 15 Ausnehmung (8) vorgesehen ist, in welcher der Resonator (1) mittels eines geeigneten Befestigungsmittels (7) angeordnet ist.
- 3. Filterelement nach Anspruch 1 oder 2, dadurch gekenn-
20 zeichnet, dass die Ausnehmung (8) dergestalt dimensioniert ist, dass eine selbstzentrierende Bestückung bzw. Montage des Resonators (1) ermöglicht ist.
- 4. Filterelement nach einem der Ansprüche 1 bis 3, dadurch
25 gekennzeichnet, dass als Befestigungsmittel (7) für den Resonator (1) ein Kleber oder Silicon verwendet wird.
- 5. Filterelement nach einem der Ansprüche 1 bis 4, dadurch
30 gekennzeichnet, dass jede Leitung (2, 3) jeweils in einer separat ausgebildeten Ankontaktierungsstruktur (4a, 4b) endet.

6. Filterelement nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass zwei oder mehr Leitungen (2, 3) in einer gemeinsam ausgebildeten Ankontaktierungsstruktur (4) enden.
5
7. Filterelement nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Ankontaktierungsstruktur (4, 4a, 4b) wenigstens abschnittsweise sichelförmig ausgebildet ist.
10
8. Filterelement nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Ankontaktierungsstruktur (4) als Kreisring ausgebildet ist.
15
9. Filterelement nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Ankontaktierungsstruktur (4, 4a, 4b) als Kreisbogensegment mit einem variablen Öffnungswinkel (α) kleiner 360° ausgebildet ist; bei zwei Leitungen insbesondere etwa 160° beträgt; bei drei Zu-
20 leitungen insbesondere etwa 110° ; bei vier Leitungen insbesondere etwa 75° beträgt.
25
10. Filterelement nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Ankontaktierungsstruktur (4, 4a, 4b) größere Abmaße als der zylinderförmige Resonator (1) aufweist.
30
11. Filterelement nach einem der Ansprüche 2 bis 9, dadurch gekennzeichnet, dass die Ankontaktierungsstruktur (4, 4a, 4b) kleinere Abmaße als der zylinderförmige Resonator (1) aufweist.

12. Filterelement nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Resonator (1) zur Ankontaktierungsstruktur (4, 4a, 4b) im Wesentlichen zentriert ausgerichtet ist.

5

13. Filterelement nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Resonator (1) eine Betriebsfrequenz größer 18 GHz aufweist.

10 14. Oszillator, insbesondere für Radaranlagen, LMDS-Verteildienste oder Satellitenempfänger, umfassend ein Filterelement zur Filterung elektromagnetischer Wellen nach einem der vorherigen Ansprüche.

15

1/2

FIG 1

FIG 2

FIG 3

2/2

FIG 4

FIG 5

FIG 6

FIG 7

FIG 8

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 H01P1/203 H01P1/213 H01P7/10

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 7 H01P H03B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	VIRDEE B S: "Effective technique for electronically tuning a dielectric resonator" 13 February 1997 (1997-02-13), ELECTRONICS LETTERS, IEE STEVENAGE, GB, PAGE(S) 301-302, XPO06007083 ISSN: 0013-5194 page 301, right-hand column, line 2 - line 22; figure 1 ----- -/-	1,5-12

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the International filing date but later than the priority date claimed

- *T* later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the International search

24 January 2005

Date of mailing of the international search report

31/01/2005

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
 Fax: (+31-70) 340-3016

Authorized officer

Pastor Jiménez, J-V

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	PATENT ABSTRACTS OF JAPAN vol. 1999, no. 04, 30 April 1999 (1999-04-30) & JP 11 027034 A (MURATA MFG CO LTD), 29 January 1999 (1999-01-29) abstract paragraph '0008! paragraphs '0025! - '0030!, '0032!; figures 4,5 -----	1
A	US 5 457 431 A (FUENTES CARLOS ET AL) 10 October 1995 (1995-10-10) column 3, line 11 - line 39; figure 2 column 3, line 56 - column 4, line 15 -----	1
A	EP 0 961 340 A (BOSCH GMBH ROBERT) 1 December 1999 (1999-12-01) paragraphs '0010!, '0011!; figure 1 paragraph '0018!; figure 3 -----	1

BEST AVAILABLE COPY

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP2004/052481

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
JP 11027034	A	29-01-1999	NONE			
US 5457431	A	10-10-1995	NONE			
EP 0961340	A	01-12-1999	DE EP	19823656 A1 0961340 A1		09-12-1999 01-12-1999

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
 IPK 7 H01P1/203 H01P1/213 H01P7/10

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
 IPK 7 H01P H03B

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EP0-Internal, PAJ

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	VIRDEE B S: "Effective technique for electronically tuning a dielectric resonator" 13. Februar 1997 (1997-02-13), ELECTRONICS LETTERS, IEE STEVENAGE, GB, PAGE(S) 301-302 , XP006007083 ISSN: 0013-5194 Seite 301, rechte Spalte, Zeile 2 - Zeile 22; Abbildung 1 ----- -/-	1,5-12

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmelde datum veröffentlicht worden ist
- "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- "P" Veröffentlichung, die vor dem internationalen Anmelde datum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

- "T" Spätere Veröffentlichung, die nach dem internationalen Anmelde datum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- "Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der Internationalen Recherche

24. Januar 2005

Absendedatum des internationalen Recherchenberichts

31/01/2005

Name und Postanschrift der Internationalen Recherchenbehörde
 Europäisches Patentamt, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
 Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Pastor Jiménez, J-V

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	PATENT ABSTRACTS OF JAPAN Bd. 1999, Nr. 04, 30. April 1999 (1999-04-30) & JP 11 027034 A (MURATA MFG CO LTD), 29. Januar 1999 (1999-01-29) Zusammenfassung Absatz '0008! Absätze '0025! - '0030!, '0032!; Abbildungen 4,5 -----	1
A	US 5 457 431 A (FUENTES CARLOS ET AL) 10. Oktober 1995 (1995-10-10) Spalte 3, Zeile 11 - Zeile 39; Abbildung 2 Spalte 3, Zeile 56 - Spalte 4, Zeile 15 -----	1
A	EP 0 961 340 A (BOSCH GMBH ROBERT) 1. Dezember 1999 (1999-12-01) Absätze '0010!, '0011!; Abbildung 1 Absatz '0018!; Abbildung 3 -----	1

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP2004/052481

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
JP 11027034	A	29-01-1999	KEINE		
US 5457431	A	10-10-1995	KEINE		
EP 0961340	A	01-12-1999	DE EP	19823656 A1 0961340 A1	09-12-1999 01-12-1999