

OpenMax with Clustering for Open-Set Classification

Dennys Huber February 5, 2024

University of Zurich

Table of contents

- 1. Open-Set
- 2. OpenMax
- 3. Approach
- 4. Discussion

Open-Set

Closed-Set Problem

(a) Distribution of the original dataset

(b) Closed-set classification problem

(c) Open-set classification problem

OpenMax

softmax

Introducing OpenMax

- Extension of SoftMax during testing
- · Distance based
- · Deep features
- Extreme Value Theory
- Heuristic

OpenMax Overview

Calibrating OpenMax

- Training
- Class representation
- \cdot Mean Activation Vector μ
- \cdot Features from penultimate layer ϕ
- Correctly classified samples
- · Weibull Distribution
- Tail size η & Distance Multiplier κ

Building a Weibull Distribution

OpenMax in Detail

For a testing sample:

- 1. Sort and select α classes (logit value)
- 2. Weibull Probability ω based on distance μ_i and ϕ
- 3. $\hat{z} = z \circ \omega$
- 4. $\hat{z}_{N+1} = \sum_{i} z_{i} (1 \omega_{i})$
- 5. $\operatorname{softmax}(\hat{z})$

Approach

Improving OpenMax

- Handling negative logits
 - · Value Shift
 - Adjust Probabilities
- Introducing weight factors
 - $\varphi_N = \frac{1}{N-1}$ • $\varphi_\omega = \frac{1}{\sum_i (1-\omega_i)}$
- · Removing alpha parameter

Research Questions 1

RQ1: Can OpenMax performance be enhanced by accounting for negative activation values?

Open-Set Classification Rate

Correct Classification Rate (CCR)

- Known samples
- Threshold θ

$$CCR(\theta) = \frac{|\{k_c | \operatorname{argmax}_{1 \le n \le N} y_{c,n} = \tau_c \land y_{c,n} \ge \theta\}|}{|K|}$$
(1)

False Positive Rate (FPR)

- · Unknown samples
- Threshold θ

$$\mathsf{FPR}(\theta) = \frac{|\{u_c | \operatorname{argmax}_{1 \le n \le N} y_{c,n} \ge \theta\}|}{|U|} \tag{2}$$

Defining Scoring System

- · Σ-Score Thresholding
- γ -Score $\gamma = \frac{(\gamma^+ + \gamma^-)}{2}$

$$\gamma^{+} = \frac{1}{|K|} \sum_{c=1}^{|K|} y_{\tau_c} \tag{3}$$

$$\gamma^{-} = \frac{1}{|U|} \sum_{c=1}^{|U|} \left(1 - \operatorname{argmax}_{1 \le n \le N} y_{c,n} \right) \tag{4}$$

Baseline (γ)

Baseline (Σ)

Results RQ1 (γ)

Results RQ1 (Σ)

Where to apply the clustering?

Introducing Clustering to OpenMax

Input Clustering:

- · Input data
- Per class
- · Each cluster a class

Features Clustering:

- Training Features
- Validation Features
- Per class

Combination of both types

Visualizing Clustering

Research Questions 2

RQ2: Can clustering improve OpenMax's performance?

Results RQ2 (γ)

Results RQ2 (Σ)

Research Questions 3

RQ3: If clustering improves OpenMax, which clustering type is optimal, and by using which parameters?

Results RQ3 (γ)

Results RQ3 (Σ)

Discussion

Limitations & Future Work

- Datasets
- Other Clusetring Algorithms
- Per clusters parameters
- · Costum Loss function

Questions?