Homework 4

ECON 7023: Econometrics II Maghfira Ramadhani March 18, 2022

Spring 2023

Chapter 6

Problem 6.8

The data in FERTIL1.RAW are a pooled cross section on more than a thousand U.S. women for the even years between 1972 and 1984, inclusive; the data set is similar to the one used by Sande (1992). These data can be used to study the relationship between women's education and fertility.

a. Use OLS to estimate a model relating number of children ever born to a woman (kids) to years of education, age, region, race, and type of environment reared in. You should use a quadratic in age and should include year dummies. What is the estimated relationship between fertility and education? Holding other factors fixed, has there been any notable secular change in fertility over the time period? Answer:

Number of obs =

- **OLS** Regression Output
 - . gen age2=age^2

Source

. reg kids educ age age2 black east northcen west farm othrural town smcity y74-y84

				— F(17)	7, 1111)	=	9.72
Model	399.610888	17	23.506522		> F	=	0.0000
Residual	2685.89841	1,111	2.4175503	3 R-sc	quared	=	0.1295
					R-squared	=	0.1162
Total	3085.5093	1,128	2.7353805		t MSE	=	1.5548
kids	Coefficient	Std. err.	t	P> t	[95% co	nf.	interval]
educ	1284268	.0183486	-7.00	0.000	164428	6	092425
age	.5321346	.1383863	3.85	0.000	.260606	5	.8036626
age2	005804	.0015643	-3.71	0.000	008873	3	0027347
black	1.075658	.1735356	6.20	0.000	.735163	1	1.416152
east	.217324	.1327878	1.64	0.102	043219	2	.4778672
northcen	.363114	.1208969	3.00	0.003	.12590	2	.6003261
west	.1976032	.1669134	1.18	0.237	129897	8	.5251041
farm	0525575	.14719	-0.36	0.721	341359	2	.2362443
othrural	1628537	.175442	-0.93	0.353	507088	7	.1813814
town	.0843532	.124531	0.68	0.498	159989	3	.3286957
smcity	.2118791	.160296	1.32	0.187	102637	9	.5263961
y74	.2681825	.172716	1.55	0.121	070703	9	.6070689
y76	0973795	.1790456	-0.54	0.587	44868	5	.2539261
y78	0686665	.1816837	-0.38	0.706	425148	3	.2878154
y80	0713053	.1827707	-0.39	0.697	4299	2	.2873093
y82	5224842	.1724361	-3.03	0.003	860821	4	184147
y84	5451661	.1745162	-3.12	0.002	887584	6	2027477
_cons	-7.742457	3.051767	-2.54	0.011	-13.7303	3	-1.754579

The OLS estimate shows that women with eight more years of education on average have about one fewer kid $(-0.128 \times 8 \approx -1)$, holding all other variables. The estimate on years of education is statistically very significant. Observing the year dummies coefficient, in almost periods except for the year 1974, fertility has been declining with a negative sign. However, the year dummy variables that

are significant are the year dummy for 1982 and 1984, when women had about half a child less than a similar type of woman than the base year 1972.

b. Reestimate the model in part a, but use motheduc and fatheduc as instruments for educ. First, check that these instruments are sufficiently partially correlated with educ. Test whether educ is in fact exogenous in the fertility equation. Answer:

From the reduced form regression result, we can see that educ is very significantly partially correlated with feduc and meduc. Also, the F-test result indicates the same thing with a p-value of zero.

Reduced Form Regression Output

. reg educ age age2 black east northcen west farm othrural town smcity y74-y84 meduc feduc

Source	SS	df	MS		er of obs	=	1,129
					, 1110)	=	24.82
Model	2256.26171	18	125.347873		> F	=	0.0000
Residual	5606.85432	1,110	5.05122013		uared	=	0.2869
					R-squared	=	0.2754
Total	7863.11603	1,128	6.9708475	5 Root	MSE	=	2.2475
educ	Coefficient	Std. err.	t	P> t	[95% con	f.	interval]
age	2243687	.2000013	-1.12	0.262	616792		.1680546
age2	.0025664	.0022605	1.14	0.256	001869		.0070018
black	.3667819	.2522869	1.45	0.146	1282311		.861795
east	.2488042	.1920135	1.30	0.195	1279462		.6255546
northcen	.0913945	.1757744	0.52	0.603	2534931		.4362821
west	.1010676	.2422408	0.42	0.677	3742339		.5763691
farm	3792615	.2143864	-1.77	0.077	7999099		.0413869
othrural	560814	.2551196	-2.20	0.028	-1.061385		060243
town	.0616337	.1807832	0.34	0.733	2930816		.416349
smcity	.0806634	.2317387	0.35	0.728	3740319		.5353588
y74	.0060993	.249827	0.02	0.981	4840872		.4962858
y76	.1239104	.2587922	0.48	0.632	3838667		.6316874
y78	.2077861	.2627738	0.79	0.429	3078033		.7233755
y80	.3828911	.2642433	1.45	0.148	1355816		.9013638
y82	.5820401	.2492372	2.34	0.020	.0930108		1.071069
y84	.4250429	.2529006	1.68	0.093	0711741		.92126
meduc	.1723015	.0221964	7.76	0.000	.1287499		.2158531
feduc	.2074188	.0254604	8.15	0.000	.1574629		.2573747
_cons	13.63334	4.396773	3.10	0.002	5.006421		22.26027

Testing Joint Significant of meduc and feduc in the Reduced Form

- . test meduc feduc
- (1) meduc = 0
- (2) feduc = 0

F(2, 1110) = 155.79Prob > F =

Endogeneity Test: Predict Residuals from Reduce Form and Include in the Original Regression

- . predict vhat, resid
- . reg kids educ age age2 black east northcen west farm othrural town smcity y74-y84 vhat

Source	SS	df	MS	Number of c F(18, 1110)		1,129 9.21
Model Residual	400.802376 2684.70692	18 1,110	22.2667987 2.41865489	Prob > F R-squared	=	0.0000 0.1299
Total	3085.5093	1,128	2.73538059	Adj R-squar Root MSE	red =	0.1158 1.5552
kids	Coefficient	Std. err.	t I	?> t [95%	conf.	interval]
educ age	1527395 .5235536	.0392012 .1389568).000229).000 .250	96562 9059	0758227 .7962013
age2 black	005716 1.072952	.0015697		0.000008 0.000 .732	37959 22958	0026362 1.413609
east northcen	. 2285554	.1337787	1.71	0.088033		.491043

west	.2076398	.1675628	1.24	0.216	1211357	.5364153
farm	0770015	.1512869	-0.51	0.611	373842	.2198389
othrural	1952451	.1814491	-1.08	0.282	5512671	.1607769
town	.08181	.1246122	0.66	0.512	162692	.3263119
smcity	.2124996	.160335	1.33	0.185	1020943	.5270936
y74	.2721292	.172847	1.57	0.116	0670145	.6112729
y76	0945483	.1791319	-0.53	0.598	4460236	.2569269
y78	0572543	.1824512	-0.31	0.754	4152424	.3007337
y80	053248	.1846139	-0.29	0.773	4154795	.3089836
y82	4962149	.1764897	-2.81	0.005	842506	1499238
y84	5213604	.1778207	-2.93	0.003	8702631	1724578
vhat	.0311374	.0443634	0.70	0.483	0559081	.1181829
_cons	-7.241244	3.134883	-2.31	0.021	-13.39221	-1.09028

Check Estimation Result from 2SLS

. ivreg kids age age2 black east northcen west farm othrural town smcity y74-y84 (educ= meduc feduc) Instrumental variables 2SLS regression

Source	SS	df	MS		er of obs	=	1,129
					', 1111)	=	7.72
Model	395.36632	17	23.2568424	4 Prob	> F	=	0.0000
Residual	2690.14298	1,111	2.42137082	2 R-sc	uared	=	0.1281
				- Adj	R-squared	=	0.1148
Total	3085.5093	1,128	2.73538059	9 Root	MSE	=	1.5561
kids	Coefficient	Std. err.	t	P> t	[95% con	f.	interval]
educ	1527395	.0392232	-3.89	0.000	2296993		0757796
age	.5235536	.1390348	3.77	0.000	.2507532		.796354
age2	005716	.0015705	-3.64	0.000	0087976		0026345
black	1.072952	.1737155	6.18	0.000	.732105		1.4138
east	.2285554	.1338537	1.71	0.088	0340792		.4911901
northcen	.3744188	.122061	3.07	0.002	.1349228		.6139148
west	.2076398	.1676568	1.24	0.216	1213199		.5365995
farm	0770015	.1513718	-0.51	0.611	3740083		.2200053
othrural	1952451	.181551	-1.08	0.282	5514666		.1609764
town	.08181	.1246821	0.66	0.512	162829		.3264489
smcity	.2124996	.160425	1.32	0.186	1022706		.5272698
y74	.2721292	.172944	1.57	0.116	0672045		.6114629
у76	0945483	.1792324	-0.53	0.598	4462205		.2571239
у78	0572543	.1825536	-0.31	0.754	415443		.3009343
у80	053248	.1847175	-0.29	0.773	4156825		.3091865
у82	4962149	.1765888	-2.81	0.005	8427		1497297
y84	5213604	.1779205	-2.93	0.003	8704586		1722623
_cons	-7.241244	3.136642	-2.31	0.021	-13.39565		-1.086834

Instrumented: educ

Instruments: age age2 black east northcen west farm othrural town smcity y74 y76 y78 y80 y82 y84 meduc feduc

Then using a residual-based test of *educ* against the null that *educ* is exogenous, the p-value of the residual from the reduced form in the original regression model is around one-half, showing little evidence that *educ* is endogenous in the equation. From the 2SLS estimate, the coefficient on *educ* is larger than the one from OLS, but since we find that there is not enough evidence of endogeneity the difference can be due to the sampling problem.

c. Now allow the effect of education to change over time by including interaction terms such as $y74 \cdot educ$, $y76 \cdot educ$, and so on in the model. Use interactions of time dummies and parents' education as instruments for the interaction terms. Test that there has been no change in the relationship between fertility and education over time.

Answer:

Since there is no strong evidence of endogeneity of *educ*, I run the full model using OLS, and test the joint significance for all *time* and *educ* interaction terms. Also, I performed regression for the full model using 2SLS to compare.

Estimation Result from OLS for the Full Model

[.] ivreg kids age age2 black east northcen west farm othrural town smcity y74 educ y74educ-y84educ Instrumental variables 2SLS regression

Source	SS	df	MS		er of obs	=	1,129
					, 1110)	=	9.44
Model	409.673224	18	22.7596236	5 Prob	> F	=	0.0000
Residual	2675.83608	1,110	2.41066313		uared	=	0.1328
					R-squared	=	0.1187
Total	3085.5093	1,128	2.73538059	9 Root	MSE	=	1.5526
kids	Coefficient	Std. err.	t	P> t	[95% con	f.	interval]
age	.510053	.1384743	3.68	0.000	.2383522		.7817539
age2	0055635	.001565	-3.55	0.000	0086342		0024928
black	1.06328	.1730631	6.14	0.000	.7237118		1.402847
east	.210392	.1326161	1.59	0.113	0498146		.4705986
northcen	.3558111	.1207703	2.95	0.003	.1188473		.5927749
west	. 1844557	.166833	1.11	0.269	142888		.5117993
farm	054589	.146993	-0.37	0.710	3430044		.2338264
othrural	1670392	.1751397	-0.95	0.340	5106815		.176603
town	.0851755	.1244419	0.68	0.494	1589925		.3293434
smcity	.2153475	.1600898	1.35	0.179	0987653		.5294602
y74	200312	.6590335	-0.30	0.761	-1.493404		1.09278
educ	112692	.022643	-4.98	0.000	1571199		0682642
y74educ	.0344892	.0534433	0.65	0.519	0703721		.1393505
y76educ	0111314	.0143594	-0.78	0.438	039306		.0170433
y78educ	011372	.0143495	-0.79	0.428	0395271		.0167831
y80educ	0095471	.0142869	-0.67	0.504	0375795		.0184853
y82educ	0441485	.0134187	-3.29	0.001	0704773		0178196
y84educ	0472872	.0135507	-3.49	0.001	0738752		0206993
_cons	-7.387245	3.049727	-2.42	0.016	-13.37113		-1.403364

(no endogenous regressors)

Test Joint Significant of Interaction Variables

- . test y74educ y76educ y78educ y80educ y82educ y84educ
- (1) y74educ = 0
- (1) y14educ = 0 (2) y76educ = 0 (3) y78educ = 0 (4) y80educ = 0 (5) y82educ = 0

- (6) y84educ = 0

F(6, 1110) = 4.11 Prob > F = 0.0004

Estimation Result from 2SLS for the Full Model

. ivreg kids age age 2 black east northcen west farm othrural town smcity y74 (educ y74educ-y84educ = meduc feduc y74educ-y84educ-y Instrumental variables 2SLS regression

Source	SS	df	MS		per of obs	=	1,129
				- F(18	3, 1110)	=	7.40
Model	406.162425	18	22.564579	2 Prol	o > F	=	0.0000
Residual	2679.34688	1,110	2.4138260	1 R-sc	quared	=	0.1316
				- Adi	R-squared	=	0.1176
Total	3085.5093	1,128	2.7353805	•	t MSE	=	1.5536
kids	Coefficient	Std. err.	t	P> t	[05% 64	onf	interval]
KIUS	COETITCIENT	btu. eff.		F/ U		JIII .	Intervar]
educ	1281456	.0442233	-2.90	0.004	214916	62	041375
y74educ	.0392542	.1082955	0.36	0.717	173232	28	.2517412
y76educ	0188478	.015178	-1.24	0.215	048628	35	.010933
y78educ	0174725	.0150433	-1.16	0.246	046989	91	.0120441
y80educ	0096295	.0151773	-0.63	0.526	039408	39	.0201498
y82educ	0477111	.0144041	-3.31	0.001	075973	34	0194487
y84educ	0477952	.0143867	-3.32	0.001	076023	33	0195671
age	.4979232	.1398254	3.56	0.000	.22357	12	.7722752
age2	0054354	.0015787	-3.44	0.001	00853	33	0023378
black	1.061408	.1737569	6.11	0.000	.720478	38	1.402337
east	.2187422	.1337294	1.64	0.102	043648	36	.4811331
northcen	.3640495	.1219907	2.98	0.003	.12469		.6034078
west	.1850113	.1676614	1.10	0.270	14395		.5139803
farm	0666629	.1511741	-0.44	0.659	363282		.2299564
Idim	.0000029	.1011/41	0.11	0.003	.000202		.2233004

```
-.1829343
                          .1810601
                                       -1.01
                                                0.313
                                                          -.538193
                                                                        .1723244
othrural
                                                         -.1555407
    t.own
              .0891165
                          .1246913
                                        0.71
                                                0.475
                                                                        .3337737
  smcity
              .2171135
                          .1603366
                                        1.35
                                                0.176
                                                         -.0974836
                                                                        .5317106
             -.3023562
                          1.331661
                                       -0.23
                                                0.820
                                                          -2.915213
                                                                        2.310501
     y74
   _cons
             -6.874234
                          3.170511
                                       -2.17
                                                0.030
                                                           -13.0951
                                                                       -.6533642
```

Instrumented: educ y74educ y76educ y80educ y82educ y84educ
Instruments: age age2 black east northcen west farm othrural town smcity
y74 meduc feduc y74meduc y76meduc y78meduc y80meduc y82meduc
y84meduc y74feduc y76feduc y78feduc y80feduc y82feduc y84feduc

Test Joint Significant of Interaction Variables

```
. test y74educ y76educ y78educ y80educ y82educ y84educ
(1)
      v74educ = 0
      y76educ = 0
(2)
      y78educ = 0
(3)
(4)
      y80educ = 0
      y82educ = 0
(5)
      y84educ = 0
      F(
          6, 1110) =
                         3.45
           Prob > F =
                         0.0022
```

From the OLS model, the individual significance of the interaction terms is significant in the last two years that is 1984 and 1982 with negative coefficients. A similar result is obtained from the 2SLS estimate, with relatively close values to those from the OLS. From the joint significance of all interaction terms, there is enough evidence that there have been changes in the relationship between fertility and education over time.

Problem 6.9

Use the data in INJURY.RAW for this question.

a. Using the data for Kentucky, reestimate equation (6.54) adding as explanatory variables male, married, and a full set of industry- and injury-type dummy variables. How does the estimate on $afchnge \cdot highearn$ change when these other factors are controlled for? Is the estimate still statistically significant?

Answer:

OLS Regression Output

. reg ldurat afchnge highearn afhigh if ky

Source	SS	df	MS	Numb	er of obs	s =	5,626
				- F(3,	5622)	=	39.54
Model	191.071442	3	63.690480	7 Prob	> F	=	0.0000
Residual	9055.9345	5,622	1.6108030	1 R-sq	uared	=	0.0207
				- Adj	R-squared	d =	0.0201
Total	9247.00594	5,625	1.6439121	7 Root	MSE	=	1.2692
	'						
ldurat	Coefficient	Std. err.	t	P> t	[95% d	conf.	interval]
ldurat ————————————————————————————————————	Coefficient .0076573	Std. err.	0.17	P> t 0.864	[95% d		.0953204
						058	
afchnge	.0076573	.0447173	0.17	0.864	08000	058 652	.0953204
afchnge highearn	.0076573	.0447173	0.17 5.41	0.864	08000 .16346	058 652 973	.0953204

OLS Regression Output with Added Explanatory Variables

. reg ldurat afchnge highearn afhigh male married head-construc if ky Source SS df MS Number of obs 5,349 F(14, 5334) 16.37 25.6029852 358,441793 Prob > F 0.0000 Model 14 Residual 8341.41206 5.334 1.56381928 R-squared 0.0412 Adj R-squared 0.0387 8699.85385 1.62674904 Total 5.348 Root MSE 1.2505 Coefficient Std. err. P>|t.| [95% conf. interval] ldurat t.

afchnge	.0106274	.0449167	0.24	0.813	0774276	.0986824
highearn	.1757598	.0517462	3.40	0.001	.0743161	.2772035
afhigh	. 2308768	.0695248	3.32	0.001	.0945798	.3671738
male	0979407	.0445498	-2.20	0.028	1852766	0106049
married	.1220995	.0391228	3.12	0.002	.0454027	.1987962
head	5139003	.1292776	-3.98	0.000	7673372	2604634
neck	.2699126	.1614899	1.67	0.095	0466737	.5864988
upextr	178539	.1011794	-1.76	0.078	376892	.0198141
trunk	.1264514	.1090163	1.16	0.246	0872651	.340168
lowback	0085967	.1015267	-0.08	0.933	2076305	.1904371
lowextr	1202911	.1023262	-1.18	0.240	3208922	.0803101
occdis	.2727118	.210769	1.29	0.196	1404816	.6859052
manuf	1606709	.0409038	-3.93	0.000	2408591	0804827
construc	.1101967	.0518063	2.13	0.033	.0086352	.2117581
_cons	1.245922	.1061677	11.74	0.000	1.03779	1.454054

Compared to without adding the new variables, the estimated coefficient on the interaction terms is now higher at 0.23 than at .19 from the previous result. It is also statistically more significant with a p-value of 0.001. Adding the new variables only slightly affects the standard error on the interaction terms

- b. What do you make of the small R-squared from part a? Does this mean the equation is useless? Answer:
 - Comparing the R-squared that is quite small at 4.1% and adjusted R-square of 3.9%. It means that our model does not explain much of the variation. It means that we can not really use our model for making good predictions considering the variable that we have included so far. However, we can still get a good causal inference if the coefficient is statistically significant.
- c. Estimate equation (6.54) using the data for Michigan. Compare the estimate on the interaction term for Michigan and Kentucky, as well as their statistical significance. Answer:

OLS Regression Output

. reg ldurat afchnge highearn afhigh if \min

Source	SS	df	MS		er of obs	=	1,524
Model Residual	34.3850177 2879.96981	3 1,520	11.461672 1.8947169	6 Prob 8 R-sc	F(3, 1520) Prob > F R-squared		6.05 0.0004 0.0118
Total	2914.35483	1,523	1.9135619		R-squared MSE	=	0.0098 1.3765
ldurat	Coefficient	Std. err.	t	P> t	[95% co	nf.	interval]
afchnge highearn afhigh _cons	.0973808 .1691388 .1919906 1.412737	.0847879 .1055676 .1541699 .0567172	1.15 1.60 1.25 24.91	0.251 0.109 0.213 0.000	068932 037934 110417 1.30148	8 6	.2636945 .3762124 .4943988 1.523989

Comparing the estimate for Michigan and Kentucky we have similar estimates on the interaction terms consecutively .192 and .191, although the statistical significance for Michigan is lower probably due to the smaller sample size compared to those of Kentucky.

Problem 6.11

The following wage equation represents the populations of working people in 1978 and 1985:

$$\log(wage) = \beta_0 + \delta_0 y 85 + \beta_1 e duc + \delta_1 y 85 \cdot e duc + \beta_2 e x p e r + \beta_3 e x p e r^2 + \beta_4 u n i o n + \beta_5 f e m a l e + \delta_5 y 85 \cdot f e m a l e + u.$$

where the explanatory variables are standard. The variable *union* is a dummy variable equal to one if the person belongs to a union and zero otherwise. The variable y85 is a dummy variable equal to one if the observation comes from 1985 and zero if it comes from 1978. In the file CPS78_85.RAW, there are 550 workers in the sample in 1978 and a different set of 534 people in 1985.

a. Estimate this equation and test whether the return to education has changed over the seven-year period.

Answer:

Table show the estimates of the regression model. The return to education increased by 1.85 percent between the years 1978 and 1985 interpreted from the coefficient on $y85 \cdot educ$, which is statistically significant at 5% level (two-sided).

OLS Regression Output

reo	lwage	v285	educ	y85educ	eyner	eyperso	un i on	female	v85fem

Source	SS	df	MS		er of obs	=	1,084
Model	135.992074	8	16.9990092	Prob		=	99.80
Residual	183.099094	1,075	.170324738		uared	=	0.4262 0.4219
Total	319.091167	1,083	. 29463635	•	R-squared MSE	=	.4127
lwage	Coefficient	Std. err.	t	P> t	[95% cc	onf.	interval]
y85	.1178062	.1237817	0.95	0.341	12507	75	.3606874
educ	.0747209	.0066764	11.19	0.000	.061620)6	.0878212
y85educ	.0184605	.0093542	1.97	0.049	.00010)6	.036815
exper	.0295843	.0035673	8.29	0.000	.022584	1 6	.036584
expersq	0003994	.0000775	-5.15	0.000	000551	16	0002473
union	.2021319	.0302945	6.67	0.000	.142688	38	.2615749
female	3167086	.0366215	-8.65	0.000	388566	33	244851
y85fem	.085052	.051309	1.66	0.098	015625	51	. 185729
_cons	. 4589329	.0934485	4.91	0.000	.275570)7	.642295

b. What has happened to the gender gap over the period?

Answer:

The positive coefficient on y85fem indicates that the estimated gender gap decreases around 8.5%. The coefficient on y85fem is significant at the 10% level against the two-tail test. The gender wage difference is still large at approximately $(-31.67 + 8.5) \approx -23\%$ with women receiving lower wages.

c. Wages are measured in nominal dollars. What coefficients would change if we measure wage in 1978 dollars in both years? (Hint: Use the fact that for all 1985 observations, $\log(wage_i/P85) = \log(wage_i) - \log(P85)$, where P85 is the common deflator; P85 = 1.65 according to the Consumer Price Index.) Answer:

If we use the 1978 dollars wage, the coefficient on y85 will change, mathematically

$$\beta'_{y85} = \frac{\partial (\log wage_i - \log P85)}{\partial y85} = \underbrace{\frac{\partial \log wage_i}{\partial y85}}_{\beta_{y85}} - \log P85 = .118 - \log(1.65) = -.118 - .501 \approx -.383$$

- d. Is there evidence that the variance of the error has changed over time? Answer:
- e. With wages measured nominally, and holding other factors fixed, what is the estimated increase in nominal wage for a male with 12 years of education? Propose a regression to obtain a confidence interval for this estimate. (Hint: You must replace $y85 \cdot educ$ with something else.)

 Answer:

The coefficient that we are interested are actually $\hat{\theta} = \beta_{y85} + 12\beta_{y85educ}$. According to the introductory econometrics textbook, we can transform the regression model by replacing $y85 \cdot educ$ with $y85 \cdot (educ - 12)$ and then after performing the regression the coefficient that we are interested, $\hat{\theta}$ will be the coefficient on y85. The result are showing the same results as follows. Regression with Transformed Data to Test Linear Combination

- . gen y85xeduc_12=y85*(educ-12)
- . reg lwage y85 educ y85xeduc_12 exper expersq union female y85fem

Source	SS	df	MS	Number of obs	=	1,084
				F(8, 1075)	=	99.80

Model	135.992074	8	16.9990092	2 Prob	> F	=	0.0000
Residual	183.099094	1,075	.170324738	R-sq	uared	=	0.4262
				- Adj	R-squared	=	0.4219
Total	319.091167	1,083	.29463635	Root	MSE	=	.4127
	· 						
lwage	Coefficient	Std. err.	t	P> t	[95% cc	onf.	interval]
у85	.3393326	.0340099	9.98	0.000	.272599	93	.4060659
educ	.0747209	.0066764	11.19	0.000	.061620)6	.0878212
y85xeduc_12	.0184605	.0093542	1.97	0.049	.00010)6	.036815
exper	.0295843	.0035673	8.29	0.000	.022584	<u> 1</u> 6	.036584
expersq	0003994	.0000775	-5.15	0.000	000551	.6	0002473
union	.2021319	.0302945	6.67	0.000	.142688	88	.2615749
female	3167086	.0366215	-8.65	0.000	388566	3	244851
y85fem	.085052	.051309	1.66	0.098	015625	51	. 185729
_cons	. 4589329	.0934485	4.91	0.000	.275570)7	.642295

Compare with Regular Stata Result

- . quietly reg lwage y85 educ y85educ exper expersq union female y85fem
- . lincom y85 +12*y85educ
- (1) y85 + 12*y85educ = 0

lwage	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
(1)	.3393326	.0340099	9.98	0.000	.2725993	.4060659

Chapter 7

Problem 7.2

In model (7.11), maintain Assumptions SOLS.1 and SOLS.2, and assume $B = E(\mathbf{X}_i'\mathbf{u}_i\mathbf{u}_i'\mathbf{X}_i) = E(\mathbf{X}_i'\mathbf{\Omega}\mathbf{X}_i)$, where $\mathbf{\Omega} \equiv E(\mathbf{u}_i\mathbf{u}_i')$. (The last assumption is a different way of stating the homoskedasticity assumption for systems of equations; it always holds if assumption (7.53) holds.) Let $\hat{\boldsymbol{\beta}}_{SOLS}$ denote the system OLS estimator.

a. Show that $\operatorname{Avar}(\widehat{\boldsymbol{\beta}}_{SOLS}) = [\operatorname{E}(\mathbf{X}_i'\mathbf{X}_i)]^{-1}[\operatorname{E}(\mathbf{X}_i'\mathbf{\Omega}\mathbf{X}_i)][\operatorname{E}(\mathbf{X}_i'\mathbf{X}_i)]^{-1}/N$.

Recall model (7.11),

$$\mathbf{y}_i = \mathbf{X}_i \boldsymbol{\beta} + \mathbf{u}_i,$$

where $\boldsymbol{\beta}$ is a $K \times 1$ vector, \mathbf{X}_i is a $G \times K$ data matrix and \mathbf{u}_i is a $G \times 1$ vector of error. Also, recall Assumptions SOLS.1: $\mathrm{E}(\mathbf{X}_i'\mathbf{u}_i) = 0$, and SOLS.2: $\mathbf{A} = \mathrm{E}(\mathbf{X}_i'\mathbf{X}_i)$ is nonsingular (has rank K). Under these two assumption we can write $\boldsymbol{\beta}$ as the following

$$\mathbf{y}_{i} = \mathbf{X}_{i}\boldsymbol{\beta} + \mathbf{u}_{i} \Leftrightarrow \mathbf{X}_{i}'\mathbf{y}_{i} = \mathbf{X}_{i}'\mathbf{X}_{i}\boldsymbol{\beta} + \mathbf{X}_{i}'\mathbf{u}_{i}$$
$$\Leftrightarrow \mathbf{E}(\mathbf{X}_{i}'\mathbf{y}_{i}) = \mathbf{E}(\mathbf{X}_{i}'\mathbf{X}_{i})\boldsymbol{\beta} + \mathbf{E}(\mathbf{X}_{i}'\mathbf{u}_{i})$$
$$\Leftrightarrow \boldsymbol{\beta} = \mathbf{E}(\mathbf{X}_{i}'\mathbf{X}_{i})^{-1}\mathbf{E}(\mathbf{X}_{i}'\mathbf{y}_{i})$$

Now from the analogy principle we know that $\hat{\boldsymbol{\beta}} = (N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i}' \mathbf{X}_{i})^{-1} (N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i}' \mathbf{y}_{i})$. Substitute the population model and with some algebraic manipulation, we can then write $\sqrt{N}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})$ as the following

$$\sqrt{N}(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}) = (N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i}' \mathbf{X}_{i})^{-1} (N^{-1/2} \sum_{i=1}^{N} \mathbf{X}_{i}' \mathbf{u}_{i}).$$

Since $E(\mathbf{X}_i'\mathbf{u}_i) = 0$ from CLT we have $N^{-1/2} \sum_{i=1}^N \mathbf{X}_i'\mathbf{u}_i \stackrel{a}{\sim} \mathbb{N}(\mathbf{0}, \mathbf{B})$. Further, we can then write $N^{-1/2} \sum_{i=1}^N \mathbf{X}_i'\mathbf{u}_i = O_p(1)$, and by LLN and Slutsky's theorem we also have $(\mathbf{X}\mathbf{X}/N)^{-1} = \mathbf{A}^{-1} + o_p(1)$.

Then we can rewrite,

$$\sqrt{N}(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}) = \mathbf{A}^{-1}(N^{-1/2} \sum_{i=1}^{N} \mathbf{X}_{i}' \mathbf{u}_{i}) + [(\mathbf{X}'\mathbf{X}/N)^{-1} - \mathbf{A}^{-1}](N^{-1/2} \sum_{i=1}^{N} \mathbf{X}_{i}' \mathbf{u}_{i})
= \mathbf{A}^{-1}(N^{-1/2} \sum_{i=1}^{N} \mathbf{X}_{i}' \mathbf{u}_{i}) + o_{p}(1) \cdot O_{p}(1) = \mathbf{A}^{-1}(N^{-1/2} \sum_{i=1}^{N} \mathbf{X}_{i}' \mathbf{u}_{i}) + o_{p}(1).$$

Thus we can derive now by CLT, that $\sqrt{N}(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \stackrel{a}{\sim} \mathbb{N}(\mathbf{0}, \mathbf{A}^{-1}\mathbf{B}\mathbf{A}^{-1}) = \mathbb{N}(\mathbf{0}, \mathbf{A}^{-1}\mathbf{E}(\mathbf{X}_i'\mathbf{\Omega}\mathbf{X}_i)\mathbf{A}^{-1})$. We can write it similarly as $\operatorname{Avar}(\widehat{\boldsymbol{\beta}}_{SOLS}) = [\mathbf{E}(\mathbf{X}_i'\mathbf{X}_i)]^{-1}[\mathbf{E}(\mathbf{X}_i'\mathbf{\Omega}\mathbf{X}_i)][\mathbf{E}(\mathbf{X}_i'\mathbf{X}_i)]^{-1}/N$.

b. How would you estimate the asymptotic variance in part a? Answer:

To estimate $\operatorname{Avar}(\widehat{\boldsymbol{\beta}}_{SOLS}) = [\operatorname{E}(\mathbf{X}_i'\mathbf{X}_i)]^{-1}[\operatorname{E}(\mathbf{X}_i'\mathbf{\Omega}\mathbf{X}_i)][\operatorname{E}(\mathbf{X}_i'\mathbf{X}_i)]^{-1}/N$, we can use analogy principle. From LLN we know that, $\widehat{\mathbf{A}} = \mathbf{X}'\mathbf{X}/N = N^{-1}\sum_{i=1}^{N}\mathbf{X}_i'\mathbf{X}_i \overset{p}{\to} \operatorname{E}(\mathbf{X}_i'\mathbf{X}_i)$. Then to estimate the \mathbf{u}_i we use the SOLS residuals $\widehat{\mathbf{u}}_i = \mathbf{y}_i - \mathbf{X}_i\widehat{\boldsymbol{\beta}}$ which is a $G \times 1$ vector of residuals. Then we have $\widehat{\mathbf{\Omega}} = N^{-1}\sum_{i=1}^{N}\widehat{\mathbf{u}}_i\widehat{\mathbf{u}}_i' \overset{p}{\to} \mathbf{\Omega}$. Then we can estimate $\operatorname{Avar}(\widehat{\boldsymbol{\beta}}_{SOLS})$ by

$$\widehat{\mathbf{V}} = \widehat{\mathbf{A}}^{-1} \left(\sum_{i=1}^{N} \mathbf{X}_{i}' \widehat{\mathbf{\Omega}} \mathbf{X}_{i} \right) \widehat{\mathbf{A}}^{-1} = \left(\sum_{i=1}^{N} \mathbf{X}_{i}' \mathbf{X}_{i} \right)^{-1} \left(\sum_{i=1}^{N} \mathbf{X}_{i}' \widehat{\mathbf{\Omega}} \mathbf{X}_{i} \right) \left(\sum_{i=1}^{N} \mathbf{X}_{i}' \mathbf{X}_{i} \right)^{-1}.$$

c. Now add Assumptions SGLS.1-SGLS.3. Show that $\operatorname{Avar}(\widehat{\boldsymbol{\beta}}_{SOLS}) - \operatorname{Avar}(\widehat{\boldsymbol{\beta}}_{FGLS})$ is positive semidefinite. (Hint: Show that $[\operatorname{Avar}(\widehat{\boldsymbol{\beta}}_{FGLS})]^{-1} - [\operatorname{Avar}(\widehat{\boldsymbol{\beta}}_{SOLS})]^{-1}$ is p.s.d.)

Answer:

Recall Assumptions SGLS.1: $E(\mathbf{X}_i \otimes \mathbf{u}_i) = \mathbf{0}$, SGLS.2: $\mathbf{\Omega}$ is p.s.d. and $E(\mathbf{X}_i'\mathbf{\Omega}^{-1}\mathbf{X}_i)$ is nonsingular, and SGLS.3: $E(\mathbf{X}_i'\mathbf{\Omega}^{-1}\mathbf{u}_i\mathbf{u}_i'\mathbf{\Omega}^{-1}\mathbf{X}_i) = E(\mathbf{X}_i'\mathbf{\Omega}^{-1}\mathbf{X}_i)$, where $\mathbf{\Omega} \equiv E(\mathbf{u}_i\mathbf{u}_i')$.

We need to show that $\operatorname{Avar}(\widehat{\boldsymbol{\beta}}_{SOLS}) - \operatorname{Avar}(\widehat{\boldsymbol{\beta}}_{FGLS})$ is p.s.d which is equivalent to showing that $[\operatorname{Avar}(\widehat{\boldsymbol{\beta}}_{FGLS})]^{-1} - [\operatorname{Avar}(\widehat{\boldsymbol{\beta}}_{SOLS})]^{-1}$ is p.s.d. Recall that under Assumptions SGLS.1-SGLS.3 from Theorem 7.4 in textbook we have $\operatorname{Avar}(\widehat{\boldsymbol{\beta}}_{FGLS}) = \operatorname{E}(\mathbf{X}_i'\Omega\mathbf{X}_i)^{-1}/N$. Disregard the N and we have

$$= \operatorname{Avar}(\widehat{\boldsymbol{\beta}}_{FGLS})]^{-1} - [\operatorname{Avar}(\widehat{\boldsymbol{\beta}}_{SOLS})]^{-1} = E(\mathbf{X}_i' \mathbf{\Omega} \mathbf{X}_i) - \operatorname{E}(\mathbf{X}_i' \mathbf{X}_i) [\operatorname{E}(\mathbf{X}_i' \mathbf{\Omega} \mathbf{X}_i)]^{-1} \operatorname{E}(\mathbf{X}_i' \mathbf{X}_i)$$

need to be p.s.d. Now, we need some algebraic manipulation to help, make $E(\mathbf{X}_i'\mathbf{\Omega}\mathbf{X}_i) = E(\mathbf{Z}_i'\mathbf{Z}_i)$, by construction we have $\mathbf{Z}_i = \mathbf{\Omega}^{-1/2}\mathbf{X}_i$. Similarly, make $E(\mathbf{X}_i'\mathbf{\Omega}\mathbf{X}_i) = E(\mathbf{W}_i'\mathbf{W}_i)$, by construction we have $\mathbf{W}_i = \mathbf{\Omega}^{1/2}\mathbf{X}_i$. Now, we are left to show that

$$E(\mathbf{X}_{i}'\Omega\mathbf{X}_{i}) - E(\mathbf{X}_{i}'\mathbf{X}_{i})[E(\mathbf{X}_{i}'\Omega\mathbf{X}_{i})]^{-1}E(\mathbf{X}_{i}'\mathbf{X}_{i}) = E(\mathbf{Z}_{i}'\mathbf{Z}_{i}) - E(\mathbf{Z}_{i}'\mathbf{W}_{i})E(\mathbf{W}_{i}'\mathbf{W}_{i})E(\mathbf{W}_{i}'\mathbf{Z}_{i})$$

The latter form look familiar with the matrix form when we show efficiency of 2SLS. Now define linear projection of \mathbf{Z}_i on \mathbf{W}_i : $\mathbf{Z}_i = \mathbf{W}_i \mathbf{\Pi} + \mathbf{R}_i$, with $\mathbf{\Pi} = \mathrm{E}(\mathbf{W}_i' \mathbf{W}_i)^{-1} \mathrm{E}(\mathbf{W}_i' \mathbf{Z}_i)$, and \mathbf{R}_i is $G \times K$ matrix of population residual from the projection. By algebraic manipulation we can show that

$$E(\mathbf{R}_{i}'\mathbf{R}_{i}) = E(\mathbf{Z}_{i}'\mathbf{Z}_{i}) - E(\mathbf{Z}_{i}'\mathbf{W}_{i})E(\mathbf{W}_{i}'\mathbf{W}_{i})E(\mathbf{W}_{i}'\mathbf{Z}_{i}),$$

which is a positive semi-definite since it is a quadratic form of a matrix, with identity as the meat in the sandwich form. Thus we show that under these assumptions and the rank condition satisfied FGLS is more efficient than OLS.

d. If, in addition to the previous assumptions, $\mathbf{\Omega} = \sigma^2 \mathbf{I}_G$, show that SOLS and FGLS have the same asymptotic variance.

Answer:

Recall that

$$\operatorname{Avar}(\widehat{\boldsymbol{\beta}}_{FGLS}) = \operatorname{E}(\mathbf{X}_{i}'\mathbf{\Omega}\mathbf{X}_{i})^{-1}/N,$$

$$\operatorname{Avar}(\widehat{\boldsymbol{\beta}}_{SOLS}) = [\operatorname{E}(\mathbf{X}_{i}'\mathbf{X}_{i})]^{-1}[\operatorname{E}(\mathbf{X}_{i}'\mathbf{\Omega}\mathbf{X}_{i})][\operatorname{E}(\mathbf{X}_{i}'\mathbf{X}_{i})]^{-1}/N,$$

and substitute the given assumption. We have

$$\begin{aligned} \operatorname{Avar}(\widehat{\boldsymbol{\beta}}_{FGLS}) &= \operatorname{E}(\mathbf{X}_{i}'\mathbf{\Omega}\mathbf{X}_{i})^{-1}/N = \operatorname{E}(\mathbf{X}_{i}'\sigma^{2}\mathbf{I}_{G}\mathbf{X}_{i})^{-1}/N = \sigma^{2}\operatorname{E}(\mathbf{X}_{i}'\mathbf{X}_{i})^{-1}/N, \\ \operatorname{Avar}(\widehat{\boldsymbol{\beta}}_{SOLS}) &= [\operatorname{E}(\mathbf{X}_{i}'\mathbf{X}_{i})]^{-1}[\operatorname{E}(\mathbf{X}_{i}'\mathbf{\Omega}\mathbf{X}_{i})][\operatorname{E}(\mathbf{X}_{i}'\mathbf{X}_{i})]^{-1}/N \\ &= [\operatorname{E}(\mathbf{X}_{i}'\mathbf{X}_{i})]^{-1}[\operatorname{E}(\mathbf{X}_{i}'\sigma^{2}\mathbf{I}_{G}\mathbf{X}_{i})][\operatorname{E}(\mathbf{X}_{i}'\mathbf{X}_{i})]^{-1}/N \\ &= \sigma^{2}\operatorname{E}(\mathbf{X}_{i}'\mathbf{X}_{i})^{-1}/N. \end{aligned}$$

We showed that they are the same.

e. Evaluate the following statement: "Under the assumption of part c, FGLS is never asymptotically worse that SOLS, even if $\mathbf{\Omega} = \sigma^2 \mathbf{I}_G$."

Answer:

The statement is true provided of what we showed in part c and part d, and provided that any other condition such as rank conditions holds.

Problem 7.7

Consider the panel data model

$$y_{it} = \mathbf{x}_{it}\boldsymbol{\beta} + u_{it},$$
 $t = 1, 2, ..., T,$ $\mathbf{E}(u_{it}|\mathbf{x}_{it}, u_{i,t-1}, \mathbf{x}_{i,t-1}, ...,) = 0,$ $\mathbf{E}(u_{it}^2|\mathbf{x}_{it}) = \mathbf{E}(u_{it}^2) = \sigma_t^2,$ $t = 1, 2, ..., T.$

(Note that $E(u_{it}^2|\mathbf{x}_{it})$ does not depend on \mathbf{x}_{it} , but it is allowed to be a different constant in each time period.)

a. Show that $\mathbf{\Omega} = \mathrm{E}(\mathbf{u}_i \mathbf{u}_i')$ is a diagonal matrix.

Answer:

From the last given condition $E(u_{it}^2) = \sigma_t^2$. Now take the element with different t, $E(u_{it}u_{is})$ with $s \neq t$. From the second given condition $E(u_{it}|\mathbf{x}_{it}, u_{i,t-1}, \mathbf{x}_{i,t-1}, \dots,) = 0$, then we have $E(u_{it}|u_{is}) = 0$. By LIE we have $E(u_{it}u_{is}) = E(u_{it}u_{is}|u_{is}) = E(u_{is}E(u_{it}|u_{is})) = 0$ with $s \neq t$. Thus, $\mathbf{\Omega} = E(\mathbf{u}_i\mathbf{u}_i')$ is a diagonal matrix.

b. Write down the GLS estimator assuming that Ω is known.

Answer

Recall the GLS estimator from equation (7.45) in textbook but we don't need to estimate $\widehat{\Omega}$ because Ω is known. We have

$$\begin{split} \widehat{\boldsymbol{\beta}} &= \left(\sum_{i=1}^{N} \mathbf{X}_{i}' \mathbf{\Omega}^{-1} \mathbf{X}_{i}\right)^{-1} \left(\sum_{i=1}^{N} \mathbf{X}_{i}' \mathbf{\Omega}^{-1} \mathbf{y}_{i}\right) \\ &= \left(\sum_{i=1}^{N} \mathbf{X}_{i}' \mathbf{E} (\mathbf{u}_{i} \mathbf{u}_{i}')^{-1} \mathbf{X}_{i}\right)^{-1} \left(\sum_{i=1}^{N} \mathbf{X}_{i}' \mathbf{E} (\mathbf{u}_{i} \mathbf{u}_{i}')^{-1} \mathbf{y}_{i}\right) \\ &= \left(\sum_{i=1}^{N} \sum_{t=1}^{T} (\sigma_{t}^{2})^{-1} \mathbf{x}_{it}' \mathbf{x}_{it}\right)^{-1} \left(\sum_{i=1}^{N} \sum_{t=1}^{N} (\sigma_{t}^{2})^{-1} \mathbf{x}_{it}' \mathbf{y}_{it}\right) \\ &= \left(\sum_{i=1}^{N} \sum_{t=1}^{T} \sigma_{t}^{-2} \mathbf{x}_{it}' \mathbf{x}_{it}\right)^{-1} \left(\sum_{i=1}^{N} \sum_{t=1}^{N} \sigma_{t}^{-2} \mathbf{x}_{it}' \mathbf{y}_{it}\right). \end{split}$$

The σ_t^{-2} , the inverse of variance (taken from the diagonal element of Ω).

c. Argue that Assumption SGLS.1 does not necessarily hold under the assumptions made. (Setting $\mathbf{x}_{it} = y_{i,t-1}$ might help in answering this part.) Nevertheless, show that the GLS estimator from part b is consistent for $\boldsymbol{\beta}$ by showing that $\mathrm{E}(\mathbf{X}_i'\boldsymbol{\Omega}^{-1}\mathbf{u}_i) = 0$. (This proof shows that Assumption SGLS.1

is sufficient, but not necessary, for consistency. Sometimes $E(\mathbf{X}_i'\mathbf{\Omega}^{-1}\mathbf{u}_i) = 0$ even though Assumption SGLS.1 does not hold.)

Answer

From the hint, if $\mathbf{x}_{it} = y_{i,t-1}$ then we have $y_{it} = f(y_{i,t-1})$ or written differently, $y_{it} = \delta_0 + \delta_1 y_{i,t-1} + u_{it}$, or said differently we will have $x_{i,t+1} = y_{it}$ is correlated with u_{it} . If this correlation exist, then SGLS.1 does not hold. However, the sufficient condition for consistency of the GLS estimator is $\mathbf{E}(\mathbf{X}_i'\mathbf{\Omega}^{-1}\mathbf{u}_i) = 0$. Since $\mathbf{\Omega}$ is known and a diagonal matrix then we have

$$\mathbf{X}_{i}'\mathbf{\Omega}^{-1}\mathbf{u}_{i} = \sum_{t=1}^{T} \mathbf{x}_{it}' \sigma_{t}^{-2} u_{i} t \Leftrightarrow \mathbf{E}(\mathbf{X}_{i}'\mathbf{\Omega}^{-1}\mathbf{u}_{i}) - \sum_{t=1}^{T} \sigma_{t}^{-2} \mathbf{E}(\mathbf{x}_{it}' u_{it}) = \mathbf{0}.$$

It follows from the second given assumption, $E(u_{it}|\mathbf{x}_{it},u_{i,t-1},\mathbf{x}_{i,t-1},\ldots,)=0$, by LIE that, $E(\mathbf{x}'_{it}u_{it})=0$. Thus the GLS estimator is consistent in this case without necessarily having SGLS.1 hold.

d. Show that Assumptions SGLS.3 holds under the given assumptions. Answer:

Recall SGLS.3: $E(\mathbf{X}_i'\mathbf{\Omega}^{-1}\mathbf{u}_i\mathbf{u}_i'\mathbf{\Omega}^{-1}\mathbf{X}_i) = E(\mathbf{X}_i'\mathbf{\Omega}^{-1}\mathbf{X}_i)$, where $\mathbf{\Omega} \equiv E(\mathbf{u}_i\mathbf{u}_i')$. Since $\mathbf{\Omega}^{-1}$ is diagonal and known, we have that $\mathbf{X}_i'\mathbf{\Omega}^{-1} = (\sigma_1^{-2}\mathbf{x}_{i1}', \dots, \sigma_T^{-2}\mathbf{x}_{iT}')'$. Thus, we can write the following

$$E(\mathbf{X}_{i}'\mathbf{\Omega}^{-1}\mathbf{u}_{i}\mathbf{u}_{i}'\mathbf{\Omega}^{-1}\mathbf{X}_{i}) = E((\sigma_{1}^{-2}\mathbf{x}_{i1}', \dots, \sigma_{T}^{-2}\mathbf{x}_{iT}')'\mathbf{u}_{i}\mathbf{u}_{i}'(\sigma_{1}^{-2}\mathbf{x}_{i1}', \dots, \sigma_{T}^{-2}\mathbf{x}_{iT}'))$$

$$= \sum_{t=1}^{T} \sum_{s=1}^{T} \sigma_{s}^{-2}\sigma_{t}^{-2}E(u_{is}u_{it}\mathbf{x}_{is}'\mathbf{x}_{it}).$$

From the second given assumption, $E(u_{it}|\mathbf{x}_{it}, u_{i,t-1}, \mathbf{x}_{i,t-1}, \dots,) = 0$, when $s \neq t$, by LIE we have $E(u_{is}u_{it}\mathbf{x}'_{is}\mathbf{x}_{it}) = E(u_{it}E(u_{is}\mathbf{x}'_{is}\mathbf{x}_{it}|\mathbf{x}_{it}, \mathbf{x}_{is}, u_{is})) = 0$. And then for s = t, for each t, also by LIE, we have

$$E(u_{it}^2 \mathbf{x}'_{it} \mathbf{x}_{it}) = E(\mathbf{x}'_{it} \mathbf{x}_{it} E(u_{it}^2 | \mathbf{x}_{it})) = \sigma_t^2 E(\mathbf{x}'_{it} \mathbf{x}_{it}).$$

Finally, we can show that $E(\mathbf{X}_i'\mathbf{\Omega}^{-1}\mathbf{u}_i\mathbf{u}_i'\mathbf{\Omega}^{-1}\mathbf{X}_i) = \sum_{t=1}^T \sigma_t^2 E(\mathbf{x}_{it}'\mathbf{x}_{it}) = E(\mathbf{X}_i'\mathbf{\Omega}^{-1}\mathbf{X}_i)$, thus SGLS.3 holds.

e. Explain how to consistently estimate each σ_t^2 (as $N \to \infty$).

To estimate each σ_t^2 we can run pooled OLS across all i and t and save each residual $\hat{u}_i t$. Then, we compute the sample variance across t using $\hat{\sigma}_t^2 = (N - K)^{-1} \sum_{i=1}^N \hat{u}_i t^2$. In this case, we might not need to adjust for degree of freedom as $N \to \infty$. We can implement these using the foreach iteration in Stata and save the value in a new variable.

f. Argue that, under the assumptions made, valid inference is obtained by weighting each observation $(y_{it}, \mathbf{x}_{it})$ by $1/\widehat{\sigma}_t$ and then running pooled OLS. Answer:

Recall

$$\widehat{\boldsymbol{\beta}} = \left(\sum_{i=1}^{N} \sum_{t=1}^{T} \sigma_{t}^{-2} \mathbf{x}'_{it} \mathbf{x}_{it}\right)^{-1} \left(\sum_{i=1}^{N} \sum_{t=1}^{N} \sigma_{t}^{-2} \mathbf{x}'_{it} \mathbf{y}_{it}\right)$$

$$\Rightarrow \sqrt{N}(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}) = \left(N^{-1} \sum_{i=1}^{N} \sum_{t=1}^{T} \sigma_{t}^{-2} \mathbf{x}'_{it} \mathbf{x}_{it}\right)^{-1} \left(N^{-1/2} \sum_{i=1}^{N} \sum_{t=1}^{N} \sigma_{t}^{-2} \mathbf{x}'_{it} u_{it}\right) + o_{p}(1).$$

To have the same inference, we need to show that if $\hat{\sigma}_t^2 \xrightarrow{p} \sigma_t^2$, thus transforming the data by weighting it by $1/\hat{\sigma}_t$ will not change the asymptotic variance of the GLS. For the first term, we can use the

consistency of sample variance estimation for each t, we have

$$\widehat{\sigma}_{t}^{2} \xrightarrow{p} \sigma_{t}^{2}, \ \forall t \Leftrightarrow \sum_{i=1}^{N} \sum_{t=1}^{T} \widehat{\sigma}_{t}^{-2} \mathbf{x}'_{it} \mathbf{x}_{it} \xrightarrow{p} \sum_{i=1}^{N} \sum_{t=1}^{T} \sigma_{t}^{-2} \mathbf{x}'_{it} \mathbf{x}_{it}$$
$$\Leftrightarrow \sum_{i=1}^{N} \sum_{t=1}^{T} \widehat{\sigma}_{t}^{-2} \mathbf{x}'_{it} \mathbf{x}_{it} = \sum_{i=1}^{N} \sum_{t=1}^{T} \sigma_{t}^{-2} \mathbf{x}'_{it} \mathbf{x}_{it} + o_{p}(1).$$

Now consider the second term in the distribution, from Slutsky's theorem, we have $\widehat{\sigma}_t^{-2} \xrightarrow{p} \sigma_t^{-2}$. Also from CLT, we have $N^{-1/2} \sum_{i=1}^N \mathbf{x}'_{it} u_{it} = O_p(1)$. We have

$$\begin{split} N^{-1/2} \sum_{i=1}^{N} \sum_{t=1}^{N} \widehat{\sigma}_{t}^{-2} \mathbf{x}_{it}' u_{it} - N^{-1/2} \sum_{i=1}^{N} \sum_{t=1}^{N} \sigma_{t}^{-2} \mathbf{x}_{it}' u_{it} &= \sum_{t=1}^{T} \left(N^{-1/2} \sum_{i=1}^{N} \mathbf{x}_{it}' u_{it} \right) (\widehat{\sigma}_{t}^{-2} - \sigma_{t}^{-2}) \\ &= O_{p}(1) \cdot \phi_{p}(1) = o_{p}(1). \end{split}$$

Finally we will have

$$\begin{split} \sqrt{N}(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}) &= \left(N^{-1} \sum_{i=1}^{N} \sum_{t=1}^{T} \sigma_{t}^{-2} \mathbf{x}'_{it} \mathbf{x}_{it} \right)^{-1} \left(N^{-1/2} \sum_{i=1}^{N} \sum_{t=1}^{N} \sigma_{t}^{-2} \mathbf{x}'_{it} u_{it} \right) + o_{p}(1) \\ &= \left(N^{-1} \sum_{i=1}^{N} \sum_{t=1}^{T} \widehat{\sigma}_{t}^{-2} \mathbf{x}'_{it} \mathbf{x}_{it} - o_{p}(1) \right)^{-1} \left(N^{-1/2} \sum_{i=1}^{N} \sum_{t=1}^{N} \widehat{\sigma}_{t}^{-2} \mathbf{x}'_{it} u_{it} - o_{p}(1) \right) + o_{p}(1) \\ &= \left(N^{-1} \sum_{i=1}^{N} \sum_{t=1}^{T} \widehat{\sigma}_{t}^{-2} \mathbf{x}'_{it} \mathbf{x}_{it} \right)^{-1} \left(N^{-1/2} \sum_{i=1}^{N} \sum_{t=1}^{N} \widehat{\sigma}_{t}^{-2} \mathbf{x}'_{it} u_{it} \right) + o_{p}(1). \end{split}$$

Now we showed that by transforming the data $(y_{it}, \mathbf{x}_{it})$ to $(y_{it}/\widehat{\sigma}_t, \mathbf{x}_{it}/\widehat{\sigma}_t)$ have the same asymptotic distribution. Note that the way we get the residuals should be different and refer to answer in point e.

g. What happen if we assume that $\sigma_t^2 = \sigma^2$ for all $t = 1, \dots, T$? Answer:

If we assume $\sigma_t^2 = \sigma^2$ for all t = 1, ..., T then we can use the standard OLS regression pooled across i and t because now the variance is independently distributed across i and t.

Chapter 8

Problem 8.1

a. Show that GMM estimator that solves the problem (8.27) satisfies the first order-condition

$$\left(\sum_{i=1}^{N} \mathbf{Z}_{i}' \mathbf{X}_{i}\right)' \widehat{\mathbf{W}} \left(\sum_{i=1}^{N} \mathbf{Z}_{i}' (\mathbf{y}_{i} - \mathbf{X}_{i} \widehat{\boldsymbol{\beta}})\right) = 0$$

Answer:

Recall the minimization problem

$$\min_{\mathbf{b}} Q(\mathbf{b}) = \min_{\mathbf{b}} \left[\sum_{i=1}^{N} \mathbf{Z}_{i}'(\mathbf{y}_{i} - \mathbf{X}_{i}\mathbf{b}) \right]' \widehat{\mathbf{W}} \left[\sum_{i=1}^{N} \mathbf{Z}_{i}'(\mathbf{y}_{i} - \mathbf{X}_{i}\mathbf{b}) \right].$$

Since $\hat{\boldsymbol{\beta}} = \arg\min_{\mathbf{b}} Q(\mathbf{b})$, take the first order condition with respect to \mathbf{b} , we have

$$\frac{\partial Q(\mathbf{b})'}{\partial \mathbf{b}} = -2 \left(\sum_{i=1}^{N} \mathbf{Z}_{i}' \mathbf{X}_{i} \right)' \widehat{\mathbf{W}} \left(\sum_{i=1}^{N} \mathbf{Z}_{i}' (\mathbf{y}_{i} - \mathbf{X}_{i} \mathbf{b}) \right) = \mathbf{0}.$$

At the solution of the F.O.C, we get $\hat{\beta}$ by solving

$$\left(\sum_{i=1}^{N}\mathbf{Z}_{i}'\mathbf{X}_{i}\right)'\widehat{\mathbf{W}}\left(\sum_{i=1}^{N}\mathbf{Z}_{i}'(\mathbf{y}_{i}-\mathbf{X}_{i}\widehat{\boldsymbol{\beta}})\right)=\mathbf{0}.$$

b. Use this expression to obtain (8.28)

Answer:

We can write result from a in full matrix

$$\begin{split} &\left(\sum_{i=1}^{N}\mathbf{Z}_{i}'\mathbf{X}_{i}\right)'\widehat{\mathbf{W}}\left(\sum_{i=1}^{N}\mathbf{Z}_{i}'(\mathbf{y}_{i}-\mathbf{X}_{i}\widehat{\boldsymbol{\beta}})\right)=\mathbf{0}\\ &\Leftrightarrow (\mathbf{X}'\mathbf{Z})\widehat{\mathbf{W}}(\mathbf{Z}'\mathbf{Y}-\mathbf{Z}'\mathbf{X}\widehat{\boldsymbol{\beta}})=\mathbf{0}\\ &\Leftrightarrow (\mathbf{X}'\mathbf{Z}\widehat{\mathbf{W}}\mathbf{Z}'\mathbf{Y})=(\mathbf{X}'\mathbf{Z}\widehat{\mathbf{W}}\mathbf{Z}'\mathbf{X})\widehat{\boldsymbol{\beta}}\\ &\Leftrightarrow \widehat{\boldsymbol{\beta}}=(\mathbf{X}'\mathbf{Z}\widehat{\mathbf{W}}\mathbf{Z}'\mathbf{X})^{-1}(\mathbf{X}'\mathbf{Z}\widehat{\mathbf{W}}\mathbf{Z}'\mathbf{Y}). \end{split}$$

Problem 8.5

Verify that the difference $(\mathbf{C}'\mathbf{\Lambda}^{-1}\mathbf{C}) - (\mathbf{C}'\mathbf{W}\mathbf{C})(\mathbf{C}'\mathbf{W}\mathbf{\Lambda}\mathbf{W}\mathbf{C})\mathbf{C})^{-1}(\mathbf{C}'\mathbf{W}\mathbf{C})$ in expression (8.34) is positive semidefinite for any symmetric positive definite matrices \mathbf{W} and $\mathbf{\Lambda}$. (Hint: Show that the difference can be expressed as $\mathbf{C}'\mathbf{\Lambda}^{-1/2}[\mathbf{I}_L - \mathbf{D}(\mathbf{D}'\mathbf{D})^{-1}\mathbf{D}']\mathbf{\Lambda}^{-1/2}\mathbf{C}$ where $\mathbf{D} \equiv \mathbf{\Lambda}^{1/2}\mathbf{W}\mathbf{C}$. Then, note that for any $L \times K$ matrix $\mathbf{D}, \mathbf{I}_L - \mathbf{D}(\mathbf{D}'\mathbf{D})^{-1}\mathbf{D}'$ is a symmetric, idempotent matrix, and therefore positive semidefinite.) Answer:

Following the hint, let $\mathbf{D} = \mathbf{\Lambda}^{1/2} \mathbf{WC}$, then we have

$$\begin{split} \mathbf{C}' \boldsymbol{\Lambda}^{-1/2} [\mathbf{I}_L - \mathbf{D} (\mathbf{D}' \mathbf{D})^{-1} \mathbf{D}'] \boldsymbol{\Lambda}^{-1/2} \mathbf{C} &= \mathbf{C}' \boldsymbol{\Lambda}^{-1/2} [\mathbf{I}_L - (\boldsymbol{\Lambda}^{1/2} \mathbf{W} \mathbf{C}) ((\boldsymbol{\Lambda}^{1/2} \mathbf{W} \mathbf{C})' (\boldsymbol{\Lambda}^{1/2} \mathbf{W} \mathbf{C}))^{-1} (\boldsymbol{\Lambda}^{1/2} \mathbf{W} \mathbf{C})'] \boldsymbol{\Lambda}^{-1/2} \mathbf{C} \\ &= (\mathbf{C}' \boldsymbol{\Lambda}^{-1} \mathbf{C}) \\ &\quad - \mathbf{C}' \boldsymbol{\Lambda}^{-1/2} (\boldsymbol{\Lambda}^{1/2} \mathbf{W} \mathbf{C}) ((\boldsymbol{\Lambda}^{1/2} \mathbf{W} \mathbf{C})' (\boldsymbol{\Lambda}^{1/2} \mathbf{W} \mathbf{C}))^{-1} (\boldsymbol{\Lambda}^{1/2} \mathbf{W} \mathbf{C})' \boldsymbol{\Lambda}^{-1/2} \mathbf{C} \\ &= (\mathbf{C}' \boldsymbol{\Lambda}^{-1} \mathbf{C}) \\ &\quad - (\mathbf{C}' \mathbf{W} \mathbf{C}) ((\mathbf{C}' \mathbf{W} \boldsymbol{\Lambda}^{1/2}') (\boldsymbol{\Lambda}^{1/2}' \mathbf{W} \mathbf{C}))^{-1} (\boldsymbol{\Lambda}^{1/2} (\mathbf{C}' \mathbf{W} \mathbf{C}) \\ &= (\mathbf{C}' \boldsymbol{\Lambda}^{-1} \mathbf{C}) - (\mathbf{C}' \mathbf{W} \mathbf{C}) (\mathbf{C}' \mathbf{W} \boldsymbol{\Lambda} \mathbf{W} \mathbf{C}) \mathbf{C})^{-1} (\mathbf{C}' \mathbf{W} \mathbf{C}). \end{split}$$

It turns out it is true. Then since $\mathbf{C}' \mathbf{\Lambda}^{-1/2} [\mathbf{I}_L - \mathbf{D} (\mathbf{D}' \mathbf{D})^{-1} \mathbf{D}'] \mathbf{\Lambda}^{-1/2} \mathbf{C}$ is a matrix quadratic form, it is p.s.d. if the meat matrix in the sandwich form is p.s.d. We know that $\mathbf{D} (\mathbf{D}' \mathbf{D})^{-1} \mathbf{D}'$ is a projection matrix, call $P_{\mathbf{D}}$, then $(\mathbf{I}_L - P_{\mathbf{D}})$ is an idempotent matrix so it must be p.s.d and we showed that the difference is p.s.d.

Chapter 9

Problem 9.8

a. Extend Problem 5.4b using CARD.RAW to allow $educ^2$ to appear in the $\log(wage)$ equation, without using nearc2 as an instrument. Specifically, use interactions of nearc4 with some or all of the other exogenous variables in the $\log(wage)$ equation as instruments for $educ^2$. Compute a heteroskedasticity-robust test to be sure that at least one of these additional instruments appears in the linear projection of $educ^2$ onto your entire list of instruments. Test whether $educ^2$ needs to be in the $\log(wage)$ equation. Answer:

Generate Interaction Variables

- . gen educ2=educ^2
- . gen nearc4exper=nearc4*exper
- . gen nearc4expersq=nearc4*expersq
- . gen nearc4black=nearc4*black

Reduced Form Estimates for Extension of Problem 5.4b

. reg educ2 exper expersq black south smsa reg661-reg668 smsa66 nearc4 nearc4exper nearc4expersq nearc4black, robust

Linear regression	Number of obs	=	3,010
-	F(18, 2991)	=	233.34
	Prob > F	=	0.0000
	R-squared	=	0.4505
	Root MSE	=	52.172

educ2	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
exper	-18.01791	1.229128	-14.66	0.000	-20.42793	-15.60789
expersq	.3700966	.058167	6.36	0.000	.2560452	.4841479
black	-21.04009	3.569591	-5.89	0.000	-28.03919	-14.04098
south	5738389	3.973465	-0.14	0.885	-8.36484	7.217162
smsa	10.38892	3.036816	3.42	0.001	4.434463	16.34338
reg661	-6.175308	5.574484	-1.11	0.268	-17.10552	4.754903
reg662	-6.092379	4.254714	-1.43	0.152	-14.43484	2.250083
reg663	-6.193772	4.010618	-1.54	0.123	-14.05762	1.670077
reg664	-3.413348	5.069994	-0.67	0.501	-13.35438	6.527681
reg665	-12.31649	5.439968	-2.26	0.024	-22.98295	-1.650031
reg666	-13.27102	5.693005	-2.33	0.020	-24.43362	-2.10842
reg667	-10.83381	5.814901	-1.86	0.063	-22.23542	.567801
reg668	8.427749	6.627727	1.27	0.204	-4.567616	21.42312
smsa66	4621454	3.058084	-0.15	0.880	-6.458307	5.534016
nearc4	-12.25914	7.012394	-1.75	0.081	-26.00874	1.490464
nearc4exper	4.192304	1.55785	2.69	0.007	1.137738	7.24687
nearc4expersq	1623635	.0753242	-2.16	0.031	310056	014671
nearc4black	-4.789202	4.247869	-1.13	0.260	-13.11824	3.53984
_cons	307.212	6.617862	46.42	0.000	294.2359	320.188

Test Joint Significant of Instrument

- . test nearc4exper nearc4expersq nearc4black
- (1) nearc4exper = 0
- (2) nearc4expersq = 0
 (3) nearc4black = 0

F(3, 2991) = 3.72 Prob > F = 0.0110

2SLS Regression Result

. ivreg lwage exper expersq black south smsa reg661-reg668 smsa66 (educ educ2 = nearc4 nearc4exper nearc4expersq near Instrumental variables 2SLS regression

Source	SS	df	MS	Number of obs	=	3,010
				F(16, 2993)	=	45.92
Model	116.731381	16	7.29571132	Prob > F	=	0.0000
Residual	475.910264	2,993	.159007773	R-squared	=	0.1970
				Adj R-squared	=	0.1927
Total	592.641645	3,009	.196956346	Root MSE	=	.39876
lwage	Coefficient	Std. err.	t	P> t [95% co	onf.	interval]
educ	.3161298	.1457578	2.17	0.030 .030334	12	.6019254
educ2	0066592	.0058401	-1.14	0.254018110)3	.0047918
exper	.0840117	.0361077	2.33	0.020 .013213	32	.1548101
expersq	0007825	.0014221	-0.55	0.582003570	9	.0020058
black	1360751	.0455727	-2.99	0.003225432	22	0467181
south	141488	.0279775	-5.06	0.000196345	51	0866308
smsa	.1072011	.0290324	3.69	0.000 .050275	55	.1641267
reg661	1098848	.0428194	-2.57	0.010193843	32	0259264
reg662	.0036271	.0325364	0.11	0.911060168	38	.0674231
reg663	.0428246	.0315082	1.36	0.174018955	54	.1046045
reg664	0639842	.0391843	-1.63	0.103140815	51	.0128468
reg665	.0480365	.0445934	1.08	0.281039400)3	.1354734
reg666	.0672512	.0498043	1.35	0.177030402	28	.1649052
reg667	.0347783	.0471451	0.74	0.461057661	17	.1272183
reg668	1933844	.0512395	-3.77	0.000293852	26	0929161

smsa66	.0089666	.0222745	0.40	0.687	0347083	.0526414
_cons	2.610889	.9706341	2.69	0.007	.7077116	4.514067

Instrumented: educ educ2

Instruments: exper expersq black south smsa reg661 reg662 reg663 reg664 reg665 reg666 reg667 reg668 smsa66 nearc4 nearc4exper

nearc4expersq nearc4black

After performing heteroskedasticity-robust Wald test for the joint significance of the instrument, it can be reported that the three interaction terms are partially correlated with $educ^2$. The p-value is .011. In the 2SLS estimates the coefficient of $educ^2$ is not significant, thus we can leave it out of the equation.

b. Start again with the model estimated in Problem 5.4b, but suppose we add the interaction $black \cdot educ$. Explain why $black \cdot z_j$ is a potential IV for $black \cdot educ$, where z_j is any exogenous variable in the system (including nearc4).

Ånswer: Reduced Form from 5.4b

. gen blackeduc=black*educ

Source

. reg educ exper expersq black south smsa reg661-reg668 smsa66 nearc4 blackeduc

Source	SS	df	MS		01 01 000	= 3,010
				-	,/	= 225.46
Model	11784.607	16	736.53793		> F =	= 0.0000
Residual	9777.47304	2,993	3.2667801			= 0.5465
						= 0.5441
Total	21562.0801	3,009	7.1658624	3 Root	MSE	= 1.8074
educ	Coefficient	Std. err.	t	P> t	[95% conf	. interval]
exper	448666	.0314333	-14.27	0.000	510299	3870329
expersq	.0059278	.0015552	3.81	0.000	.0028784	.0089773
black	-8.299265	.3548985	-23.38	0.000	-8.995135	-7.603395
south	.0826884	.1262945	0.65	0.513	1649443	.3303212
smsa	.2728048	.0978085	2.79	0.005	.0810262	.4645835
reg661	3028809	.1886186	-1.61	0.108	6727162	.0669544
reg662	2851939	.1372326	-2.08	0.038	5542737	016114
reg663	3059376	.1328891	-2.30	0.021	5665007	0453744
reg664	1897754	.1732839	-1.10	0.274	5295429	.1499922
reg665	6319416	.1754165	-3.60	0.000	9758906	2879925
reg666	6838073	.1954178	-3.50	0.000	-1.066974	3006405
reg667	6105922	.1917077	-3.19	0.001	9864845	2346999
reg668	.2442232	.2251193	1.08	0.278	1971811	.6856274
smsa66	0099628	.0985277	-0.10	0.919	2031517	.1832261
nearc4	.2459321	.0819096	3.00	0.003	.0853273	.4065369
blackeduc	.6077667	.0283914	21.41	0.000	.5520979	.6634354
_cons	16.91173	.1966621	85.99	0.000	16.52613	17.29734

. reg educ exper expersq black south smsa reg661-reg668 smsa66 nearc4 nearc2 blackeduc

Number of obs =

				F(17, 2992)	=	212.73
Model	11799.6365	17	694.096263	Prob > F	=	0.0000
Residual	9762.44359	2,992	3.26284879	R-squared	=	0.5472
				- Adj R-square	d =	0.5447
Total	21562.0801	3,009	7.16586243	Root MSE	=	1.8063
educ	Coefficient	Std. err.	t	P> t [95%	conf.	interval]
027707	448436	.0314146	-14.27	0.0005100	202	3868396
exper						
expersq	.0059122	.0015543	3.80	0.000 .0028	646	.0089599
black	-8.326544	.3549125	-23.46	0.000 -9.022	441	-7.630647
south	.0951701	.1263524	0.75	0.4511525	762	.3429164
smsa	.2715175	.0977514	2.78	0.006 .0798	507	.4631843
reg661	2508726	.1900563	-1.32	0.1876235	269	.1217816
reg662	2601786	.1376444	-1.89	0.0595300	659	.0097087
reg663	2456871	.1357437	-1.81	0.0705118	474	.0204733
reg664	1203049	.1761786	-0.68	0.4954657	484	.2251386
reg665	5746888	.1773289	-3.24	0.0019223	876	2269899
reg666	6704957	.1953986	-3.43	0.001 -1.053	625	2873665

reg667	5486189	.1937561	-2.83	0.005	9285276	1687102
reg668	.3301183	.2285158	1.44	0.149	1179456	.7781822
smsa66	0419958	.0995931	-0.42	0.673	2372738	.1532822
nearc4	. 2466392	.081861	3.01	0.003	.0861297	.4071487
nearc2	.1547519	.0721046	2.15	0.032	.0133723	.2961316
blackeduc	.6090166	.0283803	21.46	0.000	.5533697	.6646636
_cons	16.81692	.2014477	83.48	0.000	16.42193	17.21191

If the error term in the reduced form is independent of z_j , then any function of \mathbf{z} will not be correlated with the error of the population model as well, including any interaction taking the form of $black \cdot z_j$. Thus, if any z_j is correlated with educ it is very likely that it is correlated with $black \cdot z_j$ as well. Thus it will be a good potential IV.

c. In Example 6.2 we used $black \cdot nearc4$ as the IV for $black \cdot educ$. Now use 2SLS with $black \cdot educ$ as the IV for $black \cdot educ$, where educ are the fitted values from the first-stage regression of educ on all exogenous variables (including nearc4). What do you find?

Answer: 2SLS Regression Result

. ivreg lwage exper expersq black south smsa reg661-reg668 smsa66 (educ blackeduc = nearc4 nearc4black), robust

Instrumental	variables	2SLS	regression	Number of obs	=	3,010
				F(16, 2993)	=	52.35
				Prob > F	=	0.0000
				R-squared	=	0.2435
				Root MSE	=	.38702

		Robust				
lwage	Coefficient	std. err.	t	P> t	[95% conf.	interval]
educ	.1273557	.0561622	2.27	0.023	.0172352	.2374762
blackeduc	.0109036	.0399278	0.27	0.785	0673851	.0891923
exper	.1059116	.0249463	4.25	0.000	.0569979	.1548253
expersq	0022406	.0004902	-4.57	0.000	0032017	0012794
black	282765	.5012131	-0.56	0.573	-1.265522	.6999922
south	1424762	.0298942	-4.77	0.000	2010914	083861
smsa	.1111555	.0310592	3.58	0.000	.050256	.1720551
reg661	1103479	.0418554	-2.64	0.008	1924161	0282797
reg662	0081783	.0339196	-0.24	0.809	0746863	.0583298
reg663	.0382413	.0335008	1.14	0.254	0274456	.1039283
reg664	0600379	.0398032	-1.51	0.132	1380824	.0180066
reg665	.0337805	.0519109	0.65	0.515	0680042	.1355652
reg666	.0498975	.0559569	0.89	0.373	0598204	.1596155
reg667	.0216942	.0528376	0.41	0.681	0819075	.1252959
reg668	1908353	.0506182	-3.77	0.000	2900853	0915853
smsa66	.0180009	.0205709	0.88	0.382	0223337	.0583356
_cons	3.84499	.9545666	4.03	0.000	1.973317	5.716663

Instrumented: educ blackeduc

Instruments: exper expersq black south smsa reg661 reg662 reg663 reg664 reg665 reg666 reg667 reg668 smsa66 nearc4 nearc4black

Generate Fitted Value for educ from First Stage Regression

. reg educ exper expersq black south smsa reg661-reg668 smsa66 nearc4, robust

	9		
Linear regression	Number of obs	=	3,010
	F(15, 2994)	=	244.92
	Prob > F	=	0.0000
	R-squared	=	0.4771
	Root MSE	=	1.9405

educ	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
exper	4125334	.0320751	-12.86	0.000	4754249	3496418
expersq	.0008686	.0017076	0.51	0.611	0024795	.0042167
black	9355287	.0925281	-10.11	0.000	-1.116954	7541037
south	0516126	.1419604	-0.36	0.716	3299623	.2267371
smsa	.4021825	.1112278	3.62	0.000	.1840918	.6202731

reg661	210271	.1993703	-1.05	0.292	6011876	.1806456
reg662	2889073	.1513383	-1.91	0.056	5856449	.0078302
reg663	2382099	.1431446	-1.66	0.096	5188817	.0424618
reg664	093089	.1799452	-0.52	0.605	4459179	.2597398
reg665	4828875	.1950961	-2.48	0.013	8654234	1003516
reg666	5130857	.2090161	-2.45	0.014	9229154	103256
reg667	4270887	.2110058	-2.02	0.043	8408198	0133576
reg668	.3136204	.2337813	1.34	0.180	144768	.7720087
smsa66	.0254805	.1106315	0.23	0.818	1914409	.2424019
nearc4	.3198989	.0850763	3.76	0.000	.153085	.4867128
_cons	16.84852	.1865621	90.31	0.000	16.48272	17.21433

[.] predict double educhat

(option xb assumed; fitted values)

2SLS Regression Result

Number of obs = 3,010 F(16, 2993) = 52.52 Prob > F = 0.0000 R-squared = 0.2501 Root MSE = .38535

lwage	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
educ	.1178141	.0554036	2.13	0.034	.0091811	.226447
blackeduc	.035984	.0105707	3.40	0.001	.0152573	.0567106
exper	.1004843	.0241951	4.15	0.000	.0530436	.147925
expersq	0020235	.0003597	-5.63	0.000	0027288	0013183
black	5955669	.1587782	-3.75	0.000	9068923	2842415
south	1374265	.0294259	-4.67	0.000	1951236	0797294
smsa	.1096541	.0306748	3.57	0.000	.0495083	.1697998
reg661	1161759	.0409317	-2.84	0.005	196433	0359189
reg662	0107817	.0335743	-0.32	0.748	0766127	.0550494
reg663	.0331736	.0326007	1.02	0.309	0307484	.0970955
reg664	064916	.0388398	-1.67	0.095	1410715	.0112395
reg665	.023022	.0505787	0.46	0.649	0761506	.1221946
reg666	.0379568	.0534653	0.71	0.478	0668757	.1427892
reg667	.0100466	.0513629	0.20	0.845	0906637	.1107568
reg668	1907066	.0502527	-3.79	0.000	2892399	0921733
smsa66	.0167814	.0203639	0.82	0.410	0231472	.0567101
_cons	4.00836	.9416251	4.26	0.000	2.162062	5.854658

Instrumented: educ blackeduc

Instruments: exper expersq black south smsa reg661 reg662 reg663 reg664 reg665 reg666 reg667 reg668 smsa66 nearc4 blackeduchat

Comparing the standard error for the two procedures, it turns out that using $\widehat{black} \cdot \widehat{educ}$ as the IV yields a smaller standard error than using $\widehat{black} \cdot nearc4$.

d. If $E(educ|\mathbf{z})$ is linear and $Var(u_2|\mathbf{z}) = \sigma_1^2$, where \mathbf{z} is the set of all exogenous variables and u_1 is the error in the $\log(wage)$ equation, explain why the estimator using $\widehat{black} \cdot \widehat{educ}$ as the IV is asymptotically more efficient than the estimator using $\widehat{black} \cdot nearc4$ as the IV.

Answer:

[.] gen blackeduchat=black*educhat