ADDITIONAL MATHEMATICS FORM 5 MODULE 7

VECTORS

VECTORS

	Contents	Page
7.0	Conceptual Map	2
7.1	Introduction to Vector Practice 7.1	3
7.2	Multiplication of Vector By Scalar	4
	Practice 7.2.1 Practice 7.2.2	5
7.3	Addition And Subtraction Practice 7.3	6 7-9
7.4	SPM Questions	10-12
	Assessment test	13-14
	Answers	15-16

7.0 **CONCEPTUAL MAP**

VECTORS

A vector is a quantity that has a magnitude and a direction

Notation of Vectors

Magnitude $\mid AB \mid$ or $\mid -a \mid$

Multiplication of vector By a scalar

$$|ka| = k |a|$$

$$\overrightarrow{AB} = \overrightarrow{a}$$
 ; $\overrightarrow{PQ} = 2 \overrightarrow{AB}$ ate $= 2 \ a$

Two vectors are parallel if one of the vectors is the scalar multiple of the other vector

$$\stackrel{\rightarrow}{AB} = \frac{1}{2} \stackrel{\rightarrow}{PQ}$$
 hence $\stackrel{\rightarrow}{AB}$ // $\stackrel{\rightarrow}{PQ}$

Addition and subtraction of vectors

Parallel vectors Example

(a)
$$2\overrightarrow{AB} + 3\overrightarrow{AB} = 5$$

(b)
$$4a + 2a = 6a$$

(b) Parallelogram Law of vector Additions

$$\overrightarrow{PR} = \overrightarrow{PQ} + \overrightarrow{QR}$$

$$=\stackrel{\rightarrow}{PQ}+\stackrel{\rightarrow}{P}$$

Expression of a vector as the linear combination of a few vectors

$$\overrightarrow{DC} = \overrightarrow{DE} + \overrightarrow{EA} + \overrightarrow{AB} + \overrightarrow{BC}$$

(c) Polygon Law

 $\overrightarrow{AF} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DE} + \overrightarrow{EF}$

http://mathsmozac.blogspot.com

7.1 INTRODUCTIONS TO VECTOR

Sharpen Your Skills $\, 1 \,$

Find the magnitude and direction of $\stackrel{\rightarrow}{AB}$ vector.

Distance of AB

$$=\sqrt{3^2+3^2}$$

$$=$$
 $\sqrt{18}$

= 4.24 unit

Magnitude
$$\begin{vmatrix} \overrightarrow{AB} \end{vmatrix}$$

= 4.24 unit

Direction

= North-East

PRACTICE 7.1

Α

Write the notation of vector and find the magnitude and direction

Notation	Magnitude	Direction
$\stackrel{ ightarrow}{AB}$	5.099 unit	North-East
7110		

7.2 MULTIPLICATION OF VECTOR BY SCALAR

Sharpen Your Skills 2

1. Express \overrightarrow{AB} and \overrightarrow{PQ} as a scalar product of a

Solution

$$\overrightarrow{AB} = 2 \ a$$

$$\overrightarrow{PQ} = -1\frac{1}{2} \stackrel{a}{\underset{\sim}{a}}$$

PRACTICE 7.2.1

Q

In the figure, ACEG is a parallelogram. It is given that $\overrightarrow{AH} = \overrightarrow{a}$, $\overrightarrow{AB} = \overrightarrow{b}$ and 1. $\overrightarrow{AJ} = c$. Points B, D, F, H are the midpoints of AC, CE, EG and AG respectively. Find each of the following vectors in terms of a, b and c

- (a)
- (b)
- (c)
- $\overrightarrow{AG} = \overrightarrow{FB} =$ (d)
- $\stackrel{\rightarrow}{HD}$ = (e)

Sharpen Your Skills 3

Given $\overrightarrow{AB} = u$ and $\overrightarrow{BC} = 4u$, shows that A, B and C are collinear

$$\overrightarrow{AB} = u, \overrightarrow{B}C = 4u$$

$$\overrightarrow{B}C = 4\overrightarrow{AB}$$
 $\therefore \overrightarrow{AB} \square \overrightarrow{B}C$

Point B is common point. ∴ A, B and C are collinear

PRACTICE 7.2.2

1.

Find the parallel vector of each of the following

2. Figure below shows a trapezium ABCD in which \overrightarrow{AB} and \overrightarrow{DC} are parallel. Given that $\overrightarrow{DC} = 6u$, $|\overrightarrow{AB}| = 4$ cm and $|\overrightarrow{DC}| = 3$ cm, express $|\overrightarrow{AB}|$ in terms of $|\overrightarrow{u}|$.

3. Given that $\overrightarrow{AB} = 4x$ and $\overrightarrow{BC} = 6x$. Shows that the point A, B and C are collinear.

4. Given that (2h-3)a = (k+5)b, find the value of h and k if a and b are non-parallel and non-zero vectors.

7.3 ADDITIONS AND SUBTRATIONS VECTORS

Sharpen Your Skills 4

1. a + 2a + 2a Find the sum of the vectors

Sum of vectors = 10 a

2.

= x + y

3.

$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$$

$$= a + (-b)$$

$$= a - b$$

PRACTICE 7.3

1.

In the above figure, point D is on BC,

- (a) Write
 - (i) \overrightarrow{DA} in term of \overrightarrow{CA} and \overrightarrow{DC}
 - (ii) \overrightarrow{AD} in term of \overrightarrow{BD} and \overrightarrow{AB}
- (b) Find the resultant vector for $\overrightarrow{CA} + \overrightarrow{BC}$

2.

In the figure, ABCD is a parallelogram which diagonals AC and BD intersect each other at point E. Find the resultant vector for each of the following.

(a)
$$\overrightarrow{AB} + \overrightarrow{BD}$$

(c)
$$\overrightarrow{CA} + \overrightarrow{BC}$$

(b)
$$\overrightarrow{CE} + \overrightarrow{ED}$$

(d)
$$\overrightarrow{EB} + \overrightarrow{DE}$$

3.

Based on the above figure, BCDE is a straight line with $\overrightarrow{BC} = \overrightarrow{CD} = \overrightarrow{DE}$. Given that $\overrightarrow{AB} = 3x + 2y$ and $\overrightarrow{BC} = x - y$. Express each of the following vectors in terms of \overrightarrow{a} and \overrightarrow{orb}

(a) \overrightarrow{ED}

(a) \overrightarrow{AC}

(a) \overrightarrow{DA}

4.

In the above figure, ABCDEF is a regular hexogen. Find the resultant vector for each of the following

- (a) $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD}$
- (b) $\overrightarrow{AC} + \overrightarrow{DE} + \overrightarrow{CD}$
- (c) $\overrightarrow{AB} + \overrightarrow{CD} + \overrightarrow{EF} + \overrightarrow{BC} + \overrightarrow{DE} + \overrightarrow{FA}$

5.

In the above figure, $\overrightarrow{BA} = \overrightarrow{a}$ and $\overrightarrow{BC} = \overrightarrow{b}$. If Q is a point above \overrightarrow{BC} so that $\overrightarrow{BQ}: \overrightarrow{QC} = 1:3$, express \overrightarrow{QA} in terms of \overrightarrow{a} and \overrightarrow{b} .

7.4 SPM QUESTION

1. SPM 2003

$$P = 2a + 3b$$

 $q = 4a - b$
 $r = ha + (h - k)b$, where h and k are constants

Use the above information to find the values of h and k when r = 3p - 2q [3 marks]

2. Diagram shows a parallelogram ABCD with BED as a straight line.

Given that $\overrightarrow{AB} = 6 \ p$, $\overrightarrow{AD} = 4 \ p$ and DE = 2EB, express in terms of p and q

(a) \overrightarrow{BD}

(b) \overrightarrow{EC}

[4 marks]

3. SPM 2004

Diagram below shows triangles OAB. The straight line AP intersects the straight line OQ at R. It is given that $OP = \frac{1}{3}OB$,

 $AQ = \frac{1}{4}AB$, $\overrightarrow{OP} = 6x$ and $\overrightarrow{OP} = 2y$

- (a) Express in terms of x and/or y:
 - (i) \overrightarrow{AP} ,
 - \vec{OQ}

[4 marks]

- (b) (i) Given that $\overrightarrow{AR} = h \overrightarrow{AP}$, state \overrightarrow{AR} in terms of h, \overrightarrow{x} and y
 - (ii) Given that $\overrightarrow{RQ} = k \overrightarrow{OQ}$, state \overrightarrow{RQ} in terms of k, \overrightarrow{x} and \overrightarrow{y} [2 marks]
- (c) Using \overrightarrow{AR} and \overrightarrow{RQ} from (b), find the value of h and of k [4 marks]

4. SPM 2005

It is

In diagram, ABCD is a quadrilateral. AED and EFC are straight lines.

 $\vec{AE} = 8Y, \vec{DC} = 25 x - 24 y, AE = \frac{1}{4} AD \text{ and } EF = \frac{3}{5} EC$

- (a) Express in terms of x and/or y:
 - (i) \overrightarrow{BD} ,
 - (ii) \overrightarrow{EC} [3 marks]
- (b) Show that the points B, F and D are collinear [2 marks]
- (c) If $\begin{vmatrix} x \\ z \end{vmatrix} = 2$ and $\begin{vmatrix} y \\ z \end{vmatrix} = 3$, find $\begin{vmatrix} \overrightarrow{BD} \end{vmatrix}$ [2 marks]

ASSESSMENT

1. In the above figure, GH : AB = 3 : 10 and GH is parallel to \overrightarrow{AB} . If AB= 10 a , find \overrightarrow{GH} in terms of a . [2 Marks]

2.

In the above figure PQRSTU is a regular hexagon. Express $\overrightarrow{PQ} + \overrightarrow{PT} - \overrightarrow{RS}$ as a single vector.

3. Given $\overrightarrow{AB} = (k+1)$ \overrightarrow{a} and $\overrightarrow{BC} = 2b$. If A, B and C are collinear, $|\overrightarrow{AB}| = |\overrightarrow{BC}|$ and b = 3a. Find the value of k. [3 Marks]

- 4. Given that OABC is a rectangle where OA = 6 cm and OC = 5cm. If $\overrightarrow{OA} = \overrightarrow{a}$ and $\overrightarrow{OB} = \overrightarrow{b}$, find [3 Marks]
 - (a) AC in terms of a and b
 - (b) a+b

5. In \triangle OPQ, $\overrightarrow{OP} = p$ and $\overrightarrow{OQ} = q$. T is a point on PQ where PT: TQ=2: 1. Given that M is the midpoint of OT, express \overrightarrow{PM} in terms of p and q. [3 Marks]

ANSWERS

PRACTICE 7.1

notation	magnitude	direction
$\stackrel{ ightarrow}{CD}$	2.828	North west
$\overset{ ightarrow}{HG}$	3	North
\overrightarrow{FE}	3.162	South-west
$\stackrel{ ightarrow}{MK}$	2	East
\overrightarrow{QP}	2.236	South-west

PRACTICE 7.2.1

- 1. (a) 2 *c*
 - (b) 2*b*
 - (c) 2 a
 - (d) -2 a
 - (e) $2b_{\tilde{a}}$

PRACTICE 7.2.2

- $1. \overset{\rightarrow}{PS} \ \Box \overset{\rightarrow}{QR}$
- 2. 8*u*
- 3. $h = \frac{3}{2}$, k = -5

PRACTICE 7.3

- (i) $\overrightarrow{DC} + \overrightarrow{CA}$ (a) 1.
 - (ii) $\overrightarrow{AB} + \overrightarrow{DC}$
 - $\stackrel{\rightarrow}{B\!A}$ (b)

- (a) \overrightarrow{AD} 4.
 - (b) \overrightarrow{AE}
 - (c) 0

5. $-\frac{1}{4}b + a$

- $\stackrel{
 ightarrow}{AD}$ 2. (a)
 - $\stackrel{\rightarrow}{CD}$ (b)
 - $\stackrel{
 ightarrow}{B\!A}$ (c)
 - $\overset{\rightarrow}{DB}$ (d)
- 3. (a)

(c) -5x

y - x $\tilde{4}x + y$ (b)

PAST YEARS QUESTION

SPM 2004 1.

(a) (i)
$$\vec{AP} = -2y + 6x$$

(ii)
$$\vec{OQ} = \frac{3}{2} y + \frac{9}{2} x$$

(b)
$$\vec{AR} = h(6x - 2y)$$

(ii)
$$\vec{RQ} = k(\frac{9}{2}x + \frac{3}{2}y)$$

(c)
$$k = \frac{1}{3}$$
, $h = \frac{1}{2}$

2.
$$h = -2$$
, $h = -13$
3. (a) $-6 p + 4 q$

3. (a)
$$-6 p + 4 q$$

(b)
$$2p + \frac{8}{3}q$$

2. SPM 2005

(a) (i)
$$\overrightarrow{BD} = -20 x + 32 y$$

(ii)
$$\overrightarrow{EC} = 25 x$$

$$(c) \left| \overrightarrow{AD} \right| = 104$$

ASSESSMENT

$$\stackrel{\rightarrow}{PR}$$

3.
$$k = 5$$

4. (a)
$$b - 2a$$

2.
$$\overrightarrow{PR}$$

3. $k = 5$
4. (a) $b - 2a$
(b) 13 units
5. $\frac{1}{3}q + \frac{5}{6}p$

ADDITIONAL MATHEMATICS FORM 5 MODULE 8

VECTORS

VECTORS

	Contents	Page
8.0	Conceptual Map	2
8.1	Vector In The Cartesian Coordinates	3 - 7
8.2	SPM Questions	8 – 10
8.3	Assessment test	11 - 12
	Answers	13 - 14

8.0 CONCEPTUAL MAP

8.1 **VECTOR IN THE CARTESIAN COORDINATES**

State the following vector in terms in i and j and also in Cartesian coordinates 1.

Example

Solutions

$$\overrightarrow{OA} = 2i = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$$

$$\overrightarrow{OB} = 3 j = \begin{pmatrix} 0 \\ 3 \end{pmatrix}$$

$$\overrightarrow{OB} = 3 j = \begin{pmatrix} 0 \\ 3 \end{pmatrix}$$

$$\overrightarrow{OP} = p = 3i + 4 j$$

$$\overrightarrow{A}$$

Exercise

Solutions

(a) $\overrightarrow{OP} =$	(b) \overrightarrow{OQ} =
	ĺ

$$(c) \overrightarrow{OR} = (d) \overrightarrow{OS} =$$

(e)
$$\overrightarrow{OT} =$$
 (f) $\overrightarrow{OW} =$

2. Find the magnitude for each of the vectors

Example $3i-2j = \sqrt{3^2+2^2} = \sqrt{13} \text{ unit}$	(a) $2i + 5j =$
(b) $5i-12j=$	(c)-i-j=

3. Find the magnitude and unit vector for each of the following

Example	(a) $r = 2i - 6j$
r = 3i + 4j	~ ~ ~
Solution:	
Magnitude, $\left r \right = \sqrt{3^2 + 4^2}$	
= 5	
unit vector, $\hat{\mathbf{r}}$, $=\frac{1}{5}(4i+3j)$	
(b) $a = \begin{pmatrix} -6 \\ 3 \end{pmatrix}$	(c) $h = \begin{pmatrix} -1 \\ -2 \end{pmatrix}$

4.	Given that $a = 3i - 2i$.	b = 2i + 5i	and $c = -4i + 3i$.	Simplify of the following
••	Sive in that ii ii ii ii ii ii ii ii	e = i : e j	and e it is j.	simplify of the following

(a) <i>a</i>	ı+	b-	- <i>c</i>						(b) a+	- 2	b-	3 <i>c</i>
~	•	~	~							~		~	~

5. Given that a = -2i + 3j, b = i - 4j and c = 2i + 5j. Determine the unit vector in the same direction with vector 2a - 3b + c.

6. If $\overrightarrow{OA} = -i + 3j$, $\overrightarrow{OB} = -2j$ and $\overrightarrow{BC} = 4i - 3j$. Find

(a)
$$\overrightarrow{OC}$$
 (b) $|\overrightarrow{AC}|$

Example

Given that

$$a = 6i + 7j$$
 and $b = pi + 2j$. find the

possible value (or values) of p for each of the following cases.

(a) a and b are parallel.

(b)
$$\begin{vmatrix} a \\ a \end{vmatrix} = \begin{vmatrix} b \\ a \end{vmatrix}$$

Solutions

$$a = kb$$

$$6i+7j = k(pi+2j)$$

$$6i+7j = kpi+2kj$$

By equating the coefficients of i

$$6 = kp \dots (1)$$

By equating the coefficients of j

7 = 2k(2)

$$k = \frac{7}{2} = 3\frac{1}{2}$$

Subtitute $k = \frac{7}{2}$ into (1)

$$6 = \frac{7}{2}p$$

$$p = \frac{12}{7} = 1\frac{5}{7}$$

(b)
$$\begin{vmatrix} a \\ - \end{vmatrix} = \begin{vmatrix} b \\ - \end{vmatrix}$$

 $\sqrt{6^2 + 7^2} = \sqrt{p^2 + 2^2}$
 $\sqrt{85} = \sqrt{p^2 + 4}$
 $p^2 + 4 = 85$
 $p^2 = 81$
 $p = \pm 9$

7. Given
$$r = 4i + (k+3)j$$
 and

$$s = (k+4)i+14j$$
. If r is parallel to s ,

find

- (a) the value of k
- (b) $\left| \frac{s-3r}{s} \right|$ for the positive values of k

Example

O is the origin, P and Q are two points such

that
$$\overrightarrow{OP} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$$
 and $\overrightarrow{OQ} = \begin{pmatrix} k^2 - 3k \\ -6 \end{pmatrix}$.

If the points O, P and Q are collinear, find the possible values of k.

Solutions

Since the points O, P and Q are collinear,

$$\overrightarrow{OP} = \overrightarrow{mOQ}$$
 (m is a constant)

$$\binom{2}{-3} = m \binom{k^2 - 3k}{-6}$$

$$\binom{2}{-3} = \binom{m(k^2 - 3k)}{-6m}$$

$$m(k^2 - 3k) = 2$$
(1)
 $-6m = -3$ (2)
 $m = \frac{1}{2}$

From (1):
$$\frac{1}{2}(k^2 - 3k) = 2$$

 $k^2 - 3k = 4$
 $k^2 - 3k - 4 = 0$
 $(k - 4)(k + 1) = 0$
 $k = 4 \text{ or } -1$

8. Given that $\overrightarrow{PQ} = 6i - 8j$ and

 $\overrightarrow{PR} = 2i + bj$. If P, Q and R are collinear, find the value of b.

8.2 SPM QUESTIONS

SPM 2003/no. 12 / paper 1.

1. Diagram 2 shows two vectors, \overrightarrow{OP} and \overrightarrow{QO} .

Express

- (a) \overrightarrow{OP} in the form $\begin{pmatrix} x \\ y \end{pmatrix}$,
- (b) \overrightarrow{OQ} in the form $x\mathbf{i} + y\mathbf{j}$.

[2 marks]

SPM 2005 / no. 15 / Paper 1

2. Diagram 5 shows a parallelogram, OPQR, drawn on a Cartesian plane.

It is given that $\overrightarrow{OP} = 6\underline{i} + 4\underline{j}$ and $\overrightarrow{PQ} = -4\underline{i} + 5\underline{j}$. Find \overrightarrow{PR} . [3 marks]

SPM 2004

- 3. Given that O(0, 0), A(-3, 4) and B(2, 16), find in terms of the unit vectors, i and j
 - (a) \overrightarrow{AB}
 - (b) the unit vector in the direction of \overrightarrow{AB} [4 marks]

SPM 2004

4. Given that A(-2, 6), B(4, 2) and C(m, P), find the value of m and of p such that $\overrightarrow{AB} + 2\overrightarrow{BC} = 10i - 12j$. [4 marks]

SPM 2003

5. Give that $\overrightarrow{AB} = \begin{pmatrix} 5 \\ 7 \end{pmatrix}$, $\overrightarrow{OB} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ and $\overrightarrow{CD} = \begin{pmatrix} k \\ 5 \end{pmatrix}$, find

(a) the coordinates of A [2 marks]

(b) the unit vector in the direction of \overrightarrow{OA} [2 marka]

(c) the value of k, if \overrightarrow{CD} is parallel to \overrightarrow{AB} [2 marks]

8.3 ASSESSMENT TEST

1. Find the magnitude and unit vector of a = 6i + 8j [2 marks]

2. Find the unit vector in the direction of $\overrightarrow{OP} = \begin{pmatrix} -12 \\ 5 \end{pmatrix}$ [2 marks]

3. Given that u = 3i + mj and v = ki - 3j, find the value of m and of k if u + mv = 11i - 4j [3 marks]

4. Three points A, B and C are such that $\overrightarrow{OA} = \begin{pmatrix} 5 \\ 6 \end{pmatrix}$, $\overrightarrow{OB} = \begin{pmatrix} 6 \\ 4 \end{pmatrix}$ and $\overrightarrow{OC} = \begin{pmatrix} k \\ 2 \end{pmatrix}$, where O is the origin. Find the value of k if the points A, B and C are collinear [4 marks]

- 5. It is given that a = 2i 2j, b = i + 2j, P(1, -3) and Q(5, 2). If $\overrightarrow{PQ} = ha + kb$, where
 - h and k are constants, find
 - (a) the value of h and k

[4 marks]

(b) the unit vector in the direction of \overrightarrow{PQ} .

[2 marks]

- 6. PQRS is a parallelogram. M is the midpoint of QR. Given that $\overrightarrow{PQ} = 3i + j$ and
 - $\overrightarrow{PM} = 4 i + 2 j$, find
 - (a) (i) \overrightarrow{QR}
 - (ii) $\stackrel{\rightarrow}{PR}$

[4 marks]

(b) the length of PS

[2 marks]

- 7 .Given that $u = \begin{pmatrix} 7 \\ 9 \end{pmatrix}$ and $v = \begin{pmatrix} 11 \\ k-3 \end{pmatrix}$, find the possible value(s) of k for each of the following cases.
 - (a) u and v are parallel

[3 marks]

(b) $\left| \begin{array}{c} u \\ z \end{array} \right| = \left| \begin{array}{c} v \\ z \end{array} \right|$

[3 marks]

ANSWERS

Exercises

1. (a)
$$\vec{OP} = i + 3j$$

(b)
$$\vec{OQ} = -3i + 2j$$

(c)
$$\overrightarrow{OR} = -i - 2j$$

(d)
$$\overrightarrow{OS} = 2i - 2j$$

(e)
$$\overrightarrow{OT} = 4i$$

(f)
$$\overrightarrow{OW} = -2j$$

2. (a)
$$\sqrt{13}$$
 units

- (b) 13 units
- (c) $\sqrt{2}$ units

3. (a)
$$\sqrt{40}$$
 units, $\frac{1}{\sqrt{40}}(2i-6j)$

(b)
$$\sqrt{45}$$
 units, $\frac{1}{\sqrt{45}} \begin{pmatrix} -6\\3 \end{pmatrix}$

(c)
$$\sqrt{5}$$
 units, $\frac{1}{\sqrt{5}} \begin{pmatrix} -1 \\ -2 \end{pmatrix}$

4. (a)
$$9i + 6j$$

(b)
$$19i + 17j$$

5.
$$\frac{1}{\sqrt{554}}(-5i+23j)$$

6. (a)
$$4i - 5j$$

(b)
$$\sqrt{89}$$

Assesment

$$1. \qquad \frac{3}{5}i + \frac{4}{5}j$$

$$2. \qquad \begin{pmatrix} -\frac{12}{13} \\ \frac{5}{13} \end{pmatrix}$$

3
$$m = 2, k = 4$$

$$4 \qquad k = 7$$

5 (a)
$$k=3, h=\frac{1}{2}$$

(b)
$$\frac{1}{\sqrt{41}} (4i + 5j)$$

6 (a) (i)
$$2i+2j$$

(ii)
$$5i + 3j$$

$$7 k = 17\frac{1}{7}$$

$$k = 0$$
 or 6

7. (a)
$$k = -11, 4$$

(b)
$$\sqrt{6}$$
 units

8.
$$b = -\frac{8}{3}$$

SPM QUESTIONS

1. (a)
$$\overrightarrow{OP} = \begin{pmatrix} 5 \\ 3 \end{pmatrix}$$

(b)
$$\overrightarrow{OQ} = -8i + 4j$$

2.
$$-10i + j$$

3. (a)
$$\binom{5}{2}$$

(b)
$$\frac{1}{13} \binom{5}{12}$$

4.
$$m = 6, p = -2$$

4.
$$m = 6, p = -2$$

5. $(a) A(-3,4)$

$$(b) \qquad \frac{1}{5} \begin{pmatrix} -3 \\ -4 \end{pmatrix}$$

(c)
$$k = \frac{25}{7}$$