$$J[n] = \sum_{k=-\infty}^{+\infty} x[k] \cdot h[n-k] = \sum_{k=-\infty}^{+\infty} \left(\left(\frac{-1}{2} \right)^{k} u[k-4] \right) \cdot \left(\frac{4}{4} u[2-n+k] \right)$$

$$= 4^{n} \sum_{k=4}^{n-2} \left(\frac{-1}{2} \right)^{k} \cdot 4^{-k} = 4^{n} \sum_{k=4}^{n-2} \left(\frac{-1}{8} \right)^{k} = 4^{n} \left(\frac{\left(\frac{-1}{8} \right)^{4} - \left(\frac{-1}{8} \right)^{4}}{8} \right)$$

#2

#2

| h(t) |
$$x(t)$$
 | $x(t)$ | $x($

b)
$$h(t)$$
: $(2e - e^{-\frac{t-100}{100}}) u(t)$
 $u(t)$: $u(t)$: