C语言程序设计

第二章 数据类型与运算符

编写一个简单程序

求圆的面积

需要考虑的问题:

- ▶ 圆周率、半径、面积用什么表示?
- 在程序运行时,需给半径和圆面积留多大的空间来暂放它们的值?
- 这些值是整数还是实数?
- ▶ 平方怎么表示?
- > 它们之间怎么运算?

欲解决这些问题,需要学习本章的内容

01 数据类型

02 标识符

03 常量及其表示

04 变量及其应用

05 运算符与优先级

01 C语言中的数据类型

整型数据的类型

类型名称	类型符 所占字节:		取值范围
短整型	[signed] short [int]	2	$-2^{15}\sim 2^{15}-1$
	unsigned short [int]	2	$0 \sim 2^{16} - 1$
整型	[signed] int	1	$-2^{31}\sim 2^{31}$ - 1
	unsigned int	4	$0 \sim 2^{32}$ -1
长整型	[signed] long [int]	4	$-2^{31}\sim 2^{31}$ - 1
	unsigned long [int]	4	$0 \sim 2^{32}-1$

- []方括号表示可省略
- VC6.0下 int 数据占4 Byte, long数据占4 Byte

实型数据

1. 实型数据的类型

单精度实型数据 float, 分配4 Byte

双精度实型数据double, 分配 8 Byte

2. 实型数据的取值范围

数据类型	取值范围	有效数字
float	$\pm 3.4 \text{ x } (10^{-38} \sim 10^{38})$	7位
double	$\pm1.7\mathrm{x}(10^{-308}\!\sim\!10^{308})$	16位

字符型数据

- > 字符型数据是指字母、数字、各种符号等用ASCII值表示的字符
- ▶ 例如 'a' 是一个char类型数据, 称作字符常量, 存储:

01100001

> 字符型数据类型char, 占 1字节

02 标识符

标识符

标识符是什么?

用来在程序中替代 常量、变量、函数等名字的的字符序列

如何起名字?

- ▶只能由字母、数字、下划线组成,且首字母必须是字母或下划线
- ▶C语言的关键字不能用作变量名
- ▶区分大小写

附: C语言中的关键字

auto	break	case	char	const	continue	default	signed
do	double	else	enum	extern	float	for	unsigned
goto	if	int	long	register	return	short	while
void	static	sizeof	struct	switch	typedef	union	volatile

标识符命名注意事项

- ▶长度: 有效长度为32个字符。随系统而异, 但至少前8个字符有效
- ▶命名原则:
 - 变量名和函数名中的英文字母一般用小写, 以增加可读性
 - 见名知意
 - 不宜混淆 如1与I, o与0

例:以下能作为合法的标识符是(D)。

A: an\$wer

B: 2to

C: signed

D: _if

03 常量及其表示

常量

```
例: 一个程序段
{ int a,b,c;
    a= 0x25;
    b= 2.5 * a;
    c= 'A' - 32;
}
```


思考: 程序段中有几个常量? 分别是?

共有4个常量

分别是:

- ▶ 十六进制整型常量: 0x25
- ▶ 实型数值常量: 2.5
- ➤ 字符型常量: 'A'
- ▶ 十进制整型常量: 32

常量

定义:程序运行时其值不能改变的量(即常数)

分类:

- ▶ 直接常量:可直接出现在程序中
 - 整型常量: 10、015、-20、0x30
 - 实型常量: 12.5、30.0、-1.5e-3
 - 字符常量: 'A'、 'b'、 '\101'
 - 字符串常量: "sum"、"A"、"123"
- ▶ 符号常量: 在程序中可以用某个标识符替代
 - #define PI 3.14159

如此定义后:程序中可以用 PI 表示 3.14159

常量的表示

整型常量

- ▶ 十进制整数:由数字0~9和正负号表示.如:123, -456, 0
- ▶ 八进制整数:由数字0开头,后跟数字0~7表示.如:0123,011
- ▶ 十六进制整数: 由0x或0X开头,后跟0~9,a~f,A~F表示. 如0x56, 0XFE

实型常量

- 十进制小数形式:由数字0~9和小数点组成.如:0.0,2.3,-3.
- ▶指数形式:其一般形式为:aEn 其含义:a×10ⁿ

如: 3.6E4 表示3.6×10⁴

常量的表示

字符常量:

▶ 普通字符: 用单引号括起来的单个字符. 如: 's', 'A'

▶ 转义字符: 反斜线后面跟一个字符或一个ASCII值表示. 如: '\n', '\101'

说明: 'A' 等价于 '\101' 等价于 '\x61'

附:转义字符及其含义

转义字符	含义	转义字符	含义
\n	换行	\t	水平制表
\v	垂直制表	\b	退格
\r	回车	\f	换页
∖a	响铃	\\	反斜线
\6	单引号	\"	双引号
\ddd	3位8进制数代表的字符	\xhh	2位16进制数代表的字符

常量的表示

字符串常量:

▶ 用双引号""括起来的字符序列. 如: "hello", "A"说明:每个字符串尾自动加一个 '\0'作为字符串结束标志字符串所占 内存空间 比实际字符数 多1个字节

思考: 'A' 与 "A" 区别?

符号常量

```
void main ()
                               #define PI 3.1415
                               void main ()
  x=3.1415*r;
  y=3.1415*r*r;
                                 x=PI*r;
  z=3.1415*r*r*r;
                                 y=PI*r*r;
                                 z=PI*r*r*r;
语法规定:
                    符号常量
                               常量
           #define
```

注意事项

- > 行尾不能有分号
- ▶ define前面一定要有#
- > 符号常量名一般使用大写

04 变量及其应用

变量

▶什么是变量

程序运行时其值可以被改变的量

▶怎么样定义变量

语法规定: [存储类型] 数据类型 变量名1, ...变量名n;

例:

```
int x, y, z;
float radius, length, area;
char ch;
```


变量的应用

▶定义变量的意义

- 为变量在内存中预留存储空间
- 限定变量所表示的取值范围

> 变量的应用原则

• 先定义,再赋值,后使用

int x;

int y;

x=5;

 $y=x^{*}20;$

思考: 若x没有值, y的结果是什么?

求圆面积

开篇的3个问题

- 圆周率、半径、面积用什么表示?
- 在程序运行时,需给半径和圆面积留多大的空间来暂放它们的值?
- > 这些值是整数还是实数?

```
#define PI 3.14159
void main ()
{ int r;
  double s;
  r=10;
  .....}
```


05 运算符与优先级

运算符与优先级

思考几个算式

- > 5/2 = ? 2
- ▶3>2>1 成立吗? 否
- **>** 3>2+1<2=? 1
- ▶ 2<x<5 是否表示 x ∈ (2,5)</p>

运算符

▶概念:

对运算对象完成规定的操作运算

▶类型:

按运算对象个数分:

- 单目、双目、三目
- 按功能分:
 - 算术、赋值、关系、逻辑
 - 条件、逗号、位、其他

运算符的优先级和结合性

▶优先级:

指各种运算符号的运算优先顺序 (即: 先算谁, 后算谁的问题)

例如: 5+6*3+2=?

3>2+1<2=?

▶结合性:

指运算符号和运算对象的结合方向(即: 计算 从左向右 还是 从右向左?)

例如: a-b+4 左结合

x = y = 5 右结合

C语言中的运算符

运

算

符

```
算术运算符: (+ - * / % ++ --)
 系运算符: (< <= == > >= !=)
逻辑运算符:
        ((! && ||)
赋值运算符:
        (= += -= *= /= %=)
位运算符: (<< >> ~ | ^ &)
条件运算符:
        (?:)
逗号运算符:
指针运算符:
求字节数 : (sizeof)
强制类型转换: (类型)
分量运算符:
下标运算符:
        ([])
```


赋值运算符 =

▶作用:将右边常量或变量或表达式的值赋给左边变量

例如: x=3

a=b+5

▶注意事项:

= 左边只能是 变量

= 右结合,优先级低,仅高于 逗号运算

x = z = 10 相当于把 (z=10)的值10 赋给x

复合赋值运算符

运算符种类:

算术运算符

- ▶基本运算符: + * / %
- ▶负号运算符: -
- ▶自增自减运算符: ++ --

- >结合性: 从左向右
- ▶ 优先级: ++ -- 高于 * / % 高于 + -
 - 算术运算符优先级 很高,仅次于 单目运算

基础算术运算符

运算法则:

两整数相除,结果为整数

%要求两侧均为整型数据,且符号取决于前面

```
例: 3/2 = 1

-3/2.0 = -1.5

5\%2 = 1

-5\%2 = -1

5\%-2 = 1

5\%1 = 0

5.5\%2 错
```


++ -- 运算符

▶ 作用:使相关变量值加1或减1

▶ 运算法则:

```
前置 ++i, --i (先执行i=i+1或i=i-1, 再使用i值)
后置 i++, i-- (先使用i值,再执行i=i+1或i=i-1)
```

例:

$$j = 3$$
; $k = ++j$; //k=4, $j=4$
 $j = 3$; $k = j++$; //k=3, $j=4$
 $j = 3$; printf ("%d", ++j); //4
 $j = 3$; printf("%d", $j++$); //3
 $a = 3$; $b = 5$; $c = (++a) * b$; //c=20, $a=4$
 $a = 3$; $b = 5$; $c = (a++) * b$; //c=15, $a=4$

思考 i=2; k=++i+(++i) 答: i=4 求 i=? k=? k=8

关系运算符

- > 运算符: > >= < <= ==!=
- >作用:判断运算符左右两边关系
- ▶结果:不是0就是1(C语言中: 0表示假,非0表示真)

▶结合性:

结合方向: 从左向右

▶优先级: > >= < <= 高于 == !=

算术运算 高于 关系运算 高于 赋值运算

关系运算符

思考

$$a = 1$$
; $b = 2$; $c = 3$;

答: d的值为1。等价于: d = ((a != c) == ((a < b) < c));

逻辑运算符

- ▶运算符:!(逻辑非) &&(逻辑与) ||(逻辑或)
- ▶结果:不是0就是1(0表示假,非0表示真)

▶结合性:

结合方向: 从左向右

▶优先级:

! 高于 算术运算 高于 关系运算

高于 逻辑运算 高于 赋值运算

逻辑运算符

▶运算法则(0表示假,非0表示真)

А	В	! A	!B	A && B	A B
假	假	1	1	0	0
假	真	1	0	0	1
真	假	0	1	0	1
真	真	0	0	1	1

例: a = 4; b = 5;

求: 5 > 3 && 2 || 8 < 4 - !0 结果? //值为1

思考

2<x<5 是否表示 *x*∈(2,5) 应该怎样描述?

应描述为: (x>2&&x<5)

逻辑运算符

▶特例

a = 1; b = 2; c = 3; d = 4; m = 1; n = 1; (m = a > b) && (n = c > d) 问: 运算后 m=? n=?

结果: m = 0, n = 1

原因:逻辑运算短路问题 逻辑表达式求解时,并非所有的逻辑运算符都被执行, 只是在必须执行下一个逻辑运算符才能求出表达式的解 时,才执行该运算符。

求圆面积

开篇问题

- 圆周率、半径、面积用什么表示?
- 在程序运行时,需给半径和圆面积留多大的空间来暂放它们的值?
- > 这些值是整数还是实数?
- ▶ 平方怎么表示?
- ▶ 它们之间怎么运算?

```
#define PI 3.14159
void main ( )
{ int r;
  double s;
  r=10;
  s=PI*r*r;
```


该程序存在什么问题?

THANKYOU

