项目:用线性回归预测房价数据

分析目标

此数据分析报告的目的是,基于已有的房屋销售价格,以及有关该房屋的属性,进行线性 回归分析,从而利用得到的线性回归模型,能对以下未知售价的房屋根据属性进行价格预 测:

面积为6500平方英尺,有4个卧室、2个厕所,总共2层,不位于主路,无客人房,带地下室,有热水器,没有空调,车位数为2,位于城市首选社区,简装修。

简介

数据集 house_price.csv 记录了超过五百栋房屋的交易价格,以及房屋的相关属性信息,包括房屋面积、卧室数、厕所数、楼层数、是否位于主路、是否有客房,等等。

house_price.csv 每列的含义如下:

• price: 房屋出售价格

• area:房屋面积,以平方英尺为单位

bedrooms: 卧室数bathrooms: 厕所数

• stories: 楼层数

• mainroad: 是否位于主路

■ yes 是 ■ no 否

• guestroom: 是否有客房

■ yes 是 ■ no 否

• basement: 是否有地下室

■ yes 是 ■ no 否

• hotwaterheating: 是否有热水器

■ yes 是 ■ no 否

• airconditioning: 是否有空调

■ yes 是 ■ no 否

• parking: 车库容量,以车辆数量为单位

• prefarea: 是否位于城市首选社区

■ yes 是 ■ no 否

• furnishingstatus: 装修状态

- furnished 精装
- semi-furnished 简装
- unfurnished 毛坯

读取数据

导入数据分析所需要的库。

In [1]: import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

导入数据分析所需要的库,并通过Pandas的 read_csv 函数,将原始数据文件"house_price.csv"里的数据内容,解析为DataFrame并赋值给变量original_house_price。

In [2]: original_house_price = pd.read_csv("house_price.csv")
 original_house_price.head()

Out[2]:		price	area	bedrooms	bathrooms	stories	mainroad	guestroom	baseme
	0	13300000	7420	4	2	3	yes	no	ı
	1	12250000	8960	4	4	4	yes	no	ı
	2	12250000	9960	3	2	2	yes	no	у
	3	12215000	7500	4	2	2	yes	no	у
	4	11410000	7420	4	1	2	yes	yes	у
	4								•

评估和清理数据

在这一部分中,我们将对在上一部分建立的 original_house_price DataFrame所包含的数据进行评估和清理。

主要从两个方面进行:结构和内容,即整齐度和干净度。

数据的结构性问题指不符合"每个变量为一列,每个观察值为一行,每种类型的观察单位为一个表格"这三个标准;数据的内容性问题包括存在丢失数据、重复数据、无效数据等。

为了区分开经过清理的数据和原始的数据,我们创建新的变量 cleaned_house_price , 让它为 original_house_price 复制出的副本。我们之后的清理步骤都将被运用在 cleaned_house_price 上。

In [3]: cleaned_house_price = original_house_price.copy()

数据整齐度

In [4]: cleaned_house_price.head(10)

ut[4]:		price	area	bedrooms	bathrooms	stories	mainroad	guestroom	basem
	0	13300000	7420	4	2	3	yes	no	
	1	12250000	8960	4	4	4	yes	no	
	2	12250000	9960	3	2	2	yes	no	
	3	12215000	7500	4	2	2	yes	no	
	4	11410000	7420	4	1	2	yes	yes	
	5	10850000	7500	3	3	1	yes	no	
	6	10150000	8580	4	3	4	yes	no	
	7	10150000	16200	5	3	2	yes	no	
	8	9870000	8100	4	1	2	yes	yes	
	9	9800000	5750	3	2	4	yes	yes	
	4								•

从头部的10行数据来看,数据符合"每个变量为一列,每个观察值为一行,每种类型的观察单位为一个表格",因此不存在结构性问题。

数据干净度

接下来通过 info , 对数据内容进行大致了解。

In [5]: cleaned_house_price.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 545 entries, 0 to 544
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	price	545 non-null	int64
1	area	545 non-null	int64
2	bedrooms	545 non-null	int64
3	bathrooms	545 non-null	int64
4	stories	545 non-null	int64
5	mainroad	545 non-null	object
6	guestroom	545 non-null	object
7	basement	545 non-null	object
8	hotwaterheating	545 non-null	object
9	airconditioning	545 non-null	object
10	parking	545 non-null	int64
11	prefarea	545 non-null	object
12	furnishingstatus	545 non-null	object

dtypes: int64(6), object(7)
memory usage: 55.5+ KB

从输出结果来看, cleaned_house_price 共有545条观察值,变量不存在缺失值。

数据类型方面,我们已知 mainroad (是否位于主路) 、 guestroom (是否有客房) 、 basement (是否有地下室) 、 hotwaterheating (是否有热水器) 、

airconditioning (是否有空调)、 prefarea (是否位于城市首选社区)、 furnishingstatus (装修状态) 都是分类数据,可以把数据类型都转换为Category。

```
In [6]:
    cleaned_house_price['mainroad'] = cleaned_house_price['mainroad'].astype("catego
    cleaned_house_price['guestroom'] = cleaned_house_price['guestroom'].astype("catego
    cleaned_house_price['basement'] = cleaned_house_price['basement'].astype("catego
    cleaned_house_price['hotwaterheating'] = cleaned_house_price['hotwaterheating'].
    cleaned_house_price['airconditioning'] = cleaned_house_price['airconditioning'].
    cleaned_house_price['prefarea'] = cleaned_house_price['prefarea'].astype("catego
    cleaned_house_price['furnishingstatus'] = cleaned_house_price['furnishingstatus']
```

In [7]: cleaned_house_price.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 545 entries, 0 to 544
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	price	545 non-null	int64
1	area	545 non-null	int64
2	bedrooms	545 non-null	int64
3	bathrooms	545 non-null	int64
4	stories	545 non-null	int64
5	mainroad	545 non-null	category
6	guestroom	545 non-null	category
7	basement	545 non-null	category
8	hotwaterheating	545 non-null	category
9	airconditioning	545 non-null	category
10	parking	545 non-null	int64
11	prefarea	545 non-null	category
12	furnishingstatus	545 non-null	category
d+vn	as: category(7) i	n+64(6)	

dtypes: category(7), int64(6)

memory usage: 30.3 KB

处理缺失数据

从 info 方法的输出结果来看, cleaned_house_price 不存在缺失值,因此不需要对缺失数据进行处理。

处理重复数据

根据数据变量的含义以及内容来看,允许变量重复,我们不需要对此数据检查是否存在重复值。

处理不一致数据

不一致数据可能存在于所有分类变量中,我们要查看是否存在不同值实际指代同一目标的情况。

```
In [8]: cleaned_house_price["mainroad"].value_counts()
```

Out[8]: mainroad yes 468 no 77

Name: count, dtype: int64

```
cleaned_house_price["guestroom"].value_counts()
 Out[9]: guestroom
         no
                448
                97
         yes
         Name: count, dtype: int64
         cleaned_house_price["basement"].value_counts()
In [10]:
Out[10]:
         basement
                354
         no
         yes
                191
         Name: count, dtype: int64
In [11]: cleaned_house_price["hotwaterheating"].value_counts()
Out[11]: hotwaterheating
                520
                25
         yes
         Name: count, dtype: int64
        cleaned_house_price["airconditioning"].value_counts()
In [12]:
Out[12]: airconditioning
                373
         no
         yes
                172
         Name: count, dtype: int64
In [13]:
         cleaned_house_price["prefarea"].value_counts()
Out[13]: prefarea
         no
                417
                128
         yes
         Name: count, dtype: int64
         cleaned_house_price["furnishingstatus"].value_counts()
In [14]:
Out[14]: furnishingstatus
         semi-furnished
                          227
         unfurnished
                          178
         furnished
                          140
         Name: count, dtype: int64
         从以上输出结果来看,均不存在不一致数据。
         处理无效或错误数据
         可以通过DataFrame的 describe 方法,对数值统计信息进行快速了解。
In [15]: cleaned_house_price.describe()
```

	price	area	bedrooms	bathrooms	stories	parkin
count	5.450000e+02	545.000000	545.000000	545.000000	545.000000	545.00000
mean	4.766729e+06	5150.541284	2.965138	1.286239	1.805505	0.69357
std	1.870440e+06	2170.141023	0.738064	0.502470	0.867492	0.86158
min	1.750000e+06	1650.000000	1.000000	1.000000	1.000000	0.00000
25%	3.430000e+06	3600.000000	2.000000	1.000000	1.000000	0.00000
50%	4.340000e+06	4600.000000	3.000000	1.000000	2.000000	0.00000
75%	5.740000e+06	6360.000000	3.000000	2.000000	2.000000	1.00000
max	1.330000e+07	16200.000000	6.000000	4.000000	4.000000	3.00000
4						

从以上统计信息来看, cleaned_house_price 里不存在脱离现实意义的数值。

探索数据

Out[15]:

在着手推断统计学分析之前,我们可以先借助数据可视化,探索数值变量的分布,以及与房价存在相关性的变量,为后续的进一步分析提供方向。

```
In [16]: # 设置图表色盘为"pastel" sns.set_palette("pastel")
```

房价分布

```
In [17]: plt.rcParams["figure.figsize"] = [7.00, 3.50]
    plt.rcParams["figure.autolayout"] = True
    figure, axes = plt.subplots(1, 2)
    sns.histplot(cleaned_house_price, x='price', ax=axes[0])
    sns.boxplot(cleaned_house_price, y='price', ax=axes[1])
    plt.show()
```


房价呈右偏态分布,说明数据集中的大多数房子价格中等,但有一些价格很高的极端值, 使得均值被拉高。

面积分布

```
In [18]:
         figure, axes = plt.subplots(1, 2)
          sns.histplot(cleaned_house_price, x='area', ax=axes[0])
          sns.boxplot(cleaned_house_price, y='area', ax=axes[1])
          plt.show()
           100
                                          16000
                                          14000
           80
                                          12000
                                          10000
            60
        Count
                                           8000
            40
                                           6000
                                           4000
            20
                                           2000
```

面积的分布与房价相似,也呈右偏态分布。

area

房价与面积的关系

```
In [19]: sns.scatterplot(cleaned_house_price, x='area', y='price')
plt.show()

le7

12 -
10 -
20 0.8 -
0.6 -
0.4 -
0.2 -
```

从散点图来看,能大致看出一些正相关关系,但关系的强度需要后续通过计算相关性来得到。

卧室数与房价

8000 :

```
In [20]: figure, axes = plt.subplots(1, 2)
    sns.histplot(cleaned_house_price, x='bedrooms', ax=axes[0])
    sns.barplot(cleaned_house_price, x='bedrooms', y='price', ax=axes[1])
    plt.show()
```


此数据集中房子的卧室数范围为1-6个,其中大多房子有2-4个。

从平均房价与卧室数之间的柱状图来看,当卧室数小于5个时,卧室数多的房子价格也相应高,但一旦多于5个,房价并不一定相应更高。

洗手间数与房价

```
In [21]: figure, axes = plt.subplots(1, 2)
    sns.histplot(cleaned_house_price, x='bathrooms', ax=axes[0])
    sns.barplot(cleaned_house_price, x='bathrooms', y='price', ax=axes[1])
    plt.show()
```


数据集中房子洗手间数量最少1个,最多4个,其中为1个的数量最多。

从平均房价与洗手间数之间的柱状图来看,洗手间多的房子价格也相应高。

楼层数与房价

```
In [22]: figure, axes = plt.subplots(1, 2)
    sns.histplot(cleaned_house_price, x='stories', ax=axes[0])
    sns.barplot(cleaned_house_price, x='stories', y='price', ax=axes[1])
    plt.show()
```


此数据集中房子的楼层数范围为1-4层,其中大多房子有1层或2层。

从平均房价与楼层数之间的柱状图来看,楼层多的房子价格也相应高。

车库数与房价

```
In [23]: figure, axes = plt.subplots(1, 2)
    sns.histplot(cleaned_house_price, x='parking', ax=axes[0])
    sns.barplot(cleaned_house_price, x='parking', y='price', ax=axes[1])
    plt.show()
```


此数据集中房子的车库数范围为0-3个,不带车库的房子数量是最多的,其次是1个和2 个。

从平均房价与楼层数之间的柱状图来看,车库多的房子价格也相应高,但超过2个后,房价并不一定相应更高。

是否在主路与房价

```
In [24]: figure, axes = plt.subplots(1, 2)
    mainroad_count = cleaned_house_price['mainroad'].value_counts()
    mainroad_label = mainroad_count.index
    axes[0].pie(mainroad_count, labels=mainroad_label)
    sns.barplot(cleaned_house_price, x='mainroad', y='price', ax=axes[1])
    plt.show()
```


此数据集中房子大多数位于主路。

从平均房价与楼层数之间的柱状图来看,在主路的的房子价格也相应高。

是否有客人房与房价

```
In [25]: figure, axes = plt.subplots(1, 2)
    guestroom_count = cleaned_house_price['guestroom'].value_counts()
    guestroom_label = guestroom_count.index
    axes[0].pie(guestroom_count, labels=guestroom_label)
    sns.barplot(cleaned_house_price, x='guestroom', y='price', ax=axes[1])
    plt.show()
```


此数据集中房子大部分没有客人房。

从平均房价与楼层数之间的柱状图来看,有客人房的的房子价格也相应高。

是否有地下室与房价

```
In [26]: figure, axes = plt.subplots(1, 2)
   basement_count = cleaned_house_price['basement'].value_counts()
   basement_label = basement_count.index
   axes[0].pie(basement_count, labels=basement_label)
   sns.barplot(cleaned_house_price, x='basement', y='price', ax=axes[1])
   plt.show()
```


此数据集中更多的房子没有地下室。

从平均房价与地下室之间的柱状图来看,有地下室的的房子价格也相应高。

是否有热水器与房价

```
In [27]: figure, axes = plt.subplots(1, 2)
hotwaterheating_count = cleaned_house_price['hotwaterheating'].value_counts()
hotwaterheating_label = hotwaterheating_count.index
```

```
axes[0].pie(hotwaterheating_count, labels=hotwaterheating_label)
sns.barplot(cleaned_house_price, x='hotwaterheating', y='price', ax=axes[1])
plt.show()
```


此数据集中房子绝大部分没有热水器。

从平均房价与热水器之间的柱状图来看,有热水器的的房子价格也相应高。

是否有空调与房价

```
In [28]: figure, axes = plt.subplots(1, 2)
    airconditioning_count = cleaned_house_price['airconditioning'].value_counts()
    airconditioning_label = hotwaterheating_count.index
    axes[0].pie(airconditioning_count, labels=airconditioning_label)
    sns.barplot(cleaned_house_price, x='airconditioning', y='price', ax=axes[1])
    plt.show()
```


此数据集中更多的房子没有空调。

从平均房价与空调之间的柱状图来看,有空调的的房子价格也相应高。

是否位于城市首选社区与房价

```
In [29]: figure, axes = plt.subplots(1, 2)
    prefarea_count = cleaned_house_price['prefarea'].value_counts()
    prefarea_label = prefarea_count.index
    axes[0].pie(prefarea_count, labels=prefarea_label)
    sns.barplot(cleaned_house_price, x='prefarea', y='price', ax=axes[1])
    plt.show()
```


此数据集中大部分房子不在城市首选社区。

从平均房价与城市首选社区之间的柱状图来看,在城市首选社区的的房子价格也相应高。

装修状态与房价

```
figure, axes = plt.subplots(1, 2)
furnishingstatus_count = cleaned_house_price['furnishingstatus'].value_counts()
furnishingstatus_label = furnishingstatus_count.index
axes[0].pie(furnishingstatus_count, labels=furnishingstatus_label)
sns.barplot(cleaned_house_price, x='furnishingstatus', y='price', ax=axes[1])
axes[1].set_xticklabels(axes[1].get_xticklabels(), rotation=45, horizontalalignm
plt.show()
```


此数据集中简装和毛坯的房子较多,1/4左右房子为精装。

分析数据

在分析步骤中,我们将利用 cleaned_house_price 的数据,进行线性回归分析,目标是得到一个可以根据房屋各个属性对价格进行预测的数学模型。

我们先引入做线性回归所需的模块。

In [31]: import statsmodels.api as sm

然后可以创建一个新的DataFrame lr_house_price , 让它作为我们进行线性回归分析 所用的数据。

和 cleaned_house_price 区分开的原因是,我们在进行回归分析前,还可能需要对数据进行一些准备,比如引入虚拟变量,这些都可以在 lr_house_price 上执行。

In [32]: lr_house_price = cleaned_house_price.copy()

由于数据里存在分类变量,无法直接建立线性回归模型。我们需要引入虚拟变量,也就是 用0和1分别表示是否属于该分类。

Out[33]: price area bedrooms bathrooms stories parking mainroad_yes gues

	•				•	•	_, ,
0	13300000	7420	4	2	3	2	1
1	12250000	8960	4	4	4	3	1
2	12250000	9960	3	2	2	2	1
3	12215000	7500	4	2	2	3	1
4	11410000	7420	4	1	2	2	1
•••				•••		•••	
540	1820000	3000	2	1	1	2	1
541	1767150	2400	3	1	1	0	0
542	1750000	3620	2	1	1	0	1
543	1750000	2910	3	1	1	0	0
544	1750000	3850	3	1	2	0	1

545 rows × 14 columns

接下来,我们要把因变量和自变量划分出来。

因变量是 price 变量,因为我们进行线性回归的目的,是得到一个能根据其它可能对房屋价格有影响的变量,来预测销售价格的模型。

In [34]: y = lr_house_price['price']

我们可以把除价格之外的都纳入自变量,但需要查看它们之间的相关性。如果其中有些变量之间相关性很高,会导致共线性。

In [35]: X = lr_house_price.drop('price', axis=1)

一般我们认为,当相关系数的绝对值大于0.8的时候,可能导致严重共线性,所以我们检查的时候,找绝对值大于0.8的值即可。

In [36]: X.corr().abs() > 0.8

Out[36]:

	area	bedrooms	bathrooms	stories	parking	mainr
area	True	False	False	False	False	
bedrooms	False	True	False	False	False	
bathrooms	False	False	True	False	False	
stories	False	False	False	True	False	
parking	False	False	False	False	True	
mainroad_yes	False	False	False	False	False	
guestroom_yes	False	False	False	False	False	
basement_yes	False	False	False	False	False	
hotwaterheating_yes	False	False	False	False	False	
airconditioning_yes	False	False	False	False	False	
prefarea_yes	False	False	False	False	False	
furnishingstatus_semi- furnished	False	False	False	False	False	
furnishingstatus_unfurnished	False	False	False	False	False	
4						•

从以上输出来看,不同变量之间相关系数的绝对值均小于或等于0.8。

接下来,给模型的线性方程添加截距。

In [37]: X = sm.add_constant(X)
X

_		
\cap	1271	
UUL	12/1	

		const	area	bedrooms	bathrooms	stories	parking	mainroad_yes	guestro
	0	1.0	7420	4	2	3	2	1	
	1	1.0	8960	4	4	4	3	1	
	2	1.0	9960	3	2	2	2	1	
	3	1.0	7500	4	2	2	3	1	
	4	1.0	7420	4	1	2	2	1	
	•••								
5	40	1.0	3000	2	1	1	2	1	
5	41	1.0	2400	3	1	1	0	0	
5	42	1.0	3620	2	1	1	0	1	
5	43	1.0	2910	3	1	1	0	0	
5	44	1.0	3850	3	1	2	0	1	

545 rows × 14 columns

下一步就可以调用OLS函数,利用最小二乘法来得到线性回归模型的参数值。

In [38]: model = sm.OLS(y, X).fit()

为了查看模型结果,我们使用 summary 方法来获得总结信息。

In [39]: model.summary()

OLS Regression Results

Dep. Variable:	price	R-squared:	0.682
Model:	OLS	Adj. R-squared:	0.674
Method:	Least Squares	F-statistic:	87.52
Date:	Sun, 29 Oct 2023	Prob (F-statistic):	9.07e-123
Time:	21:30:29	Log-Likelihood:	-8331.5
No. Observations:	545	AIC:	1.669e+04
Df Residuals:	531	BIC:	1.675e+04
Df Model:	13		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0
const	4.277e+04	2.64e+05	0.162	0.872	-4.76e+05	5.62
area	244.1394	24.289	10.052	0.000	196.425	29
bedrooms	1.148e+05	7.26e+04	1.581	0.114	-2.78e+04	2.57
bathrooms	9.877e+05	1.03e+05	9.555	0.000	7.85e+05	1.19
stories	4.508e+05	6.42e+04	7.026	0.000	3.25e+05	5.77
parking	2.771e+05	5.85e+04	4.735	0.000	1.62e+05	3.92
mainroad_yes	4.213e+05	1.42e+05	2.962	0.003	1.42e+05	7.01
guestroom_yes	3.005e+05	1.32e+05	2.282	0.023	4.18e+04	5.59
basement_yes	3.501e+05	1.1e+05	3.175	0.002	1.33e+05	5.67
hotwaterheating_yes	8.554e+05	2.23e+05	3.833	0.000	4.17e+05	1.29
airconditioning_yes	8.65e+05	1.08e+05	7.983	0.000	6.52e+05	1.08
prefarea_yes	6.515e+05	1.16e+05	5.632	0.000	4.24e+05	8.79
furnishingstatus_semi- furnished	-4.634e+04	1.17e+05	-0.398	0.691	-2.75e+05	1.83
furnishingstatus_unfurnished	-4.112e+05	1.26e+05	-3.258	0.001	-6.59e+05	-1.63

Omnibus:	97.909	Durbin-Watson:	1.209
Prob(Omnibus):	0.000	Jarque-Bera (JB):	258.281
Skew:	0.895	Prob(JB):	8.22e-57
Kurtosis:	5.859	Cond. No.	3.49e+04

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 3.49e+04. This might indicate that there are strong multicollinearity or other numerical problems.

当我们把显著区间设定为0.05时,以上结果的P值可以看出,模型认为以下因素对房屋价格没有显著性影响:卧室数、是否为简装房。此外,常数 (表示线性方程的截距)的P值也很大,说明也没有显著影响。

可以把这些变量移除后,再次建立线性回归模型。

```
In [40]: X = X.drop(['const', 'bedrooms', 'furnishingstatus_semi-furnished'], axis=1)
In [41]: model = sm.OLS(y, X).fit()
In [42]: model.summary()
```

OLS Regression Results

Dep. Variable:	price	R-squared (uncentered):	0.957
Model:	OLS	Adj. R-squared (uncentered):	0.956
Method:	Least Squares	F-statistic:	1088.
Date:	Sun, 29 Oct 2023	Prob (F-statistic):	0.00
Time:	21:30:29	Log-Likelihood:	-8333.5
No. Observations:	545	AIC:	1.669e+04
Df Residuals:	534	BIC:	1.674e+04
Df Model:	11		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0
area	257.5854	22.577	11.409	0.000	213.234	30
bathrooms	1.071e+06	9.27e+04	11.553	0.000	8.89e+05	1.25
stories	5.084e+05	5.71e+04	8.898	0.000	3.96e+05	6.21
parking	2.793e+05	5.83e+04	4.794	0.000	1.65e+05	3.94
mainroad_yes	4.672e+05	1.27e+05	3.679	0.000	2.18e+05	7.17
guestroom_yes	2.851e+05	1.31e+05	2.172	0.030	2.72e+04	5.43
basement_yes	4.016e+05	1.07e+05	3.765	0.000	1.92e+05	6.11
hotwaterheating_yes	8.668e+05	2.23e+05	3.884	0.000	4.28e+05	1.31
airconditioning_yes	8.543e+05	1.07e+05	7.952	0.000	6.43e+05	1.07
prefarea_yes	6.443e+05	1.15e+05	5.594	0.000	4.18e+05	8.71
$furnishing status_unfurnished$	-3.493e+05	9.49e+04	-3.679	0.000	-5.36e+05	-1.63

Omnibus:	94.840	Durbin-Watson:	1.262
Prob(Omnibus):	0.000	Jarque-Bera (JB):	251.889
Skew:	0.865	Prob(JB):	2.01e-55
Kurtosis:	5.845	Cond. No.	2.74e+04

Notes:

- [1] R² is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [3] The condition number is large, 2.74e+04. This might indicate that there are strong multicollinearity or other numerical problems.

可以看到,当我们把P值较大的自变量从线性回归模型中移除后,R方的值从0.682增长到了0.957,提高了模型对现有数据的拟合度。

根据各个自变量在线性回归方程中的系数来看,模型预测以下因素的增加(或存在)会显著增加房屋价格:房屋面积、厕所数、楼层数、车库容量、位于主路、有客房、有地下室、有热水器、有空调、位于城市首选社区。

线性回归模型预测以下因素的增加(或存在)会显著降低房屋价格:房屋未经装修,为毛坏房。

```
In [43]: # 要预测房价的房屋的信息:
       # 面积为6500平方英尺,有4个卧室、2个厕所,总共2层,不位于主路,无客人房,带地下室
       price_to_predict = pd.DataFrame({'area': [5600], 'bedrooms': [4], 'bathrooms': [
In [44]:
                                   'stories': [2], 'mainroad': ['no'], 'guestroom'
                                  'basement': ['yes'], 'hotwaterheating': ['yes']
                                   'airconditioning': ['no'], 'parking': 2, 'prefa
                                   'furnishingstatus': ['semi-furnished']})
       price_to_predict
          area bedrooms bathrooms stories mainroad guestroom basement hotwat
Out[44]:
        0 5600
                      4
                               2
                                      2
                                             no
                                                       no
                                                               yes
       我们需要把分类变量的类型转换为Category,并且通过 categories 参数,让程序知道
       所有可能的分类值。这样做的原因是,预测数据包含的分类可能不全。我们需要确保引入
       虚拟变量的时候,不会漏掉某个或某些分类。
```

In [45]: price_to_predict['mainroad'] = pd.Categorical(price_to_predict['mainroad'], cate
 price_to_predict['guestroom'] = pd.Categorical(price_to_predict['guestroom'], cate
 price_to_predict['basement'] = pd.Categorical(price_to_predict['basement'], cate
 price_to_predict['hotwaterheating'] = pd.Categorical(price_to_predict['hotwaterheating']) = pd.Categorical(price_to_predict['aircondite
 price_to_predict['prefarea'] = pd.Categorical(price_to_predict['prefarea'], cate
 price_to_predict['furnishingstatus'] = pd.Categorical(price_to_predict['furnishingstatus'])

下一步,对分类变量引入虚拟变量。

Out[46]:
 area bedrooms bathrooms stories parking mainroad_yes guestroom_yes b

0 5600 4 2 2 2 0 0

In [47]: price_to_predict = price_to_predict.drop(['bedrooms', 'furnishingstatus_semi-fur])

接下来就可以调用线性回归模型的 predict 方法,获得预测价格。

In [48]: predicted_value = model.predict(price_to_predict)

predicted_value

Out[48]: 0 7.071927e+06

dtype: float64

线性回归模型预测的价格为:7071927。