ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Департамент прикладной математики

ОТЧЕТ К ЛАБОРАТОРНОЙ РАБОТЕ 2 по дисциплине «Алгоритмизация и программирование»

Работу выполнила студентка группы БПМ 173	дата, подпись	_ М.В. Самоделкина
Работу проверил	дата, подпись	_ С.А. Булгаков

Содержание

П	Постановка задачи		
1	Осн	овная часть	4
	1.1	Общая идея решения задачи	4
	1.2	Структура и принципы действия	4
		1.2.1 Задание 1	4
		1.2.2 Задание 2	4
		1.2.3 Задание 3	5
	1.3	Процедура получения исполняемых программных модулей	5
	1.4	Результаты тестирования	5
Пј	рилох	кение А	6
	Task	5 cnn	6

Постановка задачи

Используя алгоритмы стандартной библиотеки < algorithm> и, при необходимости, < functional>, выполнить задания в соответствии с вариантом 18:

- 1. Ввести произвольную строку с клавиатуры и удалить все пробелы. Ввести слово и, если оно не встречается в ранее введенной строке, вывести сообщение об ошибке.
- 2. Написать программу, создающую вектор чисел, и копирующую все числа кратные заданному числу в новый вектор.
- 3. На одометре (прибор для измерения пробега автомобиля) число 15951. Через 2 часа езды он показывает другое число палиндром. Какова средняя скорость? Написать программу, позволяющую задать новое значение на одометре (новое число должно быть больше начального (15951) и быть палиндромом) и вычисляющую среднюю скорость.

1 Основная часть

1.1 Общая идея решения задачи

Для решения задачи были использованы:

- 1. Алгоритмы стандартной библиотеки <algorithm>: remove, search, generate, copy if, reverse copy, for each.
- 2. Контейнеры < vector > и < string >.
- 3. Функция srand из библиотеки < cstdlib> и функция time из библиотеки < ctime> для генерации случайных чисел.
- 4. Лямбда-выражения.

1.2 Структура и принципы действия

1.2.1 Задание 1

В функции *task* 5 происходит считывание произвольной строки, введенной с клавиатуры. Далее с помощью функции *remove* удаляются все пробелы из строки. Затем функция *erase* позволяет удалить из строки ненужные элементы, появившиеся после исключения всех пробелов. После происходит считывание подстроки, функция *search* проверяет входить ли эта последовательность символов в строку и возвращает итератор к первому элементу вхождения. Если итератор указывает на конец строки, то выводится сообщение об ошибке, то есть подстрока не найдена.

1.2.2 Задание 2

В функции *task* 11 происходит создание двух векторов одинаковой длины (для наглядности длина 10). Далее инициализируется генератор случайных чисел с помощью функций *srand* и *time*. Затем функция *generate* заполняет вектор случайными значениями (для удобства в диапазоне от 0 до 9), используя функцию-генератор в виде лямбда-выражения. После этого пользователь вводит число, чтобы проверить значения вектора на кратность используется функция *copy if*. Она копирует значения из одного вектора в другой, если параметр-функция, реализованная в виде лямбда-выражения, вернет *true*. Лямбда-выражение проверяет число из вектора на кратность введенному числу.

1.2.3 Задание 3

В функции *task 14* осуществляется генерация случайного вектора-палиндрома. Для этого генератор случайных чисел инициализируется с помощью функций *srand* и *time*. Затем функция *generate* заполняет вектор длины 5 случайными значениями от 0 до 9, используя функцию-генератор в виде лямбда-выражения. Далее функция *reverse copy* отображает вектор в обратном порядке. Операции генерации и отображения повторяются, пока не будет создан вектор-палиндром, больший заданного в условии вектора. После того, как вектор будет получен, с помощью функции *for each* и лямбда-выражения вектор переводится в число, и затем считается и выводится на экран средняя скорость.

1.3 Процедура получения исполняемых программных модулей

Программный код был скомпилирован с среде *Visual Studio 2017*. Код программы содержится в одном исходном файле. Для ускоренной компиляции программы используются предварительно откомпилированные заголовки "pch.h". Помимо этого никаких дополнительных ключей не добавлялось, использовались ключи, которые добавляются по умолчанию.

1.4 Результаты тестирования

Тестирование программы представлено в файле "Task5.cpp" в функции Main(). Ожидаемый вывод функции:

```
your string:microsoft visual studio top
new string:microsoftvisualstudiotop
your substring:nottop
Can't find
```

random vector: 7 4 2 7 0 8 5 2 9 6

your number: 7

new vector: 7 7 0

new value: 95859

speed: 39954

Приложение А

полный код программы

A.1 - Task5.cpp

#include "pch.h" #include <iostream> #include <string> #include <algorithm> #include <vector> #include <ctime> using namespace std; void task5() { string s, s1; cout << "your_string:"; getline(cin, s); auto pos = remove(s.begin(), s.end(), $'_{\sqcup}$ '); s.erase(pos, s.end()); cout << "new string:" << s; getchar(); cout << "your usubstring:"; getline (cin, s1); auto pos1 = search(s.begin(), s.end(), s1.begin(), s1.end()); if (pos1 == s.end())cerr << "Can't ind" << endl; } void task11() { vector < int > v(10), v1(v.size());int i; srand(time(NULL)); generate(v.begin(), v.end(), [](){return rand()%10;});

```
cout << "random vector:";
        for (int& x : v) cout \ll '' \ll x;
        cout << endl << "your_number:_";
        cin >> i;
        auto it = copy if(v.begin(), v.end(),
                 v1.begin(),
                 [i](int e)\{return (e \% i == 0);\});
        v1.erase(it, v1.end());
        cout << "new_vector:";
        for (int& x : v1) cout \ll ''; \ll x;
        cout << endl;
}
void task14() {
        srand(time(NULL));
        vector < int > x(5), x1(5), y = \{1,5,9,5,1\};
        do {
                 generate(x.begin(), x.end(),
                          []() {return rand() % 10;});
                 reverse_copy(x.begin(), x.end(),
                         x1.begin());
        \} while (x < y | | x != x1);
        cout << "new_value:__";
        for (int \& i : x) cout << i;
        float val = 0;
        for each (x.begin (), x.end (),
                 [\&val](int elm) { val = val * 10 + elm; });
        cout << end1 << "speed:" << (val - 15951) / 2;
int main(){
        task5();
        task11();
        task14();
        return 0;
}
```