HMSC in practice: the syntax and typical workflow of the R-package Hmsc

4	An Overview of the Structure and Use of HMSC	39
	4.1 HMSC Is a Multivariate Hierarchical Generalised	
	Linear Mixed Model	39
	4.2 The Overall Structure of HMSC	41
	4.3 Linking HMSC to Community Ecology Theory	45
	4.4 The Overall Workflow for Applying HMSC	47

HMSC in practice: the syntax and typical workflow of the R-package Hmsc

Step 1. Setting model structure and fitting the model Step 2. Examining MCMC convergence **Step 3. Evaluating model fit and comparing models Step 4. Exploring parameter estimates Step 5. Making predictions**

Figure 4.3 The five steps of a typical workflow of HMSC analyses. The computer code in Steps 1–3 illustrates the syntax of the R-package Hmsc. The graph in Step 2 shows an MCMC trace plot, and the graphs in Step 4 illustrate the estimates of some key model parameters.

Step 1. Setting model structure and fitting the model

Step 1. Setting model structure and fitting the model

sampleMcmc(m,thin, samples, transient, nChains)

Step 2. Examining MCMC convergence

Step 2. Examining MCMC convergence

Step 1. Setting model structure and fitting the model

sampleMcmc(m,thin, samples, transient, nChains)

Step 2. Examining MCMC convergence

mpost = convertToCodaObject(m)

effectiveSize(mpost)

gelman.diag(mpost)

Not satisfactory? Redo model fitting.

Step 3. Evaluating model fit and comparing models

Step 3. Evaluating model fit and comparing models

```
predY = computePredictedValues(m, partition)

MF = evaluateModelFit(m, predY)

WAIC = computeWAIC(m)
```

Step 3. Evaluating model fit and comparing models

Step 1. Setting model structure and fitting the model

sampleMcmc(m,thin, samples, transient, nChains)

Step 2. Examining MCMC convergence

mpost = convertToCodaObject(m)

effectiveSize(mpost)

gelman.diag(mpost)

Not satisfactory? Redo model fitting.

Step 3. Evaluating model fit and comparing models

predY = computePredictedValues(m, partition)

MF = evaluateModelFit(m, predY)

WAIC = computeWAIC(m)

Not satisfactory? Define better model.

Step 4. Exploring parameter estimates

post = getPostEstimate(m, parName="Beta")
plotBeta(m, post, supportLevel)

OmegaCor = computeAssociations(m)
corrplot(OmegaCor)

VP = computeVariancePartitioning(m)
plotVariancePartitioning(m, VP)

Step 5. Making predictions

Gradient = constructGradient(m, focalVariable)
pred = predict(m, Gradient)
plotGradient(m, Gradient, pred, measure, showData)