DATA SCIENCE WITH R

REGRESSION

Regression Analysis 🖈

REGRESSION ANALYSIS

Overview

Simple Linear Regression

Multiple Linear Regression

Regression Assumptions

Implementation in SAS

Regression

MULTIPLE LINEAR REGRESSION

- ✓ Concepts OLS
- ✓ How to Run
- ✓ Interpret Results

How do we validate the model?

R²

- R²
- Fit Chart Actual vs Fitted Values

- R²
- Fit Chart Actual vs Fitted Values
- MAPE Mean Absolute Percentage Error

- R²
- Fit Chart Actual vs Fitted Values

How do we validate the model?

- R²
- Fit Chart Actual vs Fitted Values

Birthweight = -2834 + 156.51*Gestation + 9.57*Years Of Education -168.9*Race -174.8*Smoking

How do we validate the model?

- R²
- Fit Chart Actual vs Fitted Values

Fitted values are values of the Dependent variable (Birthweight) according to the model equation

```
Birthweight = -2834 + 156.51*Gestation + 9.57*Years Of Education -168.9*Race -174.8*Smoking
```


How do we validate the model?

- R²
- Fit Chart Actual vs Fitted Values

Fitted values are values of the Dependent variable (Birthweight) according to the model equation

```
Birthweight = -2834 + 156.51*Gestation + 9.57*Years Of Education -168.9*Race -174.8*Smoking
```

Given values of the X's (IVs), we can come up with a Fitted value for Y (DV)

Birthweight = -2834 + 156.51*Gestation + 9.57*Years Of Education -168.9*Race -174.8*Smoking

We can automatically generate the fitted values in Excel, using the actual data values for the X variable values:

t	Regression	, ×
_	Input	ОК
	Input <u>X</u> Range: \$B\$1:\$E\$1116	Cancel
	✓ <u>Labels</u> Constant is <u>Zero</u> Con <u>f</u> idence Level: 95 %	<u>H</u> elp
	Output options Output Range: New Worksheet Ply:	
	 New <u>W</u>orkbook Residuals ✓ Residuals Standardized Residuals Line Fit Plots 	
	Normal Probability Normal Probability Plots	

This will generate predicted (fitted) values, and residuals

RESIDUAL OUTPUT

Observation		Predicted grams	Residuals
	1	3251.163557	-353.1635571
	2	891.0334453	102.9665547
	3	3132.096999	844.9030006
	4	2800.772554	239.2274461
	5	3132.096999	390.9030006
	6	3299.022703	-199.022703
	7	3314.439066	355.5609338
	8	3480.522449	-383.5224493
	9	2992.68645	47.31355013
:	10	2992.68645	246.3135501
:	11	3189.527975	-234.5279746
:	12	3189.527975	-989.5279746
:	13	3333.582725	-151.5827246
:	14	3502.551082	7.448917694

Predicted Values are the fitted values

Residuals are the difference between Predicted Values of Y and the Actual Values of Y

How many predicted values will be obtained?

How are the predicted values a measure of model validation?

We can compare the actual Y values to the predicted Y values

Actual grams	Predicted grams
2898	3251.16
994	891.03
3977	3132.10
3040	2800.77
3523	3132.10
3100	3299.02
3670	3314.44
3097	3480.52
3040	2992.69
3239	2992.69
2955	3189.53
2200	3189.53
3182	3333.58
3510	3502.55

How are the predicted values a measure of model validation?

We can compare the actual Y values to the predicted Y values

For a good model, what would be expect in the comparision?

Actual grams	Predicted grams
2898	3251.16
994	891.03
3977	3132.10
3040	2800.77
3523	3132.10
3100	3299.02
3670	3314.44
3097	3480.52
3040	2992.69
3239	2992.69
2955	3189.53
2200	3189.53
3182	3333.58
3510	3502.55

Visual Comparision of Actual and Predicted Values: FIT CHART

- R²
- Fit Chart Actual vs Fitted Values
- MAPE Mean Absolute Percentage Error

How do we validate the model?

- R²
- Fit Chart Actual vs Fitted Values
- MAPE Mean Absolute Percentage Error

The average absolute difference between Actual and Predicted values generates the MAPE

How do we validate the model?

- R²
- Fit Chart Actual vs Fitted Values
- MAPE Mean Absolute Percentage Error

The average absolute difference between Actual and Predicted values

generates the MAPE

f_x	=ABS((O2-P2)	/02)	
О	Р	Q	R
Actual grams	Predicted grams	Error	MAPE
2898	3251.16	0.121865	12%
994	891.03	0.103588	•
3977	3132.10	0.212447	
3040	2800.77	0.078693	
3523	3132.10	0.110957	
3100	3299.02	0.064201	
3670	3314.44	0.096883	
3097	3480.52	0.123837	
3040	2992.69	0.015564	
3239	2992.69	0.076046	
	O Actual grams 2898 994 3977 3040 3523 3100 3670 3097 3040	O P Actual grams Predicted grams 2898 3251.16 994 891.03 3977 3132.10 3040 2800.77 3523 3132.10 3100 3299.02 3670 3314.44 3097 3480.52 3040 2992.69	O P Q Actual grams Predicted grams Error 2898 3251.16 0.121865 994 891.03 0.103588 3977 3132.10 0.212447 3040 2800.77 0.078693 3523 3132.10 0.110957 3100 3299.02 0.064201 3670 3314.44 0.096883 3097 3480.52 0.123837 3040 2992.69 0.015564

PREDICTIVE MODEL

How is a regression a predictive modeling technique?

PREDICTIVE MODEL

How is a regression a predictive modeling technique?

 Once we have a final validated model, given the regression equation, for values of X we can predict a "Y" value

PREDICTIVE MODEL

How is a regression a predictive modeling technique?

- Once we have a final validated model, given the regression equation, for values of X we can predict a "Y" value
- We calculated fitted values or predicted values for the actual data values of X in our dataset
- We can use the same calculation for other (future) values of X's

PREDICTIVE MODEL

For example, we have a mother with 10 years of education, Race = Black (1), expected Gestation period = 40 weeks, and Smoking = No (0),

PREDICTIVE MODEL

For example, we have a mother with 10 years of education, Race = Black (1), expected Gestation period = 40 weeks, and Smoking = No (0),

we can calculate the expected birthweight as:

Birthweight =
$$-2834 + 156.51*Gestation + 9.57*Years Of Education - 168.9*Race - 174.8*Smoking$$

PREDICTIVE MODEL

For example, we have a mother with 10 years of education, Race = Black (1), expected Gestation period = 40 weeks, and Smoking = No (0),

we can calculate the expected birthweight as:

Birthweight =
$$-2834 + 156.51*Gestation + 9.57*Years Of Education - 168.9*Race - 174.8*Smoking$$

This is the predicted weight of the baby

PREDICTIVE MODEL

Why should we believe the predicted value?

PREDICTIVE MODEL

Why should we believe the predicted value?

If we have a good model (High R2, good fit, low MAPE), we can be confident about our predictions

PREDICTIVE MODEL

Why should we believe the predicted value?

If we have a good model (High R2, good fit, low MAPE), we can be confident about our predictions

In this example, our R2 is only 52%, and MAPE is 12%. This is not a great model

PREDICTIVE MODEL

Why should we believe the predicted value?

If we have a good model (High R2, good fit, low MAPE), we can be confident about our predictions

In this example, our R2 is only 52%, and MAPE is 12%. This is not a great model

What next?

Coming Up

Regression Analysis

Regression Assumptions

THANK YOU