Laporan TUBES-1 Artificial Intelligence

Nama : Simiao Salvador da Gama

NIM : 1301163617

Kelas : IF-40-12

Menurut pemahaman saya bahwa algoritma Simulated Annealing merupakan algoritma yang dapat menghasilkan optimasi dalam pemecahan masalah. Simulated Annealing menggunakan dasar ide pengolahan logam, sesuai dengan arti kata Annealing, yang berarti memanaskan dan mendinginkan sebuah bahan logam agar menjadi struktur kristal dengan energi yang minimal. Maka jika Annealing ini disimulasikan dalam sebuah perancangan langkah pencarian, maka dapat dihasilkan proses pencarian dengan energi yang minimal.

Deskripsi Masalah

Tentukan nilai minimum dari fungsi : $f(x_1, x_2) = -\left| sin(x_1)cos(x_2)exp\left(\left| 1 - \frac{\sqrt{x_1^2 + x_2^2}}{\pi} \right| \right) \right|$

Dengan batasan $-10 \le x_1 \le 10$ dan $-10 \le x_2 \le 10$.

Dengan menggunakan fungsi ini di dalam program yang dibuat dari bahasa pemrograman C++.

Terdapat 1 fungsi dan beberapa parameter yang saya buat dalam program tersebut untuk menentukan nilai optimum :

- Fungsi randomEnergi : berisi nilai energi di mana X₁ dan X₂ nya adalah nilai random antara -10 sampai 10.
- temperatur : berisi nilai temperatur
- current_energi : berisi nilai energi sekarang
- optimal energi : berisi nilai energi yang optimum(minimum)
- new_energi : berisi nilai energi yang baru ketika pindah ke state yang baru.
- current state : state sekarang
- new_state : state baru
- optimal state : state di mana terdapat nilai energi yang optimum.
- renewEnergi: parameter untuk menentukan apakah kondisi true atau false

Logika Proses

- inisialisasi nilai temperatur
- current_energi dan optimal_energi diisi dengan nilai dari fungsi randomEnergi.

- Nilai current_state diisi dengan nilai random dan optimal_state diisi dengan nilai current state.
- renewEnergi berisi nilai true
- Perulangan sampai nilai temperatur = 1;
 - 1. new_energi diisi dengan nilai randomEnergi(), new_state diisi dengan nilai random baru.
 - 2. Jika new_energi lebih kecil dari current_energi maka nilai_optimal diisi dengan new_energi, current_energi diisi dengan new_energi dan optimal_state diisi dengan new_state. Jika tidak maka menggenerate probabilitas apakah dapat diterima atau tidak. Jika probabilitas lebih besar dari random number maka current_energi diisi dengan new_energi.

Jika new_energi lebih besar atau sama dengan current_state maka optimal_energi dan optimal_state masih diisi dengan nilai yang lama. current_state diisi dengan new_state.

- Output nilai Energi yang paling Optimum

Hasil nilai Optimum Energi pada Program

"C:\Users\Alnuco\Desktop\Al\TUGAS KIRIM\TUBES1_Al(SIMIAO).exe"

BEST SOLUTION

| Terdapat Minimum Terbaik pada state ke:30578 |
| Hasil nilai SA yang paling optimum adalah -19.1999 |
| Hasil nilai SA yang paling optimum adalah -19.1999 |
| Hasil nilai SA yang paling optimum adalah -19.1999 |
| Hasil nilai SA yang paling optimum adalah -19.1999 |
| Hasil nilai SA yang paling optimum adalah -19.1999 |
| Hasil nilai SA yang paling optimum adalah -19.1999 |
| Hasil nilai SA yang paling optimum adalah -19.1999 |
| Hasil nilai SA yang paling optimum adalah -19.1999 |
| Hasil nilai SA yang paling optimum adalah -19.1999 |
| Hasil nilai SA yang paling optimum adalah -19.1999 |
| Hasil nilai SA yang paling optimum adalah -19.1999 |
| Hasil nilai SA yang paling optimum adalah -19.1999 |
| Hasil nilai SA yang paling optimum adalah -19.1999 |
| Hasil nilai SA yang paling optimum adalah -19.1999 |
| Hasil nilai SA yang paling optimum adalah -19.1999 |
| Hasil nilai SA yang paling optimum adalah -19.1999 |
| Hasil nilai SA yang paling optimum adalah -19.1999 |
| Hasil nilai SA yang paling optimum adalah -19.1999 |
| Hasil nilai SA yang paling optimum adalah -19.1999 |