PHYS 1310

Chapter 7
Potential Energy and Energy
Conservation

Chapter 7 in a Nutshell

Potential Gravitational Energy:

$$\Delta U_{grav} = mg\Delta h$$

• Potential Elastic Energy:

$$\Delta U_{el} = \frac{1}{2} kx^2$$

Conservation of Energy:

$$\Delta E = \Delta K + \Delta U = \frac{1}{2} m(\Delta v)^2 - mg\Delta h = 0$$

Determining Force from Potential Energy:

$$F(x) = -\frac{d}{dx}U(x) = -\left(\frac{\delta U}{\delta x}\hat{\imath} + \frac{\delta U}{\delta y}\hat{\jmath} + \frac{\delta U}{\delta z}\hat{z}\right)$$

CH 7 Objectives

- How to use gravitational potential energy in problems that involve vertical motion.
- How to use elastic potential energy in problems that involve a moving object attached to a stretched or compressed spring.
- The distinction between conservative and non-conservative forces. (Conservative forces always have a corresponding potential-energy function.)
- How to use energy diagrams to understand how an object moves under the influence of a conservative force.

Introduction

- How do energy concepts apply to the descending sandhill crane?
- We will see that we can think of energy as being stored and transformed from one form to another.

Gravitational Potential Energy (1 of 3)

 When a particle is in the gravitational field of the earth, there is a gravitational potential energy associated with the particle:

 As the basketball descends, gravitational potential energy is converted to kinetic energy and the basketball's speed increases.

Gravitational Potential Energy (2 of 3)

 The change in gravitational potential energy is related to the work done by gravity.

Gravitational Potential Energy (3 of 3)

 When the object moves up, y increases, the work done by the gravitational force is negative, and the gravitational potential energy increases.

The Conservation of Mechanical Energy (1 of 2)

- The total **mechanical energy** of a system is the sum of its kinetic energy and potential energy.
- A quantity that always has the same value is called a conserved quantity.
- When only the force of gravity does work on a system, the total mechanical energy of that system is conserved.
- This is an example of the conservation of mechanical energy.

```
If only the gravitational force does work, total mechanical energy is conserved:

Initial kinetic energy

Initial gravitational potential energy

K_1 = \frac{1}{2}mv_1^2

K_1 + U_{\text{grav},1} = K_2 + U_{\text{grav},2}

Final kinetic energy

K_2 = \frac{1}{2}mv_2^2

Final gravitational potential energy

U_{\text{grav},2} = mgy_2
```

The Conservation of Mechanical Energy (2 of 2)

 When only the force of gravity does work on a system, the total mechanical energy of that system is conserved.

When Forces Other Than Gravity Do Work

- $\cdot \vec{F}_{\text{other}}$ and \vec{s} are opposite, so $W_{\text{other}} < 0$.
- Hence $E = K + U_{\text{grav}}$ must decrease.
- The parachutist's speed remains constant, so *K* is constant.
- The parachutist descends, so $U_{\rm grav}$ decreases.

Work and Energy Along a Curved Path

 We can use the same expression for gravitational potential energy whether the object's path is curved or straight.

• $W_{\text{grav}} = mgy_1 - mgy_2$

(b) The work done by the gravitational force depends only on the vertical component of displacement Δy . $\vec{w} = m\vec{g}$ In this case

Elastic Potential Energy (1 of 2)

- A object is elastic if it returns to its original shape after being deformed.
- Elastic potential energy is the energy stored in an elastic object, such as a spring:

Elastic potential energy
$$U_{\rm el} = \frac{1}{2}kx^2$$
 Elongation of spring stored in a spring $(x > 0)$ if stretched, $(x < 0)$ if compressed)

Elastic Potential Energy (2 of 2)

- The Achilles tendon acts like a natural spring.
- When it stretches and then relaxes, this tendon stores and then releases elastic potential energy.
- This spring action reduces the amount of work your leg muscles must do as you run.

Work Done by a Spring

 Figure 7.13 below shows how a spring does work on a block as it is stretched and compressed.

Elastic Potential Energy

- The graph of elastic potential energy for an ideal spring is a parabola.
- x is the extension or compression of the spring.
- Elastic potential energy is never negative.

Situations with Both Gravitational and Elastic Forces

 When a situation involves both gravitational and elastic forces, the total potential energy is the sum of the gravitational potential energy and the elastic potential energy:

$$U = U_{\text{grav}} + U_{\text{el}}$$

Conservative vs Non-Conservative Forces

- A **conservative force** allows conversion between kinetic and potential energy. Gravity and the spring force are conservative.
- The work done between two points by any conservative force
 - a) can be expressed in terms of a **potential energy function**.
 - b) is reversible.
 - c) is independent of the path between the two points.
 - d) is zero if the starting and ending points are the same.
- A force (such as friction) that is not conservative is called a nonconservative force, or a dissipative force.

Conservative Forces

 The work done by a conservative force such as gravity depends on only the endpoints of a path, not the specific path taken between those points. Because the gravitational force is conservative, the work it does is the same for all three paths.

Non-Conservative Forces

- As an automobile tire flexes as it rolls, nonconservative internal friction forces act within the rubber.
- Mechanical energy is lost and converted to internal energy of the tire.
- This causes the temperature and pressure of a tire to increase as it rolls.
- That's why tire pressure is best checked before the car is driven, when the tire is cold.

Conservation of Energy

- Nonconservative forces do not store potential energy, but they do change the internal energy of a system.
- The law of conservation of energy means that energy is never created or destroyed; it only changes form.
- This law can be expressed as: $\Delta K + \Delta U + \Delta U_{int} = 0$.

$$\Delta E = \Delta K + \Delta U \sim \frac{1}{2} m(\Delta v)^2 - mg\Delta h = 0$$

Force and Potential Energy in One Dimension (1 of 3)

 In one dimension, a conservative force can be obtained from its potential energy function using:

```
Force from potential energy:
In one-dimensional motion, F_x(x) = -\frac{dU(x)}{dx} ... is the negative of the derivative at x of the associated potential-energy function.
```

- In regions where U(x) changes most rapidly with x, this corresponds to a large force magnitude.
- Also, when $F_x(x)$ is in the positive x-direction, U(x) decreases with increasing x.
- A conservative force always acts to push the system toward lower potential energy.

Force and Potential Energy in One Dimension (2 of 3)

- Elastic potential energy and force as functions of x for an ideal spring.
 - (a) Elastic potential energy and force as functions of x

Force and Potential Energy in One Dimension (3 of 3)

- Gravitational potential energy and the gravitational force as functions of y.
 - **(b)** Gravitational potential energy and force as functions of y

Force and Potential Energy in Three Dimensions (1 of 2)

 In three dimensions, the components of a conservative force can be obtained from its potential energy function using <u>partial derivatives</u>:

Force from potential energy: In three-dimensional motion,

the value at a given point of each component of a conservative force ...

$$\vec{F}_x = -\frac{\partial U}{\partial x}$$
 $\vec{F}_y = -\frac{\partial U}{\partial y}$ $\vec{F}_z = -\frac{\partial U}{\partial z}$

... is the negative of the partial derivative at that point of the associated potential-energy function.

Force and Potential Energy in Three Dimensions (2 of 2)

 When we take the partial derivative of *U* with respect to each coordinate, multiply by the corresponding unit vector, and then take the vector sum, this is called the **gradient** of *U*:

Force from potential energy: The vector value of a conservative force at a given point ...

$$\vec{F} = -\left(\frac{\partial U}{\partial x}\hat{\imath} + \frac{\partial U}{\partial y}\hat{\jmath} + \frac{\partial U}{\partial z}\hat{k}\right) = -\vec{\nabla}U$$

... is the negative of the gradient at that point of the associated potential-energy function.

Force and Potential Energy

- The greater the elevation of a hiker in Canada's Banff National Park, the greater the gravitational potential energy $U_{\rm grav}$.
- Where the mountains have steep slopes, $U_{\rm grav}$ has a large gradient and there's a strong force pushing you along the mountain's surface toward a region of lower elevation (and hence lower $U_{\rm grav}$).
- There's zero force along the surface of the lake, which is all at the same elevation.

Energy Diagrams

- An energy diagram is a graph that shows both the potential-energy function U(x) and the total mechanical energy E.
- The figure illustrates the energy diagram for a glider attached to a spring on an air track.

On the graph, the limits of motion are the points where the U curve intersects the horizontal line representing total mechanical energy E.

Force and a Graph of Its Potential-Energy Function

- For any graph of potential energy versus x, the corresponding force is: $F_x = -\frac{dU}{dx}$.
- Whenever the slope of U is zero, the force there is zero, and this is a point of equilibrium.
- When U is at a minimum, the force near the minimum draws the object closer to the minimum, so it is a restoring force. This is called stable equilibrium.
- When U is at a maximum, the force near the maximum draws the object away from the maximum. This is called unstable equilibrium.

Unstable Equilibrium

- Each of these acrobats is in unstable equilibrium.
- The gravitational potential energy is lower no matter which way an acrobat tips, so if she begins to fall she will keep on falling.
- Staying balanced requires the acrobats' constant attention.

