Análisis de Algoritmos

Alan Reyes-Figueroa Teoría de la Computación

(Aula 24) 06.noviembre.2023

Definición
Inputs
Ejemplos
Notación Asintótica

Análisis de Algoritmos

- Estimar los recursos (tiempo y memoria) que un algoritmos requiere para funcionar.
 - Estructura
 - Operaciones
- Algoritmos: argumentos de entrada
- ◆El consumo de recursos del algoritmo se escribe en función del "tamaño" de estos inputs.

Inputs: Ejemplos

- Input: Arreglo a.
- Tamaño: número de elementos del arreglo a.
- Input: Un número entero n.
- Tamaño: Número de bits que requiere la representación binaria de n.
- Input: Grafo G.
- Tamaño: Número de nodos de G.
 Número de nodos + aristas.

Tiempo de Ejecución

Buscamos determinar el tiempo de ejecución (*running time*) de un algoritmo, esto es, el número de pasos u operaciones primitivas realizadas.

```
Ejemplo: (Algoritmo para contar coincidencias en un arreglo):

Input: Array a; int b.

n = len(a)

count = 0

t = c_0 + c_1 (lectura + asign.)

t = c_1

(asignación)

t = n * c_2 (comparación)

t = c_0 + c_2 (lect. + comp.)

t = c_0 + c_2 (lect. + comp.)
```

Ejemplo: (Contar ocurrencias de b). Inputs: Array a, int b.

Operación		Tiempo
n = len(a)	t = c0 + c1	(lectura + asignación)
count = 0	t = c1	(asignación)
for i in range(0,n):	ciclo: $t = c2$	(comparación)
if (a[i] == b):	t = 2c0 + c2	(lectura + comparación)
count = count + 1	t = c0 + c3 + c1	(lectura + suma + asignación)
return count;	t = c2	(asignación)

¿Cuántas operaciones hace el algoritmo?

$$T = 2c_0 + 2c_1 + c_2 + (n-1)[3c_0 + 2c_2 + c_1)]$$

Ejemplo: (Hallar el máximo). Inputs: Array a.

Operación		Tiempo
n = len(a)	t = c0 + c1	(lectura + asignación)
max = a[0]	t = c0 + c1	(lectura + asignación)
for i in range(1,n):	ciclo: $t = c2$	(comparación)
if (a[i] > max):	t = 2c0 + c2	(lectura + comparación)
max = a[i]	t = c0 + c3 + c1	(lectura + suma + asignación)
return max;	t = c2	(asignación)

¿Cuántas operaciones hace el algoritmo?

$$T = c0 + 2c1 + c2 + n[3c0 + c2 + k(c1 + c2 + c3)]$$

= c0 + 2c1 + c2 + n(3c0 + c2) + nk(c1 + c2 + c3)

Tiempo de Ejecución

- No calculamos directamente el tiempo de ejecución (en ns, µs) por varias razones:
 - no se comporta igual en cada máquina
 - variabilidad
 - dificultad en los cálculos.

 Es mucho más simple calcular el número de operaciones ejecutadas dentro del algoritmo en función de tamaño del input.

Escenarios

Para un mismo algoritmo (y mismos inputs) podemos tener variaciones en el tiempo de ejecución de un algoritmo.

- Consideramos tres escenarios:
 - worst-case (peor caso),
 - average-case (caso promedio),
 - best-case (mejor caso).

Ejemplo: (Hallar el máximo en un arreglo de números):

Inputs: Array a.

Operación		Tiempo
n = len(a)	t = c0 + c1	(lectura + asignación)
max = a[0]	t = c0 + c1	(lectura + asignación)
for i in range(1,n):	ciclo: $t = c2$	(comparación)
if (a[i] > max):	t = 2c0 + c2	(lectura + comparación)
max = a[i]	t = c0 + c3 + c1	(lectura + suma + asignación)
return max;	t = c2	(asignación)

¿Cuántas operaciones hace el algoritmo?

$$T = 2c_0 + 2c_1 + c_2 + (n-1)[3c_0 + 2c_2 + c_1)]$$

Analizamos tres posibles casos:

Mejor Caso:

$$T = 2c_0 + 2c_1 + c_2 + (n-1)[3c_0 + 2c_2 + c_1)]$$

• Peor Caso:

$$T = 2c_0 + 2c_1 + c_2 + (n-1)[3c_0 + 2c_2 + c_1)]$$

Caso Promedio:

$$T = 2c_0 + 2c_1 + c_2 + (n-1)[3c_0 + 2c_2 + c_1)]$$

Ejemplo: (Contar coincidencias en un arreglo):

Inputs: Array a, int b.

Operación		Tiempo
n = len(a)	t = c0 + c1	(lectura + asignación)
count = 0	t = c1	(asignación)
for i in range(0,n):	ciclo: $t = c2$	(comparación)
if $(a[i] == b)$:	t = 2c0 + c2	(lectura + comparación)
count = count + 1	t = c0 + c3 + c1	(lectura + suma + asignación)
return count;	t = c2	(asignación)

¿Cuántas operaciones hace el algoritmo?

$$T = 2c_0 + 2c_1 + c_2 + (n-1)[3c_0 + 2c_2 + c_1)]$$

malizamos tres posibles casos:

Mejor Caso: el condicional if nunca es True

$$T = c0 + 2c1 + c2 + n[3c0 + c2 + 0(c1 + c2 + c3)]$$
$$= c0 + 2c1 + c2 + n[3c0 + c2]$$

Peor Caso: el condicional if es True las n veces

$$T = c0 + 2c1 + c2 + n[3c0 + c2 + n(c1 + c2 + c3)]$$

= c0 + 2c1 + c2 + n(3c0 + c2) + n²(c1 + c2 + c3)

• Caso Promedio: el promedio de todos escenarios $T = \frac{1}{2}$

$$\frac{1}{n+1} \sum_{k=0}^{n} \left(c_0 + 2c_1 + c_2 + n \left(3c_0 + c_2 + k(c_1 + c_0 + c_- 3) \right) \right)$$

- Si construimos una fórmula para contar las operaciones del algoritmo, a los coeficientes en el mejor caso los podemos resumir en constantes a y b, así como en el peor caso en a, b y c.
- Para el mejor caso tendremos una función lineal como tiempo de ejecución, mientras que para el peor caso tendremos una cuadrática.
- Nos interesa: comparar dos algoritmos en cuanto a su tiempo de ejecución (tasa de crecimiento).

Notación **big-Oh**: O(g(x))Decimos que f es **O-grande** respecto de g, $f(\mathbf{x}) = O(g(\mathbf{x}))$, cuando $\mathbf{x} \to \mathbf{a}$, si existe una constante C > 0 tal que $|f(\mathbf{x})| \le C|g(\mathbf{x})|$, para todo $|\mathbf{x}-\mathbf{a}| \le r$.

◆Equivalentemente, $f(\mathbf{x}) = O(g(\mathbf{x}))$ cuando $\mathbf{x} \to \infty$ si existe C > 0 tal que $\lim_{\mathbf{x} \to a} |f(\mathbf{x})/g(\mathbf{x})| \le C$.

Notación **big-Oh**: O(g(x))Decimos que f es **O-grande** respecto de g, $f(\mathbf{x}) = O(g(\mathbf{x}))$, cuando $\mathbf{x} \to \infty$ si existen constantes positivas r y C con $|f(\mathbf{x})| \le C|g(\mathbf{x})|$, para todo $|\mathbf{x}| \ge r$.

◆Equivalentemente, $f(\mathbf{x}) = O(g(\mathbf{x}))$ cuando $\mathbf{x} \to \infty$ si existe C > 0 tal que $\lim_{\mathbf{x} \to \infty} |f(\mathbf{x})/g(\mathbf{x})| \le C$.

f(n) = O(g(n)) quiere decir: asintóticamente (para valores muy grandes de n), g crece mucho rápido que f.

Notación **big-Omega**: Ω (g(x))

Decimos que f es Ω -grande respecto de g, $f(\mathbf{x}) = \Omega(g(\mathbf{x}))$, cuando $\mathbf{x} \to \infty$ si existen

constantes positivas r y C con $|f(\mathbf{x})| \ge C|g(\mathbf{x})|$, para todo $|\mathbf{x}| \ge r$.

• Equivalentemente, $f(\mathbf{x}) = \Omega(g(\mathbf{x}))$ cuando $\mathbf{x} \to \infty$ si existe C > 0 tal que $\lim_{\mathbf{x} \to \infty} |f(\mathbf{x})/g(\mathbf{x})| \ge C$.

 \bullet Notación **big-Theta**: $\Theta(g(x))$

Decimos que f es Θ -grande respecto de g, $f(\mathbf{x}) = \Theta(g(\mathbf{x}))$, cuando $\mathbf{x} \to \infty$ si existen constantes positivas r y c_1 , c_2 con $c_1|g(\mathbf{x})| \le |f(\mathbf{x})| \le c_2|g(\mathbf{x})|$, para $|\mathbf{x}| \ge r$.

◆Equivalentemente, $f(\mathbf{x}) = \Theta(g(\mathbf{x}))$ cuando $\mathbf{x} \to \infty$ si existe C > 0 tal que $c_1 \le \lim_{\mathbf{x} \to \infty} |f(\mathbf{x})/g(\mathbf{x})| \le c_2$.

 f(n) = Ω(g(n)) quiere decir: asintóticamente (para valores muy grandes de n), f crece mucho rápido que g.

 f(n) = Θ(g(n)) quiere decir: asintóticamente (para valores muy grandes de n), f y g crecen de forma similar.

Notación **little-oh**: o(g(x))Decimos que f es **o-pequeña** respecto g, $f(\mathbf{x}) = o(g(\mathbf{x}))$, cuando $\mathbf{x} \to \infty$ si $\lim_{\mathbf{x} \to \infty} |f(\mathbf{x})/g(\mathbf{x})| = 0$.

Típicamente vamos a tener:

$$\begin{split} f(x) &= O(g(x)) \ => \ g(x) = \Omega(f(x)) \\ f(x) &= \Omega(g(x)) \ => \ g(x) = O(f(x)) \\ f(x) &= o(g(x)) \ => \ g(x) = \Omega(f(x)) \ y \\ & \lim_{\mathbf{x} \to \infty} |g(x)/f(x)| = \infty \\ f(x) &= \Theta(g(x)) \ <=> \ g(x) = \Theta(f(x)) \\ Si \ f(x) &= \Theta(g(x)) \ y \ \lim_{\mathbf{x} \to \infty} |g(x)/f(x)| = 1, \\ f \ y \ g \ son \ as int \'otic amente \ equivalentes. \end{split}$$

• Ejemplo 1: Estudiar la relación asintótica entre las funciones $f(n) = n^3 - n + 1$ $g(n) = n^3$

• Ejemplo 2: \dot{Q} ué es $f(n) = O(\log n)$?

◆ Ejemplo 3: ¿Qué significa f(n) = O(1)?

◆ <u>Ejemplo 4</u>: ¿Cuál función es mayor?
 f(n) = log n g(n) = sqrt(n)

• Ejemplo 5: ¿Cuál es mayor? $f(n) = 0.5n^{1.5}$ $g(n) = 25n log_{10} n$

• Ejemplo 6: ¿Cuál es mayor? $f(n) = n^3 + 5$ $g(n) = n^3 - 1$

• Ejemplo 7: ¿Cuál es mayor? $f(n) = n^{1000}$ $g(n) = 5^n$

• Ejemplo 8: ¿Cuál es mayor? $f(n) = 10^n$ $g(n) = n^n$

• Ejemplo 9: ¿Qué es mayor? $f(n) = n^n$ g(n) = n!

Ejemplo: (Contar coincidencias en un arreglo):

Inputs: Array a; int b.

Operación		Tiempo
n = len(a)	t = c0 + c1	(lectura + asignación)
count = 0	t = c1	(asignación)
for i in range(0,n):	ciclo: $t = c2$	(comparación)
if $(a[i] == b)$:	t = 2c0 + c2	(lectura + comparación)
count = count + 1	t = c0 + c3 + c1	(lectura + suma + asignación)
return count;	t = c2	(asignación)

¿Cuántas operaciones hace el algoritmo?

$$T = c_0 + 2c_1 + c_2 + n[3c_0 + c_2 + k(c_1 + c_2 + c_3)]$$

Ejercicio

Algoritmo (Insertion sort) Input: array A

```
1.Function InsertionSort(A):
2.For j = 2 to n:
3.    k := A[j]
4.    i := j - 1
5.    While i > 0 and A[i] > k
6.         A[i+1] := A[i]
7.         i := i - 1
8.    A[i+1] := k
```

Ejercicio

Algoritmo (Binary search) Input: array A

```
1. Function BinarySearch (A, n, T):
2. L := 0
3. R := n - 1
4. while L \leq R do:
5.
         m := floor((L + R) / 2)
6.
  if A[m] < T then
7.
             L := m + 1
8.
    else if A[m] > T then
9.
             R := m - 1
10.
     else:
11.
              return m
12. return unsuccessful
```

 <u>Ejemplo 10</u>: Hay dos algoritmos A y B, con tiempos de ejecución

$$T_A(n) = 5n \log_{10} n$$
 ms
 $T_B(n) = 25n$ ms

- ¿Cuál es mejor asintóticamente?
- Cuál es mejor para resolver un problema de tamaño n=512?

Growth ratio

- O(log(n))
- O(√n)

- ◆ O(n)
- O(nlog(n))
- O(n²)
- O(n³)
- **•** ...

- O(2ⁿ)
- O(3ⁿ)
- O(10ⁿ)
- **•** ...

- O(n!)
- ◆ O(nⁿ)

Ejemplos: Growth

O(1)hacer una operación arit. (log(n))búsqueda binaria búsqueda lineal O(n)O(nlog(n)) MergeSort $O(n^2)$ suma de matrices, shortest path entre 2 nodos Knapsack problem $O(n^3)$ producto de matrices eliminación gaussiana, Gauss-Jordan Dijkstra en grafo completo optimización finita exhaustiva $O(k^n)$ n-queens O(n!)determinante por cofactores TSP traveling salesman problem