

Dictionary problem: Abstract Data Type (ADT) maintain set of items, each with a key. subject to - insert (item): add item to set - delete (item): remove item from set - search (key): return item with key if it exists - assume items have distinct keys (or that inserting new one clobbers old) -balanced BSTs solve in O(lg n) time per op. (in addition to inexact searches like next-largest) -goal: O(1) time per operation Python dictionaries: items are (key, value) pairs
e.g. $d = \xi$ 'algorithms': 5, 'cool': 42 \\
d. items() \rightarrow \left(\text{algorithms', 5} \right), \left(\text{cool', 5} \right) \] $d['cool'] \rightarrow 42$ $d[42] \rightarrow \text{KeyError}$ 'cool' in $d \rightarrow \text{True}$ 42 in $d \rightarrow \text{False}$ - Python set is really dict where items are keys (no values) Motivation: dictionaries are perhaps the most popular data structure in CS - built into most modern programming languages (Python, Perl, Ruby, JavaScript, Java, C++, C#,...) - e.g. best docdist code: word counts & inner prod. - implement databases: (DB_HASH in Berkeley DB) English word -> definition (literal dict.)

- English words: for spelling correction

- word -> all webpages containing that word

- username -> account object - compilers & interpreters: names -> variables - network routers: IP address -> wire - network server: port number > socket/app. - virtual memory: virtual address -> physical less obvious, using hashing techniques: - substring search (grep. Google) [19]
- string commonalities (DNA) [PS4] - file/directory synchronization (rsync) - cryptography: file transfer & identification [L10]

Ho	<u>sw</u>	de) L	Je	sol	16	the	d	icti	ionc	xry	P	rol	slev	n?		
5	imp	le st	app	oroa ite	ch:	D)irec	t-0	cce	SS U.	to	bl	e	d 1 2 key	7	om	
		in	dex	ced	64	k	an ey	(rav	don	ga na	CEE	255)	key	îte	m	
		pr	OPA	ems	<u> </u>	_								. 0	_ r	en.	
		(1)) k	eys	musiv	ust 19	be two	nov	nhec	gatil	ve inte	inte ege	29e) 15)	15			
		Q) li	arge	e ki	ey !	two vang ey	e	\Rightarrow	lan	90	SF	oac	e			
			e	g.	one	e k	ey	s F	24	56	īS	ba	d r	new	5		
<u>Sc</u>	slu	tion	to	1): \ ^{\\}	pre	hash	// \	key	S	to	in	tec)er	5	1	
	_	in	the	ovy	: ρ ≥ s	oss et	ible	be keu	.cal	ise is	ke Co	ys un	tal	re	ti.	nite	
		īN	Py	thor	: /	nasl	h (ob	jec	f)	wh	ier	e . ()	1 C		hre	la a cl	1//
		Ob	ect	ī	s a	nı	ımb	er,	st	ring	yn t	up!	le,	etc	2.1	SV(US)	1_
		U			01	Ok	rect	îr	nple	eme	ntiv	19		ha	sh-	_	
			10			(d	letau	Ut =	= ic		me	mo	ry,	ad	dre	255)	
	_	in D. H	thec	svy:	χ . 0~0.	(=	some B')=		h	lash	(X)	=	- V	195	hly	1.0	
		ry	non	ap	phies	5 E	B/)=	$\frac{2}{6}$	- L	1511	CS (1\0	0))	$X \subset A$	1140 1\		akily	
	_	Shi	ect	1	keu	ر ای	~ould) P I	int.	cha	SNG X	ρ	اردا	ilo	ìn	tabl) _o
) (els	e c	ant	- 4	nould	it	an.	amo	re)	~V.	., .	17 (IUU	~
		<u> </u>	No	mu	tabl	e (olde	cts	lil	حو	lis	ts					

Simple uniform hashing: an assumption: (cheating)
each key is equally likely to be hashed
to any slot of table, independent of
where other keys are hashed

— let n = #keys stored in table

m = # slots in table - load factor $\alpha = n/m$ = expected # keys per slot = expected length of a chain => expected running time for search $= \Theta(1+\alpha)$ > search the list > apply hash function & random access to slot = O(1) if $\alpha = O(1)$ i.e. $m = \Omega(n)$

