Q.Write a C program to simulate the following contiguous memory

allocation techniques

1. FIRST FIT

```
#include<stdio.h>
#include<conio.h>
#define max 25
void main()
{
int frag[max],b[max],f[max],i,j,nb,nf,temp;
static int bf[max],ff[max];
printf("First Fit:\n");
printf("\nEnter the number of blocks:");
scanf("%d",&nb);
printf("Enter the number of files:");
scanf("%d",&nf);
printf("\nEnter the size of the blocks:-\n");
for(i=1;i<=nb;i++)
{
printf("Block %d:",i);
scanf("%d",&b[i]);
}
printf("Enter the size of the files :-\n");
for(i=1;i<=nf;i++)
{
printf("File %d:",i);
scanf("%d",&f[i]);
}
```

```
for(i=1;i<=nf;i++)
{
for(j=1;j<=nb;j++)
{
if(bf[j]!=1)
{
temp=b[j]-f[i];
if(temp>=0)
{
ff[i]=j;
break;
}
}
}
frag[i]=temp;
bf[ff[i]]=1;
}
printf("\nFile_no:\tFile_size :\tBlock_no:\tBlock_size:\tFragement");
for(i=1;i<=nf;i++)
printf("\n\%d\t\t\%d\t\t\%d\t\t\%d',i,f[i],ff[i],b[ff[i]],frag[i]);
}
```

OUTPUT:

2. WORST FIT

```
#include<stdio.h>
#include<conio.h>
#define max 25
void main()
int frag[max],b[max],f[max],i,j,nb,nf,temp,highest=0;
static int bf[max],ff[max];
printf("Worst Fit:\n");
printf("\nEnter the number of blocks:");
scanf("%d",&nb);
printf("Enter the number of files:");
scanf("%d",&nf);
printf("\nEnter the size of the blocks:-\n");
for(i=1;i<=nb;i++)
printf("Block %d:",i);
scanf("%d",&b[i]);
printf("Enter the size of the files :-\n");
for(i=1;i<=nf;i++)
```

```
printf("File %d:",i);
scanf("%d",&f[i]);
for(i=1;i \le nf;i++)
for(j=1;j<=nb;j++)
if(bf[j]!=1) //if bf[j] is not allocated
temp=b[j]-f[i];
if(temp > = 0)
if(highest<temp)
ff[i]=j;
highest=temp;
frag[i]=highest;
bf[ff[i]]=1;
highest=0;
printf("\nFile_no:\tFile_size :\tBlock_no:\tBlock_size:\tFragement");
for(i=1;i<=nf;i++)
printf("\n\%d\t\t\%d\t\t\%d\t\t\%d'\t\t\%d'',i,f[i],ff[i],b[ff[i]],frag[i]);
}
```

OUTPUT:

3.BEST FIT

```
#include<stdio.h>
#include<conio.h>
#define max 25
void main()
int frag[max],b[max],f[max],i,j,nb,nf,temp,lowest=10000;
static int bf[max],ff[max];
printf("Best fit:\n ");
printf("\nEnter the number of blocks:");
scanf("%d",&nb);
printf("Enter the number of files:");
scanf("%d",&nf);
printf("\nEnter the size of the blocks:-\n");
for(i=1;i \le nb;i++)
printf("Block %d:",i);
scanf("%d",&b[i]);
printf("Enter the size of the files :-\n");
for(i=1;i \le nf;i++)
printf("File %d:",i);
scanf("%d",&f[i]);
for(i=1;i \le nf;i++)
for(j=1;j \le nb;j++)
if(bf[j]!=1)
temp=b[j]-f[i];
if(temp>=0)
if(lowest>temp)
ff[i]=j;
lowest=temp;
frag[i]=lowest;
bf[ff[i]]=1;
lowest=10000;
printf("\nFile No\tFile Size \tBlock No\tBlock Size\tFragment");
for(i=1;i \le nf \&\& ff[i]!=0;i++)
```

OUTPUT:

```
■ "D:\My folder\college notes\CSE ENGG\4th SEM\4TH SEM LABS\ADA\bf.exe"
Best fit:
Enter the number of blocks:3
Enter the number of files:2
Enter the size of the blocks:-
Block 1:5
Block 2:2
Block 3:7
Enter the size of the files :-
File 1:1
File 2:4
File No File Size Block No
                                      Block Size
                                                             Fragment
                 1
                                                                      1
                                                    5
Process returned 2 (0x2) execution time : 641.541 s
Press any key to continue.
```