Regression Analysis Assignment1

November 1, 2021

Assumption. $Y = X\beta + \epsilon$, where $\mathbf{Y} = (Y_1, Y_2, \dots, Y_n)^t$, $\mathbf{1} = (1, \dots, 1)^t$, $\mathbf{x}_j = (x_{1j}, \dots, x_{nj})^t$, $\epsilon = (\epsilon_1, \dots, \epsilon_n)^t$ are n-dimensional vectors, $\boldsymbol{\beta} = (\beta_0, \dots, \beta_n)^t$ is a (p+1)-dimensional vector, $\mathbf{X} = (\mathbf{1}, \mathbf{x}_1, \dots, \mathbf{x}_p)$ is a $n \times (p+1)$ known matrix of full column rank and $\boldsymbol{\epsilon} \sim N_n(0, \sigma^2 I_n)$ with $\sigma^2 > 0$.

Problem1. Let **A** be a $(p+1) \times q$ matrix of full column rank and **c** be q-dimensional vector (q < p+1). Let $\hat{\beta}_r$ be the least squared estimator with constraint $A^t\beta = c$. It means

$$\hat{\beta}_{\mathbf{r}} = \mathop{\arg\min}_{\boldsymbol{A^t}\boldsymbol{\beta} = \boldsymbol{c}} ||\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}||$$

Find the $\hat{\beta_r}$ using the Lagrangian multiplier method.

Problem2. Let \mathbf{X}_i be *i*-th row of \mathbf{X} and $\hat{\boldsymbol{\beta}}$ be the least squared estimator based on $(\mathbf{X}_1, Y_1), \dots (\mathbf{X}_n, Y_n)$. Suppose $Y_i = \mathbf{X}_i^t \hat{\boldsymbol{\beta}}$ for $i = 1, 2, \dots, k$. Then, show that the least squared estimator $\hat{\boldsymbol{\beta}}_{(-)}$ based on $(\mathbf{X}_{k+1}, Y_{k+1}), \dots (\mathbf{X}_n, Y_n)$ equals to $\hat{\boldsymbol{\beta}}$.

Problem3. Derive $100(1-\alpha)\%$ confidence interval for mean response and out-of-sample response, referring to slide 16.