# **FDA Submission**

Your Name: Ahmed M. Fathy

Name of your Device: Pneumonia Detection from Chest X-Rays software.

#### **Algorithm Description**

#### 1. General Information

#### **Intended Use Statement:**

 This algorithm is intended for use on both women and men from the ages of 5-85 who have been administered a chest X-Rays pneumonia study using PA or AP position on a X-Rays machine.

#### Indications for Use:

• for assisting radiologists in the **conferming** of pneumonia on chest X-Rays images.

#### **Device Limitations:**

 The Algorithm has a high false negative rate, so it is not recommended for using in screening or prioritization.

# **Clinical Impact of Performance:**

• This algorithm has a high precision (low false positive rate), so it can be used for helping radiologists in **confirming** pneumonia diagnosis.

### 2. Algorithm Design and Function



# **DICOM Checking Steps:**

- Patient's age between 5 and 85.
- Patient's examined body part is chest.
- Patient's position is PA or AP

# **Preprocessing Steps:**

- Images are scaled by 1/255
- Images are resized to [224,244,3]

# **CNN Architecture:**

| Layer type   | Output Shape          | Param   | note           |
|--------------|-----------------------|---------|----------------|
| InputLayer   | (None, 224, 224, 3)   | 0       | VGG16(freezed) |
| Conv2D       | (None, 224, 224, 64)  | 1792    | VGG16(freezed) |
| Conv2D       | (None, 224, 224, 64)  | 36928   | VGG16(freezed) |
| MaxPooling2D | (None, 112, 112, 64)  | 0       | VGG16(freezed) |
| Conv2D       | (None, 112, 112, 128) | 73856   | VGG16(freezed) |
| Conv2D       | (None, 112, 112, 128) | 147584  | VGG16(freezed) |
| MaxPooling2D | (None, 56, 56, 128)   | 0       | VGG16(freezed) |
| Conv2D       | (None, 56, 56, 256)   | 295168  | VGG16(freezed) |
| Conv2D       | (None, 56, 56, 256)   | 590080  | VGG16(freezed) |
| Conv2D       | (None, 56, 56, 256)   | 590080  | VGG16(freezed) |
| MaxPooling2D | (None, 28, 28, 256)   | 0       | VGG16(freezed) |
| Conv2D       | (None, 28, 28, 512)   | 1180160 | VGG16(freezed) |
| Conv2D       | (None, 28, 28, 512)   | 2359808 | VGG16(freezed) |
| Conv2D       | (None, 28, 28, 512)   | 2359808 | VGG16(freezed) |
| MaxPooling2D | (None, 14, 14, 512)   | 0       | VGG16(freezed) |
| Conv2D       | (None, 14, 14, 512)   | 2359808 | VGG16(Tunned)  |
| Conv2D       | (None, 14, 14, 512)   | 2359808 | VGG16(Tunned)  |
| Conv2D       | (None, 14, 14, 512)   | 2359808 | VGG16(Tunned)  |
| MaxPooling2D | (None, 7, 7, 512)     | 0       | added          |

| Flatten | (None, 25088) | 0        | added |
|---------|---------------|----------|-------|
| Dense   | (None, 1024)  | 25691136 | added |
| Dropout | (None, 1024)  | 0        | added |
| Dense   | (None, 512)   | 524800   | added |
| Dropout | (None, 512)   | 0        | added |
| Dense   | (None, 2)     | 1026     | added |

## 3. Algorithm Training

#### Parameters:

- Adam optimizer was used with learning rate 0.0001 and decay 1e-5.
- Binary cross entropy was used for the loss.
- Accuracy matrix was used.
- Number of epochs 15.

# Types of augmentation used during training:

- rescale=1. / 255.0
- horizontal\_flip
- Height\_shift\_range = 0.1
- Width\_shift\_range = 0.1
- Rotation\_range = 20.0
- Shear\_range = 0.1
- Zoom range = 0.1

#### Batch size:

- Training = 16
- Validation = 32

### **Optimizer learning rate:**

• 0.0001

### Layers of pre-existing architecture that were frozen:

• The first 15 layers In VGG16 model (see the CNN Architecture).

### Layers of pre-existing architecture that were fine-tuned:

 The 3 convolution layers after 15 layer and the max pooling layer (see the CNN Architecture).

### Layers added to pre-existing architecture:

• Flatten - Dense - Dropout - Dense - Dropout - Dense (see the CNN Architecture).



# Threshold and Explanation:

The threshold was chosen to be **0.51**. This achieves **0.8 precision** and **0.44 recall** and makes the algorithm efficient in **confirming** the pneumonia cases.

### 4. Databases











# **Description of Training Dataset:**

• The training dataset is 80% of the total dataset. It was balanced and has 2290 cases.

# **Description of Validation Dataset:**

• The validation dataset is 20% of the total dataset. It was balanced and has 572 cases.

#### 5. Ground Truth

- The disease labels were created using Natural Language Processing (NLP) to mine the associated radiological reports.
- The biggest limitation of this dataset is that image labels were NLP-extracted so there could be some erroneous labels but the NLP labeling accuracy is estimated to be >90%.

#### 6. FDA Validation Plan

## **Patient Population Description for FDA Validation Dataset:**

To validate the algorithms, I would collect a validation set that was made up of 2d X-rays chest images with both PA and AP positions for both women and men between the ages of 5 and 85. I would also want to make sure that the distribution of pneumonia in my validation set was reflective of the distribution of the density that is seen in the real world.

## **Ground Truth Acquisition Methodology:**

• As the diagnosis of pneumonia from chest X-rays is difficult, the silver standard approach of using several radiologists was used.

# **Algorithm Performance Standard:**

• The algorithm F1 score is 0.57, which is equal to the mean of F1 scores published in this work.