En las fórmulas se usan radianes a menos que se indique de otro modo. Observación: en general si $|\lambda_B - \lambda_A| > \pi$ para cualquiera de las rutas, se debe cruzar el meridiano 180°. Esto sirve para determinar si el rumbo general es hacia el Este o el Oeste.

- Ortodrómica
 - 1. Distancia (angular)

$$\alpha = \arccos\left(\sin\phi_A\sin\phi_B + \cos\phi_A\cos\phi_B\cos(\lambda_B - \lambda_A)\right)$$

- 2. Distancia (en nmi) es α en minutos de arco.
- 3. Escribiendo α en radianes, $d = \alpha R_e$.
- 4. Para calcular el curso inicial $\chi(A)$:

$$\chi(A) = \arccos\left(\frac{\cos\phi_A\sin\phi_B - \cos\phi_B\sin\phi_A\cos(\lambda_B - \lambda_A)}{\sin\alpha}\right)$$

5. El curso inicial se debe corregir si la ruta es hacia el Oeste. En tal caso:

$$\chi(A) = 2\pi - \arccos\left(\frac{\cos\phi_A\sin\phi_B - \cos\phi_B\sin\phi_A\cos(\lambda_B - \lambda_A)}{\sin\alpha}\right)$$

6. Problema inverso. Dado A, que punto B alcanzamos si seguimos la ruta ortodrómica con curso inicial $\chi(A)$ durante una distancia α ? Calculamos primero ϕ_B :

$$\phi_B = \arcsin(\cos(\chi(A))\sin(\alpha) * \cos(\phi_A) + \cos(\alpha)\sin(\phi_A))$$

7. Luego λ_B

$$\lambda_B = \lambda_A + \arccos\left(\frac{\cos(\alpha) - \sin(\phi_A)\sin(\phi_B)}{\cos(\phi_A)\cos(\phi_B)}\right)$$

8. Si $\chi(A)$ era hacia el Oeste, corregimos:

$$\lambda_B = \lambda_A + 2\pi - \arccos\left(\frac{\cos(\alpha) - \sin(\phi_A)\sin(\phi_B)}{\cos(\phi_A)\cos(\phi_B)}\right)$$

9. Curso en el punto final:

$$\chi(B) = \pi - \arccos\left(\frac{\cos\phi_B\sin\phi_A - \cos\phi_A\sin\phi_B\cos(\lambda_B - \lambda_A)}{\sin\alpha}\right)$$

Si la ruta es hacia el Oeste hay que corregira

$$\chi(B) = \pi + \arccos\left(\frac{\cos\phi_B\sin\phi_A - \cos\phi_A\sin\phi_B\cos(\lambda_B - \lambda_A)}{\sin\alpha}\right)$$

- Rutas Loxodromicas.
 - 1. Primero calcular el curso χ :

$$\chi_{lox} = \arctan\left(\frac{\lambda_B - \lambda_A}{\ln\left(\frac{\tan(\pi/4 - \phi_A/2)}{\tan(\pi/4 - \phi_B/2)}\right)}\right)$$

2. Si $|\lambda_B - \lambda_A| > \pi$, se cruza el meridiano 180°. Entonces, si $\lambda_B < 0$, la fórmula del curso se tiene que corregir a:

$$\chi_{lox} = \arctan\left(\frac{\lambda_B + 2\pi - \lambda_A}{\ln\left(\frac{\tan(\pi/4 - \phi_A/2)}{\tan(\pi/4 - \phi_B/2)}\right)}\right)$$

y si $\lambda_B > 0$:

$$\chi_{lox} = \arctan\left(\frac{\lambda_B - 2\pi - \lambda_A}{\ln\left(\frac{\tan(\pi/4 - \phi_A/2)}{\tan(\pi/4 - \phi_B/2)}\right)}\right)$$

3. Finalmente, si B está al Sur ($\phi_B < \phi_A$), hay que hacer una corrección al curso calculado con cualquiera de las fórmulas anteriores: $\chi_{lox} = \pi + \chi_{lox}$.

4. Distancia angular Loxodrómica.

$$\alpha_{lox} = \frac{\phi_B - \phi_A}{\cos \chi_{lox}}$$

- 5. La ditancia (nmi) es α_{lox} en minutos de arco.
- 6. Escribiendo α en radianes, $d = \alpha_{lox} R_e$.
- 7. Problema inverso: dado A, que punto B alcanzamos siguiendo la loxodrómica de curso χ_{lox} una distancia α_{lox} ? Calcular primero ϕ_B :

$$\phi_B = \phi_A + \alpha_{lox} \cos \chi_{lox}$$

8. Luego λ_B :

$$\lambda_B = \lambda_A + \tan \chi_{lox} \ln \left(\frac{\tan (\pi/4 - \phi_A/2)}{\tan (\pi/4 - \phi_B/2)} \right)$$