# A Visual Analytics Framework for Analyzing Parallel and Distributed Computing Applications

**Kelvin Li**<sup>1</sup>, Takanori Fujiwara<sup>1</sup>, Suraj P. Kesavan<sup>1</sup>, Caitlin Ross<sup>2</sup>, Misbah Mubarak<sup>3</sup>, Christopher D. Carothers<sup>2</sup>, Robert R. Ross<sup>3</sup>, Kwan-Liu Ma<sup>1</sup>

University of California, Davis (UCD)<sup>1</sup>
Rensselaer Polytechnic Institute, Troy (RPI)<sup>2</sup>
Argonne National Laboratory, Chicago (ANL)<sup>3</sup>

Oct. 20, 2019



## Visualization and Visual Analytics for HPC



Isaacs et al. 2014: A survey on performance visualization



# Advance in HPC and Supercomputing

- Exascale Computing
- More compute nodes
- Complex interconnects
  - Dragonfly (Kim et al. 2008)
  - Slimfly (Besta et al. 2014)





Argonne National Laboratory's Theta <a href="https://www.alcf.anl.gov">https://www.alcf.anl.gov</a>







## Overview of our Visual Analytics Framework





## Time-Series Clustering and Classification



#### **Time-Series Dimensionality Reduction**





## Change Point Detection



Automatic segmentation based on E-Divisive (James et al. 2015) for finding change points.



## **Communication Patterns**





Line colors encodes communication events.

Bar heights represents metric values.



## Case Study

Parallel discrete-event simulation (**PDES**) with optimistic scheduling

- Compute nodes process events individually.
- Two compute nodes only communicate on connected events.
- Events occurred in the wrong order needs to be rollback.



#### Visual Interface based on our framework for analyzing PDES



(a) See an overview of rollback behaviors.

(b1, b2) See detailed behaviors of two selected metrics.

(c1, c2) See similarities and dissimilarities among the processes.

(d) See network communication patterns for the selected intervals(A, B, C, D)



## **Analyzing PDES**

- Quick overview of PDES behaviors and potential problems.
- Identify important stages or intervals of the PDES.
- Analyze when and where a performance bottleneck occurs.
- Explore the workload balance and similarities among compute nodes.



## Work in Progress

- In-situ data processing and online analysis.
- Real-time monitoring of PDES.
- Monitor and analyze different types of HPC applications.



### Thank You!

### Acknowledgement

This research has been sponsored in part by the U.S. Department of Energy through grants DE-SC0007443, DE-SC0012610, and DE-SC0014917.

