Centro Federal de Educação Tecnológica de Minas Gerais ENGENHARIA DA COMPUTAÇÃO

Um dos tópicos mais importantes da Eletrônica Digital (Sistemas Digitais) é o que trata dos circuitos combinacionais.

Um dos tópicos mais importantes da Eletrônica Digital (Sistemas Digitais) é o que trata dos circuitos combinacionais.

É através do estudos destes circuitos (combinacionais) que é possível entender o funcionamento de circuitos que executam tarefas de prioridade, codificadores, decodificadores, multiplexadores, e outros.

Um dos tópicos mais importantes da Eletrônica Digital (Sistemas Digitais) é o que trata dos circuitos combinacionais.

É através do estudos destes circuitos (combinacionais) que é possível entender o funcionamento de circuitos que executam tarefas de prioridade, codificadores, decodificadores, multiplexadores, e outros.

Definição: um circuito lógico combinacional é aquele em que a saída depende única e exclusivamente das combinações entre as variáveis de entrada e saída.

Aplicação: podemos utilizar os circuitos lógicos combinacionais para solucionar problemas em que necessitamos de uma resposta.

A Figura abaixo ilustra a sequência do processo:

Um circuito combinacional pode possuir diversas variáveis de entrada e uma ou mais saídas, dependendo de cada projeto a ser implementado.

Exemplo 1 – Circuito com 2 variáveis de entrada e 4 saídas:

1º Passo – Analisar as possibilidades, sendo que:

- 1^a) Quando houver carros para transitar nas Ruas A e B, deve-se abrir o semáforo para a Rua A, pois é uma rua preferencial.
- 2^a) Quando houver carros para transitar na Rua B, o semáforo 2 permanecer verde para que esses veículos possam trafegar livremente;
- 3^a) Quando houver carros para transitar na Rua A, o semáforo 1 deverá permanecer verde pelo mesmo motivo;
- 4°) Quando não houver carros para transitar em nenhuma das ruas, tanto faz (*don't care!*). Por convenção será adotado que o semáforo 2 permanecerá com sinal verde.

2º Passo – A partir das possibilidades, montar a tabela verdade, onde deve-se estabelecer as seguintes convenções:

```
1º) Existência de carros na Rua A:
                                 Assume-se A=1;
2º) Não existência de carros na Rua A: Assume-se A=0;
3º) Existência de carros na Rua B: Assume-se B=1;
4º) Não existência de carros na Rua B: Assume-se B=0;
5°) Verde do Semáforo 1 estiver aceso: Saída Vrd1 = 1;
6°) Verde do Semáforo 2 estiver aceso: Saída Vrd2 = 1;
7^{\circ}) Quando Vrd1 = 1:
       a) vermelho do semáforo 1 apagado (Vrm1 = 0);
       b) vermelho do semáforo 2 aceso (Vrm2 = 1);
       c) verde semáforo 2 apagado (Vrd2 = 0);
8^{\circ}) Quando Vrd2 = 1:
       a) vermelho do semáforo 2 apagado (Vrm2 = 0);
       b) vermelho do semáforo 1 aceso (Vrm1 = 1);
```

c) verde semáforo 1 apagado (Vrd1 = 0);

2º Passo – A partir das possibilidades, montar a tabela verdade, onde deve-se estabelecer as seguintes convenções:

Situação	Α	В	Vrd1	Vrm1	Vrd2	Vrm2
1	0	0				
2	0	1				
3	1	0				,
4	1	1				

2º Passo – A partir das possibilidades, montar a tabela verdade, onde deve-se estabelecer as seguintes convenções:

Situação	Α	В	Vrd1	Vrm1	Vrd2	Vrm2
1	0	0	0	1	1	0
2	0	1	0	1	1	0
3	1	0	1	0	0	1
4	1	1	1	0	0	1

2º Passo – A partir das possibilidades, montar a tabela verdade, onde deve-se estabelecer as seguintes convenções:

Situação	Α	В	Vrd1	Vrm1	Vrd2	Vrm2
1	0	0	0	1	1	0
2	0	1	0	1	1	0
3	1	0	1	0	0	1
4	1	1	1	0	0	1

3º Passo – Simplificar as expressões de saída, podendo utilizar para isso:

- a) Álgebra de Boole;
- b) Mapa de Karnaugh.

Simplificação para Vrd1

Simplificação para Vrm1

	$\overline{\mathbf{B}}$	B
$\overline{\mathbf{A}}$	0	0
A	1	1

	$\overline{\mathbf{B}}$	В
Ā	1	1
A	0	0

Simplificação para Vrd2

Simplificação para Vrm2

	$\overline{\mathbf{B}}$	B
Ā	1	1
A	0	0

	$\overline{\mathbf{B}}$	B
Ā	0	0
A	1	1

As expressões simplificadas são:

$$V_{rd1} = V_{rm2} = A$$

e

$$V_{rd2} = V_{rm1} = \overline{A}$$

4º Passo – Montar o circuito lógico:

1º Passo – Analisar as possibilidades, estabelecendo as prioridades:

1^a prioridade) Discos;

2ª prioridade) Fitas;

3ª prioridade) Rádio FM.

2º Passo – Estabelecer as seguintes convenções e montar a tabela:

- 1º) Variáveis de entrada (A, B, C): aparelho ligado = 1 e desligado = 0;
- 2°) Saídas (Sa, Sb, Sc): S=0, chave aberta e S=1, chave fechada.

Tabela verdade:

						B. 11. Sec. 1. 1. 1.
Situações	A	В	С	S_a	S_b	S_c
1	0	0	0			
2	0	0	1			
3	0	1	0	1		
4	0	1	1			
5	1	0	0			
6	1	0	1			
7	1	1	0			
8	1	1	1			

Tabela verdade:

Situações	Α	В	С	S_a	S_b	S_c
1	0	0	0	X	Х	Х
2	0	0	1	0	0	1
3	0	1	0	0	1	0
4	0	1	1	0	1	0
5	1	0	0	1	0	0
6	1	0	1	1	0	0
7	1	1	0	1	0	0
8	1	1	1	1	0	0

Simplificando:

Sa	Ī	3	В		
Ā	X	0	0	0	
A	1	1	1	1	
	C	(

Sc	$\overline{\mathbf{B}}$		В		
Ā	X	1	0	0	
A	0	0	0	0	
	C	C		C	

Sb		3	В		
$\overline{\mathbf{A}}$	X	0	1	1	
A	0	0	0	0	
	<u>c</u> c			C	

$$S_{A} = A$$

$$S_{B} = \overline{A}B$$

$$S_{C} = \overline{A}\overline{B}$$

4º Passo – Montar o circuito lógico: В Sa Sb Sc