Matemáticas básicas

Universidad Nacional San Cristobal de Huamanga

Fisart.cf

Agradecimento a los estudiantes de la ESFAPA FGPA

A la UNSCH

Índice general

Ín	dice d	e cuadros	v									
Íno	ndice de figuras vi											
Re	Resumen ix											
Int	ntroducción xi											
1.	Logi 1.1.	ca Conjunción	1									
2.	Conj	juntos	3									
		Determinación de un conjunto	3									
		Conjuntos básicos	3									
	2.3.	Función proposicional y cuantificadores	4									
		2.3.1. Función proposicional	4									
		2.3.2. Cuantificadores	4									
	2.4.	Conjuntos Iguales	6									
		2.4.1. Propiedades	6									
	2.5.	Inclusión y subconjuntos	7									
	2.6	2.5.1. Propiedades	7									
	2.6.	Conjuntos disjuntos	7									
	2.7.	Conjunto potencia	7 8									
	2.8.	Representación Gráfica de los Conjuntos	8									
	2.9.	Operaciones entre conjuntos	8									
		2.9.1. Unión	8									
		2.9.3. Diferencia	8									
		2.9.4. Complemento	9									
		2.9.5. Diferencia simétrica	9									
	2.10.	Ejercicios	10									
		Número de elementos de un Conjunto. Propiedades	10									
3.	Func	ciones y relaciones	11									
4.	Num	neros reales 4.0.1. Ejercicios	13 14									

iv	Cont	ents
	4.0.2. Potenciación	14
5.	Funciones exponenciales logarítmicas	15
6.	Inducción matemática	17
7.	Suceciones	19
8.	Números complejos	21
9.	Polinomios	23
Ar	péndice	23

Índice de cuadros

1	Conjunción.																															
.1.	Conjunction.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	٠	•	•	•	•	•	•	

Índice de figuras

																_
l. I.	WWWWWWWWW															- /

Resumen

www.

Introducción

www.

Logica

Teorema 1.1 (Pythagorean theorem). For a right triangle, if c denotes the length of the hypotenuse and a and b denote the lengths of the other two sides, we have

$$a^2 + b^2 = c^2$$

1.1

1.1. Conjunción

Cuadro 1.1: Conjunción.

\overline{p}	q	$p \wedge q$	$p \lor q$	$p \Longrightarrow q$	$p \Longleftrightarrow q$	$p\Delta q \equiv \sim$
						$(p \iff q)$
						<i>q</i>)
V	V	V	V	V	V	F
V	F	F	V	F	F	V
F	V	F	V	V	F	V
F	F	F	F	V	V	F

$$\frac{\sqrt{5}-1}{2}AB$$

$$\frac{\sqrt{5}-1}{2}AB$$

Refiérase al cuadro 1.1

2 1 Logica

Figura 1.1: wwwwwwwwww

Conjuntos

Definición 2.1 (Conjunto). Es una coleccion de elementos con características similares

2.1. Determinación de un conjunto

Definición 2.2 (Determinacion de conjuntos). Por extensión y comprensión. **Extensión**

$$A = \{1, 2, 3, 4, 5, 6, 7\}$$

Comprensión

$$A = \{ x \in \mathbb{N}; 0 < x < 5 \}$$

2.2. Conjuntos básicos

- Conjuntos universal
- Conjunto de los sitemas numéricos

$$\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{I}, \mathbb{R}, \mathbb{C}$$

■ Cojunto vacio

$$\phi = \{x/x \neq x\}$$

■ Conjunto unitario

$$A = \{a\}$$

4 2 Conjuntos

2.3. Función proposicional y cuantificadores

2.3.1. Función proposicional

Definición 2.3 (Función proposicional). Sea x una variable P(x) un *enunciado*, P(x) es una *función proposicional* si al sustituir la variable con una constante este se convierte en una *proposición*.

Por ejemplo P(x): x es un numero par

Al conjunto de todos lo valores de x se denomina domino de la variable

2.3.2. Cuantificadores

Definición 2.4 (Cuantificador existencial). Este cuatificador

 \exists

Es una generalización de la disyunción Inclusiva. Por ello, es verdadero cuando al menos un valor de x perteneciente al Dominio de A, es Verdadero. Se denota; $\exists x/P(x)$ Se lee: "Existe al menos un x", "Algunos x", "Hay x", "Existe un x", etc.

Definición 2.5 (Cuantificador universal). Este cuatificador

 \forall

Es una generalización de la *conjunción*. Debido a esto es verdadero cuando todos los valores de x que pertenecen al Dominio de A son Verdaderos. Se denota: $\forall x; p(x)$ Se lee: "Para Todo x", "Para cada x", "Todos (as) las x", "Todo x".

Sea $A = \{1, 2, 3, 4, 5\}$ y la función proposicional 3x - 2 < 12 entonces las proposiciones

- 1. $\forall x \in A : 3x 1 < 14$
- 2. $\exists x \in A : 3x 2 < 12$

son falsa y verdadera respectivamente

Definición 2.6 (Proposición universal). Una *proposición universal* es aquella que está provista de un *cuantificador universal*, y tiene la forma:

$$\forall x \in A : p(x)$$

Definición 2.7 (Proposición existencial). Una *proposición existencial* es aquella que está provista de un *cuantificador existencial*, y tiene la forma:

$$\exists x \in A : p(x)$$

Cambiando el cuantificador universal por el cuantificador existencial, o viceversa, es decir

$$\sim [\exists x \in A; P(x)] \equiv \forall x \in A; \sim P(x)$$

$$\sim [\forall x \in A; P(x)] \equiv \exists x \in A; \sim P(x)$$

La negación del *cuantificador universal* es equivalente a la *afirmación de un cuantificador existencial* respecto de la *función proposicional negada*.

La negación de un *cuantificador existencial* es equivalente a la *afirmación de un cuantificador universal* respecto de la *función proposicional negada*.

Ejemplo 2.1. Dada la proposición: "Si todos los números primos son impares, los números positivos son mayores que -1"

- Expresarla simbólicamente
- Negar oracionalmente la proposición

Solución. Sea p(x) : números primos son impares y q(x) : números positivos mayores que -1

- $\forall x : [p(x) \to q(x)]$
- Negando el item anterior

$$\sim \{ \forall x : [p(x) \to q(x)] \} \equiv \sim \{ \forall x : p(x) \to \forall x : q(x) \}$$
$$= \sim \{ \sim [\forall x : p(x)] \lor \forall x : q(x) \}$$
$$\equiv \forall x : p(x) \land \exists \ x : \sim q(x)$$

que se lee: "Todos los números primos son impares y algunos números no son mayores que -1"

Ejemplo 2.2. Dado el conjunto $A = \{x \in \mathbb{N} : -14 < x < 27\}$. Hallar el valor de verdad de

$$s = [(\sim p \land \sim q) \to (\sim q \land \sim r)] \leftrightarrow (\sim p \lor r)$$

si
$$p=(\forall x\in A,\exists y\in A,\forall z\in A)[x^2-z^2>y^2],\,q=(\exists y\in A,\forall z\in A,\exists x\in A)[2x-4y<-z]$$
y $r=(\forall z\in A,\exists x\in A,\forall y\in A)[3x^2-z^2>y]$

Solución. $A=\{1,2,3,\dots,26\}$ luego el valor de $\mathbf{V}(p)=F,\,\mathbf{V}(q)=V$ y $\mathbf{V}(r)=V$ pues

- \blacksquare Si y=1 entonces $x^2-z^2>y^2\equiv x^2>1+z^2$ lo cual no es valido $\forall x,z\in A$ entonces ${\rm V}(p)=F$
- Si $y=25\in A$ y $x=1\in A$ entonces $2x-4y<-z\equiv 2+z<100$ lo cual es valido $\forall z\in A$ entonces V(q)=V

6 2 Conjuntos

■ Si $x=26 \in A$ entonces $3x^2-z^2>y\equiv 3(26)^2>z^2+y$ lo cual es valido $\forall z,y\in A$ entonces V(r)=V por lo tanto

$$\begin{aligned} \mathbf{V}(s) &= \mathbf{V}[(\sim p \land \sim q) \Longrightarrow (\sim q \land \sim r)] \Longleftrightarrow (\sim p \lor r) \\ &= [(V \land F) \Longrightarrow (F \land F)] \Longleftrightarrow (V \lor V) \\ &= [F \Longrightarrow F] \Longleftrightarrow V \\ &= V \end{aligned}$$

Ejercicio 2.1. Dada la proposición: "Obtendré un puntaje aprobatorio si y solo si estudio concienzudamente el curso"

- Expresarla simbólicamente
- Negar oracionalmente la proposición

Ejercicio 2.2. Dado el conjunto $G=\{x\in\mathbb{Z}^+: -14<2x<20\}$. Hallar el valor de verdad de

$$s = (p \land \sim q) \to [(\sim q \land \sim r) \leftrightarrow (\sim p \lor r)]$$

si $p=(\forall x\in A,z\in\mathbb{N}_{\digamma})[xz\in\mathbb{Z}], q=(\forall z\in A,\exists x\in A)[x\neq y]$ y $r=(\forall z\in A,\forall y\in A)[yx^2>500]$

2.4. Conjuntos Iguales

$$A = B \Longleftrightarrow \{(x \in A \to x \in B) \land (x \in B \to x \in A)\}$$
$$\Longleftrightarrow x \in A \leftrightarrow x \in B$$

$$A \neq B \Longleftrightarrow \{(\exists x \in A; x \notin B) \lor (\exists x \in B; x \notin A)\}$$
$$\iff x \in A \leftrightarrow x \in B$$

2.4.1. Propiedades

- $\blacksquare A = A$
- $A = B \to B = A$
- A = B y B = C entonces A = C

2.5. Inclusión y subconjuntos

$$A \subset B \leftrightarrow \{x \in A \rightarrow x \in B\}$$

$$\leftrightarrow \{\forall x \in A, x \in B\}$$

$$A \not\subset B \leftrightarrow \exists x \in A \mid x \notin B$$

2.5.1. Propiedades

- $\quad \blacksquare \ A \subset A$
- $\quad \blacksquare \ A \subset B \land B \subset A \to A \subset B$
- $A \subset B \wedge B \subset C \to A \subset C$
- $\quad \blacksquare \ \, \forall A \ \emptyset \subset A$

2.6. Conjuntos disjuntos

A disjunto de
$$B \leftrightarrow \nexists x \mid x \in A \land x \in B$$

2.7. Conjunto potencia

$$P(A) = \{X \mid X \subset A\}$$

Observación. Tiene las siguientes Propiedades

- P(A) tiene 2^n elementos
- $\blacksquare \emptyset \in P(A)$
- $A \in P(A)$

Propiedades

- $P(\emptyset) = \{\emptyset\}$
- $A \subset B \leftrightarrow P(A) \subset P(B)$
- $A = B \leftrightarrow P(A) = P(B)$

8 2 Conjuntos

2.8. Representación Gráfica de los Conjuntos

Diagrama de euler

2.9. Operaciones entre conjuntos

2.9.1. Unión

$$A \cup B = \{x/x \in A \lor x \in B\}$$

Propiedades

- $\quad \blacksquare \ A \cup A = A$
- $\bullet \ A \cup \emptyset = A$
- $\quad \blacksquare \ A \cup U = U$
- $\quad \blacksquare \ A \cup B = B \cup A$
- $\bullet (A \cup B) \cup C = A \cup (B \cup C)$

2.9.2. Intersección

$$A \cap B = \{x/x \in A \land x \in B\}$$

$$x \in A \cap B \leftrightarrow x \in A \land x \in B$$

Propiedades

- $\quad \blacksquare \ A\cap A=A$
- $\quad \blacksquare \ A \cap \emptyset = \emptyset$
- $\quad \blacksquare \ A \cap U = A$
- $\quad \blacksquare \ A\cap B=B\cap A$
- $\bullet (A \cap B) \cap C = A \cap (B \cap C)$

2.9.3. Diferencia

$$A - B = \{x/x \in A \land x \notin B\}$$

$$x \in A - B \leftrightarrow x \in A \land x \notin B$$

Propiedades

- $A A = \emptyset$
- $\quad \blacksquare \ A \emptyset = A$
- $\quad \blacksquare \ \emptyset A = \emptyset$
- $\blacksquare A B \subset A$
- $(A B) = (A \cup B) B) = A (A \cap B)$

2.9.4. Complemento

$$C_B A = B - A = \{x/x \in B \land x \notin A\}$$

$$x \in \mathcal{C}_B A \leftrightarrow x \in B \lor x \notin W$$

Si
$$B = U$$
 entonces $C_B A = A' = A^C = \overline{A}$

Propiedades

- $C_BA \subset B$ y $C_AB \subset A$
- $A' \cup A = U$ o $A \cup C_A B = A$
- $A \cap A' = \emptyset$ o $A \cap \mathcal{C}_A B = \emptyset$
- $U' = \emptyset$ o $\mathcal{C}_A A = \emptyset$
- $\bullet \emptyset' = U \circ \mathcal{C}_A \emptyset = A$
- $(A')' = A \circ \mathcal{C}_B(\mathcal{C}_B A) = A$
- $A B = A \cap B'$ o $A B = A \cap C_A B$

2.9.5. Diferencia simétrica

$$A\Delta B = \{x/(x \in A \land x \in B) \lor (x \in A \land x \in B)\}\$$

$$x \in A\Delta B \leftrightarrow (x \in A \land x \in B) \lor (x \in A \land x \in B)$$

Propiedades

- \bullet $A\Delta B = \emptyset$
- $\quad \blacksquare \ \, A\Delta\emptyset = A$
- $\quad \blacksquare \ A\Delta B = B\Delta A$
- $(A\Delta B)\Delta C = A\Delta (B\Delta C)$
- $(A\Delta B) \cap C = (A\Delta C)\Delta (B\Delta C)$
- $(A\Delta B) \cup (B\Delta C) = (A \cup B \cup C) (A \cap B \cap C)$

10 2 Conjuntos

2.10. **Ejercicios**

Ejercicio 2.3. Resuelva

```
1. Sea U = \{x \in \mathbb{N} | 0 < x \le 10\} y los subconjuntos: A =
\{x \in \mathbb{N} | x \text{ es primo}\}, B = \{x \in \mathbb{N} | x \text{ es es un cuadrado perfecto}\}\ y\ C =
\{x \in \mathbb{N} | x \text{ es impar}\}. Hallar
```

- $\blacksquare (A \cup B)' C$
- $\blacksquare (A-C)'\cap B$
- $(A\Delta B) (A\Delta C)$ $(A\cap C)' (B\cup C)'$

2. Dados los conjuntos
$$A=\{x\in\mathbb{Z}|\sim[x\leq-2\lor x>3]\},$$
 $B=\{x\in\mathbb{N}|\sim[-1< x\leq 3\to x=5]\}$ y $C=\{x\in\mathbb{Z}|(x<-2\lor x\geq 2)\to x>1\}$ Hallar el resultado de $(B\cap C)\Delta(A\cap B)$

Ejercicio 2.4. Sombree las regiones correspondientes a los conjuntos

- $\bullet \{ [(A \cup B)' \cap (C\Delta D)] \cap B \} \Delta C$
- $\bullet [(A \cup B)' \cap (C\Delta D)] (B \cap C)$

Ejemplo 2.3.

$$\{[(A \cup B)' \cap C] \cap B\} \Delta C$$

Número de elementos de un Conjunto. Propiedades

Definición 2.8.

$$\{[(A \cup B)' \cap C] \cap B\} \Delta C$$

Funciones y relaciones

Numeros reales

$$(\mathbb{R}, *, +)$$

4.0.0.1. Axiomas de la adición

- Cerrada (clausura)
- Asociativa y commutativa
- Elemento inverso y neutro aditivo

4.0.0.2. Axiomas de la Multiplicación

- Cerrada (clausura)
- Asociativa (ab)c = a(bc) y commutativa

$$5 \cdot 7$$

ab

■ Elemento inverso y neutro multiplicativo

4.0.0.3. Axiomas distributivas

$$w(a+b) = wa + wb$$
$$(a+b)w = aw + bw$$
$$(a+b)(w+z) = a(w+z) + b(w+z) = aw + az + bw + bz$$

4.0.0.4. Axiomas de orden

Dados a y b solo ocurre que a = b, a > b o a < b

4.0.0.5. Axioma del supremo

Si S es un conjunto no vacío de elementos de R superiormente acotado, entonces S tiene un supremo en R.

4.0.1. Ejercicios

Hallar el valor de \boldsymbol{x}

$$5x - [3x - 7 - (\frac{3x - 1}{3})] = 10$$

$$5x - [3x - 7 - (\frac{3x - 1}{3})] = 10$$
$$5x - [\frac{9x - 21 - (3x - 1)}{3}] = 10$$
$$5x - [\frac{6x - 20}{3}] = 10$$
$$[\frac{15x - (6x - 20)}{3}] = 10$$

$$\left[\frac{9x + 20}{3}\right] = 10$$
$$9x + 20 = 30$$

$$x = \frac{10}{9}$$

$$a - \frac{m+n}{x} = b - \frac{m-n}{x}$$

$$(m+x) \qquad n(n+x)$$

$m \frac{(m+x)}{n} = \frac{n(n+x)}{m}^{x}$

4.0.2. Potenciación

Teorema

$$a^n a^m = a^{n+m}$$

•

$$(a^n)^m = a^{nm}$$

.

$$(ab)^m = a^m b^m$$

$$\frac{a^n}{a^m} = a^{n-m}$$

•

$$(\frac{a}{a})^n = \frac{a^n}{a^n}$$

1.

$$(x^2 - \frac{1}{y^2})^x (x^2 - \frac{1}{y^2})^x$$

Funciones exponenciales logarítmicas

Inducción matemática

Suceciones

Números complejos

Polinomios

Temas de reforzamiento o conocimientos preliminares que son necesarias para entender el contenido.

A

Trasformaciones