

Mining Evidences of Internet of Robotic Things (IoRT) Software from Open Source Projects

15th Brazilian Symposium on Software Components, Architectures, and Reuse, SBCARS 2021

Michel Albonico

Federal University of Technology, Paraná - UTFPR michelalbonico@utfpr.edu.br

Adair José Rohling

Federal University of Technology, Paraná - UTFPR

Paulo Jr. Varela

Federal University of Technology, Paraná - UTFPR

Juliano Soares dos Santos

Federal University of Technology, Paraná - UTFPR

Study Goal

- IoRT systems integrate two types of ecosystems that tend to be very complex;
- Lack of documentation of such systems may be catastrophic;
 - People rely on robots and IoT for critical tasks, such as security, autonomous cars, etc.
- The state-of-the-practice has a lot to say;
- This study aims at taking the first step on studying the state-of-the-practice of IoRT software, to be the base of deeper studies.

Research Questions

RQ1: How has been the interest and the activity on loRT systems over time?

RQ2: What are the relevant characteristics of loRT system repositories?

RQ3: What is the software architectural evidence of loRT systems?

Replication package:

Phase 1

Replication package:

https://github.com/IntelAgir-Research-Group/sbcars2021-replication-package-mining-iot

Phase 1: Dataset Building

GitHub REST API (shell script automation)

curl -u \$user:\$hash "https://api.github.com/search/repositories?q=\$terms+in:\$where+created:\$date&per_page=100&page=\$ii"
-o \$dir"/"\$file"-"\$i".json"

MongoDB would be the "right" storage, but the students were used to SQLite.

Phase 2

Phase 2: Manual Filtering

- Extract description snippets (-25 words [term] +25 words);
- 2. 2 researchers: decide whether the repositories are about IoRT or not;
 - o NO
 - They are discarded.
 - YES
 - Included in the quantitative data.
- 3. The ones that meet the selection criteria are included in the qualitative data:
 - > 100 words in the description AND
 - > 100 commits (software that has some maturity) OR
 - > 5 contributors (collaborative software dev) OR
 - > 100 stars
 - AND have been updated in the last 2 years (active).

	Min.	Max.	Median	Mean	SD
# commits	1	7599	17.5	154.74	620.27
# contributors	1	378	1	7.45	30.32
# watchers	0	150550	0	479.10	6023.65
# stars	0	12200	2	139.55	963.22
# words (README)	1	8325	346	950.24	1481.38

Phase 3

Phase 3: Data Analysis

- 1. Thematic analysis by 2 of the researchers (Kappa's > 80%);
 - a. Data familiarization (previous phases);
 - b. **Code preset families/categories**: project nature, project domain, IoT capability, robot capability, other relevant.
 - c. **Define themes**;
 - d. **Refine themes**;
 - e. **Document themes.**

Main Results

RQ1: How has been the interest and the activity on IoRT systems over time?

Main Results

RQ2: What are the relevant characteristics of IoRT system repositories?

Project Nature	Projects	
Base	P2, P3, P4, P9, P10, P15, P20, P26, P29, P30, P31, P32	
Programming Artifact	P5, P8, P10, P11, P12, P 13, P14, P24, P25, P26, P28, P34	
Artificial Intelligence	P1, P2, P7, P17, P23	
Sensing Data	P7, P18, P22, P23	
User Interface	P2, P19	
Communication	P21, P27, P33	
$Device\ Prototype$	P6, P35	
Security	P16, P31	
Data Analysis	P17	

IoT Capability		
General	P12, P3, P4, P5, P9, P10, P12, P13, P14, P15, P20, P21, P25, P26, P27, P28, P29, P32, P33, P34, P35 P1, P6, P7, P8, P17, P18, P22, P23, P24, P31 P11, P16, P19, P30	
Sensor	P1, P6, P7, P8, P17, P18, P22, P23, P24, P31	

Project Domain	Projects
	P1, P5, P9, P10, P11, P12, P13
General	P14, P15, P21, P24, P25, P26
	P27, P28, P32, P33, P34
Social robots	P1, P7, P19, P20, P35
Autonomous navigation	P6, P8, P16, P18, P22
Smart home	P3, P19, P23, P31
Smart industy	P17, P29, P30
Education	P30, P35

Robot Capability	Projects	
General	P2, P3, P5, P9, P10, P11, P12, P13, P14, P15, P19, P20, P21, P25, P26, P27, P28, P29, P31, P32, P33, P34, P35	
Navigation	P4, P6, P8, P16, P18, P22, P23	
Vision	P1, P4, P7, P8, P24	
Control	P4, P6, P16, P30	
Base	P17, P19	

Main Results

RQ3: What is the software architectural evidence of loRT systems?

- 1. *Programing languages:* python, Java, JavaScript...
- 2. Software platforms: TensorFlow, OpenCV, Apache Kafka, Node.js...
- 3. *Protocols:* MQTT, COAP, AMQP...
- 4. Computing infrastructure: Cloud, AWS IoT, Azure IoT, Docker...
- 5. Libraries: PyTorch, NVidia JetPack, TensorSort...
- 6. *Middlewares:* ROS, RIOT...
- 7. Frameworks: Robot4J, Gradle, SLAM...
- 8. *Databases:* Blockchain, KFSQL...

Conclusion and Future Work

- More than a half of the studied projects are still active;
 - Some of them date from ~8 years ago.
- Some projects are very active:
 - Thousands of commits and watchers/starts.
- The evidence from this work will trigger further research:
 - Empirically study the impact of architectural/technical debt on the energy consumption of IoRT software.

Mining Evidences of Internet of Robotic Things (IoRT) Software from Open Source Projects

15th Brazilian Symposium on Software Components, Architectures, and Reuse, SBCARS 2021

Michel Albonico

Federal University of Technology, Paraná - UTFPR michelalbonico@utfpr.edu.br

Adair José Rohling

Federal University of Technology, Paraná - UTFPR

Paulo Jr. Varela

Federal University of Technology, Paraná - UTFPR

Juliano Soares dos Santos

Federal University of Technology, Paraná - UTFPR