汇编第五次实验报告

(1)课前完成:运行3.1中的程序,回答3.1中的问题;在上文的程序中,对程序中的每一句进行备注;拍摄一到两张程序运行中的图片作为报告附图。(相关答案请直接手写填写在上文中)

(2)课后完成:根据3.2中的要求进行编程,简单描述程序的整体结构和各子函数的功能,并对程序的每一句进行简单备注;拍摄一到两张程序运行中的图片作为报告附图。

设计思路:此次实验比较容易,只需在原有程序的基础上加上一个循环数码管的程序即可 各子程序功能:

MAIN为程序循环的主程序,每循环一次显示一次数码管,检测两次按键是否弹起

JUDGE为ROW按键检测函数,即检测ROW按键是否有按下

KEY为获取键值函数,即通过P2口读取按下的按键的键值

NUM为获取键值对应的16进制数的八段数码管值函数

DELAY为10ms延时函数

TAB1存放的为16个按键存储的键值

TAB2存放的为各个键值对应的16进制数的八段数码管值

流程图:

汇编第五次实验报告 1

具体程序代码:

ORG 0000H		
	LJMP START	
	ORG 0050H	
START:	MOV SP,#60H	设置堆栈指针
	MOV R5, #16	将16作为R5的初始值,灭灯
	MOV R3, #0EEH	该值减一为数码管LED9的导通值
	MOV 40H, #00H	40H用于存储按钮的行列值。第0~3位代表行
		KeyOut4~1,,第4~7位代表列KeyIn1~4
MAIN:	MOV A, R5	将R5的值给A,用于查表
	MOV DPTR, #TAB2	将TAB2的起始地址给DPTR
	MOVC A, @A+DPT	R 查表
	MOV PO, A	
	MOV P1,R3 LCALL DELAY	导通数码管
	LCALL DELAY	延时10ms
	ACALL JUDGE	进入JUDGE,判断ROW有无按键按下,返回一个A值
		如果A为O就循环MAIN自己
	LCALL DELAY	
	ACALL JUDGE	
		如果A为O就循环MAIN自己
	ACALL KEY	跳至KEY,获取按下的按键对应的键值
	ACALL NUM	跳至NUM,将获取的键值与对应的16进制数的八段数码值相对应
	LJMP MAIN	循环MAIN
JUDGE:	MOV P2, #0FH	将00001111给P2,允许P2低四位读取外部输入
	MOV A, P2	将读取到的p2给A
		清零进位位
	•	A与00001111相减并赋给A,判断ROW是否有按键按下
	RET	₩ N₩
KEY:	PUSH ACC	存储ACC
K_LINE:		将00001111给P2,允许P2低四位读取外部输入
	MOV A, P2	将低四位存入R1中
K D0M	MOV R1, A	型11110000Mpg 台次pg克四位法取例如检阅
K_ROW:	,	将11110000给P2,允许P2高四位读取外部输入 将高四位存入R0中
	'	付同は世代人です
K WALLE.	MOV RO, A	将R1与00001111做与运算,得到Row的键值
K_VALUE:	ANL A, #0FH	17NLTプUUUULIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
	ANL A, #UFF	

汇编第五次实验报告 2

```
MOV R1, A 将键值还给R1
              MOV A, RO 将R0与11110000做与运算,得到Column的键值
             ANL A, #0F0H
ORL A, R1 将Row的键值与Column的键值做或运算,得到完整的键值
MOV 40H, A 将键值存入地址40H中
              DEC R3 将数码管选通值减一,即数码管右移
              CJNE R3,#0E7H,RET1 判断数码管显示是否到达最右端LED2,
                                   如到达将其初始化为LED9
              MOV R3, #0EDH 初始化为LED9
RET1:
             POP ACC 取出ACC
                               返回
             RFT
             PUSH DPL 存储数据指针低八位
PUSH DPH 存储数据指针高八位
PUSH ACC 存储ACC
NUM:
              MOV DPTR, #TAB1 将表1的地址初始值给数据指针
              MOV R5, #0FFH 0FFH+1为00H,用于查表
             INC R5 查下一位
MOV A, R5 将R5的值给A,查表
              MOVC A, @A+DPTR 将查到的值给A

      (TOTAL) (1997) [EACH Procedure]

      CLR C
      清零进位位

      SUBB A, 40H
      将键值与A做比较

      JNZ NUM0
      如果不相等就循环,直到找到与表中对应的值为止

      LCALL DELAY
      10ms延时

      MOV P2, #0FH
      检查按键是否弹起

      MOV A, P2
      将00001111给p2, 允许读取外部信号

NUM1:
              CJNE A, #0FH, NUM1 与00001111比较,确保按键弹起
              POPACC取出ACCPOPDPH取出数据指针高八位
             POP DPL 取出数据指针低八位
PCT 返回
             MOV R7, #20 10ms延时函数
MOV R6, #229
DELAY:
DEL1:
             DJNZ R6, DEL2
DFI2:
             DJNZ R7, DEL1
             RET
TAB1:
             DB 0EEH, 0E7H, 0D7H, 0B7H, 0EBH, 0DBH, 0BBH, 0EDH,
                    0DDH, 0BDH, 77H, 7BH, 7EH, 7DH, 0DEH, 0BEH
TAB2:
           DB 0C0H, 0F9H, 0A4H, 0B0H, 99H, 92H, 82H, 0F8H, 80H,
                    90H, 88H, 83H, 0C6H, 0A1H, 86H, 8EH, 0FFH
```

汇编第五次实验报告 3