Конспект по дискретной математике

September 24, 2019

Определение. Арифметический базис $-\oplus, \wedge, 1$

Полином Жегалкина

Пример: $f(x,y,z)=(x\oplus y)\wedge(x\oplus x\wedge y\oplus 1)\leftrightarrow(x+y)(x+xy+1)=x^2+x^2y+x+xy+xy^2+y$. Можно заметить, что $x^2=x (mod\ 2).\ x^2+x^2y+x+xy+xy+xy+x+xy+x+xy+xy=xy+y\leftrightarrow x\wedge y\oplus y$

Определение. Приведенный полином Жегалкина: $\oplus_{\alpha_1,\alpha_2...\alpha_n} x_1^{\alpha_1}, x_2^{\alpha_2} \dots x_n^{\alpha_n}$

Теорема 1. Любая булева функция, кроме 0, имеет представление в виде приведенного полинома Жегалкина, и только одно.

Доказательство. Существование тривиально - любую функцию записываем в арифметическом базисе и создаем приведенный полином Жегалкина. Докажем единственность. Всего существует $2^{2^n}-1$ функций от n аргументов, кроме 0. Кроме того, столько же существует полиномов Жегалкина от n аргументов. Если некоторой функции соответствует больше чем один полином Жегалкина, то некоторой функции не соответствует такой полином — противоречие.

Определение. Булева функция называется линейной, если в её полиноме Жегалкина не используется \wedge .

Примечание. От n переменных существует 2^{n+1} линейных функций. Для 3 аргументов:

$$F_0 \quad f(0,0\dots,0) = 0 - \mathrm{Bcero} \ 2^{2^n-1}$$

$$F_1 \quad f(1,1\dots,1) = 1 - \mathrm{Bcero} \ 2^{2^n-1}$$

$$F_l \quad f(x_1,x_2\dots,x_n) = \oplus_{i \in \{1\dots n\}} x_i - \mathrm{Bcero} \ 2^{n+1}$$

$$F_s \quad f(\neg x_1 \dots \neg x_n) = \neg f(x_1 \dots x_n) - \mathrm{Bcero} \ 2^{2^n-1}$$

$$F_m \quad x_1 \dots x_n, y_1 \dots y_n, x_i \leq y_i \Rightarrow f(x_1,x_2\dots,x_n) \leq f(y_1,y_2\dots,y_n)$$

Определение. Эти пять множеств функций называются классы Пирса

Лемма 1. Классы Поста замкнуты относительно композиции

Лемма 2. Для любого класса Поста существует функция, не принадлежащая этому классу

Доказательство. ↑ - стрелка Пирса не принадлежит ни одному классу Поста.

Определение. Замыкание $\overline{F}=\{g\}$, где g можно записать формулой в системе связок F.

Определение. F — базис, если замыкание на нем - все булевы функции.

Теорема 2. Множество функций F является базисом базис тогда и только тогда, когда в этом классе содержатся функции всех пяти классов Поста. Другой способ записи: F - базис $\Leftrightarrow \forall i \in \{0,1,s,m,l\}$ $F \not\subset F_i$

Доказательство. Докажем " \Rightarrow ". $F\subset F_i\Rightarrow^{L1}\overline{F}\subset F_i\Rightarrow^{L2}\downarrow\neq\overline{F}\to F$ — не базис.

Докажем в другую сторону.

Здесь f_0, f_1, f_l, f_m, f_s $f_i \neq F_i$, то есть рассматриваются функции, не лежащие в соответствующих классах Поста.

Рассмотрим $f_0(0, 0, \dots 0)$.

1.
$$f_0(1, 1, \dots, 1) = 0$$

 $f_0(x, x, \dots, x) = \neg x$

2.
$$f_0(1, 1, \dots, 1) = 1$$

 $f_0(x, x, \dots, x) = 1$

Если сделать то же самое для f_2 , то получим \neg и 0.

Выпишем все возможные аргументы для f_m :

$$\begin{cases} x_1 x_2 x_3 \dots x_n & f_m(X) = 1 \\ y_1 x_2 x_3 \dots x_n & f_m(X) = 1 \\ y_1 y_2 x_3 \dots x_n & f_m(X) = 1 \\ \vdots & & \vdots \\ y_1 y_2 y_3 \dots y_n & f_m(X) = 0 \end{cases}$$

Заметим, что для некоторого i-того набора переменных $f_m(X_i)=0$, а $f_m(X_{i-1})=1$. $f_m(x_1,x_2,\ldots,x_{i-1},0,x_i)=1$ $f_m(x_1,x_2,\ldots,x_{i-1},1,x_{i+1},\ldots x_n)=0$. Зафиксируем такие x. Тогда $f_m(x_1,x_2,\ldots,x_{i-1},x,x_{i+1},\ldots x_n)=0$

Итого, мы получили $\neg x$ из f_m

Рассмотрим f_s . $\exists x_1, x_1, \dots x_n f_s(x_1 \dots x_n) = f_s(\neg x_1, \dots x_n)$. С помощью этого каким-то образом получается одна из констант. Другая константа получается отрицанием.

Рассмотрим $f_l = x \wedge y \wedge z_3 \wedge z_4 \wedge \ldots \wedge z_k \oplus \ldots \oplus x \oplus \ldots \oplus z_i \oplus \ldots \oplus u_j$. Мы выбрали нелинейный член с наименьшим числом элементов, его элементы обозначили за $x, y, z_3, z_4, \ldots, z_k$. Не встречающиеся в этом члене переменные обозначили за u_1, u_2, \ldots, u_j . Если подставить вместо z_i 1, вместо u_j 0, то $f(x, y, 1, \ldots, 1, 0, \ldots, 0) = x \wedge y[\oplus x][\oplus y][\oplus 1] = g(x, y)$. Члены с u_j обратились в ноль.

Если в g есть $\oplus 1$, то от него можно избавиться, взяв $\neg g$. Если есть $\oplus x$ (или y), то берем $g(\not x,y)$ или наоборот. $x \land y \oplus x \oplus y = x \lor y$

	coxp. 0	coxp. 1	мон.	сам.	лин.
\wedge	ě	ě	•	нет	нет
\vee			•	нет	нет
\neg	нет	нет	нет	•	•
\wedge				нет	нет
\oplus		нет	нет	нет	
1	нет	•	•	нет	•
\rightarrow	нет	•	нет	нет	нет
0	•	нет	•	нет	