Neural Collaborative Filtering

Lab Intern 이준모

bubblego0217@kaist.ac.kr

Contents

- 1. Introduction
- 2. Preliminaries
- 3. Neural Collaborative Filtering
- 4. Experiments
- 5. Conclusion & Future Work
- 6. Implementation (To be updated)

1. Introduction

Introduction

- Collaborative Filtering
 - Matrix Factorization (MF)
 - Interaction: Inner product of user and item latent vectors
 - Combine with neighbor-based models, Factorization Machines
 - Performance can be hindered by the interaction function
 - not be sufficient to capture the complex structure of interaction
- Using Deep Neural Network
 - Little work on Recommendation (Previous)
 - DNNs to model auxiliary information (ex. Textual description of items)
 - Still resorted to MF
 - Use DNNs for learning the interaction function from data

1. Introduction

Implicit Feedback & Contribution

Implicit Feedback

- Can be tracked automatically & Much easier to collect
- User Satisfaction is not observed & A natural Scarcity of Negative Feedback

Contribution

- 1. Neural Net Architecture to model latent features & General framework NCF
- 2. MF = Specialization of NCF & Non-linearity with Multi-Layer Perceptron
- 3. Effectiveness of NCF Approaches & Promise of Deep Learning for CF

Learning from Implicit Data

M and N: the number of users and items

$$\mathbf{Y} \in \mathbb{R}^{M \times N} \quad = \begin{cases} 1, & \text{if interaction (user } u, \text{ item } i) \text{ is observed;} \\ 0, & \text{otherwise.} \end{cases}$$

(a) user–item matrix

- * Interaction doesn't mean Preference
 - Observed : at least interest
 - Unobserved : Missing Data & Scarcity of Negative Feedback

Learning from Implicit Data

- Recommendation problem with Implicit Feedback
 - Estimating the scores of unobserved entries in Y
 - Abstracted as learning $\hat{y}_{ui} = f(u, i | \Theta)$
- Estimate parameters Θ
 - Follow the Machine Learning Paradigm Optimizes an objective function
 - Pointwise Loss
 - $min \frac{1}{2} (\hat{y}_{ui} y_{ui})^2$ (ex. OCCF)
 - Pairwise Loss
 - $\max(0, f(y_{unobs}) f(y_{obs}) + \alpha)$ (ex. BPR)

Matrix Factorization

Abstraction

$$\hat{y}_{ui} = f(u, i | \mathbf{p}_u, \mathbf{q}_i) = \mathbf{p}_u^T \mathbf{q}_i = \sum_{k=1}^K p_{uk} q_{ik}$$

- p_u and q_i denote latent vector for user u and item i
- Linear model of latent factors
- Expressiveness Limitation of MF
 - 1. Similarity between two users by inner product
 - Cosine similarity
 - 2. Use Jaccard coefficient
 - Ground-truth similarity of two users that MF needs to cover
 - Defined as $s_{ij}=rac{|\mathcal{R}_i|\cap |\mathcal{R}_j|}{|\mathcal{R}_i|\cup |\mathcal{R}_j|}$, \mathcal{R}_u be the set of items that user u has interacted with

Matrix Factorization

1. Consider only the first three users

Similarity

$$s_{23}\left(\frac{2}{3} = 0.66\right) > s_{12}\left(\frac{2}{4} = 0.5\right) > s_{13}\left(\frac{2}{5} = 0.4\right)$$

- Interpretation
 - Relative Similiarity

Matrix Factorization

2. Consider new user u₄

$$s_{41}\left(\frac{3}{5} = 0.6\right) > s_{43}\left(\frac{2}{5} = 0.4\right) > s_{42}\left(\frac{1}{5} = 0.2\right)$$

(b) user latent space

- Interpretation
 - p₄ closer to p₂ than p₃

Matrix Factorization

Question: Increasing the number of latent factors K?

- It may hurt the generalization of the model (Overfitting)
 - Especially in sparse settings
- So use DNNs to learn the interaction function from data

Figure 2: Neural collaborative filtering framework

Multi-Layer Representation

- 1. Input Layer
 - Sparse feature vectors v_u^U and v_i^I
 - Binarized by one-hot encoding
 - Pure collaborative filtering setting

Figure 2: Neural collaborative filtering framework

- 2. Embedding Layer
 - Fully-Connected Layer
 - Sparse representation to a dense vector

Figure 2: Neural collaborative filtering framework

3. Neural CF Layer

- Multi-Layer Neural Architecture
- Map the latent vectors to prediction scores
- Dimension of last hidden Layer X determines the model's capability

Figure 2: Neural collaborative filtering framework

4. Output Layer

- Predicted Score \hat{y}_{ui}
- By minimizing pointwise loss
 - * Future work for pairwise loss
- Abstraction

$$\hat{y}_{ui} = f(\mathbf{P}^T \mathbf{v}_u^U, \mathbf{Q}^T \mathbf{v}_i^I | \mathbf{P}, \mathbf{Q}, \Theta_f)$$

$$f(\mathbf{P}^T \mathbf{v}_u^U, \mathbf{Q}^T \mathbf{v}_i^I) = \phi_{out}(\phi_X(...\phi_2(\phi_1(\mathbf{P}^T \mathbf{v}_u^U, \mathbf{Q}^T \mathbf{v}_i^I))...))$$

3. Neural Collaborative Filtering

Learning NCF

Existing Pointwise Methods

$$L_{sqr} = \sum_{(u,i)\in\mathcal{Y}\cup\mathcal{Y}^-} w_{ui} (y_{ui} - \hat{y}_{ui})^2$$

- Squared Loss explained by Gaussian Distribution (Observation)
 - But target value y_{ui} is binarized

- Probabilistic Approach in NCF
 - $y_{ui} = 1$ means item i is relevant to u, and 0 otherwise
 - \hat{y}_{ui} represents how likely i is relevant to u
 - Use the Logistic activation Function to make $\hat{y}_{ui} \in [0,1]$

Learning NCF

Define Likelihood Function

$$p(\mathcal{Y}, \mathcal{Y}^- | \mathbf{P}, \mathbf{Q}, \Theta_f) = \prod_{(u,i) \in \mathcal{Y}} \hat{y}_{ui} \prod_{(u,j) \in \mathcal{Y}^-} (1 - \hat{y}_{uj})$$

Negative Logarithm

$$L = -\sum_{(u,i)\in\mathcal{Y}} \log \hat{y}_{ui} - \sum_{(u,j)\in\mathcal{Y}^-} \log(1-\hat{y}_{uj}) = -\sum_{(u,i)\in\mathcal{Y}\cup\mathcal{Y}^-} y_{ui} \log \hat{y}_{ui} + (1-y_{ui}) \log(1-\hat{y}_{ui})$$

- Same as Binary cross-entropy loss
 - Recommendation with implicit feedback as a binary classification problem
- Uniformly sample negative instances from unobserved interactions in each iteration

Generalized Matrix Factorization (GMF)

Let \mathbf{p}_u be $\mathbf{p}^T \mathbf{v}_u^U$ and \mathbf{q}_i be $\mathbf{Q}^T \mathbf{v}_i^I$

Figure 2: Neural collaborative filtering framework

• First CF Layer

$$\phi_1(\mathbf{p}_u, \mathbf{q}_i) = \mathbf{p}_u \odot \mathbf{q}_i$$

• denotes the element-wise product of vectors

Generalized Matrix Factorization (GMF)

Let \mathbf{p}_u be $\mathbf{p}^T \mathbf{v}_u^U$ and \mathbf{q}_i be $\mathbf{Q}^T \mathbf{v}_i^I$

Output Layer

$$\hat{y}_{ui} = \underline{a_{out}}(\mathbf{h}^T(\mathbf{p}_u\odot\mathbf{q}_i))$$
Identity Function Uniform Vector of 1
"Become MF" $\hat{y}_{ui} = \mathbf{p}_u^T\mathbf{q}_i$

Figure 2: Neural collaborative filtering framework

3. Neural Collaborative Filtering

Generalized Matrix Factorization (GMF)

Generalized and Extended Version of MF

$$\hat{y}_{ui} = a_{out}(\mathbf{h}^T(\mathbf{p}_u \odot \mathbf{q}_i))$$

- 1. Allow h to be learnt from Data
 - Vary importance of latent dimension
- 2. Use a non-linear function for a_{out}
 - Be more expressive than linear MF model

Multi-Layer Perceptron (MLP)

Let \mathbf{p}_u be $\mathbf{p}^T \mathbf{v}_u^U$ and \mathbf{q}_i be $\mathbf{Q}^T \mathbf{v}_i^I$

Figure 2: Neural collaborative filtering framework

- Hidden Layers on the concatenated vector
- Layer Composition

$$\mathbf{z}_{1} = \phi_{1}(\mathbf{p}_{u}, \mathbf{q}_{i}) = \begin{bmatrix} \mathbf{p}_{u} \\ \mathbf{q}_{i} \end{bmatrix},$$

$$\phi_{2}(\mathbf{z}_{1}) = a_{2}(\mathbf{W}_{2}^{T}\mathbf{z}_{1} + \mathbf{b}_{2}),$$

$$\dots$$

$$\phi_{L}(\mathbf{z}_{L-1}) = a_{L}(\mathbf{W}_{L}^{T}\mathbf{z}_{L-1} + \mathbf{b}_{L}),$$

$$\hat{y}_{ui} = \sigma(\mathbf{h}^{T}\phi_{L}(\mathbf{z}_{L-1})),$$

ReLU yields slightly better

Fusion of GMF and MLP

✓ GMF uses a linear kernel & MLP uses a non-linear kernel

? How can we fuse GMF and MLP, so that they make a better model?

1. Share same embedding layer and

then combine
$$\hat{y}_{ui} = \sigma(\mathbf{h}^T a(\mathbf{p}_u \odot \mathbf{q}_i + \mathbf{W} \begin{bmatrix} \mathbf{p}_u \\ \mathbf{q}_i \end{bmatrix} + \mathbf{b}))$$

- From Neural Tensor Network
- Limit the performance
 - Same size of embeddings

Fusion of GMF and MLP

 \mathbf{p}_u^G and \mathbf{p}_u^M denote user embeddings, \mathbf{q}_i^M and \mathbf{q}_i^G denote item embeddings

Figure 3: Neural matrix factorization model

- Combines linearity of MF and non-linearity of DNNs
- Layer Composition

$$\phi^{GMF} = \mathbf{p}_u^G \odot \mathbf{q}_i^G,$$

$$\phi^{MLP} = a_L(\mathbf{W}_L^T(a_{L-1}(...a_2(\mathbf{W}_2^T \begin{bmatrix} \mathbf{p}_u^M \\ \mathbf{q}_i^M \end{bmatrix} + \mathbf{b}_2)...)) + \mathbf{b}_L)$$

Fusion of GMF and MLP

 \mathbf{p}_u^G and \mathbf{p}_u^M denote user embeddings, \mathbf{q}_i^M and \mathbf{q}_i^G denote item embeddings

Figure 3: Neural matrix factorization model

- Hidden Layers on the concatenated vector
- Layer Composition

$$\hat{y}_{ui} = \sigma(\mathbf{h}^T \begin{bmatrix} \phi^{GMF} \\ \phi^{MLP} \end{bmatrix})$$

"Neural Matrix Factorization"

Neural Collaborative Filtering

Pre-Training

Non-convexity of the objective function of NeuMF

• Initialization determines convergence and performance

- Initialize NeuMF using the pretrained models of GMF and MLP
 - 1. Train GMF and MLP with random initializations
 - 2. Use their model parameters as the initialization

$$\mathbf{h} \leftarrow \begin{bmatrix} \alpha \mathbf{h}^{GMF} \\ (1-\alpha)\mathbf{h}^{MLP} \end{bmatrix} \quad \text{Weighted concatenation of pretrained } \mathbf{h} \text{ vector}$$

Research Questions

- Conduct experiments with the aim of answering three questions
 - 1. Do NCF methods outperform?

2. How does optimization framework work for the recommendation task?

3. Are deeper layers of hidden units helpful for learning from data?

Experimental Settings

I. Datasets

1. MovieLens

- Movie rating dataset
 - Learning from implicit
 signal of explicit feedback
 - Whether user has rated item

2. Pinterest

- SNS for sharing images
 - Constructed by below paper
 - X. Geng, H. Zhang, J. Bian, and T.-S. Chua. Learning image and user features for recommendation in social networks. In ICCV, pages 4274-4282, 2015.

Table 1: Statistics of the evaluation datasets.

Dataset	Interaction#	Item#	$\mathbf{U}\mathbf{ser} \#$	Sparsity
MovieLens	1,000,209	3,706	6,040	95.53%
Pinterest	1,500,809	9,916	$55,\!187$	99.73%

Experimental Settings

II. Evaluations Protocols

- Leave-one-out (latest interaction as test, remaining for train)
- Rank the test item among 100 unobserved randomly sampled items
- 1. HR (Hit Ratio)
 - Whether test item is present on the top-K list
- III. Baselines
- 1. ItemPop
- 2. ItemKNN

3. BPR

4. eALS

- Non-personalized
- Item-based CF

Pairwise Loss

• State-of-the-art MF

2. NDCG

 The position of the hit by assigning higher scores to hits at top ranks

Experimental Settings

IV. Parameter Settings

- To determine hyperparameters, randomly sampled one interaction for each user as the validation data
- Initialized model parameters with a Gaussian Distribution $N(0,0.01^2)$
- Optimizing with mini-batch Adam (batch size [128,256,512,1024])
- Learning rate [0.0001, 0.0005, 0.001, 0.005]
- Last hidden layer determines the model capability term it as predictive factors [8, 16, 32, 64]
 - Ex) Architecture of NCF layers 32 -> 16 (embedding size) -> 8, three hidden layers
- Set alpha = 0.5 for pre-training

Performance Comparison (RQ1)

Performance Result

Figure 4: Performance of HR@10 and NDCG@10 w.r.t. the number of predictive factors on the two datasets.

Figure 5: Evaluation of Top-K item recommendation where K ranges from 1 to 10 on the two datasets.

- 4 NeuMF achieves the best
 performance on both datasets
- 4 GMF and MLP also show quite
 strong performance
- 4 GMF shows consistent
 improvements over BPR
- Solution
 Solution</p

Performance Comparison (RQ1)

• Utility of Pre-training

Table 2: Performance of NeuMF with and without pre-training.

	With Pre-training		Without Pre-training		
Factors	HR@10	NDCG@10	HR@10	NDCG@10	
		MovieLens			
8	0.684	0.403	0.688	0.410	
16	0.707	0.426	0.696	0.420	
32	0.726	0.445	0.701	0.425	
64	0.730	0.447	0.705	0.426	
		Pinterest			
8	0.878	0.555	0.869	0.546	
16	0.880	0.558	0.871	0.547	
32	0.879	0.555	0.870	0.549	
64	0.877	0.552	0.872	0.551	

 NeuMF with pre-training achieves better performance in most cases

Log Loss with Negative Sampling (RQ2)

Result of Pointwise Log loss

Figure 6: Training loss and recommendation performance of NCF methods w.r.t. the number of iterations on MovieLens (factors=8).

(a) MovieLens — HR@10 (b) MovieLens — NDCG@10 (c) Pinterest — HR@10 (d) Pinterest — NDCG@10 Figure 7: Performance of NCF methods w.r.t. the number of negative samples per positive instance (factors=16). The performance of BPR is also shown, which samples only one negative instance to pair with a positive instance for learning.

- ⑥ With more iterations, loss
 gradually decreases
- 6 NeuMF achieves the lowest loss followed by MLP, GMF
- ⑦ Pointwise loss can handle
 flexible sampling ratio
- ⑦ Too large sampling ratio
 hurts the performance

Is Deep Learning Helpful? (RQ3)

MLP with different layers

Table 3: HR@10 of MLP with different layers.

Factors	MLP-0	MLP-1	MLP-2	MLP-3	MLP-4
MovieLens					
8	0.452	0.628	0.655	0.671	0.678
16	0.454	0.663	0.674	0.684	0.690
32	0.453	0.682	0.687	0.692	0.699
64	0.453	0.687	0.696	0.702	0.707
Pinterest					
8	0.275	0.848	0.855	0.859	0.862
16	0.274	0.855	0.861	0.865	0.867
32	0.273	0.861	0.863	0.868	0.867
64	0.274	0.864	0.867	0.869	0.873

Table 4: NDCG@10 of MLP with different layers.

Factors	MLP-0	MLP-1	MLP-2	MLP-3	MLP-4
MovieLens					
8	0.253	0.359	0.383	0.399	0.406
16	0.252	0.391	0.402	0.410	0.415
32	0.252	0.406	0.410	0.425	0.423
64	0.251	0.409	0.417	0.426	0.432
Pinterest					
8	0.141	0.526	0.534	0.536	0.539
16	0.141	0.532	0.536	0.538	0.544
32	0.142	0.537	0.538	0.542	0.546
64	0.141	0.538	0.542	0.545	0.550

- Stacking more layers are beneficial to performance
 - High non-linearities brought by stacking more non-linear layers
- Simply concatenating latent vectors is insufficient for modelling (MLP with no hidden layers)

Conclusion and Future Work

- Explored Neural Network Architectures for CF
 - Simple and general framework NCF
 - Three instantiations GMF, MLP, NeuMF
 - Opening up a new avenue for recommendation based on Deep Learning

- Future Work
 - Study pairwise learners for NCF
 - Extend NCF to model auxiliary information
 - Such as user review, knowledge bases, temporal signals
 - Build recommender systems for multi-media items
 - Effective methods for multi-view and multi-modal data

Python Implementation

- To be updated (Not complete yet)
 - Having trouble dealing with argparse and non-csv file
 - https://github.com/LeeJunmo/DSAIL-Lab-Intern

Any Questions?