Math 535 - General Topology Fall 2012 Homework 12 Solutions

Problem 1. Consider the open cover $\mathcal{U} = \{B_1(x)\}_{x \in \mathbb{R}}$ of \mathbb{R} by open balls of radius 1, i.e. open intervals $B_1(x) = (x - 1, x + 1)$. Find a partition of unity on \mathbb{R} subordinate to \mathcal{U} .

Solution. We will construct a partition of unity which is in fact subordinate to the open cover $\{B_1(n)\}_{n\in\mathbb{Z}}$ of \mathbb{R} . Let $\rho\colon\mathbb{R}\to[0,1]$ be the "trapezoid bump" function defined by

$$\rho(x) = \begin{cases} 1 & \text{if } |x| \le \frac{1}{4} \\ 1 - 2\left(|x| - \frac{1}{4}\right) & \text{if } \frac{1}{4} \le |x| \le \frac{3}{4} \\ 0 & \text{if } |x| \ge \frac{3}{4} \end{cases}$$

as illustrated in figure 1. Clearly ρ is continuous, and its support is supp $\rho = \overline{(-\frac{3}{4}, \frac{3}{4})} = [-\frac{3}{4}, \frac{3}{4}].$

Figure 1: Graph of ρ .

For every integer $n \in \mathbb{Z}$, define $\rho_n \colon \mathbb{R} \to [0,1]$ by $\rho_n(x) = \rho(x-n)$, so that ρ_n is the shifted bump function centered at n. Their supports are

$$\operatorname{supp} \rho_n = \overline{(n - \frac{3}{4}, n + \frac{3}{4})} = [n - \frac{3}{4}, n + \frac{3}{4}] \subseteq (n - 1, n + 1)$$

and in particular the family $\{\operatorname{supp} \rho_n\}_{n\in\mathbb{Z}}$ is locally finite.

It remains to check that the functions ρ_n add up to 1, as illustrated in figure 2.

Figure 2: Graph of ρ_0 , ρ_1 , and ρ_2 .

Every real number $x \in \mathbb{R}$ can be uniquely written as

$$x = \lfloor x \rfloor + \langle x \rangle$$

with $\lfloor x \rfloor \in \mathbb{Z}$ and $\langle x \rangle \in [0,1)$ – respectively the floor of x and fractional part of x. Then we have

$$\sum_{n \in \mathbb{Z}} \rho_n(x) = \rho_{\lfloor x \rfloor}(x) + \rho_{\lfloor x \rfloor + 1}(x)$$
$$= \rho(\langle x \rangle) + \rho(\langle x \rangle - 1)$$
$$= \rho(\langle x \rangle) + \rho(1 - \langle x \rangle)$$
$$= 1. \quad \Box$$

Problem 2. Let X be a second-countable locally compact space. Show that X is σ -compact.

Solution. Let $\mathcal{B} = \{B_n\}_{n \in \mathbb{N}}$ be a countable basis for the topology of X. For every $x \in X$, pick a compact neighborhood K_x of x, and pick a basic open neighborhood $B_{n(x)}$ of x inside K_x :

$$x \in B_{n(x)} \subseteq K_x$$
.

The set $I = \{n(x) \in \mathbb{N} \mid x \in X\} \subseteq \mathbb{N}$ is countable. Each index $i \in I$ is of the form n(x) for at least one point $x \in X$, though possibly many. For each $i \in I$, pick one such point $x_i \in X$ satisfying $i = n(x_i)$.

We claim $X = \bigcup_{i \in I} K_{x_i}$, which exhibits X as a countable union of compact subsets. For every $x \in X$, we have

$$x \in B_{n(x)}$$

= B_i writing $i = n(x) \in I$
= $B_{n(x_i)}$
 $\subseteq K_{x_i}$. \square

Problem 3. Show that any closed subspace $C \subseteq X$ of a paracompact space X is paracompact.

Solution. Let $\mathcal{U} = \{U_{\alpha}\}_{{\alpha} \in A}$ be an open cover C. Since each U_{α} is open in C, it can be written as

$$U_{\alpha} = \widetilde{U}_{\alpha} \cap C$$

for some $\widetilde{U}_{\alpha} \subseteq X$ open in X. Then we have the inclusion

$$C \subseteq \bigcup_{\alpha \in A} \widetilde{U}_{\alpha}$$

and the collection $\{\widetilde{U}_{\alpha}\}_{\alpha\in A}\cup\{X\setminus C\}$ is an open cover of X. Since X is paracompact, this open cover admits a locally finite open refinement $\{\widetilde{V}_{\beta}\}_{\beta\in B}$. Writing $V_{\beta}:=\widetilde{V}_{\beta}\cap C$, the collection $\mathcal{V}=\{V_{\beta}\}_{\beta}$ is an open cover of C. We claim that \mathcal{V} is a locally finite refinement of \mathcal{U} .

 \mathcal{V} is locally finite. Let $x \in C$. There is an X-neighborhood \widetilde{N}_x of x such that \widetilde{N}_x intersects finitely many \widetilde{V}_{β} . Then $\widetilde{N}_x \cap C$ is a C-neighborhood of x which intersects finitely many $\widetilde{V}_{\beta} \cap C = V_{\beta}$.

 \mathcal{V} refines \mathcal{U} . For every index $\beta \in B$, there is an index $\alpha = \alpha(\beta) \in A$ satisfying $\widetilde{V}_{\beta} \subseteq \widetilde{U}_{\alpha(\beta)}$ or possibly $\widetilde{V}_{\beta} \subseteq X \setminus C$. In the latter case, we have $V_{\beta} = \widetilde{V}_{\beta} \cap C = \emptyset$ so that we can ignore those cases.

Using the same index $\alpha = \alpha(\beta)$, the following inclusion holds:

$$V_{\beta} = \widetilde{V}_{\beta} \cap C \subseteq \widetilde{U}_{\alpha(\beta)} \cap C = U_{\alpha(\beta)}. \quad \Box$$

Problem 4. Let $\{X_i\}_{i\in I}$ be a collection of topological spaces and let $X:=\coprod_{i\in I} X_i$ denote their coproduct.

a. Show that an arbitrary coproduct of paracompact spaces is paracompact. In other words, if each X_i is paracompact, then so is X.

Solution. Let $\mathcal{U} = \{U_{\alpha}\}_{{\alpha} \in A}$ be an open cover of X. Each open U_{α} can be written as

$$U_{\alpha} = \bigsqcup_{i \in I} U_{\alpha,i}$$

where $U_{\alpha,i} := U_{\alpha} \cap X_i \subseteq X_i$ is open in X_i .

For every index $i \in I$, the collection $\{U_{\alpha,i}\}_{\alpha \in A}$ is an open cover of X_i . Since X_i is paracompact, this open cover admits a locally finite open refinement $\{V_{\beta,i}\}_{\beta \in B_i}$ for some indexing set B_i . Take the union of all those indexing sets

$$B = \bigsqcup_{i \in I} B_i$$

and the union of all the refinements

$$\mathcal{V} = \{V_{\beta}\}_{\beta \in B} := \bigsqcup_{i \in I} \{V_{\beta,i}\}_{\beta \in B_i}.$$

Note that \mathcal{V} is an open cover of X. Indeed, each $V_{\beta,i} \subseteq X_i$ is open in X_i and thus in X since X_i is open in X. Moreover, their union is

$$\bigcup_{\beta \in B} V_{\beta} = \bigcup_{i \in I} \bigcup_{\beta \in B_i} V_{\beta,i} = \bigcup_{i \in I} X_i = X.$$

We claim that \mathcal{V} is a locally finite refinement of \mathcal{U} .

 \mathcal{V} is locally finite. Each point $x \in X$ lives in exactly one summand $X_i \subseteq X$. There is an X_i -neighborhood $N \subseteq X_i$ of x which intersects only finitely many $V_{\beta,i}$. For any other index $j \neq i$, we have $X_i \cap X_j = \emptyset$ and thus N intersects none of the $V_{\beta,j}$. Moreover, N is an X-neighborhood of x since X_i is open in X.

 \mathcal{V} refines \mathcal{U} . Each $V_{\beta} = V_{\beta,i}$ is included in some $U_{\alpha,i} = U_{\alpha} \cap X_i \subseteq U_{\alpha}$.

b.	Show that the converse holds:	If the coproduct	X is paracompact,	then so is each sum	mand
X_i .					

Solution. $X_i \subseteq X$ is closed in X, hence paracompact by Problem 3.

c. Show that a coproduct of compact spaces is compact if and only if the collection is finite. In other words, assume each X_i is compact, and show that their coproduct X is compact if and only if the indexing set I is finite.

Solution. (\Rightarrow) Note that each X_i is open in X, and consider the open cover $\{X_i\}_{i\in I}$ of X. Since X is compact, there is a finite subcover $X = X_{i_1} \cup \ldots \cup X_{i_k}$. But since the union $X = \coprod_{i\in I} X_i$ is disjoint, the subcover must be equal to the original cover. In other words, the equality

$$\coprod_{i\in I} X_i = X_{i_1} \cup \ldots \cup X_{i_k}$$

implies the equality $I = \{i_1, \dots, i_k\}$, so that I is finite.

 $(\Leftarrow) X = \coprod_{i \in I} X_i$ is a finite union of compact subsets, hence compact.