

The OPLS method and recent extensions: -unlocking interpretation in two block modeling and multivariate calibration

Johan Trygg

Computational Life Science cluster (CLiC), Umeå University, Sweden Group leader, Chemometrics & Bioinformatics Umeå Plant Science Centre Co-director WCN Metabolomics platform

> Research group for Chemometrics Department of Chemistry, Umeå University, Sweden

MVA and DoE

Multivariate Analysis

- Extract information from multivariate data sets
- Graphical overview & quantitative modelling
- Large datasets and databases
- Reduces complexity

Design of Experiments (DoE)

- For new experiments and already collected data
- Maximise the information, minimize experiments
- Get causality no correlation
 - What are the important factors?
 - What to Optimise
 - Improve Robustness and Quality

Umeå University/Chemometrics - Bio-applications

Disease diagnosis, theranostics

- Autoimmune diseases
- Neurodegenerative diseases.
- Cancer

Post surgery:

Kidney transplant

Nutrition:

Functional foods

Rehabilitation

Medical imaging of muscle tissue function

Multi-disciplinary collaborations
Biotech companies, patient
organizations, leading research
groups, clinicians, and diagnostics
companies

Urine test to monitor kidneytransplant rejection

A urine test that diagnoses acute rejection without the need for an invasive biopsy

Umeå University/Chemometrics - PAT/QbD initiative for process understanding

Food and Drug Administration (FDA)

Instead go from product testing to *quality by design*!

**Risk minimisation – process understanding*

The FDA's initiative is built on the premise that if manufacturers can demonstrate understanding of their processes, less risk of making bad product.

To control the manufacturing process

Control = to ensure

Control ≠ to check

Multivariate data analysis by means of projection methods

PRINCIPAL COMPONENT ANALYSIS

Data reduction to "latent" or "conceptual" variables by projection

3 Basic Data Analysis Questions

Overview	Classification	Relationship
Process monitoring Chemical Property Maps Selection of drug candidates Encoding proteins and DNA sequences Assessing biological variation Trends in quality Sensory profiling Competitor Analysis Silicon chip manufacture	Classification of raw materials / foodstuffs Wine authenticity Drug Transport & Toxicity Mechanisms Genomics / Proteomics / Metabonomics i.e. Control / Treated Genetic Modification detection	Drug Activity (QSAR) Detergent design New material properties Calibration models Online NIR – moisture/ particle size / actives Sensory information Wheat Quality Process Quality prediction Batch Modelling
PCA	SIMCA / PLS- DA / OPLS-DA	PLS / OPLS / O2PLS

Model the relation between two blocks of data

Chemometrics: Multivariate calibration, MC

Samples and sample characterisation

provide LOTS of data

Powders, molecules, industrial process samples, plasma, tissue (leaf), ... Spectrometers (NIR,UV, IR, NMR, MS), chromatography, chemical descriptors, gene-arrays, metabolites highly multidimensional (1000's of variables)

Model the relation between two blocks of data

Chemometrics: Multivariate calibration, MC

Samples and sample characterisation

provide LOTS of data

Powders, molecules, industrial process samples, plasma, tissue (leaf), ... Spectrometers (NIR,UV, IR, NMR, MS), chromatography, chemical descriptors, gene-arrays, metabolites highly multidimensional (1000's of variables)

N samples

Linear prediction model: y = Xb + f

Objective: Provide good fit to estimate y, and good predictions for future samples

Focus: How to solve for b?

Many different methods to choose from

Linear methods

Full rank methods

- Multiple Linear Regression (MLR)
- Stepwise MLR
- Ridge Regression
- Canonical correlation

Latent variable regression (LVR) methods

- Principal Component Regression (PCR)
- Partial Least Squares (PLS)
- Orthogonal Projections to Latent Structures (OPLS)

Non-Linear methods

- Neural Networks (NN)
- Support Vector Machines (SVM)
- Regression trees

Example: One component system

$$\mathbf{X} = \mathbf{y}_1 \mathbf{x}_1^{\mathrm{T}} + \mathbf{E}$$

0.25

Example: One component model

PLS regression

0.2 0.15 0.1 0.05

b coefficients

Ridge Regression

Linear Neural Net

Observed vs Predicted

Svante Wold's, Harald Martens et al... problem! Sensory/Consumer/Chemical / biological data are complex

- Single PLS component is simply not enough!!
- Lots of unknown systematic variation mostly due to poor knowledge...
 - strong dietary, environmental, hormonal variations, etc...
 - Experimental variation, sampling, instrumental variation
 - Input material varies with supplier
- Measured signal is the sum of many contributing factors
 - Human urine sample (e.g. genetics, diet, gender, age, stress, disease)
 - Pharmaceutical tablet formulation (e.g. binders, fillers, active drug, lubricant)
 - Plant biotech / Pulp & paper (e.g. wood species, cellulose & lignin content, water, age)
 - In QSAR the molecular descriptor profile is a function of its chemical and biological property/activity/function

Example: Two component system (overlap)

Example: Two component system (overlap) Model interpretation by regression coefficient profile

PLS regression

Ridge Regression

Linear Neural Net

Negative dips observed in regression coefficients, but we have only positive correlation in the data?

→ Disturbance is due to Y-Orthogonal variation

Wold, Martens and colleagues PLS NIPALS (1982)

Ability to handle unknown variation in X

- Success story of PLS and chemometrics

A SEE TO THE

What about interpretation of PLS model

Example: Single-Y, two component system

R2Xcomp1=94% variation R2Xcomp2= 3.7% variation

Loading plot

Regression coefficients, b

OPLS method -Trygg & Wold (2002)

Trygg J, Wold S. J. Chemometr., 2002; 16: 119-128

The concept of Orthogonal variation

- Not all systematic variation in the X-block is related to the Y-block
- The new 'O'-methods, OPLS and O2PLS, are able to divide the systematic X-variation in two parts:
 - What in X is related to Y;
 Y-predictive variation
 - What in X is not related to Y;
 Y-orthogonal variation
- This Y-orthogonal variation is important information for the total understanding of the studied system or process
 - Gender
 - Drift
 - Unknown interferents
 - Sampling / Experimental problems
 - Non-linearities
 - Within class variation

OPLS model

Example: Single-Y, two component system

Some theoretical properties of OPLS

Objective function:

Find t_o that maximizes overlap with predictive score matrix T

$$max(\mathbf{T}^{T}\mathbf{t}_{osc})^{2} = max(\mathbf{T}^{T}\mathbf{X}\mathbf{w}_{osc})^{2}$$

$$\|\mathbf{w}_{osc}\| = 1, \qquad \mathbf{Y}^{T}\mathbf{t}_{osc} = \mathbf{0}$$

Solution (PLS principle)

$$PCA(\mathbf{Y}^{T}\mathbf{X}) = \mathbf{C}\mathbf{W}^{T}$$

$$\mathbf{E}_{\mathrm{XY}} = \mathbf{X} - \mathbf{T}\mathbf{W}^{\mathrm{T}}$$
 where $\mathbf{T} = \mathbf{X}\mathbf{W}$

$$(\mathbf{E}_{XY}^{T}\mathbf{T}\mathbf{T}^{T}\mathbf{E}_{XY})\mathbf{w}_{osc} = \lambda \mathbf{w}_{osc}$$

Benefits of OPLS modeling

✓ Model diagnostics:

- R²(XY): How much variation in X is correlated to Y, and vice versa?
- $R2(X_{vo})$: How much is not correlated to Y? (to X?)

✓ Model interpretation

- More focussed components (plots) & easier interpretation
 - Predictive components (T_pP_p^T)
 - Y-orthogonal components $(\mathbf{T}_{o}\mathbf{P}_{o}^{\mathsf{T}})$
- Pure profile estimation

✓ Model (prediction):

- Understand & correct for faults/mistakes found in Y-orthogonal components
- e.g. experimental, sampling

Multi-block modeling (X←→Y)

Integrate, compare and filter multiple data tables

Preference mapping

understanding the descriptive sensory attributes that relate to consumer preferences

Product attributes / Sensory attributes

K var

consumer likings

]M var

Products

N samples

Multi-block modeling

- Similar to multivariate calibration $(X \rightarrow Y)$, but extended to both directions
- Compare & Integrate X and Y in terms of....
 - Experimental conditions, Process step, Time (drift), Instruments, Replication, Pre-treatments, and so on...
- Understand...
 - Overlap? What is jointly related?
 - What is unique for X, for Y?

Product attributes / Sensory attributes

consumer likings

Current methods lack proper multi-block structure

- ✓ They mix all the different variations
- √ and/or... uni-directional models (X→Y)
- ✓ and/or... focus on correlations only

a.) Single-block model (e.g. PCA)

- Mixes all variation together
- No relation between blocks

b.) Two-block model (e.g. PLS, PCR, MLR, RR, SVM, CC)

- Uni-directional (X→Y), only X-block is modelled
- Mixes all variations in X block together,
- Non-overlapping variation of no interest
 - Sometimes, the most interesting!!

...including Multi-block extensions of PCA/PLS modeling

- c.) Hierarchical modeling
- d.) Batch modeling
- e.) BIF-PLS, L-PLSR (more?)

Hierarchical modeling

Base (lower) level

Batch modeling

Three block modeling (BIF-PLS, L-PLSR)

O2PLS for multi-block modeling

- Does not mix all different variations together
 - Separates 'between block' (Y-related) variation from 'within block' (Y-orthogonal) variation
- Only uses joint X/Y variation for modeling Y from X (and vice versa)
 - Main reason for differences in how we interpret a PLS model (W,W*, P, B)

The O2PLS model structure

- Separate model for joined and orthogonal variation
- Model of X: $\mathbf{X} = \mathbf{T}_{\mathbf{p}} \mathbf{P}_{\mathbf{p}}^{\mathsf{T}} + \mathbf{T}_{\mathbf{o}} \mathbf{P}_{\mathbf{o}}^{\mathsf{T}} + \mathbf{E}$
- Model of Y: $Y = U_p Q_p^T + U_o Q_o^T + F$
- O2PLS components number for X-Y joined variation obtained by PCA of their co-variance matrix (X^TY)

X-Y Joint Variation

Trygg J, Wold S, O2-PLS, a two-block (X-Y) latent variable regression (LVR) method with an integral OSC filter JOURNAL OF CHEMOMETRICS 17 (1): 53-64 JAN 2003

O2PLS - Interpretation

What is the overlapping variation between X↔Y?

O2PLS - Interpretation

Which variation is only found in X?

- What is seen in the orthogonal vectors, $X^{\perp}Y$?
 - Systematic variation in <u>X</u> that is orthogonal between X and Y
 - Look at T_o and corresponding P_o

O2PLS - Interpretation

Which variation is only found in Y?

- What is seen in the unrelated vectors, $Y^{\perp}X$?
 - Systematic variation in <u>Y</u> that is uncorrelated between X and Y
 - Look at U_o and corresponding Q_o

Unique to Y

O2PLS modeling of Apples Preference mapping

- Sensory and preference data for a set of 13 apples
 - 70 sensory attributes (X-variables); panel averages across 12 judges
 - 108 comsumer likings (Y-variables), expressed on a nine-grade scale
 - Original reference [MacFie, H., et al., 1999].

Sensory judges
X
13

- Group formation among sensory attributes
 - 1 is a "First Bite" attribute,
 - E_ is an "External Appearance" attribute,
 - EA_ is "External Aroma",
 - A_ is "Astringent aftertaste",
 - F_ is "Flavor",
 - I is "Internal Appearance",
 - T_ is "Texture"

O2PLS modeling of Apples Preference mapping

- O2PLS analysis results in a 4 + 0 + 2 model
 - Joint information; $R^2X = 0.79$; $R^2Y = 0.56$
 - Y-orthogonal (uncorrelated to the judges); ---
 - X-orthogonal (uncorrelated to the consumers); $R^2Y_{X-orth} = 0.16$

O2PLS modeling in Preference mapping Joint variation (overlapping)

O2PLS modeling in Preference mapping Joint variation (overlapping)

Sensory data

Joint variation (79%)
Loading plot (p₁-p₂)

Consumer data

Joint variation (58%) Loading plot (q₁-q₂)

O2PLS modeling in Preference mapping Unique variation in Y (uncorrelated)

Unique variation
in Y (16%)
Consumers discriminate
Between two groups of apples
Not picked up by Sensory data

Preference mapping using 3 block extension of O2PLS

age, gender, frequency of consumption, and the place of consumption

likings

Structure of the extended O2PLS model

37 3/8/10

Concluding remarks

- OPLS and O2PLS are the only methods that have a multi-focus
 - Analyzes the correlation
 - analyzes the Orthogonal variation i.e. the uncorrelated, unique structure in a comprehensive way.
- Predictive component
 - What is related between blocks
- Uncorrelated structure, orthogonal variation
 - What is NOT related between blocks

Acknowledgements

Swedish Foundation for Strategic Research (SSF)
Swedish Research Council
FORMAS FuncFibre
Knut & Alice Wallenberg Foundation
GlaxoSmithKline
AstraZeneca
MKS Umetrics

Chemometrics group, Umeå University

M. Bylesjö

S. Wiklund

H. Stenlund

P. Jonsson

H. Antti

M. Hedenström

M. Sjöström

Umeå Plant Science Center, Umeå Univ

T. Moritz

A. Johansson

D. Eriksson

A. Sjödin

B Sundberg

G. Sandberg

Bergen University

Olav Kvalheim

Acure Pharma .

T. Lundstedt

Umetrics AB, Sweden

E. Johansson

S. Wold

L. Eriksson

AstraZeneca

O. Berntsson

M Josefsson

S Folestad

J Gottfries

GlaxoSmithKline

R Escott

C Airau

T Thurston

<u>SweTreeTechnologies</u>

M Hertzberg

K Johansson

A Karlsson