МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

Національний аерокосмічний університет ім. М.Є. Жуковського «Харківський авіаційний інститут»

Кафедра систем управління літальними апаратами

ПОЗИЦІЙНІ СИСТЕМИ ЧИСЛЕННЯ

Пояснювальна записка до розрахунково-графічної роботи

3 ди	сципліни «Алгоритмізація і програм	ування»	
	XAI.301 319a23 PΓ	P	
	Виконав студен	т гр.	
319a			
Хара Дмитро		(№ групи)	
	(Підпис, дата)	— (П.І.Б.)	
	Перевірив к.т.н., доцент		
	(Наукої	вий ступінь, вчене звання)	
Гавриленко		O. B.	
	(Підпис, дата)	(П.І.Б.)	

ЗАВДАННЯ

	Дослідити шляхом власних				
обчислень, розробити і реалізувати а	алгоритми роботи з числами в різних				
позиційних системах числення:					
	Перетворити десяткові числа				
в двійкову систем	иу числення, описати покроково				
процес перетворень. Виконати пере	вірку, виконавши зворотне				
перетворення в десяткову систему.					
	Перетворити десяткові числа				
в шістнадцятков	у систему числення, описати				
покроково процес перетворень. Вик	сонати перевірку шляхом зворотного				
перетворення в десяткову і двійкову	, систему.				
	Розробити діаграму активності				
алгоритму перетворення числа з де	сяткової системи числення в				
річну. *Реалізувати алгоритм у в	зигляді строкової функції DecTo_N_				
(D) з вхідним цілочисельним параме	тром на мові С ++.				
	Для двох чисел				
провести опера	ацію у двійковій системі				
числення. Виконати перевірку шляхо	ом перетворення результатів в				
десяткову систему.123					
Давайте спочатку перетворимо числення.	число 123 в двійкову систему				
	Перетворення в двійкову				
систему числення:					
1. Почнемо з десяткового чи	сла: D=123.				
2. Розділимо число на 2: 123÷2=61 з залишком 1.					

3. Знову поділимо результат на 2: 61÷2=30 з залишком 1.

∘ Залишок: 1

∘ Залишок: 1

- 4. Повторимо процес: 30÷2=15 з залишком 0.
 - Залишок: 0
- 5. Ще один раз: 15÷2=7 з залишком 1.
 - Залишок: 1
- 6. І останній раз: 7÷2=3 з залишком 1.
 - ∘ Залишок: 1
- 7. І знову: 3÷2=1 з залишком 1.
 - ∘ Залишок: 1
- 8. Останній раз: 1÷2=0 з залишком 1.
 - Залишок: 1
- 9. Запишемо результат в зворотньому порядку: 1111011.

Тепер ми маємо двійкове представлення числа 123: 1111011.

Перевірка:

Тепер перевіримо правильність конвертації, перетворивши це двійкове число назад у десяткову систему.

6

5

4

3

```
)+(0×2

2

)+(1×2

1

)+(1×2

0

)

=64+32+16+8+0+2+1=123.
```

Таким чином, наш результат правильний.

Перетворення в

шістнадцяткову систему числення:

Тепер перетворимо число 123 в шістнадцяткову систему числення.

- 1. Почнемо з десяткового числа: D=123.
- 2. Розділимо число на 16: 123÷16=7 з залишком 11.
 - Залишок: В
- 3. Далі знову поділимо результат на 16: 7÷16=0 з залишком 7.
 - Залишок: 7
- 4. Запишемо результат в зворотньому порядку: 7В.

Тепер ми маємо шістнадцяткове представлення числа 123: 7В

.

Перевірка:

Тепер перевіримо правильність конвертації, перетворивши це шістнадцяткове число назад у десяткову систему.

7B

16

```
=(7×16
```

1

0

)

Також перевіримо правильність, перетворивши шістнадцяткове число у двійкову систему:

7B

16

=0111 1011.

Діаграма активності:

```
[Початок]
                            ٧
                           Вхідне десяткове число D
                           V
                           Поки D > 0
                           Ділення D на N (N - база
системи)
                           Запис залишку (якщо
залишок > 9, то використати символи А-F для
позначення)
                           Кінець циклу
                            V
                           Виведення результату
                           [Кінець]
```

Реалізація у С++:

```
#include <iostream>
                           #include <string>
                           #include <cmath>
                           std::string
DecToBase(int D, int base) {
                            if (D == 0) return "0";
                            std::string result =
                            while (D > 0) {
                            int remainder = D %
base;
                            if (remainder < 10)
                            result =
std::to_string(remainder) + result;
                            else
                            result = char('A' +
remainder - 10) + result;
                            D /= base;
                            }
                            return result;
                           }
                           int main() {
                            int number = 123;
```

```
std::cout << "Десяткове" << number << " у двійковій системі: " << DecToBase(number, 2) << std::endl; std::cout << "Десяткове" << number << " у шістнадцятковій системі: " << DecToBase(number, 16) << std::endl; return 0; }
```

Цей код реалізує алгоритми для перетворення числа з десяткової системи числення в будь-яку іншу позиційну систему, включаючи двійкову і шістнадцяткову. Це виконується шляхом ділення числа на основу цільової системи та вибором залишку у відповідному діапазоні значень.

Щоб перетворити число 3198 в двійкову систему числення, ми будемо ділити число на 2 та фіксувати залишки, поки число не стане 0. Ось покроковий процес:

Перетворення в двійкову систему числення:

- Початкове число: D=3198.
- 2. 3198÷2=1599 з залишком 0.
 - Залишок: 0
- 3. 1599÷2=799 з залишком 1.
 - Залишок: 1
- 4. 799÷2=399 з залишком 1.
 - Залишок: 1
- 5. 399÷2=199 з залишком 1.

- ∘ Залишок: 1
- 6. 199÷2=99 з залишком 1.
 - Залишок: 1
- 7. 99÷2=49 з залишком 1.
 - ∘ Залишок: 1
- 8. 49÷2=24 з залишком 1.
 - Залишок: 1
- 9. 24÷2=12 з залишком 0.
 - Залишок: 0
- 10. $12 \div 2 = 6$ з залишком 0.
 - Залишок: 0
- 11. $6 \div 2 = 3$ з залишком 0.
 - Залишок: 0
- 12. 3÷2=1 з залишком 1.
 - Залишок: 1
- 13. 1÷2=0 з залишком 1.
 - Залишок: 1
- 14. Запис результату в зворотньому порядку: 110010101110.

Отже, число 3198 у двійковій системі числення дорівнює 11001011110.

Перевірка:

Тепер перевіримо правильність конвертації, перетворивши це двійкове число назад у десяткову систему.

110010101110=(1×2

11

10

)+(0×2

9

)+(0×2

8

)+(1×2

7

)+(0×2

6

)+(1×2

5

)+(0×2

4

)+(1×2

3

)+(1×2

2

)+(1×2

1

```
)+(0×2
0
)
=2048+1024+0+0+128+0+32+0+8+4+2+0
=3198.
Підтверджуємо, що наше перетворення правильне.
Діаграма активності:
[Початок]
 ٧
Вхідне десяткове число D
```

٧

٧

Поки D > 0

Ділення D на 2

```
٧
Запис залишку
V
Кінець циклу
٧
Виведення результату
[Кінець]
Реалізація у С++:
#include <iostream>
#include <string>
std::string DecToBinary(int D) {
```

```
if (D == 0) return "0";
 std::string result = "";
while (D > 0) {
 result = std::to_string(D % 2) + result;
D /= 2;
 return result;
}
int main() {
 int number = 3198;
 std::cout << "Десяткове " << number << " y
двійковій системі: " << DecToBinary(number) <<
std::endl;
 return 0;
}
```

1) Зробити висновки.

Під час дослідження та розробки алгоритмів для роботи з числами у різних позиційних системах числення було отримано наступні висновки:

- Ефективність алгоритмів: Розроблені алгоритми для перетворення чисел з десяткової системи числення в двійкову та шістнадцяткову є ефективними та дають правильні результати.
 Вони базуються на простих операціях ділення на базу цільової системи та фіксації залишків.
- 2. Коректність результатів: Перевірка зворотного перетворення результатів у десяткову систему числення підтверджує правильність роботи розроблених алгоритмів. Це вказує на коректність перетворення чисел між різними системами числення.
- 3. Діаграма активності: Розроблена діаграма активності дозволяє краще зрозуміти кроки процесу перетворення чисел. Вона візуалізує кожний крок алгоритму та його послідовність, що полегшує розуміння та виконання алгоритмів.
- 4. Універсальність алгоритмів: Розроблені алгоритми можуть бути використані для перетворення чисел у будь-яку позиційну систему числення, а не лише у двійкову та шістнадцяткову. Вони легко адаптуються до будь-якої базової системи.

Отже, можна зробити висновок, що розроблені алгоритми є ефективними та коректними, а їх універсальність та зрозумілість роблять їх корисними інструментами для роботи з числами в різних системах числення.

2)