

7 – ÉTUDE DES SYSTÈMES MÉCANIQUES

Analyser – Concevoir – Réaliser Conception – Chapitre 5 : Liaison pivot par éléments roulants

APPLICATION 02 - CONCEPTION D'UN RÉDUCTEUR

1°- Contexte

- Objectif pédagogique : concevoir un mécanisme à partir d'un cahier des charges
- Objectif technique
- Concevoir un réducteur

2°- Analyse fonctionnelle et technique

Afin de réduire la vitesse de sortie d'un moteur électrique, on désire concevoir un réducteur à engrenage.

L'entreprise prévoit de vendre un volume de 25 réducteurs par an.

Fonction	Intitulé	Critères	Niveaux	Limites
FP1	Réduire la vitesse de rotation de l'arbre moteur	Rapport de réduction	0,3	
FC1	S'assembler avec l'arbre moteur			
FC2	S'assembler avec l'arbre récepteur			
FC3	Réaliser une liaison encastrement démontable			
FC4	Empêcher le lubrifiant de sortir du moteur			

Une étude préliminaire a conduit à se tourner vers l'architecture suivante.

Fonction	Intitulé	Commentaires	
FT1	Réduire la vitesse de rotation de l'arbre moteur	Rapport de réduction 0,3	
FT1'	Garantir la distance entre les axes	65 mm	
FT1"	Garantir la transmission du couple	Pignon + Couronne Coefficient de largeur de denture k=7 Module 2	
FT2	Assurer une liaison pivot avec le bâti		
FT3	Assurer une liaison pivot avec le bâti		
FT4	Garantir une distance satisfaisant entre l'axe du pignon et la base du bâti	Distance : 70mm à 85mm	
FT5	Garantir l'étanchéité statique et dynamique	Lubrification à l'huile	
FT6	Prévoir un dispositif d'assemblage avec le sol		
FT7	Permettre l'assemblage d'un arbre moteur	Vitesse de 1500 tr/min Puissance : 4kW	

Le carter sera réalisé en fonderie au sable. Il sera en deux parties conformément au dessin ci-dessous.

3°- Travail à réaliser

1- Calculs préliminaires

- Rayons primitifs des pignons
- Nombres de dents des pignons
- Diamètres de tête et de pied des pignons
- Largeur de denture
- Représenter sur un schéma en perspective la direction de l'effort exercé par une dent du petit pignon sur une dent du gros pignon - On prendra un angle de pression de 20°

2- Compléments d'information

- Série de 25 appareils
- Chaque arbre est monté sur deux roulements à billes à contact radial à choisir parmi ceux proposés
- Lubrification à l'huile par barbotage
- Étanchéité dynamique à l'aide de joints à lèvres à contact radial à choisir parmi ceux proposés
- Le carter est réalisé en fonderie au sable
- Le carter est en deux parties
- Le carter doit permettre de lier le réducteur au plan 0

3- Conseils de conception

- o L'arbre d'entrée est monté en porte à faux
- o Le pignon d'entrée est démontable car acheté sur catalogue (forme libre)
- o La couronne d'entrée est également achetée et sa fixation s'inspire du schéma page 1
- o Le support de couronne est en liaison pivot à appui-plan prépondérant avec son arbre
- o L'entraînement en rotation se fait par obstacle
- o L'arbre de sortie est monté en chape

4- Mise en page et dessin

o Respecter le schéma suivant

- o Réducteur complet en coupe passant par le plan contenant les axes
- o Indiquer tous les ajustements notamment au niveau des roulements et au niveau des joints
- o Indiquer les jeux non visibles et les chiffrer
- o Indiquer le niveau d'huile au repos
- Représenter les éléments permettant d'introduire l'huile et de vidanger le réducteur
- La pièce représentant le plan 0 n'est pas à représenter

4°- Silhouette des joints et des roulements

Joints à lèvre à contact radial
Roulements à billes à contact radial