Synthesis Techniques

Juan P Bello

Synthesis

- It implies the artificial construction of a complex body by combining its elements.
 - Complex body: acoustic signal (sound)
 - Elements: parameters and/or "basic signals"

- Motivations:
 - Reproduce existing sounds
 - Reproduce the physical process of sound generation
 - Generate new pleasant sounds
 - > Control/explore timbre

How can I generate new sounds?

- Networks of basic elements → synthesis techniques
- Two main types: linear and non-linear

Additive Synthesis

- It is based on the idea that complex waveforms can be created by the addition of simpler ones.
- It is a linear technique, i.e. do not create frequency components that were not explicitly contained in the original waveforms
- Commonly, these simpler signals are sinusoids (sines or cosines)
 with time-varying parameters, according to Fourier's theory:

Additive Synthesis:

A Pipe Organ

Additive Synthesis

• Square wave: only odd harmonics. Amplitude of the nth harmonic

= 1/n

Time-varying sounds

- According to Fourier, all sounds can be described and reproduced with additive synthesis.
- Even impulse-like components can be represented by using a short-lived sinusoid with "infinite" amplitude.

- Additive synthesis is very general (perhaps the most versatile).
- Control data hungry: large number of parameters are required to reproduce realistic sounds

Examples

Subtractive Synthesis

• Is another linear technique based on the idea that sounds can be generated from subtracting (filtering out) components from a very rich signal (e.g. noise, square wave).

 Its simplicity made it very popular for the design of analog synthesisers (e.g. Moog)

The human speech system

 The vocal chords act as an oscillator, the mouth/nose cavities, tongue and throat as filters

 We can shape a tonal sound ('oooh' vs 'aaah'), we can whiten the signal ('sssshhh'), we can produce pink noise by removing high

Source-Filter model

- Subtractive synthesis can be seen as a excitation-resonator or source-filter model
- The resonator or filter shapes the spectrum, i.e. defines the spectral envelope

Source-Filter model

Amplitude modulation

- Non-linear technique, i.e. results on the creation of frequencies which are not produced by the oscillators.
- In AM the amplitude of the carrier wave is varied in direct proportion to that of a modulating signal.

Ring Modulation

Let us define the carrier signal as:

$$c(t) = A_c \cos(\omega_c t)$$

And the (bipolar) modulator signal as:

$$m(t) = A_m \cos(\omega_m t)$$

The Ring modulated signal can be expressed as:

$$s(t) = A_c \cos(\omega_c t) \cdot A_m \cos(\omega_m t)$$

Which can be re-written as:

$$s(t) = \frac{A_c A_m}{2} \left[\cos(\left[\omega_c - \omega_m\right]t) + \cos(\left[\omega_c + \omega_m\right]t) \right]$$

• s(t) presents two sidebands at frequencies: ω_c - ω_m and ω_c + ω_m

Ring Modulation

Amplitude Modulation

Let us define the carrier signal as:

$$c(t) = \cos(\omega_c t)$$

And the (unipolar) modulator signal as:

$$m(t) = A_c + A_m \cos(\omega_m t)$$

The amplitude modulated signal can be expressed as:

$$s(t) = \left[A_c + A_m \cos(\omega_m t)\right] \cos(\omega_c t)$$

Which can be re-written as:

$$s(t) = A_c \cos(\omega_c t) + \frac{A_m}{2} \left[\cos(\left[\omega_c - \omega_m\right]t) + \cos(\left[\omega_c + \omega_m\right]t) \right]$$

• s(t) presents components at frequencies: $\omega_{\rm c}$, $\omega_{\rm c}$ - $\omega_{\rm m}$ and $\omega_{\rm c}$ + $\omega_{\rm m}$

Modulation index

- In modulation techniques a modulation index is usually defined such that it indicates how much the modulated variable varies around its original value.
- ullet For AM this quantity is also known as modulation depth: eta
- If β = 0.5 then the carrier's amplitude varies by 50% around its unmodulated level.
- For $\beta = 1$ it varies by 100%.
- $\beta > 1$ causes distortion and is usually avoided

C/M frequency ratio

- Lets define the carrier to modulator frequency ratio c/m (= ω_c / ω_m) for a pitched signal m(t)
- If c/m is an integer n, then ω_c , and all present frequencies, are multiples of ω_m (which will become the fundamental)
- If c/m = 1/n, then ω_c will be the fundamental
- When c/m deviates from n or 1/n (or more generally, from a ratio of integers), then the output frequencies becomes more inharmonic
- Example of C/M frequency variation

Frequency Modulation

 Frequency modulation (FM) is a form of modulation in which the frequency of a carrier wave is varied in direct proportion to the amplitude variation of a modulating signal.

 When the frequency modulation produces a variation of less than 20Hz this results on a vibrato.

Frequency Modulation

Let us define the carrier signal as:

$$c(t) = \cos(\omega_c t)$$

And the modulator signal as:

$$m(t) = \beta \sin(\omega_m t)$$

The Frequency modulated signal can be expressed as:

$$s(t) = \cos(\omega_c t + \beta \sin(\omega_m t))$$

This can be re-written as

$$s(t) = \sum_{k=-\infty}^{\infty} J_k(\beta) \cos[(\omega_c + k\omega_m)t]$$

Frequency Modulation

• If $\beta \neq 0$ then the FM spectrum contains infinite sidebands at positions $\omega_c \pm k\omega_m$.

• The amplitudes of each pair of sidebands are given by the J_k coefficients which are functions of β

Modulation index

- As in AM we define a FM modulation index that controls the modulation depth.
- In FM synthesis this index is equal to β , the amplitude of the modulator and is directly proportional to Δf .
- As we have seen the value of β determines the amplitude of the sidebands of the FM spectrum
- Furthermore the amplitude decreases with the order *k*.
- Thus, although theoretically the number of sidebands is infinite, in practice their amplitude makes them inaudible for higher orders.
- The number of audible sidebands is a function of β , and is approximated by $2\beta+1$
- Thus the bandwidth increases with the amplitude of m(t), like in some real instruments

C/M frequency ratio

- The ratio between the carrier and modulator frequencies c/m is relevant to define the (in)harmonic characteristic of s(t).
- The sound is pitched (harmonic) if c/m is a ratio of positive integers: $\omega_c/\omega_m = N_c/N_m$
- E.g. for $f_c = 800$ Hz and $f_m = 200$ Hz, we have sidebands at 600Hz and 1kHz, 400Hz and 1.2kHz, 200Hz and 1.4kHz, etc
- Thus the fundamental frequency of the harmonic spectrum responds to: $f_0 = f_c / N_c = f_m / N_m$
- If c/m is not rational an inharmonic spectrum is produced
- If f_0 is below the auditory range, the sound will not be perceived as having definitive pitch.

FM examples

