15-213 "The course that gives CMU its Zip!"

Floating Point Sept 6, 2006

Topics

- IEEE Floating Point Standard
- Rounding
- Floating Point Operations
- Mathematical properties

class03.ppt 15-213, F'06

Floating Point Puzzles

- For each of the following C expressions, either:
 - Argue that it is true for all argument values
 - Explain why not true

Assume neither d nor f is NaN

- 2 - 15-213, F'06

• (d+f)-d == f

IEEE Floating Point

IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
- Supported by all major CPUs

Driven by Numerical Concerns

- Nice standards for rounding, overflow, underflow
- Hard to make go fast
 - Numerical analysts predominated over hardware types in defining standard

Fractional Binary Numbers

Representation

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number: $\sum_{k=-i}^{i} b_k$

- 3 - 15-213, F'06 - 4 - 15-213, F'06

Frac. Binary Number Examples

Value	Representation		
5-3/4	101.112		
2-7/8	10.1112		
63/64	0.1111112		

Observations

- Divide by 2 by shifting right
- Multiply by 2 by shifting left
- Numbers of form 0.1111111..., just below 1.0
 - \bullet 1/2 + 1/4 + 1/8 + ... + 1/2ⁱ + ... \rightarrow 1.0
 - •Use notation 1.0 − ε

Representable Numbers

Limitation

- Can only exactly represent numbers of the form $x/2^k$
- Other numbers have repeating bit representations

Value	Representation
1/3	$0.0101010101[01]_{\cdots 2}$
1/5	$0.001100110011[0011]_{\cdots_2}$
1/10	0.0001100110011[0011]2

-5- 15-213, F'06 -6- 15-213, F'06

Floating Point Representation

Numerical Form

- -1s M 2E
 - Sign bit s determines whether number is negative or positive
 - Significand M normally a fractional value in range [1.0,2.0).
 - Exponent E weights value by power of two

Encoding

- MSB is sign bit
- exp field encodes E
- frac field encodes M

Floating Point Precisions

Encoding

- MSB is sign bit
- exp field encodes E
- frac field encodes M

Sizes

- Single precision: 8 exp bits, 23 frac bits
 - •32 bits total
- Double precision: 11 exp bits, 52 frac bits
 - •64 bits total
- Extended precision: 15 exp bits, 63 frac bits
 - Only found in Intel-compatible machines
 - Stored in 80 bits
 - » 1 bit wasted

"Normalized" Numeric Values

Condition

• $exp \neq 000...0$ and $exp \neq 111...1$

Exponent coded as biased value

E = Exp - Bias

• Exp: unsigned value denoted by exp

• Bias : Bias value

» Single precision: 127 (Exp: 1...254, E: -126...127)

» Double precision: 1023 (Exp: 1...2046, E: -1022...1023)

» in general: Bias = 2e-1 - 1, where e is number of exponent bits

Significand coded with implied leading 1

 $M = 1.xxx...x_2$

• xxx...x: bits of frac

■ Minimum when 000...0 (M = 1.0)

• Maximum when 111...1 (*M* = 2.0 – ϵ)

Get extra leading bit for "free"

– 9 – 15-213, F'06

Normalized Encoding Example

Value

```
Float F = 15213.0;

• 15213_{10} = 11101101101101_2 = 1.1101101101101_2 \times 2^{13}
```

Significand

```
M = 1.1101101101101_2
frac= 110110110110100000000000000002
```

Exponent

```
E = 13
Bias = 127
Exp = 140 = 10001100
```

Floating Point Representation:

```
      Hex:
      4
      6
      6
      D
      B
      4
      0
      0

      Binary:
      0100
      0110
      0110
      1101
      1011
      0100
      0000
      0000

      140:
      100
      0110
      0

      15213:
      2110
      1101
      1011
      01
```

- 10 - 15-213, F'06

Denormalized Values

Condition

 $= \exp = 000...0$

Value

- Exponent value *E* = −*Bias* + 1
- Significand value $M = 0.xxx...x_2$
 - xxx...x: bits of frac

Cases

-11-

- exp = 000...0, frac = 000...0
 - Represents value 0
 - Note that have distinct values +0 and -0
- = exp = 000...0, frac \neq 000...0
 - Numbers very close to 0.0
 - Lose precision as get smaller
 - "Gradual underflow"

Special Values

Condition

 $= \exp = 111...1$

Cases

- exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- \blacksquare exp = 111...1, frac \neq 000...0
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1), $\infty \infty$, $\infty * 0$

Summary of Floating Point Real Number Encodings

Tiny Floating Point Example

8-bit Floating Point Representation

- the sign bit is in the most significant bit.
- the next four bits are the exponent, with a bias of 7.
- the last three bits are the frac

Same General Form as IEEE Format

- normalized, denormalized
- representation of 0, NaN, infinity

7	6 3	2 0
s	ехр	frac

15-213, F'06

– 13 – 15-213, F′06 – 14 –

Values Related to the Exponent

Exp	exp	E	2 ^E	
0	0000	-6	1/64	(denorms)
1	0001	-6	1/64	
2	0010	-5	1/32	
3	0011	-4	1/16	
4	0100	-3	1/8	
5	0101	-2	1/4	
6	0110	-1	1/2	
7	0111	0	1	
8	1000	+1	2	
9	1001	+2	4	
10	1010	+3	8	
11	1011	+4	16	
12	1100	+5	32	
13	1101	+6	64	
14	1110	+7	128	
15	1111	n/a		(inf, NaN)

- 15 -

Dynamic Range

	s	exp	frac	E	Value
	0	0000	000	-6	0
	0	0000	001	-6	1/8*1/64 = 1/512 ← closest to zero
Denormalized	0	0000	010	-6	2/8*1/64 = 2/512
numbers					
	0	0000	110	-6	6/8*1/64 = 6/512
	0	0000	111	-6	7/8*1/64 = 7/512 ← largest denorm
	0	0001	000	-6	8/8*1/64 = 8/512 ← smallest norm
	0	0001	001	-6	9/8*1/64 = 9/512
	0	0110	110	-1	14/8*1/2 = 14/16
	0	0110	111	-1	$15/8*1/2 = 15/16 \leftarrow \text{closest to 1 below}$
Normalized	0	0111	000	0	8/8*1 = 1
numbers	0	0111	001	0	$9/8*1 = 9/8 \leftarrow \text{closest to 1 above}$
	0	0111	010	0	10/8*1 = 10/8
	0	1110	110	7	14/8*128 = 224
	0	1110	111	7	15/8*128 = 240 ← largest norm
•••••	0	1111	000	n/a	inf
16					15-213 F'06

15-213, F'06 — 16 — 15-213, F'06

Distribution of Values

6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is 3

Notice how the distribution gets denser toward zero.

- 17 - 15-213, F'06

Distribution of Values (close-up view)

6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is 3

– 18 – 15-213, F'06

Interesting Numbers

Largest Normalized

Single ≈ 3.4 X 10³⁸
 Double ≈ 1.8 X 10³⁰⁸

Numeric Value Description frac exp Zero. 00...00 00...00 0.0 Smallest Pos. Denorm. 2- {23,52} X 2- {126,1022} 00...00 00...01 ■ Single ≈ 1.4 X 10⁻⁴⁵ ■ Double ≈ 4.9 X 10⁻³²⁴ Largest Denormalized $(1.0 - \varepsilon) \times 2^{-\{126,1022\}}$ 00...00 11...11 ■ Single ≈ 1.18 X 10⁻³⁸ ■ Double ≈ 2.2 X 10⁻³⁰⁸ Smallest Pos. Normalized 00...01 00...00 1.0 X 2- {126,1022} Just larger than largest denormalized 01...11 00...00 1.0 One

11...10 11...11

 $(2.0 - \varepsilon) \times 2^{\{127,1023\}}$

Special Properties of Encoding

FP Zero Same as Integer Zero

■ All bits = 0

Can (Almost) Use Unsigned Integer Comparison

- Must first compare sign bits
- Must consider -0 = 0
- NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
- Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

- 19 - 15-213, F'06 - 20 - 15-213, F'06

Floating Point Operations

Conceptual View

- First compute exact result
- Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Rounding Modes (illustrate with \$ rounding)

	\$1.40	\$1.60	\$1.50	\$2.50	- \$1.50
■ Zero	\$1	\$1	\$1	\$2	- \$1
■ Round down (-∞)	\$1	\$1	\$1	\$2	-\$2
■ Round up (+∞)	\$2	\$2	\$2	\$3	- \$1
■ Nearest Even (default)	\$1	\$2	\$2	\$2	-\$2

Note:

- 1. Round down: rounded result is close to but no greater than true result.
- 2. Round up: rounded result is close to but no less than true result.

– 21 – 15-213, F'06

Closer Look at Round-To-Even

Default Rounding Mode

- Hard to get any other kind without dropping into assembly
- All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or underestimated

Applying to Other Decimal Places / Bit Positions

- When exactly halfway between two possible values
 - Round so that least significant digit is even
- E.g., round to nearest hundredth

1.23	(Less than half way)
1.24	(Greater than half way)
1.24	(Half way—round up)
1.24	(Half way—round down)
	1.24 1.24

- 22 - 15-213, F'06

Rounding Binary Numbers

Binary Fractional Numbers

- "Even" when least significant bit is 0
- Half way when bits to right of rounding position = 100...₂

Examples

Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.000112	10.002	(<1/2—down)	2
2 3/16	10.001102	10.012	(>1/2—up)	2 1/4
2 7/8	10.11 <mark>100</mark> 2	11.002	(1/2—up)	3
2 5/8	10.10100	10.10	(1/2—down)	2 1/2

FP Multiplication

Operands

 $(-1)^{s_1} M1 \ 2^{E_1}$ * $(-1)^{s_2} M2 \ 2^{E_2}$

Exact Result

 $(-1)^s M 2^E$

■ Sign s: s1^s2

■ Significand M: M1 * M2

■ Exponent *E*: *E*1 + *E*2

Fixing

- If $M \ge 2$, shift M right, increment E
- If E out of range, overflow
- Round *M* to fit frac precision

Implementation

Biggest chore is multiplying significands

FP Addition

Operands

 $(-1)^{s1} M1 \ 2^{E1}$ $(-1)^{s2} M2 \ 2^{E2}$ Assume E1 > E2 $(-1)^{s2} M2$

Exact Result

 $(-1)^s M 2^E$

- Sign s, significand M:
 - Result of signed align & add
- Exponent *E*: *E*1

Fixing

- If $M \ge 2$, shift M right, increment E
- if M < 1, shift M left k positions, decrement E by k
- Overflow if E out of range
- Round *M* to fit frac precision

15-213, F'06

 $(-1)^{s} M$

Mathematical Properties of FP Add

Compare to those of Abelian Group

■ Closed under addition? YES

But may generate infinity or NaN

■ Commutative? YES

■ Associative? NO

Overflow and inexactness of rounding

■ 0 is additive identity? YES

Every element has additive inverse ALMOST

Except for infinities & NaNs

Monotonicity

■ $a \ge b \Rightarrow a+c \ge b+c$? ALMOST

Except for infinities & NaNs

- 26 - 15-213, F'06

Math. Properties of FP Mult

Compare to Commutative Ring

■ Closed under multiplication? YES

But may generate infinity or NaN

■ Multiplication Commutative? YES

■ Multiplication is Associative? NO

Possibility of overflow, inexactness of rounding

■ 1 is multiplicative identity? YES

■ Multiplication distributes over addition? NO

Possibility of overflow, inexactness of rounding

Monotonicity

■ $a \ge b \& c \ge 0 \Rightarrow a *c \ge b *c$? ALMOST

Except for infinities & NaNs

Creating Floating Point Number

Steps

■ Normalize to have leading 1 s exp

Round to fit within fraction

Postnormalize to deal with effects of rounding

Case Study

- Convert 8-bit unsigned numbers to tiny floating point format
- **Example Numbers**

128 10000000

15 00001101 33 00010001

35 00010011

138 10001010

- 28 - **63** 00111111

frac

Normalize

	7	6 3	2 (
[s	exp	frac

Requirement

- Set binary point so that numbers of form 1.xxxxx
- Adjust all to have leading one
 - Decrement exponent as shift left

Value	Binary	Fraction	Exponent
128	10000000	1.0000000	7
15	00001101	1.1010000	3
17	00010001	1.0001000	5
19	00010011	1.0011000	5
138	10001010	1.0001010	7
63	00111111	1.1111100	5

– 29 – 15-213, F'06

Rounding

Guard bit: LSB of result

Sticky bit: OR of remaining bits

Round bit: 1st bit removed

Round up conditions

- Round = 1, Sticky = $1 \rightarrow > 0.5$
- Guard = 1, Round = 1, Sticky = 0 → Round to even

Value	Fraction	GRS	Incr	? Rounded
128	1.0000000	000	N	1.000
15	1.1010000	100	N	1.101
17	1.0001000	010	N	1.000
19	1.0011000	110	Y	1.010
138	1.0001010	111	Y	1.001
63	1.1111100	111	Y	10.000

– 30 – 15-213, F'06

Postnormalize

Issue

- Rounding may have caused overflow
- Handle by shifting right once & incrementing exponent

Value	Rounded	Exp	Adjusted	Result
128	1.000	7		128
15	1.101	3		15
17	1.000	4		16
19	1.010	4		20
138	1.001	7		134
63	10.000	5	1.000/6	64

Floating Point in C

C Guarantees Two Levels

float single precision double double precision

Conversions

- Casting between int, float, and double changes numeric values
- Double or float to int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN
 - » Generally sets to TMin
- int to double
 - Exact conversion, as long as int has ≤ 53 bit word size
- int to float
 - Will round according to rounding mode

Curious Excel Behavior

	Number	Subtract 16	Subtract .3	Subtract .01
Default Format	16.31	0.31	0.01	-1.2681E-15
Currency Format	\$16.31	\$0.31	\$0.01	(\$0.00)

- Spreadsheets use floating point for all computations
- Some imprecision for decimal arithmetic
- Can yield nonintuitive results to an accountant!

Summary

IEEE Floating Point Has Clear Mathematical Properties

- Represents numbers of form M X 2^E
- Can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers

- 33 - 15-213, F'06 - 34 - 15-213, F'06