MA 544: Homework 1

Carlos Salinas

January 17, 2016

PROBLEM 1.1 (WHEEDEN & ZYGMUND §2, Ex. 1)

Let $f(x) = x \sin(1/x)$ for $0 < x \le 1$ and f(0) = 0. Show that f is bounded and continuous on [0, 1], but that $V[f; 0, 1] = +\infty$.

Proof. Moreover, f is continuous on (0,1] since it is the product of continuous functions on (0,1]. To see that f is continuous at 0 is suffices to show that f(0+) = f(0) = 0. To that end, let $\{x_n\} \subset [0,1]$ be a sequence such that $x_n \to 0$ and consider $\lim_{n \to \infty} f(x_n)$. Since $x_n \to 0$, for every $\varepsilon > 0$, there exists a natural number N such that $n \ge N$ implies $|0 - x_n| < \varepsilon$. Thus, for $n \ge N$ we have

$$|0 - f(x_n)| = |f(x_n)| = |x_n||\sin(1/x_n)| \le \varepsilon|\sin(1/\varepsilon)| \le \varepsilon.$$

Thus, $f(x_n) \to 0$ and we see that f(0+) = 0. Hence, f is continuous on [0, 1].

It is easy to see that f is bounded since $|\sin(1/x)| \le 1$ for all $x \in (0,1]$. More explicitly, we have that

$$|f(x)| \le |x\sin(1/x)| = |x| \cdot |\sin(1/x)| \le 1 \cdot 1.$$

Thus, |f(x)| < 1 and we see that f is bounded.

Moreover, f is continuous on (0,1] since it is the product of continuous functions on (0,1]. To see that f is continuous at 0, it suffices to show that f(0+) = 0. To that end, we shall use the following limiting argument: Let $\varepsilon > 0$ and consider the limit (from the right) of $f(\varepsilon)$ as $\varepsilon \to 0$. This is

$$\lim_{\varepsilon \to 0} f(\varepsilon) \lim_{\varepsilon \to 0} \varepsilon \sin(1/\varepsilon) \leq \lim_{\varepsilon \to 0} |\varepsilon| |\sin(1/\varepsilon)| \leq \lim_{\varepsilon \to 0} |\varepsilon| \cdot 1 = 0.$$

Thus, f(0+) = 0 and we see that f is continuous on [0,1].

Last but not least, we show that f is BV. Define the family of partitions $\{\Gamma_n\}_{n=1}^{\infty}$ by $x_i := \blacksquare$

PROBLEM 1.2 (WHEEDEN & ZYGMUND §2, Ex. 2)

Prove theorem (2.1).

Proof. Recall the statement of theorem (2.1):

Theorem (Wheeden & Zygmund, 2.1). (a) If f is of bounded variation on [a, b], then f is bounded on [a, b].

- (b) Let f and g be of bounded variation on [a,b]. Then cf (for any real constant c), f+g, and fg are of bounded variation on [a,b]. Moreover, f/g is of bounded variation on [a,b] if there exists an $\varepsilon > 0$ such that $|g(x)| \ge \varepsilon$ for $x \in [a,b]$.
- (a) We shall proceed by contradiction. Suppose that f is not bounded, i.e., for every positive real number M>0, there exists $x\in [a,b]$ such that |f(x)|>M. In particular, if V is the variation of f, then $|f(x_0)|>V+(f(a)+f(b))/2$ for some $x_0\in [a,b]$. Then, putting $\Gamma=\{a,x_0,b\}\subset [a,b]$, we have

$$S_{\Gamma} = |f(b) - f(x_0)| + |f(x_0) - f(a)|$$

$$= |f(x_0) - f(b)| + |f(x_0) - f(a)|$$

$$\geq |2f(x_0) - f(a) - f(b)|$$

$$= |2(V + (f(a) + f(b))/2) - f(a) - f(b)|$$

$$= |2V + f(a) + f(b) - f(a) - f(b)|$$

$$= 2V$$

$$> V.$$

This is a contradiction since V is the supremum over all such sums.

(b) Let f and g be BV on [a,b] and c a real number. Then, for every partition Γ of [a,b], we have $V[f;a,b] \geq S_{\Gamma}[f;a,b]$

PROBLEM 1.3 (WHEEDEN & ZYGMUND §2, Ex. 3)

If [a',b'] is a subinterval of [a,b] show that $P[a',b'] \leq P[a,b]$ and $N[a',b'] \leq N[a,b]$.

Proof.

PROBLEM 1.4 (WHEEDEN & ZYGMUND §2, Ex. 11)

Show that $\int_a^b f \, d\phi$ exists if and only if given $\varepsilon > 0$ there exists $\delta > 0$ such that $|R_\Gamma - R_{\Gamma'}| < \varepsilon$ if $|\Gamma|, |\Gamma'| < \delta$.

Proof.

PROBLEM 1.5 (WHEEDEN & ZYGMUND §2, Ex. 13)

Prove theorem (2.16).

Proof.

Theorem (Wheeden & Zygmund, 2.16). (i) If $\int_a^b f \, d\phi$ exists, then so do $\int_a^b cf \, d\phi$ and $\int_a^b f \, d(c\phi)$ for any constant c, and

 $\int_{a}^{b} cf \, d\phi = \int_{a}^{b} f \, d(c\phi) = c \int_{a}^{b} f \, d\phi.$

(ii) If $\int_a^b f_1 d\phi$ and $\int_a^b f_2 d\phi$ both exist, so does $\int_a^b (f_1 + f_2) d\phi$, and

$$\int_{a}^{b} (f_1 + f_2) d\phi = \int_{a}^{b} f_1 d\phi + \int_{a}^{b} f_2 d\phi.$$

(iii) If $\int_a^b f \, d\phi_1$ and $\int_a^b f \, d\phi_2$ both exist, so does $\int_a^b f \, d(\phi_1 + \phi_2)$, and

$$\int_{a}^{b} f \, d(\phi_1 + \phi_2) = \int_{a}^{b} f \, d\phi_1 + \int_{a}^{b} f \, d\phi_2.$$

MA 544: Homework 1