

MACHINE LEARNING AS A SERVICE: APACHE SPARK MLLIB ENRICHMENT AND WEB-BASED CODELESS MODELING

Zhengyi Le Suning R&D Center at Palo Alto

Who I am?

Zhengyi (Jennifer) Le

Deputy Director, Big Data Lab Suning R&D Center at Palo Alto

What you want as a Data Scientist?

- Clean Data
 - And, labeled ~
- Powerful Computing
 - Lightening fast
- Easy to Use
 - No hard grammar or long hidden/default parameters

What we do for you

- Spark-backend
- Codeless
- Drag-N-Play
- Team workspace
 Machine Learning Service

It is NOT EASY to make your work EASY

Overview

Programming Guides▼

API Docs

Deploying -

More▼

MLlib DataFrame-Based API

Extracting, transforming and selecting features		Classification and regression	Clustering
Feature Transformers Tokenizer StopWordsRemover n-gram Binarizer	Feature Extractors TF-IDF Word2Vec CountVectorizer Feature Selectors	Classification Logistic regression Binomial logistic regression Multinomial logistic regression Decision tree classifier	K-means Latent Dirichlet allocation (LDA) Bisecting k-means Gaussian Mixture Model (GMM)
PCA PolynomialExpansion	VectorSlicer RFormula	Random forest classifier Gradient-boosted tree classifier	Collaborative Filtering
Discrete Cosine Transform (DCT) StringIndexer IndexToString	ChiSqSelector Locality Sensitive Hashing LSH Operations	Multilayer perceptron classifier One-vs-Rest classifier (a.k.a. One-vs-All) Naive Bayes	Collaborative filteringExplicit vs. implicit feedback Scaling of the regularization parameter
OneHotEncoder VectorIndexer Interaction	Feature Transformation Approximate Similarity Join Approximate Nearest	Regression Linear regression Generalized linear regression	ML Tuning: model selection and hyperparameter tuning
Normalizer StandardScaler MinMaxScaler MaxAbsScaler Bucketizer	Neighbor Search LSH Algorithms Bucketed Random Projection for Euclidean Distance	Available families Decision tree regression Random forest regression Gradient-boosted tree regression Survival regression	Model selection (a.k.a. hyperparameter tuning) Cross-Validation Train-Validation Split
ElementwiseProduct SQLTransformer	MinHash for Jaccard Distance	Isotonic regression Linear methods	Advanced topics
VectorAssembler QuantileDiscretizer	Listance	Decision trees Tree Ensembles Random Forests Gradient-Boosted Trees (GBTs)	Optimization of linear methods (developer)Limited-memory BFGS (L-BFGS) Normal equation solver for weighted least squares Iteratively reweighted least squares (IRLS)

That is not enough

→ Our Spark MLlib Extensions

Data Processing Time Series Domain-Specific Library for Finance

Processing (our new add-on)

Sampling	Feature Selection / Transformation	Classifiers	NLP
 SMOTE Sampling Weighted Sampling Cluster Sampling Box-Cox Transformation Weight of Evidence Information Value 	XGboost Binning	Auto Tagging Self-Define Dictionary Library Distance	
Random Sampling Upper/Down Sampling	Murmur/Sim Hash Random Forest Feature Importance	Monotonic Binning Equal Width Equal Frequency	Hamming, (Squared/Weighted) Euclidean (Weighted) Manhattan
• t-Test	 Filter Feature Selection Forward/Backward Feature Selection 	Decision Tree Binning Time Series	(Weighted) ManhattanChebyshevCosine
z-Test f-Test Distance Correlation	z-Test f-Test Distance Correlation Single Column Operations Multi Column Operations	Decomposition Simple MA AR/MA/ARMA/ARIMA Auto-ARIMA AIC/BIC/AICc ACF/PACF	Minkowski Tanimoto Similarity (adjusted) Cosine Pearson's Rank Jaccard Hidden Markov Model
GraphX - Single - Multi			
		Confusion Matrix	Conditional Random Fields Auto Key Word Auto Abstracting

Time Series

Spark-ts RDD-Based

DateTimeIndex: [10/31/06, 11/30/06, 12/31/06, 1/31/07, ...]

[10/31/00,	11/30/00, 12/31/00, 1/31/07,]
Key	Series
PCE	[9411, 9479, 9540, 9611,]
POP	[300836,301070,301296,301481,]
PSAVERT	[-0.9, -1.1, -0/9, -1,]

TimeSeriesRDD[K] extends RDD[(K, Vector[Double])]

Our-ts DataFrame-Based

Date	PCE (\$B)	POP (K)	PSAVERT (%)	UEMPMED (weeks)	UNEMPLOY (K)
10/31/06	9411	300836	-0.9	8.2	6826
11/30/06	9479	301070	-1.1	7.3	6849
12/31/06	9540	301296	-0.9	8.1	7017
1/31/07	9611	301481	-1	8.1	6865
2/28/07	9653	301684	-0.7	8.5	6724
3/31/07	9705	301913	-1.3	8.7	6801

Time Series

Functionality	Our-ts	Spark-ts	R	
DataFrame	Yes	No	Yes (R data.frame)	
Time Series Decomposition	Yes	No	Yes	
Simple MA	Yes	No	Yes	
AR	OLS/ Yule-Walker	OLS	OLS/Yule-Walker/MLE	
MA	OLS/Yule-Walker	OLS	OLS/Yule-Walker/MLE	
ARMA	OLS/Yule-Walker	OLS	OLS/Yule-Walker/MLE	
ARIMA	OLS/Yule-Walker	OLS	OLS/Yule-Walker/MLE	
Auto-ARIMA	OLS/Yule-Walker	OLS	OLS/Yule-Walker/MLE	
AIC/BIC/AICc	Yes	Yes	Yes	
ACF/PACF	Yes	Yes	Yes	

Time Series

# of Data Rows	0.5 Million	2 Million	16 Million
Our ts	4 sec	34 sec	180 sec
Spark-ts	1 sec	2 sec	Fail
R	140 sec	Fail	Fail

Finance Domain

Example: Fraud Detection

- SMOTE Sampling
- Cost Sensitive Decision Tree
- IP Mapping
- Mobile Number Grouping
- Bank Card Decoding
- National ID Decoding
- K-core (GraphX)
- Modularity (GraphX)
- Hypergraph (GraphX)

1. Sampling

Imbalance

Class2

Class1 ...

2. Weight Assignment

	Actual Normal	Actual Fraud
Pred Normal	0	1000
Pred Fraud	5	0

Anomaly Detection (Unsupervised Learning)

Thank You.

Zhengyi.Le@ussuning.com

Our Demo: https://youtu.be/pmN_-f-yXos

