

Interrogación 2

17 de noviembre de 2023 Profesores: Nicolás Alvarado - Bernardo Barías - Sebastián Bugedo - Gabriel Diéguez

Instrucciones

- La duración de la interrogación es de 2:30 horas.
- Durante la evaluación **no puede** hacer uso de sus apuntes o slides del curso.
- Rellene sus datos en cada hoja de respuesta que utilice.
- Cada pregunta debe responderse en hojas separadas.
- Entregue al menos una hoja por pregunta.
 - Si entrega la pregunta completamente en blanco, tiene nota mínima 1.5 en vez de 1.0 en la pregunta entregada. Esto solo aplica a preguntas completas.
- Escriba sus respuestas con lápiz pasta. Por el uso de lápiz mina usted pierde el derecho a recorreción.

Pregunta 1 - Relaciones de orden

Sea (A, \leq) un orden parcial. Una secuencia a_1, a_2, \ldots, a_n de elementos en A se dice ordenada si todos sus elementos son distintos y $a_i \leq a_{i+1}$, con $1 \leq i < n$. Además, diremos que dicha secuencia tiene largo n.

- a) Demuestre que para todo $n \geq 2$, no existe una secuencia ordenada a_1, a_2, \ldots, a_n de largo n tal que $a_n \leq a_1$.
- b) Decimos que una secuencia ordenada de largo n es de largo máximo si no existe una secuencia ordenada de largo m > n de elementos en A.
 - Demuestre que si A es finito y a_1, a_2, \ldots, a_n es una secuencia ordenada de largo máximo, entonces a_1 es un elemento minimal de A.
 - Recuerde que x es un elemento minimal de A si $x \in A$ y para todo $y \in A$ se cumple que si $y \leq x$, entonces y = x.

Pregunta 2 - Relaciones de equivalencia

Sea A un conjunto y S una relación binaria sobre A.

- a) (2 ptos.) Demuestre que existe una relación de equivalencia R sobre A tal que $S \subseteq R$.
- b) (4 ptos.) Considere el conjunto

$$T_S = \{ E \subseteq A^2 \mid E \text{ es una relación de equivalencia tal que } S \subseteq E \}.$$

Sea $R_S = \bigcap T_S$ la relación que resulta de intersectar los elementos de T.

Demuestre que R_S es una relación de equivalencia.

Pregunta 3 - Cardinalidad

Una función $f:\mathbb{R}\to\mathbb{R}$ es un polinomio con coeficientes enteros si es de la forma

$$f(x) = \sum_{i=0}^{n} a_i x^i$$
, donde $a_i \in \mathbb{Z}$ y $n \in \mathbb{N}$.

Sea $\mathcal{P} = \{f \mid f \text{ es un polinomio con coeficientes enteros}\}.$

Demuestre que \mathcal{P} es enumerable.

Pregunta 4 - Análisis de algoritmos

Considere la siguiente ecuación de recurrencia:

$$T(n) = \begin{cases} 1 & \text{si } n = 1\\ 4 \cdot T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n^2 \log_2(n) & \text{si } n > 1 \end{cases}$$

Demuestre usando inducción que $T(n) \in O(n^2 (\log n)^2)$.

Puede que los siguientes valores le resulten útiles:

$$\log_2(3) \approx 1.6 \quad \log_2(5) \approx 2.3 \quad \log_2(6) \approx 2.6 \quad \log_2(7) \approx 2.8$$