

Exam Question Paper

College/ Institute	CEDPS				
Department	ECE – TNE Program				
Exam Author(s)	Dr Zhengwen Huang				
Module Code	EE1655				
Module Title	Digital Systems and Microprocessors				
Month	June/August	Year	2019		
Paper Type	Full				
Duration	3 Hours				
Question Instructions					
Are Calculators Permitted?	ulators Permitted? No				
Permitted Reference Materials	A Data sheet is attached to this exam paper.				
Required Stationery	Please use a separate answer book for each Section.				

SECTION A

1. Convert the following decimal number

3275₁₀ to

- a) Binary
- b) Hexadecimal
- c) 7,4,-2,-1 Binary Coded Decimal

[5 marks]

- 2. In multiply parity error correction, 3 parity bits P_1 , P_2 , and P_3 are generated from 4 data bits $b_3b_2b_1b_0$. Consider the following definitions:
 - P₁ is the EVEN parity of b₃b₂b₁
 - P₂ is the EVEN parity of b₃b₁b₀
 - P₃ is the EVEN parity of b₂b₁b₀

Determine the parity failures for single errors in each of the data bits b_3 , b_2 , b_1 and b_0 and correct the error in the following data:

$$P_1P_2P_3b_3b_2b_1b_0 = 0 \ 1 \ 0 \ 1 \ 0 \ 0 \ 1$$

[5 marks]

3. Use the Truth Table Equivalence to determine whether the following equations are true or false.

a)
$$(A + \overline{B}). (\overline{A} + \overline{B} + C) = A.C + A.\overline{B} + \overline{A}.\overline{B}$$

b)
$$\overline{(A \oplus B)} + (B \oplus C) + (A \oplus C) = 1$$

4. Obtain the MINIMAL 1^{st} and 2^{nd} Canonical forms of a logic circuit which indicates (F =1) when a 4-bit binary number (ABCD) is greater than 1 but less than 12

[5 marks]

5. The following equation is in its minimal NAND form. Obtain its MINIMAL 1st Canonical (AND/OR/NOT) form,

$$F = \overline{\overline{A} B. \overline{BC}. \overline{ACD}. \overline{AB} \overline{D}}$$

[5 marks]

6. A 4-bit shift register $Q_3Q_2Q_1Q_0$ has EXCLUSIVE-NOR feedback. The feedback function is

$$I_0 = \overline{Q_3 \oplus Q_2}$$

If the initial state is 1011, what sequence does the register generate when clocked?

[5 marks]

7. Design a sequential circuit to continuously output the sequence

Include a detailed block diagram in your answer and obtain any necessary logic functions in their MINIMAL forms.

[5 marks]

8. Design a combinational logic system to convert 3-bit pure binary (b_2, b_1, b_0) into 3-bit Gray code (g_2, g_1, g_0) . Using any cellular structure you can identify in your three equations, calculate the gray code of the following binary number

9. Program the function of

$$F = \Sigma (0, 1, 3, 7, 9, 12, 13, 15)$$

Into

- a) ONE 16 to 1 multiplexer.
- b) 2 layer system of 4 to 1 multiplexer

Present your answers as a block diagram of the system with all the inputs and outputs appropriately labeled

[5 marks]

10. An engineer has designed the following circuit (FIGURE Q10). It works but takes up too much silicon area and consumes excessive power. Redesign the circuit and obtain the best possible design in terms of power consumption and size.

Section B

- 11. Read each of the following statements about the PIC16F877A microcontroller and identify whether it is true or false and explain the reason.
 - a) The program counter has 13 bits.
 - b) The program counter has a stack with 10 levels.
 - c) It allows more data locations by grouping the data into 6 separate banks.
 - d) It has 35 instructions.
 - e) STATUS register only appears in the first bank.
 - f) The size of program memory is 14k Bytes.
 - g) The width of data memory is 10bits.
 - h) The chip has 40 pins.
 - i) It is Von Neuman architecture.
 - j) It is a reduced instruction set computer (RISC).

[10 marks]

- 12. Provide the hexadecimal and binary representation of the following value in the data memory (8-bits registers) of PIC microcontroller.
 - a) 100
 - b) -10
 - c) 127
 - d) 36
 - e) -98

13. a) The following assembly language code is written for a PIC16F877A chip:

MOVF PORTA ADDWF PORTB MOVWF PORTC ANDLW 255

Write down the 14-bit binary machine code for each row of the code and explain the meaning of each instruction. (instruction table is attached at the end of exam paper)

[8 marks]

b) The following assembly language code is used to change data memory bank

BSF STATUS,RP0 BCF STATUS, RP1

After the execution of the above code, which bank is selected? RP1 and RP0 are defined with the following FIGURE Q13.

RP1	RP0	
0	0	memory bank 0
0	1	memory bank 1
1	0	memory bank 2
1	1	memory bank 3

STATUS Register

FIGURE Q13.

[2 marks]

- 14. The Port B of a PIC microcontroller is connected with an 8-segment display as shown in Figure Q15 (a).
 - a) Write down all the value on PORT B of the PIC microcontroller for showing the letters "A", "b", "C", "d", "E", "F", "G" and "H" in in FIGURE Q15(b).

Continued on the next page

b) Write a piece of assembly code that can show the letters one by one on the 8-segment display.

[6 marks]

15. Below is a segment of code <u>written</u> for a PIC16F877A chip in assembly language.

DELAY MOVLW 0x1F **MOVWF** COUNT1 **MOVLW** 0x0A MOVWF COUNT2 DELAY1 DECFSZ COUNT1,F **GOTO** DELAY2 GOTO **COMPLETE** DELAY2 DECFSZ COUNT2,F **GOTO** DELAY2 **GOTO** DELAY1 **COMPLETE RETURN**

Continued on the next page

- a) Calculate the number of instructions to run when DELAY is called. [5 marks]
- b) Assume that each PIC instruction takes 1 μs to execute. Calculate the total execution time to run this segment of code (Instruction table is attached at the end of exam paper). Note: Each of instructions of CALL, RETURN and GOTO takes 2 μs to execute.

	File Address	A	File Address		File Address		File Addr
Indirect addr.(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	180
TMR0	01h	OPTION REG	81h	TMR0	101h	OPTION REG	181
PCL	02h	PCL	82h	PCL	102h	PCL	182
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183
FSR	04h	FSR	84h	FSR	104h	FSR	184
PORTA	05h	TRISA	85h		105h		185
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186
PORTC	07h	TRISC	87h		107h		187
PORTD ⁽¹⁾	08h	TRISD ⁽¹⁾	88h		108h		188
PORTE ⁽¹⁾	09h	TRISE ⁽¹⁾	89h		109h		189
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18
PIR1	0Ch	PIE1	8Ch	EEDATA	10Ch	EECON1	180
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2	18
TMR1L	0Eh	PCON	8Eh	EEDATH	10Eh	Reserved ⁽²⁾	18
TMR1H	0Fh		8Fh	EEADRH	10Fh	Reserved ⁽²⁾	18
T1CON	10h		90h		110h	110001100	190
TMR2	11h	SSPCON2	91h		111h		19
T2CON	12h	PR2	92h		112h		193
SSPBUF	13h	SSPADD	93h		113h		193
SSPCON	14h	SSPSTAT	94h		114h		194
CCPR1L	15h	33. 3.7	95h		115h		19
CCPR1H	16h		96h		116h		190
CCP1CON	17h		97h	General	117h	General	19
RCSTA	18h	TXSTA	98h	Purpose Register	118h	Purpose Register	19
TXREG	19h	SPBRG	99h	16 Bytes	119h	16 Bytes	199
RCREG	1Ah		9Ah		11Ah	,	19/
CCPR2L	1Bh		9Bh		11Bh		19
CCPR2H	1Ch	CMCON	9Ch		11Ch		190
CCP2CON	1Dh	CVRCON	9Dh		11Dh		19
ADRESH	1Eh	ADRESL	9Eh		11Eh		198
ADCON0	1Fh	ADCON1	9Fh		11Fh		19
7,500,10	20h	7,500,111	A0h		120h		1A
General Purpose Register		General Purpose Register 80 Bytes	COLL	General Purpose Register 80 Bytes		General Purpose Register 80 Bytes	171
_		,,		2,			
96 Bytes			EFh		16Fh		1E
		accesses	F0h	accesses	170h	accesses	1F(
	7Fh	70h-7Fh	FFh	70h-7Fh	17Fh	70h - 7Fh	1FI
Bank 0	/FII	Bank 1	FFN	Bank 2	111111	Bank 3	IF
* Notaph ote 1: These re	nysical reg egisters ar	ata memory location ister. e not implemente e reserved; maint	d on the P	PIC16F876A.			

Mnemonic, Operands		Description	Cycles	14-Bit Opcode				Status	Notes
		Description	Cycles	MSb			LSb	Affected	Notes
BYTE-ORIENTED FILE REGISTER OPERATIONS									
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0xxx	XXXX	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1.2
INCFSZ	f, d	Increment f. Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3
IORWF	f. d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f. d	Move f	1	00	1000	dfff	ffff	Z	1.2
MOVWF	f	Move W to f	1	00	0000	1fff	ffff		
NOP	_	No Operation	1	00	0000	0xx0	0000		
RLF	f. d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f. d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1.2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110		ffff	-,,-	1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
		BIT-ORIENTED FILE REGIST	ER OPER	RATION	IS				
BCF	f. b	Bit Clear f	1	01	00bb	bfff	ffff		1.2
BSF	f. b	Bit Set f	1	01		bfff			1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01			ffff		3
		LITERAL AND CONTROL	OPERAT	IONS					
ADDLW	k	Add Literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND Literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call Subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to Address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR Literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move Literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from Interrupt	2	00	0000	0000	1001		
RETLW	k	Return with Literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from Literal	1	11	110x	kkkk	kkkk	C,DC,Z	
XORLW	k	Exclusive OR Literal with W	1	11	1010	kkkk	kkkk	Z	

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

Datasheet -2-

^{2:} If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 module.

If Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is
executed as a NOP.