#### **SIPMOS** ® Power Transistor

- N channel
- Enhancement mode
- Logic Level
- Avalanche-rated
- dv/dt rated
- 175°C operating temperature
- also in SMD available



| Pin 1 | Pin 2 | Pin 3 |
|-------|-------|-------|
| G     | D     | S     |

| Туре       | V <sub>DS</sub> | <b>l</b> <sub>D</sub> | R <sub>DS(on)</sub> | Package   | Ordering Code   |
|------------|-----------------|-----------------------|---------------------|-----------|-----------------|
| BUZ 100 SL | 55 V            | 70 A                  | 0.018 Ω             | TO-220 AB | Q67040-S4000-A2 |

### **Maximum Ratings**

| Parameter                                                                                | Symbol             | Values | Unit  |
|------------------------------------------------------------------------------------------|--------------------|--------|-------|
| Continuous drain current                                                                 | I <sub>D</sub>     |        | А     |
| $T_{\rm C}$ = 25 °C                                                                      |                    | 70     |       |
| <i>T</i> <sub>C</sub> = 100 °C                                                           |                    | 50     |       |
| Pulsed drain current                                                                     | I <sub>Dpuls</sub> |        |       |
| $T_{\rm C}$ = 25 °C                                                                      |                    | 280    |       |
| Avalanche energy, single pulse                                                           | E <sub>AS</sub>    |        | mJ    |
| $I_{D} = 70 \; A, \; V_{DD} = 25 \; V, \; R_{GS} = 25 \; \Omega$                         |                    |        |       |
| $L = 155 \mu H, T_j = 25 °C$                                                             |                    | 380    |       |
| Avalanche current, limited by $T_{jmax}$                                                 | I <sub>AR</sub>    | 70     | А     |
| Avalanche energy,periodic limited by $T_{jmax}$                                          | E <sub>AR</sub>    | 17     | mJ    |
| Reverse diode dv/dt                                                                      | dv/dt              |        | kV/µs |
| $I_{S} = 70 \text{ A}, \ V_{DS} = 40 \text{ V}, \ di_{F}/dt = 200 \text{ A/}\mu\text{s}$ |                    |        |       |
| $T_{\text{jmax}} = 175 ^{\circ}\text{C}$                                                 |                    | 6      |       |
| Gate source voltage                                                                      | $V_{GS}$           | ± 14   | V     |
| Power dissipation                                                                        | P <sub>tot</sub>   |        | W     |
| $T_{\rm C}$ = 25 °C                                                                      |                    | 170    |       |



### **Maximum Ratings**

| Parameter                              | Symbol            | Values        | Unit |
|----------------------------------------|-------------------|---------------|------|
| Operating temperature                  | T <sub>j</sub>    | -55 + 175     | °C   |
| Storage temperature                    | T <sub>stg</sub>  | -55 + 175     |      |
| Thermal resistance, junction - case    | R <sub>thJC</sub> | ≤ 0.88        | K/W  |
| Thermal resistance, junction - ambient | R <sub>thJA</sub> | ≤ 62          |      |
| IEC climatic category, DIN IEC 68-1    |                   | 55 / 175 / 56 |      |

### **Electrical Characteristics**, at $T_j = 25$ °C, unless otherwise specified

| Parameter                                                                                                                 | Symbol               | Values |       |       | Unit |
|---------------------------------------------------------------------------------------------------------------------------|----------------------|--------|-------|-------|------|
|                                                                                                                           |                      | min.   | typ.  | max.  |      |
| Static Characteristics                                                                                                    |                      |        |       |       | ·    |
| Drain- source breakdown voltage                                                                                           | V <sub>(BR)DSS</sub> |        |       |       | V    |
| $V_{\rm GS}$ = 0 V, $I_{\rm D}$ = 0.25 mA, $T_{\rm j}$ = 25 °C                                                            |                      | 55     | -     | -     |      |
| Gate threshold voltage                                                                                                    | V <sub>GS(th)</sub>  |        |       |       |      |
| $V_{\rm GS} = V_{\rm DS}, I_{\rm D} = 130 \ \mu {\rm A}$                                                                  |                      | 1.2    | 1.6   | 2     |      |
| Zero gate voltage drain current                                                                                           | / <sub>DSS</sub>     |        |       |       | μA   |
| $V_{\mathrm{DS}} = 50 \; \mathrm{V}, \; V_{\mathrm{GS}} = 0 \; \mathrm{V}, \; T_{\mathrm{j}} = -40 \; \mathrm{^{\circ}C}$ |                      | -      | -     | 0.1   |      |
| $V_{\mathrm{DS}} = 50 \; \mathrm{V}, \; V_{\mathrm{GS}} = 0 \; \mathrm{V}, \; T_{\mathrm{j}} = 25 \; \mathrm{^{\circ}C}$  |                      | -      | 0.1   | 1     |      |
| $V_{\rm DS} = 50 \; \rm V, \; V_{\rm GS} = 0 \; \rm V, \; T_{\rm j} = 150 \; ^{\circ} \rm C$                              |                      | -      | -     | 100   |      |
| Gate-source leakage current                                                                                               | I <sub>GSS</sub>     |        |       |       | nA   |
| $V_{GS} = 20 \text{ V}, \ V_{DS} = 0 \text{ V}$                                                                           |                      | -      | 10    | 100   |      |
| Drain-Source on-resistance                                                                                                | R <sub>DS(on)</sub>  |        |       |       | Ω    |
| $V_{GS} = 4.5 \text{ V}, I_D = 50 \text{ A}$                                                                              |                      | -      | 0.016 | 0.018 |      |
| $V_{GS} = 10 \text{ V}, I_D = 50 \text{ A}$                                                                               |                      | -      | 0.01  | 0.012 |      |



## **Electrical Characteristics**, at $T_j = 25$ °C, unless otherwise specified

| Parameter                                                                                      | Symbol                 | Values |      |      | Unit |
|------------------------------------------------------------------------------------------------|------------------------|--------|------|------|------|
|                                                                                                |                        | min.   | typ. | max. |      |
| Dynamic Characteristics                                                                        |                        |        |      |      |      |
| Transconductance                                                                               | $g_{fs}$               |        |      |      | S    |
| $V_{\rm DS} \ge 2 * I_{\rm D} * R_{\rm DS(on)max}, I_{\rm D} = 50 \text{ A}$                   |                        | 25     | -    | -    |      |
| Input capacitance                                                                              | C <sub>iss</sub>       |        |      |      | pF   |
| $V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$                               |                        | -      | 2130 | 2660 |      |
| Output capacitance                                                                             | C <sub>oss</sub>       |        |      |      |      |
| $V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$                               |                        | -      | 600  | 750  |      |
| Reverse transfer capacitance                                                                   | C <sub>rss</sub>       |        |      |      |      |
| $V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$                               |                        | -      | 320  | 400  |      |
| Turn-on delay time                                                                             | $t_{d(on)}$            |        |      |      | ns   |
| $V_{\rm DD} = 30 \text{ V}, \ V_{\rm GS} = 4.5 \text{ V}, \ I_{\rm D} = 70 \text{ A}$          |                        |        |      |      |      |
| $R_{\rm G}$ = 2.2 $\Omega$                                                                     |                        | -      | 15   | 25   |      |
| Rise time                                                                                      | t <sub>r</sub>         |        |      |      |      |
| $V_{\rm DD} = 30 \text{ V}, \ V_{\rm GS} = 4.5 \text{ V}, \ I_{\rm D} = 70 \text{ A}$          |                        |        |      |      |      |
| $R_{\rm G}$ = 2.2 $\Omega$                                                                     |                        | -      | 70   | 105  |      |
| Turn-off delay time                                                                            | t <sub>d(off)</sub>    |        |      |      |      |
| $V_{\rm DD} = 30 \text{ V}, \ V_{\rm GS} = 4.5 \text{ V}, \ I_{\rm D} = 70 \text{ A}$          |                        |        |      |      |      |
| $R_{\rm G}$ = 2.2 $\Omega$                                                                     |                        | -      | 40   | 60   |      |
| Fall time                                                                                      | $t_{\mathrm{f}}$       |        |      |      |      |
| $V_{\rm DD} = 30 \text{ V}, \ V_{\rm GS} = 4.5 \text{ V}, \ I_{\rm D} = 70 \text{ A}$          |                        |        |      |      |      |
| $R_{\rm G}$ = 2.2 $\Omega$                                                                     |                        | -      | 25   | 40   |      |
| Gate charge at threshold                                                                       | Q <sub>g(th)</sub>     |        |      |      | nC   |
| $V_{\rm DD} = 40 \text{ V}, I_{\rm D} = 0.1 \text{ A}, V_{\rm GS} = 0 \text{ to } 1 \text{ V}$ |                        | -      | 2.5  | 3.8  |      |
| Gate charge at 5.0 V                                                                           | Q <sub>g(5)</sub>      |        |      |      |      |
| $V_{\rm DD} = 40 \text{ V}, I_{\rm D} = 70 \text{ A}, V_{\rm GS} = 0 \text{ to 5 V}$           |                        | -      | 50   | 75   |      |
| Gate charge total                                                                              | Q <sub>g(total)</sub>  |        |      |      |      |
| $V_{DD} = 40 \text{ V}, I_{D} = 70 \text{ A}, V_{GS} = 0 \text{ to } 10 \text{ V}$             |                        | -      | 85   | 130  |      |
| Gate plateau voltage                                                                           | V <sub>(plateau)</sub> |        |      |      | V    |
| $V_{\rm DD} = 40 \text{ V}, I_{\rm D} = 70 \text{ A}$                                          |                        | -      | 4.1  | -    |      |

### **Electrical Characteristics**, at $T_j = 25$ °C, unless otherwise specified

| Parameter                                                                    | Symbol          | Values |      |      | Unit |
|------------------------------------------------------------------------------|-----------------|--------|------|------|------|
|                                                                              |                 | min.   | typ. | max. |      |
| Reverse Diode                                                                |                 |        |      |      |      |
| Inverse diode continuous forward current                                     | Is              |        |      |      | А    |
| $T_{\rm C}$ = 25 °C                                                          |                 | -      | -    | 70   |      |
| Inverse diode direct current,pulsed                                          | / <sub>SM</sub> |        |      |      |      |
| $T_{\rm C}$ = 25 °C                                                          |                 | -      | -    | 280  |      |
| Inverse diode forward voltage                                                | V <sub>SD</sub> |        |      |      | V    |
| $V_{GS} = 0 \text{ V}, I_{F} = 140 \text{ A}$                                |                 | -      | 1.25 | 1.8  |      |
| Reverse recovery time                                                        | t <sub>rr</sub> |        |      |      | ns   |
| $V_{R} = 30 \text{ V}, I_{F} = I_{S}, di_{F}/dt = 100 \text{ A/}\mu\text{s}$ |                 | -      | 110  | 165  |      |
| Reverse recovery charge                                                      | Q <sub>rr</sub> |        |      |      | μC   |
| $V_{R} = 30 \text{ V}, I_{F} = I_{S}, di_{F}/dt = 100 \text{ A/}\mu\text{s}$ |                 | -      | 0.23 | 0.35 |      |

### **Power dissipation**

$$P_{\mathsf{tot}} = f(T_{\mathsf{C}})$$



#### **Drain current**

$$I_{\mathsf{D}} = f(T_{\mathsf{C}})$$

parameter: V<sub>GS</sub> ≥ 4 V



### Safe operating area

$$I_{\mathsf{D}} = f(V_{\mathsf{DS}})$$

parameter: D = 0,  $T_C = 25$ °C



### **Transient thermal impedance**

$$Z_{\text{th,IC}} = f(t_{\text{p}})$$

 $Z_{\text{th JC}} = f(t_{\text{p}})$ parameter:  $D = t_{\text{p}} / T$ 



### Typ. output characteristics

 $I_{\mathsf{D}} = f(V_{\mathsf{DS}})$ 

parameter:  $t_p = 80 \mu s$ 



### Typ. drain-source on-resistance

 $R_{\rm DS~(on)} = f(I_{\rm D})$ parameter:  $t_{\rm p} = 80~\mu \rm s,~T_{\rm j} = 25~^{\circ} C$ 



Typ. transfer characteristics  $I_D = f(V_{GS})$ 

parameter:  $t_p = 80 \mu s$ 

 $V_{DS} \ge 2 \times I_D \times R_{DS(on)max}$ 



#### **Drain-source on-resistance**

 $R_{\rm DS~(on)} = f(T_{\rm j})$ parameter:  $I_{\rm D} = 50$  A,  $V_{\rm GS} = 4.5$  V



### Typ. capacitances

 $C = f(V_{DS})$ 

parameter:  $V_{GS} = 0V$ , f = 1MHz



#### Gate threshold voltage

 $V_{GS(th)} = f(T_j)$ 

parameter:  $V_{GS} = V_{DS}$ ,  $I_D = 130 \mu A$ 



### Forward characteristics of reverse diode

 $I_{\mathsf{F}} = f(V_{\mathsf{SD}})$ 

parameter:  $T_j$ ,  $t_p = 80 \mu s$ 



Avalanche energy  $E_{AS} = f(T_j)$ parameter:  $I_D = 70 \text{ A}, V_{DD} = 25 \text{ V}$ 





### Typ. gate charge

 $V_{\mathsf{GS}} = f(Q_{\mathsf{Gate}})$ 

parameter:  $I_{D \text{ puls}} = 70 \text{ A}$ 



### Drain-source breakdown voltage

$$V_{(\mathsf{BR})\mathsf{DSS}} = f(T_{\mathsf{j}})$$

