CSE 473 Pattern Recognition

Lecturer: Dr. Md. Monirul Islam

The Design Cycle

- Data collection
- Feature Choice
- Model Choice

prior knowledge (e.g., invariances)

- Training
- Evaluation
- Computational Complexity

Data Collection

— How do we know when we have collected an adequately large and representative set of examples for training and testing the system?

Feature Choice

- Depends on the characteristics of the problem domain.
- Requirement
 - simple to extract
 - invariant to irrelevant transformation
 - insensitive to noise.

Model Choice

- too many classification models?
- which one is best?

Training

 Use data to determine the classifier. Many different procedures for training classifiers and choosing models

Evaluation

 Measure the error rate (or performance) and switch from one set of features to another Computational Complexity

What is the trade-off between computational ease and performance?

Supervised vs. Unsupervised Learning

Supervised learning

 A teacher provides a category label or cost for each pattern in the training set

Unsupervised learning

 The system forms clusters or "natural groupings" of the input patterns

Bayesian Classifier and its Variants

Given:

- A doctor knows that meningitis causes stiff neck 50% of the time
- one of every 50,000 persons has meningitis
- one of every 20 persons has stiff neck

• Given:

- A doctor knows that meningitis causes stiff neck 50% of the time
- one of every 50,000 persons has meningitis
- one of every 20 persons has stiff neck
- If a patient has stiff neck, does he/she has meningitis?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

 A married person with income 100K did not refund the loan previously

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

- A married person with income 100K did not refund the loan previously
- Can we trust him?

The sea bass/salmon example

- We know the previous counts of salmon/sea bass
- Can we predict which fish is coming in the conveyor?

Bayes Classifier

A probabilistic framework for solving classification problems

Bayes theorem:

$$P(A, C) = P(A)P(C | A) = P(A | C)P(C)$$

Bayes Classifier

A probabilistic framework for solving classification problems

Conditional Probabilities:

$$P(C \mid A) = \frac{P(A,C)}{P(A)}$$

$$P(A \mid C) = \frac{P(A,C)}{P(C)}$$

Example 1

Given:

- A doctor knows that meningitis causes stiff neck 50% of the time
- Prior probability of any patient having meningitis is 1/50,000
- Prior probability of any patient having stiff neck is 1/20
- If a patient has stiff neck, does he/she has meningitis?

$$P(M \mid S) = \frac{P(S \mid M)P(M)}{P(S)} = \frac{0.5 \times 1/50000}{1/20} = 0.0002$$

Example 3

- The sea bass/salmon example
 - We know the previous counts of salmon/sea bass
 - amount of catches
 - class or state of nature (Salmon/Sea bass)
 state of nature is a random variable

Example 3

The sea bass/salmon example

• if the catch of salmon and sea bass is equi-probable

```
-P(\omega_1) = P(\omega_2) (uniform priors)
```

 $-P(\omega_1) + P(\omega_2) = 1$ (exclusivity and exhaustivity)

Decision rule with only the prior information

– Decide ω_1 if $P(\omega_1) > P(\omega_2)$ otherwise decide ω_2

Decision rule with only the prior information

– Decide ω_1 if $P(\omega_1) > P(\omega_2)$ otherwise decide ω_2

Misclassify many fishes

- Use of the class –conditional information
 - Use lightness
- $P(x \mid \omega_1)$ and $P(x \mid \omega_2)$ describe lightness in sea bass and salmon

Lightness

 Given the lightness evidence x, calculate Posterior from Likelihood and evidence

$$- P(\omega_j \mid x) = \frac{p(x \mid \omega_j)P(\omega_j)}{p(x)}$$

- Posterior = (Likelihood. Prior) / Evidence

 Given the lightness evidence x, calculate Posterior from Likelihood and evidence

$$- P(\omega_j \mid x) = \frac{p(x \mid \omega_j)P(\omega_j)}{p(x)}$$

where in case of two categories

$$P(x) = \sum_{j=1}^{j=2} P(x/\omega_j) P(\omega_j)$$

Posterior function

Decision given the posterior probabilities

X is an observation for which:

if
$$P(\omega_1 \mid x) > P(\omega_2 \mid x)$$
 True state of nature = ω_1
if $P(\omega_1 \mid x) < P(\omega_2 \mid x)$ True state of nature = ω_2

Decision given the posterior probabilities

X is an observation for which:

if
$$P(\omega_1 \mid x) > P(\omega_2 \mid x)$$
 True state of nature = ω_1 if $P(\omega_1 \mid x) < P(\omega_2 \mid x)$ True state of nature = ω_2

Therefore:

whenever we observe a particular x, the probability of error is :

$$P(error \mid x) = P(\omega_1 \mid x)$$
 if we decide ω_2
 $P(error \mid x) = P(\omega_2 \mid x)$ if we decide ω_1

Minimizing the probability of error

• Decide ω_1 if $P(\omega_1 \mid x) > P(\omega_2 \mid x)$; otherwise decide ω_2

Therefore:

$$P(error \mid x) = min [P(\omega_1 \mid x), P(\omega_2 \mid x)]$$
 (Bayes decision)

Bayesian Decision Theory – Continuous Features

Generalization of the preceding ideas

- Use of more than one feature
- Use more than two states of nature
- Allowing actions and not only decide on the state of nature
- Introduce a loss of function which is more general than the probability of error

Let $\{\omega_1, \omega_2, ..., \omega_m\}$ be the set of m states of nature (or "categories or classes")

Let $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ be the set of possible actions

Let $\lambda(\alpha_i / \omega_j)$ be the loss incurred for taking

action α_i when the state of nature is ω_i

The risk to take decision α_i is

$$R(\alpha_i \mid x) = \sum_{j=1}^{j=m} \lambda(\alpha_i \mid \omega_j) P(\omega_j \mid x)$$

Overall risk

$$R = Sum \ of \ all \ R(\alpha_i / x) \ for \ i = 1, ..., n$$

Minimizing $R(\alpha_i / x)$ for i = 1, ..., n

Two-category classification

 α_1 : deciding ω_1

 α_2 : deciding ω_2

Two-category classification

 $lpha_1$: deciding ω_1

 α_2 : deciding ω_2

 $\lambda_{ij} = \lambda(\alpha_i \mid \omega_j)$

loss incurred for deciding ω_i when the true state of nature is ω_i

Two-category classification

 α_1 : deciding ω_1 α_2 : deciding ω_2 $\lambda_{ij} = \lambda(\alpha_i \mid \omega_j)$

loss incurred for deciding ω_i when the true state of nature is ω_j

Conditional risk:

$$R(\alpha_1 \mid x) = \lambda_{11} P(\omega_1 \mid x) + \lambda_{12} P(\omega_2 \mid x)$$

$$R(\alpha_2 \mid x) = \lambda_{21} P(\omega_1 \mid x) + \lambda_{22} P(\omega_2 \mid x)$$

Our rule is the following:

if
$$R(\alpha_1 \mid x) < R(\alpha_2 \mid x)$$

action α_1 : "decide ω_1 " is taken

Our rule is the following:

if
$$R(\alpha_1 \mid x) < R(\alpha_2 \mid x)$$

action α_1 : "decide ω_1 " is taken

Now use these formula:

$$R(\alpha_1 \mid x) = \lambda_{11} P(\omega_1 \mid x) + \lambda_{12} P(\omega_2 \mid x)$$

$$R(\alpha_2 \mid x) = \lambda_{21} P(\omega_1 \mid x) + \lambda_{22} P(\omega_2 \mid x)$$

Our rule is the following:

if
$$R(\alpha_1 \mid x) < R(\alpha_2 \mid x)$$

action α_1 : "decide ω_1 " is taken

This results in the equivalent rule:

decide ω_1 if:

$$(\lambda_{21} - \lambda_{11}) P(x \mid \omega_1) P(\omega_1) >$$

 $(\lambda_{12} - \lambda_{22}) P(x \mid \omega_2) P(\omega_2)$

and decide ω₂ otherwise

The preceding rule

$$(\lambda_{21} - \lambda_{11}) P(x \mid \omega_1) P(\omega_1) >$$

$$(\lambda_{12} - \lambda_{22}) P(x \mid \omega_2) P(\omega_2)$$

is equivalent to the following rule:

if
$$\frac{P(x/\omega_1)}{P(x/\omega_2)} > \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}} \cdot \frac{P(\omega_2)}{P(\omega_1)}$$

Then take action α_1 (decide ω_1) Otherwise take action α_2 (decide ω_2)

Likelihood ratio:

The preceding rule

$$(\lambda_{21} - \lambda_{11}) P(x \mid \omega_1) P(\omega_1) >$$

$$(\lambda_{12} - \lambda_{22}) P(x \mid \omega_2) P(\omega_2)$$

is equivalent to the following rule:

if
$$\frac{P(x/\omega_1)}{P(x/\omega_2)} > \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}} \cdot \frac{P(\omega_2)}{P(\omega_1)}$$

Likelihood ratio

Then take action α_1 (decide ω_1) Otherwise take action α_2 (decide ω_2)

Optimal decision property

"If the likelihood ratio exceeds a threshold value independent of the input pattern x, we can take optimal actions"

$$\frac{P(x | \omega_{1})}{P(x | \omega_{2})} > \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}} \cdot \frac{P(\omega_{2})}{P(\omega_{1})}$$

Minimum Error Rate Classification

Assume the loss function for two class case:

$$\lambda(\alpha_i|\omega_j) = \begin{cases} 0 & i=j\\ 1 & i\neq j \end{cases} \qquad i,j=1,...,c.$$

The Risk is now:

$$R(\alpha_i|\mathbf{x}) = \sum_{j=1}^{c} \lambda(\alpha_i|\omega_j) P(\omega_j|\mathbf{x})$$
$$= \sum_{j\neq i} P(\omega_j|\mathbf{x})$$
$$= 1 - P(\omega_i|\mathbf{x})$$

Minimum Error Rate Classification

Assume the loss function for two class case:

$$\lambda(\alpha_i|\omega_j) = \begin{cases} 0 & i=j\\ 1 & i\neq j \end{cases} \qquad i,j=1,...,c.$$

The Risk is now:

$$R(\alpha_i|\mathbf{x}) = \sum_{j=1}^c \lambda(\alpha_i|\omega_j)P(\omega_j|\mathbf{x})$$
$$= \sum_{j\neq i} P(\omega_j|\mathbf{x})$$
$$= 1 - P(\omega_i|\mathbf{x})$$

Minimizing $R(\alpha_i \mid x)$ Maximizing $P(\omega_i \mid x)$

Minimum Error Rate Classification

Our rule was:

if
$$R(\alpha_1 \mid x) < R(\alpha_2 \mid x)$$

action α_1 : "decide ω_1 " is taken

which is equivalent to:

Decide
$$\omega_i$$
 if $P(\omega_i|\mathbf{x}) > P(\omega_j|\mathbf{x})$ for all $j \neq i$.