CS524: Introduction to Optimization Lecture 18

Michael Ferris

Computer Sciences Department University of Wisconsin-Madison

October 21, 2019

Vehicle Routing

- You have a fleet of k trucks, each with a capacity Q
- You have a set of customers $N = \{0, 1, 2, \dots n\}$
- 0 is a special "depot" node
- Each customer has a demand b_i , $i \in N \setminus \{0\}$
- How do route trucks to meet customer demand at minimum cost?
 - A truck must visit every customer
 - ▶ The sum of the demands on the route visiting the customer must be $\leq Q$

Can you do it?

- Can you formulate it? What are your decision variables?
- What are your constraints?
- What if each customer had some "time windows" $[t_i^-, t_i^+]$ that the routes had to obey?
- What if each route had some "fixed cost" or was a nonlinear function of the distance traveled?

A New Formulation Idea

• Let there be a variable for every possible route $r \in R$

$$x_r = \begin{cases} 1 & \text{Travel on route } r \\ 0 & \text{Otherwise} \end{cases}$$

Vehicle Routing

	x_1	<i>X</i> ₂	<i>X</i> 3			
Customer 1 :	1	0	0	:	\geq	1
Customer 2 :	0	1	0	:	\geq	1
Customer 3 :	0	1	1	:	\geq	1
Customer 4 :	0	1	0	:	\geq	1
Customer 5 :	1	0	1	:	\geq	1

Set Covering

- Suppose we are given a set of objects $S = \{1, 2, \dots m\}$.
- We are also given a set S of subsets of S.
- $S = \{1, 2, 3, 4, 5, 6\}$ • $S = \{\{1, 2\}, \{1, 3, 5\}, \{1, 2, 4, 5\}, \{4, 5\}, \{3, 6\}\}$
- The problem is to choose a set of subsets (from S) so that all of the members of S are "covered".
- The set $C_1 = \{\{1,2\}, \{1,2,4,5\}, \{3,6\}\}$ is a cover
- We may be interested in finding a cover of minimum cost
- Let $x_i = 1$ if the *i*th member of S is used in the cover.

Formulation (of previous example)

minimize

$$x_1 + x_2 + x_3 + x_4 + x_5$$

subject to

More Set Covering: Kilroy County

- There are 6 cities in Kilroy County.
- The county must determine where to build fire stations to serve these cities. They want to build the stations in some of the cities, and to build the minimum number of stations needed to ensure that at least one station is within 15 minutes driving time of each city.
- Can we formulate an integer program whose solution gives the minimum number of fire stations and their locations.

Driving Distances

	1	2	3	4	5	6
1	0	10	20	30	30	20
2	10	0	25	35	20	10
3	20	25	0	15	30	20
4	30	35	15	0	15	25
5	30	20	30	15	0	14
6	20	10	20	25	14	0

Variables

• $x_j = 1$ if build in city j

Set Covering/Packing/Partitioning

- If A is a matrix consisting only of 0's and 1's, then
- **Set Covering**: $\min c^T x : Ax \ge 1, x \in \{0,1\}^n$
- **Set Packing**: $\max c^T x : Ax \le 1, x \in \{0, 1\}^n$
- Set Partitioning: $\min c^T x : Ax = 1, x \in \{0,1\}^n$

Another Example - Flight Crew Scheduling

- Determine a minimum cost set of pilots to use so that all flights are "covered"
- The rules that constitute a feasible trip (called a pairing) for a set of pilots are complicated
- The amount of money that a pilot is paid for his pairing is also a complicated function of flying time, time away from home, and a minimum trip guarantee.
- How do they do it?
 - The trick is to just list all (or most) of the feasible pairings and their costs

Set Covering

- Rows: Flight Legs
- Columns: "Pairings": Subsets of flight legs, starting and ending in home base, that obey FAA flying regulations

The Farmer's Daughter

- A traveling salesman must visit all his cities at minimum cost
- Must also start and end at home

Given

- Set of cities N
- Distances between cities cij
- This is the most famous combinatorial optimization problem
- There are lots of applications

$$x_{ij} = \begin{cases} 1 & \text{We travel from city } i \text{ to city } j \\ 0 & \text{Otherwise} \end{cases}$$

A Formulation for TSP?

Consider the following

$$\min \sum_{i \in N} \sum_{j \in N} c_{ij} x_{ij}$$

$$\sum_{i \in N} x_{ij} = 1 \quad \forall j \in N$$

$$\sum_{j \in N} x_{ij} = 1 \quad \forall i \in N$$

$$x_{ij} \in \{0, 1\}$$

$$(1)$$

• Is this a valid TSP formulation?

10 City USA Instance

table	dist(i,j) "	distances	"						
	Atlanta	Chicago	Denver	Houston	LosAngeles	Miami	NewYork	${\tt SanFrancisco}$	Seattle	WashingtonDC
Atlanta	0	587	1212	701	1936	604	748	2139	2182	543
Chicago	587	0	920	940	1745	1188	713	1858	1737	597
Denver	1212	920	0	879	831	1726	1631	949	1021	1494
Houston	701	940	879	0	1372	968	1420	1645	1891	1220
LosAngeles	1936	1745	831	1374	0	2339	2451	347	959	2300
Miami	604	1188	1726	968	2339	0	1092	2594	2734	923
NewYork	748	713	1631	1420	2451	1092	0	2571	2408	205
SanFrancisc	o 2139	1858	949	1645	347	2594	2571	0	678	2442
Seattle	2182	1737	1021	1891	959	2734	2408	678	0	2329
WashingtonD	C 543	597	1494	1220	2300	923	205	2442	2329	0 ;

Subtours

- How do we get rid of those pesky subtours?
- For every set S of cities except the whole set, we can use at most |S|-1 edges.

$$\sum_{i \in S} \sum_{j \in S} x_{ij} \le |S| - 1 \quad \forall S \subseteq N, 2 \le |S| \le |N| - 1$$

• There are exponentially many "subtour elimination" constraints

Quiz Time!

101851798816724304313422284420468908052573419683296 8125318070224677190649881668353091698688.

- Is this...
 - (a) The number of gifts that I have bought my wife?
 - (b) The number of subatomic particles in the universe?
 - (c) The number of "subtour elimination constraints" when |N| = 299.
 - (d) All of the above?
 - (e) None of the above?

Answer Time!

- The answer is (e). (a)–(c) are all too small (as far as I know) :–). (It is (c), for |N|=300).
- "Exponential" is really big.
- Yet people have solved TSP's with |N| > 80,000!
- How? You ask...
- Branch and cut! (www.tsp.gatech.edu)
 - Solve the problem without all of those subtours, and then just add them as we need them
- Finding the "add we need them" subtours is called the separation problem
- Let's finish solving our example...
 - See tsp1.gms in GAMS model library for fancier code: doing it dynamically (Other examples: tsp2,tsp3,tsp4,tsp5,swath)

Miller Tucker Zemlin

- There is a weaker, but more compact formulation that should suffice to eliminate subtours for smallish instances.
- We can derive it from the Slide of Trix.
- Idea: Let u_i , $i \in N$ be the relative positive of node i in the tour.
- $1 \le u_i \le n = |\mathcal{N}| \quad \forall i \in \mathcal{N}$
- Just model implication (assuming $x_{ii} = 0$ is forced):

$$x_{ij} = 1 \Rightarrow u_j \ge u_i + 1(i.e.u_i - u_j \le -1) \ (\forall i \ne 1, \forall j \ne 1)$$

$$\delta = 1 \Rightarrow \sum_{j \in N} \mathsf{a}_j \mathsf{x}_j \leq \mathsf{b} \Leftrightarrow \sum_{j \in N} \mathsf{a}_j \mathsf{x}_j + \mathsf{M} \delta \leq \mathsf{M} + \mathsf{b}.$$

- M = n 1 + 1 = n
- Gives inequalities

$$u_i - u_i + nx_{ij} \le n - 1 \quad \forall i \ne 1, \forall j \ne 1$$

Stronger version

To exclude subtours, one can use extra variables $u_i (i = 1, ..., n)$, and the constraints

$$u_{1} = 1,$$

$$2 \leq u_{i} \leq n, \quad \forall i \neq 1,$$

$$u_{i} - u_{j} + 1 \leq (n - 1)(1 - x_{ij}), \quad \forall i \neq 1, \forall j \neq 1.$$

$$(2)$$

We call the last inequality in (2) an arc-constraint. The formulation consisting of (1) and (2) is called the MillerTuckerZemlin (MTZ) formulation of the TSP. It indeed excludes subtours, as (1) the arc-constraint for (i, j) forces $u_j \geq u_i + 1$, when $x_{ij} = 1$; (2) if a feasible solution of (1)-(2) contained more than one subtour, then at least one of these would not contain node 1, and along this subtour the u_i values would have to increase to infinity. This argument, with the bounds on the u_i variables, also implies that the only feasible value of u_i is the position of node i in the tour.