SOLID-STATE IMAGE PICKUP DEVICE

Patent number:

JP6082846 1994-03-25

Publication date:

TATSUMI SHINGO

Inventor: Applicant:

CANON INC

Classification: - international:

G02F1/31: G02F1/13: H04N5/335

- european: Application number:

JP19920255669 19920831

Priority number(s):

Report a data error here

Abstract of JP6082846

PURPOSE:To easily obtain the solid-state image pickup device which obtains an image of high resolution without providing any mechanical driving mechanism. CONSTITUTION: A polarizing element 7, a voltage-controlled polarizing element 8, and a double refractive element 9 are provided on the optical path between an image pickup lens 1 and a solid-state image pickup element 3, a control circuit 10 which controls polarization characteristics of the voltage-controlled polarizing element 8 and a signal processing circuit 6 which processes an optical image detected by the solid-state image pickup element 3 are provided, and the control circuit 10 applies a voltage to the voltage-controlled polarizing element 8 at specific timing to control the polarization state of light passing through the voltage-controlled polarizing element 8. Consequently, the rotational state of the plane of polarization of the light passing through the voltage-controlled polarizing element 8 is changed to make a light beam which reaches the solid-state image pickup element 3 through the double refractive element 9 shift in position by the separation width of the double refractive element 9. thereby separating the optical path without providing any mechanical driving mechanism.

Data supplied from the esp@cenet database - Patent Abstracts of Japan

特開平6-82846 (43)公開日 平成6年(1994) 3月25日

(51) Int.Cl. ⁵		識別記号	庁内整理番号	F 1	技術表示箇所
G 0 2 F	1/31		8106-2K		
	1/13	505	7348-2K		
H 0 4 N	5/335				

		審査請求 未請求 請求項の数1(全 4 頁)
(21)出顾番号	特頭平4-255669	(71)出版人 000001007 キヤノン株式会社
(22) 出順日	平成4年(1992)8月31日	東京都大田区下丸子3丁目30番2号
		(72)発明者 辰巳 晋吾 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内
		(74)代理人 弁理士 國分 孝悦

(54) 【発明の名称】 固体撮像装置

(57) 【要約】

【目的】 高解像度の画像が得られる固体機像装置を機 核的な駆動機構を設けることなく簡単に得られるように することを目的とする。

「構成」 排像レンズ1と原格機像素字3との間の光路 中に、億米素子7と電圧制卵電光素子8と復肥折案子9 とを設けるとさもに、上配理性制御記案子8の個光符 性を削削する制即回路10と、上配理体操像素字6によ 財役出される光学像を受頭する毎年別処理開始らまた 財産のカイミン学で鑑定を印加し、上配理任制開催光素子8へ 所定のタイミン学で鑑定を印加し、上配理任制開催光素子8へ 所定のタイミン学で鑑定を印加し、上配理任制開催光素子8へ 所定のタイミン学で鑑定を印加し、上配理任制開始光、上 記程任制即解光素子8を通過する光や回向市面の回転状態 を変化させ、上配復順折案子9を力して上配固体均線表 子3に到達する光線の位置が、上記復距折案子9の分解 幅だけずれるようにして、機械的な駆動機構を設けるこ となく影路を必要できるといことなく影路を必要できるといると たなく影路を必要できるといことの

【特許請求の範囲】

【請求項1】 被写体の像を撮像面に結像させる操像レ ンズと、上記撮像レンズにより結像された像を光電変換 する固体撮像素子とを有する固体撮像装置において、

上記提像レンズと上記周体操像素子との間の光路中に、 偏光素子と電圧制御偏光素子と複属折案子とを設けると ともに、

上記電圧制御偏光素子へ所定のタイミングで電圧を印加 して、上記電圧制御偏光素子を通過する光の偏向状態を 所定のタイミングで制御する制御回路と、上記制御回路 10 動するために大きな駆動部を設けなければならないの の制御状態に広じて画像合成を行う信号処理装置とを設 けたことを特徴とする固体損像装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】 本発明は固体撮像装置に係わり、 特に、高面質化が要求されるビデオカメラ装置に用いて 好適なものである。

[0002]

【従来の技術】近年、固体掃像素子等を用いた画像入力 両質化の中でも、特に、高解像度化が望まれており、そ のために、各撮像素子メーカは高囲素数のセンサを実用 化している。しかしながら、現在実用化されている固体 損像素子の場合は、文字の識別やプリント出力に使うに は未だ不十分である。また、ビデオ装置用として用いる 場合でも、高両素数になると歩留等の点でコストが割高 になる問題があった。

【0003】そのため、通常のビデオ信号を扱う場合で も、センサの使い方によって高解像度化のための工夫を て、図3を用いて簡単に説明する。図3において、被写 休からの光しは、レンズ1、光路変更用の平行平板ガラ ス2を経て固体損像素子3に至る。上記固体損像素子3 は、入射された被写体からの光しを光質変換して電気信 号として出力する。

[0004] 固体操像素子3から出力された信号は、信 号処理装置 6 で必要な処理を施された後ピデオ信号Sv として出力される。また、平行平板ガラス2は駆動装置 4によって、固体操像素子3に対する平行度を変えるこ 板ガラス2の傾きによって光路が平行に移動し、固体提 像素子3上に結像する像の位置が平行移動することにな

[0005] そこで、同期信号発生器5から与えられる 同期信号に応じて、例えば、フレーム毎に平行平板ガラ ス2の固体操像素子3に対する平行度が、平行な状態と 少し傾いた状態とに交互に入れ替わるように制御する。 この時、平行度を傾ける量は、固体操像素子3のサンプ リング間隔の1/2ピッチになるようにする。すると、

イントが2倍)になったことと同じになり、解像度が向 上する。もちろん、光学像が平行移動しているので、後 段の信号処理装置6で1/2ピッチ分のオフセット補正 をしている。

[0006]

【発明が解決しようとする課題】このような従来技術に は、次のような問題点があった。すなわち、平行平板サ ラスのような光学部品を機械的に高速に駆動しているた め信頼性に欠ける。また、光学部品を機械的に高速に駆 で、装置が大きくなってしまう問題があった。本発明は 上述の問題点にかんがみ、機械的な駆動機構を設けるこ となく高解像度の画像を容易に得られるようにすること を目的とする。

[0007]

【課題を解決するための手段】本発明の固体撮像装置 は、被写体の像を操像面に結像させる提像レンズと、上 記提像レンズにより結像された像を光電変換する間体提 像素子とを有する関体機像装置において、上記機像レン 装置において、高囲質化が要望されている。さらに、高 20 ズと上記固体操像素子との間の光路中に、偏光素子と電 圧制御偏光素子と復屈折素子とを設けるとともに、上記 電圧制御偏光素子へ所定のタイミングで電圧を印加し て、上記電圧制御偏光素子を通過する光の偏向状態を所 定のタイミングで制御する制御回路と、上記制御回路の 割御状態に応じて画像合成を行う信号処理装置とを設け ている.

[0008]

【作用】電圧制御偏光素子は、電圧が印加されていると きはここを通過する光の偏向面を回転させないが、電圧 施した製品が出されている。その従来技術の原理につい 30 が印加されていないときはここを通過する光の偏向面を 回転させるので、上記電圧制御偏光素子に所定のタイミ ングで電圧を印加すると、複屈折素子を介して固体提像 素子に到達する光線は、上記複屈折素子の分離幅だけ位 **潤がずれることになり、機械的な駆動機構を設けること** なく光路の分離が可能になる。

[0009]

【実施例】次に、添付図面に従って本発明の一実施例を 説明する。図1は、本実施例の固体撮像装置の概略構成 を示すプロック図である。図1において、被写体からの とができるように構成されている。したがって、平行平 40 光しはレンズ1、偏光素子7、電圧制御偏光素子8、複 屈折索子9を経て固体摄像索子3へ至る。

> 【0010】また、固体操像素子3からの出力された信 号は、信号処理装置6で必要な処理が施された後、ビデ オ信号Svとして出力される。電圧制御偏光素子8は、 制御回路10によって、例えば、フレーム毎に電圧制御 を受けて偏光面が90度回転する。制御回路10は、同 期信号発生器5の出力に基づいてその出力電圧を制御し ている。なお、図1において、従来例と同一部分につい ては同一の符号を付している。

サンプリング間隔が等価的に 1 / 2 倍 (サンプリングポ 50 【0011】次に、図1および図2の(a), (b) に

3 よって、本実施例の団体摄像装置の動作について説明す る。図2は、図1の偏光素子7から固体操像素子3に至 る光路中の素子を更に詳しく書き、かつ、動作が分かり やすいように、光の偏光について模式的に表現した図で

【0012】先ず、電圧制御偏光素子8の一例について 説明する。この世圧制御偏光素子8は、透明世極8-1、 8-1によって、液品ユニット8-2を挟み込んだ構成にな っている。したがって、透明電極間8-1、8-1に似圧を 印加しない時は、この素子を通過する光は偏光面が90 10 空間的な分離方向は特に問題にしない。例えば、従来の * 回転し、電圧を印加した時には偏光面が回転せずに通 尚する。

[0013] 次に、動作について説明する。最初に、図 2 (a) を参照して、電圧制御偏光素子8に電圧を印加 しない場合について説明する。偏光素子?に至るまでの 光は、自然光なので偏光していない。この様子を、紙面 に垂直な方向を示す符号 (矢の正面を示す符号) と、紙 面に平行な方向を示す符号 (図中、上下方向を示す矢 印)とを合成して表現して模式的に示した。

光を透過するように配置する。すると、電圧制御偏光素 子8へ入射する光は紙面に平行な方向(図中、上下方向 を示す矢印) に偏光している。今、電圧制御偏光素子8 に電圧を印加していないと、透過光は偏光面が90°回 転して紙面に垂直な方向の偏光 (矢の正面を示す符号) となる。この光が、毎屈折索子9に入射する。

【0015】この復屈折素子9は、例えば水晶で構成さ れており、自然光が入射すると、常光線と異常光線とに 分離されて出力される。この時、常光線は、分離方向に 垂直な方向に偏光した(この場合、紙面に垂直な方向) 光が透過し、異常光線は、分離方向に平行な方向に偏光 した光 (この場合、紙面に平行な方向の光) が透過す る。したがって、復屈折索子9を透過する光路は、図中 の実線で示した光路となる。

【0016】次に、電圧制御偏光素子8に電圧を印加し た場合について、図2 (b) について説明する。この場 合、電圧が印加されているため、電圧制御偏光素子8を 通過する光は偏光面の回転を受けない。したがって、電 圧制御偏光素子8を通過した光は、紙面に平行な方向に 偏向した状態で複屈折素子9に入射する。複屈折素子9 では、その性質によって、図中実線で示した光路を辿り 固体撮像素子3に至る。

【0017】したがって、固体操像素子3に到達する光 線は、電圧制御偏光素子8に電圧を印加した時と印加し ない時とでは、複屈折素子の分離幅分だけ位置がずれる ことになる。そこで、上記分離幅を固体提像素子3の光 電変換用フォトダイオードPDのピッチPの1/2の幅 (1/2P) になるように設定すると、等価的にサンプ リング問隔が1/2倍(サンプリングポイントが2倍) になったことになり、高解像度の画像を得ることができ 50

【0018】なお、光学的にずれた画像を合成して復元 方法は、従来より行われている技術を用いて行うことが できるので、説明を省く、また、常圧制御信光素子及に

質圧を印加するタイミング (フレーム無) も従来と同じ でよいので、説明を省略する。

【0019】 さらに、上述の実施例では、像の切換タイ ミングをフレーム毎としたが、フィールド毎に像を切換 えるようにしてもよい。また、本発明の実施例で、像の ビデオシステム (例えば、NTSC, PAL) では、水 平解像度を向上させるために、画像の水平方向に分離す れば良い。また、ハイビジョンシステムやコンピュータ 用画像入力として応用する場合は画像の垂直方向、また は水平と垂直を合成した方向(斜め方向)に分離すれば よい。このようにする場合でも、後段の信号処理装置 6

[0020]

を若干改良するだけでよい。

【発明の効果】本発明は上述したように、損傷レンズと [0014] 偏光素子7は、例えば紙面に平行な向きの 20 固体提像素子との間の光路中に、偏光素子と電圧制御偏 光素子と複屈折素子とを配設し、上記電圧制御偏光素子 へ所定のタイミングで電圧を印加して、上記電圧制御偏 光素子を通過する光の偏向状態を制御するとともに、上 記制御回路の制御状態に応じた画像合成を行うようにし たので、上記電圧制御偏光素子に電圧が印加されている ときと、賃圧が印加されていないときとで、上記費圧制 御偏光素子を消過する光の偏向面の回転状態を変化させ ることができる。これにより、上記復屈折素子を介して 上記固体操像素子に到達する光線の位置を、上記物屈折 30 素子の分離幅だけずらすことができ、機械的な駆動機構 を設けることなく光路の分離が可能になる。したがっ て、高解像度の画像が得られる固体撮像装置を、機械的 な駆動機構を設けることなく簡単に構成することができ

【図面の簡単な説明】

【図1】本発明の一実施例を示す固体操像装置の構成図

【図2】 (a) は、電圧制御偏光素子に電圧が印加され ていない場合の固体損像装置の要部構成および光路を示 し、(b) は食圧制御信光素子に食圧が印加されている 場合の固体機像装置の要部構成および光路を示す図であ

【図3】高解像度化の従来例を示す固体操像装置の構成 図である。 【符号の説明】

1 レンズ

2 平行平板ガラス

3 固体排機基子

4 駆動装置

5 同期信号発生器

- 6 信号処理装置
- 7 偏光素子 8 電圧制御偏光素子

9 復屈折索子

10 制御回路

[図3]

