Uvod u obradu prirodnog jezika

9.1. Ekstrakcija informacija i prepoznavanje imenovanih entiteta
(Information Extraction and Named Entity Recognition)

Branko Žitko

prevedeno od: Dan Jurafsky, Chris Manning

Ekstrakcija informacija (IE)

- Sustavi za ekstrakciju informacija (IE)
 - pronalaženje i razumijevanje relevantnih dijelova teksta
 - skupljanje informacija iz mnogih izvora teksta
 - produkcija strukturne reprezentacije relevantnih informacija
 - relacije
 - baza znanja
 - Ciljevi:
 - 1. organizacija informacija tako da budu korisne ljudima
 - postavljanje informacija u semantički preciznom obliku čime se omogućava daljnje zaključivanje uz pomoć računalnih algoritama

Ekstrakcija informacija (IE)

- IE sustavi ekstraktiraju čiste, činjenične informacije:
 - Ugrubo: Tko je učinio nešto nekome kada?
- Npr:
 - Prikupljanje zarade, profita, članova odbora, sjedišta, itd. iz izvještaja kompanije
 - Sjedišta ABC Trade d.o.o. i globalna sjedišta kombinirane
 ABC Trade Grupe, su locirane u Splitu, Hrvatska
 - sjedišta("ABC Trade d.o.o.", "Split Hrvatska")
 - Učenje lijek-gen interakcije iz znanstvene medicinske literature

IE na niskom nivou

 Dostupno – relativno popularno – u aplikacijama kao Apple ili Google mail i kod web indeksiranja

Izgleda da su temeljena na regularnim izrazima i listama naziva

 Važan podzadatak: pronalaženje i klasifikacija naziva u tekstu, npr:

– odluka nezavisnog kandidata Ivana Mimača da obustavi njegovu podršku za manjinsku stranku Rada je zvučala dramatično, ali u buduće neće prijetiti stabilnosti. Kada su, nakon izbora 2010 godine, Ivan, Ante Jukić, Marija Anitovska i Milanić odlučili podržati Rad, dali su samo dvije garancije: povjerenje i opskrbu.

 Važan podzadatak: pronalaženje i klasifikacija naziva u tekstu, npr:

– odluka nezavisnog kandidata Ivana Mimača da obustavi njegovu podršku za manjinsku stranku Rada je zvučala dramatično, ali u buduće neće prijetiti stabilnosti. Kada su, nakon izbora 2010 godine, Ivan, Ante Jukić, Marija Anitovska i Milanić odlučili podržati Rad, dali su samo dvije garancije: povjerenje i opskrbu.

 Važan podzadatak: pronalaženje i klasifikacija naziva u tekstu, npr:

– odluka nezavisnog kandidata Ivana Mimača da obustavi njegovu podršku za manjinsku stranku Rada je zvučala dramatično, ali u buduće neće prijetiti stabilnosti. Kada su, nakon izbora 2010 godine, Ivan, Ante Jukić, Marija Anitovska i Milanić odlučili podržati Rad, dali su samo dvije garancije: povjerenje i opskrbu.

> Osoba Datum Lokacija Organizacija

Korištenje:

- imenovani entiteti se mogu indeksirati, povezati, itd.
- Sentiment se može pridružiti kompanijama ili produktima
- Mnoge IE relacije su veze između imenovanih entiteta
- Za odgovaranje na pitanja, odgovori su često imenovani entiteti

Konkretno:

- Mnoge Web stranice označavaju razne entitete, s vezama na biografiju, tematske stranice i slično
 - Reuter's OpenCalais, Evri, AlchemyAPI, Yahoo's Term Extraction
- Apple/Google/Microsoft/ ... pametni prepoznavatelji za sadržaj dokumenta

Uvod u obradu prirodnog jezika

9.2. Evaluacija prepoznavanja imenovanih entiteta (Evaluation of Named Entity Recognition)

Branko Žitko

prevedeno od: Dan Jurafsky, Chris Manning

Zadatak NER prepoznavanja

• Zadatak: Predvidjeti entitete u tekstu

– govornik	0
Ministarstva	ORG
Vanjskih	ORG
Poslova	ORG
– Ivan	PER Standardna evaulacija je po
– Ivanić	PER entitetu, ne po pojavnici (tokenu)
rekao	0
– je	O
– Vjesniku	ORG
:	:

Zadatak NER prepoznavanja

Zadatak: Predvidjeti entitete u tekstu

Zadatak NER prepoznavanja

Zadatak: Predvidjeti entitete u tekstu

Preciznost/Odziv/F1 za IE/NER

- Odziv i preciznost su odlične mjere za dohvat informacija (IR) i kategorizaciju teksta
- Mjera se ponaša čudno kod IE/NER kada ima graničnih grešaka (koje su česte):
 - Prva Banka za Splićane je proglasila...
- Ovim se obuhvaća i lažno pozitivne i lažno negativne vrijednosti
- Izbor <u>ničega</u> bi bilo bolje
- Neke druge metrike (npr. MUC bodovanje) daju djelomičan utjecaj (prema složenim pravilima)

IE na niskom nivou

 Dostupno – relativno popularno – u aplikacijama kao Apple ili Google mail i kod web indeksiranja

Izgleda da su temeljena na regularnim izrazima i listama naziva

 Važan podzadatak: pronalaženje i klasifikacija naziva u tekstu, npr:

– odluka nezavisnog kandidata Ivana Mimača da obustavi njegovu podršku za manjinsku stranku Rada je zvučala dramatično, ali u buduće neće prijetiti stabilnosti. Kada su, nakon izbora 2010 godine, Ivan, Ante Jukić, Marija Anitovska i Milanić odlučili podržati Rad, dali su samo dvije garancije: povjerenje i opskrbu.

 Važan podzadatak: pronalaženje i klasifikacija naziva u tekstu, npr:

– odluka nezavisnog kandidata Ivana Mimača da obustavi njegovu podršku za manjinsku stranku Rada je zvučala dramatično, ali u buduće neće prijetiti stabilnosti. Kada su, nakon izbora 2010 godine, Ivan, Ante Jukić, Marija Anitovska i Milanić odlučili podržati Rad, dali su samo dvije garancije: povjerenje i opskrbu.

 Važan podzadatak: pronalaženje i klasifikacija naziva u tekstu, npr:

– odluka nezavisnog kandidata Ivana Mimača da obustavi njegovu podršku za manjinsku stranku Rada je zvučala dramatično, ali u buduće neće prijetiti stabilnosti. Kada su, nakon izbora 2010 godine, Ivan, Ante Jukić, Marija Anitovska i Milanić odlučili podržati Rad, dali su samo dvije garancije: povjerenje i opskrbu.

> Osoba Datum Lokacija Organizacija

Korištenje:

- imenovani entiteti se mogu indeksirati, povezati, itd.
- Sentiment se može pridružiti kompanijama ili produktima
- Mnoge IE relacije su veze između imenovanih entiteta
- Za odgovaranje na pitanja, odgovori su često imenovani entiteti

Konkretno:

- Mnoge Web stranice označavaju razne entitete, s vezama na biografiju, tematske stranice i slično
 - Reuter's OpenCalais, Evri, AlchemyAPI, Yahoo's Term Extraction
- Apple/Google/Microsoft/ ... pametni prepoznavatelji za sadržaj dokumenta

Uvod u obradu prirodnog jezika

9.3. Modeli sekvenci za prepoznavanje imenovanih entiteta (Sequence Models for Named Entity Recognition)

Branko Žitko

prevedeno od: Dan Jurafsky, Chris Manning

NER i model sekvence iz strojnog učenja

Treniranje

- 1. Prikupi skup reprezentativnih dokumenata za treniranje
- Označi svaku pojavnicu entitetskom klasom ili ostalo (O)
- 3. Oblikuj ekstraktore osobina prikladne za tekst i klase
- 4. Treniraj sekvencijski klasifikator za predviđanje oznaka iz podataka

Testiranje

- 1. Primi skup dokumenata za testiranje
- Pokreni zaključivanje pomoću modela sekvence radi označavanja svake pojavnice
- 3. Prikladno vrati prepoznate entitete

Kodne klase za označavanje sekvence

	IO kodiranje	IOB kodiranje
Luka	PER	B-PER
pokazuje	O	O
Sanji	PER	B-PER
lvo	PER	B-PER
lvičevu	PER	I-PER
novu	O	O
sliku	O	O

Osobine za označavanje kod sekvenci

- Riječi
 - Trenutna riječ (kao naučeni rječnik)
 - Prethodna/sljedeća riječ (sadržaj)
- Druge vrste naslijeđenih lingvističkih klasifikacija
 - POS
- Sadržaj oznake
 - prethodna (i možda sljedeća) oznaka

Osobine: Podnizovi riječi

lijek tvrtka film mjesto osoba

Cotrimoxazole

Wethersfield

Rambo: First Blood

Osobine: Oblik riječi

Oblik riječi

 pridruživanje pojednostavljenog prikaza riječi koji kodira atribute kao što su duljina, velika/mala slova, brojevi, grčka slova, unutrašnje interpunkcije, itd.

Varicella-zoster	Xx-xxx
mRNA	xXXX
CPA1	XXXd

Uvod u obradu prirodnog jezika

9.4. Maksimalna entropija Markovljevog modela (Maximum Entropy Markov Models)

Branko Žitko

prevedeno od: Dan Jurafsky, Chris Manning

Problemi sekvenci

- Mnogi problemi OPJ imaju podatke kao sekvence znakova, riječi, fraza, linija, rečenica ...
- Naš zadatak je označavanje svakog elementa sekvence

POS označavanje

N	V	С	V	A	N
Stručnjaci	navode	kako	će	metalurški	sektor

NER

PERS	0	0	0	ORG	ORG
Matić	diskutira	0	budućnosti	Fakulteta	strojarstva

Segmentacija riječi

Segmentacija teksta

MEMM zaključivanje

- Uvjetni Markovljev model (Conditional Markov Model) tj.
 Markovljev model maksimalne entropije (MEMM) je klasifikator koji donosi odluku ovisno o opservacijama i prethodnim odlukama.
- Naš zadatak je označiti svaki element sekvence.

Osobine

W_0	22.6
W ₊₁	%
W ₋₁	pale
T ₋₁	V
T ₋₁ T ₋₂	VV
imaBroj?	da
	•••

Sustav za zaključivanje

Pohlepno (greedy) zaključivanje

Pohlepno zaključivanje

- Počinjemo s lijeva i koristimo klasifikator na svakoj poziciji kako bi pridružili oznaku
- Klasifikator može ovisiti o prethodnoj odluci kao i o promatranom podatku

Prednosti

- Brz, ne zahtjeva dodatnu memoriju
- Jednostavan za implementaciju
- Obogaćivanjem osobina tako da uključuju opservacije s desna mogu se postići dobri rezultati

Mane

Pohlepan. Rade se greške od kojih se ne može oporaviti.

Zaključivanje zrakama (Beam)

Zaključivanje zrakama

- Na svakoj poziciji zadrži najboljih K kompletiranih sekvenci
- Proširivanje sekvence se vrši lokalno
- Proširivanjem s oznakom se dobiva novi skup K kompletiranih sekvenci

Prednosti

- Brz, zrake veličine 3-5 su u većini slučajeva dobre kao i egzaktno zaključivanje
- Jednostavno za implementirati (ne zahtjeva dinamičko programiranje)

Mane

Nije egzaktno: globalno najbolje sekvence mogu ispasti sa zrake

Viterbi zaključivanje

- Viterbi zaključivanje
 - Dinamičko programiranje ili memoizacija
 - Zahtjeva mali prozor utjecaja stanja (npr. prethodna dva stanja su relevantna)
- Prednosti
 - Egzaktan: Globalno najbolja sekvenca se dobiva
- Mane
 - Teže za implementirati duže interakcije stanja (ali zaključivanje zrakama ne dopušta duže interakcije)

Uvjetna slučajna polja

- Još jedan model sekvenci: Conditional Random Fields (CRF)
- Uvjetni model cijele sekvence u odnosu na ulančavanje lokalnih modela

$$P(\overrightarrow{c} \mid \overrightarrow{d}, \lambda) = \frac{\exp \sum_{i} \lambda_{i} f_{i}(c, d)}{\sum_{c'} \exp \sum_{i} \lambda_{i} f_{i}(c', d)}$$

- Prostor od C je sada prostor sekvenci
 - Ako osobine f_i ostaju lokalne, onda se uvjetna vjerodostojnost može izračunati dinamičkim programiranjem
- Treniranje je sporije, ali CRF izbjegava natjecanje pristranosti
- U praksi obično rade dobro kao i MEMM

Uvod u obradu prirodnog jezika

9.5. Markovljev model (Markov model)

Branko Žitko

Markovljev model

- Sekvenca slučajnih varijabli koja nije nezavisna
- Primjer
 - prognoza vremena
 - tekst
- Svojstva:
 - $P(X_{t+1} = s_k | X_1,...,X_t) = P(X_{t+1} = s_k | X_t)$
 - Vremenska invarijanta
 - $P(X_2 = s_k | X_1)$
- Definicija:
 - u terminima tranzicijske matrice A i vjerojatnosti početnog stanja П

(Vidljivi) Markovljev model (VMM)

$$P(X1, ..., XT) = P(X1) P(X2|X1) P(X3|X1,X2) ... P(XT|X1,X2,...,XT-1)$$

= $P(X1) P(X2|X1) P(X3|X2) ... P(XT,XT-1)$
= $P(d, a, b) = P(X_1=d) P(X_2=a|X_1=d) P(X_3=b|X_2=a)$
= $1.0 * 0.7 * 0.8$
= 0.56

Skriveni Markovljev model

- Hidden Markov Model (HMM)
 - Promatra sekvencu simbola
 - Sekvenca stanja koja vodi do generiranja simbola je skrivena

Definicija

- Q = skup stanja
- O = skup opservacija, napravljena iz rječnika
- $-q_0$, q_f = specijalna stanja (početno i završno stanje)
- A = matrica vjerojatnosti tranzicija stanja
- B = matrica vjerojatnosti emisije simbola
- Π = vjerojatnosti početnog stanja
- μ = (A, B, Π) = potpuni probabilistički model

Skriveni Markovljev model

- Koristi se za modeliranja sekvence stanja i sekvence opservacija
- Primjer:

$$P(S|W) = \Pi_i P(s_i|s_{i-1}) P(w_i|s_i)$$

Generativni algoritam

- 1. Izaberi početak iz Π
- 2. zat = 1..T
 - 1. Prijeđi u sljedeće stanje temeljem A
 - 2. Emitiraj opservaciju temeljem B

Vjerojatnosti skrivenog Markovljevog modela

Vjerojatnosti prijelaza

Emisijske vjerojatnosti

	Х	у	Z
Α	0.7	0.2	0.1
В	0.3	0.5	0.2

Svi parametri skrivenog Markovljevog modela

Početak

$$-P(A|start) = 1.0$$
 $P(B|start) = 0.0$

Tranzicije

$$-P(A|A) = 0.8 P(A|B) = 0.6$$

$$-P(B|A) = 0.2 P(B|B) = 0.4$$

Emisije

$$-P(x|A) = 0.7 P(y|A) = 0.2 P(z|A) = 0.1$$

$$-P(x|B) = 0.3 P(y|B) = 0.5 P(z|B) = 0.2$$

Opservacijska sekvenca "yz"

- Počevši u stanju A, koliki je P(yz)?
- Moguće sekvence stanja
 - -AA
 - -AB
 - BA
 - -BB

```
    P(yz) = P(yz|AA)+P(yz|AB)+P(yz|BA)+P(yz|BB)
    = 0.8 x 0.2 x 0.8 x 0.1
    + 0.8 x 0.2 x 0.2 x 0.2
    + 0.2 x 0.5 x 0.4 x 0.2
    + 0.2 x 0.5 x 0.6 x 0.1
    = 0.0128 + 0.0064 + 0.0080 + 0.0060 = 0.0332
```

HMM zadaci

- Zadaci
 - Za dani model μ =(A,B,Π) pronađi vjerojatnost opservacija P(O| μ)
 - Za dane opservacije O, koji je slijed stanja $(X_1, ..., X_{T+1})$
 - Za dane opservacije O i sve moguće modele μ, odredi model koji najbolje opisuje O
- Dekodiranje
 - označiti svaku pojavnicu oznakom
- Vjerodostojnost opservacije
 - klasificiraj sekvencu
- Učenje
 - treniraj model da odgovara empiričkim podacima

Zaključivanje

- Pronađi najvjerojatniji slijed oznaka, za dani slijed riječi
 - $-t^* = argmax_t P(t|w)$
- Za dani model μ jeli moguće izračunati P(t|w) za sve vrijednosti od t
- U praksi, postoji previše kombinacija
- Moguća rješenja:
 - koristiti pretraživanje po zrakama (beam search) djelomična hipoteza
 - U svakom stanju, čuvati k najboljih hipoteza do sada
 - Ne mora dobro raditi

Viterbi algoritam

- Pronađi najbolju putanju do opservacije O i stanja S
- Karakteristike
 - koristi dinamičko programiranje
 - memoizacija
 - praćenje unatrag

HMM učenje

- Nadzirano
 - Sekvence za treniranje su označene
- Nenadzirano
 - Sekvence za treniranje nisu označene
 - Poznat broj stanja
- Polunadzirano
 - Neke sekvence za treniranje su označene

Nadzirano HMM učenje

Procjeni vjerojatnosti tranzicija koristeći maksimalnu vjerodostojnost

$$a_{i,j} = \frac{broj(q_t = s_i, q_{t+1} = s_j)}{broj(q_t)}$$

 Procjeni vjerojatnosti opservacije koristeći maksimalnu vjerodostojnost

$$b_{j}(k) = \frac{broj(q_{i} = s_{j}, o_{i} = v_{k})}{broj(q_{i} = s_{j})}$$

Koristi izglađivanje

Nenadzirano HMM učenje

- Dano
 - slijed opservacija
- Cilj
 - izgraditi HMM
- Koristiti metodu maksimizacije očekivanja (EM - Expectation Maximization)
 - naprijed-nazad (forward-backward) (Baum-Welch) algoritam
 - Baum-Welch pronalazi približno rješenje za P(O|μ)

Baum-Welch

Algoritam

- Postavi slučajnim izborom parametre za HMM
- Dok parametri konvergiraju ponavljaj
 - E korak (očekivanje) odredi vjerojatnosti za razne sekvence stanja koje generiraju opservaciju (forward-backward)
 - M korak (maksimizacija) ponovno procjeni parametre za HMM temeljem dobivenih vjerojatnosti

Rezultati

- algoritam garantira da će se kod svake iteracije vjerodostojnost od P(O|μ) povećavati
- može se zaustaviti bilo kada i dobiti djelomično rješenje
- konvergira prema lokalnom maksimumu