

WEST Search History

[Hide Items](#) | [Restore](#) | [Clear](#) | [Cancel](#)

DATE: Friday, June 23, 2006

<u>Hide?</u>	<u>Set Name</u>	<u>Query</u>	<u>Hit Count</u>
<i>DB=PGPB,USPT,USOC,EPAB,JPAB,DWPI; THES=ASSIGNEE; PLUR=YES; OP=ADJ</i>			
<input type="checkbox"/>	L6	l5 not l1	12
<input type="checkbox"/>	L5	L4 and tetrafluoroethylene	12
<input type="checkbox"/>	L4	L2 and ethylene	66
<input type="checkbox"/>	L3	L2 and copper with catalyst	1
<input type="checkbox"/>	L2	polyfluoroalkyl acrylate	99
<input type="checkbox"/>	L1	polyfluoroalkylethyl acrylate	2

END OF SEARCH HISTORY

Connecting via Winsock to STN

Welcome to STN International! Enter x:x

LOGINID: ssspta1202jxp

PASSWORD :

TERMINAL (ENTER 1, 2, 3, OR ?):2

NEWS	1	Web Page URLs for STN Seminar Schedule - N. America
NEWS	2	"Ask CAS" for self-help around the clock
NEWS	3	JAN 17 Pre-1988 INPI data added to MARPAT
NEWS	4	FEB 21 STN AnaVist, Version 1.1, lets you share your STN AnaVist visualization results
NEWS	5	FEB 22 The IPC thesaurus added to additional patent databases on STN
NEWS	6	FEB 22 Updates in EPFULL; IPC 8 enhancements added
NEWS	7	FEB 27 New STN AnaVist pricing effective March 1, 2006
NEWS	8	MAR 03 Updates in PATDPA; addition of IPC 8 data without attributes
NEWS	9	MAR 22 EMBASE is now updated on a daily basis
NEWS	10	APR 03 New IPC 8 fields and IPC thesaurus added to PATDP FULL
NEWS	11	APR 03 Bibliographic data updates resume; new IPC 8 fields and IPC thesaurus added in PCTFULL
NEWS	12	APR 04 STN AnaVist \$500 visualization usage credit offered
NEWS	13	APR 12 LINSPEC, learning database for INSPEC, reloaded and enhanced
NEWS	14	APR 12 Improved structure highlighting in FQHIT and QHIT display in MARPAT
NEWS	15	APR 12 Derwent World Patents Index to be reloaded and enhanced during second quarter; strategies may be affected
NEWS	16	MAY 10 CA/CAplus enhanced with 1900-1906 U.S. patent records
NEWS	17	MAY 11 KOREAPAT updates resume
NEWS	18	MAY 19 Derwent World Patents Index to be reloaded and enhanced
NEWS	19	MAY 30 IPC 8 Rolled-up Core codes added to CA/CAplus and USPAT FULL/USPAT2
NEWS	20	MAY 30 The F-Term thesaurus is now available in CA/CAplus
NEWS	21	JUN 02 The first reclassification of IPC codes now complete in INPADOC
NEWS EXPRESS		FEBRUARY 15 CURRENT VERSION FOR WINDOWS IS V8.01a, CURRENT MACINTOSH VERSION IS V6.0c(ENG) AND V6.0Jc(JP), AND CURRENT DISCOVER FILE IS DATED 19 DECEMBER 2005. V8.0 AND V8.01 USERS CAN OBTAIN THE UPGRADE TO V8.01a AT http://download.cas.org/express/v8.0-Discover/
NEWS HOURS		STN Operating Hours Plus Help Desk Availability
NEWS LOGIN		Welcome Banner and News Items
NEWS IPC8		For general information regarding STN implementation of IPC 8
NEWS X25		X.25 communication option no longer available after June 2006

Enter NEWS followed by the item number or name to see news on that specific topic.

All use of STN is subject to the provisions of the STN Customer agreement. Please note that this agreement limits use to scientific research. Use for software development or design or implementation of commercial gateways or other similar uses is prohibited and may result in loss of user privileges and other penalties.

Connecting via Winsock to STN

Welcome to STN International! Enter x:x

LOGINID: ssspta1202jxp

PASSWORD :

TERMINAL (ENTER 1, 2, 3, OR ?):2

NEWS	1	Web Page URLs for STN Seminar Schedule - N. America
NEWS	2	"Ask CAS" for self-help around the clock
NEWS	3	JAN 17 Pre-1988 INPI data added to MARPAT
NEWS	4	FEB 21 STN AnaVist, Version 1.1, lets you share your STN AnaVist visualization results
NEWS	5	FEB 22 The IPC thesaurus added to additional patent databases on STN
NEWS	6	FEB 22 Updates in EPFULL; IPC 8 enhancements added
NEWS	7	FEB 27 New STN AnaVist pricing effective March 1, 2006
NEWS	8	MAR 03 Updates in PATDPA; addition of IPC 8 data without attributes
NEWS	9	MAR 22 EMBASE is now updated on a daily basis
NEWS	10	APR 03 New IPC 8 fields and IPC thesaurus added to PATDP FULL
NEWS	11	APR 03 Bibliographic data updates resume; new IPC 8 fields and IPC thesaurus added in PCTFULL
NEWS	12	APR 04 STN AnaVist \$500 visualization usage credit offered
NEWS	13	APR 12 LINSPEC, learning database for INSPEC, reloaded and enhanced
NEWS	14	APR 12 Improved structure highlighting in FQHIT and QHIT display in MARPAT
NEWS	15	APR 12 Derwent World Patents Index to be reloaded and enhanced during second quarter; strategies may be affected
NEWS	16	MAY 10 CA/CAplus enhanced with 1900-1906 U.S. patent records
NEWS	17	MAY 11 KOREAPAT updates resume
NEWS	18	MAY 19 Derwent World Patents Index to be reloaded and enhanced
NEWS	19	MAY 30 IPC 8 Rolled-up Core codes added to CA/CAplus and USPAT FULL/USPAT2
NEWS	20	MAY 30 The F-Term thesaurus is now available in CA/CAplus
NEWS	21	JUN 02 The first reclassification of IPC codes now complete in INPADOC
NEWS EXPRESS		FEBRUARY 15 CURRENT VERSION FOR WINDOWS IS V8.01a, CURRENT MACINTOSH VERSION IS V6.0c(ENG) AND V6.0Jc(JP), AND CURRENT DISCOVER FILE IS DATED 19 DECEMBER 2005. V8.0 AND V8.01 USERS CAN OBTAIN THE UPGRADE TO V8.01a AT http://download.cas.org/express/v8.0-Discover/
NEWS HOURS		STN Operating Hours Plus Help Desk Availability
NEWS LOGIN		Welcome Banner and News Items
NEWS IPC8		For general information regarding STN implementation of IPC 8
NEWS X25		X.25 communication option no longer available after June 2006

Enter NEWS followed by the item number or name to see news on that specific topic.

All use of STN is subject to the provisions of the STN Customer agreement. Please note that this agreement limits use to scientific research. Use for software development or design or implementation of commercial gateways or other similar uses is prohibited and may result in loss of user privileges and other penalties.

FILE 'HOME' ENTERED AT 17:54:16 ON 23 JUN 2006

=> file casreact
COST IN U.S. DOLLARS

FULL ESTIMATED COST

SINCE FILE ENTRY	TOTAL SESSION
0.21	0.21

FILE 'CASREACT' ENTERED AT 17:54:27 ON 23 JUN 2006
USE IS SUBJECT TO THE TERMS OF YOUR CUSTOMER AGREEMENT
COPYRIGHT (C) 2006 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications.

FILE CONTENT:1840 - 18 Jun 2006 VOL 144 ISS 25

New CAS Information Use Policies, enter **HELP USAGE TERMS** for details.

*
* CASREACT now has more than 10 million reactions
*

Some CASREACT records are derived from the ZIC/VINITI database (1974-1991) provided by InfoChem, INPI data prior to 1986, and Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich.

This file contains CAS Registry Numbers for easy and accurate substance identification.

```
=> Uploading C:\Program Files\Stnexp\Queries\10516940a.str
```

L1 STRUCTURE UPLOADED

```
=> d 11
L1 HAS NO ANSWERS
L1           STR
*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***
```

Structure attributes must be viewed using STN Express query preparation.

=> s 11
SAMPLE SEARCH INITIATED 17:55:04 FILE 'CASREACT'
SCREENING COMPLETE - 246 REACTIONS TO VERIFY FROM 25 DOCUMENTS

100.0% DONE 246 VERIFIED 0 HIT RXNS . 0 DOCS
SEARCH TIME: 00.00.01

FULL FILE PROJECTIONS: ONLINE **COMPLETE**
 BATCH **COMPLETE**
PROJECTED VERIFICATIONS: 3980 TO 5860
PROJECTED ANSWERS: 0 TO 0

=> s 11 full
FULL SEARCH INITIATED 17:55:17 FILE 'CASREACT'

Connecting via Winsock to STN

Welcome to STN International! Enter x:x

LOGINID: ssspta1202jxp

PASSWORD :

TERMINAL (ENTER 1, 2, 3, OR ?):2

NEWS	1	Web Page URLs for STN Seminar Schedule - N. America
NEWS	2	"Ask CAS" for self-help around the clock
NEWS	3	JAN 17 Pre-1988 INPI data added to MARPAT
NEWS	4	FEB 21 STN AnaVist, Version 1.1, lets you share your STN AnaVist visualization results
NEWS	5	FEB 22 The IPC thesaurus added to additional patent databases on STN
NEWS	6	FEB 22 Updates in EPFULL; IPC 8 enhancements added
NEWS	7	FEB 27 New STN AnaVist pricing effective March 1, 2006
NEWS	8	MAR 03 Updates in PATDPA; addition of IPC 8 data without attributes
NEWS	9	MAR 22 EMBASE is now updated on a daily basis
NEWS	10	APR 03 New IPC 8 fields and IPC thesaurus added to PATDPAFULL
NEWS	11	APR 03 Bibliographic data updates resume; new IPC 8 fields and IPC thesaurus added in PCTFULL
NEWS	12	APR 04 STN AnaVist \$500 visualization usage credit offered
NEWS	13	APR 12 LINSPEC, learning database for INSPEC, reloaded and enhanced
NEWS	14	APR 12 Improved structure highlighting in FQHIT and QHIT display in MARPAT
NEWS	15	APR 12 Derwent World Patents Index to be reloaded and enhanced during second quarter; strategies may be affected
NEWS	16	MAY 10 CA/CAPLUS enhanced with 1900-1906 U.S. patent records
NEWS	17	MAY 11 KOREAPAT updates resume
NEWS	18	MAY 19 Derwent World Patents Index to be reloaded and enhanced
NEWS	19	MAY 30 IPC 8 Rolled-up Core codes added to CA/CAPLUS and USPATFULL/USPAT2
NEWS	20	MAY 30 The F-Term thesaurus is now available in CA/CAPLUS
NEWS	21	JUN 02 The first reclassification of IPC codes now complete in INPADOC
NEWS EXPRESS		FEBRUARY 15 CURRENT VERSION FOR WINDOWS IS V8.01a, CURRENT MACINTOSH VERSION IS V6.0c(ENG) AND V6.0Jc(JP), AND CURRENT DISCOVER FILE IS DATED 19 DECEMBER 2005. V8.0 AND V8.01 USERS CAN OBTAIN THE UPGRADE TO V8.01a AT http://download.cas.org/express/v8.0-Discover/
NEWS HOURS		STN Operating Hours Plus Help Desk Availability
NEWS LOGIN		Welcome Banner and News Items
NEWS IPC8		For general information regarding STN implementation of IPC 8
NEWS X25		X.25 communication option no longer available after June 2006

Enter NEWS followed by the item number or name to see news on that specific topic.

All use of STN is subject to the provisions of the STN Customer agreement. Please note that this agreement limits use to scientific research. Use for software development or design or implementation of commercial gateways or other similar uses is prohibited and may result in loss of user privileges and other penalties.

* * * * * * * * * * * * * * * * STN Columbus * * * * * * * * * * * * * * *

FILE 'HOME' ENTERED AT 10:32:28 ON 23 JUN 2006

| | | |
|----------------------|------------|---------|
| => file caplus | SINCE FILE | TOTAL |
| COST IN U.S. DOLLARS | ENTRY | SESSION |
| FULL ESTIMATED COST | 0.21 | 0.21 |

FILE 'CAPLUS' ENTERED AT 10:32:46 ON 23 JUN 2006
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2006 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 23 Jun 2006 VOL 145 ISS 1
FILE LAST UPDATED: 22 Jun 2006 (20060622/ED)

Effective October 17, 2005, revised CAS Information Use Policies apply. They are available for your review at:

<http://www.cas.org/infopolicy.html>

=> polyfluoroalkylethyl iodide
POLYFLUOROALKYLETHYL IS NOT A RECOGNIZED COMMAND
The previous command name entered was not recognized by the system.
For a list of commands available to you in the current file, enter
"HELP COMMANDS" at an arrow prompt (>).

=> s polyfluoroalkylethyl iodide
1 POLYFLUOROALKYLETHYL
173365 IODIDE
24137 IODIDES
183154 IODIDE
(IODIDE OR IODIDES)
L1 1 POLYFLUOROALKYLETHYL IODIDE
(POLYFLUOROALKYLETHYL (W) IODIDE)

=> d 11 ibib ab

L1 ANSWER 1 OF 1 CAPLUS COPYRIGHT 2006 ACS on STN
ACCESSION NUMBER: 2003:1006848 CAPLUS
DOCUMENT NUMBER: 140:17105
TITLE: Metallic copper catalyst for
polyfluoroalkylethyl iodide
production and process for producing
polyfluoroalkylethyl iodides
INVENTOR(S): Funakoshi, Yoshiro; Miki, Jun
PATENT ASSIGNEE(S): Daikin Industries, Ltd., Japan
SOURCE: PCT Int. Appl., 21 pp.
CODEN: PIXXD2
DOCUMENT TYPE: Patent
LANGUAGE: Japanese
FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|---|------|----------|-----------------|------------|
| WO 2003106023 | A1 | 20031224 | WO 2003-JP7643 | 20030617 |
| W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW | | | | |
| RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG | | | | |
| AU 2003241701 | A1 | 20031231 | AU 2003-241701 | 20030617 |
| CN 1662302 | A | 20050831 | CN 2003-814144 | 20030617 |
| US 2005250966 | A1 | 20051110 | US 2004-516940 | 20041215 |
| PRIORITY APPLN. INFO.: | | | JP 2002-175381 | A 20020617 |
| | | | WO 2003-JP7643 | W 20030617 |

OTHER SOURCE(S): MARPAT 140:17105

AB Copper catalyzes the addition of ethylene to polyfluoroalkyl iodides to prepare polyfluoroalkylethyl iodides. Thus, 138.6 g C2F5I, 8.21 g Cu, and 1.0 MPa C2H4 were heated 80 min at 80° to give perfluoroethylethyl iodide at selectivity 99.8% and C2F5I conversion 99.5%.

REFERENCE COUNT: 32 THERE ARE 32 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

=> s polyfluoroalkyl iodide
 1572 POLYFLUOROALKYL
 1 POLYFLUOROALKYLS
 1572 POLYFLUOROALKYL
 (POLYFLUOROALKYL OR POLYFLUOROALKYLS)
 173365 IODIDE
 24137 IODIDES
 183154 IODIDE
 (IODIDE OR IODIDES)
 L2 89 POLYFLUOROALKYL IODIDE
 (POLYFLUOROALKYL (W) IODIDE)

=> s l2 and ethylene
 524665 ETHYLENE
 3356 ETHYLENES
 526141 ETHYLENE
 (ETHYLENE OR ETHYLENES)
 L3 5 L2 AND ETHYLENE

=> s l3 ibib ab 1-5
 MISSING OPERATOR L3 IBIB
 The search profile that was entered contains terms or nested terms that are not separated by a logical operator.

=> d l3 ibib ab 1-5

L3 ANSWER 1 OF 5 CAPLUS COPYRIGHT 2006 ACS on STN
 ACCESSION NUMBER: 2003:1006848 CAPLUS
 DOCUMENT NUMBER: 140:17105
 TITLE: Metallic copper catalyst for polyfluoroalkylethyl iodide production and process for producing polyfluoroalkylethyl iodides
 INVENTOR(S): Funakoshi, Yoshiro; Miki, Jun
 PATENT ASSIGNEE(S): Daikin Industries, Ltd., Japan

SOURCE: PCT Int. Appl., 21 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|---|------|----------|-----------------|------------|
| WO 2003106023 | A1 | 20031224 | WO 2003-JP7643 | 20030617 |
| W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW | | | | |
| RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG | | | | |
| AU 2003241701 | A1 | 20031231 | AU 2003-241701 | 20030617 |
| CN 1662302 | A | 20050831 | CN 2003-814144 | 20030617 |
| US 2005250966 | A1 | 20051110 | US 2004-516940 | 20041215 |
| PRIORITY APPLN. INFO.: | | | JP 2002-175381 | A 20020617 |
| | | | WO 2003-JP7643 | W 20030617 |

OTHER SOURCE(S): MARPAT 140:17105

AB Copper catalyzes the addition of ethylene to polyfluoroalkyl iodides to prepare polyfluoroalkylethyl iodides. Thus, 138.6 g C2F5I, 8.21 g Cu, and 1.0 MPa C2H4 were heated 80 min at 80° to give perfluoroethyl iodide at selectivity 99.8% and C2F5I conversion 99.5%.

REFERENCE COUNT: 32 THERE ARE 32 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L3 ANSWER 2 OF 5 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1974:571361 CAPLUS

DOCUMENT NUMBER: 81:171361

TITLE: N-(Fluoroalkyl)arylamine dye intermediates

INVENTOR(S): Sureau, Robert; Pechmeze, Jacques

PATENT ASSIGNEE(S): Ugine Kuhlmann

SOURCE: Ger. Offen., 15 pp.

CODEN: GWXXBX

DOCUMENT TYPE: Patent

LANGUAGE: German

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|-------------|------|----------|-----------------|----------|
| DE 2353293 | A1 | 19740516 | DE 1973-2353293 | 19731024 |
| FR 2205894 | A5 | 19740531 | FR 1972-38896 | 19721103 |
| CH 590204 | A | 19770729 | CH 1973-14842 | 19731022 |
| BE 806852 | A1 | 19740430 | BE 1973-137359 | 19731031 |
| NL 7314986 | A | 19740507 | NL 1973-14986 | 19731101 |
| JP 49108028 | A2 | 19741014 | JP 1973-123920 | 19731102 |
| GB 1448701 | A | 19760908 | GB 1973-50911 | 19731102 |
| IT 999712 | A | 19760310 | IT 1973-70216 | 19731105 |

PRIORITY APPLN. INFO.:

AB Twelve RR1N(CH₂)₂(CF₂)_nCF₃ (I; R = Ph, 3-MeC₆H₄, 3-ClC₆H₄, or 1-C₁₀H₇; R₁ = H, Et, CH₂CH₂CN, or CH₂CH₂OH; n = 1, 3, or 5) were prepared. Thus, reaction of PhNH₂ with CF₃CF₂CH₂CH₂I gave 80.7% N-(3,3,4,4,4-pentafluorobutyl)aniline (II) [52671-65-5]. Similarly prepared were 4 other I. Ethylation of II gave 84.7% N-ethyl-N-(3,3,4,4,4-pentafluorobutyl)aniline [52298-66-5]. Similarly prepared was 1 other I.

Reaction of II with CH₂:CHCN gave 70.2% N-(cyanoethyl)-N-(3,3,4,4,4-pentafluorobutyl)aniline [52298-65-4]. Similarly prepared were 2 other I. Reaction of N-(3,3,4,4,4-pentafluorobutyl)-m-toluidine with ethylene oxide gave 75.5% N-(pentafluorobutyl)-N-(hydroxyethyl)-m-toluidine [52671-66-6]. Similarly prepared was 1 other I.

L3 ANSWER 3 OF 5 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1974:519901 CAPLUS
 DOCUMENT NUMBER: 81:119901
 TITLE: Polyfluoroalkyl iodides
 INVENTOR(S): Jaeger, Horst
 PATENT ASSIGNEE(S): Ciba-Geigy A.-G.
 SOURCE: Ger. Offen., 36 pp.
 CODEN: GWXXBX
 DOCUMENT TYPE: Patent
 LANGUAGE: German
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------------------|------|----------|-----------------|------------|
| DE 2361807 | A1 | 19740627 | DE 1973-2361807 | 19731212 |
| CH 576922 | A | 19760630 | CH 1972-18662 | 19721221 |
| CA 1023768 | A1 | 19780103 | CA 1973-187808 | 19731210 |
| US 3979469 | A | 19760907 | US 1973-425011 | 19731214 |
| GB 1411200 | A | 19751022 | GB 1973-58328 | 19731217 |
| FR 2211430 | A1 | 19740719 | FR 1973-45565 | 19731219 |
| BE 808878 | A1 | 19740620 | BE 1973-139076 | 19731220 |
| SU 528029 | D | 19760905 | SU 1973-1978254 | 19731220 |
| JP 49088811 | A2 | 19740824 | JP 1973-142552 | 19731221 |
| IT 1000773 | A | 19760410 | IT 1973-54542 | 19731221 |
| PRIORITY APPLN. INFO.: | | | CH 1972-18662 | A 19721221 |
| | | | CH 1973-2653 | A 19730223 |
| | | | CH 1973-16037 | A 19731114 |

AB Twenty-four F₃C(CF₂)_n(CH₂CR₁F)_mCH₂CHR₁ (n = 3-11, m = 1-3, R = H, Me, or CH₂OH; R₁ = H or F) were prepared by addition reaction of CH₂:CHR to F₃C(CF₂)_n(CH₂CR₁F)_mI at 100-60° and 1-30 kg/cm² in the presence of Al₂O₃-supported catalysts containing CuCl_x, (di)ethanolamine, and optionally SnCl₄. Thus, reaction of F₃C(CF₂)₃CH₂CF₂I with CH₂:CH₂ over a CuCl_x-SnCl₄-HOCH₂CH₂NH₂ catalyst 7 hr at 140° and 26 kg/cm² gave 98.5% F₃C(CF₂)₃CH₂CF₂CH₂CH₂I.

L3 ANSWER 4 OF 5 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1971:22415 CAPLUS
 DOCUMENT NUMBER: 74:22415
 TITLE: Thermal addition of polyfluoroalkyl iodides to ethylene
 INVENTOR(S): Bloechl, Walter
 PATENT ASSIGNEE(S): FMC Corp.
 SOURCE: U.S., 3 pp.
 CODEN: USXXAM
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------------------|------|----------|-----------------|------------|
| US 3535393 | A | 19701020 | US 1968-719692 | 19680408 |
| PRIORITY APPLN. INFO.: | | | US 1968-719692 | A 19680408 |

AB CH₂:CH₂ (14 g) and 87 g n-C₇F₁₅I at 124 ml/min and atmospheric pressure were passed through a Monel spiral preheater at 180-200° and through a Pyrex reactor 60 + 1.5 cm. heated to 379-401° with a spirally-wound Nichrome wire (resistance 2.4 ohms/ft.), residence time 17

sec. The exit gas was condensed to give 91 g n-C₇F₁₅CH₂CH₂I, b₂₀ 89-90°, purity 90%. Similarly was prepared 87% n-C₈F₁₇CH₂CH₂I, m. 50°, b₁₀ 90-1°.

L3 ANSWER 5 OF 5 CAPLUS COPYRIGHT 2006 ACS on STN
ACCESSION NUMBER: 1964:410993 CAPLUS
DOCUMENT NUMBER: 61:10993
ORIGINAL REFERENCE NO.: 61:1755d-h,1756a-b
TITLE: Improvement in the preparation of perfluoroalkyl iodides from tetrafluoroethylene
INVENTOR(S): Parsons, Raymond E.
PATENT ASSIGNEE(S): E. I. du Pont de Nemours & Co.
SOURCE: 5 pp.
DOCUMENT TYPE: Patent
LANGUAGE: Unavailable
PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------|-------|----------|-----------------|----------|
| US 3132185 | ----- | 19640505 | US 1962-191722 | 19620502 |
| BE 640970 | ----- | | BE | |
| GB 998235 | ----- | | GB | |

AB The preparation is given of perfluoroethyl iodide (C₂F₅I) (I) and longer chain title compds. C₂F₅(CF₂CF₂)_nI (II), where n = 1 or greater, according to the reaction 2I₂ + IF₅ + 5CF₂:CF₂ → 5CF₃CF₂I. If the molar ratio of iodine to IF₅ <2:1, products of formula II (mixture, various n values) result, usually in conjunction with varying amts. of I depending on the iodine to IF₅ ratio. Thus, 0.66 mole iodine, 0.33 mole IF₅ (III), and 0.0028 mole SbF₅ were mixed at ambient temperature in a Hastelloy-C lined autoclave (2 moles iodine and 8.48 millimoles catalyst/mole III), the whole cooled <0°, evacuated to remove air, heated to 80° with agitation and CF₂CF₂ (IV) and 192 parts added slowly; the pressure rose to 200-50 lb./in.² gage in <3 min., the temperature rose 8-26° after each addition in about 1 min. and then reverted to about 80° until 165 parts had been added. No temperature increase occurred during the addition of

the

remaining 27 parts of IV. The mixture was kept 1 hr. at 80°, cooled and the volatile products collected in a refrigerated receiver at -60°. Mass-spectrometry, showed 98.3% I, 0.4% unreacted IV, 0.8% IF₂CCF₂I (V) and 0.4% perfluorocyclobutane (VI). The noncondensed gases contained 28.1 parts IV and 4.3 parts I. The yield of I was 98.5%, based on IV. When the reaction temperature was 60° rather than 80°, the condensed product contained 97.4% I, 0.7% IV, 0.6% VI, 0.7% V, and 0.4% other products; the yield of I was 98.1%. When the reaction was repeated with omission of the SbF₅, the condensed product contained 98.5% I, 0.4% IV, 0.5% V and 0.5% VI, the oily residue contained 94.6% V and 4.4% I and the yield of I was 98.4% based on IV. The reaction was repeated with 0.0128 mole anhydrous SnF₂; the condensed product contained 96.9% I, 0.6% IV, 0.8% VI, 0.3% V, and 1.3% other products. The yield of I was 99% based on IV. Similarly, other catalysts were used (catalyst, and amount (parts) and % yield of I given): CaF₂, 2.0, 78; CrF₃.3H₂O, 2.0, 16; KF, 2.0, 18; HF, 100.0, 15; CoF₂.2H₂O, 2.0, 60; PbF₄, 2.0, 39; CuF₂, 2.0, 78; NiF₂.5H₂O, 2.0, 28; and AgF (50%), 2.0, 73. The following examples give the mixture of components. A mixture of 0.33 mole iodine, 0.182 mole III, and 0.0028 mole SbF₃ (VII) was prepared at ambient temperature in a Hastelloy-C lined autoclave,

cooled to below 0°, evacuated, sealed, heated to 60° with agitation, and 1.21 moles IV added slowly in small increments in 1 hr. The reaction was exothermic, the pressure dropped rapidly from 150-250 lb./in.² gage to <100 lb./in.² gage, the temperature rose 7-44° after each addition. The mixture was kept at 70° 1 hr., cooled, the volatile products were vented through a H₂O scrubber and a CaSO₄ drying column, condensed in a refrigerated receiver at -60° and the condensed volatile material analyzed. It contained (in mole-%) 95.1 I, 1.2 C₄F₉I

(VIII), 0.5 IV, and 1 C2F6 (IX). The noncondensed gases were found to consist of 8.0 parts IV, 4.0 parts I, and 3.1 parts IX. The nonvolatile residue (100 parts) was washed with H₂O and analyzed with a vapor phase chromatograph (in weight-%): I 21.1; VIII 28.7; C₆F₁₃I (X) 20.6; C₈F₁₇I (XI) 13.0; C₁₀F₂₁I (XII) 7.5; C₁₂F₂₅I (XIII) 4.1; C₁₄F₂₉I (XIV) 2.3; C₁₆F₃₃I (XV) 1.1. The combination of these analyses indicates that 96.9% IV is accounted for; % yields are as follows (based on IV consumed): I 48.8, VIII 15.8, X 12.3, XI 1.7, XV 0.9, and IX 0.6. Thus, the total yield of I was 95.8% and the total yield of products II was 47.1%. Iodine consumption was quant. Similarly, addnl. expts. were carried out with a varying ratio of iodine and III, as well as the temperature and the catalysts.

=> d his

(FILE 'HOME' ENTERED AT 10:32:28 ON 23 JUN 2006)

FILE 'CAPLUS' ENTERED AT 10:32:46 ON 23 JUN 2006

L1 1 S POLYFLUOROALKYLETHYL IODIDE
L2 89 S POLYFLUOROALKYL IODIDE
L3 5 S L2 AND ETHYLENE

=> s tetrafluoroethylene and 12

25843 TETRAFLUOROETHYLENE
34 TETRAFLUOROETHYLENES
25850 TETRAFLUOROETHYLENE
(TETRAFLUOROETHYLENE OR TETRAFLUOROETHYLENES)

L4 8 TETRAFLUOROETHYLENE AND L2

=> s 14 not 13

L5 6 L4 NOT L3

=> d 15 ibib ab 1-6

L5 ANSWER 1 OF 6 CAPLUS COPYRIGHT 2006 ACS on STN
ACCESSION NUMBER: 1997:381429 CAPLUS
DOCUMENT NUMBER: 127:81136
TITLE: Pentafluoro- λ^6 -sulfanyl (SF₅) fluoroalkyl iodides
AUTHOR(S): Terjeson, Robin J.; Renn, Julia; Winter, Rolf; Gard, Gary L.
CORPORATE SOURCE: Dep. Chem., Portland State Univ., Portland, OR, 97207, USA
SOURCE: Journal of Fluorine Chemistry (1997), 82(1), 73-78
CODEN: JFLCAR; ISSN: 0022-1139
PUBLISHER: Elsevier
DOCUMENT TYPE: Journal
LANGUAGE: English
OTHER SOURCE(S): CASREACT 127:81136

AB The synthesis of several SF₅-containing fluoroalkyl iodides derived from an improved synthesis of SF₅CF₂CF₂I are reported. These include SF₅CF₂CF₂CH₂CH₂I, SF₅(CF₂)₄I, SF₅CF₂CF₂(CH₂)₄I, SF₅CF₂CF₂CH:CHI and SF₅CF₂CF₂CHFCF₂I. The higher homologs SF₅(CF₂)₆I, SF₅CF₂CF₂(CHFCF₂)₂I and SF₅CF₂CF₂(CH₂CH₂)₃I were also identified.

REFERENCE COUNT: 18 THERE ARE 18 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 2 OF 6 CAPLUS COPYRIGHT 2006 ACS on STN
ACCESSION NUMBER: 1996:137648 CAPLUS
DOCUMENT NUMBER: 124:177222
TITLE: Initiators for telomerization of polyfluoroalkyl iodides with fluoroolefins
INVENTOR(S): Krespan, Carl George; Petrov, Viacheslav Alexandrovic;

PATENT ASSIGNEE(S): Smart, Bruce Edmund
 du Pont de Nemours, E. I., and Co., USA
 SOURCE: PCT Int. Appl., 14 pp.
 CODEN: PIXXD2
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|--|------|----------|-----------------|------------|
| WO 9532936 | A1 | 19951207 | WO 1995-US5857 | 19950518 |
| W: AU, CA, CN, JP, KR | | | | |
| RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE | | | | |
| US 5574193 | A | 19961112 | US 1995-416942 | 19950404 |
| AU 9525857 | A1 | 19951221 | AU 1995-25857 | 19950518 |
| PRIORITY APPLN. INFO.: | | | US 1994-249311 | A 19940526 |
| | | | WO 1995-US5857 | W 19950518 |

AB Polyfluoroalkyl iodides are telomerized with polyfluoroolefins in the presence of strong fluorooxidizer initiators. The products obtained are useful in the production of surfactants and oil repellents. Tetrafluoroethylene and perfluorobutyl iodide were telomerized in the presence of XeF_2 .

L5 ANSWER 3 OF 6 CAPLUS COPYRIGHT 2006 ACS on STN
 ACCESSION NUMBER: 1988:21312 CAPLUS
 DOCUMENT NUMBER: 108:21312
 TITLE: Studies of fluoroalkylation and fluoroalkoxylation. Part 16. Reactions of fluoroalkyl iodides with some nucleophiles by SRN1 mechanism
 AUTHOR(S): Chen, Qing Yun; Qiu, Zai Ming
 CORPORATE SOURCE: Shanghai Inst. Org. Chem., Acad. Sin., Shanghai, Peop. Rep. China
 SOURCE: Journal of Fluorine Chemistry (1987), 35(2), 343-57
 CODEN: JFLCAR; ISSN: 0022-1139
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 OTHER SOURCE(S): CASREACT 108:21312

AB XCF_2CF_2I [I; $X = ClCF_2CF_2, Cl(CF_2)_4$] readily react with the anion of Et acetoacetate in DMF to give $XCF_2C(CH_2CO_2Et) : CHCO_2Et$ (II), XCF_2CF_2H (III), Ac_2CHCO_2Et , and $AcCH(CO_2Et)_2CH(CO_2Et)Ac$ (IV). The reaction can be partly suppressed with 1,4-dinitrobenzene and the radical intermediate can be trapped by diallyl ether (DAE) to give the THF derivs. Anions of acetylacetone and malonitrile react also with I in the presence of DAE to yield the five-membered ring compds. All these results seem to indicate that the reaction is a radical chain process induced by electron transfer. In the case of XCF_2CF_2I (I; $X = Cl$), tetrafluoroethylene and IV, instead of II and III, are produced, showing the occurrence of β -fragmentation of the 2-halotetrafluoroethyl radical in the initiation step.

L5 ANSWER 4 OF 6 CAPLUS COPYRIGHT 2006 ACS on STN
 ACCESSION NUMBER: 1977:422253 CAPLUS
 DOCUMENT NUMBER: 87:22253
 TITLE: Methyl-terminated perfluoroalkyl iodides and related compounds
 AUTHOR(S): Rondestvedt, Christian S., Jr.
 CORPORATE SOURCE: Org. Chem. Dep., E. I. du Pont de Nemours and Co., Wilmington, DE, USA
 SOURCE: Journal of Organic Chemistry (1977), 42(11), 1985-90
 CODEN: JOCEAH; ISSN: 0022-3263
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 AB 1,1-Difluoroethyl iodide was prepared from vinylidene fluoride and hydrogen

iodide in 96% yield; it telomerized with tetrafluoroethylene with acyl peroxide catalysis to give the resp. Me(CF₂)_nI (n = 3,5,7,9,11,13,15).

L5 ANSWER 5 OF 6 CAPLUS COPYRIGHT 2006 ACS on STN
ACCESSION NUMBER: 1970:476644 CAPLUS
DOCUMENT NUMBER: 73:76644
TITLE: Linear polyfluoroalkyl iodide compounds
INVENTOR(S): Rebsdat, Siegfried; Schuierer, Erich; Hahn, Helmut
PATENT ASSIGNEE(S): Farbwerte Hoechst A.-G.
SOURCE: Ger., 4 pp.
CODEN: GWXXAW
DOCUMENT TYPE: Patent
LANGUAGE: German
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------|------|----------|-----------------|----------|
| DE 1915395 | A | 19700702 | DE 1969-1915395 | 19690326 |
| NL 7004025 | A | 19700929 | NL 1970-4025 | 19700320 |
| BE 748010 | A | 19700928 | BE 1970-748010 | 19700326 |
| FR 2035913 | A5 | 19701224 | FR 1970-10881 | 19700326 |
| FR 2035913 | B1 | 19740503 | | |
| GB 1256818 | A | 19711215 | GB 1970-1256818 | 19700326 |

PRIORITY APPLN. INFO.: DE 1969-1915395 A 19690326
AB Compds. of the general formula, C₂F₅(CF₂CF₂)_nI, where n = 2 to 5, were prepared by treating C₂F₅I with tetrafluoroethylene in the presence of 0.08-0.2% bis(trichloroacryloyl) peroxide, at 60-75° and 8-12 atmospheric. The products are intermediates for the production of hydro- and oleophobic media.

L5 ANSWER 6 OF 6 CAPLUS COPYRIGHT 2006 ACS on STN
ACCESSION NUMBER: 1969:11105 CAPLUS
DOCUMENT NUMBER: 70:11105
TITLE: Polyfluoroalkyl iodides from tetrafluoroethylene and lower polyfluoroalkyl iodides
INVENTOR(S): Blochl, Walter
PATENT ASSIGNEE(S): FMC Corp.
SOURCE: U.S., 5 pp.
CODEN: USXXAM
DOCUMENT TYPE: Patent
LANGUAGE: English
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------|------|----------|-----------------|----------|
| US 3404189 | A | 19681001 | US 1966-603072 | 19661104 |

PRIORITY APPLN. INFO.: US 1966-603072 A 19661104
AB A 3:1 molar mixture of 29.1 g. n-C₇H₁₅I (I) and Fe₂C:CF₂ were heated to 200° and passed through a glass tube 1.5 m. + 6 mm. at 355° and 80 mm., residence time 12 min., to give a condensate of 26.65 g. I, 3.64 g. n-C₉F₁₉I, and 0.53 g. 90% n-C₁₁F₂₃I. Similarly were prepared 13% H(CF₂)₄I, b₇₅₀ 85°; 86% Cl(CF₂)₄I, b₃₅₀ 70°; 2.7 g. I(CF₂)₄I, from 20 g. ICF₂CF₂I, b₁₀₀ 86°; 72% Br(CF₂)₄I, b₁₃₀; and a mixture of 80% n-C₁₀F₂₁I and 15% n-C₁₂F₂₅I. A drawing of the apparatus is included.

=> d his

(FILE 'HOME' ENTERED AT 10:32:28 ON 23 JUN 2006)

FILE 'CPLUS' ENTERED AT 10:32:46 ON 23 JUN 2006

L1 1 S POLYFLUOROALKYLETHYL IODIDE
L2 89 S POLYFLUOROALKYL IODIDE
L3 5 S L2 AND ETHYLENE
L4 8 S TETRAFLUOROETHYLENE AND L2
L5 6 S L4 NOT L3

=> s polyfluoroalkyl acrylate
1572 POLYFLUOROALKYL
1 POLYFLUOROALKYLS
1572 POLYFLUOROALKYL
(POLYFLUOROALKYL OR POLYFLUOROALKYLS)
180045 ACRYLATE
35260 ACRYLATES
189689 ACRYLATE
(ACRYLATE OR ACRYLATES)
L6 72 POLYFLUOROALKYL ACRYLATE
(POLYFLUOROALKYL (W) ACRYLATE)

=> s 16 and tetrafluoroethylene
25843 TETRAFLUOROETHYLENE
34 TETRAFLUOROETHYLENES
25850 TETRAFLUOROETHYLENE
(TETRAFLUOROETHYLENE OR TETRAFLUOROETHYLENES)
L7 1 L6 AND TETRAFLUOROETHYLENE

=> d 17 ibib ab

L7 ANSWER 1 OF 1 CPLUS COPYRIGHT 2006 ACS on STN
ACCESSION NUMBER: 1993:214334 CPLUS
DOCUMENT NUMBER: 118:214334
TITLE: UV absorbers based on fluorine-containing acrylic polymers
INVENTOR(S): Kodama, Shunichi; Kawasaki, Toru; Kobayashi, Shigeki;
Funaki, Atsushi
PATENT ASSIGNEE(S): Asahi Glass Co., Ltd., Japan
SOURCE: Jpn. Kokai Tokkyo Koho, 5 pp.
CODEN: JKXXAF
DOCUMENT TYPE: Patent
LANGUAGE: Japanese
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|-------------|------|----------|-----------------|----------|
| JP 04288387 | A2 | 19921013 | JP 1991-75681 | 19910315 |
| JP 2980999 | B2 | 19991122 | | |

PRIORITY APPLN. INFO.: JP 1991-75681 19910315
AB Title polymers are obtained from radical-polymerizable double bond-containing compds. [for example, (meth)acryloyl group-containing benzophenones, Ph salicylates, or benzotriazoles] and C4-21-polyfluoroalkyl or polyfluoroether-containing (meth)acrylates at mol ratio 90/10 - 10/90 and show weight average mol. weight (Mw) 1000-100,000. Thus, autoclaving 71 parts 2-(3'-hydroxy-4'-benzoyl)phenyloxyethyl methacrylate (I) and 126 parts perfluoroalkylethyl acrylate (II) in Me₂CO in the presence of peroxybutyl isobutyrate under N at 65° gave a copolymer (III) with Mw .apprx.5000. A 25 μm-thick film extruded from a mixture of 100 parts ethylene-chlorotrifluoroethylene-tetrafluoroethylene copolymer and 5 parts of the III showed UV permeation 0% at 340 nm and 0.2% at 360 nm initially and 0 and 0.3%, resp., after 1000-h exposure to a Sunshine arc weatherometer.

WEST Search History

[Hide Items](#) | [Restore](#) | [Clear](#) | [Cancel](#)

DATE: Friday, June 23, 2006

| <u>Hide?</u> | <u>Set Name</u> | <u>Query</u> | <u>Hit Count</u> |
|--|-----------------|---|------------------|
| <i>DB=PGPB,USPT,USOC,EPAB,JPAB,DWPI; THES=ASSIGNEE; PLUR=YES; OP=ADJ</i> | | | |
| <input type="checkbox"/> | L13 | L12 or l10 | 68 |
| <input type="checkbox"/> | L12 | L11 and ethylene | 47 |
| <input type="checkbox"/> | L11 | method with (produc\$3 or prepar\$3 or mak\$3)same (polyfluoroalkyl iodide or perfluoroalkyl iodide) | 110 |
| <input type="checkbox"/> | L10 | L9 not l5 not l6 | 34 |
| <input type="checkbox"/> | L9 | L8 not l1 | 34 |
| <input type="checkbox"/> | L8 | L7 and ethylene | 35 |
| <input type="checkbox"/> | L7 | process with (produc\$3 or prepar\$3 or mak\$3)same (polyfluoroalkyl iodide or perfluoroalkyl iodide) | 109 |
| <input type="checkbox"/> | L6 | l5 not l1 | 12 |
| <input type="checkbox"/> | L5 | L4 and tetrafluoroethylene | 12 |
| <input type="checkbox"/> | L4 | L2 and ethylene | 66 |
| <input type="checkbox"/> | L3 | L2 and copper with catalyst | 1 |
| <input type="checkbox"/> | L2 | polyfluoroalkyl acrylate | 99 |
| <input type="checkbox"/> | L1 | polyfluoroalkylethyl acrylate | 2 |

END OF SEARCH HISTORY

WEST Search History

[Hide Items](#) | [Restore](#) | [Clear](#) | [Cancel](#)

DATE: Friday, June 23, 2006

| <u>Hide?</u> | <u>Set Name</u> | <u>Query</u> | <u>Hit Count</u> |
|--|-----------------|---|------------------|
| <i>DB=PGPB,USPT,USOC,EPAB,JPAB,DWPI; THES=ASSIGNEE; PLUR=YES; OP=ADJ</i> | | | |
| <input type="checkbox"/> | L14 | l13 and copper | 14 |
| <input type="checkbox"/> | L13 | L12 or l10 | 68 |
| <input type="checkbox"/> | L12 | L11 and ethylene | 47 |
| <input type="checkbox"/> | L11 | method with (produc\$3 or prepar\$3 or mak\$3)same (polyfluoroalkyl iodide or perfluoroalkyl iodide) | 110 |
| <input type="checkbox"/> | L10 | L9 not l5 not l6 | 34 |
| <input type="checkbox"/> | L9 | L8 not l1 | 34 |
| <input type="checkbox"/> | L8 | L7 and ethylene | 35 |
| <input type="checkbox"/> | L7 | process with (produc\$3 or prepar\$3 or mak\$3)same (polyfluoroalkyl iodide or perfluoroalkyl iodide) | 109 |
| <input type="checkbox"/> | L6 | l5 not l1 | 12 |
| <input type="checkbox"/> | L5 | L4 and tetrafluoroethylene | 12 |
| <input type="checkbox"/> | L4 | L2 and ethylene | 66 |
| <input type="checkbox"/> | L3 | L2 and copper with catalyst | 1 |
| <input type="checkbox"/> | L2 | polyfluoroalkyl acrylate | 99 |
| <input type="checkbox"/> | L1 | polyfluoroalkylethyl acrylate | 2 |

END OF SEARCH HISTORY

Connecting via Winsock to STN

Welcome to STN International! Enter x:x

LOGINID: sssptal202jxp

PASSWORD:

TERMINAL (ENTER 1, 2, 3, OR ?):2

NEWS 1 Web Page URLs for STN Seminar Schedule - N. America
NEWS 2 "Ask CAS" for self-help around the clock
NEWS 3 JAN 17 Pre-1988 INPI data added to MARPAT
NEWS 4 FEB 21 STN AnaVist, Version 1.1, lets you share your STN AnaVist visualization results
NEWS 5 FEB 22 The IPC thesaurus added to additional patent databases on STN
NEWS 6 FEB 22 Updates in EPFULL; IPC 8 enhancements added
NEWS 7 FEB 27 New STN AnaVist pricing effective March 1, 2006
NEWS 8 MAR 03 Updates in PATDPA; addition of IPC 8 data without attributes
NEWS 9 MAR 22 EMBASE is now updated on a daily basis
NEWS 10 APR 03 New IPC 8 fields and IPC thesaurus added to PATDPAFULL
NEWS 11 APR 03 Bibliographic data updates resume; new IPC 8 fields and IPC thesaurus added in PCTFULL
NEWS 12 APR 04 STN AnaVist \$500 visualization usage credit offered
NEWS 13 APR 12 LINSPEC, learning database for INSPEC, reloaded and enhanced
NEWS 14 APR 12 Improved structure highlighting in FQHIT and QHIT display in MARPAT
NEWS 15 APR 12 Derwent World Patents Index to be reloaded and enhanced during second quarter; strategies may be affected
NEWS 16 MAY 10 CA/CAplus enhanced with 1900-1906 U.S. patent records
NEWS 17 MAY 11 KOREAPAT updates resume
NEWS 18 MAY 19 Derwent World Patents Index to be reloaded and enhanced
NEWS 19 MAY 30 IPC 8 Rolled-up Core codes added to CA/CAplus and USPATFULL/USPAT2
NEWS 20 MAY 30 The F-Term thesaurus is now available in CA/CAplus
NEWS 21 JUN 02 The first reclassification of IPC codes now complete in INPADOC

NEWS EXPRESS FEBRUARY 15 CURRENT VERSION FOR WINDOWS IS V8.01a,
CURRENT MACINTOSH VERSION IS V6.0c(ENG) AND V6.0Jc(JP),
AND CURRENT DISCOVER FILE IS DATED 19 DECEMBER 2005.
V8.0 AND V8.01 USERS CAN OBTAIN THE UPGRADE TO V8.01a AT
<http://download.cas.org/express/v8.0-Discover/>

NEWS HOURS STN Operating Hours Plus Help Desk Availability
NEWS LOGIN Welcome Banner and News Items
NEWS IPC8 For general information regarding STN implementation of IPC 8
NEWS X25 X.25 communication option no longer available after June 2006

Enter NEWS followed by the item number or name to see news on that specific topic.

All use of STN is subject to the provisions of the STN Customer agreement. Please note that this agreement limits use to scientific research. Use for software development or design or implementation of commercial gateways or other similar uses is prohibited and may

result in loss of user privileges and other penalties.

* * * * * * * * * * * * * * * * STN Columbus * * * * * * * * * * * * * * *

FILE 'HOME' ENTERED AT 17:54:16 ON 23 JUN 2006

=> file casreact

COST IN U.S. DOLLARS

| SINCE FILE
ENTRY | TOTAL
SESSION |
|---------------------|------------------|
| 0.21 | 0.21 |

FULL ESTIMATED COST

FILE 'CASREACT' ENTERED AT 17:54:27 ON 23 JUN 2006

USE IS SUBJECT TO THE TERMS OF YOUR CUSTOMER AGREEMENT

COPYRIGHT (C) 2006 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications.

FILE CONTENT:1840 - 18 Jun 2006 VOL 144 ISS 25

New CAS Information Use Policies, enter HELP USAGETERMS for details.

*
* CASREACT now has more than 10 million reactions *
*

Some CASREACT records are derived from the ZIC/VINITI database (1974-1991) provided by InfoChem, INPI data prior to 1986, and Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich.

This file contains CAS Registry Numbers for easy and accurate substance identification.

=>

Uploading C:\Program Files\Stnexp\Queries\10516940a.str

L1 STRUCTURE UPLOADED

=> d 11

L1 HAS NO ANSWERS

L1 STR

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

Structure attributes must be viewed using STN Express query preparation.

=> s 11

SAMPLE SEARCH INITIATED 17:55:04 FILE 'CASREACT'

SCREENING COMPLETE - 246 REACTIONS TO VERIFY FROM 25 DOCUMENTS

100.0% DONE 246 VERIFIED 0 HIT RXNS 0 DOCS
SEARCH TIME: 00.00.01

FULL FILE PROJECTIONS: ONLINE **COMPLETE**
BATCH **COMPLETE**

PROJECTED VERIFICATIONS: 3980 TO 5860

PROJECTED ANSWERS: 0 TO 0

L2 0 SEA SSS SAM L1 (0 REACTIONS)

=> s 11 full

FULL SEARCH INITIATED 17:55:17 FILE 'CASREACT'
SCREENING COMPLETE - 4448 REACTIONS TO VERIFY FROM 437 DOCUMENTS

100.0% DONE 4448 VERIFIED 0 HIT RXNS 0 DOCS
SEARCH TIME: 00.00.04

L3 0 SEA SSS FUL L1 (0 REACTIONS)

=> s 11 sss full

FULL SEARCH INITIATED 17:55:36 FILE 'CASREACT'
SCREENING COMPLETE - 4448 REACTIONS TO VERIFY FROM 437 DOCUMENTS

100.0% DONE 4448 VERIFIED 0 HIT RXNS 0 DOCS
SEARCH TIME: 00.00.04

L4 0 SEA SSS FUL L1 (0 REACTIONS)

=> file caplus

| COST IN U.S. DOLLARS | SINCE FILE ENTRY | TOTAL SESSION |
|----------------------|------------------|---------------|
| FULL ESTIMATED COST | 220.72 | 220.93 |

FILE 'CAPLUS' ENTERED AT 17:56:00 ON 23 JUN 2006
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2006 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 23 Jun 2006 VOL 145 ISS 1
FILE LAST UPDATED: 22 Jun 2006 (20060622/ED)

Effective October 17, 2005, revised CAS Information Use Policies apply. They are available for your review at:

<http://www.cas.org/infopolicy.html>

=> s ethylene and perfluoroalkyl iodide
524665 ETHYLENE
3356 ETHYLENES
526141 ETHYLENE
 (ETHYLENE OR ETHYLENES)
10971 PERFLUOROALKYL
35 PERFLUOROALKYLS
10991 PERFLUOROALKYL
 (PERFLUOROALKYL OR PERFLUOROALKYLS)
173365 IODIDE
24137 IODIDES
183154 IODIDE
 (IODIDE OR IODIDES)

691 PERFLUOROALKYL IODIDE
(PERFLUOROALKYL(W) IODIDE)
L5 35 ETHYLENE AND PERFLUOROALKYL IODIDE

=> s 15 and copper
890360 COPPER
436 COPPERS
890423 COPPER
(COPPER OR COPPERS)

L6 4 L5 AND COPPER

=> d 16 ibib ab 1-4

L6 ANSWER 1 OF 4 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2004:125104 CAPLUS

DOCUMENT NUMBER: 140:320999

TITLE: Environmentally Benign Processes for Making Useful Fluorocarbons: Nickel- or Copper(I) Iodide-Catalyzed Reaction of Highly Fluorinated Epoxides with Halogens in the Absence of Solvent and Thermal Addition of CF₂I₂ to Olefins

AUTHOR(S): Yang, Zhen-Yu

CORPORATE SOURCE: Experimental Station, Central Research Development, E. I. Du Pont de Nemours and Co., Wilmington, DE, 19880-0328, USA

SOURCE: Journal of Organic Chemistry (2004), 69(7), 2394-2403
CODEN: JOCEAH; ISSN: 0022-3263

PUBLISHER: American Chemical Society

DOCUMENT TYPE: Journal

LANGUAGE: English

OTHER SOURCE(S): CASREACT 140:320999

AB Highly fluorinated epoxides react with halogens in the presence of nickel powder or CuI at elevated temps. to provide a useful and general synthesis of dihalodifluoromethanes (CF₂X₂) and fluoroacyl fluorides in the absence of solvent. At 185 °C, hexafluoropropylene oxide and halogens produce CF₂X₂ (X = I, Br) in 68-90% isolated yields, along with small amts. of X(CF₂)_nX, (n = 2, 3). With interhalogens I-X (X = Cl, Br), a mixture of CF₂I₂, CF₂XI, and CF₂X₂ was obtained. The fluorinated epoxides substituted with perfluorophenyl, fluorosulfonyl, and chlorofluoroalkyl groups also react cleanly with iodine to give CF₂I₂ and the corresponding fluorinated acyl fluorides in good yields. The reaction probably involves an oxidative addition of fluorinated epoxides into metal surfaces to form an oxametallacycle, followed by rapid decomposition to difluorocarbene-metal surfaces, which alters the reactivity of the difluorocarbene carbon from electrophilic to nucleophilic. The increase of nucleophilicity of difluorocarbene facilitates the reaction with electrophilic halogens. CF₂I₂ reacted with olefins thermally to give 1,3-diiodofluoropropane derivs. Both fluorinated and non-fluorinated alkenes gave good yields of the adducts. Reaction with ethylene, propylene, perfluoroalkylethylene, vinylidene fluoride, and trifluoroethylene provided the corresponding adducts in 58-86% yields. With tetrafluoroethylene, a 1:1 adduct was predominantly formed along with small amts. of higher homologs. In contrast to perfluoroalkyl iodides, CF₂I₂ also readily adds to perfluorovinyl ethers to give 1,3-diiodoperfluoro ethers. The formation of fluorocarbene was discussed.

REFERENCE COUNT: 117 THERE ARE 117 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L6 ANSWER 2 OF 4 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1984:591104 CAPLUS

DOCUMENT NUMBER: 101:191104

TITLE: Reactivity of perfluoroiodoalkanes with alkyl carbonates and pyrocarbonates in the presence of a zinc-copper couple
 AUTHOR(S): Benefice, S.; Blancou, H.; Commeyras, A.
 CORPORATE SOURCE: Lab. Chim. Org., Univ. Sci. Tech. Languedoc, Montpellier, 34060, Fr.
 SOURCE: Tetrahedron (1984), 40(9), 1541-4
 DOCUMENT TYPE: Journal
 LANGUAGE: French
 OTHER SOURCE(S): CASREACT 101:191104
 AB Perfluoroalkyl iodides RI [R = F₃C(CF₂)_n; n = 3, 5, 7] reacted with Zn-Cr in ethylene carbonate at 80-90° to give 60-80% RCO₂CH₂CH₂OH, and at >150° to give 60-85% RCO₂H. RI reacted with Cu-Zn in (EtO)₂CO or (EtO₂C)CO to give 50-70, 50-60% RCO₂Et, resp. In all cases the coupling product RR was also formed.

L6 ANSWER 3 OF 4 CAPLUS COPYRIGHT 2006 ACS on STN
 ACCESSION NUMBER: 1974:81946 CAPLUS
 DOCUMENT NUMBER: 80:81946
 TITLE: Reaction of (perfluoroalkyl)copper compounds with 1-bromo-1-(perfluoroalkyl)ethylenes
 AUTHOR(S): Santini, G.; Le Blanc, M.; Reiss, J. G.
 CORPORATE SOURCE: Dep. Chim., Inst. Math. Sci. Phys., Nice, Fr.
 SOURCE: Tetrahedron (1973), 29(16), 2411-14
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 AB Heating RCB_r:CH₂ [I, R = (CF₂)₅CF₃, (CF₂)₇CF₃], RII [R = (CF₂)₃CF₃, (CF₂)₅CF₃, (CF₂)₇CF₃], precipitated Cu, and DMF for 20 hr at 120-40° in a sealed tube gave 60-70% trans-RCH:CHR₁. I were prepared by bromination-dehydrebromination of RCH:CH₂. ¹H and ¹⁹F NMR were determined

L6 ANSWER 4 OF 4 CAPLUS COPYRIGHT 2006 ACS on STN
 ACCESSION NUMBER: 1961:33124 CAPLUS
 DOCUMENT NUMBER: 55:33124
 ORIGINAL REFERENCE NO.: 55:6496h-i,6497a-c
 TITLE: Perfluoroalkylated aromatic compounds
 PATENT ASSIGNEE(S): Minnesota Mining and Manufacturing Co.
 DOCUMENT TYPE: Patent
 LANGUAGE: Unavailable
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------|------|----------|-----------------|----------|
| GB 840725 | --- | 19600706 | GB 1956-24567 | 19560810 |
| DE 1049862 | | | DE | |

AB Aromatic compds. were perfluoroalkylated with the appropriate perfluoroalkyl iodide. Some of the products were converted to dyes. The following reactions were run in a 180 ml. stainless steel rocking autoclave capped by a 3000 lb./sq. in. Ni rupture disk. n-C₃F₇I (90 g.) and 23.4 g. C₆H₆ was heated 15 hrs. at 250°, the crude product filtered off, treated with Hg and distilled to yield 22.3 g. C₃F₇Ph, b₇₆₀ 132°, n_{25D} 1.3790, and 1.5 g. isomeric (C₃F₇)₂C₆H₄, n_{25D} 1.3492. Likewise prepared were C₇F₁₅Ph (32% yield), b₇₆₀ 200°, n_{25D} 1.3596, and (C₇F₁₅)₂C₆H₄ (4% yield), m. 88°. All subsequent reactions were run in heavy-walled 30 ml. glass ampuls. n-C₇F₁₅I (10 g.) and 0.9 g. PhMe was heated 14 hrs. at 290°, the mixture extracted with perfluorooxacycloheptane and distilled to give a 31% yield of C₇F₁₅C₆H₄Me, b₇₆₀ 217°, n_{25D} 1.3678. Similarly prepared were: C₇F₁₅C₁₀H₇ in 31% yield (from naphthalene), n_{25D} 1.4160; C₇F₁₅C₆H₄CN in 26% yield (from

PhCN), b₇₆₀ 254°, m. 45-52°; C₇F₁₅C₆H₄Br in 30% yield (from PhBr), b₇₆₀ 237°, n_{25D} 1.3870; C₇F₁₅C₆H₄I in 38% yield (from PhI), b₇₆₀ 253°, n_{25D} 1.4152; C₇F₁₅C₆H₃(CO)2O (I) in 36% yield (from C₆H₄(CO)2O), m. 121-4°. I and glycerol in 3:2 mole ratio heated 4 hrs. at 220° gave fluorinated alkyd resins that had varnishlike properties. A perfluoroalkylated dye was prepared as follows: a 30 ml. glass ampul was charged with 1.4 g. Cu phthalocyanine and 10 g. n-C₇F₁₅I. The sealed ampul was heated 14 hrs. at 330°. Extraction with perfluorooxacycloheptane gave 4.4 g. C₆O₆F₆O₁₂N₈Cu (I) (purity approx. 85%). Impurities were removed by vacuum sublimation to yield I, m. 300°, visible absorption at 6550-90 Å. and 6200 Å. I was soluble in fluorinated solvents only. Similarly perfluoroalkylated were the following: thioindigo (Color Index 1207), pyranthrone (Color Index 1096), violanthrone (Color Index 1099), and dichloroisoviolanthrone (Color Index 1104). The principal visible absorption peaks of the products were given. These dyes have been used to dye Teflon.

=> d his

(FILE 'HOME' ENTERED AT 17:54:16 ON 23 JUN 2006)

FILE 'CASREACT' ENTERED AT 17:54:27 ON 23 JUN 2006

L1 STRUCTURE UPLOADED
L2 0 S L1
L3 0 S L1 FULL
L4 0 S L1 SSS FULL

FILE 'CAPLUS' ENTERED AT 17:56:00 ON 23 JUN 2006

L5 35 S ETHYLENE AND PERFLUOROALKYL IODIDE
L6 4 S L5 AND COPPER

=> s 15 not 16
L7 31 L5 NOT L6

=> d 17 ibib ab 1-31

L7 ANSWER 1 OF 31 CAPLUS COPYRIGHT 2006 ACS on STN
ACCESSION NUMBER: 2005:735265 CAPLUS
DOCUMENT NUMBER: 143:220367
TITLE: Method of fabricating dual damascene interconnection
 and etchant for stripping sacrificial layer
INVENTOR(S): Han, Sang-cheol; Lee, Kyoung-woo; Kim, Mi-young
PATENT ASSIGNEE(S): Samsung Electronics Co., Ltd., S. Korea
SOURCE: U.S. Pat. Appl. Publ., 13 pp.
 CODEN: USXXCO
DOCUMENT TYPE: Patent
LANGUAGE: English
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------------------|---|------------|-----------------|------------|
| US 2005176243 | A1 | 20050811 | US 2005-33208 | 20050111 |
| PRIORITY APPLN. INFO.: | | | KR 2004-8065 | A 20040206 |
| OTHER SOURCE(S): | MARPAT | 143:220367 | | |
| AB | A method of forming a dual damascene semiconductor interconnection and an etchant composition specially adapted for stripping a sacrificial layer in a dual damascene fabrication process without profile damage to a dual damascene pattern are provided. The method includes sequentially forming a 1st etch stop layer, a 1st intermetal dielec., a 2nd intermetal dielec., and a capping layer on a surface of a semiconductor substrate on which a | | | |

lower metal wiring is formed; etching the 1st intermetal dielec., the 2nd intermetal dielec., and the capping layer to form a via; forming a sacrificial layer within the via; etching the sacrificial layer, the 2nd intermetal dielec., and the capping layer to form a trench; removing the sacrificial layer remaining around the via using an etchant composition including NH₄F, HF, H₂O and a surfactant; and forming an upper metal wiring within the thus formed dual damascene pattern including the via and the trench. The preferred etchant composition for stripping a sacrificial layer in the foregoing dual damascene process consists essentially of NH₄F, HF, H₂O and a surfactant.

L7 ANSWER 2 OF 31 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2005:727519 CAPLUS
DOCUMENT NUMBER: 144:312852
TITLE: Amphiphilic block copolymers having water soluble and perfluoroalkyl-group containing blocks
AUTHOR(S): Kressler, Joerg; Kaiser, Sergej
CORPORATE SOURCE: Department of Engineering Science Martin-Luther-Universitaet Halle-Wittenberg, Halle, D-06099, Germany
SOURCE: Polymer Preprints (American Chemical Society, Division of Polymer Chemistry) (2005), 46(2), 580-581
CODEN: ACPPAY; ISSN: 0032-3934
PUBLISHER: American Chemical Society, Division of Polymer Chemistry
DOCUMENT TYPE: Journal; (computer optical disk)
LANGUAGE: English

AB A series of amphiphilic block copolymer having polyethylene oxide as the water soluble block were synthesized, and then esterified with **perfluoroalkyl iodide**. A second triblock copolymer was synthesized from **ethylene** oxide and hexafluoropropylene oxide. The aggregation behavior of the polymers and the interactions of the above block polymer with lipid monomers were also studied by surface pressure measurement and IRRAS.

REFERENCE COUNT: 7 THERE ARE 7 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L7 ANSWER 3 OF 31 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2004:769016 CAPLUS
DOCUMENT NUMBER: 141:395229
TITLE: An easy three step synthesis of perfluoroalkylated amphetamines
AUTHOR(S): Tewari, Amit; Hein, Martin; Zapf, Alexander; Beller, Matthias
CORPORATE SOURCE: Universitaet Rostock, Rostock, 18059, Germany
SOURCE: Tetrahedron Letters (2004), 45(41), 7703-7707
CODEN: TELEAY; ISSN: 0040-4039
PUBLISHER: Elsevier B.V.
DOCUMENT TYPE: Journal
LANGUAGE: English
OTHER SOURCE(S): CASREACT 141:395229

AB A general synthesis of perfluoroalkylated amphetamines is presented. Initially, 1-aryl-1-iodo-2-(perfluoroalkyl)**ethylenes** are prepared by radical addition of **perfluoroalkyl iodides** to arylacetylenes. Key step of the reaction sequence is the following dehydroiodination in the presence of n-BuLi to give 1-perfluoroalkyl-2-arylacetylenes in situ, which are reacted with secondary amines to produce perfluoroalkylated enamines in a new one pot procedure. Final hydrogenation yields the desired products in good yields. By using N,N-dibenzylamine or N-benzylamines the corresponding primary and secondary perfluoroalkylated amines are easily available.

REFERENCE COUNT: 44 THERE ARE 44 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L7 ANSWER 4 OF 31 CAPLUS COPYRIGHT 2006 ACS on STN
ACCESSION NUMBER: 2004:385293 CAPLUS
DOCUMENT NUMBER: 141:349790
TITLE: Pentafluoro- λ 6-sulfanyl (SF5)
perfluoroalkyl iodides-synthesis and
reaction with ethylene and
tetrafluoroethylene. Crystal structure of
SF5(CF2)4CH2CH2I
AUTHOR(S): Nixon, Paul G.; Mohtasham, Javid; Winter, Rolf; Gard,
Gary L.; Twamley, Brendan; Shreeve, Jean'ne. M.
CORPORATE SOURCE: Department of Chemistry, Portland State University,
Portland, OR, 97207-0751, USA
SOURCE: Journal of Fluorine Chemistry (2004), 125(4), 553-560
CODEN: JFLCAR; ISSN: 0022-1139
PUBLISHER: Elsevier Science B.V.
DOCUMENT TYPE: Journal
LANGUAGE: English
OTHER SOURCE(S): CASREACT 141:349790
AB A series of reactions of SF5CF2CF2I and SF5(CF2)4I with F2C:CF2 was
carried out in an effort to find the most effective methods for
chain-extension. SF5(CF2)8I and SF5(CF2)10I were prepared and isolated.
The reaction conditions for the addition of H2C:CH2 were also investigated.
The crystal structure of SF5(CF2)4CH2CH2I was determined
REFERENCE COUNT: 17 THERE ARE 17 CITED REFERENCES AVAILABLE FOR THIS
RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L7 ANSWER 5 OF 31 CAPLUS COPYRIGHT 2006 ACS on STN
ACCESSION NUMBER: 2001:292782 CAPLUS
DOCUMENT NUMBER: 135:121980
TITLE: A simple procedure for nucleophilic
perfluoroalkylation of organic and inorganic
substrates
AUTHOR(S): Petrov, V. A.
CORPORATE SOURCE: Experimental Station, Central Research and
Development, E. I. Du Pont de Nemours and Co.,
Wilmington, DE, 19880-0328, USA
SOURCE: Tetrahedron Letters (2001), 42(19), 3267-3269
CODEN: TELEAY; ISSN: 0040-4039
PUBLISHER: Elsevier Science Ltd.
DOCUMENT TYPE: Journal
LANGUAGE: English
OTHER SOURCE(S): CASREACT 135:121980
AB The mixture **perfluoroalkyl iodide** and
tetrakis(dimethylamino)ethylene is used for the nucleophilic
perfluoroalkylation. The reaction of chlorotrimethylsilane with
perfluoroalkyl iodide and tetrakis(dimethylamino)
ethylene in diglyme gives perfluoroalkyltrimethylsilane in 55-81%
yield. The interaction of this system with organic electrophiles such as
benzoyl and benzenesulfonyl chlorides, aliphatic and aromatic aldehydes and
activated ketones leads to the formation of the corresponding condensation
products in 24-62% yield.
REFERENCE COUNT: 22 THERE ARE 22 CITED REFERENCES AVAILABLE FOR THIS
RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L7 ANSWER 6 OF 31 CAPLUS COPYRIGHT 2006 ACS on STN
ACCESSION NUMBER: 2001:180342 CAPLUS
DOCUMENT NUMBER: 134:366988
TITLE: Reactions of Halofluorocarbons with Group 6 Complexes
M(C5H5)2L (M = Mo, W; L = C2H4, CO). Fluoroalkylation
at Molybdenum and Tungsten, and at Cyclopentadienyl or
Ethylene Ligands

AUTHOR(S): Hughes, Russell P.; Maddock, Susan M.; Guzei, Ilia A.;
Liable-Sands, Louise M.; Rheingold, Arnold L.
CORPORATE SOURCE: Departments of Chemistry Burke Chemistry Laboratory,
Dartmouth College, Hanover, NH, 03755-3564, USA
SOURCE: Journal of the American Chemical Society (2001),
123(14), 3279-3288
CODEN: JACSAT; ISSN: 0002-7863
PUBLISHER: American Chemical Society
DOCUMENT TYPE: Journal
LANGUAGE: English
OTHER SOURCE(S): CASREACT 134:366988

AB The Mo(II) and W(II) complexes [MCp₂L] (Cp = η^5 -cyclopentadienyl; L = C₂H₄, CO) react with **perfluoroalkyl iodides** to give a variety of products. The Mo(II) complex [MoCp₂(C₂H₄)] reacts with perfluoro-BuI or perfluorobenzyl iodide with loss of **ethylene** to give the 1st examples of fluoroalkyl complexes of Mo(IV), MoCp₂(CF₂CF₂CF₃)I (8) and MoCp₂(CF₂C₆F₅)I (9), one of which (8) was crystallog. characterized. In contrast, the CO analog [MoCp₂(CO)] reacts with perfluorobenzyl iodide without loss of CO to give the crystallog. characterized salt, [MoCp₂(CF₂C₆F₅)(CO)]⁺I⁻ (10), and the W(II) **ethylene** precursor [WCp₂(C₂H₄)] reacts with perfluorobenzyl iodide without loss of **ethylene** to afford [WCp₂(CF₂C₆F₅)(C₂H₄)]⁺I⁻ (11). These observations demonstrate that the metal-C bond is formed 1st. In further contrast the W precursor [WCp₂(C₂H₄)] reacts with perfluoro-BuI, perfluoro-iso-Pr iodide, and pentafluorophenyl iodide to give fluoroalkyl- and fluorophenyl-substituted cyclopentadienyl complexes WCp(η^5 -C₅H₄RF)(H)I (12, RF = CF₂CF₂CF₂CF₃; 15, RF = CF(CF₃)₂; 16, RF = C₆F₅); the Mo analog MoCp(η^5 -C₅H₄RF)(H)I (14, RF = CF(CF₃)₂) was obtained in similar fashion. The W(IV) hydrido compds. react with iodoform to afford the corresponding diiodides WCp(η^5 -C₅H₄RF)I₂ (13, RF = CF₂CF₂CF₂CF₃; 18, RF = CF(CF₃)₂; 19, RF = C₆F₅), two of which (13 and 19) were crystallog. characterized. The carbonyl precursors [MCp₂(CO)] each react with perfluoro-iso-Pr iodide without loss of CO, to afford the exo-fluoroalkylated cyclopentadiene M(II) complexes MCp(η^4 -C₅H₅RF)(CO)I (21, M = Mo; 22, M = W); the exo-stereochem. for the fluoroalkyl group is confirmed by an x-ray structural study of 22. The **ethylene** analogs [MCp₂(C₂H₄)] react with perfluoro-tert-BuI to yield the products MCp₂[CH₂CH₂C(CF₃)₃]I (25, M = Mo; 26, M = W) resulting from fluoroalkylation at the **ethylene** ligand. Attempts to provide pos. evidence for fluoroalkyl radicals as intermediates in reactions of primary and benzylic substrates were unsuccessful, but trapping expts. with CH₃OD (to give RFD, not RFH) indicate that fluoroalkyl anions are the intermediates responsible for ring and **ethylene** fluoroalkylation in the reactions of secondary and tertiary fluoroalkyl substrates.

REFERENCE COUNT: 65 THERE ARE 65 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L7 ANSWER 7 OF 31 CAPLUS COPYRIGHT 2006 ACS on STN
ACCESSION NUMBER: 2000:200696 CAPLUS
DOCUMENT NUMBER: 133:17879
TITLE: Controlled step-wise telomerization of vinylidene fluoride, hexafluoropropene and trifluoroethylene with iodofluorinated transfer agents
AUTHOR(S): Balague, J.; Ameduri, B.; Boutevin, B.; Caporiccio, G.
CORPORATE SOURCE: Ecole Nationale Supérieure de Chimie, UMR 5076 (CNRS),
Laboratory of Macromolecular Chemistry, Montpellier,
34296, Fr.
SOURCE: Journal of Fluorine Chemistry (2000), 102(1-2),
253-268
CODEN: JFLCAR; ISSN: 0022-1139
PUBLISHER: Elsevier Science S.A.

DOCUMENT TYPE:

Journal

LANGUAGE:

English

AB Highly fluorinated cotelomers having the structure F(TFE)_w(VDF)_x(HFP)_y(TrFE)_zI containing one or several tetrafluoroethylene (TFE), vinylidene fluoride (or 1,1-difluoroethylene, VDF), hexafluoropropene (HFP) or trifluoroethylene (TrFE) base units were synthesized by thermal step-wise cotelomerization of these fluoroolefins with **perfluoroalkyl iodides**. ¹H and ¹⁹F NMR allowed one to characterize these cotelomers and to assess the defects of chaining and the mol. wts. While the monoadduct produced from VDF exclusively exhibits RFCH₂CF₂I structure, that prepared from TrFE was composed of RFCFHC₂I and RFCF₂CFHI isomers, the ratio of which is directed from the electrophilicity of RF⁺ radical. The reactivity of the C-I bond in RF-Q-CXY-I depends on the nature of the Q spacer and on the reactivity of the fluorinated monomer (e.g., thermal initiations of VDF, TrFE and HFP were efficient from 180°, 195° and 210°, resp.). The mechanism of the addition of the radical generated from the iodinated transfer agent to the fluoroalkene is explained by means of its electrophilic attack to the more nucleophilic (i.e., the less electrophilic) side of the olefin. Ethylenation of these fluorocotelomers was successfully achieved from various initiations (thermal, redox or from peroxides) with best results from redox catalysis. Thermal properties of several fluorotelomers (glass transition temps., T_g and melting temps., T_m) were assessed. They were linked to the number of consecutive CF₂ groups (for the crystalline zones) and bulky side groups which induced amorphous regions.

REFERENCE COUNT:

80 THERE ARE 80 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L7 ANSWER 8 OF 31 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2000:200694 CAPLUS

DOCUMENT NUMBER: 133:17205

TITLE: Diododifluoromethane: an excellent telogen for the preparation of 1,3-diodofluoropropane derivatives

AUTHOR(S): Yang, Z.-Y.

CORPORATE SOURCE: Experimental Station, Central Research & Development, E. I. Du Pont de Nemours and Co., Wilmington, DE, USA

SOURCE: Journal of Fluorine Chemistry (2000), 102(1-2), 239-241

PUBLISHER: Elsevier Science S.A.

DOCUMENT TYPE: Journal

LANGUAGE: English

AB CF₂I₂ reacted with olefins thermally to give 1,3-diodofluoropropane derivs. Both fluorinated and non-fluorinated alkenes gave good yields of adducts. Reaction with **ethylene**, propylene, perfluoroalkylethylene, vinylidene fluoride, and trifluoroethylene provided the corresponding adducts in 58-86% yields. With tetrafluoroethylene, 1-to-1 adduct was predominantly formed along with small amts. of higher homologs. In contrast to **perfluoroalkyl iodides**, CF₂I₂ also readily added to perfluorovinyl ethers to give 1,3-diiodoperfluoroethers.

REFERENCE COUNT:

29 THERE ARE 29 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L7 ANSWER 9 OF 31 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1997:403224 CAPLUS

DOCUMENT NUMBER: 127:81545

TITLE: Selective Fluoroalkylation of Cyclopentadienyl and **Ethylene Ligands** in Reactions of **Perfluoroalkyl Iodides** with Low-Valent Complexes of Molybdenum and Tungsten:

AUTHOR(S): Evidence for a Fluorocarbanion Mechanism
 Hughes, Russell P.; Maddock, Susan M.; Rheingold,
 Arnold L.; Liable-Sands, Louise M.
 CORPORATE SOURCE: Department of Chemistry 6128 Burke Laboratory,
 Dartmouth College, Hanover, NH, 03755, USA
 SOURCE: Journal of the American Chemical Society (1997),
 119(25), 5988-5989
 CODEN: JACSAT; ISSN: 0002-7863
 PUBLISHER: American Chemical Society
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 OTHER SOURCE(S): CASREACT 127:81545
 AB Reactions of **perfluoroalkyl iodide** $\text{ICF}(\text{CF}_3)_2$ with
 $[\text{MCp}_2(\text{C}_2\text{H}_4)]$ (2, M = Mo; 3, M = W) afford the hydrido complexes
 $[\{\text{C}_5\text{H}_4\text{CF}(\text{CF}_3)_2\}(\text{Cp})]\text{MHI}$ (4, M = Mo; 5, M = W) quant. The structure of 5
 has been confirmed by x-ray crystallog.; monoclinic, $P\bar{1}/c$, $a = 6.268(2)$,
 $b = 33.748(6)$, $c = 7.616(2)$ Å, $\beta = 112.01(2)^\circ$, $V = 1493.6(6)$ Å³, $Z = 4$. In contrast, the tertiary **perfluoroalkyl iodide** $\text{IC}(\text{CF}_3)_3$ reacts with 2 or 3 cleanly at the ethylene
 ligand to give 6 and 7. X-ray crystallog. also confirms the structure of 7; monoclinic, $P21/n$, $a = 12.8936(1)$, $b = 7.557(1)$, $c = 38.9142(2)$ Å,
 $\beta = 95.0237(2)^\circ$, $V = 3777.46(6)$ Å³, $Z = 8$ (two chemical
 identical, crystallog. independent mols.). Running these reactions in the
 presence of radical traps like perdeuterotoluene or dihydroanthraene
 provides no evidence for fluoroalkyl radical intermediates, but pos.
 signatures for fluorocarbanion intermediates are provided by trapping
 expts. with CH_3OD , and by observation of fluoroolefins $\text{F}_2\text{C:CF}(\text{CF}_3)$ and
 $\text{F}_2\text{C:C}(\text{CF}_3)_2$ among the reaction products from $\text{ICF}(\text{CF}_3)_2$ or $\text{IC}(\text{CF}_3)_3$ resp.
 REFERENCE COUNT: 27 THERE ARE 27 CITED REFERENCES AVAILABLE FOR THIS
 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L7 ANSWER 10 OF 31 CAPLUS COPYRIGHT 2006 ACS on STN
 ACCESSION NUMBER: 1995:650376 CAPLUS
 DOCUMENT NUMBER: 123:256153
 TITLE: Preparation of **perfluoroalkyl iodides** from perfluorocarboxylic acids
 INVENTOR(S): Ueda, Kunimasa
 PATENT ASSIGNEE(S): Idemitsu Petrochemical Co, Japan
 SOURCE: Jpn. Kokai Tokyo Koho, 12 pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------------------|------|----------|-----------------|----------|
| JP 07109234 | A2 | 19950425 | JP 1993-277348 | 19931012 |
| PRIORITY APPLN. INFO.: | | | JP 1993-277348 | 19931012 |

OTHER SOURCE(S): MARPAT 123:256153
 AB In preparation of $\text{C}_n\text{F}_m\text{I}$ ($n \geq 1$; $3 \leq m \leq 2n + 1$), useful as
 perfluoroalkylating agents by treatment of $\text{C}_n\text{F}_m\text{CO}_2\text{H}$ with I and Bz_2O_2 (I)
 in an organic solvent, a homogeneous solution or suspension of I in the organic
 solvent, obtained by treatment of I containing H_2O with the organic solvent,
 which is suitable for the above iodination and practically immiscible with
 H_2O , to extract I followed by separation and removal of the aqueous layer, is
 used as
 I and the solvent. The method is prevented from danger of explosive I. I
 containing 25 weight% H_2O was suspended in $\text{Cl}(\text{CH}_2)_4\text{Cl}$ (II) and the upper H_2O
 layer was removed. The suspension was treated with $\text{CF}_3(\text{CF}_2)_7\text{CO}_2\text{H}$, II, and
 I under reflux at 100° for 1 h to give 77% $\text{CF}_3(\text{CF}_2)_7\text{I}$.

L7 ANSWER 11 OF 31 CAPLUS COPYRIGHT 2006 ACS on STN
 ACCESSION NUMBER: 1995:321022 CAPLUS
 DOCUMENT NUMBER: 123:313360
 TITLE: Free-radical addition of 2-(perfluoroalkyl)ethanethiols to alkenes, alkadienes, cycloalkenes, alkynes and vinyl monomers. [Erratum to document cited in CA119:225554]
 AUTHOR(S): Brace, Neal O.
 CORPORATE SOURCE: Wheaton College, Wheaton, IL, 60187, USA
 SOURCE: Journal of Fluorine Chemistry (1995), 70(1), 145
 CODEN: JFLCAR; ISSN: 0022-1139
 PUBLISHER: Elsevier
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 AB The errors were not reflected in the abstract or the index entries.

L7 ANSWER 12 OF 31 CAPLUS COPYRIGHT 2006 ACS on STN
 ACCESSION NUMBER: 1994:136059 CAPLUS
 DOCUMENT NUMBER: 120:136059
 TITLE: Perfluoroalkyl halides and derivatives as precursors for oil and water repellants and surfactants
 INVENTOR(S): Behr, Frederick E.; Dams, Rudolf J.; DeWitte, Johan E.; Hagen, Donald F.
 PATENT ASSIGNEE(S): Minnesota Mining and Manufacturing Co., USA
 SOURCE: Can. Pat. Appl., 67 pp.
 CODEN: CPXXEB
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 3
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|-----------------------------------|------|----------|-----------------|-------------|
| CA 2071596 | AA | 19930111 | CA 1992-2071596 | 19920618 |
| EP 526976 | A1 | 19930210 | EP 1992-305710 | 19920622 |
| EP 526976 | B1 | 19970115 | | |
| R: BE, CH, DE, FR, GB, IT, LI, NL | | | | |
| JP 05345732 | A2 | 19931227 | JP 1992-183345 | 19920710 |
| JP 3231844 | B2 | 20011126 | | |
| JP 2002138078 | A2 | 20020514 | JP 2001-204928 | 19920710 |
| PRIORITY APPLN. INFO.: | | | US 1991-728184 | A 19910710 |
| | | | JP 1992-183345 | A3 19920710 |

OTHER SOURCE(S): MARPAT 120:136059

AB The title compds. comprise a mixture of straight and branched perfluoroalkyl groups bonded to Cl, Br, or I through a F-free alkylene group. Perfluorodecyltetrahydroiodide (prepared from perfluorosulfonyl fluoride, 40% straight and 60% branched, treated first with I, then with C₂H₄) was derivatized to thiol functionality by treatment with thiourea in EtOH to give perfluorodecyltetrahydrothiol (I). I was added to a reaction mixture containing hexamethoxymethylmelamine to give a I-melamine condensate (II, 1:4 mol ratio). A 50/50 polyester/cotton fabric blend was treated with an emulsion of II at 0.3%, dried and cured at 150°, to give a fabric with oil resistance (AATCC 118-1975) 5 and 5 after 1 dry cleaning, vs. 3 and 2, resp., for a precursor perfluorodecyltetrahydroiodide having all straight chain perfluoroalkyl groups.

L7 ANSWER 13 OF 31 CAPLUS COPYRIGHT 2006 ACS on STN
 ACCESSION NUMBER: 1993:625554 CAPLUS
 DOCUMENT NUMBER: 119:225554
 TITLE: Free-radical addition of 2-(perfluoroalkyl)ethanethiols to alkenes, alkadienes, cycloalkenes, alkynes and vinyl monomers

AUTHOR(S): Brace, Neal O.
 CORPORATE SOURCE: Wheaton Coll., Wheaton, IL, 60187, USA
 SOURCE: Journal of Fluorine Chemistry (1993), 62(2-3), 217-41
 CODEN: JFLCAR; ISSN: 0022-1139
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 AB The free-radical addition of 2-(perfluoroalkyl)ethanethiols ($\text{RFCH}_2\text{CH}_2\text{SH}$) to alkenes, cycloalkenes, alkadienes and alkynes has been studied to determine (1) the mode of reaction, i.e., the stereochem., regiochem. and any skeletal changes; (2) the relative reactivity towards unsats. of various structures and classes as affected by the presence of the RF group; and (3) the influence of the reaction conditions on the rate of addition or selectivity for different products. Adducts from 2-(F-hexyl)ethanethiol (1) and alkenes have been obtained in high yield, but containing small amts. of regioisomers. For example, compound 1 with 1-heptene gave 96% 1-[2-(F-hexyl)ethanethio]heptane, as well as 0.61% 2- and 2.22% 3-[2-(F-hexyl)ethanethio]heptane. Dienes gave chiefly linear adducts adducts; small amts. of cyclic isomers were also formed. Compound 1 added readily with free-radical initiation to vinyl monomers such as styrene and vinyl acetate, and to phenylacetylene, propargyl acetate and Et propynoate.

L7 ANSWER 14 OF 31 CAPLUS COPYRIGHT 2006 ACS on STN
 ACCESSION NUMBER: 1988:454260 CAPLUS
 DOCUMENT NUMBER: 109:54260
 TITLE: Synthesis and chemistry of perfluoro-2-iodo-2-methylalkanes
 AUTHOR(S): Probst, A.; Raab, K.; Ulm, K.; Von Werner, K.
 CORPORATE SOURCE: Werk Gendorf, Hoechst A.-G., Burgkirchen, D-8269, Fed. Rep. Ger.
 SOURCE: Journal of Fluorine Chemistry (1987), 37(2), 223-45
 CODEN: JFLCAR; ISSN: 0022-1139
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 OTHER SOURCE(S): CASREACT 109:54260
 AB $\text{CF}_3(\text{CF}_2)_n\text{C}(\text{CF}_3)_2\text{I}$ (I , $n = 1, 2$) were obtained from $\text{CF}_3(\text{CF}_2)_n\text{CF:C}(\text{CF}_3)_2$ ($n = 0, 1$) by formal addns. of IF that required substantial alterations of known procedures. I ($n = 1, 2$) are the most reactive alkyl halides known so far, and they are also very toxic. The reactions studied included (a) Nucleophilic attack of anions at the iodine, leading to perfluoroalkenes, (b) elimination of IF, caused by metals or metal complexes, (c) pyrolysis, to selectively give perfluoroisobutene and n-perfluoroalkyl iodides, (d) photolysis, and (e) thermally induced insertions into the carbon-iodine bond. Screening results on the inhalation toxicity of the iodides and of some other fluoro-compds. are also reported.

L7 ANSWER 15 OF 31 CAPLUS COPYRIGHT 2006 ACS on STN
 ACCESSION NUMBER: 1987:33621 CAPLUS
 DOCUMENT NUMBER: 106:33621
 TITLE: ω -Perfluoroalkyl- α -olefin polymers
 INVENTOR(S): Su, Aaron Chung Liang
 PATENT ASSIGNEE(S): du Pont de Nemours, E. I., and Co., USA
 SOURCE: Eur. Pat. Appl., 18 pp.
 CODEN: EPXXDW
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------|------|----------|-----------------|----------|
| EP 193202 | A2 | 19860903 | EP 1986-102650 | 19860228 |

| | | | | |
|-------------------|----|----------|----------------|----------|
| EP 193202 | A3 | 19870722 | | |
| R: DE, FR, GB, IT | | | | |
| US 4617363 | A | 19861014 | US 1985-707013 | 19850228 |
| CA 1275544 | A1 | 19901023 | CA 1986-502693 | 19860225 |
| JP 61204208 | A2 | 19860910 | JP 1986-42027 | 19860228 |
| JP 03080804 | B4 | 19911226 | | |
| JP 01103609 | A2 | 19890420 | JP 1988-208460 | 19880824 |

PRIORITY APPLN. INFO.:

AB Polymers of CH₂:CH(CH₂)_nR (R = C₂-10 perfluoroalkyl; n = 2-8) have high gas-selective permeability and solvent resistance. Thus, 20 mL C₄F₉(CH₂)₂CH:CH₂ (prepared by addition of C₄F₉(CH₂)₂I and C₂H₄, then dehydroiodination with tert-BuOK), 3 mmol iso-Bu₃Al, and 0.3 g TiCl₄ on MgCl₂ were heated at 50° for 4 h to form poly(4-perfluorobutyl-1-butene) having 100% modulus 3.4 MPa and tensile strength 10.3 MPa, which was insol. in hydrocarbon, fluorocarbon, and polar solvents, and showed CO₂ permeability (80:20 CO₂/CH₄) 7.7 + 10⁻⁸ cm³-cm/cm²-s-cm Hg and selectivity [(CO₂/CH₄ in product)/(CO₂/CH₄ in feed)] 9; vs. 1.2 + 10⁻⁹ cm³-cm/cm²-s-cm Hg and 10 for Teflon; or 5 + 10⁻⁸ cm³-cm/cm²-s-cm Hg and 5 for natural rubber.

L7 ANSWER 16 OF 31 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1987:17597 CAPLUS
 DOCUMENT NUMBER: 106:17597
 TITLE: Fluoroiodo compounds
 PATENT ASSIGNEE(S): du Pont de Nemours, E. I., and Co., USA
 SOURCE: Jpn. Kokai Tokkyo Koho, 11 pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|-------------|------|----------|-----------------|----------|
| JP 61134329 | A2 | 19860621 | JP 1985-269194 | 19851129 |
| US 4650913 | A | 19870317 | US 1984-676100 | 19841129 |
| EP 194348 | A2 | 19860917 | EP 1985-115132 | 19851129 |
| EP 194348 | A3 | 19870819 | | |
| EP 194348 | B1 | 19900124 | | |

R: CH, DE, FR, LI

PRIORITY APPLN. INFO.: US 1984-676100 A 19841129

OTHER SOURCE(S): CASREACT 106:17597; MARPAT 106:17597

AB RCR₁R₂CR₃R₄I (R = C₁-18 perfluorohydrocarbon residue; R₁₋₄ = H, C₁-16 hydrocarbon, mono- or bicyclic aliphatic residue) are prepared by addition of R₁R₂C:CRR₄ with RI in the presence of R₅SO₂M (R₅ = C₁-18 hydrocarbon residue, M = alkali metal, NH₄, etc.) as initiators. Thus a mixture of norbornene 0.1, CF₃(CF₂)₇I 0.02, and PhSO₂Na 0.03 mol in DMF was stirred under Ar to give 93% 2-iodo-3-(perfluorooctyl)norbornane.

L7 ANSWER 17 OF 31 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1985:614859 CAPLUS
 DOCUMENT NUMBER: 103:214859
 TITLE: Fluoroalkyl-substituted iodoalkanes
 INVENTOR(S): Von Werner, Konrad
 PATENT ASSIGNEE(S): Hoechst A.-G. , Fed. Rep. Ger.
 SOURCE: Ger. Offen., 19 pp.
 CODEN: GWXXBX
 DOCUMENT TYPE: Patent
 LANGUAGE: German
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|-----------------------------------|------|----------|-----------------|------------|
| DE 3338300 | A1 | 19850502 | DE 1983-3338300 | 19831021 |
| EP 140254 | A1 | 19850508 | EP 1984-112300 | 19841012 |
| EP 140254 | B1 | 19881005 | | |
| R: BE, CH, DE, FR, GB, IT, LI, NL | | | | |
| JP 60106533 | A2 | 19850612 | JP 1984-218786 | 19841019 |
| US 4587366 | A | 19860506 | US 1984-663084 | 19841019 |
| PRIORITY APPLN. INFO.: | | | DE 1983-3338300 | A 19831021 |

OTHER SOURCE(S): MARPAT 103:214859

AB (Fluoroalkyl)alkyl iodides were prepared by reaction of a fluorinated alkyl iodide with warm (un)substituted alkenes in the presence of a finely-divided metal catalyst chosen from elements with atomic nos. 24-30, 42-48, or 74-79. I(CF₂)₄I (0.68 mol) reacted with G0.68 mol CH₂:CH₂ in the presence of Ru at 170°/2 MPa in 33 h to give 97.8% yield of I(CH₂)₂(CF₂)₄(CH₂)₂I with 98.5% conversion I(CF₂)₄I.

L7 ANSWER 18 OF 31 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1984:51074 CAPLUS
 DOCUMENT NUMBER: 100:51074
 TITLE: Branched 1,2-bis(perfluoroalkyl)ethenes
 INVENTOR(S): Riess, Jean Georges; Jeanneaux, Francois; Le Blanc, Maurice; Lantz, Andre
 PATENT ASSIGNEE(S): Produits Chimiques Ugine Kuhlmann, Fr.
 SOURCE: Eur. Pat. Appl., 12 pp.
 CODEN: EPXXDW
 DOCUMENT TYPE: Patent
 LANGUAGE: French
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|---|------|----------|-----------------|------------|
| EP 90712 | A1 | 19831005 | EP 1983-400569 | 19830318 |
| EP 90712 | B1 | 19850619 | | |
| R: AT, BE, CH, DE, FR, GB, IT, LI, NL, SE | | | | |
| FR 2523956 | A1 | 19830930 | FR 1982-5165 | 19820326 |
| FR 2523956 | B1 | 19850524 | | |
| US 4613708 | A | 19860923 | US 1983-467648 | 19830218 |
| AT 13872 | E | 19850715 | AT 1983-400569 | 19830318 |
| AU 8312872 | A1 | 19830929 | AU 1983-12872 | 19830325 |
| AU 554646 | B2 | 19860828 | | |
| JP 58174334 | A2 | 19831013 | JP 1983-49089 | 19830325 |
| JP 01055251 | B4 | 19891122 | | |
| ES 521022 | A1 | 19840601 | ES 1983-521022 | 19830325 |
| CA 1186344 | A1 | 19850430 | CA 1983-424516 | 19830325 |
| PRIORITY APPLN. INFO.: | | | FR 1982-5165 | A 19820326 |
| | | | EP 1983-400569 | A 19830318 |

OTHER SOURCE(S): CASREACT 100:51074; MARPAT 100:51074

AB Perfluoroalkyl iodides reacted with mono(perfluoroalkyl)ethylenes, and the addition products obtained were dehydriodinated to yield RCH:CHR₁ (R and R₁ are perfluoroalkyl and one or both of them is/are branched), useful in emulsions. A mixture of CH₂:CHCF(CF₃)₂ and (CF₃)₂CFI was heated at 200° to give (CF₃)₂CFCH₂CHCF(CF₃)₂, which was treated with KOH in EtOH to give (CF₃)₂CFCH:CHCF(CF₃)₂.

L7 ANSWER 19 OF 31 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1982:217164 CAPLUS
 DOCUMENT NUMBER: 96:217164
 TITLE: Synthesis of fluorinated acetylenes
 AUTHOR(S): Baum, Kurt; Bedford, Clifford D.; Hunad, Ronald J.

CORPORATE SOURCE: Fluorochem, Inc., Azusa, CA, 91702, USA
SOURCE: Journal of Organic Chemistry (1982), 47(12), 2251-7
CODEN: JOCEAH; ISSN: 0022-3263
DOCUMENT TYPE: Journal
LANGUAGE: English
OTHER SOURCE(S): CASREACT 96:217164

AB New routes to fluorinated acetylenes were developed based on addns. of iodofluorocarbons to silylacetylenes. Free radical addition of α -diodoperfluoroalkanes to (trimethylsilyl)acetylene gave the iodotrimethylsilyl olefins $\text{Me}_3\text{SiIC:CH(CF}_2\text{nCH:CISiMe}_3$, which reacted with KOCMe_3 or 1,8-diazabicyclo[5.4.0]undec-7-ene to give (trimethylsilyl)acetylenes and, with an excess of the base, the free diacetylenes. **Perfluoroalkyl iodides** similarly gave (perfluoroalkyl)acetylenes. The addition of perfluoroheptyl iodide to PhC.tpbond.CH followed by treatment with KOCMe_3 gave 1-phenylperfluorononyne. The peroxide-catalyzed reaction of **perfluoroalkyl iodides** (RFI) and $\text{Me}_3\text{SiC.tpbond.CSiMe}_3$ gave 1:1 adducts, $\text{RF(Me}_2\text{SiCH}_2\text{)IC:CHSiMe}_3$, resulting from intramol. H abstraction by the initially formed vinyl radical. The thermal reaction of **perfluoroalkyl iodides** and diiodides with bis(trimethylsilyl)acetylene in the presence of free iodine gave the (trimethylsilyl)acetylenes, which were desilylated with KF. A route to diacetylenes was investigated based on addition of perfluoroiodo compds. to **ethylene**, dehydroiodination, brominations, and eliminations.

L7 ANSWER 20 OF 31 CAPLUS COPYRIGHT 2006 ACS on STN
ACCESSION NUMBER: 1978:512054 CAPLUS
DOCUMENT NUMBER: 89:112054
TITLE: Modification of fiber surfaces by monomeric additives.
Part II. Absorption of fluorocarbon additives by poly(**ethylene terephthalate**)
AUTHOR(S): Mares, F.; Oxenrider, B. C.
CORPORATE SOURCE: Chem. Res. Cent., Allied Chem. Corp., Morristown, NJ,
USA
SOURCE: Textile Research Journal (1978), 48(4), 218-29
DOCUMENT TYPE: Journal
LANGUAGE: English
AB Evaluation of 3 different methods for the modification of poly(**ethylene terephthalate**) fiber surfaces showed that coating the fibers with reactive group-containing additives from a dioxane solution followed by annealing produces the best results. The additives, e.g., an isomeric mixture of dihydrogen bis(4-perfluoroisopropoxy-3,3,4,4-tetrafluorobutyl pyromellitates and mono(4-perfluoroisopropoxy-3,3,4,4-tetrafluorobutyl) phthalate [62478-07-3], were not simply deposited on the fiber surfaces, as demonstrated by scanning electron microscopy, but penetrated the fiber and interacted with the polymer matrix to form oligomers near the fiber surface. Additive concns. as low as 0.25% produced excellent water and oil repellency that was durable to washing and dry cleaning owing to the insol. of the additives in soap solns. and dry cleaning solvents. The modified fibers could be knitted and dyed without affecting the surface properties.

L7 ANSWER 21 OF 31 CAPLUS COPYRIGHT 2006 ACS on STN
ACCESSION NUMBER: 1978:74021 CAPLUS
DOCUMENT NUMBER: 88:74021
TITLE: Addition to gaseous nonhalogenated olefins and acetylenes of **perfluoroalkyl iodides**
INVENTOR(S): Knell, Martin
PATENT ASSIGNEE(S): Ciba-Geigy Corp., USA
SOURCE: U.S., 7 pp.

CODEN: USXXAM

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

3

PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------------------|------|----------|-----------------|-------------|
| US 4058573 | A | 19771115 | US 1974-457879 | 19740404 |
| PRIORITY APPLN. INFO.: | | | US 1967-693148 | A2 19671226 |
| | | | US 1970-4179 | A2 19700114 |
| | | | US 1971-159515 | A1 19710702 |

AB A gaseous olefin (e.g., **ethylene**, propene, and 2-butene) or acetylene was bubbled through liquid **perfluoroalkyl iodide** [e.g., 1-iodoperfluoroheptane (I) and 1-iodoperfluorohexane] or a mixture of **perfluoroalkyl iodides** at .apprx.50-100° in the presence of a free radical generating catalyst to give the corresponding adducts, essentially free of telomers. Thus, **ethylene** was bubbled through a mixture of I and Bz2O2 at 80-5° for .apprx.10.5 h to give 1,1,2,2-tetrahydro-1-iodoperfluorononane (88.5% yield) free of telomers. About 18 other fluoroiodoalkanes or -alkenes were similarly prepared

L7 ANSWER 22 OF 31 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1974:48569 CAPLUS

DOCUMENT NUMBER: 80:48569

TITLE: Fluoroalkyl iodide telomers

INVENTOR(S): Rudolph, Werner; Massonne, Joachim

PATENT ASSIGNEE(S): Kali-Chemie A.-G.

SOURCE: Ger. Offen., 11 pp.

CODEN: GWXXBX

DOCUMENT TYPE: Patent

LANGUAGE: German

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|-------------|------|----------|-----------------|----------|
| DE 2218451 | A1 | 19731031 | DE 1972-2218451 | 19720417 |
| CH 580552 | A | 19761015 | CH 1973-4264 | 19730323 |
| GB 1415245 | A | 19751126 | GB 1973-16199 | 19730404 |
| NL 7304737 | A | 19731019 | NL 1973-4737 | 19730405 |
| BE 798268 | A1 | 19731016 | BE 1973-130056 | 19730416 |
| FR 2180863 | A1 | 19731130 | FR 1973-13754 | 19730416 |
| JP 49014407 | A2 | 19740207 | JP 1973-43040 | 19730416 |
| IT 982785 | A | 19741021 | IT 1973-23107 | 19730417 |

PRIORITY APPLN. INFO.: DE 1972-2218451 A 19720417

AB Fluoroalkyl iodide telomers were prepared by 1:1 addition of **ethylene** to C6-12 **perfluoroalkyl iodide** telomers (I) in the presence of peracid catalysts, e.g. peracetic acid [79-21-0] at 70-100.deg.. Thus, 40 standard l. **ethylene**/hr and 30 g catalyst solution/hr (11.6% HO2Ac in C2F3Cl3) were passed into a reactor containing 4000 g I 8 hr at 70-80.deg. to give 98.3% monoethylene adduct of I.

L7 ANSWER 23 OF 31 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1974:14545 CAPLUS

DOCUMENT NUMBER: 80:14545

TITLE: **Perfluoroalkyl iodides**

INVENTOR(S): Oda, Yoshio; Suhara, Manabu

PATENT ASSIGNEE(S): Asahi Glass Co., Ltd.

SOURCE: Jpn. Kokai Tokkyo Koho, 4 pp.

CODEN: JKXXAF

DOCUMENT TYPE:

Patent

LANGUAGE:

Japanese

FAMILY ACC. NUM. COUNT:

1

PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|-------------|------|----------|-----------------|----------|
| JP 48052706 | A2 | 19730724 | JP 1971-88200 | 19711108 |
| JP 56002054 | B4 | 19810117 | | |

PRIORITY APPLN. INFO.:

JP 1971-88200 A 19711108

AB Catalytic action of Mo or W fluoride gave **perfluoroalkyl iodides** from C₂F₄, iodine, and IF₅. E.g., 20.3 g C₂F₄ was fed to a mixture of iodine 16.8 g, IF₅ 7.4 g, and MoF₆ 100 mg at 75° in 2.8 hr at 4-12 kg/cm² to give 39.1 g pentafluoroethyl iodide.

L7 ANSWER 24 OF 31 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1969:501287 CAPLUS

DOCUMENT NUMBER: 71:101287

TITLE: Iodoperfluoroalkanes

INVENTOR(S): Knell, Martin

PATENT ASSIGNEE(S): Geigy, J. R., A.-G.

SOURCE: Ger. Offen., 11 pp.

CODEN: GWXXBX

DOCUMENT TYPE: Patent

LANGUAGE: German

FAMILY ACC. NUM. COUNT: 3

PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------|------|----------|-----------------|----------|
| DE 1816706 | C3 | 19740926 | DE 1968-1816706 | 19681223 |
| CH 509954 | A | 19710715 | CH 1968-509954 | 19681202 |
| GB 1210730 | A | 19701028 | GB 1968-1210730 | 19681224 |
| FR 1597171 | A | 19700622 | FR 1968-1597171 | 19681226 |

PRIORITY APPLN. INFO.:

US 1967-693148 A 19671226

AB Perflouroalkyl iodides [C_xF_{2x+1}] (x = 4-14), which are liquid at reaction temperature, are added to gaseous olefins and acetylenes in the presence of a catalyst giving free radicals, at atmospheric or lower pressure and 50-220°. Thus, **ethylene** is introduced during 10.5 hrs. at 80-5°C. into a mixture of 10 parts by weight 1-iodoperfluoroheptane and 1 part by weight benzoyl peroxide to give 88.5% 1,1,2,2-tetrahydro-1-iodoperfluorononane b₂₃ 89-90°, m. 40-5°. Similarly prepared were: 1,1,1,2,3,3-hexahydro-2-iodoperfluorodecane, b. 119-20°; 1,1-dimethyl-2,2-dihydro-1-iodoperfluorononane, b. 82-4°; 1,2-dimethyl-1,2-dihydro-1-iodoperfluorononane, b. 86-90°; 1,1,2,2-tetrahydro-1-iodoperfluoroctane, b. 107-10°; 1,2-dihydro-1-iodoperfluorononene.

L7 ANSWER 25 OF 31 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1969:402955 CAPLUS

DOCUMENT NUMBER: 71:2955

TITLE: Perfluoroalkyl fluoriodides and their use for telomerization of **perfluoroalkyl iodides** with olefins

INVENTOR(S): Rondestvedt, Christian S., Jr.

PATENT ASSIGNEE(S): du Pont de Nemours, E. I., and Co.

SOURCE: Fr., 14 pp.

CODEN: FRXXAK

DOCUMENT TYPE: Patent

LANGUAGE: French

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------|------|----------|-----------------|----------|
| FR 1521775 | | 19680419 | FR 1967-104939 | 19670502 |

PRIORITY APPLN. INFO.:

AB The title preparation and telomerization, especially telomerization of tetrafluoroethylene (I) is described. Thus, 4.67 g. liquid ClF₃ was added with stirring at -70° to a solution of 33.4 g. n-C₆F₁₃I in 100 ml. perfluorohexane. The temperature raised by exothermic reaction to 0°, C₆F₁₄ and excess C₆F₁₃I were evaporated in vacuo <0° to give C₆F₁₃IF₂. Similarly, C₂F₅I and ClF₃ gave C₂F₅IF₂ with some C₂F₅IF₄; 6 moles n-C₄F₉I with 1 mole ClF₃ gave n-C₄F₉IF₂, m. 150°; 0.0337 mole n-C₁₀F₂₁I with 0.03 mole ClF₃ gave C₁₀F₂₁IF₂, solid. Addition of 40.7 g. liquid ClF₃ to 206 g. n-C₄F₉I in 2614 g. C₆F₁₄ at -80° gave a precipitate, dissolved by slow heating to -30°; the solution was cooled to -55°, and more 69.3 g. ClF₃ was added to give 80% n-C₄F₉IF₄ m. 10° (stable at -20°, but decomposed at room temperature). Dry He, saturated at 0° with ClF₃ vapor, was bubbled in C₂F₅I at 70° to absorb 2 moles ClF₃, and the mixture was evaporated in vacuo <0° to give C₂F₅IF₂, m. 18°. By the He-method, the reaction of 0.1 mole ClF₃ with 0.5 mole (CF₃)₂CFI at -70° gave 99% (CF₃)₂CFIF₂, pasty solid; 0.1 mole ClF₃ with 0.5 mole C₆F₁₃I gave n-C₆F₁₃IF₂, m. 35°; 25 g. CF₃I in 30 ml. C₆F₁₄ with He-ClF₃ at -80 to 30° gave a solid, decomposing 0°. A mixture of 42.6 g. C₂F₅I and 7 g. BrF₅ did not react at -50°; on heating, a violent reaction gave C₂F₅IF₂ and C₂F₅IF₄. A similar reaction of 0.15 mole n-C₄F₉I with 0.06 mole BrF₅ at -80 to -30° gave an equimolar mixture of n-C₄F₉-IF₂ and C₄F₉IF₄, m. 18°. The mixture of 0.1 mole n-C₄F₉I in 146 g. C₆F₁₄ with 0.04 mole BrF₅ at -80 to 0° gave a mixture of 64% n-C₄F₉IF₄ and 36% n-C₄F₉IF₂, m. 16°. A similar reaction of C₄F₉I with BrF₃ at the same conditions gave the same compds. For the telomerization, 5.9 g. C₆F₁₃IF₂ and 100 g. n-C₃F₇I in a glass autoclave in vacuo was heated to 70°, and 33.4 g. I was introduced at 70-8°/8.4 bar, in 10 min. After 32 min. at 70°, the pressure fell to 2.25 bar, to give a mixture of telomers F(CF₂)_nI with predominately odd n from 3 to 19. Other methods for telomerization of I are related, giving telomers with n 0-7, 1-6, 3-11, 2-20, with predominately odd or even n, using as telogen C₄F₉I and C₂F₅I, and as catalyst C₄F₉IF₂ and C₃F₇IF₄. RIF₂ are more active as catalysts than RIF₄. The telomerization of ethylene with n-C₄F₉I, catalyzed with n-C₄F₉IF₂, at 60-80° gave a low yield of n-C₄F₉CH₂CH₂I and traces of telomers with n = 2,3,4. Similarly, vinyl fluoride gave n-C₄F₉CH₂CH₂IFI, and vinylidene fluoride gave n-C₄F₉CH₂CF₂I, b760 120°.

L7 ANSWER 26 OF 31 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1966:43304 CAPLUS
 DOCUMENT NUMBER: 64:43304
 ORIGINAL REFERENCE NO.: 64:8031h,8032a-c
 TITLE: **Perfluoroalkyl iodides**
 INVENTOR(S): Blanchard, Wesley A.; Rhode, Judson C.
 PATENT ASSIGNEE(S): E. I. du Pont de Nemours & Co.
 SOURCE: 4 pp.
 DOCUMENT TYPE: Patent
 LANGUAGE: Unavailable
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------|------|----------|-----------------|----------|
| US 3226449 | | 19651228 | US 1962-200299 | 19620606 |

AB **Perfluoroalkyl iodides** containing 6-12 C atoms may be

prepared by injecting C₂F₄ and a free radical-generating catalyst into a mixture of (1) a **perfluoroalkyl iodide** chosen from C₂F₅I and mixts. of C₂F₅I and C₄F₉I and (2) a portion of free radical generating catalyst. The mixture is heated to 80-170° under a pressure of 225-700 psi. The injection of the C₂F₄ mixture is continued until there are 0.25-1.2 moles of C₂F₄ per mole of **perfluoroalkyl iodide**. The amount of catalyst should be 0.25-0.9 weight-% of the total reaction mixture. Product yields of 70% or better are obtained. The preferred catalyst is di-tert-butyl peroxide. The preferred reaction temperature with the catalyst is 165°. The preferred mole ratio of C₂F₄-iodide is 0.4-1.1. The table gives yields obtained under various conditions. The products may be used as intermediates for preparing oil and water repellants for textiles and as intermediates for the preparation of perfluoroalkanecarboxylic acids which are surface active agents. Parts, 2F₆I, C₄F₉I, Total tert-BuO₂ used, weight %, Temperature, Ratio of C₂F₄ added to initial iodide moles, % yield C₆F₁₃I-C₁₂F₂₅I, Based on C₂F₄, Based on iodide; 800, 800, 0.9, 165°, 0.654, 93.9, 74.5; 1200, 400, 0.89, 165°, 0.961, 98, 80.1; 1200, 400, 0.78, 165°, 0.67, 98+, 73.6; 1200, 400, 0.85, 165°, 0.767, 90.7, 81.9; 1200, 400, 0.91, 165°, 0.86, --, 60; 1200, 400, 0.78, 175°, 1.2, 65, 65;

L7 ANSWER 27 OF 31 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1966:18698 CAPLUS
 DOCUMENT NUMBER: 64:18698
 ORIGINAL REFERENCE NO.: 64:3349g-h,3350a-b
 TITLE: **Perfluoroalkyl iodides**
 INVENTOR(S): Bloechl, Walter
 SOURCE: 13 pp.
 DOCUMENT TYPE: Patent
 LANGUAGE: Unavailable
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------------------|------|----------|-----------------|----------|
| NL 6414504 | | 19650614 | NL 1964-14504 | 19641211 |
| PRIORITY APPLN. INFO.: | | | DE | 19631212 |

AB The title compds. are prepared in high yields (without forming polymers) by treating a perfluoroolefin R₁CF:CFR₂ with a saturated haloalkyl iodide I(CF₂)_nX or I(CFR₃CFR₄)_m(CF₂)_nX at 260-350° for <10 min. Thus, a mixture of 2 volume parts gaseous perfluoroheptyl iodide (I) and 1 volume part CF₂:CF₂ (II) was fed continuously (0.1 g. I/min.) into a Pyrex glass tube and heated at 260°. After a contact time of 3 min., the mixture was cooled to -10°. After 5 hrs., the liquid formed was distilled to yield 25.8 g. I, 4.05 g. perfluorononyl iodide (III), b₇₆₀ 178°, b₄₀ 85°, and b₁₀₀ 98°, and 1.1 g. residue, containing 90% perfluoroundecyl iodide (IV), b₄₀ 113°. At 390-410°, waxlike compds., m. >80° were formed. Similarly, CF₃CF₂I (V) and II (containing 0.3% O) were heated at 330°, and the product (300 g.) was distilled to yield 156 g. V, 51 g. 1-iodononafluorobutane, 41 g. 1-iodotridecafluorohexane, 23 g. 1-iodoheptadecafluoroctane, 15.5 g. F(CF₂)₁₀I, and 7 g. F-(CF₂)₁₂I. The perfluoro compds. prepared were (reactants, volume ratio of reactants, reaction conditions, yield, products formed, and phys. consts. are given): CF₃I, II, 4:1, 40 sec./305°/4 atmospheric, --, perfluoroiodopropane (and some perfluoroiodopentane and a trace of I); I, perfluoropropene, 5:1 by weight, --/245°/300 atmospheric, --, 2-trifluoromethyl-1-iodononane, b₁₂₀ 129°; ICF₂CF₂H, II, 3:1, 3 min./260°/750 mm., 85% (13% conversion), H(CF₂)₄I, b₇₅₀ 85°; ICF₂CF₂Cl, II, 3:1, 3 min./260°/750 mm., 80% (9% conversion),

$\text{Cl}(\text{CF}_2)_4\text{I}$, b350 76°; I(CF_2)₂I, II, 5:1, 3 min./260°/750 mm., --, I(CF_2)₄I, b100 86°. The compds. are useful as hydraulic fluids.

L7 ANSWER 28 OF 31 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1965:90276 CAPLUS
 DOCUMENT NUMBER: 62:90276
 ORIGINAL REFERENCE NO.: 62:16051g-h,16052a
 TITLE: **Perfluoroalkyl iodides**
 PATENT ASSIGNEE(S): E. I. du Pont de Nemours & Co.
 SOURCE: 22 pp.
 DOCUMENT TYPE: Patent
 LANGUAGE: Unavailable
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|---|-------|----------|-----------------|----------|
| FR 1380555 | ----- | 19641204 | FR 1963-949248 | 19631001 |
| AB IF5 73.3 is mixed at room temperature with 167.7 I and 0.5 part SbF_3 in a bomb jacketed with Hastelloy C. The bomb is cooled at 0°, purged of air and heated at 80° with stirring. C_2F_4 (I) 192 parts is added portionwise over an hr. The pressure rises from 14 to 17 kg./cm. ² after each addition. After another hr. the bomb is vented through a water cleaner followed by a drying column (Drierite). The gases are collected at -60°. The non-condensed gas contains 4.3 parts $\text{C}_2\text{F}_5\text{I}$ (II), while the condensed fraction (397 parts) contains 98.3% II, 0.4% I, 0.8% $\text{CF}_2\text{ICF}_2\text{I}$ and 0.4% C_4F_{10} . The yield in II is 98.5% based on the consumed I. Other catalysts may be used (given: catalyst (2 parts) and yield in % II) SnF_2 , 99; CaF_2 , 78; $\text{CrF}_3\cdot 3\text{H}_2\text{O}$, 16; KF , 18; HF (100 parts), 15; $\text{CoF}_2\cdot 2\text{H}_2\text{O}$, 60; PbF_4 , 39; CuF_2 , 78; $\text{NiF}_2\cdot 5\text{H}_2\text{O}$, 28; AgF (50%), 73. Depending on the exptl. conditions, the following products were also obtained in the reaction mixture: $\text{C}_4\text{F}_9\text{I}$, $\text{C}_6\text{F}_{13}\text{I}$, $\text{C}_8\text{F}_{17}\text{I}$, $\text{C}_{10}\text{F}_{21}\text{I}$, $\text{C}_{12}\text{F}_{25}\text{I}$, $\text{C}_{14}\text{F}_{29}\text{I}$, $\text{C}_{16}\text{F}_{33}\text{I}$. | | | | |

L7 ANSWER 29 OF 31 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1964:410993 CAPLUS
 DOCUMENT NUMBER: 61:10993
 ORIGINAL REFERENCE NO.: 61:1755d-h,1756a-b
 TITLE: Improvement in the preparation of **perfluoroalkyl iodides** from tetrafluoroethylene
 INVENTOR(S): Parsons, Raymond E.
 PATENT ASSIGNEE(S): E. I. du Pont de Nemours & Co.
 SOURCE: 5 pp.
 DOCUMENT TYPE: Patent
 LANGUAGE: Unavailable
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------|-------|----------|-----------------|----------|
| US 3132185 | ----- | 19640505 | US 1962-191722 | 19620502 |
| BE 640970 | ----- | | BE | |
| GB 998235 | ----- | | GB | |

AB The preparation is given of perfluoroethyl iodide ($\text{C}_2\text{F}_5\text{I}$) (I) and longer chain title compds. $\text{C}_2\text{F}_5(\text{CF}_2\text{CF}_2)_n\text{I}$ (II), where n = 1 or greater, according to the reaction $2\text{I}_2 + \text{IF}_5 + 5\text{CF}_2:\text{CF}_2 \rightarrow 5\text{CF}_3\text{CF}_2\text{I}$. If the molar ratio of iodine to IF_5 < 2:1, products of formula II (mixture, various n values) result, usually in conjunction with varying amts. of I depending on the iodine to IF_5 ratio. Thus, 0.66 mole iodine, 0.33 mole IF_5 (III), and 0.0028 mole SbF_5 were mixed at ambient temperature in a Hastelloy-C lined autoclave (2 moles iodine and 8.48 millimoles catalyst/mole III), the

whole cooled <0°, evacuated to remove air, heated to 80° with agitation and CF₂CF₂ (IV) and 192 parts added slowly; the pressure rose to 200-50 lb./in.² gage in <3 min., the temperature rose 8-26° after each addition in about 1 min. and then reverted to about 80° until 165 parts had been added. No temperature increase occurred during the addition of the

remaining 27 parts of IV. The mixture was kept 1 hr. at 80°, cooled and the volatile products collected in a refrigerated receiver at -60°. Mass-spectrometry, showed 98.3% I, 0.4% unreacted IV, 0.8% IF₂CCF₂I (V) and 0.4% perfluorocyclobutane (VI). The noncondensed gases contained 28.1 parts IV and 4.3 parts I. The yield of I was 98.5%, based on IV. When the reaction temperature was 60° rather than 80°, the condensed product contained 97.4% I, 0.7% IV, 0.6% VI, 0.7% V, and 0.4% other products; the yield of I was 98.1%. When the reaction was repeated with omission of the SbF₅, the condensed product contained 98.5% I, 0.4% IV, 0.5% V and 0.5% VI, the oily residue contained 94.6% V and 4.4% I and the yield of I was 98.4% based on IV. The reaction was repeated with 0.0128 mole anhydrous SnF₂; the condensed product contained 96.9% I, 0.6% IV, 0.8% VI, 0.3% V, and 1.3% other products. The yield of I was 99% based on IV. Similarly, other catalysts were used (catalyst, and amount (parts) and % yield of I given): CaF₂, 2.0, 78; CrF₃.3H₂O, 2.0, 16; KF, 2.0, 18; HF, 100.0, 15; CoF₂.2H₂O, 2.0, 60; PbF₄, 2.0, 39; CuF₂, 2.0, 78; NiF₂.5H₂O, 2.0, 28; and AgF (50%), 2.0, 73. The following examples give the mixture of components. A mixture of 0.33 mole iodine, 0.182 mole III, and 0.0028 mole SbF₃ (VII) was prepared at ambient temperature in a Hastelloy-C lined autoclave,

cooled to below 0°, evacuated, sealed, heated to 60° with agitation, and 1.21 moles IV added slowly in small increments in 1 hr. The reaction was exothermic, the pressure dropped rapidly from 150-250 lb./in.² gage to <100 lb./in.² gage, the temperature rose 7-44° after each addition. The mixture was kept at 70° 1 hr., cooled, the volatile products were vented through a H₂O scrubber and a CaSO₄ drying column, condensed in a refrigerated receiver at -60° and the condensed volatile material analyzed. It contained (in mole-%) 95.1 I, 1.2 C₄F₉I (VIII), 0.5 IV, and 1 C₂F₆ (IX). The noncondensed gases were found to consist of 8.0 parts IV, 4.0 parts I, and 3.1 parts IX. The nonvolatile residue (100 parts) was washed with H₂O and analyzed with a vapor phase chromatograph (in weight-%): I 21.1; VIII 28.7; C₆F₁₃I (X) 20.6; C₈F₁₇I (XI) 13.0; C₁₀F₂₁I (XII) 7.5; C₁₂F₂₅I (XIII) 4.1; C₁₄F₂₉I (XIV) 2.3; C₁₆F₃₃I (XV) 1.1. The combination of these analyses indicates that 96.9% IV is accounted for; % yields are as follows (based on IV consumed): I 48.8, VIII 15.8, X 12.3, XI 1.7, XV 0.9, and IX 0.6. Thus, the total yield of I was 95.8% and the total yield of products II was 47.1%. Iodine consumption was quant. Similarly, addnl. expts. were carried out with a varying ratio of iodine and III, as well as the temperature and the catalysts.

L7 ANSWER 30 OF 31 CAPLUS COPYRIGHT 2006 ACS on STN
ACCESSION NUMBER: 1964:404316 CAPLUS
DOCUMENT NUMBER: 61:4316
ORIGINAL REFERENCE NO.: 61:684h,685a-b
TITLE: Chemistry of the metal carbonyls. XXV. Fluorocarbon derivatives of nickel
AUTHOR(S): McBride, D. W.; Dudek, E.; Stone, F. G. A.
CORPORATE SOURCE: Harvard Univ.
SOURCE: Journal of the Chemical Society (1964), (May), 1752-9
CODEN: JCSOA9; ISSN: 0368-1769
DOCUMENT TYPE: Journal
LANGUAGE: Unavailable
AB cf. CA 60, 5532e. π-C₅H₅.Ni(CO)Rf [Rf = CF₃, C₂F₅, or n-C₃F₇] were isolated from reactions between dicarbonyl-π-dicyclopentadienyldinickel and **perfluoroalkyl iodides**. The related complexes were also obtained, namely, π-C₅H₅.Ni(CO)Me, π-C₅H₅.Ni(Ph₃P)C₂F₅,

and π -C₅H₅.Ni(Ph₃P)I. Treatment of the salt K[π -C₅H₅.Ni(CO)] with perfluoroallyl chloride gave a mixture of π -C₅H₅.Ni(CO)(CF₂CF:CF₂) and π -C₅H₅.Ni(CO)(CF:CFCF₃). The probable constitution of the C₄F₅ group in a new complex π -C₅H₅.Ni(Ph₃P)C₄F₅ was discussed. Reactions between dicyclopentadienylnickel and ethylene, hexafluorobut-2-yne, and butadiene were described.

L7 ANSWER 31 OF 31 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1951:49720 CAPLUS

DOCUMENT NUMBER: 45:49720

ORIGINAL REFERENCE NO.: 45:8442a-f

TITLE: Synthesis of fluorocarbons, perfluoroalkyl iodides, bromides, and chlorides, and perfluoroalkyl Grignard reagents

AUTHOR(S): Haszeldine, R. N.

CORPORATE SOURCE: Univ. Cambridge, UK

SOURCE: Nature (London, United Kingdom) (1951), 167, 139-40

CODEN: NATUAS; ISSN: 0028-0836

DOCUMENT TYPE: Journal

LANGUAGE: Unavailable

AB cf. C.A. 44, 3875h, 4861d. I(CF₂CF₂)₂I is prepared in high yield from ICF₂CF₂I and C₂F₄ with heat, also from C₂F₄ and iodine by heating under pressure; in both cases higher members of the series I(CF₂CF₂)_nI are formed in amts. that can be varied by choice of temperature and pressure. The cyclic dimer of C₂F₄ is a by-product in these reactions. The reaction is more conveniently carried out in stages in which each member of the series is converted into the next higher member. With lower members of the series, small amts. of the compds. formed with 2 or more C₂F₄ mols. are produced and this tendency becomes greater with longer chains. Compds. containing up to 9 C₂F₄ units have been prepared. A chain mechanism is proposed for these reactions. Compds. of greater chain length, from 10 to 20 C₂H₄ units, are obtained by heating iodine with excess C₂F₄ than by heating C₂F₄I₂, C₄F₈I₂, etc., with excess C₂F₄ or from C₂F₄ and excess iodine. Compds. with the general formula I(CF₂CF₂)_nI have properties similar to those of CF₃(CH₂)_nI; the lower members are liquids and the higher members are waxy solids. The compds. with n greater than 1 are much more stable than C₂F₄I₂, but the C-I bonds are broken by heat or ultraviolet light to give the corresponding free radicals which undergo addition-polymerization with C₂H₄, C₂H₂, and yield organometallic compds. I(CF₂CF₂)_nI with IF₅, SbF₅, or F diluted with N yield CF₃(CF₂)_nI. Fluorocarbons are conveniently prepared in high yield up to C₁₈F₃₈ from I(CF₂)_nI or CF₃(CF₂)_nI with F diluted with N, IF₅, IF₇, or SbF₅ in an autoclave or by passing over heated CoF₃. Pos. iodine is present in perfluoroalkyl mono- and diiodides and it may be replaced with H from alc. alkali or by irradiation in solvents such as hydrocarbons, alcs., and ethers. Br(CF₂CF₂)_nBr and Cl(CF₂CF₂)_nCl and small amts. of Br(CF₂CF₂)_nI or Cl(CF₂CF₂)_nI are formed by the thermal or photochem. bromination or chlorination. Perfluoroalkyl dibromides have been converted into perfluoroalkyl monobromides with BF₃. Perfluoroalkyl monobromides give fluorocarbons with excess BF₃ or SbF₅ under pressure. The conversion of perfluoroalkyl dichlorides into perfluoroalkyl monochlorides and fluorocarbons with F diluted with N, ClF₃, or SbF₅ under pressure gives poorer yields than are obtained from the corresponding iodo and Br compds. Oils, greases, and waxy solids are obtained from long-chain fluorocarbons with fluorochlorocarbons or with small amts. of cyclic fluorocarbons. The lower perfluoroalkyl monoiodides form Grignard reagents that behave normally with water, CO₂, and acyl halides; the latter give low yields.

=>