Computer Networks @CS.NYCU

Lecture 4: Network Layer: Data Plane

Instructor: Kate Ching-Ju Lin (林靖茹)

Outline

- Overview of network layer
- What's inside a router
- IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - DHCP
 - Network address translation (NAT)
 - IPv6
- Software defined networking

NAT: Network Address Translation

- More and more devices, each needs a global unique IP address?
 - All the devices in a private net use private IP address
 - Only the gateway gets a global unique IP address

 translator! Modify the address field of each packet

NAT: Network Address Translation

- Packets from all the devices in the private net use the same global public IP address
 - Public IP is assigned by the ISP
 - Private IP addresses are allocated by the gateway
- NAT gateway (router)
 - Translate between public and private IP
 - Modify each packet header
 - Re-route packets to/from the Internet

NAT Translation Table

NAT: Challenges

- 16-bit port-number field:
 - 60,000 simultaneous connections with a single LAN-side address!
- NAT is controversial:
 - Routers should only process up to layer 3
 - Address shortage should be solved by IPv6
 - Violate end-to-end argument
 - NAT possibility must be taken into account by app designers, e.g., P2P applications
 - NAT traversal: what if client wants to connect to server behind NAT?

Outline

- Overview of network layer
- What's inside a router
- IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - DHCP
 - Network address translation (NAT)
 - · IPv6
- Software defined networking

Why IPv6

Initial motivation:

- 32-bit address space soon to be completely allocated
- v6: 128-bit address
- Additional motivation:
 - Header format helps speed processing/forwarding
 - Header changes to facilitate QoS
- IPv6 datagram format:
 - fixed-length 40 byte header
 - no fragmentation allowed

IPv6 Datagram Format

- Priority: identify priority among datagrams in flow
- Flow label: identify datagrams in same "flow" (concept of "flow" not well defined)
- Next header: identify upper layer protocol for data

Other Changes from IPv4

- Fragmentation/reassembly:
 - not allowed in routers
 - only performed by a source/destination
- Checksum: removed entirely to reduce processing time at each hop
- Options: allowed, but outside of header, indicated by "Next Header" field
 - Fix the header to 40 bytes
- ICMPv6: new version of ICMP
 - additional message types, e.g. "Packet Too Big"
 - multicast group management functions

Transition from IPv4 to IPv6

- All hosts upgrade simultaneously?
 - Hard in practice
- IPv4 and IPV6 coexist: tunneling
 - IPv6 datagram carried as payload in IPv4 datagram among IPv4 routers

Tunneling

IPv6 Adoption

- Google: In 2015. Google reports that only ~8% of clients accessing Google via IPv6
- NIST: in 2015, NIST reports that <1/3 of US governments are IPv6-enabled
- Long (long!) time for deployment, use
 - 20 years and counting!
 - think of application-level changes in last 20 years:
 WWW, Facebook, streaming media, Skype, ...
 - · Why?

Outline

- Overview of network layer
- What's inside a router
- IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - DHCP
 - Network address translation (NAT)
 - IPv6
- Software defined networking

Software Defined Networks (SDN)

 Each router has a flow table that is computed and installed by a centralized controller

OpenFlow

- Standard for SDN data plane and controllers
 - Currently, version 1.5 (v1.6 only for ONF)
- Match-plus-Action
 - Match
 - Look up the felids in each packet header
 - Hardware-based matching: performed in TCAM (fast, but expensive, power consuming)

Action

- Forwarding: to one ore more output port
- Load balancing
- Rewrite: rewrite header values (e.g., NAT)
- Blocking/dropping
- Further processing: send to the controller

Counter

Keep statistics (# bytes or # packets)

Packet Header Field

Match-plus-Action

- Functionality: limited by available fields and actions
- * means wildcard
- Each flowtable entry has a priority

- 1. src=1.2.*.*, $dest=3.4.5.* \rightarrow drop$
- 2. $src = *.*.*.*, dest=3.4.*.* \rightarrow forward(2)$
- 3. src=10.1.2.3, $dest=*.*.*.* \rightarrow send to controller$

Match-plus-Action

Offer different kinds of service

1. Router

- Match: longest dst IP prefix
- Action: forward to an output port

2. Switch

- Match: destination MAC address (layer-2 addr)
- Action: forward or flood

3. Firewall

- Match: IP address and TCP/UDP port
- Action: permit or deny

4. NAT

- Match: IP address and port
- Action: rewrite address and port

Examples of Match-plus-Action

Destination-based forwarding:

IP datagrams destined to IP address 51.6.0.8 should be forwarded to router output port 6

Firewall:

do not forward (block) all datagrams destined to TCP port 22

do not forward (block) all datagrams sent by host 128.119.1.1

Examples of Match-plus-Action

Destination-based layer 2 (switch) forwarding:

layer 2 frames from MAC address 22:A7:23:11:E1:02 should be forwarded to output port 3

OpenFlow Examples

Load balancing:

Controller find the specific routing path

For each flow?

No! too many

- Elephant flows: long and huge flows (<5% flow, but occupy half bandwidth)
 - → specific routing paths
- Mice flows: short and small flows
 - → traditional shortest path routing

List of SDN Controller Software

- OpenDaylight (part of the Linux Foundation)
- ONOS (distributed via Apache 2.0 license)
 - Supported by ONF
- NOX/POX (first SDN Controller)
- Open vSwitch
- Foodlight (under an Apache 2.0 license)
- Ryu (supported by NTT Labs)
 - Easy prototyping

P4

- Programming language for controlling packet forwarding planes
- Published in ACM SIGCOMM "Programming Protocol-Independent Packet Processors"
- Properties
 - Target independence (can be compiled in any machine)
 - Protocol independence (no native support for any protocol, e.g., IP, TCP or Ethernet)
 - Reconfigurability (able to change the way they process packets)

P4 Application

P4 Programmable Switch

Barefoot Tofino chipset

Networks Ports

48x25G + 8x100G in 1RU Chassis Port 1 – Port 16: Support 1/10/25GbE Port 17 – Port 48: Support 10/25GbE

ASIC

Barefoot Tofino 2.0Tbit

CPU & Core

Broadwell-DE 8-core @2.0GHz 32G DDR4 128G SSD

Timesync option

1588v2 PTP Time Synchronization

26

Quiz

- What does "IPV6 Tunneling" mean?
 - Encrypt IPv6 packets with IPv4 headers such that IPv4 routers can forward the packets

Quiz

- Explain why it is difficult to build a server within a private network
 - Hosts in the Internet do not know what is the global IP of a server behind a private network