Big Classes and Class Forcings

Richard Matthews

University of Leeds

R.M.A.Matthews@leeds.ac.uk

(Prikry) Forcing Online

Motivation

From "Taking Reinhardt's Power Away", arXiv:2009.01127

Suppose that

- V is a model of ZFC without Power Set, 1
- $M \subseteq V$ is a transitive class containing Ord,
- $j: V \to M$ is a non-trivial elementary embedding with critical point κ .

Questions

- Is V_{κ} a set in V?
- What about $\mathcal{P}(\omega)$?

¹To be defined on the next slide

ZFC without Power Set²

Under ZF the following three principles are equivalent:

- The Reflection Principle
- The Collection Scheme
- The Replacement Scheme.

However, without Power Set the reverse implications break down.

Definition (ZF-)

Let ZF- denote the theory consisting of the following axioms:

- Empty set, Extensionality, Pairing, Unions, Infinity,
- the Foundation Scheme, the Separation Scheme,
- the Replacement Scheme.

²See What is the Theory ZFC without Power Set? by Gitman, Hamkins and Johnstone.

ZFC without Power Set²

Definition |

- ZF⁻ denotes the theory ZF⁻ plus the Collection Scheme.
- ZFC⁻ denotes the theory ZF⁻ plus the Well-Ordering Principle.
- ZFC^-_{Ref} denotes the theory ZFC^- plus the Reflection Principle.

Remarks

- For μ regular, $H_{\mu} \models ZFC_{Ref}^-$.
- Models of ZFC- can behave very counter-intuitively.

 $^{^2 \}mathrm{See}$ What is the Theory ZFC without Power Set? by Gitman, Hamkins and Johnstone.

Big Classes

Definition

A proper class A is called Big if for every non-zero ordinal α there is a surjection of A onto α .

Proposition

If $j: V \to M$ is elementary and if $j \upharpoonright (C \cup \{C\})$ is the identity then C does not surject onto κ .

Corollary

If $j: V \to M$ is elementary, $\mathcal{P}(\omega)$ is not big.

Proposition

Under ZF, every proper class is big.

Easy Examples 1

Proposition

Under ZF, every proper class is big.

Proof.

• Given a proper class \mathcal{C} , define

$$S := \{ \gamma \in \text{ORD} : \exists x \in \mathcal{C} \ \text{rank}(x) = \gamma \}.$$

- S must be unbounded in the ordinals.
- So, given an ordinal α , we can take the first α many elements of S, $\{\gamma_{\beta} : \beta \in \alpha\}$.
- Then $f(x) = \begin{cases} \beta, & \text{if } \operatorname{rank}(x) = \gamma_{\beta} \\ 0, & \text{otherwise} \end{cases}$

defines a surjection of \mathcal{C} onto α .

Easy Examples 2

Theorem (Gitman, Hamkins, Johnstone)

Suppose that $V \models ZFC$, κ is a regular cardinal with $2^{\omega} < \aleph_{\kappa}$ and that $G \subseteq Add(\omega, \aleph_{\kappa})$ is V-generic. If $W = \bigcup_{\gamma < \kappa} V[G_{\gamma}]$ where $G_{\gamma} = G \cap Add(\omega, \aleph_{\gamma})$, (that is G_{γ} is the first \aleph_{γ} many of the Cohen reals added by G) then $W \models ZFC$ - has the same cardinals as V and the DC_{α} -Scheme holds in W for all $\alpha < \kappa$, but the DC_{κ} -Scheme and the Collection Scheme fail.

- W will have the same cardinals as V and V[G].
- In V[G], $2^{\omega} = \aleph_{\kappa}$.
- Therefore there is no surjection of $\mathcal{P}(\omega)$ onto $\aleph_{\kappa+1}$.
- Hence there is no such surjection in W.
- So W is a model of ZFC- with a proper class that is not big.

Dependent Choice

Under ZF, Set dependent choice of length μ is defined as follows:

Definition (DC $_{\mu}$)

- Let S be a non-empty set and R a binary relation.
- Suppose that for every $\alpha \in \mu$ and every α -sequence $s = \langle x_{\beta} \colon \beta \in \alpha \rangle$ of elements of S there exists some $y \in S$ such that sRy.
- Then there is a function $f: \mu \to S$ such that for every $\alpha \in \mu$, $(f \upharpoonright \alpha)Rf(\alpha)$.

S is the domain and R is the relation

Dependent Choice

Under ZF⁻, Class dependent choice of length μ is defined as follows:

Definition (DC_{μ} -Scheme)

- Let ψ and φ be formulae and u and w be sets such that for some z, $\psi(z, u)$.
- Suppose that for every $\alpha \in \mu$ and every α -sequence $s = \langle x_{\beta} \colon \beta \in \alpha \rangle$ satisfying $\psi(x_{\beta}, u)$ for each β there exists some y satisfying $\psi(y, u)$ and $\varphi(s, y, w)$.
- Then there is a function f with domain μ such that for every $\alpha \in \mu$, $\psi(f(\alpha), u)$ and $\varphi((f \upharpoonright \alpha), f(\alpha), w)$.

 ψ is the domain and φ is the relation

Reflection

Definition

 $ZF_{DC_{<ORD}}^-$ is the theory ZF^- plus the DC_{μ} -Scheme for every cardinal μ .

Theorem (Gitman, Hamkins and Johnstone)

Over ZFC⁻, the DC_{\aleph_0}-Scheme is equivalent to the Reflection Principle.

Theorem (Friedman, Gitman and Kanovei)

The Reflection Principle is not provable in ZFC⁻.

Proper Classes are Big with Dependent Choice

Theorem (M.)

Suppose that $V \models ZF^- + DC_{\mu}$ for μ an infinite cardinal. Then for any proper class C, which is definable over V, there is a subset b of C of cardinality μ .

Corollary

If $V \models ZF_{DC_{< ORD}}^-$ then every proper class is big.

Corollary

If $j: V \to M$ is an elementary embedding then both $\mathcal{P}(\omega)$ and V_{κ} are sets.

An attempt

- Start with a model of ZFC.
- Consider the forcing $\mathbb{P} = \operatorname{Add}(\omega, \operatorname{ORD} \times \omega)$ to add ORD many ω blocks of Cohen reals.
- Let $G \subseteq \mathbb{P}$ be generic. Then $M[G] \models ZFC^-$.
- Take the symmetric model N such that the blocks form an amorphous proper class.³

Assertion

N is a model of ZF^- with an infinite class which doesn't surject onto ω .

³That is an infinite class A such that for any subclass B either B or $A \setminus B$ is finite.

A Contradiction

Theorem

Suppose that $\langle N, A \rangle$ satisfies;

- **○** N models ZF- in the language with a predicate for A,
- **2** $A \subseteq \mathbb{N}$ and $\langle \mathbb{N}, A \rangle \models$ "A is a proper class",
- \bullet $\langle N, A \rangle \models$ "if $B \subseteq A$ is infinite then B is a proper class".

Then the Collection Scheme fails in $\langle N, A \rangle$. In fact, $\langle N, A \rangle$ does not have a cumulative hierarchy and therefore the Power Set also fails.

To prove that the Collection Scheme fails consider the sentence

$$\forall n \in \omega \ \exists y \ (|y| = n \ \land \ y \subseteq A).$$

What Does this mean?

- Suppose that $M \models ZF^-$.
- A class forcing $\mathbb{P} \in \mathcal{M}$ is *pretame* if for any \mathbb{P} -generic G, $\mathcal{M}[G] \models \mathbf{ZF}^-$.
- Adding ORD many Cohen reals is pretame.
- But the Collection Scheme failed in N.
- Therefore the symmetric submodel of a pretame class forcing need not preserve the Collection Scheme.

Remarks

- In fact, it is unclear what the symmetric submodel actually satisfies!
- In Gitik's model where every cardinal in singular, the forcing is pretame (and Power Set fails) but the symmetric submodel satisfies ZF!

Symmetric Class Forcing

- Suppose that $\langle M, C_1, C_2, C_3 \rangle^4$ is a model of fourth order ZFC and \mathbb{P} is a pretame class forcing. (Add(ω , ORD))
- Let $\mathcal{G} \subseteq \mathcal{C}_2$ be a group of order preserving automorphisms of \mathbb{P} . (The automorphisms generated by bijections of ORD)
- Let $K \in C_3$ denote the collection of subclasses of G.
- $\mathcal{F} \in \mathcal{C}_3$ is a normal filter of subgroups of \mathcal{G} if
 - $\mathcal{F} \subseteq \mathcal{K}$,
 - If $H \in \mathcal{F}$ and $K \in \mathcal{F}$ then $H \cap K \in \mathcal{F}$,
 - If $H \in \mathcal{F}$ and $H \subseteq K$ where $K \in \mathcal{K}$ then $K \in \mathcal{F}$,
 - (Normality) If $\pi \in \mathcal{G}$ and $H \in \mathcal{F}$ then $\pi H \pi^{-1} \in \mathcal{F}$.

(The filter generated by fixing finite subsets of ORD)

• We shall then call the triple $\langle \mathbb{P}, \mathcal{G}, \mathcal{F} \rangle$ a symmetric system.

 $^{^{4}\}mathcal{C}_{1}$ are the classes, \mathcal{C}_{2} the hyper-classes and \mathcal{C}_{3} the hyper-hyper-classes.

The Symmetric Model

Definition

Say that a name \dot{x} is symmetric if

$$sym(\dot{x}) := \{ \pi \in \mathcal{G} : \pi \dot{x} = \dot{x} \} \in \mathcal{F}.$$

Let $HS_{\mathcal{F}}$ denote the class of hereditarily symmetric names.

Definition

The symmetric model given by \mathcal{F} is $\langle N, \mathcal{C} \rangle$ where

$$\mathbf{N} \coloneqq \{\dot{x}^G : \dot{x} \in \mathbf{M}^{\mathbb{P}} \land \dot{x} \in \mathbf{HS}_{\mathcal{F}}\}$$

$$\mathcal{C} \coloneqq \{\dot{x}^G : \dot{x} \in \mathcal{C}_1^{\mathbb{P}} \land \dot{x} \in \mathrm{HS}_{\mathcal{F}}\}.$$

The Symmetry Lemma

Let φ be a formula, $p \in \mathbb{P}$, $\pi \in \mathcal{G}$, $\dot{x} \in M^{\mathbb{P}}$ and $\dot{\Gamma} \in \mathcal{C}_1$. Then

$$p \Vdash \varphi(\dot{x}, \dot{\Gamma}) \Longleftrightarrow \pi p \Vdash \varphi(\pi \dot{x}, \pi \dot{\Gamma}).$$

Replacement

- Let N be the symmetric submodel.
- Suppose that $p \Vdash \dot{f}$ is a total function on \dot{a} where \dot{f} and \dot{a} are hereditarily symmetric names.
- We want a name for the range of f.
- Using collection, we can find some set of hereditarily symmetric names c containing witnesses to elements being in the range of \dot{f} .
- Let

$$\dot{b} = \{ \langle \dot{y}, s \rangle : \dot{y} \in c \land \exists \langle \dot{x}, r \rangle \in \dot{a} \ (s \in d_{\dot{x}, r}^5 \land s \Vdash \dot{f}(\dot{x}) = \dot{y}) \}.$$

- Want to conclude that for any $\pi \in \text{sym}(\dot{a}) \cap \text{sym}(\dot{f})$, $\pi \dot{b} = \dot{b}$.
- However, in general, $\{\pi(\langle \dot{y}, s \rangle) : \pi \in \text{sym}(\dot{a}) \cap \text{sym}(\dot{f})\}$ will not be a set!

⁵These sets are determined using pretameness

Hereditary Respect

Definition

Say that a name \dot{x} is respected if $\{\pi \in \mathcal{G} : \mathbb{1} \Vdash \pi \dot{x} = \dot{x}\} \in \mathcal{F}$. Let $HR_{\mathcal{F}}$ denote the class of hereditarily respected names.

Definition

The respected model given by \mathcal{F} is $\langle N, \mathcal{C} \rangle$ where

$$N := \{ \dot{x}^G : \dot{x} \in \mathcal{M}^{\mathbb{P}} \land \dot{x} \in \mathcal{HR}_{\mathcal{F}} \}$$

$$\mathcal{C} := \{ \dot{x}^G : \dot{x} \in \mathcal{C}_1^{\mathbb{P}} \land \dot{x} \in \mathrm{HR}_{\mathcal{F}} \}.$$

Remark

If \dot{a} and \dot{f} are hereditarily respected and $\{\pi: \pi p = p\} \in \mathcal{F}$ then so is

$$\dot{b} = \{ \langle \dot{y}, s \rangle : \dot{y} \in c \ \land \ \exists \langle \dot{x}, r \rangle \in \dot{a} \ (s \in d_{\dot{x},r} \ \land \ s \Vdash \dot{f}(\dot{x}) = \dot{y}) \}.$$

The Respected Model

Theorem (M.)

Suppose that \mathbb{M} is a model of (fourth-order) GB^- . Let \mathbb{P} be a pretame class forcing and $\langle \mathbb{P}, \mathcal{G}, \mathcal{F} \rangle$ a tenacious⁶ symmetric system. Then for any \mathbb{P} -generic G, the hereditarily respected model $\langle \mathbb{N}, \mathcal{C} \rangle$ is a model of GB^- .

Proposition

Suppose that \mathbb{M} is a model of (fourth-order) GB. Let \mathbb{P} be a pretame class forcing and $\langle \mathbb{P}, \mathcal{G}, \mathcal{F} \rangle$ a tenacious symmetric system. Suppose further that for any $\dot{x} \in \mathbb{M}^{HR}$ and any $H \in \mathcal{F}$, $\{\pi \dot{x} : \pi \in H\} \in \mathbb{M}$.

Then $\dot{x} \in HR$ iff there is some $\dot{y} \in HS$ such that $\mathbb{1} \Vdash \dot{x} = \dot{y}$. Therefore $N = \{\dot{x}^G : \dot{x} \in M^{\mathbb{P}} \land \dot{x} \in HS_{\mathcal{F}}\}.$

⁶That is, for every $p \in \mathbb{P}$, $\{\pi \in \mathcal{G} : \pi p = p\} \in \mathcal{F}$.

Union of ZF models

Construction (Zarach)

Suppose that $\mathcal{M} = \langle \mathbf{M}, \in \rangle \models \mathrm{ZFC}$, $\mathbb{P} \in \mathbf{M}$, $\omega(\mathbb{P})$ is the finite support product of ω many copies of \mathbf{N} and $h : \mathbb{P} \cong \omega(\mathbb{P})$ be an order isomorphism. Let G be \mathbb{P} -generic over \mathcal{M} and H = h"G be $\omega(\mathbb{P})$ -generic. Let $G_n = H \upharpoonright \{n\}$ be the n^{th} generic and let $\mathbf{M}_n = \mathbf{M}[G_0 \times \cdots \times G_{n-1}]$. Consider

$$N = \bigcup_{n} M_n$$
.

Theorem

 $\langle N, \in M \rangle$ is a model of $ZFC_{Ref}^- + \neg DC_{|\mathcal{P}^{V[G]}(\mathbb{P})|^+}$. In particular, $\mathcal{P}(\mathbb{P})$ is a proper class that does not surject onto every ordinal!

A solution

Theorem

 $\langle N, \in M \rangle$ is a model of $ZFC_{Ref}^- + \neg DC_{|\mathcal{P}^{V[G]}(\mathbb{P})|^+}$. In particular, $\mathcal{P}(\mathbb{P})$ is a proper class that does not surject onto every ordinal!

Corollary

One can have models V of ZFC_{Ref}^- with an elementary embedding $j: V \to M$ for which $\mathcal{P}(\omega)$ is a proper class.

Bibliography

- [FGK] SY-DAVID FRIEDMAN, VICTORIA GITMAN and VLADIMIR KANOVEI, A model of second-order arithmetic satisfying AC but not DC, Journal of Mathematical Logic, Volume 19, 2019.
- [GHJ] VICTORIA GITMAN, JOEL DAVID HAMKINS and THOMAS A. JOHNSTONE, What is theory ZFC without power set?, Mathematical Logic Quarterly, Volume 62, 2016
- [HK] PETER HOLY, REGULA KRAPF and PHILIPP SCHLICHT, Characterizations of pretameness and the Ord-cc, Annals of Pure and Applied Logic, Volume 169, 2018.
- [Mat] RICHARD MATTHEWS, Taking Reinhardt's Power Away, arxiv preprint arXiv:2009.01127, 2020.
- [Zar] Andrezj Zarach, Unions of ZF^- models which are themselves ZF^- models, Studies in Logic and the Foundations of Mathematics, Volume 108, 1982.

A note on Injections

Theorem (Monro)

Let ZF(K) be the theory with the language of ZF plus a one-place predicate K and let M be a countable transitive model of ZF. Then there is a model N such that N is a transitive model of ZF(K) and

N |= K is a proper class which is Dedekind-finite and can be mapped onto the universe.

Proper Classes Are Big with Reflection

Theorem (M.)

Suppose that $V \models ZF^- + DC_{\mu}$ for μ an infinite cardinal. Then for any proper class C, which is definable over V, there is a subset b of C of cardinality μ .

Proof

- We shall prove that for any $\nu \leq \mu$ there is a subset b of \mathcal{C} and a bijection between b and ν .
- \bullet Suppose not and let δ be the least cardinal for which this fails.
- Let $\varphi(s, y) \equiv (s \cup \{y\} \subseteq \mathcal{C} \land y \notin s)$.
- This satisfies the hypothesis of DC_{δ} .
- So there is a function f with domain δ and whose range gives a subset of \mathcal{C} of cardinality δ . Contradiction.