Lecture 3

Introduction to Relational Algebra

What is Relational Algebra?

- Operators
 - Relational Algebra consists of eight operators:
 - Four traditional set operators: UNION, INTERSECTION, DIFFERENCE, CARTESIAN PRODUCT
 - Four special relational operators: RESTRICTION, PROJECTION, JOIN, DIVISION
- Operands
 - Relations are the operands used in Relational Algebra
- Closure property of Relations
 - output from some relational operator is always a relation.

UNION

- the union of two type-compatible relations A and B (A UNION B) is a relation with the same heading as each of A and B and with a body consisting of the set of all tuples belonging to A and B.
- relations must have same heading
- same tuples are included once

UNION

Returns a relation consisting of all tuples appearing in either or both relations

A

ID	Name	Age	Department	NIC
S 1	Ahmad	23	Sales	245-77-245367
S2	Salman	34	Marketing	234-66-245368
S4	Tariq	29	Admin	245-71-325370

B

ID	Name	Age	Department	NIC
S3	Karim	21	Sales	255-79-256369
S4	Tariq	29	Admin	245-71-325370
S5	Sadiq	32	Sales	245-68-345371

A UNION B

ID	Name	Age	Department	NIC
S1	Ahmad	23	Sales	245-77-245367
S2	Salman	34	Marketing	234-66-245368
S3	Karim	21	Sales	255-79-256369
S4	Tariq	29	Admin	245-71-325370
S5	Sadiq	32	Sales	245-68-345371

INTERSECTION

- the intersection of two type-compatible relations A and B (A INTERSECT B) is a relation with the same heading as each of A and B and with a body consisting of the set of all tuples belonging to both A and B.
- relations must have same heading

INTERSECTION

 Returns a relation consisting of all tuples appearing in both of two specified relations

A

ID	Name	Age	Department	NIC
S1	Ahmad	23	Sales	245-77-245367
S2	Salman	34	Marketing	234-66-245368
S4	Tariq	29	Admin	245-71-325370

B

ID	Name	Age	Department	NIC
S3	Karim	21	Sales	255-79-256369
S4	Tariq	29	Admin	245-71-325370
S5	Sadiq	32	Sales	245-68-345371

A INTERSECT B

ID	Name	Age	Department	NIC
S4	Tariq	29	Admin	245-71-325370

DIFFERENCE

- the difference between two type-compatible relations A and B, in that order (A MINUS B) is a relation with the same heading as each of A and B and with a body consisting of the set of all tuples belonging to A and not to B.
- relations must have same heading
- direction of operation does matter

DIFFERENCE

 Returns a relation consisting of all tuples appearing in the first and not in the second of two specified relations

A

ID	Name	Age	Department	NIC
S 1	Ahmad	23	Sales	245-77-245367
S2	Salman	34	Marketing	234-66-245368
S4	Tariq	29	Admin	245-71-325370

B

ID	Name	Age	Department	NIC
S3	Karim	21	Sales	255-79-256369
S4	Tariq	29	Admin	245-71-325370
S5	Sadiq	32	Sales	245-68-345371

A MINUS B

ID	Name	Age	Department	NIC
S1	Ahmad	23	Sales	245-77-245367
S2	Salman	34	Marketing	234-66-245368

B MINUS A

ID	Name	Age	Department	NIC
S3	Karim	21	Sales	255-79-256369
S5	Sadiq	32	Sales	245-68-345371

- PRODUCT (CARTESIAN PRODUCT)
 - the product of two relations A and B with no common attribute, (A TIMES B) is a relation with a same heading as set of all attributes in each of A and B and with a body consisting of the set of all tuples such that each resulting tuple is combination of a tuple from A and a tuple from B.
 - Cardinality of resulting relation is equal to the product of the cardinalities of A and B.
 - Degree of resulting relation is equal to the sum of the degrees of A and B.
- Returns a relation consisting of all possible tuples that are a combination of two tuples, one from each of two specified relations.

PRODUCT (CARTESIAN PRODUCT)

A

ID	Name	Age
S1	Ahmad	23
S2	Salman	34
S4	Tariq	29

B

Department	NIC
Sales	255-79-256369
Admin	245-71-325370
Sales	245-68-345371

A TIMES B

ID	Name	Age	Department	NIC
S1	Ahmad	23	Sales	255-79-256369
S1	Ahmad	23	Admin	245-71-325370
S1	Ahmad	23	Sales	245-68-345371
S2	Salman	34	Sales	255-79-256369
S2	Salman	34	Admin	245-71-325370
S2	Salman	34	Sales	245-68-345371
S4	Tariq	29	Sales	255-79-256369
S4	Tariq	29	Admin	245-71-325370
S4	Tariq	29	Sales	245-68-345371

Some more about Traditional Set Operators

- Commutative
 - Union, Intersect and Times are Commutative:
 - A UNION B is equal to B UNION A
 - A INTERSECT B is equal to B INTERSECT A
 - A TIMES B is equal to B TIMES A
 - MINUS is not Commutative i.e.,
 - A MINUS B is not equal to B MINUS A
- Associative
 - Union, Intersect and Times are Associative:
 - (A UNION B) UNION C is equal to A UNION (B UNION C)
 - (A INTERSECT B) INTERSECT C is equal to A INTERSECT (B INERSECT C)
 - (A TIMES B) TIMES C is equal to A TIMES (B TIMES C)
 - MINUS is not Associative i.e.,
 - (A MINUS B) MINUS C is not equal to A MINUS (B MINUS C)

RESTRICTION

- is actually abbreviation for θ -restriction, where " θ " stands for any simple scalar comparison operator(=,<,>,=)
- θ-restriction of relation A on attributes X and Y(in that order)
 A where X θ Y is a relation with the same heading as A and with a body consisting of the set of all tuples of A such that the condition "X θ Y" evaluates true for those tuples.
- X and Y must be defined on the same domain
- operator must make sense for that domain

RESTRICTION

 Returns a relation consisting of all tuples from a specified relation that satisfy a specified condition.

A

ID	Name	Age	Department	NIC
S1	Ahmad	23	Sales	245-77-245367
S2	Salman	34	Marketing	234-66-245368
S3	Karim	21	Sales	255-79-256369
S4	Tariq	29	Admin	245-71-325370
S5	Sadiq	32	Sales	245-68-345371

A WHERE Department="Sales"

ID	Name	Age	Department	NIC
S1	Ahmad	23	Sales	245-77-245367
S3	Karim	21	Sales	255-79-256369
S5	Sadiq	32	Sales	245-68-345371

PROJECTION

- the projection of relation A on X,Y,...,Z (where each of X,Y,...,Z is an attribute of A) is a relation with heading {X,Y,...,Z} and body consisting of the set of all tuples {X:x,Y:y,...,Z:z} such that a tuple appears in A with X-value x, Y-value y,..., Z-value z.
- projection yields a vertical subset of relation

PROJECTION

 Returns a relation consisting of all tuples that remain as (sub) tuples in a specified relation after specified attributes have been eliminated

A

ID	Name	Age	Department	NIC
S1	Ahmad	23	Sales	245-77-245367
S2	Salman	34	Marketing	234-66-245368
S3	Karim	21	Sales	255-79-256369
S4	Tariq	29	Admin	245-71-325370
S5	Sadiq	32	Sales	245-68-345371

A [Name]

Name
Ahmad
Salman
Karim
Tariq
Sadiq

A where Department="Sales"

[Name.Department]				
		Department		
Ahmad	23	Sales		
Karim	21	Sales		
Sadiq	32	Sales		

JOIN(NATURAL JOIN)

 Returns a relation consisting of all possible tuples that are combination of two tuples, one from each of the two specified relations, such that two tuples contributing to any given combination have a common value for the common attributes (and that value appears just once)

A

ID	Name
S1	Ahmad
S2	Salman
S3	Karim

В

ID	Subject
S1	Math
S2	Urdu
S1	English

A JOIN B

ID	Name	Subject
S1	Ahmad	Math
S1	Ahmad	English
S2	Salman	Urdu

• θ -JOIN

where $X \theta Y$

- it is a relation with same heading as Cartesian Product of A and B and with a body consisting of the set of all those tuples belonging to that Cartesian Product of that evaluate true for **X** θ **Y**.
- if *\mathcal{\theta}* is "equals", the *\mathcal{\theta}*-JOIN is called an EQUIJOIN.

	θ	JOI		b1 b2 b3	c1 c2 c3
a2	b2	b1	c1		
a3	b2	b1	c1		

θ- JOIN

A

ID	Name
S1	Ahmad
S2	Salman
S3	Karim

B

ID	Subject
S1	Math
S2	Urdu
S1	English

(A TIMES B) where IDA > IDB

IDA	Name	IDB	Subject
S2	Salman	S1	Math
S2	Salman	S1	English
S3	Karim	S1	Math
S3	Karim	S1	English
S3	Karim	S2	Urdu

(A TIMES B) where IDA = IDB

IDA	Name	IDB	Subject
S1	Ahmad	S1	Math
S1	Ahmad	S1	English
S2	Salman	S2	Urdu

Some more about Relational Operators

- Primitive Operators
 - Union, Difference, Product, Restriction and Projection
- Type Compatible Relations / UNION Compatible
- Three more operators
 - RENAME
 - SUMMARIZE
 - EXTEND