

Security of Distributed Cyber-Physical Systems with Connected Vehicle Applications

PI: Dr. Pierluigi Pisu

Automotive Engineering Department (CUICAR)

Co-PI: Dr. Richard Brooks

Electrical and Computer Engineering Department

Co-PI: Dr. Jim Martin

School of Computing

Clemson University

October 26, 2017

○ OUTLINE

I. Overview

II. Motivation & Introduction

III. Problem Statements

IV. Scenario I

V. Scenario II

- □ Overview
- □ Motivation & Introduction
- □ Problem Statement
- \square Scenario I
 - Hybrid modeling
 - Detection
- □ Scenario II
 - Game Theory : Attack Resilient Countermeasure
- □ Experimental Setup

Overview

OUTLINE

I. Overview

○ Overview

II. Motivation & Introduction

III. Problem Statements

IV. Scenario I

V. Scenario II

Motivation

OUTLINE

- I. Overview
- II. Motivation & Introduction
- ▶ Motivation

Motivation

III. Problem Statements

IV. Scenario I

V. Scenario II

- □ Intrusion detection systems (IDS) have shown their inability to detect and distinguish cyber-attacks from failures when CPS is concerned.
- Damages to the vehicles in connected vehicles include but not limited to
 - False data injection to hamper system performance (energy or fuel efficient driving)
 - Collision between vehicles
- The cyber security vulnerabilities that are associated with connected vehicles involve a number of parties: the vehicle users, the vehicle manufacturer, the suppliers, the insurance companies, public agencies and effectively anyone connected in the transportation network.

Motivation

- I. Overview
- II. Motivation & Introduction
- Motivation
- ▶ Motivation
- III. Problem Statements
- IV. Scenario I
- V. Scenario II
- VI. Experimental Setup

- ☐ Cyber Physical System (CPS)
 - Physical plant
 - Multi agents/ Interconnected system
 - Sensors / Actuators
 - Communication network
 - Global
 - Local
- □ Cyber-attacks
 - Receiving information
 - Sending data
 - Control process
- ☐ Physical failure
 - Sensors / Actuators

I. Overview

II. Motivation & Introduction

III. Problem Statements

Cyber attacks on individual

Compromised subsystem in a distributed CPS

IV. Scenario I

V. Scenario II

I. Overview

II. Motivation & Introduction

III. Problem
Statements
Cyber attacks on individual subsystem
Compromised subsystem in a distributed CPS

IV. Scenario I

V. Scenario II

Cyber attacks on individual subsystem

OUTLINE

- I. Overview
- II. Motivation & Introduction
- III. Problem Statements
- IV. Scenario I

Cyber attacks on individual

- Hybrid Modeling and Control

Detection

- V. Scenario II
- VI. Experimental Setup

• CPS System (Deterministic)
Continuous part
Discrete part

Hybrid Modeling

• Attack modeling (Stochastic)
Packet drop out
Denial of Service

Detection

- Cyber attack on Network
- Physical failure on sensors/ actuators

Active Attack Detection

Hybrid Observer Designing

Counteract

- Keep the performance of the CPS close to normal
- Minimize the effect of the attack

Reconfigurable Robust Control

Hybrid Modeling and Control

OUTLINE

- I. Overview
- II. Motivation & Introduction
- III. Problem Statements
- IV. Scenario I

Cyber attacks on individual subsystem
Hybrid Modeling
and Control

Detection

- V. Scenario II
- VI. Experimental Setup

- ☐ Hybrid system
 - Different strategy for different cyber-attacks
 - Switch between strategies based on detection decision
 - M: Hybrid system
 - Γ : Set of discrete states of M
 - Ψ : Continuous dynamics of M
 - $\sigma(k)$: Event
- ☐ Assumptions
 - Continuous sub-systems:

LTI systems

Detection

- I. Overview
- II. Motivation & Introduction
- III. Problem Statements
- IV. Scenario I
 Cyber attacks on individual subsystem
 Hybrid Modeling and Control
 Detection
- V. Scenario II
- VI. Experimental Setup

- ☐ Hybrid Observer
 - Considers the cyber and physical states of the CPS
 - Makes decisions on cyber-attack by monitoring the augmented system
 - Has the potential to detect a wider range of cyber-attacks that includes common attacks (jamming, false data injection, etc.) as well as intelligent attacks (stealth, covert and replay attacks)
- Active Attack Detection
 - In cases where the reachable output set of different attacks and the normal operating point of a system overlap, due to system uncertainties or control action masking attack effect, mere observer based attack detection would not work well
 - n appropriate control signal, over a small duration, would be utilized for the identification of system anomaly

Compromised subsystem in a distributed CPS

- I. Overview
- II. Motivation & Introduction
- III. Problem Statements
- IV. Scenario I
- V. Scenario II
 Compromised
 subsystem in a
- VI. Experimental Setup

- ☐ Game Theory : Attack Resilient Countermeasure
 - One or more than one of the subsystems in distributed networked CPS are malicious
 - Malicious components trying to maximize the global cost function
 - The rest of the group want to minimize the cost function
 - Win- lose Game theory
 - Control countermeasure is performed based on game theory

Experimental Setup

- I. Overview
- II. Motivation & Introduction
- III. Problem Statements
- IV. Scenario I
- V. Scenario II
- VI. Experimental Setup
- Experimental Setup

- ☐ Experimental testing and validation has 2 main components
 - CV testbed located at South Carolina Technology
 - > More than 2.5-miles of straightaway test track,
 - 2.5-mile interstate-grade test track (expandable up to 17.5 miles) DSRC-based communication network for V2V and V2I
 - Aviation Center (SC-TAC); a CV virtual/simulation lab at CU-ICAR

Connected Vehicle Testbed at SC-TAC

I. Overview

II. Motivation & Introduction

III. Problem Statements

IV. Scenario I

V. Scenario II

VI. Experimental Setup

Experimental Setup

$$L_i(t) = w_1 \int_{\Delta t} \frac{\mathsf{Fuel}}{v_i(t)} \tag{1}$$