

From Model-Based to Data-Driven Simulation: Challenges and Trends in Autonomous Driving

Ferdinand Mütsch^{1*}, Helen Gremmelmaier^{2*}, Nicolas Becker^{1*}, Daniel Bogdoll¹², Marc René Zofka², J. Marius Zöllner¹²

¹KIT Karlsruhe Institute of Technology, Karlsruhe, Germany, ²FZI Research Center for Information Technology, Karlsruhe, Germany *These authors contributed equally

Content Realism

Scenes &

Where is AD Simulation Heading Towards?

- Simulation is crucial for development and testing of autonomous vehicles (AV).
 Where are we now? Where are we going?
- We provide an overview of current challenges and recent trends

Figure 1. Examples of our proposed simulation levels.
Top-left to bottom-right: AR-enhanced (level 1), SUMO (level 2), CARLA (level 3), Block-NeRF (level 4)

• In addition, we present a classification scheme for simulation approaches

Levels of Simulation Approaches

- Categorization of simulations by comprehensives, realism, capabilities, etc.
- Higher level ≈ more "powerful" simulators
- Levels 0 to 3 well adopted and widely used
- Levels 4 and 5 of primary interest in research lately (e.g. [1, 2])

	Closed-loop / reactive	End-to-end development & testing	Visual fidelity	Diversity (content & behavior)	Object representation	Scalability	Control- lability	Key use cases	Examples
0. Log replay	X	Х	high	low	implicit	very low	none	Perception	-
1. AR- enhanced log replay	partly	X	mixed	medium	mixed	low	low	Perception	[29,67,69, 71]
2. Abstract dynamics simulation	1	Х	-	medium	explicit	medium	high	Prediction, planning, control	SUMO [7], CityFlow [65]
3. Model- driven 3D simulation	1	✓	low - high	medium	explicit	medium	high	E2E training / testing	CARLA [13], DriveSim [42]
4. Data-driven 3D simulation		✓	medium - high	medium - high	implicit	high	low - medium	E2E training / testing	ViSTA 2.0 [3], Drive- GAN [27]
5. Mixed neural simulation	/	✓	medium - high	high	mixed	high	medium - high	E2E training / testing	-

Table 1. Categories of Simulation Approaches for AD

Challenges & Trends

Content Realism

 Is about accurately representing realworld objects (static and dynamic) and environments and their diversity (what's "in" a scene)

Road Network

- 3D mapping or modeling in CAD is costly and lacks scalability
- Navigation maps are not suitable for autonomous driving
 - → Traditional procedural content generation (PCG) from gaming, GANs for road graph generation, adversarial RL for PCG (e.g. [3])

Scenes & Environment

- Lack in (visual) fidelity / photo-realism of objects or entire 3Drendered scenes
- Hand-crafting scenarios for level 2 / 3 simulations is timeconsuming and lacks scalability
- Lack in diversity and / or realism of scene topologies
- Limited controllability over generated content (with levels 4 / 5)
- → GANs for novel view-point synthesis (NVP), large-scale NeRFs for NVP, ML-facilitated 2D to 3D to 2D projection for end-to-end simulation, RL or sequence models for scene graph generation (e.g. [1, 4])

3D objects

- Lack in diversity / level of detail of scene objects (e.g. vehicles)
- Hand-crafting object models is time-consuming and lacks diversity
- → NeRFs for NVP ("scanning" objects), end-to-end 3D mesh generation, text-to-3D models (e.g. [5, 6])

Cross-Cutting Aspects

Standardization Data & Compute Power Validity & Transferability

Behavior Realism

- Covers dynamic aspects of scenes, such as non-static actors' motion characteristics (what's "happening" in a scene)
- It is hard to design challenging, yet plausible maneuvers to cover the "long tail of events"
- → Data-driven methods
- → Adversarial methods
- → Knowledge-guided methods

Perception Realism

- Is about replicating the appearance of the real world from the perspective of different sensors (how a scene "looks like")
- Lack in fidelity of camera-, lidar- and radar noise models
- Lack in generalization from sensor-specific characteristics
- → Deep learning for data-driven noise models, image-to-image translation, "hybrid" approaches (e.g. [7, 8])

In Summary

We observe simulations being pushed heavily towards levels 4 and 5, particularly facilitated by generative ML methods, NeRFs, adversarial RL and others. Heading in this direction, important future research questions include:

[3] Linus Gisslen et al. - Adversarial Reinforcement Learning for Procedural Content Generation. In 2021 IEEE COG.
[4] Yuanbo Xiangli et al. - BungeeNeRF: Progressive Neural Radiance Field for Extreme Multi-scale Scene Rendering. In The European Conference on Computer Vision (ECCV), 2022.
[5] Jun Gao et al. - GET3D: A Generative Model of High-Quality 3D Textured Shapes Learned from Images. In Advances In Neural Information