冯瑾元

博客园 首页 新随笔 联系 订阅 管理

随笔-47 文章-0 评论-0

公告

昵称: 冯瑾亓 园龄: 2年11个月

粉丝: 1 关注: 2 +加关注

<		2018年8月				>
日	_	=	Ξ	四	五	六
29	30	31	1	2	3	4
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28	29	30	31	1
2	3	4	5	6	7	8

搜索

找找看

常用链接

我的随笔

我的评论

我的参与

最新评论

我的标签

随笔分类(47)

Deep Learning(2)

LaTex(1)

Linear Algebra(8)

Linux(1)

Machine Learning(9)

MIT Linear Algebra

Opencv(1)

Papers(1)

Probability Statistics(1)

Python(5)

USACO(18)

随笔档案(47)

2016年6月 (12)

2016年5月(8)

2016年4月 (5)

2015年8月 (4)

2014年8月 (7)

2014年7月 (5)

2014年6月 (6)

阅读排行榜

Logistic回归做多分类和Softmax回归

我们已经知道,普通的logistic回归只能针对二分类(Binary Classification)问题,要想实现多个类别的分类,我们必须要改进logistic回归,让其适应多分类问题。

关于这种改进,有两种方式可以做到。

第一种方式是直接根据每个类别,都建立一个二分类器,带有这个类别的样本标记为1,带有其他类别的样本标记为0。假如我们有k个类别,最后我们就得到了k个针对不同标记的普通的logistic分类器。

第二种方式是修改logistic回归的损失函数,让其适应多分类问题。这个损失函数不再笼统地只考虑二分类非1就0的损失,而是具体考虑每个样本标记的损失。这种方法叫做softmax回归,即logistic回归的多分类版本。

我们首先简单介绍第一种方式。

对于二分类问题,我们只需要一个分类器即可,但是对于多分类问题,我们需要多个分类器才行。假如给定数据集 $\mathbf{X} \in \mathbb{R}^{m \times n}$,它们的标记 $\mathbf{Y} \in \mathbb{R}^k$,即这些样本有k个不同的类别。

我们挑选出标记为 $c(c \le k)$ 的样本,将挑选出来的带有标记c的样本的标记置为1,将剩下的不带有标记c的样本的标记置为0。然后就用这些数据训练出一个分类器,我们得到 $h_c(x)$ (表示针对标记c的logistic分类函数)。

按照上面的步骤,我们可以得到k个不同的分类器。针对一个测试样本,我们需要找到这k个分类函数输出值最大的那一个,即为测试样本的标记:

$$\arg\max_{c} h_c(x) \quad c = 1, 2, \cdots, k$$

下面我们介绍softmax回归。

对于有6个标记的分类问题,分类函数是下面这样:

$$h_{\theta}(x^{(i)}) = \begin{bmatrix} p(y^{(i)} = 1 | x^{(i)}, \theta) \\ p(y^{(i)} = 2 | x^{(i)}, \theta) \\ \vdots \\ p(y^{(i)} = k | x^{(i)}, \theta) \end{bmatrix} = \frac{1}{\sum_{c=1}^{k} e^{\theta_{c}^{T} x^{(i)}}} \begin{bmatrix} e^{\theta_{1}^{T} x^{(i)}} \\ e^{\theta_{2}^{T} x^{(i)}} \\ \vdots \\ e^{\theta_{k}^{T} x^{(i)}} \end{bmatrix}$$

在这里,我们将上式的所有的 $\theta_1, \theta_2, \cdots, \theta_k$ 组合起来,用矩阵 θ 来表示,即:

$$\theta = \begin{bmatrix} \theta_1^T \\ \theta_2^T \\ \vdots \\ \theta_k^T \end{bmatrix}$$

这时候,softmax回归算法的代价函数如下所示(其中 $sign(expression\ is\ true)=1$):

$$J(\theta) = -\sum_{i=1}^{m} \sum_{c=1}^{k} \operatorname{sign}(y^{(i)} = c) \log p(y^{(i)} = c | x^{(i)}, \theta) = -\sum_{i=1}^{m} \sum_{c=1}^{k} \operatorname{sign}(y^{(i)} = c) \log \frac{e^{\theta_c^T x^{(i)}}}{\sum_{k=1}^{k} e^{\theta_k^T x^{(i)}}}$$

很明显,上述公式是logistic回归损失函数的推广。

我们可以把logistic回归的损失函数改为如下形式:

- 1. Python中使用numpy创建的 array之间的乘法(8213)
- 2. Logistic回归做多分类和Softmax 回归(5783)
- 3. 对LeNet-5卷积神经网络的理解 (3766)
- 4. 矩阵的迹运算 (trace operator) (2807)
- 5. 矩阵的伪逆 (pseudoinverse) (2791)

推荐排行榜

- 1. Broken Necklace 坏掉的项链
- 2. Python中使用numpy创建的 array之间的乘法(1)
- 3. 对LeNet-5卷积神经网络的理解 (1)

$$J(\theta) = -\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) - (1 - y^{(i)}(1 - h_{\theta}x^{(i)})) = -\sum_{i=1}^{m} \sum_{c=0}^{1} \operatorname{sign}(y^{(i)} = c) \log p(y^{(i)} = c|x^{(i)}, \theta)$$

但是,需要特别注意的是,对于 $p(y^{(i)}=c|x^{(i)},\theta)$,softmax回归和logistic回归的计算方式是

对于选择softmax分类器还是k个logistic分类器,取决于所有类别之间是否互斥。所有类别之间明 显互斥用softmax分类器,所有类别之间不互斥有交叉的情况下最好用人个logistic分类器。

参考资料:

http://deeplearning.stanford.edu/wiki/index.php/Softmax_Regression http://blog.csdn.net/u013239871/article/details/51291277

分类: Machine Learning

关注 - 2

0 \cap

+加关注

« 上一篇: 二分类(Binary Classification)中用的衡量指标(Precision, Recall, F1-Measure)

» 下一篇:视频字幕识别的一般流程

posted @ 2016-05-03 11:40 冯瑾亓 阅读(5783) 评论(0) 编辑 收藏

刷新评论 刷新页面 返回顶部

注册用户登录后才能发表评论, 请 登录 或 注册, 访问网站首页。

最新IT新闻:

- ·苹果市值超万亿背后:苹果汽车月底"小批量送样"
- · 外媒: 满帮集团寻求新一轮10亿美元融资 估值将达100亿美元
- · 高通发新品为Google Pixel Watch铺路? Wear OS真的准备好了吗
- · 微博高管电话会议实录: 三年三线城市渗透率翻了三倍
- ·有了情商和智商的微软小冰,在商业化上有哪些想象力?
- » 更多新闻...

最新知识库文章:

- · 成为一个有目标的学习者
- · 历史转折中的"杭派工程师"
- ·如何提高代码质量?
- ·在腾讯的八年,我的职业思考
- · 为什么我离开了管理岗位
- » 更多知识库文章...

Copyright ©2018 冯瑾亓