

Universidad Nacional Autónoma de México Facultad de Ingeniería

PROGRAMA DE ESTUDIO

DISEÑO ESTRUCTURAL	0230	9	9
Asignatura	Clave	Semestre	Créditos
INGENIERÍAS CIVIL Y GEOMÁTICA	ESTRUCTURAS	INGENIERÍA CIVIL	
División	Departamento	Licenci	atura
Asignatura: Obligatoria X	Horas/semana: Teóricas 4.5	Horas/semo Teóricas	estre: 72.0
Optativa	Prácticas 0.0	Prácticas	0.0
	Total 4.5	Total	72.0
Modalidad: Curso teórico			

Seriación obligatoria antecedente: Dimensionamiento de Elementos Estructurales

Seriación obligatoria consecuente: Ninguna

Objetivo(s) del curso:

El alumno aplicará los conocimientos adquiridos de mecánica de materiales, análisis estructural, dimensionamiento de elementos y cimentaciones, entre otros, para el desarrollo de proyectos de ingeniería estructural, tomando en cuenta las características de los principales tipos de acciones estáticas y dinámicas establecidas en los códigos de diseño vigentes.

Temario

NÚM.	NOMBRE	HORAS
1.	Criterios de estructuración	9.0
2.	Acciones sobre estructuras	46.5
3.	Proyecto estructural	16.5
		72.0
	Actividades prácticas	0.0
	Total	72.0

1 Criterios de estructuración

Objetivo: El alumno comprenderá la función de las formas estructurales y materiales más comúnmente usados en diversas obras de ingeniería civil, para proponer sistemas estructurales eficientes que soporten las diversas solicitaciones a que pueda estar sometida una estructura.

Contenido:

- 1.1 Conceptos de estructuración.
- 1.2 Influencia de la forma en los efectos de las acciones.
- 1.3 Formas y materiales ideales según necesidades específicas.
- 1.4 Formas estructurales más comunes.
- 1.5 Recomendaciones sobre estructuración para construcciones en zonas sísmicas.
- **1.6** Sistemas de piso. Losas en una y en dos direcciones, losas planas, losas aligeradas, prefabricados y postensados.
- 1.7 Distintos tipos de estructuración en edificios.

2 Acciones sobre estructuras

Objetivo: El alumno comprenderá los orígenes y características de las solicitaciones dinámicas como sismo y viento para determinar sus efectos sobre las estructuras.

Contenido:

- 2.1 Aspectos generales de reglamentación.
- 2.2 Solicitaciones sísmicas y características de los sismos.
- 2.3 Estructuras amortiguadas de varios grados de libertad. Modos de vibración. Factores de participación. Efectos del amortiguamiento estructural. Respuesta dinámica elástica. Espectros de respuesta elásticos e inelásticos. Espectros de diseño.
- **2.4** Determinación de efectos sísmicos en diferentes formas estructurales por criterios estáticos. Ductilidad de estructuras usuales. Fuerzas y desplazamientos. Efectos de torsión. Distribución a los elementos resistentes.
- 2.5 Viento. Origen y características, factores que influyen en la intensidad de las presiones, principio de Bernoulli. Tipificación de estructuras en función de su respuesta ante las solicitaciones de viento. Régimen laminar y turbulento, velocidad crítica, vibraciones, vorticidad, vibraciones causadas por vórtices transversales al flujo (vórtices de Von Karman).
- **2.6** Obtención de fuerzas por viento para estructuras de baja y alta respuesta dinámica. Respuestas estructurales, presiones seudoestáticas.
- 2.7 Otras acciones: cargas vehiculares en puentes carreteros y de ferrocarriles. Empujes estáticos y dinámicos de líquidos y seudolíquidos. Movimientos y deformaciones de carácter dinámico. Asentamientos diferenciales

diferidos y súbitos.

3 Proyecto estructural

Objetivo: El alumno aplicará los conocimientos adquiridos de análisis estructural, dimensionamiento de elementos y de geotecnia, entre otros, para desarrollar un proyecto estructural completo basado en la normatividad vigente.

Contenido:

- **3.1** Necesidades de la ingeniería básica. Diagramas de flujo y, en general, estudio de los requisitos que la forma estructural propuesta debe satisfacer.
- **3.2** Determinación de las acciones que se considerarán para el análisis del proyecto. Obtención de los elementos mecánicos y desplazamientos; revisión del cumplimiento de los estados límite de la forma estructural propuesta, con base en las normas vigentes en el sitio.
- **3.3** Elaboración de memoria de cálculos y planos estructurales.

Bibliografía básica	Temas para los que se recomienda:
BANGASH, M.	
Earthquake Resistant Buildings. Dynamic Analyses, Numerical	3 y 4
Computations, Codified Methods, Case Studies and Examples London	
Springer, 2011	
CHOPRA, Anil	
Dinámica de estructuras	2
4a. edición	
México	
Pearson, 2014	
CLOUGH, Ray, PENZIEN, Joseph	
Dynamics of Structures	2
2nd edition	
New York	
Computers and Structures, 2010	
DEPARTAMENTO DE ESTRUCTURAS, Fi, UNAM,	
Apuntes de diseño estructural	Todos
México	
Facultad de Ingeniería, UNAM, 1987	
MELI PIRALLA, R.	
Diseño estructural	Todos
2a. edición	
México	
Computers and Structures, 2010	
PAZ, Mario	
Dinámica estructural. Teoría y cálculo	2
Barcelona	
Reverté S.A., 2002	
SALVADORI, Mario, LEVY, Matthys, et al.	
Diseño estructural en arquitectura	1
México	
CECSA, 1978	

ASAMBLEA LEGISLATIVA DEL DISTRITO FEDERAL

Reglamento de Construcciones para el Distrito Federal,

Bibliografía complementaria

Todos

Temas para los que se recomienda:

Normas Técnicas Complementarias México
Gaceta Oficial del Distrito Federal, 2004

COMISIÓN FEDERAL DE ELECTRICIDAD

Manual de Diseño de Obras Civiles. Diseño por Viento 2 y 3

México CFE, 2008

COMISIÓN FEDERAL DE ELECTRICIDAD

Manual de Diseño de Obras Civiles. Diseño por Sismo 2 y 3

México CFE, 2008

MARTÍNEZ ORTÍZ, I.

Dinámica estructural 2

Zacatecas

Universidad Autónoma de Zacatecas, 1983

MÉNDEZ CHAMORRO, F.

Criterios de dimensionamiento estructural

México

Trillas, 2010

Sugerencias didácticas			
Exposición oral	X	Lecturas obligatorias	X
Exposición audiovisual	X	Trabajos de investigación	X
Ejercicios dentro de clase	X	Prácticas de taller o laboratorio	
Ejercicios fuera del aula	X	Prácticas de campo	
Seminarios	X	Búsqueda especializada en internet	X
Uso de software especializado	$X \longrightarrow X$	Uso de redes sociales con fines académicos	X
Uso de plataformas educativas	s X		
Forma de evaluar			
Exámenes parciales	X	Participación en clase	X
Exámenes finales	X	Asistencia a prácticas	
Trabajos y tareas fuera del aul	la X		

Perfil profesiográfico de quienes pueden impartir la asignatura

El profesor deberá ser Ingeniero Civil con experiencia profesional alta, orientado hacia el área de estructuras, que posea las siguientes aptitudes y actitudes: habilidad para el modelado, análisis, evaluación del comportamiento y diseño de sistemas estructurales. Dedicación a la docencia, capacidad de transmitir y actualizar conocimientos, facilidad para relacionarse con alumnos, colaboradores y académicos, capacidad de trabajo y creatividad en las tareas académicas.