Prediction of Potential Vehicle Insurance Fraud

Team 05

Ying Chai Jingping Guo Jing Lin Yifei Li Shenger Zhang

AGENDA

- Introduction
- Research Question
- Data Processing
- Modeling
- Analysis and Finding
- Model Selection
- Conclusion

INTRODUCTION

ABOUT VEHICLE INSURANCE FRAUD

What are we interested in?

What the target features are?

How to improve the insurance screening rate?

What algorithms do we need to use?

Feature Data

- 33 features including target variable
- Sample size: 15,420
 - Training 70%, Testing 30%
- Most of them are categorical
- Fraud are classified into 2 classes
 - Fraudulent and Not Fraudulent

Data Source

Kaggle: Vehicle Insurance Fraud Detection

https://www.kaggle.com/datasets/shivamb/vehicle-claim-fraud-detection

Original data: Oracle

```
Rows: 15,420
 Columns: 33
 $ Month
                                                                                                                                                                                 <chr> "Dec", "Jan", "Oct", "Jun", "Jan", "Oct", "Feb", "Nov", "Dec", "Apr", "Mar", "Mar",
 $ WeekOfMonth
                                                                                                                                                                                 <int> 5, 3, 5, 2, 5, 4, 1, 1, 4, 3, 2, 5, 3, 5, 5, 4, 4, 5, 4, 4, 2, 2, 3, 3, 3, 3, 3, 3,
 $ DayOfWeek
                                                                                                                                                                                 <chr> "Wednesday", "Wednesday", "Friday", "Saturday", "Monday", "Friday", "Saturday", "Friday", 
$ Make
                                                                                                                                                                                 <chr> "Honda", "Honda", "Honda", "Toyota", "Honda", "H
 $ AccidentArea
                                                                                                                                                                                  <chr> "Urban", "Urban", "Urban", "Rural", "Urban", "Urban
  $ DayOfWeekClaimed
                                                                                                                                                                                  <chr> "Tuesday", "Monday", "Thursday", "Friday", "Tuesday", "Wednesday", "Monday", "Tuesday"
  $ MonthClaimed
                                                                                                                                                                                 <chr> "Jan", "Jan", "Nov", "Jul", "Feb", "Nov", "Feb", "Mar", "Dec", "Apr", "Mar", "Mar"
 $ WeekOfMonthClaimed
                                                                                                                                                                                <int> 1, 4, 2, 1, 2, 1, 3, 4, 5, 3, 3, 5, 3, 1, 1, 5, 1, 1, 5, 1, 1, 2, 5, 3, 3, 1, 4, 4,
 $ Sex
                                                                                                                                                                                 <chr> "Female", "Male", "Male", "Female", "Male", "Mal
 $ MaritalStatus
                                                                                                                                                                                 <chr> "Single", "Single", "Married", "Married", "Single", "Single", "Married", "Single",
$ Age
                                                                                                                                                                                 <int> 21, 34, 47, 65, 27, 20, 36, 0, 30, 42, 71, 52, 28, 0, 61, 38, 41, 28, 32, 30, 40, 47
 $ Fault
                                                                                                                                                                                 <chr> "Policy Holder", "Policy Holder", "Policy Holder", "Third Party", "Third Pa
 $ PolicyType
                                                                                                                                                                                 <chr> "Sport - Liability", "Sport - Collision", "Sport - Collision", "Sedan - Liability",
 $ VehicleCategory
                                                                                                                                                                                 <chr> "Sport", "Ut-
 $ VehiclePrice
                                                                                                                                                                                 <chr> "more than 69000", "more than 69000", "more than 69000", "20000 to 29000", "more than
 $ PolicyNumber
                                                                                                                                                                                 <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24
  $ RepNumber
                                                                                                                                                                                 <int> 12, 15, 7, 4, 3, 12, 14, 1, 7, 7, 7, 13, 11, 12, 3, 16, 15, 6, 6, 2, 3, 13, 8, 5, 12,
  $ Deductible
                                                                                                                                                                                 $ DriverRatina
                                                                                                                                                                                 <int> 1, 4, 3, 2, 1, 3, 1, 4, 4, 1, 3, 1, 1, 3, 1, 1, 4, 1, 1, 2, 1, 2, 3, 3, 3, 4, 2, 3,
 \$ Days_Policy_Accident <chr>> "more than 30", "more
 $ Days_Policy_Claim
                                                                                                                                                                                <chr> "more than 30", "more th
 $ PastNumberOfClaims
                                                                                                                                                                                <chr> "none", "none", "1", "1", "none", "none", "1", "1", "none", "2 to 4", "none", "2 to
  $ AgeOfVehicle
                                                                                                                                                                                 <chr> "3 years", "6 years", "7 years", "more than 7", "5 years", "5 years", "7 years", "new
 $ AgeOfPolicyHolder
                                                                                                                                                                                 <chr> "26 to 30", "31 to 35", "41 to 50", "51 to 65", "31 to 35", "21 to 25", "36 to 40"
 $ PoliceReportFiled
                                                                                                                                                                                 <chr> "No", "Yes", "No", "Yes", "No", "No"
 $ WitnessPresent
                                                                                                                                                                                 <chr> "No", "No", "No", "No", "No", "No", "No", "No", "Yes", "No", "No",
 $ AgentType
                                                                                                                                                                                 <chr> "External", "Extern
  $ NumberOfSuppliments
                                                                                                                                                                            <chr> "none", "none", "none", "more than 5", "none", "3 to 5", "1 to 2", "none", "3 to 5"
  $ AddressChange_Claim
                                                                                                                                                                              <chr> "1 year", "no change", "n
$ NumberOfCars
                                                                                                                                                                                 <chr> "3 to 4", "1 vehicle", "1
$ Year
                                                                                                                                                                                 <int> 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 
 $ BasePolicy
                                                                                                                                                                                 <chr> "Liability", "Collision", "Collision", "Liability", "Collision", "Collision", "Collis
 $ FraudFound_P
```


Data Pre-process

- Remove records with any missing values and Replace invalid data
 - 1 Record DayOfWeekClaimed = 0 & MonthClaimed = 0
 - 320 Records (Age = 0)
- Convert all character type to factor

Imbalance Data

- Class Proportion: 6% of Fraud and Not Fraud 94%
- Upsample training data
 - Duplicating the minority class many times

Methodology

WHAT MODEL DID WE USE

Model1 LOGISTIC REGRESSION

- Upsampling works
- Low accuracy (0.65)
- High sensitivity (0.83)

Model 2 CLASSIFICATION TREE

- Growing a full tree -> Pruned tree
- Low Accuracy (0.6)
- High sensitivity (0.96)

- Intelligent algorithm: comprehensive & randomness
- High Accuracy (0.94)
- High sensitivity (0.05): Not applicable in reality

Model3

RANDOM FOREST

Model 4 BOOSTING

- "upweights" misclassified data points
- parameter: learning rate=0.001(default)tree number=5000
- High accuracy(0.93), low sensitivity(0.21)
- important variables

Model 5 xgboost

- regularization techniques
- parameter:
 logistic regression for classification
 maximum depth of the tree=4
- Low accuracy(0.66), high sensitivity(0.87)
- important variables

Model	Upsample Ratio: 1:1 (class 0 vs class 1)			
	Accuracy	Specificity	Sensitivity	AUC
Logistic	0.6484	0.6369	0.8315	0.779
Class Full tree	0.6024	0.5797	0.9634	
Pruned tree	0.6024	0.5797	0.9634	0.772
Random Forest	0.9418	0.9977	0.0512	0.524
Boosting	0.9258	0.9710	0.2051	0.815
XGboost	0.6595	0.6461	0.8718	0.820

Conclusions

We selected the best predictive models based on different indicators:

Sensitivity best: Classification Tree

Accuracy best: Random Forest

Overall best: XGBoost

We figured out some important features that probably affect a claim is fraud or not:

(2)

Fault Which day of week

Which month it's claimed The policy type

The make of car

Improvement

- To find a better way when upsampling instead of simply duplicating data
- To find a method to merge some features or decrease some categories (too many features lead to reduced validity)
- To prove whether or not there is a better way to trade off the accuracy and sensitivity in this case (more model to try)

THANKS

FOR YOUR

LISTENING!