Mikor mondjuk azt, hogy egy függvény n-szer ($2 \le n \in N$) differenciálható egy pontban?

TFH $f\in\mathbb{R}\to\mathbb{R}, a\in \mathrm{int}\ \mathcal{D}_f$ és egy n=2,3,...-re \exists az $f^{(n-1)}$ deriváltfüggvény. AMH az f n-szer deriválható az $a\in \mathrm{int}\ \mathcal{D}_f$ pontban (jelölése: $f\in D^n\{a\}$), ha

- $\exists r > 0 : f \in D^{n-1}(K_r(a))$, és
- az $f^{(n-1)}$ függvény deriválható $a\text{-ban, azaz }f^{(n-1)}\in D\{a\}.$

Legyen ekkor

$$f^{(n)}(a) \coloneqq \left(f^{(n-1)}\right)'(a)$$

az f függvény a-beli n-edik deriváltja.

Írja le a $\frac{0}{0}$ esetre vonatkozó L'Hospital-szabályt!

 $\text{Legyen} - \overset{\cdot}{\infty} \leq a < b < +\infty \text{ \'es } f,g \in D(a,\overset{\cdot}{b}).$

TFH

$$\exists \lim_{a \to 0} f = \lim_{a \to 0} g = 0$$

•
$$g(x) \neq 0$$
 és $g'(x) \neq 0$ $\forall x \in (a, b)$

•
$$\exists \lim_{a+0} \frac{f'}{g'} \in \overline{\mathbb{R}}$$

Ekkor

$$\exists \lim_{a \to 0} \frac{f}{g} \in \overline{\mathbb{R}} \quad \text{\'es} \quad \lim_{a \to 0} \frac{f}{g} = \lim_{a \to 0} \frac{f'}{g'} \in \overline{\mathbb{R}}$$

Írja le a $\frac{+\infty}{+\infty}$ esetre vonatkozó L'Hospital-szabályt!

Legyen $-\infty \le a < b < +\infty$ és $f, g \in D(a, b)$.

TFH

•
$$\exists \lim_{a+0} f = \lim_{a+0} g = +\infty$$

•
$$g(x) \neq 0$$
 és $g'(x) \neq 0$ $\forall x \in (a, b)$

•
$$\exists \lim_{a+0} \frac{f'}{g'} \in \overline{\mathbb{R}}$$

Ekkor

$$\exists \lim_{a \to 0} \frac{f}{g} \in \overline{\mathbb{R}} \quad \text{\'es} \quad \lim_{a \to 0} \frac{f}{g} = \lim_{a \to 0} \frac{f'}{g'} \in \overline{\mathbb{R}}$$

Mi a kapcsolat a hatványsor összegfüggvénye és a hatványsor együtthatói között?

TFH a $\sum_{k=0}\alpha_k(x-a)^k\ (x\in\mathbb{R})$ hatványsor Rkonvergencisugara pozitív, és jelölje faz összegfüggvényét.

Ekkor minden $x \in K_R(a)$ pontban $f \in D^\infty\{x\},$ és bármely $n \in \mathbb{N}^+$ esetén

$$f^{(n)}(x) = \sum_{k=n}^{+\infty} k(k-1)...(k-n+1)\alpha_k(x-a)^{k-n}$$

Ha x = a, akkor

$$\alpha_n = \frac{f^{(n)}(a)}{n!} \quad (n \in \mathbb{N})$$

Hogyan definiálja egy függvény Taylor-sorát?

Ha a $f \in D^{\infty}\{a\}$, akkor a

$$T_af(x)\coloneqq \sum_{k=0}\frac{f^{(k)}(a)}{k!}(x-a)^k \qquad (x\in\mathbb{R})$$

hatványsort az f függvény $a \in \text{int } \mathcal{D}_f$ ponthoz tartozó Taylor-sorának, a sor n-edik részletösszegét, azaz a

$$T_{a,n}f(x)\coloneqq \sum_{k=0}^n \frac{f^{(k)}(a)}{k!}(x-a)^k \quad \ (x\in\mathbb{R})$$

polinomot az f függvény $a\in \operatorname{int}\, \mathcal{D}_f$ ponthoz tartozó n-edik Taylor-polinomjának nevezzük. Az f függvény a=0 ponthoz tartozó Taylor-sorát f Maclaurin-sorának is nevezzük.

Fogalmazza meg a Taylor-formula Lagrange maradéktaggal néven tanult tételt!

Legyen $n \in \mathbb{N}$

 $\text{TFH } f \in D^{n+1}(K(a))$

Ekkor $\forall x \in K(a)$ ponthoz \exists olyan a és x közé eső ξ szám, hogy

$$f(x) - T_{a,n}f(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}$$

Milyen elégséges feltételt ismer a Taylor-sornak a generáló függvényhez való konvergenciájával kapcsolatosan?

Legyen $f \in D^{\infty}(K(a))$ TFH

$$\exists M>0: \left|f^{(n)}(x)\right| \leq M(\forall x \in K(a), \forall n \in \mathbb{N})$$

Ekkor f-nek az a ponthoz tartozó Taylor-sora a K(a) halmazon előállítja az f függvényt, vagyik fennáll az

$$f(x) = \lim_{n \to +\infty} \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^{k} = \sum_{k=0}^{+\infty} \frac{f^{(k)}(a)}{k!} (x - a)^{k} \quad (x \in K(a))$$

egyenlőség

Írja fel az
$$f(x)=rac{1}{1+x}$$
 $(x\in\mathbb{R},|x|<1)$ függvény Taylor-sorát!
$$f(x)=rac{1}{1+x}=\sum_{n=0}^{\infty}{(-1)^nx^n}=1-x+x^2-x^3+x^4-\dots$$

Írja fel az
$$f(x)=rac{1}{1+x^2}$$
 $(x\in\mathbb{R},|x|<1)$ függvény Taylor-sorát!
$$f(x)=rac{1}{1+x^2}=\sum_{n=0}^{\infty}{(-1)^nx^{2n}}=1-x^2+x^4-x^6+x^8-\dots$$