Models de Probabilitat

Nom	Paràmetres	Valors variable	Funció de probabilitat o funció de densitat $P(X = x), f(x)$	Funció de Distribució (Probabilitat Acumulada) $F(x) = P(X \le x)$	Esperança $E(X) = \mu$	Variància $VAR(X) = \sigma^2$
Uniforme discreta	a,b	${a, a+1, a+2,,b}$	$\frac{1}{b-a+1}$	$\sum_{i=a}^{x} \frac{1}{b-a+1}$	$\frac{a+b}{2}$	$\frac{(b-a+1)^2-1}{12}$
Binomial	n, p	{0, 1,, n}	$\binom{n}{x}p^x(1-p)^{n-x}$	$\sum_{i=0}^{i=x} \binom{n}{i} p^i (1-p)^{n-i}$	пр	<i>np</i> (1 – <i>p</i>)
Hipergeomètrica	N,D,n	$\{\max(0, n - N + D), \dots, \min\{D, n\}\}$	$\frac{\binom{D}{x}\binom{N-D}{n-x}}{\binom{N}{n}}$	$\sum_{i=0}^{i=x} \frac{\binom{D}{i} \binom{N-D}{n-i}}{\binom{N}{n}}$	$n\frac{D}{N}$	$\frac{nD(N-D)(N-n)}{N^2(N-1)}$
Geomètrica (fracassos)	p	{0, 1, 2,, ∞}	$p(1-p)^x$	$1-(1-p)^{x+1}$	$\frac{1-p}{p}$	$\frac{1-p}{p^2}$
Geomètrica	p	{1, 2,, ∞}	$p(1-p)^{x-1}$	$1-(1-p)^x$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
Binomial negativa (fracassos)	r, p	{0, 1, 2,, ∞}	$\binom{x+r-1}{x}p^r(1-p)^x$	$\sum_{i=k}^{i=x} {i+r-1 \choose i} p^r (1-p)^i$	$\frac{r(1-p)}{p}$	$\frac{r(1-p)}{p^2}$
Binomial negativa	r, p	$\{r,r+1,,\infty\}$	$\binom{x-1}{r-1}p^r(1-p)^{x-r}$	$\sum_{i=k}^{i=x} {i-1 \choose r-1} p^r (1-p)^{i-r}$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$
Poisson	λ	{0, 1, 2,, ∞}	$\frac{\lambda^x}{x!}e^{-\lambda}$	$\sum_{i=0}^{i=x} \frac{\lambda^i}{i!} e^{-\lambda}$	λ	λ
Uniforme continua	a,b	(a,b)	$\frac{1}{b-a}$	$\frac{x-a}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Exponencial	λ	(0,∞)	$\lambda e^{-\lambda x}$	$1 - e^{-\lambda x}$	$1/\lambda$	$1/\lambda^2$
Normal	μ,σ	$(-\infty,\infty)$	$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$	$\int_{-\infty}^{x} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{t-\mu}{\sigma}\right)^{2}} dt$	μ	σ^2

Tècniques combinatòries

Nom	Fórmula
Permutació	$P_n = n! = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 3 \cdot 2 \cdot 1$
Permutació amb repetició	$PR_n^{r_1, r_2, \dots, r_k} = \frac{(r_1 + r_2 + \dots + r_k)!}{r_1! \cdot r_2! \cdot \dots \cdot r_k!}$
Variacions	$V_n^s = \frac{n!}{(n-s)!}$
Variacions amb repetició	$VR_n^s = n^s$
Combinacions	$C_n^s = \frac{n!}{s! \cdot (n-s)!}$
Combinacions amb repetició	$CR_n^s = C_{n+s-1}^s = \frac{(n+s-1)!}{s! \cdot (n-1)!}$

Probabilitat

Nom	Fórmula			
Probabilitat condicionada	$P(A/B) = \frac{P(A \cap B)}{P(B)}$			
Probabilitat total	$P(A) = P(A/B_1) \cdot P(B_1) + \dots + P(A/B_n) \cdot P(B_n)$			
Bayes	$P(B_1/A) = \frac{P(A/B_1) \cdot P(B_1)}{P(A/B_1) \cdot P(B_1) + \dots + P(A/B_n) \cdot P(B_n)}$			