Project: traffic signs classification

Step 1: Import packages

```
In [138]: import pandas as pd
   import numpy as np
   import os
   import matplotlib.pyplot as plt
   import random
   from sklearn.model_selection import train_test_split
   from sklearn.preprocessing import MinMaxScaler
   import tensorflow as tf
   from tensorflow import keras
   import cv2
   from sklearn.metrics import classification_report
   import seaborn as sn
```

Step 2: Explore the data size distribution in classes

```
In [8]: # Store the class names in x
x = list(series_of_classes.index)

# Store the number of files/images in each class in y
y = []
for i in x:
    y.append(len(list_of_classes[i]))

print('x:',x)
print('y:',y)
```

```
x: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 2 1, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42]
y: [210, 2220, 2250, 1410, 1980, 1860, 420, 1440, 1410, 1470, 2010, 1320, 2100, 2160, 780, 630, 420, 1110, 1200, 210, 360, 330, 390, 510, 270, 1500, 600, 240, 540, 270, 450, 780, 240, 689, 420, 1200, 390, 210, 2070, 300, 360, 240, 240]
```

```
In [9]: # plot
plt.bar(x,y)
plt.title('Distribution of number of images per class')
plt.xlabel('classes')
plt.ylabel('number of images')
plt.show()
```


In [10]: # import the csv file with the meaning of the signs/classes
 signs_meanings = pd.read_csv(r'C:\Users\smart\Desktop\GitHub\Traffic_Signs\signs
 signs_meanings

Out[10]:

	sign_number	sign_meaning
0	0	Max Speed 20 km/h
1	1	Max Speed 30 km/h
2	2	Max Speed 50 km/h
3	3	Max Speed 60 km/h
4	4	Max Speed 70 km/h
5	5	Max Speed 80 km/h
6	6	End of Max Speed 80 km/h
7	7	Max Speed 100 km/h
8	8	Max Speed 120 km/h
9	9	No Passing (for any vehicle type)
10	10	No Passing (by vehicles over 3,5 t)
11	11	Priority to through-traffic at the next inters
12	12	Priority Road
13	13	Yield
14	14	Stop
15	15	No vehicles of any kind permitted
16	16	No Lkw(trucks) Permitted
17	17	Do Not Enter
18	18	Danger
19	19	Curve (left)
20	20	Curve (right)
21	21	Double curve
22	22	Uneven surfaces ahead, bumpy road
23	23	Slippery road
24	24	Road narrows on the right
25	25	Construction area
26	26	Traffic lights
27	27	Pedestrian crosswalk
28	28	Children
29	29	Bicycles
30	30	Slipperiness due to snow or ice
31	31	Wild animals
32	32	End of previous limitation

	sign_number	sign_meaning
33	33	You must turn right ahead, yield appropriately
34	34	You must turn left ahead, yield appropriately
35	35	You must go straight ahead, yield appropriately
36	36	You must go straight or turn right
37	37	You must go straight or turn left
38	38	Keep right of traffic barrier/divider
39	39	Keep left of traffic barrier/divider
40	40	Roundabout
41	41	End of No Passing (for any vehicle type)
42	42	End of No Passing (by vehicles over 3,5 t)

Step 3: Read, resize, and normalize the images

```
In [11]: | # Define a function to read, resize and label the images
         def process_resize_image(path_to_folder):
             retruns two arrays:
             X is an array of images
             Y is an array of labels
              path formate: 'C:\\Users\\smart\\Desktop\\GitHub\\Traffic_Signs\\Train'
             X = [] #images
             Y = [] #labels
             label = 0
             for number in range(43):
                  path_to_files = path_to_folder+'\\{}'.format(str(number))
                  for image_name in os.listdir(path_to_files):
                      X.append(cv2.resize(cv2.imread(os.path.join(path_to_files,image_name
                      Y.append(label)
                  label += 1
             return (X,Y)
In [13]: resized_images, labels = process_resize_image('C:\\Users\\smart\\Desktop\\GitHub'
```

```
In [14]: # Split the data into train and test subsets

X_train, X_test, y_train, y_test = train_test_split (resized_images, labels, test)
```

```
In [15]: # Check the Lenth of the train and test subsets
         ltr = len(y_train)
         print("ltr: ",ltr)
         lt = len(y_test)
         print("lt: ",lt)
         ltr: 29406
         lt: 9803
In [16]: # Double-check the unique values of labels for the train and test subsets
         uniq test labels = np.unique(y test)
         print("test labels: ",uniq test labels)
         uniq_training_labels = np.unique(y_train)
         print("training labels:", uniq training labels)
         test labels: [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2
         1 22 23
          24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42]
         training labels: [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2
         0 21 22 23
          24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42]
In [17]: | # Convert the subsets to numpy arrays
         X_train = np.array(X_train)
         print('training images np array shape:',X_train.shape)
         y_train = np.array(y_train)
         y_train.shape = (ltr,1)
         print('training labels np array shape:',y_train.shape)
         X test = np.array(X test)
         print('testing images np array shape:',X_test.shape)
         y_test = np.array(y_test)
         y_{test.shape} = (lt,1)
         print('testing labels np array shape:',y test.shape)
         training images np array shape: (29406, 28, 28)
         training labels np array shape: (29406, 1)
         testing images np array shape: (9803, 28, 28)
         testing labels np array shape: (9803, 1)
```

```
In [21]: # Normalize the train and test image subsets
         min train = np.min(X train)
         print("min pixel value, train: ",min train)
         max_train = np.max(X_train)
         print("max pixel value, train: ",max_train)
         min test = np.min(X test)
         print("min pixel value, test: ",min test)
         max test = np.max(X test)
         print("max pixel value, test: ",max_test)
         X_train_normalized = (X_train - min_train)/(max_train - min_train)
         X_test_normalized = (X_test - min_test)/(max_test - min_train)
         min train n = np.min(X train normalized)
         print("min pixel value, train_normalized: ",min_train_n)
         max_train_n = np.max(X_train_normalized)
         print("max pixel value, train_normalized: ",max_train_n)
         min_test_n = np.min(X_test_normalized)
         print("min pixel value, test normalized: ",min test n)
         max_test_n = np.max(X_test_normalized)
         print("max pixel value, test_normalized: ",max_test_n)
         min pixel value, train: 3
         max pixel value, train: 255
         min pixel value, test: 3
         max pixel value, test: 255
         min pixel value, train_normalized: 0.0
         max pixel value, train normalized: 1.0
         min pixel value, test_normalized: 0.0
```

In [22]: # Example image before nomalization plt.imshow(X train[100])

print(y_train[100])

max pixel value, test_normalized:

[18]


```
In [23]: # Example image after nomalization

plt.imshow(X_train_normalized[100])
print(y_train[100])
```

[18]

Step 4: Define, Compile and Fit the Convolutional Neural Network Model

```
In [57]: #CNN Model set to stop training after reaching 99% accuray
        class Mycallback2 (tf.keras.callbacks.Callback):
            def on epoch end (self,epoch, logs = {}):
                if logs.get("acc") > 0.99:
                   print("\n accuracy is greater than 0.99 now \n")
                   self.model.stop training = True
        training images c = X train normalized.reshape(29406,28,28,1)
        test_images_c = X_test_normalized.reshape(9803,28,28,1)
        callbacks = Mycallback2()
        model_ts = tf.keras.models.Sequential([
            tf.keras.layers.Conv2D(16,(3,3),activation = tf.nn.relu,input shape = (28,28)
                                 tf.keras.layers.Conv2D(32, (3,3), activation='relu'),
                                 tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
                                 tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
                                 tf.keras.layers.Flatten(),
                                 tf.keras.layers.Dense(512, activation = tf.nn.relu),
                                 tf.keras.layers.Dense(43, activation = 'softmax')])
        model_ts.compile(optimizer = tf.keras.optimizers.RMSprop(lr=0.0001),loss = "spar"
        results = model_ts.fit(training_images_c, y_train, epochs = 15,callbacks = [call
        Epoch 1/15
        29406/29406 [============= ] - 131s 4ms/sample - loss: 1.0724 -
        acc: 0.7301
        Epoch 2/15
        29406/29406 [============== ] - 130s 4ms/sample - loss: 0.1947 -
        acc: 0.9495
        Epoch 3/15
        29406/29406 [============== ] - 128s 4ms/sample - loss: 0.0908 -
        acc: 0.9760
        Epoch 4/15
        29406/29406 [============== ] - 127s 4ms/sample - loss: 0.0478 -
        acc: 0.9873
        Epoch 5/15
        accuracy is greater than 0.99 now
        29406/29406 [============== ] - 127s 4ms/sample - loss: 0.0273 -
        acc: 0.9924
In [25]:
        print(results.history.keys())
```

```
localhost:8888/notebooks/traffic_signs.ipynb#
```

dict keys(['loss', 'acc'])

```
In [26]: # summarize history for accuracy
plt.plot(results.history['acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
```



```
In [27]: # summarize history for loss
plt.plot(results.history['loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
```


Step 5: Evaluate the model

```
model_ts.evaluate(test_images_c,y_test)
In [59]:
         9803/9803 [============= ] - 8s 823us/sample - loss: 0.0791 - a
         cc: 0.9826
Out[59]: [0.07905799278253012, 0.98255634]
In [60]:
         prediction = model_ts.predict(test_images_c)
In [62]:
         # Transform the test labels into a list of label values
         labels list = []
         for i in range(len(y_test)):
             labels_list.append(int(y_test[i]))
         print(labels_list[:10])
         [26, 15, 13, 10, 15, 12, 25, 2, 11, 35]
In [63]:
         # Transform the prediction into a list of label values
         predictions_list = []
         for i in range(len(prediction)):
             predictions_list.append(np.argmax(prediction[i]))
         print(predictions_list[:10])
         [26, 15, 13, 10, 15, 12, 25, 2, 11, 35]
```

In [66]: # Print precision, recall, f1-score and support for all classes
support: the number of occurrences of each label (in y_test)

evaluation_report = classification_report(labels_list,predictions_list)
print(evaluation_report)

	precision	recall	f1-score	support
0	0.93	0.95	0.94	44
1	0.99	0.96	0.98	594
2	0.97	0.98	0.97	560
3	0.99	0.93	0.96	348
4	0.97	1.00	0.98	529
5	0.93	0.97	0.95	462
6	1.00	1.00	1.00	81
7	0.96	0.97	0.97	336
8	0.98	0.98	0.98	385
9	0.98	0.99	0.98	359
10	1.00	0.99	0.99	461
11	0.99	0.99	0.99	291
12	0.99	0.99	0.99	548
13	0.99	1.00	1.00	549
14	0.99	0.98	0.99	197
15	1.00	0.99	1.00	152
16	1.00	0.99	1.00	108
17	0.99	1.00	0.99	286
18	0.98	0.99	0.98	288
19	0.98	0.96	0.97	53
20	1.00	0.96	0.98	90
21	0.98	0.98	0.98	82
22	1.00	0.98	0.99	107
23	1.00	0.98	0.99	138
24	1.00	0.99	0.99	68
25	0.97	0.99	0.98	369
26	0.95	0.97	0.96	152
27	0.98	0.98	0.98	60
28	0.99	0.95	0.97	129
29	1.00	0.97	0.99	77
30	0.97	0.99	0.98	118
31	0.99	1.00	0.99	201
32	1.00	0.98	0.99	48
33	0.99	1.00	0.99	182
34	1.00	0.97	0.98	117
35	1.00	1.00	1.00	290
36	0.99	0.98	0.99	105
37	1.00	1.00	1.00	60
38	1.00	1.00	1.00	517
39	1.00	1.00	1.00	69
40	0.97	0.99	0.98	77
41	1.00	0.97	0.98	60
42	1.00	0.98	0.99	56
_		-		
avg	0.98	0.98	0.98	9803
avg	0.99	0.98	0.98	9803
avg	0.98	0.98	0.98	9803

micro macro weighted

```
In [189]: # Create a function to visualize the classification report
          def plot_classification_report(cr):
              Visualizes the output of the classification_report
              cr: classification report
              lines = evaluation_report.split('\n')
              #print('measures:',measures)
              classes = []
              plot_mat = []
              for line in lines[2 : (len(lines) - 5)]:
                  t = line.split()
                  classes.append(t[0])
                  v = [float(x) for x in t[1: len(t)-1]]
                  plot_mat.append(v)
              df_cm = pd.DataFrame(plot_mat, index = [i for i in classes],
                             columns = [i for i in ['precision', 'recall', 'f1-score']])
              plt.figure(figsize = (10,20))
              sn.heatmap(df_cm, annot=True)
```

In [190]: plot_classification_report(evaluation_report)

0	0.93	0.95	0.94
-	0.99	0.96	0.98
7	0.97	0.98	0.97
က	0.99	0.93	0.96
4	0.97	1	0.98
S	0.93	0.97	0.95
9	1	1	1
-	0.96	0.97	0.97
0	0.98	0.98	0.98
0	0.98	0.99	0.98
2	1	0.99	0.99
	0.99	0.99	0.99
	0.99	0.99	0.99
	0.99	1	1
8	0.99	0.98	0.99
	1	0.99	1
	1	0.99	1
	0.99	1	0.99
	0.98	0.99	0.98
	0.98	0.96	0.97
	1	0.96	0.98
	0.98	0.98	0.98
	1	0.98	0.99
	1	0.98	0.99
	1	0.99	0.99
	0.97	0.99	0.98
	0.95	0.97	0.96
	0.98	0.98	0.98
	0.99	0.95	0.97
	1	0.97	0.99
	0.97	0.99	0.98
	0.99	1	0.99
1	1	0.98	0.99
3	0.99	1	0.99
5	1	0.97	0.98
8	1	1	1
0	0.99	0.98	0.99


```
In [164]: | # Print some prediction vs true value comparisons
          for i in range(5):
               print("example",i)
              temporary_list = list(prediction[i])
              print('Predicted value:',temporary_list.index(max(temporary_list)))
              print('meaning:',signs_meanings['sign_meaning'][temporary_list.index(max(tem
               print('Actual value:',y_test[i])
              print("_"*30)
          example 0
          Predicted value: 26
          meaning: Traffic lights
          Actual value: [26]
          example 1
          Predicted value: 15
          meaning: No vehicles of any kind permitted
          Actual value: [15]
          example 2
          Predicted value: 13
          meaning: Yield
          Actual value: [13]
          example 3
          Predicted value: 10
          meaning: No Passing (by vehicles over 3,5 t)
          Actual value: [10]
          example 4
          Predicted value: 15
          meaning: No vehicles of any kind permitted
          Actual value: [15]
```

Step 6: Creat a function to read any new image and return

traffic_signs 5/20/2021

its meaning

```
# Define a function to read, resize, normalize and predict a new image
In [29]:
         def resize_normalize_predict (path_to_file):
             retruns one arrays:
             x is an array of images
             path formate: 'C:\\Users\\smart\\Desktop\\GitHub\\Traffic_Signs\\Train\\file
             x = cv2.resize(cv2.imread(path_to_file,cv2.IMREAD_GRAYSCALE),(28,28), interpolar
             x = np.array(x)
             ma = np.max(x)
             mi = np.min(x)
             x_n = (x - mi)/(ma - mi)
             x reshape = x n.reshape(1,28,28,1)
             prediction_array = model_ts.predict(x reshape)
             prediction_list = prediction_array.tolist()
             predicted label = prediction list[0].index(max(prediction list[0]))
             meaning = signs_meanings['sign_meaning'][predicted_label]
              return (meaning)
In [30]: #C:\Users\smart\Desktop\GitHub\Traffic_Signs_Original\Test
```

```
resize_normalize_predict("C:\\Users\\smart\\Desktop\\GitHub\\Traffic_Signs_Origit
```

Out[30]: 'Max Speed 60 km/h'