3.9 Types of Hypothesis **Tests**

MBC 638

Data Analysis and Decision Making

2 of 101

One-Sample Hypothesis Tests

for Continuous Data (Purple) Two-tail test One-tail test Select: Two-tail Lower/left-tail Upper/right-tail H_0 : $\mu = \mu_0$ H_0 : $\mu \ge \mu_0$ H_0 : $\mu \le \mu_0$ H_a : $\mu \neq \mu_0$ H_a : $\mu < \mu_0$ $H_{\rm a}$: $\mu > \mu_{\rm 0}$ Sample size Choose: Large Small $n \ge 30$ n < 30(or σ known) (or σ unknown) Test statistic Calculate: Can replace s with σ if known df = n - 1Identify: *p*-value

Two-tail

Lower/left-tail

Upper/right-tail

Two-Sample Hypothesis Tests for Continuous Data (Green)

Select: Two-tail test One-tail test

Two-tail Lower/left-tail

Upper/right-tail

 H_0 : $\mu_1 = \mu_2$

 $H_0: \mu_1 \ge \mu_2$

 $H_0: \mu_1 \leq \mu_2$

 H_a : $\mu_1 \neq \mu_2$

 H_a : $\mu_1 < \mu_2$

 H_a : $\mu_1 > \mu_2$

Choose: Sample size

Large Small $n_1 + n_2 \ge 30$ $n_1 + n_2 < 30$ (or σ known) (or σ unknown)

Calculate: Test statistic

$$Z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$df = n_1 + n_2 - 2$$

Identify:

p-value

Two-tail

Lower/left-tail

Upper/right-tail

Upper/right-tail

One-Sample Hypothesis Tests for Discrete Data (Orange)

Select: Two-tail test One-tail test

Two-tail Lower/left-tail

...

 H_0 : $p = p_0$ H_0 : $p \ge p_0$ H_0 : $p \le p_0$

 $H_a: p \neq p_0$ $H_a: p < p_0$ $H_a: p > p_0$

Choose: Sample size

Must have Where

 $np \ge 5$ $p = \frac{X}{n}$

 $n(1-p) \ge 5$ X = no. of items of interest in

 $n \ge 30$ sample

Calculate: Test statistic

 $Z = \frac{p - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$

Identify: p-value

Two-tail Lower/left-tail Upper/right-tail

 $p = 2 \times \text{area past } Z$ p = area left of Z p = area right of Z

Two-Sample Hypothesis Tests for Discrete Data (Pink)

Two-tail test Select:

One-tail test

Two-tail Lower/left-tail

Upper/right-tail

 $H_0: p_1 = p_2$ $H_0: p_1 \ge p_2$ $H_0: p_1 \le p_2$

 $H_a: p_1 \neq p_2$ $H_a: p_1 < p_2$ $H_a: p_1 > p_2$

Choose:

Sample size

Must have

 $n_1 + n_2 \ge 30$

Where

$$p_1 = \frac{X_1}{n_1}$$
 and $p_2 = \frac{X_2}{n_2}$

X = no. of items of interest in

sample

Calculate:

Test statistic

$$Z = \frac{p_1 - p_2}{\sqrt{\frac{x_1 + x_2}{n_1 + n_2} \left[1 - \frac{x_1 + x_2}{n_1 + n_2}\right] \left[\frac{1}{n_1} + \frac{1}{n_2}\right]}}$$

Identify:

p-value

Two-tail

Lower/left-tail Upper/right-tail

 $p_1 = 2 \times \text{area past } Z$

 p_1 = area left of Z p_1 = area right of Z

Using the Charts: Introduction

Select: Two-tail test One-tail test

Two-tail

Lower/left-tail

Upper/right-tail

 H_0 : $\mu = \mu_0$

 $H_0: \mu \ge \mu_0$

 $H_0: \mu \leq \mu_0$

 H_a : $\mu \neq \mu_0$

 H_{a} : $\mu < \mu_{0}$

 $H_{\rm a}$: $\mu > \mu_{\rm 0}$

Choose: Sample size

Large

n ≥ 30

(or σ known)

Small

n < 30

(or σ unknown)

Calculate: Test statistic

 $Z = \frac{\bar{x} - \mu_0}{\frac{s}{\sqrt{n}}}$

 $t = \frac{\bar{x} - \mu_0}{\frac{s}{\sqrt{n}}}$

Can replace s with σ if known

df = n - 1

Identify:

p-value

Two-tail

Lower/left-tail

Upper/right-tail

Two-tail test One-tail test Select: Two-tail Lower/left-tail Upper/right-tail H_0 : $\mu = \mu_0$ H_0 : $\mu \geq \mu_0$ $H_0: \mu \leq \mu_0$ H_a : $\mu \neq \mu_0$ H_{a} : $\mu < \mu_{0}$ H_{a} : $\mu > \mu_{0}$ Sample size Choose: Large Small $n \ge 30$ n < 30(or σ known) (or σ unknown) Test statistic Calculate:

$$Z = \frac{\bar{x} - \mu_0}{\frac{s}{\sqrt{n}}} \qquad \qquad t = \frac{\bar{x} - \mu_0}{\frac{s}{\sqrt{n}}}$$

Can replace s with σ if known

Identify:

p-value

Two-tail Lower/left-tail Upper/right-tail

df = n - 1

Select:

Two-tail test

One-tail test

Two-tail

Lower/left-tail

Upper/right-tail

 H_0 : $\mu = \mu_0$ H_0 : $\mu \ge \mu_0$

 $H_0: \mu \leq \mu_0$

 H_a : $\mu \neq \mu_0$

$$H_{a}$$
: $\mu < \mu_{0}$

 $H_{\rm a}$: $\mu > \mu_{\rm 0}$

Choose:

Sample size

Large

n ≥ 30

(or σ known)

Small

n < 30

(or σ unknown)

Calculate:

Test statistic

$$Z = \frac{\bar{x} - \mu_0}{\frac{s}{\sqrt{n}}}$$

$$t = \frac{\bar{x} - \mu_0}{\frac{s}{\sqrt{n}}}$$

Can replace s with σ if known

df = n - 1

Identify:

p-value

Two-tail

Lower/left-tail

Upper/right-tail

 $p = 2 \times \text{area past } Z \text{ or } t$ p = area left of Z or t p = area right of Z or t

10 of 101

Hank's Hypothesis Statements:

 H_0 : $\mu_1 \leq \mu_2$

 H_a : $\mu_1 > \mu_2$

Select: Two-tail test One-tail test Two-tail Lower/left-tail Upper/right-tail H_0 : $\mu = \mu_0$ H_0 : $\mu \ge \mu_0$ H_0 : $\mu \le \mu_0$ H_a : $\mu \ne \mu_0$ H_a : $\mu < \mu_0$ H_a : $\mu > \mu_0$ Choose: Sample size

Large Small $n \ge 30$ n < 30 (or σ known) (or σ unknown)

Calculate: Test statistic

$$Z = \frac{\bar{x} - \mu_0}{\frac{s}{\sqrt{n}}}$$

$$t = \frac{\bar{x} - \mu_0}{\frac{s}{\sqrt{n}}}$$

$$dt = n - 1$$

Can replace s with σ if known

Identify:

p-value

Two-tail Lower/left-tail Upper/right-tail

Select: Two-tail test One-tail test

Two-tail Lower/left-tail

wer/left-tail Upper/right-tail

 H_0 : $\mu_1 = \mu_2$ H_0 : $\mu_1 \ge \mu_2$

 H_0 : $\mu_1 \le \mu_2$

*H*a: μ₁≠ μ₂

 H_a : $\mu_1 > \mu_2$

Choose: Sample size

Large Small $n_1 + n_2 \ge 30 \qquad \qquad n_1 + n_2 < 30$ (or σ known) (or σ unknown)

 H_a : $\mu_1 < \mu_2$

Calculate: Test statistic

$$Z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$df = n_1 + n_2 - 2$$

Identify:

p-value

Two-tail

Lower/left-tail

Upper/right-tail

Select: Two-tail test One-tail test

Two-tail Lower/left-tail Upper/right-tail

 H_0 : $\mu_1 = \mu_2$ H_0 : $\mu_1 \ge \mu_2$ H_0 : $\mu_1 \le \mu_2$

 H_a : $\mu_1 \neq \mu_2$ H_a : $\mu_1 < \mu_2$ H_a : $\mu_1 > \mu_2$

Choose: Sample size

Large Small $n_1 + n_2 \ge 30 \qquad \qquad n_1 + n_2 < 30$ (or σ known) (or σ unknown)

Calculate: Test statistic

$$Z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$df = n_1 + n_2 - 2$$

Identify: p-value

Two-tail Lower/left-tail Upper/right-tail

 $p = 2 \times \text{area past } Z \text{ or } t$ p = area left of Z or t p = area right of Z or t

14 of 101

Hypothesis Tests for Continuous Data

15 of 101

Hypothesis Tests for Continuous Data

Purple: one-sample test

Hypothesis Tests for Continuous Data

Purple: one-sample testGreen: two-sample test

17 of 101

Hypothesis Tests for Continuous Data

Purple: one-sample testGreen: two-sample test

Hank's process

18 of 101

Hypothesis Tests for Continuous Data

Purple: one-sample testGreen: two-sample test

Hank's process

• Two samples and two sample means

19 of 101

Hypothesis Tests for Continuous Data

Purple: one-sample testGreen: two-sample test

Hank's process

• Two samples and two sample means

• Two-sample test appropriate

Hypothesis Tests for Continuous Data

- Purple: one-sample test
- Green: two-sample test
- Hank's process
 - Two samples and two sample means
 - Two-sample test appropriate

21 of 101

Hypothesis Tests for Continuous Data

- Purple: one-sample test
- Green: two-sample test
- Hank's process
 - Two samples and two sample means
 - Two-sample test appropriate
- External standard

22 of 101

Hypothesis Tests for Continuous Data

- Purple: one-sample test
- Green: two-sample test
- Hank's process
 - Two samples and two sample means
 - Two-sample test appropriate
- External standard
 - One-sample test appropriate

Two-tail test One-tail test Select:

> Two-tail Lower/left-tail Upper/right-tail

 H_0 : $\mu_1 = \mu_2$ $H_0: \mu_1 \ge \mu_2$

 H_0 : $\mu_1 \le \mu_2$

 H_a : $\mu_1 \neq \mu_2$ H_a : $\mu_1 < \mu_2$ H_a : $\mu_1 > \mu_2$

Sample size Choose:

> Large Small $n_1 + n_2 \ge 30$ $n_1 + n_2 < 30$ (or σ unknown) (or σ known)

Test statistic Calculate:

$$Z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$df = n_1 + n_2 - 2$$

p-value Identify:

> Two-tail Lower/left-tail Upper/right-tail

Two-tail test One-tail test Select: Two-tail Lower/left-tail Upper/right-tail H_0 : $\mu_1 = \mu_2$ $H_0: \mu_1 \ge \mu_2$ H_0 : $\mu_1 \le \mu_2$ H_a : $\mu_1 \neq \mu_2$ H_a : $\mu_1 < \mu_2$ H_a : $\mu_1 > \mu_2$ Sample size Choose: Small Large $n_1 + n_2 \ge 30$ $n_1 + n_2 < 30$ (or σ unknown) (or σ known) Test statistic Calculate: Identify: *p*-value

Lower/left-tail

 $p = 2 \times \text{area past } Z \text{ or } t$ p = area left of Z or t p = area right of Z or t

25 of 101

Upper/right-tail

Hypothesis Tests for Continuous Data

Purple: one-sample testGreen: two-sample test

Two-tail

- Hank's process
 - Two samples and two sample means
 - Two-sample test appropriate
- External standard
 - One-sample test appropriate
- Continuous data: time, height, temperature, etc.

Select: Two-tail test One-tail test

Two-tail Lower/left-tail Upper/right-tail

 $H_0: \mu_1 = \mu_2$ $H_0: \mu_1 \ge \mu_2$ $H_0: \mu_1 \le \mu_2$

 H_a : $\mu_1 \neq \mu_2$ H_a : $\mu_1 < \mu_2$ H_a : $\mu_1 > \mu_2$

Choose: Sample size

Large Small $n_1 + n_2 \ge 30$ $n_1 + n_2 < 30$ (or σ known) (or σ unknown)

Calculate: Test statistic

$$Z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$df = n_1 + n_2 - 2$$

Identify: p-value

Two-tail Lower/left-tail Upper/right-tail

Using the Charts, Step 2: Choose Sample Size

Select: Two-tail test One-tail test

Two-tail Lower/left-tail

 $H_0: \mu_1 \ge \mu_2$ $H_0:$

 H_0 : $\mu_1 = \mu_2$ H_0 : $\mu_1 \ge \mu_2$

 H_0 : $\mu_1 \le \mu_2$

Upper/right-tail

 H_a : $\mu_1 \neq \mu_2$ H_a : $\mu_1 < \mu_2$

 H_a : $\mu_1 > \mu_2$

Choose: Sample size

Large Small $n_1 + n_2 \ge 30 \qquad \qquad n_1 + n_2 < 30$ (or σ known) (or σ unknown)

Calculate: Test statistic

$$Z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$df = n_1 + n_2 - 2$$

Identify: p-value

Two-tail Lower/left-tail Upper/right-tail

Using the Charts, Step 2: Choose Sample Size

 H_0 : $\mu_1 = \mu_2$

Select: Two-tail test One-tail test

Two-tail Lower/left-tail

 H_0 : $\mu_1 \ge \mu_2$

 $H_0: \mu_1 \leq \mu_2$

Upper/right-tail

 H_a : $\mu_1 \neq \mu_2$ H_a : $\mu_1 < \mu_2$

 H_a : $\mu_1 > \mu_2$

Choose: Sample size

Large Small $n_1 + n_2 \ge 30$ $n_1 + n_2 < 30$ (or σ known) (or σ unknown)

Calculate: Test statistic

$$Z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$df = n_1 + n_2 - 2$$

Identify: p-value

Two-tail Lower/left-tail Upper/right-tail

Using the Charts, Step 2: Choose Sample Size

Select: Two-tail test One-tail test

Two-tail Lower/left-tail

Upper/right-tail

 H_0 : $\mu_1 = \mu_2$

 $H_0: \mu_1 \ge \mu_2$

 $H_0: \mu_1 \le \mu_2$

 H_a : $\mu_1 \neq \mu_2$

 H_a : $\mu_1 < \mu_2$

 H_a : $\mu_1 > \mu_2$

Choose: Sample size

Large Small $n_1 + n_2 \ge 30$ $n_1 + n_2 < 30$ (or σ known) (or σ unknown)

Calculate:

Test statistic

$$Z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$df = n_1 + n_2 - 2$$

Identify:

p-value

Two-tail

Lower/left-tail

Upper/right-tail

Select: Two-tail test One-tail test

Two-tail Lower/left-tail

er/left-tail Upper/right-tail

 H_0 : $\mu_1 = \mu_2$

 $H_0: \mu_1 \ge \mu_2$

 H_0 : $\mu_1 \le \mu_2$

 H_a : $\mu_1 \neq \mu_2$

 H_a : $\mu_1 < \mu_2$

 H_a : $\mu_1 > \mu_2$

Choose: Sample size

Large Small $n_1 + n_2 \ge 30$ $n_1 + n_2 < 30$ (or σ known) (or σ unknown)

Calculate: Test statistic

$$Z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$df = n_1 + n_2 - 2$$

Identify:

p-value

Two-tail

Lower/left-tail

Upper/right-tail

Select: Two-tail test One-tail test

Two-tail Lower/left-tail Upper/right-tail

 $H_0: \mu_1 = \mu_2$ $H_0: \mu_1 \ge \mu_2$ $H_0: \mu_1 \le \mu_2$

 H_a : $\mu_1 \neq \mu_2$ H_a : $\mu_1 < \mu_2$ H_a : $\mu_1 > \mu_2$

Choose: Sample size

Large Small $n_1 + n_2 \ge 30$ $n_1 + n_2 < 30$ (or σ known) (or σ unknown)

Calculate: Test statistic

$$Z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$df = n_1 + n_2 - 2$$

Identify: p-value

Two-tail Lower/left-tail Upper/right-tail

Select: Two-tail test One-tail test

Two-tail Lower/left-tail

wer/left-tail Upper/right-tail

 H_0 : $\mu_1 = \mu_2$ H_0 : $\mu_1 \ge \mu_2$

 $H_0: \mu_1 \leq \mu_2$

 H_a : $\mu_1 \neq \mu_2$ H_a : $\mu_1 < \mu_2$

 H_a : $\mu_1 > \mu_2$

Choose: Sample size

Large Small $n_1 + n_2 \ge 30$ $n_1 + n_2 < 30$ (or σ known) (or σ unknown)

Calculate: Test statistic

$$Z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$df = n_1 + n_2 - 2$$

Identify: p-value

Two-tail Lower/left-tail Upper/right-tail

Upper/right-tail

Using the Charts, Step 3: Calculate Test Statistic

 H_0 : $\mu_1 = \mu_2$

Select: Two-tail test One-tail test

Two-tail Lower/left-tail

 $H_0: \mu_1 \ge \mu_2$ $H_0: \mu_1 \le \mu_2$

 H_a : $\mu_1 \neq \mu_2$ H_a : $\mu_1 < \mu_2$ H_a : $\mu_1 > \mu_2$

Choose: Sample size

Large Small $n_1 + n_2 \ge 30 \qquad \qquad n_1 + n_2 < 30$ (or σ known) (or σ unknown)

Calculate: Test statistic

$$Z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$df = n_1 + n_2 - 2$$

Identify: p-value

Two-tail Lower/left-tail Upper/right-tail

Select: Two-tail test One-tail test

Two-tail Lower/left-tail

 H_0 : $\mu_1 = \mu_2$ H_0 : $\mu_1 \ge \mu_2$

 $H_0: \mu_1 \leq \mu_2$

Upper/right-tail

*H*a: μ₁≠ μ₂

 H_a : $\mu_1 < \mu_2$

 H_a : $\mu_1 > \mu_2$

Choose: Sample size

Large Small $n_1 + n_2 \ge 30$ $n_1 + n_2 < 30$ (or σ known) (or σ unknown)

Calculate: Test statistic

$$Z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$df = n_1 + n_2 - 2$$

Identify: p-value

Two-tail Lower/left-tail Upper/right-tail

Select: Two-tail test One-tail test

Two-tail Lower/left-tail

Upper/right-tail

 H_0 : $\mu_1 = \mu_2$

 $H_0: \mu_1 \ge \mu_2$

 $H_0: \mu_1 \le \mu_2$

 H_a : $\mu_1 \neq \mu_2$

 H_a : $\mu_1 < \mu_2$

 H_a : $\mu_1 > \mu_2$

Choose: Sample size

Large Small $n_1 + n_2 \ge 30$ $n_1 + n_2 < 30$ (or σ known) (or σ unknown)

Calculate: Test statistic

$$Z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$df = n_1 + n_2 - 2$$

Identify:

p-value

Two-tail

Lower/left-tail

Upper/right-tail

Select: Two-tail test One-tail test

Two-tail Lower/left-tail Upper/right-tail

 H_0 : $\mu_1 = \mu_2$ H_0 : $\mu_1 \ge \mu_2$ H_0 : $\mu_1 \le \mu_2$

 H_a : $\mu_1 \neq \mu_2$ H_a : $\mu_1 < \mu_2$ H_a : $\mu_1 > \mu_2$

Choose: Sample size

Large Small $n_1 + n_2 \ge 30$ $n_1 + n_2 < 30$ (or σ known) (or σ unknown)

Calculate: Test statistic

$$Z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$df = n_1 + n_2 - 2$$

Identify: p-value

Two-tail Lower/left-tail Upper/right-tail

Select: Two-tail test One-tail test

Two-tail Lower/left-tail

Upper/right-tail

 H_0 : $\mu_1 = \mu_2$

 $H_0: \mu_1 \ge \mu_2$

 $H_0: \mu_1 \leq \mu_2$

 H_a : $\mu_1 \neq \mu_2$

 H_a : $\mu_1 < \mu_2$

 H_a : $\mu_1 > \mu_2$

Choose: Sample size

Large Small $n_1 + n_2 \ge 30$ $n_1 + n_2 < 30$ (or σ known) (or σ unknown)

Calculate:

Test statistic

$$Z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$df = n_1 + n_2 - 2$$

Identify:

p-value

Two-tail

Lower/left-tail

Upper/right-tail

Select: Two-tail test One-tail test

Two-tail Lower/left-tail Upper/right-tail

 H_0 : $\mu_1 = \mu_2$ H_0 : $\mu_1 \ge \mu_2$

 H_0 : $\mu_1 \le \mu_2$

 H_a : $\mu_1 \neq \mu_2$ H_a : $\mu_1 < \mu_2$

 H_a : $\mu_1 > \mu_2$

Choose: Sample size

Large Small $n_1 + n_2 \ge 30 \qquad \qquad n_1 + n_2 < 30$ (or σ known) (or σ unknown)

Calculate: Test statistic

$$Z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$df = n_1 + n_2 - 2$$

Identify: p-value

Two-tail Lower/left-tail Upper/right-tail

Select: Two-tail test One-tail test

Two-tail Lower/left-tail

ail Upper/right-tail

 H_0 : $\mu_1 = \mu_2$

 $H_0: \mu_1 \ge \mu_2$

 $H_0: \mu_1 \leq \mu_2$

 H_a : $\mu_1 \neq \mu_2$

 H_a : $\mu_1 < \mu_2$

 H_a : $\mu_1 > \mu_2$

Choose: Sample size

Large Small $n_1 + n_2 \ge 30$ $n_1 + n_2 < 30$ (or σ known) (or σ unknown)

Calculate: Test statistic

$$Z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$df = n_1 + n_2 - 2$$

Identify:

p-value

Two-tail

Lower/left-tail

Upper/right-tail

Two-tail test One-tail test Select: Two-tail Lower/left-tail Upper/right-tail H_0 : $\mu_1 = \mu_2$ H_0 : $\mu_1 \ge \mu_2$ H_0 : $\mu_1 \le \mu_2$ H_a : $\mu_1 \neq \mu_2$ H_a : $\mu_1 < \mu_2$ H_a : $\mu_1 > \mu_2$ Sample size Choose:

Large Small $n_1 + n_2 \ge 30$ $n_1 + n_2 < 30$ (or σ known) (or σ unknown)

Test statistic Calculate:

$$Z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$df = n_1 + n_2 - 2$$

p-value Identify:

> Two-tail Lower/left-tail Upper/right-tail

Upper/right-tail

Using the Charts, Step 4: Identify p-Value

Two-tail test One-tail test Select:

> Lower/left-tail Two-tail

> > H_0 : $\mu_1 \ge \mu_2$

 H_0 : $\mu_1 = \mu_2$ $H_0: \mu_1 \leq \mu_2$

 H_a : $\mu_1 \neq \mu_2$ H_a : $\mu_1 < \mu_2$ H_a : $\mu_1 > \mu_2$

Sample size Choose:

> Large Small $n_1 + n_2 \ge 30$ $n_1 + n_2 < 30$ (or σ unknown) (or σ known)

Test statistic Calculate:

$$Z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$df = n_1 + n_2 - 2$$

p-value Identify:

> Two-tail Lower/left-tail Upper/right-tail

Upper/right-tail

Using the Charts, Step 4: Identify p-Value

 H_0 : $\mu_1 = \mu_2$

Two-tail test One-tail test Select:

> Two-tail Lower/left-tail

> > $H_0: \mu_1 \ge \mu_2$ $H_0: \mu_1 \le \mu_2$

 H_a : $\mu_1 > \mu_2$

 H_a : $\mu_1 \neq \mu_2$ H_a : $\mu_1 < \mu_2$

Sample size Choose:

> Large Small $n_1 + n_2 \ge 30$ $n_1 + n_2 < 30$ (or σ unknown) (or σ known)

Test statistic Calculate:

$$Z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$df = n_1 + n_2 - 2$$

p-value Identify:

> Two-tail Lower/left-tail Upper/right-tail

Select: Two-tail test One-tail test

Two-tail Lower/left-tail Upper/right-tail

 H_0 : $\mu_1 = \mu_2$ H_0 : $\mu_1 \ge \mu_2$ H_0 : $\mu_1 \le \mu_2$

 H_a : $\mu_1 \neq \mu_2$ H_a : $\mu_1 < \mu_2$ H_a : $\mu_1 > \mu_2$

Choose: Sample size

Large Small
$$n_1 + n_2 \ge 30 \qquad \qquad n_1 + n_2 < 30$$
 (or σ known) (or σ unknown)

Calculate: Test statistic

$$Z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$df = n_1 + n_2 - 2$$

Identify: p-value

Two-tail Lower/left-tail Upper/right-tail

 $p = 2 \times \text{area past } Z \text{ or } t$ p = area left of Z or t p = area right of Z or t

45 of 101

Hypothesis Tests for Discrete Data

46 of 101

Hypothesis Tests for Discrete Data

Discrete data: good/bad, right/wrong, defective/not

Hypothesis Tests for Discrete Data

- Discrete data: good/bad, right/wrong, defective/not
- Orange: one-sample test

48 of 101

Hypothesis Tests for Discrete Data

- Discrete data: good/bad, right/wrong, defective/not
- Orange: one-sample test
 - One proportion calculated

49 of 101

Hypothesis Tests for Discrete Data

- Discrete data: good/bad, right/wrong, defective/not
- Orange: one-sample test
 - One proportion calculated

50 of 101

Hypothesis Tests for Discrete Data

- Discrete data: good/bad, right/wrong, defective/not
- Orange: one-sample test
 - One proportion calculated
 - Proportion compared to external standard

Hypothesis Tests for Discrete Data

- Discrete data: good/bad, right/wrong, defective/not
- Orange: one-sample test
 - One proportion calculated
 - Proportion compared to external standard
- Pink: two-sample test

52 of 101

Hypothesis Tests for Discrete Data

- Discrete data: good/bad, right/wrong, defective/not
- Orange: one-sample test
 - One proportion calculated
 - Proportion compared to external standard
- Pink: two-sample test
 - Two sample proportions compared

53 of 101

Hank's Process: Step 1

54 of 101

Hank's Process: Step 1

Is the mean time to process a job ticket in Hank's new and improved process, μ_2 , really less than in his original process, μ_1 ?

Hank's Process: Step 1

Is the mean time to process a job ticket in Hank's new and improved process, μ_2 , really less than in his original process, μ_1 ?

- H_0 : $\mu_1 \le \mu_2$
- H_a : $\mu_1 > \mu_2$

56 of 101

Two-Sample Hypothesis Tests for Continuous Data (Green)

Select: Two-tail test One-tail test

Two-tail Lower/left-tail Upper/right-tail

 H_0 : $\mu_1 = \mu_2$ H_0 : $\mu_1 \ge \mu_2$

 H_0 : $\mu_1 \le \mu_2$

 H_a : $\mu_1 \neq \mu_2$

 H_a : $\mu_1 < \mu_2$

 H_a : $\mu_1 > \mu_2$

Choose: Sample size

Large Small $n_1 + n_2 \ge 30 \qquad \qquad n_1 + n_2 < 30$ (or σ known) (or σ unknown)

Calculate:

Test statistic

$$Z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$df = n_1 + n_2 - 2$$

Identify:

p-value

Two-tail

Lower/left-tail

Upper/right-tail

 $p = 2 \times \text{area past } Z \text{ or } t$ p = area left of Z or t p = area right of Z or t

57 of 101

Hank's Process: Step 2

Did we significantly improve the mean time to process a job ticket?

59 of 101

Hank's Process: Step 2

Did we significantly improve the mean time to process a job ticket?

- Mean process time
 - \circ $\bar{x}_1 = 17.23$
 - $\circ \ \bar{x}_2 = 12.17$

60 of 101

Hank's Process: Step 2

Did we significantly improve the mean time to process a job ticket?

- Mean process time
 - $\circ \ \bar{x}_1 = 17.23$
 - \circ $\bar{x}_2 = 12.17$

61 of 101

Hank's Process: Step 2

Did we significantly improve the mean time to process a job ticket?

- · Mean process time
 - $\circ \ \bar{x}_1 = 17.23$
 - \circ $\bar{x}_2 = 12.17$

Did we significantly improve the mean time to process a job ticket?

- Mean process time
 - $\circ \ \bar{x}_1 = 17.23$
 - $\circ \ \bar{x}_2 = 12.17$
- · Standard deviation of process time
 - \circ $s_1 = 4.52$
 - \circ $s_2 = 3.32$

63 of 101

Hank's Process: Step 2

Did we significantly improve the mean time to process a job ticket?

- Mean process time
 - $\circ \ \bar{x}_1 = 17.23$
 - \circ $\bar{x}_2 = 12.17$
- Standard deviation of process time
 - \circ $s_1 = 4.52$
 - \circ $s_2 = 3.32$

Did we significantly improve the mean time to process a job ticket?

- Mean process time
 - \circ $\bar{x}_1 = 17.23$
 - \circ $\bar{x}_2 = 12.17$
- · Standard deviation of process time
 - \circ $s_1 = 4.52$
 - \circ $s_2 = 3.32$

65 of 101

Hank's Process: Step 2 (cont.)

- Sample size (no. job tickets processed)
 - \circ $n_1 = 30$
 - $on_2 = 30$

66 of 101

Hank's Process: Step 2 (cont.)

- Sample size (no. job tickets processed)
 - $o n_1 = 30$
 - $on_2 = 30$
- Alpha level
 - a = 0.05

67 of 101

Hank's Process: Step 3

Is our sample large or small?

Is our sample large or small?

•
$$n_1 + n_2 = 30 + 30 = 60$$

69 of 101

Hank's Process: Step 3

Is our sample large or small?

•
$$n_1 + n_2 = 30 + 30 = 60$$

• Large:
$$n_1 + n_2 \ge 30$$

70 of 101

Two-Sample Hypothesis Tests for Continuous Data (Green)

Select: Two-tail test One-tail test

Two-tail Lower/left-tail Upper/right-tail

 $H_0: \mu_1 = \mu_2$ $H_0: \mu_1 \ge \mu_2$ $H_0: \mu_1 \le \mu_2$

 H_a : $\mu_1 \neq \mu_2$ H_a : $\mu_1 < \mu_2$ H_a : $\mu_1 > \mu_2$

Choose: Sample size

Large Small
$$n_1 + n_2 \ge 30 \qquad \qquad n_1 + n_2 < 30$$
 (or σ known) (or σ unknown)

Calculate: Test statistic

$$Z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$df = n_1 + n_2 - 2$$

Identify: p-value

Two-tail Lower/left-tail Upper/right-tail

 $p = 2 \times \text{area past } Z \text{ or } t$ p = area left of Z or t p = area right of Z or t

Upper/right-tail

Two-Sample Hypothesis Tests for Continuous Data (Green)

Select: Two-tail test One-tail test

Two-tail Lower/left-tail

 H_0 : $\mu_1 = \mu_2$ H_0 : $\mu_1 \ge \mu_2$ H_0 : $\mu_1 \le \mu_2$

 H_a : $\mu_1 \neq \mu_2$ H_a : $\mu_1 < \mu_2$ H_a : $\mu_1 > \mu_2$

Choose: Sample size

Large Small $n_1 + n_2 \ge 30 \qquad \qquad n_1 + n_2 < 30$ (or σ known) (or σ unknown)

Calculate: Test statistic

$$Z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$df = n_1 + n_2 - 2$$

Identify: p-value

Two-tail Lower/left-tail Upper/right-tail

 $p = 2 \times \text{area past } Z \text{ or } t$ p = area left of Z or t p = area right of Z or t

Two-Sample Hypothesis Tests for Continuous Data (Green)

Two-tail test One-tail test Select: Two-tail Lower/left-tail Upper/right-tail H_0 : $\mu_1 = \mu_2$ $H_0: \mu_1 \ge \mu_2$ H_0 : $\mu_1 \le \mu_2$ H_a : $μ_1$ ≠ $μ_2$ H_a : $\mu_1 < \mu_2$ H_a : $\mu_1 > \mu_2$ Sample size Choose: Small Large $n_1 + n_2 \ge 30$ $n_1 + n_2 < 30$

(or σ known) (or σ unknown)

Test statistic

$$Z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$df = n_1 + n_2 - 2$$

Identify: p-value

Two-tail Lower/left-tail Upper/right-tail

 $p = 2 \times \text{area past } Z \text{ or } t$ p = area left of Z or t p = area right of Z or t

73 of 101

Hank's Process: Step 4

Calculate test statistic.

Calculate:

We have a large sample, so we calculate Z

Calculate test statistic.

• We have a large sample, so we calculate Z

$$Z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

75 of 101

Hank's Process: Step 4

Calculate test statistic.

• We have a large sample, so we calculate Z

$$Z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{17.23 - 12.17}{\sqrt{\frac{4.52^2}{30} + \frac{3.32^2}{30}}}$$

Calculate test statistic.

• We have a large sample, so we calculate Z

$$Z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{17.23 - 12.17}{\sqrt{\frac{4.52^2}{30} + \frac{3.32^2}{30}}}$$

$$=\frac{5.06}{\sqrt{\frac{4.52^2}{30} + \frac{3.32^2}{30}}}$$

77 of 101

Hank's Process: Step 4

Calculate test statistic.

• We have a large sample, so we calculate Z

$$Z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{17.23 - 12.17}{\sqrt{\frac{4.52^2}{30} + \frac{3.32^2}{30}}}$$

$$= \frac{5.06}{\sqrt{\frac{4.52^2}{30} + \frac{3.32^2}{30}}} = \frac{5.06}{\sqrt{0.681 + 0.367}}$$

Remember Order of Operations: PEMDAS

- 1. Parentheses
- 2. Exponents (including square roots)
- 3. Multiplication and division
- 4. Addition and subtraction

79 of 101

Hank's Process: Step 4 (cont.)

Calculate test statistic.

• We have a large sample, so we calculate Z

$$Z = \frac{x_1 - x_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{17.23 - 12.17}{\sqrt{\frac{4.52^2}{30} + \frac{3.32^2}{30}}}$$
$$= \frac{5.06}{\sqrt{\frac{4.52^2}{30} + \frac{3.32^2}{30}}} = \frac{5.06}{\sqrt{0.681 + 0.367}}$$

Hank's Process: Step 4 (cont.)

Calculate test statistic.

• We have a large sample, so we calculate Z

$$Z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{17.23 - 12.17}{\sqrt{\frac{4.52^2}{30} + \frac{3.32^2}{30}}}$$
$$= \frac{5.06}{\sqrt{\frac{4.52^2}{30} + \frac{3.32^2}{30}}} = \frac{5.06}{\sqrt{0.681 + 0.367}}$$
$$= 4.943$$

81 of 101

Hank's Process: Step 5

Use the test statistic (Z = 4.943) to find the area in the tail (the p-value).

82 of 101

Standard Normal Table

Z	0.00	0.01	0.02	0.03	0.04	0.05	
:				:			
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	

Hank's Process: Step 5 (cont.)

Use the test statistic (Z = 4.943) to find the area in the tail (the p-value).

4.943 standard deviations is off the table.

84 of 101

Hank's Process: Step 5 (cont.)

Use the test statistic (Z = 4.943) to find the area in the tail (the p-value).

- 4.943 standard deviations is off the table.
- We'll use an Excel function.

85 of 101

Hank's Process: Step 5 (cont.)

Use the test statistic (Z = 4.943) to find the area in the tail (the p-value).

- 4.943 standard deviations is off the table.
- We'll use an Excel function.
 - =NORM.S.DIST(4.943, true)

86 of 101

Hank's Process: Step 5 (cont.)

Use the test statistic (Z = 4.943) to find the area in the tail (the p-value).

- 4.943 standard deviations is off the table.
- We'll use an Excel function.
 - =NORM.S.DIST(4.943, true)
 - 0.999999615

Which side of the curve is relevant?

88 of 101

Two-Sample Hypothesis Tests for Continuous Data (Green)

Select: Two-tail test One-tail test

Two-tail Lower/left-tail Upper/right-tail

 H_0 : $\mu_1 = \mu_2$ H_0 : $\mu_1 \ge \mu_2$ H_0 : $\mu_1 \le \mu_2$

 H_a : $\mu_1 \neq \mu_2$ H_a : $\mu_1 < \mu_2$ H_a : $\mu_1 > \mu_2$

Choose: Sample size

Large Small $n_1 + n_2 \ge 30$ $n_1 + n_2 < 30$ (or σ known) (or σ unknown)

Calculate: Test statistic

 $Z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$ $t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$ $df = n_1 + n_2 - 2$

Identify: p-value

Two-tail Lower/left-tail Upper/right-tail

 $p = 2 \times \text{area past } Z \text{ or } t$ p = area left of Z or t p = area right of Z or t

Two-Sample Hypothesis Tests for Continuous Data (Green)

Two-tail test One-tail test Select: Two-tail Lower/left-tail

Upper/right-tail

 H_0 : $\mu_1 = \mu_2$

 $H_0: \mu_1 \ge \mu_2$

 H_0 : $\mu_1 \le \mu_2$

 H_a : $μ_1$ ≠ $μ_2$

 H_a : $\mu_1 < \mu_2$

 H_a : $\mu_1 > \mu_2$

Sample size Choose:

Large Small
$$n_1 + n_2 \ge 30 \qquad \qquad n_1 + n_2 < 30$$
 (or σ known) (or σ unknown)

Calculate:

Test statistic

$$Z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$df = n_1 + n_2 - 2$$

Identify:

p-value

Two-tail

Lower/left-tail

Upper/right-tail

 $p = 2 \times \text{area past } Z \text{ or } t$ p = area left of Z or t p = area right of Z or t

90 of 101

Hank's Process: Step 6

Which side of the curve is relevant?

Area right of the test statistic

92 of 101

Hank's Process: Step 7

What is our *p*-value?

• p = 1 - 0.999999615

93 of 101

Hank's Process: Step 7

What is our *p*-value?

- p = 1 0.999999615
- $p \approx 0$

94 of 101

Hank's Process: Steps 8 and 9

Compare the p-value with a.

Hank's Process: Steps 8 and 9

Compare the p-value with a.

• *p*-value ≈ 0

96 of 101

Hank's Process: Steps 8 and 9

Compare the p-value with a.

- *p*-value ≈ 0
- a = 0.05

97 of 101

Hank's Process: Steps 8 and 9

Compare the p-value with a.

- *p*-value ≈ 0
- a = 0.05
- *p*-value < α

98 of 101

Hank's Process: Steps 8 and 9

Compare the p-value with a.

- p-value ≈ 0
- a = 0.05
- p-value < α

Since *p*-value < a, reject H_0 .

What does it mean?

• The data is statistically significant at *a*.

100 of 101

Hank's Process: Step 10

What does it mean?

- The data is statistically significant at α.
- The difference in Hank's mean speed is too large to be explained by chance alone.

101 of 101

Hank's Process: Step 10

What does it mean?

- The data is statistically significant at α.
- The difference in Hank's mean speed is too large to be explained by chance alone.
- We made a statistically significant change in Hank's job ticket processing time!