# Análisis Probabilístico de Algoritmos

Pablo Rotondo LIGM, Université Gustave Eiffel

ECI, Buenos Aires, 28 de Julio a 1 de Agosto, 2025.

#### Modalidad del curso

- Curso divido en 3 grandes módulos temáticos
- Cada clase estará divida en dos partes:
   15 min intro/exos + 1h15 + 15 min de pausa + 1h15
- Examen escrito al final de la última clase. Duración 1h

### ¿De qué trata este curso?

Analysis of Algorithms (AofA) is a field at the boundary of computer science and mathematics. The goal is to obtain a precise understanding of the asymptotic, average-case characteristics of algorithms and data structures. [...]

The area of Analysis of Algorithms is frequently traced to 27 July 1963, when Donald E. Knuth wrote "Notes on Open Addressing".

Del sitio de la comunidad **AofA**https://www.math.aau.at/AofA/



Wikipedia. CC BY-SA 3.0.

### Contenido

- 1. Introducción al análisis probabilístico de algoritmos:
  - Motivación, ejemplos clásicos (sorting, hashing, ...)
  - Modelos modernos (branch prediction).
- 2. Introducción a la Combinatoria analítica:
  - Funciones generatrices ordinarias y exponenciales.
  - Singularidades, extracción de coeficientes y Teorema de Transferencia.
  - Aplicaciones algorítmicas.

- 3. Aplicaciones a la generación aleatoria de estructuras discretas<sup>1</sup>:
  - Método recursivo.
  - Boltzmann samplers.

# 1. Introducción al análisis de algoritmos

#### Introducción: análisis de algoritmos

Estudiar teóricamente la performance de un algoritmo:

- independientemente del lenguaje de programación,
- independientemente del hardware.

⇒ contar operaciones concretas efectuadas.

En los estudios más clásicos:

- Se considera solo el peor caso.
- Solo en orden de magnitud cuando el tamaño del input  $n \to \infty$ . Por ejemplo  $O(n^2), O(n \log n)$ , etc.

 $Ejemplo\ 1$ . Consideremos el problema de ordenar un array de n elementos distintos.

Si contamos comparaciones:

- 1. Mergesort  $\Theta(n \log n)$  en peor caso, Bubble sort y Quicksort  $\Theta(n^2)$ ,
- 2. pero Quicksort se comporta en  $O(n \log n)$  en media (valor esperado !)

### Nociones básicas de probabilidad

La media de una variable aleatoria discreta X es

$$\mathbb{E}[X] = \sum_{k \in \mathbb{Z}} k \cdot \Pr(X = k),$$

cuando la suma converge absolutamente, es decir  $\mathbb{E}[|X|] < \infty$ .

Recordamos las siguientes propiedades básicas:

- Designaldad triangular:  $|\mathbb{E}[X]| \leq \mathbb{E}[|X|]$
- La media es lineal  $\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$ .
- Para una función indicatriz  $\mathbf{1}_A$  tenemos  $\mathbb{E}[\mathbf{1}_A] = \Pr(A)$ .

### Fórmula de la probabilidad total

Sean eventos  $S_1, S_2, \ldots$  disjuntos con  $\bigcup_i S_i$  =  $\Omega$  (todo) :

$$\mathbb{E}[X] = \sum_{k=1}^{\infty} \Pr(S_k) \times \mathbb{E}[X|S_k].$$

<sup>&</sup>lt;sup>1</sup>Si tiempo.

#### 1.1. Algoritmos de sorting

#### Quicksort



Quicksort particiona según un pivot y luego continua recursivamente.

#### Quicksort

Por simplicidad<sup>2</sup> consideramos que el pivot es elegido determinísticamente:

```
def partition(arr, low, high):
    pivot = arr[high]
    i = low

    for j in range(low, high):
        if arr[j] < pivot:
            arr[i], arr[j] = arr[j], arr[i]
            i += 1</pre>

arr[i], arr[high] = arr[high], arr[i]
return i
```

Peor caso: o todos mayores, o todos menores que el pivot:

- Cantidad de comparaciones =  $1+2+\cdots+(n-1)=\frac{n(n-1)}{2}=\Theta(n^2)$ .
- Puede suceder si el array está ya ordenado!

### Quicksort: modelo aleatorio

Veamos ahora qué sucede si el array es una permutación aleatoria

- cada permutación  $\pi$  de  $(1,2,\ldots,n)$  tiene probabilidad  $p(\pi)=1/n!$
- equivalente a elegir n números aleatorios del intervalo [0,1]  $\Longrightarrow$  argumento de simetría !

Nos interesa la cantidad de comparaciones  $C_n(\pi)$  necesarias para ordenar:

- En media  $E_n$  =  $\mathbb{E}[C_n]$  =  $\sum_{\pi \in \mathcal{S}_n} C_n(\pi) \times p(\pi)$  =  $\frac{1}{n!} \sum_{\pi \in \mathcal{S}_n} C_n(\pi)$ ,
- En distribución  $\Pr(C_n > \lambda) = \sum_{\pi \in \mathcal{S}_n : C_n(\pi) > \lambda} p(\pi)$ .

<sup>&</sup>lt;sup>2</sup>Mejor sería un pivot aleatorio, o permutar la entrada para evitar ataques.

#### Quicksort: comportamiento en media

Para la media  $E_n$  de la cantidad de comparaciones  $C_n$  tenemos:

**Proposición 1.** Quicksort satisface  $E_n = 2(n+1)H_n - 4n$ , donde  $H_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$  son las sumas armónicas.

Entonces  $E_n \sim 2n \log n$  donde  $\log$  es el logaritmo natural (neperiano). <sup>3</sup>

#### Análisis en media de Quicksort

Con probabilidad 1/n el rango de  $\pi(n)$  es j, entonces

En la tercera línea  $\tilde{C}_{n-j}$  es el costo de ordenar el array de la parte alta, que contiene  $j+1,\ldots,n$  en el orden inicial. Su distribución es la misma que  $C_{n-j}$ .

Tenemos entonces

$$nE_n = 2\sum_{j=0}^{n-1} E_j + n(n-1), \quad (n-1)E_{n-1} = 2\sum_{j=0}^{n-2} E_j + (n-1)(n-2).$$

Restando las ecuaciones  $nE_n-(n-1)E_{n-1}=2E_{n-1}+2(n-1)$  i.e.,  $nE_n=(n+1)E_{n-1}+2(n-1)$ . Así  $\frac{1}{n+1}E_n=\frac{1}{n}E_{n-1}+\frac{2(n-1)}{n(n+1)}=\frac{1}{n}E_{n-1}+\frac{2}{n+1}-\frac{2}{n(n+1)}=\frac{1}{n}E_{n-1}+\frac{4}{n+1}-\frac{2}{n}$ . Sumando de 1 a n,  $\frac{1}{n+1}E_n=4H_{n+1}-4-2H_n=2H_n-4\frac{n}{n+1}$ , lo cual prueba la proposición.  $\Box$ 

#### Estudio en media

La media es una buena medida cuando pensamos ejecutar muchas veces un algoritmo.

**Teorema 1** (Ley de los grandes números). Si  $X_1, X_2, \ldots$  son independientes e identicamente distribuidas, con  $\mathbb{E}[|X_1|] < \infty$ , entonces con probabilidad 1 :

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} X_i = \mathbb{E}[X_1].$$

- ¿y si lo queremos ejecutar solamente una vez?
- ¿la media refleja la complejidad de una sola ejecución? En general: no.

 $<sup>^3</sup>$ Las sumas harmónicas satisfacen  $H_n \sim \int_1^n \frac{dx}{x} = \log n$ .

### Concentración en probabilidad

Decimos que una secuencia de variables aleatorias  $X_n$  satisface  $X_n \sim f(n)$  en probabilidad sii, para cada  $\varepsilon > 0$  fijo,

$$\Pr(X_n \in [(1-\varepsilon)f(n), (1+\varepsilon)f(n)]) \to 1.$$

Probaremos más tarde que la cantidad de comparaciones  $C_n$  en quicksort<sup>4</sup> satisface  $C_n \sim 2n\log n$  en probabilidad.

**Proposición 2.** La cantidad de comparaciones satisface  $C_n \sim 2n \log n$  en probabilidad.

Las funciones generatrices nos ahorrarán muchos cálculos.

## Optimalidad en media

Algoritmo basado en comparaciones se representa como árbol binario:

- nodos internos corresponden a comparaciones; rama izquierda False, rama derecha True.
- hojas corresponden a los posibles output del algoritmo.



#### Optimalidad en media y entropía

Hojas son permutaciones  $\Rightarrow n!$  hojas.

- Altura del árbol [peor caso] es al menos  $log_2(n!)$ ,
- $\bullet \log_2(n!) \sim n \log_2 n$

Pero esto es también cierto para la media. Sea  $\ell_{\pi}$  la profundidad de la hoja  $\pi$ , notar que  $C_n(\pi) = \ell_{\pi}$  es la cantidad de comparaciones,

**Teorema 2** (Profundidad media de un árbol binario). Para cualquier distribución  $\mathbf{p} = (p(\pi))_{\pi}$  sobre las hojas

$$\mathbb{E}[\ell] = \sum \ell_{\pi} p(\pi) \ge H_2(\mathbf{p}),$$

donde  $H_2(\mathbf{p}) = -\sum_{\pi} p(\pi) \log_2 p(\pi)$  es la entropía binaria.

En nuestro caso  $p(\pi) = 1/n!$  para cada permutación, y  $\mathbb{E}[C_n] \ge \log_2 n!$ .

<sup>&</sup>lt;sup>4</sup>De hecho se sabe mucho más al respecto, ver el artículo: *C. McDiarmid y R. Hayward. 1992. Strong concentration for Quicksort. SODA '92.* 

#### Prueba: entropía es cota inferior

**Lema 1.** Para un árbol binario completo  $\sum_{h \text{ hoias}} 2^{-\ell_h} = 1$ 

**Lema 2.** Para todo x > 0,  $\log x \le x - 1$ . La igualdad se verifica sii x = 1.

Prueba del Teorema. Usando las propiedades del logaritmo:

$$-\sum_{\pi \in \mathcal{S}_n} \ell_{\pi} p(\pi) = \sum_{\pi \in \mathcal{S}_n} \log_2 p(\pi) \cdot p(\pi) + \sum_{\pi \in \mathcal{S}_n} \log_2 (2^{-\ell_{\pi}}/p(\pi)) \cdot p(\pi).$$

Gracias a nuestros lemas,

$$\sum_{\pi \in \mathcal{S}_n} \log_2(2^{-\ell_\pi}/p(\pi)) \cdot p(\pi) \leq \frac{1}{\log 2} \sum_{\pi \in \mathcal{S}_n} (2^{-\ell_\pi}/p(\pi) - 1) \cdot p(\pi) = 0,$$

y esto demuestra la proposición.

### QuickSort: modelo del input

• En nuestro modelo de quicksort el input  $\pi$  es una permutación uniforme :

$$\Pr(\pi = (a_1, \dots, a_n)) = (n!)^{-1}.$$

- Corresponde a considerar n números (flotantes) de [0,1].
- Razonable sin conocimiento a priori del input.

Otros algoritmos (Powersort, Timsort, ...) suponen que el input puede estar parcialmente ordenado en pedazos:

• input dividido en *runs* crecientes/decrecientes de longitud  $a_1, \ldots, a_r$ .

$$\underbrace{[\underbrace{1,5,7}_{a_1=3},\underbrace{2,4,9}_{a_2=3},\underbrace{6,4,4}_{a_3=3},\underbrace{12,4}_{a_4=2}]; \text{ o quizás } \underbrace{[\underbrace{1,5,7}_{a_1=3},\underbrace{2,4,9}_{a_2=3},\underbrace{6,4}_{a_3=2},\underbrace{4,12}_{a_4=2},\underbrace{4}_{a_5=1}]}_{a_5=1}.$$

merge(sort) inteligente aprovecha los runs existentes!

La elección del modelo probabilista es un paso clave.

#### Fusión de dos runs

### Entropía de runs

**Suposición**: la fusión (merge) de dos runs (corridas), de longitud  $a_1$  y  $a_2$ , cuesta  $a_1 + a_2$ .

**Teorema 3.** El costo C de cualquier algoritmo basado en la fusión de runs $^5$  satisface

$$C(\pi) > n \cdot \mathcal{H}(\pi)$$
.

donde  $\mathcal{H}$  =  $H_2(a_1/n,\ldots,a_r/n)$  =  $-\sum \frac{a_i}{n}\log_2\frac{a_i}{n}$  es la entropía de run de  $\pi$ .

### Demostración.

- Estrategia de fusión corresponde a árbol binario  $\Rightarrow$  costo  $C = \sum a_i \ell_i$ .
- Renormalizando obtenemos el resutlado.

<sup>&</sup>lt;sup>5</sup>Sin contar la detección de runs.

#### Entropía de runs

**Teorema 4.** El costo C de cualquier algoritmo basado en la fusión de runs satisface

$$C(\pi) \ge n \cdot \mathcal{H}(\pi)$$
,

donde  $\mathcal{H}$  =  $H_2(a_1/n,\ldots,a_r/n)$  =  $-\sum \frac{a_i}{n}\log_2\frac{a_i}{n}$  es la entropía de run de  $\pi$ .

 $\mathcal{H}$  puede ser mucho menor que  $\log_2 n$ .

**Proposición 3.** Tenemos  $\mathcal{H} \leq \log_2 r$  donde r es la cantidad de runs.

 $\Rightarrow$  Existen varios algoritmos en tiempo  $\Theta(n\mathcal{H}+n)$ .

### Entropía de runs

No se pierde mucho trabajando solo con fusiones.

**Teorema 5** (Barbay, Navarro, '13). Sea  $C = C(a_1, ..., a_r)$  la clase de las permutaciones con runs de largo  $a_1, a_2, ..., a_r$ , con  $a_i \ge 2$  para i = 1, ..., r - 1.

Para todo algoritmo  $\mathcal{A}$  basado en la comparación de pares de elementos, existe un elemento  $\pi \in \mathcal{C}$  que requiere al menos  $n\mathcal{H} - 3n$  comparaciones.

Borrador de prueba. Siempre existe  $\pi$  que requiere al menos  $\log_2 |\mathcal{C}|$  operaciones.

Se necesita una cota [no trivial<sup>6</sup>] , en este caso 
$$2^{r-1}|\mathcal{C}| \geq \binom{n}{a_1,\dots,a_r}$$
.

#### **TimSort**

Tim Peters<sup>7</sup> diseña en 2002 un nuevo algoritmo para Python:

This describes an adaptive, stable, natural mergesort, modestly called timsort (hey, I earned it <wink>). It has supernatural performance on many kinds of partially ordered arrays (less than lg(N!) comparisons needed, and as few as N-1), yet as fast as Python's previous highly tuned samplesort hybrid on random arrays.

In a nutshell, the main routine marches over the array once, left to right, alternately identifying the next run, then merging it into the previous runs "intelligently". Everything else is complication for speed, and some hard-won measure of memory efficiency.

#### TimSort principio e historia

- Leer runs de izquierda a derecha, agregándolas a una pila (stack).
- La pila → R<sub>1</sub>, R<sub>2</sub>, . . . debe satisfacer un *invariante*: si el invariante no se cumple, desencadena secuencia de fusiones.
- Merges se realizan entre runs advacentes (localidad/cache).

<sup>&</sup>lt;sup>6</sup>Ver referencias, en particular https://arxiv.org/pdf/1805.08612

Thttps://svn.python.org/projects/python/trunk/Objects/listsort.txt

Invariante inspirado por Fibonacci:

$$r_{i+2} > r_i + r_{i+1}$$
,  $r_{i+1} > r_i$ ,

donde  $r_i = |R_i|$  son las longitudes.

- Algoritmo era usado en Python [ahora PowerSort], usado en Java.
- Ha inspirado muchos algoritmos nuevos, basados en runs.

### Optimalidad en media y entropía

**Teorema 6** (Auger, Jugé, Nicaud, Pivoteau '18). *En el peor caso TimSort es*  $1.5 n\mathcal{H} + O(n)$ .

TimSort no es óptimo

**Teorema 7** (Wild, Munro'18). *En el peor caso PowerSort es*  $n\mathcal{H} + O(n)$ .

Una permutación aleatoria (típica) tiene muchos runs cortos!

$$n = 20$$
: [11, 18, 1, 5, 2, 14, 20, 3, 8, 15, 6, 4, 16, 17, 13, 10, 19, 9, 7, 12].

$$\mathcal{H} = 3,1...$$
,  $\log_2 20 = 4,3...$ 

# Probabilidad de run de largo $\geq k$

Sea  $S_i$ : run de longitud  $\geq k$  comienza en i. Notar que  $\Pr(S_i) \leq 2/k!$ 

#### Técnica: Union bound

$$\Pr(A \cup B) \le \Pr(A) + \Pr(B)$$



Por el union bound tenemos:

$$P(n,k) \coloneqq \Pr(\exists \mathsf{run} \ \mathsf{de} \ \mathsf{longitud} \ \geq k) = \Pr(\bigcup_i S_i) \leq \sum_i \Pr(S_i) \leq 2n/k! \, .$$

### Proposición 4.

$$P = P(n,k) \le 2\exp(\log n - k\log k + k).$$

Demostración. Notar que  $e^k = \sum_{i=0}^\infty k^i/i! \ge k^k/k!$  .

#### Entropía de corridas de permutación aleatoria

Utilizando

$$P = P(n, k) \le 2 \exp(\log n - k \log k + k),$$

obtenemos que para  $k \ge 2 \frac{\log n}{\log \log n}$ ,  $P(n,k) \to 0$ . Las runs son cortas !

### Proposición

Con alta probabilidad (es decir  $p \to 1$ ) todas las runs  $A_1, \dots, A_r$  de una permutación aleatoria uniforme satisfacen  $A_i \le 2 \frac{\log n}{\log \log n}$ .

#### Corolario

Con alta probabilidad, para una permutación aleatoria uniforme<sup>8</sup>,

$$\mathcal{H} \ge \sum \frac{A_i}{n} \log_2 \left( \frac{n}{2(\log n)/\log \log n} \right) = \log_2 n + O(\log \log n), \quad \mathcal{H} \le \log_2 n.$$

⇒ Modelo de permutaciones uniformes ≠ modelo de runs largas

# Con alta probabilidad y en media

Probamos que, con probabilidad  $p \rightarrow 1$ ,

$$\mathcal{H} = \log_2 n + O(\log \log n),$$

es decir, que esto se cumple para  $\pi \in A_n \subseteq S_n$  con  $\Pr(A_n) \to 1$ .

### **Pregunta**

i Qué podemos decir sobre la esperanza  $\mathbb{E}[\mathcal{H}]$  ?

$$\mathbb{E}[\mathcal{H}] = \Pr(A_n) \times \mathbb{E}[\mathcal{H} | A_n] + \Pr(A_n^c) \times \mathbb{E}[\mathcal{H} | A_n^c],$$
  

$$\geq \Pr(A_n) \times \mathbb{E}[\mathcal{H} | A_n],$$
  

$$= \Pr(A_n) \times (\log_2 n + O(\log \log n)).$$

Para la cota superior tenemos suerte:  $\mathcal{H} \leq \log_2(n)$  siempre.

Conclusión:  $\mathbb{E}[\mathcal{H}] \sim \log_2 n$  también.

### Problema: número de runs

 $<sup>^{8}</sup>$ La constante del término O en realidad se puede calcular explícitamente y no depende de la secuencia de conjuntos elegidos, cuya probabilidad tiende a 1.

#### Problema: número de runs

#### **Problema**

La cantidad esperada de runs es  $\mathbb{E}[r] \sim cn$  para una cierta c > 0.

Veamos la permutación como una secuencia  $X_1, X_2, \ldots$  de números iid de [0,1].

- (a) Probar  $runs(X_1, ..., X_{i+j}) \le runs(X_1, ..., X_i) + runs(X_{i+1}, ..., X_{i+j})$ .
- (b) Probar que  $e_k := \mathbb{E}[runs(X_1, \dots, X_k)]$  satisface  $e_{i+j} \le e_i + e_j$  para todo  $i, j \ge 0$ . Concluir que  $e_k/k \to c$  para cierta  $c \ge 0$ .
- (c) Mostrar que la constante es positiva c > 0.

#### Entropía de corrida: modelo aleatorio

### Distribución de Zipf

Dado  $\alpha > 1$ , consideramos

$$\Pr(\ell = k) \propto k^{-\alpha}$$
.

Cuando  $\alpha \leq 2$ , la longitud esperada de  $\ell$  es infinita.

■ Valores más irregulares. Ejemplo con  $\alpha = 3/2$ 

Usada para modelar frecuencias de palabras en lenguaje natural.

¿ Modelo más razonable? ¿ Producir permutación con longitudes dadas?

#### Para aprender más

- Nicolas Auger, Vincent Jugé, Cyril Nicaud, y Carine Pivoteau, On the Worst-Case Complexity of TimSort https://arxiv.org/pdf/1805.08612
- Jérémy Barbay y Gonzalo Navarro,
  On compressing permutations and adaptive sorting.
  http://dx.doi.org/10.1016/j.tcs.2013.10.019
- Nearly-Optimal Mergesorts: Fast, Practical Sorting Methods That Optimally Adapt to Existing Runs,

```
https://doi.org/10.4230/LIPIcs.ESA.2018.63
```

<sup>&</sup>lt;sup>8</sup>Pista (b). Lema de Fekete...

<sup>&</sup>lt;sup>8</sup>Pista (c). ¿Qué podemos decir si  $X_i < X_{i+1}$  y  $X_{i+1} > X_{i+2}$ ?

#### 1.2. Tablas de Hash

#### Tablas de Hash

#### Motivación

Implementar un array asociativo m:

- universo  $\mathcal{U}$  de claves  $k \in \mathcal{U}$  grande,
- asociar a cada clave k un valor m[k],
- insertar, buscar, borrar...

Las tablas de Hash:

- Idea : utilizar un array A pequeño, de tamaño  $K \ll |\mathcal{U}|$ 
  - considerar una función  $h: \mathcal{U} \to \mathbb{Z}$  pseudo-aleatoria,
  - insertar k en A[i] donde  $i = h(k) \mod K$ . [modelo : i es uniforme]
- **Problema** : colisiones, dos *keys*  $k_1$  y  $k_2$  con  $h(k_1) = h(k_2)$ .

## La paradoja del cumpleaños

Las colisiones están relacionadas con la famosa paradoja del cumpleaños:

# Paradoja del cumpleaños

¿Cuál es el **número mínimo de personas** requerido para que la probabilidad de que dos o más personas tengan el mismo cumpleaños $^9$  sea mayor que 1/2?.

Más en general, ¿cuántas personas para la primera "colisión"?

- Supongamos que tenemos K posibles valores (K = 365),
- $\blacksquare$  y consideramos n elementos (las personas),
- ¿cuál es la probabilidad de que hayan dos elementos iguales?

**Modelo:** cada valor tiene probabilidad 1/K, elementos independientes.

#### La paradoja del cumpleaños

$$p_n = \Pr(n \text{ valores distintos}) = \prod_{i=1}^{n-1} (1 - \frac{i}{K}).$$

<sup>&</sup>lt;sup>9</sup>solo el día del año, no el año



La probabilidad de al menos un cumpleaños repetido es  $q_n = 1 - p_n$ .

# La paradoja del cumpleaños

Estimemos la probabilidad de n valores distintos:  $p_n = \prod_{i=1}^{n-1} \left(1 - \frac{i}{K}\right)$ ,

• Usando la desigualdad  $1 + x \le e^x$ , valida para  $x \in \mathbb{R}$ ,

$$p_n \le \exp\left(-\sum_{i=1}^{n-1} \frac{i}{K}\right) \le \exp\left(-\frac{(n-1)^2}{2K}\right).$$

■ Usando la desigualdad  $1 + x \ge e^{x-x^2/2}$ , valida para  $x \in [0,1]$ ,

$$p_n \ge \exp\left(-\sum_{i=1}^{n-1} \frac{i}{K} - \frac{1}{2} \sum_{i=1}^{n-1} \frac{i^2}{K^2}\right) \ge \exp\left(-\frac{n^2}{2K} - \frac{n^3}{2K^2}\right).$$

**Proposición 5.** Considerando  $n \sim \sqrt{2\theta K}$  con  $K \to \infty$ ,  $p_n \sim e^{-\theta}$ .

Primera colisión ocurre (con gran proba.) cuando n es de orden  $\sqrt{K}$ .

### La paradoja del cumpleaños

Illustración de la aproximación:  $n \sim \sqrt{2\theta K}$ ,  $p_n \sim e^{-\theta}$  con  $\theta = \log 2$ 



#### Tablas de Hash

Tablas de Hash requieren un mecanismo de resolución de colisiones:

### ■ Política de resolución de colisiones :

1. [External Hashing] Cada célula A[i] contiene una lista encadenada.



2. [Internal Hashing / Open addressing ] Si la célula está ya ocupada, buscar otra en el mismo array.



[la flecha roja es indicativa]

### • Política de rehashing :

- si tasa de ocupación<sup>10</sup> del array A es alta, nuevo array de tamaño mayor,
- necesario re-insertar todo. [paso lento!]

### Rehashing

Cuando el load factor  $\alpha$  = n/K excede un valor dado  $\gamma$  (p.e.,  $\gamma$  = 0,85), considerar un array nuevo con capacidad K' = 2K.

Proposición 6. El costo amortizado por inserción es constante.

### Concepto: costo amortizado

En lugar de considerar el costo de una sola operación  $c_t$ , nos interesa el costo medio de la secuencia total de operaciones  $\frac{1}{T}\sum_{t=1}^{T}c_t$ .



<sup>&</sup>lt;sup>10</sup>"Load factor" en inglés.

<sup>&</sup>lt;sup>11</sup>Aquí no consideramos que el tamaño puede reducirse.

### **External hashing**

Cada celda A[i] contiene una lista encadenada



### Observación

Cada celda contiene en media  $\alpha = n/K$  elementos.

**Proposición 7** (Lookup). Con alta probabilidad  $(K \to \infty)$ , ninguna lista tiene longitud mayor que  $2 \frac{\log K}{\log \log K}$ .

### **External hashing**

Consideremos solo inserciones. Sea  $\gamma > 0$  la tasa de ocupación máxima,  $n/K \le \gamma$ .

**Proposición 8** (Lookup). Con alta probabilidad  $(K \to \infty)$ , ninguna lista tiene longitud mayor que  $2 \frac{\log K}{\log \log K}$ .

*Demostración.* Sea  $X_1,...,X_n$  la secuencia de células elegidas para las n inserciones.

Consideremos la célula  $C_0$ , y sea  $C_0(n)$  la lista luego de n inserciones. Por el union-bound su longitud satisface:

$$\Pr(|C_0(n)| \ge m) \le \sum_{i_1 \le \dots \le i_m} \Pr(X_{i_1} = \dots = X_{i_m} = 0) = \binom{n}{m} K^{-m}.$$

Y, nuevamente por el union-bound,

$$P_m := \Pr(\exists j : |C_j(n)| \ge m) \le K \times \binom{n}{m} K^{-m}.$$

$$P_m := \Pr(\exists j : |C_j(n)| \ge m) \le K \times \binom{n}{m} K^{-m}.$$

Observamos que

$$\binom{n}{m} = \frac{n \cdot \ldots \cdot (n-m+1)}{m!} \le \frac{n^m}{m!}, \qquad \frac{m^m}{m!} \le \sum_{k=0}^{\infty} \frac{m^k}{k!} = e^m.$$

Deducimos, recordando que  $n/K \leq \gamma$ ,

$$P_m \le K \times \frac{n^m}{(m/e)^m} K^{-m} \le K \times \frac{\gamma^m}{(m/e)^m}$$
$$= \exp(\log K + m \log \gamma + m - m \log m).$$

 $\mathsf{Tomando}^{\mathsf{12}}\ m = 2 \frac{\log K}{\log \log K},$ 

$$\log K + m \log \gamma + m - m \log m = -\log K + o(\log K) \to -\infty.$$

 $f^{12}f(m) := m \log \gamma + m - m \log m$  es decreciente si  $m \ge \gamma$ .

# Internal hashing / Open addressing

Internal hashing: Si la celda está ya ocupada, buscar otra en el mismo array.

- Internal hashing / Open addressing es más común en la actualidad.
- Muchas estrategias para decidir la secuencia (probe sequence).

### Probing sequence / secuencia de búsqueda

Para buscar/inserir un elemento x:

- Comenzar por  $i_0 = h(x) \mod K$ .
- Si posición ocupada por otra clave, seguir para  $i_1, i_2, \ldots$  etc.

Módulo K,

- Linear probing:  $i_1 = i_0 + 1$ ,  $i_2 = i_1 + 1$ , ...
- **Quadratic probing:**  $i_1 = i_0 + 1$ ,  $i_2 = i_1 + 2$ , ...,  $i_j = i_{j-1} + j$ , ...
- **Double hashing:**  $\Delta(x) = h_2(x)$ ,  $i_1 = i_0 + \Delta$ ,  $i_2 = i_1 + \Delta$ , ...

### Secuencia de búsqueda: modelo

El comportamiento de linear y quadratic probing es complejo:

■ Linear probing presenta el llamado *primary clustering*, pero aprovecha localidad (memoria cache).



 Quadratic probing se comporta inicialmente en modo similar a linear probing, pero luego los saltos aumentan en tamaño.



Modelos simplificados para el análisis:

- Random probing: secuencia de búsqueda de números aleatorios uniformes (incluso repetidos).
- Uniform probing: secuencia de búsqueda es una permutación  $\pi \in \mathcal{S}_K$  aleatoria.

#### Secuencia de búsqueda: modelo

#### Parámetros de interés [análisis sin supresiones]

- 1. Búsqueda exitosa: buscar un elemento presente.
- 2. Búsqueda no exitosa: buscar un elemento no presente.

### First Come First Serve (FCFS)

Los elementos se insertan donde termina su búsqueda no exitosa.

Es decir, los elementos ya insertados no se desplazan

En tiempo: Inserción n-ésima = búsqueda no exitosa con n-1 elementos

### Random probing: búsqueda no exitosa

Buscar un elemento no presente corresponde a una inserción.

**Teorema 8.** El costo medio de una búsqueda no exitosa, cuando hay n elementos, es

$$U_n = \frac{1}{1-\alpha}$$
,  $\alpha = \frac{n}{K}$ .



No hay concentración: ley ~ geométrica.

### Random probing: búsqueda exitosa

Teorema 9. El costo medio de una búsqueda exitosa es

$$S_n = \frac{1}{\alpha} \log \left( \frac{1}{1 - \alpha} \right) + O(n^{-1}).$$

#### Técnica: aproximar sumas con integrales

Si f es positiva, monótona y acotada en [a,b]:

$$\sum_{j=a:N}^{b:N-1} f(\frac{j}{N}) \cdot \frac{1}{N} = \int_a^b f(x) dx + O(N^{-1}).$$

La prueba de la fórmula se sigue de

$$\sum_{j=A}^{B-1} f\left(\frac{j}{N}\right) \cdot \frac{1}{N} \le \int_{A/N}^{B/N} f(x) dx \le \sum_{j=A+1}^{B} f\left(\frac{j}{N}\right) \cdot \frac{1}{N}.$$



Demostración. Notamos que  $S_n = \frac{1}{n} \sum_{k=0}^{n-1} U_k$ . En efecto,  $U_k$  es el costo de buscar el (k+1)-ésimo elemento insertado, y 1/n es la probabilidad de buscar éste último.

**Entonces** 

$$S_n = \frac{1}{n} \sum_{k=0}^{n-1} U_k = \frac{1}{n} \sum_{k=0}^{n-1} \frac{1}{1 - k/K}.$$

Usando la técnica de sumas e integrales

$$nS_n \le K \int_0^{n/K} \frac{dx}{1-x} = K \log(\frac{1}{1-\alpha}),$$

y también

$$\left(1 - \frac{1}{1 - \alpha}\right) + K \log\left(\frac{1}{1 - \alpha}\right) \le nS_n.$$

Como  $\frac{n}{K} \le \alpha \le \gamma < 1$  el término  $(1 - \frac{1}{1 - \alpha})$  está acotado y obtenemos el resultado dividiendo por n.  $\square$ 

# **Uniform hashing**

En Uniform Hashing las secuencias de búsqueda son permutaciones de  $\mathcal{S}_K$ 

- Eliminar la posibilidad de elementos repetidos no cambia sustancialmente el resultado.
- Esto es esperado: si la secuencia de búsqueda es  $\ll \sqrt{K}$  no esperamos repetidos (paradoja del cumpleaños).

**Teorema 10** (Búsqueda en Uniform hashing, Peterson '57). *El costo medio de una búsqueda con uniform hashing es* 

$$U_n = \frac{K+1}{K-n+1} \sim \frac{1}{1-\alpha},$$
  $S_n \sim \frac{1}{\alpha} \log \left(\frac{1}{1-\alpha}\right).$ 

#### **Linear probing**

Linear probing es más complejo

Teorema 11 (Búsqueda en Linear probing, Knuth '63).

No exitosa 
$$\sim \frac{1}{2} \left( 1 + \frac{1}{(1-\alpha)^2} \right)$$
, Exitosa  $\sim \frac{1}{2} \left( 1 + \frac{1}{1-\alpha} \right)$ .

El punto clave del análisis es el siguiente lema:

**Lema 3.** La probabilidad de tener las celdas C[0] y C[k+1] vacías y  $C[1], \ldots, C[k]$  ocupadas es:

$$\frac{1}{K^n} \binom{n}{k} (k+1)^k \left( 1 - \frac{k}{k+1} \right) (K-k-1)^{n-k} \left( 1 - \frac{n-k}{K-k-1} \right)$$

Demostración. Sea f(M,r) la cantidad de secuencias de r inserciones (eligiendo sus hashes) en una tabla de M entradas  $0,1,\ldots,M-1$ , tales que la posición 0 resta vacía al final.

En tal situación, por simetría circular de Linear Probing (la proba. es igual para todos), la probabilidad de que al final la posición 0 esté vacía es  $1-\frac{r}{M}$  y tenemos  $f(M,r)=M^r\cdot\left(1-\frac{r}{M}\right)$  La probabilidad que buscamos es

$$\binom{n}{k} f(k+1,k) f(K-k-1,n-k)$$
,

ya que hay que elegir cuáles de las n inserciones van al primer segmento de 0 a k (por eso la binomial).  $\square$ 

# Comparación de tiempos de búsqueda según $\alpha$





# Y si hay supresiones

Para borrar:

■ Introducir tombstones (marcas especiales) para indicar que la celda alguna vez fue ocupada,



- Las tombstones ocupan una celda, y se cuenta para los rehashings.
- Se puede insertar un elemento en un tombstone.

# Para aprender más

Donald E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and Searching.

Donald E. Knuth

Notes on Open Addressing.

https://jeffe.cs.illinois.edu/teaching/datastructures/2011/notes/knuth-OALP.pdf

Conrado Martínez, Cyril Nicaud y Pablo Rotondo
Mathematical models to analyze Lua hybrid tables.
Preprint https://arxiv.org/abs/2208.13602

### 2. Aplicaciones a la predicción de saltos

#### 2.1. MinMax: records en permutaciones

### MinMax: un ejemplo paradójico

Sean los algoritmos siguientes para encontrar simultáneamente el mínimo y el máximo de un array T de largo n.

```
min = max = T[0];
for(i = 1; i < n; i++) {
    if (T[i] < min)
        min = T[i];
    if (T[i] > max)
        max = T[i];
}
```

# MinMax "ingenuo"

2n-2 comparaciones

```
min = max = T[n-1];
for(i = 0; i < n - 1; i += 2) {
    if (T[i] < T[i+1]) {
        if (T[i] < min)
            min = T[i];
        if (T[i+1] > max)
            max = T[i+1];
    } else {
        if (T[i+1] < min)
            min = T[i+1];
        if (T[i] > max)
            max = T[i];
}
```

# MinMax "optimizado"

 $\sim \frac{3}{2}n$  comparaciones

### MinMax: resultados prácticos para los algoritmos

Considerando T como una permutación aleatoria:



¿Por qué? ¿modelo?

### Optimizaciones de "bajo nivel"

La arquitectura de la computadora incluye varias optimizaciones:

- La jerarquía de memoria (memoria cache),
- Operaciones SIMD (Single Instruction, Multiple Data),
- El pipeline del procesador.

En nuestro caso no hay SIMD, y acceso a memoria es esencialmente el mismo en los dos algoritmos:

⇒ nos vamos a concentrar en el pipeline.

El pipeline del procesador:

• ejecutar una instrucción requiere fetch, decode, execute, write:

traer instrucción de memoria, decodificar, ejecutar, escribir

• en un ciclo de reloj se pueden realizar en paralelo para varias instrucciones sucesivas, en distintas etapas del pipeline.

# El pipeline del procesador



### El pipeline del procesador

**Problema.** un if provoca un dilema:

¿qué rama (branch) de ejecución tomar (fetch)?

⇒ error de predicción provoca pérdida del pipeline (paralelismo)

Branch prediction. diseñar esquemas para predecir el resultado de un if

- Locales (cada if separado), globales, mixtos, ...
- Memoria: ¿cuánta historia recuerda un predictor?



Figura: Predictor 1 Bit

 $<sup>^{12}</sup>$ Fuente: Wikipedia, por en:User:Cburnett, **CC BY-SA 3.0**, https://commons.wikimedia.org/w/index.php?curid=1499754

### Esquemas de predicción de branching

Por simplicidad consideraremos los siguientes predictores locales:

- Predictor de 1 bit [pagina precedente],
- Predictor de 2 bits saturado



■ Predictor de 3 bits saturado ...

### Records en permutaciones

Errores de predicción en los dos MinMax relacionados con los records

#### Definición

Una posición k en una permutación  $\pi$  es un record máximo (mínimo) sii  $\pi_i < \pi_k$  (resp.  $\pi_i > \pi_k$ ) para todo i < k.



### Records en permutaciones

#### Observación

Por simetría basta estudiar records de máximo.

```
<sup>12</sup>Fuente: Wikipedia, Afog derivative work: ENORMATOR (talk), CC BY-SA 3.0, File:Branch_prediction_2bit_saturating_counter-dia.svg
```

### La cantidad esperada de records

Sea  $R_n(\pi)$  la cantidad de records en  $\pi \in \mathcal{S}_n$ , y  $e_n \coloneqq \mathbb{E}[R_n]$ .

### Proposición

La cantidad esperada de records es  $e_n$  =  $H_n$  =  $\frac{1}{1}$  +  $\frac{1}{2}$  + ... +  $\frac{1}{n}$ .

*Demostración.* Sea  $E_j = \{ \pi \in \mathcal{S}_n : j \text{ es un record de } \pi \}.$ 

Observar que:

- 1. Tenemos  $R_n$  =  $\sum_{j=1}^n \mathbf{1}_{E_j}$ , así  $e_n$  =  $\sum_{j=1}^n \Pr(E_j)$ ,
- 2. Los eventos  $E_j$  satisfacen  $\Pr(E_j) = \frac{1}{i}$ .

# Branch misses: MinMax ingenuo

# Proposición[Auger, Nicaud, Pivoteau'16]

La cantidad esperada de errores de predicción en el MinMax ingenuo para una permutación aleatoria es asintóticamente:

$$4\log n$$
 (predictor 1-bit),  $2\log n$  (predictor 2-bit,3-bit,...)

Demostración. ■ Predictor de un bit se equivoca si se pasa de un "record" a "no record" y viceversa, de un "no record" a un "record".

■ Es raro encontrar dos posiciones consecutivas que sean record, en esperanza

$$\sum_{j=1}^{n-1} \Pr(j \text{ record y } j+1 \text{ record}) \leq \sum_{j=1}^{\infty} \frac{1}{j(j+1)} = 1$$

■ La cantidad esperada de errores es (olvidando la primera entrada)

$$\sum_{j=1}^{n-1} \Pr(j \text{ record, } j+1 \text{ no record}) + \sum_{j=1}^{n-1} \Pr(j \text{ no record, } j+1 \text{ record})$$

$$=2\mathbb{E}[R_n]+O(1)-2\sum_{j=1}^n\Pr(j\text{ record},\ j+1\text{ record})$$

### Branch misses: MinMax optimizado

#### Proposición [Auger, Nicaud, Pivoteau'16]

La cantidad esperada de errores de predicción en el MinMax optimizado es asintóticamente:

$$\frac{1}{4}n + O(\log n),$$

para los predictores de  $1, 2, 3, \dots$  bits.

```
a) Condición de línea (3), es decir T[i] < T[i+1], se \begin{bmatrix} 1 \\ 2 \end{bmatrix} cumple con probabilidad 1/2 para un i dado. \begin{bmatrix} 2 \\ 3 \end{bmatrix} b) El evento T[i] < T[i+1] es independiente de la \begin{bmatrix} 4 \\ 1 \end{bmatrix} historia \begin{bmatrix} 5 \\ 6 \end{bmatrix} \begin{bmatrix} T[i] < T[i+1] > max \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix}
```

# Branch misses en una sola ejecución

Probamos  $\mathbb{E}[R_n] \sim \log n$ , pero ¿y si ejecutamos el algoritmo una sola vez?

**Proposición 9.** Se cumple que  $R_n \sim \log n$  en probabilidad

**Recordamos.** Una secuencia de variables aleatorias  $X_n$  satisface  $X_n \sim f(n)$  en probabilidad sii, para cada  $\varepsilon > 0$  fijo,

$$\Pr(X_n \in [(1-\varepsilon)f(n), (1+\varepsilon)f(n)]) \to 1.$$

 $\Rightarrow$  Típicamente  $R_n$  está "cerca" de  $\log n$ .

# Desigualdad de Chebyshev

**Proposición 10** (Concentración). Supongamos que  $\mathbb{E}[X_n^2] \sim \mathbb{E}[X_n]^2$ , y  $\mathbb{E}[X_n] \to \infty$ , cuando  $n \to \infty$ .

Entonces  $X_n \sim \mathbb{E}[X_n]$  en probabilidad.

**Lema 4** (Chebyshev). Sea X una variable aleatoria, entonces

$$\Pr(|X - \mathbb{E}[X]| \ge \epsilon) \le \frac{\operatorname{Var}(X)}{\epsilon^2}.$$

### Concentración de la cantidad de records

Demostración. Probamos que  $d_n := \mathbb{E}[R_n^2] \sim \mathbb{E}[R_n]^2 = e_n^2$ 

Sea  $E_j = \{\pi \in S_n : j \text{ es un record de } \pi\}$ . Observar que:

- 1. Los eventos  $E_j$  satisfacen  $\Pr(E_j) = \frac{1}{i}$ .
- 2. Los eventos  $E_j$  y  $E_k$  son independientes para  $j \neq k$ ,

$$\Pr(E_j \cap E_k) = \frac{1}{j \cdot k} = \Pr(E_j) \cdot \Pr(E_k)$$
.

 $\Rightarrow$  las indicatrices  $X_j$  =  $\mathbf{1}_{E_j}$  son independientes: para  $j \neq k$ 

$$\mathbb{E}[X_j X_k] = \mathbb{E}[X_j] \mathbb{E}[X_k] = \frac{1}{i \cdot k}.$$

Usando  $R_n = \sum_{j=1}^n X_j$  obtenemos

$$\mathbb{E}[R_n^2] = H_n + 2\sum_{j=2}^n \frac{H_{j-1}}{j}.$$

Considerando 
$$(\log n)^2 \sim H_n^2 = \sum_{j=1}^n \frac{1}{j^2} + 2 \sum_{j=2}^n \frac{H_{j-1}}{j}$$

<sup>&</sup>lt;sup>12</sup>Para MinMax ingenuo, sabemos que la cantidad de errores de predicción es  $O(R_n)$ .

### Concentración del MinMax optimizado

Sea  $A_i = \{ \text{ branch miss en } T[i] < T[i+1] \}$ . Observamos que:

- $Pr(A_i) = 1/2$ ,
- $A_i$  es independiente de  $A_j$  para |i-j| > 1.

Tenemos  $m \approx \frac{n}{2}$  variables aleatorias Bernoulli  $\frac{1}{2} - \frac{1}{2}$  independientes:

$$C_m \coloneqq \sum_{i=0}^{m-1} \mathbf{1}_{A_{2i}}$$

Se tiene el Teorema Central del Límite:  $(C_m - m/2)/\sqrt{m/4} \rightarrow N(0,1)$  en ley.



### Sesgar algoritmos para acelerarlos

Se necesita un compromiso:

- Un **if** con una condición que es True con proba.  $50\,\%$  (e independiente del pasado) es un problema para el predictor.
- Un **if** con una condición que no es 50 50 e independiente del pasado presenta redundancias.

Veamos otro ejemplo: la exponenciación...

### 2.2. Exponeciación sesgada

# Exponenciación sesgada

```
r = 1;

while (n > 0) {

// n es impar

if (n & 1)

    r = r * x;

n /= 2;

    x = x * x;

}
```

#### Potencia clásica

```
r = 1;
while (n > 0) {
    t = x * x;
    // n1 n0 != 0 0
    if (n & 3) {
        if (n & 1)
            r = r * x;
        if (n & 2)
            r = r * t;
    }
    n /= 4;
    x = t * t;
}
```

### Potencia sesgada

- En la potencia clásica, a priori cada bit de n es 1/2 1/2 independiente.
- En la potencia sesgada, el primer if aumenta la probabilidad de los otros dos!
- Igual cantidad de multiplicaciones, pero más ifs! ¿Quién ganará?

### Análisis de la exponenciación sesgada

**Modelo.** Consideramos k > 0 y  $n \in [0, 2^{2k} - 1]$  aleatorio:

$$n = n_{2k-1}n_{2k-2}\dots n_1n_0$$
,

con cada  $n_i$  independiente y  $n_i \sim \text{Ber}(1/2)$ .

Consideramos predictores de 1-bit y 2-bits.

**Plan para el análisis.** Modelamos estado de predictor como una *Cadena de Markov*, nos interesa contar transiciones asociadas a "branch-miss"



Figura: Predictor 1 Bit para if exterior

#### Modelo: cadenas de Markov

- Leemos pares [independientes]  $(n_{2i+1}, n_{2i})$ ,  $i = 0, 1, 2, \ldots, k-1$ .
- Seguimos el estado del predictor de cada if.

Resultado: cadenas de Markov.



Figura: Predictor 1 Bit para if exterior



Figura: Predictor 1 Bit para ifs interiores

- Para el **if exterior**, tenemos  $n\&3 \neq 0$  con  $\Pr(\texttt{Taken}) = \frac{3}{4}$ .
- Para los **ifs interiores**, dado que pasamos el if exterior, tenemos n&1 y n&2 con  $\Pr(\mathsf{Taken}) = \frac{2}{3}$ .
- Branch misses en rojo en las figuras.

#### Cadena de Markov y distribución estacionaria

Un proceso  $X_0, X_1, \ldots$  con valores en  $\{s_1, \ldots, s_K\}$ , el conjunto de estados, es una Cadena de Markov sii existe una matriz  $P \in \mathcal{M}_{K \times K}([0,1])$ , fija, que define las probabilidades de transición

$$[P]_{i,j} = \Pr(X_{n+1} = s_j | X_n = s_i),$$

para todo  $n \ge 0$ .

#### Lema

Sea  $\mu^{(n)} = (\mu_1^{(n)}, \dots, \mu_K^{(n)})$  la distribución de  $X_n$ , i.e.,  $\Pr(X_n = s_i) = \mu_i^{(n)}$ . Entonces tenemos la recurrencia matricial  $\mu^{(n+1)} = \mu^{(n)}P$ .

#### Definición

Un vector  $\pi = (\pi_1, \dots, \pi_K)$  con  $\pi_i \ge 0$  y  $\sum \pi_i = 1$  es una distribución estacionaria para P sii  $\pi = \pi P$ .

### Teorema Ergódico para Cadenas de Markov

Para asegurar que la distribución converge a una estacionaria  $\mu^{(n)} \to \pi$ , necesitamos algunas condiciones técnicas relacionadas con el digrafo de P.

### Definición

- Una Cadena de Markov es irreducible sii existe un camino con probabilidad positiva entre cada par de estados.
- Una Cadena de Markov es aperiódica sii el máximo común divisor de la longitud de todos los ciclos es 1.

La condición de irreductibilidad permite afirmar que no tenemos nodos "transitorios", que no visitaremos más a partir de un cierto momento.

### Cadenas periódicas y aperiódicas

Una cadena aperiódica (izq.) y una periódica (der.):



- La aperiodicidad se cumple inmediatamente cuando tenemos loops.
- Una cadena periódica presenta periodicidades en  $\mu^{(n)}$ .

#### Teorema Ergódico para Cadenas de Markov

**Teorema 12.** Sea  $(X_0, X_1, ...)$  una Cadena de Markov irreducible y aperiódica con matriz de transición P y distribución inicial arbitraria  $\mu^{(0)}$ .

Existe una única distribución estacionaria  $\pi$  tal que  $\mu^{(n)} \to \pi$ . Más aún,  $\pi$  no depende de la elección de la distribución inicial  $\mu^{(0)}$ .

En este caso  $\pi$  es el único vector proprio de  $\lambda$  = 1 para P, con  $\sum \pi_i$  = 1.

Para contar las transiciones

**Proposición 11.** En las hipótesis del teorema, para cada transición  $v = (s_i, s_j)$ ,

$$\lim_{N \to \infty} \frac{1}{N} \sum_{k=0}^{N-1} \mathbf{1}_{(X_k, X_{k+1}) = v} = \pi_i P_{i,j}.$$

#### Teorema Ergódico aplicado: 1 bit



Figura: Predictor 1 Bit para if exterior



Figura: Predictor 1 Bit para ifs interiores

#### Sea entonces



Basta estudiar  $\pi = \pi(p)$ , donde 1 = T, 2 = NT. En este caso

$$\pi = (p, 1 - p).$$

Y para las transiciones en rojo tenemos la frecuencia  $\alpha_1(p) := 2p(1-p)$ . En el caso del predictor de 1-bit es sencillo deducir que  $\alpha_1(p) = 2p(1-p)$ .

En efecto, el predictor se equivoca únicamente con los patterns True, False y False, True y cada uno tiene probabilidad p(1-p) y (1-p)p respectivamente.

### Teorema Ergódico aplicado: 2 bits

Para dos bits tenemos



Hay que calcular  $\pi = \pi(p)$ , donde 1 = S.T, 2 = T, 3 = NT, 4 = S.NT.

En este caso [cálculo en pizarrón]

$$\pi_i = C \cdot \left(\frac{1-p}{p}\right)^{i-1}, \qquad C = \frac{1-\left(\frac{1-p}{p}\right)}{1-\left(\frac{1-p}{p}\right)^4} = \frac{p^3}{1-2p(1-p)}.$$

El conjunto de transiciones marcadas en rojo tiene frecuencia:

$$\alpha_2(p) = \pi_1(1-p) + \pi_2(1-p) + \pi_3 p + \pi_4 p = \frac{p(1-p)}{1-2p(1-p)}.$$

# Errores de predicción en la exponenciación sesgada

**Proposición 12** (Simplificada). Sea  $N=4^k$  y consideremos  $n \in \{0,\ldots,N-1\}$  uniforme. La cantidad media de errores de predicción, cuando  $k \to \infty$ , con el predictor para i-bits es asintóticamente

$$k \times (\alpha_i(3/4) + \frac{3}{4} \cdot 2 \cdot \alpha_i(2/3)), \qquad k = \frac{1}{2} \log_2 N.$$

 $<sup>^{12}</sup>$ El factor  $^{3}_{4}$  es la probabilidad de efectuar los ifs internos.

**Proposición 13** (Auger, Nicaud, Pivoteau'2016). Sea  $N \to \infty$  arbitrario y consideremos  $n \in \{0, \dots, N-1\}$  uniforme.

La cantidad esperada de errores de predicción en la exponenciación sesgada para los predictores saturados de 1, 2 y 3 bits es:

$$M_{1 \text{ bit}}(N) \sim \log_2(N) \times \frac{25}{48}$$
,  $M_{2 \text{ bit}}(N) \sim \log_2(N) \times \frac{9}{20}$ ,  $M_{3 \text{ bit}}(N) \sim \log_2(N) \times \frac{1095}{2788}$ .

# Para aprender más

- Olle Häggström, Finite Markov Chains and Algorithmic Applications. London Mathematical Society Student Texts 52.
- Nicolas Auger, Cyril Nicaud, y Carine Pivoteau, Good Predictions Are Worth a Few Comparisons. https://www-igm.univ-mlv.fr/~nicaud/articles/stacs16.pdf
- Cyril Nicaud, Carine Pivoteau y Stéphane Vialette Branch Prediction Analysis of Morris-Pratt and Knuth-Morris-Pratt Algorithms. https://arxiv.org/abs/2503.13694
- Conrado Martínez, Markus E. Nebel y Sebastian Wild Analysis of branch misses in quicksort. https://dl.acm.org/doi/10.5555/2790216.2790227

 $<sup>\</sup>frac{1225}{48} \approx 0.52$ ,  $\frac{9}{20} = 0.45$ ,  $\frac{1095}{2788} \approx 0.39$ .