Dernière mise à jour	MECA 2	Denis DEFAUCHY
18/01/2023	Dynamique	TD4 - Correction

Equilibrage d'une roue de voiture

Conditions d'équilibrage dynamique de la roue

Question 1: Déterminer le torseur cinétique $\{C(S_3/0)\}$ en O_3 .

$$\{\mathcal{C}(S_3/0)\} = \begin{cases} M\vec{V}(G_3, S_3/0) \\ \vec{\sigma}(O_3, S_3/0) \end{cases} \begin{cases} O(G_3, S_3/0) \\ O(G_3, S_3/0) \end{cases} = \vec{V}(O_3, S_3/0) + \vec{G_3O_3} \wedge \vec{\Omega}(S_3/0)$$

$$\vec{V}(G_3, S_3/0) = \begin{bmatrix} -a \\ -b \\ -c \end{bmatrix}^{B_3} \wedge \begin{bmatrix} 0 \\ 0 \\ \dot{\theta} \end{bmatrix}^{B_3} = \begin{bmatrix} -b\dot{\theta} \\ a\dot{\theta} \\ 0 \end{bmatrix}^{B_3}$$

$$\vec{\sigma}(O_3, S_3/0) = I(O_3, S_3)\vec{\Omega}(S_3/0) + M_3 \vec{O_3G_3} \wedge \vec{V}(O_3, S_3/0)$$

$$\vec{\sigma}(O_3, S_3/0) = \begin{bmatrix} A_3 & -F_3 & -E_3 \\ -F_3 & B_3 & -D_3 \\ -E_3 & -D_3 & C_3 \end{bmatrix}^{B_3} \begin{bmatrix} 0 \\ 0 \\ \dot{\theta} \end{bmatrix}^{B_3} = \begin{bmatrix} -E_3\dot{\theta} \\ -D_3\dot{\theta} \\ C_3\dot{\theta} \end{bmatrix}^{B_3}$$

$$\{\mathcal{C}(S_3/0)\} = \begin{cases} M_3(-b\dot{\theta}) & -E_3\dot{\theta} \\ M_3(a\dot{\theta}) & -D_3\dot{\theta} \\ 0 & C_3\dot{\theta} \end{cases}$$

Question 2: Déterminer le torseur dynamique $\{\mathcal{D}(S_3/0)\}$ en O_3 .

$$\begin{split} \{\mathcal{D}(S_3/0)\} &= \begin{cases} M\vec{\Gamma}(G_3,S_3/0) \\ \vec{\delta}(O_3,S_3/0) \end{cases} \\ \vec{\Gamma}(G_3,S_3/0) &= \frac{d\vec{V}(G_3,S_3/0)}{dt} \end{pmatrix}_0 = \frac{d\vec{V}(G_3,S_3/0)}{dt} \end{pmatrix}_3 + \vec{\Omega}(S_3/0) \wedge \vec{V}(G_3,S_3/0) \\ \vec{\Gamma}(G_3,S_3/0) &= \begin{bmatrix} -b\ddot{\theta} \\ a\ddot{\theta} \\ 0 \end{bmatrix}^{B_3} + \begin{bmatrix} 0 \\ 0 \\ \dot{\theta} \end{bmatrix}^{B_3} \wedge \begin{bmatrix} -b\dot{\theta} \\ a\dot{\theta} \\ 0 \end{bmatrix}^{B_3} \\ \vec{\Gamma}(G_3,S_3/0) &= \begin{bmatrix} -b\ddot{\theta} - a\dot{\theta}^2 \\ a\ddot{\theta} - b\dot{\theta}^2 \end{bmatrix}^{B_3} \\ \vec{\delta}(O_3,S_3/0) &= \frac{d\vec{\sigma}(O_3,S_3/0)}{dt} \end{pmatrix}_0 + M_3\vec{V}(O_3,S_3/0) \wedge \vec{V}(G_3,S_3/0) \\ \vec{\delta}(O_3,S_3/0) &= \frac{d\vec{\sigma}(O_3,S_3/0)}{dt} \end{pmatrix}_0 &= \frac{d\vec{\sigma}(O_3,S_3/0)}{dt} \end{pmatrix}_3 + \vec{\Omega}(S_3/0) \wedge \vec{\sigma}(O_3,S_3/0) \\ \vec{\delta}(O_3,S_3/0) &= \frac{d}{dt} \begin{bmatrix} -E_3\dot{\theta} \\ -D_3\dot{\theta} \\ C_3\dot{\theta} \end{bmatrix}^{B_3} + \begin{bmatrix} 0 \\ 0 \\ \dot{\theta} \end{bmatrix}^{B_3} \wedge \begin{bmatrix} -E_3\dot{\theta} \\ -D_3\dot{\theta} \\ C_3\dot{\theta} \end{bmatrix}^{B_3} &= \begin{bmatrix} -E_3\ddot{\theta} \\ -D_3\ddot{\theta} \\ C_3\ddot{\theta} \end{bmatrix}^{B_3} + \begin{bmatrix} D_3\dot{\theta}^2 \\ -E_3\dot{\theta}^2 \\ 0 \end{bmatrix}^{B_3} \\ \vec{\delta}(O_3,S_3/0) &= \begin{bmatrix} -E_3\ddot{\theta} + D_3\dot{\theta}^2 \\ -D_3\ddot{\theta} - E_3\dot{\theta}^2 \\ C_3\ddot{\theta} \end{bmatrix}^{B_3} \end{split}$$

Page 1 sur 12

Dernière mise à jour	MECA 2	Denis DEFAUCHY
18/01/2023	Dynamique	TD4 - Correction

$$\{\mathcal{D}(S_3/0)\} = \begin{cases} M_3 \left(-b\ddot{\theta} - a\dot{\theta}^2 \right) & -E_3\ddot{\theta} + D_3\dot{\theta}^2 \\ M_3 \left(a\ddot{\theta} - b\dot{\theta}^2 \right) & -D_3\ddot{\theta} - E_3\dot{\theta}^2 \\ 0 & C_3\ddot{\theta} \end{cases}^{B_3}$$

Question 3: En déduire les actions exercées par la roue sur le bâti en O_3 dans la liaison pivot d'axe $(O_3, \overrightarrow{z_3})$ dans la base 0.

$$\begin{split} &\{\mathcal{D}(S_3/0)\} \\ &= \begin{pmatrix} M_3 \left(-b\ddot{\theta} - a\dot{\theta}^2 \right) \cos\theta - \sin\theta \, M_3 \left(a\ddot{\theta} - b\dot{\theta}^2 \right) & \left(-E_3\ddot{\theta} + D_3\dot{\theta}^2 \right) \cos\theta - \left(-D_3\ddot{\theta} - E_3\dot{\theta}^2 \right) \sin\theta \\ M_3 \left(-b\ddot{\theta} - a\dot{\theta}^2 \right) \sin\theta + \cos\theta \, M_3 \left(a\ddot{\theta} - b\dot{\theta}^2 \right) & \left(-E_3\ddot{\theta} + D_3\dot{\theta}^2 \right) \sin\theta + \left(-D_3\ddot{\theta} - E_3\dot{\theta}^2 \right) \cos\theta \\ 0 & C_3\ddot{\theta} \end{pmatrix}^{B_0} \end{split}$$

On applique le Principe Fondamental de la Dynamique à l'arbre dans le référentiel terrestre supposé Galiléen.

$$\{\mathcal{D}(S_3/0)\} = \left\{\mathcal{T}_{\overline{S_3} \to S_3}\right\}$$

$$\begin{cases} M_{3}(-b\ddot{\theta}-a\dot{\theta}^{2})\cos\theta-\sin\theta\,M_{3}(a\ddot{\theta}-b\dot{\theta}^{2}) & (-E_{3}\ddot{\theta}+D_{3}\dot{\theta}^{2})\cos\theta-(-D_{3}\ddot{\theta}-E_{3}\dot{\theta}^{2})\sin\theta\\ M_{3}(-b\ddot{\theta}-a\dot{\theta}^{2})\sin\theta+\cos\theta\,M_{3}(a\ddot{\theta}-b\dot{\theta}^{2}) & (-E_{3}\ddot{\theta}+D_{3}\dot{\theta}^{2})\sin\theta+(-D_{3}\ddot{\theta}-E_{3}\dot{\theta}^{2})\sin\theta\\ 0 & C_{3}\ddot{\theta} \end{cases} \\ = \begin{cases} X_{03} & L_{03}\\ Y_{03} & M_{03}\\ Z_{03} & 0 \end{cases}^{B_{0}} + \begin{cases} 0 & 0\\ -M_{3}g & 0\\ 0 & 0 \end{cases}^{B_{0}} + \begin{cases} 0 & 0\\ 0 & 0\\ 0 & C_{m} \end{cases}^{B_{0}} \\ 0 & 0 \end{cases}^{B_{0}} \\ \vec{M}_{O_{3}}(\vec{P}) = \begin{bmatrix} a\cos\theta-b\sin\theta\\ a\sin\theta+b\cos\theta \end{bmatrix}^{B_{0}} & \Lambda \begin{bmatrix} 0\\ -M_{3}g \end{bmatrix}^{B_{0}} = \begin{bmatrix} cM_{3}g\\ 0\\ -M_{3}g(a\cos\theta-b\sin\theta) \end{bmatrix}^{B_{0}} \\ 0 & -M_{3}g(a\cos\theta-b\sin\theta) \end{cases}^{B_{0}} \\ = \begin{cases} X_{03} & L_{03}\\ Y_{03} & M_{03}\\ Z_{03} & 0 \end{cases}^{B_{0}} + \begin{cases} 0 & cM_{3}g\\ 0 & -M_{3}g(a\cos\theta-b\sin\theta) \end{cases}^{B_{0}} \\ 0 & -M_{3}g(a\cos\theta-b\sin\theta) \end{cases}^{B_{0}} \\ = \begin{cases} X_{03} & L_{03}\\ Y_{03} - M_{3}g\\ Z_{03} & C_{m} - M_{3}g(a\cos\theta-b\sin\theta) \end{cases}^{B_{0}} \\ 0 & C_{m} \end{cases}^{B_{0}}$$

Dernière mise à jour	MECA 2	Denis DEFAUCHY
18/01/2023	Dynamique	TD4 - Correction

On a donc les actions reprises dans la liaison pivot :

$$\begin{cases} X_{03} = M_3 \left(-b\ddot{\theta} - a\dot{\theta}^2 \right) \cos\theta - \sin\theta \, M_3 \left(a\ddot{\theta} - b\dot{\theta}^2 \right) \\ Y_{03} = M_3 g + M_3 \left(-b\ddot{\theta} - a\dot{\theta}^2 \right) \sin\theta + \cos\theta \, M_3 \left(a\ddot{\theta} - b\dot{\theta}^2 \right) \\ Z_{03} = 0 \\ L_{03} = -cM_3 g + \left(-E_3\ddot{\theta} + D_3\dot{\theta}^2 \right) \cos\theta - \left(-D_3\ddot{\theta} - E_3\dot{\theta}^2 \right) \sin\theta \\ M_{03} = \left(-E_3\ddot{\theta} + D_3\dot{\theta}^2 \right) \sin\theta + \left(-D_3\ddot{\theta} - E_3\dot{\theta}^2 \right) \cos\theta \end{cases}$$

On a de plus l'équation différentielle du mouvement :

$$C_3\ddot{\theta} = C_m - M_3g(a\cos\theta - b\sin\theta)$$

Question 4: A quelles conditions sur a, b, c, A_3 , B_3 , C_3 , D_3 , E_3 et F_3 l'équilibrage dynamique est-il réalisé ?

Actions indépendantes de θ et du mouvement $\dot{\theta}$ et $\ddot{\theta}$:

$$a = b = 0$$

$$\overrightarrow{O_3 G_3} = \begin{bmatrix} 0 \\ 0 \\ c \end{bmatrix}^{B_3}$$

Moments indépendants de θ et du mouvement $\dot{\theta}$ et $\ddot{\theta}$:

$$E_3 = D_3 = 0$$

$$I(O_3, S_3) = \begin{bmatrix} A_3 & -F_3 & 0 \\ -F_3 & B_3 & 0 \\ 0 & 0 & C_3 \end{bmatrix}^{B_3}$$

Question 5: Proposer un énoncé de ces deux conditions

Soit un solide S de centre d'inertie G en rotation autour d'un axe $(0, \vec{z})$ par rapport à un référentiel Galiléen 0. Soit la base $B(\vec{x}, \vec{y}, \vec{z})$ liée au bâti et $B_S(\vec{x_S}, \vec{y_S}, \vec{z_S})$ liée à S telles que $\vec{z} = \vec{z_S}$. Pour que le solide S soit équilibré dynamiquement, il faut :

Condition 1 : Le centre de gravité doit se trouver sur l'axe de rotation. On appelle cette condition l'équilibrage statique.

$$\begin{cases} X_G = \overrightarrow{OG} \cdot \vec{x} = 0 \\ Y_G = \overrightarrow{OG} \cdot \vec{y} = 0 \end{cases}$$

Condition 2 : L'axe de rotation $(0, \vec{z})$ doit être un axe principal d'inertie de la matrice.

$$I(O,S) = \begin{bmatrix} A & -F & 0 \\ -F & B & 0 \\ 0 & 0 & C \end{bmatrix}^{B_S}$$

Dernière mise à jour	MECA 2	Denis DEFAUCHY
18/01/2023	Dynamique	TD4 - Correction

Question 6: Montrer que si la condition 1 est vérifiée, alors si la condition 2 est vérifiée en un point de l'axe, elle l'est en tout point de l'axe

Ecrivons un théorème de Huygens généralisé entre P' et P

$$\overrightarrow{GP} = \begin{pmatrix} 0 \\ 0 \\ z \end{pmatrix}^{\mathfrak{B}_{3}} ; \quad \overrightarrow{GP'} = \begin{pmatrix} 0 \\ 0 \\ z' \end{pmatrix}^{\mathfrak{B}_{3}}$$

$$I(P,S) = I(G,S) + m \begin{bmatrix} z^{2} & 0 & 0 \\ 0 & z^{2} & 0 \\ 0 & 0 & 0 \end{bmatrix}^{B_{3}}$$

$$I(P',S) = I(G,S) + m \begin{bmatrix} z'^{2} & 0 & 0 \\ 0 & z'^{2} & 0 \\ 0 & 0 & 0 \end{bmatrix}^{B_{3}}$$

$$I(P',S) - I(P,S) = m \begin{bmatrix} z'^{2} - z^{2} & 0 & 0 \\ 0 & z'^{2} - z^{2} & 0 \\ 0 & 0 & 0 \end{bmatrix}^{B_{3}}$$

$$I(P',S) = I(P,S) + \begin{bmatrix} z'^{2} - z^{2} & 0 & 0 \\ 0 & z'^{2} - z^{2} & 0 \\ 0 & 0 & 0 \end{bmatrix}^{B_{3}B_{3}}$$

On ne modifie pas les termes hors diagonaux, donc si la condition 2 est vérifiée sur I(P,S), elle l'est sur I(P',S) quel que soit P sur l'axe.

Question 7: Comment pourrait-on équilibrer un objet avec des masses négatives ? Quel intérêt cela présente-t-il ? Quels en sont les inconvénients ?

Il suffit d'enlever de la matière !!! Plus léger, pas e volume supplémentaire... Mais le client n'aimera pas voir ses jantes trouées © Problème : fragilisation de la structure ?

Dernière mise à jour	MECA 2	Denis DEFAUCHY
18/01/2023	Dynamique	TD4 - Correction

Fonctionnement de la machine d'équilibrage

Question 8: Déterminer le torseur des actions des deux roulements en ${\it O}_{3}$ dans la base 0.

$$\begin{cases} X_{A} & 0 \\ Y_{A} & 0 \\ Z_{A} & 0 \end{cases}^{B_{0}} + \begin{cases} X_{B} & 0 \\ Y_{B} & 0 \\ 0 & 0 \end{cases}^{B_{0}} \\ \overrightarrow{M}_{O_{3}}(\overrightarrow{R_{A}}) = \overrightarrow{M}_{A}(\overrightarrow{R_{A}}) + \overrightarrow{O_{3}}\overrightarrow{A}\wedge\overrightarrow{R_{A}} \\ \overrightarrow{M}_{O_{3}}(\overrightarrow{R_{A}}) = \begin{bmatrix} 0 \\ 0 \\ -L \end{bmatrix}^{B_{0}} \wedge \begin{bmatrix} X_{A} \\ Y_{A} \\ Z_{A} \end{bmatrix}^{B_{0}} = \begin{bmatrix} LY_{A} \\ -LX_{A} \\ 0 \end{bmatrix}^{B_{0}} \\ \overrightarrow{M}_{O_{3}}(\overrightarrow{R_{B}}) = \overrightarrow{M}_{B}(\overrightarrow{R_{B}}) + \overrightarrow{O_{3}}\overrightarrow{B}\wedge\overrightarrow{R_{B}} \\ \overrightarrow{M}_{O_{3}}(\overrightarrow{R_{B}}) = \begin{bmatrix} 0 \\ 0 \\ -(L-l) \end{bmatrix}^{B_{0}} \wedge \begin{bmatrix} X_{B} \\ Y_{B} \end{bmatrix}^{B_{0}} = \begin{bmatrix} (L-l)Y_{B} \\ -(L-l)X_{B} \end{bmatrix}^{B_{0}} \\ \begin{bmatrix} X_{A} & 0 \\ Y_{A} & 0 \\ Z_{A} & 0 \end{bmatrix}^{B_{0}} + \begin{cases} X_{B} & 0 \\ Y_{B} & 0 \\ 0 & 0 \end{bmatrix}^{B_{0}} = \begin{cases} X_{A} & LY_{A} \\ Y_{A} & -LX_{A} \\ Z_{A} & 0 \end{cases}^{B_{0}} + \begin{cases} X_{B} & (L-l)Y_{B} \\ Y_{B} & -(L-l)X_{B} \\ 0 & 0 \end{cases}^{B_{0}} \\ = \begin{cases} X_{A} + X_{B} & LY_{A} + (L-l)Y_{B} \\ Y_{A} + Y_{B} & -LX_{A} - (L-l)X_{B} \\ Z_{A} & 0 \end{cases}^{B_{0}}$$

Question 9: En déduire le système d'équations simplifié du problème où l'on appellera ω la vitesse de rotation imposée

On avait:

$$\begin{cases} X_{03} = M_3 \left(-b\ddot{\theta} - a\dot{\theta}^2 \right) \cos\theta - \sin\theta \, M_3 \left(a\ddot{\theta} - b\dot{\theta}^2 \right) \\ Y_{03} = M_3 g + M_3 \left(-b\ddot{\theta} - a\dot{\theta}^2 \right) \sin\theta + \cos\theta \, M_3 \left(a\ddot{\theta} - b\dot{\theta}^2 \right) \\ Z_{03} = 0 \\ L_{03} = -cM_3 g + \left(-E_3\ddot{\theta} + D_3\dot{\theta}^2 \right) \cos\theta - \left(-D_3\ddot{\theta} - E_3\dot{\theta}^2 \right) \sin\theta \\ M_{03} = \left(-E_3\ddot{\theta} + D_3\dot{\theta}^2 \right) \sin\theta + \left(-D_3\ddot{\theta} - E_3\dot{\theta}^2 \right) \cos\theta \end{cases}$$

On peut remplacer les variables X_{03} etc dans le système :

$$\begin{cases} X_A + X_B = M_3 \left(-b\ddot{\theta} - a\dot{\theta}^2 \right) \cos\theta - \sin\theta \, M_3 \left(a\ddot{\theta} - b\dot{\theta}^2 \right) \\ Y_A + Y_B = M_3 g + M_3 \left(-b\ddot{\theta} - a\dot{\theta}^2 \right) \sin\theta + \cos\theta \, M_3 \left(a\ddot{\theta} - b\dot{\theta}^2 \right) \\ Z_A = 0 \\ LY_A + (L - l)Y_B = -cM_3 g + \left(-E_3\ddot{\theta} + D_3\dot{\theta}^2 \right) \cos\theta - \left(-D_3\ddot{\theta} - E_3\dot{\theta}^2 \right) \sin\theta \\ -LX_A - (L - l)X_B = \left(-E_3\ddot{\theta} + D_3\dot{\theta}^2 \right) \sin\theta + \left(-D_3\ddot{\theta} - E_3\dot{\theta}^2 \right) \cos\theta \end{cases}$$

On remarque que C_3 n'intervient pas.

Dernière mise à jour	MECA 2	Denis DEFAUCHY
18/01/2023	Dynamique	TD4 - Correction

On impose une vitesse de rotation constante : $\ddot{\theta} = 0$

$$\begin{cases} X_A + X_B = M_3 \omega^2 (-a \cos \theta + b \sin \theta) \\ Y_A + Y_B = M_3 g - M_3 \omega^2 (a \sin \theta + b \cos \theta) \\ Z_A = 0 \\ LY_A + (L - l)Y_B = -cM_3 g + \omega^2 (D_3 \cos \theta + E_3 \sin \theta) \\ -LX_A - (L - l)X_B = \omega^2 (D_3 \sin \theta - E_3 \cos \theta) \end{cases}$$

Question 10: Montrer qu'il suffit de mettre un capteur d'effort dans une seule direction pour chaque roulement afin de déterminer M_3 , a, b, D_3 et E_3 .

Il faut déjà mesurer soit X_A et X_B , soit Y_A et Y_B .

Dans tous les cas, l'astuce pour avoir plusieurs équations est de procéder à des mesures pour différentes positions. On obtient 2n équations pour n mesures! On fait ensuite une résolution moindres carrés, comme pour trouver les coefficients a et b d'une droite y=ax+b, on peut utiliser n points et faire une régression, c'est plus précis!

Si on mesure les X:

$$\begin{cases} X_A + X_B = M_3 \omega^2 (-a \cos \theta + b \sin \theta) \\ -LX_A - (L - l)X_B = \omega^2 (D_3 \sin \theta - E_3 \cos \theta) \end{cases}$$

$$\begin{cases} X_A + X_B = -\omega^2 \cos \theta \, \mathbf{M_3 a} + \omega^2 \sin \theta \, \mathbf{M_3 b} \\ -LX_A - (L - l)X_B = (\omega^2 \sin \theta \, \mathbf{D_3} - \omega^2 \cos \theta \, \mathbf{E_3}) \end{cases}$$

On ne pourra pas obtenir la masse M_3 . En effet, On aura uniquement les produits M_3a et M_3b . Il faut au préalable peser la roue.

Si on mesure les Y:

$$\begin{cases} Y_A + Y_B = M_3 g - M_3 \omega^2 (a \sin \theta + b \cos \theta) \\ L Y_A + (L - l) Y_B = -c M_3 g + \omega^2 (D_3 \cos \theta + E_3 \sin \theta) \end{cases}$$

Quand on ne tourne pas, on a:

$$\begin{cases} Y_A + Y_B = M_3g \\ LY_A + (L-l)Y_B = -cM_3g \end{cases}$$

On peut donc trouver M_3 et c connaissant g. On les aurait aussi quand ça tourne...

On a alors un système de 2 équations à 4 inconnues $a,\,b,\,D_3$ et E_3 :

$$\begin{cases} Y_A + Y_B = \mathbf{M}_3 g - \omega^2 \mathbf{M}_3 \mathbf{a} \sin \theta - \omega^2 \mathbf{M}_3 \mathbf{b} \cos \theta \\ LY_A + (L - l)Y_B = -\mathbf{c} \mathbf{M}_3 g + \omega^2 \cos \theta \mathbf{D}_3 + \omega^2 \sin \theta \mathbf{E}_3 \end{cases}$$

On a donc ce qui est nécessaire pour la suite : M_3 , a, b, D_3 et E_3

Remarque : on pourrait ne mesurer qu'un Y, l'autre serait résolu dans l'équation. Mais pour le coup, cela risque de rendre les mesures moins fiables.

Dernière mise à jour	MECA 2	Denis DEFAUCHY
18/01/2023	Dynamique	TD4 - Correction

Ajout de masselottes pour l'équilibrage

Question 11: Exprimer $\overrightarrow{O_3G_1}$ en fonction de r, φ_1 et z_1

$$\overrightarrow{O_3G_1} = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}^{B_3} = \begin{bmatrix} r\cos\varphi_1 \\ r\sin\varphi_1 \\ z_1 \end{bmatrix}^{B_3}$$

Question 12: Déterminer la/les relation(s) permettant de respecter la condition 1.

Centre de gravité :

$$\overrightarrow{O_{3}G_{1U3}} = \frac{M_{1}\overrightarrow{O_{3}G_{1}} + M_{3}\overrightarrow{O_{3}G_{3}}}{M_{1} + M_{3}} = \frac{1}{M_{1} + M_{3}} \left[M_{1} \begin{bmatrix} r\cos\varphi_{1} \\ r\sin\varphi_{1} \\ z_{1} \end{bmatrix}^{B_{3}} + M_{3} \begin{bmatrix} a \\ b \\ c \end{bmatrix}^{B_{3}} \right]$$

Condition 1:

$$\begin{cases} a_{1U3} = 0 \\ b_{1U3} = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} \overrightarrow{O_3 G_{1U3}}. \overrightarrow{x_3} = 0 \\ \overrightarrow{O_3 G_{1U3}}. \overrightarrow{y_3} = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} M_1 r \cos \varphi_1 + M_3 a = 0 \\ M_1 r \sin \varphi_1 + M_3 b = 0 \end{cases}$$

On aurait aussi pu écrire :

$$\begin{cases} a_{1U3} = 0 \\ b_{1U3} = 0 \end{cases} \Leftrightarrow \begin{cases} M_1 x_1 + M_3 a = 0 \\ M_1 y_1 + M_3 b = 0 \end{cases}$$

Dernière mise à jour	MECA 2	Denis DEFAUCHY
18/01/2023	Dynamique	TD4 - Correction

Question 13: Déterminer la/les relation(s) permettant de respecter la condition 2.

$$\overrightarrow{O_3G_1} = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}^{B_3} = \begin{bmatrix} r\cos\varphi_1 \\ r\sin\varphi_1 \\ z_1 \end{bmatrix}^{B_3}$$

Nouvelle matrice d'inertie :

$$I(O_3, S_1 U S_3) = I(O_3, S_1) + I(O_3, S_3) = \begin{bmatrix} A_{1U3} & -F_{1U3} & -E_{1U3} \\ -F_{1U3} & B_{1U3} & -D_{1U3} \\ -E_{1U3} & -D_{1U3} & C_{1U3} \end{bmatrix}^{B_3}$$

Cas d'une masse ponctuelle :

$$I(O_3,S_1) = M_1 \begin{bmatrix} y_1^2 + z_1^2 & -x_1y_1 & -x_1z_1 \\ -x_1y_1 & x_1^2 + z_1^2 & -y_1z_1 \end{bmatrix}_{B_3}$$

$$I(O_3,S_1) = M_1 \begin{bmatrix} r^2 \sin^2 \varphi_1 + z_1^2 & -r \cos \varphi_1 r \sin \varphi_1 & -r \cos \varphi_1 z_1 \\ -r \cos \varphi_1 r \sin \varphi_1 & r^2 \cos^2 \varphi_1 + z_1^2 & -r \sin \varphi_1 z_1 \end{bmatrix}_{B_3}$$

$$I(O_3,S_1) = M_1 \begin{bmatrix} r^2 \sin^2 \varphi_1 + z_1^2 & -r \sin \varphi_1 z_1 & r^2 \cos^2 \varphi_1 + r^2 \sin^2 \varphi_1 \\ -r \cos \varphi_1 z_1 & -r \sin \varphi_1 z_1 & r^2 \cos^2 \varphi_1 + r^2 \sin^2 \varphi_1 \end{bmatrix}_{B_3}$$

$$I(O_3,S_1) = M_1 \begin{bmatrix} r^2 \sin^2 \varphi_1 + z_1^2 & -r^2 \cos \varphi_1 \sin \varphi_1 & -r \cos \varphi_1 z_1 \\ -r^2 \cos \varphi_1 \sin \varphi_1 & r^2 \cos^2 \varphi_1 + z_1^2 & -r \sin \varphi_1 z_1 \end{bmatrix}_{-r \sin \varphi_1 z_1}$$

$$-r \cos \varphi_1 z_1 & -r \sin \varphi_1 z_1 & -r \cos \varphi_1 z_1 \\ -r^2 \cos \varphi_1 \sin \varphi_1 & r^2 \cos^2 \varphi_1 + z_1^2 & -r \cos \varphi_1 z_1 \\ -r \cos \varphi_1 z_1 & -r \sin \varphi_1 z_1 & -r \sin \varphi_1 z_1 \end{bmatrix}_{-r \sin \varphi_1 z_1}$$

Termes utiles:

$$\begin{split} -D_{1U3} &= -D_3 - M_1 y_1 z_1 = -D_3 - M_1 r \sin \varphi_1 z_1 \\ -E_{1U3} &= -E_3 - M_1 x_1 z_1 = -E_3 - M_1 r \cos \varphi_1 z_1 \end{split}$$

Soit:

$$\begin{cases} D_{1U3} = 0 \\ E_{1U3} = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} D_3 + M_1 r \sin \varphi_1 z_1 = 0 \\ E_3 + M_1 r \cos \varphi_1 z_1 = 0 \end{cases}$$

Dernière mise à jour	MECA 2	Denis DEFAUCHY
18/01/2023	Dynamique	TD4 - Correction

Question 14: Récapituler les conditions à respecter pour que la roue soit équilibrée

Les 4 relations sont donc:

$$\begin{cases} M_1 r \cos \varphi_1 = -M_3 a \\ M_1 r \sin \varphi_1 = -M_3 b \\ M_1 r \sin \varphi_1 z_1 = -D_3 \\ M_1 r \cos \varphi_1 z_1 = -E_3 \end{cases}$$

Question 15: Montrer que ce système d'équations impose la valeur de z_1 en fonction des paramètres de la roue initiale a, b, D_3 et E_3 ainsi qu'une condition liant ces paramètres

On a 4 équations pour 2 inconnues m_1 et φ_1 , il en résulte deux conditions qui doivent être vérifiées par le solide à équilibrer pour qu'il soit possible de l'équilibrer :

$$\begin{cases} M_1 r \cos \varphi_1 = -M_3 a \\ M_1 r \cos \varphi_1 z_1 = -E_3 \end{cases} \Rightarrow -M_3 a z_1 = -E_3$$

$$\begin{cases} M_1 r \sin \varphi_1 = -M_3 b \\ M_1 r \sin \varphi_1 z_1 = -D_3 \end{cases} \Rightarrow -M_3 b z_1 = -D_3$$

Soit:

$$\frac{-M_3 a z_1}{-M_3 b z_1} = \frac{-E_3}{-D_3}$$

$$\frac{a}{b} = \frac{E_3}{D_3}$$

$$z_1 = \frac{E_3}{M_3 a} = \frac{D_3}{M_3 b}$$

Question 16: Conclure quant à la capacité d'une masselotte à équilibrer une roue.

Le solide ne peut être équilibré que si :

- De base, il respecte la condition $\frac{a}{b} = \frac{E_3}{D_3}$
- $z_1 = \frac{E_3}{M_2 a}$ peut être imposé, ce qui n'est pas le cas

On ne peut donc pas équilibrer un solide quelconque avec une seule masselotte et l'épaisseur de la roue est imposée par sa géométrie...

Dernière mise à jour	MECA 2	Denis DEFAUCHY
18/01/2023	Dynamique	TD4 - Correction

Question 17: Déterminer les nouvelles conditions à respecter pour réaliser l'équilibrage dynamique de la roue.

Par analogie, on obtient:

$$\begin{cases} M_1 r \cos \varphi_1 + M_2 r \cos \varphi_2 = -M_3 a \\ M_1 r \sin \varphi_1 + M_2 r \sin \varphi_2 = -M_3 b \\ M_1 r \sin \varphi_1 z_1 + M_2 r \sin \varphi_2 z_2 = -D_3 \\ M_1 r \cos \varphi_1 z_1 + M_2 r \cos \varphi_2 z_2 = -E_3 \end{cases}$$

Question 18: Que se passe-t-il si $z_1 = z_2$?

Si $z_1 = z_2 = z$

$$\begin{cases} M_1 r \cos \varphi_1 + M_2 r \cos \varphi_2 = -M_3 a \\ M_1 r \sin \varphi_1 + M_2 r \sin \varphi_2 = -M_3 b \\ (M_1 r \sin \varphi_1 + M_2 r \sin \varphi_2) z = -D_3 \\ (M_1 r \cos \varphi_1 + M_2 r \cos \varphi_2) z = -E_3 \end{cases}$$

Le système devient :

$$\begin{cases} M_1 r \cos \varphi_1 + M_2 r \cos \varphi_2 = -M_3 a \\ M_1 r \sin \varphi_1 + M_2 r \sin \varphi_2 = -M_3 b \\ -M_3 b z = -D_3 \\ -M_3 a z = -E_3 \end{cases}$$

Soit:

$$\frac{-M_3 az}{-M_3 bz} = \frac{-E_3}{-D_3}$$

$$\frac{a}{b} = \frac{E_3}{D_3}$$

$$z_1 = \frac{E_3}{M_3 a} = \frac{D_3}{M_3 b}$$

On trouve la même condition qu'à la question 10 : ceci n'est pas vrai quel que soit le solide étudié. Remarque : ajouter deux masselottes dans le même plan revient à ajouter une seule masselotte dans ce plan au centre de gravité de l'ensemble, d'où le même résultat que pour l'ajout d'une masselotte.

Question 19: L'ajout de deux masselottes de part et d'autre de la roue permet-il de l'équilibrer ?

On a 4 équations, 4 inconnues : M_1 , φ_1 , M_2 , φ_2 . On peut résoudre le système à la condition que $z_1 \neq z_2$

On peut alors mettre l'une des masselottes à l'intérieur et l'autre à l'extérieur, ou inversement.

Dernière mise à jour	MECA 2	Denis DEFAUCHY
18/01/2023	Dynamique	TD4 - Correction

Question 20: Quelles conditions doivent finalement respecter M_1 , M_2 , φ_1 et φ_2 pour que la roue soit équilibrée ?

$$\begin{cases} M_1 \cos \varphi_1 + M_2 \cos \varphi_2 = -\frac{M_3 a}{r} \\ M_1 \sin \varphi_1 + M_2 \sin \varphi_2 = -\frac{M_3 b}{r} \\ M_1 \sin \varphi_1 z_1 + M_2 \sin \varphi_2 z_2 = -\frac{D_3}{r} \\ M_1 \cos \varphi_1 z_1 + M_2 \cos \varphi_2 z_2 = -\frac{E_3}{r} \\ Z_1 = -z_2 = \pm h \\ M_1 > 0 \\ M_2 > 0 \end{cases}$$

Rappeler qu'on est dans le contexte du pneu. Si le rayon n'est pas imposé, la question est différente!

Question 21: Déterminer les expressions de M_1 , M_2 , φ_1 et φ_2 permettant d'équilibrer la roue par ajout de masselottes

$$\begin{cases} M_1 \cos \varphi_1 + M_2 \cos \varphi_2 = -\frac{M_3 a}{r} \\ M_1 \sin \varphi_1 + M_2 \sin \varphi_2 = -\frac{M_3 b}{r} \\ M_1 \sin \varphi_1 z_1 + M_2 \sin \varphi_2 z_2 = -\frac{D_3}{r} \\ M_1 \cos \varphi_1 z_1 + M_2 \cos \varphi_2 z_2 = -\frac{E_3}{r} \\ z_1 = h \quad ; \quad z_2 = -h \end{cases} ;$$

$$\begin{cases} M_1 \cos \varphi_1 + M_2 \cos \varphi_2 = -\frac{M_3 a}{r} \\ M_1 \sin \varphi_1 + M_2 \sin \varphi_2 = -\frac{M_3 b}{r} \\ M_1 \sin \varphi_1 - M_2 \sin \varphi_2 = -\frac{D_3}{rh} \\ M_1 \cos \varphi_1 - M_2 \cos \varphi_2 = -\frac{E_3}{rh} \end{cases}$$

$$\begin{cases} M_1 \cos \varphi_1 = -\frac{M_3 a}{r} - M_2 \cos \varphi_2 \\ M_1 \sin \varphi_1 = -\frac{M_3 b}{r} - M_2 \sin \varphi_2 \\ -\frac{M_3 b}{r} - 2M_2 \sin \varphi_2 = -\frac{D_3}{rh} \\ -\frac{M_3 a}{r} - 2M_2 \cos \varphi_2 = -\frac{E_3}{rh} \end{cases} ;$$

$$\begin{cases} M_1 \cos \varphi_1 = -\frac{M_3 a}{r} - M_2 \cos \varphi_2 \\ M_1 \sin \varphi_1 = -\frac{M_3 b}{r} - M_2 \sin \varphi_2 \\ M_2 \sin \varphi_2 = \frac{D_3 - M_3 bh}{2rh} \\ M_2 \cos \varphi_2 = \frac{E_3 - M_3 ah}{2rh} \end{cases}$$

$$\begin{cases} M_1\cos\varphi_1 = -\frac{M_3a}{r} - \frac{E_3 - M_3ah}{2rh} \\ M_1\sin\varphi_1 = -\frac{M_3b}{r} - \frac{D_3 - M_3bh}{2rh} \\ M_2\sin\varphi_2 = \frac{D_3 - M_3bh}{2rh} \\ M_2\cos\varphi_2 = \frac{E_3 - M_3ah}{2rh} \end{cases} ; \begin{cases} M_1\cos\varphi_1 = \frac{-M_3ah - E_3}{2rh} \\ M_1\sin\varphi_1 = \frac{-M_3bh - D_3}{2rh} \\ M_2\sin\varphi_2 = \frac{D_3 - M_3bh}{2rh} \\ M_2\cos\varphi_2 = \frac{E_3 - M_3ah}{2rh} \end{cases}$$

Dernière mise à jour	MECA 2	Denis DEFAUCHY
18/01/2023	Dynamique	TD4 - Correction

$$\begin{cases} \tan \varphi_1 = \frac{-M_3 ah - E_3}{2rh \cos \varphi_1} \\ \tan \varphi_1 = \frac{\frac{-M_3 bh - D_3}{2rh}}{\frac{-M_3 ah - E_3}{2rh}} = \frac{-M_3 bh - D_3}{-M_3 ah - E_3} \\ \tan \varphi_2 = \frac{\frac{D_3 - M_3 bh}{2rh}}{\frac{E_3 - M_3 ah}{2rh}} = \frac{D_3 - M_3 bh}{E_3 - M_3 ah} \\ M_2 = \frac{E_3 - M_3 ah}{2rh \cos \varphi_2} \end{cases} ; \begin{cases} M_1 = -\frac{M_3 ah + E_3}{2rh \cos \varphi_1} > 0 \\ \varphi_1 = \tan^{-1} \left[\frac{M_3 bh + D_3}{M_3 ah + E_3} \right] + k\pi \\ \varphi_2 = \tan^{-1} \left[\frac{D_3 - M_3 bh}{E_3 - M_3 ah} \right] + k\pi \\ M_2 = \frac{E_3 - M_3 ah}{2rh \cos \varphi_2} > 0 \end{cases}$$

La solution est donc :

$$\begin{cases} M_1 = -\frac{M_3ah + E_3}{2rh\cos\varphi_1} > 0 \\ \varphi_1 = \tan^{-1}\left[\frac{M_3bh + D_3}{M_3ah + E_3}\right] + k\pi \\ \varphi_2 = \tan^{-1}\left[\frac{D_3 - M_3bh}{E_3 - M_3ah}\right] + k\pi \\ M_2 = \frac{E_3 - M_3ah}{2rh\cos\varphi_2} > 0 \end{cases}$$

Mais il faudra choisir φ_1 et φ_2 tels que M_1 et M_2 positifs