Chapter 5

Grammars

- A. Construct right-linear or left-linear grammars for the following regular languages:
- 1. Binary strings in which every 0 is followed by 11. Construct a parse tree for the string 0111011

Solution:

LHS		RHS
S	\rightarrow	1S
S	\rightarrow	0118
S	\rightarrow	λ

2. Binary strings in which each string has alternating 0 s and 1 s and is of even length.

Also, convert the grammar to an equivalent DFA. What is the minimum number of states in the equivalent DFA?

Solution:

LHS		RHS
S	\rightarrow	A
S	\rightarrow	В
A	\rightarrow	01A
В	\rightarrow	10B
A	\rightarrow	λ
В	\rightarrow	λ

Equivalent NFA:

Equivalent DFA:

This is already minimal. The minimum number of states is therefore 5 (since it is incorrect to merge the two branches into a single branch).

3. Binary strings that begin with 11 and end with 11 or begin with 00 and end with 00.

Solution: Assuming that strings in the language are at least 4 symbols long:

LHS		RHS
S	\rightarrow	11A
S	\rightarrow	00B
A	\rightarrow	0A
A A	\rightarrow	1A
A	\rightarrow	11
В	\rightarrow	0B
В	\rightarrow	1B
В	\rightarrow	00

4. Binary strings starting with 000 or ending with 111 (or both). Show the derivation of 00010111

Solution: Grammar and two possible parse trees for the given string:

LHS		RHS
S	\rightarrow	000A
S	\rightarrow	В
A	\rightarrow	0A
A	\rightarrow	1A
A A A	\rightarrow	λ
A	\rightarrow	В
В	\rightarrow	0B
В	\rightarrow	1B
В	\rightarrow	111

5. Binary strings in which the sum of the last three digits is even (e.g., 00101011 but not 00101001).

Solution:

LHS		RHS
S	\rightarrow	0S
S	\rightarrow	1S
S	\rightarrow	000
S	\rightarrow	011
S	\rightarrow	101
S	\rightarrow	110

6. Strings over $\{a, b, c\}$ that contain at least one a and at least one b.

Solution:

LHS			RHS
S	\rightarrow	aA	
S	\rightarrow	bВ	
S	\rightarrow	cS	
A	\rightarrow	aA	
A	\rightarrow	bС	
A	\rightarrow	cA	
В	\rightarrow	bВ	
В	\rightarrow	aC	
В	\rightarrow	cВ	
С	\rightarrow	aC	
C C	\rightarrow	bС	
С	\rightarrow	cС	
С	\rightarrow	λ	

7. Strings over $\{a, b\}$ that contain at least three a s or at least two b s.

Solution: Please see also the VIDEO SOLUTION to follow the method for constructing the grammar shown below.

LHS		RHS
S	\rightarrow	
S	\rightarrow	D
А	\rightarrow	аВ
В	\rightarrow	aC
С	\rightarrow	а
А	\rightarrow	aA
В	\rightarrow	аВ
С	\rightarrow	aC
А	\rightarrow	bA
В	\rightarrow	bB
С	\rightarrow	bC
D	\rightarrow	bE
E	\rightarrow	b
D	\rightarrow	bD
E	\rightarrow	bE
D	\rightarrow	aD
E	\rightarrow	аE

8. Strings over $\{a, b\}$ in which some number of a s is followed by some number of b s with the total length of the string being divisible by 3. Show the parse tree for aabbbb.

LHS		RHS
S	\rightarrow	aaaS
S	\rightarrow	aA
S	\rightarrow	aaB
S	\rightarrow	С
A	\rightarrow	bbC
В	\rightarrow	bC
С	\rightarrow	bbbC
С	\rightarrow	λ

9. Strings over $\{a, b\}$ containing at least two a s and ending with an even number of b s.

Solution:

LHS		RHS
S	\rightarrow	bS
S	\rightarrow	aA
A	\rightarrow	aA
A	\rightarrow	bA
A	\rightarrow	aВ
В	\rightarrow	bbB
В	\rightarrow	λ

10. Strings over the alphabet $\{a, b\}$ of the form $(ab)^n$, e.g., ababab.

Solution:

LHS		RHS
S	\rightarrow	abS
S	\rightarrow	λ

11. Strings of the form abwba over the alphabet $\{a, b\}$ where w is any string over the same alphabet. Show the parse tree for abbaba.

LHS		RHS
S	\rightarrow	abA
A	\rightarrow	aA
A	\rightarrow	bA
A	\rightarrow	ba

12. The set of all binary strings that are palindromes of length 4. The alphabet is $\{a, b, c\}$.

	RHS
\rightarrow	aA
\rightarrow	bB
\rightarrow	cC
\rightarrow	aD
\rightarrow	bE
\rightarrow	cF
\rightarrow	aa
\rightarrow	ba
\rightarrow	ca
\rightarrow	aG
\rightarrow	bH
\rightarrow	cl
\rightarrow	ab
\rightarrow	bb
\rightarrow	cb
\rightarrow	aJ
\rightarrow	bK
\rightarrow	cL
\rightarrow	ac
\rightarrow	bc
\rightarrow	сс
	$\begin{array}{c} \rightarrow \\ \rightarrow $

13. Binary strings with no consecutive 0 s. Show the derivation of the string $w_1 = 1011101$ and also why $w_2 = 1001$ cannot be derived.

Solution:

LHS		RHS
S	\rightarrow	1S
S	\rightarrow	01S
S	\rightarrow	λ
S	\rightarrow	0

String 1001 is not generated by this grammar since it has a 0 that is not followed by a 1.

14. Binary strings in which the first part of each string contains at least four 1 s and the second part contains at least three 0 s.

Solution: Please see also the VIDEO SOLUTION for this exercise.

LHS		RHS
S	\rightarrow	A
А	\rightarrow	18
В	\rightarrow	1C
С	\rightarrow	1D
D	\rightarrow	1E
E	\rightarrow	DF
F	\rightarrow	DG
G	\rightarrow	0
А	\rightarrow	1A
А	\rightarrow	0A
В	\rightarrow	18
В	\rightarrow	OB
С	\rightarrow	1C
С	\rightarrow	DC
D	\rightarrow	1D
D	\rightarrow	0D
E	\rightarrow	1E
E	\rightarrow	0E
F	\rightarrow	1F
F	\rightarrow	OF
G	\rightarrow	1G
G	\rightarrow	0G

15. Binary strings with at least two occurrences of at least two consecutive 1 s, the two occurrences not being adjacent (i.e., 011011 is acceptable but 011111 is not).

Solution:

LHS		RHS
S	\rightarrow	0S
S	\rightarrow	1S
S	\rightarrow	11A
A	\rightarrow	1A
A	\rightarrow	0B
В	\rightarrow	1B
В	\rightarrow	0B
В	\rightarrow	11C
С	\rightarrow	0C
С	\rightarrow	1C
С	\rightarrow	λ

16. Strings over $\{a, b\}$ of the form $aa^*(ab + a)^*$. Solution:

LHS		RHS
S	\rightarrow	aA
A	\rightarrow	aA
A	\rightarrow	λ
A	\rightarrow	abA

17. Strings over $\{a, b\}$ where the last two symbols in each string are a reversal of the first two symbols (i.e., last symbol = first symbol and penultimate symbol = second symbol).

Solution:

LHS		RHS
S	\rightarrow	ааА
S	\rightarrow	abB
S	\rightarrow	baC
S	\rightarrow	bbD
А	\rightarrow	aa
В	\rightarrow	ba
С	\rightarrow	ab
D	\rightarrow	bb
А	\rightarrow	аА
А	\rightarrow	bA
В	\rightarrow	аВ
В	\rightarrow	bB
С	\rightarrow	aC
С	\rightarrow	bC
D	\rightarrow	aD
D	\rightarrow	bD

18. Student grades in an examination are represented with the letters {A, B, C, D, F}. A string such as ABFCAD indicates the grades obtained by a student in six different subjects. The grammar must generate only those strings that have at most three D s and no F s.

LHS		RHS
S	\rightarrow	AS
s	\rightarrow	BS
s	\rightarrow	cs
s	\rightarrow	DU
U	\rightarrow	AU
U	\rightarrow	BU
U	\rightarrow	CU
U	\rightarrow	DV
V	\rightarrow	AV
V	\rightarrow	B∨
V	\rightarrow	cv
V	\rightarrow	DW
W	\rightarrow	AW
W	\rightarrow	BW
W	\rightarrow	CW
W	\rightarrow	λ
s	\rightarrow	λ
U	\rightarrow	λ
V	\rightarrow	λ

- B. For the following, first construct an NFA or DFA and then convert it to a regular grammar.
- 19. Binary strings with an odd number of 0 s and an even number of 1 s.

LHS		RHS
S	\longrightarrow	0A
S	\longrightarrow	1C
С	\longrightarrow	1S
С	\longrightarrow	0B
В	\longrightarrow	0C
A	\rightarrow	0S
A	\rightarrow	1B
В	\rightarrow	1A
A	\rightarrow	λ

20. Strings over the binary alphabet that do not contain the substring 010.

Solution: Please see also the VIDEO SOLUTION for this exercise, especially to understand what happens in the grammar to the reject state.

LHS		RHS
S	\rightarrow	0A
S	\rightarrow	1S
S	\rightarrow	λ
A	\rightarrow	λ
A	\rightarrow	1B
В	\rightarrow	1S
В	\rightarrow	λ
С	\rightarrow	0C
A	\rightarrow	0A
С	\rightarrow	1C
В	\rightarrow	0C

21. Binary strings in which every pair of adjacent 0 s appears before any pair of adjacent 1 s.

Solution:

LHS		RHS
S	\rightarrow	0S
S	\rightarrow	λ
S	\rightarrow	1A
A	\rightarrow	0S
В	\rightarrow	λ
A C	\rightarrow	λ
C	\rightarrow	1B
В	\rightarrow	0C
A	\rightarrow	1B
С	\rightarrow	λ
В	\rightarrow	1B

22. The set of all binary strings having a substring 100 before a substring 111 (both must be present). Show the derivation for the string w = 00100110111.

LHS		RHS
S	\rightarrow	1S
S	\rightarrow	0S
S	\rightarrow	1A
В	\rightarrow	0C
F	\rightarrow	λ
F	\rightarrow	0F
С	\rightarrow	0C
F	\rightarrow	1F
С	\rightarrow	1C
C C	\rightarrow	1D
Е	\rightarrow	1F
D	\rightarrow	1E
A	\rightarrow	0B

23. A *run* in a string is a substring made up of a single symbol. For example, aabbbcd has a run of a s of length 2 and a run of b s of length 3. The grammar must derive all strings over the alphabet $\{a, b, c, d\}$ with at least one run of a s of length 2 or a run of b s of length 3.

LHS		RHS	LHS		RHS
S	\rightarrow	aA	Н	\rightarrow	bН
S	\rightarrow	сF	В	\rightarrow	bB
S	\rightarrow	dS	J	\rightarrow	bJ
S	\rightarrow	bS	E	\rightarrow	cЕ
S	\rightarrow	cS	Н	\rightarrow	cН
S	\rightarrow	aS	В	\rightarrow	cВ
J	\rightarrow	λ	J	\rightarrow	сJ
E	\rightarrow	λ	В	\rightarrow	сC
G	\rightarrow	cН	В	\rightarrow	aB
C	\rightarrow	cD	J	\rightarrow	aJ
F	\rightarrow	cG	Н	\rightarrow	аН
J	\rightarrow	dJ	E	\rightarrow	aЕ
В	\rightarrow	dB	I	\rightarrow	aJ
Н	\rightarrow	dH	Н	\rightarrow	aI
Е	\rightarrow	dE	A	\rightarrow	aB
E	\rightarrow	bE	D	\rightarrow	cЕ

24. Strings over $\{a, b\}$ such that the length of the string is a multiple of 3 but not a multiple of 4.

LHS		RHS	LHS		RHS
S	\rightarrow	aA	F	\rightarrow	aG
S	\rightarrow	bA	Н	\rightarrow	aI
F	\rightarrow	λ	Н	\rightarrow	bІ
C	\rightarrow	λ	С	\rightarrow	aD
I	\rightarrow	λ	J	\rightarrow	bK
D	\rightarrow	bE	J	\rightarrow	aK
D	\rightarrow	aE	C	\rightarrow	bD
G	\rightarrow	аН	K	\rightarrow	bS
A	\rightarrow	aB	K	\rightarrow	aS
E	\rightarrow	bF	В	\rightarrow	aC
E	\rightarrow	aF	В	\rightarrow	bС
A	\rightarrow	bВ	I	\rightarrow	bJ
G	\rightarrow	bH	I	\rightarrow	aJ
F	\rightarrow	bG			

25. Strings of the form ab^3wb^4 where the alphabet is $\{a,b\}$ and w is any string over the same alphabet.

LHS		RHS
S	\rightarrow	aA
H	\rightarrow	λ
В	\rightarrow	bC
D	\rightarrow	bD
C	\rightarrow	bD
D	\rightarrow	aD
A	\rightarrow	bB
F	\rightarrow	bG
D	\rightarrow	bE
G	\rightarrow	bН
E	\rightarrow	bF

C. Describe the language of the following grammar as concisely as possible.

26.
$$S \rightarrow aS \mid aaS \mid \lambda$$

Solution: The language is just a^* , that is, zero or more repetitions of a.

27.
$$S \rightarrow aA \mid \lambda, A \rightarrow bS$$

Solution: The language is $(ab)^*$, that is, zero or more repetitions of ab.

28.
$$S \rightarrow aA \mid \lambda, A \rightarrow aA \mid B, B \rightarrow bB \mid \lambda$$

Solution: The language is any number of a s followed by any number of b s with the additional constraint that there can't be b s without any a s.

29.
$$S \rightarrow 0S \mid 1S \mid A, A \rightarrow 0B, B \rightarrow 0C, C \rightarrow 0C \mid 1C \mid \lambda$$

Solution: Binary strings containing at least one pair of consecutive 0 s.

30.
$$S \to 01S \mid 10S \mid A, A \to 01A \mid 10A \mid \lambda$$

Solution: Binary strings of even length with no run of length more than two.

- D. Convert the given grammar to an equivalent NFA.
- 31. The grammar in Exercise 26.

Solution:

32. The grammar in Exercise 28.

33. The grammar in Exercise 29.

Solution:

34. The grammar in Exercise 30.

Solution:

E. The following grammar is not regular. Convert it to an equivalent regular grammar. What is the language of the grammar?

35.
$$S \rightarrow 0S \mid 1A, A \rightarrow A1 \mid \lambda$$

Solution:
$$S \rightarrow 0S \mid 1A, A \rightarrow 1A \mid \lambda$$

The language is any number of 0 s followed by one or more 1 s, that is, $0^n 1^m$, $n \ge 0$, m > 0.

36.
$$S \rightarrow abS \mid baS \mid Sab \mid Sba \mid \lambda$$

Solution:
$$S \rightarrow abS \mid baS \mid \lambda$$

The language is strings of even length with no run of length greater than two.

F. The following regular grammars are incorrect. Debug and correct them.

37. Binary numbers divisible by 4: $S \rightarrow 0S \mid 1S \mid 00S \mid \lambda$

Solution:
$$S \rightarrow 0 \mid 1A, A \rightarrow 0A \mid 1A \mid 00$$

38. Strings with any numbers of 0, 1, and 2 in that order: $S \rightarrow 0S \mid 0A, A \rightarrow 1A \mid 2B, B \rightarrow 2B \mid \lambda$

Solution:
$$S \rightarrow 0S \mid A \mid \lambda, A \rightarrow 1A \mid B \mid \lambda, B \rightarrow 2B \mid \lambda$$

39. Strings with at least two consecutive \boldsymbol{a} s before an occurrence of two consecutive \boldsymbol{b} s:

$$S \rightarrow bS \mid aaA, A \rightarrow aA \mid bA \mid bb \mid \lambda$$

Solution: The grammar is as shown in the figure:

LHS		RHS
S	\rightarrow	aS
S	\rightarrow	aВ
S	\rightarrow	bA
E	\rightarrow	λ
D	\rightarrow	bE
В	\rightarrow	aC
С	\rightarrow	bC
E	\rightarrow	bE
С	\rightarrow	aC
E	\rightarrow	аE
A	\rightarrow	aS
С	\rightarrow	bD

40. Binary strings of even length: S \rightarrow 0S \mid 1S \mid 0A \mid 1A, A \rightarrow 0S \mid 1S \mid λ

Solution: $S \rightarrow 0A \mid 1A \mid \lambda, A \rightarrow 0S \mid 1S$