| 基礎数学 | (毎日) | 第4回小テスト |
|------|------|---------|
|      |      |         |

| <br>l . |
|---------|
|         |
| 1 8     |
| _ =     |

- (3) 最終的に導き出した答えを右側の四角の中に記入せよ

 $(1) 15^{\circ}$ 

$$\frac{15}{180}\pi = \frac{1}{12}\pi$$

(2) 330°

$$\frac{330}{180}\pi = \frac{11}{6}\pi$$

 $(3) \frac{\pi}{6} \ni \forall r \vee$ 

$$\frac{180}{\pi} \times \frac{\pi}{6} = 30$$

30°

 $(4) \frac{5\pi}{4} ラジアン$ 180 x 5th = 45 x 5 = 225

2 次の値を求めよ. (各5点)







7K





(4)  $\tan \pi$ 

**③**  $\cos \theta = \frac{1}{3}$  を満たす  $\theta$  (ただし, $\frac{3\pi}{2} < \theta < 2\pi$ )に対し, $\sin \theta$  および  $\tan \theta$  の値を求めなさい(各 7点)

$$\sin^2 \theta + \left(\frac{1}{3}\right)^2 = 1$$
 $\therefore \sin^2 \theta = 1 - \frac{1}{9} = \frac{8}{9}$ 
 $\sin^2 \theta + \left(\frac{1}{3}\right)^2 = 1$ 
 $\sin^2 \theta + \left(\frac{1}{3}\right)^2 = 1$ 
 $\sin^2 \theta + \left(\frac{1}{3}\right)^2 = 1$ 
 $\sin^2 \theta + \left(\frac{1}{3}\right)^2 = 1$ 

$$\sin \theta = \frac{2\sqrt{2}}{3}$$

$$\tan \theta = \frac{2\sqrt{2}}{3}$$

3 T < a < 2 T z) li a < o to 5

sm 0 = - 2/2

$$\tan 0 = \frac{-2\sqrt{2}}{\sqrt{3}} = -2\sqrt{2}$$







(x2-x-2= (>1-2)(x+1)) りてのとする3つ17



-15852

x<1, 3< oc

$$(3) 2x^2 + x - 1 \ge 0$$

(29-1)(7+1)20







(4) - \(\begin{align\*} 2 \leq \gamma \left(+\gamma) \\
-\left(2 \left(-\gamma) \left(-\gamma) \left(-\gamma) \\
-\left(-\gamma) \left(-\gamma) \\
-\left(-\gamma) \left(-\gamma) \\
-\left(-\gamma) \\
-\gamma \\
-\gamma

- | 5 | 関数  $f(x) = x^2 2kx + k + 2$  (ただし, k は定数) について以下の問に答えなさい。
  - (1) f(x) を x に関して平方完成し、y = f(x) のグラフの頂点の座標を k を用いて表しなさい。 (7 点)

$$f(x) = (x-k)^2 - k^2 + k + 2$$

(2) y = f(x) のグラフが下に凸か上に凸か考え、f(x) の最小値を k を用いて表しなさい。(7点)

下に日だら頂点の 为这掉水最小桶

(3) 任意の実数 x に対して f(x) の値が正になるための k の条件 (k の範囲) を求めなさい。(8 点)

ナ(の)の最小個がよですれる

fix 10 常に上でまる

$$-k^{2}+k+2>0$$
 $k^{2}-k-2<0$ 
 $(k-2)(k+1)<0$ 

$$^{(3)}$$
  $-1 < k < 2$