

DIGITAL TALENT SCHOLARSHIP 2019

Program Fresh Graduate Academy Digital Talent Scholarship 2019 | Machine Learning

Support Vector Machine

Nama pembicara dengan gelar

Bagian Satu

Memahami Tujuan Support Vector Machine

Apa itu SVM

- Support Vector Machine
- Salah satu algoritma Machine Learning.
- Termasuk dalam kategori Supervised Learning.
- Termasuk dalam algoritma klasifikasi.
- Ini berarti, SVM membutuhkan data traning.

Tujuan Utama SVM

Menemukan sebuah **hyperplane** pemisah yang optimal, yang **memaksimalkan margin** training data

Apa itu Hyperplane?

- Terdapat beberapa buah data, tersebar dalam ruang 2D.
- Data tinggi dan berat badan untuk dua gender (Pria dan Wanita)
- Data tersebut terkelompok menjadi dua bagian dan sebuah garis dapat memisahkan keduanya.

Apa itu Hyperplane?

Mungkin terbesit beberapa pertanyaan dari pengamatan tersebut.

- Apa bedanya dengan Regression?
- 2. Kalau hanya garis, mengapa dinamakan hyper-plane?

Bisakah kalian menjawab pertanyaan tersebut?

Apa itu Hyperplane?

Meksipun di contoh sederhana pada slide sebelumnya, poin-poin berada pada ruang 2D, SVM dapat bekerja di multidimensi.

Hyperplane di \mathbb{R}^1 merupakan sebuah titik

Hyperplane di \mathbb{R}^2 merupakan sebuah garis

Hyperplane di \mathbb{R}^3 merupakan sebuah bidang planar

Sulit untuk diilustrasikan

Hyperplane di \mathbb{R}^4 merupakan sebuah bangun ruang

Mencari Hyperplane Terbaik

Hyperplane Mana yang Terbaik?

Bagian Dua

Menemukan Hyperplane Terbaik

Persamaan Hyperplane

Optimize Hyperplane dengan Margin

Training SVM

Goal:

 Menemukan persamaan garis (elemen-elemen w dan b).

Dengan cara:

Memaksimalkan jarak antar margin,
m

Yang juga berarti:

Meminimalkan ||w||

Dengan syarat:

- Seluruh data berlabel 1 harus memenuhi $\mathbf{w}^T \mathbf{x} + b \ge 1$
- Seluruh data berlabel 0 harus memenuhi $\mathbf{w}^T \mathbf{x} + b \leq -1$

Contoh Margin dua Hyperplane yang tidak baik

Contoh Margin dua Hyperplane yang tidak baik

Contoh Margin dua Hyperplane yang tidak baik

Contoh Margin dua Hyperplane yang baik

Bagian Tiga

SVM untuk Data Non-Linear

Data Linear vs. Non-Linear

Linearly Separable

Non-Linearly Separable

Apakah SVM mampu menangani hal ini?

Kalau SVM Linear (biasa) tidak Kita ubah supaya bisa!

Menciptakan Fitur Baru

- Ada berapa fitur yang kita punya?
 - 2 Buah (*x* dan *y*)
- Kita ciptakan fitur baru dari fitur-fitur yang lama.

Transformasi Data

Terminologi Kernel dalam SVM

 $f: \mathbb{R}^m \to \mathbb{R}^n$ untuk m < n

$$(x_1, x_2)$$

 $(x_1, x_2, x_3, \cdots, x_n)$

Not Linearly Separable

Linearly Separable

Contoh Kernel Trick Lainnya

IKUTI KAMI

- digitalent.kominfo
- digitalent.kominfo
- DTS_kominfo
- Digital Talent Scholarship 2019

Pusat Pengembangan Profesi dan Sertifikasi Badan Penelitian dan Pengembangan SDM Kementerian Komunikasi dan Informatika Jl. Medan Merdeka Barat No. 9 (Gd. Belakang Lt. 4 - 5) Jakarta Pusat, 10110

