FLCD Seminar 1: Programming Languages' Specification

Notations (meta-languages)

I.BNF (Backus-Naur Form)

Constructs:

- 1. Meta-linguistic variables (non-terminals) written between <>
- 2. Language primitives (terminals) written as they are, no special delimiters
- 3. Meta-linguistic connectors

```
a.::= equals by definitionb. | alternative (OR)
```

General shape of a BNF definition:

<construct> ::= expr_1 | expr_2 | ... | expr_n, where expr_i is a combinaton of terminals
and/or nonterminals, i=1,n

Ex.1: Specify, using BNF, all nonempty sequences of letters

Ex.2: Specify, using BNF, both signed and unsigned integers, with the following constraints:

- 0 does not have a sign
- numbers of at least two digits cannot start with 0

II.EBNF (Extended BNF)

Wirth's dialect

- 1. Changes to the concrete syntax of standard BNF
 - Nonterminals lose <> => they are written without delimiters
 - Terminals are written between " "
 - ::= becomes =
- 2. New constructs
 - {} repetition 0 or more times
 - [] optionality (0 or 1)
 - () math grouping
 - (* *) comments
 - rules end with.

Ex.3: Ex. 2 reloaded, in EBNF

FLCD Seminar 2 – Scanning

Monday, October 05, 2020 1:32 PM

Input: source code + lexical tokens

Output: PIF, ST, lex. err

Input source:

Program test; Var a : integer; Begin

a:= b + 1;

End.

Outputs:

PIF

Token ST_pos

Program -1 Id 0 ; -1 Var -1

Id 1 : -1 Integer -1

; -1 Begin -1

Id 1 := -1

Id 2 + -1

Const 3; -1 End -1

. -1

ST (only id & const)

ST_pos symbol

0 test
1 a
2 b
3 1

GRAMMARS

1. Given the grammar $G = (N, \Sigma, P, S)$

$$N = \{S, C\}$$

$$\Sigma = \{a, b\}$$

$$P : S \to ab \mid aCSb$$

$$C \to S \mid bSb$$

$$CS \to b$$

prove that $w = ab(ab^2)^2 \in L(G)$.

Obs.: $(ab)^2 = abab \neq a^2b^2 = aabb$

Sol.: **300000**

 $S \Rightarrow aCSb \Rightarrow abSbSb \Rightarrow ababbabb$ (2) (4) (1)

4

 $=> S => ababbabb = w => w \in L(G)$

O Civer the grammar C (N. S. D. C)

2. Given the grammar $G = (N, \Sigma, P, S)$

$$N = \{S\}$$

$$\Sigma = \{a, b, c\}$$

$$P: S \rightarrow a^2S \mid bc$$
,

find L(G).

Sol.:

Let
$$L = \{a^{2n}bc \mid n \in \mathbb{N}\}$$

?
$$L = L(G)$$

(1) ? $L \subseteq L(G)$ (all sequences of that shape are generated by G)

?
$$\forall n \in \mathbb{N}, a^{2n}bc \in L(G)$$

Take P(n): $a^{2n}bc \in L(G)$ and prove P(n) true, $\forall n \in \mathbb{N}$ We'll prove by mathematical induction

- (a) Verification step: ? P(0): $a^0bc \in L(G)$ is true $S \Rightarrow bc = a^0bc \Rightarrow P(0)$ true (2)
- (b) Proof step: We suppose P(k) is true and then prove that P(k+1) is also true, where $k \in \mathbb{N}$

P(k) true =>
$$a^{2k}bc \in L(G)$$
 => S => $a^{2k}bc$ (induction hypothesis)

S =>
$$a^2S$$
 => $a^2a^{2k}bc = a^{2(k+1)}bc$ (1) (ind. hypo.)

=>
$$S => a^{2(k+1)}bc$$
 => $P(k+1)$ is true

$$(a) + (b) => (1)$$

(2) ? $L \supseteq L(G)$ (G generates only sequences of that shape)

$$S \Rightarrow bc = a^{0}bc$$

$$\Rightarrow a^{2}S \Rightarrow a^{2}bc$$

$$\Rightarrow a^{4}S \Rightarrow a^{4}bc$$

$$\Rightarrow a^{6}S \Rightarrow ...$$

We notice that starting from S and using all grammar productions in all possible combinations, we only get, as sequences of terminals,

sequences of the shape $a^{2n}bc$ where $n \in \mathbb{N}$. It follows that the grammar doesn't generate anything else.

Obs.: This inclusion may also be discharged by induction.

3. Find a grammar that generates $L = \{0^n 1^n 2^m \mid n, m \in \mathbb{N}^*\}$

(1) ?
$$L \subseteq L(G)$$

? $\forall n, m \in N^*, 0^n 1^n 2^m \in L(G)$

Let
$$n, m \in N^*$$

$$n \qquad m \qquad *$$
 $S \Rightarrow VC \Rightarrow 0^n 1^n C \Rightarrow 0^n 1^n 2^m \implies S \Rightarrow 0^n 1^n 2^m \implies 0^n 1^n 2^m \in L(G)$
(1) (a) (b)

$$(a) \lor => 0^{n} 1^{n}, \forall n \in N^{*}$$

$$m$$

$$(b) C => 2^{m}, \forall m \in N^{*}$$

HW: Prove (a) and (b) above by induction Justify the reverse inclusion

FINITE AUTOMATA (FA)

1. Given the FA: $M=(Q,\Sigma,\delta,q_0,F)$, $Q=\{q_0,\ q_1,\ q_2,\ q_3,\ q_f\}$, $\Sigma=\{1,\ 2,\ 3\}$, $F=\{q_f\}$,

δ	1	2	3
q_0	$\{q_0, q_1\}$	$\{q_0, q_2\}$	$\{q_0, q_3\}$
q_1	$\{q_1, q_f\}$	$\{q_1\}$	$\{q_1\}$
q_2	{q ₂ }	$\{q_2, q_f\}$	{q ₂ }
q_3	$\{q_3\}$	$\{q_3\}$	$\{q_3, q_f\}$
q_f	0	0	0

Prove that $w = 12321 \in L(M)$

2. Find the language accepted by the FA below.

Sol.: B: **6000000000**

$$L = \{a^n b^m | n \in N, m \in N^*\}$$

?
$$L = L(M)$$

1. $?L \subseteq L(M)$ (all sequences of that shape are accepted by M)

$$\forall n \in \mathbb{N}, \ \forall m \in \mathbb{N}^* \ a^n b^m \in L(M)$$

Let
$$n \in \mathbb{N}$$
, $m \in \mathbb{N}^*$

n m-1
$$(p, a^n b^m) |- (p, b^m)| - (q, b^{m-1})| - (q, \epsilon) \Rightarrow a^n b^m \in L(M)$$
 a b

a).
$$(p, a^n) \mid -(p, \epsilon)$$
, $\forall n \in N \text{ oki}$

b).
$$(q, b^k) \mid -(q, \epsilon), \forall k \in N$$

a).
$$P(n)$$
: $(p, a^n) | -(p, \epsilon)$

$$P(0): (p, \varepsilon) | -(p, \varepsilon)$$
, P(0) - true

$$?P(k) - true = > P(k+1) - true$$

k

$$P(k)$$
 - true => $(p, a^k) | -(p, \epsilon)$ (induction hypothesis) k k+1

$$(p, a^{k+1}) | - (p, a^k) | - (p, \epsilon) => (p, a^{k+1}) | - (p, \epsilon) => P(k+1)$$
 -true Ind. hyp.

Similarly, we demonstrate b.

2. ? $L(M) \subseteq L$ (M does not accept anything else but sequences of that shape)

In order to reach the final state q from the initial state p, we should read at least one b. Before the mandatory b, we can read any natural number of a's, while remaining in state p, and after the mandatory b we can read any natural number of b's, while remaining in state q. Therefore, M accepts only sequences of the shape a^nbb^k , $n,k \in N$

Obs. In order for such a reasoning to count as proof, you should make sure that you have covered all paths from initial state to final states.

- 3. Build FAs that accept the following languages
 - a. Integer numbers
 - b. Variable declarations (Pascal, C, ...)
 - c. $L = \{0^n 1^m 0^q \mid n, m \in N^*, q \in N\}$
 - d. $L = \{0(01)^n \mid n \in N\}$
 - e. $L = \{c^{3n} \mid n \in N^*\}$
 - f. The language over $\Sigma = \{0, 1\}$ having the property that all sequences have at least two consecutive 0's.

b. IW->

c. IW ->B:

d. IW ->B:

e. IW ->B: (+mark q as initial state)

f. IW->B: **COCCOCCOCC**

FA ⇔ RG ⇔ RE

I) FA ⇔ RG (team work)

T1. Given the regular grammar $G = (\{S, A\}, \{a, b\}, P, S)$

$$P: S \to aA$$

$$A \to aA \mid bA \mid a \mid b,$$

build the equivalent FA.

Sol.:

T2. Given the regular grammar $G = (\{S, A\}, \{a, b\}, P, S)$

$$P: S \to \varepsilon \mid aA$$

$$A \to aA \mid bA \mid a \mid b,$$

build the equivalent FA.

Sol.:

$$\begin{split} M &= (Q, \; \Sigma, \; \delta, \; q_0, \; F) \\ Q &= \{S, \; A, \; K\}, \; q_0 = S, \; F = \{K, \; S\}, \; \Sigma = \; \{a, \; b\} \end{split}$$

δ	а	b
S	$\{A\}$	0
A	$\{A, K\}$	$\{A, K\}$
K	0	∅

T3. Given the following FA
$$M = (Q, \Sigma, \delta, q_0, F)$$

$$Q = \{p, q, r\}, \ q_0 = p, \ F = \{r\}, \ \Sigma = \{0, 1\}$$

δ	0	1
p	q	p
q	r	p
r	r	r

build the equivalent right linear grammar.

Sol.:

T4. Given the following FA
$$M = (Q, \Sigma, \delta, q_0, F)$$

$$Q = \{p, q, r\}, \ q_0 = p, \ F = \{p, r\}, \ \Sigma = \{0, 1\}$$

δ	0	1
p	q	p
q	r	p
r	r	r

build the equivalent right linear grammar.

Sol.:

$$G = \{N_1 \Sigma, P_1 S\}$$

 $\Sigma = \{0, 1\}$
 $N = \{p_1 2, r\}$
 $S = p$
 $P: p \rightarrow 02|1p|1|2$
 $2 \rightarrow 0r|1p|0|1$
 $r \rightarrow 0r|1r|0|1$

II) RG ⇔ RE

1. Give the RG corresponding to the following RE $0(0+1)^*1$.

$$\begin{array}{lll} 0\colon & G_1=(\{S_1\},\ \{0,1\},\ \{S_1->0\},\ S_1) \\ 1\colon & G_2=(\{S_2\},\ \{0,1\},\ \{S_2->1\},\ S_2) \\ 0+1\colon & G_3=(\{S_1,\ S_2,\ S_3\},\ \{0,1\},\ \{S_1->0,\ S_2->1,\ S_3->0\ |\ 1\},\ S_3) \\ & G'_3=(\{S_3\},\ \{0,1\},\ \{S_3->0\ |\ 1\},\ S_3) \\ (0+1)^*\colon & G_4=(\{S_3\},\ \{0,1\},\ \{S_3->0\ |\ 1,\ S_3->0S_3\ |\ 1S_3,\ S_3->\epsilon\}) \\ & G'_4=(\{S_3\},\ \{0,1\},\ \{S_3->0S_3\ |\ 1S_3|\epsilon\},\ S_3)\ !\ \text{not\ regular} \\ 0(0+1)^*\colon & G_5=(\{S_1,S_3\},\ \{0,1\},\ \{S_1->0S_3\ ,S_3->0S_3\ |\ 1S_3|\epsilon\},\ S_1) \\ & !\ \text{not\ regular} \\ 0(0+1)^*\ 1\colon \\ G_6=(\{S_1,S_2,S_3\},\ \{0,1\},\ \{S_1->0S_3\ ,S_3->0S_3\ |\ 1S_3\ |\ S_2\ ,S_2->1\},\ S_1)\ !\ \text{not\ regular} \\ G'_6=(\{S_1,S_3\},\ \{0,1\},\ \{S_1->0S_3\ ,S_3->0S_3\ |\ 1S_3\ |\ 1\},\ S_1) \end{array}$$

(TW)

2. Give the RE corresponding to the following grammar

$$G = (\{S, A, B\}, \{a, b\}, P, S)$$

$$P : S \rightarrow aA$$

$$A \rightarrow aA \mid bB \mid b$$

$$B \rightarrow bB \mid b$$

Sol.: T4

$$S = aA$$

$$A = aA + bB + b$$

$$B = bB + b = A$$

$$A = aA + B$$

III) FA ⇔ RE

1. Give the FA corresponding to the following RE $01(1+0)^*1^*$.

#board, pdf attached to Seminar 7 meet in MSTeams

2. Give the regular expression corresponding to the FA below.

$$q_1 = \varepsilon + q_1 a + q_2 b$$

$$q_2 = q_1 b$$

$$q_3 = q_1 b + q_3 a$$

$$X = Xa + b \implies X = ba^*$$
 solution

$$q_3 = q_1 b a^*$$

$$q_1 = \varepsilon + q_1 a + q_1 bb = q_1 (a + bb) + \varepsilon \implies q_1 = (a + bb)^* \implies q_3 = (a + bb)^* ba^*$$

$$RE = q_1 + q_3 = (a + bb)^* + (a + bb)^* ba^* = (a + bb)^* (\varepsilon + ba^*)$$

CFG

- 1. Given the CFG grammars below, give a leftmost/rightmost derivation for w.
 - a. $G = (\{S, A, B\}, \{0, 1\}, \{S \to 0B \mid 1A, A \to 0 \mid 0S \mid 1AA, B \to 1 \mid 1S \mid 0BB\}),$ w = 0001101110

Leftmost: 1886686723

 $S \Rightarrow 0B \Rightarrow 000BB \Rightarrow 000BBB \Rightarrow 0001BB \Rightarrow 000110BB \Rightarrow 0001101B$ $\Rightarrow 00011011S \Rightarrow 000110111A \Rightarrow 0001101110$

Rightmost: 1887236866

 $S \Rightarrow 0B \Rightarrow 00BB \Rightarrow 00B0BB \Rightarrow 00B0B1S \Rightarrow 00B0B11A \Rightarrow 00B0B110 \Rightarrow 00B01110 \Rightarrow 00B01110 \Rightarrow 000B01110 \Rightarrow 000B01110 \Rightarrow 000B01110 \Rightarrow 000B01110$

b.
$$G = (\{E, T, F\}, \{a, +, *, (,)\}, \{E \to E + T \mid T, T \to T * F \mid F, F \to (E) \mid a\})$$

 $w = a * (a + a) \rightarrow HW$

2. Prove that the following grammars are ambiguous

a.
$$G_1 = (\{S, B, C\}, \{a, b, c\}, \{S \to abC \mid aB, B \to bC, C \to c\}, S) \rightarrow HW$$

b.
$$G_2 = (\{E\}, \{a,+,*,(,)\}, \{E \to E + E \mid E * E \mid (E) \mid a\})$$

Sol.:

w= a*a+a

C. $G_3 = (\{S\}, \{if, then, else, a, b\}, \{S \rightarrow if b then S \mid if b then S else S \mid a\}, S)$ -> HW

Recursive descendent parser

1. Given the CFG $G = (\{S\}, \{a, b, c\}, \{S \rightarrow aSbS \mid aS \mid c\})$, parse the sequence w = aacbc using rec. desc. parser.

Sol. : //B:

```
(S_1) S \rightarrow aSbS
```

$$(S_2) S \rightarrow aS$$

$$(S_3) S \rightarrow c$$

```
 (q, 1, \epsilon, S) \mid -\exp(q, 1, S_1, aSbS) \mid -adv \ (q, 2, S_1a, SbS) \mid -\exp(q, 2, S_1aS_1, aSbSbS) \mid -adv \ (q, 3, S_1aS_1a, SbSbS) \mid -adv \ (q, 3, S_1aS_1a, SbSbS) \mid -at(q, 3, S_1aS_1aS_2, aSbSbS) \mid -at(b, 3, S_1aS_1aS_2, aSbSbS) \mid -at(q, 3, S_1aS_1aS_2, aSbSbS) \mid -adv(q, 4, S_1aS_1aS_3c, bSbS) \mid -adv(q, 5, S_1aS_1aS_3cb, SbS) \mid -adv(q, 4, S_1aS_1aS_3cbS_1, aSbSbS) \mid -at(q, 5, S_1aS_1aS_3cbS_1, aSbSbS) \mid -at(q, 5, S_1aS_1aS_3cbS_2, aSbS) \mid -at(q, 5, S_1aS_1aS_3cbS_3, cbS) \mid -at(q, 5, S_1aS_1aS_3cbS_3, cbS) \mid -adv(q, 6, S_1aS_1aS_3cbS_3, cbS) \mid -at(q, 5, S_1aS_1aS_3cbS_3c, bS) \mid -adv(q, 6, S_1aS_1aS_3cbS_3c, bS) \mid -at(b, 5, S_1aS_1aS_3cbS_3c, bS) \mid -at(b, 3, S_1aS_1aS_3cbS_3c, bS) \mid -at(b, 3, S_1aS_1aS_3cbS_3c, bS) \mid -at(a, 2, S_1aS_1aS_3cbS_3c, bS) \mid -adv(q, 3, S_1aS_2aS_3cbS_3c, bS) \mid -adv(q, 3, S_1aS_2aS_3cbS_3c, bS) \mid -adv(q, 3, S_1aS_2aS_3cbS_3c, bS) \mid -adv(q, 4, S_1aS_2aS_3cbS_3c, bS) \mid -adv(q, 5, S_1aS_2aS_3cbS_3c, bS)
```

=> w is syntactically correct

Parse tree: $S_1 S_2 S_3 S_3$

LL(1) parser

Ex.: Given the CFG $G = (\{S, A, B, C, D\}, \{+, *, a, (,)\}, P, S)$,

 $P: (1) S \rightarrow BA$

- $(2) A \rightarrow +BA$
- $(3) A \rightarrow \varepsilon$
- $(4) B \rightarrow DC$
- $(5) C \rightarrow *DC$
- (6) $C \rightarrow \varepsilon$
- $(7) D \rightarrow (S)$
- $(8) D \rightarrow a$,

Parse the sequence w = a * (a + a) using the LL(1) parser.

1) Compute FIRST //B

	F_0	F_1	F2	F3
S	0	∅	(, a	(, a
A	+, ε	+, ε	+, ε	+, ε
В	0	(, a	(, a	(, a
C	*, ε	*, ε	*, ε	*, E
D	(, a	(, a	(, a	(, a

 $FIRST(S) = \{(, a)\}$

 $FIRST(A) = \{+, \epsilon\}$

 $FIRST(B) = \{(, a)\}$

FIRST(C) ={*, ε }

FIRST(D) ={ (, a }

2) Compute FOLLOW //B:

	L_0	L_1	L2	L3	L4
S	3	ε,)	ε,)	ε,)	ε,)
A	0	3	ε,)	ε,)	ε,)
В	0	+, ε	+, ε,)	+, ε,)	+, ε,)
C	0	0	+, ε	+, ε,)	+, ε,)
D	0	*	*,+, ε	*,+, ε,)	*,+, ε,)

FOLLOW(
$$S$$
) = { ε ,)}
FOLLOW(A) = { ε ,)}
FOLLOW(B) = {+, ε ,)}
FOLLOW(C) = {+, ε ,)}
FOLLOW(D) = {*,+, ε ,)}

3) Fill LL(1) parsing table //B:

	a	+	*	()	\$
S	BA, 1			BA, 1		
A		+BA,2			ε,3	ε,3
В	DC,4			DC,4		
C		ε,6	*DC,5		ε,6	ε,6
D	a,8			(S),7		
а	рор					
+		рор				

*		рор			
(рор		
)				рор	
\$					acc

4) Parse the sequence //B:

```
 (a*(a+a)\$, S\$, \epsilon) | - \\ (a*(a+a)\$, BA\$, 1) | - (a*(a+a)\$, DCA\$, 14) | - \\ (a*(a+a)\$, aCA\$, 148) | - (*(a+a)\$, CA\$, 148) | - (*(a+a)\$, *DCA\$, 1485) | - \\ ((a+a)\$, DCA\$, 1485) | - ((a+a)\$, (S)CA\$, 14857) | - (a+a)\$, S)CA\$, 14857) | - \\ (a+a)\$, BA)CA\$, 148571) | - (a+a)\$, DCA)CA\$, 1485714) | - \\ (a+a)\$, aCA)CA\$, 14857148) | - (+a)\$, CA)CA\$, 14857148) | - \\ (+a)\$, A)CA\$, 148571486) | - (+a)\$, +BA)CA\$, 1485714862) | - \\ (a)\$, BA)CA\$, 1485714862) | - (a)\$, DCA)CA\$, 14857148624) | - \\ (a)\$, aCA)CA\$, 148571486248) | - ()\$, CA)CA\$, 148571486248) | - \\ ()\$, A)CA\$, 1485714862486) | - ()\$, CA)CA\$, 14857148624863) | - \\ (\$, CA\$, 14857148624863) | - (\$, A\$, 148571486248636) | - \\ (\$, \$, 1485714862486363)
```

LL(1) conflict

$$A \rightarrow \alpha \beta$$

$$A \rightarrow \alpha \gamma$$

transformed to

$$A \rightarrow \alpha B$$

$$B \rightarrow \beta | \gamma$$

LR(0) parser

Ex.
$$G = (\{S', S, A\}, \{a, b, c\}, P, S')$$

P:
$$S' \rightarrow S$$

(1)
$$S \rightarrow aA$$

(2)
$$A \rightarrow bA$$

$$\textbf{(3)} \ A \rightarrow c$$

$$w = abbc$$

1. Compute the canonical collection of states //B:

$$\begin{array}{lll} s_0 = closure(\{[S' -> .S]\}) &= \{[S' -> .S], [S \rightarrow .aA]\} \\ s_1 = goto(s_0, S) = closure(\{[S' -> S.]\}) &= \{[S' -> S.]\} \\ goto(s_0, A) &= \{\}... \\ s_2 = goto(s_0, a) = closure(\{[S \rightarrow a.A]\}) &= \{[S \rightarrow a.A], [A \rightarrow .bA], [A \rightarrow .c]\} \\ s_3 = goto(s_2, A) = closure(\{[S \rightarrow aA.]\}) &= \{[S \rightarrow aA.]\} \\ s_4 = goto(s_2, b) = closure(\{[A \rightarrow b.A]\}) &= \{[A \rightarrow b.A], [A \rightarrow .bA], [A \rightarrow .c]\} \\ s_5 = goto(s_2, c) = closure(\{[A \rightarrow c.]\}) &= \{[A \rightarrow c.]\} \\ s_6 = goto(s_4, A) = closure(\{[A \rightarrow bA.]\}) &= \{[A \rightarrow bA.]\} \\ \end{array}$$

2. Fill in LR(0) parsing table //B:

 $goto(s_4, b) = closure(\{[A \rightarrow b. A]\}) = s_4$

 $goto(s_A, c) = closure(\{[A \rightarrow c.]\}) = s_5$

	ACTION		GOTO				
		а	b	С	s	A	
0	shift	2			1		
1	accept						

2	shift	4	5	3
3	r1			
4	shift	4	5	6
5	r3			
6	r2			

3. Parse the input sequence // B:

work stack	input stack	output band
\$0	abbc\$	ε
\$0a2	bbc\$	ε
\$0a2b4	bc\$	ε
\$0a2b4b4	c \$	ε
\$0a2b4b4 <mark>c5</mark>	\$	ε
\$0a2b4 <mark>b4A6</mark>	\$	3
\$0a2 <mark>b4A6</mark>	\$	23
\$0 <mark>a2A3</mark>	\$	223
\$0S1	\$	1223
accept	\$	1223

SLR parser

Ex.
$$G = (\{S', E, T\}, \{+, id, const, (,)\}, P, S')$$

P: $S' \to E$
 $(1)E \to T$
 $(2)E \to E + T$
 $(3)T \to (E)$
 $(4)T \to id$
 $(5)T \to const$

w = id + const

1. Compute the canonical collection

```
S0 = closure(\{[S' -> .E]\}) = \{[S' -> .E], [E->.T], [E-> .E + T], [T -> .(E)], [T -> .id], [T -> ...]\}
.const]}
S1 = goto(s0, E) = closure(\{[S' -> E.], [E -> E. + T]\}) = \{[S' -> E.], [E -> E. + T]\}
S2 = goto(s0, T) = closure(\{[E -> T.]\}) = \{[E -> T.]\}
S3 = goto(s0, () = closure({[T -> (.E)]}) = {[T -> (.E)], [E -> .T], [E -> .E + T], [T -> .(E)],
[T->.id], [T->.const]}
S4 = goto(s0, id) = closure(\{[T -> id.]\}) = \{[T -> id.]\}
S5 = goto(s0, const) = closure(\{[T -> const.]\}) = \{[T -> const.]\}
S6 = goto(s1, +) = closure(\{[E \rightarrow E+.T]\}) = \{[E \rightarrow E+.T], [T \rightarrow .(E)], [T \rightarrow .id], [T \rightarrow .const]\}
S7 = goto(s3, E) = closure(\{[T -> (E.)], [E -> E.+T]\}) = \{[T -> (E.)], [E -> E.+T]\}
      goto(s3, T) = closure(\{[E-> T.]\}) = S2
      goto(s3, id) = closure(\{[T -> id.]\}) = S4
      goto(s3, const) = closure(\{[T -> const.]\}) = S5
      goto(s3, () = closure(\{[T -> (.E)]\}) = S3
S8 = goto(s6, T) = closure(\{[E \rightarrow E+T.]\})
      goto(s6, () = closure(\{[T->(.E)]\}) = s3
      goto(s6, id) = closure(\{[T -> id.]\}) = s4
     goto(s6, const) = closure(\{[T -> const.]\}) = s5
S9 = goto(s7, )) = closure(\{[T -> (E).]\}) = \{[T -> (E).]\}
      goto(s7, +) = closure(\{[E -> E+.T]\}) = s6
```

FOLLOW(E) =
$$\{\varepsilon, +, \}$$

FOLLOW(T) = $\{\varepsilon, +, \}$

2. Fill the SLR table

	ACTION							то
	+	()	id	const	\$	E	Т
0		Shift 3		Shift 4	Shift 5		1	2
1	Shift 6					acc		
2	Reduce1		Reduce1			Reduce1		
3		Shift 3		Shift 4	Shift 5		7	2
4	Reduce4		Reduce4			Reduce4		
5	Reduce 5		Reduce 5			Reduce 5		
6		Shift3		Shift4	Shift5			8
7	Shift6		Shift9					
8	Reduce 2		Reduce 2			Reduce 2		
9	Reduce 3		Reduce 3			Reduce 3		

Work stack	Input stack	Output band
\$0 \$0id4 \$0T2 \$0E1 \$0E1+6 \$0E1+6const5 \$0E1+6T8 \$0E1 accept	id+const\$ +const\$ +const\$ +const\$ const\$ \$	ε ε 4 14 14 14 514 2514

2 5 1 4

LR(1) parser

Ex.
$$G = (\{S', S, A\}, \{a, b\}, P, S')$$

P: $S' \to S$
 $(1)S \to AA$
 $(2)A \to aA$
 $(3)A \to b$
W =
LR(1) item $[A \to \alpha.\beta, a]$
FIRST(S) = $\{a,b\}$
FIRST(A) = $\{a,b\}$

1. Canonical collection

// **COCO**

```
S0 = closure(\{[S'-> .S, \$]\}) = \{[S'-> .S, \$], [S->.AA, \$], [A->.aA, a], [A->.aA, b], [A->.b, a],
[A->.b, b] }
S1 = goto(S0, S) = closure(\{[S' -> S., \$]\}) = \{[S' -> S., \$]\}
S2 = goto(S0, A) = closure(\{[S->A.A, \$]\}) = \{[S->A.A, \$], [A->.aA, \$], [A->.b, \$]\}
S3 = goto(S0, a) = closure(\{[A-> a.A, a], [A->a.A, b]\}) = \{[A-> a.A, a], [A-> a.A, b], [A-> a.A, b]\}
.aA, a], [A -> .b, a], [A -> .aA, b], [A -> .b, b]}
S4 = goto(S0, b) = closure(\{ [A-> b., a], [A-> b., b] \}) = \{ [A-> b., a], [A-> b., b] \}
S5 = goto(S2, A) = closure(\{[S->AA., \$]\}) = \{[S->AA., \$]\}
S6 = goto(S2, a) = closure(\{[A -> a.A, \$]\}) = \{[A -> a.A, \$], [A -> .aA, \$], [A -> .b, \$]\}
S7 = goto(S2, b) = closure(\{[A -> b., \$]\}) = \{ [A -> b., \$] \}
S8 = goto(S3, A) = closure(\{[A -> aA., a], [A -> aA., b]\}) = \{ [A -> aA., a], [A -> aA., b] \}
   goto(S3, a) = closure(\{ [A -> a.A, a], [A -> a.A, b] \}) = S3
   goto(S3, b) = closure(\{[A -> b., a], [A -> b., b]\}) = S4
S9 = goto(S6, A) = closure(\{ [A -> aA., \$] \}) = \{ [A -> aA., \$] \}
   goto(S6, a) = closure(\{[A -> a.A, \$]\}) = S6
   goto(S6, b) = closure(\{[A -> b., \$]\}) = S7
```

2. Fill the LR(1) table

	ACTION		GOTO		
	а	b	\$	s	A
0	Shift 3	shift4		1	2
1			accept		
2	shift6	shift7			5
3	shift3	shift4			8
4	reduce3	reduce3			
5			reduce1		
6	shift6	shift7			9
7			reduce3		
8	reduce2	reduce2			
9			reduce2		

3. Syntactical Analysis W = abab

Work stack	Input stack	Output band
\$0 \$0a3 \$0a3b4 \$0 <mark>a3A8</mark> \$0A2 \$0A2a6 \$0A2a6b7 \$0A2a6A9 \$0 <mark>A2A5</mark> \$0S1 AC	abab\$ bab\$ ab\$ ab\$ ab\$ sb\$ sb\$ \$\$	- - - 3 23 23 23 23 323 2323 x

LALR(1) parser

Ex.
$$G = (\{S', S, A\}, \{a, b\}, P, S')$$

P:
$$S' \rightarrow S$$

 $(1)S \rightarrow AA$
 $(2)A \rightarrow aA$
 $(3)A \rightarrow b$

W = aaab

1. Canonical collection

$$\begin{split} s_0 &= \{ [S' \to .S, \, \$], \, [S \to .AA, \, \$], [A \to .aA, a], [A \to .aA, b], \, , [A \to .b, \, a], \, [A \to .b, \, b] \} \\ s_1 &= \{ [S' \to S., \, \$] \} \\ s_2 &= \{ [S \to A.A, \, \$], \, [A \to .aA, \$], [A \to .b, \$] \} \\ s_3 &= \{ [A \to a.A, a/b/\$], \, [A \to .aA, a/b/\$], \, [A \to .b, a/b/\$] \} \\ s_4 &= \{ [A \to b., \, a/b/\$] \} \\ s_5 &= \{ [S \to AA., \, \$] \} \\ s_8 &= \{ [A \to aA., \, a/b/\$] \} \end{split}$$

2. LALR(1) table

	ACTION		GOTO		
	а	b	\$	S	A
s0	Shift s36	Shift s47		s1	s2
s1			accept		
s2	Shift s36	Shift s47			s5
s36	Shift s36	Shift s47			s89
s47	Reduce 3	Reduce 3	Reduce 3		
s5			Reduce 1		
s89	Reduce 2	Reduce 2	Reduce 2		

3. Parse the sequence

Work stack	Input stack	Output band
\$ s0	aaab\$	Eps
\$ s0 a s36	aab\$	Eps
\$ s0 a s36 a s36 \$ s0 a s36 a s36 a s36 \$ s0 a s36 a s36 b s47	a b \$ b \$ \$	Eps Eps Eps
\$ s0 a s36 a s36 A s89	\$	3
\$ s0 a s36 <mark>a s36 A s89</mark>	\$	23
\$ s0 <mark>a s36 A s89</mark>	\$	223
\$ s0 A s2	\$	2223