Cost functions in Bayesian decision theory

Sensor fusion & nonlinear filtering

Lars Hammarstrand

BAYESIAN DECISION THEORY - SUMMARY

- · Bayesian decision theory relies on
 - 1. Likelihood: $p(y|\theta)$
 - 2. Prior distribution: $p(\theta)$
 - 3. Loss function: $C(\theta, a)$
- Combining likelihood and prior gives posterior

$$p(\theta|y) \propto p(y|\theta)p(\theta).$$

Posterior and loss gives decisions

$$\hat{\theta} = \arg\min_{a} \int_{\Omega} C(\theta, a) p(\theta|y) d\theta.$$

THE QUADRATIC LOSS FUNCTION

Minimum mean squared error estimator, MMSE

- Parameter estimation, $\theta \in \Theta = \mathbb{R}^n$
- Most common loss function is the quadratic loss

$$C(\theta, a) = \|\theta - a\|_2^2 = (\theta - a)^T (\theta - a)$$

• Let:
$$\bar{\theta} = \mathbb{E}\left\{\theta\big|y\right\}$$
, $\mathbf{P} = \mathsf{Cov}\{\theta\big|y\} = \mathbb{E}\left\{\left(\theta - \bar{\theta}\right)\left(\theta - \bar{\theta}\right)^T\big|y\right\}$

• Let:
$$\bar{\theta} = \mathbb{E} \{\theta | y\}$$
, $\mathbf{P} = \text{Cov}\{\theta | y\} = \mathbb{E} \{(\theta - \bar{\theta})(\theta - \bar{\theta})^T | y\}$
• Optimal estimator: $\mathbf{E} \{(\theta, a) | y\} = \mathbf{E} \{(\theta - a)^T (\theta - a) | y\} = \mathbf{E} \{(\theta - \bar{\theta})^T (\bar{\theta} - a) | y\} = \mathbf{E} \{(\theta - \bar{\theta})^T (\bar{\theta} - a) | y\} + \mathbf{E} \{(\theta - \bar{\theta})^T (\bar{\theta} - a) + O + (\bar{\theta} - a)^T (\bar{\theta} - a) + O + (\bar{$

THE 0-1 LOSS FUNCTION

Maximum a-posteriori estimator, MAP

- Parameter estimation, $\theta \in \Theta = \mathbb{R}^n$.
- Another common choice is the 0 1 loss function

$$C(\theta, a) = -\delta(\theta - a),$$

$$\delta(\cdot)$$
 is the Dirac's delta function.

$$\Rightarrow \hat{\theta} = \arg\min_{a} -p(\theta|y)\Big|_{\theta=a}$$
$$= \arg\max_{\theta} p(\theta|y)$$

SELF-ASSESSMENT

Suppose $p(\theta|y) = \mathcal{N}(\theta; \bar{\theta}, \mathbf{P})$. The MMSE and MAP estimators are, respectively,

- $\bar{\theta} + \text{tr}\{\mathbf{P}\}$ and $\bar{\theta}$.
- $\bar{\theta}$ and $\mathcal{N}(\theta; \bar{\theta}, \mathbf{P})$.
- $\bar{\theta}$ and $\bar{\theta}$.
- $\bar{\theta} + \text{tr}\{\mathbf{P}\}$ and $\mathcal{N}(\theta; \bar{\theta}, \mathbf{P})$.

Only one statement is correct.