Different Techniques for Stein Variational Gradient Descent

Min Hyung (Daniel) Kang

Department of Computer Science

Dartmouth College

May 22nd, 2017

- Problem Setting
- Background Information
- Algorithms
- A Results
- 5 Future Direction

Bayes Theorem

$$p(x|\mathcal{D}) = \frac{p(\mathcal{D}|x)p(x)}{p(D)}$$

• $p(x|\mathcal{D})$: Posterior Distribution

• $p(\mathcal{D}|x)$: Likelihood

• p(x) : Prior

• $p(\mathcal{D})$: Normalization constant (Model Evidence)

Bayesian Inference

Bayesian Inference uses prior and likelihood to compute the posterior distribution according to Bayes' theorem.

Bayesian Inference

Bayesian Inference uses prior and likelihood to compute the posterior distribution according to Bayes' theorem.

Monte carlo Markov Chain

• Generate samples by constructing a Markov chain whose equilibrium is the desired distribution.

Variational Inference

• Frames the problem into an optimization problem of approximating the distribution using a simpler distribution.

Bayesian Inference

Bayesian Inference uses prior and likelihood to compute the posterior distribution according to Bayes' theorem.

Monte carlo Markov Chain

- Generate samples by constructing a Markov chain whose equilibrium is the desired distribution.
- Slow, problem with convergence, tough to scale up

Variational Inference

- Frames the problem into an optimization problem of approximating the distribution using a simpler distribution.
- Model-by-model derivation, careful choice of family of distributions

Stein Variational Gradient Descent

We deterministically transport particles to reduce KL divergence to fit the true posterior distribution.

Stein Variational Gradient Descent

We deterministically transport particles to reduce KL divergence to fit the true posterior distribution.

Tasks

- Can we make it faster?
- Can we make it better?

Reproducing Kernel Hilbert Space (RKHS)

Definition (Reproducing Kernel Hilbert Space)

Given positive definite kernel $k(x, x') : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, **Reproducing Kernel Hilbert Space (RKHS)** is closure of linear span

$$\{f: f(x) = \sum_{i=1}^{m} a_i k(x, x_i), a_i \in \mathbb{R}, m \in \mathbb{N}, x_i \in \mathcal{X}\}$$

with inner product

$$\langle f, g \rangle = \sum_{ij} a_i b_j k(x_i, x_j)$$
 for $g(x) = \sum_i b_i k(x, x_i)$

Kernelized Stein Discrepancy (KSD)

Definition (Stein's Operator)

$$\mathcal{A}_{p}f(x) = s_{p}(x)f(x) + \nabla_{x}f(x) \tag{1}$$

Theorem (Stein's Identity)

For any smooth vector function f such that $\int_{x\in\mathcal{X}}\nabla_x\left(f(x)p(x)\right)dx=0$,

$$\mathbb{E}_p\left[\mathcal{A}_p f(x)\right] = \mathbb{E}_p\left[s_p(x) f(x) + \nabla_x f(x)\right] = 0 \tag{2}$$

Definition (Kernelized Stein Discrepancy)

$$\mathbb{S}(p,q) = \max_{\phi \in \mathcal{H}^d} \left(\left[\mathbb{E}_{x \sim q} \left[trace(\mathcal{A}_p \phi(x)) \right] \right]^2, \text{ s.t. } ||\phi||_{\mathcal{H}^d} \le 1 \right)$$
 (3)

Stein Variational Gradient Descent (SVGD)

Idea

The general idea is that we minimize KL divergence between distribution after incremental transformation and target distribution.

KL divergence and Stein Operator

$$\nabla_{\epsilon} KL(q_{[T]}||p)|_{\epsilon=0} = -\mathbb{E}_{x \sim q} \left[tr(\mathcal{A}_p \phi(x)) \right]; \quad T = x + \epsilon \phi(x) \quad \text{(4)}$$

Optimal perturbance and KSD

The optimal direction is then

$$\phi_{q,p}^*(\cdot) = \mathbb{E}_{x \sim q} \left[k(x, \cdot) \nabla_x \log p(x) + \nabla_x k(x, \cdot) \right]$$
 (5)

which gives the following negative gradient

$$\nabla_{\epsilon} KL(q_{[T]}||p)|_{\epsilon=0} = -\mathbb{S}(q,p)$$
(6)

Stein Variational Gradient Descent (SVGD)

Idea

The general idea is that we minimize KL divergence between distribution after incremental transformation and target distribution.

SVGD [5]

For each iteration t, we update the particles

$$x_i^{t+1} \leftarrow x_i^t + \epsilon^t \hat{\psi}^*(x_i^t)$$
$$\hat{\psi}^*(x) = \frac{1}{n} \sum_{i=1}^n \left[k(x_j^t, x) \nabla_{x_j^t} \log p(x_j^t) + \nabla_{x_j^t} k(x_j^t, x) \right]$$

 ϵ^t is the step size at the t-th iteration.

Demo

https://drive.google.com/open?id=0B58F7g3eKB1VX0I2enEtR2t1SHM

Random Subset

Intuition

Instead of computing the a value between every pair, we can take average of value with respect to a smaller subset.

Random Subset

Intuition

Instead of computing the a value between every pair, we can take average of value with respect to a smaller subset.

Algorithm 1 SVGD Random Subset (SVGD-RS)

Input: Target distribution with density function p(x); Set of initial particles $\{x_i^0\}_{i=1}^n$; Positive definite kernel k(x,x')

Output: Set of particles $\{x_i\}_{i=1}^n$ that approximates the target distribution for t=1: maxIter do

Let $\{y_j^t\}_{j=1}^m$ be randomly selected m particles from $\{x_i^t\}_{i=1}^n$

$$\tilde{\psi}(x) = \frac{1}{m} \sum_{j=1}^{m} \left[k_h(y_j^t, x) \nabla_{y_j^t} \log p(y_j^t) + \nabla_{y_j^t} k_h(y_j^t, x) \right]$$

 $x_i^{t+1} \leftarrow x_i^t + \epsilon^t \tilde{\psi}(x_i^t)$ where ϵ^t is the step size at the t-th iteration

end for

Random Subset + Control Functional

Intuition

We can assign weights to each of the subparticles.

Control Functional

We use the concept of control functional, a non-parametric extension of control variates.

end for

Random Subset + Control Functional

Algorithm 2 SVGD Random Subset Control Functional (SVGD-RSCF)

```
Input: Target distribution with density function p(x); Set of initial particles \{x_i^0\}_{i=1}^n; Positive definite kernel k(x,x') Output: Set of particles \{x_i\}_{i=1}^n that approximates the target distribution. for t=1: maxIter do Let \{y_j^t\}_{j=1}^m be randomly selected m particles from \{x_i^t\}_{i=1}^n. Let v^t = \frac{\mathbf{1}^T(\mathbf{K_0} + \lambda m\mathbf{I})^{-1}}{\mathbf{1} + \mathbf{1}^T(\mathbf{K_0} + \lambda m\mathbf{I})^{-1}\mathbf{1}} where (\mathbf{K_0})_{i,j} = k(y_i, y_j) Let w_i^t = \frac{v_i^t}{\sum_j v_j^t} \tilde{\psi}(x) = \sum_{j=1}^m w_j^t \left[k_h(y_j^t, x) \nabla_{y_j^t} \log p(y_j^t) + \nabla_{y_j^t} k_h(y_j^t, x)\right] x_i^{t+1} \leftarrow x_i^t + \epsilon^t \tilde{\psi}(x_i^t) where \epsilon^t is the step size at the t-th iteration.
```

Induced Points - Idea

Induced Kernel

Define induced kernel as

$$k_y(x, x') = \frac{1}{m} \sum_{j=1}^{m} [k(x, y_j)k(x', y_j)]$$

where $\{y_i\}_{i=1}^m$ are induced points.

Induced Kernel Update

$$\phi(x') = \mathcal{A}_p k_y(x, x') = \frac{1}{m} \sum_{j=1}^m \left[\frac{1}{n} \sum_{i=1}^n \left[\mathcal{A}_p k(x_i, y_j) \right] k(x', y_j) \right]$$

Induced Points

Algorithm 3 Induced SVGD (I-SVGD)

```
Input: Target distribution with density function p(x); Set of initial particles \{x_i^0\}_{i=1}^n; Positive definite kernel k(x,x')

Output: Set of particles \{x_i\}_{i=1}^n that approximates the target distribution for t=1: maxIter do
```

Let $\{y_j^t\}_{j=1}^m$ be randomly selected m particles from $\{x_i^t\}_{i=1}^n$.

$$\begin{split} \tilde{\psi}(x) &= \frac{1}{m} \sum_{j=1}^{m} \left[\frac{1}{n} \sum_{i=1}^{n} \left[k(x_i^t, y_j^t) \nabla_{x_i^t} \log p(x_i^t) + \nabla_{x_i^t} k(x_i^t, y_j^t) \right] k(x, y_j^t) \right] \\ x_i^{t+1} &\leftarrow x_i^t + \epsilon^t \tilde{\psi}(x_i^t) \end{split} \qquad \text{where } \epsilon^t \text{ is the step size at the } t\text{-th iteration} \end{split}$$

end for

Induced Points + Adversarial Updates

Adversarial Updates

From before:

$$\nabla_{\epsilon} KL(q_{[T]}||p)|_{\epsilon=0} = -\mathbb{S}(q,p)$$

Intuition: The amount of decrease in KL divergence is equal to the KSD. So what if we increase KSD inbetween regular particle updates?

Options we can change to increase KSD:

- Induced Points
- Parameters of the kernel (e.g. bandwidth of RBF kernel)

Induced Points + Adversarial Updates

Algorithm 4 Adversarial Induced SVGD (AI-SVGD)

```
Input: Target distribution with density function p(x); Set of initial parti-
    cles \{x_i^0\}_{i=1}^n; Positive definite kernel k(x,x')
Output: Set of particles \{x_i^0\}_{i=1}^n that approximates the target distribution
    Initialize \{y_i^0\}_{i=1}^m as randomly selected m particles from \{x_i^0\}_{i=1}^n
    for t = 1 : maxIter do
        \tilde{\psi}(x) = \frac{1}{m} \sum_{i=1}^{m} \left[ \frac{1}{n} \sum_{i=1}^{n} \left[ k(x_i^t, y_j^t) \nabla_{x_i^t} \log p(x_i^t) + \nabla_{x_i^t} k(x_i^t, y_j^t) \right] k(x, y_j^t) \right]
        x_i^{t+1} \leftarrow x_i^t + \epsilon_{\bar{x}}^t \tilde{\psi}(x_i^t)
         for \ell = 1 : \mathcal{L} do
             y_{j}^{t,l+1} \leftarrow y_{j}^{t,l} + \epsilon_{y}^{t,l} \frac{1}{n^{2}} \sum_{x,x'} \nabla_{y_{j}^{t,1}} \mathcal{A}_{p}^{x} \mathcal{A}_{p}^{x'} k_{y}(x,x')
             h^{t,l+1} \leftarrow h^{t,l} + \epsilon_h^{t,l} \frac{1}{n^2} \sum_{x \in \mathcal{X}'} \nabla_{h^{t,1}} \mathcal{A}_n^x \mathcal{A}_n^{x'} k_y(x,x')
        end for
        y^{t+1,1} \leftarrow y^{t,\mathcal{L}+1}, h^{t+1,1} \leftarrow h^{t,\mathcal{L}+1}
    end for
```

where ϵ indicate step size for each variable at each iteration

Improvement Techniques

Regularization

$$\Delta y = \frac{1}{n^2} \sum_{x,x'} \nabla_y \mathcal{A}_p^x \mathcal{A}_p^{x'} k_y(x,x') - \alpha \frac{1}{m} \sum_{j=1}^m \nabla_y k(y,y_j)$$
(4)

U-Statistics

$$\Delta_y = \frac{1}{n(n-1)} \sum_{x \neq x'} \nabla_y \mathcal{A}_p^x \mathcal{A}_p^{x'} k_y(x, x') \tag{5}$$

Toy example: Gaussian

Demo

 $https://drive.google.com/open?id{=}0B58F7g3eKB1VeEl4VDhJOU5Tc2c\\$

Toy example: Gaussian

50 particles, 20 subparticles/induced points, 800 iterations.

Model

- $p(\alpha) = Gamma(\alpha; a_0, b_0)$
- $p(w_k|\alpha) = \mathcal{N}(w_k; 0, \alpha^{-1})$
- $p(c_t = 1|x_t, w) = \frac{1}{1 + \exp(-w^T x_t)}$

Varying number of particles/subparticles

200 Particles, 40 Induced points, 10 trials

Maximum Mean Discrepancy

Maximum Mean Discrepancy (MMD) is a framework to compare distributions, testing whether two sets of samples are drawn from different distributions.

$$MMD\left[\mathcal{F}, p, q\right] = \sup_{f \in \mathcal{F}} \left(\mathbb{E}_{x \sim p}\left[f(x)\right] - \mathbb{E}_{y \sim q}\left[f(y)\right]\right) \tag{6}$$

or empirically,

$$MMD\left[\mathcal{F}, p, q\right] = \sup_{f \in \mathcal{F}} \left(\frac{1}{m} \sum_{i=1}^{m} f(x_i) - \frac{1}{n} \sum_{i=1}^{n} f(y_i) \right) \tag{7}$$

Varying number of particles/subparticles

Bayesian Neural Networks

Dataset	SVGD	Avg. Test RMSE RS	RS + CF
Boston Concrete Energy Kin8nm	$\begin{array}{c} 2.2324 \pm 0.0223 \\ 6.0231 \pm 0.0555 \\ 1.4454 \pm 0.0429 \\ \textbf{0.1244} \pm \textbf{0.0010} \end{array}$	$ \begin{aligned} 2.2038 &\pm 0.0204 \\ 5.8865 &\pm 0.0481 \\ 1.4995 &\pm 0.0451 \\ 0.1258 &\pm 0.0011 \end{aligned} $	$2.2091 \pm 0.0202 \\ 5.8637 \pm 0.0526 \\ 1.4218 \pm 0.0498 \\ 0.1255 \pm 0.0011$

Table 2: Comparison of test RMSE for different datasets

Bayesian Neural Networks

Dataset	Avg. Time (sec)		
Dataset	SVGD	RS	RS + CF
Boston	20.99 ± 0.69	19.00 ± 0.30	20.14 ± 0.61
Concrete	16.09 ± 0.79	15.24 ± 0.18	16.07 ± 0.13
Energy	17.21 ± 0.65	15.58 ± 0.34	16.53 ± 0.23
Kin8nm	17.52 ± 0.71	15.76 ± 0.28	16.72 ± 0.33

Table 4: Comparison of computation time for different datasets

Conclusion

- Random subset methods perform similar to original SVGD algorithm yet are much faster.
- Induced points methods provide novel approach to the Bayesian Inference problem that outperform original SVGD in its approximation of distributions.

Future Direction

- Optimal choice for size of subparticles and induced points.
- More theoretical understanding behind these algorithms.
- Instead of random subset, using a distribution to generate points.
- Ways to make the induced points algorithm perform faster.

References

- [1] A. Gretton, K. Borgwardt, M. Rasch, B. Scholkopf, and A. Smola. A kernel method for the two-sample problem. In *NIPS*. 2008
- [2] J. M. Hernandez-Lobato and R. P. Adams. Probabilistic backpropagation for scalable learning of Bayesian neural networks. In *ICML*, 2015.
- [3] W. Hoeffding. A class of statistics with asymptotically normal distribution. *Ann. Math. Statist.*, 19(3):293-325, 1948.
- [4] M. Hoffman and A. Gelman. The no-u-turn sampler: Adaptively setting path lengths in hamiltonian monte carlo. volume 15, pages 1351-1381. 2014.
- [5] Q. Liu and D. Wang. Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm. In *NIPS*, 2015.
- [6] Q. Liu, J. D. Lee, and M. I. Jordan. A kernelized Stein discrepancy for goodness-of-fit tests and model evaluation. In *ICML*, 2016.
- [7] C. Oates, M. Girolami, and N. Chopin. Control functionals for monte carlo integration. *Journal of the Royal Statistical Society: Series B*, 2017.