1 FA 60004190057 TT2 JAGickal 06/04/21 84 ANS Let L be a regular language and $M = (9, \Sigma, 8, 90, F)$ be a finite automata with n-states. Language L is accepted by m. let we L and | w/ ≥ n, then w can be written as myz where (1) 141>0 (ii) 19191 4 n (iii) ny'z et for all i >0 here y' denotes that y is repeated or pumped i times Interpretation of pumping lemma:

Pumping lemma gives a necessary condition for an input string to belong to a regular set · Pumping lemma does not give sufficient condition jov a language to be regular. · pumping lemma should not be used to establish that a given lanquage is regulat. · pumping lemma should be used to establish that a given language is not regular It uses the pigeonhole principle. L = { W = WR | W & fa, b 3 3 let n be a pumping remma constant let == W FOR EDUCATIONAL USE (Sundarani)

JUNAID GIRKAR

JUNAID. GIRKAR 60004190057 JAGÜKAY

Represent Z in P.L.C Let $Z = a^n b a^n = \omega^R$ Z can also be written al Z = UVW Buch that |uv| < n and | < |v| < n select values of · 4, v, w satisfying above two conditions let $u = a^{n-1}$ w = ban then $uv^iw = a^{n-1}(b)^iba^n$ For i=D, we get Uvow = an-1 ban & L : Resultant ω ($a^{n-1}ba^n$) cannot be xeverse of $\omega(\omega^R)$.

Hence it contradicts out assumption.

-: L is not a regular language.

(Sundaram)

JUNAID GIRKAR 60004190053 JAGUKON.

		91190
89	5 🕲	
ANS	convert given grammer to CNF	
	<u> </u>	
	S -> ABC BAB	
	A → aA Bac aaa	
	B → bBb a D	
	C -> CAIAC	
	$D \rightarrow \mathcal{E}$	
(i) Removing & transition	
	$D \xrightarrow{\smile} B$	
	$\beta \rightarrow D$	
	∴ 8 → €	,
	S -> ABC	×
	В → е	
	$S \rightarrow AC$	
	S -> BAB	
	2	
		oth B → E
		→ A
	A -> B & C	
	$B \rightarrow \varepsilon$	
	$A \rightarrow aC$	
	B→6Bb	
	$B \rightarrow \varepsilon$	
	В → 66	

Jundaram ®

JUNAID GIRKAR BOOOU190057 JAGUICOJ

}	
	S -> ABC BAB AC AB BA A
	A -> a A Bac aaa a C
	13 → 6Bb a bb
	$C \longrightarrow CA \mid A \mid C$
(î	i) Removing unit production
	$S \rightarrow A$
	S-> a A B a C a a a a C
	: S -> ABC B AB AC AB BA QA Bac Qaa QC
	A -> a A Bac a a a a
	B → bBb 9 6b
	$C \rightarrow cA \mid AC$
	(iii) Removing useless productions
	There are no useless productions
	For CNP,
	iet ca = a
	$C_b = b$
	= S -> ABC BAB AC AB BA (aA) B(aC) Ca(a(a) Ca C
	A -> Ca A B Ca C Ca (a Ca C
	$B \longrightarrow C_b B C_b Q C_b C_b$ $C \longrightarrow CA A C$
	CA AC
	ict Fi -> AB
	f ₂ → 8(a
	F 3 => Ca Ca
	Fy -> Cb B

Sundaram

JUNAID .

	CNF form:
	S -> FIC BFI AC AB BA GA F2 C F3 (a Ca C
	$A \rightarrow CaA F_2C F_3(a CaC$
	B > FyCb a 1 Cb Cb
	$c \rightarrow cA AC$
	$Ca \rightarrow q$
	Cb -> 6
	$f_i \longrightarrow AB$
	$F_2 \rightarrow B(a)$
	F3 -> Ca (a
	Fy → CbR
l l	

<u>Sundaram</u>®

FOR EDUCATIONAL USE

JUNAID. GIRKAR 6000 U1900 ST JAGÜKOJ

								٠,	9911		
96			i i						I	I	
ANS	Α	В	S	C							
	0	0	0	0	,						
	0	1	1	0	,		-				
	1	0	ı	0			•	*			
	l	l	٥	ı							
	LOGIC:	Nc	9nc	no	coxy	(state	with)				
		C	9,0	a	rory	(state	, with)				
							-				
	5 10										
	$\Sigma \setminus \emptyset$				10	11					
	9nc	0		<u>D</u>	0	0					
	90	1				1 '	<u></u>				
							$\overline{}$				
	Σ/Q	00		01	10	H	1,200	1			
	9nc						mea ma	chine			
	9rc	9.0			9nc 9c						
	70	γιι	<u> </u>	γ -	VC	γC	\rightarrow				
	DRIGINAL TRANSITION.										
	Moore	macline	2 tro	ansiti	on dia	gram	8	λ			
			,,,,			J	9nc	O			
		01					9c	1			
	01										
	\longrightarrow	(qnc)		(9c							
	60										
	ORIGINAL TRANSTION DIAGRAM										

(Sundarani)

JUNAID GIRKAR 60004190057 FAGURAJ

Moore transition diagram.

mealy transition Diagram