Quiz: Chap 3 and Chap 4

Max marks: 20

Max time: 40 minutes + 10 minutes for uploading

Give formal notation for full credit. Upload one pdf file for Q1(b), Q2 and Q3.

1. (a) Consider a two class and three action problem with the following loss matrix.

Action \ Actual Class	C1	C2
α_1 : Choose C1	0	0.8
α_2 : Choose C2	1	0
α_R : Reject instance	0.5	0.5

Calculate the expected risk and match the the correct decision rule for each action.

1. Choose Action α_1	A. $P(C1 x) > 0.8$
2. Choose Action α_2	B. $P(C1 x) < 3/8$
3. Reject	C. $P(C1 x) > 3/8$
	D. $P(C1 x) < 0.5$
	E. $P(C1 x) < 0.5 < P(C2 x)$
	F. $3/8 < P(C1 x) < 0.5$

(b)Upload the calculations as pdf file. (3+4 Marks)

2. Consider the following log likelihood function for parameters (α, β^2) and the data sample X. Find the MLE for the parameters.(5 Marks)

$$\mathcal{L}(\alpha, \beta | \chi) = -N \log \beta - \frac{\Sigma_t (x^t - \alpha)^2}{2\beta^2}$$
 (1)

- 3. Consider a sample $X = \{x^t, r^t\}$ and model g(.) trained over it. Explain in one sentence each the semantics of noise, bias and variance. (3 Marks)
- 4. If θ is the true value of the parameters and $\hat{\theta}(X)$ is its estimate from data set X, then $E[(\hat{\theta}(X) \theta)^2]$ is the ———— of the estimator. (1 Mark)
 - a. Biasb. Variance squared error
- c. Squared error
- d. Mear
- 5. Consider a K-class problem with one independent real variable x, which is normally distributed $\sim N(\mu, \sigma^2)$ and the discriminant for i^{th} class is $g_i(x) = -\frac{1}{2}\log \pi \log s_i \frac{(x-m_i)^2}{2s_i^2} + \log \hat{P}(C_i)$. We can write $g_i(x) = (x-m_i)^2$ when ———. (2 Marks)

- (a) All classes have equal mean and std dev
- (b) All classes have same std dev and number of instances
- (c) All classes have equal mean and number of instances
- (d) All classes have equal mean, std dev and number of instances
- 6. Suppose that we fit a linear and 4^{th} degree polynomial to data, $\mathcal{M}1$ and $\mathcal{M}2$ respectively, coming from a cubic function. Assume that there exists standard Gaussian noise in data. Choose the correct statement. (1 Mark)
 - (a) $Bias(M1) \le Bias(M2)$; $Variance(M1) \le Variance(M2)$
 - (b) $Bias(M1) \ge Bias(M2)$; $Variance(M1) \le Variance(M2)$
 - (c) $Bias(M1) \le Bias(M2)$; $Variance(M1) \ge Variance(M2)$
 - (d) $Bias(M1) \ge Bias(M2)$; $Variance(M1) \ge Variance(M2)$
- 7. In polynomial regression, the model is linear in —-. (1 Marks)