Μοντέλα και Αποδείξεις Ασφάλειας στην Κρυπτογραφία - Ανταλλαγή Κλειδιού Diffie Hellman

Παναγιώτης Γροντάς - Άρης Παγουρτζής 21/11/2023

ΕΜΠ - Κρυπτογραφία

Formal Models - DHKE 1/48

Ερωτήματα

- Τι σημαίνει ότι ένα σύστημα είναι ασφαλές;
- Πώς αποδεικνύεται;

Μειονέκτημα

Ασφαλές: προστασία ∀ επίθεση

Μη-Ασφαλές: 🛭 μία επιτυχής επίθεση

Σύγχρονη Κρυπτογραφία: Αυστηροί Ορισμοί και Αποδείξεις

Formal Models - DHKE 2 / 48

Ορισμοί

Κρυπτοσύστημα

- CS = (M, K, C, KGen, Enc, Dec)
- Μ: Σύνολο Μηνυμάτων
- Κ: Σύνολο Κλειδιών
- C: Σύνολο Κρυπτοκειμένων

Formal Models - DHKE Ορισμοί 3/48

Δημιουργία κλειδιού

- $\mathsf{KGen}(1^{\lambda}) = (\mathit{key}_{\mathsf{Enc}}, \mathit{key}_{\mathsf{Dec}}) \in \mathit{K}^2$
 - Πιθανοτικός Αλγόριθμος
 - Το κλειδί συνήθως επιλέγεται ομοιόμορφα από το Κ
 - · λ : Παράμετρος ασφάλειας πλήθος bits του κλειδιού
 - Συμβολισμός στο μοναδιαίο (λ '1'): Χαρακτηρισμός ως προς το μέγεθος της εισόδου, όχι ως προς το μέγεθος της αναπαράστασής της
 - Πχ. για ασφάλεια 80 bits θέλουμε το κλειδί να έχει 80 δυαδικά ψηφία και όχι $log_280=7$ ή $log_{10}80=2$
 - Σημασία για χρόνο παραγωγής κλειδιών, εκτέλεσης κρυπτογράφησης, υπολογιστικής προσπάθειας πιθανότητας επιτυχίας 'σπασίματος'

Formal Models - DHKE Ορισμοί 4 / 48

Κρυπτογράφηση

Κρυπτογράφηση

 $Enc(key_{enc}, m) = c \in C$

- Ντετερμινιστικός Αλγόριθμος: Κάθε μήνυμα αντιστοιχεί σε ένα κρυπτοκείμενο
- Πιθανοτικός Αλγόριθμος: Κάθε μήνυμα αντιστοιχεί σε ένα σύνολο πιθανών κρυπτοκειμένων

Αποκρυπτογράφηση

 $Dec(key_{dec}, c) = m$

Ορθότητα

 $Dec(key_{dec}, Enc(key_{enc}, m)) = m, \forall m \in M$

Παρατηρήσεις

- · Συμμετρικό Κρυπτοσύστημα $key_{enc} = key_{dec}$
- · Ασύμμετρο Κρυπτοσύστημα $key_{enc} \neq key_{dec}$
 - Κρυπτογραφία Δημοσίου Κλειδιού
 - Το key_{enc} μπορεί να δημοσιοποιηθεί για την εύκολη ανταλλαγή μηνυμάτων
 - · Το key_{dec} είναι μυστικό

Formal Models - DHKE Ορισμοί 6 / 48

Ο αντίπαλος Α

- Στόχος: Να παραβιάσει την ασφάλεια.
- Δηλαδή, για το κρυπτοκείμενο c:
 - Να μάθει το κλειδί k;
 - Θέλουμε να προστατεύσουμε το μήνυμα
 - Τετριμμένα Enc(k, m) = m είναι αδύνατο να σπάσει, αλλά τι ασφάλεια παρέχει;
 - Να μάθει ολόκληρο το αρχικό μήνυμα m;
 - Αν μάθει το 90%;
 - Να μάθει κάποια συνάρτηση του m;
 - Ναι αλλά ποια:
- Συμπέρασμα: Χρειάζονται ακριβείς ορισμοί
 - Για τις δυνατότητες και τα μέσα του αντιπάλου.
 - Για τον τρόπο αλληλεπίδρασής του με το σύστημα.

• Για το κριτήριο επιτυχίας - 'σπάσιμο'.

Formal Models - DHKE Ορισμοί

Είδη επιθέσεων

Επίθεση Μόνο Κρυπτοκειμένου - Ciphertext Only Attack (COA)

- · Παθητικός Αντίπαλος (Eve)
- Πολύ εύκολη: Χρειάζεται απλά πρόσβαση στο κανάλι επικοινωνίας

Formal Models - DHKE Εἰδη επιθέσεων 8 / 48

Επίθεση Γνωστού Μηνύματος - Known Plaintext Attack (KPA)

- Παθητικός Αντίπαλος
- Γνωρίζει ζεύγη μηνυμάτων κρυπτοκειμένων
- Τετριμμένο σενάριο για ασύμμετρα, γιατί:
 - Ο Α έχει το δημόσιο κλειδί
 - Μπορεί να κατασκευάσει μόνος του όσα ζεύγη θέλει
- Ρεαλιστικό σενάριο και για συμμετρικά, γιατί:
 - Ακόμα και τα κρυπτογραφημένα πρωτόκολλα περιέχουν μη απόρρητα μηνύματα (handshakes, ack)
 - · Ιστορικό παράδειγμα: Κρυπτοκείμενα πρόγνωσης καιρού στη μηχανή Enigma
 - Κρυπτογραφημένα μηνύματα γίνονται κάποια στιγμή διαθέσιμα

Formal Models - DHKE Είδη επιθέσεων 9 / 48

Επίθεση Επιλεγμένου Μηνύματος - Chosen Plaintext Attack (CPA)

- · Ενεργός Αντίπαλος (Mallorie)
- Γνωρίζει ζεύγη μηνυμάτων κρυπτοκειμένων
- Μπορεί να ζητήσει την κρυπτογράφηση μηνυμάτων της επιλογής του (Μαντείο Κρυπτογράφησης)
- Ιστορικό Παράδειγμα: Σπάσιμο κρυπτοσυστήματος JN-25b στη ναυμαχία του Midway (Ιούνιος 1942)
 - Υποψία ότι Enc("Midway") = "AF"
 - Αποστολή Πλαστών Μηνυμάτων για επισκευή του συστήματος υδροδότησης του 'Midway'
 - Συλλογή Επικοινωνιών Με Κρυπτοκείμενα 'ΑΕ'
 - Συσχέτιση με παλιότερες επικοινωνίες

Formal Models - DHKE Είδη επιθέσεων 10 / 48

Επίθεση Επιλεγμένου Κρυπτοκειμένου Chosen Ciphertext Attack (CCA)

- Ενεργός Αντίπαλος
- Γνωρίζει ζεύγη μηνυμάτων κρυπτοκειμένων
- Μπορεί να ζητήσει την κρυπτογράφηση μηνυμάτων της επιλογής του (Μαντείο Κρυπτογράφησης)
- Μπορεί να *επιτύχει* την αποκρυπτογράφηση μηνυμάτων της επιλογής του (Μαντείο Αποκρυπτογράφησης)
- Διαίσθηση: Ο αντίπαλος μπορεί να βγάλει έμμεσα συμπεράσματα από αντιδράσεις σε κρυπτογραφημένα μηνύματα
 - · Απόρριψη κρυπτογραφημένων 'σκουπιδιών' από το πρωτόκολλο (Bleichenbacher RSA PKCS1 attack)
 - Ενέργεια στον πραγματικό κόσμο (πχ. αγορά μετοχών)

Formal Models - DHKE Είδη επιθέσεων 11 /

Μοντέλα Ασφάλειας

Οι κανόνες του Kerchoffs (1883)

Οι πρώτες προσπάθειες ορισμού ασφάλειας κρυπτοσυστημάτων και προστασίας

Αρχή 2

Ο αλγόριθμος (από) κρυπτογράφησης δεν πρέπει να είναι μυστικός. Πρέπει να μπορεί να πέσει στα χέρια του *Α* χωρίς να δημιουργήσει κανένα πρόβλημα. Αντίθετα το κλειδί μόνο πρέπει να είναι μυστικό.

Λόγοι:

- Το κλειδί διανέμεται πιο εύκολα από τους αλγόριθμους (μικρότερο μέγεθος, απλούστερη δομή)
- Το κλειδί είναι πιο εύκολο να αλλαχθεί αν διαρρεύσει
- Πιο πρακτική χρήση για περισσότερους από έναν συμμετέχοντες
- Ανοικτό κρυπτοσύστημα: Εύκολη μελέτη

Οι κανόνες του Kerchoffs (1883) - (2)

Παρατηρήσεις:

Αν και έχουν παράδοση ακόμα και σήμερα δεν εφαρμόζονται πλήρως

- (Μεγάλες) εταιρίες δημιουργούν και χρησιμοποιούν δικούς τους μυστικούς αλγόριθμους/πρωτόκολλα
- · Crypto Snake Oil (Bruce Schneier)

Formal Models - DHKE Μοντέλα Ασφάλειας

Οι κανόνες του Kerchoffs (1883) - (3)

Αρχή 1

Το κρυπτοσύστημα θα πρέπει να είναι *πρακτικά* απρόσβλητο, αν δεν γίνεται θεωρητικά

- Διάρκεια Κρυπτανάλυσης > Διάρκεια Ζωής Μηνύματος
- Μικρή Πιθανότητα Επιτυχίας
- Υπολογιστική Ασφάλεια

Εμπειρική αρχή - δεν αντιστοιχίζονται σε κάτι πρακτικό

Formal Models - DHKE Μοντέλα Ασφάλειας 14 / 48

Αποδείξιμη Ασφάλεια

Ιδέα

Μαθηματική (Λογική) απόδειξη ότι το κρυπτοσύστημα έχει κάποιες ιδιότητες ασφάλειας.

Παράδειγμα: Τέλεια μυστικότητα (Shannon)

Μπορεί να εφαρμοστεί στην κρυπτογραφία δημοσίου κλειδιού; Γιατί;

Επαναχρησιμοποίηση δημοσίου κλειδιού

Formal Models - DHKE Μοντέλα Ασφάλειας

Σημασιολογική Ασφάλεια

Βασική ιδέα (Goldwasser, Micali):

Χαλαρώνουμε τις απαιτήσεις ασφάλειας για να οδηγηθούμε σε έναν πρακτικό ορισμό

Λαμβάνουμε υπ' όψιν:

- · την υπολογιστική ισχύ του ${\mathcal A}$
- την πιθανότητα επιτυχίας
- το είδος των επιθέσεων

Διαίσθηση

Ένας υπολογιστικά περιορισμένος Α δεν μπορεί να μάθει τίποτε χρήσιμο από το κρυπτοκείμενο παρά μόνο με αμελητέα πιθανότητα

Formal Models - DHKE Μοντέλα Ασφάλειας 16 / 48

Ρητή Προσέγγιση

Ορισμός

Ένα κρυπτοσύστημα είναι (τ,ϵ) ασφαλές αν οποιοσδήποτε $\mathcal A$ σε χρόνο (πλήθος λειτουργιών) το πολύ τ , δεν μπορεί να το σπάσει με πιθανότητα καλύτερη από ϵ

Κάθε κρυπτοσύστημα με μήκος κλειδιού λ bits έχει ασφάλεια στην καλύτερη περίπτωση $(\tau,\frac{\tau}{2\lambda})$

Επίθεση Brute Force

Με $\tau=2^\lambda$ λειτουργίες το κρυπτοσύστημα θα σπάσει. Θα θέλαμε να είναι το καλύτερο δυνατό που μπορεί να γίνει.

Πρακτικά

Για συμμετρικά κρυπτοσυστήματα σήμερα με βραχυχρόνιες απαιτήσεις ασφάλειας $2^{80} < \tau < 2^{100}$ και $\epsilon = 2^{-64}$

Για μακροχρόνιες απαιτήσεις ασφαλείας: $\tau=2^{128}$

Κβαντικοί υπολογιστές $\tau=2^{256}$ (Αλγόριθμος αναζήτησης Formal Models - DHKE, Μοντέλα Ασφάλειας

Ρητή Προσέγγιση (2)

Κάποιοι αριθμοί Distributed.net RC5 brute force cracking

- 56bits 250 μέρες 1997
- 64bits 5 χρόνια 2002
- · 72bits δεν έχει σπάσει ακόμα (μετά 15 χρόνια είχε εξερευνηθεί το 5% του Κ)
- Bitcoin miners: Υπολογισμός περίπου 2^93 hashes όλο το 2022
- \cdot 288 αριθμός δευτερολέπτων από το Big Bang

Δεν χρησιμοποιείται γιατί:

• Δεν λαμβάνει υπ'όψιν το υπολογιστικό μοντέλο (παράλληλοι υπολογιστές, εξειδικευμένο HW κτλ.)

Ασυμπτωτική Προσέγγιση

Ορισμός

Ένα κρυπτοσύστημα είναι ασφαλές αν οποιοσδήποτε περιορισμένος \mathcal{A} έχει αμελητέα πιθανότητα να το σπάσει (σε σχέση με την παράμετρο ασφάλειας)

Παρατηρήσεις:

- περιορισμένος = Probabilistic Polynomial Time
- \cdot Ισχύει για μεγάλες τιμές του λ
- Συνέπεια του $|\mathit{K}| < |\mathit{M}|$
- Επιτρέπει προσαρμογή της ασφάλειας με αλλαγή του μήκους του κλειδιού

Formal Models - DHKE Μοντέλα Ασφάλειας 19 / 48

Στόχος αντιπάλου

- \cdot Ο \mathcal{A} θέλει να υπολογίσει το κατηγόρημα $q: \mathbf{M} \to \{0,1\}$
- · Γενικά: $Pr_{m\in \mathbf{M}}[q(m)=0]=Pr_{m\in \mathbf{M}}[q(m)=1]=rac{1}{2}$
- Το μήκος των κρυπτοκειμένων είναι το ίδιο (δεν διαρρέει πληροφορία)

Το πλεονέκτημα του Α

$$\mathsf{Adv}_q^{\mathcal{A}}(\lambda) = |\Pr[\mathcal{A}(c) = q(\mathsf{Dec}(\mathit{key}, c))] - \frac{1}{2}|$$

Αν ο \mathcal{A} μαντέψει στην τύχη έχει $Adv_q(\mathcal{A})=0$

Formal Models - DHKE Μοντέλα Ασφάλειας

Σημασιολογική ασφάλεια - ορισμός

Ορισμός

Ένα κρυπτοσύστημα \mathcal{CS} είναι σημασιολογικά ασφαλές όταν \forall PPT \mathcal{A} , $\forall q$:

$$Adv_q^{\mathcal{A}}(\lambda) = negl(\lambda)$$

Αμελητέα συνάρτηση

Οποιαδήποτε συνάρτηση f για την οποία για κάθε πολυώνυμο p υπάρχει n_0 ώστε $\forall n \geq n_0: f(n) < \frac{1}{p(n)}$

Δηλαδή: Μεγαλώνει με πιο αργό ρυθμό από αντίστροφο πολυώνυμο

Παραδείγματα αμελητέων συναρτήσεων: $2^{-n}, 2^{-\sqrt{n}}$

Formal Models - DHKE Μοντέλα Ασφάλειας

Σημασιολογική ασφάλεια (2)

Παρατηρήσεις

- Ο τυπικός ορισμός ενσωματώνει την παράμετρο ασφαλείας
- Δύσχρηστος ορισμός δεν ορίζουμε τι ξέρει ο Α και τι διαδικασία ακολουθεί για το 'σπάσιμο'
- Ανάγκη εύρεση κατηγορήματος που δεν ικανοποιεί τον ορισμό.

Formal Models - DHKE Movτέλα Ασφάλειας 22 / 48

Μη Διακρισιμότητα (Indistinguishability)

Οντότητα (challenger - αναπαριστά το κρυπτοσύστημα)

Παίγνιο Μη Διακρισιμότητας μεταξύ των Α, C

- Ανταλλαγή Μηνυμάτων μεταξύ Α, C
- \cdot \mathcal{A} Παράγει δύο μηνύματα m_0, m_1
- \mathcal{C} : Διαλέγει ένα τυχαίο bit $b \leftrightarrow \{0,1\}$
- \cdot \mathcal{C} : Παράγει και απαντά με το $c_b = \mathsf{Enc}(m_b)$
- · Α Μαντεύει ένα bit b'
- · Κερδίζει αν μαντέψει την επιλογή του $\mathcal C$

Formal Models - DHKE Μοντέλα Ασφάλειας

Μη Διακρισιμότητα (Indistinguishability) - (2)

Δηλαδή:

IND – Game(
$$\mathcal{A}$$
) =
$$\begin{cases} 1, b' = b \\ 0, \alpha \lambda \lambda \iota \dot{\omega} \varsigma \end{cases}$$

Πλεονέκτημα

$$\mathsf{Adv}^{\mathcal{A}}_{\mathsf{IND}}(\lambda) = |\Pr[\mathsf{IND} - \mathsf{Game}(\mathcal{A}) = 1] - \frac{1}{2}|$$

Ορισμός

Ένα κρυπτοσύστημα διαθέτει την ιδιότητα της μη διακρισιμότητας όταν ∀ PPT *A*:

$$\mathsf{Adv}^{\mathcal{A}}_{\mathit{IND}}(\lambda) = \mathsf{negl}(\lambda)$$

Θεώρημα

Σημασιολογική Ασφάλεια \Leftrightarrow Μη-Διακρισιμότητα

Formal Models - DHKE Μοντέλα Ασφάλειας

Formal Models - DHKE Μοντέλα Ασφάλειας 26 / 48

Παρατηρήσεις IND-CPA

Θεώρημα

Ένα κρυπτοσύστημα με ντετερμινιστικό αλγόριθμο κρυπτογράφησης δεν μπορεί να έχει την ιδιότητα IND-CPA.

Απόδειξη

- \cdot Ο $\mathcal A$ θέτει $m^*=m_0$ και λαμβάνει την κρυπτογράφηση c^*
- · Η απάντηση του είναι $b' = \begin{cases} 0, c^* = c \\ 1, αλλιώς \end{cases}$
- \cdot Ο $\mathcal A$ κερδίζει πάντα $\Pr[\mathit{IND}-\mathit{CPA}(\mathcal A)=1]=1$

Formal Models - DHKE Μοντέλα Ασφάλειας

Formal Models - DHKE Movτέλα Ασφάλειας 28 / 48

Παρατηρήσεις

- Παραλλαγή IND-CCA2: Επιτρέπεται χρήση του μαντείου αποκρυπτογράφησης μετά το c (adaptive IND-CCA)
- Παραλλαγή IND-CCA1: αλλιώς (*A* έχει μάθει ανεξάρτητες απο-κρυπτογραφήσεις)
- Στο παίγνιο IND-CCA2 ο $\mathcal A$ δεν μπορεί να ρωτήσει τον $\mathcal C$ για την αποκρυπτογράφηση του $\mathcal C$
- Μπορεί όμως να:
 - · Μετατρέψει το c σε ĉ
 - · Ζητήσει την αποκρυπτογράφηση του \hat{c} σε \hat{m}
 - · Να μετατρέψει το \hat{m} σε m, κερδίζοντας με πιθανότητα 1

29 / 48

Formal Models - DHKE Μοντέλα Ασφάλειας

Malleability

Χειρισμός κρυπτοκειμένων χωρίς αποκρυπτογράφηση

Malleable (εύπλαστο) Κρυπτοσύστημα Επιτρέπει στον Α να φτιάξει, γνωρίζοντας μόνο το κρυπτοκείμενο c = Enc(m), ένα έγκυρο κρυπτοκείμενο c' = Enc(f(m)), για κάποια, συνήθως πολυωνυμικά αντιστρέψιμη, συνάρτηση f γνωστή σε αυτόν.

Κάποιες φορές είναι επιθυμητή και κάποιες όχι.

- Ομομορφικά Κρυπτοσυστήματα: Αποτίμηση μερικών πράξεων στα κρυπτοκείμενα (ηλ. ψηφοφορίες)
- Πλήρως Ομομορφικά Κρυπτοσυστήματα (Gentry 2010): Αποτίμηση οποιουδήποτε κυκλώματος στα κρυπτοκείμενα
- · Δεν μπορούν να είναι IND-CCA2, ... αλλά είναι πολύ χρήσιμα

Σημαντική ιδιότητα

Non-malleability ⇔ IND-CCA2

Αποδείξεις Ασφάλειας

Κρυπτογραφικές Αναγωγές

Γενική Μορφή

Αν ισχύει ή ὑπόθεση \mathcal{Y} , τότε το κρυπτοσύστημα \mathcal{CS} είναι ασφαλές (υπό συγκεκριμένο ορισμό).

Αντιθετοαντιστροφή

Αν το \mathcal{CS} ΔΕΝ είναι ασφαλές (υπό συγκεκριμένο ορισμό), τότε δεν ισχύει η \mathcal{Y} .

Υ: Δυσκολία παραγοντοποίησης, δυσκολία εύρεσης διακριτού λογαρίθμου κλπ.

Formal Models - DHKE Αποδείξεις Ασφάλειας

Κατασκευαστική απόδειξη

- · \mathcal{CS} μη ασφαλές $\Rightarrow \exists$ PPT \mathcal{A} ο οποίος παραβιάζει τον ορισμό ασφάλειας
- Κατασκευάζουμε PPT αλγόριθμο \mathcal{B} , ο οποίος αλληλεπιδρά με τον $\mathcal{C}_{\mathcal{Y}}$ ο οποίος προσπαθεί να 'υπερασπιστεί' την \mathcal{Y}
- Ο Β για να καταρρίψει την Σ χρησιμοποιεί εσωτερικά σαν υπορουτίνα τον A(black box access) παριστάνοντας τον C στο παίγνιο μη διακρισιμότητας του CS

Formal Models - DHKE Αποδείξεις Ασφάλειας

Formal Models - DHKE Αποδείξεις Ασφάλειας

Παρατηρήσεις

Κανόνες Ορθότητας

- Προσομοίωση: Ο $\mathcal A$ δεν θα πρέπει να ξεχωρίζει τον challenger του $\mathcal B$ από τον κανονικό challenger.
- Πιθανότητα επιτυχίας: Αν ο Α έχει μη αμελητέα πιθανότητα επιτυχίας τότε και ο Β θα πρέπει να έχει μη αμελητέα πιθανότητα
- Πολυπλοκότητα: Ο Β θα πρέπει να είναι PPT. Αυτό πρακτικά σημαίνει ότι όποια επιπλέον εσωτερική επεξεργασία πρέπει να είναι πολυωνυμική
- · Πρέπει να είναι όσο πιο tight γίνεται $(t_{\mathcal{B}} \approx t_{\mathcal{A}})$ και $\epsilon_{\mathcal{B}} \approx \epsilon_{\mathcal{A}}$

Formal Models - DHKE Αποδείξεις Ασφάλειας 34 / 48

Συμπεράσματα-Συζήτηση

Κρυπτογραφικές Αναγωγές

- Παρέχουν σχετικές εγγυήσεις (Δύσκολο Πρόβλημα, Μοντέλο Ασφάλειας)
- Δίνουν ευκαιρία να ορίσουμε καλύτερα το κρυπτοσύστημα/πρωτόκολλο
- Πρακτική Χρησιμότητα: Ρύθμιση Παραμέτρου Ασφάλειας
- Συγκέντρωση Κρυπταναλυτικών Προσπαθειών στο
 Πρόβλημα Αναγωγής και όχι σε κάθε κρυπτοσύστημα ξεχωριστά
- Πιο σημαντικές όσο πιο πολύπλοκο γίνεται το πρωτόκολλο
- Αποδεικνύουν την ασφάλεια του μοντέλου, αλλά:
 - · Πόσο αναπαριστά το μοντέλο την πραγματικότητα περίπτωση KRACK attack on WPA2
 - Δεν σημαίνει ότι οποιαδήποτε υλοποίηση θα είναι ασφαλής

Formal Models - DHKE Αποδείξεις Ασφάλειας 35 / 48

Ανταλλαγή Κλειδιού Diffie Hellman

Το πρωτόκολλο DHKE

Αντί για Alice και Bob...

Πρωτόκολλο **Δημιουργίας** Κλειδιού

Απαιτήσεις:

Συνήθως: \mathbb{G} υποομάδα τάξης πρώτου του \mathbb{Z}_p^* (με p πρώτο) ή

ελλειπτικές καμπύλες

Εφαρμογές: SSL, TLS, IPSEC

Ασφάλεια DHKE - Πρόβλημα DLP

DLP - Το πρόβλημα του Διακριτού Λογάριθμου Δίνεται μια κυκλική ομάδα $\mathbb{G} = \langle g \rangle$ τάξης g και ένα τυχαίο στοιχείο $y \in \mathbb{G}$

Nα υπολογιστεί $x ∈ \mathbb{Z}_q$ ώστε $q^x = y$ δηλ. το $log_q y ∈ \mathbb{Z}_q$

Αγνοούμε δεδομένα στο πρωτόκολλο DHKE

Ασφάλεια DHKE - Πρόβλημα CDHP

CDHP - Το υπολογιστικό πρόβλημα Diffie Hellman

Δίνεται μια κυκλική ομάδα $\mathbb{G}=\langle g \rangle$, δύο στοιχεία

$$y_1 = g^{x_1}, y_2 = g^{x_2}$$

Να υπολογιστεί το $g^{x_1 \cdot x_2}$

Ασφάλεια DHKE - Πρόβλημα DDHP

Μπορούμε να δοκιμάζουμε στοιχεία

DDHP - Το πρόβλημα απόφασης Diffie Hellman Δίνεται μια κυκλική ομάδα $\mathbb{G}=\langle g \rangle$, δύο στοιχεία

$$y_1=g^{\mathsf{x}_1},y_2=g^{\mathsf{x}_2}$$
 και κάποιο $y\in\mathbb{G}$

Nα εξεταστεί αν $y = q^{x_1 \cdot x_2}$

ή ισοδύναμα

DDHP - Το πρόβλημα απόφασης Diffie Hellman Δίνεται μια κυκλική ομάδα $\mathbb{G} = \langle g \rangle$, δύο στοιχεία

$$y_1=g^{\mathsf{x}_1},y_2=g^{\mathsf{x}_2}$$
 και κάποιο $y\in\mathbb{G}$

Μπορούμε να ξεχωρίσουμε τις τριάδες $(q^{x_1}, q^{x_2}, q^{x_1x_2})$ και (a^{X_1}, a^{X_2}, v) :

Σχέσεις Προβλημάτων

CDHP < DLP

Αν μπορούμε να λύσουμε το *DLP*, τότε μπορούμε να υπολογίζουμε τα x_1, x_2 από τα y_1, y_2 και στην συνέχεια το $g^{x_1 \cdot x_2}$

$DDHP \leq CDHP$

Αν μπορούμε να λύσουμε το *CDHP*, υπολογίζουμε το $g^{x_1 \cdot x_2}$ και ελέγχουμε ισότητα με το y

 Δ ηλαδή: DDHP \leq CDHP \leq DLP

Δεν γνωρίζουμε αν ισχύει η αντίστροφη σειρά - ισοδυναμία

Όμως: Υπάρχουν ομάδες όπου το DDHP έχει αποδειχθεί εύκολο,

ενώ CDHP δεν έχει αποδειχθεί εύκολο

Mάλλον: DDHP < CDHP

DDH σε μορφή παιγνίου μη διακρισιμότητας

Κοινή είσοδος: παράμετρος ασφάλειας λ.

Λειτουργίες \mathcal{C}

- · Παραγωγή: $\mathbb{G} = \langle g \rangle$ τάξης πρώτου q.
- · Επιλογή $x_1, x_2 \in \mathbb{Z}_q$, $y \leftarrow \$ \mathbb{G}$
- Υπολογισμός $g^{x_1}, g^{x_2}, g^{x_1x_2}$
- Επιλογή τυχαίου bit $b \in \{0,1\}$
- Αν b=0 τότε αποστολή $\mathbb{G}, g^{x_1}, g^{x_2}, y'=g^{x_1x_2}$ στον \mathcal{A}
- \cdot Αν b=1 τότε αποστολή $\mathbb{G}, g^{\mathsf{x}_1}, g^{\mathsf{x}_2}, y'=y$ στον \mathcal{A}

Ο Α υπολογίζει b'.

Αν $b' \neq b$ τότε το αποτέλεσμα του παιχνιδιού είναι Failure, αλλιώς Success

Ασφάλεια DHKE

Πλεονέκτημα Α

$$\begin{split} & \operatorname{Adv}^{\operatorname{ddh}}_{\mathcal{A}}(\lambda) = \\ & |\Pr[\mathcal{A}(\mathbb{G}, g^{\mathsf{x}_1}, g^{\mathsf{x}_2}, g^{\mathsf{x}_1 \mathsf{x}_2}) = 1] - \Pr[\mathcal{A}(\mathbb{G}, g^{\mathsf{x}_1}, g^{\mathsf{x}_2}, y) = 1] | \end{split}$$

Η υπόθεση DDH ισχύει αν \forall PPT \mathcal{A} : $\mathrm{Adv}^{\mathrm{ddh}}_{\mathcal{A}}(\lambda) \leq \mathrm{negl}(\lambda)$

Διαίσθηση

Ο Α δεν μπορεί να διακρίνει το κλειδί από ένα τυχαίο στοιχείο της ομάδας στην οποία ανήκει

Ισοδύναμα

Ο ${\cal A}$ δεν αποκτά καμία χρήσιμη πληροφορία για το κλειδί που δημιουργείται.

Μοντέλο ασφάλειας: παθητικός αντίπαλος

Παιχνίδι ανταλλαγής κλειδιού $\mathit{KEG}_{\mathcal{A},\Pi}(\lambda)$

Κοινή είσοδος: λ . Λειτουργίες \mathcal{C} :

- · Δημιουργεί ομάδα G
- · Εκτελεί το πρωτοκόλλο $\Pi(1^{\lambda})$
- Παράγεται: (τ, k)
 - · τ transcript: Τα μηνύματα που ανταλλάσσονται (δημόσια)
 - k: Το κλειδί που παράγεται
- Επιλογή τυχαίου $b \in \{0,1\}$
- · Αν b=1 επιλογή τυχαίου k' και αποστολή (τ,k') στον $\mathcal A$
- · Αν b=0 αποστολή (τ,k) στον \mathcal{A}

Ο \mathcal{A} υπολογίζει b'. Αν $b' \neq b$ τότε το αποτέλεσμα του παιχνιδιού είναι Failure (ήττα \mathcal{A}), αλλιώς Success (νίκη \mathcal{A})

Ορισμός ασφάλειας DHKE

Πλεονέκτημα Α:

$$\mathsf{Adv}^{\mathrm{keg}}_{\mathcal{A},\Pi}(\lambda) = |\Pr[\mathit{KEG}_{\mathcal{A},\Pi}(\lambda) = \mathit{Success}] - rac{1}{2}|$$

Ένα πρωτόκολλο ανταλλαγής κλειδιού Π είναι ασφαλές, αν κάθε PPT παθητικός αντίπαλος $\mathcal A$ έχει αμελητέο πλεονέκτημα ως προς την παράμετρο ασφάλειας να επιτύχει στο *KEG*

$$Adv_{\mathcal{A},\Pi}^{keg}(\lambda) \leq negl(\lambda)$$

Δυσκολία DLP, CDHP αναγκαίες, αλλά όχι ικανές συνθήκες.

Απόδειξη ασφάλειας DHKE

Αν το DDHP είναι δύσκολο, τότε το πρωτόκολλο είναι ασφαλές (απέναντι σε παθητικό αντίπαλο)

Απόδειξη - Σχεδιάγραμμα DHKE μη ασφαλές: $\exists \mathcal{A}$ ώστε $\mathsf{Adv}^{\mathrm{keg}}_{\mathcal{A}.\mathsf{DHKF}}(\lambda) > \mathsf{negl}(\lambda)$

Θα κατασκευάσουμε αντίπαλο PPT $\mathcal B$ ως προς την υπόθεση DDH:

- \cdot Όταν λάβει το μήνυμα από τον $\mathcal{C}_{\mathit{DDH}}$ το προωθεί στον \mathcal{A}
- · Μορφή μηνύματος $(\tau, k') = ((\mathbb{G}, g^{x_1}, g^{x_2}), y')$
- Όταν ο Α απαντήσει, προωθεί το b'.

Απόδειξη ασφάλειας DHKE (2)

$$\begin{split} &\Pr[\mathit{KEG}_{\mathcal{A},\mathit{DHKE}}(\lambda) = \mathit{Success}] \\ &= \frac{1}{2} \Pr[\mathit{KEG}_{\mathcal{A},\mathit{DHKE}}(\lambda) = \mathit{Success}|b=1] + \frac{1}{2} \Pr[\mathit{KEG}_{\mathcal{A},\mathit{DHKE}}(\lambda) = \mathit{Success}|b=0] \\ &= \frac{1}{2} \Pr[\mathcal{B}(\mathbb{G},g^{\mathsf{X}_1},g^{\mathsf{X}_2},y)=1] + \frac{1}{2} \Pr[\mathcal{B}(\mathbb{G},g^{\mathsf{X}_1},g^{\mathsf{X}_2},g^{\mathsf{X}_1\mathsf{X}_2})=0] \\ &= \frac{1}{2} \Pr[\mathcal{B}(\mathbb{G},g^{\mathsf{X}_1},g^{\mathsf{X}_2},y)=1] + \frac{1}{2} (1 - \Pr[\mathcal{B}(\mathbb{G},g^{\mathsf{X}_1},g^{\mathsf{X}_2},g^{\mathsf{X}_1\mathsf{X}_2})=1]) \\ &= \frac{1}{2} + \frac{1}{2} (\Pr[\mathcal{B}(\mathbb{G},g^{\mathsf{X}_1},g^{\mathsf{X}_2},y)=1] - \Pr[\mathcal{B}(\mathbb{G},g^{\mathsf{X}_1},g^{\mathsf{X}_2},g^{\mathsf{X}_1\mathsf{X}_2})=1]) \\ &\leq \frac{1}{2} + \frac{1}{2} |\Pr[\mathcal{B}(\mathbb{G},g^{\mathsf{X}_1},g^{\mathsf{X}_2},y)=1] - \Pr[\mathcal{B}(\mathbb{G},g^{\mathsf{X}_1},g^{\mathsf{X}_2},g^{\mathsf{X}_1\mathsf{X}_2})=1]| \\ &\leq \frac{1}{2} + \frac{1}{2} |\operatorname{Adv}_{\mathcal{B}}^{\mathrm{ddh}}(\lambda) \leq \frac{1}{2} + \frac{1}{2} \mathrm{negl}(\lambda) \end{split}$$

АТОПО

Ενεργοί Αντίπαλοι

Η σημασία του μοντέλου ασφάλειας - Man In The Middle Attacks

Πώς είμαι σίγουρος ότι μιλάω με αυτόν που νομίζω ότι μιλάω; Λύση: ψηφιακές υπογραφές - ψηφιακό πιστοποιητικό (εγγύηση 'έμπιστου' τρίτου)

Πραγματικά παραδείγματα

Superfish (02/2015)

- Προεγκατεστημένο λογισμικό Visual Discovery:
 προσπάθεια για εμφάνιση διαφημίσεων όχι με βάση κείμενο αλλά με βάση εικόνες
- · Παρακολούθηση δικτυακής κίνησης και μέσω https
- · Λογισμικό proxy που λειτουργεί ως MiTM
- · Εγκατάσταση και (self signed) ψηφιακού πιστοποιητικού

Και άλλες ανάλογες περιπτώσεις: πχ. DELL - 10/2015

48 / 48