Projet 6 : Classifiez automatiquement des biens de consommation

Eva Rondeau

Présentation

Objectif: faciliter la mise en ligne de nouveaux produits (vendeurs) et la recherche de ces nouveaux produits (acheteurs) en automatisant l'attribution de la catégorie du produit à partir de la description et des images des produits

Jeu de données:

- 1050 lignes (produits)
- 15 colonnes (informations complémentaires)

Informations produits Lien Nom du produit Catégories Prix (rabais ou non) Nom image Description Marque Note

Analyse exploratoire

1. Valeurs manquantes

2. Doublons

Pas de doublons observés.

Aucun nettoyage à prévoir

3. Catégories

• 642 catégories uniques

["Baby Care >> Baby Bedding >> Baby Blankets >> Offspring Baby Blankets"]

Sélection de la catégorie générale :

• 7 catégories générales

Diagramme en camembert de la répartition des différentes catégories

4. Description

Majorité des produits contenant un faible nombre de caractères (< 500)

Pré-traitement

1. TEXTE

Processus de transformation afin de préparer les données textuelles à la classification

1.1 Phrase d'exemple

'Buy Go Hooked Wheel Pizza Cutter for Rs.199 online. Go Hooked Wheel Pizza Cutter at best prices with FREE shipping & cash on d elivery. Only Genuine Products. 30 Day Replacement Guarantee.'

1.2. Mise en minuscule

'buy go hooked wheel pizza cutter for rs.199 online. go hooked wheel pizza cutter at best prices with free shipping & cash on d elivery. only genuine products. 30 day replacement guarantee.'

1.3. Tokenisation

```
['buy', 'go', 'hooked', 'wheel', 'pizza', 'cutter', 'for', 'rs.199', 'online', '..', 'go', 'hooked', 'wheel', 'pizza', 'cutter', 'at', 'best', 'prices', 'with', 'free', 'shipping', '&', 'cash', 'on', 'delivery', '..', 'only', 'genuine', 'products', '..', '3 0', 'day', 'replacement', 'guarantee', '.']
```

1.4. Suppression ponctuation

```
['buy', 'go', 'hooked', 'wheel', 'pizza', 'cutter', 'for', 'rs', '199', 'online', 'go', 'hooked', 'wheel', 'pizza', 'cutter', 'at', 'best', 'prices', 'with', 'free', 'shipping', 'cash', 'on', 'delivery', 'only', 'genuine', 'products', '30', 'day', 'repl acement', 'guarantee']
```

1.5. Suppression stop-words

```
['buy', 'go', 'hooked', 'wheel', 'pizza', 'cutter', 'rs', '199', 'online', 'go', 'hooked', 'wheel', 'pizza', 'cutter', 'best', 'prices', 'free', 'shipping', 'cash', 'delivery', 'genuine', 'products', '30', 'day', 'replacement', 'guarantee']
```

1.6. Lemmatisation

```
['buy', 'go', 'hooked', 'wheel', 'pizza', 'cutter', 'r', '199', 'online', 'go', 'hooked', 'wheel', 'pizza', 'cutter', 'best', 'price', 'free', 'shipping', 'cash', 'delivery', 'genuine', 'product', '30', 'day', 'replacement', 'guarantee']
```

Racinisation vs. Lemmatisation

- <u>Racinisation</u> (stemming): réduction du mot à sa racine (radical) après suppression suffixe et préfixe (coupe les mots, plus difficile à interpréter).
- <u>Lemmatisation</u>: réduction du mot à sa forme canonique (verbe à l'infinitif, singulier masculin, ...). Prend en compte la signification des mots.

Après nettoyage :

- Phrase d'exemple : 35 tokens ⇒ 26 tokens
- Corpus : 90 712 tokens ⇒ 59 786 tokens

Pré-traitement

1. TEXTE

WORDCLOUD

Mots assez généralistes (free, shipping, genuine, products, ...)

- 1.7. Suppression mots fréquents
- 1.8. Suppression mots rares
- 1.9. Suppression mots courts (< 3 lettres)

Pour chaque catégorie :

Home Furnishing:

Baby Care

Watches

Computers

Home Decor & Festive Needs

Kitchen & Dining

Beauty and Personal Care

1. TEXTE

<u>Extraction features</u>: transformation données textuelles en données numériques

« Bag of Words » (sac de mots)

- Texte représenté sous forme de **vecteurs**
- Conversion du texte en matrice d'occurrence de mots
- Ne prennent pas en compte l'ordre et le contexte

Mot											
\downarrow											
		youth	youthful	yuva	zero	zinc	zingalalaa	zipper	zone	zora	zyxel
Document \longrightarrow	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	0
	2	0	0	0	0	0	0	0	0	0	0
	3	0	0	0	0	0	0	0	0	0	0
	4	0	0	0	0	0	0	0	0	0	0

CountVectorizer	Tf-idf						
Nombre d'occurrences de chaque mot dans le document.	Prise en compte de la fréquence de chaque mot dans le document et dans le corpus.						

Word Embeddings (incorporation de mots)

- Texte représenté sous forme de **vecteurs**
- Capturent des informations plus denses: contexte et ordre des mots dans un texte

Word2Vec	BERT	USE			
Identifie les similarités et relations linguistiques entre les mots. - CBOW: prédit le mot selon le contexte - Skip-gram: prédit le contexte selon le mot	Modèle de langage bidirectionnel : identifie la signification des mots dans un contexte donné: Prend en compte le contexte précédent ET suivant le mot.	Une phrase utilisée pour prédire la phrase suivante ou précédente			

Pré-traitement

2. IMAGE

2.1. Redimensionnement

Dimensions image: 1478 x 904

Dimensions image: 224 x 224

2.2. Niveaux de gris + contrastes

58 descripteurs (vecteurs de longueur 128)

Pré-traitement :

- <u>Niveaux de gris</u> : évite de se concentrer sur les différentes composantes de couleur mais uniquement sur les variations d'intensité
- <u>Contrastes de l'image</u> : mise en évidence des points d'intérêts : histogramme utilisé pour augmenter les contrastes des pixels
- <u>Descripteurs</u>: vecteurs numériques représentant les caractéristiques visuelles locales des points d'intérêts détectés par l'algorithme SIFT (Scale-Invariant Feature Transform)

2. IMAGE

Algorithme SIFT (Scale-Invariant Feature Transform)

 Utilise la Différence des Gaussiens (DoG) calculé en soustrayant les images voisines

 Valeurs du DoG utilisées afin de localiser précisément les points d'intérêts (extrema locaux)

- Points d'intérêts rendus invariants à l'orientation et à l'échelle (calculé en fonction des orientations locales)
- Descripteurs calculés pour chaque point d'intérêt
- Correspondances des caractéristiques entre 2 images :

17 correspondances trouvées

2. IMAGE

Algorithme CNN (Conventional Neural Network)

- Réseaux de neurones convolutifs
- Modèles de classification d'images
- Extraction automatique des features pertinentes
- Couches de neurones :
 - ✓ Convolution : bords, formes, texture
 - ✓ Pooling : réduction dimension spatiale données
 - Couches denses : prédictions, classifications données

1. VGG16

- Entrainé sur plus d'1 million d'images
- Base de données : ImageNet
- Classement des images en 1000 classes d'objets

Architecture:

- 16 couches :
 - √ 13 couches de convolution
 - ✓ 3 couches denses avec 4096 neurones chacune

Transfer Learning

- Utilisation modèle pré-entraîné
- Evite de repartir de 0
- Gain de temps

Architecture VGG16:

2. IMAGE

2. ResNet50 (Residual Network 50)

Architecture : blocs résiduels de différentes tailles 1 bloc = couches de convolution, normalisation, mise à l'échelle et pooling

- 50 couches:
 - ✓ Combinaison de convolutions avec différents noyaux et filtres

3. InceptionV3

• 48 couches :

- ✓ Couches initiales (Stem) : pré-traitement données en entrée
- ✓ Blocs Inception : passage informations à travers les blocs en évitant les pertes
- ✓ Blocs Réduction : après blocs Inception, réduction de dimensions spatiales des caractéristiques
- ✓ Global Average Pooling : agrégation des informations spatiales en calculant la moyenne des caractéristiques
- ✓ Couches de classification (fully-connected)

Résultats de la faisabilité

Réduction de dimensions:

- Création de nouvelles features
- Conservation des informations utiles à la classification
- Gain en temps de calcul
- Technique utilisée : t-SNE (t-Distributed Stochastic Neighbor Embedding)

1. TEXTE

Modèle	Score ARI
CountVectorizer	0,497
Tf-idf	0,507
Word2Vec (CBOW)	0,396
Word2Vec (SG)	0,355
BERT	0,321
USE	0,397

Score ARI (Adjusted Rand Index):

- Score de similitude
- Evalue la qualité de regroupement des clusters
- Compare les clusters obtenus avec les clusters de référence (vraies étiquettes)

2. IMAGE

Modèle	Score ARI
SIFT	0,053
VGG16	0,452
ResNet50	0,479
InceptionV3	0,557

Résultats de la faisabilité

3. TEXTE + IMAGE

- Meilleur score ARI: BERT (texte) + ResNet50 (image)
- SIFT: proche de 0
- Modèles d'extraction de données images ayant une influence plus forte par rapport aux modèles d'extraction de données textuelles

Classification image

Idée : déterminer si les images présentent des caractéristiques visuelles distinctes justifiant de les classer dans des catégories différentes

- **1. Séparation** des données d'entrainement, de test et de validation
- 2. Création du modèle (VGG16, ResNet50, InceptionV3)
- Utilisation de métriques évaluant la performance de chaque modèle:
 - Accuracy: proportion d'images correctement classées par rapport à l'ensemble
 - <u>Loss</u> : erreur entre les prédictions du modèle et les étiquettes de classes réelles
 - <u>Temps d'entrainement</u> : temps de calcul pour l'entrainement du modèle

Résultats:

	Data Augmentation	Validation accuracy	Validation loss	Train accuracy	Train Loss	Time
Model						
VGG16	No Data augmentation	0.836502	0.717688	0.979670	0.064009	1221.731733
ResNet50	No Data augmentation	0.840304	0.684557	0.963151	0.100062	388.292922
InceptionV3	No Data augmentation	0.844106	0.561488	0.950445	0.152528	644.806028

- Différence de **temps de calcul** entre VGG16 (long) et ResNet50 (court)
- Meilleur apprentissage sur les données d'entrainement pour VGG16
- Meilleures capacités de généralisation pour InceptionV3

Classification image

<u>Data augmentation</u>: technique de pré-traitement appliquant des transformations aléatoires aux images existantes et créant ainsi de nouvelles versions des images originales

Classification image

Data augmentation

- ImageDataGenerator : augmentations de données images en les modifiant aléatoirement « à la volée »
- Approche utilisant des couches de pré-traitement : transformations appliquées sur toutes les images

Résultats

- Pas d'amélioration observée après data augmentation
- Valeurs d'accuracy altérées après data augmentation pour ResNet50
- Meilleurs résultats atteints pour les modèles sans data augmentation
- Temps de calcul élevés pour VGG16
- Temps de calcul augmentés après data augmentation pour VGG16 et ResNet50, mais diminués pour InceptionV3

Classification texte + image

Combinaison features extraites par BERT (texte) et ResNet50 (images)

Accuracy score pour chaque modèle de classification supervisée pour la combinaison des features texte et image

• Meilleurs scores accuracy obtenus : SVM et Logistic Regression

- Catégories bien prédites : Baby Care, Beauty and Personal Care, Home Furnishing
- Catégories moins bien prédites : Watches, Home Decor & Festive Needs

Test de l'API

Programme permettant à des applications de communiquer et échanger ensemble

Objectif: élargir la gamme de produits dans l'épicerie fine et collecte de produits à base de champagne.

Récupération des 10 premiers produits à base de champagne afin d'offrir aux clients un plus large choix de produits.

Conclusion

Intérêt(s) d'automatiser l'attribution de la catégorie d'un nouvel article à partir d'une description et/ou une image

Kitchen & Dining

Description de l'article : Buy NIKsales 7 W LED Bulb for Rs.365 online. NIKsales 7 W LED Bulb at best prices with FREE shipping & cash on delivery. Only Genuine Products. 30 Day Replacement Guarantee.

Gain de temps

Moins de risque d'erreur

Meilleure précision

Grand nombre de produits

Expérience acheteur améliorée

Expérience vendeur facilitée