Assessed Coursework: Systems Verification

Ioannis Kassinopoulos

February 12, 2013

Question 1

Figure 1: The transition system \mathcal{M}_1 .

Algebraic Form

A transition system $\mathcal{M}=(S,\to,\pi)$ is a set of states S endowed with a transition relation \to (a binary relation on S), such that every $s\in S$ has some $s'\in S$ with $s\to s'$, and an inverse labeling function $\pi:\mathcal{P}\to S$.

```
Our system \mathcal{M}_1 (figure: 1) can be described as following: \mathcal{P} = \{p,q,r,t\}

\mathcal{M}_1 = \{\{s_0,s_1,s_2,s_3\},\{(s_0,s_0),(s_0,s_1),(s_0,s_3),(s_1,s_2),(s_2,s_1),(s_3,s_1)\},\pi\}

\pi(p) = \{s_1,s_3\}

\pi(q) = \{s_2,s_3\}

\pi(r) = \{s_0,s_1,s_2\}

\pi(t) = \{s_1\}
```

Infinite Tree

Figure 2: Unwinding the system described by \mathcal{M}_1 as an infinite tree of all computation paths beginning in s_0 (first layer).

Satisfiability

Question 2

Question 3

Question 4

Let $\phi = (x_1 \wedge x_2) \vee (y_1 \wedge y_2)$, the following truth table is derived to help us with our calculations

x_1	x_2	y_1	y_2	$x_1 \wedge x_2$	$y_1 \wedge y_2$	$(x_1 \wedge x_2) \vee (y_1 \wedge y_2)$
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	0	1	0	0	0	0
0	0	1	1	0	1	1
0	1	0	0	0	0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	1	1	0	1	1
1	0	0	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	0	0	0
1	0	1	1	0	1	1
1	1	0	0	1	0	1
1	1	0	1	1	0	1
1	1	1	0	1	0	1
1	1	1	1	1	1	1

Binary Decision Tree

Figure 3: A BDT is easily derrived from the truth table. Every non-terminal node is labelled with a variable and every terminal node is labelled with either 0 or 1.

ROBDD for x1 x2 y1 y2

ROBDD for x1 y1 y2 x2

Discuss how ordering impacts ROBDD $\,$

Suggest an algorithm for choosing ordering