Lecture 7: Feature Matching

Correspondence and alignment

 Correspondence: matching points, patches, edges, or regions across images

Overview of Keypoint Matching

- Find a set of distinctive key-points
- 2. Define a region around each keypoint
- 3. Extract and normalize the region content
- 4. Compute a local descriptor from the normalized region
- 5. Match local Special Topics in Image Proc. descriptors

3

Review: Harris corner detector

- Approximate distinctiveness by local autocorrelation.
- Approximate local auto-correlation by second moment matrix
- Quantify distinctiveness (or cornerness) as function of the eigenvalues of the second moment matrix.
- But we don't actually need to compute the eigenvalues by using the determinant and trace of the second moment matrix.

Harris Detector

Second moment matrix

$$\mu(\sigma_{I}, \sigma_{D}) = g(\sigma_{I}) * \begin{bmatrix} I_{x}^{2}(\sigma_{D}) & I_{x}I_{y}(\sigma_{D}) \\ I_{x}I_{y}(\sigma_{D}) & I_{y}^{2}(\sigma_{D}) \end{bmatrix}$$
 derivatives (optionally, blur first)

1. Image

 $\det M = \lambda_1 \lambda_2$ trace $M = \lambda_1 + \lambda_2$ 2. Square of derivatives

3. Gaussian filter $g(\sigma_I)$

4. Cornerness function – both eigenvalues are strong

$$har = \det[\mu(\sigma_{I}, \sigma_{D})] - \alpha[\operatorname{trace}(\mu(\sigma_{I}, \sigma_{D}))^{2}] =$$

$$g(I_{x}^{2})g(I_{y}^{2}) - [g(I_{x}I_{y})]^{2} - \alpha[g(I_{x}^{2}) + g(I_{y}^{2})]^{2}$$

5. Noη₅maxima suppression

Special Topics in Image Proc.

So far: can localize in x-y, but not scale

How to find corresponding patch sizes?

Function responses for increasing scale (scale signature)

Function responses for increasing scale (scale signature)

Function responses for increasing scale (scale signature)

What Is A Useful Signature Function?

Difference-of-Gaussian = "blob" detector

Difference-of-Gaussian (DoG)

4/28/2022

Special Topics in Image Proc.

DoG – Efficient Computation

Computation in Gaussian scale pyramid

Find local maxima in position-scale space of Difference-of-Gaussian

Results: Difference-of-Gaussian

Orientation Normalization

- Compute orientation histogram
- Select dominant orientation
- Normalize: rotate to fixed orientation

Harris-Laplace

Initialization: Multiscale Harris corner

 σ^2

 σ

detection

Computing Harris function

Special Topics in Image Proc.

Detecting local maxima

Harris-Laplace

- Initialization: Multiscale Harris corner detection
- Scale selection based on Laplacian
 (same procedure with Hessian ⇒ Hessian-Laplace)
 Harris points

Harris-Laplace points

Maximally Stable Extremal Regions(MSER)

- Based on Watershed segmentation algorithm
- Select regions that stay stable over a large parameter range

Example Results: MSER

Comparison

Harris

Hessian

LoG

MSER

Available at a web site

- For most local feature detectors, executables are available online:
 - http://www.robots.ox.ac.uk/~vgg/research/affine
 - http://www.cs.ubc.ca/~lowe/keypoints/
 - http://www.vision.ee.ethz.ch/~surf

Image representations

- Templates
 - Intensity, gradients, etc.

- Histograms
 - Color, texture, SIFT descriptors, etc.

Image Representations: Histograms

Global histogram

- Represent distribution of features
 - Color, texture, depth, ...

Image Representations: Histograms

Histogram: Probability or count of data in each bin

Joint histogram

- Requires lots of data
- Loss of resolution to avoid empty bins

- Requires independent features
- More data/bin than

Image Representations: Histograms

Clustering

Use the same cluster centers for all images

Computing histogram distance

$$histint(h_i, h_j) = 1 - \sum_{i=1}^{K} \min(h_i(m), h_j(m))$$

Histogram intersection (assuming normalized histograms)

$$\chi^{2}(h_{i},h_{j}) = \frac{1}{2} \sum_{m=1}^{K} \frac{[h_{i}(m) - h_{j}(m)]^{2}}{h_{i}(m) + h_{j}(m)}$$

Chi-squared Histogram matching distance

Special Topics in Image Proc. Special Topics in Image Proc. Cars found by color histogram matching using chi-squared

Histograms: Implementation issues

- Quantization
 - Grids: fast but applicable only with few dimensions
 - Clustering: slower but can quantize data in higher dimensions

Need less data Coarser representation Many Bins

Need more data Finer representation

- Matching
 - Histogram intersection or Euclidean may be faster
 - Chi-squared often works better
 - Earth mover's distance is good for when nearby bins represent similar values

What kind of things do we compute histograms of?

Color

Texture (filter banks or HOG over regions)

What kind of things do we compute histograms of?

Histograms of oriented gradients

$$m(x,y) = \sqrt{(L(x+1,y) - L(x-1,y))^2 + (L(x,y+1) - L(x,y-1))^2}$$

$$\theta(x,y) = \tan^{-1}((L(x,y+1) - L(x,y-1))/(L(x+1,y) - L(x-1,y)))$$

How to generate Keypoint descriptor Based on SIFT(1)

$$m(x,y) = \sqrt{(L(x+1,y) - L(x-1,y))^2 + (L(x,y+1) - L(x,y-1))^2}$$

$$\theta(x,y) = \tan^{-1}((L(x,y+1) - L(x,y-1))/(L(x+1,y) - L(x-1,y)))$$

-

How to generate Keypoint descriptor Based on SIFT(2)

How to generate Keypoint descriptor based on SIFT(3)

그림 15. keypoint 주변 그레디언트 방향 히스토그램 [1]

그림 16. 하나의 keypoint의 특징을 나타내는 128개의 숫자를 얻는 과정

SIFT vector formation

- Computed on rotated and scaled version of window according to computed orientation & scale
 - resample the window
- Based on gradients weighted by a Gaussian of variance half the window (for smooth falloff)

SIFT vector formation

- 4x4 array of gradient orientation histogram weighted by magnitude
- 8 orientations x 4x4 array = 128 dimensions
- Motivation: some sensitivity to spatial layout, but not too much.

Ensure smoothness

- Gaussian weight
 - Trilinear interpolation
 - a given gradient contributes to 8 bins:4 in space times 2 in orientation

Reduce effect of illumination

- 128-dim vector normalized to 1
- Threshold gradient magnitudes to avoid excessive influence of high gradients
 - after normalization, clamp gradients >0.2
 - renormalize

Local Descriptors: Shape Context

Count the number of points inside each bin, e.g.:

$$Count = 4$$

•

Count = 10

Log-polar binning: more precision for nearby points, more flexibility for farther points.

Shape Context Descriptor

Local Descriptors: Geometric Blur

(Idealized signal)

Example descriptor

Self-similarity Descriptor

Figure 1. These images of the same object (a heart) do NOT share common image properties (colors, textures, edges), but DO share a similar geometric layout of local internal self-similarities.

Matching Local Self-Similarities across Images and Videos, Shechtman and Irani, 2007

1

Self-similarity Descriptor

Matching Local Self-Similarities across Images and Videos, Shechtman and Irani, 2007

Self-similarity Descriptor

Matching Local Self-Similarities across Images and Videos, Shechtman and Irani, 2007

Right features depend on what you want to know

- Shape: scene-scale, object-scale, detail-scale
 - 2D form, shading, shadows, texture, linear perspective
- Material properties: albedo, feel, hardness, ...
 - Color, texture
- Motion
 - Optical flow, tracked points
- Distance
 - Stereo, position, occlusion, scene shape
 - If known object: size, other objects

Local Descriptors

- Most features can be thought of as templates, histograms (counts), or combinations
- The ideal descriptor should be
 - Robust
 - Distinctive
 - Compact
 - Efficient
- Most available descriptors focus on edge/gradient information
 - Capture texture information
 - Color rarely used

Local Descriptors: SURF

Fast approximation of SIFT idea

Efficient computation by 2D box filters & integral images ⇒ 6 times faster than SIFT Equivalent quality for object identification

GPU implementation available

Feature extraction @ 200Hz (detector + descriptor, 640×480 img)

http://www.vision.ee.ethz.ch/~surf

Choosing a detector

- What do you want it for?
 - Precise localization in x-y: Harris
 - Good localization in scale: Difference of Gaussian
 - Flexible region shape: MSER
- Best choice often application dependent
 - Harris-/Hessian-Laplace/DoG work well for many natural categories
 - MSER works well for buildings and printed things
- Why choose?
 - Get more points with more detectors
- There have been extensive evaluations/comparisons
 - [Mikolajczyk et al., IJCV'05, PAMI'05]
 - All detectors/descriptors shown here work well

Comparison of Keypoint Detectors

Table 7.1 Overview of feature detectors.

1.4				Rotation	Scale	Affine		Localization		
Feature Detector	Corner	Blob	Region	invariant	invariant	invariant	Repeatability	accuracy	Robustness	Efficiency
Harris	\vee	(9)		√			+++	+++	+++	++
Hessian	10001	\checkmark		\checkmark			++	++	++	+
SUSAN	\checkmark			\checkmark			++	++	++	+++
Harris-Laplace	\checkmark	(√)		√	√		+++	+++	++	+
Hessian-Laplace	(√)	\checkmark		\checkmark	\checkmark		+++	+++	+++	+
DoG	(√)	\checkmark		\checkmark	\checkmark		++	++	++	++
SURF	(√)	\checkmark		\checkmark	\checkmark		++	++	++	+++
Harris-Affine	√	(√)	-	√	√	√	+++	+++	++	++
Hessian-Affine	(√)	\checkmark		\checkmark	\checkmark	\checkmark	+++	+++	+++	++
Salient Regions	(√)	\checkmark		\checkmark	\checkmark	(√)	+	+	++	+
Edge-based	\checkmark			\checkmark	\checkmark	\checkmark	+++	+++	+	+
MSER			\checkmark	√	√	√	+++	+++	++	+++
Intensity-based			\checkmark	\checkmark	\checkmark	\checkmark	++	++	++	++
Superpixels			\checkmark	\checkmark	(√)	(√)	+	+	+	+

Choosing a descriptor

- Again, need not stick to one
- For object instance recognition or stitching, SIFT or variant is a good choice

Things to remember

- Keypoint detection: repeatable and distinctive
 - Corners, blobs, stable regions
 - Harris, DoG
- Descriptors: robust and selective
 - spatial histograms of orientation
 - SIFT

Feature Matching and Robust Fitting

Review: Interest points

- Keypoint detection: repeatable and distinctive
 - Corners, blobs, stable regions
 - Harris, DoG, MSER

Review: Choosing an interest point detector

- What do you want it for?
 - Precise localization in x-y: Harris
 - Good localization in scale: Difference of Gaussian
 - Flexible region shape: MSER
- Best choice often application dependent
 - Harris-/Hessian-Laplace/DoG work well for many natural categories
 - MSER works well for buildings and printed things
- Why choose?
 - Get more points with more detectors
- There have been extensive evaluations/comparisons
 - [Mikolajczyk et al., IJCV'05, PAMI'05]
 - All detectors/descriptors shown here work well 4/28/2022 Special Topics in Image Proc.

Review: Local Descriptors

- Most features can be thought of as templates, histograms (counts), or combinations
- The ideal descriptor should be
 - Robust and Distinctive
 - Compact and Efficient
- Most available descriptors focus on edge/gradient information
 - Capture texture information
 - Color rarely used

4

Feature Matching

- Szeliski 4.1.3
 - Simple feature-space methods
 - Evaluation methods
 - Acceleration methods
 - Geometric verification (Chapter 6)

Feature Matching

Simple criteria: One feature matches to another if those features are nearest neighbors and their distance is below some threshold.

Problems:

- Threshold is difficult to set
- Non-distinctive features could have lots of close matches, only one of which is correct

Comparison of Keypoint Detectors

Table 7.1 Overview of feature detectors.

A-				Rotation	Scale	Affine		Localization		
Feature Detector	Corner	Blob	Region	invariant	invariant	invariant	Repeatability	accuracy	Robustness	Efficiency
Harris	\checkmark	Ox.		√			+++	+++	+++	++
Hessian	10000	\checkmark		\checkmark			++	++	++	+
SUSAN	\checkmark			\checkmark			++	++	++	+++
Harris-Laplace	√	(√)		√	√		+++	+++	++	+
Hessian-Laplace	(√)	\checkmark		\checkmark	\checkmark		+++	+++	+++	+
DoG	(√)	\checkmark		\checkmark	\checkmark		++	++	++	++
SURF	(√)	\checkmark		\checkmark	\checkmark		++	++	++	+++
Harris-Affine	√	(√)		√	√	√	+++	+++	++	++
Hessian-Affine	(√)	\checkmark		\checkmark	\checkmark	\checkmark	+++	+++	+++	++
Salient Regions	(√)	\checkmark		\checkmark	\checkmark	(√)	+	+	++	+
Edge-based	\checkmark			\checkmark	\checkmark	\checkmark	+++	+++	+	+
MSER			\checkmark	√	√	√	+++	+++	++	+++
Intensity-based			\checkmark	\checkmark	\checkmark	\checkmark	++	++	++	++
Superpixels			\checkmark	\checkmark	()	(√)	+	+	+	+

How do we decide which features match?

Fitting and Alignment

 Fitting: find the parameters of a model that best fit the data

Alignment: find the parameters of the transformation that best align matched points

Fitting and Alignment

- Design challenges
 - Design a suitable goodness of fit measure
 - Similarity should reflect application goals
 - Encode robustness to outliers and noise
 - Design an optimization method
 - Avoid local optima
 - Find best parameters quickly

Fitting and Alignment: Methods

- Global optimization / Search for parameters
 - Least squares fit
 - Robust least squares
 - Iterative closest point (ICP)
- Hypothesize and test
 - Generalized Hough transform
 - RANSAC

Least squares line fitting

$$E = \sum_{i=1}^{n} (y_i - mx_i - b)^2$$

- •Data: $(x_1, y_1), ..., (x_n, y_n)$
- •Line equation: $y_i = m x_i + b$

Find
$$(m, b)$$
 to minimize
$$E = \sum_{i=1}^{n} \left[\begin{bmatrix} x_i & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} - y_i \right]^2 = \begin{bmatrix} x_1 & 1 \\ \vdots & \vdots \\ x & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} - \begin{bmatrix} y_1 \\ \vdots \\ y \end{bmatrix}^2 = \|\mathbf{A}\mathbf{p} - \mathbf{y}\|^2$$

$$= \mathbf{y}^T \mathbf{y} - 2(\mathbf{A}\mathbf{p})^T \mathbf{y} + (\mathbf{A}\mathbf{p})^T (\mathbf{A}\mathbf{p})$$

$$\frac{dE}{dp} = 2\mathbf{A}^T \mathbf{A} \mathbf{p} - 2\mathbf{A}^T \mathbf{y} = 0$$

Matlab: $p = A \setminus y$;

$$\mathbf{A}^{T}\mathbf{A}\mathbf{p} = \mathbf{A}^{T}\mathbf{y} \Rightarrow \mathbf{p} = (\mathbf{A}^{T}\mathbf{A})^{-1}\mathbf{A}^{T}\mathbf{y}$$

4/28/2022 Special Topics in Image Proc.

Problem with "vertical" least squares

- Not rotation-invariant
- Fails completely for vertical lines

4

Total least squares

If
$$(a^2+b^2=1)$$
 then
Distance between point (x_i, y_i) is $|ax_i + by_i + c|$

proof:

http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html

Total least squares

If
$$(a^2+b^2=1)$$
 then
Distance between point (x_i, y_i) is $|ax_i + by_i + c|$

Find (a, b, c) to minimize the sum of squared perpendicular distances

$$E = \sum_{i=1}^{n} (ax_i + by_i + c)^2$$

Total least squares

Find (a, b, c) to minimize the sum of squared perpendicular distances

$$E = \sum_{i=1}^{n} (ax_i + by_i + c)^2$$

$$\frac{\partial E}{\partial c} = \sum_{i=1}^{n} 2(ax_i + by_i + c) = 0$$

squared perpendicular distances
$$E = \sum_{i=1}^{n} (ax_i + by_i + c)^2$$

$$\frac{\partial E}{\partial c} = \sum_{i=1}^{n} 2(ax_i + by_i + c) = 0$$

$$c = -\frac{a}{n} \sum_{i=1}^{n} x_i - \frac{b}{n} \sum_{i=1}^{n} y_i = -a\bar{x} - b\bar{y}$$

$$E = \sum_{i=1}^{n} (a(x_i - \overline{x}) + b(y_i - \overline{y}))^2 = \begin{bmatrix} x_1 - \overline{x} & y_1 - \overline{y} \\ \vdots & \vdots \\ x_n - \overline{x} & y_n - \overline{y} \end{bmatrix}^2 = \mathbf{p}^T \mathbf{A}^T \mathbf{A} \mathbf{p}$$

$$\min \mathbf{p}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{p} \quad \text{s.t. } \mathbf{p}^{T} \mathbf{p} = 1 \quad \Rightarrow \quad \min \mathbf{p}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{p}$$

Solution is eigenvector corresponding to smallest eigenvalue of A^TA

Problem statement

minimize $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2$

least squares solution to Ax = b

Solution

$$\mathbf{x} = \left(\mathbf{A}^T \mathbf{A}\right)^{-1} \mathbf{A}^T \mathbf{b}$$

$$\mathbf{x} = \mathbf{A} \setminus \mathbf{b}$$
 (matlab)

Problem statement

minimize $\mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x}$ s.t. $\mathbf{x}^T \mathbf{x} = 1$

$$\mininize \frac{\mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x}}{\mathbf{x}^T \mathbf{x}}$$

Solution

$$[\mathbf{v}, \lambda] = \operatorname{eig}(\mathbf{A}^T \mathbf{A})$$

$$\lambda_1 < \lambda_{2..n} : \mathbf{x} = \mathbf{v}_1$$

non - trizgizadelsq solution to Aspecial Topics in Image Proc.

Least squares (global) optimization

Good

- Clearly specified objective
- Optimization is easy

Bad

- May not be what you want to optimize
- Sensitive to outliers
 - Bad matches, extra points
- Doesn't allow you to get multiple good fits
 - Detecting multiple objects, lines, etc.