256 Kbit / 512 Kbit / 1 Mbit / 2 Mbit (x8) Many-Time Programmable Flash SST27SF256 / SST27SF512 / SST27SF010 / SST27SF020

Data Sheet

FEATURES:

- Organized as 32K x8 / 64K x8 / 128K x8 / 256K x8
- 4.5-5.5V Read Operation
- Superior Reliability
 - Endurance: At least 1000 Cycles
 - Greater than 100 years Data Retention
- Low Power Consumption
 - Active Current: 20 mA (typical)Standby Current: 10 μA (typical)
- Fast Read Access Time
 - 70 ns
 - 90 ns

Fast Byte-Program Operation

- Byte-Program Time: 20 μs (typical)
- Chip Program Time:
 - 0.7 seconds (typical) for SST27SF256
 - 1.4 seconds (typical) for SST27SF512
 - 2.8 seconds (typical) for SST27SF010
 - 5.6 seconds (typical) for SST27SF020

Electrical Erase Using Programmer

- Does not require UV source
- Chip-Erase Time: 100 ms (typical)
- TTL I/O Compatibility
- JEDEC Standard Byte-wide EPROM Pinouts
- Packages Available
 - 32-pin PLCC
 - 32-pin TSOP (8mm x 14mm)
 - 28-pin PDIP for SST27SF256/512
 - 32-pin PDIP for SST27SF010/020

PRODUCT DESCRIPTION

The SST27SF256/512/010/020 are a 32K x8 / 64K x8 / 128K x8 / 256K x8 CMOS, Many-Time Programmable (MTP) low cost flash, manufactured with SST's proprietary, high performance SuperFlash technology. The split-gate cell design and thick oxide tunneling injector attain better reliability and manufacturability compared with alternate approaches. These MTP devices can be electrically erased and programmed at least 1000 times using an external programmer with a 12 volt power supply. They have to be erased prior to programming. These devices conform to JEDEC standard pinouts for byte-wide memories.

Featuring high performance Byte-Program, the SST27SF256/512/010/020 provide a Byte-Program time of 20 µs. Designed, manufactured, and tested for a wide spectrum of applications, these devices are offered with an endurance of at least 1000 cycles. Data retention is rated at greater than 100 years.

The SST27SF256/512/010/020 are suited for applications that require infrequent writes and low power nonvolatile storage. These devices will improve flexibility, efficiency, and performance while matching the low cost in nonvolatile applications that currently use UV-EPROMs, OTPs, and mask ROMs.

To meet surface mount and conventional through hole requirements, the SST27SF256/512 are offered in 32-pin PLCC, 32-pin TSOP, and 28-pin PDIP packages. The SST27SF010/020 are offered in 32-pin PDIP, 32-pin PLCC and 32-pin TSOP packages. See Figures 1, 2, and 3 for pinouts.

Device Operation

The SST27SF256/512/010/020 are a low cost flash solution that can be used to replace existing UV-EPROM, OTP, and mask ROM sockets. These devices are functionally (read and program) and pin compatible with industry standard EPROM products. In addition to EPROM functionality, these devices also support electrical erase operation via an external programmer. They do not require a UV source to erase, and therefore the packages do not have a window.

Read

The Read operation of the SST27SF256/512/010/020 is controlled by CE# and OE#. Both CE# and OE# have to be low for the system to obtain data from the outputs. Once the address is stable, the address access time is equal to the delay from CE# to output (T_{CE}). Data is available at the output after a delay of T_{OE} from the falling edge of OE#, assuming that CE# pin has been low and the addresses have been stable for at least T_{CE} - T_{OE} . When the CE# pin is high, the chip is deselected and a typical standby current of 10 μ A is consumed. OE# is the output control and is used to gate data from the output pins. The data bus is in high impedance state when either CE# or OE# is high.

Byte-Program Operation

The SST27SF256/512/010/020 are programmed by using an external programmer. The programming mode for SST27SF256/010/020 is activated by asserting 12V (±5%)

Data Sheet

on V_{PP} pin, V_{DD} = 5V (\pm 5%), V_{IL} on CE# pin, and V_{IH} on OE# pin. The programming mode for SST27SF512 is activated by asserting 12V (\pm 5%) on OE#/V_{PP} pin, V_{DD} = 5V (\pm 5%), and V_{IL} on CE# pin. These devices are programmed byte-by-byte with the desired data at the desired address using a single pulse (CE# pin low for SST27SF256/512 and PGM# pin low for SST27SF010/020) of 20 μ s. Using the MTP programming algorithm, the Byte-Programming process continues byte-by-byte until the entire chip has been programmed.

Chip-Erase Operation

The only way to change a data from a "0" to "1" is by electrical erase that changes every bit in the device to "1". Unlike traditional EPROMs, which use UV light to do the Chip-Erase, the SST27SF256/512/010/020 uses an electrical Chip-Erase operation. This saves a significant amount of time (about 30 minutes for each Erase operation). The entire chip can be erased in a single pulse of 100 ms (CE# pin low for SST27SF256/512 and PGM# pin for SST27SF010/020). In order to activate the Erase mode for SST27SF256/010/020, the 12V (\pm 5%) is applied to V_{PP} and A₉ pins, $V_{DD} = 5V$ (±5%), V_{IL} on CE# pin, and V_{IH} on OE# pin. In order to activate Erase mode for SST27SF512, the 12V (\pm 5%) is applied to OE#/V_{PP} and A₉ pins, V_{DD} = 5V (±5%), and V_{IL} on CE# pin. All other address and data pins are "don't care". The falling edge of CE# (PGM# for SST27SF010/020) will start the Chip-Erase operation. Once the chip has been erased, all bytes must be verified for FFH. Refer to Figures 13, 14, and 15 for the flowcharts.

Product Identification Mode

The Product Identification mode identifies the devices as the SST27SF256, SST27SF512, SST27SF010 and SST27SF020 and manufacturer as SST. This mode may be accessed by the hardware method. To activate this mode for SST27SF256/010/020, the programming equipment must force V_H (12V±5%) on address A_9 with V_{PP} pin at V_{DD} (5V±10%) or V_{SS} . To activate this mode for SST27SF512, the programming equipment must force V_H (12V±5%) on address A_9 with OE#/ V_{PP} pin at V_{IL} . Two identifier bytes may then be sequenced from the device outputs by toggling address line A_0 . For details, see Tables 3, 4, and 5 for hardware operation.

TABLE 1: PRODUCT IDENTIFICATION

	Address	Data
Manufacturer's ID	0000H	BFH
Device ID		
SST27SF256	0001H	АЗН
SST27SF512	0001H	A4H
SST27SF010	0001H	A5H
SST27SF020	0001H	A6H

T1.1 502

FIGURE 1: PIN ASSIGNMENTS FOR 32-PIN PLCC

FIGURE 2: PIN ASSIGNMENTS FOR 32-PIN TSOP (8MM x 14MM)

FIGURE 3: PIN ASSIGNMENTS FOR 28-PIN AND 32-PIN PDIP

Data Sheet

TABLE 2: PIN DESCRIPTION

Symbol	Pin Name	Functions
A _{MS} ¹ -A ₀	Address Inputs	To provide memory addresses
DQ ₇ -DQ ₀	Data Input/output	To output data during Read cycles and receive input data during Program cycles The outputs are in tri-state when OE# or CE# is high.
CE#	Chip Enable	To activate the device when CE# is low
OE#	Output Enable	For SST27SF256/010/020, to gate the data output buffers during Read operation
OE#/V _{PP}	Output Enable/V _{PP}	For SST27SF512, to gate the data output buffers during Read operation and high voltage pin during Chip-Erase and programming operation
V_{PP}	Power Supply for Program or Erase	For SST27SF256/010/020, high voltage pin during Chip-Erase and programming operation 12V (±5%)
V_{DD}	Power Supply	To provide 5.0V supply (±10%)
V_{SS}	Ground	
NC	No Connection	Unconnected pins.

T2.3 502

1. A_{MS} = Most significant address A_{MS} = A_{14} for SST27SF256, A_{15} for SST27SF512, A_{16} for SST27SF010, and A_{17} for SST27SF020

T3.1 502

Data Sheet

TABLE 3: OPERATION MODES SELECTION FOR SST27SF256

Mode	CE#	OE#	V _{PP}	A ₉	DQ	Address
Read	V_{IL}	V_{IL}	V _{DD} or V _{SS}	A _{IN}	D _{OUT}	A _{IN}
Output Disable	V_{IL}	V_{IH}	V _{DD} or V _{SS}	Х	High Z	X
Byte-Program	V_{IL}	V_{IH}	V_{PPH}	A _{IN}	D _{IN}	A _{IN}
Standby	V_{IH}	Χ	V _{DD} or V _{SS}	Х	High Z	X
Chip-Erase	V_{IL}	V _{IH}	V _{PPH}	V _H	High Z	X
Program/Erase Inhibit	V_{IH}	Χ	V_{PPH}	Х	High Z	X
Product Identification	V _{IL}	V _{IL}	V _{DD} or V _{SS}	V _H	Manufacturer's ID (BFH) Device ID (A3H)	$A_{14} - A_1 = V_{IL}, A_0 = V_{IL}$ $A_{14} - A_1 = V_{IL}, A_0 = V_{IH}$

- V . V . - 1 V

Note: $X = V_{IL}$ or V_{IH} $V_{PPH} = 12V \pm 5\%$, $V_{H} = 12V \pm 5\%$

TABLE 4: OPERATION MODES SELECTION FOR SST27SF512

Mode	CE#	OE#/V _{PP}	A ₉	DQ	Address
Read	V _{IL}	V_{IL}	A _{IN}	D _{OUT}	A _{IN}
Output Disable	V_{IL}	V_{IH}	Х	High Z	×
Program	V _{IL}	V_{PPH}	A _{IN}	D _{IN}	A _{IN}
Standby	V_{IH}	X	Х	High Z	x
Chip-Erase	V _{IL}	V_{PPH}	V_{H}	High Z	x
Program/Erase Inhibit	V_{IH}	V_{PPH}	Х	High Z	x
Product Identification	V_{IL}	V_{IL}	V_{H}	Manufacturer's ID (BFH)	$A_{15} - A_1 = V_{IL}, A_0 = V_{IL}$
Product Identification	V _{IL}	V_{IL}	V _H	Manufacturer's ID (BFH) Device ID (A4H)	$A_{15} - A_1 = V_{IL}, A_0 = V_{IL}$ $A_{15} - A_1 = V_{IL}, A_0 = V_{IH}$

Note: $X = V_{IL}$ or V_{IH} $V_{PPH} = 12V \pm 5\%$, $V_{H} = 12V \pm 5\%$

T4.1 502

TABLE 5: OPERATION MODES SELECTION FOR SST27SF010/020

Mode	CE#	OE#	PGM#	A ₉	V_{PP}	DQ	Address
Read	V_{IL}	V_{IL}	Х	A _{IN}	V_{DD} or V_{SS}	D _{OUT}	A _{IN}
Output Disable	V_{IL}	V_{IH}	Х	Χ	V_{DD} or V_{SS}	High Z	A _{IN}
Program	V_{IL}	V_{IH}	V_{IL}	A _{IN}	V _{PPH}	D _{IN}	A _{IN}
Standby	V_{IH}	Χ	Х	Χ	V_{DD} or V_{SS}	High Z	X
Chip-Erase	V_{IL}	V_{IH}	V_{IL}	V_{H}	V_{PPH}	High Z	X
Program/Erase Inhibit	V_{IH}	Χ	Х	Χ	V_{PPH}	High Z	X
Product Identification	V _{IL}	V _{IL}	Х	V_{H}	V _{DD} or V _{SS}	Manufacturer's ID (BFH) Device ID ¹	$A_{MS}^2 - A_1 = V_{IL}, A_0 = V_{IL}$ $A_{MS}^2 - A_1 = V_{IL}, A_0 = V_{IH}$

T5.1 502

 $A_{MS} = A_{16}$ for SST27SF010 and A_{17} for SST27SF020

Note: $X = V_{IL}$ or V_{IH}

 $V_{PPH} = 12V \pm 5\%, V_{H} = 12V \pm 5\%$

^{1.} Device ID = A5H for SST27SF010 and A6H for SST27SF020

^{2.} $A_{MS} = Most significant address$

Data Sheet

Absolute Maximum Stress Ratings (Applied conditions greater than those listed under "Absolute Maximum Stress Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these conditions or conditions greater than those defined in the operational sections of this data sheet is not implied. Exposure to absolute maximum stress rating conditions may affect device reliability.)

Temperature Under Bias	55°C to +125°C
Storage Temperature	65°C to +150°C
D. C. Voltage on Any Pin to Ground Potential	0.5V to V _{DD} +0.5V
Transient Voltage (<20 ns) on Any Pin to Ground Potential	1.0V to V _{DD} +1.0V
Voltage on A ₉ and V _{PP} Pin to Ground Potential	0.5V to 14.0V
Package Power Dissipation Capability (Ta = 25°C)	1.0W
Through Hold Lead Soldering Temperature (10 Seconds)	300°C
Surface Mount Lead Soldering Temperature (3 Seconds)	240°C
Output Short Circuit Current ¹	

^{1.} Outputs shorted for no more than one second. No more than one output shorted at a time.

OPERATING RANGE

Range	Ambient Temp	V_{DD}	V_{PP}
Commercial	0°C to +70°C	5.0V±10%	12V±5%

AC CONDITIONS OF TEST

Input Rise/Fall Time 10 ns
Output Load $C_L = 100 \text{ pF}$ for 90 ns Output Load $C_L = 30 \text{ pF}$ for 70 ns
See Figures 11 and 12

TABLE 6: READ MODE DC OPERATING CHARACTERISTICS FOR SST27SF256/512/010/020 $V_{DD} = 5.0V \pm 10\%$, $V_{PP} = V_{DD}$ OR V_{SS} (Ta = 0°C to +70°C (Commercial))

			Limits		
Symbol	Parameter	Min	Max	Units	Test Conditions
I _{DD}	V _{DD} Read Current				Address input=V _{IL} /V _{IH} at f=1/T _{RC} Min V _{DD} =V _{DD} Max
			30	mA	CE#=OE#=V _{IL} , all I/Os open
I_{PPR}	V _{PP} Read Current				Address input=V _{IL} /V _{IH} at f=1/T _{RC} Min V _{DD} =V _{DD} Max, V _{PP} =V _{DD}
			100	μΑ	CE#=OE#=V _{IL} , all I/Os open
I _{SB1}	Standby V _{DD} Current (TTL input)		3	mA	CE#=V _{IH} , V _{DD} =V _{DD} Max
I _{SB2}	Standby V _{DD} Current (CMOS input)		100	μA	CE#=V _{DD} -0.3 V _{DD} =V _{DD} Max
ILI	Input Leakage Current		1	μΑ	V _{IN} =GND to V _{DD} , V _{DD} =V _{DD} Max
I _{LO}	Output Leakage Current		10	μΑ	V _{OUT} =GND to V _{DD} , V _{DD} =V _{DD} Max
V _{IL}	Input Low Voltage		0.8	V	V _{DD} =V _{DD} Min
V_{IH}	Input High Voltage	2.0	V _{DD} +0.5	V	V _{DD} =V _{DD} Max
V_{OL}	Output Low Voltage		0.2	V	I _{OL} =2.1 mA, V _{DD} =V _{DD} Min
V_{OH}	Output High Voltage	2.4		V	I _{OH} =-400 μA, V _{DD} =V _{DD} Min
I _H	Supervoltage Current for A ₉		100	μA	CE#=OE#=V _{IL} , A ₉ =V _H Max

T6.3 502

Data Sheet

TABLE 7: PROGRAM/ERASE DC OPERATING CHARACTERISTICS FOR SST27SF256 $V_{DD}=5.0V\pm10\%, V_{PP}=V_{PPH} (Ta=25^{\circ}C\pm5^{\circ}C)$

			Limits		
Symbol	Parameter	Min	Max	Units	Test Conditions
I_{DD}	V _{DD} Erase or Program Current		30	mA	CE#=V _{IL,} OE#=V _{IH} , V _{PP} =12V±5%, V _{DD} =V _{DD} Max
I_{PP}	V _{PP} Erase or Program Current		1	mA	CE#=V _{IL,} OE#=V _{IH} , V _{PP} =12V±5%, V _{DD} =V _{DD} Max
ILI	Input Leakage Current		1	μΑ	V _{IN} =GND to V _{DD} , V _{DD} =V _{DD} Max
I_{LO}	Output Leakage Current		1	μΑ	V_{OUT} =GND to V_{DD} , V_{DD} = V_{DD} Max
V _H	Supervoltage for A ₉	11.4	12.6	V	CE#=OE#=V _{IL} ,
I _H	Supervoltage Current for A ₉		100	μΑ	CE#=OE#=V _{IL} , A ₉ =V _H Max
V_{PPH}	High Voltage for V _{PP} Pin	11.4	12.6	V	

T7.1 502

TABLE 8: PROGRAM/ERASE DC OPERATING CHARACTERISTICS FOR SST27SF512 $V_{DD}=5.0V\pm10\%, V_{PP}=V_{PPH} (Ta=25^{\circ}C\pm5^{\circ}C)$

			Limits		
Symbol	Parameter	Min	Max	Units	Test Conditions
I _{DD}	V _{DD} Erase or Program Current		30	mA	CE#=V _{IL,} OE#/V _{PP} =12V±5%, V _{DD} =V _{DD} Max
I_{PP}	V _{PP} Erase or Program Current		1	mΑ	CE#=V _{IL,} OE#/V _{PP} =12V±5%, V _{DD} =V _{DD} Max
ILI	Input Leakage Current		1	μΑ	V _{IN} =GND to V _{DD} , V _{DD} =V _{DD} Max
I_{LO}	Output Leakage Current		1	μΑ	V _{OUT} =GND to V _{DD} , V _{DD} =V _{DD} Max
V_{H}	Supervoltage for A ₉	11.4	12.6	V	CE#=OE#/V _{PP} =V _{IL,}
I _H	Supervoltage Current for A ₉		100	μΑ	CE#=OE#/V _{PP} =V _{IL} , A ₉ =V _H Max
V_{PPH}	High Voltage for OE#/V _{PP} Pin	11.4	12.6	V	

T8.1 502

TABLE 9: PROGRAM/ERASE DC OPERATING CHARACTERISTICS FOR SST27SF010/020 V_{DD} =5.0V±10%, V_{PP} = V_{PPH} (Ta=25°C±5°C)

			Limits		
Symbol	Parameter	Min	Max	Units	Test Conditions
I _{DD}	V _{DD} Erase or Program Current		30	mA	CE#=PGM#=V _{IL} , OE#=V _{IH} , V _{PP} =12V±5%,
					V _{DD} =V _{DD} Max
I_{PP}	V _{PP} Erase or Program Current		1	mA	CE#=PGM#=V _{IL} , OE#=V _{IH} , V _{PP} =12V±5%,
					V _{DD} =V _{DD} Max
ILI	Input Leakage Current		1	μΑ	V_{IN} =GND to V_{DD} , V_{DD} = V_{DD} Max
I_{LO}	Output Leakage Current		1	μΑ	V_{OUT} =GND to V_{DD} , V_{DD} = V_{DD} Max
V_{H}	Supervoltage for A ₉	11.4	12.6	V	CE#=OE#=V _{IL,}
I _H	Supervoltage Current for A ₉		100	μΑ	CE#=OE#=V _{IL} , A ₉ =V _H Max
V_{PPH}	High Voltage for V _{PP} Pin	11.4	12.6	V	

T9.1 502

Data Sheet

TABLE 10: RECOMMENDED SYSTEM POWER-UP TIMINGS

Symbol	Parameter	Minimum	Units
T _{PU-READ} ¹	Power-up to Read Operation	100	μs
T _{PU-WRITE} ¹	Power-up to Write Operation	100	μs

T10.1 502

TABLE 11: CAPACITANCE (Ta = 25°C, f=1 Mhz, other pins open)

Parameter	Description	Test Condition	Maximum
C _{I/O} ¹	I/O Pin Capacitance	$V_{I/O} = 0V$	12 pF
C _{IN} ¹	Input Capacitance	$V_{IN} = 0V$	6 pF

T11.0 502

TABLE 12: RELIABILITY CHARACTERISTICS

Symbol	Parameter	Minimum Specification	Units	Test Method
N _{END} ¹	Endurance	1000	Cycles	JEDEC Standard A117
T _{DR} ¹	Data Retention	100	Years	JEDEC Standard A103
I _{LTH} ¹	Latch Up	100	mA	JEDEC Standard 78

T12.2 502

AC CHARACTERISTICS

TABLE 13: READ CYCLE TIMING PARAMETERS V_{DD} = 5.0V±10% (Ta = 0°C to +70°C (Commercial))

			SST27SF256-70 SST27SF512-70 SST27SF010-70 SST27SF020-70		SST27SF256-90 SST27SF512-90 SST27SF010-90 SST27SF020-90	
Symbol	Parameter	Min	Max	Min	Max	Units
T _{RC}	Read Cycle Time	70		90		ns
T _{CE}	Chip Enable Access Time		70		90	ns
T _{AA}	Address Access Time		70		90	ns
T _{OE}	Output Enable Access Time		35		45	ns
T _{CLZ} ¹	CE# Low to Active Output	0		0		ns
T _{OLZ} ¹	OE# Low to Active Output	0		0		ns
T _{CHZ} ¹	CE# High to High-Z Output		25		30	ns
T _{OHZ} ¹	OE# High to High-Z Output		25		30	ns
T _{OH} ¹	Output Hold from Address Change	0		0		ns

T13.1 502

^{1.} This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.

^{1.} This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.

^{1.} This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.

^{1.} This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.

Data Sheet

TABLE 14: PROGRAM/ERASE CYCLE TIMING PARAMETERS FOR SST27SF256

Symbol	Parameter	Min	Max	Units
T _{AS}	Address Setup Time	1		μs
T _{AH}	Address Hold Time	1		μs
T _{PRT}	V _{PP} Pulse Rise Time	50		ns
T _{VPS}	V _{PP} Setup Time	1		μs
T_{VPH}	V _{PP} Hold Time	1		μs
T_PW	CE# Program Pulse Width	20	30	μs
T _{EW}	CE# Erase Pulse Width	100	500	ms
T _{DS}	Data Setup Time	1		μs
T _{DH}	Data Hold Time	1		μs
T_{VR}	V _{PP} and A ₉ Recovery Time	1		μs
T _{ART}	A ₉ Rise Time to 12V during Erase	50		ns
T _{A9S}	A ₉ Setup Time during Erase	1		μs
T _{A9H}	A ₉ Hold Time during Erase	1		μs

T14.0 502

TABLE 15: PROGRAM/ERASE CYCLE TIMING PARAMETERS FOR SST27SF512

Symbol	Parameter	Min	Max	Units
T _{AS}	Address Setup Time	1		μs
T _{AH}	Address Hold Time	1		μs
T _{PRT}	OE#/V _{PP} Pulse Rise Time	50		ns
T _{VPS}	OE#/V _{PP} Setup Time	1		μs
T_{VPH}	OE#/V _{PP} Hold Time	1		μs
T _{PW}	CE# Program Pulse Width	20	30	μs
T _{EW}	CE# Erase Pulse Width	100	500	ms
T _{DS}	Data Setup Time	1		μs
T_DH	Data Hold Time	1		μs
T_VR	OE#/V _{PP} and A ₉ Recovery Time	1		μs
T _{ART}	A ₉ Rise Time to 12V during Erase	50		ns
T _{A9S}	A ₉ Setup Time during Erase	1		μs
T _{A9H}	A ₉ Hold Time during Erase	1		μs

T15.0 502

TABLE 16: PROGRAM/ERASE CYCLE TIMING PARAMETERS FOR SST27SF010/020

Symbol	Parameter	Min	Max	Units
T _{CES}	CE# Setup Time	1		μs
T _{CEH}	CE# Hold Time	1		μs
T _{AS}	Address Setup Time	1		μs
T _{AH}	Address Hold Time	1		μs
T _{PRT}	V _{PP} Pulse Rise Time	50		ns
T _{VPS}	V _{PP} Setup Time	1		μs
T _{VPH}	V _{PP} Hold Time	1		μs
T_PW	PGM# Program Pulse Width	20	30	μs
T _{EW}	PGM# Erase Pulse Width	100	500	ms
T_{DS}	Data Setup Time	1		μs
T_{DH}	Data Hold Time	1		μs
T_{VR}	A ₉ Recovery Time for Erase	1		μs
T _{ART}	A ₉ Rise Time to 12V during Erase	50		ns
T _{A9S}	A ₉ Setup Time during Erase	1		μs
T _{A9H}	A ₉ Hold Time during Erase	1		μs

T16.0 502

FIGURE 4: READ CYCLE TIMING DIAGRAM FOR SST27SF256/512/010/020

FIGURE 5: CHIP-ERASE TIMING DIAGRAM FOR SST27SF256

FIGURE 6: READ CYCLE TIMING DIAGRAM FOR SST27SF512

FIGURE 7: CHIP-ERASE TIMING DIAGRAM FOR SST27SF010/020

FIGURE 8: BYTE-PROGRAM TIMING DIAGRAM FOR SST27SF256

FIGURE 9: BYTE-PROGRAM TIMING DIAGRAM FOR SST27SF512

FIGURE 10: BYTE-PROGRAM TIMING DIAGRAM FOR SST27SF010/020

Data Sheet

AC test inputs are driven at V_{IHT} (2.4 V) for a logic "1" and V_{ILT} (0.4 V) for a logic "0". Measurement reference points for inputs and outputs are V_{HT} (2.0 V) and V_{LT} (0.8 V). Input rise and fall times (10% \leftrightarrow 90%) are <10 ns.

 $\begin{aligned} \textbf{Note:} \quad & V_{\text{HT}} - V_{\text{HIGH}} \text{ Test} \\ & V_{\text{LT}} - V_{\text{LOW}} \text{ Test} \\ & V_{\text{IHT}} - V_{\text{INPUT}} \text{ HIGH Test} \\ & V_{\text{ILT}} - V_{\text{INPUT}} \text{ LOW Test} \end{aligned}$

FIGURE 11: AC INPUT/OUTPUT REFERENCE WAVEFORMS

FIGURE 12: A TEST LOAD EXAMPLE

FIGURE 13: Chip-Erase Algorithm for SST27SF256

FIGURE 14: CHIP-ERASE ALGORITHM FOR SST27SF512

FIGURE 15: CHIP-ERASE ALGORITHM FOR SST27SF010/020

FIGURE 16: BYTE-PROGRAM ALGORITHM FOR SST27SF256

FIGURE 17: BYTE-PROGRAM ALGORITHM FOR SST27SF512

FIGURE 18: BYTE-PROGRAM ALGORITHM FOR SST27SF010/020

Data Sheet

Valid combinations for SST27SF256

SST27SF256-70-3C-NH SST27SF256-70-3C-WH SST27SF256-70-3C-PG SST27SF256-90-3C-NH SST27SF256-90-3C-PG

Valid combinations for SST27SF512

SST27SF512-70-3C-NH SST27SF512-70-3C-WH SST27SF512-70-3C-PG SST27SF512-90-3C-NH SST27SF512-90-3C-PG

Valid combinations for SST27SF010

SST27SF010-70-3C-NH SST27SF010-70-3C-WH SST27SF010-70-3C-PH SST27SF010-90-3C-NH SST27SF010-90-3C-PH

Valid combinations for SST27SF020

SST27SF020-70-3C-NH SST27SF020-70-3C-WH SST27SF020-70-3C-PH SST27SF020-90-3C-NH SST27SF020-90-3C-PH

Example: Valid combinations are those products in mass production or will be in mass production. Consult your SST sales representative to confirm availability of valid combinations and to determine availability of new combinations.

Data Sheet

PACKAGING DIAGRAMS

32-PIN PLASTIC LEAD CHIP CARRIER (PLCC) SST PACKAGE CODE: NH

32-PIN THIN SMALL OUTLINE PACKAGE (TSOP) 8MM X 14MM SST PACKAGE CODE: WH

Data Sheet

28-PIN PLASTIC DUAL-IN-LINE PACKAGE (PDIP) SST PACKAGE CODE: PG

32-PIN PLASTIC DUAL-IN-LINE PACKAGE (PDIP) SST PACKAGE CODE: PH

Silicon Storage Technology, Inc. • 1171 Sonora Court • Sunnyvale, CA 94086 • Telephone 408-735-9110 • Fax 408-735-9036 www.SuperFlash.com or www.ssti.com