江西理工大学期终考试卷

试卷编号:

20 — 20 学年第二学期	考试性质(正考、补考或其它):[正考]
课程名称:高等数学(二)	考试方式(开卷、闭卷):[闭卷]
考试时间: 年月日	试卷类别(A、B):[B]共 <u>三</u> 大题

温馨提示

温馨提示 请考生自觉遵守考试纪律,争做文明诚信的大学生。如有违犯考试纪律,将严格 按照《江西理工大学学生违纪处分暂行规定》处理。

班级	参考答案
----	------

题号	_	11	Ξ.	总 分
得分				

一、选择题(请将正确答案编码填入下表中,每小题 3 分,共 24 分)

题号	1	2	3	4	5	6	7	8
答案								

- 1. $\[rac{1}{xy} \sin x^2 y, \quad \stackrel{\text{def}}{=} x y \neq 0, \\ 0, \qquad \qquad \qquad \qquad \qquad \qquad \downarrow \] \[0, \qquad \stackrel{\text{def}}{=} x y = 0, \]$

- (A) 0 (B) 1 (C) 2 (D) 不存在
- 2. 曲线 $z = \frac{x^2}{2} + \frac{y^2}{4},$ 在点(1, 2, $\frac{3}{2}$)处的切线与x轴的正向所成的倾角是(). y = 2,
 - (A) arctan1 (B) 30° (C) 60° (D) 90°

- 3. 设 \overrightarrow{AB} 与 u 轴的夹角为 $\frac{\pi}{3}$,则 \overrightarrow{AB} 在 u 轴上的投影是 ().
- (A) $\overrightarrow{AB}\cos\frac{\pi}{2}$ (B) $\overrightarrow{AB}\sin\frac{\pi}{3}$ (C) $|\overrightarrow{AB}|\cos\frac{\pi}{3}$ (D) $|\overrightarrow{AB}|\sin\frac{\pi}{3}$
- 4. 过点 $M_1(3, -2, 1), M_2(-1, 0, 2)$ 的直线方程是().
 - (A) -4(x-3) + 2(y+2) + (z-1) = 0 (B) $\frac{x-3}{4} = \frac{y+2}{2} = \frac{z-1}{1}$

- (C) $\frac{x+1}{4} = \frac{y}{2} = \frac{z-2}{1}$
- (D) $\frac{x-3}{4} = \frac{y+2}{-2} = \frac{z-1}{-1}$
- 5. 直线 $\begin{cases} x + y + 3z = 0 \\ x y z = 0 \end{cases}$ 与平面 x y z + 1 = 0 的夹角是 ().
- (A) 90^0 (B) 60^0 (C) 30^0 (D) 0^0
- 6. 当 $\sum_{n=1}^{\infty} (a_n + b_n)$ 收敛时, $\sum_{n=1}^{\infty} a_n$ 与 $\sum_{n=1}^{\infty} b_n$ ().

 - (A) 可能不同时收敛 (B) 不可能同时收敛 (C) 必同时收敛 (D) 必同时发散
- 7. $L 为 y = x^2 \bot 从 A(1, 1) 到 B(0, 0)$ 的一段弧,则 $\int_L x dy = ($).
- (A) $\int_{0}^{1} 2x^{2} dx$ (B) $\int_{1}^{0} x dy$ (C) $\int_{1}^{0} 2x^{2} dx$ (D) $\int_{0}^{1} \sqrt{y} dy$
- 8. D 是矩形闭区域 $0 \le x \le 1$, $0 \le y \le 2$, $I = \iint_{\Sigma} (x + y + 1) dx dy$, 利用二重积分的性质,

I的最佳估计区间为 ().

- (A) [0,1] (B) [0,2] (C) [1,3] (D) [2,8]

二、填空题	(请将正确答案填写在以下相应	应的横线上,每空3分,共24分)	
1	2	3	
4.	5	6	
	8		
1. L 为圆周:	$x^2 + y^2 = 1$, $\iiint_{\mathbb{L}} (x^2 + y^2) ds = 1$	·	
2. ∑是 <i>xoy</i>	平面上的圆域: $x^2+y^2 \le 1$,取	【下侧,则 ∬ <i>dxdy</i> =	
3. e ^{x²} 的 x i	的幂级数展开式为	.	
4. 级数 $\sum_{n=1}^{\infty}$ -	$\frac{3^n + 4^n}{7^n}$ 的和为		

5.
$$\[\[\] z = \ln \sqrt{1 + x^2 + y^2} \] , \[\] \[\] \[\] dz \Big|_{(1,1)} = \underline{\qquad} .$$

6. 函数 $z = x^2 + y^2$ 在点 P(1,2)沿从点(1,2)到点(2,2+ $\sqrt{3}$)的方向上的方向导数为 .

7. 改换二次积分的积分次序:
$$\int_0^1 dy \int_0^y f(x, y) dx =$$
_______.

8. 平面
$$x + y + z = 1$$
含在圆柱面 $x^2 + y^2 = 2x$ 内部的那部分平面面积为______.

三、综合题(请写出求解过程,8小题,共52分)

1. 计算
$$I = \iint_D (x^2 + y^2) dxdy$$
,其中 $D = \{(x, y) | 1 \le x^2 + y^2 \le 4\}$. (5分)

2. 由
$$e^x - xyz = 0$$
确定了函数 $z = z(x, y)$,求 $\frac{\partial z}{\partial x}$. (5分)

4. 求微分方程 $y'' - 2y' + y = e^x$ 的通解. (8分)

5. 求幂级数 $\sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1}$ 在收敛域(-1, 1)内的和函数. (8分)

6. 设Σ是由旋转抛物面 $z = x^2 + y^2$ 与平面 z = 2所围成的封闭曲面,取外侧. 用 高斯公式计算 $\iint_{\Sigma} 4(1-y^2) dz dx + z(8y+1) dx dy$ (8分)

7. 利用格林公式,计算 $\oint_L (2x^2y - 2y)dx + \left(\frac{1}{3}x^3 - 2x\right)dy$, 其中 L 为以 y = x, $y = x^2$, 围成区域的正向边界. (8分)

8. 设函数 f(x) 在[a, b] 上连续且 f(x) > 0,证明 $\int_{a}^{b} f(x) dx \int_{a}^{b} \frac{1}{f(x)} dx \ge (b-a)^{2}$. (5分)