Struktur und Simulation Übung 02

Malte Schokolowski

April 22, 2024

Aufgabe 1

$$p_{i} = \frac{1}{N}$$

$$S = -k \sum_{i}^{N} p_{i} \log p_{i}$$

$$S = -k \sum_{i}^{N} \frac{1}{N} \log \frac{1}{N}$$

$$= -k \sum_{i}^{N} \frac{1}{N} (\log 1 - \log N)$$

$$= -k \sum_{i}^{N} -\frac{\log N}{N}$$

$$= -k \cdot N \cdot \frac{-\log N}{N}$$

$$= k \log N$$

Aufgabe 2

Die Entropie des Dimer-Systems ist gleich der doppelten Entropie des einzelnen Monomers, wenn keine Wechselwirkungen einberechnet werden.

0.1 Mono:

T = 3K:

state	E[kJ/mol]	$e^{-\frac{E}{RT}}$	p	$p \log p$
1	0	1.000000e+00	1.505166e-35	-1.206866e-33
2	-1	2.577554e + 17	3.879647e-18	-1.555381e-16
3	-2	6.643785e + 34	1.000000e+00	0.000000e+00
		Z = 6.643785e + 34		S = 1.555381e-16

T = 3	300K:	_		
state	E[kJ/mol]	$e^{-\frac{E}{RT}}$	p	$p \log p$
1	0	1.000000e+00	2.117404e-01	-3.287046e-01
2	-1	1.493180e+00	3.161664e-01	-3.640614e-01
3	-2	2.229586e+00	4.720932e-01	-3.543432e-01
		Z = 4.722765e + 00		S = 1.047109e + 00
'	20000077	ļ		
T = 0	300000K:		i	
$T = \frac{1}{2}$	$\begin{array}{ c c } \mathrm{E[kJ/mol]} \end{array}$	$e^{-\frac{E}{RT}}$	p	$p \log p$
1	1	$e^{-\frac{E}{RT}}$ 1.000000e+00	<i>p</i> 3.331997e-01	$p \log p$ -3.661909e-01
1	E[kJ/mol]	Ü	1	1 01
state 1	$\begin{array}{ c c }\hline E[kJ/mol]\\\hline 0\\\hline \end{array}$	1.000000e+00	3.331997e-01	-3.661909e-01
state 1 2	E[kJ/mol] 0 -1	1.000000e+00 1.000401e+00	3.331997e-01 3.333333e-01	-3.661909e-01 -3.662041e-01

0.2 Dimere:

0.2.1 Ohne Wechselwirkung:

T = 3K	:	_		
state	E[kJ/mol]	$e^{-\frac{E}{RT}}$	p	$p \log p$
(1,1)	0	1.000000e+00	2.265525e-70	-3.633067e-68
(1,2)	-1	2.577554e + 17	5.839513e-53	-7.023320e-51
(1,3)	-2	6.643785e + 34	1.505166e-35	-1.206866e-33
(2,1)	-1	2.577554e + 17	5.839513e-53	-7.023320e-51
(2,2)	-2	6.643785e + 34	1.505166e-35	-1.206866e-33
(2,3)	-3	1.712472e + 52	3.879647e-18	-1.555381e-16
(3,1)	-2	6.643785e + 34	1.505166e-35	-1.206866e-33
(3,2)	-3	1.712472e + 52	3.879647e-18	-1.555381e-16
(3,3)	-4	4.413988e+69	1.000000e+00	0.000000e+00
·		Z = 4.413988e + 69		S = 3.110762e-16
T - '	200 <i>K</i> •	•		•

T = 3	300K:	_		
state	E[kJ/mol]	$e^{-\frac{E}{RT}}$	p	$p \log p$
(1,1)	0	1.000000e+00	4.483398e-02	-1.392000e-01
(1,2)	-1	1.493180e+00	6.694518e-02	-1.810118e-01
(1,3)	-2	2.229586e+00	9.996119e-02	-2.302080e-01
(2,1)	-1	1.493180e+00	6.694518e-02	-1.810118e-01
(2,2)	-2	2.229586e+00	9.996119e-02	-2.302080e-01
(2,3)	-3	3.329172e+00	1.492600e-01	-2.839023e-01
(3,1)	-2	2.229586e+00	9.996119e-02	-2.302080e-01
(3,2)	-3	3.329172e+00	1.492600e-01	-2.839023e-01
(3,3)	-4	4.971052e+00	2.228720e-01	-3.345660e-01
		Z = 2.230451e + 01		S = 2.094218e + 00

T = 300.000K:

state	E[kJ/mol]	$e^{-\frac{E}{RT}}$	p	$p \log p$
(1,1)	0	1.000000e+00	1.110220e-01	-2.440294e-01
(1,2)	-1	1.000401e+00	1.110666e-01	-2.440827e-01
(1,3)	-2	1.000802e+00	1.111111e-01	-2.441360e-01
(2,1)	-1	1.000401e+00	1.110666e-01	-2.440827e-01
(2,2)	-2	1.000802e+00	1.111111e-01	-2.441360e-01
(2,3)	-3	1.001203e+00	1.111557e-01	-2.441894e-01
(3,1)	-2	1.000802e+00	1.111111e-01	-2.441360e-01
(3,2)	-3	1.001203e+00	1.111557e-01	-2.441894e-01
(3,3)	-4	1.001605e+00	1.112002e-01	-2.442427e-01
		Z = 9.007220e + 00		S = 2.197224e + 00

0.2.2 mit Wechselwirkung:

σ	വ	T/	
,	-≺	n	

I = 9N	•			
state	E[kJ/mol]	$e^{-\frac{E}{RT}}$	p	$p \log p$
(1,1)	-5	1.137729e + 87	1.505166e-35	-1.206866e-33
(1,2)	-1	2.577554e + 17	3.409991e-105	-8.202554e-103
(1,3)	0	0.000000e+00	1.322956e-122	-3.712685e -120
(2,1)	-1	2.577554e + 17	3.409991e-105	-8.202554e-103
(2,2)	-7	7.558829e + 121	1.000000e+00	0.000000e+00
(2,3)	0	0.0000000e+00	1.322956e-122	-3.712685e-120
(3,1)	0	0.0000000e+00	1.322956e-122	-3.712685e-120
(3,2)	0	0.0000000e+00	1.322956e-122	-3.712685e-120
(3,3)	0	0.0000000e+00	1.322956e-122	-3.712685e-120
		Z = 7.558829e + 121		S = 1.206866e-33
T = 3	300K:			

T = i	I = 300K.				
state	E[kJ/mol]	$e^{-\frac{E}{RT}}$	p	$p \log p$	
(1,1)	-5	7.422674e+00	2.753368e-01	-3.551185e-01	
(1,2)	-1	1.493180e+00	5.538804e-02	-1.602593e-01	
(1,3)	0	0.000000e+00	3.709402e-02	-1.221988e-01	
(2,1)	-1	1.493180e+00	5.538804e-02	-1.602593e-01	
(2,2)	-7	1.654949e+01	6.138871e-01	-2.995427e-01	
(2,3)	0	0.000000e+00	3.709402e-02	-1.221988e-01	
(3,1)	0	0.000000e+00	3.709402e-02	-1.221988e-01	
(3,2)	0	0.000000e+00	3.709402e-02	-1.221988e-01	
(3,3)	0	0.000000e+00	3.709402e-02	-1.221988e-01	
		Z = 2.695852e + 01		S = 1.586174e + 00	

T = 300.000K:

state	E[kJ/mol]	$e^{-\frac{E}{RT}}$	p	$p \log p$
(1,1)	-5	1.002007e+00	2.501502e-01	-3.466316e-01
(1,2)	-1	1.000401e+00	2.497494e-01	-3.464767e-01
(1,3)	0	0.000000e+00	2.496493e-01	-3.464379e-01
(2,1)	-1	1.000401e+00	2.497494e-01	-3.464767e-01
(2,2)	-7	1.002810e+00	2.503509e-01	-3.467089e-01
(2,3)	0	0.000000e+00	2.496493e-01	-3.464379e-01
(3,1)	0	0.000000e+00	2.496493e-01	-3.464379e-01
(3,2)	0	0.000000e+00	2.496493e-01	-3.464379e-01
(3,3)	0	0.000000e+00	2.496493e-01	-3.464379e-01
		Z = 4.005619e + 00		S = 3.118483e + 00

Aufgabe 3

$$\begin{aligned} -kT \log Z &= G \\ &= U - TS \\ &= \sum_{i} p_{i} E_{i} - T \cdot -k \sum_{i} p_{i} \log p_{i} \\ &= \sum_{i} p_{i} E_{i} - T \cdot \left(-k \sum_{i} p_{i} \log \frac{e^{-E_{i}/kT}}{Z} \right) \\ &= \sum_{i} p_{i} E_{i} - T \cdot \left(-k \sum_{i} p_{i} \log e^{-E_{i}/kT} - p_{i} \log Z \right) \\ &= \sum_{i} p_{i} E_{i} - T \cdot \left(-k \sum_{i} p_{i} \left(\frac{E_{i}}{kT} \right) - p_{i} \log Z \right) \\ &= \sum_{i} p_{i} E_{i} - \sum_{i} p_{i} E_{i} + T \cdot \left(-k \sum_{i} p_{i} \log Z \right) \\ &= T \cdot \left(-k \sum_{i} p_{i} \log Z \right) \\ &= -kT \cdot \log Z \end{aligned}$$