CS 223 Computer Organization & Architecture

Lecture 35 [12.05.2020]

Introduction to Tiled Chip Multicore Processors

John Jose

Assistant Professor

Department of Computer Science & Engineering Indian Institute of Technology Guwahati, Assam.

Impact of VLSI in processor trends

Processors Performance

Frequency Wall

Power Wall

ILP Wall

Memory Wall

Paradigm Shift to Multicore

Multiple slower processors vs single fast powerful processor

Paradigm Shift to Multicore

Multiple slower processors is better that single fast powerful processor

What is Multicore?

What is Multicore?

- How these cores communicate?
- What is the best interconnection mechanism?

The Paradigm Shift

Tiled Chip Many-Core Processor (TCMP)

State-of-the-Art Architectures

State-of-the-Art Architectures

Intel KNL

Routers and Tiles

- East, West, North and South neighbors
- Packets are divided into flow control units called flits
- ❖L1 and L2 cache misses create NoC traffic packets

What is the role of on-chip cache?

On-Chip Cache Address Mapping

Hex Address: 0x764254

What is the role of memory controllers?

Tiled Chip Many-Core Processor (TCMP)

What is NoC?

- Processing units interconnected via packet based network
- ❖ Each resource is called as a 'tile'
- All resources organized as rectangular tiles on the chip.
- ❖ Each tile have an address (X, Y)
- Tiles interconnected by network of routers
- Communication by packet transmission

Packets & Flits

- Packet
 - Unit of transfer for network
- Flit
 - Basic unit of transfer between a pair of routers
 - Unit of flow control within network

Building Blocks of NoC

- Topology
- **❖**Routing
- **❖Flow control**
- **❖**Router micro-architecture

Building Blocks of NoC

- Topology
 - Specifies the way switches are wired
- Routing (algorithm)
 - How does a message move from source to destination
- Buffering and Flow Control
 - What do we store within the network?
 - Entire packets, parts of packets, etc?
 - What is basic unit of transfer

Topology

❖ Determines the physical layout and connection pattern between nodes and channels in the network.

Mesh

- ❖ Each node connected to 4 neighbors (N, E, S, W)
- ❖ Easy to layout on-chip: regular and equal-length links
- Path diversity: many ways to get from one node to another

Torus

- Mesh is not symmetric on edges: performance very sensitive to placement of task on edge vs. middle
- Torus avoids this problem
- Harder to lay out on-chip
- Unequal link lengths

Hierarchical Rings

- ❖More scalable
- Lower latency
- ❖More complex

Trees

- Planar, hierarchical topology
- Good for local traffic
- Easy to Layout
- Root can become a bottleneck
- ❖ Fat trees avoid this problem (CM-5)

Tiled Chip Many-Core Processor (TCMP)

What is NoC?

- Processing units interconnected via packet based network
- ❖ Each resource is called as a 'tile'
- All resources organized as rectangular tiles on the chip.
- Tiles interconnected by network of routers

Routers and Tiles

- East, West, North and South neighbors
- Packets are divided into flow control units called flits
- ❖L1 and L2 cache misses create NoC traffic packets

Building Blocks of NoC

- Topology
- **❖**Routing
- **❖Flow control**
- **❖**Router micro-architecture

Routing Algorithm

- Compute the path route for packets to reach destination.
 - Deterministic: always chooses the same path for a communicating source-destination pair
 - Oblivious: chooses different paths, without considering network state
 - Adaptive: can choose different paths, adapting to the state of the network
- Minimal Routing vs Non-Minimal Routing
- Source Routing vs Node Routing
- Deterministic Routing vs Adaptive Routing

Minimal & Non-Minimal Routing

- Profitable route: The route that always leads the packet closer to the destination.
- Misroute: A route that leads the packet away from the destination.

Minimal routing

Non-Minimal routing

Deterministic Routing

- All packets between the same (source, dest) pair take the same path
- ❖ Dimension-order routing Eg. XY routing
 - ❖ First traverse dimension X, then traverse dimension Y
 - ❖ Simple
 - Deadlock freedom
 - Could lead to high contention
 - Does not exploit path diversity

Deadlock

No forward progress

Caused by circular dependencies on resources

Each packet waits for a buffer occupied by another packet

downstream

Handling Deadlock

- Avoid cycles in routing Dimension order routing cannot build a circular dependency
- Restrict the turns each packet can take
- Avoid deadlock by adding more buffering (escape paths)
- Detect and break deadlock by preemption of buffers

Turn Model to Avoid Deadlock

- Analyze directions in which packets can turn in the network
- Determine turns the can form cycles
- Prohibit just enough turns to break possible cycles

Turn Model to Avoid Deadlock

Adaptive Odd-Even Turn Routing

Non restrictive turns leads to deadlocks

- Prohibited Turns at certain junctions
- For nodes in even column EN and ES.
- For nodes in odd column NW and SW.

The Minimal Odd-Even Routing

Static vs Adaptive Routing

Static routing – XY routing

Adaptive Routing

Contention-look-ahead Routing

- Can forese the contention of neighbors using control wires.
- The traffic condition of the neighboring nodes are obtained through the control signal wires.

johnjose@iitg.ac.in http://www.iitg.ac.in/johnjose/