Normal CDF: $\Phi(\mathbf{x}) = \int_{-\infty}^{x} \phi(y) dy$ $\forall \mu \in \mathbb{M}, E_{\mu}g(\mathbf{y}, \theta_{\mu}) = \mathbf{0} \text{ or } E(\mathbf{X}^{\top}\mathbf{u}) = \mathbf{0}$ $X \text{ exogenous } \Longrightarrow E(\mathbf{u} \mid \mathbf{X}) = \mathbf{0} \text{ and both } \hat{\beta}$ and estimating equations unbiased. Continuous: $m_k(X) \equiv \int_{-\infty}^{\infty} x^k f(x) dx$ Make exog assumpt in cross-sec not time. Central: regressors predetermined: $E(\mathbf{X}^{\top}\mathbf{u}) = \mathbf{0}$ $\mu_k \equiv E(X - E(X)^k) = \int_{-\infty}^{\infty} (x - \mu)^k f(x) dx$ **Stochastic Limits** Discrete Central: Converg in prob: $\lim Pr(|Y_n - Y_\infty| > \epsilon) =$ $\mu_k \equiv E(X - E(X)^k) = \sum_{i=1}^{m} p(x)(x_i - \mu)^k$ $0 \Rightarrow \text{p lim } Y_n = Y_\infty \implies \text{converg dist}$ Converg dist: $\lim F_n(x) = F(x) \equiv Y_n \to F$ Multivariate LLN: $\operatorname{plim} \overline{Y_n} = \operatorname{plim} \frac{1}{n} \sum_{t=1}^{n} Y_t = \mu_Y$, $Y_t \operatorname{IID}$ Joint Density Func: $f(x_1, x_2) = \frac{\partial^2 F(x_1, x_2)}{\partial x_1 \partial x_2}$ $\overline{Y_n}$ sample mean of Y_t , μ_T pop mean. Independence: LLN2: $\operatorname{plim} \frac{1}{n} \sum_{t=1}^{n} Y_{t} = \lim_{t \to \infty} \frac{1}{n} \sum_{t=1}^{n} E(Y_{t})$ $F(x_1, x_2) = F(x_1, \infty)F(\infty, x_2)$ $p\lim Y_n Z_n = p\lim Y_n p\lim Z_n$ if converg or $f(x_1, x_2) = f(x_1)f(x_2)$ $\mathbf{X}^{\top}\mathbf{X}$ may not have plim so mult by $1 \setminus n$. Marginal Density: consistent: $\operatorname{plim}_{\mu}\hat{\beta} = \beta_{\mu}$, may be bias $f(x_1) \equiv F_1(x_1, \infty) = \int_{-\infty}^{\infty} f(x_1, x_2) dx_2$ $E(\mu_t \mid \mathbf{X}_t) = 0 \implies \hat{\beta}$ consistent. Conditional Density: $f(x_1|x_2) = \frac{f(x_1,x_2)}{f(x_2)}$ **Covariance and Precision Matrices** Law Iterate Expec: $E(E(X_1|X_2)) = E(X_1)$ Any Deterministic Func h: $Cov(b_i, b_i) \equiv E((b_i - E(b_i))(b_i - E(b_i)))$ if i = j, $Cov(b_i, b_i) = Var(b_i)$ $E(X_1 h(X_2) | X_2) = h(X_2)E(X_1 | X_2)$ $Var(\mathbf{b}) \equiv E((\mathbf{b} - E(\mathbf{b}))(\mathbf{b} - E(\mathbf{b}))^{\top})$ when $E(\mathbf{b}) = \mathbf{0}$, $Var(\mathbf{b}) = E(\mathbf{b}\mathbf{b}^{\top}) b_i$, b_i Matrix Algebra indep: $Cov(b_i, b_i) = 0$, converse false Dot Product: $\mathbf{a}^{\top}\mathbf{b} = \sum_{i=1}^{n} a_i b_i$ correlation: $\rho(b_i, b_j) \equiv \frac{\text{Cov}(b_i, b_j)}{(\text{Var}(b_i)\text{Var}(b_j))^{1/2}}$ Matrix Multiplication: $C_{ij} = \sum_{k=1}^{m} A_{ik} B_{ki}$ Transpose: $(\mathbf{A}\mathbf{B})^{\top} = \mathbf{B}^{\top}\mathbf{A}^{\top}$ Var(b) positive semidefinite. cov and corr $\|\mathbf{x}\| = (\mathbf{x}^{\top}\mathbf{y})^{1/2} = (\sum_{i=1}^{n} x_i^2)^{1/2}$ matrix positive definite most of the time. $\langle \mathbf{x}, \mathbf{y} \rangle = ||\mathbf{x}|| ||\mathbf{y}|| \cos(\theta)$ positive definite: $\mathbf{x}^{\top} \mathbf{A} \mathbf{x} > 0$ for $\mathbf{x} \in k \times 1$. Cauchy-Schwartz: $\langle x, y \rangle \le ||x||||y||$ Linear dep: Xb = 0, $b \ne 0$ $\mathbf{x}^{\top} \mathbf{A} \mathbf{x} = \sum_{i=1}^{k} \sum_{j=1}^{k} x_{i} x_{j} A_{ij}$. If $\geq 0 \Rightarrow$ semidef. Any $\mathbf{B}^{\mathsf{T}}\mathbf{B}$ is pos semidef. If full col rank Singular: $\exists \mathbf{x} \neq 0 : \mathbf{A}\mathbf{x} = \mathbf{0}$ then pos def. pos def \Rightarrow diag > 0 & nonsingular. (pos def) $^{-1}$ \exists & is pos def. 2 Linear Regression Precision mtrx: invers of cov mtrx of estmatr. ∃ & pos def iff cov mtrx pos def. Estimator: $\hat{\beta} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$ $E(x_{ti}u_t) = 0 \implies \mathbf{X}^{\top}(\mathbf{y} - \mathbf{X}\dot{\beta}) = \mathbf{0}$ $SSR(\beta) := \sum_{t=1}^{n} (y_i - \mathbf{X}_t \beta)^2$ Ω = err cov mtrx. If diag of Ω differ, heteroskedastic. Homoskedastic: all u $\mathbf{y}^{\top}\mathbf{y} = \hat{\beta}^{\top}\mathbf{X}^{\top}\mathbf{X}\hat{\beta} + (\mathbf{y} - \mathbf{X}\hat{\beta})^{\top}(\mathbf{y} - \mathbf{X}\hat{\beta})$ same Var. Autocorrelated: off-diag $\Omega \neq 0$. Projection: $P_X = X(X^T X)^{-1} X^T$ $\hat{\beta}$ unbiased & $\Omega = \sigma^2 \mathbf{I}$ so no hetero or $\mathbf{M}_{\mathbf{X}} = \mathbf{I} - \mathbf{P}_{\mathbf{X}} = \mathbf{I} - \mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}$ autocorr, then $Var(\hat{\beta}) = \sigma^2(\mathbf{X}^{\top}\mathbf{X})^{-1}$. $\mathbf{P}_{\mathbf{X}}\mathbf{y} = \mathbf{X}((\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}); \mathbf{P}_{\mathbf{X}}\mathbf{P}_{\mathbf{X}} = \mathbf{P}_{\mathbf{X}}$ $\mathbf{M}_{\mathbf{X}}\mathbf{y} = \hat{\mathbf{u}}; \mathbf{M}_{\mathbf{X}}\mathbf{X} = \mathbf{0}; \mathbf{M}_{\mathbf{X}}\mathbf{M}_{\mathbf{X}} = \mathbf{M}_{\mathbf{X}}$ Precision affected by n, σ^2 , X. Collinearity: precision for β_1 dep on X_2 . $P_X + M_X = I; P_X M_X = 0; P_Y^{\perp} = P_X$ **Efficiency** $\|\mathbf{v}\|^2 = \|\mathbf{P}_{\mathbf{X}}\mathbf{v}\|^2 + \|\mathbf{M}_{\mathbf{X}}\mathbf{v}\|^2; \|\mathbf{P}_{\mathbf{X}}\mathbf{v}\| \le \|\mathbf{v}\|$ $\tilde{\beta}$ more efficient than $\hat{\beta}$ iff $Var(\tilde{\beta})^{-1}$ – Centering: $\mathbf{M}_{\iota}\mathbf{x} = \mathbf{z} = \mathbf{x} - \overline{x}\iota$; $\iota^{\mathsf{T}}\mathbf{z} = 0$ $P_1 \equiv P_{X_1}$; $P_1 P_X = P_X P_1 = P_1$ $Var(\hat{\beta})^{-1}$ is nonzero pos semidef mtrx. FWL: β_2 from $\mathbf{y} = \mathbf{X}_1 \beta_1 + \mathbf{X}_2 \beta_2 + \mathbf{u}$ and Gauss-Markov: If $E(\mathbf{u} \mid \mathbf{X}) = \mathbf{0}$ and $\mathbf{M_1y} = \mathbf{M_1X_2\beta_2} + \text{res are the same.}$ (+ res) $E(\mathbf{u}\mathbf{u}^{\top} \mid \mathbf{X}) = \sigma^2 \mathbf{I}$ then OLS $\hat{\beta}$ is BLUE Seasonal w const: $s'_{i} = s_{i} - s_{4}$, i = 1, 2, 3. (best linear unbiased estimator). Not Avg is const coeff. $M_{S}y$ is deseasonalized. necessary that *u* normally distributed.

ECON 468 Cheat Sheet

Zachary Probst Page:1

Normal: $\phi(x) = (2\pi)^{-1/2} \exp(-\frac{1}{2}x^2)$

1 Basics

Distributions

 $\beta^{(t)} - \hat{\beta} = -1 \setminus 1 - h_t(\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}_t^{\top} \hat{u_t}$ where h_t

denotes the t^{th} diagonal element of P_X .

estimating eq: $g(\mathbf{y}, \theta) = 0$ unbiased iff

vector of (true) model params: θ

Bias: $E(\hat{\theta}) - \theta_0$, $E((\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{u}) = 0$

Residuals & Disturbances

 $\hat{\mathbf{u}} = \mathbf{M}_{\mathbf{X}}\mathbf{u}$ (hat resid, u dist).

 $\operatorname{Var}(\hat{u_t}) < \sigma^2$; $\hat{\sigma}^2 \equiv \frac{1}{n} \sum_{t=1}^{n} \hat{u_t}^2$

 s^2 unbiased and consistent.

 $E(\hat{\sigma}^2) = \frac{n-k}{n} \sigma^2$

If $E(\mathbf{u} \mid \mathbf{X}) = \mathbf{0} \Rightarrow E(||\hat{\mathbf{u}}||^2) \le E(||\mathbf{u}||^2)$

 $E(\mathbf{u}^{\top}\mathbf{M}_{\mathbf{X}}\mathbf{u}) = E(SSR(\hat{\beta})) = (n-k)\sigma^{2}$

unbiased: $s^2 \equiv \frac{1}{n-k} \sum_{t=0}^{n} \hat{u}_t^2$; s = std err.

unbias est of $Var(\hat{\beta})$: $\widehat{Var}(\hat{\beta}) = s^2 (\mathbf{X}^{\top} \mathbf{X})^{-1}$

$MSE(\tilde{\beta}) \equiv E((\tilde{\beta} - \beta_0)(\tilde{\beta} - \beta_0)^{\top})$ $\mathbf{M_1 y} = \mathbf{M_1 u} \Rightarrow F_{\beta_2} = \frac{e^{\top} \mathbf{P_{M_1 X_2}} e/r}{e^{\top} \mathbf{M_X} e/(n-k)}$, where I $\tilde{\beta}$ unbiased $MSE(\tilde{\beta}) = Var(\tilde{\beta})$. $\epsilon \equiv \mathbf{u}/\sigma$, $\mathbf{P_{M_1X_2}} = \mathbf{P_x} - \mathbf{P_1}$. P-value for F is **Measures of Goodness of Fit** $1 - F_{r,n-k}(F_{\beta_2})$. When only 1 restriction, $R_u^2 = \frac{\text{ESS}}{\text{TSS}} = \frac{\|\mathbf{P}_{\mathbf{X}}\mathbf{y}\|^2}{\|\mathbf{y}\|^2} = \cos^2\theta$, where θ F and 2-tailed t test are the same. If angle between **y** and P_X **y**. $0 \le R_y^2 \le 1$. testing all $\beta = 0$, $F = \frac{n-k}{k-1} \times \frac{R_c^2}{1-R_c^2}$. If R_c^2 : center all vars first. Invalid if $\iota \notin \mathcal{S}(\mathbf{X})$. testing $\beta_1 = \beta_2$, let $\gamma = \beta_2 - \beta_1$ then $F_{\gamma} = \frac{(RSSR - SSR_1 - SSR_2)/k}{(SSR_1 + SSR_2)/(n-2k)}$ $R_c^2 = 1 - \sum_t^n \hat{u}_t^2 \setminus \sum_t^n (y_t - \overline{y})^2.$ Adj R^2 : unbiased estimators. maybe < 0. $\overline{R}^2 \equiv 1 - \frac{\frac{1}{n-k} \sum_t^n \hat{u_t}^2}{\frac{1}{n-1} \sum_t^n (y_t - \overline{y})^2} = 1 - \frac{(n-1)\mathbf{y}^\top \mathbf{M_X y}}{(n-k)\mathbf{y}^\top \mathbf{M_t y}}$ **Asymptotic Theory** EDF: $\hat{F}(x) \equiv \frac{1}{n} \sum_{t=1}^{n} \mathbb{I}(x_t \leq x)$. FTS: $\operatorname{plim} \hat{F}(x) = F(x)$. CLT: $z_n \equiv \frac{1}{\sqrt{n}} \sum_{t=0}^{n} \frac{x_t - \mu}{\sigma}$ \overline{R}^2 does not always \uparrow in regressors. **Hypothesis Testing** asymptotically $\sim N(0,1)$ if x_t IID. If u_t normal, and σ known, test $\beta = \beta_0$ w Uncorrelated x_t with $E(x_t) = 0 \Rightarrow$ $z = \frac{\hat{\beta} - \beta_0}{(\operatorname{Var}(\hat{\beta}))^{1/2}} = \frac{n^{1/2}}{\sigma}(\hat{\beta} - \beta_0), z \sim N(0, 1)$ $n^{-1/2} \sum_{t=1}^{n} x_t$ goes to $N(0, \lim_{t=1}^{n} \sum_{t=1}^{n} \operatorname{Var}(x_t))$. If $\mathbf{u} \sim IID(\mathbf{0}, \sigma^2 \mathbf{I}), E(u_t \mid \mathbf{X}_t) = 0,$ NCP: $\lambda = \frac{n^{1/2}}{\sigma} (\beta_1 - \beta_0), \, \beta_1 \neq \beta_0$ $E(u_t^2 \mid \mathbf{X_t} = \sigma^2)$, $p\lim_{n \to \infty} \mathbf{X}^{\top} \mathbf{X} = S_{X^{\top} X}$ $0 < \lambda < 1$. Reject null if z large enough. 2-tail: |z|. where S finite, deterministic, pos def **Bootstrap** Type 1: reject true null, 2: accept false left-tail $\Phi(-c_{\alpha}) = \alpha \setminus 2$, $c_{\alpha} = \Phi^{-1}(\alpha \setminus 2)$. mtrx, then $n^{1/2}(\hat{\beta} - \beta_0) \xrightarrow{d} N(\mathbf{0}, \sigma^2 \mathbf{S}_{\mathbf{Y}^{\top}\mathbf{Y}}^{-1})$ $\Phi^{-1}(.975) = 1.96$. Power: prob test rejects and plim $s^2(n^{-1}X^{\top}X)^{-1} = \sigma^2 S_{Y^{\top}Y}^{-1}$. the null. Prob of Type 2 = 1 - P(power). An estimator for cov mtrx is consistent Power \uparrow with $(\beta_1 - \beta_0) \uparrow$ or $\sigma \downarrow$ or $n \uparrow$. if $plim(nVar(\hat{\theta})) = V(\theta)$, where $V(\theta)$ is $p(z) = 2(1 - \Phi(|z|))$ limiting cov mtrx of $n^{1/2}(\hat{\theta} - \theta_0)$ $x \sim N(\mu, \sigma^2) \Rightarrow z = (x - \mu) \setminus \sigma, z \sim N(0, 1)$ If u IID and testing $\beta_2 = \beta_2^0$, Lin comb of rand vars that are jointly multivariate normal must be $\sim N$. If \mathbf{x} $t_{\beta_2} = \frac{\beta_2 - \beta_2^0}{\sqrt{s^2 (\mathbf{X}^\top \mathbf{X})_{22}^{-1}}} \text{ and } t_{\beta_2} \stackrel{a}{\sim} N(0,1) \Rightarrow$ multivar norm with 0 cov, componenets of \mathbf{x} are mutually indep. $t_{\beta_2} = O_p(1)$. Under null $\beta_2 = 0$, w χ^2 : $y = ||\mathbf{z}||^2 = \mathbf{z}^{\top}\mathbf{z} = \sum_{i=1}^{m} z_i^2$., $y \sim \chi^2(m)$ If u IID w Var σ^2 and cov of any pair with $\mathbf{z} \sim N(\mathbf{0}, \mathbf{I})$; E(y) = m. Var(y) = 2m. predetermined regressors $rF_{\beta_2} \stackrel{a}{\sim} \chi^2(r)$ simultaneous eq. Assume, $E(\mathbf{u}\mathbf{u}^{\top}) = \sigma^2 \mathbf{I}$ and at least one = 0: $Var(\mathbf{u}) = E(\mathbf{u}\mathbf{u}^{\top}) = \sigma^2 \mathbf{I}$. If false, $v_1 \sim \chi^2(m_1) \& v_2 \sim \chi^2(m_2)$ indep where $r = k_2$ is dim of β_2 . in **X** not predetermined wrt disturb. $n \times k$ $\Rightarrow y_1 + y_2 \sim \chi^2(m_1 + m_2)$ $W(\hat{\beta}) = (\mathbf{R}\hat{\beta} - r)^{\top} (\mathbf{R}\widehat{\mathrm{Var}}(\hat{\beta})\mathbf{R}^{\top})^{-1} (\mathbf{R}\hat{\beta} - r)$ mtrx **W** with $W_t \in \Omega_t$. Col of **W** are IV. is Wald where cov mtrx consistent. $m \times 1 \mathbf{x} \sim N(\mathbf{0}, \mathbf{\Omega})$, then $\mathbf{x}^{\top} \mathbf{\Omega}^{-1} \mathbf{x} \sim \chi^{2}(m)$ $E(u_t \mid \mathbf{W}_t) = 0$, $\mathbf{W}^{\top}(\mathbf{y} - \mathbf{X}\beta) = \mathbf{0}$ are $W(\hat{\beta}) \stackrel{a}{\sim} \chi^2(r)$ under null where r is If $P n \times n$ w rank r < n and $z \sim N(0, I)$ unbiased est eq. $\hat{\beta}_{IV} \equiv (\mathbf{W}^{\top}\mathbf{X})^{-1}\mathbf{W}^{\top}\mathbf{y}$. r-vector. then $\mathbf{z}^{\top}\mathbf{P}\mathbf{z} \sim \chi^2(r)$. $\mathbf{W}^{\mathsf{T}}\mathbf{X}$ must be non-sing. $\hat{\beta}_{IV}$ generally **Multiple Testing** $z \sim N(0,1) \& y \sim \chi^{2}(m)$, z, y indep, then biased but consistent. Assume $S_{W^TX} \equiv$ FWER: $\alpha_m = 1 - (1 - \alpha)^m$. $t \equiv z \setminus (v \setminus m)^{1/2}$. Or $t \sim t(m)$. Only Bonferroni: $Pr(\bigcup_{i=1}^{m} P_i \leq \alpha/m) \leq \alpha$. $plim \frac{1}{n} W^{T} X$ is deterministic and nonfirst m-1 moments exist. Cauchy: t(1). Simes: $P_{(i)} \le j\alpha/m$ for increasing P. Bonf sing. Same for S_{W^TW} . β_{IV} consistent iff $Var(t) = m \setminus (m-2)$. t(m) tends to std more conservative than Simes. $\operatorname{plim} \frac{1}{n} \mathbf{W}' \mathbf{u} = 0$. Asym cov mtrx of IV est: y_1 , y_2 indep rand var $\sim \chi^2(m_1)$ & $\sigma_0^2 \operatorname{plim}(n^{-1} \mathbf{X}^{\top} \mathbf{P_W} \mathbf{X})^{-1}$. J: full col rank, If $\mathbf{z} \sim N(\mu, \mathbf{I})$ then $\mathbf{z}^{\top}\mathbf{z} \sim \text{non-central}$ $\chi^{2}(m_{2})$, then $F \equiv \frac{y_{1} \setminus m_{1}}{y_{2} \setminus m_{2}}$. $F \sim F(m_{1}, m_{2})$. asym deterministic, min asym cov mtrx $\chi^2(m, \Lambda = \mu^{\top} \mu)$ If $\mathbf{z} \sim N(\mu, \mathbf{I})$ then $\mathbf{z}^{\top} \mathbf{z} \sim$ As $m_2 \to \infty$, $F \sim 1 \setminus m_1$ times $\chi^2(m_1)$. non-central $\chi^2(m, \Lambda = \mu^T \mu)$. Under null GIVE: $\hat{\beta}_{IV} = (\mathbf{X}^{\top} \mathbf{P}_{\mathbf{W}} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{P}_{\mathbf{W}} \mathbf{y}$ IV est: $t \sim t(m_2) \Rightarrow t^2 \sim F(1, m_2).$ $\beta_2 = \mathbf{0} \Rightarrow \Lambda = 0$. Col of $P_W X$ should be lin indep.

Exact Tests ($\mathbf{u} \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$)

 $\frac{\mathbf{x}_{2}^{\top}\mathbf{M}_{1}\mathbf{y}}{s(\mathbf{x}_{2}^{\top}\mathbf{M}_{1}\mathbf{x}_{2})^{1/2}} = \left(\frac{\mathbf{y}^{\top}\mathbf{M}_{X}\mathbf{y}}{n-k}\right)^{-\frac{1}{2}} \frac{\mathbf{x}_{2}^{\top}\mathbf{M}_{1}\mathbf{y}}{(\mathbf{x}_{2}^{\top}\mathbf{M}_{1}\mathbf{x}_{2})^{1/2}}$

is t-stat $t_{\beta_2} \sim t(n-k)$ for testing $\beta_2 = 0$.

 $\beta_2 \in \mathbb{R} \Rightarrow \text{test for } \beta_2 = \beta_{20} : (\hat{\beta_2} - \beta_{20})/s_2.$

 $F_{\beta_2} \equiv \frac{(\text{RSSR - USSR})/r}{\text{USSR}/(n-k)} = \frac{\mathbf{y}^{\top} \mathbf{P_{M_1 X_2} y}/r}{\mathbf{y}^{\top} \mathbf{M_X y}/(n-k)}$

is F-stat $\sim F(r, n - k)$, used for

multiple hyp on β_2 . Under null,

stat: $(\hat{\theta} - \theta)/s_{\theta}$. Pivot: same distribution \forall DGP. CI exact only if τ pivot. If no stat with known finite sample dist, use Wald with k_2 vector $\hat{\theta}_2$ asym normal: $(\hat{\theta}_2 - \theta_{20})^{\top} (\widehat{\text{Var}}(\hat{\theta}_2))^{-1} (\hat{\theta}_2 - \theta_{20}) \leq c_{\alpha}.$ $\operatorname{Var}(\hat{\beta}) = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{\Omega}\mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}$ $\hat{\Omega}$: $\frac{1}{n} \sum_{t=1}^{n} \hat{u}_{t}^{2} x_{ti} x_{ti}$ $\widehat{\operatorname{Var}}(\hat{\beta}) = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\hat{\mathbf{\Omega}}\mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}$ HC_0 : Use \hat{u}_t^2 in diag of $\hat{\Omega}$ and 0 else. HC_1 : Use \hat{u}_t^2 in $\hat{\Omega}$ then mult by n/(n-k) HC_2 : $\hat{u}_t^2/(1-h_t)$ with $h_t \equiv \mathbf{X_t}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X_t^{\top}}$. HC_3 : $\hat{u}_t^2/(1-h_t)$ jackknife, for big Ignore hetero for std err of sample mean. HAC for when u_t hetero and/or autocorr. $\hat{\Sigma} = (1/n)\mathbf{X}^{\top}\hat{\mathbf{\Omega}}\mathbf{X}$ (Newey-West/H. White) $f(a+h) = f(a) + hf'(a+\lambda h), h = b-a,$ $\hat{p}^*(\hat{\tau}) = \frac{1}{B} \sum_{h}^{B} \mathbb{I}(\tau_h^* > \hat{\tau})$ $\hat{p}_{et}^*(\hat{\tau}) = 2\min\left(\frac{1}{B}\sum_{h}^{B}\mathbb{I}(\tau_h^* \leq \hat{\tau}), \frac{1}{B}\sum_{h}^{B}\mathbb{I}(\tau_h^* > \hat{\tau})\right)$ when biased param est and 2-tailed. $\hat{p}^*(\hat{\tau}) \to p(\hat{\tau}) \text{ as } B \to \infty. \tau \text{ pivotal.}$ **Instrumental Variables** Can define $E(u_t \mid \Omega_t) = 0$. Err in variables: indep vars in regr model measured with err. $E(u_t \mid x_t) \neq$ 0, $Cov(x_t.u_t) \neq 0$. OLS est biased and inconsist. Simultaneity: two or more endog vars jointly determined by sys of

 $t(n-k,\lambda) \sim \frac{N(\lambda,1)}{(\chi^2(n-k)/(n-k))^{1/2}}, \ \lambda^2 = \Lambda.$

Pretest estimator: $\hat{\beta} = \mathbb{I}(F_{\gamma=0} > c_{\alpha})\hat{\beta} +$

 $\mathbb{I}(F_{\nu=0} \le c_{\alpha})\tilde{\beta}$ where c_{α} is critical value

for F test with r and n - k - r df at α .

 $\hat{\beta} = \hat{\beta}$ when pretest rejects and $\hat{\beta} = \hat{\beta}$

 $\theta_0 \in \text{confidence set iff } \tau(\mathbf{y}, \theta_0) \leq c_{\alpha}$, if θ_0 true then prob is $1 - \alpha$. Asymp t-

Confidence & Sandwich Cov Matrices

when reject.

Suppose SSR from O.5 is 106.4. Consider Fig. 1 = $0.07 + \text{g/s} / \text{m}$ and $0 + \text{s}$ its $1.0 + \text{s} / \text{m}$ and $0 + \text{s}$ its $1.0 + \text{s} / \text{m}$ and $0 + \text{s}$ its $1.0 + \text{s} / \text{m}$ and $0 + \text{s}$ its $1.0 + \text{s} / \text{m}$ and $0 + \text{s}$ its $1.0 + \text{s} / \text{m}$ and $0 + \text{s}$ its $1.0 + \text{s} / \text{m}$ and $0 + \text{s}$ its $1.0 + \text{s} / \text{m}$ and $0 + \text{s}$ its $1.0 + \text{s} / \text{m}$ and $0 + \text{s}$ its $1.0 + \text{s} / \text{m}$ and $0 + \text{s}$ its $1.0 + \text{s} / \text{m}$ and $0 + \text{s}$ its $1.0 + \text{s} / \text{m}$ and $0 + \text{s}$ its $1.0 + \text{s} / \text{m}$ and $0 + \text{s}$ its $1.0 + \text{s} / \text{m}$ and $0 + \text{s}$ its $1.0 + \text{s} / \text{m}$ and $0 + \text{s}$ its $1.0 + \text{s} / \text{m}$ and $0 + \text{s} / \text{m} / \text{m} / \text{m}$ and $0 + \text{s} / \text{m} / \text{m} / \text{m} / \text{m}$ and $0 + \text{s} / \text{m} / \text{m} / \text{m}$ and $0 + \text{s} / \text{m} / \text{m} / \text{m}$ and $0 + \text{s} / \text{m} / \text{m} / \text{m}$ and $0 + \text{s} / \text{m} / \text{m} / \text{m}$ and $0 + \text{s} / \text{m} / \text{m} / \text{m} / \text{m}$ and $0 + \text{s} / \text{m} / \text{m} / \text{m}$ and $0 + \text{s} / \text$	ECON 468 Cheat Sheet Zachary Probst Page:2	Q :If A pos def matrix, show that A^{-1} is pos def. A :non-zero x : $x^{T}A^{-1}x =$	by RSSRSSR1, and SSR1 + SSR2 must be replaced by SSR1, as in the formula	by c_{α}^* . Then the symmetric bootstrap CI is $[\hat{\theta} - s_{\theta}c_{\alpha}^*, \hat{\theta} + s_{\theta}c_{\alpha}^*]$	assumption on $n^{-1}W^{\top}u$ so plim $\hat{\beta}_{IV} = \beta_0$.
The proposal of the proposal	IV asym normal like all est.	$(A^{-1}x)^{\top}A(A^{-1}x)$. quad form must be pos, and so is this.		Q:Suppose SSR from OLS is 106.44. Under classic normal, construct .95	Q :Apply CLT to $n^{-1/2}W^{T}u$ and get asym multivar normal with mean 0.
reservation thank Squares consider from $1 - 0$, $-1 - $			and k parameters. For the numerator,	CI for σ^2 . A:Under classic normal $v^T M_{XX}/sigma^2 \sim \chi^2(n-k)$ $n-k-94$	Show $n^{1/2}(\beta_{IV} - \beta_0)$ is asym normal with
Some of the final properties of the properties			the degrees of freedom for RSSR is n k,		
	-	$R^{-1}R^{-1} = A^{-1}$ and $R^{-1}AR^{-1} = I$. $r^{\top}(I - A)r - r^{top}(A^{-1} - I)r$ so left pos def			
		iff right pos def. If $A - B$ pos def then so	nk(n1k) = nn1 = n2.		$((S_{X^{\top}W})(S_{W^{\top}W})^{-1}S_{W^{\top}X})^{-1}$ Second
Addenom of F dist as $\chi^2(u-k)$ under the possibility χ^{-1} . Pions def from part al. $Proposed (2/k) = (u-k) \log k$ and p as multiply χ^{-1} . Other as some horizon formulation and post multiply χ^{-1} . Other as some horizon formulation and post multiply χ^{-1} . Other as some horizon formulation and post multiply χ^{-1} . Other as some horizon formulation and post multiply χ^{-1} . Other as some horizon formulation and post multiply χ^{-1} . Other as some horizon formulation and post multiply χ^{-1} . Other as some horizon formulation and post multiply χ^{-1} . Other as $\chi^{-1} = \chi^{-1} = \chi^{-1$	$\beta_{GLS} = (\mathbf{X} \cdot \mathbf{\Omega} \cdot \mathbf{X}) \cdot \mathbf{X} \cdot \mathbf{\Omega} \cdot \mathbf{y}$		Q :Show <i>r</i> times F stat is $\chi^2(r)$ asym.	bootstrap and calc t for $\theta = \hat{\theta}$.	
and morth and the present of the property of	$E(\mathbf{\Psi}^{\top}\mathbf{u}\mathbf{u}^{\top}\mathbf{\Psi}) = \mathbf{I}.$ $V_{\text{or}}(\hat{\rho}^{\top}) = (\mathbf{V}^{\top}\mathbf{O}^{-1}\mathbf{V})^{-1}$ subsequations of	· · · · · · · · · · · · · · · · · · ·	A :denom of F dist as $\chi^2(n-k)$ under		
From the transfer of the projection. Now consider $x = x + x + x + y = x + x + y = x + y + y = x + y $	_2		normality. Has mean $(n-k)$ even without		Under assmpt last term is asym normal
sing and q^2 increasing away from diag. q^2 in q^2	of AR(1): $\Omega(p) = \frac{\sigma_{\epsilon}}{1-\rho^2} \times \text{mtrx with } 1$				
we trace. $E(k^1 k^2) = E(Tr(k^2 M_X)) = C_X - N(0, 1)/2 = a-\beta/1 - 10/2) = a-\beta/1 - a-\beta/2 = a-\beta/2 a-$	diag and ρ^i increasing away from diag.			is evidently the denominator of both F	
$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} (1-\rho^2) = \frac{\partial}{\partial t} (1$				3	instruments with W_2 extra col. Prove
$\frac{1}{(y-y-y-x)} = \rho_{(y-1)} + c_{(x)} \sim III(0,0,\frac{2}{c}) = O_{(x)} \sim III$	$\sigma_u^2 = \sigma_e^2/(1-\rho^2)$				
Some variety of the numerator of the Fataistic. The usual fastistic is to subtract the numerator of an Fataistic. The usual fastistic is to subtract the numerator of an Fataistic is to subtract the nu					
$\frac{M_{Z}X = X \text{ is all you need.}}{M_{Z}X = X \text{ is all you need.}} = \frac{M_{Z}X = X \text{ is all you need.}}{M_{Z}X = M_{Z}X = M_{Z$	3 Questions		Two-tailed.		
Sign from the restricted SSR and divide $(x) = (x) - (x) = $			- ()		
when data gen by $\sigma_{V}=0$. A $\beta_{V}=0$ when $\beta_{V}=0$ is extracted by $\beta_{V}=0$ and $\beta_{V}=0$ in $\beta_{V}=0$ and $\beta_{V}=0$ in $\beta_{V}=0$	A :Mean: μ , Var: σ^2 .				Q:Show that simple IV unbiased
Use def to get cow matrix. Use $\beta = (1, 1)$ $\beta = (1, 2)$			onsider $F(\tau) = 1/2$.	by the number of restrictions. For the	when data gen by $\sigma_v = 0$. A : $\hat{\beta_{IV}} =$
$\frac{\chi}{(k_1, k_2)} = p_{\chi} p_{\chi} p_{\chi} = p_{\chi} p_{\chi} p_{\chi} = p_{\chi} p_{\chi} p_{\chi} = p_{\chi} p_{\chi} p_{\chi} p_{\chi} q_{\chi} p_{\chi} p_{$				model (5.25), k2 times this numerator is	$\beta_0 + \sigma_u(w^\top x)^{-1} w^\top u$. If $\sigma_u = 0$, then
Figh X, M, $z = 1 = P_X + P_X M_y = P_y = P_X M_y^2 - D_y^3 = 1 - P_Z = M_y^3$ and $z = 1 - P_Z = M_y^3 - D_y^3 = 1 - P_Z = M_y^3$ and $z = 1 - P_Z = M_y^3 - D_y^3 = 1 - P_Z = M_y^3$ and $z = 1 - P_Z = M_y^3 - D_y^3 = 1 - P_Z = M_y^3$ and $z = 1 - P_Z = M_y^3 - D_y^3 = 1 - P_Z = M_y^3$ and $z = 1 - P_Z = M_y^3 - D_y^3 = 1 - P_Z = M_y^3$ and $z = 1 - P_Z = M_y^3 - D_y^3 = 1 - P_Z = M_y^3$ and $z = 1 - P_Z = M_y^3 - D_y^3 = 1 - P_Z = M_y^3$ and $z = 1 - P_Z = M_y^3 - D_y^3 = 1 - P_Z = M_y^3 = M_y^3$		Q:Run regression with restriction that	$X \sim U(0,1)$, then $F^{-1}(X)$ is drawing		
Solve $ S(X) > S(X) > S(X) > S(X) > S(X) > S(X) > S(X) > S(X) > Y > S(X) > S(X) > S(X) > S(X) > Y > S(X) > Y > S(X) > Y > S(X) > S($	$A:P_X + M_X = I \Rightarrow P_X + P_X M_X = P_X \Rightarrow P_X M_X$	$M_{p2} + p_3 = 1$. A:Sub $p_3 = 1 - p_2$ Into	from dist of which F is CDF. A:Since F		subbing in is σ_u/π_0 times coeff est from OLS of u on w , w exog so
Suppose new regression with Q -var(a_1) = $(1-h_1)a_0^2$. Derive at to $x_1^2 M_2 x_1 = (1-h_2)a_1^2 N_2 x_1$. See Five and R^2 unchanged becuase TSS around R^2 unchanged becuase TSS around R^2 unchanged becuase TSS around mean nor SSR change. But R_0^2 changes $R_0^2 = h_1 N_2 N_1 = h_2 N_2 N_2 N_2 = h_1 N_2 N_2 N_2 N_2 N_2 N_2 N_2 N_2 N_2 N_2$	$\mathbf{Q}:\mathcal{S}(W)\neq\mathcal{S}(X)$, show $P\equiv\mathbf{X}(\mathbf{W}^{\top}\mathbf{X})^{-1}\mathbf{W}^{\top}$	regression. Define $y_t = y_t - x_{t3}$ and			
mage of P is all $S(X)$ but image of $V_1 = V_1 + 10$ Acconstant goes 10 higher. $E_t = V_1 + 10$ Acconstant goes 10 higher goes and $E_t = V_2 + 10$ Acconstant goes 10 higher. $E_t = V_2 + 10$ Acconstant goes 10 higher. $E_t = V_2 + 10$ Acconstant goes 10 higher. $E_t = V_2 + 10$ Acconstant goes 10 higher goes 10 higher. $E_t = V_2 + 10$ Acconstant goes 10 higher. $E_t = V_2 + 10$ Acconstant goes 10 higher goes 10 higher. $E_t = V_2 + 10$ Acconstant goes 10 higher go		Q:Suppose new regression with			`` X
and \mathbb{R}^c unchanged because TSS around mean nor SSR change. But \mathbb{R}^2_c changes between TSS around \mathbb{R}^c great \mathbb{R}^c in the written as with \mathbb{R}^c . OLIS resid orthog to regressors \mathbb{R}^c \mathbb		$y'_t = y_t + 10$ A :constant goes 10 higher. R_c^2			
$\frac{h_0(I-P)=0}{h_0(I+X_Dbeta_0+u)} = h_0 $	P^{\top} is $S(W)$. $I-P$ projects to $S^{\perp}(W)$.	and \overline{R}^2 unchanged becuase TSS around			
hat β_i can be written aswithM, colds resided the second of section β_i in the β_i can be written aswithM, colds β_i residently and β_i residently section β_i residuals set of β_i section β_i residuals β_i residuals $\beta_$	$P_W(I-P)=0.$	mean nor SSR change. But R_{μ}^2 changes			
(C)C.5 resid orthog to regressors $x = x \le (1-\omega(z))$. Show $x = x \le (1-\omega(z))$. Show $x = x \le (1-\omega(z))$. Show that $x = x \le (1-\omega(z))$. Show the $x = x \le (1-\omega(z))$. Show the $x = x \le (1-\omega(z))$. Show the $x = x \le (1-\omega(z))$. Show the $x = x \le (1-\omega(z))$. Show the $x = x \le (1-\omega(z))$. Show the $x = x \le (1$				Q :Consider .05 conf region for β_1	chug. Yes consistent. plim of est is β_0 +
$\frac{1}{2} X_1^-(M, y - M_1 X_2 \beta_2) = 0. \text{ OLS } \\ \text{if } p_{\text{II}} \text{ must be resid have men 0}, \\ implifies its of not not not have resided for possible po$					
if β_1 must be resid have mean 0, $(y-\beta_1I-X_2\beta_2)=0$. $(y-\beta_1I-X_2\beta_$			Q:If $z \sim N(0,1)$ under null and $N(\lambda,1)$		1st factor in 2nd term is full rank
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		1			
2. Show that $P_X - P_1 = P_M_1 \chi_2$. Acvector $Y \in S(M_1, X_2)$ is $M_1 X_2 Y$. Pre-multiply $Y \in S(M_1, X_2)$ is $M_1 X_2 Y$. Pre-multiply $Y \in S(M_1, X_2)$ is $M_1 X_2 Y$. Pre-multiply $Y \in S(M_1, X_2)$ is $M_1 X_2 Y$. Pre-multiply $Y \in S(M_1, X_2)$ is $M_1 X_2 Y$. Pre-multiply $Y \in S(M_1, X_2)$ is $M_1 X_2 Y$. Pre-multiply $Y \in S(M_1, X_2)$ is $M_1 X_2 Y$. Pre-multiply $Y \in S(M_1, X_2)$ is $M_1 X_2 Y$. Pre-multiply $Y \in S(M_1, X_2)$ is $M_1 X_2 Y$. Pre-multiply $Y \in S(M_1, X_2)$ is $M_1 X_2 Y$. Pre-multiply $Y \in S(M_1, X_2)$ is $M_1 X_2 Y$. Pre-multiply $Y \in S(M_1, X_2)$ is $M_1 X_2 Y$. Pre-multiply $Y \in S(M_1, X_2)$ is $M_1 X_2 Y$. So invariant under projection. Now consider $Z \in S(M_1, X_2)$ is $M_1 X_2 Y$. So invariant under projection. Now consider $Z \in S(M_1, X_2)$ is $M_1 X_2 Y$. So invariant under projection. Now consider $Z \in S(M_1, X_2)$ is $M_1 X_2 Y$. So invariant under projection. Now consider $Z \in S(M_1, X_2)$ is $M_1 X_2 Y$. So invariant under projection. Now consider $Z \in S(M_1, X_2)$ is $X \in S(M_1, X_2)$. So invariant under projection. Now consider $Z \in S(M_1, X_2)$ is $X \in S(M_1, X_2)$. So invariant under projection. Now consider $Z \in S(M_1, X_2)$ is $X \in S(M_1, X_2)$. So invariant under projection. Now consider $Z \in S(M_1, X_2)$ is $X \in S(M_1, X_2)$. So invariant under projection. Now consider $Z \in S(M_1, X_2)$ is $X \in S(M_1, X_2)$. So invariant under projection. Now consider $Z \in S(M_1, X_2)$ is $X \in S(M_1, X_2)$. So invariant under projection. Now consider $Z \in S(M_1, X_2)$ is $X \in S(M_1, X_2)$. So invariant under projection. Now consider $Z \in S(M_1, X_2)$ is $X \in S(M_1, X_2)$. So invariant under projection. Now consider $Z \in S(M_1, X_2)$ is $Z \in S(M_1, X_2)$. So invariant under projection. Now consider $Z \in S(M_1, X_2)$ is $Z \in S(M_1, X_2)$. So invariant under projection. Now consider $Z \in S(M_1, X_2)$ is $Z \in S(M_1, X_2)$. So in $Z \in S(M_1, X_2)$ is $Z \in S(M_1, X_2)$. So in $Z \in S(M_1, X_2)$ is $Z \in S(M_1, X_2)$. So in $Z \in S(M_1, X_2)$ is $Z \in S(M_1, X_2)$. So in $Z \in S(M_1, X_2)$ is	$\iota^{\top}(\dot{y} - \beta_1 \iota - X_2 \beta_2) = 0.$	$\Phi(\Phi^{-1}(1-x/2)) + 1 \Phi(\Phi^{-1}(1-x/2))$			
Q_1, Q_2, Q_3 in and Q_3, Q_4 is Q_3, Q_4 in and Q_3, Q_4 in an anglet Q_4, Q_4 is Q_4 in an anglet Q_4, Q_4 is Q_4 in an anglet Q_4 in an Q_4 in an Q_4 in an Q_4 is Q_4 in an Q_4 i		Simplifies to x . Use symmetry of normal.			in W are exog and pred and LLN. A :Need
inder projection. Now consider z and rearrange so LHS is $y_t + x_{t2}$ and add $y_{t2} = 0$. Show $y_{t2} = P_1 z$. Equiv because spans of regressors are same. Becomers restricted model when $y = 0$. Q:Show that minimizing the criterion function with respect to β yields generalized IV est. A:Citerion function with respect to β yields generalized IV est. A:Citerion function with respect to β yields generalized IV est. A:Citerion function with respect to β yields generalized IV est. A:Citerion function with respect to β yields generalized IV est. A:Citerion function with respect to β yields generalized IV est. A:Citerion function with respect to β yields generalized IV est. A:Citerion function with respect to β yields generalized IV est. A:Citerion function with respect to β yields generalized IV est. A:Citerion function with respect to β yields generalized IV est. A:Citerion function with respect to β yields generalized IV est. A:Citerion function with respect to β yields generalized IV est. A:Citerion function with respect to β yields generalized IV est. A:Citerion function with respect to β yields generalized IV est. A:Citerion function with respect to β yields generalized IV est. A:Citerion function with respect to β yields generalized IV est. A:Citerion function with respect to β yields generalized IV est. A:Citerion function with respect to β yields generalized IV est. A:Citerion function with respect to β yields generalized IV est. A:Citerion function with respect to β yields generalized IV est. A:Citerion function with respect to β yields generalized IV est. A:Citerion function with respect to β yields generalized IV est. A:Citerion function with respect to β yields generalized IV est. A:Citerion function with respect to β . A:Use simple t. $Pr(t < F_{99}(1, n - k)$). Q:Show that minimizing the criterion function with respect to β . A:Use simple t. $Pr(t < F_{99}(1, n - k)$). Q:Show that pline β is quarter of the state obtain .99 CI for β . A: β . Yie		$\mathbf{Q}: y_t = \beta_1 + \beta_2 x_{t1} + \beta_3 x_{t2} + u_t$. Rerwite	A :Write $z = \mu + x$ with $x \sim N(0, I)$.	right is $\in \mathbb{R}$. Repreated. A :Use FWL for	
with given those of $S(M_1, X_2)$, $X_2^T M_1 z = 0$. Show $S_2 z = I_2 z$. Equiv because spans of regressors are same. Becomers restricted model when $\gamma = 0$. What about $M_1 X$ and $P_1 X$ when $n \times 3$? What about $M_1 X$ is 0. Other two are entered X . Each col of $P_1 X$ has n copies of mean from col in X . First col is 1, and: $\overline{Y_2}$. Know $P_1 P_2 Y = I_2$, show that $I_2 Y = I_3 Y = $					
$2x = P_1 z$. Finally show $P_1 X$ when $P_2 X$ is a same. Becomes restricted model $P_2 X$ has no copies of angle by the $P_2 X$ is $P_2 Y$ and $P_1 X$ when $P_2 X$ is $P_2 Y$ and $P_3 X$ when $P_4 X$ is $P_2 X$ is same. Becomes restricted model when $P_4 X$ is $P_2 X$ is same. Becomes restricted model when $P_4 X$ is $P_4 X$ is an expectation of $P_4 X$ has no copies of $P_4 X$ has no copie			dist chi^2 with exp m .	function with respect to β vields	
2. What about M_t X and P_t X when $n \times 3$? N_t X is 0. Other two are entered X. Each col of P_t X has n copies of mean from col in X. First col is t_t , and t_t in the subspace of t_t in the subspace of t_t is one projection of t_t in the subspace of t_t is one projection of t_t in the subspace of t_t is one projection of t_t in the subspace of t_t is one projection of t_t in the subspace of t_t is one projection of t_t in the subspace of t_t is one projection of t_t in the subspace of t_t is one projection of t_t in the subspace of t_t is one projection of t_t in the subspace of t_t is one projection of t_t in the subspace of t_t is one projection of t_t in the subspace of t_t in the subspace of t_t is one projection of t_t in the subspace of t_t in the subspace of t_t is one projection of t_t in the subspace of t_t in the subspace of t_t is one projection of t_t in the subspace of t_t in the subspace of t_t is one projection of t_t in the subspace of t_t in the subspace of t_t is one projection of t_t in the subspace of	$P_x z = P_1 z$.			generalized IV est. A:Criterion func	Q:Prove $\frac{1}{\sigma^2}u \cdot (P_{P_W}\chi - P_{P_W}\chi_1)u \sim \chi^2(k_2)$
Write out both ineq so get rid of abs entered X. Each col of P_X has n copies of mean from col in X. First col is t , and: $\frac{1}{2}t$. Know P_t as P_t show that P_t has n copies of mean from col in X. First col is t , and P_t has n copies of mean from col in X. First col is t , and P_t has n copies of mean from col in X. First col is t , and P_t has n copies of mean from col in X. First col is t , and P_t has n copies of mean from col in X. First col is t , and P_t has n copies of mean from col in X. First col is t , and P_t has n copies of mean from col in X. First col is t , and P_t has n copies of P_t has n copies of mean from col in X. First col is t , and P_t has n copies of P_t has a copies of P_t has a copies of P_t has n copies of P_t has a copies of	Q :What about $M_t X$ and $P_t X$ when $n \times 3$?	when $\gamma = 0$.			
If mean from col in X. First col is t , and t in t i			Write out both ineq so get rid of abs		
Ind: $\overline{x_2}\iota$. Know $P_tP_X = P_t$ show that $M_tM_X = M_X$. Finally show $P_tM_X = 0$. Sub in. Subtract $X_2R_2^{-1}r$ from Y . Sub in. Subtract $X_2R_2^{-1}r$ from Y . Sub in. Subtract $X_2R_2^{-1}r$ spans same as $M_tM_X = M_X$. Finally show $P_tM_X = 0$. Sub in. Subtract $X_2R_2^{-1}r$ spans same as $M_tM_X = M_X$. Finally show $P_tM_X = 0$. Sub in. Subtract $X_2R_2^{-1}r$ spans same as $M_tM_X = M_X$. Finally show $P_tM_X = 0$. Sub in. Subtract $X_2R_2^{-1}r$ from Y . Sub in. Subtract $X_2R_2^{-1}r$ spans same as $X_tM_X = M_X$. Finally show $P_tM_X = 0$. Sub in. Subtract $X_tM_X = M_X$. Finally show $P_tM_X = 0$. Sub in. Subtract $X_tM_X = M_X$. Finally show $P_tM_X = 0$. Sub in. Subtract $X_tM_X = M_X$. Finally show $P_tM_X = 0$. Sub in. Subtract $X_tM_X = M_X$. Finally show $P_tM_X = 0$. Sub in. Subtract $X_tM_X = M_X$. Finally show $P_tM_X = 0$. Sub in. Subtract $X_tM_X = M_X$. Finally show $P_tM_X = 0$. Sub in. Subtract $X_tM_X = M_X$. Finally show $P_tM_X = 0$. Sub in. Subtract $X_tM_X = M_X$. Finally show $P_tM_X = 0$. Sub in. Subtract $X_tM_X = M_X$. Finally show $P_tM_X = 0$. Sub in. Subtract $X_tM_X = M_X$. Finally show $P_tM_X = M_X$. Fi	of mean from col in X. First col is ι ,	$\mathbf{A}: R_1 \beta_1 + R_2 \beta_2 = r$. Solve for β_2 .	value. Sub <i>bêta</i> ₂ and mult -1.	The state of the s	
Split P_W up into three plims with W . Assumption when plim $n^{-1}W^{\top}u=0$ and $n^{-1/2}Z^{\top}u=n^{-1/2}Z^{$	2nd: $\overline{x_2}\iota$. Know $P_{\iota}P_{X} = P_{\iota}$ show that		Q:Explain how to construct symm	A:plim $\frac{1}{n}Q(\beta_0, y) = \text{plim } \frac{1}{n}u^{\top}P_Wu$.	
if angle bt e_t and its proj. A:proj: $P_X e_t$. So $\theta: e_t^{\top} P_X e_t$. With $\beta_1 = \gamma_1$, $\gamma_2 = 0 \Rightarrow R\beta = r$. What is $\text{Tr}(P_X)$? A: $\text{Tr}(P_X) = k$ if full and α if less. $\text{Tr}(M_X) = n - r$. Show $(\text{Cov}(b_1, b_2))^2 \leq \text{Var}(b_1)\text{Var}(b_2)$. Cishow $(\text{Cov}(b_1, b_2))^2 \leq \text{Var}(b_1)\text{Var}(b_2)$. Cishow for integration in the second subsample. If we did, we have a norm sandwich and must be absolute values and sort the them from largest to smallest. If we do this, the level and sort the second subsample. If we did, we have a norm sandwich and must be sorting the t_j^* themselves, we take their absolute values and sort the them from largest to smallest. If we do this, the level and α critical value can be estimated as the entry numbered $(B+1)$ in the sorted list. For example, if $B=999$, it is equivalent when plinh W $u=0$ and					cols of Z asym uncorr with u . CLT to
os $^2\theta$: e_t 1P_Xe_t . with $\beta_1=\gamma_1$. $\gamma_2=0\Rightarrow R\beta=r$. Q:What is $\text{Tr}(P_X)$? A: $\text{Tr}(P_X)=k$ if full ank or r if less. $\text{Tr}(M_X)=n-r$. Q:When performing Chow test A:Since ank or r if less. $\text{Tr}(M_X)=n-r$. Q:When performing Chow test A:Since and or r if less. $\text{Tr}(M_X)=n-r$. Q:When performing Chow test A:Since and r if less. $\text{Tr}(M_X)=n-r$. Q:When performing Chow test A:Since and r if less. $\text{Tr}(M_X)=n-r$. Q:When performing Chow test A:Since and sort the them from absolute values and sort the them from largest to smallest. If we do this, the level a critical value can be estimated as the entry numbered $(B+1)$ in the sorted list. For example, if $B=999$, it is entry β_{IV} to $\beta_0+\dots$ Multiplybyn β_1 . plim β_1 and β_2 and β_3 are normal with β_1 and β_2 are normal with β_2 and β_3 are normal with β_1 and β_2 are normal with β_1 and β_2 are normal with β_1 and β_2 are normal with β_2 and β_3 are normal with β_3 and β_4 are normal with β_2 and β_3 are normal with β_3 and β_4 are normal with β_4 and	of angle bt e_t and its proj. A :proj: $P_X e_t$.		<i>j</i>		
Q:What is $\text{Tr}(P_X)$? A: $\text{Tr}(P_X) = k$ if full and $\text{Tr}(P_X) = k$	$\cos^2\theta$: $e_t^{\top}P_Xe_t$.				
and of r it less. If $(M\chi) = n - r$. 1. Show $(Cov(b_1, b_2))^2 \le Var(b_1)Var(b_2)$. 2. Show $(Cov(b_1, b_2))^2 \le Var(b_1)Var(b_2)$. 2. Show $(Cov(b_1, b_2))^2 \le Var(b_1)Var(b_2)$. 3. Section of the second subsample. If we did, we would get SSR 2 = 0. Thus, in this special natrix is nonnegative. Find det of natrix is nonnegative. Find the natrix is not natrix in the natrix is not natrix is	Q:What is $Tr(P_X)$? A : $Tr(P_X) = k$ if full	Q:When performing Chow test A:Since	<i>- j</i>		
2:Show $(\text{Cov}(b_1, b_2))^2 \le \text{Var}(b_1)\text{Var}(b_2)$. For the second subsample. If we did, we a critical value can be estimated as the entry numbered (B + 1) in the sorted hatrix is nonnegative. Find det of natrix is nonnegative. Find natrix is nonnegative. Find natrix is nonnegative. Find natrix is not natrix is nonnegative. Find natrix is not natrix is natrix is not natrix is not natrix is not natrix is natrix is not natrix is natri					- 2
natrix is nonnegative. Find det of case, SSR1 +SSR2 = SSR1. Therefore, list. For example, if B = 999, it is entry $\hat{\beta}_{IV}$ to β_0 +Multiplybyn ⁻¹ . plim both sides, get normal w mean 0 and cov	Q :Show $(Cov(b_1, b_2))^2 \le Var(b_1)Var(b_2)$.		α critical value can be estimated as the	Show GIVE is consistent. A :Expand	
RSSRSSR1 SSR2 in () must be replaced local to complete the control of the control		case, $SSR1 + SSR2 = SSR1$. Therefore,			both sides, get normal w mean 0 and cov
$\sqrt{ar(b)} = Var(b_1)Var(b_2) - (Cov(b_1, b_2))^2$. According to the following number 50. Let us denote this estimate $\beta_{IV} = \beta_0 + \dots$ which goes to 0 by matrix plim $\frac{1}{n}Z^{\perp}Z$.	$Var(b) = Var(b_1)Var(b_2) - (Cov(b_1, b_2))^2.$	RSSRSSR1 SSR2 in () must be replaced	number 50. Let us denote this estimate	$\hat{\beta}_{IV} = \beta_0 + \dots$ which goes to 0 by	matrix plim $\frac{1}{n}Z^{\top}Z$.