Particle spectrograph

Wave operator and propagator

${\mathfrak l}_{1^-}^{\#2}_{\alpha}$	0	0	0	$\frac{4i}{k(1+2k^2)(r_3+2r_5)}$	$\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$	0	$\frac{6k^2(r_3+2r_5)+8t_3}{(1+2k^2)^2(r_3+2r_5)t_3}$	$\sigma_{0^{+}}^{\#1}$	† (1+ † (1+	$\sigma_{0}^{\#1} + \frac{1}{2k^{2})^{2}t^{2}}$ $\sqrt{2}k$ $2k^{2})^{2}t^{2}$	$-\frac{i}{(1+i)}$	$\tau_{0+}^{\#1}$ $i\sqrt{2} k$ $-2 k^{2})^{2} t$ $2 k^{2}$ $2 k^{2}$ $2 k^{2})^{2} t_{3}$		σ ₀ ^{#-1} 0 0	$\omega_0^{\#_+}$	+	$\omega_0^{\#1}$ t_3 $\sqrt{2} kt_3$		$\frac{1}{2}kt_3$	f ₀ ^{#2} 0 0	ω ₀ ^{#-1} 0
$t_{1}^{\#1}\alpha$	0	0	0	0	0	0	0	$ au_{0}^{\#2}$	†	0		0	0	0	$f_0^{#2}$		0	C)	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	$\frac{3k^2(r_3+2r_5)+4t_3}{(k+2k^3)^2(r_3+2r_5)t_3}$	0	$\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$	$f_{1}^{\#2}$ σ	0	0	0	$\frac{2}{3}ikt_3$	$i\sqrt{2}kt_3$	$\frac{1}{t_2}$	$\frac{2k^2t_3}{3}$	1+	0	C)	0	t_2
				k ² (1.	$\frac{3k^2}{(k+2)}$		$-\frac{i\sqrt{2} (3)}{k(1+2)}$	$f_{1^{-}}^{\#1}$	0	0	0	- 0	$0 \frac{1}{3} i$	0	0						
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	$\frac{2}{k^2 (r_3 + 2 r_5)}$	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	0	$\frac{4i}{k(1+2k^2)(r_3+2r_5)}$	$\omega_{1}^{\#2}{}_{\alpha} \qquad f_{1}^{\dagger}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	<u>t3</u> 3	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_3$						
$\tau_{1}^{\#1}_{\alpha\beta}$	$-\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	$\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0	$\omega_{1^-}^{\#1}{}_{\alpha}$	2 0	0	0	$k^2 \left(\frac{r_3}{2} + r_5 \right) + \frac{2t_3}{3}$	$-\frac{\sqrt{2}t_3}{3}$	0	<u>2 i k t 3</u> 3	#:		$\sigma_{2^{+}lphaeta}^{\sharp1}$		$_{eta}$ σ_{2}^{\sharp}	
g_{χ}	2 r3+r5)							$f_1^{\#1}$	$\frac{1}{3}\overline{l}\sqrt{2}kt_2$	<u>ikt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0	$ au_2^{\#_2}$	$\frac{1}{1} + \frac{\alpha \beta}{\alpha \beta}$	$-\frac{2}{3k^2r_3}$	0		0
$\sigma_{1}^{\#2}{}_{lphaeta}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(k+k^3)^2(2r_3+r_5)t_2}$	$\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0	$\omega_1^{\#2}_{+}{}_{\alpha\beta}$	$\frac{\sqrt{2} t_2}{3}$	3	$-\frac{1}{3}$ ik t_2	0	0	0	0	ı		0	0		0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{1}{k^2 \left(2 r_3 + r_5\right)}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)} -$	0	0	0	0	$\omega_{1}^{\#1}_{\alpha\beta}$	$k^2 (2 r_3 + r_5) + \frac{2t_2}{3}$	$\frac{\sqrt{2}t_2}{3}$	$-\frac{1}{3}$ i $\sqrt{2}$ kt ₂	0	0	0	0	$\omega_{2}^{\#1}_{+lphaeta}f_{2}^{\#1}_{+lphaeta}\omega_{2}^{\#1}_{2}$	$-\frac{3k^2r_3}{2} 0 0$	0	0 0 0		
	$\sigma_{1}^{\#1} + \alpha^{\beta}$	$\sigma_1^{\#2} + \alpha^{\beta}$	$\tau_1^{\#1} + ^{\alpha\beta}$	$\sigma_{1}^{\#1} \dagger^{\alpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_{1}^{#2} +^{\alpha}$		$\left \omega_1^{\#1} + ^{lphaeta} \right $	$\omega_1^{\#2} + \alpha^{\beta}$	$f_1^{#1} + \alpha \beta$	$\omega_{1}^{\#1} \dagger^{\alpha}$	$\omega_{1}^{\#2} \dagger^{lpha}$	$f_{1^{ ext{-}}}^{\#1}\dagger^{lpha}$	$f_{1}^{\#2} +^{\alpha}$			$c_2^{*1} + \alpha \beta$	$\frac{1}{2} + \frac{\alpha \beta \chi}{1}$		

Total constraints:

 $4t_3\partial_i f^{\alpha i}\partial_k f_{\alpha}^{\ \ k} - 8t_3\partial^i f^{\alpha}_{\ \ \alpha}\partial_k f_{i}^{\ \ k} - 6r_5\partial_\alpha w^{\alpha i\theta}\partial_k w_{i}^{\ \ k} + 12r_5\partial^\theta w^{\alpha i}$

 $6 r_5 \partial_{lpha} \omega^{lpha ert eta} \partial_{\kappa} \omega_{eta^{\ K}}^{\ \ \ \ \ \ \ } - 12 r_5 \, \partial^{eta} \omega^{lpha ert}_{\ \ \ \ \ \ \ \ \ \ \ } \partial_{\kappa} \omega_{eta^{\ K}}^{\ \ \ \ \ \ }))[t, \ ec{ert}, \ ec{y}, \ ec{z}] \, dz \, dy \, dx \, dt$

 $S == \begin{cases} \int_{0}^{\infty} (-4t_{3} \ \omega^{\alpha_{l}} \ \omega^{\kappa}_{l} + 6 \ f^{\alpha\beta} \ t_{\alpha\beta} + 6 \ \omega^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + 8t_{3} \ \omega^{\kappa}_{a} \ \omega^{\kappa}_{k} \ \partial_{l} f^{\alpha_{l}} - 8t_{3} \end{cases} \\ \partial_{l} f^{\alpha}_{a} + 4t_{3} \partial_{l} f^{\kappa}_{k} \partial^{l} f^{\alpha}_{a} - 3r_{3} \partial_{\beta} \omega^{\beta}_{l} \partial^{\beta} \partial^{\alpha_{l}} \partial^{\beta}_{a} - 3r_{3} \partial_{l} \omega^{\beta}_{\beta} \partial^{\beta}_{a} \partial^{\beta}_{a} \partial^{\beta}_{a} - 3r_{3} \partial_{l} \omega^{\beta}_{\beta} \partial^{\beta}_{a} \partial^{\beta}_$

Quadratic (free) action

(No massive particles)

Massive and massless spectra

Quadratic pole

Pole residue:
$$-\frac{1}{r_3(2r_3+r_5)(r_3+2r_5)p^2} > 0$$

Polarisations: 2

Unitarity conditions

 $r_3 < 0 \&\& (r_5 < -\frac{r_3}{2} || r_5 > -2 r_3) || r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2}$