Examenul de bacalaureat național 2014 Proba E. c)

Matematică M_mate-info

Barem de evaluare și de notare

Varianta 7

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	z = -2 + 2i	2 p
	Partea reală a numărului z este egală cu −2	3 p
2.	$f(x) = g(x) \Leftrightarrow x - 1 = 3x - 5$	3 p
	x=2 şi $y=1$	2 p
3.	$x^2 - x = 2x \Leftrightarrow x^2 - 3x = 0$	3 p
	$x_1 = 0$ și $x_2 = 3$	2p
4.	Cifra unităților poate fi 0 sau 2	2p
	Cifra zecilor poate fi aleasă în câte 3 moduri, deci se pot forma $3 \cdot 2 = 6$ numere	3p
5.	$(m+1)\vec{i} + 4\vec{j} = 2(3\vec{i} + 2\vec{j})$	2p
	m=5	3 p
6.	ΔABC este dreptunghic isoscel	3p
	$\cos C = \frac{\sqrt{2}}{2}$	2 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	1 0 0	
	$\det(A(0)) = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} =$	2 p
		_
	=1+0+0-0-0-0=1	3 p
b)	$\begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$	
	$A(x+y) = \begin{vmatrix} 1 & 0 & 0 \\ x+y & 1 & 0 \end{vmatrix}$	2p
	$A(x+y) = \begin{pmatrix} 1 & 0 & 0 \\ x+y & 1 & 0 \\ 2(x+y)^2 - 2(x+y) & 4(x+y) & 1 \end{pmatrix}$	-P
	$\begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$	
	$A(x) \cdot A(y) = \begin{pmatrix} 1 & 0 & 0 \\ x+y & 1 & 0 \\ 2x^2 + 4xy + 2y^2 - 2x - 2y & 4x + 4y & 1 \end{pmatrix} = A(x+y) \text{ pentru orice numere}$	
	$A(x) \cdot A(y) = \begin{bmatrix} x + y & 1 & 0 \\ -2 & 1 & 2 \end{bmatrix}$	3 p
	$(2x^2 + 4xy + 2y^2 - 2x - 2y 4x + 4y 1)$	
	reale x și y	
c)	$A(x) \cdot A(x) \cdot A(x) = A(3x)$	2 p
	$x^2 + 2 = 3x \Longrightarrow x_1 = 1 \text{ si } x_2 = 2$	3 p
2.a)	$f(2) = 2^3 - 3 \cdot 2^2 + a \cdot 2 - 2 =$	2p
	=2a-6=2(a-3)	3 p
b)	$f = (X-2)(X^2-X+1)+(a-3)X$	3 p
	a=3	2p

c)	$f = (X-2)(X^2 - X + 1)$	2p
	$(2^{x}-2)(2^{2x}-2^{x}+1)=0 \Leftrightarrow x=1$	3 p

SUBIECTUL al III-lea (30 de puncte)

1.a)	$f'(x) = \frac{(xe^x)' \cdot (x+2) - xe^x \cdot (x+2)'}{(x+2)^2} =$	2p
	$= \frac{\left(e^x + xe^x\right) \cdot (x+2) - xe^x}{\left(x+2\right)^2} = \frac{\left(x^2 + 2x + 2\right)e^x}{\left(x+2\right)^2}, \ x \in (-2, +\infty)$	3p
b)	y - f(0) = f'(0)(x - 0)	2p
	$f(0) = 0$, $f'(0) = \frac{1}{2}$, deci ecuația tangentei este $y = \frac{1}{2}x$	3 p
c)	Funcția $g:[1,2] \to \mathbb{R}$, $g(x) = f(x) - 1$ este continuă pe $[1,2]$	2 p
	$g(1) \cdot g(2) = \frac{e-3}{3} \cdot \frac{e^2-2}{2} < 0$, deci există $c \in (1,2)$ astfel încât $g(c) = 0$, adică $f(c) = 1$	3 p
2.a)	$I_1 = \int_0^1 \frac{x}{1+x} dx = \int_0^1 \left(1 - \frac{1}{1+x}\right) dx =$	2 p
	$= x \begin{vmatrix} 1 \\ 0 - \ln(1+x) \end{vmatrix} \begin{vmatrix} 1 \\ 0 = 1 - \ln 2$	3p
b)	$I_{n+1} - I_n = \int_0^1 x^n \left(\frac{x}{1 + x^{n+1}} - \frac{1}{1 + x^n} \right) dx = \int_0^1 \frac{x^n (x - 1)}{\left(1 + x^n \right) \left(1 + x^{n+1} \right)} dx$	2 p
	Pentru orice $x \in [0,1]$ avem $x-1 \le 0$, $x^n \ge 0$, $1+x^n > 0$ și $1+x^{n+1} > 0$, deci $I_{n+1} - I_n \le 0$	3 p
c)	Pentru orice $x \in [0,1]$ și orice $n \in \mathbb{N}^*$ avem $0 \le \frac{x^n}{1+x^n} \le x^n$	2p
	$0 \le \int_0^1 \frac{x^n}{1+x^n} dx \le \int_0^1 x^n dx \Rightarrow 0 \le I_n \le \frac{1}{n+1}, \text{ deci } \lim_{n \to +\infty} I_n = 0$	3p