

第三章 几何向量及其应用

第一节:向量及其线性运算

第二节:数量积、向量积、混合积

董荣 数学与统计学院

作业

习题3.1

(A) 10, 12, 15, 16, 18

习题3.2 (下次课讲完再做)

(A) 2, 3, 7, 8, 11, 13, 14, 18

第一节: 向量及其线性运算

向量的基本概念

向量: 既有大小又有方向的量.

向量表示: \vec{a} 或 $\overline{M_1M_2}$

以 M_1 为起点, M_2 为终点的有向线段.

 M_{2}

向量的长度(模、范数): 向量的大小. \ddot{a} ,或 $|\overline{M_1M_2}|$

单位向量: 长度为1的向量. 与 \vec{a} 或 $\overline{M_1M_2}$ 同方向的单位向量记

为 \vec{a}^0 或 $\overline{M_1M_2}^0$

零向量: 长度为0的向量. $\vec{0}$ (方向是任意的)

自由向量: 不考虑起点位置的向量.

相等向量: 长度相等且方向相同的向量.

$$\vec{a} \longrightarrow \vec{b} \longrightarrow$$

负向量: 长度相等但方向相反的向量. $-\vec{a}$

$$\vec{a} \longrightarrow -\vec{a} \longleftarrow$$

向径: 空间直角坐标系中任一点M与原点构成的向量 \overrightarrow{OM}

◆ 共线或平行

TO TONG UNITED TO THE PARTY OF THE PARTY OF

若两非零向量 \vec{a} 与 \vec{b} 的方向相同或相反,则称 \vec{a} 与 \vec{b} 共线或平行。记为 \vec{a} // \vec{b} 特别的,零向量被认为与任一向量共线.

◆ 正交或垂直

如果两非零向量 \vec{a} 与 \vec{b} 的方向互相垂直,则称 \vec{a} 与 \vec{b} 正交或垂直。记为 \vec{a} \perp \vec{b} . 零向量被认为与任一向量正交.

◆ 共面

如果将几个向量的起点取为同一点,它们都在过该 点的同一平面上,则称这几个向量共面。

向量的线性运算

1、向量加法: $\vec{a} + \vec{b} = \vec{c}$

三角形法则(折线法则)或平行四边形法则

向量的加法符合下列运算规律:

- (1) 交換律: $\vec{a} + \vec{b} = \vec{b} + \vec{a}$.
- (2) 结合律: $\vec{a} + \vec{b} + \vec{c} = (\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$.
- $(3) \ \vec{a} + \vec{0} = \vec{a}.$
- (4) $\vec{a} + (-\vec{a}) = \vec{0}$.

2、数乘向量

设 λ 是一个数,向量 \vec{a} 与 λ 的乘积 $\lambda \vec{a}$ 规定为

(1)
$$\lambda > 0$$
, $\lambda \vec{a}$ 与 \vec{a} 同 向, $||\lambda \vec{a}|| = \lambda ||\vec{a}||$

(2)
$$\lambda = 0$$
 $\overrightarrow{a} = \overrightarrow{0}$, $\lambda \overrightarrow{a} = \overrightarrow{0}$

(3)
$$\lambda < 0$$
, $\lambda \vec{a}$ 与 \vec{a} 反 向, $\|\lambda \vec{a}\| = \|\lambda \| \cdot \|\vec{a}\|$

$$\vec{a} / 2\vec{a} / -\frac{1}{2}\vec{a} /$$
減法 $\vec{a} - \vec{b} = \vec{a} + (-\vec{b})$

数与向量的乘积符合下列运算规律:

(1) 结合律:
$$\lambda(\mu \vec{a}) = \mu(\lambda \vec{a}) = (\lambda \mu)\vec{a}$$

(2) 分配律:
$$(\lambda + \mu)\vec{a} = \lambda \vec{a} + \mu \vec{a}$$

$$\lambda(\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b}$$

设ā⁰表示与非零向量 ā同方向的单位向量,

则
$$\vec{a} = ||\vec{a}||\vec{a}^0$$
 $\longrightarrow \frac{\vec{a}}{||\vec{a}||} = \vec{a}^0$.

一个非零向量除以它的模是一个与其同方向的单位向量

向量的加法与数乘向量的运算统称为向量的线性运算.

向量长度的基本性质:

(1)非负性:
$$||\vec{a}|| \ge 0$$
, 且 $||\vec{a}|| = 0 \Leftrightarrow \vec{a} = \vec{0}$

(2)齐性:
$$||\lambda \vec{a}|| = |\lambda| ||\vec{a}||$$

(3)三角不等式:

$$||\vec{a} + \vec{b}|| \le ||\vec{a}|| + ||\vec{b}||$$
, 等号成立当且仅当 \vec{a} 与 \vec{b} 同向

To Tong of the second of the s

两个向量共线的充要条件

- 定理3.1.1 两个向量 \vec{a} 与 \vec{b} 共线的充要条件是存在不全为零的常数 k_1 和 k_2 使得 $k_1\vec{a}+k_2$ $\vec{b}=\vec{0}$.
- 推论3.1.1 在一条直线上取定一个非零向量 \vec{e}_1 , 则该直线上任一向量 \vec{a} 必可由 \vec{e}_1 惟一地表示为 $\vec{a} = x\vec{e}_1$,其中x为一个常数.

$$\vec{e}_1$$
 \vec{a}

三个向量共面的充要条件

定理3.1.2 三个向量 \vec{a} , \vec{b} , \vec{c} 共面的充要条件是存在不全为零的常数 k_1 , k_2 和 k_3 使得

$$k_1\vec{a} + k_2\vec{b} + k_3\vec{c} = \vec{0}$$

推论3.1.2 在一个平面内取定两个不共线的向量 \vec{e}_1 , \vec{e}_2 ,则该平面上任一向量 \vec{a} 都可由 \vec{e}_1 , \vec{e}_2 惟一地表示为

$$\vec{a} = x\vec{e}_1 + y\vec{e}_2,$$

其中x,y为常数.

定理3.1.3 设 \vec{e}_1 , \vec{e}_2 , \vec{e}_3 是空间中不共面的三个向量,则空间中任一向量 \vec{a} 都可由 \vec{e}_1 , \vec{e}_2 , \vec{e}_3 惟一地表示为

$$\vec{a} = x\vec{e}_1 + y\vec{e}_2 + z\vec{e}_3$$

其中x, y, z为常数.

空间直角坐标系

三个坐标轴的正方向符合右手系.

记为: $\{O; \vec{i}, \vec{j}, \vec{k}\}$

1) 基向量(基本单位向量、坐标向量)

空间直角坐标系

2) 坐标轴

3) 坐标面

空间直角坐标系共有八个卦限

空间中的点的坐标

空间的点 \leftarrow 1--1 有序数组(x,y,z)

特殊点的表示: 坐标轴上的点P, Q, R

坐标面上的点A, B, C

向量的坐标

设 й 为空间直角坐标系中的一个向量,将 й 平移使其

起点与原点重合,终点为P

则有

$$\vec{a} = \overrightarrow{OP} = x\vec{i} + y\vec{j} + z\vec{k}$$
 分解式

 $\mathfrak{R}(x,y,z)$ 为 \overrightarrow{a} 在该坐标系下的坐标.

简记
$$\vec{a} = (x, y, z)$$

起点为 $A(x_1, y_1, z_1)$ 终点为 $B(x_2, y_2, z_2)$

的向量
$$\overline{AB} = \overline{OB} - \overline{OA} = (x_2 \vec{i} + y_2 \vec{j} + z_2 \vec{k}) - (x_1 \vec{i} + y_1 \vec{j} + z_1 \vec{k})$$

= $(x_2, y_2, z_2) - (x_1, y_1, z_1) = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$

特别地
$$\vec{i} = (1,0,0)$$
 $\vec{j} = (0,1,0)$ $\vec{k} = (0,0,1)$

向量的长度与方向余弦

- 设 $\vec{a} = (x, y, z)$,则 $||\vec{a}|| = ||\overrightarrow{OP}|| = \sqrt{x^2 + y^2 + z^2}$
- 设有空间内两点 $A(x_1, y_1, z_1), B(x_2, y_2, z_2)$ 则有 $\overline{AB} = (x_2 x_1, y_2 y_1, z_2 z_1)$

$$||\overrightarrow{AB}|| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

• 向量的夹角:

 \vec{a}, \vec{b} 的夹角 (\vec{a}, \vec{b})

$$0 \le \angle AMB \le \pi$$

• 方向角: 向量 \vec{a} 与x轴,y轴,z轴

正向之间的夹角 α, β, γ

• 方向余弦: 方向角的余弦 $\cos \alpha = \frac{x}{||\vec{a}||}, \cos \beta = \frac{y}{||\vec{a}||}, \cos \gamma = \frac{z}{||\vec{a}||}$

方向余弦的特征

$$\cos \alpha = \frac{x}{||\vec{a}||} = \frac{x}{\sqrt{x^2 + y^2 + z^2}}, \cos \beta = \frac{y}{||\vec{a}||} = \frac{y}{\sqrt{x^2 + y^2 + z^2}},$$
$$\cos \gamma = \frac{z}{||\vec{a}||} = \frac{z}{\sqrt{x^2 + y^2 + z^2}}.$$

(1)
$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$$

(2)单位向量的坐标就是它的方向余弦

$$\vec{a}^{0} = \frac{\vec{a}}{\parallel \vec{a} \parallel} = \left(\frac{x}{\parallel \vec{a} \parallel}, \frac{y}{\parallel \vec{a} \parallel}, \frac{z}{\parallel \vec{a} \parallel}\right) = (\cos \alpha, \cos \beta, \cos \gamma).$$

用坐标进行向量的线性运算

设
$$\vec{a} = x_1 \vec{i} + y_1 \vec{j} + z_1 \vec{k} = (x_1, y_1, z_1),$$
 $\vec{b} = x_2 \vec{i} + y_2 \vec{j} + z_2 \vec{k} = (x_2, y_2, z_2),$
则有
$$\vec{a} \pm \vec{b} = (x_1 \pm x_2) \vec{i} + (y_1 \pm y_2) \vec{j} + (z_1 \pm z_2) \vec{k};$$

$$= (x_1 \pm x_2, y_1 \pm y_2, z_1 \pm z_2)$$

$$\lambda \vec{a} = (\lambda x_1) \vec{i} + (\lambda y_1) \vec{j} + (\lambda z_1) \vec{k}.$$

$$= (\lambda x_1, \lambda y_1, \lambda z_1)$$

$$(x_1, y_1, z_1) = (x_2, y_2, z_2) \Leftrightarrow x_1 = x_2, y_1 = y_2, z_1 = z_2.$$

用坐标表示向量的共线共面的充要条件

设
$$\vec{a} = x_1 \vec{i} + y_1 \vec{j} + z_1 \vec{k} = (x_1, y_1, z_1),$$
 $\vec{b} = x_2 \vec{i} + y_2 \vec{j} + z_2 \vec{k} = (x_2, y_2, z_2),$

\vec{a} 与 \vec{b} 共线的充要条件是存在不全为零的常数 k_1 和 k_2 ,使得

$$k_1\vec{a} + k_2\vec{b} = \vec{0}$$
 不妨设 k_1 不为0

$$\vec{a} = \lambda \vec{b} , (\lambda = -\frac{k_2}{k_1})$$

$$\langle x_1 : x_2 = y_1 : y_2 = z_1 : z_2 \rangle$$

两向量共线

三向量
$$\vec{a} = (x_1, y_1, z_1)$$
, $\vec{b} = (x_2, y_2, z_2)$, $\vec{c} = (x_3, y_3, z_3)$ 共面

存在不全为零的常数 k_1,k_2,k_3 ,使得

$$k_1\vec{a} + k_2\vec{b} + k_3\vec{c} = \vec{0}$$

方程组
$$\begin{cases} x_1k_1 + x_2k_2 + x_3k_3 = 0 \\ y_1k_1 + y_2k_2 + y_3k_3 = 0 有非零解 \\ z_1k_1 + z_2k_2 + z_3k_3 = 0 \end{cases}$$

$$\begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix} = 0$$
 三个向量共面的充要条件

线段的定比分点的坐标

设 $A(x_1, y_1, z_1)$, $B(x_2, y_2, z_2)$ 为空间两个已知点($A \neq B$), 如果点 C(x, y, z) 为直线 AB 上一点,它使得 $\overrightarrow{AC} = \lambda \overrightarrow{CB}$ 其中,常数 $\lambda \neq -1$,则称 点 C 分线段 AB 成定比 λ ,我们来求分点 C 的坐标.

由于
$$\overrightarrow{AC} = (x - x_1, y - y_1, z - z_1)$$

 $\overrightarrow{CB} = (x_2 - x, y_2 - y, z_2 - z)$

我们有
$$(x-x_1, y-y_1, z-z_1) = \lambda(x_2-x, y_2-y, z_2-z)$$

从而整理得到
$$(x, y, z) = \left(\frac{x_1 + \lambda x_2}{1 + \lambda}, \frac{y_1 + \lambda y_2}{1 + \lambda}, \frac{z_1 + \lambda z_2}{1 + \lambda}\right)$$

正交射影

定义3.1.3(正交射影向量和正交射影)

设向量 \vec{a} 与 \vec{b} 的夹角为 θ ,定义向量 $\operatorname{Proj}_{\vec{a}}\vec{b} = ||\vec{b}|| \cos \theta \cdot \vec{a}^{0}$

为 \vec{b} 在 \vec{a} 上的正交射影向量,简称为射影向量.

定义数值 $(\vec{b})_{\vec{a}} = ||\vec{b}|| \cos \theta$ 为 \vec{b} 在 \vec{a} 上的正交射影,简称为射影,即有向线段 OB' 的值.

令 $\vec{v} = \vec{b} - \text{Proj}_{\vec{a}}\vec{b}$, 则 $\vec{b} = \text{Proj}_{\vec{a}}\vec{b} + \vec{v}$, 称为向量 \vec{b} 的正交分解.

称 $\operatorname{Proj}_{\vec{a}}\vec{b}$ 为 \vec{b} 沿 \vec{a} 的分量, 称 \vec{v} 为 \vec{b} 的正交于 \vec{a} 的分量.

向量 $\vec{a} = (x, y, z)$ 的坐标x, y, z分别是 \vec{a} 在坐标向量 $\vec{i}, \vec{j}, \vec{k}$ 上的射影.

$$\vec{a} = (x, y, z) = (||a||cos\alpha, ||a||cos\beta, ||a||cos\gamma) = ((a)_{\vec{i}}, (a)_{\vec{j}}, (a)_{\vec{k}})$$

$$\vec{a}^0 = \left(\frac{x}{\|\vec{a}\|}, \frac{y}{\|\vec{a}\|}, \frac{z}{\|\vec{a}\|}\right) = (\cos \alpha, \cos \beta, \cos \gamma).$$

射影有下述基本性质:

$$(1) \quad (k\vec{b})_{\vec{a}} = k(\vec{b})_{\vec{a}}$$

(2)
$$(\vec{b} + \vec{c})_{\vec{a}} = (\vec{b})_{\vec{a}} + (\vec{c})_{\vec{a}}$$

第二节:数量积、向量积、混合积

一、数量积(内积、点积)

1、定义3.2.1 (数量积、内积、点积)

$$|\vec{a}\cdot\vec{b}| = ||\vec{a}|| ||\vec{b}|| \cos\theta = ||\vec{a}|| (|\vec{b}|)_{\vec{a}} = ||\vec{b}|| (|\vec{a}|)_{\vec{b}}$$

2、性质: (1)
$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$

(2)
$$(\vec{a} + \vec{b}) \cdot \vec{c} = \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c}$$

(3)
$$(k\vec{a})\cdot\vec{b} = k(\vec{a}\cdot\vec{b})$$

(4)
$$\vec{a} \cdot \vec{a} = ||\vec{a}||^2 \ge 0$$
 $\mathbf{\underline{B}}$ $\vec{a} \cdot \vec{a} = 0 \Leftrightarrow \vec{a} = \vec{0}$

由数量积的交换律和分配律。我们有

$$\left(\sum_{i=1}^{m} k_{i} \overrightarrow{a_{i}}\right) \cdot \left(\sum_{j=1}^{n} \ell_{j} \overrightarrow{b_{j}}\right) = \sum_{i=1}^{m} \sum_{j=1}^{n} k_{i} \ell_{j} (\overrightarrow{a_{i}} \cdot \overrightarrow{b_{j}})$$

例
$$\vec{i} \cdot \vec{i} = \vec{j} \cdot \vec{j} = \vec{k} \cdot \vec{k} = 1$$
, $\vec{i} \cdot \vec{j} = \vec{j} \cdot \vec{k} = \vec{k} \cdot \vec{i} = 0$.

THE STANGE OF TH

3、数量积的坐标表示:

设
$$\vec{a} = a_x \vec{i} + a_y \vec{j} + a_z \vec{k}$$
, $\vec{b} = b_x \vec{i} + b_y \vec{j} + b_z \vec{k}$
则 $\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z$