

République Tunisienne Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Institut Supérieur d'Informatique et des Mathématiques de Monastir Université de Monastir

<u>Cours:</u> Systèmes Logiques et Architecture des Ordinateurs

Dr. Safa Teboulbi

Année universitaire : 2024-2025

Chapitre 5

Logique Séquentielle

Introduction

Rappel sur les circuits combinatoires

Dans un système combinatoire, les sorties ne dépendent que de l'état des entrées à un instant donné.

Les circuits séquentiels

La fonction de sortie des systèmes séquentiels dépend en plus des états des entrées (appelées entrées primaires) des états antérieurs des sorties (appelées entrées secondaires).

On dit que le circuit séquentiel possède une fonction mémoire.

Les systèmes séquentiels sont classés en 2 catégories :

> Circuits séquentiels asynchrones

Dans les circuits séquentiels asynchrones, les sorties changent d'états dès qu'il y a changements des états des entrées.

> Circuits séquentiels synchrones

Dans ce type de circuits, les sorties changent d'états après avoir eu une autorisation d'un signal de synchronisation appelé souvent signal « Horloge » noté H ou CLK.

Les Bascules Asynchrones

❖La bascule est le circuit de mémorisation le plus répandu.
 ❖Elle est un système séquentiel constitué par une ou deux entrées et deux sorties complémentaires.

❖On l'appelle ainsi « bascule bistable » car elle possède deux états stables.

❖ On distingue 4 types de bascules : RS, D, JK, et T.

3

Bascule R5

Symbole	Explication
S — Q RS — Q	Une impulsion sur S (set) \rightarrow Mise à 1 de Q (marche) Une impulsion sur R (Reset) \rightarrow Mise à 0 de Q (Arrêt)

Table de vérité

Equation de Sortie

	E	ntré	es	Sorties		Mode de
	R	S	Qn	Q _{n+1}	Q_{n+1}	fonctionnement
	0	0	0	0	1	Etat précèdent
	0	0	1	1	0	Etat précèdent
ı	0	1	0	1	0	Enclenchement
١	0	1	1	1	0	Maintien à 1
١	1	0	0	0	1	Maintien a 0
١	1	0	1	0	1	Declenchement
١	1	1	0	-	-	Interdit
	1	1	1	-	-	Interdit

Q_{n+}	1			
Q_n RS	00	01	11	10
Ö ′	0	<u></u>	Ø	0
1		1	Ø	0

$$Q_{n+1} = \overline{R} Q_n + S$$

Logigramme

REMARQUE :

L'état R=5=1 est un état interdit puisqu'il nous donne le deux sorties complémentaires $m{Q}$ et $ar{m{Q}}$ au même état ce qui n'est pas logique.

ascule D

Symbole	Explication
D Q	Un appui sur D → Mise à 1 de Q
D	Un relâchement de D → Mise à 0 de Q

			Equ	ation			
ſ	Entr	rées	Sor	rties	Mode de	Q_{n+1}	
$\ \cdot\ $	D	Qn	Q _{n+1}	$\overline{Q_{n+1}}$	Fonctionnement	Q_n D	C
$\ \cdot \ $	0	0	0	1	Maintien à 0: μ_0	0	. (
$\ \cdot \ $	0	1	0	1	Déclenchement: δ		
lt	1	0	1	0	Enclenchement: ε	1	
	1	1	1	0	Maintien à $1:\mu_1$		Q_{n+1}

Equation de Sortie						
Q_{n+1}						
Q_n D	0	,1				
0	0	1				
1 0 1						
1	$Q_{n+1} = D$					

Logigramme

REMARQUE :

En mettant S = D et R = \overline{D} dans l'équation de la <u>bascule RS</u> on aura $Q_{n+1} = D$ $Q_n + D = D$ (1+ Q_n) = D.

On obtient une bascule D en rajoutant un inverseur entre 5 et R.

<u>Contrairement</u> à la bascule *RS*, la condition *J=K=1*, ne donne pas lieu à une condition indéterminée, mais par contre la bascule passe à l'état opposé.

	Table de vérité							Sorti	દ
Entré J K	Q_n	Sor Q_{n+1}	Ties $\overline{Q_{n+1}}$	Mode de Fonctionnement	Q_n	+1			
0 0 0 0 1 0 1 1 0 1 0 1 1 1 1	0 1 0 1 0 1 0	0 1 0 0 1 1 1	1 0 1 1 0 0 0	État précédent État précédent Maintien à 0: μ ₀ Déclenchement: δ Enclenchement: ε Maintien à 1: μ ₁ Enclenchement: ε Déclenchement: δ	Q _n JK 0 1	Q_{n+1}	0 0 0 $= J \overline{Q_n}$	$ \begin{array}{c} 11 \\ 0 \\ $	10

La bascule T est obtenue en reliant les entrées J et K d'une bascule JK.

ntrées Sorties Mode de fonctionnement Q_n Q_{n+1} Q_{n+1} fonctionnement Q_n Q_{n+1} Q_{n+1} Q_n Q	Table de vérité					Eq	uation de	Sortie
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Entr	ées	Sor	ties	,	Q_{n+1}		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Т	Q_n	Q_{n+1}	Q _{n+1}	fonctionnement	Q_n	0	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	0	0	1	Maintien à 0 : μο		^	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	1	0	Maintien à 1 : μ ₁	0	0	1
1 0 1 Déclenchement δ		0	1	0		/ 1	1	ا ا
	1	1	0	1				

11

REMARQUE :

En remplaçant J et K par T dans l'équation de la bascule JK on aura :

$$\begin{array}{c}
Q_{n+1} = \overline{T}Q_n + T\overline{Q_n} \\
= T \oplus Q_n
\end{array}$$

Forçage des Bascules

Certaines bascules sont équipées par des entrées particulières :

- > Entrée de remise à 1 : PRESET (RA1).
- > Entrée de remise à 0 : RESET (RAO).

✓ On applique le même résonnement pour les bascules D, T et JK.

Table de vérité

	Table de Verrie								
	Ent	rées	Sor	ties	Mode de				
PRES	SET	CLEAR	Q_{n+1}	$\overline{Q_{n+1}}$	fonctionnement				
C)	0 ;	Ø	Ø	Interdit				
0)	1	. 1	0	Forçage à 1				
1		0	0	1	Forçage à O				
1	6	1	Q_n	$\overline{Q_n}$	Mémorisation				

13

Les Bascules Synchrones

Une bascule est synchrone quand ses sorties ne changent d'état que si un signal supplémentaire est appliqué sur une entrée, dite entrée d'horloge (notée H ou CLK).

Modes d'action du signal d'horloge-:

Il existe quatre modes d'actions ou de synchronisation d'horloge connus par les symboles suivants :

Symbole	Désignation
	Niveau Haut
	Niveou Bas
	Front montant
7	Front descendant

On distingue deux familles de bascules :

- Bascules à commande par niveau d'horloge (niveau haut ou niveau bas): On dit que la bascule est commandée de manière statique.
 - ☐ Bascules à commande par front d'horloge (front montant ou front descendant): On dit que la bascule est commandée de manière dynamique.

Bascule synchrone RSH ou RST

- C'est une bascule R5 dont les ordres Set et Reset ne changent l'état de la sortie Q qu'après l'autorisation d'un signal d'horloge H (Clock CLK).
 - Cette technique permet d'immuniser la bascule contre les parasites.

	Table de	<u>vérité</u>		
R	S	- Н	Q_{n+1}	
0	0	0	Q	
0	1.	0	Q	Mémorisation
1	0	0	Q	Memor isarion
1	1	0	Q	J
0	0.	1	Q	
0	1	1	1	Valeurs prises
1	0	1	0	par Q_{n+1} quand H passe de 0 à 1.
1	1	1	Ø	15

Synchronisation sur niveau haut

- □ Si H=0 : les sorties 5 et R sont bloquées à 1 quelques soient R et S, (les entrées sont masquées par rapport aux sorties); la sortie garde l'état précèdent.
- ☐ Si H=1: la bascule RS fonctionne normalement; les sorties obéissent aux entrées.
- Donc la bascule RS ne fonctionne normalement que si H=1 (Niveau Haut).
 Même chose pour les autres bascules.

Dans le niveau bas, c'est l'inverse qui se manifeste :

☐ Si H=1 : Q garde <u>l'état précèdent</u>.

☐ Si H=0 : Fonctionnement <u>normal</u> de la bascule.

 \square Si H=1 : les sorties \overline{S} et \overline{R} sont bloquées à 1 quelques soient R et S, (les entrées sont masquées par rapport aux sorties), la sortie garde l'état précèdent. □ Si H=0 : la bascule fonctionne normalement et les sorties obéissent aux entrées.

 \triangleright Donc la bascule RS ne fonctionne normalement que si H=0 (Niveau bas).

> La bascule synchrone est identique à celle asynchrone.

> Même chose pour les autres bascules.

Synchronisation sur front

> Une variable logique S peut avoir deux niveaux : le niveau haut (Vrai) ou le niveau logique bas (Faux). > Quand elle passe du niveau bas vers le niveau haut, elle définit le front montant.

> Dans le cas contraire, elle définit le front descendant.

Front montant	Front descendant
$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$	$\begin{array}{c} \downarrow \\ \overline{Q} \end{array}$

La bascule D (Data ou Donnée) est dérivée de la bascule RSH en ajoutant une porte inverseuse entre les entrées Set et Reset pour n'avoir qu'une seule entrée pour fixer le niveau logique à mémoriser.

* Avec cette bascule, il n'y a plus de combinaison invalide S=R=1.

On distingue deux types de bascules D:

> Une bascule D à verrouillage ou bascule D Latch.

C'est une bascule statique synchrone sur le niveau d'horloge dont le fonctionnement est le suivant :

La bascule est transparente tant que le signal d'horloge est au niveau haut. La sortie Q suit toutes les variations de l'entrée D. Le Latch, est dit transparent. L'état de la sortie Q est verrouillé (mémoire) tant que le signal d'horloge est au niveau bas. La sortie Q conserve son état logique. Le Latch est dit bloqué.

Une bascule D flip-flop.

C'est une bascule dynamique synchrone sur le front d'horloge dont le fonctionnement est le suivant :

En présence du front actif de l'horloge, la bascule recopie l'état logique de l'entrée D sur la sortie Q.

En absence du front actif de l'horloge, la bascule mémorise son état logique de la sortie Q.

19

Bascule D à commande par niveau d'horloge

Q

₫

Н

Table de vérité :

D	Ŧ	Q_{n+1}	Mode
" X	0	Q_n	Mémorisation
O	1	0	Transparent (La bascule recopie la
. 1	1	1	valeur de D sur Q)

Bascule D à commande par front d'horloge

- La bascule JK est une bascule synchrone possédant deux entrées de commande:
- L'entrée de l'enclenchement J qui joue le rôle de l'entrée S de la bascule RSH.
- L'entrée de déclenchement K qui joue le rôle de l'entrée R de la bascule RSH.
- En absence du signal d'horloge, la bascule conserve l'état précédant de la sortie Q (mémorisation).
- ❖ Pour la combinaison J=K=O, la bascule mémorise l'état de la sortie Q à chaque front actif d'horloge.
- \star Lorsque $J=\overline{K}$, la sortie Q recopie l'état de l'entrée J à chaque front actif d'horloge :
- Pour la combinaison JK=10, La sortie Q est mise à 1 à chaque front actif d'horloge.
- > Pour la combinaison JK=01, La sortie Q est mise à 0 à chaque front actif d'horloge.
- À l'action simultanée sur J et K (J=K=1), la bascule change d'état à chaque front actif d'horloge.

La bascule JK permet donc de lever l'ambiguité qui existe pour la combinaison S=R=1 de la bascule RSH.

Remarque

Le principe des bascules dynamiques permet de mieux protéger la bascule contre les changements indésirables des entrées.

	r abies des entrees,		
Symbole	Commentaire		
J Q - K Q -	Bascule JK synchrone à front montant		
H SD Q - R RD Q -	Bascule JK synchrone à front montant et à commande asynchrone complémentée		
I S Q Q R R R R R R R R R R R R R R R R R	Bascule JK synchrone à front descendant et à commande asynchrone complémentée		

Principe de fonctionnement d'une bascule JK synchronisée sur front montant

Symbole:

Logigramme à l'aide des portes NAND :

Table de vérité			le de	Symbole		
Entrées Sorties		ties	Mode de fonctionnement			
Н	J	K	Q _{n+1}	$\overline{\mathbf{Q}}_{n+1}$		l I &
0	Х	Х	Q_n	Q	Etat précèdent	
1	x	х	Q_n	\overline{Q}_n	Etat précèdent	$\int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \int_{$
\downarrow	х	х	Q_n	\overline{Q}_n	Etat précèdent	
\uparrow	0	0	Q_n	\overline{Q}_n	Etat précèdent	, K —
\uparrow	0	1	0	1	Déclenchement : δ	i i
\uparrow	1	0	1	0	Enclenchement : ε	
\uparrow	1	1	\overline{Q}_n	$Q_{n_{\cdot}}$	changement d'état	
1	<u> </u>			⊸ .⊓.		

Chronogramme:

Bascule JK maitre esclave

Synchronisation sur Front descendant

Les deux bascules fonctionnent normalement si PRESET = CLEAR = 1 et si H=1 la première bascule fonctionne normalement alors que la deuxième est bloquée et quand H=0 la première bascule est bloquée alors que la deuxième fonctionne normalement et les deux bascules ne fonctionnent ensemble qu'au moment de passage de H de 1 à 0 c'est-à-dire au moment du front descendant (†).

nchronisation sur Front montant

Les deux bascules fonctionnent normalement si PRESET = CLEAR = 1 et si H=0 la première bascule fonctionne normalement alors que la deuxième est bloquée et quand H=1 la première bascule est bloquée alors que la deuxième fonctionne normalement et les deux bascules ne fonctionnent ensemble qu'au moment de passage de H de 0 à 1 c'est-à-dire au moment du front montant (†).

Donc toute bascule maitre esclave dont le maitre travaille sur le niveau bas et l'esclave travaille sur le niveau haut est une bascule <u>synchronisée</u> sur front montant.

(27

Résumé

			•	
Synchronisation sur niveau haut	Synchronisation sur niveau Bas	Synchronisation sur front montant	Synchronisation sur front descendant	
$ \begin{array}{c c} & \overline{P} \\ & \overline{P} \\ & \overline{Q} \\ & \overline{Q} \end{array} $	J — Q H — Q K — О — Q С	$ \begin{array}{c c} & \overline{P} \\ & \overline{Q} \\ & \overline{Q} \end{array} $	$ \begin{array}{c c} \hline P \\ \hline Q \\ \hline K \\ \hline C \end{array} $ $ \begin{array}{c c} \hline Q \\ \hline C \end{array} $	

La bascule T est une bascule synchrone possédant une seule entrée de commande T (Timing).

La sortie Q de la bascule T change d'état à chaque front actif de l'horloge.

En absence du signal d'horloge, la bascule conserve l'état précédant de la sortie Q (mémorisation).

La bascule T est l'un des éléments constitutifs de certains compteurs.

Symbole :

Table de vérité :

		Q.,	\overline{o}_{+}	oose verion
0/1	X	Q	\overline{Q}	Etat mémoire
î	0	Q	\overline{Q}	Mémorisation
1	1	$\overline{m{Q}}$	Q	Basculement