

MV JH RM IS GH LT

ЛН

KNOX GRAMMAR SCHOOL MATHEMATICS DEPARTMENT

2004
TRIAL HSC EXAMINATION

SET BY:

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- · Write using blue or black pen
- Board-approved calculators may be used
- A table of standard integrals is provided on the back page of this paper
- All necessary working should be shown in every question

Total marks (84)

- Attempt Questions 1–7
- All questions are of equal value
- Use a SEPARATE Writing Booklet for each question
- Please write your Board of Studies
 Student Number and Teachers Initials
 on the front cover of each of your
 writing booklets.

NAME:	TEACHER:
-	

Total marks (84) Attempt questions 1 – 7 All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (12 marks)	Jse a SEPARATE writing booklet	Marks
(a) Find $\lim_{x\to 0} \frac{\sin 2x}{4x}$.		2
(b) Find the exact value of	$\int_2^5 \left(\frac{x^2}{x^3-7}\right) dx.$	3
(c) Solve for x : $\frac{2x}{x-1} \le x$	1.	3
(d) Find $\frac{d}{dx} \left(\tan^{-1} \frac{x}{3} \right)$.		1
	ivides an interval AB externally in the ratio 3:2. • the point $B(x, y)$ given $A(-2, 3)$.	3

(a)

In the diagram above, PC is a tangent to the circle at C and QC bisects $\angle ACB$.

3

Copy the diagram into your writing booklet.

Prove, with reasons, that PC = PQ.

(b) Use the substitution
$$u = e^x$$
 to find:
$$\int \frac{dx}{e^x + 4e^{-x}}$$

3

(c) Evaluate
$$\int_0^{\frac{\pi}{2}} \cos^2 2x \ dx$$
.

3

(d) Find the exact value of
$$\cos^{-1} \left(\sin \frac{4\pi}{3} \right)$$
.

- (a) Find the value of the term independent of x in the expansion of $\left(x \frac{2}{x^3}\right)^{12}$.
- 2
- (b) (i) Find the equation of the tangent to the curve $y = x^2 x$ at the point where x = 2.
- 2
- (ii) Find the obtuse angle between the line $\frac{x}{3} + \frac{y}{2} = 1$ and the tangent found in part (i). Give your answer to the nearest degree.
- 2

(c) (i) Express $\sqrt{12} \sin x + 2\cos x$ in the form $A\cos(x-\alpha)$; where A > 0 and $0 < \alpha < \frac{\pi}{2}$.

- 2
- (ii) Hence, sketch the graph of $y = \sqrt{12} \sin x + 2 \cos x$, in the domain $0 \le x \le 2\pi$.
- 2
- (iii) State the number of solutions that satisfy the equation $\sqrt{12} \sin x + 2 \cos x = 1$ in the domain $0 \le x \le 2\pi$.
- 1

(iv) Write down the general solution to $\sqrt{12} \sin x + 2\cos x = 1$

(a) Use one application of Newton's method to find a better approximation to the root of the equation $e^{-x} - \log_e x = 0$, given that there is a root near x = 1.4. Give your answer to 3 decimal places.

3

(b) Use the Principle of Mathematical Induction to show that the expression 7" +5 is divisible by 6 for all positive integers n.

(c) (i) Find $\frac{d}{dx}\left(x\sin^{-1}\frac{x}{4}+\sqrt{16-x^2}\right)$.

3

(ii) Hence, evaluate $\int_0^4 \sin^{-1} \frac{x}{4} dx$.

- (a) Newton's Law of Cooling states that when an object at temperature T (°C) is placed in an environment at a temperature R (°C), then the rate of temperature loss is given by the equation \$\frac{dT}{dt} = k(T-R)\$; where t is the time in seconds and k is a constant.

 A packet of peas, initially at 24°C is placed in a snap-freeze refrigerator in which the internal temperature is maintained at \$-40°C\$. After 5 seconds the temperature of the packet is 19°C. Suppose \$T = R + Ae^h\$, where \$A\$ is a constant.
 - (i) State the value of A.
 - (ii) Show that $k = \frac{1}{5} \log_a \left(\frac{59}{64} \right)$.
 - (iii) Hence show that it will take approximately 29 seconds for the packet's temperature to reduce to 0°C.
- (b) Prove that: $\tan\left(\frac{\pi}{4} + \theta\right) \tan\left(\frac{\pi}{4} \theta\right) = 2\tan 2\theta$

(c)

Water is poured into a conical vessel, of base radius 20 cm, and height 30 cm at a constant rate of 24 cm³ per second. The depth of water is h cm at time t seconds and V is the volume of the water in the vessel at this time.

- (i) Explain why $r = \frac{2h}{3}$.
- (ii) Hence show that the volume of water in the vessel at any time t is given by $V = \frac{4\pi h^3}{27}.$
- (iii) Find the rate of increase of the area (A) of the surface of the water, when the depth is 16cm.

- (a) Two points $P(2ap,ap^2)$ and $Q(2aq,aq^2)$ lie on the parabola $x^2 = 4ay$ (a > 0).
 - (i) By derivation, show that the equation of the chord is:

2

$$y = \frac{1}{2}(p+q)x - apq.$$

(ii) If the chord PQ passes through the focus, S, show that pq = -1.

2

3

- (iii) Using the fact that PQ = PS + SQ, or otherwise, show that the chord PQ has length $a\left(p + \frac{1}{p}\right)^2$.
- (b) A particle moves along a straight line such that its distance from the origin at time t(s) is x(m) and its velocity is v.

(i) Prove that $\frac{d^2x}{dt^2} = \frac{d}{dx} \left(\frac{1}{2} v^2 \right)$.

2

(ii) If the acceleration satisfies $\frac{d^2x}{dt^2} \approx -4\left(x + \frac{16}{x^3}\right)$ and the particle is

initially at rest when
$$x = 2$$
, show that $v^2 = 4\left(\frac{16 - x^4}{x^2}\right)$.

(a)

The diagram shows a parabola y = f(x), with vertex $(0, \alpha)$ and $\alpha > 0$. The parabola passes through the points $(-\pi, 0)$ and $(\pi, 0)$ as shown.

If a is the focal length of the parabola:

(i) Show that
$$4\alpha = \frac{\pi^2}{\alpha}$$
.

(ii) Show that
$$f(x)$$
 can be expressed in the form $f(x) = \alpha \left(1 - \frac{x^2}{\pi^2}\right)$.

(iii) Find the exact value of
$$\alpha$$
 given that the area between $y = f(x)$ and the x axis from $x = -\pi$ to $x = \pi$ is 4 square units.

(b) Assume that tides rise and fall in Simple Harmonic Motion. A ship needs

11 metres of water to pass down a channel safely. At low tide, the channel is

8m deep and at high tide 12 m deep. Low tide is at 10:00 am and high tide
at 4:00 pm.

Find the first time period during which the ship can safely proceed through the channel.

END OF PAPER

Year 12- 2004 Term 3 Mathematics Extension I HSC TRIAL EXAM

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
i) fin Sindx $x \Rightarrow 0 4x$ $= \frac{1}{2} \lim_{x \to 0} \frac{\text{Rind}x}{2x}$ $= \frac{1}{2}$	V OV AW2	d) $\frac{d}{dx} \left(ton^{-1} \frac{x}{3} \right)$ $= \frac{3}{9+x^2}$	~
$\int_{2}^{3} \frac{x^{2}}{(x^{3}-7)} dx$ $= \int_{2}^{3} \frac{3x^{2}}{(x^{3}-7)} dx$ $= \int_{2}^{3} \ln(x^{3}-7) \int_{2}^{3}$	V	e) $x = \frac{mx_1 + nx_1}{m+n}$ $19 = \frac{-3(x)}{-3+2}$ -19 = -3x - 4	~
$= \frac{1}{3} \left(\ln(27-7) - \ln(8-7) \right)$ $= \frac{1}{3} \left(\ln 20 - \ln 1 \right)$ $= \frac{1}{3} \ln 20$	V	$ \begin{array}{r} -3x = -15 \\ $	
$\frac{2\kappa}{\kappa-1} \leq 1$ $(\kappa-1)^{\frac{1}{2}} \frac{2\kappa}{\kappa-1} \leq (\kappa-1)^{\frac{1}{2}}$ $2\kappa(\kappa-1) \leq (\kappa-1)^{\frac{1}{2}}$	~	$-15 = -\frac{3}{9} + \frac{2(3)}{4}$ $-3 + 2$ $15 = -3y + 6$ $3y = -9$ $y = -3$ $15 = -3$	
$2x(x-1) - (x-1)^{2} \le 0$ $(x-1)(2x-x+1) \le 0$ $(x-1)(x+1) \le 0$ and $x \ne 1$.	V	B(S,-3)	-
; -1 ± x < 1		·	

Year 12- 2004 Term 3 Mathematics Extension J HSC TRIAL EXAM

Year 12- 2004 Term 3 Mathematics Extension 1 HSC 1 RIAL EXAM			
Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
20) Let L ACO = d L ACB = L (AC bisects L ACB). Let LBCP = B. L CAB = B (L behive tangent and a chord is equation the L in the alt. Augment So LBOC = LTB (ext. L ACO). also LOCP = atB. LBQC = LQCP (both = alt.)	that they	c) $\int_{0}^{\frac{\pi}{2}} \cos^{2} 2x dx$ anide: $\cos^{2} x = \frac{1}{2} \left(\cos^{2} x + 1 \right)$ $= \cos^{2} (2x) = \frac{1}{2} \left(\cos 4x + 1 \right) dx$ $= \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \left(\cos 4x + 1 \right) dx$ $= \frac{1}{2} \left[\frac{\sin 4x}{4} + \frac{\pi}{2} \right] - (0)$ $= \frac{1}{2} \left[\frac{\sin 2\pi}{4} + \frac{\pi}{2} \right] - (0)$	クナ
$PC = PQ \text{ (base L's of k)}$ $\Delta \text{ as e equal}$ $b) \int \frac{dx}{e^{x} + 4e^{-x}}$ $= \int \frac{dx}{e^{x} + \frac{4}{e^{x}}} u = e^{x}$ $du - e^{x}$		$= \frac{1}{2} \left(\frac{\pi}{2} \right)$ $= \frac{\pi}{4}$ $d) \cdot \det \alpha = \cos^{-1} \left(\sin \frac{4\pi}{2} \right)$ $\therefore \alpha = \cos^{-1} \left(-\frac{\sqrt{3}}{2} \right)$ $\cos \alpha = -\frac{\sqrt{3}}{2}$	V
$= \int \frac{e^{x} dx}{e^{2x} + 4}$ $= \int \frac{du}{u^{\frac{1}{4}} + 4}$ $= \int \frac{du}{u^{$		Related $X = T - T$ X = ST	V
			<u> </u>

1) $\frac{12}{12} \left(3 \left(\frac{2}{3} \right)^{\frac{9}{3}} \left(-\frac{1}{2} \right)^{\frac{3}{3}} \right)$ = $\frac{12}{12} \left(\frac{3}{3} \times \frac{1}{3} \right)^{\frac{3}{3}}$ = $\frac{12}{12} \left(\frac{3}{3} \times \frac{1}{3} \times \frac{1}{4} \times $	Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
	• ,			V.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$= \begin{pmatrix} 2 & \sqrt{2} & (-1)^3 \\ (-1)^3 & (-1)^3 \end{pmatrix}$		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
i) $y = x^{2} - x$ $dy = 2x - 1$ $dn = x - x$ $dy = 2x - 1$ $dn = x - x - x - x - x - x - x - x - x - x$	= 12 (3 × (-2) 3	V	: Aros x = 2 A am x =	1/2
$ \frac{dn}{(0)} x = \lambda \ dy = 3. $ $ \frac{dn}{dn} = \frac{\pi}{(0)} = \frac{\pi}{(0)$	i) y=x+x			7.
$y - 2 = 3(x - 2)$ $y = 3x - 6 + 2$ $y = 3x - 4$ $y = 3x - 4$ $2x + 3y = 6$ $3y = 6 - 2x$ $y = 2 - \frac{2}{3}x$ $m_1 = -\frac{2}{3}$ $m_2 = 3$ $4x + 3x = 6$ $3y = 6 - 2x$ $(iv) + 4x + 3x = 1$ $(vi) = 1$ $(vi) + 4x + 3x = 1$ $(vii) = 1$ $(vi$	0.81	~	$tan < \sqrt{3}$	-
$y = 3x - 64$ $y = 3x - 4$ $y = 3x - 4$ $2x + 3y = 6$ $3y = 6 - 2x$ $y = 2x - \frac{2}{3}x$ $m_1 = -\frac{2}{3}$ $m_2 = 3$ $4x + 3y = 6$ $(ii) 2$ $(iv) 4x + 3y = 1$ $(v) 4x + 3x + 3x = 1$ $(v) 4x + 3$	$x_{1} - 2 = 3(x - 2)$			- <u>II</u>)
$ \frac{x}{3} + \frac{y}{3} = 1 $ $ 2x + 3y = 6 $ $ 3y = 6 - 2x $ $ y = 2 - \frac{2}{3}x $ $ (iv) 4 \cos(x - \pi/3) = 1 $ $ \cos(x - \pi/3) = \frac{1}{4} $ $ \cos(x - \pi/3) = $	4= 3x-6+0	V	2	ex.
$3y = 6-2x$ $y = 2 - \frac{2}{3}zc$ $(iv) 4ros(x-\pi/3) = 1$ $cos(x-\pi/3) = \frac{1}{4}$ $m_2 = 3$ $\tan 0 = \frac{m_1 - m_2}{1 + m_1 m_2}$:	-2 3 3 -44	
$m_{2} = 3$. $\tan \theta = \left \frac{m_{1} - m_{2}}{1 + m_{1} m_{2}} \right $	y= 2 - 2 oc		(iV) 4105 (x-T/3) = 1	
1+m,m2	$m_{\lambda}=3$.		$\therefore x = \frac{\pi}{3} + 2m \pm \cos^{-1}\left(\frac{1}{4}\right)$	
	1+m,m			
$tan0 = 3^{2/3}$		/		

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
$f(x) = e^{-x} - \log_e(x)$ $f'(x) = -e^{-x} - \frac{1}{x}$ $f'(x) = -e^{-x} - \frac{1}{x}$ $f''(x) = -\frac{1}{x}$	}/	= 42P-35+5 = 42P-30 = 6(7P-5) = 60; where 0=76 which is divisible by 6	
$f'(104) = -e^{1.4} - \frac{1}{1.4}$ kence $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$ $= 1.4 - \left(\frac{e^{-1.4} - 1_{1.4}}{-c^{-1.4} - 1.4}\right)$	✓	If the statement is the for N=K, then the statement is true for N=K+1. Since the statement is the for N=1, her it	V
= 1/306 (3dp) Test that the statement is the for n=1; where n is	V	is the few n=1+1=2, 2+1=3, etc for all pos Integers n. note: St must have attemp 1,2,3 to be award for step.4.	sve Late
positive last ger. ie 7+5=12 = 6×2 divisible by 6. Assume that he statements for n=K, ie	,	$\frac{c)\frac{d}{dx}(x\sin^{2}\frac{x}{4}+16x^{2})}{\frac{d}{dx}(x\sin^{2}\frac{x}{4}+16x^{2})} = \frac{x}{\sqrt{16-x^{2}}} + \sin^{2}(\frac{x}{4}) \cdot 1 + \frac{1}{2}(16-x^{2})^{\frac{1}{2}}x - 2x$	/
Pore that the statement is thuc for n= K+1. The TK+ + 5= 60; IN A is a positive integer.		$= \frac{x}{\sqrt{16.x^{2}}} + \sin^{-1}(\frac{x}{4}) + \frac{-x}{\sqrt{16-x^{2}}}$ $= \sin^{-1}(\frac{x}{4}).$ (i) $\int_{0}^{4} \sin^{-1}(\frac{x}{4}) = \left[x \sin^{-1}(\frac{x}{4})\right]$	N/6-x2
So 7 K+1 45 = 7/7 K)+5 = 7/6 (-5) +5 5 for the assumption	m	$= \frac{-f_{om}(i)}{-f_{om}(i)} - \frac{-f_{om}(i)}{-f_{om}(i)} $	~*~` IJ

Year 12- 2004 Term 3 Mathematics Extension 1 HSC TRIAL EXAM

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
Suggested Solution (s) when $t=0$, $T=24^{\circ}C$, $C=-40^{\circ}C$, $A=-40+Ae^{\circ}C$, $A=-40+Ae^{\circ}C$, $A=-40+64e^{\circ}C$, $A=-$		Suggested Solution (s) LHS= $tonII + tonO = \int tanII - ta$ $I - tanII \cdot tanO = (I + tanII)$ $= \underbrace{I + tanO} = \underbrace{(I - tonO)} (I + tanO)$ $= \underbrace{(I + tanO)^2 - (I - tanO)^2} (I - tanO) (I + tanO)$ $= \underbrace{I + 2 tanO + tanO} - (I - 2tanO)$ $= \underbrace{I + 2 tanO + tanO} - I + 2 tanO$ $= \underbrace{I - tanO} (I + tanO)$ $= \underbrace{A + tanO} = \underbrace{I - tanO} = I -$	0 + tan 0)
		·	

Year 12-2004 Term 3 Mathematics Extension 1 HSC TRIAL EXAM

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
50(1) noing similar mangle	··	$A = \pi r^{2}$ $A = \pi \left(\frac{2h}{3}\right)^{2}$ $= \frac{4\pi}{4}h^{2}$ $\frac{dA}{dh} = \frac{8\pi}{9}\pi h$	
$\frac{7}{h} = \frac{20}{30}$ $\frac{7}{h} = \frac{2}{3}$	<u> </u>	$dA = \frac{dA}{dA} \times \frac{dh}{dt}$ $= \frac{8\pi k}{9} \times \frac{54}{\pi k^2}$ when h= 16 cm $dA = \frac{8\pi}{9} \times \frac{54}{\pi 16}$	
$= \frac{3\pi}{3\pi} \left(\frac{2h}{3}\right)^2 h$ $= \frac{3\pi}{3\pi} \left(\frac{4h}{9}\right)^2 h$ $= \frac{4}{27} \pi h^3$ $(iii) \frac{dV}{dh} = \frac{4}{9} \pi h^2$ $dh = dh \times dV$	V	$=3\mathrm{cm}^2/\mathrm{s}.$	
$\frac{dh}{dt} = \frac{dh}{dv} \times \frac{dv}{dt}$ $= \frac{9}{4\pi h^2} \times 24$ $\frac{dh}{dt} = \frac{54}{\pi h^2}$			

1) PS= $\sqrt{(2ap-0)^2+(ap^2-a)^2}$ $\sqrt{(2ap)^2+a^2(p^2-2p^2+1)}$ $\sqrt{(2ap)^2+a^2(p^2-2p^2+1)}$ $\sqrt{(2ap-2ap^2+1)^2}$ $(2ap-2ap^2+1)$

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
66XI) Using the chain Rule;			
\$ (\frac{1}{2} v') = \$ \frac{1}{2} (\frac{1}{2} v') \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} v' \right) \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} v' \right)			
$= V \times \frac{dV}{dX}$			
$= V \times \frac{dV}{dx}$ $= \frac{dx}{dt} \times \frac{dV}{dx}$	V		
$= \frac{dV}{dt}$			
de			
$\frac{dt}{dt^2} = -4\left(\eta + \frac{16}{\pi^3}\right)$			
$\therefore -4\left(x+\frac{16}{x^3}\right) = \frac{d}{dx}\left(\frac{1}{2}V^2\right)$).		
1-12 = S(-4x - 64x-3)dx			
$\frac{1}{2}V^{2} - \frac{4x^{2}}{2} - \frac{64x^{-2}}{-2} + C$ $t=0, \ V=0, \ x=2, \ C=0.$	V		
$V^{2} = -4x^{2} + 64x^{2}$ $V^{2} = \frac{64}{x^{2}} - 4x^{2}$ $V^{2} = \frac{64 - 4x^{4}}{x^{2}}$	V		
$V^{2} = \frac{64 - 4\chi^{4}}{\chi^{2}}$			
$Y^{\frac{3}{2}} = \frac{4\left(\frac{36}{16} - x^4\right)}{x^2}$			
· · · · · · · · · · · · · · · · · · ·			

Year 12-2004 Term 3 Mathematics Extension 1 HSC TRIAL EXAM

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
Ventex $(0, \infty)$. $(x-h)^{\frac{1}{2}} - 4a(y-k)$ $(x-0)^{2} = -4a(y-\infty)$ $x^{\frac{1}{2}} - 4a(y-\infty)$ function passes through	V	$\int_{-\pi}^{\pi} \frac{x(1-\frac{x^2}{\pi^2})dx}{\left(1-\frac{x^2}{\pi^2}\right)dx} = 4$ $\int_{0}^{\pi} \frac{x(1-\frac{x^2}{\pi^2})dx}{\left(x-\frac{x^2}{\pi^2}\right)dx} = 2$	V
$(\pi_0)'$ $\pi^2 - 4a(0-\alpha)$ $\pi^2 - 4a(-\alpha)$ $\pi^2 - 4a(-\alpha)$ $\pi^2 - 4a(-\alpha)$ $\pi^2 - 4a(-\alpha)$ $4a = \frac{\pi^2}{\alpha}$	/	$ \left[\frac{2}{4} x - \frac{2}{\pi^{2}} \frac{x}{3} \right]_{0}^{\pi} = 2 \left(\frac{2}{4} - \frac{\pi^{3}}{\pi^{1}} \frac{\pi^{3}}{3} \right) - (0 - 0) = 2 $	/
Anne $4a = \pi^2$ $\therefore x^2 = -\frac{\pi^2}{\alpha}(y-\alpha)$. $x^2 = -\frac{\pi^2}{\alpha}(y-\alpha)$ $x^2 = -\frac{\pi^2}{\alpha}y + \pi^2$ $\alpha x^2 = -\pi^2 y + \alpha \pi^2$ $\pi y = \alpha \pi^2 - \alpha x^2$ $y = \alpha \frac{\pi^2}{\pi^2} - \alpha x^2$ $y = \alpha (1 - \frac{x^2}{\pi^2})$		$ \begin{array}{cccc} \lambda \pi & & & \lambda \pi & = & 2 \\ \frac{2}{3} & & & \lambda \pi & = & 2 \\ & & & & & & \lambda \pi & = & 3 \\ & & & & & & & \lambda \pi & = & 3 \\ & & & & & & & & \pi & \pi \end{array} $	V

Year 12- 2004 Term 3 Mathematics Extension 1 HSC TRIAL EXAM

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
b) 2		le The first time period The ship can supply pass through would be between Ipm and 6 pm.	
6 hours. Navelength: 12h. peniod = 2 = 12			
amplitude = 2m. $x = -2 \cos(\pm t) + 10$			
Mun X=11m; 11=-2(05(でも)+10 - = 105(でも)・ - = 105(でも)・ モモニューチョ、ガザ ナニザンティザー	{ /	·	
t = 4 hows, 8 hows from 10 am.			