Table 11 Summary of AQM schemes with online training in the intermediate nodes of a wired network

Ref.	ML Technique	Multiple Bottleneck ^a	Synthetic data from ns-2 simulation	Features	Output (action-set for RL)	Evaluation	
						Settings	Results
PAQM [160]	Supervised: · OLS	✓	Topology: · 6-linear · Arbitrary dumbbell Time = 50s	· Traffic volume (bytes)	TSF: • Traffic volume	· NMLS algorithm based on LMMSE	Accuracy: · 90 — 92.3%
APACE [212]	Supervised: • OLS	✓	Topology: Dumbbell (1-sink) - 6-linear Time = 40s	· Queue length	TSF: · Queue length	· NMLS algorithm based on LMMSE	Accuracy: · 92%
α_SNFAQM [498]	Supervised: · MLP-NN	-	Topology: Dumbbell (1-sink) Time = 300s	Traffic volume Predicted traffic volume	TSF: • Traffic volume	· 2 input neurons · 2 hidden layers with 3 neurons · 1 output neuron	Accuracy: ∙ 90 — 93%
NN-RED [179]	Supervised: • SLP-NN	-	Topology: Dumbbell Time = 900s	· Queue length	TSF: · Queue length	· 1+N input neurons (N past values) · 0 hidden layers · 1 output neuron · Delta-rule learning	N/A
DEEP BLUE [298]	Reinforcemen • Q-learning • €-greedy	nt: –	Topology: Dumbbell Time = 50s OPNET simulator instead of ns-2	States:	Decision making: Increment of the packet drop probability (finite: 6 actions)	$\cdot \epsilon$ -greedy	Optimal packet drop probability: Outperforms BLUE [144]
Neuron PID [428]	Reinforcemen • PIDNN	nt: 🗸	Topology: ∙ Dumbbell Time = 100s	· Queue length error	Decision making: Increment of the packet drop probability (continuous)		QL _{Acc} error ^c : · 7.15 QL _{Jit} : · 20.18
AN-AQM [427]	Reinforcemen • PIDNN	nt: 🗸	Topology: Dumbbell Glinear Time = 100s	· Queue length error · Sending rate error	Decision making: Increment of the packet drop probability (continuous)	 6 input neurons 0 hidden layers 1 output neuron Hebbian learning 2 PID components 	QL _{Acc} error ^c : · 6.44 QL _{Jit} : · 22.61
FAPIDNN [485]	Reinforcemen · PIDNN	nt: 🗸	Topology: Dumbbell Time = 60s	· Queue length error	Decision making: Increment of the packet drop probability (continuous)		QL _{Acc} error ^c : · 3.73 QL _{Jit} : · 31.8
NRL [499]	Reinforcemen · SLP-NN	nt: 🗸	Topology: Dumbbell Time = 100s	· Queue length error · Sending rate error	Decision making: Increment of the packet drop probability (continuous)	· 2 input neurons · 0 hidden layers · 1 output neuron · RL learning	QL _{Acc} error ^c : · 38.73 QL _{Jit} : · 128.84

 $^{^{\}mathrm{a}}$ Specifies if the approach was evaluated for multiple bottleneck links (\checkmark) or simply for a single bottleneck link (–)

On the other hand, DEEP BLUE [298] focus on addressing the limitations of BLUE [144], an AQM scheme proposed for improving RED. BLUE suffers from inaccurate

parameter setting and is highly dependent on its parameters. DEEP BLUE addresses these problems by introducing a fuzzy Q-learning (FQL) approach that learns to select

^bAction Selection Strategy (ASS)

cValue computed using RMSE on the results presented in [269] for different network conditions