Ejercicios en clase: División y conquista, Recurrencias

Análisis y Diseño de Algoritmos

15 de abril de 2020

Ejercicio 1. Ilustre la operación del MergeSort en el siguiente arreglo A=<3,41,52,26,38,57,9,49>

Ejercicio 2. Considere la siguiente variación para insertionSort. Para ordenar el vector A[1..n], ordenamos recursivamente el vector A[1..n-1] y luego insertamos A[n] en el arreglo ordenado A[1..n-1]. Escriba el pseudocódigo del algoritmo anterior. Escriba una recurrencia para el peor caso de este algoritmo. Resuelva la recurrencia.

Ejercicio 3. Considere el siguiente problema de búsqueda. Entrada: un arreglo ordenado A[1..n], y un número v. Salida: Un indice i tal que v = A[i] si v está en A y -1 si v no está en A. El algoritmo de búsqueda binaria para dicho problema encuentra el punto medio de A y lo compara con v, descartando la mitad de la secuencia y repitiendo este procedimiento recursivamente. Escriba el pseudocódigo del algoritmo anterior. Escriba una recurrencia para el peor caso de este algoritmo. Resuelva la recurrencia.

Ejercicio 4. Resolver las siguientes recurrencias. Compruebe usando inducción. Compruebe usando teorema maestro. En cada caso, suponga que T(1) = 1.

(a)
$$T(n) = 2T(\lfloor n/2 \rfloor) + n^2$$

(b)
$$T(n) = 2T(n-1) + 3n - 2$$

(c)
$$T(n) = 4T(\lfloor n/2 \rfloor) + n$$

$$(d) \ T(n) = 2T(\lfloor n/2 \rfloor) + n^3$$

(e)
$$T(n) = 7T(\lfloor n/3 \rfloor) + n^2$$