

Machine Learning

Abdelhak Mahmoudi abdelhak.mahmoudi@um5.ac.ma

ENSIAS - 2020

Content

- 1. The Big Picture
- 2. Supervised Learning
 - Linear Regression, Logistic Regression, Support Vector
 Machines, Trees, Random Forests, Boosting, Artificial Neural Networks
- 3. Unsupervised Learning
 - Principal Component Analysis, K-means, Mean Shift

- The Big Picture of ML!
- Terminologies
- How can I Apply?
- How can I Learn?

Forbes: "The Top 10 Al And Machine Learning Use Cases Everyone Should Know About"

- 1. Data Security,
- 2. Personal Security,
- 3. Financial Trading,
- 4. Healthcare,
- 5. Marketing personalization,
- 6. Fraud Detection,
- 7. Recommendations,
- 8. Online Search,
- 9. Natural Language Processing (NLP),
- 10. Smart Cars

Programming

Machine Learning

Machine Learning

Machine Learning

Machine Learning

Data

- Example x⁽ⁱ⁾
 - Row/Instance/Input/Observation/Record/Point/Sample/Entity
- Feature $x^{(i)}_{j}$
 - Columns/Variable/Predictor/Characteristic/Field/Attribute
 - Quantitative (numeric, continue)
 - Qualitative (textual, category)
- Dimension, Visualization
 - m Examples: i = 1..m
 - n Features: j = 1..n
- Output : $y_i = x^{(i)}_k$ (k in 1..n)
 - target/class/output
 - For each example (0/1)

Features

12

Abdelhak Mahmoudi

Examples

Data

- Structured
 - CSV, XML, JSON, XLSX, etc.
- Unstructured
 - DOC, HTML, PDF, PNG, MP3, MP4, etc.

Text, Image, son

Types of Learning

- Supervised
 - Classification
 - Regression
- Unsupervised
 - Dimensionality Reduction
 - Clustering
- Semi-supervised
 - Little supervised data
- Reinforcement

Supervised Learning

15

Unsupervised Learning (y absent)

Terminologies

- Artificial Intelligence
- Machine Learning, Deep Learning
- Statistical Learning
- Data Mining
- Deep Learning

Artificial Intelligence (1943)

- "The first work that is now generally recognized as AI was <u>McCullouch</u> and <u>Pitts</u>' 1943 formal design for <u>Turing-complete</u> "artificial neurons". Wikipedia
- Intelligent Machines mimics Natural Intelligence (NI)
- Natural Intelligence (General Intelligence)
 - Reasoning, Problem solving,
 - Knowledge representation, Learning,
 - Planning, Perception, Motion and manipulation, Natural Language
 - Etc.

Machine Learning (1959)

- <u>"Arthur Samuel</u>, an American pioneer in the field of <u>computer</u> gaming and <u>artificial intelligence</u>, coined the term "Machine Learning" in 1959 while at <u>IBM</u>". Wikipedia
- A subfield of Computer Science and Artificial Intelligence which deals with building systems that can learn from data, instead of explicitly programmed instructions.
- Artificial Neural Networks (1975)
 - Begin in 1943, stagnated in 1969, relaunched in 1975 by the Backpropagation algorithm,
- Book: "Machine Learning". Tom M. Mitchell. 1997

Statistical Learning (1968)

- VC Theory. "On the Uniform Convergence of Relative Frequencies of Events to Their Probabilities". Vapnik, V. N.; Chervonenkis, A. Ya, 1968
- A subfield of Mathematics which deals with finding relationship between variables to predict an outcome
- Support Vector Machines (1995)
 - Much simpler, overtook ANN, Vapnik V. N.
- Book
 - "An introduction to statistical learning with applications in R" (1st Edition 2013). Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani.

Data Mining (1990)

Appeared in the database and financial community to recognize customer and products trends

Definition: "The process of automatically discovering useful information in large repositories".

- Automatically
 - Stats: correlation between 2 variables, what is the problem?
 - DM: parallel correlation between 1000 variables, send and email if two variables are correlated in some way.
- Discovering useful information
 - Stats: answer a specific question
 - DM: look for any specific reason
- Large Repositories
 - Stats: Collect data to answer a specific question
 - DM: Collect all, you don't know the reason yet!

Book:Introduction to Data Mining (2nd edition 2018, 1st Edition in 2005). Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, Vipin Kumar

Deep Learning

How can I Learn?

- Math
 - Statistics, Probabilistic Graphical Models, Algebra, Optimization
- Programming Languages
 - Python, R, Julia!
- Books
 - Gilbert Strang, Linear Algebra and Learning from Data. 2018.
 - Ian Goodfellow et al. "Deep Learning". 2016
 - Aurélien Géron. "Hands on ML with sklearn". 2017
 - Gareth James et al., "An introduction to statistical learning with R". 2013
 - Etc.

How can I Learn?

- MOOCs
 - Coursera.org, Udemy.com, ocw.mit.edu, etc.
- StackOverflow
- Research Papers
 - Read and rewrite algorithms from scratch
- Follow People:
 - Androw Ng, Yann LeCun, Jeff Hinton, Sebastian Thrun, Yoshua Bengio, etc.

How can I Apply?

- Start small projects and use Framworks
 - Scikit-learn, TensorFlow, Keras, Pytorch, Caffe, Microsoft Cognitive Toolkit (CNTK), MXNet, Spark MLlib, etc.
- Challenge your self
 - Find data: Web, UCI Machine Learning Repo
 - Go for competitions: Kaggle, DrivenData, Zindi
- Github
 - Find codes
 - Share your code
- Softwares (for non-pro!)
 - Knime, IBM SPSS Modeler