§1 Lecture 11-25

Lemma 1.1 (Gauss's Lemma)

Let $p \in \mathbb{Z}[x]$ be monic. Suppose p is reducible over \mathbb{Q} . So $p = \alpha\beta$ where $\alpha, \beta \in \mathbb{Q}[x]$ and $\deg(\beta), \deg(\alpha) \geq 1$.

Then $p = a \cdot b$ where $a, b \in \mathbb{Z}[x]$ and $\deg(a) = \deg(\alpha)$, $\deg(b) = \deg(\beta)$.

Corollary 1.2

Let $p \in \mathbb{Z}[x]$ where $p = x^n + a_{n-1}x^{n-1} + \cdots + a_0$. Suppose p has a zero in \mathbb{Q} . Then p has a zero $z \in \mathbb{Z}$. Moreover $z \mid a_0$.

Proof. If p(z) = 0, then p(x) = q(x)(x - z). Hence $p(x) = a(x) \cdot b(x)$ where $\deg(b) = 1$ and $b \in \mathbb{Z}[[x]]$. Hence b = (x - z) for some $z \in \mathbb{Z}$ and p(z) = q(z)b(z) = 0.

Often recognize irreducible deg 3 polynomials in $\mathbb{Q}[x]$. $x^2 + x + 1$ must be irreducible in $\mathbb{Q}[x]$. Since it has no \mathbb{Q} zero, since no \mathbb{Z} zero.

§1.1 Eisenstein's Criterion

Let p be prime. Let $f = a_n x^n + \cdots + a_0 \in \mathbb{Z}[x]$.

Suppose p divides each a_i for i < n, p does not divide a_n , and p^2 does not divide a_0 .

Example 1.3

$$7x^4 + 5x^3 + 10x^2 + 25x^1 + 5x^0$$

Show it is irreducible over \mathbb{Q} .

Under assumption f monic by Gauss's Lemma, it suffices to show that f is irreducible over \mathbb{Z} .

Suppose $f = (b_r x^r + \cdots + b_0)(c_s x^s + \cdots + c_0)$. Note either $p \nmid b_0$ or $p \nmid c_0$ because $p^2 \nmid a_0 = b_0 c_0$.

Suppose $p \nmid b_0$, hence $p \mid c_0$.

Let m be the smallest such that $p \nmid c_m$.

Note $p \nmid c_s$ because $p \nmid a_n = b_r c_s$ so m < s.

Then $a_m = b_1 c_{m-1} + \cdots + b_m c_0$.

 $p \mid a_m$ by hypothesis. $p \nmid b_0$, $b \nmid c_m$ and $p \mid c_{m-1} \cdots c_0$. So $P \mid$ left but \nmid right. Contradiction!

For each $n \geq 1$, there is a homomorphism $\phi_n : \mathbb{Z}[x] \to \mathbb{Z}_n[x]$ induced by $\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} = 0$ \mathbb{Z}_n .

 $\phi_n(f) = f$ with coefficients mod n

Example 1.4

$$\underbrace{\phi_3(5x^3 + 4x + 7)}_{\in \mathbb{Z}[x]} = \underbrace{2x^3 + x + 1}_{\in \mathbb{Z}_3[x]}$$

Lemma 1.5

If $\phi_n(f)$ is irreducible in $\mathbb{Z}_n[x]$ (and $f \neq mf'$ for some $m \in \mathbb{Z}$), then f is irreducible

Proof. Indeed, if $f = g \cdot h$ in $\mathbb{Z}[x]$, then $\phi_n(f) = \phi_n(gh) = \phi_n(g)\phi_n(h)$.

Example 1.6

 $\mathbb{Q}[x]/\langle 5x^3+4x+7\rangle$ is a field.

To compute $gcd(f, g), f, g \in \mathbb{F}[x]$, just apply Euclid's algorithm.

Example 1.7
$$\gcd(x^3 + x + 1, x^2 + 2) \text{ in } \mathbb{Z}_3[x].$$

$$x^2 + 2) \underbrace{ x^3 + x + 1 }_{-x^3 - 2x}$$

$$-x + 1$$

$$\gcd(x^2 + 2, 2x + 1) = 2x + 1$$

$$2x + 1) \underbrace{ \frac{1}{2}x - \frac{1}{4}}_{2x + 2}$$

$$-\frac{1}{2}x + 2$$

$$-\frac{1}{2}x + \frac{1}{4}$$

$$\frac{9}{4}$$