Задача А. Сортировка

Имя входного файла: sort.in Имя выходного файла: sort.out

Дан массив целых чисел. Ваша задача — отсортировать его в порядке неубывания. Вы должны написать сортировку в соответствии с вашим вариантом.

Формат входного файла

В первой строке входного файла содержится число $n\ (1 \le n \le 100000)$ — количество элементов в массиве. Во второй строке находятся n целых чисел, по модулю не превосходящих 10^9 .

Формат выходного файла

В выходной файл надо вывести этот же массив в порядке неубывания, между любыми двумя числами должен стоять ровно один пробел.

sort.in	sort.out
10	1 1 2 2 3 3 4 6 7 8
1821473236	

Задача В. Двоичный поиск

Имя входного файла: binsearch.in Имя выходного файла: binsearch.out

Дан массив из n элементов, упорядоченный в порядке неубывания и m запросов: найти первое и последнее вхождение числа в массив.

Формат входного файла

В первую строке входного файла содержится одно число n — размер массива. ($1 \le n \le 100000$). Во второй строке находится n чисел в порядке неубывания — элементы массива. В третьей строке находится число m — количество запросов. В следующей строке находится m чисел — запросы.

Формат выходного файла

Для каждого запроса выведите в отдельной строке номер первого и последнего вхождения этого числа в массив. Если числа в массиве нет выведите два раза -1.

binsearch.in	binsearch.out
5	1 2
1 1 2 2 2	3 5
3	-1 -1
1 2 3	

Задача С. К-ая порядковая статистика

Имя входного файла: kth.in Имя выходного файла: kth.out

Дан массив из n элементов. Какое число k-ое в порядке возрастания в этом массиве.

Формат входного файла

В первую строке входного файла содержится два числа n — размер массива и k ($1 \le k \le n \le 3 \cdot 10^7$). Во второй строке находятся числа A, B, C, a_1, a_2 по модулю не превосходящие 10^9 . Вы должны получить элементы массива начиная с третьего по формуле: $a_i = A \cdot a_{i-2} + B \cdot a_{i-1} + C$. Все вычисления должны производится в 32 битном знаковом типе, переполнения должны игнорироваться.

Формат выходного файла

Выведите значение k-ое в порядке возрастания число в массиве a.

Пример

kth.in	kth.out
5 3	13
2 3 5 1 2	
5 3	2
200000 300000 5 1 2	

Во втором примере элементы массива a равны: (1, 2, 800005, -516268571, 1331571109).

Задача D. Гирлянда

Имя входного файла: garland.in Имя выходного файла: garland.out

Гирлянда состоит из n лампочек на общем проводе. Один её конец закреплён на заданной высоте A мм $(h_1=A)$. Благодаря силе тяжести гирлянда прогибается: высота каждой неконцевой лампы на 1 мм меньше, чем средняя высота ближайших соседей $(h_i = \frac{(h_{i-1} + h_{i+1})}{2} - 1$ для 1 < i < N). Требуется найти минимальную высоту второго конца B $(B = h_n)$ при условии, что ни одна из лампочек не должна лежать на земле $(h_i > 0$ для $1 \le i \le N)$.

Формат входного файла

В первую строке входного файла содержится два числа n и A ($3 \le n \le 1000, n$ —целое, $10 \le A \le 1000, A$ —вещественное).

Формат выходного файла

Вывести одно вещественное число B с двумя знаками после запятой.

garland.in	garland.out
8 15	9.75
692 532.81	446113.34

Задача Е. Цифровая сортировка

Имя входного файла: radixsort.in Имя выходного файла: radixsort.out

Дано n строк, выведите их порядок после k фаз цифровой сортировки.

Формат входного файла

В первой строке входного файла содержится число n — количество строк, m — их длина и k — число фаз цифровой сортировки ($1 \le n \le 1000, \ 1 \le k \le m \le 1000$). В следующих n строках находятся сами строки.

Формат выходного файла

Выведите строки в порядке в котором они будут после k фаз цифровой сортировки.

radixsort.in	radixsort.out
3 3 1	aba
bbb	baa
aba	bbb
baa	
3 3 2	baa
bbb	aba
aba	bbb
baa	
3 3 3	aba
bbb	baa
aba	bbb
baa	

Задача F. Анти-QuickSort

Имя входного файла: antiqs.in Имя выходного файла: antiqs.out

Для сортировки последовательности чисел широко используется быстрая сортировка - QuickSort. Далее приведена программа, которая сортирует массив а, используя этот алгоритм.

```
var
   a : array [1..N] of integer;
  procedure QSort(left , right : integer);
      i, j : integer;
      key : integer;
      buf : integer;
   begin
      key := a[(left + right) div 2];
      i := left;
      j := right;
      repeat
         while a[i] < key do {nepвий while}
            inc(i);
         while key < a[j] do {emopoŭ while}
            dec(j);
         if i \le j then begin
            buf := a[i];
            a[i] := a[j];
            a[j] := buf;
            inc(i);
            dec(j);
         end:
      until i > j;
      if left < j then
         QSort(left, j);
      if i < right then
         QSort(i, right);
   end:
begin
   QSort(1, N);
```

Хотя QuickSort является самой быстрой сортировкой в среднем, существуют тесты, на которых она работает очень долго. Оценивать время работы алгоритма будем количеством сравнений с элементами массива (то есть суммарным количеством сравнений в первом и втором while). Требуется написать программу, генерирующую тест, на котором быстрая сортировка сделает наибольшее число таких сравнений.

Формат входного файла

end.

В первой строке находится единственное число $n \ (1 \le n \le 70000)$.

Формат выходного файла

Вывести перестановку чисел от 1 до n, на которой быстрая сортировка выполнит максимальное число сравнений. Если таких перестановок несколько, вывести любую из них.

antiqs.in	antiqs.out
3	1 3 2

Задача G. Проверьте сортирующую сеть

Имя входного файла: netcheck.in Имя выходного файла: netcheck.out

Проверьте является ли сеть из n проводов сортирующей.

Формат входного файла

В первой строке входного файла содержится три числа n —количество проводов, m —количество компараторов в сети и k —количество слоев в сети ($1 \le n \le 15,\ 0 \le m,k \le 150$). В каждой из следующих строк содержится описание слоя из компараторов: число r — количество компараторов в слое и далее r пар чисел, номера проводов, которые сравнивает компаратор. Внутри слоя все номера проводов различны.

Формат выходного файла

Выведите «Yes», если сеть является сортирующей и «No», если нет.

netcheck.in	netcheck.out
4 6 3	Yes
2 1 2 3 4	
2 1 4 2 3	
2 1 2 3 4	

Задача Н. Постройте сортирующую сеть

Имя входного файла: netbuild.in Имя выходного файла: netbuild.out

Постройте сортирующую сеть для n проводов.

Формат входного файла

В первой строке входного файла находится одно число $n\ (1 \le n \le 16)$ — требуемый размер сортирующей сети.

Формат выходного файла

В первую строку выходного файла выведите три числа n —количество проводов, m —количество компараторов в сети и k —количество слоев в сети. В каждой из следующих строк выведите описание слоя из компараторов, число r — количество компараторов в слое и далее r пар чисел, номера проводов, которые сравнивает компаратор. Внутри слоя все номера проводов должны быть различны. Число слоев не должно превышать 12.

netbuild.in	netbuild.out
4	4 6 3
	2 1 2 3 4
	2 1 4 2 3
	2 1 2 3 4