Método de la bisección aplicado a la función $f(x) = 5^x - \underline{5}$

Claudia Ballester Niebla, Cathaysa Pérez Quintero y Carlos Herrera Carballo

14 de mayo de 2014

Facultad de Matemáticas Universidad de La Laguna

Objetivos

- Objetivos
- Pundamentos teóricos

<u>Í</u>ndice

- Objetivos
- Pundamentos teóricos
- 3 Procedimiento experimental

- Objetivos
- Pundamentos teóricos
- Procedimiento experimental
- 4 Algoritmo

- Objetivos
- Pundamentos teóricos
- Procedimiento experimental
- 4 Algoritmo
- Gráficas

- Objetivos
- Pundamentos teóricos
- 3 Procedimiento experimental
- 4 Algoritmo
- Gráficas
- 6 Bibliografía

Objetivos

• **Objetivo principal**: Implementación con Python del método de bisección.

Objetivos

- Objetivo principal: Implementación con Python del método de bisección.
- **Objetivo específico**: Cómo se aproximan las raíces de una función, mediante el método de bisección.

El método de la bisección se basa en dos teoremas, el de Bolzano y el del Valor Intermedio.

El método de la bisección se basa en dos teoremas, el de Bolzano y el del Valor Intermedio.

Definición

• Teorema de Bolzano: Sea f(x) una función continua en un intervalo [a,b] tal que f(a) * f(b) < 0, entonces existe un punto c perteneciente al intervalo (a,b) tal que f(c) = 0.

El método de la bisección se basa en dos teoremas, el de Bolzano y el del Valor Intermedio.

Definición

- Teorema de Bolzano: Sea f(x) una función continua en un intervalo [a,b] tal que f(a)*f(b)<0, entonces existe un punto c perteneciente al intervalo (a,b) tal que f(c)=0.
- Teorema del Valor Intermedio: Sea f(x) una función continua en un intervalo [a,b], tal que f(a) < f(b) entonces, para todo k tal que f(a) < k < f(b) existe x_0 que pertenece al intervalo (a,b) tal que $f(x_0) = k$.

Definición

Dados dos puntos a y b, tal que f(a) y f(b) tengan signos distintos debe tener, al menos, una raíz en el intervalo [a,b]. Este método divide el intervalo en dos utilizando un tercer punto $c=\frac{a+b}{2}$. De esta forma, se darán dos posibilidades: f(a) y f(c), δ f(c) y f(b) tienen distinto signo. Se aplica este método al subintervalo donde ocurre el cambio de signo. Así se realizará tantas veces como sea necesario para conseguir la máxima precisión.

Descripción de los experimentos.

• Experimento 1: Con el fin de verificar la precisión del algoritmo propuesto, se ejecuta el programa con los mismos valores y la misma función tres veces. De esta forma, si los resultados coinciden, significará que es exacto.

- Experimento 1: Con el fin de verificar la precisión del algoritmo propuesto, se ejecuta el programa con los mismos valores y la misma función tres veces. De esta forma, si los resultados coinciden, significará que es exacto.
- Experimento 2: Se ejecutará el algoritmo con distintas funciones para así observar que es válido para cualquier f(x).

- Experimento 1: Con el fin de verificar la precisión del algoritmo propuesto, se ejecuta el programa con los mismos valores y la misma función tres veces. De esta forma, si los resultados coinciden, significará que es exacto.
- Experimento 2: Se ejecutará el algoritmo con distintas funciones para así observar que es válido para cualquier f(x).
- Experimento 3: En este tercer experimento, se ejecutará el programa con distintos intervalos para verificar la existencia de raíces en los mismos.

- Experimento 1: Con el fin de verificar la precisión del algoritmo propuesto, se ejecuta el programa con los mismos valores y la misma función tres veces. De esta forma, si los resultados coinciden, significará que es exacto.
- Experimento 2: Se ejecutará el algoritmo con distintas funciones para así observar que es válido para cualquier f(x).
- Experimento 3: En este tercer experimento, se ejecutará el programa con distintos intervalos para verificar la existencia de raíces en los mismos.
- Experimento 4: Se observa cómo varían las soluciones obtenidas con distintos valores de tolerancia de error.

- Experimento 1: Con el fin de verificar la precisión del algoritmo propuesto, se ejecuta el programa con los mismos valores y la misma función tres veces. De esta forma, si los resultados coinciden, significará que es exacto.
- Experimento 2: Se ejecutará el algoritmo con distintas funciones para así observar que es válido para cualquier f(x).
- Experimento 3: En este tercer experimento, se ejecutará el programa con distintos intervalos para verificar la existencia de raíces en los mismos.
- **Experimento 4:** Se observa cómo varían las soluciones obtenidas con distintos valores de tolerancia de error.
- Experimento 5: Para determinar el rendimiento del algoritmo, se introduce un cronómetro en el mismo, de forma que imprima el tiempo que tarda la CPU de la computadora en ejecutar el programa.

Resultados. Experimento 1

Intento	Resultado
1	0.969
2	0.969
3	0.969

Resultados. Experimento 2

Funcion	Resultado
5 ^x	Error
5x - 10	1.969
$3x^2 - 1$	Error

Resultados. Experimento 3

Intervalo	Resultado
(-3,2)	1.023
(-2,3)	1.008
(2,5)	Error

Resultados. Experimento 4

Tolerancia	Resultado
0.01	0.996
0.02	0.992
0.001	1.000

Resultados. Experimento 5

Intento	Tiempo (segundos)
1	$2.8133*10^{-5}$
2	$2.4080*10^{-5}$
3	$3.1948*10^{-}5$

```
Algoritmo empleado
import time
import timeit
def f(x):
 return (5**x)-5
def biseccion(a.b.tol):
 c=(a+b)/2.0
 while((f(c)!=0.000001) and (abs(b-a)>tol)):
   if f(a)*f(c)<0.000001:
      b=c
    else:
      a=c
    c=(a+b)/2.0
 return c
import sys
if (len(sys.argv) == 4):
 A=float(svs.argv[1])
 B=float(sys.argv[2])
 TOL=float(sys.argv[3])
else:
 A=float(raw input("Introduzca el extremo a del intervalo: "))
 B=float(raw_input("Introduzca el extremo b del intervalo: "))
 TOL=float(raw_input("Introduzca la tolerancia del error que desee: "))
if f(A)*f(B)<0.000001:
 start=time.time()
 raiz=biseccion(A,B,TOL)
 finish=time.time()-start
 print "El tiempo de ejecución es:"
 print finish
 print "La raíz aproximada de la función escogida es: %4.3f" %raiz
else:
 print "En ese intervalo no existe raíz, por favor vuelva a ejecutar el programa con otros valores"
```


Figure: Gráfica del tiempo

Figure: Gráfica de la funcion

Bibliografía

Guía docente de la asignatura: Técnicas Experimentales. (2013)

http://eguia.ull.es/matematicas/query.php?codigo = 299341201

Spivak, M. -Calculus, Ed. Cambridge, 2006; Ed. Reverté, 1981 [BULL]

http://www.ma3.upc.edu/users/carmona/teaching/clases/08 — 09/trabajos/

Python para todos. -Raúl González Duque.

http:

 $// campus virtual.ull.es/1314/pluginfile.php/197675/mod_r esource/content/4/Primera_Parte/General 2012/Python_para_todoubless and the content of the conte$

The beamer class. User Guide for version 3.26.

 $http://campus virtual.ull.es/1314/pluginfile.php/197674/mod_r esource/content/1/beamer user guide.pdf$