

FIT3081
Project Assignment 1

LUNG CANCER DETECTION USING CT SCAN IMAGE PROCESSING

Teh Yi Chang (28695127)

Thung Hui Ling (27208699)

INTRODUCTION

- •Lung cancer is one of the deadliest cancers
- More people die of lung cancer than other cancers
- Early detection saves life

INTRODUCTION - CHEST CT SCAN

MOTIVATION

- Comparison with other imaging techniques:
 - MRI = low availability and high cost
 - X-ray = less sensitive and gives a lower contrast

 CT scans could be improved by image processing techniques to reduce false positives and to differentiate benign and malignant tumors.

Traditional X-ray

CT Scans showing internal body

AIMS AND OBJECTIVES

- To design and develop a system that can correctly classify images to normal/lung cancer patients by using MATLAB.
- To do a thorough literature review, analyse and compare different algorithms we explore in class and find out which techniques are the most suitable.
- To point out overall limitation, drawbacks for future improvements.
- To collect a proper dataset for our experiments

METHODOLOGY

1ST STEP: IMAGE ACQUISITION

- •Cancer Imaging Archive(https://www.cancerimagingarchive.net/) provide several different datasets:
- •The RIDER Lung CT collection
- •The Lung Image Database Consortium image collection (LIDC-IDRI)
- •Sample images:

2ND STEP: PRE-PROCESSING — SMOOTHING (NOT NEEDED)

Function	MATLAB Code
To convert image into grayscale	I = rgb2gray(image;
Median filter to remove salt and pepper noise	K = medfilt2(image);
Gaussian filter to blur image and remove	Iblur = imgaussfilt(image, 2);
noises	

Median Filters

2ND STEP: PRE-PROCESSING — IMAGE ENHANCEMENT

Function	MATLAB Code
Adaptive histogram equalization for image sharpening	J = adapthisteq(image);
Gabor filter	<pre>gb = gabor_fn(bw,gamma,psi(1),lambda,theta) + gabor_fn(bw,gamma,psi(2),lambda,theta);</pre>

(b) Enhanced by Gabor

2ND STEP: PRE-PROCESSING — IMAGE SEGMENTATION TO OBTAIN LUNG VOLUME

- Region Based Active Contour Segmentation
- •Introduced by Chan Vese in the paper: "Active Contours Without Edges"
- Used the library that is coded by Shawn Lankton

To segment images whose foregrounds and backgrounds are statistically

different and homogeneous.

(a) Enhanced by Gabor

(b) Segmented Image

4TH STEP: GETTING RESULTS-BINARIZATION AND MASKING

- By counting the black pixels of the segmented lung images
- •If number of black pixels greater than 17179*, consider normal lung
- •Else consider lung cancer

*Value proven in several research papers:

Abdillah, B., Bustamam, A., & Sarwinda, D. (2016). Image processing based detection of lung cancer on CT scan images. The Asian Mathematical Conference 2016 (AMC). doi:10.1088/1742-6596/893/1/012063

Prasad, D. V. R. (2013). Lung Cancer Detection Using Image Processing Techniques. International Journal of Latest Trends in Engineering and Technology (IJLTET).

2ND STEP: PRE-PROCESSING — OTSU THRESHOLDING TO OBTAIN LUNG NODULES

imbinarize

- Built-in Otsu Thresholding using MATLAB's imbinarize
 - Binarize 2-D grayscale image or 3-D volume by thresholding
- Drawbacks = Low performance when foreground objects (tumors) are small

Segmented Lung Volume

Histogram of pixel intensity

Segmented Lung Nodules

WATERSHED SEGMENTATION

Original Image

Segmented Mask using imbinarize

After Watershed Segmentation

Source: MathWorks

2ND STEP: PRE-PROCESSING — WATERSHED SEGMENTATION TO SEPARATE LUNG NODULES

•Connected tumors are separated using watershed segmentation.

3RD STEP: FEATURE EXTRACTION - GENERAL CHARACTERISTICS OF THE NODULE

Function	MATLAB Code
Obtain properties of tumour blob	conncomp = bwconncomp (nodulesMask);
	blobMeasurements= regionprops (conncomp, ''all');
Perimeter	blobPerimeter = blobMeasurements. Perimeter ;
Area	blobArea = blobMeasurements. Area ;
Eccentricity	blobEccentricity = blobMeasurements. Eccentricity ;
Texture (Contrast, Correlation, Energy, Homogeneity) [NOT IMPLEMENTED]	<pre>glcms = graycomatrix(circuitBoard,'Offset',offsets0); stats = graycoprops(glcms,'Contrast Correlation');</pre>

3RD STEP: FEATURE EXTRACTION - GENERAL CHARACTERISTICS OF THE NODULE

regionprops

Measure properties of image regions

Fields	H Area	MajorAxisLength	Eccentricity	Perimeter
1	17	5.2944	0.5415	12.8440
2	46	9.2777	0.6893	23.3880
3	48	10.3231	0.7912	23.9670
4	9	3.4641	0	7.4760
5	6	5.1343	0.9329	7.5010
6	5	3.3066	0.7651	4.9620
7	10	4.1633	0.5923	8.6260
8	38	8.3594	0.7084	19.1950
9	28	6.4697	0.4543	16.2180
10	186	18.8877	0.6884	52.1100
11	139	14.5923	0.5423	39.8210
12	97	12.7467	0.6232	33.9990
13	29	6.7054	0.5206	16.7720
14	168	16.6837	0.6204	44.2870
15	4	3.0551	0.7319	4.5900
16	27	6.8192	0.6503	15.3660

3RD STEP: FEATURE EXTRACTION - Convert Pixels to Actual Dimensions

Field ▼	Value
HighBit	15
BitsStored	16
BitsAllocated	16
PixelSpacing	[0.7031;0.7031]
Columns	512
Rows	512
PhotometricInterp	'MONOCHROME2'
── SamplesPerPixel	1
→ SliceLocation	-100
PositionReferencel	'SN'
FrameOfReference	1.3.6.1.4.1.14519.5.2.1.6279
ImageOrientation	[1;0;0;0;1;0]
ImagePositionPati	[-166;-171.7000;-100]
InstanceNumber	37
- SeriesNumber	3000566

Digital Imaging and Communications in Medicine (DICOM) medical CT images are provided from the LIDC datasets.

Actual dimensions of blobs are calculated from the pixel spacing value obtained from DICOM header

```
dinfo = dicominfo('TheFileName.dcm');
spacing = dinfo.PixelSpacing;
per_pixel_area = spacing(1) * spacing(2);
```

Various metadata could be obtained from DICOM header

4TH STEP: GETTING RESULTS

Nodules are staged based on American Joint Committee on Cancer (AJCC)
 TNM 8th edition.

T_1	≤ 3 cm surrounded by lung/visceral pleura, not involving main bronchus
T _{1a(mi)}	Minimally invasive carcinoma
T _{1a}	≤1 cm
T _{1b}	> 1 to ≤ 2 cm
T _{1c}	> 2 to ≤ 3 cm
T ₂	> 3 to ≤ 5 cm or involvement of main bronchus without carina, regardless of distance from carina or invasion visceral pleural or atelectasis or post obstructive pneumonitis extending to hilum
T _{2a}	>3 to ≤4cm
T _{2b}	>4 to ≤5cm
T ₃	>5 to ≤7cm in greatest dimension or tumor of any size that involves chest wall, pericardium, phrenic nerve or satellite nodules in the same lobe

- Tumor (T): How large is the tumor? Has it grown into nearby structures or organs?
- Lymph Nodes (N): Has the cancer spread to nearby lymph nodes?
- Metastasis (M): Has the cancer spread to distant organs?
- We classify tumors based on its greatest diameter as stated in T component..

4TH STEP: GETTING RESULTS


```
ans =
   'tumor detected'
Nodule # 1
Diameter of nodule/tumor = 13.3 mm
Mean Intensity of Pixels = 766.5
Blob Area (mm^2) = 92.0
Blob Perimeter (mm) = 36.6
Centroid Coordinates (x,y) = (293.0, 285.3)
Nodule # 2
Diameter of nodule/tumor = 10.3 mm
Mean Intensity of Pixels = 869.5
Blob Area (mm^2) = 68.7
Blob Perimeter (mm) = 28.0
Centroid Coordinates (x,y) = (297.8, 249.7)
Nodule # 3
Diameter of nodule/tumor = 11.7 mm
Mean Intensity of Pixels = 855.0
Blob Area (mm^2) = 83.1
Blob Perimeter (mm) = 31.1
Centroid Coordinates (x,y) = (307.7, 277.0)
```

**Extra Feature: (NOT USING) - Subpleural nodules

LIMITATIONS & DISCUSSION

1. Unable to detect subpleural nodules for some of the lung cancer images we have – decided to remove the function instead

2. Have to use libraries that have developed by other researchers for Gabor Filter and Region Based Active Contour segmentation algorithms.

LIMITATIONS & DISCUSSION

- 3. Undetected small, ground-glass nodules
- •Due to difficult segmentation, poorly defined borders and low contrast.

- 4. Only a single CT slice is analysed
- •High false positives as might be a blood vessel

TASK DISTRIBUTION

Criteria	Work Distribution
Introduction/ background	Background = Hui Ling
	Motivation = Hui Ling & Yi Chang
Project aims/ objectives	Aims = Hui Ling
Literature Review	2.1 Pre-processing = Hui Ling
	2.2 Feature Extraction = Yi Chang & Hui Ling
Design/ Methodology	3.1 Overall System Architecture = Hui Ling
	3.2 Image Acquisition = Hui Ling & Yi Chang
	3.3 Pre-processing = Hui Ling & Yi Chang
	3.4 Feature Extraction = Yi Chang & Hui Ling
Limitations and discussion	Limitations = Hui Ling & Yi Chang
	TT ' T ' O TT' C1
References	Hui Ling & Yi Chang
Report format	Hui Ling & Yi Chang

DEMO

Undefined = Patient 6 Slice #69

[Tumor (5) and Non Tumor (1-3) Detected]

Non Tumor

T1b
Nodule # 1
Diameter of nodule/tumor = 19.9 mm
Mean Intensity of Pixels = 915.9
Blob Area $(mm^2) = 257.8$
Blob Perimeter (mm) = 62.9
Centroid Coordinates $(x,y) = (183.7, 241.0)$
Nodule # 2
Diameter of nodule/tumor = 10.8 mm
Mean Intensity of Pixels = 1034.2
Blob Area (mm^2) = 64.8 Blob Perimeter (mm) = 28.0
Centroid Coordinates $(x,y) = (330.5, 285.3)$
Nodule # 3
Diameter of nodule/tumor = 11.7 mm
Mean Intensity of Pixels = 1053.7
Blob Area (mm^2) = 80.5 Blob Perimeter (mm) = 30.8
Centroid Coordinates $(x,y) = (345.5, 275.4)$
Tumor
Nodule # 4
Diameter of nodule/tumor = 15.4 mm
Mean Intensity of Pixels = 588.6

588.6 110.5

38.9

Successful = Patient 6 Slice #69 (Tumor has lower intensity than lymph nodes)

Successful - Patient 1 Slice #123

Successful = Patient 1 Slice #96

T1b

Nodule # 1

Diameter of nodule/tumor = 11.2 mm

Mean Intensity of Pixels = 456.5

Blob Area (mm^2) = 56.4

Blob Perimeter (mm) = 29.0

Centroid Coordinates (x,y) = (340.9, 255.4)

Successful = Patient 6 Slice #111

Successful = Patient 13 Slice #96

Successful (Healthy) = Patient 6 Slice #57


```
ans =
  'normal lung'
```

Successful (Healthy) = Patient 82 Slice #7


```
ans =
'normal lung'
```

Unsuccessful = Patient 1 Slice #3 [Tumor is segmented out]

ans =
 'normal lung'

Unsuccessful = Patient 1

Slice #3 [Tumor is segmented out]

ans = 'normal lung'