任意の原始再帰関数をどこかの g_n で支配できる 原始再帰関数列 $\{g_n\}_{n\in\omega}$ の構成とその証明 in PRA

橋本 航気

2022年10月28日

概要

一階算術の $I\Sigma_1$ より少し弱い体系 PRA(Primitive Recursive Arithmetic)でタイトルの 定理を示すためには Δ_0 帰納法でうまくやりくりしなくてはならない.この"うまくやりくり" の部分は 3 節にまとめた.2 節の証明はメタのそれとまったく同じである.

目次

一階算術の形式的体系 PRA の定義
 タイトルのやつ
 直感的に明らかだけどちゃんとした証明は大変なやつの証明
 3

1 一階算術の形式的体系 PRA の定義

書くのがめんどくさいので Simpson [2] IX.3 節を見て下さい. 形式的体系に興味がない人は $PRA \vdash$ をメタだと思ってもらってもよいです.

2 タイトルのやつ

定理 2.1. 任意の原始再帰的関数(記号)f に対して、次を満たす $n \in \omega$ が存在するような原始再帰関数列 $\{g_n\}_{n \in \omega}$ が存在する*1.

$$PRA \vdash f(x_1, ..., x_k) < g_n(\max\{x_1, ..., x_k\})$$

証明. 所望の $\{g_n\}_{n\in\omega}$ は以下のように再帰的に構成される. まず $g_0(x)=x+1$ とする. g_n が与

^{*1} 便宜上 k = 0 なら $\max\{x_1, ..., x_k\} = 0$

えられているとして、 g_n をイテレートする原始再帰的関数 I_n が次のよう定まる.

$$I_n(x,0) = x$$

$$I_n(x,y+1) = g_n(I(x,y))$$

表記しよう. そして g_{n+1} を $g_{n+1}(x) := g_n^{x+2}(x)$ と定める. 以上で構成される列 $\{g_n\}_{n\in\omega}$ が原始 再帰的関数の列になっていることは定義から明らか. $\{g_n\}_{n\in\omega}$ に関する基本的な性質として次が成り立つ (証明は 3 節に書いた).

- 1. 任意の n について PRA $\vdash \forall x, y(x < y \rightarrow g_n(x) < g_n(y))$
- 2. n < m ならば PRA $\vdash \forall x (g_n(x) < g_m(x))$

主定理は原始再帰的関数の構成に関する帰納法で示す.

ゼロ関数・後者関数・射影関数

$$Z(x) = 0 < g_0(0)$$

$$S(x) = g_0(x) < g_1(x)$$

$$P_i^k(x_1, ..., x_k) = x_i \le \max\{x_1, ..., x_k\} < g_0(\max\{x_1, ..., x_k\})$$

この証明中だけの略記として PRA $\vdash f(x_1,...,x_k) < g_n(\max\{x_1,...,x_k\})$ を端的に $f < g_n$ と書く.

合成

m 個の k 変数関数 $f_1, ..., f_m$ と m 変数関数 h について,ある $n_1,, n_m, n_h$ で

$$f_1 < g_{n_1}, f_2 < g_{n_2}, ..., f_m < g_{n_m}, h < g_h$$

となっていたとする. このとき $n := \max\{n_1, ..., n_m, n_h\}$ をとれば

$$f_1, ..., f_m, h < g_n$$

となっている. 任意に $x_1,...,x_k$ をとる. いま各 $1 \le i \le m$ について

$$f_{n_k}(x_1,...,x_k) < q_n(\max\{x_1,...,x_k\})$$

であるので,

$$\max\{f_1(x_1,...,x_k),...,f_m(x_1,...,x_k)\} < g_n(\max\{x_1,...,x_k\})$$

となる. したがって

$$h(f_1(x_1,...,x_k),...,f_m(x_1,...,x_k)) < g_n(\max\{f_1(x_1,...,x_k),...,f_m(x_1,...,x_k)\})$$

 $< g_n(g_n(\max\{x_1,...,x_k\}))$ (∵ g_n の単調性)
 $\le g_{n+1}(\max\{x_1,...,x_k\})$

原始再帰

k 変数関数 f_0 と k+2 変数関数 h について $f_0, h < g_n$ だったとする. このとき

$$f(x_1, ..., x_k, 0) = f_0(x_1, ..., x_k)$$

$$f(x_1, ..., x_k, y + 1) = h(x_1, ..., x_k, y, f(x_1, ..., x_k, y))$$

で定まる f について $f < g_{n+1}$ であることを示す。 $x_1, ..., x_k$ を固定し,y に関する帰納法で以下を示す。

$$f(x_1, ..., x_k, y) < g_n^{y+1}(\max\{x_1, ..., x_k, y\})$$

y=0 なら自明.

$$f(x_1,...,x_k,y+1) = h(x_1,...,x_k,y,f(x_1,...,x_k,y))$$

$$< g_n(\max\{x_1,...,x_k,y,f(x_1,...,x_k,y)\})$$

$$\leq g_n(\max\{x_1,...,x_k,y,g_n^{y+1}(\max\{x_1,...,x_k,y\})\}) \quad (∵帰納法の仮定と g_nの単調性)$$

$$\leq g_n(g_n^{y+1}(\max\{x_1,...,x_k,y\})) \quad (∵x_1,...,x_k,y < g_n^{y+1}(\max\{x_1,...,x_k,y\}))$$

$$= g_n^{y+2}(\max\{x_1,...,x_k,y\})$$

したがって任意の $x_1, ..., x_k, y$ について

$$f(x_1,...,x_k,y) < g_n^{y+1}(\max\{x_1,...,x_k,y\}) < g_{n+1}(\max\{x_1,...,x_k,y\})$$

3 直感的に明らかだけどちゃんとした証明は大変なやつの証明

証明. 次の (a)&(b)&(c) がすべての $m\in\omega$ で成り立つことを m に関する帰納法で示す.

- (a) PRA $\vdash \forall x, y[x < y \rightarrow g_m(x) < g_m(y)]$
- (b) PRA $\vdash \forall x, y[x < g_m^{y+1}(x)]$
- (c) PRA $\vdash \forall x (g_m(x) < g_{m+1}(x))$

以降 (b)m と書いて、「m に関する (b)」を表す。また、単に帰納法の仮定といった場合、最も入れ子が浅い帰納法の仮定を指すと約束しておく。

まず (a)0,(b)0,(c)0 が成立することを見る. (a)0 は自明.

(b)0 は x を固定し、y に関する帰納法で示す。 y = 0 なら x < x + 1 よりよい。 y + 1 について、

$$g_0^{y+2}(x) = g_0(g_0^{y+1}(x)) > g_0(x)$$
 (∵ 帰納法の仮定と $(a)0$) $> g_0(x) = x+1 > x$

(c)0 x を任意にとる. このとき (b)0 より $g_0(x) < g_0^{x+1}(g_0(x))$ なので、(a)0 から以下が成り立つ.

$$g_1(x) = g_0^{x+2}(x) = g_0(g_0^{x+1}(x)) > g_0(x)$$

次に (a)m,(b)m,(c)m が成立すると仮定して m+1 でそれぞれが成立することを見る.

(a)m+1 まず x < y を固定しておく.定義から $g_{m+1}(y) = g_m^{y+2}(y) = g_m(g_m^{y+1}(y))$ であり,同様に $g_{m+1}(x) = g_m(g_m^{x+1}(x))$ ゆえ, $g_m^{x+1}(x) < g_m^{y+1}(y)$ を示せば (a)m から帰結される.そのためには次の二つを示せば十分.

- 1. $\forall i [g_m^{i+1}(x) < g_m^{i+1}(y)]$
- 2. $\forall z (\forall w < z[g_m^{w+1}(y) < g_m^{z+1}(y)])$

実際,1 から $g_m^{x+1}(x) < g_m^{x+1}(y)$ が分かり,2 から $g_m^{x+1}(y) < g_m^{y+1}(y)$ が従う.まず 1 を i に関する帰納法で示す.i=0 は (a)m なのでよい.i+1 の場合も,帰納法の仮定と (a)m より

$$g_m^{i+2}(x) = g_m(g_m^{i+1}(x)) < g_m(g_m^{i+1}(y)) = g_m^{i+2}(y)$$

2 を z に関する帰納法で示す. z=0 は自明. z=1 とする. このとき (a)m より $g_m^1(y)=g_m(y)< g_m^2(y)$.

 $1 \leq z$ で成立するとして z+1 での成立をみる。まず w=0 のとき。(b)m より $y < g_m^{z+1}(y)$ なので (a)m から

$$g_m(y) < g_m(g_m^{z+1}(y)) = g_m^{z+2}(y)$$

次に w は 0 < w < z+1 だとする. w=w'+1 なる $w' \geq 0$ がただ一つある. w' < z ゆえ,帰納 法の仮定から $g_m^{w'+1}(y) < g_m^{z+1}(y)$ である. よって (a)m と合わせて

$$g_m^{w+1}(y) = g_m(g_m^{w'+1}(y)) < g_m(g_m^{z+1}(y)) = g_m^{z+2}(y)$$

を得る.

(b)m+1 まず x を固定しておく. y に関する帰納法で示す. y=0 なら (b)m より

$$x < g_m^{x+2}(x) = g_{m+1}(x) = g_{m+1}^1(x)$$

y でよいとし,y+1 については以下.

$$x < g_m(x)$$
 (∵ $(b)m$) $< g_m(g_{m+1}^{y+1}(x))$ (∵ 帰納法の仮定から $x < g_{m+1}^{y+1}(x)$, および $(a)m$) $< g_{m+1}(g_{m+1}^{y+1}(x))$ (∵ $(c)m$) $= g_{m+1}^{y+2}(x)$

(c)m+1 x を固定しておく. 先ほど示した (b)m+1 から $x < g_{m+1}^{x+1}(x)$ であり,(a)m+1 によって

$$g_{m+1}(x) < g_{m+1}(g_{m+1}^{x+1}(x)) = g_{m+1}^{x+2}(x) = g_{m+2}(x)$$

以上ですべての帰納法が完了した.

n < m ならば PRA $\vdash \forall x (g_n(x) < g_m(x))$ を示す. n を個定し,

$$\forall m > n[PRA \vdash \forall x(q_n(x) < q_m(x))]$$

を m に関する帰納法で示す。 m=n+1 なら (c) そのものである。 m+1 についても (c) と帰納法の仮定から即座に成り立つ。

参考文献

- [1] 田中 一之, "数学基礎論序説 数の体系への論理的アプローチ", 裳華房,2019.
- [2] S. G. Simpson, Subsystems of Second Order Arithmetic, Perspectives in Mathematical Logic. Springer-Verlag, 1999.