What to do after you select the article?

- Get the raw data for the method reimplementation
 - Can you physically download it?
 - Is it readable, not too large, ...
- Re-implement the method
 - Preferably in Jupyter/Python, is easier to evaluate, but anything is fine
- Mitigation
 - If you have problems, let us know, and discuss it with us
 - It might be possible that you cannot re-implement everything, but we need to know in advance why and what
- Write this up in article form
 - We will have question sessions in case you have problems (see schedule)
 - Submission date 30/05, 23:59, with project code etc. (git rep also OK)

- Introduction
 - What is your text about?
- Materials & methods
 - Which data and methods?
- Results
 - Describe the results you obtained
- Discussion
- References

- Introduction
 - Start with generic context
 - Then zoom in: why is your approach necessary and relevant within this context?
 - Finish with a brief description of your method and what you found out

- Read background information!
- Brief, I page (font size II, normal margins)

- Materials and methods
 - Describe the datasets you are using
 - Both their content and where you got them
 - Describe the methods you implemented to get your results
 - Describe separate steps required (reproducibility!)
 - Overview figures can help.
 - 2-3 pages

- Results
 - Describe your results
 - This can be in relation to:
 - Different input/validation data
 - Different method parameterisations, ...
 - Explain what the results mean
 - Use tables for numbers (do not list in the text)
 - Figures for distributions, relationships, ... (easier to understand than text)
 - 2-3 pages

Discussion

- Which issues did you identify, and which problems did you encounter?
- What is different about your approach (and the results you get) in comparison to the original method? Why?
- What are advantages/disadvantage of each method?
- I page

- Final article about 6-8 pages (excl. References)
- No plagiarism!
- Many guides with background info available...
 - http://abacus.bates.edu/~ganderso/biology/resourc
 es/writing/HTWsections.html
 - http://www.nature.com/scitable/ebooks/englishcommunication-for-scientists-14053993/writingscientific-papers-14239285

Presenting results

Typical data flow in bioinformatics

Analysis

To discuss in relation to data/results

- Bias
 - Accuracy and precision
- Data distributions
- How to fit data
- Data visualization
- Data integration

Data bias

Data bias

• https://study.com/academy/lesson/bias-in-statistics-definition-examples.html

Data bias

Accuracy and precision

Data distributions

Data distributions

Table 2.1 Two Data Sets

Data Set I:	40	38	42	40	39	39	43	40	39	40
Data Set II:	46	37	40	33	42	36	40	47	34	45

Mean? Median? Mode?

Figure 2.10 Dot Plots of Data Sets

Data distributions

Fitting data

Fitting data

I DON'T TRUST LINEAR REGRESSIONS WHEN IT'S HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

Data integration

Data management

- Findable, Accessible, Interoperable, Reusable (FAIR)
- Data management plan (DMP)

