Тема 3. Означення, класифікація та представлення лінійних і нелінійних динамічних систем.

3.1. Означення динамічної системи за Р. Калманом.

Формалізація динамічної (процесної) точки зору на систему приводить до математичного визначення її предмету, яке ввів Р.Калман. Наведемо цитату із філософії: «Причинність загальна, так як немає явищ, які не мали би своїх причин, як немає явищ, які не породжували б тих чи інших наслідків». В теорії систем причинний процес називають входом (керуванням), а процес-наслідок – виходом (реакцією системи). Іншим фундаментальним поняттям ТС являється поняття стану. Стан в момент t – це певні об'єкти, які зв'язують всю передісторію входів-причин до моменту t і вихід в цей момент. Конкретною причиною явища в процесі-виході, основою реалізації якраз цього явища, є деякий стан (детермінізм). Отже, в кожний момент часу т система характеризується деяким станом – елементом із її множини станів, який однозначно визначає значення виходу в цей момент t, і це одна із аксіом TC. Вплив входу на вихід зводиться до залежності стану в кожний момент t від процесу-входу, який реалізувався до цього моменту t, тобто в стані накопичуються всі причини, що реалізувалися в минулому, і які визначають сучасність. Треба звернути увагу на наступне. Якщо в конструкції поняття системи використання процесів входу і виходу було визвано фізичними уявленнями про функціонування системи, то поняття стану має відношення до закону формування виходу. Об'єкт, який взаємодіє із системою, може здійснювати цю взаємодію тільки через вхід і вихід системи, а встановити безпосередній зв'язок з процесом в просторі станів неможливо. Знання, в якому стані знаходиться система в деякий момент часу, може бути отримане лише в результаті розв'язування деякої теоретико-системної задачі.

Крім входу, стану і виходу є ще два поняття, які необхідні при побудові поняття системи: відображення виходу і перехідні відображення. Оскільки вихід однозначно визначається станом, то існує зв'язок між ними, який виражається відображенням із множини значень станів в множину значень, які приймає вихід. Це відображення називається відображенням виходу. Аналогічно, існує зв'язок між входом і станом. Якщо в момент t_0 система характеризувалась станом x^0 , а в момент t_1 , $t_1 > t_0$ — станом x^1 , причому в момент часу τ , $t_0 < \tau < t_1$, вхід приймав певні значення $u(\tau)$, то зміна стану якраз в x^1 , а не в який-небудь інший, визивається дією певного закону поведінки системи. Іншими словами, існує іще одна характеристика — закон, якому підпорядковується поведінка системи в просторі станів. В процесі формалізації цей закон можна описати у вигляді відображення, яке кожному стану і кожному входу ставить у відповідність певний стан, причому це відображення залежить

від двох моментів часу як від параметрів. Воно називається перехідним відображенням.

Таким чином, конструкція поняття динамічної системи включає первісні поняття входу, стану, виходу а також відношення між цими поняттями, що виражаються відображеннями виходу і перехідним. Знання множини станів, перехідного відображення і відображення виходу дозволяє відповісти на такі питання: яку поведінку може мати система, як потрібно підійти до розв'язування задачі про передбачення поведінки системи і як розв'язати задачу забезпечення заданої поведінки?

А тепер переходимо до <u>строгих математичних викладок</u>. Для математичного визначення процесу необхідно виділити множину його значень і впорядковану множину, яка фіксує, в якій послідовності ці значення реалізуються. В основному в якості впорядкованої множини розглядають множину дійсних чисел (чи якусь підмножину множини дійсних чисел). Часто упорядковану множину трактують як час, і тоді кажуть про процеси, що протікають у часі (динамічні процеси). Упорядковану множину для трьох процесів (входу, стану, виходу) будемо вважати однією і тією ж, і позначати через T і називати множиною моментів часу. Через U, Y, X позначимо множину значень входу, виходу і станів, відповідно.

Елементи множини $U^T, U^T: T \to U$, тобто множини всіх відображень із T в U, позначимо через $u(\cdot)$ і назвемо exodamu. Елементи $y(\cdot)$ множини $Y^T, Y^T: T \to Y$, назвемо exodamu, і елементи $x(\cdot)$ множини $X^T, X^T: T \to X$, назвемо exodamu в exo

Кожна конкретна система характеризується своєю множиною входів, яку називають допустимою і позначають $U(\cdot) \subset U^T$. Через $u[t_1,t_2]$ позначимо звуження відображення $u(\cdot)$ на інтервал $[t_1,t_2]$. Відносно множини $U(\cdot)$ будемо припускати, що вона не порожня, тобто система не ізольована від інших систем. Також будемо припускати, що якщо $u^1(\cdot) \in U(\cdot)$ і $u^2(\cdot) \in U(\cdot)$, то для довільних $t_1 < t_2 < t_3$ можна вибрати такий допустимий вхід $u(\cdot) \in U(\cdot)$, що $u[t_1,t_2] = u^1[t_1,t_2]$ і $u[t_2,t_3] = u^2[t_2,t_3]$.

Множина всіх реакцій системи, тобто множина виходів, також являється характеристикою системи. Позначимо її через $Y(\cdot) \subset Y^T$. Як відмічалось вище, конкретний вихід $y(\cdot) \in Y(\cdot)$ в кожний момент t повністю визначається станом і тільки станом системи в цей момент t. Позначимо цей стан через x(t). Тоді існує відображення $\eta: T \times X \to Y$ таке, що виконується співвідношення:

$$y(t) = \eta(t,x(t)), t \in T.$$

Тут залежність відображення η від t означає, що характер залежності виходу від стану з часом може змінюватися. Відображення η називається відображенням виходу чи функцією спостереження.

Вище обговорювалась аксіома, яка полягає в тому, що в кожний момент t система знаходиться в певному стані, причому стан в момент $t \ge \tau$ однозначно визначається станом x в момент τ і відрізком входу $u[\tau,t]$. В цьому відображається принцип детермінізму (визначеності) в поведінці систем. При формалізації цієї обставини встановлюється існування сімейства відображень $\mu_{rt}: X \times U(\cdot) \to X$, заданих для всіх значень параметрів $\tau \in T, t \in T, \tau \le t$. Конкретне відображення, яке відповідає фіксованим τ і t, дозволяє для довільних t і довільних t і використовувався вхід t і, за формулою:

$$x(t) = \mu_{\tau}(x, u(\cdot)). \tag{1}$$

Аксіома однозначної визначеності стану в момент $t > \tau$ за станом в момент τ і входом $u(\cdot)$ накладає обмеження на сімейство відображень $\{\mu_{rt}\}$. Запишемо формальний вираз цієї аксіоми. Для цього фіксуємо $u(\cdot)$ і моменти t_0, t_1, t_2 , де $t_0 \le t_1 \le t_2$. Умова детермінізму сімейства відображень $\{\mu_{rt}\}$ така:

$$\mu_{t_0 t_2}(x^0, u(\cdot)) = \mu_{t_1 t_2}(\mu_{t_0 t_1}(x^0, u(\cdot)), u(\cdot)),$$
(2)

яка повинна виконуватись для всіх $t_0 \le t_1 \le t_2$, всіх $x^0 = x \big(t_0 \big)$ і всіх $u \big(\cdot \big)$.

Позначимо через $(T \times T)^+$ множину $\{(t,\tau), \tau \le t\}$. Визначимо *перехідне* відображення $\sigma : (T \times T)^+ \times X \times U(\cdot) \to X$ за формулою:

$$\sigma(t;\tau,x,u(\cdot)) = \mu_{\tau t}(x,u(\cdot)).$$

Із (1) маємо $x(t) = \sigma(t; \tau, x, u(\cdot))$, причому із (2) випливає:

$$\sigma(t_2;t_0,x,u(\cdot)) = \sigma(t_2;t_1,\sigma(t_1;t_0,x,u(\cdot)),u(\cdot)).$$

Наступна вимога, якій повинно задовольняти перехідне відображення, полягає в тому, щоб рівність

$$\sigma(t;t,x,u(\cdot))=x$$

виконувалась тотожно при всіх $t, x, u(\cdot)$, (це означає, що в один і той же момент часу t система не може знаходитися в двох різних станах).

Також відображення σ повинно бути таким, щоб стан в момент t не залежав від значень входу , які поступають в моменти часу більші моменту t .

Тепер наведемо всі аксіоми, яким задовольняє перехідне відображення σ :

1. *Аксіома узгодженості*. Для довільних $t \in T$, $x \in X$, $u(\cdot) \in U(\cdot)$ виконується рівність:

$$\sigma(t;t,x,u(\cdot))=x.$$

2. Аксіома детермінізму. Для довільних $t_0 \le t_1 \le t_2$, $x \in X$, $u(\cdot) \in U(\cdot)$ виконується рівність:

$$\sigma(t_2;t_0,x,u(\cdot)) = \sigma(t_2;t_1,\sigma(t_1;t_0,x,u(\cdot)),u(\cdot)).$$

Цю аксіому також називають асоціативною чи наполовину груповою.

3. Аксіома причинності. Для довільних $x \in X$, $(t,t_0) \in (T \times T)^+$ і будь-яких $u(\cdot) \in U(\cdot)$, $u(\cdot) \in U(\cdot)$, таких, що $u[t_0,t] = u[t_0,t]$, виконується рівність: $\sigma(t;t_0,x,u(\cdot)) = \sigma(t;t_0,x,u(\cdot))$.

Означення (Р.Калман). Кажуть, що деяка система Ξ визначена, якщо задані впорядкована множина T, множина значень входів U, виходів Y і станів X, допустимі множини входів $U(\cdot)$ і виходів $Y(\cdot)$, перехідне відображення σ , яке задовольняє аксіомам узгодженості, детермінізму і причинності, і відображення виходу η такі, що для довільного $y(\cdot) \in Y(\cdot)$ існує $x(\cdot): T \to X$ і $u(\cdot) \in U(\cdot)$, для яких при довільних $\tau, t \in T$, де $\tau \le t$ виконується співвідношення:

$$y(t) = \eta(t, \sigma(t; \tau, x(\tau), u(\cdot))), \tag{3}$$

і навпаки, довільний процес $y(t), t \ge \tau$, який отримується із (3), належить допустимій множині виходів $Y(\cdot)$.