CS4423 - Networks

Prof. Götz Pfeiffer School of Mathematics, Statistics and Applied Mathematics NUI Galway

6. Power Laws and Scale-Free Graphs

Lecture 19: Hubs and Authorities

```
In [1]: import numpy as np
import pandas as pd
import networkx as nx
import matplotlib.pyplot as plt
```

In-Degree vs. Out-Degree

Recall in-degree and out-degree centrality:

$$c_i^{D^ ext{in}} = k_i^ ext{in} = \sum_{j=1}^n a_{ij}, \quad c_i^{D^ ext{out}} = k_i^ ext{out} = \sum_{j=1}^n a_{ji},$$

where $A=(a_{ij})$ is the adjacency matrix of a directed graph G=(X,E) ...

... and the corresponding eigenvector centralities:

$$Ac^{E^{ ext{in}}} = \lambda c^{E^{ ext{in}}}, \quad A^Tc^{E^{ ext{out}}} = \lambda c^{E^{ ext{out}}}.$$

Hub Centrality and Authority Centrality

In a network of nodes connected by directed edges, each node plays two different roles, one as a receiver of links, and one as a sender of links. A first measure of importance, or recognition, of a node in this network might be the number of links it receives, i.e., its **in-degree** in the underlying graph. If in a collection of web pages relating to a search query on the subject of "networks", say, a particular page receives a high number of links, this page might count as an **authority** on that subject, with **authority score** measured by its in-degree.

In turn, the web pages linking to an authority in some sense know where to find valuable information and thus serve as good "lists" for the subject. A high value list is called a **hub** for this query. It makes sense to measure the value of a page as list in terms of the values of the pages it points at, by assigning to its **hub score** the sum of the authority scores of the pages it points at.

Now the authority score of a page could take the hub scores of the list pages into account, by using the sum of the hub scores of the pages that point at it as an updated authority score.

Then again, applying the **Principle of Repeated Improvement**, the hub scores can be updated on the basis of the new authority scores, and so on.

This suggests a ranking procedure that tries to estimate, for each page p, its value as an authority and its value as a hub in the form of numerical scores, a(p) and h(p).

Starting off with values all equal to 1, the estimates are updated by applying the following two rules in an alternating fashion.

Authority Update Rule: For each page p, update a(p) to be the sum of the hub scores of all the pages pointing to it.

Hub Update Rule: For each page p, update h(p) to be the sum of the authority scores of all the pages that it points to.

In order to keep the numbers from growing too large, score vectors should be **normalized** after each step, in a way that replaces h by a scalar multiple $\hat{h}=sh$ so that the entries in \hat{h} add up to 100, say, representing relative percentage values, similarly for a.

After a number of iterations, the values a(p) and h(p) stabilize, in the sense that further applications of the update rules do not yield essentially better relative estimates.

Example. Continuing the example above ...


```
In [7]: A = nx.adjacency_matrix(G)
       print(A.todense())
       [[0 0 0 0 0 0 0 0 0 1 0 0 0 0 0]
        [0 0 0 0 0 0 0 0 0 1 0 0 0 0 0]
        [0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0]
        [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0]
        [0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0]
        [0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0]
        [0 0 0 0 0 0 0 0 0 0 0 1 1 0 0]
        [0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1]
        [0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1]
        [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
        [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
        In [8]: AT = A.transpose()
In [9]: | h = [1 for node in G]
       a = [1 \text{ for node in } G]
       print("a = ", a)
print("h = ", h)
       In [10]: a = AT * h
       a = 100/sum(a) * a
       print("a = ", a[9:])
       \mathsf{a} = [16.66666667 \ 16.66666667 \ 5.55555556 \ 16.66666667 \ 22.22222222 \ 11.111111111
        11.11111111]
In [11]: h = A * a
       h = 100/sum(h) * h
       print("h = ", h[:9])
       h = [5.76923077 5.76923077 11.53846154 5.76923077 9.61538462 11.53846154
        13.46153846 21.15384615 15.38461538]
In [12]: aaa = [a]
       hhh = [h]
```

```
In [13]: for i in range(9):
             a = AT * h
             a = 100/sum(a) * a
             print("a = ", a[9:])
             aaa.append(a)
             h = A^{\cdot \cdot} * a
              h = 100/sum(h) * h
              print("h = ", h[:9])
              hhh.append(h)
         a = [9.6 12]
                          4. 19.2 24.8 15.2 15.2]
              [ 3.35195531  3.35195531  7.54189944  4.18994413  10.05586592  10.89385475
          15.36312849 25.97765363 19.27374302]
                             8.69098712 3.86266094 20.06437768 27.14592275 17.38197425
         a = [5.472103]
          17.38197425]
         h = [1.92235205 \ 1.92235205 \ 4.97549943 \ 3.05314738 \ 10.89332831 \ 10.10177158
          16.58499812 28.79758764 21.74896344]
         a = [3.23741007 \ 6.65467626 \ 3.99833979 \ 20.36524626 \ 28.63862756 \ 18.55285003
          18.55285003]
         h = [1.1417976]
                             1.1417976
                                         3.488826
                                                      2.3470284 11.51068605 9.52961842
          17.28310725 30.36986435 23.187274321
         a = [2.06677266 5.50149374 4.12131589 20.47380283 29.48514125 19.17573682
          19.175736821
         h = [0.73058966 \ 0.73058966 \ 2.67532917 \ 1.94473951 \ 11.87964724 \ 9.18208542
          17.66013685 31.2171142 23.97976829]
         a = [1.46162206 \ 4.87694705 \ 4.19763539 \ 20.51508102 \ 29.94143037 \ 19.50364205
          19.50364205]
         h = [0.51731715 \ 0.51731715 \ 2.24343255 \ 1.7261154 \ 12.08296229 \ 8.98709179
          17.85825448 31.66424279 24.4032664 ]
         a = [1.15031594 \ 4.54665199 \ 4.2400673 \ 20.5317694 \ 30.1815712 \ 19.67481208
          19.674812081
         h = [0.40740519 \ 0.40740519 \ 2.01768421 \ 1.61027902 \ 12.19104571 \ 8.88197642
          17.9610466 31.89742754 24.62573014]
         a = [0.99039832 \ 4.37417366 \ 4.26267053 \ 20.53894254 \ 30.30650876 \ 19.7636531
          19.7636531 ]
         h = [0.3508892]
                             0.3508892
                                         1.90061952 1.54973032 12.24754875 8.8264926
          18.01408527 32.01825372 24.74149143]
         a = [0.90825735 \ 4.28471463 \ 4.2744909 \ 20.54219544 \ 30.37114618 \ 19.80959775
          19.80959775]
         h = [ 0.32184543  0.32184543  1.84015498  1.51830955  12.27685067  8.79753681
          18.04139121 32.08064659 24.801419331
         \mathsf{a} = [0.86605288 \ 4.23848367 \ 4.28062071 \ 20.54373372 \ 30.40449487 \ 19.83330707
          19.83330707]
         h = [0.3069187]
                             0.3069187
                                        1.80898623 1.50206753 12.29198691 8.78251915
          18.05543815 32.11280812 24.8323565 ]
```

In [14]:	pd	.Dat	taFr	ame	(hhh)											
Out[14]:			0		1			2		3	4	5	6	7	8	9	
	0	5.76		5.70	69231		.5384		5.769			11.538462				0.0	0
					51955		.5418		4.189					25.977654	19.273743	0.0	0
	2	1.92	2352	1.9	22352	4.	.9754	99	3.053	147	10.893328	10.101772	16.584998	28.797588	21.748963	0.0	0
	3	1.14	1798	1.14	41798	3.	3.488826		2.347028		11.510686	9.529618	17.283107	30.369864	23.187274	0.0	0
	4	0.730590		0.730590		2.	2.675329		1.944740		11.879647	9.182085	17.660137	31.217114	23.979768	0.0	0
	5	0.51	7317	0.5	17317	2	.2434	33	1.726	115	12.082962	8.987092	17.858254	31.664243	24.403266	0.0	0
	6	0.40	7405	0.40	07405	2.	.0176	84	1.610	279	12.191046	8.881976	17.961047	31.897428	24.625730	0.0	0
	7	0.35	0889	0.3	50889	1.	.9006	20	1.549	730	12.247549	8.826493	18.014085	32.018254	24.741491	0.0	0
	8	0.32	1845	0.3	21845	1.	.8401	55	1.518	310	12.276851	8.797537	18.041391	32.080647	24.801419	0.0	0
	9	0.30	6919	0.30	06919	1.	.8089	86	1.502	068	12.291987	8.782519	18.055438	32.112808	24.832356	0.0	0
	pd.DataFrame(aaa)																
In [15]:	pd	. Dat	taFr	ame	(aaa)											
<pre>In [15]: Out[15]:</pre>	pd	. Dat	taFr	ame	(aaa)											
	pd	. Da1	taFr	ame 2	(aaa 3	4	5	6	7	8	9	10	11	12	13		
	_		1	2		4			7 0.0						13	11.1	11
	_	0	0.0	0.0	3	4		0.0	0.0		16.666667		5.555556	16.666667	22.22222	11.1 15.2	
	0 1 2	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	3 0.0 0.0 0.0	4 0.0 0.0 0.0	0.0 0.0 0.0	0.0	0.0 0.0 0.0	0.0 0.0 0.0	16.666667 9.600000 5.472103	16.666667 12.000000 8.690987	5.55556 4.000000 3.862661	16.666667 19.200000 20.064378	22.22222 24.800000 27.145923	15.2 17.3	00 81:
	0 1 2 3	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	2 0.0 0.0 0.0 0.0	3 0.0 0.0 0.0 0.0	4 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	16.666667 9.600000 5.472103 3.237410	16.666667 12.000000 8.690987 6.654676	5.555556 4.000000 3.862661 3.998340	16.666667 19.200000 20.064378 20.365246	22.22222 24.800000 27.145923 28.638628	15.2 17.3 18.5	00 81: 52
	0 1 2 3 4	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	2 0.0 0.0 0.0 0.0	3 0.0 0.0 0.0 0.0	4 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	16.666667 9.600000 5.472103 3.237410 2.066773	16.666667 12.000000 8.690987 6.654676 5.501494	5.55556 4.000000 3.862661 3.998340 4.121316	16.666667 19.200000 20.064378 20.365246 20.473803	22.22222 24.800000 27.145923 28.638628 29.485141	15.2 17.3 18.5 19.1	00 81: 52: 75
	0 1 2 3 4 5	0.0 0.0 0.0 0.0 0.0	1 0.0 0.0 0.0 0.0 0.0	2 0.0 0.0 0.0 0.0 0.0	3 0.0 0.0 0.0 0.0 0.0 0.0	4 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	16.666667 9.600000 5.472103 3.237410 2.066773 1.461622	16.666667 12.000000 8.690987 6.654676 5.501494 4.876947	5.55556 4.000000 3.862661 3.998340 4.121316 4.197635	16.666667 19.200000 20.064378 20.365246 20.473803 20.515081	22.222222 24.800000 27.145923 28.638628 29.485141 29.941430	15.2 17.3 18.5 19.1 19.5	00 81: 52: 75
	0 1 2 3 4 5 6	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	2 0.0 0.0 0.0 0.0 0.0 0.0	3 0.0 0.0 0.0 0.0 0.0 0.0	4 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	16.666667 9.600000 5.472103 3.237410 2.066773 1.461622 1.150316	16.666667 12.000000 8.690987 6.654676 5.501494 4.876947 4.546652	5.555556 4.000000 3.862661 3.998340 4.121316 4.197635 4.240067	16.666667 19.200000 20.064378 20.365246 20.473803 20.515081 20.531769	22.222222 24.800000 27.145923 28.638628 29.485141 29.941430 30.181571	15.2 17.3 18.5 19.1 19.5 19.6	000 811 522 75 030 74
	0 1 2 3 4 5	0.0 0.0 0.0 0.0 0.0	1 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2 0.0 0.0 0.0 0.0 0.0 0.0 0.0	3 0.0 0.0 0.0 0.0 0.0 0.0	4 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	16.666667 9.600000 5.472103 3.237410 2.066773 1.461622	16.666667 12.000000 8.690987 6.654676 5.501494 4.876947 4.546652 4.374174	5.55556 4.000000 3.862661 3.998340 4.121316 4.197635	16.666667 19.200000 20.064378 20.365246 20.473803 20.515081 20.531769 20.538943	22.222222 24.800000 27.145923 28.638628 29.485141 29.941430 30.181571 30.306509	15.2 17.3 18.5 19.1 19.5	000 811 520 750 030 740 630

In terms of matrix algebra this effect can be described as follows.

Spectral Analysis of Hubs and Authorities

```
Let M=(m_{ij}) be the adjacency matrix of the directed graph G=(X,E) that is m_{ij}=1 if x_i\to x_j and m_{ij}=0 otherwise, where X=\{x_1,\ldots,x_n\}.
```

We write $h=(h_1,\ldots,h_n)$ for a list of hub scores, with $h_i=h(x_i)$, the hub score of node x_i . Similarly, we write $a=(a_1,\ldots,a_l)$ for a list of authority scores.

The hub update rule can now be expressed as a matrix multiplication:

$$h \leftarrow Ma$$

and similarly, the **authority update rule**, using the transpose of the matrix M:

$$a \leftarrow M^T h$$

Applying two steps of the procedure at once yields update rules

$$h \leftarrow MM^T h$$

and

$$a \leftarrow M^T M a$$

for h and a, respectively.

In the limit, one expects to get vectors h^* and a^* whose directions do not change under the latter rules, i.e.,

$$(MM^T)h^* = ch^*$$

and

$$(M^TM)a^* = da^*$$

for constants c and d, meaning that h^* and a^* are **eigenvectors** for the matrices MM^T and M^TM , respectively.

Using the fact that MM^T and M^TM are **symmetric** matrices $((MM^T)^T=(M^T)^TM^T=MM^T)$, it can indeed be shown that any sequence of hub score vectors h under repeated application of the above update rule converges to a real-valued eigenvector h^* of MM^T for the real eigenvalue c. A similar result exists for any sequence of authority score vectors a.

In []:	
---------	--