A Note of Calculus-Michael Spivak

Son To 1

 $Ravintola\ Kiltakellari$

 $23rd\ June,\ 2017$

 $^{^{1}\}mathrm{Contact}$ me at: son.trung.to@gmail.com

Preface

This is the note for the book Calculus written by Michael Spivak, citing what I think the most interesting and important subjects mentioned in the book.

Contents

Preface		
Ι	Prologue	1
1	Basic properties of number	3

Part I Prologue

Chapter 1

Basic properties of number

(P1) If a, b, and c are any numbers, then

$$a + (b+c) = (a+b) + c$$

See problem 24 for the generalization of $a_1 + a_2 + a_3 + \cdots + a_n$ for (P1). The number 0 has important properties.

(P2) If a is any number, then

$$a + 0 = 0 + a = a$$

(P3) For every number a, there is also a number -a such that

$$a + (-a) = (-a) + a = 0$$

We now prove Lemma 1.

Lemma 1. If a + x = a, then x = 0

Proof.

If
$$a + x = a$$

then $(-a) + (a + x) = (-a) + a = 0$ (by (P3))
hence $((-a) + a) + x = 0$ (by (P1))
hence $0 + x = 0$ (by (P3) again)
therefore, $x = 0$ (by (P2))

Also, remember that the order of addition does not matter.

(P4) If a and b are any numbers, then

$$a + b = b + a$$

However, with only (P1)-(P4), we are powerless to figure out what conditions needed to have a - b = b - a. Therefore, we need to set new properties, and, oddly, they involve multiplication.

(P5) If a, b and c are any numbers, then

$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$

(P6) If a is any number, then

$$a \cdot 1 = 1 \cdot a = a$$

Moreover, $1 \neq 0$ (This cannot be proved by other properties listed!)

(P7) For every number $a \neq 0$, there is a number a^{-1} such that

$$a \cdot a^{-1} = a^{-1} \cdot a = 1 (\Leftarrow 0 \cdot b = 0 \ \forall b)$$

This is why 1/0 is meaningless!

(P8) If a and b are any numbers, then

$$a \cdot b = b \cdot a$$

From (P5), (P6) and (P7), we have two lemmas:

Lemma 2. If $a \cdot b = a \cdot c$ then $a = 0 \lor b = c$

Proof. If a = 0 then the lemma is trivial. Suppose now $a \neq 0$,

Multiply
$$a^{-1}$$
 to both sides,
$$(a^{-1}) \cdot (a \cdot b) = (a^{-1}) \cdot (a \cdot c)$$
By (P5),
$$(a^{-1} \cdot a) \cdot b = (a^{-1} \cdot a) \cdot c$$
By (P7),
$$1 \cdot b = 1 \cdot c$$
By (P6),
$$b = c$$

Lemma 3. If $a \cdot b = 0$ then $a = 0 \lor b = 0$

Proof. If a=0, there is nothing to prove. Suppose now $a \neq 0$, follow the proof of Lemma 2 by consecutively applying (P5), (P7) and (P6) in that order to finish the proof.

We, however, will not able to prove anything without a relationship between multiplication and addition. Therefore, the next property is definitely necessary.

(P9) If a, b and c are any numbers, then

$$a \cdot (b+c) = a \cdot b + a \cdot c$$

By (P8), it is also true that
$$(b+c) \cdot a = b \cdot a + c \cdot a$$

We will see in the next remark and lemmas that properties are not built in a straight line. Rather, it is a result of necessities, of fixes and starts that somehow fits the pieces of a puzzle perfectly.

Remark. When a - b = b - a?

Solution.

Add b at both sides,
$$(a-b)+b=(b-a)+b==b+(b-a)$$
 by (P4)
By (P1), $a+(-b+b)=(b+b)+(-a)$
By (P3), $a+0=b+b-a$
By (P2), $a=b+b-a$
Add both sides to a, $a+a=(b+b-a)+a$
By (P1), $a+a=b+(b+(-a+a))=b+b$ by (P2) and (P3)
By (P9), $a\cdot (1+1)=b\cdot (1+1)$
By Lemma 2, $a=b$

Lemma 4. $a \cdot 0 = 0$

Proof.

We have
$$a \cdot 0 + a \cdot 0 = a \cdot (0+0)$$
 by (P9)
$$= a \cdot 0$$

$$Add -a \cdot 0,$$

$$a \cdot 0 = 0$$

Lemma 5. The product of two negative numbers is positive

Proof. We first prove that $(-a) \cdot b = -(a \cdot b)$,

We have by (P9),
$$(-a) \cdot b + (a \cdot b) = (-a + a) \cdot b$$
$$= 0$$
Adding $-(a \cdot b)$ to both sides,
$$(-a) \cdot b = -(a \cdot b)$$

Now, let's prove the main statement.

From above,
$$(-a)\cdot(-b)+[-(a\cdot b)]=(-a)\cdot(-b)+[(-a)\cdot b]$$

$$= (-a)\cdot(-b+b)$$

$$= 0$$
 Adding $(a\cdot b)$ to both sides,
$$(-a)\cdot(-b)=(a\cdot b)$$

We say that Lemma 5 is a direct consequence of (P1)-(P9).

Also, (P9) has important consequences: Justifying the algebraic manipulations (e.g, $x^2-3x+2=(x-1)(x-2)$) and the way one multiplies arabic numerals,

$$\begin{array}{r}
 13 \\
 \times 24 \\
 \hline
 52 \\
 \underline{26} \\
 312
 \end{array}$$

Denote the set of all positive numbers by P.

- (P10) (Trichotomy law) For every number a, one and only one of the following holds:
 - (i) a = 0
 - (ii) $a \in P$
 - (iii) $-a \in P$
- (P11) (Closure under addition) If $a \in P \land b \in P$ then $a + b \in P$
- (P12) (Closure under multiplication) If $a \in P \land b \in P$ then $a \cdot b \in P$

These properties should be complemented by the following definitions:

$$\begin{array}{ll} a > b & \text{if} & a - b \in P \\ a < b & \text{if} & b > a \end{array}$$