Write your name here Surname	Other names
Edexcel International GCSE	Centre Number Candidate Number
Further Pu	re Mathematics
Paper 2	are matricinaties
_	

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

P 4 6 2 4 1 A 0 1 3 6

Turn over ▶

Answer all TWELVE questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

1	Find the exact solution of	$4^{(x-2)} = 8^{(3x-1)}$	(4)
		(Total for Orestian 1 is 4	alza)
_		(Total for Question 1 is 4 mar	(NO)

The sector OAD of a chere, centre O, has area 40 cm.	
The length of the arc AB is 8 cm and the size of angle AOB is θ radians.	
Find	
(i) the radius of sector <i>OAB</i>	
(ii) the value of θ	
	(5)
(Total for Question 2 is 5 mar	ks)
	The length of the arc AB is 8 cm and the size of angle AOB is θ radians. Find (i) the radius of sector OAB (ii) the value of θ

3 Solve t	he equations
-----------	--------------

$$3y = 12 - 4x$$

$$(x + 1)^2 + (y - 2)^2 = 4$$

(7	1
l	/	

Question 3 continued	
	(Total for Question 3 is 7 marks)

4		$y = e^{2x} \sqrt{x+1}$	
	show that	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{e}^{2x}(4x+5)}{2\sqrt{x+1}}$	(6)

Question 4 continued	
	(Total for Question 4 is 6 marks)

Given that $\alpha + \beta = 5$ and $\alpha^2 + \beta^2 = 19$ (a) show that $\alpha\beta = 3$ (2) (b) Hence form a quadratic equation, with integer coefficients, which has roots α and β (2) (c) Form a quadratic equation, with integer coefficients, which has roots $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$ (5)

DO NOT WRITE IN THIS AREA

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$

$$\frac{\sin A}{\cos A} = \tan A$$

Using the above formulae, show that

(a)
$$\sin 2x = 2\sin x \cos x$$

(1)

(b)
$$\cos 2x = \cos^2 x - \sin^2 x$$

(1)

(c)
$$\frac{\sin 2x}{1 + \cos 2x} = \tan x$$

(4)

10

Question 6 continued	
	(Total for Question 6 is 6 marks)

7

Figure 1

Figure 1 shows the curve with equation $y = \frac{x^2 - 2}{2x - 3}$ where $x \neq \frac{3}{2}$

(a) Write down an equation of the asymptote to the curve which is parallel to the *y*-axis.

(1)

(b) Find $\frac{dy}{dx}$

(3)

(c) Find the coordinates of the stationary points on the curve.

(5)

••••

Question 7 continued		

Question 7 continued	

Question 7 continued	
	(Total for Question 7 is 9 marks)

8	The sum of the first n terms of the series is S_n				
	(a) Show that $S_n = n(n-2)$				
	(b) Find the value of n such that $5t_{n+2} = 3S_{n-3}$	(5)			

Question 8 continued			

$\times\!\times\!\times$	X		
$\times \times \times$	~>		×
	4	\Diamond	\Diamond
	Ĵ	\Diamond	X
\otimes	20	Ó	
886	5		X
	J	X	X
	X	8	X
	¥	V	
	2	\Diamond	Ç
OO.		\Diamond	2
XX.c)	Ŏ	6
XX	ď.	X.	X
XXX	76	×	
	4	V	Q
000	(5	\bigcirc	\circ
	wir.	\Diamond	\Diamond
	š	8	8
XX	$\overline{}$	X	X
	Z	×	X
	O	\Diamond	8
		$\langle \rangle$	\circ
		\Diamond	$^{\circ}$
	21	\Diamond	
$\times \times$	24,	X,	×
$\otimes \otimes_{0}$	п		×
	Ŋľ	v	×
	\times	\bigcirc	V
	$\overline{}$	\Diamond	
	ġ.	0	0
88	\sim	X,	×
		X.	×
\times	1		×
	78	×	×
	×	V	Š
004		\Diamond	\circ
	z	♦	♦
	Z.		Ş
$\otimes \overline{\mathfrak{q}}$	n	X	
	X	X	
	Z	X	X
	ź	×	X
		\Diamond	Š
	ď	\Diamond	\circ
	15	\Diamond	Ó
	ñ	X	Š
\times	23		×
\otimes	5	×	X
XX	呎	×	8
	×>	X	V
	$\langle \rangle$	\Diamond	\Diamond
$\otimes \otimes$	$\langle \rangle$	\Diamond	Ŏ
	X	X	X
$\times\!\!\times\!\!\times$	X	X.	Χ
$\times\!\!\times\!\!\times$	X	X	8
	X	V	
$\Rightarrow \Rightarrow$	$\langle \rangle$	\Diamond	\Diamond
$\sim\sim$		\Diamond	\Diamond
X	Š	Ö	
$\times\!\!\times\!\!\times$	X	×	
	8	X.	X
$\times \times \times$	X		
$\otimes\!\!\!\otimes$	$\langle \rangle$	\Diamond	Ž
∞	♦		\circ
$\sim\sim$	X	\Diamond	\Diamond
XXX.	X	Ŏ	Ŏ
$\times \times \times$			
$\times\!\!\times\!\!\times$	X	\Diamond	2
$\times\!\!\times\!\!\times$	\otimes	8	8
	×	8	8
$\times\!\!\times\!\!\times$	$\stackrel{>}{>}$	8	8
$\times\!\!\times\!\!\times$		8	8
\times	× ×	\$	8
\times	$\stackrel{>}{\sim}$	8	
\times	$\stackrel{>}{\sim}$	\$	X
\times	$\stackrel{>}{\sim}$	8	X
	× ×	\ \ \	8
	× × ×	\ \ \	8
	× × ×		8
	× × ×		8
	× × ×		8
Ţ	> > >		8
Ţ	× × ×		
Ţ	> > >		
Ţ	7		
Ţ			
Ę			
E C			
Ę			
Ę			
E 6	7020		
Ē			
Ē			
Ē			
E C 2 C			
DO NOT WIND			
DO NOT WIND			
DO NOT WIND			
	こうとうできる。		
	こうとうできる。		
SOMOS WALLS IN			
SOMOS WALLS IN			
SOMOS WALLS IN	こうとうできるこれでしている。		
SOMOS WALLS IN			
BOMOS WASSESSANDS			
DOMOT WATER TAKEN			
DOMOT WATER TAKEN			
SOMOT WINDS IN THE	クラスの子とのは行うにもはなった。		
SO MOT MINITED IN 1980 A			
SO MOT WINDS IN THE M			
DO NOT WATER IN THE ME			
DO NOT WAITE IN THE AN	こうこうするないできるとのできる		
DOMOS WALLS IN 1840 AND	こうこうするないできるとのできる		
DOMOS WALLS IN 1840 AND	DO NOT WITH IN TELL ADE		
DO NOT WALLE IN JUNE WALK	DO NOT WITH IN TELL ADE		
DO NOT WALLE IN JUNE WALK	DO NOT WRITE IN TELL AREA		
DO NOT WALLE IN JUNE WALK	DO NOT WITH IN TELL ADE		
	DO NOT WRITE IN TELL AREA		
	DO NOT WRITE IN TELL AREA		
SOMOT WALLETIN TEROMARK	DO NOT WRITE IN TELL AREA		
SOMOT WALLETIN TEROMARK	DO NOT WRITE IN TELL AREA		
	DO NOT WRITE IN TELL AREA		
BO MOT WATER IN 17110 MARK	DO NOT WRITE IN TELL AREA		

Question 8 continued	

9

Figure 2

Figure 2 shows a quadrilateral OABC

$$\overrightarrow{OA} = \mathbf{a}, \overrightarrow{OB} = \mathbf{b} \text{ and } \overrightarrow{BC} = \mathbf{b} - 2\mathbf{a}$$

- (a) (i) Prove that \overrightarrow{AB} is parallel to \overrightarrow{OC}
 - (ii) Show that AB:OC = 1:2

(4)

The point *D* lies on *OB* such that OD:DB = 2:3

(b) Find the ratio of the area of $\triangle ODC$: the area of $\triangle OAB$.

(6)

Question 9 continued		

Question 9 continued	

10	$f(x) = 2x^3 - px^2 - 13x - q$	
	When $f(x)$ is divided by $(x-2)$ the remainder is -20	
	Given that $(x-3)$ is a factor of $f(x)$	
	(a) find the value of p and the value of q	
		(7)
	(b) Hence use algebra to solve the equation $f(x) = 0$	(5)

Question 10 continued		

Question 10 continued	

Question 10 continued	
	(Total for Question 10 is 12 marks)

11 (a) Complete the table of values for $y = e^{(x-1)} + 2$

Give your answers to 2 decimal places where appropriate.

X	-2	-1	0	1	2	3
f(x)	2.05				4.72	9.39

(2)

(b) On the grid opposite, draw the graph of $y = e^{(x-1)} + 2$ for $-2 \le x \le 3$

(2)

(c) Use your graph to obtain an estimate, to 1 decimal place, of the root of the equation $4 = e^{(x-1)}$ in the interval $-2 \le x \le 3$

(2)

(d) By drawing a straight line on the grid, obtain an estimate, to 1 decimal place, of the root of the equation $\ln(4x-4) = x-1$ in the interval $-2 \le x \le 3$

(5)

Ž
-88
×O×
\times
\times
\rightarrow
_XXXX=XX
\sim
-XX*XXX
$\longrightarrow\longrightarrow$
-XXZEXX
$-\infty$
Un :

\times m \times
- XX
$-\times\times\times\times\times\times$
->>>>

->>>>
->>>>>
$-\infty\times\times\times$

-8888888
$-\infty\!\times\!\infty\!\times\!$
Ø
₽
ø
Do
Do
DOP
DON
DON
DO NO
DO NO
DO NOT
DO NOT
DO NOT V
DONOTW
DO NOT W
DO NOT W
DO NOT WR
DO NOT WRI
DO NOT WRI
DO NOT WRIT
DO NOT WRITE
DO NOT WRITE
DO NOT WRITE
DO NOT WRITE!
DO NOT WRITE II
DO NOT WRITE IN TH
DO NOT WRITE IN TH
DO NOT WRITE IN THI
DO NOT WRITE IN THI
DO NOT WRITE IN THIS
DO NOT WRITE IN THIS
DO NOT WRITE IN THIS.
DO NOT WRITE IN THIS A
DO NOT WRITE IN THIS A
DO NOT WRITE IN THIS AF
DO NOT WRITE IN THIS AI

Question 11 continued	
	•••••
	•••••
	•••••

12

Diagram **NOT** accurately drawn

Figure 3

Figure 3 shows a right prism ABCDEFGH. The cross section ABCD of the prism is a trapezium with AB = DC. The point M lies on AD and BM is perpendicular to AD.

AB = 8 cm

$$CD = 8 \text{ cm}$$

$$BC = 8 \text{ cm}$$

$$AD = 16 \text{ cm}$$

$$DE = 20 \text{ cm}$$

Given that $BM = p\sqrt{q}$ cm where q is a prime number,

(a) find the value of p and the value of q.

(3)

(b) Find the size of angle BAM in degrees.

(2)

Find, in degrees to the nearest 0.1°

(c) the size of the angle between EB and the plane ADEH,

(4)

(d) the size of the angle between the plane *BCEH* and the plane *ADEH*.

(3)

Question 12 continued		

	CONTRACT.
- 1	
- 1	
- 1	\times
- 1	111
- 1	
- 1	$\times \Longrightarrow \times$
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	XX X
- 1	XX XX X
- 1	× Un
- 1	
- 1	5
- 1	
- 1	×
- 1	3
- 1	
- 1	
- 1	
- 1	$C/Z \sim C$
- 1	
- 1	
- 1	$\times\!\!\times\!\!\times$
- 1	$\times\!\!\times\!\!\times\!\!\times$
- 1	$\times\!\!\times\!\!\times$
- 1	$\times\!\!\times\!\!\times$
- 1	$\otimes \otimes \otimes$
- 1	
- 1	$\times\!\!\times\!\!\times$
- 1	
- 1	$\times\!\!\times\!\!\times$
- 1	$\times\!\!\times\!\!\times\!\!\times$
- 1	***
- 1	$\times\!\!\times\!\!\times\!\!\times$
- 1	
- 1	
- 1	
- 1	
- 1	$\times\!\!\times\!\!\times$
- 1	
- 1	$\times\!\!\times\!\!\times$
- 1	\times
- 1	
- 1	
- 1	$\times\!\!\times\!\!\times$
- 1	>>>>
- 1	$\times \times \times \times \times$
- 1	$\times\!\!\times\!\!\times$
- 1	
- 1	\times
- 1	
- 1	
- 1	0
- 1	\times
- 1	
- 1	
- 1	× 5
- 1	O
- 1	$\times \varnothing$
- 1	
- 1	
- 1	Ę
- 1	
- 1	\times
- 1	
- 1	
- 1	XX
- 1	
- 1	\sim
- 1	× III
- 1	
- 1	CXXXX.
- 1	
- 1	XX X
- 1	2
- 1	
- 1	
- 1	\times
- 1	
- 1	=
- 1	XX XX X
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	62 x x 2
- 1	×=×
- 1	88 m 8
- 1	\times
- 1	
- 1	\times

Question 12 continued	

Question 12 continued		

Question 12 continued	
	(Total for Question 12 is 12 marks)
	TOTAL FOR PAPER IS 100 MARKS