# **11. HTTPS**

## 6 janvier 2025

# Développement web il3

#### **HTTPS**

HE-Arc (DGR) 2022

## Sécuriser un site web

- Authentification du serveur
  - Assurer que le serveur est celui qu'il prétend être
- Intégrité des données
  - Assurer que les données reçues sont celles qui ont été envoyées
- · Confidentialité des données
  - Eviter que des tiers ne puissent voir les données
- Authentification du client (optionnelle)
  - Assurer que le client est celui qu'il prétend être
- Pour un site web, ces services sont fournis par https
  - HTTPS: HTTP sécurisé par SSL/TLS, par défaut sur le port 443

## Secure Socket Layer -> Transport Layer Security

- Conçu par Netscape (v2.0 en 1994, v3.0 en 1996)
- Brevet racheté par l'IETF: TLS v1.0 en 1999 (SSL 3.1), v1.3 en 2018
- Couche Application :
  - Entre les couches transport et application
  - Pas besoin de modifier la pile TCP/IP
- Possibilité de sécuriser d'autres protocoles :
  - HTTP, SMTP, SIP, ...
- Services offerts:
  - Authentification serveur + intégrité données
  - Confidentialité des données
  - Authentification optionnelle du client
- Certificats (clé publique associée au certificat)

### Rôle d'un certificat

- Garantir le lien entre une entité physique et une entité numérique :
  - Intégrité des données
  - Authentification
  - Confidentialité
- Document contenant une identité et une signature numérique
- Utilisations courantes : https, mails
- Délivré par une autorité de certification
- Certificats clients

## Autorité de Certification

- Tiers de confiance
  - enregistrée et certifiée par des autorités publiques ou de gouvernance de l'Internet
- Rôle :
  - Vérifier et garantir les informations sur l'entité
  - Emettre, délivrer et révoquer les certificats
  - Leur assigner une période de validité
  - Maintenir la liste des certificats valides/révoqués

- Certificats auto-signés :
  - usage interne
  - pas de tiers de confiance

## Contenu d'un certificat X509

- version de X.509 (v3, depuis 1996)
- numéro de série du certificat
- algorithme de chiffrement utilisé pour signer le certificat
- nom de l'AC émettrice
- informations sur la clé publique
- dates de début et fin de validité du certificat
- clé publique du propriétaire du certificat
- signature de l'émetteur du certificat (thumbprint)
- ...

# Composants d'une PKI<sup>1</sup>

CA : Autorité de certification - VA : Autorité de validation - RA : Autorité d'enregistrement



## Scénario simplifié de connexion HTTPS

- 1. Le client demande une page sécurisée
- 2. Le serveur émet sa clé publique et son certificat
- 3. Le client vérifie la validité du certificat (et qu'il correspond au site)
- 4. Le client utilise la clé publique pour chiffrer la clé symétrique (CS) utilisée ensuite
- 5. Le serveur déchiffre cette CS (avec sa clé privée) et l'utilise pour décoder la requête HTTPS
- 6. Le serveur répond à la requête en chiffrant avec la CS
- 7. Le navigateur décode la réponse avec la CS
- En images<sup>2</sup>, ou ici<sup>3</sup> ou en slides<sup>4</sup>
- 2-5 en TCP

<sup>&</sup>lt;sup>1</sup>https://en.wikipedia.org/wiki/Public\_key\_infrastructure

<sup>&</sup>lt;sup>2</sup>https://tiptopsecurity.com/how-does-https-work-rsa-encryption-explained/

 $<sup>^3</sup> http://software-engineer-tips-and-tricks.blogspot.ch/2012/08/ssl-in-pictures.html?view=sidebarrors.blogspot.ch/2012/08/ssl-in-pictures.html?view=sidebarrors.blogspot.ch/2012/08/ssl-in-pictures.html?view=sidebarrors.blogspot.ch/2012/08/ssl-in-pictures.html?view=sidebarrors.blogspot.ch/2012/08/ssl-in-pictures.html?view=sidebarrors.blogspot.ch/2012/08/ssl-in-pictures.html?view=sidebarrors.blogspot.ch/2012/08/ssl-in-pictures.html?view=sidebarrors.blogspot.ch/2012/08/ssl-in-pictures.html?view=sidebarrors.blogspot.ch/2012/08/ssl-in-pictures.html?view=sidebarrors.blogspot.ch/2012/08/ssl-in-pictures.html?view=sidebarrors.blogspot.ch/2012/08/ssl-in-pictures.html?view=sidebarrors.blogspot.ch/2012/08/ssl-in-pictures.html?view=sidebarrors.blogspot.ch/2012/08/ssl-in-pictures.html?view=sidebarrors.blogspot.ch/2012/08/ssl-in-pictures.html?view=sidebarrors.blogspot.ch/2012/08/ssl-in-pictures.html?view=sidebarrors.blogspot.ch/2012/08/ssl-in-pictures.html?view=sidebarrors.blogspot.ch/2012/08/ssl-in-pictures.html?view=sidebarrors.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogspot.blogsp$ 

<sup>&</sup>lt;sup>4</sup>https://www.youtube.com/embed/iQsKdtjwtYI?rel=0

## Déploiement

- Installer OpenSSL
- (Créer son autorité de certification si autosigné)
- Obtenir le certificat et la clé privée du serveur
- Configurer httpd. Pour Apache:
  - virtual host (port 443), ssl.conf, (ports.conf)
- Création de l'arborescence sécurisée
- Démarrage serveur
- OU BIEN utiliser Let's encrypt<sup>5</sup>
- OU BIEN utiliser un serveur pré-configuré comme Caddy<sup>6</sup>

## HTTPS Aujourd'hui

- Il n'y a plus de bonne raison d'utiliser HTTP
- TLS toujours utilisé avec HTTP2 et HTTP3
- HTTP2 et 3 minimisent et accélèrent les échanges
- · Certificats gratuits
- Mise en place simplifiée

#### Ressources

- SebSauvage<sup>7</sup>
- HTTPS en détails :
  - Diagramme de séquence HTTPS<sup>8</sup>
  - Diagramme de séquence SPDY<sup>9</sup>
  - SSL<sup>10</sup> en détails
- Durée de vie de la Clé Symétrique<sup>11</sup>
- Faux Certificat<sup>12</sup>
- Autorités de certification :

<sup>&</sup>lt;sup>5</sup>https://letsencrypt.org/

<sup>&</sup>lt;sup>6</sup>https://caddyserver.com/

<sup>&</sup>lt;sup>7</sup>http://www.sebsauvage.net/comprendre/ssl/

<sup>8</sup>https://www.eventhelix.com/networking/SSL.pdf

 $<sup>^9</sup> https://www.eventhelix.com/networking/ssl-tls/https-ssl-tls-session-for-spdy.pdf\\$ 

 $<sup>^{10}</sup> https://security.stackexchange.com/questions/20803/how-does-ssl-tls-work/20847\#20847$ 

 $<sup>^{11}</sup> https://security.stackexchange.com/questions/55454/how-long-does-an-https-symmetric-key-lastic formula of the control of the control$ 

<sup>12</sup>https://www.win.tue.nl/hashclash/rogue-ca/

- Let's Encrypt<sup>13</sup>
  CA Cert<sup>14</sup>
- SSLforFree<sup>15</sup>
- Différences TLS / SSH : Snailbook $^{16}$ , StackExchange $^{17}$

### Sources

<sup>13</sup>https://letsencrypt.org/ 14http://www.cacert.org/ 15https://www.sslforfree.com/

http://www.snailbook.com/faq/ssl.auto.html
 http://security.stackexchange.com/questions/1599/what-is-the-difference-between-ssl-vs-ssh-which-is-moresecure