Plan du cours

I.	Introduction					
11.	Fonctions affines					
	1.	Définition	3			
	2.	Propriétés	4			
	3.	Représentation graphique	5			

I. Introduction

Enoncé:

Un club multi-sports propose à sa clientèle de choisir entre les trois formules suivantes :

Formule A: 10 euros par séance.

Formule B : Un forfait annuel de 150 €auquel s'ajoute une participation de 5 €par séance.

Formule C : Un forfait annuel de 500 €permettant l'accès illimité aux séances.

- 1. Calculer pour chaque formule la dépense annuelle pour : 15 séances ; 40 séances ; 50 séances ; 75 séances ; 90 séances . Dans chaque cas, quelle est la formule la plus intéressante ?
 - 2. Soit x le nombre de séances pendant une année. Exprimer en fonction de x la dépense annuelle pour chaque formule.
 - 3. (a) Pour chaque formule, représenter sur un même graphique la dépense annuelle en fonction du nombre d'entrées.
- (b) Déterminer graphiquement la formule la plus avantageuse en fonction du nombre de séances.

Résolution :	
1.	
2. Les différentes formules :	
Formule A:	
On a alors défini une	
Formule B:	
On a alors défini une	
Formule C :	
On a alors défini une	

3. (a) Les représentations graphiques :

II. Fonctions affines

1. Définition

On dit qu'une fonction f est affine s'il existe deux nombres a et b tel que $f: f: x \mapsto ax + b$. Le nombre **a** est appelé **coefficient directeur** de la fonction f et le nombre **b** est appelé **ordonnée à l'origine**.

Remarque:

- Une fonction linéaire est une fonction affine où
- Une fonction constante est une fonction affine où

Exemple:

Fonction	Linéaire ? Constante ? Affine ?	Coefficients?
$f: x \longmapsto 5x$		
$g: x \longmapsto 5x + 2$		
$h: x \longmapsto 8$		
$i: x \longmapsto \frac{x-8}{3}$		
$j: x \longmapsto x^2$		

Exercice d'application 1

Calculer des images connaissant les antécédents.		
On donne $f: x \longmapsto -4x + 2$ et $g: x \longmapsto \frac{x-1}{2}$. Calculer $f(3), g(-1)$ et $g(1)$.		

Exercice d'application 2 -

Déterminer des antécédents connaissant les images.
On donne la fonction $f: x \mapsto -2x + 3$. Déterminer les antécédents de -5 et de 3.

2. Propriétés

Propriété

Soient f une fonction affine, x_1 et x_2 deux nombres.

Si
$$x1 \neq x2$$
 alors $a = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$

Exemple:

 \rightarrow Déterminer la fonctions affine telle que f(1) = 2 et f(3) = -4.

Étape 1 : Calcul du coefficient a.

Pour trouver le coefficient a, nous allons utiliser la propriété ci-dessus. On a f(1) = 2 et f(3) = -4.

Ainsi,
$$a = \frac{f(3) - f(1)}{3 - 1}$$
 On remplace par les valeurs.

$$a = \frac{-4 - 2}{3 - 1}$$

$$a = \frac{-6}{2}$$

$$a = -3$$

Dès lors, on obtient que, pour tout réel x, f(x) = -3x + b.

Étape 2 : Calcul du coefficient b.

Pour cela, il faut utiliser une des 2 égalités de l'énoncé. Prenons, f(1)=2. Cela signifie de l'image de 1 est 2 par la fonction f(x)=-3x+b.

$$f(1) = 2$$
 et $f(x) = -3x + b$ implique que :

$$-3 \times 1 + b = 2$$

$$-3 + b = 2$$

Il n'y a plus qu'à résoudre l'équation.

$$b = 2 + 3$$

$$b = 5$$

Étape 3 : Expression de la fonction f.

L'expression de la fonction affine f est donc f(x) = -3x + 5.

Fve	rcice	ď'a	nnlica	ation	3
Exe	rcice	uа	ppiica	สนเบท	. J

Déterminer une fonction affine à l'aide de deux nombres et de leur image.		
Déterminer la fonction affine f telle que f $(1) = 3$ et f $(-2) = 0$.		

3. Représentation graphique

Propriété

La représentation graphique d'une fonction affine est une droite

Méthode:

On remplit le tableau suivant où l'on choisit librement (mais intelligemment!) les deux nombres de la première ligne et on calcule leur image.

Х	
f(x)	

On place ensuite les deux points dont les coordonnées sont en colonnes et on trace la droite.

Exemple: Tracer les représentations graphiques des fonctions f et g telles que g(x) = 6x - 7 et $f(x) = \frac{x}{2} - 4$

Vous pouvez commencer par exemple à remplir les tableaux de valeurs ci-dessous. Nous voulons obtenir une droite donc 2 valeurs suffisent pour les x.

Х	0	2
g(x)		

Х	0	2
f(x)		

 \rightarrow Pour vous entraı̂ner, faı̂tes les exercices 17, 19, 22 p°124/125 de votre livre.