Problem Set

MA17Q4-L

mail@kenjisato.jp

2018/1/18

Staircase diagrams

One-dimensional discrete-time dynamics is characterized by a real-valued function

$$\hat{k}_{t+1} = f\left(\hat{k}_t\right),\,$$

where \hat{k}_0 is given.

- (1) Figures on the answer sheet show four instances of (f, \hat{k}_0) . For each case, draw a "staircase diagram" that describes the dynamic path that starts from the dots, \hat{k}_0 .
- (2) An intersection of 45 degree line and the graph of f corresponds to a steady state; i.e., $\hat{k}_t = \hat{k}_{t+1}$. Convergence to or divergence from the steady state can be characterized by how f crosses the 45 degree line. Summarize your observations from Exercise (1).

(1)

ID

(2)