Numbers for Rudin

Peter Koepke

August 1, 2018

0.1 Set-Theoretic Terminology

Let A, B stand for sets. Let $x \in A$ denote x is an element of A. Let x is in A denote x is an element of A. Let $x \notin A$ denote x is not an element of A.

Signature 1 (1.3) The empty set is the set that has no elements. Let \emptyset denote the empty set.

Definition 1 A is nonempty iff A has an element.

Definition 2 A subset of B is a set A such that every element of A is an element of B. Let $A \subseteq B$ stand for A is a subset of B. Let $B \supseteq A$ stand for A is a subset of B.

Definition 3 A proper subset of B is a subset A of B such that there is an element of B that is not in A.

Proposition 1 $A \subseteq A$.

Proposition 2 If $A \subseteq B$ and $B \subseteq A$ then A = B.

Definition 4 $A \cup B = \{x \mid x \in A \lor x \in B\}.$

1 The real field

[number/-s]

Signature 2 A real number is a notion.

Signature 3 \mathbb{R} is the set of real numbers. Let x, y, z denote real numbers.

Signature 4 (1.12 A1) x + y is a real number. Let the sum of x and y denote x + y.

Signature 5 (1.12 M1) $x \cdot y$ is a real number. Let the product of x and y denote $x \cdot y$.

Signature 6 (1.5) x < y is an atom. Let x > y stand for y < x. Let $x \le y$ stand for $x < y \lor x = y$. Let $x \ge y$ stand for $y \le x$.

Axiom 1 (1.5(i)) $x < y \land x \neq y \land \neg y < x \text{ or } \neg x < y \land x = y \land \neg y < x \text{ or } \neg x < y \land x \neq y \land y < x.$

Axiom 2 (1.5(ii)) If x < y and y < z then x < z.

Proposition 3 $x \le y$ iff not x > y.

Axiom 3 (1.12 A2) x + y = y + x.

Axiom 4 (1.12 A3) (x + y) + z = x + (y + z).

Signature 7 (1.12 A4) 0 is a real number such that for every real number x + 0 = x.

Signature 8 (1.12 A5) -x is a real number such that x + (-x) = 0.

Axiom 5 (1.12 M2) $x \cdot y = y \cdot x$.

Axiom 6 (1.12 M3) $(x \cdot y) \cdot z = x \cdot (y \cdot z)$.

Signature 9 (1.12 M4) 1 is a real number such that $1 \neq 0$ and for every real number $x \cdot 1 \cdot x = x$.

Signature 10 (1.12 M5) Assume $x \neq 0$. 1/x is a real number such that x * (1/x) = 1.

Axiom 7 (1.12 D) $x \cdot (y+z) = (x \cdot y) + (x \cdot z)$.

Proposition 4 (Dist1) $(y \cdot x) + (z \cdot x) = (y + z) \cdot x$.

Proposition 5 (1-14 a) If x + y = x + z then y = z.

Proof Assume x + y = x + z. Then

$$y = (-x + x) + y = -x + (x + y) = -x + (x + z) = (-x + x) + z = z.$$

Proposition 6 If x + y = x then y = 0.

Proposition 7 If x + y = 0 then y = -x.

Proposition 8 (1.14 d) -(-x) = x.

Proposition 9 (1.15 a) If $x \neq 0$ and $x \cdot y = x \cdot z$ then y = z.

Proof Let $x \neq 0$ and $x \cdot y = x \cdot z$.

$$y=1\cdot y=((1/x)\cdot x)\cdot y=(1/x)\cdot (x\cdot y)=(1/x)\cdot (x\cdot z)=((1/x)\cdot x)\cdot z=1\cdot z=z.$$

Proposition 10 If $x \neq 0$ and $x \cdot y = x$ then y = 1.

Proposition 11 If $x \neq 0$ and $x \cdot y = 1$ then y = 1/x.

Proposition 12 If $x \neq 0$ then 1/(1/x) = x.

Proposition 13 (1.16 a) $0 \cdot x = 0$.

Proposition 14 If $x \neq 0$ and $y \neq 0$ then $x \cdot y \neq 0$.

Proposition 15 $(-x) \cdot y = -(x \cdot y)$.

Proof
$$(x \cdot y) + (-x \cdot y) = (x + (-x)) \cdot y = 0 \cdot y = 0.$$

Proposition 16 $-x = -1 \cdot x$.

Proposition 17 (1.16 d) $(-x) \cdot (-y) = x \cdot y$.

Proof
$$(-x) \cdot (-y) = -(x \cdot (-y)) = -((-y) \cdot x) = -(-(y \cdot x)) = y \cdot x = x \cdot y$$
.

Let x-y stand for x+(-y). Let $\frac{x}{y}$ stand for $x\cdot (1/y)$.

2 The real ordered field

Axiom 8 (1.17 i) If y < z then x + y < x + z and y + x < z + x.

Axiom 9 (1.17 ii) If x > 0 and y > 0 then $x \cdot y > 0$.

Definition 5 x is positive iff x > 0.

Definition 6 x is negative iff x < 0.

Proposition 18 (1.18 a) x > 0 iff -x < 0.

Proposition 19 (1.18 b) If x > 0 and y < z then x * y < x * z.

Proof Let
$$x > 0$$
 and $y < z$. $z - y > y - y = 0$. $x \cdot (z - y) > 0$. $x \cdot z = (x \cdot (z - y)) + (x \cdot y)$. $(x \cdot (z - y)) + (x \cdot y) > 0 + (x \cdot y)$ (by 1.17 i). $0 + (x \cdot y) = x \cdot y$.

Proposition 20 (1.18 bb) If x > 0 and y < z then $y \cdot x < z \cdot x$.

Proposition 21 (1.18 d) If $x \neq 0$ then $x \cdot x > 0$.

Proposition 22 (1.18 dd) 1 > 0.

Proposition 23 x < y iff -x > -y.

Proof
$$x < y \Leftrightarrow x - y < 0$$
. $x - y < 0 \Leftrightarrow (-y) + x < 0$. $(-y) + x < 0$ $\Leftrightarrow (-y) + (-(-x)) < 0$. $(-y) + (-(-x)) < 0 \Leftrightarrow (-y) - (-x) < 0$. $(-y) - (-x) < 0 \Leftrightarrow -y < -x$. □

Proposition 24 (1.18 c) If x < 0 and y < z then $x \cdot y > x \cdot z$.

Proof Let
$$x < 0$$
 and $y < z$. $-x > 0$. $(-x) \cdot y < (-x) \cdot z$ (by 1.18 b). $-(x \cdot y) < -(x \cdot z)$.

Proposition 25 (1.18 cc) If x < 0 and y < z then $y \cdot x > z \cdot x$.

Proposition 26 (Next) x + 1 > x.

Proposition 27 x - 1 < x.

Proposition 28 If 0 < x then 0 < 1/x.

[prove off]

Proposition 29 Assume 0 < x < y. Then 1/y < 1/x.

Proof Case 1/x < 1/y. Then

$$1 = x \cdot (1/x) = (1/x) \cdot x < (1/x) \cdot y = y \cdot (1/x) < y \cdot (1/y) = 1.$$

Contradiction. end.

Case 1/x = 1/y. Then

$$1 = x * (1/x) < y * (1/y) = 1.$$

Contradiction. end.

Case 1/y < 1/x. end.

3 Upper and lower bounds

[/prove]

Definition 7 Let E be a subset of \mathbb{R} . An upper bound of E is a real number b such that for all elements x of E $x \leq b$.

Definition 8 Let E be a subset of \mathbb{R} . E is bounded above iff E has an upper bound.

Definition 9 Let E be a subset of \mathbb{R} . A lower bound of E is a real number b such that for all elements x of E $x \geq b$.

Definition 10 Let E be a subset of \mathbb{R} . E is bounded below iff E has a lower bound.

Definition 11 Let E be a subset of \mathbb{R} such that E is bounded above. A least upper bound of E is a real number a such that a is an upper bound of E and for all x if x < a then x is not an upper bound of E.

Definition 12 Let E be a subset of \mathbb{R} such that E is bounded below. A greatest lower bound of E is a real number a such that a is a lower bound of E and for all x if x > a then x is not a lower bound of E.

Axiom 10 Assume that E is a nonempty subset of \mathbb{R} such that E is bounded above. Then E has a least upper bound.

Definition 13 . Let E be a subset of \mathbb{R} . $E^- = \{-x \mid x \in E\}$.

Lemma 1 Let E be a subset of \mathbb{R} . x is an upper bound of E iff -x is a lower bound of E^- .

Theorem 1 Assume that E is a nonempty subset of \mathbb{R} such that E is bounded below. Then E has a greatest lower bound.

Proof Take a lower bound a of E. -a is an upper bound of E^- . Take a least upper bound b of E^- . Let us show that -b is a greatest lower bound of E. -b is a lower bound of E. Let c be a lower bound of E. Then -c is an upper bound of E^- . end.

4 The rational numbers

Signature 11 A rational number is a real number. Let p, q, r stand for rational numbers.

Definition 14 \mathbb{Q} *is the set of rational numbers.*

 \mathbb{Q} is a subfield of \mathbb{R} :

Lemma 2 $\mathbb{Q} \subseteq \mathbb{R}$.

Axiom 11 p + q, $p \cdot q$, 0, -p, 1 are rational numbers.

Axiom 12 Assume $p \neq 0$. 1/p is a rational number.

Axiom 13 There exists a subset A of \mathbb{Q} such that (A is bounded above and x is a least upper bound of A).

Theorem 2 $\mathbb{R} = \{x \in \mathbb{R} \mid \text{ there exists } A \subseteq \mathbb{Q} \text{ such that } A \text{ is bounded above and } x \text{ is a least upper bound of } A \subseteq \mathbb{R} \}$

5 Integers

[integer/-s]

Signature 12 An integer is a rational number. Let a, b stand for integers.

Definition 15 \mathbb{Z} is the set of integers.

 \mathbb{Z} is a discrete subring of \mathbb{Q} :

Axiom 14 a + b, a * b, 0, -a, 1 are integers.

Axiom 15 There is no integer a such that 0 < a < 1.

Axiom 16 There exist a, b such that $a \neq 0 \land p = \frac{b}{a}$.

Theorem 3 (Archimedes1) \mathbb{Z} is not bounded above.

Proof Assume the contrary. \mathbb{Z} is nonempty. Take a least upper bound b of \mathbb{Z} . Let us show that b-1 is an upper bound of \mathbb{Z} . Let $x \in \mathbb{Z}$. $x+1 \in \mathbb{Z}$. $x+1 \le b$. $x=(x+1)-1 \le b-1$. end.

Theorem 4 (Archimedes2) There is an integer a such that $x \leq a$.

Proof x is not an upper bound of \mathbb{Z} (by Archimedes1). Take $a \in \mathbb{Z}$ such that not $a \leq x$. Then $x \leq a$.

6 The natural numbers

Definition 16 \mathbb{N} *is the set of positive integers. Let* m, n *stand for positive integers.*

Definition 17 $\{x\} = \{y \in \mathbb{R} \mid y = x\}.$

Lemma 3 $\mathbb{Z} = (\mathbb{N}^- \cup 0) \cup \mathbb{N}$.

Theorem 5 (Induction Theorem) Assume $A \subseteq \mathbb{N}$ and $1 \in A$ and for all $n \in A$ $n+1 \in A$. Then $A = \mathbb{N}$.

Proof Let us show that every element of \mathbb{N} is an element of A. Let $n \in \mathbb{N}$. Assume the contrary. Define $F = \{j \in \mathbb{N} \mid j \notin A\}$. F is nonempty. F is bounded below. Take a greatest lower bound a of F. Let us show that a+1 is a lower bound of F. Let $x \in F$. $x-1 \in \mathbb{Z}$.

Case x - 1 < 0. Then 0 < x < 1. Contradiction. end.

Case x - 1 = 0. Then x = 1 and $1 \notin A$. Contradiction. end.

Case x-1 > 0. Then $x-1 \in \mathbb{N}$. $x-1 \in F$. $a \le x-1$. $a+1 \le (x-1)+1 = x$. end. end.

Then a + 1 > a (by Next). Contradiction. end.

7 Archimedian properties

Theorem 6 (1.20 a) Let x > 0. Then there is a positive integer n such that $n \cdot x > y$.

Proof Take an integer a such that $a > \frac{y}{x}$. Take a positive integer n such that n > a. $n > \frac{y}{x}$ and $n \cdot x > (\frac{y}{x}) * x = y$.

Theorem 7 (1.20 b) Let x < y. Then there exists $p \in \mathbb{Q}$ such that x .

Proof Assume x < y. Then y - x > 0. Take a positive integer n such that $n \cdot (y - x) > 1$ (by 1.20 a). [prove off] Take an integer m such that $m - 1 \le n \cdot x < m$. Then

$$n \cdot x < m = (m-1)+1 <= (n \cdot x)+1 < (n \cdot x)+(n \cdot (y-x)) = n \cdot (x+(y-x)) = n \cdot y.$$

[/prove] $m \leq (n \cdot x) + 1 < n \cdot y$. Let us show that $m < n \cdot y$.

Case $m < (n \cdot x) + 1$. end.

Case $m = (n \cdot x) + 1$. end. end. $\frac{m}{n} < \frac{n \cdot y}{n}$. Indeed $m < n \cdot y$ and 1/n > 0. Then

$$x = \frac{n \cdot x}{n} < \frac{m}{n} < \frac{n \cdot y}{n} = y.$$

Let $p = \frac{m}{n}$. Then $p \in \mathbb{Q}$ and x .