BUS

Contenuti

- Architettura di un bus
 - Cosa sono i bus
 - Tipi di bus
 - caratteristiche di un bus
 - ottimizzazioni: DMA, chipset, SBS
- Alcuni bus
- AGP

Modello di Von Neumann

 Tutte le componenti funzionali processore, la memoria e le interfacce di input/output sono

collegati al

bus

attraversoquesto siscambianosegnali che

trasportano dati e comandi.

BUS

- Un solo bus può collegare tra loro più dispositivi.
- Sono connessioni elettriche tra il microprocessore, la memoria e le periferiche per lo scambio di informazioni e comandi che possono essere realizzate direttamente su circuito stampato oppure tramite un apposito cavo.

CONCETTO DI MASTER/SLAVE

 In prima istanza, il collegamento contemporaneo di tutti i dispositivi potrebbe apparire poco gestibile:

 si pensi al caso in cui la CPU stia accedendo alla memoria per leggere un dato e contemporaneamente da un'interfaccia input/output siano in arrivo dati che devono transitare su questo stesso bus.

CONCETTO DI MASTER/SLAVE

Soluzione

 <u>Si attribuisce</u> ad un solo componente del sistema, la <u>CPU (master), la gestione</u> <u>dell'intero sistema</u> ed in particolare l'accesso al bus, <u>impedendo</u> dunque <u>alle</u> unità <u>periferiche (slave)</u> la possibilità <u>di accedervi</u> <u>autonomamente.</u>

CONCETTO DI MASTER/SLAVE

- Ogni trasferimento di dati avviene sotto il controllo della CPU, che
- ✓ identifica la sorgente e la destinazione dei dati mediante il loro indirizzo,
- ✓ sincronizza con i segnali di controllo i dispositivi che devono colloquiare.
- Così il bus viene utilizzato evitando qualsiasi collisione fra le diverse periferiche.

Bus sincrono / asincrono

In base alla temporizzazione delle operazioni:

- Bus Sincrono: la temporizzazione è regolata da un clock,
- Bus Asincrono: la temporizzazione è regolata da segnali che i dispositivi si scambiano
 - N.B. Nei bus asincroni la velocità del bus dipende dalla velocità dei dispositivi

Le trasmissioni sul Bus

- possono essere
 - **❖**Seriali
 - **❖** parallele

Bus seriale

• è un unico canale che permette il passaggio dei bit in modo sequenziale (incolonnati uno dietro l'altro). Esempi: SATA, PCI Express, USB

BUS PARALLELO

- Il **bus parallelo** è costituito da *n* canali che consentono il trasferimento di *n* bit contemporaneamente.
- Il bus parallelo è evidentemente **più veloce di quello seriale** e viene utilizzato per i collegamenti all'interno del calcolatore.
- più ingombrante e a volte più costoso
- Esempi: ISA, PCI

BUS PARALLELO

 Se realizzato su circuito stampato il bus parallelo è riconoscibile a vista perché si nota sul circuito un nutrito gruppo di piste compatte e disposte in parallelo che vanno a toccare i vari componenti della scheda.

BUS PARALLELO

- per assicurare il corretto trasferimento necessita della sincronia dei bit trasmessi: sugli n canali i bit devono giungere a destinazione contemporaneamente per consentire l'esatta interpretazione dell'informazione trasferita.
- Se avessi un bus di 4 canali potrei trasferire 4 bit a volta. Se per esempio l'informazione iniziale fosse "1011" ed il bit più significativo arrivasse in ritardo l'informazione ricevuta diventerebbe "0011" con un evidente errore.

Bus interni ed esterni

 BUS interni, confinati all'interno di una singola unità funzionale, e che collegano i blocchi funzionali contenuti nell'unità

 BUS esterni, che si estendono all'esterno dell'unità funzionale, e che la collegano alle altre unità funzionali. I BUS esterni del calcolatore sono solitamente standardizzati.

Bus interni ed esterni

Tipi di bus

- il **bus sistema** (System Bus)
- il bus di estensione (detto talvolta bus I/O) permette ai diversi componenti della scheda madre (USB, seriale, parallela, schede collegate ai connettori PCI, dischi rigidi, lettori e masterizzatori di CD-ROM, ecc.) di comunicare tra loro, ma esso permette soprattutto l'aggiunta di nuove periferiche grazie ai connettori di estensione (detti **slot**) connessi al bus d'entrata-uscita.

BUS DI SISTEMA

- È Il bus che collega i principali moduli (CPU, Memoria, I/O).
- Fisicamente il bus è costituito da un insieme di linee elettriche, disposte opportunamente sulla scheda madre, lungo le quali vengono trasferiti i dati o i segnali di controllo.
- In ogni istante, su ogni filo, passa un bit.

BUS DI SISTEMA

A seconda del tipo di segnale trasportato, le linee del bus vengono **LOGICAMENTE** suddivise in tre categorie:

- Bus dati (Data Bus)
- Bus indirizzi (Address Bus)
- **❖** Bus di controllo (control bus)

- Linee per il trasporto di soli dati
- permette l'ingresso e l'uscita dei dati elaborati dal processore
 - ⇒sono bidirezionali, nel senso che i dati che passano attraverso queste linee possono andare da e verso il processore
- È usufruibile da tutti i componenti del sistema, sia in scrittura sia in lettura

- A seconda del microprocessore, il bus dati può avere 8,16,32,64,80 linee (bit)
- Il numero di linee viene detto ampiezza del bus dati
- Poiché ogni linea può trasportare solo un bit alla volta, il numero di linee determina quanti bit possono essere trasportati contemporaneamente

- Ad esempio, se il bus dei dati è di 16 bit, consente di trasferire in un'unica operazione 2 byte verso la memoria o alle porte di input/output.
- Ad esempio, se il bus dei dati è di 32 bit, consente di trasferire in un'unica operazione 4 byte verso la memoria o alle porte di input/output.

Ampiezza del bus dati è un fattore chiave per le prestazioni complessive del sistema

esempio.

Se il bus dati è largo 8 bit e ciascuna istruzione è lunga 16 bit,

il processore deve accedere alla memoria due volte per ogni istruzione.

- Linee per il trasporto di soli indirizzi,
- È utilizzabile in scrittura solo dalla CPU ed in lettura dagli altri componenti, in quanto tramite questo bus viene dato solo l'indirizzo scelto dalla CPU
- è unidirezionale

- Vengono impiegate dal processore per assegnare la destinazione dei dati presenti sul bus dati o la locazione da cui prelevarli
- Ad esempio,
 - se il processore vuole leggere un dato da una zona di memoria, deve mettere l'indirizzo sul bus indirizzi. Poi, la lettura (o scrittura) avviene normalmente tramite il bus dati.

- L'ampiezza del bus indirizzi determina la massima quantità di memoria di un sistema (spazio massimo di indirizzi disponibili).
- A seconda del processore, ha 16, 20, 24, 32 linee (bit), e lo spazio di indirizzamento di è rispettivamente di

64KB [= 2^{16} byte = 2^{6} x 2^{10} byte = 64 KB], 1MB, 16MB e 4GB.

Le quantità vengono solitamente espresse in termini di potenze di 2, vale la seguente corrispondenza:

```
1 KB equivale a 2<sup>10</sup> byte = 1024 byte
```

1 MB equivale a
$$2^{20}$$
 byte= $2^{10} \times 2^{10} =$

$$= 1024 \times 1024$$
 byte

$$= 2^{10} \times 2^{10} \times 2^{10}$$

$$= 1024 \times 1024 \times 1024$$
 byte

- Linee per il trasporto di segnali di controllo
- È un insieme di collegamenti il cui scopo è coordinare le attività del sistema: controllare l'accesso e l'uso delle linee dati e indirizzi
- I segnali di controllo trasmettono sia comandi [operazioni da compiere] sia informazioni di temporizzazione [come le operazioni sono coordinate sul bus]

- tramite esso, ad esempio la CPU può decidere quale componente deve scrivere sul bus dati in un determinato momento, quale componente deve leggere l'indirizzo sul bus indirizzi, ...
- A differenza del data bus e dell'address bus, i bit presenti su queste linee hanno ciascuno un significato indipendente dagli altri, e agiscono separatamente l'uno dall'altro.

 Esempio . Due tipiche linee per la comunicazione tra una periferica e il processore:

-INTR (Interrupt Request) è una linea utilizzata dalle unità di I/O per chiedere al processore di sospendere l'attività in corso e gestire un trasferimento di dati;

-INTA (Interrupt Acknowledge) è una linea gestita dal processore che serve ad <u>avvisare</u> <u>il dispositivo di I/O</u> che il processore è pronto a gestire il trasferimento.

ESEMPI SEMPLIFICATI:

- trasferimento dati tra CPU e periferica
- Operazione di lettura tra CPU e RAM [il dato entra nella CPU]
- Operazione di scrittura tra CPU e RAM
 [il dato esce dalla CPU]

Frequenza e Banda

- Frequenza: è la frequenza del clock, indica numero di operazioni al secondo
- Banda: è la quantità di informazione trasferita nell'unità di tempo, dipende da due fattori:
 - frequenza,
 - numero di bit trasferiti per operazione

BANDWITH

 Per valutare le prestazioni dei bus si calcolala larghezza di banda (Bandwidth) in multipli di Byte al secondo, come segue:

numero
Bandwith = di linee
espresso
in byte

frequenza

X del bus
espressa in Hz

Prestazione dei bus

- Esempio
- Bus con 64 linee dati che lavora a 100 MHz (inverso della frequenza: 10 ns):
 - Ogni operazione vengono trasferiti 8byte
 - 100 milioni di operazioni al secondo
 - Banda 800 MB/sec