EVERY FINITE LATTICE IS THE CONGRUENCE LATTICE OF A FINITE PARTIAL ALGEBRA

1. Introduction

This note begins with a proof in Section 2 of the result stated in the title. Bill Lampe pointed out that this result has been known for a long time and subsequently explained to DeMeo a more general viewpoint. In Section 3 we try to describe what Lampe explained, but surely our presentation is imperfect. Hopefully it will elicit comments and criticisms that we will use to improve it.

2. A WELL KNOWN RESULT

In this section we give a straight-forward proof of the fact that every finite lattice is the congruence lattice of a finite partial algebra.

Lemma 2.1. Let X be a finite set, and let $\operatorname{Eq}(X)$ denote the lattice of equivalence relations on X. If $L \leq \operatorname{Eq}(X)$ is a 0-1-sublattice, and $\rho \in \operatorname{Eq}(X)$ and $\rho \notin L$, then for some $k < \omega$ there exists a partial operation $f \colon X^k \rightharpoonup X$ that is compatible with L and incompatible with ρ .

Proof. First we focus on the relations in L that are above ρ . Let $\rho^{\uparrow} \cap L = \{ \gamma \in L \mid \gamma \geq \rho \}$. Since $\rho \notin L$, we have $\gamma > \rho$ for all $\gamma \in \rho^{\uparrow} \cap L$. Now, $\rho^{\uparrow} \cap L$ has a least element $\rho^* = \bigwedge(\rho^{\uparrow} \cap L)$. Clearly $\rho^* \geq \rho$ and since $\rho^* \in L$ we have $\rho^* \neq \rho$, so $\rho^* > \rho$. Therefore, there exists $(u, v) \in \rho^* - \rho$.

Next consider the elements of L that are not above ρ . For each such $\alpha_i \in L - \rho^{\uparrow}$ there exists $(x_i, y_i) \in \rho - \alpha_i$. Let $(x_1, y_1), \ldots, (x_k, y_k)$ be the list of all unique such pairs (i.e., each pair appears in the list exactly once). Define the partial function $f: X^k \to X$ at only two points of X^k ; specifically, let

$$f(x_1, ..., x_k) = u$$
 and $f(y_1, ..., y_k) = v$.

Then, since $(\forall i)(x_i, y_i) \in \rho$ and $(u, v) \notin \rho$, f is incompatible with ρ . On the other hand, $(u, v) \in \rho^* = \bigwedge(\rho^{\uparrow} \cap L)$, so $(u, v) \in \gamma$ for every $\gamma \in \rho^{\uparrow} \cap L$, so f is compatible with every $\gamma \in \rho^{\uparrow} \cap L$.

Finally, for each $\alpha_i \in L$ not above ρ there is at least one pair $(x_i, y_i) \notin \alpha_i$. Therefore, it is impossible for f to be incompatible with any such α_i .

Theorem 2.2. Let X be a finite set and let $L \leq \text{Eq}(X)$ be a 0-1-sublattice. Then there exists a finite partial algebra $\mathbb{X} = \langle X, F \rangle$ with $\text{Con}(\mathbb{X}) = L$.

Proof. By the lemma, for each $\rho \in \text{Eq}(X) - L$, there exists $k < \omega$ and $f_{\rho} \colon X^k \to X$ such that f_{ρ} is compatible with every relation in L and incompatible with ρ . Let \mathcal{R} be the set Eq(X) - L of all equivalence relations on X that do not belong to L. Define, $F = \{f_{\rho} \mid \rho \in \mathcal{R}\}$. Evidently, Con(X, F) = L.

Date: October 22, 2016.

3. Generalities

First we recall some standard definitions. A *closure system* on a set X is a collection \mathbb{C} of subsets of X that is closed under arbitrary intersection (including the empty intersection, so $\bigcap \emptyset = X \in \mathbb{C}$). Thus a closure system is a complete meet semilattice with respect to subset inclusion ordering. Since every complete meet semilattice is automatically a complete lattice (see [1, Theorem 2.5]), the closed sets of a closure system form a complete lattice.

For us, the key examples of closure systems are the

- order ideals of an ordered set
- subalgebras of an algebra
- equivalence relations on a set
- congruence relations of an algebra

Let $\mathbf{P} = \langle P, \leq \rangle$ be a poset. An function c: $P \to P$ is called a *closure operator* on \mathbf{P} if it satisfies the following axioms for all $x, y \in P$.

- (1) $x \le c x$ (extensivity)
- (2) $x \le y$ implies $c(x) \le c(y)$ (monotonicity)
- (3) c c x = c x (idempotence)

More concisely, a closure operator is an extensive idempotent poset endomorphism, and the definition above is equivalent to the single axiom

$$(\forall x, y \in P)(x \le c y \iff c x \le c y)$$

Example 3.1. Let X be a set and let $Y \subseteq X$. Define $c_Y : \mathcal{P}(X) \to \mathcal{P}(X)$ by $c_Y(W) = W \cup Y$. Then c_Y is a closure operator on $\langle \mathcal{P}(X), \subseteq \rangle$.

Example 3.2 (Pudlák-Tůma [2]). Let $\mathbf{L} = \langle L, \vee, \wedge \rangle$ be a lattice, $u, v \in L$, and $u \leq v$. Define a subset $L_{u,v}$ of L by

$$L_{u,v} = \{ x \in L \mid v \le x \text{ or } u \nleq x \}.$$

The partial order relation of the lattice **L** induces a lattice order on $L_{u,v}$. Denote the resulting lattice by $\mathbf{L}_{u,v}$. Then the meet of $\mathbf{L}_{u,v}$ is that of **L**, whereas the join of $\mathbf{L}_{u,v}$ is

$$x \vee_{u,v} y = \begin{cases} x \vee y, & \text{if } u \nleq x \vee y, \\ x \vee y \vee v, & \text{if } u \leq x \vee y. \end{cases}$$

Define a mapping $\sigma_{u,v}: L \to L_{u,v}$ as follows:

$$\sigma_{u,v}(x) = \begin{cases} x, & \text{if } u \nleq x, \\ x \lor v, & \text{if } u \leq x. \end{cases}$$

Then $\sigma_{u,v}$ is a surjective join-homomorphism. In fact, every join-homomorphism $\phi: L \to K$ satisfying $\phi(u) = \phi(v)$ splits as $\phi = \psi \circ \sigma_{u,v}$ for some $\psi: L_{u,v} \to K$, as indicated in the commutative diagram below.

Questions: Is $\sigma_{u,v}$ a closure operator? On what set? Is $L_{u,v}$ the subset of fixpoints of $\sigma_{u,v}$?

A fixpoint of a closure operator c (i.e., an element $x \in P$ satisfying cx = x) is called a closed element. A closure operator on a partially ordered set is determined by its closed elements. If x is closed, then $y \le x$ iff $cy \le x$.

REFERENCES 3

FIGURE 1. Every join-homomorphism collapsing u and v is divisible by $\sigma_{u,v}$.

The collection of fixpoints of a closure operator is closed under arbitrary intersection, hence forms a closure system. Indeed, let \mathcal{A} be a collection of fixpoints of C. For each $A \in \mathcal{A}$ we have $\bigcap \mathcal{A} \subseteq A$, so $C(\bigcap \mathcal{A}) \subseteq A$ by monotonicity. Therefore, $\bigcap \mathcal{A} \subseteq C(\bigcap \mathcal{A}) \subseteq \bigcap \mathcal{A}$, so $C(\bigcap \mathcal{A}) = \bigcap \mathcal{A}$; that is, $\bigcap \mathcal{A}$ is a fixpoint of C.

Thus, if \mathcal{C} is the collection of closed sets of the closure operator C , then \mathcal{C} is a closure system. Conversely, given a closure system \mathcal{C} on a set X, define the operator $\mathsf{C} \colon \mathcal{P}(X) \to \mathcal{P}(X)$ as follows

$$\mathsf{C}A = \bigcap \{B \in \mathfrak{C} \mid A \subseteq B\}.$$

It is obvious that C so defined satisfies conditions (a)–(c) above, making it a closure operator. A closure operator C is called $\mathit{algebraic}$ iff

$$CA = \bigcup \{CF \mid F \subseteq A \text{ and } F \text{ finite } \}.$$

Let $\mathbf{L} = \langle L, \vee, \wedge \rangle$ be a complete lattice and let $\top = \bigvee L$. A subset $M \subseteq L$ is called a *Moore family* on \mathbf{L} if $\top \in M$ and every nonempty subset of M is closed under meet. That is, if $\emptyset \neq S \subseteq M$, then $\bigwedge S \in S$.

If $\mathbf{L} = \langle L, \vee, \wedge \rangle$ is a complete lattice, then a subset $C \subseteq L$ is the set of closed elements for some closure operator on L if and only if C is a *Moore family* on L. Any such set C is itself the universe of a complete lattice \mathbf{C} with the order inherited from \mathbf{L} . However, it is important to note that join of \mathbf{C} might differ from that of \mathbf{L} . When \mathcal{L} is the powerset Boolean algebra of X—that is, when $\mathcal{L} = \langle \mathcal{P}(X), \subseteq \rangle$ —then a Moore family in \mathcal{L} is called a *closure system* on X.

The closure operators on \mathcal{L} form themselves a complete lattice; the order on closure operators is defined by $c_1 \leq c_2$ iff $c_1 x \leq c_2 x$ for all $x \in L$.

References

- [1] J. B. Nation. "Notes on Lattice Theory". Unpublished notes. 2007, 2016. URL: http://www.math.hawaii.edu/~jb/.
- [2] Pavel Pudlák and Jiří Tůma. "Every finite lattice can be embedded in a finite partition lattice". In: Algebra Universalis 10.1 (1980), pp. 74–95. ISSN: 0002-5240. DOI: 10.1007/BF02482893. URL: http://dx.doi.org/10.1007/BF02482893.

University of Hawaii

 $E ext{-}mail\ address:$ williamdemeo@gmail.com

4 REFERENCES

 $\begin{array}{l} {\it Chapman~University} \\ {\it E-mail~address:}~ {\tt jipsen@chapman.edu} \end{array}$