Univerza v Ljubljani, Fakulteta za elektrotehniko Podiplomski magistrski študijski program 2. stopnje Elektrotehnika Biomedicinska tehnika - Biomedicinska informatika

NAVODILA

Vaja 8: Ujemanje zaporedij

Pripravila: Žiga Bizjak & Tomaž Vrtovec

Navodila

Needleman-Wunsch-ev algoritem je uveljavljen pristop za določanje globalnega optimalnega ujemanja zaporedij (npr. nukleotidov v DNK ali aminokislin v beljakovinah). Algoritem je poseben primer metode dinamičnega programiranja, s pomočjo katere lahko rešimo relativno kompleksne probleme tako, da jih razdelimo na lažje podprobleme.

1. Napišite funkcijo za določanje matrike ocen M in poti T za ujemanje zaporedij a in b:

```
def computeMatrices(iSeqA, iSeqB, iSubS, iSubM, iGapP):
# ...
# your code goes here
# ...
return oScrM, oTrcM
```

kjer vhodna argumenta iSeqA in iSeqB predstavljata zaporedji a in b, iSubS predstavlja zastopane znake v izbranem vrstnem redu (npr. 'AGCT'), iSubM predstavlja substitucijsko matriko S z znaki v enakem vrstnem redu, iGapP pa predstavlja kazen za vrinjeno mesto P. Izhodna argumenta oScrM in oTrcM predstavljata matriko ocen M in matriko poti T. Matriko ocen M ustrezno inicializirajte z začetnimi vrednostmi (ničle), matriko poti T pa z začetnimi smermi. Oceno M(i,j) in smer T(i,j) določite s pomočjo rekurzivne formule:

$$M(i,j) = \max \left\{ \begin{array}{lll} M(i-1,j-1) & + & S\big(a(i),b(j)\big) & \nwarrow & (\text{smer diagonala oz. D}) \\ M(i,j-1) & + & P & \leftarrow & (\text{smer levo oz. L}) \\ M(i-1,j) & + & P & \uparrow & (\text{smer gor oz. U}) \end{array} \right.$$

V primeru, da je več vrednosti hkrati največjih, v matriko poti T vpišete samo eno smer, pri čemer se držite predpisanega vrstnega reda, in sicer najprej smer diagonala (\nwarrow oz. D), nato smer levo (\leftarrow oz. L) in nazadnje smer gor (\uparrow oz. U).

2. Napišite funkcijo za določanje optimalno ujemajočih se zaporedij:

```
def computeSequences(iSeqA, iSeqB, iTrcM):
# ...
# your code goes here
# ...
return oSeqA, oSeqB
```

kjer vhodna argumenta iSeqA in iSeqB predstavljata zaporedji a in b, iTrcM pa matriko poti T. Izhodna argumenta oSeqA in oSeqB predstavljata optimalno ujemajoči se zaporedji a in b, ki ju poiščete s pomočjo sledenja glede na smeri v matriki poti T, pri čemer s sledenjem pričnete v zadnjem elementu matrike.

Preverite implementacijo algoritma tako, da določite optimalno ujemanje DNK zaporedij $a=\mathsf{GGATCGA}$ in $b=\mathsf{GAATTCAGTTA}$, za katere je bila rešitev podana pri pripravah na

laboratorijske vaje. Uporabite substitucijsko matriko S in kazen za vrinjeno mesto P:

S =	А	G	С	Т
А	2	-1	-1	-1
G	-1	2	-1	-1
С	-1	-1	2	-1
Т	-1	-1	-1	2

$S^* =$	Α	G	С	Т
А	2	1	-1	-1
G	1	2	-1	-1
С	-1	-1	2	1
Т	-1	-1	1	2

$$P = -2$$

$P^* = 0$

Vprašanja

Odgovore na sledeča vprašanja zapišite v poročilo, v katerega vstavite zahtevane izrise in programske kode.

1. Napišite funkcijo za izračun ocene optimalnega ujemanja:

```
def computeScore(iSeqA, iSeqB, iSubS, iSubM, iGapP):
# ...
# your code goes here
# ...
return oScr
```

kjer vhodna argumenta iSeqA in iSeqB predstavljata optimalno ujemajoči se zaporedji a in b, iSubS predstavlja znake v izbranem vrstnem redu (npr. 'AGCT'), iSubM predstavlja substitucijsko matriko S z znaki v enakem vrstnem redu, iGapP pa predstavlja kazen za vrinjeno mesto P. Izhodni argument oScr predstavlja oceno optimalnega ujemanja.

Priložite programsko kodo funkcije computeScore().

- 2. Določite optimalno ujemanje DNK zaporedij $a=\mathsf{ACA}$ in $b=\mathsf{CGACT},$ pri čemer uporabite substitucijsko matriko S in kazen za vrinjeno mesto P. Zapišite tudi matriko ocen M, matriko poti T z označeno optimalno potjo ter oceno optimalnega ujemanja.
- 3. Določite optimalno ujemanje DNK zaporedij $a = \mathsf{CTCTAGCATTAG}$ in $b = \mathsf{GTGCACCCA}$, pri čemer uporabite substitucijsko matriko S in kazen za vrinjeno mesto P. Zapišite tudi oceno optimalnega ujemanja.
- 4. Določite optimalno ujemanje zaporedij iz vprašanja št. 2, pri čemer uporabite substitucijsko matriko S^* in kazen za vrinjeno mesto P^* . Zapišite tudi matriko ocen M, matriko poti T z označeno optimalno potjo ter oceno optimalnega ujemanja.
- 5. Določite optimalno ujemanje zaporedij iz vprašanja št. 3, pri čemer uporabite substitucijsko matriko S^* in kazen za vrinjeno mesto P^* . Zapišite tudi oceno optimalnega ujemanja.

Dodatek

Odgovore na sledeče probleme ni potrebno prilagati k poročilu, prispevajo pa naj k boljšemu razumevanju vsebine.

Pri obstoječi implementaciji algoritma smo zanemarili dejstvo, da lahko obstaja več optimalnih ujemanj danih zaporedij, ki bi izhajala iz več možnih izbir v matriki poti T zaradi hkratnih največjih vrednosti v rekurzivni formuli za iskanje vrednosti matrike ocen M. Popravite obstoječo implementacijo tako, da bo omogočala določanje vseh obstoječih optimalnih ujemanj zaporedij.

