MATH 11 WORKSHEET: Conservative fields

B) Is
$$F'(x,y) = (y \cos xy, x \cos xy + 2y)$$
 conservative?

For whichever of the above was conservative, find
$$f(x,y)$$
 such that $\vec{F} = \vec{D}f$:

integrate P wist. x

$$f = \cdots P dx$$

[Hint: don't forget $g(y)$!

take by of what you got: fy = ...

set it equal to Q:

solve for g'(y) = got. toget

integrate to got g(y) =

Write final answer f(x,y) = .

D) For this same
$$\vec{F}$$
, find \vec{F} . $d\vec{r}$ where C is $(t-t^2,t)$, $0 < t < 1$:

E) [discuss!] Is
$$F(x,y,z) = (2x+yz^2, xz^2, 2xyz+1)$$
 conservative?

11/10/11 Barnett

11/10/11 Famett

MATH 21 WORKSHEET: Conservative fields
- 50 SOLUTIONS 6.

A) Is $\vec{F}(x,y) = (x \cos xy, y \cos xy + 2y)$ conservative? $\frac{\partial P}{\partial y} = -x^2 \sin xy \qquad \neq \qquad \frac{\partial Q}{\partial x} = -y^2 \sin xy \qquad \Rightarrow \qquad \text{NO}.$

B) Is $F(x,y) = (y \cos xy, x \cos xy + 2y)$ conservative? Equal, and $\frac{\partial P}{\partial y} = \cos xy - xy \sin xy$ $\frac{\partial R}{\partial x} = \cos xy - xy \sin xy$ all of R^2 $\Rightarrow yes$.

For whichever of the above was conservative, find f(x,y) such that F=Df:

integrate P w.t. x $f = \int g \cos xy \, dx = \sin xy + g(y)$ [Hint: don't forget g(y)!

take by of what you got: fy = ... x cos xy + g'(y)

set it equal to Q: x cosxy + g/y) = Q = x cosxy + Zy solve for g'(y) = -2y

integrate to got g(y) = ... y + c

Write final answer $f(x,y) = . \sin xy + y^2 + c$

D) For this same \vec{F} , find $\int_{C} \vec{F} \cdot d\vec{r}$ where C is $(t-t^2, t)$, 0 < t < 1.

E) [discuss!] Is $\vec{F}(x,y,z) = (2x+yz^2, xz^2, 2xyz+1)$ conservative? Yes, since $\frac{\partial p}{\partial y} = \frac{\partial Q}{\partial x}$, $\frac{\partial Q}{\partial z} = \frac{\partial R}{\partial x}$, $2\frac{\partial P}{\partial z} = \frac{\partial R}{\partial x}$, $\frac{\partial P}{\partial z} = \frac{\partial R}{\partial x}$