Automated Answer Paper Evaluation using Deep Learning & NLP

Team No. 16

Name	Roll number			
Pranav T N	46			
Rahul Mohanan A K	47			
Sourabh Subhod	53			
Vishal V	59			

S7 CSE (2016 Batch) Guide: Prof. Sajith B

November 25, 2019

Outline

- Project Objectives
- Functional Requirements
- Non-Functional Requirements
- Project Preliminary Design
 - Flow Charts
 - Data Flow Diagram Level 0
 - Data Flow Diagram Level 1
- Work Plan Gantt Chart
- 6 Conclusion and Future Scope

Project Objectives

- Manual evaluation time consuming.
- Automated system preferred for fast evaluation.
- A handwriting recognition system based on a RNN architecture used for digital conversion of answer paper.
- A NLP model used for semantic evaluation of digital answer paper using provided answer key.

Functional Requirements

- The system must provide the teachers with a GUI to upload answer paper and the answer key.
- The system must convert the handwritten text in answer scripts to digital text.
- The system must separate answers from the recognized text and map them to each question.
- The system must perform answer paper evaluation based on the digital text extracted and the answer key.

Non-Functional Requirements

- The system shall be able to perform evaluation with reasonable performance compared to manual evaluation.
- The system shall be accurate in recognizing handwriting from the answer papers.
- Apart from the initial cost, the system shall be less costly to maintain.
- The system shall be open-source.
- The system shall be usable on any platform.

Flow Charts

Data Flow Diagram - Level 0

Data Flow Diagram - Level 1

Work Plan - Gantt Chart

	2019			2020			
	October	November	December	January	February	March	April
Literature Survey							
Create and train RNN model							
Separate answers and map to answer key							
Create NLP Model							
Test Primary System							
Evaluation of performance							

Conclusion and Future Scope

- We presented a method to recognize handwritten texts using a system based on LSTM-RNNs, model widely applied to transcribe isolated text lines, and is inspired from the recent attention-based models.
- The answers recognized are fed to a NLP model along with a the answer key to evaluate the answer paper.
- In future, we plan to provide features for sending answer paper copies to student.
- We also plan to carry out revaluation requests.

References

J Annie Vinisha M S Bhuvaneswari, S Esakkiammal and S Udhaya Sankari. Semantic similarity based answer sheet evaluation using nlp.

International Journal For Trends In Engineering & Technology, 3, May 2017.

Jérôme Louradour Théodore Bluche and Ronaldo Messina.

Scan, attend and read: End-to-end handwritten paragraph recognition with mdlstm attention.

14th IAPR International Conference on Document Analysis and Recognition, November 2017.

Thank You