Predicting Peak Chair Status at WhistlerBlackcomb

Introduction

Data Acquisition

Weather Station Locations

EDA – Wind Speed

Winds linearly decrease opening probability between 25 and 60 km/hr

EDA – Wind Direction

Winds from the south west dominate closures

Heat Map of Wind Direction at Quillayute Weather Balloon Station Coloured by Peak Chair Lift Status

EDA – Snowpack Depth

Variance in snowpack depth almost 1.3m across first Peak chair opening each season.

Feature Engineering – Snowpack Depth

No difference achieved in snowpack by Peak chair opening day

Modelling

Tracking model performance for selecting base models to stack on

Model Performance Metrics Over Feature Engineering and Removal

Model Evaluation Odds Ratios

Open yesterday? Probably open today Windy this morning? Probably closed today

Model Evaluation Mis-classified Days

Early season calling too many closed days Late season calling to many open days

Model Evaluation - Decision Boundary

Squeezing another 0.7% accuracy from the model

Acknowledgements & thanks to:

- Dr. Douw Steyn
- Mr. David Jones
- Mr. Todd Laney
- Dr. Pascal Haegeli
- BrainStation Data Science Education
 Team

Contact Information

wjmatthews@gmail.com

github.com/wjmatthews

linkedin.com/in/wjmatthews