THU-DiscreteMathmatics-Homework-3

He Yuhui 2022012050

October 2024

1 Homework

1.1 Write the following formulas

- $P \wedge \neg P$
 - 1 **CNF**: $P \land \neg P$
 - 2 **DNF**: $P \land \neg P$
 - 3 **PCNF**: $P \wedge \neg P = \bigwedge_{0.1}$
 - 4 **PDNF**: Empty formula
 - 5 There is no P that let $P \wedge \neg P$ be True.
- $(P \leftrightarrow Q) \lor ((Q \land P) \leftrightarrow (Q \leftrightarrow \neg P))$
 - 1 **CNF**:

$$(P \leftrightarrow Q) \lor ((Q \land P) \leftrightarrow (Q \leftrightarrow \neg P))$$
 (Equivalence Law) \Leftrightarrow $((P \rightarrow Q) \land (Q \rightarrow P)) \lor ((Q \land P) \leftrightarrow ((Q \rightarrow \neg P) \land (\neg P \rightarrow Q)))$ (Implication Equivalence) \Leftrightarrow $((\neg P \lor Q) \land (\neg Q \lor P)) \lor ((Q \land P) \leftrightarrow ((\neg Q \lor \neg P) \land (P \lor Q)))$

We first caculate $(Q \land P) \rightarrow ((\neg Q \lor \neg P) \land (P \lor Q))$:

$$(Q \land P) \rightarrow ((\neg Q \lor \neg P) \land (P \lor Q))$$
 (Implication Equivalence) $\Leftrightarrow \neg (Q \land P) \lor ((\neg Q \lor \neg P) \land (P \lor Q))$ (De Morgan Law) $\Leftrightarrow (\neg P \lor \neg Q) \lor ((\neg Q \lor \neg P) \land (P \lor Q))$ (Distributive) $\Leftrightarrow (\neg P \lor \neg Q \lor \neg P \lor \neg Q) \land (\neg P \lor \neg Q \lor P \lor Q)$ (Complement, Idempotent) $\Leftrightarrow (\neg P \lor \neg Q) \land \mathsf{T}$ (Identity) $\Leftrightarrow \neg P \lor \neg Q$

Then we caculate $((\neg Q \lor \neg P) \land (P \lor Q)) \to (Q \land P)$:

$$((\neg Q \vee \neg P) \wedge (P \vee Q)) \rightarrow (Q \wedge P)$$
 (Implication Equivalence) $\Leftrightarrow \neg ((\neg Q \vee \neg P) \wedge (P \vee Q)) \vee (Q \wedge P)$ (De Morgan Law) $\Leftrightarrow ((P \wedge Q) \vee (\neg P \wedge \neg Q)) \vee (P \wedge Q)$ (Idempotent) $\Leftrightarrow (P \wedge Q) \vee (\neg P \wedge \neg Q)$

So we have

$$((\neg P \lor Q) \land (\neg Q \lor P)) \lor ((Q \land P) \leftrightarrow ((\neg Q \lor \neg P) \land (P \lor Q))$$
 (Equivalence Law) $\Leftrightarrow ((\neg P \lor Q) \land (\neg Q \lor P)) \lor ((\neg P \lor \neg Q) \land ((P \land Q) \lor (\neg P \land \neg Q)))$ (Distributive) $\Leftrightarrow ((\neg P \lor Q) \land (\neg Q \lor P)) \lor (\neg P \land \neg Q)$ (Distributive) $\Leftrightarrow (\neg P \lor Q) \land (\neg P \lor \neg Q)$

2 **DNF**: $(\neg P \land Q) \lor (\neg P \land \neg Q)$

3 PCNF: $\bigwedge_{0.1}$

4 **PDNF**: $\bigvee_{0.1}$

5 When $(P,Q) = (\mathsf{F},\mathsf{F})$ or $(P,Q) = (\mathsf{F},\mathsf{T})$.

1.2 Prove

$$P \to (Q \to R) \Rightarrow (P \to Q) \to (P \to R)$$

1 $A \rightarrow B$ is a tautology:

$$(P \rightarrow (Q \rightarrow R)) \rightarrow ((P \rightarrow Q) \rightarrow (P \rightarrow R))$$
 (Implication Equivalence) $\Leftrightarrow (P \land Q \land \neg R) \lor (P \land \neg Q) \lor \neg P \lor R$ (Identity) $\Leftrightarrow m_6 \lor (m_4 \lor m_5) \lor (m_0 \lor m_1 \lor m_2 \lor m_3) \lor (m_1 \lor m_3 \lor m_5 \lor m_7)$ (Idempotent) $\Leftrightarrow \bigvee_{0, \cdots, 7}$

So it is a tautology.

2 $A \wedge \neg B$ is a contradicton:

$$(P \to (Q \to R)) \land \neg ((P \to Q) \to (P \to R))$$
 (Implication Equivalence) $\Leftrightarrow (\neg P \lor (\neg Q \lor R)) \land \neg (\neg (\neg P \lor Q) \lor (\neg P \lor R))$ (De Morgan Law) $\Leftrightarrow (\neg P \lor \neg Q \lor R) \land ((\neg P \lor Q) \land (P \land \neg R))$ (Associative) $\Leftrightarrow (\neg P \lor \neg Q \lor R) \land (P \land Q \land \neg R)$
$$= \bigwedge_{0, \cdots, 7}$$

So it is a contradicton.

3 Explain

When event P happens, then when event Q happens, the event R will also happen. So we know, when the event P happening leads to the happen of event Q happens, the event R will also happen. And it's equivalent to $P \to R$.

1.3 Prove

$$\neg Q \vee S, (E \to \neg U) \to \neg S$$

$$(\textbf{Conjunction}) \Rightarrow (\neg Q \vee S) \wedge ((E \to \neg U) \to \neg S)$$

$$(\textbf{Implication Equivalence}) \Leftrightarrow (\neg Q \vee S) \wedge ((E \wedge U) \vee \neg S)$$

$$(\textbf{Distributive}) \Leftrightarrow (\neg Q \vee S) \wedge ((E \vee \neg S) \wedge (U \vee \neg S))$$

$$(\textbf{Conjunction}) \Rightarrow \neg Q \vee S, E \vee \neg S, U \vee \neg S$$

$$(\textbf{Simplification}) \Rightarrow \neg Q \vee S, E \vee \neg S$$

$$(\textbf{Resolution}) \Rightarrow \neg Q \vee E$$

$$(\textbf{Implication Equivalence}) \Leftrightarrow Q \to E$$

1.4 Prove

We use

- ullet P to denote the state subsidizes agricultural products.
- Q to denote the state exercises control over agricultural products.

ullet R to denote the shortage of agricultural products.

We know $\neg P \to Q,\, Q \to \neg R,$ and we need to prove $R \to P$:

$$\neg P \to Q, Q \to \neg R$$
 (Hypothetical Syllogism) $\Rightarrow \neg P \to \neg Q$ (Contrapositive) $\Leftrightarrow R \to P$