Package 'adverSCarial'

March 26, 2023

Title adverSCarial, generate and analyze the vulnerability of scRNA-seq classifiers to adversarial attacks

Version 0.99.0

Description

adverSCarial is an R Package designed for generating and analyzing the vulnerability of scRNA-seq

classifiers to adversarial attacks. The package is versatile and provides a format for integrating any type of classifier. It offers functions for studying and generating two types of attacks, min change attack and max change attack. The min change attack involves making a small modification

to the input to alter the classification. The max change attack involves making a large modification to the input without changing its classification.

The package provides a comprehensive solution for evaluating the robustness of scRNA-seq classifiers

against adversarial attacks.

License MIT + file LICENSE

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

biocViews Software, SingleCell, Transcriptomics, Classification

Suggests knitr, RUnit, BiocGenerics, TENxPBMCData

Imports gtools, stringr, randomForest

VignetteBuilder knitr

Author Ghislain FIEVET <ghislain.fievet@gmail.com>

Maintainer Ghislain FIEVET <ghislain.fievet@gmail.com>

R topics documented:

dvGridMinChange	2
dvMaxChange	
dvMinChange	4
dvModifications	6

2 advGridMinChange

advGr	ridMinChange	Grid on a				_											bin	at	ioi	ı
Index																				15
	sceConvertToHGNC					•	•	 •		•	•	 •	•			•		•	•	14
	RFClassifier																			13
	predictWithNewValu	ıe																		12
	minChangeOverviev	/																		10
	maxChangeOverviev	v																		9
	matrixFromSCE																			8
	advRandWalkMinCl	nange																		7

Description

Grid search of min change adversarial attack. Tries each combination on a cluster, given a list of genes and a list of modifications.

Usage

```
advGridMinChange(
  exprs,
  clusters,
  target,
  classifier,
  genes,
  modifications = list(list("perc1"), list("perc99")),
  return_first_found = FALSE,
  verbose = FALSE,
  iamsure = FALSE
)
```

Arguments

exprs a matrix or dataframe of numeric RNA expression, cells are rows and ger	nes are
---	---------

columns.

clusters a list of the clusters to which the cells belong

target the name of the cluster to modify classifier a classifier in the suitable format

genes the list of genes to study

modifications the list of the modifications to study

return_first_found

set to TRUE to return result when a the first misclassification is found

verbose logical, set to TRUE to activate verbose mode

iamsure logical, prevents from expansive calculations when genes list is too long, set to

TRUE to run anyway.

advMaxChange 3

Value

dataframe results of the classification of all the grid combinations

Examples

advMaxChange

Find a max change adversarial attack. It finds the longer list of genes you can modify on a cluster without changing its classification.

Description

Find a max change adversarial attack. It finds the longer list of genes you can modify on a cluster without changing its classification.

Usage

```
advMaxChange(
  exprs,
  clusters,
  target,
  classifier,
  excl_genes = c(),
  genes = c(),
  adv_method = "perc99",
  adv_fixed_value = 3,
  adv_fct = NULL,
  max_split_size = 1,
  verbose = FALSE
)
```

Arguments

exprs a matrix or dataframe of numeric RNA expression, cells are rows and genes are

columns.

clusters a list of the clusters to which the cells belong

4 advMinChange

the name of the cluster to modify target a classifier in the suitable format classifier excl_genes a list of genes to exclude from the analysis a list of genes in case you want to limit the attack on a subset of genes genes adv_method the name of the method to use adv_fixed_value the numeric value to use in case of adv method=fixed adv_fct the function to use in case adv_method belongs to the following list: full_row_fct, target_row_fct, target_matrix_fct, full_matrix_fct max_split_size max size of dichotomic slices. verbose logical, set to TRUE to activate verbose mode

Value

a list of genes you can modify on a cluster without modifying its classification

Examples

advMinChange

Find a one gene min change adversarial attack list. A one gene min change adversarial attack refers to the modification of a single gene within a cluster, leading to a change in its classification. The function returns a list of genes/new classification.

Description

Find a one gene min change adversarial attack list. A one gene min change adversarial attack refers to the modification of a single gene within a cluster, leading to a change in its classification. The function returns a list of genes/new classification.

advMinChange 5

Usage

```
advMinChange(
  exprs,
  clusters,
  target,
  classifier,
  excl\_genes = c(),
  genes = c(),
  adv_method = "perc99",
  adv_fixed_value = 3,
  adv_fct = NULL,
  first_dichot = 100,
 max_split_size = 1,
  return_first_found = FALSE,
  change_type = "any",
  verbose = FALSE
)
```

Arguments

exprs a matrix or dataframe of numeric RNA expression, cells are rows and genes are

columns.

clusters a list of the clusters to which the cells belong

target the name of the cluster to modify classifier a classifier in the suitable format

excl_genes a list of genes to exclude from the analysis

genes a list of genes in case you want to limit the attack on a subset of genes

adv_method the name of the method to use

adv_fixed_value

the numeric value to use in case of adv_method=fixed

adv_fct the function to use in case adv_method belongs to the following list: full_row_fct,

target_row_fct, target_matrix_fct, full_matrix_fct

first_dichot the initial number of slices before the dichotomic search

max_split_size max size of dichotomic slices

return_first_found

set to TRUE to return result when a the first misclassification is found

change_type any consider each misclassification, not_na consider each misclassification but

NA.

verbose logical, set to TRUE to activate verbose mode

Value

a list of genes/new classification tuples

6 advModifications

Examples

advModifications

Returns a modified RNA expression matrix, for a given cluster, for a given modification.

Description

Returns a modified RNA expression matrix, for a given cluster, for a given modification.

Usage

```
advModifications(
  exprs,
  genes,
  clusters,
  target,
  adv_method = "perc99",
  adv_fixed_value = 3,
  adv_fct = NULL,
  verbose = FALSE
)
```

Arguments

exprs a matrix or dataframe of numeric RNA expression, cells are rows and genes are

columns.

genes the list of genes to modify

clusters a list of the clusters to which the cells belong

target the name of the cluster to modify adv_method the name of the method to use

adv_fixed_value

the numeric value to use in case of adv_method=fixed

adv_fct the function to use in case adv_method belongs to the following list: full_row_fct,

target_row_fct, target_matrix_fct, full_matrix_fct

verbose logical, set to TRUE to activate verbose mode

Value

the matrix or a dataframe exprs modified on asked genes with the specified modification

Examples

advRandWalkMinChange

Random walk search of min change adversarial attack. Step 1 is to find a seed by trying random combinations of genes and modifications on a cluster until the classification is altered. Step 2 is to perform a random walk search to reduce the number of genes needed to change the classification."

Description

Random walk search of min change adversarial attack. Step 1 is to find a seed by trying random combinations of genes and modifications on a cluster until the classification is altered. Step 2 is to perform a random walk search to reduce the number of genes needed to change the classification."

Usage

```
advRandWalkMinChange(
  exprs,
  clusters,
  target,
  classifier,
  genes,
  modifications = list(list("perc1"), list("perc99")),
  first_batch = 100,
  walk_length = 100,
  step_change_ratio = 0.2,
  while_max_count = 10000,
  change_type = "any",
  verbose = FALSE
)
```

Arguments

exprs

a matrix or dataframe of numeric RNA expression, cells are rows and genes are columns.

8 matrixFromSCE

a list of the clusters to which the cells belong clusters the name of the cluster to modify target classifier a classifier in the suitable format the list of genes to study genes modifications the list of the modifications to study first_batch the maximum number of try in step 1 walk_length the maximum number of try in step 2 step_change_ratio ratio of parameters change in new walk step while_max_count the maximum number of try when looking for new combination of parameters

change_type any consider each misclassification, not_na consider each misclassification but

verbose logical, set to TRUE to activate verbose mode

Value

dataframe results of the classification of all the grid combinations

Examples

matrixFromSCE

Returns the RNA expression matrix from a SingleCellExperiment with unique hgnc gene names in columns

Description

Returns the RNA expression matrix from a SingleCellExperiment with unique hgnc gene names in columns

maxChangeOverview 9

Usage

```
matrixFromSCE(sce)
```

Arguments

sce

SingleCellExperiment object to convert

Value

the RNA expression matrix from a SingleCellExperiment with unique hgnc gene names in columns

Examples

```
library(TENxPBMCData)

pbmc <- TENxPBMCData(dataset = "pbmc3k")
mat_rna <- matrixFromSCE(pbmc)</pre>
```

maxChangeOverview

Run an approximation of advMaxChange on all clusters for a given modification. The precision of the approximation can be controlled using the max_split_size parameter, with lower values resulting in greater precision but longer processing time. The purpose of this approximation is to determine which clusters are most susceptible to max change adversarial attacks.

Description

Run an approximation of advMaxChange on all clusters for a given modification. The precision of the approximation can be controlled using the max_split_size parameter, with lower values resulting in greater precision but longer processing time. The purpose of this approximation is to determine which clusters are most susceptible to max change adversarial attacks.

Usage

```
maxChangeOverview(
  exprs,
  clusters,
  classifier,
  excl_genes = c(),
  genes = c(),
  modifications = list(list("perc1"), list("perc99")),
  adv_method = "perc99",
  adv_fixed_value = 3,
  adv_fct = NULL,
  max_split_size = 100,
  verbose = FALSE
)
```

10 minChangeOverview

Arguments

a matrix or dataframe of numeric RNA expression, cells are rows and genes are exprs columns. clusters a list of the clusters to which the cells belong classifier a classifier in the suitable format excl_genes a list of genes to exclude from the analysis a list of genes in case you want to limit the analysis on a subset of genes genes the list of the modifications to study modifications the name of the method to use adv method adv_fixed_value the numeric value to use in case of adv_method=fixed the function to use in case adv method belongs to the following list: full_row_fct, adv_fct target_row_fct, target_matrix_fct, full_matrix_fct max_split_size max size of dichotomic slices.

Value

verbose

a list of genes/new classification tuples

Examples

logical, set to TRUE to activate verbose mode

minChangeOverview

Run an approximation of advMinChange on all clusters for a given modification. The precision of the approximation can be controlled using the max_split_size parameter, with lower values resulting in greater precision but longer processing time. The purpose of this approximation is to determine which clusters are most susceptible to min change adversarial attacks.

Description

Run an approximation of advMinChange on all clusters for a given modification. The precision of the approximation can be controlled using the max_split_size parameter, with lower values resulting in greater precision but longer processing time. The purpose of this approximation is to determine which clusters are most susceptible to min change adversarial attacks.

minChangeOverview 11

Usage

```
minChangeOverview(
  exprs,
  clusters,
  classifier,
  excl_genes = c(),
  genes = c(),
  modifications = list(list("perc1"), list("perc99")),
  adv_method = "perc99",
  adv_fixed_value = 3,
  adv_fct = NULL,
  first_dichot = 100,
  max_split_size = 100,
  change_type = "any",
  verbose = FALSE
)
```

Arguments

a matrix or dataframe of numeric RNA expression, cells are rows and genes are exprs columns. a list of the clusters to which the cells belong clusters classifier a classifier in the suitable format excl_genes a list of genes to exclude from the analysis a list of genes in case you want to limit the analysis on a subset of genes genes the list of the modifications to study modifications adv_method the name of the method to use adv_fixed_value the numeric value to use in case of adv_method=fixed the function to use in case adv_method belongs to the following list: full_row_fct, adv_fct target_row_fct, target_matrix_fct, full_matrix_fct the initial number of slices before the dichotomic search first_dichot max_split_size max size of dichotomic slices. any consider each misclassification, not_na consider each misclassification but change_type

logical, set to TRUE to activate verbose mode

Value

verbose

a list of genes/new classification tuples

Examples

```
MyClassifier <- function(expr, clusters, target) {
   c("T cell", 0.9)</pre>
```

predictWithNewValue

predictWithNewValue

Returns a classification and an odd value from a RNA expression matrix, for given genes, for a given cluster, for a given modification.

Description

Returns a classification and an odd value from a RNA expression matrix, for given genes, for a given cluster, for a given modification.

Usage

```
predictWithNewValue(
  exprs,
  genes,
  clusters,
  target,
  classifier,
  adv_method = "perc99",
  adv_fixed_value = 3,
  adv_fct = NULL,
  verbose = FALSE
)
```

Arguments

adv_fixed_value

exprs a matrix or dataframe of numeric RNA expression, cells are rows and genes are columns.

genes the list of genes to modify

clusters a list of the clusters to which the cells belong

target the name of the cluster to modify classifier a classifier in the suitable format adv_method the name of the method to use

the numeric value to use in case of adv_method=fixed

adv_fct the function to use in case adv_method belongs to the following list: full_row_fct,

target_row_fct, target_matrix_fct, full_matrix_fct

verbose logical, set to TRUE to activate verbose mode

RFClassifier 13

Value

a vector of the classification, and the associated odd

Examples

RFClassifier

Example cell type classifier for the pbmc3k dataset

Description

Example cell type classifier for the pbmc3k dataset

Usage

```
RFClassifier(expr, clusters, target)
```

Arguments

expr RNA expression matrix

clusters list of clusters to which each cell belongs

target name of the cell cluster to classify

Value

a vector with the classification, and the odd

Examples

14 sceConvertToHGNC

```
RFClassifier(mat_rna, cell_types, "DC")
```

sceConvertToHGNC

Returns a SingleCellExperiment object keeping unique HGNC gene

Description

Returns a SingleCellExperiment object keeping unique HGNC gene

Usage

```
sceConvertToHGNC(sce)
```

Arguments

sce

SingleCellExperiment object to convert

Value

the SingleCellExperiment object keeping unique HGNC gene

Examples

```
library(TENxPBMCData)

pbmc <- TENxPBMCData(dataset = "pbmc3k")
hgnc_pbmc <- sceConvertToHGNC(pbmc)</pre>
```

Index

```
advGridMinChange, 2
advMaxChange, 3
advMinChange, 4
advModifications, 6
advRandWalkMinChange, 7
matrixFromSCE, 8
maxChangeOverview, 9
minChangeOverview, 10
predictWithNewValue, 12
RFClassifier, 13
sceConvertToHGNC, 14
```