Name: James Tsai
Section: MSDS6371-401
Date: 11/24/15

### Question 1.



Since the log-transformed data is more linear, we proceed with the analysis using log-transformed data.

## Step 2: Build a model

 $\mu\{\log(force)|height, species\} = \beta_0 + \beta_1\log(height) + \beta_2cp + \beta_3lb + \beta_4log(height) * cp + \beta_5\log(height) * lb$ 

Note: Hemigrapsus nudus (nb) is not listed since it is the reference variable; when Cancer Productus (cp) and Lophopanopeus Bellus (lb) is set to zero.

Step 3: Fit the model using SAS

| Parameter                            | Estimate     |   | Standard<br>Error | t Value | Pr >  t |
|--------------------------------------|--------------|---|-------------------|---------|---------|
| Intercept                            | 0.519144003  | В | 1.00007045        | 0.52    | 0.6073  |
| lheight                              | 0.408312827  | В | 0.48684969        | 0.84    | 0.4079  |
| Species Cancer_productus             | -2.486417452 | В | 1.76055648        | -1.41   | 0.1675  |
| Species Lophopanopeus_bellus         | -4.299169517 | В | 1.52825142        | -2.81   | 0.0083  |
| Species Hemigrapsus_nudus            | 0.000000000  | В |                   |         |         |
| Iheight*Species Cancer_productus     | 1.660138198  | В | 0.78893660        | 2.10    | 0.0433  |
| Iheight*Species Lophopanopeus_bellus | 2.565338521  | В | 0.73537591        | 3.49    | 0.0014  |
| Iheight*Species Hemigrapsus_nudus    | 0.000000000  | В |                   |         |         |

Step 4: Provide a residual plot, studentized residual plot, histogram of residuals and qq plot of residuals



- The scatter plots look random, and thus there is no strong evidence against linearity.
- The scatter plots show several questionable points, but most of the data looks to have equal standard deviation.
- The Q-Q plot shows no strong evidence against normality as the data follows the straight line closely.
- The histogram, while slightly skewed, shows no strong evidence against normality.

#### Step 5: Interpret each coefficient in the model

- With each increase of multiplicative factor of 2 in height, and the species is Hemigrapsus Nudus, the median force for the crab is associated with a 32 percent increase. ( $2^{.408} = 1.32$ ).
- With each increase of multiplicative factor of 2 in height, and the species is Cancer Productus, the median force for the crab is associated with a 25 percent decrease.  $(2^{-.412} = 0.751)$ .
- With each increase of multiplicative factor of 2 in height, and the species is Lophopanopeus Bellus, the median force for the crab is associated with a 60 percent decrease. ( $2^{-1.326} = 0.398$ ).

## BONUS: How many degrees of freedom were used to estimate the error term (MSE)?

The degrees of freedom used to estimate the MSE is 32.

### **BONUS: What is the estimate of the MSE?**

The estimate of the MSE is 0.18741.

| Analysis of Variance |    |                   |                |         |        |  |
|----------------------|----|-------------------|----------------|---------|--------|--|
| Source               | DF | Sum of<br>Squares | Mean<br>Square | F Value | Pr > F |  |
| Model                | 5  | 23.19217          | 4.63843        | 24.75   | <.0001 |  |
| Error                | 32 | 5.99713           | 0.18741        |         |        |  |
| Corrected Total      | 37 | 29.18930          |                |         |        |  |

### Question 2.



The original matrix scatter plot is extremely non-linear. We proceed with the log-transformed data, as it is much closer to linearity.

# Step 2: Build a model

 $\mu\{\log(brain)|body, gestation, litter\} = \beta_0 + \beta_1 \log(body) + \beta_2 \log(gestation) + \beta_3 \log(litter)$ 

Step 3: Fit the model using SAS

| Parameter  | Estimate     | Standard<br>Error | t Value | Pr >  t |
|------------|--------------|-------------------|---------|---------|
| Intercept  | 0.8548219230 | 0.66167247        | 1.29    | 0.1996  |
| lbody      | 0.5750713812 | 0.03258789        | 17.65   | <.0001  |
| Igestation | 0.4179420896 | 0.14078249        | 2.97    | 0.0038  |
| llitter    | 3100711670   | 0.11592709        | -2.67   | 0.0089  |

Step 4: Provide a residual plot, studentized residual plot, histogram of residuals and qq plot of residuals



- The scatter plots look random, and thus there is no strong evidence against linearity.
- The scatter plots show several questionable points, but most of the data looks to have equal standard deviation.
- The Q-Q plot shows no strong evidence against normality as the data follows the straight line closely.
- The histogram shows no strong evidence against normality.

### Step 5: Interpret each coefficient in the model

- There is evidence to suggest at  $\alpha=0.05$  that litter size was associated with brain weight after accounting for body weight and gestation (p-value = 0.0089). An increase of a multiplicative factor of 2 in litter size would suggest an estimated multiplicative change of 19% (2<sup>-31</sup>) decrease in median brain size.
- There is evidence to suggest at  $\alpha=0.05$  that gestation length was associated with brain weight after accounting for body weight and litter size (p-value = 0.0038). An increase of a multiplicative factor of 2 in gestation length would suggest an estimated multiplicative change of 33.6% (2<sup>.418</sup>) increase in median brain size.

## BONUS: How many degrees of freedom were used to estimate the error term (MSE)?

The degrees of freedom used to estimate the MSE is 92.

## **BONUS: What is the estimate of the MSE?**

The estimate of the MSE is 0.22539.

| Analysis of Variance   |    |                   |                |         |        |  |  |
|------------------------|----|-------------------|----------------|---------|--------|--|--|
| Source                 | DF | Sum of<br>Squares | Mean<br>Square | F Value | Pr > F |  |  |
| Model                  | 3  | 427.07552         | 142.35851      | 631.60  | <.0001 |  |  |
| Error                  | 92 | 20.73608          | 0.22539        |         |        |  |  |
| <b>Corrected Total</b> | 95 | 447.81160         |                |         |        |  |  |