UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2010 question paper for the guidance of teachers

9701 CHEMISTRY

9701/41

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2010	9701	41

1 (a) P: burns with white / yellow flame or copious white smoke / fumes produced (1)

$$4P (or P_4) + 5O_2 \longrightarrow P_4O_{10}$$
 (1)

S: burns with blue flame / choking / pungent gas produced (1)

$$S + O_2 \longrightarrow SO_2$$
 (1) [4]

(b) (i)
$$2 \text{ Ca}_3(PO_4)_2 + 6 \text{ SiO}_2 + 10 \text{ C} \longrightarrow 1 \text{ P}_4 + 6 \text{ CaSiO}_3 + 10 \text{ CO}$$
 (2)

(ii)

allotrope	type of structure	type of bonding
white	simple / molecular	covalent
red	giant / polymeric	covalent

(4)

(iii)

(in each case P has to be trivalent. Many alternatives allowable for the polymeric red P) (2)

(8 max 7) [7]

[Total: 11]

		ige o	GCE AS/A LEVEL – May/June 2010	9701	41	
2	(a)	variable	ions / compounds oxidation states n of complexes activity		(1) (1) (1) (4 max 3)	[3]
	(b)	(green is ppt is Ni	s [Ni(H ₂ O) ₆] ²⁺) (OH) ₂		(1)	
		blue solu	ution is $[Ni(NH_3)_6]^{2+}$ or $[Ni(NH_3)_4]^{2+}$ or $[Ni(NH_3)_4(H_2O)_2]^{2+}$	2+	(1)	
		formed b	by ligand exchange		(1)	
		Ni ²⁺ + 2	$2OH^- \longrightarrow Ni(OH)_2$		(1)	
		Ni(OH) ₂	+ $6NH_3 \longrightarrow [Ni(NH_3)_6]^{2+} + 2OH^-$	((1) (5 max 4)	[4]
	(c)	$M_r = 58$	3.7 + 48 + 6 + 28 + 32 = 172.7 (173)		(1)	
		n(Ni) =	4.00/172.7 = 0.0232 mol		(1)	
		mass(Ni) = 0.0232 × 58.7 = 1.36g			
		percenta	ige = 100 × 1.36 / 3.4 = 40.0 %		(1)	[3]
					[Total:	10]
3	(a)	PbO ₂ de	composed into PbO (and O ₂). (SnO ₂ is stable)			[1]
	(b)	or P	l_4 dissociates into Cl_2 and $PbCl_2$ (white solid) $bCl_4 \longrightarrow PbCl_2 + Cl_2$ or in words			
		Cl_2	$+ 2KI \longrightarrow 2KCl + I_2$		(1)	
		E°(C	${\mathbb C} I_2/{\mathbb C} I^-$) is more positive than ${\mathsf E}^\circ(I_2/I^-)$		(1)	
		(ii) SnC	\mathcal{L}_4 is more stable than PbC \mathcal{L}_4 / answers using E $^\circ$ accept		(1) (5 max 4)	[4]
	(c)	(i) C <i>l</i> :C	 C:Cl or Cl=C–Cl		(1)	
			t <i>or</i> non-linear <i>or</i> angle = 100–140°		(1)	
		(ii) CCl	$_2$ + H_2O \longrightarrow CO + $2HCl$		(1)	[3]
					[Tota	l: 8]

Syllabus

Paper

Page 3

		GCE AS/A LEVEL – May/June	20	10	9701	41	
(a)	hydrogei	n bonding				(1)	
	•	$H_2CH_2CH_2OH$ OHC $H_2CH_2NH_2$ or NH_2 and from OH group to either OH or NH_2)	_	CH ₂ OHN	IH₂CH₂CH₂OH	(1)	[2]
(b)		nine is more basic than phenylamine lone pair on N is delocalised over ring i	n ph	enylamine	(so less availat	(1) ole for	
	•	opyl group is electron-donating, so the l	one	pair is more	e available	(1)	[2]
(c)	or HOC	$CH_2NH_2 + H^{\dagger} \longrightarrow HOCH_2CH_2NH_3^{\dagger}$ $H_2CH_2NH_2 + HCl \longrightarrow HOCH_2CH_2N^{\dagger}$ $H_2CH_2NH_2 + H_2O \longrightarrow HOCH_2CH_2N^{\dagger}$ with any acceptable Bronsted acid acceptable	NH_3^{-1}	OH_			[1]
(d)	(i) X is	CH ₃ CH ₂ CN				(1)	
	` '	1 is KCN in ethanol, heat [HCN negative 2 is H ₂ +Ni / Pt or LiAlH ₄ or Na in ethanol		-	H ₄ or Sn/HC <i>ī</i>]	(1) (1)	[3]
(e)	ethanola Na or Cr ₂ C or MnC or PCl ₂	D ₇ ²⁻ / H ⁺ D ₄ ⁻ / H ⁺	(1)	colour turn	nce / bubbles p s from orange t our disappears mes		
	phenylar Br ₂ (a or HNC		(1)		es / white ppt fo ye formed	ormed (1)	[4]

Page 4

[Total: 12]

Paper

Syllabus

F	age 5	1	Mark Scheme: Teachers' Version	Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2010	9701	41	
5 (a)) (i)	E° =	0.40 - (-0.83) = 1.23V		(1)	
	(ii)	2H ₂	$+ O_2 \longrightarrow 2H_2O$		(1)	
	(iii)		electrode will become more negative electrode will also become more negative / less positive	e	(1) (1)	
	(iv)	no c	hange ecf from (iii)		(1)	
	(v)	incre	eased conductance or lower cell resistance or increa	sed rate of reactio	n (1)	[6]
(b)			1.47 - (-0.13) = 1.60V $_2 + Pb + 4H^+ \longrightarrow 2Pb^{2+} + 2H_2O$		(1) (1)	
	(iii)	PbO	$O_2 + Pb + 4H^+ + 2SO_4^{2-} \longrightarrow 2PbSO_4(s) + 2H_2C$)	(1)	
	(iv)	E° _{cell}	will increase		(1)	
			Pb ²⁺] decreases, E _{electrode} (PbO ₂) will become more posit become more negative	ive, but E _{electrode} (Pt	o) (1)	[5]
					[Total:	11]
6 (a)) (i)	soc	Cl_2 or PCl_5 or PCl_3		(1)	
	(ii)	or C	$CO_2H + SOCl_2 \longrightarrow CH_3COCl + SO_2 + HCl$ $CH_3CO_2H + PCl_5 \longrightarrow CH_3COCl + POCl_3 + HCl$ $SCH_3CO_2H + PCl_3 \longrightarrow 3CH_3COCl + H_3PO_3$		(1)	[2]
(b)) (i)		$C_6H_5CO_2C_2H_5$ $C_6H_5CONH_2$		(1) (1)	
	(ii)	este amic			(1) (1)	
	(iii)	nucle	eophilic substitution / condensation		(1)	[5]
(c)) (i)		CICOCOCI CICOCOCOCI		(1) (1)	
	(ii)	hydr	rogen bonding		(1)	
	(iii)		ause it's an amide <i>or</i> not an amine <i>or</i> its lone pair is del	ocalised (over C=0	O)	
		or le avail basi	lable due to electronegative oxygen [NOT: E is neutral,	but the diamine is	(1)	
	(iv)	cond	densation (polymer) <i>or</i> polyester		(1)	[5]
					[Total:	12]

Syllabus

Paper

Page 5

Page 6	Page 6 Mark Scheme: Teachers' version		Paper
	GCE AS/A LEVEL – May/June 2010	9701	41

7

[6]

[Total: 6]

8 (a)

Block letter	Identity of compound
J	Deoxyribose (NOT "sugar" or "pentose")
K	Guanine
L	Phosphate
M	Thymine

All 4 correct score 3 marks, 3 score 2, 2 score 1

[3]

(b) hydrogen bonds (1) between the bases (1)

[2]

- (c) 1 RNA is a single strand; DNA is double strand (1) 2 RNA contains ribose; DNA contains deoxyribose (1)
 - RNA contains <u>uracil;</u> DNA contains <u>thymine</u> (1)
 - RNA is shorter than DNA (1)

(4 max 3) [3]

(d) mRNA – copies the DNA gene sequenceor forms a template for a particular polypeptide / in protein synthesis (1)

tRNA – carries amino acids to the ribosome (1) [2]

[Total: 10]

raye <i>i</i>	IVIAI K SCITET	ile. Teachers version	Syliabus	Fapei	
	GCE AS/A L	EVEL – May/June 2010	9701	41	
` ' '	•	spin states / magnetic mome t an applied magnetic field	nts	(1) (1)	[2]
different peaks ar	chemical environmen	1 (methyl to –OH protons)	oms / protons are	in two (1) (1)	[2]
(c) (i)					
C	CH ₃ CH ₂ CO ₂ H	CH ₃ CO ₂ CH ₃	HCO ₂ CH ₂ CH ₃		
рі	ropanoic acid	methyl ethanoate	ethyl methano	ate	
			all for (2) to	vo for (1)	
	pound is CH ₃ CO ₂ CH ₃		and the second at the 4.0	(1)	
	otner two compounds ctrum shows only 2 pe	each have 3 different proton eaks.	environments, but t	ne (1)	
A is	OCH ₃ , B is CH ₃ C	O		(1)	
	pound – propanoic ac -OH proton	or ethyl methanoate or the H–CO proton		(1)	[6]
(d) (i) dista	ance between atoms /	bond lengths / bond angles		(1)	
(ii) hydr	ogen atoms		[To	(1) tal: 12 max	[2] : 10]

Syllabus

Paper

Page 7

9

[Total: 10]

Page 8	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2010	9701	41

10 (a) ester or amide (allow nitrile)

[1]

(b)

amide (1) + any one ester (1) allow whole groups circled

[2]

(1)

(1)

- (c) (i) hydrophilic drug at C
 hydrophobic drug at B both needed
 - (ii) (at A) the drug would be exposed to attack / breakdown / digestion (1) [3]
- (d) (i) at one of the –OH groups (1)
 - (ii) volume of sphere can be large or one PEG molecule can only carry 1 or 2 drug molecules
 or can carry different types of drug
 [2]
- (e) more economic (1)
 less chance of side-effects / side effects reduced / less chance of allergic reaction (1)
 less risk of harming healthy tissue / organs / less chance of an overdose (1)
 (3 max 2) [2]

[Total: 10]