## Homework-2

Problem 4 Due : 24 - Jan-2025

Time Spent : 3.5 Hours

- (a) The cross product can be thought of as:
  - + Project b onto a vector orthogonal to a in the plane defined by a,b
  - > Scale Projection by lal
  - 7 Rotate the scaled orthogonal vector positively about the axis defined by a by an angle 17/2.

Given: ā, b, c

To Prove: a x (6+ c) = (a x b)+(a x c)

For proof, refor to MATLAB Script.

Aternatively,

Desine: a = b + z

Sketch: Given Vectors

Ā TĒ

A D D'

Sketch : a x a

 $\vec{a}' = |\vec{a}| \sin \theta_{ad} \hat{\alpha}_{ad}$ 

d" = lallal sin Oad âld

d'" = lallal Sin Bad Rod



| (b) ā | · = 1    | [an ay | ae J'                |                               |                            |                                                    |
|-------|----------|--------|----------------------|-------------------------------|----------------------------|----------------------------------------------------|
| - Ē   | - [      | ba by  | bz ]'                |                               |                            |                                                    |
|       |          | 2      |                      |                               |                            |                                                    |
| For   |          | Plane, |                      |                               |                            |                                                    |
|       | ā        | х Б    | = ax bx sin(e) ō +   | ay by sin (o) ō + ax b        | y sin 90 k + ay bu si      | n(-40) k                                           |
|       |          |        |                      |                               |                            |                                                    |
|       |          |        | = (axby - aybx)      | ĥ                             |                            |                                                    |
| For   | Y-2 P    | lone   |                      |                               |                            |                                                    |
| .,,   |          | ,      |                      |                               |                            |                                                    |
|       | ā        | a E    | = ay by sin (o) to + | azbz sinlo) ō + aybz          | sin (40) i + az by sin (-4 | v)?                                                |
|       |          |        |                      |                               |                            |                                                    |
|       |          |        | ' (aybe - aeby) î    |                               |                            |                                                    |
| Fo    | - X-2    | plane, |                      |                               |                            |                                                    |
|       |          |        |                      |                               |                            |                                                    |
|       | ā        | х Б    | = axbx Sinto) D +    | azbz Sin (0)ō + axbz Sin (-90 | )j + azbz sin40(j)         |                                                    |
|       |          |        | - (azbu - anbz) ĵ    |                               |                            |                                                    |
|       |          |        | (050" - 0#25)        |                               |                            |                                                    |
| Ir    | 3-D,     |        |                      |                               |                            |                                                    |
|       | $\vdash$ |        |                      | ++++                          |                            | <del>.                                      </del> |
|       | ā        | хБ     | = (ay bz - azby) î   | + (azbu - aubz) j             | + (an by - ay bn)          | Î.                                                 |
|       |          |        |                      |                               |                            |                                                    |
|       |          |        |                      |                               |                            |                                                    |
|       |          |        |                      |                               |                            |                                                    |
|       |          |        |                      |                               |                            |                                                    |
|       |          |        |                      |                               |                            |                                                    |
|       |          |        |                      |                               |                            |                                                    |
|       |          |        |                      |                               |                            |                                                    |
|       |          |        |                      |                               |                            |                                                    |
|       |          |        |                      |                               |                            |                                                    |