Intro to Real Analysis HW #1

Ozaner Hansha

January 30, 2021

Let \mathbb{J} be the set of positive integers.

Problem 1

Problem: Prove the following:

$$\forall n \in \mathbb{J}, 4 \cdot 3^n > (n+2)^2$$

Solution: Consider the predicate $P(n) \equiv 4 \cdot 3^n > (n+2)^2$. We can prove P(1) quite simply:

$$P(1) \equiv 4 \cdot 3 > (1+2)^2$$
$$\equiv 12 > 9$$
$$\equiv \top$$

Now let us consider the following lemma $\forall n \in \mathbb{J}$:

$$0 < 2n^2 + 6n + 3$$

$$n^2 + 6n + 9 < 3n^2 + 12n + 12$$

$$(n + 3)^2 < 3(n + 2)^2$$
(Lemma 1)

Now we will prove that $P(n) \implies P(n+1)$:

$$4 \cdot 3^{n+1} = 3(4 \cdot 3^n)$$
 (additive prop. of exponent)
 $> 3(n+2)^2$ (assume the antecedent, $P(n)$)
 $> (n+3)^2$ (Lemma 1)
 $4 \cdot 3^{n+1} > (n+1+2)^2$ ($P(n+1)$)

And so we have shown P(1) and $P(n) \implies P(n+1)$. By the principle of mathematical induction, this implies that P(n) holds for all integers greater than or equal to 1, in other words:

$$\forall n \in \mathbb{J}, \ 4 \cdot 3^n > (n+2)^2$$

Problem 2

Problem: For an integer k, let $k\mathbb{J}$ be the set of positive integers which are multiples of k. Prove that $\operatorname{card}(2\mathbb{J}) = \operatorname{card}(3\mathbb{J})$.

Solution: Recall that for two sets to have the same cardinality there must exist a bijection between them. Consider the function $f: 2\mathbb{J} \to 3\mathbb{J}$ defined by $n \to \frac{3n}{2}$. We will first prove that f is injective. Consider arbitrary $x, y \in 2\mathbb{J}$:

$$f(x) = f(y) \implies \frac{3x}{2} = \frac{3y}{2}$$
 (def. of f)
 $\implies x = y$ (algebra)

And so we have shown that $f(x) = f(y) \implies x = y$, which is the definition of an injective function.

Next we will show f is surjective. Consider an arbitrary $y \in 3\mathbb{J}$. There exists an x such that f(x) = y, namely $x = \frac{2y}{3}$. We prove this below:

$$f(x) = f\left(\frac{2y}{3}\right) \tag{def. of } x)$$

$$= \frac{3}{2} \cdot \frac{2y}{3}$$

$$= y$$
 (def. of f)

And so we have shown that $(\forall y \in 3\mathbb{J})$ $(\exists x \in 2\mathbb{J})$ f(x) = y, which is the definition of a surjective function. Since a function that is both injective and surjective is a bijection, we have shown that f is bijective and thus, by the definition of cardinality, that:

$$\operatorname{card}(2\mathbb{J}) = \operatorname{card}(3\mathbb{J})$$

Problem 3

Consider the set of polynomials with integer coefficients $\mathbb{Z}[x]$. Given two polynomials $f, g \in \mathbb{Z}[x]$, we define the relation \sim as:

$$f \sim g \equiv \exists h \in \mathbb{Z}[x], f - g = h'$$

Part a: Prove that $f \sim f$.

Solution: Consider an arbitrary polynomial $f \in \mathbb{Z}[x]$. We have f - f = 0 and since there exists an $h \in \mathbb{Z}[x]$ such that h' = 0, in particular any integer constant C, we have that $f \sim f$.

Part b: Prove that $f \sim g \implies g \sim f$.

Solution: If for two functions $f, g \in \mathbb{Z}$ we have $f \sim g$ this means that:

$$\exists h \in \mathbb{Z}[x], \ f - g = h'$$

Now recall that for any function a, the derivative of the negative is equal to the negative of the derivative:

$$(-a)' = -a'$$

Also recall that for any function $a \in \mathbb{Z}[x]$ we also have $-a \in \mathbb{Z}[x]$ since the integers (i.e. its coefficients) are closed under negation. Putting these together we have that:

$$g - f = -h'$$

And since -h' = (-h)' and $-h \in \mathbb{Z}[x]$, since $h \in \mathbb{Z}[x]$, we have that $g \sim f$.

Part c: Prove that $f \sim g \wedge g \sim h \implies f \sim h$.

Solution: If for functions $f, g, h \in \mathbb{Z}$ we have $f \sim g \wedge g \sim h$ this means that:

$$\exists a \in \mathbb{Z}[x], \ f - g = a'$$

 $\exists b \in \mathbb{Z}[x], \ g - h = b'$

Now recall that for any functions a, b, the derivative of their sum is the sum of their derivatives:

$$(a+b)' = a' + b'$$

Also recall that for any functions $a, b \in \mathbb{Z}[x]$ we also have $a + b \in \mathbb{Z}[x]$ since the integers (i.e. their coefficients) are closed under addition. Putting these together we have that:

$$f - h = (f - g) + (g - h) = a' + b'$$

And since a' + b' = (a + b)' and $a + b \in \mathbb{Z}[x]$, since $a, b \in \mathbb{Z}[x]$, we have that $f \sim h$.

Part d: For any $f, g \in \mathbb{Z}[x]$, is $f \sim g$?

Solution: No. To see this consider f = 2x and g = x:

$$2x - x = x$$

For $2x \sim x$ it must be the case that their difference x be the derivative of some function $h \in \mathbb{Z}[x]$. Let us solve for all such possible h:

$$\frac{\mathrm{d}h}{\mathrm{d}x} = x$$

$$h_C = \frac{x^2}{2} + C$$

Notice that no solution h_C is contained in $\mathbb{Z}[x]$ since the squared term of the solutions have a coefficient of $\frac{1}{2} \notin \mathbb{Z}$. Thus we have shown by counterexample that:

$$\neg \forall f,g \in \mathbb{Z}[x], \ f \sim g$$

Problem 4

Problem: Prove Bernoulli's inequality. That is, prove the following:

$$\forall m, n \in \mathbb{J}, \ (1+m)^n \ge 1+mn$$

Solution: Consider an arbitrary $m \in \mathbb{J}$, we have the following predicate:

$$P(n) \equiv (1+m)^n \ge 1 + mn$$

We can prove P(1) immediately:

$$P(1) \equiv 1 + m \ge 1 + m$$
$$\equiv \top$$

Now we will prove that $P(n) \implies P(n+1)$:

$$(1+m)^{n+1} = (1+m)(1+m)^n \qquad \text{(additive prop. of exponent)}$$

$$> (1+m)(1+mn) \qquad \text{(assume the antecedent, } P(n))$$

$$= 1+mn+m^2n+m \qquad \text{(algebra)}$$

$$\geq 1+mn+m \qquad (m,n\in\mathbb{J}\implies m^2n>0)$$

$$(1+m)^{n+1}\geq 1+m(n+1) \qquad (P(n+1))$$

And so we have shown P(1) and $P(n) \implies P(n+1)$. By the principle of mathematical induction, this implies that P(n) holds for all integers greater than or equal to 1, in other words:

$$\forall m, n \in \mathbb{J}, (1+m)^n > 1+mn$$

Problem 5

Problem: Prove that $P(\mathbb{J})$ is not countable.

Solution: Before we prove the desired statement, let us establish Cantor's theorem. First, consider a set A and its power set $\mathcal{P}(A)$. The function $g: A \to \mathcal{P}(A)$ defined by $x \mapsto \{x\}$ is clearly an injunction from $A \to \mathcal{P}(A)$. Since an injunction exits between these two sets we have, by the definition of cardinality:

$$\operatorname{card}(A) \le \operatorname{card}(\mathcal{P}(A))$$
 (Lemma 1)

Next, consider an arbitrary function $f: A \to \mathcal{P}(A)$, and the set $B = \{x \in A \mid x \notin f(x)\}$. Suppose f is surjective. This means that $\forall y \in \mathcal{P}(A)$ there exists an $x \in A$ such that f(x) = y, in particular it implies that:

$$\exists c \in A, \ f(c) = B$$
 (f is surjective & $B \in \mathcal{P}(A)$)

But now we have a contradiction:

$$c \in f(c) \iff c \in B$$
 (f(c) = B & def. of set equality)
 $c \in f(c) \iff c \notin B$ (def. of B)

And so our assumption that f was surjective is false, and thus no map from a set A to its powerset $\mathcal{P}(A)$ can be surjective. By the definition of cardinality this means:

$$\operatorname{card}(A) \not\geq \operatorname{card}(\mathcal{P}(A))$$
 (Lemma 2)

Putting these two lemmas together we have that for an arbitrary set A:

$$\operatorname{card}(A) \leq \operatorname{card}(\mathcal{P}(A)) \tag{Lemma 1}$$

$$\operatorname{card}(A) \not\geq \operatorname{card}(\mathcal{P}(A)) \tag{Lemma 2}$$

$$\operatorname{card}(A) < \operatorname{card}(\mathcal{P}(A)) \tag{Cantor's Theorem}$$

Or in other words, the cardinality of a set is strictly smaller than that of its powerset. In the case of \mathbb{J} this implies:

$$\operatorname{card}(\mathbb{J}) < \operatorname{card}(\mathcal{P}(\mathbb{J}))$$

And since, by definition, any cardinality larger than countably infinite (i.e. $\operatorname{card}(\mathbb{J}) = \aleph_0$) is uncountably infinite, we are done.