21BDS0340

Abhinav Dinesh Srivatsa

Digital Systems Design Lab

Task 3

S. No.	Components	Page No.	Student Check Mark	RA Check Mark
	PART I-Multiplexer based Design	4	✓	
1	Aim	4	✓	
2	Components Required and Tools Required	4	✓	
3	Procedure	4	✓	
4	Pin diagram	4	✓	
5	Truth Table and Boolean expression of Multiplexer, Demultiplexer.	5	✓	
6	Multiplexer Theory	7	✓	
7	Demultiplexer Theory	7	✓	
8	Block diagram/Circuit diagram for implementing 16:1 MUX using 8:1 MUX	7	✓	
9	Block diagram and Circuit diagram for implementing 8:1 MUX using 4:1 MUX	7	✓	
10	Block diagram and Circuit diagram for implementing 4:1 MUX using 2:1 MUX	8	✓	
11	SOP canonical expression of MUX and circuit implemented in MUX	8	✓	
12	POS canonical expression of MUX and circuit implemented in MUX	8	✓	
13	Circuit diagram of 2:1 MUX Circuit using SOP Equation AOI circuit	9	✓	
14	Circuit diagram of 2:1 MUX Circuit using POS Equation OAI circuit	9	√	
15	Circuit diagram of 2:1 MUX Circuit using SOP	10	✓	

	Equation NAND circuit			
16	Circuit diagram of 2:1 MUX Circuit using POS Equation NOR circuit	10	✓	
17	Implementation steps for Task I and II using 4:1 Multiplexer	11	✓	
18	Implementation steps for Task I and II using 8:1 Multiplexer	11	✓	
19	Multisim live / Circuitverse.org Simulation link for Multiplexer based circuit implemented using 8:1 Multiplexer	12	√	
20	Multisim live / Circuitverse.org Simulation link for Multiplexer based circuit implemented using 4:1 Multiplexer	13	√	
21	Verilog code: SL	13	✓	
22	Verilog code: BL	14	✓	
23	Verilog code: DFL	15	✓	
24	Verilog code: Conditional Operator	16	✓	
25	Test Bench	17	✓	
26	Snip of Output waveform with respective code	18	✓	
27	Online Verilog code Simulation links	18	✓	
28	Result	18	✓	
29	Inference	18	✓	
	PART II - Demultiplexer / Decoder based Design			
1	Aim	19	✓	
2	Components Required and Tools Required	19	✓	
3	Procedure	19	√	
4	Pin diagram	19	√	
5	Truth Table and Boolean expression of Encoder (4:2, 8:3), Decoder (2:4, 3:8) with active low and active high logic.	19	✓	

Block diagram for implementing 3:8 Decoder using 2:4 Decoder	✓	20	
Block diagram for implementing 2: 4 Decoder using 1:2 Decoder	✓	20	
Decoder theory	√	20	
Encoder and Priority Encoder Theory	√	20	
AOI logic circuit of 2:4 Decoder	√	21	
NAND logic circuit of 2:4 Decoder	√	21	
AOI logic circuit of 4:2 encoder	√	22	
NAND logic circuit of 4:2 encoder	√	22	
Implementation steps for Task I & II using Decoder	✓	23	
Proof of Task I (SOP) implemented using Decoder Active Low logic in simulator using snipping tool	√	24	
Proof of Task I (SOP) implemented using Decoder Active High logic in simulator using snipping tool	√	25	
Proof of Task I (POS) implemented using Decoder Active Low logic in simulator using snipping tool	✓	24	
Proof of Task I (POS) implemented using Decoder Active High logic in simulator using snipping tool	√	25	
Verilog code for 2:4 Decoder (BL, DFL)	√	26	
Verilog code of 3:8 Decoder (BL, DFL)	√	26	
Verilog code for 2:4 and 3:8 Decoder (SL)	√	26	
Verilog Test Bench of Decoder	√	27	
Snip of Verilog code output with links	√	27	
Result	√	27	
Inference	√	27	
	using 2:4 Decoder Block diagram for implementing 2: 4 Decoder using 1:2 Decoder Decoder theory Encoder and Priority Encoder Theory AOI logic circuit of 2:4 Decoder NAND logic circuit of 2:4 Decoder NAND logic circuit of 4:2 encoder NAND logic circuit of 4:2 encoder Implementation steps for Task I & II using Decoder Proof of Task I (SOP) implemented using Decoder Active Low logic in simulator using snipping tool Proof of Task I (SOP) implemented using Decoder Active High logic in simulator using snipping tool Proof of Task I (POS) implemented using Decoder Active Low logic in simulator using snipping tool Proof of Task I (POS) implemented using Decoder Active High logic in simulator using snipping tool Verilog code for 2:4 Decoder (BL, DFL) Verilog code of 3:8 Decoder (BL, DFL) Verilog code for 2:4 and 3:8 Decoder (SL) Verilog Test Bench of Decoder Snip of Verilog code output with links Result	using 2:4 Decoder Block diagram for implementing 2: 4 Decoder using 1:2 Decoder Decoder theory Encoder and Priority Encoder Theory AOI logic circuit of 2:4 Decoder NAND logic circuit of 2:4 Decoder AOI logic circuit of 4:2 encoder NAND logic circuit of 4:2 encoder Implementation steps for Task I & II using Decoder Proof of Task I (SOP) implemented using Decoder Active Low logic in simulator using snipping tool Proof of Task I (POS) implemented using Decoder Active High logic in simulator using snipping tool Proof of Task I (POS) implemented using Decoder Active Low logic in simulator using snipping tool Proof of Task I (POS) implemented using Decoder Active High logic in simulator using snipping tool Proof of Task I (POS) implemented using Decoder Active High logic in simulator using snipping tool Verilog code for 2:4 Decoder (BL, DFL) Verilog code of 3:8 Decoder (BL, DFL) Verilog Test Bench of Decoder Snip of Verilog code output with links Versult Verilog code output with links	using 2:4 Decoder Block diagram for implementing 2: 4 Decoder using 1:2 Decoder Decoder theory Encoder and Priority Encoder Theory AOI logic circuit of 2:4 Decoder NAND logic circuit of 2:4 Decoder AOI logic circuit of 4:2 encoder AOI logic circuit of 4:2 encoder V 22 NAND logic circuit of 4:2 encoder V 22 Implementation steps for Task I & II using Decoder Proof of Task I (SOP) implemented using Decoder Active Low logic in simulator using snipping tool Proof of Task I (SOP) implemented using Decoder Active High logic in simulator using snipping tool Proof of Task I (POS) implemented using Decoder Active Low logic in simulator using snipping tool Proof of Task I (POS) implemented using Decoder Active High logic in simulator using snipping tool Proof of Task I (POS) implemented using Decoder Active High logic in simulator using snipping tool Verilog code for 2:4 Decoder (BL, DFL) Verilog code of 3:8 Decoder (BL, DFL) Verilog code for 2:4 and 3:8 Decoder (SL) Verilog Test Bench of Decoder Snip of Verilog code output with links V 27 Snip of Verilog code output with links

Part I - Multiplexer Based Design

Aim

Using Reg.no. formulate expressions in SOP and POS for F and F '. Implement the circuits using only

- a. Design 16:1 Multiplexer using 8:1 Multiplexer constructed using 4:1 Multiplexer constructed using 2:1 Multiplexer.
- b. Give the Internal structure of 2:1 Multiplexer using SOP, POS, NAND, NOR logic design, CMOS, and transmission gates.
- c. Implement a Combinational circuit framed by your registration number using only
 - a. 16:1 Multiplexer.
 - b. 8:1 Multiplexer.
- d. Write the Verilog code for Multiplexer in different styles and verify the results using the truth table and show the output waveform.
- e. Show the steps and procedure in the tool used.

Components Required

- a. AND, OR, NOT, NAND and NOR gates
- b. 5V voltage source
- c. Led indicator

Tools Required

a. Multisim simulator

Procedure

- 1. Draw circuit diagrams to convert X:1 mux to X/2:1 mux till 2:1
- 2. Write SOP and POS canonical forms of mux equation
- 3. Simplify registration number using implementation table and represent with mux

Pin Diagram

<u>Truth Table and Boolean expression of Multiplexer, Demultiplexer</u>

Multiplexer:

Binary	S ₀	S ₁	S ₂	S ₃	Υ
Equivalent					
0	0	0	0	0	A ₀
1	0	0	0	1	A_1
2	0	0	1	0	A_2
3	0	0	1	1	A ₃
4	0	1	0	0	A_4
5	0	1	0	1	A ₅
6	0	1	1	0	A_6
7	0	1	1	1	A_7
8	1	0	0	0	A ₈
9	1	0	0	1	A_9
10	1	0	1	0	A ₁₀
11	1	0	1	1	A ₁₁
12	1	1	0	0	A ₁₂
13	1	1	0	1	A ₁₃
14	1	1	1	0	A ₁₄
15	1	1	1	1	A ₁₅

 $Y = A_0.S_0'S_1'S_2'S_3' + A_1.S_0'S_1'S_2'S_3 + A_2.S_0'S_1'S_2S_3' + A_3.S_0'S_1'S_2S_3 + A_4.S_0'S_1S_2'S_3' + A_5.S_0'S_1S_2'S_3 + A_6.S_0'S_1S_2S_3' + A_7.S_0'S_1S_2S_3 + A_8.S_0S_1'S_2'S_3' + A_9.S_0S_1'S_2'S_3 + A_{10}.S_0S_1'S_2S_3' + A_{11}.S_0S_1'S_2S_3 + A_{12}.S_0S_1S_2'S_3' + A_{13}.S_0S_1S_2'S_3 + A_{14}.S_0S_1S_2S_3' + A_{15}.S_0S_1S_2S_3$

S ₀	S ₁	S ₂	S ₃	A_0	A_1	A ₂	A ₃	A_4	A_5	A_6	A ₇	A ₈	A ₉	A ₁₀	A ₁₁	A ₁₂	A ₁₃	A ₁₄	A ₁₅
0	0	0	0	Α	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	Α	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	Α	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	Α	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	Α	0	0	0	0	0	0	0	0	0	0	0
0	1	0	1	0	0	0	0	0	Α	0	0	0	0	0	0	0	0	0	0
0	1	1	0	0	0	0	0	0	0	Α	0	0	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0	0	0	0	Α	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	Α	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0	0	0	0	Α	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0	0	0	0	0	0	Α	0	0	0	0	0
1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	Α	0	0	0	0
1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Α	0	0	0
1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	Α	0	0
1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Α	0
1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Α

 $A_0 = S_0'S_1'S_2'S_3'$

 $A_1 = S_0'S_1'S_2'S_3$

 $A_2 = S_0'S_1'S_2S_3'$

 $A_3 = S_0'S_1'S_2S_3$

 $A_4 = S_0'S_1S_2'S_3'$

 $A_5 = S_0'S_1S_2'S_3$

 $A_6 = S_0'S_1S_2S_3'$

 $A_7 = S_0'S_1S_2S_3$

 $A_8 = S_0S_1'S_2'S_3'$

 $A_9 = S_0S_1'S_2'S_3$

 $A_{10} = S_0 S_1' S_2 S_3'$

 $A_{11} = S_0 S_1' S_2 S_3$

 $A_{12} = S_0S_1S_2'S_3'$

 $A_{13} = S_0 S_1 S_2' S_3$

 $A_{14} = S_0 S_1 S_2 S_3'$

 $A_{15} = S_0 S_1 S_2 S_3$

Multiplexer Theory

The *multiplexer*, shortened to "MUX" or "MPX", is a combinational logic circuit designed to switch one of several input lines through to a single common output line by the application of a control signal. Multiplexers operate like very fast acting multiple position rotary switches connecting or controlling multiple input lines called "channels" one at a time to the output.

Demultiplexer Theory

The *demultiplexer* takes one single input data line and then switches it to any one of several individual output lines one at a time. The demultiplexer converts a serial data signal at the input to a parallel data at its output lines as shown below.

Block diagram/Circuit diagram for implementing 16:1 MUX using 8:1 MUX

Block diagram and Circuit diagram for implementing 8:1 MUX using 4:1 MUX

Block diagram and Circuit diagram for implementing 4:1 MUX using 2:1 MUX

SOP canonical expression of MUX and circuit implemented in MUX

 $F = S_0'S_1'S_2'S_3' + S_0'S_1'S_2S_3 + S_0'S_1'S_2S_3' + S_0'S_1'S_2S_3 + S_0'S_1S_2'S_3' + A_{11}.S_0S_1'S_2S_3 + A_{13}.S_0S_1S_2'S_3$ $F' = S_0'S_1S_2'S_3 + S_0'S_1S_2S_3' + S_0'S_1S_2S_3 + S_0S_1'S_2'S_3' + S_0S_1'S_2'S_3' + S_0S_1'S_2S_3' + S_0S_1S_2S_3' + S_0S_1S_2S_3'$ $+ S_0S_1S_2S_3$

POS canonical expression of MUX and circuit implemented in MUX

 $F = (S_0 + S_1 + S_2 + S_3) (S_0 + S_1 + S_2 + S_3') (S_0 + S_1 + S_2' + S_3) (S_0 + S_1 + S_2' + S_3') (S_0 + S_1' + S_2 + S_3') (S_0' + S_1' + S_2' + S_3')$ $(S_0' + S_1' + S_2 + S_3')$

 $F' = (S_0 + S_1' + S_2 + S_3') (S_0 + S_1' + S_2' + S_3) (S_0 + S_1' + S_2' + S_3') (S_0' + S_1 + S_2 + S_3') (S_0' + S_1 + S_2 + S_3') (S_0' + S_1' + S_2' + S_3')$

<u>Circuit diagram of 2:1 MUX Circuit using SOP Equation --- AOI circuit</u>

Circuit diagram of 2:1 MUX Circuit using POS Equation --- OAI circuit

<u>Circuit diagram of 2:1 MUX Circuit using SOP Equation --- NAND circuit</u>

<u>Circuit diagram of 2:1 MUX Circuit using POS Equation --- NOR circuit</u>

	C'D'	C'D	CD'	CD
	I ₀	l ₁	l ₂	l ₃
A'B'	1	1	1	1
A'B	1	0	0	0
AB'	0	0	0	1
AB	0	1	0	0
F:	A'	(A^B)'	A'B'	B'
F':	Α	A^B	A+B	В

F implementation:

$$I_0 = A'$$

$$I_2 = A'B'$$

$$I_3 = B'$$

F' implementation:

$$I_0 = A$$

$$I_2 = A + B$$

$$I_3 = B$$

Implementation steps for Task I and II using 8:1 Multiplexer

	B'C'D'	B'C'D	B'CD'	B'CD	BC'D'	BC'D	BCD'	BCD
	I ₀	l ₁	l ₂	I ₃	14	I ₅	I ₆	I ₇
A'	1	1	1	1	1	0	0	0
Α	0	0	0	1	0	1	0	0
F	A'	A'	A'	1	A'	Α	0	0
F'	Α	Α	Α	0	Α	A'	1	1

F implementation:

$$\mathsf{I}_0=\mathsf{I}_1=\mathsf{I}_2=\mathsf{I}_4=\mathsf{A'}$$

$$I_3 = 1$$

$$I_5 = A$$

$$I_6 = I_7 = 0$$

F' implementation:

$$I_0 = I_1 = I_2 = I_4 = A$$

$$I_3 = 0$$

$$I_5 = A'$$

$$I_6 = I_7 = 1$$

<u>Multisim live / Circuitverse.org Simulation link for Multiplexer based circuit implemented</u> using 8:1 Multiplexer

https://circuitverse.org/simulator/21bds0340-8-1-regno-mux

<u>Multisim live / Circuitverse.org Simulation link for Multiplexer based circuit implemented</u> using 4:1 Multiplexer

https://circuitverse.org/simulator/21bds0340-4-1-regno-mux

Verilog code: SL

```
module mux2to1(x, s, f);
    input [0:1]x;
    input s;
    output f;
    wire nots, prod1, prod2;
    not(nots, s);
    and(prod1, x[0], nots);
    and(prod2, x[1], s);
    or(f, prod1, prod2);
endmodule
module mux4to1(x, s, f);
    input [0:3]x;
    input [0:1]s;
    output f;
    wire [0:1]farr;
    mux2to1 tto1(x[0:1], s[1], farr[0]);
    mux2to1 tto2(x[2:3], s[1], farr[1]);
```

```
mux2to1 tto3(farr, s[0], f);
endmodule
module mux8to1(x, s, f);
    input [0:7]x;
    input [0:2]s;
    output f;
    wire [0:1]farr;
    mux4to1 fto1(x[0:3], s[1:2], farr[0]);
    mux4to1 fto2(x[4:7], s[1:2], farr[1]);
    mux2to1 tto1(farr, s[0], f);
endmodule
module mux16to1(x, s, f);
    input [0:15]x;
    input [0:3]s;
    output f;
    wire [0:1]farr;
    mux8to1 eto1(x[0:7], s[1:3], farr[0]);
    mux8to1 eto2(x[8:15], s[1:3], farr[1]);
    mux2to1 tto1(farr, s[0], f);
endmodule
Verilog code: BL
module mux2to1(x, s, f);
    input [0:1]x;
    input s;
    output f;
    wire nots, prod1, prod2;
    always @(*);
    begin
        nots = \sims;
        prod1 = x[0] & nots;
        prod2 = x[1] \& s;
        f = prod1 | prod2;
    end
endmodule
module mux4to1(x, s, f);
    input [0:3]x;
    input [0:1]s;
    output f;
    wire [0:1]farr;
    mux2to1 tto1(x[0:1], s[1], farr[0]);
    mux2to1 tto2(x[2:3], s[1], farr[1]);
    mux2to1 tto3(farr, s[0], f);
```

endmodule

```
module mux8to1(x, s, f);
    input [0:7]x;
    input [0:2]s;
    output f;
    wire [0:1]farr;
    mux4to1 fto1(x[0:3], s[1:2], farr[0]);
    mux4to1 fto2(x[4:7], s[1:2], farr[1]);
    mux2to1 tto1(farr, s[0], f);
endmodule
module mux16to1(x, s, f);
    input [0:15]x;
    input [0:3]s;
    output f;
    wire [0:1]farr;
    mux8to1 eto1(x[0:7], s[1:3], farr[0]);
    mux8to1 eto2(x[8:15], s[1:3], farr[1]);
    mux2to1 tto1(farr, s[0], f);
endmodule
```

Verilog code: DFL

```
module mux2to1(x, s, f);
    input [0:1]x;
    input s;
    output f;
    wire nots, prod1, prod2;
    assign nots = ~s;
    assign prod1 = x[0] & nots;
    assign prod2 = x[1] & s;
    assign f = prod1 | prod2;
endmodule
module mux4to1(x, s, f);
    input [0:3]x;
    input [0:1]s;
    output f;
    wire [0:1]farr;
    mux2to1 tto1(x[0:1], s[1], farr[0]);
    mux2to1 tto2(x[2:3], s[1], farr[1]);
    mux2to1 tto3(farr, s[0], f);
endmodule
module mux8to1(x, s, f);
    input [0:7]x;
    input [0:2]s;
```

```
output f;
wire [0:1]farr;
mux4to1 fto1(x[0:3], s[1:2], farr[0]);
mux4to1 fto2(x[4:7], s[1:2], farr[1]);
mux2to1 tto1(farr, s[0], f);
endmodule

module mux16to1(x, s, f);
  input [0:15]x;
  input [0:3]s;
  output f;
  wire [0:1]farr;
  mux8to1 eto1(x[0:7], s[1:3], farr[0]);
  mux8to1 eto2(x[8:15], s[1:3], farr[1]);
  mux2to1 tto1(farr, s[0], f);
endmodule
```

Verilog code: Conditional Operator

```
module mux2to1(x, s, f);
    input [0:1]x;
    input s;
    output f;
    assign f = s ? x[0] : x[1];
endmodule
module mux4to1(x, s, f);
    input [0:3]x;
    input [0:1]s;
    output f;
   wire [0:1]farr;
    mux2to1 tto1(x[0:1], s[1], farr[0]);
    mux2to1 tto2(x[2:3], s[1], farr[1]);
    mux2to1 tto3(farr, s[0], f);
endmodule
module mux8to1(x, s, f);
    input [0:7]x;
    input [0:2]s;
    output f;
    wire [0:1]farr;
    mux4to1 fto1(x[0:3], s[1:2], farr[0]);
    mux4to1 fto2(x[4:7], s[1:2], farr[1]);
    mux2to1 tto1(farr, s[0], f);
endmodule
module mux16to1(x, s, f);
    input [0:15]x;
    input [0:3]s;
```

```
output f;
wire [0:1]farr;
mux8to1 eto1(x[0:7], s[1:3], farr[0]);
mux8to1 eto2(x[8:15], s[1:3], farr[1]);
mux2to1 tto1(farr, s[0], f);
endmodule
```

Test Bench

```
module testbench;
  reg [0:15]x;
 reg [0:3]s;
  wire f;
  mux16to1 sto1(x, s, f);
  initial begin
    x[0] = 1; x[1] = 1; x[2] = 1; x[3] = 1; x[4] = 1; x[5] = 0; x[6] = 0; x[7]
= 0; x[8] = 0; x[9] = 0; x[10] = 0; x[11] = 1; x[12] = 0; x[13] = 1; x[14] =
0; x[15] = 0;
    s[0] = 0; s[1] = 0; s[2] = 0; s[3] = 0;
    #100
    s[0] = 0; s[1] = 0; s[2] = 0; s[3] = 1;
    #100
    s[0] = 0; s[1] = 0; s[2] = 1; s[3] = 0;
    #100
    s[0] = 0; s[1] = 0; s[2] = 1; s[3] = 1;
    #100
    s[0] = 0; s[1] = 1; s[2] = 0; s[3] = 0;
    #100
    s[0] = 0; s[1] = 1; s[2] = 0; s[3] = 1;
    #100
    s[0] = 0; s[1] = 1; s[2] = 1; s[3] = 0;
    #100
    s[0] = 0; s[1] = 1; s[2] = 1; s[3] = 1;
    #100
    s[0] = 1; s[1] = 0; s[2] = 0; s[3] = 0;
    #100
    s[0] = 1; s[1] = 0; s[2] = 0; s[3] = 1;
    #100
    s[0] = 1; s[1] = 0; s[2] = 1; s[3] = 0;
    #100
    s[0] = 1; s[1] = 0; s[2] = 1; s[3] = 1;
    #100
    s[0] = 1; s[1] = 1; s[2] = 0; s[3] = 0;
    #100
    s[0] = 1; s[1] = 1; s[2] = 0; s[3] = 1;
    #100
    s[0] = 1; s[1] = 1; s[2] = 1; s[3] = 0;
    #100
    s[0] = 1; s[1] = 1; s[2] = 1; s[3] = 1;
```

Snip of Output waveform with respective code

Note: To revert to EPWave opening in a new browser window, set that option on your user page.

Online Verilog code Simulation links

https://www.edaplayground.com/x/Mwqd

Result and Inference

The output of the function matches the digits in hexadecimal of my registration number.

PART II - Demultiplexer / Decoder based Design

Aim

Using Reg.no. formulate expressions in SOP and POS for F and F'. Implement the circuits using only

- a. Design 4 to 16 Decoder using 3 to 8 Decoder constructed using 2-4 Decoders.
- b. Give the internal circuit of 2 to 4 Decoder using SOP, POS, NAND, NOR logic design.
- c. Implement a Combinational logic circuit obtained from your registration number using Decoder.
- d. Write the Verilog code for 4:16,3:8 and 2:4 Decoders and Verify the results using the truth table and show the output waveform.
- e. Implement the Verilog code in ModelSim and verify the results using the truth table and show the output waveform.
- f. Show the steps and procedure for implementation in the tool used.

Components Required

- a. AND, OR, NOT, NAND and NOR gates
- b. 5V voltage source
- c. Led indicator

Tools Required

a. Multisim simulator

Procedure

1. Decode registration number with a 4:16 decoder.

Pin Diagram

Block diagram for implementing 3:8 Decoder using 2:4 Decoder

Decoder theory

A decoder can take the form of a multiple-input, multiple-output logic circuit that converts coded inputs into coded outputs, where the input and output codes are different e.g. n-to- 2^n , binary-coded decimal decoders.

Encoder and Priority Encoder Theory

An Encoder is a combinational circuit that performs the reverse operation of decoder. It has maximum of 2ⁿ input lines and 'n' output lines, hence it encodes the information from 2ⁿ inputs into an n-bit code. It will produce a binary code equivalent to the input, which is active High. Therefore, the encoder encodes 2ⁿ input lines with 'n' bits.

A priority encoder is a circuit or algorithm that compresses multiple binary inputs into a smaller number of outputs. The output of a priority encoder is the binary representation of the index of the most significant activated line, starting from zero.

AOI logic circuit of 2:4 Decoder

NAND logic circuit of 2:4 Decoder

AOI logic circuit of 4:2 encoder

NAND logic circuit of 4:2 encoder

Implementation steps for Task I using Decoder

<u>Proof of Task I (SOP) implemented using Decoder Active Low logic in simulator using snipping tool</u>

<u>Proof of Task I (SOP) implemented using Decoder Active High logic in simulator using snipping tool</u>

Verilog code for 2:4 Decoder (BL, DFL)

```
module decoder2to4(e, x, f);
   input e;
   input [0:1]x;
   output [0:3]f;
   assign f[0] = ~(~e & ~x[0] & ~x[1]);
   assign f[1] = ~(~e & ~x[0] & x[1]);
   assign f[2] = ~(~e & x[0] & ~x[1]);
   assign f[3] = ~(~e & x[0] & x[1]);
endmodule
```

Verilog code of 3:8 Decoder (BL, DFL)

```
module decoder3to8(e, x, f);
   input e;
   input [0:2]x;
   output [0:7]f;
   assign f[0] = ~(~e & ~x[0] & ~x[1] & ~x[2]);
   assign f[1] = ~(~e & ~x[0] & ~x[1] & x[2]);
   assign f[2] = ~(~e & ~x[0] & x[1] & ~x[2]);
   assign f[3] = ~(~e & ~x[0] & x[1] & x[2]);
   assign f[4] = ~(~e & x[0] & ~x[1] & ~x[2]);
   assign f[5] = ~(~e & x[0] & ~x[1] & x[2]);
   assign f[6] = ~(~e & x[0] & x[1] & x[2]);
   assign f[7] = ~(~e & x[0] & x[1] & x[2]);
   assign f[7] = ~(~e & x[0] & x[1] & x[2]);
```

Verilog code for 2:4 and 3:8 Decoder (SL)

```
module decoder2to4(e, x, f);
    input e;
    input [0:1]x;
    output [0:3]f;
    assign f[0] = \sim (\sim e \& \sim x[0] \& \sim x[1]);
    assign f[1] = \sim (\sim e \& \sim x[0] \& x[1]);
    assign f[2] = \sim (\sim e \& x[0] \& \sim x[1]);
    assign f[3] = \sim (\sim e \& x[0] \& x[1]);
endmodule
module decoder3to8(e, x, f);
    input e;
    input [0:2]x;
    output [0:7]f;
    decoder2to4 d2t41(x[0], x[1:2], f[0:3]);
    decoder2to4 d2t42(\sim x[0], x[1:2], f[4:7]);
endmodule
```

Verilog Test Bench of Decoder

```
module testdecoder;
    reg e;
    reg [0:2]x;
    wire [0:7]f;
    decoder3to8 d1(e, x, f);
    initial begin
        e = 0;
        x = 3'b000;
        #100
        x = 3'b001;
        #100
        x = 3'b010;
        #100
        x = 3'b011;
        #100
        x = 3'b100;
        #100
        x = 3'b101;
        #100
        x = 3'b110;
        #100
        x = 3'b111;
        #100
        x = 2'b00;
    end
endmodule
```

Snip of Verilog code output with links

Note: To revert to EPWave opening in a new browser window, set that option on your user page.

https://www.edaplayground.com/x/kG r

Result and Inference

The circuit above has been created to decode any input with an active low input enabled.