Lecture 19

DICTIONARIES, HASHING &

IMPROVED BALANCED SEARCH TREES

Outline

- Dictionary ADT and its Implementation
- Hash Functions
- Balanced Search Trees
- AVL Trees
- 2-3 Trees
- Red-Black Trees

What is a Dictionary?

• A dictionary is an associative container that stores elements in a mapped fashion. Each element has a key value and a mapped value.

• Example: a natural language dictionary: keys are words, value are the entries (part of speech, definitions, etc).

Dictionary ADT

- isEmpty()
- getNumberOfItems()
- add(searchKey, newItem)
- remove(searchKey)
- clear()
- getItem(searchKey)
- contains(searchKey)

Implementations

- List
- Sorted List
- Binary Search Tree

String Matching is Inelegant

Duplicated Keys

- NewYork (NY)
- Pittsburgh (PA)
- Pittsburg (KS)
- Arlington (TX)
- Salem (OR)
- Arlington (VA)
- Salem (MA)

What is a hash function?

 A hash function is any function that can be used to map data of arbitrary size onto data of a fixed size (smaller size).

Example

- Cryptography and Passwords (example: SHA)
- Error correction (example: CRC)
- Identification and verification (example: MD5)

Goal is to improve efficiency of access

Retrieve Using a Hash Function

- retrieve(in key:keyType, out item:itemType): bool
 - Node loc = hash(key)
 - if(loc.key != key)
 - return false
 - else
 - item = loc.item
 - return true endif
 - endif

Insert Using a Hash Function

- insert(in key:keyType, in item:itemType)
 - Node loc = hash(key)
 - loc.item = item

Collision

- Since the result of hash function is smaller than the original data size (can be integer or string), two keys can produce the same <u>result.</u>
- A hash that has no collision is called perfect

Example

Addressing Collisions: 1. Open addressing

- In open addressing, we move on to another slot. If that one is full, we move to another,
- This is called probing. We probe for an empty slot. (note this probe sequence must be repeatable)
- Several probing exist:
 - Linear probing: linearly probe for the next spot
 - Quadratic probing: we look for the i²th slot in ith operation

0	6
1	
2	2
3	8
4	
5	

• Hash function: h(k) = k mod m

Insert(2): $2 \mod 6 = 2$

Insert(6): $6 \mod 6 = 0$

Insert(8): $8 \mod 6 = 2$ collision

Probing

- Linear Probing:
 - index = h(key)
 - while array[index] is full
 - index = index + 1 mod array.size
 - endwhile
- Quadratic Probing:
 - index = h(key)
 - probe = 1
 - while array[index] is full
 - index = h(key) + probe*probe mod array.size
 - probe += 1
 - endwhile

How to Determine if an Index is Full?

- Reserve an item value that indicates empty.
- Each array entry is a struct with item and empty fields
- Array is an array of pointers, with NULL indicating empty.

Addressing Collisions: 2. Chaining

Make the hash table an array of linked lists

Example

• Hash function: $h(k) = k \mod m$

Insert(2): $2 \mod 6 = 2$

Insert(6): $6 \mod 6 = 0$

Insert(8): $8 \mod 6 = 2$ collision

Advantages/Disadvantages of Hashing

- Advantages: (good hash function, not close to full)
 - Insert is O(1)
 - Retrieve is O(1)
 - Delete is O(1)
- Disadvantages:
 - Traversals in order by key is (very) slow
 - Selection in a range of keys is (very) slow

Well-known Hash Functions

- RSHash
- JSHash
- ELFHash
- DEKHash
- MurmurHash

BST

- The basic operations are:
 - Insert
 - Delete
 - Search
- How the organization of a tree impacts the time to find a key?
- Questions:
 - what is the number of comparisons in the best case?
 - what is the number of comparisons in the worst case?
 - what is the number of comparisons in the average case?

BST

Example

The average complexity (number of comparisons) when searching a BST is best when the tree is balanced.

How can we force the BST to be balanced?

• Recall, a tree of height h is balanced if it is full down to level h-1; and the depth of a tree was the number of nodes from the root to a leaf.

Basic approach to making a balanced binary tree

- 1. Insert/Delete a node
- 2. Restore the balance of the tree

The primary tool used to restore balance is called a rotation

There are left and right rotations

The rotation should not violate the binary tree property

Left Rotation

Let A, B, and C be subtrees and a, b nodes in the following tree

Rotate Right

```
// rotate a tree rooted at node
rotateRight(in node:TreeNode)
x = node
y = node->left_child
// if x is a left child
If x = x->parent->left_child
  x->parent->left_child=y
else //x is a right child
  x->parent->right_child=y
x->left_child = y->right_child
y->right_child = x
node = y
```


- Add 30
- Add 20
- Add 10
 - Tree is unbalanced
- Rotate Right
- Add 40
- Add 50
 - Tree is unbalanced
- Rotate subtree Left
- Add 60
 - Tree is unbalanced
- Where do I rotate?

- Height of A is h
- Height of B is h+1
- Height of C is h+2
- Rotate left at root:

- New Height of A is h+1
- Height of B is h+1
- Height of C is h+1

2-3 Trees

• 2-3 tree is a tree data structure in which every internal node (non-leaf node) has either one data element and two children or two data elements and three

Searching a 2-3 Tree

- Compare search complexity of a 2-3 and shortest binary search tree
 - Complexity is?
- A binary search tree with n nodes cannot be shorter than $\log_2(n+1)$
- A 2-3 tree with n nodes cannot be taller than $\log_2(n + 1)$
- Node in a 2-3 tree has at most two data items
- Searching 2-3 tree is O(log n)

- Find the location as you would in a BST
- Add 38

- Find the location as you would in a BST
- Add 38
 - Doesn't fit...
 - Split and move middle up
- Add 37
- Add 42
- Add 41
 - Doesn't fit...
 - Split and move the middle up...

- Add 41
 - Doesn't fit...
 - Split and move the middle up...

• Sort of like rotate right

- Sort of like rotate right
- Delete 80

- Delete 80
- Swap 80 and 90
- Remove 80
- Move 90 down

- Delete 80
- Swap 80 and 90
- Remove 80
- Move 90 down
- Move 50 down
 - Adopt empty node's child

See Fig. 19-23 in the textbook for a summary of all the possible situations during removing an item

Red-Black Trees

- Every node has a color either red or black.
- Root of tree and leaf are always black.
- There are no two adjacent red nodes (A red node cannot have a red parent or red child).
- Every path from a node (including root) to any of its descendant NULL node has the same number of black nodes.

Consequence

- The maximum depth of the red-black tree T with n nodes is at most twice the minimum depth.
- Depth(T) $\leq 2 \log_2(n+1)$

Red-Black Trees example

Assignment/Homework

- Reading pp. 614-625
- ICE 9 due on Friday.
- Homework 7 due on Friday.
- Homework 8 is released.
- ICE 10 is released.