1. Controle via realimentação de estados

Seja o sistema

$$\dot{x} = Ax + Bu$$

$$y = Cx + Du$$
(12)

e a lei de controle

$$u(t) = r(t) - Kx(t), \qquad (13)$$

onde a matriz K tem ordem m.n (m entradas. N estados)

Figura 1. Sistema das equações (12)-(13).

O sistema em malha fechada fica da forma

$$\dot{x} = Ax + B(r - Kx)$$

$$y = Cx$$
ou
$$\dot{x} = (A - BK)x + Br$$

$$y = Cx$$
(14)

Os autovalores da nova matriz do sistema, (A-BK), são alterados pela matriz de ganho K.

Vamos aplicar a lei de controle (13) ao sistema na forma FCC (7.1)-(7.2):

$$\dot{x} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -a_0 & -a_1 & -a_2 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} (r - \begin{bmatrix} k_1 & k_2 & k_3 \end{bmatrix} x)$$

ou

$$\dot{x} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -a_0 - k_1 & -a_1 - k_2 & -a_2 - k_3 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} r$$

O novo polinômio característico passa a ser

$$\lambda(A - BK) = s^3 + (a_2 - k_3)s^2 + (a_1 - k_2)s + (a_0 - k_1)$$

Observa-se assim, que pela escolha adequada dos ganhos k1, k2 e k3, pode-se obter qualquer polinômio característico de malha fechada, com as raízes que se desejar.

Em outras palavras, os autovalores de (A-BK), que são os polos de malha fechada, podem ser livremente alocados pela escolha da matriz de ganhos K.

Para que isto seja possível, é necessário e suficiente que o sistema esteja na FCC, isto é, que seja controlável.

Um exemplo com comando place no Matlab

Dadas as matrizes $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ e $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, e assumindo que se queira os polos de malha fechada $\{-1, -2\}$

O comando K=place(A,B,[-1 -2]) fornece o vetor

 $K = \begin{bmatrix} 2 & 3 \end{bmatrix}$ que aloca os polos de A - BK em $\{-1, -2\}$.

A função de transferência de malha fechada é obtida aplicando Laplace em (14),

$$\frac{Y(s)}{R(s)} = M(s) = C(SI - A - BK)^{-1}B$$

O ganho de M(s) depende da localização dos polos de malha fechada. A realimentação de estados garante a estabilidade, mas não tem compromisso do o erro em regime.

2. Realimentação de estados com observadores

Como os estados não são em geral medidos, devem ser observados (ou estimados) para usar na realimentação.

Figura 2. Repetição da Figura 1.

Seja o sistema no EE dado pela equação (15), com realimentação de estados (16). O grafo de fluxo de sinal matricial é mostrado na figura acima.

$$\dot{x} = Ax + Bu$$

$$y = Cx$$

$$u(t) = r(t) - Kx(t),$$
(16)

Percebe-se que a informação realimentada é o estado x, que é uma informação não medida, logo, não disponível para ser utilizada para controle.

Se esta informação não pode ser medida, devemos verificar a possibilidade de calculá-la a partir das informações disponíveis: a entrada **u** e a saída **y**.

A FT de malha fechada será dada por $M(s) = C(sI - A - KB)^{-1}B$. O ganho K_0 desta FT depende de K. Portanto, ao aplicar uma referência r em sua entrada, em regime, teremos $y = K_0 r$. Ou seja, pode haver uma grande diferença entre a referência e a saída.

Figura 2.1. Efeito da realimentação de estados no ganho de MF

Uma forma de amenizar o erro em regime é multiplicar a referência por uma constante p_1 , tal que $p_1K_0=1$. Esta deficiência será eliminada com a realimentação integral de estados.

2.1 Projeto do observador

O projeto do observador baseia-se no observador mostrado na figura 3.

Figura 3. Sistema original (amarelo) e cópia (branco) para o observador

A parte superior corresponde à planta na qual se deseja conhecer os estados. A parte inferior \acute{e} o observador, que tem por objetivo estimar os estados x(t).

As equações do observador são

$$\dot{\hat{x}} = A\hat{x} + Bu + L(y - \hat{y})$$

$$\hat{y} = C\hat{x}$$
(17)

ou

$$\dot{\hat{x}} = (A - LC)\hat{x} + Bu + Ly$$

$$\hat{y} = C\hat{x}$$
(18)

Pergunta: como escolher a matriz de ganhos L de forma que o estado estimado \hat{x} convirja para o estado real x?

Escrevendo a equação do erro entre os estados estimado e real, vem

$$e = x - \hat{x}$$

e

$$\dot{e} = \dot{x} - \dot{\hat{x}}$$

De (17) e (18) segue que

$$\dot{e} = Ax + Bu - [(A - LC)\hat{x} + Ly + Bu]$$

$$\dot{e} = Ax + LC\hat{x} - A\hat{x} - Ly$$

$$\dot{e} = (A - LC)x + (A - LC)\hat{x}$$

$$\dot{e} = (A - LC)e$$
(19)

A solução de (19) é dada por

$$e(t) = e^{(A-LC)t}e(0)$$
 (20)

Logo, para que o erro tenda a zero quando $t\rightarrow\infty$, basta que a matriz (A-LC) tenha todos os autovalores com parte real negativa.

Assim, a matriz de ganho L deve ser escolhida de modo que isto aconteça.

A matriz L pode ser calculada com o comando place do Matlab, usando as matrizes A e C transpostas,

$$L=[place(A',C',l)]'$$

onde 1 são os autovalores de (A-LC) desejados.

Caso eles esteja no semiplano esquerdo, garante-se que o erro tende a zero. Entretanto, é importante escolher polos rápidos (longe da origem), para garantir que o erro tenda rapidamente a zero, evitando assim realimentar estados com erro.

3 Princípio da separação (realimentação de estados + observador)

Das equações (17) e (18) podemos escrever

$$\begin{bmatrix} \dot{x} \\ \dot{\hat{x}} \end{bmatrix} = \begin{bmatrix} A & 0 \\ LC & A - LC \end{bmatrix} \begin{bmatrix} x \\ \hat{x} \end{bmatrix} + \begin{bmatrix} B \\ B \end{bmatrix} u$$

Substituindo a lei de controle $u(t) = -K\hat{x}(t)$ acima, segue que

$$\begin{bmatrix} \dot{x} \\ \dot{\hat{x}} \end{bmatrix} = \begin{bmatrix} A & 0 \\ LC & A - LC \end{bmatrix} \begin{bmatrix} x \\ \hat{x} \end{bmatrix} + \begin{bmatrix} B \\ B \end{bmatrix} \begin{bmatrix} 0 & K \end{bmatrix} \begin{bmatrix} x \\ \hat{x} \end{bmatrix}$$

ou

$$\begin{bmatrix} \dot{x} \\ \dot{\hat{x}} \end{bmatrix} = \begin{bmatrix} A & 0 \\ LC & A - LC \end{bmatrix} \begin{bmatrix} x \\ \hat{x} \end{bmatrix} + \begin{bmatrix} 0 & BK \\ 0 & BK \end{bmatrix} \begin{bmatrix} x \\ \hat{x} \end{bmatrix}$$

ou

$$\begin{bmatrix} \dot{x} \\ \dot{\hat{x}} \end{bmatrix} = \begin{bmatrix} A & -BK \\ LC & A - LC - BK \end{bmatrix} \begin{bmatrix} x \\ \hat{x} \end{bmatrix}$$

Fazendo a transformação de similaridade

$$\begin{bmatrix} x \\ e \end{bmatrix} = \begin{bmatrix} x \\ x - \hat{x} \end{bmatrix} = \begin{bmatrix} I & 0 \\ I & -I \end{bmatrix} \begin{bmatrix} x \\ \hat{x} \end{bmatrix} = \begin{bmatrix} T \end{bmatrix} \begin{bmatrix} x \\ \hat{x} \end{bmatrix}$$

resulta que

$$\begin{bmatrix} \dot{x} \\ \dot{e} \end{bmatrix} = T \begin{bmatrix} A & -BK \\ LC & A - LC - BK \end{bmatrix} T^{-1} \begin{bmatrix} x \\ \hat{x} \end{bmatrix}$$

ou

$$\begin{bmatrix} \dot{x} \\ \dot{e} \end{bmatrix} = \begin{bmatrix} A - BK & BK \\ 0 & A - LC \end{bmatrix} \begin{bmatrix} x \\ e \end{bmatrix}$$

Os autovalores da matriz acima são

$$\lambda(A-BK) \bigcup \lambda(A-LC)$$
,

ou seja, os autovalores da realimentação de estados mais os autovalores do observador. Portanto, pode-se fazer os projetos separadamente, da realimentação de estados e do observador.

4 Compensador resultante da realimentação de estados+ observador

Considere o sistema definido por:

$$\dot{x} = Ax + Bu$$

$$y = Cx$$

Completamente observável e o projeto do controlador é dado por:

$$u = r - K\tilde{x}$$
.

Realimenta-se os estados observados, pois os reais não são medidos

As equações ficam na forma:

$$\dot{\tilde{x}} = (A - LC - BK)\tilde{x} + Ly + Br$$

$$u = r - K\tilde{x}$$

Aplicando Laplace com uma condição inicial nula temos:

$$\tilde{X}(s) = M(s)LY(s) + M(s)BR(s)$$

$$M(s) = (SI - A + LC + BK)^{-1}$$

$$U(s) = R(s) - KM(s)LY(s) - KM(s)BR(s)$$

$$U(s) = (1 - KM(s)B)R(s) - KM(s)LY(s)$$

$$U(s) = C_1(s)R(s) - C_2(s)Y(s)$$

Uma função de transferência $G(s) = C(sI - A)^{-1}B$ tem a realização

$$\dot{x} = Ax + Bu, Y = Cx + Du$$

Para obter a FT de $K(sI - A)^{-1}L$, basta converter a realização

$$\dot{x} = Ax + Lu, Y = Kx$$

para uma FT. No Matlab, esta conversão é feita com o comando [num,den]=ss2tf(A,L,K,0).

Como

$$M(s) = (sI - A + LC + BK)^{-1}$$

o denominador de $C_1(s)$ e $C_2(s)$ tem ordem igual a matriz A, igual ao número de estados.

Figura 5. Compensadores C1 e C2 resultantes da realimentação de estados+observador

Exemplo:

Seja o sistema
$$\dot{x} = \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$$

A realimentação de estados $u = -[3\ 5]\tilde{x} + r(t)$ aloca os autovalores de (A-BK) para $\{-1,-2\}$

Construindo um observador tal que os autovalores (A-LC) estejam em $\{-2, -4\}$, resulta $L = [8\ 25]$

Resultam os compensadores
$$C_1(s) = \frac{2s^2 + 12.03s + 16.05}{s^2 + 11s + 51}$$
 e $C_2(s) = \frac{149s + 67}{s^2 + 11s + 51}$

Os numeradores e denominadores das FTs de C1 e C2 são obtidos facilmente com os comandos

$$C_1(s) = 1 - \frac{NC1(s)}{DC1(s)} e C_2(s) = \frac{NC2(s)}{DC2(s)}$$

Sendo $G(s) = C(sI - A)^{-1}B = \frac{1}{s^2 - 2s - 1}$, fechando a malha com $C_2(s)$ e pré-multiplicando por $C_1(s)$, resulta a FT de malha fechada m=C1*feedback (g2, C2)

Como g2 tem ordem 2, para o exemplo, m terá ordem 6.

Ela pode ser simplificada com o comando (ver help mineral) Ms=minreal(m)

5 Realimentação integral de estados

Como a realimentação de estados não garante erro nulo em regime, uma alternativa é o uso da realimentação integral de estados.

Figura 6. Realimentação integral de estados

Um polo na origem é adicionado de modo que erros entre a referência e a saída são agora corrigidos. A adição do polo na origem cria mais um estado no sistema, que é multiplicado pelo ganho Ki.

A lei de controle era

$$u(t) = r - K_1 x_1 - K_2 x_2$$

Com o integrador, passa a ser

$$u(t) = Ref - K_1x_1 - K_2x_2 - K_ix_3$$

com $K = [K_1 \quad K_2]$ e x_3 ee o novo estado associado ao integrador (cada integrador tem associado a ele um estado).

O novo sistema aumentado pode ser escrito como

$$\begin{bmatrix} \dot{x} \\ \dot{x_3} \end{bmatrix} = \begin{bmatrix} A & 0 \\ -C & 0 \end{bmatrix} \begin{bmatrix} x \\ x_3 \end{bmatrix} - \begin{bmatrix} B \\ 0 \end{bmatrix} [K_1 \quad K_2 \quad K_i] + \begin{bmatrix} 0 \\ 1 \end{bmatrix} Ref$$

$$Y = \begin{bmatrix} C & 0 \end{bmatrix} \begin{bmatrix} x \\ x_3 \end{bmatrix}$$

Ou no formato compacto em malha fechada,

$$\begin{bmatrix} \dot{x} \\ \dot{x_3} \end{bmatrix} = \begin{bmatrix} A - BK & BK_i \\ -C & 0 \end{bmatrix} \begin{bmatrix} x \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} Ref$$

$$Y = \begin{bmatrix} C & 0 \end{bmatrix} \begin{bmatrix} x \\ x_3 \end{bmatrix}$$

Os polos de $\begin{bmatrix} A-BK & BK_i \\ -C & 0 \end{bmatrix}$ pode ser livremente alocados usando como matriz A, $\begin{bmatrix} A & 0 \\ -C & 0 \end{bmatrix}$ e como matriz B, $\begin{bmatrix} B \\ 0 \end{bmatrix}$.

Se os polos de $\begin{bmatrix} A-BK & BK_i \\ -C & 0 \end{bmatrix}$ tiverem parte real negativa, o erro entre a referência Ref e a saída Y tenderá a zero.

O polo adicional que surge devido a introdução do integrador deve ser colocado longe da origem para não tornar a resposta lenta. Se for colocado muito longe da origem pode aumentar muito o ganho do controlador, causando oscilações na resposta. Para sistemas de ordem 2, pode-se usar como referência a parte real dos polos complexos, ou o polo real mais lento, para o caso de polos reais.

Diagrama slx usado para a simulação.

Como RI=0 tem-se realimentação de estados. Com RI=1 adiciona-se a parte integral. O ganho p1 somente é utilizado quando não há a parte integral, para que o ganho da referência para a saída seja igual a 1. As cores dos blocos identificam as estratégias de controle utilizadas.

