05- Електромагнетска компатибилност

1. Направити модел електрички кратке дипол антене, као на слици 1, тако да је укупна дужина антене $2h=\lambda/30$. Полупречник жице је r=h/50. Радна учестаност је $f=1\,\mathrm{GHz}$. Антена се напаја напонским генератором $\underline{E}=(1+\mathrm{j}0)\mathrm{V}$. Околна средина је вакуум. (а) Израчунати и приказати 3D дијаграм зрачења антене. (б) У екваторијалној равни антене снимити блиско поље за растојање $10 \le d \le 30\,\mathrm{mm}$ и израчунати са којим степеном растојања опада интензитет електричног поља. (в) Поновити претходну тачку уколико је растојање $5 \le d \le 10\,\mathrm{m}$.

Слика 1.1. Модел дипол антене у програмском пакету AWAS.

2. Направити модел квадратне жичане контуре, странице $a=10\,\mathrm{mm}$, постављене паралелно Oxy равни на висини $z=1\,\mathrm{mm}$, у програмском пакету AWAS. Полупречник свих жица је $r=0,1\,\mathrm{mm}$. Помоћу струјног генератора, успоставити у контури простопериодичну струју учестаности $f=30\,\mathrm{MHz}$ и ефективне вредности $I=10\,\mathrm{mA}$. (а) Нацртати зависност z-компоненте магнетског поља на оси контуре за $40 \le z \le 100\,\mathrm{mm}$ и израчунати са којим степеном растојања опада поље. (б) Поставити бесконачну савршено проводну раван у Oxy раван и поновити претходну тачку. (в) Нацртати 3-D дијаграм зрачења контуре (без проводне равни) и на основу њега проценити у којим правцима контура има највећу електромагнетску спрегу са околином. (г) Нацртати зависност y-компоненте електричног поља у равни контуре за $5 \le x \le 15\,\mathrm{m}$ и израчунати са којим степеном растојања опада поље, за случај без проводне равни. (д) Проверити да ли електрично поље на одстојању $10\,\mathrm{m}$ од контуре задовољава стандард електромагнетске компатибилности којим је прописано да електрично поље мора бити маље од $50\,\mathrm{\mu V/m}$. (ђ) Поновити тачке (г) и (д) уколико је учестаност струјног генератора $f=300\,\mathrm{MHz}$.

Слика 2.1. Модел квадратне жичане контуре у програмском пакету AWAS.

3. Направити модел две квадратне контуре према слици 3.1, помоћу програмског пакета AWAS. Контуре се налазе у истој равни. Полупречник свих жица је $r=0,1\,\mathrm{mm}$. (а) Снимити спрегу између контура (s_{21}) у децибелима у опсегу учестаности $1\,\mathrm{GHz} \le f \le 3\,\mathrm{GHz}$. (б) Додати још једну контуру према слици 3.2, истог полупречника жице. Поново снимити спрегу између прве две контуре (s_{21}) у децибелима у истом опсегу учестаности као у претходној тачки. Упоредити резултате. У ком случају је већа спрега. (в) Пронаћи учестаност на којој је спрега максимална за случај (б). (г) Израчунати однос таласне дужине у слободном простору на учестаности максималне спреге у случају (б) и укупне дужине спољашње контуре.

