WU, Jialin (jw1816)

Imperial College London

Department of Computing Academic Year **2020-2021**

Page created Tue Nov 3 23:15:11 GMT 2020

70051 rac101 2 t5 jw1816 v1

 ${\bf Electronic_submission}$

Sat - 31 Oct 2020 09:11:42

jw1816

Exercise Information

Module: 70051 Introduction to Symbolic

Artificial Intelligence (MSc AI)

Exercise: 2 (CW)

Title: Logic FAO: Craven, Robert (rac101) **Issued:** Tue - 20 Oct 2020

Due: Tue - 03 Nov 2020

Assessment: Individual Submission: Electronic

Student Declaration - Version 1

• I declare that this final submitted version is my unaided work.

Signed: (electronic signature) Date: 2020-10-29 07:58:14

For Markers only: (circle appropriate grade)

WU, Jialin (jw1816)	01197870	t5	2020-10-29 07:58:14	A *	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	${f E}$	\mathbf{F}
---------------------	----------	----	---------------------	------------	--------------	--------------	--------------	--------------	---------	--------------

Introduction to Symbolic Al – Coursework 1

WU, JIALIN CID:01197870

Question 1

- (i) If Michel isn't either fulfilled or rich, he won't live another five years.
 - p = Michel is fulfilled
 - q = Michel is rich
 - r = Michel will live another five years

$$(\neg(p \lor q)) \to (\neg r)$$

- (ii) Unless the snowstorm doesn't arrive, Raheen will wear his boots; but I'm sure it will arrive.
 - p = Storm arrives
 - q = Raheen will wear his boots
 - r = I'm sure the snowstorm will arrive

$$((\neg p) \lor q) \land r$$

- (iii) If Akira and Toshire are on set, then filming will begin if and only if the caterers have cleared out.
 - p = Akira is on set
 - q = Toshire is on set
 - r = Filming will begin
 - s =The caterers have cleared out

$$(p \land q) \longrightarrow (r \leftrightarrow s)$$

- (iv) Either Irad arrived, or Sarah didn't: but not both!
 - p = Irad arrived
 - q = Sarah arrived

$$(p \lor (\neg q)) \land (\neg (p \land q))$$

My understanding to this sentence is that either Irad arrived or Sarah did not arrive but not the case that both Irad and Sarah arrived.

- (v) It's not the case both that Herbert heard the performance and Anne-Sophie did, if the latter didn't answer her phone calls.
 - p = Herbert heard the performance
 - q = Anne-Sophie heard the performance
 - r = Anne-Sophie answered her phone calls

$$(\neg(p \land q)) \lor r$$

Question 2

(i) Definition of satisfiability

A propositional formula A is satisfiable if there is <u>some</u> ν such that $h_{\nu}(A) = t$, where ν is an atomic evaluation function and $h_{\nu}(A)$ is the propositional evaluation function of A based on ν .

(ii) Definition of logical equivalence

Two propositional formulas A,B are logically equivalent if, for every ν , $h_{\nu}(A) = h_{\nu}(B)$, where ν is an atomic evaluation function and $h_{\nu}(A)$ and $h_{\nu}(B)$ are propositional evaluation functions based on ν for A and B respectively.

(iii) Prove that a propositional formula $\neg A$ is satisfiable iff $\neg \neg A \not\equiv \top$.

Assume $\neg \neg A \not\equiv T$, then not for every ν that $h_{\nu}(\neg \neg A) = t$. This implies there is at least one ν such that $h_{\nu}(\neg \neg A) = f$. According to Definition 1.5, $h_{\nu}(\neg \neg A) = f$ iff $h_{\nu}(\neg A) = t$. Hence, there is at least one ν such that $h_{\nu}(\neg A) = t$ if $\neg \neg A \not\equiv T$. Thus, $\neg A$ is satisfiable if $\neg \neg A \not\equiv T$ is proved.

Now assume $\neg A$ is satisfiable. There is some ν such that $h_{\nu}(\neg A) = t$ and, therefore, $h_{\nu}(\neg \neg A) = f$ according to Definition 1.5. This implies $h_{\nu}(\neg \neg A) = t$ is not valid for every ν , i.e. $\neg \neg A \not\equiv \top$. Thus, $\neg \neg A \not\equiv \top$ if $\neg A$ is satisfiable is proved.

Since $\neg A$ is satisfiable if $\neg \neg A \not\equiv \top$ and $\neg \neg A \not\equiv \top$ if $\neg A$ is satisfiable, it is proved that $\neg A$ is satisfiable iff $\neg \neg A \not\equiv \top$.

Question 3

p	q	r	(p	٨	7	q	\leftrightarrow	П	(¬	r	V	7	p)) t t	\rightarrow	(¬	٦	р	\rightarrow	r)
t	t	t	t	f	f	t	f	t	f	t	f	f	t	t	t	f	t	f	t
t	t	f	t	f	f	t	t	f	t	f	t	f	t	f	t	f	t	f	f

Since we have already found an instance ν such that the formulation is false, we can conclude that the formula is not valid and stop the truth table derivation. For example, when $\nu(p) = t$, $\nu(q) = t$ and $\nu(r) = f$, $h_{\nu}\left(\left(p \land \neg q \leftrightarrow (\neg r \lor \neg p)\right) \rightarrow (\neg \neg p \rightarrow r)\right) = f$

Question 4

- (i) Conjunctive normal form (CNF): a, b, f, g
 Disjunctive normal form (DNF): b, e, h
- (ii) Refutation-soundness and -completeness (Doets, 1994) Let S be in CNF. $S \vdash_{res(pL)} \emptyset$ is defined as the refutation of S.

Soundness of refutation gives, if $S \vdash_{res(pL)} \emptyset$ then $S \vDash \emptyset$. Since \emptyset is unsatisfiable, it follows that $S \vDash \bot$. That is:

if
$$S \vdash_{res(pL)} \emptyset$$
 then $S \vDash \perp$

Completeness of refutation defines that if S is unsatisfiable, then \emptyset is result of resolution derivation of S. That is:

If
$$S \models \perp$$
 then $S \vdash_{res(pL)} \emptyset$

Together, it is proved logically that $S \vdash_{res(pL)} \emptyset$ iff $S \vDash \bot$. The refutation-soundness ensures that if a set of premises leads to \bot after any number of resolution steps, the set must be unsatisfiable. Closeness of refutation then ensures that a conclusion can be drawn from propositional resolution. If there is no proof

of a \perp in a finite set of premises in CNF, then the set is satisfiable. S is satisfiable iff $S \not\vdash_{res(pL)} \emptyset$.

(iii) Unit propogation and pure rule

- (a) $\{\{p, s\}, \{q, r\}, \{\neg s, q\}, \{\neg p, \neg r, \neg s\}\}\}$ $\Rightarrow \{\{p, s\}, \{\neg p, \neg r, \neg s\}\} [q \text{ was pure}]$ $\Rightarrow \{\{p, s\}\} [\neg r \text{ was pure}]$ $\Rightarrow \{\}$
 - ⇒ SATISFIABLE [since no condition for further application of rules apply]
- (b) {{¬p, q, r}, {¬q}, {p, r, q}, {¬r, q}}
 ⇒ {{¬p, r}, {p, r}, {¬r}} [unit propogation by unit clause {¬q}]
 ⇒ {{¬p}, {p}} [unit propogation by unit clause {¬r}]
 ⇒ {{}} [unit propogation by unit clause {¬p}]
 ⇒ UNSATISFIABLE [since Ø is in the set]

Question 5

If we define: p = I am going, q = Y ou are going and r = T ara is going, then the sentences can be formalised as:

Premises

If I'm going, then you are going.	$p \longrightarrow \neg q$	=	$\neg p \lor \neg q$
If you are not going, then neither is Tara	$\neg q \longrightarrow \neg r$	≡	$q \vee \neg r$
Either Tara's going or I'm not	$r \lor \neg p$	≡	$r \vee \neg p$
Tara's going unless I am.	$r \lor p$	≡	$r \lor p$

Conclusion

You are going

In general, A1, . . . , An \models B iff A1 $\land \cdot \cdot \cdot \land$ An $\land \neg$ B is unsatisfiable. So to prove the validity of argument, we can check the satisfiability of the following.

$$(\neg p \lor \neg q) \land (q \lor \neg r) \land (r \lor \neg p) \land (r \lor p) \land (\neg q)$$
Converting it to clausal form CNF: $\{\{\neg p, \neg q\}, \{q, \neg r\}, \{r, \neg p\}, \{r, p\}, \{\neg q\}\}\}$

Then applying DP:

- $\Rightarrow \{\{\neg r\}, \{r, \neg p\}, \{r, p\}\}\}$ [unit propogation by unit clause $\{\neg q\}$]
- $\Rightarrow \{\{\neg p\}, \{p\}\}\$ [unit propogation by unit clause $\{\neg r\}$]
- \Rightarrow {{}}{[unit propogation by unit clause {p}]
- ⇒ UNSATISFIABLE [since Ø is in the set]

Since the CNF is unsatisfiable, the original argument is propositionally valid.

Question 6

(i) All of Andrea's aunts' aunts gave a cupcake to someone other than Andrea. $\forall X(X = aunt(aunt(Andrea)) \rightarrow \exists Y(\neg(Y = Andrea) \land cupcake(X,Y)))$ $\mathcal{C} = \{andrea\}$

```
\mathcal{F}_1 = \{aunt\} \text{ (aunt(X) means X's aunt)}

\mathcal{P}_2 = \{cupcake\} \text{ (cupcake(X,Y) means X gave a cupcake to y)}

\mathcal{L} = Tuple(\mathcal{C}, \mathcal{F}_1, \mathcal{P}_2)
```

(ii) There's a computer connected to every computer which isn't connected to itself.

```
\exists X \forall Y (computer(X) \land computer(Y) \land \neg connect(Y,Y) \land connect(X,Y))

\mathcal{P}_1 = \{computer\} \ (computer(X) \text{ means } X \text{ is a computer})

\mathcal{P}_2 = \{connect\} \ (connect(X,Y) \text{ means } X \text{ is connected to } Y

\mathcal{L} = Tuple(\mathcal{P}_1, \mathcal{P}_2)
```

(iii) Any painting by Paul Klee in a British gallery hangs in a room where all Kandinsky paintings in that gallery hang.

```
\forall G\exists Z(gallery(G) \land room(Z) \land in(Z,G) \longrightarrow \forall X \forall Y(X) \\ = painting(paul) \land Y \\ = painting(kandinsky) \land in(X,Z) \land in(Y,Z)))
\mathcal{F}_1\{painting\} \\ painting(X) \text{ means } X\text{'s painting}
\mathcal{P}_1\{gallery, room\} \\ \text{gallery}(X) \text{ means } X \text{ is a British gallery} \\ \text{room}(X) \text{ mean } X \text{ is a room}
\mathcal{P}_2\{in\} \\ \text{in}(X,Y) X \text{ is in } Y
\mathcal{C} = \{paul, kandingsky\}
\mathcal{L} = Tuple(\mathcal{F}_1, \mathcal{P}_1, \mathcal{P}_2, \mathcal{C})
```

(iv) If there's somebody who loves nobody, then it's false that everybody loves somebody

```
\exists X (\neg(\exists Y (love(X,Y))) \rightarrow \neg(\forall Z \exists P (love(Z,P))) \mathcal{P}_2\{love\} (love(X,Y) \text{ means } X \text{ loves } Y) \mathcal{L} = Tuple(\mathcal{P}_2)
```

Question 7

Let $M = (D, \varphi)$ be the following \mathcal{L} -structure

- (i) $\forall X(a(k, X) \rightarrow \neg(X = j))$ False
 - We need to show that $M \models \forall X (a(k,X) \rightarrow \neg (X=j))$, i.e. show that for all $X a(k,X) \rightarrow \neg (X=j)$ is true.
 - So for any X, assume $(\varphi_M(k), \varphi_M(X)) \in \varphi_M(a)$, then we can show that $X = \varphi_M(j)$.
 - Since $X = \varphi_M(j)$, it is false that $\neg (X = j)$.
 - Hence, $M \not\models \forall X (a(k, X) \rightarrow \neg (X = j))$ and the original argument is false.
- (ii) $c(l) \rightarrow \exists X(b(X) \land c(X) \land a(l, X))$ True
 - Let σ_1 be the M assignment such that X = j and $\sigma_1 = \sigma$.

- The antecedent c(l) is true because $\varphi_M(l) \in \varphi_M(c)$.
- b(X) is true since constant j refers to a black object.
- c(X) is true since constant j also refers to a circular object.
- a(l, X) is true since $\phi_{M,\sigma_1}(l)$, $\phi_{M,\sigma_1}(j) \in \phi_M(A)$.
- Therefore, M, $\sigma_1 \models b(X) \land c(X) \land a(l, x)$.
- Hence $\exists X(b(X) \land c(X) \land a(1, X))$ is true.
- The original argument is therefore, true.

(iii) $\exists X \neg \exists Y (\neg (X = Y) \land a(X, Y))$

True

- Let σ_1 be the M assignment such that $X = \blacksquare$ and $\sigma_1 =_X \sigma$.
- We then need to prove that under σ_1 , $\neg \exists Y (\neg (X = Y) \land a(X, Y))$
- Under M, σ_1 , assume $\exists Y (\neg (X = Y) \land a(X, Y))$ is true. Then there exists a Y such that $(\neg (X = Y) \land a(X, Y))$.
- Further assume that $\neg(X = Y)$ is true, i.e. $\neg(Y = \blacksquare)$. All possible Ys are: $\varphi_{M,\sigma_1}(j)$, $\varphi_{M,\sigma_1}(k)$, $\varphi_{M,\sigma_1}(l)$ and \square .
- For all these possible Ys, a(X, Y) is false.
- Thus $\exists Y (\neg(X = Y) \land a(X, Y))$ is false and $\neg \exists Y (\neg(X = Y) \land a(X, Y))$ is true under M, σ_1 .
- $M, \sigma_1 \models \neg \exists Y (\neg (X = Y) \land a(X, Y))$
- Hence, $M \models \exists X \neg \exists Y (\neg (X = Y) \land a(X, Y))$

(iv) $\forall X(\neg s(X) \rightarrow \exists Y (c(Y) \land b(Y) \land a(X, Y)))$ False

- For any X, assume $\neg s(X)$ is true. Possible Xs are \blacksquare and \square .
- We must then show that $\exists Y (c(Y) \land b(Y) \land a(X, Y))$. There exist a Y such that $c(Y) \land b(Y) \land a(X, Y)$
- Further assume that $c(Y) \land b(Y)$ is true. Possible Ys are $\varphi_M(j)$, $\varphi_M(k)$.
- For $X = \blacksquare$, $a(X, \varphi_M(j))$ and $a(X, \varphi_M(k))$ are both false.
- For $X = \blacksquare$, $\exists Y (c(Y) \land b(Y) \land a(X, Y))$ is therefore, false.
- For $X = \square$, $a(X, \varphi_M(j))$ and $a(X, \varphi_M(k))$ are both false.
- For $X = \Box$, $\exists Y (c(Y) \land b(Y) \land a(X, Y))$ is therefore, false.
- Thus, for any X, if $\neg s(X)$ then $\exists Y (c(Y) \land b(Y) \land a(X, Y))$ is not satisfiable.
- Hence, the original argument is false.

(v) $\forall X (\exists Y (\neg (X = Y) \land a(X, Y)) \rightarrow \exists Y (a(X, Y) \land a(Y, X)))$ False

- Let σ_1 be an X-variant of σ . σ_1 assigns $X = \varphi_M(k)$
- We then must show that M, $\sigma_1 \models \exists Y (\neg(X = Y) \land a(X, Y)) \rightarrow \exists Y (a(X, Y) \land a(Y, X))$
- $M, \sigma_1 \models \exists Y (\neg (X = Y) \land a(X, Y))$ is true for $Y = \varphi_{M,\sigma_1}(j)$
- We then must show that M, $\sigma_1 \models \exists Y (a(X, Y) \land a(Y, X))$.
- Assume a(X, Y) is true, then $Y = \varphi_{M,\sigma_1}(j)$. a(Y, X) is therefore false.
- Thus M, $\sigma_1 \not\models \exists Y (a(X, Y) \land a(Y, X))$.
- Thus M, $\sigma_1 \not\models \exists Y (\neg(X = Y) \land a(X, Y)) \rightarrow \exists Y (a(X, Y) \land a(Y, X))$
- The original argument is false.

(vi) $\forall X \forall Y (a(X, j) \land a(Y, j) \rightarrow (a(X, Y) \lor a(Y, X)))$ False

- Let σ_1 be the M assignment such that $X = \varphi_M(k)$ and $Y = \varphi_M(k)$.
- $M, \sigma_1 \models a(X, j) \land a(Y, j)$
- $M, \sigma_1 \not\models a(X, Y)$ and $M, \sigma_1 \not\models a(Y, X)$. Thus $M, \sigma_1 \not\models a(X, Y) \lor a(Y, X)$
- Therefore, M, $\sigma_1 \not\models a(X, j) \land a(Y, j) \rightarrow (a(X, Y) \lor a(Y, X))$
- Therefore, the original argument is false.

Reference

Doets, Kees. From Logic to Logic Programming. Cambridge: MIT, 1994. Foundations of Computing. Web.