Pregunta sobre Contraste de la t de Student - Toma de decisión

Regla de decisión

Se rechaza H_0 si p-valor \leq nivel de significación. NO se rechaza en caso contrario; es decir

- \square H_0 se rechaza tanto al 10 como al 5 por ciento. $(p\text{-}valor \leq 5)$.
- \square H₀ debe rechazarse al 10 pero no al 5 por ciento. (5 < p-valor \leq 10).
- \square H_0 no puede rechazarse ni al 5 ni al 10 por ciento. (10 < p-valor).

Bilateral

Si el modelo $Y = \beta_1 \mathbb{1} + \beta_2 X + U$ cumple todas las hipótesis clásicas y se desea contrastar $H_0: \beta_2 = 0$ frente a $H_1: \beta_2 \neq 0$ utilizando el estadístico \mathcal{T} cuyo valor calculado (con muestra de tamaño N) es $\widehat{\mathcal{T}}$ y

$$Prob(-|\widehat{\mathcal{T}}| \le t_{N-2} \le |\widehat{\mathcal{T}}|) = X$$

Distribución t con (N-k) grados de libertad

entonces... aplíquese la Regla de decisión, donde el Cálculo del p-valor es:

Como $Prob(-|\widehat{\mathcal{T}}| \leq t_{N-2} \leq |\widehat{\mathcal{T}}|) = X$, y como el contraste es <u>bilateral</u>; el *p-valor* del contraste es la probabilidad fuera del intervalo es decir: **p-valor** = 1 - X

Cola derecha

• $\widehat{\mathcal{T}} > 0$: Si el modelo $Y = \beta_1 \mathbb{1} + \beta_2 X + U$ cumple todas las hipótesis clásicas y se desea contrastar $H_0: \beta_2 = 0$ frente a $H_1: \beta_2 > 0$ utilizando el estadístico t cuyo valor calculado (con muestra de tamaño N) es $\widehat{\mathcal{T}} > 0$, y

$$Prob(-|\widehat{\mathcal{T}}| \le t_{N-2} \le |\widehat{\mathcal{T}}|) = X$$

Distribución t con (N-k) grados de libertad

entonces... aplíquese la Regla de decisión, donde el Cálculo del p-valor es:

Como $Prob\left(-|\widehat{\mathcal{T}}| \leq t_{N-2} \leq |\widehat{\mathcal{T}}|\right) = X$, y como el contraste es de la <u>cola derecha</u>, el *p-valor* del contraste es la probabilidad a la derecha de $\widehat{\mathcal{T}}$, es decir: *p-valor* $=\frac{1-X}{2}$.

• $\widehat{\mathcal{T}}$ < 0: Si el modelo $Y = \beta_1 \mathbb{1} + \beta_2 X + U$ cumple todas las hipótesis clásicas y se desea contrastar $H_0: \beta_2 = 0$ frente a $\underline{H_1: \beta_2 > 0}$ utilizando el estadístico t cuyo valor calculado (con muestra de tamaño N) es $\widehat{\mathcal{T}}$ < 0, y

$$Prob(-|\widehat{\mathcal{T}}| \le t_{N-2} \le |\widehat{\mathcal{T}}|) = X$$

Distribución t con (N-k) grados de libertad

entonces... aplíquese la Regla de decisión, donde el Cálculo del p-valor es:

Como $Prob\left(-|\widehat{\mathcal{T}}| \leq t_{N-2} \leq |\widehat{\mathcal{T}}|\right) = X$, y como el contraste es de la <u>cola derecha</u>, el *p-valor* del contraste es la probabilidad a la derecha de $\widehat{\mathcal{T}}$, es decir: *p-valor* = $X + \frac{1-X}{2}$.

Cola izquierda

• $\widehat{\mathcal{T}} < 0$: Si el modelo $Y = \beta_1 \mathbb{1} + \beta_2 X + U$ cumple todas las hipótesis clásicas y se desea contrastar $H_0: \beta_2 = 0$ frente a $\underline{H_1: \beta_2 < 0}$ utilizando el estadístico t cuyo valor calculado (con muestra de tamaño N) es $\widehat{\underline{\mathcal{T}}} < 0$, y

$$Prob(-|\widehat{\mathcal{T}}| \le t_{N-2} \le |\widehat{\mathcal{T}}|) = X$$

Distribución t con (N-k) grados de libertad

entonces... aplíquese la Regla de decisión, donde el Cálculo del p-valor es:

Como $Prob\left(-|\hat{\mathcal{T}}| \leq t_{N-2} \leq |\hat{\mathcal{T}}|\right) = X$, y como el contraste es de la <u>cola izquierda</u>, el *p-valor* del contraste es la probabilidad a la izquierda de $\hat{\mathcal{T}}$, es decir: *p-valor* = $\frac{1-X}{2}$.

• $\widehat{\mathcal{T}} > 0$: Si el modelo $Y = \beta_1 \mathbb{1} + \beta_2 X + U$ cumple todas las hipótesis clásicas y se desea contrastar $H_0: \beta_2 = 0$ frente a $\underline{H_1: \beta_2 < 0}$ utilizando el estadístico t cuyo valor calculado (con muestra de tamaño N) es $\widehat{\underline{\mathcal{T}} > 0}$, y

$$Prob(-|\hat{\mathcal{T}}| \le t_{N-2} \le |\hat{\mathcal{T}}|) = X$$

Distribución t con (N-k) grados de libertad

entonces... aplíquese la Regla de decisión, donde el Cálculo del *p-valor* es:

Como $Prob\left(-|\hat{\mathcal{T}}| \leq t_{N-2} \leq |\hat{\mathcal{T}}|\right) = X$, y como el contraste es de la <u>cola izquierda</u>, el *p-valor* del contraste es la probabilidad a la izquierda de $\hat{\mathcal{T}}$, es decir: *p-valor* = $X + \frac{1-X}{2}$.

Contraste de la t de Student - Calculo de una probabilidad usando intervalo de confianza

Con una muestra de tamaño 28 estimamos por MCO el modelo de 4 regresores, $Y = X\beta + U$, que cumple las hipótesis clásicas. El intervalo de confianza del 60% estimado para β_3 es [4, 16]. Si $Prob(t_{24} \leq \frac{6}{7}) = 0.8$, la probabilidad estimada de que el estimador de β_3 sea mayor o igual a 28 es igual a la siguiente probabilidad:

$$Prob\left(t_{24} \geq \frac{18}{7}\right).$$

Explicación

- El intervalo [4, 16] es el resultado del siguiente cálculo: $[\widehat{\beta_3} v \cdot \widehat{\mathrm{Dt}}(\widehat{\beta_3}), \ \widehat{\beta_3} + v \cdot \widehat{\mathrm{Dt}}(\widehat{\beta_3})]$
- Por tanto, el punto medio del intervalo es la predicción puntual de β _3, es decir, $\widehat{\beta}_3 = 4 + \frac{16-4}{2} = 4 + 6 = 10$.
- El intervalo es $\widehat{\beta_3} \pm v \cdot \widehat{\mathrm{Dt}}(\widehat{\beta_3})$; donde v es el valor de las tablas utilizado para que la confianza sea del 60%, por tanto $v = 6/7 = t_{24}^{\langle 0.8 \rangle}$.
- Como la distancia del centro del intervalo a los extremos es $\frac{16-4}{2} = 6$, tenemos que $6 = v \cdot \widehat{\mathrm{Dt}}(\widehat{\beta_3}) = \frac{6}{7} \cdot \widehat{\mathrm{Dt}}(\widehat{\beta_3})$, se concluye que $\widehat{\mathrm{Dt}}(\widehat{\beta_3}) = 7$.

Ahora ya conocemos todo lo necesario para contestar:

Bajo las hipótesis clásicas $\widehat{\beta_3} \sim N\left(\beta_3, \operatorname{Dt}\left(\widehat{\beta_3}\right)\right)$, y bajo la H_0 de que $\beta_3 = 10$ tenemos que $\frac{\widehat{\beta_3} - 10(1)}{\widehat{\operatorname{Dt}}\left(\widehat{\beta_3}\right)} \sim t_{24}$, por tanto la estimación de $Prob\left(\widehat{\beta_3} \geq 28\right)$ es (realizando las mismas operaciones a izquierda y derecha de la desigualdad):

$$Prob\left(\frac{\widehat{\beta_3}-10}{7}\geq \frac{28-10}{7}\right)=Prob\left(t_{24}\geq \frac{18}{7}\right).$$