Dataset

100 Sports Classes, 13572 Training Samples, 500 Validation Samples, 500 Test Samples, 224x224 RGB images.

Initial Model

Resnet50 V2 architecture, two fully connected layers and one output layer. Total trainable parameters: 14,286,948. Non-trainable parameters: 15,695,360

Model: "sequential"

Layer (type)	Output Shape	Param #
resnet50v2 (Functional)	(None, 7, 7, 2048)	23564800
<pre>global_average_pooling2d (G lobalAveragePooling2D)</pre>	(None, 2048)	0
<pre>batch_normalization (BatchN ormalization)</pre>	(None, 2048)	8192
dense (Dense)	(None, 2048)	4196352
dropout (Dropout)	(None, 2048)	0
<pre>batch_normalization_1 (Batc hNormalization)</pre>	(None, 2048)	8192
dense_1 (Dense)	(None, 1024)	2098176
<pre>batch_normalization_2 (Batc hNormalization)</pre>	(None, 1024)	4096
dense_2 (Dense)	(None, 100)	102500
Total params: 29,982,308 Trainable params: 14,286,948 Non-trainable params: 15,695,360		

Loss: Categorical-Crossentropy

Optimizer: RMSprop with a learning rate of 0.0001

Metric: Categorical Accuracy

Train Batch Size: 16, Validation Batch Size: 16

Train and Validation Accuracy

Train and Validation Los

Observation & Conclusion

Using custom neural network architectures, we couldn't get good performance for the model. The dataset was too small for the custom neural network to do well. Complex model was easily overfitting, simple model was not able to catch important features from the data. Convolutional Neural Networks have a great option for such cases, which is transfer learning. It uses pre-trained weights calculated from another task to help solve a different (but similar) problem. Using weights from 'imagenet', deleting bottom layers, adding new ones, and training them on the new dataset, we were able to reach 97% test accuracy, which is a very good result for such small datasets.