Math 470 Assignment 31

Arnold Jiadong Yu

May 2, 2018

Q1: Let $X = \{(a_1, a_2, ...) : a_k \in \mathbb{R}, \sum_{k=1}^{\infty} |a_k| < \infty\}.$

$$d((a_1, a_2, \dots), (b_1, b_2, \dots)) = \sum_{k=1}^{\infty} |a_k - b_k|$$

Show (X, d) is separable. $(l_1 \text{ norm})$

proof: Let $\mathbf{x} = (x_1, x_2, ...) \in X$. Let $E = \{\mathbf{x}^n = (x_1^{(n)}, x_2^{(n)}, ...) : x_i^{(n)} = x_i \text{ for } i \leq n \text{ and } x_i^{(n)} = 0 \text{ for } i > n \}$ and $E \subset X$. Then $\mathbf{x}^n \to \mathbf{x}$ as $n \to \infty$. Let $\epsilon > 0$, then

$$d(\mathbf{x}, \mathbf{x}^n) = \sum_{k>n}^{\infty} |x_k| < \frac{\epsilon}{2} \text{ as } n \to \infty$$

Therefore, \mathbf{x} is limit point of \mathbf{x}^n . WTS E is countable.

Since $\mathbb{Q} \in \mathbb{R}$ is countable. Every entry can be approximated by a sequence of rational numbers. Therefore, let $y_k^{(n),(i)} \to x_i^{(n)}$ as $k \to \infty$, where $y_k^{(n),(i)} \in \mathbb{Q}$ for all $k \in \mathbb{N}$ and . Fix k, then $y_k^{(n),(i)} \in E$ for all k, call it $\mathbf{y}^{(n),(i)}$. That is $(y_k^{(n),(i)} - x_i^{(n)}) \to 0$ for large k. Moreover, $d(y_k^{(n),(i)}, x_i^{(n)})) < \frac{\epsilon}{2k}$. Hence

$$d(\mathbf{x}, \mathbf{y}^{(x),(i)}) \le d(\mathbf{x}, \mathbf{x}^n) + d(\mathbf{x}^n, \mathbf{y}^{(n),(i)}) < \frac{\epsilon}{2} + k \cdot \frac{\epsilon}{2k} < \epsilon$$

E is countable and every \mathbf{x} is a limit point of E. That is (X, d) is separable.

Q2: let X = set of all bounded sequence of real numbers.

$$d((a_1, a_2, \dots), (b_1, b_2, \dots)) = \sup_{k \in \mathbb{N}} |a_k - b_k|$$

Show that (X, d) is not separable. $(l_{\infty} \text{ norm})$

proof: Let $E=\{(a_1,a_2,...):a_i=1 \text{ or } 0\}$ (binary sequence), pick $\mathbf{x},\mathbf{y}\in E$ and $\mathbf{x}\neq\mathbf{y}$, then

$$d(\mathbf{x}, \mathbf{y}) = 1$$

Moreover, $E \subset X$ since every element in E is bounded. Therefore

$$\bigcap_{\mathbf{x}\in E}B_{\frac{1}{2}}(\mathbf{x})=\emptyset$$

Suppose $Y \subset X$ is dense, then $\overline{Y} = X$. This means every $\mathbf{x} \in E$ must be in \overline{Y} . Then $Y \cap B_{\epsilon}(\mathbf{x}) \neq \emptyset$ for each $\epsilon > 0$. Since there are uncoutable many binary sequence, then Y must be uncountable. That is (X, d) is not separable.