MIDTERM SPRING 2015

1. In a linear model,

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}, E(\mathbf{e}|\mathbf{X}) = 0, \text{var}(\mathbf{e}|\mathbf{X}) = \sigma^2 \mathbf{\Omega}$$

with Ω a known function of X. The GLS estimator is:

$$\tilde{\boldsymbol{\beta}} = (\boldsymbol{X'}\boldsymbol{\Omega}^{-1}\boldsymbol{X})^{-1}(\boldsymbol{X}\boldsymbol{\Omega}^{-1}\boldsymbol{y}),$$

the residual vector is $\hat{\boldsymbol{e}} = \boldsymbol{y} - \boldsymbol{X}\tilde{\boldsymbol{\beta}}$, and an estimate of σ^2 is

$$s^2 = \frac{1}{n-k} \hat{\boldsymbol{e}}' \boldsymbol{\Omega}^{-1} \hat{\boldsymbol{e}}$$

- (a) Find $E(\tilde{\boldsymbol{\beta}}|\boldsymbol{X})$.
- (b) Find $\operatorname{var}(\tilde{\boldsymbol{\beta}}|\boldsymbol{X})$.
- (c) Prove that $\hat{e} = M_1 e$, where $M_1 = I X(X'\Omega^{-1}X)^{-1}X'\Omega^{-1}$.
- (d) Prove that $M_1'\Omega^{-1}M_1 = \Omega^{-1} \Omega^{-1}X(X'\Omega^{-1}X)^{-1}X'\Omega^{-1}$.
- (e) Find $E(s^2|\boldsymbol{X})$.
- (f) Is s^2 a reasonable estimator for σ^2 ?
- 2. Let (y_i, x_i) be a random sample with $E(y|X) = X\beta$. Consider the Weighted Least Squares (WLS) estimator of β

$$\tilde{\beta} = (\mathbf{X'WX})^{-1}(\mathbf{X'Wy})$$

where $\mathbf{W} = diag(w_1, w_2, \dots, w_n)$ and $w_i = x_{ji}^{-2}$, where x_{ji} is one of the $\mathbf{x_i}$.

- (a) In which contexts would $\tilde{\boldsymbol{\beta}}$ be a good estimator?
- (b) Using your intuition, in which situations would you expect $\tilde{\beta}$ would perform better than the OLS estimator?
- **3.** Let \mathbf{y} be $n \times 1$, \mathbf{X} be $n \times k$ (rank k). $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$ with $E(\mathbf{x_i}e_i) = 0$. Define the ridge regression estimator

$$\hat{\beta} = (\sum_{i=1}^{n} \boldsymbol{x_i x_i'} + \lambda \boldsymbol{I_k})^{-1} (\sum_{i=1}^{n} \boldsymbol{x_i y_i})$$

where $\lambda > 0$ is a fixed constant. Find the probability limit of $\hat{\beta}$ as $n \to \infty$. Is $\hat{\beta}$ consistent for β ?

- **4.** For the ridge regression estimator in 3, set $\lambda = cn$ where c > 0 is fixed as $n \to \infty$. Find the probability limit of $\hat{\beta}$ as $n \to \infty$.
 - **5.** The model is

$$y_i = \mathbf{x_i'}\boldsymbol{\beta} + e_i$$

 $E(\mathbf{x_i}e_i) = 0$
 $\mathbf{\Omega} = E(\mathbf{x_i}\mathbf{x_i'}e_i^2)$

- (a) Find the method of moments estimators $(\hat{\pmb{\beta}}, \hat{\pmb{\Omega}})$ for $(\pmb{\beta}, \pmb{\Omega})$.
- (b) In this model, are $(\hat{\boldsymbol{\beta}}, \hat{\boldsymbol{\Omega}})$ efficient estimators of $(\boldsymbol{\beta}, \boldsymbol{\Omega})$?
- (c) If so, in what sense are they efficient?