EVALUATING MACHINE LEARNING CLASSIFIERS: ACCURACY, PRECISION AND RECALL

Scott O'Hara

Metrowest Developers Machine Learning Group

11/20/2019

REFERENCES

Applied Machine Learning in Python

University of Michigan, Prof. Kevin Collins Thompson (AMLP)

https://www.coursera.org/learn/python-machine-learning/home/welcome

Machine Learning: Classification

University of Washington, Profs. Emily Fox & Carlos Guestrin (MLC)

https://www.coursera.org/learn/ml-regression/home/welcome

REPRESENT, TRAIN, EVALUATE, REFINE

Representation:

Extract and select object features

Train models:
Fit the estimator to the data

Feature and model refinement

Evaluation

ACCURACY IS A COMMON METRIC

$$Accuracy = \frac{\# of \ correct \ predictions}{\# of \ total \ instances}$$

A model with 99.9% accuracy can sound really good!

HOWEVER, CONSIDER IMBALANCED CLASSES

- Suppose you have two classes:
 - Relevant (R): the positive class
 - Not_Relevant (N): the negative class
- Out of 1000 randomly selected items,
 on average
 - 1 item is relevant
 - 999 items are not relevant

A DUMMY CLASSIFIER GETS 99.9% ACCURACY!

- Classifier always predicts N
- Out of 1000 randomly selected items:

$$Accuracy = \frac{999}{1000} = 99.9\%$$

DUMMY CLASSIFIERS COMPLETELY IGNORE INPUT DATA

- Dummy classifiers can serve as a sanity check on your classifier's performance.
- Some commonly-used dummy classifiers:
 - most-frequent: predict most frequent label in training set.
 - stratified: random prediction based on training set distribution
 - uniform: choose predictions from a uniform probability distribution.
 - constant: predict constant label given by user.

PRECISION AND RECALL

Different applications have different goals. Accuracy is widely used, but many other metrics are possible. Two common alternatives to accuracy are: **precision** and **recall**.

PRECISION: fraction of positive predictions that are actually positive.

RECALL: fraction of positive examples that are predicted to be positive.

DOMAINS WHERE PRECISION IS IMPORTANT

- Search engine rankings, query suggestions
- Document classification
- Customer-facing tasks, e.g.,:
 - product recommendation
 - a restaurant website that automatically selects and posts positive reviews.

DOMAINS WHERE RECALL IS IMPORTANT

- Cancer tumor detection
- Search and information extraction in legal discovery.
- Often paired with a human expert to filter out false positives.

TP = true positive
FP = false positive
TN = true negative
FN = false negative

THE CONFUSION MATRIX

VISUALIZING DIFFERENT ERROR TYPES

N = TN + TP + FN + FP = 450

- Every test instance is in exactly one box.
- Breaks down classifier results by error type (FP vs FN).
- Provides more information than simple accuracy.
- Helps you choose an evaluation metric that matches your project goals.
- There are many possible metrics that can be derived from the confusion matrix.

THE CONFUSION MATRIX

- As FN + FP \rightarrow 0, Accuracy \rightarrow 1.0
- As FN + FP \uparrow , Accuracy $\rightarrow 0.0$

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

ACCURACY

- As FP \rightarrow 0, Precision \rightarrow 1.0
- As FP ↑, Precision → 0.0

$$Precision = \frac{TP}{TP + FP}$$

PRECISION

- As FN \rightarrow 0, Recall \rightarrow 1.0
- As FN \uparrow , Recall $\rightarrow 0.0$

$$Recall = \frac{TP}{TP + FN}$$

RECÁLL

ILLUSTRATING PRECISION & RECALL

digits dataset: positive class (black) is digit 1, negative class (white) all others

TN =	FP=
FN =	TP=

ILLUSTRATING PRECISION & RECALL

$$TN = 429$$
 $FP = 6$ $FN = 2$ $TP = 13$

Precision =
$$\frac{TP}{TP+FP} = \frac{13}{19} = 0.68$$

Recall = $\frac{TP}{TP+FN} = \frac{13}{15} = 0.87$

HIGH PRECISION / LOW RECALL

$$TN = 435$$
 $FP = 0$ $FN = 8$ $TP = 7$

Precision =
$$\frac{TP}{TP+FP} = \frac{7}{7} = 1.00$$

Recall = $\frac{TP}{TP+FN} = \frac{7}{15} = 0.47$

HIGH PRECISION / LOW RECALL

$$TN = 408$$
 $FP = 27$ $FN = 0$ $TP = 15$

Precision =
$$\frac{TP}{TP+FP} = \frac{15}{42} = 0.36$$

Recall = $\frac{TP}{TP+FN} = \frac{15}{15} = 1.06$

BALANCING PRECISION AND RECALL

Rather than seeking to maximize precision or recall, an optimal balance between the two is often sought.

DECISION FUNCTIONS

- A decision function is a classifier that returns a score that represents how confident the classifier is in its prediction.
- o The **decision threshold** can be "adjusted" to result in a decision function that exhibits more or less precision or recall.
- A higher threshold results in a more "pessimistic" classifier i.e.,
 it increase precision.
- A lower threshold results in a more "optimistic" classifier i.e., it increase recall.
- By sweeping the decision threshold through the entire range of possible score values, we get a series of classification outcomes that form a curve.

VARYING THE DECISION THRESHOLD

True Label	Classifier score	
0	-27.6457	
0	-25.8486	
0	-25.1011	
0	-24.1511	
0	-23.1765	
0	-22.575	
0	-21.8271	
0	-21.7226	
0	-19.7361	
0	-19.5768	
0	-19.3071	
0	-18.9077	
0	-13.5411	
0	-12.8594	
1	-3.9128	
0	-1.9798	
1	1.824	
0	4.74931	
1	15.234624	
1	21.20597	

Classifier score threshold	Precision	Recall
-20	4/12=0.34	4/4=1.00
-10	4/6=0.67	4/4=1.00
0	3/4=0.75	3/4=0.75
10	2/2=1.0	2/4=0.50
20	1/1=1.0	1/4 = 0.25

Recall

Precision

PRECISION-RECALL CURVES

X-axis: Precision

Y-axis: Recall

Top right corner:

- The "ideal" point
- Precision = 1.0
- Recall = 1.0

"Steepness" of P-R curves is important:

- Maximize precision
- while maximizing recall

ROC CURVES

X-axis: False Positive Rate Y-axis: True Positive Rate

Top left corner:

- The "ideal" point
- False positive rate of zero
- True positive rate of one

"Steepness" of ROC curves is important:

- Maximize the true positive rate
- while minimizing the false positive rate

SUMMARIZING AN ROC CURVE IN ONE NUMBER: AREA UNDER THE CURVE (AUC)

- AUC = 0 (worst) AUC = 1 (best)
- AUC can be interpreted as:
 - 1. The total area under the ROC curve.
 - 2. The probability that the classifier will assign a higher score to a randomly chosen positive example than to a randomly chosen negative example.
- Advantages:
 - Gives a single number for easy comparison.
 - Does not require specifying a decision threshold.
- Drawbacks:
 - As with other single-number metrics, AUC loses information, e.g. about tradeoffs and the shape of the ROC curve.
 - This may be a factor to consider when e.g. wanting to compare the performance of classifiers with overlapping ROC curves.

CONCLUSION

- 1. Consider carefully the data you have and what you are trying to do with it.
- 2. Choose a SINGLE metric and optimize that metric.
- 3. If this gives satisfactory results, then you are done. Otherwise return to step 1.

EXTRA SLIDES

PROBABILISTIC CLASSIFIERS

- Some classifiers return a probability that an item is a particular class rather than a Boolean value.
- Examples include Logistic regression, Naïve Bayes.
- Typical rule is choose likely class if P(x) > threshold where threshold > 0.5
- Adjusting threshold affects predictions of classifier
- Higher threshold results in a more "pessimistic"
 classifier i.e., it increase precision.

ROC CURVES: RANDOM GUESSING

ROC CURVES: PERFECT CLASSIFIER

SUMMARIZING AN ROC CURVE IN ONE NUMBER: AREA UNDER THE CURVE (AUC)

- AUC = 0 (worst) AUC = 1 (best)
- AUC can be interpreted as:
 - 1. The total area under the ROC curve.
 - 2. The probability that the classifier will assign a higher score to a randomly chosen positive example than to a randomly chosen negative example.
- Advantages:
 - Gives a single number for easy comparison.
 - Does not require specifying a decision threshold.
- Drawbacks:
 - As with other single-number metrics, AUC loses information, e.g. about tradeoffs and the shape of the ROC curve.
 - This may be a factor to consider when e.g. wanting to compare the performance of classifiers with overlapping ROC curves.

THE F1-SCORE

- o The **F1-score** combines precision and recall into a single number.
- o The F1-score is the *harmonic mean* of precision and recall.

$$F_1 = 2 \cdot \frac{Precision \cdot Recall}{Precision + Recall} = \frac{2 \cdot TP}{2 \cdot TP + FN + FP}$$

THE F-SCORE

- o The **F-score** is a generalization of the F1-score.
- β allows adjustment of the metric to control
 the emphasis on recall vs precision.
 - β < 1.0 results in greater precision (minimize false positives)
 - β > 1.0 results in greater recall (minimize false negatives)

$$F_{\beta} = (1 + \beta^2) \cdot \frac{Precision \cdot Recall}{(\beta^2 \cdot Precision) + Recall} = \frac{(1 + \beta^2) \cdot TP}{(1 + \beta^2) \cdot TP + \beta \cdot FN + FP}$$