Module 5: Classification

Assignment Solution

edureka!

© Brain4ce Education Solutions Pvt. Ltd.

Module 5: Assignment Solution

Analyze the information given in the Affairs dataset and create classifiers using it.

The dataset can be loaded into R using the library:

library(AER)

$\mathbf{affairs}^{\Diamond}$	$gende\hat{\vec{r}}$	age ‡	yearsmarried	children	religiousnesŝ	education	$occupatio\hat{\textbf{n}}$	rating ‡
0	male	37.0	10.000	no	3	18	7	4
0	female	27.0	4.000	no	4	14	6	4
0	female	32.0	15.000	yes	1	12	1	4
0	male	57.0	15.000	yes	5	18	6	5
0	male	22.0	0.750	no	2	17	6	3
0	female	32.0	1.500	no	2	17	5	5
0	female	22.0	0.750	no	2	12	1	3
0	male	57.0	15.000	yes	2	14	4	4
0	female	32.0	15.000	yes	4	16	1	2
0	male	22.0	1.500	no	4	14	4	5
0	male	37.0	15.000	yes	2	20	7	2

The description of the attributes in the dataset are as follows:

- affairs numeric. How often engaged in extramarital sexual intercourse during the past year
- gender Factor indicating gender.
- age numeric variable coding age in years
- yearsmarried numeric variable coding number of years married
 0.125 = 3 months or less, 0.417 = 4–6 months, 0.75 = 6 months–1
 year, 1.5 = 1–2 years, 4 = 3–5 years, 7 = 6–8 years, 10 = 9–11 years, 15
 = 12 or more years.
- religiousness numeric variable coding religiousness: 1 = anti, 2 = not at all, 3 = slightly, 4 = somewhat, 5 = very.
- Education numeric variable coding level of education: 9 = grade school, 12 = high school graduate, 14 = some college, 16 = college graduate, 17 = some graduate work, 18 = master's degree, 20 = Ph.D., M.D., or other advanced degree.

Perform the following tasks on the dataset

Task 1: Using the affairs column of our data

- → Create a new column with nominal values "YES" and "NO".
- → Convert it into factor

```
#To load the data we will first attach the library AER into R
library(AER)
data("Affairs")
View(Affairs)
?Affairs

#Here we will convert the column affairs into class variables as
Affairs$yesno<-ifelse(Affairs$affairs>0,"YES","NO")
Affairs$yesno<-as.factor(Affairs$yesno)
class(Affairs$yesno)</pre>
```

Task 2: Create a classifier with our data using Decision tree algorithm

- → Plot the Decision tree
- → Calculate the accuracy using confusion matrix

```
#Now we can remove the first column
Affairs<-Affairs[-1]
set.seed(3)
id<-sample(2,nrow(Affairs),prob = c(0.7,0.3),replace = T)
trainaffair<-Affairs[id==1,]
testaffair<-Affairs[id==2,]
#Decision Tree
library(rpart)
affairtree<-rpart(yesno~.,data = trainaffair)
affairtree
plot(affairtree,margin = 0.1)
text(affairtree,pretty = T,cex = 0.7)
predtree<-predict(affairtree,testaffair,type = "class")</pre>
predtree
library(caret)
confusionMatrix(table(predtree,testaffair$yesno))
```

Task 3: Create another classifier with our data using random forest algorithm

- → Calculate the accuracy using confusion matrix
- → Find out the importance of attributes using importance() function

```
library(randomForest)
affairforest<-randomForest(yesno~.,data = trainaffair)
affairforest

predforest<-predict(affairforest,testaffair,type = "class")
predforest
confusionMatrix(table(predforest,testaffair$yesno))
importance(affairforest)</pre>
```

