REPORT DOCUMENTATION PAGE

AFRL-SR-BL-TR-00-

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the tir.

g and

and to the Office of Management and Budget, Pape 1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE 5/1/00	gion, DC 20003			
			AND DATES COVE t 1/15/97 -		
. TITLE AND SUBTITLE				5. FUNDING NUMBERS	
Spectroscopy of Anion a Stimulated Raman Pumpin		Using			
6.AUTHOR(S) Daniel M. Neumark					
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)				8. PERFORMING ORGANIZATION REPORT NUMBER	
University of California Sponsored Projects Office 336 Sproul Hall					
Berkeley, CA 94720-5940	¥				
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)			AGENCY	10. SPONSORING / MONITORING AGENCY REPORT NUMBER	
Air Force Office of Scientific Research/NL Chemistry and Materials Science Research 801 N. Randolph St., Suite 732			F49620-97-	1-0018	
Arlington, VA 22203-1977			2000	0740 445	
11. SUPPLEMENTARY NOTES			2000	0710 115	
12a.DISTRIBUTION/AVAILABILITY Approved for public rel	STATEMENT ease; distribution is	s unlimited		12b. DISTRIBUTION CODE	
				·	
13. ABSTRACT (Maximum 200 Word	(s)				
During the last grant p and ZEKE spectroscopy t neutral species. Speci halides (RgX ⁻) and clus effects of solvation on probe of neutral radica (d) time-resolved studi photoelectron spectrosc	o probe the spectrose fic areas include (a ters of the form Rg _n X a molecular (as opposed and reactive interes of excited state of	copy and dynam) ZEKE spectro -, (b) PES of osed to atomic rmediates, spe	ics of negat scopy of dia ${\rm I_2}^-({\rm Ar})_{\rm n}$ and to ion are precifically ${\rm I_3}$	ively-charged and atomic rare gas $I_2^-(CO_2)_n$, in which the cobed, (c) PES as a , CH_3O , and NCN, and	

OF REPORT

17. SECURITY CLASSIFICATION

unclassified

Transitition states, clusters, radicals photodetachment

OF THIS PAGE

18. SECURITY CLASSIFICATION

unclassified

20. LIMITATION OF ABSTRACT

unlimited (SAR)

16. PRICE CODE

19. SECURITY CLASSIFICATION

unclassified

OF ABSTRACT

FINAL TECHNICAL REPORT

TITLE: Spectroscopy of Anion and Transition States Using Stimulated Raman Pumping

PRINCIPAL INVESTIGATOR: Daniel M. Neumark

DATE: 1/15/97 - 1/14/00

GRANT NO: F49620-97-1-0018

SENIOR RESEARCH PERSONNEL: none, other than P.I.

JUNIOR RESEARCH PERSONNEL: K. R. Asmis, M. Furlanetto, H. Gomez, J. Greenblatt, T. Lenzer, N. Pivonka, T. Taylor, I. Yourshaw, M. Zanni

PUBLICATIONS ACKNOWLEDGING THIS GRANT: see attached

Abstract:

During the last grant period, we have used negative ion photoelectron spectroscopy (PES) and ZEKE spectroscopy to probe the spectroscopy and dynamics of negatively-charged and neutral species. Specific areas include (a) ZEKE spectroscopy of diatomic rare gas halides (RgX⁻) and clusters of the for Rg_nX⁻, (b) PES of I₂⁻(Ar)_n and I₂⁻(CO₂)_n, in which the effects of solvation on a molecular (as opposed to atomic) ion are probed, (c) PES as a probe of neutral radicals and reactive intermediates, specifically I₃, CH₃O, and NCN, and (d) time-resolved studies of excited state dynamics in I⁻(H₂O)_n clusters using femtosecond photoelectron spectroscopy (FPES).

Technical Summary:

(a) ZEKE spectroscopy of diatomic RgX species and Rg_nX clusters

We have measured ZEKE spectra of the diatomic species KrBr, KrCl, XeBr, XeI, and ArCl. 1-3 In these experiments, the anions are photodetached to access the ground X (1/2) and low-lying I (3/2) and II (1/2) electronic states of the open shell RgX species; the number in parentheses is Ω , the projection of the electronic and spin angular momentum on the internuclear axis, since Hund's case (c) is appropriate here. The X and I states correlate to the Rg + X(2 P_{3/2}) asymptote, whereas the II state correlates to the higher-lying Rg + X(2 P_{1/2}) asymptote.

The resolution of the spectrometer is as high as 1 c⁻¹, allowing us to observe vibrational transitions between the anion and three neutral electronic states. By fitting the spectra to model potentials, we obtain high quality pair-potentials for the anion and neutral states. The neutral potentials can also be extracted from scattering⁴⁻⁶ and, in some cases, emission spectroscopy experiments;^{7,8} our analysis generally incorporate this earlier work and results in a full set of three high quality neutral potentials. Our anion potentials represent a significant improvement over those obtained from ion mobility measurements,⁹⁻¹¹ the only experimental technique other than ours from which these potentials have been extracted. We find that the ion mobility potentials typically overestimate the RgX well depth by 25-50% and underestimate the equilibrium internuclear separation by as much as 1 Å.

We have also measured ZEKE spectra of the larger clusters Rg_nX, in order to study in detail the effects of solvation on the anion and neutral halogen atom. Results were obtained for Xe_nl⁻ clusters with up to 14 Xe atoms¹² and Ar_nCl⁻ clusters with up to 15 Ar atoms. These experiments yield accurate electron affinities and neutral state splitting as a function of cluster size. Since all the pair potentials within the anion and neutral cluster are well-determined from both our diatomic ZEKE experiments and previous work on Rg₂ potentials, our experiments provide a sensitive probe of many-body effects in the larger clusters. By performing molecular dynamics simulations on the anion and neutral clusters using our pair potentials and successive non-additive terms, we can determine which non-additive terms are needed and their relative importance. Specifically, we find that using pair potentials alone significantly overestimates the electron affinities. The inclusion of induction effects in the anion overcorrects for this. vielding electron affinities that are too low. Much of this overcorrection is removed by including exchange-induced quadrupole interactions in the anion, and very good agreement with experiment is obtained from including additional many-body effects.

The experimental and theoretical work on Xe_nl⁻ is of particular interest as it shows there is no solvent shell closure at n=12, as had been expected fro mass spectrometry measurements.¹³ Instead, our simulations show that the lowest energy structures for n=13 and 14 consist of a single solvent shell around the l⁻. Simulations using the pair potentials alone yield a shell-closing at n=12, so

it appears that the inclusion of many-body effects changes the geometries of the lowest-energy structures for the n=13 and 14 clusters.

(b) Photoelectron spectroscopy of I₂-(Ar)_n and I₂-(CO₂)_n clusters

The work described above considered the effect of solvation on atomic species. Analogous experiments on clusters with molecular chromophores such as I_2 (Ar)_n and I_2 (CO₂)_n are also of interest, particularly in light of time-resolved experiments performed on these species by Lineberger and ourselves. By measuring high resolution photoelectron spectra of these clusters we determine the solvation energetics and learn about structural changes that occur upon solvation. Our studies on I_2 (Ar)_n (n=1-20) showed a decrease in slope in the stepwise solvation energy at n=6, indicating a weaker binding energy for the seventh (and higher) Ar atoms. ¹⁴ This is consistent with molecular dynamics simulations by Parson, ¹⁵ which predict that the first six Ar atoms form a ring around the I-I bond and can therefore interact with the partial negative charge on each I atom. Subsequent Ar atoms cluster can interact strongly with only a single I atom and therefore are not as strongly bound.

The photoelectron spectra also show that the I_2^- chromophore is vibrationally colder in I_2^- (Ar) than in the bare I_2^- produced in our ion source. This can be understood because the binding energy of I_2^- (Ar) is sufficiently small (53±4 meV)¹⁴ so that clusters with four or more I_2^- vibrational quanta undergo predissociation before they can be photodetached. This reduction of vibrational complexity upon clustering with an Ar atom appears to be quite general and will be exploited in the proposed research program.

Our studies of $I_2^-(CO_2)_n$ are still in progress but have already revealed that the CO_2 solvent molecules are slightly bent in the anion clusters. This is evident from the observation of vibrational progressions in the CO_2 bend, just as we found previously for $X^-(CO_2)_n$ clusters. This result should be of considerable interest because all simulations of $X_2^-(CO_2)_n$ clusters performed to date¹⁶⁻¹⁹ have assumed the CO_2 solvent molecules to be linear.

(c) Reactive intermediates and free radicals

We have characterized the ground and first excited states of the I_3 radical by photoelectron spectroscopy of I_3^- and $Ar \cdot I_3^-$ at 266 nm.²⁰ The electron affinity of I_3 is 4.226 ± 0.013 eV. Based on the recently determined bond dissociation energy of I_3^- ,²¹ the I_3 ground state is bound by 0.143 ± 0.06 eV, and the first excited state lies 0.27 eV above the ground state. The I_3 radical was proposed many years ago as an intermediate in the recombination of I atoms,²²⁻²⁵ and our experiment represents the first determination that this species is thermodynamically stable. In addition, a vibrational progression is seen in the ground state band of the I_3^- photoelectron spectrum. The addition of an argon atom to I_3^- reduces the contribution of hot bands to the photoelectron spectrum, just as in the case of $Ar \cdot I_2^-$, facilitating the interpretation of the vibrational structure. Simulations indicate that the I_3 ground state is linear with a symmetric stretch frequency o 115 ± 5 cm⁻¹ and is likely to be centrosymmetric.

The photoelectron spectra of the methoxide anions, CH₃O⁻ and CD₃O⁻, were measured at considerably higher resolution²⁶ (8-10 meV) than in the only previously reported study (60 meV).²⁷ The spectra show resolved vibrational

structure corresponding to vibrational levels of the CH₃O / CD₃O $\widetilde{X}(^2E)$ state. These vibrational progressions are assigned to the degenerate v_5 and v_6 modes of the methoxy radical; no progressions in the totally symmetric stretch modes are observed. In addition, we obtain refined electron affinities: EA(CH₃O) = 1.568 ± 0.005 eV and EA(CD₃O) = 1.551 ± 0.005 eV.

We also obtained the photoelectron spectrum of the cyanonitrene anion, NCN⁻, at 266 nm.²⁸ This spectrum reveals the \widetilde{a} $^{1}\Delta_{g}$ and the \widetilde{b} $^{1}\Sigma_{g}^{+}$ of NCN states together with the \widetilde{X} $^{3}\Sigma_{g}^{-}$ ground state for the first time. The low-lying singlet states are separated from the triplet ground state by 1.010 \pm 0.010 and 1.629 \pm 0.010 eV, respectively. We find a vibrational frequency of 1120 \pm 50 c $^{-1}$ for the v_{1} mode of the \widetilde{b} $^{1}\Sigma_{g}^{+}$ state.

(d) Time-resolved studies of electron solvation dynamics in $\Gamma(H_2O)_n$ clusters

While much of our work on solvated halide anions has focused on frequency-domain photodetachment spectroscopy (part (a),above), we have also performed time-resolved experiments on electron solvation dynamics in $I^-(D_2O)_{n=4-6}$ and $I^-(H_2O)_{4-6}$ using femtosecond photoelectron spectroscopy (FPES). ^{29,30} In these experiments, an ultrafast pump pulse excites the anion to the cluster analog³¹ of the charge-transfer-to-solvent state seen for I^- in aqueous solution. Evolution o this state is monitored by time-resolved photoelectron spectroscopy using an ultrafast probe pulse. We observe a profound change in the excited state dynamics as the number of water molecules increases. The excited n=4 clusters undergo simple population decay attributed to vibrational autodetachment.

However, in the n=5 and 6 clusters the solvent molecules rearrange to stabilize and localize the excess electron, showing characteristics associated with electron solvation dynamics in bulk water. Comparison of the FPES of $\Gamma(D_2O)_n$ with $\Gamma(H_2O)_n$ indicates more rapid solvation in the H_2O clusters.

References:

- ¹ I. Yourshaw, T. Lenzer, G. Reiser, and D. M. Neumark, J. Chem. Phys. **109**, 5247 (1998).
- ² T. Lenzer, M. R. Furlanetto, K. R. Asmis, and D. M. Neumark, J. Chem. Phys. **109**, 10754 (1998).
- ³ T. Lenzer, I. Yourshaw, M. R. Furlanetto, G. Reiser, and D. M. Neumark, J. Chem. Phys. **110**, 9578 (1999).
- ⁴ P. Casavecchia, G. He, R. K. Sparks, and Y. T. Lee, J. Chem. Phys. **75**, 710 (1981).
- ⁵ P. Casavecchia, G. He, R. K. Sparks, and Y. T. Lee, J. Chem. Phys. **77**, 1878 (1982).
- ⁶ V. Aquilanti, D. Cappelletti, V. Lorent, E. Luzzatti, and F. Pirani, J. Phys. Chem. **97**, 2063 (1993).
- ⁷ J. O. Clevenger and J. Tellinghuisen, J. Chem. Phys. **103**, 9611 (1995).
- ⁸ D. T. Radzykewycz and J. Tellinghuisen, J. Chem. Phys. **105**, 1330 (1996).
- ⁹ D. R. Lamm, R. D. Chelf, J. R. Twist, F. B. Holleman, M. G. Thackston, F. L. Eisele, W. M. Pope, I. R. Gatland, and E. W. McDaniel, J. Chem. Phys. **79**, 1965 (1983).
- 10 C. C. Kirkpatrick and L. Viehland, Chem. Phys. 98, 221 (1985).
- ¹¹ L. A. Viehland and C. C. Kirkpatrick, Chem. Phys. **202**, 285 (1996).
- ¹² T. Lenzer, M. R. Furlanetto, N. L. Pivonka, and D. M. Neumark, J. Chem. Phys. **110** (in press).
- ¹³ I. Becker, G. Markovich, and O. Cheshnovsky, Phys. Rev. Lett. **79**, 3391 (1997).
- ¹⁴ K. R. Asmis, T. R. Taylor, C. S. Xu, and D. M. Neumark, J. Chem. Phys. **109**, 4389 (1998).
- ¹⁵ J. Faeder, N. Delaney, P. E. Maslen, and R. Parson, Chem. Phys. Lett. **270**, 196 (1997).
- ¹⁶ F. G. Amar and L. Perera, Z. Phys. D **20**, 173 (1991).
- ¹⁷ L. Perera and F. G. Amar, J. Chem. Phys. **90**, 7354 (1989).
- ¹⁸ J. M. Papanikolas, P. E. Maslen, and R. Parson, J. Chem. Phys. **102**, 2452 (1995).
- ¹⁹ N. Delaney, J. Faeder, P. E. Maslen, and R. Parson, J. Phys. Chem. A **101**, 8148 (1997).
- ²⁰ T. R. Taylor, K. R. Asmis, M. T. Zanni, and D. M. Neumark, J. Chem. Phys. **110**, 7607 (1999).

- ²¹ K. Do, T. P. Klein, C. A. Pommerening, and L. S. Sunderlin, J. Am. Soc. Mass Spectrom. **8**, 688 (1997).
- ²² R. M. Noyes and J. Zimmerman, J. Chem. Phys. **18**, 656 (1950).
- ²³ M. I. Christie, A. J. Harrison, R. G. W. Norrish, and P. G., Proc. Roy. Soc. (London) **A231**, 446 (1955).
- ²⁴ D. L. Bunker and N. Davidson, J. Am. Chem. Soc. **80**, 5090 (1958).
- ²⁵ G. Porter, Disc. Faraday Soc. **33**, 198 (1962).
- ²⁶ D. L. Osborn, D. J. Leahy, E. H. Kim, E. deBeer, and D. M. Neumark, Chem. Phys. Lett. **292**, 651 (1998).
- ²⁷ P. C. Engelking, G. B. Ellison, and W. C. Lineberger, J. Chem. Phys. **69**, 1826 (1978).
- ²⁸ T. R. Taylor, R. T. Bise, K. R. Asmis, and D. M. Neumark, Chem. Phys. Lett. **301**, 413 (1999).
- ²⁹ M. T. Zanni, L. Lehr, B. J. Greenblatt, R. Weinkauf, and D. M. Neumark, in *Ultrafast Phenomena XI*, edited by T. Elsaesser, J. G. Fujimoto, D. Wiersma, and W. Zinth (Springer-VerlagJournal, Berlin, 1998), p. 474.
- ³⁰ L. Lehr, M. T. Zanni, C. Frischkorn, R. Weinkauf, and D. M. Neumark, Science **284**, 635 (1999).
- ³¹ D. Serxner, C. E. H. Dessent, and M. A. Johnson, J. Chem. Phys. **105**, 7231 (1996).

Publications:

- 1. K. R. Asmis, T. R. Taylor, C. Xu and D. M. Neumark, "Anion Photoelectron Spectroscopy of I_2^- and I_2^- Ar_n (n = 1 14, 16, 20) Clusters," J. Chem. Phys. 109, 4389, (1998).
- 2. I. Yourshaw, T. Lenzer, G. Reiser, and D. M. Neumark, "Zero electron kinetic energy (ZEKE) spectroscopy of the KrBr-, XeBr-, and KrCl- anions," J. Chem. Phys. 109, 5247, (1998).
- 3. M. T. Zanni, L. Lehr, B. J. Greenblatt, R. Weinkauf and D. M. Neumark, "Dynamics of charge-transfer-to-solvent precursor states in I⁻(D₂O)_n clusters," Ultrafast Phenomena XI <u>63</u>, 474, (1998).
- T. Lenzer, M. Furlanetto, K. R. Asmis and D. M. Neumark, "Zero Electron kinetic energy (ZEKE) and Photoelectron Spectroscopy of the Xel⁻ anion," J. Chem Phys. <u>109</u>, 10754, (1998).
- 5. T. R. Taylor, R. T. Bise, K. R. Asmis and D. M. Neumark, "The singlet-triplet splittings of NCN," Chem. Phys. Lett. <u>301</u>, 413, (1998).
- 6. T. Lenzer, M. R. Furlanetto, N. L. Pivonka and D. M. Neumark, "Zero electron kinetic energy and threshold photodetachment spectroscopy o Xe_nl⁻ clusters (n=2-14): binding, many-body effects, and structures," J. Chem. Phys. 110, 6714, (1999).
- 7. L. Lehr, M. T. Zanni, C. Frischkorn, R. Weinkauf and D. M. Neumark, "Electron solvation dynamics in finite systems: A femtosecond study of iodide (water)_n anion clusters," *Science*, <u>284</u>, 635, (1999).
- 8. T. R. Taylor, K. R. Asmis, M. T. Zanni and D. M. Neumark, "Characterization of the I₃ radical by anion photoelectron spectroscopy," J. Chem. Phys. <u>110</u>, 3736, (1999).
- 9. T. Lenzer, I. Yourshaw, M. R. Furlanetto, G. Reiser and D. M. Neumark, "Zero electron kinetic energy spectroscopy of the ArCl anion," J. Chem. Phys. <u>110</u>, 9578, (1999).
- A. L. Kaledin, M. C. Heaven, K. Morokuma and D. M. Neumark, "Cl⁻₃ electron photodetachment spectrum: measurement and assignment," Chem. Phys. Lett. <u>306</u>, 48, (1999).