Ciencia de Datos con Python

Una breve introducción

Qué es Machine Learning?

"Dar la habilidad a las computadoras de aprender a tomar decisiones en base a la data, sin estar explícitamente programadas."

Ejemplos:

- Aprender a predecir si un email es spam o no
- Agrupar las entradas de Wikipedia en diferentes categorías

Aprendizaje Supervisado

La data es etiquetada y el programa aprende a predecir el output desde el input

Regresión: predecir valores continuos

- Precio de una casa en Rio
- Valor de las criptomonedas

Clasificación: predice valores discretos

- Esta pintura es de humano o de un Al?
- Este email es SPAM?

Aprendizaje No Supervisado

Descubre patrones ocultos en data no etiquetada.

Clustering: encuentra patrones y estructuras en data no etiquetada agrupando en clusters.

- Agrupa nuevos tópico en Redes Sociales (Twitter)
- Clusters de clientes para recomendación
- Search engine agrupan objetos similares en un cluster

Aprendizaje Reforzado

Software que interactúa con su entorno y aprende a cómo mejorarse. Tiene un sistema de premios y castigos.

- Economía
- Juegos (AlphaGo)

Pregunta

Cuál de estos problemas es un problema de aprendizaje supervisado de clasificación:

- 1. Usar data financiera etiquetada para predecir si el valor de un bien crecerá o disminuirá.
- 2. Usar data etiquetada de precios de vivienda para predecir el precio de la vivienda basado en sus características.
- 3. Usar data no etiquetada para agrupar a los estudiantes en diversas categorías para ofrecerles cursos.
- 4. Usar data financiera etiquetada para predecir el valor de un bien la próxima semana.

Aprendizaje Supervisado

La meta del aprendizaje supervisado es:

- Automatizar el tiempo consumido o gasto por una tarea manual.
 - Ejemplo: Diagnósticos de doctores.
- Hacer predicciones del futuro
 - EJemplo: El cliente le dará clic al anuncio o no?
- Necesitas data etiquetada
 - Data histórica etiquetada
 - Experimentos para conseguir data etiquetada
 - Data etiquetada por Crowd-sourcing (ReCAPTCHA)

Aprendizaje Supervisado

- Características = variables predictoras = variables independientes (Features)
- Variable objetivo = variable dependiente = variable respuesta
 (Target)

Predictor variables

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2

Target variable

El dataset Iris

Características:

- Longitud del pétalo
- Ancho del pétalo
- Longitud del sépalo
- Ancho del sépalo

Variable objetivo: Especie

- Versicolor
- Virginica
- Setosa

Idea básica: predecir la etiqueta de un punto basado en:

- Observación de los "k"
 puntos etiquetados más
 cercanos
- Tomar lo que dice la mayoría

Idea básica: predecir la etiqueta de un punto basado en:

- Observación de los "k" puntos etiquetados más cercanos
- Tomar lo que dice la mayoría

Idea básica: predecir la etiqueta de un punto basado en:

- Observación de los "k" puntos etiquetados más cercanos
- Tomar lo que dice la mayoría

Idea básica: predecir la etiqueta de un punto basado en:

- Observación de los "k" puntos etiquetados más cercanos
- Tomar lo que dice la mayoría

k-NN: Resultado

k-NN: Resultado

Midiendo el Performance del Modelo

- En clasificación, el accuracy es una métrica comúnmente usada.
- Accuracy = Fracción de predicciones correctas.
- Cuál data debe ser usada para calcular el accuracy?
- Cómo rendirá nuestro modelo en una nueva data?

$$accuracy = \frac{correct}{correct + incorrect}$$

Overfitting & Underfitting

Complejidad del Modelo

- k grande = límites más lineales = modelo menos complejo
- k pequeño = modelo más complejo = puede llevar a overfitting

Complejidad del Modelo y over/underfitting

Complejidad del Modelo y over/underfitting

