

Modelling pollution in the urban environment using neural networks

Hanson Shen
Prof Christopher C. Pain
Dr Claire E. Heaney
Dr Boyang Chen

CONTENTS

1 Introduction

4 Results

2 Literature Review

5 Conclusion

3 Methodology

INTRODUCTIOIN

Topic

Air Pollution

Public Health Concern

Question

Prediction Accuracy

Limitations of Traditional Methods

Answer

Comprehensive Framework incorporating

- Neural Networks
- Computational Fluid Dynamic
- Data Assimilation

Neural Networks Computational Fluid Dynamics

Potential and Performance

NN-based Solver for PDEs

Generation of Predictions

Traditional Modelling

v.s.

Convolutional VAE

- Computational Resources
- Reducing Dimensionality

Assimilation with **Observational Data**

- Refining the Model
- Adjusting to Realistic Environment
- Accuracy of Predictions

METHODOLOGY – Overview of the Workflow

Structured Mesh

Traffic Data

METHODOLOGY - Setup of a Test Case

METHODOLOGY – Data Preprocessing

METHODOLOGY – Convolutional VAE

3x64x64x64=<u>786,432</u>

64x8x8x8 = 32,768

METHODOLOGY – Convolutional VAE

METHODOLOGY – CFD Simulation

METHODOLOGY - Observational Data

METHODOLOGY – Data Assimilation

METHODOLOGY – Data Assimilation Loop

RESULTS - Velocity and Pollution Field

Wind Velocity in X-Direction

Pollution Concentration Field

RESULTS - Velocity and Pollution Field

Wind Velocity in Z-Direction Wind Velocity in Y-Direction Simulation Simulation Observation Observation Updated Updated

RESULTS - Detailed Analysis

(Velocity Field in x-direction at 1-Meter Height)

RESULTS – Data Mismatch & Sensor Performance

CONCLUSION & DISCUSSION

1 2 3

Novel Framework

- Neural Networks
- Computational Fluid Dynamic
- Data Assimilation

Large-Scale Predictions

- Feasibility for a smaller domain
- Relative Error < 10%
- Environmental Policy

Moving Window Strategy

- Memory Issue
- Stored and Reloaded
- In terms of Time

Modelling pollution in the urban environment using neural networks

Hanson Shen
Prof Christopher C. Pain
Dr Claire E. Heaney
Dr Boyang Chen