

Métricas de avaliação II: MSE

≡ Ciclo	Ciclo 03: Aprendizado supervisionado - Regressão
# Aula	23
① Created	@January 30, 2023 7:58 AM
☑ Done	
☑ Ready	

Objetivo da Aula:

П	A reta	de	regressão
	/ \ I C L C	uС	regressae

☐ O erro MSE

П	Os	problemas	do	MSE
		problemae	au	

г	\neg	_					
-	- 1	н.	ρο	SH	ın	n	r

Próxima aula

Conteúdo:

▼ 1. A reta de regressão

▼ 2. O erro MSE

MSE (Mean Square Error) calcula a média do quadrado das diferenças entre os valores reais e preditos.

O MSE é usado como um função de perda (métrica de performance) e representa quão bem o model ajustou aos dados de treinamento. Quanto menor o MSE, melhor o ajuste do modelo aos dados.

▼ 2.1 Fórmula

O erro médio quadrático, conhecido como MSE, é calculado da seguinte forma:

$$MSE = rac{1}{n}\sum_{i=1}^n (y_i - \hat{y_i})^2$$

▼ 2.2 Exemplo:

Actual Value (y)	Predicted Value (ŷ)	Error (y - ŷ)	Squared Error (Error^2)
10	18	-8	64
120	10	110	12100
15	13	2	4
18	25	-7	49
20	19	1	1
25	26	-1	1
28	27	1	1
30	29	1	1
33	31	2	4
35	38	-3	9
38	37	1	1
40	39	1	1
43	42	1	1
45	44	1	1
			142
			MSE = (12100 / 14) = 10.14
			= 864,00

▼ 2.3 Como interpretar o MSE

O MSE é um único número que nos diz o quão próximo as previsões estão dos valores reais, na média.

▼ 3. Os problemas do MSE

- Sensível na presença de outliers: Um único grande erro pode impactar significativamente o valor final do MSE.
- 2. Fora de escala: O MSE é o erro quadrático, que não está na mesma escala da variável resposta. Por exemplo, o MSE da previsão de metro é metro ao quadrado. Não é possível comparar se o erro está bom ou ruim em relação a escala original.

▼ 4. MSE na prática

```
import pandas as pd
import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn import metrics as mt

# 1.0 Load dataset
df = pd.read_csv( '../dataset/train.csv' )
```

```
# 2.0 Seleção de Features
features = ['idade', 'divida_atual', 'renda_anual', 'valor_em_investimentos',
             'taxa_utilizacao_credito', 'num_emprestimos', 'num_contas_bancarias', 'num_cartoes_credito', 'dias_atraso_dt_venc', 'num_pgtos_atrasados', 'num_consultas_credito', 'taxa_juros']
label = ['saldo_atual']
x_train = df.loc[:, features]
y_train = df.loc[:, label]
# 3.0 Model Training
lr_model = LinearRegression()
lr_model.fit( x_train, y_train )
y_pred = lr_model.predict( x_train )
df1 = df.loc[:, ['id_cliente', 'saldo_atual']]
df1['predicted'] = y_pred
# 4.0 Model Performance
## 4.1 R squared
r2_squared = np.round( 100*mt.r2_score( y_train, y_pred ), 2 )
print( 'R2 square: {}%'.format( r2_squared ) )
mse = np.round( mt.mean_squared_error( y_train, y_pred ) , 2 )
print( 'A cada previsão, o erro médio é de: U${}'.format( mse ) )
# 5.0 Conclusão
print( '{}% da variação da variável alvo y é reduzida, levando em consideração o preditor'.format( r2_squared ) )
print( '{}% da variação da variável alvo y é "explicada pela variação do preditor x'.format( r2\_squared ) )
```

▼ 5. Resumo

- 1. O erro MSE mede o erro médio ao realizar cada previsão.
- 2. O principal problema do MSE é a alta importância aos outliers.

▼ 6. Próxima aula

Métricas de avaliação III: RMSE