CO200 – COA. Tutorial 1. 2 – Aug – 2017

1. Against each of the following design tasks, state whether the task is an Organizational challenge or an Architectural task. (Write "A" or "O" against the task). (3)

Design Decision/Task/Challenge	O/A
Support for the XNOR instruction in the processor.	
Completing a cache access under 2.0 ns.	
Design a new processor to support the IA-32 ISA.	
Support for the base-index addressing mode.	
The next generation processor should use a special register - "Accumulator" to store the result of every ALU operation.	
Decision to build a 64 bit adder using 2 32bit adders or using 4 16 bit adders.	

2. Write the equivalent assembly code for the following two high level language statements. Bear in mind that the ALU can only receive two inputs and produce one output. (2)

$$a = b + c;$$

$$d = b + c + a;$$

ADD R1, R2, R3		
Instruction	Input Operands	Output operands
7. Identify the input and the	output operands in the following instructions:	(3)
completes in 1.8 ms. What is	s the processor's operating frequency (2)?	
	instruction in 3 clock cycles. A program contai	ning 1.5 Million instructions
(c) Your program declares at the A[12] is:	n array of double precision floating point numb	pers (double A[100];). The address of
(b) The data cos range for De	au 10 .	
(b) The address range for Da	ata is ·	
(a) The address range for Ins	structions is :	
4. A system has 1 GB of men hold the instructions and the	mory. During a program execution, the first 2/5 e rest to hold the data. (3)	portion of the memory is used to
Bytes . (1)	a word-addressable memory is 16 bits. The siz	e of the memory is

LOAD R4, 0(R5)

STORE R6, 0(R7)

8. Base addres of the integer array A is present in \$s2. Contents of the variable h is in \$s3. Write the MIPS equivalent code for: $A[12] = h + A[8]$;		
9. Convert 16 bit binary versions of +2 and -2 into 32 bit 2s complement binary numbers.		

Rough Work