EE223 Analog Integrated Circuits Fall 2018

Lecture 9: Common Gate Amplifiers

Prof. Sang-Soo Lee sang-soo.lee@sjsu.edu ENG-259

- Voltage headroom limitation
- Nonlinear dependence of V_{TH} on the source potential
- r_O changes substantially with V_{DS}

- Nonlinearity can be eliminated if the bulk is tied to the source
- PMOS source follower employing two separate n-wells can eliminate the body effect of M_1

Can we create separate p-wells for NMOS Source Follower?

What voltage V1 should be? All pn junctions must be reverse-biased at all times.

Layout of NMOS Source Follower

Can we create separate p-wells for NMOS Source Follower?

Voltage headroom

- CS Amp only : V_X needs $V_{DS} > V_{GS1} V_{TH1}$
- With Source Follower, $V_X > V_{GS2} + (V_{GS3} V_{TH3})$

Common-Gate Topology

Common-Gate Amplifier

CG Amplifier with R_s

$$V_{b} \stackrel{\downarrow}{\longrightarrow} V_{out}$$

$$V_{b} \stackrel{\downarrow}{\longrightarrow} V_{out}$$

$$V_{b} \stackrel{\downarrow}{\longrightarrow} V_{out}$$

$$V_{in} \stackrel{\downarrow}{\longrightarrow} V_{in}$$

$$V_{in} \stackrel{\downarrow}{\longrightarrow} V_{out}$$

$$V_{in} \stackrel{\downarrow}{\longrightarrow} V_{out}$$

$$V_{in} \stackrel{\downarrow}{\longrightarrow} V_{in} = 0$$

$$V_{in} \stackrel{\downarrow}{\longrightarrow} V_{out}$$

$$V_{in} \stackrel{\downarrow}{\longrightarrow} V_{ou$$

$$\frac{V_{out}}{V_{in}} = \frac{(g_m + g_{mb})r_O + 1}{r_O + (g_m + g_{mb})r_O R_S + R_S + R_D} R_D \approx \frac{g_m r_o R_D}{r_o + g_m r_o R_S} = \frac{R_D}{\frac{1}{g_m} + R_S}$$

CG Amplifier vs. CS Amplifier

Summary: Gain of CG and CS with Rs

$$A_v = \frac{R_D}{\frac{1}{g_m} + R_S}$$

$$V_{DD}$$
 R_D
 V_{out}
 $V_{in} \circ V_{out}$
 $R_S \stackrel{?}{=}$

$$A_{v} = -\frac{R_{D}}{\frac{1}{g_{m}} + R_{S}}$$

 $\rightarrow \frac{Resistance\ seen\ at\ the\ drain}{Total\ resistance\ seen\ in\ the\ source\ path}$

Same magnitude for both structures

Summary: Rout of CG and CS with Rs

 $R_{out} = r_o + R_S + (g_m r_o) \cdot R_S \rightarrow$ Same for both structures

Summary of Amplifiers

CS Amp

Inverting

$$A_{v} = -g_{m}R_{out}$$

$$= -g_{m1}(R \uparrow //R \downarrow)$$

$$= -g_{m1}(R_{D}//r_{o1})$$

CG Amp

Non-Inverting

$$A_v = g_m R_{out}$$

$$= g_{m1}(R \uparrow //R \downarrow)$$

$$= g_{m1}(R_D //r_{o1})$$

CD Amp

Non-Inverting

$$A_v = g_m R_{out}$$

$$= g_m (R \uparrow / / R \downarrow)$$

$$= g_m \left(\frac{1}{M_D} / / R_D\right)$$

Cascode Stage

Cascode Topology: Cascade of CS stage and CG stage

I/O Characteristics of Cascode Stage

Output Impedance of Cascode Stage

$$R_{out} = r_{o1} + r_{o2} + (g_{m2}r_{o2})r_{o1}$$

$$R_{out} = r_{o1} + r_{o2} + (g_{m2} + g_{mb2})r_{o2}r_{o1}$$
 if $g_{mb} \neq 0$

Gain of Cascode Stage

$$A_v = \frac{V_{out}}{V_{in}} = -g_{m1}R_{out}$$

$$R_{out} = \{r_{o1} + r_{o2} + (g_{m2} + g_{mb2})r_{o2}r_{o1}\} //R_D$$

$$\approx (g_{m2}r_{o2}) r_{o1} //R_D$$

$$A_v \approx -g_{m1}(g_{m2}r_{o2}) r_{o1} = -(g_m r_o)^2$$
 if R_D is neglected

Cascode Amp with Cascode Current Source

$$A_v \approx -g_{m1}[\{(g_{m2}r_{o2}) r_{o1}\}||\{(g_{m3}r_{o3}) r_{o4}\}] \approx -\frac{(g_m r_o)^2}{2}$$