Example Class 1

Elementary Number Theory

Outline

- Modulo n
- Binary arithmetic
- Applications of binary arithmetic

Modulo n

Recall

$$a \equiv b \pmod{n}$$

- If $a \equiv b \pmod{n}$, then a-b = qn and a=qn+b.
- We represent integers mod n as {0,1,...,n-1} (thanks to the Euclidean division)

We have addition and multiplication modulo n.

Integers mod 2

+	0	1
0	0	1
1	1	0

*	0	1
0	0	0
1	0	1

Counting in Binary

$$10010_{2} = 0*2^{0} + 1*2^{1} + 0*2^{2} + 0*2^{3} + 1*2^{4}$$
$$= 18_{10}$$
$$= 8.10^{0} + 1.10^{1}$$

There are 10 kinds of people in the world.

Those who understand binary, and those who don't.

Binary Vectors

 A vector is a row (or column) array containing numbers.

• (1,0,0,1) is a binary row vector (of length 4)

 One can add two binary vectors component wise (vector addition).

Binary Vectors: Example

• For example (1,0,0,1)+(0,0,1,1)=(1,0,1,0)

• S=set of binary vectors of length n, Δ =vector addition. Is S closed under Δ ?

Different from counting in binary!

Binary in the Real World

 Storage of data across multiple hard disks

Data is in binary format.

 Data needs to be stored so as to tolerate disk failures.

Example (I)

Suppose you want to store 200GB of (binary) data

• Option 1: buy 4 disks of 100 GB each, store 2 copies of your data.

$$D = (D_1, D_2)$$

Example (II)

- Good thing: if one hard disk fails, your data is safe.
- Bad thing: you paid for 4 hard disks instead of 2.

Can we think of a better solution?

Example (III)

Suppose a and b are bits, and take
 a, b, a+b

a	b	a+b
0	0	0
0	1	1
1	0	1
1	1	0

Do the same thing with disks

$$D = (D_1, D_2)$$

Example (IV): Parity (RAID)

Binary vector addition:

Drive 1: 01101101

Drive 2: 11010100

01101101 XOR 11010100

10111001

Store in Drive 3

You can still loose one disk, but paid for only 3.

Another Example (I)

- You want to store 150 GB data.
- Now you are buying storage devices, each of 50GB capacity.
- This time, even if any arbitrary two devices fail, you still want to recover all your data!

Another Example (II)

$$D = (D_1, D_2, D_3)$$
 D_1
 D_2
 D_3
 D_3
 D_4
 D_5
 D_6
 D_7
 D_8
 D_9
 D_9
 D_9
 D_9
 D_9

We can achieve what we want with a total of 9 disks. Can we do better?

Another Example (III)

To tolerate two failures, we need each D_i to be present at least 3 times.

Summary

- Modulo n
- Binary arithmetic
 - Binary vectors
 - Counting in binary
- Applications of binary arithmetic
 - storage

