Assignment 2 Analog Electronics (EC-261)

Max. Marks: 10

Note: All questions are compulsory.

Q.1 The amplifier of Fig. 1 utilizes an n-channel JFET for which V_p = -2.0 V, I_{DSS} =1.65 mA. It is desired to bias the circuit at I_D =0.8 mA, using V_{DD} = 24 V. Assume r_d >> R_D . Find (a) V_{GS} (b) g_m (c) R_s and (d) R_d , such that voltage gain at least 20 db, with R_S bypassed with a very large capacitance C_s .

- Q.2 For the network of Fig. 2:
- (a) Determine A_{vNL} , Z_i , and Z_o .
- (b) Determine A_v and A_{vs}.
- (c) Change R_L to 4.7 $k\Omega$ and calculate A_v and A_{vs} . What was the effect of increasing levels of R_L on both voltage gains?
- (d) Change R_{sig} to 1 k Ω (with R_L at 2.2 k Ω) and calculate A_v and A_{vs} . What was the effect of increasing levels of R_{sig} on both voltage gains?
- (e) Change R_L to 4.7 k Ω and R_{sig} to 1 k Ω and calculate Z_i and Z_o . What was the effect on both parameters?

Fig. 2

- Q.3 The self-bias configuration has an operating point defined by $V_{GSQ} = -2.6 \text{ V}$ and $I_{DQ} = 2.6 \text{ mA}$, with $I_{DSS} = 8 \text{ mA}$ and $V_P = -6 \text{ V}$. The network is redrawn as Fig. 3 with an applied signal V_i . The value of y_{os} is given as 20 S.
- (a) Determine g_m, r_d, Z_i.
- (b) Calculate Z₀ with and without the effects of r_d. Compare the results.
- (c) Calculate A_V with and without the effects of r_d. Compare the results.

Fig. 3

- Q.4 Determine the following for the network of Fig. 4.
 - (a) I_{DQ} and V_{GSQ}
 - (b) V_{DS}
 - (c) V_D
 - $(d)V_S$

Fig. 4