Numer indeksu:	

Logika dla informatyków

Egzamin poprawkowy (pierwsza część)		
	21 lutego 2014	
	$\Rightarrow \neg q$ oraz $\neg p \vee q$ są równoważne to w prostokąt poniżej rnym przypadku wpisz uzasadnienie, dlaczego te formuły nie	
równoważne oraz φ zawiera mniej wystąpi	uła φ jest uproszczeniem formuły ψ , jeśli obie formuły są leń spójników logicznych niż ψ . Jesli istnieje uproszczenie kąt poniżej wpisz dowolne takie uproszczenie. W przeciwnym	
Zadanie 3 (2 punkty). W prostokąt poni niunkcyjnej postaci normalnej, mające nastę	iżej wpisz dwie formuły, odpowiednio w dysjunkcyjnej i ko- ępującą tabelkię zero-jedynkową.	
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	
	T T F T	
	T F T T T T F F T F F F F F F F F F F F	
	F T F F	
	F F F F F	
logiki I rzędu mówiącą, że para $\langle a,b\rangle$ nie na	$R \subseteq A \times B$ i $S \subseteq B \times A$. W prostokąt poniżej wpisz formułę ależy do złożenia relacji SR . Formuła ta nie może zawierać $\not\in$) i nie może zawierać symboli złożenia relacji SR (ale może	

Zadanie 5 (2 punkty). Jeśli formuła $\forall x \ (p(x) \Rightarrow q(x)) \Rightarrow \left(\forall x \ p(x) \Rightarrow (\exists x \ q(x)) \right)$ jest prawem rachunku kwantyfikatorów, to w prostokąt poniżej wpisz dowód tej formuły w systemie naturalnej dedukcji W przeciwnym przypadku wpisz odpowiedni kontrprzykład.		
w przeciwnym przypadku wpisz odpowiedni kontrprzykład.		
Zadanie 6 (2 punkty). W prostokąt poniżej wpisz przykład trzech różnych relacji, których przechodnim domknięciem jest relacja $\{\langle m,n\rangle\in\mathbb{N}\times\mathbb{N}\mid m< n\}$.		
Zadanie 7 (2 punkty). Jeśli zbiór klauzul $\{\neg p \lor q, \neg p \lor r, p \lor s, \neg q \lor s, \neg r \lor \neg s \lor t, \neg s \lor p\}$ jest sprzeczny, to w prostokąt poniżej wpisz rezolucyjny dowód sprzeczności tego zbioru. W przeciwnym przypadku wpisz wartościowanie spełniające ten zbiór.		
Zadanie 8 (2 punkty). Mówimy, że formuła φ logiki I rzędu jest w preneksowej postaci normalnej, jeśli jest postaci $Q_1x_1\ldots Q_nx_n\psi$, gdzie x_i są zmiennymi, Q_i są kwantyfikatorami (czyli $Q_i\in\{\forall,\exists\}$ dla $i=1,\ldots,n$), a formuła ψ nie zawiera kwantyfikatorów. Jeśli istnieje formuła w preneksowej postaci normalnej równoważna formule $\forall z'(\exists k\ xk=z' \land \exists k\ yk=z') \Rightarrow z \leq z'$, to w prostokąt poniżej wpisz dowolną taką formułę. W przeciwnym przypadku wpisz słowo "NIE". (Dla ułatwienia: formuła ta mówi, że każda wspólna wielokrotność liczb x i y jest nie mniejsza niz z .)		

Numer indeksu:	
Zadanie 9 (2 punkty). Dla $n \in \mathbb{N}$ niech $A_n = \{i \in \mathbb{N} \mid i \geq n\}$ i Jeśli zbiór $\bigcup_{n=42}^{2014} A_n \setminus \bigcup_{n\leq 42} B_n$ jest pusty to w prostokąt poniżej wpisz przypadku wpisz najmniejszy element tego zbioru.	
Zadanie 10 (2 punkty). Jeśli istnieje relacja równoważności na zbiorklasa abstrakcji ma dokładnie 5 elementów, to w prostokąt poniżej w ważności. W przeciwnym przypadku wpisz uzasadnienie, dlaczego taka	pisz dowolną taką relację równo-
Zadanie 11 (2 punkty). Mówimy, że w algebrze zbiorów wyrażenie W' jeśli oba wyrażenia oznaczają ten sam zbiór, oba zawierają tylko i nawiasy, oraz W zawiera mniej symboli niż W' . Np. $A \setminus B$ jest uprosz uproszczenie wyrażenia $(A \cap (B \setminus C) \cap D) \cup (A \cap C \cap D)$ to w prost uproszczenie. W przeciwnym przypadku wpisz słowo "NIE".	zmienne, binarne symbole \cup, \cap, \setminus czeniem $(A \cup B) \setminus B$. Jeśli istnieje
Zadanie 12 (2 punkty). Rozważmy zbiory osób O , barów B i sokó $Lubi \subseteq O \times S$ i $Podają \subseteq B \times S$ informujące odpowiednio o tym jakie osoby lubią jakie soki oraz jakie bary podają jakie soki. W prostokąt $\{x \mid \varphi\}$ jest zapytaniem relacyjnego rachunku dziedzin oznaczającym soki podawane w barze $Jagódka$.	soby bywają w jakich barach, jakie poniżej wpisz taką formułę φ , że
Zadanie 13 (2 punkty). W prostokąt poniżej wpisz liczbę różnych {21,2,2014}.	relacji równoważności na zbiorze
Zadanie 14 (2 punkty). Jeśli istnieje bijekcja $f: \mathbb{N}^{\{0,1\}} \to \mathbb{N} \times$ dowolną takią bijekcję. W przeciwnym razie wpisz uzasadnienie, dlacz	
wpisz uzasadnicnie, diacz	ego cente orjeneja me isumeje.

1	
	e zbiory X i Y , że $ \mathbb{R} < X $ oraz $ X < Y $, to w prostokąt zbiorów. W przeciwnym razie wpisz uzasadnienie, dlaczego
Zadanie 17 (2 punkty). Jeśli istnieje bijel	kcja $f: \mathcal{P}([0,1]) \to \{0,1\}^{[2,3]}$ to w prostokąt poniżej wpisz
	nym przypadku wpisz uzasadnienie, dlaczego taka bijekcja
	e dwie relacje równoważności R i S na zbiorze liczb naturalostokąt poniżej wpisz dowolne takie relacje. W przeciwnym e relacje nie istnieją.
$\langle \mathbb{N} \times \mathbb{N}, \leq_{lex} \rangle$ są izomorficzne, to w prostokąt	rządkowane $\langle \{m-\frac{1}{n} \mid m,n \in \mathbb{N} \land m>0 \land n>0\}, \leq \rangle$ oraz poniżej wpisz dowolny izomorfizm tych porządków. W przewaga taki izomorfizm pie istnicie
Zadanie 19 (2 punkty). Jeśli zbiory upor $\langle \mathbb{N} \times \mathbb{N}, \leq_{lex} \rangle$ są izomorficzne, to w prostokąt ciwnym przypadku wpisz uzasadnienie, dlacz	poniżej wpisz dowolny izomorfizm tych porządków. W prze-
$\langle \mathbb{N} \times \mathbb{N}, \leq_{lex} \rangle$ są izomorficzne, to w prostokąt	poniżej wpisz dowolny izomorfizm tych porządków. W prze-
$\langle \mathbb{N} \times \mathbb{N}, \leq_{lex} \rangle$ są izomorficzne, to w prostokąt	poniżej wpisz dowolny izomorfizm tych porządków. W prze-
$\langle \mathbb{N} \times \mathbb{N}, \leq_{lex} \rangle$ są izomorficzne, to w prostokąt	poniżej wpisz dowolny izomorfizm tych porządków. W prze-
$\langle \mathbb{N} \times \mathbb{N}, \leq_{lex} \rangle$ są izomorficzne, to w prostokąt ciwnym przypadku wpisz uzasadnienie, dlacz Zadanie 20 (2 punkty). W tym zadaniu natomiast x,y i z są zmiennymi. W prosto	poniżej wpisz dowolny izomorfizm tych porządków. W prze-
$\langle \mathbb{N} \times \mathbb{N}, \leq_{lex} \rangle$ są izomorficzne, to w prostokąt ciwnym przypadku wpisz uzasadnienie, dlacz Zadanie 20 (2 punkty). W tym zadaniu natomiast x,y i z są zmiennymi. W prosto unifikowalne, wpisz najogólniejsze unifikator	poniżej wpisz dowolny izomorfizm tych porządków. W przeżego taki izomorfizm nie istnieje. $f \ i \ g \ są symbolami funkcyjnymi, \ a \ jest symbolem stałej, okąty obok tych spośród podanych par termów, które są$
$\langle \mathbb{N} \times \mathbb{N}, \leq_{lex} \rangle$ są izomorficzne, to w prostokąt ciwnym przypadku wpisz uzasadnienie, dlacz Zadanie 20 (2 punkty). W tym zadaniu natomiast x,y i z są zmiennymi. W prosto unifikowalne, wpisz najogólniejsze unifikator unifikowalne, wpisz słowo "NIE".	poniżej wpisz dowolny izomorfizm tych porządków. W przeżego taki izomorfizm nie istnieje. $f \ i \ g \ są symbolami funkcyjnymi, \ a \ jest symbolem stałej, okąty obok tych spośród podanych par termów, które są$