ME115 - Linguagem R

Atividade Prática 08 - Gabarito

 1° semestre de 2023

Introdução

Nessa atividade, exploraremos os seguintes tópicos:

- 1. Aplicaremos a ideia: dado original —> seleção —> filtro (pipe ou %>%);
- 2. Principais verbos do pacote dplyr: select(), filter(), arrange(), mutate(), summarize(), e group_by().

Antes de iniciar a atividade instale, se necessário, e carregue os pacotes tidyverse e dslabs. Note que ao carregar o tidyverse, vários pacotes são carregados, incluindo o dplyr. Veja quais são os demais.

```
library(tidyverse)
library(dslabs)
```

Nessa atividade, iremos trabalhar com o conjunto de dados murders do pacote dslabs. Carregue o conjunto de dados e use a função glimpse() do pacote dplyr para olhar sua estrutura. Compare com a função str() da base do R.

Solução:

```
data(murders)
glimpse(murders)
## Rows: 51
## Columns: 5
                <chr> "Alabama", "Alaska", "Arizona", "Arkansas", "California", "~
## $ state
                <chr> "AL", "AK", "AZ", "AR", "CA", "CO", "CT", "DE", "DC", "FL",~
## $ abb
                <fct> South, West, West, South, West, West, Northeast, South, Sou~
## $ region
## $ population <dbl> 4779736, 710231, 6392017, 2915918, 37253956, 5029196, 35740~
## $ total
                <dbl> 135, 19, 232, 93, 1257, 65, 97, 38, 99, 669, 376, 7, 12, 36~
str(murders)
  'data.frame':
                    51 obs. of 5 variables:
                : chr
                       "Alabama" "Alaska" "Arizona" "Arkansas" ...
##
   $ state
##
   $ abb
                       "AL" "AK" "AZ" "AR" ...
                : Factor w/ 4 levels "Northeast", "South", ...: 2 4 4 2 4 4 1 2 2 2 ...
## $ population: num 4779736 710231 6392017 2915918 37253956 ...
   $ total
                : num 135 19 232 93 1257 ...
```

Atividade

1. Usando a função mutate(), adicione uma nova coluna chamada rate aos dados murders do pacote dslabs, dada por rate = total/ population * 100000.

```
murders <- murders %>% mutate(rate = total/ population * 100000)
  # murders %<>% mutate(rate = total/ population * 100000) # operador pipe + '<-'
  glimpse(murders)
  ## Rows: 51
  ## Columns: 6
  ## $ state
                   <chr> "Alabama", "Alaska", "Arizona", "Arkansas", "California", "~
  ## $ abb
                   <chr> "AL", "AK", "AZ", "AR", "CA", "CO", "CT", "DE", "DC", "FL",~
                   <fct> South, West, West, South, West, West, Northeast, South, Sou~
  ## $ region
  ## $ population <dbl> 4779736, 710231, 6392017, 2915918, 37253956, 5029196, 35740~
  ## $ total
                   <dbl> 135, 19, 232, 93, 1257, 65, 97, 38, 99, 669, 376, 7, 12, 36~
  ## $ rate
                   <dbl> 2.8244238, 2.6751860, 3.6295273, 3.1893901, 3.3741383, 1.29~
2. A partir do conjunto de dados murders aumentado em (1), selecione as variáveis state, region, rate
  e os registros onde a taxa (rate) é maior que 0.6 usando as funções select() e filter(). Escreva seu
  código do modo tradicional, ou seja, sem usar o operador %>% (pipe).
  Solução:
  new_table <- select(murders, state, region, rate)</pre>
  high_rates <- filter(new_table, rate > 0.6)
  slice_min(high_rates, rate, n = 5)
  ##
         state
                       region
                                    rate
  ## 1
          Iowa North Central 0.6893484
  ## 2
         Idaho
                         West 0.7655102
  ## 3
          Utah
                         West 0.7959810
  ## 4
         Maine
                    Northeast 0.8280881
  ## 5 Wyoming
                         West 0.8871131
  Outras soluções apresentadas em aula:
  sol.1 <- filter(select(murders, state, region, rate), rate > 0.6)
  slice_min(sol.1, rate, n = 5)
  ##
         state
                       region
                                    rate
  ## 1
          Iowa North Central 0.6893484
  ## 2
         Idaho
                         West 0.7655102
  ## 3
                         West 0.7959810
          IItah
  ## 4
         Maine
                    Northeast 0.8280881
  ## 5 Wyoming
                         West 0.8871131
  sol.2 <- subset(murders[, c("state", "region", "rate")], rate > 0.6)
  slice min(sol.2, rate, n = 5)
  ##
          state
                       region
                                    rate
  ## 1
          Iowa North Central 0.6893484
  ## 2
                         West 0.7655102
         Idaho
  ## 3
          Utah
                         West 0.7959810
  ## 4
                    Northeast 0.8280881
         Maine
  ## 5 Wyoming
                         West 0.8871131
```

3. A partir do conjunto de dados murders aumentado em (1), selecione as variáveis state, region, rate e os registros onde a taxa (rate) é maior que 0.6 usando as funções select() e filter(), agora com o operador %>%. Observe as diferenças entre os dois códigos.

```
murders %>%
  select(state, region, rate) %>%
  filter(rate > 0.6) %>%
  slice_min(rate, n = 5)
```

```
##
       state
                    region
                                rate
## 1
        Iowa North Central 0.6893484
## 2
       Idaho
                      West 0.7655102
## 3
        Utah
                      West 0.7959810
## 4
       Maine
                 Northeast 0.8280881
## 5 Wyoming
                      West 0.8871131
```

4. Crie uma coluna chamada rank nos dados murders contendo o posto em ordem descrescente do estado de acordo com a taxa de assassinatos. Dica: rank().

```
murders <- murders %>% mutate(rank = rank(-rate))
murders %>% arrange(rank)
```

##		state	abb	region	${\tt population}$	total	rate	rank
##	1	District of Columbia	DC	South	601723	99	16.4527532	1
##	2	Louisiana	LA	South	4533372	351	7.7425810	2
##	3	Missouri	MO	North Central	5988927	321	5.3598917	3
##	4	Maryland	MD	South	5773552	293	5.0748655	4
##	5	South Carolina	SC	South	4625364	207	4.4753235	5
##	6	Delaware	DE	South	897934	38	4.2319369	6
##	7	Michigan	MI	North Central	9883640	413	4.1786225	7
##	8	Mississippi	MS	South	2967297	120	4.0440846	8
##	9	Georgia	GA	South	9920000	376	3.7903226	9
##	10	Arizona	ΑZ	West	6392017	232	3.6295273	10
##	11	Pennsylvania	PΑ	Northeast	12702379	457	3.5977513	11
##	12	Tennessee	TN	South	6346105	219	3.4509357	12
##	13	Florida	FL	South	19687653	669	3.3980688	13
##	14	California	CA	West	37253956	1257	3.3741383	14
##	15	New Mexico	NM	West	2059179	67	3.2537239	15
##	16	Texas	TX	South	25145561	805	3.2013603	16
##	17	Arkansas	AR	South	2915918	93	3.1893901	17
##	18	Virginia	VA	South	8001024	250	3.1246001	18
##	19	Nevada	NV	West	2700551	84	3.1104763	19
##	20	North Carolina	NC	South	9535483	286	2.9993237	20
##	21	Oklahoma	OK	South	3751351	111	2.9589340	21
##	22	Illinois	IL	North Central	12830632	364	2.8369608	22
##	23	Alabama	AL	South	4779736	135	2.8244238	23
##	24	New Jersey	NJ	Northeast	8791894	246	2.7980319	24
##	25	Connecticut	CT	Northeast	3574097	97	2.7139722	25
##	26	Ohio	OH	North Central	11536504	310	2.6871225	26
##	27	Alaska	AK	West	710231	19	2.6751860	27
##	28	Kentucky	KY	South	4339367	116	2.6732010	28
##	29	New York	NY	Northeast	19378102	517	2.6679599	29
##	30	Kansas	KS	North Central	2853118	63	2.2081106	30
##	31	Indiana	IN	North Central	6483802	142	2.1900730	31
##	32	Massachusetts	MA	Northeast	6547629	118	1.8021791	32
##	33	Nebraska	NE	North Central	1826341	32	1.7521372	33
##	34	Wisconsin	WI	North Central	5686986	97	1.7056487	34

```
## 35
              Rhode Island
                                    Northeast
                                                  1052567
                                                              16 1.5200933
                                                                               35
## 36
             West Virginia
                                                                               36
                             WV
                                         South
                                                  1852994
                                                              27
                                                                  1.4571013
## 37
                Washington
                             WA
                                          West
                                                  6724540
                                                                  1.3829942
                                                                               37
## 38
                  Colorado
                             CO
                                                                  1.2924531
                                                                               38
                                          West
                                                  5029196
                                                              65
## 39
                    Montana MT
                                          West
                                                   989415
                                                              12
                                                                  1.2128379
                                                                               39
## 40
                  Minnesota MN North Central
                                                                  0.9992600
                                                  5303925
                                                              53
                                                                               40
## 41
              South Dakota SD North Central
                                                                  0.9825837
                                                   814180
                                                               8
                                                                               41
## 42
                     Oregon
                             OR
                                          West
                                                  3831074
                                                              36
                                                                  0.9396843
                                                                               42
## 43
                    Wyoming WY
                                          West
                                                   563626
                                                               5
                                                                  0.8871131
                                                                               43
## 44
                      Maine ME
                                    Northeast
                                                  1328361
                                                              11
                                                                  0.8280881
                                                                               44
## 45
                       Utah UT
                                          West
                                                  2763885
                                                              22
                                                                  0.7959810
                                                                               45
## 46
                             ID
                                                                  0.7655102
                      Idaho
                                          West
                                                  1567582
                                                              12
                                                                               46
## 47
                       Iowa
                             IA North Central
                                                  3046355
                                                              21
                                                                  0.6893484
                                                                               47
## 48
              North Dakota ND North Central
                                                   672591
                                                                  0.5947151
                                                                               48
## 49
                                                  1360301
                                                               7
                                                                  0.5145920
                                                                               49
                     Hawaii
                             ΗI
                                          West.
## 50
             New Hampshire
                             NH
                                    Northeast
                                                  1316470
                                                               5
                                                                  0.3798036
                                                                               50
## 51
                    Vermont
                                    Northeast
                                                   625741
                                                               2 0.3196211
                            VT
                                                                               51
```

5. Calcule a média e o desvio padrão da taxa de assassinatos segundo a região e guarde o resultado no objeto murder.by.region. Qual a região mais segura? Dica: group_by() e summarize().

Solução:

```
murder.by.region <- murders %>%
  group_by(region) %>%
  summarize(media = mean(rate), desvio_padrao = sd(rate))
murder.by.region
```

```
## # A tibble: 4 x 3
##
     region
                    media desvio_padrao
##
     <fct>
                    <dbl>
                                   <dbl>
## 1 Northeast
                     1.85
                                    1.17
## 2 South
                                    3.37
                     4.42
## 3 North Central
                     2.18
                                    1.44
## 4 West
                     1.83
                                    1.17
```

A região mais segura é aquela com menor taxa média de assassinatos, no caso, a região a West.

murder.by.region %>% filter(media == min(media))

6. Ordene o objeto murder.by.region em ordem decrescente de taxa de assassinato média.

```
murder.by.region %>% arrange(desc(media))
```

```
## # A tibble: 4 x 3
##
     region
                   media desvio_padrao
##
     <fct>
                   <dbl>
                                 <dbl>
## 1 South
                    4.42
                                  3.37
## 2 North Central 2.18
                                  1.44
## 3 Northeast
                    1.85
                                  1.17
## 4 West
                    1.83
                                  1.17
```

7. Calcule quantidade de estados da região Sul (South) com taxa de assassinatos menor do que a média de assassinatos da mesma região.

Solução:

```
murders %>%
 filter(region == 'South') %>%
 filter(rate < mean(rate)) %>%
  summarise(count = n())
##
     count
## 1
        13
Ou.
murders %>%
 filter(region == "South") %>%
 filter(rate < mean(rate)) %>%
 count()
##
     n
## 1 13
Ou,
murders %>%
 filter(region == 'South') %>%
 filter(rate < mean(rate)) %>%
 nrow()
```

[1] 13

8. Calcule a proporção de estados para cada região com taxa de assassinatos menor do que a média de assassinatos da respectiva região. Qual a região mais segura?

```
## # A tibble: 4 x 4
##
     region
                   low_rate
                                n prop_low_rate
     <fct>
                      <int> <int>
                                           <dbl>
## 1 North Central
                                           0.5
                          6
                               12
## 2 Northeast
                          5
                                9
                                           0.556
## 3 West
                          8
                                13
                                           0.615
```

```
## 4 South
                             13
                                   17
                                               0.765
  # Fazendo direto no summarise
  murders %>%
    group_by(region) %>%
    summarise(low_rate = sum(rate < mean(rate, na.rm = TRUE)),</pre>
               n = n(),
               prop = low_rate/n) %>%
    arrange(prop)
  ## # A tibble: 4 x 4
       region
                      low_rate
                                    n prop
  ##
       <fct>
                          <int> <int> <dbl>
  ## 1 North Central
                              6
                                   12 0.5
  ## 2 Northeast
                              5
                                    9 0.556
  ## 3 West
                              8
                                   13 0.615
  ## 4 South
                             13
                                   17 0.765
9. Crie uma nova coluna chamada rank10 em murders usando mutate() tal, baseado na coluna rank
```

9. Crie uma nova coluna chamada rank10 em murders usando mutate() tal, baseado na coluna rank criada em (4), ela seja 1 se o estado foi rankeado abaixo de 10 e 0 caso contrário. A seguir faça uma tabela classificando os estados abaixo da décima posição, por região. Qual região é mais segura?

Solução:

```
murders <- murders %>% mutate(rank10 = ifelse(rank < 10, 1, 0))
murders %>%
 group_by(region, rank10) %>%
  summarise(n = n()) \%
 pivot_wider(names_from = rank10, values_from = n, values_fill = 0)
## # A tibble: 4 x 3
## # Groups:
               region [4]
     region
                     .0,
     <fct>
##
                   <int> <int>
## 1 Northeast
                       9
                              0
## 2 South
                              7
                       10
## 3 North Central
                              2
                       10
## 4 West
                       13
                              0
murders %>%
  group_by(region) %>%
  summarize(Total = n(),
            EstadosViolentos = sum(rank10),
            Proporcao = EstadosViolentos / Total) %>%
  arrange(desc(Proporcao))
## # A tibble: 4 x 4
     region
                   Total Estados Violentos Proporcao
##
     <fct>
                                     <dbl>
                                               <dbl>
                   <int>
## 1 South
                      17
                                         7
                                               0.412
## 2 North Central
                       12
                                         2
                                               0.167
## 3 Northeast
                       9
                                         0
                                               0
## 4 West
                                         0
                       13
                                               0
```

Agradecimento

O material foi produzido pela Profa. Tatiana Benaglia para o curso de ME115.