Assignment 2 - Solutions

Badea Adrian Catalin, 407

June 20, 2022

1. (1.5 points) Consider \mathcal{H} the class of 3-piece classifiers (signed intervals):

$$\mathcal{H} = \{h_{a,b,s} : \mathbb{R} \to \{-1,1\} \mid a \le b, s \in \{-1,1\}\}, \text{ where } h_{a,b,s}(x) = \begin{cases} s, & x \in [a,b] \\ -s, & x \notin [a,b] \end{cases}$$

- a. Compute the shattering coefficient $\tau_H(m)$ of the growth function for $m \geq 0$ for hypothesis class \mathcal{H} . (1 point)
- b. Compare your result with the general upper bound for the growth functions and show that $\tau_H(m)$ obtained at previous point a is not equal with the upper bound. (0.25 points)
- c. Does there exist a hypothesis class \mathcal{H} for which is equal to the general upper bound (over or another domain \mathcal{X})? If your answer is yes please provide an example, if your answer is no please provide a justification. (0.25 points)

Solution

a. First, we have to know e $VCdim(\mathcal{H})$. In seminar 3's solutions, it has been demonstrated that $VCdim(\mathcal{H}) = 3$ in the following manner:

Considering $C = \{x_1, x_2, x_3\}$ a set of 3 distinct points with $x_1 < x_2 < x_3$, it has been shown that \mathcal{H} shatters C, by outputting any set of labels, so $VCdim(\mathcal{H}) \geq 3$. (*)

Also, \mathcal{H} doesn't shatter the following labels (-1, 1, -1, 1), for any C with |C| = 4. So $VCdim(\mathcal{H}) < 4$ (**)

From (*) and (**),
$$VCdim(\mathcal{H}) = 3$$

In general, we notice that the hypothesis class can output for a set $C = \{x_1, x_2, x_3...x_n\}$ with $x_1 < x_2 < ...x_n$ and |C| = m, only the following type of labels:

- Case 1. $-1, -1, \dots -1, 1, 1..., -1, \dots -1$ a sequence of -1s (possibly of null length), followed by a sequence of 1s, and then finishing with a sequence of -1s again, this can be formally translated to $(-1)^p, 1^k, (-1)^{(m-p-k)}, p >= 0, k >= 0, p+k <= m$

We will count how many possibilities we have for each case. First, we should consider trivial cases for both options, where k = 0 or k = m.

- In Case 1, if k=0, we have only one possibility: (-1, -1, -1, ... -1). If k=m, we have the other trivial case: (1, 1, ... 1)
- In Case 2, if k = 0, we have only one possibility: (1, 1, 1, ... 1). If k = m, we have the other trivial case: (-1, -1, ... -1)

For this case, we have 2 labelings (i). In these, the value labeled is unique.

Now, we can consider only the solutions for when 0 < k < m.

If p = m, then k would be 0 $(p + k \le m)$, has been discussed previously.

If p = 0, then Case 1 becomes (1, 1, ...1, -1, -1... - 1). Case 2 becomes (-1, -1, ... - 1, 1, 1, ...1). Here, we have m - 1 labelings (k takes values from 1 to n - 1) for the first case and m - 1 labelings for the second case. In total, 2 * m - 2 labelings for which the value changes only once. (ii)

And now we consider the cases for which 0 and <math>0 < k < m. We should note here that if p + k = m, then m - p - k = 0 and these labelings have already been counted at the last case.

- For the first case, we will discuss all 0 < k < m, as k = 0 or k = m have been already taken into consideration.
 - If k = 1, p can take values from 1 to m 2.
 - If k=2, p can take values from 1 to m-3... ...
 - If k = m 2, p = 1.
 - If k = m 1, p can take no values

In total, we have (m-2) + (m-3) + ... + 1 = (m-2) * (m-1)/2

• For the second case, we reach the same number of sequences.

For this case (m-2)*(m-1) (iii).

From (i), (ii), and (iii), we get a total sum of $(m-2)*(m-1)+2*m-2+2=m^2-3*m+2+2*m=m^2-m+2$ sequences.

So, the shattering coefficient $\tau_H(m)$ of the growth function for $m \geq 0$ for hypothesis class \mathcal{H} is bounded by m * (m-1) + 2.

b. From Sauer's Lemma, for a hypothesis class, \mathcal{H} , with c, and for all m, we have $\tau_H(m) <= \sum_{i=0}^d C_m^i$.

We will note the general upper bound as $U = \sum_{i=0}^{d} C_m^i$, thus $\tau_H(m) \le U$.

In our case, when d = 3, the general upper bound is $U = C_m^0 + C_m^1 + C_m^2 + C_m^3 = 1 + m + (m - 1) * m/2 + (m - 2) * (m - 1) * m/6$.

So,
$$U = 1 + m + (m^2 - m)/2 + (m^2 - 3 * m + 2) * m/6$$

 $U = 1 + m + m^2/2 - m/2 + m^3/6 - 3 * m^2/6 + 2 * m/6$
 $U = m^3/6 + m^2/2 - m^2/2 + m + -m/2 + m/3$
 $U = m^3/6 + m - m/2 + m/3$
 $U = m^3/6 + 5 * m/6 + 1$

The general upper bound for the growth fuction has degree 3, but our the shattering coefficient $\tau_H(m)$ has degree 2.

We can easily check some cases :

- If m=1, the general upper bound is 1/6+5/6+1=2
- If m=2, the general upper bound is 8/6+10/6+1=4
- If m = 3, the general upper bound is 27/6 + 15/6 + 1 = 8
- If m = 4, the general upper bound is 64/6 + 20/6 + 1 = 15. The actual value for the shattering coefficient function here is 14.

These three values for m (1, 2, 3) will be roots for the difference function between the shattering coefficient function and the upper bound.

Let's compare the two functions : $\tau_H(m) \leq U$

$$m^2 - m + 2 \le m^3/6 + 5 * m/6 + 1$$

$$m^2 - m + 1 \le m^3/6 + 5 * m/6$$

$$6*m^2 - 6*m + 6 \le m^3 + 5*m$$

$$0 \le m^3 - 6 * m^2 + 11 * m - 6$$

We will define the following function $f: \mathbf{N} \longrightarrow \mathbf{R}$ with $f(m) = m^3 - 6 * m^2 + 11 * m - 6$.

As we know from above, we found the solutions m = 1, m = 2, m = 3

So, f(m) = (m-1)*(m-2)*(m-3). We know that for (m=1, m=2, m=3), f(m) = 0 and $\tau_H(m) = U$

Also, $f'(m) = 3 * m^2 - 12 * m + 11$, which has solutions for:

$$m = 2 - \frac{1}{\sqrt{(3)}}$$
 and

$$m = 2 + \frac{1}{\sqrt{3}}$$

So, for $m \ge 3$, f'(m) > 0, f(m) is increasing and will never be 0 again, as m = 3 is biggest root.

In conclusion, we showed that the result from a. is different than the upper bound.

 \mathbf{c} . Yes, there exists a hypothesis class \mathcal{H} for which the general upper bound is equal to the shattering coefficient function.

I will use the hypothesis class $\mathcal{H}_{thresholds}$, where $h_a: \mathbf{R} \longrightarrow \{0,1\}$ from Lecture 5.

We will compute the shattering coefficient $\tau_H(m)$ for $\mathcal{H}_{thresholds}$.

We notice that for this hypothesis class, the outputs for our set C that can be obtained are of the following pattern: (1, 1, 1, ...1, 0, 0, ...0). A sequence of 1s followed by a sequence of 0s.

So, our label sets have the form 1^p0^{m-p} . The number of 1s (p) can take values from 0 to m - because the number of 0s (m-p), is not less than 0.

The shattering coefficient function $\tau_H(m) = m + 1$

From Lecture 6, we know that $VCdim(\mathcal{H}) = 1$. So, from Sauer's, we get that $\tau_H(m) = m + 1 \le C_m^0 + C_m^1$. The general upper bound is m + 1, which is equal to the shattering coefficient function $\tau_H(m)$.

- 2. (1.5 points) Consider the concept class C_2 formed by the union of two closed intervals $[a,b] \cup [c,d]$, where $a,b,c,d \in \mathbb{R}, a \leq b \leq c \leq d$. Give an efficient ERM algorithm for learning the concept class C_2 and compute its complexity for each of the following cases:
 - a. realizable case. (1 point)
 - b. agnostic case. (0.5 point)

Solution

a. In the realizable case, there exists a function $h_{a*,b*,c*,d*}(x) = 1_{[a*,b*]} \bigcup 1_{[c*,d*]}$ that can label the training points.

Let $\{x_1, x_2, ... x_m\}$ be the set of the training points. For each $x_i, y_i = h_{a*,b*,c*,d*}(x)$.

Then,
$$S = \{(x_1, y_i), (x_2, y_2, ...(x_m, y_m))\}$$

We can sort the pairs x_i, y_i in ascending order, depending on x_i . The pairs will be sorted by the permutation σ .

S becomes
$$\{(x_{\sigma(1)}, y_{\sigma(1)}), (x_{\sigma(2)}, y_{\sigma(2)}, ...(x_{\sigma(m)}, y_{\sigma(m)})\}$$
, with $x_{\sigma(1)} \leq x_{\sigma(2)} \leq ... \leq x_{\sigma(m)}$.

We can consider the next ERM algorithm for determining a,b,c,d after sorting the training set and continuing with these steps.

- 0. We can calculate the number of positive examples in O(n).
- 1.a. If there are only positive examples, we can choose $a = b = c = x_{\sigma(1)}$, and $d = x_{\sigma(m)}$. The output of the function will always be 1, as $\forall x_i \in [c, d]$.

- 1.b. If there are no positive examples, we can choose $a = b = c = d = x_{\sigma(1)} 1$.
- 2. If there are both positive and negative examples, we continue with this step. We can calculate a function z_i with dynamic programming, as being the number of consecutive 1s finishing at i.

```
We can start with z_0 = 0 and then \forall i = \overline{1, m}: if (y_{\sigma(i)} == 1), then z_i = 1 + z_{i-1}, else z_i = 0.
```

3. With z_i calculated for $\forall i$ from 1 to m, we can choose the two maxima from this sequence, let them be z_k and z_p and then we can choose for a, b, c, d:

$$a = x_{\sigma(k-z_k+1)}$$
, $b = x_{\sigma(k)}$

[a,b] will include $x_{\sigma(k-z_k+1)}, x_{\sigma(k-z_k+2)}, ... x_{\sigma(k)}$, and we know their y's are 1. And similarly we will take $c = x_{\sigma(p)}, d = x_{\sigma(p-z_p+1)}$

Then, we return $h_{a,b,c,d}$

Let's compute the complexity of the algorithm:

Sorting: $\mathcal{O}(m * log m)$

Calculating the number of positives/negatives : $\mathcal{O}(m)$

In case all are positives/negatives $\mathcal{O}(1)$

Else, Calculating function $z: \mathcal{O}(m)$ and calculating a, b, c, d: $\mathcal{O}(1)$

Total complexity : $\mathcal{O}(m * log m)$.

b. In the agnostic case, it might be the case that there is no labeling function, but instead a distribution.

Similarly to the realizable case, we have $S = \{(x_1, y_i), (x_2, y_2, ...(x_m, y_m))\}$, and we can start by sorting the points.

So, S becomes
$$\{(x_{\sigma(1)}, y_{\sigma(1)}), (x_{\sigma(2)}, y_{\sigma(2)}, ..(x_{\sigma(m)}, y_{\sigma(m)})\}$$
, with $x_{\sigma(1)} \leq x_{\sigma(2)} \leq .. \leq x_{\sigma(m)}$.

Consider the set $\mathcal{Z} = \{z_1, z_2, ... z_n\}$ containing the values of x_i without repetitions.

$$x_{\sigma(1)} = z1 = \langle z_2 \langle z_3 \langle ... \langle z_n = x_{\sigma(n)}, n \leq m, n \text{ is the number of distinct values of } x_i \rangle$$

As we are in the agnostic case, we can have $x_{\sigma(i)} = x_{\sigma(i+1)}$ but $y_{\sigma(i)} \neq y_{\sigma(i+1)}$

- i) If all $y_i = 0$, we can pick two intervals outside the training set with $a, b, c, d = z_1 1$
- ii) If all $y_i = 1$, we can pick contain the whole set in the intervals, with $a = z_1$ and $b, c, d = z_n$.
- iii) We can consider all the possible intervals $W_{i,j,k,l} = [z_i, z_j] \bigcup [z_k, z_l], i, j, k, l = \overline{1,n}$

For the ERM algorithm, we have to determine the solution $W_{i,j,k,l}^*$ with the smallest empirical risk. We will compute the loss.

We will note:

```
PI_W = number of positive points inside W_{i,j,k,l}

PO_W = number of positive points outside W_{i,j,k,l}

NI_W = number of negative points inside W_{i,j,k,l}

NO_W = number negative points outside W_{i,j,k,l}

Then, Loss(W^*) = \frac{PO_W + NI_W}{m}
```

Then, we compute pos_i , for $i = \overline{1, n}$, the number of positives with $x = z_i$ and neg_i , for $i = \overline{1, n}$, the number of negatives with $x = z_i$.

In order to make the algorithm more efficient, we can use dynamic programming to pre-compute even the number of positives and negatives with $x \le z_i$, for $i = \overline{1, n}$.

So, we can compute pos_pre_i and neg_pre_i with the following rules :

```
\begin{split} pos\_pre_0 &= 0 \\ pos\_pre_i &= pos\_pre_{i-1} + pos_i \\ neg\_pre_0 &= 0 \\ neg\_pre_i &= neg\_pre_{i-1} + neg_i \end{split}
```

And we know $a \leq b \leq c \leq d$, and we can write the variables defined above for .

$$\begin{split} PI_W &= pos_pre_j - pos_pre_{i-1} + pos_pre_l - pos_pre_{k-1} \\ PO_W &= pos_pre_n - PI_W \\ NI_W &= neg_pre_j - neg_pre_{i-1} + neg_pre_l - neg_pre_{k-1} \\ NO_W &= neg_pre_n - NI_W \end{split}$$

Now, we can the limits i, j, k, l and find the best solution that minimizes $Loss(W^*)$. The efficient ERM algorithm is :

- 0. Sort S and obtain $\{(x_{\sigma(1)}, y_{\sigma(1)}), (x_{\sigma(2)}, y_{\sigma(2)}, ...(x_{\sigma(m)}, y_{\sigma(m)})\}$, with $x_{\sigma(1)} \leq x_{\sigma(2)} \leq ... \leq x_{\sigma(m)}$. Create set \mathcal{Z} .
 - 1. For every $i = \overline{1, n}$, calculate pos_i , neg_i .

```
pos_i = number of points with x value equal to z_i and y_i = 1. neg_i = number of points with x value equal to z_i and y_i = 0.
```

- 2. With the recurrences discussed above, we can calculate pos_pre_i and neg_pre_i .
- 3. If $pos_pre_n = 0$ or $neg_pre_n = 0$, returns the solutions as discussed above.

4. Start with $min_{error} = 1$ and $i_{sol} = 0, j_{sol} = 0, k_{sol} = 0, l_{sol} = 0$.

For
$$i = \overline{1, n}$$

For
$$j = \overline{i, n}$$

For
$$k = \overline{j, n}$$

For
$$l = \overline{k, n}$$

$$\frac{Loss(W_{i,j,k,l}) = \frac{PO_W + NI_W}{m}}{m} = \frac{\frac{pos_pre_n - (pos_pre_j - pos_pre_{i-1} + pos_pre_l - pos_pre_{k-1})}{m} + \frac{neg_pre_j - neg_pre_{i-1} + neg_pre_l - neg_pre_{k-1}}{m}}{m} + \frac{neg_pre_j - neg_pre_{k-1}}{m}}{m} + \frac{neg_pre_{k-1}}{m}}{m} + \frac{neg_pre_{k-1}}{m}$$

If
$$Loss(W_{i,j,k,l}) < min_{error}$$
:

$$min_{error} = Loss(W_{i,i,k,l})$$

$$i_{sol} = i, j_{sol} = j, k_{sol} = k, l_{sol} = l$$

5. Return $h_{a,b,c,d}$, where $a = z_{i_sol}$, $b = z_{j_sol}$, $c = z_{k_sol}$, $d = z_{l_sol}$.

Complexity of this algorithm:

Step 0: Sort the set S and obtain Z. $\mathcal{O}(m * log m)$.

Step 1 : Calculate pos_i , neg_i . $\mathcal{O}(m)$.

Step 2: Calculate pos_pre_i and neg_pre_i . $\mathcal{O}(m)$.

Step 3: Return solutions in case of unique labels. $\mathcal{O}(1)$.

Step 4: Finding best i, j, k, l. $\mathcal{O}(m^4)$.

Step $5: \mathcal{O}(1)$.

Total complexity : $\mathcal{O}(m^4)$.

- 3. (1.5 points) Consider a modified version of the AdaBoost algorithm that runs for exactly three rounds as follows:
 - the first two rounds run exactly as in AdaBoost (at round 1 we obtain distribution $\mathbf{D}^{(1)}$, weak classifier h_1 with error ϵ_1 ; at round 2 we obtain distribution $\mathbf{D}^{(2)}$, weak classifier h_2 with error ϵ_2).
 - in the third round we compute for each i = 1, 2, ..., m:

$$\mathbf{D}^{(3)}(i) = \begin{cases} \frac{D^{(1)}(i)}{Z}, & if \ h_1(x_i) \neq h_2(x_i) \\ 0, & otherwise \end{cases}$$

where Z is a normalization factor such that $\mathbf{D}^{(3)}$ is a probability distribution.

- obtain weak classifier h_3 with error ϵ_3 .
- output the final classifier $h_{final}(x) = sign(h_1(x) + h_2(x) + h_3(x))$.

Assume that at each round t = 1, 2, 3 the weak learner returns a weak classifier h_t for which the error ϵ_t satisfies $\epsilon_t \leq \frac{1}{2} - \gamma_t, \gamma_t > 0$.

- a. What is the probability that the classifier h_1 (selected at round 1) will be selected again at round 2? Justify your answer. (0.75 points)
- b. Consider $\gamma = min\{\gamma_1, \gamma_2, \gamma_3\}$. Show that the training error of the final classifier h_{final} is at most $\frac{1}{2} \frac{3}{2}\gamma + \gamma^2$ and show that this is strictly smaller than $\frac{1}{2} \gamma$. (0.75 points)

Solution

a. We will prove that under the constraint $\epsilon_i <= 1/2 - \gamma_i, \gamma_i > 0, i = \overline{1,3}$, there is 0 probability of choosing h2 = h1 in the second round.

From Seminar 6, we have the following relationship from \mathcal{D}_{t+1} in relation to \mathcal{D}_t :

$$\begin{split} \mathcal{D}_{t+1}(i) &= \frac{\mathcal{D}_{t}(i)*e^{-w_{t}*h_{t}(x_{i})*y_{i}}}{Z_{t+1}}.\\ Z_{t+1} &\text{ is the normalizing factor.} \end{split}$$

$$w_t = \frac{1}{2} * \log(\frac{1}{\epsilon_t} - 1)$$
 is the weight

$$\epsilon_t = \mathcal{P}_{i \sim D_t}[h_t(x) \neq y_i] = \sum_{h_t(x_i) \neq y_i} \mathcal{D}_t(i).$$

From Seminar 6 on AdaBoost, we know that:

- If example x_i is correctly classified, then $h_t(x_i) = y_i$, so at the next iteration t+1, its importance (probability distribution) is decreased to $D_{(t+1)}(i) = \frac{D_{(t)}(i)*\sqrt{\frac{\epsilon_t}{1-\epsilon_t}}}{\mathcal{Z}_{t-1}}$
- If example x_i is misclassified, then $h_t(x_i) = y_i$, so at the next iteration t+1, its importance (probability distribution) will be increased to $D_{(t+1)}(i) = \frac{D_{(t)}(i)*\sqrt{\frac{1-\epsilon_t}{\epsilon_t}}}{\mathcal{Z}_{t+1}}$

Then,
$$Z_{t+1} = \sum_{h_t(x_i)=y_i} \mathcal{D}_t(i) \sqrt{\frac{\epsilon_t}{1-\epsilon_t}} + \sum_{h_t(x_i)\neq y_i} \mathcal{D}_t(i) \sqrt{\frac{1-\epsilon_t}{\epsilon_t}}$$
.

$$Z_{t+1} = (1 - \epsilon_t) * \sqrt{\frac{\epsilon_t}{1 - \epsilon_t}} + \epsilon_t * \sqrt{\frac{\epsilon_t}{1 - \epsilon_t}} = 2 * \sqrt{\epsilon_t * (1 - \epsilon_t)}.$$
 (*)

If the classifier h_1 would be selected again at round 2, then $h_2 = h_1$.

•
$$Z_2 = 2 * \sqrt{\epsilon_1 * (1 - \epsilon_1)}$$
 from (*)

•
$$D_2(i) = \frac{D_1(i) * \sqrt{\frac{1-\epsilon_1}{\epsilon_1}}}{Z_2}$$
, if $h_1(x_1) \neq y_1$

•
$$\epsilon_2 = \sum_{h_2(x_i) \neq y_i} D_2(i) = \sum_{h_1(x_i) \neq y_i} \frac{D_1(i) * \sqrt{\frac{1-\epsilon_1}{\epsilon_1}}}{Z_2} = \sum_{h_1(x_i) \neq y_i} * D_1(i) * \frac{\sqrt{\frac{1-\epsilon_1}{\epsilon_1}}}{Z_2} = \epsilon_1 * \frac{\sqrt{\frac{1-\epsilon_1}{\epsilon_1}}}{Z_2}$$

So,
$$\epsilon_2 = \epsilon_1 * \frac{\sqrt{\frac{1-\epsilon_1}{\epsilon_1}}}{2*\sqrt{\epsilon_1*(1-\epsilon_1)}} = \epsilon_1 * \sqrt{\frac{1-\epsilon_1}{\epsilon_1}} * \frac{1}{2*\sqrt{\epsilon_1*(1-\epsilon_1)}} = \epsilon_1 * \frac{1}{\sqrt{\epsilon_1}} * \frac{1}{2*\sqrt{\epsilon_1}} = \frac{1}{2}.$$

But, in the assumption above, we had that every $\epsilon_i <= 1/2 - \gamma_i, \gamma_i > 0, i = \overline{1,3}$, thus $\epsilon_2 <= 1/2 - \gamma_2$. So, $1/2 <= 1/2 - \gamma_2 \rightarrow \gamma_2 >= 0$.

Given that, in the same assumption above, we have $\gamma_2 < 0$, we have a contradiction.

4. (1 point) Consider H_{2DNF}^d the class of 2-term disjunctive normal form formulae consisting of hypothesis of the form $h: \{0,1\}^d \to \{0,1\}$,

$$h(x) = A_1(x) \vee A_2(x)$$

where $A_i(x)$ is a Boolean conjunction of literals H_{conj}^d .

It is known that the class H^d_{2DNF} is not efficient properly learnable but can be learned improperly considering the class H^d_{2CNF} . Give a γ -weak-learner algorithm for learning the class H^d_{2DNF} which is not a stronger PAC learning algorithm for H^d_{2DNF} (like the one considering H^d_{2CNF}). Prove that this algorithm is a γ -weak-learner algorithm for H^d_{2DNF} .

Hint: Find an algorithm that returns h(x) = 0 or the disjunction of 2 literals.

Solution

A learning algorithm \mathcal{A} is a γ -weak-learner for \mathcal{H} if there exists a function $m_{\mathcal{H}}:(0,1)\to \mathbf{N}$:

- for every $\delta > 0$ (confidence),
- for every labeling function $f \in \mathcal{H}, f : \mathcal{X} \to \{-1, +1\}$ (realizability case)
- for every distribution \mathcal{D} over \mathcal{X} ,

when we run the algorithm \mathcal{A} on a training set, consisting of $m > m_{\mathcal{H}}(\delta)$ examples sampled i.i.d from \mathcal{D} , and labeled by f, the algorithm A returns a hypothesis h (h might not be from \mathcal{H} , in the case of improper learning, such that, with probability at least $1 - \delta$, over the choice of examples, $L_{D,f} \leq \frac{1}{2} - \gamma$.

Using the distribution rule, we can transform the 2-term disjunctive normal form to a 2-term conjunctive normal form formula:

$$A_1 \vee A_2 = \bigwedge (a_1 \vee a_2) = \bigwedge y_{a_1,a_2}$$
, where $a_1 \in A_1$ and $a_2 \in A_2$.

By doing this, we obtain a conjunction of $(2n)^2$ variables. Each of them is a disjunction of 2 literals from the original conjunctions.

We know that C_N , the concept class of conjunctions of at most n boolean literals is PAC learnable with the sample complexity $m_{\mathcal{H}}(\epsilon, \delta) = \left[\frac{1}{\epsilon}(n \log(3) - \log(\delta))\right]$.

So our conjunction is also PAC learnable, but with $m_{\mathcal{H}}(\epsilon, \delta) = \left[\frac{1}{\epsilon}((2*n)^2\log(3) - \log(\delta))\right]$

Ex-oficio: 0.5 points.