Développement : Méthode de Newton

Proposition: Soit $f: I = [a; b] \to \mathbb{R}$. Si

- -- f(a)f(b) < 0,
- f dérivable sur I,
- f' > 0 sur I,
- f' str. croissante sur I,
- f est \mathscr{C}^0 sur I.

Alors l'équation f(x)=0 admet une unique solution $z\in I$. De plus, la suite $(x_n)_{n\in\mathbb{N}}$ définie par récurrence de la sorte

$$\begin{cases} x_0 \in]z, b] \\ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \end{cases}$$

est bien définie et converge vers z.

Preuve

Note préliminaire : en appliquant le TVI on obtient que z est l'unique zéro de f sur I.

On démontre que la suite est bien définie par récurrence.

<u>Initialisation</u>: Ok par construction.

<u>Hérédité</u>: Soit $n \in \mathbb{N}$. Supposons construit le terme x_n . Commençons par dire que comme $x_n \in [z;b] \subset [a;b]$, on peut composer f comme f' par x_n sans souci. De plus, f' > 0 et donc on peut diviser par $f'(x_n)$, cela justifie la bonne définition du terme x_{n+1} .

Ensuite, comme par hypothèse f' est strictement croissante, f est convexe et son graphe se situe donc au dessus de toutes ses tangentes. Plus particulièrement, $f'(x_n)(x-x_n) < f(x)$ qqsoit $x \in I \setminus \{x_n\}$. Pour x=z ($\neq x_n$ par hypothèse de récurrence), cela se formule $f'(x_n)(z-x_n) < f(x_n)$. En travaillant sur cette inéquation (attention à bien utiliser les hypothèses et la note préliminaire) on arrive à $z < x_n - \frac{f(x_n)}{f'(x_n)} = x_{n+1}$.

Ensuite, un simple travail sur les signes permet d'affirmer que $-\frac{f(x_n)}{f'(x_n)} < 0$ et donc $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} < x_n$. Cela achève la preuve par récurrence.

Nous avons donc montré la bonne définition de $(x_n)_n$. Au passage on a montré qu'elle était (strictement) décroissante. Comme elle est donc minorée (par z) et décroissante, elle converge vers un réel $l \in [z;b]$. Comme f est continue et que $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$, il vient par passage à la limite que $l = l - \frac{f(l)}{f'(l)}$. On en déduit que f(l) = 0, et donc par unicité de z énoncée en préliminaire que z = l.

Application : Résolution de $x^2=2$. On ré-écrit l'équation $x^2-2=0$. En montrant d'abord que $1<\sqrt{2}<2$ (en sachant à l'avance que $\sqrt{2}$ est solution de $x^2-2=0$), appliquer la méthode de Newton à la résolution de $x^2-2=0$.

La suite obtenue est dite « de Héron ». Faire le calcul à la main et écrire les premières approximations rationnelles à la main : $x_0=2$, $x_1=\frac{3}{2}$ et $x_2=\frac{17}{12}\approx 1,41166$.

Rq : L'étude de la convergence de cette suite peut se faire plus concrètement au lycée, c.f. BO Tle Spé, approfondissements.

Développement : se fait en live.

