This challenge uses the famous <u>KMP algorithm</u>. It isn't really important to understand how KMP works, but you should understand what it calculates.

A KMP algorithm takes a string, S, of length N as input. Let's assume that the characters in S are indexed from 1 to N; for every prefix of S, the algorithm calculates the length of its longest valid border in linear complexity. In other words, for every i (where $1 \le i \le N$) it calculates the largest i (where $1 \le i \le N$) such that for every i (where i is i in the property i in the property i in the property i is the property i in the property i in the property i in the property i is the property i in the property i in the property i in the property i in the property i is the property i in the property i in

Here is an implementation example of KMP:

```
kmp[1] = 0;
for (i = 2; i <= N; i = i + 1){
    l = kmp[i - 1];
    while (l > 0 && S[i] != S[l + 1]){
        l = kmp[l];
    }
    if (S[i] == S[l + 1]){
        kmp[i] = l + 1;
    }
    else{
        kmp[i] = 0;
    }
}
```

Given a sequence x_1, x_2, \ldots, x_{26} , construct a string, S, that meets the following conditions:

- 1. The frequency of letter 'a' in S is exactly x_1 , the frequency of letter 'b' in S is exactly x_2 , and so on.
- 2. Let's assume characters of S are numbered from 1 to N, where $\sum_{i=1}^{n} x_i = N$. We apply the KMP algorithm to S and get a table, kmp, of size N. You must ensure that the sum of kmp[i] for all i is minimal.

If there are multiple strings which fulfill the above conditions, print the lexicographically smallest one.

Input Format

A single line containing 26 space-separated integers describing sequence x.

Constraints

• The sum of all x_i will be a positive integer $\leq 10^6$.

Output Format

Print a single string denoting S.

Sample Input

Sample Output

aabb

Explanation

The output string must have two 'a' and two 'b'. There are several such strings but we must ensure that sum of kmp[i] for all 1 <= i <= 4 is minimal. See the figure below:

kmp table for s="aabb"			kmp table for s="bbaa"		kmp table for s="abba"	
1	0		1	0	1	0
2	1		2	1	2	0
3	0		3	0	3	0
4	0		4	0	4	1
su	sum = 1		sum = 1		sum = 1	
			_			
	table for baba"		kmp ta	ble for	kmp ta	ble for aab"
s=	baba"		s="a	bab"	s="b	aab"
s='	baba" 0		s="a	bab" 0	s="b	aab" 0
1 2	baba" 0 0		s="a 1 2	0 0	s="b 1 2	0 0
s=' 1 2 3 4	0 0 1		s="a 1 2 3	0 0 1 2	s="b 1 2 3	0 0 0 0

The minimum sum is ${f 1}$. Among all the strings that satisfy both the condition, "aabb" is the lexicographically smallest.