Equational Reasoning - Presentation 1

Gabriel Silva

https://github.com/gabriel951/my_work

Professor: Daniele Nantes

November 9, 2020

G. Silva

Overview

Goal

Using Structured Proofs

Necessary Definitions and The Lemma

Quick Comments

Proof

Goal

To present Lemma 10.3.25 of Baader's book ([1]): "Term Rewriting and All That" and its proof. We follow the approach in [1].

Using Structured Proofs

I decided to use a **structured proof** as described by Leslie Lamport in [2], [3].

Figure 1: Leslie Lamport.

Why Use a Structured Proof?

A structured proof allows us to present a proof in details without compromising readability, due to its **hierarchical organization**.

Necessary Definition - $C_{y\downarrow}$

Definition

For a vector $y \downarrow \in \mathbb{R}^n$, we denote the unit cube with lower left corner $y \downarrow$ by $C_{y \downarrow}$, i.e.

$$C_{y\downarrow} = \{z\downarrow \in \mathbb{R}^n \mid z\downarrow = y\downarrow + \sum_{1\leq i\leq n} e^{\downarrow(i)} \cdot r_i, \text{ for some } r_i \in [0,1]\}.$$

Necessary Definition - $[0\downarrow, y\downarrow]$

Definition

We denote the line between $0\downarrow$ and $y\downarrow$ by $[0\downarrow,y\downarrow]$, i.e.

$$[0{\downarrow},y{\downarrow}]:=\{y{\downarrow}\cdot r\mid r\in[0,1]\}.$$

The Lemma

Lemma (10.3.25 of Baader's book)

Let $x \downarrow \in \mathbb{N}^n$ and $p := ||x \downarrow||$. There exist sequences of vectors $v\downarrow^{(0)},\ldots,v\downarrow^{(p)}\in\mathbb{N}^n$ and $z\downarrow^{(0)},\ldots,z\downarrow^{(p)}\in\mathbb{R}^n$ such that:

- 1. $y\downarrow^{(0)} = 0 \downarrow \langle y\downarrow^{(1)} \langle \dots \langle y\downarrow^{(p)} = x \downarrow.$ 2. $y\downarrow^{(i+1)} = y\downarrow^{(i)} + e\downarrow^{(j_i)}$ for some $j_i, 1 \leq j_i \leq n$.
- 3. $z\downarrow^{(i)} \in C_{v\downarrow(i)} \cap [0\downarrow, x\downarrow]$.

Quick Comment

- 1. Item (1) just says that we can obtain a sequence $(y\downarrow)_n$ starting at $0\downarrow$ and going to $x\downarrow$.
- 2. Item (2) says that this sequence is obtained by adding unit vectors.
- 3. Item (3) says that $y\downarrow^{(i)}$ doesn't get too far from the straight route from $0\downarrow$ to $x\downarrow$.

Picture Proof

Figure 2: Illustration of The Idea of The Proof. Figure from [1].

Proof

Proof: We define the required sequence by induction.

- $\langle 1 \rangle 1$. Base Case.
 - $\langle 2 \rangle 1$. **Define:** $y \downarrow^{(0)} := 0 \downarrow$ and $z \downarrow^{(0)} := 0 \downarrow$.
 - $\langle 2 \rangle 2$. Item 1 is satisfied: $y \downarrow^{(0)} = 0 \downarrow$. Additionally, if p = 0 then $y \downarrow^{(0)} = y \downarrow^{(p)} = 0 \downarrow = x \downarrow$.
 - $\langle 2 \rangle$ 3. Item 2 is vacuously satisfied.
 - $\langle 2 \rangle 4$. Item 3 is satisfied: $0 \downarrow \in C_{0 \downarrow} \cap [0 \downarrow, x \downarrow]$.

- $\langle 1 \rangle 2$. Inductive Step.
 - $\langle 2 \rangle 1$. Assume: $0 \le l < p$.
 - $\langle 2 \rangle 2$. Let: $y \downarrow^{(0)}, \dots, y \downarrow^{(I)}$ and $z \downarrow^{(0)}, \dots, z \downarrow^{(I)}$ be the sequences satisfying: $y \downarrow^{(0)} = 0 \downarrow < y \downarrow^{(1)} < \dots < y \downarrow^{(I)} < x \downarrow$.

and the parts (2) (for $0 \le i < I$) and (3) (for $0 \le i \le I$).

These sequences exist by induction.

 $\langle 2 \rangle 3$. The elements of $C_{v\downarrow(l)} \cap [0\downarrow, x\downarrow]$ are the vectors $z\downarrow$ such that:

$$z \downarrow = x \downarrow \cdot r = \sum_{1 \le i \le n} e^{\downarrow (i)} \cdot x_i \cdot r \tag{1}$$

for some $r \in [0, 1]$ and

$$y_i^{(l)} \le z_i = x_i \cdot r \le y_i^{(l)} + 1$$
, for $i = 1, ..., n$. (2)

The vectors $z\downarrow$ satisfy (1) since $z\downarrow\in[0\downarrow,x\downarrow]$. They satisfy (2) since $z\downarrow\in C_{v\downarrow(i)}$.

- $\langle 2 \rangle 4$. Let: r_l be the largest number in [0,1] that satisfies Equation (2). Such r_l exists since $C_{v\downarrow^{(l)}}\cap [0\downarrow,x\downarrow]$ is not empty (it contains $z\downarrow^{(l)}$ by item 3 of induction hypothesis).
- $\langle 2 \rangle$ 5. Let: j_l , $1 \leq j_l \leq n$, be the index such that $x_{j_l} \cdot r_l = y_{j_l}^{(l)} + 1$ In Step $\langle 2 \rangle$ 4 we picked r_i to be the largest number in [0, 1] that satisfies Equation (2). Therefore, by the maximality of r_l there will be an index j_l such that $x_{i_l} \cdot r_l \leq y_{i_l}^{(l)} + 1$ is actually $x_{i_l} \cdot r_l = y_{i_l}^{(l)} + 1.$

 $\langle 2 \rangle$ 6. **Define:** $y \downarrow^{(l+1)} := y \downarrow^{(l)} + e \downarrow^{(j_l)}$ and $z \downarrow^{(l+1)} := x \downarrow \cdot r_l$. Quick Comment: Intuitively, the appropriate vector $z \downarrow^{(l+1)}$ can be found by considering the intersection of the faces of the unit cube $C_{y \downarrow^{(l)}}$ with the line $[0 \downarrow, x \downarrow]$, and then taking the point that is nearest to $x \downarrow$.

15 / 21

Fig. 10.3. How to find $z\downarrow^{(\ell+1)}$.

Figure 3: Figure from [1].

- $\langle 2 \rangle$ 7. Item 1 is satisfied.
 - $\langle 3 \rangle 1. \ \ y \downarrow^{(0)} = 0 \downarrow < y \downarrow^{(1)} < \ldots < y \downarrow^{(I)}.$ By item 1 of the induction hypothesis.
 - $\langle 3 \rangle 2. \ \ y\downarrow^{(I)} < y\downarrow^{(I)} + e\downarrow^{(j_I)} = y\downarrow^{(I+1)}.$
 - $\langle 3 \rangle 3. \ y \downarrow^{(l+1)} \le x \downarrow$, and the equality holds iff l+1=p.
 - $\langle 4 \rangle 1. \ \ y \downarrow^{(l+1)} \le x \downarrow \text{ since } y_i^{(l+1)} \le x_i, \text{ for } i = 1, \dots, n.$
 - $\langle 5 \rangle 1$. Case: $i = j_l$. Then $y_{j_l}^{(l+1)} = y_{j_l}^{(l)} + 1 = x_{j_l} \cdot r_l \le x_{j_l}$.
 - $\langle 5 \rangle 2$. Case: $i \neq j_l$. Then $y_i^{(l+1)} = y_i^{(l)} \leq x_i$ since $y \downarrow^{(l)} < x \downarrow$ by item 1 of the induction hypothesis.
 - $\langle 4 \rangle 2$. Since $||x\downarrow|| = p$ and $||y\downarrow^{(l+1)}|| = l+1$ and by Step $\langle 4 \rangle 1$ we have that $y\downarrow^{(l+1)}$ and $x\downarrow$ are comparable, the equality holds iff l+1=p.

- $\langle 2 \rangle 8$. Item 2 is satisfied: $y \downarrow^{(i+1)} = y \downarrow^{(i)} + e \downarrow^{(j_i)}$ for some $j_i, 1 \leq j_i \leq n$ $\langle 3 \rangle 1$. Case: i = I. It holds by the definition of $y \downarrow^{(i+1)}$ in Step $\langle 2 \rangle 6$.
 - $\langle 3 \rangle 2$. Case: i < I. It holds by item 2 of the induction hypothesis.

- $\langle 2 \rangle 9$. Item 3 is satisfied: $z \downarrow^{(l+1)} \in C_{y \downarrow^{(l+1)}} \cap [0 \downarrow, x \downarrow]$.
 - $\langle 3 \rangle 1. \ z \downarrow^{(l+1)} \in C_{v \downarrow^{(l+1)}}.$
 - $\langle 4 \rangle 1$. Case: $i = j_l$. Then, $z_{j_l}^{(l+1)} = y_{j_l}^{(l+1)}$. $z_{j_l}^{(l+1)} = x_{j_l} \cdot r_l$ by definition of $z \downarrow$ in Step $\langle 2 \rangle 6$. $x_{j_l} \cdot r_l = y_{j_l}^{(l)} + 1$ by Step $\langle 2 \rangle 5$. Finally, $y_{j_l}^{(l)} + 1 = y_{j_l}^{(l+1)}$ by Step $\langle 2 \rangle 6$.
 - $\langle 4 \rangle 2$. Case: $i \neq j_l$. Then, $y_i^{(l+1)} \leq z_i^{(l+1)} \leq y_i^{(l+1)} + 1$. Then by Equation (2) and the fact that $y_i^{(l+1)} = y_i^{(l)}$ for $i \neq j_l$ we obtain $y_i^{(l+1)} \leq z_i^{(l+1)} = x_i \cdot r_l \leq y_i^{(l+1)} + 1$.
 - $\langle 4 \rangle$ 3. By Steps $\langle 4 \rangle$ 1 and $\langle 4 \rangle$ 2 we have: $y_i^{(l+1)} \leq z_i^{(l+1)} \leq y_i^{(l+1)} + 1$ for all i. We conclude that $z \downarrow^{(l+1)} \in C_{v \downarrow^{(l+1)}}$.
 - $\langle 3 \rangle 2. \ z \downarrow^{(l+1)} = x \downarrow \cdot r_l \in [0 \downarrow, x \downarrow], \text{ as } r_l \in [0, 1].$

Thank You

Thank you! Any doubts? 1

¹I now have a webpage, where I make my texts and my slides available:

Bibliography

- [1] F. Baader and T. Nipkow, Term Rewriting and All That. 1998.
- [2] L. Lamport, "How to write a 21st century proof," *J. of Fixed Point Theory and Applications*, vol. 11, no. 1, pp. 43–63, 2012.
- [3] L. Lamport, "How to write a proof," *The American math. monthly*, vol. 102, no. 7, pp. 600–608, 1995.