BDA / TP01 Oracle

Table des matières

1.	Introduction	. 2
2.	Manipulation de la base de données	. 2
	2.1. SQL	
	2.2. PL/SQL	
	Conclusion	

1. Introduction

Ce TP sert de révision sur le langage SQL et PL/SQL.

2. Manipulation de la base de données

2.1. SQL

(3) Vérifier le contenu des tables avec la commande suivante :

	♦ NOM	
1	Asie	44579000
2	Afrique	30065000
3	Amérique	42189120
4	Antarctique	13209000
5	Europe	9938000

SELECT * FROM Continent;

+	Antarctique	13209000
	Europe	9938000
,	Océanie	7687000

SELECT * FROM Fleuve;

SELECT * FROM Frontiere;

Afghanistan

♦ LONGUEUR

470

3

♦ NOMF

Bhoutan

France

Italie

♦ NOMP

2 Chine

639 Monaco

640 Vatican

	♦ NF	⊕ N	OM	♦ LONGUEUR	
1	1	La	Medjerda	460	mer Méditerranée
2	2	Le	Bandama	1050	lagune Lahou
3	3	La	Betsiboka	525	baie de Bombetoka
4	4	Le	Chelif	733	mer Méditerranée
	229	229	le Waitaki		110 océan Pacifique
	230	230	la Whanganui		290 mer de Tasman

1 1 Kilimandjaro - Kibo 5892 Vallée du grand rift 2 Mont Kenya 5199 Vallée du grand rift 234 234 Pics Doma 3568 Monts Bismarck 235 235 Mont Priora 3557 Monts Bismarck

SELECT * FROM Traverser;

	₽N	IF	∯ NOMP
1		1	Tunisie
2		2	Côte d'Ivoire
37	4 :	229	Nouvelle-Zélande
37	5 2	230	Nouvelle-Zélande

- (4) A partir du dictionnaire de données Oracle, affichez les meta-données suivantes :
 - à partir de USER_OBJECTS les tables (OBJECT_NAME) et leur date de création (CREATED)

SELECT object_name, created FROM User_Objects;

	OBJECT_NAME		
1	UK_PAYS_ISO3	18/09/20	
2 1	UK_PAYS_ISO2	18/09/20	
3 :	TRAVERSER	18/09/20	
16	FRONTIERE	18/09/20	
10	FRONTIERE	10/09/20	
17	FLEUVE	18/09/20	
18	CONTINENT	18/09/20	

• à partir de USER_TAB_COLUMNS les attributs (COLUMN_NAME, DATA_TYPE, DATA LENGTH, DATA PRECISION) ordonnés par table (TABLE NAME).

SELECT column_name, data_type, data_length, data_precision FROM User_Tab_Columns;

				DATA_PRECISION
1	NOM	VARCHAR2	50	(null)
2	SUPERFICIE	NUMBER	22	(null)
23	NF	NUMBER	22	(null)
24	NOMP	VARCHAR2	50	(null)

• à partir de USER_CONSTRAINTS, les contraintes d'intégrités (TABLE_NAME, CONSTRAINT_NAME, CONSTRAINT_TYPE, SEARCH_CONDITION) ordonnées par table (TABLE_NAME), puis par type de contrainte.

SELECT table_name, constraint_name, constraint_type, search_condition FROM User_Constraints;

1	TABLE_NAME			SEARCH_CONDITION
1 (CONTINENT	CK_CONTINENT_SUPERFICIE	С	superficie > 0
2	PAYS	CK_PAYS_SUPERFICIE	С	superficie > 0
21	FLEUVE	PK_FLEUVE	P	(null)
22	TRAVERSER	PK_TRAVERSER	P	(null)

(1) Créez une procédure stockée en PL/SQL conforme aux spécifications suivantes : (voir sujet TP)

```
CREATE OR REPLACE PROCEDURE Ajout Pays
(vnom Pays.nom%TYPE, vcap Pays.capitale%TYPE, vsup Pays.superficie%TYPE,
vpop Pays.population%TYPE, viso3 Pays.iso3%TYPE, viso2 Pays.iso2%TYPE, vnomc Pays.nomc%TYPE)
erreur_ck EXCEPTION;
PRAGMA EXCEPTION_INIT (erreur_ck, -02290);
erreur fk EXCEPTION;
PRAGMA EXCEPTION_INIT (erreur_fk, -02291);
erreur_uk EXCEPTION;
PRAGMA EXCEPTION_INIT (erreur_uk, -00001);
INSERT INTO Pays VALUES (vnom, vcap, vsup, vpop, viso3, viso2, vnomc);
DBMS_OUTPUT.PUT_LINE('Pays enregistré');
COMMIT:
EXCEPTION
WHEN erreur_fk THEN
   IF (SQLERRM LIKE '%FK_PAYS_CONTINENT%') THEN
        DBMS OUTPUT.PUT LINE('Le continent est inconnu');
    END IF;
WHEN erreur_ck THEN
    IF (SQLERRM LIKE '%CK_PAYS_SUPERFICIE%') THEN
        DBMS OUTPUT.PUT LINE('La superficie est invalide');
    ELSIF (SQLERRM LIKE '%CK PAYS POPULATION%') THEN
       DBMS OUTPUT.PUT LINE('La superficie est invalide');
    END IF;
WHEN erreur uk THEN
    IF (SQLERRM LIKE '%UK_PAYS_ISO3%') THEN
        DBMS OUTPUT.PUT LINE('Le code iso3 existe déjà');
    ELSIF (SQLERRM LIKE '%UK PAYS ISO2%') THEN
       DBMS_OUTPUT.PUT_LINE('Le code iso2 existe déjà');
    ELSIF (SQLERRM LIKE '%PK PAYS%') THEN
       DBMS OUTPUT.PUT LINE('Le pays existe déjà ');
    END IF;
END;
```

(2) Testez votre procédure en ajoutant le pays suivant.

```
EXECUTE Ajout_Pays ('IUT de Blagnac', 'Dept Info', NULL, NULL, 'IUT', 'UT', 'Europe');

Pays enregistré

SELECT * FROM Pays WHERE nom = 'IUT de Blagnac';
```

```
    ♦ NOM
    ♦ CAPITALE
    ♦ SUPERFICIE
    POPULATION
    ISO3
    ISO2
    NOMC

    1 IUT de Blagnac Dept Info
    (null)
    (null)
    IUT
    UT
    Europe
```

(3) Testez votre procédure avec tous les cas d'erreur.

→ Pays existant

```
EXECUTE Ajout_Pays ('IUT de Blagnac', 'Dept Info', NULL, NULL, 'IUT', 'UT', 'Europe');

Le pays existe déjà
```

Procédure PL/SQL terminée.

→ Code ISO3 existant

```
EXECUTE Ajout_Pays ('IUT de Blagnac2', 'Dept Info2', NULL, NULL, 'IUT', 'U2', 'Europe2');
Le code iso3 existe déjà
```

Procédure PL/SQL terminée.

→ Code ISO2 existant

```
EXECUTE Ajout_Pays ('IUT de Blagnac2', 'Dept Info2', NULL, NULL, 'IU2', 'UT', 'Europe2');

Le code iso2 existe déjà
```

Procédure PL/SQL terminée.

→ Continent inconnu

```
EXECUTE Ajout Pays('IUT de Blagnac2', 'Dept Info2', NULL, NULL, 'IU2', 'U2', 'Europ');
```

Le continent est inconnu

Procédure PL/SQL terminée.

→ Superficie invalide

```
EXECUTE Ajout_Pays('IUT de Blagnac2', 'Dept Info2', -45, NULL, 'IU2', 'U2', 'Europe');

La superficie est invalide

Procédure PL/SQL terminée.

Population invalide

EXECUTE Ajout_Pays('IUT de Blagnac2', 'Dept Info2', NULL, -45, 'IU2', 'U2', 'Europe');

La superficie est invalide

Procédure PL/SQL terminée.
```

3. Conclusion

Ce TP01 a pour but de mettre en application ce que nous avons déjà vu au cours de l'année précédente pour réviser, c'est à dire la manipulation de base de données grâce au langage SQL (Structured Query Langage) et le fonctionnement de blocs PL/SQL.

Durant ce TP, on a pu utiliser la requête SQL « SELECT » sur diverses tables pour observer leur contenu puis nous avons créé une procédure stockée en PL/SQL qui permet l'insertion d'un pays dans la table « Pays ».

Ce TP01 nous a permis de nous rappeler nos connaissances sur la gestion des bases de donnés en SQL et PL/SQL.