Modeliranje strojev

električnih

11. LABORATORIJSKA VAJA

Ime in priimek: Jaka Ambruš

Datum in ura: sreda ob 14.00 Ocena poročila:

1.Uvod

Pri zadnji laboratorijski vaji smo trifaznemu sinhornskemu generatorju določili Potierovo reaktanco. Za željen rezultat smo potrebovali:

- Karakteristiko kratkega stika generatorja
- Karakteristiko prostega teka generatorja
- Vzbujalni tok I_{vL} pri obratovanju generatorja na nazivni napetosti $(U=U_n)$ in obremenitvi z nazivnim tokom $(I=I_n)$, a pri čisto induktivnem značaju bremena $(\cos \varphi_L=0)$

2. Vezalni načrt

3. Nazivni podatki

Taho generator:	Enosmerni motor:	Sinhronski stroj:	Enosmerni generator:	Asinhornski motor
$U_n = 50 V$	$U_n = 190 V$	$U_n(Y) = (400 \pm 20) V$	$U_n = 200/270 \ V$	$U_n(\Delta) = 380 V$
$I_n = 0.3 A$	$I_n = 217 A$	$I_n = 58 A$	$I_n = 10/13.5 A$	$I_n = 114 A$
$n_n = 1440 \ min^{-1}$	$P_n = 36.3 \; kW$	$S_n = 40 \; kVA$	$P_n = 2.0/3.64 \ kW$	$P_n = 64 kW$
$f_n = 48 Hz$	$n_n = 1500 \ min^{-1}$	$\cos \varphi = 0.8$	$n_n = 1500 \ min^{-1}$	$\cos \varphi = 0.9$
	$U_{vzb} = 190 V$	$n_n = 1500 \ min^{-1}$	$U_{vzb} = 57/100 V$	$n_n = 1470 \ min^{-1}$
	$I_{vzb} = 3.6 A$	$f_n = 50 Hz$	$I_{vzb} = 1.3/2.3 A$	$f_n = 50 Hz$

4. Rezultati:

I _v / A	U ₀ / V
0	5,3
0,72	69
0,85	81,9
1,21	117
1,71	165,6
2,01	196
2,51	238,9
2,96	276,7
3,49	319
4,2	359,1
5,2	401
6,56	440
7,58	462

Rezultati meritev preizkusa prostega teka

Rezultati meritev preizkusa kratkega stika

I _v /A	I _k / V
0	0,67
1,94	20,25
3,95	39,9
4,85	49,81
5,65	58

Obremenilna karakteristika pri $\cos \varphi_L = 0$:

Po dosegu vseh potrebnih pogojev za sinhornizacijo sinhronskega generatorja na omrežje smo nastavili električne veličine na: $U_n=392~V$, $n=1500~min^{-1}$, f=50~Hz, $I_{v0}=4.93~A$

Nato smo dobili v delovni točki naslednje rezultate:

$$I_{vL} = 11.25 \, A, I_1 = 58.30 \, A, \cos \varphi = 0.013$$

Potierov diagram.:

Dobimo padec napetosti:

$$U_p = 36 V$$

Absolutna vrednost Potierove reaktance:

$$X_p = \frac{U_p}{\sqrt{3} * I_n} = \frac{36 V}{\sqrt{3} 58 A} = 0.383 \Omega$$

Potierov padec napetosti kot relativna vrednost glede na nazivno napetost:

$$u_p = U_P/U_n = 0.09 = 9\%$$

5. Zaključek

Pri vaji smo se podrobneje seznanili s Potierovo reaktanco sinhronskega stroja. Videli smo, da Potierov trikotnik skonstruiramo v diagramu s KPT generatorja, ter kako s pomočjo Potierovega trikotnika, narejenega v prejšnjem diagramu dobimo naš iskan padec napetosti, s katerim lahko določimo Potierovo reaktanco.

6. Domača naloga

Trifazni sinhronski generator s cilindričnim rotorjem ima nazivne podatke: S_n = 40 kVA, U_n = 400 V, f_n = 50 Hz, n_n = 1500 vrt/min, $\cos \varphi_n$ = 0,8. Pri nazivnem obratovanju generatorja je rotorski vzbujalni tok I_{vn} = 10,2 A.

Generator bomo sinhronizirali na nazivno omrežje. V prostem teku generatorja pri nazivni hitrosti vrtenja, smo nastavili vzbujalni tok $I_{\nu\theta}$ = 4,1 A, da se je na statorju inducirala nazivna napetost.

Kolikšen vzbujalni tok moramo nastaviti sinhroniziranemu generatorju, da bo obremenjen z nazivnim tokom čistega induktivnega značaja ($cos\phi$ =0)?

