Yakeen NEET 2.0 2026

Physical Chemistry By Amit Mahajan Sir Some Basic Concept of Chemistry

DPP: 6

Q1 The number of moles of ${}^{\prime}B$ ${}^{\prime}$ required to produce 2.5 mole of AB_4 according to equation:

 $A + 4 B \rightarrow AB_4$

(A)1

(B) 10

(C)5

- (D) 15
- **Q2** The equation $2Al(s) + \frac{3}{2}O_2 \longrightarrow Al_2O_3$ (s) shows that
 - (A) 2 moles of aluminium react with $\frac{3}{2}$ moles of oxygen to produce one mole of aluminium oxide
 - (B) 2 atoms of aluminium react with $\frac{3}{2}$ atoms of oxygen to produce one atom of aluminium oxide
 - (C) 2g of aluminium react with $\frac{3}{2}$ g of oxygen to produce 1 g of aluminium oxide
 - (D) 2 g of aluminium react with $\frac{3}{2}$ litres of oxygen to produce $1\ g$ of aluminium oxide
- **Q3** The number of moles of $Ca(HCO_3)_2$ required to prepare 1.50 moles of CO_2 , according to the equation

 $Ca(HCO_3)_2 + 2HCl \rightarrow CaCl_2 + 2CO_2$ is $+2H_{2}O$

- (A) 1.00 mol
- (B) 2.00 mol
- (C) 0.750 mol
- (D) 1.50 mol
- Q4 0.7 moles of potassium sulphate is allowed to react with 0.9 moles of barium chloride in aqueous solutions. The number of moles of the substance precipitated in the reaction is:
 - (A) 1.4 moles of potassium chloride
 - (B) 0.7 moles of barium sulphate
 - (C) 1.6 moles of potassium chloride
 - (D) 1.6 moles of barium sulphate

- Q5 How many grams of calcium oxide is obtained on heating 100 g of $CaCO_3(\text{ s})$?
 - (A) 50 g
 - (B)40g
 - (C) 56 g
 - (D) 44 g
- Q6 What is the mass of glucose required to produce 44 g of CO_2 on complete combustion?
 - (A) 30 g
 - (B) 45 g
 - (C) 60 g
 - (D) 22 g
- Q7 What is the weight of oxygen required for the complete combustion of 2.8 kg of ethylene?
 - (A) 2.8 kg
 - (B) 6.4 kg
 - (C) 9.6 kg
 - (D) 96 kg
- **Q8** According to the following reaction the minimum quantity in g of H_2 S needed to precipitate $63.5 \mathrm{gm}$ of Cu^{2+} ions will be nearly?

$$\mathrm{Cu}^{+2} + \mathrm{H_2} \; \mathrm{S} o \mathrm{CuS} + 2\mathrm{H}^+$$

- (A) 63.5 g
- (B) 31.75g
- (C) 34g
- (D) 20g
- **Q9** A quantity of $2.76 \, \mathrm{g}$ of silver carbonate on being strongly heated yields a residue(Solid/liquid) weighing Gramatomic mass of (Ag = 108),C=12g and O=16 g)

$$\begin{split} & \operatorname{Ag_2 CO_3}\left(s\right) \overset{\Delta}{\to} 2\operatorname{Ag}\left(s\right) + \operatorname{CO_2}\left(g\right) \\ & + \tfrac{1}{2}\operatorname{O_2}\left(g\right) \end{split}$$

(A) 2.16 g

- (B) 2.48 g
- (C) 2.32 g
- (D) 2.64 g
- $\mbox{\bf Q10}\ \ \, \mbox{How many grams of}\ H_2$ are required to consume 2 mol of CO?

(Gram atomic mass of H = 1 g, C = 12 gand O = 16

 $\mathrm{CO}(\mathrm{g}) + 2\mathrm{H}_2(\; \mathrm{g}) o \mathrm{CH}_3\,\mathrm{OH}(\mathrm{g})$

- (A) 2 g
- (B) 4 g
- (C) 8g
- (D) $16 \mathrm{g}$
- $\mbox{\bf Q11} \ \ \, \mbox{The mass of } 70\% \ H_2SO_4 \ \mbox{required for}$ neutralization of one mole of NaOH is : (Gram $\,$ atomic mass of H = 1 g, O = 16 g, Na = 23 g and S= 32 g

$$2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$$

- (A) 70 g
- (B) $35 \mathrm{g}$
- (C) 30 g
- (D) 95 g

Q1	(B)	Q 7	
Q2	(A)	Q8	(C)
Q3	(C)	Q9	(A)
Q4	(B)	Q10	(C)
Q5	(C)	Q11	(A)
Q6	(A)		

Android App | iOS App | PW Website

