AMENDMENTS TO THE CLAIMS

List of Current Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Claims 1 - 7 (Cancelled)

8. (Currently Amended) A method for determining a measuring point in time (t_M) , at which a measured value is to be produced by a field device of process automation technology, comprising the steps of:

communicating measured values of the field device at certain communication points in time (t_K) via a field bus following a query from a central control unit for measured values of the field device;

at least approximately determining a <u>following</u> communication point in time (t_f) from <u>at least one time span (A) between two preceding communication points</u> in time (t_k, t_k') and a preceding communication point in time (t_k, t_k') or which is either one of said two preceding communication points in time (t_k, t_k') or which is another communication point in time (t_k') ; at least two communication points in time (t_k, t_k') ; and

determining the measuring point in time (t_M) on the basis of said approximately determined following communication point in time $(t_r)[[.]]$; wherein:

the point in time of measurement (t_m) should, in such case, be as shortly as possible before the approximately determined communication point in time (t_f) and, consequently, before the reporting of the measured value such that said determined measuring point in time (t_M) lies as shortly as possible before said approximately determined following communication point in time (t_M)

9. (Previously presented) The method as claimed in claim 8, wherein:

the measurement point in time (t_M) is also communicated with the measured value.

10. (Cancelled)

11. (Currently Amended) The method as claimed in claim 8, further comprising the step of:

calculating at least two time spans (A_1, A_2) between, in each case, at least two preceding communication points in time $(t_{K1}, t'_{K1}, t_{K2}, t'_{K2})$;

forming an average value (M) from the time spans (A₁, A₂); and approximating approximately determining the following communication point in time (t_f) starting from the average value (M) and a preceding communication point in time (t''_K).

Claims 12 - 13 (Cancelled).

14. (Currently Amended) <u>A field device</u> An apparatus for determining a measuring point in time (t_M) An apparatus for determining a measured point in time (t_M) , comprising:

a control unit;

at least one field bus communication unit, which, in the case of a query from said control unit, communicates at least one measured value; and

at least one output/control unit, which controls the measuring point in time (t_M) of said field device, wherein:

said at least one field bus communication unit transmits at least the communication point in time (t_K) to said output/control unit;

said output/control unit approximately determines a following communication point in time (t_f) from at least one time span (A) between two preceding communication points in time (t_K , t_K) and a preceding communication point in time (t_K) which is either one of said two preceding points in time (t_K , t_K)

or which is another communication point in time (t",); and

said output/control unit determines the measuring point in time (t_M on the basis of said approximately determined following communication point in time (t_f) such that said determined measuring point in time (t_M) lies as shortly as possible before the approximately determined following communication point in time (t_f).