0	Le	corps des nombres complexes.	1	
1	Forme algébrique d'un nombre complexe.			
	1.1	Partie réelle, partie imaginaire	3	
	1.2	Représentation : le plan complexe		
	1.3	Conjugué d'un nombre complexe		
	1.4	Module d'un nombre complexe		
2	For	Forme trigonométrique d'un nombre complexe.		
	2.1	Paramétrisation du cercle trigonométrique	8	
	2.2	Forme trigonométrique d'un nombre complexe non nul		
	2.3	Applications à la trigonométrie		
	2.4	Exponentielle d'un nombre complexe		
	2.5	Compléments de géométrie.		
3	Équations algébriques.		19	
	3.1	Racines carrées d'un nombre complexe	19	
	3.2	Racines n -èmes de l'unité et équation $z^n = a$		
	3.3	Équations du second degré.		
\mathbf{E}_{2}	Exercices			

0 Le corps des nombres complexes.

On admet l'existence d'un ensemble de nombres noté $\mathbb C$ ainsi que d'une addition et d'un produit + et \cdot :

$$+: \left\{ \begin{array}{ccc} \mathbb{C}^2 & \to & \mathbb{C} \\ (z,z') & \mapsto & z+z' \end{array} \right. \quad \text{et} \quad \cdot: \left\{ \begin{array}{ccc} \mathbb{C}^2 & \to & \mathbb{C} \\ (z,z') & \mapsto & z\cdot z' \end{array} \right..$$

Les éléments de \mathbb{C} sont appelés **nombres complexes**.

La construction de $(\mathbb{C}, +, \cdot)$ n'est pas très difficile (ce qui est dur, c'est de construire \mathbb{R} !) mais elle est horsprogramme. La liste des propriétés ci-dessous est donc <u>admise</u>.

• Les nombres réels sont des nombres complexes : $\mathbb{R} \subset \mathbb{C}$. Dans \mathbb{C} , il existe un nombre i tel que

$$i^2 = -1$$
.

Ainsi, l'équation $x^2 = -1$, qui n'a pas de solutions dans \mathbb{R} , en possède une (au moins...) dans \mathbb{C} .

- Tout nombre complexe z s'écrit sous la forme z = a + ib, avec z = a + ib, avec z = a + ib. Cette écriture est unique (voir plus bas) : on dit que z = a + ib est la **forme algébrique** du nombre z = a + ib.
- Les lois + et \cdot sont commutatives :

$$\forall z, z' \in \mathbb{C}$$
 $z + z' = z' + z$ et $z \cdot z' = z' \cdot z$.

• Les lois + et \cdot sont associatives :

$$\forall z_1, z_2, z_3 \in \mathbb{C}$$
 $(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$ et $(z_1 \cdot z_2) \cdot z_3 = z_1 \cdot (z_2 \cdot z_3)$.

• La loi · est distributive par rapport à + :

$$\forall z_1, z_2, z \in \mathbb{C}$$
 $(z_1 + z_2) \cdot z = z_1 \cdot z + z_2 \cdot z = z \cdot (z_1 + z_2).$

• 0 est neutre pour l'addition et 1 est neutre pour la multiplication :

$$\forall z \in \mathbb{C} \quad 0+z=z=z+0 \quad \text{ et } \quad z \times 1=z=1 \times z.$$

Méthode (Un premier calcul dans \mathbb{C}).

$$(a+ib)\cdot(c+id) =$$

- L'ensemble $\mathbb{C} \setminus \{0\}$ sera noté \mathbb{C}^* . Pour tout nombre complexe z non nul, il existe un unique nombre complexe ω tel que $\omega z = z\omega = 1$. Ce nombre sera appelé **inverse** de z et noté z^{-1} . Comme dans \mathbb{R} , 0 n'a pas d'inverse dans \mathbb{C} .
- Le quotient de deux nombres complexes est défini ainsi : si $(z, z') \in \mathbb{C}^* \times \mathbb{C}$,

$$\frac{z'}{z} := z' \cdot (z)^{-1}.$$

Les égalités suivantes sont vraies pour tous nombres z_1, z_2, z_3 non nuls :

$$\left(\frac{z_1}{z_2}\right)^{-1} = \frac{z_2}{z_1} \qquad \frac{z_1 + z_2}{z_3} = \frac{z_1}{z_3} + \frac{z_2}{z_3} \qquad \frac{z_1 \cdot z_2}{z_3} = z_1 \cdot \frac{z_2}{z_3}.$$

• Un produit de nombres complexes est nul si et seulement si l'un des facteurs est nul :

$$\forall z, z' \in \mathbb{C} \quad z \cdot z' = 0 \iff (z = 0 \text{ ou } z' = 0).$$

- Un nombre complexe n'a pas de signe. Une inégalité entre nombres complexes non réels n'a <u>aucun sens</u>.
- Les identités démontrées dans le cours Sommes et produits sont vraies pour les nombres complexes (toutes les preuves fonctionnent de la même façon). On a notamment

$$\forall z \in \mathbb{C} \qquad \forall n \in \mathbb{N} \qquad \sum_{k=0}^{n} z^{k} = \begin{cases} \frac{1-z^{n+1}}{1-z} & \text{si } z \neq 1 \\ n+1 & \text{si } z = 1 \end{cases}$$

$$\forall (\alpha,\beta) \in \mathbb{C}^{2} \qquad \forall n \in \mathbb{N}^{*} \qquad \alpha^{n} - \beta^{n} = (\alpha-\beta) \sum_{k=0}^{n-1} \alpha^{n-1-k} \beta^{k}$$

$$\forall (\alpha,\beta) \in \mathbb{C}^{2} \qquad \forall n \in \mathbb{N} \qquad (\alpha+\beta)^{n} = \sum_{k=0}^{n} \binom{n}{k} \alpha^{k} \beta^{n-k}.$$

Exemple 1.

1.
$$\forall p \in \mathbb{Z}$$
 $i^{2p} = (-1)^p$ et $i^{2p+1} = (-1)^p i$. En particulier, $\left| \frac{1}{i} = -i \right|$.

2. Calcul de

$$1 + 2i + 3i^2 + 4i^3 + 5i^4$$
, $(1+2i)^2$, $(1+i)^3$.

Exemple 2 (Calcul de l'inverse).

- 1. Soient $(a,b) \in \mathbb{R}^2 \setminus \{(0,0)\}$. Vérifier que $\frac{1}{a+ib} = \frac{a-ib}{a^2+b^2}$. Le nombre a-ib sera appelé plus loin le conjugué de de a+ib et $\sqrt{a^2+b^2}$ son module.
- 2. Donner la forme algébrique des nombres $\frac{1}{1+i}$ et $\frac{2-i}{1-3i}$.

1 Forme algébrique d'un nombre complexe.

1.1 Partie réelle, partie imaginaire.

Proposition-Définition 3.

Soient $a, a', b, b' \in \mathbb{R}$. L'unicité de l'écriture de la forme algébrique d'un nombre complexe donne

$$a+ib=a'+ib' \iff (a=a' \text{ et } b=b').$$

En particulier, $a+ib=0 \iff (a=0 \text{ et } b=0)$.

Soit z = a + ib un nombre complexe, avec (a, b) tel que z = a + ib.

Le réel a est appelé **partie réelle** de z et noté Re(z).

Le réel b est appelé partie imaginaire de z et noté Im(z).

Proposition 4 (Réels et imaginaires purs).

$$\forall z \in \mathbb{C} \quad z \in \mathbb{R} \iff \operatorname{Im}(z) = 0.$$

La nullité de la partie réelle de z caractérise quant à elle l'appartenance de z à l'ensemble des **imaginaires purs**, ensemble parfois noté $i\mathbb{R}$.

Proposition 5.

Pour tous $z, z' \in \mathbb{C}$, pour tout $\lambda \in \mathbb{R}$ réel, on a

$$\operatorname{Re}(z+z') = \operatorname{Re}(z) + \operatorname{Re}(z')$$
 et $\operatorname{Re}(\lambda z) = \lambda \operatorname{Re}(z)$.

$$\operatorname{Im}(z+z') = \operatorname{Im}(z) + \operatorname{Im}(z')$$
 et $\operatorname{Im}(\lambda z) = \lambda \operatorname{Im}(z)$.

Plus généralement, si $z_1, \ldots, z_n \in \mathbb{C}$,

$$\operatorname{Re}\left(\sum_{k=1}^{n} z_{k}\right) = \sum_{k=1}^{n} \operatorname{Re}(z_{k}) \quad \text{ et } \quad \operatorname{Im}\left(\sum_{k=1}^{n} z_{k}\right) = \sum_{k=1}^{n} \operatorname{Im}(z_{k}).$$

« La partie réelle de la somme, c'est la somme des parties réelles ». Idem pour la partie imaginaire.

1.2 Représentation : le plan complexe.

On travaille dans cette partie avec un repère orthonormé du plan $(O, \overrightarrow{i}, \overrightarrow{j})$.

Définition 6.

Soient a et b deux réels.

- 1. Si M est le point du plan de coordonnées (a,b), le nombre a+ib est appelé l'affixe de M. Réciproquement, si z=a+ib, le point M de coordonnées (a,b) est l'unique point du plan d'affixe z. On pourra le noter M(z).
- 2. Cette correspondance bijective $z \mapsto M(z)$ entre nombres complexes et points du plan permet d'identifier \mathbb{C} à \mathbb{R}^2 : on parle de **plan complexe**.
- 3. L'affixe d'un vecteur $\overrightarrow{u}(a,b)$ est le nombre complexe a+ib.

Point d'affixe z = a + ib

Exemples, en confondant points et affixes

Somme et parallélogramme

Soit $c \in \mathbb{C}$ un nombre complexe. L'application $z \mapsto z + c$ est appelée **translation** de vecteur c. Soit k un nombre réel. L'application $z \mapsto kz$ est appelée **homothétie** de rapport k.

Translation de vecteur c

Homothétie de rapport k

Proposition 7.

Si A a pour affixe z_A et B pour affixe z_B , le vecteur \overrightarrow{AB} a pour affixe $z_B - z_A$.

Si \overrightarrow{u} et \overrightarrow{v} sont deux vecteurs d'affixes respectives z et z', et λ et μ deux réels, le vecteur $\lambda \overrightarrow{u} + \mu \overrightarrow{v}$ a pour affixe $\lambda z + \mu z'$.

1.3 Conjugué d'un nombre complexe.

Définition 8.

On appelle **conjugué** d'un nombre complexe z, et on note \overline{z} le nombre

$$\overline{z} := \operatorname{Re}(z) - i \operatorname{Im}(z).$$

Autrement dit,

$$\forall (a,b) \in \mathbb{R} \quad \overline{a+ib} = a-ib.$$

Figure. Soit un point M d'affixe z.

Le point M', d'affixe \overline{z} , est le symétrique de M par rapport à l'axe des abscisses.

Proposition 9.

Pour tout $z \in \mathbb{C}$,

$$z + \overline{z} = 2\text{Re}(z)$$
 et $z - \overline{z} = 2i\text{Im}(z)$.

Ceci permet d'obtenir les caractérisations suivantes :

$$z \in \mathbb{R} \iff z = \overline{z}$$
 et $z \in i\mathbb{R} \iff z = -\overline{z}$.

Proposition 10 (Conjugaison et opérations).

Pour tous nombres complexes z et z', on a

a)
$$\overline{\overline{z}} = z$$
 c) $\overline{z \cdot z'} = \overline{z} \cdot \overline{z'}$
b) $\overline{z + z'} = \overline{z} + \overline{z'}$ d) si $z' \neq 0$, $\overline{\left(\frac{z}{z'}\right)} = \frac{\overline{z}}{\overline{z'}}$.

Par conséquent, l'application $z \mapsto \overline{z}$ est \mathbb{R} -linéaire, c'est à dire que pour tous nombres $z, z' \in \mathbb{C}$, et tous <u>réels</u> λ, μ , on a

$$\overline{\lambda z + \mu z'} = \lambda \overline{z} + \mu \overline{z'}.$$

« Le conjugué de la somme, c'est la somme des conjugués ». Marche avec le produit et le quotient.

1.4 Module d'un nombre complexe.

Définition 11.

Pour tout nombre complexe z, on appelle **module** de z et on note |z| le nombre réel positif

$$|z| := \sqrt{\operatorname{Re}(z)^2 + \operatorname{Im}(z)^2}.$$

Exemple 12.

$$|i| = |2 + 3i| =$$

Le module d'un nombre réel a vaut $\sqrt{a^2+0^2}$: c'est sa valeur absolue.

Figure.

- Si M est un point du plan d'affixe z, alors |z| est la longueur du segment [OM].
- Si M et M' sont deux points du plan d'affixes z et z', alors |z-z'| est la distance entre M et M'.

Confondons le point et son affixe pour énoncer l'idée importante suivante :

pour
$$z, z' \in \mathbb{C}$$
, $|z - z'|$ est la **distance** entre z et z' .

6

Continuons de confondre point et affixe. Soit $a \in \mathbb{C}$ et r un nombre réel positif. Les ensembles

$$\{z \in \mathbb{C} \mid |z - a| = r\}$$
 et

$$\{z \in \mathbb{C} \mid |z - a| \le r\}$$

sont respectivement le **cercle** et le **disque** de centre a et de rayon r.

Exemple 13 (Module, cercles et disques).

Représenter l'ensemble

$$\{z \in \mathbb{C} \mid |z-1| = 1 \text{ et } |z+1| \le 2\}.$$

Proposition 14.

Pour tout nombre complexe z,

a)
$$|z| = 0 \iff z = 0$$

a)
$$|z| = 0 \iff z = 0$$
. c) $|\operatorname{Re}(z)| \le |z|$ et $|\operatorname{Im}(z)| \le |z|$.

b)
$$|-z| = |z| = |\overline{z}|$$
.

b)
$$|-z| = |z| = |\overline{z}|$$
. d) $\operatorname{Re}(z) = |z| \iff z \in \mathbb{R}_+$.

Proposition 15 (Propriétés multiplicatives du module).

Pour tous nombres complexes z et z', on a

$$a) |z|^2 = z \cdot \overline{z}$$

$$b) |z \cdot z'| = |z| \cdot |z'|$$

c) si
$$z' \neq 0$$
, $\left| \frac{z}{z'} \right|$

$$a) \ |z|^2 = z \cdot \overline{z} \qquad b) \ |z \cdot z'| = |z| \cdot |z'|, \qquad c) \text{ si } z' \neq 0, \quad \left|\frac{z}{z'}\right| = \frac{|z|}{|z'|} \qquad d) \text{ si } z \neq 0, \quad \frac{1}{z} = \frac{\overline{z}}{|z|^2}.$$

« Le module du produit, c'est le produit des modules ». Idem pour le quotient mais... attention à la somme!

Théorème 16 (Inégalité triangulaire).

Pour tous nombres complexes z et z', on a

$$|z+z'| \le |z| + |z'|.$$

Il y a égalité si et seulement si z=0 ou il existe un nombre réel positif λ tel que $z'=\lambda z$.

Corollaire 17.

1.
$$\forall (z, z') \in \mathbb{C}^2 \quad |z - z'| \le |z| + |z'|$$
.

$$2. \ \forall (z,z') \in \mathbb{C}^2 \quad ||z|-|z'|| \leq |z-z'|.$$

3.
$$\forall n \in \mathbb{N}^*, \quad \forall (z_1, \dots, z_n) \in \mathbb{C}^n, \qquad \left| \sum_{k=1}^n z_k \right| \leq \sum_{k=1}^n |z_k|.$$

2 Forme trigonométrique d'un nombre complexe.

2.1 Paramétrisation du cercle trigonométrique.

Définition 18.

On note $\mathbb U$ l'ensemble des nombres complexes de module 1 :

$$\mathbb{U} = \left\{ \omega \in \mathbb{C} \mid |\omega| = 1. \right\}.$$

Si on identifie $\mathbb C$ avec le plan muni d'un repère orthonormé, alors $\mathbb U$ est le cercle trigonométrique.

Proposition 19.

Tous les nombres de U sont non nuls, donc inversibles, et

$$\forall \omega \in \mathbb{U} \quad \omega^{-1} = \overline{\omega}.$$

Définition 20.

Soit $\theta \in \mathbb{R}$. On note $e^{i\theta}$ (« exponentielle de $i\theta$ ») le nombre complexe de module 1 suivant :

$$e^{i\theta} := \cos\theta + i\sin\theta.$$

Par définition même de $e^{i\theta}$, on a $\cos\theta = \operatorname{Re}\left(e^{i\theta}\right)$ et $\sin\theta = \operatorname{Im}\left(e^{i\theta}\right)$.

Proposition 21 (Paramétrisation de \mathbb{U}).

$$\forall z \in \mathbb{C} \quad z \in \mathbb{U} \iff \exists \theta \in \mathbb{R} \ z = e^{i\theta}.$$

Par conséquent,

$$\mathbb{U} = \left\{ e^{i\theta} \mid \theta \in \mathbb{R} \right\}.$$

Exemple 22 (Valeurs notables).

$$\begin{aligned} -1 &= e^{i\pi}, & 1 &= e^{i0} &= e^{2i\pi}, & i &= e^{i\frac{\pi}{2}}, & -i &= e^{-i\frac{\pi}{2}} \\ \frac{\sqrt{2}}{2} &+ \frac{\sqrt{2}}{2}i &= e^{i\frac{\pi}{4}}, & \frac{1}{2} &+ \frac{\sqrt{3}}{2}i &= e^{i\frac{\pi}{3}}, & \frac{\sqrt{3}}{2} &+ \frac{1}{2}i &= e^{i\frac{\pi}{6}}. \end{aligned}$$

Le rapport entre les nombres $e^{i\theta}$ qui viennent d'être définis et la fonction exponentielle définie sur \mathbb{R} restera floue dans ce cours, faute d'une définition rigoureuse de l'exponentielle comme somme de série. Nous démontrons néanmoins dans la proposition ci-dessous que que ces deux applications

$$: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R}_+^* \\ x & \mapsto & e^x \end{array} \right. \quad \text{et} \quad : \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{U} \\ \theta & \mapsto & e^{i\theta} \end{array} \right.$$

possèdent un point commun : la propriété de morphisme.

Proposition 23 (Propriété de morphisme pour $e^{i\cdot}$).

$$\forall \theta, \theta' \in \mathbb{R}$$
 $e^{i(\theta+\theta')} = e^{i\theta} \cdot e^{i\theta'}$

Par conséquent, pour tout θ, θ' réels

$$\left(e^{i\theta}\right)^{-1} = e^{-i\theta} = \overline{e^{i\theta}}, \quad e^{i(\theta - \theta')} = \frac{e^{i\theta}}{e^{i\theta'}} \quad \text{et} \quad \forall k \in \mathbb{Z} \quad (e^{i\theta})^k = e^{ik\theta}.$$

Proposition 24.

$$\forall (\theta, \theta') \in \mathbb{R}^2 \quad e^{i\theta} = e^{i\theta'} \iff \theta = \theta' [2\pi].$$

2.2 Forme trigonométrique d'un nombre complexe non nul.

Proposition-Définition 25.

Tout nombre complexe z non nul peut s'écrire sous la forme

$$z = re^{i\theta}$$
, où $r \in \mathbb{R}_+^*$ et $\theta \in \mathbb{R}$.

- Le nombre r est le module de z,
- et on appelle θ un argument de z.
- On dit alors que z est écrit sous forme trigonométrique.

Dans le plan muni d'un repère orthonormé direct, si O, I et M sont les points d'affixes 0, 1, z ($z \neq 0$), et si θ est un argument de z, alors peut être considéré comme une **mesure de l'angle orienté** (\overrightarrow{OI} , \overrightarrow{OM}).

Méthode (Passer de la forme algébrique à la forme trigonométrique).

Pour mettre un nombre complexe non nul sous forme trigonométrique il suffit de mettre son module en facteur. On va peut-être reconnaître un argument connu $(\frac{\pi}{3}, \frac{\pi}{4}...)$.

Exemple 26.

1. Mettre les nombres suivants sous forme trigonométrique (on précisera bien le module et un argument)

$$1+i, \quad 1-i, \quad \sqrt{3}+i, \quad -2.$$

2. Justifier que 1+2i possède un argument dans l'intervalle $\left[\frac{\pi}{3},\frac{\pi}{2}\right]$.

Proposition 27 (Égalité de formes trigonométriques : presque-unicité de l'écriture).

$$\forall r, r' \in \mathbb{R}_+^* \ \forall \theta, \theta' \in \mathbb{R} \qquad re^{i\theta} = r'e^{i\theta'} \iff \left\{ \begin{array}{l} r = r' \\ \theta \equiv \theta' \ [2\pi] \end{array} \right.$$

Exemple 28 (Résoudre un problème multiplicatif avec la forme trigonométrique).

Résoudre sur \mathbb{C} l'équation

$$z^3 = -4|z|.$$

Définition 29.

Parmi l'infinité d'arguments d'un même nombre complexe non nul, un seul appartient à l'intervalle $[-\pi,\pi]$. On l'appelle **argument principal** de z et on le note $\arg(z)$.

Proposition 30.

Soit $z \in \mathbb{C}^*$. Alors

$$z \in \mathbb{R} \iff \left(\arg(z) = 0 \ \text{ ou } \arg(z) = \pi\right); \qquad \quad z \in i\mathbb{R} \iff \left(\arg(z) = \pm \frac{\pi}{2}\right).$$

Proposition 31.

Soient z et z' dans \mathbb{C}^* . On a

$$\arg(zz') \equiv \arg(z) + \arg(z') [2\pi]$$
 et $\arg\left(\frac{z}{z'}\right) \equiv \arg(z) - \arg(z') [2\pi]$

Soient r > 0 et $\theta, \alpha \in \mathbb{R}$. Multiplions le nombre $z = re^{i\theta}$ par $e^{i\alpha}$. On obtient $re^{i(\theta+\alpha)}$. On voit que l'application $z \mapsto e^{i\alpha}z$ est la **rotation** d'angle α et de centre 0 (dessin plus bas).

Plus généralement, on est désormais capable d'interpréter géométriquement le produit de deux nombres complexes. La proposition ci-dessous est énoncée en confondant les points et leurs affixes.

Proposition 32.

Soit $(r, \alpha) \in \mathbb{R}_+^* \times \mathbb{R}$ et $a = re^{i\alpha}$. L'application $z \mapsto az$ est la composée (commutative) de

- l'homothétie de centre 0 et de rapport r,
- la rotation de centre 0 et de rapport α .

 $2i=2e^{irac{\pi}{4}}$

Effet d'une multiplication par $e^{i\alpha}$

Effet d'une multiplication par 2i

2.3 Applications à la trigonométrie

Certains des résultats du paragraphe 2.1 se récrivent sous la forme de formules que nous donnons ci-dessous.

Proposition 33 (Formule d'Euler/Formule de Moivre).

Les identités suivantes sont appelées formules d'Euler:

$$\forall \theta \in \mathbb{R}$$
 $\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$ $\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$.

La relation suivante est appelée formule de Moivre :

$$\forall \theta \in \mathbb{R} \quad \forall n \in \mathbb{N} \quad (\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta).$$

Preuve.

Les formules d'Euler découlent directement de la définition de $e^{i\theta}$, pour θ réel :

$$e^{i\theta} + e^{-i\theta} = e^{i\theta} + \overline{e^{i\theta}} = 2\operatorname{Re}(e^{i\theta}) = 2\cos(\theta) \qquad e^{i\theta} - e^{-i\theta} = e^{i\theta} - \overline{e^{i\theta}} = 2i\operatorname{Im}(e^{i\theta}) = 2i\sin(\theta).$$

Quant à la formule de Moivre, il s'agit juste de la propriété de morphisme : pour $\theta \in \mathbb{R}$ et $n \in \mathbb{N}$

$$\left(e^{i\theta}\right)^n = e^{in\theta},$$

et on écrit la définition de $e^{i\theta}$ et $e^{in\theta}$.

Méthode (Factorisation par l'argument moitié).

Cette factorisation permet de faire apparaître une formule d'Euler:

$$1 + e^{i\theta} = e^{i\frac{\theta}{2}} \left(\underbrace{e^{-i\theta/2} + e^{i\theta/2}}_{=2\cos\frac{\theta}{2}} \right) = 2\cos\left(\frac{\theta}{2}\right) e^{i\frac{\theta}{2}}.$$

$$1 - e^{i\theta} = e^{i\frac{\theta}{2}} \left(\underbrace{e^{-i\theta/2} - e^{i\theta/2}}_{=-2i\sin\frac{\theta}{2}} \right) = -2i\sin\left(\frac{\theta}{2}\right) e^{i\frac{\theta}{2}}.$$

L'argument moitié sur un dessin

Méthode (Généralisation : factorisation par l'argument moyen).

Pour factoriser la somme ou la différence de e^{ia} et e^{ib} , retenons qu'on peut factoriser par $e^{i\frac{a+b}{2}}$.

$$e^{ia} + e^{ib} = e^{i\frac{a+b}{2}} \left(\underbrace{e^{i\frac{a-b}{2}} + e^{i\frac{b-a}{2}}}_{=2\cos\frac{a-b}{2}} \right) = 2\cos\left(\frac{a-b}{2}\right) e^{i\frac{a+b}{2}}.$$

$$e^{ia}-e^{ib}=e^{i\frac{a+b}{2}}\big(\underbrace{e^{i\frac{a-b}{2}}-e^{i\frac{b-a}{2}}}_{=2i\sin\frac{a-b}{2}}\big)=2i\sin\left(\frac{a-b}{2}\right)e^{i\frac{a+b}{2}}.$$

Exemple 34 (Somme de cos, somme de sin).

Soient $p, q \in \mathbb{R}$. On retrouve les égalités :

$$\cos p + \cos q = 2\cos\left(\frac{p-q}{2}\right)\cos\left(\frac{p+q}{2}\right) \qquad \sin(p) + \sin(q) = 2\cos\left(\frac{p-q}{2}\right)\sin\left(\frac{p+q}{2}\right)$$

Exemple 35.

Pour $\theta \in \mathbb{R} \setminus \{2k\pi, k \in \mathbb{Z}\}$, on établit les formules

$$\sum_{k=0}^{n} \cos(k\theta) = \frac{\sin\left(\frac{(n+1)\theta}{2}\right) \cos\left(\frac{n\theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)} \quad \text{et} \quad \sum_{k=0}^{n} \sin(k\theta) = \frac{\sin\left(\frac{(n+1)\theta}{2}\right) \sin\left(\frac{n\theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)}$$

Méthode (Linéarisation des puissances de cos et sin).

Soient p et q deux entiers naturels. Pour linéariser $(\cos \theta)^p (\sin \theta)^q$, on peut toujours :

- · transformer $\cos \theta$ et $\sin \theta$ par les formules d'Euler;
- · développer grâce à la formule du binôme de Newton;
- · regrouper les exponentielles conjuguées $e^{ik\theta}$ et $e^{-ik\theta}$;
- · reconnaître des termes $\cos(k\theta)$ et $\sin(k\theta)$ $(k \in \mathbb{N})$ par les formules d'Euler.

On peut ainsi transformer $(\cos \theta)^p (\sin \theta)^q$ en une combinaison linéaire de termes $\cos(k\theta)$ et $\sin(k\theta)$, où $k \in \mathbb{N}$.

Exemple 36.

Linéariser $(\cos \theta)^4$, $(\sin \theta)^3$ et $(\cos \theta)^3 \sin \theta$. Calculer $\int_0^{\pi} (\cos x)^4 dx$.

Méthode (« Délinéarisation » : exprimer $\cos(n\theta)$ et $\sin(n\theta)$ en fonction de $\cos\theta$ et $\sin\theta$).

On peut toujours

· écrire la formule de Moivre :

$$\cos(n\theta) + i\sin(n\theta) = (\cos\theta + i\sin\theta)^{n}.$$

- · développer par la formule du binôme de Newton;
- · identifier les parties réelles et imaginaires.

On exprime ainsi $\cos(n\theta)$ et $\sin(n\theta)$ en fonction de $\cos\theta$ et $\sin\theta$.

En utilisant la relation $\cos^2 \theta + \sin^2 \theta = 1$, on poursuit les simplifications.

On obtiendra toujours deux polynômes T_n et U_{n-1} tels que

$$cos(n\theta) = T_n(cos \theta)$$

$$sin(n\theta) = (sin \theta)U_{n-1}(cos \theta).$$

Exemple 37.

Exprimer $\cos 3\theta$ et $\sin 5\theta$ en fonction de $\cos \theta$ et de $\sin \theta$.

On termine par une dernière application de la formule d'Euler.

Méthode (Amplitude et retard de phase d'une combinaison linéaire de signaux).

Transformation de $a\cos t + b\sin t$ en $A\cos(t+\varphi)$, où $A = \sqrt{a^2 + b^2}$.

- On écrit $a\cos t + b\sin t$ sous la forme $ze^{it} + \overline{z}e^{-it}$ (formules d'Euler).
- On écrit z sous forme trigonométrique : $z = \rho e^{i\varphi}$.
- Encore la formule d'Euler pour faire apparaître $\cos(t+\varphi)$.

2.4 Exponentielle d'un nombre complexe.

Définition 38.

Soit $z \in \mathbb{C}$. On appelle **exponentielle** du nombre z et on note $\exp(z)$ ou e^z le nombre complexe

$$\exp(z) := e^{\operatorname{Re}(z)} \cdot e^{i\operatorname{Im}(z)}.$$

Proposition 39.

$$\forall z \in \mathbb{C} \qquad |e^z| = e^{\mathrm{Re}(z)} \quad \text{ et } \quad \arg(e^z) = \mathrm{Im}(z) \ [2\pi].$$

Pour tout z, on déduit de la proposition précédente que e^z n'est jamais nul (son module est strictement positif). On peut donc voir l'exponentielle complexe comme l'application

$$\exp: \left\{ \begin{array}{ccc} \mathbb{C} & \to & \mathbb{C}^* \\ z & \mapsto & e^z \end{array} \right.$$

Proposition 40.

$$\forall z, z' \in \mathbb{C}$$
 $\exp(z + z') = \exp(z) \exp(z'),$

ce qui justifie la notation "puissance" $\exp(z) = e^z$.

Par conséquent, pour tout z, z' complexes

$$\overline{e^z} = e^{\overline{z}}, \qquad (e^z)^{-1} = e^{-z}, \qquad e^{z-z'} = \frac{e^z}{e^{z'}}.$$

$$\forall z, z' \in \mathbb{C} \quad e^z = e^{z'} \iff z - z' \in 2i\pi\mathbb{Z}.$$

Exemple 41.

Soit $a \in \mathbb{C}^*$. Résolution de l'équation $e^z = a$.

Preuve

On résout l'équation en se ramenant à l'égalité de deux formes trigonométrique. Écrivons $a = \rho e^{i\alpha}$, avec $(\rho, \alpha) \in \mathbb{R}_+^* \times \mathbb{R}$ et considérons un nombre $z \in \mathbb{C}$. On a

$$e^z = a \iff e^{\operatorname{Re}(z)} \cdot e^{i\operatorname{Im}(z)} = \rho e^{i\alpha} \iff \left\{ \begin{array}{l} e^{\operatorname{Re}(z)} = \rho \\ \operatorname{Im}(z) \equiv \alpha \ [2\pi] \end{array} \right. \iff \left\{ \begin{array}{l} \operatorname{Re}(z) = \ln(\rho) \\ \exists k \in \mathbb{Z} \mid \operatorname{Im}(z) = \alpha + 2k\pi \end{array} \right.$$

L'ensemble des solutions de l'équation est donc

$$\{\ln(\rho) + i\alpha + 2ik\pi \mid k \in \mathbb{Z}\}.$$

2.5 Compléments de géométrie.

On travaille ici dans le plan muni d'un repère orthonormé direct $(O, \overrightarrow{i}, \overrightarrow{j})$. Le point O a pour affixe 0 et on note I le point d'affixe 1. On rappelle que si A et B sont deux points du plan d'affixes respectives a et b, on appelle **affixe du vecteur** \overrightarrow{AB} le nombre complexe b-a. Il s'agit de l'affixe du point M tel que $\overrightarrow{OM} = \overrightarrow{AB}$.

$$\|\overrightarrow{AB}\| = |b - a|,$$

 $\arg(b-a)$ est une mesure de l'angle orienté $(\overrightarrow{OI},\overrightarrow{OM})$.

Alignement, parallélisme, orthgonalité.

Proposition 42 (Quatre points dans le plan).

Soient A, B, C, D quatre points du plan distincts deux à deux, d'affixes respectives a, b, c et d.

$$\left| \frac{d-c}{b-a} \right| = \frac{\|\overrightarrow{CD}\|}{\|\overrightarrow{AB}\|}$$

Le nombre $\operatorname{arg}\left(\frac{d-c}{b-a}\right)$ est une mesure de l'angle orienté $(\overrightarrow{AB},\overrightarrow{CD})$.

Corollaire 43.

Soient A,B,C,D quatre points du plan distincts deux à deux d'affixes $a,\,b,\,c$ et d.

- $(AB) / (CD) \iff \frac{d-c}{b-a} \in \mathbb{R}.$
- En particulier A,B et C sont alignés ssi $\frac{c-a}{b-a} \in \mathbb{R}.$
- $(AB) \perp (CD) \iff \frac{d-c}{b-a} \in i\mathbb{R}.$

Preuve de la proposition 42. Il faudrait mettre le mot preuve entre guillemets ici puisque la notion d'angle orienté n'a pas été définie rigoureusement...

Notons $\theta = \arg(b-a)$. C'est une mesure de l'angle orienté $(\overrightarrow{OI}, \overrightarrow{OM})$ où $\overrightarrow{OM} = \overrightarrow{AB}$. Notons $\theta' = \arg(d-c)$. C'est une mesure de l'angle orienté $(\overrightarrow{OI}, \overrightarrow{OM'})$ où $\overrightarrow{OM'} = \overrightarrow{CD}$. Le nombre $\theta' - \theta$ est (cf. figure) une mesure de l'angle $(\overrightarrow{OM}, \overrightarrow{OM'})$, donc de l'angle $(\overrightarrow{AB}, \overrightarrow{CD})$ On peut désormais conclure en écrivant

$$\theta' - \theta = \arg(d - c) - \arg(b - a) \equiv \arg\left(\frac{d - c}{b - a}\right) [2\pi].$$

Preuve du corollaire 43.

Les droites (AB) et (CD) sont parallèles si et seulement si \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires. Cela arrive si et seulement si 0 est une mesure de l'angle orienté $(\overrightarrow{AB},\overrightarrow{CD})$ (vecteurs colinéaires, de même sens) ou si π en est une (vecteurs colinéaires, de sens opposé). On a donc

$$(AB) /\!\!/ (CD) \iff \arg\left(\frac{d-c}{b-a}\right) = 0 \text{ ou } \pi \iff \frac{d-c}{b-a} \in \mathbb{R}.$$

En particulier, ceci donne une condition d'alignement pour trois points A, B et C distincts deux à deux, car A, B, C sont alignés ssi (AB) / (AC).

Et pour l'orthogonalité? Les droites (AB) et (CD) sont perpendiculaires si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont orthogonaux, c'est à dire si $\frac{\pi}{2}$ ou $-\frac{\pi}{2}$ est une mesure de l'angle orienté $(\overrightarrow{AB},\overrightarrow{CD})$. On a donc

$$(AB) \perp (CD) \iff \arg\left(\frac{d-c}{b-a}\right) = \frac{\pi}{2} \text{ ou } -\frac{\pi}{2} \iff \frac{d-c}{b-a} \in i\mathbb{R}.$$

Rotations.

Proposition 44.

Soit M_0 un point du plan d'affixe $z_0 \in \mathbb{C}$ et $\alpha \in \mathbb{R}$. Soient M et M' deux points du plan d'affixes respectives z et z'.

Le point M' est l'image de M par la rotation de centre M_0 et d'angle α si et seulement si

$$z'-z_0=e^{i\alpha}\left(z-z_0\right).$$

Simitudes directes du plan.

Méthode (Étude de $z \mapsto az + b$ lorsque $a \notin \{0, 1\}$.).

Soient a et b deux nombres complexes. On suppose \underline{a} non nul et différent de $\underline{1}$.

Soit $f: z \mapsto az + b$. Elle possède un unique point fixe $z_0 = \frac{b}{1-a}$.

Pour tout $z, z' \in \mathbb{C}$, on a

$$z' = az + b \iff z' - z_0 = a(z - z_0).$$

Le point z' se déduit donc de z par la composée de l'homothétie de centre z_0 et de rapport |a| avec la rotation de centre z_0 et d'angle $\arg(a)$.

Remarque. Pour $b \in \mathbb{C}$ donné, l'application $z \mapsto z + b$ est sans point fixe si $b \neq 0$. C'est translation de vecteur b.

Exemple 45.

Étude de $f: z \mapsto (1+i)z + (1-2i)$.

Solution.

Déterminons d'abord le point fixe de f. L'équation f(z)=z a pour unique solution le complexe $z_0=2+i$. Puisque $1+i=\sqrt{2}e^{i\frac{\pi}{4}}$, la transformation f se comprend comme la composée de l'homothétie de rapport $\sqrt{2}$ et de centre z_0 , et de la rotation de centre z_0 et d'angle $\frac{\pi}{4}$.

Remarque.

• Les applications de la forme $z \mapsto az + b$ avec $a \neq 0$ sont appelées **similitudes directes**. Ce sont les applications qui transforment les figures du plan en une figure semblable de même "forme" en agrandissant ou rétrécissant sa taille, et en conservant son orientation (d'où le directe).

• Les applications de la forme $z \mapsto a\overline{z} + b$, avec $a \neq 0$, sont appelées similitudes indirectes. Elles transforment une figure en une figure semblable, en changeant l'orientation (la conjugaison correspondant à une symétrie). On n'en dira pas plus : seules les similitudes directes figurent à notre programme.

Ci-dessous, des figures, dont certaines sont semblables (from Wikipedia).

Effet d'une similiture directe ou indirecte

3 Équations algébriques.

Soient $n \in \mathbb{N}$ et a_0, \ldots, a_n des nombres complexes. L'équation

$$a_n z^n + a_{n-1} z^{n-1} + \ldots + a_1 z + a_0 = 0$$

d'inconnue $z \in \mathbb{C}$, est appelée **équation algébrique** : elle s'écrit seulement avec des sommes et des produits. On parle aussi d'équation **polynomiale** puisque l'application $z \mapsto \sum_{k=0}^{n} a_k z^k$ est appelée polynôme.

Dans le cours sur les polynômes, nous énoncerons le théorème de d'Alembert-Gauss (ou théorème fondamental de l'algèbre) qui affirme que si a_1, \ldots, a_n ne sont pas tous nuls, l'équation ci-dessus possède au moins une solution dans \mathbb{C} .

Prenons par exemple l'équation $x^6 + 2x^2 + 3 = 0$. On peut vite voir qu'elle ne possède pas de solution réelle. En effet, pour tout x réel, $x^6 + 2x^2 + 3 \ge 3 > 0$. Le théorème de d'Alembert-Gauss nous apprend que dans \mathbb{C} , il y a une solution. Mais il ne nous dit pas comment la trouver! Il n'existe d'ailleurs pas de méthode générale.

Dans cette partie, on va s'intéresser à des équations algébriques particulières et importantes, pour lesquelles on a une méthode de résolution.

3.1 Racines carrées d'un nombre complexe.

Rappelons que <u>la</u> racine carrée d'un nombre réel positif a est <u>le</u> nombre réel positif dont le carré vaut a. Il est noté \sqrt{a} . On réservera le symbole \sqrt{a} pour la racine carrée d'un nombre réel positif.

Définition 46.

Soit $a \in \mathbb{C}$. Une racine carrée de a est un nombre complexe z tel que $z^2 = a$.

Exemple. Racines carrées d'un nombre réel positif. Racines carrées d'un nombre réel négatif.

Proposition 47.

Tout nombre complexe non nul a exactement deux racines carrées et elles sont opposées.

 $\underline{\Lambda}$ Une écriture du type « $\sqrt{1+i}$ » n'a <u>aucun sens</u> : le symbole radical est réservé pour les nombres réels positifs comme rappelé plus haut.

Méthode (Recherche des racines carrées sous forme trigonométrique).

Soit l'équation $z^2 = a$ (d'inconnue z, avec $a \in \mathbb{C}^*$ fixé).

On écrit a sous forme trigonométrique : $a = \rho e^{i\alpha} \ (\rho \in \mathbb{R}_+^*, \alpha \in \mathbb{R}).$

Les racines carrées de a sont

$$\sqrt{\rho}e^{i\alpha/2}$$
 et $-\sqrt{\rho}e^{i\alpha/2}$.

Méthode (Recherche des racines carrées sous forme algébrique).

Soit l'équation $z^2 = a$ (d'inconnue z, avec $a \in \mathbb{C}$ fixé).

On écrit z et a sous forme algébrique : $z=x+iy, \ (x,y\in\mathbb{R})$ et $a=\alpha+i\beta \ (\alpha,\beta\in\mathbb{R})$. On a $z^2=x^2-y^2+2ixy$. Ainsi,

$$z^{2} = a \iff \begin{cases} |z|^{2} &= |a| \\ z^{2} &= a \end{cases} \iff \begin{cases} x^{2} + y^{2} &= \sqrt{\alpha^{2} + \beta^{2}} \\ x^{2} - y^{2} &= \alpha \\ 2xy &= \beta \end{cases}$$

Les deux premières lignes permettent de calculer x^2 et y^2 et donc x et y au signe près. La dernière ligne permet de savoir si x et y sont de même signe ou de signes opposés.

Exemple 48.

Calculer les racines carrées de -4i, ainsi que celles du nombre 3-4i.

3.2 Racines n-èmes de l'unité et équation $z^n = a$.

Définition 49.

Soit $n \in \mathbb{N}^*$. On appelle **racine** nème de l'unité toute solution complexe de l'équation

$$z^n = 1$$
.

On note \mathbb{U}_n l'ensemble des racines nèmes de l'unité.

Soit $n \in \mathbb{N}^*$.

- Remarquons que $1 \in \mathbb{U}_n$. À quelle condition a-t-on $-1 \in \mathbb{U}_n$?
- Démontrer que \mathbb{U}_n est stable par conjugaison : $\forall z \in \mathbb{C} \ z \in \mathbb{U}_n \Longrightarrow \overline{z} \in \mathbb{U}_n$.

Théorème 50 (Description des racines nèmes de l'unité).

Soit $n \in \mathbb{N}^*$. On a

$$\mathbb{U}_n = \left\{ e^{\frac{2ik\pi}{n}}, \ k \in \llbracket 0, n-1 \rrbracket \right\}$$
 (ensemble de cardinal n).

Proposition 51 (Propriétés algébriques des racines nèmes de 1).

Soit $n \in \mathbb{N}^*$. Les racines nèmes de l'unité forment une progression géométrique de raison $\omega = e^{\frac{2i\pi}{n}}$:

$$\mathbb{U}_n = \left\{1, \omega, \omega^2, \dots, \omega^{n-1}\right\}.$$

Les nombres $\omega, \omega^2, \ldots, \omega^{n-1}$ sont les n-1 solutions de l'équation $\sum_{k=0}^{n-1} x^k = 0$.

Si $n \ge 2$, alors la somme des racines nèmes de l'unité est nulle.

Corollaire 52 (Cas particulier important : racines troisième de l'unité).

Notons $j = e^{\frac{2i\pi}{3}}$. L'équation $z^3 = 1$ a pour solutions les trois éléments de $\mathbb{U}_3 = \{1, j, j^2\}$.

$$j = e^{\frac{2i\pi}{3}} = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$$
 et $j^2 = e^{\frac{4i\pi}{3}} = j^{-1} = \bar{j}$

Les nombres j et j^2 sont les solutions de l'équation $x^2 + x + 1 = 0$.

$$\mathbb{U}_3 = \{1, j, j^2\}$$

$$\mathbb{U}_4 = \{1, i, -1, -i\}$$

Méthode (Résoudre $z^n = a$, avec $a \in \mathbb{C}^*$ quelconque).

Soit $a \in \mathbb{C}^*$. On peut l'écrire $a = \rho e^{i\alpha}$, avec $\rho \in \mathbb{R}_+^*$ et $\alpha \in \mathbb{R}$.

Le nombre $z_0 := \rho^{\frac{1}{n}} e^{\frac{i\alpha}{n}}$ est une solution de l'équation $z^n = a$. Ainsi, pour $z \in \mathbb{C}$,

$$z^n = a \iff z^n = z_0^n \iff \left(\frac{z}{z_0}\right)^n = 1 \iff \frac{z}{z_0} \in \mathbb{U}_n.$$

L'ensemble des solutions de $z^n=a$ est donc $\left\{z_0e^{\frac{2ik\pi}{n}},\ k\in[0,n-1]\right\}$.

Les points dont l'affixe est solution de l'équation forment un polygone régulier à n sommets.

Exemple 53.

Résolution de $z^3 = 8i$.

3.3 Équations du second degré.

Définition 54.

On appelle $\acute{e}quation\ du\ second\ degr\acute{e}$ toute $\acute{e}quation\ de\ la$ forme

$$az^2 + bz + c = 0,$$

où $a, b, c \in \mathbb{C}$ avec $a \neq 0$. Les solutions de l'équation sont appelées ses **racines**.

Proposition 55 (Équations du second degré, coefficients complexes).

Soient $a, b, c \in \mathbb{C}$ avec $a \neq 0$. On considère l'équation

$$az^2 + bz + c = 0$$

et on note Δ le nombre complexe $b^2 - 4ac$, qu'on appelle **discriminant** de l'équation.

- Si $\Delta \neq 0$, alors Δ a exactement deux racines carrées que l'on note δ et $-\delta$. L'équation a alors exactement deux racines : $r_1 = \frac{-b - \delta}{2a}$ et $r_2 = \frac{-b + \delta}{2a}$.
- Si $\Delta = 0$, l'équation a une racine "double" : $r_1 = r_2 = -\frac{b}{2a}$.

<u>Factorisation</u> du trinôme : pour tout $z \in \mathbb{C}$,

$$az^{2} + bz + c = a(z - r_{1})(z - r_{2})$$

Proposition 56 (Équations du second degré, coefficients réels).

Soient $a, b, c \in \mathbb{R}$ avec $a \neq 0$. On considère l'équation

$$az^2 + bz + c = 0$$

et on note $\Delta = b^2 - 4ac$ son discriminant.

• Si $\Delta > 0$, alors Δ a pour racines carrées $\sqrt{\Delta}$ et $-\sqrt{\Delta}$ et l'équation a deux racines réelles distinctes

$$r_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 et $r_2 = \frac{-b + \sqrt{\Delta}}{2a}$.

- Si $\Delta = 0$, l'équation a une racine "double" : $r = -\frac{b}{2a}$.
- Si $\Delta < 0$, alors Δ a pour racines carrées $i\sqrt{|\Delta|}$ et $-i\sqrt{|\Delta|}$ et l'équation a deux racines complexes conjuguées

$$r_1 = \frac{-b - i\sqrt{|\Delta|}}{2a}$$
 et $r_2 = \frac{-b + i\sqrt{|\Delta|}}{2a}$

22

Proposition 57 (Relations coefficients-racines).

Soient $a, b, c \in \mathbb{C}$ avec $a \neq 0$ et z_1 et z_2 deux nombres complexes. Les nombres z_1 et z_2 sont deux racines, éventuellement égales, de $az^2 + bz + c = 0$ si et seulement si

$$z_1 + z_2 = -\frac{b}{a}$$
 et $z_1 z_2 = \frac{c}{a}$.

Remarque. Ainsi, si S et P sont deux nombres complexes, le système

$$\begin{cases} z_1 + z_2 &= S \\ z_1 z_2 &= P \end{cases}$$

a deux solutions dans \mathbb{C}^2 : les couples (r_1,r_2) et (r_2,r_1) , où r_1 et r_2 sont les racines de l'équation

$$z^2 - Sz + P = 0.$$

Exemple 58.

Soit $z \in \mathbb{C}$, $r \in \mathbb{R}_+^*$ et $\theta \in \mathbb{R}$. Factoriser à vue les expressions

$$z^{2} + 2z - 3$$
, $2z^{2} + z - 1$, $z^{2} - 2r\cos(\theta)z + r^{2}$.

Exercices

Forme algébrique, conjugué, module.

 $\boxed{\mathbf{5.1}} \ \left[\blacklozenge \diamondsuit \diamondsuit \right]$ Résoudre $4z^2 + 8|z|^2 - 3 = 0$.

 $[\mathbf{5.2}]$ $[\mathbf{\diamond} \Diamond \Diamond]$ Soient a et b deux nombres complexes non nuls. Montrer que :

$$\left| \frac{a}{|a|^2} - \frac{b}{|b|^2} \right| = \frac{|a-b|}{|a||b|}.$$

5.3 $[\spadesuit \diamondsuit \diamondsuit]$ Soient ω et ω' deux éléments de \mathbb{U} tels que $\omega + \omega' \neq 0$.

Démontrer que

$$\frac{\omega + \omega'}{1 - \omega \omega'} \in \mathbb{R}.$$

 $[\bullet,\bullet]$ Soient $z_1, z_2, \ldots z_n$ des nombres complexes non nuls de même module. Démontrer que

$$\frac{(z_1+z_2)(z_2+z_3)\cdots(z_{n-1}+z_n)(z_n+z_1)}{z_1z_2\cdots z_n} \in \mathbb{R}.$$

 $[\bullet,\bullet]$ [\bullet,\bullet] Si $z \in \mathbb{C} \setminus \{1\}$, montrer que :

$$\frac{1+z}{1-z} \in i\mathbb{R} \iff |z| = 1.$$

5.6 $[\spadesuit \spadesuit \diamondsuit]$ Soient a, b deux nombres complexes tels que $\overline{a}b \neq 1$ et $c = \frac{a-b}{1-\overline{a}b}$. Montrer que

$$(|c| = 1) \iff (|a| = 1 \text{ ou } |b| = 1).$$

 $[\bullet,\bullet]$ [\bullet,\bullet] Pour $n \in \mathbb{N}^*$, calculer $\mathbb{R}^2 + \mathbb{S}^2$ où

$$R = \sum_{0 \le 2k \le n} (-1)^k \binom{n}{2k} \quad \text{et} \quad S = \sum_{0 \le 2k+1 \le n} (-1)^k \binom{n}{2k+1}.$$

5.8 $[\spadesuit \spadesuit \spadesuit]$ Soit ABCD un parallélogramme.

Montrer que $AC^2 + BD^2 = AB^2 + BC^2 + CD^2 + DA^2$.

Forme trigonométrique

5.10 [$\Diamond \Diamond \Diamond$] Soient trois réels x, y, z tels que $e^{ix} + e^{iy} + e^{iz} = 0$. Montrer que $e^{2ix} + e^{2iy} + e^{2iz} = 0$.

5.11 [$\Diamond\Diamond\Diamond$]

1. Déterminer les formes algébriques et trigonométriques du nombre

$$\frac{1+i\sqrt{3}}{2-2i}.$$

2. En déduire l'expression de $\cos \frac{7\pi}{12}$ et de $\sin \frac{7\pi}{12}$ à l'aide de radicaux.

5.13 [$\Diamond \Diamond \Diamond$]

- 1. Soit x un réel. Exprimer $\cos(5x)$ comme un polynôme en $\cos x$.
- 2. Montrer que $\cos^2\left(\frac{\pi}{10}\right)$ est racine du trinôme $x\mapsto 16x^2-20x+5$.
- 3. En déduire l'égalité $\cos\left(\frac{\pi}{5}\right) = \frac{1+\sqrt{5}}{4}$.
- 4. (*) Pourquoi ceci démontre-t-il que le pentagone régulier est constructible à la règle et au compas?

5.14 $[\blacklozenge \blacklozenge \diamondsuit]$ Soit $x \in \mathbb{R}$ et $n \in \mathbb{N}$. Calculer

$$\sum_{k=0}^{n} \binom{n}{k} \cos(kx), \quad \text{et} \quad \sum_{k=0}^{n} \binom{n}{k} \sin(kx).$$

$$D_n(x) = \sum_{k=-n}^n e^{ikx}$$
 et $F_n(x) = \frac{1}{n} \sum_{k=0}^{n-1} D_k(x)$.

La fonction $x \mapsto D_n(x)$ est appelée noyau de Dirichlet; elle intervient notamment dans le cadre de l'analyse de Fourier. La fonction $x \mapsto F_n(x)$, moyenne arithmétique des n premiers noyaux de Dirichlet, est appelée noyau de Féjer.

- 1. Montrer que $D_n(x) = \frac{\sin\left((n + \frac{1}{2})x\right)}{\sin\frac{x}{2}}$.
- 2. Montrer que $F_n(x) = \frac{1}{n} \left(\frac{\sin\left(\frac{nx}{2}\right)}{\sin\frac{x}{2}} \right)^2$.

$$\overrightarrow{EG} \perp \overrightarrow{FH}$$
 et $EG = FH$.

5.17 $[\blacklozenge \blacklozenge \blacklozenge]$ Trouver les nombres complexes d'affixe $z \in \mathbb{C}$ tels que $1, z^2$ et z^4 sont alignés.

Équations algébriques

5.18 [♦♦♦]

- 1. Calculer les racines carrées du nombre -8i. On donnera ces nombres sous forme algébrique et sous forme trigonométrique.
- 2. Résoudre dans \mathbb{C} l'équation

$$z^2 - 4z + 4 + 2i = 0.$$

5.19 [
$$\Diamond \Diamond \Diamond$$
] Résoudre $iz^2 + (4-i)z - 5 - 5i = 0$. Indication: $13^2 = 169$.

$$5.20$$
 [$\diamondsuit \diamondsuit \diamondsuit$] Soit $n \in \mathbb{N}$, $n \ge 2$. Calcul de $\sum_{z \in \mathbb{U}_n} z$ et $\prod_{z \in \mathbb{U}_n} z$.

[5.21] $[\phi \phi \diamondsuit]$ Donner une expression du périmètre du polygone régulier formé par les nombres de \mathbb{U}_n . Que conjecture-t-on géométriquement sur la limite du périmètre lorsque $n \to +\infty$? Essayer de prouver votre conjecture.

 $[\mathbf{5.22}]$ $[\mathbf{\diamondsuit} \diamondsuit \diamondsuit]$ Soit $\omega \in \mathbb{U}_7$, une racine 7e de l'unité différente de 1.

- 1. Justifier que $1 + \omega + \omega^2 + \omega^3 + \omega^4 + \omega^5 + \omega^6 = 0$.
- 2. Calculer le nombre

$$\frac{\omega}{1+\omega^2} + \frac{\omega^2}{1+\omega^4} + \frac{\omega^3}{1+\omega^6}.$$

Indication: La réponse est un entier négatif.

5.23 $[\blacklozenge \blacklozenge \diamondsuit]$ Dans cet exercice, n est un entier naturel supérieur ou égal à 2.

- 1. Rappel de définition : quand dit-on qu'un nombre réel θ est un argument d'un nombre complexe z?
- 2. Soit $k \in [0, n-1]$. Donner le module et un argument de $e^{\frac{2ik\pi}{n}} 1$.
- 3. Établir l'égalité

$$\sum_{z \in \mathbb{U}_n} |z - 1| = \frac{2}{\tan\left(\frac{\pi}{2n}\right)}.$$

5.24 $[\spadesuit \spadesuit \diamondsuit]$ Soit θ un nombre réel appartenant à $]0,\pi[$. Résoudre l'équation

$$z^2 - 2e^{i\theta}z + 2ie^{i\theta}\sin\theta = 0.$$

On écrira les solutions sous forme algébrique et sous forme trigonométrique.

 $\boxed{\mathbf{5.25}} \ [\spadesuit \spadesuit \lozenge] \text{ Soit } n \in \mathbb{N}^*$

- 1. Résoudre dans $\mathbb C$ l'équation $z^2-2\cos(\theta)z+1=0.$
- 2. Résoudre dans $\mathbb C$ l'équation $z^{2n}-2\cos(\theta)z^n+1=0.$

$$\left(\frac{z+i}{z-i}\right)^3 + \left(\frac{z+i}{z-i}\right)^2 + \left(\frac{z+i}{z-i}\right) + 1 = 0.$$

5.27 [$\Diamond \Diamond \Diamond$] Résoudre dans \mathbb{C} l'équation $(z+1)^n = z^n$.

5.28 $[\spadesuit \spadesuit \spadesuit]$ Soient $n \in \mathbb{N}^*$ et $z \in \mathbb{C}$ tels que $z^n = (1+z)^n = 1$.

Montrer que n est un multiple de 6 et que $z^3 = 1$.

5.29 $[\blacklozenge \blacklozenge \blacklozenge]$ Résoudre dans \mathbb{C}^2 le système

$$\left\{ \begin{array}{rcl} u^2+v^2 & = & -1 \\ uv & = & 1 \end{array} \right.$$