Lineare Algebra

Yannik Hörnschemeyer

October 18, 2023

1 Aussagenlogik

Definition 1.1: Eine Aussage ist ein Satz, der entweder wahr oder falsch ist. Beispiele:

- "8 ist eine gerae Zahl." (wahre Aussage)
- "4 ist eine Primzahl." (falsche Aussage)
- "Es gibt unendlich viele Primzahlzwillinge." (bei dieser Aussge ist der Wahrheitsgehalt unbekannt. Nur weil wir den Wahrheitsgehalt noch neiht kennen heißt es nicht, dass das hier keine Aussge ist.)
- "Heute ist ein schöner Tag." (keine Aussage, da der Wahrheitsgehalt von der Person abhängt, die die Aussage macht.)

Aus schon gegebenen Aussagen können wir neue Aussagen bilden. Definition 1.2: Es seien A und B Aussagen.

A	В	$\neg A$	$A \wedge B$	$A \vee B$	$A \rightarrow B$	$A \leftrightarrow B$
W	W	f	W	w	W	W
w	f	f	f	w	f	f
f	w	W	f	w	w	f
f	f	w	f	f	W	W

Bemerkung:

 $\neg A$ wird gesprochen 'nicht A'.

 $A \wedge B$ wird gesprochen 'A und B'.

 $A \vee B$ wird gesprochen 'A oder B'.

 $A \to B$ wird gesprochen 'A impliziert B'.

 $A \leftrightarrow B$ wird gesprochen 'A äquivalent B'.

Synonyme für $A \Rightarrow B$: Aus A folgt B, A ist hinreichend für B, B ist notwendig für A, Wenn A dann B

Synonyme für $A \Leftrightarrow B$: A ist äquivalent zu B, A ist notwendig und hinreichend für B, A genau dann wenn B

Bemerkung

Warum folgt aus einer Falschen Aussage etwas wahres?

In Beweisen müssen wir zeigen, dass etwas immer wahr ist. Beispiel wenn n gerade, dann n hoch 2 gerade. Wenn n ungerade, dann müssten wir diesen Fall im Beweis auch abdecken. Durch die Definition der Implikation können wir diesen Fall aber ignorieren, da die Aussage dann automatisch wahr ist.

Lemma 1.3:

Sei A eine Aussage. Dann ist $A \vee \neg A$ wahr.

Beweis:

Wie untersuchen die zwei Fälle für A: A ist wahr oder A ist falsch. Wir betrachten die Wahrheitstabelle von $A \vee \neg A$

A	¬ A	$A \lor \neg A$	
W	f	W	
f	w	w	

Hinweis: Ein Beweis per Wahrheitstafel ist eine valide Beweismethode. Eine Tautologie ist eine Aussage, die immer wahr ist.

Bemerkung:

Das – Zeichen bindet stärker als die anderen Verknüpigen. Beispiel:

 $\neg A \lor B$ ist äquivalent zu $(\neg A) \lor B$

Außerdem gibt es die Konvention dass das 'und' und das 'oder' stärker bindet als die Implikation.

Die Reichenfolge der Stärke der Bindung ist also: $\neg, \wedge, \vee, \rightarrow$

Lemma 1.4:

Es seien $A,\ B$ und C Aussagen. Dann sind die fogenden Aussagen jeweils äquivalent:

- 1. a $A \to B$ und $\neg A \lor B$
- 2. b $A \leftrightarrow B$ und $(A \to B) \land (B \to A)$

- 3. c A und $\neg \neg A$
- 4. d A und $\neg A \rightarrow \text{falsch}$
- 5. e $A \to B$ und $\neg B \to \neg A$
- 6. f $A \wedge B$ und $B \wedge A$
- 7. g $A \vee B$ und $B \vee A$
- 8. h $(A \wedge B) \vee C$ und $A \wedge (B \vee C)$
- 9. i $(A \vee B) \vee C$ und $A \vee (B \vee C)$
- 10. j $A \wedge (B \vee C)$ und $(A \wedge B) \vee (A \wedge C)$
- 11. k $A \lor (B \land C)$ und $(A \lor B) \land (A \lor C)$
- 12. $1 \neg (A \land B)$ und $\neg A \lor \neg B$
- 13. m $\neg (A \lor B)$ und $\neg A \land \neg B$

Bemerkungen:

Wenn die Aussagen äquivalent sind? Die linke Aussage ist äquivalent \leftrightarrow zur rechten Aussage und damit immer wahr. zu a: Man kann in a und b auch statt \rightarrow und \leftrightarrow auch \lor und \land nutzen.

zu d: d zeigt den Aufbau eines textit Widerspruchsbeweis. d rechtfertigt also den Widerspruchsbwesei.

zu e: e ist die Kontraposition von a.

zu f und g
: f und g ist die Kommutativität von \wedge .

zu h und i: h und i ist die Assoziativität von \land und \lor . Wenn ich mehrere Aussagen mit \land oder \lor verknüpfe, dann ist es egal in welcher Reihenfolge man die Klammern setzt (und ob man sie setzt).

zu j und k: j und k ist die *Distributivität* von \wedge und \vee .

zu l und m: l und m ist die De Morgan'sche Regel (oder 'Gesetze').

Beweis (Aussage a):

Beweis per Wahrheitstafel.

A	В	¬ A	$A \rightarrow B$	$\neg A \lor B$
W	w	f	W	W
w	f	f	f	f
f	w	w	w	w
f	f	w	w	w

Wenn wir die letzten beiden Spalten vergleichen sehen wir, dass die Aussagen äquivalent sind.

Damit ist die Aussage bewiesen. \square

References

[1] Velleman, Daniel J., How To Prove It: A Structured Approach, Camebridge University Press, 2006.