

Autoencoding any Data through Kernel Autoencoders

P. Laforgue*, S. Clémençon*, F. d'Alché-Buc*

* LTCI, Télécom ParisTech, Université Paris-Saclay, 75013, Paris, France

Standard Autoencoder (AE)

- $\mathcal{S} = (x_1, \dots, x_n)$ i.i.d. sample on $\mathcal{X}_0 = \mathbb{R}^d$. $\mathcal{X}_1 = \mathbb{R}^p$ with p < d
- $f: \mathcal{X}_0 \to \mathcal{X}_1, \quad f(x) = \sigma(W_1 x + b_1), \quad W_1 \in \mathbb{R}^{p \times d}, b_1 \in \mathbb{R}^p$
- $g: \mathcal{X}_1 \to \mathcal{X}_0$, $g(y) = \sigma(W_2 y + b_2)$, $W_2 \in \mathbb{R}^{d \times p}$, $b_2 \in \mathbb{R}^d$
- $\min_{W_1, W_2, b_1, b_2} \frac{1}{n} \sum_{i=1}^n ||x_i g \circ f(x_i)||_{\mathcal{X}_0}^2$

Representer Theorem

Let $L \in \mathbb{N}$, and $V : \mathcal{X}_L^n \times \mathbb{R}_+^L \to \mathbb{R}$ a function of n + L variables, strictly increasing in each of its L last arguments. Suppose that (f_1^*, \ldots, f_L^*) is a minimizer on $\mathcal{H}_1 \times \ldots \times \mathcal{H}_L$ of:

$$V((f_L \circ \ldots \circ f_1)(x_1), \ldots, (f_L \circ \ldots \circ f_1)(x_n), ||f_1||_{\mathcal{H}_1}, \ldots, ||f_L||_{\mathcal{H}_L})$$

Let $x_i^{*(l)} := f_l^* \circ \ldots \circ f_1^*(x_i), \ x_i^{*(0)} := x_i$. Then, $\exists (\varphi_{1,1}^*, \ldots, \varphi_{L,n}^*) \in \mathcal{X}_1^n \times \ldots \times \mathcal{X}_L^n$ such that:

$$\forall l \leq L, \quad f_l^*(\cdot) = \sum_{i=1}^n \mathcal{K}_l\left(\cdot, x_i^{*(l-1)}\right) \varphi_{l,i}^*$$

Unsupervised Experiments

1) Original data, 2D hidden layer, recontructions by 2-1-2 standard and kernel AEs.

2) MSREs on Test Metabolites

DIMENSION	AE (SIGMOID)	AE (RELU)	KAE
5 10 25 50	99.81 87.36 72.31 63.00	96.62 84.02 68.77 58.29	76.38 65.76 51.63 40.72
100	55.43	48.63	36.27

Kernel Autoencoder (KAE)

- $\mathcal{X}_0, \mathcal{X}_1$ Hilbert spaces endowed with OVKs $\mathcal{K}_1 : \mathcal{X}_0 \times \mathcal{X}_0 \to \mathcal{L}(\mathcal{X}_1)$ and $\mathcal{K}_2 : \mathcal{X}_1 \times \mathcal{X}_1 \to \mathcal{L}(\mathcal{X}_0)$, associated to Vector Valued RKHSs \mathcal{H}_1 and \mathcal{H}_2
- $\min_{f_1 \in \mathcal{H}_1, f_2 \in \mathcal{H}_2} \frac{1}{n} \sum_{i=1}^n ||x_i f_2 \circ f_1(x_i)||_{\mathcal{X}_0}^2 + \lambda_1 ||f_1||_{\mathcal{H}_1}^2 + \lambda_2 ||f_2||_{\mathcal{H}_2}^2$

Algorithm

Algorithm 1 General Hilbert KAE and K²AE

input: Gram matrix K_{in}

init : $\Phi_1 = \Phi_1^{init}, \dots, \Phi_{L-1} = \Phi_{L-1}^{init},$

 $N_L = N_{\text{KRR}} \left(\Phi_1, \dots, \Phi_{L-1}, K_{in}, \lambda_L \right)$

for epoch t from 1 to T do

// inner coefficients updates at fixed N_L

for layer l from 1 to L-1 do

 $| \Phi_l = \Phi_l - \gamma_t \nabla_{\Phi_l} (\hat{\epsilon}_n + \Omega \mid N_L)$

// N_L update $N_L = N_{ ext{KRR}}\left(\Phi_1, \ldots, \Phi_{L-1}, K_{in}, \lambda_L
ight)$

return $\Phi_1, \ldots, \Phi_{L-1}$

Supervised Experiments

K²AE run on molecules after a Tanimoto kernel transformation. Then Random Forests are fed with these finite-dimensional representations. The table stores the Normalized Mean Squared Errors (NMSEs):

	KRR	$KPCA_{10}+RF$	$KPCA_{50}+RF$	$K^2AE_{10}+RF$	$K^2AE_{50}+RF$
C.1 C.2 C.3	0.0298 0.0300 0.0288	$0.0328 \\ 0.0319 \\ 0.0316$	$0.0304 \\ 0.0298 \\ 0.0291$	$0.0310 \\ 0.0310 \\ 0.0299$	$0.0281 \\ 0.0278 \\ 0.0271$

References

- C. Micchelli, and M. Pontil. On learning vector-valued functions. Neural computation, 17(1): 177–204, 2005
- P. Baldi. Autoencoders, Unsupervised Learning, and Deep Architectures. Proc. of JMLR, Workshop Unsupervised and Transfer Learning, 2012