Mestrado em Engenharia Informática

VI-RT

Projectos:

Última fase

Luís Paulo Peixoto dos Santos

Visualização e Iluminação

Mestrado em Eng^a Informática

Metodologia

- As fases 1 e 2 valem até 8 valores.
- Para a fase final cada grupo deve seleccionar 1 a 3 temas QUAISQUER da tabela seguinte. Esta fase vale um máximo de 12 valores.
- Cada tema é cotado na gama de valores indicada.
- A classificação final é dada pelas soma das classificações obtidas em cada uma das fases, truncada em 20 valores
- A entrega final consistirá em:
 - submissão de um relatório de não mais de 6 páginas
 - apresentação oral do trabalho por todos os elementos do grupo. Máximo 15 minutos
- Esta entrega decorrerá em data a marcar via Doodle

Mestrado em Eng^a Informática

Temas (estudantes podem sugerir temas)

ID	Desc.	Gama	Referências
1	Parallel multithreading	08	
2	Acceleration Structure	010	PBRT 2 nd Ed. 4.3 PBRT 3 rd Ed. Chap 4
3	Sampling many light sources	010	
4	Tone Mapping	04	https://en.wikipedia.org/wiki/Tone mapping https://64.github.io/tonemapping/
5	Improving BRDFs	012	
6	Environment Lights	012	PBRT 3 rd Ed. 12.6
7	Alternative Cameras	05	PBRT 3 rd Ed. 6.3 (Lens, Environment , Fish-Eye, Distortion, Plenoptic)
8	Output JPG / PFM / OpenEXR images	04	
9	Texture Mapping on meshes	08	PBRT 3 rd Ed. Chaps 8 and 9
10	Window interactive output	05	
11	Progressive Path Tracing	08	

Sampling many light sources

318 light sources.

spp=1; 3 secs

spp=128; 420 secs

Can we do any better?
Can we sample the light sources non-uniformly?

Improving BRDFs

A BRDF suportada neste momento (Phong) não é fisicamente correcta:

$$f(\omega_o, \omega_i) = k_d \cos(\vec{N}, \omega_i) + k_s \cos^{N_s}(\vec{R}, \omega_i)$$

- Temos bons resultados para:
 - o caso difuso, em que geramos aleatoriamente ω_i distribuída na semi esfera
 - o caso especular ideal, em que para N_s muito grande (> 1000 ?) ignoramos a BRDF de Phong, calculamos \vec{R} , deterministicamente fazemos $\omega_i = \vec{R}$ e tratamos a BRDF como sendo apenas k_s
- Propõe-se acrescentar um modelos de BRDF que suporte glossiness e que o faça de forma fisicamente correcta, permitindo amostragem estocástica e integração de Monte Carlo

Improving BRDFs - recursos

- Microfacet models
 - PBRT 2nd and 3rd Ed. Chap 8
 - https://agraphicsguynotes.com/posts/sample_microfacet brdf/
 - https://www.shadertoy.com/view/XtdXzl (uma implementação)
- Global Illumination Compendium (https://people.cs.kuleuven.be/~philip.dutre/GI/)
 - especialmente secção VIII
- Crash Course on BRDF (https://boksajak.github.io/files/CrashCourseBRDF.pdf)
- Microfacet BRDF (https://www.youtube.com/watch?v=gya7x9H3mV0)

Mestrado em

Environment Lights

Enga Informática

- The scene is surrounded by a virtual infinitely distant sphere
- A spherical image (environment map) is mapped on to this virtual sphere
- The spherically mapped image acts as a light source

Since environment maps can be real photographs the lighting is extremely

real

- https://www.pauldebevec.com/Probes/
- http://graphics.cs.cmu.edu/courses/15-463/2006_fall/www/Lectures/IBLighting.pdf