Clustering: k-means

Basics

- dataset D
- object $\mathbf{x} = (x_1, x_2, \dots, x_d)$
 - every x is a point in a d-dimensional space

Clustering: groups the data into clusters

- objects in the same cluster have high similarity
- objects in different clusters are dissimilar to each other

- unlike classification, there is no class attribute in clustering
 - this is quite common in large databases, because assigning class labels to a large number of objects can be very costly
- unsupervised learning (on the other hand, classification is supervised learning)

Applications of Clustering

- business
 - discover distinct groups of customers based on their purchasing patterns
- biology
 - derive plant and animal taxonomies
- geographical data
 - group houses in a city according to house type and geographical location
- outlier detection
 - find credit card transactions that are not ordinary (fraud detection)

Dissimilarity

- measures how different two objects are (lower when objects are more alike)
- minimum dissimilarity is often 0

$$\mathbf{x_1} = (x_{11}, x_{12}, \dots, x_{1d}) \text{ and } \mathbf{x_2} = (x_{21}, x_{22}, \dots, x_{2d})$$

- Euclidean distance: $dist(\mathbf{x_1}, \mathbf{x_2}) = \sqrt{\sum_{i=1}^{d} (x_{1i} x_{2i})^2}$
- Manhattan distance: $dist(\mathbf{x_1}, \mathbf{x_2}) = \sum_{i=1}^{d} |x_{1i} x_{2i}|$

 standardization is necessary if the <u>scales</u> of the attributes vary considerably

Similarity

- measures how alike two objects are
 - higher when objects are more alike
 - ullet often falls in the range [0,1]

Example

cosine similarity: $\cos(\mathbf{x}_1, \mathbf{x}_2) = \frac{\mathbf{x}_1 \cdot \mathbf{x}_2}{\|\mathbf{x}_1\| \cdot \|\mathbf{x}_2\|}$

- $\mathbf{x}_1 = (3, 2, 0, 5, 0, 0, 0, 2, 0, 0)$ $\mathbf{x}_2 = (1, 0, 0, 0, 0, 0, 0, 1, 0, 2)$
- cosine similarity is: 0.31

Similarity Measures for Binary Attributes

- x_1 and x_2 : two objects containing d binary attributes
 - f_{00} : number of attributes with x_1 is 0 and x_2 is 0
 - f_{01} : number of attributes with x_1 is 0 and x_2 is 1
 - f_{10} : number of attributes with x_1 is 1 and x_2 is 0
 - f_{11} : number of attributes with x_1 is 1 and x_2 is 1

• simple matching coefficient:
$$\frac{SMC = \frac{f_{11} + f_{00}}{f_{01} + f_{10} + f_{00} + f_{11}} = \frac{f_{11} + f_{00}}{d}$$

Example

•
$$\mathbf{x_1} = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0), \mathbf{x_2} = (0, 0, 0, 0, 0, 0, 1, 0, 0, 1)$$

•
$$f_{00} = 7$$
, $f_{01} = 2$, $f_{10} = 1$, $f_{11} = 0$; $SMC = \frac{0+7}{2+1+0+7} = 0.7$

Partitioning Methods

Basic idea

- organize the N objects into k partitions (k < N), where each partition represents a cluster
 - objects within a cluster are similar, whereas objects of different clusters are dissimilar

• the clusters are formed to minimize an objective criterion, such as a distance function

Will focus on the following partitioning method

k-means

k-means

- C_i : a cluster; N_i : number of points in C_i
- mean of this cluster: $\mathbf{c}_i = \frac{1}{N_i} \sum_{\mathbf{x} \in C_i} \mathbf{x}$
 - can be regarded as the centroid or center of gravity of the cluster

k-means algorithm

input: dataset D, number of clusters k

output: *k* clusters

- 1. randomly select k points from D as the initial means
- 2. repeat
- 3. form k clusters by assigning each point to its closest mean
- 4. recompute the mean for every cluster
- 5. until no changes in the mean
- 6. **return** the *k* clusters

Example

demo

Issues: Local Minimum

• objective criterion that k-means attempts to minimize

(sum squared error)
$$SSE = \sum_{i=1}^{k} \sum_{\mathbf{x} \in C_i} \|\mathbf{x} - \mathbf{c}_i\|^2$$

converges to a local minimum → suboptimal clustering

 \bullet different initial starts of the means gives different final answers \to initial selection is very important

how to alleviate this problem?

- multiple runs
- 2 pick the solution with minimum SSE

Issues: Implicit Assumption on Cluster Shape

• can get wrong results when clusters have other shapes

Issues: Number of Clusters

You have to pick the number of clusters

ullet in general, clustering result depends on k

Issues: Outliers

- the means may be fictitious (i.e., non-existent in the dataset)
- k-means is sensitive to outliers

Example

• by removing points 1 and 2, we obtain much tighter clusters