# Compsci 571 HW4

Yilin Gao (yg95)

February 27, 2018

### Constructing Kernels

Let  $K_1$  be kernels over  $\mathbb{R}^n \times \mathbb{R}^n$ , let  $a \in \mathbb{R}$ ,  $\langle a, b \rangle$  denotes the dot product,  $a^T b$ .

(a)  $K(x,z) = aK_1(x,z)$ 

This is not a kernel. Because  $K_1$  is a valid kernel,  $K_1(x,z) \ge 0$ . When a < 0,  $K(x,z) = aK_1(x,z) \le 0$ 0. Because inner products  $\langle \cdot, \cdot \rangle \geq 0$ , there won't be an inner product such that  $K(x,z) = \langle \cdot, \cdot \rangle$  $\Phi(x), \Phi(z) >_{H_k}$ .

(b)  $K(x,z) = \langle x, z \rangle^3 + (\langle x, z \rangle - 1)^2$ 

This is not a valid kernel.

From lecture notes we've proved  $\langle x, z \rangle^3$  can be expressed as inner product in a new vector space, thus a valid kernel.

For 
$$(< x, z > -1)^2$$
:

$$(\langle x,z \rangle -1)^2 = (x^Tz-1)^2 = (\sum_{i=1}^n x^{(i)}z^{(i)}-1)(\sum_{j=1}^n x^{(j)}z^{(j)}-1) = \sum_{i=1}^n \sum_{j=1}^n x^{(i)}x^{(j)}z^{(i)} - 2\sum_{i=1}^n x^{(i)}z^{(i)}+1 = \sum_{i=1}^n \sum_{j=1}^n x^{(i)}x^{(j)}z^{(i)}z^{(j)} - \sum_{i=1}^n (\sqrt{2}x^{(i)})(\sqrt{2}z^{(i)}) + 1$$

This equation cannot be expressed as an inner product of some  $\Phi(x)$  and  $\Phi(z)$ . So  $(\langle x, z \rangle -1)^2$  is not a valid kernel.

From lecture notes we know that when  $k(x,z) = k_1(x,z) + k_2(x,z)$ , only if both  $k_1(x,z)$  and  $k_2(x,z)$ are valid kernels, will k(x,z) be a valid kernel. So in this case K(x,z) is not a kernel.

(c)  $K(x,z) = \langle x, z \rangle^2 + \exp(-\|x\|^2) \exp(-\|z\|^2)$ 

This is a valid kernel.

From lecture notes we've proved  $\langle x, z \rangle^2$  can be expressed as inner product in a new vector space, thus a valid kernel.

From lecture notes we've proved  $k(x,z) = g(x)g(z), g: \mathbb{R}^n \to \mathbb{R}$  is a valid kernel, so  $\exp(-\|x\|^2) \exp(-\|z\|^2)$ , in the same form, is a valid kernel.

So  $K(x,z) = \langle x,z \rangle^2 + \exp(-\|x\|^2) \exp(-\|z\|^2)$ , a sum of two valid kernels, is a valid kernel.

#### 2 Reproducing Kernel Hilbert Spaces

For  $\mathscr{F}$  to be the RKHS for kernel K(x,y)=xy, it should satisfy:

- 1. K(x,y) spans  $\mathscr{F}$ , i.e.,  $\mathscr{F} = span\{K(\cdot,x), x \in [0,1]\} = \{f: f(\cdot) = \sum_{i=1}^m \alpha_i K(\cdot,x_i), \}$
- 2. K(x,y) has the reproducing kernel property:  $f(x) = \langle f(\cdot), K(\cdot,x) \rangle_{\mathscr{F}_K}$

If  $\mathscr{F}$  satisfies condition 1, for any function f(x)=ax in  $\mathscr{F}$ ,  $f(x)=\sum_{i=1}^m\alpha_iK(x,x_i)=\sum_{i=1}^m\alpha_ixx_i=(\sum_{i=1}^m\alpha_ix_i)x$ , and this means the real number  $a=\sum_{i=1}^m\alpha_ix_i$  for the specific m and  $\alpha_i$ . Under this condition, for any  $f(\cdot)=a\cdot=(\sum_{i=1}^m\alpha_ix_i)\cdot, < f(\cdot), K(\cdot,x)>_{\mathscr{F}_K}=<\sum_{i=1}^m\alpha_iK(\cdot,x_i), K(\cdot,x)>_{\mathscr{F}_K}=\sum_{i=1}^m\alpha_iK(x,x_i)=\sum_{i=1}^m\alpha_ixx_i=(\sum_{i=1}^m\alpha_ix_i)x=ax=f(x).$  So condition 2 is also satisfied. So  $\mathscr{F}$  is the RKHS for kernel K(x,y)=xy.  $\square$ 

## 3 Convexity and KKT Conditions

(a) The Lagrangian function for the primal form is:

$$\min L(\mathbf{w}, \eta, \eta^*, \mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n (\eta_i + \eta_i^*) + \sum_{i=1}^n a_i [y_i - \mathbf{w}^T \mathbf{x}_i - \epsilon - \eta_i]$$
$$+ \sum_{i=1}^n b_i [\mathbf{w}^T \mathbf{x}_i - y_i - \epsilon - \eta_i^*] - \sum_{i=1}^n c_i \eta_i - \sum_{i=1}^n d_i \eta_i^*$$

It's KKT conditions are:

• Primal feasibility:

$$y_i - \mathbf{w}^T \mathbf{x}_i - \epsilon - \eta_i \le 0, i = 1, \dots, n$$

$$\mathbf{w}^T \mathbf{x}_i - y_i - \epsilon - \eta_i^* \le 0, i = 1, \dots, n$$

$$\eta_i \ge 0, i = 1, \dots, n$$

$$\eta_i^* \ge 0, i = 1, \dots, n$$

• Dual feasibility:

$$a_i \ge 0, i = 1, \dots, n$$
  
 $b_i \ge 0, i = 1, \dots, n$   
 $c_i \ge 0, i = 1, \dots, n$   
 $d_i \ge 0, i = 1, \dots, n$ 

• Complementary slackness:

$$a_i[y_i - \mathbf{w}^T \mathbf{x}_i - \epsilon - \eta_i] = 0, i = 1, \dots, n$$

$$b_i[\mathbf{w}^T \mathbf{x}_i - y_i - \epsilon - \eta_i^*] = 0, i = 1, \dots, n$$

$$c_i \eta_i = 0, i = 1, \dots, n$$

$$d_i \eta_i^* = 0, i = 1, \dots, n$$

• Lagrangian stationary:

$$\nabla_{\mathbf{w}L} = \mathbf{w} - \sum_{i=1}^{n} (a_i - b_i) \mathbf{x}_i = 0$$
$$(\nabla_{\eta L})_i = C - a_i - c_i = 0, i = 1, \dots, n$$
$$(\nabla_{\eta^* L})_i = C - b_i - d_i = 0, i = 1, \dots, n$$

With these conditions, we can transform Lagrangian function into dual form:

$$\max L(\mathbf{a}, \mathbf{b}) = \sum_{i=1}^{n} (a_i - b_i) y_i - \epsilon \sum_{i=1}^{n} (a_i + b_i) - \frac{1}{2} \sum_{i=1}^{n} (a_i - b_i) (a_j - b_j) \mathbf{x}_i^T \mathbf{x}_j$$

subject to

$$0 \le a_i, b_i \le C, i = 1, \dots, n$$

(b) Support vectors are the points i such that  $|y_i - \mathbf{w}^T \mathbf{x}_i| \le \epsilon$ .

- (c) Increasing  $\epsilon$  makes the model less likely to overfit. Because the model penalizes the points that have training error larger than  $\epsilon$ . If  $\epsilon$  increases, the allowed/unpenalized training error increases, and the model tends to overfit less.
- (d) Increasing C makes the model more likely to overfit. C is the penalty for each point that has training error larger than  $\epsilon$ . If the penalty increases, the model will try to make points have smaller training error, and thus overfits.
- (e) Assume we've computed the optimal dual variables as  $\mathbf{a}^*$  and  $\mathbf{b}^*$ . From one of the KKT conditions, we can get the optimal primal variable is  $\mathbf{w}^* = \sum_{i=1}^n (a_i^* - b_i^*) \mathbf{x}_i$ . So for a new point  $\mathbf{x}^{new}$ , its evaluation is  $f(\mathbf{x}^{new}) = \sum_{j=1}^p w_j^* x_j^{new} = \sum_{j=1}^p \sum_{i=1}^n (a_i^* - b_i^*) \mathbf{x}_{ij} x_j^{new} = \sum_{i=1}^n (a_i^* - b_i^*) \mathbf{x}_i \cdot \mathbf{x}^{new}$ .

## 4 SVM Implementation

- (a) See svm\_classifier.py.
- (b) Note: for questions (b) and (c), I use sklearn.mode\_selection.train\_test\_split to split the training and testing set with 2018 as the random seed. And if I use numpy with 2018 as the random seed to generate indices for training and testing data and then split, the split is different. Code for these 2 questions are in q4.ipynb.

The accuracy of the classifier on testing data is 0.86363636363636. The ROC curve is like following:



The AUC on testing data is 0.8316400580551523.

(c) For  $\sigma^2 = 25$ , the accuracy of the classifier on testing data is 0.84848484848485. The ROC curve is like:



The AUC on testing data is 0.8388969521044993.

For  $\sigma^2=5$ , the accuracy for the classifier on testing data is 0.79545454545454. The ROC curve is like:



The AUC on testing data is 0.7790275761973875.

The comparison between 2  $\sigma^2$  values suggests that for Gaussian kernel if we set  $\sigma^2$  too small we may overfit.