Functional Analysis Assignment 4

Ashish Kujur

Note

A checkmark \checkmark indicates the question has been done.

Contents

1	Question 1	2
2	Question 2	3
3	Question 3	4
4	Question 4	5
5	Question 5	6
6	Question 6	7
7	Question 7	8

Let $(V, \|\cdot\|_1)$ and $(V, \|\cdot\|_2)$ be two Banach spaces. Suppose there exist a c > 0 such that $\|x\|_1 \leq c\|x\|_2$ for every $x \in V$. Then show that the two norms $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent.

Proof. First, we prove that $I:(V,\|\cdot\|_2)\to (V,\|\cdot\|_1)$ is continuous. To do so , let $x\in V$. Then ¹

$$\begin{split} \|Ix\|_1 &= \|x\|_1 \\ &\leq c \, \|x\|_2 \,. \end{split} \tag{by hypothesis}$$

Since I is a bounded linear operator, we have that it is invertible by the inverse mapping theorem. Thus $I:(V,\|\cdot\|_1)\to (V,\|\cdot\|_2)$ is bounded. Thus, we have that

$$\begin{split} \|x\|_2 &= \|I(Ix)\|_2 \\ &\leq \|I\| \, \|Ix\|_1 \qquad \text{(viewing "first" I as a mapping from } (V,\|\cdot\|_2) \ \text{to } (V,\|\cdot\|_1)) \\ &= \|I\| \, \|x\|_1 \end{split}$$

///

Hence, we have that the both norms are equivalent.

¹Yes, I know that there was nothing to show!

Let X and Y be two Banach spaces and $T: X \to Y$ be a continuous linear transformation. Show that there exist a constant c > 0 such that $||Tx|| \ge c||x||$ for all $x \in X$ if and only if $\ker T = \{0\}$ and im (T) is closed.

Solution. (\Longrightarrow) Suppose that there is a constant c > 0 such that $||Tx|| \ge c ||x||$ for all $x \in X$. First, let us show that $\ker T = \{0\}$. Let $x \in \ker T$. Then Tx = 0. Then we have that $0 = ||Tx|| \ge c ||x||$ and hence x = 0.

To show that that the image of T is closed, let $(Tx_n)_{n\in\mathbb{N}}$ be a sequence converging to some $y\in Y$. We need to show that y=Tx for some $x\in X$.

Since (Tx_n) is convergent, it is Cauchy in Y. Therefore, we have that

$$||x_n - x_m|| \le \frac{1}{c} ||Tx_n - Tx_m||$$

for all $m, n \in \mathbb{N}$. This shows that $(x_n)_{n \in \mathbb{N}}$ is Cauchy in X. Since X is Banach, we have that $(x_n)_{n \in \mathbb{N}}$ converges to some $x \in X$. By continuity, we have that $(Tx_n)_{n \in \mathbb{N}}$ converges to Tx. By uniqueness of limits, we have that Tx = y.

 (\Leftarrow) If $X = \{0\}$ then the result is trivial. Suppose that $X \neq \{0\}$. Since $T : X \to Y$ is injective, we consider the map $T^{-1} : \text{im } T \to X$. Note that T is bounded linear transformation, thus, T^{-1} is a bounded linear transformation by the inverse mapping theorem. (Quick remark: im T is Banach by virtue of being closed).

Thus, we have that

$$||x|| = ||T^{-1}(Tx)||$$

 $\leq ||T^{-1}|| ||Tx||$

for any $x \in X$. We will be done if we show that $||T^{-1}|| \neq 0$. Since X is nonzero, im T is nonzero. Select a nonzero vector $y \in \text{im } (T)$ such that $||y|| \leq 1$. Thus, we have that $||T^{-1}|| \geq ||T^{-1}(y)||$. Hence y = Tx for some nonzero $x \in X$. Thus, $||T^{-1}|| \geq ||x|| > 0$. This completes the proof.

Let $(X, \|\cdot\|)$ be a Banach space with a Schauder basis, say $\{v_j : j \in \mathbb{N}\}$. Define a new norm on X in the following manner: For any $x \in X$, there exist unique scalars $\{c_i(x) : i \in \mathbb{N}\}$ such that $x = \sum_{i=1}^{\infty} c_i(x)v_i$. Now consider

$$||x||_n := \sup_k \left\{ ||\sum_{i=1}^k c_i(x)v_i|| \right\}$$

Show that $\|\cdot\|_n$ is indeed a norm on X and the two norms $\|\cdot\|_n$ and $\|\cdot\|$ are equivalent.

Solution. The first question is whether $\|\cdot\|_n$ is well defined. Let's proceed to show that. Let $x \in X$. Then there exists scalars $\{c_i(x) : i \in \mathbb{N}\}$ such that

Since $\left\|\sum_{i=1}^{k} c_i(x) v_i\right\|$ is convergent and hence is bounded. Thus the norm $\|\cdot\|_n$ is well defined. It is easy to see that $\|\cdot\|_n$ is a norm on X. Let $x \in X$ be arbitrary. Since $\{v_j : j \in \mathbb{N}\}$ is a Schauder basis, there exists unique scalars $\{c_i(x) : i \in \mathbb{N}\}$ such that

$$x = \sum_{i=1}^{\infty} c_i(x) v_i$$

Observe that for each $k \in \mathbb{N}$, we have that

$$\left\| \sum_{i=1}^{k} c_i(x) x_i \right\| \le \|x\|_n.$$

Letting $k \to \infty$, we have that

$$||x|| \le ||x||_n.$$

In view of Question 1 of this Assignment, we are done.

Let $(X, \|\cdot\|)$ be a Banach space with a Schauder basis, say $\{v_j : j \in \mathbb{N}\}$. Thus for any $x \in X$, there exist unique scalars $\{c_i(x) : i \in \mathbb{N}\}$ such that $x = \sum_i c_i(x)v_i$. Now consider the family of linear functional $P_i : X \to \mathbb{F}$ defined by $P_i(x) = c_i(x)$ for every $x \in X$. Show that P_i is a continuous linear functional on X for each $i \in \mathbb{N}$.

Proof. By the uniqueness part of the Schauder basis, it is easy to see that each $P_i: X \to \mathbb{F}$ is indeed an linear functional. We are left to show that it is continuous.

We use the previous problem to complete this problem. Since $\|\cdot\|$ and $\|\cdot\|_n$ is equivalent, there exists constants $\alpha_1, \alpha_2 > 0$ such that

$$\alpha_1 \|x\|_n \le \|x\| \le \alpha_2 \|x\|_n$$

for each $x \in X$.

We show that the map $\varphi_k : (V, \|\cdot\|) \to (V, \|\cdot\|)$ given by $\varphi_k(x) = \sum_{i=1}^k c_i(x) v_i$ is continuous. Let $x \in X$ and consider the following:

$$\|\varphi_k(x)\| = \left\| \sum_{i=1}^k c_i(x) v_i \right\|$$

$$\leq \|x\|_n$$

$$\leq \frac{1}{\alpha_1} \|x\|.$$

This shows that φ_k is continuous for each $k \in \mathbb{N}$. Define $\varphi_0(x) = 0$ for each $x \in X$. Notice that now, $P_k = \frac{1}{\|v_k\|} \|\varphi_k - \varphi_{k-1}\|$ for each $k \in \mathbb{N}$. By continuity of norm and φ_k 's, we are done.

Let $T: \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$ be the linear map given by $T\left((x_j)_{j\in\mathbb{N}}\right) = \left((\frac{x_j}{j})_{j\in\mathbb{N}}\right)$.

- 1. Show that T is continuous and injective.
- 2. Consider the map $T^{-1}: range(T) \to \ell^2(\mathbb{N})$ given by $T^{-1}(Tf) = f$ for $f \in \ell^2(\mathbb{N})$. Show that T^{-1} is not continuous.
- 3. Conclude that range(T) is not closed in $\ell^2(\mathbb{N})$.

Solution. 1. This is clear from Holder's inequality.

2. Let k > 0. Select $N \in \mathbb{N}$ such that k < N. Consider the sequence

$$N = \left\| T^{-1} \left(\frac{e_N}{N} \right) \right\| > k \left\| e_N \right\|$$

This shows that T is discontinuous.

3. If im T was closed then the Banach isomorphism theorem would tell us that T^{-1} : im $T \to \ell^2(\mathbb{N})$ is continuous which would contradict item 2.

///

Suppose φ is a Borel measurable function on [0,1] such that $\varphi f \in L^2[0,1]$ for every $f \in L^2[0,1]$ $L^2[0,1]$. Consider the map $M_{\varphi}: L^2[0,1] \to L^2[0,1]$ defined by $M_{\varphi}(f) = \varphi f$ for every $f \in$ $L^2[0,1]$. Prove that M_{φ} is continuous linear transformation and $\varphi \in L^{\infty}[0,1]$.

Proof. Let φ be a Borel measurable function. Since $\varphi f \in L^2[0,1]$ for each $f \in L^2[0,1]$, we have by taking f=1 that $\varphi\in L^2[0,1]$. Consider the sequence of functions given by
$$\begin{split} \varphi_n &= \varphi \chi_{\{|\varphi| \leq n\}}. \text{ Now note that } |\varphi_n - \varphi| \leq |\varphi| \text{ on } [0,1]. \text{ Also, note that } |\varphi_n| \leq n \text{ on } [0,1] \text{ so } \\ M_{\varphi_n} &: L^2[0,1] \to L^2[0,1] \text{ defined by } M_{\varphi_n}(f) = \varphi_n f \text{ for every } f \in L^2[0,1] \text{ is continuous.} \\ \text{We now show that } M_{\varphi_n}(f) \to M_{\varphi}(f) \text{ in 2-norm. Now, } |\varphi_n - \varphi|^2 |f|^2 \leq |\varphi f|^2 \text{ on } [0,1]. \end{split}$$

By Dominated Convergence Theorem, we have that

$$\lim_{n\to\infty} \int_0^1 |\varphi_n - \varphi|^2 |f|^2 dt = 0$$

as $|\varphi_n - \varphi| \to 0$ pointwise.

By the Corollary 2 in this webpage, we conclude that M_{φ} is continuous. ///

(*) Let X and Y be two normed linear spaces and $dim(Y) < \infty$. Suppose $T: X \to Y$ be onto linear transformation. Show that T is an open map.