Terminologia de MTs e Decidibilidade

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

29 de maio de 2017

Plano de Aula

- Revisão
 - Definição de algoritmo
- 2 Terminologia para descrever MTs
- Opecidibilidade

Bônus (0,5 pt)

Desafio

- Problema 4.7:
 - Seja $T = \{(i, j, k) | i, j, k \in \mathbb{N}\}$. Mostre que T é contável.
- Candidaturas até o fim da aula (24 de maio, 11h00);
- Apresentação e resposta por escrito → Segunda (07 de junho, 11h30);
- 20 minutos de apresentação.

Candidato

???

Bônus (0,5 pt)

Desafio

- Problema 4.7:
 - Seja $T = \{(i, j, k) \mid i, j, k \in \mathbb{N}\}$. Mostre que T é contável.
- Candidaturas agora;
- Apresentação e resposta por escrito \rightarrow Quinta (01 de junho, 15h30);
- 10 minutos de apresentação.

Livro

SIPSER, M. Introdução à Teoria da Computação, 2a Edição, Editora Thomson Learning, 2011. Código Bib.: [004 SIP/int].

Sumário

- Revisão
 - Definição de algoritmo
- 2 Terminologia para descrever MTs
- 3 Decidibilidade

Problema 3.16 (b)

Mostre que a coleção de linguagens Turing-reconhecíveis é fechada sob a operação de concatenação.

Prova: Sejam duas linguagens Turing-reconhecíveis (TR) quaisquer A e B. Sejam M_A e M_B as duas máquinas de Turing (MT) que reconhecem A e B, respectivamente (pois se uma linguagem é Turing-reconhecível, então uma MT a reconhece). Iremos construir uma MT não-determinística (MTN) M_{aux} , a partir de M_A e M_B , que reconhece $A \circ B$. A descrição de M_{aux} é dada a seguir:

Prova: Sejam duas linguagens Turing-reconhecíveis (TR) quaisquer A e B. Sejam M_A e M_B as duas máquinas de Turing (MT) que reconhecem A e B, respectivamente (pois se uma linguagem é Turing-reconhecível, então uma MT a reconhece). Iremos construir uma MT não-determinística (MTN) M_{aux} , a partir de M_A e M_B , que reconhece $A \circ B$. A descrição de M_{aux} é dada a seguir: $M_{aux} =$ "Sobre a entrada ω , faça:

• Corte, não deterministicamente, ω em duas cadeias (i.e. $\omega = \omega_1 \circ \omega_2$).

Prova: Sejam duas linguagens Turing-reconhecíveis (TR) quaisquer A e B. Sejam M_A e M_B as duas máquinas de Turing (MT) que reconhecem A e B, respectivamente (pois se uma linguagem é Turing-reconhecível, então uma MT a reconhece). Iremos construir uma MT não-determinística (MTN) M_{aux} , a partir de M_A e M_B , que reconhece $A \circ B$. A descrição de M_{aux} é dada a seguir: M_{aux} = "Sobre a entrada ω , faça:

- Corte, não deterministicamente, ω em duas cadeias (i.e. $\omega = \omega_1 \circ \omega_2$).
- 2 Rode M_A sobre ω_1 . Se M_A rejeita, rejeite.

Prova: Sejam duas linguagens Turing-reconhecíveis (TR) quaisquer A e B. Sejam M_A e M_B as duas máquinas de Turing (MT) que reconhecem A e B, respectivamente (pois se uma linguagem é Turing-reconhecível, então uma MT a reconhece). Iremos construir uma MT não-determinística (MTN) M_{aux} , a partir de M_A e M_B , que reconhece $A \circ B$. A descrição de M_{aux} é dada a seguir: M_{aux} = "Sobre a entrada ω , faça:

- Corte, não deterministicamente, ω em duas cadeias (i.e. $\omega = \omega_1 \circ \omega_2$).
- 2 Rode M_A sobre ω_1 . Se M_A rejeita, rejeite.
- **3** Rode M_B sobre ω_2 . Se M_B aceita, aceite.

Prova: Sejam duas linguagens Turing-reconhecíveis (TR) quaisquer A e B. Sejam M_A e M_B as duas máquinas de Turing (MT) que reconhecem A e B, respectivamente (pois se uma linguagem é Turing-reconhecível, então uma MT a reconhece). Iremos construir uma MT não-determinística (MTN) M_{aux} , a partir de M_A e M_B , que reconhece $A \circ B$. A descrição de M_{aux} é dada a seguir: M_{aux} = "Sobre a entrada ω , faça:

- Corte, não deterministicamente, ω em duas cadeias (i.e. $\omega = \omega_1 \circ \omega_2$).
- 2 Rode M_A sobre ω_1 . Se M_A rejeita, rejeite.
- **3** Rode M_B sobre ω_2 . Se M_B aceita, aceite.
- Rejeite".

Prova: Sejam duas linguagens Turing-reconhecíveis (TR) quaisquer $A \in B$. Sejam $M_A \in M_B$ as duas máquinas de Turing (MT) que reconhecem A e B, respectivamente (pois se uma linguagem é Turing-reconhecível, então uma MT a reconhece). Iremos construir uma MT não-determinística (MTN) M_{aux} , a partir de M_A e M_B , que reconhece $A \circ B$. A descrição de M_{aux} é dada a seguir: M_{aux} = "Sobre a entrada ω , faça:

- lacktriangle Corte, não deterministicamente, ω em duas cadeias (i.e. $\omega = \omega_1 \circ \omega_2$).
- 2 Rode M_{Δ} sobre ω_1 . Se M_{Δ} rejeita, rejeite.
- 3 Rode M_B sobre ω_2 . Se M_B aceita, aceite.
- Rejeite".

Como é possível construir M_{aux} , então $A \circ B$ é TR (pois toda MTN tem uma MT equivalente). Logo, a classe de linguagens Turing-reconhecíveis é fechada sob a operação de concatenação

Contribuição

Apresentou uma noção do que seria um algoritmo no Congresso Internacional de Matemáticos em Paris, no ano de 1900.

Quem?

David Hilbert (1862-1943)

Matemático alemão

Polinômio

Definições

Um **polinômio** é uma soma de termos. Um **termo** é um produto de variáveis e uma constante chamada de **coeficiente**.

Exemplo: Termo

$$6 \cdot x \cdot x \cdot y \cdot z \cdot z \cdot z = 6x^2yz^3$$

Exemplo: Polinômio

$$6x^2yz^3 + 3xy^2 - 10$$

Polinômio

Definições

Uma raiz de um polinômio é uma atribuição de valores às suas variáveis de modo que o valor do mesmo seja 0. Chamamos de raiz inteira aquela em todos os valores atribuídos são valores inteiros.

Exemplo: Raiz

O polinômio $6x^3yz^2 + 3xy^2 - x^3 - 10$ tem uma raiz em x = 5, y = 3 e z = 0.

Exemplo: Raiz Inteira

A raiz do exemplo acima é uma raiz inteira.

Polinômio

Problema apresentado por Hilbert

É possível conceber um algoritmo que teste se um polinômio tem uma raiz inteira ou não?

Expressão utilizada por Hilbert

"Um processo com o qual ela possa ser determinada por um número finito de operações".

Curioso

Não existe algoritmo que execute esta tarefa.

Contribuição

Mostrou, em 1970, que não existe algoritmo para se testar se um polinômio tem raízes inteiras.

Quem?

Yuri Matijasevich (1947-) Cientista da computação e matemático russo.

Noção intuitiva de algoritmos de igual a algoritmos de máquina de Turing

FIGURA 3.22

A Tese de Church-Turing

Conclusão

Existem problemas que são algoritmicamente insolúveis.

Contexto

 $D = \{p \mid p \text{ \'e um polinômio com uma raiz inteira}\}$

Problema

O conjunto D é decidível?

Resposta

Não é decidível. Mas é Turing-reconhecível.

Problema análogo

 $D_1 = \{p \mid p \text{ \'e um polinômio sobre } x \text{ com uma raiz inteira}\}$

$MT M_1$ que reconhece D_1

 M_1 = "A entrada é um polinômio p sobre a variável x.

• Calcule o valor de p com x substituída sucessivamente pelos valores $0, 1, -1, 2, -2, 3, -3, \dots$

Se em algum ponto o valor do polinômio resulta em 0, aceite.

Considerações

 M_1 reconhece D_1 , mas não a decide.

Resultado obtido por Matijasevich

É possível construir um decisor para D_1 . Mas não para D.

Justificativa

É possível obter um limitante para polinômios de uma única variável. Porém, Matijasevich provou ser impossível calcular tais limitantes para polinômios multivariáveis.

Limitante para polinômios de uma única variável

$$\pm k \frac{c_{max}}{c_1}$$

em que

- k é o número de termos do polinômio,
- c_{max} é o coeficiente com maior valor absoluto, e
- c₁ é o coeficiente do termo de mais alta ordem.

Sumário

- Revisão
 - Definição de algoritmo
- 2 Terminologia para descrever MTs
- 3 Decidibilidade

Níveis de descrição

 Descrição formal: esmiúça todos os elementos da 7-upla, conforme definição;

Níveis de descrição

 Descrição de implementação: descreve a forma pela qual a MT move a sua cabeça e a forma como ela armazena os dados na fita;

Níveis de descrição

 Descrição de alto nível: neste nível não precisamos mencionar como a máquina administra a sua fita ou sua cabeça de leitura-escrita.

Níveis de descrição

- Descrição formal: esmiúça todos os elementos da 7-upla, conforme definição;
- Descrição de implementação: descreve a forma pela qual a MT move a sua cabeça e a forma como ela armazena os dados na fita:
- Descrição de alto nível: neste nível não precisamos mencionar como a máquina administra a sua fita ou sua cabeça de leitura-escrita.

Exemplo

Seja A a linguagem consistindo em todas as cadeias representando grafos não-direcionados que são conexos. Logo:

$$A = \{\langle G \rangle | G \text{ \'e um grafo n\~ao-direcionado conexo}\}$$

Exemplo

Seja A a linguagem consistindo em todas as cadeias representando grafos não-direcionados que são conexos. Logo:

 $A = \{\langle G \rangle | G \text{ \'e um grafo n\~ao-direcionado conexo}\}$

Descrição de alto nível

 $M = \text{``Sobre a entrada } \langle G \rangle$, a codificação de um grafo G:

- Selecione o primeiro nó de G e marque-o.
- Repita o seguinte estágio até que nenhum novo nó seja marcado:
 - Para cada nó em G, marque-o se ele está ligado por uma aresta a um nó que já está marcado.
- Faça uma varredura em todos os nós de G para determinar se eles estão todos marcados. Se eles estão, aceite; caso contrário, rejeite".

Exemplo

Pergunta

Como seria a descrição de M no nível de implementação?

Sumário

- Revisão
 - Definição de algoritmo
- 2 Terminologia para descrever MTs
- Opecidibilidade

Introdução

Propósitos da Teoria da Computação

- Conhecer o poder dos algoritmos;
- Explorar os limites da solubilidade algorítmica;
- Identificar algoritmos insolúveis.

Introdução

Propósitos da Teoria da Computação

- Conhecer o poder dos algoritmos;
- Explorar os limites da solubilidade algorítmica;
- Identificar algoritmos insolúveis.

Por que devemos estudar insolubilidade?

- Relaxamento dos requisitos;
- Conhecimento das limitações dos modelos computacionais.

Linguagens Decidíveis

Exemplos de Linguagens Decidíveis

São úteis porque

- Algumas linguagens decidíveis estão associadas a aplicações;
- Algumas linguagens aparentemente triviais não são decidíveis.

Linguagens Decidíveis

Exemplos de Linguagens Decidíveis

São úteis porque

- Algumas linguagens decidíveis estão associadas a aplicações;
- Algumas linguagens aparentemente triviais não são decidíveis.

Problema da aceitação

Dado um modelo computacional MC e uma cadeia de entrada ω , identificar se MC aceita ω .

Problema da aceitação para AFDs

Problema da aceitação para AFDs

Dado um AFD B e uma cadeia de entrada ω , identificar se B aceita ω .

Problema da aceitação para AFDs

Problema da aceitação para AFDs

Dado um AFD B e uma cadeia de entrada ω , identificar se B aceita ω .

Problema

 $A_{AFD} = \{\langle B, \omega \rangle \mid B \text{ \'e um AFD que aceita a cadeia de entrada } \omega \}$

Problema da aceitação para AFDs

Dado um AFD B e uma cadeia de entrada ω , identificar se B aceita ω .

Problema

 $A_{AFD} = \{\langle B, \omega \rangle \mid B \text{ \'e um AFD que aceita a cadeia de entrada } \omega \}$

Estratégia de Resolução

Resolver o problema da aceitação para AFDs é decidir se $\omega \in \mathcal{A}_{AFD}$.

Teorema 4.1

 A_{AFD} é uma linguagem decidível.

Teorema 4.1

A_{AFD} é uma linguagem decidível.

Ideia da Prova

M= "Sobre a entrada $\langle B,\omega\rangle$, em que B é um AFD, e ω , uma cadeia:

- **1** Simule B sobre a entrada ω ;
- Se a simulação termina em um estado de aceitação, aceite. Senão, rejeite."

Detalhes de implementação

- A entrada $\langle B, \omega \rangle$ representa um AFD e uma cadeia;
 - Uma representação razoável de B seria uma lista de seus cinco componentes: Q, Σ, δ, q₀ e F;
 - M simula B de forma que M aceita se B estiver em um estado final, e rejeita, caso contrário.

Problema da aceitação para AFNs

Dado um AFN B e uma cadeia de entrada ω , identificar se B aceita ω .

Problema da aceitação para AFNs

Dado um AFN B e uma cadeia de entrada ω , identificar se B aceita ω .

Problema

 $A_{AFN} = \{\langle B, \omega \rangle \mid B ext{ é um AFN que aceita a cadeia de entrada } \omega \}$

Problema da aceitação para AFNs

Dado um AFN B e uma cadeia de entrada ω , identificar se B aceita ω .

Problema

 $A_{AFN} = \{\langle B, \omega \rangle \mid B \text{ \'e um AFN que aceita a cadeia de entrada } \omega \}$

Estratégia de Resolução

Decidir se $\langle B, \omega \rangle \in A_{AFN}$.

Teorema 4.2

A_{AFN} é uma linguagem decidível.

Teorema 4.2

A_{AFN} é uma linguagem decidível.

Prova

N= "Sobre a entrada $\langle B,\omega\rangle$, em que B é um AFN, e ω , uma cadeia:

- Converta AFN B para um AFD equivalente C, usando o procedimento para essa conversão dado no Teorema 1.39;
- 2 Rode a MT M do Teorema 4.1 sobre a cadeia $\langle C, \omega \rangle$;
- 3 Se M aceita, aceite. Caso contrário, rejeite."

Problema da Vacuidade de uma Linguagem

Descrição

Dada uma linguagem L, identificar se $L = \emptyset$.

Problema aplicado a AFDs

$$V_{AFD} = \{ \langle A \rangle \mid A \text{ \'e um AFD e } L(A) = \emptyset \}$$

Estratégia de Resolução

Decidir se $\langle A \rangle \in V_{AFD}$.

Problema da Vacuidade de uma Linguagem

Teorema 4.4

 V_{AFD} é uma linguagem decidível.

Problema da Vacuidade de uma Linguagem

Teorema 4.4

 V_{AFD} é uma linguagem decidível.

Prova

A seguinte MT T decide V_{AFD} .

T = "Sobre a entrada $\langle A \rangle$, em que A é uma AFD:

- Marque o estado inicial de A;
- Repita até que nenhum estado novo venha a ser marcado;
 - Marque qualquer estado que tenha uma transição chegando nele a partir de qualquer estado que já está marcado.
- Se nenhum estado final estiver marcado, aceite. Caso contrário, rejeite."

Terminologia de MTs e Decidibilidade

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

29 de maio de 2017

