Best Available Copy

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平7-236146

(43)公開日 平成7年(1995)9月5日

技術表示箇所 庁内整理番号 FI (51) Int.CL* 識別記号 H04N 7/32 5/92 A 7337-5C 11/04 H04N 7/137 5/92 客査開求 未請求 請求項の数7 OL (全 10 頁) 最終頁に扱く (71)出版人 000005223 特爾平6-24659 (21)出職番号 富土通株式会社 神奈川県川崎市中原区上小田中1015番地 (22)出頭日 平成6年(1994)2月23日 (72) 発明者 此島 真喜子 神奈川県川崎市中原区上小田中1015番地 含土通株式会社内 (72) 発明者 松田 客一 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 (74)代理人 弗理士 柏谷 昭司 (外1名)

(54) [発明の名称] 面像信号符号化装置及び量子化パラメータ設定方法

(57)【要約】

【目的】 高能率符号化を行う画像信号符号化装置及び 量子化パラメータ設定方法に関し、画質を劣化させることなく符号化効率を向上する。

【構成】 量子化器2と量子化パラメータ発生器3と動き補債器4とを含み、フレーム内符号化及びフレーム間符号化を行う符号化処理部1と、I.P.Bフレームの何れかを示すフレーム種別情報を出力するフレーム判定部5と、面像信号評価部6と、量子化パラメータ補正部7とを備え、画像信号評価部6に於いて、入力画像信号のフレーム内相関やフレーム間相関を評価パラメータとして出力し、Bフレームの時に、量子化パラメータ発生器3からの量子化パラメータを、量子化パラメータ補正部7に於いて評価パラメータに対応して補正して、量子化器2に設定する。

本発明の原理説明図

村用平7−236146

【特許請求の範囲】

【請求項1】 フレーム内符号化を行うIフレームと、一つの参照フレームを用いてフレーム間符号化を行うPフレームと、複数の参照フレームを用いてフレーム間符号化を行うBフレームとを担合せて符号化を行う画像信号行号化装置に於いて、

量子化器(2)と量子化パラメータ発生器(3)と動き 補償器(4)とを含み、前記フレーム内符号化及びフレーム間符号化を行う符号化処理部(1)と、

前記I,P,Bフレームの何れかを示すフレーム種別情報を出力するフレーム判定部(5)と、

該フレーム判定部 (5) からのフレーム種別情報が前記 Bフレームを示す時の画像信号を評価する画像信号評価 部 (6)と、

該画像信号評価部 (6)からの評価パラメータと、前記 フレーム判定部 (5)からのフレーム種別情報を基に、 前記量子化パラメータ発生器 (3)からの量子化パラメ ータを補正処理して、前記量子化器 (2)に加える量子 化パラメータ補正部 (7)とを設けたことを特徴とする 画像信号符号化装置。

【請求項2】 前記画像信号評価部(6)は、前記フレーム判定部(5)からのフレーム種別情報と共に、入力画像信号と前記動き補償器(4)からの動きベクトルと予測誤差との少なくとも何れか一つを入力し、フレーム内の相関又はフレーム間の相関の何れか一方又は両方を評価パラメータとして出力する構成を有することを特徴とする請求項1記載の画像信号符号化装置。

【請求項3】 量子化器(2)と量子化パラメータ発生器(3)と動き補償器(4)とを含み、フレーム内符号化及びフレーム間符号化を行う符号化処理部(1)と、3I、P、Bフレームの何れのフレームかを示すフレーム種別情報を出力するフレーム判定部(5)と、画像信号評価部(6)と、量子化パラメータ補正部(7)とを備え、フレーム内符号化を行うIフレームと、一つの参照フレームを用いてフレーム間符号化を行うPフレームと、複数の参照フレームを用いてフレーム間符号化を行うBフレームとを組合せて符号化を行う画像信号符号化装置の量子化パラメータ設定方法に於いて、

前記画像信号評価部(6)からフレーム内相関又はフレーム間相関の少なくとも何れか一方を評価パラメータと 40 して出力し、前記フレーム判定部(5)からのフレーム種別情報がBフレームを示す時に、前記評価パラメータに対応した倍率で前記量子化パラメータ発生器(3)からの量子化パラメータを前記量子化パラメータ補正部(7)に於いて補正し、前記量子化器(2)の量子化パラメータとして設定する過程を含むことを特徴とする量子化パラメータ設定方法。

【請求項4】 入力画像信号のブロック内の分散を求め、該ブロック内の分散のフレーム内の平均値を、前記評価パラメータの中のフレーム内の相関を表すパラメー

ARTIN .

タとすることを特徴とする請求項3記載の量子化パラメ ータ設定方法。

【請求項5】 入力画像信号に対する予測誤差の絶対値の累積値を、前記評価パラメータの中のフレーム内の相関を表すパラメータとすることを特徴とする請求項3記載の量子化パラメータ設定方法。

【請求項6】 前記動き補償器(4)からの動きベクトルと、該動きベクトルに対応するブロックの周囲のブロックの動きベクトルとの差分が総て所定値以内のブロック数を累積して、前記評価パラメータの中のフレーム間の相関を表すパラメータとすることを特徴とする請求項3記載の量子化パラメータ設定方法。

【請求項7】 フレーム間の相関が大きく且つフレーム 内の相関が大きい前配評価バラメータの場合に、前記量 子化パラメータ発生器(3)からの量子化パラメータを 補正する倍率を小さく設定し、フレーム間の相関が小さ く且つフレーム内の相関が小さい場合に、前記量子化パ ラメータ発生器(3)からの量子化パラメータを補正す る倍率を大きく設定することを特徴とする請求項3記載 の量子化パラメータ設定方法。

【産業上の利用分野】本発明は、画像信号を高能率符号化する画像信号符号化装置及び量子化パラメータ設定方法に関する。画像信号を高能率符号化して伝送或いは蓄積する各種の方式が提案され、又標準化が進められている。このような符号化処理に於いて予測誤差を量子化又は予測誤差をDCT(離散コサイン変換)処理を行って量子化する構成が採用されており、この場合の量子化パラメータ(ステップサイズ)は、発生情報量に従って制御される構成が一般的である。この量子化パラメータを更に最適化して発生情報を減少させることが要望されている。

[0002]

50

【従来の技術】図11は、符号化フレームの説明図であり、時間軸子側モードによって、I(Intra-coded)フレームと、B(Bi-directionally predictive coded)フレームと、P(Predictive coded)フレームと、P(Predictive coded)フレームとがあり、Iフレームは、フレーム内符号化のみで符号化するもので、伝送系に於いては、最初のフレームがIフレームとなり、又蓄積系では、任意の位置から再生できるように、所定数のフレーム毎にIフレームとする。又Pフレームは、矢印で示すように、過去のIフレーム又は過去のPフレームを参照フレームとしてフレーム間符号化を行うフレームである。

【0003】又Bフレームは、実線の矢印と点線の矢印とによって示すように、時間的に前のIフレームと後のPフレーム、又は時間的に前後のPフレームの二つを参照フレームとしてフレーム間符号化を行うフレームである。このBフレームは、I,Pフレーム間又はPフレー

THE POST OF THE PARTY OF THE PA

3

ム間に一つ或いは複数配置することができる。

【0004】図12は従来例の説明図であり、入力画像信号はフレームメモリ43に1フレーム分又は複数フレーム分蓄積される。又フレーム同期信号等をカウントするカウンタ41のカウント内容を基に、フレーム判定器42に於いて符号化処理をI.P.Bフレームの何れにするかを判定する。その判定出力信号のフレームの種別情報を、動き補償器44と可変遅延器45とフレームメモリ43、46と可変長符号器49と加えて、その種別情報に対応した制御を行う。

【0005】又フレームメモリ43から読出した画像信号と、可変遅延器45を介したフレームメモリ46からの予測値とを加算器55に加えて両者の差分の予測誤差を求め、符号器47に於いて、DCT(離散コサイン変換)、ベクトル量子化、PCM等の符号化を行い、その符号化出力信号を選量子化器48により量子化する。又量子化出力信号を逆量子化器52により逆量子化し、復号器53により符号器47と逆の処理により復号し、加算器56により予測値と加算し、その加算出力信号を局部復号信号としてフレームメモリ46に蓄積する。

【0006】量子化出力信号を可変長符号器49に加えて可変長符号化し、バッファ54を介して伝送するか、又は蓄積する。又情報量カウンタ50は、バッファ54の残容量又は蓄積情報量をカウントするもので、量子化パラメータ発生器51は、その情報量カウンタ50のカウント内容を基に、量子化器48に加える量子化パラメータ(量子化ステップサイズ)を出力し、発生情報量が場一化されるように制御する。

【0007】又動き補償器44は、フレームメモリ43、46からの画像信号のブロック対応に動き補償を行うもので、その動き補償器44からの動きベクトルによって可変遅延器45の遅延時間を制御し、又その動きベクトルを可変長符号器49に加えて可変長符号化する。【0008】

【発明が解決しようとする課題】I,P,Bフレームの中のBフレームは、時間的に前後のフレームから動き補償等の予測を行うものであるから、比較的少ないビットレートでも、画像を再生する場合に視覚的には充分な画質を得ることができる。しかし、I,P,Bフレームについての量子化パラメータは、情報量カウンタ50のカウント内容に従って設定されるものである。即ち、画像信号の性質やフレーム種類に関係なく、同一の量子化パラメータを設定するものであるから、再生画像の画質を劣化させることなく、符号化効率を向上することができなかった。本発明は、画像信号の性質とフレーム種類とに対応して量子化パラメータを設定して、符号化効率を向上することを目的とする。

[0009]

【課題を解決するための手段】本発明の画像信号符号化 装置及び量子化パラメータ設定方法は、図1を参照して 50

説明すると、(1)フレーム内符号化を行うIフレームと、一つの参照フレームを用いてフレーム間符号化を行うPフレームと、複数の参照フレームを用いてフレーム間符号化を行うBフレームとを組合せて符号化を行う画像信号符号化装置に於いて、量子化器2と量子化パラメータ発生器3と動き補償器4とを含み、フレーム内符号化及びフレーム間符号化を行う符号化処理部1と、I、P、Bフレームの何れかを示すフレーム種別情報を出力するフレーム判定部5と、このフレーム判定部5からのフレーム種別情報がBフレームを示す時の画像信号評価部6と、この画像信号評価部6からの評価パラメータと、フレーム判定部5からのフレーム種別情報とを基に、量子化パラメータ発生器3からの量子化パラメータを補正処理して、量子化器2に加える量子化パラメータ補正部7とを設けた。

【0010】(2)画像信号評価部6は、フレーム判定部5からのフレーム種別情報と共に、入力画像信号と動き補償器4からの動きベクトルと予測誤差との少なくとも何れか一つを入力し、フレーム内の相関又はフレームであれば関の何れか一方又は両方を評価パラメータとして出力する構成を備えている。

【0011】 (3)量子化器2と量子化パラメータ発生 器3と動き補償器4とを含み、フレーム内符号化及びフ レーム間符号化を行う符号化処理部1と、I,P.Bフ レームの何れのフレームかを示すフレーム種別情報を出 力するフレーム判定部5と、画像信号評価部6と、量子 化パラメータ補正部7とを備え、フレーム内符号化を行 う【フレームと、一つの参照フレームを用いてフレーム・ - 間符号化を行うPフレームと、複数の参照フレームを用 いてフレーム間符号化を行うBフレームとを組合せて符 号化を行う画像信号符号化装置の量子化パラメータ設定 方法に於いて、画像信号評価部6からフレーム内相関又 はフレーム間相関の少なくとも何れか一方を評価パラメ ータとして出力し、フレーム判定部5からのフレーム種 別情報がBフレームを示す時に、評価パラメータに対応 した倍率で量子化パラメータ発生部3からの量子化パラ メータを量子化パラメータ補正部7に於いて補正し、量 子化器2の量子化パラメータとして設定する過程を含む ものである。

【0012】(4)又入力画像信号のブロック内の分散を求め、このブロック内の分散のフレーム内の平均値を、評価パラメータの中のフレーム内の相関を表すパラメータとすることができる。

【0013】(5)又入力画像信号に対する予測誤差の 絶対値の累積値を、評価パラメータの中のフレーム間の 相関を表すパラメータとすることができる。

【0014】(6)又動き補償器4からの動きベクトルと、この動きベクトルに対応するブロックの周囲のブロックの動きベクトルとの差分が総て所定値以内のブロック数を累積して、評価パラメータの中のフレーム間の相

THE RESERVE OF THE PARTY OF THE

関を表すパラメータとすることができる。

【0015】(7)又フレーム間の相関が大きく且つフ レーム内の相関が大きい評価パラメータの場合に、量子 化パラメータ発生器3からの量子化パラメータを補正す る倍率を小さく設定し、フレーム間の相関が小さく且つ フレーム内の相関が小さい場合に、量子化パラメータ発 生器3からの量子化パラメータを補正する倍率を大きく 、設定することができる。

[0016]

【作用】

(1)符号化処理部1の量子化パラメータ発生器3は、 符号化による発生情報量に従った量子化パラメータ(量 子化ステップサイズ)を発生するものであり、画像信号 評価部6は、入力画像信号のフレーム内相関やフレーム 間相関等の性質を示す評価パラメータを出力する。又量 子化パラメータ補正部7は、フレーム判定部5からのフ レーム種別情報がBフレームを示す時に、評価パラメー タに従って量子化パラメータ発生器3からの量子化パラ メータを補正する。即ち、Bフレームは、その前後の複 数のフレームを参照フレームとしてフレーム間符号化を 行うものであり、IフレームやPフレームに比較して量 子化ステップサイズを大きくしても、再生画像の画質の 劣化が少ない。そこで、入力画像信号の性質を評価し、 且つBフレームの時に、量子化ステップサイズを大きく するように量子化パラメータを補正する。

【0.017】(2)又画像信号評価部6は、フレーム判 定部5からのフレーム種別情報がBフレームを示す時 に、入力画像信号、動きベクトル、予測誤差の少なくと も何れか一つを入力して、入力画像信号の場合は、ブロ ック毎の分散等を求めてフレーム内の相関を表すパラメ ータを得ることができ、又動きベクトル又は予測誤差の 場合はフレーム間の相関を表すパラメータを得ることが できる.

【0018】(3)又画像信号評価部6からフレーム内 相関又はフレーム間相関の何れか一方又は両方を入力画 像信号の評価パラメータとして出力する。そして、フレ ーム判定部5からのフレーム種別情報がBフレームを示 す時に、量子化パラメータ発生器3からの量子化パラメ ータを、量子化パラメータ補正部7に於いて補正して、 量子化器2の量子化パラメータとして設定する。従っ て、Bフレームの時の画像信号の性質に対応して発生情 報量を抑圧できる量子化パラメータを、量子化器2に設 定することができる。

【0019】(4)又入力画像信号の1フレームを複数 のブロックに分割し、各ブロック内の分散を求め、各分 散の1フレーム内の平均値を求める。この平均値が小さ いことは、フレーム内の相関が大きいことを示すことな る。従って、この平均値を評価パラメータの中のフレー ム内の相関を表すパラメータとすることができる。

干測値との差分の干測誤差を求め、その干測誤差の絶対流 値の累積値を求める。1フレームついての予測誤差の絶 対値の累積値が大きいことは、フレーム間相関が小さい ことを示し、反対に累積値が小さいことは、フレーム間 相関が大きいことを示す。従って、これを評価パラメー タの中のフレーム内の相関を表すパラメータとすること ができる.

6

【0021】(6)又周囲のブロックの動きベクトルの 差分が総て所定値以内のブロック数が多いことは、フレ 10 一厶間の相関が大きいことを示すことになる。従って、 このようなブロック数を累積することにより、評価パラ メータの中のフレーム間の相関を表すパラメータとする ことができる。こ

【0022】(7)又フレーム間の相関が大きく且つフ レーム内の相関が大きい評価パラメータが得られた時、 量子化ステップサイズを大きくすると、視覚的に不自然 な感を与える場合が多いから、量子化パラメータの補正 の倍率を小さくする。又フレーム間の相関が小さく且つ フレーム内の相関が小さい場合は、量子化パラメータの 補正の倍率を大きくして、Bフレームについての符号化 の発生情報量を低減して、符号化効率を改善する。

[0023]

【実施例】図2は本発明の実施例の説明図であり、11 はカウンタ、12は I ,...P , Bフレームを判定するフレ ーム判定器、13はフレームメモリ、14は動き補償品 器、15は可変遅延器、116はフレームメモリ、17は 符号器、18は量子化器部19は可変長符号器、20はキーショ 情報カウンタ、21は量子化パラメータ発生器、22は 逆量子化器、23は復号器、24はバッファ、25は画 30 像信号評価器、26は量子化パラメータ補正器、27は メモリ、28,29は加算器である。

.

【0024】この実施例は、図12に示す従来例の構成 に、画像信号評価器25と、量子化パラメータ補正器2 6と、メモリ27とを追加した場合を示す。又図1に於 ける符号化処理部1は、動き補償器14,可変遅延器1 5, フレームメモリ16, 符号器17, 量子化器18, 可変長符号器19、情報量カウンタ20、量子化パラメ ータ発生器21,逆量子化器22,復号器23,加算器 28,29等を含む構成に相当する。又図1のフレーム 40 判定部5と画像信号評価部6と量子化パラメータ補正部 7とは、フレーム判定器12と画像信号評価器25と量 子化パラメータ補正器26とに対応する。

【0025】画像信号評価器25は、フレームメモリ1 3からの画像信号と、フレーム判定器12からのフレー ム種別情報と、加算器28からの画像信号と予測値との 差分の予測誤差と、動き補償器14からの動きベクトル とを入力して、画像信号の評価を行い、その評価結果の 評価パラメータを量子化パラメータ補正器26に加え る。又情報量カウンタ20のカウント内容に対応して、

【0020】(5)又入力画像信号と動き補償等を含む 50 量子化パラメータ発生器21から量子化パラメータ(量

. 7

子化ステップサイズ)を発生して量子化パラメータ補正 器26に加える。この量子化パラメータ補正器26に於 いて、量子化パラメータを評価パラメータに対応して補 正し、その補正した量子化パラメータを量子化器18に 設定する.

【0026】又メモリ27は、画像信号評価器25から の評価パラメータを蓄積するものであり、画像信号評価 器25に於いて過去の評価パラメータも用いて入力画像 信号の評価を行う場合に、メモリ27から過去の評価パ ラメータを読出して用いることになる。又符号化遅延が 10 許容されないような場合は、メモリ27に蓄積された過 去の評価パラメータを用いて、量子化パラメータ補正器 26に於ける量子化パラメータの補正を行わせることが できる.

【0027】図3、図4、図5は本発明の実施例のフロ ーチャートを示し、フレームメモリ13からの符号化フ レームF(px,py)と、動き補償器14からの動き ベクトルX(bx), Y(by)とを画像信号評価器2 5に入力する(A1)。なお、pxは横方向の画案数、 pyは縦方向の画素数、bxは横方向のブロック数、b yは縦方向のブロック数を示す。従って、F(px, p y)は1フレーム分のデータを示し、X(bx),Y. (by)はブロック対応のx方向(模方向)及びy方向 (縦方向)の動きベクトル成分を示す。 又Bフレームに ついては、動きベクトルが参照フレーム数分だけ生じる ことになるが、何れか一つの参照フレームに対応した動 きベクトルを選択する。

- 【0028】次に8×8画素のブロックに分割し、ブロ ック毎の分散v(bx,by)を調べる処理を行う(A (A3)、次に画案の縦方向の変数pjを初期値の1と する(A4).

【0029】次に、ステップ (A5) に示すように、平 均値Fを求め、そして、ブロック毎の分散v(pi/8 +1. pj/8+1)を求める。次に、pj=pj+8 とし(A6)、次にpj>pyか否かを判定し(A 7)、画案の縦方向の交数pjが縦方向の画案数pyを 超えない場合はステップ(A5)に戻り、又超えた場合 は、pi=pi+8とし(A8)、次にpi>pxか否 かを判定し(A9)、画素の横方向の変数piが横方向 40 の画素数pxを超えない場合はステップ(A4)に戻 り、又超えた場合はステップ(A10)に移行する。

【0030】ステップ(A10)(図4参照)に於いて は、フレーム内での分散の平均値Vを求める。即ち、ブ ロックの様方向の変数をbi、ブロックの縦方向の変数 をbjとしてブロック毎の分散v(bi,bj)につい て、biを1からbxまで果積し、且つbjを1からb yまで累積し、(bx×by)で除算して、分散の平均 値Vを求める。このVがフレーム間の相関を表すパラメ ータとなる.

8 【0031】次に動きベクトルからフレーム間の相関を 調べる(A11)。即ち、相関を示すパラメータCを初 期値のOとし(A12)、次にブロックの横方向の変数 biを初期値の1とし(A13)、次にブロックの縦方 向の変数bjを初期値の1とし(A14)、動きベクト ルX(bi, bj)と、その動きベクトルのブロックの 上下左右に隣接するプロックの動きベクトルとの差分の 絶対値が、閾値aより小さいか否かを判定する。粒ての 絶対値が閾値aより小さい時に、C=C+1とする(A 16)。即ち、隣接する動きベクトルが近似している場 合、フレーム間の相関があることを示し、Cをカウント アップする。又一つでも絶対値が閾値aより小さくない 時は、ステップ (A17) に移行する。

【0032】ステップ (A16) 又はステップ (A1 5)の次のステップ(A17)に於いては、ブロックの **継方向の変数bj=bj+1とし、次にbj>byか否** かを判定する(A18)。ブロックの殺方向の変数bj が縦方向のブロック数byを超えない場合はステップ。 (A15)に移行し、超えた場合はステップ (A19) に移行する。このステップ (A19) では、bi=bi +1とし、次にbi>bxか否かを判定し(A20)、 ブロックの横方向の変数biが横方向のブロック数bx を超えない場合はステップ(A14)に移行し、超えた。 場合はステップ (A21) に移行する。即ち、フレーム 内の相関を表すパラメータVと、フレーム間の相関を表 すパラメータCとを出力する。

【0033】、図6は本発明の他の実施例の要部フローチ ャートを示し、図3のステップ(A5)に於いて求めた ブロック毎の分散を基に、フレーム内の相関を表すパラ 2)。即ち、画素の横方向の変数piを初期値の1とし 30 メータVを求める処理を示すもので、先ず、V=0とし (B1)、bi, bjをそれぞれ初期値の1とする(B 2), (B3), 次に動きベクトルv (bi, bj)が 閾値THaを超えているか否かを判定し(B4)、超え ていない場合はbj=bj+1とし(B5)、又超えて いる場合は、V=V+1とし(B6)、次にbj=bj +1とする(B5).

> 【0034】次にbj>byか否かを判定し(B7)、 ブロックの縦方向の変数b亅が縦方向のブロック数by を超えない場合はステップ(B4)に移行し、超えた場 合はステップ (B8) に移行して、bi=bi+1とす る。そして、bi>bxか否かを判定し(B9)、横方 向の変数biが横方向のブロック数bxを超えない場合 はステップ (B3) に移行し、超えた場合は、順次ステ ップ(B6)の処理を行った値のVを、フレーム内の相 関を表すパラメータとして出力する。

【0035】図7は本発明の他の実施例の要部フローチ ャートを示し、図3のステップ (A11)~ (A21) によるフレーム間の相関を示すパラメータCを求める処 理と異なる処理の実施例を示す。予測誤差 (図2の加算 50 器28の出力信号)G(px,py)を入力とし(C

1)、初期値としてC=0とする(C2)。次に、画素 の横方向の変数piを初期値の1とし(C3)、次に、 画素の縦方向の変数pjを初期値の1として(C4)、 一刀誤差G(px, py)の絶対値を累算することによ り、パラメータCとする(C5)。

9

【0036】次に、pj=pj+1とし (C6)、pj >pyか否かを判定し、pj>pyでない場合はステッ , プ (C 5) に移行し、p j > p y の場合は、p i = p i +1とし(C8)、pi>pxか否かを判定し、pi> pxでない場合はステップ(C4)に移行し、pi>p ×の場合は、ステップ(C5)による順次累積された値 Cをフレーム間の相関を表すパラメータCとして出力す

【0037】図8は本発明の一実施例の量子化パラメー タ補正処理のフローチャートを示し、分散のパラメータ Ⅴ、即ち、フレーム内の相関を表すパラメータⅤと、動 きベクトルのパラメータC、即ち、フレーム間の相関を 表すパラメータCと、IPB符号化フレームの種類を表 すパラメータ、即ち、I、P、Bフレームの種別を示す フレーム種別情報と、元の量子化パラメータQ、即ち、 量子化パラメータ発生器21 (図2参照)からの量子化 パラメータとを入力する(D1)。

【0038】次に、1PB=Bか否か、即ち、フレーム 種別情報がBフレームを示すか否かを判定する(D 2) Bフレームでない場合は、元の量子化パラメータ Qを量子化器18(図2参照)に加える量子化パラメー 4. タロ'とする(D3)。

【0039】又Bフレームの場合は、フレーム間の相関 を表すパラメータCが閾値TH1を超えているか否かを 判定する(D4)。C>TH1の場合、類似した動きべ 30 クトルが周囲に多い場合で、フレーム間の相関が大きい ことを示す。又ステップ (D5) (D8) に於いて は、フレーム内の相関を表すパラメータンが関値TH2 を超えているか否かを判定する。V>TH2の場合、分 散の平均値が閾値より大きいから、フレーム内の相関が 小さいことを示す。

【0040】そこで、C>TII1、即ち、フレーム間の 相関が大きく、且つV>TH2、即ち、フレーム内の相 関が小さい場合は、Q'=wxQとし(D6)、又C> TH1で、且つV>TH2でない場合、即ち、フレーム 内の相関が大きい場合、Q'-u×Qとし(D7)、又 C>TH1でなく、即ち、フレーム間の相関が小さく、 且つV>TH2の場合は、 $Q'=z\times Q$ とし(D1 0)、C>TH1でなく、且つV>TH2でない場合 は、 $Q' = y \times Q$ とする (Q9)。そして、補正した量 子化パラメータQ'を量子化器18(図2参照)に加え ることになる.

【0041】前述の係数u, w, z, yは、量子化パラ メータQの倍率であり、フレーム間の相関が大きい場 合、又はフレーム内の相関が大きい場合に、量子化パラ 50

10. メータQの倍率の変化について視覚特性が衰退となるか ら、その倍率をあまり大きくすることができないもので ある。このような点を考慮して、少なくとも1より大き い値に設定され、例えば、z>y>u>wの関係で設定 することができる.

【0042】図9は本発明の他の実施例の量子化パラメ ータ補正処理のフローチャートを示し、分散のパラメー タV、即ち、フレーム内の相関を表すパラメータVと、 JPB符号化フレームの種類を表すパラメータ、即ち、 I.P.Bフレームの種別を示すフレーム種別情報と、 元の量子化パラメータQ、即ち、量子化パラメータ発生 器21(図2参照)からの量子化パラメータとを入力す る(E1).。

【0043】そして、IPB=Bか否かを判定し(E 2)、I, P, Bフレームの種別がBフレームでない場 合、即ち、Iフレームか又はPフレームの場合、Q'= Qとする (E3)。又Bフレームの場合、V>TH2か 否かを判定し(E4)、V>TH2の場合、即ち、フレ ーム内の相関が大きい場合に、Q'=α×Qとする(E 20 6) A X V > TH2 でない場合、即ち、フレーム内の相 関が小さい場合に、Q'=8×Qとする(E5)。そし て、ステップ(E3),(E5),(E6)に於いて補 正した量子化パラメータQ'を出力し(E7)、量子化 器18(図2参照)に加える。この場合の量子化パラメ ータQの倍数α. βについても、視覚特性を考慮して1 以上の値に設定する。

【004:4】図10は本発明の更に他の実施例の量子化 パラメータ補正処理のフローチャートを示し、動きベク トルのパラメータC、即ち、フレーム間の相関を表すパ ラメータCと、IPB符号化フレームの種類を表すパラ メータ、即ち、I.P.Bフレームの種別を示すフレー ム種別情報と、元の量子化パラメータQ、即ち、量子化 パラメータ発生器21(図2参照)からの量子化パラメ ータとを入力する(F1)。

【0045】そして、IPB=Bか否かを判定し(F 2)、I.P.Bフレームの種別がBフレームでない場 合、即ち、Iフレームか又はPフレームの場合、Q'= Qとする(F3)。又Bフレームの場合、C>TH1か 否かを判定し(F4)、C>TH1の場合、Q'= $\delta \times$ Qとし (F5)、XC>TH1でない場合、 $Q'=r\times$ Qとし(F6)、ステップ(F3), (F5), (F 6)に於いて補正した量子化パラメータQ'を出力する (F7).

【0046】本発明は、前述の実施例にのみ限定される ものではなく、例えば、シーンチェンジ等の場合に、 I.P.Bフレームの切替えを行う構成に対しても、B フレームとして符号化する場合に、画像信号の評価パラ メータを用いて量子化パラメータの補正を行うことも可 能である.

[0047]

【発明の効果】以上説明したように、本発明は、「. P、Bフレームを組合せて符号化する画像信号符号化装 置に於いて、画像信号評価部6に於いて入力画像信号の 性質を示すフレーム内相関やフレーム間相関等の評価パ ラメータを求め、量子化パラメータ発生器3からの量子 化パラメータを、評価パラメータに対応して、量子化パ ラメータ補正部7に於いて補正するもので、複数の参照 フレームを用いてフレーム間符号化を行うBフレームに 対して無駄な情報量を割当てることがなくなり、且つ再 生画像の画質の劣化もなく、符号化効率を向上できる利 10 点がある。

1 1

【0048】又入力画像信号のフレーム内相関とフレー ム相関との何れか一方又は両方を含む評価パラメータを 求め、フレーム判定部5からのフレーム種別情報がBフ レームを示す時に、評価パラメータに対応した倍率で、 量子化パラメータ発生器3からの量子化パラメータを補 正することにより、単にBフレームであることのみでな く、フレーム内相関やフレーム間相関等の評価を行っ て、量子化パラメータを補正して設定するものであるか ら、再生画像の画質を劣化させることなく、符号化効率 20 4 動き補償器 を向上できる利点がある。

【図面の簡単な説明】

- 【図1】本発明の原理説明図である。
- [図2]本発明の実施例の説明図である。

【図1】 ----

本発明の原理説明図

1 2

- 【図3】本発明の実施例のフローチャートである。
- 【図4】本発明の実施例のフローチャートである。
- 【図5】本発明の実施例のフローチャートである.
- 【図6】本発明の他の実施例の要部フローチャートであ
- 【図7】本発明の他の実施例の要部フローチャートであ る.
- 【図8】本発明の一実施例の量子化パラメータ補正処理 のフローチャートである.
- 【図9】本発明の他の実施例の量子化パラメータ補正処 理のフローチャートである。
 - 【図10】本発明の更に他の実施例の量子化パラメータ 補正処理のフローチャートである。
 - 【図11】符号化フレームの説明図である.
 - 【図12】従来例の説明図である.

【符号の説明】

- 1 符号化処理部
- 2 量子化器
- 3 量子化パラメータ発生器
- - 5 :フレーム判定部
 - 6 画像信号評価部
 - 量子化パラメータ補正部

[図2]

本発明の実施例の説明図

The state of the s

(図3)

本発明の実施例のフローチャート

[図5]

本発明の実施例のフローチャート

[図4]

[図9]

本発明の他の実施例の量子化パラメータ補正処理 のフローチャート

【図6】

本発明の他の実施例の要認フローチャート

[図10]

本発明の更に他の実施例の量子化パラメータ 補正処理のフローチャート

【図7】

本発明の他の実施例の要部フローチャート

【図11】

符号化フレームの説明図

[図8]

本発明の一実施所の量子化パラメータ補正処理 のフローチャート

出力 Q

[図12]

従来何の説明図

フロントページの続き

(D 11)

(51) Int. Cl. 6 H O 4 N 11/04 識別記号 庁内整理番号 B 7337-5C FI

技術表示箇所

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07~236146

(43) Date of publication of application: 05.09.1995

(51)Int.CI.

HO4N 7/32

H04N 5/92

H04N 11/04

(21)Application number: 06-024659

(71)Applicant: FUJITSU LTD

(22)Date of filing:

23.02.1994

(72)Inventor: KONOSHIMA MAKIKO

MATSUDA KIICHI

(54) PICTURE SIGNAL ENCODING DEVICE AND METHOD FOR SETTING UP QUANTIZING PARAMETER

(57)Abstract:

PURPOSE: To improve the efficiency of encoding without deteriorating picture quality in respect to a picture signal encoding device for executing highly efficient encoding and a quantizing parameter setting method.

CONSTITUTION: This picture signal encoding device i.s provided with an encoding processing part 1 including a quantizer 2, a quantizing parameter generator 3 and a movement compensator 4 and executing intra-frame encoding and inter- frame encoding, a frame judging part 5 for outputting frame sort information indicating any one of I, P and B frames, a picture signal evaluating part 6, and a quantizing parameter correcting part 7. The evaluating part 6 outputs the intra-frame correlation or interframe correlation of an input picture signal as an evaluation parameter, and in the case of the B frame, the correcting part 7 corrects a quantizing parameter from the generator 3 correspondingly to the

evaluation parameter and sets up the corrected parameter in the quantizer 2.

LEGAL STATUS

[Date of request for examination]

23.06.2000

[Date of sending the examiner's decision of rejection]

Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

Date of requesting appeal against examiner's

This Page is inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

A	BLACK BORDERS
	IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
	FADED TEXT OR DRAWING
Ø	BLURED OR ILLEGIBLE TEXT OR DRAWING
	SKEWED/SLANTED IMAGES
	COLORED OR BLACK AND WHITE PHOTOGRAPHS
	GRAY SCALE DOCUMENTS
	LINES OR MARKS ON ORIGINAL DOCUMENT
	REPERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
	OTHER:

IMAGES ARE BEST AVAILABLE COPY.
As rescanning documents will not correct images problems checked, please do not report the problems to the IFW Image Problem Mailbox