

(12)

Europäisches Patentamt European Patent Office Office européen des brevets

Publication number:

0 360 853 B1

EUROPEAN PATENT SPECIFICATION

- 3 Date of publication of patent specification: 01.12.93 3 Int. CL5 G01B 5/00, G01B 7/00
- (1) Application number: 89902956.5
- 2 Date of filing: 20.02.89
- International application number: PCT/GB89/00160
- (97) International publication number: WO 89/07745 (24.08.89 89/20)
- SURFACE-SENSING DEVICE.
- Priority: 18.02.88 GB 8803847
- Date of publication of application: 04.04.90 Bulletin 90/14
- Publication of the grant of the patent: 01.12.93 Bulletin 93/48
- Designated Contracting States:
 CH DE FR GB IT LI SE
- (3) References cited: EP-A- 0 317 967 WO-A-89/05960 DE-A- 3 406 045 FR-A- 2 298 084 US-A- 3 727 119

PATENT ABSTRACTS OF JAPAN, vol. 8, no. 55, (P-260)(1492) 13 March 1984; & JP-A-58205801

- Proprietor: Renishaw plc New Mills Wotton-Under-Edge Gloucestershire GL12 8JR(GB)
- Inventor: McMURTRY, David, Roberts 20 Tabernacle Road Wotton-Under-Edge Gloucestershire GL12 7EF(GB) Inventor: POWLEY, David, Graham 4 Costers Close Alveston Avon BS12 2HZ(GB)
- Representative: Jackson, John Timothy et al Renishaw pic Patent Department New Mills Wotton-under-Edge Gloucestershire GL12 8JR (GB)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been patid (Art. 99(1) European patent convention).

ber 4

have

drive

MX.

sitio

XY.

tivel

tion

det

era

into

det

era

qi

cr

р

d

р

Description

This invention relates to a surface-sensing device for use in position-determining apparatus such as, for example, a coordinate measuring machine,

Such a machine (see for example US-A-3,727,119) is used for measuring a workpiece, and typically comprises an arm movable in three directions x.y.z relative to a table on which the workpiece is supported. Movement of the arm in each of the directions x.y.z is measured by transducers on the machine, and a probe provided on the arm emits a signal indicating the relationship between the workpiece surface to be measured, and the head. The position of the surface may thus be determined.

It is sometimes desirable to obtain continuous data on the position of a surface, i.e.: to scan the profile of a surface with the machine, rather than simply obtain data in the form of one or more discrete points.

EP 0317967 (published after the priority date of the present application), describes a device for checking the profile of a workpiece, which supports a probe on the movable arm of a coordinate measuring machine, and provides rotation of the probe relative to the movable arm about two perpendicular axes. The probe may be either a touch-trigger probe or a measuring, or "scanning" probe.

The present invention provides an alternative device for measuring the profile, or "scanning" a workpiece.

The present invention is defined in the claims.

An example of apparatus according to this invention will now be described with reference to the accompanying drawings wherein:-

Fig. 1 is a partly sectioned elevation of a probe head.

Fig. 2 is an elevation of a coordinate measuring machine embodying the probe head.

Fig. 3 is a system diagram showing a computer arranged for controlling electrical components of the machine and the probe head.

Fig. 4 is an perspective view of a workpiece whose contour is to be determined by the machine and probe head.

Fig. 5 is an elevation of the workpiece. Fig. 6 is a plan view of Fig. 5.

Fig. 7 is a section on the line VII-VII in Fig. 6.

Fig. 8 is a section on the line VIII-VIII in Fig. 6. Fig. 9 is a diagram of a control system for

controlling the machine and probe head for the purpose of a scanning operation.

Fig. 10 is a detail of Fig. 1 and shows a modi-

rig. 10 is a detail of Fig. 1 and shows a modification of a motor shown in Fig. 1.

Fig. 11 is a view similar to Fig. 5 and diagrammatically illustrates deflection of the probe head.

Referring to Fig. 1, an elongate stylus 10 extending along an axis 10A has a spherical sensing element 11 whereby to engage a surface 12A of workpiece 12 whose contour is to be determined. Two planar springs 13.14, secured between a housing 15 and the stylus 10 support the stylus for linear displacement over a distance D1 relative to the housing 15 in the direction of the axis 10A. A motor M1 arranged between the housing 15 and the stylus 10 is adapted for applying a force F1 to the stylus in the direction of the axis 10A and a transducer T1 is provided for sensing the axial position of the stylus relative to the housing 15. The motor M1 is an electromagnetic positioning device urging the stylus in a sense away from the housing 15. A strain gauge system 16 provided on the stylus 10 is adapted for sensing any force F2 on the element 11 in a direction transverse to the axis 10A. The forces F1,F2 are assumed to act through a point B being the centre of the spherical element 11. The output of the system 16 is denoted S and is the resultant of components Sx.Sv (or Sx,y) which are respectively Perpendicular and parallel to the axis 20A.

The housing 15 is supported on a housing 20 by a motor M2 for effecting angular displacement of the housing 15 about an axis 20A perpendicular to the axis 10A. A transducer 72 arranged between the housings 15.20 is adapted for sensing the angle D2 of the displacement. The housing 20 is supported on a housing 30 by a motor M3 for effecting angular displacement about an axis 30A perpendicular to the axis 20A. A transducer T3 arranged is adapted for sensing the angle, D3, of the latter displacement. The axes A2, A3 have a fixed relationship preferably such that they intersect at a common point I. The apparatus as described so far constitutes a probe head PH.

The probe head PH constitutes a structure or arm 17 having an end portion 17A secured to the member 40 nominally regarded as fixed and a free end portion 17B defined by the element 11. The arm 17 is also regarded as having a first portion 17C extending between the end portion 17A and the axis 20A, a second portion 17D extending between the axis 20A and the housing 15, and a third end portion defined by the stylus 10.

The probe head PH is intended for use with a coordinate measuring machine CMM (Fig. 2) having a member 40 supported on a member 50 for linear displacement in the direction of an axis Z, the member 50 being supported on a member 60 for linear displacement in the direction of an axis X, and the member 60 being supported on a base 61 for linear displacement in the direction of an axis Y. The axes X.Y.Z are mutually perpendicular. In use the probe head is connected to the machine CMM by the end portion 17A being secured to the member 600 for the properties of the machine CMM by the end portion 17A being secured to the member 600 for 18 for 18

35

an

50

55

4

XZ1 parallel to the XZ datum plane, the profile shown in a first position PH1 in which the probe head is in the datum condition described

itself being defined by a line 12B. The probe PH is

hereinabove and which is also the start position for

the scanning operation. A second position PH2

shows the probe head PH at the juncture 12C of

the portions 12A1,12A2

The scanning operation is intended to be such

that the element 11 is moved along the line 12B and that the axis 10A remains substantially normal

to the surface 12A regardless of the orientation

thereof. The scanning operation is carried out with

the aid of a control system 100 (Fig. 9), associated

with the computer 70, and which acts on the relevant ones of the motors M(X,Y,Z,1,2,3) by control

loops L1.L2.L3 and which responds to forces which

act on the element 11 by its mechanical interaction indicated symbolically by lines 107,108,109 with

the orientation of the surface 12A, indicated sym-

bolically at 106, the interactions 107,108,109 pro-

duce the outputs T1A and Sx.v as shown in Fig. 9.

In the following description said forces are

treated as vectors acting on the point B. The profile is determined in terms of positions of the point B

along the line 12B in terms of machine coordinates. It is to be understood that those of the vectors

which determine the Position of the point B are

converted into machine coordinates, this being well

understood per se and not specifically described.

The vectors, of which the vectors F1.F2 have al-

ready been briefly mentioned, are now described in

detail, considering at first the position PH1 of the

probe head The vector F1 is generated by the pressure of

the motor M1 and is sensed by the output, T1A, of the transducer T1 which responds to the axial

position of the stylus. As will be seen the vector F1

is maintained at a given nominal value by control of the position of the point I the motors M(X,Y,Z). The vector F2 is the reaction of the surface

12A in a direction normal to the axis 10A and is produced by a computation 101 from the output of

the sytem 16, i.e. from a component signal Sx

normal to the axis 20A and a component signal Sy Parallel to the axis 20A. For so long as the vector

F1 is normal to the surface 12A, the vector F2 is of course zero

A vector F3 defines the orientation of the surface 12A at the point B or the reaction of the

surface 12A normal thereto. The vector F3 is computed by an operation 102 (Fig. 9) from the vectors F1.F2. In the position PH1, the vector F3 is simply

the equal and opposite of the vector F1. A vector F4 lies at right angles to the vector F3

and is computed by an operation 103 from the vector F3 by a "vector turning" computation. Thus the vector F4 also defines the orientation of the

ber 40 preferably such that the axes 30A and Z have the same direction The members 40,50,60 are adapted to be

driven in the directions X,Y,Z by motors MX.MY.MZ respectively and the instantaneous positions of the members 40.50.60 in the directions X.Y.Z are sensed by transducers TX.TY.TZ respectively whose outputs are denoted TXA.TYA.TZA

The motors M2.M3 may be operated in a positioning mode for placing the element 11 into a predetermined position or these motors may be operated in a torque mode for urging the element 11 into engagement with the workpiece with a predetermined force.

A computer 70 (Fig. 3) is programmed to operate the motors M(X,Y,Z,2,3), and if required also the motor M1, so as to place the element 11 in a given position in the coordinate field of the machine or to determine the coordinate position of a point on the workpiece or, by a scanning operation. determine the coordinate position of points along a profile of the workpiece

The probe head PH is calibrated so as to have a datum condition from which any operational displacements of the motors M1,M2,M3 and any bending of the stylus due to the force F2 are measured. In the present example the datum condition is defined when the axes 10A.30A are aligned, the axis 20A extends in the Y direction and, while no force or only a preselected force acts on the element 11, a given distance R1 is defined between the points I,B. The distance R1 may be defined when the motor M1 is in a zero position approximately mid-way between the full extent of

its possible movement D1 It is to be understood that the position of the centre B is required to be known in terms of socalled "machine coordinates" which are measurements in the directions X,Y,Z relative to mutually perpendicular datum planes XY,XZ and YZ respectively. To this end, account is taken of the so-called "probe coordinates" which are the polar coordinates of the point B relative to the point I. To derive the machine coordinates of point B, the polar coordinates of the point B are converted into machine coordinates and added to the machine

coordinates of the point I. Referring to Figs. 4 to 9 the workpiece 12 is shown (Figs. 4.5,6) in relation to the datum planes XY,XZ,YZ. The surface 12A comprises a surface portion 12A1 parallel to the XY plane and a surface portion 12A2 lying oblique to each of the three datum planes. The mutual relationship of the surface portions 12A1,12A2 is an example of a change in orientation of the surface 12A which may occur in practice. It is assumed by way of example that the machine CMM has to determine the profile of the workpiece in a plane (the "scanning plane")

55

35

4n

The direction of the line 12B is given by the cross-product of the vector F4 and a vector F5 normal to the scanning plane XZ1. The vector F5 is simply a constant position demand, in this example on the motor MY. The cross-product is produced by a computation 104 whose output is a vector F6 defining the direction of the line 12B.

A speed term S7 is applied to the direction F6 by an operation 105 to produce a vector F7 which now defines both the speed and the required direction of the element 11 to follow the surface 12A along the line 12B.

When the element 11 reaches the junction 12C the interactions 106,107 affect the vectors F1, F2 as follows. Regarding the vector F1, since in the present example the interaction 107 urges the stvlus toward the housing 15, the motor M1 is displaced from its nominal position and produces a change in the output T1A of the transducer T1, i.e. a change in the magnitude of the vector F1. Thus the motor M1 cushions the stylus against damage, but to restore the motor M1 as quickly as possible to its nominal position, and further to avoid damage to the stylus 10, the vector F1 is connected by the loop L1, which is relatively fast, to the motors M-(X,Z) thereby raising the probe head relative to the surface 12A.

Regarding the vector F2, the interaction 108 produces a change in the signals Sx,y and a new value for the vector F2. The resulting change in the vector F3, i.e. the vector defining surface orientation, is communicated by the relatively slower loop L2 to the motors M(2,3) so as to rotate the arm 17 about the axes 20A,30A in the sense of bringing the axis 10A into the direction of the vector F3, i.e. to a position normal to the portion 12A2.

This change in the angular orientation of the probe head PH has two effects. Firstly, the mechanical interaction 109 between the stylus and the surface 12A2 may result in a change in the distance I,B. This is compensated for by the loop L1. Secondly, since the change in the angular orientation of the probe head tends to shift the position of the point B away from the loacation, BO, which it has on the plane XZ1, this tendency needs to be compensated for by a shift in the position of the point I such that the point B remains at the location BO. The required displacement of the point I has to take place in the X,Y,Z dimensions from a position I1 to a position I2 (Fig. 6 to 8). This is effected by the loop L3 whereby the vector F3 is connected. through a summing junction 110, to the motors M-(XYZ). It will be clear that the displacement of point I may be due to the loop L1 or the loop L3 whichever loop demands the greater displacement.

Referring to Fig. 10, instead of the electromagnetic motor M1, there may be provided a motor M1A constituted by a spring 18 which urges the stylus in a direction away from the housing 15. Instead of the springs 13,14 the stylus 10 may be supported for its axial motion by a precision linear bearing 19.

As has been explained, the system 16 may be used for determining the vector F2 with a view to deriving the vector F3. However, the system 16 may, in any case, be used for measuring deflection of the arm 17 with a view to correcting the position measurement of the transducers TX.TY.TZ insofar as that measurement is falsified by deflection of the arm 17. Referring to Fig. 11, the stylus is assumed to be deflected such that the point B is moved from a nominal position B1 which it has when no force other than the vector F1 acts thereon, to a deflected position B2. This may occur due to friction between the element 11 and the surface 12A or due to engagement with surface portion 12A2. The extent of the deflection which, in this example, takes place solely in the X direction, is denoted R2 and is computable by the expression R2 = Sx/Kx where Sx is the output of the system 16 in the XZ plane perpendicular to the axis 10A and Kx is the spring constant of the stylus in the same direction. A position B2X of the point B in machine coordinates is then B2X = IX-Sx/Kx where IX is the position, in machine coordinates, of the point I. However, if one considers obliqueness of the surface 12A to the XY plane and an angular displacement D2 of the motor M2, and further considers a linear displacement D1, all as shown by the positions B1,B3,B4, then the X and Z positions of the point B are given by:

B4X = IX + R1 cos D2 + R2 sin D2 and B4Z = IZ + R1 sin D2 + R2 cos D2.

wherein:

35

40

IX = the position of the point I in the X direction.

IZ = the position of the point I in the Z direction. R1 = the distance between the points I,B

R2 = the distance between the positions B1.B4.

D2 = the angle of displacement of the motor M2.

It will be clear that inasmuch as the surface 12A is oblique both to the XY and the YZ plane, the angle D3 of the motor M3 has to be taken account of also.

The system 16 may be provided at any location along the length of the arm, e.g. at a connection 21 (Fig. 1) between the motor M3 and the housing 20.

Systems such as the system 16 are known per se e.g. from United States Patent No. 4,158.919 (McMurtry) or from Federal Republic of Germany OLS No. 1,638,048 (Indramat).

M2.M tional wo :

Clair

1.

5

10

15

20

20

35

40

WO 89/05960.

axes;

of the stylus (10).

axis (10A).

linear axis (10A).

ond (30A) rotational axes.

Claims

ar of is

5. A surface sensing device (PH) according to

any one of the preceding claims wherein each of said motors (M2.M3) is operable in a positioning mode for placing the sensing element (11) in a pre-determined position, or in a torque mode for urging the element (11) into

engagement with a workpiece. 6. A surface sensing device (PH) according to any one of the preceding claims, wherein the

first (20A) and second (30A) rotational axes

and the linear axes (10A) intersect at a sub-

stantially common point.

Middle Jim

An arrangement of motors such as the motors

M2,M3 is shown in detail in our co-pending Interna-

tional Application, International Publication Number

1. A surface sensing device (PH) for use in posi-

is secured to the apparatus (CMM):

ment (11) for contacting a surface:

tion determining apparatus (CMM), comprising:

a fixed structure (30) by which the device (PH)

an elongate stylus (10) having a sensing ele-

said stylus (10) being rotatable relative to said fixed structure (30) about first (20A) and sec-

ond (30A) mutually perpendicular rotational

first and second (M2,M3) motors provided for

rotating said stylus (10) about said first (20A)

and second (30A) mutually perpendicular axes;

means for supporting the stylus (10) for linear

movement along a linear axis (10A) defined by the length of the stylus (10); and

a transducer (T1) for sensing the axial position

claim 1 further comprising sensing means (16) for sensing forces (F2) acting on the sensing

element in a direction transverse to the linear

A surface sensing device (PH) according to

claim 1 or claim 2 further comprising a linear motor (M1) for urging the stylus (10) along the

4. A surface sensing device (PH) according to

any one of the preceding claims further com-

prising first (T2) and second (T3) angular tran-

sducers for sensing angular displacement of

said stylus (10) about said first (20A) and sec-

2. A surface sensing device (PH) according to

7. A surface sensing device (PH) for use in position determining apparatus (CMM), comprising: a fixed structure (30) by which the device (PH) is secured to the apparatus (CMM);

an elongate stylus (10) having a sensing element for contacting a surface:

said stylus (10) being rotatable relative to said fixed structure (30) about first (20A) and secand (30A) mutually perpendicular rotational ayes:

first and second motors (M2.M3) provided for rotating said stylus (10) about said first (20A) and second (30A) mutually perpendicular axes:

sensing means (16) for sensing forces acting on the stylus (10) in a direction transverse to the linear axis (10A).

- A surface sensing device (PH) according to claim 7 wherein the sensing means is a strain gauge system (16).
- 9. A surface sensing device (PH) according to claim 7 or claim 8 wherein the first (20A) and 25 Second (30A) axes, and an axis (10A) defined by the length of the stylus, intersect at a substantially common point.
 - 10. A surface sensing device (PH) according to any one of claims 7 to 9 wherein the sensing means (16) is provided on the stylus (10).

Patentansprüche

1. 441

Si 5 7 50 150

Eine Oberflächenabtastvorrichtung (PH) zur Verwendung in einem Positionsbestimmungsgerät (CMM) mit:

einer festen Struktur (30), durch welche die Vorrichtung (PH) an dem Gerät (CMM) befestigt ist.

einem länglichen Taster (10) mit einem Abtastelement (11), um eine Oberfläche zu berühren. wobei der Taster (10) relativ zu der festen Struktur (30) um erste (20A) und zweite (30A) wechselseitig senkrechte Drehachsen drehbar

ersten und zweiten (M2, M3) Motoren, welche vorgesehen sind, um den Taster (10) um die ersten (20A) und zweiten (30A) wechselseitig senkrechten Achsen zu drehen.

Mitteln zum Halten des Tasters (10) zur linearen Bewegung entlang einer linearen Achse (10A), welche durch die Länge des Tasters (10) definiert ist, und

einem Transducer (T1), um die axiale Position des Tasters (10) wahrzunehmen.

- Eine Oberflächenabtastvorrichtung (PH) nach Anspruch 1, welche ferner eine Abtasteinrichtung (16) zum Wahrnehmen von Kräften (F2) aufweist, welche auf das Abtastelement in eine Richtung quer zu der linearen Achse (10A) wirken.
- Eine Oberflächenabtastvorrichtung (PH) nach Anspruch 1 oder Anspruch 2, weiche ferner einen linearen Motor (M1) aufweist, um den Taster (10) entlang der linearen Achse (10A) zu treiben
- Eine Oberflächenabtastvorrichtung (PH) nach einem der vorhergehenden Ansprüche, welche ferner erste (T2) und zweite (T3) Winkeltransducer aufweist, um eine Winkelverschiebung des Tasters (10) um die ersten (20A) und zweiten (30A) Drehachsen wahrzunehmen.
- 5. Eine Oberflächenabtastvorrichtung (PH) nach einem der vorhergehenden Ansprüche, worinjeder der Motoren (M2, M3) in einem Positionierungsmodus, um das Abtastelement (11) in einer vorbestimmten Position zu plazieren, oder in einem Drehmomentmodus, um das Element (11) in Eingriff mit einem Werkstück zu treiben, betreibbar ist.
- Eine Oberflächenabtastvorrichtung (PH) nach einem der vorhergehenden Ansprüche, worin sich die ersten (20A) und zweiten (30A) Drehachsen und die linearen Achsen (10A) an einem im wesentlichen gemeinsamen Punkt schneiden.
- Eine Oberflächenabtastvorrichtung (PH) zur Verwendung in einem Positionsbestimmungsgerät (CMM) mit:

einer festen Struktur (30), durch welche die Vorrichtung (PH) an dem Gerät (CMM) befestigt ist,

einem länglichen Taster (10) mit einem Abtastelement, um eine Oberfläche zu berühren,

wobei der Taster (10) relativ zu der festen Struktur (30) um erste (20A) und zweite (30A) wechselseitig senkrechte Drehachsen drehbar ist

ersten und zweiten Motoren (M2, M3), welche vorgesehen sind, um den Taster (10) um die ersten (20A) und zweiten (30A) wechselseitig senkrechten Achsen zu drehen, und

einer Abtasteinrichtung (16) zum Wahrnehmen von Kräften, welche auf den Taster (10) in eine Richtung quer zu der linearen Achse (10A) wirken.

- Eine Oberfiächenabtastvorrichtung (PH) nach Anspruch 7, worin die Abtasteinrichtung ein Dehnungsmeßsystem (16) ist.
- Eine Oberflächenabtastvorrichtung (PH) nach Anspruch 7 oder Anspruch 8, worin sich die ersten (20A) und zweiten (30A) Achsen und eine Achse (10A), welche durch die Länge des Tasters definiert ist, an einem im wesentlichen gemeinsamen Punkt schneiden.
 - Eine Oberflächenabtastvorrichtung (pH) nach einem der Ansprüche 7 bis 9, worin die Abtasteinrichtung (16) auf dem Taster (10) vorgesehen ist

6.

7.

Revendications

15

20

35

40

45

50

55

- Un dispositif de détection de surface (PH) devant être utilisé dans l'appareil de détermination de la position (CMM), comprenant: une structure fixe (30) par laquelle le dispositif
- (PH) est fixé à l'appareil (CMM); une pointe allongée (10) ayant un élément
- capteur (11) pour contacter une surface; ladite pointe (10) pouvant pivoter par rapport à
 - ladite structure fixe (30) autour des premier (20A) et deuxième (30A) axes de rotation mutuellement perpendiculaires;
 - des premier et deuxième (M2, M3) moteurs prévus pour faire tourner ladite pointe (10) autour desdits premier (20A) et deuxième (30A) axes mutuellement perpendiculaires:
 - un moyen de support de la pointe (10) pour son déplacement linéaire le long d'un axe linéaire (10A) défini par la longueur de la pointe (10): et
 - un transducteur (T1) pour la détection de la position axiale de la pointe (10).
- Un dispositif de détection de surface (PH) selon revendication 1 comprenant en outre un moyen de détection (16) pour détecter les forces (F2) agissant sur l'élément détecteur dans une direction transversale à l'axe linéaire (10A).
- Un dispositif détecteur de surface (PH) selon revendication 1 ou revendication 2 comprenant en outre un moteur linéaire (M1) pour pousses la pointe (10) le long de l'axe linéaire (10A).
- 4. Un dispositif de détection de surface (PH) selon l'une quelconque des revendications précédentes comprenant en outre des premier (TZ) et deuxième (T3) transducteurs angulaires pour détecter le déplacement angulaire de ladite pointe (10) par rapport auxidits premier.

(20A) et deuxième (30A) axes de rotation.

ain

ach

dia

und des

1en

:ch

ta-

- 5. Un dispositif de détection de surface (PH) seion l'une quelconque des revendications précédentes dans lequel chacun desdits moteurs (M2, M3) peut être utilisé dans un mode positionnement pour placer l'élément détecteur (11) dans une position prédéterminée, ou dans un mode couple pour pousser l'élément (11) en engagement avec une pièce à usiner.
- 6. Un dispositif détecteur de surface (PH) selon l'une quelconque des revendications précédentes, dans lequel les premier (20A) et deuxième (30A) axes de rotation et les axes linéaires (10A) se coupent à un point essentiellement commun.
- 7. Un dispositif détecteur de surface (PH) devant être utilisé dans un appareil de détermination de la position (CCM), comprenant: une structure fixe (30) par laquelle le dispositif

(PH) est fixé à l'appareil (CMM); une pointe allongée (10) ayant un élément capteur devant être en contact avec une surface;

ladite pointe allongée (10) pouvant pivoter par rapport à ladite structure fixe (30) autour des premier (20A) et deuxième (30A) axes de rotation mutuellement perpendiculaires:

des premier et deuxième moteurs (M2, M3) prévus pour faire pivoter ladite pointe (10) autour desdits premier (20A) et deuxième (30A) axes mutuellement perpendiculaires; et un moyen de détection (16) pour détecter les

un moyen de détection (16) pour détecter les forces agissant sur la pointe (10) dans une direction transversale à l'axe linéaire (10A).

- Un dispositif de détection de surface (PH) selon revendication 7 dans lequel le moyen de détection est un système de jauge de contrainte (16).
- Un dispositif détecteur de surface (PH) seion revendication 7 ou revendication 8 dans lequel les premier (20A) et deuxième (30A) axes, et un axe (10A) définis par la longueur de la pointe, se coupent en un point essentiellement commun.
- 10. Un dispositif de détection de surface (PH) selon l'une quelconque des revendications 7 à 9 dans lequel le moyen de détection (16) est prévu sur la pointe (10).

15

10

20

25

30

35

40

45

50

55

3 3 - 10

Q1 - 83

Fig. 1.

(

