Recall, say a set A is countable if 3 bijection $g: N \rightarrow A$ • $ N < P(N) $ uncountable. • $ N = Z = Q $ This: R is uncountable. (i.e. $ R > N $). pf. (Cantor's diagonal argument). want to show: any $f: N \rightarrow R$ is not surjective. 1 $\mapsto f(s) = f(s) = f(s) = a_{21} a_{22} a_{23} a_{24} a_{24} a_{25} $	Today:	NV WNK	table s	sets,	. M.	2asuri	2. tk	Lvo.	sets		antor	set	' 5.	•	•
uncountable. • $ N = Z = Q $ This: R is uncountable. (i.e. $ R > N $). • arge fortion. • f. (Cantor's diagonal argument). • want to show: • any $f: N \rightarrow R$ is not surjective. •	Recall,	say a	set	A		Lour	1/16/	e .	íf	.3	الما الما	ection	.f,	<u>N</u> -	> A
This: $ R = Q $ This: $ R = Q $ This: $ R = Q $ Pf. (Cantor's diagonal argument). Want to show: any $f: N = Q $ $1 \mapsto f(1) = integer \cdot (a_1)a_{12}a_{13}a_{14} \cdots a_{2n}a_{2n$	•	N <	<	PIN)	•	•	•	•	•	•	•	•	•	•
This: $ R = Q $ This: $ R > N $ of (Cantor's diagonal argument). Want to show: any $f: N \rightarrow R$ is not surjective. If $1 \mapsto f(1) = i_1 t_2 gen. (a_{11}) a_{12} a_{13} a_{14} \cdots a_{1n} a_$			•	un wi	u ntab	le.	•	•	•	•	•	•	•	•	•
ef. (Cantor's diagonal argument). Want to show: any $f: N \rightarrow R$ is not surjective. If $1 \mapsto f(1) = integer \cdot (R_1)a_{12}a_{13}a_{14} \cdots a_{2n}a_$	•	N =	2/ =	- [Q	.\.	•	•	•	•	•	•	•	•	•	•
ef. (Cantor's diagonal argument). Want to show: any $f: N \rightarrow R$ is not surjective. If $1 \mapsto f(1) = integer \cdot (R_1)a_{12}a_{13}a_{14} \cdots a_{2n}a_$	Thm:	R 73	Un 60U	wabla	٠.	· (i	٠ الم	•	r!	· > [1	νΙ <u>)</u>	•	مر	je so	· · / 1,/
want to show: any $f: N \longrightarrow \mathbb{R}$ is not surjective. If $1 \longmapsto f(s) = integer \cdot (a_1)a_{12}a_{13}a_{14}\cdots a_{1n}a_{2n$	pf. (C	antor's	diagon	al a	/aum	ent)		•	•	•	•	•	decin	ul ex	y punsos farea
Then $r \neq f(i)$ for any i . 1 \mapsto $f(i) = integer \cdot (x_1)a_{12}a_{13}a_{14} \cdots a_{2n}a_{$. Wan	t to sh	ow:	•	any	f	i. I	J	<u></u>	R.	TS. Y	of	surj	ectlue	f.) 4
Choose a real number $3 \leftrightarrow f(is) - a_{31}a_{32}a_{33} - a_{33}a_{33}a_{33} - a_{33}a$	• •	• •	•	•	•	•		L.H	<u>_</u>	f(1)=	= integ	er. Or	110012	01301	14:
Then $V \neq f(i)$ for any i . O. by $h_i - b_i - \cdots - a_{i1} a_{i1} - \cdots - a_{in} - \cdots$				•	•	•	. 3	· —	ا ا ا	fla)= fl:3)	•	a	31 032	(P132)	
Then $V \neq f(i)$ for any i . O. by $h_i - b_i - \cdots - a_{i1} a_{i1} - \cdots - a_{in} - \cdots$	Choose	a real	numke		•	•	٠ 4	<u> </u>	つ 。	flei	<u></u> ~ •	•	•	• () ,
Then $V \neq f(i)$ for any i . O. by $h_i - b_i - \cdots - a_{i1} a_{i1} - \cdots - a_{in} - \cdots$. V.= .C	ه ام	3		•	•	•	; 1 (•	•	•	•	•	•	• 1
O. b. h. $V = f(i)$ for any i . O. b. h. $V = f(i)$ for any i .		下中 代行	٧.	•	•	•	•	•	•	•	•	•	•	•	•
0. by by - bi		· · ·	Cres	P	٠		•	•	•	•	•	•	•	•	•
	. (Men	! +.	T(2)	. 101	/ an	9	l	•	•	•	•	•	•	•	•
	n by by (bi)		۵:۱ ه		· (a;) -		•	•	•	•	•	•	•	•
			۰	0			•	•	□.	•	•	•	•	•	•
Thus: $ P(N) = R $.	• • •	• •	•	•	•	•	•	•	•	•	•	•	•	•	•
	This:	P(n)	= 18	R).	•	•	•	•	•	•	•	•	•	•	•

pf: By Schröden-Berstein thin, it's enough to construct

injective maps from PLN) to R.
and from R to PLN) ([Pas]=1Pm]) De Construct an injective map from R to P(Q): f: R - + (Q) · r fqeolqcr3. .If. r#s.in.R, say. r.cs. need: fir)={qex|qcr} + {qex|qcs}.fis> By denseness of Q, 3q st. rcqcs Then qefis), but q¢f(r) So f(r) + f(s). D 2 Construt an injective map fin PLN t, R: $g: \mathbb{R}(\mathbb{N}) \longrightarrow \mathbb{R}$ Subset of N: $\sum_{i=1}^{\infty} \frac{\alpha_i}{3^i} = \frac{\alpha_1}{3} + \frac{\alpha_2}{3^2} + \frac{\alpha_3}{3^3} + \dots$ This easy to check g is injective. $a_i = \begin{cases} 2 & \text{if } i \in S \\ 0 & \text{if } i \notin S \end{cases}$

$C_{m,k}$: $ N < R = P(N) $	
D: Is there any set . S . st. N < 151. < 11	R ?
·A: The existence of S can not be proved as	
set theory axioms: (Girdel, Cohen)	
Def: A subset E SIR & has measure zero	īf:
· ¥ 270,	
3 finite or countably many open intervals	{I1, I2, ··· }
\bullet $E\subseteq \left(\bigcup_{n=1}^{\infty}I_{n}\right)$	
. ^	
$\sum_{N=1}^{\infty} ength(In) < \epsilon$.	
· · · · · · · · · · · · · · · · · · ·	N pla SIR
le son le	
	NSK
1	
	• • •
I winter subset EDEM	• • •
$\{a_1,a_2,a_3,a_4,\cdots\}$	• • •
	· · · · · ·
-> Countable subsets in R are of measure	ire tero:

X= 3+ 32 + 33 + --· C is of measure tero: 4270, Choose n large st. (3) < E. . Then one can find finite collection of open intervals of total length $< \epsilon$ that covers C_n . which also covers E. [· Cis uncountables F: N - C , Want to show: 1 $f(1) = \frac{\alpha_{11}}{3} + \frac{\alpha_{12}}{3^2} + \frac{\alpha_{13}}{3^3} + \cdots$ $\alpha_{15} \in \{0,2\}$ $2 \mapsto f(v) = \frac{\alpha_{21}}{3} + \frac{\alpha_{22}}{3^2} + \frac{\alpha_{33}}{3^3} + \cdots$ Define $b := \frac{b_1}{3} + \frac{b_2}{3^2} + \frac{b_3}{3^3} + \cdots$ bi + aii ti . b7. E {.0,2} bt f(i) ti.