```
In [23]:
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]:

```
data = pd.read_csv('train.csv')
data.shape
```

Out[2]:

(614, 13)

In [3]:

data.columns

Out[3]:

In [4]:

data.head()

Out[4]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Coappl
0	LP001002	Male	No	0	Graduate	No	5849	_
1	LP001003	Male	Yes	1	Graduate	No	4583	
2	LP001005	Male	Yes	0	Graduate	Yes	3000	
3	LP001006	Male	Yes	0	Not Graduate	No	2583	
4	LP001008	Male	No	0	Graduate	No	6000	

```
In [5]:
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 614 entries, 0 to 613
Data columns (total 13 columns):
 #
     Column
                          Non-Null Count
                                            Dtype
                                            ____
 0
     Loan ID
                           614 non-null
                                            object
 1
     Gender
                                            object
                           601 non-null
 2
     Married
                           611 non-null
                                            object
 3
     Dependents
                           599 non-null
                                            object
 4
     Education
                           614 non-null
                                            object
 5
     Self Employed
                           582 non-null
                                            object
                           614 non-null
 6
     ApplicantIncome
                                             int64
 7
     CoapplicantIncome
                           614 non-null
                                            float64
 8
                           592 non-null
                                            float64
     LoanAmount
 9
     Loan Amount Term
                           600 non-null
                                             float64
 10
     Credit History
                           564 non-null
                                             float64
 11
     Property_Area
                           614 non-null
                                            object
 12
     Loan Status
                           614 non-null
                                            object
dtypes: float64(4), int64(1), object(8)
memory usage: 62.5+ KB
In [6]:
data = data.drop(columns=['Loan_ID'])
In [7]:
data.head()
Out[7]:
   Gender
          Married
                 Dependents
                            Education
                                      Self_Employed
                                                   ApplicantIncome
                                                                CoapplicantIncome
     Male
                          0
                              Graduate
                                                            5849
                                                                              0.0
0
              Nο
                                               Nο
                                                                            1508.0
 1
     Male
              Yes
                          1
                              Graduate
                                               No
                                                            4583
 2
     Male
              Yes
                          0
                              Graduate
                                               Yes
                                                            3000
                                                                              0.0
                                  Not
 3
     Male
              Yes
                          0
                                               No
                                                            2583
                                                                            2358.0
                              Graduate
```

6000

0.0

No

Basic data exploration

No

Male

0

Graduate

In [8]:

data.describe()

Out[8]:

	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History
count	614.000000	614.000000	592.000000	600.00000	564.000000
mean	5403.459283	1621.245798	146.412162	342.00000	0.842199
std	6109.041673	2926.248369	85.587325	65.12041	0.364878
min	150.000000	0.000000	9.000000	12.00000	0.000000
25%	2877.500000	0.000000	100.000000	360.00000	1.000000
50%	3812.500000	1188.500000	128.000000	360.00000	1.000000
75%	5795.000000	2297.250000	168.000000	360.00000	1.000000
max	81000.000000	41667.000000	700.000000	480.00000	1.000000

In [9]:

data.describe(include=['object'])

Out[9]:

	Gender	Married	Dependents	Education	Self_Employed	Property_Area	Loan_Status
count	601	611	599	614	582	614	614
unique	2	2	4	2	2	3	2
top	Male	Yes	0	Graduate	No	Semiurban	Υ
freq	489	398	345	480	500	233	422

```
In [11]:
data.isna().sum()
Out[11]:
Gender
                      13
Married
                       3
                      15
Dependents
Education
                       0
Self Employed
                      32
                       0
ApplicantIncome
CoapplicantIncome
                       0
LoanAmount
                      22
Loan_Amount_Term
                      14
                      50
Credit History
                       0
Property_Area
Loan Status
                       0
dtype: int64
In [17]:
cat cols = data.dtypes == 'object'
cat_cols = list(cat_cols[cat_cols].index)
num_cols = data.dtypes != 'object'
num_cols = list(num_cols[num_cols].index)
In [18]:
cat_cols
Out[18]:
['Gender',
 'Married',
 'Dependents',
 'Education',
 'Self_Employed',
 'Property Area',
 'Loan Status']
In [19]:
num cols
Out[19]:
['ApplicantIncome',
 'CoapplicantIncome',
 'LoanAmount',
 'Loan_Amount_Term',
 'Credit History']
```

In [21]:

data[cat_cols].head()

Out[21]:

	Gender	Married	Dependents	Education	Self_Employed	Property_Area	Loan_Status
0	Male	No	0	Graduate	No	Urban	Υ
1	Male	Yes	1	Graduate	No	Rural	N
2	Male	Yes	0	Graduate	Yes	Urban	Υ
3	Male	Yes	0	Not Graduate	No	Urban	Υ
4	Male	No	0	Graduate	No	Urban	Υ

In [22]:

data[num_cols].head()

Out[22]:

	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History
0	5849	0.0	NaN	360.0	1.0
1	4583	1508.0	128.0	360.0	1.0
2	3000	0.0	66.0	360.0	1.0
3	2583	2358.0	120.0	360.0	1.0
4	6000	0.0	141.0	360.0	1.0

```
In [24]:
sns.countplot(data= data, x='Loan_Status')
```

Out[24]:

<AxesSubplot:xlabel='Loan_Status', ylabel='count'>


```
In [25]:
```

```
data['Loan_Status'].value_counts()
```

Out[25]:

Y 422 N 192

Name: Loan_Status, dtype: int64

In []:

Applicant's income

In [31]:

```
plt.figure(figsize=(15, 6))

plt.subplot(121)
sns.distplot(data['ApplicantIncome'])

plt.subplot(122)
sns.boxplot(y= data['ApplicantIncome'])

plt.show()
```

/Users/mohit/opt/anaconda3/lib/python3.8/site-packages/seaborn/distrib utions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use eit her `displot` (a figure-level function with similar flexibility) or `h istplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

In [32]:

```
plt.figure(figsize=(15, 6))

plt.subplot(121)
sns.distplot(data['CoapplicantIncome'])

plt.subplot(122)
sns.boxplot(y= data['CoapplicantIncome'])

plt.show()
```

/Users/mohit/opt/anaconda3/lib/python3.8/site-packages/seaborn/distrib utions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use eit her `displot` (a figure-level function with similar flexibility) or `h istplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

In [33]:

```
np.quantile(data['CoapplicantIncome'], 0.25)
```

Out[33]:

0.0

In [34]:

```
plt.figure(figsize=(15, 6))
plt.subplot(121)
sns.distplot(np.log(data['ApplicantIncome']))
plt.subplot(122)
sns.boxplot(y= np.log(data['ApplicantIncome']))
plt.show()
```

/Users/mohit/opt/anaconda3/lib/python3.8/site-packages/seaborn/distrib utions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use eit her `displot` (a figure-level function with similar flexibility) or `h istplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)


```
In [38]:

data.boxplot(column = 'ApplicantIncome', by = 'Education', figsize=(15, 6))
plt.show()
```



```
In [ ]:

In [40]:

data.groupby(by='Loan_Status').mean()['ApplicantIncome']

Out[40]:

Loan_Status
N     5446.078125
Y     5384.068720
Name: ApplicantIncome, dtype: float64

In [ ]:
```

Simple Feature Engineering

```
In [41]:
bins = [0, 2500, 4000, 6000, 81000]
group = ['Low', 'Avg', 'High', 'Very High']
In [45]:
data['Income_bin'] = pd.cut(data['ApplicantIncome'], bins, labels=group)
In [46]:
data.head()
Out[46]:
   Gender
           Married Dependents Education Self_Employed ApplicantIncome CoapplicantIncome
                                                                                  0.0
                           0
                               Graduate
                                                               5849
     Male
               No
                                                 No
0
     Male
                           1
                               Graduate
                                                               4583
                                                                               1508.0
 1
              Yes
                                                 No
2
     Male
              Yes
                           0
                               Graduate
                                                 Yes
                                                               3000
                                                                                  0.0
                                   Not
3
     Male
              Yes
                           0
                                                 No
                                                               2583
                                                                               2358.0
                               Graduate
                           0
                                                               6000
     Male
               No
                               Graduate
                                                  No
                                                                                  0.0
In [ ]:
In [47]:
pd.crosstab(data['Income_bin'], data['Loan_Status'])
Out[47]:
Loan Status
                 Υ
 Income_bin
            34
                 74
       Low
       Avg
            67
                159
       High
            45
                 98
   Very High 46
                 91
In [ ]:
```

```
In [ ]:
```

```
bins = [0, 2500, 4000, 6000, 81000]
group = ['Low', 'Avg', 'High', 'Very High']
```

In [58]:

```
data['CoApplicantIncome_bin'] = pd.cut(data['CoapplicantIncome'], bins, labels=group
```

In []:

In [59]:

```
data.head()
```

Out[59]:

	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome
0	Male	No	0	Graduate	No	5849	0.0
1	Male	Yes	1	Graduate	No	4583	1508.0
2	Male	Yes	0	Graduate	Yes	3000	0.0
3	Male	Yes	0	Not Graduate	No	2583	2358.0
4	Male	No	0	Graduate	No	6000	0.0

In [61]:

```
CoapplicantIncome = pd.crosstab(data['CoApplicantIncome_bin'], data['Loan_Status'])
CoapplicantIncome
```

Out[61]:

Loan_Status N Y

CoApplicantIncome_bin

 Low
 53
 161

 Avg
 24
 48

 High
 11
 26

 Very High
 8
 10

In [62]:

CoapplicantIncome.div(CoapplicantIncome.sum(axis=1), axis=0)

Out[62]:

Loan_Status	N	Y
CoApplicantIncome_bin		
Low	0.247664	0.752336
Avg	0.333333	0.666667
High	0.297297	0.702703
Very High	0.444444	0.55556

In [63]:

CoapplicantIncome = pd.crosstab(data['CoApplicantIncome_bin'], data['Loan_Status'])
CoapplicantIncome.div(CoapplicantIncome.sum(axis=1), axis=0).plot(kind='bar')

Out[63]:

<AxesSubplot:xlabel='CoApplicantIncome_bin'>


```
data['CoapplicantIncome'].value_counts().head()
Out[64]:
           273
0.0
2500.0
             5
             5
2083.0
1666.0
             5
1625.0
             3
Name: CoapplicantIncome, dtype: int64
In [ ]:
In [65]:
data['TotalIncome'] = data['ApplicantIncome'] + data['CoapplicantIncome']
In [66]:
data.head()
Out[66]:
   Gender
          Married Dependents Education Self_Employed ApplicantIncome CoapplicantIncome
                              Graduate
                                                                                0.0
0
     Male
              No
                          0
                                                No
                                                             5849
                                                                             1508.0
              Yes
                           1
                              Graduate
                                                             4583
 1
     Male
                                                No
                          0
2
     Male
              Yes
                              Graduate
                                                Yes
                                                             3000
                                                                                0.0
                                  Not
3
     Male
              Yes
                                                No
                                                             2583
                                                                             2358.0
                              Graduate
     Male
              No
                           0
                              Graduate
                                                No
                                                             6000
                                                                                0.0
In [ ]:
In [67]:
bins = [0, 2500, 4000, 6000, 81000]
group = ['Low', 'Avg', 'High', 'Very High']
In [68]:
data['TotalIncome_bin'] = pd.cut(data['TotalIncome'], bins, labels=group)
```

In [64]:

In [69]:

data.head()

Out[69]:

	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome
0	Male	No	0	Graduate	No	5849	0.0
1	Male	Yes	1	Graduate	No	4583	1508.(
2	Male	Yes	0	Graduate	Yes	3000	0.0
3	Male	Yes	0	Not Graduate	No	2583	2358.0
4	Male	No	0	Graduate	No	6000	0.0

In [70]:

TotalIncome = pd.crosstab(data['TotalIncome_bin'], data['Loan_Status'])
TotalIncome.div(TotalIncome.sum(axis=1), axis=0).plot(kind='bar')

Out[70]:

<AxesSubplot:xlabel='TotalIncome_bin'>

In []:

Loan term & Loan amaount

In [75]:

```
data['Loan_Amount_Term'] = (data['Loan_Amount_Term']/12).astype('float')
```

In [76]:

```
sns.countplot(x='Loan_Amount_Term', data=data)
```

Out[76]:

<AxesSubplot:xlabel='Loan_Amount_Term', ylabel='count'>

In []:

In [77]:

data.head()

Out[77]:

	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome
0	Male	No	0	Graduate	No	5849	0.0
1	Male	Yes	1	Graduate	No	4583	1508.0
2	Male	Yes	0	Graduate	Yes	3000	0.0
3	Male	Yes	0	Not Graduate	No	2583	2358.0
4	Male	No	0	Graduate	No	6000	0.0

In [78]:

```
data['Loan_Amount_per_year'] = data['LoanAmount']/ data['Loan_Amount_Term']
```

```
In [ ]:
```

In [79]:

data.head()

Out[79]:

	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome
0	Male	No	0	Graduate	No	5849	0.0
1	Male	Yes	1	Graduate	No	4583	1508.0
2	Male	Yes	0	Graduate	Yes	3000	0.0
3	Male	Yes	0	Not Graduate	No	2583	2358.0
4	Male	No	0	Graduate	No	6000	0.0

In [84]:

```
data['EMI'] = np.round(data['Loan_Amount_per_year']*1000/12, 2)
```

In [85]:

data.head()

Out[85]:

	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome
0	Male	No	0	Graduate	No	5849	0.0
1	Male	Yes	1	Graduate	No	4583	1508.0
2	Male	Yes	0	Graduate	Yes	3000	0.0
3	Male	Yes	0	Not Graduate	No	2583	2358.0
4	Male	No	0	Graduate	No	6000	0.0

In [86]:

```
data['Able_to_pay_EMI'] = (data['EMI'] < data['TotalIncome']*0.1)</pre>
```

In [88]:

data.head()

Out[88]:

	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome
0	Male	No	0	Graduate	No	5849	0.0
1	Male	Yes	1	Graduate	No	4583	1508.0
2	Male	Yes	0	Graduate	Yes	3000	0.0
3	Male	Yes	0	Not Graduate	No	2583	2358.(
4	Male	No	0	Graduate	No	6000	0.0

In [90]:

sns.countplot(x='Able_to_pay_EMI', data=data, hue='Loan_Status')

Out[90]:

<AxesSubplot:xlabel='Able_to_pay_EMI', ylabel='count'>


```
In [101]:
data['Dependents'].value_counts()
Out[101]:
0
     345
1
     102
2
     101
3
      51
Name: Dependents, dtype: int64
In [102]:
data['Dependents'].replace('3+', 3, inplace=True)
In [106]:
data['Dependents'] = data['Dependents'].astype('float')
In [ ]:
In [108]:
sns.countplot(x='Dependents', data=data, hue='Loan_Status')
Out[108]:
<AxesSubplot:xlabel='Dependents', ylabel='count'>
                                        Loan Status
                                          Y
  200
  150
  100
   50
                                          3.0
          0.0
                     1.0
                                2.0
                       Dependents
```

```
In [109]:

data['Credit_History'].value_counts()

Out[109]:

1.0     475
0.0     89
Name: Credit_History, dtype: int64

In [110]:

sns.countplot(x='Credit_History', data=data, hue='Loan_Status')

Out[110]:
```

<AxesSubplot:xlabel='Credit_History', ylabel='count'>

In []:

Missing Values

In [111]:

```
data.isna().sum()
```

Out[111]:

3
15
0
32
0
0
22
14
50
0
0
0
273
0
0
36
36
0

In []:

In [113]:

```
def missing_to_df(df):
    #Number and percentage of missing data in training data set for each column
    total_missing_df = df.isnull().sum().sort_values(ascending =False)
```

percent_missing_df = (df.isnull().sum()/df.isnull().count()*100).sort_values(asc missing_data_df = pd.concat([total_missing_df, percent_missing_df], axis=1, keys return missing_data_df

```
In [115]:
```

```
missing_df = missing_to_df(data)
missing_df[missing_df['Total']> 0]
```

Out[115]:

	Total	Percent
CoApplicantIncome_bin	273	44.462541
Credit_History	50	8.143322
ЕМІ	36	5.863192
Loan_Amount_per_year	36	5.863192
Self_Employed	32	5.211726
LoanAmount	22	3.583062
Dependents	15	2.442997
Loan_Amount_Term	14	2.280130
Gender	13	2.117264
Married	3	0.488599

In [116]:

```
data['Credit_History'].fillna(2, inplace=True)
```

In [117]:

```
data['Self_Employed'].value_counts()
```

Out[117]:

No 500 Yes 82

Name: Self_Employed, dtype: int64

In [118]:

```
data['Self_Employed'].fillna('Others', inplace=True)
```

```
In [124]:
```

```
from sklearn.impute import SimpleImputer

median_imputer = SimpleImputer(strategy='median')

data['EMI'] = median_imputer.fit_transform(pd.DataFrame(data['EMI']))
 data['LoanAmount'] = median_imputer.fit_transform(pd.DataFrame(data['LoanAmount']))
 data['Loan_Amount_per_year'] = median_imputer.fit_transform(pd.DataFrame(data['Loan_data['Loan_Amount_Term']) = median_imputer.fit_transform(pd.DataFrame(data['Loan_Amount_Term']) = median_imputer.fit_transform(pd.DataFrame(data['Loan_Amount_Term']) = median_imputer.fit_transform(pd.DataFrame(data['Loan_Amount_Term'])
```

In [125]:

```
missing_df = missing_to_df(data)
missing_df[missing_df['Total']> 0]
```

Out[125]:

	Total	Percent
CoApplicantIncome_bin	273	44.462541
Dependents	15	2.442997
Gender	13	2.117264
Married	3	0.488599

In [131]:

```
# data[pd.isna(data['Married'])]
```

In [132]:

```
freq_imputer = SimpleImputer(strategy='most_frequent')
```

In [135]:

```
data['Dependents'] = freq_imputer.fit_transform(pd.DataFrame(data['Dependents']))
data['Gender'] = freq_imputer.fit_transform(pd.DataFrame(data['Gender']))
data['Married'] = freq_imputer.fit_transform(pd.DataFrame(data['Married']))
```

In [136]:

```
missing_df = missing_to_df(data)
missing_df[missing_df['Total']> 0]
```

Out[136]:

	Total	Percent
CoApplicantIncome bin	273	44.462541

```
In [137]:
data.drop('CoApplicantIncome_bin', axis=1, inplace=True)
In [138]:
missing_df = missing_to_df(data)
missing_df[missing_df['Total']> 0]
Out[138]:
  Total Percent
In [ ]:
Converting categorical to Numeric Encoding
 1. LabelEncoding
In [139]:
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
In [143]:
enc label = LabelEncoder()
# enc_label.fit_transform()
In [142]:
```

ohe = OneHotEncoder()
ohe.fit_transform()

```
In [144]:
! pip install category encoders
Collecting category encoders
  Downloading category encoders-2.5.0-py2.py3-none-any.whl (69 kB)
                                      69 kB 6.4 MB/s eta 0:00:011
Requirement already satisfied: statsmodels>=0.9.0 in /Users/mohit/opt/
anaconda3/lib/python3.8/site-packages (from category encoders) (0.12.
2)
Requirement already satisfied: pandas>=1.0.5 in /Users/mohit/opt/anaco
nda3/lib/python3.8/site-packages (from category encoders) (1.2.4)
Requirement already satisfied: patsy>=0.5.1 in /Users/mohit/opt/anacon
da3/lib/python3.8/site-packages (from category encoders) (0.5.1)
Requirement already satisfied: scipy>=1.0.0 in /Users/mohit/opt/anacon
da3/lib/python3.8/site-packages (from category_encoders) (1.6.2)
Requirement already satisfied: numpy>=1.14.0 in /Users/mohit/opt/anaco
nda3/lib/python3.8/site-packages (from category encoders) (1.20.1)
Requirement already satisfied: scikit-learn>=0.20.0 in /Users/mohit/op
t/anaconda3/lib/python3.8/site-packages (from category encoders) (0.2
```

Requirement already satisfied: python-dateutil>=2.7.3 in /Users/mohit/ opt/anaconda3/lib/python3.8/site-packages (from pandas>=1.0.5->categor y encoders) (2.8.1)

Requirement already satisfied: pytz>=2017.3 in /Users/mohit/opt/anacon da3/lib/python3.8/site-packages (from pandas>=1.0.5->category encoder s) (2021.1)

Requirement already satisfied: six in /Users/mohit/opt/anaconda3/lib/p ython3.8/site-packages (from patsy>=0.5.1->category encoders) (1.15.0) Requirement already satisfied: joblib>=0.11 in /Users/mohit/opt/anacon da3/lib/python3.8/site-packages (from scikit-learn>=0.20.0->category e ncoders) (1.0.1)

Requirement already satisfied: threadpoolctl>=2.0.0 in /Users/mohit/op t/anaconda3/lib/python3.8/site-packages (from scikit-learn>=0.20.0->ca tegory encoders) (2.1.0)

Installing collected packages: category-encoders Successfully installed category-encoders-2.5.0

In [145]:

from category encoders import TargetEncoder

In [146]:

```
te = TargetEncoder()
# te.fit_transform()
```

/Users/mohit/opt/anaconda3/lib/python3.8/site-packages/category_encode rs/target_encoder.py:92: FutureWarning: Default parameter min_samples_ leaf will change in version 2.6.See https://github.com/scikit-learn-contrib/category_encoders/issues/327 (https://github.com/scikit-learn-contrib/category_encoders/issues/327)

warnings.warn("Default parameter min_samples_leaf will change in ver sion 2.6."

/Users/mohit/opt/anaconda3/lib/python3.8/site-packages/category_encode rs/target_encoder.py:97: FutureWarning: Default parameter smoothing wi ll change in version 2.6.See https://github.com/scikit-learn-contrib/category_encoders/issues/327 (https://github.com/scikit-learn-contrib/category_encoders/issues/327)

warnings.warn("Default parameter smoothing will change in version 2.
6."

In [147]:

data

Out[147]:

tatus	Income_bin	TotalIncome	TotalIncome_bin	Loan_Amount_per_year	EMI	Able_to_pay_EMI
Υ	High	5849.0	High	4.383333	365.28	False
N	High	6091.0	Very High	4.266667	355.56	True
Υ	Avg	3000.0	Avg	2.200000	183.33	True
Υ	Avg	4941.0	High	4.000000	333.33	True
Y	High	6000.0	High	4.700000	391.67	True
Υ	Avg	2900.0	Avg	2.366667	197.22	True
Υ	High	4106.0	High	2.666667	222.22	True
Υ	Very High	8312.0	Very High	8.433333	702.78	True
Υ	Very High	7583.0	Very High	6.233333	519.44	True
N	High	4583.0	High	4.433333	369.44	True

In [152]:

```
data.drop(columns=['Income_bin', 'TotalIncome_bin'], axis=1, inplace=True)
```

```
In [153]:
data.dtypes
Out[153]:
Gender
                          object
Married
                          object
Dependents
                         float64
Education
                          object
Self Employed
                          object
ApplicantIncome
                           int64
CoapplicantIncome
                         float64
                         float64
LoanAmount
Loan_Amount_Term
                         float64
Credit History
                         float64
Property_Area
                          object
Loan Status
                          object
TotalIncome
                         float64
Loan_Amount_per_year
                         float64
EMI
                         float64
Able_to_pay_EMI
                            bool
dtype: object
In [155]:
s = data.dtypes == 'object'
object_cols = list(s[s].index)
object cols
Out[155]:
['Gender',
 'Married'
 'Education',
 'Self_Employed',
 'Property Area',
 'Loan_Status']
In [156]:
col = "Loan_Status"
data[col].value_counts()
Out[156]:
     422
Y
     192
Name: Loan Status, dtype: int64
In [158]:
enc_label = LabelEncoder()
data[col] = enc_label.fit_transform(data[col])
```

```
In [159]:
col = "Loan Status"
data[col].value_counts()
Out[159]:
     422
1
     192
Name: Loan_Status, dtype: int64
In [160]:
col = "Married"
data[col].value_counts()
Out[160]:
       401
Yes
No
       213
Name: Married, dtype: int64
In [161]:
enc_label = LabelEncoder()
data[col] = enc_label.fit_transform(data[col])
In [162]:
col = "Married"
data[col].value_counts()
Out[162]:
     401
1
     213
Name: Married, dtype: int64
In [163]:
enc_label = LabelEncoder()
data[col] = enc_label.fit_transform(data[col])
Out[163]:
Graduate
                480
Not Graduate
                134
Name: Education, dtype: int64
In [164]:
enc_label = LabelEncoder()
data[col] = enc_label.fit_transform(data[col])
```

```
In [ ]:
In [184]:
col = "Property_Area"
data[col].value_counts()
Out[184]:
             233
Semiurban
Urban
             202
Rural
             179
Name: Property_Area, dtype: int64
In [185]:
ohe = OneHotEncoder()
ohe.fit_transform(pd.DataFrame(data[col])).toarray()
Out[185]:
array([[0., 0., 1.],
       [1., 0., 0.],
       [0., 0., 1.],
       ...,
       [0., 0., 1.],
       [0., 0., 1.],
       [0., 1., 0.]])
```

```
In [186]:
```

```
prop = pd.get_dummies(data[col], )
prop
```

Out[186]:

	Rural	Semiurban	Urban
0	0	0	1
1	1	0	0
2	0	0	1
3	0	0	1
4	0	0	1
609	1	0	0
610	1	0	0
611	0	0	1
612	0	0	1
613	0	1	0

614 rows × 3 columns

In [189]:

```
data=pd.concat([data, prop], axis=1)
```

In [190]:

```
data.drop(columns=['Property_Area'], inplace=True)
```

In []:

In [178]:

```
s = data.dtypes == 'object'
object_cols = list(s[s].index)
object_cols
```

Out[178]:

```
['Gender', 'Self_Employed', 'Property_Area']
```

```
In [ ]:
In [182]:
# label encoding
data['Gender'] = data['Gender'].astype('category').cat.codes
data['Self_Employed'] = data['Self_Employed'].astype('category').cat.codes
In [191]:
s = data.dtypes == 'object'
object cols = list(s[s].index)
object_cols
Out[191]:
[]
In [192]:
data.head()
Out[192]:
Credit_History Loan_Status TotalIncome Loan_Amount_per_year
                                                          EMI Able_to_pay_EMI Rural
         1.0
                      1
                             5849.0
                                                4.383333
                                                        365.28
                                                                         False
                                                                                  0
         1.0
                      0
                             6091.0
                                                4.266667 355.56
                                                                          True
                                                                                  1
         1.0
                      1
                             3000.0
                                                2.200000
                                                       183.33
                                                                          True
                                                                                  0
                             4941.0
                                                4.000000
                                                        333.33
         1.0
                      1
                                                                          True
                                                                                  0
         1.0
                             6000.0
                                                4.700000 391.67
                                                                          True
                                                                                  0
```

data['Able_to_pay_EMI'] = data['Able_to_pay_EMI'].astype('int')

In [195]:

In [198]:

```
plt.figure(figsize=(15,15))
sns.heatmap(data.corr(), square=True, annot = True, cmap='Blues')
```

Out[198]:

<AxesSubplot:>

In [200]:

```
sns.scatterplot(data=data, x='Credit_History', y = 'Loan_Status')
plt.show()
```



```
In [201]:
```

```
sns.jointplot(data=data, x='Credit_History', y = 'Loan_Status', kind='hex')
plt.show()
```



```
In [ ]:
```

Feature Scaling

- Standaridation
- Normalisation

```
In [ ]:
```

```
In [207]:
```

```
mu = data.mean()
sig = data.std()
```

```
In [210]:
```

```
data = (data-mu)/sig
```

In [212]:

```
data.mean()
```

Out[212]:

```
Gender
                        -9.474868e-17
Married
                         1.855194e-16
Dependents
                        -9.402540e-18
                        -1.117456e-16
Education
Self Employed
                         2.444660e-16
                         5.243724e-18
ApplicantIncome
CoapplicantIncome
                         7.883668e-17
LoanAmount
                        -1.387779e-17
Loan_Amount_Term
                         3.817070e-16
Credit History
                        -2.169817e-17
Loan_Status
                         1.851577e-16
TotalIncome
                        1.073155e-16
Loan_Amount_per_year
                        -2.257062e-16
                        -1.299178e-16
                        -1.795524e-16
Able_to_pay_EMI
Rural
                        -4.585547e-16
Semiurban
                        -7.594359e-18
Urban
                         1.600240e-16
dtype: float64
```

In [213]:

```
data.std()
```

Out[213]:

```
Gender
                          1.0
Married
                          1.0
Dependents
                          1.0
Education
                          1.0
Self Employed
                          1.0
ApplicantIncome
                          1.0
CoapplicantIncome
                          1.0
LoanAmount
                          1.0
Loan Amount Term
                          1.0
Credit_History
                          1.0
Loan Status
                          1.0
TotalIncome
                          1.0
Loan_Amount_per_year
                          1.0
                          1.0
EMI
Able_to_pay_EMI
                          1.0
Rural
                          1.0
Semiurban
                          1.0
                          1.0
Urban
dtype: float64
```