

PROTON CONDUCTIVE SUBSTANCE

Patent number:

JP2002184427

Publication date:

2002-06-28

Inventor:

FUJINAMI TATSUO; MARY AN META; WATANABE

MASAHIRO; YO UNSHO

Applicant:

JAPAN SCIENCE & TECH CORP

Classification:

- international:

H01M8/02; C08G77/56; C08J5/18; C08L83/14;

C08L101/00; H01M8/10

- european:

Application number: JP20000376772 20001212 Priority number(s): JP20000376772 20001212

Report a data error here

PROBLEM TO BE SOLVED: To eliminate many disadvantages of a proton conductive substance usable in a polymer solid electrolyte of a fuel cell that proton conductivity of a conventional fluoride hydrocarbon polymer electrolyte material is markedly reduced in low humidity atmosphere or at a temperature of 100 deg.C, the suppression of the permeation property of fuel such as methanol, namely, crossover is difficult, and the proton conductive substance is very expensive. SOLUTION: The inventor of this invention finds that the proton conductive substance has a boron containing part, the dissociation property of sulfonic acid of a sulfo group containing part is promoted, and as a result, proton conductivity is improved. Moreover, this invention relates to a fuel cell constituted by the proton conductive substance and the proton conductive substance composed of polymer stable under acid condition and a film composed of the proton conductive substance and having a thickness of 10 to 500 &mu m by nipping and holding the film between a fuel electrode and an oxidant electrode.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-184427 (P2002-184427A)

(43)公開日 平成14年6月28日(2002.6.28)

(51) Int.Cl.'	設別記号	FI	テーマコード(参考)
H01M 8/02		H 0 1 M 8/02	P 4F071
CO8G 77/56		C 0 8 G 77/56	4 J 0 0 2
CO8J 5/18	CFH	C 0 8 J 5/18	CFH 4J035
CO8L 83/14		C08L 83/14	5 H O 2 6
101/00		101/00	
	審査請求	未請求 請求項の数5 OL	(全7頁) 最終頁に続く
(21)出願番号	特顧2000-376772(P2000-376772)	(71)出願人 396020800 科学技術振り	要業団
(22)出願日	平成12年12月12日(2000.12.12)	12月12日(2000. 12.12) 埼玉県川口市本町4丁目1番8月	
		(72)発明者 藤波 達雄	
		静岡県浜松市	6富塚町1618-34
		(72)発明者 メリー・アン	ノ・メータ
		静岡県浜松市	お富塚町1873-4 レイクコー
		⊩204	
		(72)発明者 渡辺 政廣	
		山梨県甲府市	方和田町2421-8
		(74)代理人 100087631	

(54) 【発明の名称】 プロトン導電性物質

(57)【要約】

(修正有)

【課題】 この発明は燃料電池の高分子固体電解質等に用いることができるプロトン導電性物質に関する。 従来のフッ化炭化水素系高分子電解質材料は、低湿度雰囲気あるいは100℃以上の高温ではプロトン導電率が著しく低下すること、メタノール等の燃料の透過性すなわちクロスオーバーの抑制が困難であること、極めて高価であることなどの多くの欠点を有している。

【解決手段】 本発明者らは、プロトン導電性物質がホウ素含有部分を持つことにより、スルホン酸基含有部分のスルホン酸の解離性が促進され、その結果プロトン導電性が向上することを見出して、本発明を完成させた。また、本発明は、これらのプロトン導電性物質及び酸性条件で安定な高分子から成るプロトン導電性物質、このプロトン導電性物質から成る厚さが $10\sim50.0~\mu$ mの膜、及びこの膜を燃料電極及び酸化剤電極の間に挟持して構成される燃料電池である。

BEST AVAILABLE COPY

弁理士 滝田 清暉

(外1名)

最終頁に続く

特(2)2002-184427(P2002-184427A)

【特許請求の範囲】

【請求項1】 次式

 $(SiR^{1} \times 0 (4-x)/2) \times (B0_{3/2}) \times (SiR^{2} \times 0 (4-y)/2) \times (B0_{3/2}) \times (SiR^{2} \times 0 (4-y)/2) \times (B0_{3/2}) \times (B0_{3/2}$

で表されるプロトン導電性物質(式中、 R^1 は-X-SO $_3$ Hを表し(式中、Xは炭素数が $2\sim18$ の二価の炭化水素基を表す。)、 R^2 は炭素数が $1\sim18$ の一価の炭化水素基を表し、xは0より大きく2以下、yは0以上2以下、a及びbはa+bに対してそれぞれ10%以上90%以下であり、cはa+b+cに対して0%以上1080%以下である。)。

【請求項2】 リン酸をドープした請求項1に記載のプロトン導電性物質。

【請求項3】 請求項1又は2に記載のプロトン導電性物質及び酸性条件で安定な高分子から成るプロトン導電性物質。

【請求項4】 請求項3に記載のプロトン導電性物質から成る厚さが10~500μmの膜。

【請求項5】 請求項4に記載の膜を燃料電極及び酸化 剤電極の間に挟持して構成される燃料電池。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明はプロトン導電性物質に関し、より詳細には燃料電池の高分子固体電解質等 に用いることができるプロトン導電性物質に関する。

[0002]

【従来の技術】代表的プロトン導電性高分子電解質膜で あるフッ化炭化水素系高分子電解質材料は、低湿度雰囲 気あるいは100℃以上の高温ではプロトン導電率が著 しく低下すること、メタノール等の燃料の透過性すなわ 30 ちクロスオーバーの抑制が困難であること、極めて高価 であることなどの多くの欠点を有している。一方、通常 の炭化水素系ポリマーのスルホン化物 (T. Kobayashi, M. Rikukawa, K. Sanui, and N. Ogata, Solid State Io nics, Vol. 106, 219(1998)) や、有機・無機ハイブリ ッド型プロトン導電性材料としてケイ索上にスルホニル ベンジル基を有するシロキサンポリマー (I. Gautier, A. Denoyelle, J. Y. Sanchez, and C. Poinsignon, El ectrochimica Acta, Vol. 37, 1615(1992)) 及びシロキ サンと有機ポリマーとがウレタン結合で重合化された有 40 機・無機ハイブリッドポリマー (I.Honma, S. Hirakaw a, K. Yamada, and J. M. Bae, Solid State Ionics, V ol.118, 29(1999)) が報告されているが、合成法が複雑 であったり、プロトン導電率がやや低い問題がある。ま た、ケイ索上にメチル基を有するポロシロキサン構造を 有する有機・無機ハイブリッド物質が報告されているが (G. D. Soraru, N.Dallabona, C. Gervais, and F. Ba bonneau, Chem. Mater. Vol. 11, 910(1999))、プロト ン導電性ではない。

【0003】プロトン導電性高分子の応用例の一つであ 50 提供することである。

[0004]

4.3

【発明が解決しようとする課題】本発明は上記の問題を解決すべく、プロトン導電率の高い電解質材料及びその簡便な製造方法を提供することを目的とする。高いプロトン導電率を得るために、本発明ではスルホン酸の解離性を促進する構造としてボロシロキサン骨格に注目し、製造法が容易な加水分解縮合法によるボロシロキサン重合体の調製とそのスルホン化方法について研究した結果、高いプロトン導電率を有する有機・無機ハイブリッド型プロトン導電体を得た。

[0005]

【課題を解決するための手段】本発明者らは、プロトン 導電性物質がホウ素含有部分(BO $_{3/2}$)を持つこと により、スルホン酸基含有部分(Si(X-SO $_{3}$ H) $_{\times}$ O $_{(4-\times)/2}$)のスルホン酸の解離性が促進され、その結果プロトン導電性が向上することを見出して、本発明を完成させたものである。即ち、本発明の目的は、次式

 $(SiR^{1}_{\times}O(4-x)/2) = (BO_{3/2}) = (SiR^{2}_{\times}O(4-x)/2) =$

で表されるプロトン導電性物質(式中、R¹は一X-SO₃Hを表し(式中、Xは炭素数が2~18の二価の炭化水素基を表す。)、R²は炭素数が1~18の一価の炭化水素基を表し、xは0より大きく2以下、yは0以上2以下、a及びbはa+bに対してそれぞれ10%以上90%以下であり、cはa+b+cに対して0%以上80%以下である。)を提供することである。このプロトン導電性物質はリン酸をドープすることにより性能の向上を図ることができる。また、本発明の別の目的は、これらのプロトン導電性物質及び酸性条件で安定な高分子から成るプロトン導電性物質を提供することである。本発明の更に別の目的は、このプロトン導電性物質が多速性が変更に別の目的は、このプロトン導電性物質が多速性が変更に別の目的は、このプロトン導電性物質が多速性が変更に別の目的は、このプロトン導電性物質が多速性が変更に別の間に挟持して構成される燃料電池を提供することである。

[0006]

【発明の実施の形態】本発明のプロトン導電性物質(又 は、有機・無機ハイブリッド型プロトン導電体) は、ボ ロシロキサン構造とスルホン酸基とを有し、次式

 $(SiR^{1} \times O(4-x)/2) \times (BO_{3/2}) \times (S$ $iR^{2}yO(4-y)/2)c$

で表される。これらの必須成分である(SiR¹×〇 (4-x)/2)部分及び(BO3/2)部分並びに任意 成分である (SiR²y〇 (4-y)/2) 部分は当該 式の順にブロックを構成する必要はなく、ランダムに分 散してポリマーを構成してよい。即ち、上式は単に構成 成分とその量比を示すに過ぎない。プロトン導電性をよ り向上させるためには、ホウ素含有部分(BO 3/2) とスルホン酸基含有部分(SiR

1 × O (4-x) /2) とがより近接してポリマーを構 成しているほうが好ましいと考えられる。

【0007】上式のR¹は-X-SO₃Hを表し、Xは 炭素数が2~18、好ましくは2~8の二価の炭化水素 基を表し、二価の炭化水素基であれば特に他に制限はな い。またR²は炭素数が1~18、好ましくは1~8、 より好ましくは2~6の一価の炭化水素基を表し、一価 の炭化水素基であれば特に他に制限はない。即ち、X及 びR²は直鎖若しくは分枝であっても又は不飽和結合を 有するものであってもよく、また芳香環又は脂環を有す るものであってもよい。これらの炭素数が大きくなる と、例えば、高分子と混合した場合の相溶性が増すこと になり、フィルム等を作成する場合に有利になるが、一 方プロトン導電性は下がることになるため、目的によっ て適宜選択すればよい。

【0008】xは0より大きく2以下、好ましくは0. 01以上1.5以下、より好ましくは0.1以上1.1 以下であり、yは0以上2以下、好ましくは0.01以 上1.5以下、より好ましくは0.1以上1.1以下で ある。またa及びbはa+bに対してそれぞれ10%以 上90%以下、好ましくは30%以上70%以下、より 好ましくは40%以上60%以下である。またcはa+ b+cに対して0%以上80%以下、好ましくは10% 以上60%以下、20%以上50%以下である。これら の数値は、プロトン導電性物質中のスルホン酸基が0. $1 \sim 20$ ミリ等量/g、特に $1 \sim 5$ ミリ等量/gとなる 40 よう適宜選択されることが好ましい。また、本発明のプ ロトン導電性物質はリン酸をドープすることによって、 髙温 (約100~約180℃、特に約100~約150 ℃)でのプロトン導電性を向上させることができる。好 ましいリン酸のドープ量はプロトン導電性物質に対して 0.1~50ミリモル/g、特に1~10ミリモル/g である。

【0009】本発明のプロトン導電性物質の製法につい ては特に制限はなく公知の方法で作成してよい。その製

示す。これら図に示した化合物は単なる例に過ぎず、本 発明はこれらに限定されない。 反応機構 1 においては、 チオール基を有するアルコキシシラン誘導体とホウ酸エ ステルとを加水分解反応させることにより重合体を生成 させ、チオール基を酸化することにより、スルホン酸基 を有するポロシロキサンポリマーを生成させる。また、 反応機構2においては、炭化水素基を有するアルコキシ シラン誘導体とホウ酸エステルとを加水分解反応させる ことにより重合体を生成させ、炭化水素基をスルホン化 することにより、スルホン酸基を有するポロシロキサン ポリマーを生成させる。即ち、本発明のプロトン導電性 物質は、アルコキシシラン誘導体とホウ酸エステルとの 加水分解、縮合反応に続いてスルホン化することによっ て簡便に製造できるが、後述の実施例で示されるように 適当な反応条件を採用することによってより高いプロト ン導電率を得ることができる。即ち、反応機構1におい て酸化反応時の温度は90℃以下が好ましく、特に70 +5℃が好ましい。

【0010】本発明のプロトン導電体を適当な高分子に 20 分散させたプレンド系は良好な膜を形成できる。この高 分子としては酸性条件下で安定、即ち分解等の劣化を起 こさないければ、他の特性は特に問わない。これら高分 子は、熱可塑性高分子でもよいし熱硬化性高分子であっ てもよく、有機高分子及び無機高分子を含む。例えば、 ポリスチレンやポリオレフィン等の付加重合系ポリマー 等が適したものとして挙げられ、重縮合系ポリマーの一 部には酸性条件で不安定なものがある。好ましい高分子 としては例えば、ポリスチレンスルホン酸、橋かけポリ スチレンスルホン酸、あるいは非プロトン導電性高分子 30 であるポリエチレンオキシド、スチレン・イソプレン・ スチレンブロック共重合体、ポリフッ化ビニリデン、シ リコン樹脂等が挙げられる。これら高分子は構造材とし て機能する。これら高分子は目的、例えばフィルムを作 成するならばその製造に適した高分子と適宜選択すれば よい。また、これらポリマーに当該プロトン導電体を公 知の方法で混合してもよいし、モノマーに当該プロトン 導電体を分散させた後に重合させてもよい。

【0011】また、プロトン導電性高分子である、スル ホン酸基を有するパーフルオロカーボン重合体(例え ば、Nafion)を構造材として用いてもよい。この パーフルオロカーボン重合体に本発明のプロトン導電性 物質を混合することにより、更にプロトン導電性を向上 させることが可能になり、そのため高価なパーフルオロ カーボン重合体の使用量を減らすことも可能になる。高 分子中の本発明のプロトン導電性物質の含量は、用いる 高分子の種類に依存するが、一般にその含量が高いほう がプロトン導電率が高いが、膜強度をよくしようとする 場合にはポリマーの割合を増やした方がよい。その兼ね 合いでは50~90%が好ましい。スルホン酸基を有す 法の例を図1(反応機構1)及び図2(反応機構2)に 50 る重合体を用いる場合には50%でもよく、スルホン酸

特(4)2002-184427A) ・

基を有しないポリマーでは 70~90%がよい。またメタノールクロスオーバー制御や寸法安定性等の要求に応じ、橋かけ構造を導入することも可能である。

【0012】本発明のプロトン導電性物質は優れたプロトン導電性を有することから、燃料電池の電解質膜として用いることができる。この膜は上記のように本発明のプロトン導電性物質及び高分子から構成してもよく、その膜厚は通常 $10\sim500\mu$ m、好ましくは $50\sim200\mu$ mである。この膜の両側に白金等の燃料電極及び酸化電極を密着させたセルを必要に応じて複層重ねて燃料 10電池を構成し、その一方から酸素及び他方から水素等の燃料を流し込み適度な温度で適度な背圧をかけることにより、電池として機能させることができる。

[0013]

【実施例】以下、実施例により本発明を例証するが、これらは本発明を制限することを意図したものではない。なお、プロトン導電率は、ACインピーダンス法により測定した。サンプルはボロシロキサンポリマーを100℃で1時間加熱することで作成し、スペーサーによって面積1.0×1.0cm²、厚さ0.4mmの正方形状 20に制御した。電極には白金板を用いた。測定に用いた装置の概略図を図3に示す。これに10mVの交流を印加し、周波数を8 MHz \sim 0.0001 Hz \sim 20を改化させ、得られたコールーコールプロットからバルク抵抗(R \sim)を等価回路を用いてカーブフィットすることにより求めた。イオン導電率 σ (S/cm)は、次式で示すように、電極間距離d(cm)を膜の断面積S(cm²)と抵抗(S $^{-1}$ (= Ω))の積で割って算出した。

 $\sigma = d/R_bS$

プロトン導電率は数値が大きいほど好ましく、通常のス*

*ルホン酸基を有するパーフルオロカーボン重合体のプロトン導電率は0.1 S/cm程度であり、燃料電池として用いる場合には0.1 S/cm以上のプロトン導電率が好ましいとされている。

【0014】 実施例1

4.0

図1に示す反応機構1に従って、ポロシロキサン電解質 を作成した。3-メルカプトトリエトキシシラン4.9 6g(25.3ミリモル)、ホウ酸トリイソプロピル 4. 77g (25. 3ミリモル)、 n-ヘキシルトリメ トキシシラン10.3g(49.9ミリモル)をメタノ ール100m1中に溶解させた。その溶液に0.04N HC1水溶液3.59g(199ミリモル)を加え、室 温で24時間攪拌させた後、60℃で48時間攪拌し、 さらに加熱還流を5時間行った。溶媒を室温で減圧除去 し、さらに90℃で24時間減圧乾燥させると、透明な 柔らかい固体ポリマーが得られた(収量10. 4g)。 調製したポリマー1.04gが入っているフラスコに、 30% H202溶液を5m1加え、70℃(酸化反応 温度)で1時間攪拌した。攪拌終了後、溶媒を減圧除去 し、さらに室温で24時間減圧乾燥した。この生成物を 「サンプル70」と呼ぶ。酸化反応温度を90℃にして 同様の操作を繰り返し、得た生成物を「サンプル90」 と呼ぶ。得られたポリマーは粉末であった。さらに得ら れたポリマーの一部を酸化途中で生成した硫酸を取り除 くためにジエチルエーテルで6回超音波洗浄及び濾過を 行い、ボロシロキサン電解質を得た。洗浄前後の試料の 収量及び収率を表1に示す。なお、後述の図4及び5に おいて、洗浄サンプルとは洗浄後のサンプルを示し、サ ンプルとは洗浄前のサンプルを示す。

30 [0015]

【表1】

サンプル名	サンブル 90	サンブル 70
反応温度(℃)	90	70
スルホン化に用いたサンプル量 (g)	1.04	D.615
スルホン化したサンプルの収率(g, %)	1.11, 90.9	0.63, 92.6
洗浄を行ったサンプル量(g)	0.300	0.366
洗浄を行ったサンプルの収率(g, %)	0.252, 84.0	0.323, 88.3

【0016】なお、 $3-メルカプトトリエトキシシラン、ホウ酸トリイソプロピルを出発原料として、ヘキシル基を含まないポロシロキサン電解質を得、高湿度下で、<math>10^{-1}$ Scm $^{-1}$ オーダーのプロトン導電率を示したが、高分子とブレンドして膜を生成しようとすると膜形成性が低く、さらに潮解性があった。サンブル90及びサンブル70について、洗浄前後のプロトン導電率のを比較し、25 での相対湿度とプロトン導電率との関係を図4に示し、相対湿度95%でのプロトン導電率の温度依存性を図5に示す。これらの図から分かるように、90 でで酸化すると、チオール基がスルホン酸への酸化で留まらず、一部硫酸にまで酸化されてしまうため、洗浄によって硫酸を除去すると、プロトン導電率

かなりの低下が観測された。しかし、70℃で酸化した 試料については洗浄によってプロトン導電率はわずかし 40 か低下しなかった。すなわち、酸化反応温度は70℃が 適当であることが明らかである。また、本発明のプロト ン導電性物質のプロトン導電率はかなり高いことが示さ れた。

【0017】<u>実施例2</u>

3-メルカプトトリエトキシシラン4. 91g (25ミリモル)、ホウ酸トリイソプロイル4. 73g (25. 1ミリモル)、n-ヘキシルトリメトキシシラン10. 4g (50. 5ミリモル)を2-プロパノール50m1中に溶解させた。その溶液に0.04N HC1水溶液、テトラエチルアンモニウムテトラフルオロポレート

0.25g(1.15ミリモル)及びリン酸(0.5モル /リットル)100ml(50ミリモル)を加え、室温で 24時間攪拌させた。溶媒を室温で減圧除去し、140 °Cで2時間加熱処理を行った。加熱処理後、90°Cで2 4時間減圧乾燥した。得られたポリマーをすり鉢で粉末 状に粉砕した後、フラスコに移し、30% H2O2溶 被50m1を加え、70℃で1時間攪拌した。攪拌終了 後、溶媒を減圧除去し、さらに室温で24時間減圧乾燥 し、リン酸をドープした白色粉末のボロシロキサン電解 質を得た。空気中でのプロトン導電率の温度依存性を図 10 6に示す。100℃ (1000/T=約2.68) 以上 でもプロトン導電率の低下は小さく、リン酸ドープによ って高温での高いプロトン導電率を達成できた。

【0018】 実施例3

図2に示す反応機構2に従って、ケイ素上にスルホン化 フェニル基を有するポロシロキサンポリマーを合成し た。トリメトキシフェニルシラン6.29g(31.7 ミリモル)、ホウ酸トリイソプロピル5.87g(3 1. 2ミリモル)そして水(0.1N HCl) 1.92 g (96ミリモル)を30m1フラスコに入れた。溶媒 としてアセトニトリル100m1を加え、室温で5時間 攪拌した。次に、温度を60℃に上げて65時間攪拌 し、さらに85℃で還流を3時間行った。溶媒を真空中 で**80℃、24時間の乾燥によって取り除き、ポロシロ** キサンポリマーを得た。合成したポロシロキサンポリマ ーを砕き、砕いたポリマー0.202gを10m1二口 フラスコに移し、N $_2$ をフローしながらジクロロメタン 3m1に溶かした。そして、ゆっくりとクロロ硫酸(C 1SO₃H) 0. 1m1を加えスルホン化した。混合物 を0℃で3時間攪拌し、溶媒を留去後、未反応の硫酸を 30 洗い流すためにジエチルエーテルによって数回超音波洗 浄器を用いて洗浄した。そして、室温、真空中で24時 間乾燥し、スルホン化されたポロシロキサン電解質を得 た。なお、詳細は示さないが、トリメトキシフェニルシ ランの代わりにトリメトキシベンジルシランを原料とし て同様の操作を繰り返すことにより、同様の性質を有す るポロシロキサン電解質を得た。

【0019】実施例4

トリメトキシフェニルシラン6.27g(31.6ミリ モル)、ホウ酸トリイソプロピル5.91g(31.4 ミリモル)、及びスチレン1.287g(12.36ミ リモル)を300mlフラスコに入れ、溶媒にはアセト ニトリル100m1を用いた。さらに、水(0.1N H C1) 2.51g (139.4ミリモル)と再結晶した AIBN 0.64g (3.90ミリモル)を加え、室温 で5時間攪拌した。そして、温度を60℃に上げて1週 間攪拌し、さらに3時間還流を行った。溶媒を真空中で 80℃、24時間の乾燥によって取り除き、黄色の均一 の固体ポリマーを得た。この固体ポリマーはポロシロキ サンポリマーとポリスチレンとの相互侵入網目構造 (I 50 とSISとのプレンド系のプロトン導電率を図8に示

PN)を構成していると考えられる。合成したポリマー を砕き、砕いたポリマー0.501gを10mlニロフ ラスコに移し、窒素ガスを流しながらジクロロメタン5 mlに溶かした。そして、ゆっくりとクロロ硫酸(Cl SОзН) 0. 3mlを加えスルホン化した。混合物を 0℃で3時間拠拌し、溶媒を留去後、未反応の硫酸を洗 い流すためにジエチルエーテルによって数回超音波洗浄 器を用いて洗浄した。室温、真空中で24時間乾燥し、 ポロシロキサン電解質とポリスチレンとのハイブリッド ポリマーを得た。なお、スチレンの比率を変えた試料、 ジビニルベンゼン(DVB)を添加して橋かけしたポリス チレンスルホン酸とポロシトキサンとのハイブリッド 系、テトラエトキシシラン(TEOS)を添加することに よってポロシロキサンを橋かけさせた系も調製した。 【0020】実施例3及び4で得られたボロシロキサン 電解質のプロトン導電率を図7に示す。図7において、 「A」は化1の構造式でa:b:c:m=1:1:0: 4のポリスチレンスルホン酸とポロシロキサンとのハイ ブリッド系電解質、「B」は化1の構造式でa:b: c:m=1:1:0:0のポリスチレンスルホン酸とポ ロシロキサンとのハイブリッド系電解質、「C」は化1 の構造式でa:b:c:m=1:1:0:1のポリスチ レンスルホン酸とポロシロキサンとのハイブリッド系電 解質、「DVB-10」は化1の構造式でa:b:c: m=1:1:0:4のジビニルペンゼン(DVB)10% で橋かけした電解質、及び「TEOS-0.2」は化1 の構造式でa:b:c:m=1:1:0.2:4のテト ラエトキシシラン(TEOS)20%で橋かけした電解質 材料を表す。

【化1】

4.00

図7から本発明のプロトン導電性物質がかなり高いプロ トン導電率を示すことがわかる。

【0021】<u>実施例5</u>

実施例1で調製したヘキシル基を含まないポロシロキサ ン電解質生成物に、10重量%のスチレン-イソプレン ースチレンブロック共重合体(SIS)をブレンドした 電解質を次の方法で調製した。SIS 0.036gを トルエン溶媒(1ml)中に均一な溶液になるまで溶かし た。すり鉢上でかき混ぜながらポロシロキサン電解質 0.324gにSISのトルエン溶液を加えた。フラス コに移し室温で24時間減圧乾燥させるとゴム状で硬い 固体プレンド電解質が得られた。ポロシロキサン電解質

す。高湿度条件下でかなり高いプロトン導電率を示すことがわかる。また、詳細は示さないが、SISの代わりにポリエチレンオキシド、ポリプロピレンオキシド、ナフィオンまたはフッ化ビニリデン等の高分子を用いて同様の操作を繰り返すことにより、これらとポロシロキサン電解質とのブレンド系電解質を得た。これらは同様に優れたプロトン導電率を示した。

[0022]

【発明の効果】本発明のプロトン導電性物質は、ルイス酸性ホウ素の導入によってスルホン酸基の解離が促進さ 10れ高いプロトン導電性を有する。更にリン酸をドープすることにより高温(約100~約180℃、特に約100~約150℃)でのプロトン導電性を上げることができる。本発明のプロトン導電性物質は、有機ケイ素アルコキシド、ホウ酸エステルから簡便に合成できる。さらに本発明のプロトン導電性物質は他の高分子とブレンド系を容易に調製でき、プロトン導電性物質に導入した炭化水素基を適当に選択することにより高分子との相溶性は向上し、膜の生成が容易になる。橋かけ構造導入も可能である。また、生成した膜は燃料電池用電解質膜とし 20

て用いることができる。

0,0

【図面の簡単な説明】

【図1】本発明のプロトン導電性物質の生成反応の一例 を示す図である(反応機構1)。

【図2】本発明のプロトン導電性物質の生成反応の別の 例を示す図である(反応機構2)。

【図3】プロトン導電率の測定装置を示す図である。

【図4】25℃におけるプロトン導電率の相対湿度依存 性を示す図である。

0 【図5】相対湿度95%下におけるプロトン導電率の温度依存性を示す図である。

【図6】リン酸をドープしたボロシロキサン電解質の空 気中でのプロトン導電率の温度依存性を示す図である。

【図7】ベンゼンスルホニル基を有するボロシロキサン 電解質の空気中でのプロトン導電率の相対湿度依存性を 示す図である。

【図8】ボロシロキサン電解質とISIとのブレンド系の25℃におけるプロトン導電率の相対湿度依存性を示す図である。

【図1】

【図2】

【図4】

フロントページの続き

(51) Int.Cl.7

識別記号

相対湿度(%)

H 0 1 M 8/10

(72)発明者 楊 云松

静岡県浜松市蜆塚町3-22-1 国際交流

会館413

50

FI H01M 8/10 .

50

テーマコード(参考)

100

Fターム(参考) 4F071 AA01 AA12X AA22 AA22X

AA26 AA51 AA67 AA68 AA75 AA78 AB25 AH15 BC01 BC12

70

相対温度(%)

80

4J002 BB00X BC03X BC12X BD14X BP01X CH02X CP03X CP19W DH026 FB07W GQ00 GQ02

4J035 BA02 BA04 BA12 BA14 CA01N CA261 HA04 LA03 LB20

5H026 AA06 CX04 EE18 HH03