New Heavy Quark Baryons

Michal Kreps University of Karlsruhe

Why heavy baryon spectroscopy

- Heavy Quark mesons are QCD analog of "hydrogen atom"
 - → Starts to be very sensitive test of various model in non-perturbative regime of QCD
 - → Lot of information in charm sector
 - → Bottom sector starts to speak up as well
- Heavy Quark baryon are next interesting laboratory
 - → Heavy quark light diquark is basic picture
 - → Another sensitive test of models
 - → Still many things to observe in charm sector
 - \rightarrow In bottom sector only Λ_b directly seen
- Discovery of new particles is exciting and fun

Where to study heavy baryons

- Everywhere where we produce them and have detector to detect them
- Current results come from
 - → B-factories (Belle, BABAR)
 - + Have large amount of data
 - + Clean environment
 - Bound to charm sector
 - → Tevatron (CDF)
 - Difficult environment from $p\overline{p}$ collisions
 - Only now starts to have reasonable amount of data for b-baryons
 - + Can do all b-hadrons

Directly observed states

Listed in PDG 2006

Listed in PDG 2006, but new results

Not in PDG 2006, covered here

$\Lambda_{\rm c}^{+}(2880), \Lambda_{\rm c}^{+}(2940)$

- ightharpoonup 287 fb⁻¹ of data
- p D⁰ final state
- $D^0 \rightarrow K\pi$, $D^0 \rightarrow K\pi\pi\pi$
- PRL 98, 012001 (2007)

- $553 \, \text{fb}^{-1}$ of data
- Confirmation in $\Lambda_c^+\pi^+\pi^-$
- $\Lambda_c^+\pi^\pm$ consistent with $\Sigma_c(2455)$
- hep-ex/0608043

$\Lambda_{\rm c}^{+}(2880), \Lambda_{\rm c}^{+}(2940)$

- $\Lambda_c(2880)$ known state, but pD^0 decay is new
- $\Lambda_c(2940)$ observed for the first time
- Significance 7.5 σ at BABAR and 6.2 σ at Belle
- Mass and width consistent between experiments

	State	Mass [MeV/ c^2]	Width [MeV/ c^2]
BABAR	$\Lambda_{c}(2880)$	$2882 \pm 0.1 \pm 0.5$	$5.8 \pm 1.5 \pm 1.1$
Belle	$\Lambda_{c}(2880)$	$2881.2 \pm 0.2 \pm 0.4$	$5.5\pm0.7\pm1.1$
BABAR	$\Lambda_{c}(2940)$	$2939.8 \pm 1.3 \pm 1.0$	$17.5 \pm 5.2 \pm 5.9$
Belle	$\Lambda_{c}(2940)$	$2938.0 \pm 1.3^{+2.0}_{-4.0}$	$13^{+8}_{-5}^{+27}_{-7}$

- To learn more, both experiments do further studies
 - → BABAR checks isospin partners
 - Belle studies resonant substructure of decay and angular distributions

$\Lambda_{\rm c}^{+}(2880), \Lambda_{\rm c}^{+}(2940)$

Curves same rate as pD⁰

- ightarrow If $\Sigma_c \Rightarrow$ also $\Sigma_c^{++} \rightarrow D^+ p$ $D^+ \rightarrow K \pi \pi$
- → No resonant structure seen
- \Rightarrow Both states are Λ_c 's
- 3 Λ_c states predicted ≈ 2940 MeV/ c^2 $J^P = (1/2)^+, (1/2)^-, (3/2)^-$ Migura et al, Eur.Phys.J. A28 (2006) 41
- The $\Lambda_c(2880)^+$ is near a predicted $(3/2)^-$ state.
- Details PRL 98, 012001 (2007)

$\Lambda_{\rm c}^{+}(2880)$

Fit $\Lambda_c(2880)$ yield in bins of $M(\Lambda_c^+\pi^\pm)$

- Significance of $\Lambda_c(2880) \rightarrow \Sigma_c(2520)\pi$ 3σ with syst.
- $\Gamma(\Sigma_c(2455)\pi)/\Gamma(\Lambda_c\pi\pi) = 40.4 \pm 2.1 \pm 1.4\%$
- $\Gamma(\Sigma_c(2520)\pi)/\Gamma(\Lambda_c\pi\pi) = 9.1 \pm 2.5 \pm 1.0\%$
- $\Gamma(\Sigma_c(2520)\pi)/\Gamma(\Sigma_c(2455)\pi) = 22.5 \pm 6.2 \pm 2.5\%$

$\Lambda_{\rm c}^+(2880)$

- Fit $\Lambda_c(2880)$ mass distribution in angular bins and subtract non-resonant contribution
- χ^2/ndf : 46.7/9 (J = 1/2); 35.1/8 (J = 3/2); 12.1/7 (J = 5/2)
- From χ^2 difference exclude J = 1/2 (J = 3/2) by 5.5 σ (4.8 σ)
- HQS expectations for $\Gamma(\Sigma_c(2520)\pi)/\Gamma(\Sigma_c(2455)\pi)$: 140% ($J^P = 5/2^-$) and 23 36% ($J^P = 5/2^+$)

$\Xi_{\rm c}(2980), \Xi_{\rm c}(3077)$

l			

$\Sigma_{\rm b}$ Fit result

- Mass differences (MeV/ c^2)
- $\rightarrow m(\Sigma_b^-) m(\Lambda_b) m(\pi) = 55.9 \pm 1.0(\text{stat}) \pm 0.1(\text{sys})$
- $\rightarrow m(\Sigma_b^+) m(\Lambda_b) m(\pi) = 48.4^{+2.0}_{-2.3}(\text{stat}) \pm 0.1(\text{sys})$
- $\rightarrow m(\Sigma_b^*) m(\Sigma_b) =$ 21.3^{+2.0}_{-1.9}(stat)^{+0.4}_{-0.2}(sys)
- Signal events

$$\rightarrow N(\Sigma_b^+) = 29^{+12.4}_{-11.6}(\text{stat})^{+5.0}_{-3.4}(\text{sys})$$

$$\rightarrow N(\Sigma_b^-) = 60^{+14.8}_{-13.8}(stat)^{+8.4}_{-4.0}(sys)$$

$$\rightarrow N(\Sigma_b^{*+}) = 74^{+17.2}_{-16.3}(stat)^{+10.3}_{-5.7}(sys)$$

$$\rightarrow N(\Sigma_b^{*-}) = 74^{+18.2}_{-17.4}(\text{stat})^{+15.6}_{-5.0}(\text{sys})$$

$\Sigma_{\rm b}$ Significance

- Repeat fit with alternative hypothesis
 - Single peak left out
 - Only one peak in each charge combination
 - No peak, pure background
- Derived from $\Delta(-\ln \mathcal{L})$

Hypothesis	$\Delta(-\ln\mathcal{L})$	Hypothesis	$\Delta(-\ln\mathcal{L})$
Null	44.7	No Σ_b^-	10.4
2 peaks	14.3	No Σ_b^+	1.1
		No Σ_b^{*-}	10.1
		No Σ_b^{*+}	9.8

- \Rightarrow Significance more than 5σ for 4 peaks
- ⇒ Evidence for three out of four individual peaks

Details at

http://www-cdf.fnal.gov/physics/new/bottom/060921.blessed-sigmab

Conclusions

- Last year very rich for Heavy Quark Baryons
- Several new baryon states in charm sector discovered $\Lambda_c^+(2940), \, \Xi_c^{+,0}(2980), \, \Xi_c^{+,0}(3077)$ and Ω_c^*
- Several refined measurements in charm sector
- Charged Σ_b states discovered in bottom sector
- ⇒ Our knowledge about Heavy Quark Baryons increased
- → I'm convinced this was not our last word on the topic