0.1 有限群

定义 0.1 (有限群)

设 (G,\cdot) 是一个群. 我们称G是一个有限群, 若G是有限的.

定义 0.2 (元素的阶)

设 (G,\cdot) 是一个群, 若 $x \in G$, 则 x (在 G 中)的**阶**, 记作 |x|, 定义为那个最小的正整数 $n \in \mathbb{N}_1$, 使得 $x^n = e$. 若这样的 n 不存在, 则记 $|x| = \infty$.

命题 0.1 (有限群的每个元素的阶必有限)

若 (G,\cdot) 是有限群, 且 $x \in G$, 则 $|x| < \infty$. 换言之, 有限群的每一个元素通过自乘有限多次, 都可以得到单位元.

证明 我们用反证法,假设 $|x|=\infty$,那么根据定义,对于任意的 $n\in\mathbb{N}_1$,我们都有 $x^n\neq e$. 我们要说明的是,这会导致一个事实,就是所有的 $x^n(n\in\mathbb{N}_1)$ 都是不同的. 假设但凡有一对 $n\neq m\in\mathbb{N}_1$ 使得 $x^n=x^m$,不失一般性我们假设 n>m. 则通过反复的消元 (两边反复右乘 x^{-1}),我们可以得到 $x^{n-m}=e$,其中 $n-m\in\mathbb{N}_1$,而这与假设是矛盾的,因为我们假设 x 的阶是无穷的. 因此,这个事实是对的——所有的 $x^n(n\in\mathbb{N}_1)$ 都是不同的,从而 G 中有无穷多个元素,这与 G 是有限群矛盾. 这就证明了这个命题.

命题 0.2

设 (G,\cdot) 是一个群,任取 $x \in G$.则

$$f: (\mathbb{Z}, +) \to (G, \cdot)$$

 $n \mapsto x^n$

是一个群同态.

证明 取定 $x \in G$. 令 $m, n \in \mathbb{Z}$, 我们只须证明 $f(m+n) = f(m) \cdot f(n)$, 也即 $x^{m+n} = x^m \cdot x^n$. 于是根据命题??(1) 就能立即得到结论.

定义 **0.3** (由 *x* 生成的群)

设 (G,\cdot) 是一个群, 且 $x \in G$, 则 $\langle x \rangle$, 被称为由 x 生成的群, 定义为

$$\langle x \rangle = \{ x^n : n \in \mathbb{Z} \}.$$

命题 0.3

设 (G, \cdot) 是一个群, 且 $x \in G$, 则 $\langle x \rangle < G$.

证明 记

$$f: (\mathbb{Z}, +) \to (G, \cdot)$$

 $n \mapsto x^n$

由命题 0.2可知 f 是一个群同态. 注意到 $\operatorname{im} f = \langle x \rangle$, 即 $\langle x \rangle$ 是 f 的同态像. 从而由命题??可知, $\langle x \rangle = \operatorname{im} f < G$. \square

定义 0.4 (由 S 生成的群)

设 (G,\cdot) 是一个群, 且 $S \subset G$. 则由 S 生成的群, 记作 $\langle S \rangle$, 定义为

$$\langle S \rangle = \bigcap \{ H \subset G : H \supset S, H < G \}$$

命题 0.4

令 (G, \cdot) 是一个群, 且 $S \subset G$, 则 $\langle S \rangle < G$.

Ŷ 笔记 这个命题表明:G 中由 S 生成的子群, 确实是包含了 S 的最小子群.

证明 在这里,我们只要证明其包含单位元,在乘法和逆元下封闭.

根据定义、 $\langle S \rangle$ 是由所有包含了S 的G 中子群全部取交集得到的.

单位元:每个这样的子群 H 都包含单位元,故它们的交集也包含单位元.

乘法封闭性: 设 $x,y \in \langle S \rangle$, 任取一个包含了 S 的子群 H, 则 $x,y \in H$. 因为 H 是子群, 故 $xy \in H$, 所以由 H 的任意性可知 $xy \in \langle S \rangle$.

逆元封闭性: 设 $x \in \langle S \rangle$, 任取一个包含了 S 的子群 H, 则 $x \in H$. 因为 H 是子群, 故 $x^{-1} \in H$, 所以由 H 的任意性可知 $x^{-1} \in \langle S \rangle$.

定义 0.5 (循环群)

令 (G, \cdot) 是一个群. 若存在 $x \in G$, 使得 $G = \langle x \rangle = \{x^n : n \in \mathbb{Z}\}$, 则 G 被称为一个**循环群**, 而 x 被称为 G 的一个生成元.

若G还是一个有限群,则我们称G为有限循环群.若G不是有限群,则我们称G为无限循环群.

注 我们一般用 C_n 表示 n 阶循环群.

Ŷ 笔记 有限循环群与无限循环群示意图如下:

命题 0.5

设 (G, \cdot) 是一个群, 对 $\forall x \in G$, 都有 $\langle x \rangle = \langle \{x\} \rangle$.

Ŷ 笔记 这个命题表明:由x生成的群就是由子集{x}生成的子群.

证明 根据定义和性质、 $\langle \{x\} \rangle$ 是包含了 $\{x\}$ 的最小的子群. 因此要证明这个最小的子群就是 $\langle x \rangle$,我们只须证明两点. 一, $\langle x \rangle$ 是个子群; 二,如果一个子群 H 包含了 $\{x\}$,那么它一定要包含整个 $\langle x \rangle$.

首先, 由命题 0.3可知 $\langle x \rangle$ 是个子群. 这就证明了第一点.

第二点几乎也是显然的. 我们设 H 是个子群, 且 $x \in H$. 那么根据子群包含单位元, 且有乘法和逆元的封闭性, 我们有 $e \in H$, 并且递归地, 对于 $\forall n \in \mathbb{N}_1$, 都有 $x^n = x \cdots x \in H, x^{-n} = x^{-1} \cdots x^{-1} \in H$. 这就证明了 $H \supset \langle x \rangle$.

命题 0.6

设 $G = \langle x \rangle$ 是有限循环群, 并且 |x| = n, 则 $G = \{e, x, x^2, \cdots, x^{n-1}\}$, 并且 $\{e, x, x^2, \cdots, x^{n-1}\}$ 中的这些元素是两两不同的. 我们称这样的有限循环群的阶是 n.

证明 我们来证明两件事. 第一, 每一个 G 中元素都可以写成从 0 开始的前 n 项幂的形式; 第二, 从 0 开始的前 n 项幂是两两不同的.

我们来证明第一点. 任取 G 中元素 x^m , 其中 $m \in \mathbb{Z}$. 根据带余除法, 存在 $q \in \mathbb{Z}, 0 \le r \le n-1$, 使得 m = qn + r. 那么因为 $x^n = e$, 所以 $x^m = x^{qn+r} = (x^n)^q \cdot x^r = x^r$, 而这就属于从 0 开始的前 n 项幂.

我们来证明第二点. 用反证法, 假设 $0 \le m' < m \le n-1$, 使得 $x^m = x^{m'}$, 则 $x^{m-m'} = e$. 其中 $1 \le m-m' \le n-1 < n$, 可是 n = |x| 是最小的正整数 k 使 $x^k = e$, 这就导致了矛盾.

综上所述, $G = \{e, x, x^2, \dots, x^{n-1}\}$, 其中枚举法中的这些元素是两两不同的.

命题 0.7

对于任意的 $n \in \mathbb{N}_1$, 所有 n 阶的循环群都是互相同构的.

证明 设 $G = \langle x \rangle, G' = \langle v \rangle$ 都是 n 阶循环群. 令

$$f: G \to G', x^m \mapsto y^m$$

则对 $\forall x^{m_1}, x^{m_2} \in G$, 其中 $1 \le m_1, m_2 \le n - 1$. 我们都有

$$f\left(x^{m_1}x^{m_2}\right) = f\left(x^{m_1+m_2}\right) = y^{m_1+m_2} = y^{m_1}y^{m_2} = f\left(x^{m_1}\right)f\left(x^{m_2}\right).$$

因此 f 是个同态映射. 此外, 它是个双射, 因为我们可以明确地找到其逆映射

$$f^{-1}(y^m) = x^m$$

这样,f 既是双射,也是同态,这就证明了 f 是个同构.

命题 0.8

设 $G = \langle x \rangle$ 是无限循环群, 则 $x^n (n \in \mathbb{Z})$ 是两两不同的, 且 G 只有两个生成元, 分别是 x = 1.

证明 首先证明 $x^n (n \in \mathbb{Z})$ 是两两不同的. 假设有两个相同, 不失一般性假设 $m > n \in \mathbb{Z}, x^m = x^n$, 则 $x^{m-n} = e$, 故 x 是有有限阶的. 这就矛盾了.

接着, 如果 $x^n(n \in \mathbb{Z})$ 可以生成这个群, 那么 $x \in \langle x^n \rangle$, 于是存在 $m \in \mathbb{Z}$ 使得 $x = (x^n)^m$, 于是 $x^{nm-1} = e$. 由于 x 是无限阶的, 所以 nm = 1, 那么这样的 n 只能是 ± 1 . 另外, 显然 x^{-1} 也可以生成这个群. 这就证明了恰好是这两个 生成元.

命题 0.9

所有的无限循环群是彼此同构的. 进而所有的无限循环群 $\langle x \rangle(|x|=\infty)$ 都同构于整数加群 $(\mathbb{Z},+)$.

Ŷ 笔记 这个命题告诉我们: 要研究无限循环群, 只要研究整数加群 (ℤ, +) 就可以了.

证明 设 $G = \langle x \rangle, G' = \langle y \rangle$ 都是无限循环群. 令

$$f:G\to G', x^m\mapsto y^m$$

则对 $\forall x^{m_1}, x^{m_2} \in G$, 其中 $m_1, m_2 \in \mathbb{Z}$. 我们都有

$$f(x^{m_1}x^{m_2}) = f(x^{m_1+m_2}) = y^{m_1+m_2} = y^{m_1}y^{m_2} = f(x^{m_1}) f(x^{m_2}).$$

因此 f 是个同态映射. 此外, 它是个双射, 因为我们可以明确地找到其逆映射

$$f^{-1}(y^m) = x^m$$

这样,f 既是双射,也是同态,这就证明了 f 是个同构.

命题 0.10

令 $G = \langle x \rangle$ 是一个 n 阶循环群. 假设 $1 \le m \le n$, 则 x^m 的阶为

$$|x^m| = \frac{n}{\gcd(n, m)}$$

证明 设 $1 \le m \le n-1$, 我们希望找到最小的正整数 k 使得 $(x^m)^k = x^{mk} = e$. 由于 |x| = n, 故这等价于 $n \mid mk$. 接下来我们要利用简单的初等数论. 通过同时除以 n 和 m 的最大公因数, 我们得到

$$\frac{n}{\gcd(n,m)} \left| \frac{m}{\gcd(n,m)} \cdot k \right|$$

而因为 $\frac{n}{\gcd(n,m)}$ 和 $\frac{m}{\gcd(n,m)}$ 是互素的, 所以这个条件进一步等价于

$$\frac{n}{\gcd(n,m)} \bigg| k$$

也就是说,最小的这个正整数 k 正是 $\frac{n}{\gcd(n,m)}$. 这就完成了证明.

命题 0.11

令 $G = \langle x \rangle$ 是一个 n 阶循环群, 则 $x^m (1 \le m \le n)$ 是个生成元, 当且仅当

$$gcd(m, n) = 1.$$

根据欧拉 ϕ 函数的定义,这些生成元的个数正是 $\phi(n)$.

证明 若 x^m 是一个生成元,则由 G 是一个 n 阶循环群可知, $|x^m|=n$. 从而由命题 0.10可知, $\gcd(m,n)=\frac{n}{|x^m|}=1$. 若 $\gcd(m,n)=1$,则由命题 0.10可知, $|x^m|=\frac{n}{\gcd(n,m)}=n$. 从而

$$(x^m)^n = e, (x^m)^{n+1} = (x^m)^n x = x, \dots, (x^m)^{2n-1} = (x^m)^n x^{n-1} = x^{n-1}.$$

又由命题 0.6可知 $G = \{e, x, \dots, x^{n-1}\}$. 于是

$$G = \left\{ e, x, \cdots, x^{n-1} \right\} = \left\{ (x^m)^n, (x^m)^{n+1}, \cdots, (x^m)^{2n-1} \right\} = \left\{ (x^m)^n : n \in \mathbb{Z} \right\}.$$

因此 $G = \langle x^m \rangle$, 故 x^m 是 G 的生成元.

定义 0.6 (群的阶)

设 (G,\cdot) 是一个群,则G的阶,记作[G],定义为G的集合大小(元素的个数).

定义 0.7 (子群的阶)

设 (G, \cdot) 是一个群,H 是 G 的子群,则 H 的阶,记作 |H|,定义为 H 的集合大小 (元素的个数). 若 H 是无限群则记 $|H|=\infty$.

定义 0.8 (左陪集)

设 G 是一个群,H < G 是一个子群, $a \in G$. 则称 aH 是 H 的一个(由 a 引出的) **左陪集**, 定义为

$$aH = \{ax : x \in H\}.$$

称 aH 是 H 的一个 (由 a 引出的) 右陪集, 定义为

$$Ha = \{xa : x \in H\}.$$

注 aH, Ha 一般来说不是 G 的子群.

我们只讨论左陪集的性质和结论,右陪集的性质与左陪集类似.

引理 0.1

令 G 是一个有限群,H < G 是一个子群, $a \in G$. 令

$$f: H \to aH, x \mapsto ax$$
.

则 f 是一个双射. 特别地,|H| = |aH|.

 \Diamond

П

\$

笔记 这个引理表明: 陪集的大小都是一样的.

证明 证法一: 根据 f 的定义易知 f 是满射. 若 $f(h_1) = f(h_2)$, 则

$$ah_1 = ah_2 \Rightarrow a^{-1}ah_1 = a^{-1}ah_2 \Rightarrow h_1 = h_2.$$

故 f 也是单射. 因此 f 是双射.

证法二: 令

$$g: aH \to H, k \mapsto a^{-1}k.$$

设 $k \in aH$, 则存在 $h \in H$, 使得 k = ah. 则 $g(k) = g(ah) = a^{-1}ah = h \in H$. 故 g 是良定义的. 注意到

$$g \circ f = \mathrm{id}_H$$
, $f \circ g = \mathrm{id}_{aH}$.

故 g 是 f 的逆映射. 因此 f 是双射.

命题 0.12

设 G 是一个有限群,H < G 是一个子群, $a,b \in G$. 则左陪集 aH 和 bH 要么相等, 要么无交. 也就是说, 我们有 aH = bH, 或 $aH \cap bH = \emptyset$.

证明 假设 $aH \cap bH \neq \emptyset$, 则可设 $ah_1 = bh_2 \in aH \cap bH$, 其中 $h_1, h_2 \in H$. 我们只须证明 aH = bH, 而根据对称性, 我们只须证明 $aH \subset bH$ 即可. 任取 aH 中的元素 $ah(h \in H)$, 则由 $ah_1 = bh_2$ 可知, $a = bh_2h_1^{-1}$. 从而

$$ah = (bh_2h_1^{-1})h = b(h_2h_1^{-1}h) \in bH$$

这就完成了证明.

定义 0.9 (商集)

设 G 是一个非空集合, $H \subset G$ 是一个子集合. 则**商集** G/H 定义为

$$G/H=\{aH:a\in G\}.$$

商集 H\G 定义为

$$H \backslash G = \{ Ha : a \in G \}.$$

我们把商集 G/H 的大小 (所含元素的个数) 称为 H 在 G 中的指数, 记为 [G:H], 即

$$[G:H]=|G/H|.$$

定理 0.1

设 G 是一个有限群,H < G 是一个子群, 则商集 $G/H = \{aH : a \in G\}$ 就是 G 的一个分拆, 即

$$G = \bigsqcup_{i=1}^{[G:H]} a_i H = \bigsqcup_{a \in G} aH.$$

证明 一方面,设 $x \in G$,取 a = x,则 $x = xe = ae \in xH$. 另一方面,由由命题 0.12可知,对 $\forall aH,bH \in G/H$,都有 aH 和 bH 要么相等,要么无交.故商集 $G/H = \{aH : a \in G\}$ 就是 G 的一个分拆.

笔记

图 2: 左陪集示意图

定理 0.2 (Lagrange 定理)

设G是一个有限群,H < G是一个子群,则

|G| = [G:H]|H|.

进而 $[G:H] = \frac{|G|}{|H|}$. 特别地,

|H||G|.

证明 由定理 0.1可知 $G = \bigsqcup_{i=1}^{[G:H]} a_i H$, 从而

$$|G| = \sum_{i=1}^{[G:H]} |a_i H_i|.$$

又由引理 0.1可知 $|a_iH_i| = |H|$. 故

|G| = [G:H]|H|.

例题 0.1 设 (G, \cdot) 是一个群, 若 |G| = p 是素数, 则不存在任何非平凡子群.

证明 设 H < G, 则由Lagrange 定理可知 $|H| \mid |G|$, 即 $|H| \mid p$. 从而 |H| = 1 或 p, 于是 $H = \{e\}$ 或 G.

引理 0.2

设 G 是一个群,H < G 是一个子群, $x, y, a, b \in G$, 则

- $(1) \ xH \subset yH \Leftrightarrow axHb \subset ayHb.$
- $(2)\ Hx\subset Hy\Leftrightarrow aHxb\subset aHyb.$
- (3) $xH \subset Hy \Leftrightarrow axHb \subset aHyb$.

进一步, 我们有

- (4) $xH = yH \Leftrightarrow axHb = ayHb$.
- (5) $Hx = Hy \Leftrightarrow aHxb = aHyb$.
- (6) $xH = Hy \Leftrightarrow axHb = aHyb$.

证明

(4) ⇒: 若 xH = yH, 则要证 axHb = ayHb, 根据对称性, 只须证 $axHb \subset ayHb$. 任取 $axhb \in axHb$, 其中 $h \in H$, 则由 xH = yH 及 $xh \in xH$ 可知, 存在 $h' \in H$, 使得 xh = yh'. 从而 $axhb = ayh'b \in ayHb$. 故 $axHb \subset ayHb$. \Leftarrow : 若 axHb = ayHb, 则要证 xH = yH, 根据对称性, 只须证 $xH \subset yH$. 任取 $xh \in xH$, 其中 $h \in H$, 则由 axHb = ayHb 及 $axhb \in axHb$ 可知, 存在 $h' \in H$, 使得 axhb = ayh'b. 从而 $xh = a^{-1}axhbb^{-1} = axHb$

 $a^{-1}ayh'bb^{-1} = yh' \in yH$. $to xH \subset yH$.

- (5) ⇒: 若 Hx = Hy, 则要证 aHxb = aHyb, 根据对称性, 只须证 $aHxb \subset aHyb$. 任取 $ahxb \in aHxb$, 其中 $h \in H$, 则由 Hx = Hy 及 $hx \in Hx$ 可知, 存在 $h' \in H$, 使得 hx = h'y. 从而 $ahxb = ah'yb \in aHyb$. 故 $aHxb \subset aHyb$. \Leftrightarrow : 若 aHbx = aHyb, 则要证 Hx = Hy, 根据对称性, 只须证 $Hx \subset Hy$. 任取 $hx \in Hx$, 其中 $h \in H$, 则由 aHxb = aHyb 及 $ahxb \in aHxb$ 可知, 存在 $h' \in H$, 使得 ahxb = ah'yb. 从而 $hx = a^{-1}ahxbb^{-1} = a^{-1}ah'ybb^{-1} = h'y \in Hy$. 故 $Hx \subset Hy$.
- (6) ⇒: 若 xH = Hy, 则要证 axHb = aHyb, 根据对称性, 只须证 $axHb \subset aHyb$. 任取 $axhb \in axHb$, 其中 $h \in H$, 则由 xH = Hy 及 $xh \in xH$ 可知, 存在 $h' \in H$, 使得 xh = h'y. 从而 $axhb = ah'yb \in aHyb$. 故 $axHb \subset aHyb$. \Leftarrow : 若 axHb = aHyb, 则要证 xH = Hy, 根据对称性, 只须证 $xH \subset Hy$. 任取 $xh \in xH$, 其中 $h \in H$, 则由 axHb = aHyb 及 $axhb \in axHb$ 可知, 存在 $h' \in H$, 使得 axhb = ah'yb. 从而 $xh = a^{-1}axhbb^{-1} = a^{-1}ah'ybb^{-1} = h'y \in Hy$. 故 $xH \subset Hy$.

根据上述 (4)(5)(6) 的证明过程就能直接得到 (1)(2)(3) 的证明.

引理 0.3

设 G 是一个群,H < G 是一个子群, $x \in G$,则我们有充要条件

 $xH = H \iff x \in H.$

一般地,对于 $x,y \in G$,我们有充要条件

 $xH = yH \iff y^{-1}x \in H \iff x^{-1}y \in H \iff x \in yH \iff y \in xH.$

拿 筆記 同理可知对右陪集也有相同的结论。

证明 对于 $x \in G$, 一方面, 设 xH = H, 则 $x = xe \in xH = H$, 因此 $x \in H$.

另一方面,证法一:设 $x \in H$, 任取 $xh \in xH$, 则根据乘法封闭性可知 $xh \in H$. 故 $xH \subset H$. 任取 $h \in H$, 则根据乘法封闭性和逆元封闭性可知 $x^{-1}h \in H$, 从而 $h = xx^{-1}h \in xH$. 故 $H \subset xH$. 因此xH = H.

证法二:设 $x \in H$,则 $x = xe \in xH$.从而 $xH \cap H \neq \emptyset$.于是由命题 0.12可知xH = H.

综上, 我们就有 xH = H ⇔ x ∈ H.

一般地, 对于 $x, y \in G$, 由引理 0.2可知 $xH = yH \Leftrightarrow y^{-1}xH = H \Leftrightarrow H = x^{-1}yH$, 又由上述证明可知

$$y^{-1}xH = H \iff y^{-1}x \in H, x^{-1}yH = H \iff x^{-1}y \in H.$$

故 $xH = yH \iff y^{-1}x \in H \iff x^{-1}y \in H$. 下证 $xH = yH \iff x \in yH \iff y \in xH$.

一方面, 设 xH = yH, 则 $x = xe \in xH = yH$, 因此 $x \in yH$. 另一方面, 设 $x \in yH$, 则 $x = xe \in xH$. 从而 $xH \cap yH \neq \emptyset$. 于是由命题 0.12可知 xH = yH. 故 xH = yH $\Longleftrightarrow x \in yH$. 同理可证 xH = yH $\Longleftrightarrow y \in xH$.

推论 0.1

(1) 设 G 是一个群,H < G 是一个子群, $a \in G$,则

 $axH = aH \iff x \in H.$

(2) 设 G 是一个群, $K < H < G,a_1,a_2 \in G,b_1,b_2 \in H$. 若 $a_1b_1K = a_2b_2K$,则 $a_1H = a_2H$.

🕏 笔记 同理可知对右陪集也有相同的结论.

证明

(1) 由引理 0.2可知

 $axH = aH \iff xH = H.$

又由引理 0.3可知

 $xH = H \iff x \in H.$

故

$$axH = aH \iff x \in H.$$

(2) 由引理 0.3可知 $b_2^{-1}a_2^{-1}a_1b_1 \in K$, 从而存在 $k \in K$, 使得 $b_2^{-1}a_2^{-1}a_1b_1 = k$, 于是 $a_2^{-1}a_1 = b_2kb_1^{-1} \in H$. 再根据引理 0.3可知 $a_1H = a_2H$.

命题 0.13

令K < H < G是三个有限群,则

$$[G:K] = [G:H][H:K].$$

证明 证法一:由Lagrange 定理可得

$$[G:K] = \frac{|G|}{K} = \frac{|G|}{|H|} \cdot \frac{|H|}{|K|} = [G:H][H:K].$$

证法二:设 $G/H = \{a_iH\}_{i \in I}, H/K = \{b_jK\}_{j \in J},$ 其中 $I = \{1, 2, \cdots, [G:H]\}, J = \{1, 2, \cdots, [H:K]\}.$ 则 |I| = [G:H], |J| = [H:K].

$$xK = a_i b_j kK = a_i b_j K.$$

再由 xK 的任意性可知 $G/K = \{a_ib_jK\}_{i \in I, j \in J}$.

再证明 $\{a_ib_jK\}_{i\in I, j\in J}$ 两两互异 (集合中不含重复元素). 设 $a_ib_jK = a_{i'}b_{j'}K$, 则由推论 0.1(2)可知, $a_iH = a_{i'}H$. 又因为 $G/H = \{a_iH\}_{i\in I}$, 所以 $\{a_iH\}_{i\in I}$ 两两互异, 从而 $a_i = a_{i'}$. 于是由引理 0.2可得

$$a_ib_jK = a_i,b_j,K \Leftrightarrow a_ib_jK = a_ib_j,K \Leftrightarrow a_i^{-1}a_ib_jK = a_i^{-1}a_ib_j,K \Leftrightarrow b_jK = b_j,K.$$

又因为 $H/K = \{b_j K\}_{j \in J}$, 所以 $\{b_j K\}_{j \in J}$ 两两互异, 因此 $b_j = b_{j'}$. 故 $\{a_i b_j K\}_{i \in I, j \in J}$ 两两互异 (集合中不含重复元素).

综上,
$$G/K = \bigsqcup_{i \in I} \bigsqcup_{j \in I} a_i b_j K$$
. 因此根据定义 0.9 可知

$$[G:K] = |I| \cdot |J| = [G:H][H:K].$$

定义 0.10 (两个子群的乘积)

设G是一个群,且H,K < G,定义H和K的乘积为

$$HK = \{hk : h \in H, k \in K\}.$$

注 两个子群的乘积不一定是子群.

命题 0.14

 $\Diamond(G,\cdot)$ 是一个群. 若 H,K < G 是两个有限子群,则

$$|HK| = \frac{|H||K|}{|H \cap K|}, \, \text{tr}|HK||H \cap K| = |H||K|.$$

其中HK未必是G的子群,也不一定是群.

证明 证法一:不考虑重复性,HK 产生 |H||K| 个元素, 其中存在 $hk = h'k', h \neq h', k \neq k'$ 的情况.

现在分析产生相同乘积的 (h,k) 组合个数, 对 $\forall t \in H \cap K$, 都有 $hk = (ht)(t^{-1}k)$. 从而一方面, 对 $\forall t_1, t_2 \in H \cap K$

且 $t_1 \neq t_2$, 都有 $ht_i \in H, t_i^{-1}k \in K(i=1,2), (ht_1,t_1^{-1}k) \neq (ht_2,t_2^{-1}k)$, 但 $(ht_1)(t_1^{-1}k) = hk = (ht_2)(t_2^{-1}k)$. 于是 HK 中产 生相同乘积的不同 (h,k) 组合至少有 $|H \cap K|$ 个.

另一方面,我们有

$$hk = h'k' \iff t = h^{-1}h' = k(k')^{-1} \in H \cap K$$

 $\iff \exists t \in H \cap K \text{ s.t. } h' = ht, k' = t^{-1}k.$

因此 HK 中产生相同乘积的不同 (h,k) 组合最多有 $|H \cap K|$ 个. 综上,HK 中产生相同乘积的不同 (h,k) 组合恰好 有 $|H \cap K|$ 个. 故 $|HK| = \frac{|H||K|}{|H \cap K|}$ 证法一(右往来)

证法二(有待考察): 原命题等价于证明

$$\frac{|HK|}{|K|} = \frac{|H|}{|H \cap K|}.$$

因为 $H \cap K < H$, 我们可以假设 $H/(H \cap K) = \{a_i(H \cap K)\}_{i \in I}$, 其中 $a_i \in H(i \in I)$ 是两两不同的. 我们只须证明 $HK/K = \{a_iK\}_{i \in I}$, 并且 HK/K 中的重复元对应的指标与 $H/(H \cap K)$ 相同. 再根据 $H/(H \cap K)$ 和 HK/K 的指标集 相同都是I就能得到两个商集 $H/(H \cap K)$ 和HK/K所含元素的个数相等.

任取 $hkK = hK \in HK/K$, 其中 $h \in H$, 故存在 $i \in I$ 使得 $h \in a_i(H \cap K)$. 假设 $h = a_ix$. 其中 x 既在 H, 也在 K. 这样, $hkK = hK = a_ixK = a_iK$, 因为 $x \in K$. 这就证明了第一点.

接着, 假设 $a_iK = a_jK$, 其中 $i, j \in I$. 我们只须证明 $a_i(H \cap K) = a_j(H \cap K)$. 根据引理 0.3可知 $a_i^{-1}a_i \in K$, 可是 $a_i = a_j \in H$, 于是 $a_i^{-1}a_i \in H \cap K$. 同样根据引理 0.3, 我们知道 $a_i(H \cap K) = a_j(H \cap K)$. 这就证明了第二点.

综上所述, 两个商集 $H/(H\cap K)$ 和 HK/K 所含元素的个数相等. 显然 H 是一个群, 于是由Lagrange 定理及商 集的性质可得

$$\frac{|HK|}{|K|} \stackrel{?}{=} [HK:K] = [H:H \cap K] = \frac{|H|}{|H \cap K|}.$$

注 尽管 HK 不需要成为一个群, 但是 HK/K 完全可以通过 $H/(H\cap K)$ 来明确地构造出来, 它们的大小相等, 这就 完成了这个命题的证明.