Übung 1.

Man entscheide, ob die folgenden Aussagen wahr oder falsch sind.

- 1. Wenn V ein Euklidischer Vektorraum ungerader Dimension ist, so hat die Gruppe $\mathrm{O}(V)$ einen offenen Normalteiler vom Index 2.
- 2. Jede echte offene Untergruppe von $GL_{2016}(\mathbb{R})$ ist zusammenhängend.
- 3. Sei $n \geq 2$ gerade und $T(x_1, \ldots, x_n) = (x_n, x_1, \ldots, x_{n-1})$. Für je zwei $A, B \in \mathrm{GL}_n(\mathbb{R})$ gehören entweder A und B oder A und TB zu derselben Zusammenhangskomponente von $\mathrm{GL}_n(\mathbb{R})$.
- 4. Wenn a, b und c die Seiten eines spärischen Dreieckes mit einem rechten Winkel bei C (also gegenüber der Seite c) sind, so gilt $\sin^2(c) = \sin^2(a) + \sin^2(b)$.
- 5. Wenn $A=(a_{ij})_{i,j=1}^n$ eine $n\times n$ -Matrix mit komplexen Koeffizienten ist, welche $a_{ij}=\overline{a_{ji}}$ für alle ganzzahligen $i,j\in[1,n]$ erfüllen, so ist der durch die Multiplikation mit A definierte Endomorphismus von \mathbb{C}^n bezüglich des Standardskalarproduktes selbstadjungiert.
- 6. Sei N ein Endomorphismus eines K-Vektorraums V mit $N^{50}=0$ und dim $(\ker(N))<50$, dann gilt dim $V\leq 2016$.
- 7. Wenn β eine nichtgeartete Bilinearform auf einem endlichdimensionalen Vektorraum V über einem beliebigen Körper und A ein Endomorphismus von V mit $\beta(Ax,Ay)=\beta(x,y)$ für alle $x,y\in V$ ist, so gilt det $A=\pm 1$.

Lösung 1.

- 1. Die Aussage ist wahr, wie in der Vorlesung gezeigt.
- 2. Die Aussage ist wahr, wie wohl in der Vorlesung gezeigt wurde.
- 3. Die Aussage ist wahr: Es gilt det T=-1 (denn für die Abbildung $T_i\colon\mathbb{R}^n\to\mathbb{R}^n$ mit $T_i(x_1,\dots,x_n)=(x_1,\dots,x_{i-1},x_{i+1},x_i,x_{i+2},\dots,x_n)$ gilt det $T_i=-1$, und es gilt $T=T_1\cdots T_{n-1}$). Deshalb haben entweder det A und det B die gleichen Vorzeichen, oder det A und det B die gleichen Vorzeichen. Da die Zusammenhangskomponenten von $\mathrm{GL}_n(\mathbb{R})$ durch die Vorzeichen der Determinante bestimmt sind, ergibt sich die Aussage.
- 4. Die Aussage ist falsch; man betrachte etwa ein spärisches Dreieck mit drei rechten Winkeln, bei dem alle Seiten gleich lang sind.
- 5. Die Aussage ist wahr. Es sei $f \colon \mathbb{C}^n \to \mathbb{C}^n$ mit f(x) = Ax für alle $x \in \mathbb{C}^n$ die entsprechende Abbildung. Dass $a_{ij} = \overline{a_{ji}}$ für alle $i, j = 1, \ldots, n$ ist äquivalent dazu, dass $A = A^*$, dass also A selbstadjungiert ist. Es gibt zwei einfache Möglichkeiten, die Aussage zu zeigen:
 - Bezüglich der Standardbasis $\mathcal{B}=(e_1,\ldots,e_n)$ von \mathbb{C}^n gilt $\mathcal{M}_{\mathcal{B}}(f)=A$. Da \mathcal{B} eine Orthonormalbasis von \mathbb{C}^n ist folgt aus der Selbstadjungiert von A, dass f selbstadjungiert ist.

Alternativ ergibt sich für alle $x,y\in\mathbb{C}^n$ durch direktes Nachrechnen, dass

$$\langle f(x),y\rangle = \langle Ax,y\rangle = (Ax)^T\overline{y} = x^TA^T\overline{y} = x^T\overline{A}\overline{y} = x^T\overline{A}\overline{y} = \langle x,Ay\rangle = \langle x,f(y)\rangle$$

- 6. Die Aussage ist falsch, es muss nur dim $V \leq 50 \cdot \dim \ker f \leq 50 \cdot 49 = 2450$ gelten.
- 7. Die Aussage ist wahr.
- 8. Die Aussage ist wahr: Sind $p,q\in K[T]$ zwei Polynome mit $\deg p,\deg q\le 2016$ und p(x)=q(x) für alle $x\in K$, so hat das Polynom p-q jedes Element des Körpers als Nullstelle. Wäre $p-q\ne 0$, so könnte p-q wegen $\deg(p-q)\le 2016$ aber höchstens 2016 Nullstellen haben. Also muss p-q=0 gelten und somit p=q.