Validação Cruzada

Rachid Muleia

A validação cruzada é uma técnica que nos permite comparar valores previstos com valores observados. Em dados espaciais esta técnica pode nos ajudar a decidir qual modelo de semivariograma escolher ou qual método de predição dá melhores resultados. A idéia básica da validação cruzada é a seguinte: Omite-se o ponto i do conjunto de dados e interpola-se o mesmo usando os restantes n-1 pontos. Portanto, podemos comparar o valor previsto com o valor verdadeiro na localização. Outra maneira é dividir o conjunto de dados em duas partes. A primeira parte será usada para modelizar o variograma. A localização espacial da outra parte do conjunto de dados será a nossa malha. Depois de prever os valores, podemos compará-los com os valores observados nesses locais.

Para ilustração da validação cruzada iremos usar a base de dados meuse river

Vamos dividir aleatoriamente os dados em duas partes. Serão utilizadas 100 observações para modelização e 55 para predição. Aqui estão os comandos:

```
choose100 <- sample(1:155, 100)
part_model <- lead_zinc.df[choose100, ]
part_valid <- lead_zinc.df[-choose100, ]</pre>
```

Nota: Observe que esta é uma seleção aleatória e cada vez que executamos esses comandos, obteremos amostras diferentes.

Para estimar o semivariograma vamos usar a base de dados part_model

```
g=gstat(id="log_lead", formula = log(lead)~1, locations = ~x+y, data=part_model)
q=variogram(g) # calcula o semivariograma experimental
plot(q) # representacao grafica do semivariograma experimental
```

```
v.fit <- fit.variogram(q, vgm(1, "Sph", 800, 1))
plot(q, v.fit) # representacao do semivaiograma teorico junto ao semivariograma experimenta:</pre>
```

Agora que temos as estimativas da krigagem, vamos calcular as diferencas entre os valores previstos e observados

```
difference <- log(part_valid$lead) - part_valid_pr$log_lead.pred
summary(difference)</pre>
```

Assim que temos as diferencas entre os valos previstos e observados podemos calular , o erro médio da estimativa, erro quadrático médio, erro quatrático médio padronizado, e a o coeficiente de correlação.

```
> mean(difference ) #erro medio
[1] -0.01452672
> mean(difference^2) #erro quadratico medio
[1] 0.1553702
> mean(difference^2/part_valid_pr$log_lead.var) #erro quadratico medio padronizado
[1] 0.7394981
cor(part_valid_pr$log_lead.pred,log(part_valid$lead)) # correlacao entre valores
```

[1] 0.7726411

previstos e observados

Além de calcularmos a correlação podemos também representar os valores previstos e observados num diagrama de dispersão

```
plot(log(part_valid$lead),part_valid_pr$log_lead.pred, xlab="valores observados",
ylab="valores previstos")
```


Uma forma mais automatizada de fazer a validação cruzada é usar o comando krige.cv

> summary(cv_pr)

var1.pred		var1.var		observed		residual	
Min.	:3.685	Min.	:0.1240	Min.	:3.611	Min.	:-1.0465998
1st Qu.:4.375		1st Qu.:0.1565		1st Qu.:4.284		1st Qu.:-0.2146486	
Median	:4.786	Median	:0.1723	Median	:4.812	Median	:-0.0233480
Mean	:4.808	Mean	:0.1813	Mean	:4.807	Mean	:-0.0008775
3rd Qu.:5.202		3rd Qu.:0.1931		3rd Qu.:5.333		3rd Qu.: 0.1845019	
Max.	:6.073	Max.	:0.4912	Max.	:6.483	Max.	: 1.6235280
zscore		fold		х		у	
Min.	:-2.4714	Min.	: 1.0	Min.	:178605	Min.	:329714
1st Qu.:-0.4799		1st Qu.: 39.5		1st Qu.:179371		1st Qu.:330762	
Median	:-0.0593	Media	ın : 78.0	Mediar	n :179991	Media	n :331633
Mean	:-0.0008	Mean	: 78.0	Mean	:180005	Mean	:331635
3rd Qu.: 0.4344		3rd Qu.:116.5		3rd Qu.:180630		3rd Qu.:332463	
	: 3.8577	Max.	:155.0	Max.	:181390	Max.	:333611

Se quisermos comparar dois semivariogramas (exponencial e esférico), ou escolher entre métodos de predição (por exemplo, krigagem ordinária, krigagem universal, método de interpolação inversa ponderada a distância , etc.), ou entre diferentes tipos de semivariogramas experimentais(clássicos ou robustos) ou diferentes Pesos, podemos usar o erro médio, erro quadrático médio, ou ainda a soma dos quadrados dos resíduos. Em geral seleccionamos o metódo que tiver menor soma dos quadrados dos resíduos.

PRESS =
$$\sum_{i=1}^{n} (z(s_i) - \hat{z}(s_i))^2$$

PRESS(Prediction sum of squares)

Faça o mesmo exercício usando a variável zinco.