GENERAL TOPOLOGY EXERCISES FOR SESSION 3 (TUE 4.3)

- **Exercise 1.** Let $A \subset X$ and suppose that there is a sequence of points $(x_n) \subset A$ converging to some $a \in X$. Show that $a \in \bar{A}$.
- **Exercise 2.** Suppose that \mathbb{R} is equipped with the cofinite topology (A is open if $A = \emptyset$ or A^c is finite). Find all limit points of the sequence $1, 2, 3, \ldots$
- **Exercise 3.** Let X be Hausdorff and $A \subset X$. Prove that A is Hausdorff in the relative topology.
- **Exercise 4.** Let \mathbb{R} be equipped with the topology given by the basis $\{(-R, R) : R > 0\}$. Show that a sequence has a limit if and only if it is bounded (i.e. $|x_n| \leq M$ for some M > 0 and all n).
- **Exercise 5.** Show that in a T_1 -space X, a point x is an accumulation point of a set A if and only if every neighbourhood of x contains infinitely many points in A.
- **Exercise 6.** Let $A \subset X$ and let $(x_n) \subset A$ be a converging sequence in the relative topology on A. Show that (x_n) also converges in the topology of X.
- **Exercise 7.** Prove the second part of Theorem 2.4 in the lecture notes: If X is first-countable, $A \subset X$ and $a \in \overline{A}$, then there is a sequence in A converging to a.
- **Exercise 8.** Show that if $A \subset X$ is closed, then the reverse of the statement in Exercise 6 is true: If $(x_n) \subset A$ converges in X, then it converges in the subspace A with the relative topology.
- Is there an example of a space X and a subspace A which is not closed but this still holds?