专业、班级

믁 学

名 姓

出题说明:

- 1. 考试形式 (闭卷)
- 2. 答卷时间 (110) 分钟
- 3. 是否需要草稿纸 (需1张)
- 4. 是否需备计算器 (否)

其他说明:

2014 高等数学(下)期末模拟试题 E

_	<u>-</u>	Ξ	四	总 分

- 一、填空题: (每题 2.5 分, 共 15 分)
- 1. 将 xOz 坐标面上的抛物线 $x^2-z^2=1$ 绕 z 轴旋转一周所得的旋转曲面方程
- 2. 己知向量 a = (0,1,1), b = (1,0,1), c = (1,1,0), 则 $(a \times b) \cdot c =$

 $Prj_x a = \underline{\hspace{1cm}}; Prj_b a = \underline{\hspace{1cm}}; cos(\widehat{a,b}) = \underline{\hspace{1cm}}.$

3. 球面 Ω : $x^2 + y^2 + z^2 = 14$ 在点 (1.2.3) 处的法线方程 :切平

- 4. 将 $I = \int_0^1 dy \int_0^y f(x, y) dx$ 交换积分次序后, I =______.
- 5. 函数 $f(x, y) = \ln(x + y) + \sqrt{x y}$ 的定义域为_____
- 6. $95 \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)!} = \underline{\hspace{1cm}}$
- 二、选择题: (每小题 3 分, 共 15 分)
- 1. 下列函数极限存在的是().
- (A) $\lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy}{x^2 + y^2}$ (B) $\lim_{\substack{x \to 0 \\ y \to 0}} \frac{x + y}{\sqrt{x^2 + y^2}}$
- (C) $\lim_{x\to 0} \frac{xy^2}{x^2 + y^4}$ (D) $\lim_{x\to 0} xy \sin \frac{1}{xy}$
- 2. 下列说法中正确的是()
 - (A) 多元函数在某点连续是在该点偏导存在的充分条件
 - (B) 多元函数在某点偏导存在是在该点可微的充分条件
 - (C) 多元函数在某点连续是在该点偏导连续的必要条件
 - (D) 多元函数在某点可微是在该点偏导存在的必要条件
 - 2013 ---2014 学年 2 学期

- 3. 函数 $f(x, y) = x^2 y^2$, 则 (0,0) 是 f(x, y) 的 (0,0)
- (B) 极小值点 (C) 非极值点
- (D) 不能确定

- 4. 下列级数中, 收敛的是().
- (A) $\sum_{n=1}^{\infty} \frac{1}{n \cdot \sqrt[n]{10^{1000} + n}}$ (B) $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n+n^2}}$ (C) $\sum_{n=1}^{\infty} (-1)^n \cos \frac{1}{n}$ (D) $\sum_{n=1}^{\infty} \frac{1+2^n}{3^n}$

- 5. 设级数 $\sum_{n=1}^{\infty} (-1)^n \frac{x^{2n}}{n \times 2^n}$ 的收敛区间是().
 - (A) [-2,2)
- (B) (-2,2)
- (C) $[-\sqrt{2}, \sqrt{2}]$ (D) $[-\sqrt{2}, \sqrt{2}]$
- 三、计算题: (每小题 7 分, 共 70 分)
- 1. 求函数 $z = \ln(1 + x^2 + y^2)$ 的偏导数 $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial x \partial y}$, $\frac{\partial^2 z}{\partial x^2}$ 以及全微分 dz.

2. 若函数由方程 $x^2 + y^2 + z^2 - 2z = 1$ 所确定,求 $\frac{\partial z}{\partial r}$, $\frac{\partial x}{\partial v}$, $\frac{\partial^2 z}{\partial r^2}$.