Tentamen – Mekanik F del 2 (FFM521 och 520)

Tid och plats: Tisdagen den 27 augusti 2013 klockan

14.00-18.00.

Lösningsskiss: Christian Forssén

Obligatorisk del

1. Lösningsskiss

• Använd arbete-energi principen.

• För rotationsrörelse runt en fix punkt kan vi använda att $T=I_{O}\omega^{2}/2$.

• Det blir då uppenbart att maximal rotationshastighet fås när den potentiella energin är som minst, dvs när skivans masscentrum befinner sig rakt nedanför O.

 \bullet Den enda svårigheten blir då att räkna ut I_O (använd Steiners sats), samt höjdskillnaden hmellan start- och slutlägen. Vi finner att

$$I_O = \frac{5}{3}mb^2, \quad h = \frac{\sqrt{5} - 1}{2}b.$$

• Insättning i $V_1 + T_1 = V_2 + T_2$ ger slutligen

$$\omega = \sqrt{\frac{3g}{5b} \left(\sqrt{5} - 1\right)},$$

vilket lätt kontrolleras för rätt dimension.

2. Rätt svarsalternativ:

- (a) X
- (b) X
- (c) 1
- (d) 1
- (e) X
- (f) 2

3. Lösningsskiss

• Rörelseekvationen för små svängningar i detta fall är

$$\ddot{\theta} + \frac{mgd}{I}\theta = 0,$$

där I är det relevanta tröghetsmomentet för den aktuella rotationsaxeln och d är avståndet till masscentrum. Vi ser alltså att $\omega \propto 1/\sqrt{I}$

- Avståndet d = r i bägge fall.
- För att finna tröghetsmomenten är det enklast att använda Steiners sats

$$I_{A-A} = mr^2/2 + mr^2 = 3mr^2/2,$$

 $I_{B-B} = mr^2 + mr^2 = 2mr^2.$

• Slutligen får vi alltså att

$$\frac{\omega_{A-A}}{\omega_{B-B}} = \sqrt{\frac{4}{3}}.$$

Vi noterar också att en dimensionsanalys enkelt ger att vårt slututtryck ej kan bero på några av systemparametrarna: m, r, g, och att en numeriska kvot alltså var förväntad.

4. Kroppen A befinner sig på jordytan (vid latitud ϕ , se figur).

Den upplever en gravitationskraft som verkar rakt mot jordens masscentrum. Vi kan frilägga kroppen A, och har alltså bara en verklig kraft

Vi tecknar Newton II: $m\vec{g}_0 = m\vec{a}_A$, där \vec{a}_A alltså är A:s absoluta acceleration. Notera att $\vec{a}_A = \vec{g}_0$ alltså är den acceleration som vi skulle uppmäta i ett icke-roterande koordinatsystem.

Låt oss istället betrakta kroppen A på ett roterande jordklot (vinkelhastigheten $\vec{\Omega}$ pekar norrut). Vi har fortfarande samma rörelseekvation: $m\vec{g}_0 = m\vec{a}_A$. Men vi kommer att observera en rörelse relativt jordytan, dvs en acceleration $\vec{a}_{\rm rel}$ relativt ett roterande koordinatsystem. Den absoluta accelerationen kan relateras till denna via följande samband

$$\vec{a}_A = \vec{a}_B + \vec{\alpha} \times \vec{R} + 2\vec{\Omega} \times \vec{v}_{rel} + \vec{\Omega} \times (\vec{\Omega} \times \vec{R}) + \vec{a}_{rel}$$

Med jordens mittpunkt B som origo i ett inertialsystem, och $\vec{v}_{\rm rel} = 0$, $\alpha = 0$ får vi alltså från rörelseekvationen att

$$m\vec{g}_0 = m \left[\vec{a}_{\rm rel} + \vec{\Omega} \times (\vec{\Omega} \times \vec{R}) \right],$$

vilket ger den observerade accelerationen

$$\vec{g} \equiv \vec{a}_{\rm rel} = \vec{g}_0 - \vec{\Omega} \times (\vec{\Omega} \times \vec{R}).$$

Vi noterar att $\left| \vec{\Omega} \times (\vec{\Omega} \times \vec{R}) \right| = \Omega^2 R \sin(\pi/2 - \phi) = \Omega^2 R \cos \phi$, och illustrerar de relevanta vektorerna och vinklarna med en figur

Vi kan använda cosinussatsen för att relatera längden på vektorerna

$$g^{2} = g_{0}^{2} + (\Omega^{2}R\cos\phi)^{2} - 2g_{0}(\Omega^{2}R\cos\phi)\cos\phi.$$

Vi introducerar nu $x \equiv \Omega^2 R/g_0$, och noterar att $x \ll 1$ (med numeriska värden: $x \approx 0.0005$). Vi finner därför att

$$\frac{g^2}{g_0^2} = 1 - 2x\cos^2\phi + O(x^2) \quad \Rightarrow \quad \frac{g}{g_0} = 1 - x\cos^2\phi + O(x^2).$$

I uppgiften eftersöktes $g - g_0 \approx -g_0 x \cos^2 \phi$.

(b)-uppgiften gick ut på att finna den maximala vinkeln mellan vektorerna \vec{g} och \vec{g}_0 . Vi noterar från figuren ovan att vinkeln θ blir som störst när $a_{c,\perp} = (\Omega^2 R \cos \phi) \sin \phi = \Omega^2 R \sin(2\phi)/2$ är maximal. Detta inträffar uppenbarligen när $\phi = 45^{\circ}$ (vilket känns logiskt).

Med $g \approx g_0(1 - x\cos^2\phi)$ får vi

$$\theta \approx \sin \theta \approx \frac{\Omega^2 R \sin(2\phi)/2}{g_0(1 - x \cos^2 \phi)} = \frac{x \sin(2\phi)}{2(1 - x \cos^2 \phi)}.$$

Vid latituden 45° blir detta $\theta_{\rm max} \approx x/2 + O(x^2) \ (\approx 0.015^\circ).$

Extrauppgift

5. (Enbart ledningar och svar)

Vi kan antingen teckna två rörelseekvationer (N-II för translationsrörelse samt vridmomentsekvation), eliminera den okända friktionskraften från dessa, och integrera från start till tiden då bollen har slutat att glida. Notera att friktionskraften inte är given $(F_f \leq \mu N)$.

Alternativt kan man använda sig av konservering av rörelsemängdsmoment m.a.p. en punkt på marken.

I bägge fall får vi svaret

$$v_f = \frac{v_0}{1+\beta},$$

där $\beta=2/5$ för ett homogent klot. Notera att friktionskraften uträttar ett negativt arbete och att den totala energin kommer at minska. Eftersom bollen rullar utan att glida gäller att $\omega_f=v_f/R$ och vi

Examinator: C. Forssén

förändringen i kinetisk energi fås enkelt som

$$\Delta T = \frac{1}{2} m v_0^2 - \left(\frac{1}{2} m v_f^2 + \frac{1}{2} \bar{I} \omega_f^2\right) = \frac{1}{2} m v_0^2 \left[1 - \frac{1}{(1+\beta)^2} - \frac{\beta}{(1+\beta)^2}\right]$$
$$= \frac{1}{2} m v_0^2 \frac{\beta}{(1+\beta)}.$$

Vi kan notera att mängden kinetisk energi som förloras beror på storleken på tröghetsmomentet $\bar{I} = \beta m R^2$. Desto större β är, ju mer energi förloras.

Överbetygsuppgifter

6. Lösningsstrategi

- Teckna skivans rotationsvektor samt tröghetsmatris i ett kroppsfixt koordinatsystem
- \bullet Teckna ett samband mellan dessa kroppsfixa axlar och det rumsfixa koordinatsystemet xyz.
- Den sökta vinkeln fås genom skalärprodukten $\cos \beta = \frac{\vec{L}_O}{L_O} \cdot \hat{z}$.
- (a) Rörelsemängdsmomenten uttryckt i det rumsfixa koordinatsystemet

$$\vec{L}_O = \frac{1}{4} m r^2 \omega \left[(-\sin \alpha \cos \alpha) \hat{x} + (\sin^2 \alpha + 2\cos^2 \alpha) \hat{z} \right]$$

- (b) Vinkeln $\beta = \arccos\left(\frac{3}{\sqrt{10}}\right) \approx 18^{\circ}$.
- 7. (Enbart svar)

$$\mathcal{F}_x = F_x, \quad \mathcal{F}_y = F_y, \quad \mathcal{F}_z = F_z,$$

dvs dessa tre motsvarar de kartesiska kraftkomponenterna. Vidare har vi

$$\mathcal{F}_{\theta} = l \left(F_x \cos \theta \cos \phi + F_y \cos \theta \sin \phi - F_z \sin \theta \right),$$

dv
s $\hat{\phi}$ -komponenten av vridmomentet m.a.p. masscentrum, där
 $\hat{\phi}$ -riktningen är vinkelrät mot vertikalen (z) samt mot stavens riktning. Slutligen har vi

Examinator: C. Forssén

$$\mathcal{F}_{\phi} = l \sin \theta \left(-F_x \sin \phi + F_y \cos \phi \right),\,$$

där detta motsvarar den vertikala $\left(z\right)$ komponenten av vridmomentet m.a.p. masscentrum.

Examinator: C. Forssén