Exercices Chapitre sur le Produit Scalaire*

Diego Van Overberghe

4 Juin 2020

Exercice 34

a)
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times \cos \frac{\pi}{6} = AB \times AC \times \frac{\sqrt{3}}{2} = \frac{20\sqrt{3}}{2}$$

- b) $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AH = 5$ H étant le projeté orthogonal de AC sur [AB].
- c) $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AH = 20$ H étant le projeté orthogonal de AC sur la demie-droite [AB)
- d) $\widehat{BAC} = 60^{\circ} = \frac{\pi}{3}$ (angles alternes-internes) $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times \cos \frac{\pi}{3} = 12$
- e) Non Traité

Exercice 35

a)
$$-2\vec{u} \cdot (3\vec{u} + \vec{v}) = -6\vec{u}^2 - 2\vec{u} \cdot \vec{v} = -166$$

b)
$$-8\vec{u}^2 + 14\vec{u} \cdot \vec{v} - 3\vec{v}^2 = -155$$

- c) Demander Correction
- d) Demander Correction

- a) La projéction orthogonale de \overrightarrow{AC} sur (AB) est \overrightarrow{AO}
- b) La projéction orthogonale de \overrightarrow{BD} sur (DC) est \overrightarrow{DO}
- c) La projéction orthogonale de \overrightarrow{OC} sur (BC) est \overrightarrow{OC}
- d) La projéction orthogonale de \overrightarrow{AD} sur (CD) est \overrightarrow{OD}
- e) La projéction orthogonale de \overrightarrow{OB} sur (EF) est \overrightarrow{OE}
- f) La projéction orthogonale de \overrightarrow{AB} sur (EF) est \overrightarrow{FE}

^{*}Page 233 du manuel Hatier

- a) $\overrightarrow{AB} \cdot \overrightarrow{DC} = 1$
- b) $\overrightarrow{AB} \cdot \overrightarrow{CD} = -1$
- c) $\overrightarrow{OB} \cdot \overrightarrow{OD} = -\frac{1}{2}$
- d) $\overrightarrow{DB} \cdot \overrightarrow{DC} = \frac{3\sqrt{2}}{2}$
- e) $\overrightarrow{DO} \cdot \overrightarrow{DC} = \frac{1}{2}$
- f) $\overrightarrow{AO} \cdot \overrightarrow{CB} = -\frac{1}{2}$

Exercice 46

- a) $\overrightarrow{EF} \cdot \overrightarrow{EG} = EF \times EG \times \cos \frac{\pi}{2} = 12\sqrt{2}$
- b) $\overrightarrow{EF} \cdot \overrightarrow{EG} = EF \times EG \times \cos \frac{5\pi}{6} = -\frac{15\sqrt{3}}{2}$

Exercice 48

- a) $\vec{u}\binom{2}{-1}$, $\vec{v}\binom{4}{5}$: $\vec{u} \cdot \vec{v} = x_{\vec{u}} \times x_{\vec{v}} + y_{\vec{u}} \times y_{\vec{v}} = 3$
- b) $\vec{u} \begin{pmatrix} \frac{1}{2} \\ -3 \end{pmatrix}$, $\vec{v} \begin{pmatrix} \frac{1}{4} \\ \frac{1}{3} \end{pmatrix}$: $\vec{u} \cdot \vec{v} = x_{\vec{u}} \times x_{\vec{v}} + y_{\vec{u}} \times y_{\vec{v}} = \frac{-7}{8}$
- c) $\vec{u} = 3\vec{i} + 2\vec{j}$, et $\vec{v} = 3\vec{i} + \vec{j}$: $\vec{u} \cdot \vec{v} = x_{\vec{u}} \times x_{\vec{v}} + y_{\vec{u}} \times y_{\vec{v}} = 11$

Exercice 49

- a) Faux. Si les deux vecteurs ont un sens opposé, alors le produit scalaire sera l'opposé du produit de leurs normes.
- b) Faux. Il suffit d'imaginer deux vecteurs ayant le même projeté orthogonal sur un vecteur. Ces deux derniers sont différents, et pourtant leur produit scalaire est identique.
- c) Faux. $\|\vec{u}\|^2 + \|\vec{v}\|^2 2\vec{u} \cdot \vec{v} < 0 \iff \|\vec{u} + \vec{v}\|^2 < 0$ Or, un nombre au carré est positif.
- d) Vrai. $\vec{u}^2 = \vec{u} \cdot \vec{u} = ||\vec{u}|| \times ||\vec{u}|| \times \cos 0^* = ||\vec{u}||^2$

Exercice 50

- a) $\overrightarrow{AB} \cdot \overrightarrow{AC} = -9$
- b) $\overrightarrow{AB} \cdot \overrightarrow{AC} = -12$
- c) $\overrightarrow{AB} \cdot \overrightarrow{AC} = 8$
- d) $\overrightarrow{AB} \cdot \overrightarrow{AC} = -10$

^{*.} L'angle entre deux vecteurs identiques est 0°

- a) $\vec{u} \cdot \vec{v} = 12$
- b) $\vec{t} \cdot \vec{w} = -12$
- c) $\vec{m} \cdot \vec{h} = 2$
- d) $\vec{w} \cdot \vec{u} = 16$
- e) $\vec{v} \cdot \vec{w} = 12$
- f) $\vec{m} \cdot \vec{u} = 12$

1. a)
$$\|\vec{u}\| = 4$$
 $\|\vec{v}\| = 3\sqrt{2}$

b)
$$\vec{u} \cdot \vec{v} = 12$$

c)
$$\cos \alpha = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \times \|\vec{v}\|} = \frac{\sqrt{2}}{2} \quad \alpha = 45^{\circ}$$

2. a)
$$\|\vec{u}\| = 2\sqrt{2} \quad \|\vec{v}\| = 4$$

b)
$$\vec{u} \cdot \vec{v} = -8$$

c)
$$\cos \alpha = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \times \|\vec{v}\|} = -\frac{\sqrt{2}}{2} \quad \alpha = 135^{\circ}$$

3. a)
$$\|\vec{u}\| = \sqrt{5}$$
 $\|\vec{v}\| = 3$

b)
$$\vec{u} \cdot \vec{v} = 3$$

c)
$$\cos \alpha = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \times \|\vec{v}\|} = \frac{\sqrt{5}}{5} \quad \alpha \approx 63^{\circ}$$

4. a)
$$\|\vec{u}\| = 2\sqrt{2}$$
 $\|\vec{v}\| = \sqrt{10}$

b)
$$\vec{u} \cdot \vec{v} = 4$$

c)
$$\cos \alpha = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \times \|\vec{v}\|} = \frac{\sqrt{5}}{5} \quad \alpha \approx 63^{\circ}$$

Exercice 53

1. a) Ce n'est pas possible. L'angle est inférieur à 90° mais le produit scalaire est négatif.

b)
$$AC = \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{AB \times \cos \frac{3\pi}{4}} = 2\sqrt{2}$$

2. a)
$$\cos \alpha = \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{\overrightarrow{AB} \times \overrightarrow{AC}} = -\frac{\sqrt{2}}{2} \quad \alpha = 135^{\circ}$$

b) Ce n'est pas possible.
$$AB \times AC = 10$$
, Or, $\overrightarrow{AB} \cdot \overrightarrow{AC} = 15$

c)
$$AB \times AC = \overrightarrow{AB} \cdot \overrightarrow{AC}$$
, Donc, $\alpha = 0^{\circ}$

a)
$$5\vec{u}^2 + 9\vec{u} \cdot \vec{v} - 2\vec{v}^2 = 117$$

b)
$$\vec{u}^2 + 2\vec{u} \cdot \vec{v} + \vec{v}^2 = 30$$

Exercice 57

a)
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \frac{1}{2}(AB^2 + AC^2 - BC^2) = 20$$

b)
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \frac{1}{2}(AB^2 + AC^2 - BC^2) = 8$$

c) Le triangle est réctangle en B. Le projeté orthogonal de C sur [AB] est B.

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AB = 36$$

ou

D'Après le théorème de Pythagore : $BC^2 = AC^2 - AB^2 = 64$

Alors
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = 36$$

d) BC = AD = 7 Donc,
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \frac{1}{2}(AB^2 + AC^2 - BC^2) = -4$$

Exercice 58

a)
$$\vec{u} \cdot \vec{v} = x_{\vec{u}} \times x_{\vec{v}} + y_{\vec{u}} \times y_{\vec{v}} = 4$$

b)
$$-4\vec{u} \cdot \vec{v} = -16$$

c)
$$-2\vec{u}\cdot\vec{v}=-8$$

d)
$$\vec{u} + \vec{v} = \begin{pmatrix} 2 \\ -4 \end{pmatrix}$$
 $\vec{u} - \vec{v} = \begin{pmatrix} 0 \\ -2 \end{pmatrix}$ $\begin{pmatrix} 2 \\ -4 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ -2 \end{pmatrix} = 8$

Exercice 60

a)
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = -AB \times AC \implies A,B \text{ et } C \text{ sont alignés.}$$

b)
$$\vec{u} \cdot \vec{v} = 0 \implies \vec{u} = 0 \text{ ou } \vec{v} = 0$$

c)
$$\vec{u} = 3\vec{v} \implies \vec{u}^2 = 9\vec{v}^2$$

d)
$$\|\vec{u}\| = 0 \iff \vec{u} = \overrightarrow{0}$$

Exercice 61

a)
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times \cos 40^{\circ} \approx 15.3$$

b) D'Après le théorème d'Al-Kashi,
$$a^2 = b^2 + c^2 - 2bc \times \cos \widehat{A}$$
.

Donc,
$$\cos \widehat{A} = \frac{b^2 + c^2 - a^2}{2bc}$$

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times \frac{6^2 + 4^2 - 3^2}{2 \times 6 \times 4} = 21,5$$

c) Le triangle est isocèle, donc, le projeté orthogonal de B sur [AC] se situe au centre de ce ségment. $\overrightarrow{AB} \cdot \overrightarrow{AC} = 6 \times 3 = 18$

4

d) On imagine le point E qui forme le carré ADCE, avec une diagonale de 3, et donc un côté de $\frac{3}{\sqrt{2}}$

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = 5 \times \frac{3}{\sqrt{2}} = \frac{15}{\sqrt{2}}$$

e) On assume que ADCB est un parallélogramme. On imagine le point E qui forme le réctangle HDCE, [EB] = 1. E est le projeté orthogonal de C sur [AE]. $\overrightarrow{AB} \cdot \overrightarrow{AC} = 30$

f)
$$(\overrightarrow{AB}; \overrightarrow{AC}) = (\pi - \frac{2\pi}{3}) = -\frac{\pi}{3}$$
 et $\overrightarrow{AB} \cdot \overrightarrow{AC} = 7 \times \cos - \frac{-\pi}{3} = \frac{7}{2}$

Exercice 63

a) Méthode 1: On utilise la relation de Chasles.

$$\overrightarrow{EC} \cdot \overrightarrow{ED} = (\overrightarrow{EA} + \overrightarrow{AC}) \cdot (\overrightarrow{EB} + \overrightarrow{BD})$$

$$= \overrightarrow{EA} \cdot \overrightarrow{EB} + \overrightarrow{EA} \cdot \overrightarrow{BD} + \overrightarrow{AC} \cdot \overrightarrow{EB} + \overrightarrow{AC} \cdot \overrightarrow{BD}$$

$$= 9,25$$

Méthode 2 : Posons le repère (A; \vec{t} ; \vec{j}) où $\begin{pmatrix} \vec{t} = \frac{1}{6}AB \\ \vec{t} = \frac{1}{4}\overrightarrow{AC} \end{pmatrix}$

$$\begin{cases}
\overrightarrow{EC}\binom{x_{C}-x_{E}}{y_{C}-y_{E}} \\
\overrightarrow{ED}\binom{x_{D}-x_{E}}{y_{D}-y_{E}}
\end{cases}
\iff
\begin{cases}
\overrightarrow{EC}\binom{-1,5}{4} \\
\overrightarrow{ED}\binom{4,5}{4}
\end{cases}$$

$$\overrightarrow{EC} \cdot \overrightarrow{ED} = x_{\overrightarrow{EC}} \times x_{\overrightarrow{ED}} + y_{\overrightarrow{EC}} \times y_{\overrightarrow{ED}} = 9,25$$

Angle \widehat{DEC} : $\overrightarrow{EC} \cdot \overrightarrow{ED} = EC \times ED \times \cos \widehat{DEC}$

EC =
$$\sqrt{x_{\overrightarrow{EC}}^2 + y_{\overrightarrow{EC}}^2} = \sqrt{18,25}$$

ED = $\sqrt{x_{\overrightarrow{ED}}^2 + y_{\overrightarrow{ED}}^2} = \sqrt{36,25}$

$$ED = \sqrt{x_{\overrightarrow{ED}}^2 + y_{\overrightarrow{ED}}^2} = \sqrt{36,25}$$

$$\cos \widehat{DEC} = \frac{\overrightarrow{EC} \cdot \overrightarrow{ED}}{EC \times ED} = \frac{9,25}{\sqrt{661.5625}}$$

$$\widehat{DEC} = cos^{-1} \left(\frac{9,25}{\sqrt{661,5625}} \right) \approx 68,92^{\circ}$$

Méthode 1 : On voit que B est le projeté orthogonal de E sur [DB], donc, b)

$$\overrightarrow{DB} \cdot \overrightarrow{DE} = DB \times DB = 16$$

Méthode 2 : Dans
$$(A; \overrightarrow{i}; \overrightarrow{j}) : \overrightarrow{DB}(0; -4) \longrightarrow \overrightarrow{DE}(-4,5; -4)$$

$$\overrightarrow{DB} \cdot \overrightarrow{DE} = 16$$

Longeur de BF: Aire DBC = $\frac{DB \times DE}{2} = \frac{DF \times DE}{2}$ donc DB × BE = BF × DE

$$BF = \frac{DB \times BE}{DE} \approx 2,99$$

- a) Faux. Les vecteurs sont colinéaires. $\vec{u} \cdot \vec{v} = x_{\vec{u}} x_{\vec{v}} + y_{\vec{u}} y_{\vec{v}} = -13$ $\vec{u} \cdot \vec{v} \neq 0 \iff \neg(\vec{u} \perp \vec{v})$
- b) Vrai. $\vec{u} \cdot \vec{v} = x_{\vec{u}} x_{\vec{v}} + y_{\vec{u}} y_{\vec{v}} = 0$ $\vec{u} \cdot \vec{v} = 0 \iff \vec{u} \perp \vec{v}$ (Parce que $\vec{u} \neq 0$ et $\vec{v} \neq 0$)
- c) Faux. Pour a=2, on a $\vec{u}\binom{2}{-1}$ et $\vec{v}\binom{0}{1}$. Or $x_{\vec{u}}x_{\vec{v}}+y_{\vec{u}}y_{\vec{v}}=-1$ $\vec{u}\cdot\vec{v}\neq 0 \iff \neg(\vec{u}\perp\vec{v})$
- d) On a $\vec{u}\binom{2}{-3}$ et $\vec{v}\binom{6}{4}$. $x_{\vec{u}}x_{\vec{v}} + y_{\vec{u}}y_{\vec{v}} = 0$ $\vec{u} \cdot \vec{v} = 0 \iff \vec{u} \perp \vec{v}$ (Parce que $\vec{u} \neq 0$ et $\vec{v} \neq 0$)

Exercice 66

$$\vec{u} \cdot \vec{v} = 0 \iff x_{\vec{u}} x_{\vec{v}} + y_{\vec{u}} y_{\vec{v}} = 0$$

- a) $\vec{u} \perp \vec{v}$ pour $\vec{v} \begin{pmatrix} -2 \\ 1 \end{pmatrix}$
- b) $\vec{u} \perp \vec{v}$ pour $\vec{v} \begin{pmatrix} 4 \\ 3 \end{pmatrix}$
- c) $\vec{u} \perp \vec{v}$ pour $\vec{v} \begin{pmatrix} 1 \\ -2 \end{pmatrix}$
- d) $\vec{u} \perp \vec{v}$ pour $\vec{v} \begin{pmatrix} 2 \\ \sqrt{2} \end{pmatrix}$
- e) $\vec{u} \perp \vec{v}$ pour $\vec{v} \begin{pmatrix} -a \\ 1 \end{pmatrix}$

Exercice 68

a) Vrai. Si les deux vecteurs sont orthogonaux, alors, leur produit scalaire sera nul.

6

$$(\vec{u} + \vec{v}) \cdot (\vec{u} - \vec{v}) = 0$$

$$\iff \vec{u}^2 - \vec{v}^2 = 0$$

$$\iff ||\vec{u}||^2 - ||\vec{v}||^2 = 0$$

$$\iff ||\vec{u}|| = ||\vec{v}||$$

- b) Vrai.
- c) Vrai. Il s'agit tout simplement du théorème de Pythagore.
- d) Vrai. Ici, il s'agit de la réciproque du théorème de Pythagore.

Exercice 69

Si ABC est réctangle, alors, $\overrightarrow{AB} \cdot \overrightarrow{AC} = 0$.

$$\begin{cases}
\overrightarrow{AB} \begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix} \\
\overrightarrow{BC} \begin{pmatrix} x_C - x_B \\ y_C - y_B \end{pmatrix}
\end{cases} \iff \begin{cases}
\overrightarrow{AB} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \\
\overrightarrow{BC} \begin{pmatrix} 2 \\ -3 \end{pmatrix}$$

$$\overrightarrow{AB} \cdot \overrightarrow{BC} = x_{\overrightarrow{AB}} \times x_{\overrightarrow{BC}} + y_{\overrightarrow{AB}} \times y_{\overrightarrow{BC}} = 1$$
 Donc, $\widehat{B} \neq 90^{\circ}$

a)
$$\vec{u} \cdot \vec{v} = 15 + m$$

 $\vec{u} \cdot \vec{v} = 0 \iff 15 + m = 0 \iff m = -15$

b)
$$\vec{u} \cdot \vec{v} = 5m - 6$$

 $\vec{u} \cdot \vec{v} = 0 \iff 5m - 6 = 0 \iff m = \frac{6}{5}$

c)
$$\vec{u} \cdot \vec{v} = 8 - m^2$$

 $\vec{u} \cdot \vec{v} = 0 \iff 8 - m^2 = 0 \iff m = 2\sqrt{2}$ ou $m = -2\sqrt{2}$

d)
$$\vec{u} \cdot \vec{v} = 0$$

 $\vec{u} \cdot \vec{v} = 0 \iff m = m$

a)
$$\begin{cases}
\overrightarrow{AB} \begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix} \\
\overrightarrow{AD} \begin{pmatrix} x_D - x_A \\ y_D - y_A \end{pmatrix} \\
\overrightarrow{BA} \begin{pmatrix} x_A - x_B \\ y_A - y_B \end{pmatrix} \\
\overrightarrow{BC} \begin{pmatrix} x_C - x_B \\ y_C - y_B \end{pmatrix}
\end{cases}
\iff
\begin{cases}
\overrightarrow{AB} \begin{pmatrix} -3 \\ 1 \end{pmatrix} \\
\overrightarrow{AD} \begin{pmatrix} -1 \\ -3 \end{pmatrix} \\
\overrightarrow{BA} \begin{pmatrix} 3 \\ -1 \end{pmatrix} \\
\overrightarrow{BC} \begin{pmatrix} -2 \\ -6 \end{pmatrix}
\end{cases}$$

$$\overrightarrow{AB} \cdot \overrightarrow{AD} = x_{\overrightarrow{AB}} x_{\overrightarrow{AD}} + y_{\overrightarrow{AB}} y_{\overrightarrow{AD}} = 0$$
$$\overrightarrow{BA} \cdot \overrightarrow{BC} = x_{\overrightarrow{BA}} x_{\overrightarrow{BC}} + y_{\overrightarrow{BA}} y_{\overrightarrow{BC}} = 0$$

b) \overrightarrow{AD} et \overrightarrow{BC} sont colinéaires, puisque ils sont tous les deux orthogonaux avec \overrightarrow{AB} . Donc, [AD] et [BC] sont parallèles. Comme AD \neq BC ($\overrightarrow{AD} = \frac{1}{2}\overrightarrow{BC}$), il ne s'agit pas d'un carré ou d'un rectangle, donc le quadrilatère est un trapèze.

Exercice 73

a)
$$\begin{cases} \overrightarrow{AB} \begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix} & \iff \begin{cases} \overrightarrow{AB} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \overrightarrow{CD} \begin{pmatrix} x_D - x_C \\ y_D - y_C \end{pmatrix} \end{cases} \iff \begin{cases} \overrightarrow{AB} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{cases}$$

$$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{CD}} = x_{\overrightarrow{\mathrm{AB}}} x_{\overrightarrow{\mathrm{CD}}} + y_{\overrightarrow{\mathrm{AB}}} y_{\overrightarrow{\mathrm{CD}}} = -1$$

$$\vec{u} \cdot \vec{v} \neq 0 \iff \neg (\vec{u} \perp \vec{v})$$

On peut donc conclure que (AB) et (CD) ne sont pas perpendiculaires.

b)
$$\begin{cases} \overrightarrow{AB} \begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix} & \iff \begin{cases} \overrightarrow{AB} \begin{pmatrix} 2 \\ -7 \end{pmatrix} \\ \overrightarrow{CD} \begin{pmatrix} x_D - x_C \\ y_D - y_C \end{pmatrix} \end{cases}$$

$$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{CD}} = x_{\overrightarrow{\mathrm{AB}}} x_{\overrightarrow{\mathrm{CD}}} + y_{\overrightarrow{\mathrm{AB}}} y_{\overrightarrow{\mathrm{CD}}} = 0$$

$$\vec{u} \cdot \vec{v} = 0 \iff \vec{u} \perp \vec{v} \quad \text{(Parce que } \vec{u} \neq 0 \text{ et } \vec{v} \neq 0\text{)}$$

On peut donc conclure que (AB) et (CD) sont perpendiculaires.

c)
$$\begin{cases} \overrightarrow{AB} \begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix} & \iff \begin{cases} \overrightarrow{AB} \begin{pmatrix} \sqrt{2} - \sqrt{3} \\ -5 \end{cases} \\ \overrightarrow{CD} \begin{pmatrix} x_D - x_C \\ \sqrt{2} - \sqrt{3} \end{pmatrix} \end{cases}$$

$$\overrightarrow{AB} \cdot \overrightarrow{CD} = x_{\overrightarrow{AB}} x_{\overrightarrow{CD}} + y_{\overrightarrow{AB}} y_{\overrightarrow{CD}} = 0$$

$$\vec{u} \cdot \vec{v} = 0 \iff \vec{u} \perp \vec{v} \quad \text{(Parce que } \vec{u} \neq \vec{0} \text{ et } \vec{v} \neq \vec{0}\text{)}$$

On peut donc conclure que (AB) et (CD) sont perpendiculaires.

a) On pose le repère (A;
$$\overrightarrow{t}$$
; \overrightarrow{j}) où $\left(\overrightarrow{i} = \frac{1}{4}\overrightarrow{AB}\right)$

$$A(0;0), G(-2;4), H(6;4)$$

$$\begin{cases} \overrightarrow{AG} \begin{pmatrix} x_{G} - x_{A} \\ y_{G} - y_{A} \end{pmatrix} & \iff \begin{cases} \overrightarrow{AG} \begin{pmatrix} -2 \\ 4 \end{pmatrix} \\ \overrightarrow{AH} \begin{pmatrix} x_{H} - x_{A} \\ y_{H} - y_{A} \end{pmatrix} & \iff \begin{cases} \overrightarrow{AH} \begin{pmatrix} 6 \\ 4 \end{pmatrix} \end{cases}$$

$$\overrightarrow{AG} \cdot \overrightarrow{AH} = x_{\overrightarrow{AG}} \times x_{\overrightarrow{AH}} + y_{\overrightarrow{AG}} \times y_{\overrightarrow{AH}} = 4$$
 Donc, $\widehat{A} \neq 90^{\circ}$

Exercice 78

1) def orthogonaux(a,b,c,d):

$$p=a*c+b*d$$
if $p==0$:

return True

else:

return False

- 2) a) True
 - b) False

Exercice 79

1) a) Méthode 1 :
$$\begin{cases} \overrightarrow{AH} \begin{pmatrix} x_H - x_A \\ y_H - y_A \end{pmatrix} \\ \overrightarrow{CB} \begin{pmatrix} x_B - x_C \\ y_B - y_C \end{pmatrix} \end{cases} \iff \begin{cases} \overrightarrow{AH} \begin{pmatrix} x_H \\ y_H - 3 \end{pmatrix} \\ \overrightarrow{CB} \begin{pmatrix} 4 \\ -4 \end{pmatrix} \end{cases}$$

$$\overrightarrow{AH} \cdot \overrightarrow{CB} = x_{\overrightarrow{AH}} x_{\overrightarrow{CB}} + y_{\overrightarrow{AH}} y_{\overrightarrow{CB}} = 4x_H - 4y_H + 12$$

Méthode 2 : La hauteur issue de BC passe par le point H et A.

Donc,
$$([AH] \perp [CB]) \iff \overrightarrow{AH} \cdot \overrightarrow{CB} = 0$$

b) On a donc,

$$\overrightarrow{AH} \cdot \overrightarrow{CB} = 0$$

$$\iff 4x_{\rm H} - 4y_{\rm H} + 12 = 0$$

$$\iff$$
 $4x_{\rm H} - 4y_{\rm H} - 12$

$$\iff$$
 $x_{\rm H} = y_{\rm H} - 3$

$$\iff$$
 $y_{\rm H} = x_{\rm H} + 3$

2) Méthode 1 :
$$\begin{cases} \overrightarrow{BH} \begin{pmatrix} x_H - x_B \\ y_H - y_B \end{pmatrix} & \iff \begin{cases} \overrightarrow{BH} \begin{pmatrix} x - 2 \\ y + 1 \end{pmatrix} \\ \overrightarrow{AC} \begin{pmatrix} x_C - x_A \\ y_C - y_A \end{pmatrix} \end{cases} \Leftrightarrow \begin{cases} \overrightarrow{BH} \begin{pmatrix} x - 2 \\ y + 1 \end{pmatrix} \end{cases}$$

$$\overrightarrow{BH} \cdot \overrightarrow{AC} = x_{\overrightarrow{BH}} x_{\overrightarrow{AC}} + y_{\overrightarrow{BH}} y_{\overrightarrow{AC}} = 4 - 2x_H$$

Méthode 2 : La hauteur issue de AC passe par le point H et B.

Donc,
$$([BH] \perp [AC]) \iff \overrightarrow{BH} \cdot \overrightarrow{AC} = 0$$

3)
$$\begin{cases} 4 - 2x_{H} = 0 \\ y_{H} = x_{H} + 3 \end{cases} \iff \begin{cases} x_{H} = 2 \\ y_{H} = 5 \end{cases}$$
 H(2;5)

Exercice 81

a)
$$\overrightarrow{CD} \cdot \overrightarrow{EA} = CD \times EA \times \cos 0 = ax$$

 $\overrightarrow{DF} \cdot \overrightarrow{AD} = DF \times AD \times \cos 180^{\circ} = -ax$

b) On pose le repère $(D; \overrightarrow{DC}; \overrightarrow{DA})$.

$$\begin{cases} \overrightarrow{\mathrm{CF}}\begin{pmatrix} x_{\mathrm{F}} - x_{\mathrm{C}} \\ y_{\mathrm{F}} - y_{\mathrm{C}} \end{pmatrix} & \iff \begin{cases} \overrightarrow{\mathrm{CF}}\begin{pmatrix} -a \\ x \end{pmatrix} \\ \overrightarrow{\mathrm{ED}}\begin{pmatrix} x_{\mathrm{D}} - x_{\mathrm{E}} \\ y_{\mathrm{D}} - y_{\mathrm{E}} \end{pmatrix} \end{cases}$$

$$\overrightarrow{CF} \cdot \overrightarrow{ED} = -a \times -x - a \times x = 0$$

Or. $\overrightarrow{CD} \cdot \overrightarrow{ED} = 0 \iff (CF) \perp (ED)$

Exercice 83

Tout d'Abord, (TU)
$$\perp$$
 (RS) $\Longrightarrow \overrightarrow{TU} \cdot \overrightarrow{RS} = 0 \iff x_{\overrightarrow{TU}} x_{\overrightarrow{RS}} + y_{\overrightarrow{TU}} y_{\overrightarrow{RS}} = 0$

De plus, $\overrightarrow{RS} \begin{pmatrix} x_S - x_R \\ y_S - y_R \end{pmatrix} \iff \overrightarrow{RS} \begin{pmatrix} 6 \\ 2 \end{pmatrix}$, et $x_{\overrightarrow{TU}} = x_U - x_T$, $y_{\overrightarrow{TU}} = y_U - y_T$
 $\overrightarrow{TU} \cdot \overrightarrow{RS} = 0 \iff 6x_{\overrightarrow{TU}} + 2y_{\overrightarrow{TU}} = 0$
 $\iff 6(x_U - 3) = -2(y_U + 2)$
 $\iff 6x_U - 18 = -2y_U - 4$
 $\iff 6x_U + 2y_U = 14$

Tout doublet qui satisfie cette equation représente un point qui se situera sur la droite (TU), mais n'appartiendra pas forcément à la doite (RS).

On définit donc cette droite. $y = \frac{1}{3}x + \frac{11}{3}$

On cherche donc le doublet qui satisfait les deux équations.

$$\begin{cases} 6x_{U} + 2y_{U} = 14 \\ y_{U} = \frac{1}{3}x_{U} + \frac{11}{3} \end{cases} \iff \begin{cases} 6x_{U} + \frac{2}{3}x_{U} + \frac{22}{3} = 14 \\ y_{U} = \frac{1}{3}x_{U} + \frac{11}{3} \end{cases} \iff \begin{cases} x_{U} = 1 \\ y_{U} = 4 \end{cases}$$
 U(1;4)

Exercice 85

D'Après le théorème d'Al-Kashi:

$$AC^{2} = BC^{2} + BA^{2} - 2 \times BC \times BA \times \cos \widehat{ABC}$$

$$AC = \sqrt{AB^{2} + BC^{2} - 2 \times AB \times BC \times \cos 30^{\circ}} \approx 4.6$$

D'Après le théorème d'Al-Kashi:

$$EF^{2} = DE^{2} + DF^{2} - 2 \times DE \times DF \times \cos \widehat{EDF}$$

$$EF = \sqrt{DE^{2} + DF^{2} - 2DE \times DF \times \cos 45^{\circ}} \approx 3.6$$

Exercice 87

a)
$$IJ^2 + JK^2 = IK^2$$

Donc, d'après la réciproque du théorème de Pythagore, le triangle IJK est un triangle rectangle en J.

b)
$$\hat{J} = 90^{\circ}$$

$$\widehat{\mathbf{I}} = \cos^{-1}\left(\frac{j^2 + k^2 - i^2}{2jk}\right) \approx 41^{\circ}$$

$$\widehat{K} = \cos^{-1}\left(\frac{i^2 + j^2 - k^2}{2i\,i}\right) \approx 49^\circ$$

Exercice 89

a)
$$\cos \hat{G} = \frac{h^2 + l^2 - g^2}{2hl} = \frac{31}{44}$$

$$\cos \hat{H} = \frac{g^2 + l^2 - h^2}{2gl} = -\frac{7}{32}$$

b)
$$\widehat{L} = 180 - \cos^{-1}\left(\frac{31}{44}\right) - \cos^{-1}\left(-\frac{7}{32}\right) \approx 32.2^{\circ}$$

Exercice 90

$$MA^2 + MB^2 = 2MI^2 + \frac{AB^2}{2}$$

$$\iff MI = \sqrt{\frac{1}{2} \left(MA^2 + MB^2 - \frac{AB^2}{2} \right)}$$

$$\iff$$
 MI = 5

$$n^2 = q^2 + r^2 - 2pr \times \cos \widehat{N} = 76$$

$$n = 2\sqrt{19} \approx 8.7 \approx 4.4\text{NP}$$

D'après le théorème d'Al-Kashi:

$$r^{2} = s^{2} + n^{2} - 2sn \times \cos \widehat{R}$$

$$\iff \widehat{R} = \cos^{-1} \left(\frac{s^{2} + n^{2} - r^{2}}{2sn} \right) \approx 123^{\circ}$$
De même, $\widehat{N} = \cos^{-1} \left(\frac{r^{2} + s^{2} - n^{2}}{2rs} \right) \approx 16^{\circ}$

$$\widehat{S} = \cos^{-1} \left(\frac{n^{2} + r^{2} - s^{2}}{2nr} \right) \approx 41^{\circ}$$

Exercice 93

a) D'après le théorème d'Al-Kashi dans le trianlge ABC, et avec a = BC, b = AC et c = AB:

$$a^{2} = b^{2} + c^{2} - 2bc \times \cos \widehat{A}$$

$$\iff \widehat{A} = \cos^{-1} \left(\frac{b^{2} + c^{2} - a^{2}}{2bc} \right) \approx 26,6^{\circ}$$
De même, $\widehat{B} = \cos^{-1} \left(\frac{c^{2} + a^{2} - b^{2}}{2ca} \right) \approx 137,9^{\circ}$

$$\widehat{C} = \cos^{-1} \left(\frac{a^{2} + b^{2} - c^{2}}{2ab} \right) \approx 15,6^{\circ}$$

b) D'après le théorème d'Al-Kashi dans le triangle EDF, et avec d = EF, e = DF et f = DE:

$$d = \sqrt{e^2 + f^2 - 2ef \times \cos \frac{\pi}{3}}$$
$$= \sqrt{79}$$
$$\approx 8.9$$

c) D'après le théorème d'Al-Kashi dans le triangle IJK, et avec i = JK, j = IK et k = IJ:

$$i = \sqrt{j^2 + k^2 - 2jk \times \cos\frac{\pi}{6}}$$

$$\approx 17.8$$

d) D'après le théorème d'Al-Kashi dans le triangle GHL, et avec g = HL, l = GH et h = GL:

11

$$h^{2} = g^{2} + l^{2} - 2gl \times \cos \widehat{H}$$

$$\iff \widehat{H} = \cos^{-1} \left(\frac{g^{2} + l^{2} - h^{2}}{2gl} \right) \approx 71^{\circ}$$

D'après le théorème de la médiane :

$$MP^{2} + MN^{2} = 2MM'^{2} + \frac{MP^{2}}{2}$$

$$\iff MM' = \sqrt{\frac{1}{2} \left(MP^{2} + MN^{2} - \frac{NP^{2}}{2} \right)}$$

$$\iff MM' \approx 6.2$$

$$MP^{2} + NP^{2} = 2PP'^{2} + \frac{NM^{2}}{2}$$

$$\iff PP' = \sqrt{\frac{1}{2} \left(MP^{2} + NP^{2} - \frac{NM^{2}}{2} \right)}$$

$$\iff PP' \approx 4,5$$

$$NM^{2} + NP^{2} = 2NN'^{2} + \frac{MP^{2}}{2}$$

$$\iff NN' = \sqrt{\frac{1}{2} \left(NM^{2} + NP^{2} - \frac{MP^{2}}{2} \right)}$$

$$\iff NN' \approx 7.9$$

Exercice 96

a) D'après le théorème d'Al-Kashi dans le triangle ABC, avec a = BC, b = AC et c = AB:

$$b^{2} = a^{2} + c^{2} - 2ac \times \cos \widehat{B}$$

$$\iff b = \sqrt{a^{2} + c^{2} - 2ac \times \cos \widehat{B}}$$

$$\iff AC = \sqrt{19} \approx 4.4$$

b) De plus,

$$\widehat{A} = \cos^{-1} \left(\frac{b^2 + c^2 - a^2}{2bc} \right)$$

$$\iff \widehat{A} \approx 32^{\circ}$$

$$\widehat{C} = 180 - 30 - 32$$

$$\iff \widehat{C} = 118^{\circ}$$

a) D'Après le théorème d'Al-Kashi dans le triangle IMJ, avec i = MJ, m = IJ et j = IM. $\widehat{I} = 30^{\circ}$:

$$i^{2} = m^{2} + j^{2} - 2mj \times \cos \widehat{1}$$

$$\iff i = \sqrt{m^{2} + j^{2} - 2mj \times \cos \widehat{1}}$$

$$\iff MJ \approx 3.4$$

De même, dans le triangle IML, avec i = [ML], m = [IL] et l = [IM]. $\widehat{l} = 60^{\circ}$:

$$i^{2} = m^{2} + l^{2} - 2ml \times \cos \widehat{1}$$

$$\iff i = \sqrt{m^{2} + l^{2} - 2ml \times \cos \widehat{1}}$$

$$\iff ML \approx 3.5$$

b) On cherche d'Abord $\widehat{\text{MLK}}$. $\widehat{\text{MLK}} = 90 - \widehat{\text{ILM}}$ D'après le théorème d'Al-Kashi dans le triangle IML, avec l = IM, i = ML et m = IL:

c)
$$l^{2} = i^{2} + m^{2} - 2im \times \cos \widehat{ILM}$$

$$\iff \widehat{ILM} = \cos^{-1} \left(\frac{i^{2} + m^{2} - l^{2}}{2im} \right)$$

$$\iff \widehat{ILM} = 30^{\circ} = \frac{\pi}{6}.$$

On conclut que $\widehat{\text{MLK}} = 60^{\circ} = \frac{\pi}{3}$

D'après le théorème d'Al-Kashi, dans le triangle MLK, avec l = MK, m = LK et k = ML: $l^2 = m^2 + k^2 - 2mk \times \cos \hat{L}$

$$\iff l = \sqrt{m^2 + k^2 - 2mk \times \cos \hat{L}}$$

$$\iff$$
 MK ≈ 4.4

Exercice 99

$$[AB] = \cos \frac{\pi}{6} \times [AE] = 7$$

D'Après la contraposée du théorème de Pythagore, dans le triangle ABE, rectangle en E :

[BE] =
$$\sqrt{AE^2 - AB^2} = \frac{7\sqrt{3}}{3} \approx 4$$

D'après le théorème d'Al-Kashi, dans le triangle ADB, avec a= DB, d= AB et b= AD :

13

$$a = \sqrt{d^2 + b^2 - 2db \times \cos\frac{\pi}{6}} \approx 3.5$$

Donc, le chemin a une longeur d'à peu près 7,5

D'Après le théorème d'Al-Kashi, dans le triangle ABC, avec a = BC, b = AC et c = AB:

$$\widehat{I} = \cos^{-1}\left(\frac{b^2 + c^2 - a^2}{2bc}\right) \approx 39^{\circ}$$

$$[CH] = \sin 39^{\circ} \times [AC] \approx 3.7$$

$$Aire_{ABC} = \frac{bh}{2} \approx 15$$

Exercice 108

On cherche d'abord la longuer de ST.

D'Après le théorème d'Al-Kashi, dans le triangle RST, avec r = ST, s = RT et t = RS:

$$r^{2} = s^{2} + t^{2} - 2st \times \cos\widehat{TRS}$$

$$\iff r = \sqrt{s^{2} + t^{2} - 2st \times \cos 45^{\circ}}$$

$$\iff$$
 ST \approx 3,6

On définit le point I tel que TI = IS

$$RT^{2} + RS^{2} = 2RI^{2} + \frac{TS^{2}}{2}$$

$$\iff RI = \sqrt{\frac{1}{2} \left(RT^{2} + RS^{2} - \frac{TS^{2}}{2} \right)}$$

$$\iff RI \approx 4.2$$

Exercice 109

a) Pour BP:

$$\widehat{BAP} = \widehat{BAC} - 15$$

D'après le théorème de Pythagore dans le triangle ABC, rectangle en B:

$$AC = \sqrt{AB^2 + BC^2} \approx 10.8$$

D'après le théorème d'Al-Kashi dans le triangle ABC, avec a = BC, b = AC et c = AB:

$$a^{2} = b^{2} + c^{2} - 2bc \times \cos \widehat{BAC}$$

$$\iff \widehat{BAC} = \cos^{-1} \left(\frac{b^{2} + c^{2} - a^{2}}{2bc} \right)$$

$$\iff \widehat{BAC} \approx 21.7^{\circ}$$

Donc,
$$\widehat{BAP} \approx 6.8^{\circ}$$

D'après le théorème d'Al-Kashi dans le triangle ABP, avec a = BP, b = AP et p = AB:

$$a = \sqrt{b^2 + p^2 - 2bp \times \cos 6.8^{\circ}}$$

$$\iff BP \approx 7.0$$

Pour DP:

$$\widehat{PAD} = 90 - 6.8 = 84.2^{\circ}$$

D'après le théorème d'Al-Kashi dans le triangle ADP, avec a = DP, d = AP et p = AD:

$$a = \sqrt{d^2 + p^2 - 2dp \times \cos 83,2^{\circ}}$$

$$\iff DP \approx 4,7$$

b) Pour CP:

D'après le théorème d'Al-Kashi dans le triangle ACP, avec a = CP, c = AP et p = AC:

$$a = \sqrt{c^2 + p^2 - 2cp \times \cos 15^{\circ}}$$

$$\iff CP \approx 7.9$$

Exercice 112

D'après le théorème d'Al-Kashi dans le triangle IJK, avec i= JK, j= IK et k= IJ :

$$i^{2} = j^{2} + k^{2} - 2jk \times \cos\widehat{1}$$

$$\iff i = \sqrt{j^{2} + k^{2} - 2jk \times \cos\widehat{1}}$$

$$\iff JK \approx 15,7$$

$$\widehat{J} = \cos^{-1} \left(\frac{i^2 + k^2 - j^2}{2ik} \right)$$

$$\iff \widehat{J} \approx 9.6^{\circ}$$

Donc,
$$\hat{K} = 50.5^{\circ}$$

Exercice 114

a) Le triangle PRR' est isocèle si et seulement si PR = PR'.

$$PR^{2} + QR^{2} = 2RR' + \frac{PQ^{2}}{2}$$

$$\iff RR' = \sqrt{\frac{1}{2} \left(PR^{2} + QR^{2} - \frac{PQ^{2}}{2} \right)^{2}}$$

$$\iff RR' = 5$$

[RR'] = [PR], donc PRR' est bien isocèle.

b) P' appartient au cercle si et seulement si [QP'] = [QP].

Or,
$$[QP'] = \frac{\sqrt{97}}{2} \approx 4.9$$
 et $[QP] = 12$

a)
$$\overrightarrow{AP} \cdot \overrightarrow{AB} = 1$$
 alors $\overrightarrow{AP} = \frac{1}{AB^2} \times AB = \frac{1}{AB^2} \overrightarrow{AB}$

b)
$$\overrightarrow{AB} \cdot \overrightarrow{AP} = -4$$
 alors $\overrightarrow{AP} = -\frac{4}{AB^2} \overrightarrow{AB}$

c)
$$\overrightarrow{AB} \cdot \overrightarrow{AP} = 2.5$$
 alors $\overrightarrow{AP} = -\frac{2.5}{AB^2} \times \overrightarrow{AB}$

d)
$$\overrightarrow{AP} \cdot \overrightarrow{AB} = \sqrt{2}$$
 alors $\overrightarrow{AP} = \frac{\sqrt{2}}{AB^2} \overrightarrow{AB}$

e)
$$\overrightarrow{BP} \cdot \overrightarrow{AB} = \left(\overrightarrow{BA} + \overrightarrow{AP}\right) \cdot \overrightarrow{AB} = \overrightarrow{AP} \cdot \overrightarrow{AB} - AB^2$$
 d'où $\overrightarrow{AP} = \frac{AB^2 - 10}{AB^2} \overrightarrow{AB}$

Exercice 118

- a) Soit $H \in (AB)$ tel que $\overrightarrow{AH} \cdot \overrightarrow{AB} = 1$, A, H et B étant trois points alignés. $AH = \frac{1}{5}$ \mathscr{E} : La droite perpendiculaire à (AB), passant par le point H.
- b) Soit $H \in [BA) \setminus [AB]$ tel que $\overrightarrow{AB} \cdot \overrightarrow{AH} = -4$, les deux vecteurs ont un sens opposé. $AH = \frac{4}{5}$

 \mathscr{E} : La droite perpendiculaires à (AB), passant par le point H.

- c) Soit $H \in [BA) \setminus [AB]$ tel que $\overrightarrow{AH} \cdot \overrightarrow{AB} = -2.5$. $AH = \frac{1}{2}$ \mathscr{E} : La droite perpendiculaire à (AB), passant par le point H.
- d) Soit $H \in (AB)$ tel que $\overrightarrow{AH} \cdot \overrightarrow{AB} = \sqrt{2}$, $AH = \frac{\sqrt{2}}{5}$ \mathscr{E} : La droite perpendiculaire à (AB), passant par le point H.
- e) Soit $H \in (AB)$ tel que $\overrightarrow{BH} \cdot \overrightarrow{AB} = -10$, $\overrightarrow{BH} = -\frac{10}{25} \overrightarrow{AB}$ BH = 2 \mathscr{E} : La droite perpendiculaire à (AB), passant par le point H.

a)
$$\overrightarrow{MA} \cdot \overrightarrow{MB} = MI^2 - \frac{AB^2}{4} \iff MI^2 - \frac{AB^2}{4} = 3$$

 $\iff MI^2 = \frac{21}{4}$

b)
$$MI^2 - \frac{AB^2}{4} = -3 \iff MI^2 = -\frac{3}{4}$$
 C'est impossible

c)
$$\overrightarrow{AM} \cdot \overrightarrow{MB} = -10 \iff \overrightarrow{MA} \cdot \overrightarrow{MB} = 10$$

 $\iff \overrightarrow{MI}^2 - \frac{\overrightarrow{AB}^2}{4} = 10$
 $\iff \overrightarrow{MI}^2 = 26$

d)
$$\overrightarrow{AM} \cdot \overrightarrow{BM} = 1 \iff \overrightarrow{MA} \cdot \overrightarrow{MB} = 1$$

 $\iff MI^2 - \frac{AB^2}{4} = 1$
 $\iff MI^2 = \frac{5}{4}$

a)
$$\overrightarrow{MA} \cdot \overrightarrow{MB} = -4 \iff MI^2 - \frac{AB^2}{4} = -4$$

 $\iff MI^2 = 0$

 \mathcal{E} : Le point I.

b)
$$\overrightarrow{MA} \cdot \overrightarrow{MB} = -1 \iff MI^2 - \frac{AB^2}{4} = -1$$

 $\iff MI^2 = 3$

 \mathscr{E} : Le cercle de centre I et de rayon $\sqrt{3}$.

c)
$$\overrightarrow{MA} \cdot \overrightarrow{MB} = 2 \iff MI^2 - \frac{AB^2}{4} = 2$$

 $\iff MI^2 = 6$

 \mathscr{E} : Le cercle de centre I et de rayon $\sqrt{6}$.

Exercice 121

1) a) Les deux vecteurs sont colinéaires, donc $\overrightarrow{DA} \cdot \overrightarrow{DE} = DA \times DE = 3$, d'où $DA = \frac{3}{DE} = 0.6$ et donc $\overrightarrow{DA} = \frac{0.6}{5} \overrightarrow{DE} = 0.12 \overrightarrow{DE}$

b) Si
$$M \in \mathcal{D}_1$$
, alors $\overrightarrow{AM} \cdot \overrightarrow{DE} = 0 \iff \left(\overrightarrow{AD} + \overrightarrow{DM}\right) \cdot \overrightarrow{DE} = 0$
 $\iff \overrightarrow{AD} \cdot \overrightarrow{DE} + \overrightarrow{DM} \cdot \overrightarrow{DE} = 0$
 $\iff \overrightarrow{DM} \cdot \overrightarrow{DE} = \overrightarrow{AD} \times \overrightarrow{DE}$
 $\iff \overrightarrow{DM} \cdot \overrightarrow{DE} = 3$

Donc,
$$M \in \mathcal{D}_1 \Longrightarrow \overrightarrow{AM} \cdot \overrightarrow{DE} = 0$$

c) $\mathcal{D}_1 \subset \text{perpendiculaire } (d) \text{ de (DE)} \quad (d) \text{ passe par le point A.}$ Soit K un point de la droite (d),

$$\overrightarrow{AK} \cdot \overrightarrow{DE} = 0 \iff (\overrightarrow{AD} + \overrightarrow{DK}) \cdot \overrightarrow{DE} = 0$$

$$\iff -3 + \overrightarrow{DK} \cdot \overrightarrow{DE} = 0$$

$$\iff \overrightarrow{DK} \cdot \overrightarrow{DE} = 3$$

Donc \mathcal{D}_1 est la droite (d).

2) a) Soit le point B de (DE) tel que $\overrightarrow{DB} \cdot \overrightarrow{DE} = 10$. \overrightarrow{DB} et \overrightarrow{DE} sont de même sens et DB × DE = 10, DB = 2, et $\overrightarrow{DB} = \frac{2}{5}\overrightarrow{DE}$.

b)
$$P \in \mathcal{D}_2 \iff \overrightarrow{DP} \cdot \overrightarrow{DE} = 10 \iff \left(\overrightarrow{DB} + \overrightarrow{BP}\right) \cdot \overrightarrow{DE} = 10$$

 $\iff 10 + \overrightarrow{BP} \cdot \overrightarrow{DE} = 10$
 $\iff \overrightarrow{BP} \cdot \overrightarrow{DE} = 0$
 $\iff P \text{ est sur la perpendiculaire à (DE) passant par B.}$

c) Donc, \mathcal{D}_2 est la perpendiculaire à (DE) passant par B.

1) a)
$$\overrightarrow{SM} \cdot \overrightarrow{UM} = 3 \iff MT^2 - \frac{SU^2}{4} = 3$$

 $\iff MT^2 = 19$

b) Il s'agit d'un cercle de centre T et de rayon $\sqrt{19}$.

2) a)
$$\overrightarrow{SP} \cdot \overrightarrow{UP} = -3 \iff PT^2 - \frac{SU^2}{4} = -3$$

 $\iff MT^2 = 13$

b) Il s'agit d'un cercle de centre T et de rayon $\sqrt{13}$.

Exercice 142

1. D'Après le théorème d'Al-Kashi dans le triangle QNZ, avec q = NZ, n = QZ et z = QN.

$$q^{2} = n^{2} + z^{2} - 2nz \times \cos \widehat{NQZ}$$

$$\iff q = \sqrt{n^{2} + z^{2} - 2nz \times \cos \widehat{NQZ}}$$

$$\iff NZ = \frac{\sqrt{6} - \sqrt{2}}{2}$$

a) Dans un triangle isocèle, la hauteur coupe la base en son milieu, de plus, 2.

18

$$\widehat{HQZ} = \sin^{-1}\left(\frac{HZ}{QZ}\right)$$

$$\iff \widehat{HQZ} = \sin^{-1}\left(\frac{\sqrt{6} - \sqrt{2}}{4}\right)$$

$$\iff \widehat{HQZ} = 15^{\circ}$$

b)
$$\sin 15^{\circ} = \frac{\sqrt{6} - \sqrt{2}}{4}$$

c)
$$HQ = \cos 15^{\circ} = \frac{\sqrt{6} + \sqrt{2}}{4}$$

a) D'après la loi des Sinus dans le triangle DEF,
$$\frac{\sin \widehat{D}}{d} = \frac{\sin \widehat{E}}{e} = \frac{\sin \widehat{F}}{f} \qquad \text{De plus,} \quad \widehat{F} = 97^{\circ}$$

$$\text{D'où} \quad e = \frac{\sin \widehat{E} \times f}{\sin \widehat{F}} \approx 3,0 \qquad d = \frac{\sin \widehat{D} \times f}{\sin \widehat{F}} \approx 2,3$$

b) D'après la loi des Sinus dans le triangle GHK,
$$\frac{\sin \widehat{K}}{k} = \frac{\sin \widehat{G}}{g} = \frac{\sin \widehat{H}}{h}$$
 De plus, $\widehat{G} = 105^{\circ}$

D'où
$$k = \frac{\sin \hat{K} \times g}{\sin \hat{G}} \approx 7.3$$
 $h = \frac{\sin \hat{H} \times g}{\sin \hat{G}} \approx 5.2$

Je ne sais pas résoudre le problème sans faire recours à la loi des Sinus, vue en Enseignement Scientifique. a

On trouve $\hat{R} = 180 - 30 - 45 = 105^{\circ}$

D'après la loi des Sinus :
$$\frac{\sin \widehat{A}}{a} = \frac{\sin \widehat{R}}{r} = \frac{\sin \widehat{B}}{b}$$

D'où:
$$a = \frac{\sin \widehat{A} \times r}{\sin \widehat{R}} \approx 2.6$$
 et $b = \frac{\sin B \times r}{\sin R} \approx 3.7$

a. je viens de voir que l'on peut utiliser la loi des sinus, démontrée dans l'exercice 143