

Discriminative Information Retrieval for **Question Answering Sentence Selection**

Tongfei Chen, Benjamin Van Durme Johns Hopkins University {tongfei, vandurme}@cs.jhu.edu

Problem

Given a question q, rank the candidate sentences in a corpus w.r.t. a scoring function s(q, p) that measures how likely p answers q.

Motivation

Vanilla IR – efficient, results not good Neural reranking – good results, slow (linear) Is there a better way to triage the set?

Discriminative IR

 $argmax_{p \in P} s(q, p)$

We want s to be

- Trainable by question/answer pairs
- Decomposable into inner products of sparse vectors $\mathbf{g}(q) \cdot \mathbf{f}(p)$

Under these conditions IR algorithms can be reused! Given q, we compute the feature vector that is expected from answers: $t_{\theta}(f_{\Omega}(q))$.

Given feature functions \mathbf{f}_{O} / \mathbf{f}_{P} / \mathbf{f}_{OP} :

$$\mathbf{f}_{QP}(q, p) = \mathbf{f}_{Q}(q) \odot \mathbf{f}_{P}(p)$$

$$s(q, p) = \mathbf{\theta} \cdot \mathbf{f}_{QP}(q, p) = \mathbf{t}_{\mathbf{\theta}}(\mathbf{f}_{Q}(q)) \cdot \mathbf{f}_{P}(p)$$

Modeled as linear feature-based IR (trained using log loss)

Trainable **0**

Decoupled

Compositional operators (⊚):

f
$$\otimes$$
 g = {((k_f , k_g) = (v_f , v_g), $w_f w_g$)}
f \bowtie **g** = {((k_f = k_g) = 1, $w_f w_g$)}

Projection:

Paper

$$\mathbf{t}_{\theta}^{\otimes}(\mathbf{f}) = \{ (k = v, w_{f}\theta((k_{f}, k) = (v_{f}, v))) \}$$

 $\mathbf{t}_{\theta}^{\otimes}(\mathbf{f}) = \{ (k = v_{f}, w_{f}\theta((k_{f} = k) = 1)) \}$

It can be proven that

$$t_{\theta}^{\otimes}(f) \cdot g = \theta \cdot (f \otimes g)$$
$$t_{\theta}^{\bowtie}(f) \cdot g = \theta \cdot (f \bowtie g)$$

- * Feature vectors are represented as a set of (key = value, weight) tuples.
- * For all $(k_f = V_f, W_f) \in \mathbf{f}, (k_g = V_g, W_g) \in \mathbf{g}.$

Feature set

((QWord	\otimes	LexAnsType)	\otimes	NamedEntityTypes >)	+
((QWord	\otimes	LexAnsType)	\otimes	BagOfWords)	+
(NamedE	Ent	ities	M	NamedEntities)	+
(Normal	iz	edTfIdf	M	BagOfWords)	

Experiments

Dataset	# O	fquesti	# of		
	train	dev	test	sentences	
TREC/AQUAINT	2150	53	99	23,398,842	
WikiQA/Wikipedia	2118	77	157	20,368,761	

	R@1k	b-pref	MAP	MRR					
TREC/AQUAINT									
Lucene	35.47%	38.22%	9.78%	15.06%					
Yao et al. (2013)	25.88%	45.41%	13.75%	29.87%					
DiscIR	78.20%	75.15%	17.84%	25.30%					
WikiQA/Wikipedia									
Lucene	24.73%	25.69%	0.58%	0.72%					
DiscIR	58.79%	60.88%	10.26%	11.42%					

Software

