

- □ Tentative Specification
- □ Preliminary Specification
- Approval Specification

MODEL NO.: V400DJ1 SUFFIX: KS5

Revision : C8 Customer :	
APPROVED BY	SIGNATURE
Name / Title Note	
Please return 1 copy for your confirm	nation with your signature and comments.

Approved By	Checked By	Prepared By		
Chao-Chun Chung	Vita Wu	Delia Lin		

Version 2.0 1 Date : Dec 03, 2014

CONTENTS

CONTENTS	2
REVISION HISTORY	4
1. GENERAL DESCRIPTION	5
1.1 OVERVIEW	5
1.2 FEATURES	5
1.3 GENERAL SPECIFICATIONS	5
1.4 MECHANICAL SPECIFICATIONS	6
2. ABSOLUTE MAXIMUM RATINGS	7
2.1 ABSOLUTE RATINGS OF ENVIRONMENT	7
2.2 PACKAGE STORAGE	8
2.3 ELECTRICAL ABSOLUTE RATINGS	8
2.3.1 TFT LCD MODULE	8
2.3.2 BACKLIGHT CONVERTER UNIT	8
3. ELECTRICAL CHARACTERISTICS	9
3.1 TFT LCD MODULE	9
3.2 BACKLIGHT UNIT	11
3.2.1 CONVERTER CHARACTERISTICS	11
3.2.2 CONVERTER INTERFACE CHARACTERISTICS	13
4. BLOCK DIAGRAM OF INTERFACE	15
4.1 TFT LCD MODULE	15
5 .INPUT TERMINAL PIN ASSIGNMENT	16
5.1 TFT LCD MODULE	16
5.2 BACKLIGHT UNIT	20
5.3 CONVERTER UNIT	21
5.4 COLOR DATA INPUT ASSIGNMENT	22
6. INTERFACE TIMING	23
6.1 INPUT SIGNAL TIMING SPECIFICATIONS	23
6.1.1 Timing spec for QFHD Frame Rate = 50Hz	23
6.1.2 Timing spec for QFHD Frame Rate = 60Hz	23
6.1.3 Input Timing Spec for FHD, Frame Rate = 50Hz	24
Version 2.0 2	Date : Dec 03, 2014

PRODUCT SPECIFICATION

6.1.4 Input Timing Spec for FHD, Frame Rate = 60Hz	24
6.1.5 Input Timing Spec for FHD, Frame Rate = 100Hz	24
6.1.6 Input Timing Spec for FHD, Frame Rate = 120Hz	25
6.1.7 Input Timing spec for QFHD, Frame Rate = 24Hz	25
6.1.8 Input Timing spec for QFHD, Frame Rate = 30Hz	26
6.2 V by One Input Signal Timing Diagram	28
6.3 Byte Length and Color mapping of V-by-One HS	29
6.4 POWER ON/OFF SEQUENCE	30
7. OPTICAL CHARACTERISTICS	32
7.1 TEST CONDITIONS	32
7.2 OPTICAL SPECIFICATIONS	33
8. PRECAUTIONS	36
8.1 ASSEMBLY AND HANDLING PRECAUTIONS	36
8.2 SAFETY PRECAUTIONS	36
8.3 SAFETY STANDARDS	37
9. DEFINITION OF LABELS	38
9.1 MODULE LABEL	38
9.2 CARTON LABEL	39
10. PACKAGING	40
10.1 PACKAGING SPECIFICATIONS	40
10.2 PACKAGING METHOD	40
11 MECHANICAL CHARACTERISTIC	42

PRODUCT SPECIFICATION

REVISION HISTORY

Version	Date	Page (New)	Section	Description
Ver. 1.0	Oct.14, 2014	All	All	The Preliminary specification was firstly issued.
		(New)		

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V400DJ1-KS5 is a 40" TFT Liquid Crystal Display module with LED Backlight unit and 8Lanes V-by-One HS interface. This module supports 3840 x 2160 Quad Full HDTV format and can display true 1.07G colors (8-bit+FRC). The driving board module for backlight is built-in.

1.2 FEATURES

High brightness: 350 nitsHigh contrast ratio: 5000:1

Fast response time : Gray to Gray typical : 8.5 ms

High color saturation : NTSC 88%

Quad Full HDTV (3840 x 2160 pixels) resolution, true HDTV format

V-by-One HS interface

Optimized response time for 50Hz/60Hz frame rate

Viewing Angle: 176(H)/176(V) (CR > 10) VA Technology

Ultra wide viewing angle: Super MVA technology

RoHs compliance

T-con input frame rate *: FHD 50/60Hz, FHD 100/120Hz, QFHD 24/30Hz or QFHD 50/60Hz,
 Output frame rate: QFHD 50/60Hz

1.3 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	878.112(H) x 485.352(V) (39.5" diagonal)	mm	(1)
Bezel Opening Area	881.112(H) x 488.352(V)	mm	(1)
Driver Element	a-si TFT active matrix	-	-
Pixel Number	3840 x R.G.B. x 2160	pixel	-
Pixel Pitch(Sub Pixel)	0.076225 (H) x 0.2247 (V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	1.07G colors (8-bit+FRC)	color	-
Display Operation Mode	Transmissive mode / Normally black	-	-
Surface Treatment	Anti-Glare coating (Haze 1%), Hardness 3H	-	(2)
Rotation Function	Unachievable		(3)
Display Orientation	Signal input with "INX"		(3)

Note (1) Please refer to the attached drawings in chapter 11 for more information about the front and back outlines.

Note (2) The spec of the surface treatment is temporarily for this phase. INX reserves the rights to change this feature.

^{*:} The detail setting such as I2C command or timing requirement in FHD/QFHD is specified in INX application note. It's important and necessary to follow the specification either in product SPEC or application note, otherwise it may lead to abnormal or no display. INX application note would be provided by INX in the design-in stage.

Note (3)

Back Side	
Tcon Board	

1.4 MECHANICAL SPECIFICATIONS

Item		Min.	Тур.	Max.	Unit	Note
	Horizontal (H)	892.112	893.112	894.112	mm	(1),(2)
Module Size	Vertical (V)	503.352	504.352	505.352	mm	(1),(2)
		12.775	13.775	14.775	mm	To Rear
Depth (D)		24.075	25.075	26.075	mm	To converter cover
Weight			7340		g	

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Note (2) Module Depth does not include connectors.

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	alue	Unit	Note	
item	Symbol	Min.	Max.	Offic		
Storage Temperature	T _{ST}	-20	+60	°C	(1)	
Operating Ambient Temperature	T_OP	0	50	°C	(1), (2)	
Shock (Non-Operating)	S _{NOP}	-	50	G	(3), (5)	
Vibration (Non-Operating)	V _{NOP}	-	1.0	G	(4), (5)	

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max.
- (c) No condensation.
- Note (2) Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.
- Note (3) 11 ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.
- Note (4) 10 ~ 200 Hz, 30 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

Relative Humidity (%RH)

Version 2.0 7 Date: Dec 03, 2014

2.2 PACKAGE STORAGE

When storing modules as spares for a long time, the following precaution is necessary.

- (a) Do not leave the module in high temperature, and high humidity for a long time, It is highly recommended to store the module with temperature from 0 to 35 $^{\circ}$ C at normal humidity without condensation.
- (b) The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.

2.3 ELECTRICAL ABSOLUTE RATINGS

2.3.1 TFT LCD MODULE

Item	Symbol	Va	lue	Unit	Note	
nem	Symbol	Min.	Max.	Offil		
Power Supply Voltage	V _{CC}	-0.3	13.5	V	(1)	
Logic Input Voltage	V _{IN}	-0.3	3.6	V	(1)	

2.3.2 BACKLIGHT CONVERTER UNIT

Item	Symbol	Test Condition	Min.	Туре	Max.	Unit	Note
Light Bar Voltage	V _W	Ta = 25 °C	ı	-	45	V_{RMS}	2D Mode
Converter Input Voltage	V_{BL}	-	0	-	30	٧	
Control Signal Level	-	-	-0.3	-	6	V	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) No moisture condensation or freezing.

Note (3) The control signals include On/Off Control and External PWM Control.

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

 $(Ta = 25 \pm 2 \, {}^{\circ}C)$

	Paramo	otor	Symbol		Value	- Unit	Note	
	Parami	eter	Symbol	Min.	Тур.	Max.	Unit	Note
Power Su	pply Voltage		V _{CC}	10.8	12	13.2	V	(1)
Rush Curr	rent		I _{RUSH}	_	_	3.5	А	(2)
		White Pattern	P _T	_	13.075	15.616	W	
	OHz Output nsumption	Horizontal Stripe	P _T	_	27.720	33.556	W	
1 0WC1 00	noumption	Black Pattern	P _T	_	14.040	16.832	W	
		White Pattern	_	_	1.090	1.301	А	
	OHz Output	Horizontal Stripe	_	_	2.310	2.796	А	
Power Supply Current	Black Pattern	_	_	1.170	1.403	А	(2)	
		White Pattern	P _T	_	11.621	13.884	W	(3)
QFHD 60H	Hz Output nsumption	Horizontal Stripe	P _T	_	28.843	34.882	W	
i ower co	nsumption	Black Pattern	P _T	_	11.765	14.102	W	
		White Pattern	_	_	0.968	1.157	А	-
QFHD 60l	•	Horizontal Stripe	_	_	2.404	2.907	А	
Power Supply Current		Black Pattern	_	_	0.980	1.175	А	
V-by-One Differential Input Hig			VLVTH	+50	_	_	mV	(4)
HS		Differential Input Low Threshold Voltage		_	_	-50	mV	(.,
CMOS		hreshold Voltage	V _{IH}	2.7	_	3.3	V	
interface	Input Low T	hreshold Voltage	V _{IL}	0	_	0.7	V	

Note (1) The module should be always operated within the above ranges. The ripple voltage should be controlled under 10% of Vcc (Typ.)

Note (3) The specified power supply current is under the conditions at Vcc = 12 V, $Ta = 25 \pm 2 \,^{\circ}\text{C}$, fv = 60/120 Hz, whereas a power dissipation check pattern below is displayed.

3.2 BACKLIGHT UNIT

3.2.1 CONVERTER CHARACTERISTICS

Parameter	Symbol		Value		Unit	Note
Parameter	Symbol	Min.	Тур.	Max.	Offic	Note
Power Consumption	P _{BL(2D)}	_	37.9	43.6	W	(1), (2)
Converter Input Voltage	VBL	22.8	24.0	25.2	VDC	
Converter Input Current	I _{BL(2D)}	_	1.6	1.9	Α	Non Dimming
Input Inrush Current	I _{R(2D)}	_	_	3.9	Apeak	V _{BL} =22.8V (3), (6)
Dimming Frequency	FB	470	480	490	Hz	(5)
Dimming Duty Ratio	DDR	0	-	100	%	(4), (5)
Life Time	-	30,000	-	-	Hrs	(7)

- Note (1) The power supply capacity should be higher than the total converter power consumption P_{BL}. Since the pulse width modulation (PWM) mode was applied for backlight dimming, the driving current changed as PWM duty on and off. The transient response of power supply should be considered for the changing loading when converter dimming.
- Note (2) The measurement condition of Max. value is based on 40" backlight unit under input voltage 24V, at 2D/3D Mode and lighting 1 hour later.
- Note (3) For input inrush current measure, the VBL rising time from 10% to 90% is about 20ms.
- Note (4) EPWM signal have to input available duty range. Between 97% and 100% duty (DDR) have to be avoided. (97% < DDR < 100%) But 100% duty (DDR) is possible. 5% duty (DDR) is only valid for electrical operation.
- Note (5) FB and DDR are available only at 2D Mode.
- Note (6) Below diagram is only for power supply design reference.

Test Condition :VBL=22.8V, IL=115mA at 2D Mode

Note (7) The lifetime is defined as the time which luminance of the LED decays to 50% compared to the initial value, Operating condition: Continuous operating at $Ta = 25\pm2^{\circ}C$

3.2.2 CONVERTER INTERFACE CHARACTERISTICS

Darameter		Symbol	Test		Value		Unit	N	ote	
Parameter		Symbol	Condition	Min.	Тур.	Max.	Unit	IN IN	ote	
On/Off Control Voltage	ON	VBLON	_	2.0	_	5.0	V			
On/On Control voltage	OFF	VBLOIN	_	0	_	0.8	V			
External PWM Control	HI		_	2.0	_	5.25	V	Duty on	(E) (C) (O)	
Voltage	LO	VEPWM	_	0	_	0.8	V	Duty off	(5), (6) ,(9)	
External PWM Frequer	су	F _{EPWM}	_	150	160	170	Hz	Normal m	ode (7) ,(9)	
Error Signal		ERR	_	_	_	_	_	Abnormal: Oper		
VBL Rising Time		Tr1	_	20	_	_	ms	10%-90%V _{BL}		
Control Signal Rising T	ime	Tr	_	_	_	100	ms			
Control Signal Falling T	ime	Tf	_	_	_	100	ms			
PWM Signal Rising Tim	ne	TPWMR	_	_	_	50	us		(C)	
PWM Signal Falling Tin	ne	TPWMF	_	_	_	50	us] '	(6)	
Input Impedance		Rin	_	1	_	_	ΜΩ	EPWN	I, BLON	
PWM Delay Time		TPWM	_	100	_	_	ms	((6)	
DI ON Data Taxa		T _{on}	_	300	_	_	ms	าร		
BLON Delay Time		T _{on1}	_	300	_	_	ms			
BLON Off Time		Toff	_	300	_	_	ms			

- Note (1) The Dimming signal should be valid before backlight turns on by BLON signal. It is inhibited to change the external PWM signal during backlight turn on period.
- Note (2) The power sequence and control signal timing are shown in the Fig.1. For a certain reason, the converter has a possibility to be damaged with wrong power sequence and control signal timing.
- Note (3) While system is turned ON or OFF, the power sequences must follow as below descriptions:

Turn ON sequence: $VBL \rightarrow PWM \text{ signal} \rightarrow BLON$

Turn OFF sequence: BLOFF \rightarrow PWM signal \rightarrow VBL

- Note (4) When converter protective function is triggered, ERR will output open collector status. Please refers to Fig.2.
- Note (5) The EPWM interface that inserts a pull up resistor to 5V in Max Duty (100%), please refers to Fig.3.
- Note (6) EPWM is available only at 2D Mode.
- Note (7) EPWM signal have to input available frequency range.
- Note (8) [Recommend] EPWM duty ratio is set at 100%(Max. Brightness) in 3D Mode.
- Note (9) Used the EPWM signal control user dimming only in 2D normal Mode. 2D scan and 2D local dimming Mode please reference 5.1 Note (11) and application Note.

Version 2.0 13 Date : Dec 03, 2014

Fig. 1

Fig. 2 Fig. 3

4. BLOCK DIAGRAM OF INTERFACE

4.1 TFT LCD MODULE

5 .INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE

CNV1 Connector Pin Assignment (187059-51221(P-TWO) or WF23-402-5133(FCN))

Matting connector: FI-RE51HL (JAE)

Pin	Name	Description	Note
1	Vin	Power input (+12V)	
2	Vin	Power input (+12V)	
3	Vin	Power input (+12V)	
4	Vin	Power input (+12V)	
5	Vin	Power input (+12V)	
6	Vin	Power input (+12V)	
7	Vin	Power input (+12V)	
8	Vin	Power input (+12V)	
9	N.C.	No Connection	(6)
10	GND	Ground	
11	GND	Ground	
12	GND	Ground	
13	GND	Ground	
14	GND	Ground	
15	N.C.	No Connection	(6)
16	N.C.	No Connection	(6)
17	N.C	No Connection	(6)
18	SDA	I2C Data signal	(7) (8)
19	SCL	I2C Clock signal	(7) (8)
20	N.C.	No Connection	(6)
21	N.C.	No Connection	(6)
22	LD_EN	Local Dimming Mode Enable.	(2)(3)
23	N.C.	No Connection	(6)
24	N.C.	No Connection	(6)
25	HTPDN	Hot plug detect output, Open drain.	
26	LOCKN	Lock detect output, Open drain.	
27	GND	Ground	
28	RX0N	1 ST Pixel Negative V-by-One differential data input in area A. Lane 0	(1)
29	RX0P	1 ST Pixel Positive V-by-One differential data input in area A. Lane 0	(1)
30	GND	Ground	
31	RX1N	2 ND Pixel Negative V-by-One differential data input in area A. Lane 1	(1)
32	RX1P	2 ND Pixel Positive V-by-One differential data input in area A. Lane 1	(')
33	GND	Ground	

PRODUCT SPECIFICATION

34	RX2N	3 RD Pixel Negative V-by-One differential data input in area A. Lane 2	
35	RX2P	3 RD Pixel Positive V-by-One differential data input in area A. Lane 2	(1)
36	GND	Ground	
37	RX3N	4 TH Pixel Negative V-by-One differential data input in area A. Lane 3	(4)
38	RX3P	4 TH Pixel Positive V-by-One differential data input in area A. Lane 3	(1)
39	GND	Ground	
40	RX4N	5 TH Pixel Negative V-by-One differential data input in area A. Lane 4	(4)
41	RX4P	5 TH Pixel Positive V-by-One differential data input in area A. Lane 4	(1)
42	GND	Ground	
43	RX5N	6 TH Pixel Negative V-by-One differential data input in area A. Lane 5	(4)
44	RX5P	6 TH Pixel Positive V-by-One differential data input in area A. Lane 5	(1)
45	GND	Ground	
46	RX6N	7 TH Pixel Negative V-by-One differential data input in area A. Lane 6	(4)
47	RX6P	7 TH Pixel Positive V-by-One differential data input in area A. Lane 6	(1)
48	GND	Ground	
49	RX7N	8 TH Pixel Negative V-by-One differential data input in area A. Lane 7	(1)
50	RX7P	8 TH Pixel Positive V-by-One differential data input in area A. Lane 7	(1)
51	GND	Ground	

Note (1) V-by-One^R HS Data Mapping

11010 (1) 1 2) 00	Tie Bata Mapping	
Area	Lane	Data Stream
	Lane 0	1, 9, 17,, 3825, 3833
	Lane 1	2, 10, 18,, 3826, 3834
	Lane 2	3, 11, 19,, 3827, 3835
۸	Lane 3	4, 12, 20,, 3828, 3836
А	Lane 4	5, 13, 21,,3829, 3837
	Lane 5	6, 14, 22,, 3830, 3838
	Lane 6	7, 15, 23,, 3831, 3839
	Lane7	8, 16, 24,, 3832, 3840

Note (2) Local dimming enable selection. (Default: enable)

L= Connect to GND, H=Connect to +3.3V or Open

LD_EN	Note
L	Local Dimming Disable
H or Open	Local Dimming Enable

LD_EN enable pin should be set in power on stage.

Backlight should be turned off in the period of changing original setting after power on.

Note (3) Interface optional pin has internal scheme as following diagram. Customer should keep the interface voltage level requirement which including Panel board loading as below.

Version 2.0 18 Date : Dec 03, 2014

Note (4) V-by-One HS connector pin order defined as follows

Note (5) V-by-One connector mating dimension range request is 0.93mm~1.0mm as below

- Note (6) Reserved for internal use. Please leave it open.
- Note (7) Local dimming table select & User dimming adjust for customer use. (User dimming is available only at 2D Mode.

 User dimming duty ratio is set at 100%
- Note (8) The detail setting such as I2C command or timing requirement in FHD/QFHD is specified in INX application note. It's important and necessary to follow the specification either in product SPEC or application note, otherwise it may lead to abnormal or no display. INX application note would be provided by INX in the design-in stage.

5.2 BACKLIGHT UNIT

The pin configuration for the housing and leader wire is shown in the table below.

CN2

Connector Type : CF2012FV0R0-NH(Cvilux) or FF03-301-1231(FCN)

Pin No.	Symbol	Description
1	VLED+	
2	VLED+	Positive of LED string
3	VLED+	
4	NC	NC
5	N-	
6	N-	
7	N-	
8	N-	Negative of LED string
9	N-	Negative of LED string
10	N-	
11	N-	
12	N-	

5.3 CONVERTER UNIT

CN1 (Header): CI0114M1HR0-LA (CvilLux)

Pin No.	Symbol	Feature
1		
2		
3	VBL	+24V
4		
5		
6		
7		
8	GND	GND
9		
10		
11	ERR	Normal (GND) ; Abnormal (Open collector)
12	BLON	BL ON/OFF
13	NC	NC
14	E_PWM	External PWM Control

Note (1) If Pin14 is open, E_PWM is 100% duty.

Note (2) Input connector pin order defined as follows

Input Connector

PRODUCT SPECIFICATION

5.4 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 10-bit gray scale data input for the color. The higher the binary input the brighter the color. The table below provides the assignment of color versus data input.

															D	ata :	Sign	al													
	Color					Re	_									Gre										ВІ	_				
		R9	R8	R7	R6	R5	R4	R3	R2	R1	R0	G9	G8	G7	G6	G5	G4	G3	G2	G1	G0	B9	B8	B7	B6	B5	B4	B3	B2	B1	B0
Basic Colors	Black Red Green Blue Cyan Magenta Yellow White	0 1 0 0 0 1 1	0 0 1 0 1 0 1	0 0 1 0 1 0 1	0 0 1 1 1 0	0 0 1 1 1 0	0 0 0 1 1 1 0	0 0 0 1 1 1 0	0 0 0 1 1 1 0	0 0 0 1 1 1 0	0 0 0 1 1 1 0	0 0 1 1 1 0	0 0 1 1 1 0	0 0 1 1 1 0																	
Gray Scale Of Red	Red (0) / Dark Red (1) Red (2) : : : Red (1021) Red (1022) Red (1023)	0 0 0	0 0 0	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 1 : : 0 1	0 1 0 : : 1 0 1	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : ; 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 0 0 0	0 0 0 : : 0 0 0	0 0 0 : : 0 0
Gray Scale Of Green	Green (0) / Dark Green (1) Green (2) : : : : : : : : : : : : : : : : : : :	0 0 0 : : 0 0	0 0 0 : : 1 1	0 0 1 : : 0 1 1	0 1 0 : : 1 0	0 0 0 : : 0 0	0 0 0 : 0 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0																						
Gray Scale Of Blue	Blue (0) / Dark Blue (1) Blue (2) : : : : : : : : : : : : : : : : : : :	0 0 0 : : 0 0	0 0 0 :: 0 0	0 0 0 : : 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 : : 0 0 0	0 0 0 0 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 1 1	0 0 1 : 0 1	0 1 0 : : 1 0 1																

Note (1) 0: Low Level Voltage , 1: High Level Voltage

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram. (Ta = 25 ± 2 °C)

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
Data Clock	Frequency	1/Tc	70	74.25	78	MHz	(1)
	Intra-Pair skew		-0.3	_	0.3	UI	(2)
	Inter-pair skew		-5	_	5	UI	(3)
V-by-One Receiver	Spread spectrum modulation range	Fclkin_mod	1/Tc-0.5%		1/Tc+0.5%	MHz	(4)
	Spread spectrum modulation frequency	F _{SSM}	_	_	30	KHz	(4)

6.1.1 Timing spec for QFHD Frame Rate = 50Hz

Signal	Ite	Symbol	Min.	Тур.	Max.	Unit	Note	
Data Clock	Freque	ency	F _{clkin} (=1/TC)	70	74.25	78	MHZ	(1)
Frame rate	2D n	Fr5	47	50	53	Hz	(5),(6)	
Vertical Active		Total	Tv	2200	2700	2790	Th	Tv=Tvd+Tvb
Display Term (8 Lane,3840X2160	2D Mode	Display	Tvd	2160	2160	2160	Th	
Active Area)		Blank	Tvb	40	540	630	Th	
Horizontal Active		Total	Th	530	550	600	Тс	Th=Thd+Thb
Display Term (8 Lane,3840X2160	2D Mode	Display	Thd	480	480	480	Тс	
Active Area)		Blank	Thb	50	70	120	Tc	

6.1.2 Timing spec for QFHD Frame Rate = 60Hz

Signal		Item	Symbol	Min.	Тур.	Max.	Unit	Note
Data Clock	20) Mode	F _{clkin} (=1/TC)	70	74.25	78	MHz	(1)
Frame Rate	20) Mode	F _r	57	60	63	Hz	(5),(6)
Vertical Active		Total	Tv	2208	2250	2350	Th	Tv=Tvd+Tvb
Display Term (8 Lane,3840X2160	2D Mode	Display	Tvd		2160	2160		
Active Area)			Tvb	48	90	190	Th	

PRODUCT SPECIFICATION

Horizontal Active	2D Mode	Total	Th	530	550	600	Тс	Th=Thd+Thb
Display Term (8 Lane,3840X2160		Display	Thd		480		Тс	
Active Area)		Blank	Thb	50	70	120	Tc	

6.1.3 Input Timing Spec for FHD, Frame Rate = 50Hz

Signal	Item		Symbol	Min.	Тур.	Max.	Unit	Note
Data Clock	Frequency		F _{clkin} (=1/TC)	70	74.25	78	MHz	(1)
Frame Rate	2D Mode		F _r	47	50	53	Hz	(5),(6)
Vertical Active Display Term		Total	Tv	1104	1350	1395	Th	Tv=Tvd+Tvb
(2 Lane,1920X1080		Display	Tvd		1080		Th	
Active Area)	2D Mode	Blank	Tvb	24	270	315	Th	
Horizontal Active	ZD WOOC	Total	Th	1060	1100	1340	Тс	Th=Thd+Thb
Display Term (2 Lane,1920X1080	e,1920X1080	Display	Thd		960		Тс	
Active Area)		Blank	Thb	100	140	380	Тс	

6.1.4 Input Timing Spec for FHD, Frame Rate = 60Hz

Signal	Item		Symbol	Min.	Тур.	Max.	Unit	Note
Data Clock	Frequency		F _{clkin} (=1/TC)	70	74.25	78	MHz	(1)
Frame Rate	2D Mode		Fr	57	60	63	Hz	(5),(6)
Vertical Active Display Term		Total	Tv	1104	1125	1395	Th	Tv=Tvd+Tvb
(2 Lane,1920X1080		Display	Tvd		1080		Th	
Active Area)	2D Mode	Blank	Tvb	24	45	315	Th	
Horizontal Active	ZD WOOC	Total	Th	1060	1100	1340	Tc	Th=Thd+Thb
Display Term (2 Lane,1920X1080	0X1080	Display	Thd		960		Тс	
Active Area)		Blank	Thb	100	140	380	Тс	

6.1.5 Input Timing Spec for FHD, Frame Rate = 100Hz

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
Data Clock	Frequency	F _{clkin} (=1/TC)	70	74.25	78	MHz	(1)

PRODUCT SPECIFICATION

Frame Rate	2D Mode		Fr	97	100	103	Hz	(5),(6)
Vertical Active Display Term		Total	Tv	1104	1350	1395	Th	Tv=Tvd+Tvb
(4 Lane,1920X1080		Display	Tvd		1080		Th	
Active Area)	2D Mode	Blank	Tvb	24	270	315	Th	
Horizontal Active	2D Mode	Total	Th	530	550	670	Tc	Th=Thd+Thb
Display Term (4 Lane,1920X1080		Display	Thd		480		Tc	
Active Area)		Blank	Thb	50	70	190	Тс	

6.1.6 Input Timing Spec for FHD, Frame Rate = 120Hz

Signal		Item	Symbol	Min.	Тур.	Max.	Unit	Note
Data Clock	2D Mode		F _{clkin} (=1/TC)	70	74.25	78	MHz	(1)
Frame Rate	20	2D Mode		117	120	123	Hz	(5),(6)
Vertical Active		Total	Tv	1104	1125	1395	Th	Tv=Tvd+Tvb
Display Term	2D Mode	Display	Tvd		1080		Th	
(4 Lane,1920X1080	ZD Mode	Blank	Tvb	24	45	315	Th	
Active Area)		Blank	Tvb		45		Th	
Horizontal Active		Total	Th	530	550	670	Tc	Th=Thd+Thb
Display Term (4 Lane,1920X1080	2D Mode	Display	Thd		480		Tc	
Active Area)		Blank	Thb	50	70	190	Тс	

6.1.7 Input Timing spec for QFHD, Frame Rate = 24Hz

Signal	Item		Symbol	Min.	Тур.	Max.	Unit	Note
Data Clock	Frequency		F _{clkin} (=1/TC)	70	74.25	78	MHz	(1)
Frame Rate	2D Mode		F _r	23.6	24	24.5	Hz	(5),(6)
Vertical Active Display Term		Total	Tv	2208	2250	2750	Th	Tv=Tvd+Tvb
(4 Lane,3840X2160		Display	Tvd		2160		Th	
Active Area)	2D Mode	Blank	Tvb	48	90	590	Th	
Horizontal Active	2D Mode	Total	Th	1060	1100	1200	Tc	Th=Thd+Thb
Display Term (4 Lane,3840X2160		Display	Thd		960		Tc	
Active Area)		Blank	Thb	80	140	240	Тс	

6.1.8 Input Timing spec for QFHD, Frame Rate = 30Hz

Signal		Item		Min.	Тур.	Max.	Unit	Note
Data Clock	2D Mode		F _{clkin} (=1/TC)	70	74.25	78	MHz	(1)
Frame Rate	20) Mode	Fr	29	30	31	Hz	(5),(6)
Vertical Active		Total	Tv	2208	2250	2350	Th	Tv=Tvd+Tvb
Display Term	2D Mode	Display	Tvd		2160		Th	
(4 Lane,1920X1080	ZD Mode	Blank	Tvb	48	90	190	Th	
Active Area)		Blank	Tvb		90		Th	
Horizontal Active		Total	Th	1060	1100	1200	Тс	Th=Thd+Thb
Display Term (4 Lane,1920X1080	2D Mode	Display	Thd		960	•	Тс	
Active Area)		Blank	Thb	80	140	240	Тс	

Note (1) Please make sure the range of pixel clock has follow the below equation :

 $Fclkin(max) \ge Fr \times Tv \times Th$

 $Fr \times Tv \times Th \ge Fclkin (min)$

INPUT SIGNAL TIMING DIAGRAM

Note (2) Intra-pair Data skew

Note (3) V-by-One HS Inter-pair skew.

Note (4) The SSCG (Spread spectrum clock generator) is defined as below figures.

Note (5) The frame-to-frame jitter of the input frame rate is defined as the above figures. FRn = FRn-1 \pm 0.05Hz.

Note (6) The setup of the frame rate jitter > 0.05Hz may result in poor picture quality or cosmetic LED backlight symptom but the electric function is not affected.

6.2 V by One Input Signal Timing Diagram

Table 1 Eye Mask Specification

	X [UI]	Y [mV]	Note
Α	0.25	0	(1)
В	0.3	50	(1)
С	0.7	50	(1)
D	0.75	0	(1)
Е	0.7	-50	(1)
F	0.3	-50	(1)

Note (1) Input levels of V-by-One HS signals are comes from "V-by-One HS Stander Ver.1.4"

6.3 Byte Length and Color mapping of V-by-One HS

Color mapp	ning or v-k	by-One no
Packer input	&	30bpp RGB (10bit)
Unpacker ou	tput	COOPP ICE (TOOK)
	D[0]	R[2]
	D[1]	R[3]
	D[2]	R[4]
Byte 0	D[3]	R[5]
Dyle 0	D[4]	R[6]
	D[5]	R[7]
	D[6]	R[8]
	D[7]	R[9]
Byte 1	D[8]	G[2]
	D[9]	G[3]
	D[10]	G[4]
	D[11]	G[5]
	D[12]	G[6]
	D[13]	G[7]
	D[14]	G[8]
	D[15]	G[9]
	D[16]	B[2]
	D[17]	B[3]
	D[18]	B[4]
Puto 2	D[19]	B[5]
Byte 2	D[20]	B[6]
	D[21]	B[7]
	D[22]	B[8]
	D[23]	B[9]
	D[24]	Χ
	D[25]	X
	D[26]	B[0]
Duta 0	D[27]	B[1]
Byte 3	D[28]	G[0]
	D[29]	G[1]
	D[30]	R[0]
	D[31]	R[1]

Version 2.0 29 Date : Dec 03, 2014

6.4 POWER ON/OFF SEQUENCE

 $(Ta = 25 \pm 2 \, {}^{\circ}C)$

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

PRODUCT SPECIFICATION

- Note (1) The supply voltage of the external system for the module input should follow the definition of Vcc.
- Note (2) Apply the LED voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- Note (3) In case of Vcc is in off level, please keep the level of input signals on the low or high impedance. If T2<0,that maybe cause electrical overstress failure.
- Note (4) T4 should be measured after the module has been fully discharged between power off and on period.
- Note (5) Interface signal shall not be kept at high impedance when the power is on.
- Note (6) When 2D mode is changed, TCON will insert black pattern internally. During black insertion, TCON would load required optical table and TCON parameter setting. The black insertion time should be longer than 650ms because TCON must recognize 2D format and set the correct parameter.
- Note (7) Vcc must decay smoothly when power-off.
- Note (8) T5 > (T13 + T14)
- Note (9) T16, V-by-One signals shall be stabilized and follows timing specification which defined by section 6.1 & 6.2.

Version 2.0 31 Date: Dec 03, 2014

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit
Ambient Temperature	Ta	25±2	°C
Ambient Humidity	На	50±10	%RH
Supply Voltage	V _{CC}	12±1.2	V
Input Signal	According to typical v	alue in "3. ELECTRICAL (CHARACTERISTICS"
Vertical Frame Rate	Fr	60	Hz

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring in a windless room.

Local Dimming Function should be Disable before testing to get the steady optical characteristics (According to 5.1 CNF1 Connector Pin Assignment, Pin no. "42")

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in 7.1.

Iter	m	Sym	nbol	Condition	Min.	Тур.	Max.	Unit	Note
Contrast Ratio		С	R		3500	5000	-	-	Note (2)
Response Tim	е	Gray t	o gray			8.5	17	ms	Note (3)
Center Luminance of White White Variation		Lc	2D		280	350	-	cd/m ²	Note (4)
		δΙ	N				1.3	-	Note (6)
Cross Talk		СТ	2D		-		4	%	Note (5)
	Dad	R	Х			0.670		-	
	Kea	R	y			0.307		-	
	Green	G	ix			0.259		-	
		G	iy	normal direction	Turo	0.648	Turo i	-	
Color	Blue	В	Х			0.151		-	
		В	У		0.03	0.054	0.03	-	
Chilomaticity	\\/hito	W	/x			0.280		-	
	vvriite	W	/y	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
Color Chromaticity Correlated color temperature Color Correlated color temperature Color Correlated color temperature Color Color Correlated color temperature Color C	K								
	Color Gamut	C.	G.		-	88	ı	%	NTSC
	Horizontal	θ,	+,		80	89	ı	<u></u>	
Viewing	TIONZONIA	θ	x-	CP>10	80	89	-		(1)
Angle	Vertical	θ _Y +		UN>10	80	89	-	Deg.	(1)
	vertical	θ	Y-		80	89	- cd/m² Note 1.3 - Note 4 % Note		

Note (1) Definition of Viewing Angle (θx , θy):

Viewing angles are measured by Autronic Conoscope Cono-80 (or Eldim EZ-Contrast 160R).

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

L1023: Luminance of gray level 1023

L 0: Luminance of gray level 0

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (6).

Note (3) Definition of Gray-to-Gray Switching Time :

The driving signal means the signal of gray level 0, 124, 252, 380, 508, 636, 764, 892 and 1023.

Gray to gray average time means the average switching time of gray level 0, 124, 252, 380, 508, 636, 764, 892 and 1023 to each other.

Note (4) Definition of Luminance of White (L_C):

Measure the luminance of gray level 1023 at center point.

L_C = L (5), where L (x) is corresponding to the luminance of the point X at the figure in Note (6).

Note (5) Definition of Cross Talk (CT):

$$CT = | Y_B - Y_A | / Y_A \times 100 (\%)$$

Where:

YA = Luminance of measured location without gray level 1023 pattern (cd/m2)

YB = Luminance of measured location with gray level 1023 pattern (cd/m2)

Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 1023 at 5 points

$$\delta W = \frac{\text{Maximum} [L (1), L (2), L (3), L (4), L (5)]}{\text{Minimum} [L (1), L (2), L (3), L (4), L (5)]}$$

8. PRECAUTIONS

8.1 ASSEMBLY AND HANDLING PRECAUTIONS

- [1] Do not apply rough force such as bending or twisting to the module during assembly.
- [2] Do not apply pressure or impulse to the module to prevent the damage of LCD panel and Backlight.
- [3] Bezel of Set can not press or touch the panel surface. It will make light leakage or scrape.
- [4] It should be attached to the system firmly using all mounting holes.
- [5] It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer, do not press or scratch the surface harder than a HB pencil lead.
- [6] Use finger-stalls with soft gloves in order to keep display clean during the incoming inspection and assembly process.
- [7] Protection film for polarizer on the module should be slowly peeled off just before use so that the electrostatic charge can be minimized.
- [8] Do not disassemble the module.
- [9] Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- [10] Do not plug in or pull out the I/F connector while the module is in operation, pins of I/F connector should not be touched directly with bare hands. Do not adjust the variable resistor located on the module.
- [11] Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched. Water, IPA (Isoproyl Alcohol) or Hexane are desirable cleaners. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanent damage to the polarizer due to chemical reaction.
- [12] Moisture can easily penetrate into LCD module and may cause the damage during operation.
- [13] When storing modules as spares for a long time, the following precaution is necessary.
 - [13.1] Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35°C at normal humidity (under 70%) without condensation.
 - [13.2] The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.
- [14] When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of LED will be higher than that of room temperature.

8.2 SAFETY PRECAUTIONS

To optimize PID module's lifetime and functions, operating conditions should be followed as below

- [1] Normal operating condition
 - [1.1] Temperature : 20±15°C
 - [1.2] Humidity: 55±20%
 - [1.3] Well-ventilated place is suggested to set up PID module and system.
 - [1.4] Display pattern: regular switched patterns or moving pictures.

INNOLUX 群創光電股份有限公司

PRODUCT SPECIFICATION

- [1.4.1] Periodical power-off or screen saver is needed after long-term static display.
- [1.4.2] Moving picture or black pattern is strongly recommended for screen saver.
- [2] Operating requirements of PID modules and systems to prevent uneven display under long-term operating.
 - [2.1] PID suitable operating time: under 20 hrs a day.
 - [2.2] Periodical display contents should be changed from static image to moving picture.
 - [2.2.1] Different background and image colors changed respectively, and changed colors periodically.
 - [2.2.2] Background and image with large different luminance displayed at the same time should be avoided.
- [3] The startup voltage of a Backlight may cause an electrical shock while assembling with the converter. Do not disassemble the module or insert anything into the Backlight unit.
- [4] Do not connect or disconnect the module in the "Power On" condition.
- [5] Do not exceed the absolute maximum rating value. (supply voltage variation, input voltage variation, variation in part contents and environmental temperature...) Otherwise the module may be damaged.
- [6] If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- [7] Module should be turned clockwise (regular front view perspective) when used in portrait mode.
- [8] Ultra-violet ray filter is necessary for outdoor operation.
- [9] Only when PID module is operated under right operating conditions, lifetime in this spec can be guaranteed.

 After the module's end of life, it is not harmful in case of normal operation and storage.

8.3 SAFETY STANDARDS

The LCD module should be certified with safety regulations as follows:

Regulatory	Item	Standard
Information Technology equipment	UL	UL60950-1:2006 or Ed.2:2007
	cUL	CAN/CSA C22.2 No.60950-1-03 or 60950-1-07
	СВ	IEC60950-1:2005 / EN60950-1:2006+ A11:2009
Audio/Video Apparatus	UL	UL60065 Ed.7:2007
	cUL	CAN/CSA C22.2 No.60065-03:2006 + A1:2006
	СВ	IEC60065:2001+ A1:2005 / EN60065:2002 + A1:2006+ A11:2008

If the module displays the same pattern for a long period of time, the phenomenon of image sticking may be occurred.

9. DEFINITION OF LABELS

9.1 MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

Model Name: V400DJ1-KS5

Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

Serial ID includes the information as below:

Manufactured Date:

Year: 2001=1, 2002=2, 2003=3, 2004=4...2010=0, 2011=1, 2012=2...

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I,O, and U.

Revision Code: Cover all the change

Serial No. : Manufacturing sequence of product

Product Line : $1 \rightarrow Line 1$, $2 \rightarrow Line 2$, ...etc.

9.2 CARTON LABEL

The barcode nameplate is pasted on each box as illustration, and its definitions are as following explanation.

Model Name: V400DJ1- KS5

Serial ID includes the information as below:

Manufactured Date:

Year: 2010=0, 2011=1, 2012=2...etc.

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I,O, and U.

Revision Code: Cover all the change

10. PACKAGING

10.1 PACKAGING SPECIFICATIONS

(1) 7 LCD TV modules / 1 Box

(2) Box dimensions: 954(L) X 378 (W) X 625 (H)

(3) Weight: approximately 55.6 Kg

10.2 PACKAGING METHOD

Figures 10-1 and 10-2 are the packing method

Figure 10-1 packing method

Sea / Land Transportation (40ft HQ Container)

Sea / Land Transportation (20ft / 40ft Container)

Air Transportation

Figure 10-2 packing method

10.3 UN-PACKAGING METHOD

Figures 10-3 is the un-packing method

Figure 10-3 un-packing method

11. MECHANICAL CHARACTERISTIC

