THE UNIVERSITY OF SYDNEY MATH1901/06 DIFFERENTIAL CALCULUS (ADVANCED)

Semester 1 Short answers to exam questions

2009

- 1. (a) Annulus between two concentric circles, including the circles themselves, radii 1 and 2, centre -1 + i in second quadrant, inner circle touching both axes.
 - (b) Roots: $z = 2 \pm i$ and $z = \pm 2i$.
 - (c) Surjective because every complex number has a fourth root. Not injective because a nonzero complex number has more than one fourth root.
- **2**. (a) (i). Directional derivative: $D_{\mathbf{u}}f(3,1) = \nabla f \cdot \hat{\mathbf{u}} = \frac{6\mathbf{i} + 8\mathbf{j}}{13} \cdot \frac{3\mathbf{i} 2\mathbf{j}}{\sqrt{13}} = \frac{2}{13\sqrt{13}}$.
 - (ii). Tangent plane: $z = (6x + 8y)/13 + \ln(13) 2$.
 - (b) $T_6(x) = 1 \frac{x^2}{3!} + \frac{x^4}{5!} \frac{x^6}{7!}, \quad f''(0) = -\frac{1}{3}, \quad f^{(4)}(0) = \frac{1}{5}, \quad f^{(6)}(0) = -\frac{1}{7}.$
 - (c) Limit is -4. (Use $T_3(x) = x x^3/6$ for $\sin x$ about x = 0.)
- **3**. (a) (i). Limit is a + b. (Rationalise numerator or use binomial series.)
 - (ii). Limit is $-\infty$. (The logarithm of zero, approached from the right.)
 - (iii). Limit is $2/\pi^2$. (Use l'Hôpital's rule twice.)
 - (b) Vertical tangent because $\lim_{x\to 0}(x^{3/5}-0^{3/5})/x=\lim_{x\to 0}x^{-2/5}=+\infty$ (two-sided). Alternatively, because inverse $y=x^{5/3}$ has a horizontal tangent at x=0. Also acceptable: $(d/dx)x^{3/5}=(3/5)x^{-2/5}\to +\infty$ as $x\to 0$ (two-sided).
- 4. (a) Point (R, 2R) occurs at $\theta = \pi/2$. Slope of tangent: $dy/dx = y'(\theta)/x'(\theta) = -1$. Equation of tangent line: y = 3R x.
 - (b) (i). $f_x(0,y) = 0$, $f_x(0,0) = 0$, $f_y(x,0) = x$, $f_y(0,0) = 0$.
 - (ii). $f_{xy}(0,0) = 0$, $f_{yx}(0,0) = 1$. (Able to be different because f_{xy} and f_{yx} are both discontinuous at (0,0) and because f_y is not differentiable at (0,0).)