Water Potability Prediction

Final Project

Our Team

Muhammad Nurfalah Rohmawan

Sandy Febrian

Samsul Rizal

Renaldi Ega

Table of Content

- A. Background of Study
- B. Materials and Methods (EDA, Data Processing, Modelling, etc)
- C. Conclusion

A. Background of Study

- Human existence relies on water, but both surface and groundwater sources are often polluted by various contaminants generated from rapid population growth and urban development.
- Globally, 20% of people lack clean drinking water, and 50% lack safe sanitation systems, as per the United Nations Environment Program (2000).
- In recent years, predicting water quality has become a significant research area due to its critical importance to address any issue related to clean water in the future.
- Predictive models can provide early warnings for water quality issues, such as contamination events or natural disasters. This information is invaluable for emergency response and safeguarding public health.

B. Material and Method

In this project, we aim to predict the water potability based on a set of features. To train our machine learning model, we will use Scikit Learn and deploy to Streamlit

Source: https://www.kaggle.com/datasets/uom190346a/water-quality-and-potability/data

Evaluating Data Structure

	ph	Hardness	Solids	Chloramines	Sulfate	Conductivity	Organic_carbon	Trihalomethanes	Turbidity	Potability
0	NaN	204.890455	20791.318981	7.300212	368.516441	564.308654	10.379783	86.990970	2.963135	(
1	3.716080	129.422921	18630.057858	6.635246	NaN	592.885359	15.180013	56.329076	4.500656	
2	8.099124	224.236259	19909.541732	9.275884	NaN	418.606213	16.868637	66.420093	3.055934	(
3	8.316766	214.373394	22018.417441	8.059332	356.886136	363.266516	18.436524	100.341674	4.628771	(
4	9.092223	181.101509	17978.986339	6.546600	310.135738	398.410813	11.558279	31.997993	4.075075	(
		122		(873)	577.0	2775		535		
3271	4.668102	193.681735	47580.991603	7.166639	359.948574	526.424171	13.894419	66.687695	4.435821	1
3272	7.808856	193.553212	17329.802160	8.061362	NaN	392.449580	19.903225	NaN	2.798243	1
3273	9.419510	175.762646	33155.578218	7.350233	NaN	432.044783	11.039070	69.845400	3.298875	1
3274	5.126763	230.603758	11983.869376	6.303357	NaN	402.883113	11.168946	77.488213	4.708658	9
3275	7.874671	195.102299	17404.177061	7.509306	NaN	327.459760	16.140368	78.698446	2.309149	

Attributes Information

pH: The pH level of the water.

Hardness: Water hardness, a measure of mineral content.

Solids: Total dissolved solids in the water.

Chloramines: Chloramines concentration in the water.

Sulfate: Sulfate concentration in the water.

Conductivity: Electrical conductivity of the water.

Organic_carbon: Organic carbon content in the water.

Trihalomethanes: Trihalomethanes concentration in the water.

Turbidity: Turbidity level, a measure of water clarity.

Potability: Target variable; indicates water potability with values 1 (potable) and 0 (not potable).

Evaluating Data Structure

```
[] 1 df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3276 entries, 0 to 3275
Data columns (total 10 columns):
   Column
                  Non-Null Count Dtype
   ph 2785 non-null float64
   Hardness 3276 non-null float64
   Solids 3276 non-null float64
   Chloramines 3276 non-null float64
   Sulfate 2495 non-null float64
   Conductivity 3276 non-null float64
   Organic_carbon 3276 non-null float64
   Trihalomethanes 3114 non-null float64
   Turbidity 3276 non-null float64
    Potability 3276 non-null int64
dtypes: float64(9), int64(1)
memory usage: 256.1 KB
```


Evaluating Data Structure

V Os	[6]	1	df.describe()

	ph	Hardness	Solids	Chloramines	Sulfate	Conductivity	Organic_carbon	Trihalomethanes	Turbidity	Potability
count	2785.000000	3276.000000	3276.000000	3276.000000	2495.000000	3276.000000	3276.000000	3114.000000	3276.000000	3276.000000
mean	7.080795	196.369496	22014.092526	7.122277	333.775777	426.205111	14.284970	66.396293	3.966786	0.390110
std	1.594320	32.879761	8768.570828	1.583085	41.416840	80.824064	3.308162	16.175008	0.780382	0.487849
min	0.000000	47.432000	320.942611	0.352000	129.000000	181.483754	2.200000	0.738000	1.450000	0.000000
25%	6.093092	176.850538	15666.690297	6.127421	307.699498	365.734414	12.065801	55.844536	3.439711	0.000000
50%	7.036752	196.967627	20927.833607	7.130299	333.073546	421.884968	14.218338	66.622485	3.955028	0.000000
75%	8.062066	216.667456	27332.762127	8.114887	359.950170	481.792304	16.557652	77.337473	4.500320	1.000000
max	14.000000	323.124000	61227.196008	13.127000	481.030642	753.342620	28.300000	124.000000	6.739000	1.000000

0s	[7]	1	df.isna().sum()

ph	491
Hardness	0
Solids	0
Chloramines	0
Sulfate	781
Conductivity	0
Organic_carbon	0
Trihalomethanes	162
Turbidity	0
Potability	0
dtype: int64	

Checking Target Feature

```
# Check target feature

plt.figure(figsize=(5,5))
plt.title('Overall Potability Rate', fontsize=15)
sns.countplot(data=df, x=df['Potability'], color='skyblue', edgecolor='black')

plt.show()
```


Distribution with Histplot

0.0

Turbidity

0.2

0.4

Potability

0.6

0.8

1.0

except for "Solids" feature

Distribution with Boxplot

2

Turbidity

0.4

Potability

0.8

1.0

Correlation Matrix

All features seems to have low correlation with Potability. We will explore with Non-Linear model

Correlation Matrix Heatmap

1.00	0.08	-0.08	-0.03	0.02	0.02	0.04	0.00	-0.04	-0.00
0.08	1.00	-0.05	-0.03	-0.11	-0.02	0.00	-0.01	-0.01	-0.01
-0.08	-0.05	1.00	-0.06	-0.16	0.01	0.01	-0.02	0.03	0.03
-0.03	-0.03	-0.06	1.00	0.03	-0.02	-0.01	0.02	0.00	0.02
0.02	-0.11	-0.16	0.03	1.00	-0.02	0.03	-0.03	-0.01	-0.02
0.02	-0.02	0.01	-0.02	-0.02	1.00	0.02	0.00	0.01	-0.01
0.04	0.00	0.01	-0.01	0.03	0.02	1.00	-0.01	-0.03	-0.03
0.00	-0.01	-0.02	0.02	-0.03	0.00	-0.01	1.00	-0.02	0.01
-0.04	-0.01	0.03	0.00	-0.01	0.01	-0.03	-0.02	1.00	0.00
-0.00	-0.01	0.03	0.02	-0.02	-0.01	-0.03	0.01	0.00	1.00
	0.08 -0.08 -0.03 0.02 0.02 0.04 0.00 -0.04	0.081.00-0.08-0.05-0.03-0.030.02-0.110.02-0.020.040.000.00-0.01-0.04-0.01	0.08 1.00 -0.05 -0.08 -0.05 1.00 -0.03 -0.03 -0.06 0.02 -0.11 -0.16 0.02 -0.02 0.01 0.04 0.00 0.01 0.00 -0.01 -0.02 -0.04 -0.01 0.03	0.08 1.00 -0.05 -0.03 -0.08 -0.05 1.00 -0.06 -0.03 -0.06 1.00 0.02 -0.11 -0.16 0.03 0.02 -0.02 0.01 -0.02 0.04 0.00 0.01 -0.01 0.00 -0.01 -0.02 0.02 -0.04 -0.01 0.03 0.00	0.08 1.00 -0.05 -0.03 -0.11 -0.08 -0.05 1.00 -0.06 -0.16 -0.03 -0.03 -0.06 1.00 0.03 0.02 -0.11 -0.16 0.03 1.00 0.02 -0.02 0.01 -0.02 -0.02 0.04 0.00 0.01 -0.01 0.03 0.00 -0.01 -0.02 0.02 -0.03 -0.04 -0.01 0.03 0.00 -0.01	0.08 1.00 -0.05 -0.03 -0.11 -0.02 -0.08 -0.05 1.00 -0.06 -0.16 0.01 -0.03 -0.03 -0.06 1.00 0.03 -0.02 0.02 -0.11 -0.16 0.03 1.00 -0.02 0.02 -0.02 0.01 -0.02 -0.02 1.00 0.04 0.00 0.01 -0.01 0.03 0.02 0.00 -0.01 -0.02 0.02 -0.03 0.00 -0.04 -0.01 0.03 0.00 -0.01 0.01	0.08 1.00 -0.05 -0.03 -0.11 -0.02 0.00 -0.08 -0.05 1.00 -0.06 -0.16 0.01 0.01 -0.03 -0.03 -0.06 1.00 0.03 -0.02 -0.01 0.02 -0.11 -0.16 0.03 1.00 -0.02 0.03 0.02 -0.02 0.01 -0.02 -0.02 1.00 0.02 0.04 0.00 0.01 -0.01 0.03 0.02 1.00 0.00 -0.01 -0.02 0.02 -0.03 0.00 -0.01 -0.04 -0.01 0.03 0.00 -0.01 0.03 -0.03	0.08 1.00 -0.05 -0.03 -0.11 -0.02 0.00 -0.01 -0.08 -0.05 1.00 -0.06 -0.16 0.01 0.01 -0.02 -0.03 -0.03 -0.06 1.00 0.03 -0.02 -0.01 0.02 0.02 -0.11 -0.16 0.03 1.00 -0.02 0.03 -0.03 0.02 -0.02 0.01 -0.02 -0.02 1.00 0.02 0.00 0.04 0.00 0.01 -0.01 0.03 0.02 1.00 -0.01 0.00 -0.01 -0.02 0.03 0.00 -0.01 1.00 -0.04 -0.01 0.03 0.00 -0.01 0.01 -0.02	0.08 1.00 -0.05 -0.03 -0.11 -0.02 0.00 -0.01 -0.01 -0.08 -0.05 1.00 -0.06 -0.16 0.01 0.01 -0.02 0.03 -0.03 -0.03 -0.06 1.00 0.03 -0.02 -0.01 0.02 0.00 0.02 -0.11 -0.16 0.03 1.00 -0.02 0.03 -0.03 -0.01 0.02 -0.02 0.01 -0.02 -0.02 1.00 0.02 0.00 0.01 0.04 0.00 0.01 -0.01 0.03 0.02 1.00 -0.01 -0.03 0.00 -0.01 -0.02 0.03 0.00 -0.01 1.00 -0.02 -0.04 -0.01 0.03 0.00 -0.01 0.03 -0.02 1.00

0.6 0.4 0.2 0.0

Cleaning Outliers

Check NaN Values

Percent of NaN per column of the dataset

Check NaN Values

ph and Trihalomethanes has normal distribution = we use mean or median Sulfate has left skew = we use mean

To simplify, all feature will use mean SimpleImputer

Compare Before after Imputer

Distribution is not affected after SimpleImputer

Split data set into training and testing

Generate training and testing datasets from **df_imputed**. First, define a predictor (X) and response (y) variable. And then split with the proportion are 80% for training and 20% for testing.

Handling Imbalanced Data with SMOTE

```
Before OverSampling, counts of label '1': 1022
Before OverSampling, counts of label '0': 1598
     5 sm = SMOTE(random state=0)
     6 X train resampled, y train resampled = sm.fit resample(X train, y train)
After OverSampling, the shape of train X: (3196, 9)
After OverSampling, the shape of train y: (3196,)
After OverSampling, counts of label '1' y train resampled: 1598
After OverSampling, counts of label '0' y train resampled: 1598
After OverSampling, counts of label '1' y test: 256
After OverSampling, counts of label '0' y test: 400
```


Feature Scaling

```
[ ] 1 # Feature Scaling
2
3 sc_X = StandardScaler()
4 X_train2 = pd.DataFrame(sc_X.fit_transform(X_train_resampled))
5 X_train2.columns = X_train_resampled.columns.values
6 X_train2.index = X_train_resampled.index.values
7 X_train_resampled = X_train2
8
9 X_test2 = pd.DataFrame(sc_X.transform(X_test))
10 X_test2.columns = X_test.columns.values
11 X_test2.index = X_test.index.values
12 X_test = X_test2
```

Feature scaling using **StandardScaler()**, it makes mean = 0 and scales the data to unit variance.

To enhance the accuracy and efficacy of water quality classification, this analysis uses the **Scikit-learn library** to implement six (6) Classifiers as below:

- 1. Support Vector Classifier (SVC)
- 2. Multi-Layer Perceptron Classifier (MPL)
- 3. XGBoost Classifier (XGB)
- 4. Decision Tree Classifier (DT
- 5. Random Forest Classifier (RF)
- 6. K-Neighbor Classifier (KNN)

Which one is the best?

Support Vector Classifier (SVC)

```
1 # Inisialization MLP
         clf_svc = SVC(probability=True, random_state=0)
      4 # Model training
      5 clf_svc.fit(X_train_resampled, y_train_resampled)
      7 # Predicting the Test set results
         y pred = clf svc.predict(X test)
     10 #Evaluate results
     11 acc = accuracy_score(y_test, y_pred )
     12 prec = precision score(v test, v pred )
     13 rec = recall_score(y_test, y_pred )
     14 f1 = f1_score(y_test, y_pred )
         model_results = pd.DataFrame([['MLP', acc, prec, rec, f1]],
               columns = ['Model', 'Accuracy', 'Precision', 'Recall', 'F1 Score'])
     19 results = model_results.sort_values(["Precision", "Recall"], ascending = False)
     20 print (results)
      Model Accuracy Precision Recall F1 Score
     0 MLP 0.61128 0.501845 0.53125 0.516129
[112] 1 # Parameters to be tuned
      2 param_grid = {
```

```
Fitting 5 folds for each of 240 candidates, totalling 1200 fits
Best parameters found: {'C': 10, 'degree': 2, 'gamma': 'auto', 'kernel': 'rbf'}
```

```
1 #save best parameter as best mlp
    best svc = grid search1.best estimator
    # Predicting the test set results using best parameter
    v pred = best svc.predict(X test)
    #Evaluate results
    acc = accuracy_score(y_test, y_pred )
     prec = precision_score(y_test, y_pred )
   rec = recall score(y test, y pred )
    f1 = f1_score(y_test, y_pred )
12
    #Save model performance to model list
    model_list.append(best_svc.__class__.__name__)
    accuracy_list.append(acc)
    precision_list.append(prec)
    recall list.append(rec)
    f1 Score list.append(f1)
19
20
     model_results = pd.DataFrame([['SVC', acc, prec, rec, f1]],
21
      columns = ['Model', 'Accuracy', 'Precision', 'Recall', 'F1 Score'])
22
    results_svc = model_results.append(model_results, ignore_index=True)
24 model results
```

Model	Accuracy	Precision	Recall	F1 Score
SVC	0.625	0.517606	0.574219	0.544444

Multi-Layer Perceptron Classifier (MPL)

```
1 # Inisialization MLP
     mlp = MLPClassifier(hidden_layer_sizes=(50), max_iter=1000, random_state=0)
  4 # Model training
  5 mlp.fit(X_train_resampled, y_train_resampled)
  7 # Predicting the Test set results
     y pred = mlp.predict(X test)
 10 #Evaluate results
 11 acc = accuracy score(v test, v pred )
 12 prec = precision_score(y_test, y_pred )
 13 rec = recall_score(y_test, y_pred )
 14 f1 = f1_score(y_test, y_pred )
 16 model_results = pd.DataFrame([['MLP', acc, prec, rec, f1]],
      columns = ['Model', 'Accuracy', 'Precision', 'Recall', 'F1 Score'])
 19 results = model_results.sort_values(["Precision", "Recall"], ascending = False)
 20 print (results)
   Model Accuracy Precision Recall F1 Score
 0 MLP 0.606707 0.49635 0.53125 0.513208
1 # Parameters to be tuned
     param_grid = {
```

```
Fitting 5 folds for each of 16 candidates, totalling 80 fits
Best parameters found: {'activation': 'relu', 'alpha': 0.05, 'hidden_layer_sizes': (50,), 'learning_rate': 'constant', 'solver': 'adam'}
```

```
[110] 1 #save best parameter as best_mlp
      2 best mlp = grid search.best estimator
      4 # Predicting the test set results using best parameter
      5 y_pred = best_mlp.predict(X_test)
      7 #Evaluate results
      8 acc = accuracy score(y test, y pred )
      9 prec = precision_score(y_test, y_pred )
      10 rec = recall_score(y_test, y_pred )
      f1 = f1_score(y_test, y_pred )
      13 #Save model performance to model list
      14 model_list.append(best_mlp.__class_.__name__)
      15 accuracy_list.append(acc)
         precision_list.append(prec)
      17 recall list.append(rec)
          f1_Score_list.append(f1)
          model_results = []
          model_results = pd.DataFrame([['MLP', acc, prec, rec, f1]],
                 columns = ['Model', 'Accuracy', 'Precision', 'Recall', 'F1 Score'])
      24 results_mlp = model_results.append(model_results, ignore_index=True)
      25 model results
```

```
Model Accuracy Precision Recall F1 Score
MLP 0.612805 0.503788 0.519531 0.511538
```


XG Boost Classifier:

It's an extension of the traditional gradient boosting algorithm and is known for its high performance

and efficiency

```
1 from xgboost import XGBClassifier
 2 from sklearn.model selection import RandomizedSearchCV
 3 from sklearn.metrics import classification_report, accuracy_score
 4 from sklearn.model_selection import RepeatedStratifiedKFold
 6 # Create an XGBoost model
 7 XGB model = XGBClassifier()
9 # Define hyperparameter search space
10 param dist = {
      "learning_rate": [0.05, 0.10, 0.15, 0.20, 0.25, 0.30],
      "max_depth": [3, 4, 5, 6, 8, 10, 12, 15],
      "min_child_weight": [1, 3, 5, 7],
     "gamma": [0.0, 0.1, 0.2, 0.3, 0.4],
      "colsample_bytree": [0.3, 0.4, 0.5, 0.7]
16 }
18 # Create cross-validation strategy
19 cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)
21 # Perform hyperparameter tuning with RandomizedSearchCV
22 XGB = RandomizedSearchCV(XGB model, param dist, n iter=50, scoring='roc auc', n jobs=-1, cv=cv, random state=1)
23 XGB.fit(X_train_resampled, y_train_resampled)
25 # Predict on the test data
26 y_pred = XGB.predict(X_test)
28 #Evaluate results
29 acc = accuracy_score(y_test, y_pred )
30 prec = precision score(y test, y pred )
31 rec = recall_score(y_test, y_pred )
32 f1 = f1_score(y_test, y_pred )
```

34 # Disp	lay classification report and accuracy
35 print(classification_report(y_test, y_pred))
36 accura	cy = accuracy_score(y_test, y_pred)
37 print(f'Accuracy: {accuracy}')
38	
39 # Get	the best estimator from RandomizedSearchCV
40 best_X	GB = XGB.best_estimator_
41	
42 #Save	model performance to model_list
43 model_	list.append(best_XGBclassname)
44 accura	cy_list.append(acc)
45 precis	ion_list.append(prec)
46 recall	_list.append(rec)
47 f1_Sco	re_list.append(f1)

	precision	recall	f1-score	support
0.0	0.69	0.67	0.68	400
1.0	0.51	0.53	0.52	256
accuracy			0.62	656
macro avg	0.60	0.60	0.60	656
weighted avg	0.62	0.62	0.62	656

Decision Tree

A decision tree is a popular supervised machine learning algorithm used for both classification and regression tasks..

```
1 #from sklearn.tree import DecisionTreeClassifier
 2 from sklearn.model selection import RandomizedSearchCV
3 from scipy.stats import randint
 4 from sklearn.metrics import classification report
 5 from sklearn.model selection import RepeatedStratifiedKFold
 6
 7 # Kemudian, Anda dapat membuat objek RepeatedStratifiedKFold seperti ini:
 8 cv = RepeatedStratifiedKFold(n splits=10, n repeats=3, random state=1)
 9
10
11
12 # Create a Decision Tree model
13 DT_model = DecisionTreeClassifier()
14
15 # Define hyperparameter search space
16 param dist = {
      "max depth": [3, None],
      "max features": randint(1, X train resampled.shape[1]),
18
19
       "min samples leaf": randint(1, X train resampled.shape[0]),
20
      "criterion": ["gini", "entropy"]
21 }
22
23 # Create cross-validation strategy
24 cv = RepeatedStratifiedKFold(n splits=10, n repeats=3, random state=1)
25
26 # Perform hyperparameter tuning with RandomizedSearchCV
27 DT = RandomizedSearchCV(DT_model, param_dist, n_iter=50, scoring='roc_auc', n_jobs=-1, cv=cv, random_state=1)
28 DT.fit(X_train_resampled, y_train_resampled)
```

```
30 # Get the best estimator from RandomizedSearchCV
31 best DT = DT.best estimator
33 # Train the best Decision Tree model on the training data
34 best_DT.fit(X_train_resampled, y_train_resampled)
36 # Predict on the test data
37 pred = best DT.predict(X test)
38 pred_prob = best_DT.predict_proba(X_test)
40 #Evaluate results
41 acc = accuracy_score(y_test, pred )
42 prec = precision score(y test, pred )
43 rec = recall score(y test, pred )
44 f1 = f1_score(y_test, pred )
46 #Save model performance to model list
47 model list.append(best DT. class . name )
48 accuracy_list.append(acc)
49 precision list.append(prec)
50 recall list.append(rec)
51 f1_Score_list.append(f1)
53 # Display classification report
54 print(classification report(y test, pred))
```

		precision	recall	f1-score	support	
	0.0	0.63	0.53	0.58	400	
	1.0	0.41	0.52	0.46	256	
accur	acy			0.52	656	
macro	avg	0.52	0.52	0.52	656	
weighted	avg	0.55	0.52	0.53	656	

Random Forest:

Random Forests are made out of decision trees composed of different bootstrapped data.

```
from sklearn.ensemble import RandomForestClassifier
    from sklearn.model selection import RandomizedSearchCV, RepeatedStratifiedKFold
    from scipy.stats import randint
    from sklearn.metrics import classification_report
    # Create a Random Forest model
    RF model = RandomForestClassifier()
10
    # Define hyperparameter search space for Random Forest
    RF param dist = {
13
        "n estimators": [100, 200, 300],
14
        "max depth": [None, 10, 20, 30],
15
        "min samples split": [2, 5, 10],
16
        "min samples_leaf": [1, 2, 4],
        "criterion": ["gini", "entropy"]
17
18
19
    # Create cross-validation strategy
    cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)
22
    # Perform hyperparameter tuning with RandomizedSearchCV for Random Forest
    RF = RandomizedSearchCV(RF model, RF param dist, n iter=50, scoring='roc auc', n jobs=-1, cv=cv, random state=1)
    RF.fit(X train resampled, y train resampled)
25
26
27 # Get the best estimator from RandomizedSearchCV for Random Forest
    best RF = RF.best estimator
```

```
1 # Train the best Random Forest model on the training data
    best RF.fit(X train resampled, y train resampled)
    # Predict on the test data for Random Forest
    pred RF = best RF.predict(X test)
    pred_prob_RF = best_RF.predict_proba(X_test)
    # Evaluate results
    acc = accuracy score(v test, v pred)
     prec = precision score(v test, v pred)
11 rec = recall score(v test, v pred)
    f1 = f1_score(y_test, y_pred)
    #Save model performance to model list
    model list.append(best RF. class . name )
    accuracy list.append(acc)
    precision list.append(prec)
    recall list.append(rec)
    f1 Score list.append(f1)
20
21 # Display classification report for Random Forest
    print("Classification Report for Random Forest:")
23 print(classification report(y test, pred RF))
```

support	f1-score	recall	precision	
406	0.71	0.72	0.71	0.0
256	0.54	0.53	0.55	1.0
656	0.64			accuracy
656	0.62	0.62	0.63	macro avg
656	0.64	0.64	0.64	weighted avg

K-Nearest Neighbour:

K-NN makes predictions by finding the **K-nearest data** points in the training dataset to a given data point and then classifying or regressing based on the majority or average of the neighbors' labels or values.

```
1 # K-Nearest Neighbors (KNN) model
    from sklearn.neighbors import KNeighborsClassifier
    from sklearn.model selection import RandomizedSearchCV, RepeatedStratifiedKFold
    from scipy.stats import randint
    from sklearn.metrics import classification report
    # Create a K-Nearest Neighbors (KNN) model
    KNN model = KNeighborsClassifier()
    # Define hyperparameter search space for KNN
    KNN param dist = {
12
        "n neighbors": randint(1, 10),
13
        "weights": ['uniform', 'distance'],
14
        "algorithm": ['auto', 'ball_tree', 'kd_tree', 'brute']
15
16
    # Create cross-validation strategy
    cv = RepeatedStratifiedKFold(n splits=10, n repeats=3, random state=1)
19
    # Perform hyperparameter tuning with RandomizedSearchCV for KNN
    KNN = RandomizedSearchCV(KNN model, KNN param dist, n iter=50, scoring='roc auc', n jobs=-1, cv=cv, random state=1)
22
    KNN.fit(X_train_resampled, y_train_resampled)
    # Get the best estimator from RandomizedSearchCV for KNN
    best_KNN = KNN.best_estimator_
```

```
# Train the best KNN model on the training data
    best KNN.fit(X train resampled, y train resampled)
    # Predict on the test data for KNN
    pred KNN = best KNN.predict(X test)
    pred_prob_KNN = best_KNN.predict_proba(X_test)
    # Evaluate results
    acc = accuracy_score(y_test, pred_KNN)
    prec = precision score(y test, pred KNN)
    rec = recall score(y test, pred KNN)
12 f1 = f1 score(v test, pred KNN)
    #Save model performance to model list
    model_list.append(best_KNN.__class_.__name__)
    accuracy list.append(acc)
    precision list.append(prec)
    recall_list.append(rec)
    f1 Score list.append(f1)
    # Display classification report for KNN
    print("Classification Report for K-Nearest Neighbors:")
23 print(classification report(y test, pred KNN))
```

	ion Report fo			
	precision	recall	f1-score	support
0.	0.69	0.59	0.63	400
1.	0.47	0.58	0.52	256
accurac	у		0.59	656
macro av	g 0.58	0.58	0.58	656
weighted av	g 0.60	0.59	0.59	656

Model Evaluation

Accuracy Model

	Model	Accuracy	Precision	Recall	F1 Score
0	MLPClassifier	0.612805	0.503788	0.519531	0.511538
1	SVC	0.625000	0.517606	0.574219	0.544444
2	RandomForestClassifier	0.641768	0.543210	0.515625	0.529058
3	KNeighborsClassifier	0.585366	0.474522	0.582031	0.522807
4	DecisionTreeClassifier	0.591463	0.476923	0.484375	0.480620
5	XGBClassifier	0.615854	0.507519	0.527344	0.517241

"Random Forest Classifier (RF) with accuracy of 0.64 is the best one

Model Evaluation

Confusion-Matrix

Actual Values

1 (Postive)

2 (Postive)

1 (Po

Confusion Matrix

- 160

Model Evaluation

Evaluate the model using ROC Graph

ROC Graph

Model Deployment

Streamlit

C. Conclusion

"Random Forest Classifier (RF) with accuracy of 0.64 is the best one to other models in accuracy and robustness, making it the optimal choice for classification."

