

Mini-batch gradient descent

Batch vs. mini-batch gradient descent

Vectorization allows you to efficiently compute on m examples.

(os if me 1 500) Mini-batch gradient descent report 2 for t = 1,..., 5000 { Formal peop on X [61]. Acco = des (5co)

Herpisch inhereport

(1200 example)

Then Xii, Xii) (Compute cost $J_{=}^{EI} = \frac{1}{1000} \stackrel{?}{\geq} 1(\stackrel{\wedge}{y}, \stackrel{\vee}{y})) + \frac{1}{21000} \stackrel{?}{\geq} 1||\stackrel{\vee}{w}||_{F}^{2}$ Doubprop to congut grounts cort Jeez (usy (x823, x822)) W= Wres - ddwas, Pari = Par - mpas "I epoch" poss through training set. Andrew Ng

Understanding mini-batch gradient descent

Training with mini batch gradient descent

Batch gradient descent

iterations

☐ Mini-batch gradient descent

Andrew Ng

Choosing your mini-batch size

> If mini-both size = m : Borth godnt desent. (X 813, Y 813) = (X, Y)

 \bigcirc > If min=both Size=1: Stochasta graph descent. Every example is it our $(X^{(1)},Y^{(1)})=(\chi^{(1)},y^{(1)})\dots(\chi^{(2)},y^{(1)})$ min=both.

In practice: Somewh in-between I all m

Stochostic Live speaking for Vostoritation

In-bother Bostch (minihotal size godiet desut (min; both size = m) not too by (small) Furleyt learnly. Too long · Vectoraution. per iteration · Make poor without processing extire truly sot. Andrew Ng

Choosing your mini-batch size

- If small tray set: Use both gradet designed.

 (m < 2000)
- Typical mini-hotch sizes:

 -> 64, 128, 256, 512

 20 22 28 20 20

Make sure miniporte file in CPU/GPU memoory.

Exponentially weighted averages

Temperature in London

```
\theta_{1} = 40^{\circ}F \quad 4^{\circ}C \leftarrow
\theta_{2} = 49^{\circ}F \quad 9^{\circ}C
\theta_{3} = 45^{\circ}F
\vdots
\theta_{180} = 60^{\circ}F \quad 6^{\circ}C
\theta_{181} = 56^{\circ}F
\vdots
```


Exponentially weighted averages

Understanding exponentially weighted averages

Exponentially weighted averages

$$\begin{array}{c} v_{t} = \beta v_{t-1} + (1-\beta)\theta_{t} \\ v_{100} = 0.9v_{99} + 0.1\theta_{100} \\ \hline v_{99} = 0.9v_{98} + 0.1\theta_{99} \\ \hline v_{98} = 0.9v_{97} + 0.1\theta_{98} \\ \hline \\ \vdots \\ \hline \\ v_{100} = 0.9v_{99} + 0.1\theta_{99} \\ \hline \\ v_{100} = 0.9v_{99} + 0.1\theta_{99} \\ \hline \\ v_{100} = 0.9v_{97} + 0.1\theta_{98} \\ \hline \\ \vdots \\ \hline \\ v_{100} = 0.9v_{99} + 0.1\theta_{99} \\ \hline \\ v_{100} = 0.9v_{99}$$

Implementing exponentially weighted averages

$$v_0 = 0$$

 $v_1 = \beta v_0 + (1 - \beta) \theta_1$
 $v_2 = \beta v_1 + (1 - \beta) \theta_2$
 $v_3 = \beta v_2 + (1 - \beta) \theta_3$
...

$$V_0 := \beta v + (1-\beta) O_1$$
 $V_0 := \beta v + (1-\beta) O_2$
:

Bias correction in exponentially weighted average

Bias correction

$$v_t = \beta v_{t-1} + (1 - \beta)\theta_t$$

$$v_0 = 0$$

$$v_1 = 0.08 v_0 + 0.02 \Theta_1$$

$$v_2 = 0.98 v_1 + 0.02 \Theta_2$$

$$= 0.98 \times 0.02 \times \Theta_1 + 0.02 \Theta_2$$

$$= 0.98 \times 0.02 \times \Theta_1 + 0.02 \Theta_2$$

$$= 0.0196 \Theta_1 + 0.02 \Theta_2$$

$$\frac{1-\beta^{t}}{1-\beta^{t}}$$

$$t=2: 1-\beta^{t} = 1-(0.98)^{2} = 0.0396$$

$$\frac{1-\beta^{t}}{0.0396} = \frac{0.01960. + 0.020}{0.0396}$$

Andrew Ng

Gradient descent with momentum

Implementation details

On iteration *t*:

Compute *dW*, *db* on the current mini-batch

$$\square \rightarrow v_{dW} = \beta v_{dW} + M \beta dW$$

$$> v_{db} = \beta v_{db} + (1 - \beta) \underline{db}$$

Hyperparameters:
$$\alpha, \beta$$

$$\beta = 0.9$$
Overlage on last 100 graduits

RMSprop

RMSprop W, W2, 42 Z=10-8

Adam optimization algorithm

Adam optimization algorithm

Hyperparameters choice:

$$D \rightarrow d$$
: needs to be tune
 $\Rightarrow \beta_1: 0.9 \rightarrow (du)$
 $\Rightarrow \beta_2: 0.999 \rightarrow (dw^2)$
 $\Rightarrow \xi: 10^{-8}$

Adami: Adaptu momet estination

Adam Coates

Learning rate decay

Learning rate decay

Learning rate decay

1 apoch = 1 pass through dort.

1 + decay-rote * epoch-num

\bigcirc	Epoch	2
	(0.1
	2	0.67
	3	6.5
	4	0.4
		-

 $\frac{\chi^{\{1\}}}{\chi^{\{1\}}}$ = poul 1

do = 0.2 decq. rate = 1

Other learning rate decay methods

The problem of local optima

