Steklov's Problem for OPUC

Michel Alexis

joint with Alexander Aptekarev and Sergey Denisov

UW-Madison

ORAM, 2021

Setting: $\mathbb{T} \subset \mathbb{C}$.

Can write $z = e^{i\theta}$.

Setting: $\mathbb{T} \subset \mathbb{C}$.

 $1, z, z^2, z^3, \dots$

Can write $z = e^{i\theta}$.

Can write
$$z = e^{i\theta}$$
.

$$1, z, z^2, z^3, \dots$$
 \perp w.r.t.

Can write
$$z = e^{i\theta}$$
.

$$1,z,z^2,z^3,\ldots$$
 \perp w.r.t. $\frac{d\theta}{2\pi}$ \downarrow $w(\theta) rac{d\theta}{2\pi}$

Can write
$$z = e^{i\theta}$$
.

Can write
$$z = e^{i\theta}$$
.

$$1,z,z^2,z^3,\dots$$
 \perp w.r.t. $\frac{d\theta}{2\pi}$ \downarrow $\varphi_0,\varphi_1,\varphi_2,\varphi_3,\dots$ \perp w.r.t. $w(\theta)\frac{d\theta}{2\pi}$

Setting: $\mathbb{T} \subset \mathbb{C}$.

$$1,z,z^2,z^3,\ldots$$
 \perp w.r.t. $\frac{d\theta}{2\pi}$ \downarrow Gram-Schmidt \downarrow $\varphi_0,\varphi_1,\varphi_2,\varphi_3,\ldots$ \perp w.r.t. $w(\theta)\frac{d\theta}{2\pi}$

Can write $z = e^{i\theta}$.

• $\varphi_n(z)$ is orthonormal polynomial of degree n.

Setting: $\mathbb{T} \subset \mathbb{C}$.

$$1,z,z^2,z^3,\dots$$
 \perp w.r.t. $\frac{d\theta}{2\pi}$ \downarrow Gram-Schmidt \downarrow $\varphi_0,\varphi_1,\varphi_2,\varphi_3,\dots$ \perp w.r.t. $w(\theta)\frac{d\theta}{2\pi}$

Can write $z = e^{i\theta}$.

- $\varphi_n(z)$ is orthonormal polynomial of degree n.
- $\{\varphi_n(z)\}$ are called Orthogonal Polynomials on the Unit Circle.

ullet $\frac{1}{|arphi_n|^2} o w$ in the weak-* sense as measures.

- $\frac{1}{|\varphi_n|^2} \to w$ in the weak-* sense as measures.
- $\log \frac{1}{|\varphi_n|^2} \to \log w$ in L^1 and weak-* sense if $\int_{\mathbb{T}} \log w > -\infty$.

- $\frac{1}{|\varphi_n|^2} \to w$ in the weak-* sense as measures.
- $\log \frac{1}{|\varphi_n|^2} \to \log w$ in L^1 and weak-* sense if $\int_{\mathbb{T}} \log w > -\infty$.

Trend seems to be $|\varphi_n| \to w^{-1/2}$;

- $\frac{1}{|\varphi_n|^2} \to w$ in the weak-* sense as measures.
- $\log \frac{1}{|\varphi_n|^2} \to \log w$ in L^1 and weak-* sense if $\int_{\mathbb{T}} \log w > -\infty$.

Trend seems to be $|\varphi_n| \to w^{-1/2}$; indeed, $\int |\varphi_n|^2 w = 1$ and φ_n oscillate more and more.

- $\frac{1}{|\varphi_n|^2} \to w$ in the weak-* sense as measures.
- $\log \frac{1}{|\varphi_n|^2} \to \log w$ in L^1 and weak-* sense if $\int_{\mathbb{T}} \log w > -\infty$.

Trend seems to be $|\varphi_n| \to w^{-1/2}$; indeed, $\int |\varphi_n|^2 w = 1$ and φ_n oscillate more and more.

We expect this behavior pointwise as well.

- ullet $\frac{1}{|arphi_n|^2} o w$ in the weak-* sense as measures.
- $\log \frac{1}{|\varphi_n|^2} \to \log w$ in L^1 and weak-* sense if $\int_{\mathbb{T}} \log w > -\infty$.

Trend seems to be $|\varphi_n| \to w^{-1/2}$; indeed, $\int |\varphi_n|^2 w = 1$ and φ_n oscillate more and more.

We expect this behavior pointwise as well.

- $\frac{1}{|\varphi_n|^2} \to w$ in the weak-* sense as measures.
- $\log \frac{1}{|\varphi_n|^2} \to \log w$ in L^1 and weak-* sense if $\int_{\mathbb{T}} \log w > -\infty$.

Trend seems to be $|\varphi_n| \to w^{-1/2}$; indeed, $\int |\varphi_n|^2 w = 1$ and φ_n oscillate more and more.

We expect this behavior pointwise as well.

$$|\varphi_{\it n}| \rightarrow {\it w}^{-1/2}$$

If $w \geqslant \delta > 0$, then $\{\varphi_n\}$ are bounded above, i.e. $\sup_n \|\varphi_n\|_{L^\infty(w)} < \infty$.

$$|\varphi_n| \to w^{-1/2}$$

If $w \geqslant \delta > 0$, then $\{\varphi_n\}$ are bounded above, i.e. $\sup_n \|\varphi_n\|_{L^\infty(w)} < \infty$.

False! Can create weights w which oscillate rapidly, forcing $\{\varphi_n\}$ to blow-up.

3/10

$$|\varphi_n| \to w^{-1/2}$$

If $w \ge \delta > 0$, then $\{\varphi_n\}$ are bounded above, i.e. $\sup_n \|\varphi_n\|_{L^\infty(w)} < \infty$.

False! Can create weights w which oscillate rapidly, forcing $\{\varphi_n\}$ to blow-up.

But $\|\varphi_n\|_{L^2(w)} = 1$ by definition. Maybe we're asking for too much regularity?

$$|\varphi_n| \to w^{-1/2}$$

If $w \ge \delta > 0$, then $\{\varphi_n\}$ are bounded above, i.e. $\sup \|\varphi_n\|_{L^{\infty}(w)} < \infty$.

False! Can create weights w which oscillate rapidly, forcing $\{\varphi_n\}$ to blow-up.

But $\|\varphi_n\|_{L^2(w)} = 1$ by definition.

Maybe we're asking for too much regularity?

Problem (Steklov problem)

Does there exist p > 2 such that $\sup \|\varphi_n\|_{L^p(w)} < \infty$?

$$|\varphi_n| \to w^{-1/2}$$

If $w \ge \delta > 0$, then $\{\varphi_n\}$ are bounded above, i.e. $\sup_n \|\varphi_n\|_{L^\infty(w)} < \infty$.

False! Can create weights w which oscillate rapidly, forcing $\{\varphi_n\}$ to blow-up.

But $\|\varphi_n\|_{L^2(w)} = 1$ by definition. Maybe we're asking for too much regularity?

Problem (Steklov problem)

Does there exist p > 2 such that $\sup_{n} \|\varphi_n\|_{L^p(w)} < \infty$?

Remark: If $\int_{\mathbb{T}} \log w > -\infty$, then $|\varphi_n(z)| \sim |\Phi_n(z)|$, where $\Phi_n(z)$ are the

monic orthogonal polynomials of degree n.

Theorem (Nazarov, 2016)

Suppose $\epsilon \leqslant w \leqslant \Lambda$. Then there exists p > 2 for which $\sup_{n} \|\Phi_{n}\|_{L^{p}} < \infty$.

Theorem (Nazarov, 2016)

Suppose $\epsilon \leqslant w \leqslant 1$. Then there exists p > 2 for which $\sup_{n} \|\Phi_{n}\|_{L^{p}} < \infty$.

Proof:

Theorem (Nazarov, 2016)

Suppose $\epsilon \leqslant w \leqslant \cancel{N} 1$. Then there exists p > 2 for which $\sup_{n} \|\Phi_n\|_{L^p} < \infty$.

Proof: $\mathcal{P}_{[0,n]} \stackrel{\text{def}}{=} \text{Projection onto } \operatorname{Span}\{1,z,z^2,z^3,\ldots,z^n\}.$

Theorem (Nazarov, 2016)

Suppose $\epsilon \leqslant w \leqslant 1$. Then there exists p > 2 for which $\sup_n \|\Phi_n\|_{L^p} < \infty$.

Proof: $\mathcal{P}_{[0,n]} \stackrel{\text{def}}{=}$ Projection onto $\operatorname{Span}\{1,z,z^2,z^3,\ldots,z^n\}$.

$$\begin{cases} \Phi_n = z^n + \mathcal{P}_{[0,n-1]} \Phi_n \quad \text{(monic)} \end{cases}$$

Theorem (Nazarov, 2016)

Suppose $\epsilon \leqslant w \leqslant 1$. Then there exists p > 2 for which $\sup_{n} \|\Phi_{n}\|_{L^{p}} < \infty$.

Proof:
$$\mathcal{P}_{[0,n]} \stackrel{\text{def}}{=} \text{Projection onto } \operatorname{Span}\{1, z, z^2, z^3, \dots, z^n\}.$$

$$\begin{cases} \Phi_n &= z^n + \mathcal{P}_{[0,n-1]} \Phi_n \quad \text{(monic)} \\ 0 &= \mathcal{P}_{[0,n-1]} w \Phi_n \quad \text{(orthogonal)} \end{cases}$$

Theorem (Nazarov, 2016)

Suppose $\epsilon \leqslant w \leqslant \cancel{K} 1$. Then there exists p > 2 for which $\sup_n \|\Phi_n\|_{L^p} < \infty$.

Proof: $\mathcal{P}_{[0,n]} \stackrel{\text{def}}{=} \text{Projection onto } \operatorname{Span}\{1,z,z^2,z^3,\ldots,z^n\}.$

$$\begin{cases} \Phi_n &= z^n + \mathcal{P}_{[0,n-1]} \Phi_n \quad \text{(monic)} \\ 0 &= \mathcal{P}_{[0,n-1]} w \Phi_n \quad \text{(orthogonal)} \end{cases} \Rightarrow \Phi_n = z^n + \mathcal{P}_{[0,n-1]} (1-w) \Phi_n \,,$$

Theorem (Nazarov, 2016)

Suppose $\epsilon \leqslant w \leqslant 1$. Then there exists p > 2 for which $\sup_{n} \|\Phi_{n}\|_{L^{p}} < \infty$.

Proof: $\mathcal{P}_{[0,n]} \stackrel{\text{def}}{=} \text{Projection onto } \operatorname{Span}\{1,z,z^2,z^3,\ldots,z^n\}.$

$$\begin{cases} \Phi_n &= z^n + \mathcal{P}_{[0,n-1]} \Phi_n \quad \text{(monic)} \\ 0 &= \mathcal{P}_{[0,n-1]} w \Phi_n \quad \text{(orthogonal)} \end{cases} \Rightarrow \Phi_n = z^n + \mathcal{P}_{[0,n-1]} (1-w) \Phi_n \,,$$

or rather $(I - \mathcal{P}_{[0,n-1]}(1-w))\Phi_n = z^n$.

Theorem (Nazarov, 2016)

Suppose $\epsilon \leqslant w \leqslant \cancel{K} 1$. Then there exists p > 2 for which $\sup_n \|\Phi_n\|_{L^p} < \infty$.

Proof: $\mathcal{P}_{[0,n]} \stackrel{\text{def}}{=} \text{Projection onto } \operatorname{Span}\{1, z, z^2, z^3, \dots, z^n\}.$

$$\begin{cases} \Phi_n &= z^n + \mathcal{P}_{[0,n-1]} \Phi_n \quad \text{(monic)} \\ 0 &= \mathcal{P}_{[0,n-1]} w \Phi_n \quad \text{(orthogonal)} \end{cases} \Rightarrow \Phi_n = z^n + \mathcal{P}_{[0,n-1]} (1-w) \Phi_n \,,$$

or rather $(I - \mathcal{P}_{\lceil 0, n-1 \rceil}(1-w))\Phi_n = z^n$.

If we can show $\|\mathcal{P}_{[0,n-1]}\|_{p,p} \leq 1 + \epsilon$ for p close to 2, then done!

Theorem (Nazarov, 2016)

Suppose $\epsilon \leqslant w \leqslant 1$. Then there exists p > 2 for which $\sup_{n} \|\Phi_{n}\|_{L^{p}} < \infty$.

Proof: $\mathcal{P}_{[0,n]} \stackrel{\text{def}}{=} \text{Projection onto } \operatorname{Span}\{1,z,z^2,z^3,\ldots,z^n\}.$

$$\begin{cases} \Phi_n &= z^n + \mathcal{P}_{[0,n-1]} \Phi_n \quad \text{(monic)} \\ 0 &= \mathcal{P}_{[0,n-1]} w \Phi_n \quad \text{(orthogonal)} \end{cases} \Rightarrow \Phi_n = z^n + \mathcal{P}_{[0,n-1]} (1-w) \Phi_n \,,$$

or rather $(I - \mathcal{P}_{\lceil 0, n-1 \rceil}(1-w))\Phi_n = z^n$.

If we can show $\|\mathcal{P}_{[0,n-1]}\|_{p,p} \leq 1 + \epsilon$ for p close to 2, then done!

• Indeed, $\|\mathcal{P}_{[0,n-1]}(1-w)\|_{p,p} \leqslant (1+\epsilon)(1-\epsilon) \leqslant 1-\epsilon^2 < 1$

Theorem (Nazarov, 2016)

Suppose $\epsilon \leqslant w \leqslant 1$. Then there exists p > 2 for which $\sup_{n} \|\Phi_{n}\|_{L^{p}} < \infty$.

Proof: $\mathcal{P}_{[0,n]} \stackrel{\text{def}}{=} \text{Projection onto } \operatorname{Span}\{1,z,z^2,z^3,\ldots,z^n\}.$

$$\begin{cases} \Phi_n &= z^n + \mathcal{P}_{[0,n-1]} \Phi_n \quad \text{(monic)} \\ 0 &= \mathcal{P}_{[0,n-1]} w \Phi_n \quad \text{(orthogonal)} \end{cases} \Rightarrow \Phi_n = z^n + \mathcal{P}_{[0,n-1]} (1-w) \Phi_n \,,$$

or rather $(I - \mathcal{P}_{[0,n-1]}(1-w))\Phi_n = z^n$.

If we can show $\|\mathcal{P}_{[0,n-1]}\|_{p,p} \leq 1 + \epsilon$ for p close to 2, then done!

- Indeed, $\|\mathcal{P}_{[0,n-1]}(1-w)\|_{p,p} \leqslant (1+\epsilon)(1-\epsilon) \leqslant 1-\epsilon^2 < 1$
- Now by geometric sum,

Does there exist p > 2 such that $\sup_{n} \|\Phi_n\|_{L^p(w)} < \infty$?

Theorem (Nazarov, 2016)

Suppose $\epsilon \leqslant w \leqslant 1$. Then there exists p > 2 for which $\sup_{n} \|\Phi_{n}\|_{L^{p}} < \infty$.

Proof: $\mathcal{P}_{[0,n]} \stackrel{\text{def}}{=} \text{Projection onto } \operatorname{Span}\{1,z,z^2,z^3,\ldots,z^n\}.$

$$\begin{cases} \Phi_n &= z^n + \mathcal{P}_{[0,n-1]} \Phi_n \quad \text{(monic)} \\ 0 &= \mathcal{P}_{[0,n-1]} w \Phi_n \quad \text{(orthogonal)} \end{cases} \Rightarrow \Phi_n = z^n + \mathcal{P}_{[0,n-1]} (1-w) \Phi_n \,,$$

or rather $(I - \mathcal{P}_{\lceil 0, n-1 \rceil}(1-w))\Phi_n = z^n$.

If we can show $\|\mathcal{P}_{[0,n-1]}\|_{p,p} \leq 1 + \epsilon$ for p close to 2, then done!

- Indeed, $\|\mathcal{P}_{[0,n-1]}(1-w)\|_{p,p} \le (1+\epsilon)(1-\epsilon) \le 1-\epsilon^2 < 1$
- Now by geometric sum,

$$\|\Phi_n\|_p \leqslant \|(I - \mathcal{P}_{[0,n-1]}(1-w))^{-1}\|_{p,p}\|z^n\|_p$$

Does there exist p > 2 such that $\sup_{n} \|\Phi_n\|_{L^p(w)} < \infty$?

Theorem (Nazarov, 2016)

Suppose $\epsilon \leqslant w \leqslant 1$. Then there exists p > 2 for which $\sup_{n} \|\Phi_{n}\|_{L^{p}} < \infty$.

Proof: $\mathcal{P}_{[0,n]} \stackrel{\text{def}}{=} \text{Projection onto } \operatorname{Span}\{1,z,z^2,z^3,\ldots,z^n\}.$

$$\begin{cases} \Phi_n &= z^n + \mathcal{P}_{[0,n-1]} \Phi_n \quad \text{(monic)} \\ 0 &= \mathcal{P}_{[0,n-1]} w \Phi_n \quad \text{(orthogonal)} \end{cases} \Rightarrow \Phi_n = z^n + \mathcal{P}_{[0,n-1]} (1-w) \Phi_n \,,$$

or rather $(I - \mathcal{P}_{\lceil 0, n-1 \rceil}(1-w))\Phi_n = z^n$.

If we can show $\|\mathcal{P}_{[0,n-1]}\|_{p,p} \leq 1 + \epsilon$ for p close to 2, then done!

- Indeed, $\|\mathcal{P}_{[0,n-1]}(1-w)\|_{\rho,\rho} \le (1+\epsilon)(1-\epsilon) \le 1-\epsilon^2 < 1$
- Now by geometric sum,

$$\|\Phi_n\|_{\rho} \leqslant \|(I - \mathcal{P}_{[0,n-1]}(1-w))^{-1}\|_{\rho,\rho}\|z^n\|_{\rho} \leqslant \|\sum_{k=0}^{\infty} (\mathcal{P}_{[0,n-1]}(1-w))^k\|_{\rho,\rho}$$

• Have uniform control of $\|\mathcal{P}_{[0,n-1]}\|_{p,p}$ since $\mathcal{P}_{[0,n-1]}$ is a linear combination of Hilbert transforms,

• Given $\|\mathcal{P}_{[0,n]}\|_{2,2} = 1$, one can show $\|\mathcal{P}_{[0,n]}\|_{p,p} \leqslant 1 + O(|p-2|)$ uniformly in n.

- Given $\|\mathcal{P}_{[0,n]}\|_{2,2} = 1$, one can show $\|\mathcal{P}_{[0,n]}\|_{p,p} \leqslant 1 + O(|p-2|)$ uniformly in n.
- \bullet Choose p close enough to 2 so that $\|\mathcal{P}_{[0,n-1]}\|_{p,p}\leqslant 1+\epsilon<1$

• We say $w \in A_2$ if $\sup_{I: \text{ arc in } \mathbb{T}} \left(\frac{1}{|I|} \int_I w\right) \left(\frac{1}{|I|} \int_I w^{-1}\right) < \infty$.

- We say $w \in A_2$ if $\sup_{I: \text{ arc in } \mathbb{T}} \left(\frac{1}{|I|} \int_I w\right) \left(\frac{1}{|I|} \int_I w^{-1}\right) < \infty.$
- Facts/notions about A_2 :

- We say $w \in A_2$ if $\sup_{I: \text{ arc in } \mathbb{T}} \left(\frac{1}{|I|} \int_I w\right) \left(\frac{1}{|I|} \int_I w^{-1}\right) < \infty$.
- Facts/notions about A_2 :
- $w \in A_2$ means w cannot be too singular/oscillatory.

- We say $w \in A_2$ if $\sup_{I: \text{ arc in } \mathbb{T}} \left(\frac{1}{|I|} \int_I w\right) \left(\frac{1}{|I|} \int_I w^{-1}\right) < \infty$.
- Facts/notions about A_2 :
- $w \in A_2$ means w cannot be too singular/oscillatory.
- if $w \in A_2$ then $\log w \in BMO$.

- We say $w \in A_2$ if $\sup_{I: \text{ arc in } \mathbb{T}} \left(\frac{1}{|I|} \int_I w\right) \left(\frac{1}{|I|} \int_I w^{-1}\right) < \infty$.
- Facts/notions about A_2 :
- $w \in A_2$ means w cannot be too singular/oscillatory.
- if $w \in A_2$ then $\log w \in BMO$.
- Power weights $|\theta|^{\alpha} \in \mathcal{A}_2$ if $-1 < \alpha < 1$

- We say $w \in A_2$ if $\sup_{I: \text{ arc in } \mathbb{T}} \left(\frac{1}{|I|} \int_I w\right) \left(\frac{1}{|I|} \int_I w^{-1}\right) < \infty.$
- Facts/notions about A_2 :
- $w \in A_2$ means w cannot be too singular/oscillatory.
- if $w \in A_2$ then $\log w \in BMO$.
- Power weights $|\theta|^{\alpha} \in A_2$ if $-1 < \alpha < 1$

- We say $w \in A_2$ if $\sup_{I: \text{ arc in } \mathbb{T}} \left(\frac{1}{|I|} \int_I w\right) \left(\frac{1}{|I|} \int_I w^{-1}\right) < \infty$.
- Facts/notions about A_2 :
- $w \in A_2$ means w cannot be too singular/oscillatory.
- if $w \in A_2$ then $\log w \in BMO$.
- Power weights $|\theta|^{\alpha} \in A_2$ if $-1 < \alpha < 1$
- Can define A_p weights similarly for 1 .

- We say $w \in A_2$ if $\sup_{I: \text{ arc in } \mathbb{T}} \left(\frac{1}{|I|} \int_I w\right) \left(\frac{1}{|I|} \int_I w^{-1}\right) < \infty$.
- Facts/notions about A_2 :
- $w \in A_2$ means w cannot be too singular/oscillatory.
- if $w \in A_2$ then $\log w \in BMO$.
- Power weights $|\theta|^{\alpha} \in A_2$ if $-1 < \alpha < 1$
- Can define A_p weights similarly for 1 .

Theorem (Hunt-Muckenhoupt-Wheeden)

If $w \in A_p$, then $\|w^{1/p}\mathcal{H}w^{-1/p}\|_{p,p} = \|\mathcal{H}\|_{L^p(w)\to L^p(w)} < \infty$.

- We say $w \in A_2$ if $\sup_{I: \text{ arc in } \mathbb{T}} \left(\frac{1}{|I|} \int_I w\right) \left(\frac{1}{|I|} \int_I w^{-1}\right) < \infty.$
- Facts/notions about A_2 :
- $w \in A_2$ means w cannot be too singular/oscillatory.
- if $w \in A_2$ then $\log w \in BMO$.
- Power weights $|\theta|^{\alpha} \in A_2$ if $-1 < \alpha < 1$
- Can define A_p weights similarly for 1 .

Theorem (Hunt-Muckenhoupt-Wheeden)

If
$$w \in A_p$$
, then $\|w^{1/p}\mathcal{H}w^{-1/p}\|_{p,p} = \|\mathcal{H}\|_{L^p(w)\to L^p(w)} < \infty$.

 A_p plays nicely with the Hilbert transform \mathcal{H} , so makes sense to adapt previous proof to A_p weights.

Theorem (A.-Aptekarev-Denisov, '20)

If $w \in A_2$, then $\sup_n \|w^{1/p} \Phi_n\|_{L^p} = \sup_n \|\Phi_n\|_{L^p(w)} < \infty$ for some p > 2.

Theorem (A.-Aptekarev-Denisov, '20)

If $w \in A_2$, then $\sup_n \|w^{1/p} \Phi_n\|_{L^p} = \sup_n \|\Phi_n\|_{L^p(w)} < \infty$ for some p > 2.

$$\Phi_n = z^n + \mathcal{P}_{[0,n-1]} \qquad \Phi_n \quad \text{(monic)}$$

$$0 = \mathcal{P}_{[0,n-1]} \quad w \quad \Phi_n \quad \text{(orthogonal)}$$

The Steklov problem for A₂ weights

Theorem (A.-Aptekarev-Denisov, '20)

If $w \in A_2$, then $\sup_n \|w^{1/p} \Phi_n\|_{L^p} = \sup_n \|\Phi_n\|_{L^p(w)} < \infty$ for some p > 2.

$$\begin{array}{lll}
\bullet & \begin{cases} w^{1/p} \Phi_n &= w^{1/p} z^n + w^{1/p} \mathcal{P}_{[0,n-1]} & \Phi_n & \text{(monic)} \\ 0 &= \mathcal{P}_{[0,n-1]} & w & \Phi_n & \text{(orthogonal)} \end{cases}$$

The Steklov problem for A₂ weights

Theorem (A.-Aptekarev-Denisov, '20)

If $w \in A_2$, then $\sup_n \|w^{1/p} \Phi_n\|_{L^p} = \sup_n \|\Phi_n\|_{L^p(w)} < \infty$ for some p > 2.

$$\begin{cases}
 w^{1/p} \Phi_n &= w^{1/p} z^n + w^{1/p} \mathcal{P}_{[0,n-1]} w^{-1/p} w^{1/p} \Phi_n & \text{(monic)} \\
 0 &= \mathcal{P}_{[0,n-1]} & w & \Phi_n & \text{(orthogonal)}
\end{cases}$$

Theorem (A.-Aptekarev-Denisov, '20)

If $w \in A_2$, then $\sup_n \|w^{1/p} \Phi_n\|_{L^p} = \sup_n \|\Phi_n\|_{L^p(w)} < \infty$ for some p > 2.

$$\begin{cases} w^{1/p} \Phi_n &= w^{1/p} z^n + w^{1/p} \mathcal{P}_{[0,n-1]} w^{-1/p} w^{1/p} \Phi_n & \text{(monic)} \\ 0 &= w^{-1/p'} \mathcal{P}_{[0,n-1]} w^{1/p'} w^{1/p} \Phi_n & \text{(orthogonal)} \end{cases}$$

Theorem (A.-Aptekarev-Denisov, '20)

If $w \in A_2$, then $\sup_n \|w^{1/p} \Phi_n\|_{L^p} = \sup_n \|\Phi_n\|_{L^p(w)} < \infty$ for some p > 2.

Proof.

- $\begin{cases} w^{1/p} \Phi_n &= w^{1/p} z^n + w^{1/p} \mathcal{P}_{[0,n-1]} w^{-1/p} w^{1/p} \Phi_n & \text{(monic)} \\ 0 &= w^{-1/p'} \mathcal{P}_{[0,n-1]} w^{1/p'} w^{1/p} \Phi_n & \text{(orthogonal)} \end{cases}$
- Subtract bottom from top and re-arrange to get

$$(I - Q_{w,p})w^{1/p}\Phi_n = w^{1/p}z^n$$

where $Q_{w,p} = w^{1/p} \mathcal{P}_{[0,n-1]} w^{-1/p} - w^{-1/p'} \mathcal{P}_{[0,n-1]} w^{1/p'}$.

Theorem (A.-Aptekarev-Denisov, '20)

If $w \in A_2$, then $\sup_n \|w^{1/p}\Phi_n\|_{L^p} = \sup_n \|\Phi_n\|_{L^p(w)} < \infty$ for some p > 2.

Proof.

- $\begin{cases} w^{1/p} \Phi_n &= w^{1/p} z^n + w^{1/p} \mathcal{P}_{[0,n-1]} w^{-1/p} w^{1/p} \Phi_n & \text{(monic)} \\ 0 &= w^{-1/p'} \mathcal{P}_{[0,n-1]} w^{1/p'} w^{1/p} \Phi_n & \text{(orthogonal)} \end{cases}$
- Subtract bottom from top and re-arrange to get

$$(I - Q_{w,p})w^{1/p}\Phi_n = w^{1/p}z^n$$
,

where
$$Q_{w,p} = w^{1/p} \mathcal{P}_{[0,n-1]} w^{-1/p} - w^{-1/p'} \mathcal{P}_{[0,n-1]} w^{1/p'}$$
.

• Can invert $I - Q_{w,p}$ for some p near 2 using spectral theory and analytic interpolation. (Skipped because not main goal of talk).

• Till now, we measured the regularity of $\{\varphi_n\}$ using L^p norms.

- Till now, we measured the regularity of $\{\varphi_n\}$ using L^p norms.
- But can also measure regularity from an operator perspective.

- Till now, we measured the regularity of $\{\varphi_n\}$ using L^p norms.
- But can also measure regularity from an operator perspective.
- Define $\mathcal{P}^w_{[0,n]} \stackrel{\text{def}}{=} \operatorname{Proj}_w \operatorname{Span} \{\varphi_0, \varphi_1, \varphi_2, \dots, \varphi_n\}.$

- Till now, we measured the regularity of $\{\varphi_n\}$ using L^p norms.
- But can also measure regularity from an operator perspective.
- Define $\mathcal{P}_{[0,n]}^{w} \stackrel{\text{def}}{=} \operatorname{Proj}_{w} \operatorname{Span} \{\varphi_{0}, \varphi_{1}, \varphi_{2}, \dots, \varphi_{n}\}.$
 - When w = 1 we just get back $\mathcal{P}_{[0,n]}$, bounded on L^p for 1 .

- Till now, we measured the regularity of $\{\varphi_n\}$ using L^p norms.
- But can also measure regularity from an operator perspective.
- Define $\mathcal{P}_{[0,n]}^{w} \stackrel{\text{def}}{=} \operatorname{Proj}_{w} \operatorname{Span} \{\varphi_{0}, \varphi_{1}, \varphi_{2}, \dots, \varphi_{n}\}.$
 - When w=1 we just get back $\mathcal{P}_{[0,n]}$, bounded on L^p for 1 .

Problem

Does there exist $p \neq 2$ for which $\{\mathcal{P}^w_{[0,n]}\}_{n\geqslant 0}$ is uniformly bounded as operators on $L^p(w)$?

- Till now, we measured the regularity of $\{\varphi_n\}$ using L^p norms.
- But can also measure regularity from an operator perspective.
- Define $\mathcal{P}_{[0,n]}^{w} \stackrel{\text{def}}{=} \operatorname{Proj}_{w} \operatorname{Span} \{\varphi_{0}, \varphi_{1}, \varphi_{2}, \dots, \varphi_{n}\}.$
 - When w = 1 we just get back $\mathcal{P}_{[0,n]}$, bounded on L^p for 1 .

Problem

Does there exist $p \neq 2$ for which $\{\mathcal{P}^w_{[0,n]}\}_{n\geqslant 0}$ is uniformly bounded as operators on $L^p(w)$?

A: Yes!

If $w \in A_2$, then there exists $\delta > 0$ such that whenever $\left|\frac{1}{p} - \frac{1}{2}\right| < \delta$, then

$$\sup_{n} \|\mathcal{P}_{[0,n]}^{w}\|_{L^{p}(w) \to L^{p}(w)} < \infty.$$

If $w \in A_2$, then there exists $\delta > 0$ such that whenever $\left|\frac{1}{p} - \frac{1}{2}\right| < \delta$, then

$$\sup_{n} \|\mathcal{P}_{[0,n]}^{w}\|_{L^{p}(w)\to L^{p}(w)} < \infty.$$

Proof.

One can show that when $w \in A_2$, we have $\mathcal{P}^w_{[0,\infty)}$ is bounded on $L^p(w)$. So suffices to show $\{\mathcal{P}^w_{[n+1,\infty)}\}_{n\geqslant 0}$ are bounded on $L^p(w)$.

If $w \in A_2$, then there exists $\delta > 0$ such that whenever $\left|\frac{1}{p} - \frac{1}{2}\right| < \delta$, then

$$\sup_{n} \|\mathcal{P}_{[0,n]}^{w}\|_{L^{p}(w)\to L^{p}(w)} < \infty.$$

Proof.

One can show that when $w \in A_2$, we have $\mathcal{P}^w_{[0,\infty)}$ is bounded on $L^p(w)$. So suffices to show $\{\mathcal{P}^w_{[n+1,\infty)}\}_{n\geqslant 0}$ are bounded on $L^p(w)$.

$$\begin{cases} 0 & = \mathcal{P}_{[0,n]} w \mathcal{P}^w_{[n+1,\infty)} \quad \text{(orthogonality)} \end{cases}$$

If $w \in A_2$, then there exists $\delta > 0$ such that whenever $\left|\frac{1}{p} - \frac{1}{2}\right| < \delta$, then

$$\sup_{n} \|\mathcal{P}_{[0,n]}^{w}\|_{L^{p}(w)\to L^{p}(w)} < \infty.$$

Proof.

One can show that when $w \in A_2$, we have $\mathcal{P}^w_{[0,\infty)}$ is bounded on $L^p(w)$. So suffices to show $\{\mathcal{P}^w_{[n+1,\infty)}\}_{n\geqslant 0}$ are bounded on $L^p(w)$.

$$\begin{cases} \mathcal{P}^w_{[n+1,\infty)} &= (I - \mathcal{P}_{[0,n]}) \mathcal{P}^w_{[0,\infty)} + \mathcal{P}_{[0,n]} \mathcal{P}^w_{[n+1,\infty)} & \text{("monic")} \\ 0 &= \mathcal{P}_{[0,n]} w \mathcal{P}^w_{[n+1,\infty)} & \text{(orthogonality)} \end{cases}$$

If $w \in A_2$, then there exists $\delta > 0$ such that whenever $\left|\frac{1}{p} - \frac{1}{2}\right| < \delta$, then

$$\sup_{n} \|\mathcal{P}_{[0,n]}^{w}\|_{L^{p}(w)\to L^{p}(w)} < \infty.$$

Proof.

One can show that when $w \in A_2$, we have $\mathcal{P}^w_{[0,\infty)}$ is bounded on $L^p(w)$. So suffices to show $\{\mathcal{P}^w_{[n+1,\infty)}\}_{n\geqslant 0}$ are bounded on $L^p(w)$.

$$\begin{cases} \mathcal{P}^w_{[n+1,\infty)} &= (I - \mathcal{P}_{[0,n]}) \mathcal{P}^w_{[0,\infty)} + \mathcal{P}_{[0,n]} \mathcal{P}^w_{[n+1,\infty)} & \text{("monic")} \\ 0 &= \mathcal{P}_{[0,n]} w \mathcal{P}^w_{[n+1,\infty)} & \text{(orthogonality)} \end{cases}$$

Now we can proceed exactly as before!

Thank you for Listening!