Question	Scheme	Marks
8(a)	$\overrightarrow{AB} = \overrightarrow{AD} + \overrightarrow{DC} + \overrightarrow{CB} = 5\mathbf{a} - 2\mathbf{b} - 3\mathbf{a} = 2\mathbf{a} - 2\mathbf{b}$	B1 [1]
(b)	$\overrightarrow{BX} = k \overrightarrow{BD} = k (3\mathbf{a} + 2\mathbf{b})$	M1
	$\overrightarrow{BX} = \overrightarrow{BA} + \lambda \overrightarrow{AC} = -2\mathbf{a} + 2\mathbf{b} + \lambda (5\mathbf{a} - 2\mathbf{b})$	M1
	$\Rightarrow k(3\mathbf{a} + 2\mathbf{b}) = -2\mathbf{a} + 2\mathbf{b} + \lambda(5\mathbf{a} - 2\mathbf{b})$	
	$\Rightarrow 3k\mathbf{a} + 2k\mathbf{b} = (5\lambda - 2)\mathbf{a} + (2 - 2\lambda)\mathbf{b}$	M1
	$\Rightarrow 3k = 5\lambda - 2 2k = 2 - 2\lambda$	
	$\Rightarrow k = \frac{3}{8} \qquad \left[\lambda = \frac{5}{8}\right]$	M1A1 [5]
(c)	$\Delta CXD = \frac{5}{8} \Delta BCD$	M1
	$\Delta BCD = \frac{3}{8} ABCD$	M1
	$\frac{\Delta CXD}{ABCD} = \frac{\frac{5}{8}}{\frac{8}{3}} = \frac{15}{64}$	M1
	Ratio of area of triangle CXD : Trapezium $ABCD = 15:64$	A1
		[4]
Total 10		

Useful sketch

Part	Mark	Notes		
(a)	B1	For the correct vector for \overrightarrow{AB}		
(b)	Note ca	e carefully.		
	For the t	first two marks in part (b) you must follow through their working using		
	their AB	\overrightarrow{AC} or \overrightarrow{BD}		
	M1	For one correct vector statement for \overrightarrow{BX}		
	M1	For a second correct and different vector statement for \overrightarrow{BX} For example: $\rightarrow \rightarrow \rightarrow \rightarrow$ $\overrightarrow{BX} = \overrightarrow{BA} + \lambda \overrightarrow{AC} = -2\mathbf{a} + 2\mathbf{b} + \lambda (5\mathbf{a} - 2\mathbf{b})$ OR $\rightarrow \rightarrow \rightarrow \rightarrow$		
		$\overrightarrow{BX} = \overrightarrow{BC} + \lambda \overrightarrow{AC} = 3\mathbf{a} - \lambda (5\mathbf{a} - 2\mathbf{b})$		
	ddM1	For equating coefficients of a and b and forming two equations in <i>k</i> and another parameter. This must be correct Dependent on first two M marks		
	dddM1	For solving their simultaneous equations to find <i>k</i> Allow one arithmetical error in processing. Dependent on all three previous M marks		
	A1	For $k = \frac{3}{8}$		
(c)	M1	For using their k to find the ratio of the areas of for example, $CXD : CAD \Rightarrow \frac{CXD}{CAD} = \frac{3}{8} \text{ or } \frac{CXD}{CAD} = \frac{\frac{1}{2} \times \frac{3}{8} \times 2b \times \sin ACD}{\frac{1}{2} \times \frac{8}{8} \times 2b \times \sin ACD} = \frac{3}{8}$ OR $CXD : CAD \Rightarrow \frac{CXD}{CAD} = \frac{3}{8} \text{ or } \frac{CXD}{CAD} = \frac{\frac{1}{2} \times \frac{3}{8} \times 2b \times \sin ACD}{\frac{1}{2} \times \frac{8}{8} \times 2b \times \sin ACD} = \frac{3}{8}$		
		$CXD: BCD \Rightarrow \frac{CXD}{BCD} = \frac{5}{8} \text{ or } \frac{CXD}{CAD} = \frac{\frac{1}{2} \times \frac{5}{8} \times 2b \times \sin BDC}{\frac{1}{2} \times \frac{8}{8} \times 2b \times \sin BDC} = \frac{5}{8}$		
	M1	For using the given lengths of BC and AD [3 and 5],to find the ratio of the area of triangle ACD : trapezium $ABCD$		
		$\frac{CAD}{ABCD} = \frac{\frac{1}{2} \times h \times 5}{\frac{1}{2} \times h \times (5+3)} = \frac{5}{8} \mathbf{OR} \frac{BCD}{ABCD} = \frac{\frac{1}{2} \times h \times 3}{\frac{1}{2} \times h \times (5+3)} = \frac{3}{8}$		
	Note car	retully.		
		st ft their ratios above and check to see if they are being combined for the final M mark here.		
	correctly	Combines the areas above to obtain:		
	M1	$\frac{CXD}{CAD} \times \frac{CAD}{ABCD} = \frac{3}{8} \times \frac{5}{8} = \left(\frac{15}{64}\right) \mathbf{OR} \frac{CXD}{BCD} \times \frac{BCD}{ABCD} = \frac{5}{8} \times \frac{3}{8} = \left(\frac{15}{64}\right)$		
	A1	For the correct ratio 15:64		