Chapter 1 Basic Structure of Computers

Guohua Wang

E-mail: ghwang@scut.edu.cn

Contents

- 1.1 Computer Types
- 1.2 Functional Units
- 1.3 Basic Operational Concepts
- 1.6 Performance
- 1.7 Historical Perspective
- Summary

- Computer Types(size, cost, computational power, intended use)
 - Embedded computers
 - Integrated into a larger device or system
 - Automatically monitor and control a physical process or environment
 - For specific purpose
 - Typical Applications
 - Industrial and home automation
 - Appliances, telecommunication products
 - Vehicles

- Computer Types
 - Personal computers
 - Primarily for dedicated individual use
 - Support a variety of applications
 - General computation
 - Document preparation
 - Computer-aided design
 - Audiovisual entertainment, ...
 - Desktop computers, workstation computers, portable and notebook computers

Computer Types

- Server & Enterprise systems
 - Large computers, be shared by a large number of users over a public or private network
 - Contain sizable database storage units
 - Capable of handling large volumes of requests to access the data
 - Business data processing in medium to large corporations, information processing for a government agency,...

Computer Types

- Supercomputers & Grid computers
 - Offer the highest performance
 - Supercomputers: used for the highly demanding computations, e.g., weather forecasting, engineering design, scientific work.
 - Grid computers: combine a large number of personal computers and disk storage units in a physically distributed high-speed network.

中国超级计算机的发展

- 银河一号(1983)
- 曙光一号(1992)
- 天河一号(2009)
- 天河二号(2014)
- · 神威·太湖之光(20
- · 天河三号(2018)
- 天河四号(2023)

- Computer Types
 - Cloud Computing
 - Cloud computing is Internet-based computing, whereby shared resources, software and information are provided to computers and other devices on-demand.

- Basic Functions of a Computer
 - Data Processing
 - Data means any digital information, includes
 - Machine Instructions
 - Numbers and Characters
 - Data Storage
 - Data Movement
 - Control

- Basic Functional Units of a Computer
 - Input UnitOutput Unit

 - Memory
 - Arithmetic and Logic Unit (ALU)

 Control Unit

 Processor
 - **Control Unit**

Basic Functional Units of a Computer

- Input Unit
 - Function
 - Make computer accept coded information
 - Input Devices
 - Keyboard
 - Graphic input devices: touchpad, mouse, joystick, and trackball
 - Digital Camera
 - Microphone
 - Digital communication facilities, such as the Internet
 - ...

- Output Unit
 - Function
 - Send processed results to the outside world
 - Output Devices
 - Printer
 - Graphic display
 - ...

Memory

- Memory
 - Function
 - Store programs and data
 - Classification of Storage
 - Primary Storage (main memory)
 - Store programs when they are being executed
 - Related Terms
 - Word
 - Word Length (typically 16, 32, or 64 bits)
 - Address
 - Random Access Memory (RAM)
 - Memory Access Time

- Memory
 - Classification of Storage
 - Cache Memory
 - A smaller, faster RAM unit.
 - Hold sections of a program that are currently being executed.
 - Initially, the cache is empty. As execution proceeds, instructions and the required data are copied to the cache.

- Memory
 - Classification of Storage
 - Secondary Storage
 - Store many programs and large amounts of data, particularly for information that is accessed infrequently.
 - Secondary storage devices
 - Magnetic disks and tapes
 - Optical Disks (DVD and CD)
 - Flash memory devices

- Arithmetic and Logic Unit (ALU)
 - Function
 - Execute arithmetic or logic operations
 - Most computer operations are executed in ALU of the processor.
 - Load the operands into memory bring them to the processor – perform operation in ALU – store the result back to memory or retain in the processor.

- Control Unit
 - Function
 - Coordinate operations of the other units
 - Send control signals to other units and sense their states

- Operations of a Computer
 - The computer accepts information in the form of programs and data through an input unit and stores it in the memory.
 - Information stored in the memory is fetched, under program control, into an arithmetic and logic unit where it is processed.
 - Processed information leaves the computer through an output unit.
 - All activities in the computer are directed by the control unit.

- Program Execution
 - Execute instructions specified in the program
 - 1. The processor reads (fetch) instructions from memory one at a time, and executes each instruction.
 - 2. Program execution consists of repeating the process of instruction fetch and instruction execution.

Instruction

- Program Execution
 - Example: Load R2, LOC
 - Fetch the instruction from the memory into the processor register (IR)
 - Read the operand at LOC and load it into register R2
 - Store R4, LOC
 - Copy the operand in register R4 to LOC
 - Add R4, R2, R3
 - Add the contents of register R2 and R3
 - Place the sum into register R4

Program Execution

- Program Execution
 - Two important registers:
 - PC: points to the next instruction to be executed
 - IR: holds the instruction that is currently being executed

- Program Execution
 - Interrupt
 - An interrupt is a request from an I/O device for service by the processor.

1.6 Performance

- The most important measure of the performance of a computer is how quickly it can execute programs.
- It is affected by the design of instruction set, hardware and software.
 - VLSI technology
 - Smaller transistors switch faster
 - Parallelism: performing a number of operations in parallel
 - Instruction-level parallelism (pipelining)
 - Multicore processors
 - Multiprocessors
 - Multicomputers

- Computer Generations
 - The Zero Generation: Mechanical Computers (1642-1945)
 - 1642, Blaise Pascal: The first person to build a working calculating machine (only do addition and subtraction).
 - 1672, Leibniz: multiplication and division
 - 1834, Babbage: Difference Engine, Analytical Engine
 - Late 1930s, Konrad Zuse: Z1 was the first working electro-magnetic relay calculating machine

- Computer Generations
 - The First Generation: Vacuum Tubes (1945-1955)
 - ENIAC (Electronic Numerical Integrator And Computer)
 - The world's first general-purpose electronic digital computer
 - The Moore school of the University of Pennsylvania
 - Consisted of 18,000 vacuum tubes and 1500 relays

- Computer Generations
 - The First Generation: Vacuum Tubes (1945-1955)
 - Stored-program concept (John von Neumann)
 - Data and instructions are stored in a single read-write memory.
 - The contents of this memory are addressable by location, without regard to the type of data contained there.
 - Execution occurs in a sequential fashion (unless explicitly modified) from one instruction to the next.
 - Assembly Language was used to prepare programs.
 - Mercury delay-line memory was used at first.
 - Magnetic core memories and magnetic drum storage devices were also developed.
 - I/O functions were performed by devices similar to typewriters.

Computer Generations

- The Second Generation: Transistors (1955-1965)
 - AT&T Bell Laboratories invented transistors in the late 1940s
 - Magnetic core memories and magnetic drum storage devices were widely used.
 - Magnetic disk storage devices were developed.
 - The earliest high-level languages, such as Fortran, were developed.
 - Compiler were developed.
 - IBM became a major computer manufacturer during this time.

- Computer Generations
 - The Third Generation: Integrated Circuits (1965-1975)
 - Integrated-circuit technology
 - Fabricate many transistors on a single silicon chip
 - Developed by Texas Instruments and Fairchild Semiconductor
 - Integrated-circuit memories began to replace magnetic core memories.
 - Microprogramming, parallelism, pipelining
 - Cache, Virtual memories
 - IBM360 Computer family, PDP-11, ...

- Computer Generations
 - The Fourth Generation: LSI & VLSI (1975-)
 - VLSI technology makes complete processors and large sections of the main memory of small computers could be implemented on single chips.
 - Desktop personal computers, embedded computers, portable notebook computers, and versatile mobile telephone handsets
 - Intel 8088, ...
 - A particular form of VLSI technology: FPGA (Field Programmable Gate Array)
 - Organizational concepts such as parallelism and hierarchical memories have evolved.

- Evolution of Performance
 - Technology
 - Vacuum Tubes: 100- to 1000-fold speed increase
 - Transistors: 1000-fold speed increase
 - LSI & VLSI: 1000-fold speed increase
 - Computer Architecture
 - Cache, Pipelining, ...

Summary

- Computer Types
 - Embedded computers, Personal computers, Servers
 & Enterprise systems, Supercomputers & Grid computers
- Five basic functional units of computers
 - Input unit
 - Output unit
 - Memory
 - Arithmetic and logic unit
 - Control unit

Summary

- Computer generations
 - The first generation: vacuum tubes
 - The second generation: transistors
 - The third generation: integrated circuits
 - The fourth generation: LSI&VLSI

Quiz (1)

- Which of the following is an example of both input and output device?
 - A. Touchpad B. Display C. Printer D. Keyboard

- List the names of five functional units of a computer.
 - Arithmetic and logic unit, control unit, memory, input unit, output unit

Quiz (2)

- Which technology marked the start of the first/second/third generation of electronic digital computers?
 - A. integrated-circuit
 - B. VLSI
 - C. transistor
 - D. vacuum tube