The Properties of Buffers

Professor Thomas Hamade, UM-SJTU JI

&

Department of Chemistry, SJTU

LAST WEEK E1 EXPERIENCE

This week lab care

- SAFETY ISSUES
- pH METER CARE & MEASURMENTS
- MAKE UP SOLUTIONS
- LABEL SAMPLES
- MEASURING VOLUMES
- WASHING & RINSING
- HOW MANY SAMPLES, EACH STUDENT, EACH GROUP

OBJECTIVES

- Develop an understanding of the pH scale.
- Examine the differences between strong and weak acids.
- Investigate how buffers work.
- Prepare a buffer solution with a target concentration and pH.
- Determine the buffer capacity of a solution.

What are buffers

- Buffers are solutions of a weak conjugate
 acid-base pair
- HAc/NaAc
- HF/NaF
- Etc.
- They are particularly
 resistant to pH changes,
 even when strong acid or
 base is added.

Buffers are solutions of a weak conjugate acid-base pair

- Buffer means lessen the impact of external force. Remember Le Châtelier's
- They resist pH changes when H⁺ or OH⁻ added. Example: Weak Nitrous Acid HNO₂

- Water acts as a Brønsted–Lowry base and abstracts a proton (H⁺) from the acid (the acid acts as a Bronsted-Lowry acid).
- Important applications: Controlling pH of human blood (Carbonic acid buffer H₂CO₃/HCO₃-)

BACKGROUND

- Calculating the pH of weak acid
- Preparing a buffer
- The properties of buffers
- Capacity of Buffers

Calculating the pH of weak acid

$$HA \implies H^+ + A^-$$

$$HA(aq) + H_2O(h)$$

Or:
$$HA(aq) + H_2O(l)$$
 $A^{-}(aq) + H_3O^{+}(aq)$

	[HCOOH], M	[H ₃ O+], <i>M</i>	[HCOO ⁻], <i>M</i>
Initially	C	0	0
Change	-x	х	X
At equilibrium	C-X	X	X

c = initial conc. of weak acid HA & x is concentration H_3O^+ or A⁻ formed from partial dissociation of weak acid (c-x \approx c)

$$K_a = \frac{[H_3O^+][A^-]}{[HA]}$$

$$K_a = \frac{X^2}{C-X} \approx X^2/C$$

$$x = [H^+] = \sqrt{K_a^{\theta} c}$$

$$K_a = \frac{\mathsf{X}^2}{\mathsf{C-X}} \approx \mathsf{X}^2/\mathsf{C}$$

$$pH = -\log[H^+] = \frac{1}{2} pK_a^\theta - \frac{1}{2}\log c$$

The properties of buffers (1)--Depicting Buffer Action

The properties of buffers (2)---

Common Ion Effect Illustrated (La Chatelier's Principle)

$$HAc = H^+ + Ac^-$$

Composition of a buffer solution

a weak acid /conjugate base or

a weak base /conjugate acid

CH₃COOH/CH₃COONa; NH₃•H₂O/NH₄CI

The essential components of a buffer consists of high concentrations of weak acid & its conjugate base so they neutralize added small amounts of H⁺ or OH⁻ and the buffer components stay the same (pH remains constant)

Preparation of a buffer (3)

$$[H^+] = K_a \bullet \frac{[CH_3COOH]}{[CH_3COO^-]}$$

Buffer Calculations

Consider the equilibrium constant expression for the dissociation of a generic acid, HA:

$$HA + H_2O \longrightarrow H_3O^+ + A^-$$

AT EQUILIBRIUM (AFTER REACTION):

$$K_a = \frac{[H_3O^+][A^-]}{[HA]}$$

Buffer Calculations

Rearranging slightly, this becomes

AT EQUILIBRIUM (AFTER REACTION):

$$K_a = [H_3O^+] \frac{[A^-]}{[HA]}$$

Taking the negative log of both side, we get

$$-\log K_a = -\log [H_3O^+] + -\log \frac{[A^-]}{[HA]}$$
 base
$$pK_a$$

$$pH$$
 acid

Buffer Calculations

• So at equilibrium:

$$pK_a = pH - log \frac{[base]}{[acid]}$$

Rearranging, this becomes

$$pH = pK_a + log \frac{[base]_{eq}}{[acid]_{eq}}$$

This is the Henderson–Hasselbalch equation.

Buffer Calculations: very important

NEXT EXAMPLE SHOWS THAT:

Henderson-Hasselbalch equation

$$pH = pK_a + log \frac{[base]_{eq}}{[acid]_{eq}}$$

IS ABOUT THE SAME AS:

$$pH = pK_a + log$$

[acid]_{eq} = weak
acid
[base]_{eq} = strong
electrolyte of the
acid

Because K_a is small and a common ion is present, we expect x to be small relative to either weak acid initial molarity or its initially added electrolyte molarity. Thus, our equation can be simplified to give

Henderson–Hasselbalch Equation EMPHASIZE

What is the pH of a buffer that is 0.12 M in lactic acid, CH₃CH(OH)COOH, and 0.10 M in sodium lactate? K_a for lactic acid is 1.4×10^{-4} .

a.Use Henderson-Hasselbalch equation:

$$pH = pK_a + log \frac{[base]}{[acid]}$$

b.Compare with previous calculations

Henderson-Hasselbalch Equation

$$pH = pK_a + log \frac{[base]}{[acid]}$$

pH =
$$-\log (1.4 \times 10^{-4}) + \log \frac{(0.10)}{(0.12)}$$

pH = $3.85 + (-0.08)$

Sample Exercise 17.3 Calculating the pH of a Buffer

What is the pH of a buffer that is 0.12 M in lactic acid [CH₃CH(OH)COOH, or HC₃H₅O₃] and 0.10 M in sodium lactate [CH₃CH(OH)COONa, or NaC₃H₅O₃]? For lactic acid, $K_a = 1.4 \times 10^{-4}$.

Solution

Analyze We are asked to calculate the pH of a buffer containing lactic acid ($HC_3H_5O_3$) and its conjugate base, the lactate ion ($C_3H_5O_3^-$).

Plan We will first determine the pH using the method described in Section 17.1. Because $HC_3H_5O_3$ is a weak electrolyte and $NaC_3H_5O_3$ is a strong electrolyte, the major species in solution are $HC_3H_5O_3$, Na^+ , and $C_3H_5O_3^-$. The Na^+ ion is a spectator ion. The $HC_3H_5O_3^-$ conjugate acid—base pair determines $[H^+]$ and, thus, pH; $[H^+]$ can be determined using the acid-dissociation equilibrium of lactic acid.

Solve The initial and equilibrium concentrations of the species involved in this equilibrium are

	$HC_3H_5O_3(aq)$	\rightleftharpoons	$H^+(aq)$	+	$C_3H_5O_3^-(aq)$
Initial	0.12 M		0		$0.10 \ M$
Change	-xM		+xM		+xM
Equilibrium	(0.12-x)M		xM		(0.10 + x) M

2012 Pearson Education, Inc.

The equilibrium concentrations are governed by the equilibrium expression:

$$K_a = 1.4 \times 10^{-4} = \frac{[\text{H}^+][\text{C}_3\text{H}_5\text{O}_3^-]}{[\text{HC}_3\text{H}_5\text{O}_3]} = \frac{x(0.10 + x)}{(0.12 - x)}$$

Because K_a is small and a common ion is present, we expect x to be small relative to either 0.12 or 0.10 M. Thus, our equation can be simplified to give

$$K_a = 1.4 \times 10^{-4} = \frac{x(0.10)}{0.12}$$

Sample Exercise 17.3 Calculating the pH of a Buffer

Continued

a. TRADITIONAL METHOD

Solving for *x* gives a value that justifies our approximation:

$$[H^{+}] = x = \left(\frac{0.12}{0.10}\right)(1.4 \times 10^{-4}) = 1.7 \times 10^{-4} M$$
$$pH = -\log(1.7 \times 10^{-4}) = 3.77$$

Alternatively, we can use the Henderson-Hasselbalch equation to calculate pH directly:

b. Henderson-Hasselbalch Eq.

pH = p
$$K_a$$
 + log $\frac{\text{[base]}}{\text{[acid]}}$ = 3.85 + log $\left(\frac{0.10}{0.12}\right)$
= 3.85 + (-0.08) = 3.77

Practice Exercise

Calculate the pH of a buffer composed of 0.12 *M* benzoic acid and 0.20 *M* sodium benzoate. (Refer to Appendix D.)

Answer: 4.42

a. or b. SAME RESULTS

Sample Exercise 17.4 Preparing a Buffer

How many moles of NH₄Cl must be added to 2.0 L of 0.10 M NH₃ to form a buffer whose pH is 9.00? (Assume that the addition of NH₄Cl does not change the volume of the solution.)

$NH_3(aq) + H_2O(l) \Longrightarrow NH_4^+(aq) + OH^-(aq)$ $K_b = \frac{[NH_4^+][OH^-]}{[NH_2]} = 1.8 \times 10^{-5}$ **Solution**

Analyze We are asked to determine the amount

of NH₄⁺ ion required to prepare a buffer of a specific pH.

Plan The major species in the solution will

be NH₄⁺, Cl⁻, and NH₃. Of these, the Cl⁻ ion

is a spectator (it is the conjugate base of a

strong acid). Thus, the NH₄+-NH₃ conjugate

acid-base pair will determine the pH of the

buffer. The equilibrium relationship between

NH₄⁺ and NH₃ is given by the base-

dissociation reaction for NH₃:

The key to this exercise is to use this K_b expression to calculate $[NH_a^+]$.

Solve We obtain [OH⁻] from the given pH:

$$pOH = 14.00 - pH = 14.00 - 9.00 = 5.00$$

and so

$$[OH^{-}] = 1.0 \times 10^{-5} M$$

Because K_h is small and the common ion [NH₄⁺] is present, the equilibrium concentration of NH₃ essentially equals its initial concentration:

$$[NH_3] = 0.10 M$$

Preparation of a buffer (1)---

Henderson-Hasselbalch Equation

$$K_{a}^{\theta} = \frac{[H^{+}][A^{-}]}{[HA]} = \frac{cx \cdot cx}{c(1-x)} \approx cx^{2}$$

$$[H^{+}] = K_{a} \cdot \frac{[CH_{3}COOH]}{[CH_{3}COO^{-}]}$$

$$pH = pK_{a} + \log \frac{[CH_{3}COO^{-}]}{[CH_{3}COOH]} = pK_{a} + \log \frac{[ConjugateBase]}{[WeakAcid]}$$

If [weak acid] = [conjugate base], pH = pK_a

Preparation of a buffer (2)--Henderson-Hasselbalch Equation

Requirements:

❖The ratio of [conjugate base] to [weak acid] is between 0.10 and 10

$$pH = pK_a \pm 1$$

Preparation of a buffer (4)---Related Calculation: Example

- 1. How to prepare 100mL buffer solution with a pH=4.0 and total concentration of 0.10M, starting with: x mL of [HA]= 5.0M. & y mL of [Ac $^{-}$] = 2.0M? a. Find X & Y, b. Find? g AcNa added
- a. Analysis: $K_a=1.8x10^{-5}$, $pK_a(HAc)=4.75$, therefore, HAc+NaAc can be chosen.

$$pH = pK_a + \log \frac{[Ac^-]}{[HAc]}$$

$$pH = pK_a + \log \frac{[Ac^-]}{[HAc]}$$

$$4.0 = 4.75 + \log \frac{[Ac^-]}{[HAc]} \frac{\text{NOTE: Eq. 1 next, has 2 uknowns}}{10^{(4.00-4.75)} = [Ac^-]/[HAc] = C_b/C_a}$$
 Eq. 1

Log
$$(C_b/C_a)$$
= - 0.75 , then C_b/C_a = 10^{-0.75} or: C_b/C_a = 0.178 Eq.1

Preparation of a buffer (5)--- Related Calculation: Weak Acid conc. [HAc]= C_a , Conjugate Base Conc. $[A_c^-]=C_b$

but:
$$C_a + C_b = 0.10M$$
 Eq.2 $C_a = [HAc] = 0.085M$ $C_a + (0.178 C_a) = 0.10$, then: $C_b = [Ac^-] = 0.015M$

$$X (5.0M) = 100 \text{ mL } (0.085M), X = 1.7 \text{ mL} = V_a$$

 $Y (2.0M) = 100 \text{ mL } (0.015M), Y = 0.75 \text{ mL} = V_b$

b.
$$m_{AcNa} = ? g$$

? moles NaAc = $V_b x 2.0M = 0.75 \text{ mL } x2.0 \text{moles}/1000 \text{mL}$

 $m_{AcNa} = (0.75x2.0) molesx83 (g/mole) = 0.12 g AcNa$

SEE DETAILED CALCULATIONS IN PROCEDURE

Each student must prepare one buffer. "Show TA your buffer design table to get his approval to start the experiment"

- Design four Buffer Solutions: V_a & V_b to be calculated (see next slide) assuming desired buffer pH. Prepare 1 buffer per student, 4 buffers (not 5) per group.
- Make 0.100L of a 0.100M (0.100M = C_a+C_b) buffer solution in a 100-mL volumetric flask using V_a mL 5.00M CH₃COOH and V_b mL 2.00M CH₃COONa solutions, diluted with deionized H₂O). * See example slide, answers on last slide

Buffer	Target pH	C _b /C _a	V _a (mL)	V _b (mL)
			5.00M HA _c	2.00M A _c -
Example*	4.00	0.178*	1.70*	0.75*
1	4.15			
2	4.57			
3	4.75			
4	5.35			

SUMMARY OF E2 PROCEDURES:

(best to follow datasheet after pH meter calibration)

- 1. PART A: Measure pH of: 0.50M HCl, 0.50M HAc (diluted from 5.0M HAc), and unknown molarity of HAc sample. Then test their strength in dissolving Mg strip. (3 pH measurements & 2 Mg strips tested /group). GROUP EFFORTS
- 2. <u>PART B:</u> Design <u>4 buffers</u> with different pH using same stock solutions of HAc & AcNa but each buffer is diluted to 100 mL (use different volumes of each stock that will be calculated to give designed pH). (<u>1buffer/student</u>, <u>4buffers/group</u>)
- 3. PART C: Test the initial pH of each buffer to compare with target pH. Then add 5 drops of 0.50M HCl to one 20mL buffer sample then add 5 drops of 0.50M NaOH to another 20mL sample of same buffer. Add 5ml de-ionized water to the 3rd beaker of of 20mL sample of same buffer. Measure pH to conclude that pH remains about constant. Measure pH for the remaining 2 water beakers of 20mL distilled water before and after using 5drops of 0.5M HCl for one beaker & 5drops 0.50M NaOH for the other beaker. If only100-mL beakers available then use 30mL samples. Note: Datasheet pH columns not in order as procedure.
- 4. (3beakers/buffer/student, 12beakers/group, plus 2beakers of distilled water/group). PART D: Test the total capacity of a buffer using the previous sample from Part C when 5drops of 0.50M HCl were added (not NaOH) by also adding more drops until pH starts dropping rapidly. Make sure you account for the initial drops of 0.50M HCl added at start of Part C, to find volume added to capacity. (1 buffer sample/student, 4buffer samples/group).
- 5. Data Errors: not following procedure, temperature effect on K_{eq} , contamination, pH meter errors & mishandling (electrode saturated), stock solutions, readings & dilutions, etc.

TABULATED DATASHEET

(pH meter calibration with buffer pH=4.003 or as provided)

- 1. pH meter calibration (see instructions later): Use standard buffer of pH = 4.003 or as available. In all pH measurements measure 30 mL desired solution and pour into 50-mL a beaker so height of liquid is enough to cover sensor of pH meter electrode. If 100-mL beaker is used then carefully tilt beaker to cover electrode.
- 2. Prepare dilution of 5.0 M to 0.50M in a 100-mL volumetric flask, measure pH1, pH2, & pH3 of each of: 0.50M HCl, 0.50M Hac, ?M $\rm HA_c$ of unknown concentration. Mg observation: two Mg strips add 5-10 drops 0.50M HCl to one strip and then 0.50 M $\rm HA_c$ to the other.
- 3. Prepare Buffers Target pH: Target pH, Calculated C_b/C_a , Calculated V_a (to measure & add to 100mL volumetric flask), Calculated V_b (to measure & add to the same 100mL volumetric flask), pH4&pH5 of distilled water in 2 separate beakers, pH6&pH7: Add 5drops of 0.50M HCl one beaker, and 5 drops of 0.50M NaOH to the other beaker.
- 4. pH8, pH9: measure pH of 30 mL buffer in a 50-mL beaker, then add 5 mL distilled water and measure pH again. pH10& pH11: Using same stock buffer pour measured 30mL each into two separate beakers and measure the pH after adding 5 drops of 0.5M NaOH to one beaker and another 5 drops of 0.5M HCl to another beaker. pH12: add another 5 drops of the 0.5M HCl into the last beaker that of pH11 then measure the pH12 (keep track of the initial volume of 0.50M HCl before adding more drops to test buffer capacity (Part C), final volume after adding more drops of 0.50M HCl to capacity point, change in volume at capacity point, end pH reading at capacity point. Make enough measurements to conclude when buffer capacity is reached within a reasonable time before end of lab session). Instructor/TA will give you directions if you should use HCl or NaOH to reach buffer capacity. Note: Datasheet pH columns are not in the same order as Procedure Part C.
- 5. Discuss results & complete the post lab report for the experiment. All information in the ALR report must be completed as instructed in manual.
- 6. Inconsistent Data Errors: not following procedure, temperature effect on $K_{\rm eq}$, contamination, pH meter errors & mishandling (electrode saturated), stock solutions, inaccurate readings & dilutions, etc.

${}_{\mathcal{A}}$	A	В	С	D	E	F	G	Н	I	J	K	L	М	N	0	P	Q	R	S	T
1			ATASHEE			RIME	NT: I	E2 PRO			OF BU	FFER	S							PAGE 1
2		SECTION:			TA:				LAB R	OOM: _										
3		RT B: TA	BUFFER DES	IGN-	#1	#2	#3	#4	Start	with (x)	mL 5.0	M HAc	& (y)	mL 2.0	M AcN	la. T <i>l</i>	A will co	ompare	°pH De	sign"
4		CCION,I		pH	4.15	4.57	4.75	5.35	to me	asured	ъН8⁻ о	f each b	uffer n	nade by	a stud	ent				
6		PROCED	URE PART→	A	Al	Al	Al	A2	A2	C	C		C	С	С	С	С	C	D	D
				рН	←	- GROUP	FFORTS)	INDIV.		up effo		ach pH			20mL)		FORTS	
7		EFFOR		CALID	(Each pH	<u> </u>				INDIV.): H ₂ O	only	→	_					****
_		H meter Te	mp. = ⁰ C	CTOCK	HCl	HAc	?HAc		Mg	Design	_		H_2O	H ₂ O /	_	_	_	_	aOH, &	
	$\overline{}$	NAME							0.50M	Danei		H ₂ O		NaOH						TOT. mL
10	#	Chinese	ID	pН	pHl	pH2	pH3	HCl	HAc	pН	pH4	pH5	pH6	pH7	pH8	pH9	pH10	pHll	pH12	V(HCl)
11																				
12																				
13																				
14																				
15								Sand	Sand		20 mL	20 mL	Use	Use	20mL	Use	20 -1	20 mL	Use	Add TTL
16				See E2 PPT	20mL	20mL	20mL		Mg		H ₂ O	H ₂ O	same	same	Bfr	pH8	Bfr +		pH11 &	vol. of
17				for		Dilute		Fast/S low	Fast/ Slow		on1y	on1y	bkr as	bkr as		20 mL	5	5	drop	HC1 drops
18				c1ear	Dil.	5. 0mL	Dil.	RXN	RXN				рН4	pH4 +		Bfr		drops	by drop	added
19				easy		in 50mL							+ 5	5		+	NaOH	HC1	until	inc1.
20	\longrightarrow			instr		Vol.							drops	drops		5mL	<u> </u>		pН	initia1
				Record above		flask										H ₂ O		Use	rises	5 drops
				your													l	grad pipet	rapid	
				name pH													l	to	the	
				meter													l	de1vr		
				Avg.														the 5	grad	
				Temp.													l	drops	pipet)	
																		Follw		
																		E2		
21																		proc.		
22																				
23																				
2.4																				

DATASHEET SUMMARY OF E2

A	Α	В	С	D	Ε	F	G	Н	I	J	K	L	М	N	0	P	Q	R	S	T
4			DATASHEE	T FOR		RIME	NT: I	E2 PRO			DF BU	FFER	S							PAGE 1
2		SECTION:			TA:	_			LAB R			_								
3			BUFFER DES		#1	#2	#3	#4	1			M HAc				_	A will c	ompai	е "рН	Design"
1			PART B	pН	4.15	4.57	4.75	5.35	to me	asured	ъН8⁻ о	f each b	uffer m	ade by	<mark>a stud</mark>	<mark>e</mark> nt				
,		PROCEI	URE PART→	A	Al	Al	Al	A2	A2	C	C		С	С	С	C	С	С	D	D
		EFFOI	RTS	pH METER	←	GROUP	EFFORTS		→	INDIV.	Group	efforts:	H ₂ O (only		IN	DIVID	JAL E	FFORT	s -
1	GRP	NAME	ID	CALIB. BUFFER	HCl	HAc	?HAc	Mg	Mg											HCl →
ı	#	Chinese		STOCK	0.50M	0.50M	?М		0.50M	Design	H ₂ O	H ₂ O	H ₂ O	H₂O / NaOH		_	NaOH			TOT. ml
t		Chinese	-	77					HAe		pH4		pH6				-	-		
_				pН	pHl	pH2	pH3	HC1	HAc		pii4	piis	piio	pii/	pH8	рН9	pHIU	pHII	pH12	V(HCl)
1	1				-		-			4.15 4.57		-	_				-			
3	1									4.75										
1	1									5.35										
5	2									4.15										
,	2									4.57										
	2									4.75										
3	2									5.35										
L	3									4.15										
) <u> </u>	3									4.57										
+	3									4.75										
+	3									5.35										
-	4									4.15 4.57										
	4									4.75										
;	4			<u> </u>	<u> </u>			<u> </u>		5.35		1								
	4									4.15										
3	4									4.57										
	4									4.75										
)	4									5.35										
L	5									4.15										
2	5									4.57										
3	5									4.75										
4	5									5.35										

$_{A}$	A	В	С	D	E	F	G	Н	I	J	K	L	М	N	0	P	Q	R	S	T
1		VC211 D	ATASHEE	T FOR	EXPE	RIME	NT: I	E2 PRO	OPER?	TIES (DF BU	FFER	S							PAGE 1
2		SECTION:			TA:				LAB RO	OOM: _		-								
3			BUFFER DES	IGN:	#1	#2	#3	#4	Start	with (x	mL 5.0	M HAc	& (y)	mL 2.0	M AcN	la. T <i>i</i>	4 will c	ompar	e "pH l	Design"
4			PART B	pН	4.15	4.57	4.75	5.35	to me	asured	ъН8⁻ о	f each b	uffer m	ade by	a stud	ent				
6		PROCED	URE PART→	A	Al	Al	Al	A2	A2	C	C		С	С	С	С	С	С	D	D
		FFFOT	arc.	pH METER	,					INDIV.		<i></i>								
7	opp	EFFOR		CALIB.	÷	- GROUP		_)	INDIV.	<u> </u>	efforts:	H ₂ U (only			DIVIDU			_
8	GRP	NAME	ID	BUFFER STOCK	HCl	HAc	?HAe		Mg	Design	H_2O /	H ₂ O /	H_2O	H_2O /						HCl →
9	#	Chinese		JIUCK	0.50M	0.50M	?M	0.50M	0.50M	Buffer	H_2O	H_2O	/ HCl	NaOH	INIT.	H ₂ O	NaOH	HCl	HCl	TOT. mL
10				pН	pHl	pH2	pH3	HC1	HAc	pН	pH4	pH5	pH6	pH7	pH8	pH9	pH10	pH11	pH12	V(HCl)
11	1									4 15		l <u> </u>								
12	1		ARY SUPLEMEN									_								
13	1		– <u>Hasselbalch</u> e									-								
14	1		LOG (C _B /[C _A] , C			_						-								
15	2		uffer for E2: Exa						-		-									
16	2	_	M & C ₈ = 0.015									-								
17	2		C_{A2}/C_{A1} or $V_{A1} =$								/2.0=0.7	5mL		<u> </u>						
18	(best to follow datasheet after pH meter calibration) 5 TABULATED DATASHEET —																			
19		PART A: Measure pH of: 0.50M HCl, 0.50M HAc (diluted from 5.0M HAc), and unknown (pH meter calibration with buffer pH-4.003 or as provided)																		
20	3	molarity	of HAc sample.	Then test the	ir strength	in dissolvi						ieter calibrat ieasurements								
21	3	_	strips tested/grou							. <u>5</u>	enou	gh to cover se r electrode.								
22 23	1		B: Design 4 buffers ffer is diluted to 10								2. Prep	are dilution o								
24	4		igned pH). (1buffe							7		II HCl, 0.50M s 0.50M HCl					-	tion: two	Mg strips ac	5d 5-10
25	4		Test the initial p								3. Prep	are Buffers T netric flask),	arget pH:	Target pH, (Calculated	C _b /C _b , C _i	lculated V _a			
26	4		ICl to one 20mL b of same buffer. Ac								distil	led water in 2	2 separate	beakers, pH6						
27	4		Measure pH to con							5		d NaOH to th pH9: measur			n a 50-mL	beaker, t	hen add 5 m	L distilled	l water and	measure
28	4		ng 2 water beaker								pH a	gain. pH10& neasure the p	pH11: Usi	ing same stoc	k buffer pe	our meast	ared 30mL o	ach into t	wo separate	beakers
29	4		beaker & 5drops 0 : 30mL samples. N							DIE '5	HCl	to another be measure the	aker. pH1	2: add anoth	er 5 drops	of the 0.5	M HCl into	the last be	aker that of	pH11
30	4		rs/buffer/student,					_		D: 5	buffe	r capacity (P	art C), fin	al volume aft	er adding 1	more drop	ps of 0.50M	HCl to cap	pacity point,	change
31	5	Test the	total capacity of a	buffer using	g the previo	ous sample	from Par	rt C when 5	drops of	5	when	lume at capa: buffer capac	city is reac	hed within a	reasonable	time bef	ore end of la	b session)	. Instructor	TA will
32	5	***	ICl were added (no Make sure you ac							C to 7		you direction ans are not in					ouffer capac	ity. Note:	Datasheet p	Н
33	5		ume added to capa							·, io ' <u>5</u>	5. Discu	ıss results &	complete t	he post lab re	eport for th		nent. All in	formation	in the ALR	report
34	5	•	rors: not following		-					r <mark>5</mark>		be completed sistent Data				temperati	ure effect on	Kan cont	amination, p	H meter
35		errors &	k mishandling (ele	ctrode satura	ited), stock	solutions,	readings	& dilution	s, etc.			rs & mishand								

PROCEDURE-- Part A.1

- Strong and Weak Acids
- Prepare 0.50M CH₃COOH solution in a 50-mL volumetric flask solution by using 5-mL graduated pipette and adding 5.00mL of 5.0M CH₃COOH into the volumetric flask

Procedure Part A.1

Attention!
Add drop-wise
with a pipet!

PROCEDURE-- Part A.2

- Strong and Weak Acids
- 2. Use the pH meter to record the pH of the 0.50 M HCl solution, the 0.50 M HAc solution and one of the unknown HAc solutions. This part: Students work in group, measure 3 pH readings total.

PROCEDURE-- Part A.3

Strong and Weak Acids

2Mg strips tested /group

3. Sand two short Mg strips with a piece of abrasive paper and put each in the bottom of the 2 empty wells of a porcelain spot plate, add 5-10 drops 0.50M HCl solution to one well & equal amount of HAc solution to the other well just to cover the Mg, record your observations.

PROCEDURE---- Part B.1(ANSWERS LAST SLIDE)

- Designing a Buffer: V_a & V_b to be calculated (see next slide) assuming desired buffer pH. Prepare 1 buffer per student, 4 buffers (not 5) per group.
- 1. Make 0.100L of a 0.100M (0.100M = C_a+C_b) buffer solution in a 100-mL volumetric flask using V_a mL 5.00M CH₃COOH and V_b mL 2.00M CH₃COONa solutions, diluted with deionized H₂O).

Buffer	Target pH	V_a (mL) 5.00M HA _c	V _b (mL) 2.00M A _c ⁻
Example	4.00	1.70 see example	0.75 see example
1	4.15	?	?
2	4.57	?	?
3	4.75	?	?
4	5.35	?	?

SAMPLE CALCULATION

a. Prepared Buffer must be: Total volume = 0.100L, 0.100M

$$pH = pKa + log ([A_c^-]/[HA_c])$$

b. Start with: V_a mL of $[A_c] = 2M \& V_b$ mL of $[HA_c] = 5M$,

To find $V_a \& V_b$: Set V_a =volume 5.00M HA_c , V_b =volume 2.00M A_c

c. Then prepared Buffer: 5.00 V_a (mmole HA_c) & 2.00 V_b (mmole A_c⁻)

d.
$$10^{pH-pKa} = [A_c^-]/[HA_c] = C_b/C_a$$

Example Buffer 1: Desired pH = 4.15:

$$\bullet C_b/C_a = 10^{pH-pKa} = 10^{4.00-4.75} = 0.178 = C_b/C_a$$

- •or $C_b = 0.178C_a$, substitute value of C_a into: $C_a + C_b = 0.100$
- •Then $C_a = 0.085M \& C_b = 0.015M$, But:
- 5.00 M x V_a (mL) = 100 mL x 0.085M, $V_a = 1.7$ mL
- •Similarly: 2.00 M x $V_b = 100 \text{ mL x } 0.015\text{M}, V_b = 0.75 \text{ mL}$
- •USE VOLUMES CALCULATED TO MAKE THE BUFFER THEN MEASURE pH TO COMPARE WITH TARGET pH

Procedure Part B

2.00M NaAc

Attention!
Add drop-wise
with a pipet!

infinition that the property of the property o

Procedure Part C: Properties of Buffer

PROCEDURE--- Part D.

 Determination of Buffer Capacity (use 0.50M HCl only & not NaOH)

After lab

- Exchange data with the others in your team who had a different buffer.
- Mark the solution you prepared and measured.
- Discuss in ALR why some data inconsistent? Inconsistent Data Causes: not following procedure, temperature effect on K_{eq}, contamination, pH meter errors & mishandling (electrode saturated), stock solutions, inaccurate readings & dilutions, etc.
- Example next: K_a Temperature corrections

Temperature Effect from CH19, Eq. 19-19:

$$\Delta G = \Delta G^{\circ} + RT \ln Q$$

At equilibrium: $\Delta G = 0 \& Q = K_{eq}$

Then: $\Delta G^{\circ} = -RT \ln K_{eq}$

or $K_{eq} = e^{-\Delta G^{\circ}/RT}$

Where: $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$

All the values for various substances & solutions are typically tabulated in handbook of chemistry or appendices of VC210 chemistry book

TABLE 19.2 • Conventions Used in Establishing Standard Free Energies

For E, H & S, elements in <u>standard states at 25°C & 1atm</u>.

State of Matter Standard State

Solid

Pure solid

 ΔG° [J/mol]

Liquid

Pure liquid

Gas

1 atm pressure

Solution

1 M concentration

Element

 $\Delta G_f^{\circ} = 0$ for element

 ΔG_f° =0 for elements (incl.N₂, F₂, Br₂, I₂, Cl₂, O₂ in standard state)

in standard state

NOTE: For substances in solution, the standard state is a concentration of 1M, for gas 1atm all at a given T that does not have to be 298 K. ΔG_f° = 0 only for elements in their standard state (at 25°C& 1atm)

pH meter

Calibrating a Digital pH Meter

- 1. Switch on the pH meter.
- 2. Press the "校准" "RESET" button to begin the new calibration.
- 3. Remove the electrode from the bottle of storage solution. Rinse with de-ionized water & dry the electrode tip **carefully** with a tissue.

Calibrating a Digital pH Meter

4. Immerse the electrode in pH 4.003 buffer. Swirl the solution to fully saturate the electrode with buffer.

Calibrating a Digital pH Meter

Press the "校准" "RESET" button again. After the reading is stable, the meter will return to the Measure screen and a tiny boxed A appears at the top left hand side of the display. The box may blink and disappear between, indicating that calibration is complete.

Calibrating a Digital pH Meter

6. Remove the solution from the pH 4.003 buffer and rinse the electrode with deionized water. Dry the electrode tip carefully with a tissue. Safe and label the used buffer solution for collection by TA at end of lab.

pH measurement

- Now the meter is ready to use for measuring the pH of any solution.
- Immerse the electrode in the pH unknown solution and swirl.
- Press "测量" "MEASURE" button, after the reading is stable, record pH.
- A tiny boxed "A" or "A/" or "/" appears at the top left hand side of the display. The box may blink and disappear between, indicating that calibration is complete.

BUFFERS

CH17: p707-713 VC210 textbook (12th ed.)

Conclude

Buffer sample #1 with designed pH = 4.15 will take less no. of drops of HCl than sample #4 with designed pH = 5.35 before the pH starts to drop significantly, indicating the approach of Buffer Capacity Point. Because buffer Sample #1 is made of lesser volume of conjugate base (1mL) than Sample # 5 (4mL). So, it will take lesser amount of HCl to neutralize the lesser amount of conjugate base.