

POLITECNICO DI MILANO DIPARTIMENTO DI ENERGIA

SISTEMI ENERGETICI PER INGEGNERIA FISICA

02/03/2017

Allievi fisici

	Allegare al	le soluzioni il	presente testo	o indicando ((in STAMPA	ATELLO):	
NOME E CO	OGNOME						

Tempo a disposizione: 2 ore 30 minuti

Leggere attentamente le avvertenze: Indicare chiaramente nome e cognome su <u>tutti</u> i fogli da consegnare. Rispondere <u>brevemente</u> ma <u>con chiarezza solamente ai quesiti</u> <u>posti, evidenziando le necessarie unità di misura</u>. Calcoli e spiegazioni - pur corretti in sé - che non rispondono ai quesiti posti <u>non</u> saranno considerati ai fini della valutazione del compito. Nel caso sia richiesta una <u>soluzione grafica</u> indicare con chiarezza sui grafici allegati la soluzione proposta.

Tenere spenti i telefoni cellulari, non usare appunti, dispense, etc. Riportare i risultati richiesti su questo foglio e procedimento/calcoli intermedi sul foglio a quadretti.

Punteggio: Punteggio totale pari a 35. Il docente si riserva di normalizzare i risultati in trentesimi con coefficienti correttivi in base all'esito medio delle risposte date.

Dati per la risoluzione dei quesiti

Costante universale dei gas $\Re = 8314 \text{ J/(kmol-K)}$

□ ESERCIZIO 1 (punti 4)

Un impianto idroelettrico (densità acqua= 1000 kg/m³, viscosità dinamica=1.137*10⁻³ Pa*s) lavora tra due bacini A e B rispettivamente alla quota hA=1000 m e hB=450 m. Il condotto di aspirazione è costituito da 2 tubi in parallelo identici di diametro 500 mm e lunghezza 3000 m. Il condotto di scarico ha un diametro di 300 mm e lunghezza 50 m. La velocità nel tubo di scarico è pari a 1.5 m/s. La scabrezza assoluta dei tubi è 0.2 mm, il coeffiente Kc delle perdite di carico concentrate è 6 per tutti i condotti. Assumendo un rendimento idraulico della turbina di 86% e un rendimento organico elettrico di 98%, si chiede di:

- Rappresentare lo schema di impianto evidenziando le portate nei condotti
- Determinare il coefficiente di attrito "f" dei condotti (vedi diagramma Moody allegato)
- Determinare la massima potenza idealmente producibile dall'impianto
- Determinare le perdite dell'impianto
- Calcolare la potenza netta prodotta dalla turbina e il rendimento globale di impianto

□ ESERCIZIO 2 (punti 4)

Una portata volumetrica di 5 m³/s di vapore d'acqua si trova alla temperatura di T1=167°C e alla pressione P1=50 kPa. Il vapore viene raffredato isobaricamente (in uno scambiatore di calore) fino ad avere una miscela bifase con titolo pari a 90%. Successivamente viene laminato adiabaticamente fino alla pressione P3=0.02 bar. Si chiede di:

- Identificare gli stati 1-2-3 e le trasformazioni $1 \rightarrow 2 \rightarrow 3$ (sul diagramma h-s allegato)
- Calcolare il lavoro e la potenza termica delle varie trasformazioni
- Se la trasformazione 1→3 fosse eseguita in una turbina, quale sarebbe il suo η_{is}?

□ ESERCIZIO 3 (punti 5)

Una goccia di piombo liquido, schematizzabile come una sfera di diametro pari a 2 mm, alla temperatura iniziale di 500°C cade con una velocità di 3 m/s in aria in quiete a 25°C. Nota la temperatura di solidicazione del piombo (357°C) e i valori di densità, calore specifico e conduttività termica (10250 kg/m³, 150 J/kg/K ,17 W/m/K). Si calcoli:

- il coefficiente di scambio termico convettivo
- il numero di Fourier per t=0.5 s
- la minima durata della caduta affinchè si raggiunga la temperatura di solidificazione
- il calore scambiato nel processo di raffreddamento

Correlazioni per geometria sferica (Dimensione caratteristica → diametro della sfera)

Convezione Naturale	Convezione Forzata	Proprietà Aria @ T∞=25°C		
$0.589Ra^{0.25}$		ср	1006.73	J/kgK
$Nu = 2 + \frac{1}{2}$	$Nu = 2 + 0.6Re^{0.5}Pr^{\frac{1}{3}}$	k	0.0262	W/mK
$\left(1 + (0.469)^{\frac{1}{16}}\right)$	Nu - 2 O. ORC 11	μ	1.873E-05	Pa*s
$\left(\begin{array}{c} 1+\left(\overline{Pr}\right) \end{array}\right)$		densità	1.15	kg/m³

□ ESERCIZIO 4 (punti 7)

Si consideri un ciclo Joule-Brayton chiuso ad elio (gas perfetto monoatomico, MM=4 kg/kmol) con temperatura massima di 900°C e temperatura minima di 300°C. La temperatura di fine compressione è pari a 600°C. Il rendimento isoentropico di compressore e turbina è rispettivamente 88% e 92% mentre il rendimento organicoelettrico è 99%. Sapendo che la potenza nettà è 10 MW, si chiede di:

- Disegnare lo schema di impianto e il ciclo termodinamico sul piano T-s riportando i valori di T e s dei punti (assumere s1=100 J/kg/K).
- Determinare il lavoro specifico del compressore, della turbina e il lavoro netto
- Determinare la portata massica di fluido circolante e la potenza termica entrante nel ciclo
- Determinare il rendimento netto e confrontarlo con il η di un ciclo semplice ideale
- Assumendo che le sorgenti di temperatura siano a T1 e T3, calcolare η_{II} del ciclo. Che effetto avrebbe la pratica della rigenerazione sul ciclo semplice calcolato precedentemente (motivare la risposta)?

□ QUESITO 5 (Rispondere ad una sola delle due domande) (punteggio 7.5)

- 1- Ricavare il Principio di conservazione quantità di moto per flusso monodimensionale in condizioni stazionarie. Riportare graficamente le componenti per una curva (90°) di un condotto con sezione di ingresso pari a metà della sezione di uscita (fluido incomprimibile). (Attenzione alle proporzioni)
- 2- Discutere la necessità che spinge verso l'adozione di superfici alettate. Ricavare l'espressione del profilo di temperatura e la potenza scambiata (evidenziare le ipotesi utilizzate) per un'aletta di lunghezza infinita. Definire il concetto di efficacia ed efficienza.

□ QUESITO 6 (DOMANDE A RISPOSTA GUIDATA) (punteggio 7.5)

Rispondere alle seguenti 15 domande a risposta guidata. Segnare la casella relativa alla **sola risposta corretta** (0.5 punto per risposta corretta, -0.125 punti se sbagliata).

Il calore specifico a volume	□ È pari a 7/2R/MM
costante c _v [J/kgK] per un gas	$\square > C_p$
perfetto biatomico:	□ E'uguale per tutti i gas perfetti biatomici
	□ E' inversamente proporzionale all massa molecolare
In una parete (spess=50 cm, k=45	□ Profilo T parabolico con massimo nel centro
W/m/K) c'è una generazione di	□ Flusso termico è 5 W/m² indipendente da spessore
potenza (φ=10 W/m³). Una faccia è	□ Profilo T parabolico con massimo sulla sup.adiabatica
adiabatica mentre l'altra a 150°C,	□ Flusso termico dipendente da k
in condizioni stazionarie:	

,	□ Una riduzione del rendimento del ciclo
la rigenerazione continua ideale	□ Un aumento del lavoro del ciclo
implica:	□ Un rendimento di II principio pari a 1
	□ L'aggiunta di 2 scambiatori a superficie
Due tubi in parallelo (A e B) di	□ mA=4mB
stessa lunghezza e coefficiente di	□ mA=1/16mB
attrito, hanno D _A =4D _B , il legame	□ mA=mB
tra le portate massiche m:	□ mA=32 mB
Una lastra a 35°C è in una stanza	□ Il contributo radiativo è trascurabile
con aria a 15°C (h=150 W/m ² K). Le	
pareti sono anch'esse a 15°C. Se	□ II flusso termico è 1540.8 W/m²
ε _{lastra} =0.1 e pareti come corpi neri:	□ La potenza termica scambiata è 3120 W
Dati due corpi neri (A e B) a	□ εA< εB
TA=1000 K e TB=2000 K:	□ E _A =8E _B
$\lambda_{\text{max}} \rightarrow \text{Lungh.onda di massima}$	$\square \lambda_{max}A=2\lambda_{max}B$
	Nessuna delle precedenti
In una laminazione adiabatica:	□ Per fluido reale è sempre T2 <t1< td=""></t1<>
1→ Stato iniziale	□ Per gas perfetto (cp=cost) può essere T2 <t1< td=""></t1<>
2→ Stato finale	□ Se T1>T2, il fluido cede calore all'esterno
Danish a super Called Processing	□ Per fluido reale può essere T2>T1
Per una superficie di scambio	□ Se b↓ allora efficacia (ε) ↑
alettata (con alette apice	□ Se h↑ allora m↓
adiabatico a sezione quadrata):	□ Se L↓ allora (T(L)-T∞)↓
L→ Lunghezza b→Lato quadrato	□ Se L↑ allora efficienza (η) ↑
In un ciclo Joule-Brayton ideale	□ II rendimento presenta un massimo
aperto, all'aumentare del rapporto	□ II lavoro netto aumenta
di compressione (a pari T1 e T3):	□ La potenza del compressore diminuisce
	□ La T4 diminuisce
A pari rapporto di compressione,	□ η _{otto} > η _{diesel}
considerando cicli ideali che	\square $\eta_{\text{otto}} = \eta_{\text{diesel}}$ solo se $T_{\text{max_otto}} < T_{\text{max_diesel}}$
elaborano lo stesso fluido:	\square $\eta_{\text{otto}} > \eta_{\text{diesel}}$ solo se $T_{\text{max_otto}} > T_{\text{max_diesel}}$
	□ η _{otto} < η _{diesel}
La relazione dh-vdp=du+pdv:	□ Solo per i sistemi aperti monocomponenti
	□ Sempre
	□ Solo lungo un'isobara
	□ Solo per gas perfetti
Per determinare le condizioni di	□ 1 variabile intensiva
equilibrio per una miscela di 2	□ Problema indeterminato (non sono noti i componenti)
componenti in fase liquida, sono	□ P e T sono in corrispondenza biunivoca
necessarie:	□ 3 variabili intensive indipendenti
La produzione di energia elettrica	□ Ciclo Rankine a carbone + recupero termico da fumi
con un ciclo combinato si basa su:	Accoppiamento tra turbina a gas e energia rinnovabile
	Accoppiamenot tra turbina a gas e ciclo a vapore
Donumo monolino montale distinui	Combustibili fossili solidi Det all'albare, Det ideale, Det Flattrice
Per una macchina motrice indicare	□ Pot. all'albero>Pot. ideale> Pot. Elettrica
l'affermazione vera:	Pot. ideale>Pot. all'abero> Pot. Elettrica Pot. Elettrica> Pot. ideale> Pot. all'albero
	Pot. Elettrica>Pot ideale> Pot. all'albero Pot Elettrica> Pot all'albero> Pot. ideale
2 kg/g di 2001/2 (2 4 2 k l/kg//) =	□ Pot.Elettrica>Pot all'albero>Pot. ideale
3 kg/s di acqua (c=4.2 kJ/kgK) a	□ La lunghezza L del tubo è circa 2.35 m
150°C fluiscono in tubo (D=10cm) che si trova in un ambiente a 20°C.	□ Il calore scambiato è 1260 kJ/kg
Se Tout=50°C e il coefficiente	□ ∆Tml=341.35 K
globale di scambio è 25 W/m ² K:	□ Differenza temperatura minima acqua-aria è 130°C
gionale di scallinio e 20 W/III N.	

