Trigonometrie

x	0°	30°	45°	60°	90°	180°	270°	360°
х	0	$\frac{\pi}{}$	$\frac{\pi}{}$	$\frac{\pi}{}$	$\frac{\pi}{}$	π	3π	2π
		6	$\overline{4}$	3	2		2	
sin x	0	1	$\sqrt{2}$	$\sqrt{3}$	1	0	-1	0
		$\overline{2}$	2	2				
cos x	1	$\sqrt{3}$	$\sqrt{2}$	1	0	-1	0	1
		2	2	$\overline{2}$				
tg x	0	$\sqrt{3}$	1	$\sqrt{3}$	_	0	_	1
		3						
ctg x	_	$\sqrt{3}$	1	$\sqrt{3}$	0	_	0	
				3				

Schimbare de cadran:

$$C_{II} \rightarrow C_{I}: \frac{\pi}{2} < t_{0} < \pi => \cos t_{0} = -\cos(\pi - t_{0})$$
 $\sin t_{0} = \sin(\pi - t_{0})$
 $C_{III} \rightarrow C_{I}: \pi < t_{0} < \frac{3\pi}{2} => \cos t_{0} = -\cos(t_{0} - \pi)$
 $\sin t_{0} = -\sin(t_{0} - \pi)$
 $C_{IV} \rightarrow C_{I}: \frac{3\pi}{2} < t_{0} < 2\pi => \cos t_{0} = \cos(2\pi - t_{0})$
 $\sin t_{0} = -\sin(2\pi - t_{0})$

Formule:

$$\sin(x + y) = \sin x \cos y + \sin y \cos x$$

$$\sin(x - y) = \sin x \cos y - \sin y \cos x$$

$$\cos(x + y) = \cos x \cos y - \sin x \sin y$$

$$\cos(x - y) = \cos x \cos y + \sin x \sin y$$

$$\sin x \cos y = \frac{\sin(x+y) + \sin(x-y)}{2}$$

$$\sin x \sin y = \frac{\cos(x-y) - \cos(x+y)}{2}$$

$$\cos x \cos y = \frac{\cos(x+y) + \cos(x-y)}{2}$$

$$\sin x + \sin y = 2\sin\frac{x+y}{2}\cos\frac{x-y}{2}$$

$$\sin x - \sin y = 2\cos\frac{x+y}{2}\sin\frac{x-y}{2}$$

$$\cos x + \cos y = 2\cos\frac{x+y}{2}\cos\frac{x-y}{2}$$

$$\cos x - \cos y = -2\sin\frac{x+y}{2}\sin\frac{x-y}{2}$$

$$tg(x + y) = \frac{tg x + tg y}{1 - tg x tg y}$$

$$tg(x + y) = \frac{tg x - tg y}{1 + tg x tg y}$$

$$tg 2x = \frac{2 tg x}{1 - tg^2 x}$$

$$tg 3x = \frac{3 tg x - tg^3 x}{1 - 3tg^2 x}$$

$$tg x tg y = \frac{\cos(x - y) - \cos(x + y)}{\cos(x - y) + \cos(x + y)}$$

$$tg\frac{x}{2} = \pm \sqrt{\frac{1 - \cos x}{1 + \cos x}}$$

$$tg\frac{x}{2} = \frac{\sin x}{1 + \cos x}$$

$$tgx + tgy = \frac{\sin(x + y)}{\cos x \cos y} = tg(x + y) (1 - tgx tgy)$$

$$tgx - tgy = \frac{\sin(x - y)}{\cos x \cos y} = tg(x - y) (1 + tgx tgy)$$