1 群,环,域

- 1. 考虑一个群G上的一个映射: $\phi_g:G\to G$, 这里 $\phi_g(x)=gxg^{-1}$, g是G里面的一个元素.
 - (a) 证明: ϕ_a 是一个群同态.
 - (b) 证明: ϕ_q 是一个群同构. (需要证明 ϕ_q 是一个单射, 也是满射)
- 2. 一个子群 $H \subset G$ 称为正规子群,如果对于任何元素 $a \in H, g \in G$,我们有 $gag^{-1} \in H$. 证明: 对于一个群同态 ϕ , $ker(\phi)$ 是一个正规子群.
- 3. 群里的两个元素x和x'是共轭的,如果存在一个元素g使得 $gxg^{-1} = x'$. 群G可以分成共轭类. 请计算 S_3 这个群的共轭类.
- 4. 考虑一个环同态 $\phi:R\to R^{'},\ ker(\phi)=\{a\in R|\phi(a)=0_{R^{'}}\}.$ 证明: $ker(\phi)$ 是一个理想.
- 5. 我们来证明 F_p (p是一个素数)是一个域. 我们记 \bar{a} 为整数a相对于p的同余类. 这个同余类有元素 $F=(\bar{0},\bar{1},\ldots,\bar{p-1})$. 定义加法为 $\bar{a}+\bar{b}=\bar{a+b}, \; \bar{a}\bar{b}=\bar{a}\bar{b}$
 - (a) 证明: 上述定义的加法和乘法是有意义的, 也就是说结果不依赖于同 余类元素的选取
 - (b) 证明: 加法构成一个交换群, 单位元为ō.
 - (c) 证明: 乘法在 $F/\bar{0}$ 上构成一个交换群. 单位元为 $\bar{1}$. 重点是找到 \bar{a} 的逆元:
 - i. 考虑一个元素的幂: $\bar{1}, \bar{a}, \bar{a}^2, \ldots$, 证明: 一定存在一个m, n使得 $\bar{a}^m = \bar{a}^n, \ m < n$.
 - ii. \bar{a} 的逆元为 \bar{a}^{n-m-1} .
 - (d) 证明: 乘法和加法满足分配律 $(\bar{a} + \bar{b})\bar{c} = \bar{a} \bar{c} + \bar{b} \bar{c}$.

2 一般域上线性空间

- 1. 考虑一个线性空间(F,V), 这里F是实数域, V是所有的 $n \times n$ 反厄米复矩阵的集合, 求V的维数.
- 2. 考虑线性方程组 $\begin{bmatrix} 6 & -3 \\ 2 & 6 \end{bmatrix}$ $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ = $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$:
 - (a) 在 F_p 这个域上求解方程组,取p = 5, 11, 17.
 - (b) 如果p = 7, 找出所有的解。
- 3. 考虑域F上两个线性空间 V_1, V_2 ,考虑线性映射 $f: V_1 \rightarrow V_2$,证明: dimker(f) + dimIm(f) = n,这里 $n = dimV_1$.

4. 用初等变换的办法求解线性方程组Ax = b.

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & -1 \end{bmatrix}, \quad b = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$
 (1)

这里F分别取a): Q; b): F₂, c): F₃, d): F₇.