EARLY DETECTION OF DIABETES USING MACHINE LEARNING

Problem Background

- Diabetes, a rapidly escalating global health issue, affected 422 million people worldwide as of 2018 (WHO).
- The number of people affected is expected to have increased significantly since then.
- Approximately 50% of all people with diabetes are undiagnosed due to its long-term asymptomatic phase.
- In the United States, 8.5 million people (23.0% of adults) are undiagnosed. (June 29, 2022)
- Early detection is vital for clinically meaningful outcomes, requiring careful assessment of both common and less common symptoms.

The Challenge

- Currently, there is a lack of efficient methods to predict the likelihood of developing diabetes.
- The unique asymptomatic phase of diabetes presents a significant challenge for early detection and intervention.

EARLY DETECTION OF DIABETES USING MACHINE LEARNING

Our Approach

- We used data mining classification techniques and machine learning models to predict the likelihood of developing diabetes.
- A dataset of 520 instances from Sylhet Diabetes Hospital in Sylhet, Bangladesh, collected via direct questionnaires, will serve as the basis for our model.
- Tools: Alteryx for data preparation and blending, Tableau for data visualization and exploration, and machine learning for predictive modelling and analysis.

Objective

- To leverage the power of Alteryx, Tableau, and Machine Learning to create a robust risk prediction model.
- The ultimate goal is to facilitate the early detection of diabetes, thus enabling timely interventions and improved patient outcomes.

Initial Data Dictionary

Patient Details

- Age [20-65]
- Sex [Male, Female]

Binary Medical Condition Variables

- Polyuria
- Polydipsia
- sudden weight loss.
- weakness
- Polyphagia
- Genital thrush
- visual blurring
- Itching
- Irritability
- delayed healing
- partial paresis
- muscle stifness
- Alopecia
- Obesity

Target Variable

Class (Positive/Negative)

Final Data used in Modeling

Upon conducting a comprehensive literature review, I discovered that 'partial_paresis' and 'muscle_stiffness' are symptoms often associated with prolonged diabetes. Conversely, 'alopecia' (hair loss) does not typically correlate with diabetes

Based on the Chi-Square test results, I decided not to include 'obesity', 'itching', and 'delayed_healing' as these showed insignificance in relation to the target variable.

Patient Details

- Age Ordinal Bucketing
- Sex [Male, Female]

Binary Medical Condition

Variables

- Polyuria
- Polydipsia
- sudden weight loss.
- weakness
- Polyphagia
- Genital thrush
- visual blurring
- Obesity

Target Variable

Class

(Positive/Negative)

ALTERYX WORKFLOW

Data Input

In Alteryx, I have imported the Diabetes dataset using the Input Data tool. The only modification I've made during this data input stage was to adjust the column names to follow the snake_case format.

The browse tool here summarized and graphed all the variables.

Data Preparation Steps:

Age Transformation: Utilizing the Formula tool, I've transformed the Age variable, which is continuous and ranges from 16 to 90, into an ordinal variable. The new Age buckets are: [16-35], [36-45], [46-55], [56-65], and [66>].

Class Variable Transformation: The Class variable has been converted into a binary format, where 'Positive' is represented by 1 and 'Negative' is represented by 0.

Gender Variable Transformation: Similarly, the Gender variable has been transformed into a binary format, where 'Male' is represented by 0 and 'Female' is represented by 1.

Categorical Variables Transformation: With the help of the Multi-Field Formula tool, I've converted all the remaining categorical variables into binary variables, assigning 'True Class' as 1 and 'False Class' as 0.

Selection Tool for Conversion: To finalize the data preparation for statistical testing and model building, I've used the Selection tool to convert all variables into numerical format.

These refined steps provide a clear description of the data preparation process carried out in Alteryx.

DATA PREP ALTREYX WORKFLOW

CHI SQUARE ALTREYX WORKFLOW

Final Models

MODEL PERFORMANCE ON THE TEST DATA. RANDOM FOREST IS THE ONE WITH HIGHEST AUC AND ACCURACY.

Logistic Regression | Coefficient's

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-5.2032	1.0769	-4.8316	1.35e-06 ***
age.16.35.	2.5702	1.0346	2.4844	0.01298 *
age.36.45.	1.9857	0.9156	2.1688	0.03009 *
age.46.55.	1.6857	0.9466	1.7808	0.07495 .
age.56.65.	1.6354	0.9192	1.7793	0.07519.
Gender.Female.1.	3.0774	0.5467	5.6287	1.81e-08 ***
New_Polyuria	3.8671	0.6641	5.8228	5.78e-09 ***
New_Polydipsia	4.1238	0.6741	6.1177	9.49e-10 ***
New_sudden_weight_loss	0.6307	0.5272	1.1964	0.23152
New_weakness	0.2970	0.4923	0.6034	0.54622
New_Polyphagia	1.4431	0.5637	2.5601	0.01046 *
New_genital_thrush	0.9075	0.5362	1.6925	0.09055.
New_visual_blurring	-0.4126	0.5158	-0.7999	0.4238
New_Obesity	0.2036	0.6067	0.3355	0.73721
age66.	NA	NA	NA	NA

Significance codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial taken to be 1)