

Retrieval-Augmented Generation (RAG)

Yu Meng

University of Virginia

yumeng5@virginia.edu

Oct 30, 2024

Reminder

Join at slido.com #3719 083

Assignment 4 is due next Monday (11/04) 11:59pm!

Overview of Course Contents

- Week 1: Logistics & Overview
- Week 2: N-gram Language Models
- Week 3: Word Senses, Semantics & Classic Word Representations
- Week 4: Word Embeddings
- Week 5: Sequence Modeling and Neural Language Models
- Week 6-7: Language Modeling with Transformers (Pretraining + Fine-tuning)
- Week 8: Large Language Models (LLMs) & In-context Learning
- Week 9-10: Reasoning, Knowledge, and Retrieval-Augmented Generation (RAG)
- Week 11: LLM Alignment
- Week 12: Language Agents
- Week 13: Recap + Future of NLP
- Week 15 (after Thanksgiving): Project Presentations

(Recap) Hallucination

- Hallucination: LM generates information that is factually incorrect, misleading, or fabricated, even though it may sound plausible or convincing
- Why does hallucination happen?
 - Limited knowledge: LLMs are trained on finite datasets, which don't have access to all possible information; when asked about topics outside their training data, they may generate plausible-sounding but incorrect responses
 - Overgeneralization: LLMs may apply patterns they've learned from one context to another where they don't apply, leading to incorrect conclusions
 - Lack of common sense: While LLMs can process and generate human-like text, they often lack the ability to apply commonsense reasoning to their outputs
 - ...

(Recap) Non-parametric Knowledge

- Non-parametric knowledge: (external) information not stored in the model's parameters but can be accessed or retrieved when needed
- Examples:
 - External knowledge bases/graphs
 - Pretraining corpora
 - User-provided documents/passages
- Non-parametric knowledge is typically used to augment parametric knowledge (typically via retrieval) for more accurate factoid question answering
- Benefits of non-parametric knowledge
 - Incorporate more information without increasing model size
 - Easier updates and modifications to the knowledge base
 - Improve model interpretability

(Recap) Retrieval-Augmented Generation

- Use a retriever to obtain relevant documents to the query from an external text collection
- Use LLMs to generate answers given the documents and a prompt

(Recap) Information Retrieval (IR)

- **Information retrieval (IR)**: finding relevant information from a large collection of unstructured data (e.g., documents, web pages) in response to a user query
- Query: user-provided input (e.g., keywords or phrases), describing the information they are seeking
- Documents/corpus: the data collection that the system searches through
- Ranking: sort the search results by relevance based on specific metrics (e.g., keyword matching, semantic similarity)
- Web search engines (e.g., Google, Bing) are IR systems

(Recap) Sparse vs. Dense Retrieval

- Sparse retrieval: based on traditional IR techniques where the representations of documents and queries are sparse (most vector values are zero)
 - Example: TF-IDF
 - Pros: simple and interpretable
 - Cons: lack semantic understanding
- Dense retrieval: encode documents and queries into dense vectors (embeddings) using deep neural networks
 - Example: BERT-based encoding methods
 - Pros: semantic & contextualized understanding
 - Cons: computationally more expensive and less interpretable

(Recap) TF-IDF Weighting

- Introduced in week 3's lectures $\operatorname{TF-IDF}(w,d) = \operatorname{TF}(w,d) imes \operatorname{IDF}(w)$
- Main idea: represent a document with frequent & distinctive words

TF-IDF weighted

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	0.246	0	0.454	0.520
good	0	0	0	0
fool	0.030	0.033	0.0012	0.0019
wit	0.085	0.081	0.048	0.054

$$\cos(\boldsymbol{v}_{d_2}, \boldsymbol{v}_{d_3}) = 0.10 \quad \cos(\boldsymbol{v}_{d_3}, \boldsymbol{v}_{d_4}) = 0.99$$

Raw counts

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
good fool	36	58	1	4
wit	20	15	2	3

$$\cos(\mathbf{v}_{d_2}, \mathbf{v}_{d_3}) = 0.81 \quad \cos(\mathbf{v}_{d_3}, \mathbf{v}_{d_4}) = 0.99$$

Figure source: https://web.stanford.edu/~jurafsky/slp3/6.pdf

(Recap) Example: TF-IDF for Sparse Retrieval

Example query and mini-corpus:

Query: sweet love

Doc 1: Sweet sweet nurse! Love?

Doc 2: Sweet sorrow

Doc 3: How sweet is love?

Doc 4: Nurse!

Query & document vectors:

Query								
word	cnt	tf	df	idf	tf-idf	$\mathbf{n'lized} = \text{tf-idf}/ q $		
sweet	1	1	3	0.125	0.125	0.383		
nurse	0	0	2	0.301	0	0		
love	1	1	2	0.301	0.301	0.924		
how	0	0	1	0.602	0	0		
sorrow	0	0	1	0.602	0	0		
is	0	0	1	0.602	0	0		

			Docur	nent 1		Document 2		
word	cnt	tf	tf-idf	n'lized	cnt	tf	tf-idf	n'lized
sweet	2	1.301	0.163	0.357	1	1.000	0.125	0.203
nurse	1	1.000	0.301	0.661	0	0	0	0
love	1	1.000	0.301	0.661	0	0	0	0
how	0	0	0	0	0	0	0	0
sorrow	0	0	0	0	1	1.000	0.602	0.979
is	0	0	0	0	0	0	0	0

$$\cos(\boldsymbol{q}, \boldsymbol{d}_1) = 0.747$$

$$\cos(\boldsymbol{q}, \boldsymbol{d}_2) = 0.078$$

Agenda

- Dense Retrieval
- Evaluation of Retrieval
- Retrieval-Augmented Generation (RAG)
- Long-context Issues

Dense Retrieval

- Motivation: sparse retrieval (e.g., TF-IDF) relies on the exact overlap of words between the query and document without considering semantic similarity
- Solution: use a language model to obtain (dense) distributed representations of query and document
- The retriever language model is typically a small text encoder model (e.g., BERT)
 - Retrieval is a natural language understanding task
 - Encoder-only models are more efficient than LLMs for this purpose
- Both query and document representations are computed by text encoders

Dense Retrieval: Cross-encoder

- Process query-document pairs together
- Relevance score produced directly by the model output
- (+) Capture intricate interactions between the query and the document
- (-) Not scalable to large retrieval corpus
- Good for small document sets

Figure source: https://web.stanford.edu/~jurafsky/slp3/14.pdf

Dense Retrieval: Bi-encoder

- Independently encode the query and the document using two separate (but often identical) encoder models
- Use cosine similarity between the query and document vectors as relevance score
- (+) Document vectors can be precomputed
- (-) Cannot capture query-document interactions
- Common choice for large-scale retrieval

Further Reading on Dense Retrieval

- <u>Latent Retrieval for Weakly Supervised Open Domain Question Answering</u> [Lee et al., 2019]
- Dense Passage Retrieval for Open-Domain Question Answering [Karpukhin et al., 2020]
- Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval [Xiong et al., 2020]
- <u>Improving language models by retrieving from trillions of tokens</u> [Borgeaud et al., 2021]

Agenda

- Dense Retrieval
- Evaluation of Retrieval
- Retrieval-Augmented Generation (RAG)
- Long-context Issues

Evaluation of IR Systems

- Assume that each document returned by the IR system is either relevant to our purposes or not relevant
- Given a query, assume the system returns a set of ranked documents T
 - A subset R of these are relevant (The remaining N = T R is irrelevant)
 - There are U documents in the entire retrieval collection that are relevant to this query
- **Precision:** the fraction of the returned documents that are relevant

$$Precision = \frac{|R|}{|T|}$$

• Recall: the fraction of all relevant documents that are returned

$$Recall = \frac{|R|}{|U|}$$

Precision & Recall @ k

- We hope to build a retrieval system that ranks the relevant documents higher
- Use precision & recall @ k (among the top-k items in the ranked list) to reflect this
- Recall @ k is non-decreasing wrt k

Rank	Judgment	Precision _{Rank}	Recall _{Rank}
1	R	1.0	.11
2	N	.50	.11
3	R	.66	.22
4	N	.50	.22
5	R	.60	.33
6	R	.66	.44
7	N	.57	.44
8	R	.63	.55
9	N	.55	.55
10	N	.50	.55

Assume there are 9 total relevant documents in the retrieval corpus

Average Precision

Average precision (AP): mean of the precision values at the points in the ranked list where a relevant document is retrieved

Indicator function of whether

$$AP = \frac{1}{|R|} \sum_{k=1}^{|T|} (Precision@k \times 1(d_k \text{ is relevant}))$$

Rank	Judgment	Precision _{Rank}	\mathbf{Recall}_{Rank}
1	R	1.0	.11
2	N	.50	.11
3	R	.66	.22
4	N	.50	.22
5	R	.60	.33
6	R	.66	.44
7	N	.57	.44
8	R	.63	.55
9	N	.55	.55
10	N	.50	.55

Agenda

- Dense Retrieval
- Evaluation of Retrieval
- Retrieval-Augmented Generation (RAG)
- Long-context Issues

RAG for LLMs

Join at slido.com #3719 083

RAG is a common technique to enhance factuality of LLM generation & mitigate

hallucination

Time-sensitive query triggers
RAG for ChatGPT

What is the latest iPhone model?

Searching "latest iPhone model 2024" ∨

Retriever performs web search

The latest iPhone model as of 2024 is the iPhone 16, which launched in September. It comes in two versions: the standard iPhone 16 and the iPhone 16 Plus. Both models feature Apple's new A18 chip, improving performance and efficiency, particularly in machine learning and gaming. They also introduce a Camera Control button, offering advanced camera functionalities, alongside the Action button for customizable shortcuts.

Screenshot taken: https://chatgpt.com/

RAG vs. Direct Prompting

Prompting relies on LM's parametric knowledge to directly answer the question:

```
P(w|\mathbf{Q}): Who wrote the book 'The Origin of Species'? A: prompt
```

RAG prepends the set of retrieved passages to the question

```
retrieved passage 1
retrieved passage 2
Returned by the retriever
retrieved passage n

Based on these texts, answer this question: Q: Who wrote the book 'The Origin of Species"? A:
```


RAG in Pretraining

Join at slido.com #3719 083

- Retrieval-Augmented Language Model pre-training (REALM)
- The first paper that studies incorporating RAG into encoder pretraining (BERT style)
- Main model is a "knowledge-augmented encoder"
- Pretrain with masked language modeling (MLM) loss conditioned on retrieved content

Unlabeled text, from pre-training corpus (\mathcal{X}) The [MASK] at the top of the pyramid (x)Textual retrieve Neural Knowledge Retriever $\sim p_{ heta}(z|x)$ knowledge -end backpropagation corpus (Z)Retrieved document The pyramidion on top allows for less material higher up the pyramid. (z)Query and document [CLS] The [MASK] at the top of the pyramid [SEP] The pyramidion on top allows for less material higher up the pyramid. (x,z)Knowledge-Augmented Encoder $\sim p_{\phi}(y|x, x)$ Answer [MASK] = pyramidion (y)

BERT-style model to be pretrained

RAG for Text Generation

- The first paper that studies RAG for text generation
- Both the retriever (an encoder-only LM) and the generator (an LLM) are trained

Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks

Patrick Lewis^{†‡}, Ethan Perez*,

Aleksandra Piktus[†], Fabio Petroni[†], Vladimir Karpukhin[†], Naman Goyal[†], Heinrich Küttler[†],

Mike Lewis[†], Wen-tau Yih[†], Tim Rocktäschel^{†‡}, Sebastian Riedel^{†‡}, Douwe Kiela[†]

A Latent Variable Model

The retrieved documents are treated as latent variables (z) for generation

RAG-Sequence Model

- Use the same retrieved document to generate the complete sequence
- Treat the retrieved document as a single latent variable
- Marginalize to get the generation probability p(y|x) via a top-K approximation

Top-K approximation (only consider the top-K retrieved docs)

The same retrieved doc (z) is used to generate all tokens in the sequence

RAG-Token Model

- Can use different retrieved documents to generate different tokens in a sequence
- Marginalization is performed for each generated token (rather than at sequence level)

$$p_{\text{RAG-token}}(\boldsymbol{y}|\boldsymbol{x}) = \prod_{i=1}^{N} p_{\theta}(y_{i}|\boldsymbol{x},\boldsymbol{y}_{< i}) \approx \prod_{i=1}^{N} \sum_{\boldsymbol{z} \in \text{top-K}(p(\cdot|\boldsymbol{x},\boldsymbol{y}_{< i}))} p_{\eta}(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{y}_{< i}) p_{\theta}(y_{i}|\boldsymbol{x},\boldsymbol{z},\boldsymbol{y}_{< i})$$

Different retrieved doc (z) can be used to generate different tokens in the sequence

RAG-Sequence & RAG-Token Results

Evaluation results on open-domain QA tasks:

- Natural Questions (NQ)
- TriviaQA (TQA)
- WebQuestions (WQ)
- CuratedTrec (CT)

	Model	NQ	TQA	WQ	CT
	T5-11B [52] T5-11B+SSM[52]	34.5 36.6	- /50.1 - /60.5		- -
-	REALM [20] DPR [26]	40.4 41.5	- / - 57.9 / -	40.7 41.1	46.8 50.6
	RAG-Token RAG-Seq.		55.2/66.1 56.8/ 68.0	45.5 45.2	

Further Reading on RAG

- <u>Generalization through Memorization: Nearest Neighbor Language Models</u> [Khandelwal et al., 2019]
- Active Retrieval Augmented Generation [Jiang et al., 2023]
- <u>Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection</u> [Asai et al., 2023]
- <u>InstructRAG: Instructing Retrieval-Augmented Generation via Self-Synthesized</u> <u>Rationales</u> [Wei et al., 2024]

Agenda

- Dense Retrieval
- Evaluation of Retrieval
- Retrieval-Augmented Generation (RAG)
- Long-context Issues

RAG & Long Context Issues in LLMs

- RAG significantly increases the input sequence length to LLMs ("long context") by prepending multiple retrieved passages
- **Inefficiency**: the complexity of self-attention is quadratic wrt number of tokens
- Irrelevant information: LLMs might get distracted by irrelevant retrieval content
- Lost in the middle: LLMs tend to focus more on the beginning and end of the input sequence, but missing important information located in the middle of a long context
- **Performance saturation**: LLMs do not always effectively using the extra context (more retrieved documents)

Lost in the Middle

- Main finding: LLM performance (with RAG) can degrade significantly when changing the position of relevant information
- Performance is often highest when relevant information occurs at the beginning or end of the input context
- Significantly degrades when models must access relevant information in the middle of long contexts
- Analogous to the serial-position effect: a person tends to recall the first and last items in a series best, and the middle items worst

Lost in the Middle: How Language Models Use Long Contexts

Nelson F. Liu^{1*} Kevin Lin² John Hewitt¹ Ashwin Paranjape³
Michele Bevilacqua³ Fabio Petroni³ Percy Liang¹

Stanford University ²University of California, Berkeley ³Samaya AI

Primacy & Recency Bias

- Exactly one of the documents contains the answer, with other "distractor" documents
- Vary the position of the gold document
- U-shaped performance curve: LLMs are better at using relevant information that occurs at the very beginning (primacy bias) or end of its input context (recency bias)

Performance Saturation Under More Context

- Retriever recall always improves with more retrieved docs
- LLM performance saturates long before retriever performance saturates (using more than 20 retrieved documents only marginally improves LLM performance)

Practical Considerations of RAG

- Retrieve fewer documents when appropriate
- Avoid inputting irrelevant information to LLMs if possible
- Re-rank retrieved documents to push relevant information closer to the start of the input context
- Adjust & refine retrieval queries based on intermediate results or feedback
- Optimize document chunking: break entire documents into smaller, semantically coherent chunks to ensure only the most relevant parts are input to the LLM

Further Reading on Long-context LLMs

- <u>Efficient Streaming Language Models with Attention Sinks</u> [Xiao et al., 2023]
- LongNet: Scaling Transformers to 1,000,000,000 Tokens [Ding et al., 2023]
- Adapting Language Models to Compress Contexts [Chevalier et al., 2023]
- <u>LLM Maybe LongLM: Self-Extend LLM Context Window Without Tuning</u> [Jin et al., 2024]

Thank You!

Yu Meng

University of Virginia

yumeng5@virginia.edu