CS143: Database Systems Homework #8

1. Consider the relation Employee(name, salary) where name is the key. The following three transactions are being executed:

```
T_1:
   SELECT SUM(salary) FROM Employee;
   COMMIT;

T_2:
   UPDATE Employee SET salary = salary + 200;
   UPDATE Employee SET salary = salary + 1000 WHERE name = 'Tony';
   COMMIT;

T_3:
   UPDATE Employee SET salary = salary + 100 WHERE name = 'James';
   UPDATE Employee SET salary = salary + 200 WHERE name = 'Tony';
   COMMIT;
```

The table Employee originally has two tuples, ('Tony', 1000) and ('James', 1000). Please assume that individual SQL statements are executed atomically.

(a) Assume that all three transactions run under the isolation level SERIALIZABLE. List all possible values that can be returned by T_1 . Briefly explain your answer.

ANSWER:

```
2000, 2300, 3400, 3700.
```

When all transactions run under SERIALIZABLE, any possible schedule is conflict equivalent to a serial schedule. Possible schedules for T_1,T_2 and T_3 are: $T_1T_2T_3$, $T_1T_3T_2$, $T_2T_1T_3$, $T_2T_3T_1$, $T_3T_1T_2$, and $T_3T_2T_1$. The outputs from T_1 are 2000, 2000, 3400, 3700, 2300, 3700, respectively.

(b) Assume that T_1 runs under the isolation level READ UNCOMMITTED and T_2 under REPEAT-ABLE READ and T_3 under SERIALIZABLE. List all possible values that can be returned by T_1 . Briefly explain your answer.

ANSWER:

```
2000, 2100, 2300, 2400, 2700, 3400, 3500, 3700.
```

Only T_2 and T_3 are updating values, so let us focus on these two transactions first. Under REPEATABLE READ, the only exception to ACID is phantom, but because T_2 and T_3 do not insert any tuple, we do not need to worry about ACID exceptions for the two. So the possible schedules for T_2 and T_3 are equivalent to T_2T_3 or T_3T_2 . Regarding T_1 , since it is READ UNCOMMITTED, its SELECT statement may do a dirty read.

Now let us consider the schedule T_2T_3 . Under this schedule, the total salay value changes from $2000 \to 2400 \to 3400 \to 3500 \to 3700$. T_1 may read any of these salary sum values.

For the schedule T_3T_2 , the total salay value changes from $2000 \to 2100 \to 2300 \to 2700 \to 3700$. Again, T_1 may read any of these salary sum values.

Therefore, possible outputs from T_1 are 2000, 2100, 2300, 2400, 2700, 3400, 3500, 3700.