Optionnel

Problème. On considère la fonction f définie sur \mathbb{R}_+ par $f(x) = \begin{cases} x e^{-1/x} & \text{si } x > 0 \\ 0 & \text{si } x = 0 \end{cases}$

- **1. a)** Calculer $\lim_{x\to 0^+} f(x)$ et en déduire que f est continue à droite en 0.
- **b)** Calculer $\lim_{x\to 0^+} \frac{f(x)}{x}$ et en déduire que f est dérivable à droite en 0 et donner le nombre dérivé à droite de f en 0, noté $f'_d(0)$.
- **2. a)** Déterminer, pour tout réel x de \mathbb{R}_+^* , l'expression de f'(x) en fonction de x, où f' désgine la fonction dérivée de f.
 - **b)** Étudier le signe de f'(x) sur \mathbb{R}_+^* , puis donner les variations de f sur \mathbb{R}_+ .
- c) Calculer les limites de f aux bornes de son domaine de définition puis dresser le tableau de variations de f.
- **d)** Vérifier que, pour tout réel x de \mathbb{R}_+^* , on a $f''(x) = \frac{1}{x^3} e^{-1/x}$. La fonction f est-elle convexe ou concave sur \mathbb{R}_+^* ?
- **3. a)** Calculer $\lim_{u \to 0^+} \frac{e^{-u} 1}{u}$.
 - **b)** En déduire que $\lim_{x \to +\infty} (f(x) (x-1)) = 0$.
- c) On note (\mathscr{C}) la courbe représentative de f dans un repère orthonormé. Donner l'équation de la droite asymptote à (\mathscr{C}) au voisinage de $+\infty$ et tracer l'allure de (\mathscr{C}) .

On définit la suite $(u_n)_{n\in\mathbb{N}}$ par la donnée de son premier terme $u_0=1$ et par la relation de récurrence $u_{n+1}=f(u_n)$, valable pour tout entier naturel n.

- **4. a)** Montrer par récurrence que, pour tout entier naturel n, on a $u_n > 0$.
 - **b)** Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante.
 - c) En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ converge et donner sa limite.
- **5. a)** Montrer que, pour tout n entier naturel, on a la relation $\sum_{k=0}^{n} \frac{1}{u_k} = -\ln(u_{n+1})$.
 - **b)** En déduire que la suite de terme général $\sum_{k=0}^{n} \frac{1}{u_k}$ est divergente.

Exercice 1. (Dénombrement de surjections) Soient q, k, p trois entiers tels que $0 \le q \le k \le p$.

- **1.** Montrer que $\binom{p}{k} \cdot \binom{k}{q} = \binom{p}{q} \cdot \binom{p-q}{p-k}$.
- **2.** En déduire $\sum_{\ell=q}^{p} (-1)^{p-\ell} \binom{p}{\ell} \binom{\ell}{q} = \delta_{p,q}$, où $\delta_{p,q} = 0$ si et seulement si $p \neq q$.
- 3. Soient n un entier naturel, $(a_k)_{k \in \llbracket 0,n \rrbracket}$ et $(b_k)_{k \in \llbracket 0,n \rrbracket}$ deux familles de réels. On suppose que pour tout entier $p \in \llbracket 0,n \rrbracket$, $\sum_{q=0}^p \binom{p}{q} a_q = b_p$. Pour tout entier $p \in \llbracket 0,n \rrbracket$, exprimer $\sum_{k=0}^p (-1)^{p-k} \binom{p}{k} b_k$ en fonction de a_p .

Nombre de surjections Pour tout $(n,p) \in (\mathbb{N}^*)^2$, on note S_n^p le nombre d'applications surjectives de $[\![1,n]\!]$ dans $[\![1,p]\!]$. Par convention, on pose $S_n^0 = S_0^n = 0$ et $S_0^0 = 1$.

- **4.** Soit $n \in \mathbb{N}^*$.
 - **a)** Déterminer S_n^1 , S_n^2 , S_n^n
 - **b)** Soit p > n. Déterminer S_n^p .
 - c) Montrer que pour tout $p \in \mathbb{N}^*$, $p^n = \sum_{k=1}^p \binom{p}{k} S_n^k$.

d) On suppose n différent de 0. En déduire que

$$\forall \ p \in [\![1,n]\!], \ S_n^p = \sum_{k=1}^p (-1)^{p-k} \binom{p}{k} k^n.$$

5. a) On suppose que $2 \le p \le n$. En considérant la restriction à [1, n-1] d'une surjection de [1, n] dans [1, p], montrer que

$$S_n^p = p \left(S_{n-1}^p + S_{n-1}^{p-1} \right).$$

- **b)** Cette relation est-elle encore vraie lorsque $1 \leqslant p \leqslant n$?
- **c**) En déduire que, pour tout entier naturel $n, S_{n+1}^n = \frac{n}{2}(n+1)!$.