Machine Learning

Lecture 14 Linear Support Vector Machine

深度取特徵 再做SVM分類

Chen-Kuo Chiang (江 振 國) *ckchiang@cs.ccu.edu.tw*

中正大學 資訊工程學系

Course Introduction

- three major techniques surrounding feature transforms:
 - Embedding Numerous Features: how to exploit and regularize numerous features?
 - -inspires Support Vector Machine (SVM) model
 - Combining Predictive Features: how to construct and blend predictive features?
 - -inspires Adaptive Boosting (AdaBoost) model
 - Distilling Implicit Features: how to identify and learn implicit features?
 - —inspires **Deep Learning** model

The Storyline

Embedding Numerous Features: Kernel Models

Linear Support Vector Machine

- Course Introduction
- Large-Margin Separating Hyperplane
- Standard Large-Margin Problem
- Support Vector Machine
- Reasons behind Large-Margin Hyperplane
- 2 Combining Predictive Features: Aggregation Models
- 3 Distilling Implicit Features: Extraction Models

Linear Classification Revisited

(linear separable)

linear (hyperplane) classifiers: $h(\mathbf{x}) = \underline{\operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x})}$

Which Line Is Best?

- PLA? depending on randomness 一條線將兩者分開
- VC bound? whichever you like!

$$E_{\text{out}}(\mathbf{w}) \leq \underbrace{E_{\text{in}}(\mathbf{w})}_{0} + \underbrace{\Omega(\mathcal{H})}_{d_{\text{Vc}} = d+1}$$

You? rightmost one, possibly:-)

Why Rightmost Hyperplane?

informal argument

if (Gaussian-like) noise on future $\mathbf{x} \approx \mathbf{x}_n$:

 \mathbf{x}_n further from hyperplane distance to closest \mathbf{x}_n

An further from hyperplane distance to closest A

 \iff tolerate more noise \iff amount of noise tolerance

⇔ more robust to overfitting
 ⇔ robustness of hyperplane

rightmost one: more robust because of larger distance to closest x_n

Fat Hyperplane

- robust separating hyperplane: fat 線越粗
 —far from both sides of examples
- robustness \equiv **fatness**: distance to closest \mathbf{x}_n

goal: find fattest separating hyperplane

Large-Margin Separating Hyperplane


```
max fatness(w) 找最肥的 subject to w classifies every (\mathbf{x}_n, y_n) correctly fatness(w) = \min_{n=1,...,N} distance(\mathbf{x}_n, \mathbf{w}) 制條件
```

- fatness: formally called margin 最大margin
- correctness: $y_n = sign(\mathbf{w}^T \mathbf{x}_n)$ 分類預測結果要與標準一致

goal: find largest-margin separating hyperplane

Large-Margin Separating Hyperplane


```
\max_{\mathbf{w}} margin(\mathbf{w}) 將概念轉換為數學式,再計算出\mathbf{w}。 subject to every y_n \mathbf{w}^T \mathbf{x}_n > 0 代表資料做對 margin(\mathbf{w}) = \min_{n=1,...,N} distance(\mathbf{x}_n, \mathbf{w})
```

- fatness: formally called margin
- correctness: $y_n = sign(\mathbf{w}^T \mathbf{x}_n)$

goal: find largest-margin separating hyperplane

Fun Time

Consider two examples $(\mathbf{v}, +1)$ and $(-\mathbf{v}, -1)$ where $\mathbf{v} \in \mathbb{R}^2$ (without padding the $v_0 = 1$). Which of the following hyperplane is the largest-margin separating one for the two examples? You are highly encouraged to visualize by considering, for instance, $\mathbf{v} = (3, 2)$.

- $1 x_1 = 0$
- $2 x_2 = 0$

Reference Answer: (3)

Here the largest-margin separating hyperplane (line) must be a perpendicular bisector of the line segment between \mathbf{v} and $-\mathbf{v}$. Hence \mathbf{v} is a normal vector of the largest-margin line. The result can be extended to the more general case of $\mathbf{v} \in \mathbb{R}^d$.

Distance to Hyperplane: Preliminary

```
max margin(\mathbf{w})
subject to every y_n \mathbf{w}^T \mathbf{x}_n > 0
margin(\mathbf{w}) = min distance(\mathbf{x}_n, \mathbf{w})
```

```
'shorten' x and w
distance needs w and (w_1, \ldots, w_d) differently (to be derived)

将常數獨立出來

= w_0

\begin{bmatrix} | \\ \mathbf{w} \\ | \end{bmatrix}
= \begin{bmatrix} w_1 \\ \vdots \\ w_d \end{bmatrix}
\vdots
\begin{bmatrix} | \\ \mathbf{x} \\ | \end{bmatrix}
= \begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix}
```

for this part: $h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^T \mathbf{x} + \mathbf{b})$

Distance to Hyperplane

want: distance($\mathbf{x}, \mathbf{b}, \mathbf{w}$), with hyperplane $\mathbf{w}^T \mathbf{x}' + \mathbf{b} = 0$

consider x', x" on hyperplane

- $\mathbf{0} \mathbf{w}^{\mathsf{T}} \mathbf{x}' = -b, \mathbf{w}^{\mathsf{T}} \mathbf{x}'' = -b$ 落在平面上結果為 $\mathbf{0}$
- 2 w ⊥ hyperplane:

3 distance = project $(\mathbf{x} - \mathbf{x}')$ to \perp hyperplane

$$\mathsf{distance}(\mathbf{x}, \textcolor{red}{b}, \mathbf{w}) = \left| \frac{\mathbf{w}^{\intercal}}{\|\mathbf{w}\|} (\mathbf{x} - \mathbf{x}') \right| \stackrel{\text{1}}{=} \frac{1}{\|\mathbf{w}\|} | \underline{\mathbf{w}}^{\intercal} \mathbf{x} + \textcolor{red}{b} |$$

Distance to **Separating** Hyperplane

$$distance(\mathbf{x}, \frac{\mathbf{b}}{\mathbf{b}}, \mathbf{w}) = \frac{1}{\|\mathbf{w}\|} |\mathbf{w}^T \mathbf{x} + \mathbf{b}|$$

• separating hyperplane: for every n

$$y_n(\mathbf{w}^T\mathbf{x}_n+b)>0$$

• distance to separating hyperplane:

distance(
$$\mathbf{x}_n, \mathbf{b}, \mathbf{w}$$
) = $\frac{1}{\|\mathbf{w}\|} \mathbf{y}_n(\mathbf{w}^T \mathbf{x}_n + \mathbf{b})$

max
$$\max_{b,\mathbf{w}}$$
 margin (b,\mathbf{w})
subject to every $y_n(\mathbf{w}^T\mathbf{x}_n + b) > 0$
margin $(b,\mathbf{w}) = \min_{n=1,\dots,N} \frac{1}{\|\mathbf{w}\|} y_n(\mathbf{w}^T\mathbf{x}_n + b)$

Margin of Special Separating Hyperplane

```
\max_{\substack{b,\mathbf{w}\\b,\mathbf{w}}} \quad \text{margin}(\mathbf{b},\mathbf{w}) subject to \text{every } y_n(\mathbf{w}^T\mathbf{x}_n+\mathbf{b})>0 \text{margin}(\mathbf{b},\mathbf{w})=\min_{n=1,\dots,N}\frac{1}{\|\mathbf{w}\|}y_n(\mathbf{w}^T\mathbf{x}_n+\mathbf{b})
```

- $\mathbf{w}^T \mathbf{x} + \mathbf{b} = 0$ same as $3\mathbf{w}^T \mathbf{x} + 3\mathbf{b} = 0$: scaling does not matter
- special scaling: only consider separating (b, w) such that

$$\min_{n=1,\dots,N} y_n(\mathbf{w}^T \mathbf{x}_n + b) = 1 \Longrightarrow \operatorname{margin}(b, \mathbf{w}) = \frac{1}{\|\mathbf{w}\|}$$

$$\max_{\substack{b,\mathbf{w}\\b,\mathbf{w}}} \frac{1}{\|\mathbf{w}\|}$$
subject to every $y_n(\mathbf{w}^T\mathbf{x}_n + b) > 0$

$$\min_{n=1,\dots,N} y_n(\mathbf{w}^T\mathbf{x}_n + b) = 1$$

Standard Large-Margin Hyperplane Problem

$$\max_{\mathbf{b},\mathbf{w}} \quad \frac{1}{\|\mathbf{w}\|} \quad \text{subject to} \min_{n=1,\dots,N} \quad y_n(\mathbf{w}^T \mathbf{x}_n + \mathbf{b}) = 1$$

```
necessary constraints: y_n(\mathbf{w}^T\mathbf{x}_n + \mathbf{b}) \geq 1 for all n
```

```
original constraint: \min_{n=1,...,N} y_n(\mathbf{w}^T \mathbf{x}_n + b) = 1 want: optimal (b, \mathbf{w}) here (inside)
```

if optimal (b, \mathbf{w}) outside, e.g. $y_n(\mathbf{w}^T\mathbf{x}_n + \mathbf{b}) > 1.126$ for all n—can scale (b, \mathbf{w}) to "more optimal" $(\frac{b}{1.126}, \frac{\mathbf{w}}{1.126})$ (contradiction!)

```
final change: max \Longrightarrow min, remove \sqrt{\phantom{a}}, add \frac{1}{2} \min_{\substack{b,\mathbf{w}\\b}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w} subject to y_n(\mathbf{w}^T\mathbf{x}_n + \mathbf{b}) \ge 1 for all n
```

Fun Time

Consider three examples $(\mathbf{x}_1, +1)$, $(\mathbf{x}_2, +1)$, $(\mathbf{x}_3, -1)$, where $\mathbf{x}_1 = (3, 0)$, $\mathbf{x}_2 = (0, 4)$, $\mathbf{x}_3 = (0, 0)$. In addition, consider a hyperplane $x_1 + x_2 = 1$. Which of the following is not true?

- 1 the hyperplane is a separating one for the three examples
- 2 the distance from the hyperplane to \mathbf{x}_1 is 2
- 3 the distance from the hyperplane to \mathbf{x}_3 is $\frac{1}{\sqrt{2}}$
- 4 the example that is closest to the hyperplane is \mathbf{x}_3

Reference Answer: (2)

The distance from the hyperplane to \mathbf{x}_1 is $\frac{1}{\sqrt{2}}(3+0-1)=\sqrt{2}$.

點
$$P(x_o, y_o)$$
到直線 $L: ax + by + c = 0$ 的距離寫
$$d = \frac{|ax_o + by_o + c|}{\sqrt{a^2 + b^2}}$$

Solving a Particular Standard Problem

 $\min_{\substack{b,\mathbf{w}\\b}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$
subject to $y_n(\mathbf{w}^T\mathbf{x}_n + \mathbf{b}) \ge 1 \text{ for all } n$

$$X = \begin{bmatrix} 0 & 0 \\ 2 & 2 \\ 2 & 0 \\ 3 & 0 \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} -1 \\ -1 \\ +1 \\ +1 \end{bmatrix} \qquad \begin{array}{c} -b \ge 1 & (i) \\ -2w_1 - 2w_2 - b \ge 1 & (ii) \\ 2w_1 & +b \ge 1 & (iii) \\ 3w_1 & +b \ge 1 & (iv) \end{array}$$

- $\left\{ \begin{array}{ccc} (i) & \& & (iii) & \Longrightarrow & w_1 \ge +1 \\ (ii) & \& & (iii) & \Longrightarrow & w_2 \le -1 \end{array} \right\} \Longrightarrow \frac{1}{2} \mathbf{w}^T \mathbf{w} \ge 1$
- $(w_1 = 1, w_2 = -1, b = -1)$ at **lower bound** and satisfies (i) (iv)

$$g_{\text{SVM}}(\mathbf{x}) = \text{sign}(x_1 - x_2 - 1)$$
: SVM? :-)

Support Vector Machine (SVM)

```
optimal solution: (w_1 = 1, w_2 = -1, b = -1)
margin(b, \mathbf{w}) = \frac{1}{\|\mathbf{w}\|} = \frac{1}{\sqrt{2}}
```


- examples on boundary: 'locates' fattest hyperplane other examples: not needed
- call boundary example support vector (candidate)

support vector machine (SVM): learn fattest hyperplanes (with help of support vectors)

Solving General SVM

```
\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^{T}\mathbf{w}<br/>subject to y_{n}(\mathbf{w}^{T}\mathbf{x}_{n}+b) \geq 1 \text{ for all } n
```

- not easy manually, of course :-)
- gradient descent? not easy with constraints
- luckily:
 - (convex) quadratic objective function of (b, w)
 - linear constraints of (b, w)
 - -quadratic programming

quadratic programming (QP):
 'easy' optimization problem

Quadratic Programming

```
optimal (b, \mathbf{w}) = ?
\min_{b, \mathbf{w}} \quad \frac{1}{2} \mathbf{w}^T \mathbf{w}
subject to y_n(\mathbf{w}^T \mathbf{x}_n + b) \ge 1, for n = 1, 2, ..., N
```

optimal
$$\mathbf{u} \leftarrow \mathsf{QP}(\mathbf{Q}, \mathbf{p}, \mathbf{A}, \mathbf{c})$$

$$\min_{\mathbf{u}} \quad \frac{1}{2} \mathbf{u}^T \mathsf{Q} \mathbf{u} + \mathbf{p}^T \mathbf{u}$$
subject to $\mathbf{a}_m^T \mathbf{u} \geq c_m$,
for $m = 1, 2, \dots, M$

objective function:
$$\mathbf{u} = \begin{bmatrix} b \\ \mathbf{w} \end{bmatrix}$$
; $\mathbf{Q} = \begin{bmatrix} \mathbf{0} & \mathbf{0}_{d}^{T} \\ \mathbf{0}_{d} & \mathbf{I}_{d} \end{bmatrix}$; $\mathbf{p} = \mathbf{0}_{d+1}$ constraints: $\mathbf{a}_{n}^{T} = \mathbf{y}_{n} \begin{bmatrix} 1 & \mathbf{x}_{n}^{T} \end{bmatrix}$; $\mathbf{c}_{n} = 1$; $M = N$

SVM with general QP solver: easy if you've read the manual :-)

SVM with QP Solver

Linear Hard-Margin SVM Algorithm

$$\mathbf{0} \quad \mathbf{Q} = \begin{bmatrix} \mathbf{0} & \mathbf{0}_d^T \\ \mathbf{0}_d & \mathbf{I}_d \end{bmatrix}; \mathbf{p} = \mathbf{0}_{d+1}; \mathbf{a}_n^T = y_n \begin{bmatrix} 1 & \mathbf{x}_n^T \end{bmatrix}; c_n = 1$$

- 3 return $b \& \mathbf{w}$ as g_{SVM}
- hard-margin: nothing violate 'fat boundary'
- linear: x_n

want **non-linear**?
$$\mathbf{z}_n = \mathbf{\Phi}(\mathbf{x}_n)$$
—**remember?** :-)

Fun Time

Consider two negative examples with $\mathbf{x}_1 = (0,0)$ and $\mathbf{x}_2 = (2,2)$; two positive examples with $\mathbf{x}_3 = (2,0)$ and $\mathbf{x}_4 = (3,0)$, as shown on page 17 of the slides. Define \mathbf{u} , \mathbf{Q} , \mathbf{p} , \mathbf{c}_n as those listed on page 20 of the slides. What are \mathbf{a}_n^T that need to be fed into the QP solver?

- **1** $\mathbf{a}_1^T = [-1, 0, 0]$, $\mathbf{a}_2^T = [-1, 2, 2]$, $\mathbf{a}_3^T = [-1, 2, 0]$

- , $\mathbf{a}_{4}^{T} = [-1, 3, 0]$
- **2** $\mathbf{a}_1^T = [1,0,0]$, $\mathbf{a}_2^T = [1,-2,-2]$, $\mathbf{a}_3^T = [-1,2,0]$

- , $\mathbf{a}_{4}^{T} = [-1, 3, 0]$
- (3) $\mathbf{a}_1^T = [1,0,0]$, $\mathbf{a}_2^T = [1,2,2]$, $\mathbf{a}_3^T = [1,2,0]$, $\mathbf{a}_4^T = [1,3,0]$

- **4** $\mathbf{a}_1^T = [-1, 0, 0]$, $\mathbf{a}_2^T = [-1, -2, -2]$, $\mathbf{a}_3^T = [1, 2, 0]$

, $\mathbf{a}_{4}^{T} = [1, 3, 0]$

Reference Answer: (4)

We need $\mathbf{a}_n^T = y_n \begin{bmatrix} 1 & \mathbf{x}_n^T \end{bmatrix}$.

Why Large-Margin Hyperplane?

 $\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$
subject to $y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge 1 \text{ for all } n$

	minimize	constraint
regularization	<i>E</i> in	$\mathbf{w}^{T}\mathbf{w} \leq C$
SVM	$\mathbf{w}^T\mathbf{w}$	$E_{\rm in} = 0$ [and more]

SVM (large-margin hyperplane): 'weight-decay regularization' within $E_{\rm in}=0$

Benefits of Large-Margin Hyperplanes

	large-margin hyperplanes	hyperplanes	hyperplanes + feature transform Φ
#	even fewer	not many	many
boundary	simple	simple	sophisticated

- not many good, for d_{VC} and generalization
- sophisticated good, for possibly better E_{in}

a new possibility: non-linear SVM			
	large-margin		
	hyperplanes + numerous feature transform Ф		
#	not many		
boundary	sophisticated		

Summary

1 Embedding Numerous Features: Kernel Models

Linear Support Vector Machine

- Course Introduction
 - from foundations to techniques
- Large-Margin Separating Hyperplane intuitively more robust against noise
- Standard Large-Margin Problem

minimize 'length of w' at special separating scale

- Support Vector Machine
 - 'easy' via quadratic programming
- Reasons behind Large-Margin Hyperplane fewer dichotomies and better generalization
- next: solving non-linear Support Vector Machine