

Schletter, Inc.		15° Tilt w/o Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2

Module Tilt = 15°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load,
$$P_g =$$
 30.00 psf Sloped Roof Snow Load, $P_s =$ 22.68 psf (ASCE 7-05, Eq. 7-2) $I_s =$ 1.00 $C_s =$ 1.00 $C_e =$ 0.90 $C_t =$ 1.20

2.3 Wind Loads

Design Wind Speed, V =	100 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 15.70 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Cf+ _{TOP}	=	1.000 (Prossure)	
Cf+ BOTTOM	=	1.000 1.600 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.300	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.780 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	applied away from the surface.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S $_{ds}$ of 1.0 was used
$T_a =$	0.00	$C_{d} = 1.25$	to calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E ^O

(ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2)

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

 $\begin{array}{c} 1.0D + 1.0S \\ 1.0D + 1.0W \\ 1.0D + 0.75L + 0.75W + 0.75S \\ 0.6D + 1.0W & \text{(ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2)} \\ 1.238D + 0.875E & \text{0} \\ 1.1785D + 0.65625E + 0.75S & \text{0} \\ 0.362D + 0.875E & \text{0} \\ \end{array}$

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	<u>Diagonal Struts</u>	<u>Location</u>	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	<u>Location</u>	Rear Struts	<u>Location</u>	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	<u>Location</u>			
M4	Outer			
M8	Inner			
M12	Outer			

[™] Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u> Front</u>	<u>Rear</u>	
<u>1400.73</u>	<u>4840.52</u>	k
<u>4839.37</u>	5020.78	k
<u>9.98</u>	<u>1754.10</u>	k
0.02	<u>0.01</u>	k
	1400.73 4839.37 9.98	1400.73 4840.52 4839.37 5020.78 9.98 1754.10

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. Compressive Strength = 2500 psi Yield Strength = 60000 psi Overturning Check $M_O = 121060.9 \text{ in-lbs}$ Resisting Force Required = 1834.26 lbs A minimum 132in long x 27in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 3057.09 lbs to resist overturning. Minimum Width = <u>27 in</u> in Weight Provided = 5383.13 lbs Sliding 421.50 lbs Force = Friction = Use a 132in long x 27in wide x 18in tall 0.4 ballast foundation to resist sliding. Weight Required = 1053.74 lbs Resisting Weight = 5383.13 lbs Friction is OK. Additional Weight Required = 0 lbs Cohesion Sliding Force = 421.50 lbs Cohesion = 130 psf Use a 132in long x 27in wide x 18in tall 24.75 ft² Area = ballast foundation. Cohesion is OK. Resisting = 2691.56 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs Lateral Bearing Pressure = 200 psf/ft Required Depth = 0.00 ft Shear key is not required. 2500 psi $f'_c =$

Bearing Pressure

Length =

8 in

 $\frac{\text{Ballast Width}}{27 \text{ in}} = \frac{28 \text{ in}}{29 \text{ in}} = \frac{30 \text{ in}}{5981 \text{ lbs}}$ $P_{\text{ftg}} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(2.25 \text{ ft}) = \frac{5383 \text{ lbs}}{5583 \text{ lbs}} = \frac{5782 \text{ lbs}}{5981 \text{ lbs}}$

40D L 0		1.00	+ 1.0S		1.0D + 1.0W 1.0D + 0.75l				0D + 0.7EL +	+ 0.75L + 0.75W + 0.75S			0.6D + 1.0W			
ASD LC		1.00	+ 1.03			1.004	F 1.000		1	.0D + 0.73L +	0.7500 + 0.75	3		0.60 +	- 1.000	
Width	27 in	28 in	29 in	30 in	27 in	28 in	29 in	30 in	27 in	28 in	29 in	30 in	27 in	28 in	29 in	30 in
FA	1724 lbs	1724 lbs	1724 lbs	1724 lbs	1592 lbs	1592 lbs	1592 lbs	1592 lbs	2359 lbs	2359 lbs	2359 lbs	2359 lbs	-667 lbs	-667 lbs	-667 lbs	-667 lbs
F _B	1786 lbs	1786 lbs	1786 lbs	1786 lbs	1651 lbs	1651 lbs	1651 lbs	1651 lbs	2445 lbs	2445 lbs	2445 lbs	2445 lbs	-2321 lbs	-2321 lbs	-2321 lbs	-2321 lbs
F_V	152 lbs	152 lbs	152 lbs	152 lbs	749 lbs	749 lbs	749 lbs	749 lbs	665 lbs	665 lbs	665 lbs	665 lbs	-843 lbs	-843 lbs	-843 lbs	-843 lbs
P _{total}	8893 lbs	9092 lbs	9292 lbs	9491 lbs	8626 lbs	8825 lbs	9025 lbs	9224 lbs	10187 lbs	10386 lbs	10586 lbs	10785 lbs	241 lbs	361 lbs	481 lbs	600 lbs
М	4187 lbs-ft	4187 lbs-ft	4187 lbs-ft	4187 lbs-ft	4774 lbs-ft	4774 lbs-ft	4774 lbs-ft	4774 lbs-ft	6409 lbs-ft	6409 lbs-ft	6409 lbs-ft	6409 lbs-ft	1212 lbs-ft	1212 lbs-ft	1212 lbs-ft	1212 lbs-ft
е	0.47 ft	0.46 ft	0.45 ft	0.44 ft	0.55 ft	0.54 ft	0.53 ft	0.52 ft	0.63 ft	0.62 ft	0.61 ft	0.59 ft	5.02 ft	3.36 ft	2.52 ft	2.02 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft				
f _{min}	267.0 psf	265.3 psf	263.6 psf	262.1 psf	243.3 psf	242.4 psf	241.5 psf	240.7 psf	270.4 psf	268.5 psf	266.7 psf	265.1 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	451.6 psf	443.2 psf	435.4 psf	428.2 psf	453.7 psf	445.3 psf	437.4 psf	430.1 psf	552.8 psf	540.9 psf	529.7 psf	519.3 psf	148.3 psf	48.1 psf	44.5 psf	46.0 psf

Maximum Bearing Pressure = 553 psf Allowable Bearing Pressure = 1500 psf Use a 132in long x 27in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Weak Side Design

Overturning Check

1043.2 ft-lbs $M_O =$

927.25 lbs Resisting Force Required =

S.F. = 1.67

Weight Required = 1545.41 lbs Minimum Width = <u>27 in</u> in Weight Provided = 5383.13 lbs

A minimum 132in long x 27in wide x 18in tall ballast foundation is required to resist

overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E			
Width		27 in		27 in			27 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F _Y	237 lbs	645 lbs	237 lbs	938 lbs	2856 lbs	938 lbs	69 lbs	189 lbs	69 lbs	
F _V	1 lbs	0 lbs	1 lbs	4 lbs	0 lbs	4 lbs	0 lbs	0 lbs	0 lbs	
P _{total}	6902 lbs	5383 lbs	6902 lbs	7282 lbs	5383 lbs	7282 lbs	2018 lbs	5383 lbs	2018 lbs	
М	3 lbs-ft	0 lbs-ft	3 lbs-ft	12 lbs-ft	0 lbs-ft	12 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft	
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	
L/6	0.38 ft	0.38 ft	0.38 ft	0.38 ft	0.38 ft	0.38 ft	0.38 ft	0.38 ft	0.38 ft	
f _{min}	278.5 psf	217.5 psf	278.5 psf	292.9 psf	217.5 psf	292.9 psf	81.5 psf	217.5 psf	81.5 psf	
f _{max}	279.2 psf	217.5 psf	279.2 psf	295.6 psf	217.5 psf	295.6 psf	81.6 psf	217.5 psf	81.6 psf	

Maximum Bearing Pressure = 296 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 27in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 27in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

<u>Front Strut</u> Maximum Axial Load = M12 Bolt Capacity =	3.723 k 12.808 k	Rear Strut Maximum Axial Load = 3.664 k M12 Bolt Capacity = 12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity = 7.421 k
Utilization =	<u>50%</u>	Utilization = 49%
Diagonal Strut Maximum Axial Load = M12 Bolt Shear Capacity = Strut Bearing Capacity = Utilization =	1.275 k 12.808 k 7.421 k <u>17%</u>	Bolt and bearing capacities are accounting for double shear. (ASCE 8-02, Eq. 5.3.4-1)

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, h_{sx} = 36.30 in Allowable Story Drift for All Other Structures, $\Delta = \{$ $0.020h_{sx}$ 0.726 in Max Drift, $\Delta_{MAX} =$ 0.034 in

N/A

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_{b} = 120 \text{ in}$$

$$J = 0.432$$

$$331.976$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_{L} = \phi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)}}]$$

Weak Axis:

3.4.14

$$L_{b} = 120$$

$$J = 0.432$$

$$211.117$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_{L} = \phi b[Bc-1.6Dc*\sqrt{((LbSc)/(Cb*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 28.6$$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

 $\phi F_L = 27.4 \text{ ksi}$

3.4.16

b/t = 37.0588

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

Not Used

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 37.0588

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr-mDbr*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

h/t = 32.195

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 23.1 \text{ ksi}$$

$$\begin{array}{cccc} \phi F_L W \, k = & 23.1 \, \, \text{ksi} \\ y = & 446476 \, \, \text{mm}^4 \\ & 1.073 \, \, \text{in}^4 \\ x = & 45.5 \, \, \text{mm} \\ \text{Sy} = & 0.599 \, \, \text{in}^3 \\ M_{\text{max}} W \, k = & 1.152 \, \, \text{k-ft} \end{array}$$

Compression

3.4.9

$$\phi F_L = \phi c [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

$$b/t = 37.0588$$

$$S1 = 12.21$$

$$S2 = 32.70$$

$$\varphi F_L = (\varphi ck2^* \sqrt{(BpE)})/(1.6b/t)$$

$$\phi F_L = 21.9 \text{ ksi}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87

$$SI = 0.0$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

41.32 kips $P_{max} =$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis:

3.4.14 $L_b =$ 88.9 in

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(lyJ)/2))]$$

 $φF_L = 29.4 \text{ ksi}$

3.4.16

$$b/t = 16.2$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

31.6 ksi

Weak Axis:

3.4.14

$$L_b = 88.9$$
 $J = 1.08$
 161.829

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 29.2$$

$$Bp - \frac{\theta_y}{\theta_z} Fcy$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

 $\phi F_L =$

3.4.16.1 Used Rb/t = 18.1
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

 $\varphi F_L = \varphi b[Bt-Dt^*\sqrt{(Rb/t)}]$

3.4.16.1 N/A for Weak Direction

Compression

3.4.9

b/t =16.2 S1 =

12.21 (See 3.4.16 above for formula) 32.70 (See 3.4.16 above for formula)

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

31.6 ksi $\phi F_L =$

b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L {=} \; \phi y F c y$ $\phi F_L =$ 33.3 ksi

3.4.10

Rb/t =18.1 S1 =S1 = 6.87 S2 = 131.3 $\varphi F_L = \varphi c[Bt-Dt^*\sqrt{(Rb/t)}]$ $\phi F_L =$ 31.09 ksi $\phi F_L =$ 31.09 ksi $A = 1215.13 \text{ mm}^2$ 1.88 in²

58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 24.8 \text{ in} \\ \mathsf{J} = & 0.942 \\ & 38.7028 \\ \\ \mathit{S1} = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ \\ \mathit{S2} = & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = & \mathsf{\phib}[\mathsf{Bc-1.6Dc^*}\sqrt{(\mathsf{LbSc})/(\mathsf{Cb^*}\sqrt{(\mathsf{lyJ})/2}))}] \end{array}$$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L}_{b} &= 24.8 \\ \mathsf{J} &= 0.942 \\ 38.7028 \\ S1 &= \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2} \\ S1 &= 0.51461 \\ S2 &= \left(\frac{C_{c}}{1.6}\right)^{2} \\ S2 &= 1701.56 \\ \phi \mathsf{F}_{\mathsf{L}} &= \phi b [\mathsf{Bc-1.6Dc*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb*} \sqrt{(\mathsf{lyJ})/2}))}] \\ \phi \mathsf{F}_{\mathsf{L}} &= 31.4 \end{split}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

 $\phi F_L = 31.4 \text{ ksi}$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$k = 279836 \text{ mm}^4$$

0.672 in⁴

 $0.621 in^{3}$

1.460 k-ft

27.5 mm

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.2 \text{ ksi}$$

$$\phi F_L Wk = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}Wk = 1.460 \text{ k-ft}$$

y =

Sx =

 $M_{max}St =$

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$
3.4.9
$$b/t = 24.5$$

$$S1 = 12.21 \text{ (See 3.4.16 above for formula)}$$

$$S2 = 32.70 \text{ (See 3.4.16 above for formula)}$$

$$\varphi F_L = \varphi c[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = 12.21$$

$$S2 = 32.70$$

$$\varphi F_L = \varphi c[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$
3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 28.03 \text{ ksi}$
 $\phi F_L = 663.99 \text{ mm}^2$
1.03 in²
 $\phi F_L = 28.85 \text{ kips}$

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

 $Strut = \underline{55x55}$

Strong Axis: 3.4.14	Weak Axis: 3.4.14
$L_b = 86.60 \text{ in}$	$L_{b} = 86.6$
J = 0.942 135.148	J = 0.942 135.148
$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$	$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$
S1 = 0.51461	S1 = 0.51461
$S2 = \left(\frac{C_c}{1.6}\right)^2$	$S2 = \left(\frac{C_c}{1.6}\right)^2$
S2 = 1701.56	S2 = 1701.56
$\phi F_L = \phi b[Bc-1.6Dc*\sqrt{((LbSc)/(Cb*\sqrt{(lyJ)/2))}}]$	$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$
$\varphi F_L = 29.6 \text{ ksi}$	$\varphi F_L = 29.6$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 <u>Not Used</u>

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$y = 27.5 \text{ mm}$$

$$Sx = 0.621 \text{ in}^3$$

$$M_{max} St = 1.460 \text{ k-ft}$$

Compression

3.4.7

$$\begin{array}{ll} \lambda = & 2.00335 \\ r = & 0.81 \text{ in} \\ S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ \phi cc = & 0.86047 \\ \phi F_L = (\phi cc Fcy)/(\lambda^2) \\ \phi F_L = & 7.50396 \text{ ksi} \end{array}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{cccc} \phi F_L W k = & 28.2 \text{ ksi} \\ y = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ \text{Sy} = & 0.621 \text{ in}^3 \\ M_{\text{max}} W k = & 1.460 \text{ k-ft} \end{array}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$\phi F_L = \phi c [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 48.30 \text{ in}$$
 $J = 0.942$
 75.3767

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

S2 = 1701.56

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)}}]$$

30.6 ksi $\phi F_L =$

Weak Axis:

3.4.14

$$L_b = 48.3$$
 $J = 0.942$
 75.3767

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

 $\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

$$\phi F_{L} = 30.6$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1N/A for Weak Direction

3.4.18 h/t =24.5 S1 = mDbrS1 = 36.9 0.65 m = $C_0 =$ 27.5 Cc = 27.5 k_1Bbr mDbrS2 = 77.3 $\phi F_L = 1.3 \phi y F c y$ 43.2 ksi $\phi F_L =$ $\phi F_1 St =$ 28.2 ksi $lx = 279836 \text{ mm}^4$ 0.672 in^4

27.5 mm

0.621 in³

1.460 k-ft

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$\phi F_L W k = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}W k = 1.460 \text{ k-ft}$$

Compression

y =

Sx =

 $M_{max}St =$

3.4.7 $\lambda = 1.11734$ r = 0.81 in $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$ $S1^* = 0.33515$ $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ $S2^* = 1.23671$ $\varphi cc = 0.76536$ $\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$ $\varphi F_L = 18.9268$ ksi

$$S2^* = 1.23671$$
 $\phi cc = 0.76536$
 $\phi F_L = \phi cc(Bc-Dc^*\lambda)$
 $\phi F_L = 18.9268 \text{ ksi}$

3.4.9

$$b/t = 24.5$$
 $S1 = 12.21 \text{ (See 3.4.16 above for formula)}$
 $S2 = 32.70 \text{ (See 3.4.16 above for formula)}$
 $\phi F_L = \phi c[Bp-1.6Dp^*b/t]$
 $\phi F_L = 28.2 \text{ ksi}$

$$b/t = 24.5$$
 $S1 = 12.21$
 $S2 = 32.70$
 $\phi F_L = \phi c[Bp-1.6Dp^*b/t]$
 $\phi F_L = 28.2 \text{ ksi}$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 18.93 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 19.48 \text{ kips}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-61.093	-61.093	0	0
2	M14	Υ	-61.093	-61.093	0	0
3	M15	Υ	-61.093	-61.093	0	0
4	M16	Υ	-61 093	-61 093	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

		Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	1	M13	V	-43.785	-43.785	0	0
2	2	M14	У	-43.785	-43.785	0	0
3	3	M15	ý	-70.057	-70.057	0	0
4	4	M16	٧	-70.057	-70.057	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	100.707	100.707	0	0
2	M14	V	77.938	77.938	0	0
3	M15	V	43.785	43.785	0	0
4	M16	V	43 785	43 785	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	. B	Fa	В	. Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25				1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Load Combinations (Continued)

_	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
	LATERAL - ASD 1.238D + 0.875E				1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65	Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	315.592	2	1153.738	1	1.058	1	.005	1	Ó	1	Ó	1
2		min	-427.491	3	-1134.493	3	.039	15	0	15	0	1	0	1
3	N7	max	.034	1	1266.094	1	261	15	0	15	0	1	0	1
4		min	081	2	-313.202	3	-7.678	1	016	1	0	1	0	1
5	N15	max	.023	9	3722.59	1	0	9	0	9	0	1	0	1
6		min	-1.116	2	-1077.485	3	0	14	0	14	0	1	0	1
7	N16	max	1255.822	2	3862.137	1	0	3	0	3	0	1	0	1
8		min	-1349.304	3	-3723.476	3	0	11	0	11	0	1	0	1
9	N23	max	.034	1	1266.094	1	7.678	1	.016	1	0	1	0	1
10		min	081	2	-313.202	3	.261	15	0	15	0	1	0	1
11	N24	max	315.592	2	1153.738	1	039	15	0	15	0	1	0	1
12		min	-427.491	3	-1134.493	3	-1.058	1	005	1	0	1	0	1
13	Totals:	max	1885.727	2	12424.391	1	0	9	·					
14		min	-2204.848	3	-7696.351	3	0	14						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	84.121	1	522.513	_1_	-4.45	15	0	3	.2	1	0	1
2			min	2.758	15	-584.638	3	-136.28	1	014	1	.007	15	0	3
3		2	max	84.121	1	365.971	1	-3.423	15	0	3	.066	1	.553	3
4			min	2.758	15	-411.355	3	-104.764	1	014	1	.002	15	494	1
5		3	max	84.121	1	209.43	1	-2.395	15	0	3	0	3	.914	3
6			min	2.758	15	-238.071	3	-73.247	1	014	1	033	1	813	1
7		4	max	84.121	1	52.888	1	-1.368	15	0	3	003	12	1.082	3
8			min	2.758	15	-64.788	3	-41.73	1	014	1	097	1	959	1
9		5	max	84.121	1	108.495	3	34	15	0	3	004	12	1.058	3
10			min	2.758	15	-103.654	1	-10.214	1	014	1	126	1	931	1
11		6	max	84.121	1	281.779	3	21.303	1	0	3	004	15	.841	3
12			min	2.758	15	-260.195	1	.304	12	014	1	119	1	729	1
13		7	max	84.121	1	455.062	3	52.82	1	0	3	003	15	.432	3
14			min	2.758	15	-416.737	1	1.331	12	014	1	078	1	353	1
15		8	max	84.121	1	628.346	3	84.336	1	0	3	0	10	.197	1
16			min	2.758	15	-573.278	1	2.358	12	014	1	002	1	17	3
17		9	max	84.121	1	801.629	3	115.853	1	0	3	.109	1	.921	1
18			min	2.758	15	-729.82	1	3.386	12	014	1	.002	12	964	3
19		10	max	84.121	1	886.362	1	-4.413	12	.014	1	.255	1	1.819	1
20			min	2.758	15	-974.912	3	-147.369	1	0	3	.006	12	-1.951	3
21		11	max	84.121	1	729.82	1	-3.386	12	.014	1	.109	1	.921	1
22			min	2.758	15	-801.629	3	-115.853	1	0	3	.002	12	964	3
23		12	max	84.121	1	573.278	1	-2.358	12	.014	1	0	10	.197	1
24			min	2.758	15	-628.346	3	-84.336	1	0	3	002	1	17	3
25		13	max	84.121	1	416.737	1	-1.331	12	.014	1	003	15	.432	3
26			min	2.758	15	-455.062	3	-52.82	1	0	3	078	1	353	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]						Torque[k-ft]					
27		14	max	84.121	1	260.195	_1_	304	12	.014	_1_	004	15	.841	3
28			min	2.758	15	-281.779	3	-21.303	1	0	3	119	1	729	1
29		15	max	84.121	1	103.654	_1_	10.214	1	.014	_1_	004	12	1.058	3
30			min	2.758	15	-108.495	3	.34	15	0	3	126	1	931	1
31		16	max	84.121	1	64.788	3	41.73	1	.014	1_	003	12	1.082	3
32			min	2.758	15	-52.888	1_	1.368	15	0	3	097	1	959	1
33		17	max	84.121	1	238.071	3	73.247	1	.014	1	0	3	.914	3
34			min	2.758	15	-209.43	1	2.395	15	0	3	033	1	813	1
35		18	max	84.121	1	411.355	3	104.764	1	.014	1	.066	1	.553	3
36			min	2.758	15	-365.971	1	3.423	15	0	3	.002	15	494	1
37		19	max	84.121	1	584.638	3	136.28	1	.014	1	.2	1	0	1
38			min	2.758	15	-522.513	1	4.45	15	0	3	.007	15	0	3
39	M14	1	max	39.22	1	553.077	1	-4.588	15	.007	3	.228	1	0	1
40		i i	min	1.288	15	-461.42	3	-140.496	1	012	1	.007	15	0	3
41		2	max	39.22	1	396.535	1	-3.56	15	.007	3	.089	1	.439	3
42			min	1.288	15	-328.615	3	-108.98	1	012	1	.003	15	528	1
43		3		39.22	1	239.993	<u> </u>	-2.532	15	.007	3	0	3	.73	3
44		3	max	1.288		-195.81		-77.463	1		1	014	1	881	1
		1	min		15		3			012			_		
45		4	max	39.22	1	83.452	1_	-1.505	15	.007	3	002	12	.874	3
46		_	min	1.288	15	-63.005	3	-45.947	1_	012	1_	083	1	<u>-1.061</u>	1
47		5	max	39.22	1	69.8	3	477	15	.007	3	004	12	.87	3
48			min	1.288	15	-73.09	_1_	-14.43	1	012	_1_	116	1	-1.067	1
49		6	max	39.22	1	202.605	3	17.087	1	.007	3	004	15	.719	3
50			min	1.288	15	-229.631	1_	.171	12	012	1	115	1	898	1
51		7	max	39.22	1	335.411	3	48.603	1	.007	3	003	15	.42	3
52			min	1.288	15	-386.173	1_	1.198	12	012	1_	078	1	556	1
53		8	max	39.22	1	468.216	3	80.12	1	.007	3	0	10	0	15
54			min	1.288	15	-542.715	1_	2.226	12	012	1	007	1	047	2
55		9	max	39.22	1	601.021	3	111.637	1	.007	3	.1	1	.65	1
56			min	1.288	15	-699.256	1	3.253	12	012	1	.002	12	62	3
57		10	max	39.22	1	855.798	1	-4.28	12	.012	1	.241	1	1.514	1
58			min	1.288	15	-733.826	3	-143.153	1	008	11	.006	12	-1.362	3
59		11	max	39.22	1	699.256	1	-3.253	12	.012	1	.1	1	.65	1
60			min	1.288	15	-601.021	3	-111.637	1	007	3	.002	12	62	3
61		12	max	39.22	1	542.715	1	-2.226	12	.012	1	0	10	0	15
62		12	min	1.288	15	-468.216	3	-80.12	1	007	3	007	1	047	2
63		13	max	39.22	1	386.173	1	-1.198	12	.012	1	003	15	.42	3
64		10	min	1.288	15	-335.411	3	-48.603	1	007	3	078	1	556	1
65		14	max	39.22	1	229.631	1	171	12	.012	1	004	15	.719	3
66		17	min	1.288	15	-202.605	3	-17.087	1	007	3	115	1	898	1
67		15	max	39.22	1	73.09	1	14.43	1	.012	1	004	12	030 .87	3
68		13	min	1.288	15	-69.8	3	.477	15	007	3	116	1	-1.067	1
		16		39.22	1	63.005	3	45.947	1	.012	<u> </u>	002	12	.874	3
69 70		10	max	1.288	15	-83.452	<u> </u>	1.505	15	007	3		1	-1.061	1
		17	min									083			_
71		17	max	39.22	1	195.81	3	77.463	1	.012	1	0	3	.73	3
72		40	min	1.288	15	-239.993	1_	2.532	15	007	3	014	1	881	1
73		18	max	39.22	1	328.615	3	108.98	1	.012	1	.089	1	.439	3
74			min	1.288	15	-396.535	1_	3.56	15	007	3	.003	15	<u>528</u>	1
75		19	max	39.22	1	461.42	3	140.496	11	.012	1_	.228	1	0	1
<u>76</u>			min	1.288	15	-553.077	1_	4.588	15	007	3	.007	15	0	3
77	<u>M15</u>	1	max	-1.353	15	631.89	1_	-4.587	15	.012	1	.228	1	0	2
78			min	<u>-41.16</u>	1	-256.718	3	-140.48	1	006	3	.007	15	0	3
79		2	max	-1.353	15	451.995	_1_	-3.559	15	.012	1	.089	1	.245	3
80			min	-41.16	1	-184.629	3	-108.963	1	006	3	.003	15	602	1
81		3	max	-1.353	15	272.101	1	-2.532	15	.012	1_	0	3	.41	3
82			min	-41.16	1	-112.54	3	-77.446	1	006	3	014	1	-1.004	1
83		4	max	-1.353	15	92.206	1_	-1.504	15	.012	1_	002	12	.495	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC			z Shear[lb]							LC
84			min	<u>-41.16</u>	1	-40.451	3	-45.93	1	006	3	083	1	-1.207	1
85		5	max	-1.353	15	31.637	3	477	15	.012	1	004	12	.5	3
86			min	-41.16	1	-87.688	1_	-14.413	1	006	3	116	1	-1.209	1
87		6	max	-1.353	15	103.726	3	17.103	1	.012	1	004	15	.425	3
88			min	-41.16	1	-267.583	1	.2	12	006	3	115	1	-1.012	1
89		7	max	-1.353	15	175.815	3	48.62	1	.012	1	003	15	.27	3
90			min	-41.16	1	-447.477	1	1.228	12	006	3	078	1	615	1
91		8	max	-1.353	15	247.904	3	80.137	1	.012	1	0	10	.034	3
92			min	-41.16	1	-627.372	1	2.255	12	006	3	007	1	018	1
93		9	max	-1.353	15	319.992	3	111.653	1	.012	1	.1	1	.779	1
94			min	-41.16	1	-807.266	1	3.283	12	006	3	.002	12	281	3
95		10	max	-1.353	15	987.161	1	-4.31	12	.006	3	.241	1	1.776	1
96			min	-41.16	1	-392.081	3	-143.17	1	012	1	.006	12	677	3
97		11	max	-1.353	15	807.266	1	-3.283	12	.006	3	.1	1	.779	1
98			min	-41.16	1	-319.992	3	-111.653	1	012	1	.002	12	281	3
99		12	max	-1.353	15	627.372	1	-2.255	12	.006	3	0	10	.034	3
100		'-	min	-41.16	1	-247.904	3	-80.137	1	012	1	007	1	018	1
101		13	max	-1.353	15	447.477	1	-1.228	12	.006	3	003	15	.27	3
102		13	min	-41.16	1	-175.815	3	-48.62	1	012	1	078	1	615	1
103		14	max	-1.353	15	267.583	<u> </u>	2	12	.006	3	004	15	.425	3
104		14	min	-41.16	1	-103.726	3	-17.103	1	012	1	115	1	-1.012	1
105		15	max	-1.353	15	87.688	<u> </u>	14.413	1	.006	3	004	12	.5	3
106		13	min	-41.16	1	-31.637	3	.477	15	012	1	116	1	-1.209	1
107		16		-1.353	15	40.451	3	45.93	1	.006	3	002	12	.495	3
		10	max		1		1		15		1		1		1
108		17	min	<u>-41.16</u>		-92.206	•	1.504		012		083	3	-1.207	
109		17	max	-1.353	15	112.54	3	77.446	1	.006	3	0		.41	3
110		40	min	<u>-41.16</u>	1_	-272.101	1_	2.532	15	012	1	014	1	-1.004	1
111		18	max	-1.353	15	184.629	3	108.963	1_	.006	3	.089	1	.245	3
112		40	min	<u>-41.16</u>	1	-451.995	1_	3.559	15	012	1	.003	15	602	1
113		19	max	-1.353	15	256.718	3	140.48	11	.006	3	.228	1	0	2
114	N440		min	<u>-41.16</u>	1_	-631.89	1_	4.587	15	012	1	.007	15	0	3
115	M16	1	max	-2.915	15	601.687	1_	-4.455	15	.013	1	.201	1	0	1
116			min	-88.801	1_	-239.59	3	-136.462	1_	009	3	.007	15	0	3
117		2	max	-2.915	15	421.793	1_	-3.427	15	.013	1	.067	1	.226	3
118			min	-88.801	1	-167.501	3	-104.945	1_	009	3	.002	15	569	1
119		3	max	-2.915	15	241.898	1_	-2.4	15	.013	1	0	12	.372	3
120			min	-88.801	1	-95.412	3	-73.429	1_	009	3	032	1	937	1
121		4	max	-2.915	15	62.004	1_	-1.372	15	.013	1	003	12	.438	3
122		_	min	-88.801	1	-23.323	3	-41.912	1_	009	3	096	1	-1.106	1
123		5	max	<u>-2.915</u>	15	48.765	3	345	15	.013	1	004	12	.424	3
124			min		1	-117.891	_1_	-10.395	1_	009	3	125	1	-1.075	1
125		6	max	-2.915	15	120.854	3	21.121	1	.013	1	004	15	.33	3
126			min	-88.801	1	-297.785	_1_	.402	12	009	3	119	1_	844	1
127		7	max	-2.915	15	192.943	3	52.638	1	.013	1	003	15	.155	3
128			min	-88.801	1	-477.68	1_	1.43	12	009	3	078	1	413	1
129		8	max	-2.915	15	265.031	3	84.154	1	.013	1	0	10	.217	1
130			min	-88.801	1	-657.574	1_	2.457	12	009	3	002	1	099	3
131		9	max	-2.915	15	337.12	3	115.671	1	.013	1	.109	1	1.048	1
132			min	-88.801	1	-837.469	1_	3.484	12	009	3	.002	12	433	3
133		10	max	-2.915	15	1017.363	_1_	-4.512	12	.013	1	.255	1	2.078	1
134			min	-88.801	1	-409.209	3	-147.188	1	009	3	.007	12	848	3
135		11	max	-2.915	15	837.469	1	-3.484	12	.009	3	.109	1	1.048	1
136			min	-88.801	1	-337.12	3	-115.671	1	013	1	.002	12	433	3
137		12	max	-2.915	15	657.574	1	-2.457	12	.009	3	0	10	.217	1
138			min	-88.801	1	-265.031	3	-84.154	1	013	1	002	1	099	3
139		13	max	-2.915	15	477.68	1	-1.43	12	.009	3	003	15	.155	3
140			min	-88.801	1	-192.943	3	-52.638	1	013	1	078	1	413	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]	LC	z Shear[lb]			LC			z-z Mome	LC
141		14	max	-2.915	15	297.785	1	402	12	.009	3	004	<u>15</u>	.33	3
142			min	-88.801	1_	-120.854	3	-21.121	1	013	1	119	1_	844	1
143		15	max	-2.915	15	117.891	1	10.395	1_	.009	3	004	12	.424	3
144			min	-88.801	1	-48.765	3	.345	15	013	1	125	1	-1.075	1
145		16	max	-2.915	15	23.323	3	41.912	1	.009	3	003	12	.438	3
146			min	-88.801	1	-62.004	1	1.372	15	013	1	096	1	-1.106	1
147		17	max	-2.915	15	95.412	3	73.429	1	.009	3	0	12	.372	3
148			min	-88.801	1	-241.898	1	2.4	15	013	1	032	1	937	1
149		18	max	-2.915	15	167.501	3	104.945	1	.009	3	.067	1	.226	3
150			min	-88.801	1	-421.793	1	3.427	15	013	1	.002	15	569	1
151		19	max	-2.915	15	239.59	3	136.462	1	.009	3	.201	1	0	1
152			min	-88.801	1	-601.687	1	4.455	15	013	1	.007	15	0	3
153	M2	1	max	1136.445	1	2.28	4	1.197	1	0	3	0	3	0	1
154			min	-1033.645	3	.537	15	.039	15	0	1	0	1	0	1
155		2	max	1136.774	1	2.265	4	1.197	1	0	3	0	1	0	15
156			min	-1033.399	3	.534	15	.039	15	0	1	0	15	0	4
157		3	max		1	2.249	4	1.197	1	0	3	0	1	0	15
158			min	-1033.153	3	.53	15	.039	15	0	1	0	15	001	4
159		4		1137.431	1	2.234	4	1.197	1	0	3	0	1	0	15
160			min	-1032.906	3	.526	15	.039	15	0	1	0	15	002	4
161		5		1137.759	1	2.219	4	1.197	1	0	3	.001	1	0	15
162			min	-1032.66	3	.523	15	.039	15	0	1	0	15	002	4
163		6		1138.087	1	2.204	4	1.197	1	0	3	.001	1	0	15
164			min	-1032.414	3	.519	15	.039	15	0	1	0	15	002	4
165		7		1138.416	1	2.188	4	1.197	1	0	3	.002	1	0	15
166			min	-1032.168	3	.516	15	.039	15	0	1	0	15	003	4
167		8	max		1	2.173	4	1.197	1	0	3	.002	1	0	15
168		0	min	-1031.921	3	.512	15	.039	15	0	1	0	15	003	4
169		9		1139.073	1	2.158	4	1.197	1	0	3	.002	1	003 0	15
170		9	min	-1031.675	3	.508	15	.039	15	0	1	0	15	004	4
171		10	max		1	2.143	4	1.197	1	0	3	.002	1 <u>15</u>	004 001	15
172		10	min	-1031.429	3	.505	15	.039	15	0	1	0	15	004	4
173		11		1139.73	1	2.127	4	1.197	1		3	.003	1	004	15
174			max	-1031.182		.501	15	.039	15	0	1	.003	15	005	
		12	min		3	2.112	4								4
175		12		1140.058 -1030.936	1		15	1.197	1	0	3	.003	1_	001	15
176		40	min		3	.498 2.097		.039	1 <u>5</u>	0		0	<u>15</u>	005 001	4
177 178		13		1140.387	3	.494	4 15	1.197 .039	15	0	1	.003	<u>1</u> 15		15
		14	min	-1030.69							_		1 <u>15</u>	006	_
179		14		1140.715 -1030.443	1	2.082	4	1.197	1	0	3	.003		001	15
180		4.5	min		3	.491	15	.039	15	0	1	0	15	006	4
181		15		1141.043	1	2.066	4	1.197	1	0	3	.004	1_	002	15
182		40	min	-1030.197	3	.487	15	.039	15	0	1	0	<u>15</u>	007	4
183		16		1141.372	1	2.051	4	1.197	1	0	3	.004	1_	002	15
184		47	min		3	.483	15	.039	15	0	1	0	15	007	4
185		17	max		1	2.036	4	1.197	1	0	3	.004	1_	002	15
186		40	min	-1029.704	3	.48	15	.039	15	0	1	0	15	008	4
187		18		1142.029	1	2.021	4	1.197	1_	0	3	.004	1_	002	15
188		4.0	min	-1029.458	3	.476	15	.039	15	0	1	0	15	008	4
189		19		1142.357	1	2.005	4	1.197	1	0	3	.005	1_	002	15
190	1.40		min	-1029.212	3	.473	15	.039	15	0	1	0	15	009	4
191	M3	1		293.075	2	8.078	4	.014	1	0	3	0	1_	.009	4
192			min	-405.041	3	1.899	15	0	15	0	1	0	15	.002	15
193		2	max		2	7.305	4	.014	1_	0	3	0	1_	.005	4
194			min		3	1.718	15	0	15	0	1	0	15	.001	15
195		3	max		2	6.533	4	.014	1	0	3	0	1_	.003	2
196			min		3	1.536	15	0	15	0	1	0	15	0	12
197		4	max	292.564	2	5.76	4	.014	_ 1	0	3	0	_1_	0	2

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	v Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC :	z-z Mome	. LC
198			min	-405.424	3	1.355	15	0	15	0	1	0	15	001	3
199		5	max		2	4.988	4	.014	1	0	3	0	1	0	15
200				-405.552	3	1.173	15	0	15	0	1	0	15	002	3
201		6	max	292.223	2	4.215	4	.014	1	0	3	0	1	001	15
202			min	-405.68	3	.992	15	0	15	0	1	0	15	004	4
203		7	max	292.053	2	3.443	4	.014	1	0	3	0	1	001	15
204			min	-405.807	3	.81	15	0	15	0	1	0	15	006	4
205		8	max		2	2.671	4	.014	1	0	3	0	1	002	15
206			min	-405.935	3	.628	15	0	15	0	1	0	15	007	4
207		9	max	291.712	2	1.898	4	.014	1	0	3	0	1	002	15
208			min	-406.063	3	.447	15	0	15	0	1	Ö	15	008	4
209		10			2	1.126	4	.014	1	0	3	0	1	002	15
210				-406.191	3	.265	15	0	15	0	1	0	15	009	4
211		11	max	291.372	2	.404	2	.014	1	0	3	0	1	002	15
212			min	-406.318	3	.027	12	0	15	0	1	0	15	009	4
213		12	max		2	098	15	.014	1	0	3	0	1	002	15
214			min		3	423	3	0	15	0	1	0	15	009	4
215		13	max		2	279	15	.014	1	0	3	0	1	002	15
216			min	-406.574	3	-1.192	4	0	15	0	1	0	15	009	4
217		14	max		2	461	15	.014	1	0	3	0	1	002	15
218			min	-406.702	3	-1.964	4	0	15	0	1	0	15	008	4
219		15	max		2	643	15	.014	1	0	3	0	1	002	15
220		-10		-406.829	3	-2.736	4	0	15	0	1	0	15	007	4
221		16	max	290.52	2	824	15	.014	1	0	3	0	1	001	15
222		10	min	-406.957	3	-3.509	4	0	15	0	1	0	15	006	4
223		17	max	290.35	2	-1.006	15	.014	1	0	3	0	1	001	15
224				-407.085	3	-4.281	4	0	15	0	1	0	15	004	4
225		18		290.179	2	-1.187	15	.014	1	0	3	0	1	<u>.00-</u> _	15
226		10	min	-407.213	3	-5.054	4	0	15	0	1	0	15	002	4
227		19	max	290.009	2	-1.369	15	.014	1	0	3	0	1	0	1
228		10	min	-407.341	3	-5.826	4	0	15	0	1	0	15	0	1
229	M4	1		1263.028	1	0.020	1	261	15	0	1	0	1	0	1
230	IVIT			-315.502	3	0	1	-7.992	1	0	1	0	10	0	1
231		2		1263.198	1	0	1	261	15	0	1	0	12	0	1
232				-315.374	3	0	1	-7.992	1	0	1	0	1	0	1
233		3		1263.369	1	0	1	261	15	0	1	0	15	0	1
234				-315.246	3	0	1	-7.992	1	0	1	002	1	0	1
235		4		1263.539	1	0	1	261	15	0	1	0	15	0	1
236				-315.118	3	0	1	-7.992	1	0	1	003	1	0	1
237		5		1263.709	1	0	1	261	15	0	1	0	15	0	1
238				-314.991	3	0	1	-7.992	1	0	1	004	1	0	1
239		6		1263.88	1	0	1	261	15	0	1	0	15	0	1
240				-314.863	3	0	1	-7.992	1	0	1	004	1	0	1
241		7		1264.05	1	0	1	261	15	0	1	0	15	0	1
242				-314.735	3	0	1	-7.992	1	0	1	005	1	0	1
243		8		1264.22	1	0	1	261	15	0	1	0	15	0	1
244				-314.607	3	0	1	-7.992	1	0	1	006	1	0	1
245		9		1264.391	1	0	1	261	15	0	1	0	15	0	1
246				-314.48	3	0	1	-7.992	1	0	1	007	1	0	1
247		10		1264.561		0	1	261	15	0	1	0	15	0	1
248		10		-314.352	3	0	1	-7.992	1	0	1	008	1	0	1
249		11		1264.731	<u> </u>	0	1	261	15	0	1	0	15	0	1
250				-314.224	3	0	1	-7.992	1	0	1	009	1	0	1
251		12		1264.902	<u> </u>	0	1	261	15	0	1	0	15	0	1
252		12		-314.096	3	0	1	-7.992	1	0	1	01	1	0	1
253		13		1265.072	<u> </u>	0	1	-7.9 <u>92</u> 261	15	0	1	0	15	0	1
254		10		-313.968	3	0	1	-7.992	1	0	1	011	1	0	1
2 0T			111111	010.000	0			1.002		-		.011			

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec	T	Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	LC
255		14		1265.242	_1_	0	1	261	15	0	_1_	0	15	0	1
256			min	-313.841	3	0	1	-7.992	1	0	1_	012	1_	0	1
257		15	max	1265.413	<u>1</u>	0	1	261	15	0	<u>1</u>	0	15	0	1
258			min		3	0	1	-7.992	1	0	1	013	1	0	1
259		16	max	1265.583	1	0	1	261	15	0	1	0	15	0	1
260			min	-313.585	3	0	1	-7.992	1	0	1	014	1	0	1
261		17	max	1265.753	1	0	1	261	15	0	1	0	15	0	1
262			min	-313.457	3	0	1	-7.992	1	0	1	015	1	0	1
263		18	max	1265.924	1	0	1	261	15	0	1	0	15	0	1
264			min	-313.33	3	0	1	-7.992	1	0	1	015	1	0	1
265		19		1266.094	1	0	1	261	15	0	1	0	15	0	1
266			min	-313.202	3	0	1	-7.992	1	0	1	016	1	0	1
267	M6	1	max	3658.382	1	2.705	2	0	1	0	1	0	1	0	1
268			min	-3387.573	3	.209	12	0	1	0	1	0	1	0	1
269		2	max	3658.711	1	2.693	2	0	1	0	1	0	1	0	12
270			min	-3387.326	3	.203	12	0	1	0	1	0	1	0	2
271		3	max	3659.039	1	2.681	2	0	1	0	1	0	1	0	12
272			min	-3387.08	3	.197	12	0	1	0	1	0	1	001	2
273		4		3659.367	1	2.669	2	0	1	0	1	0	1	0	12
274			min	-3386.834	3	.191	12	0	1	0	1	0	1	002	2
275		5		3659.696	1	2.657	2	0	1	Ö	1	0	1	0	12
276			min	-3386.587	3	.185	12	0	1	0	1	0	1	002	2
277		6		3660.024	1	2.645	2	0	1	0	1	0	1	0	12
278			min	-3386.341	3	.179	12	0	1	0	1	0	1	003	2
279		7		3660.353	1	2.634	2	0	1	0	1	0	1	0	12
280			min	-3386.095	3	.173	12	0	1	0	1	0	1	004	2
281		8		3660.681	1	2.622	2	0	1	0	1	0	1	0	12
282			min	-3385.848	3	.167	12	0	1	0	1	0	1	004	2
283		9	max		1	2.61	2	0	1	0	1	0	1	0	12
284			min	-3385.602	3	.161	12	0	1	0	1	0	1	005	2
285		10		3661.338	1	2.598	2	0	1	0	1	0	1	0	12
286			min	-3385.356	3	.155	12	0	1	0	1	0	1	005	2
287		11		3661.666	1	2.586	2	0	1	0	1	0	1	0	12
288			min	-3385.109	3	.15	12	0	1	0	1	0	1	006	2
289		12		3661.995	1	2.574	2	0	1	0	1	0	1	0	12
290			min	-3384.863	3	.144	12	0	1	0	1	0	1	006	2
291		13	_	3662.323	1	2.562	2	0	1	0	1	0	1	0	12
292			min	-3384.617	3	.138	12	0	1	0	1	0	1	007	2
293		14		3662.652	1	2.55	2	0	1	0	1	0	1	0	12
294			min		3	.129	3	0	1	0	1	0	1	008	2
295		15		3662.98	1	2.538	2	0	1	0	1	0	1	0	12
296			min		3	.12	3	0	1	0	1	0	1	008	2
297		16	+	3663.309	1	2.527	2	0	1	0	1	0	1	0	12
298			min		3	.111	3	0	1	0	1	0	1	009	2
299		17		3663.637	<u></u>	2.515	2	0	1	0	1	0	1	0	12
300			min		3	.102	3	0	1	0	1	0	1	009	2
301		18	_	3663.965	1	2.503	2	0	1	0	1	0	1	0	12
302		10	min	-3383.385	3	.093	3	0	1	0	1	0	1	01	2
303		19		3664.294		2.491	2	0	1	0	1	0	1	0	12
304		1.5	min		3	.084	3	0	1	0	1	0	1	01	2
305	M7	1		1193.657	2	8.118	4	0	1	0	1	0	1	.01	2
306	IVII		min	-1272.729	3	1.905	15	0	1	0	1	0	1	0	12
307		2		1193.487	2	7.345	4	0	1	0	1	0	1	.008	2
308			min		3	1.723	15	0	1	0	1	0	1	0	3
309		3		1193.317	2	6.573	4	0	1	0	1	0	1	.005	2
310		5	min		3	1.542	15	0	1	0	1	0	1	002	3
311		4	_	1193.146	2	5.8	4	0	1	0	1	0	1	.002	2
		т_	IIIIUX	1.100.170		0.0	т_								

Model Name

Schletter, Inc.

: HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

312		Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
314						3			0	1	0	1	0	1	004	
316			5	max					0			_1_	0	1		
316						_				_						
318			6													
318						_						1	0	1		
329			7					_				1				
320										•		_				$\overline{}$
321			8										_			
322												1		1		
323			9							-		_				
325										1		1	0	1		
325			10	max					_			_				
1266						_										
327			11			2			0	1		1	0	1		
328						3	365		0	1	0	1	0	1	009	
339			12	max		2	.161		0	1	0	_1	0	1_	002	15
330						3	816		0	1	0	1	0	1	009	_
331			13	max		2	274		0		0	1	0	1_	002	15
332	330					3	-1.268	3	0	1	0	1	0	1	009	4
333			14	max	1191.443	2	456	15	0	1	0	_1_	0	1	002	15
334				min	-1274.39	3		4	0	1	0	1	0	1	008	
335	333		15	max		2		15	0	1	0	_1_	0	_1_	002	15
336						3	-2.696		0	1	0	1	0	1	007	
337	335		16	max		2	819	15	0	1	0	1	0	1	001	15
338	336			min	-1274.645	3	-3.469		0	1	0	1	0	1	006	4
18 max 1190.762 2 -1.182 15 0 1 0 1 0 1 0 15	337		17	max	1190.932	2	-1	15	0	1	0	1	0	1	0	15
340	338			min	-1274.773	3	-4.241	4	0	1	0	1	0	1	004	4
341	339		18	max	1190.762	2	-1.182	15	0	1	0	1	0	1	0	15
342	340			min	-1274.901	3	-5.013	4	0	1	0	1	0	1	002	4
343 M8 1 max 3719.524 1 0 1 0 1 0 1 0 1 0 1 0 1 344	341		19	max	1190.591	2	-1.364	15	0	1	0	1	0	1	0	1
344	342			min	-1275.029	3	-5.786	4	0	1	0	1	0	1	0	1
345	343	M8	1	max	3719.524	1	0	1	0	1	0	1	0	1	0	1
346	344			min	-1079.785	3	0	1	0	1	0	1	0	1	0	1
347	345		2	max	3719.694	1	0	1	0	1	0	1	0	1	0	1
348 min -1079.529 3 0 1 <	346			min	-1079.657	3	0	1	0	1	0	1	0	1	0	1
349 4 max 3720.035 1 0 1	347		3	max	3719.864	1	0	1	0	1	0	1	0	1	0	1
350	348			min	-1079.529	3	0	1	0	1	0	1	0	1	0	1
351 5 max 3720.205 1 0 <t< td=""><td>349</td><td></td><td>4</td><td>max</td><td>3720.035</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td></t<>	349		4	max	3720.035	1	0	1	0	1	0	1	0	1	0	1
352	350			min	-1079.401	3	0	1	0	1	0	1	0	1	0	1
353 6 max 3720.376 1 0 <t< td=""><td>351</td><td></td><td>5</td><td>max</td><td>3720.205</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td></t<>	351		5	max	3720.205	1	0	1	0	1	0	1	0	1	0	1
354 min -1079.146 3 0 1 <	352			min	-1079.273	3	0	1	0	1	0	1	0	1	0	1
355 7 max 3720.546 1 0 <t< td=""><td>353</td><td></td><td>6</td><td>max</td><td>3720.376</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td></t<>	353		6	max	3720.376	1	0	1	0	1	0	1	0	1	0	1
356 min -1079.018 3 0 1 <	354			min	-1079.146	3	0	1	0	1	0	1	0	1	0	1
356 min -1079.018 3 0 1 <			7	max		1	0	1	0	1	0	1	0	1	0	1
358 min -1078.89 3 0 1 <t< td=""><td>356</td><td></td><td></td><td>min</td><td>-1079.018</td><td>3</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td></t<>	356			min	-1079.018	3	0	1	0	1	0	1	0	1	0	1
359 9 max 3720.887 1 0 1 0 1 0 1 0 1 0	357		8	max	3720.716	1	0	1	0	1	0	1	0	1	0	1
360 min -1078.762 3 0 1 <	358			min	-1078.89	3	0	1	0	1	0	1	0	1	0	1
361 10 max 3721.057 1 0 1			9	max	3720.887	1	0	1	0	1	0	1	0	1	0	1
361 10 max 3721.057 1 0 1						3		1	0	1		1	0	1		1
362 min -1078.635 3 0 1 0			10					1		1		1		1		1
363 11 max 3721.227 1 0 1						3		1		1		1		1		1
364 min -1078.507 3 0 1 0 1 0 1 0 1 0 1 365 12 max 3721.398 1 0 1 0 1 0 1 0 1 0 1 366 min -1078.379 3 0 1 0 1 0 1 0 1 0 1 367 13 max 3721.568 1 0 1 0 1 0 1 0 1			11			1		1		1		1		1		1
365								1		1		1		1		
366 min -1078.379 3 0 1 0 1 0 1 0 1 0 1 0 1 367 13 max 3721.568 1 0 1 0 1 0 1 0 1 0 1			12			_		1		1		1		1		
367 13 max 3721.568 1 0 1 0 1 0 1 0 1								_								
			13													_

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
369		14	max	3721.738	1	0	1	0	1	0	1	0	1	0	1
370			min	-1078.124	3	0	1	0	1	0	1	0	1	0	1
371		15	max	3721.909	1_	0	1	0	1	0	_1_	0	1	0	1
372			min	-1077.996	3	0	1	0	1	0	1	0	1	0	1
373		16	max	3722.079	1_	0	1	0	1	0	1	0	1	0	1
374			min	-1077.868	3	0	1	0	1	0	1	0	1	0	1
375		17	max	3722.249	_1_	0	1	0	1	0	1_	0	1	0	1
376			min	-1077.74	3	0	1	0	1	0	1	0	1	0	1
377		18	max	3722.42	_1_	0	1	0	1	0	_1_	0	1	0	1
378			min	-1077.613	3	0	1	0	1	0	1	0	1	0	1
379		19	max	3722.59	_1_	0	1	0	1	0	_1_	0	1	0	1
380			min	-1077.485	3	0	1	0	1	0	1_	0	1	0	1
381	M10	1	max	1136.445	_1_	2.28	4	039	15	0	<u>1</u>	0	1	0	1
382			min	-1033.645	3	.537	15	-1.197	1	0	3	0	3	0	1
383		2	max	1136.774	_1_	2.265	4	039	15	0	_1_	0	15	0	15
384			min	-1033.399	3	.534	15	-1.197	1	0	3	0	1	0	4
385		3	max	1137.102	<u>1</u>	2.249	4	039	15	0	_1_	0	15	0	15
386			min	-1033.153	3	.53	15	-1.197	1	0	3	0	1	001	4
387		4	max	1137.431	_1_	2.234	4	039	15	0	_1_	0	15	0	15
388			min	-1032.906	3	.526	15	-1.197	1	0	3	0	1	002	4
389		5	max	1137.759	_1_	2.219	4	039	15	0	_1_	0	15	0	15
390			min	-1032.66	3	.523	15	-1.197	1	0	3	001	1	002	4
391		6	max	1138.087	_1_	2.204	4	039	15	0	<u>1</u>	0	15	0	15
392			min	-1032.414	3	.519	15	-1.197	1	0	3	001	1	002	4
393		7	max	1138.416	_1_	2.188	4	039	15	0	_1_	0	15	0	15
394			min	-1032.168	3	.516	15	-1.197	1	0	3	002	1	003	4
395		8	max	1138.744	_1_	2.173	4	039	15	0	<u>1</u>	0	15	0	15
396			min	-1031.921	3	.512	15	-1.197	1	0	3	002	1	003	4
397		9	max	1139.073	1	2.158	4	039	15	0	1	0	15	0	15
398			min	-1031.675	3	.508	15	-1.197	1	0	3	002	1	004	4
399		10		1139.401	_1_	2.143	4	039	15	0	_1_	0	15	001	15
400			min	-1031.429	3	.505	15	-1.197	1	0	3	002	1	004	4
401		11	max		_1_	2.127	4	039	15	0	_1_	0	15	001	15
402			min	-1031.182	3	.501	15	-1.197	1	0	3	003	1	005	4
403		12		1140.058	_1_	2.112	4	039	15	0	_1_	0	15	001	15
404			min	-1030.936	3	.498	15	-1.197	1	0	3	003	1	005	4
405		13	max	1140.387	_1_	2.097	4	039	15	0	_1_	0	15	001	15
406			min		3_	.494	15	-1.197	1	0	3	003	1	006	4
407		14		1140.715	_1_	2.082	4	039	15	0	_1_	0	15	001	15
408			min	-1030.443	3	.491	15	-1.197	1	0	3	003	1	006	4
409		15		1141.043	_1_	2.066	4	039	15	0	_1_	0	15	002	15
410			min	-1030.197	3	.487	15	-1.197	1	0	3	004	1	007	4
411		16		1141.372	_1_	2.051	4	039	15	0	_1_	0	15	002	15
412			min	-1029.951	3	.483	15	-1.197	1	0	3	004	1	007	4
413		17	max		1_	2.036	4	039	15	0	1_	0	15	002	15
414			min	-1029.704	3	.48	15	-1.197	1_	0	3	004	1	008	4
415		18		1142.029	1	2.021	4	039	15	0	_1_	0	15	002	15
416			min	-1029.458	3	.476	15	-1.197	1	0	3	004	1	008	4
417		19		1142.357	_1_	2.005	4	039	15	0	1	0	15	002	15
418			min	-1029.212	3	.473	15	-1.197	1_	0	3	005	1_	009	4
419	M11	1	max		2	8.078	4	0	15	0	_1_	0	15	.009	4
420			min		3_	1.899	15	014	1_	0	3	0	1	.002	15
421		2	max		2	7.305	4	0	15	0	_1_	0	15	.005	4
422			min	-405.169	3_	1.718	15	014	1	0	3	0	1	.001	15
423		3	max		2	6.533	4	0	15	0	1	0	15	.003	2
424			min	-405.296	3	1.536	15	014	1_	0	3	0	1_	0	12
425		4	max	292.564	2	5.76	4	0	15	0	<u>1</u>	0	15	0	2

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
426			min	-405.424	3	1.355	15	014	1	0	3	0	1	001	3
427		5	max	292.394	2	4.988	4	0	15	0	1	0	15	0	15
428			min	-405.552	3	1.173	15	014	1	0	3	0	1	002	3
429		6	max	292.223	2	4.215	4	0	15	0	1	0	15	001	15
430			min	-405.68	3	.992	15	014	1	0	3	0	1	004	4
431		7	max	292.053	2	3.443	4	0	15	0	1	0	15	001	15
432			min	-405.807	3	.81	15	014	1	0	3	0	1	006	4
433		8	max	291.883	2	2.671	4	0	15	0	1	0	15	002	15
434			min	-405.935	3	.628	15	014	1	0	3	0	1	007	4
435		9	max	291.712	2	1.898	4	0	15	0	1	0	15	002	15
436			min	-406.063	3	.447	15	014	1	0	3	0	1	008	4
437		10	max	291.542	2	1.126	4	0	15	0	1	0	15	002	15
438			min	-406.191	3	.265	15	014	1	0	3	0	1	009	4
439		11	max	291.372	2	.404	2	0	15	0	1	0	15	002	15
440			min	-406.318	3	.027	12	014	1	0	3	0	1	009	4
441		12	max	291.201	2	098	15	0	15	0	1	0	15	002	15
442			min	-406.446	3	423	3	014	1	0	3	0	1	009	4
443		13	max	291.031	2	279	15	0	15	0	1	0	15	002	15
444			min	-406.574	3	-1.192	4	014	1	0	3	0	1	009	4
445		14	max	290.861	2	461	15	0	15	0	1	0	15	002	15
446			min	-406.702	3	-1.964	4	014	1	0	3	0	1	008	4
447		15	max	290.69	2	643	15	0	15	0	1	0	15	002	15
448			min	-406.829	3	-2.736	4	014	1	0	3	0	1	007	4
449		16	max	290.52	2	824	15	0	15	0	1	0	15	001	15
450			min	-406.957	3	-3.509	4	014	1	0	3	0	1	006	4
451		17	max	290.35	2	-1.006	15	0	15	0	1	0	15	001	15
452			min	-407.085	3	-4.281	4	014	1	0	3	0	1	004	4
453		18	max	290.179	2	-1.187	15	0	15	0	1	0	15	0	15
454			min	-407.213	3	-5.054	4	014	1	0	3	0	1	002	4
455		19	max	290.009	2	-1.369	15	0	15	0	1	0	15	0	1
456			min	-407.341	3	-5.826	4	014	1	0	3	0	1	0	1
457	M12	1	max	1263.028	_1_	0	1	7.992	1	0	1	0	10	0	1
458			min	-315.502	3_	0	1	.261	15	0	1	0	1	0	1
459		2		1263.198	_1_	0	1	7.992	1	0	1	0	1	0	1
460			min	-315.374	3	0	1	.261	15	0	1	0	12	0	1
461		3	max		_1_	0	1	7.992	1_	0	1	.002	1_	0	1
462			min	-315.246	3_	0	1	.261	15	0	1	0	15	0	1
463		4	max		_1_	0	1_	7.992	1_	0	1	.003	1_	0	1
464			min	-315.118	3	0	1	.261	15	0	1	0	15	0	1
465		5		1263.709	_1_	0	1	7.992	1	0	1	.004	1	0	1
466				-314.991	3	0	1	.261	15	0	1	0	15		1
467		6	max		_1_	0	1	7.992	1	0	1	.004	1	0	1
468			min	-314.863	3	0	1	.261	15	0	1	0	15	0	1
469		7		1264.05	_1_	0	1	7.992	1	0	1	.005	1	0	1
470		_	min	-314.735	3	0	1	.261	15	0	1	0	15	0	1
471		8		1264.22	1	0	1	7.992	1	0	1	.006	1	0	1
472			min		3_	0	1	.261	15	0	1	0	15	0	1
473		9		1264.391	_1_	0	1	7.992	1_	0	1	.007	1_	0	1
474			min		3	0	1	.261	15	0	1	0	15	0	1
475		10		1264.561	1_	0	1	7.992	1	0	1	.008	1	0	1
476				-314.352	3	0	1	.261	15	0	1	0	15	0	1
477		11		1264.731	_1_	0	1	7.992	1	0	1	.009	1_	0	1
478			min		3	0	1	.261	15	0	1	0	15	0	1
479		12		1264.902	1_	0	1	7.992	1	0	1	.01	1_	0	1
480			min	-314.096	3	0	1	.261	15	0	1	0	15	0	1
481		13		1265.072	1_	0	1	7.992	1	0	1	.011	1_	0	1
482			min	-313.968	3	0	1	.261	15	0	1	0	15	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
483		14	max	1265.242	1	0	1	7.992	1	0	1_	.012	1	0	1
484			min	-313.841	3	0	1	.261	15	0	1	0	15	0	1
485		15	max	1265.413	1	0	1	7.992	1	0	1	.013	1	0	1
486			min	-313.713	3	0	1	.261	15	0	1	0	15	0	1
487		16	max		1	0	1	7.992	1	0	1	.014	1	0	1
488			min	-313.585	3	0	1	.261	15	0	1	0	15	0	1
489		17	max	1265.753	1	0	1	7.992	1	0	1	.015	1	0	1
490			min	-313.457	3	0	1	.261	15	0	1	0	15	0	1
491		18	max	1265.924	1	0	1	7.992	1	0	1	.015	1	0	1
492			min	-313.33	3	0	1	.261	15	0	1	0	15	0	1
493		19	max	1266.094	1	0	1	7.992	1	0	1	.016	1	0	1
494			min	-313.202	3	0	1	.261	15	0	1	0	15	0	1
495	M1	1	max	136.283	1	584.624	3	-2.758	15	0	1	.2	1	0	3
496			min	4.45	15	-521.301	1	-84.042	1	0	3	.007	15	014	1
497		2	max	136.654	1	583.586	3	-2.758	15	0	1	.156	1	.261	1
498			min	4.562	15	-522.685	1	-84.042	1	0	3	.005	15	308	3
499		3	max		3	581.445	1	-2.719	15	0	3	.111	1	.524	1
500			min	-151.327	2	-425.924	3	-83.055	1	0	1	.004	15	603	3
501		4	max	240.205	3	580.061	1	-2.719	15	0	3	.067	1	.218	1
502			min	-150.956	2	-426.962	3	-83.055	1	0	1	.002	15	378	3
503		5	max	240.483	3	578.677	1	-2.719	15	0	3	.024	1	004	15
504			min	-150.585	2	-427.999	3	-83.055	1	0	1	0	15	153	3
505		6	max	240.761	3	577.294	1	-2.719	15	0	3	0	15	.074	3
506			min	-150.214	2	-429.037	3	-83.055	1	0	1	02	1	393	1
507		7	max	241.039	3	575.91	1	-2.719	15	0	3	002	15	.3	3
508		<u> </u>	min	-149.844	2	-430.075	3	-83.055	1	0	1	064	1	697	1
509		8	max		3	574.526	1	-2.719	15	0	3	004	15	.527	3
510			min	-149.473	2	-431.113	3	-83.055	1	0	1	108	1	-1.001	1
511		9	max	249.081	3	39.89	2	-4.008	15	0	9	.064	1	.616	3
512		J	min	-95.106	2	.42	15	-122.297	1	0	3	.002	15	-1.14	1
513		10	max	249.359	3	38.507	2	-4.008	15	0	9	0	15	.6	3
514		10	min	-94.735	2	.002	15	-122.297	1	0	3	0	1	-1.151	1
515		11	max	249.637	3	37.123	2	-4.008	15	0	9	002	15	.585	3
516			min	-94.364	2	-1.715	4	-122.297	1	0	3	065	1	-1.162	1
517		12	max	257.355	3	285.494	3	-2.655	15	0	1	.107	1	.51	3
518		12	min	-59.585	10	-616.589	1	-81.171	1	0	3	.003	15	-1.026	1
519		13	max	257.633	3	284.456	3	-2.655	15	0	1	.064	1	.359	3
520		13	min	-59.276	10	-617.973	1	-81.171	1	0	3	.002	15	7	1
521		14	max	257.911	3	283.419	3	-2.655	15	0	<u> </u>	.002	1	.209	3
522		14	min	-58.967	10	-619.356	1	-81.171	1	0	3	0	15	373	1
523		15	max		3	282.381	3	-2.655	15	0	<u> </u>	0	15	.06	3
524		13	min		10	-620.74	1	-81.171	1	0	3	022	1	046	1
525		16			3	281.343	3	-2.655	15	0	<u> </u>	022	15	.282	1
526		10	max min	-58.349	10	-622.123	1	-2.055 -81.171	1	0	3	065	1	089	3
527		17	max		3	280.305	3	-2.655	15	0	<u>ာ</u> 1	004	15	069 .61	1
528		17	min	-58.04		-623.507	1	-2.055 -81.171	1	0	3	108	1	237	3
		10			10		-						_		
529		18	max		<u>15</u>	604.21	1	-2.915	15	0	3	005	15	.306	1
530		10	min		1_	-238.585	3	-88.878	1	0	1	154	1	117	3
531		19	max		15	602.827	1	-2.915	15	0	3	007	15	.009	3
532	N A C	4	min	-136.46	1	-239.623	3	-88.878	1	0	1	201	1	013	1
533	<u>M5</u>	1	max		1_	1949.772	3	0	1	0	1	0	1	.028	1
534			min	8.827	12	-1765.607	1	0	1	0	1_	0	1	001	3
535		2	max		1	1948.735		0	1	0	1	0	1	.96	1
536		_	min	9.012	12	-1766.99	1	0	1	0	1_	0	1	-1.03	3
537		3	max	770.57	3_	1775.59	1	0	1	0	1	0	1	1.85	1
538			min	-545.106	2	-1365.613	3	0	1	0	1	0	1	-2.018	3
539		4	max	770.848	3	1774.206	1	0	1	0	<u>1</u>	0	1	.914	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
540			min	-544.735	2	-1366.651	3	0	1	0	1	0	1	-1.297	3
541		5	max	771.127	3	1772.823	1	0	1	0	1	0	1	.014	9
542			min	-544.364	2	-1367.688	3	0	1	0	1	0	1	576	3
543		6	max	771.405	3	1771.439	1	0	1	0	1	0	1	.146	3
544			min	-543.993	2	-1368.726	3	0	1	0	1	0	1	957	1
545		7	max	771.683	3	1770.056	1	0	1	0	1	0	1	.869	3
546			min	-543.623	2	-1369.764	3	0	1	0	1	0	1	-1.892	1
547		8	max	771.961	3	1768.672	1	0	1	0	1	0	1	1.592	3
548			min	-543.252	2	-1370.801	3	0	1	0	1	0	1	-2.825	1
549		9	max	785.005	3	132.676	2	0	1	0	1	0	1	1.832	3
550			min	-431.443	2	.418	15	0	1	0	1	0	1	-3.196	1
551		10	max	785.283	3	131.293	2	0	1	0	1	0	1	1.776	3
552			min	-431.072	2	0	15	0	1	0	1	0	1	-3.233	1
553		11	max	785.561	3	129.909	2	0	1	0	1	0	1	1.72	3
554			min	-430.701	2	-1.597	4	0	1	0	1	0	1	-3.269	1
555		12	max	798.7	3	900.704	3	0	1	0	1	0	1	1.51	3
556		12	min	-318.917	2	-1909.161	1	0	1	0	1	0	1	-2.913	1
557		13	max	798.978	3	899.666	3	0	1	0	1	0	1	1.035	3
558		13	min	-318.546	2	-1910.545	1	0	1	0	1	0	1	-1.905	1
559		14		799.256	3	898.629	3	0	1	0	1	0	1	.56	3
560		14	max min	-318.175	2	-1911.928	1	0	1	0	1	0	1	897	1
		15		799.534	3	897.591	3	0	1	0	1	0	1	.172	2
561		15	max			-1913.312	1		1		1		1		
562		10	min	-317.804	2		_	0		0		0		004	13
563		16	max	799.812	3	896.553	3	0	1	0	1	0	1	1.122	1
564		47	min	-317.434	2	-1914.696	1	0	1_	0	1_	0	1	387	3
565		17	max	800.09	3	895.515	3	0	1	0	1	0	1	2.133	1
566			min	-317.063	2	-1916.079	1_	0	1_	0	_1_	0	1	86	3
567		18	max	-9.208	12	2042.708	1	0	1	0	1	0	1	1.103	1
568			min	-294.75	1	-817.573	3	0	1	0	1_	0	1	449	3
569		19	max	-9.023	12	2041.324	1	0	1	0	_1_	0	1	.025	1
570			min	-294.38	1	-818.61	3	0	1	0	1_	0	1	017	3
571	<u>M9</u>	1_	max	136.283	1_	584.624	3	84.042	1	0	3	007	15	0	3
572			min	4.45	15	-521.301	1	2.758	15	0	1_	2	1	014	1
573		2	max	136.654	1_	583.586	3	84.042	1	0	3	005	15	.261	1
574			min	4.562	15	-522.685	1	2.758	15	0	1_	156	1	308	3
575		3	max	239.927	3	581.445	1	83.055	1	0	1_	004	15	.524	1
576			min	-151.327	2	-425.924	3	2.719	15	0	3	111	1	603	3
577		4	max	240.205	3	580.061	1	83.055	1	0	_1_	002	15	.218	1
578			min	-150.956	2	-426.962	3	2.719	15	0	3	067	1	378	3
579		5	max	240.483	3	578.677	1	83.055	1	0	1	0	15	004	15
580			min	-150.585	2	-427.999	3	2.719	15	0	3	024	1	153	3
581		6	max		3	577.294	1	83.055	1	0	1	.02	1	.074	3
582			min	-150.214	2	-429.037	3	2.719	15	0	3	0	15	393	1
583		7	max		3	575.91	1	83.055	1	0	1	.064	1	.3	3
584			min	-149.844	2	-430.075	3	2.719	15	0	3	.002	15	697	1
585		8		241.317	3	574.526	1	83.055	1	0	1	.108	1	.527	3
586					2	-431.113	3	2.719	15	0	3	.004	15	-1.001	1
587		9	max		3	39.89	2	122.297	1	0	3	002	15	.616	3
588			min	-95.106	2	.42	15	4.008	15	0	9	064	1	-1.14	1
589		10	max		3	38.507	2	122.297	1	0	3	0	1	.6	3
590			min	-94.735	2	.002	15	4.008	15	0	9	0	15	-1.151	1
591		11	max		3	37.123	2	122.297	1	0	3	.065	1	.585	3
592			min	-94.364	2	-1.715	4	4.008	15	0	9	.002	15	-1.162	1
593		12	max		3	285.494	3	81.171	1	0	3	003	15	.51	3
594		12	min	-59.585	10	-616.589	1	2.655	15	0	<u> </u>	107	1	-1.026	1
595		13			3	284.456	3	81.171	1		3	002	15	.359	3
		13	max							0					
596			min	-59.276	10	-617.973	1	2.655	15	0	1	064	1	7	1

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
597		14	max	257.911	3	283.419	3	81.171	1	0	3	0	15	.209	3
598			min	-58.967	10	-619.356	1	2.655	15	0	1	021	1	373	1
599		15	max	258.189	3	282.381	3	81.171	1	0	3	.022	1	.06	3
600			min	-58.658	10	-620.74	1	2.655	15	0	1	0	15	046	1
601		16	max	258.467	3	281.343	3	81.171	1	0	3	.065	1	.282	1
602			min	-58.349	10	-622.123	1	2.655	15	0	1	.002	15	089	3
603		17	max	258.745	3	280.305	3	81.171	1	0	3	.108	1	.61	1
604			min	-58.04	10	-623.507	1	2.655	15	0	1	.004	15	237	3
605		18	max	-4.566	15	604.21	1	88.878	1	0	1	.154	1	.306	1
606			min	-136.83	1	-238.585	3	2.915	15	0	3	.005	15	117	3
607		19	max	-4.455	15	602.827	1	88.878	1	0	1	.201	1	.009	3
608			min	-136.46	1	-239.623	3	2.915	15	0	3	.007	15	013	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	0	1	.116	1	.004	3 9.229e-3	1_	NC	1_	NC	1
2			min	0	15	019	3	002	2 -1.452e-3	3	NC	1	NC	1
3		2	max	0	1	.256	3	.032	1 1.06e-2	1	NC	5	NC	2
4			min	0	15	108	1	.001	10 -1.515e-3	3	871.953	3	7874.003	1
5		3	max	0	1	.479	3	.076	1 1.198e-2	1	NC	5	NC	3
6			min	0	15	285	1	.003	15 -1.578e-3	3	482.071	3	3220.415	1
7		4	max	0	1	.613	3	.114	1 1.335e-2	1	NC	5	NC	3
8			min	0	15	383	1	.004	15 -1.641e-3	3	379.46	3	2130.19	1
9		5	max	0	1	.643	3	.134	1 1.473e-2	1	NC	5	NC	3
10			min	0	15	39	1	.004	15 -1.704e-3	3	362.189	3	1813.644	1
11		6	max	0	1	.572	3	.129	1 1.611e-2	1_	NC	5	NC	3
12			min	0	15	306	1	.004	15 -1.767e-3	3	406.291	3	1877.395	1
13		7	max	0	1	.419	3	.102	1 1.748e-2	1	NC	5	NC	3
14			min	0	15	152	1	.003	15 -1.83e-3	3	548.024	3	2390.485	1
15		8	max	0	1	.225	3	.06	1 1.886e-2	1	NC	4	NC	2
16			min	0	15	0	15	0	10 -1.894e-3	3	981.91	3	4129.358	1
17		9	max	0	1	.2	1	.018	1 2.023e-2	1	NC	4	NC	1
18			min	0	15	.005	15	004	10 -1.957e-3	3	2777.735	2	NC	1
19		10	max	0	1	.275	1	.014	3 2.161e-2	1	NC	3	NC	1
20			min	0	1	029	3	008	2 -2.02e-3	3	1514.523	1	NC	1
21		11	max	0	15	.2	1	.018	1 2.023e-2	1	NC	4	NC	1
22			min	0	1	.005	15	004	10 -1.957e-3	3	2777.735	2	NC	1
23		12	max	0	15	.225	3	.06	1 1.886e-2	1	NC	4	NC	2
24			min	0	1	0	15	0	10 -1.894e-3	3	981.91	3	4129.358	1
25		13	max	0	15	.419	3	.102	1 1.748e-2	1	NC	5	NC	3
26			min	0	1	152	1	.003	15 -1.83e-3	3	548.024	3	2390.485	1
27		14	max	0	15	.572	3	.129	1 1.611e-2	1	NC	5	NC	3
28			min	0	1	306	1	.004	15 -1.767e-3	3	406.291	3	1877.395	
29		15	max	0	15	.643	3	.134	1 1.473e-2	1	NC	5	NC	3
30			min	0	1	39	1	.004	15 -1.704e-3	3	362.189	3	1813.644	1
31		16	max	0	15	.613	3	.114	1 1.335e-2	_1_	NC	5	NC	3
32			min	0	1	383	1	.004	15 -1.641e-3	3	379.46	3	2130.19	1
33		17	max	0	15	.479	3	.076	1 1.198e-2	1_	NC	5	NC	3
34			min	0	1	285	1	.003	15 -1.578e-3	3	482.071	3	3220.415	1
35		18	max	0	15	.256	3	.032	1 1.06e-2	1	NC	5	NC	2
36			min	0	1	108	1	.001	10 -1.515e-3	3	871.953	3	7874.003	1
37		19	max	0	15	.116	1	.004	3 9.229e-3	1	NC	1_	NC	1
38			min	0	1	019	3	002	2 -1.452e-3	3	NC	1	NC	1
39	M14	1	max	0	1	.182	3	.004	3 5.761e-3	1	NC	1	NC	1
40			min	0	15	374	1	001	2 -3.284e-3	3	NC	1	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

42 min 0 15 732 1 0 10 -3.998e-3 3 67 43 3 max 0 1 .679 3 .061 1 8.073e-3 1 44 min 0 15 -1.04 1 .002 15 -4.712e-3 3 36	NC 5 0.107 1 NC 15 0.339 1	NC NC	1
43 3 max 0 1 .679 3 .061 1 8.073e-3 1 44 min 0 15 -1.04 1 .002 15 -4.712e-3 3 36	NC 15		1
44 min 0 15 -1.04 1 .002 15 -4.712e-3 3 36		NIO.	
	n 220 1		2
		4020.653	1
45 4 max 0 1 .837 3 .098 1 9.228e-3 1	NC 15		3
	9.961 1	2489.839	1
	16.906 15		3
	7.745 1	2044.845	1
	22.515 15 3.719 1	NC 2068.637	3
	NC 15		3
	50.61 1	2590.875	1
	NC 15		2
	7.299 1	4412.142	1
	NC 15		1
	7.769 1	NC	1
	NC 5	NC	1
	8.782 1	NC	1
	NC 15		1
	7.769 1	NC	1
	NC 15		2
	7.299 1	4412.142	1
	NC 15		3
	0.61 1	2590.875	1
	22.515 15	NC	3
	3.719 1	2068.637	1
67 15 max 0 15 .91 3 .119 1 1.038e-2 1 994	16.906 15	NC	3
	7.745 1	2044.845	1
	NC 15		3
	9.961 1	2489.839	1
	NC 15		2
	0.339 1	4020.653	1
	NC 5	NC	1
	0.107 1	NC	1
	NC 1	NC NC	1
	NC 1	NC NC	1
	NC 1	NC NC	1
	NC 1	NC NC	1
	NC 5	NC NC	1
	7.062 1 NC 15	NC NC	2
	7.273 1	4009.27	1
	NC 15		3
	6.268 1	2484.168	_
	55.911 15		3
	8.347 1	2040.451	1
	33.059 15		3
	6.814 1	2063.81	1
	NC 15		3
	5.941 1	2583.085	1
	NC 15		2
	6.219 1	4389.504	1
	NC 15		1
	33.12 1	NC	1
	NC 5	NC	1
	9.207 1	NC	1
	NC 15	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r.					
98			min	0	15	-1.094	1	003	10 -1.531e-2		333.12	1_	NC	1
99		12	max	0	1	.621	3	.056	1 7.018e-3			15	NC	2
100			min	0	15	-1.242	1	0	10 -1.413e-2		276.219	<u>1</u>	4389.504	1_
101		13	max	0	1	<u>.673</u>	3	.095	1 6.413e-3			15	NC	3
102		4.4	min	0	15	<u>-1.39</u>	1	.003	15 -1.295e-2		235.941	1_	2583.085	1
103		14	max	0	1	.699	3	.118	1 5.807e-3			<u>15</u>	NC OOCO O4	3
104		4.5	min	0	15	<u>-1.48</u>	1	.004	15 -1.177e-2		216.814	1_	2063.81	1
105		15	max	0	1	.684	3	.119	1 5.201e-3			<u>15</u>	NC	3
106		16	min	0	15 1	<u>-1.472</u>		.004	15 -1.059e-2		218.347	1_	2040.451	1
107 108		16	max	0	15	<u>.621</u> -1.348	3	.003	1 4.596e-3		NC 246.268	<u>15</u> 1	NC 2484.168	3
109		17	min max	0	1	<u>-1.346</u> .51	3	.062	1 3.99e-3			15	NC	2
110		17	min	0	15	-1.107	1	.002	15 -8.226e-3		327.273	1	4009.27	1
111		18	max	0	1	.36	3	.023	1 3.384e-3		NC	5	NC	1
112		10	min	0	15	769	1	0	10 -7.045e-3		607.062	1	NC NC	1
113		19	max	0	1	.186	3	.004	3 2.779e-3		NC	1	NC	1
114		10	min	0	15	373	1	001	2 -5.864e-3		NC	1	NC	1
115	M16	1	max	0	15	.112	1	.003	3 4.85e-3		NC	1	NC	1
116	10110		min	0	1	062	3	001	2 -8.605e-3		NC	1	NC	1
117		2	max	0	15	.037	3	.032	1 5.703e-3		NC	5	NC	2
118			min	0	1	159	2	.001	15 -9.83e-3		913.742	1	7918.009	1
119		3	max	0	15	.114	3	.076	1 6.556e-3		NC	5	NC	3
120			min	0	1	36	2	.003	15 -1.105e-2	2 1	509.294	1	3227.777	1
121		4	max	0	15	.155	3	.114	1 7.409e-3		NC	5	NC	3
122			min	0	1	478	1	.004	15 -1.228e-2		407.035	1	2130.975	1
123		5	max	0	15	.154	3	.134	1 8.262e-3	3	NC	5	NC	3
124			min	0	1	49	1	.004	15 -1.35e-2	1	399.146	1	1811.23	1
125		6	max	0	15	.112	3	.13	1 9.115e-3	3	NC	5	NC	3
126			min	0	1	405	2	.004	15 -1.473e-2		471.288	1	1870.901	1
127		7	max	0	15	.039	3	.103	1 9.968e-3		NC	5	NC	3
128			min	0	1	244	2	.003	15 -1.595e-2		713.714	2	2373.44	1
129		8	max	0	15	.01	9	.061	1 1.082e-2		NC	3	NC	2
130			min	0	1	049	3	.002	10 -1.718e-2		1743.695	2	4061.682	1_
131		9	max	0	15	.177	1	.019	1 1.167e-2		NC	4	NC	1_
132		40	min	0	1	127	3	002	10 -1.84e-2		3657.991	3	NC NC	1
133		10	max	0	1	.261	1	.01	3 1.253e-2		NC 4000 040	5	NC	1
134		44	min	0	1	162	3	006	2 -1.963e-2		1603.848	1_	NC NC	1
135		11	max	0	1	.177	1	.019	1 1.167e-2		NC 2057 004	4	NC NC	1
136		12	min	0	15 1	127	3	002	10 -1.84e-2 1 1.082e-2		3657.991	3	NC NC	
137 138		12	max min	0	15	.01 049	9	.061 .002	1 1.082e-2	2 3	NC 1742 605	3	NC 4061.682	1
139		13	max	0	1	.039	3	.103	1 9.968e-3		NC	5	NC	3
140		13	min	0	15	244	2	.003	15 -1.595e-2		713.714	2	2373.44	1
141		14	max	0	1	.112	3	.13	1 9.115e-3		NC	5	NC	3
142		17	min	0	15	405	2	.004	15 -1.473e-2		471.288	1	1870.901	1
143		15	max	0	1	.154	3	.134	1 8.262e-3		NC NC	5	NC	3
144			min	0	15	49	1	.004	15 -1.35e-2		399.146	1	1811.23	1
145		16	max	0	1	.155	3	.114	1 7.409e-3		NC	5	NC	3
146			min	0	15	478	1	.004	15 -1.228e-2		407.035	1	2130.975	1
147		17	max	0	1	.114	3	.076	1 6.556e-3		NC	5	NC	3
148			min	0	15	36	2	.003	15 -1.105e-2		509.294	1	3227.777	1
149		18	max	0	1	.037	3	.032	1 5.703e-3		NC	5	NC	2
150			min	0	15	159	2	.001	15 -9.83e-3		913.742	1	7918.009	1
151		19	max	0	1	.112	1	.003	3 4.85e-3		NC	1	NC	1
152			min	0	15	062	3	001	2 -8.605e-3		NC	1	NC	1
153	M2	1	max	.005	1	.003	2	.006	1 -5.417e-	3 15	NC	1	NC	2
154			min	005	3	006	3	0	15 -1.656e-	4 1	NC	1	7422.268	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r			LC		
155		2	max	.005	1	.002	2	.006	1	-5.02e-6	<u>15</u>	NC	_1_	NC	2
156			min	004	3	005	3	0	15	-1.535e-4	1_	NC	1_	8094.181	1
157		3	max	.005	1	.002	2	.005	1	-4.623e-6	15	NC	_1_	NC	2
158			min	004	3	005	3	0	15	-1.413e-4	1_	NC	1	8894.717	1
159		4	max	.004	1	.001	2	.005	1	-4.225e-6	<u>15</u>	NC	_1_	NC	2
160			min	004	3	005	3	0	15	-1.292e-4	1_	NC	1_	9857.913	1
161		5	max	.004	1	0	2	.004	1	-3.828e-6	15	NC	_1_	NC	1
162			min	004	3	005	3	0	15	-1.17e-4	1_	NC	1_	NC	1
163		6	max	.004	1	0	2	.004	1	-3.431e-6	15	NC	1_	NC	1
164			min	003	3	005	3	0	15	-1.049e-4	1_	NC	1_	NC	1
165		7	max	.003	1	0	2	.003	1	-3.034e-6	<u>15</u>	NC	_1_	NC	1
166			min	003	3	004	3	0	15	-9.27e-5	1_	NC	1_	NC	1
167		8	max	.003	1	00	2	.003	1	-2.637e-6	15	NC	_1_	NC	1
168			min	003	3	004	3	0	15	-8.054e-5	1_	NC	1	NC	1
169		9	max	.003	1	0	2	.002	1	-2.239e-6	<u>15</u>	NC	_1_	NC	1
170			min	003	3	004	3	0	15	-6.839e-5	1_	NC	1	NC	1
171		10	max	.003	1	0	15	.002	1	-1.842e-6	15	NC	_1_	NC	1
172			min	002	3	004	3	0	15	-5.623e-5	1_	NC	1	NC	1
173		11	max	.002	1	0	15	.002	1	-1.445e-6	15	NC	1	NC	1
174			min	002	3	003	3	0	15	-4.408e-5	1_	NC	1	NC	1
175		12	max	.002	1	0	15	.001	1	-1.048e-6	15	NC	_1_	NC	1
176			min	002	3	003	3	0	15	-3.192e-5	1	NC	1	NC	1
177		13	max	.002	1	0	15	0	1	-6.507e-7	15	NC	1_	NC	1
178			min	002	3	003	3	0	15	-1.977e-5	1	NC	1	NC	1
179		14	max	.001	1	0	15	0	1	-2.535e-7	15	NC	1	NC	1
180			min	001	3	002	3	0	15	-7.616e-6	1	NC	1	NC	1
181		15	max	.001	1	0	15	0	1	4.539e-6	1	NC	1	NC	1
182			min	001	3	002	3	0	15	-1.107e-7	3	NC	1	NC	1
183		16	max	0	1	0	15	0	1	1.669e-5	1	NC	1	NC	1
184			min	0	3	002	4	0	15	4.521e-7	12	NC	1	NC	1
185		17	max	0	1	0	15	0	1	2.885e-5	1	NC	1	NC	1
186			min	0	3	001	4	0	15	9.381e-7	15	NC	1	NC	1
187		18	max	0	1	0	15	0	1	4.1e-5	1	NC	1	NC	1
188			min	0	3	0	4	0	15	1.335e-6	15	NC	1	NC	1
189		19	max	0	1	0	1	0	1	5.316e-5	1	NC	1	NC	1
190			min	0	1	0	1	0	1	1.733e-6	15	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1	-5.377e-7	15	NC	1	NC	1
192			min	0	1	0	1	0	1	-1.649e-5	1	NC	1	NC	1
193		2	max	0	3	0	15	0	1	4.116e-6	1	NC	1	NC	1
194			min	0	2	001	4	0	15	1.35e-7	15	NC	1	NC	1
195		3	max	0	3	0	15	0	1	2.472e-5	1	NC	1	NC	1
196			min	0	2	003	4	0	15	8.078e-7	15	NC	1	NC	1
197		4	max	0	3	001	15	0	1	4.533e-5	1	NC	1	NC	1
198			min	0	2	005	4	0	15	1.481e-6	15	NC	1	NC	1
199		5	max	0	3	002	15	.001	1	6.594e-5	1	NC	1	NC	1
200			min	0	2	007	4	0	15	2.153e-6	15	NC	1	NC	1
201		6	max	0	3	002	15	.001	1	8.654e-5	1	NC	1	NC	1
202			min	0	2	009	4	0	15	2.826e-6	15	NC	1	NC	1
203		7	max	.001	3	002	15	.002	1	1.071e-4	1	NC	1	NC	1
204			min	0	2	01	4	0	15	3.499e-6	15	9284.938	4	NC	1
205		8	max	.001	3	003	15	.002	1	1.278e-4	1	NC	1	NC	1
206			min	0	2	011	4	0	15	4.172e-6		8276.647	4	NC	1
207		9	max	.002	3	003	15	.002	1	1.484e-4	1	NC	1	NC	1
208		Ĭ	min	001	2	012	4	0	15	4.844e-6		7674.132	4	NC	1
209		10	max	.002	3	003	15	.003	1	1.69e-4	1	NC	2	NC	1
210		'	min	001	2	013	4	0	15	5.517e-6		7370.326	4	NC	1
211		11	max	.002	3	003	15	.003	1	1.896e-4	1	NC	2	NC	1
			IIIIUA	.002	U	.000	10	.000	1 1	1.0000		INO			1 1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r			LC		LC
212			min	001	2	013	4	0	15	6.19e-6	15		4	NC	1
213		12	max	.002	3	003	15	.003	1	2.102e-4	_1_	NC	2	NC	1
214			min	002	2	013	4	0	15	6.863e-6	15	7520.561	4	NC	1
215		13	max	.002	3	003	15	.004	1_	2.308e-4	_1_	NC	_1_	NC	1
216			min	002	2	012	4	0	15	7.535e-6		8016.767	4	NC	1
217		14	max	.003	3	002	15	.004	1	2.514e-4	_1_	NC	_1_	NC	1
218			min	002	2	011	4	0	15	8.208e-6	15	8920.882	4	NC	1
219		15	max	.003	3	002	15	.004	1	2.72e-4	<u>1</u>	NC	<u>1</u>	NC	1
220			min	002	2	009	4	0	15	8.881e-6	15	NC	1	NC	1
221		16	max	.003	3	002	15	.005	1	2.926e-4	_1_	NC	1_	NC	1
222			min	002	2	008	1	0	15	9.554e-6	15	NC	1	NC	1
223		17	max	.003	3	001	15	.005	1	3.132e-4	_1_	NC	1_	NC	1
224			min	002	2	006	1	0	15	1.023e-5	15	NC	1	NC	1
225		18	max	.003	3	0	15	.006	1	3.338e-4	1_	NC	1	NC	1
226			min	002	2	005	1	0	15	1.09e-5	15	NC	1	NC	1
227		19	max	.004	3	0	15	.006	1	3.544e-4	1	NC	1	NC	1
228			min	003	2	003	1	0	15	1.157e-5	15	NC	1	NC	1
229	M4	1	max	.003	1	.002	2	0	15	-3.305e-7	12	NC	1	NC	2
230			min	0	3	003	3	006	1	-1.213e-5	1	NC	1	4020.473	1
231		2	max	.003	1	.002	2	0	15	-3.305e-7	12	NC	1	NC	2
232			min	0	3	003	3	006	1	-1.213e-5	1	NC	1	4379.209	1
233		3	max	.003	1	.002	2	0	15	-3.305e-7	12	NC	1	NC	2
234			min	0	3	003	3	005	1	-1.213e-5	1	NC	1	4805.763	1
235		4	max	.003	1	.002	2	0	15	-3.305e-7	12	NC	1	NC	2
236			min	0	3	003	3	005	1	-1.213e-5	1	NC	1	5317.824	1
237		5	max	.002	1	.002	2	0	15	-3.305e-7	12	NC	1	NC	2
238			min	0	3	003	3	004	1	-1.213e-5	1	NC	1	5939.43	1
239		6	max	.002	1	.001	2	0	15	-3.305e-7	12	NC	1	NC	2
240			min	0	3	003	3	004	1	-1.213e-5	1	NC	1	6703.918	1
241		7	max	.002	1	.001	2	0	15	-3.305e-7	12	NC	1	NC	2
242			min	0	3	002	3	003	1	-1.213e-5	1	NC	1	7658.61	1
243		8	max	.002	1	.001	2	0	15	-3.305e-7	12	NC	1	NC	2
244			min	0	3	002	3	003	1	-1.213e-5	1	NC	1	8872.533	1
245		9	max	.002	1	.001	2	0	15	-3.305e-7	12	NC	1	NC	1
246			min	0	3	002	3	002	1	-1.213e-5	1	NC	1	NC	1
247		10	max	.002	1	0	2	0	15	-3.305e-7	12	NC	1	NC	1
248		1.0	min	0	3	002	3	002	1	-1.213e-5	1	NC	1	NC	1
249		11	max	.001	1	0	2	0	15	-3.305e-7	12	NC	1	NC	1
250			min	0	3	002	3	002	1	-1.213e-5	1	NC	1	NC	1
251		12	max	.001	1	0	2	0	15	-3.305e-7	12	NC	1	NC	1
252		14	min	0	3	001	3	001	1	-1.213e-5		NC	1	NC	1
253		13	max	.001	1	0	2	0		-3.305e-7		NC	1	NC	1
254		13	min	0	3	001	3	0	1	-1.213e-5	1	NC	1	NC	1
255		14	max	0	1	0	2	0		-3.305e-7		NC	1	NC	1
256		1-4	min	0	3	0	3	0	1	-1.213e-5	1	NC	1	NC	1
257		15	max	0	1	0	2	0	15		12	NC	1	NC	1
258		15	min	0	3	0	3	0	1	-1.213e-5	1	NC	1	NC	1
		16		0	1	0	2	0	15			NC	1	NC	1
259 260		10	max min	0	3	0	3	0	1	-3.305e-7 -1.213e-5	1	NC NC	1	NC NC	1
		17			1		2				10		1		
261		17	max	<u> </u>	3	<u>0</u> 	3	<u> </u>	15	-3.305e-7		NC NC	1	NC NC	1
262		40	min						1 1 5	-1.213e-5	1		•		-
263		18	max	0	1	0	2	0	15	-3.305e-7	12	NC NC	1	NC NC	1
264		40	min	0	3	0	3	0	1	-1.213e-5	1_	NC NC	1_	NC NC	1
265		19	max	0	1	0	1	0	1	-3.305e-7		NC	1	NC NC	1
266	NAC		min	0	1	0	1	0	1	-1.213e-5	1_	NC NC	1_	NC NC	1
267	<u>M6</u>	1	max	.017	1	.012	2	0	1	0	1_	NC	3	NC NC	1
268			min	016	3	017	3	0	1	0	1	4047.813	2	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio			
269		2	max	.016	1	.011	2	0	1	0	_1_	NC	3	NC	1
270			min	015	3	017	3	0	1	0	1_	4443.639	2	NC	1
271		3	max	.015	1	.01	2	0	1	0	_1_	NC	3	NC	1_
272			min	014	3	016	3	0	1	0	1		2	NC	1
273		4	max	.014	1	.009	2	0	1	0	_1_	NC	1_	NC	1
274		_	min	013	3	01 <u>5</u>	3	0	1	0	1_	5504.975	2	NC	1
275		5	max	.013	1	.008	2	0	1	0	1_	NC	1_	NC	1
276			min	012	3	<u>014</u>	3	0	1	0	1_	6227.258	2	NC	1
277		6	max	.012	1	.007	2	0	1	0	1	NC	1_	NC	1
278		_	min	011	3	<u>013</u>	3	0	1	0	1_	7135.875	2	NC	1
279		7	max	.011	1	.006	2	0	1	0	1	NC NC	1	NC NC	1
280			min	01	3	012	3	0	1	0	1_	8301.117	2	NC	1
281		8	max	.01	1	.005	2	0	1	0	1	NC	1_	NC NC	1
282			min	01	3	011	3	0	1	0	1	9830.556	2	NC	1
283		9	max	.009	1	.004	2	0	1	0	1	NC	1	NC NC	1
284		4.0	min	009	3	01	3	0	1	0	1_	NC	1_	NC	1
285		10	max	.008	1	.003	2	0	1	0	1	NC	1_	NC NC	1
286		4.4	min	008	3	009	3	0	1	0	1_	NC NC	1_	NC NC	1
287		11	max	.007	1	.003	2	0	1	0	1	NC NC	1_	NC NC	1
288		40	min	007	3	008	3	0	1	0	1_	NC NC	1_	NC NC	1
289		12	max	.007	1	.002	2	0	1	0	1	NC	1	NC NC	1
290		40	min	006	3	007	3	0	1	0	1_	NC NC	1_	NC NC	1
291		13	max	.006	1	.001	2	0	1	0	1	NC NC	1_	NC NC	1
292		4.4	min	005	3	006	3	0	1	0	1_	NC NC	1_	NC NC	1
293		14	max	.005	1	0	2	0	1	0	1	NC NC	1	NC NC	1
294		4.5	min	004	3	005	3	0		0	1_	NC NC		NC NC	1
295		15	max	.004	3	0	2	0	1	0	1	NC	1_	NC NC	1
296		4.0	min	003		004	3	0	1	0	1_	NC NC	1_	NC NC	1
297		16	max	.003	1	0	2	0	1	0	1	NC NC	1_	NC NC	1
298		17	min	003	3	003	3	0	1	0	1	NC NC	<u>1</u> 1	NC NC	1
299		17	max	.002	3	0	2	0	1	0	1	NC NC	1	NC NC	1
300		18	min	002	1	002 0	3	0	1	0	1	NC NC	1	NC NC	1
301		10	max	<u> </u>	3	001	3	0	1	0	1	NC NC	1	NC NC	1
303		19	min	0	1	<u>001</u> 0	1	0	1	0	1	NC NC	1	NC NC	1
304		19	max	0	1	0	1	0	1	0	1	NC NC	1	NC NC	1
305	M7	1	min	0	1	0	1	0	1	0	1	NC NC	+	NC NC	1
306	IVI /		max	0	1	0	1	0	1	0	1	NC	1	NC	1
307		2		0	3	0	15	0	1	0	1	NC	+	NC	1
308			max	0	2	002	3	0	1	0	1	NC	1	NC	1
309		3	max	.001	3	<u>002</u> 0	15	0	1	0	1	NC NC	1	NC NC	1
310		5	min	001	2	004	3	0	1	0	1	NC	1	NC	1
311		4	max	.002	3	004 001	15	0	1	0	1	NC	1	NC	1
312		-	min	002	2	006	3	0	1	0	1	NC	+	NC	1
313		5	max	.002	3	000 002	15	0	1	0	1	NC NC	1	NC NC	1
314			min	002	2	002 007	3	0	1	0	1	NC NC	1	NC NC	1
315		6	max	.002	3	007 002	15	0	1	0	1	NC NC	+	NC NC	1
316			min	003	2	002 009	3	0	1	0	1	NC NC	1	NC NC	1
317		7	max	.004	3	00 <u>9</u> 002	15	0	1	0	1	NC	+	NC	1
318			min	003	2	002 01	4	0	1	0	1	9417.349	3	NC	1
319		8	max	.004	3	003	15	0	1	0	1	NC	1	NC	1
320			min	004	2	011	4	0	1	0	1	8497.81	4	NC	1
321		9	max	.005	3	003	15	0	1	0	1	NC	1	NC	1
322		-	min	005	2	012	4	0	1	0	1	7864.507	4	NC	1
323		10	max	.006	3	003	15	0	1	0	1	NC	1	NC	1
324		10	min	005	2	013	4	0	1	0	1	7541.507	4	NC	1
325		11	max	.006	3	003	15	0	1	0	1	NC	1	NC	1
020			πιαλ	.000		.000	10					110			

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC		LC
326			min	006	2	013	4	0	1	0	1	7480.05	4	NC	1
327		12	max	.007	3	003	15	0	1	0	1_	NC	1_	NC	1
328			min	006	2	013	4	0	1	0	1	7677.07	4	NC	1
329		13	max	.007	3	003	15	0	1	0	1	NC	1	NC	1
330			min	007	2	012	4	0	1	0	1	8176.267	4	NC	1
331		14	max	.008	3	003	15	0	1	0	1_	NC	1_	NC	1
332			min	008	2	012	1	0	1	0	1	9091.629	4	NC	1
333		15	max	.009	3	002	15	0	1	0	1	NC	1	NC	1
334			min	008	2	011	1	0	1	0	1	NC	1	NC	1
335		16	max	.009	3	002	15	0	1	0	1	NC	1_	NC	1
336			min	009	2	01	1	0	1	0	1	NC	1	NC	1
337		17	max	.01	3	001	15	0	1	0	1	NC	1	NC	1
338			min	009	2	01	1	0	1	0	1	NC	1	NC	1
339		18	max	.011	3	0	15	0	1	0	1	NC	1	NC	1
340			min	01	2	009	1	0	1	0	1	NC	1	NC	1
341		19	max	.011	3	0	15	0	1	0	1	NC	1	NC	1
342			min	01	2	007	1	0	1	0	1	NC	1	NC	1
343	M8	1	max	.009	1	.009	2	0	1	0	1	NC	1	NC	1
344			min	003	3	011	3	0	1	0	1	NC	1	NC	1
345		2	max	.008	1	.008	2	0	1	0	1	NC	1	NC	1
346			min	002	3	01	3	0	1	0	1	NC	1	NC	1
347		3	max	.008	1	.008	2	0	1	0	1	NC	1	NC	1
348			min	002	3	01	3	0	1	0	1	NC	1	NC	1
349		4	max	.007	1	.007	2	0	1	0	1	NC	1	NC	1
350			min	002	3	009	3	0	1	0	1	NC	1	NC	1
351		5	max	.007	1	.007	2	0	1	0	1	NC	1	NC	1
352			min	002	3	008	3	0	1	0	1	NC	1	NC	1
353		6	max	.006	1	.006	2	0	1	0	1	NC	1	NC	1
354			min	002	3	008	3	0	1	0	1	NC	1	NC	1
355		7	max	.006	1	.006	2	0	1	0	1	NC	1	NC	1
356		,	min	002	3	007	3	0	1	Ö	1	NC	1	NC	1
357		8	max	.005	1	.005	2	0	1	0	1	NC	1	NC	1
358			min	002	3	007	3	0	1	0	1	NC	1	NC	1
359		9	max	.005	1	.005	2	0	1	0	1	NC	1	NC	1
360			min	001	3	006	3	0	1	0	1	NC	1	NC	1
361		10	max	.004	1	.004	2	0	1	0	1	NC	1	NC	1
362		10	min	001	3	005	3	0	1	0	1	NC	1	NC	1
363		11	max	.004	1	.004	2	0	1	0	1	NC	1	NC	1
364		1	min	001	3	005	3	0	1	0	1	NC	1	NC	1
365		12	max	.003	1	.003	2	0	1	0	1	NC	1	NC	1
366		12	min	001	3	004	3	0	1	0	1	NC	1	NC	1
367		13	max	.003	1	.003	2	0	1	0	1	NC	1	NC	1
368		10	min	0	3	004	3	0	1	0	1	NC	1	NC	1
369		14	max	.002	1	.002	2	0	1	0	1	NC	1	NC	1
370			min	0	3	003	3	0	1	0	1	NC	1	NC	1
371		15	max	.002	1	.002	2	0	1	0	1	NC	1	NC	1
372		13	min	0	3	002	3	0	1	0	1	NC NC	1	NC	1
373		16		.001	1	.002	2	0	1	0	+	NC NC	1	NC NC	1
374		10	max	0	3	002	3	0	1	0	1	NC NC	1	NC NC	1
		17				002 0			1		1		1		1
375		17	max	0	3	001	3	0	1	0	1	NC NC	1	NC NC	1
376		10	min					0		0	_			NC NC	•
377		18	max	0	3	0	2	0	1	0	1	NC NC	1	NC NC	1
378		40	min	0	_	0	3	0	1	0	1_	NC NC	1_	NC NC	1
379		19	max	0	1	0	1	0	1	0	1_	NC	1	NC	1
380	Mac	-	min	0	1	0	1	0	1_45	0	1_	NC NC	1_	NC NC	1
381	M10	1	max	.005	1	.003	2	0	15	1.656e-4	1_	NC	1	NC	2
382			min	005	3	006	3	006	1	5.417e-6	15	NC	1_	7422.268	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC		LC		
383		2	max	.005	1	.002	2	0	15	1.535e-4	<u>1</u>	NC	_1_	NC	2
384			min	004	3	005	3	006	1	5.02e-6	15	NC	1	8094.181	1
385		3	max	.005	1	.002	2	0	15	1.413e-4	1_	NC	1	NC	2
386			min	004	3	005	3	005	1	4.623e-6	15	NC	1	8894.717	1
387		4	max	.004	1	.001	2	0	15		1_	NC	1_	NC	2
388			min	004	3	005	3	005	1	4.225e-6	15	NC	1	9857.913	1
389		5	max	.004	1	0	2	0	15	1.17e-4	1	NC	1	NC	1
390			min	004	3	005	3	004	1	3.828e-6	15	NC	1	NC	1
391		6	max	.004	1	0	2	0	15	1.049e-4	1	NC	1	NC	1
392			min	003	3	005	3	004	1	3.431e-6	15	NC	1	NC	1
393		7	max	.003	1	0	2	0	15	9.27e-5	1	NC	1	NC	1
394			min	003	3	004	3	003	1	3.034e-6	15	NC	1	NC	1
395		8	max	.003	1	0	2	0	15		1_	NC	1	NC	1
396			min	003	3	004	3	003	1	2.637e-6	15	NC	1	NC	1
397		9	max	.003	1	0	2	0	15	6.839e-5	1	NC	1	NC	1
398			min	003	3	004	3	002	1	2.239e-6	15	NC	1	NC	1
399		10	max	.003	1	0	15	0	15	5.623e-5	1	NC	1	NC	1
400			min	002	3	004	3	002	1	1.842e-6	15	NC	1	NC	1
401		11	max	.002	1	0	15	0	15	4.408e-5	1	NC	1	NC	1
402			min	002	3	003	3	002	1	1.445e-6	15	NC	1	NC	1
403		12	max	.002	1	0	15	0	15	3.192e-5	1	NC	1	NC	1
404			min	002	3	003	3	001	1	1.048e-6	15	NC	1	NC	1
405		13	max	.002	1	0	15	0	15		1	NC	1	NC	1
406			min	002	3	003	3	0	1	6.507e-7	15	NC	1	NC	1
407		14	max	.001	1	0	15	0	15	7.616e-6	1	NC	1	NC	1
408			min	001	3	002	3	0	1	2.535e-7	15	NC	1	NC	1
409		15	max	.001	1	0	15	0	15		3	NC	1	NC	1
410			min	001	3	002	3	0	1	-4.539e-6	1	NC	1	NC	1
411		16	max	0	1	0	15	0	15	-4.521e-7	12	NC	1	NC	1
412			min	0	3	002	4	0	1	-1.669e-5	1	NC	1	NC	1
413		17	max	0	1	0	15	0	15	-9.381e-7	15	NC	1	NC	1
414			min	0	3	001	4	0	1	-2.885e-5	1	NC	1	NC	1
415		18	max	0	1	0	15	0	15	-1.335e-6	15	NC	1	NC	1
416			min	0	3	0	4	0	1	-4.1e-5	1	NC	1	NC	1
417		19	max	0	1	0	1	0	1	-1.733e-6	15	NC	1	NC	1
418			min	0	1	0	1	0	1	-5.316e-5	1	NC	1	NC	1
419	M11	1	max	0	1	0	1	0	1	1.649e-5	1	NC	1	NC	1
420			min	0	1	0	1	0	1	5.377e-7	15	NC	1	NC	1
421		2	max	0	3	0	15	0	15	-1.35e-7	15	NC	1	NC	1
422			min	0	2	001	4	0	1	-4.116e-6	1	NC	1	NC	1
423		3	max	0	3	0	15	0		-8.078e-7		NC	1	NC	1
424			min	0	2	003	4	0	1	-2.472e-5	1	NC	1	NC	1
425		4	max	0	3	001	15	0	15			NC	1	NC	1
426			min	0	2	005	4	0	1	-4.533e-5	1	NC	1	NC	1
427		5	max	0	3	002	15	0	15			NC	1	NC	1
428			min	0	2	007	4	001	1	-6.594e-5	1	NC	1	NC	1
429		6	max	0	3	002	15	0	15			NC	1	NC	1
430			min	0	2	009	4	001	1	-8.654e-5	1	NC	1	NC	1
431		7	max	.001	3	002	15	0	15	-3.499e-6	15	NC	1	NC	1
432			min	0	2	002	4	002	1	-1.071e-4	1	9284.938	4	NC	1
433		8	max	.001	3	003	15	<u>002</u>	15	-4.172e-6	15	NC	1	NC	1
434			min	0	2	003 011	4	002	1	-1.278e-4	1	8276.647	4	NC	1
435		9	max	.002	3	003	15	0	15		15	NC	1	NC	1
436		9	min	001	2	012	4	002	1	-1.484e-4	1	7674.132	4	NC	1
437		10	max	.002	3	012	15	<u>002</u> 0	15		15	NC	2	NC	1
438		10	min	001	2	003	4	003	1	-1.69e-4	1	7370.326	4	NC	1
439		11	max	.002	3	003	15	<u>003</u> 0	15		15	NC	2	NC	1
408		<u> </u>	πιαλ	.002	」 J	003	ΙÜ	U	10	-0.13C-0	10	INC		INC	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC		LC
440			min	001	2	013	4	003	1	-1.896e-4	1	7319.68	4	NC	1
441		12	max	.002	3	003	15	0	15		15	NC	2	NC	1
442			min	002	2	013	4	003	1	-2.102e-4	1_	7520.561	4	NC	1
443		13	max	.002	3	003	15	0	15		15	NC	_1_	NC	1
444			min	002	2	012	4	004	1	-2.308e-4	1_	8016.767	4_	NC	1
445		14	max	.003	3	002	15	0	15		<u>15</u>	NC	1	NC NC	1
446		45	min	002	2	011	4	004	1	-2.514e-4	1_	8920.882	4	NC NC	1
447		15	max	.003	3	002	15	0	15	-8.881e-6		NC NC	1_	NC	1
448		4.0	min	002	2	009	4	004	1	-2.72e-4	1_	NC NC	1_	NC NC	1
449		16	max	.003	3	002 008	15	0 005	15	-9.554e-6 -2.926e-4	<u>15</u>	NC NC	<u>1</u> 1	NC NC	1
450 451		17	min	002 .003	3		15	<u>005</u> 0	15		1_	NC NC	1	NC NC	1
451		11/	max	002	2	001 006	1	005	1	-1.023e-5 -3.132e-4	<u>15</u>	NC NC	1	NC NC	1
452		18	min	.002	3	<u>006</u> 0	15	<u>005</u> 0	15	-3.132e-4 -1.09e-5	1_	NC NC	1	NC NC	1
454		10	max min	002	2	005	1	006	1	-3.338e-4	<u>15</u> 1	NC NC	1	NC NC	1
455		19	max	.004	3	<u>005</u> 0	15	<u>000</u> 0	15		15	NC	1	NC	1
456		13	min	003	2	003	1	006	1	-3.544e-4	1	NC	1	NC	1
457	M12	1	max	.003	1	.002	2	.006	1	1.213e-5	1	NC	1	NC	2
458	IVIIZ		min	0	3	003	3	0	15		12	NC	1	4020.473	1
459		2	max	.003	1	.002	2	.006	1	1.213e-5	1	NC	1	NC	2
460		_	min	0	3	003	3	0	15	3.305e-7	12	NC	1	4379.209	1
461		3	max	.003	1	.002	2	.005	1	1.213e-5	1	NC	1	NC	2
462			min	0	3	003	3	0	15	3.305e-7	12	NC	1	4805.763	1
463		4	max	.003	1	.002	2	.005	1	1.213e-5	1	NC	1	NC	2
464			min	0	3	003	3	0	15	3.305e-7	12	NC	1	5317.824	1
465		5	max	.002	1	.002	2	.004	1	1.213e-5	1	NC	1	NC	2
466			min	0	3	003	3	0	15	3.305e-7	12	NC	1	5939.43	1
467		6	max	.002	1	.001	2	.004	1	1.213e-5	1	NC	1	NC	2
468			min	0	3	003	3	0	15		12	NC	1	6703.918	1
469		7	max	.002	1	.001	2	.003	1	1.213e-5	1_	NC	1_	NC	2
470			min	0	3	002	3	0	15	3.305e-7	12	NC	1	7658.61	1
471		8	max	.002	1	.001	2	.003	1	1.213e-5	1_	NC	_1_	NC	2
472			min	0	3	002	3	0	15	3.305e-7	12	NC	1_	8872.533	1
473		9	max	.002	1	.001	2	.002	1	1.213e-5	_1_	NC	_1_	NC	1
474			min	0	3	002	3	0	15	3.305e-7	12	NC	1_	NC	1
475		10	max	.002	1	0	2	.002	1	1.213e-5	_1_	NC	_1_	NC	1
476			min	0	3	002	3	0	15	3.305e-7	12	NC	1_	NC	1
477		11	max	.001	1	0	2	.002	1	1.213e-5	1_	NC	1_	NC NC	1
478		40	min	0	3	002	3	0	15	3.305e-7	12	NC	_1_	NC NC	1
479		12	max	.001	1	0	2	.001	1	1.213e-5	1	NC NC	1_	NC NC	1
480		40	min	0	3	001	3	0		3.305e-7			1	NC NC	1
481		13	max	.001	3	0	2	0	1	1.213e-5	1	NC NC	1	NC NC	1
482		1.1	min	0	1	001	2	0	15		12	NC NC	<u>1</u> 1	NC NC	1
483		14	max	0	3	0 0	3	0 0	1 1 5	1.213e-5	12	NC NC	1	NC NC	1
484 485		15	min max	0	1	0	2	0	1 <u>5</u>	3.305e-7 1.213e-5	<u>12</u> 1	NC NC	1	NC NC	1
486		10	min	0	3	0	3	0	15	3.305e-7	12	NC	1	NC	1
487		16	max	0	1	0	2	0	1	1.213e-5	1	NC	1	NC	1
488		10	min	0	3	0	3	0	15		12	NC	1	NC	1
489		17	max	0	1	0	2	0	1	1.213e-5	1	NC NC	1	NC NC	1
490		11/	min	0	3	0	3	0	15	3.305e-7	12	NC NC	1	NC NC	1
491		18	max	0	1	0	2	0	1	1.213e-5	1	NC	1	NC	1
492		10	min	0	3	0	3	0	15		12	NC	1	NC	1
493		19	max	0	1	0	1	0	1	1.213e-5	1	NC	1	NC	1
494		1.5	min	0	1	0	1	0	1	3.305e-7	12	NC	1	NC	1
495	M1	1	max	.004	3	.116	1	0	1	1.749e-2	1	NC	1	NC	1
496			min	002	2	019	3	0	15	-2.142e-2	3	NC	1	NC	1
											_				

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
497		2	max	.004	3	.057	1	0	15	8.525e-3	1	NC	5	NC	1
498			min	002	2	009	3	005	1	-1.059e-2	3	1948.385	1	NC	1
499		3	max	.004	3	.006	3	0	15	2.665e-5	10	NC	5	NC	1
500			min	002	2	007	1	006	1	-1.161e-4	1	932.371	1	NC	1
501		4	max	.004	3	.033	3	0	15	5.016e-3	1_	NC	5	NC	1
502			min	002	2	08	1	006	1	-3.942e-3	3	582.714	1	NC	1
503		5	max	.004	3	.068	3	0	15	1.015e-2	1	NC	15	NC	1
504			min	002	2	158	1	004	1	-7.782e-3	3	417.034	1	NC	1
505		6	max	.004	3	.106	3	0	15	1.528e-2	1	NC	15	NC	1
506			min	002	2	234	1	002	1	-1.162e-2	3	326.342	1	NC	1
507		7	max	.004	3	.142	3	0	1	2.041e-2	1		15	NC	1
508			min	001	2	303	1	0	12	-1.546e-2	3	273.09	1	NC	1
509		8	max	.004	3	.172	3	0	1	2.555e-2	1	8612.578	15	NC	1
510			min	001	2	357	1	0	15	-1.93e-2	3	241.712	1	NC	1
511		9	max	.004	3	.192	3	0	15	2.814e-2	1		15	NC	1
512			min	001	2	391	1	0	1	-1.943e-2	3	225.422	1	NC	1
513		10	max	.004	3	.199	3	0	1	2.904e-2	1	7877.752	15	NC	1
514			min	001	2	403	1	0	12	-1.71e-2	3	220.547	1	NC	1
515		11	max	.004	3	.194	3	0	1	2.994e-2	1	8049.137	15	NC	1
516			min	001	2	391	1	0	15	-1.477e-2	3	225.71	1	NC	1
517		12	max	.004	3	.178	3	0	15	2.827e-2	1	8612.244	15	NC	1
518			min	001	2	356	1	0	1	-1.239e-2	3	242.604	1	NC	1
519		13	max	.004	3	.151	3	0	15	2.271e-2	1	9692.337	15	NC	1
520			min	001	2	301	1	0	1	-9.919e-3	3	275.288	1	NC	1
521		14	max	.003	3	.117	3	.002	1	1.715e-2	1	NC	15	NC	1
522			min	001	2	231	1	0	15	-7.448e-3	3	331.067	1	NC	1
523		15	max	.003	3	.079	3	.004	1	1.159e-2	1	NC	15	NC	1
524			min	001	2	154	1	0	15	-4.977e-3	3	426.79	1	NC	1
525		16	max	.003	3	.04	3	.006	1	6.035e-3	1	NC	5	NC	1
526			min	001	2	077	1	0	15	-2.507e-3	3	603.313	1	NC	1
527		17	max	.003	3	.002	3	.006	1	4.761e-4	1	NC	5	NC	1
528			min	001	2	004	1	0	15	-3.582e-5	3	979.079	1	NC	1
529		18	max	.003	3	.057	1	.004	1	1.031e-2	1	NC	5	NC	1
530			min	001	2	031	3	0	15	-3.801e-3	3	2067.206	1	NC	1
531		19	max	.003	3	.112	1	0	15	2.05e-2	1	NC	1	NC	1
532			min	001	2	062	3	0	1	-7.711e-3	3	NC	1	NC	1
533	M5	1	max	.014	3	.275	1	0	1	0	1	NC	1	NC	1
534			min	008	2	029	3	0	1	0	1	NC	1	NC	1
535		2	max	.014	3	.136	1	0	1	0	1	NC	5	NC	1
536			min	008	2	015	3	0	1	0	1	826.555	1	NC	1
537		3	max	.014	3	.02	3	0	1	0	1		15	NC	1
538			min	008	2	022	1	0	1	0	1	386.294	1	NC	1
539		4	max	.013	3	.093	3	0	1	0	1	9361.537	15	NC	1
540			min	008	2	214	1	0	1	0	1	234.328	1	NC	1
541		5	max	.013	3	.192	3	0	1	0	1		15	NC	1
542			min	008	2	424	1	0	1	0	1	163.757	1	NC	1
543		6	max	.013	3	.302	3	0	1	0	1		15	NC	1
544			min	008	2	634	1	0	1	0	1	125.916	1	NC	1
545		7	max	.012	3	.41	3	0	1	0	1		15	NC	1
546			min	008	2	825	1	0	1	0	1	104.067	1	NC	1
547		8	max	.012	3	.5	3	0	1	0	1		15	NC	1
548			min	008	2	978	1	0	1	0	1	91.365	1	NC	1
549		9	max	.012	3	.558	3	0	1	0	1		15	NC	1
550		Ĭ	min	007	2	-1.074	1	0	1	0	1	84.856	1	NC	1
551		10	max	.012	3	.579	3	0	1	0	1		15	NC	1
552		· ·	min	007	2	-1.107	1	0	1	0	1		1	NC	1
553		11	max	.011	3	.564	3	0	1	0	1		15	NC	1
			παλ	.011		.00-						OTOTAL III	10	110	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

5554		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC_
				min						1	•	1		_		1
557	555		12	max	.011		.515	3	0	1	0	1_		15	NC	1
	556			min	007		976		0	1	0	1	91.746	1		1
1559	557		13	max		3		3	0	1	0	1_		15		1
Secondary Seco				min					0	1	0	1				1
Fig.			14		.011			3	0	1	0	_1_		15		_
F652	560			min	007		624	_	0	1	0	1	128.144	1	NC	1
563	561		15	max			.225	3	0	1	0	1_	6552.358	15		1
Feet	562			min		2		1	0	1	0	1		1		1
Feb 17 max	563		16	max				3	0	1	0	1		15		1
Se66				min			201		0	1	0	1				1
Set	565		17	max	.01	3	.008	3	0	1	0	1	NC	15	NC	1
See	566			min	006	2	013	1	0	1	0	1	412.598	1	NC	1
Feb	567		18	max	.01	3	.135	1	0	1	0	1	NC	5	NC	1
S70	568			min	006	2	082	3	0	1	0	1	897.021	1	NC	1
S71	569		19	max	.01	3	.261	1	0	1	0	1	NC	1	NC	1
S72	570			min	006	2	162	3	0	1	0	1	NC	1	NC	1
573	571	M9	1	max	.004	3	.116	1	0	15	2.142e-2	3	NC	1	NC	1
573	572			min	002	2	019	3	0	1	-1.749e-2	1	NC	1	NC	1
575	573		2	max	.004	3	.057	1	.005	1	1.059e-2	3	NC	5	NC	1
	574			min	002	2	009	3	0	15		1	1948.385	1	NC	1
577	575		3	max	.004	3	.006	3	.006	1	1.161e-4	1	NC	5	NC	1
578	576			min	002	2	007	1	0	15	-2.665e-5	10	932.371	1	NC	1
578	577		4	max	.004	3	.033	3	.006	1	3.942e-3	3	NC	5	NC	1
5 max										15		1				1
581 6 max .004 3 .106 3 .002 1 1.162e-2 3 NC 15 NC 1 582 min 002 2 234 1 0 15 -1.528e-2 1 326,342 1 NC 1 583 7 max .004 3 .142 3 0 12 1.546e-2 3 .9692.928 15 NC 1 584 min 001 2 303 1 0 1 -2.041e-2 1 273.09 1 NC 1 585 8 max .004 3 .172 3 0 15 .193e-2 3 8612.578 15 NC 1 586 min 001 2 391 1 0 15 2.814e-2 1 241.71e 1 NC 1 589 10 max .004 3 .199			5		.004	3	.068	3	.004	1		3	NC	15	NC	1
581 6 max .004 3 .106 3 .002 1 1.162e-2 3 NC 15 NC 1 582 min 002 2 234 1 0 15 -1.528e-2 1 326,342 1 NC 1 583 7 max .004 3 .142 3 0 12 1.546e-2 3 .9692.928 15 NC 1 584 min 001 2 303 1 0 1 -2.041e-2 1 273.09 1 NC 1 585 8 max .004 3 .172 3 0 15 .193e-2 3 8612.578 15 NC 1 586 min 001 2 391 1 0 15 2.814e-2 1 241.71e 1 NC 1 589 10 max .004 3 .199				min						15					NC	1
Table Tabl			6		.004	3	.106	3	.002	1		3		15	NC	1
Table Tabl				min	002		234	1	0	15		1			NC	1
584 min 001 2 303 1 0 1 -2.041e-2 1 273.09 1 NC 1 585 8 max .004 3 .172 3 0 15 1.93e-2 3 8612.578 15 NC 1 587 9 max .004 3 .192 3 0 1 1.943e-2 3 8049.296 15 NC 1 588 min 001 2 391 1 0 15 -2.814e-2 1 225.422 1 NC 1 589 10 max .004 3 .199 3 0 12 1.71e-2 3 7877.752 15 NC 1 590 min 001 2 403 1 0 1 -2.904e-2 1 220.547 1 NC 1 591 11 max .004 3			7					3	0			3		15		1
585 8 max .004 3 .172 3 0 15 1.93e-2 3 8612.578 15 NC 1 586 min 001 2 357 1 0 1 -2.555e-2 1 241.712 1 NC 1 587 9 max .004 3 .192 3 0 1 1.943e-2 3 8049.296 15 NC 1 588 min 001 2 391 1 0 15 -2.814e-2 1 225.422 1 NC 1 589 10 max .004 3 .199 3 0 12 1.71e-2 3 7877.752 15 NC 1 590 min 001 2 403 1 0 1 -2.904e-2 1 220.547 1 NC 1 591 11 max .004 3 .178 3 0				min		2	303	1	0	1		1		1	NC	1
586 min 001 2 357 1 0 1 -2.555e-2 1 241.712 1 NC 1 587 9 max .004 3 .192 3 0 1 1.943e-2 3 8049.296 15 NC 1 588 min 001 2 391 1 0 15 -2.814e-2 1 225.422 1 NC 1 589 10 max .004 3 .199 3 0 12 1.71e-2 3 7877.752 15 NC 1 590 min 001 2 403 1 0 1 -2.904e-2 1 220.547 1 NC 1 591 11 max .004 3 .178 3 0 1 -2.994e-2 1 .225.71 1 NC 1 592 min 001 2 356			8	max	.004	3	.172	3	0	15	1.93e-2	3	8612.578	15	NC	1
587 9 max .004 3 .192 3 0 1 1.943e-2 3 8049.296 15 NC 1 588 min 001 2 391 1 0 15 -2.814e-2 1 225.422 1 NC 1 589 10 max .004 3 .199 3 0 12 1.71e-2 3 7877.752 15 NC 1 590 min 001 2 -403 1 0 1 -2.904e-2 1 220.547 1 NC 1 591 11 max .004 3 .194 3 0 15 1.47re-2 3 8049.137 15 NC 1 592 min 001 2 391 1 0 1 -2.994e-2 1 225.71 1 NC 1 593 12 max .004 3 .151				min	001	2	357	1	0	1	-2.555e-2	1		1	NC	1
588 min 001 2 391 1 0 15 -2.814e-2 1 225.422 1 NC 1 589 10 max .004 3 .199 3 0 12 1.71e-2 3 7877.752 15 NC 1 590 min 001 2 403 1 0 1 -2.904e-2 1 220.547 1 NC 1 591 11 max .004 3 .194 3 0 15 1.477e-2 3 8049.137 15 NC 1 592 min 001 2 391 1 0 1 2.994e-2 1 225.71 1 NC 1 593 12 max .004 3 .178 3 0 1 1.239e-2 3 8612.244 15 NC 1 594 min 001 2 356	587		9	max	.004	3	.192	3	0	1		3	8049.296	15	NC	1
590 min 001 2 403 1 0 1 -2.904e-2 1 220.547 1 NC 1 591 11 max .004 3 .194 3 0 15 1.477e-2 3 8049.137 15 NC 1 592 min 001 2 391 1 0 1 -2.994e-2 1 225.71 1 NC 1 593 12 max .004 3 .178 3 0 1 1.239e-2 3 8612.244 15 NC 1 594 min 001 2 356 1 0 15 -2.827e-2 1 242.604 1 NC 1 595 13 max .004 3 .151 3 0 1 9.919e-3 3 9692.337 15 NC 1 596 min 001 2 301 <td></td> <td></td> <td></td> <td>min</td> <td>001</td> <td>2</td> <td>391</td> <td>1</td> <td>0</td> <td>15</td> <td>-2.814e-2</td> <td>1</td> <td></td> <td>1</td> <td>NC</td> <td>1</td>				min	001	2	391	1	0	15	-2.814e-2	1		1	NC	1
590 min 001 2 403 1 0 1 -2.904e-2 1 220.547 1 NC 1 591 11 max .004 3 .194 3 0 15 1.477e-2 3 8049.137 15 NC 1 592 min 001 2 391 1 0 1 -2.994e-2 1 225.71 1 NC 1 593 12 max .004 3 .178 3 0 1 1.239e-2 3 8612.244 15 NC 1 594 min 001 2 356 1 0 15 -2.827e-2 1 242.604 1 NC 1 595 13 max .004 3 .151 3 0 1 9.919e-3 3 9692.337 15 NC 1 596 min 001 2 301 <td></td> <td></td> <td>10</td> <td></td> <td>.004</td> <td>3</td> <td>.199</td> <td>3</td> <td>0</td> <td>12</td> <td></td> <td>3</td> <td></td> <td>15</td> <td>NC</td> <td>1</td>			10		.004	3	.199	3	0	12		3		15	NC	1
592 min 001 2 391 1 0 1 -2.994e-2 1 225.71 1 NC 1 593 12 max .004 3 .178 3 0 1 1.239e-2 3 8612.244 15 NC 1 594 min 001 2 356 1 0 15 -2.827e-2 1 242.604 1 NC 1 595 13 max .004 3 .151 3 0 1 9.919e-3 3 9692.337 15 NC 1 596 min 001 2 301 1 0 15 -2.271e-2 1 275.288 1 NC 1 597 14 max .003 3 .117 3 0 15 7.448e-3 3 NC 15 NC 1 598 min 001 2 231				min	001	2	403	1	0	1	-2.904e-2	1	220.547	1	NC	1
592 min 001 2 391 1 0 1 -2.994e-2 1 225.71 1 NC 1 593 12 max .004 3 .178 3 0 1 1.239e-2 3 8612.244 15 NC 1 594 min 001 2 356 1 0 15 -2.827e-2 1 242.604 1 NC 1 595 13 max .004 3 .151 3 0 1 9.919e-3 3 9692.337 15 NC 1 596 min 001 2 301 1 0 15 -2.271e-2 1 275.288 1 NC 1 597 14 max .003 3 .117 3 0 15 7.448e-3 3 NC 15 NC 1 598 min 001 2 231			11		.004	3	.194	3	0	15		3		15	NC	1
593 12 max .004 3 .178 3 0 1 1.239e-2 3 8612.244 15 NC 1 594 min 001 2 356 1 0 15 -2.827e-2 1 242.604 1 NC 1 595 13 max .004 3 .151 3 0 1 9.919e-3 3 9692.337 15 NC 1 596 min 001 2 301 1 0 15 -2.271e-2 1 275.288 1 NC 1 597 14 max .003 3 .117 3 0 15 7.448e-3 3 NC 15 NC 1 598 min 001 2 231 1 002 1 -1.715e-2 1 331.067 1 NC 1 600 min 001 2 154 <td></td> <td></td> <td></td> <td>min</td> <td>001</td> <td></td> <td>391</td> <td>1</td> <td>0</td> <td>1</td> <td>-2.994e-2</td> <td>1</td> <td></td> <td></td> <td></td> <td>1</td>				min	001		391	1	0	1	-2.994e-2	1				1
594 min 001 2 356 1 0 15 -2.827e-2 1 242.604 1 NC 1 595 13 max .004 3 .151 3 0 1 9.919e-3 3 9692.337 15 NC 1 596 min 001 2 301 1 0 15 -2.271e-2 1 275.288 1 NC 1 597 14 max .003 3 .117 3 0 15 7.448e-3 3 NC 15 NC 1 598 min 001 2 231 1 002 1 -1.715e-2 1 331.067 1 NC 1 599 15 max .003 3 .079 3 0 15 4.977e-3 3 NC 15 NC 1 601 min 001 2 154			12			3		3	0	1		3		15		1
595 13 max .004 3 .151 3 0 1 9.919e-3 3 9692.337 15 NC 1 596 min 001 2 301 1 0 15 -2.271e-2 1 275.288 1 NC 1 597 14 max .003 3 .117 3 0 15 7.448e-3 3 NC 15 NC 1 598 min 001 2 231 1 002 1 -1.715e-2 1 331.067 1 NC 1 599 15 max .003 3 .079 3 0 15 4.977e-3 3 NC 15 NC 1 600 min 001 2 154 1 004 1 -1.159e-2 1 426.79 1 NC 1 601 max .003 3 .04				min			356		0	15		1			NC	1
596 min 001 2 301 1 0 15 -2.271e-2 1 275.288 1 NC 1 597 14 max .003 3 .117 3 0 15 7.448e-3 3 NC 15 NC 1 598 min 001 2 231 1 002 1 -1.715e-2 1 331.067 1 NC 1 599 15 max .003 3 .079 3 0 15 4.977e-3 3 NC 15 NC 1 600 min 001 2 154 1 004 1 -1.159e-2 1 426.79 1 NC 1 601 16 max .003 3 .04 3 0 15 2.507e-3 3 NC 5 NC 1 602 min 001 2 077			13					3						15		1
597 14 max .003 3 .117 3 0 15 7.448e-3 3 NC 15 NC 1 598 min 001 2 231 1 002 1 -1.715e-2 1 331.067 1 NC 1 599 15 max .003 3 .079 3 0 15 4.977e-3 3 NC 15 NC 1 600 min 001 2 154 1 004 1 -1.159e-2 1 426.79 1 NC 1 601 16 max .003 3 .04 3 0 15 2.507e-3 3 NC 5 NC 1 602 min 001 2 077 1 006 1 -6.035e-3 1 603.313 1 NC 1 603 17 max .003 3 .002 3 0 15 3.582e-5 3 NC 5 NC<				min					0	15		-				1
598 min 001 2 231 1 002 1 -1.715e-2 1 331.067 1 NC 1 599 15 max .003 3 .079 3 0 15 4.977e-3 3 NC 15 NC 1 600 min 001 2 154 1 004 1 -1.159e-2 1 426.79 1 NC 1 601 16 max .003 3 .04 3 0 15 2.507e-3 3 NC 5 NC 1 602 min 001 2 077 1 006 1 -6.035e-3 1 603.313 1 NC 1 603 17 max .003 3 .002 3 0 15 3.582e-5 3 NC 5 NC 1 604 min 001 2 004			14		.003		.117	3	0			3		15	NC	1
599 15 max .003 3 .079 3 0 15 4.977e-3 3 NC 15 NC 1 600 min 001 2 154 1 004 1 -1.159e-2 1 426.79 1 NC 1 601 16 max .003 3 .04 3 0 15 2.507e-3 3 NC 5 NC 1 602 min 001 2 077 1 006 1 -6.035e-3 1 603.313 1 NC 1 603 17 max .003 3 .002 3 0 15 3.582e-5 3 NC 5 NC 1 604 min 001 2 004 1 006 1 -4.761e-4 1 979.079 1 NC 1 605 18 max .003 3 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td></t<>																1
600 min 001 2 154 1 004 1 -1.159e-2 1 426.79 1 NC 1 601 16 max .003 3 .04 3 0 15 2.507e-3 3 NC 5 NC 1 602 min 001 2 077 1 006 1 -6.035e-3 1 603.313 1 NC 1 603 17 max .003 3 .002 3 0 15 3.582e-5 3 NC 5 NC 1 604 min 001 2 004 1 006 1 -4.761e-4 1 979.079 1 NC 1 605 18 max .003 3 .057 1 0 15 3.801e-3 3 NC 5 NC 1 606 min 001 2 031			15					3		15		3		15		1
601 16 max .003 3 .04 3 0 15 2.507e-3 3 NC 5 NC 1 602 min 001 2 077 1 006 1 -6.035e-3 1 603.313 1 NC 1 603 17 max .003 3 .002 3 0 15 3.582e-5 3 NC 5 NC 1 604 min 001 2 004 1 006 1 -4.761e-4 1 979.079 1 NC 1 605 18 max .003 3 .057 1 0 15 3.801e-3 3 NC 5 NC 1 606 min 001 2 031 3 004 1 -1.031e-2 1 2067.206 1 NC 1 607 19 max .003 3 <									004							1
602 min 001 2 077 1 006 1 -6.035e-3 1 603.313 1 NC 1 603 17 max .003 3 .002 3 0 15 3.582e-5 3 NC 5 NC 1 604 min 001 2 004 1 006 1 -4.761e-4 1 979.079 1 NC 1 605 18 max .003 3 .057 1 0 15 3.801e-3 3 NC 5 NC 1 606 min 001 2 031 3 004 1 -1.031e-2 1 2067.206 1 NC 1 607 19 max .003 3 .112 1 0 1 7.711e-3 3 NC 1 NC 1			16					3		15		3		5		
603 17 max .003 3 .002 3 0 15 3.582e-5 3 NC 5 NC 1 604 min 001 2 004 1 006 1 -4.761e-4 1 979.079 1 NC 1 605 18 max .003 3 .057 1 0 15 3.801e-3 3 NC 5 NC 1 606 min 001 2 031 3 004 1 -1.031e-2 1 2067.206 1 NC 1 607 19 max .003 3 .112 1 0 1 7.711e-3 3 NC 1 NC 1									-			1				
604 min 001 2 004 1 006 1 -4.761e-4 1 979.079 1 NC 1 605 18 max .003 3 .057 1 0 15 3.801e-3 3 NC 5 NC 1 606 min 001 2 031 3 004 1 -1.031e-2 1 2067.206 1 NC 1 607 19 max .003 3 .112 1 0 1 7.711e-3 3 NC 1 NC 1			17					_				3				
605 18 max .003 3 .057 1 0 15 3.801e-3 3 NC 5 NC 1 606 min 001 2 031 3 004 1 -1.031e-2 1 2067.206 1 NC 1 607 19 max .003 3 .112 1 0 1 7.711e-3 3 NC 1 NC 1																
606 min 001 2 031 3 004 1 -1.031e-2 1 2067.206 1 NC 1 607 19 max .003 3 .112 1 0 1 7.711e-3 3 NC 1 NC 1			18													_
607 19 max .003 3 .112 1 0 1 7.711e-3 3 NC 1 NC 1												-				
			19													
	608			min	001	2	062	3	0	15	-2.05e-2	1	NC	1	NC	1

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 21-	-30 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015				
Engineer:	HCV	Page:	2/5				
Project:	Standard PVMax - Worst Case, 21	Standard PVMax - Worst Case, 21-30 Inch Width					
Address:							
Phone:							
E-mail:							

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x , V_{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2344.5	1654.5	0.0	1654.5
2	2344.5	1654.5	0.0	1654.5
Sum	4689.0	3309.0	0.0	3309.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4689 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	ıc / ΑΝco) Ψec,N Ψea	$_{I,N}\varPsi_{c,N}\varPsi_{cp,N}N_{b}$ (3	Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$arPsi_{ extsf{c}, extsf{N}}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
378.00	324 00	1 000	0.972	1.00	1 000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

,								
τ _{k,cr} (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / A_{Na0}) $\Psi_{ed,Na}$ Ψ_{g}	$_{ extstyle extstyle NA} arPhi_{ extstyle ec,Na} arPhi_{ extstyle p,Na} extstyle N$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

378 00	648.00	1 000	0 836	1 000	1 000	15503		φν cbgx (ID)
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec.V}$	$arPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	φ	ϕV_{cbqx} (lb)
$\phi V_{cbgx} = \phi (A$	$(V_{c}/A_{V_{co}})\Psi_{ec,V}\Psi_{ec}$	$_{ed,V} arPsi_{c,V} arPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
4.00	0.50	1.00	2500	12.00	15593			
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
$V_{bx} = 7(I_e/d_e)$	$(a)^{0.2} \sqrt{d_a} \lambda \sqrt{f'_c} c_{a1}^{1.5}$	⁵ (Eq. D-24)						

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.9}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\mathcal{V}_{c,V} \mathcal{\Psi}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n <i>kcpNag</i> ; <i>kcpN</i>	$ c_{bg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$arPsi_{p,Na}$	N_{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A _{Nc} (in ²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2345	6071	0.39	Pass
Concrete breakout	4689	9208	0.51	Pass
Adhesive	4689	8093	0.58	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1655	3156	0.52	Pass
T Concrete breakout x+	3309	5323	0.62	Pass (Governs)
Concrete breakout y-	1655	12241	0.14	Pass (Governs)
Pryout	3309	19833	0.17	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rat	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 21-30 Inch Width		
Address:			
Phone:			
E-mail:			

Sec. D.7.3 0.58 0.62 120.1 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.