Latency Analysis in the Trading Community

MARK E. DAWSON, JR. PERFORMANCE ANALYST

CHRISTOPH LAMETER

TRACING SUMMIT 2013 EDINBURGH

High Frequency Trading

- Competition based on speed of reaction to Market conditions
- Need for fast propagation of event information
- Latency analysis at multiple location
 - Intra-machine
 - Inter-machine (within & between datacenters)
 - Network ingress & egress points
- Timestamps on the system as well as in network packets
 - o PTP
 - Network stack timestamps
 - Hardware timestamps
- Stock Exchange interaction challenges

A Simplified Trading Environment

- Exchange
- Servers
- Local Network
- Remote Network
- Correlation
 - Within a server
 - Between servers
 - ▼ Same datacenter
 - Remote datacenters

Timing Issue Illustrated

- 1. SPY ETF vs. S&P 500 (index arbitrage)
- 2. How old is my "Market Event" data?
- 3. How quickly can I now "Buy or Sell"?
- 4. If new info arrives, how quickly can I cancel my Buy or Sell?
- 5. My strategy failed. Where along the chain was I too slow?

FTrace/Perf

Local system time-stamping only

Mostly kernel based

No correlation capability

LTTng

User space events

• Correlation of timestamps at the kernel level with user space functionality and driver timestamps

What is missing?

- Importing timestamps and events contained within a network packet
- Correlation with NIC HW timestamps
- Correlation of events between multiple systems
- Commercial solutions available in that space
 - Correlix
 - o TSA
 - Corvil

Conclusion

Questions

Comments

Opinions

• Ideas on how to solve this?

Latency Analysis in the Trading Community

APPENDIX

Need for Sub-microsecond Precision

- NTP inadequate
 - Millisecond accuracy in real world
- gettimeofday inadequate
 - Microsecond precision
- rdtsc too platform dependent
- Nanosecond precision printk

GPS issues

- GPS Antenna cabling varies widely in length
 - Range from 10ft to >1,500ft
- Rule-of-thumb in signal delay
 - o ~1ns per foot of cable
- Greatly influences inter-datacenter time skew

New Timestamp Call

Simpler return value

- o e.g., 64-bit value representing nanoseconds since epoch
- Requires no division/multiplication like *clock_gettime*

Low overhead

- o gettimeofday notoriously high overhead
- o clock_gettime still takes 20 30ns
- o rdtsc has low overhead but platform-specific

PTP Challenges

- Linux ptpd inadequate
 - Subject to OS noise
 - Does not account for PCIe read latency of HW timestamp
 - Does not offer lightweight time call intercept like *TimeKeeper*
 - o Competitive servo algorithm?
- Accurate sync between system time and NIC timestamping clocks
 - o a la *hardpps* (NTP_PPS kconfig option)
 - Must work with tickless kernel

Packet Capture Devices

- Only nascent nanosecond support
- Require port spanning or tapping
 - o Can impact timing or degrade signal
- On-the-wire timing only
 - Does not include application decision-point timing
- Do not scale
 - Most only offer 2 ports (costly additions)
 - Aggregation induces packet serialization
 - Only 1GbE offerings
- PCIe offering tradeoffs
 - o Require OS mgmt.
 - No PPS or PTP reference clock support

Q&A

Questions?