DSM LAB REPORT – 5

Macharla Harish

2020102062

Objective:

To build an RS latch, a JK Master-Slave Flip-Flop, and a 4-bit Up-Down Counter in Tinker cad.

Part A: SR Latch

Objective:

To Assemble a NOR latch using two NOR gates

Components Required:

- *Bread Board
- *Arduino
- *Logic Nor gates
- *Push Button
- *Led's, Resistors and connecting wires.

Reference Circuit:

Procedure:

- 1) Construct the circuit with the components mentioned above on Bread Board as shown in the figure.
- 2) Give the inputs R and S through Arduino.
- 3)Connect the outputs Q and Q' to the Led's with resistors using connecting wires.
- 4) Note down the readings.

Observations:

S	R	Q	Q'
0	1	0	1
0	0	0	0
1	0	1	0
0	0	1	0
0	1	0	1
1	0	1	0
0	1	0	1
0	0	0	1
1	1	0	0
0	0	0	1
1	0	1	0
1	1	0	0
0	0	0	1
0	1	0	1
1	1	0	0
0	0	0	1

- From my observations latch works properly until both the inputs were given 1 (S=R=1) because it contradicts outputs that is the number and the complement of the number should be opposite but in this case both are equal.
- Hence it leads to forbidden state where it loses it previous states.

Link for Tinker cad:

https://www.tinkercad.com/things/4Mij0z8XqtK-2020102062lab5part1/editel?sharecode=a2N433xRKdCb8q0q37iN1cLZ kN51qa3Vxiid9V08Lqg

Conclusion:

Truth Table for SR Latch:

Boolean exp:

$$Q(n+1) = [R + (S + Q(n))']'$$

= R'. (Q(n)+s)

S	R	Q(n+1) state
0	0	Q(n)> No change
1	0	1> Set
0	1	0> Reset
1	1	0> Forbidden

Part B: JK Master-Slave Flip-Flop

Objective:

To Assemble a JK Master-Slave Flip-Flop.

Components Required:

*Bread Board

Reference circuit:

^{*}Arduino

^{*}Logic Triple Nand gate, Two Quad Nand gates, Hex converter.

^{*}Led's, Resistors and connecting wires.

^{*}Push Buttons

master slave JK flip flop

Procedure:

- 1) Construct the circuit with the components mentioned above on Bread Board as shown in the figure.
- 2) Give the inputs J, K and clock through Arduino.
- 3)Connect the outputs Q and Q' to the Led's with resistors using connecting wires.
- 4) Note down the readings.

Observations:

J	K	Q	Q'
1	0	1	0
0	0	1	0
0	1	0	1
1	0	1	0
0	1	0	1
0	0	0	1
1	1	1	0
0	0	0	1
1	0	1	0
1	1	0	1
0	0	0	1
0	1	0	1
1	1	1	0

|--|

Link for Tinker Cad:

https://www.tinkercad.com/things/dxKsmNH09wj-2020102062lab5partb/editel?sharecode=9RSBbateS7_eFFb2QpOmmgnnfRt1Adk bV-rj1JOFuvl

Conclusion:

• We can theoretically understand with the behavior of the JK Master-Slave Flipflop with help of Circuit made on Tinker cad.

JK master slave flip flop function table:

J	K	ACTION	Q _{n+1}
0	0	Hold	Q _n
0	1	Clear	0
1	0	Set	1
1	1	Toggles	Q'n

Part C: 4-bit Up-Down Counter

Objective:

To study the working of a counter.

Components Required:

Reference Circuit:

^{*}Bread Board

^{*}Connecting Wires, Led's and Resistors

^{*}Arduino

Procedure:

- Using the Timer library, implement a 4-bit counter. The bit outputs of the 4-bit ripple counter will be represented by LEDs. (One LED for each bit)
- Initialize a Timer t and use t. oscillate function to toggle the pin values in a pre-defined time period (each pin will have a different time period.
- Down counter: once the ripple counter reaches 15 (1111), make it go down to 0. You will need to stop existing timers using t.stop. You can use t. every to fire a function after a set-interval of time that will do two tasks: stop all timers and restart them in opposite direction.
- Simulate the tinker Cad project and observe the LEDs.

Observations:

The ripple counter first goes UP from 0 (0000) to 15 (1111), then goes DOWN from 15 to 0, then goes UP, and this cycle repeats until the simulation is stopped.

Link for TinkerCad:

https://www.tinkercad.com/things/enbX0r9sZm2-copy-of-timer-starter-code/editel?sharecode= aNC047fTY87zytC8uGbLNPUKrlciTg0w4ky16kYmpQ

Conclusion:

Thus, we have implemented a 4-bit UP DOWN counter using tinkercad.