🧲 핵심 개념

- 1. 템플릿을 사용하지 않고 find, reverse, remove 를 멤버 함수로 만든다면
 - 3개 컨테이너 * 3개 함수 * 3개 타입 = 27 개 함수가 필요
- 2. 템플릿을 사용해서 find, reverse, remove 를 멤버 함수로 만든다면
 - 3개 컨테이너 * 3개 함수 = 9 개 함수가 필요
- 3. find, reverse, remove 를 멤버 함수가 아닌 일반 함수로 만든다면
 - 모든 컨테이너에 동작하는 3개의 함수가 필요
 - 모든 컨테이너의 요소를 동일한 방식으로 접근할 수 있어야 한다. 반복자가 필요하다.
- 4. STL은 자료구조와 알고리즘이 분리된 라이브러리
 - 알고리즘 함수는 자신이 어떤 자료구조에 대해 연산을 수행하는지 모른다.

STL example

₹핵심 개념

1. STL 컨테이너의 모든 요소를 열거하는 방법

- [] 연산자 사용 vector등 일부 컨테이너만 가능. list 안됨.
- 반복자 사용 대부분 컨테이너에서 사용가능.
- range for 문 사용
- 스트림 반복자 SECTION 3 참고.

STL 과 member type

₹ 핵심 개념

- 1. STL 에는 멤버 데이터, 멤버 함수 이외에도 "멤버 타입" 이라는 개념 제공.
- 2. 템플릿 의존 타입(template dependent type) 의 경우 typename을 표기 해야 한다.
 - typename T::value_type
- 3. 템플릿이 아닌 경우는 typename을 표기 하지 않는다.
 - list<int>::value_type

4. value_type

- 컨테이너가 저장하는 타입
- 반복자가 가리키는 타입

₹핵심 개념

• STL 컨테이너가 제공하는 "member type"

Member type	Definition	
value_type	Т	
allocator_type	Allocator	
size_type	Unsigned integer type (usually std::size_t)	
difference_type	Signed integer type (usually std::ptrdiff_t)	
reference	value_type&	
const_reference	const value_type&	
pointer	std::allocator_traits <allocator>::pointer</allocator>	
const_pointer	std::allocator_traits <allocator>::const_pointer</allocator>	
iterator	컨테이너 마다 다른 정의	
const_iterator	컨테이너 마다 다른 정의	
reverse_iterator	std::reverse_iterator <iterator></iterator>	
const_reverse_iterator	std::reverse_iterator <const_iterator></const_iterator>	

• STL 반복자가 제공하는 "member type"

Member type	Definition
value_type	Т
difference_type	Signed integer type (usually std::ptrdiff_t)
reference	value_type&
pointer	value_type*
iterator_category	컨테이너 마다 다른 정의

C++17 과 STL

₹ 핵심 개념

- 1. class template type deduction
 - C++17 에서 도입된 문법
 - 클래스 템플릿도 템플릿 인자를 명시적으로 지정하지 않아도 생성자의 인자 또는 사용 자가 제공한 "deduction guide" 를 통해서 컴파일러가 추론(deduction) 할 수 있다.

Raw String Literal

₹핵심 정리

1. Raw String Literal

- R"(raw_characters)"
- \를 특수 문자(escape sequence)가 아닌 일반 문자로 인식.
- 파일 경로, 정규 표현식 등의 표현할 때 편리하다.

2.)" 이 표현을 사용하고 싶다면?

- 사용자 정의 delimiter 추가.
- R"delimiter(raw_characters)delimiter"
- R"***(raw_characters)***"

록 핵심 정리

1. 문자열 prefix 와 type

String literal	type	encoding
"hello"	const char[]	narrow multi-byte string literal
L"hello"	const wchar_t[]	wide string literal
u8"hello"	const char[]	UTF-8
u"hello"	const char16_t[]	UTF-16
U"hello"	const char32_t[]	UTF-32

1. CharT

 문자열 관련 타입(char, wchar_t, char16_t, char32_t) 를 총괄해서 표 현하는 관례적인 표기법.

char_traits

1. char_traits<>

- <string> 헤더
- 다양한 문자 타입에 대한 문자열(문자) 연산 함수를 제공하는 클래스
- char, wchar_t, char16_t, char32_t 타입에 대해서 부분 특수화 되어 있다.
- 모든 멤버 함수가 static 으로 되어 있다.

Member function	description
assign	assigns a character
eqlt	compares two characters
move	moves one character sequence onto another
сору	copies a character sequence
compare	lexicographically compares two character sequences
length	returns the length of a character sequence
find	finds a character in a character sequence
to_char_type	converts int_type to equivalent char_type
to_int_type	converts char_type to equivalent int_type
eq_int_type	compares two int_type values
eof	returns an eof value
not_eof	checks whether a character is eof value

user define character traits 를 제공할 수도 있다.

문자열 관련 클래스 in STL

1. string 클래스

type	definition	
string	basic_string <char></char>	
wstring	basic_string <wchar_t></wchar_t>	
u16string	basic_string <char16_t></char16_t>	
u32string	basic_string <char32_t></char32_t>	

2. stream class

type	definition	
ostream	basic_ostream <char></char>	
istream	basic_istream <char></char>	
wostream	basic_ostream <wchar_t></wchar_t>	
wistream	basic_istream <wchar_t></wchar_t>	

C++ STL 에 포함된 문자열 관련 대부분 클래스는 CharT 를 인자로 가지는 템플릿 형태로 제공.