

UNBIASED ESTIMATORS

Definition

Consider a random variable $x:\Omega\to \mathbf{R}^n$. The error of the estimate $\xi\in \mathbf{R}^n$ is the random variable $e:\Omega\to \mathbf{R}^n$ which is defined by $e(\omega)=x(\omega)-\xi$. The *bias* of an estimate is the expected value of the error. An estimate is *unbiased* if it has zero bias.

Likewise, if we have another random variable $y: \Omega \to \mathbf{R}^m$, then the error of the estimator $f: \mathbf{R}^m \to \mathbf{R}^n$ is the random variable $e: \Omega \to \mathbf{R}^n$ defined by $e(\omega) = f(x(\omega)) - y(\omega)$.

