

1. Problem Definition

The correlation between video moments and text is crucial for task of video moment retrieval (VMR), yet there is a scarcity of large-scale datasets.

2. Solution

- A video diffusion model that synthesises training data
- A data selection module that selects beneficial data for the VMR task

Generative Video Diffusion for Unseen Novel Semantic Video Moment Retrieval

Dezhao Luo¹, Shaogang Gong¹, Jiabo Huang², Hailin Jin³, Yang Liu^{4,5}

¹Oueen Mary University of London, ²Sony AI, ³Adobe Research,

⁴WICT, Peking University, ⁵State Key Laboratory of General Artificial Intelligence, Peking University,

Video Diffusion Model

7. Conclusion

Hybrid

Generated Dataset

Sony Al

4. Data Generation

A person is eating sandwich (p;)

A person is washing hand in the sink (p_e)

a. FVE changes the action in a video and maintains other details.

b. FVE is able to generate highquality training data that benefits the VMR task (44.89%vs 44.01%)

5. Data Selection

Cross-modal relevance: $s_c(p_e, m_e) = \frac{1}{N} \sum_{i=1}^{N} \cos(\text{VLM}(p_e), \text{VLM}(f_{m_e}^i))$

 $s_u(m_s,m_e) = rac{1}{N} \sum_{i=1}^N \cos(ext{VM}(f_{m_s}^i), ext{VM}(f_{m_e}^i))$ Uni-modal structure:

 $D_{\mathrm{mpd}} = \mathrm{TOP}_l(\{(d, -\mathrm{VMR}(d)) \mid d \in D_{cu}\})$ Model performance:

