Astron. Astrophys. Suppl. Ser. 83, 491-500 (1990)

Photoelectric photometry of chemically peculiar stars at the Catania astrophysical observatory. I. Observatory of HD 2453, HD 71866, HD 72968 and HD 126515

F.A Catalano $(^{1,3})$ and F. Leone $(^{2,3})$

- (1) Instituto di Astronomia, Università di Catania, I-95125 Catania, Italy
- (2) Osservatorio Astrofisico di Catania, Italy
- (3) C.N.R.- G.N.A. Unità di Catania, Italy

Received July 10, accepted December 27, 1989

Abstract. — Photoelectric observations of four CP stars are presented which were carried out from 1969 through 1975 at the Catania Astrophysical Observatory in the *UBV* natural system. For the star HD 2453 a revised value (546.87) of the period is derived from the magnetic field data available in the literature which satisfies the photometric observations. The periods of the stars HD 71866 and HD 72968 are confirmed to be 6.80054 and 11.305 days respectively. For the long period variable HD 126515 Preston's 130.0 days value, deduced from the magnetic field variations, is shown to be the period of the light variations too.

Key words: CP stars — Light variability — HD 2453 — HD 71866 — HD 72968 — HD 126515.

1. Introduction.

Knowledge of the period of variability of the chemically peculiar (CP) stars of the upper main sequence is fundamental to understand the complex phenomenology presented by these stars, which is currently interpreted in terms of the oblique rotator model (Babcock, 1949; Stibbs, 1950; Deutsch, 1958; Preston, 1971a).

Photoelectric photometry is well-suited in this respect because it necessitates relatively small telescopes and gives a relatively high accuracy in short observing times.

A long-term programme of period determination of CP stars by photoelectric photometry was undertaken in 1967 at the Catania Astrophysical Observatory and the stars were mainly chosen among those for which magnetic observations were available in the literature.

In referring to the various subgroups of CP stars we will use Preston's (1974) nomenclature, according to which, for example, CP2 refers to the stars in which lines of Si, Cr, Sr, Eu, etc. are enhanced (these are also known in the literature as magnetic stars).

2. Observations, reduction and analysis of the data.

The photoelectric observations presented here have been carried out at the stellar station of the Catania Astrophysical Observatory from 1969 through 1975 in our natural *UBV* system with the telescopes, equipments and procedures decribed in Blanco *et al.* (1978).

The programme stars and the used comparison stars are listed in table I: the spectral types and peculiarities for the programme stars are taken from the "General

TABLE I. — Data on programme stars and comparison stars. The spectrum and peculiarity type for the programme stars are from "The General Catalogue of Ap and Am Stars" (Renson et al., in preparation). The data for the comparison stars are from "The Bright Star Catalogue" (Hoffleit and Jaschek, 1982) or from the Smithsonian Astrophysical Observatory Star Catalogue.

Programme	stars	Comparison	stars	
HD2453	A1 Sr Eu Cr	HD1439 = HD 952 =		
HD71866	A1 Eu Sr Si	HD71844 = HD70273 =		
HD72968	A0 Sr Cr	HD73451 = HD73997 =		•
HD126515	A2 Cr Sr	HD127167 = HD125489 =		

Catalogue of the Ap and Am Stars" by Renson et al. (in preparation), while the data for the comparison stars are taken from the 41th revised edition of "The Bright Star Catalogue" (Hoffleit and Jaschek, 1982) or from the Smithsonian Astrophysical Observatory Star Catalog (Smithsonian Institution Publ. N. 4652, Washington, 1971).

At least two comparison stars were used during the various runs in order to secure ourselves against the possibility that some of them could be variable. The magnitude differences in each filter between the programme and the comparison stars were computed by means of the formula:

$$\Delta m = \frac{1}{2} \left[(CP - C_1) + (CP - C_2) + \langle C_2 - C_1 \rangle \right]$$
 (1)

where $\langle C_2 - C_1 \rangle$ is the annual average value of the magnitude differences between the comparison stars: this term has been introduced in formula (1) in order to take into account possible systematic differences in the instrumental photometric system due to alterations of the reflectivity of the telescope mirrors, transparency of the filters, and so on. Moreover the standard deviation of this term has been found to be very useful to have an estimate of the behavior of the comparison stars. In any case the changes of $\langle C_2 - C_1 \rangle$ for all the stars presented here never exceeded 0.015 magnitudes.

Search for periodicity has been carried out by means of the Fourier analysis of unequally spaced data technique as suggested by Deeming (1975). To distinguish if a peak in the periodogram was noise or signal we looked for peaks present simultaneously in all three filters. In the case more than one significant peak was present we choose the one that minimized the scatter of the observations around the function:

$$\Delta m = A_0 + A_1 \sin \left(2\pi (t - t_0)/P + \phi_1 \right)$$

$$+ A_2 \sin \left(4\pi (t - t_0)/P + \phi_2 \right)$$
(2)

where:

- Δm is the magnitude difference in each filter computed by (1);
- t is the JD time of observation;
- t_0 is the initial epoch (given as J.D.₀ in Tab. II);
- P is the period in days;
- A_i and ϕ_i are the amplitudes and the phases.

When a reliable value of the period was found the data were phased by means of the simple formula:

$$\phi = (J.D. - J.D._0)/P$$
 (3)

where $J.D._0$ is the assumed initial epoch and P is the period (in days). The assumed phase is of course the fractional part of the right-hand side of equation (3). For each programme star the initial epoch ($J.D._0$), the adopted values of the period and the empirically estimated errors in these quantities are summarized in table II.

The parameters of the least-squares fit of the light curves are reported in table III.

3. Results for individual stars.

Here we present the observations of the individual stars and the results obtained.

TABLE II. — The ephemeris elements for the programme stars used to compute the phase by means of formula (3).

Star	Assume	Period	
	JD_o	Instant of	
HD2453	2442288.00 ±0.50	H_{eff} minimum	546.87 ±0.25
HD71866	$2432957.90 \\ \pm 0.02$	Positive Crossover	$6.80054 \\ \pm 0.00002$
HD72968	$2432897.68 \\ \pm 0.23$	H_{eff} maximum	$11.305 \\ \pm 0.002$
HD126515	2437015.00 ±1.00	H _s maximum	130.0 ±0.1

TABLE III. — Parameters of the least-square fit of the hight curves according to formula (2) in the text. In the last column the standard deviation σ (in magnitudes) is given.

Star	Filter	A_0	A_1	A_2	ϕ_1	ϕ_2	σ
HD2453	U	+1.17503	00709	00138	089	025	0.0010
	B	+1.11216	00536	00150	150	075	0.0008
	V	+1.01617	+.00593	00483	244	+.037	0.0010
HD71866	U	-0.58553	+.01418	+.00496	008	+.332	0.0012
	B	-0.46827	+.01262	+.00575	+.047	+.131	0.0013
	V	-0.35757	00682	00587	+.434	+.062	0.0011
HD72968	U	-1.47371	+.00829	00868	291	+.156	0.0012
	B	-1.37510	00220	+.01418	011	273	0.0018
	V	-0.92191	00859	01493	+.174	+.213	0.0012
HD126515	U	+0.85968	00872	+.00862	064	+.063	0.0012
	B	+0.98596	01763	+.00735	825	+.082	0.0015
	V	+1.11946	02265	+.00911	905	+.053	0.0019

3.1 HD 2453 = GC 553 = GR And. — The possible variability of the spectrum and of the effective magnetic field of the star HD 2453 (A1, Sr Eu Cr) was firstly pointed out by Babcock (1958a) who also suggested a general similarity (spectral and magnetic) to the long period magnetic variable star HD 188041 (HR 7575).

Photoelectric observations of HD 2453 in *UBV* have been carried out by Stepien (1968) and Winzer (1974a, b). Both these authors found HD 2453 to be constant on a short time baseline, although a periodicity of at least several months was not excluded by Stepien. No spectral variations were also evident on a ten years baseline (Winzer, 1974a). On the

other hand, Preston (1970a) included HD 2453 into a list of suspected long period variables, giving evidence in support of this hypothesis. On the basis of uvby observations Wolff and Morrison (1973) suggested HD 2453 to be definitely variable but on a time scale of the order of two years. This result was later confirmed by Wolff (1975) who derived a period of 525 days for the variability of the magnetic field intensity and the c_1 photometric index.

Photoelectric observations of HD 2453 were carried out from 1970 to 1974 using the comparison stars listed in table I. First reduction of the observations confirmed the results of Wolff (1975), showing that HD 2453 has a definite variation in V, but no improvement of the period was obtained (Catalano and Vaccari, 1985).

To check the reliability of the 525 days period we decided to use the magnetic data by Wolff (1975) together with those by Babcock (1958a) because of the larger time lag between these two sets, both sets as a whole covering a 24 years time interval, i.e. about 16 times the 525 days period. However, as it has been pointed out by Hensberge et al. (1979), it is of basic importance to correct the published effective magnetic field values for inconsistencies introduced by the use of different instrumentations, if one wants to compare various sets of data. Hence we transformed the Mt. Wilson and Mt. Palomar measurements by Babcock (1958a) into the Lick system, by applying the linear transformation formula and the suitable coefficients given in the paper by Hensberge et al. (1979). Plots of all the magnetic data versus the phase computed by means of the 525 days period gave no satisfactory representation. Performing the search for the period by the method and the procedure described above and including also our photometric observations, we obtained a final value of 546.87 days for the period which gave the best phase diagrammes for all sets of data.

In figure 1 the magnetic field measurements and the photometric c_1 index (Wolff, 1975) are plotted versus the phase computed by means of the adopted ephemeris elements:

$$JD (H_{eff} minimum) = 2442288.0 + 546.87 E$$
 (4)

The magnitude differences between HD 2453 and the comparison stars, computed by means of formula (1), are listed in table IV and are plotted in figure 2 versus the phase computed according to the ephemeris elements (4). Each point in figure 2 represents the nightly average of multiple observations, mainly 2 to 3 observations per night, with a typical standard deviation of ± 0.008 magnitudes.

3.2 HD 71866 = GC 11639 = TZ Lyn. — The magnetic field variations of the stars HD 71866 (A1, Eu Sr Si) have been studied by Babcock (1956; 1958a, b) and by Preston and Pyper (1965).

Photoelectric observations of HD 71866 have also been extensively carried out both in *UBV* and *uvby* photometric systems and are published in the literature (for complete references see Catalano and Renson, 1984 and 1988) with

TABLE IV. — Observations of HD 2453. The magnitude differences HD 2453 minus the comparison stars HD 1439 and HD 952 are computed by means of formula (1) in the text.

JD 2440000+	ΔU	JD 2440000+	ΔΒ	JD 2440000+	ΔV
838.5825	1.173	838.5825	1.106	838.5825	1.012
854.6154	1.174	854.6154	1.105	854.6154	1.031
860.5930	1.160	860.5930	1.113	860.5930	1.028
864.5332	1.167	864.5332	1.106	864.5332	1.019
870.5368	1.172	870.5368	1.115	870.5368	1.033
886.4930	1.176	886.5930	1.106	886.5930	1.028
894.4591	1.181	894.4591	1.107	894.4591	1.036
896.4609	1.171	896.4609	1.108	896.4609	1.020
1177.5607	1.185	1177.5607	1.116	1177.5607	1.004
1187.5816	1.179	1187.5816	1.128	1187.5816	1.002
1190.5712	1.180	1190.5712	1.119	1190.5712	1.005
1206.4917	1.181	1206.4917	1.125	1206.4917	1.005
1215.5343	1.177	1215.5343	1.122	1215.5343	1.003
1218.5235	1.176	1218.5235	1.118	1218.5235	1.014
1233.4823	1.178	1233.4823	1.112	1233.4823	1.005
1236.4893	1.186	1236.4893	1.117	1236.4893	1.009
1246.4177	1.179	1246.4177	1.117	1246.4177	1.020
1261.3055	1.174	1261.3055	1.108	1261.3055	1.002
1264.4380	1.180	1264.4380	1.122	1264.4380	1.008
1503.5679	1.172	1503.5679	1.115	1503.5679	1.013
1506.5615	1.177	1506.5615	1.105	1506.5615	1.004
1516.5599	1.170	1516.5599	1.110	1516.5599	1.010
1518.5624	1.185	1518.5624	1.110	1518.5624	1.022
1530.5916	1.176	1530.5916	1.101	1530.5916	1.002
1531.5553	1.170	1531.5553	1.100	1531.5553	1.013
1539.5818	1.176	1539.5818	1.111	1539.5818	1.020
1543.5755	1.175	1543.5755	1.114	1543.5755	1.018
1560.5882	1.168	1560.5882	1.113	1560.5882	1.010
1571.5747	1.176	1571.5747	1.117	1571.5747	1.025
1594.4968	1.179	1594.5968	1.117	1594.5968	1.022
1600.4730	1.182	1600.4730	1.116	1600.4730	1.024
1607.4664	1.187	1607.4664	1.115	1607.4664	1.018
1608.3989	1.176	1608.4989	1.112	1608.4989	1.022
1636.4341	1.198	1636.4341	1.116	1636.4341	1.021
1645.3800	1.180	1645.3800	1.118	1645.3800	1.009
2004.3320	1.159	2004.3320	1.111	2004.3320	1.020
2281.5929	1.177	2281.5929	1.115	2281.5929	1.018
2287.5001	1.173	2287.5001	1.114	2287.5001	1.000
2300.5474	1.171	2300.5474	1.111	2300.5474	1.006
2301.5801	1.166	2301.5801	1.109	2301.5801	1.010
2314.5036	1.172	2314.5036	1.097	2314.5036	1.003
2328.3917	1.175	2328.3917	1.118	2328.3917	1.016
2399.2953	1.155	2399.3953	1.103	2399.3953	1.006
	1.100		1.100	2500.5000	1.000

values of the period which have been progressively and slightly improved from the initial value of 6.7976 days established by Babcock (1956) to the currently assumed value of 6.80054 days (Hildebrandt *et al.*, 1985). It is important to note that all observers always used the same comparison star HD 71844.

Our photoelectric observations were performed in 1971 with HD 71844 and HD 70273 as comparison stars. Since the value of the period is well established we did not per-

form a complete search, but we only checked its reliability, which was confirmed indeed. The magnitude differences HD 71866 minus the comparison stars, computed by means of formula (1), are listed in table V and are plotted in figure 3 *versus* the phase computed on the basis of the ephemeris elements:

JD (positive crossover) =
$$2432957.9 + 6.80054 E$$
 (5)

where the initial epoch is taken from Babcock (1956).

TABLE V. — Observations of HD 71866. The magnitude differences HD 71866 minus the comparison stars HD 71844 and HD 70273 are computed by means of formula (1) in the text.

3.3 HD 72968 = HR 3398 = 3 Hya = HV Hya. — HD 72968 (A0, Sr Cr) is the first star for which an estimate of the intensity of the surface magnetic field has been carried out on the basis of the study of the Zeeman intensification of spectral lines on the saturated part of the curve of growth (Hensberge and de Loore, 1974).

Photoelectric observations of HD 72968 have been carried out in *uvby* by Wolff and Wolff (1971) who derived a period of 5.57 days, which indeed did not satisfy too well the magnetic field observations by Babcock (1958a). From the analysis of extensive photoelectric photometry performed at ESO-La Silla, Maitzen *et al.* (1978) were able to evidence

TABLE VI. — Observations of HD 72968. The magnitude differences HD 72968 minus the comparison stars HD 73451 and HD 73997 are computed by means of formula (1) in the text.

JD 2440000+	ΔU	JD 2440000+	ΔΒ	JD 2440000+	Δ
1036.4247 1036.4473	-0.585 -0.595	1036.4295 1036.4429	-0.460 -0.469	1036.4342 1036.4381	-0.356 -0.356
1036.4520	-0.590	1036.4572	-0.466	1036.4617	-0.353
1036.4754	-0.606	1036.4701	-0.466	1036.4662	-0.355
1043.3555	-0.582	1043.3610	-0.474	1043.3666	-0.361
1043.3719	-0.600	1043.3776	-0.483	1043.3834	-0.360
1056.3162	-0.589	1056.3257	-0.476	1056.3327	-0.354
1060.3152	-0.576	1060.3280	-0.450	1060.3359	-0.340
1060.3435	-0.568	1060.3503	-0.475	1060.3580	-0.359
1060.3673	-0.568	1060.3768	-0.469	1060.3846	-0.347
1060.3930	-0.583	1060.4019	-0.481	1060.4104	-0.343
1060.4194	-0.583	1060.4268	-0.467	1060.4346	-0.346
1062.4059	-0.598	1062.4134	-0.498	1062.4220	-0.350
1062.4293	-0.595	1062.4392	-0.493	1062.4472	-0.366
1062.4568	-0.607	1062.4650	-0.509	1062.4715	-0.364
1063.4080	-0.593	1063.4184	-0.472	1063.4261	-0.362
1066.3095	-0.573	1066.3170	-0.465	1066.3240	-0.353
1066.3316	-0.564	1066.3399	-0.464	1066.3470	-0.341
1066.3559	-0.568	1066.3643	-0.457	1066.3712	-0.348
1066.3782	-0.571	1066.3851	-0.462	1066.3927	-0.360
1068.3408	-0.590	1068.3484	-0.469	1068.3559	-0.377
1068.3638	-0.598	1068.3707	-0.469	1068.3774	-0.363
1068.3844	-0.599	1068.3912	-0.473	1068.3977	-0.376
1068.4046	-0.595	1068.4111	-0.475	1068.4189	-0.360
1071.3177	-0.580	1071.3274	-0.449	1071.3344	-0.373
1071.3413	-0.567	1071.3483	-0.453	1071.3580	-0.367
1071.3650	-0.572	1071.3726	-0.467	1071.3803	-0.361
1071.3879	-0.580	1071.3949	-0.459	1071.4017	-0.368
1071.4087	-0.584	1071.4150	-0.454	1071.4209	-0.361
1072.3121	-0.576	1072.3191	-0.454	1072.3302	-0.350
1072.3372	-0.571	1072.3441	-0.457	1072.3517	-0.342
1072.3588	-0.586	1072.3655	-0.453	1072.3725	-0.358
1072.3802	-0.594	1072.3872	-0.459	1072.3982	-0.349
1072.4055	-0.582	1072.4123	-0.461	1072.4187	-0.358
1089.3339	-0.596	1089.3413	-0.470	1089.3489	-0.365
1089.3566	-0.606	1089.3656	-0.466	1089.3746	-0.370
		1089.3900	-0.474	1089.3976	-0.363
1090.3295	-0.616	1090.3385	-0.485	1090.3469	-0.359

JD 2440000+	ΔU	JD 2440000+	ΔΒ	JD 2440000+	ΔV
1631.6329 1631.6674 1636.6437 1636.6690 1639.6568 1640.6641 1641.6397 1641.6650 1655.6372 1662.6375	-1.479 -1.481 -1.494 -1.496 -1.472 -1.468 -1.461 -1.470 -1.482 -1.464	1631.6346 1631.6695 1636.6451 1639.6580 1640.6657 1641.6314 1641.6664 1655.6386 1662.6389	-1.385 -1.383 -1.404 -1.380 -1.374 -1.388 -1.380 -1.375 -1.362	1631.6362 1631.6715 1636.6463 1636.6715 1639.6591 1640.6669 1641.6429 1641.6676 1655.6398 1662.6404	-0.920 -0.921 -0.943 -0.944 -0.999 -0.924 -0.919 -0.914 -0.901 -0.908
2423.4492 2423.4780 2423.5087 2427.4582 2427.4857 2427.5215 2431.4788 2431.5128 2433.4702	-1.468 -1.460 -1.461 -1.476 -1.474 -1.482 -1.460 -1.463 -1.478	2423.4511 2423.4800 2423.5106 2427.4594 2427.4881 2427.5193 2431.4770 2431.5145 2433.4687	-1.371 -1.374 -1.403 -1.382 -1.381 -1.380 -1.384 -1.371 -1.391	2423.4532 2423.4818 2423.5121 2427.4528 2427.4905 2427.5175 2431.4755 2431.5163 2433.4669	-0.917 -0.918 -0.929 -0.934 -0.925 -0.927 -0.913 -0.911 -0.935
2433.4918 2433.5170 2434.4792 2434.5051 2455.4119 2455.4384 3524.5202 3524.5316	-1.486 -1.486 -1.471 -1.469 -1.472 -1.462 -1.493 -1.495	2433.4933 2433.5153 2434.4776 2434.5064 2455.4106 2455.4400 3524.5317 3524.5400	-1.390 -1.394 -1.380 -1.385 -1.376 -1.374 -1.397 -1.407	2433.4946 2433.5137 2434.4760 2434.5076 2455.4091 2455.4414 3524.5202 3524.5400	-0.938 -0.933 -0.921 -0.927 -0.928 -0.926 -0.952 -0.945
3524.5400 3524.5478 3850.6253 3850.6424 3850.6685 3853.5967 3853.6009 3853.6454	-1.491 -1.499 -1.476 -1.471 -1.465 -1.482 -1.487 -1.480	3524.5478 3850.6287 3850.6424 3850.6435 3853.5967 3853.6088 3853.6248 3853.6289	-1.402 -1.358 -1.350 -1.354 -1.365 -1.366 -1.367	3524.5479 3524.5550 3850.6424 3850.6501 3850.6804 3853.5967 3853.6328 3853.6454	-0.960 -0.950 -0.923 -0.922 -0.913 -0.932 -0.928 -0.933

a double wave variation in all filters with a periodicity of 11.305 days. This value of the period has been very recently confirmed by Heck *et al.* (1987).

Our photoelectric observations of HD 72968 were carried out from 1972 to 1975 using HD 73451 and HD 73997 as comparison stars (see Tab. I). HD 73451 was also one of the comparison stars used by Wolff and Wolff (1971), while HD 73997 was the comparison star used by Maitzen *et al.* (1978) and by Heck *et al.* (1987). As in the case of HD 71866, also for HD 72968 the period appears to be fairly well established and with far more observations than ours, so that we did not carry out the search for periodicity, but we only checked it.

The magnitude differences, HD 72968 minus the comparison stars, computed by means of formula (1), are listed in table VI and are plotted in figure 4 *versus* the phase computed on the basis of the ephemeris elements taken from Maitzen *et al.* (1978):

$$JD (H_{eff} Maximum) = 2432897.68 + 11.305 E$$
 (6)

From figure 4 a slight difference in the heights of the maxima in all three filters is evident, in good agreement with the results of Maitzen *et al.* (1978).

3.4 HD 126515 = GC 19462 = FF Vir. — The star HD 126515 (A2, Cr Sr) is one of the very few CP stars in which the spectral lines split in the Zeeman components have been observed. This fact allowed Preston (1970b) to succeed in measuring the average surface field $H_{\rm s}$ which resulted to vary between 10 and 17 kG with a periodicity of 130 days. With the same period of the magnetic field and in phase with of the elements Si, Cr, Fe, Ti, Sr, and Eu.

No photometric observations of HD 126515 are available in the literature apart from a Δa study of the $\lambda 5200$ continuum depression carried out by Hensberge *et al.* (1986). In this study the association of the surface region, in which the high peculiarity values originate, with the regions of enhanced spectral lines strength was inferred, rather than with the local magnetic field strength.

The observations of HD 126515 were carried out from 1972 to 1975 using HD 127167 and HD 125489 as comparison stars (see Tab. I). Search for periodicities with the procedure outlined above confirmed the 130 days value, which, on the other hand, was found by Preston (1970b) by analyzing observations obtained in a time interval longer than 12 years since he included in his work the measurements based on plates taken by Babcock (1958a). Hence we assumed the Preston's (1970b) ephemeris elements:

$$JD(H_s Maximum) = 2437015.0 + 130.0 E$$
 (7)

The magnitude differences HD 126515 minus the comparison stars, computed by means of formula (1), are listed in table VII and are plotted in figure 5 versus the phase obtained using the ephemeris (7). It has to be noted that in figure 5 each point represents the nightly average of multi-

TABLE VII. — Observations of HD 126515. The magnitude differeces HD 126515 minus the comparison stars HD 127167 and HD 126489 are computed by means of formula (1) in the text.

ple observations (from a minimum of three to a maximum of six observations per night) with a typical standard deviation of ± 0.005 magnitudes.

From figure 5 it is evident that the largest amplitude of the variations occurs in the V filter, where it amounts to about 0^m05 , and decreases to 0^m04 in B and to 0^m03 in U. From the same figure a different behavior is also evident for the light curves in the three colours: while in V and B the minimum of light is sharp and quite well defined, in U it appears quite shallow and not so well defined. Interesting enough, the instant of minimum in V and B (where it can be better appreciated) occurs at around the phase 0.6, just when the surface magnetic field attains its lowest intensity and all the line intensities are at their minimum (see Figs. 3 and 7 in: Preston, 1970b).

4. Conclusion.

Interpreting the observed light variations as due to an oblique rotating star, the equatorial rotational velocity $v_{\rm e}$ of the star can be computed by means of the simple formula:

$$v_{\rm e} = 2\pi R/P = 50.613 \ R/P$$
 (8)

where R is the radius in solar units and P is the period in days. When measurements of the projected rotational

496

The radius of a star can be evaluated by using the formula:

$$\log (R/R_{\odot}) = 0.2 \left[42.361 - M_{\text{bol}} - 10 \log (T_{\text{eff}}) \right]$$
 (9)

which implies the knowledge of the bolometric magnitude and of the effective temperature. The choice of the values of these quantities is a complicated task because of the special atmospheric structure of the CP stars. As it is well known, enhanced line blocking and backwarming may significantly alter the overall flux distribution. This means that a straightforward application to the CP stars of the usual calibrations appropriate for normal stars may lead to noticeable differences.

Valuable efforts have been done in recent years by many authors to establish reliable empirical and theoretical calibrations of the fundamental parameters of the CP stars. From a statistical analysis of the apparent rotational velocities and rotational periods of 78 CP2 stars having periods shorter than 10 days, Hensberge and Van Rensbergen (1990) have evaluated the distribution of the radii of these stars. Grouping them into three subsamples: Si stars, Si and other peculiarities or other plus Si, and other CP2 (i.e. the Cr, Sr and the rare earths CP2 stars) Hensberge and Van Rensbergen found the mean radii to be:

- 3.18 R_{\odot} for Si stars
- 2.84 R_{\odot} for Si plus other peculiarities
- 2.24 R_{\odot} for the other (cooler) CP2 stars

Out our four stars, only HD 71866 is in the sample studied by Hensberge and Van Rensbergen, and, more precisely, in the second subsample. The stars HD 2453 and HD 126515 share the peculiarities of the third subsample, the one of the cooler CP2 stars. As far as it concerns the spectral peculiarities, HD 72968 should be considered as belonging to the third subsample, but, as Maitzen et al. (1978) have pointed out, HD 72968 is a hotter CP2 star, so that, as far as the value of the radius is concerned, it seems to be more appropriate to assign it the value typical of the subsample "Si plus other peculiarities". On the other hand the 2.84 R_{\odot} value of the radius proper to this subsample is in good

TABLE VIII. — Observed and computed quantities necessary to compute the inclination angle i. The rotational velocity v_e is computed by means of formula (8) in the text. The reference codes for the values of v_e sin (i) are the following: P71 = Preston, 1971b; HL74 = Hensberge and de Loore, 1974; HV89 = Hensberge and Van Rensbergen, 1989.

Star	Period (days)	R/R_{\odot}	v _e (Km/s)	v _e sini (Refer.)	i
HD2453	546.87	2.24	0.2	< 6 (P71)	•
HD71866	6.80054	2.84	21.1	12 (HV89)	35
HD72968	11.305	2.84	12.7	11 (HL74)	60
HD126515	130.0	2.24	0.9	< 6 (P71)	-

agreement with the range (2.75 - 3.0) estimated by Maitzen et al. (1978) by means of formula (9).

Projected rotational velocity measurements or estimates for all our programme stars are available in the literature and are reported in column 5 of table VIII together with the references.

Introducing into formula (8) the appropriate mean value of the radius we obtain the rotational velocity. From the ratios $(v_e \sin{(i)})/v_e$ we can evaluate the i angle values which are reported in table VIII. For the two longest period stars (i.e. HD 2453 and HD 126515) only upper values are given for the $v_e \sin{(i)}$, which are so high with respect to the v_e we got that they do not even allow upper limit estimates of i.

In conclusion we would like to stress the importance of determining the light curves of CP2 stars. The fact that they are quite satisfactorily represented by a sinusoid and its first harmonic strongly supports the presence of only two patches, or conversely a unique ring, with anomalous abundances on the surface of these stars (Mathys *et al.*, 1989) and might have remarkable consequences on the comprehension of the link between the light and spectral variations and the magnetic field structure.

Aknowledgements.

The authors would like to thank the staff of the Catania Astrophysical Observatory for their help during the observing runs.

References

BABCOCK H.W.: 1949, Observatory 69, 191.

BABCOCK H.W.: 1956, Astrophys. J. 124, 489.

BABCOCK H.W.: 1958a, Astrophys. J. Suppl. Ser. 3, 141.

BABCOCK H.W.: 1958b, Astrophys. J. 128, 228.

BLANCO C., CATALANO F.A., STRAZZULLA G.: 1978, Astron. Astrophys. Suppl. Ser. 31, 205.

CATALANO F.A., RENSON P.: 1984, Astron. Astrophys. Suppl. Ser. 55, 371.

N°3

CATALANO F.A., RENSON P.: 1988, Astron. Astrophys. Suppl. Ser. 72, 1. CATALANO F.A., VACCARI S.: 1985, Inf. Bull. Var. Stars 2687.

DEEMING T.J.: 1975, Astrophys. Space Sci. 36, 137.

DEUTSCH A.J.: 1958, in "Electromagnetic Phenomena in Cosmical Physics" B. Lehnert Ed., I.A.U. Symp. 6, 209.

HECK A., MATHYS G., MANFROID J.: 1987, Astron. Astrophys. Suppl. Ser. 70, 33.

HENSBERGE H., de LOORE C.: 1974, Astron. Astrophys. 37, 367.

HENSBERGE H., MAITZEN H.M., CATALANO F.A., SCHNEIDER H., PAVLOVSKI K., WEISS W.W.: 1986, Astron. Astrophys. 155, 314.

HENSBERGE H., VAN RENSBERGEN W.: 1990, Astron. Astrophys. (in press).

HENSBERGE H., VAN RENSBERGEN W., GOOSSENS M., DERIDDER Gh.: 1979, Astron. Astrophys. 75, 83.

HILDEBRANDT G., SCHÖNEICH W., LANGE D., ZELWANOWA E., HEMPELMANN A.: 1985, Publ. Astrophys. Obs. Potsdam 32, 5.

HOFFLEIT D., JASCHEK C.: 1982, "The Bright Star Catalogue" 4th revised edition, Yale University Observatory.

MAITZEN H.M., ALBRECHT R., HECK A.: 1978, Astron. Astrophys. 62, 199.

MATHYS G., MAITZEN H.M., NORTH P., HENSBERGE H., WEISS W.W., ANSARI S., CATALANO F.A., DIDELON P., FARAGGIANA R., FUHRMANN K., GERBALDI M., RENSON P., SCHNEIDER H.: 1989, *The Messenger* 55, 41.

PRESTON G.W.: 1970a, Publ. Astron. Soc. Pacific 82, 878.

PRESTON G.W.: 1970b, Astrophys. J. 160, 1059.

PRESTON G.W.: 1971a, Publ. Astron. Soc. Pacific. 83, 571.

PRESTON G.W.: 1971b, Astrophys. J. 164, 309.

PRESTON G.W.: 1974, Ann. Rev. Astron. Astrophys. 12, 257.

PRESTON G.W., PYPER D.M.: 1965, Astrophys. J. 142, 983.

STEPIEN K.: 1968, Astrophys. J. 154, 945.

STIBBS D.W.N.: 1950, Mon. Not. R. Astron. Soc. 110, 395.

WINZER J.E.: 1974a, Astron. J. 79, 124.

WINZER J.E.: 1974b, Thesis - University of Toronto.

WOLFF S.C.: 1975, Astrophys. J. 202, 127.

WOLFF S.C., MORRISON N.D.: 1973, Publ. Astron. Soc. Pacific 85, 141.

WOLFF S.C., WOLFF R.J.: 1971, Astron. J. 76, 422.

FIGURE 1. — The Wolff (1975) Strömgren index c_1 (a) and the magnetic field (b) variations of HD 2453 *versus* the phase computed according the ephemeris elements (4). In (b) the symbols represent the various sets of observations, transformed into the Lick system as outlined in the text, with the meaning: (\triangle) Mt. Wilson and \square Mt. Palomar (Babcock, 1958a), (+) Lick and (\circ) Mauna Kea (Wolff, 1975).

FIGURE 2. — Light curves of HD 2453. The magnitude differences between HD 2453 and the comparison stars HD 1439 and HD 952 are computed by means of formula (1) in the text. The phases are computed according to the ephemeris elements (4). The solid line is a least-square fit of the observations by formula (2). In the magnitude axis one subdivision is 0.01 mag.

FIGURE 3. — Light curves of HD 71866. The magnitude differences between HD 71866 and the comparison stars HD 71844 and HD 70273 are computed by means of formula (1) in the text. The phases are computed according to the ephemeris elements (5). The solid line is a least-square fit of the observations by formula (2). The magnitude scale is the same as in figure 2.

FIGURE 4. — Light curves of HD 72968. The magnitude differences between HD 72968 and the comparison stars HD 73451 and HD 73997 are computed by means of formula (1) in the text. The phases are computed according to the ephemeris elements (6). The solid line is a least-square fit of the observations by formula (2). The magnitude scale is the same as in figure 2.

500

FIGURE 5. — Light curves of HD 126515. The magnitude differences between HD 126515 and the comparison stars HD 127167 and HD 125489 are computed by means of formula (1) in the text. The phases are computed according to the ephemeris elements (7). The solid line is a lest-square fit of the observations by formula (2). The magnitude scale is the same as in figure 2.

phase