Code A

Ques No.	Opt ion	Ans		
1		True		
2	D	3		
3	D	a may be any number, b = 2		
4	В	infinite solutions		
5	С	x ∈ (-∞, 1)		
6		0.5		
7	D	None of these		
8	С	0		
9	D	$y(x) = 0.5(3x - x^{-1})$		
10	Α	y = 4 tan 4x and x < 1/8		
11	Α	$(D^3 + D^2 + 4D + 4) y = 0$		
12	С	$f(x, y) = x^2 \cos^2 y + y \sin x \text{ on } R:$		
		$ x \le 1$, $ y < \infty$.		
13	Α	$2, 2 + 7x, 2 + 7x + 10.5x^2, 2 + 7x$		
		$+ 10.5x^2 + 10.5x^3$.		

Code B

Ques No.	Opt ion	Ans	
1	D	None of these	
2	С	0	
3	D	$y(x) = 0.5(3x - x^{-1})$	
4	Α	$y = 4 \tan 4x $ and $ x < 1/8$	
5	Α	$(D^3 + D^2 + 4D + 4) y = 0$	
6	С	$f(x, y) = x^2 \cos^2 y + y \sin x \text{ on } R$:	
		$ x \le 1$, $ y < \infty$.	
7	Α	$2, 2 + 7x, 2 + 7x + 10.5x^2, 2 + 7x$	
		$+ 10.5x^2 + 10.5x^3$.	
8		True	
9	D	3	
10	D	a may be any number, b = 2	
11	В	infinite solutions	
12	С	x ∈ (-∞, 1)	
13		0.5	

Code C

Ques No.	Opt ion	Ans		
1	Α	y = 4 tan 4x and x < 1/8		
2	Α	$(D^3 + D^2 + 4D + 4) y = 0$		
3	С	$f(x, y) = x^2 \cos^2 y + y \sin x \text{ on } R$:		
		$ x \le 1$, $ y < \infty$.		
4	A 2, 2 + 7x, 2 + 7x + $10.5x^2$, 2 +			
		$+ 10.5x^2 + 10.5x^3$.		
5		True		
6	D	3		
7	D	None of these		
8	С	0		
9	D	$y(x) = 0.5(3x - x^{-1})$		
10	D	a may be any number, b = 2		
11	В	infinite solutions		
12	С	x ∈ (-∞, 1)		
13		0.5		

Code D

Ques No.	Opt ion	Ans	
1	В	infinite solutions	
2	С	x ∈ (-∞, 1)	
3		0.5	
4	D	None of these	
5	С	0	
6	D	$y(x) = 0.5(3x - x^{-1})$	
7		True	
8	D	3	
9	D	a may be any number, b = 2	
10	Α	y = 4 tan 4x and x < 1/8	
11	Α	$(D^3 + D^2 + 4D + 4) y = 0$	
12	С	$f(x, y) = x^2 \cos^2 y + y \sin x \text{ on R} :$	
		$ x \le 1$, $ y < \infty$.	
13	Α	$2, 2 + 7x, 2 + 7x + 10.5x^2, 2 + 7x$	
		$+ 10.5x^2 + 10.5x^3$.	

Admission No		Section	
Semester: Winter	Code: A	Session: 2021-2022.	

Examination & Semester: Quiz-2, II Sem. B.Tech.

Subject: Mathematics-II (MCI102), IIT (ISM) Dhanbad Max. Marks: 13.
Time: 30 Minutes.

Instructions: 1. All questions are compulsory.

- 2. Each question carries one marks.
- 3. Each MCQ has only a single correct option

Q.1. Consider $\frac{d^2y}{dx^2} + p(x)\frac{dy}{dx} + q(x)y = 0$, $x \in I$, where $I \subset \mathbb{R}$ is an interval and p(x), q(x) are continuous functions on I. Decide if the following statement is true or false. If $y_1(x)$ and $y_2(x)$ are linearly independent solution of the above ODE on an interval I, they are linearly independent on any interval contained in I. If it is false, give a counterexample.

Q.2. If $x^2 + xy^2 = c$, where c is an arbitrary constant, is the general solution of the exact differential equation M(x,y)dx + 2xydy = 0, then M(1,-1) is

Q.3. $(3a^2x^2 + by\cos x) + (2\sin x - 4ay^3)\frac{dy}{dx} = 0$ is exact for

- (A) a may be any number, b = 3
- (B) a = 3, b = 4
- (C) a = 2, b = 5

(D)
$$a$$
 may be any number, $b = 2$ [1]

Q.4. Given initial value problem $2x\frac{dy}{dx} = 3(2y - 1)$ defined on the real line \mathbb{R} , such that $y(0) = \frac{1}{2}$, then it has

(A) unique solution (B) infinite solutions (C) no solution (D) finite solutions [1]

Q.5. The solution of the differential equation $\frac{dy}{dx} = y^2$, y(0) = 1 exists for all

- (A) $x \in (-\infty, \infty)$
- (B) $x \in (0, a]$, where a > 1
- (C) $x \in (-\infty, 1)$

(D)
$$x \in [1, a]$$
, where $a > 1$

Q.6. Find largest b such that in the interval [0, b], the existence of the solution is assured by Picard's Theorem for the following IVP:

$$\frac{dy}{dx} = y^2 + \cos^2 x; \quad x > 0; \ y(0) = 0$$

$$b = \underline{\hspace{1cm}}$$

Q.7. Which of the following functions is **not** an integrating factor for the differential equation ydx - xdy = 0?

(A)
$$-1/x^2$$
 (B) $1/y^2$ (C) $1/xy$ (D) None of these. [1]

Q.8. Consider two solutions $y_1(t)$ and $y_2(t)$ of differential equation y''-3y'+2y=0 such that $y_1(0)=2$, $y_1'(0)=2$, $y_2(0)=1$ and $y_2'(0)=1$. The Wronskian $W(y_1,y_2)$ at the point t=-1 is

(A)
$$2e^3$$
 (B) $2/e^3$ (C) 0 (D) e^2

- Q.9. If a set of functions $\{x, 1/x\}$ forms a basis of solutions of the equation $x^2y'' + xy' y = 0$. A solution when y(1) = 1, y'(1) = 2 is
- (A) y(x) = 0.5(3x x)
- (B) $y(x) = 0.5(2x x^{-1})$
- (C) y(x) = 0.5(2x x)

(D)
$$y(x) = 0.5(3x - x^{-1})$$

- Q.10. Find the solution and the largest possible interval for x, for which the existence theorem guarantees at least one solution of the IVP $y' = 16 + y^2$, y(0) = 0.
- (A) $y = 4 \tan 4x$ and |x| < 1/8
- (B) $y = 4 \tan 4x$ and |x| < 1/4
- (C) $y = 2 \tan 4x$ and |x| < 1/2
- (D) None of the above. [1]
- Q.11. The differential equation whose linearly independent solutions are $\cos 2x, \sin 2x$, and e^{-x} is $\left[Assume \ D \equiv \frac{d}{dx}\right]$.
- (A) $(D^3 + D^2 + 4D + 4) y = 0$
- (B) $(D^3 D^2 + 4D 4)y = 0$
- (C) $(D^3 + D^2 4D 4)y = 0$

(D)
$$(D^3 - D^2 - 4D + 4)y = 0$$
 [1]

- Q.12. Which of the following function satisfies the Lipschitz condition (with respect to y) on R?
- (A) $f(x,y) = y^{2/3}$ on $R: |x| \le 1, |y| \le 1$.
- (B) $f(x,y) = y^{1/2}$ on $R: |x| \le 1, 0 \le y < \infty$.
- (C) $f(x,y) = x^2 \cos^2 y + y \sin x$ on $R: |x| \le 1, |y| < \infty$.

- Q.13. The first four successive approximations of solutions of the IVP y' = 3y+1, y(0) = 2 are
- (A) $2, 2+7x, 2+7x+10.5x^2, 2+7x+10.5x^2+10.5x^3$.
- (B) $2, 2+7x, 2+7x-10.5x^2, 2+7x-10.5x^2+10.5x^3$.
- (C) 2, 2-7x, $2-7x-10.5x^2$, $2-7x-10.5x^2-10.5x^3$.
- (D) None [1]