

AD-A188 877 THE EFFECTS OF A DC ELECTRIC FIELD ON THE CURRENT
DRIVEN ION CYCLOTRON INSTABILITY(U) NAVAL RESEARCH LAB
WASHINGTON DC G GANGULI ET AL. 19 JAN 88 NRL-MR-6139
UNCLASSIFIED F/G 28/9 NL

1/1

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1961 A

Naval Research Laboratory

Washington, DC 20375-5000

DTIC FILE COPY

NRL Memorandum Report 6139

AD-A188 877

**The Effects of a D.C. Electric Field on the
Current Driven Ion Cyclotron Instability**

G. GANGULI AND Y. C. LEE

*Science Applications International Corporation
McLean, VA 22012*

P. K. CHATURVEDI, P. J. PALMADESSO AND S. L. OSSAKOW

Plasma Physics Division

January 19, 1988

DTIC
SELECTED
FEB 02 1988
S E C D

Approved for public release; distribution unlimited.

88 1 27 032

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE				Form Approved OMB No 0704-0188					
1a REPORT SECURITY CLASSIFICATION UNCLASSIFIED		1b RESTRICTIVE MARKINGS							
2a SECURITY CLASSIFICATION AUTHORITY		3 DISTRIBUTION/AVAILABILITY OF REPORT Approved for public release; distribution unlimited.							
2b DECLASSIFICATION/DOWNGRADING SCHEDULE									
4 PERFORMING ORGANIZATION REPORT NUMBER(S) NRL Memorandum Report 6139		5 MONITORING ORGANIZATION REPORT NUMBER(S)							
6a NAME OF PERFORMING ORGANIZATION Naval Research Laboratory	6b OFFICE SYMBOL (if applicable) Code 4780	7a NAME OF MONITORING ORGANIZATION							
6c ADDRESS (City, State, and ZIP Code) Washington, DC 20375-5000		7b ADDRESS (City, State, and ZIP Code)							
8a NAME OF FUNDING/SPONSORING ORGANIZATION ONR and NASA	8b OFFICE SYMBOL (if applicable)	9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER							
8c ADDRESS (City, State, and ZIP Code) ONR - Arlington, VA 22203 NASA - Washington, DC 20546		10 SOURCE OF FUNDING NUMBERS <table border="1"> <tr> <td>PROGRAM ELEMENT NO 61153N</td> <td>PROJECT NO W-16, 154</td> <td>TASK NO RR033-02-44</td> <td>WORK UNIT ACCESSION NO DN880-024</td> </tr> </table>			PROGRAM ELEMENT NO 61153N	PROJECT NO W-16, 154	TASK NO RR033-02-44	WORK UNIT ACCESSION NO DN880-024	
PROGRAM ELEMENT NO 61153N	PROJECT NO W-16, 154	TASK NO RR033-02-44	WORK UNIT ACCESSION NO DN880-024						
11 TITLE (Include Security Classification) The Effects of a D.C. Electric Field on the Current Driven Ion Cyclotron Instability									
12 PERSONAL AUTHOR(S) Ganguli,* G., Lee,+ Y.C., Chaturvedi, P.K., Palmadesso, P.J., and Ossakow, S.L.									
13a TYPE OF REPORT Interim	13b TIME COVERED FROM _____ TO _____	14 DATE OF REPORT (Year, Month, Day) 1988 January 19	15 PAGE COUNT 18						
16 SUPPLEMENTARY NOTATION *Science Applications International Corporation +Permanent Address: Dept. of Physics, Univ. of Maryland College Park, Md									
17 COSATI CODES		18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) <table border="1"> <tr> <td>FIELD</td> <td>GROUP</td> <td>SUB-GROUP</td> <td>Ion waves Instability Nonlocal</td> <td>D.C. electric field Parallel current</td> </tr> </table>			FIELD	GROUP	SUB-GROUP	Ion waves Instability Nonlocal	D.C. electric field Parallel current
FIELD	GROUP	SUB-GROUP	Ion waves Instability Nonlocal	D.C. electric field Parallel current					
19 ABSTRACT (Continue on reverse if necessary and identify by block number) <p>We provide a nonlocal kinetic formalism to study the electrostatic ion waves that can be excited in a magnetised plasma including a d.c. electric field such as a double layer. The d.c. electric field can have components parallel (E_{\parallel}) and perpendicular (E_{\perp}) to the uniform ambient magnetic field. In a collisional plasma, E_{\parallel} can give rise to a magnetic field aligned drift V_d, of the electrons with respect to the ions, while E_{\perp} provides an $E_{\perp} \times B$ drift to both the species. For $V_d = 0$, our formalism recovers the ion cyclotron-like modes, suggested by Ganguli et al., while for $E_{\perp} = 0$, we recover the ion cyclotron modes, discussed by Drummond and Rosenbluth. We study the electrostatic ion modes for arbitrary values of V_d and E_{\perp}. It is found that the real frequency is strongly affected by the transverse component of the d.c. electric field and can assume values much different from the harmonics and may even get below the first harmonic. The growth rate is influenced by the field aligned electron drift.</p>									
20 DISTRIBUTION/AVAILABILITY OF ABSTRACT <input checked="" type="checkbox"/> UNCLASSIFIED/UNLIMITED <input type="checkbox"/> SAME AS RPT <input type="checkbox"/> DTIC USERS			21 ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED						
22a NAME OF RESPONSIBLE INDIVIDUAL J.D. Huba			22b TELEPHONE (Include Area Code) (202) 767-3630	22c OFFICE SYMBOL Code 4780					

CONTENTS

INTRODUCTION	1
THEORY	2
RESULTS AND DISCUSSION	3
CONCLUSIONS	5
ACKNOWLEDGMENTS	5
REFERENCES	6

Accession For	
NTIS GRA&I	
DTIC TAB	
Unannounced	<input type="checkbox"/>
Justification _____	
By _____	
Distribution/ _____	
Availability Codes	
Dist	Avail and/or Special
A-1	

THE EFFECTS OF A D.C. ELECTRIC FIELD ON THE CURRENT DRIVEN ION CYCLOTRON INSTABILITY

INTRODUCTION

The presence of the magnetic field aligned electron drift can lead to the current driven ion cyclotron instability in collisionless¹ and collisional² plasmas. In a collisional plasma the field aligned electron drift V_d may be due to a field aligned component of a d.c. electric field. Recently, laboratory experiments^{3,4} report ion-cyclotron-like waves associated with double layers in a magnetised plasma which can not be explained satisfactorily by the existing theories^{1,2} of the ion cyclotron instabilities, since these theories do not include a transverse component of a d.c. electric field in their initial equilibrium. This is a crucial feature of a magnetised plasma containing a double layer. In order to study the role of the transverse component of a d.c. electric field in the generation of ion-cyclotron-like waves, Ganguli et al.^{5,6} used a nonlocal kinetic theory and concluded that it is possible to excite electrostatic ion waves around the ion cyclotron frequency. These waves are driven by an inhomogeneity in the energy density of the ion cyclotron waves introduced by a localized $E_{\perp} \times B$ drift. The theory was based on idealized conditions. Recently, a rigorous kinetic theory⁷ has been developed which supports the earlier conclusions^{5,6} and distinguishes the inhomogeneous energy density driven modes⁵ from the Kelvin-Helmholtz modes. We have further generalised the kinetic theory⁸ to include a magnetic field aligned electron drift V_d and the neutral-species collisions. In the limit where the transverse component of the electric field $E_{\perp} \rightarrow 0$, we recover the current driven ion cyclotron waves^{1,2} and for $V_d \rightarrow 0$, we recover the waves described by Ganguli et al.⁵⁻⁷. Here we study the ion modes in the simultaneous presence of both the perpendicular component of a d.c. electric field and a magnetic field aligned electron drift.

Manuscript approved October 7, 1987.

THEORY

The dispersion differential relation for the electrostatic modes in a magnetised collisional plasma including a transverse component of a d.c. electric field and an equilibrium magnetic field aligned electron drift with respect to the ions, is given by⁸,

$$A(\xi) \frac{d^2\Phi(\xi)}{d\xi^2} + Q(\xi)\Phi(\xi) = 0 , \quad (1)$$

where $\xi=x/\rho_i$, $\rho_i=v_{ti}/\Omega_i$ is the ion gyroradius, $\Phi(\xi)$ is the perturbed electrostatic potential and,

$$A(\xi) = -\frac{1}{2} \left[C \sum_n \Gamma'_n(b) \zeta_i Z\left(\frac{\omega_1 + i v_i - n \Omega_i}{|k_{||}| v_i}\right) + \tau D \sum_n \Gamma'_n(b) \zeta_{iv} Z\left(\frac{\omega_1 + i v_i - n \Omega_i}{|k_{||}| v_i}\right) \right] , \quad (2)$$

$$Q(\xi) = C \left(1 + \sum_n \Gamma_n(b) \zeta_i Z\left(\frac{\omega_1 + i v_i - n \Omega_i}{|k_{||}| v_i}\right) \right) + \tau D \left(1 + \sum_n \Gamma_n(b) \zeta_{iv} Z\left(\frac{\omega_1 + i v_i - n \Omega_i}{|k_{||}| v_i}\right) \right) , \quad (3)$$

where $C=1+\zeta_{ev}Z(\zeta_e-\delta\bar{V}_d)$, $D=1+(\zeta_e-\delta\bar{V}_d)Z(\zeta_e-\delta\bar{V}_d)$, $\zeta_\alpha=(\omega_1+i v_\alpha)/|k_{||}| v_\alpha$, $\omega_1=\omega-k_y V_E(x)$, $V_E(x)=-cE_\perp(x)/B_0$, $\bar{V}_d=v_d/v_{ti}$, $\zeta_{\alpha v}=i v_\alpha/|k_{||}| v_\alpha$, $\Gamma_n(b)=\exp(-b)I_n(b)$, I_n are the modified Bessel functions, $b=(k_y \rho_i)^2/2$, $\Gamma'(b)=\partial\Gamma/\partial b$, α denotes the species, v_α is the neutral-species collision frequency, $\tau=T_i/T_e$, $\mu=m_{ion}/m_{ele}$, $\delta=\sqrt{\tau/\mu}$ and $Z(\zeta)$ is the plasma dispersion function.

Briefly, the derivation of (1) can be understood if the dispersion relation (A1) of reference (9), for the collisional ion cyclotron waves, is considered. The transverse d.c. electric field provides a Doppler shift to

the frequency, ω . Therefore we replace ω by ω_1 in (A1) of reference (9). Since the d.c. electric field is nonuniform, we convert this algebraic dispersion relation to a nonlocal condition by replacing ik_x by the operator $\partial/\partial x$ and reduce it to a second order differential equation by expanding the Bessel functions to $O(\partial^2/\partial x^2)$. Only the $n=0$ harmonic for the electrons is retained.

If the transverse component of the d.c. electric field is chosen to be piecewise continuous, a nonlocal dispersion relation can be obtained⁵⁻⁸,

$$-\kappa_I \operatorname{Tan}(\kappa_I/2\epsilon) = ik_{II} , \quad (4)$$

where $\kappa_I^2 = Q/A$, $\epsilon = \rho_i/L$, L is the characteristic scale length associated with the transverse d.c. electric field and κ_{II} is identical to κ_I if $E_1=0$. We now proceed to find the eigenvalues of (4).

RESULTS AND DISCUSSION

When (4) is solved for $V_d=0$ and the species-neutral collisions are neglected, we recover the electrostatic ion waves discussed by Ganguli et al.⁵⁻⁸; while for $E_1=0$ we recover the ion cyclotron waves¹. In figure (1) we choose $b=0.475$, $\tau=0.7$, $\epsilon=0.1$, $\mu=29392$ (oxygen plasma), $u=k_{II}/k_y=0.09$, $v_i=v_e=0$ and $\bar{V}_d=25$. Initially, for $\bar{V}_E=V_E/v_{ti}=0$ we obtain a root for the current driven ion cyclotron wave¹. As \bar{V}_E is increased we find that the real frequency is significantly affected while the growth rate is only marginally increased. Thus, as E_1 is increased the character of the current driven ion cyclotron instability¹ changes. Conversely, when E_1 is held constant and V_d is increased the real frequency is marginally affected while the growth rate changes significantly. In either case, depending on

the values of V_d and E_{\perp} , the mode character differs from either the current driven or the inhomogeneous energy density driven ion cyclotron waves. This may explain the apparent discrepancy between the ion cyclotron modes as reported by Alport et al.³ where $E_{||}/E_{\perp} > 1$ and V_d is significant and that of Sato et al.⁴ where $E_{||}/E_{\perp} \ll 1$ and V_d is insignificant. More details will be discussed elsewhere.

In figure (2) we choose a set of parameters that are typical of the auroral ionosphere where ion-cyclotron-like waves are reported in conjunction with d.c. electric fields¹⁰. We use $\bar{V}_E = -0.5$, $\bar{V}_d = 30$ and 25, $\tau = 1$, $\mu = 29392$, $\epsilon = 0.1$, $v_i/\Omega_i = 0.0333$, $v_e/\Omega_i = 12$, $u = 0.15$ and 0.17 and plot the growth rate γ/Ω_i and the real frequency ω_r/Ω_i as a function of b . Note that the above values of \bar{V}_d are subcritical for the collisional ion cyclotron instability². However, in the presence of E_{\perp} , the threshold for the ion cyclotron instability lowers and a coherent instability around the ion cyclotron frequency is possible. The necessary condition for the ion cyclotron instability^{1,2} is that $(\omega - k_{||} V_d) < 0$. For the values of V_d which are subcritical this condition can not be satisfied. The introduction of an E_{\perp} initiates an $E_{\perp} \times B$ drift which Doppler shifts the frequency, i.e., $\omega \rightarrow \omega_1 = \omega - k_y V_E$. Thus, in the region over which the E_{\perp} is localized the necessary condition for the onset of the ion cyclotron instability becomes $(\omega_1 - k_y V_E) < 0$. Since ω_1 can be smaller than ω , it becomes easier to satisfy the necessary condition and thereby the threshold is effectively lowered. Further details will be provided elsewhere. It should be noted that in both the figures the transverse scale length associated with the field aligned drift L_c , is assumed to be of the same order as L .

CONCLUSIONS

In this short paper we have shown that in a magnetised collisional plasma, the presence of a d.c. electric field such as double layers or shocks, can give rise to electrostatic ion waves. In the limit where the perpendicular component of the d.c. electric field is zero the ion waves are identical to the ion cyclotron waves in a collisional plasma whereas in the limit where the magnetic field aligned electron drift is zero the ion waves are identical to the inhomogeneous energy density driven waves. For smoother transverse d.c. electric field profiles the differential equation (1) is solved numerically for the eigenvalues. Initial results indicate that there is little change in the eigenvalues when smoother electric field profiles are considered.

ACKNOWLEDGMENTS

Discussions with Professor Robert Merlin are gratefully acknowledged. This work is supported by ONR and NASA.

REFERENCES

1. W.E. Drummond and M.N. Rosenbluth, Phys. Fluids., 5, 1507 (1962).
2. P.K. Chaturvedi, J. Geophys. Res., 81, 6169 (1976); P. Satyanarayana, P.K. Chaturvedi, M.J. Keskenin, J.D. Huba and S.L. Ossakow, J. Geophys. Res., 90, 12, 209 (1985).
3. M.J. Alport, S.L. Cartier and R.L. Merlino, J. Geophys. Res., 91, 1599 (1986).
4. N. Sato, M. Nakamura and R. Hatakeyama, Phys. Rev. Lett., 57, 1227 (1986).
5. G.Ganguli, Y.C. Lee and P.J. Palmaresso, Phys. Fluids., 28, 761 (1985).
6. G.Ganguli, P. Palmaresso and Y.C. Lee, Geophys. Res. Lett., 12, 643 (1985)
7. G. Ganguli, Y.C. Lee and P.J. Palmaresso, Phys. Fluids., (1987) (submitted).
8. P.K. Chaturvedi and G. Ganguli, Geophys. Res. Lett., (1987) (to be submitted)
9. J.M. Kindel and C.F. Kennel, J. Geophys. Res., 77, 1323, (1971).
10. J. Providakes, D.T. Farley, W.E. Swartz and D. Riggan, J. Geophys. Res., 90, 7513 (1985); B.G. Fejer, R.W. Reed, D.T. Farley, W.E. Swartz and M.C. Kelly, J. Geophys. Res., 89, 187 (1984).

Fig (1) A plot of ω_r/Ω_i and γ/Ω_i against \bar{V}_E . Here $b=0.475$, $\tau=0.7$, $\mu=29392$, $\varepsilon=0.1$, $\bar{V}_d=25$ and $v_i=v_e=0$

Fig (2) A plot of ω_r/Ω_i and γ/Ω_i against b . Here $\bar{V}_E = 0.5$, $\tau = 1$, $v_i/\Omega_i = 0.0333$, $v_e/\Omega_i = 12$, $\bar{v}_d = 30$ and 25 and $u = 0.15$ and 0.17.

DISTRIBUTION LIST
(Unclassified Only)

DISTRIBUTE ONE COPY EACH TO THE FOLLOWING PEOPLE (UNLESS OTHERWISE NOTED)

DIRECTOR
NAVAL RESEARCH LABORATORY
WASHINGTON, DC 20375-5000
CODE 4700 (26 CYS)
CODE 4701
CODE 4780 (50 CYS)
CODE 4750 (P. RODRIGUEZ)

OFFICE OF NAVAL RESEARCH
WASHINGTON, DC 22203
C. ROBERSON

DIRECTOR
DEFENSE NUCLEAR AGENCY
WASHINGTON, DC 20305
L. WITWER
B. PRASAD

COMMANDING OFFICER
OFFICE OF NAVAL RESEARCH
WESTERN REGIONAL OFFICE
1030 EAST GREEN STREET
PASADENA, CA 91106
R. BRANDT

NASA HEADQUARTERS
CODE EE-8
WASHINGTON, DC 20546
S. SHAWHAN
D. BUTLER

NASA/GODDARD SPACE FLIGHT CENTER
GREENBELT, MD 20771
M. GOLDSTEIN, CODE 692
R.F. BENSON, CODE 692
T. NORTHROP, CODE 665
T. BIRMINGHAM, CODE 695.1
A. FIGUERO Vinas, CODE 692
SHING F. FUNG, CODE 696
D.S. SPICER, CODE 682

AEROSPACE CORPORATION
A6/2451, P.O. BOX 92957
LOS ANGELES, CA 90009
A. NEWMAN
D. GORNEY
M. SCHULZ
J. FENNEL

BELL LABORATORIES
MURRAY HILL, NJ 07974
A. HASEGAWA
L. LANZEROTTI

LAWRENCE LIVERMORE LABORATORY
UNIVERSITY OF CALIFORNIA
LIVERMORE, CA 94551
LIBRARY

B. KRUER
J. DEGROOT
B. LANGDON
R. BRIGGS
D. PEARLSTEIN

LOS ALAMOS NATIONAL LABORATORY
P.O. BOX 1663
LOS ALAMOS, NM 87545

S.P. GARY
N. QUEST
J. BRACKBILL
J. BIRN
J. BOROVSKY
D. FORSLUND
J. KINDEL
B. BEZZERIDES
C. NIELSON
E. LINDMAN
D. RIGGIN
D. SIMONS
L. THODE
D. WINSKE

LOCKHEED RESEARCH LABORATORY
PALO ALTO, CA 94303
M. WALT
J. CLADIS
Y. THIU
P. SHARP
E. CHEILLY

NATIONAL SCIENCE FOUNDATION
ATMOSPHERE RESEARCH SECTION
1801 M STREET, NW
WASH. D.C. 20036

NOV 1974
1. BENEFIT
2. BENEFIT
3. BENEFIT
4. BENEFIT

SANDIA LABORATORIES
ALBUQUERQUE, NM 87115

A. TOEPFER
D. VANDEVENDER
J. FREEMAN
T. WRIGHT

SCIENCE APPLICATIONS
INTERNATIONAL CORPORATION
LAB. OF APPLIED PLASMA STUDIES
P.O. BOX 2351
LAJOLLA, CA 92037
L. LINSON

TRW SPACE AND TECHNOLOGY GROUP
SPACE SCIENCE DEPARTMENT
BUILDING R-1, ROOM 1170
ONE SPACE PARK
REDONDO BEACH, CA 90278
R. FREDERICKS
W.L. TAYLOR

UNIVERSITY OF ALASKA
GEOPHYSICAL INSTITUTE
FAIRBANKS, AK 99701
LIBRARY
S. AKASOFU
J. KAN
J. ROEDERER
L. LEE
D. SWIFT

UNIVERSITY OF ARIZONA
DEPT. OF PLANETARY SCIENCES
TUCSON, AZ 85721
J.R. JOKIPII

BOSTON COLLEGE
DEPARTMENT OF PHYSICS
CHESTNUT HILL, MA 02167
R.L. CAROVILLANO
P. BAKSHI

UNIVERSITY OF CALIFORNIA, S.D.
LAJOLLA, CA 92037
(PHYSICS DEPARTMENT):
T. O'NEIL
J. WINFREY
LIBRARY
J. MALMBERG
(DEPT. OF APPLIED SCIENCES):
H. BOOKER

UNIVERSITY OF CALIFORNIA
SPACE SCIENCE LABORATORY
BERKELEY, CA 94720

M. TEMERIN
F. MOZER

UNIVERSITY OF CALIFORNIA
PHYSICS DEPARTMENT
IRVINE, CA 92664
LIBRARY
G. BENFORD
N. ROSTOKER
C. ROBERTSON
N. RYNN

UNIVERSITY OF CALIFORNIA
LOS ANGELES, CA 90024
(PHYSICS DEPARTMENT):

J.M. DAWSON
B. FRIED
J. MAGGS
J.G. MORALES
W. GEKELMAN
R. STENZEL
Y. LEE
A. WONG
F. CHEN
M. ASHOUR-ABDALLA
LIBRARY
J.M. CORNWALL
R. WALKER
P. PRITCHETT
(INSTITUTE OF GEOPHYSICS
AND PLANETARY PHYSICS):
LIBRARY
C. KENNEL
F. CORONITI

UNIVERSITY OF CHICAGO
ENRICO FERMI INSTITUTE
CHICAGO, IL 60637
E.N. PARKER
I. LERCHE
LIBRARY

UNIVERSITY OF COLORADO
DEPT. OF ASTRO-GEOPHYSICS
BOULDER, CO 80302
M. GOLDMAN
LIBRARY

CORNELL UNIVERSITY
SCHOOL OF APPLIED AND
ENGINEERING PHYSICS
COLLEGE OF ENGINEERING
ITHACA, NY 14853

LIBRARY

R. SUDAN
B. KUSSE
H. FLEISCHMANN
C. WHARTON
F. MORSE
R. LOVELACE
P.M. KINTNER

HARVARD UNIVERSITY
CENTER FOR ASTROPHYSICS
60 GARDEN STREET
CAMBRIDGE, MA 02138
G.B. FIELD
R. ROSNER
K. TSINGANOS
G.S. VAIANA

UNIVERSITY OF IOWA
IOWA CITY, IA 52240

C.K. GOERTZ
D. GURNETT
G. KNORR
D. NICHOLSON
C. GRABBE
L.A. FRANK
K. NISHIKAWA
N. D'ANGELO
R. MERLINO
C. HUANG

UNIVERSITY OF MARYLAND
PHYSICS DEPARTMENT
COLLEGE PARK, MD 20742
K. PAPADOPOULOS
H. ROWLAND
C. WU

UNIVERSITY OF MARYLAND, IPST
COLLEGE PARK, MD 20742
DAVID MATTHEWS

UNIVERSITY OF MINNESOTA
SCHOOL OF PHYSICS
MINNEAPOLIS, MN 55455
LIBRARY
J.R. WINCKLER
P. KELLOGG
R. LYSAK

M.I.T.
CAMBRIDGE, MA 02139

LIBRARY

(PHYSICS DEPARTMENT):

B. COPPI
V. GEORGE
G. BEKEFI
T. CHANG
T. DUPREE
R. DAVIDSON

(ELECTRICAL ENGINEERING
DEPARTMENT):

R. PARKER
A. BERS
L. SMULLIN

(R.L.E):

LIBRARY

(SPACE SCIENCE):
READING ROOM

UNIVERSITY OF NEW HAMPSHIRE
DEPARTMENT OF PHYSICS
DURHAM, NH 03824
R.L. KAUFMAN
J. HOLLWEG

PRINCETON UNIVERSITY
PRINCETON, NJ 08540
PHYSICS LIBRARY
PLASMA PHYSICS LAB. LIBRARY
F. PERKINS
T.K. CHU
H. OKUDA
H. HENDEL
R. WHITE
R. KURLSRUD
H. FURTH
S. YOSHIKAWA
P. RUTHERFORD

RICE UNIVERSITY
HOUSTON, TX 77001
SPACE SCIENCE LIBRARY
T. HILL
R. WOLF
P. REIFF
G.-H. VOIGT

UNIVERSITY OF ROCHESTER
ROCHESTER, NY 14627
A. SIMON

STANFORD UNIVERSITY
RADIO SCIENCE LABORATORY
STANFORD, CA 94305
R. HELLIWELL

STEVENS INSTITUTE OF TECHNOLOGY
HOBOKEN, NJ 07030
B. ROSEN
G. SCHMIDT
M. SEIDL

UNIVERSITY OF TEXAS
AUSTIN, TX 78712
W. DRUMMOND
V. WONG
D. ROSS
W. HORTON

UNIVERSITY OF TEXAS
CENTER FOR SPACE SCIENCES
P.O. BOX 688
RICHARDSON, TX 75080
DAVID KLUMPAR

THAYER SCHOOL OF ENGINEERING
DARTMOUTH COLLEGE
HANOVER, NH 03755
BENGT U.O. SONNERUP
M. HUDSON

UTAH STATE UNIVERSITY
DEPT. OF PHYSICS
LOGAN, UT 84322
ROBERT W. SCHUNK

UNIVERSITY OF THESSALONIKI
DEPARTMENT OF PHYSICS
GR-54006 THESSALONIKI,
GREECE
L. VLAHOS

IONOSPHERIC MODELING DISTRIBUTION LIST
(UNCLASSIFIED ONLY)

PLEASE DISTRIBUTE ONE COPY TO EACH OF THE FOLLOWING PEOPLE (UNLESS OTHERWISE NOTED)

NAVAL RESEARCH LABORATORY
WASHINGTON, DC 20375-5000
DR. S. OSSAKOW, CODE 4700 (26 CYS)
DR. I. VITKOVITSKY, CODE 4701
DR. J. HUBA, CODE 4780 (2 CYS)
DR. H. GURSKY, CODE 4100
DR. J.M. GOODMAN, CODE 4180
DR. P. RODRIGUEZ, CODE 4706
DR. P. MANGE, CODE 1004
DR. R. MEIER, CODE 4140
CODE 2628 (22 CYS)
CODE 1220

A.F. GEOPHYSICAL LABORATORY
L.G. HANSCOM FIELD
BEDFORD, MA 01731
DR. T. ELKINS
DR. W. SWIDER
MRS. R. SAGALYN
DR. J.M. FORBES
DR. T.J. KENESHEA
DR. W. BURKE
DR. H. CARLSON
DR. J. JASPERSE
DR. J.F. RICH
DR. N. MAYNARD
DR. D.N. ANDERSON

BOSTON UNIVERSITY
DEPARTMENT OF ASTRONOMY
BOSTON, MA 02215
DR. J. AARONS
DR. M. MENDILLO

CORNELL UNIVERSITY
ITHACA, NY 14850
DR. R. SUDAN
DR. D. FARLEY
DR. M. KELLEY

HARVARD UNIVERSITY
HARVARD SQUARE
CAMBRIDGE, MA 02138
DR. M.B. McELROY

INSTITUTE FOR DEFENSE ANALYSIS
1801 N. BEAUREGARD STREET
ARLINGTON, VA 22311
DR. E. BAUER

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PLASMA FUSION CENTER
CAMBRIDGE, MA 02139
LIBRARY, NW16-262
DR. T. CHANG
DR. R. LINDZEN

NASA
GODDARD SPACE FLIGHT CENTER
GREENBELT, MD 20771
DR. N. MAYNARD, CODE 696
DR. R.F. BENSON
DR. K. MAEDA
DR. S. CURTIS
DR. M. DUBIN

COMMANDER
NAVAL OCEAN SYSTEMS CENTER
SAN DIEGO, CA 95152
MR. R. ROSE, CODE 5321

NOAA
DIRECTOR OF SPACE AND
ENVIRONMENTAL LABORATORY
BOULDER, CO 80302
DR. A. GLENN JEAN
DR. G.W. ADAMS
DR. K. DAVIES
DR. R.F. DONNELLY

OFFICE OF NAVAL RESEARCH
800 NORTH QUINCY STREET
ARLINGTON, VA 22217
DR. G. JOINER
DR. C. ROBERSON

LABORATORY FOR PLASMA AND
FUSION ENERGIES STUDIES
UNIVERSITY OF MARYLAND
COLLEGE PARK, MD 20742
JEAN VARYAN HELLMAN,
REFERENCE LIBRARIAN

PENNSYLVANIA STATE UNIVERSITY
UNIVERSITY PARK, PA 16802

DR. J.S. NISBET
DR. P.R. ROHRBAUGH
DR. L.A. CARPENTER
DR. M. LEE
DR. R. DIVANY
DR. P. BENNETT
DR. E. KLEVANS

PRINCETON UNIVERSITY
PLASMA PHYSICS LABORATORY
PRINCETON, NJ 08540
DR. F. PERKINS

SAIC
1150 PROSPECT PLAZA
LA JOLLA, CA 92037
DR. D.A. HAMLIN
DR. L. LINSON

SRI INTERNATIONAL
333 RAVENSWOOD AVENUE
MENLO PARK, CA 04025
DR. R. TSUNODA
DR. WALTER CHESNUT
DR. J. VICKREY
DR. R. LIVINGSTON

STANFORD UNIVERSITY
STANFORD, CA 04305
DR. P.M. BANKS
DR. R. HELLIWELL

U.S. ARMY ABERDEEN RESEARCH
AND DEVELOPMENT CENTER
BALLISTIC RESEARCH LABORATORY
ABERDEEN, MD
DR. J. HEIMERL

GEOPHYSICAL INSTITUTE
UNIVERSITY OF ALASKA
FAIRBANKS, AL 99701
DR. L.C. LEE

UTAH STATE UNIVERSITY
4TH AND 8TH STREETS
LOGAN, UT 84322
DR. R. HARRIS
DR. K. BAKER
DR. R. SCHUNK
DR. J. ST.-MAURICE
DR. N. SINGH
DR. B. FEJER

UNIVERSITY OF CALIFORNIA
LOS ALAMOS NATIONAL LABORATORY
EES DIVISION
LOS ALAMOS, NM 87545
DR. M. PONGRATZ, EES-DOT
DR. D. SIMONS, ESS-7, MS-D466
DR. S.P. GARY, ESS-8
DENNIS RIGGIN, ATMOS SCI GROUP

UNIVERSITY OF ILLINOIS
DEPARTMENT OF ELECTRICAL ENGINEERING
1406 W. GREEN STREET
URBANA, IL 61801
DR. ERHAN KUDEKI

UNIVERSITY OF CALIFORNIA,
LOS ANGELES
405 HILLGARD AVENUE
LOS ANGELES, CA 90024
DR. F.V. CORONITI
DR. C. KENNEL
DR. A.Y. WONG

UNIVERSITY OF MARYLAND
COLLEGE PARK, MD 20740
DR. K. PAPADOPoulos
DR. E. OTT

JOHNS HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY
JOHNS HOPKINS ROAD
LAUREL, MD 20810
DR. R. GREENWALD
DR. C. MENG
DR. T. POTEMRA

UNIVERSITY OF PITTSBURGH
PITTSBURGH, PA 15213
DR. N. ZABUSKY
DR. M. BIONDI

UNIVERSITY OF TEXAS AT DALLAS
CENTER FOR SPACE SCIENCES
P.O. BOX 688
RICHARDSON, TX 75080
DR. R. HEELIS
DR. W. HANSON
DR. J.P. McCLURE

DIRECTOR OF RESEARCH
U.S. NAVAL ACADEMY
ANNAPOLIS, MD 21402
(2 CYS)

END

FILMED

MARCH, 1988

DTIC