# Compressão Adiabática e Isotérmica do ar

Laboratório de Complementos de Eletromagnetismo e Termodinâmica MEFT 2013/2014

Débora Barreiros, 75693 — Pedro Cal, 75699 — Tiago Costa, 75970 — Nuno Rosa, 76018 Instituto Superior Técnico — Turma de sexta-feira — Grupo I 1 de Maio de 2014

#### Resumo

O objetivo deste trabalho experimental foi a análise da compressão adiabática do ar e da compressão isotérmica do ar, no interior de um cilindro de vidro devidamente vedado. Com a realização da experiência foi possível verificar que, para a compressão adiabática, houve diminuição de volume e aumento da pressão na relação de  $PV^{\gamma}$ , em que  $\gamma$  deu um valor de  $1.378 \pm 0.002$ . Verificou-se ainda que ocorram perdas de calor de valor  $-0.9 \pm 0.5$  J. Por outro lado, para a compressão isotérmica, a relação  $PV^{\gamma}$  foi obtida com um valor de  $\gamma$  de  $1.071 \pm 0.004$ . Verificou-se ainda variação da energia interna do gás foi de  $1.28 \pm 0.04$ .

# 1. INTRODUÇÃO TEÓRICA

Neste trabalho pretende-se simular compressões adiabáticas e isotérmicas de um gás ideal. Considera-se então o gás da campânula como sendo ideal e respeitando, por isso, as seguintes propriedades:

- Lei dos Gases Ideiais: PV = nRT, em que P é a pressão do gás, V é o volume do gás, n é o número de moles de moléculas de gás, R é a constante dos gases ideiais de valor  $8,314472~\mathrm{JK^{-1}mol^{-1}}$ , e T é a temperatura do gás. Apenas n e R são constantes fixas e as restantes grandezas, P, V e T são caraterizadores do estado do gás.
- As moléculas do gás são consideradas pontuais e sem interação entre si, sendo por isso a energia cinética a única considerada no estudo do gás. As colisões entre as partículas são consideradas elásticas.
- $\bullet$  A energia interna só é função da temperatura,  $U\equiv U(T).$

Este modelo é compatível, de forma geral, com o ar à pressão atmosférica e à temperatura ambiente, utilizado nesta experiência.

Um gás contido num recipiente pode interatuar com o exterior através de transferências de energia sob a forma de calor (Q) ou sob a forma de trabalho (W). É possível então definir a Primeira Lei da Termodinâmica, que está na expressão (1.1).

$$dU = \delta Q - \delta W \tag{1.1}$$

em que dU é uma variação infinitesimal da energia interna que resulta do calor,  $\delta Q$ , que o sistema recebe e do trabalho,  $\delta W$ , que o sistema fornece ao exterior.

Numa primeira parte da experiência estudar-se-á a compressão adiabática de um gás. Se é adiabática, então não existem trocas de calor para o exterior e  $\delta Q=0$ , ficando assim a primeira lei reduzida a  $dU=-\delta W$ . Sabemos ainda que a variação da energia interna pode ser descrita através da variação da temperatura como sendo  $dU=nC_VdT$  e a variação do trabalho do gás pode ser descrita pela variação do volume como sendo  $\delta W=PdV$ . Após a manipulação destas duas expressões, juntamente com a primeira Lei da Termodinâmica, chega-se a uma relação entre a pressão e o volume que está expressa na expressão (1.2).

$$PV^{\frac{7}{2}R} = \text{constante}$$
 (1.2)

De notar que se usa para o ar o valor da capacidade térmica a volume constante,  $C_V$ , de  $\frac{5}{2}R$ , uma vez que o ar pode ser reduzido a um gás diatómico ideal.

O coeficiente  $\gamma \equiv \frac{C_P}{C_V}$  de  $PV^{\gamma}$  tem ser ser então 1.4, para que se verifique uma compressão adiabática. As expressões para o trabalho e para a variação da energia interna têm de ser iguais, sendo dadas por integração das expressões já apresentadas por:

$$\frac{P_i V_i^{\gamma}}{1 - \gamma} (V_f^{1 - \gamma} - V_i^{1 - \gamma}) = W = \Delta U = nC_V (T_f - T_i)$$
 (1.3)

Em termos práticos para se conseguir ter uma compressão deste tipo, deve conseguir-se comprimir o gás rapidamente, para evitar as trocas de calor.

Por outro lado, uma compressão isotérmica implica que à medida que a pressão aumenta e o volume diminui, a temperatura tem de ser sempre constante, o que implica que a variação da energia interna do sistema, que depende apenas da temperatura, seja nula, dU=0. Deste modo, a Primeira Lei da Termodinâmica fica reduzida apenas a  $\delta Q=\delta W$ . Como a temperatura é constante, verifica-se a relação PV da equação (1.4).

$$PV = nRT = \text{constante}$$
 (1.4)

Logo, o coeficiente  $\gamma$  de  $PV^{\gamma}$  tem de ser igual a 1, para que se verifique uma compressão isotérmica. As expressões para a variação macroscópica do calor e do trabalho são obtidas integrando a equação dos gases ideiais em ordem ao volume:

$$Q = W = nRT \ln \left(\frac{V_f}{V_i}\right) \tag{1.5}$$

Neste caso, a compressão deve ser feita de forma lenta e a cada instante seja possível atingir o equilíbrio térmico, que permite a manutenção do sistema a temperatura constante.

No entanto, na prática, existem modelos mais gerais para se definirem compressões com trocas de calor. Existe a necessidade de os definir uma vez que cada um dos processos apresentados anteriormente não ocorre de forma perfeita. Para a compressão adiabática haverá sempre, em termos práticos, uma troca de calor, ou seja  $\delta Q \neq 0$  e para a compressão isotérmica, também na realidade, a temperatura não se mantém constante e  $dU \neq 0$ . Seja  $\alpha$  o expoente obtido experimentalmente para o volume em  $PV^{\alpha}$ , temos pela Primeira Lei da Termodinâmica que:

$$\delta Q = nC_V dT + \frac{nR}{1-\alpha} dT = n\left(C_V + \frac{R}{1-\alpha}\right) dT \qquad (1.6)$$

O calor trocado esperado, para cada compressão, em função do parâmetro  $\alpha$  obtido em experiência é dado pela expressão (1.7).

$$Q = n\left(C_V + \frac{R}{1 - \alpha}\right)\Delta T \tag{1.7}$$

#### 2. MONTAGEM DA EXPERIÊNCIA

Esta experiência é composta por duas partes distintas. Primeiro procede-se ao estudo de uma compressão adiabática, e de seguida, ao de uma compressão isotérmica.

A montagem associada a esta experiência é formada por um dispositivo de compressão contituído por um cilindro graduado, um pistão que é movido pelo utilizador através de um braço relativamente extenso, duas torneiras na parte inferior do cilindro que permitem controlar o fluxo de ar que entra ou sai deste. Na montagem existem também duas fontes de tensão responsáveis por alimentar os sensores e pré-amplificadores eletrónicos, e um computador no qual se corre o software Data Monitor responsável pela aquisição e tratamento dos dados. Para recolher as informações relativamente à pressão e temperatura do gás foram utilizados dois transcondutores, o de pressão - um sensor piezzo-resistivo- e o de temperatura - um fino fio de níquel com elevada resistividade térmica -, montados na base do cilindro. Antes de se proceder à experiência, verificou-se através de um primeiro ensaio que para o sensor de temperatura existia um atraso na ordem dos 60 ms em relação ao tempo para o qual eram medidos os valores de pressão e temperatura correspondentes.

O diagrama da montagem encontra-se representado na figura 1.



Figura 1. Montagem experimental

Antes de se proceder às compressões, é necessário calibrar o aparelho. Para tal recorre-se à opção *Callibration* do programa, sendo necessário introduzir dois valores do volume para duas posições do pistão, que não devem ser muito próximas uma da outra de maneira a minimizar os erros associados. Para o cálculo dos volumes é preciso ter em conta o raio do cilindro.

# 2.1. Compressão Adiabática

Para a compressão adiabática, o movimento do pistão deve efectuar-se o mais rápida e uniformemente possível, por forma a evitar que existam trocas de calor com o exterior. Como o processo se dá rapidamente é necessário configurar a escala temporal do osciloscópio onde se visualizam os gráficos correspondentes ao volume, pressão e temperatura, para um valor por volta de 10 ms por divisão.

## 2.2. Compressão Isotérmica

Para a compressão isotérmica, o movimento do pistão deve ser feito da forma mais lenta e uniforme possível, de forma a evitar variações na temperatura do gás durante o processo. É necessário ter em atenção, aquando da realização da compressão, se a linha que representa a temperatura do gás no osciloscópio do software se mantém horizontal durante todo o processo, isto é, se não houve de facto variações significativas na temperatura. Se se der o caso de que o valor da temperatura não se mantém constante deve então repetir-se o ensaio até que isso aconteça. Devido ao facto de este processo se dar mais lentamente, é necessário agora configurar a escala temporal do osciloscópio para um valor por volta dos 1000 ms por divisão.

Para ambas as compressões pode ser obtido o trabalho realizado pelo gás através da integração numérica dos pontos no gráfico PV recorrendo-se novamente ao software  $Data\ Monitor$ .

#### 3. RESULTADOS EXPERIMENTAIS

#### 3.1. Compressão Adiabática

Nesta primeira parte da experiência procedeu-se à compressão adiabática do gás. Obteve-se para a experiência, através do software destinado para o efeito, valores de pressão volume e temperatura. O gráfico que nos interessa neste caso é o da pressão em função do volume, mais concretamente, o do logaritmo dessas duas grandezas. O declive da reta que se adapta a esse conjunto de pontos é a constante  $\gamma$ . O gráfico obtido foi o da figura 2.



Figura 2. Gráfico do logaritmo da pressão em função do logaritmo do volume

Os parâmetros obtidos para este ajuste estão na tabela I, em que  $\gamma$  é o o simétrico do declive da reta e b é a ordenada na origem.

| Parâmetro | Valor              |
|-----------|--------------------|
| $-\gamma$ | $-1.378 \pm 0.002$ |
| b         | $12.096 \pm 0.009$ |

Tabela I. Tabela que contém os valores dos parâmetros de ajuste da reta aos valores experimentais

Sabendo este valor de  $\gamma$ , foi possível calcular o calor envolvido no sistema de duas maneiras distintas. A primeira através dos dados de temperatura, pressão e volume dados pelo programa. Recolheram-se cinco dados do início da compressão e cinco dados do fim da compressão, expressos nas tabelas II e III, respetivamente. Na tabela II acrescenta-se ainda o cálculo no número de moles e na tabela III, as temperaturas foram calculadas através da lei dos gases ideiais. É de notar que às grandezas pressão, volume e temperatura estão associados erros experimentais, que se manifestam nos balanços energéticos feitos posteriormente.

| P (KPa) | $V (cm^3)$ | T (K) | n (mol)                           |
|---------|------------|-------|-----------------------------------|
| 119.9   | 200.5      | 286.4 | $(10.1 \pm 0.1) \times 10^{-3}$   |
| 120.4   | 200.8      | 286.1 | $(10.1 \pm 0.1) \times 10^{-3}$   |
| 118.9   | 201.4      | 286.6 | $(10.05 \pm 0.04) \times 10^{-3}$ |
| 119.4   | 202.2      | 285.7 | $(10.16 \pm 0.07) \times 10^{-3}$ |
| 117.0   | 202.8      | 285.8 | $(10.0 \pm 0.2) \times 10^{-3}$   |

Tabela II. Valores iniciais do sistema

| P (KPa) | $V (cm^3)$ | T (K)       |
|---------|------------|-------------|
| 281.6   | 108.5      | $364 \pm 9$ |
| 279.6   | 108.8      | $363 \pm 7$ |
| 278.6   | 109.0      | $362 \pm 5$ |
| 279.1   | 109.6      | $365 \pm 6$ |
| 274.7   | 110.1      | $360 \pm 9$ |

Tabela III. Valores finais do sistema

Neste caso, para calcular a variação da energia interna, recorreu-se ao cálculo do número de moles do sistema, e da variação total da temperatura. Para a obtenção do trabalho fez-se o integral do gráfico PV ao longo de toda a variação de volume. Subtraíndo estas duas quantidades obtém-se o valor do calor perdido para o exterior. As grandezas obtidas por este processo estão na tabela IV e baseiam-se apenas nos resultados experimentais obtidos.

| Grandeza                  | Valor                           |
|---------------------------|---------------------------------|
| $\Delta T$ (K)            | $77 \pm 6$                      |
| $\bar{n} \; (\text{mol})$ | $(10.1 \pm 0.1) \times 10^{-3}$ |
| $\Delta U$ (J)            | $16.1 \pm 0.5$                  |
| W(J)                      | $-16.970 \pm 0.001$             |
| Q(J)                      | $-0.9 \pm 0.5$                  |

Tabela IV. Balanço energético do sistema, apartir dos dados retirados dos sensores

Calculou-se ainda, para comparação com W, obtido pelo software, essa mesma quantidade calculada com a equação (1.3). Teoricamente o trabalho seria então  $-16.6 \pm 0.6$ .

Por outro lado, calculando Q com a equação (1.7) é possível verificar que o valor obtido é de  $-0.94 \pm 0.08$  J, recorrendo diretamente ao valor  $\alpha = \gamma$  obtido experimentalmente.

| Parâmetro | Valor              |
|-----------|--------------------|
| $-\gamma$ | $-1.071 \pm 0.004$ |
| b         | $10.44 \pm 0.02$   |

Tabela V. Tabela que contém os valores dos parâmetros de ajuste da reta aos valores experimentais

### 3.2. Compressão Isotérmica

Numa segunda parte procede-se à compressão isotérmica do gás. Mais uma vez, recolheram-se os dados de pressão volume e temperatura com o software destacado para o efeito. O gráfico que nos interessa é, mais uma vez, o do logaritmo da pressão em função do logaritmo do volume. O declive da reta que se adapta a esses pontos é a constante  $\gamma$  que desta vez terá de ser próxima do valor 1. O grafico que foi obtido é o da figura 3.



Figura 3. Gráfico do logaritmo da pressão em função do logaritmo do volume

Os parâmteros obtidos para este ajuste estão na tabela V, em que  $\gamma$  é o simétrico do declive da reta e b é a ordenada na origem.

Sabendo este valor de  $\gamma$ , foi possível calcular o calor envolvido, mais uma vez, por duas maneiras distintas. A primeira através dos dados de temperatura, pressão e volume dados pelo programa. Recolheram-se novamente cinco dados do início da compressão e cinco dados do fim da compressão, expressos nas tabelas VI e VII, respetivamente. Na tabela VI acrescenta-se ainda o cálculo no número de moles e na tabela VII, as temperaturas foram calculadas através da lei dos gases ideiais. É de notar que às grandezas pressão, volume e temperatura estão associados erros experimentais, que se manifestam nos balanços energéticos feitos posteriormente.

| P (KPa) | $V (cm^3)$ | T (K) | n (mol)                          |
|---------|------------|-------|----------------------------------|
| 130.5   | 172.9      | 299.2 | $(9.1 \pm 0.5) \times 10^{-3}$   |
| 137.0   | 173.0      | 298.9 | $(9.53 \pm 0.08) \times 10^{-3}$ |
| 140.9   | 172.6      | 299.7 | $(9.8 \pm 0.2) \times 10^{-3}$   |
| 138.9   | 171.3      | 300.0 | $(9.5 \pm 0.2) \times 10^{-3}$   |
| 138.9   | 170.9      | 299.8 | $9.5 \pm 0.2) \times 10^{-3}$    |

Tabela VI. Valores iniciais do sistema

Neste caso, para calcular a variação da energia interna, recorreu-se ao cálculo do número de moles do sistema, e da variação total da temperatura. Para a obtenção do trabalho fez-se o integral do gráfico PV ao longo de toda a variação de volume. Subtraíndo estas duas quantidades obtém-se o valor do calor perdido para o exterior. As grandezas obtidas por

| P (KPa) | $V (cm^3)$ | T (K)       |
|---------|------------|-------------|
| 185.8   | 130.2      | $307 \pm 1$ |
| 184.4   | 130.4      | $305 \pm 1$ |
| 184.9   | 130.4      | $306 \pm 1$ |
| 184.4   | 130.4      | $305 \pm 2$ |
| 186.3   | 130.4      | $308 \pm 1$ |

Tabela VII. Valores finais do sistema

este processo estão na tabela VIII e utilizam apenas dados experimentais.

| Grandeza                  | Valor                          |
|---------------------------|--------------------------------|
| $\Delta T$ (K)            | $6 \pm 2$                      |
| $\bar{n} \; (\text{mol})$ | $(9.5 \pm 0.2) \times 10^{-3}$ |
| $\Delta U$ (J)            | $1.28 \pm 0.04$                |
| W(J)                      | $-8.589 \pm 0.001$             |
| Q(J)                      | $-7.31 \pm 0.04$               |

Tabela VIII. Balanço energético do sistema

Calculou-se ainda, para comparação com W, obtido pelo software, essa mesma quantidade calculada com a equação (1.5), a T constante. Teoricamente o trabalho seria então  $-6.6\pm0.2$ .

Por outro lado, calculando Q com a equação (1.7) é possível verificar que o valor obtido é de  $-6 \pm 2$  J, recorrendo diretamente ao valor  $\alpha = \gamma$  obtido experimentalmente. Assim o valor de  $\Delta U$  assim obtido por este método fica nos  $3 \pm 2$  J.

## 4. ANÁLISE, CRÍTICAS E CONCLUSÃO

Analisando os resultados obtidos podemos chegar a várias conclusões sobre a experiência realizada, nomeadamente em relação aos balanços energéticos nas compressões supostamente adiabáticas e isotérmicas do ar.

Na compressão adiabática do ar contido no cilindro, nota-se em primeiro lugar que a constante adiabática toma o valor experimental de  $1.378\pm0.002$  com um desvio à precisão de 0.13%(a grande precisão dos resultados resulta da pouca dispersão dos dados no gráfico PV da figura 2) e um desvio à exatidão ao valor esperado de 1.4 para um gás ideal de 1.57%. Este desvio ao valor teórico é claramente justificado pelo facto de a compressão não ter sido completamente adiabática. Estes argumentos são suportados pelos balanços energéticos da tabela IV. Podemos ver que existe calor a ser libertado pelo gás durante a compressão pois o aumento da energia interna do gás é menor em módulo que o trabalho que foi por ele recebido. Conclui-se então que parte da energia do gás é libertada sob a forma de calor. O valor dessa energia libertada foi calculada de duas maneiras distintas, a primeira recorrendo à diferença entre a energia interna e o trabalho recebido pelo gás e a segunda recorrendo à variação da temperatura do sistema em conjunto com o valor de  $\gamma$  obtido. Estes valores são muito semelhantes, variando apenas a sua precisão, que é maior para o segundo processo. Conclui-se assim que o calor libertado foi efetivamente  $0.9 \pm 0.5$  J, e que o valor de  $\gamma$  obtido deveu-se

em grande parte a estas perdas de calor do sistema, e não tanto pelo facto de o gás ser não ideal. Podemos confirmar até que estes modelos para o cálculo do balanço energético são bastante aplicáveis ao ar. Podemos ainda criticar o valor do trabalho recebido pelo gás obtido pelo modelo teórico. O valor teórico obtido para este integral foi ligeiramente mais baixo (com um desvio de cerca de 2.5%), que o experimental. Concluímos que o modelo teórico para o cálculo do trabalho não se adapta ao sistema de gás em causa, por considerar que a transformação é adiatática, o que já se verificou não ser.

Existem ainda erros associados à montagem que levaram a erros sistemáticos no cálculo das grandezas inerentes à experiência. Nomeadamente o facto de existir um ligeiro atraso temporal no sensor da temperatura. Isto verificava-se porque o registo da temperatura no software só começava algum tempo depois de se iniciar a compressão. Para além disso, para compressões muito rápidas, em que no final do gráfico registado pelo programa a pressão e a temperatura já não variavam, a temperatura continuava ainda a aumentar, o que não é plausível. Os valores dos calores, que envolvem essa variação de temperatura, terão por isso um certo desvio ao valor real, estando calculados por defeito.

Relativamente à compressão isotérmica do ar, o valor de  $\gamma$  obtido,  $1.071\pm0.004$ , afastou-se mais do valor esperado, sendo o seu desvio à precisão 0.36% e o desvio à exatidão de 7.05%. Verifica-se que existe uma maior desvio à precisão do valor do declive da reta em relação ao que se havia verificado na compressão adiabática. De facto nota-se no gráfico da compressão isotérmica, figura 3, que os pares P e V encontram-se muito mais dispersos, devido à dificuldade em manter a compressão uniforme (é feita de forma muito lenta pois a montagem, por estar pouco oleada, mostrava reistência ao movimento). Esta resistência da própria montagem à compressão lenta do ar requerida, revela-se também decisiva no balanço energético do sistema.

Por outro lado, o desvio à exatidão é explicado pelo facto de a compressão não ter sido completamente isotérmica. De facto, registou-se uma variação de temperatura de cerca de 6 K, o que levou a que o calor libertado pelo gás não fosse o mesmo que o trabalho recebido por ele. Houve então uma variação da energia interna do gás calculada por dois processos distintos. O primeiro foi através da variação da temperatura que deu uma variação de energia interna de  $1.28 \pm 0.04$  J. Obtivemos  $\Delta U$  calculando o calor correspondente ao  $\gamma$  obtido experimentalmente, e subtraindo o trabalho experimental o que correspondeu a um valor de  $3 \pm 2$ . Estes dois valores estão próximos um do outro, inclusivé  $\Delta U$  obtido no segundo caso tem um erro que engloba o valor obtido para o primeiro. Isto quer dizer que o aumento da energia interna do gás é coerente com o valor experimental de  $\gamma$  obtido, bem como com a variação de temperatura assumida para o sistema.

Assim, a principal razão pela qual a compressão não foi isotérmica foi pelo facto de existir uma variação não controlável de temperatura do sistema. Apesar de todos os esforços para a manutenção da temperatura média do sistema, o facto de existir atrito estático na compressão fez com que a situação de equilíbrio térmico a cada instante não se verificasse.

<sup>[1]</sup> Guia experimental Estudo da Compressão e Expansão Adiabática e Isotérmica de Gases

<sup>[2]</sup> Apontamentos das aulas teóricas, Professor João Figueirinhas