Énergie cinétique et travail

Exercice 1:

Une machine tournante a une fréquence de rotation égale à 200 tr/min. Son moment d'inertie par rapport à son axe de rotation est égal à $50kg.m^2$. On prendra g = 10 N/ kg. Pour l'arrêter on exerce une force tangentielle constante de 150 N.

- 1. Calculer la variation d'énergie cinétique au cours du freinage.
- 2. Calculer le moment de la force de freinage sachant que la machine peut être assimilée à un disque de diamètre 80cm.
- 3. Calculer le nombre de tours effectués par la machine avant l'arrêt.

Exercice 2:

Un volant est constitué d'un cylindre de fonte de masse M=1 tonne entièrement répartie sur une circonférence de rayon R=1 m. Il tourne à une vitesse de 300 tours par minute. .

- 1. Calculer son moment d'inertie. $J = M.R^2$.
- 2. Déterminer l'énergie cinétique du volant.
- 3. On l'utilise pour effectuer un travail, il ralentit et ne fait plus que 120 tr / min. Calculer ce travail
- 4. Calculer le moment du couple s'opposant à la rotation. On prendra g = 10 N/kg

Exercice 3:

Un autoporteur de masse m=600g est lancé depuis un point A avec une vitesse initiale $V_A=6m.s^{-1}$ sur un plan AB horizontal de longueur AB = 3 m sur lequel il glisse sans frottement, puis aborde un plan incliné BD , de longueur BD=4m, sur lequel les frottements seront supposés négligeables.

L'autoporteur pourra être considéré comme un solide ponctuel. On prendra g = $10~\mathrm{N/Kg}$

- 1. Exprimer, puis calculer l'énergie cinétique de l'autoporteur en A.
- 2. Faire l'inventaire des forces extérieures agissant sur l'autoporteur au cours de la phase AB. Définir ces forces et les représenter sur un dessin
- 3.a. Donner la définition d'un système pseudo-isolé .
- 3.b. L'autoporteur est -il pseudo-isolé au cours de la phase AB et la phase BD?
- 3.c. En déduire la vitesse du centre d'inertie du mobile en B?
- 4. Soit C_1 un point du plan incliné tel que $BC_1 = 1m$ Calculer le travail du poids de l'autoporteur et le travail de l'action du plan sur l'autoporteur au cours du déplacement BC_1 .
- 5. En appliquant le théorème de l'énergie cinétique au solide entre les instants t_B et t_{C_1} en déduire V_{c_1}
- 6. Soit C_2 le point de rebroussement sur le plan incliné. En appliquant le théorème de l'énergie cinétique au solide entre les instants t_B et t_{C_2} , en déduire BC_2 la distance parcourue par le mobile avant de rebrousser chemin en C_2 .

Exercice 4:

Un corps solide, descend une pente AB = 10 m en ligne droite, sans frottement, le plan incliné fait angle α avec l'horizontale. Au point A sa vitesse était nulle, à l'arrivée au point B sa vitesse est $V=8km.h^{-1}$. Calculer l'angle α .

Exercices Supplémentaires

Exercice 5:

Un skieur de masse m = 100 kg (équipement compris) est tiré par un bateau à l'aide d'une corde parallèle à la surface de l'eau.

Dans tout le problème, par souci de simplification on représentera les forces appliquéesau système $\{skieur + skis\}$ au niveau des skis

Données $:g=10N.kg^{-1}$, L=AB=200m, $\alpha=30^{\circ}$, OB=OC=15m

<u>1ère</u> étape (trajet AB): Le skieur démarre sans vitesse initiale du point A. Il est tracté par la force \vec{F} constante et l'ensemble des forces de frottement est représenté par la force \vec{f} d'intensité 100 N.Après un parcours de 200 m, le skieur atteint une vitesse $v_B = 20m.s^{-1}$.

- 1. Faire le bilan des forces s'exerçant sur le système {skieur+skis} sur la partie A_B .
- 2. Enoncé le théorème de l'énergie cinétique.
- 3. Exprimer les travaux des forces s'exerçant sur le système sur le trajet AB.
- 4. En déduire l'expression la force de traction \vec{F} en fonction de m, L, f, v_B .
- 5. Faire l'application numérique

 $2^{\grave{e}me}$ étape (trajet BC): Le skieur lâche la corde en B et parcourt le tremplin BC qui est circulaire de centre O de rayon OB = 15 m. OC fait un angle de 30° avec la verticale. Le tremplin est considéré comme parfaitement glissant.

- 6. Représenter sur le schéma au point I, les forces s'exerçant sur le système entre les points B et C (leurs caractéristiques ne sont pas demandées).
- 7. Exprimer la hauteur h acquise en haut du tremplin enfonction de OB et α .
- 8. En appliquant le théorème de l'énergie cinétique, exprimer la vitesse v_C du skieur au point C en fonction de v_B , α , g et OB.
- 9. Faire l'application numérique.

 $3^{\grave{e}me}$ étape (trajet CE):Le skieur effectue un saut et retombe sur ses skis au point Ei Sur ce trajet, on supposera comme négligeable les frottements de l'air. La vitesse du skieur au point C est: $v_C = 19m.s^{-1}$ On prendra l'origine des altitudes en A.

- 10. Calculer l'énergie potentielle de pesanteur et l'énergie cinétique au point C.
- 11. La somme $E_c + E_p$ est-elle constante entre C et E? Justifier.
- 12. Représenter sur un graphique les variations des énergies cinétique et potentielle de pesanteur du skieur en fonction du temps sur le trajet CE. Justifier soigneusement l'allure des deux courbes.
- 13. La valeur de la vitesse au point D n'est pas nulle, elle vaut $v_D = 14m.s^{-1}$. En utilisant la conservation de l'énergie totale du système, en déduire la hauteur du point D au dessus du plan d'eau en fonction des données de l'énoncé, puis calculer sa valeur.
- 14.En cas de frottements de l'air, que se passera-t-il en terme d'énergie et quelles peuvent être les conséquences sur le système?