Recherche d'algorithmes...

Objectifs

- Détermination d'un recouvrement optimal en chaînes du graphe divisoriel {algorithme 1},
- Détermination de la plus longue chaîne divisorielle dans une liste quelconque d'entier {algorithme 2}.

Algorithme 1 : Recouvrement optimal

Un exemple pour comprendre

2/9

Algorithme 1: Recouvrement optimal

Organigramme

3/9

Algorithme 1: Recouvrement optimal

Complexité & Optimisations

Complexité temporelle (algorithme non optimisé)

- Calcul des **permutations** en $\mathcal{O}(n!)$
- Coût d'un appel à la fonction **découpe** en $\mathcal{O}(n)$
- Complexité total en $\mathcal{O}(n \cdot n!)$

Optimisations spatiale et temporelle

- paramètre m, filtre les recouvrements non optimaux
- initialisation de m
- ne pas conserver les permutations en mémoire
- utiliser une seule grande boucle
- nombre premiers $p \le n < 2p$
- ne pas analyser les recouvrements avec 1 en tête ou en queue de liste

Algorithme 1 : Recouvrement optimal

Résultats en Python

Algorithme 1 : Recouvrement optimal

Tableau comparatif

n	n!	permutations à analyser	temps d'éxécution
4	24	4	, ≤ 1 s
6	720	96	≤ 1 s
8	40 320	600	≤ 1 s
10	3 628 800	322 560	3 s
11	39 916 800	322 560	3 s
12	479 001 600	3 265 920	23 s
13	6 227 020 800	3 265 920	24 s
14	87 178 291 200	(-)	≥ 1 h
15	1 307 674 368 000	(-)	(-)

Algorithme 2 : Plus longue chaîne

Organigramme : lci règne le récursif . . .

7/9

Algorithme 2 : Plus longue chaîne

Complexité & Optimisations

Complexité temporelle

- calcul des plus long chemins à **début fixé** selon la relation $T_n = n \cdot T_{n-1}$ d'où $T_n = \mathcal{O}(n!)$
- Recherche de la **longueur**maximale d'un chemin dans la
 liste des chemins, *linéaire en la*taille de la liste
- Filtrage des chemins de longueur maximale, linéaire en la taille de la liste
- \square Complexité total $\mathcal{O}(n!)$

Optimisations

- nombre premiers $p \leqslant n < 2p$ dans le cas du graphe divisoriel
- paramètre m,
 filtrage de chemins
 non maximaux
- plus difficile d'optimiser (récursif . . .)

Algorithme 2 : Plus longue chaîne

Résultats en Caml

