Section 3

- 識別2 (5~7章)

• 数值特徵

5.2 数値特徴に対するベイズ識別

5.2.1 数値特徴に対するナイーブベイズ識別

$$C_{NB} = \arg\max_{i} P(\omega_i) \prod_{j=1}^{d} p(x_j | \omega_i)$$

- 確率密度関数 $p(x_j|\omega_i)$ の推定
 - 正規分布を仮定

$$p(z) = \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{(z-\mu)^2}{2\sigma^2})$$

5.3.1 識別モデルの考え方

• 事後確率を直接求める

この値が正なら正例、 負なら負例となるように 重み w を学習する この平面を 求めている ことになる

確率と対応づけるには?

5.3.1 識別モデルの考え方

- ロジスティック識別
 - 入力が正例である確率

$$P(\oplus | \boldsymbol{x}) = \frac{1}{1 + \exp(-(\boldsymbol{w} \cdot \boldsymbol{x} + w_0))}$$

-∞ ~ +∞ の値域を持つ ものを、順序を変えずに 0 ~ 1 にマッピング

5.3.2 ロジスティック識別器の学習

• 最適化対象=モデルが学習データを生成する確率

$$E(\boldsymbol{w}) = -\log P(D|\boldsymbol{w}) = -\log \prod_{\boldsymbol{x}_i \in D} o_i^{y_i} (1 - o_i)^{(1 - y_i)}$$

 $o = P(\oplus | \boldsymbol{x})$

y = 0 or 1

正解ラベル

 $oldsymbol{E}(oldsymbol{w})$ を最急勾配法で最小化

6.4 ニューラルネットワーク

• 3層のフィードフォワードネットワーク

6.3 最小二乗法による学習

- シグモイド関数の適用
 - 多層の誤差修正に対応するために、勾配計算の際に 微分可能な活性化関数を用いる

ロジステック識別 w_0 活性化関数 x_1 w_1 w_2 x_2 w_d x_d $\sigma'(h) = \sigma(h) \cdot (1 - \sigma(h))$

6.4 ニューラルネットワーク

- フィードフォワードネットワークのユニット
 - 中間層の活性化関数:シグモイド関数
 - 出力層の活性化関数:シグモイド関数または softmax 関数

$$f(h_i) = \frac{\exp(h_i)}{\sum_{j=1}^{c} \exp(h_j)}$$

6.4 ニューラルネットワーク

- 誤差逆伝播法
- 1.リンクの重みを小さな初期値に設定
- 2.個々の学習データ (x_i,y_i) に対して以下繰り返し
 - 入力 x_i に対するネットワークの出力 o_i を計算
 - a)出力層の k 番目のユニットに対してエラー量 δ 計算 $\delta_k \leftarrow o_k (1 o_k) (y_k o_k)$
 - b)中間層の h 番目のユニットに対してエラー量 δ 計算

$$\delta_k \leftarrow o_k (1 - o_k) \qquad \sum \qquad w_{kh} \delta_k$$

 $k \in outputs$

c)重みの更新

$$w'_{ji} \leftarrow w_{ji} + \eta \delta_j x_{ji}$$

7. 識別 - サポートベクトルマシン -

• マージンを最大化する識別面を求める

○ ○ : サポートベクトル

7.2 ソフトマージンによる誤識別データの吸収

• 少量のデータが線形分離性を妨げている場合

7.2 ソフトマージンによる誤識別データの吸収

スラック変数 ξ, の導入

$$y_i(\mathbf{w}^T \mathbf{x}_i + w_0) \ge 1 - \xi_i \quad i = 1, \dots, N$$

• 最小化問題の修正

| 化間題の修止
$$\min(\frac{1}{2}||oldsymbol{w}||^2+C\sum_{i=1}^N\xi_i)$$
 なま里 スラック変数も 小さい方がよい

- 計算結果
 - α_i の 2 次計画問題に $0 < \alpha_i < C$ が加わるだけ

7.2 ソフトマージンによる誤識別データの吸収

- C: エラー事例に対するペナルティ
 - 大きな値:誤識別データの影響が大きい
 - → 複雑な識別面
 - 小さな値:誤識別データの影響が小さい
 - → 単純な識別面

特徴ベクトルの次元を増やす

ただし、元の空間でのデータ間の 距離関係は保持するように

- 非線形変換関数: $\phi(x)$
- カーネル関数

$$K(\boldsymbol{x}, \boldsymbol{x}') = \phi(\boldsymbol{x})^T \phi(\boldsymbol{x}')$$

2 つの引数値の近さを表す

- 元の空間での距離が変換後の空間の内積に対応
- x と x' が近ければ K(x, x') は大きい値

- カーネル関数の例(scikit-learn の定義)
 - 線形 $K(\boldsymbol{x}, \boldsymbol{x}') = \boldsymbol{x}^T \boldsymbol{x}'$
 - 元の特徴空間でマージン最大の平面
 - 多項式 $K(\boldsymbol{x}, \boldsymbol{x}') = (\boldsymbol{x}^T \boldsymbol{x}' + r)^d$
 - *d* 項の相関を加える
 - RBF $K(x, x') = \exp(-\gamma ||x x'||^2)$
 - γ の値: 大→複雑 小→単純な識別面
 - シグモイド $K(\boldsymbol{x}, \boldsymbol{x}') = \tanh(\boldsymbol{x}^T \boldsymbol{x}' + r)$
 - ニューラルネットワークと似た振る舞いを実現

• 多項式カーネルの解釈

$$\boldsymbol{x}^T \boldsymbol{x}' = ||\boldsymbol{x}|| \cdot ||\boldsymbol{x}'|| \cdot \cos \theta$$

• 多項式カーネルの展開例

$$y = \cos(x)$$

$$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = (\mathbf{x}^{(i)} \cdot \mathbf{x}^{(j)} + 1)^{2}$$

$$= (x_{1}^{(i)} x_{1}^{(j)} + x_{2}^{(i)} x_{2}^{(j)} + 1)^{2}$$

$$= (x_{1}^{(i)} x_{1}^{(j)})^{2} + (x_{2}^{(i)} x_{2}^{(j)})^{2} + 2x_{1}^{(i)} x_{1}^{(j)} x_{2}^{(i)} x_{2}^{(j)} + 2x_{1}^{(i)} x_{1}^{(j)} + 2x_{2}^{(i)} x_{2}^{(j)} + 1$$

$$= ((x_{1}^{(i)})^{2}, (x_{2}^{(i)})^{2}, \sqrt{2} x_{1}^{(i)} x_{2}^{(i)}, \sqrt{2} x_{1}^{(i)}, \sqrt{2} x_{2}^{(i)}, 1)$$

$$\cdot ((x_{1}^{(j)})^{2}, (x_{2}^{(j)})^{2}, \sqrt{2} x_{1}^{(j)} x_{2}^{(j)}, \sqrt{2} x_{1}^{(j)}, \sqrt{2} x_{2}^{(j)}, 1)$$

2 変数の相関を 表す項

• RBF カーネルの解釈

$$e^{-||\boldsymbol{x}-\boldsymbol{x}'||^2}$$

- RBF カーネルの展開
 - *e^x*のマクローリン展開

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots$$

ガウシアンカーネルは無限級数の積で表されるので、無限次元ベクトルの内積と解釈できる

- 変換後の識別関数: $g(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) + w_0$
- SVM で求めた *w* の値を代入

$$g(\mathbf{x}) = \sum_{i=1}^{N} \alpha_i y_i \phi(\mathbf{x})^T \phi(\mathbf{x}_i) + w_0$$

$$= \sum_{i=1}^{N} \alpha_i y_i K(\mathbf{x}, \mathbf{x}_i) + w_0$$
非線形変換の
式は不要!!!

カーネルトリック

Section3 のまとめ

- 生成モデル:データの分布を示す関数を推定
- ・ 識別モデル:データの境界を推定
 - 最急勾配法を用いて誤差最小のパラメータを求める
- ニューラルネットワーク
 - 複雑な非線形識別面を求める
 - 現在は、ディープニューラルネットワークの発展により 識別問題解決の中心技術になった
- サポートベクトルマシン
 - 低次元で識別しにくいデータを、高次元の疎らなデータ に変換し、マージン最大の線形識別面を求める手法