Laboratorium Podstaw Elektroniki							
Kierunek	Specjalność	Rok studiów	Symbol grupy lab.				
Informatyka	_	I		!3			
Temat Laboratorium				Numer lab.			
Tranzystory				5			
Skład grupy ćwiczeniowej oraz numery indeksów							
Piotr Więtczak(132339), Robert Ciemny(136693), Kamil Basiukajc(136681)							
Uwagi			Ocena				

1 Charakterystyka bramkowa nMOS

1.1 Cel zadania

Wyznaczenie empirycznej zależności pomiędzy sygnałem sterującym a sterowanym.

1.2 Przebieg zadania

Przy pomocy poniższego układu dokonano serii pomiarów wartości prądu drenu I_D w zakresie < 0...5 > V. Wyniki pomiarów przedstawiono w poniższej tabeli.

Rysunek 1: Układ do badania charakterystyki bramkowej tranzystora nMOS

Napięcie	I_D
$U_{GS}[V]$	[mA]
0.0	0.000
0.5	0.000
1.0	0.000
1.5	0.000
2.0	1.360
2.1	3.641
2.2	4.905
2.3	4.699
2.4	4.987
2.5	4.986
3.0	5.000
3.5	5.009
4.0	5.011
4.5	5.014
5.0	5.015

Tablica 1: Tabela przedstawiająca wyniki pomiarów

wartości napięcia scaled x ticks

2 Charakterystyka bramkowa pMOS

Rysunek 2: Układ do badania charakterystyki bramkowej tranzystora pMOS

Napięcie	I_D
Bramka- $U_{GS}\left[V\right]$	[mA]
0.0	5.000
0.5	5.000
1.0	5.000
1.5	5.000
2.0	4.972
2.1	4.950
2.2	4.902
2.3	4.721
2.4	4.166
2.5	2.793
2.6	1.050
2.7	0.563
2.8	0.249
2.9	0.044
3.0	0.023
3.5	0.000
4.0	0.000
4.5	0.000
5.0	0.000

Czasy obliczania etykiet dla grafów

Liczba wierzchołków

3 Charakterystyka drenowa nMOS

Rysunek 3: Układ do badania charakterystyki drenowej tranzystora nMOS

Napięcie	I_D
Bramka- $U_{GS}[V]$	[mA]
0	0.000
1	1.097
2	2.172
3	3.140
4	4.125
5	5.114
6	5.983
7	6.950
8	8.160
9	9.216
10	10.158

Rysunek 4: Układ do badania charakterystyki drenowej dla obniżonego napięcia bramki

4 Charakterystyka drenowa pMOS

Rysunek 5: Układ do badania charakterystyki drenowej tranzystora pMOS

5 Tranzystor nMOS jako przełącznik

Rysunek 6: Układ do badania charakterystyki drenowej dla obniżonego napięcia bramki pMOS

Rysunek 7: Schemat układu do badania tranzystora nMOS w roli przełącznika

Rysunek 8: Model układu z opóźnionym wyłączaniem

6 Czas załączania tranzystora

7 title

Literatura

- [1] S. Bolkowski, *Teoria obwodów elektrycznych*, ser. Elektrotechnika teoretyczna. Wydawnictwa Naukowo-Techniczne, 1986,
- [2] P. Horowitz and W. Hill, Sztuka elektroniki. WKiŁ, 2003, vol. 1.
- [3] D. Halliday, R. Resnick, and J. Walker, *Podstawy fizyki*. PWN, 2003, vol. 3.
- [4] J. Watson, Elektronika. WKiŁ, 1999.
- [5] Z. Nosal and J. Baranowski, Układy elektroniczne. WNT, 2003.

Spis treści

1	Charakterystyka bramkowa nMOS 1.1 Cel zadania	
2	Charakterystyka bramkowa pMOS	3
3	Charakterystyka drenowa nMOS	4
4	Charakterystyka drenowa pMOS	6
5	Tranzystor nMOS jako przełącznik	6
6	Czas załączania tranzystora	7
7	title	7