Math 321 Homework 1

In this homework, we will need several definitions. Let I = [a, b] be an interval and $k \ge 0$ be an integer. If $f: I \to \mathbb{R}$ is a function that is k-times differentiable on I, then we define

$$||f||_{C^k(I)} = \sum_{j=0}^k \sup_{x \in I} |f^{(j)}(x)|.$$

This quantity is called the " C^k norm of f." We define $C^k(I)$ to be the set of functions $f: I \to \mathbb{R}$ that satisfy the following two properties. (i): f is k-times differentiable on I, and (ii): $f^{(k)}$ is continuous on I. We define a metric on $C^k(I)$ as follows: $d(f,g) = ||f - g||_{C^k(I)}$, i.e.

$$d(f,g) = \sum_{j=0}^{k} \sup_{x \in I} |f^{(j)}(x) - g^{(j)}(x)|.$$
(1)

Nicholas Rees, 11848363

It is straightforward to verify that this is indeed a metric, but you do not have to do so for this homework.

Problem 1

Let $f(t) = e^t$; recall that f is monotone increasing, f'(t) = f(t), and f(0) = 1. Let $P_n(t)$ be the n-th order Taylor polynomial of f at the point $x_0 = 0$, as discussed in lecture. Let I = [-1, 1] and let $k \ge 1$ be an integer. Using Taylor's theorem, prove that the sequence $\{P_n\}$ converges to f in the metric space $C^k(I)$.

Hints (i) Compute the Taylor polynomial $P_n(t)$. (ii) What is the derivative of P_n ? (iii) What are the higher derivatives of P_n ? (iv) How can you estimate each term in (1)?

Solution. Recall that for f(t), the n-th ordered Taylor polynomial at $x_0 = 0$ is

$$P_n(t) = \sum_{i=0}^n \frac{x^i}{i!}$$

Furthermore, note that the j-th derivative of $P_n(t)$ is 0 if j > n and

$$\frac{d^{j}}{dx^{j}}P_{n}(t) = \frac{d^{j}}{dx^{j}}\sum_{i=0}^{j-1}\frac{x^{i}}{i!} + \sum_{i=j}^{n}\frac{d^{j}}{dx^{j}}\frac{x^{i}}{i!} = 0 + \sum_{i=j}^{n}\frac{1}{i!}\frac{i!}{(i-j)!}x^{i-j} = \sum_{i=j}^{n}\frac{x^{i-j}}{(i-j)!} = \sum_{i=0}^{n-j}\frac{x^{i}}{i!} = P_{n-j}(t)$$

when $j \geq n$.

Recall from Taylor's theorem that there exists c between t and 0 such that

$$e^{t} = P_{n}(t) + \frac{f^{(n+1)}(c)}{(n+1)!}t^{n+1} = P_{n}(t) + \frac{e^{c}}{(n+1)!}t^{n+1}$$

Then we make some argument about how e^c is maximal at 1 in I, but this will decrease arbitrarily, so $\{P_n\} \to f$.

Problem 2

Let $f(t) = e^t$. Let $P_n(t)$ be the n-th order Taylor polynomial of f at the point $x_0 = 0$.

- (a). Let $n \geq 1$. Prove that $n!P_n(1)$ is an integer.
- (b). Using part (a) and Taylor's theorem, prove that Euler's number e is irrational. You may use the fact that e^t is strictly monotone increasing, and 0 < e < 3.

Hint: if e were rational, then we could write e = m/n...

(a). Solution. See

$$n!P_n(t) = n! \sum_{i=0}^{n} \frac{x^i}{i!} = \sum_{i=0}^{n} (n-i)!x^i$$

Now when x = 1, each term is an integer, and the integers are closed under addition, so $n!P_n(1)$ is an integer as well.

(b). Solution. Assume, for the sake of contradiction, that $e \in \mathbb{Q}$, that is to say, e = m/n, for some $m \in \mathbb{Z}, n \in \mathbb{N}$. Note $n!e = m(n-1)! \in \mathbb{Z}$. Also recall by Taylor's theorem that

$$e = P_n(1) + \frac{f^{(n+1)}(x)}{(n+1)!} = P_n(1) + \frac{e^x}{(n+1)!}$$

for some $x \in (0,1)$. Then

$$n!e = n!P_n(t) + \frac{e^x}{n+1}$$

Let $n \ge 2$. Since 0 < e < 3 and 0 < x < 1, we have $0 < e^x < 3$, and so when $n \ge 2$, $n+1 > e^x \implies \frac{e^x}{n+1} \notin \mathbb{Z}$. However, by part (a), we know that $n!P_n(t) \in \mathbb{Z}$ and so $\frac{e^x}{n+1} = n!e - n!P_n(t) \in \mathbb{Z}$, which is a contradiction.

Problem 3

The next problem concerns monotone increasing functions, and will help prepare us for the Riemann–Stieltjes integral. Let $\alpha \colon [0,1] \to \mathbb{R}$ be increasing. Recall from last term that for every $c \in [0,1]$, $\lim_{x \searrow c} \alpha(x)$ and $\lim_{x \nearrow c} \alpha(x)$ always exist. Thus α is continuous at c if and only if $\lim_{x \searrow c} \alpha(x) = \lim_{x \nearrow c} \alpha(x)$. If α is not continuous at c, then $\lim_{x \nearrow c} \alpha(x) < \lim_{x \searrow c} \alpha(x)$, and we say α has a jump discontinuity at c.

Let $\alpha: [0,1] \to \mathbb{R}$ be montone increasing. Prove that the set of points $c \in [0,1]$ where α is not continuous is either finite (possibly empty), or countably infinite.

Solution. For the sake of contradiction, assume that the set of discontinuous points is uncountably infinite. If Recall that $\lim_{x\searrow c} \alpha(x) = a$ when for all $\varepsilon > 0$, there exists some $\delta > 0$ such that for all $x \in (c, c + \delta)$, $|\alpha(x) - a| < \varepsilon$. Sequences: if $\alpha(x_n) \to a$ as $n \to \infty$ for all sequences $\{x_n\}$ in (c, 1] such that $x_n \to c$.