DWH KM1

Michał Iwaniuk, Bartłomiej Borycki May 2025

1 Cel projektu i planowane korzyści

Celem projektu jest stworzenie hurtowni danych służącej do kompleksowej analizy wypadków drogowych w Wielkiej Brytanii z lat 2019–2023. Głównymi odbiorcami rozwiązania są instytucje państwowe odpowiedzialne za bezpieczeństwo ruchu drogowego. Projekt ma na celu dostarczenie narzędzia umożliwiającego monitorowanie i badanie wypadków w kontekście wielu czynników jednocześnie — takich jak lokalizacja zdarzenia, warunki pogodowe, liczba ofiar oraz typy pojazdów uczestniczących w kolizjach.

Dzięki integracji danych policyjnych o wypadkach z danymi meteorologicznymi możliwe będzie odkrywanie korelacji, na przykład wpływu pogody na liczbę i ciężkość wypadków, a także identyfikowanie szczególnie niebezpiecznych miejsc lub warunków.

Planowane korzyści: Hurtownia danych umożliwi generowanie raportów i dashboardów prezentujących kluczowe wskaźniki bezpieczeństwa drogowego. Instytucje będą mogły z łatwością śledzić trendy (np. wzrost lub spadek liczby wypadków w ujęciu rocznym), identyfikować obszary wysokiego ryzyka na mapie oraz podejmować świadome decyzje dotyczące poprawy infrastruktury czy wdrażania działań prewencyjnych.

2 Planowane raporty i dashboard BI (6 stron)

Na potrzeby użytkowników końcowych zostanie przygotowany interaktywny dashboard BI, składający się z sześciu stron tematycznych. Każda strona będzie skupiać się na innym aspekcie danych o wypadkach drogowych, prezentując kluczowe wskaźniki oraz umożliwiając ich filtrowanie. Poniżej przedstawiono planowaną zawartość każdej strony:

Strona 1: Podsumowanie ogólne

Strona startowa będzie zawierać syntetyczny przegląd sytuacji na drogach w analizowanym okresie. Znajdą się tu:

- Kafelkowe KPI: łączna liczba wypadków, liczba ofiar, liczba pojazdów.
- Wykres liniowy: liczba wypadków w latach 2019–2023.
- Wykres kołowy lub słupkowy: podział wypadków według ciężkości (śmiertelne, poważne, lekkie).
- Mapa punktowa lub heatmapa UK: lokalizacja wypadków z podziałem przestrzennym.

Strona 2: Analiza lokalizacji

Ta strona będzie umożliwiać analizę przestrzennego rozkładu wypadków:

- Choropleth map: intensywność wypadków w regionach administracyjnych (np. hrabstwa).
- Wykres słupkowy / tabela: ranking 10 najbardziej niebezpiecznych lokalizacji.
- Filtry interaktywne: rok, typ drogi (np. droga główna, lokalna).

Strona 3: Warunki pogodowe a wypadki

Sekcja ta połączy dane meteorologiczne z informacjami o wypadkach:

- Wykres kolumnowy: liczba wypadków przy różnych warunkach pogodowych.
- Wskaźnik i wykres: średnia temperatura podczas wypadków i jej rozkład.
- Wykres udziału: stan nawierzchni (sucha, mokra, oblodzona).

Strona 4: Ofiary wypadków

Strona ta będzie poświęcona analizie ofiar i ich charakterystyce:

- Wskaźnik: średnia liczba ofiar na wypadek.
- Wykres słupkowy: liczba ofiar wg ciężkości obrażeń.
- Wykres warstwowy / procentowy: typ ofiar (piesi, kierowcy, pasażerowie).
- Piramida wieku: wiek i płeć poszkodowanych.

Strona 5: Pojazdy i sprawcy

Ta część będzie analizować dane dotyczące pojazdów i kierowców uczestniczących w wypadkach:

- Wykres kolumnowy: udział różnych typów pojazdów w wypadkach.
- Wskaźnik i histogram: liczba pojazdów na wypadek.
- Wykresy: wiek pojazdu, typ paliwa, pojemność silnika.
- Wykresy demograficzne: wiek, płeć i status społeczno-ekonomiczny kierowców.

Strona 6: Analiza czasowa i sezonowość

Ostatnia strona umożliwi analizę czasową zdarzeń drogowych:

- Wykres liniowy: miesięczna liczba wypadków w latach 2019–2023.
- Wykres słupkowy: liczba wypadków wg dnia tygodnia i godziny.
- Suwak daty: wybór zakresu czasowego do analizy.

3 Wykorzystywane zbiory danych

Dane publikowane są corocznie przez Department for Transport (DfT), zwykle we wrześniu za rok poprzedni (np. dane za 2023 rok zostały udostępnione we wrześniu 2024). Publikacje obejmują finalne, zweryfikowane dane i są dostępne publicznie w formacie CSV. W projekcie wykorzystywane są dane z lat 2019–2023.

Źródłem danych dla hurtowni są zestawy opublikowane przez **Department for Transport (DfT)** na portalu https://data.gov.uk/dataset/road-safety-data, obejmujące lata 2019–2023 oraz dane meteorologiczne z biblioteki **Meteostat** (https://meteostat.net). Poniżej przedstawiono szczegóły każdego ze zbiorów, wraz z opisem ich struktury.

3.1 Dane o wypadkach (Collisions)

Zbiór Collisions zawiera jeden rekord dla każdego zgłoszonego wypadku drogowego. Dane obejmują informacje o dacie, lokalizacji, typie drogi, warunkach atmosferycznych i skutkach zdarzenia. Wartości są kodowane liczbowo zgodnie ze słownikiem STATS19.

Nazwa kolumny	Opis
accident_index	Unikalny identyfikator wypadku
accident_year	Rok zdarzenia
accident_reference	Alternatywny kod wypadku
location_easting_osgr	Współrzędna w osi wschód (OSGB)
location_northing_osgr	Współrzędna w osi północ (OSGB)
longitude	Długość geograficzna
latitude	Szerokość geograficzna
police_force	Jednostka policji rejestrująca
accident_severity	Ciężkość wypadku
number_of_vehicles	Liczba pojazdów
number_of_casualties	Liczba ofiar
date	Data zdarzenia
day_of_week	Dzień tygodnia
time	Godzina zdarzenia
local_authority_district	Kod jednostki samorządowej
local_authority_ons_district	Kod ONS jednostki
local_authority_highway	Kod drogi
first_road_class	Klasa głównej drogi
first_road_number	Numer drogi
road_type	Typ drogi
speed_limit	Ograniczenie prędkości
junction_detail	Szczegóły skrzyżowania
junction_control	Kontrola ruchu na skrzyżowaniu
second_road_class	Klasa drugorzędnej drogi
second_road_number	Numer drogi drugorzędnej
pedestrian_crossing_human_control	Przejście z nadzorem
pedestrian_crossing_physical_facilities	Rodzaj przejścia
light_conditions	Warunki oświetleniowe
weather_conditions	Warunki pogodowe
road_surface_conditions	Stan nawierzchni
special_conditions_at_site	Szczególne warunki miejsca

Nazwa kolumny	Opis
carriageway_hazards	Utrudnienia na jezdni
urban_or_rural_area	Typ terenu (miejski/wiejski)
did_police_officer_attend_scene_of_a	c Obenn ość policji na miejscu
trunk_road_flag	Flaga drogi głównej
lsoa_of_accident_location	Kod LSOA lokalizacji
enhanced_severity_collision	Znormalizowana ciężkość wypadku

3.2 Dane o pojazdach (Vehicles)

Zbiór Vehicles zawiera jeden rekord dla każdego pojazdu biorącego udział w wypadku. Dane obejmują typ pojazdu, manewr w chwili zdarzenia, jego stan techniczny, napęd oraz informacje o kierowcy.

Nazwa kolumny	Opis	
accident_index	Identyfikator wypadku	
accident_year	Rok wypadku	
accident_reference	Alternatywny identyfikator	
vehicle_reference	Numer pojazdu w zdarzeniu	
vehicle_type	Typ pojazdu	
towing_and_articulation	Czy pojazd ciągnął coś	
vehicle_manoeuvre	Wykonywany manewr	
vehicle_direction_from	Kierunek początkowy	
vehicle_direction_to	Kierunek docelowy	
vehicle_location_restricted_lane	Pas ograniczony	
junction_location	Położenie względem skrzyżowania	
skidding_and_overturning	Poślizg/dachowanie	
hit_object_in_carriageway	Obiekt na jezdni	
vehicle_leaving_carriageway	Zjazd z jezdni	
hit_object_off_carriageway	Obiekt poza jezdnią	
first_point_of_impact	Punkt pierwszego kontaktu	
vehicle_left_hand_drive	Czy pojazd z kierownicą po lewej	
journey_purpose_of_driver	Cel podróży	
sex_of_driver	Płeć kierowcy	
age_of_driver	Wiek kierowcy	
age_band_of_driver	Przedział wiekowy kierowcy	
engine_capacity_cc	Pojemność silnika	
propulsion_code	Typ napędu	
age_of_vehicle	Wiek pojazdu	
generic_make_model	Marka i model (jeśli znane)	
driver_imd_decile	Decyla deprywacji kierowcy	
driver_home_area_type	Typ miejsca zamieszkania	
lsoa_of_driver	Kod LSOA kierowcy	
escooter_flag	Flaga hulajnogi	
dir_from_e/n, dir_to_e/n	Współrzędne kierunku ruchu	
driver_distance_banding	Przedział odległości od domu	

3.3 Dane o ofiarach (Casualties)

Zbiór Casualties zawiera jeden rekord dla każdej osoby poszkodowanej w wypadku. Uwzględnia dane demograficzne, typ uczestnika ruchu i kontekst zdarzenia.

Nazwa kolumny	Opis	
accident_index	Identyfikator wypadku	
accident_year	Rok wypadku	
accident_reference	Alternatywny identyfikator	
vehicle_reference	Numer pojazdu	
casualty_reference	Numer ofiary w wypadku	
casualty_class	Klasa ofiary (pieszy, pasażer itd.)	
sex_of_casualty	Płeć ofiary	
age_of_casualty	Wiek ofiary	
age_band_of_casualty	Przedział wiekowy ofiary	
casualty_severity	Ciężkość obrażeń	
pedestrian_location	Pozycja pieszego	
pedestrian_movement	Ruch pieszego	
car_passenger	Miejsce pasażera w samochodzie	
bus_or_coach_passenger	Rodzaj pasażera autobusu	
pedestrian_road_maintenance_worker	Czy pieszy to pracownik drogowy	
casualty_type	Typ użytkownika drogi	
casualty_home_area_type	Typ miejsca zamieszkania	
casualty_imd_decile	Decyla deprywacji	
lsoa_of_casualty	Kod LSOA ofiary	
enhanced_casualty_severity	Znormalizowana ciężkość	
casualty_distance_banding	Odległość od domu	

3.4 Dane meteorologiczne (Meteostat)

Dane pogodowe zostały pobrane z biblioteki Meteostat za pomocą API w języku Python. Pozwalają na powiązanie każdego wypadku z warunkami atmosferycznymi panującymi w danym czasie i lokalizacji. Dane są pobierane dynamicznie na etapie procesu ETL.

Nazwa kolumny	Opis	
time	Data i godzina pomiaru	
temp	Temperatura powietrza [°C]	
dwpt	Temperatura punktu rosy [°C]	
rhum	Wilgotność względna [%]]	
prep	Opady [mm/h]	
snow	Pokrywa śnieżna [mm]	
wdir	Kierunek wiatru [°]	
wspd	Prędkość wiatru [km/h]	
wpgt	Poryw wiatru [km/h]	
pres	Ciśnienie atmosferyczne [hPa]	
tsun	Czas nasłonecznienia [min]	
coco	Kod warunków pogodowych (Weather Condition	
	Code)	

Uwaga dotycząca integracji danych pogodowych. Dla każdego wypadku pobierana jest godzinna obserwacja meteorologiczna odpowiadająca dokładnemu czasowi i lokalizacji zdarzenia. W tym celu wykorzystywana jest funkcjonalność Point biblioteki Meteostat, która umożliwia uzyskanie danych nawet dla lokalizacji bez bezpośredniej stacji pogodowej – poprzez interpolację na podstawie sąsiednich stacji oraz wysokości terenu. Najistotniejsze dla modelu kolumny to: temp, prcp, snow, wspd, wdir oraz coco. Dane te są pobierane dynamicznie podczas procesu ETL, a ich formatem pośrednim jest obiekt Pandas DataFrame. Dane pogodowe są historyczne i statyczne – dlatego można je pobrać jednorazowo dla zakresu lat 2019–2023 i aktualizować tylko przy dodawaniu nowych wypadków (np. dla roku 2024).

4 Model fizyczny hurtowni danych (schemat gwiazdy)

Projekt hurtowni danych został oparty o klasyczny schemat gwiazdy (ang. star schema), który jest jednym z najczęściej stosowanych podejść w budowie systemów analitycznych typu Business Intelligence (BI). Struktura modelu zakłada istnienie jednej centralnej tabeli faktów (Fact_Collisions), przechowującej zagregowane dane o wypadkach drogowych, oraz zestawu tabel wymiarów opisujących różne konteksty tych zdarzeń — takie jak data, lokalizacja czy warunki pogodower.

Główne założenia modelu:

- Poziomem szczegółowości (granularnością) tabeli faktów jest pojedynczy wypadek drogowy (jeden rekord = jedno zdarzenie).
- Tabela faktów zawiera zarówno dane bezpośrednio pochodzące z zestawu Collisions, jak również agregaty wyliczane na podstawie tabel Vehicles i Casualties.
- Do modelu włączono dane pogodowe pochodzące z biblioteki Meteostat, przypisane do konkretnego miejsca i godziny wypadku.
- Tabele wymiarów zawierają szczegółowe atrybuty opisowe wykorzystywane do filtrowania, grupowania i analiz przekrojowych.
- Model został zoptymalizowany pod kątem zastosowań raportowych i eksploracyjnych
 np. w Power BI lub SSRS dlatego nie uwzględnia pełnej normalizacji, lecz priorytetem jest wydajność odczytu oraz prostota zapytań.

W kolejnych podsekcjach przedstawiono strukturę wszystkich tabel wchodzących w skład modelu: Fact_Collisions oraz wymiarów DimDate, DimLocation, DimWeather, DimVehicleType, DimCasualtyType, DimRoadCondition i innych opcjonalnych.

Tabela faktów: fact_collision

Table 5: Struktura tabeli faktów: fact_collision

Kolumna	Тур	Opis
Klucze główne i obce		

	Typ	Opis
accident_index	string	Unikalny klucz wypadku
date_id	string	Klucz do dim_date
location_id	string	Klucz do dim_location
weather_id	string	Klucz do dim_weather
Dane ogólne		
accident_severity	smallint	Stopień powagi (1=śmiertelny,
•		2=poważny, 3=lekki)
number_of_vehicles	smallint	Liczba pojazdów
number_of_casualties	smallint	Liczba ofiar
police_attended	boolean	Czy policja była obecna
escooter_involved	boolean	Czy uczestniczyła hulajnoga elek-
		tryczna
enhanced_severity_collision	smallint	Rozszerzona klasyfikacja wypadku
Dane o pojazdach (zagregowane)	
	int	Liczba samochodów osobowych
	int	Liczba autobusów
V 1	int	Liczba motocykli
· -	int	Liczba pojazdów dostawczych/-
- 71 -0		ciężarówek
vehicle_type_other	int	Pozostałe typy pojazdów
vehicle_manoeuvre_turning_left	int	Liczba pojazdów skręcających w lewo
vehicle_manoeuvre_turning_right		Liczba pojazdów skręcających w
		prawo
vehicle_manoeuvre_overtaking	int	Liczba pojazdów wyprzedzających
0	int	Liczba pojazdów z kierownicą po
	1110	lewej
avg_vehicle_age	decimal	Średni wiek pojazdu
0 0	decimal	Średnia pojemność silnika (cc)
Dane o kierowcach		steame pojemnose simme (ee)
	int	Liczba kierowców mężczyzn
	int	Liczba kierowców kobiet
	int	Kierowcy do 25 lat
	int	Kierowcy 26–50 lat
9	int	Kierowcy powyżej 50 lat
_	int	Kierowcy w drodze do/z pracy
	int	Kierowcy do/z uczelni/szkoły
1 1	int	Inny cel podróży
Dane o ofiarach	1110	mmy cer podroży
	int	Liczba ofiar – kierowców
3 – –		
y1 0	int	Liczba ofiar – pasażerów
31	int	Liczba ofiar – pieszych
3 – 3 –	int	Liczba ofiar śmiertelnych
3	int	Liczba ofiar poważnych
3 – 3 – 6	int	Liczba ofiar lekkich
cagualty and hand () 1h	int	Offary w wieku 0–15
	int	Ofiary w wieku 16–30
casualty_age_band_16_30	int int	Ofiary w wieku 31–60

Kolumna	Typ	Opis
casualty_age_band_60_plus	int	Ofiary w wieku 60+

Wymiar: dim_time

Table 6: Struktura wymiaru: dim_time

Kolumna	Typ	Opis
time_id	string	Klucz wymiaru czasu (np. 2023010101
		= 1 stycznia 2023, godz. 01)
full_datetime	datetime	Dokładna data i godzina
date	date	Data dzienna (YYYY-MM-DD)
year	int	Rok
month	int	Miesiąc (1–12)
month_name	string	Nazwa miesiąca
day	int	Dzień miesiąca
day_of_week	string	Nazwa dnia tygodnia
day_of_week_num	int	Numer dnia tygodnia (1=Pon, 7=Nd)
is_weekend	boolean	Czy to weekend
week_number	int	Numer tygodnia w roku
quarter	int	Kwartal
hour	int	Godzina (0–23)
hour_band	string	Przedział czasowy
part_of_day	string	Pora dnia
is_night	boolean	Czy to noc (0–5)
is_rush_hour	boolean	Czy godzina to szczyt komunikacyjny
is_holiday	boolean	Czy to święto

Wymiar: dim_location

Table 7: Struktura wymiaru: ${\tt dim_location}$

Kolumna	Typ	Opis
location_id	string	Klucz lokalizacji
location_easting_osgr	int	UK Grid Easting
location_northing_osgr	int	UK Grid Northing
longitude	float	Długość geograficzna
latitude	float	Szerokość geograficzna
lsoav_of_accident_location	string	Kod LSOA
local_authority_district	string	Kod jednostki samorządowej
road_type	string	Typ drogi
speed_limit	int	Ograniczenie prędkości
junction_detail	string	Typ skrzyżowania
junction_control	string	Rodzaj kontroli skrzyżowania
carriageway_hazards	string	Zagrożenia na drodze
urban_or_rural_area	string	Miasto lub wieś

Kolumna	Typ	Opis
trunk_road_flag	boolean	Czy droga krajowa
first_road_class	string	Klasa głównej drogi
first_road_number	int	Numer głównej drogi
second_road_class	string	Klasa drogi skrzyżowanej
second_road_number	int	Numer drogi skrzyżowanej

Wymiar: dim_weather

Table 8: Struktura wymiaru: dim_weather

Kolumna	Typ	Opis
weather_id	string	Klucz wymiaru pogody
temperature	decimal	Temperatura [°C]
precipitation	decimal	Opady [mm]
snow_depth	decimal	Pokrywa śnieżna [mm]
wind_speed	decimal	Prędkość wiatru [km/h]
wind_direction	int	Kierunek wiatru [°]
pressure	decimal	Ciśnienie atmosferyczne [hPa]
weather_coco	string	Kod warunków pogodowych
weather_desc	string	Opis pogody

```
-- Tabela: dim_time
CREATE TABLE dim_time (
    time_id VARCHAR(20) NOT NULL PRIMARY KEY,
    full_datetime DATETIME NOT NULL,
    date DATE NOT NULL,
    year INT NOT NULL,
    month INT NOT NULL,
   month_name VARCHAR(20) NOT NULL,
    day INT NOT NULL,
    day_of_week VARCHAR(20) NOT NULL,
    day_of_week_num INT NOT NULL,
    is_weekend BIT NOT NULL,
    week_number INT NOT NULL,
    quarter INT NOT NULL,
    hour INT NOT NULL,
   hour_band VARCHAR(20) NOT NULL,
    part_of_day VARCHAR(20) NOT NULL,
    is_night BIT NOT NULL,
    is_rush_hour BIT NOT NULL,
    is_holiday BIT NOT NULL
);
GO
-- Tabela: dim_location
CREATE TABLE dim_location (
```

```
location_id VARCHAR(50) NOT NULL PRIMARY KEY,
    location_easting_osgr INT NOT NULL,
    location_northing_osgr INT NOT NULL,
    longitude FLOAT NOT NULL,
    latitude FLOAT NOT NULL,
    lsoav_of_accident_location VARCHAR(20),
    local_authority_district VARCHAR(50) NOT NULL,
    road_type VARCHAR(50) NOT NULL,
    speed_limit INT NOT NULL,
    junction_detail VARCHAR(50),
    junction_control VARCHAR(50),
    carriageway_hazards VARCHAR(100),
    urban_or_rural_area VARCHAR(20) NOT NULL,
    trunk_road_flag BIT NOT NULL,
    first_road_class VARCHAR(10) NOT NULL,
    first_road_number INT NOT NULL,
    second_road_class VARCHAR(10),
    second_road_number INT
);
GO
-- Tabela: dim_weather
CREATE TABLE dim_weather (
   weather_id VARCHAR(50) NOT NULL PRIMARY KEY,
    temperature DECIMAL(5,2),
   precipitation DECIMAL(5,2),
    snow_depth DECIMAL(5,2),
    wind_speed DECIMAL(5,2),
    wind_direction INT,
   pressure DECIMAL(6,2),
   weather_coco VARCHAR(20),
    weather_desc VARCHAR(100)
);
GO
-- Tabela: fact_collision
CREATE TABLE fact_collision (
    accident_index VARCHAR(50) NOT NULL PRIMARY KEY,
    date_id VARCHAR(20) NOT NULL,
    location_id VARCHAR(50) NOT NULL,
    weather_id VARCHAR(50), NOT NULL
    accident_severity SMALLINT NOT NULL,
    number_of_vehicles SMALLINT NOT NULL,
    number_of_casualties SMALLINT NOT NULL,
   police_attended BIT NOT NULL,
    escooter_involved BIT NOT NULL,
    enhanced_severity_collision SMALLINT NOT NULL,
    vehicle_type_car INT NOT NULL,
    vehicle_type_bus INT NOT NULL,
    vehicle_type_motorcycle INT NOT NULL,
```

```
vehicle_type_goods INT NOT NULL,
    vehicle_type_other INT NOT NULL,
    vehicle_manoeuvre_turning_left INT NOT NULL,
    vehicle_manoeuvre_turning_right INT NOT NULL,
    vehicle_manoeuvre_overtaking INT NOT NULL,
    vehicle_left_hand_drive_count INT NOT NULL,
    avg_vehicle_age DECIMAL(5,2),
    avg_engine_capacity_cc DECIMAL(6,2),
    driver_sex_male INT NOT NULL,
    driver_sex_female INT NOT NULL,
    driver_age_band_0_25 INT NOT NULL,
    driver_age_band_26_50 INT NOT NULL,
    driver_age_band_51_plus INT NOT NULL,
    driver_purpose_commute INT NOT NULL,
    driver_purpose_education INT NOT NULL,
    driver_purpose_other INT NOT NULL,
    casualty_class_driver INT NOT NULL,
    casualty_class_passenger INT NOT NULL,
    casualty_class_pedestrian INT NOT NULL,
    casualty_severity_fatal INT NOT NULL,
    casualty_severity_serious INT NOT NULL,
    casualty_severity_slight INT NOT NULL,
    casualty_age_band_0_15 INT NOT NULL,
    casualty_age_band_16_30 INT NOT NULL,
    casualty_age_band_31_60 INT NOT NULL,
    casualty_age_band_60_plus INT NOT NULL,
    CONSTRAINT FK_fact_time FOREIGN KEY (date_id) REFERENCES dim_time(time_id),
    CONSTRAINT FK_fact_location FOREIGN KEY (location_id) REFERENCES
   dim_location(location_id),
    CONSTRAINT FK_fact_weather FOREIGN KEY (weather_id) REFERENCES dim_weather(
   weather_id)
);
GO
```

Listing 1: Deklaracja modelu hurtowni (schemat gwiazdy)

5 Kluczowe miary i atrybuty w modelu

W zaprojektowanym modelu hurtowni danych wyróżniamy kluczowe **miary** (fact measures) oraz istotne **atrybuty wymiarów**, które stanowią podstawę analiz i raportów. Poniżej przedstawiono ich listę wraz z krótkim opisem:

Główne miary analityczne

• Liczba wypadków – podstawowa miara faktu, najczęściej obliczana jako zliczenie rekordów w fact_collision. Może być reprezentowana explicite przez kolumnę accident_count = 1, co ułatwia agregację.

Figure 1: Diagram hurtowni

- Liczba ofiar (ogółem) suma kolumny number_of_casualties; informuje o łącznej liczbie poszkodowanych.
- Liczba ofiar śmiertelnych / ciężko / lekko rannych oddzielne miary na podstawie agregacji odpowiednich kolumn w fact_collision, np. casualty_severity_fatal, ...serious, ...slight.
- Liczba pojazdów suma kolumny number_of_vehicles; wykorzystywana m.in. do analizy przeciętnego rozmiaru kolizji.
- Średnia liczba pojazdów na wypadek wartość wyliczana jako: $\frac{\sum number_of_vehicles}{\sum accident_count}$
- Średnia liczba ofiar na wypadek $\frac{\sum number_of_casualties}{\sum accident_count}$; pozwala określić przeciętną dotkliwość zdarzenia.
- Procent wypadków śmiertelnych udział liczby wypadków o kategorii fatal względem wszystkich: count_fatal total_accidents · 100%.
- Liczba wypadków w danych warunkach wynik filtrowania po wymiarach (np. weather_desc = 'Deszcz' lub road_type = 'A').

- Średnia temperatura podczas wypadków średnia wartość z kolumny temperature w dim_weather, powiązana z rekordami wypadków.
- Liczba wypadków przy opadach suma wypadków, w których precipitation > 0; może być uproszczona przez binarny atrybut was_precipitation.
- Liczba wypadków z udziałem pieszych suma wypadków, w których wystąpiła ofiara typu pedestrian, np. na podstawie flagi involved_pedestrian_flag.
- Liczba wypadków z udziałem wybranego typu pojazdu np. motocykli, rowerów, ciężarówek; możliwe do realizacji przez flagi w fakcie lub filtrację po vehicle_type.
- Liczba wypadków w godzinach szczytu zliczenia bazujące na filtrze po atrybucie is_rush_hour w dim_time.

Najczęściej wykorzystywane atrybuty wymiarów

- **Z** wymiaru czasu (dim_time): year, quarter, month, day_of_week, is_holiday, hour, is_rush_hour.
- Z wymiaru lokalizacji (dim_location): region, urban_or_rural, road_type, speed_limit.
- Z wymiaru pogody (dim_weather): weather_desc, precipitation, temperature.
- Z wymiaru typu pojazdu (dim_vehicle_type): vehicle_type_desc np. do filtrowania wypadków z rowerami, motocyklami itd.
- Z wymiaru typu ofiary (dim_casualty_type): casualty_type_desc do przeglądu kolizji z pieszymi, pasażerami itd.
- Z wymiaru stanu nawierzchni (dim_road_condition): road_surface_desc.
- Z wymiaru ciężkości zdarzenia (dim_accident_severity): severity_desc pozwala analizować np. tylko wypadki śmiertelne.

Uwagi dodatkowe. Niektóre atrybuty demograficzne, takie jak płeć czy wiek kierowców/ofiar, nie są obecnie częścią pełnych wymiarów w modelu gwiazdy. Można je agregować na poziomie źródłowych tabel Vehicles i Casualties, lub — opcjonalnie — dodać do tabeli faktów uproszczone wskaźniki (np. pct_male_drivers, avg_driver_age). Tego rodzaju agregaty warto jednak stosować tylko w uzasadnionych przypadkach, z uwagi na potencjalne zniekształcenie danych przy dużych zróżnicowaniach.

6 Architektura rozwiązania – komponenty i przepływ danych

Architektura projektowanej hurtowni danych opiera się na klasycznym podejściu warstwowym, w którym dane przepływają od źródła, przez warstwę przetwarzania, aż do końcowej warstwy prezentacyjnej. Główne komponenty systemu to:

Źródła danych

- Pliki CSV (2019–2023) dane o wypadkach drogowych publikowane przez *Department for Transport (DfT)* na portalu https://data.gov.uk. Każdy rok zawiera trzy zestawy: Collisions, Vehicles oraz Casualties.
- API Meteostat zewnętrzne źródło danych pogodowych, dostępne online i wykorzystywane dynamicznie podczas przetwarzania danych (ETL) za pomocą skryptów Python. Dane nie są pobierane w formie plików statycznych, lecz na żądanie, dla konkretnego czasu i lokalizacji wypadku.

Strefa pośrednia (Staging Area)

W celu ułatwienia kontroli jakości i przekształceń danych, wykorzystywana jest warstwa staging, zaimplementowana w relacyjnej bazie danych (np. SQL Server). Dane z plików CSV i API Meteostat są tymczasowo ładowane do następujących tabel:

- Stg_Collisions_Raw dane o wypadkach.
- Stg_Vehicles_Raw dane o pojazdach.
- Stg_Casualties_Raw dane o poszkodowanych.
- Stg_Weather_Raw dane pogodowe (zobserwowane warunki w momencie zdarzenia).

Warstwa integracyjna i analityczna (Data Warehouse)

Po wstępnym załadowaniu i przekształceniu danych, trafiają one do hurtowni danych zbudowanej w modelu gwiazdy. Składa się ona z:

- jednej tabeli faktów: fact_collision, zawierającej informacje zagregowane na poziomie pojedynczego wypadku,
- wielu tabel wymiarów: dim_date, dim_location, dim_weather, dim_vehicle_type, dim_casualty_type, dim_road_condition, dim_accident_severity, itd.

Wszystkie relacje pomiędzy tabelą faktów a wymiarami są realizowane za pomocą kluczy obcych. Kluczowe kolumny są indeksowane, co zapewnia wysoką wydajność zapytań analitycznych. Docelowa baza danych jest hostowana w systemie RDBMS, takim jak Microsoft SQL Server.

Warstwa prezentacyjna (BI)

Dane z hurtowni są udostępniane końcowym użytkownikom poprzez narzędzia Business Intelligence, takie jak Power BI lub SQL Server Reporting Services (SSRS). Dashboard BI składający się z sześciu stron umożliwia interaktywną analizę danych, w tym:

- eksplorację danych przez filtry i przekroje czasowe, przestrzenne oraz demograficzne,
- generowanie raportów zbiorczych (np. liczba wypadków w regionach),
- monitorowanie wskaźników bezpieczeństwa drogowego (KPI),
- analizę trendów oraz sezonowości zdarzeń.

Opis przepływu danych (pipeline)

- 1. Pobranie danych źródłowych (CSV i API Meteostat).
- 2. Załadunek danych do tabel staging w bazie danych.
- 3. Przekształcenie i wzbogacenie danych (agregacja, czyszczenie, dołączenie pogody).
- 4. Ładowanie wymiarów i tabeli faktów do hurtowni danych.
- 5. Udostępnienie danych do narzędzia BI w celu prezentacji i analizy.

Rola komponentów:

- SSIS (SQL Server Integration Services) orkiestracja przepływu danych (ETL).
- Python (Meteostat API) pobieranie danych pogodowych na żądanie.
- \bullet SQL Server (DWH) magazyn danych oraz warstwa modelu analitycznego.
- Power BI / SSRS wizualizacja i eksploracja danych przez użytkownika końcowego.

7 Szczegółowy opis procesu ETL w SSIS

Figure 2: Diagram aktywności

Proces ETL został zaprojektowany jako zautomatyzowany pipeline, realizowany głównie w środowisku SSIS (SQL Server Integration Services), z wykorzystaniem dodatkowego skryptu Python do integracji danych pogodowych. Całość opiera się na przetwarzaniu danych z plików źródłowych i API do hurtowni danych zgodnej ze schematem gwiazdy.

Krok 1: Inicjalizacja procesu

Proces rozpoczyna się od uruchomienia paczki SSIS – manualnie lub automatycznie (np. przez SQL Server Agent). W ramach inicjalizacji ustawiane są parametry środowiskowe:

- rok przetwarzanych danych (dla przetwarzania przyrostowego),
- ścieżki do plików CSV (dla dynamicznego ładowania),
- klucz API Meteostat (przekazywany jako zmienna środowiskowa lub parametr wejściowy do skryptu Python).

Krok 2: Załadunek danych źródłowych (Extract)

Dla każdego zbioru (Collisions, Vehicles, Casualties) tworzony jest osobny Data Flow Task w SSIS. Dane z plików CSV są ładowane do tabel staging:

- Stg_Collisions_Raw
- Stg_Vehicles_Raw
- Stg_Casualties_Raw

Zastosowano komponenty Flat File Source (CSV) oraz OLE DB Destination (SQL Server). W razie potrzeby możliwe jest wcześniejsze scalanie plików CSV lub przetwarzanie roczne z wykorzystaniem pętli Foreach Loop Container.

Krok 3: Agregacja i wzbogacenie danych (Transform)

Po załadowaniu danych surowych wykonywane są następujące transformacje:

- agregacja danych o ofiarach i pojazdach do poziomu wypadku (grupowanie po accident_index),
- wyliczenie flag (np. udział pieszych, obecność motocykli),
- klasyfikacja typu pojazdu i ciężkości wypadku na podstawie reguł logicznych,
- uzupełnienie rekordów wypadków o wartości skumulowane i atrybuty analityczne.

Wynikiem tego kroku jest tabela Stg_Collisions_Enriched, zawierająca wzbogacone dane o wypadkach, gotowe do połączenia z pogodą i wymiarami.

Krok 4: Integracja danych pogodowych (Python)

Dane meteorologiczne są pobierane dynamicznie z API Meteostat za pomocą zewnętrznego skryptu Python, uruchamianego z poziomu SSIS (komponent Execute Process Task). Logika działania obejmuje:

- wczytanie listy wypadków z lokalizacją i czasem (eksport z Stg_Collisions_Enriched),
- dla każdego wypadku pobranie godzinowego rekordu pogodowego (temperatura, opady, wiatr, itp.),
- zapis wyników do pliku CSV i import do tabeli Stg_Weather_Raw.

Pobieranie danych odbywa się z dokładnością do godziny i miejsca, a API zapewnia interpolację wartości w razie braku lokalnej stacji meteorologicznej.

Krok 5: Dołączenie danych pogodowych

Tabela Stg_Collisions_Enriched zostaje zaktualizowana o dane pogodowe. Łączenie odbywa się po accident_index. W razie potrzeby możliwe jest wcześniejsze uwzględnienie pogody już w etapie tworzenia enriched.

Krok 6: Ładowanie wymiarów

Dla każdego z wymiarów stosowane są odpowiednie strategie ładowania:

- DimDate generowanie pełnego kalendarza na lata 2019–2023,
- DimLocation wybór unikalnych kombinacji lokalizacji z enriched,
- DimWeather unikalne kombinacje cech pogodowych,

Wszystkie wymiary posiadają techniczne klucze główne (surrogate keys) typu identity oraz indeksy na kolumnach naturalnych.

Krok 7: Ładowanie tabeli faktów

Dane z tabeli Stg_Collisions_Enriched są ładowane do tabeli Fact_Collisions za pomocą Data Flow Task. Proces obejmuje:

- łańcuch transformacji typu Lookup w celu pozyskania kluczy obcych do wymiarów,
- uzupełnienie kolumn miar oraz flag,
- zapis danych do Fact_Collisions z wykorzystaniem trybu FastLoad.

Dla zapewnienia integralności danych rekomenduje się ładowanie wymiarów przed faktami oraz weryfikację spójności (np. liczba rekordów, obecność kluczy obcych).

Krok 8: Finalizacja procesu

Na końcu procesu wykonywane są opcjonalne czynności porządkowe:

- czyszczenie tymczasowych tabel staging,
- generowanie logów, komunikatów o sukcesie lub błędach,
- (opcjonalnie) obsługa wersjonowania lub inkrementalnego przetwarzania w kolejnych latach.

Uwagi końcowe. Proces został zaprojektowany z myślą o skalowalności i wydajności — obsługuje dane z kilku lat, zakłada łatwość przyszłych aktualizacji (np. za rok 2024) oraz zapewnia spójność danych między wymiarami a faktem. W ramach ewolucji rozwiązania możliwe jest także dodanie przetwarzania różnicowego (np. aktualizacja danych przy korektach DfT) lub integracja z innymi źródłami zewnętrznymi.

8 Testowanie i zapewnienie jakości danych (opcjonalnie)

Aby zagwarantować poprawność działania zaprojektowanego rozwiązania oraz wiarygodność danych w hurtowni, przewidziano zestaw testów weryfikujących jakość danych na różnych etapach przetwarzania – od plików źródłowych, przez proces ETL, po dane końcowe w modelu.

1. Testy poprawności danych wejściowych

- Struktura plików CSV weryfikacja zgodności liczby i nazw kolumn z dokumentacją STATS19. Błędne nazwy kolumn mogą skutkować błędnym mapowaniem w SSIS.
- Spójność danych testowych losowa kontrola kilku rekordów załadowanych do staging w porównaniu z plikami źródłowymi.
- Zakresy i wartości graniczne np. sprawdzenie, czy accident_severity przyjmuje tylko wartości 1–3, a współrzędne geograficzne mieszczą się w granicach UK.

2. Testy procesu ETL

- Testy jednostkowe kroków transformacji np. ręczne porównanie liczby ofiar dla wybranych wypadków z agregacjami w Stg_Casualties_Agg.
- Testy integracyjne pełne uruchomienie procesu dla jednego roku (np. 2019) i weryfikacja danych w tabeli faktów.
- **Testy wydajnościowe** pomiar czasu wykonania poszczególnych etapów (szczególnie pobierania pogody dla dużych zbiorów).

3. Testy kompletności i spójności danych

- Sumy kontrolne np. suma pojazdów z pliku collisions powinna pokrywać się z sumą z tabeli Stg_Vehicles_Raw.
- Weryfikacja losowych wypadków sprawdzenie, czy:
 - każdy accident_index występuje w tabeli faktów dokładnie raz,
 - wartości miar (liczba ofiar, pojazdów) są zgodne z danymi źródłowymi,
 - dane pogodowe zostały poprawnie przypisane i są realistyczne.
- Poprawność kluczy obcych np. brak wierszy w Fact_Collisions, które nie mają dopasowania w wymiarach (test referencyjny LEFT JOIN).
- Unikalność rekordów sprawdzenie, czy accident_index jest unikalny w tabeli faktów (można dodatkowo wymusić ograniczenie UNIQUE).

4. Testy integracji danych pogodowych

- Spójność między danymi policyjnymi i meteostat np. jeżeli w weather_conditions występuje kod oznaczający opady, to wartość prcp z Meteostat powinna być większa od zera.
- Kompletność danych pogodowych liczba wierszy w Fact_Collisions powinna odpowiadać liczbie wierszy w Stg_Collisions_Raw.

5. Testy użytkowe (User Acceptance Testing)

- Weryfikacja interpretacji danych z udziałem użytkowników końcowych (np. analityków), którzy oceniają czy wyniki raportów są spójne z ich wiedzą (np. liczba wypadków w regionie X).
- Testy dashboardu BI sprawdzenie funkcjonalności filtrów, poprawności prezentowanych wskaźników oraz czasu odpowiedzi raportów.

Podsumowanie

Wdrożone mechanizmy testowe i walidacyjne pozwalają zachować wysoką jakość danych na każdym etapie procesu — od importu danych źródłowych po końcową prezentację w narzędziu BI. Hurtownia danych została zaprojektowana w sposób umożliwiający szybką identyfikację błędów, analizę ich przyczyn oraz wdrożenie działań naprawczych. Dzięki temu użytkownicy końcowi mogą mieć pewność, że prezentowane dane są rzetelne i wspierają podejmowanie trafnych decyzji analitycznych.