DIALOG(R)File 351:Derwent WPI (c) 2003 Thomson Derwent. All rts. reserv. 008750415 **Image available** WPI Acc No: 1991-254431/199135 XRAM Acc No: C91-110455 XRPX Acc No: N91-194054 Organic electroluminescence device - with light emitting layer and opt. charge transport layer between electrode layers, and contg. conductive polyarylene polymer Patent Assignee: SUMITOMO CHEM CO LTD (SUMO); SUMITOMO CHEM IND KK (SUMO Inventor: DOI S; IYECHIKA Y; NAKANO T; NOGUCHI T; OHNISHI T Number of Countries: 006 Number of Patents: 012 Patent Family: Patent No Kind Date Applicat No Kind Date Week EP 443861 Α 19910828 EP 91301416 Α 19910222 199135 JP 3244630 Α 19911031 JP 9043930 Α 19900223 199150 JP 3273087 Α 19911204 JP 9075225 Α 19900322 199204 JP 4145192 Α 19920519 JP 90267870 Α 19901004 199226 EP 443861 Α3 19920311 EP 91301416 Α 19910222 199326 US 5317169 Α US 91658639 19940531 Α 19910222 199421 US 92861633 Α 19920401 EP 443861 В1 19950705 EP 91301416 Α 19910222 199531 DE 69110922 Ε 19950810 DE 610922 A 19910222 199537 EP 91301416 Α 19910222 US 5726457 19980310 Α US 91658639 Α 19910222 199817 US 93136046 Α 19931014 US 95444917 A 19950519 JP 2987865 19991206 B2 JP 9043930 Α 19900223 200003 JP 2998187 20000111 B2 JP 90267870 Α 19901004 200007 JP 3265395 B2 JP 9075225 20020311 Α 19900322 200220 Priority Applications (No Type Date): JP 90267870 A 19901004; JP 9043930 A 19900223; JP 9075225 A 19900322 Cited Patents: NoSR.Pub; EP 319881; WO 9013148 Patent Details: Patent No Kind Lan Pg Main IPC Filing Notes EP 443861 Α Designated States (Regional): DE FR GB NL JP 4145192 Α 7 C09K-011/06 US 5317169 Α 12 H01L-029/28 Div ex application US 91658639 EP 443861 B1 E 21 H05B-033/14 Designated States (Regional): DE FR GB NL DE 69110922 E H05B-033/14 Based on patent EP 443861 US 5726457 Α 12 H01L-035/24 Cont of application US 91658639 Cont of application US 93136046 JP 2987865 B2 5 C08G-061/00 Previous Publ. patent JP 3244630 JP 2998187 7 H05B-033/22 B2 Previous Publ. patent JP 4145192 JP 3265395 B2 Previous Publ. patent JP 3273087 6 C09K-011/06

Abstract (Basic): EP 443861 A

An organic electroluminescence (EL) device having a light emitting layer or a light emitting layer and a charge transport layer disposed between a pair of electrodes at least one of which is transparent or semitransparent, in which the light emitting layer comprises a conjugated polymer having a repeating unit of formula -Ar1-CH=CH- (I),

in which Ar1 = a 6-14C aromatic hydrocarbon gp. which is unsubstituted or substd. by one or two 1-22C hydrocarbon or alkoxy gps.

USE/ADVANTAGE - The polymers can easily be processed into thin films by spin coating, casting, etc., to give EL devices in which the conjugated polymer (I) is used as a light emitting layer, as a charge transport layer or as a conducting polymer layer disposed between a charge transport layer and an electrode. The devices are excellent in uniformity of light emission over the whole surface, in light emitting efficiency and in luminance. The devices can easily be fabricated and are useful as light emitting devices in various displays. (9pp Dwg.No.1/3)

Abstract (Equivalent): EP 443861 B

An organic electroluminescence device having a light emitting layer or a light emitting layer and a charge transport layer disposed between a pair of electrodes, at least one of which is transparent or semitransparent, the light emitting layer comprising a conjugated polymer having a repeating unit of general formula (1); -Ar1-CH=CH- (1) where Ar1 is an aromatic hydrocarbon group of 6 to 14 carbon atoms which is unsubstituted or substituted by one or two hydrocarbon or alkoxy groups of 1 to 22 carbon atoms, said polymer being obtainable by any one of the following methods: (A) heat treating at a temperature from 80 to less than 200 degC a polymer intermediate having a repeating unit of general formula (4); where Arl is as defined above and in which R1 and R2, which are same or different, are alkyl of 1 to 8 carbon atoms and X- is a counteranion, or the general formula (5): where Ar1 is as defined above and R3 is a hydrocarbon group of 1 to 12 carbon atoms; (B) condensation polymerisation in solution, and in the presence of an alkali, of a dihalide compound of the general formula (6); X2-CH2-Ar1-CH2-X2 (6), where Ar1 is as defined above and X2 is halogen; (C) subjecting a dialdehyde compound of general formula: CHO-Ar1-CHO, where Arl is as defined above, and a phosphonium salt of a dihalide compound of general formula (6) as defined above to condensation polymerization by a Wittig reaction.

Dwg.0/3

Abstract (Equivalent): US 5726457 A

An organic electroluminescence (EL) device having a light emitting layer or a light emitting layer and a charge transport layer disposed between a pair of electrodes at least one of which is transparent or semitransparent, in which the light emitting layer comprises a conjugated polymer having a repeating unit of formula -Ar1-CH=CH-(I), in which Ar1 = a 6-14C aromatic hydrocarbon gp. which is unsubstituted or substd. by one or two 1-22C hydrocarbon or alkoxy gps.

USE/ADVANTAGE - The polymers can easily be processed into thin films by spin coating, casting, etc., to give EL devices in which the conjugated polymer (I) is used as a light emitting layer, as a charge transport layer or as a conducting polymer layer disposed between a charge transport layer and an electrode. The devices are excellent in uniformity of light emission over the whole surface, in light emitting efficiency and in luminance. The devices can easily be fabricated and are useful as light emitting devices in various displays.

Dwg.0/3

US 5317169 A

Organic electroluminescence device comprises a light emitting layer and a charge transport layer (CTL) disposed between a pair of electrodes at least one of which is (semi)transparent. The CTL comprises a conducting polymer with a repeating unit of general formula (2) -Ar2-B- (2), where Ar2 = 6-14C aromatic, 4-6C heterocyclic ring and

contg. N, S or O, or its nuclear-substd. gps. in which the aromatic gp. is substd. by 1 or 2 selected from 1-22C hydrocarbons or 1-22C alkoxy gps.; and B = -CH = CH - or -NH - .

The conducting polymer has an electrical conductivity of 0.1 S/cm or less. The polymer is pref. polyaniline.

USE - The device is easily made and used as a light emitting device for various displays.

THIS PAGE BLANK (USPTO)

⑩日本国特許庁(JP)

6917-4H

8815-3K 8215-4 J

8215-4 J

① 特許出願公開

[®]公開特許公報(A) 平4-145192

⑤Int. Cl. 5 識別記号 庁内整理番号 C 09 K Z 33/22 H 05 B C 08 G 61/02 NLF 61/12 NLJ

❸公開 平成4年(1992)5月19日

審査請求 未請求 請求項の数 1 (全7頁)

会発明の名称 有機エレクトロルミネツセンス素子

> の特 願 平2-267870

20出 頤 平2(1990)10月4日

@発 明 者 家 近 茨城県つくば市北原 6 住友化学工業株式会社内 個発 明 君 中 野 強 茨城県つくば市北原 6 住友化学工業株式会社内 ②発 明 者 鲆 公 信 茨城県つくば市北原 6 住友化学工業株式会社内 個発 明 者 大 西 敏 博 茨城県つくば市北原 6 住友化学工業株式会社内 の出 颐 人 住友化学工業株式会社 大阪府大阪市中央区北浜 4 丁目 5 番33号 個代 理

人 弁理士 諸石 光凞 外1名

1. 発明の名称

有機エレクトロルミネッセンス素子

2. 特許請求の範囲

少なくとも一方が透明または半透明である一対 の電極間に発光層および電荷輸送層を有する有機 エレクトロルミネッセンス素子において、電荷輸 送層と電極の間に、一般式(1)

$$-Ar - B - (1)$$

(Arは炭素数 6 以上の芳香族炭化水素基、また は炭素数4以上のヘテロ環芳香族炭化水素基、 B はーCH=CH-基または-NH-基を示す。)

で表される繰り返し単位を有する導電性高分子の 層を設けてなることを特徴とする有機エレクトロ ルミネッセンス素子。

3. 発明の詳細な説明

(産業上の利用分野)

本発明は、有機エレクトロルミネッセンス素子 に関するものであり、詳しくは、発光効率、発光 輝度、発光の均一性が改良された有機エレクトロ

ルミネッセンス案子に関するものである。 〔従来の技術〕

有機蛍光材料を用いたエレクトロルミネッセン ス素子(以下EL素子という)は、無機EL素子 に比べ、駆動電圧が低くて輝度が高く、種々の色 の発光も容易に得ることができるという特長があ り、多くの試みが報告されてきた。しかしながら、 電極から有機物発光層へ電荷を注入しにくいため に低輝度であった。これを解決するためにTang らは、有機物発光層と電子写真の感光体等に用い られていた有機物正孔輸送材料とを積層した2層 構造を作製し、高効率, 高輝度のEL素子を実現 させた(特開昭59-194393号公報)。さらに、そ れ以後、有機物電子輸送材料と有機物正孔輸送材 料で有機物発光層を挟み込んだ3層構造の業子 [ジャパニーズ・ジャーナル・オブ・アプライド・ フィジックス (Jpn. J. Appl. Phys.) 27. L269(198 8)〕が試みられており、また発光層に種々の色素 をドーピングすることによりいろいろな発光色を 有するEL業子が作製されている(ジャーナル・

1 2

特別平4-145192(2)

. :

オブ・アプライド・フィジックス(J. Appl. Phys.) 第65巻、3610頁(1989年))。

(発明が解決しようとする課題)

[課題を解決するための手段]

本発明者らは、スピンコーティング法やキャスティング法等によって簡便に薄膜化が可能であるとの知見から、導電性高分子薄膜を使用したとする有機EL素子について鋭意検討の結果、発光層と電荷輸送層からなる有機EL素子の電荷輸送層

と電極の間に導電性高分子無設けることにより、 発光効率および輝度が顕著に向上することを見い 出し、本発明に到達した。

すなわち、本発明は、少なくとも一方が透明または半透明である一対の電極間に発光層および電荷輸送層を有する有機エレクトロルミネッセンス 素子において、電荷輸送層と電極の間に、一般式 (1)

$-Ar - B - \tag{1}$

(Arは炭素数 6 以上の芳香族炭化水素基、または炭素数 4 以上のヘテロ環芳香族炭化水素基、BはーCH=CH-基またはーNH-基を示す。)で表される繰り返し単位を有する導電性高分子の磨を設けてなることを特徴とする有機エレクトロルミネッセンス素子を提供することにある。

以下、本発明によるEし素子について詳細に説明する。

本発明に用いる一般式(1) に示す導電性高分子 は、芳香環と結合基が交互に結合した高分子であ

導電性高分子の合成法としては特に限定されないが、一般式(1)の導電性高分子の内でBがビニレン系ポリアリレンビニレン系ポリマー場合は、充分な性能を確保するため比較的共役領平1-254734号、特開昭63-159429号、特開平1-254734号、特開昭64-79217 号公報等に記載の高分子中間体を経由する方法(以下高分子スルホニウム塩分解法と総称する。)、特別昭59-199746 号公報に記載の脱ハロゲン化法等を用いることが好ましい。

高分子スルホニウム塩分解法では側鎖にスルホニウム塩を有する高分子中間体、あるいはそれをアルコール溶媒と反応させて得られる、アルコキシ基を側鎖に有する高分子中間体を熱処理することにより一般式(1) に示される導電性高分子を得ることができる。

脱ハロゲン化法では一般式(2)

 $X_1 - CH_2 - Ar - CH_2 - X_1$ (2)

(Ar は上記と同様なものを意味し、Xiはハロゲ

ンを表す。)で示されるジハロゲン化合物を溶液中でt - ブトキシカリウム等のアルカリにより縮合することにより導電性高分子を得ることができる。

一般式(1) のArは炭素数 6 以上の芳香族炭化水 素または炭素数 4 以上のヘテロ環芳香族炭化水素 である。具体的にはArが芳香族炭化水業基では、 炭素数 6 以上の無置換芳香族炭化水素基、または 核置換芳香族炭化水素基である。無置換芳香族炭 化水素基では、pーフェニレン、oーフェニレン、 2,6 -ナフタレンジイル、5.10-アントラセンジ イルが例示され、好ましくはp-フェニレンであ る。核置換芳香族炭化水素基としては炭素数1~ 22の炭化水素基または炭素数1~22のアルコキシ 基を1ないし2個核置換したものが好適に用いら れる。置換基である炭素数1~22の炭化水素基置 換基としてはメチル、エチル、プロピル、ブチル、 ペンチル、ヘキシル、ヘプチル、オクチル、ラウ リル、オクタデシル基などが例示され、また、炭 素数1~22のアルコキシ基としてはメトキシ、エ

トキシ、プロピルオキシ、ペンチルオキシ、ヘキ シルオキシ、ヘブチルオキシ、オクチルオキシ、 ラウリルオキシ、オクタデシルオキシ基等が例示 される。核置換芳香族基について、より具体的に はモノメチルーp-フェニレン、モノメトキシー p - フェニレン、2,5- ジメチル~p - フェニレ ン、2.5~ジメトキシ-p~フェニレン、モノエ チルーローフェニレン、2,5-ジエトキシーロー フュニレン、2.5-ジエチル-p-フェニレン、 モノブチルーp-フェニレン、モノブトキシ-p - フェニレン、モノブチル-p-フェニレン、2, 5-ジプトキシーローフェニレン、2.5-ジヘプチ ルーローフェニレン、2.5-ジヘプチルオキシー ρーフェニレン、2,5-ジオクチルーρーフェニ レン、2,5-ジオクトキシ-p-フェニレン、2, 5- ジラウリル-p-フェニレン、2,5- ジラウリ ルオキシーローフェニレン、2,5-ジステアリル - p - フェニレン、2.5- ジステアリルオキシー p - フェニレン等が例示される。好ましくは、2, 5-ジメトキシーp-フェニレン、2,5-ジエトキ

シー P - フェニレン、 2,5- ジヘプチルオキシー P - フェニレンである。

また、炭素数 4 以上のヘテロ環芳香族炭化水素基及びその核置換体としては 2,5 - チェニレン、2,5 - フランジイル、2,5 - ピロールジイル及び切れらの 3位および/あるいは 4位への置換体が例案数が 1 ~ 22の 3 - アルキルー2,5 - チェニレン及び炭素なは炭素数 1 ~ 22の 3 - アルコキシー2,5 - チェニレンである。具体的には 3 - メチルー2,5 - チェニレン、3 - エトキシー2,5 - チェニレン、3 - エトキシー2,5 - チェニレン、3・4 - ジメチルー2,5 - チェニレン、3・4 - ジェチェニレンなどが例示される。好ましくは 2,5 - チェニレンなが例示される。好ましくは 2,5 - チェニレンである。

上記の高分子中間体または導電性高分子をスピンコート法、キャスト法などの方法で均一に薄膜化するには、その分子量は十分高いことが必要である。重合度は5以上であり、より好ましくは、近合度10~50000である。具体的にはゲルバーミ

エションクロマトグラフィーによる分子量測定において分子量2800の標準ポリスチレンに相当する 容媒容出位置以前に溶出する高分子量を有するも のが効果的である。

高分子中間体の場合は、その高分子中間体の溶液を後述の薄膜化法で薄膜化し、ついで側鎖を公知の方法で脱離して共役系を有する導電性高分子に転換させる方法が好ましい。

また、本発明に使用の導電性高分子のうちで、Bが一NH~甚の場合は、アニリンまたはアニリンをから方法で電解を公知の方法で電解を出るポリアニリンとにより得られるポリアニリンとは、かけるではないのできるでは、ないのできるでは、水酸化ナトリウム、水酸化カリアとしては水酸化ナトリウムでが用いることができる。

使用するポリアニリンおよびその誘導体の重合 度は極限粘度〔ヵ〕で0.1d1/g 以上(N-メチル- 2-ピロリドン、30℃)が好ましい。

第1図に示した本発明のEL案子の構造の一例を用いてより具体的に説明する。ガラス、透明電極と説明電極を見る。 がラスチック等の透明基板 1 の上に透明電極の金属体のは導電性の金属体のをでは、半透明の金属体膜、半が用いられる。具体のでは、アナ、Ag、Cu等が用いられる。作製方法としては、度空蒸着法、スパッタリングによ、メッキ法などが用いられる。

特開平4-145192 (4)

. :

次いでこの上に導電性高分子層 3 を形成 レンボ 電性高分子が前者のポリアリレンに二 かった あった はった の 高分子中間体の ポリアリン ビニレン系 ポリマー の な 後者の ポリアニリンス ポリマー の な を 電極上に スピング 法 パーコート 法等を 用いて な の な た な アールコート 法等を 用いて は より 薄膜化する。 と も できる。

膜厚としては 5 Å~10 μm、電流密度を上げて 発光効率を上げるために好ましくは10 Å~1 μm である。より好ましくは20~2000 Åの範囲である。 なお、高分子中間体を薄膜化した場合は、その 後に熱処理等を行って導電性高分子に変換させる。 次いで導電性高分子層 3 の上に電荷輸送層 4 、 さらにその上に発光層 5 を形成する。

発光層および電荷輸送層用の材料としては特に限定されず、例えば特開昭 57 - 51781、同 59 - 19 4393号公報に記載されているもの等、公知のもの

が使用可能である。例えば発光層としては、ナフタレン誘導体、アントラセン誘導体、ペリレン誘導体、ポリメチン系、キサンテン系、クマリン系、シアニン系などの色素類、8-ヒドロキシキノリンおよびその誘導体の金属錯体、芳香族アミン、テトラフェニルジタンエン誘導体などが挙げられる。

図で示した構造では電荷輸送層は正孔輸送性を 示す材料を用いる必要がある。正孔輸送層用材料 としては、

などの芳香族アミン系材料があげられる。

なお、有機 E L 素子の構造としては、図に示した (陽極/導電性高分子層/電荷輸送層/発光層 / 陰極)の構造以外に、発光層と陰極の間に電子 輸送層を有する、いわゆるサンドイッチ構造の組 み合わせの構造をとることもできる。この場合の 電子輸送層の材料としては、

などが例示される。

これらの電荷輸送層 4 及び発光層 5 の成膜方法 については真空蒸着法、スピンコーティング法、 キャスティング法、ディッピング法、パーコート 法、ロールコート法などがある。なお、広い面積 に均一な薄膜を成膜するという点では、蒸着法が 制御性に優れており好ましい。 これらの電荷輸送層 4 および発光層 5 の膜厚は少なくともピンホールが発生しないような膜厚である必要がある反面、あまり厚いと逆に業子の抵抗が増加し、高い駆動電圧が必要となり好ましくない。したがって電荷輸送層および発光層についての膜厚は 5 人~10 μ m であり、好ましくは 10人~1 μ m、さらに好ましくは 50~2000人である。

次いで、発光層 5 の上に電極 6 を設けるが、この電極は電子注入陰極となる。その材料としてはAI、In、Mg、Mg — Ag合金、In — Ag合金、Mg - In 合金、グラファイト薄膜等のイオン化エネルギーの小さい材料が用いられる。陰極の作製方法としては真空蒸養法、スパッタリング法等が用いられる。

このようにして本発明の有機EL素子を製造することができる。

(発明の効果)

本発明のEし素子は導電性高分子層を設けることにより、従来のものに比較して、発光効率および最高輝度が向上し、より発光の均一化が図れる。 導電性高分子層と他の電荷輸送層を併用するこ との作用の機構については不明であるが、電極から発光届への電荷移動において、導電性高分子層と発光層間の正孔に対するボテンシャル障壁を低下させる働きがあるのではないかと推測される。

本発明によるEL案子によれば、バックライトとしての面状光顔、フラットパネルディスプレイ等の装置として好適に使用される。

〔実施例〕

以下に実施例により、本発明を具体的に説明する。 ただし、本発明は以下の実施例によって何ら 制限されるものではない。

実施例!

特開平1-9221号公報に記載の方法に従い、2.5-チェニレンジスルホニウムプロミドをアルカリで重合し、メタノールと反応させてポリー2.5-チェニレンビニレン(PTV)の中間体であるポリー2.5-チェニレンーメトキシエチレンを得た。アセトン中にて超音波洗浄した市販の1TO/ガラス基板に、得られたPTV中間体のDMF浴液を回転数2000гpmのスピンコーティング法により

500人の輝みで塗布した。その後、異空中で200℃、 2時間熱処理した。熱処理することによりPTV 中間体の膜厚は 300人に減少していた。ここで、 赤外吸収スペクトルを測定したところ、1100cm 「 の中間体特有の吸収ピークがなくなっていたこと から、PTV構造を確認した。

実施例 2

特開昭59-199746号公報に記載の方法に従い、ポリーローフェニレンビニレン(PPV)の中間体を得た。これを使用した以外は実施例 I と同様にして有機E L 素子を作製した。この素子に電電にして有機E L 素子を作製した。この素子に電電流密度 190mA/cm²の電流が流れ、輝度 3395 cd/m²の緑色の E L 発光状態を観察された。実施例 I と同様に発光状態を観察された。実施例 I と同様に発光状態を観察に示す。

実施例 3

実施例 2 で製造した P P V 中間体を実施例 1 のP T V 中間体中に 23重量 % で混合し、実施例 1 の導電性高分子膜の作製方法と同様にして、1 T O /ガラス基板上に P T V ・ P P V の混合膜を成膜した。次にこうして作成した 導電性高分子膜上に T P D、 A 1 q 1、インジウムを実施例 1 と同様にして蒸着して E L 素子を作成した。

作製した素子に電圧25Vを印加したところ、20 8m A / cm²の電流密度で、輝度4606cd/m²の発光 が観察された。実施例 | と同様に発光状態を観察した結果、及びこの業子の特性等を測定した結果を第 | 表に示す。

実施例 4

モレキュラー・クリスタルズ・リキッド・クリスタルズ(Mol. Cryst. Liq. Cryst.)パート E. 119. 173~180 頁(1985 年)に記載の方法に従い、過時酸アンモニウムを酸化剤としてアニリンを(以下 P A n といででし、ポリアニリン(以下 P A n という)を得た。その後、水酸化ナトリウム水溶液型で、水酸上に、P A n の D M F 溶液を回転が 2000 rpmのスピンコーティング法により130人の厚みで塗布した。その後、東空中、60℃で2時間もて下P D、 A 1 q 1、インジウムを真空蒸着により積し、E L 素子を作製した。

作製した素子に、電圧35Vを印加したところ、 200mA / cm²の電流密度で、輝度4818 cd / m²の緑 色の発光が確認された。実施例1と同様に発光状 態を観察した結果、及びこの業子の特性等を測定 した結果を第1岁に示す。

比較例:

導電性高分子層を設けない以外は実施例1と同様にしてEL業子を作成した。作製した素子に、電圧27Vを印加したところ、185mA/cm²の電流密度で、輝度3022cd/m²の緑色の発光が確認された。実施例1と同様に発光状態を観察した結果、及びこの素子の特性等を測定した結果を第1表に示す。

第 1 表

実験例	導電性高分子窟 (圏厚み (A))	100cd/m²での 電圧 (V)	100cd/m²での発光 効率 (lm/W)	最高輝度 (cd/m²)	発光の均一性
実施例 1	PTV .	16.0	0.381	3 9 9 2	В
実施例 2	PPV (120)	2 1. 2	0.260	3 3 9 5	С
実施例 3	PTV • PPV (70)	13.2	0.513	4606	В
実施例 4	P A n	2 1. 3	0.352	4818	A
比較例1	なし	17.7	0. 254	3 0 2 2	D

A:全面が光り、不均一性が認められない。 B:全面が光るが、若干不均一性が認められる。

C:殆ど全面光るが、発光輝度に強弱の斑がある。 D:斑に光る部分があるが、暗い部分が多い。

4. 図面の簡単な説明

図は本発明における有機EL業子の一実施例の概念的な断面構造を表す。

1 · · · 透明基板、 2 · · · 透明電極、 3 · · · 導電性高分子層、 4 · · · 電荷輸送層、 5 · · · 発光層、 6 · · · 電極

第 1 図

THE PART MANK HOLD

HIS PAGE BLANK (USPTO)