Walmart Time Series Analysis

Matt Torok Jesse Neumann

Buisness Case

The purpose of this project is to predict future sales for 10 different Walmart stores across 3 different states

Business Value

Being able to predict future sales will allow for Walmart to accurately send new shipments of products that will reduce excess inventory and reduce costs overall

Goals

- In which state do the stores tend to be the most profitable?
- Which items tend to produce the most revenue at each store?
- Which categories generate the most revenue?
- Sales Predictions for Next 28 days

Dataset

- The dataset for this project is available through the competition page on Kaggle at the link below:
- https://www.kaggle.com/c/m5-forecastingaccuracy

Recommendation #1

 California stores tend to be the most profitable so focus efforts on those stores

Recommendation #2

 Food tends to be the most profitable category across all stores so focus restocking efforts on that catagory

Recommendation #3

 We again see that food products consistently show up in the Top 5 products sold in each store

Predictions

id	F1	F2	F3	F4	F5
HOBBIES_1_001_C	1.026352599	0.8133139468	0.7779641756	0.7779641756	0.7504477841
HOBBIES_1_002_C	0.4258456717	0.3655587311	0.3655587311	0.3302089599	0.3525647849
HOBBIES_1_003_C	0.5287141857	0.4774836983	0.4774836983	0.4774836983	0.4997287475
HOBBIES_1_004_C	1.992021651	1.840086003	1.73767296	1.578966157	1.74258254
HOBBIES_1_005_C	1.046190421	0.8739032523	1.110968261	1.253933819	1.210309946
HOBBIES_1_006_C	1.121106511	1.026062061	1.149956031	1.023380214	1.074154191
HOBBIES_1_007_C	0.3794426195	0.3524403581	0.3307822475	0.3191556788	0.3861695761
HOBBIES_1_008_C	6.765903103	7.135941855	5.94957903	5.76822754	7.561314702
HOBBIES_1_009_C	0.3641484127	0.4269537175	0.4052956069	0.4079774541	0.5266355387

 Sales predictions for the next 28 days for each individual time series

SARIMAX Model

SARIMAX Results

Dep. Variable:			sold No. 0	bservations:		1913				
Model:	SARIMAX(1, 1, 1)x(1, 0, 1	, 7) Log L	ikelihood		-1774.683				
Date:		ie, 30 Jun				3575.366				
Time:		12:2	3:35 BIC			3647.531				
Sample:		01-29-	2011 HQIC			3601.930				
		- 04-24-	-							
Covariance Type: opg										
	coef	sta err	Z	P> z	[0.025	0.975]				
event name 1	0.0078	0.005	1.505	0.132	-0.002	0.018				
event type 1	-0.0276	0.028	-0.986	0.324	-0.082	0.027				
event_name_2	0.3899	0.940	0.415	0.678	-1.453	2.233				
event_type_2	-0.8120	1.041	-0.780	0.436	-2.853	1.229				
snap CA	0.0032	0.035	0.090	0.928	-0.066	0.073				
snap_TX	0.0113	0.035	0.320	0.749	-0.058	0.080				
snap_WI	-0.0292	0.035	-0.843	0.399	-0.097	0.039				
ar.L1	0.1063	0.615	0.173	0.863	-1.099	1.311				
ma.L1	-0.9357	0.185	-5.060	0.000	-1.298	-0.573				
ar.S.L7	-0.1687	0.949	-0.178	0.859	-2.030	1.692				
ma.S.L7	0.0736	1.157	0.064	0.949	-2.195	2.342				
var.measurement_err	or 0.3133	0.319	0.984	0.325	-0.311	0.938				
sigma2	0.0558	0.336	0.166	0.868	-0.603	0.714				
======================================	72.46	Jarque-Bera	. / ID) •	6951.94						
Prob(0):		0.00	Prob(JB):	(36).	0.00					
Heteroskedasticity (H):		895.76	Skew:		2.21					
Prob(H) (two-sided):		0.00	Kurtosis:		11.26					

RMSE = 0.588

 \bullet Corr = 0.519

Future Work

- Add holidays to FBProphet Model
- Investigate the effect of SNAP of sales data
- Figure out what time of year, certain products sell best

THANK YOU

Questions?