

UE22CS320A- Project Phase - 2 Capstone Project -Phase 2 -review

1

Project Title : Cost estimation tool for manufacturing units

Project ID :160

Project Guide: Dr Sandesh B J

Project Team: Aditiyaa Naag: PES2UG22CS033

Samyak Singhal PES2UG22CS498

Rayaan M Adil Sattar: PES2UG22CS437

Shreevardhan rao:PES2UG22CS530

1)PROBLEM STATEMENT

- >FLOW OF CHAIN
- >EXISTING PROCEDURES
- 2)DATASETS
- 3) REQUIREMENTS SPECIFICATION
 - >FUNCTIONAL REQUIREMENT
 - >NON FUNCTIONAL REQUIREMENT
 - >TECHNOLOGIES PLANNED
- 4) Design Constraints, Assumptions & Dependencies
 - >Constraints
 - >Assumptions
 - >Dependencies
- 5)Design Details
- 6)Proposed System / Approach
- 7)Architecture
 - > Cost estimation tool flowchart
- 8) Design Description
 - >Master class diagram
 - >ER Diagram
 - >Use Case Diagram
- 9) GANTT CHART

COST ESTIMATION TOOL FOR MANUFACTURING UNITS

Flow of chain regarding estimation of cost

PROBLEM STATEMENT

VENDOR DRAWINGS

1. FEATURE EXTRACTION

Material, size, complexity, reach, tools

2. DETERMINE MACHINES TO BE USED

One part usually requires 2-3 machines in sequence

3. HAVE MACHINE HOURLY RATE(MHR) DATA

Machine operating cost on the hourly bases

4.CALCULATE PART CYCLE-TIME(CT)

Amount of time needed per part per machine

5. CALCULATE ESTIMATED MACHINING COST

COST=MHR X CT

MULTI-PURPOSE MACHINES (MPM)

DATASET FOR MACHINE HOURLY RATE (MHR)

MACHINE -ID	QUANTITY	TYPE	AXIS	AREA	MHR
V3A0.5M	6	VERTICAL	3	0.5	1689
H3A0.8M	8	HORIZONTAL	3	0.8	1729
V6A2.0M	7	VERTICAL	6	2	2389
V5A2.0M	4	VERTICAL	5	2	2316

DATASET FOR FEATURES AND CYCLE TIME

PART -ID	MATERIAL	TOOLS	MACHINE	CYCLE TIME
PNL-AL2024-1500x500-R1	AL	EM	V3A0.5M	6
BRKT-AL-200x50-WLD-R2	AL	DB	V6A2.0M	8
RIB-SS-500x200-LAY-R1	SS	FM,DM	V5A2.0M	16

FUNCTIONAL REQUIREMENTS

1.INTERFCACE TO ACCEPT DESIGN DETAILS FOR FURTHER PROCESSING

2.STORED AND DYNAMICALLY UPDATED MHR TABLE

3.MACHINE LEARNING MODEL TRAINED ON HISTORICAL DATA TO PREDICT CT

4. CALCULATION AND VALIDATION OF ESTIMATED COST

5.FRONT-END DISPLAY AND GRAPHICAL REPRESENTATIONS

NON-FUNCTIONAL REQUIREMENTS

Performance Requirements

- The system shall respond to user queries within a defined time frame to ensure efficient interaction and decision-making.
- The application shall maintain high accuracy against industry benchmarks to ensure reliable aerospace cost assessments.
- The system shall ensure efficient performance even during peak usage periods, maintaining responsiveness and minimizing delays.

Safety Requirements

- The system shall employ robust data validation and verification mechanisms to ensure the accuracy and integrity of information, preventing data corruption or loss.
- The system shall ensure the integrity of cost estimation data to prevent inaccuracies or inconsistencies that could lead to erroneous decisions in the aerospace manufacturing process.

Integration requirements

 Seamless integration with existing tools like excel and SAP

TECHNOLOGIES PLANNED

Part to Cycle-Time (CT) Estimation: XGBoost model is used for this step

Price Prediction: Random Forest Regressor model is considered to accurately estimate the machining cost

Dashboard: ReactJS framework, tailwind CSS and SQLite for database

1. Machine Learning Model for Cost Estimation

Algorithm: Regression-based models (Random Forest, XGBoost) for cost estimation.

Training Data: Historical machining cost data, including Machine Hourly Rate (MHR) and Cycle Time (CT).

Feature Engineering: Factors like machine type, complexity, material type, energy consumption, and reach.

Deployment: Model is trained offline and periodically updated; APIs serve predictions based on stored trained models.

2. Tech Stack

Backend

Programming Language: Python (Flask/FastAPI for API development).

Database: SQLite for lightweight database

Data Processing: Pandas, NumPy, SciPy for feature engineering.

Frontend

Tech: React.js

Charts & Visualization: Chart.js for cost breakdown and statistics

Version Control: GitHub for collaboration.

3. System Architecture

Data Flow

User \rightarrow Web UI \rightarrow API Server \rightarrow ML Model \rightarrow Database \rightarrow Response. Process:

User inputs parameters (material type, machining process, etc.). ML model fetches historical data, processes inputs, and generates cost prediction. The estimated cost is displayed with breakdowns and analysis.

Security & Performance

Data Security: Role-based authentication for different access levels.

ARCHITECTURE

<u>Choice of Architecture:</u> In our case, microservices architecture would be more suitable as cost estimation has various stages that are independent of each other and creating independent modules for each framework with easy integration would be the best course of action for this particular use case.

Activity diagram

Master class diagram

ER Diagram

Use Case Diagram

GANTT CHART

Milestone description	Progress	Start Date	Weeks	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12	Week 13	Week 14	Week 15	Week 16	Week 17	Week 18	Week 19
Phase 1			- 1					77		ll J				į II				1				
Define Problem Statement	100%	22-08-2024	1																			
Define Project Objectives	100%	29-08-2024	1																			
Determine Scope	100%	05-09-2024	1																			
Feasibility Study	100%	12-09-2024	2																			
Literature Survey	100%	26-09-2024	3			į.										Acr		N.				
Combined Overall Project Plan & Detailed Project Plan for Phase II	100%	17-10-2024	1					- 1) - 1)														
Phase 2										II II			Ĵ II				ļ.					
Project Requirement Specifications			1													, <u></u>		0				
High-Level Design Document (HLD)			1												L I			-				
Low-Level Design Document (LLD)			1																			
Design Philosophy (UL Backend, Algorithms)			2					- 13														
Dataset Preprocessing			2																			
Baseline Model Exploration Implementation			2																			

