Правительство Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ» (НИУ ВШЭ)

Московский институт электроники и математики им. А.Н. Тихонова

ОТЧЕТ О ПРАКТИЧЕСКОЙ РАБОТЕ № 3 по дисциплине «Математические основы защиты информации» RSA

Студент г	р. БИБ 191
	И.Г. Тюрин
" "	2021 г.
,,	
_	
Руководит	гель
Заведующ	ций кафедрой информационной
безопасно	сти киберфизических систем
канд. техн	ı. наук, доцент
<u></u>	О.О. Евсютин
" "	2021 г.

СОДЕРЖАНИЕ

1. Задание на практическую работу	3
2. Краткая теоретическая часть	
2.1. Описание шифров	3
2.2. Методы криптоанализа шифров	4
3. Примеры шифрования	7
4. Программная реализация шифров	9
5. Примеры криптоанализа	10
6. Выводы о проделанной работе	11
7. Список использованных источников	20

1. Задание на практическую работу

Целью данной работы является исследование асимметричной криптосистемы RSA, основанной на проблеме факторизации целых чисел. Задание:

- 1) написать программную реализацию криптосистемы RSA;
- 2) изучить методы криптоанализа криптосистемы RSA;
- 3) реализовать (вручную или программно) не менее одной атаки на криптосистему RSA для случая, когда параметры криптосистемы не являются большими числами;
 - 4) подготовить отчет о выполнении работы.

Программа должна обладать следующей функциональностью:

- 1) принимать на вход произвольную последовательность символов, вводимую пользователем в качестве открытого текста или шифртекста;
 - 2) принимать на вход ключевую пару (открытый ключ, закрытый ключ);
 - 3) давать пользователю возможность сгенерировать ключевую пару;
- 4) осуществлять зашифрование или расшифрование введенного текста по выбору пользователя.

2. Краткая теоретическая часть

2.1. Криптография с открытым ключом

Концепция криптографии с открытым ключом появилась в середине 1970-х годов как возможное решение проблемы распределения ключей шифрования, актуальной для симметричных алгоритмов шифрования.

Криптосистемы с открытым ключом, также называемые асимметричными криптосистемами, используют два разных ключа: открытый ключ зашифрования и закрытый ключ расшифрования. Открытый ключ в общем случае доступен всем желающим, а закрытый ключ известен только законному владельцу. Оба ключа связаны между собой некоторой математической зависимостью. При этом данная зависимость такова, что, зная один ключ, вычислить другой практически невозможно.

Первые криптографические алгоритмы с открытым ключом основаны на задаче факторизации целых чисел.

2.2. Криптосистема RSA

Данная криптосистема является первой криптосистемой с открытым ключом. Она основывается на сложности проблемы факторизации целых чисел, то есть чисел на простые множители.

Алгоритм генерации ключей.

1. Пользователь A генерирует два больших простых числа p и q, отличных друг от друга. При этом |p-q| — большое число, хотя p и q имеют приблизительно одинаковый битовый размер.

- 2. Держа р и q в секрете, Пользователь A вычисляет их произведение n = pq, которое называют модулем алгоритма.
- 3. Пользователь A вычисляет значение функции Эйлера для n по формуле $\phi(n) = (p-1)(q-1)$.
- 4. Пользователь A выбирает целое число e, взаимно простое со значением функции $\phi(n)$. Это число называется экспонентой зашифрования.
- 5. Пользователь A применяет расширенный алгоритм Евклида к паре чисел е и $\phi(n)$ и вычисляет значение d, удовлетворяющее соотношению ed $\equiv 1 \mod \phi(n)$. Это значение называется экспонентой расшифрования.
- 6. Пара (e, n) публикуется в качестве открытого ключа пользователя A, d является закрытым ключом и держится в секрете.

Алгоритм зашифрования.

- 1. Пользователь B получает аутентичную копию открытого ключа пользователя A пару (e, n).
- 2. Пользователь В представляет сообщение в виде числа m, меньшего модуля алгоритма. В общем случае сообщение может быть разбито на блоки, каждый из которых представляется своим числом.
 - 3. Пользователь B вычисляет $c = m^e \pmod{n}$.
 - 4. Зашифрованное сообщение отправляется пользователю А.

Алгоритм расшифрования.

Московский институт электроники и математики им. А.М. Тихонова

- 1. Пользователь А получает криптограмму с от пользователя В.
- 2. Пользователь A вычисляет $m = c^d \pmod{n}$.

2.3. Нахождение обратного элемента по модулю простого числа

Для нахождения обратного элемента по модулю натурального числа, что необходимо при вычислении экспоненты расшифрования, применяется расширенный алгоритм Евклида.

Вход: целые числа а \geq b > 0.

Выход: d = HOД(a, b) и целые x, y, такие, что ax + by = d.

- 1. Полагаем $x2 \leftarrow 1$, $x1 \leftarrow 0$, $y2 \leftarrow 0$, $y1 \leftarrow 1$.
- 2. Пока b > 0, выполнять следующее:

2.1.
$$q \leftarrow [a/b], r \leftarrow a - qb, x \leftarrow x2 - qx1, y \leftarrow y2 - qy1;$$

2.2.
$$a \leftarrow b, b \leftarrow r, x2 \leftarrow x1, x1 \leftarrow x, y2 \leftarrow y1, y1 \leftarrow y$$
.

3. d
$$\leftarrow$$
 a, x \leftarrow x2, y \leftarrow y2 и возврат (d, x, y).

Чтобы найти a^{-1} mod n, необходимо подать на вход алгоритма Евклида пару n a, и если НОД(a, n) = 1, вернуть в качестве a^{-1} значение у2.

2.4. Нахождение обратного элемента по модулю простого числа

Криптографические алгоритмы с открытым ключом при их использовании на практике оперируют числами большой битовой длины (или просто большими числами), когда речь идет о сотнях и тысячах бит. Для некоторых операцией над такими числами созданы специальные алгоритмы. В случае криптосистемы RSA необходимо иметь алгоритм, который позволит осуществлять быстрое возведение в степень по модулю.

Данный алгоритм представлен ниже.

Алгоритм возведения в степень по модулю.

Вход: a, k
$$\in$$
 Zn, k = \sum ki \cdot 2 t i i=0

Выход: $a^k \mod n$.

- 1. b ← 1. Если k = 0, то переход к шагу 5.
- $2. A \leftarrow a.$
- 3. Если $k_0 = 1$, то $b \leftarrow a$.
- 4. Для i = (1, t) выполняем следующее:

4.1.
$$A \leftarrow A^2 \mod n$$
.

4.2. Если
$$k_i = 1$$
, то $b \leftarrow (A \cdot b) \mod n$.

5. Возврат b.

Еще одним важным аспектом криптографии с открытым ключом является использование простых чисел, в частности, как было рассмотрено, в криптосистеме RSA элементом открытого ключа является произведение двух больших простых чисел n = pq

Наиболее развитые вероятностные алгоритмы проверки чисел на простоту основаны на малой теореме Ферма.

Малая теорема Ферма.

Пусть р — простое число,
$$a \neq 0$$
 и $a \in \mathbb{Z}p$. Тогда $a^{p-1} \equiv 1 \pmod{p}$.

Соотношение, приведенное в теореме, используется в тесте, проверяющем, являетсяли заданное число составным. Этот тест называют тестом Ферма.

Тест Ферма.

Вход: нечетное число п.

Выход: ответ на вопрос «является ли n простым».

- 1. Для i = (1, t) выполняем следующее:
 - 1.1. Выбираем случайное целое число $a \in [2; n-1]$.

- 1.2. Вычисляем $r = a^{n-1} \mod n$ с помощью алгоритма возведения в степень по модулю.
 - 1.3. Если $r \neq 1$, то возврат «n составное».

Тест Ферма по основанию а определяет простоту n с вероятностью 1/2, после t итераций вероятность ошибки составляет $1/2^t$.

3. Примеры шифрования

3.1. Шифрование по буквам

В качестве примера рассмотрим небольшие числа, но на практике используют числа длины 1024 и больше. Будем передавать сообщение: «ARTISTICALLY». Представим открытый текст в виде последовательности чисел из диапазона 1...26.

Открытый текст: ARTISTICALLY

Закодированный текст: [1, 18, 20, 9, 19, 20, 9, 3, 1, 12, 12, 25]

Пусть p=199, q=167. Тогда N=33233, а функция Эйлера $\phi(n)=(p-1)$ (q-1)=32868. В качестве шифрующей экспоненты выбирают число, взаимно простое с $\phi(n)$. Положим, E=65537: НОД(65537, 32868) = 1. Тогда d=31877, т.к. d- обратный к 65537 элемент в кольце классов вычетов по модулю N.

Открытый ключ: (N, E) = (33233, 65537).

Секретный ключ: (d, p, q) = (31887, 199, 167).

Зашифрование

Приступаем к зашифрованию сообщения m по формуле: $C_i = m_i^E \pmod{N}$.

7

 $C1 = 1^{65537} \pmod{33233} = 1$

 $C2 = 18^{65537} \pmod{33233} = 60$

 $C3 = 20^{65537} \pmod{33233} = 6$

 $C4 = 9^{65537} \pmod{33233} = 9$

 $C5 = 19^{65537} \pmod{33233} = 33$

 $C6 = 20^{65537} \pmod{33233} = 6$

 $C7 = 9^{65537} \pmod{33233} = 9$

 $C8 = 3^{65537} \pmod{33233} = 3$

 $C9 = 1^{65537} \pmod{33233} = 1$

 $C10 = 12^{65537} \pmod{33233} = 12$

 $C11 = 12^{65537} \pmod{33233} = 12$

 $C12 = 25^{65537} \pmod{33233} = 2$

Шифртекст: [1, 60, 9, 9, 33, 6, 9, 3, 1, 12, 12, 25]

Расшифрование

Расшифровать шифртекст можно, обладая секретным ключом. Расшифрование производится по формуле: $m_i = C_i{}^d \pmod{N}$.

$$m1 = 1^{31877} \pmod{33233} = 1$$

$$m2 = 60^{31877} \pmod{33233} = 18$$

$$m3 = 6^{31877} \pmod{33233} = 20$$

$$m4 = 9^{31877} \pmod{33233} = 9$$

$$m5 = 33^{31877} \pmod{33233} = 19$$

$$m6 = 6^{31877} \pmod{33233} = 20$$

$$m7 = 9^{31877} \pmod{33233} = 9$$

$$m8 = 3^{31877} \pmod{33233} = 3$$

$$m9 = 1^{31877} \pmod{33233} = 1$$

$$m10 = 12^{31877} \pmod{33233} = 12$$

$$m11 = 12^{31877} \pmod{33233} = 12$$

$$m12 = 25^{31877} \pmod{33233} = 25$$

Получим исходный текст:

Полученный текст: [1, 18, 20, 9, 19, 20, 9, 3, 1, 12, 12, 25]

Переведём обратно в текст: «ARTISTICALLY».

4. Программная реализация шифров

Результаты работы программы:

1) Шифр RSA

Открытый текст: ARTISTICALLY

```
* RSA **

C:\Users\user-pc\PycharmProjects\pythonProject\venv\Scripts\python.exe C:\Users\user-pc\Besktop\M03N\MF-of-IS\practic_4\RSA.py
b'\R82\895\x11\xfa\x985\x11\xfa\x985\x11\xfa\x985\x11\xfa\x985\x11\xfa\x985\x15\x36\x82\xec\xf6\xd3\xb2\x81\xea^*\x20\x85\x977\xb1h'
b'\R71\STICALLY'

# Meessage = b'ARTISTICALLY'

# Budpobbanue
print(message, public_key) # Pacum$pobbanue
print(message)

# RSA **

| Pacum$pobbanue
| Pacum$pobb
```

Рисунок 4.1 – Результаты работы Алгоритма, реализующего шифр RSA

5. Оценка скорости вычислений

Оценка скорости возведения в степень по модулю:

```
%%timeit
pow(3, 618970019642690137449562110, 618970019642690137449562111)
10000 loops, best of 5: 26.7 μs per loop
```

Результат 0.0000267 с

Оценка скорости вычисления обратного по модулю:

```
[6] %%timeit
   key = np.array([[45]])

get_inverse_key(key, 89)

The slowest run took 4.07 times longer than the fastest. This could mean that an intermediate result is being cached.
1000 loops, best of 5: 189 μs per loop
```

Результат 0.000189 с

Оценка скорости проведения теста Ферма:

```
%%timeit
fermat(5,100)

1000 loops, best of 5: 298 μs per loop
```

Результат 0.000298 с

6. Криптоанализ шифра RSA

Атака на RSA (атака Виенера, Wiener attack)

Теоретическая часть

Рассматривается открытый RSA ключ (e, N), по которому необходимо определить акрытую экспоненту d. Если известно, чтоd< $1/3N^{1/4}$, то это возможно сделать по следующему алгоритму:

- 1. Разложить дробь e/N в непрерывную дробь [a1, a2, ...].
- 2. Для непрерывной дроби [a1, a2, ...]. найти множество всех возможных подходящих дробей k_n/d_n .
- 3. Исследовать подходящую дробь k_n/d_n .
 - 3.1. Определить возможное значение $\phi(N)$, вычислив $(ed_{n}-1)/k_{n}$.
 - 3.2. Решив уравнение x^2 -((N- f_n)+1)x+N=0, получить пару корней (p_n , q_n).
- 4. Если для пары корней (p_n, q_n) выполняется равенство $N = p_n *q_n$, то закрытая экспонента найдена $d = d_n$

Если условие не выполняется или не удалось найти пару корней, то необходимо исследовать следующую подходящую дробь, вернувшись к шагу 3.

Пример 1

Возьмём (e, n) = (101623, 143041). Для этой пары d = 7.

Составим следующую таблицу:

K	d	phi	S	discr
0	1	Не выполнено	условие	K не= 0 и (e*d-1) mod K = 0
1	1	101622	41420	1715044236
2	3	152434	-9392	87637500
5	7	142272	770	20736

Числа (1715044236, 87637500) не являются идеальными квадратами => не подходят. Но число 20736 являтеся таковым. Корень из этого числа t=144.

Проверим: (s+t) mod 2 на равенство 0 — выполняется => данное d найдено верно. D=7

Действительно, найденное d совпадает с исходным.

Пример 2

Возьмём (e, n) = $(151484801904485384465618370767113760572624641591056631813239456929991057853833\ ,$ $535312236995058256389292678451733647082492902595531222774053779808723678857133).\ \ Для$ этой пары $\mathbf{d}=3465385895752997477.$

Составим следующую таблицу:

K	d	phi	S	discr
0	1	Не выполнено	условие	K не= 0 и (e*d-1) mod K = 0
1	3	454454405713456	808578312816021	653798887956403158531396641344
		153396855112301	029924375661503	290737304662850567830369831559
		341281717873924	923653646189778	605605538235669208151300019469
		773169895439718	223613273343354	589826334362635398122246435454
		370789973173561	090187505052956	831112735074118397043878504521
		498	36	5964
1	4	605939207617941	-	498816897936561805619937532327
		537862473483068	706269706228832	987235109473362749181868419737
		455042290498566	814731808046167	008019793533752273264784247946
		364226527252957	213952080056637	454157196482405231102222640508
		827719964231415	686953044789040	584574051774105796695422635646
		331	479112405525581	2277
			97	
2	7	530196806665698	511543032935941	261676274545301296418730715817
		845629664297684	075962838076683	976851440871764637085992886880
		898162004186245	548507830665702	885610036760424880604991241144
		568698211346338	683301142771568	730025530353817512219286891305
		099254968702488	055375497636871	446894326332658413032327262724
		415	9	29
13	46	Не выполнено	условие	K не= 0 и (e*d-1) mod K = 0
			12	

15	53	Не выполнено	условие	K не= 0 и (e*d-1) mod $K = 0$
148	523	Не выполнено	условие	K не= 0 и (e*d-1) mod K = 0
311	109	Не выполнено	условие	K не= 0 и (e*d-1) mod K = 0
	9			
459	162	Не выполнено	условие	K не= 0 и (e*d-1) mod $K = 0$
	2			
444	156	Не выполнено	условие	K не= 0 и (e*d-1) mod $K = 0$
2	97			
490	173	Не выполнено	условие	K не= 0 и (e*d-1) mod $K = 0$
1	19			
934	330	Не выполнено	условие	K не= 0 и (e*d-1) mod $K = 0$
3	16			
142	503	Не выполнено	условие	K не= 0 и (e*d-1) mod $K = 0$
44	35			
143	506	Не выполнено	условие	K не= 0 и (e*d-1) mod $K = 0$
374	651			
3	6			
144	511	Не выполнено	условие	K не= 0 и (e*d-1) mod $K = 0$
798	685			
7	1			
332	117	Не выполнено	условие	K не= 0 и (e*d-1) mod $K = 0$
894	637			
57	238			
234	828	Не выполнено	условие	K не= 0 и (e*d-1) mod $K = 0$
474	577			
186	517			

267	946	Не выполнено	условие	K не= 0 и (e*d-1) mod K = 0
763	214			
643	755			
502	177	II		V 0 (.*11) 1V 0
502	177	Не выполнено	условие	K не= 0 и (e*d-1) mod $K = 0$
237	479			
829	227			
	2			
177	627	Не выполнено	условие	K не= 0 и (e*d-1) mod K = 0
447	059			
713	157			
0	1			
227	804	Не выполнено	условие	K не= 0 и (e*d-1) mod K = 0
671	538			
495	384			
9	3			
131	464	Не выполнено	условие	K не= 0 и (e*d-1) mod K = 0
580	975		3	,
519	107			
25	86			
173	612	Не выполнено	условие	K не= 0 и (e*d-1) mod $K = 0$
331	513			
389	024			
984	061			
186	659	Не выполнено	условие	K не= 0 и (e*d-1) mod $K = 0$
489	010			
441	534			
909	847			
546	193	Не выполнено	условие	K не= 0 и (e*d-1) mod K = 0
310	053			
	409			

273	375			
802	5			
127	452	Не выполнено	условие	K не= 0 и (e*d-1) mod K = 0
910	007			
998	872			
951	235			
3	7			
568	200	Не выполнено	условие	K не= 0 и (e*d-1) mod K = 0
271	813	The Ballioninello	условис	K he o'u' (e u-1) mou k
498	997			
123	877			
74	463			
' '	103			
171	606	Не выполнено	условие	K не= 0 и (e*d-1) mod $K = 0$
760	962			
559	072			
426	354			
635	746			
228	807	Не выполнено	условие	K не= 0 и (e*d-1) mod K = 0
587	776			
709	070			
239	232			
009	209			
400	141	Не выполнено	условие	K не= 0 и (e*d-1) mod K = 0
348	473			
268	814			
665	258			
644	695			
	5			
182	646	Не выполнено	условие	K не= 0 и (e*d-1) mod K = 0
998	672			
078	864			
	<u>l</u>			

390	058			
158	002			
5	9			
406	143	Не выполнено	условие	K не= 0 и (e*d-1) mod $K = 0$
030	481			
983	954			
646	237			
881	470			
4	13			
589	208	Не выполнено	УСПОВИ	K не= 0 и (e*d-1) mod K = 0
029	149	пс выполнено	условие	К не- 0 и (с ц-1) шоц к - 0
062	240			
037	643			
037				
	270			
9	42			
995	351	Не выполнено	условие	K не= 0 и (e*d-1) mod K = 0
060	631			
045	194			
683	880			
921	740			
3	55			
1.5.5	7.40	**		V 0 (#11) 1V 0
155	548	Не выполнено	условие	K не= 0 и (e*d-1) mod $K = 0$
149	261			
297	716			
472	385			
958	437			
594	867			
165	583	Не выполнено	условие	K не= 0 и (e*d-1) mod K = 0
099	424			
897	835			
929	873			

797	511			
807	922			
815	288	Не выполнено	условие	K не= 0 и (e*d-1) mod $K = 0$
548	196			
889	105			
192	987			
149	948			
822	555			
	5			
980	346	535312236995058	154315255907719	240070872606265249827224788971
648	538	256389292678451	580056712860337	645531454764117606074794580279
787	589	733647080949750	2707826674	517673161710473744
121	575	036454026973486		
947	299	651205350971030		
629	747	460		
	7			

Числа

 $(6537988879564031585313966413442907373046628505678303698315596056055382356692081513000194695898263343626\\353981222464354548311127350741183970438785045215964,$

 $4988168979365618056199375323279872351094733627491818684197370080197935337522732647842479464541571964824\\052311022226405085845740517741057966954226356462277,$

2616762745453012964187307158179768514408717646370859928868808856100367604248806049912411447300255303538 1751221928689130544689432633265841303232726272429) не являются идеальными квадратами => не подходят. Но число 240070872606265249827224788971645531454764117606074794580279517673161710473744 являтеся таковым. Корень из этого числа t = 489970277268188228033370954169089478588.

Проверим: (s+t) mod 2 на равенство 0 — выполняется => данное d найдено верно. D=3465385895752997477

Действительно, найденное d совпадает с исходным.

Практическая часть

Пример атаки Виенера можно реализовать следующим образом:

```
RSAwienerHacker ×

C:\Users\user-pc\PycharmProjects\pythonProject\venv\Scripts\python.exe C:\Users\user-pc\Desktop\MO3N/MF-of-IS\practic_4\RSAwienerHacker.py
Testing Wiener Attack
(e,n) is (122667 , 184861 )
d = 3
Hacked!
Hack WORKED!
d = 3 , hacked_d = 3
```

Рисунок 5.1 – Атака Виенера на шифр RSA с малыми параметрами (16 бит)

7. Выводы о проделанной работе

В результате выполнения данной работы я могу подвести следующие итоги:

Криптосистема RSA, первая криптосистема асимметричного шифрования, выдержала испытание временем и по сей день активно используются во всем мире. Это можно считать аргументом в пользу криптостойкости данной системы. Хотя аргумент этот слабый, ведь даже если задача RSA эквивалентна проблеме факторизации (а это утверждение не доказано), то с развитием вычислительной техники разумным решением будет отказаться от этой криптосистемы.

Кроме того, даже с настоящим положением вычислительной мощности компьютеров необходимо быть на чеку и тщательно подбирать параметры шифрования. Изучив методы криптоанализа системы RSA, я могу сделать следующие выводы:

- 1) Нельзя использовать общий модуль п для группы пользователей
- 2) Сообщения перед шифрованием необходимо дополнять случайными числами
- 3) Показатель дешифрования должен быть большим.

8. Список использованных источников

- 1. Традиционные шифры с симметричным ключом [электронный ресурс] URL: https://ru.wikipedia.org/wiki/Aтака Винера
- 2. Cryptanalysis of the Hill Cipher [электронный ресурс] URL: http://practicalcryptography.com/cryptanalysis/stochastic-searching/cryptanalysis-hill-cipher/
- 3. Хилл шифр Hill cipher [электронный ресурс] URL: https://ru.qaz.wiki/wiki/Hill cipher