Math 501 Homework (§3.3 Monotone Convergence Theorem)

Problem 1. If (b_n) is a bounded sequence, and $\lim(a_n) = 0$, then $\lim(a_nb_n) = 0$.

Solution. The argument $|m||a_n| = |ma_n| \le |a_nb_n| \le |Ma_n| = |M||a_n|$ is valid and using **Squeeze Theorem** leads to the conclusion $\lim |a_nb_n| = 0$.

However this does not imply that $\lim(a_nb_n)=0$ (only the converse is known to be a theorem).

By definition for every $\epsilon > 0$ there exists $K \in \mathbb{N}$ such that when $n \geq K$, $||a_n b_n| - 0| < \epsilon$. Considering both cases:

Case I :
$$a_n b_n \ge 0 \implies |a_n b_n| = a_n b_n$$
, and $\lim(a_n b_n) = 0$ follows from above.

Case II :
$$a_n b_n < 0 \implies |a_n b_n| = -a_n b_n$$
, therefore $||a_n b_n| - 0| = |-a_n b_n - 0| < \epsilon$???