EDOs lineales de segundo orden

EDO lineal de segundo orden (punto no singular)

4.2.1 (segundo parcial 14/15)

D. Considérese el problema de Cauchy definido por

$$\frac{d^2w}{dz^2} - (1 + z^2)w = 0 \text{ en } \mathbb{C},$$

 $w(0) = 1, \frac{dw}{dz}(0) = 1.$

La solución del problema anterior es una función entera, cuyo desarrollo en serie de Taylor es $w(z) = \sum_{k=0}^{+\infty} c_k z^k$. Sobre la función w y los coeficientes c_k de su desarrollo se puede afirmar que:

(5)
$$c_0 = 1, c_1 = 1, \text{ y } c_{j+2} = \frac{c_j - c_{j-2}}{(j+2)(j+1)} \text{ para todo } j \ge 2.$$
(6) $c_0 = 1, c_1 = 1, \text{ y } c_{j+2} = \frac{c_j - c_{j-2}}{(j+1)j} \text{ para todo } j \ge 2.$
(7) $c_2 = \frac{1}{2}, c_3 = \frac{1}{6}, \text{ y } c_{j+2} = \frac{c_j + c_{j-2}}{(j+2)(j+1)} \text{ para todo } j \ge 2.$
(8) No es cierta ninguna de las otras tres respuestas.

(6)
$$c_0 = 1, c_1 = 1, y c_{j+2} = \frac{c_j - c_{j-2}}{(j+1)j}$$
 para todo $j \ge 2$.

(7)
$$c_2 = \frac{1}{2}, c_3 = \frac{1}{6}, \text{ y } c_{j+2} = \frac{c_j + c_{j-2}}{(j+2)(j+1)} \text{ para todo } j \ge 2$$

$$V(2) = 1 + 2 + (2 + 2) + \cdots$$

$$\sum_{n(n-1)} (n 2^{n-2} = (1+2^2) \sum_{n=2}^{\infty} (n 2^n)$$

$$\sum_{n=2}^{\infty} (k+1) (k+1) (n+2) = (n+(k-2))$$

$$\sum_{n=2}^{\infty} (n+1) (n+1) = (n+2) \sum_{n=2}^{\infty} (n+1) (n+1)$$

$$\sum_{n=2}^{\infty} (n+1) (n+1) = (n+2) \sum_{n=2}^{\infty} (n+1) (n+1)$$

$$\sum_{n=2}^{\infty} (n+1) (n+2) = (n+2) \sum_{n=2}^{\infty} (n+1) (n+2) = (n+1) \sum_{n=2}^{\infty} (n+1) (n+1) = (n+1) \sum_{n=2}^{\infty} (n+1) (n+1) = (n+2) \sum_{n=2}^{\infty} (n+1) (n+2) = (n+1) \sum_{n=2}^{\infty} (n+2) \sum_{n=$$

4.2.2 (segundo parcial 14/15)

- E. Sca $w:\mathbb{C}\to\mathbb{C}$ la solución del problema de Cauchy definido en el cjercicio D. Sobre la función w puede afirmarse que:
 - (9) Para todo x ∈ R con x > 0 se verifica que exp(x) ≤ w(x).
 - (10) Para todo x ∈ R con x > 0 se verifica que w(x) ≤ exp(x) + x.
 - (11) Para todo $x \in \mathbb{R}$ con x > 0 se verifica que $x \le w(x) \le 2 + x^2$.
 - (12) No es cierta ninguna de las otras tres respuestas.

$$w'' = (n+x^2)w$$
. $w'' = w$ and e exp(2)
 $w(x) = w(x) = 1$
 $w(x) = 1$
 w

4.2.3 (segundo parcial 16/17)

C. Considérese el problema de Cauchy definido por

$$\frac{\mathrm{d}^2 w}{\mathrm{d}z^2} - (z^2 + z^6)w = 0 \ \text{en } \mathbb{C}, \ w(0) = 1, \ \frac{\mathrm{d}w}{\mathrm{d}z}(0) = 0.$$

La solución del problema anterior es una función entera, cuyo desarrollo en serie de Taylor es $w(z) = \sum_{k=0}^{+\infty} c_k z^k$. Sobre la función w y los coeficientes c_k de su desarrollo se puede afirmar que:

- (9) Los coeficientes c_{4j+2}, para todo j ∈ N, son nulos y la restricción de w al eje real es una función que toma valores reales que no es par ni impar.
- (10) Los coeficientes c_{4j+3} , para todo $j \in \mathbb{N}$, son no nulos y la restricción de w al eje real es una función que toma valores reales que es impar .
- (11) Los coeficientes c_{4j+2}, para todo j ∈ N, son nulos y la restricción de w al eje real es una función que toma valores reales que es par.
- (12) No es cierta ninguna de las otras tres respuestas.

$$W(2) = 1 + \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} / C_{j} \cdot j \cdot (j-1) = C_{j-4} + C_{j-8}$$

$$= \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} / C_{j} \cdot j \cdot (j-1) = C_{j-4} + C_{j-8}$$

$$= \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} / C_{j} \cdot j \cdot (j-1) = C_{j-4} + C_{j-8}$$

$$= \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} / C_{j} \cdot j \cdot (j-1) = C_{j-4} + C_{j-8}$$

$$= \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} | C_{j-4} + C_{j-8} + C_{j-8}$$

$$= \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} | C_{j-4} + C_{j-8} + C_{j-8}$$

$$= \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} | C_{j-4} + C_{j-8} + C_{j-8}$$

$$= \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} | C_{j-4} + C_{j-8} + C_{j-8}$$

$$= \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} | C_{j-4} + C_{j-8} + C_{j-8} + C_{j-8}$$

$$= \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} | C_{j-4} + C_{j-8} + C_{j-8} + C_{j-8} + C_{j-8}$$

$$= \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} | C_{j-4} + C_{j-8} + C_{j-8}$$

4.2.4 (segundo parcial 16/17)

- D. Sea $w: \mathbb{C} \to \mathbb{C}$ la solución del problema de Cauchy definido en el ejercicio C. Sobre la función w puede afirmarse que:
 - (13) La restricción de w al eje real es una función que toma valores reales y tiene un mínimo relativo.
 - (14) La restricción de w al eje real es una función que toma valores reales y tiene un máximo relativo.
 - (15) La restricción de w al eje real es una función que toma valores reales y tiene un punto de inflexión.
 - (16) No es cierta ninguna de las otras tres respuestas.

C6j+

4.2.5 (segundo parcial 17/18)

C. Considérese el problema de Cauchy definido por

$$\frac{d^2w}{dz^2}$$
 - $(iz^2 + z^4)w = 0$ en \mathbb{C} , $w(0) = 0$, $\frac{dw}{dz}(0) = i$.

La solución del problema anterior es una función entera $w:\mathbb{C} \to \mathbb{C}$, cuyo desarrollo en serie de Taylor es $w(z) = \sum_{k=0}^{+\infty} c_k z^k$. Sobre la función w y los coeficientes c_k de su desarrollo se puede afirmar que:

- (9) Los coeficientes c_j , verifican la igualdad $c_{j+2} = \frac{ic_{j-2} + c_{j-4}}{(j+2)(j+1)}$ para todo $j \in \mathbb{N}$, con $j \ge 5$ y Re(w(x)) = 0 para todo $x \in \mathbb{R}$.
- (10) Los coeficientes c_{2j}, para todo j ∈ N, son nulos y Re(c_{2j+1}) = 0
- para todo $j \in \mathbb{N}$, y $\operatorname{Re}(w(x)) = 0$ para todo $x \in \mathbb{R}$.

 (11) Los coeficientes c_j , verifican la igualdad $c_{j+2} = \frac{\mathrm{i} c_{j-2} + c_{j-4}}{(j+2)(j+1)}$ para todo $j \in \mathbb{N}$, con $j \geq 5$ y existe al menos un $x_0 \in \mathbb{R}$ tal que $Re(w(x_0)) \neq 0.$
- (12) No es cierta ninguna de las otras tres respuestas.

$$\begin{cases} ||f(s-1)|| \leq ||f(s)||^{2} + ||f(s-1)||^{2} + ||f(s-1)||^{2} \\ ||f(s-1)|| \leq ||f(s-1)||^{2} + ||f(s-1)||^{2} + ||f(s-1)||^{2} \\ ||f(s-1)|| \leq ||f(s-1)||^{2} + ||f(s-1)||^{2} + ||f(s-1)||^{2} + ||f(s-1)||^{2} \\ ||f(s-1)|| \leq ||f(s-1)||^{2} + ||f(s-1)||^{2} + ||f(s-1)||^{2} \\ ||f(s-1)|| \leq ||f(s-1)||^{2} + ||f(s-1)||^{2} + ||f(s-1)||^{2} + ||f(s-1)||^{2} + ||f(s-1)||^{2} + ||f(s-1)||^{2} + ||f(s-1)||^$$

4.2.6 (segundo parcial 19/20)

C. Considérese el problema de Cauchy definido por

$$\frac{\mathrm{d}^2 w}{\mathrm{d}z^2} - z^3 w = 0 \ \text{en} \ \mathbb{C}, \, w(0) = 0, \, \, \frac{\mathrm{d}w}{\mathrm{d}z}(0) = \mathrm{i}.$$

La solución del problema anterior es una función entera $w:\mathbb{C}\to\mathbb{C}$, cuyo desarrollo en serie de Taylor es $w(z) = \sum_{k=0}^{+\infty} c_k z^k$. La función wcumple que:

cumple que:
$$(9) \quad \lim_{\substack{z \to 0 \\ \overline{w(z_1)} \neq w(\overline{z_1)}}} \frac{w(z) - \mathrm{i}(z + \frac{z^6}{30})}{z^{11}} = \frac{\mathrm{i}}{3300} \quad \text{y existe algûn } z_1 \in \mathbb{C} \text{ tal que}$$

(10)
$$\lim_{z \to 0} \frac{w(z) - i(z + \frac{z^6}{30})}{z^{11}} = \frac{i}{3300} \text{ y } \overline{w(z_1)} = w(\overline{z_1}) \text{ para todo } z_1 \in \mathbb{C}.$$

(11)
$$\lim_{\substack{z\to 0\\w(\overline{z_1})}}\frac{w(z)-\mathrm{i}(z+\frac{z^6}{30})}{z^{11}}=\infty \text{ y existe algún } z_1\in\mathbb{C} \text{ tal que } \overline{w(z_1)}\neq$$

(12) No es cierta ninguna de las otras tres respuestas.

(12) No es cierta ninguna de las otras tres respuestas.

(
$$6=0$$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=0$

($6=$

4.2.7 (final ordinario 14/15)

C. Considérese el problema de Cauchy definido por

$$\frac{\mathrm{d}^2 w}{\mathrm{d}z^2} - (1+z)^2 w = \exp(z) \text{ en } \mathbb{C},$$

$$w(0) = 1, \ \frac{\mathrm{d}w}{\mathrm{d}z}(0) = 1.$$

La solución del problema anterior es una función entera, cuyo desarrollo en serie de Taylor es $w(z) = \sum_{k=0}^{+\infty} c_k z^k$. Sobre la función w y los coeficientes c_k de su desarrollo se puede afirmar que:

(5)
$$c_0 = 1, c_1 = 1, c_2 = 1, c_3 = 1.$$

(6)
$$c_0 = 1, c_1 = 1, c_2 = 1, c_3 = \frac{2}{3}.$$

(7) $c_0 = 1, c_1 = 1, c_2 = 1, c_3 = \frac{4}{3}.$

(7)
$$c_0 = 1, c_1 = 1, c_2 = 1, c_3 = \frac{4}{3}$$

- (8) No es cierta ninguna de las otras tres respuestas.
- D. Sea $w: \mathbb{C} \to \mathbb{C}$ la solución del problema de Cauchy definido en el ejercicio D. Sobre la función w y los coeficientes ck de su desarrollo puede afirmarse que:

(9)
$$c_4 = \frac{3}{4} \text{ y } c_{j+2} = \frac{c_j + 2c_{j-1} + c_{j-2}}{(j+2)(j+1)} \text{ para todo } j \ge 3$$

(9)
$$c_4 = \frac{3}{4} \text{ y } c_{j+2} = \frac{c_j + 2c_{j-1} + c_{j-2}}{(j+2)(j+1)} \text{ para todo } j \ge 3.$$

(10) $c_4 = \frac{5}{6} \text{ y } c_{j+2} = \frac{c_j + 2c_{j-1} + c_{j-2}}{(j+2)(j+1)} + \frac{1}{(j+2)!} \text{ para todo } j \ge 4.$
(11) $c_4 = \frac{3}{8} \text{ y } c_{j+2} = \frac{c_j + 2c_{j-1} + c_{j-2}}{(j+2)(j+1)} + \frac{1}{(j+2)!} \text{ para todo } j \ge 4.$
(12) No es cierta ninguna de las otras tres respuestas.

(11)
$$c_4 = \frac{3}{8} \text{ y } c_{j+2} = \frac{c_j + 2c_{j-1} + c_{j-2}}{(j+2)(j+1)} + \frac{1}{(j+2)!} \text{ para todo } j \ge 4.$$

(12) No es cierta ninguna de las otras tres respuestas.

$$\frac{1}{2^{12}} \Rightarrow \frac{1}{3}(\frac{1}{3}-\frac{1}{3}) = \frac{1}{3}(\frac{1}{3}-\frac{1}{3}+\frac{$$

C. Considérese el problema de Cauchy definido por

$$\frac{\mathrm{d}^2 w}{\mathrm{d}z^2} - (1 + \exp(z))w = 0 \text{ en } \mathbb{C},$$
$$w(0) = 1, \ \frac{\mathrm{d}w}{\mathrm{d}z}(0) = 1.$$

La solución del problema anterior, $w: \mathbb{C} \to \mathbb{C}$, es una función entera cuyo desarrollo en serie de Taylor es $w(z) = \sum_{k=0}^{+\infty} c_k z^k$. Sobre la función w y los coeficientes c_k de su desarrollo se puede afirmar que:

(9)
$$c_0 = 1, c_1 = 1, y c_{30} = \frac{1}{(30)(29)} (c_{27} + c_{28} + \sum_{i=0}^{26} \frac{c_i}{(28 - i)!}).$$

(10)
$$c_0 = 1, c_1 = 1, \text{ y } c_{30} = \frac{1}{(30)(29)} (c_{27} + c_{28} + \sum_{i=0}^{27} \frac{c_i}{(28-i)!}).$$

(11)
$$c_0 = 1, c_1 = 1, \text{ y } c_{30} = \frac{1}{(30)(29)} (2c_{28} + \sum_{i=0}^{27} \frac{c_i}{(28-i)!}).$$

(12) No es cierta ninguna de las otras tres respuestas.

$$\sum_{(n)} ||S(n)||^{2^{j-2}} = (1 + \sum_{(n)} \frac{2^{j}}{n!}) \cdot (\sum_{(n)} ||S(n)||^{2^{j}}) \cdot (\sum_{(n)} ||S(n$$

4.2.9 (final ordinario 16/17)

C. Considérese el problema de Cauchy definido por

$$\frac{\mathrm{d}^2 w}{\mathrm{d} z^2} - (z + z^4) w = 0 \ \text{en } \mathbb{C}, \, w(0) = 0, \, \, \frac{\mathrm{d} w}{\mathrm{d} z}(0) = 1.$$

La solución del problema anterior es una función entera, cuyo desarrollo en serie de Taylor es $w(z) = \sum_{k=0}^{+\infty} c_k z^k$. Sobre la función w y los coeficientes c_k de su desarrollo se puede afirmar que:

- (9) Los coeficientes c_{3j+1}, para todo j ∈ N, son no nulos y la restricción de w al eje real es una función que toma valores reales que es impar .
- (10) Los coeficientes c_{3j+2}, para todo j ∈ N, son nulos y la restricción de w al eje real es una función que toma valores reales que no es par ni impar.
- (11) Los coeficientes c_{3j+2}, para todo j ∈ N, son nulos y la restricción de w al eje real es una función que toma valores reales que es impar.
- (12) No es cierta ninguna de las otras tres respuestas.
- D. Sea w : C → C la solución del problema de Cauchy definido en el ejercicio C. Sobre la función w puede afirmarse que:
 - (13) La restricción de w al intervalo real]1,+∞[es una función que toma valores reales y tiene extremos relativos.
 - (14) La restricción de w al intervalo real]1,+∞[es una función que toma valores reales, carece de extremos relativos y presenta un punto de inflexión.
 - (15) La restricción de w al intervalo real]1,+∞[es una función que toma valores reales y su gráfica carece de puntos de inflexión.
 - (16) No es cierta ninguna de las otras tres respuestas.

Le conect en le (5), pour chemed M(2) > et = si que no flene extremo reletivos.

4.2.10 (final ordinario 18/19)

C. Considérese el problema de Cauchy definido por

$$\frac{\mathrm{d}^2 w}{\mathrm{d} z^2} - z^5 \frac{\mathrm{d} w}{\mathrm{d} z} - z^4 w = 0 \ \text{en } \mathbb{C}, \, w(0) = 1, \, \, \frac{\mathrm{d} w}{\mathrm{d} z}(0) = 0.$$

La solución del problema anterior es una función entera $w:\mathbb{C} \to \mathbb{C}$, cuyo desarrollo en serie de Taylor es $w(z) = \sum_{k=0}^{+\infty} c_k z^k$. La función w y

- $\frac{7}{12\cdot 11\cdot 6\cdot 5}.$ La función w no está acotada en \mathbb{C} . (11) Los coeficientes c_{6j+1} , para todo $j\in \mathbb{N}$, son nulos y la función w
- está acotada en C .
- (12) No es cierta ninguna de las otras tres respuestas.

Proof [edit]

$$f(z) = \sum_{k=0}^{\infty} a_k z^k$$

$$a_k = rac{f^{(k)}(0)}{k!} = rac{1}{2\pi i} \oint_{C_r} rac{f(\zeta)}{\zeta^{k+1}} \, d\zeta$$

and
$$C_r$$
 is the circle about 0 of radius $r > 0$. Suppose f is bounded: i.e. there exists a constant M such that $|f(z)| \le M$ for all z . We can estimate directly
$$|a_k| \le \frac{1}{2\pi} \oint_{C_r} \frac{|f(\zeta)|}{|\zeta|^{k+1}} \, |d\zeta| \le \frac{1}{2\pi} \oint_{C_r} \frac{M}{r^{k+1}} \, |d\zeta| = \frac{M}{2\pi r^{k+1}} \oint_{C_r} |d\zeta| = \frac{M}{2\pi r^{k+1}} 2\pi r = \frac{M}{r^k},$$

$$\sum_{i=0}^{n} (i-1) \cdot 2^{j-2} = \sum_{i=0}^{n} (i-1) \cdot (i-1) + (i-1) = \frac{(i-3)}{(i+2)(i+1)} \cdot (i-6)$$

$$C_{i=0}^{n} = \frac{(i-1) \cdot (i-1) + (i-1)}{(i+2)(i+1)} \cdot (i-6)$$

$$C_{i=0}^{n} = \sum_{i=0}^{n} (i-6) + \sum_{i=0}^{n} (i-6$$