

GEX606 - SISTEMAS DIGITAIS

Trabalho Final Blackjack

Gabriel Santos Costa 20240019345 gabrielsantoscosta005@gmail.com

> Pedro Augusto Sciesleski 2311100057 psciesleski@gmail.com

> > **Chapecó** 05/12/2024

SUMÁRIO

1. INTRODUÇÃO	3
2. DESENVOLVIMENTO	4
Diagrama de Estados e Descrição	4
1. Estado Inicial	4
2. Estado Jogador	4
3. Estado Jogador_as	4
4. Estado Carteador	5
5. Estado Carteador_as	5
6. Estado Resultado	5
2.1 Tabela de Transições de Estado	6
2.3 Testes e Aplicação no Digital	7
2.3 Código VHDL Mapeado para FPGA	7
3. CONCLUSÃO	14

GEX606 - SISTEMAS DIGITAIS

1. INTRODUÇÃO

No contexto da disciplina de Sistemas Digitais, oferecida no curso de Ciência da Computação da Universidade Federal da Fronteira Sul, realizamos um projeto que alia teoria e prática para implementar um clássico jogo de cassino: o Blackjack (ou "21"). Nosso objetivo foi desenvolver uma máquina de estados finitos (FSM - Finite State Machine) programada em VHDL e integrada a uma FPGA DE1-Cyclone II, capaz de simular as mecânicas do jogo.

O Blackjack, em sua essência, é um jogo de cartas no qual um jogador enfrenta um carteador, buscando obter a soma de cartas mais próxima de 21 sem ultrapassá-lo. Este projeto desafiou nossa equipe a traduzir essas dinâmicas para o ambiente digital, contemplando desde a distribuição inicial de cartas até as decisões de "HIT" (pedir uma nova carta) e "STAY" (manter a mão atual). Além disso, o sistema deveria avaliar automaticamente os resultados da partida, determinando vitória, derrota ou empate.

A implementação foi conduzida em etapas bem estruturadas. Iniciamos identificando os estados necessários para o funcionamento do jogo e elaboramos um diagrama de transições que respeitasse as condições descritas no enunciado. A partir disso, projetamos e codificamos as lógicas de próximo estado e de saída em VHDL, garantindo a integração com entradas como botões de controle e displays de 7 segmentos para exibir cartas e somas.

O resultado final é um sistema funcional em grande parte, combinando lógica digital e interatividade, e atendendo à maioria das especificações propostas. Apesar de nossos esforços, algumas funcionalidades não operaram como esperado, devido a desafios encontrados durante a implementação e integração. No entanto, o projeto representou um aprendizado valioso, reforçando nosso conhecimento em VHDL e FSM e demonstrando como aplicar princípios teóricos para criar soluções práticas, mesmo diante de dificuldades.

GEX606 - SISTEMAS DIGITAIS

2. DESENVOLVIMENTO

Diagrama de Estados e Descrição

O jogo de Blackjack foi estruturado em uma máquina de estados para organizar o fluxo de ações de maneira clara e intuitiva. A seguir, são descritos os estados principais:

1. Estado Inicial

Este é o ponto de partida do jogo, onde todas as variáveis necessárias são inicializadas:

- As somas das cartas do jogador e do carteador são definidas como zero.
- Sinais de controle como distribui e possui_as também são zerados.
- Em seguida, as primeiras cartas são distribuídas para ambos os jogadores.

Transição:

 Após a distribuição das cartas, o jogo segue para o estado Jogador, onde o jogador começa a tomar decisões.

2. Estado Jogador

Neste estado, o jogador tem a liberdade de escolher suas ações:

- HIT: Solicitar uma carta adicional (controlado por sw(6)).
 - o Caso a soma das cartas ultrapasse 21, o jogo avança para o estado Resultado.
 - Se a soma for válida, o jogador permanece neste estado para novas decisões.
- STAY: Manter a soma atual (controlado por sw(7)) e passar a vez para o carteador.
 - Se o jogador possuir um Ás utilizável como 11, o estado muda para Jogador_AS.
 - o Caso contrário, o jogo segue para o estado Carteador.

3. Estado Jogador as

Este estado é ativado quando o jogador possui um Ás e decide utilizá-lo como 11, desde que isso não o faça ultrapassar 21.

- As opções de HIT e STAY permanecem disponíveis.
- Transições:
 - o O jogador pode avançar para o estado Carteador se optar por parar (STAY).
 - Se ultrapassar 21, o jogo avança diretamente para o estado Resultado.

4. Estado Carteador

UNIVERSIDADE FEDERAL DA FRONTEIRA SUL CURSO DE CIÊNCIA DA COMPUTAÇÃO

GEX606 - SISTEMAS DIGITAIS

Neste estado, o carteador joga automaticamente de acordo com as regras do Blackjack:

- Solicita cartas adicionais enquanto a soma for menor que 17.
- Caso ultrapasse 21, o jogo avança para o estado Resultado.
- Se o carteador possuir um Ás e puder usá-lo como 11, o estado muda para Carteador_AS.
- Quando atingir ou ultrapassar 17 sem estourar, o jogo avança para o estado Resultado.

5. Estado Carteador as

Quando o carteador possui um Ás, ele pode utilizá-lo como 11, desde que isso não faça sua soma ultrapassar 21.

• O carteador continua jogando até alcançar ou ultrapassar 17.

Transição:

• Se a soma ultrapassar 21 ou atingir o limite de 17, o jogo avança para o estado Resultado.

6. Estado Resultado

O jogo termina neste estado, onde o resultado é calculado:

- As somas das cartas do jogador e do carteador são comparadas para determinar o vencedor.
- LEDs indicam o resultado:
 - Vitória do jogador: LEDs correspondentes acendem.
 - o Empate ou derrota: LEDs refletem a situação.

Transição:

O jogo pode ser reiniciado pressionando o botão de START/RESET

UNIVERSIDADE FEDERAL DA FRONTEIRA SUL CURSO DE CIÊNCIA DA COMPUTAÇÃO GEX606 - SISTEMAS DIGITAIS

2.1 Tabela de Transições de Estado

		_ , .	
Estado Atual	Condição	Próximo estado	Descrição
início	Cartas iniciais distribuídas	jogador	O jogador está pronto para tomar decisões (HIT ou STAY)
jogador	sw(6) = '1' (HIT)	jogador	O jogador solicita mais uma carta e continua no mesmo estado.
jogador	sw(7) = '1'(STAY)	carteador	O jogador decide não pegar mais cartas e passa a vez.
jogador	soma_cartas_jogador>21	resultado	O jogador ultrapassa 21 pontos e perde o jogo.
jogador	Possui As e decide usar como 11	jogador_as	O jogador utiliza o Ás como 11 para melhorar a soma.
jogador_as	sw(6) = '1' (HIT)	jogador_as	O jogador pega mais uma carta com o Ás considerado.
jogador_as	sw(7) = '1' (STAY)	carteador	O jogador decide parar e passa a vez para o carteador.
jogador_as	soma_cartas_jogador>21	resultado	O jogador ultrapassa 21 pontos, mesmo com o Ás como 11
carteador	soma_cartas_carteador <17	carteador	O carteador pega mais cartas automaticamente.
carteador	soma_cartas_carteador >= 17	resultado	O carteador atinge ou ultrapassa 17 pontos e para de jogar.
carteador	soma_cartas_carteador > 21	resultado	O carteador ultrapassa 21 pontos e perde o jogo.
carteador	possui_as(1) = '1') e decide usar como 11	carteador_ as	O carteador utiliza o Ás como 11 para melhorar a soma.
carteador_ as	soma_cartas_carteador + 10 < 17	carteador_ as	O carteador decide parar, considerando o Ás como 11
resultado	Resultado calculado (vitória, empate ou derrota)	inicio	O jogo reinicia se o botão de reset for pressionado.

GEX606 - SISTEMAS DIGITAIS

2.3 Testes e Aplicação no Digital

2.3 Código VHDL Mapeado para FPGA

UNIVERSIDADE FEDERAL DA FRONTEIRA SUL CURSO DE CIÊNCIA DA COMPUTAÇÃO GEX606 - SISTEMAS DIGITAIS


```
signal temp hex1 : std logic vector(6 downto 0);
```


GEX606 - SISTEMAS DIGITAIS

end conversao hexadecimal;


```
f (sw(7) = '1') then
end if;
```


if (carta_atual = "0001") then


```
end if;
```



```
ledg(7) <= '1';
end gurizes;
```


GEX606 - SISTEMAS DIGITAIS

3. CONCLUSÃO

Neste projeto, desenvolvemos uma Máquina de Estados Finitos (FSM) para implementar o jogo de Blackjack em um ambiente digital, utilizando VHDL e a plataforma FPGA DE1-Cyclone II. Partimos do diagrama de estados, no qual definimos cuidadosamente as transições entre os estados principais: START, JOGADOR, JOGADOR_AS, CARTEADOR, CARTEADOR_AS e RESULTADO.

A elaboração da tabela de transição foi essencial para detalhar as condições que direcionaram cada mudança de estado, assegurando que o sistema simulasse as regras do Blackjack de forma precisa. Por meio das simulações e testes práticos, verificamos que o funcionamento geral do sistema atendeu às expectativas, permitindo uma jogabilidade consistente e alinhada às regras oficiais do jogo.

Este projeto representou uma oportunidade valiosa de aplicar conceitos teóricos de máquinas de estados e lógica digital a um problema real. Além disso, superamos desafios relacionados à implementação e integração do sistema, consolidando habilidades técnicas e reforçando nossa capacidade de solucionar problemas. O aprendizado adquirido estabelece uma base sólida para enfrentar projetos futuros, nos preparando para desenvolver sistemas ainda mais complexos e interativos.