# On Strong Chromatic Index of Halin Graph

W.C. Shiu, P.C.B. Lam and W.K. Tam

Department of Mathematics, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong.

#### Abstract

A strong k-edge-coloring of a graph G is an assignment of k colors to the edges of G in such a way that any two edges meeting at a common vertex, or being adjacent to the same edge of G, are assigned different colors. The strong chromatic index of G is the smallest number k for which G has a strong k-edge-coloring. A Halin graph is a planar graph consisting of a tree with no vertex of degree two and a cycle connecting the leaves of the tree. A caterpillar is a tree such that the removal of the leaves becomes a path. In this paper, we show that the strong chromatic index of cubic Halin graph is at most 9. That is, every cubic Halin graph is edge-decomposable into at most 9 induced matchings. Also we study the strong chromatic index of a cubic Halin graph whose tree is a caterpillar.

Keywords : Strong chromatic index, necklace, Halin graph, caterpillar

**AMS 2000 MSC** : 05C15

#### 1 Introduction and notations

All graphs in this paper are finite and simple. All undefined symbols and concepts may be looked up from [2]

For k being a positive integer, let  $\llbracket \boldsymbol{k} \rrbracket = \{1, 2, ..., k\}$ . A strong k-edge-coloring of a graph G = (V, E) is a mapping  $c : E \to \llbracket \boldsymbol{k} \rrbracket$  in such a way that any two edges meeting at a common vertex, or being adjacent to the same edge of G, are assigned different values (colors). The strong chromatic index of G, denoted by  $s\chi'(G)$ , is the smallest number k for which G has a strong k-edge-coloring. A matching in a graph G is induced if no two edges in the matching are joined by an edge in G. So  $s\chi'(G) \leq k$  if and only if G is edge-decomposable into k induced matchings.

A Halin graph  $G = T \cup C$  is a plane graph that consists of a plane embedding of a tree T and a cycle C connecting the leaves (vertices of degree 1) of the tree such that C is the boundary of the exterior face and the degree of each interior vertex (also called node) of T is at least three. The tree T and the cycle C are called the *characteristic tree* and the *adjoint cycle* of G, respectively.

A tree is called a (3,1)-tree if the degree of each node is 3. A (3,1)-caterpillar T is a (3,1)-tree if the removal of the leaves (together with their incident edges) becomes a path which is called the *spine* of T. In this paper, "caterpillar" means (3,1)-caterpillar.

Suppose G is a Halin graph of order 2h+2 with a caterpillar T as its characteristic tree,  $h \geq 1$ . We name the vertices along the spine  $P_h$  by  $1, 2, \ldots, h$ . The vertices adjacent with 1 are named by 0 and 1'. The vertices adjacent with h are named by h+1 and h'. Other leaf adjacent with h is named by h', h',



Figure 1.1. All two graphs in  $\mathcal{G}_4$ : (a)  $Ne_4$ , (b) another graph in  $\mathcal{G}_4$ .

Let  $G \in \mathcal{G}_h$ . If  $\{0,1'\}$ ,  $\{1',2'\}$ , ...,  $\{(h-1)',h'\}$ ,  $\{h',h+1\}$ , and  $\{h+1,0\}$  are edges of the adjoint cycle of G (i.e., vertices  $0,1'\cdots,h',h+1$  in  $C_{h+2}$  are in order), then G is called a *necklace*. It is denoted by  $Ne_h$  (see Figure 1.2). It is easy to see that,  $\mathcal{G}_h = \{Ne_h\}$  for h = 1, 2, 3.



Figure 1.2. Necklace  $Ne_h$ .

In this paper, we investigate the strong chromatic index of a cubic Halin graph whose characteristic tree is a caterpillar.

## 2 Conjectures and Known Results

We use  $\Delta$  to denote the maximum degree of a graph G. J. L. Fouquet and J. L. Jolivet [7, 8] first studied the strong edge-coloring of cubic planar graphs. In 1988, P. Erdős and J. Nešetřil [4, 5] posed the following conjecture.

Conjecture 1 [4, 5]: For any simple graph G,

$$s\chi'(G) \le \begin{cases} \frac{5}{4}\Delta^2 & \text{if } \Delta \text{ is even;} \\ \frac{5}{4}\Delta^2 - \frac{1}{2}\Delta + \frac{1}{4} & \text{if } \Delta \text{ is odd.} \end{cases}$$

Faudree, Gyárfás, Schelp and Tuza [6] asked in 1990 whether  $s\chi'(G) \leq 9$  if G is cubic and planar. The upper bound is attained by the complement of  $C_6$ . So if the upper bound is valid, it would be the best possible. The problem is still open. The following theorem can be found in [6, 8].

Theorem 2.1 [6, 8]  $s\chi'(G) \leq 2\Delta(\Delta - 1)$ .

On the other hand, a trivial upper bound for the strong chromatic index of G is given by  $s\chi'(G) \leq 2\Delta^2 - 2\Delta + 1$  (see [9]). This inequality only shows that the conjecture of Erdős and Nešetřil is true for  $\Delta \leq 2$ .

If  $\Delta = 3$ , then  $s\chi'(G) \leq 10$  by Conjecture 1. This result was proved by L. Andersen [1], and independently, Horák, Qing and Trotter [9]. For  $\Delta = 4$ , by Conjecture 1 that  $s\chi'(G) \leq 20$ . Recently, Cranston [3] obtained that  $s\chi'(G) \leq 21$  for  $\Delta = 4$ .

In [6], an obvious lower bound for the strong chromatic index of G is given by the inequality  $s\chi'(G) \ge \max_{uv \in E} \{\deg(u) + \deg(v) - 1\}$ . The equality holds for trees.

**Theorem 2.2** [6] If G is a tree, then  $s\chi'(G) = \max_{uv \in E} \{\deg(u) + \deg(v) - 1\}.$ 

#### 3 Main Results

In the following, we consider the strong chromatic index of a cubic Halin graph whose characteristic tree is a caterpillar. Also we find sharp bounds for the strong chromatic index of cubic Halin graphs.

It is easy to check that  $s\chi'(Ne_1) = 6$  (see Figure 3.2). It is straightforward to see that all edges of  $Ne_2$  must be assigned distinct colors. Hence,  $s\chi'(Ne_2) = 9$  (see Figure 3.3). Also we shall show in Theorem 3.3 that  $s\chi'(Ne_3) = 6$  (see Figure 3.1). It suffices to consider the strong chromatic index graphs in  $\mathcal{G}_h$  for  $h \geq 4$ .



Figure 3.1.  $Ne_3$ .



Figure 3.2.  $Ne_1$ .



Figure 3.3.  $Ne_2$ .

**Theorem 3.1** For  $h \ge 4$  and  $G \in \mathcal{G}_h$ , we have  $6 \le s\chi'(G) \le 8$ .

**Proof:** Suppose  $G \in \mathcal{G}_h$ . It is easy to see that there are at least two triangles contained in G when h > 1 (readers may also find the proof from Theorem 2.2 of [10]). So G contains a subgraph isomorphic to the graph W (see Figure 3.4). In fact, G contains only two such subgraphs. It is easy to see that  $s\chi'(W) = 6$ . Hence  $s\chi'(G) \geq 6$ .



Figure 3.4. The graph W.

Now we are going to give a strong 8-edge-coloring of G. For convenience, we let 0' = 0 and (h+1)' = h+1. Consider the subgraph W that contains the triangle 011' first. Let the third vertex adjacent

with 0 be r'  $(r \neq 1)$ , and the third vertex adjacent with h+1 be m'  $(m \neq h)$ . If  $v_1 = 1$ ,  $v_2 = 0$  and  $v_3 = 1'$ , then  $v_4 = 2$  and is adjacent with either  $v_5$  or  $v_6$ . If  $v_6 = 2'$ , then  $v_5 = r'$   $(r \neq 2)$ . If  $v_5 = 2'$ , then rename  $v_3$  as 0 and  $v_2$  as 1' such that  $v_6 = r'$   $(r \neq 2)$ . By a similar argument, the other subgraph which is isomorphic to W can be named by  $v_1 = h$ ,  $v_2 = h+1$ ,  $v_3 = h'$ ,  $v_4 = h-1$ ,  $v_5 = m'$   $(m \neq h-1)$  and  $v_6 = (h-1)'$ . So G is described as either Figure 3.5 or Figure 3.6. If G is the graph in Figure 3.5, then either r = m = 0 (or h+1) or  $1 \leq r \leq m \leq 1$ . For the latter case, it implies that  $1 \leq m \leq 1$  and  $1 \leq m \leq 1$ . First we are going to color the edges of

$$\widetilde{G} = G - \left\{ \{h - 1, h\}, \{h, h + 1\}, \{h - 1, (h - 1)'\}, \{h, h'\}, \{(h - 1)', h'\}, \{h', h + 1\} \right\}$$

by using the color set [7]. First we use 6 colors to color the edges  $\{0,1\}$ ,  $\{1,1'\}$ ,  $\{0,1'\}$ ,  $\{1,2\}$ ,  $\{1',2'\}$ ,  $\{0,r'\}$  arbitrarily. By the construction of G, G contains a subgraph H (Figure 3.7) for  $0 \le j < i < k \le h+1$ .



Figure 3.5.



Figure 3.6.

For  $2 \leq i \leq h-2$ , suppose  $\{i-1,i\}$  and  $\{j',i'\}$  of H have been colored. We color the remaining edges of H in such a way that  $\{i,i'\}$  is the first edge to be colored, follow by the edges  $\{i,i+1\}$  and then  $\{i',k'\}$ . Then at most six colors are forbidden for each of the edges  $\{i,i'\}$ ,  $\{i,i+1\}$  and  $\{i',k'\}$ . So we have a strong 7-edge-coloring for  $\widetilde{G}$ .



Figure 3.7. The graph H.

To color the remaining edges of G, we look at three cases. We consider G as in Figure 3.5 first. Let c be the strong edge-coloring of  $\widetilde{G}$  defined above.

Case 1: If m = h - 2 (Figure 3.8), then we color the edges in the following order:  $\{h - 1, (h - 1)'\}$ ,  $\{h - 1, h\}$ ,  $\{(h - 1)', h'\}$ ,  $\{h, h + 1\}$ ,  $\{h, h'\}$ ,  $\{h', h + 1\}$ . Then at most six colors are forbidden for both  $\{h - 1, (h - 1)'\}$  and  $\{h - 1, h\}$ ; at most seven colors are forbidden for  $\{(h - 1)', h'\}$ ,  $\{h, h + 1\}$  and  $\{h, h'\}$ . Finally, assign  $c(\{h - 2, h - 1\})$  to  $\{h', h + 1\}$ . Hence, all edges of G require at most eight colors.



Figure 3.8.

Case 2: Suppose  $0 < m \le h-3$  (Figure 3.9). By the above assignment we have used 1, 2, ..., 7 to color the edges of  $\widetilde{G}$ . Let l' be the vertex adjacent with m',  $0 \le l \le m-1$ . Without loss of generality, we may assume  $c(\{h-2,h-1\}) = 1$ ,  $c(\{h-2,(h-2)'\}) = 2$ ,  $c(\{(h-2)',(h-1)'\}) = 3$ ,  $c(\{p',(h-2)'\}) = 4$ , where  $2 \le p \le h-3$ ,  $c(\{h-3,h-2\}) = 5$ . Let  $c(\{m',h+1\}) = x$ ,  $c(\{l',m'\}) = y$  and  $c(\{m,m'\}) = z$ , where  $x,y,z \in [7]$ .

Case 2-1: Suppose x = 7. Then  $y, z \in [6]$ . Define  $c(\{h-1, (h-1)'\}) = 7$ ,  $c(\{(h-1)', h'\}) = 5$ ,  $c(\{h, h'\}) = 2$  and  $c(\{h-1, h\}) = 4$ .

(a) If  $1 \notin \{y, z\}$ , then assign 2 to  $\{h', h + 1\}$  and 8 to  $\{h, h + 1\}$ .



(b) If  $1 \in \{y, z\}$ , then assign 8 to  $\{h', h+1\}$  and either 3 or 6 to  $\{h, h+1\}$  depending on the values of y and z.

Case 2-2: Suppose  $x \neq 7$ .

- (a) If  $1 \notin \{y, z\}$ , then define  $c(\{h-1, (h-1)'\}) = 6$ ,  $c(\{(h-1)', h'\}) = 7$ ,  $c(\{h', h+1\}) = 1$  and  $c(\{h-1, h\}) = 8$ . At most 7 colors are forbidden for  $\{h, h+1\}$ . After coloring  $\{h, h+1\}$ , at most 6 colors are forbidden for  $\{h, h'\}$ . So we can color G by 8 colors.
- (b) If  $1 \in \{y, z\}$ , then recolor  $\{h-1, h-2\}$  by 8. Define  $c(\{h-1, (h-1)'\}) = 6$ ,  $c(\{(h-1)', h'\}) = 1$ ,  $c(\{h', h+1\}) = 8$  and  $c(\{h-1, h\}) = 7$ . Now the edge  $\{h, h'\}$  may be colored by 2, 4 or 5 depending on the values of x, y, z (note that  $1 \in \{y, z\}$ ). Similarly the edge  $\{h, h+1\}$  may be colored by at least one color from  $\{2, 3, 4, 5\}$ .

So, at most eight colors are used to color all the edges of G in this case.

Case 3: If m = 0, then  $G \cong Ne_h$ . To finish the coloring, follow Case 2 and replace  $\{l', m'\}$ ,  $\{m, m'\}$  and p' by  $\{0, 1'\}$ ,  $\{0, 1\}$  and 0 respectively in Case 2. Actually, we can find the strong chromatic index of  $Ne_h$ . Please see Theorem 3.3.

Similarly, we have a strong 8-edge-coloring in both Cases 1 and 2 for G in Figure 3.6. Consequently, we find a strong 8-edge-coloring for G. Therefore,  $6 \le s\chi'(G) \le 8$ .

In fact, Theorem 3.1 gives a strong edge-coloring of necklace. In the following, we will provide another coloring for necklace and determine the strong chromatic index of it.

**Lemma 3.2** Suppose G is a graph with  $s\chi'(G) \geq 6$ . Let two adjacent vertices A and B of G be of degree 3. Let X, Y and Z, W be the other two neighbors of A and B, respectively (X, Y, Z, W) are not necessarily distinct). Let  $\widetilde{G}$  be a graph obtained from G by replacing the edge-induced subgraph  $G[\{AB\}]$  by a ladder graph of length A (see Figure 3.10). Then  $s\chi'(\widetilde{G}) \leq s\chi'(G)$ .



**Proof:** Figure 3.10 shows that  $s\chi'(\widetilde{G})$  does not exceed  $s\chi'(G)$ .

Theorem 3.3 Suppose  $h \ge 1$ .

$$s\chi'(Ne_h) = \begin{cases} 6 & \text{if } h \text{ is odd,} \\ 7 & \text{if } h \ge 6 \text{ and is even,} \\ 8 & \text{if } h = 4, \\ 9 & \text{if } h = 2. \end{cases}$$

**Proof:** For h being odd, it suffices to give a strong 6-edge-coloring for  $Ne_h$ . It is shown in Figures 3.2 and 3.1 that  $s\chi'(Ne_h) = 6$  for h = 1 and 3, respectively. Applying Lemma 3.2 repeatedly we get  $s\chi'(Ne_h) = 6$  for all odd positive integers h.

For h being even, we have seen that  $s\chi'(Ne_2) = 9$ . So we may assume  $h \geq 4$ . The edges  $\{1,1'\}$ ,  $\{h+1,0\}$ ,  $\{0,1\}$ ,  $\{1,2\}$ ,  $\{0,1'\}$  and  $\{1',2'\}$  must be colored in different colors. Without loss of generality, we may assume they are colored by 1, 2, 3, 4, 5 and 6, respectively. Since the edges of a subgraph H' (see Figure 3.11) of  $Ne_h$  require all six colors, the edges  $\{2,3\}$ ,  $\{2',3'\}$  and  $\{2,2'\}$  must receive colors 5,



Figure 3.11. The graph H'.

3 and 2 respectively. Continuing in this fashion, we see that the edge  $\{j,j'\}$ , where  $1 \leq j \leq h-1$  is 1 or 2, according to whether j is odd or even, respectively. In particular  $\{h-1,(h-1)'\}$  is colored by 1. We can also see that  $\{h-1,h\}$  and  $\{(h-1)',h'\}$  are either colored by 4 and 6 respectively, or the other way round. So the remaining three edges  $\{h,h+1\}$ ,  $\{h',h+1\}$  and  $\{h,h'\}$  cannot be properly colored by six colors. Thus,  $s\chi'(Ne_h) \geq 7$  for  $h \geq 4$ .

To color  $Ne_4$ , we first note that it has 15 edges. It is also straightforward to verify that no color may be used for three times. Therefore  $s\chi'(Ne_4) \geq 8$ . A strong 8-edge-coloring of  $Ne_4$  is given in Figure 1.1.



Figure 3.12. A strong 7-edge-coloring for  $Ne_6$ .



Figure 3.13. A strong 7-edge-coloring for  $Ne_8$ .

To prove  $s\chi'(Ne_h) = 7$  for even  $h \ge 6$ , it suffices to find a 7-edge-coloring for  $Ne_h$ . It is shown in Figures 3.12 and 3.13 that  $s\chi'(Ne_h) = 7$  for h = 6 and 8, respectively. Applying Lemma 3.2 repeatedly we get  $s\chi'(Ne_h) = 7$  for all even positive integers h which are greater than 4.

We illustrate a strong 6-edge-coloring of  $Ne_5$  in Figure 3.14.



Figure 3.14. A strong 6-edge-coloring for  $Ne_5$ .

We are now going to find general bounds for the strong chromatic index of cubic Halin graphs. We have mentioned that any cubic Halin graphs G contains at least two triangles. It is easy to see that  $G \in \mathcal{G}_h$  for some  $h \geq 2$  if and only if G contains only two triangles.

**Theorem 3.4** If G is a cubic Halin graph, then  $6 \le s\chi'(G) \le 9$  and the bounds are sharp.

**Proof:** As mentioned before, every cubic Halin graph G contains a subgraph isomorphic to the subgraph W (Figure 3.4). Since the edges of W must be assigned distinct colors, we have  $s\chi'(G) \geq s\chi'(W) = 6$ 

Let  $G = T \cup C$ , where T is a (3, 1)-tree and  $C = C_n$ . Let  $v_1, v_2, \ldots, v_n$  be vertices lying in  $C_n$  clockwisely. Let  $e_i$  be edge in T which is incident with  $v_i$ ,  $1 \le i \le n$ .

If G contains two triangles sharing an edge, then  $G \cong K_4$ . Hence  $s\chi'(G) = 6$ . If G contains only two triangles,  $G \in \mathcal{G}_h$  for some  $h \geq 2$ . By Theorem 3.1  $s\chi'(G) \leq 9$ . Thus from now on, we assume that G contains at least three triangles. Then  $n \geq 6$ . When n = 6, the characteristic tree of G is a complete cubic tree of height 2 (Figure 3.15). Then  $s\chi'(G) \leq 7$ 



Figure 3.15.

(actually  $s\chi'(G) = 7$ , see [11]). So we assume  $n \geq 7$ . The number of leaves is two more than the number of nodes in a (3,1)-tree T. So  $|V(T)| \geq 12$  and even. By Theorem 2.2  $s\chi'(T) = 5$ . Let  $c_0$  be a strong 5-edge-coloring for T. We shall extend  $c_0$  to be a strong 9-edge-coloring of G.

Since  $n \geq 7$ , either there is an edge  $e_t$ , for some t, that is not an edge of any triangle or G contains at least four triangles. For the first case, after renumbering the vertices in  $C_n$  we may assume t = n and  $\{v_1, v_2\}$  is an edge of a triangle. We shall use notation  $\triangle_s$  to denote the triangle containing the edge  $\{v_s, v_{s+1}\}$ ,  $1 \leq s \leq n-1$ .

Suppose  $\triangle_s$  is a triangle in G. If  $1 \le s \le n-2$ , then by exchanging the colors of  $e_s$  and  $e_{s+1}$  if necessary, we may assume  $c_0(e_{s-1}) \ne c_0(e_s)$  (where  $e_0 = e_n$ ). Note that,  $c_0(e_{n-2})$  may equal to  $c_0(e_{n-1})$  if  $e_{n-1}$  and  $e_n$  are edges of the triangle  $\triangle_{n-1}$ .

First we perform the change colors procedure below (we shall call this procedure CCP):

Starting from j=2 to j=n-1, if  $c_0(e_i)=c_0(e_{i+1})$ , then we redefine  $c_0(e_{i+1})$  by 6.

Note that after performing CCP, no two consecutive edges are recolored. Let the new coloring be denoted by c. Then c is still a proper coloring of T. We can see that the edges of triangles in T are not colored by 6 except  $e_{n-1}$  may be. Without loss of generality, we may assume  $c(e_1) = 1$ ,  $c(e_2) = 2$ . Also we may assume  $\Delta_1$ ,  $\Delta_i$  and  $\Delta_j$  are three consecutive triangles along the adjoint cycle  $C_n$ ,  $3 \le i$ ,  $i + 2 \le j \le n - 2$ .

- Case 1: Suppose  $n \equiv 0 \pmod{3}$ . We color the edges of  $C_n$  starting at  $\{v_1, v_2\}$  clockwisely by the colors 7, 8, 9 cyclically.
- Case 2: Suppose  $n \equiv 1 \pmod{3}$ . We have the following cases:
  - Case 2-1: Suppose  $c(e_3) \neq 6$  and  $c(e_n) \neq 6$ . Then define  $c(\{v_1, v_2\}) = 6$  and color the remaining edges of  $C_n$  starting at  $\{v_2, v_3\}$  clockwisely by the colors 7, 8, 9 cyclically.
  - Case 2-2: Suppose  $c(e_3) \neq 6$  and  $c(e_n) = 6$ . It means that  $c(e_3) \neq 2$ . We redefine  $c(e_2) = 6$  and define  $c(\{v_1, v_2\}) = 2$ . And then color the remaining edges of  $C_n$  starting at  $\{v_2, v_3\}$  clockwisely by the colors 7, 8, 9 cyclically.

- Case 2-3: Suppose  $c(e_3) = 6$  and  $c(e_n) \neq 6$ . We redefine  $c(e_1) = 6$  and define  $c(\{v_1, v_2\}) = 1$ . The rest is same as Case 2-2.
- Case 2-4: Suppose  $c(e_3) = 6$  and  $c(e_n) = 6$ . Consider  $\triangle_i$ . If  $c(e_{i-1}) \neq 6$ , then the case can be referred to Case 2-1 or 2-3. If  $c(e_{i-1}) = 6$ , then change back the original color assigned to  $e_k$  for  $3 \leq k \leq i-1$  first. And then exchange the colors of  $e_1$  and  $e_2$ . Perform CCP for edges from  $e_3$  to  $e_i$ . Then the case can be referred to Case 2-2.
- Case 3: Suppose  $n \equiv 2 \pmod{3}$ . From Case 2 we can see that the recoloring procedure only influences the edge  $\{v_1, v_2\}$  and edges  $e_k$  for  $1 \leq k \leq i$ . Thus we apply the recoloring procedure described in Case 2 from  $\triangle_1$  to  $\triangle_i$  and from  $\triangle_j$  to  $\triangle_i$  (anti-clockwisely). The new coloring is still denoted by c.

After that we have colored the  $\{v_1, v_2\}$ ,  $\{v_j, v_{j+1}\}$  and edges  $e_k$  for  $1 \le k \le j+1$  by colors in  $[\![\mathbf{6}]\!]$ . But the new colors assigned to  $e_i$  and  $e_{i+1}$  may be the same and equal to 6. If it happens, then it means that the previous colors assigned to  $e_{i-1}$  and  $e_i$  are the same, also the previous colors assigned to  $e_{i+1}$  and  $e_{i+2}$  are the same. Since  $e_i$  and  $e_{i+1}$  are adjacent, the previous colors assigned to  $e_i$  and  $e_{i+1}$  are different. Recolor  $e_i$  by  $c(e_{i+2})$  and  $e_{i+1}$  by  $c(e_{i-1})$ .

Up to now, there are n-2 edges in  $C_n$  that have not been colored. Color those edges starting at any edge clockwisely by the colors 7, 8, 9 cyclically.

So we get a strong 9-edge-coloring for G. The proof is complete.

**Remark:** From Theorem 3.4 we get that every cubic Halin graph is edge-decomposable into at most 9 induced matchings.



Figure 3.16. Strong 6-edge-colorings of the other two graphs in  $\mathcal{G}_5$ 

There are only two (non-isomorphic) graphs contained in  $\mathcal{G}_4$ . We showed in Figure 1.1 that  $s\chi'(G) = 7$ , where G is described in Figure 1.1(b). Also there are only three graphs contained in  $\mathcal{G}_5$ . We show in Figures 3.14 and 3.16 that  $s\chi'(G) = 6$  for  $G \in \mathcal{G}_5$ . It can be checked that  $\mathcal{G}_6$  has 6 members. The strong chromatic indices of 5 graphs in  $\mathcal{G}_6$  are 7 and the strong chromatic index of the remaining one is 6. We wonder whether the graphs in  $\mathcal{G}_h$  are strong 7-edge-colorable for  $h \geq 5$ . So we conclude by presenting the following conjectures:

Conjecture 2: For  $h \geq 5$ ,  $s\chi'(G) \leq 7$  for any  $G \in \mathcal{G}_h$ .

Conjecture 3: For h > 5 and h odd,  $s\chi'(G) = 6$  for any  $G \in \mathcal{G}_h$ .

Conjecture 4: Suppose  $G = T \cup C$  is a Halin graph. Then  $s\chi'(G) \leq s\chi'(T) + 4$ .

### References

- [1] L.D. Andersen, The strong chromatic index of a cubic graph is at most 10, *Discrete Mathematics*, **108** (1992), 231-252.
- [2] J.A. Bondy and U.S.R. Murty, *Graph theory with applications*, New York: Macmillan Ltd. Press, (1976)
- [3] D. Cranston, A strong edge-coloring of graphs with maximum degree 4 using 21 colors, preprint, 2003 (http://www.math.uiuc.edu/~cranston/pubs/).
- [4] P. Erdős, Problems and results in combinatorial analysis and graph theory, *Discrete Math.*, **72** (1988), 81-92.
- [5] P. Erdős and J. Nešetřil, [Problem], in: G. Halász and V. T. Sós (eds.), *Irregularities of Partitions*, Springer, Berlin, 1989, 162-163.
- [6] R.J. Faudree, A. Gyárfás, R. H. Schelp, and Zs. Tuza, The strong chromatic index of graphs, Ars Combinatoria, 29B (1990), 205-211.
- [7] J.L. Fouquet and J.L. Jolivet, Strong edge-coloring of cubic planar graphs, *Progress in graph theory (Waterloo, 1982)* (1984), 247-264.
- [8] J.L. Fouquet and J.L. Jolivet, Strong edge-coloring of graphs and applications to multi-k-gons, Ars Combinatoria, 16 (1983), 141-150. index of cyclic multigraphs, Discrete Appl. Math., 99 (2002), 23-38.
- [9] P. Horák, H. Qing, and W. T. Trotter, Induced matchings in cubic graphs, *Journal of Graph Theory*, **17** (1993), 151-160.
- [10] P.C.B. Lam, W.C. Shiu, and W.H. Chan, Edge-face total chromatic number of 3-regular Halin graphs, *Congressus Numerantium*, **145** (2000), 161-165.
- [11] W.K. Tam, The strong chromatic index of cubic Halin graphs, M. Phil. Thesis of Department of Mathematics, Hong Kong Baptist University, 2003.