

STIC Search Report Biotech-Chem Library

STIC Database Tracking Number: 180648

TO: David Lukton

Location: rem/3B75/3C18

Art Unit: 1654 March 15, 2006

Case Serial Number: 10/606422

From: P. Sheppard

Location: Remsen Building

Phone: (571) 272-2529

sheppard@uspto.gov

Search Notes	
·	
	~

SEARCH REQUEST FORM (STIC)

			(5110)	'	1 1	
	Requestor's Name:	David Lukton	Examiner nur	mber: 71263	Date: $2/27/0$	6 //
	Art Unit: 1654	Phone number	571-272-0952		<u>umber:</u> 0 – 606 4 2 2	.
٠	Mail Box: 3-C-18	Examiner Rm:	3-B-75	Results format	paper	
			*****	* *		
•	Title: SUBSTITUTE RECEPTOR MODU		CLIC ACYL-TR	IPEPTIDES U	SEFUL AS THROMB	BIN
	Applicants: MCCOM HAWKINS, MICHA		.; MARYANO	FF, BRUCE E	.;	
	Earliest priority date:	12/14/98				
			*****	**		
	Applicants are claim	ming compoun	ds of the follow	wing formula:		
		Ŷ-X-	$A^1-A^2-A^3-Z$	•		
		stituted aryl, he			l, but with the provis	o that
	X = -CO-,	-C=S- or	√-SO ₂ -			
•	A ¹ is an amino	acid residue se	elected from Le	eu, Ile, Arg, L	ys, Phe, Tyr & Trp	
	A ² is lysine or	arginine;	•			•
	A ³ is an amino	acid residue se	lected from Ph	e, Tyr, Trp, 1	Leu, Ile, Asn, Gln, A	rg, Lys;
	Z is $-NH_2$,	NH-R or Ar	g-NH ₂			
	1	wherein R	is alkyl or ber	zyl or phenet	hỳl	
			•			
•			-	٠		
*******		•			**************************************	***
	JSE ONLY	Type of Sear		venuors and,	cost where applicable	•
	e#:	AA S		· 	el/OrbitLexis/Nexi	is
	tion:		•	Westl	•	
	Picked Up:		ographic		sequence systems	
	V 			Commercial	OligomerScore	/Length de/Transl
Sancher Bran	& Review Time:	Litiga		interference	Other (specify)	
ocerenci Lich	OF INCHICAL VILLE.	runte	~·			

Other

THIS PAGE BLANK (USPTO)

Lukton 10_606422 - - History

=> d his ful

(FILE 'HOME' ENTERED AT 17:28:14 ON 15 MAR 2006)

	(11111111111111111111111111111111111111	
L4	FILE 'REGI	STRY' ENTERED AT 17:28:25 ON 15 MAR 2006 STR
	10040	
L6	12249	SEA SSS FUL L4
L7	000	STR
L8		SEA SUB=L6 SSS FUL L4 NOT L7
Ь9	85	SEA ABB=ON PLU=ON L8 AND SQL=<4
		LUS' ENTERED AT 17:54:50 ON 15 MAR 2006
L10		SEA ABB=ON PLU=ON L9
L11	13	SEA ABB=ON PLU=ON L10 AND PD= <december 15,="" 1998<="" td=""></december>
		D STAT QUE
		D IBIB ABS HITSTR L11 1-13
L12	27	SEA ABB=ON PLU=ON L10 NOT L11
		D STAT QUE L12
		D IBIB ABS HITSTR L12 1-27
L13	76	SEA ABB=ON PLU=ON ("MCCOMSEY D F"/AU OR "MCCOMSEY DAVID"/AU
		OR "MCCOMSEY DAVID F"/AU)
L14	329	SEA ABB=ON PLU=ON ("MARYANOFF B E"/AU OR "MARYANOFF BRUCE"/AU
		OR "MARYANOFF BRUCE E"/AU OR "MARYANOFF BRUCE ELIOT"/AU)
L15	106	SEA ABB=ON PLU=ON "HAWKINS MICHAEL"/AU OR ("HAWKINS MICHAEL
		J"/AU OR "HAWKINS MICHAEL JOHN"/AU) OR HAWKINS M/AU OR HAWKINS
		M J/AU
L16		SEA ABB=ON PLU=ON (L13 AND L14 AND L15) NOT (L11 OR L12)
L18		SEA ABB=ON PLU=ON L14 AND L15
L19	11	SEA ABB=ON PLU=ON L16 OR L18
		D STAT QUE L19
		D IBIB ABS HITSTR L19 1-11
L20.		SEA ABB=ON PLU=ON L6
L21	1	SEA ABB=ON PLU=ON ((L13 OR L14 OR L15) AND L20) NOT (L11 OR
		L12 OR L19)
L22	251	SEA ABB=ON PLU=ON (L13 OR L14 OR L15) AND PD= <december 14,<="" td=""></december>
		1998
L23		SEA ABB=ON PLU=ON L22 AND THROMBIN
L24	20	SEA ABB=ON PLU=ON (L21 OR L23) NOT (L11 OR L12 OR L19)

FILE HOME

FILE REGISTRY

Property values tagged with IC are from the ZIC/VINITI data file provided by InfoChem.

STRUCTURE FILE UPDATES: 14 MAR 2006 HIGHEST RN 876856-38-1 DICTIONARY FILE UPDATES: 14 MAR 2006 HIGHEST RN 876856-38-1

New CAS Information Use Policies, enter HELP USAGETERMS for details.

TSCA INFORMATION NOW CURRENT THROUGH January 6, 2006

D STAT QUE L24 NOS

D IBIB ABS HITSTR L24 1-20

Please note that search-term pricing does apply when conducting SmartSELECT searches.

* The CA roles and document type information have been removed from *

Lukton 10_606422 - - History

* the IDE default display format and the ED field has been added, * effective March 20, 2005. A new display format, IDERL, is now * available and contains the CA role and document type information. * *

Structure search iteration limits have been increased. See HELP SLIMITS for details.

REGISTRY includes numerically searchable data for experimental and predicted properties as well as tags indicating availability of experimental property data in the original document. For information on property searching in REGISTRY, refer to:

http://www.cas.org/ONLINE/UG/regprops.html

FILE HCAPLUS

=>

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 15 Mar 2006 VOL 144 ISS 12 FILE LAST UPDATED: 14 Mar 2006 (20060314/ED)

New CAS Information Use Policies, enter HELP USAGETERMS for details.

This file contains CAS Registry Numbers for easy and accurate substance identification.

Page 2

THIS PAGE BLANK (USPTO.

=> fil hcaplus FILE 'HCAPLUS' ENTERED AT 17:54:50 ON 15 MAR 2006 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS. COPYRIGHT (C) 2006 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 15 Mar 2006 VOL 144 ISS 12 FILE LAST UPDATED: 14 Mar 2006 (20060314/ED)

New CAS Information Use Policies, enter HELP USAGETERMS for details.

This file contains CAS Registry Numbers for easy and accurate substance identification.

=>

=> d stat que

L4 STR

84

Page 1-A

Lukton 10_606422

Page 2-A
VAR G1=57/59/S
VAR G2=NH2/86/88/74
VAR G3=61/66/11/69/17/1
VAR G4=11/69
NODE ATTRIBUTES:
DEFAULT MLEVEL IS ATOM
DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:

RING(S) ARE ISOLATED OR EMBEDDED

NUMBER OF NODES IS 74

STEREO ATTRIBUTES: NONE

L6 12249 SEA FILE=REGISTRY SSS FUL L4

L7 STR

15

Page 1-A

Page 2-A VAR G1=57/59/S VAR G2=NH2/86/88/74

VAR G3=91/92/93/95/97/98/99/100/PH

NODE ATTRIBUTES:

DEFAULT MLEVEL IS ATOM DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:

RING(S) ARE ISOLATED OR EMBEDDED

NUMBER OF NODES IS 47

STEREO ATTRIBUTES: NONE

L8 900 SEA FILE=REGISTRY SUB=L6 SSS FUL L4 NOT L7

L9 85 SEA FILE=REGISTRY ABB=ON PLU=ON L8 AND SQL=<4

L10 40 SEA FILE=HCAPLUS ABB=ON PLU=ON L9

L11 13 SEA FILE=HCAPLUS ABB=ON PLU=ON L10 AND PD=<DECEMBER 15, 1998

=> d ibib abs hitstr l11 1-13

L11 ANSWER 1 OF 13 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2004:539953 HCAPLUS

DOCUMENT NUMBER: 141:106734

TITLE: Preparation of peptide factor Xa inhibitors as

antithrombotics.

INVENTOR(S): Al-Obeidi, Fahad; Lebl, Michal; Ostrem, James A.;

Safar, Pavel; Stierandova, Alena; Strop, Peter;

Walser, Armin

PATENT ASSIGNEE(S): Aventis Pharmaceuticals Inc., USA

SOURCE: U.S., 32 pp., Cont.-in-part of U.S. 5,849,510.

CODEN: USXXAM

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 2

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 6759384	B1	20040706	US 1998-211715	19981214
EP 1384725	A2	20040128	EP 2003-21617	19950425
R: AT, BE, CH,	DE, DK	ES, FR,	GB, GR, IT, LI, LU,	NL, SE, MC, PT, IE
US 5849510	Α	19981215	US 1997-947794	19971008 <
PRIORITY APPLN. INFO.:			US 1994-233054	B2 19940426
			US 1995-428404	B1 19950425
			US 1997-947794	A2 19971008
			EP 1995-917736	A3 19950425

AB The invention provides compds. A1-A2-(A3)m-B [m = 0, 1; A1 = R1-R2-R3; A2 = R4-R5-R6; A3 = R7-R8-R9; R1 = (substituted) 1-20 amino acid residues, R11CO, R11R12X; X = N, CH, NCO; R11, R12 = H, alkyl, acyl, aryl, aralkyl,

Lukton 10 606422

protecting group; R2 = CR99R100; R99, R100 = H, (substituted) alkyl, aralkyl, heteroaralkyl, heteroaryl; R3 = CO, CH2, CHR99CO, etc.; R4 = CH2, imino; R5 = CR201R202; R201, R202 = H, (substituted) alkyl, aryl, aralkyl; R6 = CO, CH2, CHR99CO; R7 = (substituted) R4; R8 = CR210R211; R210, R211 = H, (substituted) alkyl, alkylaryl, heterocyclyl; R9 = CO, CH2, CHR99CO; B = (substituted) 1-20 amino acid residues, amino, OH, alkoxy, acyloxy, etc.; with provisos] which specifically inhibit factor Xa activity. A compound of the invention is characterized, in part, in that it exhibits a specific inhibition of factor Xa activity with a Ki \leq 100 μ M, preferably \leq 2 nM, and does not substantially inhibit the activity of other proteases involved in the coagulation cascade. Thus, Ac-Tyr-Chg-Arg-NH2 (Chg = cyclohexylglycyl) inhibited coagulation in human plasma with EC50 = 2.5 μ M.

IT 718644-56-5P

RN

RL: PAC (Pharmacological activity); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(preparation of peptide factor Xa inhibitors as antithrombotics) 718644-56-5 HCAPLUS

CN L-Alaninamide, N-(4-methoxybenzoyl)-L-isoleucyl-L-arginyl-L-leucyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

REFERENCE COUNT: 45 THERE ARE 45 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L11 ANSWER 2 OF 13 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1998:300866 HCAPLUS

DOCUMENT NUMBER: 129:4872

TITLE: Preparation of targetable diagnostic and therapeutic

gas-containing or gas-generating ultrasound contrast

agents

INVENTOR(S):
Klaveness, Jo; Rongved, Pal; Hogset, Anders;

Tolleshaug, Helge; Naevestad, Anne; et al.

PATENT ASSIGNEE(S): Marsden, John Christopher, UK; Nycomed Imaging AS

SOURCE: PCT Int. Appl., 205 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent

Lukton 10_606422

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 9

PATENT INFORMATION:

		APPLICATION NO.	
EE, ES, LC, LK,	AZ 19980507 AT, AU, AZ, BB, BG, FI, GB, GE, GH, HU, LR, LS, LT, LU, LV,	WO 1997-GB2954 BR, BY, CA, CH, CN, CU ID, IL, IS, JP, KE, KG MD, MG, MN, MW, MX, NO SL, TJ, TM, TR, TT, UA	19971028 < I, CZ, DE, DK, I, KP, KR, KZ, I, NZ, PL, PT,
VN, YU, RW: GH, KE, GB, GR, GN, ML,	LS, MW, SD, SZ, UG, IE, IT, LU, MC, NL, MR, NE, SN, TD, TG	ZW, AT, BE, CH, DE, DK PT, SE, BF, BJ, CF, CG	ES, FI, FR, CI, CM, GA,
	AA 19980507 A1 19980522 B2 20010517 A 19991019		
CN 1234742 EP 973552 EP 973552	A 19991110 A2 20000126 B1 20060301	CN 1997-199047 EP 1997-910514	19971028 19971028
IE, SI, NZ 335596 JP 2001503407	LT, LV, FI, RO A 20001027 T2 20010313	GB, GR, IT, LI, LU, NL NZ 1997-335596 JP 1998-520187	19971028 19971028
EP 1442751 R: AT, BE, IE, FI,	CH, DE, DK, ES, FR, CY	EP 2004-7226 GB, GR, IT, LI, LU, NL	, SE, MC, PT,
ES 2224379 NO 9901889 KR 2000052829 US 2002102217 US 6680047	T3 20050301 A 19990628 A 20000825 A1 20020801	NO 1999-1889 KR 1999-703658	19990421
CN 1440816	A 20030910 A1 20050106	US 2003-734730	20021230 20031215 A 19961028
		GB 1996-22367 GB 1996-22368 GB 1997-699 GB 1997-8265	A 19970115
		GB 1997-8265 GB 1997-11842 GB 1997-11846 US 1997-49264P US 1997-49265P	
•		US 1997-49268P GB 1996-22369 GB 1997-2195	P 19970606 A 19961028 A 19970204
·		GB 1997-11837 GB 1997-11839 US 1997-49263P US 1997-49266P	A 19970606 A 19970606 P 19970607 P 19970607
		US 1997-959206 WO 1997-GB2954 EP 1998-917461 US 2001-925715	A 19971028 W 19971028 A3 19980424 A1 20010810
AB Targetable diag	nostic and/or therape	eutically active agents	, e.g.

AB Targetable diagnostic and/or therapeutically active agents, e.g. ultrasound contrast agents, comprising a suspension in an aqueous carrier liquid

Lukton 10 606422

of a reporter comprising gas-containing or gas-generated material, in which the reporter is coupled or linked to one or more non-bioactive vectors. Thus, a mixture of phosphatidylserine, phosphatidylcholine, and biotinamidocaproate-PEG3400-L-Ala-cholesterol (preparation given) was dispersed in 5% propylene glycol-water, flushed with perfluorobutane, and sonicated to give gas-filled encapsulated microbubbles. 207302-67-8P

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(preparation of targetable diagnostic and therapeutic gas-containing or gas-generating ultrasound contrast agents linked to non-bioactive vectors)

RN 207302-67-8 HCAPLUS

IT

CN L-Cysteine, N-[[4-[[4-(dimethylamino)phenyl]azo]phenyl]sulfonyl]-L-tyrosyl-L-arginyl-L-alanyl-L-leucyl-L-valyl-L-α-aspartyl-L-threonyl-L-leucyl-L-lysyl-N6-(L-arginylglycyl-L-α-aspartyl-L-seryl)-L-lysylglycyl-(9CI) (CA INDEX NAME)

Absolute stereochemistry.
Double bond geometry unknown.

PAGE 1-A

PAGE 1-C

$$-(CH2)3$$
 $+$
 N
 $NH2$
 NH

PAGE 2-A

OH

L11 ANSWER 3 OF 13 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

1998:300865 HCAPLUS

DOCUMENT NUMBER:

129:4871

TITLE:

Preparation of targetable diagnostic and therapeutic gas-containing or gas-generating ultrasound contrast

agents

INVENTOR (S):

Klaveness, Jo; Rongved, Pal; Hogset, Anders;

Lukton 10_606422

Tolleshaug, Helge; Cuthbertson, Alan; et al. Marsden, John Christopher, UK; Nycomed Imaging AS PATENT ASSIGNEE(S):

SOURCE:

PCT Int. Appl., 150 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 9

PATENT INFORMATION:

						KIND DATE				APPLICATION NO.						DATE		
		9818						1998										
	WO	_		λM	יתי ע											1	9971	028 <
		,	EE,	EC,	ET,	AU,	A4,	BB,	DG,	BK,	BI,	CA,	CH,	CN,	CU,	CZ,	DE,	DK,
			EE,	ED,	FI,	GB,	GE,	GH,	HU,	ID,	IL,	IS,	JP,	KE,	KG,	KP,	KR,	KZ,
			ъc,	DII,	цк,	us,	ы,	LU,	LV,	MD,	MG,	MIN,	MW,	MX,	NO,	NZ,	PL,	PT,
						SE,	SG,	SI,	SK,	ъь,	TU,	TM,	TR,	TT,	UA,	UG,	US,	UZ,
		DW.		YU,		MILT	CD	C P	770	F7 F.7	3.00	D	CIT					
		KW:	CD,	CD,	LD,	TOD.	Sυ,	SZ,	UG,	ZW,	AT,	BE,	CH,	DE,	DK,	ES,	FI,	FR,
			GD,	GR,	MD,	TI,	LIU,	MC,	ML,	PT,	SE,	BF,	BJ,	CF,	CG,	CI,	CM,	GA,
	CA	2260		MIL,	MIK,			TD,			<i>-</i>	007	2250	005		_		
		2269 9747				AA A1		1998				.997-						028 <
								1998			AU 1	.997-	4718	2		1	9971	028 <
		7334 1238				B2		2001 1999	051/		C) 1	000				_		
																	9971	
		9713 1007				A A2		2000										
	EP	R:		ממ	CII			2000	0614	an.	EL I	997-	9095.	12		1	9971	028
		к:						ES,	FK,	GB,	GR,	11,	ъΙ,	LU,	NL,	SE,	MC,	PT,
	ΜZ	3357		51,	ш,	LV,	-		1104		NT 7	007	2250			_		
		2001		65		A		2000									9971	
		6331		05		12 D1		2001 2001	1210		JP 1	998-	22019	36		1:	9971	028
		1442				A1		2001	1210		DD 7	997-	95920)6				
	шЕ	R:		סס	CH		חע	20041	U8U4	αD	EP 4	004 -	/226				99804	
		к.	IE,	FI,	CY,	DE,	DK,	ES,	rk,							SE,	MC,	PT,
	ES	2224	379			Т3		2005	0301		ES 1	998-: 999-:	91746	51		19	99804	124
	ИО	9901	890			Α		19990	0628		NO 1	999-	1890				99904	
	MX	9903	867			Α		2000			MX 1	999-	3867				99904	
		2000				A A1		20000	0825			999-					99904	
	US	2002	1022	17		A1		20020	0801			001-					00108	
	US	6680	047			B2		20040	120									
		2005				A 1		2005	106	,	US 2	003-	73473	30		20	00312	215
PRIO	RITY	APP	LN.	INFO.	. :						GB 1	996-2	22366	5	Į	19	99610	028
											GB 1	996-2	22369	•	1	1 19	9610	028
										(GB 1	997-2	2195		I	19	99702	204
										(GB 1	997-8	8265		1		9704	
										(GB 1	997-:	11837	7	7	19	9706	506
										(GB 1	997-:	11839)	I	19	99706	506
												996-4				19	9706	506
												996-4			I	19	9706	506
										1	US 1	996-4	19266	P	I	19	9706	506
												997-4		-	E	19	9706	506
										1	US 1	997-4	19263	P	I	19	9706	507
												997-4			I	19	9706	507
												997-9			P	19	9710	28
												997-0			V		9710	
												998-9			P	3 19	9804	24
	_		_									001-9			P	1 20	0108	310
AB	Tar ult	getak	nd o	llagr. contr	nosti Tast	.c an agen	d/o	r the	rape	utio na a	call a su	y act spens	ive sion	agen	its, n ac	e.g.	is ca	rrier

Lukton 10 606422

of a reporter comprising gas-containing or gas-generated material, in which the reporter is coupled or linked to one or more non-bioactive vectors. Thus, lipopeptide R-Lys(R)-Lys-Arg-Lys-Arg-Trp-Glu-Pro-Pro-Arg-Ala-Arg-Ile-OH (I; R = hexadecanoyl) (preparation given) containing a heparin binding site

and

a fibronectin binding site, was prepared by standard solid-phase methods. Microbubbles containing lipopeptide I were tested in vitro for binding to endothelial cells under flow conditions.

IT · 207302-67-8P

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(preparation of targetable diagnostic and therapeutic gas-containing or gas-generating ultrasound contrast agents linked to non-bioactive vectors)

RN 207302-67-8 HCAPLUS

CN L-Cysteine, N-[[4-[[4-(dimethylamino)phenyl]azo]phenyl]sulfonyl]-L-tyrosylL-arginyl-L-alanyl-L-leucyl-L-valyl-L-α-aspartyl-L-threonyl-L-leucylL-lysyl-N6-(L-arginylglycyl-L-α-aspartyl-L-seryl)-L-lysylglycyl(9CI) (CA INDEX NAME)

Absolute stereochemistry.

Double bond geometry unknown.

PAGE 1-A

HN S OH HN S OH HN S
$$CO_2H$$
 CO_2H CO_2H

PAGE 1-C

$$-(CH_2)_3$$
 NH_2
 NH

PAGE 2-A

L11 ANSWER 4 OF 13 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1997:248791 HCAPLUS

DOCUMENT NUMBER: 126:327291

TITLE: Design of kallidin-releasing tissue kallikrein

inhibitors based on the specificities of the enzyme's

binding subsites

AUTHOR(S): Portaro, Fernanda C. V.; Cezari, Maria H. S.; Juliano,

Lukton 10 606422

Maria A.; Juliano, Luiz; Walmsley, Adrian R.; Prado,

Eline S.

CORPORATE SOURCE: Department Biophysics, Universidade Federal Sao

Paulo-Escola Paulista Medicina, Sao Paulo, 04044-020,

Brazil

SOURCE: Biochemical Journal (1997), 323(1), 161-171

CODEN: BIJOAK; ISSN: 0264-6021

PUBLISHER:

Portland Press

DOCUMENT TYPE:

Journal

LANGUAGE:

English

AB Tissue kallikrein inhibitors were derived by selectively replacing residues in Nα-substituted arginine- or phenylalanine-pNA (where pNA is p-nitroanilide), and in peptide substrates for these enzymes. Phenylacetyl-Arg-pNA was an efficient inhibitor of human tissue kallikrein (Ki 0.4 μM) and was neither a substrate nor an inhibitor of plasma kallikrein. The peptide inhibitors having phenylalanine as the P1 residue behaved as specific inhibitors for kallidin-releasing tissue kallikreins, whereas plasma kallikrein showed high affinity for inhibitors containing (p-nitro)phenylalanine at the same position. The Ki value of the most potent inhibitor developed, Abz-Phe-Arg-Arg-Pro-Arg-EDDnp [where Abz is o-aminobenzoyl and EDDnp is N-(2,4-dinitrophenyl)-ethylenediamine], was 0.08 μM for human tissue kallikrein. Progress curve analyses of the inhibition of human tissue kallikrein by benzoyl-Arg-pNA and phenylacetyl-Phe-Ser-Arg-EDDnp indicated a single-step mechanism for reversible formation of the enzyme-inhibitor complex.

IT 133839-14-2 133839-16-4

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); PRP (Properties); BIOL (Biological study)

(design of kallidin-releasing tissue kallikrein inhibitors based on the specificities of the enzyme's binding subsites)

RN 133839-14-2 HCAPLUS

CN L-Argininamide, N-(2-aminobenzoyl)-L-phenylalanyl-L-arginyl-L-seryl-N-[2-[(2,4-dinitrophenyl)amino]ethyl]- (9CI) (CA INDEX NAME)

RN 133839-16-4 HCAPLUS

CN L-Valinamide, N-(2-aminobenzoyl)-L-phenylalanyl-L-arginyl-L-arginyl-N-[2-[(2,4-dinitrophenyl)amino]ethyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 1-B

REFERENCE COUNT:

31 THERE ARE 31 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L11 ANSWER 5 OF 13 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

1996:155533 HCAPLUS

DOCUMENT NUMBER:

124:212160

TITLE:

Monoamine, diamide, thiol-containing metal chelating

agents

INVENTOR(S):

Mcbride, William; Dean, Richard T.

Lukton 10 606422

PATENT ASSIGNEE(S):

Diatech, Inc., USA

SOURCE:

PCT Int. Appl., 64 pp.

CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT: 44

PATENT INFORMATION:

PAS									PLICAT	rion no.			ATE		
							-								
WO	953349	7		A1		1995	1214	WO	1995	-US6914		1	99506	501	<
	W: A	U, BR,	CA,	CN,	JP,	KR									
	RW: A	T, BE,	CH,	DE,	ĎK,	ES,	FR,	GB, G	R, IE,	, IT, LU,	MC,	NL,	PT,	SE	
CA	219195	1		AA		1995	1214	CA	1995	-2191951		1	99506	501	<
AU	952694	4		A1		1996	0104	AU	1995	-26944		1	99506	501	<
AU	707040			B2		1999	0701								
BR	950791	7		Α		1997	0812	BR	1995	-7917		1	99506	501	<
CN	115809	0		Α		1997	0827	CN	1995	-194356		1	99506	501	<
CN	109342	4		В		2002	1030								
EP	804252			A2		1997	1105	EP	1995	-922159		1	99506	501	<
EP	804252			В1		2003	0813								
	R: A	T, BE,	CH,	DE,	DK,	ES,	FR,	GB, G	R, IT,	LI, LU,	NL,	SE,	MC,	PT,	ΙE
JP	105015	31		T2		1998	0210	JP	1996	-501181		1	99506	501	<
JP	372734	2		B2		2005	1214								
AT	246939			E		2003	0815	AT	1995	-922159		1	99506	501	
PT	804252			${f T}$		2003	1231	PT	1995	-922159		1	99506	501	
ES	220495	4		Т3		2004	0501	ES	1995	-922159		1	99506	501	
ZA	950454	8		Α		1996	0315	ZA	1995	-4548		1	99506	502	<
PRIORITY	Y APPLN	. INFO	. :					US	1994	-253973		A 1	99406	503	
								WO	1995	-US6914	,	W 1	99506	501	

OTHER SOURCE(S): MARPAT 124:212160

- AB The invention relates to reagents useful in preparing radiolabeled diagnostic and therapeutic agents (radiopharmaceuticals). Specifically, the invention provides such reagents that are monoamine, diamide, and thiol-containing metal chelators. Methods of making such reagents, and methods of using the radiopharmaceuticals produced therefrom are also provided.
- IT 161982-53-2DP, technetium 99 complexes 174350-41-5DP, technetium 99 complexes
 - RL: PNU (Preparation, unclassified); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)
 - (monoamine, diamide, and thiol-containing metal chelating agents as radiopharmaceuticals)
- RN 161982-53-2 HCAPLUS
- CN L-Cysteinamide, N6-[N-(mercaptoacetyl)-L-phenylalanyl-L-phenylalanyl-L-tryptophyl-L-lysyl-L-threonyl-L-phenylalanyl-L-cysteinyl-L-lysyl-L-lysyl-L-lysyl-L-lysyl]-L-lysylglycyl-, cyclic (1→7)-thioether (9CI) (CA INDEX NAME)

PAGE 1-A

 H_2N_{\sim}

PAGE 1-B

PAGE 1-C

CN

PAGE 2-B

Ph

RN 174350-41-5 HCAPLUS

β-Alaninamide, N6-[N2,N6-bis[N-(mercaptoacetyl)-D-tyrosyl-S-(3-aminopropyl)-L-cysteinylglycyl-L-α-aspartyl-L-cysteinyl-L-lysyl-L-lysylglycyl-L-cysteinyl-, cyclic (1→5),(1'→5')-bis(thioether) (9CI) (CA INDEX NAME)

PAGE 1-A

PAGE 1-C

IT 161982-53-2P 174350-41-5P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(monoamine, $\bar{\text{diamide}}$, and thiol-containing metal chelating agents as radiopharmaceuticals)

RN 161982-53-2 HCAPLUS

CN L-Cysteinamide, N6-[N-(mercaptoacetyl)-L-phenylalanyl-L-phenylalanyl-D-tryptophyl-L-lysyl-L-threonyl-L-phenylalanyl-L-cysteinyl-L-lysyl-L-lysyl-L-lysyl-L-lysylglycyl-, cyclic (1→7)-thioether (9CI) (CA INDEX NAME)

PAGE 1-A

 $\text{H}_2\text{N}_{\sim}$

PAGE 1-B

PAGE 1-C

PAGE 2-B

174350-41-5 HCAPLUS RNCN

β-Alaninamide, N6-[N2,N6-bis[N-(mercaptoacetyl)-D-tyrosyl-S-(3aminopropyl)-L-cysteinylglycyl-L-α-aspartyl-L-cysteinyl-L-lysyl-Llysylglycyl]-L-lysyl]-L-lysylglycyl-L-cysteinyl-, cyclic $(1\rightarrow5)$, $(1'\rightarrow5')$ -bis(thioether) (9CI) (CA INDEX NAME)

PAGE 1-A

PAGE 1-C

L11 ANSWER 6 OF 13 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

1995:465577 HCAPLUS

DOCUMENT NUMBER:

122:234388

TITLE:

Radiolabeled somatostatin-derived peptides for imaging

and therapeutic uses

INVENTOR(S):

Dean, Richard T.; McBride, William; Lister-James, John

PATENT ASSIGNEE(S): Diatech, Inc., USA PCT Int. Appl., 72 pp.

SOURCE:

CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT: 44

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 9500553	A1	19950105	WO 1994-US6274	19940603 <

Lukton 10_606422

```
W: AU, CA, JP, US
         RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE
                                             US 1993-92355
                                                                     19930715
                          Α
                                 20000125
     US 6017509
     AU 9470990
                          A1
                                 19950117
                                             AU 1994-70990
                                                                     19940603 <--
     AU 701083
                          B2
                                 19990121
                                             EP 1994-920076
                                                                     19940603 <--
                          A1
                                 19960710
     EP 720621
                          В1
                                 20010207
     EP 720621
         R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LI, NL, SE
                                                                     19940603
     AT 199089
                          E
                                 20010215
                                             AT 1994-920076
     CA 2167281
                          C
                                 20010904
                                             CA 1994-2167281
                                                                     19940603
                                             US 1996-592323
     US 6051206
                          Α
                                 20000418
                                                                     19960506
                                             US 1993-92355
                                                                 A 19930715
PRIORITY APPLN. INFO.:
                                             US 1991-807062
                                                                 A2 19911127
                                             WO 1993-US6029
                                                                 W
                                                                     19930623
                                             WO 1994-US6274
                                                                 W 19940603
```

OTHER SOURCE(S): MARPAT 122:234388

- Therapeutic reagents and peptides, including radiotherapeutic reagents and peptides, radiodiagnostic reagents and peptides, and methods for producing labeled radiodiagnostic agents, are disclosed. Specifically, the invention relates to cyclic peptide derivs. and analogs of somatostatin, and embodiments of such peptides radiolabeled with a radioisotope, as well as methods and kits for making, radiolabeling, and using such peptides for radiodiagnostic and radiotherapeutic purposes. The invention specifically relates to cyclic peptide derivs. and analogs of somatostatin radiolabeled with technetium-99m and uses thereof as scintigraphic imaging agents. The invention also specifically relates to cyclic peptide derivs. and analogs of somatostatin radiolabeled with cytotoxic radioisotopes (e.g. 186Re, 188Re) for use as radiotherapeutic agents. Methods and kits for making, radiolabeling, and using such peptides diagnostically and therapeutically in a mammalian body are also provided. Data for binding of the analogs to somatostatin receptors is included, as is use in imaging of somatostatin receptor-expressing tumors.
- IT 161982-53-2DP, technetium-99m complexes 161982-53-2P
 RL: SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(preparation and use of radiolabeled somatostatin-derived peptides for imaging and therapeutic uses)

RN 161982-53-2 HCAPLUS

CN L-Cysteinamide, N6-[N-(mercaptoacetyl)-L-phenylalanyl-L-phenylalanyl-D-tryptophyl-L-lysyl-L-threonyl-L-phenylalanyl-L-cysteinyl-L-lysyl-L-lysyl-L-lysyl-L-lysyl-L-lysyl]-L-lysylglycyl-, cyclic (1-7)-thioether (9CI) (CA INDEX NAME)

PAGE 1-A

 H_2N_{\sim}

PAGE 1-B

PAGE 1-C

PAGE 2-B

RN

L-Cysteinamide, N6-[N-(mercaptoacetyl)-L-phenylalanyl-L-phenylalanyl-D-tryptophyl-L-lysyl-L-threonyl-L-phenylalanyl-L-cysteinyl-L-lysyl-L-lysyl-L-lysyl]-L-lysylglycyl-, cyclic (1-7)-thioether (9CI) (CA INDEX NAME) CN

Absolute stereochemistry.

PAGE 1-A

 H_2N_{\sim}

PAGE 1-C

PAGE 2-B

Ph

Lukton 10 606422

L11 ANSWER 7 OF 13 HCAPLUS COPYRIGHT 2006 ACS on STN

1995:381727 HCAPLUS ACCESSION NUMBER:

122:285299 DOCUMENT NUMBER:

Determinants of the unusual cleavage specificity of TITLE:

lysyl-bradykinin-releasing kallikreins

Chagas, Jair R.; Portaro, Fernanda C. V.; Hirata, AUTHOR (S):

Isaura Y.; Almeida, Paulo C.; Juliano, Maria A.;

Julianao, Luiz; Prado, Eline S.

Dep. Biophys., Escola Paulista de Medicina, Sao Paulo, CORPORATE SOURCE:

04044-020, Brazil

Biochemical Journal (1995), 306(1), 63-9 SOURCE:

CODEN: BIJOAK; ISSN: 0264-6021

PUBLISHER:

Portland Press

DOCUMENT TYPE:

Journal

LANGUAGE:

English

Kinetic data for the hydrolysis by human tissue kallikrein of fluorogenic peptides with o-aminobenzoyl-Phe-Arg (Abz-FR) as the acyl group and different leaving groups demonstrate that interactions with the S'1, S'2 and S'3 subsites are important for cleavage efficiency. In addition, studies on the hydrolysis of fluorogenic peptides with the human kininogen sequence spanning the scissile Met-Lys bond [Abz-M-I-S-L-M-K-R-P-N-(2,4dinitrophenyl)ethylenediamine] and analogs with different residues at positions P'1, P'2 and P'3 showed that (a) the presence of a proline residue at P'3 and the interactions with the tissue kallikrein-binding sites S2 to S'2 are determinants of Met-Lys bond cleavage and (b) residues P3, P4 and/or P5 are important for cleavage efficiency. The substitution of phenylalanine for methionine or arginine in substrates with scissile Met-Lys or Arg-Xaa bonds demonstrated that lysyl-bradykinin-releasing tissue kallikreins also have a primary specificity for phenylalanine. replacement of arginine by phenylalanine in (D)P-F-R-p-nitroanilide (pNA) produced an efficient and specific chromogenic substrate (D) P-F-F-pNA, for the lysyl-bradykinin-releasing tissue kallikreins as it is resistant to plasma kallikrein and other arginine hydrolases.

133839-14-2 133839-15-3 133839-16-4 TT

162851-74-3 162851-78-7

RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)

(determinants of unusual cleavage specificity of lysyl-bradykininreleasing kallikreins)

133839-14-2 HCAPLUS RN

L-Argininamide, N-(2-aminobenzoyl)-L-phenylalanyl-L-arginyl-L-seryl-N-[2-CN [(2,4-dinitrophenyl)amino]ethyl]- (9CI) (CA INDEX NAME)

RN 133839-15-3 HCAPLUS

CN L-Valinamide, N-(2-aminobenzoyl)-L-phenylalanyl-L-arginyl-L-seryl-N-[2-[(2,4-dinitrophenyl)amino]ethyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 1-B

RN 133839-16-4 HCAPLUS

CN L-Valinamide, N-(2-aminobenzoyl)-L-phenylalanyl-L-arginyl-L-arginyl-N-[2-[(2,4-dinitrophenyl)amino]ethyl]- (9CI) (CA INDEX NAME)

PAGE 1-A

PAGE 1-B

RN 162851-74-3 HCAPLUS

CN L-Valinamide, N-(2-aminobenzoyl)-L-phenylalanyl-L-arginyl-L-leucyl-N-[2-[(2,4-dinitrophenyl)amino]ethyl]- (9CI) (CA INDEX NAME)

RN 162851-78-7 HCAPLUS

CN L-Serinamide, N-(2-aminobenzoyl)-L-phenylalanyl-L-arginyl-L-seryl-N-[2-[(2,4-dinitrophenyl)amino]ethyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 1-B

L11 ANSWER 8 OF 13 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1995:66653 HCAPLUS

DOCUMENT NUMBER: 122:234165

TITLE: Fluorogenic peptide substrates for studies on the

Arg-Ser and Met-Lys bond cleavage by tissue kallikrein

(T-KK)

AUTHOR(S): Prado, Eline S.; Chagas, Jair R.; Juliano, Luiz CORPORATE SOURCE: Dep. Biophysics, Escola Paulista de Medicina, Sao

Paulo, 04044-020, Brazil

SOURCE: Pept. 1992, Proc. Eur. Pept. Symp., 22nd (1993)

), Meeting Date 1992, 931-2. Editor(s): Schneider, Conrad H.; Eberle,

Alex N. ESCOM: Leiden, Neth.

Lukton 10_606422

CODEN: 60LUAN

DOCUMENT TYPE: Conference LANGUAGE: English

AB The kinetics of hydrolysis of 9 human kininogen-related fluorogenic peptides by human tissue kallikrein were determined and structure-activity relations were observed

IT 162128-88-3 162128-89-4

RL: BPR (Biological process); BSU (Biological study, unclassified); PRP (Properties); BIOL (Biological study); PROC (Process)

(fluorogenic peptide substrates for studies of Arg-Ser and Met-Lys bond cleavage by human tissue kallikrein)

RN 162128-88-3 HCAPLUS

CN L-Serinamide, N-(2-aminobenzoyl)-L-phenylalanyl-L-arginyl-L-seryl-N-[2-(2,4-dinitrophenyl)ethyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 1-B

RN 162128-89-4 HCAPLUS

CN L-Argininamide, N-(2-aminobenzoyl)-L-phenylalanyl-L-arginyl-L-seryl-N-[2-(2,4-dinitrophenyl)ethyl]- (9CI) (CA INDEX NAME)

PAGE 1-B

L11 ANSWER 9 OF 13 HCAPLUS COPYRIGHT 2006 ACS on STN

1992:485790 HCAPLUS ACCESSION NUMBER:

DOCUMENT NUMBER: 117:85790

Protein products of the rat kallikrein gene family. TITLE:

Substrate specificities of kallikrein rK2 (tonin) and

kallikrein rK9

AUTHOR (S): Moreau, Thierry; Brillard-Bourdet, Michele; Bouhnik,

Jacob; Gauthier, Francis Fac. Med., Univ. Francois Rabelais, Tours, F-37032, CORPORATE SOURCE:

Fr.

SOURCE: Journal of Biological Chemistry (1992),

267(14), 10045-51

CODEN: JBCHA3; ISSN: 0021-9258

DOCUMENT TYPE: Journal LANGUAGE: English ·

Two closely related kallikrein-like proteinases having little activity toward the standard synthetic amide substrates of tissue kallikreins were isolated from the rat submandibular gland. They are the protein products of the rKlk2 (tonin) and the rKlk9 genes, as determined by amino acid sequence anal. (nomenclature of the genes and proteins of the kallikrein family is according to the proposal of the KININ '91 meeting held Sept. 8-14, 1991, in Munich, Germany). These 2 proteinases of similar structure also had very similar physicochem. properties. They differed from other kallikrein-related proteinases in having high pI values of 6.20 (rK2) and 6.85 (rK9). Kallikrein rK2 was purified as a single peptide chain, whereas rK9 appeared as a 2-chain protein after reduction Their enzymic properties were also very similar and differed significantly from those of other rat kallikrein-related proteinases. Unlike the 5 other kallikrein-related proteinases purified so far, kallikrein rK9 was not inhibited by aprotinin. RK9 also differed from rK2 by its tissue localization. The prostate gland contained only rK9, where it was the major kallikrein-like component. The amino acids preferentially

Lukton 10 606422

accommodated by the proteinase S3 to S2' subsites were identified using synthetic amide and protein substrates. Unlike other kallikrein-related proteinases, rK2 had a prevalent chymotrypsin-like specificity, whereas rK9 had both chymotrypsin-like and trypsinlike properties. Both rK2 and rK9 preferred a prolyl residue in position P2 of the substrate and did not accommodate bulky and hydrophobic residues at that position, as did most of the other kallikrein-related proteinases. This P2-proline-directed specificity is necessary for processing the precursors of several biol. active peptides. Subsites accommodating residues C-terminal to the scissile bond were also important in determining the substrate specificity of these proteinases. Both rK2 and rK9 showed a preference for hydrophobic residues in P2'. Other subsites upstream of the S3 subsite intervene in substrate binding and hydrolysis. The restricted specificity of rK2 and rK9 is consistent with the presence of an extended substrate binding site, and hence with a processing enzyme function. Their Pl specificities enabled both proteinases to release angiotensin II from angiotensinogen and from angiotensinogen I, but rK9 was at least 100 times less active than rK2 on both substrates. The substrate specificities of rK2 and rK9 were correlated with key amino acids defining their substrate binding site. The predicted preferential sequence(s) around the cleavage site deduced from these data may be used to identify the biol. substrate(s) of these proteinases.

IT 133839-14-2

RL: RCT (Reactant); RACT (Reactant or reagent)
 (reaction of, with kallikrein-like proteinases rK2 and rK9, kinetics
 of)

RN 133839-14-2 HCAPLUS

CN L-Argininamide, N-(2-aminobenzoyl)-L-phenylalanyl-L-arginyl-L-seryl-N-[2-[(2,4-dinitrophenyl)amino]ethyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 1-B

Lukton 10 606422

L11 ANSWER 10 OF 13 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1992:403159 HCAPLUS

DOCUMENT NUMBER: 117:3159

TITLE: Substrate specificities of tissue kallikrein and

T-kininogenase: their possible role in kininogen

processing

AUTHOR(S): Chagas, Jair R.; Hirata, Izaura Y.; Juliano, Maria A.;

Xiong, William; Wang, Cindy; Chao, Julie; Juliano,

Luiz; Prado, Eline S.

CORPORATE SOURCE: Dep. Biophys., Esc. Paul. Med., Sao Paulo, 04034,

Brazil

SOURCE: Biochemistry (1992), 31(21), 4969-74

CODEN: BICHAW; ISSN: 0006-2960

DOCUMENT TYPE: Journal LANGUAGE: English

The present studies demonstrate the importance of subsite interactions in AB determining the cleavage specificities of kallikrein gene family proteinases. The effect of substrate amino acid residues in positions P3-P'3 on the catalytic efficiency of tissue kallikreins (rat, pig, and horse) and T-kininogenase was studied using peptidyl-pNA (pNA = p-nitroanilide) and intramol. quenched fluorogenic peptides as substrates. Kinetic analyses show the different effects of D-amino acid residues at P3, Pro at P'2, and Arg at either P'1 or P'3 on the hydrolysis of substrates by tissue kallikreins from rat and from horse or pig. T-kininogenase was shown to differ from tissue kallikrein in its interactions at subsites S2, S'1, and S'2. As a result of these differences, Abz-FRSR-EDDnp [(Abz = o-aminobenzoyl; EDDnp = N-(2,4-dinitrophenyl)ethylenediamine)] with Arg at P'2 is a good substrate for tissue kallikreins from horse, pig, and rat but not for T-kininogenase. Abz-FRRP-EDDnp and Abz-FRAPR-EDDnp with Pro at P'2 (rat high-mol.-weight kininogen sequence) are susceptible to rat tissue kallikrein but not to tissue kallikreins from horse and pig. Arg in P'3 increased the susceptibility of the Arg-Ala bond to rat tissue kallikrein. These data explain the release of bradykinin by rat tissue kallikrein and of kallidin by tissue kallikreins from other animal species. Abz-FRLV-EDDnp and Abz-FRLVR-EDDnp (T-kininogen sequence) are good substrates for T-kininogenase but not for tissue kallikrein. Arg at the leaving group (at either P'1, P'2, or P'3) lowers the Km values of T-kininogenase while Val and P'2 increases its kcat values. The results indicate that the enzyme subsites S'1, S'2, and S'3 are important determinants for the substrate specificity of tissue kallikreins and T-kininogenase. The findings are also in agreement with the known species specificity of tissue kallikreins and the resistance of rat T-kininogen to tissue kallikreins.

IT 133839-14-2 133839-15-3 133839-16-4

RL: BIOL (Biological study)

(tissue kallikrein and T-kininogenase of mammal specificity for, reaction kinetics and structure relation to)

RN 133839-14-2 HCAPLUS

CN L-Argininamide, N-(2-aminobenzoyl)-L-phenylalanyl-L-arginyl-L-seryl-N-[2-[(2,4-dinitrophenyl)amino]ethyl]- (9CI) (CA INDEX NAME)

PAGE 1-B

RN 133839-15-3 HCAPLUS

CN L-Valinamide, N-(2-aminobenzoyl)-L-phenylalanyl-L-arginyl-L-seryl-N-[2-[(2,4-dinitrophenyl)amino]ethyl]- (9CI) (CA INDEX NAME)

133839-16-4 HCAPLUS RN

L-Valinamide, N-(2-aminobenzoyl)-L-phenylalanyl-L-arginyl-L-arginyl-N-[2-[(2,4-dinitrophenyl)amino]ethyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 1-A

PAGE 1-B

HCAPLUS COPYRIGHT 2006 ACS on STN L11 ANSWER 11 OF 13

ACCESSION NUMBER:

1991:224299 HCAPLUS

DOCUMENT NUMBER:

114:224299

TITLE:

Intramolecularly quenched fluorogenic tetrapeptide

substrates for tissue and plasma kallikreins

Chagas, Jair R.; Juliano, Luiz; Prado, Eline S.

AUTHOR (S): CORPORATE SOURCE:

Dep. Biophys., Es. Paulista Med., Sao Paulo, 04034,

Brazil

Lukton 10_606422

SOURCE: Analytical Biochemistry (1991), 192(2),

419-25

CODEN: ANBCA2; ISSN: 0003-2697

DOCUMENT TYPE: Journal LANGUAGE: English

AB Five intramolecularly quenched fluorogenic substrates for arginyl hydrolases with the sequence Abz-Phe-Arg-X-Y--EDDnp (Abz = o-aminobenzoyl, EDDnp = ethylenediamine dinitrophenyl X = Arg or Ser; Y = Val, Pro, or Arg) were synthesized by classical solution methods. Kinetics of their hydrolysis by tissue and plasma kallikreins, trypsin, and thrombin characterized Abz-Phe-Arg-Ser-Arg-EDDnp as a specific and sensitive substrate for the continuous assay of tissue kallikreins while Abz-Phe-Arg-Arg-Pro-EDDnp was the best substrate for human plasma kallikrein. The 5 peptides were poor substrates for trypsin and resistant to thrombin.

IT 133855-69-3P 133855-70-6P 133855-72-8P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(preparation and detosylation of)

RN 133855-69-3 HCAPLUS

CN L-Ornithinamide, N-(4-aminobenzoyl)-L-phenylalanyl-N5-[imino[[(4-methylphenyl)sulfonyl]amino]methyl]-L-ornithyl-L-seryl-N-[2-[(2,4-dinitrophenyl)amino]ethyl]-N5-[imino[[(4-methylphenyl)sulfonyl]amino]methyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 1-A

RN 133855-70-6 HCAPLUS

CN L-Valinamide, N-(2-aminobenzoyl)-L-phenylalanyl-N5-[imino[[(4-methylphenyl)sulfonyl]amino]methyl]-L-ornithyl-L-seryl-N-[2-[(2,4-dinitrophenyl)amino]ethyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 1-A

RN 133855-72-8 HCAPLUS

CN L-Valinamide, N-(2-aminobenzoyl)-L-phenylalanyl-N5-[imino[[(4-methylphenyl)sulfonyl]amino]methyl]-L-ornithyl-N5-[imino[[(4-methylphenyl)sulfonyl]amino]methyl]-L-ornithyl-N-[2-[(2,4-dinitrophenyl)amino]ethyl]- (9CI) (CA INDEX NAME)

IT 133839-14-2P 133839-15-3P 133839-16-4P

RL: SPN (Synthetic preparation); PREP (Preparation) (preparation of, as intramolecularly quenched fluorogenic substrates for tissue and plasma kallikreins)

RN 133839-14-2 HCAPLUS

CN L-Argininamide, N-(2-aminobenzoyl)-L-phenylalanyl-L-arginyl-L-seryl-N-[2-[(2,4-dinitrophenyl)amino]ethyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 1-B

RN 133839-15-3 HCAPLUS

CN L-Valinamide, N-(2-aminobenzoyl)-L-phenylalanyl-L-arginyl-L-seryl-N-[2-[(2,4-dinitrophenyl)amino]ethyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 1-B

RN 133839-16-4 HCAPLUS

CN L-Valinamide, N-(2-aminobenzoyl)-L-phenylalanyl-L-arginyl-L-arginyl-N-[2-[(2,4-dinitrophenyl)amino]ethyl]- (9CI) (CA INDEX NAME)

AB

L11 ANSWER 12 OF 13 HCAPLUS COPYRIGHT 2006 ACS on STN

1987:614089 HCAPLUS ACCESSION NUMBER:

107:214089 DOCUMENT NUMBER:

Chromophoric and fluorophoric peptide substrates TITLE:

cleaved through the dipeptidyl carboxypeptidase

activity of cathepsin B

Pohl, Jan; Davinic, Silvia; Blaha, Ivo; Strop, Petr; AUTHOR (S):

Kostka, Vladimir

Inst. Org. Chem. Biochem., Czech. Acad. Sci., Prague, CORPORATE SOURCE:

CS-16610, Czech.

Analytical Biochemistry (1987), 165(1), SOURCE:

96-101

CODEN: ANBCA2; ISSN: 0003-2697

Journal DOCUMENT TYPE: English LANGUAGE: The action of bovine spleen cathespin B as a dipeptidyl carboxypeptidase

on newly synthesized substrates of the type peptidyl-X-p-nitrophenylalanyl (Phe(NO2))-Y (where X,Y = amino acid residue) or 5dimethylaminonaphthalene-1-sulfonyl (Dns)-peptidyl-X-Phe(NO2)-Y was investigated. The kinetic parameters of hydrolysis of the X-Phe(NO2) bond were determined by difference spectrophotometry (Δε310 = 1600 M-1 cm-1) or by spectrofluorometry by following the 5-8-fold increase of Dns-group fluorescence (excitation at 350 nm and emission at 535 nm). The substrates were moderately sensitive to cathepsin B; kcat (the catalytic constant) was 0.7-s-1 at pH 5 and 25° and Km was 6-240 μ M. very acidic optima of pH 4-5 are characteristic for the dipeptidyl carboxypeptidase activity of cathespin B. Bovine spleen cathepsins S and

H had little and no activity, resp., when assayed with Pro-Glu-Ala-Phe(NO2)-Gly. These peptides should be a valuable tool for routine assays and for mechanistic studies on cathepsin B.

IT108204-50-8 108204-51-9

> RL: RCT (Reactant); RACT (Reactant or reagent). (reaction of, with cathepsin B, kinetics and mechanism of).

RN 108204-50-8 HCAPLUS

L-Leucine, N-[N-[N2-[N-[[5-(dimethylamino)-1-naphthalenyl]sulfonyl]-L-CN phenylalanyl]-L-arginyl]-4-nitro-L-phenylalanyl]- (9CI) (CA INDEX NAME)

RN108204-51-9 HCAPLUS

L-Leucine, N-[N-[N2-[N2-[[5-(dimethylamino)-1-naphthalenyl]sulfonyl]-L-(dimethylamino)-1-naphthalenyl]sulfonyl]-L-(dimethylamino)-1-naphthalenyl]sulfonyl]-L-(dimethylamino)-1-naphthalenyl]sulfonyl]-L-(dimethylamino)-1-naphthalenyl]sulfonyl]-L-(dimethylamino)-1-naphthalenyl]sulfonyl]-L-(dimethylamino)-1-naphthalenyl]sulfonyl]-L-(dimethylamino)-1-naphthalenyl]sulfonyl]-L-(dimethylamino)-1-naphthalenyl]sulfonyl]-L-(dimethylamino)-1-naphthalenyl]sulfonyl]-L-(dimethylamino)-1-naphthalenyl]sulfonyl]-L-(dimethylamino)-1-naphthalenyl]sulfonyl[sulfonyl]sulfonyl]sulfonyl]sulfonyl]sulfonyl]sulfonyl]sulfonylCNarginyl]-L-arginyl]-4-nitro-L-phenylalanyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L11 ANSWER 13 OF 13 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1987:191672 HCAPLUS

DOCUMENT NUMBER: 106:191672

TITLE: A study of the peptidyldipeptidase activity of bovine

spleen cathepsin B using synthetic substrates

AUTHOR (S): Pohl, J.; Davinic, S.; Blaha, I.; Strop, P.; Kostka,

CORPORATE SOURCE: Inst. Org. Chem. Biochem., Czech. Acad. Sci., Prague,

CS-166 10, Czech.

SOURCE: Cysteine Proteinases Their Inhib., Proc. Int. Symp.,

1st (1986), Meeting Date 1985, 73-8.

Editor(s): Turk, Vito. de Gruyter: Berlin, Fed. Rep.

Ger.

CODEN: 55LGA3

DOCUMENT TYPE: Conference LANGUAGE:

English

AB Fundamental kinetic data characterizing the peptidyldipeptidase action of cathepsin B on chromophoric and fluorophoric synthetic substrates are reported.

IT 108204-50-8 108204-51-9

RL: RCT (Reactant); RACT (Reactant or reagent)
 (reaction of, with peptidyldipeptidase of cathepsin B of spleen,
 kinetics of)

RN 108204-50-8 HCAPLUS

CN L-Leucine, N-[N-[N2-[N-[[5-(dimethylamino)-1-naphthalenyl]sulfonyl]-L-phenylalanyl]-L-arginyl]-4-nitro-L-phenylalanyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 108204-51-9 HCAPLUS

CN L-Leucine, N-[N-[N2-[N2-[[5-(dimethylamino)-1-naphthalenyl]sulfonyl]-L-arginyl]-L-arginyl]-L-arginyl]-L-arginyl]-(9CI) (CA INDEX NAME)

$$CCH_2$$
) CCH_2 CCH_2) CCH_2 CCH_2

Page 2-A
VAR G1=57/59/S
VAR G2=NH2/86/88/74
VAR G3=61/66/11/69/17/1
VAR G4=11/69
NODE ATTRIBUTES:
DEFAULT MLEVEL IS ATOM
DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES: RING(S) ARE ISOLATED OR EMBEDDED NUMBER OF NODES IS 74

STEREO ATTRIBUTES: NONE L6 12249 SEA FILE=R

12249 SEA FILE=REGISTRY SSS FUL L4

L7 STR

15

Page 2-A
VAR G1=57/59/S
VAR G2=NH2/86/88/74
VAR G3=91/92/93/95/97/98/99/100/PH
NODE ATTRIBUTES:
DEFAULT MLEVEL IS ATOM
DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:

RING(S) ARE ISOLATED OR EMBEDDED

NUMBER OF NODES IS 47

STEREO ATTRIBUTES: NONE

L8	900 SE	A FILE=REGISTRY	SUB=L6 SSS FUL	L4 NOT L7	
L9	85 SE	A FILE=REGISTRY	ABB=ON PLU=ON	L8 AND SQL=<4	
L10	40 SE	A FILE=HCAPLUS A	ABB=ON PLU=ON	L9	
L11	13 SE	A FILE=HCAPLUS A	ABB=ON PLU=ON	L10 AND PD= <decem< td=""><td>BER 15, 1998</td></decem<>	BER 15, 1998
1.12	27 SE	TILE-HCADILIC A	MD=IIIQ MO=RRA	1.10 NOT 1.11	

Lukton 10 606422

=> d ibib abs hitstr l12 1-27

L12 ANSWER 1 OF 27 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2005:1178234 HCAPLUS

DOCUMENT NUMBER: 144:88541

TITLE: Preparation of human Melanocortin-4 receptor agonist

libraries: linear peptides X-Y-DPhe7-Arg8-Trp(or

2-Nal)9-Z-NH2

AUTHOR(S): Cheung, Adrian Wai-Hing; Qi, Lida; Gore, Vijay; Chu,

Xin-Jie; Bartkovitz, David; Kurylko, Grazyna; Swistok,

Joseph; Danho, Waleed; Chen, Li; Yagaloff, Keith

CORPORATE SOURCE: Roche Research Center, Hoffmann-La Roche Inc., Nutley,

NJ, 07110, USA

SOURCE: Bioorganic & Medicinal Chemistry Letters (2005),

15(24), 5504-5508

CODEN: BMCLE8; ISSN: 0960-894X

PUBLISHER: Elsevier B.V.

DOCUMENT TYPE: Journal LANGUAGE: English

Two libraries of hMC4R agonists, X-Y-DPhe7-Arg8-2-Nal9-Z-NH2 and X-Y-DPhe7-Arg8-Trp9-Z-NH2, totaling 185 peptides were prepared using Irori radiofrequency tagging technol. and Argonaut Quest 210 Synthesizer, where X stands for N-caps, Y for His6 surrogates and Z for Gly10 surrogates. As a result of this study, His-modified pentapeptides with Trp were found to be more hMC4R potent than the corresponding 2-Nal analogs, novel N-caps and Gly surrogates were identified and 19 new peptides which are potent

hMC4R agonists (EC50 1-15 nM) and selective against hMC1R were discovered.

IT 365552-10-9P 365552-13-2P 365552-15-4P

365552-16-5P 365552-17-6P 365552-20-1P

365552-23-4P 365552-25-6P 365552-35-8P

365552-38-1P 365552-40-5P 365552-97-2P

365552-99-4P 365553-01-1P 365553-09-9P

RL: BSU (Biological study, unclassified); CPN (Combinatorial preparation); BIOL (Biological study); CMBI (Combinatorial study); PREP (Preparation)

(preparation of peptides X-Y-DPhe7-Arg8-Trp(or 2-Nal)9-Z-NH2 as human

melanocortin-4 receptor agonists)

RN 365552-10-9 HCAPLUS

CN L-Tryptophanamide, cis-1-[(1-oxobutyl)amino]-4-phenylcyclohexanecarbonyl-D-phenylalanyl-L-arginyl-N-[2-(aminocarbonyl)phenyl]- (9CI) (CA INDEX NAME)

RN 365552-13-2 HCAPLUS

CN L-Tryptophanamide, cis-1-[[(butylamino)carbonyl]amino]-4-phenylcyclohexanecarbonyl-D-phenylalanyl-L-arginyl-N-[2-(aminocarbonyl)phenyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 365552-15-4 HCAPLUS

CN L-Tryptophanamide, cis-4-phenyl-1-[(phenylacetyl)amino]cyclohexanecarbonyl-D-phenylalanyl-L-arginyl-N-[2-(aminocarbonyl)phenyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 365552-16-5 HCAPLUS

CN L-Tryptophanamide, cis-1-[(1-oxobutyl)amino]-4-phenylcyclohexanecarbonyl-Dphenylalanyl-L-arginyl-N-[[3-(aminocarbonyl)phenyl]methyl]- (9CI) (CA
INDEX NAME)

RN 365552-17-6 HCAPLUS

CN L-Tryptophanamide, cis-1-[[(butylamino)carbonyl]amino]-4-phenylcyclohexanecarbonyl-D-phenylalanyl-L-arginyl-N-[[3-(aminocarbonyl)phenyl]methyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 365552-20-1 HCAPLUS

CN L-Tryptophanamide, cis-4-phenyl-1-[(phenylacetyl)amino]cyclohexanecarbonyl-D-phenylalanyl-L-arginyl-N-[[3-(aminocarbonyl)phenyl]methyl]- (9CI) (CA INDEX NAME)

RN 365552-23-4 HCAPLUS

CN L-Tryptophanamide, cis-1-[(1-oxobutyl)amino]-4-phenylcyclohexanecarbonyl-D-phenylalanyl-L-arginyl-N-[[4-(aminocarbonyl)phenyl]methyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 365552-25-6 HCAPLUS

CN L-Tryptophanamide, cis-4-phenyl-1-[(phenylacetyl)amino]cyclohexanecarbonyl-D-phenylalanyl-L-arginyl-N-[[4-(aminocarbonyl)phenyl]methyl]- (9CI) (CA INDEX NAME)

RN 365552-35-8 HCAPLUS

CN L-Alaninamide, cis-1-[(1-oxobutyl)amino]-4-phenylcyclohexanecarbonyl-D-phenylalanyl-L-arginyl-N-[[3-(aminocarbonyl)phenyl]methyl]-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 365552-38-1 HCAPLUS

CN L-Alaninamide, cis-1-[(1-oxobutyl)amino]-4-phenylcyclohexanecarbonyl-D-phenylalanyl-L-arginyl-N-[2-(aminocarbonyl)phenyl]-3-(2-naphthalenyl)-(9CI) (CA INDEX NAME)

RN 365552-40-5 HCAPLUS

CN L-Alaninamide, cis-1-[(1-oxobutyl)amino]-4-phenylcyclohexanecarbonyl-D-phenylalanyl-L-arginyl-N-[[4-(aminocarbonyl)phenyl]methyl]-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 365552-97-2 HCAPLUS

CN L-Tryptophanamide, 5-bromo-1,2,3,4-tetrahydro-2-[(1-oxobutyl)amino]-2-naphthalenecarbonyl-D-phenylalanyl-L-arginyl-N-[2-(aminocarbonyl)phenyl](9CI) (CA INDEX NAME)

RN 365552-99-4 HCAPLUS

CN L-Tryptophanamide, 5-bromo-2-[[(butylamino)carbonyl]amino]-1,2,3,4-tetrahydro-2-naphthalenecarbonyl-D-phenylalanyl-L-arginyl-N-[2-(aminocarbonyl)phenyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 365553-01-1 HCAPLUS

CN L-Tryptophanamide, 5-bromo-1,2,3,4-tetrahydro-2-[(phenylacetyl)amino]-2-naphthalenecarbonyl-D-phenylalanyl-L-arginyl-N-[2-(aminocarbonyl)phenyl]-(9CI) (CA INDEX NAME)

RN 365553-09-9 HCAPLUS

CN L-Alaninamide, 5-bromo-1,2,3,4-tetrahydro-2-[(1-oxobuty1)amino]-2naphthalenecarbonyl-D-phenylalanyl-L-arginyl-N-[2-(aminocarbonyl)phenyl]-3(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

REFERENCE COUNT: 15 THERE ARE 15 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L12 ANSWER 2 OF 27 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2005:1119781 HCAPLUS

DOCUMENT NUMBER: 144:22999

TITLE: Antibacterial activities of ferrocenoyl- and

cobaltocenium-peptide bioconjugates

AUTHOR(S): Chantson, Janine T.; Falzacappa, Maria Vittoria Verga;

Crovella, Sergio; Metzler-Nolte, Nils

CORPORATE SOURCE: Department of Chemistry, University of Pretoria,

Pretoria, 0002, S. Afr.

SOURCE: Journal of Organometallic Chemistry (2005),

690(21-22), 4564-4572

Lukton 10 606422

CODEN: JORCAI; ISSN: 0022-328X

PUBLISHER: Elsevier B.V.

DOCUMENT TYPE: Journal LANGUAGE: English

AB The peptide and metallocene-peptide bioconjugates R-Arg-Arg-Phe-NH2, R-Phe-Arg-Phe-NH2 where R = H, Fe(Cp)(C5H4-CO), Co(Cp)(C5H4-CO)+ and R'-Gly-Trp-Arg-Arg-Phe-NH2, R'-Trp-Arg-Arg-Phe-NH2, where R' = n-C5H11CO, Fe(Cp)(C5H4-CO), Co(Cp)(C5H4-CO)+, and Arg = L-arginine, Gly = L-glycine, Phe = L-phenylalanine, Trp = L-tryptophan were prepared by solid phase peptide synthesis (SPPS). The compds. were purified by RP-HPLC and characterized by ESI-MS and NMR spectroscopy. Antibacterial properties of the compds. were determined by min. inhibitory concentration (MIC) tests against

Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus.

IT 870487-01-7P

RL: PAC (Pharmacological activity); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation)

(solid phase synthesis and antibacterial activities of ferrocenoyl- and cobaltocenium-peptide bioconjugates)

RN 870487-01-7 HCAPLUS

CN L-Phenylalaninamide, N-(cobaltoceniumylcarbonyl)-L-tryptophyl-L-arginyl-L-arginyl-, salt with trifluoroacetic acid (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 870487-00-6

CMF C43 H54 Co N12 O5

CCI CCS

CM 2

CRN 14477-72-6 CMF C2 F3 O2

REFERENCE COUNT:

33 THERE ARE 33 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L12 ANSWER 3 OF 27 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

2005:1084905 HCAPLUS

DOCUMENT NUMBER:

143:415599

TITLE:

Discovery of 1-amino-4-phenylcyclohexane-1-carboxylic acid and its influence on agonist selectivity between

human melanocortin-4 and -1 receptors in linear

pentapeptides

AUTHOR(S):

Chu, Xin-Jie; Bartkovitz, David; Danho, Waleed; Swistok, Joseph; Cheung, Adrian Wai-Hing; Kurylko, Grazyna; Rowan, Karen; Yeon, Mitch; Franco, Lucia; Qi, Lida; Chen, Li; Yagaloff, Keith

CORPORATE SOURCE:

Roche Research Center, Hoffmann-La Roche Inc., Nutley,

NJ, 07110, USA

SOURCE:

Bioorganic & Medicinal Chemistry Letters (2005),

15(22), 4910-4914

CODEN: BMCLE8; ISSN: 0960-894X

PUBLISHER: Elsevier B.V.

DOCUMENT TYPE:

Journal

LANGUAGE: English

Linear pentapeptides (Penta-cis-Apc-DPhe-Arg-Trp-Gly-NH2) containing 1-amino-4-phenylcyclohexane-1-carboxylic acid (cis-Apc) and substituted Apc are potent hMC4R agonists and they are inactive or weakly active in hMC1R, hMC3R, and hMC5R agonist assays. This study, together with our earlier report on 5-BrAtc, demonstrated the importance of replacing His6 with phenyl-containing rigid templates in achieving good hMC4R agonist potency and selectivity against hMC1R in linear pentapeptides.

IT 868141-25-7P

RL: PAC (Pharmacological activity); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(discovery of 1-amino-4-phenylcyclohexane-1-carboxylic acid and its influence on agonist selectivity between human melanocortin-4 and -1 receptors in linear pentapeptides)

868141-25-7 HCAPLUS RN

Glycinamide, N-[(trans-4-phenylcyclohexyl)carbonyl]-D-phenylalanyl-L-CN arginyl-L-tryptophyl- (9CI) (CA INDEX NAME)

REFERENCE COUNT: 18 THERE ARE 18 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L12 ANSWER 4 OF 27 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2005:1028254 HCAPLUS

DOCUMENT NUMBER: 143:472808

TITLE: Structure-activity relationship of linear

tetrapeptides Tic-DPhe-Arg-Trp-NH2 at the human melanocortin-4 receptor and effects on feeding

behaviors in rat

AUTHOR(S): Ye, Zhixiong; MacNeil, Tanya; Weinberg, David H.;

Kalyani, Rubana N.; Tang, Rui; Strack, Alison M.;
Murphy, Beth A.; Mosley, Ralph T.; MacIntyre, D. Euan;

Van der Ploeg, Lex H. T.; Patchett, Arthur A.;

Wyvratt, Matthew J.; Nargund, Ravi P.

CORPORATE SOURCE: Department of Medicinal Chemistry, Merck Research

Laboratories, Rahway, NJ, 07065-0900, USA

SOURCE: Peptides (New York, NY, United States) (2005), 26(10),

2017-2025

CODEN: PPTDD5; ISSN: 0196-9781

PUBLISHER: Elsevier Inc.

DOCUMENT TYPE: Journal LANGUAGE: English

The melanocortin subtype-4 receptor (MC4R) has been implicated in the control of feeding behavior and body weight regulation. A series of tetrapeptides, based on Tic-DPhe-Arg-Trp-NH2-a mimic of the putative message sequence "His-Phe-Arg-Trp" and modified at the DPhe position, were prepared and pharmacol. characterized for potency and selectivity. Substitution of His with Tic gave peptides with significant increases in selectivity. The effects of the substitution pattern of DPhe were investigated and it has significant influences on potency and the level of the maximum cAMP accumulation. Intracerebroventricular administration of peptide 10 induced significant inhibition of cumulative overnight food intake and feeding duration in rats.

IT 869789-47-9 869789-48-0 869789-49-1

869789-50-4 869789-51-5 869789-52-6

869789-53-7 869789-54-8 869789-55-9

869789-56-0 869789-57-1 869789-58-2

869789-59-3 869789-60-6 869789-61-7

869789-62-8 869789-63-9 869789-64-0

RL: BSU (Biological study, unclassified); PAC (Pharmacological activity);

PRP (Properties); BIOL (Biological study)

(structure-activity relationship of linear tetrapeptides at human

melanocortin-4 receptor and effects on feeding behaviors in rat)

RN 869789-47-9 HCAPLUS

CN L-Tryptophanamide, (3S)-1,2,3,4-tetrahydro-3-isoquinolinecarbonyl-D-phenylalanyl-L-arginyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 869789-48-0 HCAPLUS

CN L-Tryptophanamide, (3S)-1,2,3,4-tetrahydro-3-isoquinolinecarbonyl-4-methyl-D-phenylalanyl-L-arginyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 869789-49-1 HCAPLUS

CN L-Tryptophanamide, (3S)-1,2,3,4-tetrahydro-3-isoquinolinecarbonyl-4-(trifluoromethyl)-D-phenylalanyl-L-arginyl- (9CI) (CA INDEX NAME)

RN 869789-50-4 HCAPLUS

CN L-Tryptophanamide, (3S)-1,2,3,4-tetrahydro-3-isoquinolinecarbonyl-4-cyano-D-phenylalanyl-L-arginyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 869789-51-5 HCAPLUS

CN L-Tryptophanamide, (3S)-1,2,3,4-tetrahydro-3-isoquinolinecarbonyl-4-amino-D-phenylalanyl-L-arginyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 869789-52-6 HCAPLUS

CN L-Tryptophanamide, (3S)-1,2,3,4-tetrahydro-3-isoquinolinecarbonyl-4-nitro-

D-phenylalanyl-L-arginyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 869789-53-7 HCAPLUS

CN L-Tryptophanamide, (3S)-1,2,3,4-tetrahydro-3-isoquinolinecarbonyl-D-tyrosyl-L-arginyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 869789-54-8 HCAPLUS

CN L-Tryptophanamide, (3S)-1,2,3,4-tetrahydro-3-isoquinolinecarbonyl-O-methyl-D-tyrosyl-L-arginyl- (9CI) (CA INDEX NAME)

RN 869789-55-9 HCAPLUS

CN L-Tryptophanamide, (3S)-1,2,3,4-tetrahydro-3-isoquinolinecarbonyl-4-fluoro-D-phenylalanyl-L-arginyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 869789-56-0 HCAPLUS

CN L-Tryptophanamide, (3S)-1,2,3,4-tetrahydro-3-isoquinolinecarbonyl-3-fluoro-D-phenylalanyl-L-arginyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 869789-57-1 HCAPLUS

CN L-Tryptophanamide, (3S)-1,2,3,4-tetrahydro-3-isoquinolinecarbonyl-2-fluoro-D-phenylalanyl-L-arginyl- (9CI) (CA INDEX NAME)

RN 869789-58-2 HCAPLUS

CN L-Tryptophanamide, (3S)-1,2,3,4-tetrahydro-3-isoquinolinecarbonyl-4-chloro-D-phenylalanyl-L-arginyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 869789-59-3 HCAPLUS

CN L-Tryptophanamide, (3S)-1,2,3,4-tetrahydro-3-isoquinolinecarbonyl-4-bromo-D-phenylalanyl-L-arginyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 869789-60-6 HCAPLUS

CN L-Tryptophanamide, (3S)-1,2,3,4-tetrahydro-3-isoquinolinecarbonyl-4-iodo-D-phenylalanyl-L-arginyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 869789-61-7 HCAPLUS

CN L-Tryptophanamide, (3S)-1,2,3,4-tetrahydro-3-isoquinolinecarbonyl-4-(1,1-dimethylethyl)-D-phenylalanyl-L-arginyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 869789-62-8 HCAPLUS

CN L-Tryptophanamide, (3S)-1,2,3,4-tetrahydro-3-isoquinolinecarbonyl-3-[1,1'-biphenyl]-4-yl-D-alanyl-L-arginyl- (9CI) (CA INDEX NAME)

RN 869789-63-9 HCAPLUS

CN L-Tryptophanamide, (3S)-1,2,3,4-tetrahydro-3-isoquinolinecarbonyl-3-(1-naphthalenyl)-D-alanyl-L-arginyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 869789-64-0 HCAPLUS

CN L-Tryptophanamide, (3S)-1,2,3,4-tetrahydro-3-isoquinolinecarbonyl-3-(2-naphthalenyl)-D-alanyl-L-arginyl- (9CI) (CA INDEX NAME)

REFERENCE COUNT: 49 THERE ARE 49 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L12 ANSWER 5 OF 27 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2005:1026482 HCAPLUS

DOCUMENT NUMBER: 143:301337

TITLE: Compounds providing detectable lanthanide ion

complexes upon cleavage and methods for determining

substrate specificity of hydrolytic enzymes

INVENTOR(S):
Barrios, Amy M.; Craik, Charles S.

PATENT ASSIGNEE(S): The Regents of the University of California, USA

SOURCE: U.S. Pat. Appl. Publ., 31 pp.

CODEN: USXXCO

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.		DATE
				-	
US 2005207981	A1	20050922	US 2004-989590		20041115
PRIORITY APPLN. INFO.:			US 2003-519938P	P	20031114

OTHER SOURCE(S): MARPAT 143:301337 The present invention relates to a novel compound comprising a detectable moiety covalently linked to a structural moiety. Upon cleavage of the covalent bond linking the two moieties, the detectable moiety becomes capable of complexing a lanthanide ion, and the lanthanide-detectable moiety complex provides a detectable signal. The structural moiety of the compound is a homo- or hetero-multimer of amino acids, nucleotides, or saccharides. The detectable moiety may be salicylic acid or 1,10-phenanthroline-2-carboxylic acid derivs. A library comprising at least two member compds. with different structural moieties is also provided in this application. Further described are methods for identifying the substrate specificity of a hydrolytic enzyme by using the library of the present invention to determine the preferred structural moiety for any particular enzyme having the potential capability of cleaving the covalent bond between the detectable moiety and the structural moiety of the member compds., as well as methods for using the novel compound of this invention for detecting in a sample the presence of a pre-determined hydrolytic enzyme, whose preferred substrate specificity is known and represented by the structural moiety of the compound Thus, libraries of tetrapeptides attached to 1,10-phenanthroline-2-carboxylic acid or to

5-fluoro-2-hydroxybenzoic acid were used to identify substrates for bovine α -chymotrypsin.

IT 864656-09-7 864656-11-1

RL: ARG (Analytical reagent use); ANST (Analytical study); USES (Uses) (compds. providing detectable lanthanide ion complexes upon cleavage and methods for determining substrate specificity of hydrolytic enzymes)

RN 864656-09-7 HCAPLUS

CN L-Alaninamide, N2-(5-fluoro-2-hydroxybenzoyl)-L-arginyl-L-arginyl-L-alanyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 864656-11-1 HCAPLUS

CN L-Alaninamide, N2-(5-fluoro-2-hydroxybenzoyl)-L-arginyl-L-arginyl-L-arginyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

Me S
$$NH_2$$
 H_2N
 H
 $CH_2)_3$
 NH
 NH
 NH
 NH_2
 NH
 NH_2

L12 ANSWER 6 OF 27 HCAPLUS COPYRIGHT 2006 ACS on STN

Lukton 10_606422

ACCESSION NUMBER: 2005:641844 HCAPLUS

DOCUMENT NUMBER: 143:146697

TITLE: Peptidic mediators of reverse cholesterol transport

for the treatment of hypercholesterolemia

INVENTOR(S): Sircar, Jagadish C.; Alisala, Kashinatham; Nikoulin,

Igor

PATENT ASSIGNEE(S): USA

SOURCE: U.S. Pat. Appl. Publ., 137 pp., Cont.-in-part of U.S.

Ser. No. 829,855.

CODEN: USXXCO

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 2

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.		DATE
				-	
US 2005159362	A1	20050721	US 2004-975157		20041027
PRIORITY APPLN. INFO.:			US 2003-464667P	P	20030422
			US 2004-829855	A2	20040422

OTHER SOURCE(S): MARPAT 143:146697

AB The invention provides compns. adapted to enhance reverse cholesterol transport in mammals. The compns. are suitable for oral delivery and useful in the treatment and/or prevention of disease conditions associated with hypercholesterolemia. Compds. of the invention include a variety of peptide/peptidomimetic compds.

IT 786691-63-2 786691-64-3 786691-70-1

786691-81-4 786691-82-5

RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(peptidomimetic mediators of reverse cholesterol transport for treatment of hypercholesterolemia)

RN 786691-63-2 HCAPLUS

CN D-Tyrosinamide, N-[3,5-bis(1,1-dimethylethyl)-4-hydroxybenzoyl]-D-phenylalanyl-D-arginyl-D-α-glutamyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 1-B

~он

RN 786691-64-3 HCAPLUS

CN D-Tyrosinamide, N-(3-pyridinylcarbonyl)-D-phenylalanyl-D-arginyl-D- α -glutamyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 786691-70-1 HCAPLUS

CN D-Tyrosinamide, N-(1-naphthalenylcarbonyl)-D-phenylalanyl-D-arginyl-D- α -qlutamyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 786691-81-4 HCAPLUS

CN D-Phenylalaninamide, N-[(5-methyl-3-isoxazolyl)carbonyl]-D-tyrosyl-D-arginyl-D- α -glutamyl- (9CI) (CA INDEX NAME)

RN 786691-82-5 HCAPLUS

CN D-Phenylalaninamide, N-(3-pyridinylcarbonyl)-D-tyrosyl-D-arginyl-D- α -glutamyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L12 ANSWER 7 OF 27 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2004:999732 HCAPLUS

DOCUMENT NUMBER: 142:129615

TITLE: Positional-Scanning Combinatorial Libraries of

Fluorescence Resonance Energy Transfer Peptides for Defining Substrate Specificity of the Angiotensin I-Converting Enzyme and Development of Selective

C-Domain Substrates

AUTHOR(S): Bersanetti, Patricia A.; Andrade, Maria Claudina C.;

Casarini, Dulce E.; Juliano, Maria A.; Nchinda, Aloysius T.; Sturrock, Edward D.; Juliano, Luiz;

Carmona, Adriana K.

CORPORATE SOURCE: Department of Biophysics and Department of Medicine,

Division of Nephrology, Escola Paulista de Medicina,

Universidade Federal de Sao Paulo, Sao Paulo,

04044-020, Brazil

SOURCE: Biochemistry (2004), 43(50), 15729-15736

CODEN: BICHAW; ISSN: 0006-2960

PUBLISHER: American Chemical Society

DOCUMENT TYPE: Journal LANGUAGE: English

Positional-scanning combinatorial libraries of fluorescence resonance energy transfer peptides were used for the analyses of the S3 to S1' subsites of the somatic angiotensin I-converting enzyme (ACE). Substrate specificity of ACE catalytic domains (C- and N-domains) was assessed in an effort to design selective substrates for the C-domain. Initially, we defined the S1 specificity by preparing a library with the general structure Abz-GXXZXK(Dnp)-OH [Abz = o-aminobenzoic acid, K(Dnp) = $N\epsilon-2,4$ -dinitrophenyllysine, and X is a random residue], where Z was successively occupied with one of the 19 natural amino acids with the exception of Cys. The peptides containing Arg and Leu in the P1 position had higher C-domain selectivity. In the sublibraries Abz-GXXRZK(Dnp)-OH, Abz-GXZRXK(Dnp)-OH, and Abz-GZXRXK(Dnp)-OH, Arg was fixed at P1 so we could define the C-domain selectivity of the S1', S2, and S3 subsites. the basis of the results from these libraries, we synthesized peptides Abz-GVIRFK(Dnp)-OH and Abz-GVILFK(Dnp)-OH which contain the most favorable residues for C-domain selectivity. Systematic reduction of the length of these two peptides resulted in Abz-LFK(Dnp)-OH, which demonstrated the highest selectivity for the recombinant ACE C-domain (kcat/Km = 36.7 μM -1 s-1) vs. the N-domain (kcat/Km = 0.51 μM -1 s-1). The substrate binding of Abz-LFK(Dnp)-OH with testis ACE using a combination of conformational anal. and mol. docking was examined, and the results shed new light on the binding characteristics of the enzyme.

IT 826995-48-6P

RL: BSU (Biological study, unclassified); CPN (Combinatorial preparation); PRP (Properties); BIOL (Biological study); CMBI (Combinatorial study); PREP (Preparation)

(positional-scanning combinatorial libraries of fluorescence resonance energy transfer peptides for defining substrate specificity of angiotensin I-converting enzyme and development of selective C-domain substrates)

RN 826995-48-6 HCAPLUS

CN L-Lysine, N-(2-aminobenzoyl)-L-isoleucyl-L-arginyl-L-phenylalanyl-N6-(2,6-dinitrophenyl)- (9CI) (CA INDEX NAME)

REFERENCE COUNT: 39 THERE ARE 39 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT L12 ANSWER 8 OF 27 HCAPLUS COPYRIGHT 2006 ACS on STN ACCESSION NUMBER: 2004:927246 HCAPLUS DOCUMENT NUMBER: 141:388716 TITLE: Mediators of reverse cholesterol transport for the treatment of hypercholesterolemia INVENTOR (S): Sircar, Jagadish C.; Alisala, Kashinatham; Nikoulin, Igor PATENT ASSIGNEE(S): Avanir Pharmaceuticals, USA SOURCE: PCT Int. Appl., 181 pp. CODEN: PIXXD2 DOCUMENT TYPE: Patent LANGUAGE: English FAMILY ACC. NUM. COUNT: PATENT INFORMATION: WO 2004094477 PATENT NO. APPLICATION NO. DATE -----. -----WO 2004094471 A2 WO 2004094471 A3 WO 2004-US12445 20041104 20040422 20050616 A3 20050616
W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW
RW: BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG TD, TG CA 2522758 20041104 CA 2004-2522758 AΑ 20040422 20060118 EP 2004-760126 EP 1615954 A2 20040422 R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, PL, SK, HR PRIORITY APPLN. INFO.: US 2003-464667P P 20030422 WO 2004-US12445 W 20040422 OTHER SOURCE(S): MARPAT 141:388716 The present invention provides compns. adapted to enhance reverse AB cholesterol transport in mammals. The compns. are suitable for oral delivery and useful in the treatment and/or prevention of hypercholesterolemia, atherosclerosis and associated cardiovascular diseases. TT 786691-63-2 786691-64-3 786691-70-1 786691-81-4 786691-82-5 RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses) (mediators of reverse cholesterol transport for treatment of hypercholesterolemia and atherosclerosis by affecting lipoprotein cholesterol in relation to drug screening) 786691-63-2 HCAPLUS RN D-Tyrosinamide, N-[3,5-bis(1,1-dimethylethyl)-4-hydroxybenzoyl]-D-CN

Absolute stereochemistry.

phenylalanyl-D-arginyl-D-α-glutamyl- (9CI) (CA INDEX NAME)

PAGE 1-A

PAGE 1-B

_он

RN 786691-64-3 HCAPLUS

CN D-Tyrosinamide, N-(3-pyridinylcarbonyl)-D-phenylalanyl-D-arginyl-D- α -glutamyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

$$HO_2C$$
 HO_2C
 HO_2

RN 786691-70-1 HCAPLUS

CN D-Tyrosinamide, N-(1-naphthalenylcarbonyl)-D-phenylalanyl-D-arginyl-D- α -glutamyl- (9CI) (CA INDEX NAME)

RN 786691-81-4 HCAPLUS
CN D-Phenylalaninamide, N-[(5-methyl-3-isoxazolyl)carbonyl]-D-tyrosyl-Darginyl-D-α-glutamyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 786691-82-5 HCAPLUS
CN D-Phenylalaninamide, N-(3-pyridinylcarbonyl)-D-tyrosyl-D-arginyl-D-αglutamyl- (9CI) (CA INDEX NAME)

L12 ANSWER 9 OF 27 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2004:781509 HCAPLUS

DOCUMENT NUMBER: 142:34412

TITLE: Differences in substrate specificities between

cysteine protease CPB isoforms of Leishmania mexicana

are mediated by a few amino acid changes

AUTHOR(S): Juliano, Maria A.; Brooks, Darren R.; Selzer, Paul M.;

Pandolfo, Hector L.; Judice, Wagner A. S.; Juliano, Luiz; Meldal, Morten; Sanderson, Sanya J.; Mottram,

Jeremy C.; Coombs, Graham H.

CORPORATE SOURCE: Department of Biophysics, Escola Paulista de Medicina,

Universidade Federal de Sao Paulo, Brazil

SOURCE: European Journal of Biochemistry (2004), 271(18),

3704-3714

CODEN: EJBCAI; ISSN: 0014-2956

PUBLISHER: Blackwell Publishing Ltd.

DOCUMENT TYPE: Journal LANGUAGE: English

The CPB genes of the protozoan parasite Leishmania mexicana encode stage-regulated cathepsin L-like cysteine proteases that are important virulence factors and are in a tandem array of 19 genes. In this study, we have compared the substrate preferences of two CPB isoforms, CPB2.8 and CPB3, and a H84Y mutant of the latter enzyme, to analyze the roles played by the few amino acid differences between the isoenzymes in determining substrate specificity. CPB3 differs from CPB2.8 at just three residues (N60D, D61N and D64S) in the mature domain. The H84Y mutation mimics an addnl. change present in another isoenzyme, CPB18. The active recombinant CPB isoenzymes and mutant were produced using Escherichia coli and the S1-S3 and S1'-S3' subsite specificities determined using a series of fluorogenic peptide derivs. in which substitutions were made on positions P3 to P3' by natural amino acids. Carboxydipeptidase activities of CPB3 and H84Y were also observed using the peptide Abz-FRAK(Dnp)-OH and some of its analogs. The kinetic parameters of hydrolysis by CPB3, H84Y and CPB2.8 of the synthetic substrates indicates that the specificity of S3 to S3' subsites is influenced greatly by the modifications at amino acids 60, 61, 64 and 84. Particularly noteworthy was the large preference for Pro in the P2' position for the hydrolytic activity of CPB3, which may be

relevant to a role in the activation mechanism of the L. mexicana CPBs. IT 500799-60-0 500799-62-2 500799-63-3

685144-20-1 685144-22-3

RL: BSU (Biological study, unclassified); PRP (Properties); BIOL (Biological study)

(carboxydipeptidase activity specificity; differences in substrate specificities between cysteine proteinase CPB isoforms of Leishmania mexicana are mediated by a few amino acid changes)

RN 500799-60-0 HCAPLUS

CN L-Tryptophan, N-(2-aminobenzoyl)-L-phenylalanyl-L-arginyl-N6-(2,4-dinitrophenyl)-L-lysyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 500799-62-2 HCAPLUS

CN L-Lysine, N-(2-aminobenzoyl)-L-phenylalanyl-L-arginyl-L-alanyl-N6-(2,4-dinitrophenyl)- (9CI) (CA INDEX NAME)

PAGE 1-B

 \sim NO₂

RN 500799-63-3 HCAPLUS

CN L-Lysine, N-(2-aminobenzoyl)-L-phenylalanyl-L-arginyl-L-phenylalanyl-N6-(2,4-dinitrophenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 1-B

 \sim NO₂

RN 685144-20-1 HCAPLUS

CN L-Lysine, N2-(2-aminobenzoyl)-L-arginyl-L-arginyl-L-phenylalanyl-N6-(2,4-dinitrophenyl)- (9CI) (CA INDEX NAME)

PAGE 1-A

PAGE 1-B

 \sim_{NO_2}

RN

685144-22-3 HCAPLUS L-Lysinamide, N-(2-aminobenzoyl)-L-phenylalanyl-L-arginyl-L-alanyl-N6-(2,4-CNdinitrophenyl) - (9CI) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 1-A (CH₂) 3 NO2 0 ö NH₂ Мe Ph

PAGE 1-B

 \sim NO₂

REFERENCE COUNT: 36 THERE ARE 36 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L12 ANSWER 10 OF 27 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2004:201913 HCAPLUS

DOCUMENT NUMBER: 140:370668

TITLE: Carboxydipeptidase activities of recombinant cysteine

peptidases: cruzain of Trypanosoma cruzi and CPB of

Leishmania mexicana

AUTHOR(S): Judice, Wagner A. S.; Puzer, Luciano; Cotrin, Simone

S.; Carmona, Adriana K.; Coombs, Graham H.; Juliano,

Luiz; Juliano, Maria A.

CORPORATE SOURCE: Department of Biophysics, Escola Paulista de Medicina,

Universidade Federal de Sao Paulo, Sao Paulo,

04044-20, Brazil

SOURCE: European Journal of Biochemistry (2004), 271(5),

1046-1053

CODEN: EJBCAI; ISSN: 0014-2956

PUBLISHER: Blackwell Publishing Ltd.

DOCUMENT TYPE: Journal LANGUAGE: English

The recombinant cysteine peptidases, cruzain from Trypanosoma cruzi and CPB2.8ACTE from Leishmania mexicana, are cathepsin L-like and characteristically endopeptidases. In this study, we characterized the carboxydi-peptidase activities of these enzymes and compared them with those of human recombinant cathepsin B and cathepsin L. The anal. used the internally quenched fluorescent peptide Abz-FRFK*-OH and some of its analogs, where Abz is ortho-aminobenzoic acid and K* is (2,4-dinitrophenyl)- ϵ -NH2-lysine. These peptides were demonstrated to be very sensitive substrates, due to the strong quenching effect of K* on the fluorescence of the Abz group. The carboxy-dipeptidase activity of cruzain was shown to be very similar to that of cathepsin B, while that of CPB2.8ACTE is closer to the carboxydipeptidase activity of cathepsin L. The S2 subsite architecture of cruzain and the nature of the amino acid at the P2 position of the substrates determine its carboxydipeptidase activity and gives further and direct support to the notion that the carboxydipeptidase activity of the papain family cysteine peptidases rely on the S2-P2 interaction. Cruzain and CPB2.8ACTE presented a broad pH-range for both the endo- and exo-peptidase activities, although the later is approx. one order of magnitude lower. This feature, that is not common in related mammalian cysteine peptidases, is consistent with the enzymes being exposed to different environmental conditions and having different locations during parasite development.

IT 500799-60-0 500799-62-2 500799-63-3 685144-20-1 685144-22-3

RL: BSU (Biological study, unclassified); BIOL (Biological study) (carboxydipeptidase activities of cruzain of Trypanosoma cruzi, CPB of Leishmania mexicana, cathepsin L and cathepsin B)

RN 500799-60-0 HCAPLUS

CN L-Tryptophan, N-(2-aminobenzoyl)-L-phenylalanyl-L-arginyl-N6-(2,4-dinitrophenyl)-L-lysyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 500799-62-2 HCAPLUS

CN L-Lysine, N-(2-aminobenzoyl)-L-phenylalanyl-L-arginyl-L-alanyl-N6-(2,4-dinitrophenyl)- (9CI) (CA INDEX NAME)

PAGE 1-B

 \sim_{NO_2}

RN 500799-63-3 HCAPLUS

CN L-Lysine, N-(2-aminobenzoyl)-L-phenylalanyl-L-arginyl-L-phenylalanyl-N6-(2,4-dinitrophenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 1-A

HN NH₂

$$(CH_2)_3$$
 $(CH_2)_3$
 $(CH_2)_4$
 $(CH_2)_4$

PAGE 1-B

 \sim NO₂

RN 685144-20-1 HCAPLUS

CN L-Lysine, N2-(2-aminobenzoyl)-L-arginyl-L-arginyl-L-phenylalanyl-N6-(2,4-dinitrophenyl)- (9CI) (CA INDEX NAME)

PAGE 1-B

 \sim_{NO_2}

RN 685144-22-3 HCAPLUS

CN L-Lysinamide, N-(2-aminobenzoyl)-L-phenylalanyl-L-arginyl-L-alanyl-N6-(2,4-dinitrophenyl)- (9CI) (CA INDEX NAME)

PAGE 1-B

NO₂

REFERENCE COUNT: 45 THERE ARE 45 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L12 ANSWER 11 OF 27 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

2003:435053 HCAPLUS

DOCUMENT NUMBER

139:12393 HCA

DOCUMENT NUMBER: TITLE:

Stabilization of radiopharmaceutical compositions

using hydrophilic 6-hydroxychromans

INVENTOR (S):

Cyr, John E.

PATENT ASSIGNEE(S):

Diatide, Inc., USA

SOURCE:

U.S. Pat. Appl. Publ., 17 pp., Cont.-in-part of Appl.

No. PCT/US01/50423.

CODEN: USXXCO

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.		TE A	PPLICATION NO.	DATE						
US 2003103899		030605 US	3 2002-131346	20020424						
US 6881396	B2 20	050419								
WO 2002060491	A2 20	020808 WC	2001-US50423	20011024						
WO 2002060491	A3 20	031106								
W: AE, AG, AL	AM, AT, A	U, AZ, BA, E	BB, BG, BR, BY,	BZ, CA, CH, CN,						
CR, CU, CZ	DE, DK, D	M, DZ, EC, E	EE, ES, FI, GB,	GD, GE, GH, GM,						
HR, HU, ID	IL, IN, I	S, JP, KE, F	KG, KP, KR, KZ,	LC, LK, LR, LS,						
LT, LU, LV	MA, MD, M	IG, MK, MN, N	W, MX, MZ, NO,	NZ, PH, PL, PT,						
RO, RU, SD	SE, SG, S	SI, SK, SL, T	J, TM, TR, TT,	TZ, UA, UG, US,						
UZ, VN, YU	ZA, ZW									
RW: GH, GM, KE	LS, MW, M	IZ, SD, SL, S	SZ, TZ, UG, ZW,	AM, AZ, BY, KG,						
KZ, MD, RU	TJ, TM, A	T, BE, CH, C	CY, DE, DK, ES,	FI, FR, GB, GR,						
IE, IT, LU	MC, NL, P	T, SE, TR, E	BF, BJ, CF, CG,	CI, CM, GA, GN,						
GO, GW, ML	MR, NE, S	N, TD, TG	•							
US 2005207973	A1 20	050922 US	3 2005-86966	20050322						
PRIORITY APPLN. INFO.:		บร	3 2000-695360	A2 20001024						
WO 2001-US50423 A2 200110										
		US 2000-694992 Al 20001024								
•			US 2000-695494 A1 20001024							
•			3 2002-131346							

OTHER SOURCE(S): MARPAT 139:12393

AB A composition comprising a peptide or non-peptide radiopharmaceutical precursor and a stabilizing amount of a hydrophilic 6-hydroxychroman derivative, e.g., 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox), is

described. A kit comprising a sealed vial containing a predetd. quantity of a radiopharmaceutical precursor and a stabilizing amount of a hydrophilic 6-hydroxychroman derivative is also described. For example, Trolox increased the radiolabeling yield and the stability of 99mTc depreotide prepared from the kit.

IT 161982-53-2 445311-66-0

RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses) (stabilization of radiopharmaceutical precursors by hydrophilic hydroxychromans)

RN 161982-53-2 HCAPLUS

CN L-Cysteinamide, N6-[N-(mercaptoacetyl)-L-phenylalanyl-L-phenylalanyl-D-tryptophyl-L-lysyl-L-threonyl-L-phenylalanyl-L-cysteinyl-L-lysyl-L-lysyl-L-lysyl-L-lysyl]-L-lysylglycyl-, cyclic (1→7)-thioether (9CI) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 1-A

H₂N_

PAGE 1-B

PAGE 1-C

PAGE 2-B

Ph

RN 445311-66-0 HCAPLUS

CN β-Alaninamide, N6-[N2,N6-bis[N-(mercaptoacetyl)-D-tyrosyl-L-ornithylglycyl-L-α-aspartyl-L-cysteinyl-L-lysyl-L-lysylglycyl]-L-lysyl]-L-lysylglycyl-L-cysteinyl-, cyclic (1→5),(1'→5')-bis(thioether) (9CI) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 1-A

PAGE 1-B

PAGE 1-C

PAGE 2-C

ОН

REFERENCE COUNT:

THERE ARE 26 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L12 ANSWER 12 OF 27 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

2003:435052 HCAPLUS

DOCUMENT NUMBER:

139:12392

TITLE:

Stabilization of radiopharmaceutical compositions

using hydrophilic thioethers and hydrophilic

6-hydroxychromans

INVENTOR(S):

Cyr, John E.; Pearson, Daniel A.

PATENT ASSIGNEE(S):

Diatide, Inc., USA

SOURCE:

U.S. Pat. Appl. Publ., 17 pp., Cont.-in-part of Appl.

No. PCT/US01/50423.

CODEN: USXXCO

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE			
US 2003103895	A1	20030605	US 2002-131546	20020424			
US 6989138	B2	20060124					
WO 2002060491	A2	20020808	WO 2001-US50423	20011024			
WO 2002060491	A 3	20031106					
W: AE, AG, AL,	AM, A'	r, AU, AZ,	BA, BB, BG, BR, BY, BZ,	CA, CH, CN,			

```
CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM,
              HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US,
               UZ, VN, YU, ZA, ZW
          RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG
PRIORITY APPLN. INFO.:
                                                   US 2000-695494
                                                                           A2 20001024
                                                                           A2 20011024
                                                   WO 2001-US50423
                                                                           A1 20001024
                                                   US 2000-694992
                                                                           A1 20001024
                                                   US 2000-695360
                             MARPAT 139:12392
OTHER SOURCE(S):
     A composition containing a peptide or non-peptide radiopharmaceutical
precursor and
      a stabilizing amount of a mixture of a hydrophilic thioether and a hydrophilic
      6-hydroxychroman derivative is described. The thioether is selected from,
      e.g., methionine, ethionine, 3-(methylthio)propionaldehyde,
      2-(ethylthio)ethylamine, buthionine, S-methyl-cysteine, and methioninol.
      The hydrophilic 6-hydroxychroman used is, e.g., 6-hydroxy-2,5,7,8-
      tetramethylchroman-2-carboxylic acid or 6-hydroxy-2,5,7,8-
      tetramethylchroman-2-glucosamine. A kit comprising a sealed vial containing a
      predetd. quantity of a radiopharmaceutical precursor and a stabilizing
      amount of a mixture of a hydrophilic thioether and a hydrophilic
      6-hydroxychroman derivative is also described. For example, the combination
      of L-methionine and Trolox increased the radiolabeling yield and the
      stability of 99mTc depreotide prepared from the kit.
      161982-53-2 445311-66-0
IT
      RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
          (stabilization of radiopharmaceutical precursors by hydrophilic
         thioethers and hydrophilic 6-hydroxychromans)
      161982-53-2 HCAPLUS
RN
      L-Cysteinamide, N6-{N-(mercaptoacetyl)-L-phenylalanyl-L-phenylalanyl-D-
CN
      tryptophyl-L-lysyl-L-threonyl-L-phenylalanyl-L-cysteinyl-L-lysyl-L-lysyl-L-
      lysyl-L-lysyl-L-lysyl]-L-lysylglycyl-, cyclic (1-7)-thioether (9CI)
```

Absolute stereochemistry.

(CA INDEX NAME)

PAGE 1-A

 H_2N_{\sim}

PAGE 1-B

PAGE 1-C

PAGE 2-B

RN 445311-66-0 HCAPLUS CN β -Alaninamide, N6-[N2,N6-bis[N-(mercaptoacetyl)-D-tyrosyl-L-ornithylglycyl-L- α -aspartyl-L-cysteinyl-L-lysyl-L-lysylglycyl]-L-lysylglycyl-L-cysteinyl-, cyclic (1 \rightarrow 5),(1' \rightarrow 5')-bis(thioether) (9CI) (CA INDEX NAME)

PAGE 1-A

H2N
$$(CH_2)_3$$
 S H S H

PAGE 1-B

PAGE 1-C

$$HO_2C$$
 HO_2C
 HO_3C
 HO_3

PAGE 2-C

ОН

29 REFERENCE COUNT:

THERE ARE 29 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L12 ANSWER 13 OF 27 HCAPLUS COPYRIGHT 2006 ACS on STN

2003:300424 HCAPLUS ACCESSION NUMBER:

DOCUMENT NUMBER: 138:316887

Stabilization of radiopharmaceutical compositions TITLE:

using hydrophilic thioethers

Cyr, John E.; Pearson, Daniel A. INVENTOR(S):

Diatide, Inc., USA PATENT ASSIGNEE(S):

U.S. Pat. Appl. Publ., 19 pp., Cont.-in-part of Appl. SOURCE:

No. PCT/US01/50423.

CODEN: USXXCO

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE		
US 2003072709	A1	20030417	US 2002-131543	20020424		
US 6902718	B2	20050607				
WO 2002060491	A2	20020808	WO 2001-US50423	20011024		
WO 2002060491	A3	20031106				
W: AE. AG. AL.	AM, AT	, AU, AZ, BA	, BB, BG, BR, BY, BZ,	CA, CH, CN,		

CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG US 2005180918 A1 20050818 US 2005-88596 20050324 US 2000-694992 PRIORITY APPLN. INFO.: A2 20001024 WO 2001-US50423 A2 20011024 US 2000-695360 A1 20001024 US 2000-695494 A1 20001024 US 2002-131543 A3 20020424

OTHER SOURCE(S):

MARPAT 138:316887

AB Radiopharmaceutical compns. which are stabilized by addition of a hydrophilic thioether (Markush structures are included).

IT 161982-53-2 445311-66-0

RL: BUU (Biological use, unclassified); CPS (Chemical process); PEP (Physical, engineering or chemical process); RCT (Reactant); BIOL (Biological study); PROC (Process); RACT (Reactant or reagent); USES (Uses)

(stabilization of radiopharmaceutical compns. using hydrophilic thioethers)

RN 161982-53-2 HCAPLUS

CN L-Cysteinamide, N6-[N-(mercaptoacetyl)-L-phenylalanyl-L-phenylalanyl-Dtryptophyl-L-lysyl-L-threonyl-L-phenylalanyl-L-cysteinyl-L-lysyl-L-lysyl-Llysyl-L-lysyl-L-lysyl]-L-lysylglycyl-, cyclic (1→7)-thioether (9CI) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 1-A

 H_2N_{\sim}

PAGE 1-B

PAGE 1-C

PAGE 2-B

Ph

RN 445311-66-0 HCAPLUS

CN β -Alaninamide, N6-[N2,N6-bis[N-(mercaptoacetyl)-D-tyrosyl-L-ornithylglycyl-L- α -aspartyl-L-cysteinyl-L-lysyl-L-lysylglycyl]-L-lysylglycyl-L-cysteinyl-, cyclic (1 \rightarrow 5),(1' \rightarrow 5')-bis(thioether) (9CI) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 1-A

PAGE 1-B

PAGE 1-C

$$HO_2C$$
 H
 N
 S
 H
 N
 R
 N

PAGE 2-C

OH

THERE ARE 19 CITED REFERENCES AVAILABLE FOR THIS 19 REFERENCE COUNT: RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L12 ANSWER 14 OF 27 HCAPLUS COPYRIGHT 2006 ACS on STN

2003:58220 HCAPLUS ACCESSION NUMBER:

138:117676 DOCUMENT NUMBER:

Linear and cyclic melanocortin receptor-specific TITLE:

peptides, and therapeutic use

Sharma, Shubh D.; Shadiack, Annette M.; Yang, Wei; INVENTOR (S):

Rajpurohit, Ramesh

Palatin Technologies, Inc., USA PATENT ASSIGNEE(S):

PCT Int. Appl., 55 pp. SOURCE: CODEN: PIXXD2

Patent DOCUMENT TYPE: English

LANGUAGE:

FAMILY ACC. NUM. COUNT: PATENT INFORMATION:

> DATE APPLICATION NO. DATE KIND PATENT NO. _____ _ _ _ _ _____ ______ 20020711 20030123 WO 2002-US22196 WO 2003006620 A2 20031127 WO 2003006620 **A3** AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT,

RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG CA 2453515 AA 20030123 CA 2002-2453515 20020711 EP 1441750 A2 20040804 EP 2002-756458 20020711 AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, SK R: JP 2004534851 T2 20041118 JP 2003-512379 20020711 **A1** 20040715 US 2003-638071 20030808 US 2004138136 A1 20050217 US 2004-756212 20040112 US 2005038230 US 2006014676 A1 20060119 US 2005-174845 20050705 20060119 US 2005-174851 20050705 US 2006014194 **A1** US 2001-304836P 20010711 PRIORITY APPLN. INFO.: US 2000-606501 A2 20000628 US 2002-40547 A2 20020104 WO 2002-US22196 W 20020711 US 2003-638071 A2 20030808 US 2004-585971P Ρ 20040706

OTHER SOURCE(S): MARPAT 138:117676

AB Linear and cyclic peptides are provided which are specific to melanocortin receptors and which exhibit agonist, antagonist, or mixed agonist-antagonist activity. The peptides of the invention may be used to treat e.g. erectile dysfunction and eating disorders.

IT 488789-57-7 488789-59-9 488789-86-2 488789-87-3

RL: PAC (Pharmacological activity); PRP (Properties); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(linear and cyclic melanocortin receptor-specific peptides, and therapeutic use)

RN 488789-57-7 HCAPLUS

CN L-Tryptophanamide, 1-aminocyclohexanecarbonyl-4-chloro-D-phenylalanyl-L-arginyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 488789-59-9 HCAPLUS

CN L-Tryptophanamide, 1-[(2-naphthalenylacetyl)amino]cyclohexanecarbonyl-4-chloro-D-phenylalanyl-L-arginyl- (9CI) (CA INDEX NAME)

PAGE 1-A

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

PAGE 1-B

488789-86-2 HCAPLUS RN

L-Tryptophanamide, 1-(2-naphthalenylcarbonyl)-2-piperidinecarbonyl-4-chloro-D-phenylalanyl-L-arginyl- (9CI) (CA INDEX NAME) CN

Absolute stereochemistry.

PAGE 1-B

RN 488789-87-3 HCAPLUS

CN L-Tryptophanamide, 1-(2-naphthalenylacetyl)-2-piperidinecarbonyl-4-chloro-D-phenylalanyl-L-arginyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L12 ANSWER 15 OF 27 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2002:847409 HCAPLUS

DOCUMENT NUMBER: 138:217330

AUTHOR (S):

at

TITLE: Cathepsin B carboxydipeptidase specificity analysis

using internally quenched fluorescent peptides Cezari, Maria Helena S.; Puzer, Luciano; Juliano,

Maria Aparecida; Carmona, Adriana K.; Juliano, Luiz CORPORATE SOURCE: Escola Paulista de Medicina, Department of Biophysics,

Universidade Federal de Sao Paulo, Sao Paulo,

04044-020, Brazil

SOURCE: Biochemical Journal (2002), 368(1), 365-369

CODEN: BIJOAK; ISSN: 0264-6021

PUBLISHER: Portland Press Ltd.

DOCUMENT TYPE: Journal LANGUAGE: English

We have examined in detail the specificity of the subsites S1, S2, S'1 and S'2 for the carboxydipeptidase activity of cathepsin B by synthesizing and assaying four series of internally quenched fluorescent peptides based on the sequence Dnp-GFRFW-OH, where Dnp (2,4-dinitrophenyl) is the quenching group of the fluorescence of the tryptophan residue. Each position, except the glycine, was substituted with 15 different naturally occurring amino acids. Based on the results we obtained, we also synthesized efficient and sensitive substrates that contained o-aminobenzoic acid and 3-Dnp-(2,3-diaminopropionic acid), or ε-amino-Dnp-Lys, as the fluorescence donor-receptor pair. The higher kinetic parameter values for the carboxydipeptidase compared with the endopeptidase activity of cathepsin B allowed an accurate anal. of its specificity. The subsite S1 accepted preferentially basic amino acids for hydrolysis; however, substrates with phenylalanine and aliphatic side-chain-containing amino acids

P1 had lower Km values. Despite the presence of Glu245 at S2, this subsite presented clear preference for aromatic amino acid residues, and the substrate with a lysine residue at P2 was hydrolyzed better than that containing an arginine residue. S'1 is essentially a hydrophobic subsite, and

S'2 has particular preference for phenylalanine or tryptophan residues.

IT 500799-58-6 500799-60-0 500799-62-2
500799-63-3

RL: BSU (Biological study, unclassified); PRP (Properties); BIOL (Biological study)

(Glu245, His110 and His111 residues of occluding loop of cathepsin B play role in carboxydipeptidase activity)

RN 500799-58-6 HCAPLUS

CN L-Tryptophan, N-(2-aminobenzoyl)-L-phenylalanyl-L-arginyl-3-[(2,4-dinitrophenyl)amino]-L-alanyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 500799-60-0 HCAPLUS

CN L-Tryptophan, N-(2-aminobenzoyl)-L-phenylalanyl-L-arginyl-N6-(2,4-dinitrophenyl)-L-lysyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 500799-62-2 HCAPLUS

CN L-Lysine, N-(2-aminobenzoyl)-L-phenylalanyl-L-arginyl-L-alanyl-N6-(2,4-dinitrophenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 1-B

_ио₂

RN 500799-63-3 HCAPLUS

CN L-Lysine, N-(2-aminobenzoyl)-L-phenylalanyl-L-arginyl-L-phenylalanyl-N6-(2,4-dinitrophenyl)- (9CI) (CA INDEX NAME)

PAGE 1-B

 \sim NO₂

REFERENCE COUNT: 33 THERE ARE 33 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L12 ANSWER 16 OF 27 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2002:637480 HCAPLUS

DOCUMENT NUMBER: 137:190724

TITLE: Melanocortin metallopeptides for treatment of sexual

dysfunction

INVENTOR(S): Sharma, Shubh D.; Shi, Yi-qun; Yang, Wei; Cai,

Hui-zhi; Shadiack, Annette

PATENT ASSIGNEE(S): Palatin Technologies, Inc., USA

SOURCE: PCT Int. Appl., 58 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 6

PATENT INFORMATION:

PA.	PATENT NO. KINI				DATE			APPLICATION NO.					DATE				
	2002		91		A2	;			1	WO 2	002-T	JS443	31		20	00202	213
		AE, CO, GM, LS,	AG, CR, HR, LT,	AL, CU, HU, LU,	AM, CZ, ID, LV,	AT, DE, IL, MA,	AU, DK, IN, MD,	AZ, DM, IS, MG,	DZ, JP, MK,	EC, KE, MN,	EE, KG, MW,	ES, KP, MX,	FI, KR, MZ,	BZ, GB, KZ, NO, TZ,	GD, LC, NZ,	GE, LK, PL,	GH, LR, PT,
	2004	GH, CY, BF, 0388	DE, BJ, 97	KE, DK, CF,	LS, ES, CG, A1	MW, FI, CI,	FR, CM, 2004	GB, GA, 0226	GR, GN,	IE, GQ, US 2	IT, GW, 003-	LU, ML, 6407!	MC, MR, 55		PT, SN,	SE, TD, 00308	TR, TG 313
US PRIORIT	2005 Y APP									US 2 US 1 US 1 US 2 WO 2 US 2	001-2 995-4 996-4 000-4 002-1	2685 4766 6606 4838 US44 6407	91P 52 97 37 31 55	I 2 2 2 2	A2 19 A3 19 A2 20 A 20 A2 20	00102 99506 99606 00002 00202	213 507 505 117 213

OTHER SOURCE(S): MARPAT 137:190724

AB Metallopeptides are provided for use in treatment of sexual dysfunction in mammals. The metallopeptides are agonists for at least one of

melanocortin-3 or melanocortin-4 receptors. The metallopeptides are conformationally fixed on complexation of a metal ion-binding portion thereof with a metal ion. Also provided are metallopeptides that are antagonists for at least one of melanocortin-3 or melanocortin-4 receptors.

IT 448903-52-4 448903-55-7 448903-84-2 448904-00-5 449729-82-2 449729-83-3

RL: PAC (Pharmacological activity); PRP (Properties); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(melanocortin metallopeptides for treatment of sexual dysfunction)

RN 448903-52-4 HCAPLUS

CN L-Cysteinamide, (3S)-1,2,3,4-tetrahydro-3-isoquinolinecarbonyl-4-chloro-D-phenylalanyl-L-arginyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 448903-55-7 HCAPLUS

CN L-Cysteinamide, (3S)-1,2,3,4-tetrahydro-3-isoquinolinecarbonyl-4-chloro-D-phenylalanyl-L-lysyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 448903-84-2 HCAPLUS

CN L-Tryptophanamide, N-[4-(aminomethyl)benzoyl]-D-phenylalanyl-L-arginyl-L-

cysteinyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 1-A

PAGE 1-B

NH₂

448904-00-5 HCAPLUS RN

L-Cysteinamide, N-[4-(aminomethyl)benzoyl]-D-phenylalanyl-L-arginyl-L-tryptophyl- (9CI) (CA INDEX NAME) CN

Absolute stereochemistry.

PAGE 1-A

PAGE 1-B

 $-NH_2$

RN 449729-82-2 HCAPLUS

CN L-Tryptophanamide, N-[[4-(aminomethyl)cyclohexyl]carbonyl]-D-phenylalanyl-L-arginyl-L-cysteinyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 1-B

RN 449729-83-3 HCAPLUS

CN L-Cysteinamide, N-[[4-(aminomethyl)cyclohexyl]carbonyl]-D-phenylalanyl-L-arginyl-L-tryptophyl- (9CI) (CA INDEX NAME)

PAGE 1-A

PAGE 1-B

-NH₂

L12 ANSWER 17 OF 27 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2002:594711 HCAPLUS

DOCUMENT NUMBER: 137:159312

TITLE: Stabilization of radiopharmaceutical compositions

using hydrophilic thioethers and hydrophilic 6-hydroxy

chromans

INVENTOR(S): Cyr, John E.; Pearson, Daniel A.

PATENT ASSIGNEE(S): Diatide, Inc., USA SOURCE: PCT Int. Appl., 64 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 4

PATENT INFORMATION:

PATENT NO.				KIND DATE			1	APPLICATION NO.					DATE			
WO 2002060491				A2	2 20020808 WO 2001-US50423					20011024						
WO 2002	06049	91		A3		2003	1106									
W:	ΑE,															
						DM,										
	HR,	HU,	ID,	IL,	IN,	IS,	JP,	KE,	KG,	ΚP,	KR,	KZ,	LC,	LK,	LR,	LS,
	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	MZ,	NO,	NZ,	PH,	PL,	PT,
	RO,	RU,	SD,	SE,	SG,	SI,	SK,	SL,	ΤJ,	TM,	TR,	TT,	TZ,	UA,	UG,	US,

Lukton 10 606422

```
UZ, VN, YU, ZA, ZW
          RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG
                                                     CA 2001-2426587
      CA 2426587
                               AA
                                      20020808
                                                                                 20011024
      EP 1381397
                               A2
                                      20040121
                                                     EP 2001-998107
                                                                                 20011024
               AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
               IE, SI, LT, LV, FI, RO, MK, CY, AL, TR
      JP 2005500982
                               T2
                                      20050113
                                                     JP 2002-560682
                                                                                 20011024
     US 2003072709
                                      20030417
                               A1
                                                    US 2002-131543
                                                                                 20020424
     US 6902718
                               B2
                                      20050607
                              A1
                                      20030605
                                                    US 2002-131346
                                                                                 20020424
      US 2003103899
                              B2
                                      20050419
      US 6881396
     US 2003103895
                              A1
                                      20030605
                                                    US 2002-131546
                                                                                 20020424
     US 6989138
                              B2
                                      20060124
                              A1
                                      20040325
                                                    US 2003-415024
      US 2004058984
                                                                                20030808
                              A1
                                      20050922
                                                     US 2005-86966
                                                                                20050322
      US 2005207973
                                      20050818
                                                     US 2005-88596
                                                                                20050324
      US 2005180918
                              A1
PRIORITY APPLN. INFO.:
                                                     US 2000-694992
                                                                             A1 20001024
                                                     US 2000-695360 1
                                                                             A1 20001024
                                                     US 2000-695494
                                                                             A1 20001024
                                                     WO 2001-US50423
                                                                             W 20011024
                                                     US 2002-131346
                                                                             A3 20020424
                                                     US 2002-131543
                                                                             A3 20020424
```

- AB Radiopharmaceutical compns. which are stabilized by addition of a hydrophilic thioether, a hydrophilic 6-hydroxy-chroman derivative, or a mixture of a hydrophilic thioether and a hydrophilic 6-hydroxy-chroman derivative are described. Several examples are provided demonstrating the stabilizing effects of L-methionine, Trolox, or a combination of the two on lyophilized kit prepns. containing 99mTc-labeled depreotide, benzodiazepinedione derivative, a glycoprotein IIb/IIa receptor-binding peptide, a peptide chelator, a bisamine bisthiol chelator, or other peptides.
- IT 161982-53-2D, radiolabeled 445311-66-0D, radiolabeled RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses) (stabilization of radiopharmaceutical compns. using hydrophilic thioethers and hydrophilic hydroxychromans)
- RN 161982-53-2 HCAPLUS
- CN L-Cysteinamide, N6-[N-(mercaptoacetyl)-L-phenylalanyl-L-phenylalanyl-D-tryptophyl-L-lysyl-L-threonyl-L-phenylalanyl-L-cysteinyl-L-lysyl-L-lysyl-L-lysyl-L-lysyl-L-lysylglycyl-, cyclic (1-7)-thioether (9CI) (CA INDEX NAME)

PAGE 1-A

 $\text{H}_2\text{N}_{\sim}$

PAGE 1-B

PAGE 1-C

$$S$$
 (CH₂)₄ NH_2

PAGE 2-B

Ph

RN 445311-66-0 HCAPLUS

CN β-Alaninamide, N6-[N2,N6-bis[N-(mercaptoacetyl)-D-tyrosyl-L-ornithylglycyl-L-α-aspartyl-L-cysteinyl-L-lysyl-L-lysylglycyl]-L-lysylglycyl-L-cysteinyl-, cyclic (1→5),(1'→5')-bis(thioether) (9CI) (CA INDEX NAME)

PAGE 1-A

PAGE 1-B

PAGE 1-C

$$HO_2C$$
 HO_3C
 HO_3

PAGE 2-C

OH

L12 ANSWER 18 OF 27 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

2002:481284 HCAPLUS

DOCUMENT NUMBER:

137:194993

TITLE:

Intercalation of an Acridine-Peptide Drug in an AA/TT

Base Step in the Crystal Structure of

[d(CGCGAATTCGCG)]2 with Six Duplexes and Seven Mg2+

Ions in the Asymmetric Unit

AUTHOR (S):

SOURCE:

Malinina, Lucy; Soler-Lopez, Montserrat; Aymami, Joan;

Subirana, Juan A.

CORPORATE SOURCE:

Departament d'Enginyeria Quimica, ETSEIB, Universitat

Politecnica de Catalunya, Barcelona, E-08028, Spain

Biochemistry (2002), 41(30), 9341-9348

CODEN: BICHAW; ISSN: 0006-2960

PUBLISHER:

American Chemical Society

DOCUMENT TYPE:

Journal

LANGUAGE:

English

AB We present the crystal structure of an acridine drug derivatized at carbon 9, [N α -(9-acridinoyl)-tetraarginine], intercalated within the dodecamer [d(CGCGAATTCGCG)]2. The presence of a lateral chain at the central carbon 9 atom differentiates this compound from most acridine drugs hitherto studied, which are usually derivatized at carbon 4. The DNA:drug interaction we observe differs from that observed in previous studies, which primarily involves shorter, mainly hexameric sequences, in two important regards: the acridine intercalates within an AA/TT base step, rather than

Lukton 10_606422

within a CG/CG base step; and the binding site is located at the center of the sequence, rather than at one end of the duplex. In addition, we observe a novel crystal packing arrangement, with six dodecamer duplexes and seven hydrated magnesium ions in the asym. unit of a large $(66.5 + 68.4 + 77.4 \ \text{\AA}3)$ unit cell in space group P212121. The duplexes are organized in layers parallel to the ab plane, with consecutive layers crossing each other at right angles.

IT 452081-70-8D, intercalating complexes with DNA

RL: PRP (Properties)

(intercalation of acridine-peptide drug in AA/TT base step in crystal structure of [d(CGCGAATTCGCG)]2 with six duplexes and seven Mg2+ ions in asym. unit)

RN 452081-70-8 HCAPLUS

CN L-Arginine, N2-(9-acridinylcarbonyl)-L-arginyl-L-arginyl-L-arginyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

$$H_{2}N$$
 $H_{2}N$
 $H_{2}N$
 $H_{3}N$
 $H_{4}N$
 $H_{5}N$
 H

REFERENCE COUNT: 43 THERE ARE 43 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L12 ANSWER 19 OF 27 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2002:394477 HCAPLUS

DOCUMENT NUMBER: 137:103998

TITLE: Structure-Activity Relationships of the Melanocortin

Tetrapeptide Ac-His-DPhe-Arg-Trp-NH2 at the Mouse Melanocortin Receptors. 1. Modifications at the His

Position

AUTHOR(S): Holder, Jerry Ryan; Bauzo, Rayna M.; Xiang, Zhimin;

Haskell-Luevano, Carrie

CORPORATE SOURCE: Department of Medicinal Chemistry, University of

Florida, Gainesville, FL, 32610, USA

SOURCE: Journal of Medicinal Chemistry (2002), 45(13),

2801-2810

CODEN: JMCMAR; ISSN: 0022-2623

PUBLISHER: American Chemical Society

DOCUMENT TYPE: Journal LANGUAGE: English

AB The melanocortin pathway is an important participant in obesity and energy

Lukton 10 606422

homeostasis. The centrally located melanocortin-3 and melanocortin-4 receptors (MC3R, MC4R) are involved in the metabolic and food intake aspects of energy homeostasis and are stimulated by melanocortin agonists such as α -melanocyte stimulation hormone (α -MSH). The melanocortin agonists contain the putative message sequence "His-Phe-Arg-Trp", and it has been well documented that inversion of chirality of the Phe to DPhe results in a dramatic increase in melanocortin receptor potency. Herein, the authors report a tetrapeptide library based on the template Ac-His-DPhe-Arg-Trp-NH2, consisting of 17 members that have been modified at the His6 position (α -MSH numbering) and pharmacol. characterized for agonist activity at the mouse melanocortin receptors MC1R, MC3R, MC4R, and MC5R. These studies provide further exptl. evidence that the His6 position can determine MC4R vs. MC3R agonist selectivity and that chemical nonreactive side chains may be substituted for the imidazole ring (generally needs to be side chain protected in synthetic schemes) in the design of MC4R-selective, small-mol., non-peptide agonists. Specifically, the tetrapeptide containing the amino-2-naphthylcarboxylic acid (Anc) amino acid at the His position resulted in a potent agonist at the mMC4R (EC50 = 21 nM), was a weak mMC3R micromolar antagonist (pA2 = 5.6, Ki = 2.5 μ M), and possessed >4700-fold agonist selectivity for the MC4R vs. the MC3R. Substitution of the His6 amino acid in the tetrapeptide template by the Phe, Anc, 3-(2-thienyl)alanine (2Thi), and 3-(4-pyridinyl)alanine (4-Pal) resulted in equipotency or only up to a 7-fold decrease in potency, compared to the His6-containing tetrapeptide at the mMC4R, demonstrating that these amino acid side chains may be substituted for the imidazole in the design of MC4R-selective non-peptide mols.

IT 443789-84-2P 443789-86-4P 443789-97-7P

RL: BSU (Biological study, unclassified); PRP (Properties); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation)

(structure-activity relationships of melanocortin tetrapeptide analogs at mouse melanocortin receptors)

RN 443789-84-2 HCAPLUS

CN L-Tryptophanamide, (3S)-2-acetyl-1,2,3,4-tetrahydro-3-isoquinolinecarbonyl-D-phenylalanyl-L-arginyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 443789-86-4 HCAPLUS

CN L-Tryptophanamide, (3R)-2-acetyl-1,2,3,4-tetrahydro-3-isoquinolinecarbonyl-D-phenylalanyl-L-arginyl- (9CI) (CA INDEX NAME)

RN 443789-97-7 HCAPLUS

CN L-Tryptophanamide, (2S)-2-(acetylamino)-1,2,3,4-tetrahydro-2-naphthalenecarbonyl-D-phenylalanyl-L-arginyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

REFERENCE COUNT: 49 THERE ARE 49 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L12 ANSWER 20 OF 27 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

2001:747815 HCAPLUS

DOCUMENT NUMBER:

135:304143

TITLE:

Preparation of selective linear peptides with melanocortin-4 receptor (MC4-R) agonist activity Chen, Li; Cheung, Adrian Wai-hing; Chu, Xin-jie;

INVENTOR(S):

Danho, Waleed; Swistok, Joseph; Yagaloff, Keith Alan

PATENT ASSIGNEE(S): F. Hoffmann-La Roche Ag, Switz.

SOURCE:

PCT Int. Appl., 265 pp. CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

: 1

PATENT INFORMATION:

PATENT NO.	KIND DATE	APPLICATION NO.	DATE			
WO 2001074844	A2 2001103	20011011 WO 2001-EP3529				
WO 2001074844	A3 2002063	.3				
W: AE, AL, AM,	AT, AU, AZ, BA	A, BB, BG, BR, BY, CA,	CH, CN, CO, CU,			
CZ, DE, DK,	EE, ES, FI, GE	B, GD, GE, GH, GM, HR,	HU, ID, IL, IN,			
IS, JP, KE,	KG, KP, KR, K	C, LC, LK, LR, LS, LT,	LU, LV, MA, MD,			
MG, MK, MN,	MW, MX, NO, N	Z, PL, PT, RO, RU, SD,	SE, SG, SI, SK,			
SL, TJ, TM,	TR, TT, UA, UG	B, UZ, VN, YU, ZA, ZW,	AM, AZ, BY, KG,			

Lukton 10 606422

KZ, MD, RU, TJ, TM RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG US 2001-811964 20010319 US 2001056179 20011227 Α1 US 6600015 20030729 B2 CA 2402416 AA 20011011 CA 2001-2402416 20010327 EP 1272516 A2 20030108 EP 2001-923703 20010327 R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR JP 2001-572533 JP 2003529607 T2 20031007 20010327 US 2003229200 A1 20031211 US 2003-435466 20030509 US 2005239711 A1 20051027 US 2005-159007 20050622 P 20000404 PRIORITY APPLN. INFO.: US 2000-194450P US 2001-811964 A1 20010319 WO 2001-EP3529 W 20010327 US 2003-435466 B1 20030509 OTHER SOURCE(S): MARPAT 135:304143 GI

R1 (NH) mCONH CO-D-Phe-L-Arg-N CO (NR8-Y-CO) n-NH2

Peptides I [m, n = 0, 1; R1 = (un)substituted alkyl, phenylalkyl, carboxyalkyl or phenyl; X = phenylmethylene or alkoxyphenylmethylene, cyclohexyl-, cycloheptyl- or alkylmethylene, or (un)substituted phenylimino; R6, R8 = H, Me; R7 = 3-indolyl, 1- or 2-naphthyl; Y = CH2, CH2CH2, CHMe, CH2C6H4-m or p- or o-C6H4 (with provisos)] or an analog in which X-CH2 is (un)substituted benzo were prepared as MC4-R agonists. Thus, pentapeptide II [pentaApc-D-Phe-Arg-Trp-Gly-NH2] was prepared by the solid-phase method using a Fmoc-Linker-BHA resin.

Ι

IT 365552-10-9P 365552-13-2P 365552-15-4P 365552-16-5P 365552-17-6P 365552-20-1P 365552-23-4P 365552-25-6P 365552-35-8P 365552-38-1P 365552-40-5P 365552-97-2P 365552-99-4P 365553-01-1P 365553-09-9P

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(preparation of selective linear peptides with melanocortin-4 receptor (MC4-R) agonist activity)

RN 365552-10-9 HCAPLUS

CN L-Tryptophanamide, cis-1-[(1-oxobutyl)amino]-4-phenylcyclohexanecarbonyl-D-phenylalanyl-L-arginyl-N-[2-(aminocarbonyl)phenyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 365552-13-2 HCAPLUS

CN L-Tryptophanamide, cis-1-[[(butylamino)carbonyl]amino]-4-phenylcyclohexanecarbonyl-D-phenylalanyl-L-arginyl-N-[2-(aminocarbonyl)phenyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 365552-15-4 HCAPLUS

CN L-Tryptophanamide, cis-4-phenyl-1-[(phenylacetyl)amino]cyclohexanecarbonyl-D-phenylalanyl-L-arginyl-N-[2-(aminocarbonyl)phenyl]- (9CI) (CA INDEX NAME)

RN 365552-16-5 HCAPLUS

CN L-Tryptophanamide, cis-1-[(1-oxobutyl)amino]-4-phenylcyclohexanecarbonyl-D-phenylalanyl-L-arginyl-N-[[3-(aminocarbonyl)phenyl]methyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 365552-17-6 HCAPLUS

CN L-Tryptophanamide, cis-1-[[(butylamino)carbonyl]amino]-4-phenylcyclohexanecarbonyl-D-phenylalanyl-L-arginyl-N-[[3-(aminocarbonyl)phenyl]methyl]- (9CI) (CA INDEX NAME)

RN 365552-20-1 HCAPLUS

CN L-Tryptophanamide, cis-4-phenyl-1-[(phenylacetyl)amino]cyclohexanecarbonyl-D-phenylalanyl-L-arginyl-N-[[3-(aminocarbonyl)phenyl]methyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 365552-23-4 HCAPLUS

CN L-Tryptophanamide, cis-1-[(1-oxobutyl)amino]-4-phenylcyclohexanecarbonyl-D-phenylalanyl-L-arginyl-N-[[4-(aminocarbonyl)phenyl]methyl]- (9CI) (CA INDEX NAME)

RN 365552-25-6 HCAPLUS

CN L-Tryptophanamide, cis-4-phenyl-1-[(phenylacetyl)amino]cyclohexanecarbonyl-D-phenylalanyl-L-arginyl-N-[[4-(aminocarbonyl)phenyl]methyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 365552-35-8 HCAPLUS

CN L-Alaninamide, cis-1-[(1-oxobutyl)amino]-4-phenylcyclohexanecarbonyl-D-phenylalanyl-L-arginyl-N-[[3-(aminocarbonyl)phenyl]methyl]-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

RN 365552-38-1 HCAPLUS

CN L-Alaninamide, cis-1-[(1-oxobutyl)amino]-4-phenylcyclohexanecarbonyl-D-phenylalanyl-L-arginyl-N-[2-(aminocarbonyl)phenyl]-3-(2-naphthalenyl)-(9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 365552-40-5 HCAPLUS

CN L-Alaninamide, cis-1-[(1-oxobutyl)amino]-4-phenylcyclohexanecarbonyl-D-phenylalanyl-L-arginyl-N-[[4-(aminocarbonyl)phenyl]methyl]-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

RN 365552-97-2 HCAPLUS

CN L-Tryptophanamide, 5-bromo-1,2,3,4-tetrahydro-2-[(1-oxobutyl)amino]-2-naphthalenecarbonyl-D-phenylalanyl-L-arginyl-N-[2-(aminocarbonyl)phenyl]-(9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 365552-99-4 HCAPLUS

CN L-Tryptophanamide, 5-bromo-2-[[(butylamino)carbonyl]amino]-1,2,3,4-tetrahydro-2-naphthalenecarbonyl-D-phenylalanyl-L-arginyl-N-[2-(aminocarbonyl)phenyl]- (9CI) (CA INDEX NAME)

RN 365553-01-1 HCAPLUS

CN L-Tryptophanamide, 5-bromo-1,2,3,4-tetrahydro-2-[(phenylacetyl)amino]-2-naphthalenecarbonyl-D-phenylalanyl-L-arginyl-N-[2-(aminocarbonyl)phenyl]-(9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 365553-09-9 HCAPLUS

CN L-Alaninamide, 5-bromo-1,2,3,4-tetrahydro-2-[(1-oxobutyl)amino]-2-naphthalenecarbonyl-D-phenylalanyl-L-arginyl-N-[2-(aminocarbonyl)phenyl]-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

L12 ANSWER 21 OF 27 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

2001:677356 HCAPLUS

DOCUMENT NUMBER:

135:195790

TITLE:

Preparation of peptides which inhibit human tissue

kallikrein and the liberation of kinins

INVENTOR(S):

De Nucci, Gilberto; Juliano Neto, Luiz; Giuseppe, Caliendo; Vincenzo, Santagada

PATENT ASSIGNEE(S):

Laboratorios Biosintetica Ltda, Brazil; Universidade

Federal de Sao Paulo -UNIFESP

SOURCE:

Braz. Pedido PI, 11 pp.

CODEN: BPXXDX

DOCUMENT TYPE:

Patent Portuguese

LANGUAGE:

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
	BR 9900694	Α	20001017	BR 1999-694	19990308
PRIO	RITY APPLN. INFO.:			BR 1999-694	19990308
AB				-NHCH2CH2NHC6H3 (NO2)2-2	
	peptides PhCH2CO-X-	Ser-Arg	-NH2 (X repr	esents certain non-natu	ral amino
	acids) were prepare	d as in	hibitors of 1	human tissue kallikrein	and the
	liberation of kinin	s for u	se as inflam	mation inhibitors and a	nalgesics.

Thirty claimed compds. were prepared by the solid-phase method.

IT 133839-14-2P

> RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(preparation of peptides which inhibit human tissue kallikrein and the liberation of kinins)

133839-14-2 HCAPLUS RN

CN L-Argininamide, N-(2-aminobenzoyl)-L-phenylalanyl-L-arginyl-L-seryl-N-[2-[(2,4-dinitrophenyl)amino]ethyl]- (9CI) (CA INDEX NAME)

Lukton 10_606422

PAGE 1-B

HCAPLUS COPYRIGHT 2006 ACS on STN L12 ANSWER 22 OF 27

ACCESSION NUMBER:

2001:519335 HCAPLUS

DOCUMENT NUMBER:

135:111977

TITLE:

Diagnostic/therapeutic agents having

phospholipid-based microbubbles coupled to one or more

vectors

INVENTOR (S):

Klaveness, Jo; Rongved, Pal; Hogset, Anders; Tolleshaug, Helge; Naevestad, Anne; Hellebust, Halldis; Hoff, Lars; Cuthbertson, Alan; Lovhaug,

Dagfinn; Solbakken, Magne

PATENT ASSIGNEE(S):

Nycomed Imaging As, Norway

SOURCE:

U.S., 89 pp., Cont.-in-part of U.S. Ser. No. 958,993.

CODEN: USXXAM

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 6261537	В1	20010717	US 1997-960054	19971029
CN 1234742	Α	19991110	CN 1997-199047	19971028
3. , 2.	B1	20011218	US 1997-959206	19971028
US 6331289				19980424
EP 1442751	A1	20040804	EP 2004-7226	
R: AT, BE, CH,	DE, DK	, ES, FR,	GB, GR, IT, LI, LU, NL,	SE, MC, PT,
IE, FI, CY				
ES 2224379	Т3	20050301	ES 1998-917461	19980424
KR 2000052829	A	20000825	KR 1999-703658	19990427
14. 200000			US 2001-765614	20010122
US 2002102215	A1	20020801		
US 2002102217	A1	20020801	US 2001-925715	20010810
US 6680047	B2	20040120		

Lukton 10 606422

```
CN 1440816
                               20030910
                                           CN 2002-160420
                                                                  20021230
                               20040722
    US 2004141922
                         A1
                                           US 2003-722075
                                                                  20031126
                               20050106
    US 2005002865
                         A1
                                           US 2003-734730
                                                                  20031215
PRIORITY APPLN. INFO.:
                                           GB 1996-22366
                                                               A 19961028
                                                               A 19961028
                                           GB 1996-22367
                                           GB 1996-22368
                                                               A 19961028
                                           GB 1997-699
                                                               A 19970115
                                           GB 1997-8265
                                                               A 19970424
                                           GB 1997-11842
                                                               Α
                                                                 19970606
                                           GB 1997-11846
                                                               Α
                                                                  19970606
                                           US 1997-49264P
                                                               Ρ
                                                                  19970606
                                           US 1997-49265P
                                                               Ρ
                                                                  19970606
                                           US 1997-49268P
                                                               Р
                                                                  19970606
                                           US 1997-958993
                                                               A2 19971028
                                           GB 1996-22369
                                                               Α
                                                                  19961028
                                           GB 1997-2195
                                                               Α
                                                                  19970204
                                           GB 1997-11837
                                                               Α
                                                                  19970606
                                           GB 1997-11839
                                                               Α
                                                                  19970606
                                           US 1997-49263P
                                                               P
                                                                  19970607
                                           US 1997-49266P
                                                               Р
                                                                  19970607
                                           US 1997-959206
                                                                  19971028
                                                               Α
                                           US 1997-960054
                                                               A1 19971029
                                           EP 1998-917461
                                                               A3 19980424
                                           US 2001-765614
                                                               B1 20010122
                                           US 2001-925715
                                                               A1 20010810
```

Targetable diagnostic and/or therapeutically active agents, e.g. AB ultrasound contrast agents, having reporters comprise gas-filled microbubbles stabilized by monolayers of film-forming surfactants, the reporter being coupled or linked to at least one vector. The gas is air, nitrogen, oxygen, carbon dioxide, hydrogen, an inert gas, a sulfur fluoride, selenium hexafluoride, a low mol. weight hydrocarbon, a ketone, an ester, a halogenated low mol. weight hydrocarbon or their mixts. The film-forming surfactant material is one or more phospholipids selected from the group consisting of phosphatidylserines, phosphatidylglycerols, phosphatidylinositols, phosphatidic acids and cardiolipins. A therapeutic agent is an antineoplastic agent, blood product, biol. response modifier, antifungal agent, hormone or hormone analog, vitamin, enzyme, antiallergic agent, tissue factor inhibitor, platelet inhibitor, coagulation protein target inhibitor, fibrin formation inhibitor, fibrinolysis promoter, antiangiogenic, circulatory drug, metabolic potentiator, antitubercular, antiviral, vasodilator, antibiotic, anti-inflammatory, antiprotozoal, antirheumatic, narcotic, opiate, cardiac glycoside, neuromuscular blocker, sedative, local anesthetic, general anesthetic or genetic material. For example, an endothelial cell adhesion of phosphatidylserine-encapsulated perfluorobutane microbubbles coated with polylysine was higher than adhesion of uncoated microbubbles. Also, a thrombus was detected by ultrasound in patients with suspected venous thrombosis using i.v. phosphatidylserine-encapsulated microbubbles. The microbubbles contained inactivated human thrombin-succinyl-PEG 3400-distearoylphosphatidylethanol amine incorporated into the encapsulating membrane.

IT 207302-67-8P

RL: SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(preparation of diagnostic/therapeutic agents having phospholipid-based gas-filled microbubbles coupled to one or more vectors)

RN 207302-67-8 HCAPLUS

L-Cysteine, N-[[4-[[4-(dimethylamino)phenyl]azo]phenyl]sulfonyl]-L-tyrosyl-L-arginyl-L-alanyl-L-leucyl-L-valyl-L-α-aspartyl-L-threonyl-L-leucyl-L-lysyl-N6-(L-arginylglycyl-L-α-aspartyl-L-seryl)-L-lysylglycyl-(9CI) (CA INDEX NAME) Absolute stereochemistry. Double bond geometry unknown.

PAGE 1-A

PAGE 1-C

Me₂N

for

PAGE 2-A

REFERENCE COUNT: 49 THERE ARE 49 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L12 ANSWER 23 OF 27 HCAPLUS COPYRIGHT 2006 ACS on STN

2001:429240 HCAPLUS ACCESSION NUMBER:

DOCUMENT NUMBER: 135:223214

Purification and characterization of active TITLE:

recombinant rat kallikrein rK9

Zani, M.-L.; Brillard-Bourdet, M.; Lazure, C.; AUTHOR (S):

Juliano, L.; Courty, Y.; Gauthier, F.; Moreau, T.

Laboratory of Enzymology and Protein Chemistry, INSERM CORPORATE SOURCE:

EMI-U 00-10, University Francois Rabelais, Tours,

37032, Fr.

SOURCE: Biochimica et Biophysica Acta, Protein Structure and

Molecular Enzymology (2001), 1547(2), 387-396 CODEN: BBAEDZ; ISSN: 0167-4838

PUBLISHER: Elsevier B.V.

DOCUMENT TYPE: Journal English LANGUAGE:

The rat tissue kallikrein rK9 is most abundant in the submandibular gland and the prostate. It has been successfully expressed in the Pichia pastoris yeast expression system. A full-length cDNA coding for the mature rK9 was fused in frame with yeast α -factor cDNA. The fusion protein was secreted into the medium with high yield without being processed by the yeast KEX2 signal peptidase. Mature rK9 was efficiently released from the fusion protein by trypsin and was purified to homogeneity by one-step affinity chromatog. using soya bean trypsin inhibitor (SBTI) as affinity ligand. The identity of the recombinant enzyme was checked by N-terminal amino acid sequencing, Western blot anal. and kinetic studies. The dual trypsin- and chymotrypsin-like enzymic specificity of rK9 was assessed by determining specificity consts. (kcat/Km)

the hydrolysis of fluorogenic substrates, the peptide sequences of which

were derived from proparathyroid hormone (pro-PTH) and from semenogelin-I. Our results confirmed the presence of an extended binding site in the rK9 active site. We also identified a far more sensitive substrate of this

Lukton 10_606422

enzyme than those previously described, Abz-VKKRSARQ-EDDnp, which was hydrolyzed with a catalytic efficiency kcat/Km of 420000 M-1s-1. Finally, we showed that four of the five major proteins contained in secretions of rat seminal vesicles were rapidly degraded by recombinant rK9.

IT 133839-14-2

RL: BPR (Biological process); BSU (Biological study, unclassified); PRP (Properties); BIOL (Biological study); PROC (Process)

(expression in Pichia pastoris, purification and characterization of active recombinant rat kallikrein rK9)

RN 133839-14-2 HCAPLUS

CN L-Argininamide, N-(2-aminobenzoyl)-L-phenylalanyl-L-arginyl-L-seryl-N-[2-[(2,4-dinitrophenyl)amino]ethyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 1-B

REFERENCE COUNT:

THERE ARE 40 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L12 ANSWER 24 OF 27 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

2001:84505 HCAPLUS

DOCUMENT NUMBER:

134:291943

TITLE:

Cathepsins ${\tt X}$ and ${\tt B}$ can be differentiated through their

respective mono- and dipeptidyl carboxypeptidase

activities

AUTHOR (S):

Therrien, Christian; Lachance, Paule; Sulea, Traian; Purisima, Enrico O.; Qi, Hongtao; Ziomek, Edmund; Alvarez-Hernandez, Alejandro; Roush, William R.;

Menard, Robert

CORPORATE SOURCE:

Biotechnology Research Institute, National Research Council of Canada, Montreal, QC, H4P 2R2, Can.

SOURCE: Biochemistry (2001), 40(9), 2702-2711

CODEN: BICHAW; ISSN: 0006-2960

PUBLISHER: American Chemical Society

DOCUMENT TYPE: Journal LANGUAGE: English

Several new cysteine proteases of the papain family have been discovered in the past few years. To help in the assignment of physiol. roles and in the design of specific inhibitors, a clear picture of the specificities of these enzymes is needed. One of these novel enzymes, cathepsin X, displays a unique specificity, cleaving single amino acid residues at the C-terminus of substrates very efficiently. In this study, the carboxypeptidase activities and substrate specificity of cathepsins X and B have been investigated in detail and compared. Using quenched fluorogenic substrates and HPLC measurements, it was shown that cathepsin X preferentially cleaves substrates through a monopeptidyl carboxypeptidase pathway, while cathepsin B displays a preference for the dipeptidyl pathway. The preference for one or the other pathway is about the same for both enzymes, i.e., approx. 2 orders of magnitude, a result supported by mol. modeling of enzyme-substrate complexes. Cleavage of a C-terminal dipeptide of a substrate by cathepsin X can become more important under conditions that preclude efficient monopeptidyl carboxypeptidase activity, e.g., nonoptimal interactions in subsites S2-S1. These results confirm that cathepsin X is designed to function as a monopeptidyl carboxypeptidase. Contrary to a recent report [Klemencic, I., et al. (2000) Eur. J. Biochem. 267, 5404-5412], it is shown that cathepsins X and B do not share similar activity profiles, and that reagents are available to clearly distinguish the two enzymes. particular, CA074 was found to inactivate cathepsin B at least 34000-fold more efficiently than cathepsin X. The insights obtained from this and previous studies have been used to produce an inhibitor designed to exploit the unique structural features responsible for the carboxypeptidase activity of cathepsin X. Although of moderate potency, this E-64 derivative is the first reported example of a cathepsin X-specific inhibitor.

IT 334772-24-6

RL: BPR (Biological process); BSU (Biological study, unclassified); PRP (Properties); BIOL (Biological study); PROC (Process)

(cathepsins X and B can be differentiated through resp. mono- and dipeptidyl carboxypeptidase activities)

RN 334772-24-6 HCAPLUS

CN L-Phenylalanine, N-(2-aminobenzoyl)-L-phenylalanyl-L-arginyl-4-nitro-L-phenylalanyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

REFERENCE COUNT:

THERE ARE 32 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

Lukton 10 606422

L12 ANSWER 25 OF 27 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2001:36316 HCAPLUS

DOCUMENT NUMBER: 134:233492

TITLE: Substrate Specificity of the Integral Membrane

Protease OmpT Determined by Spatially Addressed

Peptide Libraries

AUTHOR(S): Dekker, Niek; Cox, Ruud C.; Kramer, R. Arjen; Egmond,

Maarten R.

CORPORATE SOURCE: Department of Enzymology and Protein Engineering,

Centre for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University,

Utrecht, 3584 CH, Neth.

SOURCE: Biochemistry (2001), 40(6), 1694-1701

CODEN: BICHAW; ISSN: 0006-2960

PUBLISHER: American Chemical Society

DOCUMENT TYPE: Journal LANGUAGE: English

Escherichia coli outer membrane protease T (OmpT) is an endopeptidase that specifically cleaves between two consecutive basic residues. In this study we have investigated the substrate specificity of OmpT using spatially addressed SPOT peptide libraries. The peptide acetyl-Dap(dnp)-Ala-Arg Arg-Ala-Lys(Abz)-Gly was synthesized directly onto cellulose membrane. The peptide contained the aminobenzoyl (Abz) fluorophore, which was internally quenched by the dinitrophenyl (dnp) moiety. Treatment of the SPOT membrane with the small, water-soluble protease trypsin resulted in highly fluorescent peptide SPOTs. However, no peptide cleavage was observed after incubation with detergent-solubilized OmpT, a macromol. complex with an estimated mol. mass of 180 kDa. This problem could be solved by the introduction of a long, polar polyoxyethylene glycol linker between the membrane support and the peptide. Peptide libraries for the P2, P1, P1', and P2' positions in the substrate were screened with OmpT, and peptides of pos. SPOTs were resynthesized and subjected to kinetic measurements in solution The best substrate Abz-Ala-Lys-Lys-Ala-Dap(dnp)-Gly had a turnover number kcat of 40 s-1, which is 12-fold higher than the starting substrate. Peptides containing an acidic residue at P2 or P2' were not substrates for OmpT, suggesting that long-range electrostatic interactions are important for the formation of the enzyme-substrate complex. OmpT was highly selective toward L-amino acids at P1 but was less so at P1' where a peptide with D-Arq at P1' was a competitive inhibitor (Ki of 19 µM). An affinity chromatog. resin based on these findings was developed, which allowed for the one-step purification of OmpT from a bacterial lysate. The implications of the

consensus substrate sequence $(Arg/Lys) \downarrow (Arg/Lys)$ -Ala for the proposed biol. function of OmpT in defense against antimicrobial peptides are discussed.

IT 330651-45-1

RL: PRP (Properties)

(SPOT peptide libraries utilizing PEG linker permit anal. of substrate specificity for Escherichia coli outer membrane protease OmpT)

RN 330651-45-1 HCAPLUS

CN Glycine, N2-(2-aminobenzoyl)-L-arginyl-L-arginyl-3-[(2,4-dinitrophenyl)amino]-L-alanyl- (9CI) (CA INDEX NAME)

THERE ARE 29 CITED REFERENCES AVAILABLE FOR THIS REFERENCE COUNT: 29 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

HCAPLUS COPYRIGHT 2006 ACS on STN L12 ANSWER 26 OF 27

1999:197496 HCAPLUS ACCESSION NUMBER:

DOCUMENT NUMBER: 131:29254

TITLE: Interdependency of Sequence and Positional

Specificities for Cysteine Proteases of the Papain

Naegler, Dorit K.; Tam, Wendy; Storer, Andrew C.; AUTHOR (S):

Krupa, Joanne C.; Mort, John S.; Menard, Robert
Biotechnology Research Institute, National Research CORPORATE SOURCE:

Council of Canada, Montreal, QC, H4P2R2, Can.

Biochemistry (1999), 38(15), 4868-4874 CODEN: BICHAW; ISSN: 0006-2960 SOURCE:

American Chemical Society PUBLISHER:

Journal DOCUMENT TYPE: English LANGUAGE:

The specificity of cysteine proteases is characterized by the nature of the amino acid sequence recognized by the enzymes (sequence specificity) as well as by the position of the scissile peptide bond (positional specificity, i.e., endopeptidase, aminopeptidase, or carboxypeptidase). In this paper, the interdependency of sequence and positional specificities for selected members of this class of enzymes has been investigated using fluorogenic substrates where both the position of the cleavable peptide bond and the nature of the sequence of residues in P2-P1 are varied. The results show that cathepsins K and L and papain, typically considered to act strictly as endopeptidases, can also display dipeptidyl carboxypeptidase activity against the substrate Abz-FRF(4NO2)A and dipeptidyl aminopeptidase activity against FR-MCA. In some cases the activity is even equal to or greater than that observed with cathepsin B and DPP-I (dipeptidyl peptidase I), which have been characterized previously as exopeptidases. In contrast, the exopeptidase activities of cathepsins K and L and papain are extremely low when the P2-P1 residues are A-A, indicating that, as observed for the normal endopeptidase activity, the exopeptidase activities rely heavily on interactions in subsite S2 (and possibly S1). However, cathepsin B and DPP-I are able to hydrolyze substrates through the exopeptidase route even in absence of preferred interactions in subsites S2 and S1. This is attributed to the presence in cathepsin B and DPP-I of specific structural elements which serve as an anchor for the C- or N-terminus of a substrate, thereby allowing favorable enzyme-substrate interaction independently of the P2-P1 sequence. As a consequence, the nature of the residue at position P2 of a substrate, which is usually the main factor determining the specificity for cysteine

Lukton 10_606422

proteases of the papain family, does not have the same contribution for the exopeptidase activities of cathepsin B and DPP-I.

IT 227029-48-3

> RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)

(interdependency of sequence and positional specificities for cysteine proteases of papain family) 227029-48-3 HCAPLUS

RN

L-Alanine, N-(2-aminobenzoyl)-L-phenylalanyl-L-arginyl-4-nitro-L-CN phenylalanyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

REFERENCE COUNT: · 34 THERE ARE 34 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

HCAPLUS COPYRIGHT 2006 ACS on STN L12 ANSWER 27 OF 27

1999:77586 HCAPLUS ACCESSION NUMBER:

DOCUMENT NUMBER: 130:139657

TITLE: Preparation of modified nociceptin analogs for

treatment of vasomotor disturbances

INVENTOR (S): Thogersen, Henning; Madsen, Kjeld; Olsen, Uffe Bang;

Johansen, Nils Langeland; Scheideler, Mark

PATENT ASSIGNEE(S): Novo Nordisk A/S, Den. SOURCE: PCT Int. Appl., 69 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PAT	CENT :	NO.			KIN	D 1	DATE		1	APPL	ICAT	ION I	NO.		D	ATE	
						-									-		
WO	9903	880			A1		1999	0128	1	WO 1	998-1	DK32	6		1	9980	713
	W:	AL,	AM,	AT,	ΑU,	ΑZ,	BA,	BB,	BG,	BR,	BY,	CA,	CH,	CN,	CU,	CZ,	DE,
		DK,	EE,	ES,	FI,	GB,	GE,	GH,	GM,	HU,	ID,	IL,	IS,	JP,	KE,	KG,	KΡ,
		KR,	ΚZ,	LC,	LK,	LR,	LS,	LT,	LU,	LV,	MD,	MG,	MK,	MN,	MW,	MX,	NO,
		ΝZ,	PL,	PT,	RO,	RU,	SD,	SE,	SG,	SI,	SK,	SL,	ТJ,	TM,	TR,	TT,	UA,
		UG,	UΖ,	VN,	ΥU,	ZW,	AM,	ΑZ,	BY,	KG,	KZ,	MD,	RU,	ТJ,	TM		
	RW:	GH,	GM,	KE,	LS,	MW,	SD,	SZ,	UG,	ZW,	ΑT,	BE,	CH,	CY,	DE,	DK,	ES,
		FI,	FR,	GB,	GR,	ΙE,	IT,	LU,	MC,	NL,	PT,	SE,	BF,	ВJ,	CF,	CG,	CI,
		CM,	GA,	GN,	GW,	ML,	MR,	NE,	SN,	TD,	TG						
AU	9883	342			A1		1999	0210	7	AU 1:	998-	8334:	2		19	9980	713
US	5998	375			Α	:	1999:	1207	1	US 19	998-	1152	09		19	9980	714
PRIORITY	APP	LN.	INFO	. :					ì	DK 1	997-	867		7	A 19	9970	715

Lukton 10_606422

US 1997-52862P P 19970717 WO 1998-DK326 W 19980713

OTHER SOURCE(S): MARPAT 130:139657

The present invention relates to novel peptides (X)n-A1-A2-A3-A4-A5-A6-A7-A8 - A9 - A10 - A11 - A12 - A13 - A14 - A15 - A16 - A17 - (Y) m - A18 [A1 = bond, optionally]acylated small or lipophilic amino acid; A2 = optionally acylated aromatic, lipophilic, or small amino acid; A2-A3 = 5-aminopentanoic acid, N-methylanthranilic acid, 4-aminocyclohexanecarboxylic acid, 3-(aminomethyl)benzoic acid; A4 = small or aromatic amino acid; A3-A4 = N-methylanthranilic acid; A5 = lipophilic amino acid; A6, A7 = independently small, polar, or lipophilic amino acid; A8 = polar amino acid, L-Ala, D-Ala; A9, A10, A11, A12, A13, A14, A15 = independently lipophilic or polar amino acid; A16, A17= independently bond, small or polar amino acid; A18 = OH, NH2; X, Y = independently polar, lipophilic, aromatic, or small amino acid; n + m = 0-82; two or more of Al to Al7, X, and Y may independently form a bridge such as a disulfide bridge, lactam bridge, or Gly-lactam bridge; with the proviso that there are at least wo simultaneous amino acid modifications relative to the nociceptin sequence or an unnatural amino acid in position Al], pharmaceutically acceptable salts thereof, pharmaceutical compns. containing them, methods for preparing

the

compds., use of the compds. for preparing medicaments for treating vasomotor disturbances, in particular the peripheral vasomotor effects known as hot flushes or hot flashes, and to a method of treating vasomotor disturbances.

IT 220045-54-5P

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(preparation of modified nociceptin analogs for treatment of vasomotor disturbances)

RN 220045-54-5 HCAPLUS

CN Orphanin FQ (swine), 7-L-aspartic acid-11-(N5-glycyl-L-ornithine)-17-L-glutamamide-, $(7\rightarrow11)$ -lactam (9CI) (CA INDEX NAME)

PAGE 1-A

$$H_2N$$
 H_2N
 H_2N
 H_2N
 H_2N
 H_2N
 H_3
 H_4N
 H_4N
 H_5
 H_5
 H_5
 H_6
 H_7
 H_8
 $H_$

PAGE 1-B

PAGE 2-B

7

REFERENCE COUNT:

THERE ARE 7 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

=> => d stat que l19 L4 STR

Page 1-A

Page 2-A VAR G1=57/59/S VAR G2=NH2/86/88/74 VAR G3=61/66/11/69/17/1 VAR G4=11/69 NODE ATTRIBUTES: DEFAULT MLEVEL IS ATOM DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:

RING(S) ARE ISOLATED OR EMBEDDED NUMBER OF NODES IS 74

STEREO ATTRIBUTES: NONE

L6 12249 SEA FILE=REGISTRY SSS FUL L4

L7 STR

15

Page 2-A VAR G1=57/59/S VAR G2=NH2/86/88/74 VAR G3=91/92/93/95/97/98/99/100/PH NODE ATTRIBUTES: DEFAULT MLEVEL IS ATOM DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:

RING(S) ARE ISOLATED OR EMBEDDED NUMBER OF NODES IS 47

STEREO ATTRIBUTES: NONE

	MITTELDOT	uo. 1	NONE		
L8	900	SEA	FILE=REGISTRY SUB=L6	SSS FUL	L4 NOT L7
L9	85	SEA	FILE=REGISTRY ABB=ON	PLU=ON	L8 AND SQL=<4
L10	40	SEA	FILE=HCAPLUS ABB=ON	PLU=ON	L9
L11	13	SEA	FILE=HCAPLUS ABB=ON	PLU=ON	L10 AND PD= <december 15,="" 1998<="" td=""></december>
					•
L12	27	SEA	FILE=HCAPLUS ABB=ON	PLU=ON	L10 NOT L11
L13	76	SEA	FILE=HCAPLUS ABB=ON	PLU=ON	("MCCOMSEY D F"/AU OR
		"MCC	COMSEY DAVID"/AU OR "	MCCOMSEY	DAVID F"/AU)

Lukton 10_606422

```
329 SEA FILE=HCAPLUS ABB=ON PLU=ON ("MARYANOFF B E"/AU OR
L14
                "MARYANOFF BRUCE"/AU OR "MARYANOFF BRUCE E"/AU OR "MARYANOFF
                BRUCE ELIOT"/AU)
            106 SEA FILE=HCAPLUS ABB=ON PLU=ON "HAWKINS MICHAEL"/AU OR
L15
                ("HAWKINS MICHAEL J"/AU OR "HAWKINS MICHAEL JOHN"/AU) OR
                HAWKINS M/AU OR HAWKINS M J/AU
                                                 (L13 AND L14 AND L15) NOT
              3 SEA FILE=HCAPLUS ABB=ON PLU=ON
L16
                (L11 OR L12)
             11 SEA FILE=HCAPLUS ABB=ON PLU=ON L14 AND L15
L18
             11 SEA FILE=HCAPLUS ABB=ON PLU=ON L16 OR L18
L19
=>
=>
=> d ibib abs hitstr 119 1-11
L19 ANSWER 1 OF 11 HCAPLUS COPYRIGHT 2006 ACS on STN
                         2005:739844 HCAPLUS
ACCESSION NUMBER:
                         Structure-based design of serine protease inhibitors:
TITLE:
                         Discovery of selective chymase inhibitors containing a
                         novel \beta-amidophosphonic acid recognition motif
                         Hawkins, Michael J.; Greco, M. N.; Powell,
AUTHOR (S):
                         E. T.; Corcoran, T. W.; De Garavilla, L.; Kauffman, J.
                         A.; Wang, Y.; Minor, L.; Di Cera, E.; Sukumar, N.;
                         Chen, Z-W.; Pineda, A. O.; Mathews, F. S.;
                         Maryanoff, B. E.
                         Drug Discovery, Johnson & Johnson Pharmaceutical
CORPORATE SOURCE:
                         Research & Development, Spring House, PA, 19477, USA
                         Abstracts of Papers, 230th ACS National Meeting,
SOURCE:
                         Washington, DC, United States, Aug. 28-Sept. 1, 2005
                          (2005), MEDI-336. American Chemical Society:
                         Washington, D. C.
                         CODEN: 69HFCL
                         Conference; Meeting Abstract; (computer optical disk)
DOCUMENT TYPE:
                         English
LANGUAGE:
     Human chymase, a chymotrypsin-like serine protease present in the mast
     cell and released on activation, has been implicated in various pathol.
     conditions associated with inflammation, including airway inflammation. We
     identified β-amidophosphonic acid 1 as a selective inhibitor of
     chymase (IC50 = 0.2 \muM) through routine screening. We solved the X-ray
     crystal structure of 2-chymase and used the information in a
     structure-based optimization protocol. Details of the interactions of 2
     within the active site of chymase will be discussed. Compound 2 was
     efficacious in the standard sheep model of asthma. Further optimization of 2
     led to a series of potent, selective, orally active chymase inhibitors,
     represented by 3, from which we identified a suitable compound for preclin.
     development. Details of these studies will be presented.
L19 ANSWER 2 OF 11 HCAPLUS COPYRIGHT 2006 ACS on STN
                          2005:732638 HCAPLUS
ACCESSION NUMBER:
                          143:212017
DOCUMENT NUMBER:
                          Preparation of phosphorus containing compounds as
TITLE:
                          novel inhibitors of chymase
                          Hawkins, Michael J.; Greco, Michael N.;
 INVENTOR (S):
```

Powell, Eugene; De Garavilla, Lawrence;

Maryanoff, Bruce E.

Janssen Pharmaceutica, N. V., Belg. PATENT ASSIGNEE(S):

PCT Int. Appl., 199 pp. SOURCE:

CODEN: PIXXD2

DOCUMENT TYPE:

Patent English

LANGUAGE:

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

KIND DATE APPLICATION NO. PATENT NO. -----------_ _ _ _ _ _ _ WO 2005073214 A2 20050811 WO 2005-US1659 20050118 W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, CR, CM, CM, CM, CM, CM, CM, MI RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG 20050811 US 2005-37938 20050118 US 2005176769 A1 PRIORITY APPLN. INFO.: US 2004-538663P P 20040123 OTHER SOURCE(S): MARPAT 143:212017 GI

I

AB The present invention is directed to phosphorus containing compds. I (circle A = aryl, hetroaryl, benzo fused heterocyclyl, cyclopropyl when n is 0 and one of R2 or R3 = Ph, and benzo fused cycloalkyl, and ring A is optionally substituted with R2 and R3; R2 = C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, C1-6 alkoxy, C1-6 alkylthio, OCF3, NH2, etc.; R3 = C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, C1-6 alkoxy, C1-6 alkylthio, OCF3, OCH2(C2-6)alkenyl, NH2, NH(C1-6)alkyl, etc.; R4 = C1-6 alkyl, C1-6 alkenyl, C1-6 alkoxy, C1-6 alkylthio, aryl(C1-6)alkyl, aryl(C2-6)alkenyl, halo, C(:0)Cy, organoamido, aryl, etc.; n = 0, 1; W = 0, S; X = H, C1-3alkyl; Y = C1-6 alkyl substituted with aminosulfonyl or hydroxy, SO3H, CO2H, heteroaryl, organophosphonyl, etc.), methods for preparing these compds., compns., intermediates and derivs. thereof, and methods for treating inflammatory and serine protease mediated disorders.

L19 ANSWER 3 OF 11 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

2004:658188 HCAPLUS

TITLE:

AUTHOR (S):

Structure-based design of serine protease inhibitors:

Discovery of cathepsin G and chymase inhibitors containing a novel β -ketophosphonic acid motif

Greco, Michael N.; Hawkins, Michael J.;

Powell, Eugene T.; Almond, Harold A.; Corcoran, Thomas; de Garavilla, Lawrence; Kauffman, Jack A.;

Recacha, Rosario; Chattopadhyay, Debashish;

Andrade-Gordon, Patricia; Giardino, Edward;

Lukton 10_606422

Maryanoff, Bruce E.

Drug Discovery, Johnson and Johnson Pharmaceutical CORPORATE SOURCE:

Research and Development, Spring House, PA, 19477, USA

Abstracts of Papers, 228th ACS National Meeting, SOURCE:

Philadelphia, PA, United States, August 22-26, 2004

(2004), MEDI-326. American Chemical Society: Washington, D. C.

CODEN: 69FTZ8

Conference; Meeting Abstract DOCUMENT TYPE:

LANGUAGE: English

Cathepsin (Cat G), a chymotrypsin-like serine protease that is stored in the azurophilic granules of neutrophils and released on activation, has been implicated in various pathol. conditions associated with inflammation, including chronic pulmonary diseases. We identified β -keto phosphonic acid 1 as a moderate inhibitor of Cat G (IC50 = $4.1 \mu M$) by high-throughput screening. We solved the X-ray crystal structure of 1-Cat G and used the information in a structure-based optimization protocol, which led to 2 (IC50 = 38 nM). In further enzymic profiling, 2 was found to be a potent inhibitor of chymase (IC50 = 2 nM), a chymotrypsin-like serine protease in mast cells that is released on activation and has also been implicated in inflammatory diseases. Studies with dual protease inhibitor 2 in animal models of inflammation have delivered pos. findings, particularly with respect to airway inflammation and neutrophil influx. Details on the interactions of 2 within the active sites of Cat G and chymase will be discussed.

L19 ANSWER 4 OF 11 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2004:462860 HCAPLUS

DOCUMENT NUMBER:

141:33797

TITLE:

Substituted heterocyclic acyl-tripeptides useful as

thrombin receptor modulators

McComsey, David F.; Maryanoff, Bruce INVENTOR (S):

E.; Hawkins, Michael J.

PATENT ASSIGNEE(S):

Ortho-McNeil Pharmaceutical, Inc., USA

SOURCE:

U.S., 14 pp., Cont.-in-part of U.S. Ser. No. 444,327,

abandoned.

CODEN: USXXAM

DOCUMENT TYPE:

Patent English

LANGUAGE:

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.		DATE	
				-		
US 6747127	B1	20040608	US 2000-565715		20000505	
TR 200102502	T2	20020521	TR 2001-200102502		19991119	
US 2004063903	A1	20040401	US 2003-606422		20030626	
PRIORITY APPLN. INFO.:			US 1998-112313P	P	19981214	
			US 1999-444327	B2	19991119	
			US 2000-565715	Α3	20000505	

MARPAT 141:33797 OTHER SOURCE(S):

Substituted heterocyclic acyl-tripeptides, useful as thrombin receptor modulators, are disclosed, as is their use in wound healing and preventing platelet aggregation. Pharmaceutical compns. comprising the substituted heterocyclic acyl-tripeptides of the invention, as well as methods of treating conditions mediated by the thrombin receptor, are also disclosed.

REFERENCE COUNT:

THERE ARE 25 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L19 ANSWER 5 OF 11 HCAPLUS COPYRIGHT 2006 ACS on STN

25

ACCESSION NUMBER:

2003:696543 HCAPLUS

DOCUMENT NUMBER:

139:230617

TITLE:

Preparation of [[N-(styrylsulfonyl)pyrrolidinyl]carbam

oyl]phenylguanidines and analogs as serine protease

inhibitors

INVENTOR(S):

Greco, Michael N.; Maryanoff, Bruce E.; Hawkins, Michael J.; Boyd, Robert E.

PATENT ASSIGNEE(S):

Ortho-McNeil Pharmaceutical, Inc., USA

SOURCE:

U.S. Pat. Appl. Publ., 18 pp., Cont.-in-part of U.S.

Ser. No. 90,872.

CODEN: USXXCO

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	API	PLICATION NO.		DATE
US 2003166681	A1	20030904	US	2002-303230		20021125
US 6710061	B2	20040323				
US 2003004186	A1	20030102	US	2002-90872		20020305
US 6538017	B2	20030325				
US 2003166680	A1	20030904	US	2002-303229		20021125
US 6630505	B2	20031007				
US 2003203936	A1	20031030	US	2003-439884		20030516
US 6890939	B2	20050510				
PRIORITY APPLN. INFO.:			US	2001-274845P	P	20010309
			US	2002-90872	A2	20020305
•			US	2002-303230	А3	20021125
OMITTED GOTTEGER (C)	MADDAG	120.220617				

OTHER SOURCE(S):

MARPAT 139:230617

GI

* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT *

The title compds. [I and II; R1 = H, alkyl, cycloalkyl, etc.; R2 = H, OH, AB alkoxy, etc.; R3 = aryl, arylalkyl, heteroarylalkyl, etc.; G = H, halo, OH, etc.; n = 1-2], useful as a serine protease or dual-serine protease inhibitors, particularly, as Factor Xa or tryptase inhibitors, were prepared E.g., a multi-step synthesis of III (starting from 3-aminopyrrolidine and Me 4-formylbenzoate) which showed Ki of 0.2 μM against Factor Xa, was given.

L19 ANSWER 6 OF 11 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

2003:335110 HCAPLUS

DOCUMENT NUMBER:

138:338296

TITLE:

Preparation of phosphonic acid compounds as inhibitors

of serine proteases

INVENTOR(S):

Greco, Michael N.; Almond, Harold R.; De Garavilla,

Lawrence; Hawkins, Michael J.;

Maryanoff, Bruce E.; Qian, Yun; Walker, Donald Gilmore; Cesco-Cancian, Sergio; Nilsen, Christopher

Norman; Patel, Mitul N.; Humora, Michael J.

PATENT ASSIGNEE(S):

Ortho-McNeil Pharmaceutical, Inc., USA PCT Int. Appl., 110 pp.

SOURCE:

CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT: 2 PATENT INFORMATION:

```
APPLICATION NO.
    PATENT NO.
                       KIND
                               DATE
                                                                DATE
                                          -----
                        ____
                               -----
                               20030501
                                         WO 2002-US33206
    WO 2003035654
                        A1
                                                                 20021017
        W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN,
            CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
            GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
            LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH,
            PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ,
            UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW
        RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY,
            KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES,
            FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR, BF, BJ, CF,
            CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG
                               20030501 CA 2002-2464111
                         AA
                                                                 20021017
    CA 2464111
    EP 1438316
                         A1
                               20040721
                                         EP 2002-802153
                                                                 20021017
        R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
            IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, SK
                               20040831
                                          BR 2002-13961
    BR 2002013961
                        Α
                                                                 20021017
                                          JP 2003-538169
    JP 2005537217
                         T2
                               20051208
                                                                 20021017
                                          NO 2004-2057
    NO 2004002057
                               20040518
                                                                 20040518
                        Α
PRIORITY APPLN. INFO.:
                                          US 2001-330343P
                                                              P 20011019
                                          WO 2002-US33206
                                                              W 20021017
                   CASREACT 138:338296; MARPAT 138:338296
OTHER SOURCE(S):
GT
```

* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT *

AB Phosphonic acid compds. [I; wherein R1 = (substituted) heterocyclic ring
with the point of attachment being a nitrogen ring atom, amino; R2, R3,
independently = H, (C1-C4)alkyl, (C1-C4)alkoxy, (C2-C4)alkenyl, amino,
halo, hydroxy, or R2 and R3 together form at least one ring fused to the
benzene ring; R4 = (C1-C4)alkyl, aryl, heteroaryl; R5 = H, (C1-C8)alkyl;
R6 = (C1-C8)alkyl, aryl(C1-C8)alkyl, (C1-C8)alkoxy, aryl(C1-C8)alkoxy,
(C2-C8)alkenyloxy, etc.; X, Y, independently = H, (C1-C8)alkyl,
(C1-C8)alkoxy, (C2-C8)alkenyloxy, cycloalkyl, heterocyclyl, aryl, aryloxy,
etc.; Z = a bond, H, (C1-C8)alkyl] were prepared For example, compound (II)
was prepared in several steps. The prepared compds. are useful as serine
protease inhibitors and, thus, are useful for treating inflammatory and
serine protease mediated disorders. For example, compound II showed good
inhibition against cathepsin G (IC50 = .081 μM).

REFERENCE COUNT: 2 THERE ARE 2 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L19 ANSWER 7 OF 11 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2002:754354 HCAPLUS

DOCUMENT NUMBER: 137:262949

TITLE: Preparation of [[N-(styrylsulfonyl)pyrrolidinyl]carbam

oyl]phenylguanidines and analogs as serine protease

inhibitors

INVENTOR(S): Greco, Michael N.; Maryanoff, Bruce E.;

Hawkins, Michael J.; Boyd, Robert E.

PATENT ASSIGNEE(S): Ortho-McNeil Pharmaceutical, Inc., USA

SOURCE: PCT Int. Appl., 52 pp.

CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PA	PATENT NO.						KIND DATE			APPL	ICAT	ION I		DATE						
WO	2002	 0769	45		A1 20021003			WO 2002-US6475						20020305						
	W:	ΑE,	AG,	AL,	AM,	AT,	AU,	AZ,	BA,	BB,	BG,	BR,	BY,	BZ,	CA,	CH,	CN,			
		CO,	CR,	CU,	CZ,	DE,	DK,	DM,	·DZ,	EC,	EE,	ES,	FI,	GB,	GD,	GE,	GH,			
	GM, HR, HU,			ID,	ΙL,	ΙŃ,	ıs,	JP,	KE,	KG,	ΚP,	KR,	ΚZ,	LC,	LK,	LR,				
	LS, LT, LU,			LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	MZ,	NO,	NZ,	OM,	PH,				
PL, PT, RO,				RU,	SD,	SE,	SG,	SI,	SK,	SL,	ΤJ,	TM,	TN,	TR,	TT,	TZ,				
UA, UG, UZ,				VN,	YU,	ZA,	ZM,	ZW,	AM,	ΑZ,	BY,	KG,	ΚZ,	MD,	RU,	ТJ,	TM			
	RW: GH, GM, KE,				LS,	MW,	MZ,	SD,	SL,	SZ,	TZ,	UG,	ZM,	ZW,	AT,	BE,	CH,			
	CY, DE, DK,				ES,	FI,	FR,	GB,	GR,	ΙE,	IT,	LU,	MC,	NL,	PT,	SE,	TR,			
		BF,	ВJ,	CF,	CG,	CI,	CM,	GA,	GN,	GQ,	GW,	ML,	MR,	NE,	SN,	TD,	TG			
CA	2440	389			AA	;	2002	1003	CA 2002-2440389						20020305					
EP	1385	822			A1	:	2004	0204	EP 2002-739093						20	0020	305			
	R:	ΑT,	ΒE,	CH,	DE,	DK,	ES,	FR,	GB,	GR,	IT,	LI,	LU,	NL,	SE,	MC,	PT,			
		ΙE,	SI,	LT,	LV,	FI,	RO,	MK,	CY,	AL,	TR									
JP	JP 2004520438						2004	0708		JP 2	002-	5762	06		20	0020	305			
PRIORIT					1	JS 2	001-	2748	45P	3	P 20	0010	309							
									WO 2002-US6475						W 20020305					
OTHER S	OTHER SOURCE(S):						137:	2629	49											

GI

H2NC(:NH)NHZCOZ1Z2SO2R3 [I; R3 = (un)substituted (hetero)aryl[alk(en)yl]; AB Z = (un) substituted 1,4-phenylene; Z1 = NR1 and Z2 = 3,1-(oxo)azacycloalkylene or Z1 = 1,3-(oxo)azacycloalkylene and z2 = NR1; R1 = H, alkyl, (hetero)aryl[alk(en)yl], etc.] were prepared Thus, pyrrolidine-3-amine was condensed with 4-(OHC)C6H4CO2Me and the N-protected product reduced to yield, after deprotection, HZ2NRCH2C6H4(CO2Mé)-4 (Z2 = pyrrolidine-1,3-diyl)(II; R = H) which was N-acylated by 4-(O2N)C6H4COCl to give II [R = COC6H4(NO2)-4]. The latter was N-sulfonylated by 4-ClC6H4CH:CHSO2Cl to give, in 4 addnl. steps, title compound III. Data for biol. activity of I were given.

THERE ARE 3 CITED REFERENCES AVAILABLE FOR THIS REFERENCE COUNT: 3

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L19 ANSWER 8 OF 11 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2002:207068 HCAPLUS

DOCUMENT NUMBER: 136:395323

TITLE: Nonpeptide Inhibitors of Cathepsin G: Optimization of

a Novel β-Ketophosphonic Acid Lead by

Structure-Based Drug Design

AUTHOR(S): Greco, Michael N.; Hawkins, Michael J.;

Powell, Eugene T.; Almond, Harold R., Jr.; Corcoran, Thomas W.; de Garavilla, Lawrence; Kauffman, Jack A.;

Recacha, Rosario; Chattopadhyay, Debashish; Andrade-Gordon, Patricia; Maryanoff, Bruce E.

CORPORATE SOURCE: Johnson Johnson Pharmaceutical Research & Development,

Spring House, PA, 19477-0776, USA

SOURCE: Journal of the American Chemical Society (2002),

124(15), 3810-3811

CODEN: JACSAT; ISSN: 0002-7863

PUBLISHER: American Chemical Society

DOCUMENT TYPE: Journal LANGUAGE: English

OTHER SOURCE(S): CASREACT 136:395323

The serine protease cathepsin G (EC 3.4.21.20; Cat G), which is stored in the azurophilic granules of neutrophils (polymorphonuclear leukocytes) and released on degranulation, has been implicated in various pathol. conditions associated with inflammation. By employing high-throughput screening, we identified a β -ketophosphonic acid as a moderate inhibitor of Cat G (IC50 = $4.1 \mu M$). We were fortunate to obtain a co-crystal of the same with Cat G and solve its structure by x-ray crystallog. (3.5 Å). Structural details from the x-ray anal. of the ligand bound Cat G served as a platform for optimization of this lead compound by structure-based drug design. With the aid of mol. modeling, substituents were attached to the 3-position of the 2-naphthyl ring of the B-ketophosphonic acid, which occupies the S1 pocket of Cat G, to provide an extension into the hydrophobic S3 region. Thus, we arrived at an analog with an 80-fold potency improvement over the parent (IC50 = 53 nM). From these results, it is evident that the β -ketophosphonic acid unit can form the basis for a novel class of serine protease

REFERENCE COUNT: 38 THERE ARE 38 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L19 ANSWER 9 OF 11 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2000:421161 HCAPLUS

DOCUMENT NUMBER: 133:53708

TITLE: Substituted heterocyclic acyl-tripeptides useful as

thrombin receptor modulators

INVENTOR(S): McComsey, David F.; Maryanoff, Bruce

E.; Hawkins, Michael J.

PATENT ASSIGNEE(S): Ortho-McNeil Pharmaceutical, Inc., USA

SOURCE: PCT Int. Appl., 57 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 2

PATENT INFORMATION:

inhibitors.

PATENT NO. KIND DATE APPLICATION NO. DATE
WO 2000035942 A1 20000622 WO 1999-US27570 19991119

```
W: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ,
            DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS,
            JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK,
            MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ,
            TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD,
            RU, TJ, TM
        RW: GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY, DE,
            DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF,
            CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG
                                                                    19991119
                          AΑ
                                20000622
                                            CA.1999-2355818
    CA 2355818
                          A1
                                20011010
                                           EP 1999-961738
                                                                    19991119
    EP 1140985
            AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
             IE, SI, LT, LV, FI, RO
                                20020115
                                            BR 1999-16811
                                                                    19991119
    BR 9916811
                          Α
                          T2
                                20020521
                                            TR 2001-200102502
                                                                    19991119
    TR 200102502
    AU 771844
                          B2
                                20040401
                                            AU 2000-18256
                                                                    19991119
                                20010809
                                            NO 2001-2939
                                                                    20010614
    NO 2001002939
                                                                Ρ
PRIORITY APPLN. INFO.:
                                            US 1998-112313P
                                                                   19981214
                                            US 1999-444327
                                                                Α
                                                                   19991119
                                                                   19991119
                                            WO 1999-US27570
                                                                W
                         MARPAT 133:53708
OTHER SOURCE(S):
    Substituted heterocyclic acyl-tripeptides, useful as thrombin receptor
    modulators, are disclosed, as is their use in wound healing and preventing
    platelet aggregation. Pharmaceutical compns. comprising the substituted
     heterocyclic acyl-tripeptides of the invention, as well as methods of
     treating conditions mediated by the thrombin receptor, are also disclosed.
                               THERE ARE 4 CITED REFERENCES AVAILABLE FOR THIS
REFERENCE COUNT:
                               RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT.
L19 ANSWER 10 OF 11 HCAPLUS COPYRIGHT 2006 ACS on STN
ACCESSION NUMBER:
                         1999:348254 HCAPLUS
                         131:102532
DOCUMENT NUMBER:
                         Heterocycle-peptide hybrid compounds.
TITLE:
                         Aminotriazole-containing agonists of the thrombin
                         receptor (PAR-1)
                         McComsey, David F.; Hawkins, Michael
AUTHOR (S):
                         J.; Andrade-Gordon, Patricia; Addo, Michael F.;
                         Oksenberg, Donna; Maryanoff, Bruce E.
                         Drug Discovery, The R. W. Johnson Pharmaceutical
CORPORATE SOURCE:
                         Research Institute, Spring House, PA, 19477, USA
                         Bioorganic & Medicinal Chemistry Letters (1999),
SOURCE:
                         9(10), 1423-1428
                         CODEN: BMCLE8; ISSN: 0960-894X
                         Elsevier Science Ltd.
PUBLISHER:
DOCUMENT TYPE:
                         Journal
                         English
LANGUAGE:
     The thrombin receptor PAR-1 is activated by \alpha-thrombin to stimulate
     cells, including platelets, through the tethered-ligand sequence SFLLRN.
     The authors have discovered a novel series of heterocycle-peptide hybrids
     comprised of a tripeptide segments, such as Cha-Arg-Phe (Cha =
     cyclohexylalanine), and an N-terminal heterocyclic group, many of which
     behave as full PAR-1 agonists. Certain compds. with an aminotriazole
     group, such as RCO-Cha-Arg-Phe-NH2 (R = 5-amino-1,2,4-triazole-3-yl) and
     RCO-Phe-Arg-Phe-NH2 (R = 5-amino-1,2,4-triazole-3-yl), are nearly as
     potent as SFLLRN-NH2 in inducing platelet aggregation. Also, some
     arylethenoyl "N-capped" compds., such as RCO-Cha-Arg-Phe-NH2 [R =
     5-(o-chlorocinnamido)-1,2,4-triazol-3-yl; 5-(2-thienyl)acrylamido-1,2,4-
     triazol-3-yl], exhibit mixed PAR-1 agonist-antagonist activity.
                               THERE ARE 28 CITED REFERENCES AVAILABLE FOR THIS
REFERENCE COUNT:
                         28
                               RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT
```

L19 ANSWER 11 OF 11 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1998:268479 HCAPLUS

DOCUMENT NUMBER: 128:321928

TITLE: Preparation of phenylalaninol derivatives for the

treatment of central nervous system disorders

INVENTOR(S): Dax, Scott L.; Greco, Michael N.; Hawkins,

Michael J.; Maryanoff, Bruce E.;

McNally, James; Vavouyios-Smith, Anna

PATENT ASSIGNEE(S): Ortho Pharmaceutical Corp., USA

SOURCE: PCT Int. Appl., 46 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

	PATENT NO.						KIND DATE			1	APPL	ICAT	ION 1		DATE				
							-												
	WO	0 9817636				A1		19980430		1	WO 1	997-1		1	19971020				
		W:	AL,	AM,	ΑT,	AU,	ΑZ,	BA,	BB,	BG,	BR,	BY,	CA,	CH,	CN,	CU,	CZ,	DE,	
			DK,	EE,	ES,	FI,	GB,	GE,	GH,	HU,	IL,	IS,	JP,	KΕ,	KG,	ΚP,	KR,	ΚZ,	
	LC, LK, LR,		LS,	LT,	LU,	LV,	MD,	MG,	MK,	MN,	MW,	MX,	NO,	NZ,	PL,				
	PT, RO, RU,		SD,	SE,	SG,	SI,	SK,	SL,	TJ,	TM,	TR,	TT,	UA,	ŪĠ,	UZ,				
			VN,	YU,	ZW,	AM,	ΑZ,	BY,	KG,	ΚZ,	MD,	RU,	ТJ,	TM					
		RW:	GH,	KE,	LS,	MW,	SD,	SZ,	UG,	ZW,	ΑT,	BE,	CH,	DE,	DK,	ES,	FI,	FR,	
			GB,	GR,	ΙE,	ΙT,	LU,	MC,	NL,	PT,	SE,	BF,	ВJ,	CF,	CG,	CI,	CM,	GΑ,	
			GN,	ML,	MR,	NΕ,	SN,	TD,	TG										
AU 9746747						A 1		1998	0515	7	AU 1	997-	4674	7		19	9971	020	
PRIORITY APPLN. INFO.:										Ţ	US 1:	996-2	29583	3 P	-		9961	022	
								1	WO 19	997-1	US186	683	Ţ	W 19	9971	020			
O	- a	NTD 00			~ ~ ~	100	2010												

OTHER SOURCE(S): MARPAT 128:321928

GI

$$\begin{bmatrix} R^1 \\ R^1 \end{bmatrix}_n$$

$$\begin{bmatrix} X \\ Y \\ Q \end{bmatrix}_p$$

$$\begin{bmatrix} G^{F3} \\ G^{F3} \end{bmatrix}$$

CF₃

II

The title compds. [I; R = H, C1-8 alkyl, C3-8 cycloalkyl, etc.; R1 = H, C1-5 alkyl, C1-5 alkoxy, etc.; R2 = H, C1-5 alkyl, C1-5 alkoxy, etc.; n = 1-5; X = O, NH; Y = NH, CH2; q = 0-1] and their salts which are modulators of the NPY1 receptor and display anxiolytic animal models, and are therefore useful in the treatment of anxiety, convulsions, sleeplessness, muscle spasm, and benzodiazepine drug overdose, were prepared Thus, reaction of N-(tert-butoxycarbonyl)-D-phenylalaninol with 3,5-bis(trifluoromethyl)phenyl isocyanate in dichloroethane followed by treatment of the resulting O-[N-3,5-bis(trifluoromethyl)phenyl]carbamoyl-N-(tert-butoxycarbonyl)-D-phenylalaninol with CF3COOH in dichloroethane afforded the title compound (R)-II.CF3COOH which showed IC50 of 1.0 μM against NPY binding and IC50 of 30.0 μM against the binding of porcine PYY.

REFERENCE COUNT: 9 THERE ARE 9 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

```
=> => d stat que 124 nos
L4
                STR
L6
          12249 SEA FILE=REGISTRY SSS FUL L4
L7
            900 SEA FILE=REGISTRY SUB=L6 SSS FUL L4 NOT L7
L8
L9
             85 SEA FILE=REGISTRY ABB=ON PLU=ON L8 AND SQL=<4
L10
             40 SEA FILE=HCAPLUS ABB=ON PLU=ON L9
L11
             13 SEA FILE=HCAPLUS ABB=ON PLU=ON L10 AND PD=<DECEMBER 15, 1998
L12
             27 SEA FILE=HCAPLUS ABB=ON
                                         PLU=ON
                                                  L10 NOT L11
L13
             76 SEA FILE=HCAPLUS ABB=ON PLU=ON
                                                  ("MCCOMSEY D F"/AU OR
                "MCCOMSEY DAVID"/AU OR "MCCOMSEY DAVID F"/AU)
            329 SEA FILE=HCAPLUS ABB=ON PLU=ON
L14
                                                 ("MARYANOFF B E"/AU OR
                "MARYANOFF BRUCE"/AU OR "MARYANOFF BRUCE E"/AU OR "MARYANOFF
                BRUCE ELIOT"/AU)
            106 SEA FILE=HCAPLUS ABB=ON PLU=ON
                                                  "HAWKINS MICHAEL"/AU OR
L15
                ("HAWKINS MICHAEL J"/AU OR "HAWKINS MICHAEL JOHN"/AU) OR
                HAWKINS M/AU OR HAWKINS M J/AU
L16
              3 SEA FILE=HCAPLUS ABB=ON
                                        PLU=ON
                                                  (L13 AND L14 AND L15) NOT
                (L11 OR L12)
L18
             11 SEA FILE=HCAPLUS ABB=ON
                                         PLU=ON
                                                  L14 AND L15
L19
             11 SEA FILE=HCAPLUS ABB=ON
                                         PLU=ON
                                                  L16 OR L18
L20
           5474 SEA FILE=HCAPLUS ABB=ON
                                         PLU=ON
                                                  L6
              1 SEA FILE=HCAPLUS ABB=ON
                                         PLU=ON
                                                  ((L13 OR L14 OR L15) AND L20)
L21
                NOT (L11 OR L12 OR L19)
L22
            251 SEA FILE=HCAPLUS ABB=ON
                                         PLU=ON
                                                  (L13 OR L14 OR L15) AND
                PD=<DECEMBER 14, 1998
             20 SEA FILE=HCAPLUS ABB=ON
L23
                                         PLU=ON
                                                  L22 AND THROMBIN
L24
             20 SEA FILE=HCAPLUS ABB=ON PLU=ON
                                                 (L21 OR L23) NOT (L11 OR L12
                OR L19)
```

=> d ibib abs hitstr 124 1-20

=>

L24 ANSWER 1 OF 20 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1998:637324 HCAPLUS

DOCUMENT NUMBER: 130:34770

TITLE: Macrocyclic inhibitors of serine proteases AUTHOR(S): Greco, Michael N.; Maryanoff, Bruce E.

CORPORATE SOURCE: Drug Discovery The R.W. Johnson Pharmaceutical

Research Institute, Spring House, PA, USA

SOURCE: Advances in Amino Acid Mimetics and Peptidomimetics (

Advances in Amino Acid Mimetics and Peptidomimetics 1997), 1, 41-76

CODEN: AAAMF9
JAI Press Inc.

DOCUMENT TYPE: Journal; General Review

LANGUAGE: English

PUBLISHER:

A review with .apprx.119 refs. Macrocyclic peptides play an important role in many biol. processes. In comparison to their acyclic counterparts, the restricted conformational flexibility of macrocyclic peptides offers potential advantages for binding interactions with bioreceptors. For example, Nature employs macrocyclic peptide hormones such as oxytocin, the vasopressins, and somatostatin to regulate such critical processes as lactation, uterine contraction, vasoconstriction, and growth hormone release. The serpin superfamily is a unique class of inhibitor proteins that regulate the actions of serine proteases, proteolytic enzymes involved in the regulation of physiol. events such as blood coagulation, fibrinolysis, connective tissue turnover, inflammatory responses, and complement activation. Serpins operate by a mechanism whereby they present a peptide recognition epitope as a part of macrocyclic array, or loop of the enzyme. The macrocyclic peptide motif has been under-explored as a means to discover novel serine protease inhibitors. In this chapter, we review serine protease inhibitors from the perspective of our studies involving the macrocyclic peptide cyclotheonamide A (CtA), a marine natural product. CtA, itself, is a very potent inhibitor of trypsin and a potent inhibitor of thrombin. We outline our progression from fundamental studies of CtA to a focused drug discovery approach aimed at identifying novel inhibitors of thrombin, a serine protease that plays a central role in the control of thrombosis and hemostasis. Our protein structure-based approach utilized X-ray and NMR structural information to design hybrid structures that combined elements of CtA and the thrombin -recognition tripeptide, D-Phe-Pro-Arg, in an analogy with fibrinogen Aα-chain motifs. We describe synthetic chemical, enzyme inhibition, and mol. modeling, and then rationalize thrombin vs. trypsin inhibition by considering features of the CtA-bound X-ray structures of each enzyme. Our approach resulted in a class of novel macrocyclic inhibitors of thrombin and trypsin with good in vitro potency. Although enzyme selectivity for thrombin over trypsin was

unexceptional, we managed to find some selective inhibitors of trypsin.

REFERENCE COUNT: 118 THERE ARE 118 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE REFORMAT

L24 ANSWER 2 OF 20 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

1998:529507 HCAPLUS

TITLE:

In-depth study of tripeptide-based acylheterocycles as

inhibitors of thrombin. Effective

utilization of the S1' subsite and its implications to

protein structure-based drug design.

AUTHOR(S): Maryanoff, Bruce E.; Hecker, L. R.; Schott,

M. R.; Yabut, S. C.; Zhang, H. -C.; Andrade-Gordon, P.; Giardino, E. C.; Kauffman, J. A.; Lewis, J. M.;

Costanzo, Michael J.

CORPORATE SOURCE:

Drug Discovery, R. W. Johnson Pharmaceutical Research

Institute, Spring House, PA, 19477, USA

SOURCE:

Book of Abstracts, 216th ACS National Meeting, Boston,

August 23-27 (1998), MEDI-021. American

Chemical Society: Washington, D. C.

CODEN: 66KYA2

DOCUMENT TYPE: Conference; Meeting Abstract

LANGUAGE: English

We have briefly described (J. Med. Chemical 1996, 39, 3039) a series of

potent α - thrombin inhibitors based on the motif

Me-(D-Phe)-Pro-Arg-Het and found the preferred form of "Het" to be 2-benzothiazolyl (1) (Ki = 0.19 nM). Although 1 has good selectivity for thrombin over other key coagulation enzymes, it caused severe hypotension at about 5 times the efficacious dose. We have since identified other inhibitors from our series which have good in vitro potency with a much improved side effect profile. The design, synthesis, and extensive structure-activity relationships (SAR) of this series will

L24 ANSWER 3 OF 20 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1998:482687 HCAPLUS

DOCUMENT NUMBER: 129:231006

be presented.

Thrombin receptor (PAR-1) antagonists. TITLE:

Heterocycle-based peptidomimetics of the SFLLR agonist

motif

AUTHOR (S): Hoekstra, William J.; Hulshizer, Becky L.;

Mccomsey, David F.; Andrade-Gordon, Patricia;

Kauffman, Jack A.; Addo, Michael F.; Oksenberg, Donna;

Scarborough, Robert M.; Maryanoff, Bruce E.

The R. W. Johnson Pharmaceutical Research Institute, CORPORATE SOURCE:

Spring House, PA, 19477, USA

Bioorganic & Medicinal Chemistry Letters (1998 SOURCE:

), 8(13), 1649-1654

CODEN: BMCLE8; ISSN: 0960-894X

PUBLISHER: Elsevier Science Ltd.

Journal DOCUMENT TYPE: LANGUAGE: English

GT

The thrombin receptor (PAR-1) is activated by α -AΒ thrombin to stimulate various cell types, including platelets, through the tethered-ligand sequence SFLLRN. A series of oxazole- or thiazole-based carboxamides, designed after SFLLR, were synthesized and evaluated in vitro. The compds. inhibited platelet aggregation induced by SFLLRN-NH2 or α - thrombin, and blocked the binding of [3H]-Ser-(p-F-Phe)-Har-Leu-Har-Lys-Tyr-NH2 (Har = homoarginine) to a CHRF membrane preparation of PAR-1. Oxazole-based peptide I bound to PAR-1 with an IC50 of 1.6 μ M, and gave IC50 values of 25 μ M and 6.6 μ M against α- thrombin- and SFLLRN-NH2-induced platelet aggregation,

resp.

IT 212756-53-1P

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation)

(preparation of oxazole- and thiazole-based peptidomimetics as thrombin receptor antagonists)

RN 212756-53-1 HCAPLUS

CN L-Phenylalaninamide, N-methylglycyl-2-[(1S)-1-amino-2-(4-fluorophenyl)ethyl]-4-thiazolecarbonyl-L-arginyl-L-arginyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

$$H_2N$$
 H_1
 H_2N
 H_2N
 H_3
 H_4
 H_2N
 H_4
 H_5
 H_5
 H_5
 H_5
 H_5
 H_6
 H_7
 H_8
 H_8

REFERENCE COUNT:

THERE ARE 24 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L24 ANSWER 4 OF 20 HCAPLUS COPYRIGHT 2006 ACS on STN

24

ACCESSION NUMBER:

1997:805968 HCAPLUS

DOCUMENT NUMBER:

128:3874

TITLE:

Solid-Phase Synthesis of Arginine-Containing Peptides

by Guanidine Attachment to a Sulfonyl Linker

AUTHOR (S):

Zhong, H. Marlon; Greco, Michael N.; Maryanoff,

Bruce E.

CORPORATE SOURCE:

Drug Discovery, R. W. Johnson Pharmaceutical Research

Institute, Spring House, PA, 19477, USA

SOURCE:

Journal of Organic Chemistry (1997), 62(26),

9326-9330

CODEN: JOCEAH; ISSN: 0022-3263

PUBLISHER:

American Chemical Society

DOCUMENT TYPE:

Journal

LANGUAGE:

English

GI

AB In the area of mol. diversity generation, the authors have developed a new arenesulfonyl linker for the solid-phase organic synthesis of compds. containing

guanidine groups (viz. I; P = polystyrene resin). In the cases examined for illustration, the Arg guanidine group was attached to the novel solid support via a SO2-N bond, followed by subsequent chemical manipulation and release of the product from the resin. This new resin, I, bearing an electron-rich arenesulfonyl group, has a reasonable loading capacity of ca. 0.5 mmol/g, is stable to various reaction conditions, and is compatible with both tert-butoxycarbonyl (Boc) and 9-

fluorenylmethoxycarbonyl (Fmoc) peptide chemical Three model arginine-containing

peptides were synthesized by appending amino acids onto a resin-bound arginine derivative at either or both termini: H-Arg-Phe-OH, H-Phe-Arg-Ala-OMe, and H-Phe-Gly-Arg-Ala-OMe, obtained in isolated, purified yields of 72%, 50%, and 40%, resp. Furthermore, the authors applied resin I to the synthesis of H-Ser-Phe-Leu-Leu-Arg-Asn-NH2, an agonist hexapeptide for the thrombin receptor (16% yield).

REFERENCE COUNT: 34 THERE ARE 34 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L24 ANSWER 5 OF 20 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1997:568161 HCAPLUS

DOCUMENT NUMBER: 127:234616

TITLE: Macrocyclic peptides useful in the treatment of

thrombin related disorders

INVENTOR(S): Greco, Michael N.; Maryanoff, Bruce E.

PATENT ASSIGNEE(S): Ortho Pharmaceutical Corporation, USA

SOURCE: PCT Int. Appl., 118 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

GI

PA'		KIND DATE					LICAT		NO.		DATE								
WO	9730												75		19970219 <				
	W:	AL,	AM,	AT,	AU,	AZ,	BA,	BB,	BG,	BR	, BY,	CA,	CH,	CN,	CU,	CZ,	DE,		
		DK,	EE,	ES,	FI,	GB,	GE,	HU,	IL,	IS	, JP,	KE,	KG,	ΚP,	KR,	ΚZ,	LC,		
		LK,	LR,	LS,	LT,	LU,	LV,	MD,	MG,	MK	, MN,	MW,	MX,	NO,	NZ,	PL,	PT,		
		RO,	RU,	SD,	SE,	SG,	SI,	SK,	TJ,	TM	, TR,	TT,	UA,	UG,	UZ,	VN,	AM,		
		AZ,	BY,	KG,	ΚZ,	MD,	RU,	TJ,	TM										
	RW:	KE,	LS,	MW,	SD,	SZ,	UG,	AT,	BE,	CH	, DE,	DK,	ES,	FI,	FR,	GB,	GR,		
		ΙE,	IT,	LU,	MC,	NL,	PT,	SE,	BF,	ВJ	, CF,	CG,	CI,	CM,	GΑ,	GN,	ML,		
		MR,	NE,	SN,	TD,	TG													
	5888						1999	0330	1	US	1996-	6036	66		1	9960	220		
CA	2246	811			AA		1997	0821	(CA	1997-	2246	811		1	9970	219	<	
AU	9720	526			A1		1997	0902	1	ΑU	1997-	2052	6		1	9970	219	<	
ΑŲ	7170	24			B2		2000												
ZA	9701	419			Α		1998	0819		ZA	1997-	1419			1	9970	219	<	
EP	9326	19			A1		1999	0804]	EΡ	1997-	9086	77		1	9970	219		
	R:	ΑT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GR	, IT,	LI,	LU,	NL,	SE,	MC,	PT,		
		ΙE,	SI,	FΙ															
NZ	3314	47			Α		2000	0228	1	NZ	1997-	3314	47		1	9970	219		
JP	2000	5047	28		T2		2000	0418	1	JP	1997-	5295	78		1	9970	219		
NZ	5018	77			Α		2001	0223	1	NZ	1997-	5018	77		1	9970	219		
TW	5170	62			В		2003	0111	•	TW	1997-	8610	3657		1	9970	324		
NO	9803	800			Α		1998	1019	1	ОИ	1998-	3800			1	9980	819	<	
RIORIT	Y APP	LN.	INFO	. :					1	US	1996-	6036	66		A 1	9960	220		
									1	WO	1997-	US25	75		W 1	9970	219		
THER SO	ER SOURCE(S):					PAT	127:	2346	16										

* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT *

Title compds. I [m = 2-12; B = (CR5R6NHCHR4)b where CR5R6 is bound to the ring methylene and the CHR4 is bound to A; G = (CHR7ER8R9NH)g where NH is bound to the ring methylene and CHR7 is bound to the amido group; E = C(CH2)q, where q = 0-12; a, b, g = 0 or 1; R3 = H, OH, C1-5 alkoxy; n = 1 or 2; R4, R7 = H, C1-5 alkyl, carboxyC1-5 alkyl, (un)substituted phenyl; R5, R6 = H, or form a carbonyl group with the carbon of attachment; R8, R9 = H, or form a carbonyl group with the carbon of E] and II [W = N, S, O; same m, A, B, and G] or their pharmaceutically acceptable salts, were prepared as thrombin and trypsin inhibitors. Thus, macrocyclic peptide III was prepared by a multistep procedure and tested in vitro for inhibition of human α - thrombin (Ki = 0.0031 ± 0.0008 μ M) and trypsin (Ki = 0.004 ± 0.0018 μ M). Prepared agents I and II inhibited thrombin at nanomolar levels and exhibit reasonable selectivity for thrombin over trypsin.

L24 ANSWER 6 OF 20 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1997:162122 HCAPLUS

TITLE: Design of macrocyclic thrombin inhibitors.

AUTHOR(S): Greco, Michael N.; Powell, Eugene T.; Hecker, Leonard

R.; Andrade-Gordon, Patricia; Kauffman, Jack A.; Lewis, Joan M.; Venkatapathy, Ganesh; Tulinsky,

Alexander; Maryanoff, Bruce E.

CORPORATE SOURCE: Drug Discovery, R. W. Johnson Pharmaceutical Research

Institute, Spring House, PA, 19477, USA

SOURCE: Book of Abstracts, 213th ACS National Meeting, San

Francisco, April 13-17 (1997), MEDI-290. American Chemical Society: Washington, D. C.

CODEN: 64AOAA

DOCUMENT TYPE: Conference; Meeting Abstract

LANGUAGE: English

AB Since thrombin is a trypsin-like serine protease with a central role in the bioregulation of thrombosis and hemostasis, selective active-site-directed inhibitors represent potentially useful therapeutic agents for the management of thrombotic disorders. By following a protein structure-based protocol, we have designed potent, macrocyclic active-site inhibitors of thrombin. We plan to discuss structure-function issues relating ring size and P3/P1' modifications to enzyme inhibition. Chemical synthesis, in vitro biochem. evaluation, and details of the X-ray crystal structure of a complex between 1 and thrombin will also be presented.

L24 ANSWER 7 OF 20 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1997:142079 HCAPLUS

DOCUMENT NUMBER: 126:248109

TITLE: NMR three-dimensional solution structure of the serine

protease inhibitor cyclotheonamide A

AUTHOR(S): McDonnell, Patricia A.; Caldwell, Gary W.; Leo,

Gregory C.; Podlogar, Brent L.; Maryanoff, Bruce

E.

CORPORATE SOURCE: Drug Discovery, R. W. Johnson Pharmaceutical Research

Institute, Spring House, PA, 19477, USA

SOURCE: Biopolymers (1997), 41(3), 349-358

CODEN: BIPMAA; ISSN: 0006-3525

PUBLISHER: Wiley

DOCUMENT TYPE: Journal LANGUAGE: English

AB The NMR solution conformation of cyclotheonamide A (CtA) was determined in

media. The data produced 15 distance and 10 torsional constraints which were used to generate conformations using restrained simulated annealing (SA) and distance geometry/simulated annealing (DG/SA) calcns. Two different calcn. protocols were performed to ensure proper sampling of conformational space and even though the torsional restraints were input differently, both calcn. methods yielded the same conformation of CtA. In the structure calcns., all solns. of the Karplus equation were sampled simultaneously using the restrained SA protocol and large ranges were used for the dihedral restraints in the DG/SA protocol because all solns. to Karplus equation could not be sampled simultaneously. The solution conformation was also compared to the solid state x-ray conformations of CtA bound to thrombin and trypsin. The conformation of the residues important for active site binding (D-Phe, h-Arg, and Pro) are nearly identical in aqueous solution and solid state with largest differences

at

the a-Ala and v-Tyr residues. CtA appears to be pre-ordered in structure and does not undergo a significant conformational change upon binding to the enzyme active site.

L24 ANSWER 8 OF 20 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1997:124457 HCAPLUS

DOCUMENT NUMBER: 126:131784

TITLE: Preparation of peptidyl heterocycles useful in the

treatment of thrombin related disorders Costanzo, Michael J.; Maryanoff, Bruce E.

PATENT ASSIGNEE(S): Ortho Pharmaceutical Corp., USA

SOURCE: PCT Int. Appl., 133 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

INVENTOR (S):

	PATENT NO.						KIND DATE			APPLICATION NO.						D				
							-													
	WO	9640	742			A1 19961219					WO 1	996-	US84:		19960603 <					
		W:	AL,	AM,	ΑT,	ΑU,	ΑZ,	BB,	BG,	BR,	BY,	CA,	CH,	CN,	CZ,	DE,	DK,	EE,		
			ES,	FI,	GB,	GE,	HU,	IL,	IS,	JP,	KE,	KG,	ΚP,	KR,	ΚZ,	LK,	LR,	LS,		
			LT,	LU,	LV,	MD,	MG,	MK,	MN,	MW,	MX,	NO,	NZ,	PL,	PT,	RO,	RU,	SD,		
			SE,	SG																
		RW:	ΚE,	LS,	MW,	SD,	SZ,	UG,	ΑT,	BE,	CH,	DE,	DK,	ES,	FI,	FR,	GB,	GR,		
			ΙE,	IT,	LU,	MC,	NL,	PT,	SE,	BF,	ВJ,	CF,	CG,	CI,	CM,	GA,	GN			
	US	5827	860			Α		1998	1027	,	US 1	995-	4819	34		1	9950	507	<	
	ΑU	9658	867			A1 19961230				AU 1996-58867						19960603 <				
	ZA	9604	761			Α		1997	1205		ZA 1	996-	4761			1	9960	506	<	
	TW	4749	36			В		2002	0201		TW 1	996-	8510	3207		1	9960	708		
PRIO	RIT	APP	LN.	INFO	.:						US 1	995-	4819	34	1	A 1	9950	507		
											WO 1	996-	US84:	30	1	W 1:	9960	503		

OTHER SOURCE(S): MARPAT 126:131784

GΙ

$$\begin{array}{c|c}
 & O & (CH_2)_nCO \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\$$

Peptidyl heterocycles I [A = C1-8 alkyl, carboxy-C1-4 alkyl, C1-4 AB alkoxycarbonyl-C1-4 alkyl, (un) substituted phenyl-C1-4 alkyl, N-substituted D- or L-amino acid, N-substituted D- and/or L-amino acid-containing dipeptide; R1 = H, C1-5 alkyl; R2 = amino-C2-5 alkyl, guanidino-C2-5 alkyl, C1-4 alkylguanidino-C2-5 alkyl, di-C1-4 alkylguanidino-C2-5 alkyl, amidino-C2-5 alkyl, C1-4 alkylamidino-C2-5 alkyl, di-C1-4 alkylamidino-C2-5 alkyl, C1-3 alkoxy-C2-5alkyl, (un) substituted phenyl; R3 = H, C1-5 alkyl; n = 0-3; p = 0, 1; E =heterocycle] and their pharmaceutically acceptable salts are compds. useful in the treatment of thrombin and trypsin related disorders. Thus, condensation of protected arginine aldehyde tripeptide II (Z = PhCH2O2C; R = CHO) with acetone cyanohydrin gave tripeptide cyanohydrin II [R = CH(OH)CN], which underwent methanolysis in the presence of HCl to give imidate salt II [R = CH(OH)C(OMe):NH.HCl], followed by cyclocondensation with 2-aminothiophenol to give benzothiazole derivative II [R = CH(OH)Q; Q = 2-benzothiazolyl]. Oxidation of II [R = CH(OH)Q; Q = 2-benzothiazolyl]CH (OH) Q]

with Dess-Martin periodinane and deprotection gave the desired thrombin inhibitor III. III inhibited thrombin with Ki = $0.00023 \mu M$ in an in vitro assay.

L24 ANSWER 9 OF 20 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1997:121405 HCAPLUS

DOCUMENT NUMBER: 126:131785

TITLE: Preparation of peptidyl heterocycles useful in the

treatment of thrombin related disorders Costanzo, Michael J.; Maryanoff, Bruce E.

INVENTOR (S): Ortho Pharmaceutical Corp., USA PATENT ASSIGNEE(S):

SOURCE: PCT Int. Appl., 134 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English FAMILY ACC. NUM. COUNT: 1 PATENT INFORMATION:

PA	rent 1	NO.			KIND DATE				APPLICATION NO.						DATE					
WO	9640	741	-		A1	_	1996	 1219	1	WO 1996-US8360						19960602 <				
	W:	AL,	AM,	AT,	AU,	AZ,	BB,	BG,	BR,	BY,	CA,	CH,	CN,	CZ,	DE,	DK,	EE,			
		ES,	FI,	GB,	GE,	HU,	IL,	IS,	JP,	ΚE,	KG,	ΚP,	KR,	ΚZ,	LK,	LR,	LS,			
		LT,	LU,	LV,	MD,	MG,	MK,	MN,	MW,	MX,	NO,	NZ,	PL,	PT,	RO,	RU,	SD,			
		SE,	SG																	
	RW:	KE,	LS,	MW,	SD,	SZ,	UG,	ΑT,	BE,	CH,	DE,	DK,	ES,	FI,	FR,	GB,	GR,			
		ΙE,	IT,	LU,	MC,	NL,	PT,	SE,	BF,	ВJ,	CF,	CG,	CI,	CM,	GA,	GN				
US	5827	866			Α		1998	1027	1	US 1	995-	4825	87		1:	950	507 <			
AU	9659	678			A1		1996	1230	i	AU 1	996-	5967	В		1:	9960	502 <			
ZA	9604	762			Α		1997	1208		ZA 1	996-	4762			1:	9960	506 <			
TW	5671	87			В		2003	1221	•	rw 1	996-	8510	8211		1:	9960.	708			
PRIORITY	Y APP	LN.	INFO	. :					1	US 1	995-	4825	87	i	A 1:	950	507			
									1	WO 1	996-	US83	60	1	W 1	9960	502			
OMITTED OF	ATTO OF	101 .			MAD TO 1	ייי ע רי	126.	1217	0 =											

OTHER SOURCE(S):

MARPAT 126:131785

GI

AB Peptidyl heterocycles I [A = C1-8 alkyl, carboxy-C1-4 alkyl, C1-4 alkoxycarbonyl-C1-4 alkyl, (un)substituted phenyl-C1-4 alkyl, N-substituted D- or L-amino acid, N-substituted D- and/or L-amino acid-containing dipeptide; R1 = H, C1-5 alkyl; R2 = amino-C2-5 alkyl, guanidino-C2-5 alkyl, C1-4 alkylguanidino-C2-5 alkyl, di-C1-4 alkylguanidino-C2-5 alkyl, C1-4 alkylamidino-C2-5 alkyl, C1-4 alkylamidino-C2-5 alkyl, C1-3 alkoxy-C2-5alkyl, (un)substituted phenyl; R3 = H, C1-5 alkyl; n = 0-3; p = 0, 1; E = heterocycle] and their pharmaceutically acceptable salts are compds. useful in the treatment of thrombin and trypsin related disorders. Thus, condensation of protected arginine aldehyde tripeptide

II (Z = PhCH2O2C; R = CHO) with acetone cyanohydrin gave tripeptide
 cyanohydrin II [R = CH(OH)CN], which underwent methanolysis in the
 presence of HCl to give imidate salt II [R = CH(OH)C(OMe):NH.HCl],
 followed by cyclocondensation with 2-aminothiophenol to give benzothiazole
 derivative II [R = CH(OH)Q; Q = 2-benzothiazolyl]. Oxidation of II [R =
 CH(OH)Q]

with Dess-Martin periodinane and deprotection gave the desired thrombin inhibitor III. III inhibited thrombin with Ki = $0.00023~\mu\text{M}$ in an in vitro assay.

L24 ANSWER 10 OF 20 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1997:49331 HCAPLUS

DOCUMENT NUMBER: 126:171871

TITLE: Novel thrombin inhibitors that are based on

a macrocyclic tripeptide motif

AUTHOR(S): Greco, Michael N.; Powell, Eugene T.; Hecker, Leonard

R.; Andrade-Gordon, Patricia; Kauffman, Jack A.; Lewis, Joan M.; Ganesh, Venkatapathy; Tulinsky,

Alexnder; Maryanoff, Bruce E.

CORPORATE SOURCE: Drug Discovery, R. W. Johnson Pharmaceutical Research

Institute, Spring House, PA, 19477, USA

Ι

SOURCE: Bioorganic & Medicinal Chemistry Letters (1996

), 6(24), 2947-2952

CODEN: BMCLE8; ISSN: 0960-894X

PUBLISHER: Elsevier DOCUMENT TYPE: Journal LANGUAGE: English

GΙ

AB A series of macrocyclic α -keto amides containing the D-Phe-Pro-Arg (fPR) motif were synthesized and evaluated in vitro as inhibitors of human α - thrombin and bovine trypsin. Structure-function studies, relating ring size and modifications at the P3 and P1' positions to enzyme inhibition, are described. An X-ray crystallog. study was performed on a ternary complex formed form I [X = (CH2)7], thrombin, and hirugen.

REFERENCE COUNT: 18 THERE ARE 18 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L24 ANSWER 11 OF 20 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1996:675375 HCAPLUS

DOCUMENT NUMBER: 126:154368

TITLE: Crystal structures of thrombin with

thiazole-containing inhibitors: probes of the S1'

binding site

AUTHOR(S): Matthews, John H.; Krishnan, R.; Costanzo, Michael J.;

Maryanoff, Bruce E.; Tulinsky, A.

CORPORATE SOURCE: Dep. Chem., Michigan State Univ., East Lansing, MI,

48824, USA

Biophysical Journal (1996), 71(5), 2830-2839 SOURCE:

CODEN: BIOJAU; ISSN: 0006-3495

Biophysical Society PUBLISHER:

DOCUMENT TYPE: Journal LANGUAGE: English

Structures of human thrombin complexed with hirugen and 2 active

site inhibitors, RWJ-50353 (N-methyl-D-phenylalanyl-N-[5-

[(aminoiminomethyl)amino]-1-[[(2-benzothiazolyl)carbonyl]butyl]-L-

prolinamide trifluoroacetate hydrate) and RWJ-50215 (N-[4-

(aminoiminomethyl)amino]-1-[2-(thiazol-2-ylcarbonylethyl)piperidin-1ylcarbonyl]butyl]-5-(dimethylamino)naphthalenesulfonamide trifluoroacetate hydrate), were determined by x-ray crystallog. The refinements converged at R

values of 0.158 in the 7.0-2.3-A range for RWJ-50353 and 0.155 in the 7.0-1.8-A range for RWJ-50215. Interactions between the protein and the thiazole rings of the 2 inhibitors provided new valuable information

about the S1' binding site of thrombin. The RWJ-50353 inhibitor consisted of an S1'-binding benzothiazole group linked to the D-Phe-Pro-Arg chloromethyl ketone motif. Interactions with the S1-S3

sites were similar to the D-phenylalanyl-propyl-arginyl chloromethylketone structure. In RWJ-50215, a S1'-binding 2-ketothiazole group was added to

the thrombin inhibitor-like framework of dansylarginine

N-(3-ethyl-1,5-pentanediyl)amine. The geometry at the S1-S3 sites here was also similar to that of the parent compound The benzothiazole and 2-ketothiazole groups. bound in a cavity surrounded by His-57, Try-60A, Trp-60D, and Lys-60F. This location of the S1' binding site was

consistent with previous structures of thrombin complexes with hirulog-3, CVS-995, and hirutonin-2 and -6. The ring N atom of the RWJ-50353 benzothiazole moiety formed a H-bond with His-57, and Lys-60F reoriented because of close contacts. The O and N atoms of the

ketothiazole moiety of RWJ-50215 H-bonded with the NZ atom of Lys-60F.

L24 ANSWER 12 OF 20 HCAPLUS COPYRIGHT 2006 ACS on STN

1996:422519 HCAPLUS ACCESSION NUMBER:

DOCUMENT NUMBER: 125:104245

TITLE: Potent thrombin inhibitors that probe the

S1' subsite: tripeptide transition state analogs based

on a heterocycle-activated carbonyl group

Costanzo, Michael J.; Maryanoff, Bruce; AUTHOR (S):

Hecker, Leonard R.; Schott, Mary R.; Yabut, Stephen C.; Zhang, Han-Cheng; Andrade-Gordon, Patricia;

Kauffman, Jack A.; Lewis, Joan M.; et al.

CORPORATE SOURCE: R. W. Johnson Pharmaceutical Research Institute,

Spring House, PA, 19477, USA

Journal of Medicinal Chemistry (1996), SOURCE:

39(16), 3039-3043 CODEN: JMCMAR; ISSN: 0022-2623

PUBLISHER: American Chemical Society

DOCUMENT TYPE: Journal English LANGUAGE:

A series of peptidoyl heterocycles with the motif Me-(D-Phe)-Pro-Arq-Het was synthesized and evaluated for inhibition of human α -

thrombin and bovine trypsin. The preferred form of "Het" was a 2-azole, with the best thrombin inhibitor (Ki = 0.19 nM) having a 2-benzothiazole group (2, RWJ-50353). The best selectivity for thrombin over trypsin (try/thr ratio = 88) was obtained with the N-methyl-2-imidazole group (thrombin Ki = 50 nM). In analogs of 2 with the activated carbonyl reduced to an alc. group (two

diastereomers), there was a substantial loss of thrombin

inhibition , as expected for a transition state analog. Inhibitor 2 shows

excellent selectivity for thrombin over other blood coagulation

enzymes, such as plasmin (ratio = 12,000), tPA (ratio = 3,300), activated protein C (ratio = 19,000), and streptokinase (ratio = 6,300), but the selectivity of 2 for **thrombin** over trypsin is more modest (ratio = 16). Compound 2 has an IC50 value of 23 ± 2 nM for inhibition of **thrombin**-induced platelet aggregation (human, gel-filtered). The mol. structure of a complex between 2, human α - **thrombin**, and hirugen was determined by x-ray crystallog. Besides the standard active-site

interactions for tripeptide **thrombin** inhibitors, the structure shows novel interactions in the S1' region, where the benzothiazole ring forms a hydrogen bond with His-57 and an aromatic stacking interaction with Trp-60D of the unique insertion loop of **thrombin**.

L24 ANSWER 13 OF 20 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1996:392102 HCAPLUS

DOCUMENT NUMBER: 125:143319

TITLE: Peptidyl heterocycles useful in the treatment of

thrombin related disorders

INVENTOR(S): Costanzo, Michael J.; Maryanoff, Bruce E.

PATENT ASSIGNEE(S): USA

SOURCE: U.S., 59 pp.

CODEN: USXXAM

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

	PA'	FENT	NO.			KIND DATE					APP	LICAT		DATE							
	US	5523	308			Α		1996	0604		US	1995-	4864	73		19950607 /					
	CA	2224	110			AA		1996	1219		CA	1996-		19960603 <							
	WO	9640	748			A1		1996	1219		WO	1996-	US84		19960603 <						
		W:	AL,	AM,	AT,	AU,	AZ,	BB,	BG,	BR,	BY	, CA,	CH.	CN.	CZ.	DE.	DK	EE	`		
			ES,	FI,	GB,	GE,	HU,	IL,	IS,	JP,	KE	, KG,	KP.	KR.	ΚZ.	LK.	I.R	LS	"		
			LT,	LU,	LV,	MD,	MG,	MK,	MN,	MW,	ΜX	, NO,	NZ.	PL.	PT.	RO.	RII	SD	'		
			SE,	SG		•	•	•	•			,,	,	,	,	10,	10,	, עט			
		RW:	KE,	LS,	MW,	SD,	SZ,	UG,	AT.	BE.	СН	, DE,	DK.	ES.	FT.	FR	GB	GP			
			ΙE,	IT,	LU,	MC,	NL,	PT,	SE,	BF.	BJ	. CF.	CG.	CT.	CM.	GΔ	GN				
	AU	9659	713			A1	•	1996	1230		AU	1996-	5971:	3	C,	1	9960	603	<i>-</i>		
	AU	7210	79			B2		2000	0622							-	JJ00	005			
	EP	83383	39			A1		1998	0408		EP :	1996-	9170	14		1	9960	603	<i></i> -		
	EP 833839							2003	0108							_	,,,,,	003	`		
											GR	, IT,	LI.	LU.	NL.	SE.	MC.	PT.			
			ΙE,	SI,	FΙ								•	- ,		,	,	/			
	CN	11927	747			Α		1998	0909	(CN :	1996-	1961	03		1	9960	603	<		
	JP	11506	5762			T2			0615			1997-					9960		•		
	RU	21811	125			C2		2002	0410			1998-					9960				
	AT	23075	57			E		2003	0115			1996-					9960				
	\mathtt{PL}	18498	36			B1						1996-3					9960				
	ES	21911	L02			Т3			0901			1996-					9960				
	${ t IL}$	12243	36			A1	:	2004	0620			1996-:					9960				
	za	96047	759			Α			1208	- 2		1996-4					9960		<		
	TW	47075	51			В		2002	0101			1996-8					9960'		•		
	NO	97057	747						0203			L997-					99712		<		
PR:	IORITY	APPI	N.]	NFO.	. :							1995-4					9950		-		
					•					V		1996-t					9960				
OTI	HER SO	URCE ((S):			MARE	TA	125:1	14331	.9								•			
					_																

AB Peptidyl heterocycles ANHCR1R2CO[B(CH2)nCO]pE (A = alkyl, substituted phenylalkyl, amino acid moiety, etc.; R1 = H, alkyl; R2 = aminoalkyl, alkoxyalkyl, Ph or substituted phenyl; B = 1,2-piperidinediyl or

4-alkyl-1,2-piperidinediyl, n = 0-3; p = 0, 1; E = heterocyclyl) or theirpharmaceutically acceptable salts were prepared for use in the treatment of thrombin and trypsin related disorders. Thus, N-methyl-D-phenylalanyl-N-[4-[(aminoiminomethyl)amino]-1S-[(benzothiazol-2yl)carbonyl]butyl]-L-prolinamide (1) was prepared from N-CBZ-N-methyl-Dphenylalanyl-L-prolyl-NG-CBZ-L-arginine-aldehyde by sequential reaction with acetone cyanohydrin, gaseous HCl in MeOH, 2-aminothiophenol, and Dess-Martin periodinane. Compound 1 and 56 other synthesized compds. were tested for their ability to inhibit thrombin or trypsin mediated hydrolysis. Thr IC50 (μM) and Trp IC50 (μM) values for compound 1 are 0.00023 and 0.0031, resp.

L24 ANSWER 14 OF 20 HCAPLUS COPYRIGHT 2006 ACS on STN

1996:333128 HCAPLUS ACCESSION NUMBER:

DOCUMENT NUMBER: 125:115113

Transformation of the marine natural product TITLE:

cyclotheonamide A by aqueous base. X-Ray analysis of a

novel ligand complexed with human $\alpha\text{--}$

Maryanoff, Bruce E.; Zhang, Han-Cheng; AUTHOR (S):

Greco, Michael N.; Zhang, Erli; Vanderhoff-Hanaver,

Peggy; Tulinsky, Alexander

Drug Discovery, R. W. Johnson Pharmaceutical Res. CORPORATE SOURCE:

Inst., Spring House, PA, 19477, USA

Tetrahedron Letters (1996), 37(21), SOURCE:

3667-3670

CODEN: TELEAY; ISSN: 0040-4039

PUBLISHER: Elsevier DOCUMENT TYPE: Journal English LANGUAGE:

different product.

Treatment of the macrocyclic pentapeptide cyclotheonamide A with aqueous sodium carbonate or triethylamine at 23° generated two isomeric products. X-ray anal. of a complex with α - thrombin indicates a ring-opened pentapeptide from cleavage at the α -keto amide bond. However, mass spectral data and a model study suggest a

L24 ANSWER 15 OF 20 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1995:924639 HCAPLUS

TITLE: Macrocyclic peptide inhibitors of human α -

thrombin: Cyclotheonamide and its analogs.

Maryanoff, Bruce E.; Greco, Michael N.; AUTHOR (S):

Zhang, Han-Cheng; Glover, Karen A.; Kauffman, Jack A.; Andrade-Gordon, Patricia; Tulinsky, Alexander

CORPORATE SOURCE:

Drug Discovery, R. W. Johnson Pharmaceutical Research Institute, PA, 19477, USA

Book of Abstracts, 210th ACS National Meeting, SOURCE:

Chicago, IL, August 20-24 (1995), Issue Pt.

2, ORGN-025. American Chemical Society: Washington,

D. C.

CODEN: 61XGAC

DOCUMENT TYPE: Conference; Meeting Abstract

LANGUAGE: English

By means of structure-based drug discovery, we have pursued novel inhibitors of human α - thrombin, a serine protease central to the bioregulation of thrombosis and hemostasis. Cyclotheonamide A (CtA), a marine sponge natural product that represents a novel class of macrocyclic inhibitors, served as a prototype for drug design. We characterized the interactions of CtA within the active site of thrombin by X-ray crystallog. and developed synthetic methodol. to

prepare CtA and its analogs by a convergent route involving [2 + 3] segment condensation. Diverse analogs were obtained and evaluated for thrombin inhibition. Other aspects of thrombin inhibitors, especially those with a macrocyclic peptide structure, will be discussed.

L24 ANSWER 16 OF 20 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1995:777430 HCAPLUS

DOCUMENT NUMBER: 123:329242

TITLE: Cyclotheonamide derivatives: synthesis and

thrombin inhibition. Exploration of specific

structure-function issues

AUTHOR (S): Maryanoff, Bruce E.; Zhang, Han-Cheng;

Greco, Michael N.; Glover, Karen A.; Kauffman, Jack

A.; Andrade-Gordon, Patricia

Drug Discovery, R. W. Johnson Pharm. Res. Inst., Spring House, PA, 19477, USA CORPORATE SOURCE:

SOURCE: Bioorganic & Medicinal Chemistry (1995),

3(8), 1025-38

CODEN: BMECEP; ISSN: 0968-0896

PUBLISHER: Elsevier DOCUMENT TYPE: Journal LANGUAGE: English

Macrocyclic pentapeptide analogs of the sponge natural product cyclotheonamide A (CtA, -3) were prepared by the authors convergent synthetic protocol, in which a late-stage primary amine group is available for substitution (Maryanoff et al. Proc Natl. Acad. Sci. U.S.A. 1993, 90, 8048). These analogs, as well as CtA and cyclotheonamide B (CtB), were examined for their ability to inhibit the serine protease α thrombin, in comparison with suitable reference stds. The authors characterized Michaelis-Menten and slow-binding kinetics for the cyclotheonamide derivs. An attempt was made to utilize the unoccupied hydrophobic S3 subsite of thrombin. Also, removal of the hydroxyphenyl group, which is thought to be involved in an aromatic stacking interaction with Trp60D of thrombin, was explored. The importance of the α -keto and olefin groups was examined The relation of structure and function with the analogs proved to be less predictable than anticipated.

L24 ANSWER 17 OF 20 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1995:553946 HCAPLUS

DOCUMENT NUMBER: 123:228873

TITLE: Macrocyclic Peptide Inhibitors of Serine Proteases.

Convergent Total Synthesis of Cyclotheonamides A and B via a Late-Stage Primary Amine Intermediate. Study of

Thrombin Inhibition under Diverse Conditions. [Erratum to document cited in CA122:161323]

AUTHOR (S): Maryanoff, Bruce E.; Greco, Michael N.;

Zhang, Han-Cheng; Andrade-Gordon, Patricia; Kauffman, Jack A.; Nicolaou, K. C.; Liu, Aijun; Brungs, Peter H.

CORPORATE SOURCE: R. W. Johnson Pharmaceutical Research Institute,

Spring House, PA, 19477, USA

SOURCE: Journal of the American Chemical Society (1995

), 117(19), 5427

CODEN: JACSAT; ISSN: 0002-7863

PUBLISHER: American Chemical Society

DOCUMENT TYPE: Journal LANGUAGE: English

The errors were not reflected in the abstract or the index entries.

L24 ANSWER 18 OF 20 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

1995:319903 HCAPLUS

DOCUMENT NUMBER:

122:161323

TITLE:

Macrocyclic Peptide Inhibitors of Serine Proteases. Convergent Total Synthesis of Cyclotheonamides A and B via a Late-Stage Primary Amine Intermediate. Study of

Thrombin Inhibition under Diverse Conditions

AUTHOR (S):

Maryanoff, Bruce E.; Greco, Michael N.;

Zhang, Han-Cheng; Andrade-Gordon, Patricia; Kauffman, Jack A.; Nicolaou, K. C.; Liu, Aijun; Brungs, Peter H.

CORPORATE SOURCE:

R. W. Johnson Pharmaceutical Research Institute,

Spring House, PA, 19477, USA

SOURCE:

Journal of the American Chemical Society (1995

), 117(4), 1225-39

CODEN: JACSAT; ISSN: 0002-7863

PUBLISHER: DOCUMENT TYPE: American Chemical Society Journal

English

LANGUAGE: OTHER SOURCE(S):

CASREACT 122:161323

* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT *

Cyclotheonamide A (I; R = CHO) (II), a cyclic pentapeptide isolated from the marine sponge Theonella sp., is an inhibitor of serine proteases such as α - thrombin and trypsin. The total synthesis of II by a convergent [3 + 2] fragment-condensation route is described in detail. The requisite protected amino acid starting materials were processed and converted into two segments, III (TBS = Me3CSiMe2, PhtN = phthalimido) and IV (Fmoc = 9-fluorenylmethoxycarbonyl, Ts = tosyl), which were coupled with BOP reagent in 75% yield to give a pentapeptide intermediate. After selective removal of the terminal protecting groups, the critical macrocyclization was effected with BOP-Cl in 65% yield under high-dilution conditions to provide V in 25% overall yield. Macrocycle V was then processed in four steps to II, which was isolated and purified by HPLC (trifluoroacetate salt). Synthetic II was identical to the natural product by 500 MHz 1H NMR, 100-MHz 13C NMR, HPLC, TLC, fast-atom-bombardment mass spectrometry, optical rotation, and bioassay. The 13C NMR spectrum of II in D2O shows virtually exclusive population by the hydrated form of the α -keto amide (gem-diol structure). Cyclotheonamide B (I; R = Ac) was also prepared through an analogous transformation. This chemical protocol offers a useful vehicle for the systematic preparation of cyclotheonamide analogs, and because of a the late-stage primary amine intermediate, analogs with a modified N-acyl or N-alkyl substituent should be conveniently accessible. This seems important for satisfying the hydrophobic S3 binding pocket of thrombin which is vacant for the CtA-thrombin complex but effectively utilized by the standard D-Phe-Pro-Arg tripeptide inhibitors. Other chemical highlights of the synthesis include (1) homologation of protected arginal via a cyanohydrin to obtain the homoarginine subunit, (2) use throughout of a monoprotected guanidine, and (3) macrocyclic lactam formation with an unprotected hydroxyl substituent. characteristics of II as a thrombin inhibitor were also examined Either competitive, Michaelis-Menten kinetics or slow, tight-binding kinetics were observed, depending on the substrate, the thrombin concentration, and the order of addition of components. Given sufficient time

for

equilibration of II and thrombin, slow-binding inhibition is generally displayed.

L24 ANSWER 19 OF 20 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1994:23073 HCAPLUS

DOCUMENT NUMBER: 120:23073

TITLE: Molecular basis for the inhibition of human α -

thrombin by the macrocyclic peptide

cyclotheonamide A

AUTHOR(S): Maryanoff, Bruce E.; Qiu, Xiayang;

Padmanabhan, K. P.; Tulinsky, Alexander; Almond, Harold R., Jr.; Andrade-Gordon, Patricia; Greco,

Michael N.; Kauffman, Jack A.; Nicolaou, K. C.; et al. Drug Discovery Div., R. W. Johnson Pharm. Res. Inst.,

Spring House, PA, 19477, USA

SOURCE: Proceedings of the National Academy of Sciences of the

United States of America (1993), 90(17),

8048-52

CODEN: PNASA6; ISSN: 0027-8424

DOCUMENT TYPE: Journal LANGUAGE: English

CORPORATE SOURCE:

The macrocyclic peptide cyclotheonamide A (CtA), isolated from the marine sponge Theonella, represents an unusual class of serine protease $\frac{1}{2}$ inhibitors. A complex of this inhibitor with human α thrombin, a protease central to the bioregulation of thrombosis and hemostasis, was studied by x-ray crystallog. This work (2.3-Å resolution) confirms the structure of CtA and reveals intimate details about its mol. recognition within the enzyme active site. Interactions due to the "Pro-Arg motif" (Arg occupancy of the S1 specificity pocket; formation of a hydrogen-bonded 2-strand antiparallel B-sheet with Ser214-Gly216) and the α -keto amide group of CtA are primarily responsible for binding to thrombin, with the α -keto amide serving as a transition-state analog. A special interaction with the "insertion loop" of thrombin (Tyr60A-Thr60I) is manifested through engagement of the hydroxyphenyl group of CtA with Trp60D as part of an "aromatic stacking chain.". Biochem. inhibition data (Ki values at 37°) were obtained for CtA with thrombin and a diverse collection of serine proteases. Thus, CtA is just a moderate inhibitor of human lphathrombin (Ki = 0.18 μ M) but a potent inhibitor of trypsin (Ki = 0.023 μM) and streptokinase (K1 = 0.035 μM). The relative lack of potency of CtA as a thrombin inhibitor is discussed with respect to certain structural features of the enzyme complex. The authors also report the total synthesis of CtA, by a convergent [2 + 3] fragment-condensation approach, to serve the preparation of cyclotheonamide analogs for structure-function studies.

L24 ANSWER 20 OF 20 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1987:47826 HCAPLUS

DOCUMENT NUMBER: 106:47826

TITLE: Inhibition of protein cross-linking in

calcium-enriched human erythrocytes and activated

platelets

AUTHOR(S): Lorand, L.; Barnes, N.; Bruner-Lorand, J. A.;

Hawkins, M.; Michalska, M.

CORPORATE SOURCE: Dep. Biochem., Mol. Biol. Cell Biol., Northwestern

Univ., Evanston, IL, 60201, USA Biochemistry (1987), 26(1), 308-13

CODEN: BICHAW; ISSN: 0006-2960

DOCUMENT TYPE: Journal LANGUAGE: English

SOURCE:

AB Treatment of human erythrocytes with Ca2+, in the presence of ionophore A 23187, caused the formation of high-mol.-weight (>106) membrane protein polymers. This phenomenon, known to involve crosslinking of essentially all of the band 4.1 and 2.1 (ankyrin) proteins, as well as some spectrin, band 3, and Hb mols., could be prevented by preincubating the cells with a noncompetitive inhibitor of intrinsic transglutaminase, 2-[3-(diallylamino)propionyl]benzothiophene (I), at concns. of about (3-6) + 10-4M. I also eliminated the proteolytic breakdown of the 2 major transmembrane proteins, band 3 and glycophorin, which would otherwise occur during the Ca2+ loading of fresh human red cells. In addition, I effectively blocked the formation of a crosslinked protein polymer in thrombin-activated human platelets.

=>

This Page Blank (uspto)