Generated on 2014-10-27 16:02:38 by gEcon version 0.7.0 (2014-10-27) Model name: tc_rs

1 CONSUMER

1.1 Optimization problem

$$\max_{K_t, C_t, H_t, I_t} U_t = \beta E_t \left[U_{t+1} \right] + (1 - \eta)^{-1} \left(C_t^{\mu} (1 - H_t)^{1 - \mu} \right)^{1 - \eta}$$
(1.1)

s.t. :

$$C_t + I_t + T_t = \pi_t + TR_t + K_{t-1}r_t + H_tW_t - \psi K_{t-1} \left(-\delta + K_{t-1}^{-1}I_t \right)^2 \quad (\lambda_t^c)$$
(1.2)

$$K_t = I_t + K_{t-1} \left(1 - \delta \right) \quad \left(\lambda_t^{\text{CONSUMER}^2} \right) \tag{1.3}$$

1.2 First order conditions

$$-\lambda_{t}^{\text{CONSUMER}^{2}} + \beta \left((1 - \delta) \operatorname{E}_{t} \left[\lambda_{t+1}^{\text{CONSUMER}^{2}} \right] + \operatorname{E}_{t} \left[\lambda_{t+1}^{c} \left(r_{t+1} - \psi \left(-\delta + K_{t}^{-1} I_{t+1} \right)^{2} + 2\psi K_{t}^{-1} I_{t+1} \left(-\delta + K_{t}^{-1} I_{t+1} \right) \right) \right] \right) = 0 \quad (K_{t} - K_{t}^{2} + K_{t}^{2}$$

$$-\lambda_t^c + \mu C_t^{-1+\mu} (1 - H_t)^{1-\mu} \left(C_t^{\mu} (1 - H_t)^{1-\mu} \right)^{-\eta} = 0 \quad (C_t)$$
 (1.5)

$$\lambda_t^c W_t + (-1 + \mu) C_t^{\mu} (1 - H_t)^{-\mu} \left(C_t^{\mu} (1 - H_t)^{1 - \mu} \right)^{-\eta} = 0 \quad (H_t)$$
 (1.6)

$$\lambda_t^{\text{CONSUMER}^2} + \lambda_t^c \left(-1 - 2\psi \left(-\delta + K_{t-1}^{-1} I_t \right) \right) = 0 \quad (I_t)$$

$$(1.7)$$

2 FIRM

2.1 Optimization problem

$$\max_{K_t^d, H_t^d, Y_t, \pi_t} \Pi_t = \pi_t \tag{2.1}$$

s t

$$Y_t = Z_t H_t^{d^{1-\alpha}} K_t^{d^{\alpha}} \quad (\lambda_t^{\text{FIRM}^1})$$
(2.2)

$$\pi_t = Y_t - H_t^d W_t - r_t K_t^d \quad \left(\lambda_t^{\text{FIRM}^2}\right) \tag{2.3}$$

2.2 First order conditions

$$-\lambda_t^{\text{FIRM}^2} r_t + \alpha \lambda_t^{\text{FIRM}^1} Z_t H_t^{d^{1-\alpha}} K_t^{d^{-1+\alpha}} = 0 \quad (K_t^d)$$
 (2.4)

$$-\lambda_t^{\text{FIRM}^2} W_t + \lambda_t^{\text{FIRM}^1} Z_t (1 - \alpha) H_t^{d-\alpha} K_t^{d^{\alpha}} = 0 \quad (H_t^d)$$

$$(2.5)$$

$$-\lambda_t^{\text{FIRM}^1} + \lambda_t^{\text{FIRM}^2} = 0 \quad (Y_t)$$
 (2.6)

$$1 - \lambda_t^{\text{FIRM}^2} = 0 \quad (\pi_t) \tag{2.7}$$

2.3 First order conditions after reduction

$$-r_t + \alpha Z_t H_t^{d^{1-\alpha}} K_t^{d^{-1+\alpha}} = 0 \quad (K_t^d)$$
 (2.8)

$$-W_t + Z_t (1 - \alpha) H_t^{d-\alpha} K_t^{d^{\alpha}} = 0 \quad (H_t^d)$$
 (2.9)

3 CONSUMER*

3.1 Optimization problem

$$\max_{K_t^*, C_t^*, H_t^*, I_t^*} U_t^* = \beta E_t \left[U_{t+1}^* \right] + (1 - \eta)^{-1} \left(C_t^{*\mu} (1 - H_t^*)^{1-\mu} \right)^{1-\eta}$$
(3.1)

s.t.:

$$C_t^* + I_t^* + T_t^* = \pi_t^* - TR_t + K_{t-1}^* r_t^* + H_t^* W_t^* - \psi K_{t-1}^* \left(-\delta + K_{t-1}^{*-1} I_t^* \right)^2 \quad (\lambda_t^{c^*})$$
(3.2)

$$K_t^* = I_t^* + K_{t-1}^* (1 - \delta) \quad (\lambda_t^{\text{CONSUMER}^2})$$
 (3.3)

3.2 First order conditions

$$-\lambda_{t}^{\text{CONSUMER}^{*2}} + \beta \left((1 - \delta) \operatorname{E}_{t} \left[\lambda_{t+1}^{\text{CONSUMER}^{*2}} \right] + \operatorname{E}_{t} \left[\lambda_{t+1}^{c^{*}} \left(r_{t+1}^{*} - \psi \left(-\delta + K_{t}^{*-1} I_{t+1}^{*} \right)^{2} + 2\psi K_{t}^{*-1} I_{t+1}^{*} \left(-\delta + K_{t}^{*-1} I_{t+1}^{*} \right) \right) \right] \right) = 0$$

$$(3.4)$$

$$-\lambda_t^{c^*} + \mu C_t^{*-1+\mu} (1 - H_t^*)^{1-\mu} \left(C_t^{*\mu} (1 - H_t^*)^{1-\mu} \right)^{-\eta} = 0 \quad (C_t^*)$$
(3.5)

$$\lambda_t^{c^*} W_t^* + (-1 + \mu) C_t^{*\mu} (1 - H_t^*)^{-\mu} \left(C_t^{*\mu} (1 - H_t^*)^{1-\mu} \right)^{-\eta} = 0 \quad (H_t^*)$$
(3.6)

$$\lambda_t^{\text{CONSUMER}^{*2}} + \lambda_t^{c^*} \left(-1 - 2\psi \left(-\delta + K_{t-1}^{*-1} I_t^* \right) \right) = 0 \quad (I_t^*)$$
(3.7)

4 FIRM*

4.1 Optimization problem

$$\max_{K_t^{d^*}, H_t^{d^*}, Y_t^*, \pi_t^*} \Pi_t^* = \pi_t^* \tag{4.1}$$

s.t.

$$Y_t^* = Z_t^* H_t^{d^{*1} - \alpha} K_t^{d^{*\alpha}} \left(\lambda_t^{\text{FIRM}^*} \right)$$
 (4.2)

$$\pi_t^* = Y_t^* - H_t^{d^*} W_t^* - r_t^* K_t^{d^*} \quad (\lambda_t^{\text{FIRM}^*})$$
(4.3)

4.2 First order conditions

$$-\lambda_t^{\text{FIRM*}^2} r_t^* + \alpha \lambda_t^{\text{FIRM*}^1} Z_t^* H_t^{d^* 1 - \alpha} K_t^{d^* - 1 + \alpha} = 0 \quad (K_t^{d^*})$$
(4.4)

$$-\lambda_{t}^{\text{FIRM*}^{2}} W_{t}^{*} + \lambda_{t}^{\text{FIRM*}^{1}} Z_{t}^{*} (1 - \alpha) H_{t}^{d^{*} - \alpha} K_{t}^{d^{*} \alpha} = 0 \quad (H_{t}^{d^{*}})$$
(4.5)

$$-\lambda_t^{\text{FIRM}^*}^1 + \lambda_t^{\text{FIRM}^*}^2 = 0 \quad (Y_t^*)$$
 (4.6)

$$1 - \lambda_t^{\text{FIRM}^*} = 0 \quad (\pi_t^*) \tag{4.7}$$

4.3 First order conditions after reduction

$$-r_t^* + \alpha Z_t^* H_t^{d^*}^{1-\alpha} K_t^{d^*}^{1-\alpha} = 0 \quad (K_t^{d^*})$$
(4.8)

$$-W_t^* + Z_t^* (1 - \alpha) H_t^{d^* - \alpha} K_t^{d^* \alpha} = 0 \quad (H_t^{d^*})$$
(4.9)

5 EQUILIBRIUM

5.1 Identities

$$K_t^d = K_{t-1} (5.1)$$

$$H_t^d = H_t (5.2)$$

$$T_t = G_t^d (5.3)$$

$$K_t^{d^*} = K_{t-1}^* (5.4)$$

$$H_t^{d^*} = H_t^* (5.5)$$

$$T_t^* = G_t^{d^*} \tag{5.6}$$

$$\lambda_t^c = \lambda_t^{c^*} \tag{5.7}$$

6 EXOG

6.1 Identities

$$G_t^d = \epsilon_t^G + \phi^G G_{t-1}^d \tag{6.1}$$

$$Z_t = e^{\epsilon_t^Z + \phi^Z \log Z_{t-1}} \tag{6.2}$$

$$G_t^{d^*} = \epsilon_t^{G^*} + \phi^G G_{t-1}^{d^*} \tag{6.3}$$

$$Z_t^* = e^{\epsilon_t^{Z^*} + \phi^Z \log Z_{t-1}^*} \tag{6.4}$$

7 Equilibrium relationships

$$-\lambda_t^c + \mu C_t^{-1+\mu} (1 - H_t)^{1-\mu} \left(C_t^{\mu} (1 - H_t)^{1-\mu} \right)^{-\eta} = 0$$
 (7.1)

$$\lambda_t^c - \lambda_t^{c^*} = 0 \tag{7.2}$$

$$-\lambda_t^{c^*} + \mu C_t^{*-1+\mu} (1 - H_t^*)^{1-\mu} \left(C_t^{*\mu} (1 - H_t^*)^{1-\mu} \right)^{-\eta} = 0$$
 (7.3)

$$-r_t + \alpha Z_t K_{t-1}^{-1+\alpha} H_t^{1-\alpha} = 0 (7.4)$$

$$-r_t^* + \alpha Z_t^* K_{t-1}^*^{-1+\alpha} H_t^{*1-\alpha} = 0 \tag{7.5}$$

$$-W_t + Z_t (1 - \alpha) K_{t-1}{}^{\alpha} H_t{}^{-\alpha} = 0$$
 (7.6)

$$-W_t^* + Z_t^* (1 - \alpha) K_{t-1}^* {}^{\alpha} H_t^{*-\alpha} = 0$$
 (7.7)

$$-Y_t + Z_t K_{t-1}{}^{\alpha} H_t{}^{1-\alpha} = 0 (7.8)$$

$$-Y_t^* + Z_t^* K_{t-1}^* {}^{\alpha} H_t^{*1-\alpha} = 0 (7.9)$$

$$Z_t - e^{\epsilon_t^Z + \phi^Z \log Z_{t-1}} = 0 (7.10)$$

$$Z_t^* - e^{\epsilon_t^{Z^*} + \phi^Z \log Z_{t-1}^*} = 0 (7.11)$$

$$\beta \left(-(1-\delta) \operatorname{E}_{t} \left[\lambda_{t+1}^{c} \left(-1-2\psi \left(-\delta+K_{t}^{-1} I_{t+1} \right) \right) \right] + \operatorname{E}_{t} \left[\lambda_{t+1}^{c} \left(r_{t+1} - \psi \left(-\delta+K_{t}^{-1} I_{t+1} \right)^{2} + 2\psi K_{t}^{-1} I_{t+1} \left(-\delta+K_{t}^{-1} I_{t+1} \right) \right) \right] \right) + \left[\left(-2\psi \left(-\delta+K_{t}^{-1} I_{t+1} \right) \right) \right] + \left[\left(-2\psi \left(-\delta+K_{t}^{-1} I_{t+1} \right) \right) \right] + \left[\left(-2\psi \left(-\delta+K_{t}^{-1} I_{t+1} \right) \right) \right] + \left[\left(-2\psi \left(-\delta+K_{t}^{-1} I_{t+1} \right) \right) \right] \right] + \left[\left(-2\psi \left(-\delta+K_{t}^{-1} I_{t+1} \right) \right) \right] + \left[\left(-2\psi \left(-\delta+K_{t}^{-1} I_{t+1} \right) \right) \right] + \left[\left(-2\psi \left(-\delta+K_{t}^{-1} I_{t+1} \right) \right) \right] + \left[\left(-2\psi \left(-\delta+K_{t}^{-1} I_{t+1} \right) \right) \right] + \left[\left(-2\psi \left(-\delta+K_{t}^{-1} I_{t+1} \right) \right) \right] + \left[\left(-2\psi \left(-\delta+K_{t}^{-1} I_{t+1} \right) \right) \right] + \left[\left(-2\psi \left(-\delta+K_{t}^{-1} I_{t+1} \right) \right) \right] + \left[\left(-2\psi \left(-\delta+K_{t}^{-1} I_{t+1} \right) \right) \right] + \left[\left(-2\psi \left(-\delta+K_{t}^{-1} I_{t+1} \right) \right) \right] + \left[\left(-2\psi \left(-\delta+K_{t}^{-1} I_{t+1} \right) \right) \right] + \left[\left(-2\psi \left(-\delta+K_{t}^{-1} I_{t+1} \right) \right) \right] + \left[\left(-2\psi \left(-\delta+K_{t}^{-1} I_{t+1} \right) \right) \right] + \left[\left(-2\psi \left(-\delta+K_{t}^{-1} I_{t+1} \right) \right) \right] + \left[\left(-2\psi \left(-\delta+K_{t}^{-1} I_{t+1} \right) \right) \right] + \left[\left(-2\psi \left(-\delta+K_{t}^{-1} I_{t+1} \right) \right) \right] + \left[\left(-2\psi \left(-\delta+K_{t}^{-1} I_{t+1} \right) \right) \right] + \left[\left(-2\psi \left(-\delta+K_{t}^{-1} I_{t+1} \right) \right) \right] + \left[\left(-2\psi \left(-\delta+K_{t}^{-1} I_{t+1} \right) \right) \right] + \left[\left(-2\psi \left(-\delta+K_{t}^{-1} I_{t+1} \right) \right) \right] + \left[\left(-2\psi \left(-\delta+K_{t}^{-1} I_{t+1} \right) \right) \right] + \left[\left(-2\psi \left(-\delta+K_{t}^{-1} I_{t+1} \right) \right) \right] + \left[\left(-2\psi \left(-\delta+K_{t}^{-1} I_{t+1} \right) \right) \right] + \left[\left(-2\psi \left(-\delta+K_{t}^{-1} I_{t+1} \right) \right) \right] + \left[\left(-2\psi \left(-\delta+K_{t}^{-1} I_{t+1} \right) \right) \right] + \left[\left(-2\psi \left(-\delta+K_{t}^{-1} I_{t+1} \right) \right) \right] + \left[\left(-2\psi \left(-\delta+K_{t}^{-1} I_{t+1} \right) \right) \right] + \left[\left(-2\psi \left(-\delta+K_{t}^{-1} I_{t+1} \right) \right) \right] + \left[\left(-2\psi \left(-\delta+K_{t}^{-1} I_{t+1} \right) \right) \right] + \left[\left(-2\psi \left(-\delta+K_{t}^{-1} I_{t+1} \right) \right] + \left[\left(-2\psi \left(-\delta+K_{t}^{-1} I_{t+1} \right) \right] + \left[\left(-2\psi \left(-\delta+K_{t}^{-1} I_{t+1} \right) \right] \right] + \left[\left(-2\psi \left(-\delta+K_{t}^{-1} I_{t+1} \right) \right] + \left[\left(-2\psi \left(-\delta+K_{t}^{-1} I_{t+1} \right) \right] + \left[\left(-2\psi \left(-\delta+K_{t}^{-1} I_{t+1} \right) \right] + \left[\left(-2\psi \left(-\delta+K_{t}^{-1} I_{t+1} \right) \right] \right] + \left[\left(-2\psi \left(-\delta+K_{t}^{-1} I_{t+1} \right) \right] + \left[\left$$

$$\beta \left(-(1-\delta) \operatorname{E}_{t} \left[\lambda_{t+1}^{c^{*}} \left(-1-2\psi \left(-\delta + K_{t}^{*^{-1}} I_{t+1}^{*} \right) \right) \right] + \operatorname{E}_{t} \left[\lambda_{t+1}^{c^{*}} \left(r_{t+1}^{*} - \psi \left(-\delta + K_{t}^{*^{-1}} I_{t+1}^{*} \right)^{2} + 2\psi K_{t}^{*^{-1}} I_{t+1}^{*} \left(-\delta + K_{t}^{*^{-1}} I_{t+1}^{*} \right) \right) \right] + \operatorname{E}_{t} \left[\lambda_{t+1}^{c^{*}} \left(r_{t+1}^{*} - \psi \left(-\delta + K_{t}^{*^{-1}} I_{t+1}^{*} \right)^{2} + 2\psi K_{t}^{*^{-1}} I_{t+1}^{*} \left(-\delta + K_{t}^{*^{-1}} I_{t+1}^{*} \right) \right) \right] \right) + \operatorname{E}_{t} \left[\lambda_{t+1}^{c^{*}} \left(r_{t+1}^{*} - \psi \left(-\delta + K_{t}^{*^{-1}} I_{t+1}^{*} \right)^{2} + 2\psi K_{t}^{*^{-1}} I_{t+1}^{*} \left(-\delta + K_{t}^{*^{-1}} I_{t+1}^{*} \right) \right) \right] \right] + \operatorname{E}_{t} \left[\lambda_{t+1}^{c^{*}} \left(r_{t+1}^{*} - \psi \left(-\delta + K_{t}^{*^{-1}} I_{t+1}^{*} \right)^{2} + 2\psi K_{t}^{*^{-1}} I_{t+1}^{*} \left(-\delta + K_{t}^{*^{-1}} I_{t+1}^{*} \right) \right) \right] \right] + \operatorname{E}_{t} \left[\lambda_{t+1}^{c^{*}} \left(r_{t+1}^{*} - \psi \left(-\delta + K_{t}^{*^{-1}} I_{t+1}^{*} \right) \right) \right] + \operatorname{E}_{t} \left[\lambda_{t+1}^{c^{*}} \left(r_{t+1}^{*} - \psi \left(-\delta + K_{t}^{*^{-1}} I_{t+1}^{*} \right) \right) \right] \right] + \operatorname{E}_{t} \left[\lambda_{t+1}^{c^{*}} \left(r_{t+1}^{*} - \psi \left(-\delta + K_{t}^{*^{-1}} I_{t+1}^{*} \right) \right) \right] + \operatorname{E}_{t} \left[\lambda_{t+1}^{c^{*}} \left(r_{t+1}^{*} - \psi \left(-\delta + K_{t}^{*^{-1}} I_{t+1}^{*} \right) \right) \right] \right] + \operatorname{E}_{t} \left[\lambda_{t+1}^{c^{*}} \left(r_{t+1}^{*} - \psi \left(-\delta + K_{t}^{*^{-1}} I_{t+1}^{*} \right) \right] \right] + \operatorname{E}_{t} \left[\lambda_{t+1}^{c^{*}} \left(r_{t+1}^{*} - \psi \left(-\delta + K_{t}^{*^{-1}} I_{t+1}^{*} \right) \right) \right] + \operatorname{E}_{t} \left[\lambda_{t+1}^{c^{*}} \left(r_{t+1}^{*} - \psi \left(-\delta + K_{t}^{*^{-1}} I_{t+1}^{*} \right) \right] \right] + \operatorname{E}_{t} \left[\lambda_{t+1}^{c^{*}} \left(r_{t+1}^{*} - \psi \left(-\delta + K_{t}^{*^{-1}} I_{t+1}^{*} \right) \right) \right] + \operatorname{E}_{t} \left[\lambda_{t+1}^{c^{*}} \left(r_{t+1}^{*} - \psi \left(-\delta + K_{t}^{*^{-1}} I_{t+1}^{*} \right) \right] \right] + \operatorname{E}_{t} \left[\lambda_{t+1}^{c^{*}} \left(r_{t+1}^{*} - \psi \left(-\delta + K_{t}^{*^{-1}} I_{t+1}^{*} \right) \right] \right] + \operatorname{E}_{t} \left[\lambda_{t+1}^{c^{*}} \left(r_{t+1}^{*} - \psi \left(-\delta + K_{t}^{*^{-1}} I_{t+1}^{*} \right) \right] \right] + \operatorname{E}_{t} \left[\lambda_{t+1}^{c^{*}} \left(r_{t+1}^{*} - \psi \left(-\delta + K_{t}^{*^{-1}} I_{t+1}^{*} \right) \right] \right] + \operatorname{E}_{t} \left[\lambda_{t+1}^{c^{*}} \left(r_{t+1}^{*} - \psi \left(-\delta + K_{t}^{*^{-1}} I_{t+1}^{*} \right) \right] \right] + \operatorname{E}_{t} \left[\lambda_{t+1}^{c^{*}} \left(r_{t+1}^{*} - \psi \left(r_{t+1}$$

$$\lambda_t^c W_t + (-1 + \mu) C_t^{\mu} (1 - H_t)^{-\mu} \left(C_t^{\mu} (1 - H_t)^{1 - \mu} \right)^{-\eta} = 0$$
(7.14)

$$\lambda_t^{c^*} W_t^* + (-1 + \mu) C_t^{*\mu} (1 - H_t^*)^{-\mu} \left(C_t^{*\mu} (1 - H_t^*)^{1-\mu} \right)^{-\eta} = 0$$
 (7.15)

$$-\epsilon_t^G + G_t^d - \phi^G G_{t-1}^d = 0 (7.16)$$

$$-\epsilon_t^{G^*} + G_t^{d^*} - \phi^G G_{t-1}^{d^*} = 0 (7.17)$$

$$I_t - K_t + K_{t-1} (1 - \delta) = 0 (7.18)$$

$$I_t^* - K_t^* + K_{t-1}^* (1 - \delta) = 0 (7.19)$$

$$U_t - \beta E_t [U_{t+1}] - (1 - \eta)^{-1} \left(C_t^{\mu} (1 - H_t)^{1 - \mu} \right)^{1 - \eta} = 0$$
 (7.20)

$$U_t^* - \beta \mathcal{E}_t \left[U_{t+1}^* \right] - (1 - \eta)^{-1} \left(C_t^{*\mu} (1 - H_t^*)^{1-\mu} \right)^{1-\eta} = 0$$
 (7.21)

$$-C_t - G_t^d - I_t + TR_t + Y_t - \psi K_{t-1} \left(-\delta + K_{t-1}^{-1} I_t \right)^2 = 0$$
(7.22)

$$-C_t^* - G_t^{d^*} - I_t^* - TR_t + Y_t^* - \psi K_{t-1}^* \left(-\delta + K_{t-1}^{*-1} I_t^* \right)^2 = 0$$
 (7.23)

8 Steady state relationships

$$-\lambda_{ss}^{c} + \mu (1 - H_{ss})^{1-\mu} \left((1 - H_{ss})^{1-\mu} C_{ss}^{\mu} \right)^{-\eta} C_{ss}^{-1+\mu} = 0$$
(8.1)

$$\lambda_{\rm ss}^c - \lambda_{\rm ss}^{c^*} = 0 \tag{8.2}$$

$$-\lambda_{\rm ss}^{c^*} + \mu C_{\rm ss}^{*-1+\mu} (1 - H_{\rm ss}^*)^{1-\mu} \left((1 - H_{\rm ss}^*)^{1-\mu} C_{\rm ss}^{*\mu} \right)^{-\eta} = 0$$
 (8.3)

$$-r_{\rm ss} + \alpha Z_{\rm ss} H_{\rm ss}^{1-\alpha} K_{\rm ss}^{-1+\alpha} = 0 \tag{8.4}$$

$$-r_{ss}^* + \alpha Z_{ss}^* H_{ss}^{*1-\alpha} K_{ss}^{*-1+\alpha} = 0$$
(8.5)

$$-W_{\rm ss} + Z_{\rm ss} (1 - \alpha) H_{\rm ss}^{-\alpha} K_{\rm ss}^{\ \alpha} = 0$$
 (8.6)

$$-W_{\rm ss}^* + Z_{\rm ss}^* (1 - \alpha) H_{\rm ss}^{*-\alpha} K_{\rm ss}^{*\alpha} = 0$$
 (8.7)

$$-Y_{ss} + Z_{ss}H_{ss}^{1-\alpha}K_{ss}^{\alpha} = 0 (8.8)$$

$$-Y_{ss}^* + Z_{ss}^* K_{ss}^{*\alpha} H_{ss}^{*1-\alpha} = 0$$
 (8.9)

$$Z_{\rm ss} - e^{\phi^Z \log Z_{\rm ss}} = 0 (8.10)$$

$$Z_{\rm ss}^* - e^{\phi^Z \log Z_{\rm ss}^*} = 0 (8.11)$$

$$\beta \left(\lambda_{\rm ss}^{c} \left(r_{\rm ss} - \psi \left(-\delta + I_{\rm ss} K_{\rm ss}^{-1} \right)^{2} + 2\psi I_{\rm ss} K_{\rm ss}^{-1} \left(-\delta + I_{\rm ss} K_{\rm ss}^{-1} \right) \right) - \lambda_{\rm ss}^{c} \left(-1 - 2\psi \left(-\delta + I_{\rm ss} K_{\rm ss}^{-1} \right) \right) (1 - \delta) \right) + \lambda_{\rm ss}^{c} \left(-1 - 2\psi \left(-\delta + I_{\rm ss} K_{\rm ss}^{-1} \right) \right) (1 - \delta) \right) + \lambda_{\rm ss}^{c} \left(-1 - 2\psi \left(-\delta + I_{\rm ss} K_{\rm ss}^{-1} \right) \right) (1 - \delta) \right) + \lambda_{\rm ss}^{c} \left(-1 - 2\psi \left(-\delta + I_{\rm ss} K_{\rm ss}^{-1} \right) \right) (1 - \delta) \right) + \lambda_{\rm ss}^{c} \left(-1 - 2\psi \left(-\delta + I_{\rm ss} K_{\rm ss}^{-1} \right) \right) (1 - \delta) \right) + \lambda_{\rm ss}^{c} \left(-1 - 2\psi \left(-\delta + I_{\rm ss} K_{\rm ss}^{-1} \right) \right) (1 - \delta) \right) + \lambda_{\rm ss}^{c} \left(-1 - 2\psi \left(-\delta + I_{\rm ss} K_{\rm ss}^{-1} \right) \right) (1 - \delta) \right) + \lambda_{\rm ss}^{c} \left(-1 - 2\psi \left(-\delta + I_{\rm ss} K_{\rm ss}^{-1} \right) \right) (1 - \delta) \right) + \lambda_{\rm ss}^{c} \left(-1 - 2\psi \left(-\delta + I_{\rm ss} K_{\rm ss}^{-1} \right) \right) (1 - \delta) \right) + \lambda_{\rm ss}^{c} \left(-1 - 2\psi \left(-\delta + I_{\rm ss} K_{\rm ss}^{-1} \right) \right) (1 - \delta) \right) + \lambda_{\rm ss}^{c} \left(-1 - 2\psi \left(-\delta + I_{\rm ss} K_{\rm ss}^{-1} \right) \right) (1 - \delta) \right) + \lambda_{\rm ss}^{c} \left(-1 - 2\psi \left(-\delta + I_{\rm ss} K_{\rm ss}^{-1} \right) \right) (1 - \delta) \right) + \lambda_{\rm ss}^{c} \left(-1 - 2\psi \left(-\delta + I_{\rm ss} K_{\rm ss}^{-1} \right) \right) (1 - \delta) \right) + \lambda_{\rm ss}^{c} \left(-1 - 2\psi \left(-\delta + I_{\rm ss} K_{\rm ss}^{-1} \right) \right) (1 - \delta) \right) + \lambda_{\rm ss}^{c} \left(-1 - 2\psi \left(-\delta + I_{\rm ss} K_{\rm ss}^{-1} \right) \right) (1 - \delta) \right) + \lambda_{\rm ss}^{c} \left(-1 - 2\psi \left(-\delta + I_{\rm ss} K_{\rm ss}^{-1} \right) \right) (1 - \delta) \right) + \lambda_{\rm ss}^{c} \left(-1 - 2\psi \left(-\delta + I_{\rm ss} K_{\rm ss}^{-1} \right) \right) (1 - \delta) \right) + \lambda_{\rm ss}^{c} \left(-1 - 2\psi \left(-\delta + I_{\rm ss} K_{\rm ss}^{-1} \right) \right) (1 - \delta) \right) + \lambda_{\rm ss}^{c} \left(-1 - 2\psi \left(-\delta + I_{\rm ss} K_{\rm ss}^{-1} \right) \right) (1 - \delta) \right) + \lambda_{\rm ss}^{c} \left(-1 - 2\psi \left(-\delta + I_{\rm ss} K_{\rm ss}^{-1} \right) \right) (1 - \delta) \right) + \lambda_{\rm ss}^{c} \left(-1 - 2\psi \left(-\delta + I_{\rm ss} K_{\rm ss}^{-1} \right) \right) (1 - \delta) \right) + \lambda_{\rm ss}^{c} \left(-1 - 2\psi \left(-\delta + I_{\rm ss} K_{\rm ss}^{-1} \right) \right) (1 - \delta) \right) + \lambda_{\rm ss}^{c} \left(-1 - 2\psi \left(-\delta + I_{\rm ss} K_{\rm ss}^{-1} \right) \right) (1 - \delta) \right) + \lambda_{\rm ss}^{c} \left(-1 - 2\psi \left(-\delta + I_{\rm ss} K_{\rm ss}^{-1} \right) \right) (1 - \delta) \right)$$

$$\beta \left(\lambda_{\text{ss}}^{c^*} \left(r_{\text{ss}}^* - \psi \left(-\delta + I_{\text{ss}}^* K_{\text{ss}}^{*-1} \right)^2 + 2\psi I_{\text{ss}}^* K_{\text{ss}}^{*-1} \left(-\delta + I_{\text{ss}}^* K_{\text{ss}}^{*-1} \right) \right) - \lambda_{\text{ss}}^{c^*} \left(-1 - 2\psi \left(-\delta + I_{\text{ss}}^* K_{\text{ss}}^{*-1} \right) \right) (1 - \delta) \right) + \lambda_{\text{ss}}^{c^*} \left(-1 - 2\psi \left(-\delta + I_{\text{ss}}^* K_{\text{ss}}^{*-1} \right) \right) (1 - \delta) \right) + \lambda_{\text{ss}}^{c^*} \left(-1 - 2\psi \left(-\delta + I_{\text{ss}}^* K_{\text{ss}}^{*-1} \right) \right) (1 - \delta) \right) + \lambda_{\text{ss}}^{c^*} \left(-1 - 2\psi \left(-\delta + I_{\text{ss}}^* K_{\text{ss}}^{*-1} \right) \right) (1 - \delta) \right) + \lambda_{\text{ss}}^{c^*} \left(-1 - 2\psi \left(-\delta + I_{\text{ss}}^* K_{\text{ss}}^{*-1} \right) \right) (1 - \delta) \right) + \lambda_{\text{ss}}^{c^*} \left(-1 - 2\psi \left(-\delta + I_{\text{ss}}^* K_{\text{ss}}^{*-1} \right) \right) (1 - \delta) \right) + \lambda_{\text{ss}}^{c^*} \left(-1 - 2\psi \left(-\delta + I_{\text{ss}}^* K_{\text{ss}}^{*-1} \right) \right) (1 - \delta) \right) + \lambda_{\text{ss}}^{c^*} \left(-1 - 2\psi \left(-\delta + I_{\text{ss}}^* K_{\text{ss}}^{*-1} \right) \right) (1 - \delta) \right) + \lambda_{\text{ss}}^{c^*} \left(-1 - 2\psi \left(-\delta + I_{\text{ss}}^* K_{\text{ss}}^{*-1} \right) \right) (1 - \delta) \right) + \lambda_{\text{ss}}^{c^*} \left(-1 - 2\psi \left(-\delta + I_{\text{ss}}^* K_{\text{ss}}^{*-1} \right) \right) (1 - \delta) \right) + \lambda_{\text{ss}}^{c^*} \left(-1 - 2\psi \left(-\delta + I_{\text{ss}}^* K_{\text{ss}}^{*-1} \right) \right) (1 - \delta) \right) + \lambda_{\text{ss}}^{c^*} \left(-1 - 2\psi \left(-\delta + I_{\text{ss}}^* K_{\text{ss}}^{*-1} \right) \right) (1 - \delta) \right) + \lambda_{\text{ss}}^{c^*} \left(-1 - 2\psi \left(-\delta + I_{\text{ss}}^* K_{\text{ss}}^{*-1} \right) \right) (1 - \delta) \right) + \lambda_{\text{ss}}^{c^*} \left(-1 - 2\psi \left(-\delta + I_{\text{ss}}^* K_{\text{ss}}^{*-1} \right) \right) (1 - \delta) \right) + \lambda_{\text{ss}}^{c^*} \left(-1 - 2\psi \left(-\delta + I_{\text{ss}}^* K_{\text{ss}}^{*-1} \right) \right) (1 - \delta) \right) + \lambda_{\text{ss}}^{c^*} \left(-1 - 2\psi \left(-\delta + I_{\text{ss}}^* K_{\text{ss}}^{*-1} \right) \right) (1 - \delta) \right) + \lambda_{\text{ss}}^{c^*} \left(-1 - 2\psi \left(-\delta + I_{\text{ss}}^* K_{\text{ss}}^{*-1} \right) \right) (1 - \delta) \right) + \lambda_{\text{ss}}^{c^*} \left(-1 - 2\psi \left(-\delta + I_{\text{ss}}^* K_{\text{ss}}^{*-1} \right) \right) (1 - \delta) \right) + \lambda_{\text{ss}}^{c^*} \left(-1 - 2\psi \left(-\delta + I_{\text{ss}}^* K_{\text{ss}}^{*-1} \right) \right) (1 - \delta) \right) + \lambda_{\text{ss}}^{c^*} \left(-1 - 2\psi \left(-\delta + I_{\text{ss}}^* K_{\text{ss}}^{*-1} \right) \right) (1 - \delta) \right) + \lambda_{\text{ss}}^{c^*} \left(-1 - 2\psi \left(-\delta + I_{\text{ss}}^* K_{\text{ss}}^{*-1} \right) \right) (1 - \delta) \right)$$

$$\lambda_{\rm ss}^c W_{\rm ss} + (-1 + \mu) C_{\rm ss}^{\ \mu} (1 - H_{\rm ss})^{-\mu} \left(C_{\rm ss}^{\ \mu} (1 - H_{\rm ss})^{1 - \mu} \right)^{-\eta} = 0 \tag{8.14}$$

$$\lambda_{\rm ss}^{c^*} W_{\rm ss}^* + (-1 + \mu) C_{\rm ss}^{*\mu} (1 - H_{\rm ss}^*)^{-\mu} \left((1 - H_{\rm ss}^*)^{1-\mu} C_{\rm ss}^{*\mu} \right)^{-\eta} = 0$$
 (8.15)

$$G_{\rm ss}^d - \phi^G G_{\rm ss}^d = 0 (8.16)$$

$$G_{\rm ss}^{d^*} - \phi^G G_{\rm ss}^{d^*} = 0 (8.17)$$

$$I_{\rm ss} - K_{\rm ss} + K_{\rm ss} (1 - \delta) = 0 \tag{8.18}$$

$$I_{ss}^* - K_{ss}^* + K_{ss}^* (1 - \delta) = 0$$
(8.19)

$$U_{\rm ss} - \beta U_{\rm ss} - (1 - \eta)^{-1} \left((1 - H_{\rm ss})^{1 - \mu} C_{\rm ss}^{\mu} \right)^{1 - \eta} = 0$$
 (8.20)

$$U_{ss}^* - \beta U_{ss}^* - (1 - \eta)^{-1} \left(C_{ss}^{*\mu} (1 - H_{ss}^*)^{1 - \mu} \right)^{1 - \eta} = 0$$
 (8.21)

$$-C_{ss} - G_{ss}^{d} - I_{ss} + TR_{ss} + Y_{ss} - \psi K_{ss} \left(-\delta + I_{ss} K_{ss}^{-1} \right)^{2} = 0$$
(8.22)

$$-C_{\rm ss}^* - G_{\rm ss}^{d^*} - I_{\rm ss}^* - TR_{\rm ss} + Y_{\rm ss}^* - \psi K_{\rm ss}^* \left(-\delta + I_{\rm ss}^* K_{\rm ss}^{*-1} \right)^2 = 0$$
 (8.23)

9 Parameter settings

$$\alpha = 0.4 \tag{9.1}$$

$$\beta = 0.99 \tag{9.2}$$

$$\delta = 0.025 \tag{9.3}$$

$$\eta = 2 \tag{9.4}$$

$$\mu = 0.3 \tag{9.5}$$

$$\phi^G = 0.95 \tag{9.6}$$

$$\phi^Z = 0.95 \tag{9.7}$$

$$\psi = 0.8 \tag{9.8}$$

10 Steady state values

	C+
	Steady state values
λ^c	0.3934
λ^{c^*}	0.3934
r	0.0351
r^*	0.0351
C	0.9578
C^*	0.9578
G^d	0
G^{d^*}	0
Н	0.2645
H^*	0.2645
I	0.3816
I^*	0.3816
K	15.2627
K^*	15.2627
TR	0
U	-125.6048
U^*	-125.6048
W	3.0384
W^*	3.0384
Y	1.3393
Y^*	1.3393
Z	1
Z^*	1

11 The solution of the perturbation

11.1 P

11.2 Q

11.3 R

$$\begin{array}{c} G_{t-1}^d & G_{t-1}^{d^*} & K_{t-1} & K_{t-1}^* & Z_{t-1} & Z_{t-1}^* \\ \lambda^c \\ \lambda^c^* & 0.1022 & 0.1022 & -0.0091 & -0.0091 & -0.1072 & -0.1072 \\ 0.1022 & 0.1022 & -0.0091 & -0.0091 & -0.1072 & -0.1072 \\ 0.0044 & 0.0044 & -0.0012 & -0.0004 & 0.0497 & -0.0046 \\ r^* & 0.0044 & 0.0044 & -0.0004 & -0.0012 & -0.0046 & 0.0497 \\ C & -0.1525 & -0.1525 & 0.0187 & 0.0136 & 0.3448 & 0.1599 \\ C^* & -0.1525 & -0.1525 & 0.0136 & 0.0187 & 0.1599 & 0.3448 \\ H & 0.0554 & 0.0554 & 0.0023 & -0.0049 & 0.2054 & -0.0581 \\ H^* & 0.0554 & 0.0554 & -0.0049 & 0.0023 & -0.0581 & 0.2054 \\ I & -0.1542 & -0.1542 & -0.0296 & 0.0244 & 2.2856 & -1.0704 \\ I^* & -0.1542 & -0.1542 & 0.0244 & -0.0296 & -1.0704 & 2.2856 \\ TR & 0.475 & -0.475 & -0.053 & 0.053 & 0.7338 & -0.7338 \\ U & -3.1408 & -3.1408 & 0.1608 & 0.2366 & 0.053 & 8.3603 \\ U^* & -3.1408 & -3.1408 & 0.2366 & 0.1608 & 8.3603 & 0.053 \\ W & -0.2547 & -0.2547 & 0.0689 & 0.0227 & 1.9424 & 0.2672 \\ W^* & -0.2547 & -0.2547 & 0.0227 & 0.0689 & 0.2672 & 1.9424 \\ Y & 0.1684 & 0.1684 & 0.0422 & -0.015 & 1.8966 & -0.1767 \\ Y^* & 0.1684 & 0.1684 & -0.015 & 0.0422 & -0.1767 & 1.8966 \end{array}$$

11.4 S

	ϵ^G	ϵ^Z	ϵ^{G^*}	ϵ^{Z^*}
λ^c	$\int 0.1075$	-0.1128	0.1075	-0.1128
λ^{c^*}	0.1075	-0.1128	0.1075	-0.1128
r	0.0046	0.0523	0.0046	-0.0049
r^*	0.0046	-0.0049	0.0046	0.0523
C	-0.1605	0.3629	-0.1605	0.1683
C^*	-0.1605	0.1683	-0.1605	0.3629
H	0.0583	0.2163	0.0583	-0.0612
H^*	0.0583	-0.0612	0.0583	0.2163
I	-0.1623	2.4059	-0.1623	-1.1267
I^*	-0.1623	-1.1267	-0.1623	2.4059
TR	0.5	0.7724	-0.5	-0.7724
U	-3.3061	0.0557	-3.3061	8.8003
U^*	-3.3061	8.8003	-3.3061	0.0557
W	-0.2681	2.0446	-0.2681	0.2812
W^*	-0.2681	0.2812	-0.2681	2.0446
Y	0.1773	1.9964	0.1773	-0.186
Y^*	$\setminus 0.1773$	-0.186	0.1773	1.9964

12 Statistics of the model

12.1 Moments

	Steady state value	Std. dev.	Variance	Loglinear
r	0.0351	0.0051	0	N
C	0.9578	0.0373	0.0014	N
G^d	0	0.0922	0.0085	N
H	0.2645	0.026	0.0007	N
I	0.3816	0.2659	0.0707	N
K	15.2627	0.9072	0.8231	N
TR	0	0.1943	0.0378	N
U	-125.6048	1.065	1.1342	N
\overline{W}	3.0384	0.1882	0.0354	N
Y	1.3393	0.2048	0.042	N
Z	1	0.0922	0.0085	N

12.2 Correlation matrix

	r	C	G^d	Н	I	K	TR	U	W	Y	Z
λ^c	-0.1448	-0.8743	0.2572	0.1061	-0.0803	-0.0047	-0.0187	-0.7069	-0.4894	-0.1301	-0.2886
λ^{c^*}	-0.1448	-0.8743	0.2572	0.1061	-0.0803	-0.0047	-0.0187	-0.7069	-0.4894	-0.1301	-0.2886
r	1	0.5686	0.5522	0.8902	0.8158	0.1686	0.5159	-0.2367	0.8651	0.9218	0.9793
r^*	-0.0679	0.2	0.0324	-0.139	-0.6152	-0.1951	-0.7139	0.8085	0.0465	-0.0704	-0.0241
C	0.5686	1	0.0547	0.3898	0.4323	0.2641	0.1824	0.431	0.8511	0.5949	0.7017
C^*	0.0628	0.6885	-0.159	-0.2094	-0.2594	-0.2444	-0.2905	0.9396	0.3136	-0.0074	0.166
G^d	0.5522	0.0547	1	0.6002	0.3541	0.1369	0.4025	-0.2867	0.3765	0.5378	0.5
G^{d^*}	0.0645	-0.2751	0	0.1266	-0.3462	-0.1539	-0.5693	0.1362	-0.1009	0.0404	0
H	0.8902	0.3898	0.6002	1	0.7333	0.5322	0.3383	-0.4582	0.8152	0.9721	0.89
H^*	-0.0883	0.0506	0.0674	-0.2437	-0.6045	-0.4681	-0.575	0.764	-0.1071	-0.1999	-0.0989
I	0.8158	0.4323	0.3541	0.7333	1	0.2308	0.8288	-0.5626	0.6899	0.7501	0.7926
I^*	-0.3991	0.0775	-0.2022	-0.447	-0.8206	-0.2188	-0.8136	0.8737	-0.2061	-0.3705	-0.3347
K	0.1686	0.2641	0.1369	0.5322	0.2308	1	-0.1291	-0.3286	0.4695	0.5318	0.2956
K^*	-0.1002	0.0352	-0.0895	-0.4653	-0.1569	-0.8034	0.1682	0.4588	-0.2431	-0.3971	-0.1612
TR	0.5159	0.1824	0.4025	0.3383	0.8288	-0.1291	1	-0.5174	0.3076	0.3418	0.4493
U	-0.2367	0.431	-0.2867	-0.4582	-0.5626	-0.3286	-0.5174	1	0.0099	-0.2901	-0.1453
U^*	0.6951	0.838	0.1218	0.5844	0.8091	0.3957	0.5633	-0.0972	0.8602	0.7235	0.7851
W	0.8651	0.8511	0.3765	0.8152	0.6899	0.4695	0.3076	0.0099	1	0.9283	0.9487
W^*	-0.0133	0.4075	-0.0512	-0.2479	-0.4714	-0.3891	-0.4725	0.9335	0.1149	-0.1126	0.038
Y	0.9218	0.5949	0.5378	0.9721	0.7501	0.5318	0.3418	-0.2901	0.9283	1	0.9555
Y^*	-0.0597	0.197	0.0206	-0.2508	-0.5635	-0.4462	-0.5459	0.8497	-0.0191	-0.1687	-0.0453
Z	0.9793	0.7017	0.5	0.89	0.7926	0.2956	0.4493	-0.1453	0.9487	0.9555	1
Z^*	-0.0479	0.2874	0	-0.1857	-0.5731	-0.277	-0.6354	0.878	0.0749	-0.0889	0

12.3 Autocorrelations

	t-1	t-2	t-3	t-4	t-5
r	0.7037	0.4562	0.2539	0.0927	-0.0317
C	0.7464	0.5237	0.3324	0.1718	0.0405
G^d	0.7133	0.4711	0.2711	0.1098	-0.0163
H	0.7547	0.5359	0.3455	0.1836	0.0497
I	0.6973	0.4462	0.2424	0.0814	-0.0418
K	0.9563	0.8517	0.7083	0.544	0.3729
TR	0.7199	0.4816	0.2831	0.1217	-0.0057
U	0.7314	0.4998	0.3042	0.1431	0.0138
W	0.7473	0.5247	0.3329	0.1715	0.0394
Y	0.7516	0.5312	0.34	0.1783	0.0449
Z	0.7133	0.4711	0.2711	0.1098	-0.0163

12.4 Variance decomposition

	ϵ^G	ϵ^Z	ϵ^{G^*}	ϵ^{Z^*}
r	0.3084	0.6764	0.0057	0.0095
C	0.0097	0.6554	0.0759	0.2589
G^d	1	0	0	0
H	0.3653	0.4772	0.0294	0.1281
I	0.1286	0.5151	0.1258	0.2305
K	0.1291	0.5217	0.1239	0.2253
TR	0.1844	0.149	0.3687	0.298
U	0.0822	0.0013	0.0215	0.895
W	0.1503	0.8126	0.0138	0.0233
Y	0.2961	0.653	0.0113	0.0396
Z	0.25	0.75	0	0

13 Statistics of the model

13.1 Moments relative to moments of the reference variable

	Steady state value relative to Y	Std. dev. relative to Y	Variance relative to Y	Loglinear
λ^c	0.2937	0.0901	0.0081	N
λ^{c^*}	0.2937	0.0901	0.0081	N
r	0.0262	0.0249	0.0006	N
r^*	0.0262	0.035	0.0012	N
C	0.7151	0.1821	0.0332	N
C^*	0.7151	0.2229	0.0497	N
G^d	0	0.4499	0.2024	N
G^{d^*}	0	0.6363	0.4049	N
H	0.1975	0.1268	0.0161	N
H^*	0.1975	0.1684	0.0283	N
I	0.2849	1.2983	1.6855	N
I^*	0.2849	1.5717	2.4701	N
K	11.3957	4.4289	19.615	N
K^*	11.3957	5.381	28.9555	N
TR	0	0.9485	0.8997	N
U	-93.7814	5.1989	27.0286	N
U^*	-93.7814	4.1109	16.8995	N
\overline{W}	2.2686	0.9187	0.8439	N
W^*	2.2686	1.281	1.6408	N
Y	1	1	1	N
Y^*	1	1.387	1.9236	N
\overline{Z}	0.7466	0.4499	0.2024	N
Z^*	0.7466	0.6363	0.4049	N

13.2 Correlations with the reference variable

	Y_{t-5}	Y_{t-4}	Y_{t-3}	Y_{t-2}	Y_{t-1}	Y_t	Y_{t+1}	Y_{t+2}	Y_{t+3}	Y_{t+4}	Y_{t+5}
λ^c	0.0916	0.0747	0.0466	0.0049	-0.0531	-0.1301	-0.1296	-0.1232	-0.1127	-0.0994	-0.0844
λ^{c^*}	0.0916	0.0747	0.0466	0.0049	-0.0531	-0.1301	-0.1296	-0.1232	-0.1127	-0.0994	-0.0844
r	0.1626	0.2765	0.4099	0.5627	0.734	0.9218	0.5737	0.2944	0.0766	-0.0872	-0.2047
r^*	-0.1312	-0.14	-0.1413	-0.1324	-0.1099	-0.0704	0.0026	0.0552	0.0907	0.1122	0.1224
C	-0.0523	0.0267	0.1286	0.256	0.4109	0.5949	0.4729	0.3599	0.2578	0.1678	0.0905
C^*	-0.1138	-0.1178	-0.1126	-0.095	-0.0613	-0.0074	0.0122	0.0279	0.0399	0.0485	0.0539
G^d	0.048	0.1164	0.1992	0.2971	0.4101	0.5378	0.3679	0.2265	0.1117	0.021	-0.0483
G^{d^*}	-0.0688	-0.0646	-0.0536	-0.0339	-0.0034	0.0404	0.0468	0.0498	0.0501	0.0482	0.0449
H	0.0668	0.1964	0.352	0.5339	0.7412	0.9721	0.7231	0.5036	0.3144	0.1553	0.0251
H^*	-0.0838	-0.1155	-0.1459	-0.1723	-0.1916	-0.1999	-0.1621	-0.1234	-0.0856	-0.0504	-0.0188
I	0.1968	0.2892	0.3927	0.5058	0.6261	0.7501	0.4389	0.1931	0.0048	-0.1335	-0.2294
I^*	-0.182	-0.2276	-0.2722	-0.3132	-0.3473	-0.3705	-0.1823	-0.0376	0.0693	0.1442	0.1924
K	-0.2171	-0.1269	-0.0086	0.1399	0.3199	0.5318	0.6472	0.6876	0.6718	0.6159	0.5332
K^*	0.0348	-0.0325	-0.1112	-0.1999	-0.2963	-0.3971	-0.4404	-0.4404	-0.4091	-0.3568	-0.2917
TR	0.2346	0.2682	0.2982	0.3223	0.3379	0.3418	0.0736	-0.1192	-0.2494	-0.3285	-0.3669
U	-0.1369	-0.1765	-0.2148	-0.2489	-0.2755	-0.2901	-0.1786	-0.0871	-0.0142	0.0419	0.0832
U^*	0.0647	0.1596	0.2732	0.4055	0.5561	0.7235	0.5187	0.3431	0.196	0.0759	-0.0195
W	0.0052	0.1288	0.2816	0.4654	0.681	0.9283	0.7097	0.5134	0.3413	0.194	0.0712
W^*	-0.1083	-0.1277	-0.1413	-0.146	-0.1379	-0.1126	-0.0813	-0.0516	-0.0245	-0.0006	0.0195
Y	0.0449	0.1783	0.34	0.5312	0.7516	1	0.7516	0.5312	0.34	0.1783	0.0449
Y^*	-0.0956	-0.123	-0.1472	-0.1653	-0.1739	-0.1687	-0.1327	-0.0968	-0.0626	-0.0313	-0.0036
Z	0.1046	0.2262	0.372	0.5424	0.7374	0.9555	0.6479	0.3926	0.1859	0.0232	-0.1003
Z^*	-0.1253	-0.1386	-0.1448	-0.141	-0.1237	-0.0889	-0.0307	0.0141	0.0471	0.0701	0.0845

14 Impulse response functions

14.1 Shock ϵ^Z

Figure 1: Impulse response function for ϵ^Z shock

Figure 2: Impulse response function for ϵ^Z shock

14.2 Shock ϵ^{Z^*}

Figure 3: Impulse response function for ϵ^{Z^*} shock

Figure 4: Impulse response function for ϵ^{Z^*} shock