We start at 10:05

Scaling GNNs

Note: much of the material for this lecture was taken from <u>Stanford's CS224W (Winter 2022)</u> by Jure Leskovec

Slides by Jay Siri (<u>isiri@caltech.edu</u>)

Overview

- 1. Applications of Large Graphs
- 2. Scalability Issues
- 3. Sampling Techniques
- 4. Simplifying GNN Architecture

Applications of Large Graphs

Why do we care about scaling GNNs?

- Recommender systems:
 - Amazon
 - YouTube
 - Pinterest
 - o Etc.
- ML tasks:
 - Recommend items (link prediction)
 - Classify users/items (node classification)

Users Products/Videos 100M~1B 10M ~ 1B

- Social networks:
 - Facebook
 - Twitter
 - Instagram
 - o Etc.
- ML tasks:
 - Friend recommendation (link-level)
 - User property prediction (node-level)

Biology:

- Protein force-field modeling
- Other graph examples: disease pathways, gene interaction networks

ML tasks:

- Implicit solvation free energy prediction (graph-level)
- Pairwise energy prediction (link-level)

Atoms >10k

Source: DeepRank-GNN: A Graph Neural Network Framework to Learn Patterns in Protein-Protein Interfaces (2021)

- Physics:
 - Super-resolution of fluid flows
- ML tasks:
 - Full-field modeling (graph-level)
 - Local velocity field modeling (node-level)

Mesh ~36³ points

Source: Mesh-based Super-Resolution of Fluid Flows with Multiscale Graph Neural Networks (2024)

What is in Common?

- Large-scale:
 - #nodes ranges from 10k to 10B
 - #edges ranges from 1M to 100B
- Tasks:
 - Node-level: user/atom/point prediction
 - Edge-level: interaction prediction
 - Graph-level: structure prediction (e.g., proteins, fluid fields)

Scalability Issues

Challenges in training and inference on large graphs

Question 1

What are some possible issues when training large GNNs? Why might it be bad to use mini-batch SGD like typical model training?

Caltech EAS ALEBOOTCAMP

- **Recall**: How we usually train an ML model on large data (*N* = #data is large)
- Objective: Minimize the averaged loss

$$\ell(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=0}^{N-1} \ell_i(\boldsymbol{\theta})$$

 θ : model parameters, $\ell_i(\theta)$: loss for i-th data point.

- We perform Stochastic Gradient Descent (SGD).
 - Sample M (\ll N) data points (mini-batches).
 - Compute the $\ell_{sub}(\theta)$ over the M data points.
 - \circ Perform SGD: $\overset{\circ}{\theta} \leftarrow \theta \nabla \ell_{\text{sub}}(\theta)$

Caltech EAS ALEBOOTCAMP

• In mini-batch, we sample M (\ll N) nodes independently:

- Sampled nodes will be be isolated from each other!
- GNN generates node embeddings by aggregating neighboring node features.
 - O GNN does not access to neighboring nodes within the mini-batch!
 - Standard SGD cannot effectively train GNNs.

 Naïve full-batch implementation: Generate embeddings of all the nodes at the same time:

$$H^{(k+1)} = \sigma(\tilde{A}H^{(k)}W_k^{\mathrm{T}} + H^{(k)}B_k^{\mathrm{T}})$$

- Load the entire graph A and features X. Set H⁽⁰⁾ = X.
- At each GNN layer: Compute embeddings of all nodes using all the node embeddings from the previous layer.
- Compute the loss
- Perform gradient descent

Given all node embeddings at layer K

Perform messagepassing

Obtain **all node embeddings** at layer K+1

- However, Full-batch implementation is not feasible for large graphs.
- Why?
 - Because we want to use GPU for fast training, but GPU memory is extremely limited (10GB-80GB).
 - The entire graph and the features cannot be loaded on GPU.

Sampling Techniques

Reduce the size of data needed to train GNNs

Neighborhood Sampling

Recall: Computational Graph

- Recall: GNNs generate node embeddings via neighbor aggregation.
 - Represented as a computational graph (right).

Recall: Computational Graph

 Observation: A 2-layer GNN generates embedding of node "0" using 2-hop neighborhood structure and features

Recall: Computational Graph

• Observation: More generally, *K*-layer GNNs generate embedding of a node using *K*-hop neighborhood structure and features.

Computing Node Embeddings

- Key insight: To compute embedding of a single node, all we need is the
 K-hop neighborhood (which defines the computation graph).
- Given a set of M different nodes in a mini-batch, we can generate their embeddings using M computational graphs. Can be computed on GPU!

Stochastic Training of GNNs

- We can now consider the following SGD strategy for training K-layer GNNs:
 - Randomly sample M (\ll N) root nodes.
 - For each sampled root node v:
 - Get K-hop neighborhood and construct the computation graph.
 - Use the above to generate v's embedding.
 - Compute the loss $\ell_{sub}(\theta)$ over the *M* nodes.
 - Perform SGD: $\theta \leftarrow \theta \nabla \ell_{sub}(\theta)$

K-hop neighborhood

Computational graph

Caltech EAS ALEBOOTCAMP

Issue with Stochastic Training (1/2)

- For each node, we need to get the entire K-hop neighborhood and pass it through the computation graph.
- We need to aggregate lot of information just to compute one node embedding.
- Some computational redundancy:

Issue with Stochastic Training (2/2)

- Computation graph becomes exponentially large with respect to the layer size K.
- Computation graph explodes when it hits a hub node (high-degree node).
- Solution: make the computational graph more compact!

Caltech EAS ALEBOOTCAMP

Neighborhood Sampling

Key idea: Construct the computational graph by (randomly) sampling at most H neighbors at each hop.

Neighborhood Sampling

We can use the pruned computational graph to more efficiently compute

node embeddings.

Caltech EAS ALEBOOTCAMP

Neighborhood Sampling Algorithm

Neighbor sampling for K-layer GNN

- For k = 1, 2, ..., K:
 - For each node in k-hop neighborhood:
 - (Randomly) sample at most H_k neighbors:

1st-hop Sample
$$H_1 = 2$$
 neighborhood neighbors Sample $H_2 = 2$ neighborhood neighbors

• K-layer GNN will at most involve $\prod_{k=1}^{K} H_k$ leaf nodes in comp. graph.

Caltech EAS ALEBOOTCAMP

Remarks on Neighborhood Sampling (1/2)

• Trade-off in sampling number H

 Smaller H leads to more efficient neighbor aggregation, but results are less stable training due to the larger variance in neighbor aggregation.

Computational time

- Even with neighbor sampling, the size of the computational graph is still exponential with respect to number of GNN layers K.
- Adding one GNN layer would make computation H times more expensive.

Caltech EAS AI EBOOTCAMP

Remarks on Neighborhood Sampling (1/2)

- How to sample the nodes
 - Random Sampling: fast but many times not optimal (may sample many "unimportant" nodes)
 - Random Walk with Restarts:
 - Natural graphs are "scale free", sampling random neighbors, samples many low degree "leaf" nodes.
 - Strategy to sample important nodes:
 - Compute Random Walk with Restarts score R_i starting at the green node
 - At each level sample *H* neighbors *i* with the highest *R*.
 - This strategy works much better in practice.

Summary: Neighborhood Sampling

- A computational graph is constructed for each node in a mini-batch.
- In neighbor sampling, the comp. graph is pruned/sub-sampled to increase computational efficiency.
- The pruned comp. graph is used to generate a node embedding.
- However, computational graphs can still become large, especially for GNNs with many message-passing layers.

Caltech EAS ALEBOOTCAMP

Cluster-GCN

Issue with Neighborhood Sampling

- The size of computational graph becomes exponentially large w.r.t. the #GNN layers.
- Computation is **redundant**, especially when nodes in a mini-batch share many neighbors.

Recall: Full-batch GNN

 In full-batch GNN implementation, all the node embeddings are updated together using embeddings of the previous layer.

$\begin{aligned} & \text{Update for all } v \in V \\ & h_v^{(\ell)} = COMBINE\left(h_v^{(\ell-1)}, AGGR\left(\left\{\frac{\pmb{h_u^{(\ell-1)}}}{u}\right\}_{u \in N(v)}\right)\right) \end{aligned}$

- In each layer, only 2*#(edges)
 messages need to be computed.
- For K-layer GNN, only 2K*#(edges) messages need to be computed.
- GNN's entire computation is only linear in #(edges) and #(GNN layers). Fast!

Insight from Full-batch GNN

- The layer-wise node embedding update allows the re-use of embeddings from the previous layer.
- This significantly reduces the computational redundancy of neighbor sampling.
 - Of course, the layer-wise update is not feasible for a large graph due to limited GPU memory.
 - Requires putting the entire graph and features on GPU.

Subgraph Sampling

• **Key idea**: We can **sample a small subgraph** of the large graph and then perform the efficient **layer-wise** node embeddings update over the subgraph.

Large graph

)

Sampled subgraph (small enough to be put on a GPU)

Layer-wise node embeddings update on the GPU

Subgraph Sampling

- Key question: What subgraphs are good for training GNNs?
- Recall: GNN performs node embedding by passing messages via the edges.
 - Subgraphs should retain edge connectivity structure of the original graph as much as possible.
 - O This way, the GNN over the subgraph generates embeddings closer to the GNN over the original graph.

Question 2

Subgraph Sampling: Case Study

Which subgraph is good for training GNN?

Original graph

Subgraphs (both 4-node induced subgraph)

Subgraph Sampling: Case Study

Which subgraph is good for training GNN?

- Left subgraph retains the essential community structure among the 4 nodes → Good
- Right subgraph drops many connectivity patterns, even leading to isolated nodes → Bad

Exploiting Community Structure

- Real-world graph exhibits community structure
 - A large graph can be decomposed into many small communities
- Key insight [Chiang et al. KDD 2019]:
 - Sample a community as a subgraph. Each subgraph retains essential local connectivity pattern of the original graph.

Cluster-GCN: Overview

- We first introduce "vanilla" Cluster-GCN.
- Cluster-GCN consists of two steps:
 - **1. Pre-processing:** Given a large graph, partition it into groups of nodes (i.e., subgraphs).
 - 2. Mini-batch training: Sample one node group at a time. Apply GNN's message passing over the induced subgraph.

Cluster-GCN: Pre-Processing

- Given a large graph G = (V, E), partition its nodes
 V into C groups: V₁, ..., V_C.
 - We can use any scalable community detection methods, e.g., Louvain, METIS [Karypis et al. SIAM 1998].
- $V_1, ..., V_C$ induces C subgraphs, $G_1, ..., G_c$,
 - $\circ \quad \text{Recall: } \mathbf{G}_{\mathbf{C}} \equiv (\mathbf{V}_{\mathbf{C}}, \, \mathbf{E}_{\mathbf{C}}) \text{, where } \mathbf{E}_{\mathbf{C}} = \{ \, (u, \, v) \mid u, \, v \, \in \mathbf{V}_{\mathbf{c}} \}$
 - \circ Notice: Between-group edges are not included in $G_{\mbox{\scriptsize 1}},$... , $G_{\mbox{\tiny c}}$

Cluster-GCN: Mini-Batch Training

- For each mini-batch, randomly sample a node group V_C.
- Construct induced subgraph $G_C = (V_C, E_C)$

Cluster-GCN: Mini-Batch Training

- Apply GNN's layer-wise node update over G_c to obtain embedding h_v for each node $v \in V_c$.
- Compute the loss for each node $v \in V_c$ and take average: $\ell_{sub}(\theta) = (1/|V_c|) \cdot \sum_{v \in V_c} \ell_v(\theta)$
- Update params: $\theta \leftarrow \theta \nabla \ell_{sub}(\theta)$

Issues with Cluster-GCN (1/3)

- The induced subgraph **removes** between group links.
- As a result, messages from other groups will be lost during message passing, which could hurt the GNN's performance.

Issues with Cluster-GCN (2/3)

- Graph community detection algorithm puts similar nodes together in the same group.
- Sampled node group tends to only cover the small-concentrated portion of the entire data.

Issues with Cluster-GCN (3/3)

- Sampled nodes are not diverse enough to be represent the entire graph structure:
 - As a result, the gradient averaged over the sampled nodes,

$$\frac{1}{|V_c|} \sum_{v \in V_c} \ell_v(\boldsymbol{\theta})$$

- , becomes unreliable.
 - Fluctuates a lot from a node group to another.
 - In other words, the gradient has high variance.
- Leads to slow convergence of SGD

Cluster-GCN Summary

- Cluster-GCN first partitions the entire nodes into a set of small node groups.
- At each mini-batch, multiple node groups are sampled, and their nodes are aggregated.
- GNN performs layer-wise node embeddings update over the induced subgraph.
- Cluster-GCN is more computationally efficient than neighbor sampling, especially when #(GNN layers) is large.
- But Cluster-GCN leads to systematically biased gradient estimates (due to missing cross-community edges)

Simplifying GNN Architecture

Reduce the number of computations performed in training

Roadmap of Simplifying GCN

- We start from Graph Convolutional Network (GCN) [Kipf & Welling ICLR 2017].
- We simplify GCN ("SimplGCN") by removing the non-linear activation from the GCN [Wu et al. ICML 2019].
 - SimplGCN demonstrated that the performance on benchmark is not much lower by the simplification.
 - O Simplified GCN turns out to be extremely scalable by the model design.
 - The simplification strategy is very similar to the one used by LightGCN for recommender systems.

Simplified GCN: "SimplGCN"

- Let $\widetilde{E} = \widetilde{A}^K E$ be pre-processed feature matrix.
 - Each row stores the pre-processed feature for each node.
 - \tilde{E} can be used as input to any scalable ML models (e.g., linear model, MLP).
- SimplGCN empirically shows learning a linear model over \widetilde{E} often gives performance comparable to GCN!

Comparison to Other Methods

- Compared to neighbor sampling and cluster-GCN, SimplGCN is much more efficient.
 - SimplGCN computes \widetilde{E} only once at the beginning.
 - The pre-processing (sparse matrix vector product, $(E \leftarrow \widetilde{A} E)$ can be performed efficiently on CPU.
 - Once \widetilde{E} is obtained, getting an embedding for node v only takes constant time!
 - Just look up a row for node v in \widetilde{E} .
 - No need to build a computational graph or sample a subgraph.
- But the model is less expressive (next).

Issues with SimplGCN

 Compared to the original GNN models, SimplGCN's expressive power is limited due to the lack of non-linearity in generating node embeddings.

Performance of SimplGCN

- Surprisingly, in semi-supervised node classification benchmark, SimplGCN works comparably to the original GNNs despite being less expressive.
- Why?
 - Graph homophilly!

Graph Homophilly

- Many node classification tasks exhibit homophily structure, i.e., nodes connected by edges tend to share the same target labels.
- Examples:
 - Paper category classification in paper-citation network
 - Two papers tend to share the same category if one cites another.
 - Movie recommendation for users in social networks
 - Two users tend to like the same movie if they are friends in a social network.

When Does Simplified GCN Work?

- Recall the preprocessing step of the simplified GCN: Do $E \leftarrow \widetilde{A} E$ for K times.
 - E is node feature matrix E = X
- Pre-processed features are obtained by iteratively averaging their neighboring node features.

 Average
- As a result, nodes connected by edges tend to have similar pre-processed features.

When Does Simplified GCN Work?

- **Premise**: Model uses the pre-processed node features to make prediction.
- Nodes connected by edges tend to get similar pre-processed features.
- Nodes connected by edges tend to be predicted the same labels by the model
- Simplified SGC's prediction aligns well with the graph homophily in many node classification benchmark datasets.

SimplGCN: Summary

- Simplified GCN removes non-linearity in GCN and reduces to the simple pre-processing of node features.
- Once the pre-processed features are obtained, scalable mini-batch SGD can be directly applied to optimize the parameters.
- Simplified GCN works surprisingly well in node classification benchmark.
 - The feature pre-processing aligns well with graph homophily in real-world prediction tasks.

Recap of GNN Scaling

- Applications: some use-cases (e.g., social networks, fluid dynamics) need large-scale GNNs
- Scalability Challenges: Standard mini-batch SGD doesn't work well for GNN training
- 3. **Sampling**: neighborhood sampling, Cluster-GCN can be used to pick a *part* of the graph to train on
- 4. **Architecture**: changing model architecture, like simplGCN, can reduce computation and maintain good results

References

Lectures:

Stanford CS224W (2022) - Lectures and Colab 5 on Scaling GNNs

• Papers:

- Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks (2019)
- GraphSAINT: Graph Sampling Based Inductive Learning Method (2020)
- Distributed Graph Neural Network Training: A Survey (2022)

Articles:

 https://diplodoc.medium.com/graph-neural-networks-gnn-enable-the-study-of-drug-inter actions-and-the-discovery-of-new-6cb94ab82b53