Основы статистики и статистические критерии

Александр Сахнов linkedin.com/in/amsakhnov

Staff MLE at Alibaba Group

2 сентября 2021 г.

Оглавление

- 1 Методы принятия решений
- Тестирование гипотез
 - Статистическая гипотеза
 - Уровень значимости и мощность теста
 - Критическая область
 - Этапы проверки статистических гипотез
- 📵 Важные статистические тесты
 - Тест Стьюдента
 - Тест Манна-Уитни
 - Критерий Колмогорова
 - Критерий отношения правдоподобия
- 🐠 Бутстреп
 - Нормальный интервал
 - Интервал на основе процентилей
 - Центральный интервал
- 亙 Как выбрать критерий
 - p-value

Как принимали решения раньше

- Опрос пользователей
- Сравнение метрики до и во время эксперимента
- Мнение эксперта

Что такое АВ тестирование?

Definition

АВ тестирование — метод, который позволяет на основе сравнения пилотной и контрольной групп оценивать изолированный эффект внедряемых изменений.

Статистическая гипотеза

Definition

Статистическая гипотеза — любое предположение о распределении и свойствах случайной величины.

Example (Примеры)

- Несколько простых гипотез: $H_0 = \{F = F_0\}, H_1 = \{F = F_1\};$
- ullet Простая основная гипотеза и сложная альтернатива: $H_0 = \{ \mathbb{E} X = \mathbb{E} Y \}, \ H_1 = \{ \mathbb{E} X \neq \mathbb{E} Y \};$
- ullet Гипотеза независимости: $H_0 = \{ \mathbb{P}(X) = \mathbb{P}(X|Y) \}, \ H_1 = \{ H_0 \text{ неверна} \};$

Статистический критерий

Definition

Статистический критерий — математическое правило, позволяющее по реализациям выборок отвергнуть или не отвергнуть нулевую гипотезу с заданным уровнем значимости.

Дана выборка $X_1, \ldots, X_n \sim F$.

Хотим проверить простую гипотезу H_0 против сложной альтернативы H_1 .

Пусть можно задать функцию $t(X^n)$, обладающую свойствами:

- 1. если H_0 верна, то $t(X^n) \Rightarrow G$, где G непрерывное распределение;
- 2. если H_0 неверна, то $|t(X^n)| \stackrel{P}{\to} \infty$ при $n \to \infty$.

Для CB $Y \sim G$ определим постоянную C из равенства $\alpha = \mathbb{P}(|Y| > C)$. Тогда критерий:

$$\delta(X^n) = \begin{cases} H_0, \text{ если } t(X^n) < C, \\ H_1, \text{ если } t(X^n) \ge C \end{cases}$$

Уровень значимости и мощность теста

Definition

Уровень значимости — вероятность отклонить нулевую гипотезу при условии её истинности, вероятность совершения ошибки первого рода.

Definition

Статистическая мощность — вероятность отклонения основной гипотезы в случае, когда альтернативная гипотеза верна. Чем выше мощность теста, тем меньше вероятность совершить ошибку второго рода.

Тест на равенство средних. Критическая область

Есть две выборки $X_1,\ldots,X_n\sim F_1$ и $Y_1,\ldots,Y_n\sim F_2.$

Определим гипотезы $H_0: \mathbb{E} X = \mathbb{E} Y$ и $H_1: \mathbb{E} X
eq \mathbb{E} Y$

Рассмотрим распределение случайной величины $t = \langle X^n \rangle - \langle Y^n \rangle$.

Definition

Критическая область — область выборочного пространства, при попадании в которую нулевая гипотеза отклоняется.

Этапы проверки статистических гипотез

- 1. Выдвижение основной гипотезы H_0 и альтернативной гипотезы H_1 .
- 2. Выбор уровня значимости α , на котором будет сделан вывод о справедливости гипотезы. Он равен вероятности допустить ошибку первого рода.
- 3. Расчет статистики критерия такой, что она зависит от выборки и по её значению можно сделать вывод об истинности нулевой гипотезы.
- 4. Построение критической области.
- 5. По попаданию или непопаданию значения статистики в критическую область делается вывод о истинности выдвинутой гипотезы на выбранном уровне значимости.

Тест Стьюдента

Есть две выборки: $X_1, \ldots, X_{n_1} \sim N(\mu_1, \sigma_1)$ и $Y_1, \ldots, Y_{n_2} \sim N(\mu_2, \sigma_2)$.

Гипотезы: $H_0: \mathbb{E} X = \mathbb{E} Y$ и $H_1: \mathbb{E} X
eq \mathbb{E} Y$.

Средние выборок

$$\overline{X} = \frac{1}{n_1} \sum_{i=1}^{n_1} X_i, \qquad \overline{Y} = \frac{1}{n_2} \sum_{i=1}^{n_2} Y_i$$

Оценки дисперсий

$$S_X^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (X_i - \overline{X})^2, \qquad S_Y^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \overline{Y})^2$$

Статистика теста

$$t(X^n,Y^n) = \frac{\overline{Y} - \overline{X}}{\sqrt{\frac{S_X^2}{n_1} + \frac{S_Y^2}{n_2}}} \approx St(\nu), \qquad \nu = \frac{\left(\frac{S_X^2}{n_1} + \frac{S_Y^2}{n_2}\right)^2}{\frac{S_X^4}{n_1^2(n_1 - 1)} + \frac{S_Y^4}{n_2^2(n_2 - 1)}}$$

Тест Стьюдента

Предположения

- Средние значения выборок распределены нормально
- Дисперсии выборок равны
- Выборки независимы друг от друга

Рис.: Плотность распределения Стьюдента

При неизвестных дисперсиях распределение статистики t имеет приближенное распределение (проблема Беренса - Фишера).

Приближение достаточно точное при выполнении одного из следующих условий

- $n_1 = n_2$
- $\mathbb{I}(n_1 > n_2) = \mathbb{I}(\sigma_1 > \sigma_2)$

Тест Манна-Уитни

Есть две выборки: $X_1, \dots, X_{n_1} \sim F_X$ и $Y_1, \dots, Y_{n_2} \sim F_Y$.

Гипотезы: $H_0:F_X(t)=F_Y(t)$ и $H_1:F_X(t)=F_Y(t+\Delta), \Delta \neq 0.$

Составить единый ранжированный ряд из обеих сопоставляемых выборок.

Подсчитать отдельно сумму рангов выборок R_1 и R_2 .

Вычислить

$$U_1 = R_1 - \frac{n_1(n_1+1)}{2}, \qquad U_2 = R_2 - \frac{n_2(n_2+1)}{2}$$

Значение U-статистики Манна-Уитни

$$U=\min\{U_1,U_2\}$$

Пример

Две выборки $X=\{1,4\}, Y=\{2,5,7\}.$ Объединим выборки $\{1,2,4,5,7\}.$ Суммы рангов $R_1=4$, $R_2=11.$

$$U_1 = 4 - 3 = 1, \ U_2 = 11 - 6 = 5$$

 $U = \min\{1, 5\} = 1$

Тест Манна-Уитни

Свойства

- \bullet 0 < U_1 < $n_1 n_2$, 0 < U_2 < $n_1 n_2$
- $U_1 + U_2 = n_1 n_2$
- ullet При $n_1, n_2 \geq 20$ распределение $U(X^n, Y^n) \sim N\left(rac{n_1 n_2}{2}, rac{n_1 n_2 (n_1 + n_2 + 1)}{12}
 ight)$

Предположения

- Х и Y из одного распределения с точностью до сдвига
- Элементы внутри выборок независимы
- Выборки независимы друг от друга

Замечания

- Если есть дублирующиеся значения, то для них нужно проставить их средний ранг и внести корректировку в аппроксимирующее нормальное распределение.
- Устойчив к выбросам, результат может отличаться от теста Стьюдента.

Критерий Колмогорова

Дана выборка $X_1, \ldots, X_n \sim F$.

Гипотезы: $H_0: F = F_0$ и $H_1: F \neq F_0$.

Если F_0 непрерывная, то можно пользоваться критерием Колмогорова.

Определим статистику $t(X^n) = \sqrt{n} \sup |\hat{F}_n(x) - F_0(x)|$.

Если H_0 верна, то статистика $t(X^n)$ имеет распределение Колмогорова

$$K(x) = \begin{cases} \sum_{i=-\infty}^{\infty} (-1)^i e^{-2i^2 x^2} &, x > 0 \\ 0 &, x \le 0 \end{cases}$$

Распределение Колмогорова табулировано.

Критерий Колмогорова

$$\delta(X^n) = \begin{cases} H_0, \text{ если } t(X^n) < C, \\ H_1, \text{ если } t(X^n) \ge C \end{cases}$$

Этапы проверки статистических гипотез

Критерий отношения правдоподобия

Функция правдоподобия $L(\theta) = \prod_{i=1}^n p(X_i; \theta)$.

Гипотезы: $H_0: \theta \in \Theta_0$ и $H_1: \theta \notin \Theta_0$.

Статистика отношения правдоподобия

$$\lambda(X^n) = 2 \ln \left(\frac{\sup_{\theta \in \Theta} L(\theta)}{\sup_{\theta \in \Theta_0} L(\theta)} \right) = 2 \ln \left(\frac{L(\hat{\theta})}{L(\hat{\theta}_0)} \right)$$

где $\hat{ heta}$ - ОМП, $\hat{ heta}_0$ - ОМП при условии $heta \in \Theta_0$.

Допустим $\theta = (\theta_1, \dots, \theta_q, \theta_{q+1}, \dots, \theta_r)$. Пусть $\Theta_0 = \{\theta : (\theta_{q+1}, \dots, \theta_r) = (\theta_{0,q+1}, \dots, \theta_{0,r})\}$.

Если H_0 верна, то $\lambda(X^n) \sim$

$$\lambda(X^n) \sim \chi^2_{r-q,\alpha}$$

где r-q — размерность Θ минус размерность Θ_0 , α - уровень значимости.

Критерий отношения правдоподобия

$$\delta(X^n) = \begin{cases} H_0, \text{ если } \lambda(X^n) < C, \\ H_1, \text{ если } \lambda(X^n) \ge C \end{cases}$$

Доверительный интервал

Доверительным интервалом с доверительной вероятностью 1-lpha для параметра heta называется интервал $C_n = (a, b)$, где $a = a(X_1, \dots, X_n)$ и $b = b(X_1, \dots, X_n)$ - такие функции выборки, что $\mathbb{P}(\theta \in C_n) > 1 - \alpha$.

Возьмём в качестве параметра θ разность средних распределений. Нулевая гипотеза $H_0: \mathbb{E}X = \mathbb{E}Y$. Тогда критерий проверки гипотезы о равенстве средних будет иметь вид

$$0 \notin (a,b) \Leftrightarrow$$
 отвергнуть гипотезу H_0

Примеры расположения доверительного интервала относительно нуля:

В первом случае значимых отличий нет, ноль внутри доверительного интервала.

Во втором случае значимые отличия есть, ноль вне доверительного интервала.

Бутстреп

Definition

Бутстреп — это метод для подсчета стандартных ошибок и нахождения доверительных интервалов статистических функционалов.

Хотим оценить распределение статистики T по выборке X_1, \ldots, X_n

- Генерируем В подвыборок из выборки X^n ;
- Вычисляем статистику Т для каждой подвыборки;
- Оцениваем распределение по получившемуся множеству статистик.

Пример

Дана функция

$$f(x) = x\cos(71x) + \frac{\sin(13x^2)}{x}$$

Хотим оценить $m=\mathbb{E}(f(X))$ по выборке $X_1,\dots,X_n\sim N(1,1)$. Точечная оценка $\hat{m}=n^{-1}\sum_i f(X_i)$. Для оценки разброса оценки воспользуемся бутстрепом.

Проверка гипотезы о равенстве средних

Есть две выборки: $X_1,\ldots,X_n\sim F_X$ и $Y_1,\ldots,Y_n\sim F_Y$.

Гипотезы: $H_0: \mathbb{E} X = \mathbb{E} Y$ и $H_1: \mathbb{E} X
eq \mathbb{E} Y$.

Генерируем B пар подвыборок из выборок X^n, Y^n размером n.

Для каждой пары считаем разность выборочных средних $\{T_{n,1},\ldots,T_{n,B}\}$.

По получившимуся множеству разностей строим доверительный интервал и проверяем гипотезу.

Нормальный интервал

Предположим, что полученное множество статистик, посчитанных на бутстрепных данных, имеет нормальное распределение. Тогда

$$C_n = (T - z_{\alpha/2} \hat{se}_{boot}, T + z_{\alpha/2} \hat{se}_{boot})$$

где разность выборочных средних $T = \overline{Y^n} - \overline{X^n}$, оценка стандартной ошибки на основе бутстрепа $\hat{se}_{boot} = \sqrt{1/B\sum_{i=1}^B (T_{n,i} - \overline{T_n^B})^2}$, модуль квантиля стандартного нормального распределения $Z_{\alpha/2}$.

Интервал на основе процентилей

$$C_n = (\theta_{\alpha/2}^*, \theta_{1-\alpha/2}^*)$$

где $heta_lpha^*$ - квантили посчитанные по множеству $\{T_{n,1},\ldots,T_{n,B}\}.$

Можно подобрать монотонное преобразование, которое преобразует распределение статистики T к распределению похожее на нормальное. Так как монотонное преобразование сохраняет квантили, то квантили $\theta_{\alpha/2}, \theta_{1-\alpha/2}$ перейдут в соответствующие кванитили нормального распределения. Тогда легко показать, что вероятность попасть в определённый выше интервал равна $1-\alpha$.

Центральный интервал

Пусть $\theta = T(F)$ и $\hat{\theta}_n = T(\hat{F}_n)$. Введём $R_n = \hat{\theta}_n - \theta$ с распределением $H(r) = \mathbb{P}_F(R_n < r)$. Определим доверительный интервал

$$C_n = (a, b) = (\hat{\theta}_n - H^{-1} \left(1 - \frac{\alpha}{2}\right), \hat{\theta}_n - H^{-1} \left(\frac{\alpha}{2}\right))$$

Легко показать, что $\mathbb{P}(\theta \in C_n) = 1 - \alpha$, но мы не знаем H(r). Оценим его с помощью бутстрепа

$$\hat{H}(r) = \frac{1}{B} \sum_{i=1}^{B} \mathbb{I}(R_{n,i}^* \le r), \qquad R_{n,i}^* = \hat{\theta}_{n,i}^* - \hat{\theta}_n$$

Пусть r^*_{β} - β выборочная квантиль, посчитанная по выборке $(R^*_{n,1},\ldots,R^*_{n,B})$, а θ^*_{β} - β выборочная квантиль, посчитанная по выборке $(\hat{\theta}_{n}^*, \dots, \hat{\theta}_{n}^*)$, тогда

Центральный интервал

$$\hat{a} = \hat{\theta}_n - \hat{H}^{-1} \left(1 - \frac{\alpha}{2} \right) = \hat{\theta}_n - r_{1-\alpha/2}^* = 2\hat{\theta}_n - \theta_{1-\alpha/2}^*$$

$$\hat{b} = \hat{\theta}_n - \hat{H}^{-1} \left(\frac{\alpha}{2} \right) = \hat{\theta}_n - r_{\alpha/2}^* = 2\hat{\theta}_n - \theta_{\alpha/2}^*$$

Получаем центральный доверительный интервал

$$C_n = (2\hat{\theta}_n - \theta_{1-\alpha/2}^*, 2\hat{\theta}_n - \theta_{\alpha/2}^*)$$

Заметим, что $\mathbb{P}(T(F) \in C_n) \to 1 - \alpha$ при $n \to \infty$.

Итого, Бутстреп

- Позволяет оценить распределение некоторой функции от случайной выборки
- Не делает предположений о виде распределения
- Много вычислений

Ошибки I и II рода

Ошибки I и II рода

Нашли эффект, когда его нет

(ошибка І рода)

"Новые стеллажи увеличат средний чек на 1%."

Установить 14000 стеллажей. которые ничего не меняют.

Не нашли эффект, когда он был

(ошибка II рода)

Смена ассортимента увеличивает выручку на 2%

Провели пилот на 5 магазинах, тк дорого оборудовать. Не увидели стат значимого эффекта.

Оценка ошибок I и II рода

Оценка ошибки І рода

- 1. генерируем пилотную и контрольную группы
- 2. на исторических данных, где не был запущен эксперимент, считаем метрики для групп
- 3. оцениваем значимость отличия средних и запоминаем результат
- 4. повторяем первые три пункт, чтобы набрать статистику
- 5. считаем долю случаев, когда средние значения отличались значимо

Оценка ошибки II рода

- 1. генерируем пилотную и контрольную группы
- 2. на исторических данных, где не был запущен эксперимент, считаем метрики для групп, к метрикам пилотной группы добавляем эффект
- 3. оцениваем значимость отличия средних и запоминаем результат
- 4. повторяем первые три пункт, чтобы набрать статистику
- 5. считаем долю случаев, когда средние значения не отличались значимо

p-value

*p*_{value} - вероятность при нулевой гипотезе наблюдать полученное или более экстремальное значение статистики.

$$p_{value} = \mathbb{P}(T > t|H_0)$$

Статистический критерий можно записать как

 $p_{\text{value}} < \alpha \quad \Leftrightarrow$ отвергнуть гипотезу

Распределение p-value

Theorem

Пусть тест размера α имеет вид: отвергнуть $H_0 \Leftrightarrow T(x^n) > c(\alpha)$, где x^n - наблюдаемая выборка.

Если H_0 верна, то $p_{value}(x^n) = \mathbb{P}(T(X^n) > T(x^n)|H_0)$.

Из последнего свойства также следует, что $p_{value}(X^n) \sim \textit{Uniform}(0,1).$

Утверждение

Пусть случайная величина X имеет распределение F(x), и F(x) обратима. Тогда случайная величина Y = F(X) имеет распределение *Uniform*(0,1).

Док-во:
$$\mathbb{P}(F(X) < x) = \mathbb{P}(X < F^{-1}(x)) = F(F^{-1}(x)) = x, x \in (0,1).$$

Случайная величина Y = 1 - F(X) также является равномерной, причём:

$$Y=1-F(X)=\mathbb{P}_{Z\sim F(.)}(Z>X),$$

Теперь p_{value} подходит под роль Y в утверждении выше: $Y = p_{value}(X^n), \ X = T(X^n).$

Что дальше?

Пайплайн АВ теста

- Гипотеза
- Метрики и алгоритм принятия решений
- Ожидаемый эффект и размер групп
- Подбор групп
- Проведение пилота
- Обработка результатов

Материалы

Материалы для самостоятельного изучения

1. Larry Wasserman. All of Statistics.