Point Defect Diffusion + Defect Reactions

K.G. Field^{1,a},

a kgfield@umich.edu

¹University of Michigan

Microscopic Diffusion

- Assume that the self-diffusion process consists of a completely random walk of defects
- Assume steps of equal length, random directions:

Fig. 7.4 Eight random jumps of equal length λ .

Microscopic Diffusion

$$\bar{r}^2 = n\lambda^2$$

We need to now convert this to a function of time, t. We can do this by considering the frequency of each jump, Γ , and the time allowed for hopping, then we get:

We now need to equate this to the <u>macroscopic</u> diffusion, D. To do this we use Ficks second law of diffusion to describe the probability of finding a spherical shell surrounding an origin:

Fig. 7.4 Eight random jumps of equal length λ .

Microscopic Diffusion

Both the macroscopic and microscopic eqautions can be equated together based on both can be defined based on the probability, p_t . To do this, we substitute $p_t(r)$ into:

$$\bar{r}^2 = 4\pi \int_0^\infty r^4 p_t(r) dr$$

And solving, we get simply:

$$\bar{r}^2 = 6Dt$$

Fig. 7.4 Eight random jumps of equal length λ .

Diffusion accounting for hopping mechanism

Knowing now that:

$$D = \frac{1}{6} \lambda^2 \Gamma$$

We need to determine the jump frequency for a given jump mechanism. This is dependent on the probability a jump site is open, ρ_j , the number of nearest neighbors, z, and the frequency of a given jump type, ω :

How to determine ω

$$\omega = v \exp\left(\frac{-\Delta G_m}{k_b T}\right)$$

$$\omega = v \exp\left(\frac{-S_m}{k_b}\right) \exp\left(\frac{-\Delta H_m}{k_b T}\right)$$

$$\omega = v \exp\left(\frac{-S_m}{k_b}\right) \exp\left(\frac{-\Delta E_m}{k_b T}\right)$$

Pulling it together to get the diffusion equations:

Diffusion of vacancies:

$$D_{v} = \alpha a^{2} \omega = \alpha a^{2} v \exp\left(\frac{S_{m}^{v}}{k}\right) \exp\left(\frac{-E_{m}^{v}}{kT}\right)$$

Diffusion of atoms by way of vacancies – vacancy self-diffusion:

$$D_a^{\nu} = \alpha a^2 \nu \exp\left(\frac{S_f^{\nu} + S_m^{\nu}}{k}\right) \exp\left(\frac{-E_f^{\nu} - E_m^{\nu}}{kT}\right).$$

Diffusion of interstitials:

$$D_i = \alpha a^2 v \exp\left(\frac{S_m^i}{k}\right) \exp\left(\frac{-E_m^i}{kT}\right).$$

Diffusion of atoms by way of interstitials – interstitial self-diffusion:

$$D_a^i = \alpha a^2 v \exp\left(\frac{S_f^i + S_m^i}{k}\right) \exp\left(\frac{-E_f^i + -E_m^i}{kT}\right).$$

Or, more simply:

We can use an Arrhenius relationship:

$$D = D_0 exp\left(\frac{-Q}{k_b T}\right)$$

Where D_o and Q are given but incorporate the discussed factors:

Mechanism	D _o	Q		
Vacancy Diffusion (D_v)	$\alpha a_o^2 vexp\left(\frac{S_m^v}{k_b}\right)$	E_m^v		
Vacancy Self Diffusion (D_a^v)	$\alpha a_o^2 v exp\left(\frac{S_f^v + S_m^v}{k_b}\right)$	$E_f^v + E_m^v$		

D

Point defect properties

<u> </u>	Symbol	Unit	A1	Cu	Pt	Mo	W
Interstitials							
Relaxation volume	$V_{\scriptscriptstyle relax}^{i}$	Atomic vol.	1.9	1.4	2.0	1.1	
Formation energy	E_f^i	eV	3.2	2.2	3.5		
Equilibrium concentration at Tm*	$C_i(T_m)$	-	10 ⁻¹⁸	10 ⁻⁷	10 ⁻⁶		
Migration energy	E_m^i	eV	0.12	0.12	0.06		0.054
Vacancies							
Relaxation volume	V_{relax}^{v}	Atomic vol.	0.05	-0.2	-0.4		
Formation energy	E_f^{ν}	eV	0.66	1.27	1.51	3.2	3.8
Formation entropy	S_f^v	k	0.7	2.4			2
Equilibrium concentration at Tm*	$C_{v}(T_{m})$	-	9x10 ⁻⁶	2x10 ⁻⁶			4x10 ⁻⁵
Migration energy	$E_m^{ u}$	eV	0.62	0.8	1.43	1.3	1.8
Activation energy for self diffusion	Q_{vSD}	eV	1.28	2.07	2.9	4.5	5.7
Frenkel pairs	ED						
Formation energy	E_f^{FP}	eV	3.9	3.5	5		

Point Defect Diffusion: Comparison

- Comparsion of diffusion
 - $t = 10^6 s (11 days)$
 - $E_m^f = 1 \ eV$, $E_m^i = 0.2 \ eV$

T (°C)	$D_V(m^2/s)$	$X_V = \sqrt{D_V \tau}$	$D_i(m^2/s)$	$X_i = \sqrt{D_i \tau}$
0	2×10^{-21}	0.45nm	1.5×10^{-6}	1cm
100	2×10^{-16}	150nm	1.5×10^{-5}	4cm
200	1.7×10^{-13}	4µm	5.5×10^{-5}	7.5cm
300	1.2×10^{-11}	35µm	1.3×10^{-4}	11cm
400	2.5×10^{-10}	0.15mm	2.4×10^{-4}	15cm
500	2.3×10^{-9}	4mm	3.7×10^{-4}	19cm

Diffusion along high-diffusivity paths:

Type A: The diffusion front in the bulk and in the boundary advanced at the same speed

Type B: The diffusion in the grain boundary is faster than in the bulk

Type C: The diffusion in the bulk is negligible and grain boundary diffusion is only active

Radiation Effects at the Grain Scale

Goal: Determine the kinetics of microstructure evolution under irradiation

We now do point defect accounting

Change = Gain - Loss

What are the possible gain terms?

What are the possible loss terms?

Gain Terms

Defect production rate:

$$K_0 = \left(\frac{dpa}{s}\right) \times \varepsilon$$

Reaction production rate:

$$R_0 = \sum_{d=1}^{n} Rxn_d$$

Loss Term: Recombination

 Inherently, random walk of defects means there is a probability and thus a rate of recombination

Must be related to the defect concentration

Loss Term: Diffusion

- Inherently, random walk of defects means there is a probability and thus a local loss of defects due to diffusion
- Use macroscopic description for diffusion (Fick's Law):

Loss Terms: Sinks

- Non-perfect crystals have trapping sites for point defects where annihilation or recombination is promoted, these are defect sinks
- The effectiveness (or rate) of a sink in promoting loss is the sink strength, K_{s}

Let's play a quick game:

Change =

Gain

_

Loss

Sinks

Diffusion

Recombination

Production

Gain

Loss

$$K_0 = \left(\frac{dpa}{s}\right)\varepsilon$$

$$\frac{\partial C_{i,v}}{\partial t} = -\sum_{s=1}^{all \ sinks} K_s C_{i,v} C_s$$

$$\frac{\partial C_{i,v}}{\partial t} = K_{iv}C_iC_v$$

$$\frac{\partial C_{i,v}}{\partial t} = \nabla D_{i,v} \nabla C_{i,v}$$

Pulling it together: Point Defect Kinetic Equations

If we neglect clustering:

$$\frac{\partial C_v}{\partial t} = K_0 - K_{iv}C_iC_v - \sum_S K_{vs}C_vC_s + D_v\nabla^2C_v$$

$$\frac{\partial C_i}{\partial t} = K_0 - K_{iv}C_iC_v - \sum_{S} K_{iS}C_iC_S + D_i\nabla^2C_i$$

Point Defect Kinetic Equations

If we neglect clustering:

$$\frac{\partial C_v}{\partial t} = K_0 - K_{iv}C_iC_v - \sum_{S} K_{vs}C_vC_S + D_v\nabla^2C_v$$

$$\frac{\partial C_i}{\partial t} = K_0 - K_{iv}C_iC_v - \sum_{S} K_{iS}C_iC_S + D_i\nabla^2C_i$$

• Example of defect absorption to cavities and dislocations:

$$\frac{\partial C_v}{\partial t} = K_0 - K_{iv}C_iC_v - z_v p_d D_v C_v + 4\pi R_c N_c D_v C_v$$

$$\frac{\partial C_i}{\partial t} = K_0 - K_{iv}C_iC_v - z_ip_dD_iC_i + 4\pi R_cN_cD_iC_i$$

Results from MIK code for Fe-20Cr-24Ni at a damage rate of 7×10^{-6} dpa/s, T=200°C

To solve these, we subject these equations to limitations

- 1. The model applies to pure metals. No binding of defects to atomic species
- 2. Sink concentration and strength are time-independent
- 3. Other than mutual recombination, defect-defect interactions (e.g. formation of di-vacancies or di-interstitials) are ignored
- Bias factors for diffusion of defects to sinks are set to unity (no preferential absorption of specific point defects at specific sinks)
- 5. Diffusion loss terms in and out of the observation volume are not considered
- 6. Thermal equilibrium vacancy concentration is neglected

We can now look at several cases...

- 1. Initially, defect concentrations build up according to $dC/dt = EK_0$ with $C_i \sim C_v$ so $C_i = C_v = C = EK_0t$
 - Concentrations are too low for either recombination or sinks to have an effect
- Build up will start to level off when the production rate is compensated by the recombination rate. Quasi-steady state concentrations are:

We can find the time at which the defect concentrations level off by equating this concentration with that during build:

3. C_i and C_v remain approximately equal until a time, t_2 , which is the time constant for the process of interstitials reacting with sinks. Because $D_i > D_v$, more interstitials are lost to sinks than vacancies, which is described by:

Vacancies and interstitials build up and decay (respectively) to:

$$C_{v}(t) = \left[\frac{K_{0}K_{is}C_{s}t}{K_{iv}}\right]^{1/2} \qquad C_{i}(t) = \left[\frac{K_{0}}{K_{iv}K_{is}C_{s}t}\right]^{1/2}$$

The time at which this occurs is given by:

4. After awhile, true steady state is achieved due to interaction of vacancies with sinks. Solving for the steady state concentrations of vacancies and interstitials by setting $dC_v/dt = dC_i/dt = 0$, gives:

$$C_{v}^{SS} = -\frac{K_{is}C_{s}}{2K_{iv}} + \left[\frac{K_{0}K_{is}}{K_{iv}K_{vs}} + \frac{K_{is}^{2}C_{s}^{2}}{4K_{iv}^{2}}\right]^{1/2}$$

$$C_{i}^{SS} = -\frac{K_{is}C_{s}}{2K_{iv}} + \left[\frac{K_{0}K_{vs}}{K_{iv}K_{is}} + \frac{K_{vs}^{2}C_{s}^{2}}{4K_{iv}^{2}}\right]^{1/2}$$

For the case of low temperature and low sink density, C_s is small:

We can solve for the time to steady state in a similar manner to that of the quasi steady state by equating the previous region (build up) to the steady state regime:

Example calculation for BCC Fe

• Problem: Calculate the typical times of the different stages of $C_{\rm v}$ and $C_{\rm i}$ for BCC Fe using the following parameters:

293K neutron irradiation Lattice parameter (a_0) of 2.82 Å Dislocation density (p_d) of 10^8 cm⁻² Interstitial migration energy (E_m^i) of 0.65 eV Vacancy migration energy (E_m^v) of 1.5 eV Capture radius (r_{iv}) of $10\mathbf{a}_0$ Displacement rate (K_0) of 10^{-7} dpa/s Vibration frequency (v) of 10^{13} Hz

Problem: Calculate the typical times of the different stages of C_v and C_i for BCC Fe using the following parameters:

293K neutron irradiation
Lattice parameter (a_0) of 2.82 Å
Dislocation density (p_d) of 10^8 cm⁻²
Interstitial migration energy (E_m^i) of 0.65 eV
Vacancy migration energy (E_m^v) of 1.5 eV
Capture radius (r_{iv}) of $10\mathbf{a}_0$ Displacement rate (K_0) of 10^{-7} dpa/s
Vibration frequency (v) of 10^{13} Hz

Example calculation for BCC Fe

- Problem: Calculate the typical times of the different stages of C_v and C_i for BCC Fe using the following parameters:
 - Step 1: Calculate the recombination constant:

- Now calculate the time for recombination to become significant

Example calculation for BCC Fe

- Problem: Calculate the typical times of the different stages of C_v and C_i for BCC Fe using the following parameters:
 - Step 2: Calculate the time for interstitials to arrive sinks using D_i from before:

- Step 3: Calculate the time when vacancies arrive at sinks to determine steady state:
 - Must calculate D_v

Low Temperature, Increasing Sink Density

Low Temperature, Increasing Sink Density

Low T, High C_s

• In this case, the interstitial concentration comes into a quasisteady state with production and annihilation at sinks:

 Equating the interstitial concentrations in the linear buildup regime with the quasi-steady state regime:

Low T, High C_s

 A competition soon arises between the annihilation of interstitials at sinks and recombination with vacancies, such that:

 Yielding the time constant for the transition between the regimes where interstitials go to sinks and mutual recombination dominates:

Low T, High C_s

High Temperature

Properties of point defect balance equations

1. If there is only one type of sink, then the net absorption rate at that sink is zero:

$$K_{is}C_i = K_{vs}(C_v - C_v^0)$$

- 2. Even if we have more than one type of sink, if the sinks have the same "strength" for vacancies and interstitials $(z_i = z_v)$, then the net flow to any sink is zero
- 3. In the absence of sinks and thermal vacancies, C_v can be exchanged with C_i , that is, $C_v = C_i$ at any instant ∂C_v

$$\frac{\partial C_v}{\partial t} = K_0 - K_{iv}C_iC_v \qquad \qquad \frac{\partial C_i}{\partial t} = K_0 - K_{iv}C_iC_v$$

- Since $D_{rad}=d_iC_i+d_vC_v$ & $C_i=C_v$, but since $d_i>>d_v$, then interstitials contribute more to atom mobility than do vacancies
- 4. Inclusion of sink terms violates the symmetry with respect to C_i and C_v because of different values of K_s ($K_{vs} \neq K_{is}$)
 - Symmetry is present in the steady state with regard to d_iC_i and d_vC_v since K_{is} and K_{vs} are proportional to d_i and d_v , respectively

Note on vacancy concentration

• C_v must be accounted for thermal vacancies:

Why are we ignoring this for interstitials?!

Post-irradiation annealing

No diffusion, no sinks, no irradiation:

Integrating:

• Then:

Pulling this now together:

Pulling this now together:

Pulling this now together:

The critical temperature below which mutual recombination will dominate, above which loss to sinks will dominate:

$$T_{c} = \frac{E_{m}^{v}}{kln \frac{2D_{0}^{v}C_{s}^{2}K_{is}'K_{vs}'}{K_{0}K_{iv}'}}$$

Rate of Reaction

• We have now determined the relative change of C_i and C_v , but the **rates are dependent on the reaction rate constant** K_{AB} (s⁻¹), where the rate of reaction between A & B is:

$$K_{AB}C_{A}C_{B}$$
 reactions/cm³s

- Analogous to first order chemical reactions
- We will consider two types of reactions:
 - Defect-defect reactions
 - Defect-extended sinks reactions

