



# Universidad Nacional Autónoma de México

# FACULTAD DE INGENIERÍA

# Sistemas de comunicaciones electrónicas

# Práctica 9 Filtros eléctricos

División de ingeniería Eléctrica Grupo 1

Rivera Negrete Manuel Armando

SUPERVISADO POR ING. NORMA REYES CRUZ

15 de abril de 2019

#### 1. Finalidad

Aprender qué hace un filtro real y qué tan cerca está su funcionamiento de un filtro ideal.

## 2. Objetivos

- 1. Conocerá las curvas de respuesta a la frecuencia de los cuatro tipos de filtros que existen.
- 2. Sabrá valorizar las curvas de respuesta de los filtros.

## 3. Lista de experimentos

Obtención de curvas de respuesta a la frecuencia de filtros.

- Paso bajas.
- Paso altas.
- Supresor de banda

#### 4. Desarrollo

#### 4.1. Actividad 1

¿Qué se entiende por un filtro eléctrico?

Un Filtro electrónico es un elemento que deja pasar señales eléctricas a través de él, a una cierta frecuencia o rangos de frecuencia mientras previene el paso de otras, pudiendo modificar tanto su amplitud como su fase. Es un dispositivo que separa, pasa o suprime un grupo de señales de una mezcla de señales.

#### 4.2. Actividad 2

Haga una clasificación de los filtros atendiendo a:

Su función.

Dejan pasar una determinada frecuencia, alta o baja. Modifican la amplitud de una señal así como su fase.

Los componentes que lo forman.
Resistencias, capacitores y amplificadores operacionales.

■ Su configuración.

Paso bajas, paso altas, paso bandas.

■ El orden del sistema asociado al filtro

#### • Filtro de paso bajo

Se caracteriza por permitir el paso de las frecuencias más bajas y atenuar las frecuencias más altas. Este tipo de filtro requiere dos terminales de entrada y dos de salida y una caja negra, también llamada bipuerto o cuadripolo. De esta forma, la entrada recoge todas las frecuencias, mientras que en la señal de salida solo se encontrarán las frecuencias que permita el filtro.

#### • Filtro de paso alto (HPF)

Está formado por una resistencia y un condensador conectados en serie, de forma que el condensador permite solo el paso de las frecuencias situadas por encima de una frecuencia particular, llamada frecuencia de corte (Fc) y atenúa las frecuencias por debajo de esta.

• Filtro de paso banda (BPF) Es aquel que permite el paso de frecuencias comprendidas en un determinado rango de frecuencias, es decir, entre una frecuencia de corte superior (FH) y una inferior (FL).

Se usa en ecualizadores de audio, haciendo que unas frecuencias se amplifiquen más que otras. También para eliminar los sonidos que a parecen alrededor de una señal conocida. Fuera de la electrónica y del procesamiento de señales, se utilizan en el campo de las ciencias atmosféricas para manejar los datos dentro de un rango de unos 3 a 10 días.

#### 4.3. Actividad 3

¿Cuál es el criterio para determinar la(s) frecuencia(s) de corte de un filtro real? Las frecuencias de corte se encuentran al 70 % de la amplitud máxima de la señal.

#### 4.4. Actividad 4

Variando la frecuencia siete octavas a partir de 10Hz, tome lecturas que le permitan conocer la respuesta a la frecuencia del filtro. El voltaje de entrada para todos los filtros es  $V_{Ent} = 5[v]$ .

| frec[Hz] | Supressor Besel |         | frec[Hz] | Paso bajas Besel |         | frec[Hz] | Paso altas Besel |         |
|----------|-----------------|---------|----------|------------------|---------|----------|------------------|---------|
|          | $V_{Sal}$       | G       |          | $V_{Sal}$        | G       |          | $V_{Sal}$        | G       |
| 100      | 7.29            | 1.458   | 100      | 2.4574           | 0.49148 | 100      | 1.1432           | 0.22864 |
| 200      | 7.291           | 1.4582  | 200      | 2.4637           | 0.49274 | 200      | 0.6987           | 0.13974 |
| 400      | 7.3043          | 1.46086 | 400      | 2.4615           | 0.4923  | 400      | 0.3013           | 0.06026 |
| 800      | 7.3135          | 1.4627  | 800      | 2.4366           | 0.48732 | 800      | 0.08285          | 0.01657 |
| 1600     | 7.1824          | 1.43648 | 1600     | 2.2939           | 0.45878 | 1600     | 0.3810           | 0.0762  |
| 3200     | 3.405           | 0.681   | 3200     | 1.9175           | 0.3835  | 3200     | 0.8048           | 0.16096 |
| 6400     | 2.9207          | 0.584   | 6400     | 1.2814           | 0.25628 | 6400     | 1.2381           | 0.24762 |
| 12800    | 5.4305          | 1.0861  | 12800    | 0.6944           | 0.13888 | 12800    | 1.4940           | 0.2988  |

#### 4.5. Actividad 5

Incluya en su trabajo las curvas de respuesta a la frecuencia que se obtuvieron durante el desarrollo de la práctica.

Las gráficas se muestran en la figura 2.



Figura 2

#### 4.6. Actividad 6

Sobre cada gráfica determine aproximadamente las frecuencias de corte, trace con línea punteada la curva de respuesta ideal.

Las gráficas se muestran en la figura 3.



Figura 3

### 4.7. Actividad 7

Dibuje el circuito eléctrico del filtro correspondiente. Los circuitos usados se muestran en la figura 4.



Figura 4: Circuitos de los filtros

#### 4.8. Actividad 8

Explique cómo se calcula el ancho de banda de paso de una gráfica de respuesta a la frecuencia y cómo se obtiene el factor de calidad de filtro pasa-banda.

El ancho de banda se calcula mediante la siguiente expresión.

$$Bw = f_{c_2} - f_{c_1}$$

El factor de calidad viene dado por la siguiente expresión.

$$Q = \frac{f_c}{Bw} = \frac{F_c}{f_{c_2} - f_{c_1}}$$

#### 4.9. Actividad 9

Determine el ancho de banda y el factor de calidad de los filtros paso-banda que se probaron.

Supressor

 $f_{c_1} = 2500Hz$ ,  $f_{c_2} = 12000Hz$  Bw=9500[Hz].

Paso bajas

 $f_{c_1} = 400Hz$ ,  $f_{c_2} = 13000Hz$  Bw=12600[Hz].

Paso altas

 $f_{c_1} = 250Hz$ ,  $f_{c_2} = 5000Hz$  Bw=4750[Hz].

#### 5. Conclusiones

En esta practica pudimos observar y experimentar con varios filtros, el conocer de ellos es de gran utilidad para poder controlar una señal de salida de acuerdo a nuestras necesidades, por ejemplo dejar pasar la señal solo a ciertas frecuencias. Esto tiene aplicaciones tanto en telecomunicaciones como en audio.

El mapa mental que resume lo visto en esta práctica se muestra en la figura 5.

# 6. Bibliografía

- CARLSON, Bruce, CRILLY, PaulCommunication Systems 5th editionMcGraw-Hill Professional, 2009
- COUCH, Leon W.Digital & Analog Communication Systems 8th editionPearson Education International, 2012



Figura 5: Mapa mental