Определение производной.

Определение 1. Пусть функция f определена на некотором интервале, и пусть точка x_0 принадлежит этому интервалу. Производной функции f в точке x_0 называется число $f'(x_0) := \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$, в случае, если этот предел существует (тогда говорят, что функция f дифференцируема в точке x_0).

Задача 1. Докажите, что $f'(x_0) = \lim_{t\to 0} \frac{f(x_0+t)-f(x_0)}{t}$.

Задача 2. Для каждой точки $a \in \mathbb{R}$ найдите f'(a), если **a)** f(x) = c, где $c \in \mathbb{R}$; **б)** $f(x) = x^n, n \in \mathbb{N}$.

Задача 3°. Докажите, что $f'(x_0) = A$ тогда и только тогда, когда найдётся такая функция $\beta(t)$, что для всех достаточно малых t будет верно $f(x_0 + t) = f(x_0) + At + \beta(t)$, причём $\lim_{t\to 0} \beta(t)/t = 0$.

Задача 4. Верно ли, что функция, дифференцируемая в некоторой точке, непрерывна в этой точке?

Определение 2. Говорят, что функция f дифференцируема на интервале, если она дифференцируема в каждой точке этого интервала. При этом её npouseodhoù называется функция $f': x \mapsto f'(x)$.

Задача 5. Найдите производные функций (там, где они существуют): **a)** |x|; **б)** $\frac{1}{x}$; **в)** \sqrt{x} ; **г)** $x^{3/2}$.

Задача 6. Автомобиль едет по прямой дороге так, что в каждый момент времени t он находится в точке с координатой s(t). Что будет показывать спидометр автомобиля в момент времени t_0 ?

Вычисление производных

Задача 7°. Пусть функции f и g дифференцируемы на некотором интервале. Докажите, что

- а) функция f + g тоже дифференцируема на этом интервале и (f + g)' = f' + g';
- **б)** для любой константы C функция Cf тоже дифференцируема на этом интервале и (Cf)' = Cf';
- в) функция fg тоже дифференцируема на этом интервале и (fg)' = f'g + fg';
- г) функция f/g дифференцируема во всех точках интервала, где $g(x) \neq 0$, и $(f/g)' = (f'g fg')/g^2$.

Задача 8. Найдите производные функций (там, где они существуют): **a)** $a_n x^n + \ldots + a_1 x + a_0$; **б)** $\frac{5x+6}{7x+8}$; **в)** $\frac{1}{x^3-5x-2}$. **г)** $\sin x$; **д)** $\cos x$; **e)** $\operatorname{tg} x$; **ж)** $\operatorname{ctg} x$; **з)** $x^{m/n}$, где $m \in \mathbb{Z}$, $n \in \mathbb{N}$; **и)*** e^x .

Задача 9°. Пусть F(x) = f(g(x)). Докажите, что если g дифференцируема в точке x_0 , а f дифференцируема в точке $g(x_0)$, то F(x) дифференцируема в точке x_0 , и $F'(x_0) = f'(g(x_0))g'(x_0)$.

Задача 10°. а) Пусть функция f на некотором интервале непрерывна и имеет обратную функцию g. Докажите, что если f дифференцируема в точке x_0 из этого интервала и $f'(x_0) \neq 0$, то g дифференцируема в точке $f(x_0)$ и $g'(f(x_0)) = \frac{1}{f'(x_0)}$. **б)** Каков геометрический смысл формулы из пункта а)?

Задача 11. Продифференцируйте:

а) $\sin x^2$; б) $\arcsin x$; в) $\arccos x$; г) $\arctan x$; д)* $\ln x$; е)* 2^x ; ж)* x^{α} .

Определение 3. Говорят, что многочлен имеет *кратный корень* α , если он делится на $(x-\alpha)^k$, где натуральное $k \geqslant 2$.

Задача 12°. Докажите, что многочлен из имеет кратный корень тогда и только тогда, когда он имеет общий корень со своей производной.

1	2 a	2 6	3	4	5 a	5 6	5 B	5 г	6	7 a	7 б	7 B	7 Г	8 a	8	8 B	8 Г	8 д	8 e	8 ж	8	8 и	9	$\begin{vmatrix} 10 \\ a \end{vmatrix}$	10 б	11 a	11 ნ	11 B	11 Г	11 Д	11 ж	12