Zadanie 11 (Nie liczy się do podstawy). Pokaż, że symetryczna macierz $n \times n$ liczb rzeczywistych jest dodatnio określona wtedy i tylko wtedy, gdy ma same dodatnie wartości własne.

Wskazówka: Wiemy, że dla macierzy symetrycznej suma krotności geometrycznych jej wartości własnych to n. Rozpatrz macierz Grama dla bazy ortogonalnej.

Rozwiązanie Wiemy, że macierz symetryczna (liczb rzewczywustych) ma n niezależnych (rzeczywistych) wektorów własnych. Jeśli \vec{V}_i , \vec{V}_j są wektorami własnymi dla różnych wartości własnych, to są do siebie prostopadłe (Zadanie 2 z Listy 9). Jeśli są wektorami własnymi dla tej samej wartości własnej to nie musi to jednak być prawda. Zauważmy jednak, że dla ustalonej przestrzeni wektorów własnych \mathbb{V}_{λ} możemy wybrać bazę ortnormalną. Biorąc sumę (mnogościową) po wszystkich podprzestrzeniach własnych dostajemy bazę ortnormalną B całej przestrzeni \mathbb{R}^n .

Niech $\langle \cdot, \cdot \rangle$ będzie iloczynem skalarnym zadanym przez M, tj.

$$\left<\vec{U},\vec{V}\right> = \vec{U}^T M \vec{V}$$

Iloczyn ten wyraźmy w bazie B, wyraża się on wtedy jako

$$\left\langle \vec{U}, \vec{V} \right\rangle = (\vec{U})_B^T M^B (\vec{U})_B$$

gdzie M^B to macierze Grama wektorów z bazy B. Jako, że jest to układ ortonormalny, dostajemy, że $M^B=\mathrm{Id}.$ Ale wtedy

$$M=M^E$$
bo M zadaje iloczyn skalarny wyrażony w bazie standardowej
$$=M_{EB}^TM^BM_{EB}$$
zmiana bazy
$$=M_{EB}^TM_{EB}$$
bo $M^B=\mathrm{Id}$

Ale to pokazuje, że M jest postaci A^TA dla odwracalnego A, czyli jest dodatnio określona.