# 北京邮电大学 2016——2017 学年第二学期

《电路与电子学基础》期末试题(3学分A卷)

| 考  |                   |    | 一、学生                          | 生参加者     | <b>考试须带</b> | 学生证 | 或学院证 | E明,未 | · 带者不准进入考场。 |
|----|-------------------|----|-------------------------------|----------|-------------|-----|------|------|-------------|
| 试  |                   |    | 二、学生必须按照监考教师指定座位就坐。           |          |             |     |      |      |             |
| 注  |                   |    | 三、书本、参考资料、书包等物品一律放到考场指定位置。    |          |             |     |      |      |             |
| 意  |                   |    | 四、学生不得另行携带、使用稿纸,要遵守《北京邮电大学考场规 |          |             |     |      |      |             |
| 事  |                   |    | 则》,有考场违纪或作弊行为者,按相应规定严肃处理。     |          |             |     |      |      |             |
| 项  |                   |    | 五、学生必须将答题内容做在试题答卷纸上,做在草稿纸上一律无 |          |             |     |      |      |             |
|    |                   |    | 效。                            |          |             |     |      |      |             |
| 考证 | 电路与电子             |    | 光井功                           | 考试时间     |             |     |      |      |             |
| 课程 | 呈   <b>电路与电</b> 丁 |    | 子垄仙                           | <b>与</b> |             |     |      |      |             |
| 题号 | + -               |    | 1=1                           | 四        | 五.          | 六   | 七    |      | 总分          |
| 满分 | 20                | 30 | 8                             | 8        | 5           | 17  | 12   |      |             |
| 得分 |                   |    |                               |          |             |     |      |      |             |
| 阅卷 | è                 |    |                               |          |             |     |      |      |             |
| 教师 | j                 |    |                               |          |             |     |      |      |             |

#### 一、 判断题(每题2分,全对的打√,不是全对的打╳)

- 1. 叠加定理对于任何集总参数电路(包括非线性电路)都成立。 ( )
- 2. KCL 的实质是电荷守恒, KVL 实质是能量守恒。 ( )



- 4. 在一阶动态电路中,所有状态变量的零状态响应总是开始于零值,所有变量的零输入响应的稳态值也都是零值。 ( )
- 5. 在正弦稳态电路中,实际电阻元件只能消耗有功功率,电容和电感则具有 第1页共8页

无功功率;独立源和受控源则可能同时存在两种功率。 ( )

- 6. 稳压二极管的稳压能力,来自于它的雪崩击穿特性;稳压二极管可以用于稳定电压和作为电路的过电压保护器件。 ( )
- 7. 三极管无论其采用何种偏置电路,无论其工作在饱和区、截止区或放大区, 无论其采用何种连接方式,都可以看成是一个广义节点,电流满足基尔霍 夫电流定律。 ( )
- 8. 三极管的共基极连接方式,又称为电压跟随器,它的电压放大倍数接近于 1,但仍具有电流放大能力。 (
- 9. 差分放大电路会抑制差模信号,放大共模信号,抑制零点漂移。 ( )
- 10. 图 1-2 所示的集成运放低频等效电路,其为理想运算放大器的条件为

$$r_{id} \rightarrow 0$$
、 $r_o \rightarrow 0$ ,以及 $A_o \rightarrow \infty$ 。



图 1-2

# 二、填空题(每空2分,共30分)



- 2. 在共射级放大电路的输出波形出现如图 2-2 所示,判断此时发生了失真。
- 3. 图 2-3 所示电路中,设 $i=10\sqrt{2}\cos(\pi t)$ mA,L=10H,则在 t=10 秒时,电 第2 页 共8页



4. 如图 2-4 所示电路, 其传输函数为 $H(j\omega) = \frac{\dot{U}_2}{\dot{U}_1} = \frac{j\omega RC}{1+j\omega RC}$ , 则该电路具有

滤波特性,该电路的相频响应函数的表达式为:

5. 在图 2-5 所示的电路中, 当电路处在谐振状态时, 电流源的有功功率为

\_\_\_\_\_,谐振角频率 $oldsymbol{\omega}_{oldsymbol{o}}$ 的表达式为\_



6. 图 2-6 所示电路的电压放大倍数(表达式)为\_\_\_\_\_ ,如果

R, 断路,则电路的放大倍数会\_\_\_\_\_(填提高或降低)。

- 7. 电路中引入电压并联负反馈后,能够\_\_\_\_\_\_输入电阻,\_\_\_\_\_输出电阻。
- 8. 图 2-7 所示的文氏电桥振荡器,其振荡角频率的表达式为。



图 2-7

9. 在 2-8 所示的整流-滤波电路中,引入电容C 会使得二极管 $D_1 \sim D_4$  的导通时间\_\_\_\_\_。



10. 电路如图 2-9 (a) 所示,其传输特性曲线如 (b) 所示,其中 $U_{\mathit{oM}}$  =14V、

 $V_{R}=1{
m V}$  ,  $U_{I}=2\sin\left(\pi t\right){
m V}$  ,  $\stackrel{\mbox{\tiny $\perp$}}{=}1{
m s}$   $\stackrel{\mbox{\tiny $t$}}{=}1{
m s}$   $\stackrel{\mbox{\tiny $t$}}{=}$ 



图 2-9

以下为计算题,必须有解题步骤,否则不得分。

第4页共8页

# 三、计算题(8分)

已知电路如题图 3 所示, $u_s = 4\cos 3t$ , $i_s = \frac{1}{2}u_s$ ,试画出相量形式的电路模型,

并求阻抗 $Z_L$ 为多大值能够获取最大功率,最大功率是多少?



# 四、计算题(8分)

图 4 所示电路,在 t=0 时开关 S 闭合,求初始值  $i(0^+)$  、  $i_{\scriptscriptstyle L}(0^+)$  和时常数  $\tau$  。



# 五、计算题(5分)

图 5 所示电路,二极管为硅管,**采用理想化模型**,输入信号 $u_i=4\sin(\omega t)V$ , $V_1=2V,V_2=1V$ ,画出输出电压信号 $u_o$ 。



# 六、计算题(17分)

如图 6 所示的三极管放大电路,已知晶体管的 $\beta=50$ ,其他阻值在图中标记。

- (1)求静态工作点:  $U_{BQ}$ ,  $I_{BQ}$ ,  $I_{CQ}$ ,  $U_{CEQ}$ ;
- (2) 试写出放大电路的电压放大倍数 $\dot{\mathbf{A}}_{vi}$ , $\dot{\mathbf{A}}_{vs}$  ( $\dot{\mathbf{A}}_{vs} = \frac{u_o}{u_s}$ ),输入电阻,输出电阻的表达式(不需计算结果);
- (3) 试分析  $R_{b1}$ ,  $R_{b2}$  的作用。



# 七、计算题(12分)

含理想运算放大器电路如图 8 所示,已知两个电容值相等, $C = 20 \mu F$ ,

 $R = R_f = 150k\Omega$ ,输入差模电压信号,试求

- 1) 写出 $u_{01}$ 与 $u_{i1}$ 和 $u_{i2}$ 的运算关系式;
- 2)理想集成运放器 $A_1, A_2$ 分别完成什么功能;
- 3)为了保证集成运放输入电路的对称性,则对电阻R'与R''分别有什么要求;
- 4)已知输入信号波形如图 7(b)所示,画出 $u_o$ 的波形。

