Einführung in die Algebra

Wintersemester 2017/18

Luise Puhlmann

31. Oktober 2017

Inhaltsverzeichnis

	appen	2
1.1	Grundlegendes	2
1.2	Satz von Lagrange und Normalteiler	7
1.3	Zyklische Gruppen	11
1.4	Auflösbare Gruppen	13
1.5	Gruppenoperationen	16
1.6	p-Gruppen und Sylow-Sätze	18
1.7	Ringe	21

[9. Oktober 2017]

http://www.math.uni-bonn.de/people/palmer/A1.html

Organisatorisches

- Assistent: Martin Palmer
- Abgabe der Übungsblätter Donnerstag vor der Vorlesung
- Übungsgruppen Beginn nächste Woche
- Literatur siehe Homepage

1 Gruppen

1.1 Grundlegendes

Definition 1. Eine Gruppe ist eine Menge G zusammen mit einer Abbildung

$$\circ \colon G \times G \to G$$
$$(g,h) \mapsto g \circ h$$

(genannt Gruppenoperation), sodass gilt:

(G1)
$$(a \circ b) \circ c = a \circ (b \circ c) \ \forall a, b, c \in G \ (Assoziativität)$$

(G2)
$$\exists e \in G \text{ mit } g \circ e = g = e \circ g \ \forall g \in G \text{ (Neutrales Element)}$$

(G3)
$$\forall g \in G \ \exists g^{-1} \ \text{sodass} \ g \circ g^{-1} = e = g^{-1} \circ g \ (\text{Inverse Elemente})$$

Bemerkung.

- Neutrales Element e ist eindeutig
- Inverse Elemente g^{-1} sind eindeutig
- Es reicht sogar zu fordern: Existenz von Linksneutralem und Linksinversem oder Existenz von Rechtsneutralem und Rechtsinversem.
- Es gelten die Kürzungsregeln:

$$a \circ c = b \circ c \iff a = b \qquad \forall a, b, c \in G$$

 $c \circ a = c \circ b \iff a = b \qquad \forall a, b, c \in G$

Definition 2. (G, \circ) heißt abelsch, falls $g \circ h = h \circ g$ für alle $g, h \in G$.

Beispiel.

- \bullet $(\mathbb{Z},+)$
- $(K, +, \cdot)$ Körper $\Rightarrow (K, +)$ und $(K^* = K \setminus \{0\}, \cdot)$ sind Gruppen
- $(V, +, \cdot)$ K-Vektorraum, dann ist (V, +) eine Gruppe
- K Körper, $n \in \mathbb{N}$; $G = GL_n(K)$ ist Gruppe mit Matrixmultiplikation
- M nichtleere Menge; $S_M := \{f : M \to M | f \text{ invertierbar} \}$ mit $\circ = \text{Komposition}$ von Abbildungen ist eine Gruppe; Spezialfall: $M = \{1, \dots n\}, n \in \mathbb{N}$ ergibt die symmetrische Gruppe S_n der Ordnung n!.
- Sei (G, \circ) eine Gruppe und $a \in G$ fest gewählt. Dann ist (G, \circ_a) eine Gruppe, wobei $g \circ_a h = g \circ a \circ h$.

Definition 3. (G, \circ) Gruppe. Dann ist die Anzahl |G| der Elemente von G die Ordnung von G.

Definition 4. Sei (G, \circ) Gruppe. Eine Teilmenge $H \subseteq G$ heißt Untergruppe (kurz UG), falls $H \neq \emptyset$ und $h_1, h_2 \in H \Rightarrow h_1 \circ h_2^{-1} \in H$. Wir schreiben dann: $H < (G, \circ)$ oder H < G.

Bemerkung. $H < (G, \circ)$ gilt genau dann, wenn gilt:

(UG0)
$$e \in H$$

(UG1)
$$h_1, h_2 \in H \Rightarrow h_1 \circ h_2 \in H$$

$$(UG2) \ h \in H \Rightarrow h^{-1} \in H$$

Klar: Untergruppen sind Gruppen

Beispiel (selber nachprüfen!!!).

- $2\mathbb{Z} < (\mathbb{Z}, +)$
- $n \in \mathbb{N}$; $O(n) = \{A \in \operatorname{GL}_n(\mathbb{R}) | AA^T = \mathbb{1}_n\} < \operatorname{GL}_n(\mathbb{R})$ die orthogonale Gruppe
- $n \in \mathbb{N}$; $U(n) = \{A \in GL_n(\mathbb{C}) | A\overline{A}^T = \mathbb{1}_n\} < GL_n(\mathbb{C})$ die unitäre Gruppe
- $SL_n(K) = \{A \in \operatorname{GL}_n(K) | \det(A) = 1\} < \operatorname{GL}_n(K)$
- $SO(n) = O(n) \cap SL_n(\mathbb{R}) < O(n)$
- Spezielle Unitäre Gruppe
- $H(3,\mathbb{R}) = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \right\}$: Obere Dreiecksmatrizen, nur 1
en auf der Diagonalen (Heisenberggruppe)

Definition 5. Sei (G, \circ) eine Gruppe. Sei $\emptyset \neq N \subseteq G$. Dann ist $\langle N \rangle$ die kleinste (bzgl. Inklusion) Untergruppe von G, die N enthält (also: H < G mit $N \subseteq H \Rightarrow \langle N \rangle \subseteq H$). Wir nennen $\langle N \rangle$ die von N erzeugte Untergruppe von (G, \circ) .

Bemerkung. $\langle N \rangle$ ist wohldefiniert, denn seien $H_1, H_2 < G$ mit $N \subseteq H_1, N \subseteq H_2$, dann $N \subseteq H_1 \cap H_2$ und $H_1 \cap H_2 < G$. Also existiert kleinste Untergruppe, die N enthält; $\langle N \rangle$ ist wohldefiniert.

Definition 6. G Gruppe, $N \subseteq G$

- 1. N erzeugt die Gruppe G, falls $\langle N \rangle = G$. In diesem Fall heißt N Erzeugendensystem der Gruppe G
- 2. (G, \circ) heißt endlich erzeugt als Gruppe, falls $\exists N \subseteq G \text{ mit } |N|$ endlich und $G = \langle N \rangle$.

Bemerkung. (G, \circ) Gruppe, sei $N \subseteq G$. Dann gilt: N erzeugt G (also $G = \langle N \rangle$) genau dann, wenn $\forall g \in G : \exists n_1, \ldots, n_r \in G \text{ (mit } r \in \mathbb{N}_0), \text{ sodass } g = n_1 \circ \cdots \circ n_r \text{ (mit } g = e, \text{ falls } r = 0) \text{ und } n_i \in N \text{ oder } n_i^{-1} \in N \text{ für alle } 1 \leq i \leq r \text{ (*)}.$

Beweis. " \Leftarrow ": Sei $g \in G$ und $g = n_1 \circ \cdots \circ n_r$ wie in (*). Daraus folgt $g \in \langle N \rangle$, da $n_1, \ldots, n_r \in \langle N \rangle$ und dann auch g, weil $\langle N \rangle$ Gruppe. Dadurch ist $G \subseteq \langle N \rangle$, also $G = \langle N \rangle$. " \Rightarrow ": Sei $G = \langle N \rangle$. Behauptung: $H := \{g \in G | g \text{ von der Form (*)}\} < G$. (dkddiermsü) Da $\langle N \rangle \subseteq H$ nach Definition von $\langle N \rangle$ gilt und $\langle N \rangle$ eine Gruppe ist, muss also $\langle N \rangle = H$ wegen Minimalität gelten, da $N \subseteq H$ gilt. Nach Voraussetzung folgt G = H. Also hat jedes $g \in G$ die Form (*).

Beispiel.

- {Transpositionen} $\subseteq S_n$, d.h. (i, j) mit $1 \le i < j \le n$ erzeugen die Gruppe S_n
- {Einfache Transpositionen} $\subseteq S_n$, d.h. (i,j) mit $1 \le i < j = i+1 \le n$ erzeugt S_n

Definition 7. Eine Gruppe G heißt zyklisch, falls $\exists g \in G$, sodass $\langle \{g\} \rangle = G$ (d.h. falls G von einem Element erzeugt wird).

Beachte:
$$\langle \{g\} \rangle = \{e, g, g^{-1}, g^2, g^{-2}, \dots\} = \{g^i | i \in \mathbb{Z}\}$$

Beispiel. $(\mathbb{Z},+)$ ist zyklisch mit $\mathbb{Z}=\langle\{1\}\rangle=\langle\{-1\}\rangle$

Definition 8. (G, \circ) und (G', \circ') seien Gruppen. Ein Gruppenhomomorphismus (kurz: Gruppenhomo) von G nach G' ist eine Abbildung $f: G \to G'$ mit $f(g \circ h) = f(g) \circ' f(h) \ \forall g, h \in G$.

Er ist ein Gruppenisomorphismus (kurz: Gruppeniso), falls zusätzlich f invertierbar ist. Wir schreiben $(G, \circ) \simeq (G', \circ')$, falls ein Gruppenisomorphismus von G nach G' existiert und nennen die Gruppen isomorph.

Eigenschaften von Gruppenhomomorphismen $f: G \to G'$ von G nach G' sei ein Gruppenhomomorphismus. Dann gilt:

(E1) f Gruppeniso $\Leftrightarrow f^{-1}$ Gruppeniso: Nach Definition existiert f^{-1} . Zu zeigen: $f^{-1}(g' \circ' h') = f^{-1}(g') \circ f^{-1}(h')$ für alle $g', h' \in G$. Sei $g', h' \in G'$. Daraus folgt $\exists g, h \in G$: f(g) = g', f(h) = h'. Also:

$$f^{-1}(g' \circ' h') = f^{-1}(f(g) \circ' f(h)) = f^{-1}(f(g \circ h)) = g \circ h = f^{-1}(g') \circ f^{-1}(h')$$

(E2) f bildet Neutrales auf Neutrales ab

[9. Oktober 2017] [12. Oktober 2017]

- (E3) f bildet Inverse auf Inverse ab
- (E4) Sei (G'', \circ'') eine weitere Gruppe; $f': G' \to G''$ Gruppenhomo von (G', \circ') nach (G'', \circ'') , dann ist $f' \circ f$ Gruppenhomo. Denn:

$$(f' \circ f)(g \circ h) = f'(f(g \circ h)) = f'(f(g) \circ' f(h)) = (f' \circ f)(g) \circ'' (f' \circ f)(h)$$

Beispiel (Gruppenhomos).

- 1. (G, \circ) mit id: $G \to G$, $g \mapsto g$ Gruppenhomo von (G, \circ) nach (G, \circ) **Achtung** id: $G \to G$, $g \mapsto g$ ist kein Gruppenhomo von (G, \circ) nach (G, \circ_a) , falls $a \neq e$
- 2. det: $GL_n(K) \to K^*$ für einen Körper K ist ein Gruppenhomo
- 3. $f: \mathbb{R}^* \to \mathbb{R}_{\geq 0}, x \mapsto |x|$ Gruppenhomo von (\mathbb{R}^*, \cdot) nach $(\mathbb{R}_{\geq 0}, \cdot)$
- 4. $x \mapsto \exp(x)$ Gruppenhomo von $(\mathbb{Z}, +)$ nach (\mathbb{R}^*, \cdot)
- 5. Betrachte $G = \left\{ \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \middle| a \in \mathbb{Z} \right\} < GL_n(\mathbb{R}, \cdot) \text{ und } f \colon \mathbb{Z} \to G, \ a \mapsto \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$ Gruppenhomo von $(\mathbb{Z}, +)$ nach (G, Matrixmultiplikation). Sogar Gruppeniso mit Inversem: $\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \mapsto a$
- 6. Trivialer Gruppenhomo: Schicke alles auf das neutrale Element
- 7. Gegeben (G,\circ) Gruppe, $a\in G$. Dann ist $f\colon G\to G,\ g\mapsto g\circ a^{-1}$ ein Gruppenhomo von (G,\circ) nach (G,\circ_a)

Lemma 1. Sei $n \in \mathbb{Z}$.

1. Dann \exists ! Gruppenhomo can: $\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ von $(\mathbb{Z}, +)$ nach $(\mathbb{Z}/n\mathbb{Z}, +)$ mit can $(1) = \overline{1}$

2. Falls $n \neq 0$, existivet kein nichttrivialer Gruppenhomo $f: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}$

Beweis.

1. **Eindeutigkeit:** Sei $f: \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ Gruppenhomo. Dann $f(0) = \overline{0}$ nach (E2) und falls $f(1) = \overline{1}$, dann gilt $f(n) = f(1 + \dots 1) = n \cdot f(1)$ für alle $n \in \mathbb{N}$ und damit auch f(-n) = -nf(1) nach (E5) $\Rightarrow f$ eindeutig.

Gruppenhomo: Es gilt dann $can(x) = \overline{x}$ für alle $x \in \mathbb{Z}$ und da $can(x + y) = \overline{x + y} = \overline{x} + \overline{y} = can(x) + can(y)$ ist das auch ein Gruppenhomomorphismus

2. Sei $n \neq 0$. Sei $f: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}$ Gruppenhomo. Sei $f(\overline{1}) = x$. Dann: (ObdA $n \in \mathbb{N}$) $0 = f(0) = f(\overline{n}) = f(\overline{1} + \dots \overline{1}) = nf(\overline{1}) = nx \Rightarrow x = 0 \Rightarrow f$ trivialer Gruppenhomomorphismus

Lemma 2. Sei (G, \circ) eine Gruppe.

- 1. Sei $Aut(G) = \{f : G \to G | f \text{ Gruppeniso von } (G, \circ) \text{ nach } (G, \circ) \}$. Dann ist Aut(G) Gruppe, die Automorphismengruppen von G
- 2. Betrachte die Abbildung Konj: $G \to Aut(G)$, $g \mapsto Konj(g)$, wobei $Konj(g)(h) = g \circ h \circ g^{-1}$ für alle $h \in G$. Dann ist Konj ein Gruppenhomo von G nach Aut(G). (Im Allgemeinen nicht injektiv.)

Beweis. einfach nachrechnen

Bemerkung.

- 1. Falls (G, \circ) abelsch, dann ist jede Konjugation die Identität
- 2. Konj $(q) = id_G \Leftrightarrow q \in Z(G) := \{x \in G | x \circ y = y \circ x \ \forall y \in G\}$

Konvention: Von jetzt an schreiben wir meist gh statt $g \circ h$ und G statt (G, \circ) .

Satz 3. Sei $f: G \to G'$ Gruppenhomo. Dann gilt:

$$\ker(f) := \{g \in G | f(g) = e\} < G \quad \text{Kern von } f$$

$$\operatorname{Im}(f) := \{g' \in G' | \exists g \in G \ f(g) = g'\} < G' \quad \text{Bild von } f$$

Beweis. einfach nachrechnen

Beispiel.

- 1. Ker(can: $\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$) = $n\mathbb{Z} < \mathbb{Z}$
- 2. Ker(Konj: $G \to Aut(G)$) = Z(G) < G
- 3. Ker(det: $GL_n(K) \to K^*$) = $SL_n(K)$

Übung: f Gruppenhomo; f ist injektiv genau dann, wenn $Ker(f) = \{e\}$

Satz 4 (Satz von Cayley). Sei G eine Gruppe. Dann ist

$$\Phi \colon G \to S_G$$

$$q \mapsto \Phi(q)$$

mit $\Phi(g)(h) = gh$ für alle $h \in G$ ein injektiver Gruppenhomomorphismus. (Damit kann man G als Untergruppe einer Permutationsgruppe "realisieren".)

Beweis.

Wohldefiniert: $\Phi(g)$ ist invertierbar mit Inversem $h \mapsto g^{-1}h$.

Zu zeigen: $\Phi(g_1g_2) = \Phi(g_1) \circ \Phi(g_2)$, also $\Phi(g_1g_2)(h) = \Phi(g_1)(\Phi(g_2)(h))$ für alle $h \in G$. Es gilt aber $\Phi(g_1g_2)(h) = g_1g_2h$ und $\Phi(g_1)(\Phi(g_2)(h)) = \Phi(g_1)(g_2h) = g_1g_2h$ \checkmark Injektiv: es reicht zu zeigen, dass der Kern trivial ist. Sei $g \in \text{Ker}\Phi \Leftrightarrow \Phi(g) = e = \text{id}_G \Leftrightarrow \Phi(g)(h) = h \ \forall h \in G \Leftrightarrow gh = h \forall h \in G \Leftrightarrow g = e$ \checkmark

1.2 Satz von Lagrange und Normalteiler

Definition 1. G Gruppe, H < G, $a \in G$. Dann ist:

 $aH = \{ah | h \in H\} \subseteq G$ Linksnebenklasse von H zu a

 $Ha = \{ha | h \in H\} \subseteq G$ Rechtsnebenklasse von H zu a

Meist arbeiten wir mit Linksnebenklassen und nennen sie einfach Nebenklassen.

Aus der Linearen Algebra wissen wir folgendes:

- 1. Zwei Nebenklassen sind gleich oder disjunkt d.h. $aH \cap bH \neq \emptyset \Leftrightarrow aH = bH \Leftrightarrow b^{-1}a \in H$
- 2. Die Abbildung $aH\to H,\ ah\mapsto h$ ist bijektiv \Rightarrow alle Nebenklassen haben dieselbe Kardinalität

3.

$$G = \bigcup_{g \in G} gH = \bigcup_{b \in R}^{\cdot} bH$$

, wobei $R\subseteq G$, sodass die bH mit $b\in R$ genau ein Repräsentantensystem für die verschiedenen Nebenklassen bilden.

4. $g \in aH \Leftrightarrow g^{-1} \in Ha^{-1}$ (dadurch ergibt sich eine Bijektion zwischen Links- und Rechtsnebenklassen)

Definition 2. Bezeichne mit G/H die Menge der Nebenklassen von G bezüglich H und mit $H\backslash G$ die Menge der Rechtsnebenklassen. Dann gilt $|G/H|=|H\backslash G|$ (nach (4)). Wir nennen diese Zahl den Index, auch (G:H), von H in G

Satz 1 (Satz von Lagrange). G Gruppe, H < G, $|G| < \infty$. Dann gilt

$$|G| = |H| \cdot (G:H) .$$

Insbesondere: |G| = p Primzahl $\Rightarrow H = \{e\}$ oder H = G.

Beweis. Formel folgt direkt aus (3), (2) und Definition von Index. Falls nun $|G| = p \Rightarrow |H| = 1$ oder $|H| = p \Rightarrow H = \{e\}$ oder H = G.

Noch mehr Wissen aus der Linearen Algebra: Falls G abelsch ist, dann ist G/H wieder eine Gruppe mit Gruppenoperation

$$\circ \colon G/H \times G/H \quad \to \quad G/H$$
$$(aH, bH) \quad \mapsto \quad abH$$

Im Allgemeinen (falls G nicht abelsch ist) ist \circ nicht wohldefiniert (siehe Übungsblatt 2).

Definition 3. G Gruppe, H < G heißt Normalteiler falls gilt: $\forall g \in G, h \in H : g \circ h \circ g^{-1} \in H$. Wir schreiben dann: $H \triangleleft G$.

Bemerkung. Falls G abelsch, dann ist jede Untergruppe Normalteiler.

Lemma 2. Sei $f: G \to G'$ Gruppenhomomorphismus. Dann: $Ker(f) \triangleleft G$.

Beweis. Sei
$$g \in G$$
 und $h \in \operatorname{Ker} f$. $\Rightarrow f(ghg^{-1}) = f(g)f(h)f(g)^{-1} = f(g)f(g)^{-1} = e \Rightarrow ghg^{-1} \in \operatorname{Ker} f \Rightarrow \operatorname{Ker} f \lhd G$.

[9. Oktober 2017]

[16. Oktober 2017]

Satz 3. Sei G Gruppe, $N \triangleleft G$. Dann gilt:

- 1. G/N bilden Gruppe mit $\circ: G/N \times G/N \to G/N, (aN, bN) \mapsto abN.$
- 2. Die Abbildung

$$can: G \to G/N$$
$$q \mapsto qN$$

ist ein surjektiver Gruppenhomo.

Beweis.

1. Es gilt $(aN \circ bN) \circ cN = abN \circ cN = abcN = aN \circ (bN \circ cN) \Rightarrow$ (G1) Offensichtlich eN = N ist neutrales Element. (G2). $a^{-1}N$ ist offensichtlich Inverses zu aN (G3). noch zu zeigen: Das ist wohldefiniert. Sei also $a_1N = a_2N$ und $b_1N = b_2N$. Daraus sollte $a_1b_1N = a_2b_2N$ folgen.

Tatsächlich gilt $a_1^{-1}a_2 \in N$ und $b_1^{-1}b_2 \in N$. Dann $(a_1b_1)^{-1}(a_2b_2) = b_1^{-1}a_1^{-1}a_2b_2$, wobei $a_1^{-1}a_2 \in N$ und $b_1^{-1}a_1^{-1}a_2b_2 = b_1^{-1}b_2(b_2a_1^{-1}a_2b_2) \in N \Rightarrow (a_1b_1)^{-1}a_2b_2 \in N \Rightarrow a_1b_1N = a_2b_2N$.

2. surjektiv klar nach (3); um zu zeigen, dass das ein Gruppenhomomorphismus ist, muss man das einfach nachrechnen

Bemerkung. Somit gilt: Normalteiler sind genau die Kerne von Gruppenhomomorphismen.

Satz 4 (Homomorphiesatz). Sei $f: G \to H$ Gruppenhomo. Sei $N \triangleleft G$. Dann: $N \subseteq \text{Ker}(f) \Leftrightarrow \exists !$ Gruppenhomo $\overline{f}: G/N \to H$, sodass $\overline{f} \circ \text{can} = f$. Also

$$G \xrightarrow{f} H$$

$$\operatorname{can} \qquad \uparrow^{\exists!\overline{f}} \text{ Gruppenhomo}$$

$$G/N$$

Beweis. " = ": Ker(can) = { $g \in G|gN = N$ } = { $g \in G|g \in N$ } = $N \Rightarrow f(N) = \overline{f}(\operatorname{can}(N)) = \overline{f}(e) = e \Rightarrow N \subseteq \operatorname{Ker}(f)$.

"⇒": **Eindeutigkeit:** Es muss für \overline{f} gelten: $\overline{f}(aN) = \overline{f}(\operatorname{can}(a)) = f(a) \ \forall aN \in G/N \Rightarrow \overline{f}$ eindeutig bestimmt durch f.

Existenz: Setzen $\overline{f}(aN) := f(a) \ \forall aN \in G/N$. Das ist wohldefiniert (klar). Zu zeigen: Das ist ein Gruppenhomo. (nachrechnen)

Korollar 5. $f: G \to H$ Gruppenhomo. Dann gilt $G / \ker f \cong \operatorname{Im} f$.

Beweis. Ker $f \triangleleft G$ nach Lemma 2.2. $\Rightarrow G/\mathrm{Ker}f$ ist eine Gruppe nach Satz 2.3. imf ist eine Gruppe nach 1.3. Setze $N := \mathrm{Ker}f$. Klar: $N \subseteq \mathrm{Ker}f$. Also existiert nach Satz 2.4 ein \overline{f} , sodass

$$G \xrightarrow{f} H$$

$$\operatorname{can} \qquad \uparrow^{\exists!\overline{f} \text{ Gruppenhomo}}$$

$$G/\operatorname{Ker} f$$

Also haben wir $\overline{f}\colon G/\mathrm{Ker}f\to\mathrm{im}f$ ein Gruppenhomomorphismus. Er ist surjektiv, weil can surjektiv ist.

Behauptung: \overline{f} ist injektiv.

Es gilt $\overline{f}(aN) = f(a) = e \Leftrightarrow a \in \operatorname{Ker} f = N$. Also $\operatorname{Ker} \overline{f} = \{N\} = \{\text{neutrales Element in } G/\operatorname{Ker} f\}$. Also ist \overline{f} injektiv. $\Rightarrow \overline{f}$ ist Gruppenisomorphismus.

Satz 6 (1. Isomorphiesatz). Sei G eine Gruppe, H < G, $N \lhd G$.

- 1. $HN := \{hn | h \in H, n \in N\} < G$
- $2.\ N\vartriangleleft HN,\,(H\cap N)\vartriangleleft H$
- 3. Es gilt $H/(H \cap N) \cong HN/N$ mit dem Gruppenisomorphismus $h(H \cap N) \mapsto hN$.

Beweis.

- 1. $HN \neq \emptyset$, da $e = ee \in HN$. Seien $h_1n_1, h_2n_2 \in HN$ ($h_i \in H, n_i \in N$). Dann ist $h_1n_1(h_2n_2)^{-1} = h_1n_1n_2^{-1}h_2 1 = h_1h_2^{-1}h_2n_1n_2^{-1}h_2 1$, wobei $n_1n_2^{-1} \in N$, $h_2n_1n_2^{-1}h_2^{-1} \in N$, da $N \triangleleft G$ und $h_1h_2^{-1} \in H$, also ist der gesamte Ausdruck Element von HN.
- 2. Zunächst zeigen wir, dass $N \triangleleft HN$: $N \subseteq HN$ (Klar, denn n = en). $\Rightarrow N < HN$, weil N < G; genauso $N \triangleleft HN$, weil $N \triangleleft G$.

Noch zu zeigen: $(H \cap N) \triangleleft H$. Klar: $(H \cap N) \subseteq H$, $(H \cap N) \triangleleft H$, weil $(H \cap N) \triangleleft G$. Sei $x \in H \cap N$, $h \in H$. Dann $hxh^{-1} \in H$, weil $H \triangleleft G$; und $\in N$, weil $N \triangleleft G$. Also $hxh^{-1} \in (H \cap N) \Rightarrow H \cap N \triangleleft H$

3. Betrachte

$$f \colon H \to HN \xrightarrow{\operatorname{can}} HN/N$$
$$h \mapsto he$$

Nachprüfen: f ist ein Gruppenhomo. Für $x \in H$ gilt $x \in \text{Ker}(f) \Leftrightarrow xeN = N \Leftrightarrow x = xe \in \text{Ker}(\text{can}) = N \Leftrightarrow x \in (H \cap N)$. Also existiert nach dem Homomorphiesatz ein Gruppenhomo \overline{f} :

$$\overline{f} \colon H/(H \cap N) \to (HN)/N$$

ist nach Konstruktion injektiv.

Surjektiv: Sei $hnN \in (HN)/N$ mit $h \in H, n \in N$. Dann gilt aber: hnN = hN und dann f(h) = hN und damit $\overline{f} \circ \operatorname{can}(h) = \overline{f}(\operatorname{can}(h)) = hN \Rightarrow hN \in \operatorname{im} f \Rightarrow \overline{f}$ surjektiv. $\Rightarrow \overline{f}$ Gruppenisomorphismus.

Anmerkung zu Beweis des Homomorphiesatzes: Wo wird in " \Rightarrow "verwendet, dass $N \subseteq \operatorname{Ker} f$? Es wird benötigt für die Wohldefiniertheit von \overline{f} .

Satz 7 (2. Isomorphiesatz). Sei G eine Gruppe; $N_1 \triangleleft G$, $N_2 \triangleleft G$, $N_1 \subseteq N_2$. Dann gilt $N_1 \triangleleft N_2$ und $N_2/N_1 \triangleleft G/N_1$ und es gilt:

$$(G/N_1)/(N_2/N_1) \cong G/N_2$$

durch den Isomorphismus $(gN_1)N_2/N_1 \mapsto gN_2$.

Beweis. G/N_1 ist Gruppe, weil $N_1 \triangleleft G$. $N_2/N_1 \subseteq G/N_1$ (Klar!); G/N_2 Gruppe, weil $N_2 \triangleleft G$. $N_1 \subseteq N_2$ und damit $N_1 \triangleleft N_2$, weil $N_1 \triangleleft G$. Sei

$$\begin{array}{ccc} f \colon G/N_1 & \to & G/N_2 \\ gN_1 & \mapsto & gN_2 \end{array}$$

Das ist wohldefiert: Seien $g, h \in G$, $gN_1 = hN_1 \Rightarrow g^{-1}h \in N_1 \subseteq N_2 \Rightarrow gN_2 = hN_2 \Rightarrow$ wohldefiniert.

Klar: f ist surjektiv und $gN_1 \in \operatorname{Ker}(f) \Leftrightarrow gN_2 = N_2 \Leftrightarrow g \in N_2$. Also $\operatorname{Ker}(f) = \{gN_1|g \in N_2\} = N_2/N_1$. Also insbesondere $N_2/N_1 \lhd G/N_1$. Nach dem Korollar des Homomorphiesatzes erhalten wir einen Gruppenhomo

$$\overline{f}: (G/N_1)/\mathrm{Ker} f (= N_2/N_1) \to \mathrm{im} f = G/N_2 \; (\mathrm{da} \; f \; \mathrm{surjektiv})$$

Nach Kosntruktion ist \overline{f} injektiv, also erhalten wir den gewünschten Gruppenisomorphismus mit $\overline{f}(gN_1 \cdot (N_2/N_1)) = f(gN_1) = gN_2$.

Anwendungen

- 1. **Anzahlformel:** G endliche Gruppe, H < G, $N \lhd G$. Dann $|HN| = \frac{|H||N|}{|H \cap N|}$. Denn nach Lagrange ist $|H| = |H \cap N|(H:H \cap N)$ und |HN| = |N|(HN:N). Nach dem 1. Isomorphiesatz ist $(H:H \cap N) = (HN:N)$. Also $|HN| = \frac{|N||H|}{|H \cap N|}$.
- 2. $(G, \circ) = (\mathbb{Z}, +), m, n \in \mathbb{N}$ und m|n. Wir wissen: $m\mathbb{Z} < \mathbb{Z}$ und $n\mathbb{Z} < \mathbb{Z}$ (sogar Normalteiler, weil G abelsch ist). Klar ist: $n\mathbb{Z} \subseteq m\mathbb{Z}$ (insbesondere auch $n\mathbb{Z} \lhd m\mathbb{Z}$). Dann gilt

$$(\mathbb{Z}/n\mathbb{Z})/(m\mathbb{Z}/n\mathbb{Z}) \cong \mathbb{Z}/m\mathbb{Z}$$

1.3 Zyklische Gruppen

Wir schreiben kurz $\langle g \rangle$ statt $\langle \{g\} \rangle$.

Satz 1. Untergruppen von zyklischen Gruppen sind zyklisch.

Beweis. Sei G eine zyklische Gruppe; $G = \langle g \rangle$ mit $g \in G$. Sei H < G.

Fall 1 $H = \{e\} = \langle e \rangle$, also zyklisch

Fall 2 $H \neq \{e\} \Rightarrow \exists m \in \mathbb{Z} \setminus \{0\} : e \neq g^m \in H \Rightarrow \exists n \in \mathbb{N} : e \neq g^n \in H \text{ (weil } H < G).$ Wähle $n := \min\{j \in \mathbb{N} | e \neq g^j \in H\}$. Behauptung: $H = \langle g^n \rangle$.

" \supseteq ": Klar, da $g^n \in H$

"=": Angenommen, Gleichheit gilt nicht. Also $\exists s \in \mathbb{Z} : g^s \in H \setminus \langle g^n \rangle$ (beachte $G = \langle g \rangle$). Schreibe s = an + r für $a, r \in \mathbb{Z}$ und $0 \le r < n$. Falls r = 0, dann s = an und $g^s = g^{an} = (g^n)^a \in \langle g^n \rangle$ Widerspruch!

Falls r > 0: Dann $g^r = (g^{an})^{-1}g^{an}g^r = ((g^n)^a)^{-1}g^s \in H$ (Widerspruch zur Minimalität)

Somit war die Annahme falsch und H ist zyklisch.

[16. Oktober 2017]

[19. Oktober 2017]

Lemma 2. Bilder von zyklischen Gruppen und Gruppenhomomorphismen sind zyklisch.

Beweis. Sei $f: G \to G'$ ein Gruppenhomomorphismus und sei G zyklisch, also $G = \langle g \rangle$ für ein $g \in G \Rightarrow G = \{g^i | i \in \mathbb{Z}\}$ also $f(G) = \{f(g^i) | i \in \mathbb{Z}\} = \{(f(g^i)) | i \in \mathbb{Z}\}\} = \langle f(g) \rangle \Rightarrow \text{Im } f = \langle f(g) \rangle$ zyklisch.

Lemma 3. Sei G endliche Gruppe $|G| = n < \infty$. Sei $g \in G$ mit $G = \langle g \rangle$ (also G zyklisch). Sei $\operatorname{ord}(g) = \min \{j \in \mathbb{N} | g^j = e\}$. Dann gilt: $\operatorname{ord}(g) = n$.

Definition 1. Allgemeiner: Sei G irgendeine Gruppe, $g \in G$. Dann definiere

$$\operatorname{ord}(g) := \begin{cases} \min \left\{ j \in \mathbb{N} \middle| g^j = e \right\} & \text{falls das existiert} \\ \infty & \text{sonst} \end{cases}$$

Wir nennen ord(g) die Ordnung von $g \in G$.

- Beweis von Lemma 3. 1. Behauptung: $\operatorname{ord}(g)$ existiert. Angenommen es existiert nicht, also $g^j \neq g \ \forall j \in \mathbb{N} \Rightarrow g^i \neq g^j$ falls $i \neq j, \ i,j \in \mathbb{N}$ (denn sonst gilt $g^{i-j} = e = g^{j-i}$ mit $i-j \in \mathbb{N}$ oder $j-i \in \mathbb{N}$). Also $|G| = \infty \Rightarrow$ Widerspruch. Jetzt ist noch zu zeigen, dass $n = \operatorname{ord}(g)$ gilt. Dazu sei $S := \{g, g^2, ..., g^{\operatorname{ord}(g)} = e\} \subset G$.
 - 2. Behauptung: S < G. Klar: $e \in S$. Sei $g^a, g^b \in S$. Schreibe $a b = k \cdot \operatorname{ord}(g) + r$, wobei $k, r \in \mathbb{Z}, 0 \le r < \operatorname{ord}(g)$. Daraus folgt

$$g^{a} (g^{b})^{-1} = g^{a-b} = g^{k \cdot \operatorname{ord}(g) + r} = (g^{\operatorname{ord}(g)})^{k} g^{r} = e^{k} g^{r} = eg^{r} = g^{r} \in S$$

weil $0 \le r < \operatorname{ord}(g)$. Da $g \in S$, gilt $\langle g \rangle \subset S$. Weil S < G ist klar, dass $S \subset \langle g \rangle$, also $\langle g \rangle = S$.

3. Behauptung: $|S| = \operatorname{ord}(g)$. Seien $g^i, g^j \in S$ mit $1 \leq i, j \leq \operatorname{ord}(g)$ und $g^i = g^j$. Also $g^{i-j} = e = g^{j-i}$, was ein Widerspruch zur Minimaltität von $\operatorname{ord}(g)$ ist außer i = j. Folglich sind die $g^i (1 \leq i \leq \operatorname{ord}(g))$ paarweise verschieden, was die Behauptung zeigt.

Bemerkung. Sei G irgendeine Gruppe, $g \in G$. Dann gilt: $\operatorname{ord}(g) = |\langle g \rangle|$ und nach Satz von Lagrange dann $\operatorname{ord}(g)$ teilt |G|, falls |G| endlich.

 ${f Satz}$ 4 (Zyklische Gruppen). Je zwei zyklische Gruppen der selben Ordnung sind isomorph. Genauer gilt für G zyklische Gruppe:

$$G \cong \begin{cases} \mathbb{Z} & \text{falls } |G| = \infty \\ \mathbb{Z}/n\mathbb{Z} & \text{falls } |G| = n \end{cases}$$

Beweis. Sei $G = \langle g \rangle$ mit $g \in G$. Sei $f : \mathbb{Z} \to G : j \mapsto g^j$. Dann ist f ein Gruppenhomomorphismus (nachrechnen) und surjektiv, da $G = \langle g \rangle$.

Fall 1 $|G| = \infty$. Dann muss f injektiv sein, damit f ein Isomorphismus ist und damit $\mathbb{Z} \cong G$. Falls f nicht injektiv ist, dann $\exists i, j \in \mathbb{Z}, i \neq j$ mit $g^i = g^j$, als $g^{i-j} = e = g^{j-i}$. Folglich ist $\operatorname{ord}(g) < \infty$. Damit wäre G nach 3 endlich, was ein Widerspruch ist.

Fall 2 |G| = n endlich. Dann folgt aus 3:

$$\operatorname{ord}(g) = n \Rightarrow g^n = e \Rightarrow g^{nk} = (g^n)^k = e^k = e \ \forall k \in \mathbb{Z} \Rightarrow n\mathbb{Z} \subset \ker F$$

Nach dem Homomorphiesatz gilt dann:

$$\mathbb{Z} \xrightarrow{f} G$$

$$\downarrow \text{can} \qquad \uparrow \exists ! \ \overline{f} \ \text{Gruppenhomo}$$

$$\mathbb{Z}/n\mathbb{Z}$$

Also $\overline{f}: \mathbb{Z}/n\mathbb{Z} \to G$. Da $|\mathbb{Z}/n\mathbb{Z}| = n = |G|$ muss diese surjektive Abbildung schon ein Isomorphismus sein.

1.4 Auflösbare Gruppen

Definition 1. Eine Normalreihe eine Gruppe G ist eine Kette von Untergruppen der Form $\{e\} = G_0 \triangleleft G_1 \triangleleft ... \triangleleft G_n = G$. Man nennt die Quotientengruppe G_i/G_{i-1} die Faktoren der Normalreihe.

Definition 2. Eine Gruppe heißt auflösbar, falls eine Normalreihe mit abelschen Faktoren existiert.

Beispiel.

- 1. Abelsche Gruppen sind auflösbar: $\{e\} \triangleleft G$ und $G/\{e\} \cong G$, also abelsch
- 2. Sei $G = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \in \operatorname{GL}_2(K) \right\} < \operatorname{GL}_2(K)$. Behauptung: G ist auflösbar. Dazu betrachtet man $G' = \left\{ \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} \in \operatorname{GL}_2(K) \right\} < \operatorname{GL}_2(K)$, wobei G' insbesondere eine Gruppe ist.

$$f:G\to G':\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}\mapsto\begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$$

was ein Gruppenepimorphismus ist (nachrechnen). Es gilt:

$$\ker f = \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \middle| b \in K \right\} \lhd G$$

Folglich gilt ker $f \cong (K, +)$, sodass $\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \mapsto b$, weil $\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & b' \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & b + b' \\ 0 & 1 \end{pmatrix}$ als Gruppenhomomorphismus offensichtlich bijektiv ist. Damit ist ker f abelsch und G' somit auch.

$$\Rightarrow \{e\} = G_0 \lhd \ker f = G_1 \lhd G_2 = G$$

und $\ker f/\{e\}$ abelsch, sowie auch $G/\ker f\cong \operatorname{Im} f=G'$ abelsch. Somit ist G auflösbar.

3. S_4 ist auflösbar. Betrachte

$$S_4 > A_4 := \{ \pi \in S_4 | \operatorname{sgn}(\pi) = 1 \}$$

Nach LA 1 ist sgn ein Gruppenhomomorphismus und damit $A_4 = \ker(\operatorname{sgn}) < S_4$. Es gilt $S_4 \triangleleft A_4$, weil $A_4 = \ker(\operatorname{sgn})$ oder weil $(S_4 - A_4) = 2$, was dann nach Blatt 2 folgt. Betrachte nun

$$A_4 > V_4 := \left\{ e, \underbrace{(1,2)(3,4)}_{a}, \underbrace{(1,3)(2,4)}_{b}, \underbrace{(1,4)(2,3)}_{c} \right\}$$

Dann gilt $A_4 \triangleleft V_4$, da folgendes gilt:

$$\forall \pi \in S_4 : \pi \circ \underbrace{(a_1, a_2)(a_3, a_4)}_{\tau} \circ \pi^{-1} = (\pi(a_1), \pi(a_2))(\pi(a_3), \pi(a_3))$$

weil

$$\pi(a_1) \xrightarrow{\pi^{-1}} a_1 \xrightarrow{\tau} a_2 \xrightarrow{\pi} \pi(a_2)$$

$$\pi(a_2) \longmapsto a_2 \mapsto a_1 \mapsto \pi(a_1)$$

$$\pi(a_3) \longmapsto a_3 \mapsto a_4 \mapsto \pi(a_4)$$

$$\pi(a_4) \longmapsto a_4 \mapsto a_3 \mapsto \pi(a_3)$$

also $V_4 \triangleleft A_4$. Folglich haben wir

$$\{e\} = G_0 \triangleleft V_4 = G_1 \triangleleft A_4 = G_2 \triangleleft S_4 = G_3$$
 (1)

 $G_1/G_0 \cong V_4$ ablesch

 $G_2/G_1 \cong \mathbb{Z}/2\mathbb{Z}$ also abelsch, da jede Gruppe H der Ordunung 2 zyklisch mit $H = \langle g \rangle (g \neq e)$ ist und dann nach Klassifikationssatz $H \cong \mathbb{Z}/2\mathbb{Z}$

 G_3/G_2 Wir wissen, dass $|G_3/G_2|=3$. Dann behaupten wir, dass $G_3/G_2\cong \mathbb{Z}/3\mathbb{Z}$. Jede Gruppe H mit |H|=3 ist zyklisch, denn $\langle g\rangle < H(g\neq e)$. Nach dem Satz von Lagrange gilt $\langle g\rangle = H$, weil $\langle g\rangle \neq e$ und 3 prim ist. Also folgt die Aussage aus dem Klassifikationssatz.

Daraus folgt, dass S_4 auflösbar ist.

Satz 1. Untergruppen und Bilder unter Gruppenhomomorphismen von auflösbaren Gruppen sind auflösbar.

Beweis. Sei G auflösbare Gruppe. Dann existiert eine Auflösung

$$\{e\} = G_0 \triangleleft G_1 \triangleleft ... \triangleleft G_n = G G_i/G_{i-1}$$
 abelsch

1. Sei U < G. Behauptung: $\{e\} = G_0 \cap U \lhd (G_1 \cap U) \lhd ... \lhd (G_n \cap U) = U$. Es ist klar, dass $(G_{i-1} \cap U) \subset (G_1 \cap U)$. Auch klar ist, dass $G_i \cap U$ eine Gruppe ist und $(G_{i-1}) < (G_1 \cap U)$. Jetzt ist noch zu zeigen, dass $(G_{i-1} \cap U) \lhd (G_i \cap U)$. Sei $x \in G_{i-1} \cap U$ und sei $y \in G_i \cap U$. Dann folgt, dass $\underbrace{yxy^{-1}}_{\in G_{i-1}} \in U$, weil $x, y \in U, U < G$,

weil $x \in G_{i-1}, y \in G_i$ und $G_{i-1} \triangleleft G_i$. Daraus folgt, dass $yxy^{-1} \in U \cap G_{i-1}$, was zu zeigen war.

2. Behauptung: $G_i \cap U/G_{i-1} \cap U$ abelsch. Es gilt $G_i \cap U/G_{i-1} \cap U \stackrel{\text{1. Iso}}{\cong} (U \cap G_i)G_i/G_i \triangleleft G_i/G_{i-1}$ abelsch. Daraus folgt die Behauptung.

[19. Oktober 2017]

[23. Oktober 2017]

Sei $f: G \to G'$ Gruppenhomo. Behauptung: $\{e\} = f(G_0) \lhd f(G_1) \lhd \ldots \lhd f(G_n) = f(G)$ ist eine Normalreihe mit $f(G_i)/f(G_{i-1})$ abelsch.

Sei $y' = f(y) \in f(G_i), y \in G_i$, dann $y'f(G_{i-1})(y')^{-1} = f(yG_{i-1}y^{-1}) \subseteq f(G_i) \Rightarrow f(G_{i-1}) \triangleleft f(G_i)$ für alle i. Betrachte nun $\alpha \colon G_i \xrightarrow{f} f(G_i) \xrightarrow{\operatorname{can}} f(G_i)/f(G_{i-1})$ Gruppenhomo; offensichtlich surjektiv. Da $G_{i-1} \in \ker \alpha \Rightarrow \exists$ Gruppenhomo $\overline{\alpha} \colon G_i/G_{i-1} \to f(G_i)/f(G_{i-1})$ nach Homosatz $\overline{\alpha}$ surjektiv, weil G_i/G_{i-1} abelsch ist, ist auch $f(G_i)/f(G_{i-1})$ abelsch \Rightarrow Behauptung \Rightarrow Satz.

Definition 3. G Gruppe, $M := \{ghg^{-1}h^{-1}|g,h \in G\}$; dann heißt $[G,G] = \langle M \rangle$ Kommutatorgruppe.

Bemerkung. $[G,G] \triangleleft G$ sogar kleinster Normalteiler, sodass G/[G,G] abelsch (denn: sei $N \triangleleft G, a,b \in G, aNbN = bNaN \Leftrightarrow abN = baN \Leftrightarrow a^{-1}b^{-1}ab \in N \Leftrightarrow [G,G] \subseteq N$).

Betrachte zu einer Gruppe die abgeleitete Reihe:

$$G \qquad \rhd \qquad [G,G] \qquad \rhd \qquad [D_1(G),D_1(G)] \qquad \rhd \qquad \dots \tag{1}$$

$$D_0(G) \qquad \qquad D_1(G) \qquad \qquad D_2(G)$$

Satz 2. G auflösbar $\Leftrightarrow \exists m \in \mathbb{N} : D^m(G) = \{e\}.$

Beweis.

"⇒" Sei G auflösbar und $\{e\} = G_0 \triangleleft G_1 \triangleleft \ldots G_n = G$ mit abelschen Faktoren. Nach Bemerkung gilt G_N/G_{n-1} abelsch $\Rightarrow [G_n, G_n] \subseteq G_{n-1}$.

Behauptung: $D^i(G) \subseteq G_{n-i}$ klar für i = 0; 1. $D^{i+1}(G) = [D^i(G), D^i(G)] \subseteq [G_{n-i}, n-i] \subseteq G_{n-i-1}$ nach Bemerkung. Also $D^n(G) \subseteq G_0 = \{e\} \Rightarrow \exists m := n \text{ mit } D^m(G) = \{e\}.$

1.5 Gruppenoperationen

Definition 1. G Gruppe, $X \neq \emptyset$ Menge. Eine Operation von G auf X ist eine Abbildung

$$\Phi \colon G \times X \to X$$

$$(q, x) \mapsto q.x = \Phi(q, x)$$

sodass

(O1) e.x = x für alle $x \in X$

(O2) g.(h.x) = (gh).x für alle $g, h \in G, x \in X$

Kurz: G operiert auf X; wir schreiben $G \curvearrowright X$.

Bemerkung. Existenz von Φ ist äquivalent zur Existenz von $\Phi: G \to S_X$ Gruppenhomo mit $\Phi'(g)(x) := g.x$ (nachprüfen!)

Definition 2. Gegeben $G \curvearrowright X$, $G \curvearrowright Y$, $f: X \to Y$ Abbildung heißt G-Homomorphismus, falls f(g.x) = g.f(x) für alle $g \in G$ und $x \in X$.

Definition 3. $G \curvearrowright X$, $x \in X$. Dann

- 1. $G.x = \{g.x | g \in G\}$ Bahn von x
- 2. $G_x = \{g \in G | g.x = x\}$ Stabilisator von x
- 3. $X^G = \{x \in X | \forall g \in G \ g x = x \}$ Menge der Fixpunkte

Bemerkung. $x \sim y$ falls $y \in G.x$ ist eine Äquivalenzrelation:

- $x \sim x$ klar, weil $x = e.x \in G.x$
- $x \sim y \Rightarrow \exists g \in G : g.x = y \Rightarrow x = g^{-1}.y \Rightarrow x \in G.y \Rightarrow y \sim x$
- $x \sim y, y \sim z \Rightarrow x \sim z$ klar nach (O2)

Also $X = \dot{\bigcup}$ verschiedene Bahnen.

Definition 4. G operiert transitiv, falls genau eine Bahn existiert.

Beispiel.

1. G Gruppe, $X := \{H < G\}, G \curvearrowright X$ durch Konjugation: $g.H = gHg^{-1}$.

Bahnen: Konjugationsklassen von Untergruppen

Stabilisator von $H \in X$: $G_H = \{g \in G | gHg^{-1} = H\}$ Normalisator von H in G, $N_G(H)$

$$X^G = \{H < G | gHg^{-1} = H \forall g \in G\} = \{H \vartriangleleft G\}$$

2. G Gruppe, H < G, X = G/H. Dann $G \curvearrowright X = G/H$ durch g.(aH) = gaH für alle $g \in G, a \in G$ (Linkstranslation), Operation ist transitiv; aber $\ker \Phi' = \bigcap_{x \in G} xHx^{-1}$ (kleinster Normalteiler in G, der H enthält)

Lemma 1. $G \curvearrowright X$. Dann

- 1. $\forall x \in X : G_X < G$
- 2. $f: G/G_X \to G.x, gG_x \mapsto g.x$ wohldefiniert bijektiv und G-Homomorphismus (wobei G links wie in Beispiel 2 oben und rechts durch $G \curvearrowright X$ operiert)
- 3. $|G.x| = (G:G_x)$, wobei $(G:G_x) = \infty$, falls $|G/G_x| = \infty$

Beweis.

- 1. Übung
- 2. Klar f surjektiv; injektiv: Sei $f(g_1G_x) = g(g_2G_x) \Leftrightarrow g_1.x = g_2.x \Leftrightarrow g_1^{-1}g_2.x = x \Leftrightarrow g_1^{-1}g_2 \in G_x \Leftrightarrow g_1G_x = G_2G_x$. Also f wohldefiniert und bijektiv. G-Homorphismus: zu zeigen: $f(h.(gG_x)) = h.f(gG_x)$ für alle $x \in X, h, g \in G$. Aber $f(h.(gG_x)) = hgG_x = (hg).x = h.g.x = h.f(gG_x)$
- 3. Es gilt nun $|G.x| \stackrel{2}{=} |G/G_x| = (G:G_x)$

Satz 2 (Bahnenformel). $G \curvearrowright X, X$ endlich: Dann

$$|X| = \sum_{i \in I} (G : G_{x_i}) = |X^G| + \sum_{i \in I, x_i \notin X^G} (G : G_{x_i})$$
,

wobei $(x_i)_{i\in I}$ Elemente in X sind, sodass die Bahnen ein Repräsentantensystem der Bahnen bilden.

Beweis. $|X| = \bigcup_{i \in I} G.x_i| = \sum_{i \in I} |G.x_i| = \sum_{i \in I} |G.x_i| = \sum_{i \in I} |G.x_i| \Rightarrow 1$. Gleichung. Nun teile die Bahnen $G.x_i$ in solche auf mit genau einem Element $(\Leftrightarrow x_i \in X^G)$ und solchen mit ≥ 2 Elementen. Da $x_i \in X^G \Leftrightarrow G_{x_i} = G \Leftrightarrow (G:G_{x_i}) = 1$ folgt sofort die 2. Gleichung. \square

Satz 3. G endliche Gruppe. $G \curvearrowright G$ durch Konjugation. Sei $\{x_i\}_{i \in I}$ so gewählt, dass die Bahnen ein Repräsentantensystem für Konjugationsklassen sind. Dann:

$$|G| = |Z(G)| + \sum_{i \in I} (G : C_G(x_i))$$
,

wobei $C_G(x_i) = \{g \in G | gx_ig^{-1} = x_i\}$ Zentralisatior von x_i in G.

Beweis. folgt direkt aus der Bahnenformel, da $C_G(x_i) = G_{x_i}$ mit der Konjugation als Operation und $x \in X^G \Leftrightarrow g.x = x \forall g \in G \Leftrightarrow gxg^{-1} = x \forall g \in G_{x_i} \Leftrightarrow x \in Z(G)$.

[19. Oktober 2017]

[26. Oktober 2017]

1.6 p-Gruppen und Sylow-Sätze

Definition 1. Sei p Primzahl (insbesondere ≥ 2). Eine p-Gruppe ist eine Gruppe G mit $|G| = p^r$ für ein $r \in \mathbb{N}_0$. Insbesondere ist |G| endlich.

Satz 1. $G \neq \{e\}$ p-Gruppe $\Rightarrow Z(G) \neq \{e\}$

Beweis. Nach 5.3 (mit Notation von dort) $|G| = Z(G) + \sum_{i \in I, x_i \notin Z(G)} (G : G_{x_i})$. Nach Lagrange ist das durch p teilbar oder = 1. (Weil G eine p-Gruppe ist). $(G : G_{x_i}) = 1 \Leftrightarrow G = G_{x_i} \Leftrightarrow x_i \in Z(G)$. Das ist ein Widerspruch. Also sind die Summanden $(G : G_{x_i})$ durch p teilbar. Damit teilt p auch $|Z(G)| \Rightarrow |Z(G)| \geq 2 \Rightarrow Z(G) \neq \{e\}$.

Satz 2. G p-Gruppe. Dann existiert Normalreiche der Form

$$\{e\} \lhd G_0 \lhd \ldots \lhd G_n = G$$

für ein $n \in \mathbb{N}$, sodass $G: i/G_{i-1} \cong \mathbb{Z}/p\mathbb{Z}$ $(1 \neq i \neq n)$. Insbesondere ist G auflösbar.

Beweis. Übungsblatt 3.

Definition 2. G endliche Gruppe, p Primzahl. Sei $|G| = p^r m$ mit $p \not| m$. H < G heißt p-Sylowgruppe, falls $|H| = p^r$. Wir definieren $Syl_p(G) := \{H < G | H \text{ ist Sylowgruppe}\}$

Satz 3 (Sylowsätze). p Primzahl, G endliche Gruppe, $|G| = p^r m$ mit $p \not| m$.

- 1. $\forall 0 \neq k \neq r \exists H < G \text{ mit } |H| = p^k$
- 2. Sei U < G p-Gruppe. Dann $\exists g \in G$ und $S \in Syl_p(G)$, sodass $U < gSg^{-1}$.
- 3. Sei $n_p = |Syl_p(G)|$. Dann gilt

- $n_p \equiv 1 \pmod{p}$
- $n_p|m$

Beweis.

1. Sei $1 \le k \le r$. Fall k=0 klar mit $H=\{e\}$. Sei $X=\{A\subseteq G||A|=p^k\}$, wobei $\frac{|X|=p^rm}{p^k}$; Übungsballt 3: p^{r-k+1} $/\!\!|X|$.

Nun G weirdes Zeichen X durch $g.A = gA := \{ga | a \in A\}$ für $g \in G, A \in X$. (klar: $|gA| = p^k$ also $gA \in X$). Nachrechnen: (O1), (O2) gilt (offensichtlich).

Nach Satz 5.2 folgt $|X| = \sum_{i \in I} (G : G_{x_i})$, wobei $\exists i \in I$, sodass $p^{r-k+1} / (G : G_{x_i})$, weil $p^{r-k+1} / |X|$. Wähle solch ein $x_i =: A' \in X$.

Behauptung: $G_{A'} < G$ mit $|G_{A'} = p^k$. Dann folgt 1) mit $H = G_{A'}.Klar : G_{A'} < G$. Nach Lagrange: $|G| = |G_{A'}|(G : G_{A'})$, wobei p^r die linke Seite der Gleichung teilt, und im Index auf der rechten Seite p höchstens r - k-mal vorkommt.

 $\Rightarrow p^k$ teilt $|G_{A'}| \Rightarrow p^k \leq |G_{A'}|$. Sei $a \in A'$. Dann $G_{A'}.a := \{g.a|g \in G_{A'}\} \subseteq G_{A'}.A' \subseteq A'$ nach Definition von $G_{A'}$.

Also: $|G_{A'}| = |G_{A'}.a| \le |A'| = p^k$. (Def. von $G_{A'.a}$ und $A' \in X$). Also: $|G_{A'}| = p^k \Rightarrow$ Behauptung $\Rightarrow 1$).

2. Sei U < G mit $|U| = p^s$ für ein $s \in \mathbb{N}$. Sei $S \in Syl_p(G)$. U weirdes Zeichen G/S nach (B3) durch Linksmultiplikation.

$$u.(gS) = ugS$$
 $u \in U, g \in G$

 $m = |G/S| = \sum_{i \in I} (U : U_{x_i})$ (nach Definition ist $S \in Syl_p(G)$; wende Lagrange an; die zweite Gleichheit folgt aus Satz 5.2).

Weil $p \not| m$, existiert ein $i \in I$ sodass $p \not| (U:U_{x_i})$. Wähle ein solches $x_i =: aS$. Nach Lagrange ist

$$p^{s} = |U| = |U_{aS}|(U:U_{aS})$$

. Also $(U:U_{as})=1$. Also $U=U_{as}$. Damit

$$\begin{array}{rcl} u.aS &=& aS & \forall a \in U \\ \Leftrightarrow & (ua)S &=& as & \forall u \in U \\ \Leftrightarrow & a^{-1}uaS &=& S & \forall u \in U \\ \Leftrightarrow & a^{-1}ua &\in& S & \forall u \in U \\ \Leftrightarrow & u &\in& aSa^{-1} & \forall u \in U \end{array}$$

Setze g := a und erhalte $U < gSg^{-1}$.

3. Übungsaufgabe

Konsequenzen G endliche Gruppe, p Primzahl.

1. Je zwei p-Sylowuntergruppen in G sind zueinander konjugiert (d.h. $S, S' \in Syl_p(G) \Rightarrow \exists g \in G : S' = gSg^{-1}$)

Beweis. Nach Sylowsatz 2 folgt $\exists g \in G \text{ mit } S' < gSg^{-1}$. Da |S'| = |gSg'| nach Definition von p-Sylow gilt $S' = qSg^{-1}$.

Beachte: Falls $n_p = |Syl_p(G)| = 1$, also $\exists ! \ p$ -Sylowgruppe S, dann ist $S \triangleleft G$. Denn $\forall g \in G$ ist gSg^{-1} wieder p-Sylow, also $gSg^{-1} = S$.

2. (Cauchy) $p||G| \Rightarrow \exists g \in G \text{ mit } ord(g) = p.$

Beweis. Nach Sylowsatz 1 existiert H < G mit |H| = p. Wähle $g \in H$, $g \neq e$. Dann ist $\langle g \rangle < H$ und $\langle g \rangle \neq \{e\}$, also $\langle g \rangle = H$ nach Lagrange. Aus Kapitel 3 folgt ord(g) = |H| = p.

3. G ist p-Gruppe \Leftrightarrow Jedes Element $g \in G$ hat Ordnung p^s für geeignetes $s \in \mathbb{N}_0$ (abhängig von g).

Beweis. " \Rightarrow ": Sei $g \in G$. Sei ord(g) = n. Aus Satz 3.3 folgt $|\langle g \rangle| = n$. $\Rightarrow n||G|$ nach Lagrange. \Rightarrow (da G p-Gruppe) $n = p^s$ für ein s.

"\(\infty \)": zu zeigen: $|G| = p^r$ für ein $r \in \mathbb{N}_0$.

Annahme: q||G| für q Primzahl $p \neq q$. Nach dem Satz von Cauchy existiert $g \in G$ mit ord(g) = q. Das ist ein Widerspruch.

Bemerkung. p-Gruppen mit unendlicher Ordnung kann man definieren als Gruppen mit ord(g) = Potenz von p für alle $g \in G$.

Anwendungen Vorbemerkung: G Gruppe, |G| = p Primzahl $\Rightarrow G \cong \mathbb{Z}/p\mathbb{Z}$. (Denn wähle $g \in G$, $g \neq e$. Dann $\langle g \rangle < G$ und nach Lagrange ist $|\langle g \rangle| = p = |G|$, also $G = \langle g \rangle$ zyklisch, also $G \cong \mathbb{Z}/p\mathbb{Z}$ nach Klassifikation von zyklischen Gruppen.)

Satz 4. G Gruppe, |G| = pq mit $p \neq q$ Primzahl. Dann ist G auflösbar.

Beweis. Ohne Beschränkung der Allgemeinheit sei p > q. Nach Sylowsatz 3 gilt: $n_p|q$, also $n_p \in \{1, q\}$ und $n_p \equiv 1 \pmod{p}$.

 $\Rightarrow n_p = 1$, weil p > q. Nach Bemerkung in 1 gilt $\exists ! \ p$ -Sylowgruppe S und $S \triangleleft G$. Nach Definition von p-Sylow und weil |G| = pq gilt |S| = p. Also erhalten wir eine Normalreihe

$$\{e\} \lhd S \lhd G$$

mit $S/\{e\} \cong S \cong \mathbb{Z}/p\mathbb{Z}$ und |G/S| = q, also $G/S \cong \mathbb{Z}/q\mathbb{Z}$.

 \Rightarrow Faktoren sind abelsch \Rightarrow G ist auflösbar.

Satz 5. G Gruppe, |G| = pq, p, q Primzahlen, p < q und $p \not| q-1$. Dann $G \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z} \times q\mathbb{Z}$

Beweis. Nach Sylowsatz 3 gilt $n_p \in \{1, q\}, n_q \in \{1, p\}$ und $n_p \equiv 1 \pmod{p}, n_q \equiv 1 \pmod{q}$. Da p < q ist, gilt $n_q = 1$. Also existiert genau eine q-Sylowgruppe $Q \triangleleft G$. Falls $n_p = q \Rightarrow q \equiv 1 \pmod{p}$. Daraus folt p|(q-1) im Widerspruch zur Voraussetzung. Also ist $n_p = 1 \Rightarrow \exists ! p$ -Sylowgruppe $P \triangleleft G$.

1. Behauptung: $x \in P, y \in Q$. Dann xy = yx. Denn $xyx^{-1}y^{-1} \in Q$, da $xyx^{-1} \in Q$ (Q Normalteiler) und $y^{-1} \in Q$, $xyx^{-1}y^{-1} \in P$, da $x \in Pundyx^{-1}y^{-1} \in P$ (P Normalteiler). $\Rightarrow xyx^{-1}y^{-1} \in P \cap Q$. Aber $P \cap Q = \{e\}$, da $|P \cap Q||p = |P|$ und $|P \cap Q||q = |Q|$. \Rightarrow 1. Behauptung.

Betrachte nun $\Phi: P \times Q \to G, (x, y) \mapsto xy$. Φ ist ein wohldefinierter Gruppenhomomorphismus. Denn $\Phi((x, y) \circ (x', y')) = \Phi((xx', yy')) = xx'yy'; \Phi((x, y)) \circ \Phi((x', y')) = xyx'y' = xx'yy'$ (nach der 1. Behauptung).

Außerdem ist Φ injektiv, denn $\Phi((x,y)) = e \Leftrightarrow xy = e \Leftrightarrow x = y^{-1} = e$, weil $P \cap Q = \{e\}$.

 Φ ist surjektiv, weil $|P \times Q| = |P||Q| = pq = |G|$. $\Rightarrow \Phi$ liefert Gruppenisomorphismus $P \times Q \cong G$, also $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z} \cong G$

Korollar 6. G Gruppe, |G| = 15. Dann $G \cong \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$ und G ist zyklisch.

Beweis. Wir wissen $G \cong \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$. Behauptung: $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z} \cong \mathbb{Z}/15\mathbb{Z}$. Sei nämlich $g = (\overline{1}, \overline{1}) \in \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$. Dann gilt: $ord(g) = \min\{j | (\overline{1}, \overline{1}) + \dots (\overline{1}, \overline{1}) = (\overline{0}, \overline{0} \in \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z})\} = 15$

$$\Rightarrow |\langle g \rangle| = 15 \Rightarrow \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z} \text{ ist zyklisch.}$$

$$\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z} \to \mathbb{Z}/15\mathbb{Z}, g \mapsto \overline{1} \text{ gibt den Isomorphismus.}$$

[26. Oktober 2017]

[30. Oktober 2017]

1.7 Ringe

Definition 1. Ein Ring (mit 1) ist eine Menge R zusammen mit zwei Abbildungen

$$+, \cdot : R \times R \rightarrow R$$
 $(a,b) \mapsto a+b$ Addition
bzw. $(a,b) \mapsto a \cdot b$ Multiplikation,

sodass gilt:

- (R1) (R, +) ist eine abelsche Gruppe.
- (R2) $\forall a, b, c \in R$ gilt $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ (also · ist assoziativ)
- (R3) $\forall a, b, c \in R$ gilt:

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$

 $(b+c) \cdot a = (b \cdot a) + (c \cdot a)$

(Distributivität)

(R4) $\exists 1 = 1_R \in R$, sodass $a \cdot 1 = a = 1 \cdot a$ für alle $a \in R$ (Neutrales bezüglich ·)

Bemerkung.

- 1. Wir bezeichnen mit 0 oder 0_R das neutrale Element bezüglich + und mit (-a) das Inverse zu $a \in R$ bzgl +.
- 2. Das Element $1 \in R$ ist eindeutig (denn sei 1' ein anderes, dann ist $1 = 1 \cdot 1' = 1'$).
- 3. In einem Ring gilt: $a \cdot 0 = 0 = 0 \cdot a$ für alle $a \in R$, denn $a \cdot 0 = a \cdot (0 + 0 = (a \cdot 0) + (a \cdot 0) \Rightarrow 0 = a \cdot 0$; analog für $0 \cdot a$.

Definition 2. Ein Ring $(R, +, \cdot)$ heißt kommutativ, falls $a \cdot b = b \cdot a$ für alle $a, b \in R$ **Beispiel.**

- 1. Jeder Körper $(K, +, \cdot)$ ist ein kommutativer Ring (aber Ringe haben im Allgemeinen keine multiplikativ Inversen)
- 2. (aus LA) Sei V ein K-Vektorraum, K ein Körper, dann ist $(\operatorname{End}_K(V), +, \cdot)$ ein Ring mit (f+g)(v) = f(v) + g(v) und $(f \cdot g)(v) = (f \circ g)(v)$ (Hintereinanderausführung) mit $f, g \in \operatorname{End}_K(V), v \in V$ mit $0_{\operatorname{End}_K(V)} = \operatorname{Nullabbildung}; 1_{\operatorname{End}_K(V)} = \operatorname{id}_V$.
- 3. Nullring: $R = \{0 = 1\}$ mit 0 + 0 = 0 und $0 \cdot 0 = 0$.
- 4. Es gilt folgende Umkehrung von 1.: wenn $(R,+,\cdot)$ ein kommutativer Ring ist, $R \neq \{0\}$, jedes $x \in R$ mit $x \neq 0$ besitzt Inverses x^{-1} bezüglich \cdot ; dann ist $(R,+,\cdot)$ Körper
- 5. $(R, +, \cdot)$ Ring. Betrachte

$$R[t] = \left\{ \sum_{i=0}^{\infty} a_i t^i | a_i \in R, \text{ nur endlich viele } a_i \neq 0 \right\} = \left\{ \sum_{i=0}^{n} a_i t^i | a_i \in R, n \in \mathbb{N}_0 \right\}$$

Polynome mit Koeffizienten in R. Dann ist $(R[t], +, \cdot)$ ein Ring mit $0_{R[t]} = \text{Nullpolynom}$, d.h. $a_i = 0$ für alle i. $1_{R[t]}$ ist das Polynom $p(t) = \sum_{i=0}^{\infty} a_i t^i$ mit $a_0 = 1$ und $a_i = 0$ für $i \geq 1$. Es gilt: $(R[t], +, \cdot)$ ist kommutativ $\Leftrightarrow (R, +, \cdot)$ ist kommutativ.

Definition 3. $(R, +, \cdot)$ Ring. $R' \subseteq R$ heißt Unterring, falls

(UR1) $1_R \in R'$

$$(UR2) \ \forall a, b \in R' : a + (-b) \in R', a \cdot b \in R'$$

Beispiel. $(R, +, \cdot)$ Ring. $Z(R) = \{a \in R | a \cdot x = x \cdot a \ \forall x \in R\}$ Zentrum des Ringes ist ein Unterring.

Warnung: $Z(R) \neq Z((R, +))$ im Allgemeinen

Definition 4. Seien $(R, +, \cdot)$ und $(S, +, \cdot)$ Ringe. Eine Abbildung $\varphi \colon R \to S$ ist Ringhomomorphismus (kurz Ringhomo), falls gilt:

(RH1)
$$\varphi(a+b) = \varphi(a) + \varphi(b)$$

(RH2)
$$\varphi(a \cdot b) = \varphi(a) \cdot \varphi(b)$$

(RH3)
$$\varphi(1_R) = \varphi(1_S)$$

für alle $a, b \in R$.

Falls φ zusätzlich bijektiv ist, ist es ein Ringisomorphismus (kurz Ringiso)

Bemerkung. $\varphi \colon R \to S$ Ringhomo $\Rightarrow R \to S$ ist Gruppenhomo von (R, +) nach (S, +) wegen (RH1).

Lemma 1.

1.
$$\varphi \colon R \to S \ Ringiso \Rightarrow \varphi^{-1} \colon S \to R \ Ringiso$$

2.
$$\varphi_1 \colon R \to S, \varphi_2 \colon S \to T \ Ringhomos \Rightarrow \varphi_2 \circ \varphi_1 \colon R \to T \ ist \ ein \ Ringhomo$$

Beweis. Nachrechnen. \Box

Lemma 2. Sei $\varphi \colon R \to S$ Ringhomomorphismus. Dann ist $im\varphi \subseteq S$ ein Unterring.

Beweis. Es gilt $\varphi(1_R) = 1_S \in \text{im}\varphi \Rightarrow \text{UR1}$.

Seien
$$s_1, s_2 \in \text{im}\varphi \Rightarrow \exists r_1, r_2 \in R : \varphi(r_1) = s_1, \varphi(r_2) = s_2 \Rightarrow s_1 \cdot s_2 = \varphi(r_1) \cdot \varphi(r_2) = \varphi(r_1 \cdot r_2) \in \text{im}\varphi \Rightarrow s_1 \cdot s_2 \in \text{im}\varphi.$$

Außerdem ist
$$s_1 + (-s_2) = \varphi(r_1) + (-\varphi(r_2)) = \varphi(r_1) + \varphi(-r_2) = \varphi(r_1 + (-r_2)) \in \operatorname{im}\varphi \Rightarrow s_1 + (-s_2) \in \operatorname{im}\varphi \Rightarrow \operatorname{UR2}.$$

Warnung: Wir setzen für $\varphi \colon R \to S$ Ringhomo

$$\operatorname{Ker}\varphi := \{ r \in R | \varphi(r) = 0_S \}$$
.

Dann ist Ker $\subseteq R$ genau dann Unterring, falls S der Nullring ist. Denn:

"
$$\Rightarrow$$
": Ker φ Unterring $\Rightarrow 1_R \in \text{Ker}\varphi \Rightarrow 0_S = \varphi(1_R) = 1_S \Rightarrow \forall s \in S : s = s \cdot 1_S = s \cdot 0_S = 0_S$.

" \Leftarrow ": $S = \{0\} \Rightarrow \text{Ker}\varphi = R \text{ offensichtlich Unterring.}$

Definition 5. Sei $(R, +, \cdot)$ ein Ring. $I \subseteq R$ heißt Ideal, falls gilt:

- (I1) I < (R, +)
- (I2) a) $a \cdot x \in I$ für alle $x \in I$, $a \in R$
 - b) $x \cdot a \in I$ für alle $x \in I, a \in R$

Falls nur (I1), (I2a) erfüllt sind, heißt I Linksideal; falls nur (I1) und (I2b) erfüllt sind, heißt I Rechtsideal.

Beispiel.

- 1. $(\mathbb{Z}, +, \cdot)$ ist Ring. Sei nun $n \in \mathbb{Z}$ und $I = n\mathbb{Z} = \{nk | k \in \mathbb{Z}\} \subseteq \mathbb{Z}$ ist Ideal, denn: $n\mathbb{Z} < (\mathbb{Z}, +)$, also folgt (I1); und für $a \in \mathbb{Z}$ und $x = nk \in n\mathbb{Z}$ gilt: $ax = ank = nak \in I$; $xa = nka = nak \in I$ und damit folgt (I2).
- 2. $(R, +, \cdot)$ Ring; $(R[t], +, \cdot)$ wie in Beispiel oben; $I = \{p(t) \in R[t] | p(t) = \sum_{i=0}^{\infty} a_i t^i \ a_0 = 0\}$ Polynome ohne konstanten Term. Dann ist $I \subseteq R[t]$ ein Ideal (kurz selbst überlegen).

Lemma 3. $\varphi \colon R \to S \ Ringhomo \Rightarrow Ker \varphi \subseteq R \ ist \ Ideal.$

Beweis. $\operatorname{Ker}\varphi < (R,+)$ nach $1.3 \Rightarrow (I1)$. Sei nun $a \in R, x \in \operatorname{Ker}\varphi \Rightarrow \varphi(ax) = \varphi(a)\varphi(x) = \varphi(a) \cdot 0_S = 0_S \Rightarrow ax \in \operatorname{Ker}\varphi$. Genauso $xa \in \operatorname{Ker}\varphi \Rightarrow (I2)$.

Beispiel. $(R[t], +, \cdot)$ wie in Beispiel 3. Sei $a \in R$.

$$\operatorname{ev}_a \colon R[t] \to R$$

$$p(t) = \sum_{i=0}^{\infty} b_i t^i \quad \mapsto \quad p(a) = \sum_{i=0}^{\infty} b_i a^i$$

$$(b_i \in R; \text{ fast alle } b_i = 0) \qquad \qquad (\text{mit } a^i = a \cdot \dots \cdot a(n\text{-mal}))$$

Auswertungsabbildung

Nachrechnen: ev_a ist Ringhomo.

 $\operatorname{Ker}(\operatorname{ev}_a) = \{p(t) \in R[t] | p(a) = 0_R\}$. Also: das sind genau die Polynome, die a als Nullstelle haben. Wir wissen: $\operatorname{Ker}(\operatorname{ev}_a) \subseteq R[t]$ Ideal nach 7.3.

Spezialfall: $a = 0_R$. Dann gilt $Ker(ev_0) = I$ wie in Bsp. 3 Teil 2); (insbesondere I Ideal).

Seien nun ein Ring $(R, +, \cdot)$ und ein Ideal $I \subseteq R$ gegeben. Insbesondere, nach (I1), ist I < (R, +), sogar $I \triangleleft (R, +)$, weil (R, +) abelsch.

 $\to R/I$ ist wieder Gruppe mit den Nebenklassen in (R,+) bezüglich I als Elemente. Nebenklassen sind von der Form $\overline{a}=\{a+x|x\in I\}\ a\in R$ und die Gruppenoperation auf G/I ist $\overline{a}\circ \overline{b}=\overline{a+b}$

Satz 4. Voraussetzungen: R, I wie oben. Dann wird $(R/I, \circ)$ zu einem Ring $(R/I, +, \cdot)$, wobei $+ = \circ$ und Multiplikation $\cdot = \odot$ gegeben ist durch $\overline{a} \odot \overline{b} = \overline{a \cdot b}$, wobei letzteres die Multiplikation in R ist.

Beweis.

- (R1) (R/I, +) ist abelsche Gruppe (nach Kapitel 1.1)
- (R2) Seien $\overline{a}, \overline{b}, \overline{c} \in R/I$. $(\overline{a} \odot \overline{b}) \odot \overline{c} = (\overline{ab}) \odot \overline{c} = \overline{(ab)c} = \overline{a(bc)} = \overline{a} \odot \overline{bc} = \overline{a} \odot (\overline{b} \odot \overline{c})$.
- (R3) Seien $\overline{a}, \overline{b}, \overline{c} \in R/I$. Dann $\overline{a} \odot (\overline{b} \circ \overline{c}) = \overline{a} \odot \overline{b} + \overline{c} = \overline{a \cdot (b+c)} = \overline{ab + ac} = \overline{ab} \circ \overline{ac} = \overline{a} \odot \overline{b} \circ \overline{a} \odot \overline{c}$. Analog für den zweiten Teil von (R3).
- (R4) Sei $\overline{a} \in R/I$. Dann gilt $\overline{a} \odot \overline{1_R} = \overline{a1_R} = \overline{a} = \overline{1_R \cdot a} = \overline{1_R} \odot \overline{a}$ $\Rightarrow \overline{1_R}$ ist neutrales Element für \odot .

Noch zu prüfen: \odot ist wohldefiniert! Also zu zeigen: für $\overline{a}=\overline{a'}$ und $\overline{b}=\overline{b'}$ folgt $\overline{a}\odot\overline{b}=\overline{a'}\odot\overline{b'}$ mit $\overline{a},\overline{b},\overline{a'},\overline{b'}\in R/I$. Sei also $\overline{a}=\overline{a'}$ und $\overline{b}=\overline{b'}$.

Dann existieren
$$x, y \in I$$
 mit $a + (-a') = x$ und $b + (-b') = y$ (1)

Zu zeigen ist nun $\overline{ab} = \overline{a'b'}$. Es gilt $a \cdot b = (a'+x) \cdot (b'+y) = (a'b') + (a'y) + (xb') + (xy)$, wobei $(a'y) + (xb') + (xy) \in I$, weil I Ideal ist. $\Rightarrow (ab) + (-a'b') \in I \Rightarrow \overline{ab} = \overline{a'b'}$.