ĆWICZENIE 5

Kompresja algebraiczna obrazów – algorytm PCA

- 1. Przy pomocy funkcji zapisanych w plikach *kom2d.m* i *dek2d.m* zbadałem dla dwóch wybranych obrazów "trees" i "mandrill" zależność **SNR(p) p**=1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 60, 64.
 - a) W środowisku graficznym wstawiłem data tips dla wartości p=20 i
 p=40

Obrazek 1. Obrazek "trees" i "mandrill" względem parametru p i SQNR.

Z obrazka 1. wynika, zależność SQNR od p. Dla wartości p=20 obraz "trees" posiada SQNR na poziomie 22,64 dB, natomiast "mandrill" 18,06 dB. Dla wartości p=40 obraz "trees" posiada SQNR na pozimie 26,47 dB, natomiast "mandrill" 23,03 dB.

b)

Obrazek "Trees" lepiej podaje się kompresji. Różnica SQNR dla parametru p=20 wynosi 4,6 dB natomiast dla p=40 różnica ta zmniejsza się do 3,4 dB.

2. Oceniłem w sposób subiektywny jakość obrazu po dekompresjidla obrazu **trees**.

Tabela 1. Wrażenia subiektywne dla obrazku "trees".

Parametr	Wrażenia subiektywne	SQNR	Stopień
p	·	[dB]	kompresji η
1	Efekt blokowości na całym obrazie, brak	12.2	61.15
	możliwości rozróżnienia zawartości obrazu		
2	Efekt blokowości na całym obrazie, brak	14.03	30.58
	możliwości rozróżnienia zawartości obrazu		
3	Efekt blokowości na całym obrazie,	16.24	20.38
	możliwości rozróżnienia zawartości obrazu		
4	Efekt blokowości z obszarami rozmycia	17.04	15.29
	obrazu, możliwości rozróżnienia zawartości		
	obrazu		
5	Efekt blokowości z obszarami rozmycia	17.94	12.23
	obrazu, możliwości rozróżnienia zawartości		
	obrazu		
10	Zanik efektu blokowości, widoczny efekt	20.43	6.12
	rozmycia obrazu, akceptowalna jakość		
15	Niewielkie rozmycie obrazu	21.70	4.08
20	Obraz idealny	22.64	3.06
25	Obraz idealny	23.50	2.45
30	Obraz idealny	24.39	2.04
35	Obraz idealny	25.37	1.75
40	Obraz idealny	26.47	1.53
45	Obraz idealny	27.76	1.36
60	Obraz idealny	35.28	1.02
64	Obraz idealny	46.76	0.96

Obraz "trees" utrzymuje efekty blokowości do p<10, zanik tych efektów obserwuje dla p=10. Obraz idealny stwierdzam dla parametru p=20.

3. Odczytałem rozmiar badanego obrazu "trees" i wyznaczyłem stopień kompresji η(**p**).

Poddajemy kompresji algebraicznej obraz "trees" o wymiarach 256×344, który dzielimy na pod obrazy 8×8, a następnie tworzymy z nich wektory o długości 64. (64p rozmiar macierzy Q do rekonstrukcji).

Korzystam ze wzorów na całkowitą ilość wektorów:

$$L = \frac{256}{8} * \frac{344}{8} = 1376$$

Wyznaczam ilość informacji na wejściu u wyjściu:

$$I_{WE} = 64 * L = 64 * 1376 = 88064$$

$$I_{WY} = 1376p + 64p = 1440p$$

Określam sposób kompresji:

$$\eta = \frac{I_{WE}}{I_{WY}} = \frac{64 * L}{1376p + 64p} = \frac{88064}{1440p} = \frac{61,16}{p}$$

4. Zadanie własne:

Przedmiotem badań jest obrazek "mandrill".

Poddajemy kompresji algebraicznej obraz "mandrill" o wymiarach 480×496, który dzielimy na pod obrazy 8×8 a następnie tworzymy z nich wektory o długości 64. Wyznaczamy stopień kompresji dla parametru 0<p<64.

Użyte wzory:

$$L = \frac{480}{8} * \frac{496}{8} = 3720$$

$$I_{we} = 64 * L = 64 * 3720 = 238080$$

$$I_{wy} = 3720p + 64p = 3784p$$

$$\eta = \frac{I_{we}}{I_{wy}} = \frac{238080}{3784p} = \frac{62,92}{p}$$

Przykład η dla p=10:

$$\eta = \frac{I_{we}}{I_{wy}} = \frac{238080}{3784*10} = \frac{62,92}{10} = 6,292$$

Tabela 2. Wrażenia subiektywne dla obrazka "mandrill".

Parametr			stopień
р	Wrażenia subiektywne	SQNR	kompresji
	Efekt blokowości na całym obrazie, brak możliwości		
1	rozróżnienia zawartości obrazu	12,2	62,92
	Efekt blokowości na całym obrazie, brak możliwości		
2	rozróżnienia zawartości obrazu	12,8	31,46
	Efekt blokowości na całym obrazie, brak możliwości		
3	rozróżnienia zawartości obrazu	13,35	20,98
	Efekt blokowości na całym obrazie, brak możliwości		
4	rozróżnienia zawartości obrazu	13,76	15,73
_	Efekt blokowości na całym obrazie, brak możliwości		
5	rozróżnienia zawartości obrazu	14,08	12,58
	Efekt blokowości na całym obrazie, brak możliwości		
10	rozróżnienia zawartości obrazu	15,59	6,29
	Zanik efektu blokowości, widoczny efekt rozmycia obrazu,		
	akceptowalna jakość	16,84	4,19
20	Widoczny efekt rozmycia	18,06	3,15
25	Widoczny efekt rozmycia	19,25	2,52
30	Widoczny efekt rozmycia	20,46	2,10
35	Obraz idealny	21,7	1,80
40	Obraz idealny	23,03	1,57
45	Obraz idealny	24,48	1,40
60	Obraz idealny	32,37	1,05
64	Obraz idealny	45,88	0,98

Efekt rozmycia i blokowości obrazka "mandrill" obserwuje dla parametru p<15. Dla p=15 efekt blokowości ustaje, jednak efekt rozmycia obserwowalny jest nadal do parametru p=35. Dla p=35 przyjmuje, że obraz zrekonstruowany jest idealny.

5. Wnioski końcowe:

Porównując moje subiektywne badania obraz trees traci efekty blokowości przy SQNR=20,43 dB odpowiada to parametrowi p=10 i stopni kompresji 6,12. Dla obrazu mandrill efekt blokowości zanika przy SQNR=16,84 dB odpowiada to parametrowi p=15 i stopniu kompresji 4,20.

Obraz idealny dla trees uzyskałem dla SQNR=22,64 dB odpowiadający parametrowi p=20 i stopniu kompresji 3,06. Natomiast obraz idealny dla mandrill wystąpił dopiero dla SQNR=21,7 odpowiadający parametrowi p=35 i kompresji 1,80.

Efekt blokowości obserwuje dla parametru p<10 dla trees i p<15 dla mandrilla, w obu przypadkach SQNR jest poniżej 20 dB. W przypadku obrazka mandrill efekt rozmycia występuje od parametru p=20 do p=30, natomiast w przypadku trees jedynie dla p=15

Dla punktu p=20 obrazek mandrill ma SQNR=18 dB, natomiast trees 22,64 dB, różnica SQNR wynosi ~4,64 dB.

Dla punktu p=40 różnica SQNR maleje do $^{\sim}$ 3,65, wynosi ona dla obrazka mandrill 23,02 dB , natomiast dla trees 26,47 dB.

Stopień kompresji dla obu obrazków jest podobny (jednak obraz trees kompresuje się lepiej, można to zauważyć po znaczącej różnicy SQNR zwłaszcza w początkowych etapach kompresji p<20), przykładowo dla parametru p=20 różnica w stopni kompresji wynosi ~0,09. Podnosząc parametr p różnica kompresji obrazków coraz bardziej się zmniejsza.

Progowa wartość parametru p dla obu obrazów zapewniająca idealną jakość po rekonstrukcji wynosi p=35. Dla tej wartości SQNR wynosi ~22 dB.