Homework

陈淇奥 21210160025

2021年10月8日

Exercise 1 (1.3.22). 假设 X,Y 是传递集

- 1. $X \cap Y$, $X \cup Y 与 \mathcal{P}(X)$ 是传递集
- X∪{X} 是传递集
- 3. 如果 \mathcal{T} 的元素都是传递集,则 $\bigcup \mathcal{T}$ 是传递集
- 证明. 1. 对于任意 $x \in X \cap Y$,因为 X, Y 是传递集,因此 $x \subseteq X$ 且 $x \subseteq Y$,于是 $x \subseteq X \cap Y$

对于任意 $x \in X \cap Y$,因为 X 是传递集,因此 $x \subseteq X \subseteq X \cup Y$,于是 $x \subseteq X \cup Y$

对于任意 $x \in \mathcal{P}(X)$, $x \subseteq X$ 。对于任意 $y \in X$, $y \in X$, 于是 $y \subseteq X$, 因此 $x \subseteq \mathcal{P}(X)$

- 2. 对于任意 $x \in X \cup \{X\}$,若 $x \neq X$,则 $x \in X$,于是 $x \subseteq X \subset X \cup \{X\}$ 。 若 x = X,则 $x \subset X \cup \{X\}$
- 3. 对于任意 $x \in \bigcup \mathcal{T}$,则存在 $Y \in \mathcal{T}$ 使得 $x \in Y$ 。由于 Y 传递,于是 $x \subseteq Y \subseteq \bigcup \mathcal{T}$

Exercise 2 (1.3.27). $\Diamond \alpha, \beta$ 是序数

1. $\alpha \cap \beta$ 也是序数; $(\alpha \cup \beta$ 是序数吗)

1

- 2. $\alpha \cup \{\alpha\}$ 也是序数
- 3. 如果 $\beta \subseteq \alpha$ 并且 $\beta \neq \alpha$,则 $\beta \in \alpha$
- 证明. 1. 因为 $\alpha \cap \beta \subseteq \alpha$, 因此 \in 在 $\alpha \cap \beta$ 上是良序。对于任意 $x \in \alpha \cap \beta$, 有 $x \subseteq \alpha$ 且 $x \subseteq \beta$, 因此 $x \subseteq \alpha \cap \beta$ 。
 - $\alpha \cup \beta$ 是序数。由引理 1.3.28 我们知道 $\alpha < \beta$ 或 $\alpha = \beta$ 或 $\beta < \alpha$,于是 $\alpha \cup \beta = \beta$ 或 α ,因此 \in 在 $\alpha \cup \beta$ 上是良序,而且它也是良序
 - 2. 因为 \in 在 α 上是良序,而对于所有 $x \in \alpha$,自然有 $x \in \alpha$,因此 \in 在 $\alpha \cup \{\alpha\}$ 上也是良序。而由前面的练习得到 $\alpha \cup \{\alpha\}$ 是传递的,因此是 序数。
 - 3. 考虑集合 $S = \{ \gamma \in \alpha : \forall \eta \in \beta (\eta < \gamma) \}$, 令 γ_0 是 S 中最小的元素,那 么显然 $\beta \subseteq \gamma_0$ 。若 $\gamma_0 \neq \beta$,则存在 $x \in \gamma_0 \setminus \beta$,且 $\beta \subseteq x$,于是 γ_0 不 是 S 中的最小元素,矛盾,因此 $\beta = \gamma_0 \in \alpha$

Exercise 3 (1.3.33). 如果 X 是序数的集合,则 $\bigcap X$ 和 $\bigcup X$ 都是序数

证明. 由于 \in 在 X 的每个元素上都是良序,因此在 $\bigcap X$ 上是良序的。而对于 任意 $x \in \bigcap X$,对于任意 $\alpha \in \bigcap X$ 都有 $x \in \alpha$,于是 $x \subseteq \alpha$,因此 $x \subseteq \bigcap X$,因此 $\bigcap X$ 是序数

由引理 1.3.28, \in 在 $\bigcup X$ 良基。对任意 $x,y,z\in\bigcup X$,则存在 $\alpha,\beta,\gamma\in X$ 使得 $x\in\alpha,y\in\beta,z\in\gamma$,由引理 1.3.28, $x,y,z\in\sup\{\alpha,\beta,\gamma\}\in X$,而 \in 在 $\sup\{\alpha,\beta,\gamma\}$ 上是线序,因此 \in 在 $\bigcup X$ 上是线序。

对任意 $x \in \bigcup X$,存在 $\alpha \in X$ 使得 $x \in \alpha$,于是 $x \subseteq \alpha$,因此 $x \subseteq \bigcup X$ 。 因此 $\bigcup X$ 是序数

Exercise 4 (1.3.34). 对任意序数 α , α 是极限序数当且仅当 $\bigcup \alpha \notin \alpha$

证明. \Rightarrow 。若 α 是极限序数且 $\bigcup \alpha \in \alpha$,则存在 $\beta \in \alpha$ 使得 $\beta = \bigcup \alpha$,即对于任意 $\gamma \in \alpha$ 都有 $\gamma \leq \beta$,因此 $\beta + 1 \notin \alpha$,因此 α 不是极限序数,矛盾。

 \Leftarrow 。若 α 不是极限序数,则存在一个序数 β 使得 $\alpha = \beta \cup \{\beta\}$,于是 $\bigcup \alpha = \beta \in \alpha$,矛盾。

Exercise 5 (1.3.43). 利用超穷归纳法证明一下关于 V_{α} 的性质

- 1. 对所有 α , V_{α} 是传递集
- 2. 如果 $\alpha < \beta$, 则 $V_{\alpha} \subseteq V_{\beta}$
- 证明. 1. $V_0 = V_0$ 是传递集

若 α 是后继序数且 V_{α} 是传递集,对于任意 $x \in \mathcal{P}(V_{\alpha})$, $x \subseteq V_{\alpha}$,于是对于任意 $y \in x$,有 $y \in V_{\alpha}$,因为 V_{α} 传递, $y \subseteq V_{\alpha}$,因此 $x \subseteq \mathcal{P}(V_{\alpha}) = V_{\alpha+1}$ 若 α 是极限序数且对所有 $\lambda < \alpha$, V_{λ} 都是传递集。对于任意 $x \in V_{\alpha}$,存在 $\beta < \alpha$ 使得 $x \in V_{\beta}$ 且 V_{β} 传递,于是 $x \subseteq V_{\beta} \subset \bigcup_{\lambda < \alpha} V_{\lambda}$,因此 V_{α} 传递

2. 对 β 做归纳

若 $\beta = 0$, 则命题恒成立

若 $\beta = \gamma + 1$,因为 V_{β} 是传递集,因此由于 $V_{\gamma} \in \mathcal{P}(V_{\gamma}) = V_{\beta}$,有 $V_{\gamma} \subseteq V_{\beta}$ 。对任意 $\alpha < \gamma$,由归纳假设, $V_{\alpha} \subseteq V_{\gamma} \subseteq V_{\beta}$ 。因此对于任意 $\alpha < \beta$ 都有 $V_{\alpha} \subseteq V_{\beta}$

若 β 是极限序数,则 $V_\beta=\bigcup_{\lambda<\beta}V_\lambda$ 。因此对于任意 $\alpha<\beta$, 都有 $V_\alpha\subseteq\bigcup_{\lambda<\beta}V_\lambda=V_\beta$

Exercise 6 (1.3.45). 证明以下命题

- 1. $V_{\alpha} = \{x \in V \mid \operatorname{rank}(x) < \alpha\}$
- 2. V 是传递的
- 3. 对任意 $x, y \in V$,如果 $x \in y$,则 rank(x) < rank(y)
- 4. 对任意 $x \in V$, $\operatorname{rank}(x) = \bigcup \{ \operatorname{rank}(y) + 1 \mid y \in x \}$
- 证明. 1. 令 $S=\{x\in V\mid \mathrm{rank}(x)<\alpha\}$ 。根据定义 $V_{\alpha}\subseteq S$ 。对于任意 $x\in S$,因为 $\mathrm{rank}(x)<\alpha$,因此存在 $\beta<\alpha$ 使得 $x\in V_{\beta+1}\subseteq V_{\alpha}$ 。因此 $V_{\alpha}=S$

- 2. 对任意 $y \in V$,则存在 $\alpha \in Ord$ 使得 $y \in V_{\alpha}$,于是 $y \subseteq V_{\alpha} \subseteq V$
- 3. 对任意 $x,y\in V$,令 $\mathrm{rank}(y)=\alpha$,于是 $y\in V_{\alpha+1}$,因此 $x\in y\subseteq\bigcup V_{\alpha+1}=V_{\alpha}$,所以 $\mathrm{rank}(x)<\mathrm{rank}(y)$
- 4. 由 3 得, $\operatorname{rank}(x) \geq \bigcup \{\operatorname{rank}(y) + 1 \mid y \in x\}$ 。 令 $\operatorname{rank}(x) = \alpha$,假设对于所有 $y \in x$ 都有 $\operatorname{rank}(x) > \operatorname{rank}(y) + 1$, $\operatorname{rank}(y) < \alpha 1$,于是 $\operatorname{rank}(x) < \alpha$,矛盾。因此 $\operatorname{rank}(x) = \bigcup \{\operatorname{rank}(y) + 1 \mid y \in x\}$