数值分析 上机作业 1

李佳 2100010793

1 问题描述

对函数

$$f(x) = e^{\sin(x)} + \cos(4x), x \in [0, 2\pi]$$

在 $x_k = kh$, k = 0, 1, 2, ..., n 上进行周期三次样条插值, $h = 2\pi/n$. 数值计算 $e_h = ||f - S||_{\infty}$, 并检验当 $h \to 0$ 时 $e_h \to 0$ 的收敛阶 $(e_h \sim O(h^p))$.

2 算法描述

三次样条插值是一种插值方法, 在给定插值节点函数值的条件下, 求一个分段三次多项式, 使之整体上是二阶连续可导的. 周期三次样条插值, 对边界条件进行要求, 即要求 $S'(x_0) = S'(x_n)$ 及 $S''(x_0) = S''(x_n)$.

结合二点三次 Hermite 插值的想法, 考虑插值基函数 $h_i(x)$, $\hat{h}_i(x)$:

$$h_0(x) = \begin{cases} \alpha_0(x), & x \in [x_0, x_1], \\ 0, & x \in [x_1, x_n], \end{cases}, \quad \hat{h}_0(x) = \begin{cases} \beta_0(x), & x \in [x_0, x_1], \\ 0, & x \in [x_1, x_n], \end{cases}$$

$$h_n(x) = \begin{cases} 0, & x \in [x_0, x_{n-1}], \\ \tilde{\alpha}_n(x), & x \in [x_{n-1}, x_n], \end{cases}, \quad \hat{h}_n(x) = \begin{cases} 0, & x \in [x_0, x_{n-1}], \\ \tilde{\beta}_n(x), & x \in [x_{n-1}, x_n], \end{cases}$$

$$h_i(x) = \begin{cases} \tilde{\alpha}_i(x), & x \in [x_{i-1}, x_i], \\ \alpha_i(x), & x \in [x_i, x_{i+1}], \end{cases}, \quad \hat{h}_i(x) = \begin{cases} \tilde{\beta}_0(x), & x \in [x_{i-1}, x_i], \\ \beta_i(x), & x \in [x_i, x_{i+1}], \end{cases}, \quad i = 1, 2, ..., n - 1$$

$$0, & x \notin [x_{i-1}, x_{i+1}], \end{cases}$$

其中

$$\alpha_i(x) = (1 + 2\frac{x - x_i}{x_{i+1} - x_i})(\frac{x - x_{i+1}}{x_i - x_{i+1}})^2, \ \tilde{\alpha}_{i+1}(x) = (1 + 2\frac{x - x_{i+1}}{x_i - x_{i+1}})(\frac{x - x_i}{x_{i+1} - x_i})^2,$$
$$\beta_i(x) = (x - x_i)(\frac{x - x_{i+1}}{x_i - x_{i+1}})^2, \ \tilde{\beta}_{i+1}(x) = (x - x_{i+1})(\frac{x - x_i}{x_{i+1} - x_i})^2.$$

这样得到的插值基函数满足 $h_i(x_j) = \delta_{ij}, h'_i(x_j) = 0, \hat{h}_i(x_j) = 0, \hat{h}'_i(x_j) = \delta_{ij}$. 它们均是分段三次多项式, 且均是一阶连续可导的. 因此可将插值函数表示为: $S_3(x) = \sum_{i=0}^n [y_i h_i(x) + m_i \hat{h}_i(x)]$, 其中 $y_i = f(x_i)$, m_i 待定. 只需求适当的 m_i 使得 $S_3(x)$ 是二阶

李佳 2100010793

连续可导的, 并且满足边界条件, 可以得到下列线性方程组 (边界条件 $S'(x_0) = S'(x_n)$, 可得 $m_0 = m_n$, 因此将其它方程中出现 m_n 的项归入 m_0):

$$\begin{pmatrix} 2 & \lambda_0 & 0 & 0 & \dots & 0 & 1 - \lambda_0 \\ 1 - \lambda_1 & 2 & \lambda_1 & 0 & \dots & 0 & 0 \\ 0 & 1 - \lambda_2 & 2 & \lambda_2 & \dots & 0 & 0 \\ & & \ddots & \ddots & \ddots & \\ \lambda_{n-1} & 0 & 0 & 0 & \dots & 2 & 1 - \lambda_{n-1} \end{pmatrix} \begin{pmatrix} m_0 \\ m_1 \\ m_2 \\ \vdots \\ m_{n-1} \end{pmatrix} = \begin{pmatrix} \mu_0 \\ \mu_1 \\ \mu_2 \\ \vdots \\ \mu_{n-1} \end{pmatrix},$$

其中

$$\lambda_0 = \frac{x_n - x_{n-1}}{x_1 - x_0 + x_n - x_{n-1}}, \ \lambda_i = \frac{x_i - x_{i-1}}{x_{i+1} - x_{i-1}}, 1 \le i \le n - 1;$$

$$\mu_0 = 3\left[\frac{1 - \lambda_0}{x_n - x_{n-1}}(y_n - y_{n-1}) + \frac{\lambda_0}{x_1 - x_0}(y_1 - y_0)\right],$$

$$\mu_i = 3\left[\frac{1 - \lambda_i}{x_i - x_{i-1}}(y_i - y_{i-1}) + \frac{\lambda_i}{x_{i+1} - x_i}(y_{i+1} - y_i)\right], 1 \le i \le n - 1.$$

这是一个严格对角占优矩阵, 因此解存在且唯一. 另外, 这是一个稀疏矩阵, 可通过稀疏的高斯消去法对矩阵进行 LU 分解后求解.

3 计算结果

对插值节点数 n=4,6,8,...,88,90 的情形 (间距为 $h=2\pi/n$) 进行计算, 在 $[0,2\pi]$ 上等距取 10000 个点 $T=\{t_i\}$ 计算插值函数的数值与原函数的数值之差, 将其中绝对值的最大值 $\|f-S\|_T$ 作为 $\|f-S\|_\infty$ 的近似值. 我们试图验证 $n^4\|f-S\|_\infty=O(1)$, 因此作 $n^4\|f-S\|_T$ 关于 n 的变化图如下图所示:

Figure 1: $n^4 || f - S ||_T$ 关于 n 的变化图

李佳 2100010793

4 简明分析

我们试图验证 $||f - S||_{\infty} = O((2\pi/n)^4) = O(n^{-4})$, 只需验证: $n^4 ||f - S||_T + n^4 (||f - S||_{\infty} - ||f - S||_T) = O(1)$.

计算 C^2 函数在一列点 $\{t_i\}$ 上的值,设相邻点最大距离为 δ ,则最大值所在位置在某个区间 $[t_k, t_{k+1}]$ 上. 由最大值处导数为 0 且导数满足 Lipschitz 条件,可知 $[t_k, t_{k+1}]$ 上导数为 $O(\delta)$,因此 t_k, t_{k+1} 上的数值与最大值的误差为 $O(\delta^2)$. 由于取 $\delta = 2\pi/10000$,可知对 $n \leq 100$, $n^4(\|f - S\|_{\infty} - \|f - S\|_T) \leq 10^8 O(10^{-8}) = O(1)$,可知在这一条件下只需验证 $n^4\|f - S\|_T = O(1)$.

由上图所示, $n^4 || f - S ||_T$ 在 $n \ge 20$ 时趋于稳定, n 继续增大时该值也没有明显增大, 因此 $n^4 || f - S ||_T = O(1)$ 即有界得到了验证. 结合上述分析, 也得知 $n^4 || f - S ||_\infty = O(1)$ 得到了验证, 从而验证了三次样条插值的收敛阶为 $O(h^4)$.