LIMIT BREAKERS

WHERE LIMITS END, POSSIBILITIES BEGIN

TECHNICAL OVERVIEW

1. Chasis dimensions: 26*29*20

2. Motor controller: Arduini uno

3. Microprocessor Microprocessor: Rasberry Pi 4

4. Li-ion 18650 3.7V battery power supply

5.RP-LiDAR

6. Motors: servo & DC gear motor

VISUALIZATION

With RViz, Mapping and navigation data are transformed into 3D visuals, allowing us to see paths, obstacles, and movement in real time

ACHIEVEMENTS

- Mapping Built a system to create and update environmental maps for navigation.
- **Terrain Navigatio**n Robot moves reliably across uneven on complex surfaces.
- 3D visuals, allowing us to see paths, Image Detection Integrated vision system to identify and classify objects.
 - Object Handling Automated loading and offloading of items with precision.

COMPONENTS

Provides 360° laser scanning for mapping and obstacle detection.

Handles low-level control

of sensors and actuators.

Acts as the brain, running navigation, vision, and decision-making software.

Regulates power flow to motors for speed and direction control.

Enable movement and mobility of the robot.

Provide stability and movement, enabling the robot to traverse different terrains.

A Gazebo simulation of the gamefield

Scan to watch the robot in action 🚀

