

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

по домашнему заданию № 1 по курсу «Анализ алгоритмов» на тему: «Графовые представления»

Студент	ИУ7-56Б (Группа)	(Подпись, дата)	М. Ю. Вольняга (И. О. Фамилия)
Преподаватель		(Подпись, дата)	<u>Л. Л. Волкова</u> (И. О. Фамилия)

СОДЕРЖАНИЕ

Bl	ВЕД	ЕНИЕ	į	
1	Аналитический раздел			
	1.1	Графовые модели	4	
	1.2	Алгоритмы классификации полнотекстовых документов	4	
	1.3	Алгоритмы классификации без учителя	Ę	
	1.4	Алгоритм k-средних	6	
2	Вы	полнение задания	8	
	2.1	Графовые представления	Ć	
	2.2	Распараллеливание алгоритма	14	
34	ЗАКЛЮЧЕНИЕ			
\mathbf{C}	СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ			

ВВЕДЕНИЕ

Цель данной лабораторной работы — описать четырьмя графовыми моделями (графом управления, информационным графом, операционной историей, информационной историей) последовательный алгоритм либо фрагмент алгоритма, содержащий от 15 значащих строк кода и от двух циклов, один из которых является вложенным в другой.

Для достижения поставленной цели необходимо выполнить следующие задачи:

- 1) описать алгоритм кластеризации к-средних;
- 2) исследовать и разработать графовые модели для реализации алгоритма кластеризации k-средних;
- 3) провести анализ графовых моделей и обосновать возможность «распараллеливания» алгоритма кластеризации k-средних.

1 Аналитический раздел

В данном разделе будут рассмотрены графовые модели, алгоритмы классификации полнотекстовых документов, алгоритмы классификации без учителя и алгоритм k-средних.

1.1 Графовые модели

Графом системы управления называется граф G = G(X, U), в котором множество вершин X интерпретирует множество элементов систем управления, а множество ребер U — множество связей между ними. Важным преимуществом модели в виде графа систем управления является возможность эффективного применения компьютерных технологий для автоматизации обнаружения критических структурных свойств исследуемой СУ [1].

Информационный граф — орграф информационных связей в программе или схеме программ. Необходимым условием наличия информационной связи между операндами операторов S_1 и S_2 является существование специального вида пути по управляющему графу от S_1 до S_2 — маршрута информационной связи, подтверждающего данную информационную связь [2].

Операционная история представляет собой последовательность преобразований, выполняемых при работе программы [3].

Если вершинам графа зависимостей соответствуют отдельные срабатывания операторов программы, то такой граф называется информационной историей выполнения программы. Информационная история содержит максимально подробную информацию о структуре информационных зависимостей анализируемой программы. Поэтому она используется при анализе программ с целью распараллеливания [4].

1.2 Алгоритмы классификации полнотекстовых документов

Классификация текстов — ключевая задача в компьютерной лингвистике, охватывающая алгоритмы с учителем и без учителя, и имеющая важное значение для обеспечения информационной безопасности. Алгоритмы с учителем используют предварительно размеченные данные для обучения, в то время как алгоритмы без учителя, такие как кластеризация, организуют данные на основе внутренних закономерностей [5].

В данной лабораторной работе исследуется применение алгоритмов классификации без учителя для определения групп документов с помощью метода иерархической кластеризации с дивизимным подходом. Целью является выявление кластеров документов, таким образом, чтобы документы внутри одного кластера были максимально схожи по смыслу, а документы из различных кластеров — значительно отличались. Особенность данного подхода заключается в отсутствии необходимости в предварительной разметке данных и определении количества кластеров, что открывает широкие возможности для анализа неструктурированных данных [5]. Кластеризация — это разбиение элементов некоторого множества на группы по принципу схожести. Эти группы принято называть кластерами [6].

1.3 Алгоритмы классификации без учителя

Алгоритмы классификации без учителя разбивают набор документов на группы, где одна группа содержит родственные документы, а разные группы содержат разные документы. Без обучающего подмножества и известных категорий, алгоритм кластеризации автоматически определяет количество и состав кластеров, используя расстояния между документами [5].

Кластеризация текстов основана на идее, что похожие документы подходят к одним и тем же запросам, а разные документы подходят к разным запросам [5].

Исследование проводится над набором документов вида:

$$D = \{d_i \mid j = 1, \dots, |D|\},\tag{1.1}$$

содержащей разнообразные тематические классы. Цель алгоритмов классификации без учителя— автоматически классифицировать документы на кластеры вида:

$$C = \{c_j \mid j = 1, \dots, |C|\},\tag{1.2}$$

так чтобы каждый кластер представлял собой группу тематически схожих документов. Задача кластеризации сводится к определению оптимального множества кластеров C, удовлетворяющего заданным критериям качества [5].

1.4 Алгоритм к-средних

При заранее известном числе кластеров k, алгоритм k-средних начинает с некоторого начального разбиения документов и уточняет его, оптимизируя целевую функцию – среднеквадратичную ошибку кластеризации как среднеквадратичное расстояние между документами и центрами их кластеров:

$$e(D,C) = \sum_{j=1}^{k} \sum_{i:d_i \in C_j} \|d_i - \mu_j\|^2,$$
(1.3)

где μ_j — центр, или центроид, кластера C_j , |C|=k, вычисляющийся по формуле

$$\mu_j = \frac{1}{|C_j|} \sum_{i:d_i \in C_j} d_i, \tag{1.4}$$

где $|C_j|$ — количество документов в C_j . Идеальным кластером алгоритм k - средних считает сферу с центроидом в центре сферы.

Алгоритм k-средних состоит из следующих шагов [5].

- 1) $Bxo\partial$: множество проиндексированных документов D, количество кластеров k.
- 2) Назначить начальные центры для кластеров $\{\mu_j\},\ j=1,\ ...,\ k$ случайным образом.
- 3) Установить каждому кластеру C_j пустой набор, $j=1,\ ...,\ k.$
- 4) Для каждого документа $d_i \in D$ выполнить:
 - найти ближайший центр кластера $j^* := \arg\min_j \|\mu_j d_i\|, j = 1, ..., k;$
 - добавить документ d_i в соответствующий кластер $C_{j^*} := C_{j^*} \cup \{d_i\}.$
- 5) Для каждого кластера C_j обновить центр как среднее его элементов:

$$\mu_j := \frac{1}{|C_j|} \sum_{i: d_i \in C_j} d_i.$$

6) Если условие остановки не достигнуто, вернуться к шагу 4.

7) Bыход: множество центров кластеров $\{\mu_j\}$ и множество самих кластеров C.

Вывод

В данном разделе были рассмотрены графовые модели, алгоритмы классификации полнотекстовых документов, алгоритмы классификации без учителя и алгоритм k-средних.

2 Выполнение задания

В листинге 2.1 приведена реализация алгоритма k-средних.

Листинг 2.1 – Реализация алгоритма k-средних

```
MAXITER // -5
  docs // -3
2
  k // -4
3
  int n = docs.size // -1
4
   std::vector<std::vector<double>> centroids(k,
     std::vector<double>(docs[0].size())); // -2
  std::vector<std::vector<double>> kMeans(const
      std::vector<std::vector<double>> &docs, int n,
     std::vector<std::vector<double>> centroids, int k,) {
       // центроиды проинициализированы случ значениями
       size_t iter = 0; // 0
8
       std::vector<int> assignments(n, 0); // 1
9
                                            // 2
       bool changed;
10
       do {
                                           // 3
11
                                          // 4
           changed = false;
12
           // Назначение точек кластерам
13
           for (int i = 0; i < n; ++i) {</pre>
                                                  // 5
14
               double bestDist = -1.0;
                                                 // 6
15
               int bestCluster = 0;
                                                // 7
16
               for (int j = 0; j < k; ++j) { // 8
17
                    double dist = cosineDistance(docs[i],
18
                       centroids[j]);
                                         // 9
                    if (dist > bestDist) { // 10
19
                        bestDist = dist; // 11
20
                        bestCluster = j; // 12
21
                    }
22
               }
23
               if (assignments[i] != bestCluster) { // 13
24
                    assignments[i] = bestCluster; // 14
25
                                                     // 15
                    changed = true;
26
               }
27
           }
28
           // Обновление центроидов
29
           centroids = updateCentroids(docs, assignments, k); // 16
30
31
       } while (changed && ++iter != MAXITER ); // 17
       return centroids; // 18
32
       }
33
```

2.1 Графовые представления

На рисунке 2.1 представлен граф управления. На рисунке 2.2 представлен информационный граф. На рисунке 2.3 представлена операционная история. На рисунке 2.4 представлена информационная история.

Рисунок 2.1 – Граф управления

Рисунок 2.2 – Информационный граф

Рисунок 2.3 – Операционная история

Рисунок 2.4 – Информационная история

2.2 Распараллеливание алгоритма

Проанализировав графы 2.1-2.4 можно сделать вывод, что распараллеливанию поддаются следующем этапы алгоритма:

- инициализация центроидов;
- назначение точек кластерам;
- обновление центроидов кластеров.

Вывод

В данном разделе была разработана реализация алгоритма k-средних, разработаны графовые модели, а также описаны возможные варианты распараллеливания алгоритма.

ЗАКЛЮЧЕНИЕ

Цель лабораторной работы достигнута, последовательный алгоритм классификации k-средних описан четырьмя графовыми моделями.

Для достижения поставленной цели были выполнены следующие задачи:

- 1) описан алгоритм кластеризации к-средних;
- 2) исследованы и разработаны графовые модели для реализации алгоритма кластеризации k-средних;
- 3) проведен анализ графовых моделей и обоснована возможность «распараллеливания» алгоритма кластеризации k-средних.

В результате анализа был получен вывод, что алгоритм можно распараллелить на следующих этапах:

- инициализация центроидов;
- назначение точек кластерам;
- обновление центроидов кластеров.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Представление структуры управления в виде графа [Электронный ресурс]. Режим доступа: https://kazedu.com/referat/98683/1 (дата обращения: 10.02.2024).
- 2. Информационный граф [Электронный ресурс]. Режим доступа: https://pco.iis.nsk.su/grapp (дата обращения: 10.02.2024).
- 3. Свойства стандартных схем программ Теория вычислительных процессов и структур [Электронный ресурс]. Режим доступа: https://studref.com/695998/informatika/svoystva_standartnyh_shem_programm (дата обращения: 10.02.2024).
- 4. Технологии высокоскоростных вычислений [Электронный ресурс]. Режим доступа: https://libr.aues.kz/facultet/fit/is/32/umm/is_1. htm?ysclid=lqhzwtshkx353115151 (дата обращения: 10.02.2024).
- 5. Большакова Е. И., Клышински Э. С., Ландэ Д. В., Носков А. А., Пескова О. В., Ягунова Е. В. Автоматическая обработка текстов на естественном языке и компьютерная лингвистика: учеб. пособие. МИЭМ, 2011. С. 1—272.
- 6. Котелина Н. О., Матвийчук Б. Р. Кластеризация изображения методом К-средних // Вестник Сыктывкарского университета. 2019. Т. Выпуск 3 (32). С. 102—106.