UNIT-IT

Mathematical Expectation & Discrete probability Distributions

Short Answer questions

Define Expectation & variance of random variable

Enpectation for Discrete Variable

A Random variable 'X' assumed the value MITAL 73- -- In with respectives probabilities Pi,P2-- Pn Then E(X)= x1Pi+x2P2+-- +xmPn E(X)= I nu Pi

Continuous Case;

in is Continuous Randon variable and far) is Probability densites for con Then E(X)= sa a tasan

P.T E (X+6) = a E(x)+6 and va (X+le) = var(x)

50! $E(ax+b) = \sum_{i=1}^{n} (ax+b) p(x=ni)$

= a \(\times \(\times \) + b \(\times \) p (\(\times \) \(\times \)

= a E(X)+b(1)

- a E(X)+5

Petre Binomial austributes they a Binomial distribution $\frac{d}{dt}$ A Random Variable x has a Binomial distribution of the assumes only non-negative values and its probabilities density function is given by $\frac{d}{dt}$ $\frac{dt}{dt}$ \frac

poisson distribution;

A random Mariable 'x' is Said to follow a poisson distribution if it assumes only non-negative values and its probability dansity function is given by

$$P(X_1X) = P(X=X) = \begin{cases} \frac{e^{-X}}{21} & \lambda = 0.1/2.13 \\ 0 & \text{otherwise} \end{cases}$$

Here No is called the parmeter of the distribution.

The mean of Binomial distribution is '3' &

$$\frac{x/p^{2}}{xp^{2}} = \frac{91^{3}}{4} = \frac{3}{4} \qquad 9 = \frac{3}{4} \qquad P = \frac{1}{4}$$

$$nP=3$$
 $n = 12$

The probot poisson variate 'x' taking the valuey

1 82 are equal Form i) in (ii) p(x>1

(III) p(1<2<4)

$$P(X=1) = P(X=2)$$

$$\frac{2^{2}X^{2}}{1!} - \frac{2^{2}X^{2}}{2!} \Rightarrow \lambda = 2$$

mean = U= >= 2

$$=1-\frac{e^{2}}{e^{2}}$$
 = $1-\frac{1}{e^{2}}$

$$= \frac{e^{-2}2^{2}}{2!} + \frac{e^{-2}3^{3}}{3!}$$

$$= \frac{2}{e^{2}} + \frac{e^{2}}{2} = \frac{2}{2} + \frac{4}{3} = \frac{2}{2} + \frac{4}$$

Derive meam of Geometeric distribution

Geometric distribution

where pris success of outcome quis failure of outcome

It is number of trails required to get a first

$$= P \left(1 - 9^{1-1} + 29^{2-1} + 39^{3-1} + - - - \right)$$

$$=\frac{P}{P^2}=\frac{1}{P}$$

long Answel questions

A Random Variable 'x' has following probabilities

A.	~ Ction					1			1
7	χ	0	1	2	3	4	5	6	+
				2K	214	314	122	2/2	71C+K
	Pas	0	K	I WIT					

1) Determine K (1) Evaluate p(xC6), p(x>6), p(x>6), p(exC5)

anlii) if P(X = 14)>1 find the minimum value of k'

iv) Determine the distribution duction of x

V) Mean VI) Variance

0+1C+21C+21C+31C+1C+21C+71C=1

N	0		2	3	4	- 5	6	7
PMI	O	10	2 10	2-10	3 10	100	2 100	12-

$$P(X < 6) = P(X = 0) + P(X = 1) + P(X = 2) + R(X = 3)$$

$$+ p(X = 4) + P(X = 5)$$

$$= 0 + \frac{1}{10} + \frac{2}{10} + \frac{2}{10} + \frac{3}{10} + \frac{1}{100} = 0.81$$

$$= \frac{1}{10} + \frac{2}{10} + \frac{2}{10} + \frac{2}{10} = \frac{8}{10} = 0.8$$

$$P(X \le 2) = P(X \ge 0) + P(X = 1) + P(X = 2) = 0.1 + \frac{2}{10} = 0.3$$

(v) The distribution function of X is given by following toble

×	12(n) = p(x < n)
0	0
	0+10=10
2	$\frac{1}{10} + \frac{2}{10} = \frac{3}{10}$
3	$\frac{3}{10} + \frac{2}{10} = \frac{5}{10}$
4	$\frac{5}{10} + \frac{3}{10} - \frac{8}{10}$
5	$\frac{8}{10} + \frac{1}{100} = \frac{81}{100}$
6	$\frac{81}{100} + \frac{2}{100} = \frac{83}{100}$
7	$\frac{83}{100} + \frac{17}{100} = \frac{100}{100} = 1$

$$= 0 \times 0 + 1 \times \frac{1}{10} + 2 \times \frac{2}{10} + 3 \times \frac{2}{10} + 4 \times \frac{3}{10} + 5 \times \frac{1}{100} + 6 \times \frac{2}{100} + 3 \times \frac{1}{100}$$

$$= 3.66$$

$$= 0^{2}x_{0} + 1^{2}x_{10}^{2} + 2^{2}x_{10}^{2} + 3^{2}x_{10}^{2} + 4^{2}x_{10}^{3} + 5^{2}x_{100}^{2} + 6^{2}x_{100}^{2} + 4^{2}x_{100}^{2} = 16.8$$

$$Var(x) = 16.8 - (3.66)^{2}$$

Derive mean and variance of Binomial distribution The Binomial probabilities distribution is granble p(r)= n(x pr gn-r r=011/2-- n 9=1-p Mean of X = M = E(X) = E Y p(X=r) = Transford = 0x9"+1xnqpqh++2nc2p=9n-2+---+npn = npqn+2 n(n-1) prqn-2+--= np[9n-1+(n-1)pgn-2+-- $= MP (9+P)^{n-1} \qquad \qquad \left(9+P=1 \right)$ vaniance of Binomial distribution V(X)= E(X) - E(X)2 E(x2) = E x2 p(x=x)

$$E(x_{5}) = \sum_{x=0}^{\infty} (x(x-1) + x) \sum_{x=0}^$$

$$= \sum_{x=0}^{n} x(x+1)^{n} c_{x} p^{x} q^{n-x} + \sum_{x=0}^{n} x n_{x} p^{x} q^{n-x}$$

$$= \left[o(0+1)^{n} c_{0} p^{0} q^{n-0} + 1 (1+1)^{n} c_{1} p^{1} q^{n+1} + 2 (2+1)^{n} c_{2} p^{2} q^{n+1} - \cdots + n (n+1)^{n} p^{n} q^{n-n} \right] + np$$

$$= n (n+1)^{n} \left[q^{n-1} + \cdots + p^{n-1} + np \right]$$

$$= n (n+1)^{n} \left[q^{n-1} + \cdots + p^{n-1} + np \right]$$

$$= n (n+1)^{n} \left[q^{n} + \cdots + q^{n} p^{n} \right]$$

$$= n (n+1)^{n} \left[q^{n} + \cdots + q^{n} p^{n} \right]$$

$$= n (n+1)^{n} \left[q^{n} + \cdots + q^{n} p^{n} \right]$$

$$= n (n+1)^{n} \left[q^{n} + \cdots + q^{n} p^{n} \right]$$

$$= n (n+1)^{n} \left[q^{n} + \cdots + q^{n} p^{n} \right]$$

$$= n (n+1)^{n} \left[q^{n} + \cdots + q^{n} p^{n} \right]$$

$$= n (n+1)^{n} \left[q^{n} + \cdots + q^{n} p^{n} \right]$$

$$= n (n+1)^{n} \left[q^{n} + \cdots + q^{n} p^{n} \right]$$

$$= n (n+1)^{n} \left[q^{n} + \cdots + q^{n} p^{n} \right]$$

$$= n (n+1)^{n} \left[q^{n} + \cdots + q^{n} p^{n} \right]$$

$$= n (n+1)^{n} \left[q^{n} + \cdots + q^{n} p^{n} \right]$$

$$= n (n+1)^{n} \left[q^{n} + \cdots + q^{n} p^{n} \right]$$

$$= n (n+1)^{n} \left[q^{n} + \cdots + q^{n} p^{n} \right]$$

$$= n (n+1)^{n} \left[q^{n} + \cdots + q^{n} p^{n} \right]$$

$$= n (n+1)^{n} \left[q^{n} + \cdots + q^{n} p^{n} \right]$$

$$= n (n+1)^{n} \left[q^{n} + \cdots + q^{n} p^{n} \right]$$

$$= n (n+1)^{n} \left[q^{n} + \cdots + q^{n} p^{n} \right]$$

$$= n (n+1)^{n} \left[q^{n} + \cdots + q^{n} p^{n} \right]$$

$$= n (n+1)^{n} \left[q^{n} + \cdots + q^{n} p^{n} \right]$$

$$= n (n+1)^{n} \left[q^{n} + \cdots + q^{n} p^{n} \right]$$

$$= n (n+1)^{n} \left[q^{n} + \cdots + q^{n} p^{n} \right]$$

$$= n (n+1)^{n} \left[q^{n} + \cdots + q^{n} p^{n} \right]$$

$$= n (n+1)^{n} \left[q^{n} + \cdots + q^{n} p^{n} \right]$$

$$= n (n+1)^{n} \left[q^{n} + \cdots + q^{n} p^{n} \right]$$

$$= n (n+1)^{n} \left[q^{n} + \cdots + q^{n} p^{n} \right]$$

$$= n (n+1)^{n} \left[q^{n} + \cdots + q^{n} p^{n} \right]$$

$$= n (n+1)^{n} \left[q^{n} + \cdots + q^{n} p^{n} \right]$$

$$= n (n+1)^{n} \left[q^{n} + \cdots + q^{n} p^{n} \right]$$

$$= n (n+1)^{n} \left[q^{n} + \cdots + q^{n} p^{n} \right]$$

$$= n (n+1)^{n} \left[q^{n} + \cdots + q^{n} p^{n} \right]$$

$$= n (n+1)^{n} \left[q^{n} + \cdots + q^{n} p^{n} \right]$$

$$= n (n+1)^{n} \left[q^{n} + \cdots + q^{n} p^{n} \right]$$

$$= n (n+1)^{n} \left[q^{n} + \cdots + q^{n} p^{n} \right]$$

$$= n (n+1)^{n} \left[q^{n} + \cdots + q^{n} p^{n} \right]$$

$$= n (n+1)^{n} \left[q^{n} + \cdots + q^{n} p^{n} \right]$$

$$= n (n+1)^{n} \left[q^{n} + \cdots + q^{n} p^{n} \right]$$

$$= n (n+1)^{n} \left[q^{n} + \cdots + q^{n} p^{n} \right]$$

$$= n (n+1)^{n} \left$$

Ten Coins are tossed. Find the probability of getting greater than (or) equal to 6 heals 50% Binomial distribution P(X=x) = ncx pran-x prob of getting head 1 = 1 9=1-P=1 n=10 fma $P(X \ge 6) = P(X = 6) + P(X = 7) + P(X = 8) + P(X = 9) + P(X$ = 10c((1)6 (2)0-6 + 10cy (1) (2)0-7 +10cd = 3(=) +10cd = 9(=) 9 +10/10 (12)0 (10) = 240 $(210+120+45+10\frac{1}{2})(\frac{1}{2})^{10}$

= 0.37

Derive mean and variance of poisson distribution.

Solite poisson probability distribution is given by $P(X=r) = \frac{e^{\lambda} \lambda^{\gamma}}{r!} \quad r = 01,2--.$ Mean = $E(X) = U = \frac{e^{\lambda} \lambda^{\gamma}}{r!} \quad r = 0$ $= \frac{e^{\lambda} \lambda^{\gamma}}{r!} \quad r = 0$

 $= e^{\lambda} \sum_{x=1}^{\infty} \frac{\lambda^{x}}{(x-1)!}$ $= e^{\lambda} \left[\lambda + \frac{\lambda^{2}}{1!} + \frac{\lambda^{3}}{2!} + - - \right]$ $= \lambda e^{\lambda} \left[1 + \frac{\lambda^{2}}{1!} + \frac{\lambda^{2}}{2!} + - - \right]$ $= \lambda e^{\lambda} e^{\lambda} = \lambda$

Varianu(X)= $E(x^2) - (E(X))$ $E(X^2) = \sum_{r=0}^{\infty} \sigma^r P(X=r)$ $= \sum_{r=0}^{\infty} (r(r-1)+r) P(X=r) + \sum_{r=0}^{\infty} r P(X=r)$ $= \sum_{r=0}^{\infty} (r(r-1)) P(X=r) + \sum_{r=0}^{\infty} r P(X=r)$

Y-0

$$= \sum_{x=0}^{\infty} r(x-1) \stackrel{e}{=} \stackrel{x}{x} + x$$

$$= e^{\lambda} \stackrel{e}{=} r(x-1) \stackrel{x}{=} \stackrel{x}{x} + x$$

$$= e^{\lambda} \stackrel{e}{=} r(x-1) \stackrel{x}{=} r(x-1) + x$$

$$= e^{\lambda} \stackrel{e}{=} r(x-1) \stackrel{x}{=} r(x-1) + x$$

$$= e^{\lambda} \stackrel{x}{=} r(x-1) \stackrel{x}{=} r(x-1) + x$$

$$= e^{\lambda} \stackrel{x}{=} r(x-1) \stackrel{x}{=} r(x-1) \stackrel{x}{=} r(x-1) + x$$

$$= e^{\lambda} \stackrel{x}{=} r(x-1) \stackrel{$$

$$Var(X) = \lambda$$

5) p.+ poisson distribution is the ainting Care of Binomial distribution The poisson distribution (an be derived by a limiting Case of the Binomial distribution Under the following - Conditions i) p, the probability of the occurrence of the is) nis very very large, wherein is no officell increase TS News Small (ii) OP is a finite, quantity say np=) then is Called the parameter of the poisson distribution. Binomial distribution p(X=r) = ncrpr an-r = n(n-1)(n-2) = -(n-171) pr $(1-p)^m$ put mp=> then n= A $p(r) = \frac{\lambda}{p} \left(\frac{\lambda}{p} + 1\right) \left(\frac{\lambda}{p} - 2\right) - \left(\frac{\lambda}{p} - r + 1\right) pr. \frac{(1-p)^n}{(1-p)^n}$

 $= \frac{\lambda(\lambda-p)(\lambda-2p)-(\lambda-(\gamma-1)p)}{\delta!p^{\gamma}} \frac{p^{\gamma}(1-p)^{\gamma}}{(1-p)^{\gamma}}$ $= \frac{\lambda(\lambda-p)(\lambda-2p)-(\lambda-(\gamma-1)p)}{\delta!} \frac{(1-\frac{\lambda}{p})^{\gamma}}{(1-p)^{\gamma}}$

As now, P>0 so that mp=> wehave

=
$$\frac{\lambda^{\gamma}}{\sigma!} = \lambda$$
 [$\frac{\lambda^{\xi}}{n \rightarrow \infty} \left(1 - \frac{\lambda}{n}\right)^{\frac{\eta}{n}} = \frac{\lambda^{\xi}}{n \rightarrow \infty} \left(1 - \frac{\lambda}{n}\right)^{\frac{\eta}{n}} = e^{\lambda}$]

This is known as poisson dustribution

Average number of accidents on any day on a national highway is 1.6. Determine the probabiling that the no of allidents is

) Al least one (11) at most one

Given deta ang = nean= >= 1.6 Boission distribut P(X=1) = EXXV

ii)
$$p(at | ext | one) = p(x \le 1) = p(x = 0) + p(x = 1)$$

$$= \frac{e^{1.6}(1.6)^{0}}{0!} + \frac{e^{1.6}(1.6)^{1}}{1!}$$

$$= \frac{1}{1!} (1+1.6) = \frac{2.6}{1!} = 0.5$$

= = = 0.52

(6)

$$P(atleastone) = p(x \neq 1)$$
= $1 - p(x = 0)$
= $1 - e^{1-6}(-6)^{\circ}$
= $1 - e^{1-6} = 0.80$

Six Carols are drawn from a pack of 52 Corray Find the probabilitios that

i) at least three one diamonds

(i) 4 are diamonds

Soli p(getting a diamoral card) =
$$\frac{13c_1}{52e_1} = \frac{13}{52} = \frac{13}{4}$$

 $921-p=1-\frac{1}{4}=\frac{3}{4}$

$$n=6$$
 $P=\frac{1}{4}$ $q=\frac{3}{4}$ $=1-[P(x=3)+P(x=1)+P(x=2)]$

- 1- [0.177, p 0.355+0.2966]

= 0.1714

(i)
$$P(4 \text{ are dramored}) = P(XZH)$$
.
 $= 6c_4(\frac{1}{4})^{\frac{2}{4}} \frac{2}{4}$
 $= 15 \times 0.0039 \times 0.56$

20.0329

A sample of 5' items is selected at random from a box containing is items of which 8' are detective find i) mean (ii) variance of detective items.

Sample Size M = 5

i) mean=
$$np = 8 \times \frac{8}{45} = \frac{8}{3} = 2.66$$

(9) Chebysher's theorem:

Cheboshevis theorem States that the proportion or percentage of any data set that lies within 'k' Standard deviction of the mean where 'k' is any positive integer >1 is at least 1-1/12