1.

Solve these pairs of simultaneous equations.

a
$$2x + y = 7$$

$$3x - y = 8$$

2. Solve (round your answer to 3sf)

$$3x^2 - 7x - 1 = 0$$

Prerequisite

Prerequisite

Retrieval

Problem Solving

3. Solve:

c
$$2x - y = 9$$

 $x^2 + y^2 = 17$

4.

Worked Examples - I do

Worked Examples - We do

Solve the following.

$$\frac{x+2}{6} = \frac{x-6}{2}$$

Solve the following.

$$\frac{x+2}{6} + 3 = \frac{x}{5}$$

Independent Practice- You do

Test Your Understanding

$$\frac{3p+2}{2} - \frac{p-1}{5} = 3$$

$$\frac{3(x-2)}{2} - \frac{x-5}{4} = 2$$

Completing the Square

"Completing the square" means putting a quadratic in the form $(x+a)^2+b$ or $a(x+b)^2+c$

a. Solving Quadratics

If we have a completed square:

$$(x+4)^2 - 7 = 0$$

Using the quadratic formula is actually solving the quadratic by completing the square – it's just someone has done the work for us already.

b. Sketching Quadratics

We'll see later that if $y = (x + a)^2 + b$, then the minimum point is (-a, b)

Completing the Square Recap

$$x^2 + 12x$$

$$x^{2} + 8x$$

$$x^{2} - 2x$$

Completing the Square Recap

Complete the square:
$$x^2 - 6x + 7$$

Express
$$2x^2 + 12x + 7$$
 in the form $a(x+b)^2 + c$

Express
$$5 - 3x^2 + 6x$$
 in the form $a - b(x + c)^2$

Work out the values of a, b and c such that $3x^2 - bx + 1 = a(x - 4)^2 + c$.

- (i) Work out the values of a and b such that $x^2 8x + 20 = (x a)^2 + b$.
 - (ii) Hence make x the subject of $y = x^2 8x + 20$

Independent Practice- You do

Test Your Understanding

Express
$$3x^2 - 18x + 4$$
 in the form $a(x + b)^2 + c$

$$= 3(x^{2} - 6x) + 4$$

$$= 3((x - 3)^{2} - 9) + 4$$

$$= 3(x - 3)^{2} - 27 + 4$$

$$= 3(x - 3)^{2} - 23$$

Express $20x - 5x^2 + 3$ in the form $a - b(x + c)^2$

$$= -5x^{2} + 20x + 3$$

$$= -5(x^{2} - 4x) + 3$$

$$= -5((x - 2)^{2} - 4) + 3$$

$$= -5(x - 2)^{2} + 20 + 3$$

$$= 23 - 5(x - 2)^{2}$$

Solving by Completing the Square

Solve by completing the square:

$$3x^2 - 18x + 4 = 0$$

$$x^{2} - 6x + \frac{4}{3} = 0$$

$$(x - 3)^{2} - 9 + \frac{4}{3} = 0$$

$$(x - 3)^{2} = \frac{23}{3}$$

$$x - 3 = \pm \sqrt{\frac{23}{3}}$$

$$x = 3 \pm \sqrt{\frac{23}{3}}$$

Previously we factorised out the 3. This is because $3x^2 - 18x + 4$ on its own is an **expression,** so dividing by 3 (instead of factorising) would change the expression.

However, in an equation, we can divide both sides by 3 without affecting the solutions

Proving the Quadratic Formula

If
$$ax^2 + bx + c = 0$$
, prove that $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Just use exactly the same method as you usually would!

?

Plenary

Textbook

<u>Textbook</u>

Page 39

Exercise 2E

Q4

Q7

Q8

Page 41

Exercise 2F

Q4

Q6

Q7

Q11

Q14