

2. i.loc Workshop High-integrity Localization for Automated Vehicles

Steffen Schön

High Integrity Localisation

• Integrity measures the trust that we can put in the navigation solution

Compromise between different parameters

Well-defined Set of Parameters for Aviation

- Specifications:
 - Alert limits
 - Time to Alert
- Estimation result:
 - Computed position
 - Uncertainty
 - => Protection levels
- Unknown:
 - Actual position
 - Position error

Reduce and/or bound the position error

Magnitude of the Position Error

- Reduction of the position error
 - Quality of observations
 (GNSS, IMU, LiDAR, Camera, maps, 3D models, features,...)
 - Geometry of navigation

Truthworthy bounding of uncertainty

"Geometry of Navigation"

Simple Transfer to Automatic Vehicles?

 Specification (e.g. Reid et al. 2019) based on assessment of fatalities and road geometry

Vehicle Type	Accuracy (95%)				Alert Limit				Prob. of Failure
	Lateral [m]	Long. [m]	Vertical [m]	Attitude* [deg]	Lateral [m]	Long. [m]	Vertical [m]	Attitude* [deg]	(Integrity)
Mid-Size	0.15	0.15	0.48	0.17	0.44	0.44	1.40	0.50	10 ⁻⁹ / mile (10 ⁻⁸ / hour)
Full-Size	0.13	0.13	0.48	0.17	0.38	0.38	1.40	0.50	10 ⁻⁹ / mile (10 ⁻⁸ / hour)
Standard Pickup	0.12	0.12	0.48	0.17	0.34	0.34	1.40	0.50	10 ⁻⁹ / mile (10 ⁻⁸ / hour)
Passenger Vehicle Limits	0.10	0.10	0.48	0.17	0.29	0.29	1.40	0.50	10 ⁻⁹ / mile (10 ⁻⁸ / hour)

^{*}Error in each direction (roll, pitch, and heading).

i.c.sens and i.loc Integrity and collaboration in dynamic sensor networks (RTG2159 funded by DFG) www.icsens.uni-hannover.de/en/

Research Directions

www.icsens.uni-hannover.de/en/

LUCOOP: Leibniz University Cooperative Perception and Urban Navigation Dataset

A real-world multi-vehicle multi-modal V2V and V2X dataset (Axmann et al., 2023)

From left to right: Van 1, van 2, van 3.

 https://data.uni-hannover.de/dataset/lucoop-leibniz-university-cooperativeperception-and-urban-navigation-dataset

Program

2nd iLoc Workshop – High-integrity Localization for Automated Vehicles

14:00 - 19:00

14:30 - 15:00 | WS15.01

Invited Talk: Reliable RF Navigation in Degraded using Advanced Signal Processing

Scott Martin

15:00 - 15:30 | WS15.02

Invited Talk: Perception error modelling for autonomous driving

Justin Dauwel

15:30 - 15:50 | WS15.03 | 🗷

Workshop Paper: Vision and Map-Based Non-Line-of-Sight Satellites Hybridized Processing

David Bétaille • Cyril Meurie • Yann Cocheril

15:50 - 16:10 | WS15.04 | 🗷

Workshop Paper: GNSS Feature Map Aided RTK Positioning in Urban Trenches

Fabian Ruwisch • Steffen Schön

16:10 - 16:30 | WS15.05 | 🗷

Workshop Paper: Maximum Consensus Based Localization and Protection Level Estimation Using Synthetic LiDAR

Range Images

Jeldrik Axmann • Claus Brenner

<< Poster Session

17:30 - 18:00 | WS15.06

Invited Talk: Multi-Sensor High Accuracy and Integrity Navigation in ERASMO Intelligent Vehicle

Enrique Dominguez

18:00 - 18:30 | WS15.07

Invited Talk: Localization of Railway Vehicles using the Ferromagnetic Fingerprint of Rails

Bernd Kröper

18:30 - 18:50 | WS15.08 | 🗷

Workshop Paper: A Study of Different Observation Models for Cooperative Localization in Platoons

Elwan Héry • Philippe Xu • Philippe Bonnifait

Chen Zhu, Omar Garcia Crespillo, Daniel Gerbeth, Young-Hee Lee, Maximilian Simonetti, Wenhan Hao:

Towards Navigation System Integrity for Urban Air Mobility – Concept Design and Preliminary Validation [poster]

German Aerospace Center (DLR), Institute of Communications and Navigation

Zekun Zhang, Penghui Xu, Guohao Zhang, Li-Ta Hsu:

A Deep Learning Approach for GNSS-based Environment Detection in Urban Navigation [poster]

Department of Aeronautical and Aviation Engineering, the Hong Kong

Anat Schaper, Steffen Schön:

Multi-Agent Collaboration for High-Integrity Urban Navigation [poster]

Institut für Erdmssung (IfE), Leibniz Universität Hannover

Maxime Noizet, Philippe Xu, Philippe Bonnifait:

Multi-sensor localization integrity for autonomous navigation of intelligent vehicles [poster]

Université de technologie de Compiègne

Yunshuang Yuan, Hao Cheng, Michael Ying Yang, Monika Sester:

Generating Evidential BEV Maps in Continuous Driving Space [poster]

Leibniz University Hannover & University of Twente

Other topics to be confirmed

