UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERIA DEPARTAMENTO DE INGENIERIA INFORMÁTICA

ANÁLISIS DE LA EFICIENCIA DEL ENTRENAMIENTO DE REDES NEURONALES PROFUNDAS BASADO EN SIMULATED ANNEALING

Felipe Alberto Reyes González

Profesor Guía: Victor Parada Tesis de grado presentada en conformidad a los requisitos para obtener el grado de Magíster en Ingeniería Informática

> Santiago, Chile 2017

© Felipe Alberto Reyes González- 2017
• Algunos derechos reservados. Esta obra está bajo una Licencia Creative Commons
Atribución-Chile 3.0. Sus condiciones de uso pueden ser revisadas en:
http://creativecommons.org/licenses/by/3.0/cl/.

TABLA DE CONTENIDO

1	Introducción						
	1.1	Antecedentes y motivación					
	1.2	1.2 Descripción del problema					
	1.3	Soluci	ón propuesta	6			
		1.3.1	Características de la solución	6			
		1.3.2	Propósito de la solución	6			
	1.4	Objetiv	vos y alcances del proyecto	7			
		1.4.1	Objetivo general	7			
		1.4.2	Objetivos específicos	7			
		1.4.3	Alcances	7			
	1.5	Metod	ología y herramientas utilizadas	8			
		1.5.1	Metodología de trabajo	8			
		1.5.2	Herramientas de desarrollo	8			
2	Asp	ectos t	eóricos y revisión de la literatura	10			
	2.1	.1 Aspectos teóricos					
	2.2	Revisión de la literatura					
Re	efere	ncias		11			

ÍNDICE DE TABLAS

Tabla 1 1	Especificaciones del equipo)	c
iabia I.I	Lapecinicaciones del equipo	,	٦

ÍNDICE DE ILUSTRACIONES

CAPÍTULO 1. INTRODUCCIÓN

1.1 ANTECEDENTES Y MOTIVACIÓN

El aprendizaje profundo (*Deep learning*, DL) se refiere a una nueva clase de métodos de las máquinas de aprendizaje (*Machine learning*, ML), donde el proceso de muchas capas distribuidas en una arquitectura jerárquica se puede utilizar para clasificar un patrón y el aprendizaje de características (G. E. Hinton et al., 2006; Bengio, 2009). Esta arquitectura se inspira en la inteligencia artificial que emula el proceso de aprendizaje profundo y en capas de las áreas sensoriales primarias del neocórtex en el cerebro humano, que extrae automáticamente rasgos y abstracciones de los datos (Bengio y LeCun, 2007; Bengio et al., 2013; Arel et al., 2010).

En general, las técnicas del DL pueden clasificarse en modelos discriminativos profundos y modelos generativos (Deng y Yu, 2014). Ejemplos de modelos discriminativos son las redes neurales profundas (*Deep neural networks*, DNN), redes neuronales recurrentes (*Recurrent neural networks*, RNN) y redes neuronales convolucionales (*Convolutional neural networks*, CNN). Por otro lado, los modelos generativos, por ejemplo, son máquinas de Boltzmann restringidas (*Restricted Boltzmann machine*, RBMs), redes de creencias profundas (*Deep belief networks*, DBN), autocodificadores regularizados y máquinas profundas de Boltzmann (DBMs).

En los últimos años, se han desarrollado una serie de investigaciones en base a los algoritmos del DL en varios campos diferentes (LeCun et al., 2015). El DL ha sido utilizado para tareas de reconocimiento de imágenes (Krizhevsky et al., 2012; Farabet et al., 2013; Tompson et al., 2014; Szegedy et al., 2015) y de reconocimiento de voz (Mikolov et al., 2011; G. Hinton et al., 2012; Sainath et al., 2013), y han superado otras técnicas de aprendizaje de máquina en la predicción de la actividad de las moléculas de fármacos (Ma et al., 2015), en el análisis de datos en el acelerador de partículas (Ciodaro et al., 2012; Adam-Bourdarios et al., 2015), en la reconstrucción de los circuitos cerebrales (Helmstaedter et al., 2013), y en la predicción de los efectos de las mutaciones en el ADN no codificante en la expresión génica y en enfermedades (Leung et al., 2014; Xiong et al., 2015). Se a mostrado haber producido bueno resultados para diversas tareas en la comprensión del lenguaje natural (Collobert et al., 2011), en particular para la clasificación de temas, análisis de sentimientos, respuesta a preguntas (Bordes et al., 2014) y en la traducción (Jean et al., 2014; Sutskever et al., 2014).

Las redes neuronales artificiales (Artificial Neural Networks, NN) han sido protagonistas de su pro-

pio renacimiento en el campo del ML con el surgimiento del DL (Bengio et al., 2006; G. E. Hinton et al., 2006; Le et al., 2012; Ranzato et al., 2007). Las principales ideas detrás del nuevo enfoque abarcan una gama de algoritmos (Bengio y LeCun, 2007; G. E. Hinton et al., 2006), pero un principio en común es que una NN con múltiples capas ocultas (que lo conviernten en profundo) puede codificar características cada vez más complejas en sus capas. Las NN fueron comunmente entrenadas a través del algoritmo de retropropagación (Rumelhart et al., 1986b), que utiliza el método del gradiente estocástico descendente (Stochastics descent gradiente, SGD), o una de sus variantes, para actualizar los pesos de la NN y de esa manera reducir el error total. No fue hasta el año 2006 que fue difundido que el método del gradiente disminuía el valor del gradiente en redes muy profundas. Sin embargo, los descubrimientos en los últimos años han demostrado que, con suficientes datos de entrenamiento y con suficiente poder de procesamiento, el método de retropropagación y SGD resultan ser eficaces en la optimización de una NN de mucha profundidad (muchas capas) y altamente conectada(Cireşan et al., 2012; He et al., 2015; Le et al., 2012). Esta realización ha llevado a registros sustantivos que se rompen en muchas áreas de las ML a través de la aplicación de la retropropagación en el aprendizaje profundo (Ciresan et al., 2012; He et al., 2015; Le et al., 2012), incluyendo el aprendizaje no supervisado (Bengio, 2009).

Las NN han sido ampliamente estudiadas y ampliamente utilizadas en muchas aplicaciones de la inteligencia artificial. El problema durante el proceso de aprendizaje de las NN es descrito como un problema de minimización de una función de error, la que depende de los pesos que conforman la red (Rumelhart et al., 1986a). Este problema de optimización tiene la desventaja de ser no lineal, no convexo, además de tener mas de un mínimo local. Para solventar este problema se han desarrollado diversos algoritmos (Grippo, 1994; Jacobs, 1988; V. P. Plagianakos et al., 2002; Rumelhart et al., 1986b; V. Plagianakos et al., 1998) y su rendimiento varía según el problema a resolver.

El enfoque clásico para el entrenamiento de las NN es la aplicación de algoritmos basados en el gradiente como la retropropagación (Rumelhart et al., 1986b). El algoritmo de retropropagación busca minimizar la función de error mediante la dirección de descenso más pronunciada. Aunque la función de error disminuye rápidamente en la dirección del gradiente negativo, la retropropagación es generalmente ineficiente y poco fiable (Gori y Tesi, 1992) debido a la superficie de error. Además, su rendimiento se ve afectado por parámetros que deben ser especificados por el usuario, pues no existe una base teórica para escogerlos (Nguyen y Widrow, 1990). Dichos parámetros tienen una importancia crucial en el buen funcionamiento del algoritmo, por lo que el diseñador está obligado a seleccionar parámetros como los pesos iniciales de la NN, la topología de la red y la tasa de aprendizaje. En diversas investigaciones (Cauchy, 1847; Grippo, 1994; V. Plagianakos et al., 1998; V. P. Plagianakos et al., 2002) ha quedado demostrado que pequeñas modificaciones

en estos valores influyen en el rendimiento de la NN.

Para proporcionar una convergencia más rápida y estable se han desarrollado diversas variaciones y alternativas a la retroprogación. Algunos de estos métodos son la adaptación de un término de momento (Jacobs, 1988; Rumelhart et al., 1986b) o de una tasa variable de aprendizaje (Jacobs, 1988; Vogl et al., 1988). Magoulas, Vrahatis, y Androulakis (1997); V. Plagianakos et al. (1998) propusieron dos técnicas para evaluar en forma dinámica la tasa de aprendizaje sin el uso de alguna heurística o alguna función adicional y las evaluaciones de gradiente. El primero se basó en el algoritmo de Barzilai y Borwein (Barzilai y Borwein, 1988) que adapta la tasa de aprendizaje sin evaluar la matriz Hessiana; mientras que el segundo utiliza estimaciones de la constante de Lipschitz, explotando la información local de la superficie de error y los pesos posteriores (Magoulas et al., 1997). Hay evidencias (Magoulas et al., 1997; V. P. Plagianakos et al., 2002; V. Plagianakos et al., 1998) que han demostrado que la retropropagación con algoritmos que adaptan la velocidad del aprendizaje son robustas y tienen un buen rendimiento para el entrenamiento de NN.

Se han sugerido métodos de segundo orden para mejorar la eficiencia del proceso de minimización del error. Algunos de los métodos utilizados son el del gradiente conjugado (Fletcher y Reeves, 1964; Hestenes y Stiefel, 1952; Polak E., 1969) y el quasi-Newton (Huang, 1970; Nocedal y Wright, 2006). Los métodos del gradiente conjugado utiliza una combinación lineal de la dirección de búsqueda anterior y el gradiente actual lo que produce una convergencia generalmente más rápida, es adecuado para redes neuronales de gran escala debido a su simplicidad, sus propiedades de convergencia y la poca memoria que requiere. En la literatura se encuentran diversos métodos basados en el gradiente conjugado (Birgin y Martínez, 2001; Møller, 1993) que han sido utilizados para la construcción de NN en varias aplicaciones (Charalambous, 1992; Peng y Magoulas, 2007; Sotiropoulos et al., 2002). Los métodos guasi-Newton se consideran como los algoritmos más sofisticados para el entrenamiendo rápido de una NN. Definen la dirección de búsqueda mediante una aproximación de la matriz Hessiana, requiriendo información adicional. Se han propuesto soluciones para ajustar la aproximación Hessiana mediante la introducción de distintas estrategias (Al-Baali, 1998; Nocedal y Yuan, 1993; S. Oren, 1972; S. S. Oren y Luenberger, 1974; Yin y Du, 2007). Estas estrategias combinadas con búsquedas lineales no monótonas han permitido definir una convergencia superlineal (Yin y Du, 2007), mejorando significativamente el rendimiento de los métodos originales.

AQUÍ EMPIEZA TODO FEO Y LITERAR DE GOOGLE TRANSLATOR

El éxito de la simplicidad del SGD para lograr un rendimiento récord es quizás sorprendente.

Después de todo, en un espacio de muchas dimensiones, SGD debe ser susceptible a optima local, ya diferencia de un algoritmo evolutivo, todos sus huevos están esencialmente en una sola canasta porque trabaja en efecto con una población de uno. Sin embargo, resulta empíricamente que SGD está penetrando más lejos hacia la optimalidad en redes de miles o millones de pesos que cualquier otro enfoque. Intentando en parte explicar este fenómeno, Dauphin et al. [11] hacen el intrigante argumento de que, de hecho, los espacios de peso ANN de muy alta dimensión proporcionan tantas rutas de escape posibles desde cualquier punto dado que las optima locales son realmente muy improbables. En cambio, sugieren que los verdaderos obstáculos para SGD son puntos de silla de montar, o áreas de largas y graduales mesetas de error. Esta visión ha ayudado a explicar por qué SGD no se atascan, y también a mejorar para moverse más rápido a lo largo de tales puntos de silla en el espacio de búsqueda. También hay variantes de SGD como RMSProp [48] que ayudan a sacarlo de situaciones similares.

Si bien estos análisis pueden ayudar a explicar el éxito de SGD, también plantean una cuestión importante para la computación evolutiva (EC): Si de hecho hay tantos caminos hacia la optimalidad relativa en un espacio de peso ANN de alta dimensión, ¿por qué no Los mismos beneficios recibidos de este escenario por SGD también se aplican a EC? De hecho, quizás los algoritmos evolutivos (EAs) deberían incluso tener una ventaja. Después de todo, es posible que una población esté mejor adaptada que un solo individuo a una situación con muchas ramas prometedoras, y los EA sencillos son agnósticos respecto al índice de descenso con respecto a la pendiente del gradiente, lo que podría, en principio, Punto problema contemplado por Dauphin et al. [11]. En resumen, los argumentos de por qué SGD puede tener éxito en los espacios de dimensión extremadamente alta parecen a primera vista para apoyar o incluso favorecer EAs también.

Sin embargo, debido a que la población en una EA es en efecto una aproximación del gradiente, puede parecer que los EAs podrían estar significativamente desventajados por el hecho de que no calculan gradientes exactos, lo cual es precisamente lo que hace el SGD. Sin embargo, se ha reportado que los resultados sugieren que la exactitud del gradiente en SGD no es el quid de su éxito. Por ejemplo, recordando la aplicación de la mutación en EAs, Lillicrap et al. [31] informan del sorprendente descubrimiento de que la señal de error en una red profunda puede multiplicarse por pesos sinápticos aleatorios (rompiendo completamente la precisión del cálculo del gradiente) con poco perjuicio para el aprendizaje. Este resultado sugiere que de hecho hay tantas vías viables en el espacio de alta dimensión que la exactitud no es la explicación causal clave para alcanzar la casi óptima. Además, dado que cualquier espacio de búsqueda puede ser engañoso [18, 49], es probable que el descenso más pronunciado en cualquier punto dado no esté en el camino más corto al óptimo de todos modos. Tal vez sería aún mejor mantener una población de opciones para evitar cualquier compromiso prematuro a la mejor mirada camino del momento.

De hecho, la aplicación fluida de SGD en el aprendizaje profundo sigue siendo un trabajo en progreso. Se han desarrollado muchos trucos para mejorar su rendimiento, como la introducción de unidades rectificadas lineales (ReLUs) para funciones de activación, lo que mejora el paso del gradiente de capa a capa sobre unidades sigmoidales [38]. Sin embargo, aún así, los investigadores siguen observando los retos de encontrar los parámetros adecuados para hacer que estas estructuras aprendan sin problemas, lo que lleva a complicaciones como la interpolación entre diferentes arquitecturas a lo largo del aprendizaje [1] y la reciente arquitectura de las carreteras de Srivastava et al . [43] que en efecto convierte algunas neuronas en y fuera en el curso del aprendizaje, que es una reminiscencia de los algoritmos evolutivos que aprenden la estructura como NEAT [44]. Por lo tanto, queda mucho espacio para nuevos enfoques, pero pocos han considerado que tales nuevos enfoques podrían venir de fuera de SGD.

Quizás una de las razones por las que los EA simples todavía no se han aplicado ampliamente para optimizar los pesos de las redes profundas es que la mayoría de los problemas en el aprendizaje profundo abarcan un gran número de ejemplos de entrenamiento. Como ejemplo, la base de datos de clasificación de imágenes MNIST [28] incluye 60.000 ejemplos de entrenamiento. Mientras que SGD puede hacer un ciclo a través de estos ejemplos en su único alumno y ajustar sus pesos basado en cada ejemplo individual, en un EA cada individuo en la población en cada generación debe ser evaluado en todos los ejemplos para evaluar su aptitud en el conjunto de entrenamiento. Así, una única generación de, p. 100 individuos procesarían seis millones de ejemplos sólo para facilitar un solo paso del algoritmo de búsqueda.

Sin embargo, el algoritmo introducido en este documento, denominado algoritmo evolutivo de evaluación limitada (LEEA), se basa en una novedosa visión de la analogía entre EAs y SGD que implica que, de hecho, tal como una iteración de SGD no requiere pasar por la totalidad Formación, ni una generación de EA. En su lugar, considere que si SGD puede calcular un gradiente de error de una sola instancia (o un pequeño lote de ellos), entonces una generación de evolución puede encargarse de hacer exactamente lo mismo. Es decir, una generación de EA puede considerarse análoga a una única iteración de SGD, con el objetivo simplemente de ajustar los pesos de la mejor aproximación (es) de corriente para mejorar con respecto a una única instancia o un conjunto pequeño de ellos. En esta visión, la población de 100 sólo necesitaría procesar 100 instancias en una generación (en lugar de seis millones), lo que con una simple paralelización podría en principio hacerse en el mismo tiempo que se necesita para procesar un solo ejemplo (y no hay retropropagación de Error debe ser calculado bien). Por lo tanto, la EA comienza a parecer computacionalmente comparable a SGD.

Los experimentos en este documento sobre la optimización de alta dimensional de ANNs de hecho revelará la sorprendente conclusión de que una simple EA parece tan eficaz como back-

propagation a través de estado de la técnica SGD en problemas de más de 1.000 dimensiones. El desempeño competitivo de la EA en estos problemas sugiere que más investigación en la optimización de redes neuronales de mayor dimensión se justifica debido al potencial de una estrategia de capacitación alternativa en el aprendizaje profundo. Esta posibilidad no se trata sólo de nivelar el campo de juego con SGD. Por el contrario, es emocionante porque EA trae consigo una caja de herramientas totalmente nueva que de repente se convierte en aplicable al campo del aprendizaje profundo. Considerando que en los investigadores de aprendizaje profundo aplicar trucos como la regularización de la escasez [16] o la deserción [42], EAs tienen distintas opciones completamente no disponibles para SGD, como la evolución de la arquitectura como en NEAT [44], técnicas de mantenimiento de la diversidad como búsqueda de novedad [29] O codificaciones indirectas para RNAs como en HyperNEAT [15, 47]. Así, la entrada de EAs como una alternativa a SGD en el aprendizaje profundo llevaría consigo un amplio conjunto de nuevas posibilidades.

AQUÍ TERMINA TODO FEO Y LITE-RÁR DE GOOGLE TRANSLATOR

1.2 DESCRIPCIÓN DEL PROBLEMA

La retropropagación basa su funcionamiento en multiplicaciones sucesivas basadas en el error para poder calcular los gradientes, y a medida que el error se propaga hacia la capa de entrada de la red él gradiente comienza a disminuír su valor por cada capa que atraviesa. Esto significa que el gradiente disminuirá de manera exponencial, lo que representa un problema para redes profundas, ya que las capas mas cercanas a la capa de entrada necesitarán más tiempo para ser entrenadas.

El método de aprendizaje basado en simmulated annealing permite la actualización de los pesos de la red sin mermar la capacidad de adaptación de los pesos. El método supone una alternativa efectiva a los métodos tradicionales de aprendizaje para la convergencia de los métodos debido a la independencia que otorga a la actualización de los pesos de las distintas capas.

1.3 SOLUCIÓN PROPUESTA

1.3.1 Características de la solución

Mediante el uso de el algoritmo *simulated annealing* se busca analizar la eficiencia que la NN alcanza en una red neuronal profunda frente a otros métodos de aprendizaje tales como SGD y RMSPROP.

1.3.2 Propósito de la solución

El propósito de la solución es aportar en el campo de las redes neuronales y la clasificación de datos, proporcionando un análisis comparativo de la convergencia de distintas redes.

1.4 OBJETIVOS Y ALCANCES DEL PROYECTO

En ésta sección se presenta el objetivo general, los objetivos específicos además del alcance y limitaciones de la presenta investigación.

1.4.1 Objetivo general

Evaluar el desempeño del algoritmo *simulated annealing* y su efecto sobre el entrenamiento de redes neuronales profundas en comparación con otros métodos.

1.4.2 Objetivos específicos

Los objetivos establecidos para el presente trabajo son descritos a continuación

- 1. Definir las reglas de aprendizaje a comparar.
- 2. Construir los conjuntos de datos de entrada y salida a analizar.
- 3. Establecer los parámetros de las redes neuronales para la experimentación.
- 4. Establecer los algoritmos de aprendizaje a comparar.
- 5. Entrenar las redes con los distintos conjuntos de datos.
- 6. Establecer las conclusiones del trabajo.

1.4.3 Alcances

- 1. Se analizará la misma arquitectura con diferentes reglas de aprendizaje.
- Los conjunto de datos para el entrenamiento a utilizar son los propuestos en (Morse y Stanley, 2016).

1.5 METODOLOGÍA Y HERRAMIENTAS UTILIZADAS

1.5.1 Metodología de trabajo

Considerando el aspecto investigativo del trabajo, se considera la utilización del método científico. Entre las actividades que componen la metodología, Sampieri (2006) describe los siguientes pasos para desarrollar una investigación:

Formulación de la hipótesis: Las redes neuronales que adolecen del desvanecimiento del gradiente se ven beneficiadas por el uso del algoritmo simulated annealing en la convergencia.

- Marco teórico: Una revisión de la literatura donde se aborda el problema planteado, para situarse en el contexto actual de los problemas. Se describirán redes neuronales que buscan solucionar el mismo problema.
- Diseño de la solución: Se deberá diseñar el experimento para generar los datos que permitan sustentar las comparaciones entre las distintas redes.
- Análisis y verificación de los resultados: Los resultados se analizarán considerando los valores de convergencia de los distintos métodos.
- Presentación de los resultados: Se presentarán tablas que describan los resultados obtenidos y que se consideren pertinentes.
- Conclusiones obtenidas en el desarrollo de la investigación.

1.5.2 Herramientas de desarrollo

Para el desarrollo y ejecución de los experimentos se utilizará un equipo con las siguientes características

Sistema Operativo	Solus 2017.04.18.0 64-bit
Procesador	Intel® Core TM i5-2450M CPU @ 2.50GHz x 4
RAM	7.7Gb
Gráficos	Intel® Sandybridge Mobile
Almacenamiento	935.6 GB

Tabla 1.1: Especificaciones del equipo

El software que se utilizará es:

- Lenguaje de programación: Python.
- Sistema de redes neuronales: Keras API (Chollet, 2015).
- Herramienta ofimática: LATEX.

CAPÍTULO 2. ASPECTOS TEÓRICOS Y REVISIÓN DE LA LITERATURA

- 2.1 ASPECTOS TEÓRICOS
- 2.2 REVISIÓN DE LA LITERATURA

REFERENCIAS

Adam-Bourdarios, C., Cowan, G., Germain, C., Guyon, I., Kégl, B., y Rousseau, D. (2015, 13 Dec). The Higgs boson machine learning challenge. En G. Cowan, C. Germain, I. Guyon, B. Kégl, y D. Rousseau (Eds.), *Proceedings of the nips 2014 workshop on high-energy physics and machine learning* (Vol. 42, pp. 19–55). Montreal, Canada: PMLR. Descargado de http://proceedings.mlr.press/v42/cowa14.html

Al-Baali, M. (1998). Numerical experience with a class of self-scaling quasi-newton algorithms. *Journal of Optimization Theory and Applications*, *96*(3), 533–553. doi: 10.1023/A: 1022608410710

Arel, I., Rose, D. C., y Karnowski, T. P. (2010, nov). Research frontier: Deep machine learning—a new frontier in artificial intelligence research. *Comp. Intell. Mag.*, *5*(4), 13–18. Descargado de http://dx.doi.org/10.1109/MCI.2010.938364 doi: 10.1109/MCI.2010.938364

Barzilai, J., y Borwein, J. M. (1988). Two-point step size gradient methods. *IMA Journal of Numerical Analysis*, 8(1), 141. doi: 10.1093/imanum/8.1.141

Bengio, Y. (2009, enero). Learning deep architectures for ai. *Found. Trends Mach. Learn.*, 2(1), 1–127. Descargado de http://dx.doi.org/10.1561/2200000006 doi: 10.1561/2200000006

Bengio, Y., Courville, A., y Vincent, P. (2013, Aug). Representation learning: A review and new perspectives. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, *35*(8), 1798-1828. doi: 10.1109/TPAMI.2013.50

Bengio, Y., Lamblin, P., Popovici, D., y Larochelle, H. (2006). Greedy layer-wise training of deep networks. En *Proceedings of the 19th international conference on neural information processing systems* (pp. 153–160). Cambridge, MA, USA: MIT Press. Descargado de http://dl.acm.org/citation.cfm?id=2976456.2976476

Bengio, Y., y LeCun, Y. (2007). Scaling learning algorithms towards AI. En L. Bottou, O. Chapelle, D. DeCoste, y J. Weston (Eds.), *Large-scale kernel machines*. MIT Press. Descargado de http://yann.lecun.com/exdb/publis/pdf/bengio-lecun-07.pdf

Birgin, E. G., y Martínez, J. M. (2001). A spectral conjugate gradient method for unconstrained optimization. *Applied Mathematics and Optimization*, *43*(2), 117–128. Descargado de http://dx.doi.org/10.1007/s00245-001-0003-0 doi:10.1007/s00245-001-0003-0

Bordes, A., Chopra, S., y Weston, J. (2014). Question answering with subgraph embeddings. *CoRR*, *abs/1406.3676*. Descargado de http://arxiv.org/abs/1406.3676

Cauchy, A.-L. (1847, 18 de octubre). Méthode générale pour la résolution des systèmes d'équations simultanées. *Compte Rendu des S'eances de L'Acad'emie des Sciences XXV*, *S'erie A*(25), 536–538.

Charalambous, C. (1992, June). Conjugate gradient algorithm for efficient training of artificial neural networks. *IEE Proceedings G - Circuits, Devices and Systems*, *139*(3), 301-310. doi: 10.1049/ip-g-2.1992.0050

Chollet, F. (2015). Keras. https://github.com/fchollet/keras. GitHub.

Ciodaro, T., Deva, D., de Seixas, J. M., y Damazio, D. (2012). Online particle detection with neural networks based on topological calorimetry information. *Journal of Physics: Conference Series*, 368(1), 012030. Descargado de http://stacks.iop.org/1742-6596/368/i=1/a=012030

Cireşan, D., Meier, U., Masci, J., y Schmidhuber, J. (2012). Multi-column deep neural network for traffic sign classification. *Neural Networks*, *32*, 333 - 338. Descargado de http://www.sciencedirect.com/science/article/pii/S0893608012000524 (Selected Papers from {IJCNN} 2011) doi: https://doi.org/10.1016/j.neunet.2012.02.023

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., y Kuksa, P. (2011, noviembre). Natural language processing (almost) from scratch. *J. Mach. Learn. Res.*, *12*, 2493–2537. Descargado de http://dl.acm.org/citation.cfm?id=1953048.2078186

Deng, L., y Yu, D. (2014). Deep learning: Methods and applications. *Foundations and Trends*® *in Signal Processing*, 7(3–4), 197-387. Descargado de http://dx.doi.org/10.1561/2000000039 doi: 10.1561/2000000039

Farabet, C., Couprie, C., Najman, L., y LeCun, Y. (2013, Aug). Learning hierarchical features for scene labeling. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, *35*(8), 1915-1929. doi: 10.1109/TPAMI.2012.231

Fletcher, R., y Reeves, C. M. (1964, 1 de febrero). Function minimization by conjugate gradients. *The Computer Journal*, 7(2), 149–154. Descargado de http://dx.doi.org/10.1093/comjnl/7.2.149 doi: 10.1093/comjnl/7.2.149

Gori, M., y Tesi, A. (1992, Jan). On the problem of local minima in backpropagation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, *14*(1), 76-86. doi: 10.1109/34.107014

Grippo, L. (1994). A class of unconstrained minimization methods for neural network training. *Optimization Methods and Software*, *4*(2), 135-150. doi: 10.1080/10556789408805583

He, K., Zhang, X., Ren, S., y Sun, J. (2015). Deep residual learning for image recognition. *CoRR*, *abs/1512.03385*. Descargado de http://arxiv.org/abs/1512.03385

Helmstaedter, M., Briggman, K. L., Turaga, S. C., Jain, V., Seung, H. S., y Denk, W. (2013, aug). Connectomic reconstruction of the inner plexiform layer in the mouse retina. *Nature*, *500*(7461), 168–174. Descargado de https://doi.org/10.1038/nature12346 doi: 10.1038/nature12346

Hestenes, M. R., y Stiefel, E. (1952). Methods of conjugate gradients for solving linear systems. *Journal of research of the National Bureau of Standards*, 49, 409–436.

Hinton, G., Deng, L., Yu, D., Dahl, G. E., r. Mohamed, A., Jaitly, N., ... Kingsbury, B. (2012, Nov). Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. *IEEE Signal Processing Magazine*, *29*(6), 82-97. doi: 10.1109/MSP.2012.2205597

Hinton, G. E., Osindero, S., y Teh, Y.-W. (2006). A fast learning algorithm for deep belief nets. *Neural Computation*, *18*(7), 1527-1554. Descargado de http://dx.doi.org/10.1162/neco.2006.18.7.1527 (PMID: 16764513) doi: 10.1162/neco.2006.18.7.1527

Huang, H. Y. (1970). Unified approach to quadratically convergent algorithms for function minimization. *Journal of Optimization Theory and Applications*, *5*(6), 405–423. Descargado de http://dx.doi.org/10.1007/BF00927440 doi:10.1007/BF00927440

Jacobs, R. A. (1988). Increased rates of convergence through learning rate adaptation. *Neural Networks*, 1(4), 295 - 307. doi: https://doi.org/10.1016/0893-6080(88)90003-2

Jean, S., Cho, K., Memisevic, R., y Bengio, Y. (2014). On using very large target vocabulary for neural machine translation. *CoRR*, *abs/1412.2007*. Descargado de http://arxiv.org/abs/1412.2007

Krizhevsky, A., Sutskever, I., y Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. En *Proceedings of the 25th international conference on neural nformation processing systems* (pp. 1097–1105). USA: Curran Associates Inc. Descargado de http://dl.acm.org/citation.cfm?id=2999134.2999257

Le, Q. V., Ranzato, M., Monga, R., Devin, M., Chen, K., Corrado, G. S., ... Ng, A. Y. (2012). Building high-level features using large scale unsupervised learning. En *Proceedings of the 29th international coference on international conference on machine learning* (pp. 507–514). USA: Omnipress. Descargado de http://dl.acm.org/citation.cfm?id=3042573.3042641

LeCun, Y., Bengio, Y., y Hinton, G. (2015, may). Deep learning. *Nature*, *521*(7553), 436–444. Descargado de https://doi.org/10.1038/nature14539 doi: 10.1038/nature14539

Leung, M. K. K., Xiong, H. Y., Lee, L. J., y Frey, B. J. (2014, jun). Deep learning of the tissue-regulated splicing code. *Bioinformatics*, 30(12), i121–i129. Descargado de https://doi.org/10.1093/bioinformatics/btu277 doi:10.1093/bioinformatics/btu277

Ma, J., Sheridan, R. P., Liaw, A., Dahl, G. E., y Svetnik, V. (2015). Deep neural nets as a method for quantitative structure—activity relationships. *Journal of Chemical Information and Modeling*, 55(2), 263-274. Descargado de http://dx.doi.org/10.1021/ci500747n (PMID: 25635324) doi: 10.1021/ci500747n

Magoulas, G. D., Vrahatis, M. N., y Androulakis, G. S. (1997). Effective backpropagation training with variable stepsize. *Neural Networks*, 10(1), 69 - 82. Descargado de http://www.sciencedirect.com/science/article/pii/S0893608096000524 doi: https://doi.org/10.1016/S0893-6080(96)00052-4

Mikolov, T., Deoras, A., Povey, D., Burget, L., y Cernocky, J. H. (2011, December). Strategies for training large scale neural network language models. IEEE Automatic Speech Recognition and Understanding Workshop. Descargado de https://www.microsoft.com/en-us/research/publication/strategies-for-training-large-scale-neural-network-language-models/

Morse, G., y Stanley, K. O. (2016). Simple evolutionary optimization can rival stochastic gradient descent in neural networks. En *Proceedings of the genetic and evolutionary computation conference 2016* (pp. 477–484). New York, NY, USA: ACM. Descargado de http://doi.acm.org/10.1145/2908812.2908916 doi: 10.1145/2908812.2908916

Møller, M. F. (1993). A scaled conjugate gradient algorithm for fast supervised learning. *Neural Networks*, 6(4), 525 - 533. Descargado de http://www.sciencedirect.com/science/article/pii/S0893608005800565 doi: https://doi.org/10.1016/S0893-6080(05)80056-5

Nguyen, D., y Widrow, B. (1990, June). Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights. En *1990 ijcnn international joint conference on neural networks* (p. 21-26 vol.3). doi: 10.1109/IJCNN.1990.137819

Nocedal, J., y Wright, S. (2006). *Numerical optimization (springer series in operations research and financial engineering)*. Springer.

Nocedal, J., y Yuan, Y.-x. (1993). Analysis of a self-scaling quasi-newton method. *Mathematical Programming*, *61*(1), 19–37. doi: 10.1007/BF01582136

Oren, S. (1972). *Self-scaling variable metric algorithms for unconstrained minimization*. Department of Engineering-Economic Systems, Stanford University.

Oren, S. S., y Luenberger, D. G. (1974). Self-scaling variable metric (ssvm) algorithms. part i: Criteria and sufficient conditions for scaling a class of algorithms. *Management Science*, *20*(5), 845-862. Descargado de http://www.jstor.org/stable/2630094

Peng, C. C., y Magoulas, G. D. (2007, Oct). Adaptive nonmonotone conjugate gradient training algorithm for recurrent neural networks. En *19th ieee international conference on tools with artificial intelligence (ictai 2007)* (Vol. 2, p. 374-381). doi: 10.1109/ICTAI.2007.126

Plagianakos, V., Sotiropoulos, D., y Vrahatis, M. (1998). Automatic adaptation of learning rate for backpropagation neural networks. *Recent Advances in Circuits and Systems*, *337*.

Plagianakos, V. P., Magoulas, G. D., y Vrahatis, M. N. (2002, Nov). Deterministic nonmonotone strategies for effective training of multilayer perceptrons. *IEEE Transactions on Neural Networks*, 13(6), 1268-1284. doi: 10.1109/TNN.2002.804225

Polak E., R. G. (1969). Note sur la convergence de méthodes de directions conjuguées. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, 3(R1), 35-43. Descargado de http://eudml.org/doc/193115

Ranzato, M., Ian Boureau, Y., y Cun, Y. L. (2007). Sparse feature learning for deep belief networks. En J. Platt, D. Koller, Y. Singer, y S. Roweis (Eds.), *Advances in neural information processing systems 20* (pp. 1185–1192). Cambridge, MA: MIT Press. Descargado de http://books.nips.cc/papers/files/nips20/NIPS2007_1118.pdf

Rumelhart, D. E., Hinton, G. E., y Williams, R. J. (1986a). Learning representations by back-propagating errors. *Nature*, *323*, 533–536.

Rumelhart, D. E., Hinton, G. E., y Williams, R. J. (1986b). Parallel distributed processing: Explorations in the microstructure of cognition, vol. 1. En D. E. Rumelhart, J. L. McClelland, y C. PDP Research Group (Eds.), (pp. 318–362). Cambridge, MA, USA: MIT Press. Descargado de http://dl.acm.org/citation.cfm?id=104279.104293

Sainath, T. N., r. Mohamed, A., Kingsbury, B., y Ramabhadran, B. (2013, May). Deep convolutional neural networks for lycsr. En *2013 ieee international conference on acoustics, speech and signal processing* (p. 8614-8618). doi: 10.1109/ICASSP.2013.6639347

Sampieri, R. (2006). *Metodología de la investigación*. México: McGraw Hill.

Sotiropoulos, D., Kostopoulos, A., y Grapsa, T. (2002). A spectral version of perry's conjugate gradient method for neural network training. En *Proceedings of 4th gracm congress on computational mechanics* (Vol. 1, pp. 291–298).

Sutskever, I., Vinyals, O., y Le, Q. V. (2014). Sequence to sequence learning with neural networks. *CoRR*, *abs/1409.3215*. Descargado de http://arxiv.org/abs/1409.3215

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... Rabinovich, A. (2015, June). *Going deeper with convolutions.* doi: 10.1109/CVPR.2015.7298594

Tompson, J., Jain, A., LeCun, Y., y Bregler, C. (2014). Joint training of a convolutional network and a graphical model for human pose estimation. *CoRR*, *abs/1406.2984*. Descargado de http://arxiv.org/abs/1406.2984

Vogl, T. P., Mangis, J. K., Rigler, A. K., Zink, W. T., y Alkon, D. L. (1988). Accelerating the convergence of the back-propagation method. *Biological Cybernetics*, *59*(4), 257–263. doi: 10.1007/BF00332914

Xiong, H. Y., Alipanahi, B., Lee, L. J., Bretschneider, H., Merico, D., Yuen, R. K. C., ... Frey, B. J. (2015). The human splicing code reveals new insights into the genetic determinants of disease. *Science*, *347*(6218). Descargado de http://science.sciencemag.org/content/347/6218/1254806 doi: 10.1126/science.1254806

Yin, H. X., y Du, D. L. (2007). The global convergence of self-scaling bfgs algorithmwith nonmonotone line search forunconstrained nonconvex optimization problems. *Acta Mathematica Sinica, English Series*, *23*(7), 1233–1240. doi: 10.1007/s10114-005-0837-5