1) La fonction carré : $x \mapsto x^2$

1 - 1) Sens de variation

Définition 1 : la fonction « carrée » est définie sur \mathbb{R} par $f: x \mapsto x^2$

Propriété 1 : la fonction carrée est :

- strictement décroissante sur l'intervalle $]-\infty$; 0];
- strictement croissante sur l'intervalle $[0; +\infty]$.

x	$-\infty$	0	$+\infty$
f(x)	\searrow		7
		0	

tableau de variations de la fonction carrée

1 - 2) Représentation graphique

Propriété 2: Dans un repère orthogonal, la représentation graphique de la fonction carrée est la **parabole** d'équation $y = x^2$ qui admet l'axe des ordonnées comme axe de symétrie.

PREUVE: quel que soit le nombre réel x, $(-x)^2 = x^2$ Ainsi, les points $M(x; x^2)$ et $M'(-x; x^2)$ appartiennent tous les deux à la courbe représentative de la fonction carrée. Ils sont symétriques par rapport à l'axe des ordonnées.

Comme le raisonnement est valable pour toute valeur de x, cela montre que l'axe des ordonnées est un axe de symétrie de la parabole.

Remarque : Le point O(0; 0) est appelé le **sommet** de la parabole.

1 - 3) Équations $x^2 = a$

 $x^2 = a$ avec a < 0 n'a pas de solution

 $x^2 = a$ avec a = 0 a une unique solution : 0

 $x^2 = a$ avec a > 0 a deux solutions : \sqrt{a} et $-\sqrt{a}$

PREUVE:

Pour tout nombre $x, x^2 \ge 0$ et donc x^2 ne peut jamais être égal à un nombre strictement négatif.

PREUVE:

 $x^2=0$ peut s'interpréter comme une équation produit $x\times x=0$ ce qui signifie x=0 ou x=0c'est-à-dire x=0

PREUVE:

 $x^2=a$ revient à $x^2-a=0$ ce qui peut se factoriser en $(x-\sqrt{a})(x+\sqrt{a})=0$ Cette équation produit à pour solutions \sqrt{a} et $-\sqrt{a}$

2) Fonction inverse

2 - 1) Étude de la fonction

Définition 2: la fonction « inverse » est définie sur \mathbb{R}^* par $f: x \mapsto \frac{1}{x}$

EXEMPLES:

$$f(3) = \frac{1}{3} \qquad \qquad f(-5) = \frac{1}{-5} = -\frac{1}{5} \qquad \qquad f\left(\frac{1}{2}\right) = \frac{1}{\frac{1}{2}} = 1 \times \frac{2}{1} = 2$$

$$f\left(\frac{5}{2}\right) = \frac{1}{\frac{5}{2}} = 1 \times \frac{2}{5} = \frac{2}{5} \qquad f(10^{-3}) = \frac{1}{10^{-3}} = 10^{3} \qquad \qquad f(10^{8}) = \frac{1}{10^{8}} = 10^{-8}$$

REMARQUE:

0 n'a pas d'image : on dit que 0 est une valeur interdite pour la fonction inverse.

Propriété 3 : la fonction inverse est :

- strictement décroissante sur l'intervalle] ∞ ; 0[
- strictement décroissante sur l'intervalle $]0; +\infty[$

x	$-\infty$	0	$+\infty$
			X
f(x)			
	\searrow		

tableau de variations de la fonction inverse

2 - 2) Représentation graphique

Propriété 4: Dans un repère orthogonal, la représentation graphique de la fonction inverse est l'**hyperbole** d'équation $y=\frac{1}{x}$ qui admet l'origine du repère comme centre de symétrie.

PREUVE: quel que soit le nombre réel x, $\frac{1}{-x} = -\frac{1}{x}$ Ainsi, les points $M\left(x;\frac{1}{x}\right)$ et $M'\left(-x;-\frac{1}{x}\right)$ appartiennent tous les deux à la courbe représentative de la fonction inverse. Ils sont symétriques par rapport à l'origine du repère.

Comme le raisonnement est valable pour toute valeur de x, cela montre que l'origine du repère est centre de symétrie de l'hyperbole.

3) Fonctions polynôme du second degré

Définition 3 : une fonction polynôme du second degré est une fonction f définie sur $\mathbb R$ par

$$f: x \mapsto ax^2 + bx + c$$

a, b et c sont trois nombres réels (avec $a \neq 0$)

EXEMPLES:

 $p: t \mapsto 3t^2 + 2t$ est un polynôme du second degré (a = 3, b = 2 et c = 0)

 $f:x\mapsto (x-1)^2+3x$ est un polynôme du second degré car $f(x)=x^2-2x+1+3x=x^2+x+1$ $(a=1,\,b=1$ et c=1)

Propriété 5 : Pour une fonction polynôme du second degré $f(x) = ax^2 + bx + c$:

- $-\underline{\text{si }a>0}$: elle est strictement décroissante puis strictement croissante ;
- $-\sin a < 0$: elle est strictement croissante puis strictement décroissante.

Propriété 6: Une fonction polynôme du second degré f a pour représentation graphique une courbe appelée **parabole**. Dans un repère orthogonal, cette courbe admet un axe de symétrie parallèle à l'axe des ordonnées.

La fonction f atteint son extremum en une valeur x_S ; le point S de coordonnées $(x_S; f(x_S))$ est situé sur l'axe de symétrie de la parabole; on l'appelle le **sommet** de la parabole.

REMARQUE: ces propriétés sont admises

Pour Aller Plus Loin : $f(x) = ax^2 + bx + c$ peut s'écrire d'une autre manière (appelée forme « canonique »)

 $f(x) = ax^2 + bx + c = a(x - \alpha)^2 + \beta$; on peut passer d'une forme à l'autre par des propriétés algébriques (développement, factorisation).

Cette forme canonique permet de lire directement les coordonnées du sommet de la parabole : $S(\alpha \; ; \; \beta)$

4) Fonctions homographiques

Définition 4: une fonction homographique est une fonction f par

$$f: x \mapsto \frac{ax+b}{cx+d}$$

 $a,\,b,\,c$ et d sont quatre nombres réels (avec $c\neq 0$ et tels que $ad-bc\neq 0)$

Elle est définie pour toutes les valeurs de x telles que le dénominateur cx + d ne s'annule pas.

EXEMPLES:

 $h_1(x) = \frac{3x+2}{5x-3}$ est une fonction homographique

 $h_2(x) = \frac{7x-2}{-5x+12}$ est une fonction homographique

 $h_3(x) = \frac{3x+2}{x}$ est une fonction homographique

EXEMPLE DÉTAILLÉ :

 $h(x) = \frac{x}{x-2}$: c'est une fonction homographique $(a=1,\,b=0,\,c=1$ et d=-2)

Elle est définie partout où le dénominateur ne s'annule pas; on va chercher la ou les valeurs d'annulation du dénominateur (les valeurs « interdites ») : $x-2=0 \Leftrightarrow x=2$

Ainsi, la seule valeur interdite étant 2, $\mathcal{D}_h =]-\infty$; $2[\cup]2$; $+\infty[$

Cela se note aussi : $\mathcal{D}_h = \mathbb{R} \setminus \{-2\}$

Cela signifie que le nombre -2 n'a pas d'image; sur la figure ci-dessous, la courbe représentative de la fonction h ne coupe pas la droite d'équation x = -2 (en bleu)

