Amendments to the Claims

Please amend Claims 1, 11, 17 and 20. The Claim Listing below will replace all prior versions of the claims in the application:

Claim Listing

What is Claimed is:

 (Currently amended) A method of inhibiting rejection of a transplanted organ, tissue or cell in a recipient mammal, the method comprising the step of administering to the recipient mammal an effective amount of anti-CD40L monoclonal antibody or rapamycin and an effective amount of a compound represented by the following structural formula:

or a physiological salt thereof, wherein:

 R_1 is a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group or a substituted or unsubstituted alkyl group;

 R_2 is an optionally substituted aralkyl group or an alkyl group substituted with $-NR_5R_6$;

R₃ is a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group;

 R_4 a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group; and

 R_5 and R_6 are independently selected from a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group or R_5 and R_6 taken together with the nitrogen to which they are attached are a non-aromatic heterocyclic group;

wherein each substituted aryl group, substituted alkyl group or substituted aralkyl group are independently optionally substituted at a carbon atom with-OH, -Br, -Cl, -I, -F, R, -CH₂R, -OCH₂R, -CH₂OC(O)R, -OR, -O-COR, -COR, -CN, -NO₂, -COOH, -SO₃H, -NH₂, -NHR, -N(R)₂, -COOR, -CHO, -CONH₂, -CONHR, -CON(R)₂, -NHCOR, -NRCOR, -NHCONH₂, -NHCONRH, -NHCON(R)₂, -NRCONH₂, -NRCONRH, -NRCON(R)₂, -C(=NH)-NH₂, -C(=NH)-NHR, -C(=NH)-N(R)₂, -C(=NR)-NH₂, -C(=NR)-NH₂, -NH-C(=NH)-NH₂, -NH-C(=NH)-NHR, -NH-C(=NH)-NHR, -NH-C(=NH)-NH₂, -NH-C(=NH)-NH₂, -NR-C(=NH)-NH₂, -NR-C(=NH)-NH₂, -NR-C(=NH)-NH₂, -NR-C(=NH)-NHR, -NR-C(=NR)-NHR, -NR-C(=NR)-NHR, -NR-C(=NR)-NH₂, -SO₂NH₂, -SO₂NH₂, -SO₂NH₂, -SO₂NH₂, -SO₂NH₂, -SO₂NH₂, -SH, -SO_kR [[and]] or -NH-C(=NH)-NH₂;

wherein each substituted aryl group or substituted aralkyl group are independently optionally substituted at a nitrogen atom, if present, with -R', $-N(R')_2$, -C(O)R', $-CO_2R'$, -C(O)C(O)R', $-C(O)CH_2C(O)R'$, $-SO_2R'$, $-SO_2N(R')_2$, $-C(=S)N(R')_2$, $-C(=NH)-N(R')_2$, or [[and]] -NR' SO_3R' ;

R' is hydrogen, an alkyl group, phenyl, -O(Ph), CH₂(Ph), heteroaryl or non-aromatic heterocyclic ring;

each R is independently an alkyl, benzyl, or aryl group; or $-N(R)_2$, taken together, can also form a non-aromatic heterocyclic group; and

k is 0, 1 or 2.

- 2. (Original) The method of Claim 1 wherein the transplanted organ, tissue or cell is a transplanted heart, kidney, lung, liver, pancreas, skin or bone marrow.
- 3. (Original) The method of Claim 1 wherein the mammal is the recipient of a transplanted stem cell(s).

- 4. (Original) The method of Claim 1 wherein the transplanted organ, tissue or cell is xenogenic or bio-engineered.
- 5. (Cancelled)
- 6. (Cancelled)
- 7. (Original) The method of Claim 1 wherein R₂ is an optionally substituted heteroaralkyl group or an alkyl group substituted with -NR₅R₆.
- 8. (Original) The method of Claim 7 wherein:
 - a) R_1 is an optionally substituted aryl group or an optionally substituted C_1 - C_4 aralkyl group;
 - b) R_3 is an optionally substituted aryl group or an optionally substituted C_1 - C_4 aralkyl group; and
 - c) R_4 is an optionally substituted aryl group, an optionally substituted cycloalkyl group, an optionally substituted C_1 - C_4 aralkyl group or an optionally substituted C_1 - C_4 cycloalkylalkyl group.
- 9. (Original) The method of Claim 7 wherein:
 - a) R_1 is an optionally substituted phenyl group or an optionally substituted phenyl- C_1 - C_4 alkyl group;
 - b) R_3 a substituted or unsubstituted phenyl, phenyl- C_1 - C_4 -alkyl, diphenyl- C_1 - C_4 -alkyl, pyrazolyl, pyrazolyl- C_1 - C_4 -alkyl, indolyl, indolyl- C_1 - C_4 -alkyl, thienylphenyl, thienylphenyl- C_1 - C_4 -alkyl, furanylphenyl, furanylphenyl- C_1 - C_4 -alkyl, fluorenyl, fluorenyl- C_1 - C_4 -alkyl, naphthyl, naphthyl- C_1 - C_4 -alkyl, quinoxalinyl, quinoxalinyl- C_1 - C_4 -alkyl, an optionally substituted quinazolinyl, an optionally substituted quinazolinyl- C_1 - C_4 -alkyl, pyrolyl, pyrolyl- C_1 - C_4 -alkyl, thienyl, thienyl- C_1 - C_4 -alkyl, furanyl or furanyl- C_1 - C_4 -alkyl; and

- c) R_4 is an optionally substituted phenyl group, an optionally substituted phenyl- C_1 - C_4 -alkyl group, an optionally substituted diphenyl- C_1 - C_4 -alkyl group, an optionally substituted C_3 - C_8 -cycloalkyl- C_1 - C_4 -alkyl group or an optionally substituted di- $(C_3$ - C_8 -cycloalkyl)- C_1 - C_4 -alkyl group.
- 10. (Original) The method of Claim 9 wherein R_2 is an optionally substituted imadazolyl- C_1 - C_4 -alkyl group or a C_1 - C_4 alkyl group substituted with -NR₅R₆.
- 11. (Currently amended) The method of Claim 10 wherein:

 R_1 is a phenyl group or phenyl- C_1 - C_4 alkyl group each optionally substituted with R, - CH_2R , - OCH_2R , - $CH_2OC(O)R$, -OH, halogen, -OR, -O-COR, -COR, -CN, - NO_2 , -COOH, - SO_3H , - NH_2 , -NHR, - $N(R)_2$, -COOR, -CHO, - $CONH_2$, -CONHR, - $CON(R)_2$, -NHCOR, -NRCOR, - $NHCONH_2$, -NHCONRH, - $NHCON(R)_2$, - $NRCONH_2$, -NRCONRH, - $NRCON(R)_2$, - $C(=NH)-NH_2$, -C(=NH)-NHR, - $C(=NH)-N(R)_2$, -C(=NR)-NHR, -C(

$$R_7$$
 X $(CH_2)_n$ $=$

 R_4 is 2,2-diphenylethyl, 2-phenylethyl, benzyl, diphenylmethyl, 1,2-diphenylethyl, 3,3-diphenylpropyl, benzyl, or 2-pyridylethyl, each optionally substituted with -OH, halogen, R, -CH₂R, -OCH₂R, -CH₂OC(O)R, -OR, -O-COR, -COR, -CN, -NO₂, -COOH, -SO₃H, -NH₂, -NHR, -N(R)₂, -COOR, -CHO, -CONH₂, -CONHR, -CON(R)₂,

-NHCOR, -NRCOR, -NHCONH₂, -NHCONRH, -NHCON(R)₂, -NRCONH₂, -NRCONRH, -NRCON(R)₂, -C(=NH)-NH₂, -C(=NH)-NHR, -C(=NH)-N(R)₂, -C(=NR)-NH₂, -C(=NR)-NHR, -C(=NR)-N(R)₂, -NH-C(=NH)-NH₂, -NH-C(=NH)-NHR, -NH-C(=NH)-N(R)₂, -NH-C(=NR)-NHR, -NH-C(=NR)-N(R)₂, -NRH-C(=NR)-NH₂, -NR-C(=NH)-NHR, -NR-C(=NH)-N(R)₂, -NR-C(=NR)-NH₂, -NR-C(=NR)-NH₂, -NR-C(=NR)-NH₂, -SO₂NH₂, -SO₂NH₂, -SO₂NH₃, -SO₂N(R)₂, -SH or -SO_kR;

each R is independently C₁-C₄ alkyl or phenyl optionally substituted with amino, alkylamino, dialkylamino, aminocarbonyl, halogen, alkyl, alkylaminocarbonyl, dialkylaminocarbonyloxy, alkoxy, nitro, cyano, carboxy, alkoxycarbonyl, alkylcarbonyl, hydroxy, haloalkoxy, or haloalkyl; and

k is zero, one or two.

- 12. (Original) The method of Claim 11 wherein R₁ is a phenyl group or phenyl-C₁-C₂ alkyl group, each optionally substituted with C₁-C₄ alkyl, C₁-C₄ alkoxy, halogen, CN, C₁-C₄-alkylthiol, C₁-C₄-haloalkyl or phenoxy; R₄ is 2,2-diphenylethyl, 2-phenylethyl, benzyl, diphenylmethyl, 1,2-diphenylethyl, 3,3-diphenylpropyl, benzyl, or 2-pyridylethyl, each optionally substituted with C₁-C₄ alkyl, C₁-C₄ alkoxy, halogen, CN, C₁-C₄-alkylthiol, C₁-C₄-haloalkyl or phenoxy; R₇ is an optionally substituted phenyl group; n is 1; and X is CO.
- (Original) The method of Claim 12 wherein Ring A is unsubstituted and R₇ is a phenyl group optionally substituted with R, -CH₂R, -OCH₂R, -CH₂OC(O)R, -OH, halogen, -OR, -O-COR, -CON, -NO₂, -COOH, -SO₃H, -NH₂, -NHR, -N(R)₂, -COOR, -CHO, -CONH₂, -CONHR, -CON(R)₂, -NHCOR, -NRCOR, -NHCONH₂, -NHCONRH, -NHCON(R)₂, -NRCONH₂, -NRCONRH, -NRCON(R)₂, -C(=NH)-NH₂, -C(=NH)-NHR, -C(=NH)-N(R)₂, -C(=NR)-NH₂, -C(=NR)-NHR, -C(=NR)-NH-C(=NH)-NHR, -NH-C(=NH)-NHR, -NH-C(=NH)-NHR, -NH-C(=NR)-NHR, -NH-C(=NR)-NH

-NH-C(=NR)-N(R)₂, -NRH-C(=NH)-NH₂, -NR-C(=NH)-NHR, -NR-C(=NH)-N(R)₂, -NR-C(=NR)-NH₂, -NR-C(=NR)-NHR, -NR⁻C(=NR)-N(R)₂, -SO₂NH₂, -SO₂NHR, -SO₂N(R)₂, -SH or -SO_kR.

- 14. (Original) The method of Claim 13 wherein R_7 is a phenyl group; and R_2 is 2-(imidazol-4-yl)ethyl.
- 15. (Previously presented) A method of inhibiting rejection of a transplanted organ, tissue or cell in a recipient mammal, the method comprising the step of administering to the recipient mammal an effective amount of anti CD40L monoclonal antibody and an effective amount of a compound represented by the following structural formula:

or a pharmaceutically acceptable salt of the compound.

- 16. (Original) The method of Claim 15 wherein the transplanted organ, tissue or cell is a transplanted heart, kidney, lung, liver, pancreas, skin or bone marrow.
- 17. (Currently amended) A composition comprising anti-CD40L monoclonal antibody or rapamycin and a compound represented by the following structural formula:

$$\begin{array}{c|c}
 & R_2 \\
 & N \\
 & R_3 \\
 & R_4 \\
 & R_1 \\
 & O \\
\end{array}$$

or a physiological salt thereof, wherein:

 R_1 is a substituted or unsubstituted aryl group or a substituted or unsubstituted alkyl group;

 R_2 is an optionally substituted aralkyl group or an alkyl group substituted with -NR $_5$ R $_6$;

R₃ is a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group;

 R_4 a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group; and

R₅ and R₆ are independently selected from a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group or R₅ and R₆ taken together with the nitrogen to which they are attached are a non-aromatic heterocyclic group;

wherein each substituted aryl group or substituted alkyl group are independently optionally substituted at a carbon atom with-OH, -Br, -Cl, -I, -F, R, -CH₂R, -OCH₂R, -CH₂OC(O)R, -OR, -O-COR, -CON, -NO₂, -COOH, -SO₃H, -NH₂, -NHR, -N(R)₂, -COOR, -CHO, -CONH₂, -CONHR, -CON(R)₂, -NHCOR, -NRCOR, -NHCONH₂,

-NHCONRH, -NHCON(R)₂, -NRCONH₂, -NRCONRH, -NRCON(R)₂, -C(=NH)-NH₂, -C(=NH)-NHR, -C(=NH)-N(R)₂, -C(=NR)-NH₂, -C(=NR)-NHR, -C(=NR)-N(R)₂, -NH-C(=NH)-NH₂, -NH-C(=NH)-NHR, -NH-C(=NH)-N(R)₂, -NH-C(=NR)-NH₂, -NH-C(=NR)-NHR, -NR-C(=NH)-NHR, -NR-C(=NH)-NHR, -NR-C(=NH)-N(R)₂, -NR-C(=NR)-NHR, -NR-C(=NH)-N(R)₂, -SO₂NH₂, -SO

wherein each substituted aryl group is optionally independently substituted at a nitrogen atom, if present, with -R', $-N(R')_2$, -C(O)R', $-CO_2R'$, -C(O)C(O)R', $-C(O)CH_2$ C(O)R', $-SO_2R'$, $-SO_2N(R')_2$, $-C(=S)N(R')_2$, $-C(=NH)-N(R')_2$, [[and]] or -NR' SO_2R' ;

R' is hydrogen, an alkyl group, phenyl, -O(Ph), CH₂(Ph), heteroaryl or non-aromatic heterocyclic ring;

each R is independently an alkyl, benzyl, or aryl group; or $-N(R)_2$, taken together, can also form a non-aromatic heterocyclic group; and

k is 0, 1 or 2.

18. (Cancelled)

19. (Previously presented) A composition comprising anti CD40L monoclonal antibody-and a compound represented by the following structural formula:

or a pharmaceutically acceptable salt of the compound.

20. (Currently amended) A method of inhibiting rejection of a transplanted organ, tissue or cell in a recipient mammal, the method comprising the step of administering to the recipient mammal an effective amount of anti-CD40L monoclonal antibody or rapamycin and an effective amount of a compound represented by the following structural formula:

$$R_{14} \longrightarrow \bigcap_{R_{14}} \bigcap_{R_{11}} \bigcap_{R_{11}} \bigcap_{R_{13}} \bigcap_{R_{13}} \bigcap_{R_{14}} \bigcap_{R_{14}} \bigcap_{R_{14}} \bigcap_{R_{15}} \bigcap_{R_{15}}$$

 R_{11} is -H, a substituted or unsubstituted aryl, a substituted or unsubstituted aralkyl, a substituted or unsubstituted heteroaryl or a substituted or unsubstituted heteroaralkyl;

R₁₂ is alkyl substituted with NR₁₅R₁₆, a substituted or unsubstituted aryl, a substituted or unsubstituted heteroaralkyl, or a substituted or unsubstituted heterocycloalkylalkyl;

R₁₃ is a substituted or unsubstituted alkyl, a substituted or unsubstituted aryl, a substituted or unsubstituted aralkyl, a substituted or unsubstituted cycloalkylalkyl, a substituted or unsubstituted heteroaryl, a substituted or unsubstituted heteroaralkyl, a substituted or unsubstituted benzophenonyl, or a substituted or unsubstituted cycloalkylalkyl; and

each R₁₄ is independently, -H, a substituted or unsubstituted alkyl, a substituted or unsubstituted aryl, substituted or unsubstituted aralkyl or a substituted or unsubstituted heteroaralkyl;

 R_{15} and R_{16} are independently selected from H, a substituted or unsubstituted alkyl, a substituted or unsubstituted cycloalkyl, a substituted or unsubstituted aryl or unsubstituted aralkyl or R_{15} and R_{16} together with the nitrogen to which they are attached are a heterocycloalkyl;

wherein each substituted aryl group, substituted alkyl group, substituted heteroaralkyl, substituted heterocycloalkylalkyl, substituted cycloalkylalkyl, substituted benzophenonyl, substituted cycloalkyl, heterocycloalkyl or substituted aralkyl group are independently optionally substituted at a carbon atom with-OH, -Br, -Cl, -I, -F, R, -CH₂R, -OCH₂R, -CH₂OC(O)R, -OR, -O-COR, -COR, -CN, -NO₂, -COOH, -SO₃H, -NH₂, -NHR, -N(R)₂, -COOR, -CHO, -CONH₂, -CONHR, -CON(R)₂, -NHCOR, -NRCOR, -NHCONH₂, -NHCONRH, -NRCON(R)₂,

 $-C(=NH)-NH_2, -C(=NH)-NHR, -C(=NH)-N(R)_2, -C(=NR)-NH_2, -C(=NR)-NHR, \\ -C(=NR)-N(R)_2, -NH-C(=NH)-NH_2, -NH-C(=NH)-NHR, -NH-C(=NH)-N(R)_2, \\ -NH-C(=NR)-NH_2, -NH-C(=NR)-NHR, -NH-C(=NR)-N(R)_2, -NRH-C(=NH)-NH_2, \\ -NR-C(=NH)-NHR, -NR-C(=NH)-N(R)_2, -NR-C(=NR)-NH_2, -NR-C(=NR)-NHR, -NR-C(=NR)-NHR, -NR-C(=NR)-N(R)_2, -SO_2NH_2, -SO_2NH_2, -SO_2NR_2, -SH, -SO_kR [[and]] \underline{or} -NH-C(=NH)-NH_2; \\ NH_2; \\ -NR_2(=NR)-N(R)_2, -NR_2($

wherein each substituted aryl group, substituted heteroaralkyl, substituted heterocycloalkylalkyl, substituted cycloalkylalkyl, [[,]] heterocycloalkyl or substituted aralkyl group are independently optionally substituted at a nitrogen atom, if present, with -R', -N(R')₂, -C(O)R', -CO₂R', -C(O)C(O)R', -C(O)CH₂C(O)R', -SO₂R', -SO₂N(R')₂, -C(=S)N(R')₂, -C(=NH)-N(R')₂, [[and]] or -NR' SO₂R';

R' is hydrogen, an alkyl group, phenyl, -O(Ph), CH₂(Ph), heteroaryl or non-aromatic heterocyclic ring;

each R is independently an alkyl, benzyl, or aryl group; or $-N(R)_2$, taken together, can also form a non-aromatic heterocyclic group; and

k is 0, 1 or 2.

21. (Previously presented) A method of inhibiting rejection of a transplanted organ, tissue or cell in a recipient mammal, the method comprising the step of administering to the recipient mammal an effective amount of rapamycin and an effective amount of a compound represented by the following structural formula:

or a pharmaceutically acceptable salt of the compound.

- 22. (Previously presented) The method of Claim 21 wherein the transplanted organ, tissue or cell is a transplanted heart, kidney, lung, liver, pancreas, skin or bone marrow.
- 23. (Previously presented) A composition comprising rapamycin and a compound represented by the following structural formula:

or a pharmaceutically acceptable salt of the compound.