18.445 Introduction to Stochastic Processes

Lecture 13: Countable state space chains 2

Hao Wu

MIT

1 April 2015

Hao Wu (MIT) 18.445 1 April 2015 1 / 5

Recall Suppose that *P* is irreducible.

• The Markov chain is recurrent if and only if

$$\mathbb{P}_{x}[\tau_{x}^{+} < \infty] = 1$$
, for some x .

The Markov chain is positive recurrent if and only if

$$\mathbb{E}_{x}[\tau_{x}^{+}] < \infty$$
, for some x .

Today's Goal

- stationary distribution
- convergence to stationary distribution

Hao Wu (MIT) 18.445 1 April 2015 2 / 5

Stationary distribution

Theorem

An irreducible Markov chain is positive recurrent if and only if there exists a probability measure π on Ω such that $\pi = \pi P$.

Corollary

If an irreducible Markov chain is positive recurrent, then

• there exists a probability measure π such that $\pi = \pi P$; $\pi(x) > 0$ for all x. In fact,

$$\pi(x) = \frac{1}{\mathbb{E}_x[\tau_x^+]}.$$

Hao Wu (MIT) 18.445 1 April 2015

Convergence to the stationary

Theorem

If an irreducible Markov chain is positive recurrent and aperiodic, then

$$\lim_n \mathbb{P}_x[X_n = y] = \pi(y) > 0, \quad \textit{for all } x, y.$$

Theorem

If an irreducible Markov chain is null recurrent, then

$$\lim_n \mathbb{P}_x[X_n = y] = 0, \quad \text{for all } x, y.$$

Hao Wu (MIT) 18.445 1 April 2015 4

Convergence to the stationary

Recall Consider a Markov chain with state space Ω (countable) and transition matrix P. For each $x \in \Omega$, define

$$T(x) = \{n \ge 1 : P^n(x, x) > 0\}.$$

Then

$$gcd(T(x)) = gcd(T(y))$$
, for all x, y .

We say the chain is aperiodic if gcd(T(x)) = 1.

Theorem

Suppose that the Markov chain is irreducible and aperiodic. If the chain is positive recurrent, then

$$\lim_n ||P^n(x,\cdot) - \pi||_{TV} = 0.$$