Exercise 1.1

Let $A \subseteq B$ be an integral extension of rings and assume that B is an integral domain. Suppose $\mathfrak{q} \subset B$ is a prime ideal and let $\mathfrak{p} := \mathfrak{q} \cap A \subseteq A$.

1. Prove that A is a field if and only if B is a field.

Proof. (a) " \Rightarrow ": Let A be a field, and $b \in B$ an element. Since B is an integral extension of rings, b is integral over A, thus we have for some a_0, \ldots, a_{n-1} that

$$b^{n} + a_{n-1}b^{n-1} + \dots + a_{1}b + a_{0} = 0$$

$$\iff b^{n} + a_{n-1}b^{n-1} + \dots + a_{1}b = -a_{0}$$

$$\iff b(b^{n-1} + a_{n-1}b^{n-2} + \dots + a_{1}) = -a_{0}$$

$$\iff b\left(\frac{-(b^{n-1} + a_{n-1}b^{n-2} + \dots + a_{1})}{a_{0}}\right) = 1.$$

The last step was possible because if $a_0 = 0$, then the above would not have been the minimal polynomial. The equation above shows b is invertible, hence B is a field.

(b) " \Leftarrow ": Let B be a field, and $y \in A$ an element. Since B is a field, y has an inverse x in B that is integral over A, i.e.

$$x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0} = 0 \quad (1)$$

$$\iff x + a_{n-1} + \dots + a_{1}y^{n-2} + a_{0}y^{n-1} = 0$$
(2)

$$\iff x = -(a_{n-1} + \dots + a_1 y^{n-2} + a_0 y^{n-1})$$
(3)

so $x \in A$ and A is a field.

2. Show that \mathfrak{p} is a prime ideal of A and that A/\mathfrak{p} can be viewed as a subring of B/\mathfrak{q} .

 \square