

开关量8入4出, 高速以太网通讯Socket自由协议远程IO模块 WJ94

产品特点:

- 8路开关量输入,4路开关量输出
- DI状态变化自动发送状态数据,可以捕获脉冲
- DO采用PNP输出,可以直接驱动中间继电器
- 同时支持Modbus TCP 通讯协议
- 内置网页功能,可以通过网页查询与控制
- 双网口支持菊花链连接方便布线
- 宽电源供电范围: 8~32VDC
- 可靠性高,编程方便,易于应用
- 标准DIN35导轨安装,方便集中布线
- 用户可在网页上设置模块IP地址和其他参数
- 网页登录可设置密码, 更安全
- 低成本、小体积、模块化设计
- 外形尺寸: 120 x 70 x 43mm

典型应用:

- 直接控制电动辊筒驱动卡
- 替代PLC控制实现远程控制,降低成本
- 智能物流仓库自动分拣系统
- 以太网工业自动化控制系统
- 智能灯光照明控制系统
- 设备运行监测与控制
- 传感器信号的测量
- 工业相机状态监测与控制
- 物联网开关量信号采集

WAYJUN Data Acquisition Modules WJ94 - RJ45 SIGNAL: DI BIT 0-7 BDI, 4 DO BIT 0-3 Error Power Power

图1 WJ94 模块外观图

产品概述:

WJ94产品是一种物联网和工业以太网采集模块,实现了传感器与网络之间形成透明的数据交互。可以将传感器的数据转发到网络,或者将来自网络的数据转发到传感器。

图 2 WJ94 模块内部框图

WJ94 系列产品包括电源调理,开关量采集、三极管输出和 RJ-45 网络接口通信。通讯方式采用 MODBUS TCP 协议。TCP 是基于传输层的协议,它是使用广泛,面向连接的可靠协议。用户可直接在网页上设置模块 IP 地址、子网掩码等。可用来对传感器设备的运行监测与控制。

WJ94 系列产品是基于单片机的智能监测和控制系统,用户设定的模块 IP 地址、子网掩码等配置信息都储存在非易失性存储器 EEPROM 里。

功能简介:

WJ94 远程I/O模块,可以用来测量八路开关量信号,并有四路开关量输出。

1、开关量信号输入与输出

8 路开关量信号输入,可接干接点和湿接点,详细请参考接线图部分; 4 路开关量信号 PNP 输出,输出电压等于电源电压,输出电流最大 100mA,注意输出不能过载,否则会烧坏输出通道。

2、通讯协议

通讯接口: 2个 RJ-45 网络接口。每个网口都有两个指示灯,网线插上之后 Link 灯(绿灯)会不停闪烁, Data 灯(黄灯)会不定时的闪烁。两个网口之间的数据可以自由交换。

通讯协议:采用 Socket 自由协议或者 MODBUS TCP 协议,实现工业以太网数据交换。也可以通过网页直接访问控制模块。

网络缓存: 2K Byte (收与发都是)

通信响应时间:小于5mS。

3、抗干扰

模块内部有瞬态抑制二极管,可以有效抑制各种浪涌脉冲,保护模块。

产品型号:

RJ45: 输出为 RJ-45 网络接口

WJ94通用参数:

(typical @ +25°C, Vs为24VDC)

输入类型: 开关量输入,8通道(DI0~DI7)。

低电平: 输入 <1V 高电平: 输入 3.5~30V

输入电阻: 30KΩ

输出类型: 开关量输出,4通道(DO0~DO3)。PNP输出,输出电压等于电源电压,最大负载电流100mA,

可以直接驱动中间继电器。

通 讯: MODBUS TCP通讯协议

网 页: 支持网页访问模块,支持网页设置模块参数。

接 口: 2个RJ-45网络接口。两个网口之间的数据可以自由交换。

工作电源: +8~32VDC 宽供电范围,内部有防反接和过压保护电路

功率消耗: 小于 2W

工作温度: -10~+60℃

工作湿度: 10~90%(无凝露)

存储温度: -45~+80℃

存储湿度: 10~95%(无凝露)

隔离耐压: 非隔离

外形尺寸: 120 mm x 70 mm x 43mm

WJ94的出厂默认参数:

模块名称: WJ94-RJ45

MAC地址: EE:22:0A:FC:3E:15

IP地址: 192.168.0.7

子网掩码: 255.255.255.0

默认网关: 192.168.0.1

工作方式: Websocket ▼

本地端口: 23

远程端口: 23

远程服务器地址: 192.168.0.201

自动上传数据: 是▼

上传时间间隔: 1000 ms

版本号: 1.0

密码: 123456

图 3 WJ94 出厂默认参数

1,如何恢复出厂设置?

- 1、在模块通电工作的状态下,将INIT开关拨到INIT位置,然后再拨回NORMAL位置。
- 2、等待30秒钟,模块自动恢复为出厂设置。参数如图3所示。网页登录密码自动恢复为123456。

引脚定义与接线:

引脚	名称	描述	引脚	名称	描述
1	DO3	通道3开关量信号输出端	10	RJ-45	网络接口
2	DO2	通道2开关量信号输出端	11	DI0	通道0开关量信号输入端
3	DO1	通道1开关量信号输出端	12	DI1	通道1开关量信号输入端
4	DO0	通道0开关量信号输出端	13	DI2	通道2开关量信号输入端
5	PW+	电源正端	14	DI3	通道3开关量信号输入端
6	GND	电源负端,信号公共地	15	DI4	通道4开关量信号输入端
7	PW+	电源正端	16	DI5	通道 5 开关量信号输入端
8	GND	电源负端,信号公共地	17	DI6	通道6开关量信号输入端
9	RJ-45	网络接口	18	DI7	通道7开关量信号输入端

注: 同名引脚内部是相连的

图 5 WJ94 模块接线图

开关量信号输入接线图

开关量信号输出接线图

Modbus TCP 协议

(1)、Modbus TCP 数据帧:

在 TCP/IP 以太网上传输, 支持 Ethernet II 和 802.3 两种帧格式。图 3 所示,Modbus TCP 数据帧包含报文头、功能代码和数据 3 部分。

图 6: TCP/IP 上的 MODBUS 的请求/响应

(2)、MBAP报文头描述:

MBAP 报文头(MBAP、Modbus Application Protocol、Modbus 应用协议)分 4 个域,共 7 个字节,如表 1 所示。

衣 1: MBAP 报义头						
域	长度 (B)	描述				
传输标识	2 个字节	标志某个MODBUS 询问/应答的传输				
协议标志	2 个字节	0=MODBUS 协议				
长度	2 个字节	后续字节计数				
单元标识符	1 个字节	串行链路或其它总线上连接的远程从站的识别码				

表 1: MBAP 报文头

(3)、Modbus 功能代码:

Modbus 功能码分为 3 种类型,分别是:

- (1)公共功能代码:已定义好的功能码,保证其唯一性,由 Modbus.org 认可;
- (2)用户自定义功能代码有两组,分别为 $65\sim72$ 和 $100\sim110$,无需认可,但不保证代码使用的唯一性。如变为公共代码,需交 RFC 认可;
- (3)保留的功能代码,由某些公司使用在某些传统设备的代码,不可作为公共用途。

在常用的公共功能代码中, WJ94 支持部分的功能码, 详见如下:

功能码		名称	说明
01	Read Coil Status	读取线圈状态	1表示高电平,0表示低电平。
05	Write Single Coil	写单个线圈	1表示高电平,0表示低电平。
15	Write Multiple Coils	写多个线圈	

(4)、支持的功能码描述

01(0x01)读线圈

在一个远程设备中,使用该功能码读取线圈的1至2000连续状态。请求PDU详细说明了起始地址,即指定的第一个线圈地址和线圈编号。从零开始寻址线圈。因此寻址线圈1-16为0-15。

根据数据域的每个位(bit)将响应报文中的线圈分成为一个线圈。指示状态为1= ON 和0= OFF。第一个数据作为字节的LSB(最低有效位),后面的线圈数据依次向高位排列,来组成8位一个的字节。如果返回的输出数量不是八的倍数,将用零填充最后数据字节中的剩余位(bit)(一直到字节的高位端)。字节数量域说明了数据的完整字节数

功能码 01 举例,读 8 通道 DI 数据,寄存器地址 00033~00040:

	请求		响应		
字段名称		十六进制	字段名称		十六进制
	传输标识	01		传输标识	01
		00			00
	协议标志	00		协议标志	00
MBAP 报文		00	MBAP 报文头		00
头	长度	00		长度	00
		06			04
	单元标识符	01		单元标识符	01
功能码		01	功能码		01
起始地址 Hi		00	字节数		01
起始地址 Lo		20	输出状态 DI7-DI0		00
输出数量 Hi		00			
输出数量 Lo		08			

05(0x05)写单个线圈

在一个远程设备上,使用该功能码写单个输出为ON 或OFF。请求PDU说明了强制的线圈地址。从零开始寻址线圈。因此,寻址线圈地址1为0。线圈值域的常量说明请求的ON/OFF 状态。十六进制值0xFF00请求线圈为ON。十六进制值0x0000请求线圈为OFF。其它所有值均为非法的,并且对线圈不起作用。正确的响应应答是和请求一样的。

功能码 05 举例,设置通道 DO0 为 ON,也就是为 1,寄存器地址 00001:

请求			响应		
字段名称		十六进制	字段名称		十六进制
	传输标识	01		传输标识	01
		00			00
	协议标志	00		协议标志	00
MBAP 报文		00	MBAP 报文头		00
头	长度	00		长度	00
		06			06
	单元标识符	01		单元标识符	01
功能码		05	功能码		05
输出地址 Hi		00	输出地址 Hi		00
输出地址 Lo		00	输出地址 Lo		00
输出值 Hi		FF	输出值 Hi		FF
输出值 Lo		00	输出值 Lo		00

15(0x0F)写多个线圈

在一个远程设备上,使用该功能码写多个输出为ON 或OFF。请求PDU说明了强制的线圈地址。从零开始寻址线圈。因此,寻址线圈地址1为0。线圈值域的常量说明请求的ON/OFF 状态。数据由16进制换算成二进制按位排列,位值为1请求线圈为ON,位值为0请求线圈为OFF。

功能码 15 举例,设置通道 DO0, DO1 为 ON,也就是为 00000011,寄存器地址 00001:

	请求		响应		
字段名称		十六进制	字段名称		十六进制
	传输标识	01		传输标识	01
		00			00
	协议标志	00		协议标志	00
MBAP 报文		00	MBAP 报文头		00
头	长度	00		长度	00
		06			06
	单元标识符	01		单元标识符	01
功能码	功能码		功能码		0F
开始地址 Hi	开始地址 Hi		开始地址 Hi		00
开始地址 Lo	开始地址 Lo		开始地址 Lo		00
线圈数量 Hi		00	线圈数量 Hi		00
线圈数量 Lo		02	线圈数量 Lo		02
字节数		01			
输出值	输出值				

(5)、WJ94 的寄存器地址说明

地址 0X (PLC)	地址 (PC, DCS)	数据内容	属性	数据说明
00001	0000	输出的开关量	读/写	DO 通道 0~3 的输出状态
00002	0001	输出的开关量	读/写	0表示低电平,
00003	0002	输出的开关量	读/写	1表示高电平
00004	0003	输出的开关量	读/写	
00033	0032	输入的开关量	只读	DI 通道 0~7 的电平状态
00034	0033	输入的开关量	只读	0表示低电平输入,
00035	0034	输入的开关量	只读	1表示高电平输入
00036	0035	输入的开关量	只读	
00037	0036	输入的开关量	只读	
00038	0037	输入的开关量	只读	
00039	0038	输入的开关量	只读	
00040	0039	输入的开关量	只读	

自动上传数据: 是▼

上传时间间隔: 1000

ms

Socket通讯自由协议

在 TCP Server, TCP Client, UDP Mode 等工作方式下,可以使用以下自由协议通讯。

如果在配置设置里把自动上传数据设置为"是",

在 TCP Server, TCP Client 工作方式下,通讯连接

成功后会自动上传数据。UDP Mode 不会自动

上传数据, 需要发命令读取数据。

1、DI 状态改变后自动发送数据

明:模块的仟何一个 DI 状态改变后,模块自动发送一条数据到已连接上的设备。

命令格式: 不需要

应答格式: 06 XX 07 3个十六进制数。

参数说明: 06 代表起始符,十六进制数。

XX 代表输入开关状态,十六进制数。每一个位代表一个 DI 通道,排列顺序为 DI7~DI0,

位值为 0: 输入低电平: 位值为 1: 输入高电平

代表结束符,十六进制数。 07

应用举例 1: 模块应答 (十六进制): 06 07 07

明:模块输入开关状态是 07,转成 2 进制为 00000111,排列顺序为 DI7~DI0

通道 0: 高电平 通道 1:高电平 通道 2:高电平 通道3:低电平

通道 7: 低电平 通道 4: 低电平 通道 5: 低电平 通道 6: 低电平

应用举例 2: 模块应答 (十六进制): **06 FF 07**

说 明:模块输入开关状态是 FF,转成 2 进制为 11111111,排列顺序为 DI7~DI0

通道 1: 高电平 通道 0: 高电平 通道 2: 高电平 通道3:高电平

通道 5: 高电平 通道 6: 高电平 通道 4: 高电平 通道 7: 高电平

2、读取 DI 状态命令

明: 读取 DI 当前的状态

命令格式: 05 1个十六进制数。

应答格式: 06 XX 07 3个十六进制数。

参数说明: 06 代表起始符,十六进制数。

XX 代表输入开关状态,十六进制数。每一个位代表一个 DI 通道,排列顺序为 DI7~DI0,

位值为 0: 输入低电平; 位值为 1: 输入高电平

代表结束符,十六讲制数。

应用举例 1: 用户命令(十六进制): 05

模块应答 (十六进制): 06 11 07

说 明:模块输入开关状态是 11,转成 2进制为 00010001,排列顺序为 DI7~DI0

通道 0: 高电平 通道 1: 低电平 通道 2: 低电平 通道 3: 低电平

通道 4: 高电平 通道 5: 低电平 通道 6: 低电平 通道 7: 低电平

应用举例 2: 用户命令(十六进制): 05

模块应答 (十六进制): 06 00 07

说 明: 模块输入开关状态是 00, 转成 2 进制为 00000000, 排列顺序为 DI7~DI0

通道 0: 低电平 通道 1: 低电平 通道 2: 低电平 通道 3: 低电平

通道 4: 低电平 通道 5: 低电平 通道 6: 低电平 通道 7: 低电平

3、设置 DO 输出命令

明:设置所有 DO 通道的状态。

命令格式: **02 XX 03** 3 个十六进制数。

参数说明: 02 代表起始符,十六进制数。

XX 代表输出的状态,十六进制数。高 4 位无效,低 4 位每一个位代表一个 DO 通道,排列顺序 为 DO3~DO0, 位值为 0: 输出低电平; 位值为 1: 输出高电平

代表结束符,十六进制数。 03

应答格式: 不需要应答

应用举例 1: 用户命令 (十六进制): **02 0F 03**

说 明:设置模块输出是 0F,转成 2 进制为 00001111,排列顺序为 DO3~DO0 通道 0: 高电平 通道 1: 高电平 通道 2: 高电平 通道 3: 高电平

应用举例 2: 用户命令 (十六进制): 02 03 03

说 明:设置模块输出是 03,转成 2 进制为 00000011,排列顺序为 DO3~DO0 通道 0: 高电平 通道 1: 高电平 通道 2: 低电平 通道3:低电平

应用举例 3: 用户命令 (十六进制): 02 00 03

说 明:设置模块输出是 03,转成 2 进制为 00000000,排列顺序为 DO3~DO0 通道 0: 低电平 通道 1: 低电平 通道 2: 低电平 通道 3: 低电平

网页上的操作与设置

在电脑或手机浏览器中输入默认模块IP,默认为: 192.168.0.7,可打开模块网页(前提是电脑IP或手机IP与模块在相同网段,登陆网页要根据当前模块的IP地址来登陆操作),输入密码,默认是123456,点击"Login",即可进入数据显示界面,右上角有中英文切换标志,点击可以切换中英文标志。

1, 网页实时采集:

由于本页面使用websocket实现了网页实时采集数据,建议使用Google Chrome浏览器或者IE10浏览器进行测试。连接成功后,网页会自动更新数据(注意模块的工作方式必须设置为"Websocket,",同时自动上传数据要设置为"是"否则无法获得数据),也可以通过网页设置AI量程等参数。如果你的手机浏览器支持websocket, 你也可以用手机读取数据。

2, 配置网络参数:

(a)、模块名称

模块名称默认为 WJ94-RJ45, 用户根据需要可以修改模块名字。

(b)、MAC地址

MAC 地址根据用户需要可以更改。

(c)、IP地址

模块当前IP地址,出厂默认是: 192.168.0.7, IP地址可以修改。

(c)、子网掩码

用来划分子网范围大小(一般是255.255.255.0),用户可修改。

(d)、默认网关

访问外网的必经之路(一般填路由器的 IP 地址)。

(d)、工作方式

默认是 Websocket,最多支持 6 个 Websocket 通讯。 可设置为TCP Server,TCP Client,UDP Mode,Modbus TCP等 通讯方式。TCP Server方式下最多支持6个TCP Server。

(c)、本地端口

本地端口默认23,用户可修改。

(c)、远程端口

工作方式为 TCP Client, UDP Mode 根据实际情况填写。

(e)、远程服务器地址

是远程服务器的 ip 地址。

工作方式为 TCP Client, UDP Mode 根据实际情况填写。

(e)、自动上传数据

Websocket, TCP Server, TCP Client, UDP Mode等模式下,

配置网络参数

MICH SAY		
WJ94-RJ45		
EE:22:0A:FC:3E:15		
192.168.0.7		
255.255.255.0		
192.168.0.1		
Websocket ▼		
23		
23		
192.168.0.201		
是▼		
1000 ms		
1.0		
≒」「野认设置」		

是否需要自动上传测量数据。

(f)、上传时间间隔

测量数据自动上传的时间间隔。默认为1秒上传一次数据。

(b)、版本号

版本从 1.0 开始递增。

(g)、密码

设置参数必须输入正确的密码才会生效。密码就是网页登录密码,出厂默认为123456。

参数填写完成后,点击"保存并重启"按钮,模块会保存参数,并自动重启。

WJ94 的常见问题

1,跨网段问题

如果设备的IP与通信的PC不在一个网段内,并且是处于网线直连,或者同在一个子路由器下面,那么两者是根本无法通信的。

举例:

设备IP: 192.168.0.7 子网掩码: 255.255.255.0 PC的IP: 192.168.1.100

子网掩码: 255.255.255.0

由于设备的IP为192.168.0.7,那么导致在PC上无法登陆设备网页,也无法ping通它。

如果您想两者能够通信,就需要把设备跟 PC 的子网掩码、还有路由器上的子网掩码都设置成 255.255.0.0,这样就能登陆模块网页了。

2,设备能ping通但网页打不开

可能有几个原因造成:

- 1) 设备设置了静态IP与网络中的现有设备IP冲突
- 2) HTTP server port被修改 (默认应该为80)
- 3) 其他原因

解决办法: 重新给设备设置一个未被使用的 IP; 恢复出厂设置或者打开浏览器时输入正确的端口。

3,每隔一段时间,发生掉线重连

每隔一段时间, 会发生掉线重连现象

原因: 串口服务器跟其他设备有IP地址冲突的问题

4,通信不正常,网络链接不上,或者搜索不到

当前所用电脑的防火墙需要关闭 (在windows防火墙设置里)

三个本地端口,不能冲突,也就是必须设置为不同值,默认23、26、29

有着非法的MAC地址,比如全FF的MAC地址,可能会出现无法连接目标IP地址的情况,或者MAC地址重复。 非法的 IP 地址,比如网段与路由器不在一个网段,可能无法访问外网。

5, 硬件问题查找

电源适配器供电不好,或者插头接触不良

电源灯不亮, 网口灯也不亮, 那就是没供电或者硬件坏了

网线或者网口硬件问题, 查看网口灯的状态

网口硬件问题,可查看网口等状态,绿灯应该是长亮,黄灯应该有闪烁,而不是长亮或者长灭,否则是硬件问题密码错误,如果忘记密码,可以恢复出厂配置(在模块通电工作的状态下,将INIT开关拨到INIT位置,然后再拨回NORMAL位置。等待30秒钟,模块自动恢复为出厂设置。参数如图3所示。网页登录密码自动恢复为123456。)

外形尺寸: (单位: mm)

可以安装在标准 DIN35 导轨上

保修:

本产品自售出之日起两年内,凡用户遵守贮存、运输及使用要求,而产品质量低于技术指标的,可以返厂免费维修。因违反操作规定和要求而造成损坏的,需交纳器件费用和维修费。

版权:

版权 © 2019 深圳市维君瑞科技有限公司。

如未经许可,不得复制、分发、翻译或传输本说明书的任何部分。本说明书如有修改和更新,恕不另行通知。

商标:

本说明书提及的其他商标和版权归各自的所有人所有。

版本号: V1.0

日期: 2019年03月