Tables de routage

Nicolas, Taariq, Théo

April 2019

Table des matières

1	Introduction	1
	1.1 Objectif	1
	1.2 Instruction de compilation	2
2	Contenu du projet	2
3	Structure utlilisé	2
	3.1 Graphe	2
	3.2 Tableau du graphe	2
	3.3 Insert	2
	3.3.1 Compteur	2
	3.3.2 Proba	3
	3.4 Table de routage	3
	3.4.1 Poids	3
	3.4.2 Père	3
4	Création du graphe	3
5	Vérification de la connexité	3
6	Création de la table de routage	3
7	Reconstitution du chemin	3

1 Introduction

1.1 Objectif

Le but de ce projet est de créer un une application qui calcul la table de routage de chaque noeuds d'un réseaux de 100 noeuds (graphe de 100 noeuds).

1.2 Instruction de compilation

Le programme est écrit en C.Pour compiler il suffit de taper "make" puis pour executer taper "./graph".

2 Contenu du projet

Le projet contient :

- main.c pour le debug
- graph.c/h pour la création du graphe
- connexe.c/h pour le parcours du graphe
- routage.c/h tableau de routage
- const.h contient les constantes utilisées
- affiche.c/h pour afficher le graphe

3 Structure utlilisé

Nous avons décidé d'utiliser des pointeurs vers les structures au lieux de les passer en argument sans pointeurs.

3.1 Graphe

Cette structure contient 2 champs:

- un tableau qui représente le graphe
- une structure qui permet de bien initialisé le graphe

3.2 Tableau du graphe

Ce tableau représente le graphe. Si il y a une arrête entre i et j alors le poids de l'arrête est noté, sinon il y a -1 dans list[i][j] et list[j][i].

3.3 Insert

Cette structure permet de bien initialisé le graphe et contient 2 champs :

- un tableau qui compte le nombre d'arrête vers le même tier
- un tableau où est noté le nombre d'arrête qu'il faut avoir vers le même tier (est utilisé uniquement pour le tier 2 et 3)

3.3.1 Compteur

Ajoute 1 a la valeur au sommet i à chaque fois qu'on ajoute une arrête vers le même tier.

3.3.2 Proba

Ce tableau est initialisé au moment ou on initialise le graphe et permet de savoir combien d'arrêtes il peut y avoir vers un noeuds du même tier. Pour le tier 2 et 3 lorsque on ajoute une arrête entre le sommet i et j il faut aussi l'ajouter de j vers i et sauvegarder qu' il y a une arrête vers le même tier.

3.4 Table de routage

Cette structure contient 2 champs:

- un tableau qui représente la table de routage avec le poids
- un tableau qui représente les père

3.4.1 Poids

Ce tableau représente le poids minimum pour aller d'un sommet vers un autre. Par exemple prenons i le sommet de départ et j le sommet d'arrivé, poids[i][j] indique le poids minimum pour aller de i à j.

3.4.2 Père

Ce tableau reprèsente le père du sommet d'arrivé en prenant compte du plus petit chemin.

Par exemple on prend 3 sommet i, j et k. Le chemin le plus court pour aller de i à j est : $i \to ... \to k \to j$. Donc dans le tableau pere[i][j] il y aura k.

4 Création du graphe

à faire

5 Vérification de la connexité

à faire

6 Création de la table de routage

à faire

7 Reconstitution du chemin

à faire