Logistic Regression

Spider mites example

Dose of DDT	No. survived	No. dead
0.0	18	7
0.5	19	6
1.0	12	13
1.5	5	20
2.0	6	19
2.5	2	23
3.0	1	24

Binary vs. continuous outcomes

Continuous: ANOVA \longleftrightarrow Regression

Binary: $k \times 2 \text{ table} \longleftrightarrow$?

Goals:

- → Determine the relationship between dose and Pr(dead).
- \longrightarrow Find the dose at which Pr(dead) = 1/2.

A plot of the data

Binary outcomes

Let $p_d = Pr(dead \mid dose d)$

$$p_d = \beta_0 + \beta_1 d$$
 ?

$$0 \le p_d \le 1$$
 but $-\infty \le \beta_0 + \beta_1 d \le \infty$

Odds of death:
$$0 \le \frac{p_d}{1 - p_d} \le \infty$$

$$\text{Log odds of death:} \quad -\infty \leq \ln \left(\frac{p_d}{1-p_d} \right) \leq \infty$$

 \longrightarrow In $\left(\frac{p}{1-p}\right)$ is also called logit(p) or the logistic function.

$logit(\hat{p}_d)$ vs d

Logistic regression

$$\ln\left(\frac{p_d}{1-p_d}\right) = \beta_0 + \beta_1 d$$

Try least squares, regressing $\ln\left(\frac{\hat{p}_d}{1-\hat{p}_d}\right)$ on the dose d?

Problems:

- \longrightarrow What if $\hat{p}_d = 0$ or 1?
- \longrightarrow SD(\hat{p}_d) is not constant with d.

Maximum likelihood

Assume that

- $\circ \ y_d \sim Binomial(n_d,p_d) \text{,}$
- o y_d independent,

$$\circ logit(p_d) = ln(\frac{p_d}{1-p_d}) = \beta_0 + \beta_1 d$$

Note:
$$p_d = \frac{e^{\beta_0 + \beta_1 d}}{1 + e^{\beta_0 + \beta_1 d}}$$

Likelihood:

$$L(\beta_0,\beta_1 \mid y) = \prod_d p_d^{y_d} (1-p_d)^{(n_d-y_d)}$$

Logistic regression in R

Logistic regression is a special case of a generalized linear model.

Function in R: glm()

- > summary(glm.out)\$coef

```
Est SE z-val P-val (Intercept) -1.33 0.33 -4.06 <0.001 dose 1.44 0.23 6.29 <0.001
```

Fitted curve

Interpretation of β 's

$$\ln\left(\frac{p_d}{1-p_d}\right) = \beta_0 + \beta_1 d$$

 $\beta_0 = \log \text{ odds when dose} = 0$

Note: $\beta_0 = 0 \longrightarrow p_0 = \frac{1}{2}$

 β_1 = change in log odds with unit increase in dose

Note: $\beta_1 = 0 \longrightarrow \text{survival unrelated to dose.}$

LD50

LD50 = dose at which $Pr(\text{dead} \mid \text{dose}) = \frac{1}{2}$.

$$\ln\left(\frac{1/2}{1-1/2}\right) = \beta_0 + \beta_1(\text{LD50})$$

$$0 = \beta_0 + \beta_1(\text{LD50})$$

$$\text{LD50} = -\beta_0/\beta_1$$

$$\widehat{\text{LD50}} = -\,\hat{\beta}_0/\hat{\beta}_1$$

$$\hat{\mathsf{SE}}(\widehat{\mathsf{LD50}}) \approx |\widehat{\mathsf{LD50}}| \; \sqrt{\left(\frac{\hat{\mathsf{SE}}(\hat{\beta}_0)}{\hat{\beta}_0}\right)^2 + \left(\frac{\hat{\mathsf{SE}}(\hat{\beta}_1)}{\hat{\beta}_1}\right)^2 - 2 \, \frac{\mathsf{cov}(\hat{\beta}_0, \hat{\beta}_1)}{\hat{\beta}_0 \, \hat{\beta}_1}}$$

LD50

Another example

Tobacco budworm, Heliothis virescens

Batches of 20 male and 20 female worms were given a 3-day dose of pyrethroid *trans*-cypermethrin

The no. dead or "knocked down" in each batch was noted.

	Dose					
Sex	1	2	4	8	16	32
Male	1	4	9	13	18	20
Female	0	2	6	10	12	16

A plot of the data

Analysis in R

Assume no sex difference

> summary(glm.out)\$coef

```
Est SE z-val P-val (Intercept) -1.57 0.23 -6.81 <0.001 dose 0.15 0.02 6.81 <0.001
```

Assume sexes completely different

> summary(glm.outB)\$coef

```
Est
                       SE
                          z-val
                                  P-val
(Intercept)
              -1.72 0.32
                          -5.32
                                 <0.001
              -0.21 0.52
                                  0.681
sexmale
                          -0.41
dose
               0.12 0.02
                          4.86 < 0.001
sexmale:dose
             0.18 0.07
                          2.71
                                  0.007
```

Analysis in R (continued)

Different slopes but common "intercept"

> summary(glm.out)\$coef

```
Est
                       SE
                           z-val
                                   P-val
(Intercept)
              -1.80 0.25
                           -7.17
                                  <0.001
               0.12 0.02
                           5.63
                                  <0.001
dose
               0.16 0.04
                                  <0.001
dose:sexmale
                          3.65
```

Fitted curves

Plot using log₂ dose

Use log₂ of the dose

Assume no sex difference

> summary(glm.out)\$coef

```
Est SE z-val P-val (Intercept) -2.77 0.37 -7.47 <0.001 dose 1.01 0.12 8.15 <0.001
```

Assume sexes completely different

> summary(glm.outB)\$coef

```
Est SE z-val P-val (Intercept) -2.99 0.55 -5.41 <0.001 sexmale 0.17 0.78 -0.22 0.822 dose 0.91 0.17 5.42 <0.001 sexmale:dose 0.35 0.27 1.31 0.191
```

Use log₂ of the dose (continued)

Different slopes but common "intercept"

> summary(glm.out)\$coef

	Est	SE	z-val	P-val
(Intercept)	-2.91	0.39	-7.47	<0.001
dose	0.88	0.13	6.92	<0.001
dose:sexmale	0.41	0.12	3.26	0.001

Fitted curves

