Připomeňme si definici problému SAT:

SAT (splnitelnost booleovských formulí)

Vstup: Booleovská formule φ .

Otázka: Je φ splnitelná?

Příklad:

Formule $\varphi_1=x_1\wedge (\neg x_2\vee x_3)$ je splnitelná: např. při ohodnocení ν , kde $[x_1]_{\nu}=1$, $[x_2]_{\nu}=0$, $[x_3]_{\nu}=1$, platí $[\varphi_1]_{\nu}=1$.

Formule $\varphi_2 = (x_1 \wedge \neg x_1) \vee (\neg x_2 \wedge x_3 \wedge x_2)$ není splnitelná: pro libovolné ohodnocení ν platí $[\varphi_2]_{\nu} = 0$.

Problém SAT je NP-úplný.

Ukážeme si, že zůstává NP-úplný, i když se omezíme jen na formule určitého speciální typu:

3-SAT

Vstup: Formule φ v konjunktivní normální formě, kde každá klauzule obsahuje právě 3 literály.

Otázka: Je φ splnitelná?

Připomeňme si některé pojmy:

- Literál je formule tvaru x nebo $\neg x$, kde x je booleovská proměnná.
- Klauzule je disjunkce literálů.

Příklady:
$$x_1 \lor \neg x_2 \qquad \neg x_5 \lor x_8 \lor \neg x_{15} \lor \neg x_{23} \qquad x_6$$

 Formule je v konjunktivní normální formě (KNF), jestliže je konjunkcí klauzulí.

Příklad:
$$(x_1 \lor \neg x_2) \land (\neg x_5 \lor x_8 \lor \neg x_{15} \lor \neg x_{23}) \land x_6$$

Popíšeme polynomiální algoritmus, který k zadané formuli φ vyrobí formuli φ' takovou, že:

- $m{\varphi}'$ bude v KNF a každá její klauzule bude obsahovat právě 3 literály,
- ullet φ' bude splnitelná právě tehdy, když φ je splnitelná.

Poznámka: Jednoduchá myšlenka – převést φ do KNF – nefunguje.

Problém je v tom, že výsledná formule by mohla být exponenciálně větší než φ (a tedy by ji nebylo možné sestrojit v polynomiálním čase).

Algoritmus rozdělíme do dvou částí:

- Nejprve vyrobíme formuli φ_1 , která bude v KNF a která bude obsahovat **nejvýše** 3 literály v každé klauzuli (a která bude splnitelná právě tehdy, když φ je splnitelná).
- Poté z φ_1 vyrobíme φ' , která bude v KNF a která bude obsahovat **právě** 3 literály v každé klauzuli (a která bude splnitelná právě tehdy, když φ_1 bude splnitelná).

Formuli φ si můžeme znázornit jako booleovský obvod, jehož struktura je dána (abstraktním) syntaktickým stromem dané formule:

$$((x_1 \wedge \neg x_3) \Rightarrow \neg x_2) \wedge ((x_2 \wedge x_3) \vee x_1)$$

Formule φ je splnitelná právě tehdy, jestliže existuje nějaký vstup, pro který dostaneme na výstupu 1.

$$((x_1 \wedge \neg x_3) \Rightarrow \neg x_2) \wedge ((x_2 \wedge x_3) \vee x_1)$$

Formule φ je splnitelná právě tehdy, jestliže existuje nějaký vstup, pro který dostaneme na výstupu 1.

$$((x_1 \wedge \neg x_3) \Rightarrow \neg x_2) \wedge ((x_2 \wedge x_3) \vee x_1)$$

Ve formuli φ_1 , kterou sestrojíme k dané formuli φ , se budou vyskytovat následující proměnné:

- všechny proměnné, které se vyskytují ve formuli φ (tj. jedna proměnná pro každý vstup obvodu),
- ullet jedna proměnná pro každý výskyt booleovského operátoru ve arphi (tj. jedna proměnná pro každé hradlo obvodu).

Příklad: Formule φ_1 bude obsahovat proměnné x_1, x_2, \ldots, x_{10} .

$$((x_1 \wedge \neg x_3) \Rightarrow \neg x_2) \wedge ((x_2 \wedge x_3) \vee x_1)$$

Formule φ_1 bude sestrojena tak, aby pro libovolné ohodnocení ν platilo, že $[\varphi_1]_{\nu}=1$ právě tehdy, pokud:

- ullet v reprezentuje korektní přiřazení booleovských hodnot všem vstupům a výstupům jednotlivých hradel a
- na výstupu obvodu je hodnota 1.

(Pokud bude některá některá z těchto podmínek porušena, bude $[arphi_1]_
u=0.$)

Zaměřme se nyní na jednotlivé hradlo (např. typu \land), jehož výstupu je přiřazena proměnná x_i a jehož vstupy jsou reprezentovány proměnnými x_i a x_k .

Možná (korektní) přiřazení hodnot vstupů a výstupu daného hradla (typu \land) jsou popsána následující tabulkou:

x_j	x_k	Xi
0	0	0
0	1	0
1	0	0
1	1	1

Obsah této tabulky je možné reprezentovat pomocí následující formule ψ :

$$\begin{pmatrix} \neg x_j & \wedge & \neg x_k & \Rightarrow & \neg x_i \\ \neg x_j & \wedge & x_k & \Rightarrow & \neg x_i \end{pmatrix} \wedge \\ \begin{pmatrix} x_j & \wedge & \neg x_k & \Rightarrow & \neg x_i \\ x_j & \wedge & x_k & \Rightarrow & x_i \end{pmatrix}$$

Formule ψ reprezentuje výše uvedenou tabulku v tom smyslu, že ψ nabývá hodnoty 1 právě pro ta přiřazení, která se v této tabulce vyskytují (a pro ta, která se tam nevyskytují, nabývá hodnoty 0).

Libovolnou formuli tvaru

$$A \wedge B \Rightarrow C$$

je možné přepsat na ekvivalentní formuli tvaru

$$\neg(A \land B) \lor C$$

a tu je dále možné přepsat na ekvivalentní formuli tvaru

$$\neg A \vee \neg B \vee C$$

Formuli

$$\begin{pmatrix} \neg x_j & \wedge & \neg x_k & \Rightarrow & \neg x_i \end{pmatrix} & \wedge \\ \begin{pmatrix} \neg x_j & \wedge & x_k & \Rightarrow & \neg x_i \end{pmatrix} & \wedge \\ \begin{pmatrix} x_j & \wedge & \neg x_k & \Rightarrow & \neg x_i \end{pmatrix} & \wedge \\ \begin{pmatrix} x_j & \wedge & x_k & \Rightarrow & x_i \end{pmatrix}$$

tedy můžeme přepsat na ekvivalentní formuli

$$\begin{pmatrix} x_j & \vee & x_k & \vee & \neg x_i \\ x_j & \vee & \neg x_k & \vee & \neg x_i \end{pmatrix} \land$$

$$\begin{pmatrix} \neg x_j & \vee & x_k & \vee & \neg x_i \\ \neg x_j & \vee & \neg x_k & \vee & x_i \end{pmatrix} \land$$

K tabulce

Pokud by typ hradla byl \vee , postupovali bychom analogicky.

$$\begin{array}{c|cccc} x_j & x_k & x_i \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \end{array}$$

bychom dostali formuli

$$\begin{pmatrix} x_j & \vee & x_k & \vee & \neg x_i \\ x_j & \vee & \neg x_k & \vee & x_i \end{pmatrix} \land \begin{pmatrix} \neg x_j & \vee & x_k & \vee & x_i \\ \neg x_j & \vee & \neg x_k & \vee & x_i \end{pmatrix} \land$$

Podobně bychom mohli reprezentovat i další booleovské operace $(\Rightarrow, \Leftrightarrow, \dots)$.

Pro ilustraci si ukážeme ještě konstrukci pro hradla typu \neg (tentokrát máme jen jeden vstup x_i):

Tabulce

$$\begin{array}{c|c} x_j & x_i \\ \hline 0 & 1 \\ 1 & 0 \end{array}$$

odpovídá formule

$$(\neg x_j \Rightarrow \neg x_i) \land (x_j \Rightarrow x_i)$$

kterou můžeme přepsat na tvar

$$(x_j \vee \neg x_i) \wedge (\neg x_j \vee x_i)$$

Nyní přistoupíme k vlastní konstrukci formule φ_1 , kterou vytvoříme jako konjunkci následujících formulí:

- Pro každé hradlo přidáme jemu odpovídající formuli sestrojenou výše popsaným způsobem.
- Přidáme formuli x_{out}, kde x_{out} je proměnná reprezentující výstup obvodu.

Příklad:

Příklad:

Pro x_4 přidáme do formule φ_1 tyto klauzule: $(x_1 \lor x_5 \lor \neg x_4), (x_1 \lor \neg x_5 \lor \neg x_4), (\neg x_1 \lor x_5 \lor \neg x_4), (\neg x_1 \lor x_5 \lor x_4)$

Příklad:

Pro x_5 přidáme do formule φ_1 tyto klauzule: $(x_3 \lor x_5), (\neg x_3 \lor \neg x_5)$

Příklad:

Pro x_6 přidáme do formule φ_1 tyto klauzule: $(x_4 \lor x_7 \lor x_6), (x_4 \lor \neg x_7 \lor x_6), (\neg x_4 \lor x_7 \lor \neg x_6), (\neg x_4 \lor \neg x_7 \lor x_6)$

Příklad:

Pro x_7 přidáme do formule φ_1 tyto klauzule: $(x_2 \lor x_7), (\neg x_2 \lor \neg x_7)$

Příklad:

Pro x_8 přidáme do formule φ_1 tyto klauzule: $(x_2 \lor x_3 \lor \neg x_8), (x_2 \lor \neg x_3 \lor \neg x_8), (\neg x_2 \lor x_3 \lor \neg x_8), (\neg x_2 \lor \neg x_3 \lor x_8)$

Příklad:

Pro x_9 přidáme do formule φ_1 tyto klauzule: $(x_8 \lor x_1 \lor \neg x_9), (x_8 \lor \neg x_1 \lor x_9), (\neg x_8 \lor x_1 \lor x_9), (\neg x_8 \lor \neg x_1 \lor x_9)$

Příklad:

Pro x_{10} přidáme do formule φ_1 tyto klauzule: $(x_6 \lor x_9 \lor \neg x_{10}), (x_6 \lor \neg x_9 \lor \neg x_{10}), (\neg x_6 \lor x_9 \lor \neg x_{10}), (\neg x_6 \lor \neg x_9 \lor x_{10})$

Příklad:

Nakonec přidáme do φ_1 klauzuli reprezentující hodnotu na výstupu: (x_{10})

Celá formule φ_1 pak vypadá takto:

$$(x_{1} \lor x_{5} \lor \neg x_{4}) \land (x_{1} \lor \neg x_{5} \lor \neg x_{4}) \land (\neg x_{1} \lor x_{5} \lor \neg x_{4}) \land (\neg x_{1} \lor \neg x_{5} \lor x_{4}) \land (x_{3} \lor x_{5}) \land (x_{3} \lor x_{5}) \land (x_{4} \lor \neg x_{7} \lor x_{6}) \land (\neg x_{4} \lor x_{7} \lor \neg x_{6}) \land (\neg x_{4} \lor \neg x_{7} \lor x_{6}) \land (x_{2} \lor x_{7}) \land (x_{2} \lor \neg x_{7}) \land (x_{2} \lor x_{3} \lor \neg x_{8}) \land (x_{2} \lor \neg x_{3} \lor \neg x_{8}) \land (\neg x_{2} \lor \neg x_{3} \lor \neg x_{8}) \land (x_{2} \lor \neg x_{3} \lor \neg x_{8}) \land (x_{3} \lor x_{1} \lor \neg x_{9}) \land (x_{3} \lor \neg x_{1} \lor x_{9}) \land (\neg x_{6} \lor x_{9} \lor \neg x_{10}) \land (x_{6} \lor \neg x_{9} \lor \neg x_{10}) \land (x_{10})$$

Nyní se přesvědčíme, že φ_1 je splnitelná právě tehdy, když φ je splnitelná.

Nejprve předpokládejme, že φ je splnitelná.

Existuje tedy ohodnocení ν takové, že $[\varphi]_{\nu}=1$. Definujme ohodnocení ν' následujícím způsobem:

- $\nu'(x_i) = \nu(x_i)$ pokud x_i je proměnná ve formuli φ
- Pokud x_i reprezentuje výstup hradla, $\nu'(x_i)$ nastavíme na hodnotu, která bude na tomto výstupu při ohodnocení ν .

Vzhledem k tomu, že $[arphi]_{
u}=1$, musí platit $u'(x_{out})=1$.

Je tedy zřejmé, že bude platit $[\varphi_1]_{\nu'}=1$, neboť x_{out} i všechny klauzule odpovídající jednotlivým hradlům budou mít při ohodnocení ν' hodnotu 1.

Předpokládejme nyní, že φ_1 je splnitelná, tj. $[\varphi_1]_{\nu'}=1$ pro nějaké ohodnocení ν' .

Snadno ověříme, že $[\varphi]_{\nu'}=1$, neboť ν' musí odpovídat nějakému přiřazení hodnot na výstupech jednotlivých hradel, při kterém je na výstupu celého obvodu hodnota 1.

Tím jsme ověřili, že konstrukce formule $arphi_1$ je opravdu korektní.

Nyní k formuli φ_1 sestrojíme formuli φ' takovou, že:

- φ' bude v KNF,
- ullet každá klauzule formule arphi' bude obsahovat právě 3 literály,
- ullet v žádné klauzuli formule arphi' se žádná proměnná nebude vyskytovat více než jednou,
- ullet arphi' bude splnitelná právě tehdy, když $arphi_1$ je splnitelná.

Nejprve se zbavíme nadbytečných literálů a klauzulí:

- Pokud se v nějaké klauzuli vyskytuje nějaký literál více než jednou, odstraníme z této klauzule všechny jeho výskyty kromě jednoho.
- Pokud nějaká klauzule obsahuje současně literály x_i a ¬x_i (kde x_i je nějaká proměnná), odstraníme celou tuto klauzuli (taková klauzule by měla hodnotu 1 při libovolném ohodnocení).

Je zjevné, že upravená formule je ekvivalentní s původní formulí.

Přidáme dvě nové proměnné y a z.

- Klauzule se třemi literály ponecháme beze změny.
- Každou klauzuli tvaru $(A \lor B)$ (tj. klauzuli se dvěma literály $A \Rightarrow B$) nahradíme následující dvojicí klauzulí:

$$(A \lor B \lor y) \land (A \lor B \lor \neg y)$$

 Každou klauzuli tvaru (A) (tj. klauzuli s jedním literálem) nahradíme následující čtveřicí klauzulí:

$$(A \lor y \lor z) \land (A \lor y \lor \neg z) \land (A \lor \neg y \lor z) \land (A \lor \neg y \lor \neg z)$$

Není těžké ověřit, že výsledná formule φ' je splnitelná právě tehdy, když je splnitelná původní formule.

Jestliže velikost formule φ je n, velikost formulí φ_1 i φ' bude v O(n).

Formule φ_1 i φ' snadno sestrojíme v čase O(n).

Popsaná redukce je tedy polynomiální.