Entrega1.md 5/9/2019

Trabajo Práctico 1

Sistemas Paralelos

Punto 1

Resolver la siguiente expresión:

$$A.A + A.B + C.D$$

Donde A, B, C y D son matrices de NxN.

Solución

Secuencial

Dadas las matrices **A**, **B**, **C** y **D** de tamaño N*N, se busca calcular la ecuacion **AA** + **AB** + **CD**. Lo primero es calcular los valores de las matricez **AA**, **AB**, **CD** en los indices i,j siendo estas **AA** = A[i,j] * A[i,j] --- AB = A[i,j] * B[i,j] --- CD = C[i,j] * D[i,j] utilizando una multiplicacion normal de matrices, y antes de aumentar el indice se suman los valores obtenidos anteriormente y se asignan en la matriz **TOTAL** en la misma posicion i,j, osea, **TOTAL**[i,j] = **AA** + **AB** + **CD**

OpenMP

Se engloba el bloque a paralelizar bajo la primitiva *parallel*, se utiliza la primitiva *for* en los bloques iterativos para que se reparta la cantidad de trabajo entre los hilos y por ultimo la primitiva *private* asignandole a cada hilo sus propios indices y auxiliares para realizar las cuentas.

Tiempos

Tamaño	Tiempo Secuencial	Tiempo 2 Threads	Tiempo 4 Threads
512	1,157355	0,633085	0,327391
1024	9,367766	5,134782	2,773294
2048	75,865119	41,164858	21,877353

Speedup

Tamaño	S _p 2 Threads	S _p 4 Threads
512	1,828119447	3,53508496
1024	1,824374628	3,377848147
2048	1,842958355	3,467746715

Eficiencia

Entrega1.md 5/9/2019

Tamaño	E _p 2 Threads	E _p 4 Threads
512	0,914059735	0,88377124
1024	0,912187314	0,844462037
2048	0,921479178	0,866936679

Conclusiones

Punto 2

Resolver la siguiente expresión:

$$\sum_{i=0}^{m} \frac{maxM_i - minM_i}{avgM_i}.M_i$$

Donde M_i son matrices cuadradas de $N\times N$. min M_i y max M_i son el mínimo y el máximo valor de los elementos de la matriz M_i , respectivamente. avg M_i es el valor promedio de los elementos de la matriz M_i .

Solución

Secuencial

Tenemos una arreglo de tamaño de **M** matrices de **N*N** cada una.

Recorremos este arreglo y en cada matriz buscamos el minimo, el maximo y vamos sumando los valores de cada posicion de la misma para luego dividir ese total por el tamaño de la matriz y obtener un promedio. Terminado esto realizamos la ecuacion "(maximo - minimo)/promedio" la cual una vez calculada, utilizamos su valor para multiplicar la matriz actual. Y por ultimo terminado la multiplicacion avanzamos a la siguiente matriz.

Finalizado el recorrido del vector, lo volvemos a recorrer para obtener la sumatoria de las matrices

Pthreads

Se divide el vector para que cada thread calcule la misma cantidad de matricez. Una vez calculado se divide la sumatoria,cada hilo posee un auxiliar local para calcular su sumatoria que luego se suma en una matriz compartida utilizando exclusion mutua

Tiempos

Tamaño	Tiempo Secuencial	Tiempo 2 Threads	Tiempo 4 Threads
512	0,374618	0,197695	0,123818
1024	1,457437	0,812408	0,550743
2048	5,823712	3,204458	2,168532

Entrega1.md 5/9/2019

Speedup

Tamaño	S _p 2 Threads	S _p 4 Threads
512	1,894929057	3,025553635
1024	1,793971798	2,64631053
2048	1,817378165	2,685555021

Eficiencia

Tamaño	E _p 2 Threads	E _p 4 Threads
512	0,947464528	0,756388409
1024	0,896985874	0,661577633
2048	0,908689083	0,671388755

Conclusiones