Sorting in Linear Time

8.1 Lower bounds for sorting

Comparison sorts: Determine the sorted order based only on comparisons between the input elements $(<, >, =, \le, \ge)$. We may not inspect the values of the elements or gain order information about them in any other way.

The decision-tree model: A decision tree is a full binary tree that represents the comparisons performed by a sorting algorithm that operates on an input of a given size. In a decision tree, each internal node is annotated by a_i : a_j , and each leaf is annotated by a permutation $\langle \pi(1), \pi(2), ..., \pi(n) \rangle$.

Example: Decision tree of insertion sort with n=3.

Lower bound for the worst case

- Each of the *n*! permutations on *n* elements must appear as a leaf.
- Worst case number of comparisons is equal to the height (the longest path from root to a leaf).
- A binary tree of height h contains at most 2^h leaves. We have $n! \le 2^h$, which implies

$$h \ge \lg (n!)$$
.

Using Stirling's approximation (3.18):

$$n! = \sqrt{2\pi n} (n/e)^n (1 + \Theta(1/n)),$$

we have

$$h \ge \lg(n/e)^n = \Theta(n \lg n)$$

Theorem 8.1 Any decision tree that sorts n elements has height $\Omega(n \lg n)$.

Corollary 8.2 Heapsort and merge sort are asymptotically optimal comparison sorts.

8.2 Counting sort

(Assume that each input is an integer in [0..k-1].)

A[1..n]: input C[0..k-1]: counter B[1..n]: output

Counting-Sort(A, B, k)

for $i \leftarrow 0$ to k-1 do $C[i] \leftarrow 0$ /* Reset counters */
for $i \leftarrow 1$ to n do $C[A[i]] \leftarrow C[A[i]] + 1$ /* counting */
for $i \leftarrow 1$ to k-1 do $C[i] \leftarrow C[i] + C[i-1]$ /* prefix sums */
for $i \leftarrow n$ downto 1 do /* output */ $B[C[A[i]]] \leftarrow A[i]$ $C[A[i]] \leftarrow C[A[i]] - 1$

Example: n=8 and k=6.

- not a comparison sort.
- Time: T(n) = O(n+k) (= O(n) if k = O(n).)
- **Stable sort:** numbers of the same value appear in the output array in the same order as they do in the input array.
- Counting sort is stable.
- **8.3 Radix sort:** stable sort on each digit *i* (*i*=1 to *d*) (Every element consists of *d* digits each of which is an integer in the range [0..*k*-1].)

Example: *n*=7, *d*=3 and *k*=10

329		720		72 0		3 29
457		35 5		329		3 55
657		436		436		436
839	·····j]]]	45 7]]]])-	839]]])-	4 57
436		657		3 5 5		657
720		329		4 5 7		7 20
355		839		65 7		839

8-6

- T(n)=O(d(n+k)) (= O(n) if k=O(n) & d=O(1).)
- O(n) for sorting n elements in the range $[0..n^d]$, where d is a constant.

8.4 Bucket sort

(The input distributes uniformly over the interval [0, 1).)

A[1..n]:input B[0..n-1]: buckets

Bucket-sort(A)

for $i \leftarrow 1$ **to** n **do** insert A[i] into list $B[\lfloor nA[i] \rfloor]$ **for** $i \leftarrow 0$ **to** n-1 **do** sort list B[i] by insertion sort concatenate the lists B[0], B[1], ..., B[n-1] convert the list into an array

Example: *n*=10

- Worst case: $T(n) = O(n) + \sum_{0 \le i \le n-1} O(n_i^2)$ = $O(n^2)$.
- Average case: $T(n) = O(n) + \sum_{0 \le i \le n-1} O(E[n_i^2])$ = $O(n) + \sum_{0 \le i \le n-1} O(1)$ = O(n)

(See the textbook for $E[n_i^2] = \Theta(1)$.)

Homework: Ex. 8.2-4, 8.3-2, 8.4-2, Prob. 8-3, 8-6.