There Is No Largest Prime number

Euclid

Motivation

The Basic Problem That We Studied

There Is No Largest Prime number

Euclid of Alexandria euclid@alexandria.edu

University of Alexandria

27th International Symposium of Prime Numbers

Outline

There Is No Largest Prime number

Euclid

Motivation

The Basic Problem That We Studied

Motivation

The Basic Problem That We Studied

There Is No Largest Prime number

Euclid

Motivation

The Basic Problem That We Studied

Definition

A prime number is a number that has exactly two divisors.

There Is No Largest Prime number

Euclid

Motivation

The Basic Problem That We Studied

Definition

A prime number is a number that has exactly two divisors.

Example

▶ 2 is prime (two divisors: 1 and 2).

There Is No Largest Prime number

Euclid

Motivation

The Basic Problem That We Studied

Definition

A prime number is a number that has exactly two divisors.

Example

- ▶ 2 is prime (two divisors: 1 and 2).
- ▶ 3 is prime (two divisors: 1 and 3).

There Is No Largest Prime number

Euclid

Motivation

The Basic Problem That We Studied

Definition

A prime number is a number that has exactly two divisors.

Example

- ▶ 2 is prime (two divisors: 1 and 2).
- ▶ 3 is prime (two divisors: 1 and 3).
- 4 is not prime (three divisors: 1, 2, and 4).

Motivation

The Basic Problem That We Studied

Theorem

There is no largest prime number.

Proof.

1. Suppose *p* were the largest prime number.

4. But q+1 is greater than 1, thus divisible by some prime number not in the first p numbers.

Motivation

The Basic Problem That We Studied

Theorem

There is no largest prime number.

Proof.

- 1. Suppose *p* were the largest prime number.
- 2. Let q be the product of the first p numbers.
- 4. But q+1 is greater than 1, thus divisible by some prime number not in the first p numbers.

Motivation

The Basic Problem That We Studied

Theorem

There is no largest prime number.

Proof.

- 1. Suppose *p* were the largest prime number.
- 2. Let *q* be the product of the first *p* numbers.
- 3. Then q + 1 is not divisible by any of them.
- 4. But q + 1 is greater than 1, thus divisible by some prime number not in the first p numbers.

Activation |

The Basic Problem That We Studied

Theorem

There is no largest prime number.

Proof.

- 1. Suppose *p* were the largest prime number.
- 2. Let *q* be the product of the first *p* numbers.
- 3. Then q + 1 is not divisible by any of them.
- 4. But q + 1 is greater than 1, thus divisible by some prime number not in the first p numbers.

The proof used reductio ad absurdum.

What's Still To Do

There Is No Largest Prime number

Euclid

Motivation

The Basic Problem That We Studied

Answered Questions How many primes are there?

Open Questions

Is every even number the sum of two primes?

An Algorithm For Finding Primes Numbers.

return 0;

```
int main (void)
{
  std::vector<bool> is_prime (100, true);
  for (int i = 2; i < 100; i++)</pre>
```

```
There Is No
Largest Prime
number
```

Euclid

Motivation

The Basic Problem That We Studied

The Basic Problem That We Studied

```
int main (void)
  std::vector<bool> is_prime (100, true);
  for (int i = 2; i < 100; i++)
  if (is_prime[i])
  return 0;
```

The Basic Problem That We Studied

```
int main (void)
  std::vector<bool> is_prime (100, true);
  for (int i = 2; i < 100; i++)
   if (is_prime[i])
     std::cout << i << " ":
     for (int j = i; j < 100;)
       is_prime[j] = false, j+=i);
   }
  return 0;
```

The Basic Problem That We Studied

```
int main (void)
  std::vector<bool> is_prime (100, true);
  for (int i = 2; i < 100; i++)
   if (is_prime[i])
     std::cout << i << " ":
     for (int j = i; j < 100;)
       is_prime[j] = false, j+=i);
   }
  return 0;
```

Note the use of std::.