

UNIVERSIDADE FEDERAL DE LAVRAS PRÓ-REITORIA DE PÓS-GRADUAÇÃO

INSTITUTO DE CIÊNCIAS NATURAIS DEPARTAMENTO DE BIOLOGIA

PROGRAMA DE PÓS-GRADUAÇÃO EM GENÉTICA E MELHORAMENTO DE PLANTAS

PGM522 – ANÁLISE DE EXPERIMENTOS EM GENÉTICA E MELHORAMENTO DE PLANTAS

Ricardo Antonio Ruiz Cardozo

5ª LISTA DE EXERCÍCIOS

Experimentos com informação dentro da parcela e Experimentos com medidas repetidas

1) Os dados que se seguem referem-se à altura de plantas de milho (em metros) obtidos da avaliação de 14 famílias de meios-irmãos. O experimento foi em blocos casualizados com duas repetições e cinco plantas/parcela.

Progênie			Rep. I			Rep. II				
i rogeme	1	2	3	4	5	1	2	3	4	5
1	1,3	1,5	1,55	1,7	1,4	1,35	1,6	1,25	1,3	1,45
2	1,3	1,3	1,3	1,5	1,4	1,2	1,35	1,45	1,5	1,35
3	1,8	1,75	2	1,6	1,5	1,55	1,5	1,45	1,5	1,45
4	1,4	1,5	1,75	1,6	1,55	1,85	1,55	1,75	1,5	1,65
5	1,2	1,2	1,25	1,45	1,6	1,25	1,5	1,5	1,65	1,3
6	1,55	1,5	1,65	1,55	1,7	1,6	1,5	1,6	1,65	1,95
7	1,3	1,15	1,3	1,6	1,6	1,6	1,9	1,55	1,9	1,8
8	1,7	1,3	1,8	1,6	1,7	1,3	1,3	1,55	1,4	1,45
9	2,1	2,1	2,1	1,85	1,7	1,9	1,9	1,75	1,85	2,05
10	1,55	1,55	1,3	1,6	1,4	1,5	1,35	1,35	1,45	1,25
11	1,75	1,55	1,65	1,7	1,5	1,65	1,85	1,75	1,65	1,6
12	1,35	1,6	1,25	1,4	1,45	1,65	1,35	1,25	1,45	1,65
13	1,85	1,95	1,95	1,6	1,5	1,75	1,95	1,85	1,8	1,85
14	1,6	1,4	1,7	1,5	1,3	1,75	1,4	1,5	1,5	1,45

a) Estabelecer adequadamente o modelo estatístico e detalhe os termos e pressuposições. Assuma um modelo aleatório.

$$Y_{ijk} = \mu + f_i + b_j + \mathcal{E}_{ij} + d_{(ij)k}$$

 Y_{ijk} : Altura da planta de milho k que recebeu a família i na repetição ou bloco j (i = 1, 2, 3, 4, ..., 14; j = 1, 2, ..., 6)

μ: Constante associada a todas as observações – Efeito fixo;

 f_i : efeito da família i, sendo $f_i \sim N(0, \sigma^2_f)$ – Efeito aleatório;

 b_i : efeito do bloco j, sendo $b_i \sim N(0, \sigma^2_b)$ – Efeito aleatório;

 e_{ij} : efeito do erro experimental associado à parcela ij, sendo $e_{ij} \sim N(0, \sigma^2_e)$ – Efeito aleatório;

 $d_{(ij)k}$: efeito da planta k dentro da parcela ij, sendo $d_{(ij)k} \sim N(0, \sigma^2_e)$ – Efeito aleatório;

b) Proceder às análises de variância em nível de planta individual, de total e de média da parcela. Faça a equivalência das análises tomando como referência a análise em nível de plantas individuais.

Tabela 1. Tabela de análise de variância (ANAVA) da altura das plantas de milho obtida da avaliação de 14 famílias de meios-irmãos com referência à análise em nível de plantas.

	GL	SQ	QM	F value	p-value(>F)
Bloco	1	0,002571	0,002571	0,0446	0,725987
Família	13	3.346429	0,257418	4.4653	0,0056**
Erro	13	0.749429	0,057648	2,7675	0,0019**
Dentro	112	2.3330	0,020830		

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1

Tabela 2. Tabela de análise de variância (ANAVA) da altura das plantas de milho obtida da avaliação de 14 famílias de meios-irmãos com referência à análise em nível de médias da parcela.

	\mathbf{GL}	SQ	QM	F value	p-value(>F)
Bloco	1	0,00051	0,000514	0,0446	0,836006
Família	13	0,66929	0,051484	4.4653	0,005567**
Residuals	13	0,14989	0,011530		

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1

Tabela 3. Tabela de análise de variância (ANAVA) da altura das plantas de milho obtida da avaliação de 14 famílias de meios-irmãos com referência à análise em nível de totais.

	\mathbf{GL}	SQ	QM	F value	p-value(>F)
Bloco	1	0,0129	0,01286	0,0446	0,836006
Família	13	16,7321	1,28709	4.4653	0,005567**
Residuals	13	3,7471	0,28824		

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1

As análises de variância possuem equivalência, tomando a analise de indivual de plantas é possível observar que a analise a nível de média é equivalente a esta,

pois é necessário apenas multiplicar o quadrado médio (QM) de análise com base em média pelo número de plantas (5 plantas), assim seria equivalente ao QM _{nível indivíduo}. De igual maneira ao nível de totais o QM é igual ao nível individual pois só é dividir o QM dos totais pelo número de plantas nesse caso 5 plantas.

Tabela 4. Comparativo entre quadrados médios dos em nível de planta individual, de total e de média da parcela. Comparativo com referência à análise em nível de plantas.

FV	QM	FV	QM*5	QM/5
Bloco	0.002571	Bloco	0.002571429	0.002571429
Famílias	0.257418	Famílias	0.257417582	0.257417582
Erro	0.057648	Erro	0.057648352	0.057648352
Dentro	0.020830			

c) Obtenha as esperanças de quadrados médios da análise em nível de plantas individuais e proceda aos testes F a 5% de probabilidade e interprete.

Tabela 5. Tabela de análise de variância (ANAVA) da altura das plantas de milho obtida da avaliação de 14 famílias de meios-irmãos com referência à análise em nível

de plantas. Especificando as esperanças dos quadrados médios

	GL	SQ	E(QM)	QM	F value	p-value(>F)
Bloco	1	0,002571	$\sigma_d^2 + K\sigma_\varepsilon^2 + JK\sigma_b^2$	0,002571	0,0446	0,836
Família	13	3.346429	$\sigma_d^2 + K\sigma_\varepsilon^2 + IK\sigma_f^2$	0,257418	4.4653	0,0056**
Erro	13	0.749429	$\sigma_d^2 + K\sigma_{\varepsilon}^2$	0,057648	2,7675	0,0019**
Dentro	112	2.3330	σ_d^2	0,020830		

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1

O teste F, ao nível de 0,05 de significância se rejeita que a variância da Familia é igual a 0, de igual maneira para o erro indicando diferenças nas variâncias obtidas entre plantas e famílias e entre as diferentes famílias. Pois o p-value é inferior ao 0.05.

d) Obtenha os estimadores e, em seguida, estime os componentes da variância considerando a análise com base em plantas individuais.

Tabela 6. Tabela de estimativas dos componentes da variância da altura de planta de milho em plantas individuais.

Variância dentro Variância do Erro Variância da Família Variância do Bloco de parcelas

$\sigma_d^2 = QMD$ $= 0.020830$	$\sigma_{\varepsilon}^{2} = \frac{QME - QMD}{K} = \frac{0.057648 - 0.020830}{5} =$	$\sigma_f^2 = \frac{QMF - QME}{2 * 5}$ $- \frac{0.257418 - 0.057648}{2 * 600000000000000000000000000000000000$	$\sigma_b^2 = \frac{QMB - QME}{14 * 5}$ $- \frac{0.002571 - 0.057648}{1}$
	0.00736	10	70
		= 0.01997	$=-0.0551 \cong 0$

e) Obtenha os limites de confiança da variância associada ao efeito de progênies a 95% de probabilidade baseados nas distribuições t-Student e qui-quadrado. Intérprete.

$$v_f = \frac{(QMP - QME)^2}{\frac{QMP^2}{GLF} + \frac{QME^2}{GLE}} = 7.45541$$

- Intervalo de Confiança da variância distribuição qui-Quadrado:

$$IC\left[\sigma_f^2, (1-\alpha)\right] = \left(\frac{\nu_f * \sigma_f^2}{\chi^2_{\left(\nu_f, \frac{\alpha}{2}\right)}}; \frac{\nu_f * \sigma_f^2}{\chi^2_{\left(\nu_f, 1-\frac{\alpha}{2}\right)}}\right) = (0.008912778; \ 0.0780274)$$

- Intervalo de Confiança da variância distribuição t-Student:

$$IC\left[\sigma_f^2, (1-\alpha)\right] = \sigma_f^2 \pm t_{(\nu_f, \frac{\alpha}{2})} \sqrt{\sigma^2(\sigma_f^2)} = (-0.0924477; \ 0.1322986)$$

Pode-se interpretar ao 95% de confiança, o parâmetro da variância está entre os limites estabelecidos de acordo com a distribuição de qui-quadrado e t-Student, pois a variância da altura das plantas foi de 0.0199 aproximadamente. Mas se o número de ν for inferior a 30 o teste de t-Student, não é um teste recomendável, pois o intervalo pode considerar o zero (0) e neste está incluso no intervalo, portanto, o valor do parâmetro é igual a 0.

f) Estimar a variância fenotípica entre médias de progênies utilizando todos os procedimentos possíveis. Interprete.

Tabela 7. Estimativa de variância fenotípica entre médias de progênies.

Familia	Altura	
1	1.44	
2	1.365	
3	1.610	
4	1.61	
5	1.390	
6	1.625	
7	1.570	

Variância $(\sigma_{fen ext{o}tipo}^2)$	0.02574
14	1.510
13	1.805
12	1.440
11	1.665
10	1.430
9	1.930
8	1.510

Usando o QM Progênies

$$\sigma_{fen\'otipo}^2 = \frac{QMP}{2*5} = \frac{0,257418}{10} = 0.02574$$

Usando as estimativas dos componentes de variância

$$\sigma_{fenótipo}^2 = \frac{\sigma_{(ij)k}^2}{rn} + \frac{\sigma_{\varepsilon}^2}{r} + \sigma_f^2 = \frac{0.020830}{2*5} + \frac{0.00736}{2} + 0.01997 = 0.02573$$

Pode-se interpretar que com qualquer método de obtenção da variância genotípica dá um mesmo resultado, pequenas diferenças podem se encontrar pelos métodos de determinação e variâncias.

g) Estime a herdabilidade para seleção na média de progênie usando o estimador padrão e, logo após, calcule os limites de confiança a 95% a partir da expressão proposta por Knapp et al (1985) apresentada a seguir. Interprete o resultado.

$$IC\left[h^{2},(1-\alpha)\right] = \left\{1 - \left[\left(\frac{QMP}{QME}\right)F_{\left(1-\frac{\alpha}{2};GLE;GLP\right)}\right]^{-1};1 - \left[\left(\frac{QMP}{QME}\right)F_{\left(\frac{\alpha}{2};GLE;GLP\right)}\right]^{-1}\right\}$$

$$h^2 = \frac{\sigma_g^2}{\sigma_{fenotipica}^2} = \frac{0.01997}{0.02574} = 0.7760512$$

IC
$$[h^2, (1-\alpha)] = [0.3023916; 0.9281072]$$

Pode-se interpretar que segundo o intervalo de confiança da herdabilidade contêm o valor estimado da herdabilidade da altura de milho nesse caso foi de 0.77 aproximadamente.

3) Em um experimento com 10 clones de laranja Pêra-Rio foram obtidos os seguintes resultados de produção, em kg de frutos/planta:

Ano	Clanas	Blo	co I	Blo	Bloco II		
Ano	Clones	Planta 1	Planta 2	Planta 1	Planta 2		
	Umbigo	36,5	32,4	28,1	35,6		
	Pé Franco	71,4	109,7	62,8	57		
	Premunizada	104,9	72	59,2	89,2		
	Ipiguá CV 2	71,2	58	91,6	93,6		
ano	Messias CV	73,2	47,2	47,8	50		
1 ° 3	Sta Irene CN	87,7	41,3	45,7	73		
	Tardia CV 4	74,2	5,6	18,2	20,1		
	Ipiguá CV 1	41,6	57,3	41,5	26		
	Bianchi	85,2	66,3	79	82,1		
	Sta Tereza	36,9	30,1	29,6	28,1		
	Umbigo	39,8	45,1	57,3	23		
	Pé Franco	102,6	23,1	59,7	33,8		
	Premunizada	38,7	103,1	71,3	52,27		
	Ipiguá CV 2	44,3	26,2	49,45	59,7		
ano	Messias CV	50,4	29,9	75,75	31,55		
$^{\circ}_{\mathbf{z}}$	Sta Irene CN	49,2	70,2	59,9	42,45		
•	Tardia CV 4	23,4	28,3	31,55	28,85		
	Ipiguá CV 1	32,5	27,2	34,45	31,85		
	Bianchi	51,2	98,6	74,2	60,2		
	Sta Tereza	31,3	31,8	24,35	31,55		

Pede-se:

a) Estabelecer o modelo estatístico em nível de plantas individuais, assumindo o efeito de clones aleatório e de blocos e anos fixos.

$$Y_{ijkl} = \mu + C_i + B_j + A_k + CB_{ij} + CA_{ik} + BA_{jk} + \mathcal{E}_{ijk} + d_{ijkl}$$

 Y_{ijkl} : Produção em kg/planta de laranja da planta l que recebeu o clone i no bloco j no ano k (i = 1, 2, ..., 10; j = 1, 2; k = 1, 2; l = 1, 2);

μ: Constante associada a todas as observações – Efeito fixo;

 C_i : efeito do clone i, sendo $C_i \sim N(0, \sigma_f^2)$ – Efeito aleatório;

B_j: efeito do bloco j, sendo b_j Efeito fixo;

 A_k : efeito do bloco j, sendo A_k Efeito fixo;

 CB_{ij} : efeito da interação do clone i com o bloco j, sendo $CB_{ij} \sim N \ (0, \ \sigma^2_f)$ – Efeito aleatório;

 CA_{ik} : efeito da interação do clone i no ano k, sendo $CB_{ik} \sim N \ (0, \ \sigma^2_f)$ – Efeito aleatório;

 BA_{jk} : efeito da interação do bloco j no ano k, sendo $BA_{jk} \sim N \ (0, \ \sigma^2_f) - Efeito aleatório;$

 e_{ijk} : efeito do erro experimental associado à parcela ij no ano k, sendo $e_{ij} \sim N(0, \sigma^2_e)$ – Efeito aleatório;

 d_{ijkl} : efeito da planta a parcela ij no ano k e planta l, sendo $d_{ijkl} \sim N(0, \sigma^2_e)$ – Efeito aleatório;

b) Apresente as E(QM).

FV	GL	E(QM)
Bloco	1	$\sigma^2 + a \sigma_{CB}^2 + ac \sigma_B^2$
Clone	9	$\sigma^2 + ba \sigma_C^2$
Ano	1	$\sigma^2 + b \ \sigma_{CA}^2 + cb \ \sigma_A^2$
Clone:Bloco	9	$\sigma^2 + a\sigma_{CB}^2$
Clone:Ano	9	$\sigma^2 + b \; \sigma_{CA}^2$
Bloco:Ano	1	$\sigma^2 + c \ \sigma_{BA}^2$
Clone:Bloco:Ano	9	$\sigma^2 + \sigma_{CBA}^2$
Residuo	40	σ^2

c) Proceder a ANAVA e interpretar os resultados obtidos para o teste de F à 5% de probabilidade, especialmente os referentes a clones e à interação clones x anos.

FV	GL	SQ	QM	F-value	p-value
Bloco	1	324.9389	324.939	1.1449	0.3125
Clone	9	21932.173	2436.908	6.1748	<0.0001 ***
Ano	1	1784.444	1784.444	6.7701	0.0286 *
Clone:Bloco	9	2554.328	283.814	0.7192	0.6884
Clone:Ano	9	2372.207	263.579	0.6679	0.7325
Bloco:Ano	1	223.680	223.680	2.4276	0.1536
Clone:Bloco:Ano	9	829.252	92.139	0.2335	0.9874
Residuo	40	15786.078	394.651		

Para os efeitos dos clones e do ano se rejeita H_0 ; existe efeito significativo do ano e variâncias nos clones

d) Obtenha as estimativas das componentes da variância.

FV	GL	E(QM)	Componente	Estimativa
Bloco	1	$\sigma^2 + a \sigma_{CB}^2 + ac \sigma_B^2$	$\sigma^2 b = \frac{QMB - QMCB}{}$	2.05625
			ac	
Clone	9	$\sigma^2 + ba \sigma_C^2$	$\sigma_c^2 = \frac{QMC - QME}{l_{r,\sigma}}$	510.564
			$b_c = \frac{ba}{ba}$	
Ano	1	$\sigma^2 + b \sigma_{CA}^2 + cb \sigma_A^2$		76.043
			Ch	
Clone:Bloco	9	$\sigma^2 + a\sigma_{CB}^2$	$\sigma_{CB}^2 = \frac{QMCB - QME}{\sigma_{CB}}$	-55.418 ≅ 0
			a	

Clone:Ano	9	$\sigma^2 + b \sigma_{CA}^2$	$\sigma_{CA}^2 = \frac{QMCA - QME}{h}$	-65.536 ≅ 0
Bloco:Ano	1	$\sigma^2 + c \sigma_{BA}^2$	$\sigma_{BA}^2 = \frac{QMBA - QME}{c}$	-17.09 ≅ 0
Clone:Bloco:	9	$\sigma^2 + \sigma_{CBA}^2$	$\sigma_{CBA}^2 = QMCBA - QME$	-302.512 ≅
Ano		CBN		0
Residuo	40	σ^2	$\sigma_e^2 = QME$	394.651