

SPECIFIC INSTRUCTIONS

- You must answer the 20 questions so as to be able to obtain the maximum score.
- All of the blank pages on the back of this topic can be used for drafting if you wish. No draft will be distributed to you.
- The use of the non-programmable calculator is authorized
- In order to eliminate random answer strategies, each correct answer is rewarded with 3 points, while each wrong answer is penalized by the withdrawal of 1 point.

First exercise: Mechanical energy

We propose to determine the variation of the mechanical energy of a system between two given instants.

We have a table inclined by 15° with respect to the horizontal. During its motion, at an instant t, the mobile (A), a point mass of mass m=220 g, undergoes forces due to friction whose resultant $\vec{f}=-f\vec{1}$ is constant and in the opposite direction to $\vec{V}=V\vec{1}$ (V>0), the velocity of the center of mass M of (A) with respect to an axis (O, $\vec{1}$) parallel to the line of greatest slope. An appropriate device records, at equal intervals of time to $\tau=40$ ms, the abscissa

x of M and the value of V. The measurements are registered in the table below. (Take: $g = 10 \text{ m/s}^2$).

Instant	t_0	t_1	t_2	t ₃	t 4	t ₅	t_6	t ₇	t ₈	t ₉	t_{10}	t ₁₁	t ₁₂
Position	\mathbf{M}_0	\mathbf{M}_1	M_2	M ₃	M_4	M_5	M_6	M_7	M_8	M ₉	M_{10}	M_{11}	M_{12}
Abscissa x(m)	0.000	0.012	0.027	0.047	0.070	0.097	0.128	0.163	0.201	0.244	0.290	0.341	0.395
V(m/s)	0.242	0.338	0.435	0.532	0.629	0.726	0.823	0.919	1.016	1.113	1.210	1.307	1.403

- 1. Let P be the algebraic measurement of the linear momentum of (A) at an instant t. The instantaneous variation of the linear momentum, $\Delta \vec{P} = \Delta P \vec{i}$, is supposed to be constant; ΔP , at the instant t_6 , is equal to:
- **a)** $\Delta P = 0.0313$ kg. m/s;
- **b)** $\Delta P = 0.0531 \text{ kg .m/s};$
- c) $\Delta P = 0.0425 \text{ kg .m/s}.$
- **2.** By applying Newton's second law $(\vec{F} = \frac{d\vec{P}}{dt})$, the value of F is:
- **a)** F = 0.665 N;
- **b**) F = 0.531 N;
- **c)** F = 0.426 N.
- **3.** The value N of the normal reaction \overrightarrow{N} of the inclined support on (A) is equal to:
- a) N = 2.125 N;
- **b)** N = 1.569 N;
- **c**) N = 0.589 N.
- **4.** The algebraic measurement F of the resultant \vec{F} of the forces exerted on (A) is expressed by:
- a) F = 0.608 f;
- **b**) F= 0.569 f;
- **c**) F = 0.508 + f.

- **5.** The value of f is then:
- **a)** f = 0.021 N;
- **b**) f = 0.038 N;
- **c)** f = 0.058 N.
- **6.** The work $W(\vec{f})$ done by \vec{f} between the points M_0 and M_{12} is equal to:
- **a)** $W(\vec{f}) = -0.023 J;$
- **b**) $\vec{W(f)} = -0.008 \text{ J};$
- c) $W(\vec{f}) = -0.015 J.$
- 7. Knowing that the horizontal plane passing through M_{12} is chosen as the reference level for the gravitational potential energy, the mechanical energy of the system (mobile Earth) at the instant t_{12} is equal to:
- **a)** ME $(t_{12}) = 0.184$ J;
- **b)** ME $(t_{12}) = 0.126 \text{ J};$
- **c)** ME $(t_{12}) = 0.217$ J.
- **8.** At the point M_{12} , the mobile (A) hits a spring, of negligible mass and of stiffness constant k. The maximum compression of the spring is of 10 cm. Let C be the point reached then by (A).
- **8.1.** The mechanical energy ME of the system ((A), spring, Earth) at point (C) is expressed by:
- a) ME(C) = 0.005k + 0.00569 (ME in J);
- **b)** ME(C) = 0.005k 0.0569 (ME in J);
- c) ME(C) = 0.05k 0.569 (ME in J).
- **8.2.** The work $W(\vec{f})$ done by \vec{f} between the points M_{12} and C is equal to :
- **a)** $W(\vec{f}) = -0.0021 J;$
- **b**) $W(\vec{f}) = -0.0058 J;$
- **c**) $W(\vec{f}) = -0.0038 J.$
- **8.3.** The stiffness constant k of the spring is equal to :
- **a)** k = 54.0 N/m;
- **b)** k = 31.5 N/m;
- c) k = 42.3 N/m.

Second exercise: Role of a coil in a circuit

The circuit shown in figure 1 is carried out where:

- (G) is an ideal generator of emf E = 9 V;
- (D₁) is a resistor of resistance $R_1 = 90 \Omega$;
- (D_2) is a resistor of resistance R_2 ;
- (B) is a coil of inductance L = 1 H and of negligible resistance;
- (K) is a special switch causing no loss of energy when it passes from position 1 to position 2.

A- Current growth in the circuit (R₁L)

The switch is placed in position 1 at an instant chosen as the origin of the times ($t_0 = 0$). At an instant t, the circuit carries a current i_1 .

1. The differential equation in i_1 is:

a)
$$E = R_1 \frac{di_1}{dt} + L i_1;$$

b) $0 = L \frac{di_1}{dt} + R_1 i_1;$

b)
$$0 = L \frac{di_1}{dt} + R_1 i_1;$$

$$\mathbf{c)} E = R_1 i_1 + L \frac{di_1}{dt}.$$

2. The solution of the previous differential equation is given by:

a)
$$i_1 = 0.1 (1 - e^{-90.t})$$
 (i_1 in A and t in s);

b)
$$i_1 = 9 (1 - e^{-90.t})$$
 (i_1 in A and t in s);

c)
$$i_1 = 9 (1 - e^{-0.011.t})$$
 (i_1 in A and t in s).

3. In steady state, the value of the current i_1 is:

a)
$$i_1 = 10 A$$
;

b)
$$i_1 = 9 A$$
;

c)
$$i_1 = 0.1 A$$
.

4. In steady state, the magnetic energy W_m stored by the coil is:

a)
$$W_m = 50 J$$
;

b)
$$W_m = 45 J$$
;

c)
$$W_m = 5 \times 10^{-3} \text{ J.}$$

B - Current decay in the dipole (R₂L) and lighting of a lamp

1. Current decay in the circuit (R₂L)

At an instant chosen as a new origin of the times $(t_0 = 0)$, the switch (K) passes from position 1 to position 2. At an instant t, the circuit carries then a current i₂.

1.1. The differential equation in i_2 is:

a)
$$L \frac{di_2}{dt} + (R_1 + R_2)i_2 = 0;$$

b) $L \frac{di_2}{dt} + R_2i_2 = 0;$

b)
$$L \frac{di_2}{dt} + R_2 i_2 = 0$$

c)
$$L \frac{di_2}{dt} + R_2 i_2 = \frac{E}{R_2}$$
.

1.2. The solution of this differential equation is of the form:

a)
$$i_2 = \frac{E}{R_1} e^{-\frac{R_2}{L}t};$$

b)
$$i_2 = \frac{E}{R_2} e^{-\frac{R_2}{L}t};$$

c)
$$i_2 = \frac{E}{R_1} e^{-\frac{L}{R_2}t}$$
.

2. Duration of lighting of a lamp

The resistor D_2 is a lamp of resistance $R_2 = 400 \Omega$ (Fig. 2).

This lamp stays on as long as it carries a current that is at least equal to 20 mA. The maximum duration of the lighting the lamp is:

a)
$$\Delta t = 2 \text{ ms}$$
;

b)
$$\Delta t = 4$$
 ms;

c)
$$\Delta t = 1$$
 ms.

C – Oscillating circuit

The resistor (D_2) is replaced by a capacitor of capacitance C (Fig. 3). The switch, placed in position 1, the circuit reaches the steady state. At an instant chosen as the origin of time $(t_0=0)$, the switch (K) passes from position 1 to position 2. Using a suitable device, we record the variations of the voltage u_C across the capacitor and we obtain the waveform of figure 4.

- **1.** The proper period T_0 of the oscillations of the LC circuit is:
- **a)** $T_0 = 1.25 \text{ ms};$
- **b)** $T_0 = 0.63 \text{ ms};$
- **c**) $T_0 = 0.5$ ms.
- **2.** The value of the capacitance C of the capacitor is:
- **a**) C = 10 nF;
- **b**) $C = 10 \mu F$;
- **c**) C = 10 mF.
- **3.** The maximum value U_0 of the voltage u_C across the capacitor is:
- **a**) $U_0 = 9 V$;
- **b**) $U_0 = 100 \text{ V}$;
- **c)** $U_0 = 1000 \text{ V}.$

Solution

SPECIFIC INSTRUCTIONS

- You must answer the 20 questions so as to be able to obtain the maximum score.
- All of the blank pages on the back of this topic can be used for drafting if you wish. No draft will be distributed to you.
- The use of the non-programmable calculator is authorized
- In order to eliminate random answer strategies, each correct answer is rewarded with 3 points, while each wrong answer is penalized by the withdrawal of 1 point.

First exercie: Mechanical energy

First exercie: Mechanical energy								
Questions	(a)	(b)	(c)	Notes				
1			Х					
2		Х						
3	Х							
4		Х						
5		Х						
6			Х					
7			Х					
8.1		Х						
8.2			Х					
8.3	Х							

Second exercise: Role of a coil in a circuit

Questions	(a)	(b)	(c)	Notes
A.1			Х	
A.2	Х			
A.3			Х	
A.4			Х	
B.1.1		Х		
B.1.2	Х			
B.2		Х		
C.1		Х		
C.2	Х			
C.3			Х	