ECN140: Handout 6

Takuya Ura

February 26, 2019

The objective of this handout is to consider the situation in which the dependent variable is binary (i.e., y takes either 0 or 1). It follows Ch.7-5 & 17 of Wooldridge's textbook, but it is slightly different. To illustrate the concepts, we are going to use MROZ.DTA.

When y is binary, it is adequate to model the conditional probability of y given x. That is,

$$P(y = 1 \mid x_1, \dots, x_k) = G(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k), \tag{1}$$

where G is one of the following three functions

(LPM)
$$G(z) = z$$

(Logit)
$$G(z) = \frac{\exp(z)}{1 + \exp(z)}$$

(Probit) $G(z) = \Phi(z)$ where Φ is the standard normal cumulative distribution function.

7.5 Linear Probability Model

In the linear probability model, we have G(z) = z in Eq. (1) so

$$P(y = 1 \mid x_1, \dots, x_k) = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k.$$

Here the interpretation of β_j is straightforward: β_j measures the change in the probability of y = 1 when x_j increases by one unit, holding other factors fixed. That is,

$$\Delta P(y=1|x) = \beta_i \Delta x_i$$
.

7.5.1 Shortcoming for the Linear Probability Model

The predicted probabilities may be less than 0 or greater than 1.

7.5.2 Heteroskedasticity for Regressing y on x_1, \ldots, x_k

The parameters, $\beta_0, \beta_1, \dots, \beta_k$ are estimated by the OLS. Define

$$u = y - (\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k).$$

Then we can write down a linear regression model

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + u.$$

Furthermore, ZCM holds (i.e., $E[u \mid x_1, \dots, x_k] = 0$), because

$$E[u \mid x_1, \dots, x_k] = E[y - (\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k) \mid x_1, \dots, x_k]$$

$$= E[y \mid x_1, \dots, x_k] - (\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)$$

$$= 1 \cdot P(y = 1 \mid x_1, \dots, x_k) - (\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)$$

$$= (\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k) - (\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)$$

$$= 0.$$

One remark is that the homoscedasticity assumption does not hold. It is because

$$V(u \mid x_1, ..., x_k) = V(y \mid x_1, ..., x_k)$$

$$= E[y^2 \mid x_1, ..., x_k] - E[y \mid x_1, ..., x_k]^2$$

$$= P(y = 1 \mid x_1, ..., x_k) - P(y = 1 \mid x_1, ..., x_k)^2$$

$$= (\beta_0 + \beta_1 x_1 + ... + \beta_k x_k) - (\beta_0 + \beta_1 x_1 + ... + \beta_k x_k)^2,$$

and then $V(u \mid x_1, \ldots, x_k)$ depends on (x_1, \ldots, x_k) .

When the error is heteroskedastic, the usual formula for the OLS standard errors is wrong. We need to use "robust" option in STATA "regress."

17.1 Logit and Probit Models for Binary Respose

The logit/probit specifications force the predicted probability to be in (0,1).

In these models, the interpretation of β_j is not straightforward. Consider x_1 is a continuous variable. The partial effect of x_1 on $P(y = 1 \mid x_1, \dots, x_k)$ holding the other independent variables fixed is captured by

$$g(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)\beta_1 \tag{2}$$

where g is the derivative of G, i.e., $g(z) = \frac{\partial}{\partial z}G(z)$. Since (x_1, \ldots, x_k) are random variables, we want to construct a summary statistic of Eq. (2). The sample mean of Eq. (2) is called the average partial effect:

$$\frac{1}{n}\sum_{i=1}^n g(\beta_0+\beta_1x_{i1}+\cdots+\beta_kx_{ik})\beta_1.$$

Stata's "margins, dydx(*)" produce this value for each independent variable.

The parameters, $\beta_0, \beta_1, \dots, \beta_k$ are estimated by the maximum likelihood estimation. In the next three sections, we are going to see how to implement the MLE.

Binary Response Models with No Independent Variable

Before going to the general binary response models, we are going to assume that we have no independent variable. The probability of y = 1 is denoted by

$$\rho = P(y = 1).$$

(In this section, I will use ρ for the true parameter value and p for a generic value of the parameter.)

We do not know ρ , so we want to estimate it from a dataset. In this case, we are going to use the maximum likelihood estimation. For every parameter value p, the probability of y = 0 is evaluated as

$$1-p$$

and the conditional probability of y = 1 is evaluated as

p.

For every observation i, we can observe the value of y and then we can evaluate the probability of that value being realized:

$$\begin{cases} 1 - p & \text{if } y_i = 0 \\ p & \text{if } y_i = 0. \end{cases}$$

More simply, for every parameter value p, we can evaluate the probability of y_i being realized as

$$p^{y_i}(1-p)^{1-y_i}$$
.

$$G(\beta_0 + \beta_1 + \beta_2 x_2 + \dots + \beta_k x_k) - G(\beta_0 + \beta_2 x_2 + \dots + \beta_k x_k).$$

¹If x_j is a binary variable, the approximation via differentiation is not appropriate. The partial effect of x_1 on $P(y=1 \mid x_1, \ldots, x_k)$ holding the other independent variables fixed is captured by

We observe the values of $\{y_i : i = 1, ..., n\}$, and, for every parameter value p, we can evaluate the probability of those values being realized as

$$L(p) = p^{y_1}(1-p)^{1-y_1} \times \cdots \times (p)^{y_n}(1-p)^{1-y_n}.$$

The function L(p) is called the likelihood function. Taking the log of the likelihood function, then we have the new function

$$\mathscr{L}(p) = \sum_{i=1}^{n} \log (p^{y_i} (1-p)^{1-y_i}).$$

It is called the log-likelihood function. The maximum $\hat{\rho}$ of the (log-)likelihood function is called the maximum likelihood estimator.

In this simple case, we can show

$$\hat{\rho} = \frac{\text{(the number of observations with } y_i = 1)}{n}.$$

We will skip the proof but we demonstrate it by the first order condition. The log-likelihood function can be simplified to

$$\mathscr{L}(p) = \sum_{i=1}^{n} (y_i \log(p) + (1 - y_i) \log(1 - p)).$$

Taking the derivative, we have

$$\frac{\partial}{\partial p} \mathcal{L}(p) = \sum_{i=1}^{n} \left(y_i \frac{1}{p} + (1 - y_i) \frac{-1}{1 - p} \right). = \sum_{i=1}^{n} \frac{y_i - p}{p(1 - p)} = \frac{\sum_{i=1}^{n} (y_i - p)}{p(1 - p)} = \frac{n(\bar{y} - p)}{p(1 - p)}.$$

The first order condition $\frac{\partial}{\partial p} \mathcal{L}(p) = 0$ implies

$$p = \bar{y}$$
.

Binary Response Models with One Binary Independent Variable

Then, we are going to assume that we have only one independent variable and it is binary. The probability of y = 1 given x = 0 is denoted by

$$\rho_0 = P(y = 1 \mid x = 0)$$

and the probability of y = 1 given x = 1 is denoted by

$$\rho_1 = P(y = 1 \mid x = 1).$$

The difference $\rho_1 - \rho_0$ can be interpreted as the effect of x on $P(y = 1 \mid x)$.

We do not know ρ_0 and ρ_1 , so we want to estimate them from a dataset. In this case, we are going to use the maximum likelihood estimation. For every parameter value (p_0, p_1) , the conditional probability of y = 0 given x is evaluated as

$$\begin{cases} 1 - p_0 & \text{if } x = 0 \\ 1 - p_1 & \text{if } x = 1 \end{cases}$$

and the conditional probability of y = 1 given x is evaluated as

$$\begin{cases} p_0 & \text{if } x = 0\\ p_1 & \text{if } x = 1. \end{cases}$$

For every observation i, we can observe the value of (y, x) and then we can evaluate the conditional probability of that value being realized:

$$\begin{cases} 1 - p_0 & \text{if } (y_i, x_i) = (0, 0) \\ p_0 & \text{if } (y_i, x_i) = (1, 0) \\ 1 - p_1 & \text{if } (y_i, x_i) = (0, 1) \\ p_1 & \text{if } (y_i, x_i) = (1, 1). \end{cases}$$

More simply, for every parameter value (p_0, p_1) , we can evaluate the conditional probability of (y_i, x_i) being realized as

$$(p_{x_i})^{y_i}(1-p_{x_i})^{1-y_i}.$$

We observe the values of $\{(y_i, x_i) : i = 1, ..., n\}$, and, for every parameter value (p_0, p_1) , we can evaluate the conditional probability of those values being realized as

$$L(p_0, p_1) = (p_{x_1})^{y_1} (1 - p_{x_1})^{1 - y_1} \times \dots \times (p_{x_n})^{y_n} (1 - p_{x_n})^{1 - y_n}.$$

The function $L(p_0, p_1)$ is called the likelihood function. Taking the log of the likelihood function, then we have the new function

$$\mathscr{L}(p_0, p_1) = \sum_{i=1}^n \log ((p_{x_i})^{y_i} (1 - p_{x_i})^{1 - y_i}).$$

It is called the log-likelihood function. The maximum $(\hat{\rho}_0, \hat{\rho}_1)$ of the (log-)likelihood function is called the maximum likelihood estimator. In this case, it turns out that

$$\hat{\rho}_0 = \frac{\text{(the number of observations with } y_i = 1 \text{ and } x_i = 0)}{\text{(the number of observations with } x_i = 0)}$$

$$\hat{\rho}_1 = \frac{\text{(the number of observations with } y_i = 1 \text{ and } x_i = 1)}{\text{(the number of observations with } x_i = 1)}.$$

General Binary Response Models

The probability of y = 1 given x_1, \ldots, x_k is denoted by

$$G(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k).$$

We are going to use the maximum likelihood estimation to estimate $(\beta_0, \ldots, \beta_k)$. For every parameter value (b_0, b_1, \ldots, b_k) , we can observe the *i*'s value of (y, x) and then we can evaluate the conditional probability of that value being realized:

$$\begin{cases} 1 - G(b_0 + b_1 x_{i1} + \dots + b_k x_{ik}) & \text{if } y_i = 0\\ G(b_0 + b_1 x_{i1} + \dots + b_k x_{ik}) & \text{if } y_i = 1. \end{cases}$$

More simply, for every parameter value (b_0, b_1, \dots, b_k) , we can evaluate the conditional probability of (y_i, x_i) being realized as

$$G(b_0 + b_1x_{i1} + \dots + b_kx_{ik})^{y_i}(1 - G(b_0 + b_1x_{i1} + \dots + b_kx_{ik}))^{1-y_i}.$$

We observe the values of $\{(y_i, x_i) : i = 1, ..., n\}$, and, for every parameter value $(b_0, b_1, ..., b_k)$, we can evaluate the conditional probability of those values being realized as

$$L(b_0, b_1, \dots, b_k) = \prod_{i=1}^n \left(G(b_0 + b_1 x_{i1} + \dots + b_k x_{ik})^{y_i} (1 - G(b_0 + b_1 x_{i1} + \dots + b_k x_{ik}))^{1-y_i} \right).$$

The function $L(b_0, b_1, \ldots, b_k)$ is called the likelihood function. Taking the log of the likelihood function, then we have the new function

$$\mathscr{L}(b_0, b_1, \dots, b_k) = \sum_{i=1}^n \log \left(G(b_0 + b_1 x_{11} + \dots + b_k x_{1k})^{y_1} (1 - G(b_0 + b_1 x_{11} + \dots + b_k x_{1k}))^{1-y_1} \right).$$

It is called the log-likelihood function. The maximum $(\hat{\beta}_0, \dots, \hat{\beta}_k)$ of the (log-)likelihood function is called the maximum likelihood estimator.

- . use "MROZ.DTA"
- . regress inlf nwifeinc educ exper c.exper#c.exper age kidslt6 kidsge6, robust

Linear regression	Number of obs	=	753
	F(7, 745)	=	62.48
	Prob > F	=	0.0000
	R-squared	=	0.2642
	Root MSE	=	.42713

Robust inlf | Coef. Std. Err. [95% Conf. Interval] t P>|t| nwifeinc | -.0034052 .0015249 -2.230.026 -.0063988 -.0004115 .0379953 .007266 5.23 0.000 .023731 .0522596 educ | exper | .0394924 .00581 6.80 0.000 .0280864 .0508983 expersq | -.0005963 .00019 -3.140.002 -.0009693 -.0002233 -.0160908 .002399 -6.710.000 -.0208004 -.0113812 age | kidslt6 | -.2618105 .0317832 -8.24 0.000 -.3242058 -.1994152 kidsge6 | .0130122 .0135329 0.96 0.337 -.013555 .0395795 3.85 _cons | .5855192 .1522599 0.000 .2866098 .8844287

. margins, dydx(*)

Average marginal effects Number of obs = 753

Model VCE : Robust

Expression : Linear prediction, predict()

dy/dx w.r.t. : nwifeinc educ exper age kidslt6 kidsge6

 ا		Delta-metho	d			
	dy/dx	Std. Err.		P> t		. Interval]
						0004115
nwifeinc	0034052	.0015249	-2.23	0.026	0063988	0004115
educ	.0379953	.007266	5.23	0.000	.023731	.0522596
exper	.0268138	.0024535	10.93	0.000	.0219973	.0316304
age	0160908	.002399	-6.71	0.000	0208004	0113812
kidslt6	2618105	.0317832	-8.24	0.000	3242058	1994152
kidsge6	.0130122	.0135329	0.96	0.337	013555	.0395795

.

. logit inlf nwifeinc educ exper c.exper#c.exper age kidslt6 kidsge6

Iteration 0: log likelihood = -514.8732
Iteration 1: log likelihood = -402.38502
Iteration 2: log likelihood = -401.76569
Iteration 3: log likelihood = -401.76515
Iteration 4: log likelihood = -401.76515

Logistic regression	Number of obs	=	753
	LR chi2(7)	=	226.22
	Prob > chi2	=	0.0000
Log likelihood = -401.76515	Pseudo R2	=	0.2197

inlf	•	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
		0213452		-2.53	0.011	0378509	0048394
educ	I	.2211704	.0434396	5.09	0.000	.1360303	.3063105
exper	I	.2058695	.0320569	6.42	0.000	.1430391	.2686999
expersq	I	0031541	.0010161	-3.10	0.002	0051456	0011626
age	I	0880244	.014573	-6.04	0.000	116587	0594618

kidslt6	-1.443354	. 2035849	-7.09	0.000	-1.842373	-1.044335
kidsge6	.0601122	.0747897	0.80	0.422	086473	.2066974
_cons	.4254524	.8603697	0.49	0.621	-1.260841	2.111746

. margins, dydx(*)

Average marginal effects Number of obs = 753

Model VCE : OIM

Expression : Pr(inlf), predict()

dy/dx w.r.t. : nwifeinc educ exper age kidslt6 kidsge6

I	:	Delta-method	i			
I	dy/dx	Std. Err.	z	P> z	2	Interval]
 +						
nwifeinc	0038118	.0014824	-2.57	0.010	0067172	0009064
educ	.0394965	.0072947	5.41	0.000	.0251992	.0537939
exper	.0254254	.0022364	11.37	0.000	.0210421	.0298088
age	0157194	.0023808	-6.60	0.000	0203856	0110532
kidslt6	2577537	.0319416	-8.07	0.000	3203581	1951492
kidsge6	.0107348	.013333	0.81	0.421	0153974	.0368671

. probit inlf nwifeinc educ exper c.exper#c.exper age kidslt6 kidsge6

Iteration 0: log likelihood = -514.8732
Iteration 1: log likelihood = -402.06651
Iteration 2: log likelihood = -401.30273
Iteration 3: log likelihood = -401.30219
Iteration 4: log likelihood = -401.30219

Probit regression Number of obs = 753 LR chi2(7) = 227.14 Prob > chi2 = 0.0000 Log likelihood = -401.30219 Pseudo R2 = 0.2206

educ	.1309047	.0252542	5.18	0.000	.0814074	.180402
exper	.1233476	.0187164	6.59	0.000	.0866641	.1600311
1						
c.exper#c.exper	0018871	.0006	-3.15	0.002	003063	0007111
1						
age	0528527	.0084772	-6.23	0.000	0694678	0362376
kidslt6	8683285	.1185223	-7.33	0.000	-1.100628	636029
kidsge6	.036005	.0434768	0.83	0.408	049208	.1212179
_cons	.2700768	.508593	0.53	0.595	7267473	1.266901

. margins, dydx(*)

Average marginal effects Number of obs = 753

Model VCE : OIM

Expression : Pr(inlf), predict()

dy/dx w.r.t. : nwifeinc educ exper age kidslt6 kidsge6

	 	dy/dx	Delta-method Std. Err.	z	P> z	[95% Conf.	Interval]
	-+-						
nwifeinc	Ι	0036162	.0014414	-2.51	0.012	0064413	0007911
educ	1	.0393703	.0072216	5.45	0.000	.0252161	.0535244
exper	1	.0255825	.0022272	11.49	0.000	.0212172	.0299478
age	1	0158957	.0023587	-6.74	0.000	0205186	0112728
kidslt6	1	2611542	.0318597	-8.20	0.000	3235982	1987103
kidsge6	I	.0108287	.0130584	0.83	0.407	0147654	.0364227
