

Predicting the Tropical Cyclone Genesis

Tim Li

University of Hawaii

Acknowledgement: **Melinda Peng, Jim Hansen (NRL), X. Ge, B. Fu (UH)**

ONR support

- **Dynamical Approach**
- **Statistical approach**

Real-case TC genesis forecast for Prapiroon (2000)

A typical case of TCED (TC Energy Dispersion)-induced cyclogenesis

A: TC Bilis; B: TC Prapiroon

3-8 day band pass-filtered surface
QuikSCAT wind

20m/s

Li and Fu 2006, JAS
Li et al. 2006, JAS

$$\vec{E} = \left(\frac{[v^2 - u^2]}{2}, [-uv'] \right)$$

MM5 forecast experiment

CTL: retain the pre-existing
TC Bilis

EXP: remove the pre-existing
TC

Left: A spatial filter (Kurihara et al. 1993) is applied to extract the pre-existing TC vortex from the large-scale environmental flow. $h=h_B+h_D$.

Initial condition:
NECP/NCAR
reanalysis

$$h = h_B + h_D$$

Basic field
 h_B

Disturbance field
 h_D

Forecasted TC intensity and track

CTL: with pre-existing typhoon

EXP: without pre-existing typhoon

Through what process does the pre-existing typhoon affect the subsequent TC genesis and its intensity?

The upper level circulation

150-hPa **divergence field** ($\geq 2 \times 10^{-5} \text{ s}^{-1}$ are shaded) and total velocity of **jet core** (contour) in CTL and EXP run at Hour 48

Enhanced upper-level divergence appears at left-exit side of the TC outflow jet.

Secondary circulation induced by upper outflow jet

Shi et al. (1990)

$$\frac{du_g}{dt} = f v_a$$

Upper-level eddy flux convergence of relative angular momentum (EFC)

$$EFC = -\frac{1}{r^2} \frac{\partial}{\partial r} r^2 \bar{u_L} \bar{v_L}$$

Titley and Elsberry
2000

where u_L is the storm-relative radial velocity, v_L is the storm-relative tangential velocity, r is the radius.

Radial-time cross section of 200-hPa EFC (contour interval: $4 \text{ m s}^{-1} \text{ day}^{-1}$) in CTL (left panel) and EXP (right panel) run. The shaded areas indicate value greater than $4 \text{ m s}^{-1} \text{ day}^{-1}$

TC genesis associated with preexisting cloud cluster with no significant wind signals at the surface - **A top-down cyclogenesis scenario**

TMI liquid water

QuikSCAT wind

- A cold core below the mid-level cyclone and a warm core above - A thermal wind relation

- A transition of the cold core to a warm core

- A formation of mid-level cyclone at 600mb

- A downward development of the mid-level cyclone prior to TC genesis

genesis forecast with **cloud-resolving WRF** model

Typhoon Durian (2001)

- **Horizontal resolution: 3 km**
- Explicit convection scheme
- **Initial condition** from 0000UTC **06/28/2001** (48hrs prior to JTWC warning time **0000UTC**)

Vertical profile of moisture and temp anomaly at initial time

Observed surface wind (vector) and IR brightness temp. (shaded) at initial time

Real-case TC genesis forecast

The model wind (vector) and cloud liquid water (shaded)

Statistical Method:

A logistic nonlinear regression
model

Developing versus Nondeveloping Disturbances in North Atlantic and WNP

NA:

Dev:32 mvspd(ave): **5.29**

degrees/s

Nondev:55 Only day -3, day -2, day -1 and day 0 for Dev cases
 6.22
degrees/s

WNP:

Dev:46 mvspd: **4.31**

degrees/s

Nondev:41 All the days during the lifespan for Nondev cases
 5.36
degrees/s

Definitions

Developing cases:

Tropical storms reported in **JTWC** and NHC best track

The genesis date is the day when a TD formed with a max sustained wind over 25kts.

Nondeveloping cases:

Cyclonic circulations in 3-8-day filtered wind and relative vorticity fields with

- (1) max vorticity > $1e-5$
- (2) mean radius > 400km
- (3) lasting at least 3 days

NA:

Dev: 32

Nondev: 55

WNP:

Dev: 46

Nondev: 41

Composites:

For Dev cases, we composite each case at day -3, day -2, day-1 and day0.

For Nondev cases, we composite all the days for all the selected

Composite of TMI SST

NA

WNP

8.36°C, 28.59°C and 28.65°C vs 28.18°C

Composite of 850mb relative humidity

NA

WNP

Composite of 500mb relative humidity

WNP

Vertical profile of $10^\circ \times 10^\circ$ domain averaged 20-day filtered U component

Easterly (westerly) shear favors the amplification of TCED-induced Rossby wave train in lower (upper) troposphere

(a) CTRL

(b) ESH

(c) WSH

The vertical shear effect (Cont.)

Left: Anomaly AGCM simulation with specified 3D summer (JJA) mean flows and SST and surface moisture condition

Right: Evolution of maximum perturbation kinetic energy under a constant easterly shear (solid line) and a constant westerly shear (dashed line).

Multiple linear regression method

Multiple linear regression attempts to model the relationship between two or more explanatory variables and a response variable by fitting a linear equation to observed data.

Formally, the model for multiple linear regression, given n observations, is

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} + \varepsilon_i \text{ for } i = 1, 2, \dots, n.$$

Logistic nonlinear regression method

Logistic regression is a model used for prediction of the **probability** of occurrence event by fitting data to a **logistic curve**. It makes use of several predictor variables which may be either numerical or categorical.

$$f(z) = \frac{1}{1 + e^{-z}}$$

$$z = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \dots + \beta_k x_k,$$

vantages: (1) nonlinear
(2) used for both probability and deterministic forecasts

Logistic nonlinear regression model for WNP

1. Selected variables for WNP

Mvspd, vor850, div850, rhum500, T anomaly500, shear200-850

2. Predictors

x1=vor850 (max [10x10 box])

x2=vor850 (pattern correlation)

x3=div850 (ave [20x20 box])

x4=div850 (pattern correlation)

x5=rhum500 (ave [20x20 box])

x6=rhum500(pattern correlation)

x7=T anomaly500 (max [20x20 box])

x8=T anomaly500(pattern correlation)

x9=shear200-850 (ave [10x10] box])

x10=shear200-850(pattern correlation)

x11=mvspd

Composite of dev (day -1)

$$f(z) = \frac{1}{1 + e^{-z}}$$

$$z = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \cdots + \beta_k x_k,$$

We use samples from 2003-2005 as the input to derive the prediction model.
Currently only to predict 24-48 hours TC genesis events

Model in-sample validation

(based on NOGAPS 2003-05 analysis data)

Hit rate= $a/(a+c)=66\%$

False alarm rate= $b/(b+d)=25\%$

Miss rate= $c/(a+c)=34\%$

Correct rejection= $d/(b+d)=75\%$

Bias ratio= $(a+b)/(a+c)=1.4$

OBS FCST	yes	no
yes	$a=23$	$b=26$
no	$c=12$	$d=76$

Model in-sample validation (2003-2005)

Hit rate= $a/(a+c)=80\%$

False alarm rate= $b/(b+d)=13\%$

Miss rate= $c/(a+c)=20\%$

Correct rejection= $d/(b+d)=87\%$

Bias ratio= $(a+b)/(a+c)=1.5$

OBS	yes	no
FCST		
yes	a=37	b=32
no	c=9	d=209

The WNP real-time cyclogenesis forecast during TCS-08

- Identify each disturbance in WNP during TCS-08
- Calculate the Genesis Potential Index (GPI) for each disturbance
- Posted the forecast in NRL website

12 TCs were verified during TCS-08

<http://www.nrlmry.navy.mil/TCS.htm>

Thank you

Composite of 500mb temperature anomalies

NA

WNP

Composite of 200-850mb shear speed

NA

WNP

Multiple linear regression model for WNP

x_1, x_3, x_5, x_{11} will be normalized before they are input into regression equation

Vor850,rhum850,Mvspd:

$$Z = (X - X_{\min}) / (X_{\max} - X_{\min})$$

Div850:

$$Z = (X - X_{\text{min}}) / (X_{\text{max}} - X_{\text{min}})$$

b1=0.074, b2=0.187, b3=0.269,
b4=1.195
b5=-0.178.b6=-0.070.b7=-0.049

We use samples from 2003-2005 as the input to derive the prediction model.
Currently only to predict 24-48 hours TC genesis events

Easterly shear favors the amplification of Rossby wave in lower troposphere

An easterly shear leads to the amplification of Rossby waves at lower levels, whereas a westerly shear favors the amplification of Rossby waves at upper levels.

-day low-pass filtered 850mb convergence/divergence (10^{-6} s^{-1})

NA

-0.655	-0.623
-0.659	-0.459

WNP

-1.530	-1.619
-1.614	-1.268

Dev vs Nondev: Stronger convergence for both basins

Vertical profile of $10^\circ \times 10^\circ$ domain averaged 20-day low-pass filtered du/dz

NA

Composite of 500mb relative humidity

NA

WNP