Bargaining and Power in Networks

David Easley, Jon Kleinberg: Network, Crowds, and Markets: Reasoning about a highly connected world, 2010

Seminar Maschinelles Lernen WS 10/11 Yevgen Chebotar 15.12.2010

Gliederung

- 1. Macht in Netzwerken
- 2. Nash Bargaining Solution
- 3. Ultimatum Game
- 4. Stabiles und ausgeglichenes Ergebnis
- 5. Bargaining und Spieltheorie

Macht in Netzwerken

Macht (Power)

- 1. Eigenschaft des Individuums
- 2. Eigenschaft der Netzwerkstruktur
 - → Lage im Netzwerk

Macht über andere

Macht in Netzwerken

Der Wert muss unter den Nachbarn aufgeteilt werden

Keine Beziehung → Keine Auszahlung

Macht → Ungleichheit der Aufteilung des Wertes

B: Zugang zu mehreren Austauschmöglichkeiten → Relative Machtposition

Merkmale der Machtposition

B in einer Machtposition:

- 1. Abhängigkeit (Dependence)
 - → A und C komplett von B abhängig
 - → B hat mehrere Möglichkeiten
- 2. Ausschluss (Exclusion)
 - → B kann A und C ausschließen
 - → jedoch nicht D
- 3. Sättigung (Satiation)
 - → B nur an ungleichen Aufteilungen interessiert
- 4. Betweenness
 - → Zentrale Position von B

Experimente

Experimentale Umgebung

- 1. Jeder Knoten ist eine Person
 - Sitzt vor einem Computer
 - Kann mit Nachbarn kommunizieren
- 2. Jede Beziehung (Kante) hat einen Wert
 - \$1
 - Muss unter zwei Knoten verteilt werden
- 3. Gleichzeitige Austauschmöglichkeiten limitiert
 Ein Austausch pro Runde → 1-exchange rule
 → Matching

Experimente

Ablauf

- Austausch von Verteilungsangeboten mit allen Nachbarn
- Limitierte Zeit

1-exchange rule:

Einigung → Abbruch der Verhandlungen mit anderen Knoten

Mehrere Runden

Variante

- High-information
- Low-information

2-Knoten Pfad

Tendenz zur Hälfte-Hälfte Verteilung

3-Knoten Pfad

B in Machtposition

- B: Verhandlung mit A → Alternative: Verhandlung mit C
- A und C müssen die Beziehung attraktiver machen
- Jede Runde: A oder C ausgeschlossen
 →attraktiveres Angebot an B in nächster Runde

Aufhebung von 1-exchange rule

- Gleichzeitiger Austausch mit A und C
- Maximaler Gewinn für B:
 B braucht A und C → kein Ausschluss

4-Knoten Pfad

- B schließt A aus → B muss mit C handeln
- C hat bessere Alternative D
- C kann B ausschließen
 - → B hat weniger Macht über A (weak power)

B bekommt zwischen 7/12 und 2/3 von \$1

5-Knoten Pfad

1-exchange rule:

- C in schwacher Position
 - B hat eine günstige Alternative: A
 - **D** hat eine günstige Alternative: **E**
- Gewinne von C nur sehr wenig besser als von A und E
- → Betweenness Maß irreführend

Andere Netzwerke

- B: hohe Gewinne mit A oder C
 - → kein Austausch mit **D**
- D: nur eine Alternative E
 - → Austausch mit E auf gleichem Basis: 1/2-1/2

Andere Netzwerke Stem Graph

B: schwache Machtposition

■ B: Ausschluss von A → muss mit D oder C handeln

■ D und C haben Alternativen

Instabiles Netzwerk

Buyer-Seller Netzwerk

4-Knoten Pfad

B verkauft an A für x

- → Auszahlung für B: x
- → Auszahlung für A: 1-x

Handlungen über x und 1-x

Aufteilung von \$1 im Austauschnetzwerk

Limitierungen

- Nur bipartite Graphen
- Verschiedene Reaktionen von Menschen in den Experimenten

Nash Bargaining Solution

A: Abbruch der Handlungen → bekommt **x**

B: Abbruch der Handlungen → bekommt **y**

outside option x option y

Abbruchbedingungen:

A's Teil < x

B's Teil < y

Wenn **x** + **y** > **1** → Eine der Abbruchbedingungen immer erfüllt → keine Aufteilung von **\$1** möglich

Annahme: $x + y \le 1$

Nash Bargaining Solution

Mehrbetrag der Verhandlung (surplus):

$$s = 1 - x - y$$

Minimum-Gewinn für **A**: **x** Minimum-Gewinn für **B**: **y**

→ Es geht nur um Aufteilung des Mehrbetrages

A und B gleichmächtig (2-Knoten Pfad) → 1/2 – 1/2 Aufteilung

Gewinn für A:
$$x + \frac{1}{2}s = \frac{x+1-y}{2}$$

Gewinn für B:
$$y + \frac{1}{2}s = \frac{y+1-x}{2}$$

Strategie: möglichst größte outside option

Status Effekt

Experiment

- A und B Studenten
- A glaubt: B Schüler mit schlechten Noten
 → B low-status
- B glaubt: A Masterstudent mit sehr guten Noten
 → A high-status

high-status low-status \$1 Outside option x option y

Ablauf

Outside option selbst festlegen und dem Partner mitteilen

Ergebnis

- B low-status: A vergrößert seine outside option → größerer \$1-Anteil für A
- A high-status: B verkleinert seine outside option → kleinerer \$1-Anteil für B

Ultimatum Game

Experiment

A

- **-** \$1
- Angebot an B

В

- Nimmt Angebot an → Alle kriegen ihre Anteile
- Lehnt Angebot ab → Alle kriegen nichts

Ablauf

Nachrichtenaustausch in getrennten Zimmern

Theoretischer Ausgang

- B Ablehnung → B kriegt nichts (Auszahlung 0)
 - → B nimmt jedes positves Angebot an

Ultimatum Game

Experiment

- 1982 Güth, Schmittberger, Schwarze
- Durchschnittlich:
 Faires Angebot von A (1/3 bis 1/2)
- **B** lehnt sogar positive Angebote ab
- Emotionaler Faktor: Ablehnung des unfairen Angeboten
- Auszahlung für B: Betragshöhe + Emotionaler Faktor

Stabiles Ergebnis

Ergebnis (Outcome)

- 1. Matching: Wer tauscht mit wem
- 2. Wertanteil jedes Knotens

Stabiles Ergebnis (Stable Outcome)

Kein Knoten kann existierende Abkommen brechen

Instabilität

- Kante zwischen X und Y nicht im Matching
- X's Wert + Y's Wert < 1

Stabilität: Ergebnis ohne Instabilitäten

Stabiles Ergebnis

Immer instabil

Stabiles Ergebnis

Ausgeglichenes Ergebnis

Nash Bargaining outcome

$$A: x + \frac{1}{2}s$$

A:
$$x + \frac{1}{2}s$$
 B: $y + \frac{1}{2}s$ mit $s = 1 - x - y$

- stabil
- nicht ausgeglichen

$$s = 1-0-1/2 = 1/2$$

A:
$$0+1/4 = 1/4$$

B:
$$1/2+1/4 = 3/4$$

- stabil
- ausgeglichen

$$\mathbf{s} = 1 - 0 - 1/3 = 2/3$$

A:
$$0+1/3 = 1/3$$

B:
$$1/3+1/3 = 2/3$$

Ausgeglichenes Ergebnis

Nash Bargaining outcome

A:
$$x + \frac{1}{2}s$$

A:
$$x + \frac{1}{2}s$$
 B: $y + \frac{1}{2}s$ mit $s = 1 - x - y$

- stabil
- ausgeglichen

$$\mathbf{s} = 1-0-1/3 = 2/3$$

A:
$$0+1/3 = 1/3$$

B:
$$1/3+1/3=2/3$$

- stabil
- nicht ausgeglichen

$$s = 1-0-1/4 = 3/4$$

A:
$$0+3/8 = 3/8$$

B:
$$1/4+3/8 = 5/8$$

Ausgeglichenes Ergebnis

1/2

Balanced outcome

Für jede Kante im Matching:

$$s = 1-0-1/2 = 1/2$$

A: 0+1/4 = 1/4

B: 1/2+1/4 = 3/4

Dynamisches Spiel

2-Runden Version

1. Runde: A macht Angebot

B nimmt an → Spiel zu Ende

→ Jeder bekommt seinen Teil

B lehnt ab \rightarrow 2. Runde

2. Runde: **B** macht Angebot

A nimmt an → Jeder bekommt seinen Teil

A lehnt ab → Jeder bekommt seine Outside option

Jede Runde:

Wahrscheinlichkeit $p \rightarrow$ Spiel zu Ende \rightarrow Jeder bekommt seine Outside option

$$x + y < 1$$

Dynamisches Spiel

Analyse

2. Runde (a_2,b_2)

A nimmt an wenn
$$a_2 >= x$$

B's Angebot: $(x,1-x)$
 $x+y < 1 \Rightarrow y < 1-x$

B lehnt ab \rightarrow **B**'s payoff: py + (1-p)(1-x) = z

B nimmt an wenn $b_1 >= z$

A's Angebot: (1-z,z)

$$y < z < 1 - x \Longrightarrow x < 1 - z$$

Dynamisches Spiel

Infinite-Horizon Spiel

Stationäres Gleichgewicht

A dran: $(a_1,b_1) = (a_1,1-a_1)$

B dran: $(a_2,b_2) = (1-b_2,b_2)$

B akzeptiert wenn:

 $b_1 = py + (1 - p)b_2$ oder mehr

A akzeptiert wenn:

$$a_2 = px + (1-p)a_1$$
 oder mehr

Also:

$$1 - a_1 = py + (1 - p)b_2$$

$$1 - b_2 = px + (1 - p)a_1$$

Dynamisches Spiel

Infinite-Horizon Spiel

$$1 - a_1 = py + (1 - p)b_2$$

$$1 - b_2 = px + (1 - p)a_1$$

$$a_1 = \frac{(1-p)x + 1 - y}{2 - p}$$

$$b_1 = 1 - a_1 = \frac{y + (1 - p)(1 - x)}{2 - p}$$

$$\lim_{p \to 0} a_1 = \frac{x + 1 - y}{2} = x + \frac{1}{2}s$$

$$\lim_{p \to 0} b_1 = \frac{y + 1 - x}{2} = y + \frac{1}{2}s \quad \text{mit} \quad s = 1 - x - y$$

Fragen

Bildquellen

- http://xprojectmanagement.com/wp-content/uploads/2010/09/negotiation1.jpg
- http://musicviz.mit.edu/img/person_icon.png
- http://rende-views.com/Themes/default/images/ImagesOnBoard/dollar_icon.jpg