CS540 Introduction to Artificial Intelligence Lecture 22

Young Wu
Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles
Dyer

July 5, 2021

•0

Guess Average Game Derivation Motivation

Rationalizability

Motivation

- An action is 1-rationalizable if it is the best response to some action.
- An action is 2-rationalizable if it is the best response to some 1-rationalizable action.
- An action is 3-rationalizable if it is the best response to some 2-rationalizable action.
- An action is rationalizable if it is ∞ -rationalizable.

Traveler's Dilemma Example

- Two identical antiques are lost. The airline only knows that its value is at most v dollars, so the airline asks their owners (travelers) to report its value (integers larger than or equal to some integer x > 1). The airline tells the travelers that they will be paid the minimum of the two reported values, and the traveler who reported a strictly lower value will receive x dollars in reward from the other traveler.
- The best response of to v is $\max(v-1,x)$, and the only mutual best response is both report x.
- This result is inconsistent with experimental observations.

Traveler's Dilemma Example Derivation

Normal Form Games

- In a simultaneous move game, a state represents one action from each player.
- The costs or rewards, sometimes called payoffs, are written in a payoff table.
- The players are usually called the ROW player and the COLUMN player.
- If the game is zero-sum, the convention is: ROW player is MAX and COLUMN player is MIN.

Best Response

 An action is a best response if it is optimal for the player given the opponents' actions.

$$\begin{aligned} br_{MAX}\left(s_{MIN}\right) &= \arg\max_{s \in S_{MAX}} c\left(s, s_{MIN}\right) \\ br_{MIN}\left(s_{MAX}\right) &= \arg\min_{s \in S_{MIN}} c\left(s_{MAX}, s\right) \end{aligned}$$

Strictly Dominated and Dominant Strategy Definition

• An action s_i strictly dominates another $s_{i'}$ if it leads to a better state no matter what the opponents' actions are.

$$s_i \succ_{MAX} s_{i'}$$
 if $c(s_i, s) > c(s_{i'}, s) \ \forall \ s \in S_{MIN}$
 $s_i \succ_{MIN} s_{i'}$ if $c(s, s_i) < c(s, s_{i'}) \ \forall \ s \in S_{MAX}$

- The action $s_{i'}$ is called strictly dominated.
- An action that strictly dominates all other actions is called strictly dominant.

Weakly Dominated and Dominant Strategy Definition

• An action s_i weakly dominates another $s_{i'}$ if it leads to a better state or a state with the same payoff no matter what the opponents' actions are.

$$s_i >_{MAX} s_{i'}$$
 if $c(s_i, s) \ge c(s_{i'}, s) \ \forall \ s \in S_{MIN}$
 $s_i >_{MIN} s_{i'}$ if $c(s, s_i) \le c(s, s_{i'}) \ \forall \ s \in S_{MAX}$

• The action $s_{i'}$ is called weakly dominated.

Nash Equilibrium Definition

 A Nash equilibrium is a state in which all actions are best responses.

Prisoner's Dilemma

Discussion

 A simultaneous move, non-zero-sum, and symmetric game is a prisoner's dilemma game if the Nash equilibrium state is strictly worse for both players than another state.

_	С	D
С	(x,x)	(0,y)
D	(y, 0)	(1,1)

C stands for Cooperate and D stands for Defect (not Confess and Deny). Both players are MAX players. The game is PD if y > x > 1. Here, (D, D) is the only Nash equilibrium and (C, C) is strictly better than (D, D) for both players.

Public Good Game

Discussion

- You received one free point for this question and you have two choices.
- A: Donate the point.
- B: Keep the point.
- Your final grade is the points you keep plus twice the average donation.

Properties of Nash Equilibrium

Discussion

- All Nash equilibria are rationalizable.
- No Nash equilibrium contains a strictly dominated action.
- Rationalizable actions (the set of Nash equilibria is a subset of this) can be found be iterated elimination of strictly dominated actions.
- The above statements are not true for weakly dominated actions.

Normal Form of Sequential Games

- Sequential games can have normal form too, but the solution concept is different.
- Nash equilibria of the normal form may not be a solution of the original sequential form game.

Fixed Point Algorithm Description

- For small games, it is possible to find all the best responses.
 The states that are best responses for all players are the solutions of the game.
- For large games, start with a random action, find the best response for each player and update until the state is not changing.

Fixed Point Diagram Definition

Mixed Strategy Nash Equilibrium

- A mixed strategy is a strategy in which a player randomizes between multiple actions.
- A pure strategy is a strategy in which all actions are played with probabilities either 0 or 1.
- A mixed strategy Nash equilibrium is a Nash equilibrium for the game in which mixed strategies are allowed.

Rock Paper Scissors Example

- There are no pure strategy Nash equilibria.
- Playing each action (rock, paper, scissors) with equal probability is a mixed strategy Nash.

Rock Paper Scissors Example Derivation Discussion

Battle of the Sexes Example

 Battle of the Sexes (BoS, also called Bach or Stravinsky) is a game that models coordination in which two players have different preferences in which alternative to coordinate on.

_	Bach	Stravinsky
Bach	A (x, y)	B(0,0)
Stravinsky	C(0,0)	D (y, x)

Battle of the Sexes Example Diagram

Battle of the Sexes Example Derivation Discussion

Volunteer's Dilemma

Discussion

- On March 13, 1964, Kitty Genovese was stabbed outside the apartment building. There are 38 witnesses, and no one reported. Suppose the benefit of reported crime is 1 and the cost of reporting is c < 1.
- Suppose every witness uses the same mixed strategy of not reporting with probability p and reporting with probability 1-p. Then the mixed strategy Nash equilibrium is characterized by the following expression.

$$p^{37} \cdot 0 + (1 - p^{37}) \cdot 1 = 1 - c \Rightarrow p = c^{\frac{1}{37}}$$

Volunteer's Dilemma Derivation

Discussion

Nash Theorem Definition

- Every finite game has a Nash equilibrium.
- The Nash equilibria are fixed points of the best response functions.

Fixed Point Nash Equilibrium

- Input: the payoff table $c\left(s_{i},s_{j}\right)$ for $s_{i}\in S_{MAX},s_{j}\in S_{MIN}$.
- Output: the Nash equilibria.
- Start with random state $s = (s_{MAX}, s_{MIN})$.
- Update the state by computing the best response of one of the players.

$$\begin{aligned} \text{either } s' &= \left(br_{MAX}\left(s_{MIN}\right), br_{MIN}\left(br_{MAX}\left(s_{MIN}\right)\right)\right) \\ \text{or } s' &= \left(br_{MAX}\left(br_{MIN}\left(s_{MAX}\right)\right), br_{MIN}\left(s_{MAX}\right)\right) \end{aligned}$$

• Stop when s' = s.