MTH 414 - Spring 2023

Assignment #2

Due: Monday, January 30th 2023 (2:00PM)

- 1. For each of the following equations, state the order and whether it is nonlinear, linear inhomogeneous, or linear homogeneous; provide reasons;
 - (a) $u_t u_{xx} + 1 = 0$

Solution: Second order linear inhomogenous since $\mathcal{L} = \frac{\partial}{\partial t} - \frac{\partial^2}{\partial x^2}$ and g = -1.

(b) $u_t - u_{xx} + xu = 0$

Solution: Second order linear homogenous since $\mathcal{L} = \frac{\partial}{\partial t} - \frac{\partial^2}{\partial x^2} + x$ and g = 0.

(c) $u_t - u_{xxt} + uu_x = 0$

Solution: Third order nonlinear since

$$(u+v)_t - (u+v)_{xxt} + (u+v)(u+v)_x = u_t + v_t - u_{xxt} - v_{xxt} + uu_x + vu_x + uv_x + vv_x$$

$$\neq u_t + v_t - u_{xxt} - v_{xxt} + uu_x + vv_x$$

(d) $u_{tt} - u_{xx} + \frac{u}{x} = 0$

Solution: Second order linear homogenous since $\mathcal{L} = \frac{\partial}{\partial t} - \frac{\partial^2}{\partial x^2} + \frac{1}{x}$ and g = 0.

(e) $\frac{u_x}{\sqrt{1+u_x^2}} - u_{xy} = 0$

Solution: Second order nonlinear since

$$\frac{u_x}{\sqrt{1 + u_x^2 + v_y^2 + 2u_xv_x}} + \frac{v_x}{\sqrt{1 + u_x^2 + v_x^2 + 2u_xv_x}} - u_{xy} - v_{xy} \neq \frac{u_x}{\sqrt{1 + u_x^2}} + \frac{v_x}{\sqrt{1 + v_x^2}} - u_{xy} - v_{xy}$$

(f) $u_t + u_{xxxx} + \sqrt{1+u} = 0$

Solution: Fourth order nonlinear since

$$u_t + u_{xxxx} + v_t + v_{xxxx} + \sqrt{1 + u + v} \neq u_t + u_{xxxx} + v_t + v_{xxxx} + \sqrt{1 + u} + \sqrt{1 + v}$$

 $(g) u_x - e^y u_y = 0$

Solution: First order linear homogenous since $\mathcal{L} = \frac{\partial}{\partial x} - e^y \frac{\partial}{\partial y}$ and g = 0.

2. Solve the equation $2u_t + 3u_x = 0$ with the auxiliary condition $u = \sin x$ when t = 0.

Solution: Using the general solution u(t,x)=f(bt-ax) then u(t,x)=f(3t-2x). Evaluated at t=0 yields $u(0,x)=f(-2x)=\sin x$. Letting $w=-2x\iff x=-\frac{1}{2}w$ gives $f(w)=\sin\left(-\frac{1}{2}w\right)$ and substituting w back gives the final solution $u(t,x)=\sin\left(-\frac{1}{2}(3t-2x)\right)$

3. (a) Solve the equation $yu_x + xu_y = 0$ with the condition $u(0, y) = e^{-y^2}$.

Solution: $\frac{dy}{dx} = \frac{b(x,y)}{a(x,y)} = \frac{x}{y} \iff \int y \, dy = \int x \, dx \iff \frac{y^2}{2} = \frac{x^2}{2} + C \implies C = y^2 - x^2.$ Then $u(x,y) = f(C) = f(y^2 - x^2)$. Evaluated at u(0,y) gives $f(y^2) = e^{-y^2}$. Let $w := y^2$ then $f(w) = e^{-w}$ so $u(x,y) = e^{-(y^2 - x^2)} = e^{x^2 - y^2}$.

(b) In which region of the *xy*-plane is the solution the to IVP in (a) uniquely determined? (Hint: Recall that data is transported along characteristic curves. Look at the characteristic curves and think about what happens to the data of our initial condition.)

Solution: The region where a unique solution exists will be at the intersection of the characteristic curves and the auxiliary condition. That is, $x = 0 \cap \mathbb{R}^2 \equiv \{(x, y) \mid x = 0\}$.

4. Solve $au_x + bu_y + cu = 0$. (Assume $a, b \in \mathbb{R}^*$)

Solution: $au_x + bu_y = -cu$ then f(K) = f(bx - ay). Hence $y = \frac{bx - k}{a}$ and $x = \frac{k + ay}{b}$.

For v(x, C) = v(x, y(x)), $v_x = u_x + \frac{b}{a}u_y$ by the multivariable chain rule.

Then $av_x = au_x + bu_y = -cv$. Solving,

$$av_{x} = -cv$$

$$\iff v_{x} = -\frac{c}{a}v$$

$$\iff \frac{\partial v}{\partial x} = -\frac{c}{a}v$$

$$\iff \frac{1}{v}dv = -\frac{c}{a}dx$$

$$\iff \ln|v| = -\frac{c}{a}x + g(bx - ay)$$

$$\iff v(x, y) = e^{-cx/a}G(bx - ay)$$

5. Solve the equation

$$u_x + 2u_y + (2x - y)u = 2x^2 + 3xy - 2y^2$$
.

6. Consider the equation

$$u_x + yu_y = 0$$

with the boundary condition $u(x, 0) = \phi(x)$.

(a) Find the general solution to the PDE.

Solution:
$$\frac{\partial y}{\partial x} = \frac{y}{1} \iff \frac{1}{y} dy = dx \iff \ln|y| = x + C \iff y = Ce^x \iff C = e^{-x}y.$$

Then
$$\frac{\partial}{\partial x}u(x,Ce^x)=u_x+Ce^xu_y=u_x+yu_y=0$$
. Letting $x=0$ then $u(0,Ce^0)=u(0,C)=u(0,e^{-x}y)$. Thus

$$u(x, y) = f(e^{-x}y)$$

(b) (BVP without a solution) For $\phi(x) \equiv x$, show that no solution exists.

Solution:
$$u(x, y) = f(ye^{-x})$$
 and $u(x, 0) = f(0) = \phi(x) = x$

$$f(0) = k$$
 for some constant $k \in \mathbb{R}$, but $\phi(x) = x \ \forall \ x \in \mathbb{R}$.

The alleged solution curve $y_1 = k$ and BVP of $y_2 = \phi(x) = x$ Clearly $y_1 \neq y_2 \ \forall \ x \in \mathbb{R}$ since the intersection is at (k, k).

(c) (BVP without uniqueness) For $\phi(x) \equiv 1$, show that there are many solutions.