Physik IV: Atome Moleküle Kerne*

Prof. Dr. Christopher Wiebusch III. Physikalisches Institut B

Vorlesung SS 2024 Mi 10:30-12:00, Hörsaal H-03 (Vorlesung), Fr 10:30 12:00, H-03 (Vorlesung), Übungen: Montags

Elearning: https://moodle.rwth-aachen.de/course/view.php?id=39600

^{*}Version vom 10. April 2024

Empfohlene Lehrbücher

- [1] Claude Amsler. Kern-und Teilchenphysik, volume 2885. vdf Hochschulverlag AG, 2007.
- [2] Wolfgang Demtröder. Experimentalphysik 3: Atome, Moleküle und Festkörper. Springer-Verlag, 2016.
- [3] Wolfgang Demtröder. Experimentalphysik 4: Kern-, Teilchen-und Astrophysik. Springer-Verlag, 2017.
- [4] Hermann Haken and Hans C Wolf. Atom-und quantenphysik. 8., aktual. u. erw. aufl, 2004.
- [5] Joachim Heintze and Peter Bock. Lehrbuch zur Experimentalphysik Band 5: Quantenphysik Wellen, Teilchen und Atome. Springer.
- [6] Theo Mayer-Kuckuk. Atomphysik: eine erführung. 1977.
- [7] Theo Mayer-Kuckuk. Kernphysik: eine einführung. 2002.
- [8] Gerd Otter and Raimund Honecker. Atome, Moleküle, Kerne 2.: Molekülphysik und Kernphysik., volume 2. Springer-Verlag, 1996.
- [9] Gerd Otter and Raimund Honecker. Atome Moleküle Kerne: Band I Atomphysik. Springer-Verlag, 2013.
- [10] Gerhard Otter and Raimund Honecker. Atome Moleküle Kerne: Band III Atome: Fragen und Antworten. 2013.

Dieses neue Skript basiert auf den Skripten der Vorlesungen SS16 and SS19, die mit Hilfe von Benedikt Kalthoff, Sarah Meuter und Patrick Stöcker sowie vieler studentischer Rückmeldungen erstellt wurden. In dieser neuen Version wurden bekannte Fehler korrigiert. Auch diese neue Version wird noch Fehler enthalten. Daher sind uns alle Korrektur-Hinweise sehr willkommen.

Dieses Skript enthält mit Copyright geschütze Materialien. Die Verwendung ist nur im Rahmen der Vorlesung durch die registrierten Teilnehmer der Lehrveranstaltung erlaubt. Die Verbreitung und Weitergabe an Dritte ist nicht erlaubt.

©2024 by Christopher Wiebusch

Inhaltsverzeichnis

T	0	ie atomare Welt	3												
	1.1 Hinweise au	Atome													
	1.2 Teilchen-We	le Dualismus	15												
	1.2.1 Quar	sisierung des Lichts: das Photon	15												
		iewellen													
		$\operatorname{nschärferelation}$													
		e Atommodell													
		ger Gleichung													
		stische Herleitung													
	1.4.2 Anwe	ndungsbeispiele	36												
	1.4.3 Obse	vablen und Operatoren in der Quantenmechanik	42												
2			44												
	2.1 Lösung der	chrödinger Gleichung	44												
	2.2 Drehimpuls	ınd Spin	56												
		drehimpuls und Entartung													
		etisches Moment													
	O	lektronenspin													
		pin des Photons													
	2.2.5 Addi	ion von Spin und Drehimpulsen	65												
3	Äufone Flektne	nagnetische Felder	68												
J		-													
		Zeeman Effekt													
		Zeeman Effekt & Paschen-Back Effekt													
	3.3 Der Stark E	ekt	75												
4	Interne elektromagnetische Felder 7														
4	G C C C C C C C C C C C C C C C C C C C														
		oplung und Feinstruktur des H-Atoms													
		e Korrekturen													
	4.3 Lamb-Shift	nd Hyperfeinstruktur	85												
	4.3.1 Lam	$-\mathrm{shift}$	85												
	4.3.2 Hype	${ m feinstruktur}$	86												
		ssung des Wasserstoffspektrums													
		G I													
5	Mehrelektronenatome														
	5.1 Grundzustai	ds-Energie des He Atoms	95												
	5.2 Das Pauli P														
		Spektrum													
		atome und das Periodensystem der Elemente													
		· ·													
	<u>*</u>	Vielelektronatomen													
		ome													
	5.6.1 Posit	onium	116												
	5.6.2 Myo	ische Atome	117												
	5.6.3 Anti-	asserstoff	118												
6	${f A}$ tom $\ddot{f u}$ berg $\ddot{f a}$ ng	und Strahlung	120												
	6.1 Übergangsw	hrscheinlichkeit	120												
	6.2 Auswahlrege														
	O	und Linienschärfe													
		liche Linienbreite													
	U.U.I INGUU	110110 12111101110110100	100												

		6.3.2 6.3.3 6.3.4 6.3.5	L D	inie Tuc	enfo ckv	orm erbr	der eite	Spe rung	ektı g .	ralli 	inier 	n . 				 	 		 					131 132 134 135
7	Rö n 7.1 7.2	Erzeug Streuu 7.2.1 7.2.2 7.2.3	gur ing W D	ng u g un Vecl Oer	und nd 1 hse Wi	l En Abselwir rku	orpt kun ngse	ion gen quers	voi voi sch	n Ra n Pl nitt	öntg hote	gens onen	trah	lun; · ·	g . 	 	 		 				 	
8	Lase 8.1 8.2	er Grund Laser-'	-	_																				
9	Che 9.1 9.2 9.3	mische Molekt 9.1.1 9.1.2 Chemi Molekt	üld D N isch	orbi Oas Ieh: he I	$egin{array}{c} \mathrm{H_2} \\ \mathrm{rele} \\ \mathrm{Bin} \end{array}$	e + Ic ektr dun	 on oner igen	 n Mo	 olel 	 külo	orbit	tale				 	 		 			 	 	185 192 199
10	$10.1 \\ 10.2 \\ 10.3$	ıktur v Das R Grund Die Ru Größe	tutl llag uth	herf gen nerf	ford de ford	dsch r St lsch	ie St reut e St	treuc heo reuf	rie forn	 nel						 	 		 					224 227
11	11.1 11.2 11.3 11.4	nmode Kernki Das Fe Kernbi Das Ti Das Sc	räf ern ind röp	te . ni-C lun ofch	Gas ngse nen:	Mo ner mod	odell gie u lell	l . und	 Ма	 assei	 ndet	 fekt			 	 	 		 			 	 	248 251 253
12	12.1 12.2 12.3	$egin{aligned} ext{Der } eta ext{Adioa} \ ext{Model} \ ext{Der } eta \end{aligned}$	akt ens ll d	ive schu les e	$rac{ ext{utz}}{lpha}$ Z	Zerfa	 alls								 	 	 		 					278 282
13	13.1 13.2 13.3	v endu n Künstl Künstl Kernfu Kernre	lich lich usio	he I he I on .	Ker Ker	nre nsp	akti altu	onei ing	n . 							 	 		 					304

i

 ${\bf Abbildungs verzeichnis}$

Vorbemerkungen

Die modene Physik beschreibt die Natur auf einem riesigen Bereich an Größenskalen von 10^{-19} m, der feinsten Auflösung für die Größe von Elementarteilchen bis zu 10^{27} m $\approx 100 \cdot 10^9$ la, der Größe des heute sichtbaren Universums, siehe Abbildung 0.1.

Größenskalen der modernen Physik

Abbildung 0.1: Bereiche moderner Physik

Über die Quantenphysik

Niels Bohr:

"Anyone who is not shocked by the quantum theory has not understood it."

Erwin Schrödinger:

"Ich mag sie nicht, und es tut mir leid, jemals damit zu tun gehabt zu haben."

Albert Einstein:

"Ich kann [...] nicht ernsthaft daran glauben, weil die Theorie mit dem Grundsatz unvereinbar ist, dass die Physik eine Wirklichkeit in Zeit und Raum darstellen soll, ohne spukhafte Fernwirkung."

Richard Feynman:

"I think I can safely say that nobody understands quantum mechanics."

Abbildung 0.2: Schockierende Ansichten zur Quantenmechanik

Die klassische Physik beschreibt den Bereich von etwa $1\,\mu\mathrm{m}$ bis $10^6\,\mathrm{la}\approx 10^{22}\,\mathrm{m}$. Auf größeren Skalen wird das Universum durch die Allgemeine Relativität (ART) beschrieben (Physik 5) auf kleineren Skalen gilt die Quantenmechanik. Bei letzteren werden kontinuierliche Größen der klassischen Physik quantisiert. Dies sind

zunächst Ladungen und Bausteine der Materie (Atome \rightarrow Elementarteilchen). Wir werden jedoch in der Vorlesung sehen, dass auch Observablen wie Energie, Impuls und Drehimpulse quantisiert werden. Die Konzepte der Quantenmechanik sind mit klassischen Begriffen oft schwer zu fassen, was durch die Zitate berühmter Physiker in Abbildung 0.2 zum Ausdruck kommt. Die äußerst erfolgreiche Beschreibung physikalischer Phänomene rechtfertigt jedoch die Konzepte.

In der Vorlesung Physik 4 werden wir in die atomare Physik vorstoßen und dafür neue theoretische Methoden erlernen und anwenden müssen. Der Größenbereich den wir in der Vorlesung betrachten reicht von Molekülen (10^{-8} m) über Atome (10^{-10} m) bis zu Atomkernen (10^{-15} m) .