PDF Exercises Neural Networks

Exercise 1

What are the values of weights w0, w1 and w2 for the perceptron with decision boundary illustrated in figure below? Assume the surface crosses the x1 axis at -1 and the x2 axis at 2.

 $w_0 = 2$

 $w_1 = 1$

 $w_2 = 2$

Exercise 2

(a) Design a two-input perceptron that implements the Boolean function A AND (NOT B). This is logically displayed as follows:

$$A \cap \neg B$$

X ₁	X ₂	A ∧ ¬B
0	0	0
1	0	1
0	1	0
1	1	0

With
$$\theta_0+\theta_1x_1+\theta_2x_2$$
 and picking $\theta_0=-20,\;\theta_1=30,\;\theta_2=-20,$ the hypothesis will be:
$$h_\theta(x)=\left\{\begin{matrix} 1\;if\;\theta_0+\theta_1x_1+\theta_2x_2>0\\ -1\;otherwise \end{matrix}\right\}$$

(b) Design a two-layer network of perceptrons that implements A XOR B.

This is logically displayed as follows:

$$A \oplus B = (A \cap \neg B) \cup (\neg A \cap B)$$

Or, alternatively:

$$A \oplus B = (A \cup B) \cap \neg (A \cap B)$$

X ₁	X ₂	$A \oplus B$
0	0	0
1	0	1
0	1	1
1	1	0

Thus, it requires the input of two different two-input perceptrons to implement: either one of the options mentioned above. Since we already completed the part of the first option, let's continue with this: