Intégrales généralisées

I. Fonctions continues par morceaux sur I

Définition. Une fonction f est dite continue par morceaux sur un segment [a,b] s'il existe une subdivision (a_0,a_1,\ldots,a_n) de [a,b] (avec donc $a=a_0 < a_1 < a_2 < \cdots < a_n = b$) telle que, pour tout $k \in [1,n]$, la restriction de f à l'ouvert $]a_{k-1},a_k[$ soit continue, et admette des limites finies en a_{k-1} et a_k .

Une fonction f est dite continue par morceaux sur un intervalle I si sa restriction à tout segment inclus dans I est continue par morceaux.

Les combinaisons linéaires et les produits de fonctions continues par morceaux, sont encore continues par morceaux.

II. Intégrales convergentes

II.1. Intégrale sur un semi-ouvert

Dans ce qui suit, I=[a,b[, où $a\in\mathbb{R}$ et b est un réel ou vaut $+\infty$. Les fonctions manipulées sont toutes supposées définies et continues par morceaux sur I, à valeurs réelles ou complexes.

Les définitions et résultats se traduisent immédiatement à l'intégration sur un semi-ouvert de la forme]a,b].

Définition. On dit que l'intégrale $\int_a^b f(t) dt$ est convergente si la fonction $x \mapsto \int_a^x f(t) dt$, qui est définie sur [a,b[, admet une limite finie quand x tend vers b.

Dans ce cas, on pose
$$\int_a^b f(t) dt = \lim_{x \to b} \int_a^x f(t) dt$$
.

Proposition II.1. L'intégrale $\int_{1}^{+\infty} t^{\alpha} dt$ converge si et seulement si $\alpha < -1$.

L'intégrale
$$\int_0^1 t^{\alpha} dt$$
 converge si et seulement si $\alpha > -1$.

Proposition II.2. Si les intégrales sur I de f et g convergent, et si $(\lambda, \mu) \in \mathbb{C}^2$, alors l'intégrale sur I de $\lambda f + \mu g$ converge, et

$$\int_a^b [\lambda f + \mu g](t) dt = \lambda \int_a^b f(t) dt + \mu \int_a^b g(t) dt$$

Proposition II.3. On suppose f et g à valeurs réelles.

Si $\int_a^b f(t) dt$ converge, et si $0 \le f(t)$ pour $t \in I$, alors $\int_a^b f(t) dt \ge 0$. Si de plus il existe $t_0 \in I$ tel que f soit continue en t_0 et $f(t_0) > 0$, alors $\int_a^b f(t) dt > 0$.

Si les intégrales sur I de f et g convergent, et si $f(t) \leq g(t)$ pour tout $t \in I$, alors $\int_a^b f(t) dt \leq \int_a^b g(t) dt$.

II.2. Intégrale fonction d'une borne

Théorème II.4. Soit $c \in [a, b[$. L'intégrale sur [a, b[de f converge si et seulement si l'intégrale sur [c, b[de f converge. Dans ce cas, $\int_a^b f(t) dt = \int_a^c f(t) dt + \int_c^b f(t) dt$ (où $\int_a^c f(t) dt$ est une intégrale "ordinaire" sur un segment).

Corollaire II.5. La convergence de l'intégrale sur [a,b[de f ne dépend que du comportement de f au voisinage de b.

Théorème II.6. Si l'intégrale sur [a,b[de f converge, alors la fonction $x \mapsto \int_x^b f(t) dt$ est définie et continue sur [a,b[, et a pour limite 0 quand x tend vers b. Elle est de plus dérivable en tout point x_0 en lequel f est continue, de dérivée $-f(x_0)$; elle est donc de classe C^1 sur tout intervalle sur lequel f est continue.

II.3. Intégrale sur un ouvert

Dans ce paragraphe, I=]a,b[, avec éventuellement $a=-\infty$ ou $b=+\infty$. Les fonctions manipulées sont supposées continues par morceaux sur I, à valeurs dans $\mathbb R$ ou $\mathbb C$.

Proposition II.7. Pour $c \in]a,b[$, la convergence des intégrales sur]a,c] et [c,b[d'une fonction f ne dépend pas du choix de c.

Dans le cas où ces deux intégrales convergent, le nombre $\int_a^c f(t) dt + \int_c^b f(t) dt$ ne dépend pas non plus du choix de c.

Définition. S'il existe $c \in]a,b[$ tel que les intégrales de f sur]a,c] et [c,b[convergent, on dit que l'intégrale sur]a,b[de f converge, et on pose $\int_a^b f(t) dt = \int_a^c f(t) dt + \int_c^b f(t) dt$.

III. Convergence par comparaison

III.1. Fonctions positives

Proposition III.1. Soit f une fonction positive sur [a,b[. Alors, l'intégrale $\int_a^b f(t) dt$ converge si et seulement si la fonction $x \longmapsto \int_a^x f(t) dt$ est majorée. Dans ce cas, on a en particulier $\forall x \in [a,b[$ $\int_a^x f(t) dt \leqslant \int_a^b f(t) dt$.

Théorème III.2. Si $0 \le f(t) \le g(t)$ pour tout $t \in [a, b[$, et si $\int_a^b g(t) dt$ converge, alors $\int_a^b f(t) dt$ converge.

Théorème III.3. On suppose f et g positives sur [a,b[, et $f(t) \underset{t \to b}{\sim} g(t)$. Alors, l'intégrale $\int_a^b f(t) dt$ converge si et seulement si $\int_a^b g(t) dt$ converge.

III.2. Convergence absolue

Définition. Soit f une fonction à valeurs complexes définie sur un intervalle I. On dit que l'intégrale $\int_{T} f(t) dt$ converge **absolument**, ou que f est **intégrable** sur I, si l'intégrale $\int_{I} |\widehat{f}(t)| dt$ converge.

Théorème III.4. Si l'intégrale $\int_{T} f(t) dt$ converge absolument, alors elle converge, et:

$$\left| \int_{I} f(t) \, dt \right| \leqslant \int_{I} \left| f(t) \right| \, dt$$

III.3. Convergence par comparaison

Théorème III.5. On suppose que :

- $\forall t \in [a,b[\quad g(t) \geqslant 0 \ ;$ l'intégrale $\int_a^b g(t) \ dt$ converge ;
- f(t) = O(q(t)) au voisinage de b.

Alors, l'intégrale $\int_a^b f(t) dt$ converge absolument.

IV. Calcul des intégrales

IV.1. Utilisation de primitives

Proposition IV.1. Si f est continue $sur \,]a,b[$, et $si \, F$ est une primitive de f sur $[a,b,[, alors \int_a^b f(t) dt \ converge \ si \ et \ seulement \ si \ F \ admet \ des \ limites \ finies \ en$ $a^+ \ et \ b^- \ ; \ et, \ dans \ ce \ cas, \qquad \int_a^b f(t) \ dt = \lim_{x \to b^-} F(t) - \lim_{x \to a^+} F(t) \quad not \acute{e} \ [F(t)]_a^b.$

IV.2. Intégration par parties

Théorème IV.2. On suppose que

- f et g sont de classe C^1 sur [a, b];
- le produit f(t)g(t) admet des limites finies en a et b.

Alors, $\int_a^b f(t)g'(t) dt$ converge si et seulement si $\int_a^b f'(t)g(t) dt$ converge; dans ce

$$\int_a^b f(t)g'(t) dt = \lim_{t \to b} f(t)g(t) - \lim_{t \to a} f(t)g(t) - \int_a^b f'(t)g(t) dt$$

IV.3. Changement de variable

Théorème IV.3. On suppose que

- f est continue sur [a, b[;
- φ est une bijection de classe C^1 , strictement croissante, de $]\alpha,\beta[$ dans]a,b[. Alors, $\int_a^b f(t) dt$ converge (respectivement converge absolument) si et seulement $\sin\int_{\alpha}^{\beta}f(\varphi(u))\varphi'(u)\,du$ converge (respectivement converge absolument); et dans ce cas, les deux intégrales sont égales.

Si l'on veut que la formule fonctionne dans le cas d'un changement de variable décroissant, il suffit de remplacer $\varphi'(u)$ par $-\varphi'(u) = |\varphi'(u)|$ (on évitera d'inverser les bornes dans une intégrale généralisée).

V. Intégration des relations de comparaison

V.1. Cas intégrable

Théorème V.1. On suppose que q est positive et intégrable sur [a,b]. Dans ce

$$\triangleright \ si \ f(t) \mathop{=}_{t \to b} O \big(g(t) \big), \ alors \qquad \int_x^b f(t) \, dt \mathop{=}_{x \to b} O \Big(\int_x^b g(t) \, dt \Big) \ ;$$

$$\triangleright si f(t) = o(g(t)), alors \quad \int_x^b f(t) dt = o(\int_x^b g(t) dt);$$

$$\triangleright si f(t) \underset{t \to b}{\sim} g(t), \ alors \quad \int_x^b f(t) dt \underset{x \to b}{\sim} \int_x^b g(t) dt.$$

V.2. Cas non intégrable

Théorème V.2. On suppose que a est positive et n'est pas intégrable sur [a, b]. Dans ce cas.

$$\triangleright$$
 si $f(t) = O(g(t))$, alors $\int_a^x f(t) dt = O(\int_a^x g(t) dt)$;

$$\triangleright \ si \ f(t) \underset{t \to b}{=} o \big(g(t) \big), \ alors \qquad \int_a^x f(t) \ dt \underset{x \to b}{=} o \left(\int_a^x g(t) \ dt \right);$$

$$\triangleright \ si \ f(t) \underset{t \to b}{\sim} g(t), \ alors \qquad \int_a^x f(t) \ dt \underset{x \to b}{\sim} \int_a^x g(t) \ dt.$$

$$\triangleright si f(t) \sim_{t \to b} g(t), alors \int_a^x f(t) dt \sim_{x \to b} \int_a^x g(t) dt$$