2549 1974

Polynuclear Carbonyl Complexes of Cobalt containing Isocyanides and Other Ligands

By Josephine Newman and A. R. Manning,* Department of Chemistry, University College, Belfield, Dublin 4,

Isocyanides, RNC (R = alkyl but usually Me or Bu^t), displace up to five carbonyl ligands from $[Co_4(CO)_{12}]$, $[(\pi-C_5H_5)NiCo_3(CO)_9]$, $[YCCo_3(CO)_9]$ (Y = CI, Me, or Ph), $[SCo_3(CO)_9]$, and $[SCo_2Fe(CO)_9]$. The reactions usually take place under mild conditions with retention of the pseudotetrahedral XCo_3 or SCo_2Fe cluster (X = Co, With octacarbonyldicobalt, the products are derivatives of [Co₄(CO)₁₂] or [(RNC)₅Co][Co(CO)₄]. but never of $[Co_2(CO)_8]$. $[\{LCo(CO)_3\}_2Hg]$ (L = tertiary phosphine or CO) and $[(R_3P)_2Co(CO)_3][Co(CO)_4]$ salts undergo similar CO replacement reactions. The structures of the products are discussed on the bases of their i.r. spectra.

The replacement of carbon monoxide in various polynuclear cobalt carbonyls by Group VA ligands may take place with (a) retention of the cluster, or (b) its fragmentation into simpler units.2 The related reactions using organoisocyanide ligands have received far less attention. The investigations described in the present paper show that they are much less likely to take place by route (b), and in some instances occur with polymerisation of dicobalt to tetracobalt species. Previous work has shown that under vigorous conditions octacarbonyldicobalt and methyl isocyanide give $[(MeNC)_5Co][Co(CO)_4]$.

- ¹ G. Cetini, O. Gambino, R. Rossetti, and P. L. Stanghellini,
- Inorg. Chem., 1968, 7, 609.
 W. Hieber and R. Breu, Chem. Ber., 1957, 90, 1259.
 A. Sacco, Gazzetta, 1953, 83, 632; W. Hieber and J. Sedlmeier, Chem. Ber., 1954, 87, 787.
 - Org. Synth., 41, 13; and 46, 75.
- ⁵ R. B. King, Organometallic Synth., 1965, **1**, 103. ⁶ A. T. T. Hsieh and J. Knight, J. Organometallic Chem., 1971, **26**, 125.
- L. Markó, G. Bor, and E. Klumpp, Chem. and Ind., 1961,

EXPERIMENTAL

Published methods were used to prepare the organoisocyanides,⁴ $[Co_4(CO)_{12}]$,⁵ $[(\pi-C_5H_5)NiCo_3(CO)_9]$,⁶ $[SCo_3-CO]_9$ $(CO)_9$],⁷ [SFeCo₂(CO)₉],⁸ [MeCCo₃(CO)₉],⁹ [PhCCo₃(CO)₉],⁹ (CO)₃}₂Hg].¹³ Other chemicals were purchased.

All reactions were carried out in purified solvents under an atmosphere of nitrogen at room temperature using ca. 1-2 g of the metal carbonyl complex unless it is stated otherwise. They were monitored by i.r. spectroscopy. When the reactions were complete, the products were separated by chromatography on alumina using benzenehexane mixtures as eluants, or by crystallization. They were purified by recrystallization.

- 8 S. Khattab, L. Markó, G. Bor, and B. Markó, J. Organometallic Chem., 1964, 1, 372.
 - 9 R. B. King, Organometallic Synth., 1965, 1, 153.
- 10 W. Hieber and W. Freyer, Chem. Ber., 1958, 91, 1230.
- ¹¹ F. Bonati, S. Cenini, D. Morelli, and R. Ugo, J. Chem. Soc. (A), 1966, 1052.
- S. V. Dighe and M. Orchin, *Inorg. Chem.*, 1962, **1**, 965.
 F. Bonati, S. Cenini, and R. Ugo, *J. Chem. Soc.* (A), 1967, 932.

J.C.S. Dalton

2550

		2030s 2032s 2031s 2032s 2032s	2065 2065 2065 2065 2065	2045 2039 2041	1997 1997 1992	2057 2055	2016 2015 2018 2008 2016 2021 1997 1994 1996 2008 1980 1980	2020 (2014 1934 1940
		2020 (5·2) 2020 (4·8) 2020 (4·8) 2020 (5·6) 2021 (4·8)	2028 2028 2027 2028	2011	1988 1990 1991 1975	2029 (1.0) 2028 (1.0)	2010 (2-9) 1944 (0-4) 1995 (3-7) 1995 (3-7) 2017 (5-5) 2017 (5-5) 2012 (6-8) 1974 (6-8) 1979 (6-8) 1998 (6-8) 1998 (1-1) 1999 (6-8) 1974 (1-0)	2006 (8·2) 1996 (7·6)			1917sh
		2014 (5·5) 2012 (4·8) 2014 (4·8) 2012 (5·0) 2015 (5·2)	2014 (15·4) 2014 (14·5) 2013 (15·0) 2012 (14·7) 2016 (15·7)	2005 (16·3) 2002 (18·7) 2002 (16·8)	1977sh 1976 (10·8) 1975 (10·7) 1967 (13·0)	2013 (6·2) 2012 (6·8)	2000 (0-8) 2018sh 1988 (2-5) 1995 (2-5) 2006 (4-4) 2006 (4-4) 1977 (6-8) 1977 (6-8) 1993 (7-1) 1993 (7-1) 1964 (8-7)	1999 (4.0) $1983 (7.1)$			2007sh 1912 (4·2) 1927 (7·4)
the text	bands d	2012sh 2009sh 2012sh 2009sh 2012sh	1998 (8·0) 1996 (7·5) 1996 (8·7) 1996 (8·3) 2000 (8·3)	1985 (9.0) $1984 (9.1)$ $1982 (9.3)$	1967sh 1968 (8·4) 1967 (10) 1957 (13·0)	2006 (6·8) 2004 (6·6)	1992 (0-6) 2014th 1983 (1-4) 1995 (2-2) 1995 (2-4) 1995 (4-4) 1979 (5-9) 1979 (5-9) 1948th 1948th	1984 (2.0) $1970 (3.2)$	1882s 1880s 1886sh		1962 (10) 1985sh 1894 (10)
scribed in	Absorption bands d	1888 (0-2) 1886 (0-2) 1888 (0-5) 1887 (0-2) 1886 (0-2)			1816sh		1987 (0-5) 2003 (0-8) 1972 (1-4) 1975 (1-4) 1987 (1-7) 1987 (1-7) 1985 (1-8) 1995 (1-8) 1972 (1-8) 1972 (1-8) 1972 (1-8)	$\begin{array}{c} 1948 \ (2 \cdot 2) \\ 1931 \ (3 \cdot 4) \end{array}$	1873s 1880s 1877s		
p spunod		1860 (10) 1857 (10) 1860 (10) 1857 (10) 1858 (10)	1875 (0·5) 1876 (0·4) 1876 (0·4) 1876 (0·7) 1876 (0·4)	1865 (0·5) 1864 (0·5) 1864 (0·5)	1843 (0·05) 1802 (10)	1845 (4·3) 1845 (4·0)		1864 (0.05)			
-1) of com		1850 (9·3) 1848 (9·6) 1850 (9·0) 1849 (9·4) 1850 (7·0)	1844 (8-4) 1844 (9-2) 1842 (9-3) 1842 (9-3) 1845 (10)	1833 (10) 1831 (10) 1830 (10)	1803 (10) 1820 (10) 1817 (9·8) 1793sh	$\frac{1838}{1838} \frac{(4.7)}{(5.0)}$		1831 (1.6)			
-2200 cm		1845sh 1844sh 1845sh 1845sh 1845sh 1845sh	1832 (10) 1835 (10) 1836 (10) 1835 (10) 1836 (9·4)	1825 (9·2) 1823 (9·5) 1822 (9·3)	1794sh 1813 (9·8) 1810 (10) 1784sh	1830sh 1830sh		1823 (1.4)			
tra (1700–	Others and M	M=627	M = 682	M = 737	M = 792 $M = 847$			S = 5.6 $S = 5.1$			
speci	R/Z	ង ១ ១ ១ ១ កំ ដំ ទំ ដ ដ	44488 75187	0 0 0 0 0 0 0 0	86.23 86.23 86.23	2.3	မေးတွင်္ကေနတဲ့ မောက်ကေတာင် ဝန်ခေတ်နှင့် မောက်ထိုက်သောင်းကို ကိုလို လေသိသိသိသိသိသိသိသိသိသိသိသိသိသိသိသိသိသိသိ	4.9 6.7	4.8 9.9 9.9	4.6	44-1-2 6-6-7-5
frared	Calculated (%)	0.5 1.7 1.1	13 29 13 13 13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	3:7 4:1	1.9 4.6 5.3 5.3	2.3	14000010044404000 54 6 117514877450	3.2 4.3	4.0 6.0 8.0	9.5	1.1 6.3 4.3
nd in	Calc	26.7 28.0 30.6 33.1 34.5	28:1 35:2 39:3 41:6	29.44 29.14 20.24	30.8 42.4 45.3 3 5.3	35.5	0849 0108 0108 0107 0108	35.9 40.4	62·9 64·0 67·7	71.6	21.2 41.2 53.6
is, analyses, and infrared spectra (1700—2200 cm $^{-1}$) of compounds described in the text	Others and M	M = 638	M = 688	M = 745	M = 802 $M = 843$			S = 5·3 S = 4·4			
ints,	Z	21 24 24 24 26 24 24 11 12	4 4 4 4 8 8 6 1 0 6	7. 5.5. 5.3.	9:1 6:0 8:1	2.1	မွေ့အတွက္နက္နတ္တက္ပုံလွင္ ဝက္လာင္အနာက္နက္င္တြင္း လက္လာင္အနာက္နက္နက္နက္	4·7 6·5	4 4 6 4 7 6 6	4.4	4.8 1.6 2.4
Melting point	Found (%)	0.6 0.9 1.6 1.6		1.6 3.7 4.5	0.44.0 0.00.00	63 65	1 公 O T S T S T S A S S S S S S S S S S S S S	4·4	4.6 6.6 6.6	8.6	0.8 6.6 4.4
Melt	[F]	26.3 27.1 30.6 32.6 33.8	27.8 35.2 39.6 41.4	29.4 38.9 43.7	30.3 42.3 44.9	35.1	8 4 2 8 8 8 8 8 4 4 8 8 4 7 4 8 4 1 8 7 4 8 8 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2	35.4 40.4	63.0 63.6 67.2	72-8	20.6 41.8 53.7
	M.p.b		128—130 50—51 87—89 66—68 40—42	8081 137139 8283	$\begin{array}{c} \text{dec. 200} \\ \text{dec. 156} \\ 96 - 98 \\ 177 - 178 \end{array}$	_n(CNR)n] 114—115	72 - 74 - 76 - 76 - 76 - 76 - 76 - 76 - 76	85-86 90-91	co(CO)4] 174—176 162—164 138—139	BPh_1 122—124	nHg] 127—128 76—78 216—219
	Compound a R R R Y FC COND COND 1		Me 2 Et 2 But 2 Cy 2 PhCH, 2	Me 3 But 3 Cy 3	Me 4 But 4 Cy 4 But 50	$ \begin{array}{ll} [(\pi\text{-}C_6H_6)\text{NiCo}_3(\text{CO})_{\mathfrak{d}-n}(\text{CNR})_n] \\ \text{Me} \\ \text{But} \\ \end{array} $	[YCCo ₃ (CO) _{2-x} (CNR) _n] Me 1 Me But 1 Ph Me 2 Ne But 2 Ph Me 2 CI But 2 Ph Me 3 Me But 3 CI Me 3 Me But 3 Ph Me 4 CI But 4 CI But 4 CI But 4 CI But 4 CI	[SFeCo ₂ (CO) _{2-n} (CNR) _n] But 2 But 3	[(Ph ₃ P) ₂ Co(CNR) ₃] [Co(CO) ₄] Me \(\text{9}\) Et \(\theta\) Cy \(\theta\)	[(Bun ₃ P) ₂ Co(CNR) ₃] [BPh ₄] Me e	$ [Y_2Co_2(CO)_{\delta-n}(CNR)_nHg] $ Mc 2 CO e 15 Me 1 Bu _a nP e 7 But 2 Ph _b P e 21

2551

ses.	_;
arenth	iol mul
hts in 1	of Nu
ak heig	ectrun
tive pe	9 l.r. s
ith rela	H,
m-1) w	[e),], ³ C
ions (c	CNN
k posit	00);00
d Pea	as [C]C
zene.	allizes
7 in benz	f Cryst
pically	tion.
ryosco	m solu
nined	lorofor
determi	n in ch
weight	pectrun
molecular	e I.r. s
= mo	aker.
; c M	v = we
nt melting	and v
ithout	edium
osed w	m = m
decomb	strong, n
dec. = ¢	S
tubes. d	houlder
sealed tul	s = vs
ij	wise.
crmined	d other
b Det	state
hexyl.	n unles
= cyclo	solutio
Ç	Fexane
	Ĭ

	2192 (3:3) 2192 (3:3) 2177 (2:8) 2177 (2:8) 2177 (5:6) 2177 (5:6) 2177 (5:6) 2178 (4·1) 2175 (5·0) 2175 (5·0)			2176sh 2159sh 2185sh 2162sh 9153 (6.4)		2164 (1·4) 2157 (2·0)	2140w 2114sh 2088m	2122 (4·8)	$\begin{array}{c} 2160 \ (2 \cdot 0) \\ 2099 \ (0 \cdot 9) \\ 2100 \ (3 \cdot 7) \end{array}$
Absorption bands d	2181sh 2172sh 2173sh 2150sh 2150sh 2150sh 2150sh 2150sh 2160sh 2160sh 2160sh 2142 (9-1) 2142 (9-1) 2148 (9-1) 2148 (19-1) 2181 (19-1) 2181 (19-1) 2181 (19-1) 2181 (19-1) 2181 (19-1) 2181 (19-1) 2181 (19-1) 2181 (19-1)		$\begin{array}{c} 2181 \ (1.6) \\ 2155 \ (1.0) \\ 9185 \ (1.3) \end{array}$		2126 (6·3) 2131 (6·8) 2165 (6·5) 2112sh 2128 (11·4)	$\begin{array}{c} 2152 \ (2 \cdot 3) \\ 2141 \ (5 \cdot 9) \end{array}$	2087m	2088 (1.0)	
	2156sh 2141 (83) 2141 (83) 2149sh 2128sh 2128sh 2128sh			2164 (2·4) 2139 (2·9) 2175 (2·4) 2147 (2·5)	2113sh 2118 (4·4) 2151sh 2120sh 2078 (3·1) 2117sh	2136sh 2130 (3·9)	2100m 2028sh 2049m	2071sh	2143sh
			$^{2082}_{2081}^{(2\cdot0)}_{(3\cdot9)}$	2059 (2·6)					
	2087 (6-1) 2087 (6-5) 2087 (6-5) 2084 (5-6) 2087 (7-0)		2076 (0·8) 2076sh 2089 (9·9)	2056 (2.6) 2056 (4.9) 2064 (3.5) 2064 (2.9)	2027 (4-2) 2031 (5-1) 2044 (3-7) 2037 (4-0)	2062sh 2039 (1·4)			1995 (1.7)
	2046 (37.0) 2045 (34.5) 2045 (34.5) 2045 (37.0) 2046 (37.0)		2037 (10) 2038 (10) 2085ch	2018 (10) 2053 (3·8) 2066 (3·5) 2061 (2·9) 2081 (3·6)	2017 (2·6) 2019 (4·1) 2019 (4·1) 2034 (3·4) 2011sh	2054 (3·1) 2029 (5·0)			2986 (0.5)
	2040 (31-0) 2038 (30-0) 2040 (23-0) 2040 (23-0) 2041 (31-0) 2041 (3-0) 2051 (6-6) 2052 (16-0) 2052 (16-0) 2051 (6-4) 2051 (6-4) 2051 (6-4) 2051 (6-4)	- 10 4 4	2030 (8·0) 2030 (9·1) 9047 (1·0)	2010 (5·3) 2020sh 2062sh 2057sh 2057sh	2000sh 1999sh 2012sh 2011sh 1994 (7.8) 2007 (7.3)	2027sh 2016 (5·8)			$\begin{array}{c} 2035 \ (1 \cdot 3) \\ 1944 \ (8 \cdot 9) \\ 2059 \ (1 \cdot 1) \end{array}$
Compound a R R Y Compound A	# 4 # 4 # 4 # 4 # 4 # 4 # 4 # 4 # 4 # 4	[(#-C ₅ H ₆)NiCo ₃ (CO) ₉ _ n(CNR) _n] [e	1 Me	G C C B & C		[SFeCo ₂ (CO) _{$t = n$} (CNR) _{n}] $ \begin{array}{ccc} & & & & \\ $	[(Ph ₃ P) ₂ Co(CNR) ₃][Co(CO) ₄] = 9 : 9 : 9	[(Bun ₂ P) ₂ Co(CNR) ₃][BPh ₄] 2 e	[Y ₂ CO ₃ (CO) _{6-n} (CNR) _n Hg] e 2 CO e l Bun ₃ P e it 2 Ph ₃ P e
Comp	M. C.	[(#-C ₅ H ₆)NiC Me 1 But 1	Me But We	Me But We	But But But But	[SFeCo ₂ But But	[(Ph ₃ P); Me 9 Et 9 Cy 9	[(BungP Me e	[Y ₂ Co ₂ ((Me Me But

2552 J.C.S. Dalton

The reactions between $[Co_4(CO)_{12}]$ and the isocyanide RNC were carried out in benzene with the slow, dropwise addition of a solution of the ligand to a well-stirred solution of the complex. They were virtually instantaneous and proceeded by stepwise substitution. Thus the use of RNC: $[Co_4(CO)_{12}]$ mole ratios of n:1 gave nearly pure $Co_4(CO)_{12-n}(CNR)_n$ in yields of 60-70% for n=1-4. The procedure prevented the formation of the $[(RNC)_5Co]-[Co(CO)_4]$ salts which otherwise took place at higher concentrations. $[Co_4(CO)_7(CNBu^t)_5]$ was obtained from $[Co_4(CO)_8(CNBu^t)_4]$ and Bu^tNC (mole ratio 1:6).

Octacarbonyldicobalt and RNC (mole ratio 2:n) gave $[Co_4(CO)_{12-n}(CNR)_n]$ (n=2-4). There was no evidence for the formation of any other products except $[(RNC)_5Co][Co(CO)_4]$. Even very low concentrations of isocyanide gave no more than traces of $[Co_4(CO)_{11}(CNR)]$.

In contrast, when solutions or suspensions of [{LCo-(CO)₃}₂] in benzene (L = Ph₃P or Buⁿ₃P) were refluxed with isocyanides for 1 h (mol ratio 1:3), yellow salts [L₂Co(CNR)₃][Co(CO)₄] were obtained (R = Me, Et, or C₆H₁₁). They were isolated as such or as [L₂Co(CNR)₃]-[BPh₄] by crystallization from acetone (yields 70—80%). When L = Buⁿ₃P, there was evidence for the formation of cations containing carbonyl ligands.

 $[(\pi-C_5H_5)\text{NiCo}_3(\text{CO})_9]$ (0·3 g) and Bu^tNC (0·6 ml) in benzene (25 ml) were stirred for 2 h to give $[(\pi-C_5H_5)-\text{NiCo}_3(\text{CO})_8(\text{CNBu}^t)]$ (50% yield) and $[\text{Co}_4(\text{CO})_{12-n^2}(\text{CN}^t\text{Bu})_n]$ (n=2 or 3). The direct reaction of $[\{(\pi-C_5H_5)-\text{Ni}(\text{CNC}_6H_{11})\}_2]$ and $[\text{Co}_2(\text{CO})_8]$ gave $[\text{Co}_4(\text{CO})_{12-n}(\text{CNC}_6H_{11})_n]$ and $[\text{Ni}(\pi-C_5H_5)_2]$.

Although $[SCo_3(CO)_9]$ reacted with Bu^tNC , no product could be isolated. However with the more stable $[SFeCo_2(CO)_9]$, $[(Bu^tNC)Fe(CO)_4]$ and $[SFeCo_2(CO)_{9-n}(CNBu^t)_n]$ (n=2 or 3) were obtained.

When hexane solutions of $[MeCCo_3(CO)_9]$ (0.5 g) and RNC (R = Me or Bu^t), mol ratio 1:6, were refluxed for $1-1\frac{1}{2}$ h, mixtures $[MeCCo_3(CO)_{9-n}(CNR)_n]$ (n=1-3) were obtained. Yields of the purified products were 15-50%.

 $[PhCCo_3(CO)_{9-n}(CNBu^t)_n]$, (n=1-4) could be prepared similarly or by stirring the reaction mixtures for 20 h. $[ClCCo_3(CO)_9]$ reacted rapidly with isocyanides in hexane. By using suitable proportions of reactants, pure $[ClCCo_3(CO)_{9-n}(CNR)_n]$ could be isolated without the aid of chromatography in yields of 30-40% $(n=1-4; R=Me \text{ or } Bu^t)$.

Methyl isocyanide and [{Co(CO)₄}₂Hg] (mol ratio 2:1) reacted rapidly in benzene to give [{(MeNC)Co(CO)₃}₂Hg] (yield ca. 40%). Under the same conditions, [{Buⁿ₃PCo(CO)₃}₂Hg] and MeNC, or [{Ph₃PCo(CO)₃}₂Hg] and Bu^tNC gave [{Buⁿ₃PCo(CO)₃}Hg{Co(CO)₂(CNMe)PBuⁿ₃}] or [{Ph₃P-(Bu^tNC)Co(CO)₂}₂Hg] respectively in yields of ca. 70%. All three products were yellow solids which were recrystallized from benzene—hexane mixtures.

The complexes which have been isolated are listed in the Table together with their melting points, analyses, and i.r. spectra. The spectra were obtained as described previously.¹⁴ RESULTS AND DISCUSSION

Whereas the ionic products and the derivatives of mercury cobalt carbonyl are yellow, air-stable solids, the polynuclear compounds are deeply coloured solids or liquids; $[\mathrm{Co_4(CO)_{12_n}(CNR)_n}]$ ($R = \mathrm{alkyl}$; n = 1-5) are dark brown, $[(\pi - \mathrm{C_5H_5})\mathrm{NiCo_3(CO)_8}(\mathrm{CNBu^t})]$ is green, $[\mathrm{YCCo_3(O)_{9_n}(CNR)_n}]$ ($Y = \mathrm{Me}$, Ph or Cl) purple, and $[\mathrm{SFeCo_2(CO)_{9_m}(CMR)_m}]$ (m = 2 or 3) are brown. All are at least as stable as their unsubstituted precursors towards thermal and oxidative decomposition. Although this increase in stability is especially marked for the derivatives of dodecacarbonyltetracobalt, the ability of isocyanide ligands to stabilize clusters of the first-row transition metals appears to be widespread. 15

In a preliminary publication, the $[Co_4(CO)_{12-n}(CNR)_n]$ complexes were formulated as derivatives of octacarbonyldicobalt, $[Co_2(CO)_{8-m}(CNR)_m]$. Their true natures were confirmed by molecular-weight measurements (cryoscopic in benzene 17), whilst their i.r. spectra are consistent with molecular structures based on that of [Co₄(CO)₁₂]. 18,19 The isocyanide molecules do not act as bridging ligands in these complexes (or in any other described here), but there are three types of terminal co-ordination positions which they may occupy. Thus although isomerism is possible, the simplicity of the spectra in the terminal C-O stretching region and the sharpness of most absorption bands suggests that one isomer predominates over the others in all complexes except those of the type $[Co_4(CO)_{10}]$ (CNR)₂]. With these, the terminal v(CO) absorption band of highest frequency has two components which may be due to isomers (cf. [Co₄(CO)₁₀(PEt₃)₂] and [Co₄(CO)₉(PMe₂Ph)₃] ²⁰). The intense absorption bands in the $\nu(CO\mu)$ region of all spectra are probably due to the e vibrations of the $Co_3(\mu$ - $CO)_3$ moiety which have been split into two components by the lowering of the molecular symmetries which take place on CO substitutions. The weak absorption band at higher frequency in many spectra is attributed to the v(COµ) mode of a_1 symmetry.

The structure of $[(\pi - C_5H_5)\mathrm{NiCo_3(CO)_9}]$ is similar to that of $[\mathrm{Co_4(CO)_{12}}]$ but with the apical $\mathrm{Co(CO)_3}$ moiety being replaced by $(\pi - C_5H_5)\mathrm{Ni.^6}$ In the spectra of $[(\pi - C_5H_5)\mathrm{NiCo_3(CO)_8(CNR)}]$, the two components of the e $\vee(\mathrm{CO}\mu)$ mode have a separation comparable to that observed for $[\mathrm{Co_4(CO)_{11}(CNR)}]$. This implies that in both series of compounds the isocyanide ligands are co-ordinated to a cobalt atom of the triangular $\mathrm{Co_3(\mu - CO)_3}$ array. $[(\pi - \mathrm{mesitylene})\mathrm{CO_4(CO)_9}]^{21}$ undergoes a similar substitution reaction, but no product was isolated.

The pseudotetrahedral XCo₃ framework found in

^{*} It is only when R = Me that the expected analyses for $[Co_2(CO)_{8-m}(CNR)_m]$ and $[Co_4(CO)_{12-n}(CNR)_n]$ (n = 2m) differ to any great extent.

<sup>J. Newman and A. R. Manning, J.C.S. Dalton, 1973, 1593.
J. Newman and A. R. Manning, unpublished work.</sup>

¹⁶ M. J. Boylan, J. Bellerby, J. Newman, and A. R. Manning, J. Organometallic Chem., 1973, 47, C33.

¹⁷ F. G. Mann and B. C. Saunders, 'Practical Organic Chemistry,' Longmans Green and Co., London, 1938, p. 319.

C. W. Wei, Inorg. Chem., 1969, 8, 2384.
 G. Bor, Spectrochim. Acta, 1963, 19, 1209.

D. Labroue and R. Poilblanc, *Inorg. Chim. Acta*, 1972, 6, 387.
 I. U. Khand, G. R. Knox, P. Pauson, and W. E. Watts, *J.C.S. Perkin I*, 1973, 975.

2553 1974

 $[Co_4(CO)_{12}]$ and $[(\pi-C_5H_5)NiCo_3(CO)_9]$ is retained in the [YCCo₃(CO)₉] complexes, but these last do not possess bridging carbonyl groups.22 As they have two types of terminal ligands, isomers are possible on CO substitution. They are probably responsible for the relative complexity of the i.r. spectra of those [YCCo₃- $(CO)_{9-n}(CNR)_n$ derivatives where n=1-4 which often show more absorption bands due to their v(CO) vibrations than they have CO ligands. In other instances two components are observed for the absorption bands at highest frequency which are almost certainly due to the singly degenerate, fully symmetric, v(CO) vibrations of two different species which cannot be separated by chromatography. Isomerism is also exhibited by various $[YCCo_3(CO)_{9-n}L_n]$ complexes (L =tertiary phosphine or arsine), but for these C-O bridged isomers are often important.23 Although no µ-CO species have been observed in solutions of the isocyanide derivatives, [MeCCo₃(CO)₆(CNR)₃] (R = Me or But) crystallize in a purple form having only terminal carbonyl groups and an orange form with terminal and bridging CO ligands.*

 $[SFeCo_2(CO)_9]$ has a structure similar to those of the methynyl complexes.24 The Mössbauer spectra of its derivatives $[SFeCO_2(CO)_{9-n}(PPh_3)_n]$ (n = 1 or 2) show that substitution takes place on the cobalt atoms,25 and the similarity of the i.r. spectra of [SFeCo₂(CO)₇-(PPh₃)₂] and [SFeCo₂(CO)₇(CNBu^t)₂] suggests that the two have similar structures. [SFeCo2(CO)6(CNBut)3] exists as mixtures of isomers in solution; at least one has μ -CO ligands.

Although [SCo₃(CO)₉] undergoes CO substitution reactions with isocyanides, the products appear to be less stable than the precursor.

The initial products from the reactions of [Co₂(CO)₈] with isocyanides are the $[Co_4(CO)_{12-n}(CNR)_n]$ derivatives. If an excess of ligand and more vigorous conditions are used, the $[Co(CNR)_5][Co(CO)_4]$ salts are obtained.3 The only products obtained from [{LCo- $(CO)_3$ and RNC $(L = Ph_3P \text{ or } Bu_3^nP)$ were the salts $[L_2Co(CNR)_3][Co(CO)_4]$ in which the cation has trans trigonal bipyramidal co-ordination about the cobalt atom.²⁶ In these reactions there was i.r. spectroscopic evidence for the formation of cations containing both carbonyl and isocyanide ligands.

The i.r. spectrum of [{Co(CO)₃(CNMe)}₂Hg] is more complicated than that of [{Et₃PCo(CO)₃}₂Hg] ²⁷ where it is known that there is trigonal bipyramidal coordination about each cobalt atom and that the P-Co-Hg-Co-P system is linear.²⁸ Therefore it is probable

- * The i.r. spectrum of the orange crystals of [MeCCo₃(CO)₆-(CNBu^t)₃] as a Nujol mull shows absorption bands at 1800sh, 1834s, 1867w, 1967vs, 2004s, 2145s, and 2163m cm⁻¹.
- ²² P. W. Sutton and L. F. Dahl, J. Amer. Chem. Soc., 1967, 89,
- T. W. Matheson, B. H. Robinson, and W. S. Tham, J. Chem. Soc. (A), 1971, 1457.
 D. L. Stevenson, C. H. Wei, and L. F. Dahl, J. Amer. Chem.
- Soc., 1971, 93, 6027.
 K. Burger, L. Korecz, and G. Bor, J. Inorg. Nuclear Chem.,
- - ²⁶ R. B. King and M. S. Saran, Inorg. Chem., 1972, 11, 2112.

that the methyl isocyanide ligands occupy at least one of the equatorial co-ordination positions of a [{Co(CO)₄}₉Hg]-type of molecule.²⁹ It is probable that the linear P-Co-Hg-Co-P structure is retained in [{(Ph₃P)Co(CO)₂(CNBu^t)}₂Hg] and the single absorption band due to its v(CN) vibration implies a centrosymmetric molecule. The complexity of the i.r. $[\{(Bu_{3}^{n}P)Co(CO)_{3}\}Hg\{Co(CO)_{2}(CNMe)$ of (PBuⁿ₃)}] suggests that isomers are present (cf. [Co₂- $(CO)_5(PMe_3)_3Hg$] in ref. 30).

The observed changes in the frequencies of the various absorption bands in the i.r. spectra of the compounds may be interpreted using the accepted model of the bonding between metal atoms and either carbonyl or isocyanide ligands. As RNC are weaker π -acceptors and/or stronger σ -donors than CO groups, replacement of the latter by the former causes a decrease in the frequency of both $\nu(CO)$ and $\nu(CN)$ vibrations.³¹ The absolute frequencies of $\nu(CN)$ decrease along the series R = Me > n-alkyl > sec-alkyl > tert-alkyl and as the mass of R increases. The large band widths of these absorption bands, as compared with those due to $\nu(CO)$ modes, is also due to the presence of R. Similar behaviour is observed for absorption bands due to v(CO) when the carbonyl group acts as Lewis base towards Lewis acids such as BF₃, 32 or hydrogen bonds to alcohol solvents.33

An important feature of the properties of isocyanide ligands which has emerged in this work is their ability to stabilize polynuclear complexes. This is especially well illustrated by their reactions with octacarbonyldicobalt. Whereas phosphines, arsines, and stibines bring about a breakdown of this binuclear compound to salts, e.g. [(Ph₃P)₂Co(CO)₃][Co(CO)₄],² under similar, mild conditions isocyanides cause a polymerisation to tetracobalt complexes. The almost total absence of [Co₄(CO)₁₁(CNR)] from such reactions even when very low concentrations of isocyanides are used suggest that [Co₂(CO)₇(CNR)] are formed first and rapidly dimerise to $[Co_4(CO)_{10}(CNR)_2]$. $[SCo_3(CO)_9]$ is the only compound which appears to be destabilized when its carbonyl ligands are replaced by RNC molecules. It has been suggested that in it the unpaired electron occupies a σ* molecular orbital of the SCo₃ framework.³⁴ If replacement of CO by CNR causes an increase in the energy separation between the σ and σ^* orbitals, i.e. stabilizes the former, then the behaviour of $[SCo_3(CO)_q]$ is not unexpected nor is it inconsistent with the other observations.

[4/344 Received, 21st February, 1974]

A. R. Manning, J. Chem. Soc. (A), 1968, 1018.
 R. F. Bryan and A. R. Manning, Chem. Comm., 1968, 1316.
 G. M. Sheldrake and R. N. F. Simpson, J. Chem. Soc. (A),

^{1968, 1005.}B. de Montauzon and R. Poilblanc, J. Organometallic Chem., 1973, **54**, 291.

P. M. Treichel, Adv. Organometallic Chem., 1973, 11, 21. ³² A. Alich, N. J. Nelson, D. Stope, and D. F. Shriver, *Inorg. Chem.*, 1972, **11**, 2976.

³³ P. McArdle and A. R. Manning, J. Chem. Soc. (A), 1970, 34 C. H. Wei and L. F. Dahl, Inorg. Chem., 1967, 6, 1229.