- Graph kann ohne Definitionslücken nahtlos gezeichnet werden
- Nullstellensatz
 - Sei $f:[a;b]->\mathbb{R}$ stetig auf [a;b] und f(a)*f(b)<0
 - * x [a;b]: f(x) = 0
 - * kann mittels [[Intervallschachtelung]] bestimmt werden
- Zwischenwertsatz
 - − Sei f : [a;b] − > \mathbb{R} stetig auf [a;b]
 - * f nimmt jeden Wert zwischen f(a) und f(b) an
 - Beweis:
 - st Sei y ein Wert zwischen f(a) und f(b) ==> f(a)-y und f(b)-y haben verschiedene Vorzeichen
 - * h(x) = f(x) y ==>Nullstellensatz
 - * x [a;b]: h(x) = 0 ==> f(x) = y
- Sei $f:[a;b]->\mathbb{R}$ stetig und monoton wachsend/fallend
 - f:[a;b]->[f(a);f(b)] ist bijektiv
 - $-\ f^{-1}:[f(a);f(b)]->[a;b] \ \mathrm{ist\ stetig}$

Grenzwertkriterium

- Sei f: I -> eine reelle Funktion:
- f ist stetig in x0 I, wenn
 - für jede Folge xn aus I mit $x_0 = \lim x_n$ auch $f(x_0) = \lim f(x_n) = f(\lim x_n)$ gilt.
- f ist stetig auf I, wenn f stetig in jedem Punkt x I

ε-δ-Kriterium

- Sei f: I -> eine reelle Funktion:
- f ist stetig in x0 I, wenn

- $\varepsilon > 0 \delta > 0 x I: |x x0| < \delta = > |f(x) f(x0)| < \varepsilon$
- Vorgehensweise
 - -|f(x)-f(x0)| ersetzen mit Formel hinter Funktion

- umformen/abschätzen sodass |x x0| separater Term ist
- Ausdruck in der Form $\lambda * |x x0| < \epsilon$ ensteht ==> $|x x0| < \lambda \epsilon = \delta$
- Wenn $|x x0| < \lambda \epsilon$, dann gilt $|f(x) f(x0)| < \epsilon$

Spezielle Funktionen

- Potenzreihen, rationale Funktionen und Polynomfunktionen sind immer stetig
- p, q sind Polynome ==> $r(x)=rac{p(x)}{q(x)}$ ist eine rationale Funktion
 - r ist stetig auf Definitionsbereich D = $\{x \mid q(x) \neq 0\}$
 - rationale Funktionen sind stetig, wenn Nenner ≠ 0

Eigenschaften stetiger Funktionen

- Sei I ein abgeschlossenes, beschränktes Intervall und f: I-> stetig auf I
 - M>0 ==> x I: |f(x)| ≤ M ==> f ist beschränkt
 - xmin,xmax I x I: $|f(xmin)| \le f(x) |f(xmax)|$
 - * es gibt kleinste, obere und größte, untere Schranke
 - nicht abgeschlossen: $f:]0;1]->\mathbb{R}, f(x)=\frac{1}{x}$
 - * $x_m ax = 1$
 - * $x_m in$ existiert nicht!
 - $f(0) = \frac{1}{0} ==> Error$

[[Funktionen]] [[Supremum und Infimum]]