Материал курса *λ-исчисление, 2024*

Сод	enz	жан	ше
\sim ω_{μ}	, C P ,	1141	

І. Конверсия и Редукция	2
1.1. Основные понятия	2

1. Конверсия и Редукция

1.1. Основные понятия

Определение 1. Рассмотрим счётное множество $V = \{v, v', v'', ...\}$. Элементы этого множества будут называться *переменными*. Множество λ -выражений, Λ , — это наименьшее множество, удовлетворяющее следующим условиям:

- $x \in V \Rightarrow x \in \Lambda$;
- $x \in V, \ M \in \Lambda \Rightarrow (\lambda x M) \in \Lambda$ (абстракция, морально: определение функции);
- $M \in \Lambda, \ N \in \Lambda \Rightarrow (MN) \in \Lambda$ (комбинация, морально: применение функции к аргументу).

<u>Пример 1.</u> λ -выражения в формальной нотации:

$$v';$$
 $(vv');$
 $(\lambda v(v'v));$
 $((\lambda v(v'v))v'');$
 $(((\lambda v(\lambda v'(v'v)))v'')v''');$

Нотация

- x, y, z, ... обозначают произвольные переменные из множества V.
- M, N, K, ... обозначают произвольные λ -выражения из Λ .
- Внешние скобки опускаются: $(\lambda x(yz)) \to \lambda x(yz)$.
- Многократная абстракция сокращается:

$$\lambda x_1(\lambda x_2(\lambda...(\lambda x_nM)...)) \rightarrow \lambda x_1, x_2, ..., x_n. \ M \rightarrow \lambda \vec{x}. \ M$$

• Многократная комбинация сокращается:

$$((...((M_1M_2)M_3)...)M_n)N \to M_1M_2...M_nN \to \overrightarrow{M}N$$

- $\|M\|$ обозначает количество символов в выражении M.
- Комбинация берёт приоритет над абстракцией: $\lambda x.\; yz = \lambda x.\; (yz)$