1. I claim that the integral closure of A is $A_0 := F[t]$, to do so I will first show that A_0 is integrally closed then reduce the general case to that of A_0 . Let $q(t) \in B$ be integral over A_0 , then $q(t) = \frac{r(t)}{g(t)}$ for $r, g \in F[t]$ such that (r, g) = 1. By assumption we have some monic polynomial

$$q^{n}(t) + h_{1}(t)q^{n-1}(t) + \dots + h_{n}(t) = 0$$

which is true if and only if the following identity holds in F[t]:

$$g^{n}(t)(q^{n}(t) + h_{1}(t)q^{n-1}(t) + \dots + h_{n}(t)) = 0$$

since 0 is in any ideal of F[t], this implies in particular that

$$g^{n}(t)(q^{n}(t) + h_{1}(t)q^{n-1}(t) + \dots + h_{n}(t)) \in (g(t)) \implies r^{n}(t) \in (g(t))$$

(the implication comes from g(t) dividing each other term), since F[t] is a PID, we know that F[t]/(g(t)) is a domain, and hence $r^n \in (g)$ implies that $r \in (g)$ so that g|r, but (r,g) = 1 by assumption, so we can conclude that g is a unit, i.e. $g \in F^{\times}$, so that $g(t) \in A_0$.

Now to reduce the general case of A = F[f(t)] to that of A_0 , note that the integral closure of A contains t, since if the leading coefficient of f(t) is a we find that t satisfies the monic polynomial

$$a^{-1}f(X) - a^{-1}f(t)$$

in A_0 , it follows that A is integral over A_0 , so that the integral closure of A_0 is the integral closure of A which is A, since it is integrally closed.

2. Assume for contradiction there is some $b \in B \setminus A$, such that b is integral over A, then there exist a_1, \ldots, a_n , such that

$$b^{n} + a_{1}b^{n-1} + \dots + a_{n} = 0$$

$$\iff b^{n} + a_{1}b^{n-1} + \dots ba_{n-1} = -a_{n} \in A$$

$$\implies b^{n-1} + a_{1}b^{n-2} + \dots + a_{n-1} = a'_{1} \in A$$

$$\implies b^{n-1} + a_{1}b^{n-2} + \dots + (a_{n-1} - a'_{1}) = 0$$

continuing this process recursively, we find that $b \in A$ which is the desired contradiction. \square

3. The closure of a set is the intersection of all closed sets containing it, thus it will suffice to show that any Zariski closed set containing \mathbb{Z}^n is the entire space \mathbb{A}^n . Let V be a zariski closed set containing \mathbb{Z}^n , then by definition, V = V(I) for some $I \subset \mathbb{C}[X_1, \ldots, X_n]$. It will suffice to show that any polynomial $f \in I$ is the zero polynomial. Let $f \in I$, then f vanishes on \mathbb{Z}^n , if n = 1, then we are done since any nonzero polynomial in $\mathbb{C}[X]$ has finitely many roots. Now assume for k < n that any $f \in \mathbb{C}[X_1, X_2, \ldots, X_k]$ vanishing on \mathbb{Z}^k is the zero polynomial. Since $f(a_1, \ldots, a_{n-1}, X_n)$ has infinitely many roots for any $(a_1, \ldots, a_{n-1}) \in \mathbb{Z}^{n-1}$, we find that $f(a_1, \ldots, a_{n-1}, X_n) \equiv 0$ for any such point in \mathbb{Z}^{n-1} , in particular, we may write

$$f = X_n^m g_0(X_1, \dots, X_{n-1}) + X_n^{m-1} g_1(X_1, \dots, X_{n-1}) + \dots + g_m(X_1, \dots, X_{n-1})$$

so that each g_i is zero on \mathbb{Z}^{n-1} , by the inductive hypothesis we find that each $g_i = 0$, and hence f = 0.

4. Any finite set of points is compact, since for any open cover we can choose an open set containing each point to furnish a subcover with at most as many open sets as points. Conversely, consider the variety $X \subset \mathbb{C}^n$ and suppose that X has infinitely many points, now define I = I(X). By Noether's normalization we have that $\mathbb{C}[X_1, \ldots, X_n]/I$ is integral over $\mathbb{C}[f_1, \ldots, f_r]$ where the f_i are algebraically independent, there are two cases.

Case $\mathbf{r} \geq \mathbf{1}$. Let $\varphi : X \to \mathbb{A}^r$ be defined as $\varphi : \mathbf{x} \mapsto (f_1(\mathbf{x}), \dots, f_r(\mathbf{x}))$, then φ is continuous since each f_i is a polynomial function, moreover, φ is onto. As proof, let $\mathbf{a} = (a_1, \dots, a_r) \in \mathbb{A}^r$, then the ideal $J_a = (f_1 - a_1, \dots, f_r - a_r)$ is maximal since $\mathbb{C}[f_1, \dots, f_r]/J_a \cong \mathbb{C}$ is a field. By the going up theorem, there is some maximal $\mathbf{m}_a \in \mathbb{C}[X_1, \dots, X_n]/I$, such that $\mathbf{m}_a \cap \mathbb{C}[f_1, \dots, f_r] = J_a$. It follows (by maximality) that $V(\mathbf{m}_a) = \mathbf{x} \in \mathbb{A}^n$ is a point. Now since $\mathbf{m}_a \supset J_a$ we have $\mathbf{x} = V(\mathbf{m}_a) \subset V(J_a)$ and hence J_a vanishes on \mathbf{x} , i.e. $f_i(\mathbf{x}) - a_i = 0$ for all i, hence $\varphi(\mathbf{x}) = \mathbf{a}$ proving that φ is onto. Since \mathbb{A}^r unbounded, by the Heine Borel theorem it is not compact, the continuous image of a compact set is compact (see below) so that X was not compact.

Case $\mathbf{r}=\mathbf{0}$. It will suffice to show this case cannot happen. If r=0, then $\mathbb{C}[X_1,\ldots,X_n]/I$ is integral over \mathbb{C} , it follows that for each X_i , there is some monic polynomial g_i with coefficients in \mathbb{C} , such that $g_i(X_i) \in I$, since \mathbb{C} is algebraically closed we may factor each $g_i = \prod_{1}^{N_i} (X_i - a_j^i)$, it follows that for any $\mathbf{b} = (b_1,\ldots,b_n) \in \mathbb{A}^n$ we must have $g_i(\mathbf{b}) = g_i(b_i) = 0$, which is only possible if $b_i \in \{a_1^i,\ldots,a_{N_i}^i\}$ for each i. Hence $V(I) = X \subset \prod_{i=1}^n \{a_j^i\}_{j=1}^{N_i}$ so that $\#X \leq \prod_{1}^n N_i < \infty$, contradicting X being an infinite set.

Proof That Continuous Image of A Compact Set is Compact. Let K be compact, and f continuous, assume that $\{U_{\alpha}\}_{{\alpha}\in A}$ is an open cover for f(K), then $\{f^{-1}(U_{\alpha})\}_{{\alpha}\in A}$ is an open cover for K, hence admits a finite subcover $\{f^{-1}(U_i)\}_{i=1}^n$, since $K\subset\bigcup_1^n f^{-1}(U_i)$ we have $f(K)\subset f(\bigcup_1^n f^{-1}(U_i))=\bigcup_1^n U_i$, so that $\{U_i\}_1^n$ is a finite subcover of f(K).

5. (a) First suppose that $a \in X_1 \cup X_2$, then for any $f \in J_1J_2$, we can write $f = f_1f_2$, where $f_i \in J_i$. If $a \in X_1$, then $f_1(a) = 0$ and hence f(a) = 0, otherwise, we find that $a \in X_2$, so that $0 = f_2(a) = f(a)$, since f was arbitrary we find that $a \in V(J_1J_2)$.

Conversely, let $a \in V(J_1J_2)$, if $a \in X_1$ then we are done, so assume not. Then there is some $f \in J_1$, such that $f(a) \neq 0$, then for any $g \in J_2$ we have $fg \in J_1J_2$, implying that f(a)g(a) = 0, since $f(a)g(a) \in k$ is a field and $f(a) \neq 0$ we conclude that g(a) = 0, since this holds for any $g \in J_2$ this proves that $a \in X_2$.

(b) Since X, Y are algebraic varieties, we may write $X = V(J_X), Y = V(J_Y)$

$$V(J_X) \cap V(J_Y) = V(J_X + J_Y) \implies I(V(J_X) \cap V(J_Y)) = IV(J_X + J_Y) = \sqrt{J_X + J_Y}$$

and since $V(J_X) \cap V(J_Y) = \emptyset$, we find that $1 \in k[X_1, X_2, \dots, X_n] = I(V(J_X) \cap V(J_Y))$. $1 \in \sqrt{J_X + J_Y}$ it is immediate from definition of radical ideal that this implies $1 \in J_X + J_Y$, so that there is some $f \in J_X$ and $g \in J_Y$, such that f + g = 1, it follows that f is the desired polynomial, since f(x) = 0 for any $x \in X$ by assumption and f(y) = 1 - g(y) = 1 for any $y \in Y$, since $g \in J_Y$ implies that g(y) = 0.

6. No, assume it is the case, then Y satisfies a monic polynomial $Y^n + \sum_{i=1}^n f_{n-i}(X)Y^i = 0$ over A. Consider

$$\varphi: \mathbb{C}[X,Y] \to \mathbb{C}[X,\frac{1}{X^2+1}]$$
$$X \mapsto X$$
$$Y \mapsto \frac{1}{X^2+1}$$

such a homomorphism exists by the universal property for polynomial rings, moreover $I=(X^2Y+Y-1)\subset\ker\varphi$. By the first isomorphism theorem, this induces a homomorphism $\overline{\varphi}:B\to\mathbb{C}[X,\frac{1}{X^2+1}]$. It follows that

$$\overline{\varphi}(Y^n + \sum_{1}^{n} f_{n-i}(X)Y^i) = 0$$

$$\iff \frac{1}{X^2 + 1} = \sum_{1}^{n-1} (X^2 + 1)^i f_i$$

To see this is a contradiction, note that at least one $f_i \neq 0$, so that

$$0 = \deg 1 = \deg(X^2 + 1) \sum_{i=0}^{n-1} (X^2 + 1)^i f_i \ge \deg(X^2 + 1) = 2 \quad \Box$$