

- Arredondamento

Escreva um algoritmo que leia um número real e realize o arredondamento deste número usando 1, 2 e 3 casas decimais. A apresentação do número deve conter, obrigatoriamente 6 casas decimais. As casas decimais posteriores ao dígito arredondado devem conter o valor 0.

Considerações

O arredondamento de um número é uma operação que elimina algarismos de menor significância. A regra de arredondamento aplica-se nos algarismos situados após a posição da quantidade de casas decimais desejada. Ou seja, o processo de arredondamento do número 12.318215 considerando 1 casa decimal deve avaliar os números 18215. Para 2 casas decimais deve-se avaliar os números 8215, e assim por diante.

- Se o algarismo seguinte for menor que 5, então o anterior não se modifica
- Se os algarismo seguinte fore maior ou igual a 5, então o anterior é incrementado

Entrada

O programa deve ler 1 valor real.

Saída

O programa deve imprimir a primeira linha contendo o número arredondado com 1 casa decimal, a segunda com 2 casas decimais e a terceica com 3 casas decimais.

Exemplo

Entrada	Saída
3.1752	3.200000
	3.180000
	3.175000
Entrada	Saída
0.1825	0.200000
	0.180000

0.183000

- Composição Inteira

Escreva um algoritmo em Linguagem C que leia três números inteiros separados (n_1, n_2, n_3) e calcule o número inteiro correspondente à concatenação dos três números lidos, de modo que n_1 seja a centena, n_2 a dezena e n_3 a unidade. O programa deve apresentar o número calculado e também o seu quadrado. Caso n_1 , n_2 ou n_3 tenham mais que 1 dígito, o programa deve apresentar a mensagem: "DIGITO INVALIDO"e encerrar a execução.

Entrada

O programa deve ler 3 números inteiros.

Saída

O programa deve imprimir uma linha contendo o número resultado da composição dos três números inteiros e seu quadrado separados por vírgula e um espaço.

Exemplo

2	Entrada	
2	1	
3	2	
	3	

Entrada
10
0
3

Saída
DIGITO INVALIDO

Saída 123, 15129

- Ordena 3 números

Escreva um algoritmo que leia 3 números reais em qualquer ordem e os apresente de forma ordenada na tela.

Entrada

O programa deve ler 3 valores reais.

Saída

O programa deve imprimir uma linha contento a lista ordenada de números separados por vírgula e espaço, cada número com 2 casas decimais.

Exemplo

Entrada
3.0
1
3.1

Saída	
1.00, 3.00, 3.10	

00

- Ordena 4 números

Escreva um algoritmo que leia 4 números reais em qualquer ordem e os apresente de forma ordenada na tela.

Entrada

O programa deve ler 4 valores reais.

Saída

O programa deve imprimir uma linha contento a lista ordenada de números separados por vírgula e espaço, cada número com 2 casas decimais.

Exemplo

Entrada
3.0
1
3.1
8

Saída
1.00, 3.00, 3.10, 8.00

- Custo da Lata de Cerveja

Um fabricante de latas deseja desenvolver um programa para calcular o custo de uma lata cilíndrica de alumínio, sabendo-se que o custo do alumínio por m² é R\$ 100,00.

Entrada

O programa deve ler dois valores na entrada: o raio e a altura da lata. Ambos os valores correspondem a valores em metros. Cada valor ocorre em uma linha diferente na entrada.

Saída

O programa deve imprimir a frase: O VALOR DO CUSTO E = XXX.XX, onde XXX.XX é o valor do custo da lata. Logo após o valor do custo da lata o programa deve imprimir o caractere de quebra de linha '\n'.

Observações

- O seu programa deve utilizar a constante π com o valor aproximado de 3.14159.
- O valor total da área de um cilindro é dada por $A_t = 2 \times A_c + A_l$, onde A_c é a área do círculo, calculada como: $A_c = 2 \times \pi \times raio^2$ e A_l é a área lateral do cilindro, computada por $A_l = 2 \times \pi \times raio^2$ e A_l é a área lateral do cilindro, computada por $A_l = 2 \times \pi \times raio^2$ e A_l é a área lateral do cilindro, computada por $A_l = 2 \times \pi \times raio^2$ e A_l é a área lateral do cilindro, computada por $A_l = 2 \times \pi \times raio^2$ e A_l é a área lateral do cilindro, computada por $A_l = 2 \times \pi \times raio^2$ e A_l é a área lateral do cilindro, computada por $A_l = 2 \times \pi \times raio^2$ e A_l é a área lateral do cilindro, computada por $A_l = 2 \times \pi \times raio^2$ e A_l é a área lateral do cilindro, computada por $A_l = 2 \times \pi \times raio^2$ e A_l é a área lateral do cilindro, computada por $A_l = 2 \times \pi \times raio^2$ e A_l é a área lateral do cilindro, computada por $A_l = 2 \times \pi \times raio^2$ e A_l é a área lateral do cilindro, computada por $A_l = 2 \times \pi \times raio^2$ e A_l é a área lateral do cilindro, computada por $A_l = 2 \times \pi \times raio^2$ e A_l é a área lateral do cilindro, computada por $A_l = 2 \times \pi \times raio^2$ e A_l é a área lateral do cilindro, computada por $A_l = 2 \times \pi \times raio^2$ e A_l é a área $A_l = 2 \times \pi \times raio^2$ e $A_l = 2$

Exemplos

Entrada
0.02
0.09

Saída
O VALOR DO CUSTO $E = 1.63$