Component Model Description Form

About

Provide general information regarding the described model.

Model name	Grid-following inverter
Author / organization	Alexandros Paspatis / ICCS
Short description	A grid-following three-phase grid-connected inverter. The inverter regulates the real and reactive power injection to their reference values through the appropriate current control mechanism, while it also achieves a smooth grid synchronization.
Present use / development status	The controller was developed for the purposes of the ERIGRID 2.0 H2020 project, based on existing literature.

Classification

Describe the context of the model regarding application (modelling domain, intended use) and technical details (modelling approach, model dynamics, model of computation, functional representation).

details (modelling approach, moder dyn	unics, moder of computation, junctional representations.
Domain	□ electrical storage
	□ thermal storage
	□ energy conversion device
Intended application (including scale and resolution)	The intended application is the electrical benchmark network that is being developed in ERIGRID 2.0 project. This model will aim to represent grid-connected inverters that follow a grid-following control philosophy, while its resolution lies in the range of ms.
Modelling of spatial aspects	☐ lumped (single device)
Explain the approach of how this model describes the spatial distribution of the system.	☐ discretized (single device)
	□ averaged (multiple devices)
	□ other, please specify:
	This inverter can represent multiple grid-connected inverters as long as they are supposed to follow a grid-following control philosophy.
Model dynamics	
Explain how the model captures the dynamic behaviour of the system.	⊠ dynamic
	□ other, please specify:
	The inverter current is controlled during both steady-state and transient conditions.

Model of computation	\boxtimes	time-continuous
Explain how the model captures the	\boxtimes	discrete-event
system's evolution with respect to time and/or external stimuli.		state machine
		other, please specify:
	at the curren	ntroller of the inverter continuously reads the voltage point of common coupling and adjusts the inverter t injection to meet the reference real and reactive
	power.	•
Functional representation	⊠	explicit
Are the model functions explicit, i.e.,	'	
	` ⊠	explicit

Mathematical Model

This section provides information about the actual mathematical model by specifying variables, parameters and equations. Variables and parameters should be specified with type (Real, Integer, Boolean, String) and (physical) unit. In case the equations are too complex to be reproduced here, also a reference to a book or any other publication can be given.

Input variables	V, PCC voltage, [V]
(name, type, unit, description)	P_set, Reference real power, [W]
	Q_set, Reference reactive power, [Var]
Output variables	Inverter output voltage
(name, type, unit, description)	
Parameters	PI controllers' gains, K_p & K_i
(name, type, unit, description)	Current limit of the inverter, I_max, [A]
Internal variables	PI controllers' states
(name, type, unit, description)	
Internal constants	N/A
(name, type, unit, description)	
Model equations	Governing equations
Formulate or provide references to the model's governing equations	Current controller:
(describing the system state) and the	$v_d = v_{pccd} + \left(k_{pi} + \frac{\kappa_{ii}}{s}\right) \left(i_d^{ref} - i_d\right) - \omega L i_q$
constitutive equations (describing material properties)	$\begin{aligned} v_d &= v_{pccd} + \left(k_{pi} + \frac{k_{ii}}{s}\right) \left(i_d^{ref} - i_d\right) - \omega L i_q \\ v_q &= v_{pccq} + \left(k_{pi} + \frac{k_{ii}}{s}\right) \left(i_q^{ref} - i_q\right) + \omega L i_d \end{aligned}$
	The inverter is considered as an ideal voltage source (average modelling)

	Constitutive equations
	N/A
Initial conditions	Controller: Input to PI controller is set to zero and the PCC voltage is forwarded to the PWM generator until the point of connection of the inverter to the grid.
Boundary conditions	Controller: m_abc (duty ratio) in the range [-1,1]
Optional: graphical representation (schematic diagram, state transition diagram, etc.)	N/A

Testing

Please provide a (simple) test design for the purpose of component model validation. This test should enable three different kinds of comparisons:

- model validation: compare the behaviour of an implementation of the <u>exact same model</u> based on <u>time-series data</u>
- model harmonization: compare the behaviour of an implementation of a (supposedly) similar <u>model</u> with the same or <u>comparable intrinsic time resolution</u> based on the comparison of <u>key</u> performance indicators
- model upscaling: compare the behaviour of an implementation of a (supposedly) similar model with a <u>lower intrinsic time resolution</u> based on the comparison of <u>aggregated key performance</u> indicators

Model Validation

Provide the description of a test setup (i.e., simulation) that enables others to validate their implementation of the same model. The results should be provided as <u>time series</u> .	
Narrative Provide a simple description of the test specification.	The controller ensures the safe synchronization of the inverter with the power grid. After the connection to the grid, the controller regulates the power injection of the inverter to its reference values, while during grid faults, the controller limits the inverter current to its maximum value.
Test system configuration Describe the test setup, including: How long does the simulation run? Are there any other models required for this setup? If yes, provide a link to their description.	The inverter represents grid-connected grid-following inverters of the electrical benchmark power system developed through ERIGRID 2.0 project. The simulation may run for some ms up to many hours.

la a controller	
Is a controller required	
for this setup (see also	
below)?	
Inputs and parameters Specify the	Same as in mathematical model.
(exogeneous) inputs of	
the model used in this	
test. Also specify the	
model parameters	
used in this test. If	
necessary, attach this	
information as dataset.	
Control function	N/A
(optional)	
Specify any additional	
control functions used	
for this test.	
	Company (the initial and distance) to the continuous to the
Initial system state	Same as "Initial conditions" in the mathematical model.
Describe the initial	
state of the system.	
Temporal resolution	Sampling time in the MATLAB/Simulink environment is accordingly
	selected as Ts=1e-3 to capture transient phenomena.
Provide information	Selected as 13-12-5 to capture transient phenomena.
regarding the temporal	
resolution of the test	
simulation, such as	
integrator step size,	
time resolution for	
event handling, etc.	
Evolution of system	The inverter power injection is zero before the grid connection. When the
state	inverter is connected to the grid, the controller regulates the power
Describe (textual	injection to the reference real and reactive power values. In the case of a
and/or graphical) the	grid voltage drop, the current is driven to its maximum value due to
expected <u>qualitative</u>	unavailability of injection of the reference power. Saturation units in the
<u>behaviour</u> of the	reference currents maintain the current inside its thermal limits.
component model in	
this simulation.	
Expected results	The simulation results of the electrical benchmark network show that the
•	
Provide a <u>quantitative</u>	controller manages to synchronize the inverter safely to the grid and also
<u>description</u> of the	regulate the real and reactive power to their reference values. Moreover,
expected simulation	it is shown that when a grid fault occurs, the inverter current is limited at
output <u>based on time</u>	its maximum value to avoid damages to the inverter device.
<u>series</u> . This information	
must be	
comprehensive enough	
comprehensive enough	

for someone else to validate his/her own implementation of this model. If necessary, attach this information as dataset.

<u>Indicative result:</u> Grid-following inverter synchornization to the grid with P_set=5000 and Q_set=0 (Red-real power [W], blue-reactive power [VAr]):

Relevant simulation results are provided in the main body of the deliverable.

Additional Information

Provide any other additional information here.

Reference implementation	N/A
Similar / related models	See ERIGRID 2.0 Github
Related publications	N/A
Intellectual property concerns (if applicable)	N/A