# **Assignment No. 1**

**HSCD** 

Submitted by:

Name: Mukund Vishwas Chavan Student ID: 01011

Student E-mail: 2024ht01011@wilp.bits-pilani.ac.in

Design and implement a simple feedforward neural network using Verilog HDL on an FPGA. The network will have one hidden layer and will perform a basic classification task.

#### 1. Network Architecture:

Input Layer:

Inputs: Four 8-bit signed inputs (in1, in2, in3, in4) represent the features of the system.

• Hidden Layer:

Neurons: Three neurons calculate weighted sums of the inputs. Each neuron takes four weighted inputs and a bias term, then applies a ReLU activation:

hidden\_out = ReLU( (w1× in1) + (w2 × in2) + (w3 × in3 )+ (w4×in4) + bias ) ReLU Activation Function: Implemented as:

```
ReLU(x) = max(0,x)
```

• Output Layer:

Neurons: Two neurons calculate weighted sums of the hidden layer outputs and apply ReLII:

```
output = ReLU ( (w1 \times hidden_out1) + (w2 \times hidden_out2) + (w3 \times hidden_out3) + bias)
```

## 2. Weights and Biases:

• For simplicity, the neural network uses 8-bit signed integers for weights and biases. This choice allows easy representation and computation while ensuring that the values fit within the operational range of the model.

## 3. Design Implementation and Verilog Code Overview

- a) feedforward\_nn: The top-level module that integrates the input layer, hidden layer, and output layer.
- b) hidden\_neuron: A module representing each neuron in the hidden layer, implementing the weighted sum and ReLU activation.
- c) output\_neuron: A module for output neurons, similar to hidden neurons but specifically for combining hidden layer outputs.

# Hidden Neuron Module (hidden\_neuron.v)



# Output Neuron Module (output\_neuron.v)



## Top module (feedforward\_nm.V)





# 4) Testbench and Verification.

### > Testbench







### Simulation Results

### ☐ All Three cases



