Geometric Derivation of SVMs

Sreyas Mohan and Brett Bernstein

CDS at NYU

20 Feb 2019

Intro Question

Question

For any $w \in \mathbb{R}^d$ and $a \in \mathbb{R}$, $w^Tx - b = 0$ represents the equation of a hyperplane in \mathbb{R}^d . A hyperplane divides the space \mathbb{R}^d into two parts. We are given two points $x_1, x_2 \in \mathbb{R}^d$.

- For d = 2, consider $w = (2,3)^T$ and b = 6. Does $x_1 = (0,0)^T$ and $x_2 = (4,3)^T$ fall on the same side of the hyper plane?
- ② How can we write a computer program to determine this for a generic w, a, x_i and d?

Component of v_1, v_2 in the direction w

Component of v_1 , v_2 in the direction w

$$w^T x = b$$

- $S = \{x \in \mathbb{R}^d \mid w^T x = b\}$. What does this look like?

Level Surfaces of $f(v) = w^{T}v$ with $\|w\|_2 = 1$

Sides of the Hyperplane $w^T v = 15$

Signed Distance from x to Hyperplane $w^T v = b$

- "Signed" distance? Isn't distance always non-negative?
- If we have a vector $x \in \mathbb{R}^d$ and a hyperplane $H = \{v \mid w^T v = b\}$ we can measure the distance from x to H by

$$d(x,H) = \left| \frac{w^T x - b}{\|w\|_2} \right|.$$

• Without the absolute values we get the *signed distance*: a positive distance if $w^T x > b$ and a negative distance if $w^T x < b$.

Signed Distance from x_1, x_2 to Hyperplane $w^T v = 20$

Question

Question

You have been given a data set (x_i, y_i) for i = 1, ..., n where $x_i \in \mathbb{R}^d$ and $y_i \in \{-1, 1\}$. You are also given a hyper plane parameterized by $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$. Give an algorithm to check if $w^Tx = b$ separates the data points correctly or in other words, if y = +1 and y = -1 fall on two different sides of the hyperplane.

Linearly Separable

Definition

We say (x_i, y_i) for i = 1, ..., n are linearly separable if there is a $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$ such that $y_i(w^Tx_i - b) > 0$ for all i. The set $\{v \in \mathbb{R}^d \mid w^Tv - b = 0\}$ is called a separating hyperplane.

Linearly Separable Data

How many separating hyperplanes?

Many Separating Hyperplanes Exist

How do we pick one?

Geometric Margin

Definition

Let H be a hyperplane that separates the data (x_i, y_i) for i = 1, ..., n. The geometric margin of this hyperplane is

$$\min_{i} d(x_i, H),$$

the distance from the hyperplane to the closest data point.

Maximum Margin Separating Hyperplane

Maximizing margin

We want to:

$$\max_{i} \min_{i} d(x_{i}, H)$$

Remember:

$$d(x_i, H) = \left| \frac{w^T x_i - b}{\|w\|_2} \right| = \frac{y_i(w^T x_i - b)}{\|w\|_2}.$$

So:

$$\operatorname{maximize}_{w,b} \min_{i} \frac{y_{i}(w^{T} x_{i} - b)}{\|w\|_{2}}.$$

Note, if $M = \min_i \frac{y_i(w^T x_i - b)}{\|w\|_2}$, then $\frac{y_i(w^T x_i - b)}{\|w\|_2} \ge M$ for all i

Maximizing margin

We can rewrite this in a more standard form:

$$\label{eq:maximize} \begin{array}{ll} \text{maximize}_{w,b,M} & M \\ \text{subject to} & \frac{y_i(w^Tx_i-b)}{\|w\|_2} \geq M \quad \text{for all } i. \end{array}$$

fix $||w||_2 = 1/M$ to obtain

To find the optimal w, a we can instead solve the minimization problem

minimize_{w,b}
$$||w||_2^2$$

subject to $y_i(w^Tx_i - b) \ge 1$ for all i .

Linearly Non-Separable

What should we do if the data isn't linearly separable?

Soft Margin SVM (unlabeled points have $\xi_i = 0$)

Soft Margin SVM (introduce slack)

Questions

minimize_{w,b,\xi}
$$\|w\|_2^2 + \frac{c}{n} \sum_{i=1}^n \xi_i$$

subject to $y_i(w^Tx_i - b) \ge 1 - \xi_i$ for all i
 $\xi_i \ge 0$ for all i .

- What does $\xi_i > 0$ mean?
- What does C control?
- **3** Note that $\frac{y_i(w^Tx_i+a)}{\|w\|_2} \ge \frac{1-\xi_i}{\|w\|_2}$. What does $\xi_i = 1$ and $\xi_i = 3$ mean?

Question

Question

Explain geometrically what the following optimization problem computes:

$$\begin{array}{ll} \text{minimize}_{w,a,\xi} & \frac{1}{n} \sum_{i=1}^n \xi_i \\ \text{subject to} & y_i (w^T x_i + a) \geq 1 - \xi_i \quad \text{for all } i \\ \|w\|_2^2 \leq r^2 \\ \xi_i > 0 \quad \text{for all } i. \end{array}$$

Optimize Over Cases Where Margin Is At Least 1/r

