Student Name: Guangyu Lin **Collaboration Statement:** Total hours spent: 72 hours I discussed ideas with these individuals: • Mingyang Wu • Office hour with TA and Professor I consulted the following resources: • Bishop's textbook • TODO By submitting this assignment, I affirm this is my own original work that abides by the course collaboration policy. Links: [HW2 instructions] [collab. policy] **Contents** 2 3 3 4 5

5

6

1a: Problem Statement

Compute the expected value of estimator $\hat{\sigma}^2(x_1, \dots x_N)$, where

$$\hat{\sigma}^2(x_1, \dots x_N) = \frac{1}{N} \sum_{n=1}^N (x_n - \mu_{\text{true}})^2$$
 (1)

1a: Solution

 $\mathbb{E}[\hat{\sigma}^2(x_1,\ldots x_N)]$ substitute the definition given by problem

=
$$\mathbb{E}\left[\frac{1}{N}\sum_{n=1}^{N}(x_n-\mu_{\text{true}})^2\right]$$
 expand the $(x_n-\mu_{\text{true}})^2$

= $\mathbb{E}[\frac{1}{N}\sum_{n=1}^{N}(x_n^2-2x_n\mu_t+\mu_t^2)]$ then we can calculate the expectation to each term and since μ_t is a known parameter, we can regard it as a constant so we can move the μ_t outside of the expectation due to $\mathbb{E}[x+b]=\mathbb{E}[x]+b$ when b is a constant. On the other hand, the $\frac{1}{N}$ canceled with the sum of N so we can just write μ_t^2 at the outside

=
$$\mathbb{E}\left[\frac{1}{N}\sum_{n=1}^{N}(x_n^2-2x_n\mu_t)\right]+\mu_t^2$$
 now we can do the expectation to each term

= $\frac{1}{N} \sum_{n=1}^{N} (\mathbb{E}[x_n^2] - 2\mathbb{E}[\mu_t x_n]) + \mu_t^2$ since μ_t is a constant we can move the μ_t outside from the second term so $2\mathbb{E}[\mu_t x_n]$ can be written as $2\mu_t \mathbb{E}[x_n]$

 $=\frac{1}{N}\sum_{n=1}^{N}(\mathbb{E}[x_n^2]-2\mu_t\mathbb{E}[x_n])+\mu_t^2$ then by using the property of Gaussian distribution since our variable is drawn from Gaussian model we can find $\mathbb{E}[x_n^2]$ is $\mu_t^2+\sigma_t^2$ and $\mathbb{E}[x_n]$ is μ_t

=
$$\frac{1}{N}\sum_{n=1}^N (\mu_t^2 + \sigma_t^2 - 2\mu_t^2) + \mu_t^2$$
 now we can cancel the outside sum with $\frac{1}{N}$

=
$$\mu_t^2 + \sigma_t^2 - 2\mu_t^2 + \mu_t^2$$
 simplify this equation

$$=\sigma_t^2$$

1b: Problem Statement

Using your result in 1a, explain if the estimator $\hat{\sigma}^2$ is biased or unbiased. Explain why this differs from the biased-ness of the maximum likelihood estimator for the variance, using a justification that involves the mathematical definition of each estimator. (Hint: Why would one be lower than the other?).

1b: Solution

The estimator is unbiased. From the lecture, we derived the σ_{ml} as $\frac{N-1}{N}\sigma_t^2$. And during that derivation process, σ is an unknown parameter and we only have μ_{ml} which is calculated by the dataset that we collected as $\mu_{ml} = \frac{1}{N} \sum_{n=1}^{N} x_n$. We are not sure about where we drawn these variables so μ_{ml} might be overestimated or underestimated. But for 1a, we have μ_{true} and σ_{true} which are known parameter and using them to generate our variables. Therefore, we derived the expectation of $\hat{\sigma}^2$ is unbiased and based on our result $\frac{N-1}{N}\sigma_t^2$ less than σ_t^2 .

2a: Problem Statement

Suppose you are told that a vector random variable $x \in \mathbb{R}^M$ has the following log PDF function:

$$\log p(x) = \mathbf{c} - \frac{1}{2}x^T A x + b^T x \tag{2}$$

where A is a symmetric positive definite matrix, b is any vector, and c is any scalar constant.

Show that x has a multivariate Gaussian distribution.

2a: Solution

$$\log p(x) = \operatorname{const} - \frac{1}{2}(x - \mu)^T S(x - \mu)$$
 we can write $(x - \mu)^T$ as $(x^T - \mu^T)$

=const
$$-\frac{1}{2}[(x^T - \mu^T)S(x - \mu)]$$
 we can expand the $(x^T - \mu^T)S(x - \mu)$

= const $-\frac{1}{2}[x^TSx - xTS\mu - \mu^TSx + \mu^TS\mu]$ since S is a symmetric and positive definite matrix $x^TS\mu$ and μ^TSx are the same thing and can be combined as

one term

= const
$$-\frac{1}{2}[x^TSx - 2\mu^TSx + \mu^TS\mu]$$

then we can derive the function $\log p(x) = \mathbf{c} - \frac{1}{2}x^T A x + b^T x$

 $\log p(x) = \mathbf{c} - \frac{1}{2}x^TAx + b^Tx$ we can manipulate $x^TAx + b^T$ and write it into paranthesis

$$=\log p(x) = c - \frac{1}{2}(x^{T}Ax - 2b^{T}x)$$

now we can compare this equation and the previous equation that we derived and do the pattern matches

we can find x^TAx corresponds with x^TSx and $2b^Tx$ corresponds with $2\mu^TSx$ and since $\mu^TS\mu$ is a constant, we can ignore it and move it to constant part. And now we can say $A \coloneqq S$ and $b^T \coloneqq \mu^TS$ in other words $b \coloneqq \mu S^T$ As long as we know S and μ , we can write the function as $\log p(x) = \mathbf{c} - \frac{1}{2}x^TAx + b^Tx$ form.

3a: Problem Statement

Show that we can write $S_{N+1}^{-1} = S_N^{-1} + vv^T$ for some vector $v \in \mathbb{R}^M$.

3a: Solution

by definition of S_N^-1 given by the problem we can write the expression of S_{N+1}^-1

 $S_{N+1}^-1=\alpha I_M+\beta\Phi_{1:N+1}^T\Phi_{1:N+1}$ by the definiction of $\Phi_{1:N}$ we can write $\Phi_{1:N+1}^T\Phi_{1:N+1}$ as $\sum_n^{N+1}\phi(x_n)^T\phi(x_n)$ since the dimension of ϕ is 1*M

=
$$\alpha I_M + \beta \sum_n^{N+1} [\phi(x_n)^T \phi(x_n)]$$
 now we can rewrite $\beta \sum_n^{N+1} [\phi(x_n)^T \phi(x_n)]$ as $\beta \sum_n^N [\phi(x_n)^T \phi(x_n)] + \beta \phi(x_{n+1})^T \phi(x_{n+1})$

= $\alpha I_M + \beta \sum_n^N [\phi(x_n)^T \phi(x_n)] + \beta \phi(x_{n+1})^T \phi(x_{n+1})$ now we can find the first term $\alpha I_M + \beta \sum_n^N [\phi(x_n)^T \phi(x_n)]$ is exactly the definition of S_N^-1 so we can simplify the equation

= $S_N^- 1 + \beta \phi(x_{n+1})^T \phi(x_{n+1})$ now we can do the pattern matches and we can find $\beta \phi(x_{n+1})^T \phi(x_{n+1})$ can be written as $\sqrt{\beta} \phi(x_{n+1})^T * \sqrt{\beta} \phi(x_{n+1})$

by comparing with vv^T we can say $v := \sqrt{\beta}\phi(x_{n+1})^T$ and $v^T := \sqrt{\beta}\phi(x_{n+1})$

3b: Problem Statement

Next, consider the following identity, which holds for any invertible matrix A:

$$(A + vv^{T})^{-1} = A^{-1} - \frac{(A^{-1}v)(v^{T}A^{-1})}{1 + v^{T}A^{-1}v}$$
(3)

Substitute $A = S_N^{-1}$ and v as defined in 3a into the above. Simplify to write an expression for S_{N+1} in terms of S_N .

3b: Solution

by substituting $A = S_N^{-1}$ we can derive the equation that given by problem as

$$(S_N^- 1 + vv^T)^- 1 = S_N - \frac{(S_N v)(v^T S_N)}{1 + v^T S_N v}$$

 $(S_N^-1+vv^T)^-1=S_N-\tfrac{(S_Nv)(v^TS_N)}{1+v^TS_Nv}$ by 3a, we know $S_{N+1}^-1=S_N^{-1}+vv^T$ therefore we can written the previous equation

$$S_{N+1}^{-}1 = S_N - \frac{(S_N v)(v^T S_N)}{1 + v^T S_N v}$$

3c: Problem Statement

Show that
$$\sigma_{N+1}^2(x_*) - \sigma_N^2(x_*) = \phi(x_*)^T [S_{N+1} - S_N] \phi(x_*)$$

3c: Solution

 $\sigma_{N+1}^2(x_*) - \sigma_N^2(x_*)$ substitute with the definition that give by problem

=
$$[\beta^- 1 + \phi(x_*)^T S_{N+1} \phi(x_*)] - [\beta^- 1 + \phi(x_*)^T S_N \phi(x_*)]$$
 we can cancel the $\beta^- 1$ term

= $\phi(x_*)^T S_{N+1} \phi(x_*) - \phi(x_*)^T S_N \phi(x_*)$ now we can factorize the equation by matrix multiplication law

 $=\phi(x_*)^T(S_{N+1}\phi(x_*)-S_N\phi(x_*))$ then we can do the same factorization towards $\phi(x_*)$ by matrix multiplication law

$$= \phi(x_*)^T (S_{N+1} - S_N) \phi(x_*)$$

$$= \phi(x_*)^T [S_{N+1} - S_N] \phi(x_*)$$

3d: Problem Statement

Finally, plug your result from 3b defining S_{N+1} into 3c, plus the fact that S_N must be positive definite, to show that:

$$\sigma_{N+1}^2(x_*) \le \sigma_N^2(x_*) \tag{4}$$

This would prove that the predictive variance *cannot increase* with each additional data point. In other words, we will never be "less certain" about a prediction we make if we gather more data.

3d: Solution

When $\sigma_{N+1}^2(x_*) \leq \sigma_N^2(x_*)$ it must satisfy $\phi(x_*)^T \left[S_{N+1} - S_N\right] \phi(x_*) \leq 0$ then we can substitute $S_{N+1} - S_N$ with its definition given by the problem and we can get $\phi(x_*)^T \left[S_N - \frac{S_N v v^T S_N}{1 + v^T S_N V} - S_N \right] \phi(x_*) S_N$ will be canceled by each other

then we will only have $\phi(x_*)^T \left[-\frac{S_N v v^T S_N}{1 + v^T S_N V} \right] \phi(x_*)$ and it can be written as $\left[-\frac{\phi(x_*)^T S_N v v^T S_N \phi(x_*)}{1 + v^T S_N V} \right]$

now we can split the numerator as two terms, one is $\phi(x_*)^T S_N v$ and another one is $v^T S_N \phi(x_*)$

Since S_N is the covariance matrix and it is def positive and symmetric, we can regard these two terms are same. Therefore, the numerator can be regard as $(\phi(x_*)^T S_N v)^2$. And the quadratic form will always bigger or equal to 0. Then for the numerator, since we know S_N is a covariance matrix then by its property we know $v^T S_N v$ will always greater than or equal to 0. Therefore we can say $\frac{\phi(x_*)^T S_N v v^T S_N \phi(x_*)}{1+v^T S_N V}$ must greater than or equal to 0. And since there is a negative sign before this term, we can say $-\frac{\phi(x_*)^T S_N v v^T S_N \phi(x_*)}{1+v^T S_N V}$ must less than or equal to 0. Therefore $\sigma_{N+1}^2(x_*) \leq \sigma_N^2(x_*)$ is true.