Cheat Sheet

	Daten importieren/exportieren	
1	<pre>uploaded = files.upload()</pre>	Daten in pandas dataframe importieren
2	<pre>data = pd.read_excel(io.BytesIO(uploaded['Dateiname.xlsx']))</pre>	
3	<pre>df_gesamt.to_csv('df_gesamt.csv', encoding= 'utf-8-sig')</pre>	Daten aus pandas dataframe exportieren
4	files.download('df_gesamt.csv')	
	Basics	
	<u> </u>	
5	data.head(5)	Ersten 5 Zeilen des dataframes anzeigen
6	len(data)	Länge dataframe
7	data['Spaltenname']	Nur die Spalte 'Spaltenname'anzeigen
8	<pre>df.columns = ['neuerName', neuerName2]</pre>	Spalten neu benennen
9	<pre>df = df.drop(index=0)</pre>	Zeile löschen (0=erste Zeile)
10	<pre>data = data.drop(['Spaltenname1', 'Spaltenname2'], axis =1)</pre>	Spalten löschen
11	<pre>df_leer = pd.DataFrame(columns=['Spaltenname1', 'Spaltenname2'])</pre>	Leeren dataframe erstellen
12	<pre>df = pd.concat([series1, series2], axis=1)</pre>	Series oder dataframes zusammenfügen nebeneinander
13	<pre>df = pd.concat([series1, series2], axis=0)</pre>	Series oder dataframes zusammenfügen untereinander
14	<pre>df = df.append({'Prüfstand':wert,'maxTaktzeit':wert}, ignore_index=True)</pre>	Neue Zeile hinzufügen
	<u>Filtern</u>	
15		New Sailes against scale in the Coults
15	<pre>data.loc[data['Spaltenname'] == wert]</pre>	Nur Zeilen anzeigen, welche in der Spalte 'Spaltenname' den Wert wert besitzen
16	data log[/data[ICna]tonnamal]==vent)[/data[ICna]tonnama2]]==vent)]	Das gleiche für zwei Spalten (& UND-verknüpfte
10	<pre>data.loc[(data['Spaltenname'] == wert) & (data['Spaltenname2'] == wert)]</pre>	
		Bedingung)
	<u>Gruppieren</u>	
17	<pre>groupbyObj = data.groupby('Tierarten')</pre>	Gruppieren nach Tierarten
18	<pre>groupbyObj['Tierarten'].count()</pre>	Zählen wie viele Tiere es pro Tierart gibt

Cheat Sheet

19	<pre>groupbyObj['AnzahlBeine'].sum()</pre>	Aufsummieren der Beinanzahl pro Tierart (5 Elefanten a 4 Beine = Tierart Elefant 20 Beine)
20 21	<pre>groupbyObj['AnzahlBeine'].apply(lambda s: s[s==6].count()) groupbyObj.get_group('Affe')</pre>	Zählen wie viele Tiere 6 Beine haben pro Tierart Zeige nur die Affen an
	Berechnungen mit Spalten/Zeilen eines Dataframes	
22 23	<pre>df[neueSpalte] = df['bestSpalte']/df[bestSpalte2] df['Zeitdifferenz'] = df['Zeitstempel'].diff()</pre>	Neue Spalte berechnet sich aus bestehenden Neue Spalte berechnet sich aus der Differenz zweier aufeinanderfolgenden Zeilen
	Durch Dataframe Zeile für Zeile durchiterrieren	
24	<pre>for i, row in df.iterrows(): wertVonZeile = row['Spaltenname1'] df.at[i,'Label'] = wertVonZeile</pre>	<pre>i=Zeilenindex row=Zeile Zellenwert aus Spalte 'Spaltenname1' und der aktuellen Zeile wird ausgelesen und in Spalte 'Label' geschrieben</pre>
	Visualisierung	900011200011
25	plt.plot(days,anzahlFehler) Kontingenztabelle	plt.plot(x Werte, y Werte)
26	data = [[500, 10],[487, 140]]	
27	<pre>import scipy.stats as stats stats.chi2 contingency(data)</pre>	
	Machine Learning	
28	<pre>from sklearn.tree import DecisionTreeClassifier from sklearn import tree dt = DecisionTreeClassifier().fit(dataOhneLabel, Label])</pre>	Decision Tree trainieren

Cheat Sheet

29	plt.figure(figsize = (24,13))	Visualisierung des Trees
	<pre>tree.plot_tree(dt, filled=True)</pre>	
	plt.show()	
30	<pre>predictions = dt.predict(dataOhneLabel)</pre>	Die Label werden durch Decision Tree vorhergesagt
31	from sklearn.metrics import accuracy_score	
	accuracy_score(predictions,Label)	Accuracy = Anzahl richtige Vorhersagen / Anzahl
		Vorhersagen
32	from sklearn.metrics import confusion_matrix	
	<pre>confusion_matrix(Label ,predictions)</pre>	Konfusionsmatrix output
		predicted
		1 2
		1 11420 18
		actual
		2 972 477