1 Análisis Multivariado - Práctica 4 - Parte 1

Los ejercicios marcados en rojo no son para elegir para exponer, aunque deben hacerse.

1.1 Coordenadas discriminantes

1. Sean $\mathbf{x}_{i,1},\ldots,\mathbf{x}_{i,n_i}$ observaciones p-variadas de la población i-ésima, $1 \leq i \leq k$. Sean

$$\overline{\mathbf{x}}_i = \frac{1}{n_i} \sum_{i=1}^{n_i} \mathbf{x}_{i,j} \qquad \overline{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^k n_i \overline{\mathbf{x}}_i \qquad \mathbf{Q}_i = \sum_{j=1}^{n_i} (\mathbf{x}_{i,j} - \overline{\mathbf{x}}_i) (\mathbf{x}_{i,j} - \overline{\mathbf{x}}_i)^{\mathrm{T}}$$

donde $n = \sum_{i=1}^{k} n_i$ es el número total de observaciones. Definamos

$$\mathbf{B} = \sum_{i=1}^{k} n_i \left(\overline{\mathbf{x}}_i - \overline{\mathbf{x}} \right) \left(\overline{\mathbf{x}}_i - \overline{\mathbf{x}} \right)^{\mathrm{T}}$$

$$\mathbf{S} = \frac{1}{n-k} \sum_{i=1}^{k} \mathbf{Q}_i$$

Consideremos la siguiente medida de separación:

$$\Delta_s^2 = \sum_{i=1}^k n_i \left(\overline{\mathbf{x}}_i - \overline{\mathbf{x}} \right)^{\mathrm{T}} \mathbf{S}^{-1} \left(\overline{\mathbf{x}}_i - \overline{\mathbf{x}} \right)$$

- (a) Mostrar que $\Delta_s^2 = \lambda_1 + \lambda_2 + \dots + \lambda_p = \lambda_1 + \lambda_2 + \dots + \lambda_s$, donde $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_s$ son los autovalores no nulos de $\mathbf{S}^{-1}\mathbf{B}$ (o bien de $\mathbf{S}^{-\frac{1}{2}}\mathbf{B}\mathbf{S}^{-\frac{1}{2}}$). También mostrar que $\lambda_1 + \lambda_2 + \dots + \lambda_r$ es la separación resultante cuando se usan sólo las primeras r coordenadas discriminantes.
- (b) Deducir que la primer coordenada discriminante produce la principal contribución individual (λ_1) a la medida de separación Δ_s^2 y que en general la r-ésima coordenada discriminante contribuye λ_r a la medida de separación Δ_s^2 .
- 2. Supongamos que tenemos dos poblaciones indicadas por 1 y 2 en \mathbb{R}^2 con distribuciones $N_2(\boldsymbol{\mu}_1, \boldsymbol{\Sigma})$ y $N_2(\boldsymbol{\mu}_2, \boldsymbol{\Sigma})$, respectivamente, donde

$$\boldsymbol{\mu}_1 = (1,2)^{\mathrm{T}}, \quad \boldsymbol{\mu}_2 = (4,1)^{\mathrm{T}}, \quad \boldsymbol{\Sigma} = \left(\begin{array}{cc} 2 & 1 \\ 1 & 3 \end{array} \right).$$

- a) Calcule $\mathbf{\Sigma}^{-1}$ y deduzca una expresión para $\mathbf{z}^{\mathrm{T}}\mathbf{\Sigma}^{-1}\mathbf{z}.$
- b) Calcule la primer coordenada discriminante \mathbf{a}_1 .
- c) En base a \mathbf{a}_1 como asignaría a un punto \mathbf{x}_0 a la población 1? Dónde clasificaría $\mathbf{x}_0 = (3,2)^T$?

- 3. En el ejercicio 1 de la Práctica 3 Parte 1 se estudiaba el costo de transporte de la leche desde las granjas hasta las lecherías para $n_1 = 36$ camiones nafteros y $n_2 = 23$ camiones a diesel. En base a los resultados obtenidos en el ejercicio 8 de la Práctica 3 Parte 2 decida si es razonable hacer un gráfico de la primera coordenada discriminante.
- 4. En el ejercicio 2 de la Práctica 3 Parte 1 se estudiaba longitud de las antenas y de las alas de nueve insectos Amerohelea fasciata (Af) y seis A. pseudofasciata (Apf). Consideremos las variables x_1 =longitud de las antenas + longitud de las alas y x_2 =longitud de las alas.
 - (a) Testee si las dos poblaciones tienen igual matriz de covarianza. Tomar $\alpha = 0.01$. En base al resultado, decida si es razonable hacer un plot de la primera coordenada discriminante.
 - (b) Haga un plot de las dos primeras coordenadas discriminantes. ¿Qué observa en la segunda coordenada?
 - (c) Haga un plot de los puntos originales y grafique la recta $\hat{\mathbf{a}}^T \{ \mathbf{x} (\overline{\mathbf{x}}_1 + \overline{\mathbf{x}}_2)/2 \} = 0$ donde $\hat{\mathbf{a}} = \mathbf{S}^{-1}(\overline{\mathbf{x}}_1 \overline{\mathbf{x}}_2)$. Qué observa?
 - (d) Comprobar que la distancia euclídea entre los promedios de cada grupo expresados en la primer coordenada canónica coincide con la distancia de Mahalanobis entre los promedios $\overline{\mathbf{x}}_1$ y $\overline{\mathbf{x}}_2$ expresados en las variables originales, es decir, coincide con $\sqrt{(\overline{\mathbf{x}}_1 \overline{\mathbf{x}}_2)^T \mathbf{S}^{-1}(\overline{\mathbf{x}}_1 \overline{\mathbf{x}}_2)}$.
- 5. En el ejercicio 5 de la Práctica 3 Parte 1 se estudiaba las medidas de cinco variables biométricas sobre gorriones hembra, recogidos después de una tormenta de los cuales $n_1 = 21$ sobrevivieron y $n_2 = 28$ murieron.
 - (a) En base a los resultados obtenidos en el ejercicio 10 de la Práctica 3 Parte 2 decida si es razonable hacer un gráfico de la primera coordenada discriminante.
 - (b) Si es razonable hacer el análisis interprete los coeficientes de la primer coordenada canónica, ubique la proyección del promedio de cada grupo. Qué observa?
- 6. Consideremos los datos "iris" del R. Es un conjunto de datos analizados por Fisher que consisten en 4 mediciones realizadas en 50 flores iris de cada una de 3 especies distintas (Setosa, Versicolor y Virginica). Las 4 variables, medidas en centímetros, son
 - $x_1 = \text{Longitud de los sépalos (sepal length)}$
 - $x_2 = \text{Ancho de los sépalos (sepal width)}$
 - $x_3 = \text{Longitud de los pétalos (petal length)}$
 - x_4 = Ancho de los pétalos (petal width)
 - (a) Realizar un scatterplot de las primeras 2 coordenadas discriminantes, indicando cada grupo con un color diferente.

- (b) Realice un gráfico con las círcunferencias de confianza de nivel 95% de las proyecciones ν_i , $1 \le i \le 3$, de los valores esperados μ_i de cada población en el plano de las coordenadas discriminantes. Ubique la media muestral proyectada de cada grupo. Qué observa?
- (c) Analice si los supuestos para realizar este gráfico se cumplen, suponiendo que los datos son normales.
- 7. Del conjunto de datos "iris" consideremos solamente las variables
 - $x_2 =$ Ancho de los sépalos
 - x_4 = Ancho de los pétalos para las 3 especies de flores.
 - (a) Graficar los pares de datos (x_2, x_4) en el plano. Para cada especie, estos datos itienen aspecto de provenir de una distribución normal bivariada?
 - (b) Asumiendo que las muestras provienen de poblaciones con distribución normal bivariada con matriz de covarianza común Σ , testear a nivel $\alpha = 0.05$, la hipótesis $H_0: \mu_1 = \mu_2 = \mu_3$, versus $H_1:$ al menos una de las μ_i es distinta de las otras. ¿Es razonable el supuesto de igualdad de matrices de covarianza en este caso?
 - (c) Considere ahora solamente las especies Virginica y Versicolor y repita a) y b). Si es razonable el supuesto de igualdad de matrices de covarianza, haga un scatterplot de las primeras coordenadas discriminantes significativas.
 - (d) Repita c) con las variables (x_1, x_2, x_3, x_4) .