ANALYTIC COMBINATORICS PART ONE

http://aofa.cs.princeton.edu

6. Trees

Review

First half of class

- Introduced analysis of algoritihms.
- Surveyed basic mathematics needed for scientific studies.
- Introduced analytic combinatorics.

1	Analysis of Algorithms
2	Recurrences
3	Generating Functions
4	Asymptotics
5	Analytic Combinatorics

Note: Many applications beyond analysis of algorithms.

Orientation

Second half of class

- Surveys fundamental combinatorial classes.
- Considers techniques from analytic combinatorics to study them .
- Includes applications to the analysis of algorithms.

chapter	combinatorial classes	type of class	type of GF
6	Trees	unlabeled	OGFs
7	Permutations	labeled	EGFs
8	Strings and Tries	unlabeled	OGFs
9	Words and Mappings	labeled	EGFs

Note: Many more examples in book than in lectures.

PART ONE

http://aofa.cs.princeton.edu

6. Trees

- Trees and forests
- Binary search trees
- Path length
- Other types of trees

6a.Trees.Trees

Anatomy of a binary tree

Definition. A binary tree is an external node or an internal node and two binary trees.

Binary tree enumeration (quick review)

How many binary trees with N nodes?

Symbolic method: binary trees

How many binary trees with N nodes?

Class	T, the class of all binary trees
Size	t , the number of internal nodes in t
OGF	$T(z) = \sum_{t \in T} z^{ t } = \sum_{N \ge 0} T_N z^N$

Atoms

type	class	size	GF
external node	Z_{\square}	0	1
internal node	Z_{ullet}	1	Z

Construction

$$T = Z_{\square} + T \times Z_{\bullet} \times T$$

OGF equation

$$T(z) = 1 + zT(z)^2$$

$$[z^N]T(z) = \frac{1}{N+1} {2N \choose N} \sim \frac{4^N}{\sqrt{\pi N^3}}$$

"a binary tree is an external node or an internal node connected to two binary trees"

Forest and trees

Each forest with N nodes corresponds to

Anatomy of a (general) tree

Definition. A *forest* is a sequence of disjoint trees.

Definition. A tree is a node (called the root) connected to the roots of trees in a forest.

Forest enumeration

How many forests with N nodes?

Tree enumeration

How many trees with N nodes?

Symbolic method: forests and trees

How many forests and trees with N nodes?

Class	F, the class of all forests
Size	f , the number of nodes in f
Class	G, the class of all trees
Size	g , the number of nodes in g

type	class	size	GF
node	Z	1	Z

Construction
$$F = SEQ(G)$$
 and $G = Z \times F$

OGF equations
$$F(z) = \frac{1}{1 - G(z)}$$
 and $G(z) = zF(z)$

Solution
$$F(z) - zF(z)^2 = 1$$

Extract coefficients
$$F_N = T_N = \frac{1}{N+1} \binom{2N}{N} \sim \frac{4^N}{\sqrt{\pi N^3}}$$
 $G_N = F_{N-1} \sim \frac{4^{N-1}}{\sqrt{\pi N^3}}$

Forest and binary trees

Each forest with N nodes corresponds to

"rotation" correspondence

Connect each node to its

• left child

• right sibling

Aside: Drawing a binary tree

Approach 1:

• y-coordinate: height minus node depth

• x-coordinate: inorder node rank

Design decision:

Reduce visual clutter by omitting external nodes

Problem: distracting long edges

Aside: Drawing a binary tree

Approach 2:

• y-coordinate: height minus node depth

• x-coordinate: centered and evenly spaced by level

Drawing shows tree profile

Typical random binary tree shapes (400 nodes)

http://aofa.cs.princeton.edu

6. Trees

- Trees and forests
- Binary search trees
- Path length
- Other types of trees

6b.Trees.BSTs

Binary search tree (BST)

Fundamental data structure in computer science:

- Each node has a key, with comparable values.
- Keys are all distinct.
- Each node's left subtree has smaller keys.
- Each node's right subtree has larger keys.

Section 3.2

BST representation in Java

Java definition: A BST is a reference to a root Node.

A Node is comprised of four fields:

- A Key and a Value.
- A reference to the left and right subtree.

smaller keys

larger keys

```
private class Node
{
   private Key key;
   private Value val;
   private Node left, right;
   public Node(Key key, Value val)
   {
      this.key = key;
      this.val = val;
   }
}
```

Notes:

- Key and Value are generic types.
- Key is Comparable.

Binary search tree

BST implementation (search)

```
public class BST<Key extends Comparable<Key>, Value>
   private Node root;
  private class Node
  { /* see previous slide */ }
  public Value get(Key key)
     Node x = root;
     while (x != null)
        int cmp = key.compareTo(x.key);
            (cmp < 0) x = x.left;
        else if (cmp > 0) x = x.right;
        else if (cmp == 0) return x.val;
      return null;
   public void put(Key key, Value val)
   { /* see next slide */ }
```


BST implementation (insert)

recursive code

Key fact

The shape of a BST depends on the order of insertion of the keys.

search cost guaranteed ~lg N

Average search cost?

Average search cost $\sim N/2$ (a problem)

Reasonable model: Analyze BST built from inserting keys in *random* order.

Typical random BSTs (80 nodes)

Challenge: characterize analytically (explain difference from random binary trees)

BST shape

is a property of permutations, not trees (!)

Note: Balanced shapes are more likely.

Mapping permutations to trees via BST insertion

Q. How many permutations map to this tree? -

"result in this tree shape when inserted into an initially empty BST"

A. 2

Q. How many permutations map to *this* tree?

root must be 4

4	2	1	3	5	6	4	2	3	1	5	6	
4	2	1	5	3	6	4	2	3	5	1	6	
4	2	1	5	6	3	4	2	3	5	6	1	
4	2	5	1	3	6	4	2	5	3	1	6	
4	2	5	1	6	3	4	2	5	3	6	1	
4	2	5	6	1	3	4	2	5	6	3	1	
4	5	2	1	3	6	4	5	2	3	1	6	
4	5	2	1	6	3	4	5	2	3	6	1	
4	5	2	6	1	3	4	5	2	6	3	1	
4	5	6	2	1	3	4	5	6	2	3	1	

Mapping permutations to trees via BST insertion

Q. How many permutations map to a general binary tree t?

A. Let P_t be the number of perms that map to t

first element must be $|t_L|$ smaller elements $|t_R|$ larger elements

much, much larger when $t_L \approx t_R$ than when $t_L \ll t_R$ (explains why balanced shapes are more likely)

Two binary tree models

that are fundamental (and fundamentally different)

BST model

- Balanced shapes much more likely.
- Probability root is of rank k: 1/N.

Catalan model

- Each tree shape equally likely.
- Probability root is of rank *k*:

$$\frac{\frac{1}{k} {2k-2 \choose k} \frac{1}{N-k+1} {2N-2k \choose N-k}}{\frac{1}{N+1} {2N \choose N}}$$

Catalan distribution

Probability that the root is of rank *k* in a randomly-chosen binary tree with *N* nodes.

Note: Small subtrees are extremely likely.

Aside: Generating random binary trees

```
public class RandomBST
   private Node root;
   private int h;
   private int w;
   private class Node
      private Node left, right;
      private int N;
      private int rank, depth;
   public RandomBST(int N)
   { root = generate(N, 0); }
   private Node generate(int N, int d)
   { // See code at right. } -
   public static void main(String[] args)
      int N = Integer.parseInt(args[0]);
      RandomBST t = new RandomBST(N);
      t.show();
      stay tuned
```

Note: "rank" field includes external nodes: x.rank = 2*k+1

```
random BST: StdRandom.uniform(N)+1
random binary tree: StdRandom.discrete(cat[N]) + 1;
```

Aside: Drawing binary trees

```
public void show()
{ show(root); }
private double scaleX(Node t)
{ return 1.0*t.rank/(w+1); }
private double scaleY(Node t)
{ return 3.0*(h - t.depth)/(w+1); }
private void show(Node t)
  if (t.N == 0) return;
   show(t.left);
   show(t.right);
   double x = scaleX(t):
   double y = scaleY(t);
   double xl = scaleX(t.left);
   double yl = scaleY(t.left);
   double xr = scaleX(t.right);
   double yr = scaleY(t.right);
   StdDraw.filledCircle(x, y, .005);
   StdDraw.line(x, y, xl, yl);
   StdDraw.line(x, y, xr, yr);
}
```


Exercise: Implement "centered by level" approach.