

## GPT, LLAMA & THE OTHERS

Андреева Дарья Data Scientist, X5 Tech



## attention is...





# GPT ©ENERATIVE PRE-TRAINED TRANSFORMER



## gpt



#### Ключевые отличия:

- Одно направление (использует контекст только слева)
- Состоит только из декодеров



## gpt

|       | Параметры | Данные |
|-------|-----------|--------|
| GPT   | 117M      | 5гб    |
| GPT-2 | 1.5B      | 45гб   |
| GPT-3 | 175B      | 45тб   |

#### Идеи:

- Учимся предсказанию следующего токена
- Видим и запоминаем очень много текста
- Практически любую задачу NLP можно свести к генерации текста



## gpt

предсказываем следующий токен:



## где трансформеры?

decoder encoder + decoder



## HOW TO: DO FASTER DO BETTER



## ускорение

существуют три вида памяти:

- · gpu sram (static random-access memory) самая быстрая, но небольшая память, вшита в процессор (19 tb/s, 20 mb)
- · gpu hbm (high bandwidth memory) основная память gpu (1.5 tb/s, 40 gb)
- · cpu dram (dynamic random-access memory) оперативная память cpu, самая медленная (12.8 gb/s, >1 tb)

#### Algorithm 0 Standard Attention Implementation

**Require:** Matrices  $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{N \times d}$  in HBM.

- 1: Load **Q**, **K** by blocks from HBM, compute  $S = QK^{T}$ , write **S** to HBM.
- 2: Read S from HBM, compute P = softmax(S), write P to HBM.
- 3: Load **P** and **V** by blocks from HBM, compute  $\mathbf{O} = \mathbf{PV}$ , write **O** to HBM.
- 4: Return **O**.



## flash attention

- attention считается по блокам, которые влезают в sram
- о матрица выходов, I нормировочная константа softmax, m максимальное значение скора внимания





#### Flash Attention



Initialize O, I and m matrices with zeroes. m and I are used to calculate cumulative softmax. Divide Q, K, V into blocks (due to SRAM's memory limits) and iterate over them, for i is row & j is column.



### flash attention

- attention считается по блокам, которые влезают в sram
- 0 матрица выходов, I нормировочная константа softmax, m максимальное значение скора внимания

| Attention    | Standard | Flash |  |  |  |
|--------------|----------|-------|--|--|--|
| GFLOPs       | 66.6     | 75.2  |  |  |  |
| HBM R/W (GB) | 40.3     | 4.4   |  |  |  |
| Runtime (ms) | 41.7     | 7.3   |  |  |  |



## ГЕНЕРАЦИЯ ТЕКСТА

$$Attention(Q, V, K) = Softmax(rac{QK^T}{\sqrt{d}})V$$

- 1. Один подсчет внимания занимает  $O(l^2hd + lh^2d^2)$  операций
- 2. Пропускаем всю последовательность через модель на каждой итерации



### генерация текста





## ку-кэширование



$$O(l^2hd + lh^2d^2) \longrightarrow O(lhd + h^2d^2)$$



## multi-query attention

- · храним только одну или несколько матриц k и v (на этапе инференса)
- · на декодерах ускоряемся почти в 10 раз





## ПОЗИЦИОННЫЕ ЭМБЕДДИНГИ

#### Сейчас:

- 1. Не учитываем относительные позиции
- 2. Усложняем работу с длинными последовательностями



## relative position encodings (rpe)

$$Attn_{i} = softmax \left(\frac{Q_{i}^{T}(K^{T} + R_{i}^{K})}{\sqrt{d}}\right)(V + R_{i}^{V})$$





## relative position encodings (rpe)

- для генерализации можем договориться о максимальном расстоянии, которое используем
- новая проблема: храним больше матриц

$$Attn_i = softmax \left( \frac{Q_i^T (K^T + R_i^K)}{\sqrt{d}} \right) (V + R_i^V)$$

$$P = \begin{pmatrix} 0 & 1 & 2 & 2 & 2 \\ -1 & 0 & 1 & 2 & 2 \\ -2 & -1 & 0 & 1 & 2 \\ -2 & -2 & -1 & 0 & 1 \\ -2 & -2 & -2 & -1 & 0 \end{pmatrix}$$

$$R^{K} = Emb_{K}(P) \in \mathbb{R}^{[n \times n \times d]}$$
  
 $R^{V} = Emb_{V}(P) \in \mathbb{R}^{[n \times n \times d]}$ 



## rotary position embeddings (rope)

- · векторы q и k поворачиваются на угол i\*theta, где i позиция в тексте
- · таким образом, относительное расстояние не меняется при изменении позиции
- векторы для похожих позиций будут поворачиваться на похожий угол, далекие векторы на разные углы

в **лесу** родилась **елочка** 



в нашем зимнем лесу родилась елочка





## rotary position embeddings (rope)

$$R_j^d = \begin{pmatrix} \cos j\theta_1 & -\sin j\theta_1 & 0 & 0 & \cdots & 0 & 0\\ \sin j\theta_1 & \cos j\theta_1 & 0 & 0 & \cdots & 0 & 0\\ 0 & 0 & \cos j\theta_2 & -\sin j\theta_2 & \cdots & 0 & 0\\ 0 & 0 & \sin j\theta_2 & \cos j\theta_2 & \cdots & 0 & 0\\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\ 0 & 0 & 0 & 0 & \cdots & \cos j\theta_{d/2} & -\sin j\theta_{d/2}\\ 0 & 0 & 0 & 0 & \cdots & \sin j\theta_{d/2} & \cos j\theta_{d/2} \end{pmatrix},$$

$$Q_i^{rT} K_j^r = (R_i^d Q_i)^T (R_j^d K_j) = Q_i^T R_i^{d^T} R_j^d K_j = Q_i^T R_{j-i}^d K_j$$



## rotary position embeddings (rope)

#### выводы:

- не добавляем обучаемых параметров
- можем эффективно посчитать
- учитываем относительное расположение токенов

• плохо генерализуемся при увеличении длины контекста (на

инференсе)





## attention with linear biases (alibi)

#### идея:

- добавляем отрицательный сдвиг к каждому значению внимания
- чем больше разница между позициями, тем меньше внимания остается

$$Attention(Q, V, K) = Softmax(rac{QK^T\!\!+\!M}{\sqrt{d}})V$$

#### обычный attention

alibi

$$M_{ij} = \begin{cases} 0, & i \leq j \\ -\infty, & i > j \end{cases}$$

$$M_{ij}^{h} = \begin{cases} m_{h}(i-j), & i \leq j \\ -\infty, & i > j \end{cases}$$





## attention with linear biases (alibi)

- различные m позволяют смотреть как на локальную, так и на глобальную информацию
- не добавляем новых операций и ничего не обучаем

#### обычный attention

#### alibi

$$M_{ij} = \begin{cases} 0, & i \leq j \\ -\infty, & i > j \end{cases} \qquad M_{ij}^{h} = \begin{cases} m_{h}(i-j), & i \leq j \\ -\infty, & i > j \end{cases}$$

для каждой головы свой  $m_h = 2^{-h/2}$ 





## attention with linear biases (alibi)

• хорошо приспосабливаемся к изменению длины текста





## FEED FORWARD NETWORK



#### что это было:

для каждого токена по отдельности обрабатывает информацию

замедляет обработку



## gated linear unit (glu)

- · glu добавляет дополнительный линейный слой w, выходы которого умножаются на выходы и после активации
- играет роль фильтра, отсеивающего ненужные компоненты



$$FFN_{GLU}(x) = \left(\sigma(xU + b_u) \otimes (xW + b_w)\right)V + b_v$$



## gated linear unit (glu)

$$FFN_{GLU}(x) = (\sigma(xU + b_u) \otimes (xW + b_w))V + b_v$$

|                                  | Score   | CoLA  | SST-2 | MRPC  | MRPC  | STSB  | STSB  | QQP   | QQP   | MNLIm                | MNLImm | QNLI  | RTE   |
|----------------------------------|---------|-------|-------|-------|-------|-------|-------|-------|-------|----------------------|--------|-------|-------|
|                                  | Average | MCC   | Acc   | F1    | Acc   | PCC   | SCC   | F1    | Acc   | $\operatorname{Acc}$ | Acc    | Acc   | Acc   |
| $\mathrm{FFN}_{\mathrm{ReLU}}$   | 83.80   | 51.32 | 94.04 | 93.08 | 90.20 | 89.64 | 89.42 | 89.01 | 91.75 | 85.83                | 86.42  | 92.81 | 80.14 |
| $\mathrm{FFN}_{\mathrm{GELU}}$   | 83.86   | 53.48 | 94.04 | 92.81 | 90.20 | 89.69 | 89.49 | 88.63 | 91.62 | 85.89                | 86.13  | 92.39 | 80.51 |
| $\mathrm{FFN}_{\mathrm{Swish}}$  | 83.60   | 49.79 | 93.69 | 92.31 | 89.46 | 89.20 | 88.98 | 88.84 | 91.67 | 85.22                | 85.02  | 92.33 | 81.23 |
| $\mathrm{FFN}_{\mathrm{GLU}}$    | 84.20   | 49.16 | 94.27 | 92.39 | 89.46 | 89.46 | 89.35 | 88.79 | 91.62 | 86.36                | 86.18  | 92.92 | 84.12 |
| $FFN_{GEGLU}$                    | 84.12   | 53.65 | 93.92 | 92.68 | 89.71 | 90.26 | 90.13 | 89.11 | 91.85 | 86.15                | 86.17  | 92.81 | 79.42 |
| $FFN_{Bilinear}$                 | 83.79   | 51.02 | 94.38 | 92.28 | 89.46 | 90.06 | 89.84 | 88.95 | 91.69 | 86.90                | 87.08  | 92.92 | 81.95 |
| $\mathrm{FFN}_{\mathrm{SwiGLU}}$ | 84.36   | 51.59 | 93.92 | 92.23 | 88.97 | 90.32 | 90.13 | 89.14 | 91.87 | 86.45                | 86.47  | 92.93 | 83.39 |
| $\mathrm{FFN}_{\mathrm{ReGLU}}$  | 84.67   | 56.16 | 94.38 | 92.06 | 89.22 | 89.97 | 89.85 | 88.86 | 91.72 | 86.20                | 86.40  | 92.68 | 81.59 |

