DATA SCIENCE

Agenda

Anova

- One Way
- Two Way
- Post Hoc Tests

Chi Square

- Association Tests
- Goodness-of-Fit Tests

Chi Square Parametric

Tests of Variance

A more complex example:

You look at preferences for beverages by age to understand if there is an association between age and brand preference, in order to decide if you need differentiated marketing strategies by age

A more complex example:

You look at preferences for beverages by age to understand if there is an association between age and brand preference, in order to decide if you need differentiated marketing strategies by age

You do a survey on a random sample, and get the following results:

Observed				
Brand	M 15-25	M 26-40	M 41-55	Total
Coke	49	50	69	168
Pepsi	24	36	38	98
Sprite	19	22	28	69
Total	92	108	135	335

A more complex example:

We want to check if the preference for a brand changes as age changes i.e., is there an association between brand preference and age, or are they independent?

Observed		Preference					
Brand	M 15-25	M 26-40	M 41-55	Total			
Coke	49	50	69	168			
Pepsi	24	36	38	98			
Sprite	19	22	28	69			
Total	92	108	135	335			

A more complex example:

We want to check if the preference for a brand changes as age changes i.e., is there an association between brand preference and age, or are they independent?

Expected value – calculate the expected values under the assumption that the null hypothesis is true

Observed				
Brand	M 15-25	M 26-40	M 41-55	Total
Coke	49	50	69	168
Pepsi	24	36	38	98
Sprite	19	22	28	69
Total	92	108	135	335

A more complex example:

Mathematical calculation:

Observed				
Brand	M 15-25	M 26-40	M 41-55	Total
Coke	49	50	69	168
Pepsi	24	36	38	98
Sprite	19	22	28	69
Total	92	108	135	335

Expected		Preference				
Brand	M 15-25	M 26-40	M 41-55	Total		
Coke	46.14	54.16	67.70	168		
Pepsi	26.91	31.59	39.49	98		
Sprite	18.95	22.24	27.81	69		
Total	92	108	135	335		

A more complex example:

Mathematical calculation:

Expected Values = (Row Total * Column Total) / n,

Observed		Preference					
Brand	M 15-25	Total					
Coke	49	50	69	168			
Pepsi	24	36	38	98			
Sprite	19	22	28	69			
Total	92	108	135	335			

Expected				
Brand	M 15-25	Total		
Coke	46.14	54.16	67.70	168
Pepsi	26.91	31.59	39.49	98
Sprite	18.95	22.24	27.81	69
Total	92	108	135	335

A more complex example:

Mathematical calculation:

Expected Values = (Row Total * Column Total) / n, where n is total number of observations in sample

Observed				
Brand	M 15-25	M 26-40	M 41-55	Total
Coke	49	50	69	168
Pepsi	24	36	38	98
Sprite	19	22	28	69
Total	92	108	135	335

Expected				
Brand	M 15-25	M 26-40	M 41-55	Total
Coke	46.14	54.16	67.70	168
Pepsi	26.91	31.59	39.49	98
Sprite	18.95	22.24	27.81	69
Total	92	108	135	335

A more complex example:

Now that we have observed and expected values, we can either manually calculate a Chi Square test statistic,

Or use a tool – like Excel

	_	_	_	_			_	_	
Observed		Preference)		Expected		Preference)	
Brand	M 15-25	M 26-40	M 41-55	Total	Brand	M 15-25	M 26-40	M 41-55	Total
Coke	49	50	69	168	Coke	46.13731	54.16119	67.70149	168
Pepsi	24	36	38	98	Pepsi	26.91343	31.59403	39.49254	98
Sprite	19	22	28	69	Sprite	18.94925	22.24478	27.80597	69
otal	92	108	135	335	Total	92	108	135	335
		3:D5,H3:J5							
	CHITEST(actual_range, expected_range)								

Agenda

Anova

- One Way
- Two Way
- Post Hoc Tests

Chi Square

- Association Tests
- Goodness-of-Fit Tests

Chi Square Parametric

Tests of Variance

Very popular use of Chi Square, Goodness-of-fit tests if the data follows a particular distribution or not

Very popular use of Chi Square, Goodness-of-fit tests if the data follows a particular distribution or not

Example:

A gambler is playing a new game in a casino, which involves rolling three dice at a time. Winnings are directly proportional to the number of 6's rolled.

Very popular use of Chi Square, Goodness-of-fit tests if the data follows a particular distribution or not

Example:

A gambler is playing a new game in a casino, which involves rolling three dice at a time. Winnings are directly proportional to the number of 6's rolled.

This is what is observed in 100 rolls of the dice

Number	
of 6's	Rolls
0	48
1	35
2	15
3	2

Very popular use of Chi Square, Goodness-of-fit tests if the data follows a particular distribution or not

Example:

A gambler is playing a new game in a casino, which involves rolling three dice at a time. Winnings are directly proportional to the number of 6's rolled.

This is what is observed in 100 rolls of the dice

Would you have cause to believe that the gambler is maybe "too" lucky, and is playing with loaded dice?

Number	
of 6's	Rolls
0	48
1	35
2	15
3	2

What distribution would you expect the outcome of seeing a 6 on rolled dice to follow?

Binomial

What distribution would you expect the outcome of seeing a 6 on rolled dice to follow?

- Binomial

What should the expected probabilities be of number of 6's in three rolled dice?

What distribution would you expect the outcome of seeing a 6 on rolled dice to follow?

Binomial

What should the expected probabilities be of number of 6's in three rolled dice?

Calculate using the Binomial Distribution formula

What distribution would you expect the outcome of seeing a 6 on rolled dice to follow?

Binomial

What should the expected probabilities be of number of 6's in three rolled dice?

Calculate using the Binomial Distribution formula

=BINOM.DIST(O26,3,1/6,FALSE)					
	М	N	0	P	Q
					Expected
			Number	Expected	6's in 100
		Expected	of 6's	Prob	throws
		Expected	of 6's 0	Prob 0.5787	throws 57.8704
		Expected			
		Expected	0	0.5787	57.8704
		Expected	0	0.5787 0.34722	57.8704 34.7222

Testing for a normal distribution or any type of distribution

Calculate expected distribution using the probability distribution formula

- Calculate expected distribution using the probability distribution formula
- If checking for normality, for example, follow these steps:
 - 1. Calculate mean and std deviation of your data

- Calculate expected distribution using the probability distribution formula
- If checking for normality, for example, follow these steps:
 - 1. Calculate mean and std deviation of your data
 - Bin the data into sub-intervals

- Calculate expected distribution using the probability distribution formula
- If checking for normality, for example, follow these steps:
 - 1. Calculate mean and std deviation of your data
 - 2. Bin the data into sub-intervals
 - 3. Calculate expected probability of those sub-intervals (using normal probability function)

- Calculate expected distribution using the probability distribution formula
- If checking for normality, for example, follow these steps:
 - 1. Calculate mean and std deviation of your data
 - Bin the data into sub-intervals
 - 3. Calculate expected probability of those sub-intervals (using normal probability function)
 - 4. Compare that to frequency observed in data

- Calculate expected distribution using the probability distribution formula
- If checking for normality, for example, follow these steps:
 - 1. Calculate mean and std deviation of your data
 - 2. Bin the data into sub-intervals
 - 3. Calculate expected probability of those sub-intervals (using normal probability function)
 - 4. Compare that to frequency observed in data
 - 5. Construct Chi Square and test

Coming Up

Chi Square Parametric:

Tests of Variance

THANK YOU