Ejercicios Módulo 6

En los ejercicios 1 a 3 se da una matriz en forma escalonada. Encuentre una base para su espacio renglón, una base para su espacio columna y determine su rango.

$$\begin{bmatrix}
1 & 5 & 3 & 0 & 1 \\
0 & 0 & 1 & 7 & 3 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 4 & 5 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 4 & 0 & 5 \\
0 & 1 & 3 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

En los ejercicios 4 a 9 encuentre bases para los espacios nulo, renglón y columna de la matriz dada. Determine además el rango y la nulidad y verifique en cada caso que $\rho_A + \nu_A = n$.

4.
$$\begin{bmatrix} 3 & 2 & 5 \\ 4 & 3 & 2 \\ -1 & 7 & 8 \\ 0 & 6 & 1 \end{bmatrix}$$

5.
$$\begin{bmatrix} 1 & 2 & -3 \\ 2 & 4 & 5 \\ -3 & -6 & 0 \end{bmatrix}$$
 6.
$$\begin{bmatrix} 2 & 4 & 0 & 0 \\ 1 & 0 & 3 & 5 \\ 2 & 6 & 4 & 0 \end{bmatrix}$$

$$\begin{bmatrix}
2 & 4 & 0 & 0 \\
1 & 0 & 3 & 5 \\
2 & 6 & 4 & 0
\end{bmatrix}$$

7.
$$\begin{bmatrix} 0 & 2 & -3 & 1 & 2 \\ 0 & -2 & 3 & 3 & 1 \\ 0 & 4 & -6 & 6 & 7 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 4 & -1 & 0 \\ 2 & -2 & 3 & 1 \\ 1 & 6 & 0 & 2 \\ 2 & 8 & 9 & 0 \end{bmatrix}$$

8.
$$\begin{bmatrix} 1 & 4 & -1 & 0 \\ 2 & -2 & 3 & 1 \\ 1 & 6 & 0 & 2 \\ 2 & 8 & 9 & 0 \end{bmatrix}$$
9.
$$\begin{bmatrix} -1 & -1 & 0 & 0 \\ 0 & 0 & 2 & 3 \\ 4 & 0 & -2 & 1 \\ 3 & -1 & 0 & 4 \end{bmatrix}$$

En los ejercicios 10 a 12 encuentre una base para el espacio generado por los conjuntos de vectores dados.

11.
$$\begin{bmatrix} 2\\1\\2\\1 \end{bmatrix}, \quad \begin{bmatrix} 3\\2\\3\\2 \end{bmatrix}, \quad \begin{bmatrix} 1\\2\\1\\2 \end{bmatrix}, \quad \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \quad \begin{bmatrix} 5\\3\\5\\3 \end{bmatrix}.$$

Capítulo 1: Espacios vectoriales

En los ejercicios 13 a 15 determine si el sistema dado tiene solución.

13.
$$x+y-z=2$$

 $x+2y+2z=-3$
 $2x+3y+z=1$

14.
$$x + y - z = 2$$

 $x + 2y + 2z = -3$
 $2x + 3y + z = -1$

15.
$$x-2y+z+w=2$$

 $3x +2z-2w=-8$
 $4y-z-w=1$
 $5x +3z-w=-3$

- 16. Sea A una matriz diagonal. Demuestre que $\rho(A)$ es el número de componentes diferentes de cero en la diagonal.
- 17. Demuestre que para cualquier matriz A, $\rho(A) = \rho(A')$.
- 18. Sea *A* una matriz triangular $n \times n$ con ceros en la diagonal. Demuestre que $\rho(A) < n$.
- 19. Sea A una matriz $n \times n$. Demuestre que $\rho(A) < n$ si y sólo si existe un vector $\mathbf{x} \in \mathbb{R}^n$ tal que $\mathbf{x} \neq \mathbf{0}$ y $A\mathbf{x} = \mathbf{0}$.
- 20. ¿Son los siguientes enunciados verdaderos o falsos? Justifique su respuesta.
 - a. Si A es una matriz de $m \times n$, entonces $\mathbb{R}_A = \mathbb{C}_A$.
 - b. Si A es una matriz 5×3 , entonces las columnas de A deben ser LI.
 - c. Si A es una matriz 3×5 , las columnas de A no pueden ser LI.
 - d. Si *A* es una matriz de $m \times n$ y las columnas de *A* son LI, entonces $A\mathbf{x} = \mathbf{b}$ puede o no tener solución. Pero si tiene solución, ésta es única.
- 21. Sea A una matriz $m \times n$.
 - a. Si las columnas de A son LI, ¿cuál es el rango de A y cuál es la relación entre m y n?
 - b. Si las columnas de A generan \mathbb{R}^m , ¿cuál es el rango de A y cuál es la relación entre m y n?
 - c. Si las columnas de A forman una base de \mathbb{R}^m , ¿cuál es la relación entre m y n?