Homework 4: Continuous Distributions

- (1) Let a r.v. X have the probability density function $f(x) = \frac{1}{2}sin(x), 0 \le x \le \pi$.
 - (a) Find the mean μ and variance σ^2 .
 - (b) Sketch the graph of the p.d.f. of X.
 - (c) Sketch the graph of the distribution function of X.
- (2) Let X, Y be a random sample of size 2 from $\sim N(3, 0.25)$. Define Z = 2(X 3), U = 2(Y 3), $W = Z^2$, V = Z + U.
 - (a) Write down the probability density function of X.
 - (b) Show that Z has the standard normal distribution.
 - (c) What is the moment-generating function of Z?
 - (d) Show that $W \sim \chi^2(1)$.
 - (e) What is the moment-generating function of W?
 - (f) What is the moment-generating function of V?
 - (g) How is V distributed?
 - (h) What is the probability density function of V?
- (3) Let X have an exponential distribution with a mean of $\theta = 20$. Compute
 - (a) P(10 < X < 30)
 - (b) P(X > 30)
 - (c) P(X > 40|X > 10)
- (4) Plot the following exponential density functions in a single frame.
 - (a) An exponential function with mean 1.
 - (b) An exponential function with mean 2.
 - (c) An exponential function with mean 4.
 - (d) An exponential function with mean 7.

- (5) Plot the following $\chi^2(r)$ density functions in a single frame.
 - (a) $\chi^2(1)$.
 - (b) $\chi^2(2)$.
 - (c) $\chi^2(4)$.
 - (d) $\chi^2(7)$.
- (6) Plot the following normal density functions in a single frame.
 - (a) $X \sim N(0, 1^2)$
 - (b) $X \sim N(0, 2^2)$
 - (c) $X \sim N(0, (2.5)^2)$
 - (d) $X \sim N(0, 3^2)$