SNM_HW02

PB19111713钟颖康

2.7

令
$$g=rac{1}{f},y=rac{1}{x}$$
,则有 $g=ay+b$

根据给出的数据可得

у	0.4762	0.4	0.3571	0.3125
g	1.6428	1.4601	1.3572	1.2329

$$\begin{bmatrix} 0.4672 & 1 \\ 0.4 & 1 \\ 0.3571 & 1 \\ 0.3125 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 1.6428 \\ 1.4601 \\ 1.3572 \\ 1.2329 \end{bmatrix}$$

法方程组为

$$\begin{bmatrix} 0.6119 & 1.5458 \\ 1.5458 & 4 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 2.2363 \\ 1.2329 \end{bmatrix}$$

解得

$$a = 2.49492$$

 $b = 0.459089$

6.8

 $R_{1,1}=rac{ln1+ln2}{2}=0.346574$,根据课本125页的Romberg算法可得积分数值表如下:

0.346574			
0.376019	0.385835		
0.383700	0.386260	0.386288	
0.385644	0.386292	0.386294	0.386294

故
$$I(lnx)=\int_1^2 lnxdx=0.386294$$

6.10.(2)

因为要3阶代数精度, 所以n = 2

根据课本131页的表格可知 $x_1^{(2)}=-0.5773502692, x_2^{(2)}=0.5773502692, lpha_1^{(2)}=lpha_2^{(2)}=1$

$$\begin{split} G_n(f) &= \frac{b-a}{2} \sum_{i=1}^n \alpha_i^{(2)} f(\frac{(a+b)+(b-a)x_i^{(2)}}{2}) \\ &= 2 \times \sum_{i=1}^n \alpha_i^{(2)} f(\frac{4x_i^{(2)}-2}{2}) \\ &= 2 \times (f(\frac{4x_1^{(2)}-2}{2}) + f(\frac{4x_2^{(2)}-2}{2})) \\ &= 2 \times (f(-2.1547005384) + f(0.1547005384)) \\ &= -96.8889 \end{split}$$