Taylor approximation

import library

```
import numpy as np
import matplotlib.image as img
import matplotlib.pyplot as plt
from matplotlib import cm
import matplotlib.colors as colors
```

define a function f(x) = cos(x)

define the derivative f'(x) of function f(x)

In [170]: ▶

define the first order Taylor approxation of the function at x_0

• $\hat{f}(x) = f(x_0) + f'(x_0)(x - x_0)$

```
In [185]:
```

functions for presenting the results

In [117]: ▶

```
def function_result_01():
    x = np.linspace(-10, 10, 100)
    y = function(x)

    plt.figure(figsize=(8,6))
    plt.plot(x, y, 'b')
    plt.xlim([-10, 10])
    plt.ylim([-10, 10])
    plt.show()
```

In [102]:

In [103]:

In [104]: ▶

In [172]: ▶

results			

```
In [186]:
```

[RESULT 03]

[RESULT 04]

value1 = 0.5403023058681398

value2 = 0.5403023058681398

[RESULT 05]

value1 = 0.8414709848078965

value2 = -0.8414709848078965

In []:	H
In []:	H