Note del corso di Analisi Matematica 1

Gabriel Antonio Videtta

4 aprile 2023

Questo avviso sta ad indicare che questo documento è ancora una bozza e non è da intendersi né completo, né revisionato.

Teoria sulle derivate

Definizione. Sia $f: X \subseteq \mathbb{R} \to \mathbb{R}$. Si definisce allora **derivata** di f in $\overline{x} \in X$ punto di accumulazione, se esiste, il seguente limite:

$$f'(\overline{x}) = \lim_{h \to 0} \frac{f(\overline{x} + h) - f(\overline{x})}{h} = \lim_{x \to \overline{x}} \frac{f(x) - f(\overline{x})}{x - \overline{x}}.$$

Si definisce anche $f':D\subseteq X\to\mathbb{R}$ come la funzione derivata, la quale associa ogni punto in cui la derivata di f esiste a tale derivata, dove D è proprio l'insieme dei punti in cui questa esiste.

Definizione. $\overline{x} \in X$ si dice **derivabile** se e solo se $f'(\overline{x})$ esiste ed è finito.

Osservazione.

- ightharpoonup L'insieme D può essere vuoto.
- ▶ Si definisce $f^{(n)}(\overline{x})$ come la derivata n-esima di f in \overline{x} .
- ► Si definisce $f^{(0)}(x) = f(x)$.
- ▶ L'operazione di derivata è un operatore lineare.
- ▶ Si può definire la derivata sinistra e destra.

Definizione. Si dice che $f: X \to \mathbb{R}$ è derivabile se è derivabile in ogni suo punto.

Definizione. Si dice che $f \in \mathcal{C}^1$ se è derivabile e la sua funzione derivata è continua. In generale, si dice che $f \in \mathcal{C}^n$ se è derivabile n volte e ogni sua derivata, fino alla n-esima, è continua. Si pone $f \in \mathcal{C}^{\infty}$ se f è derivabile per un numero arbitrario di volte e ogni sua derivata è continua.

Proposizione. Sia $f:X\to\mathbb{R}$ e sia $\overline{x}\in X$ un punto di accumulazione di X. Allora:

- (i) f derivabile in $\overline{x} \implies f(\overline{x} + h) = f(\overline{x}) + f'(\overline{x})h + o(h)$.
- (ii) Se esiste a tale che $f(\overline{x} + h) = f(\overline{x}) + ah + o(h)$, allora f è derivabile in \overline{x} e $f'(\overline{x}) = a$.

Dimostrazione. Se f è derivabile in \overline{x} , allora $\lim_{h\to 0} \frac{f(\overline{x}+h)-f(\overline{x})-f'(\overline{x})h}{h} = \lim_{h\to 0} \frac{f(\overline{x}+h)-f(\overline{x})}{h} - f'(\overline{x}) = 0$, da cui la prima tesi.

Inoltre, se esiste a come nelle ipotesi, $\lim_{h\to 0} \frac{f(\overline{x}+h)-f(\overline{x})}{h} = \lim_{h\to 0} \frac{ah+o(h)}{h} = 0$, quindi f è derivabile in \overline{x} e $f'(\overline{x}) = a$.

Corollario. Se f è derivabile in \overline{x} , allora è anche continua in \overline{x} .

Dimostrazione. Infatti, poiché $f(x) = f(\overline{x}) + f'(\overline{x})(x - \overline{x}) + o(x - \overline{x})$, $\lim_{x \to \overline{x}} f(x) = f(\overline{x})$, e quindi f è continua in \overline{x} .

Proposizione. Siano $f_1, f_2: X \to \mathbb{R}$ entrambe derivabili in \overline{x} . Allora:

- (i) $(f_1 + f_2)'(\overline{x}) = f_1'(\overline{x}) + f_2'(\overline{x}),$
- (ii) $(f_1f_2)'(\overline{x})f_1(\overline{x})f_2'(\overline{x}) + f_1'(\overline{x})f_2(\overline{x})$.

 $\begin{array}{ll} Dimostrazione. & \text{(i) } \lim_{h \to 0} \frac{(f_1 + f_2)'(\overline{x} + h) - (f_1 + f_2)'(\overline{x})(\overline{x})}{h} \\ \lim_{h \to 0} \frac{f_1(x + h) - f_1(x)}{h} + \lim_{h \to 0} \frac{f_2(x + h) - f_2(x)}{h} = f_1'(\overline{x}) + f_2'(\overline{x}). \end{array}$

(ii) Poiché f_1 ed f_2 sono derivabili in \overline{x} , $f_1(\overline{x}+h) = f_1(\overline{x}) + f'_1(\overline{x})h + o(h)$ e $f_2(\overline{x}+h) = f_2(\overline{x}) + f'_2(\overline{x})h + o(h)$, da cui $(f_1f_2)(\overline{x}+h) = (f_1f_2)(\overline{x}) + (f_1f'_2(\overline{x}) + f'_1(\overline{x})f_2(\overline{x}))h + o(h) \implies (f_1f_2)'(\overline{x}) = (f_1f'_2(\overline{x}) + f'_1(\overline{x})f_2(\overline{x}).$

Proposizione. Siano $f: X \to Y \in g: Y \to \mathbb{R}$, con f derivabile in \overline{x} e g tale che sia derivabile in $\overline{y} = f(\overline{x})$. Allora $g \circ f$ è derivabile in \overline{x} e $(g \circ f)'(\overline{x}) = f'(\overline{x})g'(\overline{y})$.

Dimostrazione. Vale che $f(\overline{x}+h) = \overline{y} + f'(\overline{x})h + o(h)$, e quindi che $g(f(\overline{x}+h)) = g(\overline{y}+f'(\overline{x})h+o(h))$. In particolare, $g(\overline{y}+h) = g(\overline{y})+g'(\overline{y})h+o(h)$, e quindi $g(f(\overline{x}+h)) = g(\overline{y})+g'(\overline{y})(f'(\overline{x})h+o(h))+o(f'(\overline{x})h+o(h)) = g(\overline{y})+g'(\overline{y})+g'(\overline{y})f'(\overline{x})h+o(h) \implies (g\circ f)'(\overline{x}) = g'(\overline{y})f'(\overline{x}).$

Proposizione. Sia $f: X \to Y$ con inversa $g: Y \to X$. Sia f derivabile in \overline{x} con $f'(\overline{x}) \neq 0$. Sia g continua in $\overline{y} = f(\overline{x})$. Allora:

- (i) \overline{y} è un punto di accumulazione di Y,
- (ii) g è derivabile in \overline{y} ,
- (iii) $g'(\overline{y}) = \frac{1}{f'(\overline{x})}$.

Dimostrazione.

- (i) Poichè f è derivabile in \overline{x} , f è continua in \overline{x} . Quindi per ogni intorno I di \overline{y} , esiste un intorno J di \overline{x} tale per cui $f(I \cap X \setminus \{\overline{x}\}) \subseteq J$, e poiché $I \cap X \setminus \{\overline{x}\}$ non è mai vuoto perché \overline{x} è un punto di accumulazione di X a causa della derivabilità di f in \overline{x} , J contiene in particolare un immagine di f in esso, e quindi un punto di Y; inoltre, tale punto è diverso da \overline{y} dacché f è iniettiva. Quindi \overline{y} è un punto di accumulazione.
- (ii) e (iii) Vale¹ che $\overline{y}+k=f(g(\overline{y}+k))=f(g(\overline{y})+(\underbrace{g(\overline{y}+k)-g(\overline{y})}_h))=f(\overline{x}+h)=f(\overline{x})+f'(\overline{x})h+o(h)=\overline{y}+f'(\overline{x})h+o(h).$ Quindi $k=f'(\overline{x})h+o(h)$. Dal momento che $f'(\overline{x})\neq 0$ per ipotesi, $h\sim \frac{k}{f'(\overline{x})}$. Quindi $\lim_{k\to 0}\frac{g(\overline{y}+k)-g(\overline{y})}{k}=\lim_{k\to 0}\frac{h}{k}=\frac{1}{f'(\overline{x})}$. Quindi la derivata esiste ed è proprio come desiderata nella tesi.

Esempio. La continuità è necessaria nelle scorse ipotesi. Si può costruire infatti una funzione del tipo:

$$f(x) = \begin{cases} x & \text{se } x \ge 0, \\ -(x+2) & \text{se } -2 < x \le -1. \end{cases}$$

dove f'(0) = 1, f è invertibile, ma la derivata di g in 0 non esiste $(D_+g(0) = 1)$, ma $D_-g(0) = +\infty$).

Teorema. (di Fermat) Sia I intervallo, $f: I \to \mathbb{R}$, \overline{x} interno a I punto di massimo o minimo locale con f derivabile in \overline{x} , allora $f'(\overline{x}) = 0$.

Esempio. Dimostrare che la derivata sinistra è negativa, e che quella destra è positiva nei casi che hai capito.

¹Nel dire che $h \to 0$, si è usato che g è continua in \overline{y} .

Teorema. (di Rolle) Sia $I = [a, b] \subset \mathbb{R}$ e sia $f : I \to \mathbb{R}$ tale che f sia continua su I, che f(a) = f(b) e che f sia derivabile in [a, b]. Allora $\exists \overline{x} \in (a, b)$ tale che $f'(\overline{x}) = 0$.

Dimostrazione. Per il teorema di Weierstrass f ammette un punto di massimo M e uno di minimo m in I. Se f(a) = M e f(b) = m o viceversa, la funzione f è costante in I, e quindi per ogni punto in (a,b) la derivata è nulla, dacché f è sempre derivabile. Altrimenti, sicuramente uno tra il punto di massimo e quello di minimo appartiene a (a,b). Senza perdita di generalità, si assuma che $\exists x_M \in (a,b)$ tale che $f(x_M) = M$: per il teorema di Fermat $f'(x_M) = 0$. Analogamente per il caso in cui $\exists x_m \in (a,b)$ tale che $f(x_m) = m$, da cui la tesi.

Teorema. (di Cauchy) Sia $I=[a,b]\subset\mathbb{R}$ e siano $f,g:I\to\mathbb{R}$ continue su I e derivabili in (a,b), con g' non nulla in (a,b) e $g(a)\neq g(b)$. Allora $\exists\,\overline{x}\in(a,b)$ tale che $\frac{f'(\overline{x})}{g'(\overline{x})}=\frac{f(b)-f(a)}{g(b)-g(a)}$.

Dimostrazione. Si consideri la funzione $h: I \to \mathbb{R}$ tale che $h(x) = f(x) - \left(\frac{f(b) - f(a)}{g(b) - g(a)}(g(x) - g(a)) + f(a)\right)$. Si osserva che h, essendo una somma di funzioni continue su I e derivabili in (a,b), è anch'essa continua su I e derivabile in (a,b). Inoltre h(a) = h(b) = 0. Quindi, per il teorema di Rolle, $\exists \overline{x} \in (a,b) \mid h'(\overline{x}) = 0 \implies \frac{f'(\overline{x})}{g'(\overline{x})} = \frac{f(b) - f(a)}{g(b) - g(a)}$, da cui la tesi. \square

Teorema. (di Lagrange) Sia $I = [a, b] \subset \mathbb{R}$ e sia $f : I \to \mathbb{R}$ tale che f sia continua su I e che f sia derivabile in (a, b). Allora $\exists \overline{x} \in (a, b)$ tale che $f'(\overline{x}) = \frac{f(b) - f(a)}{b - a}$, ossia la cui retta tangente è parallela alla secante che passa per (a, f(a)) e (b, f(b)).

Dimostrazione. Si consideri g(x) = x, g è continua in [a,b] e derivabile in (a,b), con derivata sempre non nulla in tale intervallo. Allora, per il teorema di Cauchy, $\exists \overline{x} \in (a,b) \mid f'(\overline{x}) = \frac{f(b)-f(a)}{b-a}$, da cui la tesi.

Proposizione. Sia $I = [a, b] \subset \mathbb{R}$ e sia $f : I \to \mathbb{R}$ tale che f sia continua su I e che f sia derivabile in (a, b), con derivata non negativa. Allora f è crescente in [a, b]. Analogamente, se la derivata è non positiva, f è decrescente.

Dimostrazione. Senza perdita di generalità si dimostra il caso in cui la derivata di f in (a,b) è non negativa (altrimenti è sufficiente considerare g=-f). Si considerino $c < d \in I$. Allora, per il teorema di Lagrange, $\exists \overline{x} \in (c,d) \mid f'(c) = \frac{f(d)-f(c)}{d-c} \implies f(d) - f(c) = \underbrace{f'(c)(d-c)}_{>0} \implies f(d) \geq f(c)$,

ossia che f è crescente in I.

Osservazione.

▶ L'interpretazione geometrica del teorema di Cauchy, rispetto a quella di Lagrange, è leggermente più complicata. Si consideri la curva $\gamma: \mathbb{R} \to \mathbb{R}^2$ tale che $\gamma(t) = (g(t), f(t))$. Si osserva che il coefficiente della retta tangente in \overline{x} per γ è dato da $\lim_{h\to 0} \frac{f(\overline{x}+h)-f(\overline{x})}{g(\overline{x}+h)-g(\overline{x})}$, che, sotto le ipotesi del teorema di Cauchy, può essere riscritto come $\frac{f'(\overline{x})}{g'(\overline{x})}$. Allora, il teorema di Cauchy asserisce che esiste un punto della curva γ tale per cui la retta tangente alla curva in quel punto è parallela alla secante passante per (g(a), f(a)) e (g(b), f(b)).

Esercizio 1. Dare un esempio di una funzione $f: \mathbb{R} \to \mathbb{R}$ crescente e discontinua $\forall x \in \mathbb{Z}$.

Soluzione. Si consideri f(x) = |x|.

Esercizio 2. Si descriva un insieme X tale che i suoi punti di accumulazione sono $\{\pm 1\}$.

Soluzione. Si consideri $X = \{1 + \frac{1}{n}\} \cup \{-1 + \frac{1}{n}\}.$

Esercizio 3. Sia $f: X \to \overline{\mathbb{R}}$ continua in \overline{x} e sia $a < f(\overline{x})$. Allora esiste J intorno di \overline{x} tale che $a < f(x) \ \forall \ x \in J$.

Esercizio 4. Sia $X \subseteq \overline{\mathbb{R}}$ e sia \overline{x} punto di accumulazione di $X, f_1, f_2 : X \to \overline{\mathbb{R}}$. Allora:

- (i) Se $f_1 \xrightarrow[x \to \overline{x}]{} + \infty$ e f_2 è limitata inferiormente in un intorno J di \overline{x} , allora $f_1(x) + f_2(x) \xrightarrow[x \to \overline{x}]{} + \infty$.
- (ii) Se $f_1 \xrightarrow[x \to \overline{x}]{} 0$ e f_2 è limitata in un intorno di \overline{x} , allora $f_1 f_2(x) \xrightarrow[x \to \overline{x}]{} 0$.
- (iii) Se $f_1 \xrightarrow[x \to \overline{x}]{} + \infty$ è limitata inferiormente da una costante positiva m in un intorno J di \overline{x} , allora $f_1 f_2 \xrightarrow[x \to \overline{x}]{} + \infty$.

Esercizio 5. Sia $f : \mathbb{R} \to \mathbb{R}$ tale che:

$$f(x) = \begin{cases} x + 2x^2 \sin\left(\frac{1}{x}\right) & \text{se } x \neq 0, \\ 0 & \text{altrimenti.} \end{cases}$$

Mostrare che f è continua, che f'(0) = 1 e che f' non è continua in zero.