nMOS logic IC design

Material developed by Prof. C. Z. Zhao

OUTLINE

- nMOS logic (examples)
 - Truth table
 - Calculation
 - Layout
- Design Exercise 2017 (15% marks)

nMOS IC logic family

- Inverters
- NAND gate
- NOR gate
- General gate
 - Complicated gate
 - ➤ Example →

Switch Model of nMOS Transistor

If $V_{GS} = V_{DD}$, the nMOSFET is on.

nMOS Logic (Inverters)

$$V_{in} = V_{GS}$$
, $V_{out} = V_{DS}$

nMOS Logic (Inverter)

Vin	Vout	
0 (0V)	1 (V _{DD})	
1 (V _{DD})	0 (0V)	

 $V_{in} = V_{DD}$ causes NMOS transistor to be on (in triode). Low effective resistance of transistor causes voltage divider with V_{out} near 0V.

If
$$R_L >> R_D$$
 (large R_L)

$$V_{out} = \frac{R_D}{R_L + R_D} V_{DD} \approx 0$$

$$V_{out} << V_T$$

nMOS Logic (Inverter)

Vin	Vout
0 (0V)	1 (V _{DD})
1 (V _{DD})	0 (0V)

 $V_{in} = V_{DD}$ causes NMOS transistor to be on (in triode). Low effective resistance of transistor causes voltage divider with V_{out} near 0V.

 $V_{out} = \frac{R_D}{R_L + R_D} V_{DD} \approx 0$

 $V_{in} = 0$ V causes NMOS transistor to be off (cutoff). High effective resistance of transistor causes voltage divider with V_{out} near V_{DD} .

$$V_{out} \approx V_{DD}$$
 If $V_{in} \ll V_{T}$

nMOS Logic (NAND)

$V_1 = V_2 = 10$ V causes both NMOS transistors
to be on (in triode). Low effective resistance
of transistors causes voltage divider with V_{out}
near 0V.

V ₁	V ₂	V _{out}
0	0	1
0	1	1
1	0	1
1	1	0

 $V_1 = 0$ V or $V_2 = 0$ V (or both) cause one or both NMOS transistors to be off (cutoff). High effective resistance of series transistors cause voltage divider with V_{out} near 10V.

nMOS Logic (NAND)

$V_1 = V_2 = 10$ V causes both NMOS transistors
to be on (in triode). Low effective resistance
of transistors causes voltage divider with V_{out}
near 0V.
D D

$$V_{out} = \frac{R_1 + R_2}{R_L + R_1 + R_2} V_{DD} \approx 0 \text{ (Large } R_L)$$

$$V_{out} = \frac{R_1 + R_2}{R_L + R_1 + R_2} V_{DD} \approx 0 \text{ (Large } R_L)$$

nMOS Logic (NAND)

V ₁	V ₂	V _{out}
0	0	1
0	1	1
1	0	1
1	1	0

 $V_1 = V_2 = 10$ V causes both NMOS transistors to be on (in triode). Low effective resistance of transistors causes voltage divider with V_{out} near 0V.

$$V_{out} = \frac{R_1 + R_2}{R_L + R_1 + R_2} V_{DD} \approx 0 \text{ (Large } R_L)$$

 $V_1 = 0$ V or $V_2 = 0$ V (or both) cause one or both NMOS transistors to be off (cutoff). High effective resistance of series transistors cause voltage divider with V_{out} hear 10V.

$$V_{out} \approx V_{DD}$$

nMOS Logic (NOR)

V ₁	V ₂	V _{out}
0	0	1
0	1	0
1	0	0
1	1	0

nMOS Logic (NOR)

nMOS Logic (NOR)

$$V_{out} = \frac{R_1}{R_L + R_1} V_{DD} \approx 0 \text{ (Large } R_L)$$

V_1	V ₂	V _{out}
0	0	1
0	1	0
1	0	0
1	1	0

nMOS Logic (General)

Any combination of inputs $V_1 V_2 ... V_n$ that should result in an output of 0 should produce a low-resistance path from V_{out} to ground in the pull-down network.

Any combination of inputs that does not pull the output V_{out} to ground through the network will result in the output pulled high through the pull-up resistor R_D .

NMOS logic draws current continuously when V_{out} is low.

nMOS Logic (General)

- It consists of an n channel NOR gate feeding an inverter.
- The transistors A and B are the termed driver MOSFETs.
- The process parameters are defined:
 - $2\lambda = 1\mu m$
 - $\beta_0 = 1.8 \times 10^{-4} \text{AV}^{-2}$
 - $V_T = 0.3V$
 - \rightarrow $V_{DD} = 5V$
 - \rightarrow $V_{in} = V_{DD}$
 - $R_{\rm S} = 100\Omega$

V _A	V _B	V _C	V _C	V _{out}
0	0	1	1	0
0	7	0	0	1
1	0	0	0	1
1	1	0	0	1

Example 2016

- It consists of an n channel NOR gate feeding an inverter.
- The transistors A and B are the termed driver MOSFETs.
- The process parameters are defined:
 - \Rightarrow $2\lambda = 1\mu m$
 - $\beta_0 = 1.8 \times 10^{-4} \text{AV}^{-2}$
 - \rightarrow $V_T = 0.3V_{\underline{}}$
 - $V_{DD} = 5V$
 - \rightarrow $V_{in} = V_{DD}$
 - $R_{\rm S} = 100\Omega$

V _A	V _B	V _C
0	0	1
0	1	0
1	0	0
1	1	0

V _C	V _{out}	
1	0	
0	1	
0	1	
0	1	

		/	$V_{ m DI}$
/L $ $			5k
			JK
\vdash	///		
1,1	1 1	•	$ m V_{out}$
- ← ₁			
\			
4\	3 // 0		
<u>'t</u>	/	\ 	
			/ ///

Example 2016

- It consists of an n channel NOR gate feeding an inverter.
- The transistors A and B are the termed driver MOSFETs.
- The process parameters are defined:

$$\Rightarrow 2\lambda = 1\mu m$$

$$\beta_0 = 1.8 \times 10^{-4} \text{AV}^{-2}$$

$$V_T = 0.3V$$

$$V_{DD} = 5V$$

$$\rightarrow$$
 $V_{in} = V_{DD}$

$$R_{\rm S} = 100\Omega$$

V _A	V _B	V _C	V _{out}
0	0	1	0
0	1	0	1
1	0	0	1
1	1	0	1

<u>OUTLINE</u>

- nMOS logic (examples)
 - Truth table
 - Calculation
 - Layout
- Design Exercise 2017 (15% marks)

Calculate W/L with the following specification:

- 1) $R_L = 5k.$ 2) $\beta = \beta_0(W/L)$, and $\beta_0 = 1.8*10^{-4}AV^{-2}$.
- 3) $V_T = 0.3V.$ 4) $V_{DD} = 5V.$

Solution: The output of the driver when it is switched on must be significantly less than V_T say 0.1V, that is, let $V_{Out} = 0.1V$:

$$I_D = \beta[(V_G - V_T)V_D - V_D^2/2] \approx \beta[(V_G - V_T)V_D]$$

or $I_D = \beta[(V_{DD}-V_T)V_{Out}].$

The effective resistance of the driver (R_D) between source and drain is, therefore:

$$R_D = V_{Out}/I_D = (\beta[(V_{DD}-V_T)])^{-1}$$

it is obtained as a potential divider

$$[R_D/(R_D+R_L)]=V_{Out}/V_{DD}=0.1/5=0.02 \text{ so } R_D << R_L$$

and $R_L/R_D = 1/0.02 = 50 \rightarrow R_D = 100\Omega$

$$R_D = 1/[\beta(V_G - V_T)] = 1/[\beta(5 - 0.3)] = 100\Omega$$

$$\ \ \, \rightarrow \, \beta \approx 20*10^{\text{--}4}$$

Therefore, the aspect ratio, W/L, is 12.

When $V_{DS} \le V_{GS} - V_{T}$: $I_D = \beta_0 W/L [(V_{GS} - V_{T})V_{DS} - V_{DS}^2/2]$ $\beta_0 = \mu_n C_{ox}$

 $V_{GS}-V_{T}$

PL

Transistor in Saturation Mode

Assuming $V_{GS} > V_{T}$

When $V_{DS} \ge V_{GS} - V_{T}$: $I_{D} = (\beta_{0}/2) \text{ W/L } [(V_{GS} - V_{T})^{2}]$

$$R = V_{DS} / I_{D}$$

Calculate W/L with the following specification:

- 1) $R_L = 5k$. 2) $\beta = \beta_0(W/L)$, and $\beta_0 = 1.8*10^{-4}AV^{-2}$. $\beta_0 = \mu C_{0x}$
- 3) $V_T = 0.3V.4) V_{DD} = 5V.$

The aspect ratio, W/L, is ??

Calculate W/L with the following specification:

- 1) $R_L = 5k.$ 2) $\beta = \beta_0(W/L)$, and $\beta_0 = 1.8*10^{-4}AV^{-2}$.
- 3) $V_T = 0.3V.$ 4) $V_{DD} = 5V.$

Solution:

If
$$V_{in} = V_{DD}$$
, let $V_{out} = 0.1V \ll V_{T}$

Potential divider:

$$R_D/(R_D+R_L)=V_{Out}/V_{DD}=0.1/5=0.02$$

$$\rightarrow$$
 R_D \approx 100 Ω

$$I_D = \beta[(V_G - V_T)V_D - V_D^2/2] \approx \beta[(V_G - V_T)V_D]$$

$$R_D = V_{Out}/I_D = \{\beta[(V_{DD}-V_T)]\}^{-1} = 1/[\beta(5-0.3)] = 100\Omega$$

 $\rightarrow \beta \approx 20*10^{-4}$. Therefore, the aspect ratio, W/L, is 12.

Calculate W/L with the following specification:

1) $R_L = 5k.$ 2) $\beta = \beta_0(W/L)$, and $\beta_0 = 1.8*10^{-4}AV^{-2}$.

3) $V_T = 0.3V.$ 4) $V_{DD} = 5V.$

Calculate W/L with the following specification:

- 1) $R_L = 5k.$ 2) $\beta = \beta_0(W/L)$, and $\beta_0 = 1.8*10^{-4}AV^{-2}$.
- 3) $V_T = 0.3V.$ 4) $V_{DD} = 5V.$

Example: Design Exercise 2016

- It consists of an n channel NOR gate feeding an inverter.
- The transistors A and B are the termed driver MOSFETs.
- The process parameters are defined:
 - \Rightarrow $2\lambda = 1\mu m$
 - $\beta_0 = 1.8 \times 10^{-4} \text{AV}^{-2}$
 - $V_T = 0.3V$
 - \triangleright $V_{DD} = 5V$
 - \rightarrow $V_{in} = V_{DD}$
 - $ightharpoonup R_S = 100\Omega/sq$
- HINTS: Liverpool notes.

Calculate W/L of Load with the following specification:

1) The aspect ratios of D is 12.

- 2) $\beta = \beta_0(W/L)$, and $\beta_0 = 1.8*10^{-4}AV^{-2}$.
- 3) $V_T = 0.3V.4) V_{DD} = 5V.$

Solution: The output of the driver when it i switched on is $V_{Out} = 0.1V$:

$$I_{D} = \beta[(V_{DD}-V_{T})V_{Out}].$$

The effective resistance of the driver is,

$$R_D = V_{Out}/I_D = (\beta_D[(V_{DD}-V_T)])^{-1} = 100 \Omega$$

R_L is obtained as a potential divider

$$[R_D/(R_D+R_L)]=V_{Out}/V_{DD}=0.1/5=0.02$$
 so

$$R_D << R_L \text{ and } R_L / R_D = 1/0.02 = 50$$

- $\rightarrow R_L = 5k\Omega$ and the load current
- $I_D = \beta_L/2 (V_{DD} V_T)^2$

$$R_L = (V_{DD}-V_{out})/I_D = 5*2/[\beta_L(5-0.3)^2] = 5k\Omega$$

$$\rightarrow \beta_1 = 1*10^{-4} \rightarrow \text{aspect ratio of Load} = 0.5$$

Calculate W/L of Load with the following specification: 1) The aspect ratios of D is 12. $V_{
m DD}$ 2) $\beta = \beta_0(W/L)$, and $\beta_0 = 1.8*10^{-4}AV^{-2}$. 3) $V_T = 0.3V.4) V_{DD} = 5V.$ L? 28

Calculate W/L of Load with the following specification:

1) The aspect ratios of D is 12.

- 2) $\beta = \beta_0(W/L)$, and $\beta_0 = 1.8*10^{-4}AV^{-2}$.
- 3) $V_T = 0.3V.4) V_{DD} = 5V.$

Solution:

If
$$V_{in} = V_{DD}$$
, let $V_{Out} = 0.1V$:

$$I_D = \beta_D[(V_{in}-V_T)V_{Out}-V_{Out}^2/2]$$

$$R_D = V_{Out}/I_D = (12\beta_0[(V_{DD}-V_T)])^{-1} = 100 \Omega$$

$$[R_D/(R_D+R_L)]=V_{Out}/V_{DD}=0.1/5=0.02$$

$$\rightarrow R_L \approx 5k\Omega$$

$$I_D = \beta_L (V_{DD} - V_T)^2 / 2$$

$$R_L = (V_{DD} - V_{out})/I_D = 4.9*2/[β_L(5-0.3)^2] = 5kΩ$$

 $\rightarrow β_L = 8.9*10^{-5} \rightarrow \text{aspect ratio of load} = \underline{\textbf{0.5}}$

Calculate W/L of Load with the following specification:

- 1) The aspect ratios of D is 12.
- 2) $\beta = \beta_0(W/L)$, and $\beta_0 = 1.8*10^{-4}AV^{-2}$.
- 3) $V_T = 0.3V.4) V_{DD} = 5V.$

W/L of Load= 0.5

 $m V_{DD}$

Calculate W/L of Load with the following specification:

1) The aspect ratios of D is 12.

- 2) $\beta = \beta_0(W/L)$, and $\beta_0 = 1.8*10^{-4}AV^{-2}$.
- 3) $V_T = 0.3V.4) V_{DD} = 5V.$

Calculate W/L of Load with the following specification:

1) The aspect ratios of D is 12.

2) $\beta = \beta_0(W/L)$, and $\beta_0 = 1.8*10^{-4}AV^{-2}$.

 $m V_{DD}$

nMOS Logic (NOR): example3

Calculate W/L of Load with the following specification:

1) The aspect ratios of D is 12.

- 2) $\beta = \beta_0(W/L)$, and $\beta_0 = 1.8*10^{-4}AV^{-2}$.
- 3) $V_T = 0.3V.4) V_{DD} = 5V.$

Solution:

let $V_{Out} = 0.1V$:

$$I_{D} = \beta_{D}[(V_{inA}-V_{T})V_{Out}-V_{Out}^{2}/2]$$

$$R_D = V_{Out}/I_D = (\beta_D[(V_{DD}-V_T)])^{-1} = 100 \Omega$$

$$[0.5R_D/(0.5R_D+R_L)]=V_{Out}/V_{DD}=0.1/5=0.02$$

$$\rightarrow$$
 R_L=2.5k Ω

$$I_D = \beta_L (V_{DD} - V_T)^2 / 2$$

Example: Design Exercise 2016

- It consists of an n channel NOR gate feeding an inverter.
- The transistors A and B are the termed driver MOSFETs.
- The process parameters are defined:
 - \Rightarrow $2\lambda = 1\mu m$
 - $\beta_0 = 1.8 \times 10^{-4} \text{AV}^{-2}$
 - $V_T = 0.3V$
 - \rightarrow $V_{DD} = 5V$
 - \triangleright $V_{in} = V_{DD}$
 - ho R_S = 100 Ω /sq
- HINTS: Liverpool notes.

Design Exercise 2017

Layout design of the nMOS IC shown in Fig.1

 $\mu C_{ox} = \beta_0$

- It consists of an n channel NOR gate feeding an inverter.
- The transistors A and B are the termed driver MOSFETs.
- The process parameters are defined:
 - \Rightarrow $2\lambda = 1\mu m$
 - $\beta_0 = 1.8 \times 10^{-4} \text{AV}^{-2}$
 - $V_{\rm T} = 0.3 V$
 - $V_{DD} = 5V$
 - \rightarrow $V_{in} = V_{DD}$
 - $ightharpoonup R_s = 100\Omega/sq$

nMOS Logic (NOR): example4

Calculate W/L with the following specification:

- 1) $R_1 = 5k$. 2) $\beta = \beta_0(W/L)$, and $\beta_0 = 1.8*10^{-4}AV^{-2}$.
- 3) $V_T = 0.3V.4) V_{DD} = 5V.$

Solution:

If
$$V_A = V_B = V_{DD}$$
, let $V_{Out} = 0.1V << V_T$

Potential divider:

$$0.5R_D/(0.5R_D+R_L)=V_{Out}/V_{DD}=0.1/5=0.02$$

$$\rightarrow$$
 R_D \approx 200 Ω

$$I_D = \beta[(V_G - V_T)V_D - V_D^2/2] \approx \beta[(V_G - V_T)V_D]$$

$$R_D = V_{Out}/I_D = \{\beta[(V_{DD}-V_T)]\}^{-1} = 1/[\beta(5-0.3)] = 200\Omega$$

 $\rightarrow \beta \approx 10*10^{-4}$. Therefore, the aspect ratio, W/L, is 6.

Layout design of the nMOS IC shown in Fig.1

- It consists of an n channel NOR gate feeding an inverter.
- The transistors A and B are the termed driver MOSFETs.
- The process parameters are defined:
 - $2\lambda = 1\mu m$
 - $\beta_0 = 1.8 \times 10^{-4} \text{AV}^{-2}$
 - $V_{\rm T} = 0.3 V$
 - $V_{DD} = 5V$
 - \triangleright $V_{in} = V_{DD}$
 - $R_s = 100\Omega/sq$

Calculate W/L of Load with the following specification:

- 1) The aspect ratios of D is 6.
- 2) $\beta = \beta_0(W/L)$, and $\beta_0 = 1.8*10^{-4}AV^{-2}$.
- 3) $V_T = 0.3V.4) V_{DD} = 5V.$

Solution:

If
$$V_{in} = V_{DD}$$
, let $V_{Out} = 0.1V$:

$$I_D = \beta_D[(V_{in}-V_T)V_{Out}-V_{Out}^2/2]$$

$$R_D = V_{Out}/I_D = (6\beta_0[(V_{DD}-V_T)])^{-1} = 200 \Omega$$

$$[R_D/(R_D+R_L)]=V_{Out}/V_{DD}=0.1/5=0.02$$
 $\rightarrow R_L \approx 10k\Omega$

$$I_D = \beta_L (V_{DD} - V_T)^2 / 2$$

$$R_L = (V_{DD}-V_{out})/I_D = 4.9*2/[β_L(5-0.3)^2] = 10kΩ$$

 $\rightarrow β_L = 4.4*10^{-5} \rightarrow \text{aspect ratio of load} = \underline{\textbf{0.25}}$

Layout design of the nMOS IC shown in Fig.1

- It consists of an n channel NOR gate feeding an inverter.
- The transistors A and B are the termed driver MOSFETs.
- The process parameters are defined:
 - \Rightarrow $2\lambda = 1\mu m$
 - $\beta_0 = 1.8 \times 10^{-4} \text{AV}^{-2}$
 - $V_T = 0.3V$
 - $V_{DD} = 5V$
 - \rightarrow $V_{in} = V_{DD}$
 - ho R_S = 100 Ω /sq

Layout design of the nMOS IC shown in Fig.1

- It consists of an n channel NOR gate feeding an inverter.
- The transistors A and B are the termed driver MOSFETs.
- The process parameters are defined:
 - \Rightarrow $2\lambda = 1\mu m$
 - $\beta_0 = 1.8 \times 10^{-4} \text{AV}^{-2}$
 - $V_T = 0.3V$
 - \rightarrow $V_{DD} = 5V$
 - \triangleright $V_{in} = V_{DD}$
 - $ightharpoonup R_s = 100\Omega/sq$

OUTLINE

- nMOS logic (examples)
 - Truth table
 - Calculation
 - Layout
- Design Exercise 2017 (15% marks)

nMOS NOR gate: example3

OUTLINE

- nMOS logic (examples)
 - Truth table
 - Calculation
 - Layout
- Design Exercise 2017 (15% marks)

Layout design of the nMOS IC shown in Fig.1

 $\mu C_{ox} = \beta_0$

- It consists of an n channel NOR gate feeding an inverter.
- The transistors A and B are the termed driver MOSFETs.
- The process parameters are defined:

$$\Rightarrow$$
 $2\lambda = 1\mu m$

$$\beta_0 = 1.8 \times 10^{-4} \text{AV}^{-2}$$

$$V_T = 0.3V$$

$$\rightarrow$$
 $V_{DD} = 5V$

$$\rightarrow$$
 $V_{in} = V_{DD}$

$$Arr$$
 $R_s = 100\Omega/sq$

- Design rules:
- The driver transistors should have channel length L equal to the minimum feature size λ_m. The width of the drivers W, which must always be a whole number (n) of minimum feature sizes (nλ_m), and the overall value of W must be chosen to give the required output voltage. This must be significantly less than the threshold voltage of the third gate C if this transistor is to stay off.
- The layouts must take account of the alignment accuracy λ_a .

- Design rules:
- The driver transistors should have channel length L equal to the minimum feature size λ_m. The width of the drivers W, which must always be a whole number (n) of minimum feature sizes (nλ_m), and the overall value of W must be chosen to give the required output voltage. This must be significantly less than the threshold voltage of the third gate C if this transistor is to stay off.
- The layouts must take account of the alignment accuracy λ_a .

- 1) The Design involves producing the patterns corresponding to each of the stages of the process already discussed.
- **2)** Each of the patterns should be drawn on graph paper with a stipulated scale. (e.g 1μm per cm.)
- 3) The patterns would be transferred at a later stage to glass masks, as opaque regions. There are 4 masks:
 - M1. define the device area
 - M2. define the gate stripe
 - M3. define the contacts
 - M4. define the metal pattern
- 4) Your <u>design paper</u> should include 5 parts: **4** masks and **1** layout. Your <u>report</u> should include a brief explanation and calculations.

Example: Design Exercise 2016

- It consists of an n channel NOR gate feeding an inverter.
- The transistors A and B are the termed driver MOSFETs.
- The process parameters are defined:
 - $\Rightarrow 2\lambda = 1\mu m$
 - $\beta_0 = 1.8 \times 10^{-4} \text{AV}^{-2}$
 - $V_T = 0.3V$
 - \rightarrow $V_{DD} = 5V$
 - \triangleright $V_{in} = V_{DD}$
 - ho R_S = 100 Ω /sq
- HINTS: Liverpool notes.

- 1) The Design involves producing the patterns corresponding to each of the stages of the process already discussed.
- **2)** Each of the patterns should be drawn on graph paper with a stipulated scale. (e.g 1μm per cm.)
- 3) The patterns would be transferred at a later stage to glass masks, as opaque regions. There are 4 masks:
 - M1. define the device area
 - M2. define the gate stripe
 - M3. define the contacts
 - M4. define the metal pattern
- 4) Your <u>design paper</u> should include 5 parts: **4** masks and **1** layout. Your <u>report</u> should include a brief explanation and calculations.

- Design rules:
- The driver transistors should have channel length L equal to the minimum feature size λ_m. The width of the drivers W, which must always be a whole number (n) of minimum feature sizes (nλ_m), and the overall value of W must be chosen to give the required output voltage. This must be significantly less than the threshold voltage of the third gate C if this transistor is to stay off.
- The layouts must take account of the alignment accuracy λ_a .
- $\lambda_{\rm m} = 2\lambda_{\rm a}$ (correction needed)

Mask1

 $V_{DD} \\$

V_{DD} nMOS IC: example V_{out} Mask4 67

 V_{DD}