AUTOMATIC WAREHOUSE

ระบบจำลองการทำงานของคลังสินค้าอัตโนมัติ

ภาควิชาวิศวกรรมไฟฟ้า คณะวิศวกรรมศาสตร์และเทคโนโลยีอุตสาหกรรม มหาวิทยาลัยศิลปากร

อาจารย์ที่ปรึกษา อ.ชัยวุฒ ชูรักษ์

จัดทำโดย 1. นางสาววิมลสิริ อินทร์บำรุง รหัส 630910653

2. นางสาวจิณห์นิภา ศรีเรื่อง รหัส 630910858

3. นางสาวนภัทร มากเจริญ รหัส 630910866

บทคัดย่อ

โปรเจคนี้มีวัตถุประสงค์เพื่อจำลองการทำงานของ ระบบคลังสินค้าอัตโนมัติ ในการเพิ่มประสิทธิภาพการ จัดเก็บและเรียกคืนสินค้าในคลังสินค้า ได้ออกแบบและ สร้างการจำลองระบบคลังสินค้าอัตโนมัติให้มี ความสามารถในการทำงานโดยรับคำสั่งผ่าน Dashboard โครงสร้างของคลังสินค้าทำจากอลูมิเนียมโปรไฟล์ และใช้ สเต็ปมอเตอร์ขับเคลื่อนแท่นรับสินค้า เพื่อดำเนินการ จัดเก็บหรือเรียกคืนสินค้าในคลังสินค้า การควบคุมการ ทำงานของระบบคลังสินค้าอัตโนมัติใช้การควบคุมผ่าน ทางหน้า Dashboard และใช้ไมโครคอนโทรลเลอร์ ประมวลผลและควบคุมการทำงานของคลังสินค้า ทำการ ทดลองนำสินค้าเข้ามาจัดเก็บและนำออกเพื่อทดสอบ จากการทดสองเพงเว่าระงเบคลังสินค้าอัตโนมัติสามารถนำ สินค้าไปเก็บและนำออกได้ตามที่ต้องการ ซึ่งสามารถ นำไปพัฒนาต่อเพื่อใช้ในวงการอุตสาหกรรม การศึกษา และการเรียนรู้เพื่อเป็นประโยชน์ต่อไปในภายหน้า

1. บทน้ำ

1.1 ที่มาและความสำคัญ

ในปัจจุบันคลังสินค้ามีบทบาทมากทั้งในกิจการ คลังสินค้าและอุตสาหกรรม เป็นสถานที่สำหรับใช้ในการ เก็บสินค้าหรือวัตถุดิบให้อยู่ในสภาพที่พร้อมจะส่งมอบ มี วัตถุประสงค์หลักเพื่อใช้ในการเก็บวัตถุดิบ สินค้าที่รอ นำไปผลิต หรือสินค้าที่รอการจัดจำหน่าย โดยการจัดการ คลังสินค้าจะมุ่งเน้นไปที่ความเป็นระเบียบ เข้าถึงพื้นที่ จัดเก็บได้อย่างสะดวกรวดเร็วและค้นหาได้ง่าย ระบบ จัดเก็บและเรียกคืนสินค้าอัตโนมัติ (Automated Storage/Retrieval System: AS/RS) เป็นเทคโนโลยีที่ใช้ ในการขนย้ายวัสดุเพื่อนำไปจัดเก็บหรือนำออกมาจาก พื้นที่จัดเก็บ ระบบจัดเก็บและเรียกคืนสินค้าอัตโนมัติถูก นำมาใช้กับคลังสินค้าเกิดเป็น คลังสินค้าอัตโนมัติ ที่มี กระบวนการในการวางแผนและควบคุมการจัดเก็บสินค้า ด้วยระบบอัตโนมัติที่มีประสิทธิภาพมากขึ้น โปรเจคนี้จึง มุ่งเน้นการออกแบบและจำลองระบบคลังสินค้าอัตโนมัติที่ สามารถควบคุมการทำงานและแสดงผลผ่านทางเว็บ Dashboard เพื่อให้สามารถใช้พื้นที่ให้ได้มากที่สุด และ ประหยัดเวลา

1.2 วัตถุประสงค์

เพื่อสร้างเครื่องจำลองการทำงานของระบบ คลังสินค้าที่สามารถจัดเก็บสินค้า โดยอาศัยการสั่งการ ทำงานผ่านเว็บ Dashboard ได้ ซึ่งสามารถนำไปในวงการ อุตสาหกรรม การศึกษาและการเรียนรู้เพื่อเป็นประโยชน์ ต่อไปได้

1.3 ขอบเขตของโครงงาน

- 1.3.1 ศึกษาและออกแบบขั้นตอนการทำงานของ ระบบการจัดเก็บคลังสินค้า
- 1.3.2 ประกอบโครงสร้างของคลังสินค้า
- 1.3.3 เขียนโปรแกรมสำหรับควบคุมการทำงานของ ระบบคลังสินค้า
- 1.3.4 ออกแบบหน้าเว็บ Dashboard สำหรับ User interface

1.4 ขั้นตอนการดำเนินงาน

- 1.4.1 ศึกษาค้นคว้าทฤษฎีและเอกสารที่เกี่ยวข้อง
- 1.4.2 ศึกษาหลักการเกี่ยวกับอุปกรณ์ที่ต้องการ นำมาใช้งาน
- 1.4.3 ออกแบบและวางแผนการประกอบโครงสร้าง ของคลังสินค้า
- 1.4.4 สั่งซื้ออุปกรณ์
- 1.4.5 ประกอบโครงสร้างของคลังสินค้า
- 1.4.6 เขียนโปรแกรมควบคุมการทำงานของระบบ คลังสินค้าและส่วนแสดงผล
- 1.4.7 ทดสอบและแก้ไขการทำงานของระบบ คลังสินค้าอัตโบมัติ
- 1.4.8 สรุปผลและจัดทำเอกสารรายงานการวิจัย

1.5 ประโยชน์ที่คาดว่าจะได้รับ

- 1.5.1 ได้รับทักษะในกระบวนการคิด การวางแผน และแก้ไขปัญหาต่าง ๆ ในระหว่างการทำงาน
- 1.5.2 สามารถจำลองระบบคลังสินค้าอัตโนมัติให้ สำเร็จได้อย่างสมบูรณ์
- 1.5.3 สามารถนำไปประยุกต์ใช้งาน และพัฒนาต่อ ยอดเพิ่มเติมต่อไปได้

2. ทฤษฎีที่เกี่ยวข้อง

2 1 คลังสินค้า (Warehouse)

คลังสินค้าหมายถึง พื้นที่ที่ได้วางแผนแล้ว เพื่อให้เกิดประสิทธิภาพในการใช้สอยและเคลื่อนย้าย สินค้าและวัตถุดิบ โดยคลังสินค้าทำหน้าที่ในการเก็บ สินค้าระหว่างกระบวนการเคลื่อนย้ายเพื่อสนับสนุนการ ผลิตและการกระจายสินค้า ซึ่งสินค้าที่เก็บในคลังสินค้า สามารถแบ่งได้เป็น 2 ประเภท ได้แก่

- วัตถุดิบ (Material) ซึ่งอยู่ในรูปของส่วนประกอบ
 (Components) และชิ้นส่วนต่าง ๆ (Part)
- 2. สินค้าสำเร็จรูป (Finished Goods) หรือ สินค้า จะนับ รวมไปถึงงานระหว่างการผลิต (Work in Process) ตลอดจนสินค้าที่ต้องการทิ้ง (Disposed) และวัสดุที่ นำมาใช้ใหม่ (Recycle Materials)

การจัดการคลังสินค้า หมายถึง กระบวนการ ประสมประสานทรัพยากรต่าง ๆ เพื่อให้การดำเนินการ กิจการคลังสินค้าเป็นไปอย่างมีประสิทธิผลและบรรลุผล สำเร็จตามวัตถุประสงค์ของคลังสินค้าแต่ละประเภทที่ กำหนดไว้

2.2 ระบบการจัดเก็บและเรียกคืนวัสดุอัตโนมัติ (Automated Storage/Retrieval System)

การทำงานของระบบการจัดเก็บในคลังสินค้า หรือโกดังที่มีการควบคุมด้วยระบบการจัดเก็บวัสดุ การรับ วัสดุ รวมทั้งการเคลื่อนที่ของอุปกรณ์ขนถ่ายที่ทำงาน ร่วมกับโรงงานและคลังสินค้า ซึ่งสามารถออกแบบการใช้ งานให้เหมาะสมกับการทำงนลักษณะต่างได้ โดยทั่วไป แล้วปัจจัยที่มีผลต่อความสามารถในการจัดเก็บและ เรียกใช้ของอุปกรณ์แบบ AS/RS

(AutomatedStorage/Retrieval System) จะพิจารณา จากลักษณะโครงสร้างของหิ้งที่ใช้จัดเก็บ ความเร็วในการ เคลื่อนของอุปกรณ์ AS/RS ทั้งในแนวดิ่งและแนวราบ ซึ่ง เป็นส่วนประกอบของห่วงโซ่อุปทานที่สำคัญ

2.3 บอร์ดควบคุม

2.3.1 บอร์ด Arduino

บอร์ด Arduino เป็นไมโครคอนโทรลเลอร์ ที่ สามารถอ่านอินพุตจากตัวตรวจจับแสง, ใช้นิ้วกดบนปุ่ม หรือส่งข้อความไปยัง Twitter และเปลี่ยนเป็นเอาต์พุต เปิดใช้งานมอเตอร์, เปิดไฟ LED หรือเผยแพร่ข้อมูลไปยัง ระบบอินเทอร์เน็ตได้อีกด้วย ซึ่งผู้ใช้งานสามารถควบคุม บอร์ดได้ โดยส่งชุดคำสั่งไปยังไมโครคอนโทรลเลอร์ บน บอร์ด ในการทำเช่นนั้นคุณต้องใช้ภาษา Arduino ซึ่งมี คำสั่งเพิ่มขึ้นมาเพื่อเขียนในรูปแบบภาษา C++ และใช้ ซอฟต์แวร์ Arduino IDE เป็นหลักในการประมวลผล

2.4 Stepper Motor

สเต็ปเปอร์มอเตอร์ (Stepper Motor) เป็น อุปกรณ์เอาต์พุตอย่างหนึ่ง เป็นมอเตอร์ที่เหมาะสมสำหรับ ใช้ในงานควบคุมการหมุนที่ต้องการตำแหน่งและทิศทางที่ แน่นอน การทำงานของสเต็ปมอเตอร์จะขับเคลื่อนทีละ ขั้น (Step) ขั้นละ 0.9, 1.8, 5, 7.5, 15 หรือ 50 องศา ขึ้นอยู่กับคุณสมบัติแต่ละชนิดของสเต็ปมอเตอร์ตัวนั้นๆ

ส่วนประกอบของสเต็ปมอเตอร์จะประกอบด้วย สเตเตอร์ (Stator) เป็นส่วนที่ติดกับตัวถังของมอเตอร์ จะเป็นขั้วแม่เหล็กที่มีปลายเป็นฟันซี่เล็กๆ พันด้วยขดลวด เพื่อเหนี่ยวนำให้สนามแแม่เหล็กเปลี่ยนแปลง และโรเตอร์ (Rotor) เป็นก้อนแม่เหล็กถาวร มีลักษณะคล้ายเฟือง มี ฟันเป็นซี่ๆ เพื่อดูดเข้าไปตรงกันกับขี่ฟันของสเตเตอร์ โดย โรเตอร์จะติดอยู่กับแกนหมุนเพื่อนำไปใช้งานตามต้องการ สเต็ปมอเตอร์ที่มีชี่ฟันจำนวนมาก ทำให้สามารถขยับ เป็นสเต็ปเล็กๆ ได้

การทำงานของสเต็ปมอเตอร์จะมีหลักการ เหมือนกับมอเตอร์กระแสตรง คือการจ่ายไฟฟ้าเข้าไปใน ขดลวดเพื่อเปลี่ยนเป็นสนามแม่เหล็ก จากนั้นแม่เหล็กที่ แกน Rotor ก็จะดูดเข้ากับขดลวด เท่ากับมอเตอร์เคลื่อน 1 Step

2.5 Node-red

Node-RED เป็นเครื่องมือสำหรับนักพัฒนา โปรแกรมในการเชื่อมต่ออุปกรณ์ฮาร์ดแวร์เข้ากับ APIs (Application Programming Interface) ซึ่งเป็นการ พัฒนาโปรแกรมแบบ Flow-Based Programming ที่มี หน้า UI สำหรับนักพัฒนาให้ใช้งานผ่าน Web Browser ทำให้การเชื่อมต่อเส้นทางการไหลของข้อมูลนั้นเป็นเรื่อง ง่าย เนื่องจาก Node-RED เป็น Flow-Based Programming ทำให้เราแทบจะไม่ต้องเขียน Code ใน การพัฒนาโปรแกรมเลย แค่เพียงเลือก Node มาวางแล้ว เชื่อมต่อก็สามารถควบคุม I/O ได้ โดย Node-RED จะมี Node ให้เลือกใช้งานอย่างหลากหลาย สามารถสร้าง ฟังก์ชัน JavaScript ได้โดยใช้ Text Editor ที่มีอยู่ใน Node-RED และยังสามารถบันทึก Function, Templates, Flows เพื่อไปใช้งานกับงานอื่นได้ Node-RED ทำงานบน Node.js ทำให้เหมาะสำหรับการ ใช้งานกับ Raspberry Pi เนื่องจากใช้ทรัพยากรน้อย ขนาดไฟล์ไม่ใหญ่และ Node.js ยังทำหน้าที่เป็นตัวกลาง ให้ Raspberry Pi สามารถติดต่อกับ Web Browser และ อุปกรณ์อื่นๆ ได้

3. วิธีการดำเนินงาน

3.1 ขั้นตอนการดำเนินงาน

- 3.1.1 ศึกษาค้นคว้าทฤษฎีและเอกสารที่เกี่ยวข้อง
- 3.1.2 ศึกษาหลักการเกี่ยวกับอุปกรณ์ที่จะนำมาใช้
- 3.1.3 ออกแบบและวางแผนการประกอบโครงสร้าง ของคลังสินค้า
- 3.1.4 สั่งซื้ออุปกรณ์
- 3.1.5 ประกอบโครงสร้างของคลังสินค้า
- 3.1.6 เขียนโปรแกรมควบคุมการทำงานของระบบ คลังสินค้าและส่วนแสดงผล
- 3.1.7 ทดสอบและแก้ไขการทำงานของระบบ คลังสินค้าอัตโนมัติ
- 3.1.8 สรุปผลและจัดทำเอกสารรายงานการวิจัย

3.2 ออกแบบโครงสร้างคลังสินค้าอัตโนมัติ

3.3 Wiring Diagram

3.4 Flowchart ระบบการทำงาน

4. ผลการดำเนินงาน

4.1 โครงสร้างคลังสินค้าอัตโนมัติ

4.2 Dashboard

4.3 หลักการทำงานของคลังสินค้า

- 4.3.1 User ใช้งานเว็บแอป ที่เป็น user interface
- 4.3.2 ส่งค่าผ่านบอร์ด ESP32 ไปยัง Arduino MEGA 2560
- 4.3.3 Arduino MEGA 2560 ส่งคำสั่งเพื่อให้มอเตอร์ ทำงานตามเงื่อนไขที่กำหนดไว้

4.4 กำหนดการทำงานของมอเตอร์

- 1. มอเตอร์ 1 เคลื่อนที่ตามแนวแกน X (ซ้าย-ขวา)
- 2. มอเตอร์ 2 เคลื่อนที่ตามแนวแกน Z (ขึ้น-ลง)
- 3. มอเตอร์ 3 เคลื่อนที่ตามแนวแกน Y (เดินหน้า-ถอยหลัง)

4.5 การทำงานของแท่นรับสินค้า

4.5.1 การทำงานของแท่นรับสินค้าในโหมด Checkin มีดังนี้

- 1. การรับสินค้าตรงตำแหน่ง checkpoint
 - มอเตอร์ 3 เคลื่อนที่เข้ารับสินค้า
 - มอเตอร์ 2 เคลื่อนที่ขึ้นเพื่อยกสินค้า
 - มอเตอร์ 3 เคลื่อนที่กลับที่เดิม
- 2. มอเตอร์ 1 เคลื่อนที่ไปทางซ้ายให้ตรงแถวที่จะ จัดเก็บสินค้า
- 3. มอเตอร์ 3 เคลื่อนที่เข้าไปยังชั้นวางสินค้า
- 4. มอเตอร์ 2 เคลื่อนที่ลงเพื่อวางสินค้า
- 5. มอเตอร์ 3 เคลื่อนที่ออกจากชั้นวางสินค้า
- 6. มอเตอร์ 2 เคลื่อนที่ลง (คำสั่ง check-in ชั้น1 ไม่มีขึ้นตอนนี้)
- 7. มอเตอร์ 1 เคลื่อนที่ไปทางขวายังจุด checkpoint เพื่อรอการทำงานครั้งต่อไป

- 4.5.2 การทำงานของแท่นรับสินค้าในโหมด Checkout มีดังนี้
 - 1. มอเตอร์ 1 เคลื่อนที่ไปทางซ้ายให้ตรงแถวที่จะ นำสินค้าออก
 - มอเตอร์ 2 เคลื่อนที่ขึ้นไปยังชั้นที่จะนำ สินค้าออก
 - 3. มอเตอร์ 3 เคลื่อนที่เข้าไปยังชั้นวางสินค้า
 - 4. มอเตอร์ 2 เคลื่อนที่ขึ้นเพื่อยกสินค้า
 - 5. มอเตอร์ 3 เคลื่อนที่ออกจากชั้นวางสินค้า
 - 6. มอเตอร์ 1 เคลื่อนที่กลับไปทางขวายังจุด checkpoint
 - 7. การส่งสินค้าตรงตำแหน่ง checkpoint
 - มอเตอร์ 3 เคลื่อนที่เข้าเพื่อวางสินค้า
 - มอเตอร์ 2 เคลื่อนที่ลง
 - มอเตอร์ 3 เคลื่อนที่กลับที่เดิม

5. สรุปผลการดำเนินงาน

5.1 สรุปผล

จากการดำเนินงานตามขั้นตอนตามที่กล่าวมา โดยเริ่มจากการศึกษาทฤษฎีและวางแผนขอบเขตของ โครงงาน จากนั้นได้แบ่งการดำเนินงานเป็น 2 ส่วนคือ ส่วนของฮาร์ดแวร์และส่วนของซอฟต์แวร์ ในส่วนของ ฮาร์ดแวร์ ได้ทำการศึกษาหลักการของอุปกรณ์ต่าง ๆ และ ออกแบบชิ้นงานให้มีความเหมาะสมกับการใช้งาน ในส่วน ของซอฟต์แวร์ คือส่วนของการเขียนโปรแกรมควบคุมการ ทำงานของชิ้นงาน หน้า Dashboard สำหรับผู้ใช้งาน โปรแกรมสำหรับสื่อสารระหว่างหน้าDashboard และ ชิ้นงาน โดยได้มีการออกแบบการทำงานของระบบ คลังสินค้าให้สามารถลำดับความสำคัญของสินค้าในการ จัดเก็บหรือเรียกคืนได้อัตโนมัติ และออกแบบการใช้งาน ของส่วนแสดงผลหรือหน้า Dashboard เมื่อออกแบบและ สร้างระบบคลังสินค้าตโนมัติเรียบร้อยแล้ว จึงทดสอบการ ทำงานของระบบคลังสินค้าอัตโนมัติ โดยการทดลอง จัดเก็บและเรียกคืนสินค้าแต่ละประเภทผ่านหน้า Dashboard ที่ได้ออกแบบไว้ พบว่าระบบคลังสินค้า สามารถนำสินค้าไปจัดเก็บและเรียกคืนได้ตามตำแหน่งที่ ได้ทำการออกแบบไว้

5.2 ปัญหาและอุปสรรคในการดำเนินงาน

- 5.2.1 การเสียสมดุลทางด้านน้ำหนักของตัวเครื่อง เนื่องจากมีชั้นเก็บของเพียงฝั่งเดียว
- 5.2.2 แท่นรับสินค้าที่ออกแบบมีขนาดที่ไม่พอดี ทำให้ เสียสมดุลและเสียหายง่าย
- 5.2.3 การวางสินค้าที่จุดเริ่มต้นในระยะที่ไม่เหมาะสม ทำให้ไม่สามารถนำสินค้าไปวางในตำแหน่ง จัดเก็บได้
- 5.2.4 ขาดความชำนาญในการทำงานบางส่วน ทำให้ ต้องใช้เวลาในการศึกษาและทำความเข้าใจ เพิ่มเติมรวมถึงต้องใช้เวลาในการจัดการกับ ปัญหาที่เกิดขึ้น

5.3 แนวทางแก้ไขปัญหา

- 5.3.1 ออกแบบให้มีชั้นเก็บของ 2 ฝั่ง หรือให้มีการ ถ่วงน้ำหนัก เพื่อรักษาสมดุลในเรื่องน้ำหนักของ ตัวเครื่อง
- 5.3.2 ออกแบบหรือเลือกซื้อแท่นรับสินค้า ให้มีความ เหมาะสมกับวัสดุที่จะทำการยก
- 5.3.3 ระบุตำแหน่งสำหรับวางสินค้าให้แน่นอนชัดเจน เพื่อป้องกันความผิดพลาดในการเคลื่อนย้าย สินค้า

เอกสารอ้างอิง

- [1] https://pantamitsombaddee.blogspot.co m/p/node-red-node-red-apisapplication.html
- [2] https://opacimages.lib.kmitl.ac.th/medias/b00279171/เกริกซัย_เบญจถาวรอนันท์-วศ.63.pdf1.pdf2.pdf
- [3] https://forbo.blob.core.windows.net/for bodocuments/30628/304_fms_transilon-calculation-methods-conveyor-belts_th.pdf