1. Gauge invariance and the Lorentz force

(a)

Schroedinger equation

$$\mathrm{i}\hbar\frac{\partial\psi}{\partial t} = -\frac{\hbar^2}{2m}\bigg(\nabla - \frac{\mathrm{i}q}{\hbar c}\vec{A}\bigg)^2\psi + q\phi\psi$$

Complex conjugate

$$\begin{split} -\mathrm{i}\hbar\frac{\partial\psi^*}{\partial t} &= -\frac{\hbar^2}{2m}\bigg(\nabla + \frac{\mathrm{i}q}{\hbar c}\vec{A}\bigg)^2\psi^* + q\phi\psi^* \\ \mathrm{i}\hbar\psi^*\frac{\partial\psi}{\partial t} &= -\psi^*\frac{\hbar^2}{2m}\bigg(\nabla - \frac{\mathrm{i}q}{\hbar c}\vec{A}\bigg)^2\psi + q\phi\psi^*\psi \\ -\mathrm{i}\hbar\psi\frac{\partial\psi^*}{\partial t} &= -\frac{\hbar^2}{2m}\psi\bigg(\nabla + \frac{\mathrm{i}q}{\hbar c}\vec{A}\bigg)^2\psi^* + q\phi\psi^*\psi \\ \mathrm{i}\hbar\frac{\partial\psi^*\psi}{\partial t} &= -\psi^*\frac{\hbar^2}{2m}\bigg(\nabla - \frac{\mathrm{i}q}{\hbar c}\vec{A}\bigg)^2\psi + \frac{\hbar^2}{2m}\psi\bigg(\nabla + \frac{\mathrm{i}q}{\hbar c}\vec{A}\bigg)^2\psi^* \\ &= -\frac{\hbar^2}{2m}\bigg(\nabla\bigg(\psi^*\bigg(\nabla - \frac{\mathrm{i}q}{\hbar c}\vec{A}\bigg)\psi\bigg) - \bigg|\bigg(\nabla - \frac{\mathrm{i}q}{\hbar c}\vec{A}\bigg)\psi\bigg|^2\bigg) \\ &+ \frac{\hbar^2}{2m}\bigg(\nabla\bigg(\psi\bigg(\nabla + \frac{\mathrm{i}q}{\hbar c}\vec{A}\bigg)\psi^*\bigg) - \bigg|\bigg(\nabla - \frac{\mathrm{i}q}{\hbar c}\vec{A}\bigg)\psi\bigg|^2\bigg) \\ &= \frac{\hbar^2}{2m}\nabla\bigg(\psi\bigg(\nabla + \frac{\mathrm{i}q}{\hbar c}\vec{A}\bigg)\psi^* - \psi^*\bigg(\nabla - \frac{\mathrm{i}q}{\hbar c}\vec{A}\bigg)\psi\bigg) \\ &\frac{\partial\rho}{\partial t} &= \frac{\hbar}{2m\mathrm{i}}\nabla\bigg(\psi\bigg(\nabla + \frac{\mathrm{i}q}{\hbar c}\vec{A}\bigg)\psi^* - \psi^*\bigg(\nabla - \frac{\mathrm{i}q}{\hbar c}\vec{A}\bigg)\psi\bigg) \\ &= -\nabla\cdot\vec{j} \\ &0 = \frac{\partial\rho}{\partial t} + \nabla\cdot\vec{j} \end{split}$$

- (b)
- (c)
- 2.
- (a)
- (b)
- (c)
- 3.
- (a)
- (b)
- (c)
- **4.**
- (a)
- (b)
- (c)
- (d)