1 Sets and Venn Diagrams

Exercise. Which of these mean the same thing?

- 1. if $x \in A$ then $x \in B$
- 2. if $x \notin A$ then $x \notin B$
- 3. if $x \in B$ then $x \in A$
- 4. if $x \notin B$ then $x \notin A$

Let's draw Venn diagrams to figure it out...

- **Q.** If we have $x \in A \to x \in B$, then what do we call $x \notin B \to x \notin A$?
- A.
- **Q.** If we have $x \in A \to x \in B$, then what do we call $x \in B \to x \in A$?
- $\mathbf{A}.$

Exercise Which of these have the same meaning?

- $x \notin A \to x \in B$
- $\bullet \ x \in A \to x \not \in B$
- $x \notin B \to x \in A$
- $x \in B \to x \notin A$

Exercise. Draw a Venn diagram representing three sets A, B and C. Now shade in the region that represents when the statement

$$A \wedge B \rightarrow \neg C$$

is true.

Q. How could we have made this task easier?

Α.

2 If and Only If

Sometimes we see the \leftrightarrow symbol. What does it stand for? If and only if or iff.

Q. If we say $A \leftrightarrow B$ what do we mean in terms of \rightarrow ?

Α.

A	B	$A \to B$	$B \to A$	$A \leftrightarrow B$
Т	Т			
Т	F			
F	Т			
F	F			

3 Direct Proofs and Quantifiers

Let's try writing a simple direct proof.

Claim. For all real numbers x, if x > a > 0, then $x^2 > a^2$.

Proof.

Observation. Notice that here we have an implication of the form for all $x \in \mathbb{R}$, $P(x) \to Q(x)$ or mathematically,

$$\forall x \in D, P(x) \to Q(x)$$

with a variable called x where P(x) means x > 1, Q(x) means $x^2 > 1$ and D means \mathbb{R} . We call these **predicates**.

Form for such proofs, our proof structure often follows the form:

Direct Proof.

$$\forall x \in D, P(x) \to Q(x)$$

- Let x be arbitrary or any element of the domain.
- Suppose that P(x) is true.
- Use true sentences to derive that Q(x) is true.

Exercise Prove that for all real numbers x and y, if x and y are rational then xy is rational.

Proof.

Exercise Prove that there does not exist a largest natural number.

Let's first try to rewrite this in a way that uses "for all" and "there exists".

Can we rewrite this expression using the symbols \forall (for all) and \exists (there exists)?

Proof.

Notice that y > x represents a predicate with two variables and that the format of our statement is $\forall x \in D, \exists y \in D, S(x, y)$.

Q. Does the order of the $\forall x$ and $\exists y$ matter? Are these the same?

$$\forall x \in D, \exists y \in D, S(x,y) \quad \stackrel{?}{\Leftrightarrow} \quad \exists y \in D, \forall x \in D, S(x,y)$$

Α.

 ${\bf Q.}$ What do the following statements say in ${\it English}$ if:

S(x,y): x scares y

 $D = \{ \text{all people (and superheroes/characters)} \}?$

- 1. $\exists x \in D, \exists y \in D, S(x, y)$
- $2. \ \exists y \in D, \exists x \in D, S(x,y)$
- 3. $\forall x \in D, \forall y \in D, S(x, y)$

4. $\forall y \in D, \forall x \in D, S(x, y)$

5. $\forall x \in D, \exists y \in D, S(x, y)$

6. $\exists y \in D, \forall x \in D, S(x, y)$

7. $\exists x \in D, \forall y \in D, S(x, y)$

8. $\forall y \in D, \exists x \in D, S(x, y)$

Q. Which statements have the *same* meaning?

Α.

Let's get a little practice writing with *predicates* and *quantifiers* by going back to the statement:

For all real numbers x and y, if x and y are rational then xy is rational.

Rewrite this using \forall :

 \mathbf{Q} . How can we express x is rational using quantifiers?

 \mathbf{A} .

 \mathbf{Q} How can we express x is *not* rational using quantifiers?

 \mathbf{A} .

Let's write this in English:

Q. How can we simplify this mathematically? What is $\neg \forall$?

Α.

4 A Proof Using mod

Definition. $a \mod n = b$ means that $a \div n$ has a remainder b .
DEFINITION. $a \equiv_n b$ means that $a \mod n = b \mod n$.
Theorem . For all integers a , b and n with $n \ge 1$, $a \equiv_n b$ iff n divides $a - b$.
We will prove this theorem. We split it into two separate proofs. What should they be?
Proof of (\rightarrow) :
Proof of (\leftarrow) :