Chapitre 1

Raisonnement, ensembles

1.1 Logique.

Une proposition est un énoncé qui peut prendre deux valeurs logiques : V (vrai) ou F (faux).

En mathématiques, on part d'un petit nombre de propositions que l'on suppose vraies (les *axiomes*) et l'on essaie d'étendre le nombre d'énoncés vrais au moyen de *démonstrations*. Pour cela on utilise des règles de logique.

À partir de deux propositions quelconques A et B, on en fabrique de nouvelles dont on définit la valeur logique en fonction des valeurs logiques de A et de B. Une « table de vérité » résume cela :

A	B	non A	$A ext{ et } B$	A ou B	$A \Rightarrow B$	$A \Longleftrightarrow B$
V	V	F	V	V	V	V
V	F	F	F	V	F	F
F	V	V	F	V	V	F
F	F	V	F	F	V	V

L'évaluation des nouvelles propositions en fonction de la valeur des anciennes paraît naturelle sauf pour l'implication. En effet, si la proposition A vaut F, quelle que soit la valeur de vérité de la proposition B, la proposition $A\Rightarrow B$ sera évaluée à V. On utilise en mathématiques l'implication pour obtenir de nouveaux résultats. Si l'on sait qu'un résultat A est vrai et si l'on montre que l'implication $A\Rightarrow B$ est vraie, alors d'après la table de vérité, on en déduit que la proposition B est vraie, ce qui étend les résultats mathématiques.

Pour montrer que $A \Rightarrow B$ est vrai, on peut utiliser l'un des deux raisonnements suivants:

Raisonnement direct: Supposons A vrai, et montrons qu'alors B est vrai; Raisonnement par contraposée: Supposons B faux et montrons que A est faux.

Exemple 1. On considère un nombre réel $x \ge 0$ et les deux propositions:

- A: Pour tout réel ε strictement positif, $0 < x < \varepsilon$;
- B: x = 0.

Montrer que $A \Rightarrow B$.

Pour montrer une équivalence $A \iff B$, on procède en deux temps :

- 1. On montre que $A \Rightarrow B$ est vrai;
- 2. On montre que $B \Rightarrow A$ est vrai.

Exemple 2. On considère une fonction $f: \mathbb{R} \to \mathbb{R}$ et les deux propositions

- A: f est une fonction paire et impaire;
- B: f est la fonction nulle.

Montrer que $A \iff B$.

Remarque 1. Pour montrer l'équivalence de trois propositions $A \iff B \iff C$, il suffit de montrer trois implications convenablement choisies, par exemple $A \Rightarrow B, B \Rightarrow C$ et $C \Rightarrow A$.

Raisonnement par l'absurde.

On suppose qu'une proposition B est fausse. Si on aboutit à une contradiction avec une proposition A que l'on sait être vraie, alors on a montré que B est vraie.

Exemple 3. Montrer que le réel $\sqrt{2}$ n'est pas rationnel.

1.2 Ensembles

Sans rentrer dans les détails, un ensemble est une « collection » d'objets appelés éléments. On note $x \in E$ si l'objet x est un élément de E.

Soit P(x) une propriété dépendant d'un objet x d'un ensemble E. On note:

- $\forall x \in E, P(x)$ lorsque la propriété est vraie pour tous les éléments x;
- $-\exists x \in E, P(x)$ lorsqu'il existe au moins un élément x de l'ensemble E pour lequel la propriété est vraie;
- $-\exists !x \in E, P(x)$ lorsqu'il existe un unique élément de l'ensemble E pour lequel la propriété est vraie.

Il faut savoir nier une proposition dépendant de quantificateurs:

Exercice 1-1

Quelle est la négation des propositions suivantes:

- 1. $\forall x \in E, P(x)$;
- 2. $\exists x \in E, P(x)$;
- 3. $\forall x \in E, \exists y \in E, P(x,y)$;
- 4. $\exists x \in E, \forall y \in E, P(x,y);$
- 5. $\exists r \in \mathbb{R}, \exists s \in \mathbb{R}, \forall x \in \mathbb{R}, x \leq r \text{ et } s \leq r.$

Remarque 2. Nous utiliserons beaucoup les mots « soit » et « posons » dans nos démonstrations cette année.

- Pour montrer une proposition de la forme: $\forall x \in E$, P(x) (quel que soit $x \in E$, x vérifie une propriété) on commence la démonstration par: « Soit $x \in E$ ». Imaginez qu'une personne extérieure mette en doute votre résultat. Elle vous donne un élément x de son choix. Vous n'avez pas le droit de choisir vous même cet élément, et vous devez montrer que cet élément vérifie bien la propriété.
- Pour montrer une proposition de la forme: $\exists x \in E$ tel que P(x) (il existe un objet x vérifiant la propriété P(x)), il vous suffit d'exhiber un élément x vérifiant cette propriété. La démonstration contiendra alors la phrase: « Posons $x = \dots$ Vérifions que x convient \dots »
- Pour montrer qu'une proposition de la forme: $\forall x \in E, P(x)$ est fausse (c'est à dire que $\exists x \in E$ tel que P(x) est faux), il suffit d'exhiber un *contre-exemple*: « Posons $x = \dots$ ». Pour cet élément x, P(x) est fausse.

Si E et F sont deux ensembles, on note $E \subset F$ lorsque tous les éléments de E sont des éléments de $F : \forall x \in E$, $x \in F$.

Fig. 1.1 – Notations ensemblistes

Un ensemble particulier est l'ensemble vide noté \emptyset . Il ne contient aucun élément, et pour tout ensemble E, on a $\emptyset \subset E$.

Exemple 4. Soit l'ensemble $E = \{\{\emptyset\}, 1, \mathbb{N}, \{0,1,2\}\}$. Mettre le signe \in ou \notin et \subset ou \notin correct entre les objets suivants:

- $-\emptyset \dots E$;
- $-\{\emptyset\}\dots E;$
- $-\mathbb{N}\dots E$;
- $-\{\emptyset,\mathbb{N}\}\dots E.$

Définition 1.1 : Egalité de deux ensembles

On note E = F ssi

$$E \subset F$$
 et $F \subset E$

Pour montrer que E=F, on utilise le plan suivant :

- 1. Montrons que $E \subset F : \dots$;
- 2. Montrons que $F \subset E : \dots$

DÉFINITION 1.2: Intersection, union, complémentaire

Soient E et F deux ensembles. On définit de nouveaux ensembles :

- Intersection $E \cap F$: $x \in E \cap F$ lorsque $x \in E$ et $x \in F$;
- **Union** $E \cup F : x \in E \cup F$ lorsque $x \in E$ ou $x \in F$;
- Complémentaire $E \setminus F : x \in E \setminus F$ lorsque $x \in E$ et $x \notin F$.

Exercice 1-2

On considère trois ensembles A,B,C. Montrer que

$$(A \cup B \subset A \cup C \text{ et } A \cap B \subset A \cap C) \Rightarrow (B \subset C)$$

Exercice 1-3

On considère trois ensembles A,B,C. Comparer les ensembles:

- 1. $A \cap (B \cup C)$ et $(A \cap B) \cup (A \cap C)$;
- 2. $A \cup (B \cap C)$ et $(A \cup B) \cap (A \cup C)$.

DÉFINITION 1.3: ensemble des parties de E

Soit E un ensemble. On note $\mathcal{P}(E)$ l'ensemble dont les éléments sont les sous-ensembles de E.

Exemple 5. Si
$$E = \{a,b,c\}, \mathcal{P}(E) = \{\emptyset,\{a\},\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\},\{a,b,c\}\}\}$$

Exercice 1-4

Errire l'ensemble $\mathcal{P}(\mathcal{P}(E))$ lorsque $E = \{a,b\}$.

DÉFINITION 1.4: Produit cartésien

Soient E et F deux ensembles. On note $E \times F$ l'ensemble des « couples » (x,y) avec $x \in E$ et $y \in F$. L'ensemble $E \times F$ s'appelle le produit cartésien des ensembles E et F.

On définit de même pour n ensembles E_1, \ldots, E_n , l'ensemble $E_1 \times \cdots \times E_n$ formé des n-uplets (x_1, \ldots, x_n) avec $x_1 \in E_1, \ldots, x_n \in E_n$.

Remarque 3. Ne pas confondre un couple de deux éléments (x,y) avec la paire $\{x,y\}$.

Remarque 4. Soit E un ensemble de référence, et $\mathcal{P}(x)$ une propriété qui dépend de l'élément $x \in E$. On peut définir l'ensemble des éléments de l'ensemble E pour lesquels la propriété est vraie :

$$F = \{x \in E \mid \mathcal{P}(x) \text{ est vrai } \}$$

Il est nécessaire d'utiliser un ensemble de référence E sous peine d'aboutir à des paradoxes.

1.3 Applications

DÉFINITION 1.5: Définition d'une application

Soient E et F deux ensembles. Soit $G \subset E \times F$ un sous-ensemble de couples vérifiant:

$$\forall x \in E \; ; \exists ! y \in F \text{ tel que } (x,y) \in G$$

A chaque élément de x, on fait alors correspondre l'unique élément y noté f(x) de l'ensemble F tel que $(x,y) \in G$. On dit que G est un graphe fonctionnel.

$$E \xrightarrow{f} F_{x} F_{y=f(x)}$$

La donnée (E,F,G) (ensemble de départ, d'arrivée et graphe fonctionnel) s'appelle une application de l'ensemble E vers l'ensemble F notée plus simplement:

$$f: E \mapsto F \text{ ou } E \xrightarrow{f} F$$

Remarque 5.

- Fonction et application sont synonymes.
- On notera $\mathcal{F}(E,F)$ l'ensemble des applications de E dans F. (On trouve également la notation F^E).

Définition 1.6 : Égalité de deux applications

Soient $f: E \mapsto F$ et $f': E' \mapsto F'$ deux applications. On dit que qu'elles sont égales et l'on note f = f' lorsque elles ont même ensemble de départ: E = E', même ensemble d'arrivée: F = F' et lorsque

$$\forall x \in E, \quad f(x) = g(x)$$

Pour montrer que f = g, on utilise le plan suivant :

Soit $x \in E$.

. . .

$$f(x) = g(x)$$

Définition 1.7 : Identité

Soit E un ensemble. On appelle *identité* de E l'application

$$id_E: \left\{ \begin{array}{ccc} E & \longrightarrow & E \\ x & \mapsto & x \end{array} \right.$$

Définition 1.8: Restriction et prolongement d'une fonction

Soit $f: E \mapsto F$ une application.

– Soit un sous-ensemble $E' \subset E$. On définit la restriction de l'application f au sous-ensemble E' comme étant l'application

$$f_{|E'}: \left\{ \begin{array}{ccc} E' & \longrightarrow & F \\ x & \mapsto & f(x) \end{array} \right.$$

– Si $E \subset E'$, une application $\widetilde{f}: E' \mapsto F$ est un prolongement de l'application $f: E \mapsto F$ si et seulement si $\widetilde{f}_{|E} = f$, c'est à dire que $\forall x \in E, f(x) = \widetilde{f}(x)$.

DÉFINITION 1.9: Composée d'applications

Soit deux applications $f: E \mapsto F, \ g: F \mapsto G$, on définit l'application composée notée $h = g \circ f: E \mapsto G$ par la correspondance:

$$\forall x \in E, h(x) = g(f(x))$$

$$E \xrightarrow{f} F \xrightarrow{g} G$$

$$g \circ f(x) = g(f(x))$$

Remarque 6. Lorsqu'il s'agit de composer des applications, il est bon d'utiliser des schémas d'applications pour vérifier la validité des composées.

Fig. 1.2 – Composée de deux applications

Théorème 1.1 : « Associativité » de la composition

1. Pour trois applications

$$E \xrightarrow{f} F \xrightarrow{g} G \xrightarrow{h} H$$

on a $h \circ (g \circ f) = (h \circ g) \circ f$.

2. Si $f: E \mapsto F$, on a

$$f \circ \mathrm{id}_E = f$$
 et $\mathrm{id}_F \circ f = f$

Définition 1.10 : Applications injectives, surjectives, bijectives

Soit $f: E \mapsto F$ une application. On dit que

- f est injective ssi $\forall (x,y) \in E^2$, $f(x) = f(y) \Rightarrow x = y$;
- f est surjective ssi $\forall y \in F$, $\exists x \in E$ tel que y = f(x);
- f est bijective ssi f est injective et surjective.

Pour montrer que f est injective:

Soit $x \in E$ et $y \in E$. Supposons que f(x) = f(y).

. . .

Alors x = y.

Pour montrer que f est surjective:

Soit $y \in F$.

Posons $x = \dots$,

On a bien y = f(x).

Pour montrer que f est bijective:

- 1. Montrons que f est injective;
- 2. Montrons que f est surjective.

Remarque 7. – Dire que f est injective revient à dire (par contraposée) que

$$\forall (x,y) \in E^2, (x \neq y) \Rightarrow (f(x) \neq f(y))$$

Deux éléments distincts de l'ensemble de départ ont deux images distinctes.

- Dire que f est surjective revient à dire que tout élément de l'ensemble d'arrivée possède au moins un antécédent.
- Dire que f est bijective revient à dire que tout élément de l'ensemble d'arrivée possède un et un seul antécédent:

$$\forall y \in F, \exists ! x \in E \text{ to } y = f(x)$$

Exercice 1-5

Les applications de $\mathbb{R} \mapsto \mathbb{R}$ suivantes sont-elles injectives, surjectives?

$$x \to x^2$$
 $x \to x^3$ $x \to \sin x$

f injective, non surjective

f non injective, surjective

Fig. 1.3 – Injection, surjection

Soit
$$f: \begin{cases} \mathbb{R}^2 & \longrightarrow \mathbb{R}^2 \\ (x,y) & \mapsto (x+y,x+2y) \end{cases}$$
. Est-elle injective? Surjective?

Exercice 1-7

Soit \mathcal{P} l'ensemble des entiers pairs. Montrer que l'application

$$\phi: \left\{ \begin{array}{ccc} \mathbb{N} & \longrightarrow & \mathcal{P} \\ n & \mapsto & 2n \end{array} \right.$$

est une bijection. (Il y a donc « autant » d'entiers que d'entiers pairs!)

Théorème 1.2 : Propriétés des composées

Soient $f: E \mapsto F$ et $g: F \mapsto G$ deux applications.

- Si f et g sont injectives, alors $g \circ f$ est injective;
- Si f et g sont surjectives, alors $g \circ f$ est surjective;
- Si $g \circ f$ est injective, alors f est injective;
- Si $q \circ f$ est surjective, alors q est surjective.

Théorème 1.3 : Bijection réciproque

Soit $f: E \mapsto F$ une application.

$$(f \text{bijective}) \iff (\exists ! g \in \mathcal{F}(F,E) \ \text{tq} \begin{cases} f \circ g = \text{id}_F \\ g \circ f = \text{id}_E \end{cases})$$

Lorsque f est bijective, on note note l'application g du théorème $g = f^{-1}$. C'est la bijection réciproque de l'application f.

$$E \underset{f^{-1}}{\overset{f}{\rightleftarrows}} F$$

Remarque 8. N'introduire l'application f^{-1} que lorsqu'elle existe, c'est à dire lorsque l'application f est bijective!

Fig. 1.4 – Application bijective et bijection réciproque: $y = \phi(a)$, $a = \phi^{-1}(y)$

applications f et g. Déterminer les applications $g \circ f$ et $f \circ g$. Conclusion?

Exercice 1-9

Soit E un ensemble et $f: E \mapsto E$ une application vérifiant $f \circ f = f$. Montrer que:

- 1. f injective $\Rightarrow f = id_E$;
- 2. f surjective $\Rightarrow f = id_E$.

Théorème 1.4 : bijection réciproque d'une composée

Si $f: E \to F$ et $g: F \to G$ sont deux bijections, alors l'application $g \circ f$ est bijective et

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$$

Exercice 1-10

Soient deux applications $f: E \mapsto F$ et $g: F \mapsto E$. On suppose que l'application $g \circ f \circ g \circ f$ est surjective et que l'application $f \circ g \circ f \circ g$ est injective. Montrer qu'alors les deux applications f et g sont bijectives.

DÉFINITION 1.11: Fonction caractéristique

Soit un ensemble E et une partie $A\subset E$ de cet ensemble. On appelle fonction caractéristique de la partie A, l'application

 $\chi_A : \begin{cases} E & \longrightarrow & \{0,1\} \\ x & \mapsto & \begin{cases} 1 & \text{si } x \in A \\ 0 & \text{si } x \notin A \end{cases} \end{cases}$

Théorème 1.5 : Opérations usuelles en termes de fonction caractéristique

Soit un ensemble E et deux parties $A \subset E$ et $B \subset E$ de cet ensemble. On définit de nouvelles fonctions à valeurs dans $\mathbb N$ par les formules :

$$(\chi_A + \chi_B) : \left\{ \begin{array}{ccc} E & \longrightarrow & \{0,1,2\} \\ x & \mapsto & \chi_A(x) + \chi_B(x) \end{array} \right. \quad \chi_A \chi_B : \left\{ \begin{array}{ccc} E & \longrightarrow & \{0,1\} \\ x & \mapsto & \chi_A(x) \times \chi_B(x) \end{array} \right.$$

Avec ces notations, on caractérise les parties $A \cap B$, $E \setminus A$ et $A \cup B$:

$$\chi_{E \setminus A} = 1 - \chi_A, \quad \chi_{A \cap B} = \chi_A \chi_B, \quad \chi_{A \cup B} = \chi_A + \chi_B - \chi_A \chi_B$$

Exercice 1-11

Soit un ensemble E. Pour deux parties $A \subset E$ et $B \subset E$, on appelle différence symétrique de ces deux parties, la partie de E définie par

$$A\triangle B = (A \cup B) \setminus (A \cap B)$$

- a. Exprimer la fonction caractéristique de la partie $A\triangle B$ à l'aide des fonctions caractéristiques de A et de B:
- b. En déduire que pour trois parties $(A,B,C) \in \mathcal{P}(E)^3$, on a $(A\triangle B)\triangle C = A\triangle (B\triangle C)$.

DÉFINITION 1.12: Image directe, réciproque

Soit une application $f: E \mapsto F$ et deux parties $A \subset E$ et $B \subset F$.

a) On appelle $image\ r\'eciproque$ de B par f, la partie de E notée:

$$f^{-1}(B) = \{ x \in E \text{ tq } f(x) \in B \}$$

b) On appelle $image\ directe$ de A par f, la partie de F notée:

$$f(A) = \{ y \in F \text{ tq } \exists x \in A \text{ avec } y = f(x) \}$$

Fig. 1.5 – Image réciproque

Fig. 1.6 – Image directe

Remarque 9. Attention, la notation $f^{-1}(B)$ n'a rien à voir avec une éventuelle bijection réciproque: $f^{-1}(B)$ est un sous-ensemble de l'ensemble de départ de f.

```
Pour montrer que x \in f^{-1}(B):
Calculons f(x)
...
Donc f(x) \in B
Par conséquent, x \in f^{-1}(B).
```

```
Pour montrer que y \in f(A):
Posons x = \dots
On a bien y = f(x) et x \in A.
Par conséquent, y \in f(A).
```

Remarque 10. L'image réciproque est en général plus facile à manier que l'image directe.

Remarque 11. Une application $f: E \mapsto F$ est surjective ssi f(E) = F.

Exercise 1-12 Soit $f: \begin{cases} \mathbb{R} & \longrightarrow \mathbb{R} \\ x & \mapsto \sin x \end{cases}$. Déterminez (après avoir vérifié que les notations sont correctes): $-f^{-1}(0); \\ -f^{-1}(\{0\}); \\ -f^{-1}([0,+\infty[); \\ -f([0,\pi]); \\ -f(\{0\}); \\ -f(\mathbb{R}). \end{cases}$

Exercice 1-13

Soit $f: E \mapsto F$, et $A_1, A_2 \subset E$, $B_1, B_2 \subset F$. Montrer que

- 1. $B_1 \subset B_2 \Rightarrow f^{-1}(B_1) \subset f^{-1}(B_2)$;
- 2. $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$;
- 3. $f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$;
- 4. $A_1 \subset A_2 \Rightarrow f(A_1) \subset f(A_2)$;
- 5. $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$;
- 6. $f(A_1 \cap A_2) \subset f(A_1) \cap f(A_2)$;
- 7. $f(f^{-1}(B_1)) \subset B_1$;
- 8. $A_1 \subset f^{-1}(f(A_1))$.

DÉFINITION 1.13: Partie stable

Soit une application $f: E \mapsto E$, et une partie $A \subset E$. On dit que la partie A est stable par l'application f lorsque $f(A) \subset A$. Cela est équivalent à dire que:

$$\forall x \in A, f(x) \in A$$

1.4 Familles

DÉFINITION 1.14: Familles

Soit un ensemble I (les indices) et un ensemble E. On appelle famille d'éléments de E indexée par I, une application

$$\phi: \left\{ \begin{array}{ccc} I & \longrightarrow & E \\ i & \mapsto & a_i \end{array} \right.$$

On note cette application $(a_i)_{i \in I}$.

Exemple 6. Si $E = \mathbb{R}$ et $I = \mathbb{N}$, cela définit une *suite* de réels.

DÉFINITION 1.15 : Famille de parties

Soit un ensemble E et un ensemble I. On définit une famille de parties de E:

$$(A_i)_{i\in I}$$
 où $\forall i\in I, A_i\in\mathcal{P}(E)$

Et l'on note

$$\bigcap_{i \in I} A_i = \{ x \in E \text{ tq } \forall i \in I, x \in A_i \} \quad \bigcup_{i \in I} A_i = \{ x \in E \text{ tq } \exists i \in I, x \in A_i \}$$

Exemple 7. Si $E = \mathbb{R}$ et pour $k \in \mathbb{N}$, $A_k = [-k,k]$, déterminez les ensembles

$$\bigcap_{k \in \mathbb{N}} A_k \text{ et } \bigcup_{k \in \mathbb{N}} A_k$$

Exercice 1-14

Soit un ensemble E et une famille de parties de E, $(A_i)_{i \in I}$. Montrer que:

$$E \setminus \left(\bigcup_{i \in I} A_i\right) = \bigcap_{i \in I} (E \setminus A_i)$$

$$E \setminus \left(\bigcap_{i \in I} A_i\right) = \bigcup_{i \in I} (E \setminus A_i)$$

Exercice 1-15

Soit une application $f: E \mapsto F$ et une famille de parties de F, $(B_i)_{i \in I}$. Montrer que

$$f^{-1}\Big(\bigcap_{i\in I} B_i\Big) = \bigcap_{i\in I} f^{-1}(B_i)$$

1.5 Relations

DÉFINITION 1.16: Relation

Soit un ensemble E. Une relation binaire sur E est un sous-ensemble $G \subset E \times E$. Si $(x,y) \in E^2$, on écrira:

$$x\mathcal{R}y \Longleftrightarrow (x,\!y) \in G$$

Fig. 1.7 – Représentation sagittale d'une relation

Définition 1.17 : Propriétés des relations

Soit \mathcal{R} une relation sur E. On dit que \mathcal{R} est:

- réflexive ssi $\forall x \in E, x \mathcal{R} x;$
- symétrique ssi $\forall (x,y) \in E^2$, $x\mathcal{R}y \Rightarrow y\mathcal{R}x$;
- antisymétrique ssi $\forall (x,y) \in E^2$, $x\mathcal{R}y$ et $y\mathcal{R}x \Rightarrow x = y$;
- transitive ssi $\forall (x,y,z) \in E^3$, $x\mathcal{R}y$ et $y\mathcal{R}z \Rightarrow x\mathcal{R}z$;

1.5.1 Relation d'équivalence

Définition 1.18: Relation d'équivalence

On dit qu'une relation sur un ensemble E est une relation d'équivalence si elle est

- 1. réflexive;
- 2. symétrique;
- 3. transitive;

Exemple 8. La relation d'égalité sur un ensemble:

$$x\mathcal{R}y \Longleftrightarrow x = y$$

est une relation d'équivalence.

DÉFINITION 1.19 : Classes d'équivalence

Soit \mathcal{R} une relation d'équivalence sur un ensemble E. On note pour un élément $x \in E$:

$$C_x = \{ y \in E \mid x \mathcal{R} y \}$$

L'ensemble C_x s'appelle la classe d'équivalence de l'élément x.

Définition 1.20: Partition

Soit un ensemble E et une famille de parties de E: $(A_i)_{i \in I}$. On dit que cette famille de parties est une partition de l'ensemble E si et seulement si:

- 1. Chaque classe est non vide: $\forall i \in I, A_i \neq \emptyset$;
- 2. Les classes distinctes sont deux à deux disjointes: $\forall (i,j) \in I^2$, $C_i \cap C_j \neq \emptyset \Rightarrow C_i = C_j$;
- 3. Les classes recouvrent l'ensemble $E: \bigcup_{i \in I} A_i = E$.

Théorème 1.6 : Les classes d'équivalence forment une partition

Soit une relation d'équivalence \mathcal{R} sur un ensemble E. La famille $(C_x)_{x\in E}$ des classes d'équivalences associées forme une partition de l'ensemble E.

Remarque 12. Réciproquement, étant donnée une partition $(A_i)_{i\in I}$ d'un ensemble E, on peut définir la relation définie par :

$$x\mathcal{R}y \iff \exists i \in I \mid x \in A_i \text{ et } y \in A_i$$

On montre que cette relation est une relation d'équivalence et que les classes d'équivalences associées sont les ensembles A_i .

Exercice 1-16

Sur $E = \mathbb{Z}$, on définit la relation $n\mathcal{R}p \iff p-n$ est pair. Montrer que c'est une relation d'équivalence et déterminer ses classes d'équivalences.

1.5.2 Relation d'ordre

DÉFINITION 1.21: Relation d'ordre

Soit une relation \mathcal{R} définie sur un ensemble E. On dit que c'est une relation d'ordre si elle est :

- 1. réflexive;
- 2. antisymétrique;
- 3. transitive.

Remarque 13. Une relation d'ordre permet de comparer deux éléments. Lorsque $x\mathcal{R}y$, on dit que l'élément x est « plus petit » que l'élément y, et on préfère noter

$$x \leq y$$

La transitivité et l'antisymétrie empêchent d'avoir un cycle formé d'éléments distincts de la forme:

$$x_1 \preceq x_2 \preceq \cdots \preceq x_n \preceq x_1$$

DÉFINITION 1.22: Ordre total

Soit une relation d'ordre \leq sur un ensemble E. On dit que deux éléments $(x,y) \in E^2$ sont comparables pour cet ordre si et seulement si $x \leq y$ ou alors $y \leq x$.

Lorsque tous les couples d'éléments de l'ensemble E sont comparables, on dit que la relation d'ordre est totale.

Remarque 14. Soit un ensemble X et $E = \mathcal{P}(X)$. Sur l'ensemble E, on définit la relation

$$\forall (A,B) \in E^2, \quad A\mathcal{R}B \iff A \subset B$$

- 1. Montrez que la relation \mathcal{R} est une relation d'ordre;
- 2. Cet ordre est-il total?

Remarque 15. Soit l'ensemble $E = \mathbb{R}^2$. On définit les deux relations d'ordre suivantes:

- L'ordre produit :

$$(x,y) \preceq_1 (x',y') \iff x \leq x' \text{ et } y \leq y'$$

- L'ordre lexicographique:

$$(x,y) \leq_2 (x',y') \iff x \leq x' \text{ ou alors } x = x' \text{ et } y \leq y'$$

L'ordre produit est un ordre partiel et l'ordre lexicographique est un ordre total.

DÉFINITION 1.23 : Élements remarquables

Soit une relation d'ordre \leq sur un ensemble E et une partie $A \subset E$. On définit les notions suivantes :

- Un élément $M \in E$ est un majorant de la partie A si et seulement si $\forall a \in A, a \leq M$;
- Un élément $m \in E$ est un minorant de la partie A si et seulement si $\forall a \in A, m \leq a$;
- Un élément $a \in A$ est un plus petit élément de A si et seulement si $\forall x \in A, a \leq x$;
- Un élément $a \in A$ est un plus grand élément de A si et seulement si $\forall x \in A, x \leq a$;
- Un élément $m \in A$ est un élément minimal de A si et seulement si $\forall x \in A, x \leq m \Rightarrow x = m$;
- Un élément $M \in A$ est un élément maximal de A si et seulement si $\forall x \in A, M \leq x \Rightarrow x = M$.

Théorème 1.7: Unicité d'un plus petit élément

Si $a \in A$ est un plus petit (grand) élément de la partie A, il est unique.

Remarque 16. Il se peut qu'il n'existe pas de plus petit (grand) élément d'une partie.

Exercice 1-17

Dans N, on considère la relation de divisibilité:

$$\forall (n,m) \in \mathbb{N}^2, \quad n/m \iff \exists k \in \mathbb{N} \text{ tel que } m = kn$$

- 1. Vérifier que cette relation définit un ordre partiel sur \mathbb{N} ;
- 2. L'ensemble $\mathbb N$ admet-il un plus petit (grand) élément pour cet ordre?
- 3. Quels sont les éléments maximaux (minimaux) de $\mathbb{N} \setminus \{0,1\}$ pour cet ordre?

1.6 Loi de composition interne

DÉFINITION 1.24 : Loi de composition interne

Soit E un ensemble. On appelle loi de composition interne une application de $E \times E$ dans E:

$$\phi: \left\{ \begin{array}{ccc} E\times E & \longrightarrow & E \\ (a,b) & \mapsto & a\star b \end{array} \right.$$

Remarque 17. Pour simplifier les notations, on note $ab = a \star b = \phi(a,b)$. Il n'y a aucune raison à priori pour que ab = ba. On peut itérer une lci : si $(a,b,c) \in E^3$, on notera

$$(a \star b) \star c = \phi(\phi(a,b),c)$$

$$a \star (b \star c) = \phi(a, \phi(b, c))$$

Il n'y a aucune raison à priori pour que ces deux éléments soient égaux.

Exemples:

- $-E=\mathbb{N}$, la multiplication et l'addition des entiers sont des lci.
- Si G est un ensemble, sur $E = \mathcal{F}(G,G)$, la composition des applications définit une lei
- Si G est un ensemble, sur $\mathcal{P}(G)$, l'union et l'intersection définissent des lci.

DÉFINITION 1.25: Propriétés d'une lci

Soit \star une lci sur un ensemble E. On dit que \star est:

- commutative ssi $\forall (a,b) \in E^2, a \star b = b \star a$
- associative ssi $\forall (a,b,c) \in E^3$, $a \star (b \star c) = (a \star b) \star c$
- Un élément $e \in E$ est dit neutre ssi $\forall x \in E, e \star x = x \star e = x$

Pour montrer que * est commutative:

- 1. Soit $(x,y) \in E^2$
- 2. $x \star y = y \star x$
- 3. Donc \star est commutative

Pour montrer que * est associative:

- 1. soit $(x,y,z) \in E^3$
- 2. $x \star (y \star z) = (x \star y) \star z$
- 3. Donc \star est associative

Pour montrer que $e \in E$ est neutre :

- 1. Soit $x \in E$
- $2. \ e \star x = x, \ x \star e = x$
- 3. Donc e est neutre.

Exemples:

- $-(\mathbb{N},+)$, + est commutative et associative, 0 est l'unique élément neutre;
- $-(\mathbb{N},\times)$, \times est commutative et associative, 1 est l'unique élément neutre;
- $-(\mathcal{F}(\mathbb{R},\mathbb{R}),\circ)$, \circ est associative mais pas commutative. L'application $\mathrm{id}_{\mathbb{R}}$ est un élément neutre;
- $-(\mathcal{P}(G),\cup)$, la loi est commutative, associative, la partie \emptyset est neutre pour cette loi.

Remarque 18. Si une loi de composition interne est commutative et associative, on définit les notations suivantes pour $(x_1, \ldots, x_n) \in E^n$:

- Lorsque la loi est notée additivement, on définit

$$\sum_{i=1}^{n} x_i = x_1 + \dots + x_n$$

et lorsque la loi est notée multiplicativement,

$$\prod_{i=1}^{n} x_i = x_1 \star \dots \star x_n$$

Théorème 1.8 : Unicité de l'élément neutre

Si (E,\star) possède un élément neutre, il est unique.

Définition 1.26 : Monoïde

Un ensemble (E,\star) muni d'une loi de composition interne associative et admettant un élément neutre est appelé un monoïde.

Exemple 9. $(\mathbb{N},+)$ est un monoïde d'élément neutre 0.

Exemple 10. On considère un ensemble fini A appelé alphabet, et on définit un mot sur A comme étant une suite finie de lettres de A. On notera $m=a_1\ldots a_n$ un tel mot. On définit également le mot vide ε . Sur l'ensemble A^* des mots de A, on définit la concaténation de deux mots: si $m_1=a_1\ldots a_n$ et si $m_2=b_1\ldots b_p$, on note $m_1.m_2=a_1\ldots a_nb_1\ldots b_p$. Alors l'ensemble des mots muni de la concaténation, $(A^*,...)$ est un monoïde d'élément neutre le mot vide ε . Ce monoïde est très utilisé en informatique théorique en théorie des langages.

Définition 1.27 : Symétrique

On suppose que (E,\star) possède un élément neutre e. Soit un élément $x \in E$. On dit qu'un élément $y \in E$ est un symétrique (ou un inverse) de l'élément x si et seulement si :

$$x \star y = y \star x = e$$

Théorème 1.9 : Unicité du symétrique

Dans un monoïde (E,\star) , si un élément $x \in E$ possède un symétrique, ce symétrique est unique.

Pour montrer que $y \in E$ est l'inverse de $x \in E$:

- 1. $x \star y = e$;
- 2. $y \star x = e$;
- 3. Donc $y = x^{-1}$.

Remarque 19. Si un élément $x \in E$ possède un symétrique $y \in E$, alors l'élément y possède également un symétrique qui est l'élément x:

$$(x^{-1})^{-1} = x$$

Remarque 20. L'élément neutre est toujours son propre symétrique: $e^{-1} = e$.

DÉFINITION 1.28 : Groupe

On appelle groupe un ensemble G muni d'une lci \star vérifiant :

- 1. la loi \star est associative;
- 2. G possède un élément neutre ;
- 3. Tout élément x de G admet un symétrique.

Si de plus la loi ★ est commutative, on dit que le groupe est abélien (ou commutatif).

Remarque 21. Lors d'une étude abstraite d'un groupe, on note x^{-1} le symétrique d'un élément x (notation multiplicative). Mais si la lci est notée +, par analogie avec les groupes de nombres, le symétrique de l'élément x sera noté -x. C'est une difficulté qu'il faut bien comprendre!

Exemple 11. Dans les cas suivants, dire si l'ensemble est un groupe. Préciser l'élément neutre, et déterminer le symétrique éventuel d'un élément x:

$$(\mathbb{N},+), (\mathbb{Z},+), (\mathbb{R},+), (\mathbb{R},\times), (\mathbb{R}^*,\times), (\mathbb{C},+), (\mathbb{C}^*,\times), (\mathcal{B}(E,E),\circ), (\mathcal{F}(\mathbb{R},\mathbb{R}),+), (\mathcal{F}(\mathbb{R},\mathbb{R}),\times).$$

Théorème 1.10 : **Règles de calcul dans un groupe** Soit (G,\times) un groupe.

- 1. L'élément neutre est unique;
- 2. Tout élément possède un unique symétrique;
- 3. Pour tout élément x d'un groupe, on a $(x^{-1})^{-1} = x$.
- 4. On peut simplifier: $\forall (a,x,y) \in G^3$;

$$\begin{cases} a \star x = a \star y & \Rightarrow x = y \\ x \star a = y \star a & \Rightarrow x = y \end{cases}$$

5. Soit $(a,b) \in G^2$. L'équation $a \star x = b$ possède une unique solution :

$$x = a^{-1} \star b$$

6.
$$\forall (x,y) \in G^2$$
, $(x \star y)^{-1} = y^{-1} \star x^{-1}$.

Chapitre 2

Les nombres complexes

2.1 Définitions

On définit les lois suivantes sur \mathbb{R}^2 :

$$-(x,y) + (x',y') = (x+x',y+y')$$

$$- (x,y) \times (x',y') = (xx' - yy',xy' + x'y).$$

On vérifie que \mathbb{R}^2 muni de ces deux lois est un corps commutatif noté \mathbb{C} .

Si $a \in \mathbb{R}$, on « identifie » a avec le complexe (a,0).

En notant i = (0,1), on vérifie que

$$-i^2 = (-1,0)$$

$$-i \times (a,0) = (0,a)$$

Et on adopte alors les notations définitives:

$$(a,b) = (a,0) + i \times (b,0) = a + ib$$

DÉFINITION 2.1 : Partie réelle, imaginaire

Soit z = a + ib, un complexe.

- -a = Re(z) est la partie réelle de z
- $-b = \operatorname{Im}(z)$ est la partie imaginaire de z.

Théorème 2.1 : Conjugué d'un complexe

Soit z=a+ib un nombre complexe. Le conjugué de z est le nombre complexe $\bar{z}=a-ib$. On a les propriétés suivantes :

$$- \overline{z + z'} = \overline{z} + \overline{z'}$$

$$- \overline{z \times z'} = \overline{z} \times \overline{z'}$$

$$- \bar{1} = 1$$

Les propriétés suivantes sont intéressantes pour caractériser les complexes réels et imaginaires purs:

$$-z \in \mathbb{R} \iff \overline{z} = z$$
:

$$-z \in i\mathbb{R} \Longleftrightarrow \overline{z} = -\overline{z}.$$

DÉFINITION 2.2 : Affixe, image

Soit M=(a,b) un point ou un vecteur de \mathbb{R}^2 , on appelle affixe de M de coordonnées (a,b) le nombre complexe z=[M]=a+ib.

Soit z = a + ib un élément de \mathbb{C} alors on pourra définir le point image et le vecteur image de z par M = (a,b).

Remarque 22. $z \mapsto \bar{z}$ représente la symétrie par rapport à Ox et $z \mapsto z + b$ représente la translation de vecteur l'image de b.

DÉFINITION 2.3: Module d'un nombre complexe

C'est le réel défini par

$$|z| = \sqrt{a^2 + b^2} = \sqrt{z\bar{z}}$$

|z-a| représente la distance du point d'affixe z au point d'affixe a.