第二章 一维随机变量及其分布

1. 设 $f_1(x)$ 为标准正态分布的概率密度, $f_2(x)$ 为 [-1,3] 上均匀分布的概率密度, 若

$$f(x) = \begin{cases} a f_1(x), & x \le 0 \\ b f_2(x), & x > 0 \end{cases} \quad (a > 0, b > 0)$$

为概率密度,则 a,b 应满足().

(A) 2a + 3b = 4

(B) 3a + 2b = 4 **(C)** a + b = 1 **(D)** a + b = 2

2. 设随机变量的概率密度为 $f_{X}(x)$,则 Y = 3X - 1 的概率密度为 $f_{Y}(y) = ($).

(A) $\frac{1}{3}f_X(\frac{y+1}{3})$ (B) $3f_X(\frac{y+1}{3})$ (C) $\frac{1}{3}f_X[3(y+1)]$ (D) $3f_X(\frac{y-1}{3})$

3. 下列函数中可作为随机变量分布函数的是(

(A) $F_1(x) = \begin{cases} 1, & 0 \le x \le 1; \\ 0, & \not\equiv \text{th}. \end{cases}$ (B) $F_2(x) = \begin{cases} -1, & x < 0; \\ x, & 0 \le x < 1; \\ 1, & x \ge 1. \end{cases}$ (C) $F_3(x) = \begin{cases} 0, & x < 0; \\ x, & 0 \le x < 1; \\ 1, & x \ge 1. \end{cases}$ (D) $F_4(x) = \begin{cases} 0, & 0 < 0; \\ x, & 0 \le x < 1; \\ 2, & x > 1. \end{cases}$

4. 设 F(x) 和 f(x) 分别为某随机变量的分布函数和概率密度,则必有().

(A) f(x) 单调不减

(B) $\int_{-\infty}^{+\infty} F(x) \mathrm{d}x = 1$

(C) $F(-\infty) = 0$

(D) $F(x) = \int_{-\infty}^{+\infty} f(x) dx$

5. 设 F(x) 是连续型随机变量 X 的分布函数,则 F(x) 在其定义域内一定是 ().

(A) 非阶梯型间断函数

(B) 可导函数

(C) 阶梯函数

(D) 连续但不一定可导的函数

6. 设随机变量 X 服从参数 $\lambda = \frac{1}{9}$ 的指数分布,则 $P\{3 < X < 9\} = ($).

(A) $\frac{1}{\sqrt[3]{e}} - \frac{1}{e}$ (B) $\frac{1}{9} \left(\frac{1}{\sqrt[3]{e}} - \frac{1}{e} \right)$ (C) $\int_{0}^{9} e^{-\frac{x}{9}} dx$ (D) $F\left(\frac{9}{9} \right) - F\left(\frac{3}{9} \right)$

- 7. 设随机变量 X 的密度函数为 $f(x) = \begin{cases} c \, x^4, & 0 < x < 1 \\ 0, & 其它 \end{cases}$,则常数 c = ().
 - (A) $\frac{1}{5}$
- **(B)** $\frac{1}{4}$
- **(C)** 4
- **(D)** 5
- 8. 设随机变量 X 的概率分布为 $P\{X = k\} = \theta(1-\theta)^{k-1} (k = 1, 2, ...)$, 其中 $0 < \theta < 1$, 若 $P\{X \le 2\} = \frac{5}{9}$, 则 $P\{X = 3\} = \underline{\hspace{1cm}}$.
- 9. 设连续型随机变量 X 的概率密度为 $f(x) = \begin{cases} kx+1, & 0 < x < 2 \\ 0 & \text{其他} \end{cases}$,则 k =______.
- 10. 设随机变量 X 服从区间 $[2, \theta]$ 上的均匀分布, 且概率密度

$$f(x) = \begin{cases} \frac{1}{4}, & 2 \le x \le \theta \\ 0 & 其他 \end{cases}$$

则 θ =

- 11. 设随机变量 X 的概率密度函数为: $f_X(x) = \left\{ \begin{array}{ll} \frac{|x|}{4}, & -2 < x < 2 \\ 0, & 其他 \end{array} \right.$
 - (1) 求 X 的分布函数 $F_X(x)$;
 - (2)令 $Y = X^2$, 求 Y 的概率密度 $f_Y(y)$.
- 12. 设连续型随机变量 X 的分布函数为 F(x)= $\begin{cases} 0 & x<0\\ Ax^2 & 0\leq x<1, 试求:\\ 1 & x\geq 1 \end{cases}$
 - (1)系数 A;
 - **(2)**X 的概率密度;
 - **(3)** $P(0.3 < X \le 0.7);$
 - (4) $Y = X^2$ 的概率密度.
- **13.** 设随机变量 X 服从 [0,1] 上的均匀分布, 求随机变量函数 $Y = e^{X}$ 的概率密度 $f_{Y}(y)$.
- **14.** 某次考试成绩 *X* (单位:分)服从正态分布 *N*(75,15²).

- (1)求此次考试的及格率 $P\{X \ge 60\}$ 和优秀率 $P\{X \ge 90\}$;
- (2)考试成绩至少高于多少分能排名前 33.33%?

(附: $\Phi(0.33) = 0.6293$, $\Phi(0.431) = 0.6667$, $\Phi(1) = 0.8413$, $\Phi(2.18) = 0.9854$)

- **15.** 设随机变量 X 服从标准正态分布,即 X 的概率密度为 $\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$,求随机变量函数 $Y = e^X$ 的概率密度.
- **16.** 设随机变量 X 服从标准正态分布,即 X 的概率密度为 $\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$,求随机变量函数 Y = 2|X| 的概率密度.
- 17. 设随机变量 X 的概率密度

$$f(x) = \begin{cases} Ax + 1, & 0 \le x \le 2, \\ 0, &$$
其他.

试求:

- (1)常数 A;
- (2) $P\{1.5 < X < 2.5\}$.
- **18.** 设随机变量 X 服从标准正态分布,即 X 的概率密度为 $\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$,求 $Y = e^X$ 的概率密度.
- **19.** 设随机变量 X 与 Y 相互独立,且服从同一分布.试证明:

$$P{a < \min(X, Y) \le b} = [P{X > a}]^2 - [P{X > b}]^2$$