

Application Descriptions

HVAC ObIS

Temperature PI Control

Summary

The PI-Control is used for temperature control e.g. in room temperature controllers.

Version 01.00.01 is a KNX Approved Standard.

This document is part of the KNX Specifications v2.1.

7

19

5

Document updates

Version	Date	Version
1.0	2002.04.03	Editorially restyled, based on "17-01_ObIS_TPIC.doc
1.0	2009.06.15	Editorial update in view of inclusion in the KNX Specifications v2.0.
01.00.01	2013.10.29	Editorial updates for the publication of KNX Specifications 2.1.

References

None.

Filename: 07_19_05 ObIS TPIC v01.00.01 AS.docx

Version: 01.00.01

Status: Approved Standard

Savedate: 2013.10.29

Number of pages: 14

Contents

1	App	licatio	n Model(s)	4
2	ObI	S Fund	etion Model(s)	5
			Function Model "Temperature PI Control"	
		2.1.1	Aims and objectives	
		2.1.2	Functional specification	
		2.1.3	Constraints	
		2.1.4	Functional Block	
		2.1.5	Properties	
3	Data	apoint	Type(s)	13
		_	point Type "heating/cooling"	
			point Type "Controller Status"	
	3.3		point Type "8-bit signed integer"	
	3.4		point Type "8-bit unsigned multiplier without zero"	
	3.5		point Type "8-bit unsigned multiplier with special function for zero"	

1 Application Model(s)

Figure 1 - Example for Individual Room Temperature Control with Heating and Cooling with PI Control

2 ObIS Function Model(s)

2.1 ObIS Function Model "Temperature PI Control"

2.1.1 Aims and objectives

The PI-Control is used for temperature control e.g. in room temperature controllers.

2.1.2 Functional specification

This object can be used for PI control of a temperature e.g. of a room temperature. The actuating value Y is a continuous signal (0 % to 100 %). Y depends on the controlled value X (temperature) and the setpoint value W. Furthermore the actuating value Y can be activated or deactivated by an optional communication object. The Type of control (heating or cooling) is defined by a parameter.

Figure 2 – Temperature PI Control

2.1.3 Constraints

No constraints are defined for the ObIS Temperature PI Control.

2.1.4 Functional Block

<u>Input(s)</u>		Temperat Cont			Output(s)
Current Room Temperature Value	DPT 9.001	ARTV	CAV	DPT 5.004	Continuous Actuating Value
Current Temperature Setpoint Value Heating/Cooling	DPT 9.001	ATSVH/ ATSVC	RA	See 3.1	Range Alarm
Heating/Cooling Mode	See 3.1	HCM	cs	See 3.2	Controller Status
Parameter(s) Proportional Band	KNX 5.020 See 3.3	РВ			
Integral Action Time Lower Limit Controlled Value	See 3.5 DPT 9.001	IAT LLCV			
Upper Limit Controlled Value	DPT 9.001	ULCV			
Lower Limit Setpoint Value	DPT 9.001	LLSV			
Upper Limit Setpoint Value	DPT 9.001 	ULSV			
Minimum Actuating Value	DPT 5.004	MINAV			
Maximum Actuating Value	DPT 5.004	MAXAV			
Controller Type Continuous Actuating Value if Control	See 3.1 DPT 5.004	CT CAVCI			
Inactive Control Cycle Time Delta Y Transmit	See 3.4 DPT 5.004	CCT DYT			
Cycle Time Transmit Y	See 3.5	СТТҮ			

2.1.5 Properties

ID	Name	Abbr.	Description	Datapoint Type	M/O
1	PID_OBJECT_TYPE		Object Type	KNX_PropD	М
				ataType	

Input(s)

ID	Name	Abbr.	Description	Datapoint Type	M/O
<tbd></tbd>	PID_VALUE_ACTUAL_ROOM_TEM PERATURE	ARTV	Current Room Temperature Value	5.001	М
<tbd></tbd>	PID_SETPOINT_VALUE_ACTUAL TEMPERATURE_HEATING/COOLIN G		Current Room Temperature Setpoint Heating or Current Room Temperature Setpoint Cooling	5.001	M
<tbd></tbd>	PID_MODE_HEATING_COOLING	HCM	Heating Cooling Mode	See 3.1	0

Output(s)

ID	Name	Abbr.	Description	Datapoint Type	M/O
<tbd></tbd>	PID_VALUE_ACTUATING_ CONTINUOUS	CAV	Continuous Actuating Value	DPT 5.004	М
<tbd></tbd>	PID_ALARM_RANGE	RA	Range Alarm	See 3.1	0
	PID_STATUS_CONTROLLER	CS	Controller Status	See 3.2	0

Parameter(s)

Taranic					
ID	Name	Abbr.	Description	Datapoint Type	M/O
<tbd></tbd>	PID_BAND_PROPORTIONAL	PB	Proportional Band	KNX 5.020	M
				See 3.3	
<tbd></tbd>	PID_TIME_INTEGRAL_ACTION	IAT	Integral Action Time	See 3.5	0
<tbd></tbd>	PID_VALUE_CONTROLLED_LOWE	LLCV	Lower Limit Controlled	5.001	0
	R_LIMIT		Value		
<tbd></tbd>	PID_VALUE_CONTROLLED_UPPER	ULCV	Upper Limit Controlled	5.001	0
	_ LIMIT		Value		
<tbd></tbd>	PID_VALUE_SETPOINT_LOWER_	LLSV	Lower Limit Setpoint	5.001	0
	LIMIT		Value		
<tbd></tbd>	PID_VALUE_SETPOINT_UPPER_LI	ULSV	Upper Limit Setpoint	5.001	0
	MIT		Value		
<tbd></tbd>	PID_VALUE_ACTUATING_	MINAV	Minimum Actuating Value	DPT 5.004	
	MINIMUM				
<tbd></tbd>	PID_VALUE_ACTUATING_	MAXAV	Maximum Actuating	DPT 5.004	
	MAXIMUM		Value		
<tbd></tbd>	PID_TYPE_CONTROLLER	CT	Controller Type	See 3.1	0
<tbd></tbd>	PID_VALUE_ACTUATING_	CAVCI	Continuous Actuating	DPT 5.004	0
	CONTINOUS_CONTROLLER_INACT		Value if Controller		
	IVE		Inactive		
<tbd></tbd>	PID_TIME_CYCLE_CONTROL	CCT	Control Cycle Time	See 3.4	0
<tbd></tbd>	PID_DELTA_TRANSMIT_Y	DYT	Delta Y Transmit	DPT 5.004	0
<tbd></tbd>	PID_TIME_CYCLE_TRANSMIT_Y	CTTY	Cycle Time Transmit Y	See 3.5	0

2.1.5.1 Property PID_VALUE_ACTUAL_ROOM_TEMPERATURE ARTV

Unit: °C

Range: min. 5 ... 35

Default Value: Communication Object/Parameter: C
Input/Output: I

R/W Rate $\gg 10/\text{day}$

Description: This value is the controlled value of the PI control e.g. the current room

temperature value.

2.1.5.2 Property

PID_SETPOINT_VALUE_ACTUAL_TEMPERATURE_HEATING, or PID_SETPOINT_VALUE_ACTUAL_TEMPERATURE_COOLING ATSVH/ATSVC

Unit: °C

Range: min. 5 ... 35

Default Value: - Communication Object/Parameter: C Input/Output: I

R/W Rate >> 10/day

Description: This value is the setpoint value of the PI control.

2.1.5.3 Property PID_MODE_HEATING_COOLING HCM

Unit: Range: 0;1
Default Value: Communication Object/Parameter: C
Input/Output: I
R/W Rate > 1/day

Description: HCM is used in combination with the parameter CT (Controller Type) to

activate or deactivate the controller. The controller is active, if CT and HCM have the same value. If the controller becomes inactive the actuating

value (CAV) is set to the value defined by the property "Continuous

actuating value if controller is inactive" (CAVCI). (Coding of HCM see 3.1)

2.1.5.4 Property PID_VALUE_ACTUATING_CONTINUOUS CAV

Unit: %
Range: 0 ... 100

Default Value: Communication Object/Parameter: C
Input/Output: O

R/W Rate >> 10/day

Description: This is the actuating value of the Temperature PI Control (TPIC).

CAV = f(ARTV,ATSVH/C,PB,IAT,IO,CI,CAVCI)

After reset/restart CVAY remains "0" and will not be transmitted until

ATSVH/C and ARTV have been updated.

2.1.5.5 Property PID_ALARM_RANGE RA

Description: If either the setpoint value ATSVH/C or the controlled value ARTV are

below their minimum value or above their maximum value the "Range Alarm" RA will be set and bit 3 to bit 7 in the "Controller Status" CS will

be set accordingly. (Coding of RA see: 3.1)

RA = 1: Range Alarm RA = 0: no Range Alarm

2.1.5.6 Property PID_STATUS_CONTROLLER CS

Description: Controller Status CS is an optional communication object, which is read

only (coding of CS see 3.2).

2.1.5.7 Property PID_BAND_PROPORTIONAL PB

Unit: 0,1 K

Range: min. 20 ... 40 (positive values only)

Default Value: free
Communication Object/Parameter: P
Input/Output: R/W
R/W Rate << 1/day

Description: The Proportional Band PB determines the performance of the control. The

amplification of the control is proportional to 1/PB. (Coding of PB: see 3.3)

2.1.5.8 Property PID_TIME_INTEGRAL_ACTION IAT

Unit: min
Range: free
Default Value: free
Communication Object/Parameter: P
Input/Output: R/W
R/W Rate << 1/day

Description: The Integral Action Time determines the performance of the control.

If IAT = 0, the integration of the control is not active. (Coding of IAT: see

3.5)

2.1.5.9 Property PID_VALUE_CONTROLLED_LOWER_LIMIT_LLCV

Unit: °C Range: Default Value: free Communication Object/Parameter: P Input/Output: R R/W Rate <<1/day

Description: This parameter is the minimum value of the Controlled Value ARTV which

can be operated by the TPIC. This value is read only and must be defined by

the manufacturer. If ARTV is lower than LLCV, ARTV must be set to

LLCV.

2.1.5.10 Property PID_VALUE_CONTROLLED_UPPER_ LIMIT ULCV

 $^{\circ}C$ Range: Default Value: free Communication Object/Parameter: P Input/Output: R R/W Rate

<<1/day

Description: This parameter is the maximum value of the Controlled Value ARTV which

> can be operated by the TPIC. This value is read only and must be defined by the manufacturer. If ARTV is higher than ULCV, ARTV must be set to

ULCV.

LLSV 2.1.5.11 Property PID_VALUE_SETPOINT_LOWER_ LIMIT

Unit: °C Range: Default Value: free Communication Object/Parameter: P Input/Output: R R/W Rate <<1/day

This parameter is the minimum value of the Setpoint Value SVY which can Description:

> be operated by the TPIC. This value is read only and must be defined by the manufacturer. If SVY is lower than LLSV, SVY must be set to LLSV.

2.1.5.12 Property PID_VALUE_SETPOINT_UPPER_LIMIT ULSV

°C Unit: Range: Default Value: free Communication Object/Parameter: P Input/Output: R R/W Rate <<1/day

Description: This parameter is the maximum value of the Setpoint Value SVY which can

> be operated by the TPIC. This value is read only and must be defined by the manufacturer. If SVY is higher than ULSV, SVY must be set to ULSV.

2.1.5.13 Property PID_VALUE_ACTUATING_ MINIMUM MINAV

Unit: s
Range: free
Default Value: free
Communication Object/Parameter: P
Input/Output: O

R/W Rate >> 10/day

Description: If the actuating value is lower than MINAV the Continuous Actuating Value

CAV is set to MINAV.

2.1.5.14 Property PID_VALUE_ACTUATING_ MAXIMUM MAXAV

Unit: s
Range: free
Default Value: free
Communication Object/Parameter: P
Input/Output: O

R/W Rate >> 10/day

Description: If the actuating value is greater than MAXAV the Continuous Actuating

Value CAV is set to MAXAV.

2.1.5.15 Property PID_TYPE_CONTROLLER CT

Unit: Range: 0;1
Default Value: free
Communication Object/Parameter: P
Input/Output: R/W
R/W Rate << 1/day

Description: This Parameter defines whether the controller is used for heating

(CT = 1) or for cooling (CT = 0) and in combination with the object HCM if

the controller is active or inactive. The controller is active if

CT = HCM.

2.1.5.16 Property PID_VALUE_ACTUATING_CONTINUOUS_CONTROL_INACTIVE CAVCI

Unit: %
Range: 0...100
Default Value: free
Communication Object/Parameter: P
Input/Output: R/W
R/W Rate << 1/day

Description: When TPIC is switched in the inactive state, the actuating value (CAV) is

set to the Value defined by this property (CAVCI). This value is transmitted

one times only.

2.1.5.17 Property PID_TIME_CYCLE_CONTROL CCT

Unit: s
Range: free
Default Value: free
Communication Object/Parameter: P
Input/Output: O

R/W Rate $\gg 10/\text{day}$

Description: This parameter determines the time interval after which the control

algorithm is executed again. (Coding see 3.4)

2.1.5.18 PID DELTA TRANSMIT Y DYT

Unit: %

Range: 0 .. 100 %
Default Value: free
Communication Object/Parameter: P
Input/Output: O

R/W Rate >> 10/day

Description: CAV will be transmitted automatically if the difference between old and

new CAV is greater than the given DYT. It will not be transmitted

automatically, if DYT is set to "0".

2.1.5.19 Property PID_TIME_CYCLE_TRANSMIT_YCTTY

Unit: minutes ("0" = no transmission)

Range: min 0; 15 ... 60 minutes

Default Value: free
Communication Object/Parameter: P
Input/Output: R/W
R/W Rate << 1/day

Description: The actuating value CAV will be transmitted cyclically after the given cycle

time. It will not be transmitted cyclically, if CTTY is set to "0".

(Coding of CTTY: see 3.5)

3 Datapoint Type(s)

3.1 Datapoint Type "heating/cooling"

Format:	1 bit		
	V		
Encoding:	See below		
Range:	$V = \{0,1\}$		
<u>Unit:</u>	-		
Datapoint	Types		
Code:	Symbol:	Encoding: V = 0	V = 1
1.100	DPT_Heat/Cool	Cooling	Heating
1.005	DPT_Alarm	No Alarm	Alarm

3.2 Datapoint Type "Controller Status"

3.2 Da	tapoint Type	Com	ironer Status
Format:	1 octet		
	HGFEDCBA		
Encoding:	See below		
Range:	AH = $\{0,1\}$		
<u>Unit:</u>	-		
Datapoint	Types		
Code:	<u>Symbol</u> :	Encodir	ng:
<tbd></tbd>	<tbd></tbd>	A =1 :	Control is inactive
		B =1 :	Output is inverted
		C:	Not used, always zero
		D=1 :	ARTV>ULCV
		E=1:	ARTV <llcv< td=""></llcv<>
		F=1:	SVY>ULSV
		G=1 :	SVY <llsv< td=""></llsv<>
		H=1:	Range Alarm

3.3 Datapoint Type "8-bit signed integer"

Format:	1 octet					
	VVVVVVV					
Encoding:	See below					
Range:	V = [-128 127] bina	ary encoded				
<u>Unit:</u>	See below					
Datapoint Types						
Code:	Symbol:	Encoding:	Range:	<u>Unit</u> :		
5.020	DPT_TempHVACRel8	"temperature"	-128127	0.1 K		

This Datapoint Type shall only be used for the encoding of parameters. It shall not be used for the encoding of any temperature value (real temperatures, shift values, offset values ...) that are transmitted on the bus using group communication.

3.4 Datapoint Type "8-bit unsigned multiplier without zero"

Format:	1 octet					
	VVVVVVV					
Encoding:	See below					
Range:	V = [1255] binary e	ncoded				
<u>Unit:</u>	See below					
Datapoint Types						
Code:	Symbol:	Encoding:	Range:	<u>Unit</u> :		
<tbd></tbd>	<tbd></tbd>	"time"	1255	1 s		

3.5 Datapoint Type "8-bit unsigned multiplier with special function for zero"

Format:	1 octet						
	VVVVVVV	VVVVVVV					
Encoding:	See below						
Range:	V = [0255] binary e	ncoded					
<u>Unit:</u>	See below						
Datapoint	Types						
Code:	Symbol:	Encoding:	Range:	<u>Unit</u> :			
<tbd></tbd>	<tbd></tbd>	"time"	1255	1 min			
			0 = corresponding function disabled				