Exploratory Data Mining via Search Strategies Lab #3

Ross Jacobucci & Kevin J. Grimm

Outline

This script will go over Decision Trees and generalizations in R.

Resources:

Basic intro to Decision Trees: http://www.statmethods.net/advstats/cart.html Full list of data mining packages in R:

http://cran.r-project.org/web/views/MachineLearning.html Two packages will be used and their caret equivalents:

- rpart (tree accomplishes very similar thing):http: //cran.r-project.org/web/packages/rpart/vignettes/longintro.pdf
- party:

http://cran.r-project.org/web/packages/party/vignettes/party.pdf

In caret, method =

- "rpart" tuning = cp (complexity parameter)
- ▶ "rpart2" tuning = maxdepth
- "rpartCost" tuning = cp and cost
- "ctree" tuning = mincriterion (p value thresholds)
- ▶ "ctree2" tuning = maxdepth

Lets load the main packages

```
library(caret)
library(rpart)
library(pROC)
library(randomForest)
library(ada)
library(ISLR)
library(party)
library(MASS) # for boston data
data(Boston)
```

Regression (continous outcome)

Use rpart first with the Boston data use regression first – predicting median value of homes

```
#str(Boston)
# lets get a baseline with linear regression
lm.Boston <- lm(medv ~., data=Boston)
#summary(lm.Boston)</pre>
```

We do pretty well with linear regression R-squared of .74

CART

How about if we just blindly apply Decision Trees

```
rpart.Boston <- rpart(medv ~., data=Boston)
#summary(rpart.Boston)
plot(rpart.Boston); text(rpart.Boston)</pre>
```


CART Continued

```
pred1 <- predict(rpart.Boston)</pre>
cor(pred1,Boston$medv)**2
## [1] 0.8075721
Doing really well – Rsquared = 0.81
# this can be hard to interpret, so I like to look at a different output
rpart.Boston
## n = 506
##
## node), split, n, deviance, yval
##
         * denotes terminal node
##
##
    1) root 506 42716.3000 22.53281
##
      2) rm< 6.941 430 17317.3200 19.93372
        4) lstat>=14.4 175 3373.2510 14.95600
##
          8) crim>=6.99237 74 1085.9050 11.97838 *
##
          9) crim< 6.99237 101 1150.5370 17.13762 *
##
        5) lstat< 14.4 255 6632.2170 23.34980
##
         10) dis>=1.5511 248 3658.3930 22.93629
##
           20) rm< 6.543 193 1589.8140 21.65648 *
##
##
           21) rm>=6.543 55 643.1691 27.42727 *
##
         11) dis< 1.5511 7 1429.0200 38.00000 *
      3) rm>=6.941 76 6059.4190 37.23816
##
                                                  4□ → 4□ → 4 □ → 1 □ → 9 Q (~)
        6) mm / 7 /27 /6 1000 6100 20 1120/
```

Lasso Regression

Note: for glmnet, both the x's and y have to be in separate matrices

- and all class = numeric

- don't worry about response, doesn't have to be factor for logistic

-- just specify "binomial"

y.B <- Boston\$medv

x.B <- sapply(Boston[,-14],as.numeric)

alpha =1 for lasso, 0 for ridge

lasso.reg <- glmnet(x.B,y.B,alpha=1,family="gaussian",lambda=cv\$lambda.min)
lasso.resp <- predict(lasso.reg,newx=x.B)
cor(y.B,lasso.resp)**2</pre>

s0 ## [1,] 0.7403768

library(glmnet)

cv <- cv.glmnet(x.B,y.B,alpha=1)</pre>

Taking into account cross-validation, we do worse compared to linear regression with no tuning.

CART Plots So the plot for rpart didn'tcome out that well. Good news, there are better options for plotting.

What if we tried regularized (penalized) regression instead?

CART Plotting Continued

Note, prp() offers many additional capabilities for tweaking the plot For instance:

```
# ?prp
prp(rpart.Boston,varlen=10,digits=5,fallen.leaves=T)
```


CART Plotting Continued

Probably my favorite, fancyRpartPlot()

```
#fancyRpartPlot(); from rattle
fancyRpartPlot(rpart.Boston)
```


Rattle 2016-Jul-26 17:51:35 RJacobucci

Conditional Inference Trees

So what about with conditional inference trees?

What if we want a smaller tree? This can be accomplished a number of ways. We can prespecify the maxdepth, the minimum number of people per node, as well as making more restrictive splitting criterion.

Example of prespecifying the depth with ctree()

```
ctree.Boston <- ctree(medv ~., data=Boston)
#plot(ctree.Boston) # too big of a tree
pred2 <- predict(ctree.Boston)
cor(pred2,Boston$medv)**2</pre>
```

[1] 0.8746338

We do better than rpart, Rsquared = 0.87

Conditional Inference Trees Continued

Biggest difference between ctree() and rpart() is that ctree() does not demonstrate bias with respect to the number of response options, and supposedly had less of a propensity to overfit than rpart().

Note: the models are not optimizing based on Rsquared, most likely MSE

So what do we think now? Are we happy with results? Remember, decision trees are generally quite robust, so it may not be necessary to check assumptions. – See Table $10.1\ \text{ESL}$

But what about generalizability?

Although not as serious as with SVM for instance, Decision Trees have a propensity to overfit, meaning the tree structure won't generalize well

So let's try just creating a simple Training and Test datasets

```
train = sample(dim(Boston)[1], dim(Boston)[1]/2) # half of sample
Boston.train = Boston[train, ]
Boston.test = Boston[-train, ]
```

Linear Regression with CV

```
lm.train <- lm(medv ~., data=Boston.train)
pred.lmTest <- predict(lm.train,Boston.test)
cor(pred.lmTest,Boston.test$medv)**2</pre>
```

```
## [1] 0.7021417
```

Note: we are taking our Im object trained on the train dataset, and using these fixed coefficients to predict values on the test dataset.

In SEM, this is referred to as a tight replication strategy No difference in using a test dataset – both Rsq are 0.74

How about with rpart?

CART CV

```
rpart.train <- rpart(medv ~., data=Boston.train)
pred.rpartTest <- predict(rpart.train,Boston.test)
cor(pred.rpartTest,Boston.test$medv)**2</pre>
```

[1] 0.7428159

Not as good – drops from 0.81 to 0.76 – still better than Im() But with rpart, it is common to prune trees back. What if we try this, is there less of a drop in R^2 ?

Note: rpart automatically does internal CV, varying the complexity paramter (cp). If you use the tree package instead, you will have to use cv.tree()

CART Pruning

With plotcp() we are going to choose the error within 1 SE of the lowest cross-validated error. This will be used to prune

plotcp(rpart.train)

CART Pruning Continued

```
printcp(rpart.train)
```

```
##
## Regression tree:
## rpart(formula = medv ~ ., data = Boston.train)
##
## Variables actually used in tree construction:
## [1] crim dis 1stat rm
##
## Root node error: 19695/253 = 77.847
##
## n = 253
##
          CP nsplit rel error xerror xstd
##
## 1 0.474452
                 0 1.00000 1.00523 0.116686
## 2 0.192344
                 1 0.52555 0.61206 0.077845
## 3 0.055118
                 2 0.33320 0.40329 0.063869
## 4 0.034885
                 3 0.27809 0.36449 0.062982
## 5 0.027810
                 4 0.24320 0.33785 0.060652
## 6 0.011031
                 5
                    0.21539 0.31427 0.059976
## 7 0.010121
                 6
                    0.20436 0.30917 0.062573
## 8 0.010000
                    0.19424 0.30613 0.062535
```

What is xerror and other error?

CART Pruning Continued

```
# rsq.rpart(rpart.train) ## another way to get cp plots
prune.Bos <- prune(rpart.train,0.053)

pred.prune <- predict(prune.Bos,Boston.test)
cor(pred.prune,Boston.test$medv)</pre>
```

[1] 0.8027312

Plot Pruned Tree

```
#plot(prune.Bos); text(prune.Bos)
fancyRpartPlot(prune.Bos)
```


CTree CV

```
ctree.train <- ctree(medv ~., data=Boston.train)
#plot(ctree.train) # huge tree
pred.ctreeTest <- predict(ctree.train,Boston.test)
cor(pred.ctreeTest,Boston.test$medv)**2</pre>
```

[1] 0.7525739

It is worth noting how much more of an effect there was for using a test dataset with the tree methods as compared to lm(), this is pretty typical, and much more important with more "flexible" methods such as random forests, gbm, svm etc...

Classification

Classification

##

Two Biggest Things To Remember:

- 1. Make sure functions outcome variable is categorical; as.factor(outcome)
- 2. Using predict() changes. Variable across packages

As a baseline, we will use logistic regression.

```
library(ISLR)
data(Default)
#head(Default)
str(Default)
```

```
## 'data.frame': 10000 obs. of 4 variables:
## $ default: Factor w/ 2 levels "No","Yes": 1 1 1 1 1 1 1 1 1 1 1 1 ...
## $ student: Factor w/ 2 levels "No","Yes": 1 2 1 1 1 2 1 2 1 1 ...
## $ balance: num 730 817 1074 529 786 ...
```

\$ income : num 44362 12106 31767 35704 38463 ...

My favorite function in R is str(), as it gives the class of each variable and other summary characteristics. Most important thing to note is that the "default" variable is already coded as a factor variable, meaning that R now knows it is categorical, and will change the cost function (thus estimator) accordingly.

This is really important because rpart,randomForest and other packages do not automatically detect whether it is a regression or classification problem. If you don't change the outcome variable to its proper class, you could get a suboptimal answer (use

ROC Curves

```
good intro to using ROC:
```

https://ccrma.stanford.edu/workshops/mir2009/references/ROCintro.pdf These plots are a balanace of sensitivity and specificity. Ideally the curve gets as close as possible to the upper left corner.

To get this plot, we need to get our predictions from our logistic model.

```
glm.probs=predict(lr.out,type="response")
#glm.pred00=ifelse(glm.probs>0.5,1,0)

rocCurve <- roc(Default$default,glm.probs)
pROC::auc(rocCurve)

## Area under the curve: 0.9496

pROC::ci(rocCurve)

## 95% CI: 0.9402-0.959 (DeLong)

# quartz()
plot(rocCurve, legacy.axes = TRUE,print.thres=T,print.auc=T)</pre>
```

Lasso Logistic Regression

quartz()

```
How about lasso logistic regression?
library(glmnet)
yy = as.numeric(Default$default)
xx = sapply(Default[,2:4],as.numeric)
lasso.out <- cv.glmnet(xx,yy,family="binomial",alpha=1,nfolds=10) #alpha=1 ==
# find best lambda
11 <- lasso.out$lambda.min
lasso.probs <- predict(lasso.out,newx=xx,s=11,type="response")</pre>
Results from lasso using CV
rocCurve.lasso <- roc(Default$default,lasso.probs)</pre>
## Warning in roc.default(Default$default, lasso.probs): Deprecated use a
## matrix as predictor. Unexpected results may be produced, please pass a
## numeric vector.
pROC::auc(rocCurve.lasso)
## Area under the curve: 0.9495
pROC::ci(rocCurve.lasso)
## 95% CI: 0.9401-0.959 (DeLong)
```