Regulatory Sequence Analysis

Discovering phylogenetic footprints in bacterial promoters

DNA-protein binding interface

- Example of DNA-protein interface.
 - LexA homodimer on the recA promoter.
 - Note: this is only a model, the structure has still not been crystallized.
 - Source: http://srs.ebi.ac.uk

LexA binding sites (RegulonDB, oct 2006)

recA	b2699	-21	gaagcaattaTA CTG TATGCTCATA CAG TAtcaagtgttt
lexA	b4043	-10	aaatcgccttTTG CTG TATATACTCA CAG Cataactgtat
lexA	b4043	10	atactcacagCATAA CTG TATATACACC CAg gggggggaa
recA	b2699	-21	gaagcaattaTA CTG TATGCTCATA CAG TAtcaagtgttt
ssb	b4059	-46.5	gacacaaattGAC CTG AATGAATATA CAG Tattggaatgc
sulA	b0958	-2	agcccctgtgAGTTA CTG TATGGATGTA CAg tacatccag
uvrA	b4058	-31.5	gacacaaattGAC CTG AATGAATATA CAG Tattggaatgc
uvrB	b0779	-21	ttatggtgatGAA CTG TTTTTTTATC CAG Tataatttgtt
uvrD	b3813	11	taatcagcaaAT CTG TATATATACC CAG CTttttggcgga
rpsU	b3065	4.5	attttgaaatAAG CTG GCGTTGATGC CAG Cggcaaaccga
phr	b0708	25.5	ttatcctgacGC CTG GCTTTCAGGG CAG CGttatttcgaa
	lexA lexA recA ssb sulA uvrA uvrB uvrB rpsU	lexA b4043 lexA b4043 recA b2699 ssb b4059 sulA b0958 uvrA b4058 uvrB b0779 uvrD b3813 rpsU b3065	lexA b4043 -10 lexA b4043 10 recA b2699 -21 ssb b4059 -46.5 sulA b0958 -2 uvrA b4058 -31.5 uvrB b0779 -21 uvrD b3813 11 rpsU b3065 4.5

LexA aligned binding sites and position-specific scoring matrix (PSSM)

The site sequences were obtained from RegulonDB.

The alignment and matrix were created using consensus (Hertz & Stormo, 1999).

The logo was created with Web Logo (http://weblogo.berkeley.edu/logo.cgi).

Analysis of Regulatory Sequences

Phylogenetic footprint discovery in promoters of orthologous genes

Orthologs of Escherichia coli K12 gene PUTA in Gammaproteobacteria

Orthologs of Escherichia coli K12 gene PUTA in Gammaproteobacteria

NP_245526.1	Pasteurella_multocida	NP_415534.1	52.93	0.0
YP_340762.1	Pseudoalteromonas_haloplanktis_TAC125	NP_415534.1	45.21	0.0
YP_271059.1	Colwellia_psychrerythraea_34H	NP_415534.1	43.81	0.0
NP_719311.1	Shewanella_oneidensis	NP_415534.1	47.35	0.0
YP_156342.1	Idiomarina_loihiensis_L2TR	NP_415534.1	45.44	0.0
YP_095723.1	Legionella_pneumophila_Philadelphia_1	NP_415534.1	51.25	0.0
YP 126994.1	Legionella pneumophila Lens	NP 415534.1	51.63	0.0
YP_123979.1	Legionella_pneumophila_Paris	NP_415534.1	51.25	0.0
NP 819659.1	Coxiella burnetii	NP 415534.1	47.21	0.0
YP_133644.1	Photobacterium_profundum_SS9	NP_415534.1	46.63	0.0
YP_206789.1	Vibrio_fischeri_ES114	NP_415534.1	48.96	0.0
NP 937700.1	Vibrio vulnificus YJ016	NP 415534.1	47.40	0.0
NP 763030.1	Vibrio vulnificus CMCP6	NP 415534.1	47.60	0.0
NP 801236.1	Vibrio parahaemolyticus	NP 415534.1	47.92	0.0
NP 639180.1	Xanthomonas_campestris	NP 415534.1	52.40	0.0
_	Xanthomonas oryzae KACC10331	NP 415534.1	52.69	0.0
YP 244967.1	Xanthomonas campestris 8004	NP 415534.1	52.40	0.0
	Xanthomonas citri	NP 415534.1	52.59	0.0
_	Xanthomonas campestris vesicatoria	NP 415534.1	52.40	0.0
NP 805570.1	Salmonella typhi Ty2	NP 415534.1	91.29	0.0
NP 455618.1	Salmonella typhi	NP 415534.1	91.29	0.0
YP 052304.1	Erwinia_carotovora_atrosepticaa	NP 415534.1	74.24	0.0
	Shigella boydii Sb227	NP 415534.1	99.09	0.0
_	Shigella sonnei Ss046	NP 415534.1	99.39	0.0
_	Escherichia coli CFT073	NP 415534.1	99.39	0.0
_	Escherichia coli K12	NP 415534.1	100.00	0.0
NP 309287.1	Escherichia coli 0157H7	NP 415534.1	99.55	0.0
NP_287019.1	Escherichia_coli_O157H7_EDL933	NP_415534.1	99.55	0.0
NP 871437.1	Wigglesworthia brevipalpis	NP 415534.1	54.57	0.0
NP_992900.1	Yersinia_pestis_biovar_Mediaevails	NP_415534.1	79.44	0.0
NP_669761.1	Yersinia_pestis_KIM	NP_415534.1	79.37	0.0
YP 070249.1	Yersinia pseudotuberculosis IP32953	NP 415534.1	79.37	0.0
NP_405415.1	Yersinia_pestis_CO92	NP_415534.1	79.37	0.0
NP 929224.1	Photorhabdus luminescens	NP 415534.1	77.37	0.0
YP_343707.1	Nitrosococcus_oceani_ATCC_19707	NP_415534.1	50.00	0.0
YP_170117.1	Francisella_tularensis_tularensis	NP_415534.1	50.34	0.0
YP 433088.1	Hahella chejuensis KCTC 2396	NP 415534.1	48.61	0.0
NP_794750.1	Pseudomonas_syringae	NP_415534.1	73.64	0.0
NP 747050.1	Pseudomonas putida KT2440	NP 415534.1	73.45	0.0
YP_257639.1	Pseudomonas_fluorescens_Pf-5	NP_415534.1	73.60	0.0
YP 346185.1	Pseudomonas_fluorescens_Pf0-1	NP 415534.1	73.45	0.0
	Pseudomonas_aeruginosa	NP 415534.1	48.56	0.0
	Pseudomonas_syringae_phaseolicola	NP_415534.1	73.77	0.0
_	Pseudomonas syringae pv B728a	NP 415534.1	73.80	0.0
_	Psychrobacter_arcticum_273-4	NP_415534.1	44.42	0.0
_	Acinetobacter sp ADP1	NP 415534.1	59.51	0.0
_		_		

Upstream sequences of PUTA orthologs

```
>YP 046314.1 Acinetobacter sp ADP1 putA
                                             YP 046314.1; upstream from -103 to -1; size: 103;
ACAAAATTTTCCTCTAAAAAATGAATCAATTATAGTCAGTTATTTGGTAATTATTCTGTA
ATGATAAATTATCTAAACCCCTTTAAACAATATACCTTAGAGT
>YP 271059.1 Colwellia psychrerythraea 34H putA YP 271059.1; upstream from -245 to -1; size: 245
ATAATAACCCACGAACACTCCCTACAAATTATAAAAAACGATTTGCAGCACTTTATACTG
TTGAATTCGTACTCCCCCATATAAAAGTGTTTTAAATCCTGAAAATAACCAGCACATCCT
GTGGTTGTTACCCTAAAATTCGCTCATAAATTTAATGTCGTCACCAACTAATAATATATG
TATTAGTGGAAAAAAGACTATAACTAAAGCAGGATTTCTACCTGTCACACTTTGAGGAA
TGGTT
>NP 819659.1 | Coxiella burnetii | putA NP 819659.1; upstream from -118 to -1; size: 118;
GAAGTAGCCCGTATGAAGCGAAGCGAAATACGGGGAGGTGCACGTATTGTTCCCGTATTC
GCTTCGTTTCATACGGGCTACATCGCGGAAATGAAAATTAACTCCTTAATGAGGACAT
>YP_052304.1|Erwinia_carotovora_atroseptica_SCRI1043|putA YP_052304.1; upstream from -195 to -1; size: 195;
TTAACTCTCCACATTTTTTTCGTGCCGCCGTCGCGGCGACGCTGTGTTTTATAGTAATCA
TTCAGGCCGGAACGAGGTCTGAAAATGATTATGGGCAGCAACCATTCCATTTGTTAACAA
GGTTGCACAAAGTTGCAACATGATTGATATTGACGGTATCCCGATGTGCATCTTCTCATT
ACAGGAGTGGACTCT
>NP 753076.1 Escherichia coli CFT073 putA
                                             NP 753076.1; upstream from 0 to -1; size: 0;
>NP 415534.1 Escherichia coli K12 putA
                                             NP 415534.1; upstream from -400 to -1; size: 400;
ATCGGCAATGTCGAAACTTGCCGTTATATCTGCCACCGGAACGGGGTAACAGAGTTTATG
TTTTACCAGGGCGACCGTATCCTGCCGGAAGCGCTGGTTATTCACAATCGATTTAACACA
CCATTTACATTAAATTTTAGTGCTCAGCGACACTATTTTTCATCAGGTTGCACTCTCTCA
CATTTTTTGCGGTTGCACCTTTCAAAAATGTTAACTGCCGCAGAGAAAAAGTCTGAGTTA
CTACGCATGTCACATTTAACATGGTTGCACAAAGTTGCAACATCATGGATATTTCACGAT
AACGTTAAGTTGCACCTTTCTGAACAACAGGAGTAATGGC
>NP_309287.1 | Escherichia_coli_0157H7 | ECs1260
                                             NP 309287.1; upstream from -54 to -1; size: 54;
GGATATTTCACGATAACGTTAAGTTGCACCTTTCAGAACAACAGGAGTAATGGC
>NP 287019.1 Escherichia coli 0157H7 EDL933 putA
                                                         NP 287019.1; upstream from -400 to -1; size: 400;
ATCGGCAATGTCGAAACTTGCCGTTATATCTGCCACCGGAACGGGGTAACAGAGTTTATG
TTTTACCAGGGCGACCGTATCCTGCCGGAAGCGCTGGTTATTCACAATCGATTTAACACA
CCATTTACATTAAATTTTAGTGCTCAGCGACACTATTTTTCATCAGGTTGCACTCTCTCA
CATTTTTTGCGGTTGCACCTTTCAAAAATGTTAACTGCCGCAGAGAAAAAGTCTGAGTTA
CTACGCAGGTCACATTTAACATGGTTGCACAAAGTTGCAACATCATGGATATTTCACGAT
AACGTTAAGTTGCACCTTTCAGAACAACAGGAGTAATGGC
```

7

Purged upstream sequences of PUTA orthologs

```
>YP 046314.1 | Acinetobacter sp ADP1 | putA
ACAAAATTTTCCTCTAAAAAATGAATCAATTATAGTCAGTTATTTGGTAATTATTCTGTA
ATGATAAATTATCTAAACCCCTTTAAACAATATACCTTAGAGT
>YP 271059.1 | Colwellia psychrerythraea 34H | putA
ATAATAACCCACGAACACTCCCTACAAATTATAAAAAACGATTTGCAGCACTTTATACTG
TTGAATTCGTACTCCCCCATATAAAAGTGTTTTAAATCCTGAAAATAACCAGCACATCCT
GTGGTTGTTACCCTAAAATTCGCTCATAAATTTAATGTCGTCACCAACTAATAATATGT
TATTAGTGGAAAAAAGACTATAACTAAAGCAGGATTTCTACCTGTCACACTTTGAGGAA
TGGTT
>NP 819659.1 | Coxiella burnetii | putA
GAAGTAGCCCGTATGAAGCGAAGCGAAATACGGGGAGGTGCACGTATTGTTnnnnnnnn
>YP_052304.1 | Erwinia_carotovora_atroseptica_SCRI1043 | putA
TTCAGGCCGGAACGAGGTCTGAAAATGATTATGGGCAGCAACCATTCCATTTGTTAACAA
GGTTGCACAAGTTGCAACATGATTGATATTGACGGTATCCCGATGTGCATCTTCTCATT
ACAGGAGTGGACTCT
>NP 753076.1 Escherichia coli CFT073 putA
>NP 415534.1 | Escherichia coli K12 | putA
ATCGGCAATGTCGAAACTTGCCGTTATATCTGCCACCGGAACGGGGTAACAGAGTTTATG
TTTTACCAGGGCGACCGTATCCTGCCGGAAGCGCTGGTTATTCACAATCGATTTAACACA
CCATTTACATTAAATTTTAGTGCTCAGCGACACTATTTTTCATCAGGTTGCACTCTCTCA
CATTTTTTGCGGTTGCACCTTTCAAAAATGTTAACTGCCGCAGAGAAAAAGTCTGAGTTA
AACGTTAAGTTGCACCTTTCTGAACAACAGGAGTAATGGC
>NP 309287.1 | Escherichia coli 0157H7 | ECs1260
>NP 287019.1 Escherichia coli 0157H7 EDL933 putA
```

....

Significantly over-represented dyads in promoters of PUTA orthologs

```
: column headers
                                     1 sequence
                                     2 identifier
                                     3 expected freq
                                     4 occ
                                                    observed occurrences
                                                    expected occurrences
                                     5 exp occ
                                     6 occ P
                                                    occurrence probability (binomial)
                                     7 occ E
                                                    E-value for occurrences (binomial)
                                     8 occ sig
                                                    occurrence significance (binomial)
                                     9 ovl occ
                                                    number of overlapping occurrences
                                    10 all occ
                                                    number of non-overlapping + overlapping occurrences
                                    11 rank
                                                    rank
                                                    overlap coefficient
                                    12 ov coef
                                    13 remark
                                                    remark
;sequence
             identifier
                                       expected freocc exp occ occ P
                                                                            occ E
                                                                                       occ sig ovl occ all occ rank ov coef
                                                                                                                                 remark
qtqn{1}aac
             gtgn{1}aac|gttn{1}cac
                                        0.00058697
                                                      32
                                                              4.44 2.80F-14 1.10F-09
                                                                                         8.95
                                                                                                           32
                                                                                                                          1.0166
ggtn{3}acc
             ggtn{3}acc|ggtn{3}acc
                                        0.00016832
                                                      18
                                                                   2.60E-13 1.00E-08
                                                                                         7.99
                                                                                                     0
                                                                                                           18
                                                                                                                  2
                                                                                                                          1.0166 inv rep
                                                                                                                  3
gttn{0}gca
             gttn{0}gca|tgcn{0}aac
                                        0.00077131
                                                       35
                                                              5.87 3.30E-13 1.30E-08
                                                                                         7.88
                                                                                                           40
                                                                                                                          1.0166
                                                                                                     0
                                                                                                                  4
ggtn{2}aac
             ggtn{2}aac|gttn{2}acc
                                        0.00048995
                                                       28
                                                                   3.60E-13 1.40E-08
                                                                                         7.84
                                                                                                           28
                                                                                                                          1.0166
                                                                                                                  5
                                                       32
                                                              5.34 2.80E-12 1.10E-07
                                                                                         6.95
                                                                                                           32
qtqn{0}caa
             qtqn{0}caa|ttqn{0}cac
                                        0.00070077
                                                                                                                          1.0166
                                                                                         6.53
                                                                                                           24
                                                                                                                  6
ggtn{2}cac
             ggtn{2}cac|gtgn{2}acc
                                        0.00040329
                                                       24
                                                              3.03 7.40E-12 2.90E-07
                                                                                                                          1.0166
             qqtn{0}qca|tqcn{0}acc
                                        0.00052995
                                                       27
                                                              4.04 1.20E-11 4.90E-07
                                                                                         6.31
                                                                                                           27
                                                                                                                  7
                                                                                                                          1.0166
qqtn{0}qca
                                        0.00052995
                                                      27
                                                              4.04 1.20E-11 4.90E-07
                                                                                         6.31
                                                                                                     0
                                                                                                           27
                                                                                                                  8
                                                                                                                          1.0166
gcan{0}acc
             gcan{0}acc|ggtn{0}tgc
ggtn{1}caa
             ggtn{1}caa|ttgn{1}acc
                                        0.00058494
                                                       27
                                                              4.42 1.10E-10 4.20E-06
                                                                                         5.38
                                                                                                     0
                                                                                                           27
                                                                                                                  9
                                                                                                                          1.0166
                                                              4.01 1.60E-09 6.40E-05
                                                                                         4.20
                                                                                                     0
                                                                                                           24
                                                                                                                          1.0166
ggtn{1}gca
             ggtn{1}gca|tgcn{1}acc
                                        0.00052995
                                                       24
                                                                                                                 10
aagn{2}gca
                                                                                                                 11
             aagn{2}gca|tgcn{2}ctt
                                        0.00062177
                                                       26
                                                              4.67 1.70E-09 7.00E-05
                                                                                         4.16
                                                                                                     1
                                                                                                           27
                                                                                                                          1.0166
aggn{1}gca
             aggn{1}gca|tgcn{1}cct
                                         0.0004801
                                                       22
                                                              3.63 6.10E-09 2.40E-04
                                                                                         3.62
                                                                                                           22
                                                                                                                 12
                                                                                                                          1.0166
aggn{0}tgc
             aggn{0}tgc|gcan{0}cct
                                         0.0004801
                                                       20
                                                              3.66 1.30E-07 5.20E-03
                                                                                         2.28
                                                                                                           20
                                                                                                                 13
                                                                                                                          1.0166
aggn{2}caa
             aggn{2}caa|ttgn{2}cct
                                        0.00052992
                                                       21
                                                              3.98 1.40E-07 5.80E-03
                                                                                         2.24
                                                                                                     0
                                                                                                           21
                                                                                                                 14
                                                                                                                          1.0166
             aagn{1}tgc|gcan{1}ctt
                                        0.00062177
                                                       20
                                                               4.7 6.30E-06 2.50E-01
                                                                                         0.60
                                                                                                     1
                                                                                                           21
                                                                                                                 15
                                                                                                                          1.0166
aagn{1}tgc
                                                                                                     0
                                                                                                           16
aggn{3}aac
             aggn{3}aac|gttn{3}cct
                                        0.00044387
                                                      16
                                                              3.32 1.30E-05 5.30E-01
                                                                                         0.28
                                                                                                                 16
                                                                                                                          1.0166
            gggn{4}acc|ggtn{4}ccc
                                        0.00025997
                                                      12
                                                              1.93 1.50E-05 5.90E-01
                                                                                         0.23
                                                                                                           16
                                                                                                                 17
                                                                                                                          1.0166
gggn{4}acc
;Job started 13/02/06 21:31:01 CET
           13/02/06 21:31:28 CET
;Job done
```

Significantly over-represented dyads in promoters of PUTA orthologs

; pattern-assembly -v 1	-i /home/jvanl	neld/research/d	collabo
; Input score column	8		
; Output score column	0		
; two strand assembly			
; max flanking bases	1		
; max substitutions	0		
; max assembly size	50		
; max number of pattern	50		
; number of input patter	17		
;			
;assembly # 1	seed: gtgnaa	17 words	lengt
; alignt	rev_cpl	score	
aagnngca	tgcnnctt	4.16	
aagntgc	gcanctt	0.6	
.aggngca	tgcncct.	3.62	
.aggtgc	gcacct.	2.28	
.aggnncaa	ttgnncct.	2.24	
.aggnnnaac	gttnnncct.	0.28	
ggtnnnacc.	.ggtnnnacc	7.99	
ggtnnaac	gttnnacc	7.84	
ggtgca	tgcacc	6.31	
ggtncaa	ttgnacc	5.38	
ggtnnnnccc	gggnnnnacc	0.23	
gtgnaac	gttncac	8.95	
gtgcaa	ttgcac	6.95	
gtgnnacc.	.ggtnncac	6.53	
tgcaac	gttgca	7.88	
tgcnacc.	.ggtngca	4.2	
gcaacc.	.ggttgc	6.31	
aaggtgcaaccc	gggttgcacctt	8.95	best (
;Job started 13/02/06 21			
;Job done 13/02/06 21	l:31:31 CET		

Questions

- For each gene, we applied the same pattern discovery approach
 - Identify orthologs
 - Retrieve upstream sequences
 - Detect over-represented dyads
- Questions
 - How good is this method in predicting cis-acting elements?
 - Can we detect correct motifs?
 - What is the rate of false positives?
 - Can we learn something about the evolution of cis-acting elements?
 - On the basis of the discovered motifs, can we regroup the co-regulated genes?
 - Detect pair-wise associations between genes
 - Detect clusters of genes regulated by the same transcription factor

Analysis of Regulatory Sequences

Evolution of the auto-regulation of the LexA transcription factor

Study case: LexA auto-regulation

- The transcription factor LexA represses several genes involved in the SOS response
- The lexA gene is auto-regulated.
- LexA auto-regulation has been characterized in details in several bacterial species.
 - LexA protein has evolved and recognizes different motifs in different taxa.
- Note that this is an easy case:
 - LexA binding motif is highly conserved in Gammaproteobacteria
 - This motif is easily detected by most pattern discovery algorithms.
- We will start by this example, and then generalize the evaluation to other transcription factors.

Evolution of lexA binding motifs Motifs characterized experimentally in different bacterial taxa

Taxonomic level	Species	Consensus	Weblogo
Gamma-prote obacte ria	E. coli	CTGTNNNNNNNNACAG	September of the septem
Xanthomonadales	X.oryzae X.campestris X.citri Xylella fastidiosa	TTAGTArwawTACTAa	
Alpha proteobacteria	R. etli R. meliloti A. tumefasciens Rhodob acter sphaeroides Sinorhizob ium meliloti	GTTCNNNNNNNGTTC GAACNNNNNNNGAAC	Signal and the state of the sta
Delta proteobacteria	Myxococcus xanthus	CTRHAMRYBYGTTCAGS	CTA A G G GTTCAGG
	Geobacter sulfurreducens	GGTTNNCNNNNGNNNACC	
Cyanobacteria	Anab aena PCC7120	TAGTACTWATGTTCTA	and the second s
Gram+ bacteria	B. sub tilis Mycob acterium tub erculosis Mycob acterium smegmatis	CGAACRNRYGTTYC	

Significant dyads in promoters of lexA orthologs in Gammaproteobacteria

- In Gammaproteobacteria, the most significant motif is aaCTGtatacatataCAGtt
- This corresponds to the LexA motif annotated in RegulonDB

Annotated LexA binding motif (RegulonDB)

Significant dyads in promoters of lexA orthologs in Firmicutes

- In Firmicutes, the most significant motif is TACGAACATATGTTCGTA
- This corresponds to the "Cheo box"

 GAACn₄GTTC

Janky, R. and van Helden, J. Evaluation of phylogenetic footprint discovery for predicting bacterial cis-regulatory elements and revealing their evolution *BMC Bioinformatics* **9**, 37 (2008).

Significant dyads in promoters of lexA orthologs in Actinobacteria

- In Actinobacteria, the most significant motif is TCGAACA.
- This shows an almost perfect match to one half of the Cheo box motif detected in Firmicutes (TACGAACATATGTTCGTA)
- In addition, this larger Cheo box is also detected in Actinobacteria, albeit with a lower significance than the half site.

Significant dyads in promoters of lexA orthologs in Bacteria

- When all the bacterial promoters are analyzed together, the program dyadanalysis detects most of taxon-specific motifs discussed before, and the feature-map highlights their taxon-specific locations.
- This illustrates the robustness of the method: the motifs can be detected even if present in a subset of the sequences only.
- The significance is however lower when all sequences are analyzed together than with the taxon-per-taxon analysis.

Significance map of the motifs discovered in promoters of lexA orthologs at all taxonomical levels

- The heat map illustrates the most significant motifs (sig >= 8) found at different taxonomical levels.
- Each column corresponds to one dyad, each row to one taxon.
- The grey level indicates the significance.

Analysis of Regulatory Sequences

Systematic evaluation of phylogenetic footprints discovery

Principle of the evaluation

- Choice of the sequence sets:
 - Positive set: promoters of orthologs for all the genes having at least one annotated site in RegulonDB
 - Negative set: random selections of promoters.
- Evaluation criteria
 - Distribution of significance scores: does this score allow us to discriminate groups of co-regulated promoters from random selections?
 - Motif correctness: do the motifs predicted in the positive set correspond to the annotated sites?

Evaluation of significance scores: distribution in promoters of orthologs versus random selections of genes

Correctness of the discovered motifs

- How to compare a discovered motif with a collection of annotated binding sites?
 - The annotated binding sites can be considered as a set of oligonucleotides ("words").
 - The discovered motif is a set of dyads.
 - We can compare two sets of words with the program compare-patterns.

Matching list - discovered dyads against annotated sites in glpD promoters

Annotated sites for the gene glpD (Escherichia coli K12)

Site sequence	Factor	site ID
gataaacgccATAATGTTATACATATCACTCTaaaatgtttt	CRP	ECK120014013
tctttgctaaTATGTTCGATAACGAACATTtatgagcttt	GlpR	ECK120012732
taacgaacatTTATGAGCTTTAACGAAAGTgaatgagggc	GlpR	ECK120012734
gggatcaactGGTTTGCGTTTTGGCGCAAAttcagtgtta	GlpR	ECK120013968
aaaccggaaaTTAAGCGCGGATTCGAATATtctgactgtt	GlpR	ECK120013970

Perfect matches between detected dyads and annotated sites

	matching			
Site ID	bases strand	offset we	eight seq1	seq2
CRP_glpD_ECK120014013	6 R	30	6 AAAACATTTTAGAGTGATATGTATAACATTATGGCGTTTATC	aacn{0}att
GlpR_glpD_ECK120012732	7 D	11	6 tctttgctaaTATGTTCGATAACGAACATTtatgagcttt	atgn{1}tcg
GlpR_glpD_ECK120012732	6 D	24	6 tctttgctaaTATGTTCGATAACGAACATTtatgagcttt	aacn{0}att
GlpR_glpD_ECK120012732	6 D	22	6 tctttgctaaTATGTTCGATAACGAACATTtatgagcttt	cgan{0}aca
GlpR_glpD_ECK120012732	8 D	20	6 tctttgctaaTATGTTCGATAACGAACATTtatgagcttt	aacn{2}aca
GlpR_glpD_ECK120012732	8 R	20	6 AAAGCTCATAAATGTTCGTTATCGAACATATTAGCAAAGA	aatn{2}tcg
GlpR_glpD_ECK120012732	6 D	11	6 tctttgctaaTATGTTCGATAACGAACATTtatgagcttt	atgn{0}ttc
GlpR_glpD_ECK120012732	8 D	21	6 tctttgctaaTATGTTCGATAACGAACATTtatgagcttt	acgn{2}cat
GlpR_glpD_ECK120012732	9 D	20	6 tctttgctaaTATGTTCGATAACGAACATTtatgagcttt	aacn{3}cat
GlpR_glpD_ECK120012732	6 D	20	6 tctttgctaaTATGTTCGATAACGAACATTtatgagcttt	aacn{0}gaa
GlpR_glpD_ECK120012734	7 R	0	6 GCCCTCATTCACTTTCGTTAAAGCTCATAAATGTTCGTTA	atgn{1}tcg
GlpR_glpD_ECK120012734	6 D	5	6 taacgaacatTTATGAGCTTTAACGAAAGTgaatgagggc	aacn{0}att
GlpR_glpD_ECK120012734	6 D	3	6 taacgaacatTTATGAGCTTTAACGAAAGTgaatgagggc	cgan{0}aca
GlpR_glpD_ECK120012734	19 D	6	6 taacgaacatTTATGAGCTTTAACGAAAGTgaatgagggc	acan{13}acg
GlpR_glpD_ECK120012734	8 D	1	6 taacgaacatTTATGAGCTTTAACGAAAGTgaatgagggc	aacn{2}aca
GlpR_glpD_ECK120012734	8 R	1	6 GCCCTCATTCACTTTCGTTAAAGCTCATAAATGTTCGTTA	aatn{2}tcg
GlpR_glpD_ECK120012734	6 R	0	6 GCCCTCATTCACTTTCGTTAAAGCTCATAAATGTTCGTTA	$atgn{0}ttc$
GlpR_glpD_ECK120012734	8 D	2	6 taacgaacatTTATGAGCTTTAACGAAAGTgaatgagggc	$acgn{2}cat$
GlpR_glpD_ECK120012734	9 D	1	6 taacgaacatTTATGAGCTTTAACGAAAGTgaatgagggc	aacn{3}cat
GlpR_glpD_ECK120012734	10 R	28	6 GCCCTCATTCACTTTCGTTAAAGCTCATAAATGTTCGTTA	$\mathtt{cctn}\{4\}\mathtt{cac}$
GlpR_glpD_ECK120012734	6 D	1	6 taacgaacatTTATGAGCTTTAACGAAAGTgaatgagggc	aacn{0}gaa
GlpR_glpD_ECK120012734	13 R	20	6 GCCCTCATTCACTTTCGTTAAAGCTCATAAATGTTCGTTA	actn{7}aag
GlpR_glpD_ECK120013970	8 R	21	6 AACAGTCAGAATATTCGAATCCGCGCTTAATTTCCGGTTT	aatn{2}tcg
GlpR_glpD_ECK120013970	14 D	1	6 aaaccggaaaTTAAGCGCGGATTCGAATATtctgactgtt	aacn{8}aag

Matching table - discovered dyads against annotated sites in glpD promoters

- The dyad-site cross-table allows us to define correspondence statistics.
- Sensitivity (Sn)
 - \square Sn = TP/(TP+FN)
 - fraction of annotated sites matched by at least one discovered dyad
- Positive Predictive Value (PPV)
 - PPV = TP/(TP+FP)
 - Fraction of discovered dyads matching at least one annotated site
- Accuracy (geometric)
 - \triangle $Acc = sqrt(Sn \bullet PPV)$
 - Geometric mean of Sn and PPV

	gataaacgccATAATGTT/	tctttgctaaTATGTTCGA ⁻	taacgaacatTTATGAGC	gggatcaactGGTTTGCG	aaaccggaaaTTAAGCGC
; sequence	јаt	ct	ää	399	aga
atgn{1}tcg		6	6		
aacn{0}att	6	6	6		
cgan{0}aca		6	6		
agtn{10}tcg					
acan{13}acg			6		
aacn{2}aca		6	6		
aatn{2}tcg		6	6		6
atgn{0}ttc		6	6		
acgn{2}cat		6	6		
aacn{3}cat		6	6		
aacn{8}aag			•		6
cctn{4}cac			6		
aacn{0}gaa		6	6		
actn{7}aag			6		

ATACATATCACTCTaaaatgtttt

ITTAACGAAAGTgaatgagggc

SGGATTCGAATATtctgactgtt

TTTTGGCGCAAAttcagtgtta

Correctness statistics for all the genes having at least one annotated site in RegulonDB

Supplementary material

Discovered motifs in promoters of glpD orthologs from Enterobacteriales

Dyad	exp_freq	осс	exp_occ	occ_P	occ_E	sig	rank
atgn{1}tcg cgan{1}cat	0.00069	11	1.02	1.30E-08	2.40E-04	3.62	1
aacn{0}att aatn{0}gtt	0.00131	13	1.95	1.60E-07	3.00E-03	2.52	2
cgan{0}aca tgtn{0}tcg	0.00056	9	0.84	2.90E-07	5.20E-03	2.28	3
agtn{10}tcg cgan{10}act	0.00026	6	0.35	2.20E-06	3.90E-02	1.41	4
acan{13}acg cgtn{13}tgt	0.00044	7	0.6	3.50E-06	6.40E-02	1.19	5
aacn{2}aca tgtn{2}gtt	0.00082	9	1.21	5.60E-06	1.00E-01	0.99	6
aatn{2}tcg cgan{2}att	0.00089	9	1.31	1.00E-05	1.90E-01	0.73	7
atgn{0}ttc gaan{0}cat	0.00094	9	1.4	1.70E-05	3.10E-01	0.52	8
acgn{2}cat atgn{2}cgt	0.00054	7	0.79	2.10E-05	3.80E-01	0.42	9
aacn{3}cat atgn{3}gtt	0.00101	9	1.47	2.60E-05	4.60E-01	0.33	10
aacn{8}aag cttn{8}gtt	0.00080	8	1.11	2.60E-05	4.70E-01	0.33	11
cctn{4}cac gtgn{4}agg	0.00023	5	0.34	2.90E-05	5.30E-01	0.28	12
aacn{0}gaa ttcn{0}gtt	0.00106	9	1.58	4.40E-05	7.90E-01	0.1	13
actn{7}aag cttn{7}agt	0.00027	5	0.37	4.90E-05	8.90E-01	0.05	14

		12 words
;assembly # 1	seed: atgntcg	13 words
aaangtt	aacnttt	0.82
.aatgtt	aacatt.	3.38
.aatnntcg	cgannatt.	2.1
atgntcg	cgancat	7.55
atgttc	gaacat	3.29
atgnnngtt	aacnnncat	1.63
atgnncgt.	.acgnncat	1.46
tgttcg	cgaaca	4.58
tgtnngtt	aacnnaca	2.4
tgtncgt.	.acgnaca	1.32
gttngtt	aacnaac	1.05
gttcgt.	.acgaac	0.47
ttcgtt	aacgaa	1.53
aaatgttcgtt	aacgaacattt	7.55
;assembly # 2	seed: atgnnnnnnntcg	19 words
aaangtt	aacnttt	0.82
.aatgtt	aacatt.	3.38
.aatnntcg	cgannatt.	2.1
atgntcg	gancat	7.55
atgttc	gaacat	3.29
atgnnnnnntcg.	.cgannnnnncat	1.82
atgnnngtt	aacnnncat	1.63
atgnncgt	acgnncat	1.46
atgnnnnnnncga	tcgnnnnnncat	0.93
tgttcg	cgaaca	4.58
tgtnngtt	aacnnaca	2.4
tgtncgt	acgnaca	1.32
tgtnnnnntcg.	.cgannnnnaca	0.74
gttngtt	aacnaac	1.05
gttcgt	acgaac	0.47
gttnnnntcg.	.cgannnnaac	0.35
ttcgtt	aacgaa	1.53
tcgnnntcg.	.cgannncga	0.6
tcgnnnncga	tcgnnnncga	0.06
aaatgttcgttntcga	tcganaacgaacattt	7.55
	ceganaacgaacaccc	7.55
;assembly # 3	seed: agtnnnnnnnnnntcg	3 words
agtnnnnnnnnntcg	cgannnnnnnnact	1.52
.gttnnnnnnnntcg	cgannnnnnnnaac.	0.9
ttcnnnnnnntcg	cgannnnnnngaa	0.78
agttcnnnnnnntcg	cgannnnnnngaact	1.52
;assembly # 4	seed: acannnnnnnnnnnnnacg	3 words
acannnnnnnnnnnacg.	.cgtnnnnnnnnnnntgt	1.26
acannnnnnnnnnnncga	tcgnnnnnnnnnnnntgt	0.48
acannnnnnnnnnnaac	gttnnnnnnnnnnntgt	0.01
acannnnnnnnnnaacga	tcgttnnnnnnnnnnntgt	1.26