A röntgengenerátorok csoportosítása:

- tápellátó hálózat szerint: két fázisú, három fázisú
- teljesítményük szerint:
 - · nagy teljesítményű (P= 100 kW)
 - · közepes teljesítményű (P= 50 ... 100 kW)
 - · kis teljesítményű (P= 6 ... 50 kW)
- **egyenirányítás módja szerint:** együtemű, kétütemű, hatütemű, tizenkét ütemű
- nagyfeszűltség előállítási mód szerint (nagyfesz.transzformátor áttétel viszonya, szekunderben szabályozott, impulzus üzemben szabályozott.-kitöltési tényező, frekvencia-)
- védelmi automatika szerint: állandó anódáramú (kW), eső anódáramú (mAs)

Nagyfeszültség előállítási mód szerint : ZABÁLYZOTT NAGYFREKVENCIÁS

Leistungskreis eines Gleichspannungsgenerators

NAGYFREKVENCIÁS MULTIPULS: Tirisztoros

32

Leistungskreis eines Hochfrequenz- oder Multipulsgenerators

 Zeitlicher Verlauf der Zündimpulse, des Schwingstromes i(t) und der Röhrenspannung U

Funktion der Röhrenspannungsregelung mit einem Serienschwingkreis-Wechselrichter (Inverter)

IGBT-és (IGBT = Insulated Gate Bipol Transistor)

RÖNTGENGENERÁTOR PARAMÉTERMÉRŐK

A **röntgengenerátorok a röntgencső működtetésére szolgálnak**, természetesen az orvosi vizsgálat igényeinek megfelelően.

Így a röntgen a röntgencső paramétereinek mérését értjük, azaz \mathbf{U}_{AK} , \mathbf{I}_{A} , \mathbf{mAs} , \mathbf{t}_{exp} valamint \mathbf{U}_{AK} jelalak megjelenítését.

Elvárt pontossági követelmények:

Uhálózati 10% változásra megengedett U_{AK}=±0,01% és

 $IA=\pm 0,01\%$.

U_{AK} **feszültségtartomány:** 40 kV-150 kV

I_A csőáram tartomány: átvilágítás 0,1-6 mA,

felvételezés 25-1000 mA.

Mérési módszerek lehetnek:

hagyományos, a nagyfeszűltségű kör megbontásával járó mérési eljárások. Ezek másképpen un.
invazív eljárások

- gömbszikraköz,
- nagyfeszültségű ohmos osztót alkalmazó.
- korszerű, azaz a sugárzásból közvetve feszültséget meghatározó un. non-invazív eljárások (sugárelnyelés energiafüggését felhasználó)
 - spektrometriai módszerek,
 - radiográfiai módszerek,
 - két detektort alkalmazó módszerek.

(a beépített ionizációs kamrával),

felezőrétegvastagság.

PARAMÉTERMÉRŐK

Kétdetektoros módszerek elve azon alapul. hogy egy röntgensugárzás spektruma és sugárgyengítési görbéje (azaz az áteresztett sugár dózisa az abszorbens vastagság függvényében) kölcsönösen egyértelmű összefüggésben áll egymással (Silberstein 1932).

A sugárgyengülést dózismérővel és szűrősorozattal kimérve, a spektrum visszaszámítható majd ebből ($\Psi = \Psi_0 \exp(-\mu x)$ és $\mu = \text{constans*}\ U_{AK}$ alapján bonyolult algoritmussal) U_{AK} számítható . Két detektort - CsI szcintillátor és fotódióda - alkalmazva különböző rétegvastagságú szűrőkkel - réz- az érzékelt jel nagysága a sugárzás energiaintenzitásával (Ψ energiafluxussűrűségével) arányos.

PTW kV-Mentor blokkvázlata

RÖNTGENBERENDEZÉS

Egy funkcionális felépítés és specifikációs adatok példa

Specifikáció:

Nagyfrekvenciás X-ray generátor:

Kimeneti teljesítmény: 25 kW;

Inverter frekvencia: 40 kHz.

Röntgen Cső: XD56-11 32/130

Dual-fókusz: kis fókusz: 0.6 mm,

nagy fókusz: 1.3 mm.

Hőterhelés: 900kJ (1200 kHU, 1 HU= 0,75 J);

Rapid cső fordulatszáma: 3000 fpm;

Cső feszültség: 40+125 kV;

Cső áram: 200 mA;

RÖNTGENBERENDEZÉS

KIALAKTÁSOK: Példa szerkezetekre

Movement

Counter weight