Mid-term examination

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Information and Communications
Gwangju Institute of Science and Technology

Welcome!

- Total nineteen (19) problems
 - Five (5) minutes for each problem
 - 95 minutes long
- Policy
 - No cellphone!
 - No calculator!
 - No question!
- Recommendation
 - Prepare your answer sheets. (Write down your name.)

If not otherwise stated,

- Assume that following conditions:
 - 300 K
 - Silicon
- For MOSFETs,
 - NMOSFET
 - Conventional MOSFET for logic applications
 - Neglect the channel length modulation.

Problem1 (Band structure)

- The band structure of silicon is shown left below.
 - The band structure of a unknown material is shown right below.
 - Energy "0" means the valence band maximum.
 - Estimate the <u>band gap</u> of the unknown material.

Problem2 (Doping)

- The periodic table is shown below.
 - Arsenic (As) ions are implemented with a dose of 2x10¹⁵ cm⁻².
 - lons are uniformly distributed with a depth of 0.1 μm.
 - What is the <u>electron</u> and <u>hole densities</u>, [cm⁻³], at that region?
 - (You may use the intrinsic carrier density of 10¹⁰ cm⁻³, if you want.)

hydrogen 1	-					5		-	100	(55)	13.77	5.5	17.17	(859)		57.	helium 2 He
1,0079 Ithium	beryllium											boron	carbon	nitrogen	oxygen	fluorine	4.0026 neon
3	4											5	6	7	8	9	10
Li	Be											В	С	N	0	F	Ne
6.941	9.0122											10.811	12.011	14.007	15.999	18.998	20.180
sodium	magnesium											aluminium	sticon	phosphorus	sulfur	chlorine	argon
11	12											13	14	15	16	17	18
Na	Mg											AI	Si	Р	S	CI	Ar
22.990	24.305								-1-1-1			26.982	28.096	30.974	32.065	35,453	39.948
potassium 19	calcium 20	scandium 21	titanium 22	vanadium 23	chromium 24	manganese 25	26	cobalt 27	nickel 28	copper 29	zinc 30	gallium 31	germanium 32	arsenic 33	selenium 34	bromine 35	krypton 36
100		10000		1/	_		_	_	10.700	~	_	_	-		200.00	100.00	100575
K	Ca	Sc	11	V	Cr	Mn	Ьe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078	44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
rubidium	strontium	yttrium	zirconium	niobium	molybdenum	technetium	ruthenium	rhodium	palladium	silver	cadmium	indium	tin	antimony	tellurium	iodine	xenon
37	38	39	40	41	42	43	_44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	ln	Sn	Sb	Te		Xe
85.468	87.62	88.906	91.224	92.906	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29

Problem3 (Mobility)

- Drift velocity is shown below. (Log scale)
 - Estimate the <u>low-field mobility</u> and <u>saturation velocity</u>.
 - Is the graph for <u>electrons or holes</u>?

Problem4 (Drift and diffusion)

- Consider an one-dimensional structure.
 - The electron current density, J_n , is given by a sum of the drift and diffusion contributions:

$$J_n = -q\mu_n n \frac{d\phi}{dx} + qD_n \frac{dn}{dx}$$

— At equilibrium, we have zero current density:

$$J_n = 0$$

Moreover, at equilibrium, the Einstein relation holds:

$$D_n = \frac{k_B T}{q} \mu_n$$

- In this case, find out the <u>relation between n and ϕ </u>.

Problem5 (pn junction)

- We studied the built-in potential of a pn junction, V_0 .
 - It is given by

$$V_0 = \frac{k_B T}{q} \ln \frac{N_A N_D}{n_i^2}$$

Derive the above relation.

Problem6 (pn junction)

- Consider a pn junction at reverse bias, V_R .
 - The depletion width (in the n-type region) is given by

$$x_n = \sqrt{\frac{2\epsilon_s}{qN_D}} \frac{N_A}{N_A + N_D} (V_0 + V_R)$$

- Note that V_R is the reverse bias.
- Then, derive the expression for the <u>junction capacitance</u>.

Problem7 (Diode model)

- Use the exponential model.
 - Each diode conducts 1 mA at 0.7 V.
 - You may use $\exp\left(\frac{0.1 \text{ V}}{V_T}\right)$ ≈ 50.
 - The output voltage must be 2.4 V.
 - What is the <u>value of R</u>?

Problem8 (Rectifier)

- A half-wave rectifier is shown left below.
 - The expected voltage waveform is shown right below.
 - Now a capacitor, C_1 , is connected to the output port.
 - For small and large C_1 , draw the **expected voltage waveforms**.

Problem9 (Diode circuits)

- Two diode circuits are shown below. (Diodes are ideal.)
 - Calculate the <u>voltage, V</u> for both circuits.

Problem10 (Small-signal)

- A nonlinear system, $I_{out} = I_s \exp \frac{V_{in}}{V_T}$, is considered.
 - Two cases (0.3 V swing and 1 mV swing) are shown below.
 - Explain their <u>difference in the frequency domain</u>.

Problem11 (MOSFET structure)

- A schematic diagram of an NMOSFET is shown.
 - (Consider a typical one for logic applications.)
 - However, all three parameters <u>oxide thickness</u>, <u>source/drain</u>
 <u>doping density</u>, and <u>substrate doping density</u> are wrong.
 - Specify reasonable values.

Problem12 (Inversion)

- Consider a MOS structure.
 - The acceptor density of the p-type substrate is N_A .
 - The electric field in the oxide is E_{ox} .
 - (Neglect the electrons in this problem.)
 - Then, what is the <u>potential difference between the</u> <u>oxide/semiconductor interface and the substrate</u>?

Problem13 (Inversion charge density)

The inversion charge density (per unit area) is given by

$$Q = C_{ox}(V_{GS} - V_{TH})$$

- Here, C_{ox} is the oxide capacitance ([F/cm²]) and V_{TH} is the threshold voltage.
- Consider a device whose dielectric thickness is 2 nm.
- Assume that the dielectric permittivity is 3.2 x 10⁻¹³ F/cm.
- The threshold voltage, V_{TH} , is 0.4 V.
- Elementary charge is 1.6×10^{-19} C.
- When the electron sheet density is 10^{12} cm⁻², what is the **gate voltage**, V_{GS} ?

Problem14 (Triode region)

The drain current at the triode region is given by

$$I_D = \mu_n C_{ox} \frac{W}{L} \left[(V_G - V_{TH}) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$$

Derive the above equation explicitly.

Problem15 (Threshold)

- Simulated Id-Vg curve is shown below.
 - Drain voltage is 0.1 V.
 - Estimate the <u>threshold voltage and $\mu_n C_{ox} \frac{W}{L}$.</u>

Problem16 (Transconductance)

- Transconductance of a long-channel MOSFET is shown.
 - It is operated in the saturation region.
 - What is the ideal behavior? Why does g_m behave differently?

Problem17 (Small-signal model)

- Draw the MOSFET small-signal model.
 - The saturation region is assumed.
 - Include the channel-length modulation.
 - Express the quantities explicitly.

Problem18 (PMOS)

- Calculate the output voltage, V_{out} .
 - Neglect the channel length modulation.

Problem19 (PMOS)

- Calculate the output voltage, V_{out} .
 - Neglect the channel length modulation.

Thank you!

- Submit your answer sheets.
 - The problems will be posted.