Progetto - Fondamenti di informatica

Francesco Andreuzzi IN0500630

Anno 2018-2019

1 Calcolo della funzione

Ricavo la funzione dal resto della divisione del numero di matricola per 2^{16} :

(500630	mod	65536) = 41878	\rightarrow
41878 ₁₀ =	= 10100	001110010110_2	

x	\mathbf{y}	\mathbf{z}	k	f(x,y,z,k)
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

Minterm

Riscrivo le combinazioni (x,y,z,k) in cui la funzione assume valore 1:

x	\mathbf{y}	Z	k	f(x,y,z,k)
0	0	0	0	1
0	0	1	0	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	1	1	1
1	1	0	1	1
1	1	1	0	1

La funzione f(x, y, z, k) quindi si può esprimere nel seguente modo:

$$f(x, y, z, k) = (\overline{x} \cdot \overline{y} \cdot \overline{z} \cdot \overline{k}) + (\overline{x} \cdot \overline{y} \cdot z \cdot \overline{k}) + (\overline{x} \cdot y \cdot \overline{z} \cdot \overline{k}) + (\overline{x} \cdot \overline{z} \cdot \overline{k}) + (\overline{x} \cdot y \cdot \overline{z} \cdot \overline{k}) + (\overline{x} \cdot \overline{z} \cdot \overline$$

Maxterm

Riscrivo le combinazioni (x, y, z, k) in cui la funzione assume valore 0:

x	у	\mathbf{z}	k	f(x,y,z,k)
0	0	0	1	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	0

La funzione f(x, y, z, k) quindi si può esprimere nel seguente modo:

$$f(x, y, z, k) = (x + y + z + \overline{k}) \cdot (x + y + \overline{z} + \overline{k}) \cdot (x + \overline{y} + z + k) \cdot (x + \overline{y} + z + \overline{k}) \cdot (\overline{x} + y + z + \overline{k}) \cdot (\overline{x} + y + \overline{z} + \overline{k}) \cdot (\overline{x} + y + \overline{z} + \overline{k}) \cdot (\overline{x} + \overline{y} + z + \overline{k}) \cdot (\overline{x} + \overline{y} + z + \overline{k}) \cdot (\overline{x} + \overline{y} + \overline{z} + \overline{k})$$

2 Semplificazione

Semplificazione algebrica

Minterm

$$f(x,y,z,k) = \underline{(\overline{x} \cdot \overline{y} \cdot \overline{z} \cdot \overline{k})} + (\overline{x} \cdot \overline{y} \cdot z \cdot \overline{k}) + (\overline{x} \cdot y \cdot z \cdot \overline{k}) + (\overline{x} \cdot y \cdot z \cdot \overline{k}) + (x \cdot \overline{y} \cdot \overline{z} \cdot \overline{k}) + (x \cdot y \cdot z \cdot \overline{k})$$

$$\stackrel{T9}{=} (\overline{y} \cdot \overline{z} \cdot \overline{k}) + (\overline{x} \cdot \overline{y} \cdot z \cdot \overline{k}) + (\overline{x} \cdot y \cdot z \cdot \overline{k}) + (\overline{x} \cdot y \cdot z \cdot \overline{k}) + (x \cdot y \cdot z \cdot \overline{k}) + ($$

Maxterm

$$f(x,y,z,k) = (x+y+z+\bar{k}) \cdot (x+y+\bar{z}+\bar{k}) \cdot (x+y+z+k) \cdot (x+\bar{y}+z+k) \cdot (x+\bar{y}+z+\bar{k}) \cdot (x+y+z+\bar{k}) \cdot (x+y+z+\bar{k}) \cdot (x+y+z+\bar{k}) \cdot (x+y+z+\bar{k}) \cdot (x+\bar{y}+z+\bar{k}) \cdot (x$$

$$f(x,y,z,k) = \dots$$

$$= \frac{1}{4} (x \cdot y \cdot k + x \cdot z + x \cdot \overline{y} \cdot \overline{k} + y \cdot z + z \cdot \overline{k} + \overline{y} \cdot \overline{k}) \cdot (\overline{x} + y + \overline{z} + k) \cdot (\overline{x} + \overline{y} + \overline{z} + \overline{k})$$

$$= \frac{1}{4} (x \cdot y \cdot k + x \cdot z + x \cdot \overline{y} \cdot \overline{k} + y \cdot z + z \cdot \overline{k} + y \cdot \overline{k}) \cdot (\overline{x} + y + \overline{z} + k) + x \cdot \overline{y} \cdot \overline{k} \cdot (\overline{x} + y + \overline{z} + k) + x \cdot \overline{y} \cdot \overline{k} \cdot (\overline{x} + y + \overline{z} + k) + x \cdot \overline{y} \cdot \overline{k} \cdot (\overline{x} + y + \overline{z} + k) + x \cdot \overline{y} \cdot \overline{k} \cdot (\overline{x} + y + \overline{z} + k) + x \cdot \overline{y} \cdot \overline{k} \cdot (\overline{x} + y + \overline{z} + k) + x \cdot \overline{y} \cdot \overline{k} \cdot (\overline{x} + y + \overline{z} + k) + x \cdot \overline{y} \cdot \overline{k} \cdot (\overline{x} + y + \overline{z} + k) + x \cdot \overline{y} \cdot \overline{k} \cdot \overline{x} \cdot \overline{y} \cdot \overline{k} + x \cdot \overline{y} \cdot \overline{x} \cdot \overline{k} \cdot \overline{y} \cdot \overline{x} \cdot \overline{x} \cdot \overline{x} \cdot \overline{x} \cdot \overline{x} \cdot \overline{y} \cdot \overline{x} \cdot \overline{$$

Mi sono ricondotto all'espressione dei minterm non semplificata. La semplificazione può procedere come si è già mostrato sopra.

Mappa di Karnaugh

La funzione ottenuta è la seguente:

$$f(x,y,z,k) = \overline{(\overline{y} \cdot \overline{z} \cdot \overline{k})} + \overline{(x \cdot y \cdot \overline{z} \cdot k)} + \overline{(x \cdot \overline{y} \cdot z \cdot k)} + \overline{(\overline{x} \cdot y \cdot z)} + \overline{(\overline{x} \cdot z \cdot \overline{k})} + \overline{(y \cdot z \cdot \overline{k})}$$

Metodo tabellare di Quine - Mc Cluskey

Costruisco la tabella (ordinata secondo il numero di 1 all'interno del termine):

	Livello	Numero	Termine
~	0	0	0000
\checkmark	1	2	0010
✓	1	8	1000
\checkmark	2	6	0110
\checkmark	3	7	0111
A	3	11	1011
В	3	13	1101
✓	3	14	1110

Effettuate le semplificazioni, ottengo la seguente tabella.

	Livelli	Implicanti	Termine
С	0,1	0,2	00-0
D	0,1	0,8	-000
E	1,2	2,6	0-10
F	2,3	6,7	011-
G	2,3	6,14	-110

Non è possibile operare alcuna semplifiazione.

Costruisco il reticolo, in modo da poter valutare quali sono gli implicanti essenziali:

Per coprire il termine 2 posso scegliere l'implicante C oppure l'implicante E. Scegliendo l'implicante E mi riconduco all'espressione della funzione trovata con la mappa di Karnaugh.

Implicante	Termini implicati	Espressione
A	11	$x \cdot \overline{y} \cdot z \cdot k$
В	13	$x \cdot y \cdot \overline{z} \cdot k$
G	6,14	$y\cdot z\cdot \overline{k}$
F	6,7	$\overline{x} \cdot y \cdot z$
D	0,8	$\overline{y} \cdot \overline{z} \cdot \overline{k}$
E	0,2	$\overline{x} \cdot z \cdot \overline{k}$

La funzione ottenuta è la seguente:

$$f(x, y, z, k) = \underbrace{(\overline{y} \cdot \overline{z} \cdot \overline{k})}_{\text{D}} + \underbrace{(x \cdot y \cdot \overline{z} \cdot k)}_{\text{B}} + \underbrace{(x \cdot \overline{y} \cdot z \cdot k)}_{\text{A}} + \underbrace{(\overline{x} \cdot y \cdot z)}_{\text{F}} + \underbrace{(\overline{x} \cdot z \cdot \overline{k})}_{\text{E}} + \underbrace{(y \cdot z \cdot \overline{k})}_{\text{G}}$$

3 Schema logico

Minterm:

$$\begin{split} \boldsymbol{f(x,y,z,k)} &= (\overline{x} \cdot \overline{y} \cdot \overline{z} \cdot \overline{k}) + (\overline{x} \cdot \overline{y} \cdot z \cdot \overline{k}) + (\overline{x} \cdot y \cdot z \cdot \overline{k}) +$$

Maxterm:

$$f(x, y, z, k) = (x + y + z + \overline{k}) \cdot (x + y + \overline{z} + \overline{k}) \cdot (x + \overline{y} + z + k) \cdot (x + \overline{y} + z + \overline{k}) \cdot (\overline{x} + y + z + \overline{k}) \cdot (\overline{x} + y + \overline{z} + k) \cdot (\overline{x} + \overline{y} + z + k) \cdot (\overline{x} + \overline{y} + \overline{z} + \overline{k})$$

Funzione semplificata:

$$\boldsymbol{f(x,y,z,k)} = (\overline{y} \cdot \overline{z} \cdot \overline{k}) + (x \cdot y \cdot \overline{z} \cdot k) + (x \cdot \overline{y} \cdot z \cdot k) + (\overline{x} \cdot y \cdot z) + (\overline{x} \cdot z \cdot \overline{k}) + (y \cdot z \cdot \overline{k})$$

