MONOID k-FUNCTORS AND THEIR REPRESENTATIONS

1. Introduction and notation

In these notes we study algebraic structures in the category of *k*-functors with special emphasis on monoid objects.

If R is a ring, then we denote by R^{\times} its multplicative monoid.

2. Algebraic structures in the category of k-functors

In the sequel we assume that the reader is familiar with notions of a monoid, group etc. in arbitrary category with finite products. For definitions and some discussion related to these notions cf. [ML98, pages 2-5].

Definition 2.1. *A monoid (group, abelian group, ring) k-functor* is a monoid (group, abelian group, ring) object in the category of *k*-functors.

Example 2.2. Let \mathfrak{X} be a k-functor such that \mathcal{M} or $_k(\mathfrak{X},\mathfrak{X})$ exists. Then \mathcal{M} or $_k(\mathfrak{X},\mathfrak{X})$ is a monoid k-functor with respect to composition of morphisms.

Example 2.3. Basic example of a ring k-functor is a k-functor \Re given by

$$\mathfrak{K}(A) = k$$
, $\mathfrak{K}(f) = 1_k$

for any k-algebra A and morphism f of k-algebras. It can be described as a constant k-functor ([ML98, page 67]) corresponding to k.

Definition 2.4. Let \mathfrak{R} be a ring k-functor. Then we denote by \mathfrak{R}^{\times} the k-subfunctor of \mathfrak{R} defined by

$$\mathfrak{R}^{\times}(A) = \mathfrak{R}(A)^{\times}$$

for every k-algebra A. We call \mathfrak{R}^{\times} the multiplicative monoid k-functor of \mathfrak{R} .

Definition 2.5. Let \mathfrak{A} be a commutative ring k-functor. An \mathfrak{A} -algebra is an \mathfrak{A} -algebra object in the category of k-functors.

3. Global regular functions on a k-functor

Recall the ring k-functor \mathfrak{K} from Example 2.3. Note that a \mathfrak{K} -algebra \mathfrak{A} can be viewed as a functor $\mathfrak{A}: \mathbf{Alg}_k \to \mathbf{Alg}_k$.

Definition 3.1. The \mathfrak{K} -algebra \mathfrak{O}_k represented by the identity functor on \mathbf{Alg}_k is called *the structure* \mathfrak{K} -algebra.

Let $|-|: \mathbf{Alg}_k \to \mathbf{Set}$ be the forgetful k-functor. Note that |-| is the underlying k-functor of \mathfrak{K} -algebra \mathfrak{O}_k . Recall that the affine line \mathbb{A}^1_k is an affine k-scheme having k-algebra of polynomials with one variable as a k-algebra of regular functions.

Fact 3.2. Let $|-|: \mathbf{Alg}_k \to \mathbf{Set}$ be the forgetful k-functor. Then we have natural isomorphism

$$\mathfrak{P}_{\mathbb{A}^1_{\iota}} \cong |-|$$

Proof. Let *B* be a *k*-algebra. We have the following chain of identifications

$$\mathfrak{P}_{\mathbb{A}^1_+}(B) = \operatorname{Mor}_k(\operatorname{Spec} B, \mathbb{A}^1_k) = \operatorname{Mor}_k(\operatorname{Spec} B, \operatorname{Spec} k[x]) = \operatorname{Mor}_k(k[x], B) = |B|$$

natural in B.

In particular, since |-| carries the structure \mathfrak{K} -algebra \mathfrak{O}_k , we derive that $\mathfrak{P}_{\mathbb{A}^1_k}$ admits a structure of \mathfrak{K} -algebra isomorphic to \mathfrak{O}_k .

No we introduce regular functions on *k*-functors.

Definition 3.3. Let \mathfrak{X} be a k-functor and assume that \mathcal{M} or $_k(\mathfrak{X}, \mathfrak{O}_k)$ is a set. Then $\mathrm{Mor}_k(\mathfrak{X}, \mathfrak{O}_k)$ is a k-algebra with respect to the structure induced by \mathfrak{O}_k . We call this k-algebra the k-algebra of global regular functions on \mathfrak{X} . Its elements are called global regular functions on \mathfrak{X} .

Definition 3.4. Let \mathfrak{X} be a k-functor. Suppose that A is a k-algebra, $x \in \mathfrak{X}(A)$ and $f \in \operatorname{Mor}_k(\mathfrak{X}, \mathfrak{O}_k)$. The element $f(x) \in A$ is called *the value of f on a point x*.

For given k-functor \mathfrak{X} we describe k-algebra operations on $\operatorname{Mor}_k(\mathfrak{X}, \mathfrak{O}_k)$ in terms of values of its elements on points of \mathfrak{X} . For this consider $\alpha \in k$ and $f, g \in \operatorname{Mor}_k(\mathfrak{X}, \mathfrak{O}_k)$. We have formulas

$$(f+g)(x) = f(x) + g(x), (f \cdot g)(x) = f(x) \cdot g(x), (\alpha \cdot f)(x) = \alpha \cdot f(x)$$

in which right hand side are *k*-algebra operations in *A*.

Example 3.5. Let \mathfrak{X} be a k-functor and assume that \mathcal{M} or $_k(\mathfrak{X}, \mathfrak{O}_k)$ exists. Fix k-algebra A. Note that $\mathrm{Mor}_A(\mathfrak{X}_A, \mathfrak{O}_A)$ is an A-algebra of global regular functions on \mathfrak{X}_A . Moreover, if B is an A-algebra, then

$$\operatorname{Mor}_{A}(\mathfrak{X}_{A},\mathfrak{O}_{A})\ni f\mapsto f_{B}\in \operatorname{Mor}_{B}(\mathfrak{X}_{B},\mathfrak{O}_{B})$$

is a morphism of A-algebras. This implies that \mathcal{M} or $_k(\mathfrak{X}, \mathfrak{O}_k)$ admits a canonical structure of an \mathfrak{O}_k -algebra k-functor.

4. Internal hom and product of k-functors

We denote by $\mathbf{1}$ a k-functor that assigns to every k-algebra a set with one element. Then for every k-algebra A the restriction $\mathbf{1}_A$ is a terminal object in the category of A-functors.

Fact 4.1. Let \mathfrak{X} be a k-functor. Suppose A is a k-algebra and $x \in \mathfrak{X}(A)$. Then x determines a morphism $\mathbf{1}_A \to \mathfrak{X}_A$ that for every A-algebra B with structural morphism $f: A \to B$ sends a unique element of $\mathbf{1}_A(B)$ to $\mathfrak{X}(f)(x) \in \mathfrak{X}_A(B)$. This gives rise to a bijection

$$\mathfrak{X}(A) \cong \operatorname{Mor}_{A} (\mathbf{1}_{A}, \mathfrak{X}_{A})$$

Proof. Left to the reader as an exercise.

The discussion below is partially an application of the main result in [Mon19, section 6]. For reader's convenience we make our presentation self-contained.

Definition 4.2. Let $\mathfrak{U}, \mathfrak{X}, \mathfrak{Y}$ be k-functors and let $\sigma: \mathfrak{U} \times \mathfrak{X} \to \mathfrak{Y}$ be a morphism of k-functors. Fix $z \in \mathfrak{U}(A)$ for some k-algebra A. We denote by $i_z: \mathbf{1}_A \to \mathfrak{U}_A$ the morphism of A-functors corresponding to z by Fact 4.1. Since $\mathbf{1}_A$ is terminal A-functor, a morphism $\sigma_A \cdot (i_z \times 1_{\mathfrak{X}_A})$ is isomorphic to a morphism $\sigma_z: \mathfrak{X}_A \to \mathfrak{Y}_A$ of A-functors. We call σ_z the slice of σ over z.

Definition 4.3. Let $\mathfrak{X}, \mathfrak{Y}$ be k-functors. Let \mathfrak{J} be a k-functor such that $\mathfrak{J}(A)$ is a subset of a class $\operatorname{Mor}_A(\mathfrak{X}_A, \mathfrak{Y}_A)$ for every k-algebra A. Assume that for every morphism $f: A \to B$ of k-algebras and every $\sigma \in \mathfrak{J}(A)$ we have

$$\mathfrak{J}(f)(\sigma) = \sigma_B$$

where $\sigma_B \in \text{Mor}_B(\mathfrak{X}_B, \mathfrak{Y}_B)$ is the restriction of σ along f. Then we call \mathfrak{J} a k-subfunctor of internal hom of \mathfrak{X} and \mathfrak{Y} .

Definition 4.4. Let $\mathfrak{X},\mathfrak{Y},\mathfrak{U}$ be k-functors and let $\sigma:\mathfrak{U}\times\mathfrak{X}\to\mathfrak{Y}$ be a morphism of k-functors. Suppose that \mathfrak{J} is a k-subfunctor of internal hom of \mathfrak{X} and \mathfrak{Y} . Assume that $\sigma_z:\mathfrak{X}_A\to\mathfrak{Y}_A$ is contained in $\mathfrak{J}(A)$ for every k-algebra A and $z\in\mathfrak{U}(A)$. Then we call σ a family of \mathfrak{J} -morphisms parametrized by \mathfrak{U} .

Let \mathfrak{J} be a k-subfunctor of internal hom of \mathfrak{X} and \mathfrak{Y} . Assume that $\sigma : \mathfrak{U} \times \mathfrak{X} \to \mathfrak{Y}$ is a \mathfrak{J} -family of morphism parametrized by \mathfrak{U} . Then the family of maps

$$\mathfrak{U}(A) \ni z \mapsto \sigma_z \in \mathfrak{J}(A)$$

gives rise to a morphism $\tau: \mathfrak{U} \to \mathfrak{J}$ of k-functors. Indeed, for a morphism $f: A \to B$ of k-algebras and $z \in \mathfrak{U}(A)$ we have

$$\sigma_B \cdot \left(i_{\mathfrak{U}(f)(z)} \times 1_{\mathfrak{X}_B}\right) = \left(\sigma_A \cdot \left(i_z \times 1_{\mathfrak{X}_A}\right)\right)_B$$

and hence $\sigma_{\mathfrak{U}(f)(z)} = (\sigma_z)_B$. This gives rise to a map Φ of classes

$$\left\{ \text{families } \mathfrak{U} \times \mathfrak{X} \to \mathfrak{Y} \text{ of } \mathfrak{J}\text{-morphisms parametrized by } \mathfrak{U} \right\} \ni \sigma \mapsto \tau \in \text{Mor}_k \left(\mathfrak{U}, \mathfrak{J} \right)$$

Consider next a morphism $\tau: \mathfrak{U} \to \mathfrak{J}$ of k-functors and define $\sigma: \mathfrak{U} \times \mathfrak{X} \to \mathfrak{Y}$ by formula $\sigma^A(z,x) = \left(\tau^A(z)\right)^A(x)$ for every k-algebra A and points $z \in \mathfrak{U}(A)$, $x \in \mathfrak{X}(A)$. Let $f: A \to B$ be a morphism of k-algebras. Then

$$\sigma^{B}\left(\mathfrak{U}(f)(z),\mathfrak{X}(f)(x)\right) = \left(\tau^{B}\left(\mathfrak{U}(f)(z)\right)\right)^{B}\left(\mathfrak{X}(f)(x)\right) = \left(\left(\tau^{A}(z)\right)_{B}\right)^{B}\left(\mathfrak{X}(f)(x)\right) = \left(\tau^{A}(z)\right)^{B}\left(\mathfrak{X}(f)(x)\right) = \mathfrak{Y}(f)\left(\left(\tau^{A}(z)\right)^{A}(x)\right) = \mathfrak{Y}(f)\left(\sigma^{A}(z,x)\right)$$

Thus $\sigma: \mathfrak{U} \times \mathfrak{X} \to \mathfrak{Y}$ is a morphism of k-functors. For every k-algebra A and $z \in \mathfrak{U}(A)$ we have $\sigma_z = \tau^A(z)$. Indeed, let $f: A \to B$ be a morphism of k-algebras and x be an element in $\mathfrak{X}(B)$ then we have

$$(\sigma_z)^B(x) = \sigma^B(\mathfrak{U}(f)(z), x) = \left(\tau^B(\mathfrak{U}(f)(z))\right)^B(x) = \left(\left(\tau^A(z)\right)_B\right)^B(x) = \left(\tau^A(z)\right)^B(x)$$

Hence σ is a family of \mathfrak{J} -morphisms parametrized by \mathfrak{U} . This gives rise to a map Ψ of classes

$$\operatorname{Mor}_{k}(\mathfrak{U},\mathfrak{J})\ni\tau\mapsto\sigma\in\left\{ \operatorname{families}\mathfrak{U}\times\mathfrak{X}\to\mathfrak{Y} \text{ of }\mathfrak{J}\operatorname{-morphisms} \text{ parametrized by }\mathfrak{U} \right\}$$

Now we have the following result, which is an instance [Mon19, Theorem 6.3]. To make presentation self-contained we give a complete proof.

Theorem 4.5. Let \mathfrak{X} , \mathfrak{Y} be k-functors and let \mathfrak{J} be a k-subfunctor of internal hom of \mathfrak{X} and \mathfrak{Y} . Then maps

$$\Phi: \left\{ \text{families } \mathfrak{U} \times \mathfrak{X} \to \mathfrak{Y} \text{ of } \mathfrak{J}\text{-morphisms parametrized by } \mathfrak{U} \right\} \to \operatorname{Mor}_k(\mathfrak{U}, \mathfrak{J})$$

and

$$\Psi: Mor_{k}\left(\mathfrak{U}, \mathfrak{J}\right) \rightarrow \left\{\textit{families}\ \mathfrak{U} \times \mathfrak{X} \rightarrow \mathfrak{Y}\ \textit{of}\ \mathfrak{J}\textit{-morphisms}\ \textit{parametrized}\ \textit{by}\ \mathfrak{U}\right\}$$

are mutually inverse bijections.

Proof. Pick a morphism $\tau: \mathfrak{U} \to \mathfrak{J}$ of *k*-functors. Let *A* be a *k*-algebra and $z \in \mathfrak{U}(A)$. In the discussion preceding the statement we showed that $\Psi(\tau)_z = \tau^A(z)$. Thus

$$\left(\Phi(\Psi(\tau))\right)^{A}(z) = \Psi(\tau)_{z} = \tau^{A}(z)$$

and hence $\Phi \cdot \Psi$ is the identity.

Pick a family of \mathfrak{J} -morphism $\sigma: \mathfrak{U} \times \mathfrak{X} \to \mathfrak{Y}$ parametrized by \mathfrak{U} . Let A be a k-algebra and $z \in \mathfrak{U}(A)$, $x \in \mathfrak{X}(A)$ be points. Then

$$(\Psi(\Phi(\sigma)))^A(z,x) = \left(\Phi(\sigma)^A(z)\right)^A(x) = \sigma_z^A(x) = \sigma^A(z,x)$$

Thus $\Psi\cdot\Phi$ is the identity map.

Now we formulate some consequences of Theorem 4.5.

Corollary 4.6. Let $\mathfrak{X}, \mathfrak{Y}$ be k-functors. Assume that for every k-algebra A the class $\operatorname{Mor}_A(\mathfrak{X}_A, \mathfrak{Y}_A)$ is a set. Then there is a bijection

$$Mor_k(\mathfrak{U} \times \mathfrak{X}, \mathfrak{Y}) \rightarrow Mor_k(\mathfrak{U}, \mathcal{M}or_k(\mathfrak{X}, \mathfrak{Y}))$$

of classes.

Definition 4.7. Let $\mathfrak{X},\mathfrak{Y}$ be k-functors. If $\operatorname{Iso}_A(\mathfrak{X}_A,\mathfrak{Y}_A)$ is a set for every k-algebra A, then we define a k-subfunctor $\mathcal{I}\operatorname{so}_k(\mathfrak{X},\mathfrak{Y})$ of $\operatorname{Mor}_k(\mathfrak{X},\mathfrak{Y})$ by

$$\mathcal{I}$$
so_k $(\mathfrak{X},\mathfrak{Y})(A) = I$ so_A $(\mathfrak{X}_A,\mathfrak{Y}_A)$

for every k-algebra A. We call $\mathcal{I}so_k(\mathfrak{X},\mathfrak{Y})$ the k-functor of isomorphism.

Definition 4.8. Let $\mathfrak{X},\mathfrak{Y},\mathfrak{U}$ be k-functors and let $\sigma:\mathfrak{U}\times\mathfrak{X}\to\mathfrak{Y}$ be a morphism of k-functors. Assume that $\sigma_z:\mathfrak{X}_A\to\mathfrak{Y}_A$ is an isomorphism of A-functors for every k-algebra A. Then we call σ a family of isomorphisms parametrized by \mathfrak{U} .

Corollary 4.9. Let $\mathfrak{U}, \mathfrak{X}, \mathfrak{Y}$ be k-functors and suppose that for every k-algebra A the class Iso_A $(\mathfrak{X}_A, \mathfrak{Y}_A)$ is a set. The the following map

$$\left\{ families \ \mathfrak{U} \times \mathfrak{X} \to \mathfrak{Y} \ of \ isomorphism \ parametrized \ by \ \mathfrak{U} \right\} \to \operatorname{Mor}_k \left(\mathfrak{U}, \mathcal{I} so_k \left(\mathfrak{X}, \mathfrak{Y} \right) \right)$$

is a bijection of classes.

5. ACTIONS OF MONOID k-FUNCTORS

In this section we assume that the reader is familiar with notion of an action of a monoid object in arbitrary category with finite products. For definitions and some discussion related to these notions cf. [ML98, pages 5].

Let $\mathfrak G$ be a monoid k-functor and $\mathfrak X$ be a k-functor together with an action $\alpha: \mathfrak G \times \mathfrak X \to \mathfrak X$. Next assume that k-functor $\mathcal M$ or $_k(\mathfrak X,\mathfrak X)$ exists. By Example 2.2 it is a monoid k-functor. We define a morphism $\rho: \mathfrak G \to \mathcal M$ or $_k(\mathfrak X,\mathfrak X)$ of k-functors by formula $\rho(x) = \alpha_x$. Note that by discussion preceding Theorem 4.5, we deduce that ρ is a well defined morphism of k-functors. We show now that ρ is a morphism of monoids. For this pick k-algebra k and k0. Since k0 is an action, we deduce that k1. Since k2 and hence also

$$\rho(x \cdot y) = \alpha_{x \cdot y} = \alpha_x \cdot \alpha_y = \rho(x) \cdot \rho(y)$$

Therefore, ρ is a morphism of monoid k-functors. This shows how to construct a morphism of monoid k-functors ρ from an action α of \mathfrak{G} .

Theorem 5.1. Let \mathfrak{G} be a monoid k-functor and let \mathfrak{X} be a k-functor such that $\mathcal{M}or_k(\mathfrak{X},\mathfrak{X})$ exists. Suppose that

$$\left\{actions\ of\ \mathfrak{G}\ on\ \mathfrak{X}\right\} \longrightarrow \left\{Morphisms\ \rho:\mathfrak{G} \rightarrow \mathcal{M}\mathrm{or}_k(\mathfrak{X},\mathfrak{X})\ of\ monoid\ k-functors\right\}$$

is a map of classes described above. Then it is bijection.

Proof. Our goal is to construct the inverse of the map. Substitute $\mathfrak{J} = \mathcal{M}or_k(\mathfrak{X}, \mathfrak{X})$ in Theorem 4.5. Consider maps

$$\Phi: \left\{ \text{families } \mathfrak{G} \times \mathfrak{X} \to \mathfrak{X} \text{ of morphisms} \right\} \to \operatorname{Mor}_{k} \left(\mathfrak{G}, \mathcal{M} \operatorname{or}_{k} (\mathfrak{X}, \mathfrak{X}) \right)$$

and

$$\Psi: \operatorname{Mor}_{k}(\mathfrak{G}, \mathcal{M}\operatorname{or}_{k}(\mathfrak{X}, \mathfrak{X})) \to \left\{ \operatorname{families} \mathfrak{G} \times \mathfrak{X} \to \mathfrak{X} \text{ of morphisms} \right\}$$

in that Theorem. Then the map in the statement above is the restriction of Φ to \mathfrak{G} -actions on \mathfrak{X} on the right and morphisms $\mathfrak{G} \to \mathcal{M}\mathrm{or}_k(\mathfrak{X},\mathfrak{X})$ of monoid k-functors on the left. Since by Theorem 4.5 maps Φ and Ψ are mutually inverse, it suffices to check that Ψ sends a morphism $\rho: \mathfrak{G} \to \mathfrak{G}$

 \mathcal{M} or $_k(\mathfrak{X},\mathfrak{X})$ of monoids to an action of \mathfrak{G} on \mathfrak{X} . For this denote $\Psi(\rho)$ by α . Consider k-algebra A and A-points $x,y \in \mathfrak{G}(A)$, $z \in \mathfrak{X}(A)$. Then

$$\alpha\left(y,\alpha(x,z)\right) = \rho(y)\left(\rho(x)(z)\right) = \left(\rho(y)\cdot\rho(x)\right)(z) = \rho\left(x\cdot y\right)(z) = \alpha\left(x\cdot y,z\right)$$

Therefore, α is an action of \mathfrak{G} on \mathfrak{X} .

Proposition 5.2. Let \mathfrak{G} be a monoid k-functor and let \mathfrak{X}_1 , \mathfrak{X}_2 be k-functors such that \mathcal{M} or $_k(\mathfrak{X}_1,\mathfrak{X}_1)$, \mathcal{M} or $_k(\mathfrak{X}_2,\mathfrak{X}_2)$ exist. Suppose that $\alpha_1: \mathfrak{G} \times \mathfrak{X}_1 \to \mathfrak{X}_1$, $\alpha_2: \mathfrak{G} \times \mathfrak{X}_2 \to \mathfrak{X}_2$ are actions of \mathfrak{G} , respectively. Suppose that $\sigma: \mathfrak{X}_1 \to \mathfrak{X}_2$ is a morphism of k-functors. Then the following assertions are equivalent.

(i) The square

$$\mathfrak{G} \times \mathfrak{X}_{1} \xrightarrow{1_{\mathfrak{G}} \times \sigma} \mathfrak{G} \times \mathfrak{X}_{2}$$

$$\downarrow^{\alpha_{1}} \qquad \downarrow^{\alpha_{2}}$$

$$\mathfrak{X}_{1} \xrightarrow{\sigma} \mathfrak{X}_{2}$$

is commutative.

(ii) For every k-algebra A and $x \in \mathfrak{G}(A)$ we have

$$\sigma_A \cdot \rho_1(x) = \rho_2(x) \cdot \sigma_A$$

where $\rho_1: \mathfrak{G} \to \mathcal{M}or_k(\mathfrak{X}_1,\mathfrak{X}_1)$ and $\rho_2: \mathfrak{G} \to \mathcal{M}or_k(\mathfrak{X}_2,\mathfrak{X}_2)$ are morphism of monoid k-functors corresponding to α_1 and α_2 , respectively.

Proof. Conditions expressed in (i) and (ii) are directly translatable to each other by virtue of the bijection in Theorem 5.1.

Definition 5.3. Let \mathfrak{G} be a monoid k-functor and let $(\mathfrak{X}_1, \alpha_1)$, $(\mathfrak{X}_2, \alpha_2)$ be k-functors with actions of \mathfrak{G} . Suppose that $\sigma : \mathfrak{X}_1 \to \mathfrak{X}_2$ is a morphism k-functors such that the square

$$\mathfrak{G} \times \mathfrak{X}_{1} \xrightarrow{1_{\mathfrak{G}} \times \sigma} \mathfrak{G} \times \mathfrak{X}_{2}$$

$$\downarrow^{\alpha_{1}} \qquad \downarrow^{\alpha_{2}}$$

$$\mathfrak{X}_{1} \xrightarrow{\sigma} \mathfrak{X}_{2}$$

is commutative. Then σ is called an \mathfrak{G} -equivariant morphism.

6. Modules over Ring *k*-functors

Definition 6.1. Let \mathfrak{R} be a ring k-functor. Suppose that \mathfrak{M} is an abelian group k-functor and there exists a morphism $\mathfrak{R} \times \mathfrak{M} \to \mathfrak{M}$ of k-functors that for each k-algebra A makes $\mathfrak{M}(A)$ into an $\mathfrak{R}(A)$ -module. Then we say that \mathfrak{M} is a module k-functor over \mathfrak{R} .

Definition 6.2. Let \mathfrak{R} be an ring k-functor and let $\mathfrak{M}_1, \mathfrak{M}_2$ be module k-functors over \mathfrak{R} . Suppose that $\sigma: \mathfrak{M}_1 \to \mathfrak{M}_2$ is a morphism of abelian group k-functors such that the diagram

$$\mathfrak{R} \times \mathfrak{M}_{1} \xrightarrow{1_{\mathfrak{R}} \times \sigma} \mathfrak{R} \times \mathfrak{M}_{2}$$

$$\downarrow^{\alpha_{1}} \qquad \downarrow^{\alpha_{2}}$$

$$\mathfrak{M}_{1} \xrightarrow{\sigma} \mathfrak{M}_{2}$$

is commutative, where $\alpha_i : \Re \times \mathfrak{M}_i \to \mathfrak{M}_i$ define \Re -module structure on \mathfrak{M}_i for i = 1, 2. Then σ is a morphism of modules over \Re .

Let \mathfrak{M}_1 and \mathfrak{M}_2 be module k-functors over \mathfrak{R} . We denote by

$$\operatorname{Hom}_{\mathfrak{R}}(\mathfrak{M}_1,\mathfrak{M}_2)$$

the class of all morphisms of modules $\mathfrak{M}_1 \to \mathfrak{M}_2$ over \mathfrak{R} . We denote the category of \mathfrak{R} -modules by $\mathbf{Mod}(\mathfrak{R})$.

Definition 6.3. Let \mathfrak{M}_1 and \mathfrak{M}_2 be module k-functors over \mathfrak{R} . Assume that $\operatorname{Hom}_{\mathfrak{R}_A}((\mathfrak{M}_1)_A, (\mathfrak{M}_2)_A)$ is a set for every k-algebra A. Then we define a k-subfunctor $\operatorname{Hom}_{\mathfrak{R}}(\mathfrak{M}_1, \mathfrak{M}_2)$ of internal hom of \mathfrak{M}_1 and \mathfrak{M}_2 by formula

$$\mathbf{Alg}_k \ni A \mapsto \mathrm{Hom}_{\mathfrak{R}_A} ((\mathfrak{M}_1)_A, (\mathfrak{M}_2)_A) \in \mathbf{Set}$$

We call $\mathcal{H}om_{\mathfrak{R}}(\mathfrak{M}_1,\mathfrak{M}_2)$ a k-functor of module morphisms of \mathfrak{M}_1 and \mathfrak{M}_2 .

If \mathfrak{M} is a module k-functor over some ring k-functor \mathfrak{R} , then we denote (if it exists) $\mathcal{H}om_{\mathfrak{R}}(\mathfrak{M},\mathfrak{M})$ by $\mathcal{E}nd_{\mathfrak{R}}(\mathfrak{M})$.

Example 6.4. Let \mathfrak{M} be a module over a ring k-functor \mathfrak{R} . Assume that $\mathcal{E}nd_{\mathfrak{R}}(\mathfrak{M})$ exists. Then $\mathcal{E}nd_{\mathfrak{R}}(\mathfrak{M})$ is a ring k-functor with respect to composition of morphisms of modules as the multiplication and the usual addition of module morphisms. Moreover, if \mathfrak{A} is a commutative ring k-functor, then $\mathcal{E}nd_{\mathfrak{A}}(\mathfrak{M})$ (if exists) admits additional structure of a \mathfrak{A} -algebra k-functor induced via a unique morphism $\mathfrak{A} \to \mathcal{E}nd_{\mathfrak{R}}(\mathfrak{M})$ of ring k-functors that sends $1 \mapsto 1_{\mathfrak{M}}$.

Let $\mathfrak A$ be a commutative ring k-functor and let $\mathfrak R$ be a $\mathfrak A$ -algebra k-functor. This means that there exists a morphism $\mathfrak A \to \mathfrak R$ of ring k-functors and for every k-algebra A induced morphism $\mathfrak A(A) \to \mathfrak R(A)$ sends $\mathfrak A(A)$ to the center of a ring $\mathfrak R(A)$. Fix a module $\mathfrak M$ over $\mathfrak A$. Next assume that k-functor $\mathcal End_{\mathfrak A}(\mathfrak M)$ exists. By Example 6.4 it is a ring k-functor.

Definition 6.5. In the setting above suppose that $\alpha : \mathfrak{R} \times \mathfrak{M} \to \mathfrak{M}$ is a morphism of k-functors. Suppose that α makes \mathfrak{M} into \mathfrak{R} -module and moreover, for every k-algebra A and for every point $x \in \mathfrak{R}(A)$ morphism α_x is a morphism of \mathfrak{A}_A -modules. Then α is called a \mathfrak{A} -linear \mathfrak{R} -action on \mathfrak{M} .

We continue the discussion. We assume that we are given an \mathfrak{A} -linear \mathfrak{R} -action $\alpha: \mathfrak{R} \times \mathfrak{M} \to \mathfrak{M}$ on \mathfrak{M} . We define a morphism $\rho: \mathfrak{R} \to \mathcal{E}nd_{\mathfrak{A}}(\mathfrak{M})$ of k-functors by formula $\rho(x) = \alpha_x$. As in Section 5 we can prove that ρ is a morphism of ring k-functors. Now we have the following result.

Theorem 6.6. Let \mathfrak{R} be an algebra k-functor over commutative ring \mathfrak{A} k-functor and let \mathfrak{M} be a \mathfrak{A} -module such that \mathcal{E} nd \mathfrak{A} (\mathfrak{M}) exists. Suppose that

$$\left\{\mathfrak{A}\ linear\ actions\ of\ \mathfrak{R}\ on\ \mathfrak{M}\right\} \longrightarrow \left\{Morphisms\ \rho:\mathfrak{R}\to\mathcal{E}nd_{\mathfrak{O}_k}(\mathfrak{M})\ of\ ring\ k\text{-functors}\right\}$$

is a map of classes described above. Then it is bijection.

Proof. The proof is similar to the proof of Theorem 5.1.

7. Monoid algebra $\mathfrak{O}_k[\mathfrak{G}]$ and its modules

Definition 7.1. Let \mathfrak{G} be a monoid k-functor. Then we construct an \mathfrak{O}_k -algebra $\mathfrak{O}_k[\mathfrak{G}]$ as follows. For every k-algebra A we define

$$\mathfrak{O}_k[\mathfrak{G}](A) = A[\mathfrak{G}(A)]$$

where the right hand side is monoid A-algebra for the abstract monoid $\mathfrak{G}(A)$. The structure of monoid k-functor on \mathfrak{G} and \mathfrak{K} -algebra \mathfrak{O}_k makes $\mathfrak{O}_k[\mathfrak{G}]$ into a ring k-functor. Moreover, we have a morphism $\mathfrak{O}_k \to \mathfrak{O}_k[\mathfrak{G}]$ which for every k-algebra A is given by the canonical inclusion

$$A \hookrightarrow A[\mathfrak{G}(A)]$$

Thus $\mathfrak{O}_k[\mathfrak{G}]$ is \mathfrak{O}_k -algebra. We call $\mathfrak{O}_k[\mathfrak{G}]$ a monoid \mathfrak{O}_k -algebra over \mathfrak{G} .

Fact 7.2. Let \mathfrak{G} be a monoid k-functor and let \mathfrak{R} be an \mathfrak{O}_k -algebra k-functor. Then every morphism

$$\sigma:\mathfrak{G}\to\mathfrak{R}^{\times}$$

of monoid k-functors admits a unique extension

$$\tilde{\sigma}: \mathfrak{O}_k[\mathfrak{G}] \to \mathfrak{R}$$

to a morphism of \mathfrak{O}_k -algebras.

Proof. This follows from the analogical universal property of algebras over abstract monoids. \Box

Definition 7.3. Let \mathfrak{G} be a monoid k-functor and let \mathfrak{M} be a module over \mathfrak{O}_k . Suppose that $\alpha: \mathfrak{G} \times \mathfrak{M} \to \mathfrak{M}$ is an action of \mathfrak{G} such that for any k-algebra A and point $x \in \mathfrak{G}(A)$ morphism $\alpha_x: \mathfrak{M}_A \to \mathfrak{M}_A$ is a morphism of \mathfrak{O}_A -modules. Then α is called a *linear* \mathfrak{G} -action on \mathfrak{M} .

Suppose now that \mathfrak{G} is a monoid k-functor and \mathfrak{M} is a module \mathfrak{O}_k . Note that every linear \mathfrak{G} -action $\alpha:\mathfrak{G}\times\mathfrak{M}\to\mathfrak{M}$ extends uniquely to a \mathfrak{O}_k -linear action $\mathfrak{O}_k[\mathfrak{G}]\times\mathfrak{M}\to\mathfrak{M}$ of monoid \mathfrak{O}_k -algebra. This gives a bijection

$$\left\{ \text{Linear actions of } \mathfrak{G} \text{ on } \mathfrak{M} \right\} \longrightarrow \left\{ \mathfrak{O}_k\text{-linear actions } \mathfrak{O}_k[\mathfrak{G}] \times \mathfrak{M} \to \mathfrak{M} \right\}$$

Next assume that k-functor $\mathcal{E}nd_{\mathfrak{O}_k}(\mathfrak{M})$ exists. By Example 6.4 it is an \mathfrak{O}_k -algebra k-functor. Next by Theorem 6.6 we have a bijection

$$\left\{\mathfrak{O}_k\text{-linear actions of }\mathfrak{O}_k[\mathfrak{G}]\times\mathfrak{M}\to\mathfrak{M}\right\}\longrightarrow\left\{\text{Morphisms }\mathfrak{O}_k[\mathfrak{G}]\to\mathcal{E}nd_{\mathfrak{O}_k}(\mathfrak{M})\text{ of }\mathfrak{O}_k\text{-algebras}\right\}$$

Finally Fact 7.2 implies that we have a bijection

$$\left\{\mathsf{Morphisms}\,\mathfrak{O}_k[\mathfrak{G}] \to \mathcal{E}nd_{\mathfrak{O}_k}(\mathfrak{M}) \text{ of } \mathfrak{O}_k\text{-algebras}\right\} \longrightarrow \left\{\mathsf{Morphisms}\,\mathfrak{G} \to \mathcal{E}nd_{\mathfrak{O}_k}(\mathfrak{M}) \text{ of monoids}\right\}$$

This chain of bijections sends a linear action $\alpha: \mathfrak{G} \times \mathfrak{M} \to \mathfrak{M}$ of \mathfrak{G} to a morphism $\rho: \mathfrak{G} \to \mathcal{E}nd_{\mathfrak{D}_k}(\mathfrak{M})$ of monoid k-functors given by $\rho(x) = \alpha_x$ for every $x \in \mathfrak{G}(A)$ and every k-algebra A. We proved the following result.

Proposition 7.4. Let \mathfrak{G} be a monoid k-functor and let \mathfrak{M} be a \mathfrak{D}_k -module such that $\operatorname{End}_{\mathfrak{D}_k}(\mathfrak{M})$ exists. Then the following classes are in canonical bijections described above.

- (1) Linear actions of \mathfrak{G} on \mathfrak{M} .
- **(2)** \mathfrak{O}_k -linear actions $\mathfrak{O}_k[\mathfrak{G}] \times \mathfrak{M} \to \mathfrak{M}$. These are precisely $\mathfrak{O}_k[\mathfrak{G}]$ -modules.
- **(3)** Morphisms $\mathfrak{O}_k[\mathfrak{G}] \to \mathcal{E}nd_{\mathfrak{O}_k}(\mathfrak{M})$ of \mathfrak{O}_k -algebras.
- **(4)** Morphisms $\mathfrak{G} \to \mathcal{E}nd_{\mathfrak{D}_k}(\mathfrak{M})$ of monoids.

Moreover, the bijection between class (1) and (2) does not require the existence of \mathcal{E} nd $\mathfrak{D}_{\iota}(\mathfrak{M})$.

Now in a similar manner we can describe morphisms.

Proposition 7.5. Let \mathfrak{G} be a monoid k-functor and let \mathfrak{M}_1 , \mathfrak{M}_2 be k-functors of \mathfrak{O}_k -modules such that $\mathcal{E}nd_{\mathfrak{O}_k}(\mathfrak{M}_1)$, $\mathcal{E}nd_{\mathfrak{O}_k}(\mathfrak{M}_2)$ exist. Suppose that $\alpha_1:\mathfrak{G}\times\mathfrak{M}_1\to\mathfrak{M}_1$, $\alpha_2:\mathfrak{G}\times\mathfrak{M}_2\to\mathfrak{M}_2$ are linear actions of \mathfrak{G} . Suppose that $\sigma:\mathfrak{M}_1\to\mathfrak{M}_2$ is a morphism of modules over \mathfrak{O}_k . Then the following assertions are equivalent.

(i) The square

is commutative.

(ii) The square

is commutative, where $\tilde{\alpha_1}$ and $\tilde{\alpha_2}$ are \mathfrak{D}_k -linear actions of $\mathfrak{D}_k[\mathfrak{G}]$ corresponding to α_1 and α_2 , respectively. This states that σ is a morphism of $\mathfrak{D}_k[\mathfrak{G}]$ -modules.

(iii) For every k-algebra A and $x \in \mathfrak{G}(A)$ we have

$$\sigma_A \cdot \tilde{\rho}_1(x) = \tilde{\rho}_2(x) \cdot \sigma_A$$

where $\tilde{\rho}_1: \mathfrak{D}_k[\mathfrak{G}] \to \mathcal{E}nd_{\mathfrak{D}_k}(\mathfrak{M}_1)$ and $\tilde{\rho}_2: \mathfrak{D}_k[\mathfrak{G}] \to \mathcal{E}nd_{\mathfrak{D}_k}(\mathfrak{M}_2)$ are morphism of \mathfrak{D}_k -algebras corresponding to $\tilde{\alpha}_1$ and $\tilde{\alpha}_2$, respectively.

(iv) For every k-algebra A and $x \in \mathfrak{G}(A)$ we have

$$\sigma_A \cdot \rho_1(x) = \rho_2(x) \cdot \sigma_A$$

where $\rho_1:\mathfrak{G}\to\mathcal{E}nd_{\mathfrak{D}_k}(\mathfrak{M}_1)$ and $\rho_2:\mathfrak{G}\to\mathcal{E}nd_{\mathfrak{D}_k}(\mathfrak{M}_2)$ are restrictions of $\tilde{\rho_1}$ and $\tilde{\rho_2}$, respectively.

The equivalence of (i) and (ii) does not require the existence of $\operatorname{End}_{\mathfrak{D}_k}(\mathfrak{M}_1)$ and $\operatorname{End}_{\mathfrak{D}_k}(\mathfrak{M}_2)$.

Proof. Conditions expressed in (i)-(iv) are directly translatable to each other by virtue of bijections in Proposition 7.4.

Let \mathfrak{G} be a monoid k-functor. We denote by $\mathbf{Mod}(\mathfrak{O}_k[\mathfrak{G}])$ the category of $\mathfrak{O}_k[\mathfrak{G}]$ -modules.

8. Example of \mathfrak{G} -action: Regular functions k-functor

First we need the following notion.

Definition 8.1. Let $(-)^{op} : \mathbf{Mon} \to \mathbf{Mon}$ be the functor of opposite monoid and let \mathfrak{G} be a monoid k-functor. Then the composition $\mathfrak{G}^{op} = (-)^{op} \cdot \mathfrak{G}$ is called *the opposite monoid k-functor of* \mathfrak{G} .

Let $\mathfrak G$ be a monoid k-functor. In this section we discuss important example of a $\mathfrak O_k[\mathfrak G]$ -module. Fix a k-functor $\mathfrak X$ for which $\mathcal M$ or $_k(\mathfrak X, \mathfrak O_k)$ exists. Recall that by Example 3.5 $\mathcal M$ or $_k(\mathfrak X, \mathfrak O_k)$ is $\mathfrak O_k$ -algebra k-functor. Let $\alpha:\mathfrak G\times\mathfrak X\to\mathfrak X$ be an action of $\mathfrak G$ on $\mathfrak X$. For every k-algebra A we have a map of sets

$$\operatorname{Mor}_{A}(\mathfrak{X}_{A},(\mathfrak{O}_{k})_{A})\ni f\mapsto f\cdot\alpha_{x}\in\operatorname{Mor}_{A}(\mathfrak{X}_{A},(\mathfrak{O}_{k})_{A})$$

where $x \in \mathfrak{G}(A)$. From this description it follows that the map $f \mapsto f \cdot \alpha_x$ is a morphism of A-algebras. Moreover, note that if $y \in \mathfrak{G}(A)$ is some other A-point, then $(f \cdot \alpha_x) \cdot \alpha_y = f \cdot \alpha_{x \cdot y}$, where $x \cdot y \in \mathfrak{G}(A)$ is a product of x and y. Thus the opposite monoid $\mathfrak{G}^{\mathrm{op}}(A)$ acts on the A-algebra $\mathrm{Mor}_A(\mathfrak{X}_A,(\mathfrak{O}_k)_A)$ by morphism of A-algebras. Next for every A-algebra B and every point $y \in \mathfrak{X}(B)$ we have

$$(f \cdot \alpha_x)(y) = f(\alpha_x(y))$$

This proves the following result.

Proposition 8.2. Let \mathfrak{X} be a k-functor and let $\alpha:\mathfrak{G}\times\mathfrak{X}\to\mathfrak{X}$ be an action of a monoid k-functor \mathfrak{G} . Suppose that $\mathcal{M}\mathrm{or}_k(\mathfrak{X},\mathfrak{O}_k)$ exists. Then \mathfrak{G}^op acts canonically on \mathfrak{O}_k -algebra k-functor $\mathcal{M}\mathrm{or}_k(\mathfrak{X},\mathfrak{O}_k)$ by morphisms of \mathfrak{O}_k -algebras.

Let us note one important consequence of this result.

Corollary 8.3. Let \mathfrak{G} be a monoid k-functor. The action of $\mathfrak{G} \times \mathfrak{G}^{op}$ on \mathfrak{G} induces the action of $\mathfrak{G}^{op} \times \mathfrak{G}$ on \mathfrak{O}_k -algebra k-functor $\mathcal{M}or_k(\mathfrak{X}, \mathfrak{O}_k)$ by morphisms of \mathfrak{O}_k -algebras.

9. Linear representations of a monoid k-functors

We start the discussion with some results that relates categories $\mathbf{Mod}(k)$ and $\mathbf{Mod}(\mathfrak{O}_k)$.

Example 9.1. Let V be a k-module. We define a k-functor V_a . We set

$$V_{\mathrm{a}}(A) = A \otimes_k V$$
, $V_{\mathrm{a}}(f) = f \otimes_k 1_V$

for every k-algebra A and every morphism $f:A\to B$ of k-algebras. Note that V_a is \mathfrak{O}_k -module. Suppose that $\phi:V\to W$ is a morphism of k-modules, then we define $\phi_a:V_a\to W_a$ by formula

$$\phi_a^A = 1_A \otimes_k \sigma$$

for every k-algebra. Then ϕ_a is a morphism of \mathfrak{O}_k -modules.

Proposition 9.2. The functor $(-)_a : \mathbf{Mod}(k) \to \mathbf{Mod}(\mathfrak{O}_k)$ is full and faithful.

Proof. Fix *k*-modules *V*, *W*. Then

$$\operatorname{Hom}_{\mathfrak{O}_{k}}(V_{a}, W_{a}) \ni \sigma \mapsto \sigma^{k} \in \operatorname{Hom}_{k}(V, W)$$

and

$$\operatorname{Hom}_{k}(V,W)\ni\phi\mapsto\phi_{a}\in\operatorname{Hom}_{\mathfrak{O}_{k}}(V_{a},W_{a})$$

are mutually inverse bijections. Hence the functor is full and faithful.

Example 9.3. Let *V* be a *k*-module. We define a *k*-functor \mathcal{L}_V . We set

$$\mathcal{L}_V(A) = \operatorname{Hom}_A(A \otimes_k V, A \otimes_k V)$$

for every k-algebra A. Next for every morphism $f:A\to B$ of k-algebras and every morphism $\phi:A\otimes_k V\to A\otimes_k V$ of A-modules we define $\mathcal{L}_V(f)(\phi)$ as a unique morphism of B-modules such that the diagram

$$A \otimes_{k} V \xrightarrow{\phi} A \otimes_{k} V$$

$$f \otimes_{k} 1_{V} \downarrow \qquad \qquad \downarrow f \otimes_{k} 1_{V}$$

$$B \otimes_{k} V \xrightarrow{\mathcal{L}_{V}(\phi)} B \otimes_{k} V$$

is commutative. Note also that $\mathcal{L}_V(A)$ is an A-algebra. Hence \mathcal{L}_V is a monoid $k\mathfrak{O}_k$ -algebra.

Remark 9.4. Let *V* be a *k*-module. Proposition 9.2 implies that there are bijective maps that make the square

$$\mathcal{L}_{V}(A) \xrightarrow{\cong} \mathcal{E}nd_{\mathfrak{D}_{A}}\left((V_{\mathbf{a}})_{A}, (V_{\mathbf{a}})_{A}\right)$$

$$\downarrow^{\sigma \mapsto \sigma_{B}}$$

$$\mathcal{L}_{V}(B) \xrightarrow{\cong} \mathcal{E}nd_{\mathfrak{D}_{B}}\left((V_{\mathbf{a}})_{B}, (V_{\mathbf{a}})_{B}\right)$$

commutative for every morphism $f: A \to B$ of k-algebras. This induces an idenitification $\mathcal{L}_V = \mathcal{E}nd_{\mathcal{D}_k}(V_a)$ of \mathcal{D}_k -algebras.

Definition 9.5. Let \mathfrak{G} be a monoid k-functor. A pair (V, ρ) consisting of a k-module V and a morphism $\rho : \mathfrak{G} \to \mathcal{L}_V$ of k-monoids is called a *linear representation of* \mathfrak{G} .

Next result characterizes linear representations of monoid *k*-functors.

Corollary 9.6. Let \mathfrak{G} be a monoid k-functor and let V be a k-module. Then the following classes are in canonical bijections.

- **(1)** Linear actions of \mathfrak{G} on V_a .
- (2) \mathfrak{O}_k -linear actions $\mathfrak{O}_k[\mathfrak{G}] \times V_a \to V_a$. These are precisely $\mathfrak{O}_k[\mathfrak{G}]$ -modules.
- **(3)** Morphisms $\mathfrak{O}_k[\mathfrak{G}] \to \mathcal{L}_V$ of \mathfrak{O}_k -algebras.
- **(4)** Morphisms $\mathfrak{G} \to \mathcal{L}_V$ of monoids.

Proof. This follows from Proposition 7.4.

Definition 9.7. Let \mathfrak{G} be a monoid k-functor and let (V, ρ) , (W, δ) be its linear representations. A morphism $\phi : V \to W$ of k-modules such that

$$\phi_{\mathbf{a}}^A \cdot \rho(x) = \delta(x) \cdot \phi_{\mathbf{a}}^A$$

for every k-algebra A and $x \in \mathfrak{G}(A)$ is called a morphism of linear representations of \mathfrak{G} .

Next result characterizes morphisms of linear representations of monoid k-functor.

Corollary 9.8. Let \mathfrak{G} be a monoid k-functor and let V, W be k-modules. Suppose that $\alpha_1: \mathfrak{G} \times V_a \to V_a$, $\alpha_2: \mathfrak{G} \times W_a \to W_a$ are linear actions of \mathfrak{G} . Suppose that $\phi: V \to W$ is a morphism of k-modules. Then the following assertions are equivalent.

(i) The square

$$\mathfrak{G} \times V_{\mathbf{a}} \xrightarrow{1_{\mathfrak{G}} \times \phi_{\mathbf{a}}} \mathfrak{G} \times W_{\mathbf{a}}$$

$$\downarrow^{\alpha_{1}} \qquad \qquad \downarrow^{\alpha_{2}}$$

$$V_{\mathbf{a}} \xrightarrow{\phi_{\mathbf{a}}} W_{\mathbf{a}}$$

is commutative.

(ii) The square

$$\mathfrak{O}_{k}[\mathfrak{G}] \times V_{\mathbf{a}} \xrightarrow{1_{\mathfrak{O}_{k}[\mathfrak{G}]} \times \phi_{\mathbf{a}}} \mathfrak{O}_{k}[\mathfrak{G}] \times W_{\mathbf{a}}$$

$$\downarrow^{\tilde{\alpha_{1}}} \qquad \downarrow^{\tilde{\alpha_{2}}}$$

$$V_{\mathbf{a}} \xrightarrow{\phi_{\mathbf{a}}} W_{\mathbf{a}}$$

is commutative, where $\tilde{\alpha_1}$ and $\tilde{\alpha_2}$ are \mathfrak{O}_k -linear actions of $\mathfrak{O}_k[\mathfrak{G}]$ corresponding to α_1 and α_2 , respectively.

(iii) For every k-algebra A and $x \in \mathfrak{G}(A)$ we have

$$\phi_{\rm a}^A \cdot \tilde{\rho}_1(x) = \tilde{\rho}_2(x) \cdot \phi_{\rm a}^A$$

where $\tilde{\rho}_1: \mathfrak{O}_k[\mathfrak{G}] \to \mathcal{L}_V$ and $\tilde{\rho}_2: \mathfrak{O}_k[\mathfrak{G}] \to \mathcal{L}_W$ are morphism of \mathfrak{O}_k -algebras corresponding to $\tilde{\alpha}_1$ and $\tilde{\alpha}_2$, respectively.

(iv) For every k-algebra A and $x \in \mathfrak{G}(A)$ we have

$$\phi_{\mathbf{a}}^A \cdot \rho_1(x) = \rho_2(x) \cdot \phi_{\mathbf{a}}^A$$

where $\rho_1: \mathfrak{G} \to \mathcal{L}_V$ and $\rho_2: \mathfrak{G} \to \mathcal{L}_W$ are restrictions of $\tilde{\rho_1}$ and $\tilde{\rho_2}$, respectively. This states that ϕ is a morphism of linear representations of \mathfrak{G} .

Proof. This follows from Proposition 7.5.

Let \mathfrak{G} be a monoid k-functor. We denote by $\mathbf{Rep}(\mathfrak{G})$ its category of linear representations. Note that $\mathbf{Rep}(\mathfrak{G})$ is a full subcategory of $\mathbf{Mod}(\mathfrak{O}_k[\mathfrak{G}])$.

REFERENCES

[ML98] Saunders Mac Lane. Categories for the working mathematician, volume 5 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1998.

[Mon19] Monygham. Categories of presheaves. github repository: "Monygham/Pedo-mellon-a-minno", 2019.