

Neuronale Netze Einführung und Perceptron

INTERACTIVE VISUAL DATA MINING

- Motivation & Definition
- Vorbild Biologie
- Einführung
- Perceptron

Künstliche neuronale Netze sind:

 Massiv parallel verbundene Netzwerke aus

- Einfachen (adaptiven) Elementen in
- Hierarchischer Ordnung oder Organisation

Diese Netze sollen in der selben Art wie biologische Nervensysteme mit der Welt interagieren.

(Kohonen 84)

- Forschung:
 - Modellierung und Simulation biologischer neuronaler Netze
 - Speicherung von Information
 - Funktionsapproximation
 - **—** ...

- Anwendungen:
 - Analyse Sensordaten
 - Medizin
 - Schrifterkennung
 - Bilderkennung
 - Zeitreihenanalyse
 - Sprachverarbeitung
 - **–**

- Künstliche neuronale Netze sind gekennzeichnet durch:
 - Massiv parallele Informationsverarbeitung
 - Propagierung der Informationen durch Kanten
 - Verteilte Informationsspeicherung
 - Black Box Modell

- Phasen:
 - Aufbauphase (Topologie des Netzes)
 - Trainingsphase (Lernen)
 - Arbeitsphase (Propagation)

- Vorbild Biologie:
 - Neuronen können
 - Informationen aufnehmen (Dendriten)
 - Informationen verarbeiten (Zellkörper)
 - Informationen weiterleiten (Axon, Synapsen)

Vorbild Biologie

- Das menschliche Gehirn besteht aus
 - ca. 10^11 Neuronen, die mit
 - ca. 10⁴ anderen Neuronen durch
 - ca. 10^13 Synapsen verbunden sind

Abstraktion

Signal-Eingabe Signal-Verarbeitung Signal-Ausgabe

Modell

McCulloch-Pitts-Neuron 1943:

$$x_i \in \{0, 1\} =: \mathbb{B}$$

$$f: \mathbb{B}^n \to \mathbb{B}$$

- 1943: Warren McCulloch & Walter Pitts
- Beschreibung neurologischer Netzwerke
 - Modell McCulloch Pitts Neuron
 - Grundidee:
 - Neuron ist entweder aktiv oder inaktiv
 - Fähigkeiten entstehen durch Vernetzung der Neuronen

- Es werden nur statische Netze betrachtet
 - Topologie wird vorher festgelegt
 - Es werden keine neuen Verbindungen beim Lernen erstellt
 - Widerspruch zur Biologie!

- McCulloch Pitts Neuron
 - n binäre Eingangssignale x_1 bis x_n
 - Schwellwert $\theta > 0$

$$f(x_1, \dots, x_n) = \begin{cases} 1 & \text{falls } \sum_{i=1}^n x_i \ge \theta \\ 0 & \text{sonst} \end{cases}$$

Damit sind folgende logische Funktionen realisierbar:

Boolsches AND

Boolsches OR

McCulloch Pitts Neuron

n binäre Eingangssignale x_1 bis x_n

- Schwellwert $\theta > 0$

 Zusätzlich m binäre hemmende Signale y_1 bis y_m

Sonst gilt:

Summe der Eingänge >= Schwellwert -> Ausgabe = 1

Ansonsten Ausgabe = 0

$$\tilde{f}(x_1,\ldots,x_n;y_1,\ldots,y_m)=f(x_1,\ldots,x_n)\cdot\prod_{j=1}^m(1-y_j)$$

Verallgemeinerung mit Gewichten

Ist äquivalent zu

Dieser Knoten liefert 1 bei

Wenn man die Gewichte mit 10 multipliziert

Die Eingänge entsprechend dupliziert, erhält man einen äquivalenten Knoten.

- Einfaches Perceptron
 - Motivation
 - Definition
 - Geometrische Interpretation
 - Lernen mittels Delta Regel
 - XOR Problem

- Perceptron (Rosenblatt 1958)
 - Jedes Outputneuron hat einen eigenen unabhängigen Netzbereich
 - Zur Vereinfachung hat jedes Netz im folgenden nur einen Output
 - War historisch als Hardwareimplementierung gedacht
 - Später auf Multilayer Perceptrons erweitert

Inputschicht

Genereller Aufbau

- Aktivierungsfunktionen
 - Schwellwertfunktion:
 - Nimmt nur die Werte 0 und 1 an
 - Schwellwert bestimmt die Aktivierung
 - Alles oder Nichts Funktionsweise

$$arphi^{ ext{hlim}}(v) = egin{cases} 1 & ext{wenn } v \geq 0 \ 0 & ext{wenn } v < 0 \end{cases}$$

- Aktivierungsfunktionen
 - Stückweise lineare Funktion:
 - Abbildung eines begrenzten Intervalls mit einer linearen Funktion
 - Außerhalb konstante Werte

$$arphi^{ ext{pwl}}(v) = egin{cases} 1 & ext{wenn } v \geq rac{1}{2} \ v + rac{1}{2} & ext{wenn } -rac{1}{2} < v < rac{1}{2} \ 0 & ext{wenn } v \leq -rac{1}{2} \end{cases}$$

- Aktivierungsfunktionen
 - Sigmoid Funktion
 - Wurden lange als Standardfunktion genutzt
 - Steigungsmaß alpha kann modifiziert werden

$$arphi_a^{ ext{sig}}(v) = rac{1}{1 + \exp(-av)}$$

- Aktivierungsfunktionen
 - Rectifier (ReLU) Funktion
 - rectified linear activation unit
 - Abwandlung der stückweisen linearen Funktion
 - Nur positiver Teil wird linear abgebildet

$$\varphi(v) = \max(0, v)$$

- Outputneuron hat:
 - Schwellwert s
 - Aktivität a aus den Inputs und Gewichten
 - Nutzt Aktivierungsfunktion, um den Output zu berechnen
 - Historisch wurde die Sprungfunktion verwendet

Bildet damit eine Trenngerade zwischen 2
Klassen

$$w_1 x_1 + w_2 x_2 \ge \theta$$

$$\bigvee_{N = 0}^{J} 0$$

Umgestellt nach x2

$$x_2 \ge \frac{\theta}{w_2} - \frac{w_1}{w_2} x_1 \qquad \begin{array}{c} J & 1 \\ N & 0 \end{array}$$

 Bildet damit eine lineare Trenngerade zwischen 2 Klassen

$$w_1 x_1 + w_2 x_2 \ge \theta$$

$$\bigvee_{N = 0}^{J}$$

Umgestellt nach x2

$$x_2 \ge \frac{\theta}{w_2} - \frac{w_1}{w_2} x_1 \qquad \begin{array}{c} J \\ N \end{array} \qquad \begin{array}{c} 1 \\ N \end{array}$$

– Beispiel:

$$0.9 x_1 + 0.8 x_2 >= 0.6$$

$$x_2 >= 3/4 - 9/8 x_1$$

AND

NAND

OR

NOR

- Lernverfahren
 - Gegeben ist ein Trainingsdatensatz
 - Daten sind disjunkt in 2 Menge x und y aufgeteilt
 - Gesucht wird eine trennende Hyperebene
 - Basiert auf den Gewichten
 - Teilt x und y auf

 Problem: x und y müssen linear trennbar sein!

- Lernverfahren Delta Regel
 - Beim Training werden die Daten dem Netz als Input gezeigt
 - Output für die Beispiele bekannt (supervised)
 - Vergleich von Soll und Ist Zustand im Output

- Bei Abweichung werden Schwellwert und Gewichte adaptiert
- Ist nur auf differenzierbareAktivierungsfunktionen anwendbar!
- Anpassung kann nach jedem Input oder nach jeder Epoche durchgeführt werden
- Epoche = Ein Durchlauf aller Trainingsdaten

Lernverfahren Delta Regel

$$\Delta w_{ji} = \alpha(t_j - y_j)g'(h_j)x_i$$

- Alpha: konstante Lernrate
- g(x) ist die Aktivierungsfunktion
- g' ist die Ableitung von g
- t_j ist die Sollausgabe

- y_j ist die Istausgabe
- h_j ist die gewichtete Summe der Inputs des Neurons
- x_i ist der Input I
- Mit

$$h_j = \sum x_i w_{ji}$$

$$y_j = g(h_j)$$

 Die gleiche Formel wird auf auf den Schwellwert angewendet

- Lernverfahren Delta Regel
 - Der Schwellwert ist damit auch nur ein Gewicht!

$$\sum_{i=1}^{n} w_i x_i \ge \theta$$

$$\sum_{i=1}^{n} w_i x_i - \theta \ge 0$$

- Lernverfahren Delta Regel
- Initialer Schwellwert -1
- Lernfaktor 0.2

Eingang1	Eingang2	Ausgang
0	0	0
0	1	1
1	0	0
1	1	1

	$i_1 = 0/i_2 = 0$	$i_1 = 0/i_2 = 1$	$i_1 = 1/i_2 = 0$	$i_1 = 1/i_2 = 1$
ω_0	1.0	1.0	1.2	1.2
ω_1	1.0	1.0	0.8	0.8
ω_2	1.0	1.0	1.0	1.0

	$i_1 = 0/i_2 = 0$	$i_1 = 0/i_2 = 1$	$i_1 = 1/i_2 = 0$	$i_1 = 1/i_2 = 1$
ω_0	1.2	1.0	1.0	1.0
ω_1	0.8	0.8	0.8	0.8
ω_2	1.0	1.2	1.2	1.2

- Lernverfahren Delta Regel
 - Kovergenz und Korrektheit
 - Satz: Wenn ein Perzeptron eine Klasseneinteilung lernen kann, dann lernt es diese mit der Delta Regel in endlich vielen Schritten

- Problem: Falls das Perzeptron das Modell nicht erlernt, kann man nicht entscheiden:
- Ob genügend Epochen gerlernt wurde oder
- Das Problem nicht erlernbar ist
- → Es gibt keine obere Schranke für die Lerndauer
 - − → Overfitting Problematik

- Lernverfahren Delta Regel
 - Geometrische Interpretation nach Rojas

XOR Problem

X ₁	X ₂	xor			
0	0	0	\Rightarrow 0 < θ	$W_1, W_2 \ge \theta > 0$	
0	1	1	\Rightarrow W ₂ \geq θ	>	
1	0	1	\Rightarrow W ₁ \geq θ	$\Rightarrow W_1 + W_2 \ge 2\theta$	
1	1	0	\Rightarrow W ₁ + W ₂ < θ		
			•	Widerspruch!	
$W_1 X_1$	$W_1 X_1 + W_2 X_2 \ge \theta$				

 Triviales Problem ist mit künstlichen Neuronen nicht lösbar!

- XOR Problem
 - 1969 publiziert von Minsky und Papert
 - Folgerung: künstliche neuronen sind eine Sackgasse
 - Forschung wurde daraufhin ca 15 Jahre eingestellt

- Lösungen sind:
 - Mehrschichtige Perzeptrons (Feedforward Netze)

Nichtlineare Trennfunktionen

$$g(x_1, x_2) = 2x_1 + 2x_2 - 4x_1x_2 - 1$$
 mit $\theta = 0$

- Vorteile künstlicher neuronaler Netze
 - Sehr gute Mustererkennung
 - Verarbeitung von Inputs mit
 - Verrauschten Eigenschaften
 - Unvollständigen Eigenschaften
 - Widersprüchlichen Eigenschaften

- Möglicher multimodaler Input (Zahlen, Farben, Töne, Sprache, etc)
- Erstellt ein Modell ohne Hypothesen des Nutzers
- Fehlertolerant
- Im Produktivbetrieb einfach zu nutzen

- Nachteile künstlicher neuronaler Netze
 - Lange Trainingszeiten (bis zu Monaten)
 - Lernerfolg ist nicht garantiert
 - Generalisierbarkeit ist nicht garantiert
 - Viele Daten sind notwendig

- Komplexes Blackbox Verfahren
- Evaluierung des Netzes ist schwierig
- Anzahl der Knoten und Kanten kann schnell sehr groß werden
- Löst "nur" das Problem mit einem Modell, liefert aber keine Hinweise auf die wichtiges Features