Tarea Titanic

Usando el datasets: https://www.kaggle.com/c/titanic

Implemente el mejor clasificador que usted considere conveniente de los vistos en clase. (LR, KNN, SVM) (iterar hiperparámetros)

Sustentar por qué es el mejor (MCC, AUC-ROC, "ACC : (este NO ")

from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.linear_model import LogisticRegression from sklearn import svm from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.neighbors import DistanceMetric from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn.metrics import matthews_corrcoef from sklearn.metrics import recall_score from sklearn.metrics import confusion_matrix from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve from sklearn import metrics from matplotlib.colors import ListedColormap import matplotlib.patches as mpatches import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sb

Primero observamos el contenido de nuestro data set, el de entrenamiento y el de testeo.

train = pd.read_csv(r"train.csv")
test = pd.read_csv(r"test.csv")
test_ids = test["PassengerId"]
train.head(-5)

plt.rcParams['figure.figsize'] = (16, 9)

%matplotlib inline

plt.style.use('ggplot')

	PassengerId	Survived	Pclass	Name		Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
881	882	0	3	Markun, Mr. Johann	male	33.0	0	0	349257	7.8958	NaN	S
882	883	0	3	Dahlberg, Miss. Gerda Ulrika	female	22.0	0	0	7552	10.5167	NaN	S
883	884	0	2	Banfield, Mr. Frederick James	male	28.0	0	0	C.A./SOTON 34068	10.5000	NaN	S
884	885	0	3	Sutehall, Mr. Henry Jr	male	25.0	0	0	SOTON/OQ 392076	7.0500	NaN	S
885	886	0	3	Rice, Mrs. William (Margaret Norton)	female	39.0	0	5	382652	29.1250	NaN	Q
886 ro	ws × 12 column	S										

Luego empezamos con todo el adecuamiento del data set, eliminando valores NaN, Null, etc o reemplazandolos por la media, tambien pasando características como el género de palabras a números.

print("Valores nulos en train: \n", train.isna().sum(),"\n")

Valores nulos en train: PassengerId 0 Survived Pclass 0 Name 0 Sex 0 177 SibSp 0 Parch 0 Ticket 0 Fare 0 Cabin 687 Embarked 2 dtype: int64

Se eliminan las columnas que no aportan al dataset

```
train.drop(['PassengerId','Name', 'Ticket', 'Cabin'], axis = 1, inplace = True) #Las columnas inutiles se eliminan
print(train.head(), "\n")
train.isna().sum()
#Se rellenan los ceros de "Fare" con la media
train['Fare'] = train['Fare'].replace(0, train['Fare'].mean())
#Se rellenan los nulos con su media
train['Age'].fillna(train['Age'].mean(), inplace = True)
train['Embarked'].fillna(train['Embarked'].mode()[0], inplace = True)
#Revisando los vacios
print(train.isna().sum())
train.head()
      Survived Pclass Sex Age SibSp Parch Fare Embarked
        0 3 male 22.0 1 0 7.2500
               1 female 38.0 1 0 71.2833
               3 female 26.0 0 0 7.9250
        1 1 female 35.0 1 0 53.1000
                 3 male 35.0 0 0 8.0500
   Survived 0
    Pclass
    Sex
    Age
    SibSp
    Parch
    Fare
    Embarked 0
    dtype: int64
       Survived Pclass
                      Sex Age SibSp Parch Fare Embarked
                                                       S
                  3 male 22.0
                                  1 0 7.2500
            1 1 female 38.0
                                 1 0 71.2833
                  1 female 35.0
                                  1 0 53.1000
```

train['Sex'] = train['Sex'].apply(lambda val: 1 if val == 'male' else 0) #1 para hombre, 0 para mujer
train['Embarked'] = train['Embarked'].map({'S' : 0, 'C': 1, 'Q': 2}) #Abordaje
print(train.head(), "\n")
train.describe()

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0	3	1	22.0	1	0	7.2500	0
1	1	1	0	38.0	1	0	71.2833	1
2	1	3	0	26.0	0	0	7.9250	0
3	1	1	0	35.0	1	0	53.1000	0
4	0	3	1	35.0	0	0	8.0500	0

3 male 35.0 0 0 8.0500

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
count	891.000000	891.000000	891.000000	891.000000	891.000000	891.000000	891.000000	891.000000
mean	0.383838	2.308642	0.647587	29.699118	0.523008	0.381594	32.746366	0.361392
std	0.486592	0.836071	0.477990	13.002015	1.102743	0.806057	49.514272	0.635673
min	0.000000	1.000000	0.000000	0.420000	0.000000	0.000000	4.012500	0.000000
25%	0.000000	2.000000	0.000000	22.000000	0.000000	0.000000	7.925000	0.000000
50%	0.000000	3.000000	1.000000	29.699118	0.000000	0.000000	15.100000	0.000000
75%	1.000000	3.000000	1.000000	35.000000	1.000000	0.000000	32.204208	1.000000
max	1.000000	3.000000	1.000000	80.000000	8.000000	6.000000	512.329200	2.000000

Realizamos el mismo procedimiento para los datos del Test

```
test['Fare'] = test['Fare'].replace(0, test['Fare'].mean())
test['Fare'].fillna(test['Fare'].mean(), inplace = True)
#Se rellenan los nulos con su media
test['Age'].fillna(test['Age'].mean(), inplace = True)
test['Embarked'].fillna(test['Embarked'].mode()[0], inplace = True)
#Revisando los vacios
print(test.isna().sum())
test.head()
test['Sex'] = test['Sex'].apply(lambda val: 1 if val == 'male' else 0) #1 para hombre, 0 para mujer
test['Embarked'] = test['Embarked'].map({'S' : 0, 'C': 1, 'Q': 2}) #Abordaje
print(test.head(), "\n")
test.describe()
      Pclass
               Sex Age SibSp Parch Fare Embarked
              male 34.5 0 0 7.8292
                           1
                                  0 7.0000
          3 female 47.0
              male 62.0
                           0
                                  0 9.6875
                                                  Q
                                                  S
          3 male 27.0 0 0 8.6625
         3 female 22.0 1 1 12.2875
    Pclass
              0
    Sex
    Age
    SibSp
    Parch
    Fare
    Embarked
    dtype: int64
      Pclass Sex Age SibSp Parch Fare Embarked
          3 1 34.5 0 0 7.8292
          3 0 47.0 1 0 7.0000
                         0 0 9.6875
                                                2
              1 62.0
                         0
                               0 8.6625
                                                0
              1 27.0
          3 0 22.0
                         1 1 12.2875
                                                0
              Pclass
                          Sex
                                            SibSp
                                                      Parch
                                                                 Fare Embarked
                                    Age
     count 418.000000 418.000000 418.000000 418.000000 418.000000 418.000000
                                                                        0.464115
     mean
            2.265550
                      0.636364
                               30.272590
                                          0.447368
                                                    0.392344 35.798062
                                                                        0.685516
            0.841838
                      0.481622
                               12.634534
                                          0.896760
                                                    0.981429 55.785702
      std
            1.000000
                      0.000000
                                0.170000
                                          0.000000
                                                    0.000000
                                                             3.170800
                                                                        0.000000
      min
            1.000000
                      0.000000
                               23.000000
                                          0.000000
                                                    0.000000
                                                              7.895800
                                                                        0.000000
     25%
            3.000000
                      1.000000
                               30.272590
                                          0.000000
                                                    0.000000
                                                             14.479150
                                                                        0.000000
     50%
                      1.000000
                                          1.000000
                                                    0.000000 31.634400
                                                                        1.000000
            3.000000
                               35.750000
                      1.000000 76.000000
                                          8.000000
            3.000000
                                                    9.000000 512.329200
                                                                      2.000000
     max
```

Y por último antes de empezar el entrenamiento de nuestro algortimo revisamos algunas estadísticas del dataset

```
values = train['Survived'].value_counts()
labels = ['No sobrevivió', 'Sobrevivió']
fig, ax = plt.subplots(figsize = (5, 5), dpi = 100)
explode = (0, 0.06)
patches, texts, autotexts = ax.pie(values, labels = labels, autopct = '%1.2f%'')
plt.setp(texts, color = 'black')
plt.setp(autotexts, size = 12, color = 'white')
autotexts[1].set_color('black')
plt.show()
```



```
print(train.groupby(['Pclass', 'Survived'])['Survived'].count(), "\n")
plt.figure(figsize = (16, 7))
sb.countplot('Pclass', hue = 'Survived', data = train)
plt.show()

Pclass Survived
```

PC1d22	201.ATAER	
1	0	86
	1	136
2	0	97
	1	87
3	0	372
	1	119

rest. Tsila() . sull()

#Se rellenan los ceros de "Fare" con la media

Name: Survived, dtype: int64

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `dat FutureWarning


```
values = train['Pclass'].value_counts()
labels = ['Third Class', 'Second Class', 'First Class']
explode = (0, 0, 0.08)
fig, ax = plt.subplots(figsize = (5, 6), dpi = 100)
patches, texts, autotexts = ax.pie(values, labels = labels, autopct = '%1.2f%%')
```


Relación entre posibilidad de sobrevivir y clase

```
plt.setp(texts, color = 'black')
plt.setp(autotexts, size = 13, color = 'white')
autotexts[2].set_color('black')
plt.show()
```

sb.catplot('Pclass', 'Survived', kind = 'violin', data = train,height = 6, aspect = 2)
plt.show()

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `EutureWarning

Relación entre lugar de abordaje y supervivencia

sb.countplot('Embarked', hue = 'Survived', data = train)
plt.show()

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `dat FutureWarning

Relación entre lugar de abordaje, supervivencia y sexo

sb.catplot(x = 'Embarked', y = 'Survived', kind = 'bar', data = train, col = 'Sex')
plt.show()

print(train['Age'].value_counts(), "\n")

29.699118 177
24.000000 30
22.000000 27
18.000000 26
28.000000 25
....
55.500000 1
53.000000 1
20.500000 1
23.500000 1
0.420000 1
Name: Age, Length: 89, dtype: int64

Empezando nuestro entrenamiento

X = train[['Sex','Age','SibSp','Parch','Pclass','Fare','Embarked']].values

y = train['Survived'].values

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0,test_size=0.3)

scaler = StandardScaler() #Se escalizan los datos
scaler.fit(X_train) #El fit de los datos se hace con el conjunto de entrenamiento!
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)

REGRESIÓN LOGÍSTICA

log.fit(X_train, y_train)

LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, l1_ratio=None, max_iter=200, multi_class='auto', n_jobs=None, penalty='l2', random_state=0, solver='liblinear', tol=0.0001, verbose=0, warm_start=False)

0.79

268

pred = log.predict(X_test)
print(classification_report(y_test, pred))

precision recall f1-score support 0.84 0.84 168 0.83 0.73 0.72 100 0.72 268 0.79 accuracy 0.78 0.78 268 macro avg 0.78

0.79

0.79

matthews_corrcoef(y_test,pred)

0.5604377974938483

weighted avg

score = log.predict_proba(X_test)
roc_auc_score(y_test,score[:, 1])

0.8494642857142857

```
KNN
k_range = range(1, int(np.sqrt(len(y_train))))
print(k_range)
#por ejemplo euclidean. manhattan. chebyshev. minkowski. wminkowski. seuclidean. mahalanobis. hamming
#import sklearn
#sorted(sklearn.neighbors.VALID_METRICS['brute'])
distance='minkowski'#podemos hacer un for que recorra las distancias que queremos probar en un enfoque grid-search.
ACC=[]
MCC=[]
TPR=[]
FPR=[]
AUC=[]
for k in k_range:#por ahora variemos K,
       knn = KNeighborsClassifier(n_neighbors = k,weights='distance',metric=distance, metric_params=None,algorithm='brute')
       #knn = KNeighborsClassifier(n_neighbors = k)
       knn.fit(X_train, y_train)
       y_predicted=knn.predict(X_test)
       y_score=knn.predict_proba(X_test)
       #Les toca hacer:
       #Hallar: Accuracy
       ACC.append(knn.score(X_test, y_test))
       MCC.append(matthews_corrcoef(y_test,y_predicted))
       #https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html
       #TPR
       #Ustedes buscan
       TPR.append(recall_score(y_test,y_predicted))
       #FPR esuno menos TNR no TPR
       #Ustedes buscan
       tn, fp, fn, tp = confusion_matrix(y_test,y_predicted).ravel()
       #FPR= FP/N =FP/(FP+TN)
       FPR.append(fp/(fp+tn))
       # AUC de la ROC
       #AUC.append(y_score[:, 1])
       AUC.append(roc_auc_score(y_test,y_score[:, 1]))
       fpr, tpr, thresholds = metrics.roc_curve(y_test, y_score[:, 1], pos_label=1)
       plt.figure()
       lw = 2
       plt.plot(fpr, tpr, color='darkorange',lw=lw, label='ROC curve (area = %0.5f)' % roc_auc_score(y_test,y_score[:, 1]))
       plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
       plt.xlim([0.0, 1.0])
       plt.ylim([0.0, 1.05])
       plt.xlabel('False Positive Rate')
       plt.ylabel('True Positive Rate')
       plt.title('Receiver operating characteristic. ROC')
       plt.legend(loc="lower right")
       plt.show()
print(ACC)
plt.figure()
plt.plot(k_range,ACC)
plt.show()
         [0.753731343283582,\ 0.7649253731343284,\ 0.7798507462686567,\ 0.7798507462686567,\ 0.7873134328358209,\ 0.7798507462686567,\ 0.7873134328358209,\ 0.7798507462686567,\ 0.7873134328358209,\ 0.7798507462686567,\ 0.7873134328358209,\ 0.7798507462686567,\ 0.7873134328358209,\ 0.7798507462686567,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328358209,\ 0.7873134328209,\ 0.78731343282090000000000000000
           0.81 -
           0.80
           0.79
           0.78 -
           0.77
           0.76
```

print(MCC) plt.figure() plt.plot(k_range,MCC) plt.show()

 $[0.4735714285714286,\ 0.4927632817554276,\ 0.5234824282445948,\ 0.5234824282445948,\ 0.5427372558705581,\ 0.5266827763370802,\ 0.5427372558705581,\ 0.5266827763370802,\ 0.5396900634998572,\ 0.5558976987551$ 0.60 -0.58 0.56 0.54 -0.52 -0.50 -0.48

print(AUC) plt.figure() plt.plot(k_range,AUC) plt.show()

 $[0.7367857142857143,\ 0.7894940476190477,\ 0.8109226190476191,\ 0.8389285714285714,\ 0.8422321428571429,\ 0.8420238095238095,\ 0.8418452380952381,\ 0.8418154761904764,\ 0.840833333333333,\ 0.84535714285$

#lineal #Kernel=0

kernels=['linear', 'poly', 'rbf', 'sigmoid']

```
#msv = svm.SVC(kernel=kernels[Kernel])
#polinomial cuadrático
#Kernel=1
#msv = svm.SVC(kernel=kernels[Kernel],degree=2)
#polinomial cúbico
#Kernel=1
#msv = svm.SVC(kernel=kernels[Kernel],degree=3)
#rbf
Kernel=2
msv = svm.SVC(kernel=kernels[Kernel],C=0.001)
#https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC
msv.fit(X_train, y_train)
    SVC(C=0.001, break_ties=False, cache_size=200, class_weight=None, coef0=0.0,
        decision_function_shape='ovr', degree=3, gamma='scale', kernel='rbf',
        max_iter=-1, probability=False, random_state=None, shrinking=True,
        tol=0.001, verbose=False)
y_test_predicted = msv.predict(X_test)
y_test_scores = msv.decision_function(X_test)
MCC = matthews_corrcoef(y_test, y_test_predicted)
print("matthews_corrcoef", MCC)
ACC = accuracy_score(y_test, y_test_predicted)
print("Accuracy", ACC)
fpr,tpr,thresholds = roc_curve(y_test, y_test_scores)
roc_auc=roc_auc_score(y_test, y_test_scores)
plt.figure()
lw = 2
plt.plot(fpr, tpr, color='darkorange',lw=lw, label='ROC curve (area = %0.5f)' % roc_auc)
plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic. ROC')
plt.legend(loc="lower right")
plt.show()
    /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:900: RuntimeWarning: invalid value encountered in double_scalars
      mcc = cov_ytyp / np.sqrt(cov_ytyt * cov_ypyp)
    matthews_corrcoef 0.0
    Accuracy 0.6268656716417911
```


Modificando la regularización (C) del método obtenemos la mejor evaluación de la ROC para SVM y de todos los métodos de clasificación implementados.

Por ello el método a evaluar en la competición de Kaggle sera el de Máquinas de soporte vectorial.

pre = msv.predict(test)

df = pd.DataFrame({"PassengerId": test_ids.values, "Survived": pre})

df.to_csv("submission.csv", index=False)

Subiendo el archivo submission a la competición en kaggle se obtuvo el siguiente resultado:

