2020年12月8日 星期二

2020-12-0816

第六讲课后作业

[学号 作者]

(1) 考虑一个系数为实数的 FIR 滤波器 h(n),且当n<0及n>M 时,h(n)=0。h(n)具有

以下其中一个对称特点:

h(n) = h(M - n)偶对称:

则 FIR 滤波器 h(n) 具有线性相位特性,即:

 $H(\omega) = A(\omega)e^{-ja\omega+j\beta}$

奇对称:

其中, $A(\omega)$ 是频率 ω 的实函数, α 和 β 为实常数。

h(n) = -h(M-n)

试访	$\mathcal{H}(\omega)$ 具有如	卜 表所示的表达式,	开求解对应的 a 相 β 。		
类型	对称特点	滤波器长度 (<i>M</i> +1)	$A(\omega)$ 表达式	а	β
I	偶对称	奇数	$\sum_{n=0}^{M/2} a(n) \cos \omega n$	α= <u>Σ</u>	β=0
II	偶对称	偶数	$\sum_{n=1}^{(M+1)/2} b(n) \cos \omega (n-1/2)$	$\alpha = \frac{\lambda}{\lambda}$	β=0
III	奇对称	奇数	$\sum_{n=1}^{M/2} c(n) \sin \omega n$	$\alpha = \frac{r}{W}$	β= 2
IV	奇对称	偶数	$\sum_{n=1}^{(M+1)/2} d(n) \sin \omega (n-1/2)$	$\alpha = \frac{M}{\Sigma}$	β= 2

$$H(w) = \sum_{n=0}^{\infty} h(n) e^{-jwn} = \sum_{n=0}^{\frac{\infty}{2}-1} h(n) e^{-jwn} + \sum_{n=0}^{\infty} h(n) e^{-jwn} + h(\frac{\infty}{2}) e^{-jw}$$

$$\triangle m = M - n . \triangle$$

$$H(w) = \sum_{n=0}^{\infty} h(n) e^{-jwn} + \sum_{n=0}^{\infty} h(n) e^{-jwn} + h(\frac{m}{2}) e^{-jwn}$$

$$= \sum_{N=0}^{\infty} h(n) e^{-jwn} + \sum_{m=0}^{\infty} h(m-m) e^{-jw(m-m)} + h(\frac{\pi}{2}) e^{-jw\frac{\pi}{2}}$$

$$= e^{-jw\frac{\pi}{2}} \left[2 \sum_{m=0}^{\infty} h(m) \omega_{S}(\frac{\pi}{2} - m) w + h(\frac{\pi}{2}) \right]$$

再
$$2 n = \frac{M}{2} - m$$
 , 得

$$\alpha(n) = \begin{cases} h(\frac{M}{2}) & n = 0 \\ 2h(\frac{M}{2} - n) & n = 1, 2 - \infty \end{cases}$$

$$\lim_{N \to \infty} \frac{M}{2} \qquad (1.8) \quad (1.8)$$

$$||H(e^{iw})| = e^{-jw\sum_{n=0}^{m} \alpha(n) \cos(wn)}$$

$$H(w) = \sum_{n=0}^{\infty} h(n) e^{-jwn} = \sum_{n=0}^{\frac{m}{2} - \frac{1}{2}} h(n) e^{-jwn} + \sum_{n=\frac{m}{2} + \frac{1}{2}}^{\infty} h(n) e^{-jwn}$$

$$= e^{-jw} \sum_{n=0}^{\infty} h(n) e^{-jwn} + [-j(\frac{m}{2} - n)w] + [-j(\frac{m}{2} - n)w]$$

$$= e^{-jw\frac{M}{2}} \sum_{n=0}^{M-1} 2h(n) \cos \left[\left(\frac{M}{2} - n \right) w \right]$$

$$4m = \frac{m+1}{n} - n$$

$$H(e^{jw}) = e^{-jw\frac{m}{2}} \sum_{n=1}^{\frac{m-1}{2}} 2h(\frac{N}{2}-n) \cos[(n-\frac{1}{2})w]$$

会 b(n) =
$$2h(\frac{N}{2}-n)$$
, $n=1,2--- \frac{N}{2}$
H(e''') = $e^{-jw\frac{N}{2}} \sum_{n=1}^{N+1} b(n) \cos[(n-\frac{1}{2})w]$

此时 h(型)=0, 与①相导同理 $\langle \Sigma (n) = \lambda h (\frac{M}{\Sigma} - n), n = 1, 2 - \dots \rangle$

$$\mathbb{R} | H(e^{jw}) = e^{j(\frac{2}{5} - \frac{m}{2}w)} \sum_{n=1}^{\infty} C(n) sm(nw)$$

$$\frac{1}{2} d(n) = 2h(\frac{m+1}{2} - n), n = 1, 2 - - \frac{m+1}{2}$$

$$\frac{1}{2} H(e^{iw}) = e^{i(\frac{2}{2} - \frac{m}{2}w)} \sum_{n=1}^{m+1} d(n) \sin[(n-\frac{1}{2})w]$$

M+1