Topic 4:

Least Squares Curve Fitting

Lectures 18-19:

Lecture 18 Introduction to Least Squares

Motivation

Given a set of experimental data:

X	1	2	3
У	5.1	5.9	6.3

- The relationship between
 x and y may not be clear.
- We want to find an expression for f(x).

Motivation - Model Building

- In engineering, two types of applications are encountered:
 - <u>Trend analysis:</u> Predicting values of dependent variable, may include extrapolation beyond data points or interpolation between data points.
 - <u>Hypothesis testing:</u> Comparing existing mathematical model with measured data.
- 1. What is the best mathematical model (function f, y) that represents the dataset y_i ?
- 2. What is the best criterion to assess the fitting of the function **y** to the data?

Motivation - Curve Fitting

Given a set of tabulated data, find a curve or a function that <u>best represents the</u> <u>data</u>.

Given:

- 1. The tabulated data
- 2. The **form** of the function
- 3. The curve fitting criteria

Find the **unknown** coefficients

Least Squares Regression

Linear Regression

Fitting a straight line to a set of paired observations:

$$(x_1, y_1), (x_2, y_2),..., (x_n, y_n).$$

 $y=a_0+a_1x+e$
 a_1 -slope.
 a_0 -intercept.

e-error, or residual, between the model and the observations.

Selection of the Functions

Linear
$$f(x) = a + bx$$

Quadratic $f(x) = a + bx + cx^2$
Polynomial $f(x) = \sum_{k=0}^{n} a_k x^k$
General $f(x) = \sum_{k=0}^{m} a_k g_k(x)$
 $g_k(x)$ are known.

Decide on the Criterion

1. Least Squares:

$$\min_{a,b} \sum_{i=0}^{n} \left| f(x_i) - f_i \right|^2$$

Chapter 17

2. Exact Matching (Interpolation):

$$f_i = f(x_i)$$

Chapter 18

Least Squares

Given:

X _i	X_1	\mathbf{x}_2	 X _n
y _i	У1	y ₂	 y _n

The form of the function is assumed to be known but the coefficients are unknown.

$$y_i = f(x_i) + e_i$$

The difference is assumed to be the result of experimental error.

Determine the Unknowns

We want to find a and b to minimize:

$$\Phi(a,b) = \sum_{i=0}^{n} |f_i - (a+bx_i)|^2$$

How do we obtain a and b to minimize: $\Phi(a,b)$?

Determine the Unknowns

Necessary condition for the minimum:

$$\frac{\partial \Phi(a,b)}{\partial a} = 0$$

$$\frac{\partial \Phi(a,b)}{\partial b} = 0$$

Assume:

$$f(x) = a + bx$$

X	1	2	3
У	5.1	5.9	6.3

Necessary condition for the minimum:

$$\frac{\partial \Phi(a,b)}{\partial a} = 0$$

$$\frac{\partial \Phi(a,b)}{\partial b} = 0$$

Remember

$$\frac{d}{dx} \left(\sum_{k=1}^{n} a_i \ x \right) = \sum_{k=1}^{n} a_i$$

$$\frac{\partial}{\partial a} \left(\sum_{k=1}^{n} g_i(x) \ a \right) = \sum_{k=1}^{n} g_i(x)$$

$$\frac{\partial \Phi(a,b)}{\partial a} = 0 = \sum_{k=1}^{N} 2(a + bx_k - y_k)$$

$$\frac{\partial \Phi(a,b)}{\partial b} = 0 = \sum_{k=1}^{N} 2(a + bx_k - y_k)x_k$$

Normal Equations:

$$N a + \left(\sum_{k=1}^{N} x_k\right) b = \left(\sum_{k=1}^{N} y_k\right)$$
$$\left(\sum_{k=1}^{N} x_k\right) a + \left(\sum_{k=1}^{N} x_k^2\right) b = \left(\sum_{k=1}^{N} x_k y_k\right)$$

Solving the Normal Equations gives:

$$b = \frac{N\left(\sum_{k=1}^{N} x_{k} y_{k}\right) - \left(\sum_{k=1}^{N} x_{k}\right) \left(\sum_{k=1}^{N} y_{k}\right)}{N\left(\sum_{k=1}^{N} x_{k}^{2}\right) - \left(\sum_{k=1}^{N} x_{k}\right)^{2}}$$

$$a = \frac{1}{N} \left(\left(\sum_{k=1}^{N} y_k \right) - b \left(\sum_{k=1}^{N} x_k \right) \right)$$

i	1	2	3	sum
X _i	1	2	3	6
Yi	5.1	5.9	6.3	17.3
X _i ²	1	4	9	14
x _i y _i	5.1	11.8	18.9	35.8

Normal Equations:

$$N a + \left(\sum_{k=1}^{N} x_k\right) b = \left(\sum_{k=1}^{N} y_k\right)$$
$$\left(\sum_{k=1}^{N} x_k\right) a + \left(\sum_{k=1}^{N} x_k^2\right) b = \left(\sum_{k=1}^{N} x_k y_k\right)$$

$$3a + 6b = 17.3$$

 $6a + 14b = 35.8$
 $Solving \Rightarrow a = 4.5667$ $b = 0.60$

- Fitting with Nonlinear Functions -

X	0.24	0.65	0.95	1.24	1.73	2.01	2.23	2.52
У	0.23	-0.23	-1.1	-0.45	0.27	0.1	-0.29	0.24

It is required to find a function of the form:

$$f(x) = a \ln(x) + b \cos(x) + c e^{x}$$

to fit the data.

Necessary condition for the minimum:

$$\frac{\partial \Phi(a,b,c)}{\partial a} = 0$$

$$\frac{\partial \Phi(a,b,c)}{\partial b} = 0$$

$$\frac{\partial \Phi(a,b,c)}{\partial c} = 0$$

$$\frac{\partial \Phi(a,b,c)}{\partial c} = 0$$

$$a\sum_{k=1}^{8}(\ln x_k)^2 + b\sum_{k=1}^{8}(\ln x_k)(\cos x_k) + c\sum_{k=1}^{8}(\ln x_k)(e^{x_k}) = \sum_{k=1}^{8}y_k(\ln x_k)$$

$$a\sum_{k=1}^{8}(\ln x_k)(\cos x_k) + b\sum_{k=1}^{8}(\cos x_k)^2 + c\sum_{k=1}^{8}(\cos x_k)(e^{x_k}) = \sum_{k=1}^{8}y_k(\cos x_k)$$

$$a\sum_{k=1}^{8}(\ln x_k)(e^{x_k}) + b\sum_{k=1}^{8}(\cos x_k)(e^{x_k}) + c\sum_{k=1}^{8}(e^{x_k})^2 = \sum_{k=1}^{8}y_k(e^{x_k})$$

Evaluate the sums and solve the normal equations.

How Do You Judge Performance?

Given two or more functions to fit the data, How do you select the best?

Answer:

Determine the parameters for each function, then compute Φ for each one. The function resulting in smaller Φ is the best in the least square sense.

Multiple Regression

Example:

Given the following data:

t	0	1	2	3
X	0.1	0.4	0.2	0.2
f(x,t)	3	2	1	2

It is required to determine a function of two variables:

$$f(x,t) = a + b x + c t$$

to explain the data that is best in the least square sense.

Solution of Multiple Regression

Construct Φ , the sum of the square of the error and derive the necessary conditions by equating the partial derivatives with respect to the unknown parameters to zero, then solve the equations.

t	0	1	2	3
X	0.1	0.4	0.2	0.2
f(x,t)	3	2	1	2

Solution of Multiple Regression

$$f(x,t) = a + bx + ct$$

$$\Phi(a,b,c) = \sum_{i=1}^{4} (a + bx_i + ct_i - f_i)^2$$

Necessary conditions:

$$\frac{\partial \Phi(a,b,c)}{\partial a} = 2\sum_{i=1}^{4} \left(a + bx_i + ct_i - f_i \right) = 0$$

$$\frac{\partial \Phi(a,b,c)}{\partial b} = 2\sum_{i=1}^{4} (a + bx_i + ct_i - f_i)x_i = 0$$

$$\frac{\partial \Phi(a,b,c)}{\partial c} = 2\sum_{i=1}^{4} (a + bx_i + ct_i - f_i)t_i = 0$$

Lecture 19 Nonlinear Least Squares Problems + More

- Examples of Nonlinear Least Squares
- Solution of Inconsistent Equations
- Continuous Least Square Problems

Nonlinear Problem

Given:

Х	1	2	3
У	2.4	5	9

Find a function of the form ae^{bx} that best fits the data.

$$\Phi = \sum_{i=1}^{3} \left(ae^{bx_i} - y_i \right)^2$$

Normal Equations are obtained using:

$$\frac{\partial \Phi}{\partial a} = 0 = \sum_{i=1}^{3} \left(a e^{bx_i} - y_i \right) e^{bx_i}$$

$$\frac{\partial \Phi}{\partial b} = 0 = \sum_{i=1}^{3} \left(ae^{bx_i} - y_i \right) a x_i e^{bx_i}$$

Alternative Solution

(Linearization Method)

Given:

X	1	2	3
У	2.4	5	9

Find a function of the form ae^{bx} that best fits the data.

Define: z = ln(y) = ln(a) + bx

Let: $\alpha = \ln(a)$ and $z_i = \ln(y_i)$

Instead of using: $\Phi = \sum_{i=1}^{3} (ae^{bx_i} - y_i)^2$

We will use: $\Phi = \sum_{i=1}^{3} (\alpha + bx_i - z_i)^2$ (Easier to solve)

(Linearization Method)

Given:

X	1	2	3
У	0.23	.2	.14

Find a function of the form 1/(ax+b) that best fits the data.

$$f(x) = \frac{1}{ax + b}$$

Define:
$$z = \frac{1}{y} = ax + b$$

$$Let: z_i = \frac{1}{y_i}$$

Instead of using:
$$\Phi = \sum_{i=1}^{3} \left(\frac{1}{ax + b} - y_i \right)^2$$

We will use:
$$\Phi = \sum_{i=1}^{3} (ax_i + b - z_i)^2$$

Inconsistent System of Equations

Problem:

Solve the following system of equations:

$$\begin{bmatrix} 1 & 2 \\ 2 & 2 \\ 3 & 4.1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \\ 10 \end{bmatrix}$$

This is an inconsistent system of Equations.

No solution exists.

Inconsistent System of Equations

- Reasons -

- Inconsistent equations may occur because of:
 - Errors in formulating the problem,
 - Errors in collecting the data, or
 - Computational errors.

Solution exists if all lines intersect at one point.

Inconsistent System of Equations

- Formulation as a Least Squares Problem -

We can view the equations as:

$$\begin{bmatrix} 1 & 2 \\ 2 & 2 \\ 3 & 4.1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \\ 10 \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \end{bmatrix}$$

Find x_1 and x_2 to minimize the least squares error.

Solution

$$\Phi = (x_1 + 2x_2 - 4)^2 + (2x_1 + 2x_2 - 6)^2 + (3x_1 + 4.1x_2 - 10)^2$$

Find x_1 and x_2 to minimize Φ .

$$\frac{\partial \Phi}{\partial x_1} = 0 = 2(x_1 + 2x_2 - 4) + 4(2x_1 + 2x_2 - 6) + 6(3x_1 + 4.1x_2 - 10)$$

$$0 = (2+8+18)x_1 + (4+8+24.6)x_2 + (-8-24-60)$$

$$28x_1 + 36.6x_2 = 92$$

$$\frac{\partial \Phi}{\partial x_2} = 0 = 4(x_1 + 2x_2 - 4) + 4(2x_1 + 2x_2 - 6) + 8.2(3x_1 + 4.1x_2 - 10)$$

$$0 = (4+8+24.6)x_1 + (8+8+33.62)x_2 + (-16-24-82)$$

$$36.6x_1 + 49.62x_2 = 122$$

Solution

Normal equations:

$$28x_1 + 36.6x_2 = 92$$

$$36.6x_1 + 49.62x_2 = 122$$

Solution:

$$\Rightarrow x_1 = 2.0048, x_2 = 0.9799$$