Layers of a Computing System

End-user

Application Software

System Software

Computer Architecture

Electronics, Gates and Circuits

Data Representation

Data Representation

A Bit (Binary digIT) has two possible values – 0 and 1

Used to represent one of two discrete states.

- 0 (OFF) or 1 (ON)
- 0 (False) or 1 (True)

Two bits can represent four different things.

Three bits can represent eight different things.

How many things can *n* bits represent?

Bits are used to represent numbers, text characters, images, sound, etc.

Binary (bit) Addition

Only four possible combinations of input:

0 + 0	0 + 1	+ 0	1 + 1
0 0	0 1	0 1	1 0
<u> </u>	† †	† †	† †
carry sum	carry sum	carry sum	carry sum

Α	В	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Truth Table

Boolean Expressions

$$SUM = A.\overline{B} + \overline{A}.B$$

$$CARRY = A.B$$

Logic Gates

Bits can be used to represent electrical signals: 0 (0V) or 1 (5V)

A gate is a device that performs a logical operation on electrical signals

These logical operations were defined by the mathematician George Boole (1815-64)

The most common logic (Boolean) operations are:

NOT XOR
AND NAND
OR NOR

Logic Gates Symbols

Each gate has its own logic symbol which allows circuits to be represented by a logic diagram

Logic gates have one or more inputs and a single output

Logic Gates

The behaviour of gates (and circuits) are commonly represented in any of the following ways:

Boolean Expressions

Uses Boolean algebra, a mathematical notation for expressing two-valued logic

Logic Diagrams

A graphical representation of a circuit; each gate has its own symbol

Truth Tables

A table showing all possible input values and the associated output values

The AND operation

Logic Gate Symbol

Α	В	A.B
0	0	0
0	1	0
1	0	0
1	1	1

Truth Table

In order for the output to be 1 both inputs must be 1

The AND operation

Truth Table

<u>Inputs</u>		<u>Output</u>
0	0	0
0	1	0
1	0	0
1	1	1

0 = FALSE

1 = TRUE

AND operation

 Both input values must be TRUE for output to be TRUE

The OR operation

Logic Gate Symbol

Α	В	A+B
0	0	0
0	1	1
1	0	1
1	1	1

Truth Table

In order for the output to be 1 either input must be 1.

The NOT operation

Α	Ā
0	1
1	0

Logic Gate Symbol

Truth Table

Inverts a single input. Also called an inverter.

NAND

Α	В	$\overline{A}.\overline{B}$
0	0	1
0	1	1
1	0	1
1	1	0

A NAND B = NOT (A AND B)

Logic Gate Symbol

Truth Table

NOR

Logic Gate Symbol

A	В	$\overline{A+B}$
0	0	1
0	1	0
1	0	0
1	1	0

Truth Table

A NOR B = NOT (A OR B)

The XOR (eXclusive OR) operation

Logic Gate Symbol

Α	В	A+B
0	0	0
0	1	1
1	0	1
1	1	0

Truth Table

In order for the output to be 1 either (but not both) inputs must be 1.

(A AND NOT B) OR (NOT A AND B) = A XOR B

Boolean Algebra

Boolean Constants: these are '0' (false) and '1' (true)

Boolean Variables: variables that can only take the vales '0' or '1'

Boolean Functions: such as NOT, AND and OR (in that order)

Boolean Theorems: a set of identities and laws

Law	AND	OR
Commutative	A.B=B.A	A + B = B + A
Associative	A.(B.C) = (A.B).C	A + (B + C) = (A + B) + C
Absorption	A. (A + B) = A	A + (A.B) = A
Distributive	A.(B+C) = (A.B) + (B.C)	A + (B.C) = (A + B).(B + C)
De Morgan's Law	$\overline{A.B} = \overline{A} + \overline{B}$	$\overline{A+B}=\bar{A}.\bar{B}$

Complete the truth table for a Boolean expression

 $A + \bar{B}$

Α	В
0	0
0	1
1	0
1	1

\overline{B}	
1	
0	
1	
0	

	$A + \bar{B}$
	1
	0
	1
Γ	1

Complete the truth table for a Boolean expression

 $\overline{A.B}$

Α	В	A.B	$\overline{A.B}$
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

Let's say we wanted to investigate whether the identity holds

Α	В	Ā	\overline{B}	\overline{A} . \overline{B}
0	0	1	1	1
0	1	1	0	0
1	0	0	1	0
1	1	0	0	0

A.B	$\overline{A.B}$
0	1
0	1
0	1
1	0

Is NOT A AND NOT B = NOT (A AND B) ?

Investigate whether the identity holds

$$A + (A.B) = A$$

Α	В	A. B	A + (A. B)
0	0	0	0
0	1	0	0
1	0	0	1
1	1	1	1

Α	В	С	B+C	A. (B + C)	A. B	A. C	(A.B) + (B.C)
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	 1	1	1	1	1

Distribution: A.(B+C) = (A.B) + (A.C)

Α	В	U	B.C	A + (B. C)	A + B	A + C	(A + B). (A + C)
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

Distribution: A + (B.C) = (A + B).(A + C)

Using truth tables to verify identities - exercise

De Morgan's laws are used to simplify Boolean equations so that you can build equations only involving one sort of gate.

Verify De Morgan's laws using truth tables

Using truth tables to verify identities - SOLUTIONS

$$\overline{A.B} = \overline{A} + \overline{B}$$

A	В	A. B	$\overline{A.B}$	Ā	\overline{B}	$\overline{A} + \overline{B}$
0	0	0	1	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	1	1
1	1	1	0	0	0	0

$$\overline{A+B} = \overline{A}.\overline{B}$$

A	В	A + B	$\overline{A+B}$	\overline{A}	\overline{B}	\overline{A} . \overline{B}
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

Create a Boolean Expression from a logic diagram

Work progressively from the inputs to the output adding logic expressions to the output of each gate in turn

Create a Boolean Expression from a logic diagram

Work progressively from the inputs to the output adding logic expressions to the output of each gate in turn

Create a Boolean Expression from a logic diagram

Connect Logic Gates (to create circuits)

Logic gates may be combined by using the output of one gate as the input to another.

Α	В	A OR B	Q = NOT (A OR B)
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

A NOR B
1
0
0
0

Connect Logic Gates (to create circuits)

Circuits in which the output is determined solely by the current inputs are termed **combinational logic circuits**.

A AND NOT B OR NOT A AND B = A XOR B

An adder is a digital circuit that performs addition of numbers.

A half adder adds two binary digits and produces two outputs

the sum and the carry

Only four possible combinations of input:

$$SUM = A.\overline{B} + \overline{A}.B$$

$$CARRY = A.B$$

Α	В	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$SUM = A.\bar{B} + \bar{A}.B$$

$$CARRY = A.B$$

Half-adder (refined)

The circuit for SUM can be simplified as follows:

$$SUM = A.\overline{B} + \overline{A}.B$$

$$= A \square B \qquad \text{(i.e. A XOR B)}$$

Α	В	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

The half-adder can now be realised with fewer gates as shown

Half-adder (operation)

Inputs	Output	
0 0	0	
0 1	1	
1 0	1	
1 1	0	

Inputs	Output	
0 0	0	
0 1	0	
1 0	0	
1 1	1	

Inputs	Output	
0 0	0	
1 0	1	
1 1	0	

Inputs	Output	
0 0	0	
0 1	0	
1 0	0	
1 1	1	

Inputs	Output	
0 0	0	
0 1	1	
1 0	1	
1 1	0	

Inputs	Output	
0 0	0	
0 1	0	
1 0	0	
1 1	1	

Inputs	Output	
0 0	0	
0 1	1	
1 0	1	
1 1	0	

Inputs	Output	
0 0	0	
0 1	0	
1 0	0	
1 1	1	

Full-adder

A full adder adds the carry in bit to two binary digits and produces two outputs – the sum and carry out.

Full-adder

A full adder adds the carry in bit to two binary digits and produces two outputs – the sum and carry out

Α	В	Carry In	Sum	Carry Out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$SUM = \bar{A}.\bar{B}.C + \bar{A}.B.\bar{C} + A.\bar{B}.\bar{C} + A.B.C$$

$$CARRY = \bar{A}.B.C + A.\bar{B}.C + A.B.\bar{C} + A.B.C$$

Full-adder (circuit for SUM)

$$SUM = A / X$$

$$SUM = A \square B \square C$$

Full-adder (circuit for CARRY)

$$CARRY = \bar{A}.B.C + A.\bar{B}.C + A.B.\bar{C} + A.B.C$$

$$CARRY = C(\bar{A}.B + A.\bar{B}) + A.B(C + \bar{C})$$

$$CARRY = C(A \square B) + A.B$$

Full-adder

$$SUM = A \square B \square C$$

$$CARRY = C.(A \square B) + A.B$$

