MÉTODO DE RAMIFICACIÓN Y ACOTACIÓN

Se considera el problema:

$$\min \quad \sum_{j=1}^{n} c_j x_j$$

sujeto a:

$$\sum_{j=1}^{n} a_{ij} x_j = b_i \qquad i = 1, ..., m$$

$$x_j \ge 0 \qquad j = 1, ..., n$$

 x_i entero, para todo $j \in J \subseteq \{1, ..., n\}$

La aplicación del Método de Ramificación y Acotación, parte de la solución óptima del problema relajado del problema anterior.

Paso 0:

Sea P el problema original. Hacer $L = \{P\}, \ \bar{z} = \infty$, e ir al paso 2.

Paso 1:

Si $L = \emptyset$ y $\bar{z} = \infty$, el problema original es no factible. PARAR.

Si $L = \emptyset$ y $\bar{z} < \infty$, la solución óptima del problema original es \bar{x} . PARAR.

Si $L \neq \emptyset$, ir al paso 2.

Paso 2 (Relajación):

Elegir $P_r \in L$, relajarlo y resolver el problema lineal resultante \bar{P}_r . Si es no factible, hacer

$$L = L - \{P_r\}$$

(se efectúa la poda del árbol de ramificación por *infactibilidad*), e ir al paso 1; en otro caso, sea \bar{x}^r la solución óptima de \bar{P}_r y \underline{z}^r el correspondiente valor óptimo. Ir al paso 3.

Paso 3 (Eliminación por acotación):

Si
$$\underline{z}^r \ge \bar{z}$$
, hacer

$$\boldsymbol{L} = \boldsymbol{L} - \{P_r\}$$

(se efectúa la poda del árbol de ramificación por *acotación*) e ir al paso 1; en otro caso, ir al paso 4.

Paso 4:

Si $\bar{x}_j^r \in \mathbb{Z}$, para todo $j \in J$, ir al paso 6. En otro caso, ir al paso 5.

Paso 5 (Ramificación):

Elegir $j \in J$, tal que $\bar{x}_j^r \notin \mathbb{Z}$. Generar, a partir de P_r , dos subproblemas P_r^{\leq} (el problema resultante de añadir al problema P_r la restricción: $x_j \leq \left\lfloor \bar{x}_j^r \right\rfloor$) y P_r^{\geq} (el problema resultante de añadir al problema P_r la restricción: $x_j \geq \left\lfloor \bar{x}_j^r \right\rfloor + 1$). Hacer

$$L = (L - \{P_r\}) \cup \{P_r^{\leq}, P_r^{\geq}\}$$

e ir al paso 2.

Paso 6:

Hacer
$$\bar{x} = \bar{x}^r$$
, $\bar{z} = \bar{z}^r$ y

$$\boldsymbol{L} = \boldsymbol{L} - \{P_r\}$$

(se efectúa la poda del árbol de ramificación por *optimalidad*) eliminando a la vez de L todos los problemas P_r con $\underline{z}^r \geq \bar{z}$, e ir al paso 1.

Esquema de ramificación

