БИЛЕТ 1

- 1) Составить уравнения касательной плоскости и нормальной прямой к поверхности $z = \sin\left(\frac{y}{x}\right)$ в точке $\left(1, \frac{\pi}{2}, 1\right)$.
- 2) Вычислить площадь фигуры, ограниченной линией $x^2 + y^2 = 2x$.
- 3) Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \left(\arccos \frac{n}{2n+1} \right)^n$.

БИЛЕТ 2

- 1) Найти y'(x) для функции, заданной уравнением $\ln\left(\frac{1}{2}\sqrt{x^2+y^2}\right) = arctg\left(\frac{x}{y}\right).$
- 2) Изменить порядок интегрирования $\int_{0}^{1} dx \int_{\frac{1}{9}x^{2}}^{x} f(x, y) dy$
- 3) Найти область сходимости степенного ряда $\sum_{n=1}^{\infty} \frac{n! x^n}{(n+1)^n}$.

БИЛЕТ 3

- 1) Исследовать на экстремум функцию $z = x^3 + y^3 9xy + 27$.
- 2) Вычислить объем тела, ограниченного поверхностями $z+x=4,\ z=0,\ y=\sqrt{x},\ y=2\sqrt{x}$.
- 3) Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \left(\frac{n}{2n+1}\right)^n$.

- 1) Найти частные производные $\frac{\partial z}{\partial u}$, $\frac{\partial z}{\partial v}$ функции $z = f\left(\frac{x}{y}\right)$, где $x = u \cdot \cos v$, $y = \sin^2 v$.
- 2) Вычислить площадь фигуры, ограниченной линией $\rho = 2(1 + \cos \varphi)$.
- 3) Исследовать на сходимость числовой ряд $\sum_{n=1}^{\infty} \frac{\sqrt{n^3 + 2n}}{5 + n^3}$.

БИЛЕТ №5

- 1) Найти d^2z для $z = arctg \frac{x}{y}$.
- 2) Вычислить площадь фигуры, ограниченной линиями $y = ctg \ x, \ y = 0, \ x = \frac{\pi}{4}$.
- 3) Найти область сходимости степенного ряда $\sum_{n=1}^{\infty} \frac{2^n \cdot x^n}{\sqrt{(4n+1) \cdot 5^n}}$.

- 1) Составить уравнения касательной плоскости и нормальной прямой к поверхности $z = xy\sqrt{x^2 + y^2}$ в точке $(\sqrt{2}, \sqrt{2}, 4)$.
- 2) Вычислить объем тела, ограниченного поверхностями $x^2 + y^2 = 4x$, z = x, z = 2x.
- 3) Исследовать на сходимость числовой ряд $\sum_{n=1}^{\infty} \frac{2^n}{5+n^3}$.

- 1) Найти $\frac{\partial z}{\partial x}$, где $z = 2^{x\sqrt{y}} \cdot \arcsin \frac{x}{y}$.
- 2) Вычислить площадь фигуры, ограниченной линиями $\rho \cdot \cos \varphi = a, \ \rho = 2a$.
- 3) Найти область сходимости степенного ряда $\sum_{n=1}^{\infty} \frac{(x-5)^n}{n}$.

БИЛЕТ №8

- 1) Исследовать на экстремум функцию $z=x^2-2xy+2y^2+2x$.
- 2) Изменить порядок интегрирования $\int_{0}^{1} dy \int_{-\sqrt{y}}^{\sqrt{y}} f(x,y) dx + \int_{1}^{4} dy \int_{y-2}^{\sqrt{y}} f(x,y) dx$.
- 3) Найти область сходимости степенного ряда $\sum_{n=1}^{\infty} \frac{(n+1)(x-1)^n}{\sqrt{n^2+3}\cdot 10^n}$.

- 1) Найти частные производные функции $u = \cos \frac{x}{x^2 + y^2 + z^2}$.
- 2) Найти площадь части поверхности конуса $x^2 + y^2 = z^2$, расположенной внутри цилиндра $z^2 = 2px$.
- 3) Исследовать на сходимость числовой ряд $\sum_{n=1}^{\infty} \sqrt{\frac{n+2}{n+1}}$

1) Найти dz, где $z = \ln(y + \sqrt{x^2 + y^2})$.

2) Вычислить интеграл $\iiint_G \sqrt{x^2 + y^2 + z^2} \, dx \, dy \, dz$, где $G: x^2 + y^2 + z^2 \le x$.

3) Найти область сходимости степенного ряда $\sum_{n=0}^{\infty} \frac{x^n}{\sqrt{n}+1}$.

БИЛЕТ №11

- 1) Исследовать на экстремум функцию $z=x^2-2xy+4y^3$.
- 2) Найти центр тяжести однородного полушара $x^2 + y^2 + z^2 \le a^2$ ($z \ge 0$).
- 3) Найти область сходимости степенного ряда $\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n}$.

- 1) Найти $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$, где $z = \frac{y}{f(x^2 y^2)}$.
- 2) Найти часть площади поверхности конуса $y^2 + z^2 = x^2$, расположенной внутри цилиндра $x^2 + y^2 = a^2$.
- 3) Исследовать на сходимость числовой ряд $\sum_{n=2}^{\infty} \frac{1}{n \cdot \ln^2 n}$.

- 1) Найти $\frac{dy}{dx}$ для функции y(x), заданной уравнением $\sin(xy) e^{xy} x^2y = 0$.
- 2) Вычислить площадь фигуры, ограниченной линией $(x^2 + y^2)^2 = 2a^2(x^2 y^2)$.
- 3) Вычислить $\sqrt[3]{1,015}$ с точностью до 0,001 с помощью разложения в ряд Маклорена.

БИЛЕТ №14

- 1) Исследовать на экстремум функцию $z=3x^2y-x^3-y^4$.
- 2) Изменить порядок интегрирования

$$\int_{0}^{\frac{\sqrt{2}}{2}} dy \int_{y}^{\sqrt{1-y^{2}}} f(x,y) dx + \int_{-\frac{\sqrt{2}}{2}}^{0} dy \int_{-y}^{\sqrt{1-y^{2}}} f(x,y) dx .$$

3) Вычислить приближённо интеграл $\int_{0}^{\frac{1}{4}} e^{-x^2} dx$, взяв три первых члена разложения в ряд Маклорена. Оценить погрешность.

- 1) Вычислить приближенно $(1,04)^{2,02}$ с помощью дифференциала.
- 2) Вычислить площадь фигуры, ограниченной линиями x + y = 1, y = 1, $y = \ln x$.
- 3) Вычислить приближённо интеграл $\int_{0}^{\frac{1}{2}} \frac{dx}{\sqrt{1+x^4}}$, взяв три первых члена разложения в ряд Маклорена. Оценить погрешность.

- 1) Найти $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$, где $z = \frac{y \cdot arc \sin(xy)}{x^2 y^2}$.
- 2) Вычислить массу сферического слоя между поверхностями $x^2 + y^2 + z^2 = a^2$, $x^2 + y^2 + z^2 = 4a^2$, если плотность в каждой точке обратно пропорциональна расстоянию от начала координат.
- 3) Исследовать на сходимость числовой ряд $\sum_{n=2}^{\infty} \frac{1}{n \cdot \ln n}$.

БИЛЕТ №17

- 1) Найти дифференциал для функции $z = arctg \frac{x+y}{1-xy}$.
- 2) Вычислить объем тела, ограниченного поверхностью $x^2 + y^2 + z^2 \le 2y$.
- 3) Вычислить приближённо интеграл $\int_{0}^{0.1} e^{-x^2} \cdot dx$ с точностью 0,0001.

- 1) Найти частные производные функции $z = \ln\left(x + \frac{y}{2x}\right)$ в точке (1,2).
- 2) Найти площадь части поверхности конуса $x^2 + y^2 = z^2$, отсеченной плоскостями x = a, y = a, x = 0, y = 0.
- 3) Найти область сходимости степенного ряда $\sum_{n=1}^{\infty} \frac{x^n}{(n+1)(n+3)}$.