Treatment of uncertainties in multi-physics model for wind turbine asset management

Elias FEKHARI

ÉLECTRICITÉ DE FRANCE R&D

Chatou, France

&

Côte d'Azur University
Nice, France

This dissertation is submitted for the degree of Doctor of Philosophy

Dr. Vincent CHABRIDON EDF R&D, Chatou Co-advi	er
D 0/1 / DAYTHOU THOUSE	sor
Dr. Sébastien DA VEIGA ENSAI, Rennes Examin	er
Dr. Bertrand IOOSS EDF R&D, Chatou Thesis of	lirector
Dr. Joseph MURÉ EDF R&D, Chatou Co-advi	sor
Pr. Franck SCHOEFS Nantes Université, Nantes Reviewe	er
Pr. Daniel STRAUB TUM, Munich Reviewe	er
Pr. Bruno SUDRET ETH, Zürich Examin	er

Table of contents

Li	st of f	ìgures		vii
Li	st of t	ables		ix
In	trodu	ction		1
Ι	Int	roduct	tion to treatment of uncertainties and wind energy	3
1	Trea	tment	of uncertainties in computer experiments	5
	1.1	Proble	em specification (step A)	5
		1.1.1	Black-box computer model	5
		1.1.2	Output quantity of interest	5
	1.2	Input	uncertainty quantification (step B)	5
		1.2.1	Joint probability distribution [copulogram package]	5
		1.2.2	Parametric multivariate estimation	5
		1.2.3	Non-parametric multivariate estimation	5
		1.2.4	Goodness-of-fit	5
	1.3	Uncer	tainty propagation for central tendency estimation (step C)	5
		1.3.1	Numerical integration	5
		1.3.2	Numerical design of experiments	6
		1.3.3	Central tendency estimation	7
	1.4	Uncer	tainty propagation for rare event estimation (step C)	7
		1.4.1	Problem formalization	7
		1.4.2	Rare event estimation methods	7
	1.5	Sensit	ivity analysis (step C')	7
		1.5.1	Global sensitivity analysis	7
		1.5.2	Reliability-oriented sensitivity analysis	7
	1 (Matar	مرم بالمارية	7

iv Table of contents

		1.6.1	Global metamodel	7
		1.6.2	Reliability-oriented metamodel	7
2	Intro	oductio	n to wind turbine modeling and design	9
	2.1	Wind	turbine modeling	10
		2.1.1	Synthetic wind generation [TurbSim, Kaimal spectrum]	10
		2.1.2	Synthetic wave generation	10
		2.1.3	Aerodynamic interactions	10
		2.1.4	Servo-Hydro-Aero-Elastic wind turbine simulation [DIEGO]	10
		2.1.5	Soil modeling	10
		2.1.6	Wake modeling [FarmShadow]	10
	2.2	Recon	nmended design practices	10
		2.2.1	Design load cases	10
		2.2.2	Dynamic response design	10
		2.2.3	Fatigue response design	10
	2.3	Uncer	tain inputs	10
		2.3.1	Environmental inputs	10
		2.3.2	System inputs	10
		2.3.3	Probabilistic fatigue assessment	10
II	Co	ntribu	itions to uncertainty quantification and propagation	11
3	Kerr	ıel-base	ed uncertainty quantification	13
	3.1	Nonpa	arametric fit of the environmental inputs (OMAE cpaper 2023)	13
	3.2	Quant	ifying and clustering the wake-induced perturbations within a wind	
		farm (WAKE cpaper 2023)	13
4	Kerr	iel-base	ed central tendency estimation	15
	4.1	Kerne	l discrepancy	15
	4.2	Quant	ization with kernel herding [SIAM UQ talk 2022, RENEW cpaper 2022]	15
	4.3	Gauss	ian process regression	15
	4.4	Bayes	ian quadrature [otkerneldesign package]	15
	4.5	Nume	rical experiments [ctbenchmark package]	15
	4.6	Applio	cation to wind turbine mean fatigue estimation (DCE paper)	15

Table of contents v

III	C	ontributions to rare event estimation	17
5	Non	parametric rare event estimation (special issue RESS?)	19
	5.1	Bernstein adaptive nonparametric conditional sampling (MASCOT talk	
		2023, ICASP cpaper 2023)	19
	5.2	Numerical experiments [otbenchmark package]	19
	5.3	Application to wind turbine fatigue reliability	19
	5.4	Application to a floating offshore wind turbine reliability	19
6	Sequ	nential reliability oriented sensitivity analysis	21
	6.1	HSIC for GSA	21
	6.2	HSIC for TSA & CSA	21
	6.3	Sequential ROSA	21
	6.4	Application to wind turbine fatigue reliability	21
Co	nclus	ion	23
Аp	pend	ix A Multivariate distribution modeling	25
Ap	pend	ix B Nonparametric copula estimation	27
Ap	pend	ix C Rare event estimation algorithms	29
Аp	pend	ix D Résumé étendu de la thèse	31

List of figures

List of tables

Introduction

Part I

Introduction to treatment of uncertainties and wind energy

Treatment of uncertainties in computer experiments

- 1.1 Problem specification (step A)
- 1.1.1 Black-box computer model
- 1.1.2 Output quantity of interest
- 1.2 Input uncertainty quantification (step B)
- 1.2.1 Joint probability distribution [copulogram package]
- 1.2.2 Parametric multivariate estimation
- 1.2.3 Non-parametric multivariate estimation
- 1.2.4 Goodness-of-fit
- 1.3 Uncertainty propagation for central tendency estimation (step C)
- 1.3.1 Numerical integration

"Good" properties

[Curse of dim / Sequential / Deterministic]

Gauss-Kronrod

Monte Carlo

Quasi-Monte Carlo and Koksma-Hlawka inequality

1.3.2 Numerical design of experiments

Space-filling metrics

[MinMax / PhiP / MaxMin / Discrepancies]

"Good" properties

[Curse of dim / Projections in sub-spaces / Sequential / Deterministic]

Monte Carlo, quasi-Monte Carlo, randomized quasi-Monte Carlo designs

LHS, optimized LHS designs

1.3.3 Central tendency estimation

Iso-probabilistic transformation

Central tendency estimation is a probabilistic integration

1.4 Uncertainty propagation for rare event estimation (stepC)

1.4.1 Problem formalization

Limit-state function, failure event and domain

Risk measures [Failure probability, quantile, super-quantile]

1.4.2 Rare event estimation methods

FORM/SORM

Monte Carlo

Importance sampling

Adaptive sampling (SS/NAIS/IS-CE/Moving particles)

1.5 Sensitivity analysis (step C')

- 1.5.1 Global sensitivity analysis
- 1.5.2 Reliability-oriented sensitivity analysis

1.6 Metamodeling

- 1.6.1 Global metamodel
- 1.6.2 Reliability-oriented metamodel

Introduction to wind turbine modeling and design

2.1	Wind	turbine	mode	ling
-----	------	---------	------	------

- 2.1.1 Synthetic wind generation [TurbSim, Kaimal spectrum]
- 2.1.2 Synthetic wave generation
- 2.1.3 Aerodynamic interactions
- 2.1.4 Servo-Hydro-Aero-Elastic wind turbine simulation [DIEGO]
- 2.1.5 Soil modeling
- 2.1.6 Wake modeling [FarmShadow]

2.2 Recommended design practices

- 2.2.1 Design load cases
- 2.2.2 Dynamic response design
- 2.2.3 Fatigue response design

2.3 Uncertain inputs

- 2.3.1 Environmental inputs
- 2.3.2 System inputs
- 2.3.3 Probabilistic fatigue assessment

Part II

Contributions to uncertainty quantification and propagation

Kernel-based uncertainty quantification

- 3.1 Nonparametric fit of the environmental inputs (OMAE cpaper 2023)
- 3.2 Quantifying and clustering the wake-induced perturbations within a wind farm (WAKE cpaper 2023)

Kernel-based central tendency estimation

- 4.1 Kernel discrepancy
- 4.2 Quantization with kernel herding [SIAM UQ talk 2022, RENEW cpaper 2022]
- 4.3 Gaussian process regression
- 4.4 Bayesian quadrature [otkerneldesign package]
- 4.5 Numerical experiments [ctbenchmark package]
- 4.6 Application to wind turbine mean fatigue estimation (DCE paper)

Part III

Contributions to rare event estimation

Nonparametric rare event estimation (special issue RESS?)

- 5.1 Bernstein adaptive nonparametric conditional sampling (MASCOT talk 2023, ICASP cpaper 2023)
- 5.2 Numerical experiments [otbenchmark package]
- 5.3 Application to wind turbine fatigue reliability
- 5.4 Application to a floating offshore wind turbine reliability

Sequential reliability oriented sensitivity analysis

- 6.1 HSIC for GSA
- 6.2 HSIC for TSA & CSA
- 6.3 Sequential ROSA
- 6.4 Application to wind turbine fatigue reliability

Conclusion

Appendix A

Multivariate distribution modeling

Appendix B

Nonparametric copula estimation

Appendix C

Rare event estimation algorithms

Appendix D

Résumé étendu de la thèse