# Прототип автономной системы мониторинга и прогноза уровня воды на объектах РЖД САМАРА, 2024



## Цели проекта

- Разработать и описать алгоритм
- работы системы
- Разработать функционал системы;
- Разработать электрическую схему
- платы автоматизированной системы;
- Разработать 3D-модель стендового
- прототипа системы;
- Создать
- стендовый прототип системы.





### Решение 1: Русавтоматизация

| Плюсы                                   | Недостатки                                                                                                                    |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Проста к установке и<br>применению      | Примитивная система<br>определения паводковости вод                                                                           |
| Относительная дешевизна<br>всей системы | Зависимость от наличия<br>сотовой сети                                                                                        |
|                                         | Невозможность использовать<br>зимой                                                                                           |
|                                         | На стратегических объектах (каковыми могут являться мосты) нежелательно использовать ультразвуковые и другие волновые сигналы |



### Решение 2: Resensys

| Плюсы                                                       | Недостатки                                                              |
|-------------------------------------------------------------|-------------------------------------------------------------------------|
| Возможность использования и<br>спутниковой, и сотовой связи | Запутанная система коммуникации между измерительной системой и сервером |
| Целостность решения                                         | Дробленность и из-за этого излишняя сложность системы                   |
| Несложность конструкции                                     |                                                                         |
| Малое потребление<br>электроэнергии                         |                                                                         |



#### Решение 3:Valarm

| Плюсы               | Недостатки                                                              |
|---------------------|-------------------------------------------------------------------------|
| Гибкость системы    | Запутанная система коммуникации между измерительной системой и сервером |
| Целостность решения |                                                                         |

Готовое ПО





# Главные части будущей системы

- Несколько типов датчиков;
- Система коммуникации между датчиками и конечным получателем;
- Программное обеспечение, позволяющее обрабатывать данные и прогнозировать паводки;
- Система питания, позволяющая использование датчика в удаленных местностях.







Исходя из принятых в России способов измерения и прогнозирования уровней воды на мостах можно составить общие принципы работы измеряющей системы. Система имеет два режима замеров: штормовой и штатный. Изначально система работает в штатном режиме, однако в случае тревоги переходит в штормовой режим. Общая работа алгоритма описана в блоке-схеме:





#### Создание платы в KiCAD:







Печатная плата

#### Осоновные компоненты:













