CPE223 Digital Electronics and Logic Design

Mini Project Sec2A - Group19

สมาชิกในกลุ่ม

62070501056 นางสาวลิฬลณี อื่มใจ

62070501064 นางสาวอรวิภา คูเจริญไพศาล

62070501067 นายพลพัต กิตติวิทยากุล

62070501072 นายณัฐกิต เปลี่ยนขุนทด

ผศ.สนั่น สระแก้ว

คณะวิศวกรรมศาสตร์ สาขาวิศวกรรมคอมพิวเตอร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี 30 ตุลาคม พ.ศ. 2563

วัตถุประสงค์

- 1. เพื่อสร้างเสริมความเข้าใจในอุปกรณ์ต่าง ๆ เช่น Counter, Decoder, ROM, Adder, Subtractor
- 2. สามารถนำความรู้ที่ได้ไปประยุกต์ต่อยอดได้ในอนาคต

อุปกรณ์ที่ใช้

- 1. โปรแกรม Proteus 8 Professional
 - Decoder: 74HCT238
 - Adder: 4008
 - ROM: 2732
 - Counter: 74LS93
 - 2-input AND Gate
 - NOT Gate
 - 2-input XOR Gate
 - 5x7 Dot Matrix
 - Logicstate
 - Switch: SW-SPDT
- 2. โปรแกรม Frhed

ข้อมูลที่เกี่ยวข้อง

Decoder & Encoder: การทำงานของวงจรสองส่วนนี้จะทำการแปลงสัญญาณ โดย Decoder จะทำการแปลสัญญาณเข้ารหัสที่ได้รับมาเป็นสัญญาณฐานสิบ หรือฐานสิบหกตามต้องการ Encoder จะทำการ เข้ารหัสสัญญาณจากสัญญาณปกติมาเป็นสัญญาณฐานสอง

Adder & Subtractor: Adder เป็นวงจรรวมที่ใช้ในการบวกเลขบิต โดย มี Input คือ x และ y เป็น เลขบิตที่ใช้ในการบวก และ z เป็นเลขทดเข้า Output จะได้แก่ S เป็นผลลัพธ์จาก การบวก และ C เป็นตัวทดออก Subtractor คือ Adder ที่ทำการเลื่อนบิตด้วย 2's Complement ของ Input y และมีการทำงานเหมือนกับ Adder

ROM: Read-Only Memory (ROM) เป็นหน่วยความจำรูปแบบหนึ่งที่เก็บข้อมูลเป็น รูปแบบ Binary โดยข้อมูลจะยังคงอยู่ใน ROM ตลอด Input ของ ROM คือ Address Line ซึ่งจะใช้ในการ เข้าถึงข้อมูลภายใน ROM และ Output ของ ROM คือ ข้อมูลที่อยู่ในตัว ROM

ขั้นตอนการทดลอง

- 1. เริ่มจากการส่งจังหวะจาก Counter ไป Decoder ให้ครบ 40 จังหวะตามจำนวนคอลัมน์ของ LED Matrix
- 2. ส่งข้อมูลจาก ROM ไปยัง LED Matrix และปรับความถี่ของ Counter จนสามารถแสดงภาพนิ่งได้
- 3. เพิ่ม Adder เพื่อเป็น Shift Register ในการเลื่อนข้อความไปทีละ 1 คอลัมน์
- 4. ปรับสัญญาณที่ส่งจาก Counter ไปยัง Adder ให้เป็นความถี่ต่ำ
- 5. ปรับแต่งวงจรจาก Adder ให้เป็น Subtractor เพื่อเปลี่ยนทิศทางการเลื่อนของข้อความให้เลื่อนได้ทั้ง สองทิศทาง
- 6. ทำให้ข้อความกะพริบโดยการรับจังหวะจาก Clock ส่งผ่าน AND Gate ไปยัง ROM เพื่อปิดการส่งข้อมูลใน จังหวะนั้น ๆ เมื่อ AND Gate เป็น High Voltage โดยมีสวิตช์ในการเลือกการเปิด-ปิดการกะพริบข้อความ ก่อนส่งเข้า AND Gate
- 7. ปรับแต่งวงจรให้ดีขึ้น โดยการเพิ่มสวิตช์ก่อนการส่งจังหวะจาก Clock ไปยัง Counter ความถี่ต่ำ เพื่อเป็น การควบคุมการแสดงผลของ LED Matrix ในการเลือกให้ภาพเคลื่อนไหวหรือหยุดนิ่ง

ผลการทดลอง

Figure 1: Circuit Diagram

ตารางที่ 1 การแสดงผลของ LED Matrix ด้วยวงจร Adder

Input Cin	การทำงานของ Adder	การแสดงผลของ LED Matrix	
0	Addition	ขวาไปซ้าย	
1	Subtraction	ซ้ายไปขวา	

ตารางที่ 2 การควบคุมการแสดงผลด้วยสวิตช์

สวิตช์เปิดการเลื่อน	การแสดงผล LED	สวิตช์กระพริบ	การแสดงผล led
ปิด	เคลื่อนไหวภาพ	ปิด	แสดงการกะพริบ
เปิด	ภาพหยุดนิ่ง	เปิด	ไม่แสดงการกะพริบ

ผลการอภิปราย

จากการทดลองต่อวงจรแต่ละส่วนเข้าด้วยกัน และทดสอบการแสดงผลของ LED Matrix แต่ละ รูปแบบแล้ว การแสดงผลสามารถแสดงผลได้ตามที่ต้องการ โดยเมื่อปรับ Carry in ของ Adder เป็น 0 จะได้ การแสดงผลของ LED Matrix จากขวาไปซ้าย ตรงกันข้ามเมื่อปรับ Carry in เป็น 1 วงจร Adder จะ เป็น Subtractor ทำให้การแสดงผลของ LED Matrix เลื่อนจากซ้ายไปขวา และเมื่อสับสวิตช์เพื่อเปิดการ แสดงผลการกะพริบ เมื่อสัญญาณเป็นตามสัญญาณที่กำหนดไว้ จะแสดงผลการกะพริบ

การส่งข้อมูลจาก ROM จะอาศัยสัญญาณที่ได้จาก Adder ในการส่งข้อมูลและเลื่อนเฟรมของ ภาพ เมื่อ LED Matrix ได้รับข้อมูลจะแสดงผลในแต่ละคอลัมน์ โดยจุดที่เป็น 0 ไฟ LED จะสว่าง จุดที่ เป็น 1 ไฟ LED จะดับ และอาศัยความถี่การนับของ Decoder ช่วยให้ประกอบเฟรมแต่ละเฟรมเป็นภาพ

สรุปผล

จากการต่อวงจรและทดสอบการแสดงผลรูปแบบต่าง ๆ ของ LED Matrix นั้น สามารถแสดงผลตาม รูปแบบต่าง ๆ ได้อย่างตามต้องการ โดยอาศัยการทำงานของอุปกรณ์ต่าง ๆ ช่วยให้สามารถแสดงผลได้อย่าง ปกติ

ล้างถิง

M. Morris Mano and Michael D. Ciletti, Digital Design With an Introduction to the Verilog HDL, Fifth Edition, Prentice Hall, New Jersey, 2013.

ภาคผนวก

อุปกรณ์ที่ใช้

Figure 2: Decoder 74HCT238

Figure 3: Adder 4008

Figure 4: ROM 2732

Figure 5: Counter 74LS93

Figure 6: 2-input AND Gate

Figure 7: NOT Gate

Figure 8: 2-input XOR Gate

Figure 10: Logicstate

Figure 9: 5x7 Dot Matrix

Figure 11: Switch: SW-SPDT

ข้อมูลจาก Datasheet ที่นำมาใช้

Decoder: 74HCT238

Inputs				Outputs									
E1	E2	E3	A0	A1	A2	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Н	X	X	X	X	Х	L	L	L	L	L	L	L	L
Х	Н	Х	X	X	X	L	L	L	L	L	L	L	L
Х	Х	L	Х	Х	Х	L	L	L	L	L	L	L	L
L	L	Н	L	L	L	Н	L	L	L	L	L	L	L
L	L	Н	Н	L	L	L	н	L	L	L	L	L	L
L	L	Н	L	Н	L	L	L	Н	L	L	L	L	L
L	L	Н	Н	Н	L	L	L	L	н	L	L	L	L
L	L	Н	L	L	Н	L	L	L	L	Н	L	L	L
L	L	Н	Н	L	Н	L	L	L	L	L	Н	L	L
L	L	Н	L	Н	Н	L	L	L	L	L	L	Н	L
L	L	Н	Н	Н	Н	L	L	L	L	L	L	L	Н

^[1] H = HIGH voltage level;

L = LOW voltage level;

X = don't care.

Figure 12: 74HCT238 Function table.

Counter: 74LS93

	SET UTS	оитритѕ				
MR ₁	MR ₂	Q ₀ Q ₁ Q ₂ Q ₃				
Н	Н	LLLL			L	
L	н	Count				
н	L	Count				
L	L	Count				

H = HIGH Voltage Level L = LOW Voltage Level X = Don't Care

Figure 13: 74LS93 Mode Selection Table

COUNT	ОИТРИТ					
COUNT	Q ₀	Q ₁	Q ₂	Q_3		
0	L	L	L	L		
1	Н	L	L	L		
2	L	н	L	L L L		
3	н	н	L	L		
4	L	L	Н	L		
5	н	L	Н	L L		
6	L	Н	Н	L		
7	Н	Н	Н	L		
8	L	L	L	н		
9	Н	L	L	н		
10	L	Н	L	н		
11	Н	Н	L	н		
12	L	L	Н	н		
13	н	L	Н	н		
14	L	Н	Н	н		
15	Н	Н	Н	Н		

Figure 14: 74LS93 Truth Table

Adder: 4008

X	Υ	Z	С	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Figure 15: Full Adder Truth Table