Self Supervised Learning for Endoscopic Image Segmentation

End Semester Project Review

Prankur Shukla

Roll No.: EC21B1074

under the supervision of Dr. J. Umarani & Dr. T. Sreenath Reddy

Department of Electronics & Communication Engineering
Indian Institute of Information Technology
Design and Manufacturing, Kancheepuram, Tamil-Nadu-600127, India

May 8, 2025

Seminar Outline

- Introduction
 - Motivation
 - Objective
- 2 Selected Literature Survey
- 3 Proposed Work
 - Work Methodology
 - Experimental Results and Analysis
 - Conclusion & Future Work

Background

- Medical Image Segmentation plays a vital role in Al-assisted diagnosis, robotic surgeries, and surgical navigation.
- Deep Learning-based segmentation models like U-Net and DeepLabV3+ improve accuracy but rely on large labeled datasets.
- Challenges: Annotation is expensive and time-consuming.
- Precise segmentation of instruments can enhance tasks such as tumor detection, brain segmentation, disease diagnosis, and surgical planning

Challenges in Endoscopy

Motion artifacts and occlusions. Variable lighting conditions. Limited annotated datasets.

Motivation

Without Endoscopic Instrument Segmentation:

- Surgeons face difficulties in accurately tracking and identifying instruments during minimally invasive procedures.
- Increased risk of errors due to occlusions, motion blur, and poor visibility.
- Manual intervention required for real-time corrections, slowing down surgeries and increasing fatigue.
- Limited Al-assisted guidance, affecting precision in robotic surgeries.

Objective

- Develop a Self-Supervised Learning (SSL) framework for endoscopic instrument segmentation.
- Implement SimCLR and MoCo contrastive learning techniques to learn feature representations from unlabeled data.
- Fine-tune **U-Net and DeepLabV3**+ models with limited labeled data (50%) and compare their performance with fully supervised models.
- Evaluate segmentation accuracy using Dice Similarity Coefficient (DSC), Intersection-over-Union (IoU), and Accuracy.
- Demonstrate that SSL-based models can achieve near-supervised performance while reducing annotation costs

Selected Literature Survey I

- Early Methods: Rule-based techniques such as thresholding and edge detection were used for medical image segmentation but struggled with low-contrast images and motion artifacts.
- Machine Learning Methods: SVMs and Random Forests were early machine learning techniques but required extensive feature engineering, making them less suitable for complex endoscopic images.
- Deep Learning Revolution:
 - U-Net: Widely used, but struggles with small objects like surgical instruments due to limited multi-scale feature extraction.
 - DeepLabV3+: Introduced Atrous Spatial Pyramid Pooling (ASPP), improving accuracy for complex structures like surgical instruments.

Selected Literature Survey II

Prankur Shukla

Figure: DeeplabV3+ Architecture

Contrastive Learning-Based SSL

Figure: SimCLR & MoCo

Methodology I

Dataset:

- Kvasir-Instrument dataset, containing 590 annotated endoscopic images of surgical tools.
- Focus on instrument segmentation in endoscopic images, which includes challenges like motion artifacts and occlusions.
- Proposed Deep Learning Model Structure:
- U-Net & DeepLabV3+ are evaluated under two training paradigms:
 - Fully supervised learning (100% labeled data)
 - SSL pretraining followed by fine-tuning on 50% labeled data.

Segmentation Metrics:

- Dice Score (DSC)
- Intersection over Union (IoU)

Methodology II

Accuracy

Goal:

 Evaluate if SSL-pretrained models can match the segmentation performance of fully supervised models while reducing annotation dependency.

Methodology III

Figure: Workflow Diagram of model architecture

Experimental Results & Analysis I

Figure: Training Loss and Convergence Analysis

Table: Segmentation Performance of Different Models

Model (Pretraining)	DSC Score	IoU Score
U-Net (No SSL)	0.82	0.75
DeepLabV3+ (No SSL)	0.89	0.80
DeepLabV3+ (MoCo + Fine-Tuning)	0.82	0.76

Table: Comparison with State-of-the-Art Methods

Method	DSC Score	IoU Score
dJha et al. (2020) (U-Net)	0.91	0.85
Keprate et al. (2021) (U-Net)	0.80	0.73
Ours (DeepLabV3+ + MoCo)	0.82	0.76

13/16

Figure: Qualitative results: Ground truth vs. predicted segmentation masks.

Conclusion & Future Work I

- Study explores the effictiveness of SSL techniques in endoscopic image segmentation.
- Result obtained showed that even with 50% of labelled data SSL is acheving alomost similar accuracy to that of supervised models.
- Future research should focus on scaling SSL techniques to larger, multi-center datasets to improve model generalization across diverse surgical environments.
- Domain adaptation techniques should be explored to ensure robust segmentation across different surgical settings without re quiring extensive labeled data.

References

Ronneberger, O., Fischer, P., Brox, T. (2015). *U-Net: Convolutional Networks for Biomedical Image Segmentation*. In International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI).

Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A. L. (2017). DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence.

Chen, T., Kornblith, S., Norouzi, M., Hinton, G. (2020). A Simple Framework for Contrastive Learning of Visual Representations (SimCLR). International Conference on Machine Learning (ICML).

He, K., Fan, H., Wu, Y., Xie, S., Girshick, R. (2020). *Momentum Contrast for Unsupervised Visual Representation Learning*. IEEE Conference (CVPR).

Jha, D., Smedsrud, P. H., Riegler, M. A., Halvorsen, P., de Lange, T., Johansen, D., Johansen, H. D. (2020). *Kvasir-Instrument: Diagnostic and Therapeutic Tool Segmentation Dataset in Gastrointestinal Endoscopy.*International Journal of Computer Assisted Radiology and Surgery.

