```
In [3]: | pip install termcolor
         Collecting termcolor
           Downloading termcolor-1.1.0.tar.gz (3.9 kB)
         Building wheels for collected packages: termcolor
           Building wheel for termcolor (setup.py): started
           Building wheel for termcolor (setup.py): finished with status 'done'
           Created wheel for termcolor: filename=termcolor-1.1.0-py3-none-any.whl size
         =4835 sha256=274af8941db3dd27d91c75546257d4611ac11df0b6ba8b82b96467958a4f2192
           Stored in directory: c:\users\alokj\appdata\local\pip\cache\wheels\a0\16\9c
         \5473df82468f958445479c59e784896fa24f4a5fc024b0f501
         Successfully built termcolor
         Installing collected packages: termcolor
         Successfully installed termcolor-1.1.0
         Note: you may need to restart the kernel to use updated packages.
         import numpy as np
In [50]:
         import matplotlib.pyplot as plt
         import pandas as pd
         from sklearn import preprocessing
         from termcolor import colored
         from sklearn.metrics import classification report
         import matplotlib.pyplot as plt
In [ ]:
In [51]: import os
         import glob
In [52]: | glob.glob('./*.csv')
Out[52]: ['.\\browsing.csv',
           .\\climbing.csv',
          '.\\running.csv',
          '.\\Travelling.csv',
          '.\\walking.csv']
In [53]: output label = {
          './Travelling.csv' : 'travel',
           './climbing.csv' : 'climb',
          './walking.csv' : 'walk',
          './running.csv' : 'run',
           ./browsing.csv' : 'browse'
In [ ]:
```

```
In [54]:
         dataset_train = {
              'time' : [],
              'gFx' : [],
              'gFy' : [],
              'gFz' : [],
              'TgF' : [],
              'class' : []
         }
         dataset_test = {
              'time' : [],
              'gFx' : [],
              'gFy' : [],
              'gFz' : [],
              'TgF' : [],
              'class' : []
         }
         for name in output_label.keys():
              df = pd.read_csv(name)
              flag = 0
              if name != './walking.csv' :
                  for i in range(0,301, 10):
                      flag+=1
                      for key in dataset train.keys():
                          if key != 'class' :
                              if flag <= 25 :
                                  dataset_train[key].append(df[df.time.between(i, i+10.0
         )][key].mean())
                              else:
                                  dataset test[key].append(df[df.time.between(i, i+10.0
         )][key].mean())
                          else:
                              if flag <= 25 :
                                  dataset_train[key].append(output_label[name])
                              else:
                                  dataset test[key].append(output label[name])
              else:
                  for i in range(0,70, 10):
                      flag+=1
                      for key in dataset_train.keys():
                          if key != 'class' :
                              if flag <= 4 :
                                  dataset train[key].append(df[df.time.between(i, i+10.0
         )][key].mean())
                              else:
                                  dataset_test[key].append(df[df.time.between(i, i+10.0
         )][key].mean())
                          else:
                              if flag <= 4 :
                                  dataset_train[key].append(output_label[name])
                              else:
                                  dataset_test[key].append(output_label[name])
```

Visualization of Data

```
In [55]: data_train = pd.DataFrame(dataset_train)
    data_test = pd.DataFrame(dataset_test)

    data = pd.concat([data_train, data_test])

In [81]: activities = [
    'travel',
    'climb',
    #'walk'
    'run',
    'browse'
    ]
```

```
In [83]:
    for feature in ['gFx','gFy', 'gFz','TgF']:
        for act in activities:
            plt.plot(data[data['class'] == act]["time"], data[data['class'] == act
][feature], label = act)
            plt.legend()

        plt.title("Plot for {}".format(feature))
        plt.xlabel('Time')
        plt.ylabel('Activities')
        plt.show()
        print(colored("="*50, 'green'))
```

In []:

Feature Selection

features experimented with:

Mean

Standard Deviation

Skewness

specific transformation:

for travelling and runnig fourier transform is needed (to transform G-force) and the mean is sufficient for the remaining activities.

```
In [ ]:
```

Dataset Preparation for ML models

```
In [58]: df_train = pd.DataFrame(dataset_train)[['gFx','gFy','gFz','TgF','class']]
In [59]: df_test = pd.DataFrame(dataset_test)[['gFx','gFy','gFz','TgF','class']]
```

```
In [100]: # scaler to normalize the input values

min_max_scaler = preprocessing.MinMaxScaler()
X_train = min_max_scaler.fit_transform(df_train[['gFx','gFy','gFz','TgF']])

# FFT-Transform:
from scipy import fftpack
X_fft = fftpack.fft(df_train[['gFx','gFy','gFz','TgF']])

#Label encoder
label_encoder = preprocessing.LabelEncoder()
label_encoder = label_encoder.fit(df_train['class'].values)
y_train = label_encoder.transform(df_train['class'].values)

## get the test set

X_test = min_max_scaler.transform(df_test[['gFx','gFy','gFz','TgF']])
y_test = label_encoder.transform(df_test['class'].values)
```

Decision Tree

```
In [101]: from sklearn import tree
In [102]: clf = tree.DecisionTreeClassifier()
    clf = clf.fit(X_train, y_train)
```

```
In [103]: tree.plot tree(clf)
Out[103]: [Text(251.1000000000000, 205.359999999999, 'X[2] <= 0.98\ngini = 0.767\nsa
                            mples = 104 \setminus value = [25, 25, 25, 25, 4]'),
                              Text(209.25, 181.2, 'X[2] \le 0.828 \text{ ngini} = 0.697 \text{ nsamples} = 79 \text{ nvalue} = [0, 10.697]
                            25, 25, 25, 4]'),
                              Text(167.4, 157.04, X[3] \le 0.454 = 0.566 = 54 = 54 = 0.566
                            25, 25, 0, 4]'),
                              Text(125.5500000000001, 132.88, X[0] \le 0.906 = 0.365 = 32
                             \nvalue = [0, 25, 3, 0, 4]'),
                              Text(83.7, 108.72, 'X[2] <= 0.341 \setminus gini = 0.191 \setminus gsamples = 28 \setminus gsamples = [0, 2]
                             5, 3, 0, 0]'),
                              Text(41.85, 84.56, 'gini = 0.0\nsamples = 22\nvalue = [0, 22, 0, 0, 0]'),
                              Text(125.5500000000001, 84.56, 'X[3] \le 0.124 \cdot min = 0.5 \cdot msamples = 6 \cdot mval
                            ue = [0, 3, 3, 0, 0]),
                              Text(83.7, 60.40000000000000, 'gini = 0.0\nsamples = 2\nvalue = [0, 2, 0,
                            0, 0]'),
                              Text(167.4, 60.4000000000000, 'X[1] \le 0.366 \cdot i = 0.375 \cdot i = 4 \cdot i = 0.366 \cdot i = 0.375 
                            alue = [0, 1, 3, 0, 0]'),
                              Text(125.5500000000001, 36.2400000000001, 'X[1] <= 0.262\ngini = 0.5\nsamp
                            les = 2\nvalue = [0, 1, 1, 0, 0]'),
                              Text(83.7, 12.07999999999984, 'gini = 0.0\nsamples = 1\nvalue = [0, 0, 1,
                            0, 0]'),
                              Text(167.4, 12.0799999999994, 'gini = 0.0\nsamples = 1\nvalue = [0, 1, 0,
                            0, 0]'),
                              Text(209.25, 36.2400000000001, 'gini = 0.0 \nsamples = 2 \nvalue = [0, 0, 2, 0]
                            0, 0]'),
                              Text(167.4, 108.72, 'gini = 0.0\nsamples = 4\nvalue = [0, 0, 0, 0, 4]'),
                              Text(209.25, 132.88, 'gini = 0.0 \times = 22 \times = [0, 0, 22, 0, 0]'),
                              Text(251.1000000000000, 157.04, 'gini = 0.0\nsamples = 25\nvalue = [0, 0,
                            0, 25, 0]'),
                               Text(292.95, 181.2, 'gini = 0.0\nsamples = 25\nvalue = [25, 0, 0, 0, 0]')]
```



```
In [104]: dt_predicted = clf.predict(X_test)
    dt_predicted
```

Out[104]: array([3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 3, 4, 4, 4, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0])

SVM Classifier

```
In [66]: from sklearn import svm
In [67]: clf_svm = svm.SVC()
In [68]: clf_svm.fit(X_train, y_train)
Out[68]: SVC()
In [69]: svm_predicted = clf_svm.predict(X_test)
```

Logistic Regression

```
In [70]: from sklearn.linear_model import LogisticRegression
In [71]: clf = LogisticRegression(random_state=0)
    clf.fit(X_train, y_train)
Out[71]: LogisticRegression(random_state=0)
In [72]: lr_predicted = clf.predict(X_test)
```

KNN

```
In [90]: from sklearn.neighbors import KNeighborsClassifier
In [91]: neigh = KNeighborsClassifier(n_neighbors=5)
In [92]: neigh.fit(X_train, y_train)
Out[92]: KNeighborsClassifier()
In [93]: knn_predicted = neigh.predict(X_test)
```

Performance Analysis

```
In [94]: matrix = pd.DataFrame({
    "Decision_Tree" : label_encoder.inverse_transform(dt_predicted),
    "SVM" : label_encoder.inverse_transform(svm_predicted),
    "Logistic_Regression" : label_encoder.inverse_transform(lr_predicted),
    "KNN" : label_encoder.inverse_transform(knn_predicted),
    "y_test" : label_encoder.inverse_transform(y_test)
})

In [95]: matrix.head()

Out[95]:
    Decision_Tree SVM Logistic_Regression KNN y_test
```

	Decision_Tree	SVM	Logistic_Regression	KNN	y_test
0	travel	travel	travel	travel	travel
1	travel	travel	travel	travel	travel
2	travel	travel	travel	travel	travel
3	travel	travel	travel	travel	travel
4	travel	travel	travel	travel	travel

As we can see below: "Decision Tree" and "SVM" performs better than that of KNN and Logistic Regression for the give classification problem.

In [96]: matrix

Out[96]:

	Decision_Tree	SVM	Logistic_Regression	KNN	y_test
0	travel	travel	travel	travel	travel
1	travel	travel	travel	travel	travel
2	travel	travel	travel	travel	travel
3	travel	travel	travel	travel	travel
4	travel	travel	travel	travel	travel
5	travel	travel	travel	travel	travel
6	climb	climb	climb	climb	climb
7	climb	climb	climb	climb	climb
8	climb	climb	climb	climb	climb
9	climb	climb	climb	climb	climb
10	climb	climb	climb	climb	climb
11	travel	travel	travel	travel	climb
12	wa l k	walk	run	wa l k	walk
13	walk	walk	run	wa l k	walk
14	wa l k	walk	run	wa l k	walk
15	run	run	run	run	run
16	run	run	run	run	run
17	run	run	travel	run	run
18	run	climb	travel	climb	run
19	run	run	run	run	run
20	run	run	travel	run	run
21	browse	browse	browse	browse	browse
22	browse	browse	browse	browse	browse
23	browse	browse	browse	browse	browse
24	browse	browse	browse	browse	browse
25	browse	browse	browse	browse	browse
26	browse	browse	browse	browse	browse

			ification R f1-score	Report is :	
	precision	recarr	11-30016	зиррог с	
browse	1.00	1.00	1.00	6	
climb	1.00	0.83	0.91	6	
rur	1.00	1.00	1.00	6	
trave]	L 0.86	1.00	0.92	6	
walk		1.00	1.00	3	
accuracy	/		0.96	27	
macro av		0.97	0.97	27	
weighted av	•	0.96	0.96	27	
=========	=========	:======	========	=====	
For Model :	SVM , Classi	ification F	Report is :		
	precision	recall	f1-score	support	
browse		1.00	1.00	6	
climb	0.83	0.83	0.83	6	
rur	1.00	0.83	0.91	6	
trave]	L 0.86	1.00	0.92	6	
walk	1.00	1.00	1.00	3	
accuracy	/		0.93	27	
macro av		0.93	0.93	27	
weighted av	•	0.93	0.93	27	
========				=====	
For Model :	Logistic_Reg				is:
	precision	recall	f1-score	support	
browse	1.00	1.00	1.00	6	
browse climb		1.00 0.83	1.00 0.91	6 6	
climb	1.00	0.83	0.91	6	
climb rur	1.00 0.50	0.83 0.50	0.91 0.50	6 6	
climb	1.00 n 0.50 L 0.60	0.83	0.91	6	
climb rur travel walk	1.00 0.50 0.60 0.00	0.83 0.50 1.00	0.91 0.50 0.75 0.00	6 6 3	
climb rur travel walk accuracy	1.00 0.50 0.60 0.00	0.83 0.50 1.00 0.00	0.91 0.50 0.75 0.00	6 6 6 3	
climb rur travel walk	1.00 0.50 0.60 0.00	0.83 0.50 1.00	0.91 0.50 0.75 0.00	6 6 3	
climb rur travel walk accuracy macro avg weighted avg	1.00 0.50 0.60 0.00	0.83 0.50 1.00 0.00 0.67	0.91 0.50 0.75 0.00 0.74 0.63 0.70	6 6 3 27 27 27	
climb rur travel walk accuracy macro avg weighted avg	1.00 0.50 0.60 0.00 7 3 9.62 0.69	0.83 0.50 1.00 0.00 0.67 0.74	0.91 0.50 0.75 0.00 0.74 0.63 0.70	6 6 3 27 27 27	
climb rur travel walk accuracy macro avg weighted avg	1.00 0.50 0.60 0.00 7 3 0.62 0.69	0.83 0.50 1.00 0.00 0.67 0.74	0.91 0.50 0.75 0.00 0.74 0.63 0.70	6 6 3 27 27 27	
climb rur travel walk accuracy macro avg weighted avg	1.00 0.50 0.60 0.00 0.62 0.69 KNN , Classin precision	0.83 0.50 1.00 0.00 0.67 0.74	0.91 0.50 0.75 0.00 0.74 0.63 0.70	6 6 3 27 27 27	
climb rur travel walk accuracy macro avg weighted avg ====================================	1.00 0.50 0.60 0.00 0.62 0.69 KNN , Classing precision	0.83 0.50 1.00 0.00 0.67 0.74 	0.91 0.50 0.75 0.00 0.74 0.63 0.70 Report is :	6 6 3 27 27 27 27 support	
climb rur travel walk accuracy macro avg weighted avg ====================================	1.00 0.50 0.60 0.00 0.00 0.62 0.62 0.69 KNN , Classing precision 1.00 0.83	0.83 0.50 1.00 0.00 0.67 0.74 ====================================	0.91 0.50 0.75 0.00 0.74 0.63 0.70 ==================================	6 6 3 27 27 27 27 see===== support 6 6	
climb rur travel walk accuracy macro avg weighted avg ====================================	1.00 0.50 0.60 0.00 0.00 0.62 0.62 0.69 KNN , Classing precision 1.00 0.83 1.00	0.83 0.50 1.00 0.00 0.67 0.74 ====================================	0.91 0.50 0.75 0.00 0.74 0.63 0.70 Report is: f1-score 1.00 0.83 0.91	6 6 3 27 27 27 27 :====== support	
climb rur travel walk accuracy macro avg weighted avg ====================================	1.00 0.50 0.60 0.00 0.62 0.69 KNN , Classis precision 2 1.00 0.83 1.00 0.86	0.83 0.50 1.00 0.00 0.67 0.74 ====================================	0.91 0.50 0.75 0.00 0.74 0.63 0.70 ==================================	6 6 6 3 27 27 27 27 see===== support 6 6 6	
climb rur travel walk accuracy macro avg weighted avg ====================================	1.00 0.50 0.60 0.00 0.00 0.62 0.62 0.69 KNN , Classing precision 1.00 0.83 1.00 0.86 1.00	0.83 0.50 1.00 0.00 0.67 0.74 Effication Frecall 1.00 0.83 0.83 1.00	0.91 0.50 0.75 0.00 0.74 0.63 0.70 ==================================	6 6 3 27 27 27 27 see===== support 6 6 6 6 6	
climb rur travel walk accuracy macro avg weighted avg ====================================	1.00 0.50 0.60 0.00 0.62 0.62 0.69 EXNN, Classing precision 1.00 0.83 1.00 0.86 1.00	0.83 0.50 1.00 0.00 0.67 0.74 ====================================	0.91 0.50 0.75 0.00 0.74 0.63 0.70 	6 6 6 3 27 27 27 27 support 6 6 6 6 6 3	
climb rur travel walk accuracy macro avg weighted avg ====================================	1.00 0.50 0.60 0.00 0.62 0.62 0.69 KNN , Classi precision 1.00 0.83 1.00 0.86 1.00	0.83 0.50 1.00 0.00 0.67 0.74 ====================================	0.91 0.50 0.75 0.00 0.74 0.63 0.70 ==================================	6 6 6 3 27 27 27 27 see===== support 6 6 6 6 6 6 6 3	

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\metrics_classification.p y:1221: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

Analysis of Algorithms

mean is best suited feature among [mean, std, skewness] as per the classifiction report which includes precision,recall and f1_measure. """ """"

In []:	