© Laurent Garcin MP Dumont d'Urville

Devoir à la maison $n^{\circ}01$

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 – Polynômes de Bernoulli et fonction ζ

Partie I - Polynômes de Bernoulli

On admet l'existence et l'unicité d'une suite de polynômes $(B_n)_{n\in\mathbb{N}}$ de $\mathbb{R}[X]$ vérifiant les trois conditions suivantes :

$$\mathbf{B}_0 = 1 \qquad \forall n \in \mathbb{N}^*, \ \mathbf{B}_n' = \mathbf{B}_{n-1} \qquad \forall n \in \mathbb{N}^*, \ \int_0^1 \mathbf{B}_n(t) \ \mathrm{d}t = 0$$

On pose également $b_n = B_n(0)$ pour tout $n \in \mathbb{N}$.

- **I.1** Calculer B_1 et B_2 . En déduire b_1 et b_2 .
- **I.2** Montrer que pour tout entier $n \ge 2$, $B_n(0) = B_n(1)$.
- **I.3** On pose pour $n \in \mathbb{N}$, $A_n = (-1)^n B_n (1 X)$. Montrer que la suite $(A_n)_{n \in \mathbb{N}}$ vérifie les trois mêmes conditions que celles définissant la suite $(B_n)_{n \in \mathbb{N}}$. En déduire que pour tout $n \in \mathbb{N}$, $B_n = (-1)^n B_n (1 X)$.
- **I.4** Montrer que pour tout $n \in \mathbb{N}^*$, $B_{2n+1}(0) = B_{2n+1}(1) = 0$.
- **I.5** A l'aide de la formule de Taylor, montrer que pour tout $n \in \mathbb{N}$, $B_n = \sum_{k=0}^n \frac{b_{n-k}}{k!} X^k$.
- **I.6** En déduire que

$$\forall n \in \mathbb{N}, \ b_{2n+2} = \sum_{k=0}^{2n+2} \frac{b_k}{(2n+2-k)!}$$

puis que

$$\forall n \in \mathbb{N}^*, \ b_{2n} = \frac{1}{(2n+1)!} - 2 \sum_{k=0}^{n-1} \frac{b_{2k}}{(2n+2-2k)!}$$

I.7 Calculer b_4 .

Partie II – Lemme de Riemann-Lebesgue et noyau de Dirichlet

II.8 Soit f une fonction de classe \mathcal{C}^1 sur [0,1]. A l'aide d'une intégration par parties, montrer que

$$\lim_{\lambda \to +\infty} \int_0^1 f(t) \sin(\lambda t) = 0$$

© Laurent Garcin MP Dumont d'Urville

II.9 Montrer que φ : $t \in]0,1[\mapsto \frac{t(1-t)}{\sin(\pi t)}$ peut se prolonger en une fonction de classe \mathcal{C}^1 sur [0,1].

II.10 Soit $p \in \mathbb{N}^*$. Montrer que

$$\forall t \in]0,1[, \sum_{k=1}^{p} \cos(2k\pi t) = \frac{\sin((2p+1)\pi t)}{2\sin(\pi t)} - \frac{1}{2}$$

II.11 Soit $P \in \mathbb{R}[X]$ tel que P(0) = P(1) = 0. Montrer que

$$\lim_{p \to +\infty} \sum_{k=1}^{p} \int_{0}^{1} P(t) \cos(2k\pi t) dt = -\frac{1}{2} \int_{0}^{1} P(t) dt$$

Partie III – Fonction ζ de Riemann

On note pour tout réel $\alpha > 1$, $\zeta(\alpha) = \sum_{k=1}^{+\infty} \frac{1}{k^{\alpha}}$.

On pose pour $(k, n) \in (\mathbb{N}^*)^2$,

$$I_{k,n} = \int_0^1 B_{2n}(t) \cos(2k\pi t) dt$$

III.12 Calculer $I_{k,1}$.

III.13 Déterminer une relation entre $I_{k,n}$ et $I_{k,n-1}$ valide pour tout entier $n \ge 2$. En déduire que

$$\forall (k,n) \in (\mathbb{N}^*)^2, \ I_{k,n} = \frac{(-1)^{n-1}}{(2k\pi)^{2n}}$$

III.14 Montrer que pour tout $n \in \mathbb{N}^*$,

$$\zeta(2n) = \frac{(-1)^{n-1}}{2} \cdot (2\pi)^{2n} b_{2n}$$

III.15 Calculer $\zeta(2)$ et $\zeta(4)$.