An Introduction to Floating-Point Arithmetic and Computation

Jeff Arnold

CERN openlab
9 May 2017

Agenda

- Introduction
- Standards
- Properties
- Error-Free Transformations
- Summation Techniques
- Dot Products
- Polynomial Evaluation
- Value Safety
- Pitfalls and Gremlins
- Tools
- References and Bibliography

openiab

Why is Floating-Point Arithmetic Important?

- It is ubiquitous in scientific computing
 - Most research in HEP can't be done without it
- Algorithms are needed which
 - Get the best answers
 - Get the best answers all the time
 - "Best" means the right answer for the situation and context
 - There is always a compromise between fast and accurate

Important to Teach About Floating-Point Arithmetic

- A rigorous approach to floating-point arithmetic is seldom taught in programming courses
- Not enough physicists/programmers study numerical analysis
- Many physicists/programmers think floating-point arithmetic is
 - inaccurate and ill-defined
 - filled with unpredictable behaviors and random errors
 - mysterious
- Physicists/programmers need to be able to develop correct, accurate and robust algorithms
 - they need to be able to write good code to implement those algorithms

Reasoning about Floating-Point Arithmetic

Reasoning about floating-point arithmetic is important because

- One can prove algorithms are correct without exhaustive evaluation
 - One can determine when they fail
- One can prove algorithms are portable
- One can estimate the errors in calculations
- Hardware changes have made floating-point calculations appear to be less deterministic
 - SIMD instructions
 - hardware threading

Accurate knowledge about these factors increases confidence in floating-point computations

Classification of real numbers

In mathematics, the set of real numbers ${\mathbb R}$ consists of

- rational numbers \mathbb{Q} $\{p/q: p, q \in \mathbb{Z}, q \neq 0\}$
 - integers \mathbb{Z} $\{p: |p| \in \mathbb{W}\}$
 - whole \mathbb{W} $\{p: p \in \mathbb{N} \cup 0\}$
 - natural \mathbb{N} $\{p:p\in\{1,2,\ldots\}\}$
- irrational numbers $\{x: x \in \mathbb{R} \ x \notin \mathbb{Q}\}$
 - algebraic numbers A
 - transcendental numbers

Dyadic rationals: ratio of an integer and 2^b where b is a whole number

Some Properties of Floating-Point Numbers

Floating-point numbers do not behave as do the real numbers encountered in mathematics.

While all floating-point numbers are rational numbers

- The set of floating-point numbers does not form a field under the usual set of arithmetic operations
- Some common rules of arithmetic are not always valid when applied to floating-point operations
- There are only a finite number of floating-point numbers

IV openiap

Floating-Point Numbers are Rational Numbers

What does this imply?

- Since there are only a finite number of floating-point numbers, there are rational numbers which are not floating-point numbers
- The decimal equivalent of any finite floating-point value contains a finite number of non-zero digits
- The values of transcendentals such as π , e and $\sqrt{2}$ cannot be represented exactly by a floating-point value regardless of format or precision

How Many Floating-Point Numbers Are There?

- $\sim 2^{p+1}(2e_{max}+1)$
- Single-precision: $\sim 4.3 \times 10^9$
- Double-precision: $\sim 1.8 \times 10^{19}$
- Number of protons circulating in LHC: $\sim 6.7 \times 10^{14}$

Standards

There have been three major standards affecting floating-point arithmetic:

- IEEE 754-1985 Standard for Binary Floating-Point Arithmetic
- IEEE 854-1987 Standard for Radix-Independent Floating-Point Arithmetic
- IEEE 754-2008 Standard for Floating-Point Arithmetic
 - This is the current standard
 - It is also an ISO standard (ISO/IEC/IEEE 60559:2011)

IEEE 754-2008

- Merged IEEE 754-1985 and IEEE 854-1987
 - Tried not to invalidate hardware which conformed to IEEE 754-1985
- Standardized larger formats
 - For example, quad-precision format
- Standardized new instructions
 - For example, fused multiply-add (FMA)

From now on, we will only talk about IEEE 754-2008

Operations Specified by IEEE 754-2008

All these operations must return the correct finite-precision result using the current rounding mode

- Addition
- Subtraction
- Multiplication
- Division
- Remainder
- Fused multiply add (FMA)
- Square root
- Comparison

Other Operations Specified by IEEE 754-2008

- Conversions between different floating-point formats
- Conversions between floating-point and integer formats
 - · Conversion to integer must be correctly rounded
- Conversion between floating-point formats and external representations as character sequences
 - Conversions must be monotonic
 - Under some conditions, binary → decimal → binary conversions must be exact ("round-trip" conversions)

Special Values

- Zero
 - · zero is signed
- Infinity
 - · infinity is signed
- Subnormals
- NaN (Not a Number)
 - Quiet NaN
 - Signaling NaN
 - NaNs do not have a sign

openiab

Rounding Modes in IEEE 754-2008

The result must be the infinity-precise result rounded to the desired floating-point format.

Possible rounding modes are

- Round to nearest
 - round to nearest even
 - in the case of ties, select the result with a significand which is even
 - · required for binary and decimal
 - the default rounding mode for binary
 - round to nearest away
 - · required only for decimal
- round toward 0
- round toward $+\infty$
- round toward $-\infty$

Exceptions Specified by IEEE 754-2008

- Underflow
 - Absolute value of a non-zero result is less than the smallest non-zero finite floating-point number
 - Result is 0
- Overflow
 - Absolute value of a result is greater than the largest finite floating-point number
 - Result is $\pm \infty$
- Division by Zero
 - x/y where x is finite and non-zero and y=0
- Inexact
 - The result, after rounding, is different than the infinitely-precise result

Exceptions Specified by IEEE 754-2008

- Invalid
 - An operand is a NaN
 - \sqrt{x} where x < 0
 - however, $\sqrt{-0} = -0$
 - $(\pm \infty) \pm (\pm \infty)$
 - $(\pm 0) \times (\pm \infty)$
 - $(\pm 0)/(\pm 0)$
 - $(\pm \infty)/(\pm \infty)$
 - some floating-point→integer or decimal conversions

Formats Specified in IEEE 754-2008

Formats

- Basic Formats:
 - Binary with sizes of 32, 64 and 128 bits
 - Decimal with sizes of 64 and 128 bits
- Other formats:
 - Binary with a size of 16 bits
 - Decimal with a size of 32 bits

Transcendental and Algebraic Functions

The standard *recommends* the following functions be correctly rounded:

- e^x , $e^x 1$, 2^x , $2^x 1$, 10^x , $10^x 1$
- $log_{\alpha}(\Phi)$ for $\alpha = e, 2, 10$ and $\Phi = x, 1 + x$
- $\sqrt{x^2+y^2}$, $1/\sqrt{x}$, $(1+x)^n$, x^n , $x^{1/n}$
- $\sin(x), \cos(x), \tan(x), \sinh(x), \cosh(x), \tanh(x)$ and their inverse functions
- $\sin(\pi x), \cos(\pi x)$
- And more ...

We're Not Going to Consider Everything...

The rest of this talk will be limited to the following aspects of IEEE 754-2008:

- Binary32, Binary64 and Binary128 formats
 - The radix in these cases is always 2: $\beta = 2$
 - This includes the formats handled by the SSE and AVX instruction sets on the x86 architecture
 - We will not consider any aspects of decimal arithmetic or the decimal formats
 - We will not consider "double extended" format
 - Also known as the "IA32 x87" format
- The rounding mode is assumed to be round-to-nearest-even

Storage Format of a Binary Floating-Point Number

IEEE Name	Format	Size	w	p	e_{min}	e_{max}
Binary32	Single	32	8	24	-126	+127
Binary64	Double	64	11	53	-1022	+1023
Binary128	Quad	128	15	113	-16382	+16383

Notes:

- $E = e e_{min} + 1$
- $e_{max} = -e_{min} + 1$
- p-1 will be addressed later

The *format* of a floating-point number is determined by the quantities:

- $radix \beta$
 - sometimes called the "base"
- $sign \ s \in \{0, 1\}$
- exponent e
 - an integer such that $e_{min} \leq e \leq e_{max}$
- precision p
 - the number of "digits" in the number

The value of a floating-point number is determined by

- the format of the number
- the digits in the number: x_i , $0 \le i < p$, where $0 \le x_i < \beta$.

The value of a floating-point number can be expressed as

$$x = (-)^{s} \beta^{e} \sum_{i=0}^{p-1} x_{i} \beta^{-i}$$

where the *significand* is

$$m = \sum_{i=0}^{p-1} x_i \beta^{-i}$$

with

$$0 \le m < \beta$$

The value of a floating-point number can also be written

$$x = (-)^{s} \beta^{e-p+1} \sum_{i=0}^{p-1} x_i \beta^{p-i-1}$$

where the integral significand is

$$M = \sum_{i=0}^{p-1} x_i \beta^{p-i-1}$$

and M is an integer such that

$$0 \le M < \beta^p$$

The value of a floating-point number can also be written as

$$x = \begin{cases} (-)^s \frac{M}{\beta^{-(e-p+1)}} & \text{if } e - p + 1 < 0\\ (-)^s \beta^{e-p+1} M & \text{if } e - p + 1 \ge 0 \end{cases}$$

where M is the integral significand.

This demonstrates explicitly that a floating-point number is a rational dyadic number.

Requiring Uniqueness

$$x = (-)^{s} \beta^{e} \sum_{i=0}^{p-1} x_{i} \beta^{-i}$$

To make the combination of e and $\{x_i\}$ unique, x_0 must be non-zero *if possible*.

Otherwise, using binary radix ($\beta = 2$), 0.5 could be written as

- $2^{-1} \times 1 \cdot 2^0$ (e = -1, $x_0 = 1$)
- $2^0 \times 1 \cdot 2^{-1}$ ($e = 0, x_0 = 0, x_1 = 1$)
- $2^{1} \times 1 \cdot 2^{-2}$ ($e = 1, x_{0} = x_{1} = 0, x_{2} = 1$)
- ...

Requiring Uniqueness

This requirement to make $x_0 \neq 0$ if possible has the effect of minimizing the exponent in the representation of the number.

However, the exponent is constrained to be in the range $e_{min} \leq e \leq e_{max}$.

Thus, if minimizing the exponent would result in $e < e_{min}$, then x_0 must be 0.

A non-zero floating-point number with $x_0 = 0$ is called a subnormal number. The term "denormal" is also used.

Subnormal Floating-Point Numbers

$$m = \sum_{i=0}^{p-1} x_i \beta^{-i}$$

- If m=0, then $x_0=x_1=\cdots=x_{p-1}=0$ and the value of the number is ± 0
- If $m \neq 0$ and $x_0 \neq 0$, the number is a normal number with $1 \leq m < \beta$
- If $m \neq 0$ but $x_0 = 0$, the number is subnormal with 0 < m < 1
 - The exponent of the value is e_{min}

Why have Subnormal Floating-Point Numbers?

- Subnormals allow for "gradual" rather than "abrupt" underflow
- With subnormals, $a = b \Leftrightarrow a b = 0$

However, processing of subnormals can be difficult to implement in hardware

- · Software intervention may be required
- May impact performance

Why p-1?

- For normal numbers, x_0 is always 1
- For subnormal numbers and zero, x_0 is always 0
- There are many more normal numbers than subnormal numbers

An efficient storage format:

- Don't store x_0 in memory; assume it is 1
- Use a special exponent value to signal a subnormal or zero; $e=e_{min}-1$ seems useful
 - thus E=0 for both a value of 0 and for subnormals

plus 0 smallest subnormal

. . .

0x000ffffffffffff 0x00100000000000000 largest subnormal smallest normal

. . .

0x001ffffffffffff 0x00200000000000000

 $2\times$ smallest normal

. . .

0x7fefffffffffff 0x7ff00000000000000 largest normal $+\infty$

. . .

```
minus 0
0x8000000000000001
                   smallest -subnormal
                   largest -subnormal
0x800ffffffffffffff
0x8010000000000000
                   smallest -normal
largest -normal
Oxffeffffffffffffff
0xfff00000000000000
                    -\infty
```

 largest -normal

 $-\infty$

NaN

• •

 NaN

Back to the beginning!

Notation

- Floating-point operations are written
 - for addition
 - ⊕ for subtraction
 - ⊗ for multiplication
 - Ø for division
- $a \oplus b$ represents the floating-point addition of a and b
 - ullet a and b are floating-point numbers
 - the result is a floating-point number
 - in general, $a \oplus b \neq a + b$
 - similarly for \ominus , \otimes and \oslash
- fl(x) denotes the result of a floating-point operation using the current rounding mode
 - E.g., $fl(a+b) = a \oplus b$

Some Inconvenient Properties of Floating-Point Numbers

Let a, b and c be floating-point numbers. Then

- a + b may not be a floating-point number
 - a+b may not always equal $a \oplus b$
 - Similarly for the operations -, \times and /
 - Recall that floating-point numbers do not form a field
- $(a \oplus b) \oplus c$ may not be equal to $a \oplus (b \oplus c)$
 - Similarly for the operations \ominus , \otimes and \oslash
- $a \otimes (b \oplus c)$ may not be equal to $(a \otimes b) \oplus (a \oplus c)$
- $(1 \oslash a) \otimes a$ may not be equal to a

- Computes $(a \times b) + c$ in a single instruction
- There is only one rounding
 - There are two roundings with sequential multiply and add instructions
- May allow for faster and more accurate calculation of
 - · matrix multiplication
 - dot product
 - polynomial evaluation
- Standardized in IEEE 754-2008
- Execution time similar to an add or multiply but latency is greater.

However... Use of FMA may change floating-point results

- $fl(a \times b + c)$ is not always the same as $(a \otimes b) \oplus c$
- The compiler may be allowed to evaluate an expression as though it were a single operation
- Consider

```
double a, b, c;
c = a >= b ? std::sqrt(a * a - b * b) : 0;
```

There are values of a and b for which the computed value of a * a - b * b is negative even though a>=b

Consider the following example:

```
double x = 0x1.33333333333333p+0;
double x1 = x*x;
double x2 = fma(x,x,0);
double x3 - fma(x, x, -x*x));
```

```
x = 0x1.33333333333333p+0;

x1 = x*x = 0x1.70a3d70a3d70ap+0

x2 = fma(x,x,0) = 0x1.70a3d70a3d70ap+0

x3 = fma(x,x,-x*x) = -0x1.eb851eb851eb8p-55
```

x3 is the difference between the exact value of x*x and its value converted to double precision. The relative error is ≈ 0.24 ulp

Floating-point contractions

• Evaluate an expression as though it were a single operation

```
double a, b, c, d;
// Single expression; maybe replaced
// by a = FMA(b, c, d)
a = b * c + d;
```

Combine multiple expression into a single operation

```
double a, b, c, d;
// Multiple expressions; maybe replaced
// by a = FMA(b, c, d)
a = b; a *=c; a +=d;
```

Contractions are controlled by compiler switch(es) and #pragmas

- -fpp-contract=on|off|fast
- #pragma STDC FP_CONTRACT ON|OFF

IMPORTANT: Understand how your particular compiler implements these features

- gcc behavor has changed over time and may change in the future
- clang behaves differently than gcc

The problem we wish to solve is

$$f(x) \to y$$

but the problem we are actually solving is

$$f(\hat{x}) \to \hat{y}$$

Our hope is that

$$\hat{x} = x + \Delta x \approx x$$

and

$$f(\hat{x}) = f(x + \Delta x) = \hat{y} \approx y = f(x)$$

For example, if

$$f(x) = sin(x)$$
 and $x = \pi$

then

$$y = 0$$

However, if

$$\hat{x} = \texttt{M}_\texttt{PI}$$

then

$$\hat{x} \neq x$$
 and $f(\hat{x}) \neq f(x)$

Note we are assuming that if $\hat{x} \equiv x$ then $\mathtt{std}::\mathtt{sin}(\mathbf{\hat{x}}) \equiv sin(x)$

Absolute forward error: $|\hat{y} - y| = |\Delta y|$

Relative forward error: $\frac{|\hat{y} - y|}{|y|} = \frac{|\Delta y|}{|y|}$

This requires knowing the exact value of y and that $y \neq 0$

Absolute backward error: $|\hat{x} - x| = |\Delta x|$

Relative backward error: $\frac{|\hat{x} - x|}{|x|} = \frac{|\Delta x|}{|x|}$

This requires knowing the exact value of x and that $x \neq 0$

By J.G. Nagy, Emory University. From Brief Notes on Conditioning, Stability and Finite Precision Arithmetic

Condition Number

- Well conditioned: small Δx produces small Δy
- III conditioned: small Δx produces large Δy

$$\begin{array}{l} \text{condition number} = \frac{\text{relative change in }y}{\text{relative change in }x} \\ \\ = \frac{\left|\frac{\Delta y}{y}\right|}{\left|\frac{\Delta x}{x}\right|} \\ \\ \approx \left|\frac{xf'(x)}{f(x)}\right| \end{array}$$

Condition Number

• ln x for $x \approx 1$

Condition number
$$pprox \left| \frac{xf'(x)}{f(x)} \right| = \left| \frac{1}{\ln x} \right| \to \infty$$

• sin x for $x \approx \pi$

Condition number
$$pprox \left| \frac{x}{\sin x} \right| \to \infty$$

Error Measures

ulp: ulp(x) is the place value of the least bit of the significand of x If $x \neq 0$ and $|x| = \beta^e \sum_{i=0}^{p-1} x_i \beta^{-i}$, then $ulp(x) = \beta^{e-p+1}$

IEEE 754 and ulps

IEEE 754 requires that all results be correctly rounded from the infinitely-precise result.

If x is the infinitely-precise result and \hat{x} is the "round-to-even" result, then

$$|x - \hat{x}| \le 0.5 ulp(\hat{x})$$

Approximation Error

```
const double a = 0.1;
const double b = 0.01;
```

- Both 0.1 and 0.01 are rational numbers but neither is a floating-point number
- The value of a is greater than 0.1 by $\sim 5.6 \times 10^{-18}$ or ~ 0.4 ulps
- The value of b is greater than 0.01 by $\sim 2.1 \times 10^{-19}$ or ~ 0.1 ulps

(**N** openlab

Approximation Error

```
const double a = 0.1;
const double b = 0.01;
double c = a * a;
```

- c is greater than b by 1 ulp or $\sim 1.7 \times 10^{-18}$
- c is greater than 0.01 by $\sim 1.9 \times 10^{-18} > 1$ ulp

Approximating π

```
#include <cmath>
const float a = M_PI;
const double b = M_PI;
```

- The value of a is greater than π by $\sim 8.7 \times 10^{-8}$
- The value of b is less than π by $\sim 1.2 \times 10^{-16}$

This explains why $\sin(\text{M_PI})$ is not zero: the argument is not exactly π

Associativity

```
const double a = +1.0E+300;
const double b = -1.0E+300;
const double c = 1.0;
double x = ( a + b ) + c; // x is 1.0
double y = a + ( b + c ); // y is 0.0
```

- The order of operations matters!
- The compiler and the compilation options used matter as well
 - Some compilation options allow the compiler to re-arrange expressions
 - Some compilers re-arrange expressions by default

Distributivity

```
const double a = 10.0/3.0;
const double b = 0.1;
const double c = 0.2;
double x = a * (b + c);
// x is 0x1.0000000000001p+0
double y = (a * b) + (a * c);
// y is 0x1.00000000000000p+0
```

 Again, the order of operations, the compiler and the compilation options used all matter

The "Pigeonhole" Principle

- You have n+1 pigeons (i.e., discrete objects)
- You put them into n pigeonholes (i.e., boxes)
- At least one pigeonhole contains more than one pigeon.

The "Pigeonhole" Principle

An example of using the "Pigeonhole" Principle:

- The number of IEEE Binary64 numbers in [1,2) is $N=2^{52}$
- The number of IEEE Binary64 numbers in [1,4) is 2N
- Each value in [1,4) has its square root in (1,2]
- Since there are more values in [1,4) than in [1,2), there must be at least two distinct floating-point numbers in [1,4) which have the same square root

Catastrophic Cancellation

Catastrophic cancellation occurs when two nearly equal floating-point numbers are subtracted.

If $x \approx y$, their signifcands are nearly identical. When they are subtracted, only a few low-order digits remain. I.e., the result has very few significant digits left.

Sterbenz's Lemma

Lemma

Let a and b be floating-point numbers with

$$b/2 \le a \le 2b$$

. If subnormal numbers are available, $a \ominus b = a - b$.

Thus there is no rounding error associated with $a\ominus b$ when a and b satisfy the criteria.

However, there may be lost of significance.

Error-Free Transformations

An error-free transformation (EFT) is an algorithm which transforms a (small) set of floating-point numbers into another (small) set of floating-point numbers of the same precision without any loss of information.

$$f(x,y) \longmapsto (s,t)$$

Error-Free Transformations

EFTs are most useful when they can be implemented using only the precision of the floating-point numbers involved.

EFTs exist for

- Addition: a+b=s+t where $s=a\oplus b$
- Multiplication: $a \times b = s + t$ where $s = a \otimes b$
- Splitting: a = s + t

Additional EFTs can be derived by composition. For example, an EFT for dot products makes use of those for addition and multiplication.

An EFT for Addition

```
Require: |a| \geq |b|

1: s \leftarrow a \oplus b

2: t \leftarrow b \ominus (s \ominus a)

3: return (s,t)

Ensure: a+b=s+t where s=a\oplus b and t are floating-point numbers
```

A possible implementation

Another EFT for Addition: TwoSum

```
1: s \leftarrow a \oplus b

2: z \leftarrow s \ominus a

3: t \leftarrow (a \ominus (s \ominus z) \oplus (b \ominus z))

4: return (s,t)

Ensure: a+b=s+t where s=a \oplus b and t are floating-point numbers
```

A possible implementation

Comparing FastSum and TwoSum

- A realistic implementation of FastSum requires a branch and 3 floating-point opertions
- TwoSum takes 6 floating-point operations but requires no branches
- TwoSum is usually faster on modern pipelined processors
- The algorithm used in TwoSum is valid in radix 2 even if underflow occurs but fails with overflow

Precise Splitting Algorithm

- Given a base-2 floating-point number x, determine the floating-point numbers x_h and x_l such that $x=x_h+x_l$
- For $0 < \delta < p$, where p is the precision and δ is a parameter,
 - The signficand of x_h fits in $p-\delta$ bits
 - The signficand of x_l fits in $\delta 1$ bits
 - All other bits are 0
 - δ is typically chosed to be $\lceil p/2 \rceil$
- No information is lost in the transformation
 - Aside: how do we end up only needing $(p-\delta)+(\delta-1)=p-1$ bits?
- This scheme is known as Veltkamp's algorithm

Precise Splitting EFT

Require: $C = 2^s + 1$; $C \otimes x$ does not overflow

- 1: $a \leftarrow C \otimes x$
- 2: $b \leftarrow x \ominus a$
- 3: $x_h \leftarrow a \oplus b$
- 4: $x_l \leftarrow x \ominus x_h$
- 5: **return** (x_h, x_l)

Ensure: $x = x_h + x_l$

Precise Splitting EFT

Possible implementation

Precise Multiplication

• Given floating-point numbers x and y, determine floating-point numbers s and t such that $a\times b=s+t$ where $s=a\otimes b$ and

$$t = ((((x_h \otimes y_h) \ominus s) \oplus (x_h \otimes y_l)) \oplus (x_l \otimes y_h)) \oplus (x_l \otimes y_l).$$

Known as Dekker's algorithm

Precise Multiplication EFT

The algorithm is much simpler using FMA

```
1: s \leftarrow x \otimes y
2: t \leftarrow FMA(x, y, -s)
3: return (s, t)
```

Ensure: x*y=s+t where $s=x\otimes y$ and t are floating-point numbers

Possible implementation

```
void
Prod(const double a, const double b,
         double * const s, double * const t) {
    // No unsafe optimizations!
    *s = a * b;
    *t = FMA(a, b, -*s);
    return;
}
```

Summation Techniques

- Traditional
- Sorting and Insertion
- Compensated
- Reference: Higham: Accuracy and Stability of Numerical Algorithms

Summation Techniques

Condition number:

$$C_{sum} = \frac{\sum_{i} |x_{i}|}{|\sum_{i} x_{i}|}$$

- If C_{sum} is not too large, the problem is not ill-conditioned and traditional methods may be sufficient
- If C_{sum} is too large, we need to have results appropriate to a higher precision without actually using a higher precision
- · Obviously, if higher precision is readily available, use it

Traditional Summation

$$s = \sum_{i=0}^{n-1} x_i$$

```
double
Sum(const double* x, const unsigned int n)
{    // No unsafe optimizations!
    double sum = x[0]
    for(unsigned int i = 1; i < n; i++) {
        sum += x[i];
    }
    return;
}</pre>
```

Sorting and Insertion

- Reorder the operands
 - By value or magnitude
 - Increasing or decreasing
- Insertion
 - · First sort by magnitude
 - Remove x_1 and x_2 and compute their sum
 - Insert that value into the list keeping the list sorted
 - · Repeat until only one element is in the list
- Many Variations
 - If lots of cancellations, sorting by decreasing magnitude may be better but not always

Compensated Summation

- Based on FastTwoSum and TwoSum techniques
- Knowledge of the exact rounding error in a floating-point addition is used to correct the summation
- Developed by William Kahan

Compensated (Kahan) Summation

```
Function Kahan(x,n)
    Input: n > 0
    s \leftarrow x_0
   t \leftarrow 0
    for i = 1 to n - 1 do
        y \leftarrow x_i - t // Apply correction
        z \leftarrow s + y // New sum
        t \leftarrow (z-s) - y // New correction \approx low part of y
        s \leftarrow z // Update sum
    end
    return s
```

Compensated (Kahan) Summation

```
double
Kahan(const double* x, const unsigned int n)
{ // No unsafe optimizations!
  double s = x[0];
  double t = 0.0;
  for( int i = 1; i < n_values; i++ ) {</pre>
    double y = x[i] - t;
    double z = s + y;
   t = (z - s) - y;
    s = z:
  return s:
```

Compensated Summation

Many variations known. Consult the literature for papers with these authors:

- William M Kahan
- Donald Knuth
- Douglas Priest
- S M Rump, T Ogita and S Oishi
- Jonathan Shewchuk
- AriC project (CNRS/ENS Lyon/INRIA)

Choice of Summation Technique

- Performance
- Error Bound
 - Is it (weakly) dependent on n?
- Condition Number
 - Is it known?
 - Is it difficult to determine?
 - Some algorithms allow it to be determined simultaneously with an estimate of the sum
 - Permits easy evaluation of the suitability of the result
- No one technique fits all situations all the time

$$S = \boldsymbol{x}^{\mathsf{T}} \boldsymbol{y}$$
$$= \sum_{i=0}^{n-1} x_i \cdot y_i$$

where x and y are vectors of length n.

Traditional algorithm

Require: \boldsymbol{x} and \boldsymbol{y} are n-dimensional vectors with $n \geq 0$

- 1: $s \leftarrow 0$
- 2: for i=0 to n-1 do
- 3: $s \leftarrow s \oplus (x_i \otimes y_i)$
- 4: end for
- 5: return s

The error in the result is proportional to the condition number:

$$C_{dot\ product} = 2 \times \frac{\sum_{i} |x_{i}| \cdot |y_{i}|}{|\sum_{i} x_{i} \cdot y_{i}|}$$

- If C is not too large, a traditional algorithm can be used
- ullet If C is large, more accurate methods are required
 - E.g., lots of cancellation

How to tell? Compute the condition number simultaneously when computing the dot product

FMA can be used in the traditional computation

Require: x and y are n-dimensional vectors with n > 0

- 1: $s \leftarrow 0$
- 2: **for** i = 0 to n 1 **do**
- 3: $s \leftarrow FMA(x_i, y_i, s)$
- 4: end for
- 5: return s

Although there are fewer rounded operations than in the traditional scheme, using FMA does not improve the worst case accuracy.

Recall

- Sum(x,y) computes s and t with x+y=s+t and $s=x\oplus y$
- Prod(x,y) computes s and t with x+y=s+t and $s=x\otimes y$

Since each individual product in the sum for the dot product is transformed using Prod(x,y) into the sum of two floating-point numbers, the dot product of 2 vectors can be reduced to computing the sum of 2N floating-point numbers.

To accurately compute that sum, Sum(x, y) is used.

Compensated dot product algorithm

Require: \boldsymbol{x} and \boldsymbol{y} are n-dimensional vectors with $n \geq 0$

- 1: $(s_h, s_l) \leftarrow (0, 0)$
- 2: **for** i = 0 to n 1 **do**
- 3: $(p_h, p_l) \leftarrow Prod(x_i, y_i)$
- 4: $(s_h, a) \leftarrow Sum(s_h, p_h)$
- 5: $s_l \leftarrow s_l \oplus (p_l \oplus a)$
- 6: end for
- 7: **return** $s_h \oplus s_l$

The relative accuracy of this algorithm is the same as the traditional algorithm when computed using twice the precision.

Polynomial Evaluation

Evaluate

$$p(x) = \sum_{i=0}^{n} a_i x^i$$

= $a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n$

Condition number

$$C(p,x) = \frac{\sum_{i=0}^{n} |a_i| |x|^i}{\left|\sum_{i=0}^{n} a_i x^i\right|}$$

Note that C(p,x)=1 for certain combinations of a and x. E.g., if $a_i\geq 0$ for all i and $x\geq 0$.

Horner's Scheme

Nested multiplication is a standard method for evaluating p(x):

$$p(x) = (((a_n x + a_{n-1})x + a_{n-2})x \cdots + a_1)x + a_0$$

This is known as Horner's scheme (although Newton published it in 1711!)

Horner's Scheme

```
Function Horner (x,p,n)

Input: n \ge 0

s_n \leftarrow a_n

for i = n - 1 downto 0 do

// s_i \leftarrow (s_{i+1} \times x) + a_i

s_i \leftarrow \texttt{FMA}(s_{i+1}, x, a_i)

end

return s_0
```

Horner's Scheme

A possible implementation

Applying EFTs to Horner's Scheme

Horner's scheme can be improved by applying the EFTs Sum and Prod

```
Function HornerEFT (x,p,n)
Input: n \geq 0
s_n \leftarrow a_n
for i=n-1 downto 0 do
(p_i,\pi_i) \leftarrow \mathbf{Prod}(s_{i+1},x)
(s_i,\sigma_i) \leftarrow \mathbf{Sum}(p_i,a_i)
end
return s_0,\pi,\sigma
```

The value of s_0 calculated by this algorithm is the same as that using the traditional Horner's scheme.

Applying EFTs to Horner's Scheme

Let π and σ from HornerEFT be the coefficients of polynomials of degree n-1. Then the quantity

$$s_0 + (\pi(x) + \sigma(x))$$

is an improved approximation to

$$\sum_{i=0}^{n} a_i x^i$$

In fact, the relative error from HornerEFT is the same as that obtained using the traditional algorithm with twice the precision.

Simultaneous calculation of a dynamic error bound can also be incorporated into this algorithm.

Second Order Horner's Scheme

Horner's scheme is sequential: each step of the calculation depends on the result of the preceeding step.

Consider

$$p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n$$

= $(a_0 + a_2 x^2 + \dots) + x(a_1 + a_3 x^2 + \dots)$
= $q(x^2) + xr(x^2)$

- The calculations of $q(x^2)$ and $r(x^2)$ can be done in parallel
- This technique may be applied recursively

Estrin's Method

Isolate subexpressions of the form $(a_k + a_{k+1}x)$ and x^{2n} from p(x):

$$p(x) = (a_0 + a_1 x) + (a_2 + a_3 x)x^2 + ((a_4 + a_5 x) + (a_6 + a_7 x)x^2)x^4 + \cdots$$

The subexpressions $(a_k + a_{k+1}x)$ can be evaluated in parallel

Value Safety

"Value Safety" refers to transformations which, although algebraically valid, may affect floating-point results.

Ensuring "Value Safety" requires that no optimizations be done which could change the result of any series of floating-point operations as specified by the programming language.

- Changes to underflow or overflow behavior
- Effects of an operand which is not a finite floating-point number. E.g., $\pm\infty$ or a NaN

Transformations which violate "Value Safety" are not error free transformations.

Value Safety

In "safe" mode, the compiler may not make changes such as

$$(x+y) + z \Leftrightarrow x + (y+z)$$

$$x * (y+z) \Leftrightarrow x * y + x * z$$

$$x * (y * z) \Leftrightarrow (x * y) * z$$

$$x/x \Leftrightarrow 1.0$$

$$x + 0 \Leftrightarrow x$$

$$x * 0 \Leftrightarrow 0$$

Reassociations are not value-safe Distributions are not value-safe May change under-/overflow behavior x may be 0, ∞ or a NaN x may be -0 or a NaN x may be -0, ∞ or a NaN

A Note on Compiler Options

- There are many compiler options which affect floating-point results
- Not all of them are obvious
- Some of them are enabled/disabled by other options
 - -0n
 - -march and others which specify platform characteristics
- Options differ among compilers

Optimizations Affecting Value Safety

- Expression rearrangements
- Flush-to-zero
- · Approximate division and square root
- Math library accuracy

Expression Rearrangements

These rearrangements are not value-safe:

- $(a \oplus b) \oplus c \Rightarrow a \oplus (b \oplus c)$
- $a \otimes (b \oplus c) \Rightarrow (a \otimes b) \oplus (a \oplus c)$

To disallow these changes:

- gcc Don't use -ffast-math
- icc Use -fp-model precise
 - Recall that options such as -On are "aggregated" or "composite" options
 - they enable/disable many other options
 - their composition may change with new compiler releases

Disallowing rearrangements may affect performance

Subnormal Numbers and Flush-To-Zero

- Subnormal numbers extend the range of floating-point numbers but with reduced precision and reduced performance
- If you do not require subnormals, disable their generation
- "Flush-To-Zero" means "Replace all generated subnormals with 0"
 - Note that this may affect tests for == 0.0 and != 0.0
- If using SSE or AVX, this replacement is fast since it is done by the hardware

Subnormal Numbers and Flush-To-Zero

- gcc -ffast-math enables flush-to-zero
- gcc But -03 -ffast-math disables flush-to-zero
- icc Done by default at -O1 or higher
- icc Use of -no-ftz or fp-model precise to will prevent this
- icc Use -fp-model precise -ftz to get both "precise" behavior
 and subnormals
 - Options must be applied to the program unit containing main as well

Reductions

- Summation is an example of a reduction
- Parallel implementations of reductions are inherently value-unsafe because they may change the order of operations
 - the parallel implementation can be through vectorization or multi-threading or both
 - there are OpenMP and TBB options to make reductions "reproducible"
 - For OpenMP KMP_DETERMINSTIC_REDUCTION=yes

icc use of -fp-model precise disables automatic vectorization and automatic parallelization via threading

The Hardware Floating-Point Environment

The hardware floating-point environment is controlled by several CPU control words

- Rounding mode
- Status flags
- Exception mask
- Control of subnormals

If you change anything affecting the assumed state of the processor with respect to floating-point behavior, you must tell the compiler

• Use #pragma STDC FENV_ACCESS ON

icc Use -fp-model strict

#pragma STDC FENV_ACCESS ON is required if flags are accessed

Precise Exceptions

Precise Exceptions: floating-point exceptions are reported exactly when they occur

To enable precision exceptions

• Use #pragma float_control(except, on)

icc Use -fp-model strict or -fp-model except

Enabling precise exceptions disables speculative execution of floating-point instructions. This will probably affect performance.

Math Library Features – icc

A variety of options to control precision and consistency of results

- -fimf-precision=<high|medium|low>[:funclist]
- -fimf-arch-consistency=<true|false>[:funclist]
- And several more options
 - -fimf-absolute-error=<value>[:funclist]
 - -fimf-accuracy-bits=<value>[:funclist]
 - ...

- double-double and quad-double data types
 - Implemented in C++
 - Fortran 90 interfaces provided
 - Available from LBL as qd-X.Y.Z.tar.gz
 - "LBNL-BSD" type license

GMP - The GNU Multiple Precision Arithmetic Library

- a C library
- arbitrary precision arithmetic for
 - signed integers
 - rational numbers
 - floating-point numbers
- used by gcc and g++ compilers
- C++ interfaces
- GNU LGPL license

openiab

MPFR

- a C library for multiple-precision floating-point computations
- all results are correctly rounded
- used by gcc and g++
- C++ interface available
- free with a GNU LGPL license

CRlibm

- a C library
- all results are correctly rounded
- C++ interface available
- Python bindings available
- free with a GNU LGPL license

- limits
 - defines characteristics of arithmetic types
 - provides the template for the class numeric_limits
 - #include <limits>
 - requires -std=c++11
 - specializations for each fundamental type
 - compiler and platform specific

Tools

- cmath
 - functions to compute common mathematical operations and transformations
 - #include <cmath>
 - frexp
 - get exponent and significand
 - ldexp
 - create value from exponent and significand
 - Note: frexp and ldexp assume a different "normalization" than usual: $1/2 \le m < 1$
 - nextafter
 - create next representable value
 - fpclassify
 - returns one of FP_INFINITE, FP_NAN, FP_ZERO, F_SUBNORMAL, FP_NORMAL

Catastrophic Cancellation

- $x^2 y^2$ for $x \approx y$
 - (x+y)(x-y) may be preferable
 - x-y is computed with no round-off error (Sterbenz's Lemma)
 - x + y is computed with relatively small error
- FMA(x,x,-y*y) can be very accurate
 - However FMA(x,x,-x*x) is not usually 0!
- similarly $1 x^2$ for $x \approx 1$
 - -FMA(x,x,-1.0) is very accurate

Nopeniab

"Gratuitous" Overflow

Consider $\sqrt{x^2+1}$ for large x

- $\sqrt{x^2+1} \to |x|$ as $|x| \to \infty$
- $|x| \sqrt{1 + 1/x^2}$ may be preferable
 - if x^2 overflows, $1/x \to 0$
 - $|x|\sqrt{1+1/x^2} \rightarrow |x|$

CERN openlab

Consider the Newton-Raphson iteration for $1/\sqrt{x}$:

$$y_{n+1} \leftarrow y_n(3 - xy_n^2)/2$$

where $y_n \approx 1/\sqrt{x}$. Since $xy_n^2 \approx 1$, there is at most an alignment shift of 2 when computing $3-xy_n^2$, and the final operation consists of multiplying y_n by a computed quantity near 1. (The division by 2 is exact.)

If the iteration is rewritten as

$$y_n + y_n(1 - xy_n^2)/2,$$

the final addition involves a large alignment shift between y_n and the correction term $y_n(1-xy_n^2)/2$ avoiding cancellation.

This situation can be generalized:

When calculating a quantity from other calculated (i.e., inexact) values, try to formulate the expressions so that the final operation is an addition of a smaller "correction" term to a value which is close to the final result.

CERN openlab

Vectorization and Parallelization

These optimizations affect both results and reproducibility

- Results can change because the order of operations may change
- Vector sizes also affect the order of operations
- Parallalization can change from run to run (e.g., number of threads available). This impacts both results and reproducibily

CERN openlab

And finally... CPU manufacturer can impact results. Not all floating-point instructions execute exactly the same on AMD and Intel processors

- The rsqrt and rcp instructions differ
- They are not standardized
- Both implementations meet the specification given by Intel

The exact same non-vectorized, non-parallelized, non-threaded application may give different results on systems with similar processors each vendor.

And undoubtedly others, as yet undiscovered.

J.-M. Muller et al, *Handbook* of *Floating-Point Arithmetic*, Birkäuser, Boston, 2010

V openlab

J.-M. Muller, Elementary Functions, Algorithms and Implementation (2^{nd} Edition), Birkäuser, Boston, 2006

N.J. Higham, Accuracy and Stability of Numerical Algorithms (2^{nd} Edition), Siam, Philadelphia, 2002.

- IEEE, IEEE Standard for Floating-Point Arithmetic, IEEE Computer Society, August 2008.
- D. Goldberg, What every computer scientist should know about floating-point arithmetic, ACM Computing Surverys, 23(1):5-47, March 1991
- Publications from CNRS/ENS Lyon/INRIA/AriC project (J.-M. Muller et al).
- Publications from the PEQUAN project at LIP6, Université Pierre et Marie Curie (Stef Graillat, Christoph Lauter et al).
- Publications from Institut für Zuverlässiges Rechnen (Institute for Reliable Computing), Technische Universität Hamburg-Harburg (Siegfried Rump et al).

Technology, Innovation, Knowledge

Training

- Computing focus
- From beginner to expert level
- Hands-on

Experienced teachers

- Track record in major tech outlets
- Over 1'600 trained

Innovation support

- Tech analysis
- Innovation projects
- Computing strategies

TIK training topics

- Software/hardware performance and architecture
- Parallelization, vectorization, accelerators
- · Compilers, numerical processing
- Python for science, data analysis and visualization

- Full catalog available online here: http://tik.services/knowledge
- · Ask your Dept. Training Officers or Technical Training

