

A Homogeneous, Fluorescent Polarization Assay for Inositol 1,4,5-Trisphosphate (Ins P₃)

Peter Fung, Rajendra Singh, Lindy Kauffman, Richard Eglen, and Tabassum Naqvi

ONTENTS

Measuring Inositol Phospholicia Historius and Company	260
Measuring Inosital Phospholipid Hydrolysis to Monitor GPCR Activation	ZQ7
Measuring Inositol Phosphate Levels to Monitor GPCR Responses	27U
Measuring Inositol Phosphote Levels to Monitor GPCR Responses	
7_(MIS & 3)	
Statement of the Vanight and Authountem	
COMPARISON OF APPURIST INDUCTION OF THE P. IN COMPANION AS YOUR P. I. C.	
nowledgments	
	283

20.1 INTRODUCTION

G-protein-coupled receptors (GPCRs) are one of the largest classes of drug discovery targets [1,2]. GPCR ligands regulate cellular and physiological pathways by signaling through several second messengers, including cyclic AMP, inositol phospholipids, and calcium [3]. Quantitation of second messengers is frequently used as a means to screen and pharmacologically characterize GPCR ligands [4]. The GPCR signaling process occurs by two major pathways. GPCRs coupling to Go, and Go, proteins activate or inhibit, respectively, adenylate cyclase and subsequently change intracellular cAMP levels. GPCRs coupling to Go, or Go, proteins activate phosphoinositol phospholipiase CB, which hydrolyzes phospharidylinositol 4,5-bisphosphate (PIP₂) forming an 1,2-diacylglycerul and inositol 1,4,5-trisphosphate (Ins P₃) [5]. Ins P₃ binds and opens an endoplasmic Ins P₃ gared calcium channel, causing release of bound calcium into the cytosol [6]. Several metabolic products of Ins P₂ also modulate cellular function, including inositol 1,3,4,5-P₄ (Ins P₄), which acts to facilitate Ins P₃-mediated calcium release synergistically [7].

There are several HTS assay systems to measure intracellular cyclic AMP as a marker of C_3 - and C_3 -coupled GPCRs [8]. In contrast, there are few assays available to selectively measure los P_3 to monitor Gq-coupled GPCR activation, particularly those suitable for automated HTS. Consequently, many HTS laboratories measure changes in intracellular calcium to assay C_3 -coupled GPCRs using a fluorescent calcium-sensitive dye, loaded into intact cells as a cell-permeable ester. Real-time changes in the GPCR-induced signal are then determined in a microtiter plate using imaging instruments, such as a fluorescent imaging plate reader system (FLIPR, Molecular Devices Corp) [9].

269

Handbook of Assay Development in Drug Discovery

Screening library compounds, however, may modulate intracellular calcium levels by other means than binding to the receptor, such as nonspecific blockade of calcium channels or exacerbated intracellular calcium release. Moreover, compounds that autofluoresee or quench fluoreseence result in ambiguous changes in the assay signal and may manifest as false-positive or -negative hits. Consequently, several assays have been developed to measure GPCR-induced inositide phospholipid hydrolysis [10–12]. The majority of these assays involve radioactive measurements, many of which are suboptimal for high-volume screening.

20.2 MEASURING INOSITOL PHOSPHOLIPID HYDROLYSIS TO MONITOR GPCR ACTIVATION

A proportion of GPCRs that couple to Go_q proteins activate phospholipase C and mobilize Ins P₂ [5-7]. Measurement of GPCR-induced changes in phospholipositide phospholipase C activity is frequently undertaken by measuring inositol phosphate production. Here, tritiated inositol is incorporated into the inositol phospholipids of the cell. Activation of the receptor results in release of radiolabeled Ins P₃. The experiments are conducted in the presence of lithium, which inhibits inositol monophosphate phosphatase, thereby blocking the cycle and increasing accumulation the tritiated isotope at the monophosphate form. This radiometric approach is used in conjunction with scintillation proximity assay (SPA) technology (GE Healthcare) to provide a homogeneous platform more suitable for automation [13].

20.3 MEASURING INOSITOL PHOSPHATE LEVELS TO MONITOR GPCR RESPONSES

The measurement of the second messenger, Ins P₁ specifically, is undertaken differently anti-traditionally been done using mass assays with gas liquid chromatography (GLC), anion exchange chromatography, or high performance liquid chromatography (HPLC) [14]. These techniques, while very sensitive, are not adaptable to assays requiring high throughput. The recognition that the binds to a specific intracellular receptor provides the basis for a radiometric competition binds assay [5]. Here, tritium-labeled Ins P₂ is displaced from a crude preparation of the Ins P₂ receptor using a competition radioligand binding protocol [15,16]. A commercial version of this radion ceptor assay is available from GE Healthcare using boving adrenal gland Ins P₂ receptor propertions. This format, again when used with SPA, is high throughput [6]. However, the economics isotopic waste disposal emanating from high-volume screens remains a significant issue.

A nonisotopic assay for Ins P₃ is now available based on the AlphaScreen technology nElmer). This technique is an amplified luminescence assay that employs donor and accepted When the donor head is excited with light at 680 nm, a photosensitizer converts O. in oxygen. When two beads are in close proximity, the singlet oxygen produces a chemilian signal in the acceptor bead, activating bead fluorophores and amplifying the signal. In S assay, the two beads are held in close proximity by a biotinylated Ins P, molecule, as: bead is coated with streptavidin and the acceptor bead is coated with an Ins P₃-binding p the absence of cell stimulation, a signal is seen. In the presence of free Ins P, from the donor and acceptor beads dissociate, and the signal proportionally decreases [17]...E sciences have utilized the AlphaScreen assay format using a binding protein that binds inositol phosphates, including IP, and IP. These cellular metabolites compete with # 310 inositol phosphate analog as described above [18]. This assay has an advantage in that several phosphoinositols, although an extensive evaluation in HTS screens has not 😭 to date. Despite the advantage of the AlphaScreen approach as a nonisotopic homogen technology, the signal is sensitive to compound quenching, and ambient fluctuations temperature need to be carefully controlled [19]. The AlphaScreen Ins P, assay is also in

PAGE 83

DIECONEBX

10/08/2007 23:48 5109791650

FIRE 20.1 Schematic representation of the Ins P, FP assay principle.

the number of cells per well, as matrix interferences from cell lysates reduce the signal. This puis the instability of the Ins P, binding protein preparation, may cause variability in the lay performance and sensitivity.

HITHUNTER FLUORESCENCE POLARIZATION (FP) ASSAY FOR INOSITOL 1,4,5-TRISPHOSPHATE (INS P₃)

The Hilliumer FP Ins P₃ assay from DiscoveRx is a competitive binding assay, in which cellular his E displaces a fluorescent derivative of Ins P₃ from a specific binding protein. The assay measures changes in fluorescence polarization (FP), a single-wavelength ratiometric technique, in which a fluorescent derivative of Ins P₃ is used as a tracer. FP is determined as a ratio of fluorescence chairs in the vertical and horizontal planes. When fluorescent molecules are excited with pilarized light, the degree to which the emitted light retains polarization reflects the rotation that the molecule underwent between excitation and emission. Small molecules rotate rapidly, and marked light is random with respect to the plane of emission. When bound to a large protein (such the receptor or antibody), the molecule rotates much more slowly and the emitted light retains more in the FP signal.

When excited with polarized light, the emission from a fluorescent derivative of Ins P₁ (tracer) is depolarized compared to the exciting light, due to the rapid rotation of the molecule between excitation and emission. When the Ins P₃ derivative binds to a binding protein, the rotation time is reduced and a high polarization value is seen. In the assay unlabeled Ins P₂, either a standard Ins B₁ solution or derived from the cell lysate, displaces the tracer from the binding protein, and the rotation time increases and low FP signal is measured (Figure 20.1). By this means a calibration is generated to the standard Ins P₁ dilutions, and the molar concentration of Ins P₁ in the cell lysate determined by interpolation (Figure 20.2).

The critical components of the DiscoveRx assay are thus the fluorescent Ins P₃ tracer and the Ins P₃ binding protein, as shown in the protocol in Figure 20.3. In the case of the tracer, three dye conjugates have been developed including a green (fluorescein) derivative of Ins P₃ (Figure 20.4). As low concentrations of fluorescent tracers are used in the assay, the technique is sensitive to optical interference from screening library compounds. The ratiometric processing of the data confects to some extent for fluorescent compounds. Artifacts or interferences can also be identified by measuring compound fluorescence in the absence of the Ins P₃ tracer. For this reason, the Ins P₃ assay has also been developed for a series of "red" tracers that are less prone to compound

PAGE 84

DIZCONEKX

05916460TS

10/08/5007 23:48

Handbook of Assay Development in Drug Discovery

FIGURE 20.2 Ins P₃ standard curve. A standard curve was generated to measure levels of exogenously added Ins P₃. A high concentration of Ins P₃ at 7 µM was scripilly diluted 1:3 in Ins P₃ standard dilution buffer. Different concentrations of Ins P₃ were incubated with PCA, followed by the addition of the tracer and then the Ins P₃ binding protein. The reaction was read on a multiwell fluorescence polarization plate reader such as the Beckman-Coulter CRI Affinity or LTL Analyst. The majority of the experimental dam for this publication was collected on a Beckman-Coulter CRI Affinity, unless noted. An IC₂₀ of ~7 to 9 nM was observed when using either the green or red Ins P₃ fluorescent tracers.

TABLE 20.1
Assay Precision of Ins P₂ FP Assay Using Different Tracers

	Green Tracer	Red Tracer
mPs Low standard	238	196
inPs High smoderd	37	70
S/B ratio/µroPs	6/201	3/126
EC _{so} , pM tos P,	9	7
Average % CV of toplicates	2	· 2
Z' Pactor	0.97	0.92
Note: p = 4 replicates.		

interference (Table 20.1). In all cases the sensitivity of the assay is similar, although change FP (denoted as the delta mP) vary according to the dye in question (Figure 20.5 and Table 20.5).

The FP Ins P₃ assay is performed in crude cell lysates, thereby avoiding labotious separated filtration steps. It is therefore important that the Ins P₃ binding protein exhibit high affinite selectivity for the p-myo-1,4,5-inositol-Ins P₃ isomer over other inositol polyphosphates. The total Comm HEPES, 150 mm NaCl, 1 mm DTT, 0.1% BGG, and 0.02% Tween 20, pH 7.5) used in Ins P₃ assay is optimized to ensure high-affinity binding, and competition binding studies while substituted inositol phosphates demonstrate that the Ins P₃ binding protein is specific for the Competition binding protein is also a stable reagent for more than 2 months at -80°C (Figure 20.60).

In a similar fashion to many FP-based assays, the DiscoveRx Ins P, FP assay is ancell assay automation systems. A representative standard curve dispensed by a BioMek 2002 handler instrument is shown in Figure 20.7. Here, standard concentrations of Ins P, wear replicates of 10. A coefficient of variance of 2% and a Z' factor of 0.92 to 0.97 are generally Similar assay performances have been observed using either an Analyst FP reader or a CRFP reader (Figure 20.8).

PAGE 85

DISCOVERX

5169791658

10/08/2007 23:48

Fluorescent Polarization Ins P. Assay

273

FIGURE 20.3 Rithunter has P₁FP assay protocol. Schematic representation of the steps and additions made to measure levels of Ins P₃.

FIGURE 20.4 Chemical structure of the Ins P₃ FP traces. Amine derivatived n-myo-1,4,5-inositoltriphosphoric acid was reacted to each of the hydroxysuccinimide activated carboxy fluoressein, AlexaFluor, and Cy3B dyes separately in dry directly! formamide. Each of the Ins P₃ trucers was purified to 99.9% homogeneity by reverse phase HPLC on C18 column and triethy! armonium acetate; acetonitrile gradient. The molecular weight of all the conjugates was complorated by electrospray mass spectroscopy.

20.5 MEASURING GPCR AGONISM AND ANTAGONISM

In a similar fashion to other second messengers such as adenylate cyclase, basal and stimulated levels of Ins P_3 are highly dependent on cell number. To correlate cell number with Ins P_3 basal levels, three different CHO-M1 cell lines were studied using the green Ins P_2 trace: As the cell number per well was increased from 5000 to 50,000, the basal levels of Ins P_3 increased in proportion (Figure 20.9A). These data indicate that the assay is applicable to a range of different cell densities.

10/08/5001 53:48 21097/91650

DIRCONEGX

FIGURE 20.6 Stability of the Ins P, binding protein. The reagents were equilibrated at room temperature for 1; 6, and 8 h. After each time period, a standard curve citrating Ins P₃ was run. As shown in panel (a), the binding protein was stable over 8 h at room temperature. The sensitivity of the standard curve over 1, 6, and 8 h was 10, 8, and 9 nM, respectively. In panel (b), the Ins P₃ binding protein reagent was subjected to four freeze/thaw cycles (-80°C to room temperature) and a standard curve was run. Freshly prepared Ins P₃ binding protein (closed square) IC₂₀ = 9 nM, (closed circle) one freeze/thaw IC₂₀ = 5 nM, (closed inverted triangle) two freeze/thaws IC₃₀ = 5 nM, (open circle) four freeze/thaws IC₃₀ = 5 nM, (open circle) four freeze/thaws

Experience has also shown that several different types of cell (CHO-K1, HEK 293 cells, and so on) can be used in the assay (Figure 20.9B).

The goal of a competitive Ins P₂ assay is to measure changes in cellular Ins P₃ concentration induced by GPCR agonist activation. It is well known that the cellular metabolism of Ins P₃ is extremely tapid; after an initial spike, the levels decline to a plateau, the height of which depends upon the cell type and perhaps cytosolic calcium concentration. In some cells, Ins P₃ peak levels oscillate to a frequency that directly correlates to the calcium oscillation frequency [20]. In an "end-point" assay for Ins P₃, such as those described in this chapter, it is important that the peak levels of Ins P₃ are reproducibly measured using assay conditions in which Ins P₃ metabolism is

FIGURE 20.7 Automation of the HitHunter Ins P, FP array. Dispensation of the reaction was done on a BioMak 2000; ten replicates for each standard concentration were run. The IC₂₀ = 5 nM, the mean %CV was 2 and the Z' factor was 0.90.

FIGURE 20.8 Comparison of two FP readers measuring the Ins P₃ FP assay. The Ins P₃ FP green the standard curve was run on an LJL Analyst GT and a Beckman-Coulter CRI Affinity. The LJL Analyst set as follows: integration time = 100,000 µsec. G Factor 1.0. The filter set used in the CRI Affinity excitation filter — fluorescein 485 nm, Emission filter — fluorescein 530 nm, and dichroic — fluorescein 100 nm. The exposure was set at 15 to 30 msec, and the focus was set at 2700 to 3200. In this particular experiments the LJL Analyst run had an IC₃₀ = 5 nM, with 5% mean CV and a Z factor = 0.87. For the CRI Affiairy, IC₃₀ = 3 nM, with 3% CV and Z factor = 0.97.

arrested. To achieve this, the cell samples are rapidly deproteinized after agonist additions perchlortic acid (PCA; 0.2 N), which displaces Ins P, from the salts by acting as a chaoriopic and terminates metabolic activity.

An important feature of using the assay in high-throughput robotic fluid dispersing system that the PCA needs to be added 20 to 30 sec after addition of the agonists, in order to measure peak formation of Ins P₃. CHO-M1 cells induced with carbachol exhibited maximal Ins P within 30 sec, followed by a rapid decline over the following 5 min (Figure 20.10). Similar test are seen in histarnine H₁ receptor cells (Figure 20.10).

FIGURE 20.9 (a) Basal cellular Ins P₁ levels increase with cell number. Between 5000 and 50,000 CHO-Kl muscarinic M1 receptor cells (expressing either 1.5 or 8.3 pmol/mg protein of receptor) were assayed in triplicate to determine the basal amounts of Ins P₁ in the cell. No agonist was added to the cells in this experiment. Samples were assayed following the protocol shown in Figure 20.2. The amount of Ins P₂ was calculated from the standard curve run in parallel with the test conditions (data not shown). (b) Basal Ins P₃ levels in CHO-K1 cells expressing different G_q-coupled receptors. Between 5000 and 50,000 cells were assayed to measure the levels of Ins P₂ expressed by the cell lines in the absence of agonist addition. Samples were assayed in triplicate. The passage number of each cell line was noted (P₄ or P₆), as the age of the cell line can affect the expression levels of Ins P₃. The levels of detected Ins P₃ were calculated off a standard curve cut in parallel with the experiment.

FIGURE 20.10 Monitoring agonist stimulated Ins P₁ levels in CHO-M1 cells and CHO-H1 cells over time. Twenty thousand CHO-M1 cells were treated with 1000 µM carbachol, and CHO-H1 cells were treated with 1000 µM histamine. At the end of each noted time point, 0.2 N PCA was added to quench the reaction and the Ins P₂ FP agony was carried out as described above. The amount of Ins P₂ detected in the cells after the defined agonist stimulation period was calculated off an Ins P₂ standard curve run in parallel to the test samples. Samples were assayed in triplicate.

FIGURE 20.11 Agonist stimulation of CHO-M1 cells. Twenty thousand stably expressing CHO-M2 were treated with an increasing concentration of carbachol for 20 sec. PCA was immediately article agonist incubation period added to quench the reaction. The levels of Ins P, were extrapolated from a survey that was run in parallel (data not shown). The samples were assayed in triplicate. The ICo observe was determined to be 15 µM.

Agonist concentration response curves can be established using this assay with high pre-A prototypical receptor that induces formation of Ins P_3 is the muscarinic M_1 receptor. The all carbachol increased Ins P_3 levels approximately fourfold (Figure 20.11) with a potency [15] 7 μM [13]. The induction of Ins P_3 was antagonized by the muscarinic amagonist amount potencies in a range consistent with the literature (0.1 to 10 μM) (Figure 20.12) [21], using a assay systems to detect Ins P_3 . Similar data can be seen using a more potent agonist in a receptor system (Figure 20.13), in which both full and partial agonists can be detected again responses were antagonized by compounds in a concentration-dependent fashion (Figure 20.13)

3544

Receptor expression (pmol/mg protein)

FIGURE 20.15 Correlation of receptor expression levels and detection of Ins P₃ levels in three different Cric K1 cell lines expressing a muscarinic M, receptor. Three different stably transfected CRO-K1 cell lines we tested as they expressed different muscarinic M1 receptor levels [high = 8.3 pmol/mg-protein, medium problemg-protein, and low = 0.1 pmol/mg-protein]. Twenty thousand cells per well were placed in two stables wells. The samples were treated with either buffer (Basal) or 300 µM carbachol (induced). Since the results with the Ins P₃ green tracer. The concentration of Ins P₃ detected in the assay was determined from extrapolation from a standard curve run in parallel to the experimental conditions.

The low efficacy of some agonists at inducing Ins P_3 is due to the low receptor reserve association with the response. Indeed, the response is much less well coupled to receptor activation than each is (see below). Consequently, it is anticipated that the maximal level of induction would be sent to the receptor expression levels in the cell line. This is indeed the case with CHO-Maximal shown in Figure 20.15, where receptor expression levels of 0.4 pmol per mg protein and a proquired.

scent:Polarization Ins P, Assay

281

COMPARISON OF AGONIST INDUCTION OF INS P. IN COMPARISON TO INTRACELLULAR CALCIUM

public GPCR stimulation ultimately causes the liberation of calcium from bound intracellular Which measuring a calcium response that is significantly downstream from the receptor, the PER response is highly amplified, resulting in potent agonist responses. As described above, the surescence imaging place reader (FLIPR) is frequently used to measure calcium changes in living he by means of calcium-specific fluorescent dyes (Figure 20.16). Comparison of several muscanicagonists in assays measuring either Ins P, or calcium changes shows clearly marked differences oinpound potencies (Figure 20.17). However, when equiactive agonist concentrations (such as concentration) are used to determine antagonist potency, similar values can be found gure 20.16). Thus, the values for a series of musicarinic potencies (IC50) determined in an Ins assay compare well with values from a FLIPR experiment. A final point is that the rapid kinetics either calcium release or changes in Ins P, does not allow sufficient time for the agonist to reach milimium with a preincubated antagonist, resulting in a state of hemiequilibrium in which the ecopions are effectively bound irreversibly during the assay period. This is most noticeable using compounds of high affinity; therefore, depression in the agonist concentration response curve maxima will be observed in either assay, FLIPR analysis can be prone to compound interferences that modulate calcium levels resulting in false negatives or positives. It is anticipated that interferences of this nature would be much less with an Ins P3 assay. Studies have confirmed that several calcium channel blockers interfere in the FLIPR assay, including verapamil, nifedipine, nimodipine, and intrendipine. However, they did not influence the Ins P, stimulation, and were not therefore filse negatives in this assay.

20.7 CONCLUSIONS

Measuring GPCR activation upon ligand addition via monitoring second messenger response is a commonly used technique in screening. In screening for ligands at G,-coupled receptors, several existings have been developed to detect agonist induced changes in Ins P3, PI, PIP2, PLC, and calcium. These methodologies include both bomogeneous and heterogeneous formats. The HitHunter FP Ins P, assay is a homogeneous assay that is a sensitive, nonisotopic high-throughput assay to measure Ins P3. This assay is highly automatable and can be used with several cell lines expressing differing levels of GPCRs. The flexibility in the assay format provides for optimizing the sensitivity of the analysis for automation and miniaturization. The variety of tracers available for the assay may also reduce library compound interference.

ACKNOWLEDGMENTS

The authors wish to acknowledge their colleagues at DiscoveRx Corp. in the development of FPins P, assay including Berry Bosano, Hynn Dorimas, Pyare Khanna, Vashti Lacaille, Sherrylyn de La Liera, Riaz Rouhani, and Inna Vainshtein.

DIZCONEGX

0591646019 10/08/5007 23:48

FIGURE 20.16 Agonist stimulation measured by HitHunter Ins P, FP and FLIPR analysis. For the FLIPR analysis (dashed line), CHO-M1 cells were plated at a density of 50,000 cells per well, while 20,000 cells per well were used in the Ins P, FP assay (solid line). The agonists carbachol (open or closed square) of acceptance (open or closed circle) were added to the cells for 20 sec, after which they cells were processed according to described protocols to measure changes in either calcium or Ins P, levels. For both analyses, at each treatment while for Ins P, FP analysis, the mean FP values were extrapolated from a standard circle to determine the amount of Ins P, The results for both assays were normalized to the maximal agonist response.

FIGURE 20.17 Effect of calcium channel blockers on the lns P₃ FP assay. Four calcium channel were examined in the HitHunter Ins P₃ FP assay. The number of cells used were 50,000 CHO-M1 cells. As a control, carbachol was added to the cells at a concentration of 1 µM. Samples are assayed and the different treatments are plotted against the percentage of the carbachol-alone treatment.

rescent Polarization ins P, Assay

283

DEFERENCES

- Hopkins AL, Groom CR. The druggable genome. Nat Rev Drug Discov. 2002; 1:727-730.

 Bleicher KH, Bohm HJ, Muller K, Alanine Al. Hit and lead generation: beyond high-throughput screening. Nat Rev Drug Discov. 2003; 2:369-378.
- Strader CD, Fong TM, Tota MR, Underwood D, Dixon RA. Structure and function of G-protein-coupled receptors. Annu Rev Biochem. 1994; 63:101–132.
- Dove A. Drug screening beyond the bottleneck. Nat Biotechnol. 1999; 17:859-863.
- Barridge MJ, Dawson RMC, Downer CP, Heslop JP, Irvine RF. Changes in the levels of inoxitol phosphates after agonist-dependent hydrolysis of membrane phosphoinositide. Biochem J. 1983; 212:473-482.
- 6 Berridge MJ. Inositol trisphosphate and calcium signaling. Nature. 1993; 361:315-325.
 - Michell RH. Inositol lipids in cellular signalling mechanisms. Trends Biochem Sci. 1992; 17:274-276.
 - 2004; 3:125-135.
- 9. Xassack MU, Hofgen B, Lehmann J, Eckstein N, Quillan JM, Sadee W. Functional screening of O-protein-coupled receptors by measuring intracellular calcium with a fluorescence microplate reader.

 J Biomol Screen. 2002; 7:233-246.
- 10. Mullinax TR, Henrich G, Kasila P, Abarn DG, Wenske EA, Hou C, Argentieri D, Bernbenek ME. Monitoring inositol-specific phospholipase C activity using a phospholipid FlashPlate(R). J Biomol Screen. 1999; 4:151-155
- 11. Liu JJ, Hartman DS, Bostwick JR. An immobilized metal ion affinity adsorption and scintillation proximity assay for receptor-stimulated phosphotosositide hydrolysis. Anal Biochem. 2003; 318:91-99.
- Bembenek ME, Jain S, Prack A, Li P, Chee L, Cao W, Spurling H, Roy R, Fish S, Rokas M, Parsons, T, Meyers R. Development of a high-throughput assay for two inositol specific phospholipase Cs using scintillation proximity format Assay Drug Dev. Technol. 2003; 1:435-443.
- 13. Brandish PE, Hill LA, Zheng W, Scolnick EM. Scintillation proximity assay of inositol phosphates in cell extracts: high-throughput measurement of G-protein-coupled receptor activation. Anal Biochem. 2003; 313:311-318.
 - 14. Kuksu, A. Laboratory Techniques in Biochemistry and Molecular Biology, Vol. 30. Elsevier, Amsterdam, 2003.
- 15. Challiss RA, Batty IH, Nahorski SR. Mass measurements of inositol (1,4,5) trisphophate in rat cerebral cortex slices using a radioreceptur essay; affects neurotransmitters and depolarization. Biochem Biophys Res Commun. 1988; 15:684-691.
- Williams D. Price Iones M. Hughes K. An homogeneous assay for the measurement of inositol-1,4.5trisphosphate using scintillation proximity assay technology. Poster # P08012. 9th SBS Annual Conference, Portland, OR, Sept. 21-25, 2003.
- 17. Cheisky D. Bosse R, and Illy C. Alpha Screen HTS 2552y for IP3 (Abstract 10058).
- 18. 7th SBS Annual Conference and Exhibition, Baltimore, MD, Sept. 10-13, 2001.
- Neilsen PO, Assis EF, Branch AM, and Dress BE. High-throughpur nonradioactive inositol phosphare assay for GPCR inhibitor screening. Poster # P08064. 9th SBS Annual Conference, Portland, OR, Sept. 21-25, 2003.
- Packard Biosciences. Analysis of potential compound interference of ALPHA screen Signal (Application note, ASC-012). Packard Bioscience Company, Inc. Meriden, Connecticut, 2001.
- Mishra J, Bhalla U.S. Simulations of inositol phosphate metabolism and its interaction with InsP(3)mediated calcium release. Biophys J. 2002; 83:1298-1316.
- Eglen RM. Functional G-protein-coupled receptor assays for primary and secondary screening. Combia Chem & HTS. 2005; 18:311-318.