# Privacy Models in the Payments Industry\*

Terence Spies
Voltage Security

## Why "Real-World Crypto"?

If we define the "Real World" as enterprises....

|                         | Academic Crypto                              | Enterprise Crypto                                |
|-------------------------|----------------------------------------------|--------------------------------------------------|
| Security<br>Methodology | Define a model, show security in that model. | Does this reduce risk, regulatory or audit cost? |
| Credibility             | Peer-reviewed publication                    | Standards (ie. NIST) acceptance                  |
| Success Criteria        | Novelty, Publication                         | Cost-effective implementation                    |

Real-world security models typically involve cost, legacy, and business process concerns that can be more complex than the underlying crypto model.

#### Why the disparity?

#### Three factors:

- 1. Parsing crypto papers is extremely difficult
- 2. Crypto demos neglect the salient property
- 3. Cryptographers keep changing their minds

A distributed system is a system where I can't get my work done because a computer has failed that I've never even heard of.

#### **Leslie Lamport**

A real-world cryptographic system is a system where I can't secure my data because a computer has succeeded that I've never even heard of.

**Every security customer ever** 

#### A Real-World Example: Payments

What happens when a credit card is swiped at a retail terminal....surely that's encrypted, right?

- How payment systems work
- Cryptographic solutions in payments
- Future problems / models

#### **Definitions**

- PIN Personal Identification Number, used to authenticate ATM and Debit transactions
- PAN Primary Account Number. The number printed on the front of a credit or debit card.
- Track Data Data read from the two magnetic stripes on the back of a credit card.
- POS Point-of-Sale. The terminal reading a payment card.

#### PIN Security



- PIN Entry Devices (PEDs) are provisioned with individual keys.
  - Session or transaction keys are created (X9.24)
- The PIN is encrypted with the session key and PAN as randomizer
  - Multiple standards for DES and 3DES pinblock creation- (ISO 9564)
- Key management standards require PINs do not appear outside HSMs.

### Payment Standards

- Payment standards evolve very slowly
  - 3DES is the default standard
  - Some PIN blocks are still DES encrypted
  - US and ISO AES pinblock standards in progress
- Why?
  - Cost of physical upgrade
  - No single party in charge
    - Millions of retailers
    - Hundreds of intermediaries
  - Extremely complex business processes
    - Recurrence, chargeback, preauth

#### Solving the PAN problem

- Payment systems were built with the assumption that PINs are private.
- But no assumption of PAN privacy
  - Receipt printing uses last 4 PAN digits
  - Card routing uses first 2-6 digits
  - Fuel cards use arbitrary digits
- PANs have value to attackers
  - Web transactions
  - Printing fraudulent cards
- Merchant PAN databases == breach risk
  - Storage at processors, lodging, etc.

### Attempt #1: SET / STT

- The STT and SET protocols attempted to solve PAN privacy via public key encryption & signature.
- SET was cryptographically feature rich
- It was also extremely complex
  - Programmer's Guide: 619 pages
  - Protocol Specification: 250+ pages

#### Why SET Failed the Real-World Test

 SET had lots of interesting features (dual signature, etc.), but.....

|                         | Academic Crypto                              | Enterprise Crypto                                |
|-------------------------|----------------------------------------------|--------------------------------------------------|
| Security<br>Methodology | Define a model, show security in that model. | Does this reduce risk, regulatory or audit cost? |
| Credibility             | Peer-reviewed publication                    | Standards (ie. NIST) acceptance                  |
| Success Criteria        | Novelty, Publication                         | Cost-effective implementation                    |

#### **PCI**

- In 2004, the major card brands join to form the Payment Card Industry Data Security Standard (PCIDSS)
- Imposes a set of requirements, and sets up a Qualified Security Assessor (QSA) audit framework.
  - Requirement 3: Protect stored cardholder data
  - Requirement 4: Encrypt transmission of cardholder data

#### **PAN Encryption**

- Goal: Encrypt at POS
- Does TLS or other protocols solve this problem? No.
  - Existing payment system intermediaries
  - Security for stored PANs

### The Simple Case: Small Merchant



# PIN Privacy Model



PIN is private from entry until it is checked at the issuer.

HSM based reencryption is done at the processor.

## Simple PAN Privacy Model





In this case, link encryption actually would seem to do the job.

# More Complex Case





#### Deployable PAN Encryption

- A realistic solution must:
  - Be secure
  - Not break every existing payment protocol
- Why not create a new protocol?
  - Every processor has it's own message standard
  - ISO 8583 defines a framework, but all processors modify it
- Only baseline is the PAN and track data itself

#### Format Preserving Encryption

- Build a cipher so ciphertext looks like plain
  - Maintain length and alphabet
- Use a tweakable cipher to allow plain digits



### History of FPE

- The first DES FIPS document (FIPS 74, in 1981) contains a section on character set preservation!
- An example of a user asking the crypto community for a primitive.
  - Smith and Brightwell, "Using datatype-preserving encryption to enhance data warehouse security", 1997
     NIST conference
  - Defined the practical need and use, but proposed no secure solution
- Best alternative was storing plaintext in a database, returning a random index in the right format.

#### Format Preserving Encryption



Cryptographic challenge is to build a small domain cipher.
Rogaway and Black in 2002 show the first provably secure techniques, using a PRP model.

Work by Bellare, Ristenpart, Rogaway, Stegers shows improved results for constructing FPE ciphers using Feistel networks.

#### What about the intermediates?



#### **Tokenization**

- Generically, the replacement of a PAN with a random substitute.
- Tokenization creates a 1:1 replacement, enabling protection of permanently stored PAN data.
- Enables limited computation (identity)



# **Tokenized PAN Privacy**



#### **Future Work**

- Multiple standardization efforts (PCI and X9) are now working on security definitions for tokenization and encryption of card data.
- Database vs encryption vs hashing
  - Are there real differences?
  - How do we explain and build requirements?
- Next generation PIN block and key management standards
  - AES pinblock
  - AES DUKPT