一、填空题 (每空 1 分, 共 15 分)
1、 稳定是对控制系统最基本的要求,若一个控制系统的响应曲线为衰减振荡,则该
系统
<u>据</u>
2、 传递函数是指在零初始条件下、线性定常控制系统的输出拉氏变换
与
3、频域性能指标与时域性能指标有着对应关系,开环频域性能指标中的幅值穿越频
率 ω_c 对应时域性能指标
<u>性</u> 。
4 、两个传递函数分别为 $G_1(s)$ 与 $G_2(s)$ 的环节,以并联方式连接,其等效传递函数为
G(s),则G(s)为G1(s)+G2(s)(用G1(s)与G2(s)表示)。
5、根轨迹起始于开环极点
6、一阶系统传函标准形式是 $G(s) = \frac{1}{Ts+1}$
$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$
7、对自动控制系统的基本要求可以概括为三个方面,即:稳定性、快速性和准
<u>确性</u> 。
8、线性系统的对数幅频特性,纵坐标取值为L(w), 横坐标为
<u>lgw</u> .
二、选择题 (每题 2 分, 共 20 分)
1、 已知系统的开环传递函数为 $\frac{50}{(2s+1)(s+5)}$,则该系统的开环增益为 (C)。
A、50 B、25 C、10 D、5

2、	开	环对数幅频特	生的低频段决定了	"系统的	(A).		
	Α, ;	稳态精度	B、稳定裕度	C.	抗干扰性能	D、快速性	
3、	系统	充特征方程为	$D(s) = s^3 + 2s$	$^{2} + 3s -$	+6=0,则系	统(C)	
	A,	稳定;	B、单位阶跃	响应曲组	线为单调指数上	升;	
	C、	临界稳定;		D,	右半平面闭环极	5点数 Z = 2 。	
4、	系统	这在 $r(t) = t^2$ 作用]下的稳态误差e _{ss}	=∞,说	朗(A)		
	A,	型別v<2;		В、	系统不稳定;		
	C.	输入幅值过	大;	D,	闭环传递函数	中有一个积分环节。	,
5、	关于	FPI控制器作	用,下列观点正	确的有(A)		
	A,	可使系统开	环传函的型别提高	高,消除	或减小稳态误	差;	
	В、	积分部分主	要是用来改善系统	动态性	能的;		
	C′	比例系数无	论正负、大小如何	可变化,	都不会影响系统	充稳定性;	
	D,	只要应用 P	I 控制规律,系统	的稳态	误差就为零。		
6、	开环	· 频域性能指标	中的相角裕度,对	讨应时域	性能指标(A) .	
A,	超调	月 σ % B	、稳态误差 <i>e_{ss}</i>	C、i)	問整时间 t_s	D、峰值时间 <i>t_p</i>	
7、	若某	负反馈控制系	统的开环传递函数	数为 $\frac{5}{s(s+1)}$, 则该系统的 ₁₎	闭环特征方程为(В).
	A,	s(s+1)=0		B, $s(s)$	+1)+5=0		
	C.	s(s+1)+1=0		、与是	否为单位反馈系	· · · · · · · ·	

8、	若某	最小相位	系统的	相角裕度 />	$>0^{\circ}$,	,则下列说法正确的是(C)。
	A,	不稳定;			В.	、只有当幅值裕度 $k_g > 1$ 时才稳定;
	C′	稳定;			D,)、不能判用相角裕度判断系统的稳定性。
9、	若某	串联校正	装置的	传递函数为	$\frac{10s+1}{100s+1}$	+1 ;+1,则该校正装置属于(B)。
,	A、超	前校正	В、	滞后校正		C、滞后-超前校正 D、不能判断
10	、已知	印单位反馈	贵系统的	的开环传递函	逐数为	为 $G(s) = \frac{10(2s+1)}{s^2(s^2+6s+100)}$, 当输入信号是 $r(t) = 2+2t+t$
时	,系统	充的稳态设	吴差是(D)		

A, 0 ; B, ∞ ; C, 10 ; D, 20