### Geometria Analítica e Vetores

# Vetores no plano e no espaço:

Adição de vetores Produto de um número real por um vetor

> Docente: Prof<sup>a</sup>. Dr<sup>a</sup>. Thuy Nguyen IBILCE/ UNESP São Paulo - Brasil

### Estrutura da aula

- Adição de vetores
- Produto de um número real por um vetor
- Propriedades

**Referência**: BOULOS, P. e CAMARGO, I. Geometria Analítica: Um Tratamento Vetorial, 3ª edição, São Paulo: Editora Pearson.

#### Definição



### Definição



#### Definição



#### Definição



#### Observação

Sejam dois vetores  $\vec{u}$  e  $\vec{v}$ . Para determinar a soma de  $\vec{u}$  e  $\vec{v}$ , fazemos como o seguinte:

- ① Tomar um ponto A qualquer, com origem nele, traça o segmento orientado AB que representa o vetor  $\vec{u}$ .
- ② Utilizar a extremidade B para traçar o segmento orientado BC representante do vetor  $\vec{v}$ .



#### Observação

Sejam dois vetores  $\vec{u}$  e  $\vec{v}$ . Para determinar a soma de  $\vec{u}$  e  $\vec{v}$ , fazemos como o seguinte:

- ① Tomar um ponto A qualquer, com origem nele, traça o segmento orientado AB que representa o vetor  $\vec{u}$ .
- ② Utilizar a extremidade B para traçar o segmento orientado BC representante do vetor  $\vec{v}$ .



#### Observação

Sejam dois vetores  $\vec{u}$  e  $\vec{v}$ . Para determinar a soma de  $\vec{u}$  e  $\vec{v}$ , fazemos como o seguinte:

- ① Tomar um ponto A qualquer, com origem nele, traça o segmento orientado AB que representa o vetor  $\vec{u}$ .
- ② Utilizar a extremidade B para traçar o segmento orientado BC representante do vetor  $\vec{v}$ .



#### Observação

Sejam dois vetores  $\vec{u}$  e  $\vec{v}$ . Para determinar a soma de  $\vec{u}$  e  $\vec{v}$ , fazemos como o seguinte:

- ① Tomar um ponto A qualquer, com origem nele, traça o segmento orientado AB que representa o vetor  $\vec{u}$ .
- ② Utilizar a extremidade B para traçar o segmento orientado BC representante do vetor  $\vec{v}$ .



#### Observação

Sejam dois vetores  $\vec{u}$  e  $\vec{v}$ . Para determinar a soma de  $\vec{u}$  e  $\vec{v}$ , fazemos como o seguinte:

- ① Tomar um ponto A qualquer, com origem nele, traça o segmento orientado AB que representa o vetor  $\vec{u}$ .
- ② Utilizar a extremidade B para traçar o segmento orientado BC representante do vetor  $\vec{v}$ .



**Exercício 1:** Sendo  $\overrightarrow{u}$ ,  $\overrightarrow{v}$  e  $\overrightarrow{w}$  representados na figura abaixo, represente a soma dos três vetores  $\overrightarrow{u} + \overrightarrow{v} + \overrightarrow{w}$ .



**Exercício 2:** Sendo  $\overrightarrow{u}$ ,  $\overrightarrow{V}$  e  $\overrightarrow{w}$  representados na figura abaixo, represente as somas  $\overrightarrow{u} + \overrightarrow{V}$ ,  $\overrightarrow{V} + \overrightarrow{w}$ ,  $\overrightarrow{u} + \overrightarrow{w}$  e  $\overrightarrow{u} + \overrightarrow{V} + \overrightarrow{w}$ .



#### Observação: Outra maneira para determinar a soma de dois vetores

Se dois vetores  $\vec{u}$  e  $\vec{v}$  não são paralelos, há outra maneira para encontrar o vetor soma  $\vec{u} + \vec{v}$ :

- 1 Representam-se  $\vec{u} = \overrightarrow{AB}$  e  $\vec{v} = \overrightarrow{AD}$  por segmentos orientados de mesma origem A;
- 2 Completa-se o paralelogramo ABCD.



#### Observação: Outra maneira para determinar a soma de dois vetores

Se dois vetores  $\vec{u}$  e  $\vec{v}$  não são paralelos, há outra maneira para encontrar o vetor soma  $\vec{u} + \vec{v}$ :

- 1 Representam-se  $\vec{u} = \overrightarrow{AB}$  e  $\vec{v} = \overrightarrow{AD}$  por segmentos orientados de mesma origem A;
- 2 Completa-se o paralelogramo ABCD.



#### Observação: Outra maneira para determinar a soma de dois vetores

Se dois vetores  $\vec{u}$  e  $\vec{v}$  não são paralelos, há outra maneira para encontrar o vetor soma  $\vec{u} + \vec{v}$ :

- 1 Representam-se  $\vec{u} = \overrightarrow{AB}$  e  $\vec{v} = \overrightarrow{AD}$  por segmentos orientados de mesma origem A;
- 2 Completa-se o paralelogramo ABCD.



#### Observação: Outra maneira para determinar a soma de dois vetores

Se dois vetores  $\vec{u}$  e  $\vec{v}$  não são paralelos, há outra maneira para encontrar o vetor soma  $\vec{u} + \vec{v}$ :

- 1 Representam-se  $\vec{u} = \overrightarrow{AB}$  e  $\vec{v} = \overrightarrow{AD}$  por segmentos orientados de mesma origem A;
- 2 Completa-se o paralelogramo ABCD.



#### Observação: Outra maneira para determinar a soma de dois vetores

Se dois vetores  $\vec{u}$  e  $\vec{v}$  não são paralelos, há outra maneira para encontrar o vetor soma  $\vec{u} + \vec{v}$ :

- 1 Representam-se  $\vec{u} = \overrightarrow{AB}$  e  $\vec{v} = \overrightarrow{AD}$  por segmentos orientados de mesma origem A;
- 2 Completa-se o paralelogramo ABCD.



#### Observação: Outra maneira para determinar a soma de dois vetores

Se dois vetores  $\vec{u}$  e  $\vec{v}$  não são paralelos, há outra maneira para encontrar o vetor soma  $\vec{u} + \vec{v}$ :

- 1 Representam-se  $\vec{u} = \overrightarrow{AB}$  e  $\vec{v} = \overrightarrow{AD}$  por segmentos orientados de mesma origem A;
- 2 Completa-se o paralelogramo ABCD.



#### Observação: Outra maneira para determinar a soma de dois vetores

Se dois vetores  $\vec{u}$  e  $\vec{v}$  não são paralelos, há outra maneira para encontrar o vetor soma  $\vec{u} + \vec{v}$ :

- 1 Representam-se  $\vec{u} = \overrightarrow{AB}$  e  $\vec{v} = \overrightarrow{AD}$  por segmentos orientados de mesma origem A;
- ② Completa-se o paralelogramo ABCD.



**Exercício 3:** Use a observação anterior para determinar a soma de três vetores  $\overrightarrow{u}$ ,  $\overrightarrow{v}$  e  $\overrightarrow{w}$  na figura abaixo:



#### Observação

• Dados três pontos  $A, B \in C$  (no plano ou no espaço), temos sempre que:

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$
.



2 Se ABCD é um o paralelogramo, temos

$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{AD}$$
.



### Diferença de dois vetores

A diferença de dois vetores  $\vec{u}$  e  $\vec{v}$  é definida como a soma do vetor  $\vec{u}$  e o oposto do vetor  $\vec{v}$ :

$$\vec{u} - \vec{v} = \vec{u} + (-\vec{v}).$$

### Produto de um número real por um vetor

#### Produto de um número real por um vetor

Dado um vetor  $\vec{v}$  e um número real k. O produto do número k pelo vetor  $\vec{v}$  é denotado por  $k\vec{v}$  e é definido como um vetor que tem:

- **1** módulo:  $||k\vec{v}|| = |k|||\vec{v}||$ ;
- ② sentido: o vetor  $k\vec{v}$  tem o mesmo sentido do vetor  $\vec{v}$  se k>0 e o sentido contrário se k<0 (portanto,  $k\vec{v}$  e  $\vec{v}$  sempre têm a mesma direção: as retas de suporte são paralelas).

### **Exemplo:**



### Produto de um número real por um vetor

#### Produto de um número real por um vetor

Dado um vetor  $\vec{v}$  e um número real k. O produto do número k pelo vetor  $\vec{v}$  é denotado por  $k\vec{v}$  e é definido como um vetor que tem:

- **1** módulo:  $||k\vec{v}|| = |k|||\vec{v}||$ ;
- ② sentido: o vetor  $k\vec{v}$  tem o mesmo sentido do vetor  $\vec{v}$  se k>0 e o sentido contrário se k<0 (portanto,  $k\vec{v}$  e  $\vec{v}$  sempre têm a mesma direção: as retas de suporte são paralelas).

### **Exemplo:**



### Produto de um número real por um vetor

#### Produto de um número real por um vetor

Dado um vetor  $\vec{v}$  e um número real k. O produto do número k pelo vetor  $\vec{v}$  é denotado por  $k\vec{v}$  e é definido como um vetor que tem:

- **1** módulo:  $||k\vec{v}|| = |k|||\vec{v}||$ ;
- ② sentido: o vetor  $k\vec{v}$  tem o mesmo sentido do vetor  $\vec{v}$  se k>0 e o sentido contrário se k<0 (portanto,  $k\vec{v}$  e  $\vec{v}$  sempre têm a mesma direção: as retas de suporte são paralelas).

### **Exemplo:**



**Exercício 4:** Sendo  $\overrightarrow{u}$ ,  $\overrightarrow{v}$  e  $\overrightarrow{w}$  representados na figura abaixo, represente  $\overrightarrow{x}=2\overrightarrow{u}-\overrightarrow{v}+\frac{5}{4}\overrightarrow{w}$  por uma flecha de origem O.



# Propriedades

#### Propriedades sobre adição de vetores

- **① Comutativa::**  $\vec{u} + \vec{v} = \vec{v} + \vec{u}$ ,  $\forall \vec{u}, \vec{v}$ .
- **2** Associativa::  $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w}), \quad \forall \vec{u}, \vec{v}, \vec{w}.$
- **3** Soma com o vetor nulo:  $\vec{u} + \vec{0} = \vec{0} + \vec{u} = \vec{u}$ ,  $\forall \vec{u}$
- **3** Soma com o vetor oposto:  $\vec{u} + (-\vec{u}) = (-\vec{u}) + \vec{u} = \vec{0}$ ,  $\forall \vec{u}$

# Propriedades

### Propriedades sobre Produto de um número por um vetor

$$(a+b)\vec{u} = a\vec{u} + b\vec{u}, \qquad \forall \vec{u}, \ \forall a,b \in \mathbb{R}.$$

# Bom estudo!!