មាននិងខ្លា

ជាទូទៅអ្នកសិក្សាជាពិសេសសិស្សានុសិស្សគ្រប់មជ្ឈដ្ឋាន ភាគច្រើនមានផ្គត់គំនិតគិតថាមុខវិជ្ជា **គរសិតទិន្យា** ជាមុខវិជ្ជាមួយដែលមានភាពស្មុគស្មាញ និងពិបាកក្នុងការចាប់យកចំណេះដឹង។ ជាក់ស្តែងមុខវិជ្ជានេះ ជាមុខវិជ្ជាវិទ្យាសាស្ត្រមួយដែលមានឥទ្ធិពលជាងគេ ដូចនេះវាពិតណាស់ថា ពិបាកក្នុងការរៀន តែផ្ទុយទៅវិញបើសិនជាអ្នកសិក្សាបានចំណាយពេលនៅជាមួយគណិតវិទ្យាឱ្យ បានគ្រប់គ្រាន់ក្នុងការគិតលើខ្លឹមសារ និងអនុវត្តលើលំហាត់បានគ្រប់គ្រាន់ វានឹងមានភាពងាយស្រួល សម្រាប់អ្នកទៅលើអ្វីដែលអ្នកបានសិក្សា។ ដើម្បីជាជំនួយក្នុងការស្វ័យសិក្សា អ្នកសិក្សាគប្បីមាន ឯកសារគ្រប់គ្រាន់ ប៉ុន្តែខ្ញុំយល់ឃើញថាឯកសារគណិតវិទ្យាជាភាសាជាតិមានចំនួនតិចតួចដែលជា ការពិបាកសម្រាប់អ្នកសិក្សា ជាហេតុដែលធ្វើឱ្យសៀវភៅមួយក្បាលនេះមានវត្តមានឡើង។

សៀវភៅ **ស្ទឹន** សម្រាប់ថ្នាក់ទី ១១ នេះ គឺត្រូវបានរៀបចំឡើងដោយផ្សាភ្ជាប់ជាមួយមេរៀនក្នុង ជំពូកទីមួយនៃសៀវភៅគណិតវិទ្យាសិក្សាគោល ស្របតាមកម្មវិធីក្រសួងអប់រំ ដោយមានភាពក្បោះក្បាយ ក្នុងការពន្យល់, ឧទាហរណ៍គ្រប់ចំណុច, ដំណោះស្រាយគ្រប់លំហាត់ប្រតិបត្តិ គ្រប់លំហាត់បញ្ចប់ មេរៀនជាដើម។ លើសពីនេះទៅទៀត សៀវភៅនេះមានបញ្ចូលនូវចំណុចសំខាន់ៗដែលទាក់ទងនឹង មេរៀនមកបន្ថែម និង លំហាត់សម្រាប់វាស់ស្ទង់សមត្ថភាពអ្នកសិក្សាផងដែរ ជាហេតុនាំឱ្យសិស្សានុសិស្ស ងាយទទួលបានចំណេះដឹងពីសៀវភៅមួយក្បាលនេះ។

ក្នុងនាមជាអ្នករៀបរៀង និងនិពន្ធ ខ្ញុំបាទនឹងរង់ចាំនូវការរិះគន់គ្រប់មជ្ឈដ្ឋានអ្នកសិក្សាជានិច្ច ដើម្បីកែលម្អឱ្យកាន់តែល្អប្រសើរបន្ថែមទៀត។ ខ្ញុំជឿជាក់ថាសៀវភៅនេះនៅតែមានកំហុសកើតមានឡើង ត្រង់ចំណុចណាមួយ ហេតុនេះហើយខ្ញុំសូមអភ័យទោសទុកជាមុនរាល់កំហុស ទាំងអស់ដែលកើតឡើង។ ប្រសិនបើមិត្តអ្នកអាន រកឃើញនូវកំហុសក្នុងសៀវភៅនេះ សូមទំនាក់ទំនងមកកាន់ខ្ញុំបាទតាមរយៈ

Facebook Account: Phan Kimsia

Gmail: phankimsie03@gmail.com

ញ៉ូជេលី ផណ្ឌា, ថ្ងៃនី ១៤ ខែ គុម្ភៈ ឆ្នាំ ២០២៣

Sien.

හාහ සිහනේ

សំឈូមព៖មេស់អូតរៀមរៀខនៅភាន់មឡដ្ឋានអូតសិត្យា

ការស្រាវជ្រាវឯកសារបន្ថែម ពិតជាមានសារៈសំខាន់ណាស់សម្រាប់ការអភិវឌ្ឍសមត្ថភាពខ្លួន
ក្នុង ផ្នែកណាៗទាំងអស់។ ហេតុនេះហើយខ្ញុំបាទសូមលើកទឹកចិត្តដល់ប្អូនសិស្សានុសិស្ស និស្សិត
និងលោកគ្រូអ្នកគ្រូទាំងអស់ខិតខំប្រឹងប្រែងស្រាវជ្រាវបន្ថែម ព្រមទាំងបង្កើតឯកសារល្អៗសម្រាប់ប្រទេសជាតិ
យើង។ ដូចទស្សនៈមួយបានសម្ដែងថា ទុកទៅកំពង់នៅ ដែលមានន័យថា មនុស្សស្លាប់តែស្នាដៃ
ដែលមនុស្សខំសាងគឺមានជីវិតជារៀងរហូត។

ការប្រឹងប្រែងចងក្រងឯកសារជាភាសាជាតិ ជាបុព្វហេតុមួយយ៉ាងសំខាន់ដែលធ្វើឱ្យមនុស្សជំនាន់ ក្រោយមានភាពសម្បូរបែបក្នុងការសិក្សា ហើយពួកគេនឹងអាចស្រាវជ្រាវចំណេះដឹងទៅមុខទៀតបាន ធ្ងាយ។ សំណៅឯកសារដែលពួកគេបានបន្សល់ទុកទៀតសោតនឹង បន្តជះឥទ្ធិពលបែបនេះជាបន្តបន្ទាប់ រហូតទៅដល់ចំណុចអភិវឌ្ឍអស្សារួមួយ។

ននួលសិន្ទិលអំផ្លាច់មុខដោយ Math Team Kh

Facebook Page: Math Team Kh

សៀចតៅនេះមាននៅ Math Team Kh តែមួយគត់ ។ រាល់អារលួចចម្អូខ នឹទត្រូចឧនួលខុសត្រូចចំពោះមុខច្បាច់ ។

ឌលៈគន្ធអា គ្រូឌពិនិត្យ

Designed Cover by: ទុំន នាស៊ី

រៀបរៀបដោយ៖ ជាន់ គីមសៀ

The only way to learn mathematics is to do mathematics! ~Paul Halmos

ิย	ស្ទុងចតួសពង ៣
9.9	សេចក្តីផ្តើម
o.U	សញ្ញាធានៃស្វ៊ីត
o.m	ត្តទី n នៃស្វ៊ីត
១.໔	អថិរតាពនៃស្វ៊ីត ១២
១.໔.១	ស្វ៊ីតកើន ស្វ៊ីតចុះ ១២
อ.ฝ.บ	ស្វ៊ីតម្ល៉ូណូតូន ១៧
១.៥	ស្វ៊ីតទាល់
១.៥.១	ស្វ៊ីតទាល់លើ ១៩
១.៥.២	ស្វ៊ីតនាល់ក្រោម ២៣
១.៥.៣	ស្វ៊ីតនាល់
១.៦	លំហាត់ និងដំណោះស្រាយ ២៩
ឲ	ស្វ៊ីតខេត្តខ្លួ
២.១	សេចក្តីផ្តើមនៃស្វ៊ីតនព្វន្ត
២.២	និយមន័យនៃស្វ៊ីតនព្វន្ត
២.៣	ត្តទី n នៃស្ស៊ីតនព្វន្ត
២.៤	ជ់លប្ចកនៃស្វ៊ីតនព្វន្ត
២.៥	មធ្យមនព្វន្តនៃស្វ៊ីតនព្វន្ត
២.៦	លំហាត់ និងដំណើាះស្រាយ
ពា	ស្ទឹងនរសិសត្រ
៣.១	សេចក្តីផ្តើមនៃស្វ៊ីតធរណីមាត្រ
៣.២	និយមន័យនៃស្វ៊ីកធរណីមាត្រ
៣.៣	ត្តទី n នៃស្វ៊ីតធរណីមាត្រ
៣.៤	, ផលតលាតស៊ើចមាឃេីតចង , ៨៩

៣.៥	មធ្យមធរណីមាត្រនៃស្វ៊ីតធរណីមាត្រ
៣.៦	ទំនាក់ទំនងរវាងមធ្យមនព្វន្ត និងមធ្យមធរណ៍មាត្រ
៣.៧	ផ់លប្លុកតួនៃស្វ៊ីតធរណីមាត្រ
៣.៨	ស្វ៊ីតធរណីមាត្រអនត្តតួ១០២
៣. ธ์	ល់ំហាត់នឹងដំណោះស្រាយ១០៩
៣.១០	លំហាត់ជំពូក និងដំណោះស្រាយ
៣.១១	ចំណេះដឹងបន្ថែម
៣.១១.១	លក្ខណៈនៃស្វ៊ីតនព្វន្តមួយចំនួន
៣.១១.២	ស្វ៊ីត Harmonic
៣.១១.៣	ស្វ៊ីត Fibonacci
હ	សំមាន់អនុទត្តន៍១៥៣
៤.១	លំហាត់
វ.២	ចម្លើយ

និទិត្តសញ្ញាគណិតទិន្យា

វង់ក្រចក () ឃ្នាប ឬដង្កៀប []របាំង ឬសំណុំ {} តម្លៃដាច់ខាត ឬប្រវែង ឈ្នាប់និង Λ ឈ្នាប់បុ ឈ្នាប់មិន - or ឈ្នាប់នាំឱ្យ ឈ្នាប់សមមូល តម្លៃភាពពិតនៃសំណើAត.(A)[a,b]ចន្លោះបិទ (a,b)ចន្លោះបើក ចន្លោះកន្លះបើកខាងធ្វេង (a,b]ចន្លោះកន្លះបើកខាងស្ដាំ [a,b)ចំពោះគ្រប់ \forall \exists មាន # មិនមាន ពីព្រោះ ដូចនេះ ដែល : or | ប្រហែល \approx សមមូល \equiv

\in	:	របស់
∉	:	មិនរបស់
N	:	សំណុំចំនួនគត់ធម្មជាតិ
W	:	សំណុំចំនួនគត់
\mathbb{Z}	:	សំណុំចំនួនគត់រ៉ឺឡាទីប
\mathbb{Z}^+	:	សំណុំចំនួនគត់រ៉ឺឡាទីបវិជ្ជមាន
\mathbb{Q}	:	សំណុំចំនួនសនិទាន
$\mathbb{R}\setminus\mathbb{Q}$:	សំណុំចំនួនអសនិទាន
\mathbb{R}	:	សំណុំចំនួនពិត
\mathbb{C}	:	សំណុំចំនួនកុំផ្លិច
$A = \{a, b\}$:	សំណុំ A ដែលមានធាតុ a,b
\overline{A} or A^C	:	សំណុំរងបំពេញនៃសំណុំ A
P(A)	:	សំណុំស្វ័យគុណនៃសំណុំ A
Ø	:	សំណុំទទេ
n(A)	:	ចំនួនធាតុនៃសំណុំ A
\subset	:	នៅក្នុង
\subseteq	:	នៅក្នុងឬស្មើ
$\not\subset$:	មិននៅក្នុង
⊈	:	មិននៅក្នុងឬមិនស្មើ
U	:	ប្រជុំ
\cap	:	ប្រសព្វ

 $A \setminus B$: ផលសងនៃសំណុំ A និង B

Education is the most powerful

weapon we can
use to change the world.

~ NELSON MANDELA

១.១ សេចក្តីឆ្នើម

នៅពេលយើងអាចយល់ច្បាស់ពីសំណុំ នោះយើងក៏អាចឈានដល់ការស្វែងយល់ពីសេចក្ដីផ្ដើមរបស់ ស្ទឹតផងដែរ។ ក្រឡេកទៅថ្នាក់ទី ១០ យើងបានដឹងថាហើយថា សំឩុំ ជាបណ្ដុំនៃជាតុ ដែលមិនមាន ភាពស្ងួនគ្នានៃជាតុទេ ប៉ុន្តែបើយើងស្វែងយល់ពីពាក្យ " ស្ទឹត " គឺជាបណ្ដុំនៃជាតុដែលត្រូវបានរៀប ជាលំដាប់យ៉ាងជាក់លាក់ ហើយមានជាតុផ្ទួនៗគ្នាផងដែរ។ ជាការពិតជាក់ស្ដែង នៅពេលយើងបង់ រំលោះម៉ូតូ យើងអាចបង់ជាលំដាប់ ឬការកើនឡើងចំនួនប្រជាជនជាលំដាប់ជារៀងរាល់ឆ្នាំ ពោលវា មានទម្រង់ជាស្ទីត។ ដូច្នេះហើយទើបស្ទីតជាផ្នែកមួយយ៉ាងសំខាន់សម្រាប់អ្នកសិក្សាដើម្បីបម្រើដល់ ជីវិតជាក់ស្ដែង។

១.២ សញ្ញាណនៃស្វ៊ីត

ដូចដែរយើងបានដឹងហើយថា៖

- ចំនួនគត់ធម្មជាតិ៖ 1, 2, 3, ...
- ចំនួនគត់សេសតូចជាងឬស្មើ 11 ៖ 1, 3, 5, 7, 9, 11 ។

ក្នុងទម្រង់នៃឧទាហរណ៍ខាងលើនេះ សុទ្ធតែជាទម្រង់នៃការតម្រៀបតាមលំដាប់យ៉ាងជាក់លាក់មួយ ដែលគេហៅថា " ស្ទ៊ីតនៃចំនួនពិត " ។ ចំនួននីមួយៗនៃស្វ៊ីតហៅថា " តួនៃស្ទ៊ីត "។ ជាទូទៅគេតាង $a_1,a_2,a_3,...a_n$ ជាតួនៃស្ទ៊ីតដែល a_1 ជាតួទីមួយ, a_2 ជាតួទីពីរ,..., a_n ជាតួទី n ។ ម្យ៉ាងវិញ គេតាងស្ទីតដោយនិមិត្តសញ្ញា (a_n) ឬ $(a_n)_{n\in\mathbb{N}}$ ដែល $n\in\mathbb{N}$, $\mathbb{N}=\{1,2,3,4,5,...\}$ ។

ក្នុងករណីដែលគេឱ្យចំនួនគត់ $n=0,1,2,3,4\dots$ មានន័យថារាប់ចាប់ពីសូន្យ នោះតួនី មួយៗនៃស្វីត (a_n) គឺផ្ដើមចេញពី $a_0,a_1,a_2,a_3,a_4,\dots$ ។

តាមរយៈឧទាហរណ៍ខាងលើ

ដូចនេះ ស្ទីត 1,2,3,... ហៅថា " ស្ទីតមេខន្តតូ " ព្រោះគេមិនអាចរាប់ចំនួនតួទាំងអស់នៃស្ទីត បានទេ។

ដូចនេះ ស្ទីត 1,3,5,7,9,11 ហៅថា " $\mathcal{S}_{\overline{p}}$ នេះនេះ $\mathcal{S}_{\overline{q}}$ ព្រោះគេអាចកំណត់តួទីមួយ និងតួចុងក្រោយ។

សំគាល់ ១.២.១ ៖

- " ស្វ៊ីតអេនន្តតូ " គឺជាស្វ៊ីតដែលគេមិនអាចរាប់ចំនួនតួបាន។
- "ស្វីតរាច់ផស់ " គឺជាស្វីតដែលគេអាចរាប់ចំនួនតួបាន។

ជាភាះសែន៖ តាមសៀវភៅថ្នាក់ទី ១០ ភាគ ១ ក្នុងមេរៀន អនុគមន៍ និចត្រូវថនៃអនុគមន៍ បានឱ្យ និយមន័យអនុគមន៍ដូចខាងក្រោម៖

និយមន័យ ១.២.១ ៖ ចំពោះ A និង B ជាសំណុំមិនទទេ។ បើទំនាក់ទំនង f ពីសំណុំ A និង សំណុំ B ភ្ជាប់ជាតុនីមួយៗនៃសំណុំ A ទៅនឹងជាតុតែមួយគត់នៃចំណុច B នោះទំនាក់ទំនង f ហៅថា អន្ទងន៍ ពីសំណុំ A ទៅសំណុំ B ។ គេកំណត់សរសេរ

$$f:A\to B$$

$$x \mapsto y = f(x)$$

A ហៅថា សំណុំជីម ហើយ x ជាធាតុដើម $(x\in A)$ ដែល x ហៅថា អស់មើនអាត្រម័យ។ B ហៅថា សំណុំខុខ ហើយ y ជារូបភាពនៃ x តាម f និង y=f(x) ហៅថា អស់អាត្រម័យ។

បូរពិនិត្យអនុគមន៍ $f:\mathbb{N} o \mathbb{R}$ ដែល f(x)=2x-3 ។ គេបាន៖

- $\mathring{\text{vim}}$: x = 1 is: $f(1) = 2 \times 1 3 = -1$
- ប៉ំពោះ x = 2 នោះ $f(2) = 2 \times 2 3 = 1$
- $\mathring{\text{vim}}$: x = 3 is: $f(3) = 2 \times 3 3 = 3$
- ចំពោះ x = 4 នោះ $f(4) = 2 \times 4 3 = 5$ និងជាបន្តបន្ទាប់ ។

គេបានរូបភាពនៃអនុគមន៍គឺ -1,1,3,5,... ដែលត្រូវនឹងធាតុដើម 1,2,3,4,... រៀងគ្នា។ ការ រៀបតាមលំដាប់នៃរូបភាពរបស់អនុគមន៍ $-1,1,3,5,\dots$ នេះ បង្កើតបានជា " ស្វីគចំន្ ${\mathfrak s}$ តិគ " ។ ក្នុងនោះ -1 ជាតូទី 1, 1 ជាតូទី 2, 3 ជាតូទី 3 និងជាបន្តបន្ទាប់ ។

និយមន័យ ១.២.២៖ " ស្ទឹងចំនួនពិង " គឺជាអនុគមន៍លេខដែលកំណត់ពីសំណុំចំនួនគត់ ${\mathbb N}$ ទៅសំណុំចំនួនពិត $\mathbb R$ ។

ក្នុងការសិក្សាស្វីត គេប្តូរនិមិត្តសញ្ញាអនុគមន៍ពី f ទៅជា (a_n) ដែលគេកំណត់សរសេរ

$$(a_n): \mathbb{N} \to \mathbb{R}$$

និងគ្រប់តួនៃស្វីត $a_1,a_2,a_3,...,a_n$ គឺជារូបភាពនៃ 1,2,3,...,n រៀងគ្នា ។

ខ្មនាមរណ៍ 1

ចូរបំពេញតួនៃស្វីតខាងក្រោមនេះ ឱ្យបានបីតួបន្ទាប់ទៀត៖

- ñ. 1, 4, 7, 10, ...
- e. 1, 4, 9, 16, ...f. $1, \frac{2}{3}, \frac{4}{9}, \frac{8}{27}, ...$

🥕 ಜೀಣು: ಕ್ರಿಕಾರ್ಟಿ

បំពេញតួនៃស្ទីតខាងក្រោមនេះ ឱ្យបានបីតួបន្ទាប់ទៀត៖

តាង
$$(a_n)$$
 ជាស្ទីតនៃ $1, 4, 7, 10, ...$

គេបាន
$$a_1=1,\,a_2=4,\,a_3=7$$
 និង $a_4=10$ ។ បន្តរក $a_5,\,a_6$ និង a_7

ពិនិត្យ
$$a_1 = 1 = 3 \times 1 - 2$$
 $a_2 = 4 = 3 \times 2 - 2$

$$a_3 = 7 = 3 \times 3 - 2$$

$$a_4 = 10 = 3 \times 4 - 2$$

ដើម្បីកេតូបន្តបន្ទាប់នៃស្វ៊ីត ឃើងត្រូវកេលិនាំ តំរូនៃតូដែលគេឱ្យជាមុនយ៉ាងតិចបីតួដំបូងៗ ដូចខាងឆ្វេងនេះ អាចសសេសបំនាំតំរូមួយ ដែល 3 តុណានឹងលេខលំដាប់នៃតួ រួចដកនឹង 2 ដែលនាំឱ្យបីតួបន្ទាប់ គឺប្រើលំនាំតំរូនោះៗ

សង្កេតឃើញថា សម្រាប់បួនតួដំបូងគឺជាលំនាំគំរូ

សម្រាប់ស្វែងរកបីតួបន្ទាប់

នោះចំពោះ
$$a_5 = 3 \times 5 - 2 = 13$$

$$a_6 = 3 \times 6 - 2 = 16$$

$$a_7 = 3 \times 7 - 2 = 19$$

ដូចនេះ ស្តីតមានលំដាប់តួគឺ 1, 4, 7, 10, 13, 16, 19, ... ។

2. 1, 4, 9, 16, ...

តាង (a_n) ជាស្វីតនៃ 1, 4, 9, 16, ...

គេបាន $a_1 = 1$, $a_2 = 4$, $a_3 = 9$, $a_4 = 16$ ។ បន្តវក a_5 , a_6 , a_7

ື້ຄຣືຖິ $a_1 = 1 = 1^2$, $a_2 = 4 = 2^2$

$$a_3 = 9 = 3^2$$
, $a_4 = 16 = 4^2$

សង្កេតឃើញថា សម្រាប់បួនតួដំបូងបង្កើតបាន ្នាំ

លំនាំគំរួមួយគឺ ការេនៃលេខលំដាប់តូ

នោះចំពោះ
$$a_5 = \frac{5}{2}^2 = 25$$

$$a_6 = 6^2 = 36$$

$$a_7 = 7^2 = 49$$

ដូចនេះ ស្ទីតមានលំដាប់តួគឺ 1, 4, 9, 16, 25, 36, 49... ។

 $\mathfrak{h}. \ 1, \frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \dots$

តាង (a_n) ជាស្ទីតនៃ $1, \frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \dots$

ថ្វីតចំនួនពិត 🛌 💮

គេបាន
$$a_1=1, a_2=rac{2}{3}, a_3=rac{4}{9}, a_4=rac{8}{27}$$
 ។ បន្តរក a_5, a_6, a_7

ពិនិត្យ
$$a_1 = 1 = \left(\frac{2}{3}\right)^0 = \left(\frac{2}{3}\right)^{\frac{1}{2}-1}$$

$$a_2 = \frac{2}{3} = \left(\frac{2}{3}\right)^1 = \left(\frac{2}{3}\right)^{2} - 1$$

$$a_3 = \frac{4}{9} = \left(\frac{2}{3}\right)^2 = \left(\frac{2}{3}\right)^{3} - 1$$

$$a_4 = \frac{8}{27} = \left(\frac{2}{3}\right)^3 = \left(\frac{2}{3}\right)^{4}$$

សង្កេតឃើញថា សម្រាប់បួនតួដំបូងបង្កើតបានលំនាំគំរូមួយគឺ $\left(rac{2}{3}
ight)^{i\Omega 2\Omega$ ជាប់គួ-1

$$\text{isi: } a_5 = \left(\frac{2}{3}\right)^{\frac{5}{3}-1} = \left(\frac{2}{3}\right)^4 = \frac{16}{81}$$

$$a_6 = \left(\frac{2}{3}\right)^{\frac{6}{3}-1} = \left(\frac{2}{3}\right)^5 = \frac{32}{243}$$

$$a_7 = \left(\frac{2}{3}\right)^{17-1} = \left(\frac{2}{3}\right)^6 = \frac{64}{729}$$

ដូចនេះ ស្ទីតមានលំដាប់តួគឺ
$$1, \frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \frac{32}{243}, \frac{64}{729}, \dots$$
 ។

ខ្ទនាមរណ៍ 2

សរសេរគ្រប់តួនៃស្ទីតរាប់អស់
$$a_n=rac{(-1)^{n-1}}{n+1}$$
 ចំពោះ $1\leq n\leq 5$ ។

🏸 ಭೀಮಾ:ಟಾಲಕಿ

សរសេរគ្រប់ត្ចនៃស្ទីតរាប់អស់
$$a_n=rac{(-1)^{n-1}}{n+1}$$

ចំពោះ
$$1 \leq n \leq 5$$
 មានន័យថា $n=1,2,3,4,5$ នោះគេបាន

- $\ddot{\text{o}}$ im: n = 1 is: $a_1 = \frac{(-1)^{1-1}}{1+1} = \frac{1}{2}$

• ចំពោះ n=3 នោះ $a_3=\frac{(-1)^{3-1}}{3+1}=\frac{1}{4}$ • ចំពោះ n=4 នោះ $a_4=\frac{(-1)^{4-1}}{4+1}=-\frac{1}{5}$ • ចំពោះ n=5 នោះ $a_5=\frac{(-1)^{5-1}}{5+1}=\frac{1}{6}$ ដូចនេះ ស្តីតរាប់អស់គឺ $\frac{1}{2},-\frac{1}{3},\frac{1}{4},-\frac{1}{5},\frac{1}{6}$ ។

ក្រាបនៃស្វ៊ីត $a_n = \frac{(-1)^{n-1}}{n+1}$

ទ្រងមគ្គី ១

- ១. គេឱ្យស្វីត 3, 8, 15, ... ។ បន្តសរសេរស្វីតនេះឱ្យបានបីតួទៀត ។
- ២. សរសេរត្តនៃស្តីត (a_n) កំណត់ដោយ $a_n=rac{1}{n+2}$ ដែល $1\leq n\leq 4$ ។
- ព. សរសេរតួនៃស្វ៊ីតតាមលំដាប់តគ្នា $a_n=2+rac{1}{2^n}$ ដែល $n\in\mathbb{N}$ ។

១. សរសេរស្វីតនេះឱ្យបានបីតូទៀត គេមានស្វីត $3, 8, 15, \dots$ ដែលមាន $a_1 = 3, a_2 = 8$ និង $a_3 = 15$ នោះ

$$a_1 = 3 = 1^2 + 2 \times 1$$

$$a_2 = 8 = 2^2 + 2 \times 2$$

$$a_3 = 15 = 3^2 + 2 \times 3$$

គេបានបីត្លបន្ទាប់៖

$$a_4 = \boxed{4}^2 + 2 \times \boxed{4} = 24$$

$$a_5 = 5^2 + 2 \times 5 = 35$$

$$a_6 = {6 \choose 2} + 2 \times {6 \choose 4} = 48$$

ដូចនេះ ស្វ៊ីតមានលំដាប់តួគឺ 3, 8, 15, 24, 35, 48, ... ។

ស្ទឹតចំនួនពិត

២. សរសេរត្តនៃស្វ៊ីត (a_n) កំណត់ដោយ $a_n=rac{1}{n+2}$ ដែល $1\leq n\leq 4$ គេបានតួនៃស្វីតនីមួយៗចំពោះតម្លៃ $1 \leq n \leq 4$ គឺ៖

• ចំពោះ
$$n=1$$
 នោះ $a_1=\frac{1}{1+2}=\frac{1}{3}$
• ចំពោះ $n=2$ នោះ $a_2=\frac{1}{2+2}=\frac{1}{4}$

•
$$\ddot{\text{o}}$$
 im: $n = 3$ is: $a_3 = \frac{2+2}{3+2} = \frac{4}{5}$

• ប៉ំពោះ
$$n=4$$
 នោះ $a_4=\frac{1}{4+2}=\frac{1}{6}$

ដូចនេះ ស្ទីតមានលំដាប់តួគឺ
$$\frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}$$
 ។

៣. សរសេរត្ចនៃស្ទីតតាមលំដាប់តគ្នា $a_n=2+rac{1}{2^n}$ ដែល $n\in\mathbb{N}$ គេបានតួនៃស្វីតនីមួយៗ ចំពោះតម្លៃ $n\in\mathbb{N}$ គឺ៖

•
$$\ddot{\text{vim}} : n = 1 \text{ isn: } a_1 = 2 + \frac{1}{2^1} = \frac{5}{2}$$
• $\ddot{\text{vim}} : n = 2 \text{ isn: } a_2 = 2 + \frac{1}{2^2} = \frac{9}{4}$
• $\ddot{\text{vim}} : n = 3 \text{ isn: } a_3 = 2 + \frac{1}{2^3} = \frac{17}{8}$

• ប៉ំពោះ
$$n=2$$
 នោះ $a_2=2+rac{1}{2^2}=rac{9}{4}$

$$a_3 = 2 + \frac{1}{2^3} = \frac{17}{8}$$

• ចំពោះ
$$n = 4$$
 នោះ $a_4 = 2 + \frac{1}{2^3} = \frac{33}{16}$

ដោយសារតែ $n\in\mathbb{N}$ នោះស្វីត (a_n) ជាស្វីតអនន្តតួ ព្រោះសំណុំចំនួនគត់ $\mathbb N$ ជា សំណុំរាប់មិនអស់។

ដូចនេះ ស៊ីត
$$(a_n) = \frac{5}{2}, \frac{9}{4}, \frac{17}{8}, \frac{33}{16}, \dots$$
 ។

១.៣ តុនី n នៃស្ទីត

តាមរយៈឧទាហរណ៍ទី 1 ខាងលើ គេអាចរកបានតួបន្តបន្ទាប់ ក្រោយពេលដែលយើងបានកំណត់ លំនាំគំរូនៃតួយ៉ាងតិចបីដំបូង។ ដូច្នេះ បើសិនជាយើងបន្តរកបន្តបន្ទាប់រហូតដល់តូចុងក្រោយ នោះវា នឹងមិនអាចទៅរួចទេចំពោះស្វីតអនន្តតួ។ ដូចនេះ គេធ្វើការតាងតម្លៃ a_n ជាតម្លៃនៃតួចុងក្រោយនៃ

ក្រាបនៃស្វីត 2, 8, 18, 32, ...

ស្វ៊ីត (a_n) ចំពោះ $n\in\mathbb{N}$ ។ នៅពេលដែលយើងអាចសរសេរតួទី n បាន មានន័យថា យើងអាច កេបានលំនាំគំរូមួយយ៉ាងជាក់លាក់ ដែលវាមានប្រយោជន៍ក្នុងការរកតម្លៃនៃតួណាមួយដែលយើង ចង់បាន ឬពង្រីកទំហំនៃស្វីតឱ្យកាន់តែធំជាងតួទី n ផងដែរ។

ខ្ទនាមរណ៍ 3

គេមានស្វីត 2, 8, 18, 32, ... ។

- ក. កំណត់តួទី n នៃស្វីតខាងលើចំពោះ $orall n \in \mathbb{N}$ ។
- ខ. រកតម្លៃនៃតូទី 12 និង តូទី 20 ។

🚣 ಜೀಣಾಃಕ್ಷಾಲಕ

ត. កំណត់តួទី n នៃស្វ៊ីត តាង (a_n) ជាស្វីតនៃ 2, 8, 18, 32, ...

ពិនិត្យ
$$a_1=2=2\times 1$$

$$a_2 = 8 = 2 \times 2^2$$

$$a_3 = 18 = 2 \times 3^2$$

$$a_4 = 32 = 2 \times 4^2$$

: :

$$a_n = 2 \times n^2$$

ដូចនេះ ត្លូនៃ n នៃស្វីតគឺ $a_n=2n^2$ ។

រកតម្លៃនៃតូទី 12 និង តូទី 20

តាមចម្លើយ ${f r}$. គេរកបានតួទី n នៃស្ទីតគឺ $a_n=2n^2$

នោះគេបាន ចំពោះ
$$n=12$$
 នាំឱ្យ $a_{12}=2\times(12)^2=288$

ប៉ំពោះ
$$n=20$$
 នាំឱ្យ $a_{20}=2\times(20)^2=800$

ដូចនេះ តម្លៃនៃតូទី 12 គឺ 288 និងតម្លៃនៃតូទី 20 គឺ 800 ។

ការសរសេរលំនាំគំរូនៃបីឬបួនតួដំបូង មិនមែនជារឿងងាយនោះទេ ពោលឃើងគ្រូវរិះគិត សរសេរយ៉ាងណាឱ្យវាផ្ទៅងផ្ទាត់តម្លៃ ដើម និងត្រូវគ្នាជាមួយតម្លៃនៃតួ។ ក្រោយបានលំនាំគំរូ គេអាចបន្តរកដល់តូចុងក្រោយគឺតូទី n ប៉ុន្តែមិនមែនមានន័យថាអាច រាប់អស់នោះទេ ពោលវាជាការសន្មតថាគូទី n ដែល $n\in\mathbb{N}$ ជាតូចុងក្រោយៗ

៧ ផ្តិមតម្ស

កំណត់តួទី n ចំពោះ $orall n\in\mathbb{N}$ នៃស្ទីតខាងក្រោម៖

$$fi. -1, 2, 7, 14, 23, ...$$

$$2. \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \dots 9$$

∕^⁴ ಜಿಣ್ಣಾ; ಕ್ಷಾ ಅ ಕಿ

កំណត់តួទី n ចំពោះ $orall n \in \mathbb{N}$ នៃស្ទីតខាងក្រោម៖

ត. តាង (a_n) ជាំស្វីតនៃ -1, 2, 7, 14, 23, ...

ពិនិត្យ
$$a_1 = -1 = 1^2 - 2$$

$$a_2 = 2 = 2^2 - 2$$

$$a_3 = 7 = 3^2 - 2$$

$$a_4 = 14 = 4^2 - 2$$

:

$$a_n = \frac{n^2 - 2}{n^2}$$

ដូចនេះ ត្ហិទី n ចំពោះ $\forall n \in \mathbb{N}$ គឺ $a_n = n^2 - 2$ ។

ខ. តាង a_n ជាស្ទីតនៃ $\frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, ...$

ក្រាបនៃស្វីត -1, 2, 7, 14, 23, ...

ពិនិត្យ
$$a_1 = \frac{2}{3} = \frac{1}{1 + 1}$$
 $a_2 = \frac{3}{4} = \frac{2 + 1}{2 + 2}$
 $a_3 = \frac{4}{5} = \frac{3 + 1}{3 + 2}$
 $a_4 = \frac{5}{6} = \frac{4 + 1}{4 + 2}$
 $\vdots \qquad \vdots \qquad \vdots$
 $a_n = \frac{n + 1}{n + 2}$
ជួបនេះ $n = \frac{n + 1}{n + 2}$ ។

១.៤ អថិរភាពនៃស្វ៊ីត

ក្រោយពីយើងបានសិក្សាពីសញ្ញាណនៃស្វ៊ីត យើងនឹងបន្តសិក្សាពីអថិរភាពនៃស្វ៊ីត មានន័យថាយើង នឹងសិក្សាពីភាពកើន និងចុះនៃស្វ៊ីត និងស្វ៊ីតម៉ូណូតូន (កើន ឬចុះ) ។

១.៤.១ ស្វឹតកើន ស្វឹតចុះ

- \blacksquare គេឱ្យស្ដីត $(a_n)_{n\in\mathbb{N}}$ ដែល $a_n=2n$ ។ នោះតួនៃស្ដីត a_n គឺ 2,4,6,8,10... ។ តាមលំដាប់តួនៃស្វីត គេសង្កេតឃើញថា៖
- $2 < 4 < 6 < \cdots < 100 < 102 < \cdots$ ឬ $a_1 < a_2 < a_3 < \cdots < a_n < a_{n+1} < \cdots$ ដូបនេះ បើ $a_1 < a_2 < a_3 < \cdots < a_n < a_{n+1} < \cdots$ គេថាស្ទីតនេះជា ស្ទីតនើន ។

ត្រាបខាងលើនេះ បង្ហាញពីតាពកើននៃស្វ៊ីត $2,4,6,8,\ldots$ ៗ កាលណាតម្លៃ n កាន់តែកើន នោះតម្លៃតូនៃស្វ៊ីត a_n ក៏កើន តាមហ្នឹងដែរ ៗ ក្រាបនេះមិនមែនមានន័យថា n=50 ជាតម្លៃចុងក្រោយនៃស្វ៊ីតនោះទេ ប្រសិនបើបន្តយក $n=52,54,56,\ldots$ នោះតម្លៃតួនីមួយៗនឹងកើនឡើងជាបន្តបន្ទាប់ ៗ

 \blacksquare ម្យ៉ាងវិញបើគេឱ្យស្វីត $(a_n)_{n\in\mathbb{N}}$ ដែល $a_n=\frac{1}{2n}$ ។ នោះតួនៃស្វីត a_n គឺ $\frac{1}{2},\frac{1}{4},\frac{1}{6},\frac{1}{8},\cdots$ ។ តាមលំដាប់តួនៃស្វីត គេសង្កេតឃើញថា៖

$$\frac{1}{2}>\frac{1}{4}>\cdots>\frac{1}{2n}>\frac{1}{2(n+1)}>\cdots$$
 ឬ $a_1>a_2>\cdots>a_n>a_{n+1}\cdots$ ដូចនេះ បើ $a_1>a_2>a_3>\cdots>a_n>a_{n+1}\cdots$ គេឋាស៊ីតនេះជា ស៊ីតនេះ ។

ក្រាបខាងលើនេះ បង្ហាញពីតាពចុះនៃស្វ៊ីត $\frac{1}{2},\frac{1}{4},\frac{1}{6},\frac{1}{8},\cdots$ ៗ កាលណាតម្លៃ n កាន់តែកើន នោះតម្លៃតួនៃស្វ៊ីត a_n កាន់តែចុះតាម ហ្នឹង ៗ ក្រាបនេះមិនមែនមានន័យថា n=50 ជាតម្លៃចុងក្រោយនៃស្វ៊ីតនោះទេ ប្រសិនបើបន្តយក $n=52,54,56,\ldots$ នោះតម្លៃតួ នីមួយៗនឹងចុះជាបន្តបន្ទាប់ ៗ

ត្ថិយមត្ថ័យ ១.៤.៣ ៖

lacktriangle ស្ទឹត (a_n) ជា ស្ទឹតកើន លុះត្រាតែគ្រប់ចំនួនគត់ $n\in\mathbb{N}$ គេបាន

lacktriangle ស្ទីត (a_n) ជា ស្ទីតចុះ លុះត្រាតែគ្រប់ចំនួនគត់ $n\in\mathbb{N}$ គេបាន

$$a_{n+1} < a_n$$
 y $a_{n+1} - a_n < 0$ y $\frac{a_{n+1}}{a_n} < 1$ y

ខ្វនាមរណ៍ 4

- ត. បង្ហាញថាស្វីត (a_n) ដែល $a_n=3n+2$ ជាស្វីតកើន ។
- ខ. បង្ហាញថាស្វ៊ីត (a_n) ដែល $a_n=2-3n$ ជាស្វ៊ីតចុះ ។

🗲 ಜೀರ್ಬುಟಾ ಅಕಿ

ត. បង្ហាញថាស្ទីត (a_n) ដែល $a_n=3n+2$ ជាស្ទីតកើន

នាំឱ្យ
$$a_{n+1} = 3(n+1) + 2 = 3n+3$$

គេបាន $a_{n+1} - a_n = 3n+3 - (3n+2)$

$$= 1 > 0$$

គេមាន $a_n = 3n + 2$

ដូចនេះ ស្វ៊ីត
$$(a_n)$$
 ដែល $a_n=3n+2$ ជាស្វ៊ីតកើន ។

ខ. បង្ហាញហិស្វ៊ីត (a_n) ដែល $a_n=2-3n$ ជាស្វ៊ីតចុះ

គេមាន
$$a_n=2-3n$$

ទាំឱ្យ $a_{n+1}=2-3(n+1)=-3n-1$

គេបាន
$$a_{n+1}-a_n=-3n-1-(2-3n)$$

$$=-3<0$$

