## 

2012 Mathematical Methods (CAS) Trial Exam 2 Solutions Free download from www.itute.com © Copyright 2012 itute.com

## **SECTION 1**

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
|---|---|---|---|---|---|---|---|---|----|----|
| В | Α | C | C | Α | Α | Е | Е | В | C  | Α  |

|   |   |   |   |   |   |   | 19 |   |   |   |
|---|---|---|---|---|---|---|----|---|---|---|
| A | C | C | В | Е | D | В | D  | В | Е | C |

Q1 
$$x+3=0$$
,  $x=-3$ 

Q2 
$$\log_{\frac{1}{e}} \left( \frac{1}{e^{\sqrt{x}}} \right) = \log_{\frac{1}{e}} \left( \frac{1}{e} \right)^{\sqrt{x}} = \sqrt{x} \log_{\frac{1}{e}} \left( \frac{1}{e} \right) = \sqrt{x}$$
 A

Q3 
$$\sin(2x) + \cos(2x) = 0$$
,  $\frac{\sin(2x)}{\cos(2x)} = -1$  where  $\cos(2x) \neq 0$ ,

$$\tan(2x) = -1$$
,  $2x = n\pi - \frac{\pi}{4}$ ,  $x = \frac{(4n-1)\pi}{8}$ 

Q4 
$$y = -5$$
,  $x = 0$ ;  $y \to 0^-$ ,  $x \to -\infty$ ;  $y \to 2^+$ ,  $x \to 7^-$ ;  $y \to \infty$ ,  $x \to 2^+$ 



Q6 
$$f(x) = 2(x-a)^2(x-b)$$
,  
 $g(x) = 2e^x(2x-c-a)^2(2x-c-b) = 0$ 

The two unique solutions are  $x = \frac{c+a}{2}$  and  $x = \frac{c+b}{2}$ .

Since a > b > 0, both solutions are positive if c > -b.

Q7 
$$g(x) = f\left(\frac{x}{2} + b\right) = 2\left(\left(\frac{x}{2} + b\right) + b\right)^3 - a = 2\left(\frac{x}{2} + 2b\right)^3 - a$$
  
=  $2\left(\frac{1}{2}(x + 4b)\right)^3 - a = \frac{1}{4}(x + 4b)^3 - a$ 

Q8



Q9 The intersection of y = f(x) and  $y = f^{-1}(x)$  is on the line y = x.

Let  $x = e - \log_e(\log_e x)$ ,  $\log_e(\log_e x) = e - x$ , x = e, .: y = e B

Q10 
$$\frac{1}{\sqrt{2}} \le \sqrt{1 - \cos(2x)} \le 1$$
,  $\frac{1}{2} \le 1 - \cos(2x) \le 1$ ,

$$0 \le \cos(2x) \le \frac{1}{2}, \ \frac{\pi}{3} \le 2x \le \frac{\pi}{2}, \ \frac{\pi}{6} \le x \le \frac{\pi}{4}$$

Q11



Q12 Given  $g(x) = f^{-1}(x)$ , f(a) = b and  $f'(a) = \frac{1}{a}$ , then

$$g(b) = a$$
 and  $g'(b) = \frac{1}{f'(a)} = a$  A

Q13 Given function f(x),  $x \in R$ , then  $f(x) = \begin{cases} f(x), & x \ge 0 \\ f(-x), & x < 0 \end{cases}$ .

f(-x) for x < 0 is the reflection (in the y-axis) of f(x) for x > 0.

$$f'(|x|) = 0$$
 at  $(-3,-1)$ ,  $(-1,2)$ ,  $(1,2)$  and  $(3,-1)$ 

Q14 
$$\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a) = c$$

$$\int_{\frac{a-h}{2}}^{\frac{b-h}{2}} 2f(2x+h)dx = \left[\frac{2F(2x+h)}{2}\right]_{\frac{a-h}{2}}^{\frac{b-h}{2}} = F(b) - F(a) = c$$

Q15 
$$\int_{0}^{\frac{\pi}{8}} g(x)dx = \int_{0}^{\frac{\pi}{8}} \tan\left(\frac{x}{2} + \frac{\pi}{4}\right) dx = 0.4824 \text{ by CAS}$$

Average value 
$$= \frac{\int_{0}^{\frac{\pi}{8}} g(x)dx}{\frac{\pi}{9} - 0} \approx \frac{0.4824}{\frac{\pi}{8}} \approx 1.2284$$

Q16 
$$f'(x) = \frac{1}{\sqrt{x+10}}$$
,  $f(x) = \int \frac{1}{\sqrt{x+10}} dx = 2\sqrt{x+10}$ 

$$bf(a) \approx f(a) + (1.02a - a)f'(a)$$

$$bf(a) - f(a) \approx 0.02af'(a), (b-1)f(a) \approx 0.02af'(a)$$

: 
$$(b-1)2\sqrt{a+10} \approx 0.02a \times \frac{1}{\sqrt{a+10}}$$

$$b-1 \approx \frac{0.01a}{a+10}, \ b \approx \frac{1.01a+10}{a+10}$$

Q17 
$$Pr(JandJtogether) = \frac{2!5!}{6!} = \frac{1}{3}$$

В

A

Q18 
$$Pr(1green1blue) = 2 \times \frac{1}{2} \times \frac{1}{3} = \frac{1}{3}$$

Since the two rolls are independent,

$$\Pr(green2nd \mid blue1st) = \Pr(green2nd) = \frac{1}{2}$$

Q19 Binomial: 
$$np = 12.3$$
,  $np(1-p) = 2.8^2$ , .:  $n \approx 34$ 

Q20 
$$B \xrightarrow{\frac{1}{3}} A$$
, .:  $B \xrightarrow{\frac{2}{3}} B$   
 $A \xrightarrow{\frac{1}{4}} A$ , .:  $A \xrightarrow{\frac{3}{4}} B$   
.:  $Pr(BBAABAB) = 1 \times \frac{2}{3} \times \frac{1}{3} \times \frac{1}{4} \times \frac{3}{4} \times \frac{1}{3} \times \frac{3}{4} = \frac{1}{96}$ 

Q21 
$$Pr(X > 12.5) = 0.8$$
,  $Pr(X > 18.5 | X > 12.5) = 0.8$   

$$\therefore \frac{Pr(X > 18.5 \cap X > 12.5)}{Pr(X > 12.5)} = 0.8$$
,  $\frac{Pr(X > 18.5)}{Pr(X > 12.5)} = 0.8$ 

: 
$$Pr(X > 18.5) = 0.8^2 = 0.64$$
,  $Pr(Z > \frac{18.5 - \mu}{\sigma}) = 0.64$ ,

: 
$$Pr\left(Z < \frac{18.5 - \mu}{\sigma}\right) = 0.36$$
, ::  $\frac{18.5 - \mu}{\sigma} = -0.3585$ 

Q22 The graph is a probability density function, .:  $n \neq Pr(2)$  C

## **SECTION 2**

Q1a



Q1b  $f'(x) = ax^2(x-1)^2$ , .: f(x) is a degree five polynomial.

| Ī | х     | < 0      | 0    | 0 < x < 1 | 1    | >0       |
|---|-------|----------|------|-----------|------|----------|
| ĺ | f'(x) | positive | zero | positive  | zero | positive |

The table shows that there is a stationary inflection point at x = 0 and another one at x = 1.

Q1ci 
$$f'(x) = ax^2(x-1)^2 = a(x^4 - 2x^3 + x^2)$$

$$f(x) = a\left(\frac{x^5}{5} - \frac{x^4}{2} + \frac{x^3}{3}\right) + c$$
,  $f(0) = 0$ 

$$\therefore f(x) = a \left( \frac{x^5}{5} - \frac{x^4}{2} + \frac{x^3}{3} \right)$$

Q1cii 
$$f(1)=1$$
, .:  $a=30$ 

Q1d 
$$f'(x) = 30(x^4 - 2x^3 + x^2)$$
,  $x \in [0,1]$   
 $f''(x) = 30(4x^3 - 6x^2 + 2x) = 60(2x^3 - 3x^2 + x)$   
 $= 60x(x-1)(2x-1)$ 

Let f''(x) = 0 to find the greatest rate of change:

$$60x(x-1)(2x-1) = 0, :: x = \frac{1}{2}, :: y = 30\left(\frac{x^5}{5} - \frac{x^4}{2} + \frac{x^3}{3}\right) = \frac{1}{2}$$
$$\left(\frac{1}{2}, \frac{1}{2}\right)$$

Q1e Since  $\left(\frac{1}{2}, \frac{1}{2}\right)$  is a point having the greatest rate of change, it is an inflection point. .: total number of inflection points is 3.

Q1f 
$$g(x) = -2f(-x) + 2$$

f(x) undergoes reflection in both axes, a dilation by a factor of 2 parallel to the *y*-axis and then an upward translation of 2 units.  $(0,0) \rightarrow (0,2)$ ;  $(1,1) \rightarrow (-1,0)$ 

Q1g 
$$g(x) = -2f(-x) + 2$$
  
=  $-2 \times 30 \left( \frac{(-x)^5}{5} - \frac{(-x)^4}{2} + \frac{(-x)^3}{3} \right) + 2$ 

=  $60\left(\frac{x^5}{5} - \frac{x^4}{2} + \frac{x^3}{3}\right) + 2$ , a strictly increasing function (by CAS)

Domain of f(x) is (-1,2], .: domain of g(x) is [-2,1).

When x = -2, y = -62; when  $x \rightarrow 1$ ,  $y \rightarrow 64$ .

.: range of g(x) is [-62,64)

Q2a 
$$height = 2\log_e(a+e)$$
,  $width = 2e-a$ ,  
 $area \ A = (2e-a) \times 2\log_e(a+e) = 2(2e-a)\log_e(a+e)$ 

Q2bi By the product rule:

$$\frac{dA}{da} = 2(2e-a) \times \frac{1}{a+e} + (-2)\log_e(a+e) = \frac{2(2e-a)}{a+e} - 2\log_e(a+e)$$

Q2bii Maximum cross-sectional area ⇒ maximum volume

Let 
$$\frac{dA}{da} = 0$$
, .:  $\frac{2(2e-a)}{a+e} - 2\log_e(a+e) = 0$ ,

: 
$$2\log_e(a+e) = \frac{2(2e-a)}{a+e}$$
,  $height = \frac{2(2e-a)}{a+e}$ 

Q2biii



Q2c The tank has maximum volume when a = 0.8645*Volume of water V* = 8(2e - 0.8645)h,

$$\frac{dV}{dh} = 8(2e - 0.8645), \quad \frac{dV}{dt} = 90 - 36h = 54 \text{ when } h = 1$$

$$\frac{dV}{dt} = \frac{dV}{dh} \times \frac{dh}{dt}, \quad \therefore 54 = 8(2e - 0.8645) \frac{dh}{dt},$$

$$\frac{dh}{dt} = \frac{54}{8(2e - 0.8645)} \approx 1.48 \text{ m/h}$$

Q2d 
$$\frac{dt}{dh} = \frac{1}{2.5 - h}$$
,  $t = \int \frac{1}{2.5 - h} dh = -\log_e |2.5 - h| + c$ 

Given at time t = 0, h = 0,  $c = \log_a 2.5$ 

$$\therefore t = -\log_e |2.5 - h| + \log_e 2.5$$

When 
$$h = 1.25$$
,  $t = -\log_e 1.25 + \log_e 2.5 = \log_e \frac{2.5}{1.25} = \log_e 2$ 

Q2e Volume of water in the tank is maximum when

$$\frac{dV}{dt} = 90 - 36h = 0, \ h = 2.5$$
$$V_{\text{max}} = 8(2e - 0.8645) \times 2.5 \approx 91 \,\text{m}^3$$

Q2f Cross-sectional area of the tunnel

$$= \int_{0}^{2e} 2\log_e(x+e)dx \approx 17.92$$

Volume of soil =  $(17.92-11.67)\times 8 \approx 50 \text{ m}^3$ 

Q3a (0,0), 
$$a+c=0$$
,  $c=-a$ .  
(10,-5),  $ae^{10b}+c=-5$ ,  $e^{10b}=\frac{-5-c}{a}=\frac{a-5}{a}$ .  
(20,-8),  $ae^{20b}+c=-8$ ,  $e^{20b}=\frac{-8-c}{a}=\frac{a-8}{a}$ ,  $e^{10b}=\frac{a-8}{a}$ ,  $e^{10b}=\frac{a-8}{a}$ ,  $e^{10b}=\frac{a-8}{a}$ ,  $e^{10b}=\frac{a-8}{a}$ ,  $e^{10b}=\frac{a-5}{a}=\frac{3}{5}$ ,  $e^{10b}=\frac{1}{2}$  and  $e^{10b}=\frac{a-5}{a}=\frac{3}{5}$ ,  $e^{10b}=\frac{1}{2}$ 

Q3aii 
$$y = ae^{bx} + c$$
,  $\frac{dy}{dx} = abe^{bx} = \frac{25}{2} \times \frac{1}{10} \log_e \left(\frac{3}{5}\right) e^{\frac{x}{10} \log_e \left(\frac{3}{5}\right)}$ 

$$= \frac{5}{4} \log_e \left(\frac{3}{5}\right) e^{\log_e \left(\frac{3}{5}\right)^{\frac{1}{10}}} = \left[\frac{5}{4} \log_e \left(\frac{3}{5}\right)\right] \left(\frac{3}{5}\right)^{\frac{x}{10}}$$

Q3aiii When x = 10.

$$y = \left\lceil \frac{5}{4} \log_e \left( \frac{3}{5} \right) \right\rceil \left( \frac{3}{5} \right)^{\frac{x}{10}} = \left\lceil \frac{5}{4} \log_e \left( \frac{3}{5} \right) \right\rceil \left( \frac{3}{5} \right) \approx -0.38$$

Q3bi When t = 6,  $y = 3\sin\left(\frac{\pi t}{6}\right) - 5 = 3\sin \pi - 5 = -5$ . The sea

level is 5 m below the house.

Q3bii When t = 6, y = -5 and .: x = 10

:: the horizontal distance between the house and the water edge is 2+10=12 m

Q3c When 
$$t = 6$$
,  $\frac{dy}{dt} = \frac{\pi}{2} \cos \left( \frac{\pi t}{6} \right) = \frac{\pi}{2} \cos \pi = -\frac{\pi}{2}$ 

Q3d 
$$\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt}$$
,  $-\frac{\pi}{2} = \frac{3}{4} \log_e \left(\frac{3}{5}\right) \times \frac{dx}{dt}$ 

$$\therefore \frac{dx}{dt} = -\frac{2\pi}{3\log_e\left(\frac{3}{5}\right)}, \text{ ... the receding rate is } \frac{2\pi}{3\log_e\left(\frac{3}{5}\right)}.$$

Q4a Pr(W > 52), by CAS normalcdf (52, e^99,65,8)  $\approx 0.9479$ 

Q4b 
$$Pr(W > 52 \mid W > 45) = \frac{Pr(W > 52)}{Pr(W > 45)} \approx 0.9538$$

Q4c Average price (\$) per dozen =  $\frac{\Pr(52 < W < 60)}{\Pr(W > 52)} \times 1.00 + \frac{\Pr(60 < W < 68)}{\Pr(W > 52)} \times 1.10 + \frac{\Pr(W > 68)}{\Pr(W > 52)} \times 1.20$ 

Q4d Binomial: 
$$n = 12$$
, success means  $65 \le W < 68$ ,  

$$p = \frac{\Pr(65 < W < 68)}{\Pr(60 < W < 68)} = \frac{0.14617}{0.380184} \approx 0.384472$$

$$\Pr(X \ge 6) \text{ by CAS } binomialcdf (12,0.384472,6,12) \approx 0.29$$

Q4e The average weight of each of the four eggs is less than  $\frac{250}{4} = 62.5$ 

$$\Pr(total < 250) = \frac{\Pr(60 < W < 62.5)}{\Pr(60 < W < 68)} = \frac{0.111345}{0.380184} \approx 0.29$$

Q4f Probability density function  $f(x) = \frac{1}{8\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{x-65}{8})^2}$ 

Mean weight = 
$$12 \times \frac{\int_{68}^{\infty} xf(x)dx}{\Pr(W > 68)} \approx 12 \times \frac{25.97381}{0.35383} \approx 881$$

Q4g Pr(W < 45) = 0.05 and Pr(W > 75) = 0.10

:: 
$$\Pr\left(Z < \frac{45 - \mu}{\sigma}\right) = 0.05 \text{ and } \Pr\left(Z < \frac{75 - \mu}{\sigma}\right) = 0.90$$
  
::  $\frac{45 - \mu}{\sigma} \approx -1.6449 \text{ and } \frac{75 - \mu}{\sigma} \approx 1.2816$ 

 $\mu \approx 61.86 \,\mathrm{grams}$ ,  $\sigma = 10.25 \,\mathrm{grams}$ 

Q4h Pr(ABBBBBA) + Pr(ABBBBAB) + Pr(ABBBABB)

- + Pr(ABBABBB) + Pr(ABABBBB) + Pr(AABBBBB)
- $= (1)(0.64)(0.45)^4(0.55) + (1)(0.64)(0.45)^3(0.55)(0.64)$
- $+(1)(0.64)(0.45)^2(0.55)(0.64)(0.45)+(1)(0.64)(0.45)(0.55)(0.64)(0.45)^2$
- $+(1)(0.64)(0.55)(0.64)(0.45)^3 + (1)(0.36)(0.64)(0.45)^4 \approx 0.11$

Please inform mathline@itute.com re conceptual, mathematical and/or typing errors