NAIL062 V&P Logika: 8. cvičení

Témata: Struktury a podstruktury. Extenze teorií, extenze o definice. Definovatelnost ve struktuře.

Příklad 1. Uvažme $\underline{\mathbb{Z}}_4 = \langle \{0,1,2,3\},+,-,0 \rangle$ kde + je binární sčítání modulo 4 a – je unární funkce, která vrací *inverzní* prvek + vzhledem k neutrálnímu prvku 0.

- (a) Je $\underline{\mathbb{Z}}_4$ model teorie grup (tj. je to grupa)?
- (b) Určete všechny podstruktury $\underline{\mathbb{Z}}_4\langle a\rangle$ generované nějakým $a\in\mathbb{Z}_4$.
- (c) Obsahuje $\underline{\mathbb{Z}}_4$ ještě nějaké další podstruktury?
- (d) Je každá podstruktura $\underline{\mathbb{Z}}_4$ modelem teorie grup?
- (e) Je každá podstruktura $\underline{\mathbb{Z}}_4$ elementárně ekvivalentní $\underline{\mathbb{Z}}_4?$
- (f) Je každá podstruktura komutativní grupy (tj. grupy, která splňuje x+y=y+x) také komutativní grupa?

Příklad 2. Buď $\mathbb{Q}=\langle\mathbb{Q},+,-,\cdot,0,1\rangle$ těleso racionálních čísel se standardními operacemi.

- (a) Existuje redukt Q, který je modelem teorie grup?
- (b) Lze redukt $\langle \mathbb{Q}, \cdot, 1 \rangle$ rozšířit na model teorie grup?
- (c) Obsahuje $\mathbb Q$ podstrukturu, která není elementárně ekvivalentní $\mathbb Q$?
- (d) Označmě $Th(\mathbb{Q})$ množinu všech sentencí pravdivých v \mathbb{Q} . Je $Th(\mathbb{Q})$ úplná teorie?

Příklad 3. Mějme teorii $T = \{x = c_1 \lor x = c_2 \lor x = c_3\}$ v jazyce $L = \langle c_1, c_2, c_3 \rangle$ s rovností.

- (a) Je T (sémanticky) konzistentní?
- (b) Jsou všechny modely T elementárně ekvivalentní? Tj. je T (sémanticky) úplná?
- (c) Najděte všechny jednoduché úplné extenze T.
- (d) Je teorie $T' = T \cup \{x = c_1 \lor x = c_4\}$ v jazyce $L = \langle c_1, c_2, c_3, c_4 \rangle$ extenzí T? Je T' jednoduchá extenze T? Je T' konzervativní extenze T?

Příklad 4. Mějme jazyk $L = \langle F \rangle$ s rovností, kde F je binární funkční symbol. Najděte formule definující následující množiny (bez parametrů):

- (a) interval $(0, \infty)$ v $\mathcal{A} = \langle \mathbb{R}, \cdot \rangle$ kde · je násobení reálných čísel,
- (b) množina $\{(x, 1/x) \mid x \neq 0\}$ ve stejné struktuře \mathcal{A} ,
- (c) množina všech nejvýše jednoprvkových podmnožin \mathbb{N} v $\mathcal{B} = \langle \mathcal{P}(\mathbb{N}), \cup \rangle$,
- (d) množina všech prvočísel v $\mathcal{C} = \langle \mathbb{N} \cup \{0\}, \cdot \rangle$.

Domácí úkol (2 body).