

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 22 August 2013			2. REPORT TYPE Conference Proceedings		3. DATES COVERED (From – To) 1 April 2012 – 28 July 2013	
4. TITLE AND SUBTITLE The First International Workshop on Flame Chemistry			5a. CONTRACT NUMBER FA8655-12-1-2065			
			5b. GRANT NUMBER CSP 12-2065			
			5c. PROGRAM ELEMENT NUMBER 61102F			
6. AUTHOR(S) Yiguang Ju			5d. PROJECT NUMBER 			
			5d. TASK NUMBER 			
			5e. WORK UNIT NUMBER 			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Princeton University 1 Nassau Hall Princeton, NJ 08544				8. PERFORMING ORGANIZATION REPORT NUMBER N/A		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) EOARD Unit 4515 APO AE 09421-4515				10. SPONSOR/MONITOR'S ACRONYM(S) AFRL/AFOSR/IOE (EOARD)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S) AFRL-AFOSR-UK-PC-2013-0018		
12. DISTRIBUTION/AVAILABILITY STATEMENT Distribution A: Approved for public release; distribution is unlimited.						
13. SUPPLEMENTARY NOTES						
14. ABSTRACT <p>In order to find solutions for energy security, alternative fuels, and advanced propulsion systems and to increase energy conversion efficiency and reduce emissions, understanding of new combustion regimes involving new fuels at extreme conditions such as high pressure, low temperature, near flammability limit, high Reynolds number, and high speed in gas turbines and after burners is needed. It is of great interest to develop predictive tools and models to address combustion chemistry and its interaction with turbulent flows at extreme conditions to achieve accurate control of ignition timing, heat release rate, flame instability as well as emissions.</p> <p>This workshop will assemble worldwide experts in flame chemistry who will:</p> <ul style="list-style-type: none"> (a) review the recent progress in the field, (b) identify the pathways for the development of predictive high- pressure flame chemistry in turbulent flows, and (c) establish a collaborative research relationship. 						
15. SUBJECT TERMS EOARD, Flame Chemistry						
16. SECURITY CLASSIFICATION OF: a. REPORT UNCLAS			17. LIMITATION OF ABSTRACT SAR	18. NUMBER OF PAGES 387	19a. NAME OF RESPONSIBLE PERSON Gregg Abate	
					19b. TELEPHONE NUMBER (Include area code) +44 (0)1895 616021	

1st Workshop on Flame Chemistry

The First International Workshop
on Flame Chemistry

July 28 - 29, 2012,
Warsaw, Poland

PROGRAM

July 28 (Sat), 2012

7:45 – 8:30 AM Breakfast

8:30 – 8:35 Welcome: Hai Wang and Yiguang Ju

Session 1: Flame Chemistry and Transport

Chair: Chung K. Law (Princeton University, USA)

8:35 – 9:10 AM Laminar Flames and the Role of Chemistry and Transport

**Yiguang Ju and Sanghee Won (Princeton University, USA);
Zheng Chen (Peking University, China)**

9:10 – 9:45 Turbulent Flames and the Role of Chemistry

Matthias Ihme (University of Michigan)

9:45 – 10:10 Micro reactor with prescribed temperature profile

Kaoru Maruta (Tohoku University)

10:10 – 10:30 Coffee Break

Session 2: Elementary Reactions and Kinetic Mechanisms at High Pressure

Chair: Charlie Westbrook (Lawrence Livermore Lab, USA)

10:30 – 11:05 Predictive Theoretical Elementary Reaction Kinetics and its Role in Combustion Modeling

Stephen J. Klippenstein (*Argonne National Lab, USA*)

11:05 – 11:40 Kinetic Mechanism Development for Hydrocarbons and Oxygenated Fuels

Henry Curran (*National University of Ireland, Ireland*)
Philippe Dagaut (*CNRS Orleans, France*)

11:40 – 12:15 High Pressure Kinetic Mechanisms for Hydrogen and Hydrogen Syngas

Michael P. Burke (*Argonne National Lab, USA*)
Frederick L. Dryer (*Princeton University, USA*)

12:15 – 13:30 Lunch

Session 3: Uncertainty Quantification

Chair: Bill Green (*Massachusetts Institute of Technology, USA*)

13:30 – 14:05 Determination of the joint uncertainty domain of rate parameters:

The case study of hydrogen combustion
Tamas Turanyi (*Eötvös University, Hungary*)

14:05 – 14:40 The role of uncertainty quantification within kinetic model improvement in combustion

Alison S. Tomlin (*University of Leeds, UK*)

14:40 – 15:15 Mechanism Optimization

Hai Wang (*University of Southern California, USA*)

15:15 – 15:35 Coffee Break

15:35 – 17:30 **Group Discussion Session:** Identification of roadmap, challenges, & collaborations
Elementary Kinetics: Chair, **Robert S. Tranter**

(Argonne National Lab, USA)

Mechanism: Chair, **Matt Oehlschlaeger**

(Rensselaer Polytechnic Institute, USA)

Flame Chemistry: Chairs, **Zheng Chen**

(Peking University, China)

Timothy Ombrello

(Air Force Research Laboratory)

17:30 – 18:30 **Poster Session**

18:30 – Reception

July 29 (Sun), 2012

Session 4: Combustion Diagnostics

Chair: Nils Hansen (Sandia National Lab, USA)

8:30 – 9:05 Measurements of Elementary Rate Constants, Ignition Delay and Species Histories in Shock Tubes

Ronald K. Hanson (*Stanford University, USA*)

9:05 – 9:40 The role of advanced diagnostics in combustion chemistry research

Katharina Kohse-Höinghaus * (*University of Bielefeld, Germany*);
Fei Qi (*University of Chinese Science and Technology, China*);
Nils Hansen (*Sandia National Lab, USA*)

9:40 – 10:00 Coffee Break

10:00 – 12:00 **Group Discussion Session:** Identification of roadmap, challenges, & collaborations
Elementary Kinetics: Chair, **Robert S. Tranter**

(Argonne National Lab, USA)

Mechanism: Chairs, **Matt Oehlschlaeger**
(Rensselaer Polytechnic Institute, USA)
Flame Chemistry: Chairs, **Zheng Chen**,
(Peking University, China)
Timothy Ombrello
(Air Force Research Laboratory)

12:00 – 12:30 Presentations of Group Discussion by Group Chairs

Presentations and Workshop Summary

- 1. Invited Presentations (11)**
- 2. Workshop summaries (3)**
 - Elementary Kinetics
 - Flame Chemistry
 - Mechanisms
- 3. Workshop presentation (8)**

Laminar Flames and the Role of Chemistry and Transport

Yiguang Ju and Sang Hee Won
Princeton University, USA

Zheng Chen
Peking University, China

1st Flame Chemistry Workshop

Advanced Engines require fuel flexibility and work near kinetic limit

HCCI

Synfuels in gas turbine engine

- Low temperature,
- High pressure,
- Near ign./ext . limit,
- Multiple fuels,

Kinetic limiting

“Validated” mechanisms?

- Hundreds of fuels
- Different structures elements H, C, O, N, S...)
- Thousands species
- Extreme conditions

Two validation targets

- Homogeneous ignition/reactor
- Inhomogeneous flames

Plasma assisted combustion

Flame regimes in combustion

How does chemistry affect flames?

- Thin flame
- Thickening flame
- Local extinction
- Re-ignition

Propagating edge flame in a mixing layer

Premixed flame front

in non-uniform flow field with complex transport and chemistry coupling

Flames

➤ “Flame” is a ignition/reaction front supported by thermal and species transport

Non-uniform species/temperature distribution

1. Why is flame chemistry different from ignition?

➤ Then, what is the role of transport on kinetics?

- Is flame chemistry different from that of homogeneous ignition?
- How does transport and flame chemistry govern flame extinction?
- How does transport and flame chemistry affect unsteady flame initiation and propagation?
- How does low temperature chemistry change flame regimes?

Flames: Different fuels have different extinction limits

Ignition vs. flames: n-alkanes and esters

$T_f = 500 \text{ K}$, $T_{ox} = 298 \text{ K}$

- Methyl Formate
- Methyl Ethanoate
- Methyl Propanoate
- Methyl Butanoate
- Methyl Pentanoate
- Methyl Hexanoate
- Methyl Octanoate
- Methyl Decanoate

?

Kinetic coupling between alkanes and aromatics

Blending toluene into n-decane: Extinction Limits

Kinetic coupling between n-decane and toluene in diffusion flames

High pressure hydrogen kinetics: ignition and flames

Uncertainty of HO₂ related kinetics at high pressure,

- Ignition governed more by chain initiation and branching rates
- Flames governed more by branching rate and heat release rate
- Different radical pool concentration (H, OH, ...)

Difference of kinetics in homogeneous reactor and flames

Homogeneous reactor (800 K)

Fuel consumption by radicals

component	% consumed by radical reaction			
	OH	HO ₂	H	O
n-decane	86%	6.0%	3.6%	2.0%
iso-octane	82%	6.5%	5.8%	2.3%
Toluene	88%		2.8%	4.5%

OH is r the most significant radical in fuel consumption

Diffusion flames (~1600K)

Fuel consumption by Radicals

component	% by uni-molecular decomposition	% consumed by radical reaction			
		H	OH	CH ₃	O
n-decane [1]	19.3%	67.2%	6.1%	5.8%	0.1%
Methylbutanoate [2]	6.6%	70.8%	10.3%	8.1%	3.7%

1. Won et al. CNF 159 (2012)
2. Dooley et al. CNF 159 (2012) 1371-1384.

2. How does transport and flame chemistry govern diffusion flame extinction?

$$Q \sim \rho D_i \frac{dY_F}{dx} \Big|_{0-}^{0+} = \int_0^\delta \omega_i dx$$

0.9N₂+0.09n-decane+0.01toluene

Flames: Different fuels have different burning limits

A generic correlation for extinction limit: Transport weighted Enthalpy & radical index

Theoretical analysis of Extinction Damkohler number

$$\frac{1}{Da_E} = \left[\frac{2}{e} \frac{\tilde{Y}_{O,\infty}}{\tilde{Y}_{F,-\infty}^2} Le_F^3 P(\eta_F, Le_F, Le_O) L(\eta_F, Le_F) \right] \left[\frac{1}{\tilde{T}_f - \tilde{T}_{-\infty}} \left(\frac{\tilde{T}_f^2}{\tilde{T}_a} \right)^3 \exp \left(- \frac{\tilde{T}_a}{\tilde{T}_f} \right) \right]$$

Extinction Strain Rate

$$a_e \propto \frac{1}{\sqrt{M_F / M}} \frac{Y_{F,-\infty} Q_F}{C_p (T_f - T_{-\infty})} * R_i$$

Transport Heat release/heat loss

Transport weighted Enthalpy * Radical index

Fuel chemistry
Radical production
rate

A General Correlation of Hydrocarbon Fuel Extinction vs. Transport Weighted Enthalpy (TWE) and Radical Index

TWE and radical index for predicting extinction limits and synfuel fuel ranking and screening

Radical Index

Representing radical pool
High temperature reactivity

Fuel	Radical Index
n-dodecane	1.0
iso-octane	0.7
toluene	0.56
n-propyl benzene	0.67
1,2,4-trimethylbenzene	0.44
1,3,5-trimethylbenzene	0.36
JetA POSF 4658	0.79
S8 POSF 4734	0.86
JP8 POSF 6169	0.80
HRJ Camelina POSF 7720	0.82

Single fuel
Real fuel

Synfuels

Ignition Delay vs. Radical Index (real fuel)

Dooley et al., CNF 159 (2012)

Consistent in high temperature reactivity

Scaling high temperature reactivity of methyl esters: Using TWE and Radical Index

Impact of alkyl chain length on methyl ester reactivity

Methyl Formate, ROC

Higher reactivity

Methyl Acetate, R1C

Lower reactivity

H abstraction reactions, CH_3OCO and $\text{CH}_3\text{OC(O)CH}_2$ decomposition reaction rates: large discrepancies (Xueliang, 2012)

Diévert et al, 2012
to presented on Monday at 34th Symposium

3. How does transport and flame chemistry affect flame initiation and propagation?

Puzzle of high altitude relight: an unresolved ignition problem or a flame problem?

Is the flame speed really a problem for relight?

- What governs the ignition & E_{ig} ?
- What are the chemistry and transport effects?

$$Le = \frac{\text{Thermal diffusivity}}{\text{Mass diffusivity}} = \frac{\text{oxygen}}{\text{Jet fuel}}$$

- $E_{ig,min}$: Defined by flame thickness, δ (make a guess)?

B. Lewis and Von Elbe (1961), Ronney, 2004, Glassman (2008)

$$E_{ig} = \frac{4}{3} \pi \delta^3 \rho C_p (T_{ad} - T_{\infty}) \propto \frac{1}{S_u^3} \propto \frac{1}{Le^{3/2}}$$

volume heat capacity Larger fuel molecules \Leftrightarrow smaller E_{ig}

- $E_{ig,min}$: Defined by stable “flame ball” size?

Zeldovich et al. (1985), Champion et al. (1986)

$$E_{ig} = \frac{4}{3} \pi R_z^3 \rho C_p (T_{ad} - T_{\infty}) \sim Le$$

Larger fuel molecules \Leftrightarrow larger E_{ig}

Theory: Critical Ignition Size vs. Flame Speed

Assumptions and simplification:

- 1D quasi-steady state, Constant properties
- One-step chemistry
- Center energy deposition

$$T_f \cdot \frac{R^{-2} e^{-UR}}{\int_R^\infty \tau^{-2} e^{-U\tau} d\tau} - Q \cdot R^{-2} e^{-UR} = \frac{1}{Le} \frac{R^{-2} e^{-ULeR}}{\int_R^\infty \tau^{-2} e^{-ULe\tau} d\tau} = \exp \left[\frac{Z}{2} \frac{T_f - 1}{\sigma + (1-\sigma)T_f} \right]$$

Chen & Ju, Comb. Theo. Modeling, 2007

Increase of fuel molecule size

The critical ignition size and energy is governed by two different length scales

- Flame ball size (small Le)
- Extinction diameter (large Le)

Ignition by heat and radical deposition ($q_t=0.05$)

Ignition energy: impacts of flame chemistry and transport

Fuel	Mean molecular weight	Radical Index
JP8 POSF 6169	153.9	0.80
SHELL SPK POSF 5729	136.7	0.85

Chen, Burke, Ju, Proc. Comb. Inst. Vol.33, 2010

Won, Santer, Dryer, Ju, 2012

Unsteady flame initiation

Three different flame regimes (n-heptane/air)

- **Regime I**
 - Spark assisted ignition kernel
- **Regime II**
 - Weak flame regime from sparked driven ignition kernel to normal flame
- **Regime III**
 - Self-sustained propagating **normal** flame

Rapid change of flame structure in flame initiation process

(lean n-heptane/air)

Completely different flame structures!

Kim et al, 2012, to be presented on Wednesday at 34th Symposium

Will a model for flame speed predict the unsteady flame initiation?

An example: Lean n-heptane flame initiation

Critical flame initiation radius (R_c) > 10 mm

4. How does low temperature flame chemistry affect flame initiation and propagation, and stabilization?

- Low temperature chemistry (multi-stage ignition)**
- Plasma assisted low temperature ignition. extinction**

Multi flame regimes in HCCI ignition n-heptane:40 atm, T=700 K

Movie

New low temperature flame regime in Plasma assisted combustion

(Counterflow DME/O₂/He ignition)

Kinetic enhancement of plasma assisted ignition: Change of S-curve

$\text{He}/\text{O}_2 = 0.66:0.34$ and $0.38:0.62$, $P = 72 \text{ Torr}$, $f = 24 \text{ kHz}$, $a = 400 \text{ 1/s}$

Conclusion

- Flames chemistry differs from homogeneous ignition in diffusion, fuel decomposition, radical pool production/consumption.
- Low temperature and unsteady combustion processes lead to new different flame regimes and structures.
- Flame initiation and extinction are strongly affected by both transport and chemical kinetics.
- Transport weight enthalpy and radical index are developed for predicting extinction limit and ranking fuel reactivity
- Large uncertainties in elementary reaction rates of kinetic mechanisms for simple fuels exist in extreme conditions.
- A validated mechanism using flame speeds fails to predict unsteady flame transition and the critical flame radius.

Welcome to The 1st International Flame Chemistry Workshop

Sincere Thanks To:

- Invited lecture (11) speakers and Session (4+1+2) chairs
- Committee and advisory board members
- All participants, especially poster (10) contributors
- Prof. Tamás Turányi & Incoming Inc. for local organization

Acknowledgement of financial support

Dr. Atreya, Arvind (NSF)

Dr. Abate, Gregg (EOARD, AFOSR)

Dr. Li, Chiping (AFOSR)

Dr. Wells, Joe (ONRG)

Prof. Chung K. Law (CEFRC-Princeton)

Turbulent Flames and the Role of Chemistry

Matthias Ihme
Department of Aerospace Engineering
University of Michigan
Ann Arbor, MI 48109

Sponsor: ONR, AFOSR, DoE

Motivation

- Advanced combustion strategies rely on
 - Low/moderate temperature combustion
 - High-pressure operating conditions
 - (Ultra)Lean and stratified combustion
 - Emerging and alternative fuel combustion
- Challenges
 - Shift from mixing-controlled to kinetics-controlled combustion regime
 - Increasing relevance of **ignition-kinetics** and low-temperature chain-branching reactions
 - Increasing **significance of turbulence** and turbulence/chemistry interaction
 - Finite-rate chemistry effects
 - Operation near stability limit

Motivation

- Objective
 - Development of high-fidelity combustion for prediction of turbulent reacting flows under consideration of
 - Finite-rate chemistry
 - Turbulence/chemistry coupling
 - Transient combustion-dynamical processes
- Relevance
 - Identify and isolate combustion-physical processes
 - Combustor-design, control, and optimization
 - Guide experimental instrumentation

Overview

- Motivation
- LES-combustion modeling
 - Flamelet-based formulation
- **Part 1:** Modeling and simulation of combustion-physical processes: LES of lifted vitiated flames
- **Part 2:** Guide experimental instrumentation: Turbulent inhomogeneities and facility-effects?
- Summary and conclusions

Overview

- Motivation
- LES-combustion modeling
 - Flamelet-based formulation
- ***Part 1:*** Modeling and simulation of combustion-physical processes: LES of lifted vitiated flames
- ***Part 2:*** Guide experimental instrumentation: Turbulent inhomogeneities and facility-effects?
- Summary and conclusions

LES Combustion Modeling

- LES Flamelet-based combustion models

- Representation of turbulent flame as unsteady reaction-diffusion layer that is embedded in turbulent flame
- Interaction of flame structure with turbulent environment leads to stretching, deformation, and extinction of flame

LES Combustion Modeling

- LES flamelet-based combustion model

LES Combustion Modeling

- Flamelet-structure in turbulent reacting flows
 - Analysis Tools: DNS-database¹ of reacting jet-in-cross-flow
 - Fuel: N₂-diluted H₂-jet, 350 K
 - Oxidizer: Air, 750 K
- Extract instantaneous local flamelet structure from DNS-database

LES Combustion Modeling

- Evolution of 1D-flamelet-elements in JICF

Front
Side
Lee-side

LES Combustion Modeling

- LES Flamelet-based combustion models

- Parameterization of combustion process in terms of reduces set of scalars
- Account for detailed chemistry
- Tabulation of reaction chemistry
- Consideration of turbulence chemistry coupling

Overview

- Motivation
- LES-combustion modeling
 - Flamelet-based formulation
- **Part 1:** Modeling and simulation of combustion-physical processes: LES of lifted vitiated flames
- **Part 2:** Guide experimental instrumentation: Presence of turbulence in chemical-kinetics facilities?
- Summary and conclusions

Autoignition in Turbulent Flames

- Modeling challenges in predicting autoignition in turbulent flames
 - Autoignition is **transient process**; requires accurate description of **temporal flame-evolution**
 - Flame stability and ignition dynamics strongly dependent on scalar mixing and **flame/turbulence interaction**
- Modeling approach¹
 - Autoignition requires consideration of transient species formation, described by **unsteady flamelet equations**
 - Turbulence/chemistry interaction: **Presumed PDF-closure** to consider effects of subgrid-mixing and unresolved flame structure

Autoignition in Turbulent Flames

- Conditions for flame-ignition in diffusion flames
 - Autoignition is transient process
 - Sufficiently low scalar dissipation rate
 - Flame ignition occurs under conditions corresponding to “most-reactive mixture”
 - Build-up of radical pool through chain-branching reaction

Autoignition in Turbulent Flames

- Experimental configuration
 - Lifted flame in vitiated co-flow
 - Fuel: methane/air 1:2
 - Co-flow temperature: 1350 K
 - Co-flow composition from premixed H₂-Air reaction product

- Computational setup
 - Grid: 2.5 Mio grid points
 - Reaction Chem.: GRI 2.11,
(also used GRI 3.0, USC-mech II)
 - 5-dimensional chemistry table with grid-refinement

Autoignition in Turbulent Flames

- Ignition conditions: **low-strain** region at most-reactive mixture composition
- Ignition occurs primarily in diffusion regime
- Location of flame-base controlled by **HO_2 -radical pool** that is formed upstream of flame

Autoignition in Turbulent Flames

- Effects of turbulence and scalar mixing

Autoignition in Turbulent Flames

- Instantaneous temperature field

Autoignition in Turbulent Flames

- Instantaneous temperature field

Autoignition in Turbulent Flames

- Centerline profiles

Autoignition in Turbulent Flames

- Radial profiles

Summary and Conclusions

- LES-modeling of lifted vitiated flames
- Key modeling components
 - Transient flame evolution
 - Accurate description of turbulent mixing and scalar dissipation rate
- Combustion-physical insights
 - Transient flame evolution
 - Identified significance of flame/turbulence interaction

→ Homogeneous reactor-model under-predicts ignition onset

Overview

- Motivation
- LES-combustion modeling
 - Flamelet-based formulation
- **Part 1:** Modeling and simulation of combustion-physical processes: LES of lifted vitiated flames
- **Part 2:** Guide experimental instrumentation: Presence of turbulence in chemical-kinetics facilities?
- Summary and conclusions

Turbulent Inhomogeneities and Facility Effects

- Question: Can we apply “lessons-learned” from LES simulations to characterize experimental facilities?
 - Shock-tubes
 - Flow-reactors
 - Rapid compression machines
- Source of non-idealities in experimental facilities^{1,2,3}

¹ Petersen et al., Comb. & Flame, 149, 244 (2007); ² Chaos & Dryer, Combust. Sci. and Tech., 180, 1053 (2008); ³ Burke, Chaos, Dryer, & Ju, Comb. & Flame, 157, 618 (2010)

Turbulent Inhomogeneities and Facility Effects

- Research Objectives
 - Use high-fidelity simulation and non-equilibrium formulation to isolate parametric contributions of non-idealities in experimental facilities
 - Research emphasis
 - Identify **parametric sensitivities**
 - Reconcile observed differences between experiments and detailed model-formulations
 - Facilities
 - Shock-tube
 - Flow-reactor
 - Rapid compression machine

Turbulent Inhomogeneities and Facility Effects

Shock-Tube

- Non-ideal processes in shock-tubes

1. *Non-ideal rapture of diaphragm*[#]

- Finite opening time of diaphragm
- Contribution to shock attenuation: 30%

2. *Boundary layer growth*^{\$}

- Formation of viscous boundary layer behind initial shock

3. *Shock reflection and bifurcation*[%]

- Lift-off of boundary layer resulting in formation of separation region

4. *Inhomogeneous ignition and weak-to-strong ignition transition*^{\$}

- Ignition proceeds as multi-dimensional heterogeneous process

[#] Petersen, E. L. & Hanson, R., Shock Waves, 10 (2001); ^{\$} Mirels, H., NACA-TN 3278 (1956);
Mirels, H., NACA-TN 3401 (1955); [%]Yoo, Mitchell, Davidson, Hanson, Shock Waves, 21, 2011

Turbulent Inhomogeneities and Facility Effects Shock-Tube

- Modeling challenges in simulating shock-tubes
 - Disparity of spatial and temporal scales

$$\frac{1}{150 \text{ Re}_\tau^{2/7}} L \sim \frac{1}{\text{Re}_\tau} \delta \sim \delta_v \sim \frac{\text{Re}_\tau \text{ M}_t}{\text{M}_t} \xi$$

Geometric shock-tube domain
Shock Thickness

- Solution method: Adaptive mesh refinement
 - AMR exploits multiscale nature of hydro-dynamic problem by locally adjusting computational effort to maintain uniform level of accuracy^{#, \$}

Turbulent Inhomogeneities and Facility Effects

Shock-Tube

- Shock-bifurcation
 - Simulation of Ar-diluted H₂/O₂ mixture at 5 and 10 bar pressure
 - Relevant condition for weak and strong ignition regime
 - Adiabatic and isothermal wall conditions
 - Shock tube setup
 - Length: 1m
 - Diameter: 5 cm
 - Helium in driver section
 - Target condition:
 - T₅=1100 K, p₅=10 bar
 - Chemical mechanism:
 - Burke et al.¹ (2011)

Experiment²

Results: Shock Bifurcation

- Shock-bifurcation

- Instantaneous temperature evolution shows rich flow-field structure: Boundary layer separation, Shock-bifurcation, Boundary heating

Turbulent Inhomogeneities and Facility Effects

Shock-Tube

- Ignition
 - Isothermal wall

- Observations:
 - Ignition is initiated at end-wall
 - Flame propagation towards unburned mixture (region of favorable pressure gradient)
→ non-homogeneous ignition

Turbulent Inhomogeneities and Facility Effects

Flow-Reactors

Turbulent Inhomogeneities and Facility Effects Flow-Reactors

Turbulent Inhomogeneities and Facility Effects

Flow-Reactors

- Experimentally observed stochastic ignition suggests sensitivity to initial conditions
 - Mixture composition
 - Temperature
 - Unsteady heating
 - Wall-heat losses
 - Temp-difference btw. fuel and oxidizer
- Consider inhomogeneities
 - **Equivalence ratio:** sample from experimentally determined beta-distribution
 - **Temperature fluctuations:** Sample from Gaussian with specified T'
- Use fully-developed turbulent pipe-flow at $Re = 10^4$

Turbulent Inhomogeneities and Facility Effects

Flow-Reactors

- Mixture variation: $\phi=0.4$; $\phi'=0.135$
- Temperature variation: $T=850$ K; $T' = \{0, 25, 50, 75\}$ K

Turbulent Inhomogeneities and Facility Effects Flow-Reactors

- Mixture variation: $\phi=0.4$; $\phi'=0.135$
- Temperature variation: $T=850$ K; $T' = \{0, 25, 50, 75\}$ K

Summary and Conclusions

- Turbulence/chemistry coupling processes
 - Increased relevance for low-Damkoehler/high-Karlovitz combustion processes: oxygen-diluted comb.; autoignition; preheat-comb.
 - Turbulence promotes mixing, exchange of radicals and enthalpy
 - Ignition occurs at preferred sites: “most-reactive” mixture and regions of low strain
- Validated high-fidelity LES combustion models have been developed and are available to accurately capture ignition processes
 - Models rely on experimental data
- Simulations can assist and complement experimental investigations
 - Identify experimental sensitivities
 - Guide potential modifications to mitigate facility effects
 - Reconcile discrepancies btw. experiments and theory
 - **Example:** Turbulence/chemistry coupling in shock-tubes and flow-reactors

Micro flow reactor with prescribed temperature profile

Toward fuel Indexing and kinetics study
based on multiple weak flames

Kaoru Maruta, Tohoku Univ.

S. Minaev, N.I. Kim, T. Yokomori, H. Nakamura, S. Hasegawa, T. Tezuka
T. Kataoka, Y. Tsuboi, H. Oshibe, A. Yamamoto, R. Tanimoto, M. Hori,
K. Saruwatari, S. Suzuki, T. Kamada, X. Li, Y. Kizaki, T. Onishi and H. Takahashi

Background and objectives

For understandings ignition and combustion characteristics of practical fuels...

Data from
Shock tube and RCM
have been extensively used

Ignition delay

Micro flow reactor with prescribed temperature profile

Single or multiple weak flames

Micro flow reactor with prescribed temperature profile

Stationary wall-temperature profile by an external heat source
Inner diameter of the tube < conventional quenching diameter
Gas phase temperature governed by wall temperature profile
Laminar flow and constant pressure

Flame behaviors in a micro flow reactor with a prescribed temperature profile

Three kinds of flame responses

Normal flame, oscillatory flame, weak flame

Theoretical S-shaped response

Minaev et al., CTM11 (2007)

Two stable and one unstable solutions
predicted theoretically →
Weak flame corresponds to ignition branch

Lower limit of weak flames identified

At $V = 0.2$ cm/s, $T_w = 1225$ K, $T_g - T_w < 2$ K for CH₄/air mixture

Extremely small temperature increase near lower limit

Flame position close to the ignition limit

Weak flame location → Ignition temperature

Triple weak flames, n-heptane

$U = 3 \text{ cm/s}$

Triple stationary weak flames observed
Weak flame location (temp.) insensitive to flow velocity

Computations (one-dimensional plug flow)

Code PREMIX with small modification

Gas-phase energy equation

$$\dot{M} \frac{dT}{dx} - \frac{1}{c_p} \frac{d}{dx} \left(\lambda A \frac{dT}{dx} \right) + \frac{A}{c_p} \sum_{k=1}^K \rho Y_k V_k c_{pk} \frac{dT}{dx} + \frac{A}{c_p} \sum_{k=1}^K \dot{\omega}_k h_k W_k - \frac{A}{c_p} \frac{4\lambda Nu}{d^2} (T_w - T) = 0$$

Heat transfer with the wall

Reaction scheme *n*-heptane, reduced mechanism from LLNL
(159 species, 1540 steps) Seiser et al., PCI 28 (2000)

Conditions Stoichiometric gaseous *n*-heptane/air mixture
Experimental wall temperature profile was provided as $T_w(x)$

Flame position Peaks of heat-release-rate (HRR) [W/cm³] profile

Triple weak flames, n-heptane

$U = 3 \text{ cm/s}$

Three-stage heat release

Triple weak flames, n-heptane

$U = 3 \text{ cm/s}$

Three-stage heat release

Computational species profiles

Computational species profiles -1st weak flame-

LTO: CH_2O , H_2O_2 , CO , CH_4 produced

Computational species profiles -2nd weak flame-

Partial oxidations:

Computational species profiles -3rd weak flame-

Full oxidations:

Comparison: measurements and computations

($U = 2.0 \text{ cm/s}$)

Measurement by GC

Computations

Three-stage oxidation process was experimentally confirmed by gas sampling

Interpretation of triple weak flames in MFR

Typical two-stage oxidation

Present three-stage oxidation

Typical two-stage oxidation: Cool flame + Hot flame

Three-stage oxidation: Cool flame + Separated hot flames
(Blue flame & Hot flame)

MFR applied for gasoline PRF

n-heptane + iso-octane (PRF)

Appearances of multiple weak flame
represent Research Octane Number

Weak flames at different RON

Significant LTO in smaller RON
Weak flame behaviors reproduced

Weak flames at elevated pressures

PRF20, 50,
100 similar
Tendencies
but weaker
LTO

Fuels addressed

methane (CH_4)

DME (CH_3OCH_3)

n-heptane (C_7H_{16})

iso-octane (C_8H_{16})

toluene (C_7H_8 or $\text{C}_6\text{H}_5\text{CH}_3$)

methane (CH_4)

ethane (C_2H_6)

propane (C_3H_8)

n-butane, *iso*-butane (C_4H_{10}) → (Kamada et al., WIPP)

Natural gas components

(Kamada et al., WIPP)

Similar single weak flame (hot flame) observed for each fuel
Different flame locations
Computations reproduced experimental observation

Weak flames at various RON

Data collected at slightly different conditions,
i.e., flow velocity, exposure time, temperature profile

3rd weak flame (main flame) location (temp.) monotonic function of RON

2nd weak flame (blue flame) observable when RON < 100

1st weak flame (cool flame) observable when RON < 20

Conclusions and future, 1 of 2

Micro flow reactor with prescribed temperature profile was introduced

- Three kinds of flame response (S-shaped)
- Weak flame corresponds to ignition branch
- Multiple weak flame utilized for fuel characterization
- Multiple weak flames at elevated pressures
- Appearances of weak flame correlated with RON

Conclusions and future, 2 of 2

Diesel fuels and Cetane numbers

n-cetane (hexadecane, C₁₆H₃₄)

iso-cetane (2,2,4,4,6,8,8-heptamethylnonane, C₁₆H₃₄)

n-decane (C₁₀H₂₂)

α -methylnaphthalene (C₁₁H₁₀) → (Suzuki et al., 5E06)

Ethanol → (Nakamura et al., 1E02)

Syngas

Oxyfuel combustion → (Li et al., WIPP)

Effect of surface reaction → (Kizaki et al, WIPP)

PAH and soot

Optical diagnosis

LIF, CRDS for precise species profile measurements

Higher pressures

High pressure chamber (up to 20 bar) fabricated

Acknowledgements

IHI, IIC, HONDA R&D, JAXA, NEDO, HITACHI, TG,
MEXT

Micro flow reactor now commercially available

Predictive Theoretical Elementary Reaction Kinetics and its Role in Combustion Modeling

Stephen J. Klippenstein

Theoretical Elementary Reaction Kinetics

Potential Energy Surface Exploration

Ab Initio Electronic Structure Theory

Stationary Points – Minima and Transition States

Evaluate Energies and Rovibrational Properties

Predict Rate Constants for Individual Dynamical Steps

Transition State Theory (TST)

Evaluate Partition Functions

Tunneling, Hindered Rotors, Variational Effects

Predict Collision Induced Energy Transfer Rates

Collision Rate

Energy Transfer Distribution

Usually Empirical

Predict/Model Pressure Dependence

Master Equation -> Population vs. Time

Represent with Kinetic Phenomenology

Team Effort

How to Calculate Rate Constants Accurately and Efficiently?

Ab Initio Transition State Theory Master Equation

Lawrence B. Harding Yuri Georgievskii James A. Miller

AITSTME Coding Team

Energy Transfer

Ahren Jasper

Applications

Judit Zador

Outline

1. Theoretical Studies Motivated by Modeling

- CO + HO₂, H + HO₂, CH₃OH + HO₂
- NHH Chemistry
- CH₂ + O₂
- C₃H₆OOH + O₂
- C₄H₉OH, C₄H₉O, C₄H₉O + O₂

2. Uncertainties

- Electronic Energies
- Vibrational Frequencies
- Torsional Modes
- Energy Transfer
- Coupling of TST and Energy Transfer

CO/H₂/O₂ Oxidation: Ignition Delays in RCM

G. Mittal, C. J. Sung, R. A. Yetter, Int. J. Chem. Kinet. 38, 516 (2006).

Uncertainty Analysis Highlighted Sensitivity to CO + HO₂
G. Mittal, C. J. Sung, M. Fairweather, A. S. Tomlin, J. F. Griffiths, K. J. Hughes, Proc. Comb. Inst. 31, 419 (2007).

You, Wang, Goos, Sung, Klippenstein, J. Phys. Chem. A, 111, 4031 (2007)

H_2/O_2 at High Pressure

- Present model
- Li et al. (2004)
- O'Connaire et al. (2004)
- Davis et al. (2005)
- Saxena and Williams (2006)
- Konnov (2008)
- USC-MECH II (2007)
- Hong et al. (2011)
- GRI-MECH 3.0 (1999)
- Sun et al. (2007)

Burke, Chaos, Ju, Dryer, Klippenstein, Int.
J. Chem. Kinet. 44, 444 (2012).

H + HO₂ Recombination

Direct CASPT2
Variable Reaction
Coordinate TST
Calculations

~ 20% Uncertainty

Validate Modeling
Determined Rate

The Role of NNH in NO Formation and Control

NNH Lifetime – Discrepancy between value required for modeling and value predicted by theory

NNH Mechanism for NO_x Formation – Possibly important at low temperatures

1. $\text{NNH} + \text{O}_2$
2. $\text{NNH} + \text{O}; \text{NH} + \text{NO}, \text{H} + \text{N}_2\text{O}$
3. $\text{NH}_2 + \text{O}_2 \rightarrow \text{H}_2\text{NO} + \text{O}$
4. Literature Review of NNH Lifetime and Thermochemistry
5. More accurate branching ratios for $\text{NH}_2 + \text{NO}$

S. J. Klippenstein, L. B. Harding, P. Glarborg, and J. A. Miller, Comb. Flame, 158, 774 (2011).

Modeling vs Expt NO O₂ and T Dependence

Experiments:
F. Kasuya, P.
Glarborg, K.
Dam-Johansen,
Chem. Eng. Sci.
50 (1995)
1455-1466.

Modeling vs Expt N₂O O₂ and T Dependence

Inlet concentrations:

NO = 500 +/- 30

ppm

NH₃ = 1000 +/- 60

ppm

H₂O = 5%

balance N₂

F. Kasuya, P.
Glarborg, K. Dam-
Johansen, Chem.
Eng. Sci. 50 (1995)
1455-1466.

Modeling vs Expt NO_2 O₂ and T Dependence

Inlet

concentrations:

NO = 500 +/- 30

ppm

NH₃ = 1000 +/- 60

ppm

H₂O = 5%

balance N₂

F. Kasuya, P.
Glarborg, K. Dam-
Johansen, Chem.
Eng. Sci. 50 (1995)
1455-1466.

Modeling vs Expt NO H₂ and T Dependence

Inlet

concentrations:

NO = 500 +/- 30
ppm

NH₃ = 1000 +/- 60
ppm

H₂O = 5%
balance N₂

W. Duo, K.
DamJohansen, K.
Ostergaard, Can. J.
Chem. Eng. 70
(1992) 1014-1020.

Mechanism Development C0-C3 Core Mechanism

Large scale update of Miller mechanism
Include Pressure Dependent Rate Coefficients

Miller, Klippenstein, and Glarborg, work in progress

Pressure Dependent Reactions

QOOH + O₂

Modeling indicates QOOH + O₂ Central to Low Temperature Chain Branching but essentially no Elementary Kinetics Studies

C₃H₆OOH + O₂ Smallest Prototype

Goldsmith, Green, Klippenstein, J. Phys. Chem. A, 116, 3325 (2012)

Butanol Chemistry

CEFRC Developing Mechanism for Butanol Combustion

Sensitivity Analyses Suggest Need for Further Study of a Few Key Reactions

$\text{C}_4\text{H}_9\text{OH}$ Decomposition - Isobutanol

C. W. Zhou, S. J. Klippenstein, J. M. Simmie, H. J. Curran, Proc. Comb. Inst. in press (2012); Paper 4D05

$\text{C}_4\text{H}_9\text{O}$ Decomposition (α , β , γ , δ , and O radicals)

P. Zhang, C. K. Law, S. J. Klippenstein, (2012).

$\text{C}_4\text{H}_9\text{O} + \text{O}_2$ (α , β , γ , and δ radicals)

O. Welz, J. Zador, S. J. Klippenstein, in progress (2012).

Sensitivity for Methanol (CH_3OH) Combustion

Li, Zhao, Kazakov, Chaos, Dryer, Scire, IJCK, 39, 109 (2007)

Validated Against Ignition Delays, Flame Speeds, Species Profiles

How to Improve for Engine Conditions - High Pressures/Non-Dilute?

Global uncertainty analysis

- Indicates reaction with dominant contribution to overall uncertainty
- Theoretical predictions of selected rate coefficients
- How accurate?

Klippenstein, Harding,
Davis, Tomlin, Skodje
Proc. Comb. Inst. 33,
351 (2011).

Variance Analysis for the Ignition Delay

Transition State Theory

Complete torsional sampling to find torsional minima

Torsional modes treated as uncoupled 1-dimensional hindered rotors

Asymmetric Eckart Tunneling

Other modes – harmonic oscillators and rigid rotors

Change in ignition characteristics

Predicted Ignition Delays

Final Uncertainty Analysis

$\langle \tau \rangle$

Initial 0.11

Final 0.40

Width/ $\langle \tau \rangle$

Initial 2.0

Final 0.70

How Accurate are our Predictions?

- Currently a Factor of 2-3 Uncertainty
- Compare with Experiments
 - Experience from many comparisons
- Analysis of uncertainty for underlying factors in theoretical analysis
 - Barrier Height Uncertainties
 - Vibrational Frequency Uncertainties
 - Anharmonicity Corrections
- Do Mechanisms Improve?
- Trying to reduce uncertainties to about 1.2-1.3

Reactions with Barriers

Boltzmann Factors for
Given Errors (kcal/mol)

Combustion Thermochemistry Database

HEAT (Stanton and coworkers); Wn (Martin and coworkers); Focal Point (Allen and coworkers)

CCSD(T)/TZ optimizations and Frequencies

CCSD(T)/CBS from CCSD(T)/AQZ',A5Z'

CCSDT(Q)/DZ

Core-Valence CCSD(T)/CBS; TZ and QZ

Relativistic from DKH with CI/TZ

DBOC from HF/cc-pVTZ

Anharmonic corrections from B3LYP/6-311++G**

Heats of formation relative to H₂, CH₄, H₂O, NH₃

5 Heavy Atoms

Size of Individual Corrections

	Mean	MAD	RMSD	Variance
CCSDT(Q)	-0.36	0.42	0.62	0.46
Core-Valence	0.54	0.54	0.60	0.28
Anharmonicity	0.47	0.49	0.59	0.32
Relativistic	-0.16	0.16	0.20	0.11
DBOC	0.10	0.11	0.14	0.09

Accuracy vs ATcT from Ruscic

H, O, OH, O₂, HO₂, H₂O₂, O₃, C, CH, CH₂, 1CH₂, CH₃, CO, HCO, COH, CH₂O, HCOH, CH₂OH, CH₃O, CO₂, HOCO, HCO₂, OCHOH, CH₃O₂, CH₃OOH, C₂, C₂H₂, H₂CC, C₂H₃, CCH₃, C₂H₄, CHCH₃, C₂H₅, C₂H₆, CCO, 1CCO, HCCO, CH₂CO, HCCOH, CH₃CO, CH₃CHO, CH₂CHOH, CH₃CHOH, C₂H₄OH, CH₃CH₂O, C₂H₅OH, CH₃OCH₃, OCHCHO, CH₃C(O)OH, CH₂CCH, CH₃CCH, CH₂CCH₂, -CH₂CHCH-, CH₃CHCH₂, CH₃CH₂CH₃, N, NNH, NHNN, H₂NN, NHNNH₂, NH₂NH₂, NO, HNO, NOH, H₂NO, HNOH, H₂NOH, N₂O, NO₂, NO₃, CN, HCN, CNH, H₂CN, HCNH, CH₃N, CH₂NH, CH₃NH, CH₂NH₂, CH₃NH₂, NCO, HNCO, HCNO, NCOH

Rovibrational Properties Reactions on C₃H₇ PES

Rovibrational Properties

Coupling of Uncertainties

$$\Delta E = \pm 1.0$$

kcal/mol

$$\Delta v = 1.5 \text{ factor}$$

$$v^\# = (50,850) \text{ cm}^{-1}$$

J. Prager, H. N.
Najm, J. Zador
Proc. Comb. Inst.
In press (2012)
Paper 5D03

Direct Sampling of Torsions

Pressure Dependence: Comparison with Expt

Propane Decomposition

Acetaldehyde Decomposition

$$\langle \Delta E_{\text{down}} \rangle = 100 (T/300)^{0.85} \text{ cm}^{-1} \quad \langle \Delta E_{\text{down}} \rangle = 150 (T/300)^{0.85} \text{ cm}^{-1}$$

Energy Transfer
Jasper & Oana
AITSTME
Pelzer, Miller, SJK

Delta E_{down}

Fit
 237 cm^{-1}

Trajectory
 470 cm^{-1}

Experiment
Knyazev & Slagle

A Priori Predictions of Pressure Dependence

Trajectory Simulations of Energy Transfer

A Priori $P(E' \rightarrow E)$

1D Master Equation Assumes Strong Collider in J – Not Valid

$P(E', J' \rightarrow E, J)$ ΔE_{down} ΔJ_{down}

2-Dimensional Master Equation (E, J)

Coupling of Uncertainties: n-propyl + O₂

C. F. Goldsmith, A. S. Tomlin, S. J. Klippenstein, Proc.
Comb. Inst. 34, in press (2012) Paper 2D09

Funding

US-Department Of Energy

- 1. Chemical-Physics Program – Chemical Dynamics in the Gas Phase**
- 2. Argonne-Sandia Consortium on High Pressure Combustion Chemistry**
- 3. Combustion Energy Frontier Research Center**
- 4. An Expert Ab Initio Transition-State-Theory-Based Master Equation Code**

Kinetic Mechanism Development for Hydrocarbons and Oxygenated Fuels

Dr. Henry Curran and Dr. Philippe Dagaut

Combustion Chemistry Centre, NUI Galway, Ireland

CNRS Orleans, France

Lecture

1st Workshop on Flame Chemistry

July 28th, 2012

NUI Galway
OÉ Gaillimh

Future HC fuels - many sources

- Some petroleum will still be available
- Oil sands, oil shale
- Coal-to-liquids
- Fischer – Tropsch
- Natural gas
- Hydrogen
- Bio-derived fuels
 - Ethanol, butanol, algae
 - Biodiesel from vegetable and animal oils
- Chemical kinetics to understand and simulate
 - complex behaviour (ignition, NTC, cool flames...)
 - reactivity (extent of conversion, heat release)
 - product / pollutant formation

How well an oxygenated fuel works depends on its molecular structure

Miyamoto *et al.* Paper No. SAE 980506 (1998).

Westbrook *et al.* J. Phys. Chem. A (2006) 110: 6912–6922.

Oxygenated fuels

- **Alcohols** (methanol, ethanol, propanol, butanol)
- **Ethers** (DME, DEE, EME, MTBE, ETBE)
- **Esters** (methyl and ethyl esters)
- **Ketones** (acetone, EMK, DEK)
- **Furans** (methyl furan, di-methyl furan)

General reaction scheme

Fuel decomposition reactions

NUI Galway
OÉ Gaillimh

Propanol isomers: Comparison of reactivity

0.5% fuel, 2.25% O₂, $\phi = 1.0$, P = 1 atm

Johnson *et al.* Energy & Fuels (2009) 23 5886–5898.

Alcohol molecular elimination

C³

Water elimination is much more important for iso-propanol

0.5% *n*-propanol
 $\phi = 1.0, T = 1600 \text{ K}$
 30% fuel consumed

0.5% *iso*-propanol
 $\phi = 1.0, T = 1600 \text{ K}$
 30% fuel consumed

General reaction scheme

High temperature

Fuel

olefins,
cyclic ethers,
 β -scission

chain
branching

Low temperature

Intermediate temperature

Sub-mechanism

NUI Galway
OÉ Gaillimh

Reactivity of ethers

● 1% H₂, 1% O₂ in Ar, $p_5 = 1.4\text{--}2.6$ atm

Yasunaga *et al.* Comb. Flame (2011) 158: 1032–1036.

Ether molecular elimination

C³

$$k = 1.70 \times 10^{14} \text{ } 0.60800. \text{ s}^{-1}$$

$$k = 1.70 \times 10^{14} \text{ } 0.60600. \text{ s}^{-1}$$

Yasunaga *et al.* Comb. Flame (2011) 158: 1032–1036.

MP4/cc-pVTZ//MP2/cc-pVTZ level of theory with zero point corrections

Ether molecular elimination

C³

MP4/cc-pVTZ//MP2/cc-pVTZ level of theory with zero point corrections

Ethylene is very fast to ignite

General reaction scheme

H-atom abstraction reactions

Acetone: Low p , High T

1.25% fuel, 22% fuel conversion, $T = 1400$ K, $p = 1$ atm

C³

H-atom Abstraction

- *n*-Butanol + •OH/HO₂•

C-W. Zhou, J. M. Simmie, H. J. Curran. *Combust. & Flame*, **2011** 158 726–731.

C-W. Zhou, J. M. Simmie, H. J. Curran. *Int. J. Chem. Kinet.*, **2012** 44 155–164.

- *n*-Butanol + CH₃ (Imperial College London: Prof. Alex Taylor)

D. Katsikadakos, C-W. Zhou, J. M. Simmie, H. J. Curran, P.A. Hunt,
Y. Hardalupas, A.M.K.P. Taylor. *Proc. Comb. Inst.*, 2012. Paper 4D03 Thursday 2nd August.

- Ethers + •OH

DME

EME

iPME

C-W. Zhou, J.M. Simmie, H.J. Curran
Phys. Chem. Chem. Phys. **2010** 12 7221–7233.

H-atom Abstraction

C³

➤ Ketones + ·OH

DMK

EMK

iPMK

C-W. Zhou, J. M. Simmie, H. J. Curran. *Phys. Chem. Chem. Phys.* **2011** 13 11175–11192.

➤ iso-Butanol decomposition and related $(\text{CH}_3)_2\dot{\text{C}}\text{H} + \dot{\text{C}}\text{H}_2\text{OH}$ reaction (Argonne National Laboratory: Dr. Stephen Klippenstein)

C-W. Zhou, S. J. Klippenstein, J. M. Simmie, H. J. Curran

Proc. Comb. Inst., **2012** in press

Paper : 4D05 Thursday 2nd August

	A	n	E
Zhou	6.24E-05	4.89	1.05E+04
Klippenstein	2.28E-05	5.06	1.02E+04
Curran	1.08E+04	2.55	1.05E+04
Li	3.98E+13	0.00	1.94E+04

$$k = AT^n \exp(-E/RT)$$

--- in $\text{cm}^3, \text{mol}, \text{s}, \text{cal}$ units

Klippenstein, S J.; Harding, L B.; Davis, M J. et al. Proc. Comb. Inst. **2011** 33 351–358.
 Li, J.; Zhao, Z.; Kazakov, A.; Chaos, M.; Dryer, F L. et al. Int. J. Chem. Kinet. **2007** 39 109–136.

Acetone: α' hydrogen reactivity

TS1a

TS2a

Acetone: α' hydrogen reactivity

➤ Electron delocalization from $\pi(\text{CO})$ to $\sigma^*(\text{CH}_{\text{in}})$ and $\sigma^*(\text{CH}_{\text{out}})$ is different

$$\Delta E_{\text{CT}} = 2.0 \text{ kcal/mol}$$

$$\Delta E_{\text{CT}} = 0.0 \text{ kcal/mol}$$

α' hydrogen reactivity in DME

- Electron delocalization from oxygen lone pairs to $\sigma^*(\text{CH}_{\text{out}})$ weaken the BDE of **out-of-plane** CH bond by 5.0 kcal/mol.

$$\Delta E_{\text{CT}} = 4.9 \text{ kcal/mol}$$

$$\Delta E_{\text{CT}} = 1.7 \text{ kcal/mol}$$

α' Reactivity Compared to Alkanes C³

➤ Ethers

- ★ Oxygen lone pairs accelerate reactivity of α' hydrogen compared to alkane
- ★ Growing size of the α -side has no influence on reactivity of α' hydrogen atoms

➤ Ketones

- ★ α' H-atom is less reactive than primary H-atom in alkanes
- ★ Growing size of the α -side will accelerate reactivity of α' H-atoms

Comparative Reactivity

General reaction scheme

High temperature

Low-temperature chemistry

NUI Galway
OÉ Gaillimh

Alcohol Oxidation

C³

Aldehyde formation from α -radical + O₂

Alcohol Oxidation

C³

Waddington mechanism (β -radical + O₂)

Comparison: Alcohol/Alkane Oxidation

Effect of chain length

Alcohol Oxidation

Effect of chain length on influence of functional group

n-Butanol vs *n*-Butane

n-Pentanol vs *n*-Pentane

Heufer *et al.* Proc. Comb. Inst. (2012) in press.
Paper 4D06, Thursday 2nd August

Soybean and rapeseed derived biodiesels have only 5 principal components

Fatty acid methyl esters (FAMEs):

Methyl Palmitate (C16:0)

Methyl Stearate (C18:0)

Methyl Oleate (C18:1)

Methyl Linoleate (C18:2)

Methyl Linolenate (C18:3)

Westbrook *et al.* Proc. Comb. Inst. (2012) in press.

Paper 3D03 Wednesday 1st August

Biodiesel components ignite in order of number of double bonds

Westbrook *et al.* Proc. Comb. Inst. (2012) in press.
Paper 3D03 Wednesday 1st August

C = C double bonds reduce low T reactivity

- Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain
- Allylic C – H bond sites are weaker than most others
- Therefore they are preferentially abstracted by radicals
- O₂ is also very weakly bound at allylic sites and falls off rapidly, inhibiting low T reactivity

Westbrook *et al.* Proc. Comb. Inst. (2012) in press.

Paper 3D03 Wednesday 1st August

Observed same effect in hydrocarbon fuels: hexenes

RO_2 isomerization initiates
low temperature reactivity

Moving the double bond towards the center
of the molecule “inhibits” RO_2 kinetics

Ignition delay times in a rapid compression machine of hexene isomers
(0.86-1.09 MPa, $\Phi=1$):

Experimental data: Vanhove et al. PCI 2005
Simulations: Mehl, Vanhove, Pitz, Ranzi Combustion and Flame 155 (2008) 756—772.

Novel fuels

NUI Galway
OÉ Gaillimh

Furans vs bio-ethanol

- Promising Next Generation Biofuels
 - Roman-Leshkov et al., Nature (2007) 447: 982-985. (2nd generation)
- Novel renewable production process
 - Biomass (lignocellulosic) feedstock not destined for human/animal consumption
 - Highly efficient
 - Large scale and low cost
- Desirable physicochemical properties
 - Higher energy density (40%)
 - Direct combustion in unmodified engine
 - RON = 119
 - Lower aqueous solubility and less volatile

Laminar Flame Speed Measurements of DMF, Ethanol and Gasoline, Tian et al., Energy Fuels, 2010

Energy Densities:

- Gasoline: 35 MJ/L
- 2,5-DMF: 31 MJ/L
- Bio-Ethanol: 23 MJ/L

Session 1: Monday morning: “Kinetics of Cyclic Ethers”

2MF: Unimolecular Decomposition

Energies (0 K, kJ / mol) CBS-QB3, CBS-APNO, G3

Somers et al. Comb. Inst. (2012) in press. Paper1D01 Monday 30th July

Conclusions

- General chemical reaction schemes of HCs can be applied to oxygenated fuels
- Details of oxygenated fuel combustion are quite different!

High-Pressure Kinetic Mechanisms for Hydrogen and Hydrogen Syngas

1st International Workshop on Flame Chemistry
Warsaw, Poland
July 28, 2012

Michael P. Burke

Chemical Sciences and Engineering Division, Argonne National Laboratory

Frederick L. Dryer

Department of Mechanical and Aerospace Engineering, Princeton University

Other collaborators: Yiguang Ju, Marcos Chaos, Jeffrey Santner, Francis M. Haas
Stephen Klippenstein, Lawrence Harding

Motivation

- Growing interest in computational engine design/testing
 - Fluid mechanics and kinetics sub-models
- H₂ and H₂/CO
 - Synthesis gas (H₂/CO/H₂O/CO₂) from coal/biomass gasification
 - Core sub-model for all fuels
- Advanced engine technologies
→ High P , low T_f
 - Modeling difficulties for flames

(Shi & Reitz 2010)

(Burke et al. 2011)

1. Y. Shi, R.D. Reitz, Fuel 89 (2010) 3416–3430.
2. M.P. Burke, M. Chaos, F.L. Dryer, Y. Ju, Combustion and Flame 157 (2010) 618-631.
3. M.P. Burke, F.L. Dryer, Y. Ju, Proceedings of the Combustion Institute 33 (2011) 905-912.

Difficulty in predicting high-pressure flames

- Large variations among models
- None of the models capture pressure dependence across all conditions

1. M.P. Burke, M. Chaos, F.L. Dryer, Y. Ju, *Combustion and Flame* 157 (2010) 618-631.
2. M.P. Burke, F.L. Dryer, Y. Ju, *Proceedings of the Combustion Institute* 33 (2011) 905-912.

What controls high- P /low- T_f flames?

increasing P

- More HO_2
→ more $\text{HO}_2 + \text{radical flux}$
- Flame zone shifts
→ peak sensitivity at higher T 's
→ collision efficiencies of products
- More R1/R2 competition
→ amplified sensitivity

(Situation similar for H_2/CO)

1. M.P. Burke, M. Chaos, F.L. Dryer, Y. Ju, *Combustion and Flame* 157 (2010) 618-631.
2. M.P. Burke, F.L. Dryer, Y. Ju, *Proceedings of the Combustion Institute* 33 (2011) 905-912.

Complexity of the modeling problem

- Uncertainty in all reactions of 10% → burning rate uncertainty of 30%
- Realistic accuracy improvements for *elementary reactions* will not yield typical expected accuracies for *global behavior*
- Optimization against global targets necessary

- Functional temperature dependence of $\text{OH} + \text{HO}_2 = \text{H}_2\text{O} + \text{O}_2$ highly disputed/unknown
- Parameter optimization techniques don't work if the *functional dependence* is not known

1. M.P. Burke, F.L. Dryer, Y. Ju, *Proceedings of the Combustion Institute* 33 (2011) 905-912.

Complexity of the modeling problem

- A rigorous modeling solution will likely require both:
 - Empirical adjustments to rate constants
 - Improved fundamental understanding of select processes
- Neither alone appears sufficient to solve the problem.

1. M.P. Burke, F.L. Dryer, Y. Ju, *Proceedings of the Combustion Institute* 33 (2011) 905-912.

Updated kinetic-transport models

- H₂: Hong et al. (2011) and Burke et al. (2012)*
 - HO₂ formation/consumption
 - H+O₂(+M) = HO₂(+M)
 - HO₂+radical reactions
 - H₂O₂ reactions
 - ... among others
- CO: Haas et al. (2012)
 - CO + OH = CO₂ + H, CO + HO₂ = CO₂ + OH
 - HCO chemistry

*Uncertainties remained: adjustments of rate parameters to improve predictions

1. Z. Hong, D.F. Davidson, R.K. Hanson, *Combust. Flame* 158 (2011) 633–644.
2. M.P. Burke, M. Chaos, Y. Ju, F.L. Dryer, S.J. Klippenstein, *Int. J. Chem. Kinet.* 44 (2012) 444-474.
3. F.M. Haas, S. Vranckx, M. Chaos, R.X. Fernandes, F.L. Dryer (2012) in preparation.

Model performance

- Hong/Burke perform similarly well against most targets
- Largest differences in flames
 - Burke et al. – within 20%, Hong et al. – within 40%
- Parameter adjustments not unique → uncertainties remain!

1. Z. Hong, D.F. Davidson, R.K. Hanson, *Combust. Flame* 158 (2011) 633–644.
2. M.P. Burke, M. Chaos, Y. Ju, F.L. Dryer, S.J. Klippenstein, *Int. J. Chem. Kinet.* 44 (2012) 444-474.
3. F.M. Haas, S. Vranckx, M. Chaos, R.X. Fernandes, F.L. Dryer (2012) in preparation.
4. J. Santner, F.L. Dryer, Y. Ju, *Proc. Combust. Inst.* (2012) in press, oral presentation : 5E01 on Friday.

Uncertainties remaining in 2012 (for flames)

■ Parametric uncertainties

- HO₂ + X reactions

- H + O₂ (+M) = HO₂ (+M)

- CO + O + M = CO₂ + M

■ Model assumptions

- Nonlinear mixture rules

1. M.P. Burke, M. Chaos, Y. Ju, F.L. Dryer, S.J. Klippenstein, *Int. J. Chem. Kinet.* 44 (2012) 444-474.
2. F.M. Haas, S. Vranckx, M. Chaos, R.X. Fernandes, F.L. Dryer (2012) in preparation.
3. P. Saxena, F.A. Williams, 7th US National Combustion Meeting, Atlanta, GA , 2011.

Recall the complexity of the modeling problem and uncertainties in $\text{OH} + \text{HO}_2 = \text{H}_2\text{O} + \text{O}_2$

- A rigorous modeling solution will likely require **both**:
 - Empirical adjustments to rate constants
 - Improved fundamental understanding of select processes
- Neither alone appears sufficient to solve the problem.

1. M.P. Burke, F.L. Dryer, Y. Ju, *Proceedings of the Combustion Institute* 33 (2011) 905-912.

Modeling strategies

■ Current kinetic models: sets of rate parameters

- Hierarchical, comprehensive modeling
 - Westbrook & Dryer (1984)
- Optimization and Uncertainty Quantification
 - Frenklach (1984), Frenklach,Wang,Rabinowitz (1992): Solution-mapping + optimization of A -factors
 - Frenklach et al. (2004), Sheen & Wang (2009): Uncertainty Quantification of A -factors
 - Turányi et al. (2012), Sheen et al. (2012): Uncertainty quantification of A - n - E_a
- Require massive amounts of data to constrain full $T/P/M$ -dependence of all k 's
 - Extrapolation outside the dataset very challenging

■ Direct incorporation of theory useful

- Replaces fitting formulas with physical theories
- Common for extrapolation of data for a single reaction
- Imposes constraints spanning all $T/P/M$

■ ***Multi-scale models: sets of molecular parameters***

- Optimal use of information from *ab initio* calculations, k measurements, combustion measurements
- Theory *fills in the gaps* across all $T/P/M$

1. M.P. Burke, S.J. Klippenstein, L.B. Harding, *Proceedings of the Combustion Institute* (2012) in press.

▽ Peeters and Mahnen (1973)	★ Hippler et al. (1995)
▼ DeMore (1979)	○ Kappel et al. (2002)
△ Lii et al. (1980)	× Srinivasan et al. (2006)
* Cox et al. (1981)	■ Hong et al. (2010)
△ Kurylo et al. (1981)	— Keyser (1988)
● Braun et al. (1982)	- - - Sivaramakrishnan et al. (2007)
◇ DeMore (1982)	- - - Chaos & Dryer (2008) - Hippler
+	····· Chaos & Dryer (2008) - Kappel
□ Keyser (1988)	- - - Rasmussen et al. (2008)
▲ Hippler & Troe (1992)	

(R1)	$\text{H}_2\text{O}_2(+\text{M}) = \text{OH}+\text{OH}(+\text{M})$
(R2)	$\text{H}_2\text{O}_2+\text{OH} = \text{HO}_2+\text{H}_2\text{O}$
(R3)	$\text{HO}_2+\text{HO}_2 = \text{H}_2\text{O}_2+\text{O}_2$
(R4)	$\text{HO}_2+\text{OH} = \text{H}_2\text{O}+\text{O}_2$
(R5)	$\text{OH}+\text{OH} = \text{O}+\text{H}_2\text{O}$

Multi-scale informatics

set of molecular parameters informed by data across all scales

I. Molecular data

$$E^\ddagger, v's, v_{imag}, \dots$$

TST,
RRKM-ME,...

II. Rate constant measurements

$$k_n(T, P, M)$$

0-D reactor,
1-D flame,...

III. Combustion measurements

$$[\text{OH}] \text{ vs. } t, s_u, \dots$$

Mathematical implementation

- Local “surrogate model”
- Least-squares error minimization
- Iterated until converged

$$(I) + (IV) \xrightarrow{\quad} S_{ij} = \delta_{ij}$$

$$(II) \xrightarrow{\quad} S_{ij} = \frac{\partial \ln k_{p,n}(T_i, P_i, M_i)}{\partial X_j}$$

$$(III) \rightarrow S_{ij} = \sum_n \frac{\partial F_i}{\partial \ln k_{p,n}(T_i, P_i, M_i)} \frac{\partial \ln k_{p,n}(T_i, P_i, M_i)}{\partial X_j}$$

X = Optimization parameters:

Molecular parameters + experimental conditions
 $E^\ddagger, v's, v_{imag}, \dots$ + $T, P, [M], \dots$

$$F_i(X_j) = Y_{t,i} \pm Z_i$$

$$\sum_j S_{ij} (X_j - \tilde{X}_j) = Y_i \pm Z_i \rightarrow X_{j,opt} \text{ and } C_X$$

Implementation for H₂O₂ system

Optimization variables

H ₂ O ₂ (+M) = OH+OH(+M)	$A'_{(1)}, n_{(1)}, E_{(1)}$
H ₂ O ₂ +OH = HO ₂ +H ₂ O	$E'_{(2)}, v'_{all(2)}, v'_{tr(2)}, v'_{ss(2)}, v'_{imag(2)}, E_{w(2)}, \eta'_{H2O2}, \eta'_{TS(2)}$
HO ₂ +HO ₂ = H ₂ O ₂ +O ₂	$E'_{(3)}, v'_{all(3)}, v'_{tr(3)}, v'_{ss(3)}, v'_{imag(3)}, E_{w(3)}, \eta'_{TS(3)}$
HO ₂ +OH = H ₂ O+O ₂	$E'_{(4g)}, v'_{all(4)}, v'_{tr(4g)}, v'_{ss(4g)}, v'_{imag(4g)}, E_{w(4g)}, \eta'_{TS(4g)}$
OH+OH = O+H ₂ O	$E'_{(4e)}, v'_{TS(4e)}, v'_{tr(4e)}, v'_{ss(4e)}, \eta'_{TS(4e)}, f'_{VRCTST,c(4)}$
Shock-heated H ₂ O ₂ /H ₂ O/O ₂ /Ar	$E'_{(5g)}, v'_{all(5)}, v'_{tr(5g)}, v'_{ss(5g)}, v'_{imag(5g)}, E_{w(5g)}$
Shock-heated H ₂ O/O ₂ /Ar	$E'_{(5e)}, v'_{TS(5e)}, v'_{tr(5e)}, v'_{ss(5e)}$
Shock-heated H ₂ O ₂ /Ar	$T'_b, P'_b, M'_{H2O2,o,i}, M'_{H2O,o,i}, M'_{O2,o,i}$
	$T'_b, P'_b, M'_{H2O2,o,i}, M'_{O2,o,i}, M'_{H,o,i}$
	$T'_b, P'_b, M'_{H2O2,o,i}, \sigma'_{1,H2O2}, \sigma'_{2,H2O2}, \sigma'_{1,HO2}, \sigma'_{2,HO2}$

Optimization Targets

I. Molecular data:

ab initio calculations (Klippenstein/Harding)

II. Rate constant measurements:

see paper

III. Combustion measurements:

OH(t), H ₂ O(t)	<i>Shock-heated H₂O₂/Ar (Hong et al. 2009, 2010)</i>
OH(t)	<i>Shock-heated H₂O/O₂/Ar (Hong et al. 2010)</i>
<i>abs</i> _{215nm} (t)	<i>Shock-heated H₂O₂/Ar (Kappel et al. 2002)</i>

1. M.P. Burke, S.J. Klippenstein, L.B. Harding, *Proceedings of the Combustion Institute* (2012) in press.

Different interpretations for OH+HO₂

Much weaker *T*-dependence
(Secondary reactions)

Lower magnitude
(Arbitrary H atom doping)

1. M.P. Burke, S.J. Klippenstein, L.B. Harding, *Proceedings of the Combustion Institute* (2012) in press.

Consistent description of $\text{OH} + \text{HO}_2 = \text{H}_2\text{O} + \text{O}_2$

- Single description consistent with:
 1. *Ab initio* calculations
 2. Low- T k measurements
 3. High- T raw global data
- Milder T -dependence
 - Minimum near 1200 K

1. M.P. Burke, S.J. Klippenstein, L.B. Harding, *Proceedings of the Combustion Institute* (2012) in press.

Consistent description of $\text{OH} + \text{HO}_2 = \text{H}_2\text{O} + \text{O}_2$

- *Simultaneous weighting* of diverse data types
 - Theory guides experimental interpretations
- Raw data and careful documentation extremely powerful

1. M.P. Burke, S.J. Klippenstein, L.B. Harding, *Proceedings of the Combustion Institute* (2012) in press.

Consistent description of $\text{OH} + \text{HO}_2 = \text{H}_2\text{O} + \text{O}_2$

Z. Hong, K.-Y. Lam, R. Sur, S. Wang, D.F. Davidson, R.K. Hanson

“On the rate constants of $\text{OH} + \text{HO}_2$ and $\text{HO}_2 + \text{HO}_2$: A comprehensive study of H_2O_2 thermal decomposition using multi-species laser absorption.”

Combustion Symposium: 5D11

M.P. Burke, S.J. Klippenstein, L.B. Harding

“A quantitative explanation for the *apparent* anomalous temperature dependence of $\text{OH} + \text{HO}_2 = \text{H}_2\text{O} + \text{O}_2$ through multi-scale modeling.”

Combustion Symposium: 4D09

1. M.P. Burke, S.J. Klippenstein, L.B. Harding, *Proceedings of the Combustion Institute* (2012) in press.
2. Z. Hong, K.-Y. Lam, R. Sur, S. Wang, D.F. Davidson, R.K. Hanson, *Proc Combust Inst* (2012) in press.

Conclusions

- High-pressure syngas flames
 - Emphasize HO₂ pathways + collision efficiencies of CO₂/H₂O
 - Inherently difficult to model
- Rigorous modeling solutions
 - Empirical adjustments based on global targets
 - Improved fundamental characterization
- Uncertainties remain in both 1) model parameters and 2) model assumptions
- Moving forward
 - Incorporation of theory to *fill in the gaps*
 - Raw data and careful documentation
 - Characterization of non-idealities/uncertainties in experiments and theory

Acknowledgements

- This work was supported by:
 - Director's Postdoctoral Fellowship from Argonne National Laboratory (MPB)
 - U. S. Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357 (SJK, LBH)
 - U. S. Department of Energy, University Turbine Systems Research Program under Contract No. DE-NT0000752 (FLD,YJ)
 - U.S. Department of Energy, Office of Basic Energy Sciences, Energy Frontier Research Center under Contract No. DE-SC0001198 (FLD,YJ)

PrincetonUniversity

***Mechanical & Aerospace
Engineering Department***

Thank you.

Questions?

End

Determination of the joint uncertainty domain of rate parameters: The case study of hydrogen combustion

T. Turányi, T. Nagy, I.Gy. Zsély, T. Varga,
R. Pálvölgyi, I. Sedyó, C. Olm, H. J. Curran

Laboratory for Chemical Kinetics
Institute of Chemistry, Eötvös University (ELTE),
Budapest, Hungary

Uncertainty of rate coefficients

Definition of uncertainty factor f :

$$f(T) = \log_{10} \left(k^0(T) / k^{\min}(T) \right) = \log_{10} \left(k^{\max}(T) / k^0(T) \right)$$

Calculation of the variance of $\ln k$ from uncertainty factor f (assuming 3σ deviation between $\ln k^0$ and $\ln k^{\max}$):

$$\sigma(\ln k) = \frac{\ln 10}{3} f$$

The databases of evaluated combustion kinetic rate parameters
e.g. Baulch *et al.*, 2005

- recommended temperature independent (constant) uncertainty (usually selected from values $f = 0.1, 0.3, 0.5, 0.7$, and 1.0)

OR

- uncertainty is defined at some temperatures (or temperature intervals)

Uncertainty parameter f in the databases

Features of uncertainty factor f :

- widely used in the data collections / data evaluations
(Warnatz, Tsang, Konnov, Baulch, NIST)
- available for most reactions
- some uncertainty analysis works have used it
- important input information in the mechanism optimization works
of Frenklach *et al.* and Wang *et al.*
- no statistical background, subjective assessment
- Usually reflects a wider uncertainty than the quoted experimental
uncertainty of the "best" measurement
- temperature dependence:
 - quoted to be temperature independent (50%)
 - defined at several (2-3) temperatures (50%)

Arrhenius plot ($\ln k$ vs. $1/T$) with uncertain parameter A :

**uncertainty of
the rate coefficient
is independent
of temperature**

Arrhenius plot ($\ln k$ vs. $1/T$) with uncertain parameters A and E :

**uncertainty of
the rate coefficient
depends
on temperature**

extended Arrhenius expression:

$$k(T) = AT^n \exp(-E/RT)$$

linearized form:

$$\underbrace{\ln\{k(T)\}}_{\kappa(\theta)} = \underbrace{\ln\{A\}}_{\alpha} + \underbrace{n}_{n} \cdot \underbrace{\ln\{T\}}_{\theta} - \underbrace{\{E/R\}}_{\varepsilon} \cdot \underbrace{\{T\}^{-1}}_{\theta}$$

- Matrix-vector form of the linearized Arrhenius equation:

$$\mathbf{p}^T := [\alpha \ n \ \varepsilon]$$

$$\boldsymbol{\theta}^T := [1 \ \ln T \ -T^{-1}]$$

$$\kappa(\theta) = \mathbf{p}^T \boldsymbol{\theta}$$

- The covariance matrix of the Arrhenius parameters and its relation to the uncertainty of the rate coefficient:

$$\Sigma_p = \overline{(\mathbf{p} - \bar{\mathbf{p}})(\mathbf{p} - \bar{\mathbf{p}})^T} = \begin{bmatrix} \sigma_\alpha^2 & r_{\alpha n} \sigma_\alpha \sigma_n & r_{\alpha \varepsilon} \sigma_\alpha \sigma_\varepsilon \\ r_{\alpha n} \sigma_\alpha \sigma_n & \sigma_n^2 & r_{n \varepsilon} \sigma_n \sigma_\varepsilon \\ r_{\alpha \varepsilon} \sigma_\alpha \sigma_\varepsilon & r_{n \varepsilon} \sigma_n \sigma_\varepsilon & \sigma_\varepsilon^2 \end{bmatrix}$$

$$\sigma_\kappa(\theta) = \sqrt{\boldsymbol{\theta}^T \Sigma_p \boldsymbol{\theta}}$$

⇒ the temperature dependent standard deviation of k can be calculated from a quadratic form.

Relation between the rate coefficient and the covariance matrix of the Arrhenius parameters

- For the 3-parameter Arrhenius equation

$$\sigma_k(\theta) = \sqrt{\sigma_\alpha^2 + \sigma_n^2 \ln^2 \theta + \sigma_\varepsilon^2 \theta^{-2} + 2r_{\alpha n} \sigma_\alpha \sigma_n \ln \theta - 2r_{\alpha \varepsilon} \sigma_\alpha \sigma_\varepsilon \theta^{-1} - 2r_{n \varepsilon} \sigma_n \sigma_\varepsilon \ln \theta \cdot \theta^{-1}}$$

- For the original (2-parameter) Arrhenius equation:

$$\sigma_k(\theta) = \sqrt{\sigma_\alpha^2 + \sigma_\varepsilon^2 \theta^{-2} - 2r_{\alpha \varepsilon} \sigma_\alpha \sigma_\varepsilon \theta^{-1}}$$

- ⇒ If the variance of k is known at several (at least 6) temperatures the covariance matrix of the Arrhenius parameters can be calculated
- ⇒ The uncertainty limits of the Arrhenius parameters can be determined.
- ⇒ If $\ln k$ has normal distribution \Leftrightarrow the Arrhenius parameters have joint multivariate normal distribution.

Reaction $\text{O} + \text{N}_2\text{O} \rightarrow \text{NO} + \text{NO}$

temperature dependence of the uncertainty of the rate coefficient (1000K–4000K)

$$k(T) = A \exp(-E / RT)$$
$$\kappa(\theta) = \alpha - \varepsilon \cdot \theta^{-1}$$
$$\bar{\alpha} = 32,134$$
$$\bar{\varepsilon} = 13930$$

$$\sigma_{\alpha} = 0,355$$
$$\sigma_{\varepsilon} = 588$$
$$r_{\alpha\varepsilon} = 0,9045$$

Reaction $\text{O} + \text{N}_2\text{O} \rightarrow \text{NO} + \text{NO}$

$$\sigma_{\kappa}(\theta) = \sqrt{\sigma_{\alpha}^2 + \sigma_{\varepsilon}^2 \theta^{-2} - 2 r_{\alpha\varepsilon} \sigma_{\alpha} \sigma_{\varepsilon} \theta^{-1}}$$

**Temperature dependent
1D normal
probability density function (pdf)
of the rate coefficient
(1000 K – 4000 K)**

**Temperature independent
multivariate joint normal
probability density function (pdf)
of the Arrhenius parameters**

Estimation of the temperature dependent uncertainty

For most of the reactions the data evaluations define

- temperature independent f (constant $f(T)$ function)

OR

- a verbally defined $f(T)$ function

" $f = 0.1$ at 800 K raising to 0.2 at 2000 K "

Reassessment of the $f(T)$ functions is needed!

Example:

Reaction $\text{H} + \text{O}_2 \rightarrow \text{O} + \text{OH}$

All experimental and theoretical (TST) results from the NIST database

Definition of k_{\min} and k_{\max} ranges of uncertainty

Empirical $f(T)$ points and fitted $f(T)$ function

$$f(T) = \frac{3}{\ln 10} \sqrt{\sigma_{\alpha}^2 + \sigma_{\varepsilon}^2 T^{-2} + \sigma_n^2 \ln^2 T - 2r_{\alpha\varepsilon}\sigma_{\alpha}\sigma_{\varepsilon}T^{-1} - 2r_{\varepsilon n}\sigma_{\varepsilon}\sigma_n T^{-1} \ln T + 2r_{\alpha n}\sigma_{\alpha}\sigma_n \ln T}$$

Nagy, T.; Turányi, T.
Uncertainty of Arrhenius parameters
Int. J. Chem. Kinet., **43**, 359-378(2011)

Temperature dependence of the uncertainty of the rate coefficients of the most important H/O reactions

The procedure above was repeated for several H/O reactions

Sedyó, I; Nagy, T; Zsély, I; Turányi, T

Uncertainty of the Arrhenius parameters of important elementary reactions of the hydrogen-oxygen system

Proceedings of the ECM, 2011

Comprehensive determination of the uncertainty of the rate parameters

Required features

1. The determination should take into account all available information:

Direct measurements: determination of the rate coefficient of a single reaction step at given temperature, pressure and bath gas
Indirect measurements: ignition delay time, laminar flame velocity, measured concentration profiles

Theoretical calculations / estimations: uncertainty is critical

2. Statistics based (reproducible) definition of the uncertainty

3. Joint uncertainty for all rate parameters:

Arrhenius parameters A , n , E for each reaction step,
3rd body efficiencies, parameters of pressure dependence

4. Extensions:

thermodynamic data: in accordance with the ATcT method

other parameters of simulations: e.g. transport data

Step 1: Collection of large amount of indirect measurements

Aim: collection of all direct and indirect measurement, ever measured, related to hydrogen combustion

Reality: pre-selection was needed, many obsolete measurements (before about 1950) were not considered

- **ignition delay time measurements in shock tubes:** 796 data points in 55 data series from 17 publications
- **ignition delay time measurements in rapid compression machines (RCMs):** 623 data points in 44 data series from one publication
- **Laminar flame velocity measurements:** 622 data points in 64 data series from 23 publications
- **concentrations measured in PSRs:** 152 data points in 9 data series from one publication
- **concentration–distance profiles in turbulent flow reactors:** 214 data points in 16 data series from one publication

Total: 2407 data points in 188 data series from 43 publications.

All experimental data were encoded in PrIMe XML data format.

PrIMe database

PrIMe (Process Informatics Model) database of Michael Frenklach:

www.primekinetics.org

Open database that contains the description of several hundred indirect combustion measurements.

Special XML data format:
defines all experimental conditions and measurement data.

We have created computer codes for

- encoding literature data OR other experimental data in PrIMe XML format
- carrying out simulations based on a PrIMe datafile
(ignition in shock tube, laminar stationary flame, tubular reactor)
- calculating the deviations between the experimental and simulated data

PrIMe-format encoding of a shock tube experiment

```
<commonProperties>
    <property description="pressure behind reflected shock waves"
        label="P5" name="pressure" units="atm">
        <value>64</value>
        <uncertainty bound="plusminus" kind="relative"
            transformation="1">0.01</uncertainty>
    </property>
    <property name="initial composition">
        <component>
            <speciesLink preferredKey="H2" primeID="s00009809" />
            <amount units="mole fraction">0.0033</amount>
        </component>
        <component>
            <speciesLink preferredKey="O2" primeID="s00010295" />
            <amount units="mole fraction">0.00167</amount>
        </component>
        <component>
            <speciesLink preferredKey="Ar" primeID="s00000049" />
            <amount units="mole fraction">0.99503</amount>
        </component>
    </property>
</commonProperties>
```

Step 2: Cross testing of mechanisms vs. data

Mechanisms:

Group 1: hydrogen combustion mechanisms

- **Ó Conaire 2004:** 10 species, 21 reactions
Ó Conaire, M.; Curran, H. J.; Simmie, J. M.; Pitz, W. J.; Westbrook, C. K. *Int. J. Chem. Kinet.* **2004**, *36*, 603-622.
- **Konnov 2008:** 10 species, 33 reactions
Konnov, A. A. *Combust. Flame* **2008**, *152*, 507-528.
- **Hong 2011:** 10 species, 31 reactions
Hong, Z.; Davidson, D. F.; Hanson, R. K. *Combust. Flame* **2011**, *158*, 633-644.
- **Burke 2012:** 11 species, 27 reactions
Burke, M. P.; Chaos, M.; Ju, Y.; Dryer, F. L.; Klippenstein, S. J. *Int. J. Chem. Kinet.* **2012**, *44*, 444-474.

Group 2: originally developed for wet CO combustion

- **Zsély 2005:** 10 species, 32 reactions
Zsély, I. G.; Zádor, J.; Turányi, T. *Proc. Combust. Instit.* **2005**, *30/1*, 1273-1281.
- **Sun 2007:** 11 species, 32 reactions
H. Sun, S.I. Yang, G. Jomaas, C.K. Law, *Proc. Comb. Inst.* **2007**, *31*, 439-446.
- **CRECK 2012:** 11 species, 21 reactions
Frassoldati, A.; Ranzi, E.; Faravelli, T. CRECK modeling Group Hydrogen/CO mechanism version 1201.
<http://creckmodeling.chem.polimi.it/kinetic.html>
- **Rasmussen 2008:** 10 species, 30 reactions
C. L. Rasmussen; J. Hansen; P. Marshall; P. Glarborg, *Int. J. Chem. Kinet.* **2008**, *40*, 454-480.
- **Keromnes 2012:** 12 species, 33 reactions
A. Keromnes, W. K. Metcalfe, K. A. Heufer, N. Donohoe, A. K. Das, C. J. Sung, J. Herzler, C. Naumann, P. Griebel, O. Mathieu, M. C. Krejci, E. L. Petersen, W. J. Pitz, H. J. Curran, *Combust. Flame* (submitted)

Group 3: originally developed for hydrocarbon combustion

- **GRI 3.0:** 10 species, 29 reactions
Smith, G P; Golden, D M; Frenklach, M; Moriarty, N W; Eiteneer, B; Goldenberg, M; Bowman, C T; Hanson, R K;
Song, S; Gardiner, W C; Lissianski, V V; Qin, Z GRI-Mech 3.0 http://www.me.berkeley.edu/gri_mech/ 23/11/2011/
- **Li 2007:** 11 species, 25 reactions
Li, J.; Zhao, Z.; Kazakov, A.; Chaos, M.; Dryer, F. L.; Scire, J. J. J. *Int. J. Chem. Kinet.* **2007**, *39*, 109-136.
- **USC 2007:** 10 species, 28 reactions
H. Wang; X. You; A. V. Joshi; S. G. Davis; A. Laskin; F. Egolfopoulos; C. K. Law USC Mech Version II.
High-Temperature Combustion Reaction Model of H₂/CO/C₁-C₄ Compounds. http://ignis.usc.edu/USC_Mech_II.htm
(May 2007)
- **San Diego 2011:** 11 species, 21 reactions
San Diego Mechanism, version 2011-11-22. <http://combustion.ucsd.edu>

Comparison of experimental data and simulation results

Objective function Q :

$$Q(\mathbf{p}) = \frac{1}{N} \sum_{i=1}^N \frac{1}{N_i} \sum_{j=1}^{N_i} \left(\frac{Y_{ij}^{\text{mod}}(\mathbf{p}) - Y_{ij}^{\text{exp}}}{\sigma(Y_{ij}^{\text{exp}})} \right)^2$$

$$Y_{ij} = \begin{cases} y_{ij} & \text{if } \sigma(y_{ij}^{\text{exp}}) \approx \text{constant} \\ \ln y_{ij} & \text{if } \sigma(\ln y_{ij}^{\text{exp}}) \approx \text{constant} \end{cases}$$

y_{ij} measured/calculated rate coefficient OR
measured/calculated ignition time/flame velocity
in data point j of data series i

σ standard deviation of the measured data

N_i number of data points in data series i

N number of data series (different experiments)

Performance of the mechanisms vs. years

Results of cross testing

Ignition delays	average of error function values			Mechanism	Asaba <i>et al.</i> (1965) only
	PSR	flame	Overall performance		
48.13	26.34	32.67	43.34	GRI 3.0 1999 Ó Conaire 2004 Zsély 2005 Li 2007 Sun 2007 USC 2007 Version II Konnov 2008 Rasmussen 2008 Hong 2011 San Diego 2011 Burke 2012 CRECK 2012 Kéromnès 2012	184.31
13.89	49.40	30.80	20.42		122.88
21.87	83.19	54.34	33.64		143.30
14.00	54.57	32.32	21.31		154.69
17.87	65.83	29.27	24.94		159.96
16.33	51.98	32.06	22.70		161.65
15.12	82.59	31.52	25.12		153.68
31.55	82.11	36.14	37.87		152.07
16.80	54.48	29.78	22.97		165.11
20.77	55.60	33.65	26.61		181.05
18.69	52.15	31.66	24.39		171.97
11.88	57.08	48.03	22.43		157.02
14.39	65.39	30.74	22.56		163.74
634	136	200	970	No. data points	37
53	8	19	80	No. datasets	3

Some indirect experimental data series are presumably wrong and these were excluded from the optimization and mechanism testing.

example: T. Asaba, W.C. Gardiner, R.F. Stubbelman,
Proc. Combust. Inst., **10**, 295-302(1965)

Step 3: Optimization of the rate parameters

1. Direct and indirect measurements are taken into account simultaneously.
2. The uncertainty domain of all the Arrhenius parameters is determined
3. For each important reaction step, the Arrhenius parameters A , n , E and maybe other rate parameters are determined within their domain of uncertainty.

Turányi T, Nagy T, Zsély IGy, Cserháti M, Varga T, Szabó B,
Sedyó I, Kiss P, Zempléni A, Curran H J

Determination of rate parameters based on both direct and indirect measurements.

Int. J. Chem. Kinet. **44**, 284–302 (2012)

Optimization and uncertainty estimation of parameters

Optimization = minimization of this error function:

$$E(\mathbf{p}) = \sum_{i=1}^N \frac{w_i}{N_i} \sum_{j=1}^{N_i} \left(\frac{\ln y_{ij}^{\text{mod}}(\mathbf{p}) - \ln y_{ij}^{\text{exp}}}{\sigma(\ln y_{ij}^{\text{exp}})} \right)^2$$

y_k measured/calculated rate coefficient OR
measured/simulated indirect measurement

Calculation of the covariance matrix of the estimated parameters:

$$\Sigma_p = \left[(\mathbf{J}_o^T \mathbf{W} \Sigma_Y^{-1} \mathbf{J}_o)^{-1} \mathbf{J}_o^T \mathbf{W} \Sigma_Y^{-1} \right] (\Sigma_Y + \Sigma_\Delta) \left[(\mathbf{J}_o^T \mathbf{W} \Sigma_Y^{-1} \mathbf{J}_o)^{-1} \mathbf{J}_o^T \mathbf{W} \Sigma_Y^{-1} \right]^T$$

Transformation of the covariance matrix of parameters to „traditional” gas kinetics measures of uncertainty

covariance matrix of Arrhenius parameters → covariance matrix of $\ln k$

$$\text{cov}(\kappa_i(T), \kappa_j(T)) = \overline{(\kappa_i(T) - \bar{\kappa}_i(T))(\kappa_j(T) - \bar{\kappa}_j(T))} = \Theta^T \overline{(p_i - \bar{p}_i)(p_j - \bar{p}_j)^T} \Theta = \Theta^T \Sigma_{p_i, p_j} \Theta$$

$$\theta^T := [1 \quad \ln \theta \quad -\theta^{-1}]$$

$$\sigma(\ln k) = \ln 10 \quad \sigma(\log_{10} k) = \frac{\ln 10}{m_f} f(T)$$

covariance matrix of $\ln k \rightarrow$ correlation r between the $\ln k$ values

$$r_{\kappa_i, \kappa_j}(T) = \frac{\text{cov}(\kappa_i(T), \kappa_j(T))}{\sigma_{\kappa_i}(T) \sigma_{\kappa_j}(T)}$$

Strategy for optimization

STEP1

STEP2

STEP3

experiment	number of datapoints	$\text{H}+\text{O}_2=\text{O}+\text{OH}$	$\text{LPH}+\text{O}_2(+\text{M})=\text{HO}_2(+\text{M})$	$\text{O}+\text{H}_2=\text{H}+\text{OH}$	$\text{OH}+\text{H}_2=\text{H}+\text{H}_2\text{O}$	$\text{H}_2\text{O}_2+\text{H}=\text{H}_2+\text{HO}_2$	$\text{HO}_2+\text{H}=\text{H}_2+\text{OH}$	$\text{HO}_2+\text{H}=\text{H}_2+\text{O}_2$	$\text{HO}_2+\text{OH}<=>\text{H}_2\text{O}+\text{O}_2$
Herzler et al. (2009 ^a)	9	○	○						
Fujimoto and Suzuki (1967)	9	○	○						
Zhang et. al. (2012 ^a)	7	○	○						
Naumann et. al. (2011 ^a)	19	○	○						
Naumann et. al. (2011 ^b)	26	○	○						
Petersen et al. (2003 ^a)	9	○		○					
Cheng and Oppenheim (1984 ^a)	58	○		○					
Petersen et al. (2003 ^b)	24	○		○					
Petersen et al. (2003 ^c)	4	○		○					
Petersen et al. (1996 ^a)	16	○	○	○					
Petersen et al. (1996 ^b)	6	○	○	○					
Slack (1977)	12	○	○	○					
Bhaskaran et al. (1973)	14	○	○	○					
Wang et al. (2003 ^a)	12	○	○	○					
Naumann et. al. (2011 ^c)	13	○	○	○					
Chaumeix et al. (2007 ^a)	5	○		○		○			
Chaumeix et al. (2007 ^b)	7	○		○		○			
Chaumeix et al. (2007 ^c)	5	○		○		○			
Cohen et. al. (1967)	21	○		○		○			
Cheng and Oppenheim (1984 ^b)	56	○	○	○		○			
Naumann et. al. (2011 ^d)	19	○	○	○		○			
Naumann et. al. (2011 ^e)	19	○	○	○		○			

STEP 2

Petersen et al. (2003 ^a)	9	○		○				
Cheng and Oppenheim (1984 ^a)	58	○		○				
Petersen et al. (2003 ^b)	24	○		○				
Petersen et al. (2003 ^c)	4	○		○				
Petersen et al. (1996 ^a)	16	○	○	○				
Petersen et al. (1996 ^b)	6	○	○	○				
Slack (1977)	12	○	○	○				
Bhaskaran et al. (1973)	14	○	○	○				
Wang et al. (2003 ^a)	12	○	○	○				
Naumann et. al. (2011 ^c)	13	○	○	○				

STEP 3

Chaumeix et al. (2007 ^a)	5	○		○	○			
Chaumeix et al. (2007 ^b)	7	○		○	○			
Chaumeix et al. (2007 ^c)	5	○		○	○			
Cohen et. al. (1967)	21	○		○	○			
Cheng and Oppenheim (1984 ^b)	56	○	○	○	○			
Naumann et. al. (2011 ^d)	19	○	○	○	○			
Naumann et. al. (2011 ^e)	19	○	○	○	○			

STEP 4

Zhang et. al. (2012 ^b)	10	○	○			○		
Wang et al. (2003 ^b)	10	○	○			○		
Wang et al. (2003 ^c)	21	○	○			○		
Naumann et. al. (2011 ^f)	9	○	○	○		○		

STEP 5

Wang et al. (2003 ^d)	12	○	○			○	○	
Naumann et. al. (2011 ^g)	10	○	○			○	○	
Petersen et al. (1996 ^c)	8	○	○			○	○	
Herzler et al. (2009 ^b)	9	○	○			○	○	
Petersen et al. (1996 ^d)	3	○	○		○	○	○	
Zhang et. al. (2012 ^c)	8	○	○			○	○	
Herzler et al. (2009 ^c)	12	○	○			○	○	
Naumann et. al. (2011 ^h)	16	○	○			○	○	

STEP 6

Petersen et al. (1996 ^e)	14	○		○				○
Petersen et al. (1996 ^f)	7	○	○	○				○
Schott and Kinsey (1958)	17	○		○	○			○
Petersen et al. (1996 ^g)	17	○	○	○				○
Naumann et. al. (2011 ⁱ)	18	○	○	○	○			○
Naumann et. al. (2011 ^j)	13	○	○	○	○	○	○	○

○

Results of optimization

- A new set of optimized rate parameters
(in this case: 26 optimized parameters (23 Arrhenius parameters of 8 reactions
3 third body efficiencies))
- Covariance matrix of all optimized parameters
CONVERTED TO
- $f(T)$ uncertainty function for each rate coefficient
- $r(T)$ correlation function of pairs of rate coefficients

Step 4: Testing the optimized mechanism against other mechanisms

The optimization code created figures on the agreement of the simulation results and the experimental points.

experiments: Pang, G.A., Davison, D.F., Hanson, R.K.,
Proc. Combust. Inst., **32**, 181-188(2009)
Fig. 3., full square; 4% H₂ / 2% O₂ / Ar, P_{t=0} = 3.5 atm

Testing the optimized mechanism against other mechanisms

mechanisms	set #1
GRI 3.0 1999	43.63
Ó Conaire 2004	11.01
Zsély 2005	16.64
Li 2007	11.47
Sun 2007	15.72
USC 2007 II	14.31
Konnov 2008	12.42
Rasmussen 2008	28.58
Hong 2011	14.44
San Diego 2011	18.18
Burke 2012	16.49
CRECK 2012	9.28
Kéromnès 2012	11.94
optimized mechanism	8.25

error function values (smaller is better)

set #1: Ignition time experiments *used at the optimization*

Testing the optimized mechanism against other mechanisms

mechanisms	set #1	set#2
GRI 3.0 1999	43.63	48.13
Ó Conaire 2004	11.01	13.89
Zsély 2005	16.64	21.87
Li 2007	11.47	14.00
Sun 2007	15.72	17.87
USC 2007 II	14.31	16.33
Konnov 2008	12.42	15.12
Rasmussen 2008	28.58	31.55
Hong 2011	14.44	16.80
San Diego 2011	18.18	20.77
Burke 2012	16.49	18.69
CRECK 2012	9.28	11.88
Kéromnès 2012	11.94	14.39
optimized mechanism	8.25	11.59

set #1: Ignition time experiments *used at the optimization*

set #2: All available ignition time experiments

Testing the optimized mechanism against other mechanisms

mechanisms	set #1	set#2	set#3
GRI 3.0 1999	43.63	48.13	43.34
Ó Conaire 2004	11.01	13.89	20.42
Zsély 2005	16.64	21.87	33.64
Li 2007	11.47	14.00	21.31
Sun 2007	15.72	17.87	24.94
USC 2007 II	14.31	16.33	22.70
Konnov 2008	12.42	15.12	25.12
Rasmussen 2008	28.58	31.55	37.87
Hong 2011	14.44	16.80	22.97
San Diego 2011	18.18	20.77	26.61
Burke 2012	16.49	18.69	24.39
CRECK 2012	9.28	11.88	22.43
Kéromnès 2012	11.94	14.39	22.56
optimized mechanism	8.25	11.59	19.35

set #1: Ignition time experiments *used at the optimization*

set #2: All available ignition time experiments

set #3: All types of data (ignition time, PSR, laminar flame velocity)

Testing the optimized mechanism against other mechanisms

mechanisms	set #1	set#2	set#3
GRI 3.0 1999	43.63	48.13	43.34
Ó Conaire 2004	11.01	13.89	20.42
Zsély 2005	16.64	21.87	33.64
Li 2007	11.47	14.00	21.31
Sun 2007	15.72	17.87	24.94
USC 2007 II	14.31	16.33	22.70
Konnov 2008	12.42	15.12	25.12
Rasmussen 2008	28.58	31.55	37.87
Hong 2011	14.44	16.80	22.97
San Diego 2011	18.18	20.77	26.61
Burke 2012	16.49	18.69	24.39
CRECK 2012	9.28	11.88	22.43
Kéromnès 2012	11.94	14.39	22.56
optimized mechanism	8.25	11.59	19.35

set #1: Ignition time experiments *used at the optimization*

set #2: All available ignition time experiments

set #3: All types of data (ignition time, PSR, laminar flame velocity)

The future

Based on the current trend,
the absolutely accurate hydrogen combustion mechanism
will be available on **7th March, 2032** ☺

Summary

- 1 The $f(T)$ uncertainty parameters available from the data collections are realistic, but have several shortcomings, like it refers to the uncertainty of k only.
Needed: a joint uncertainty of the rate parameters.
- 2 Assessment of the **joint uncertainty domain of the Arrhenius parameters** of a selected reaction step based on **all direct measurements and TST calculations**.
 - upper estimation of the uncertainty
 - no information about the correlation of two k values
- 3 Comprehensive evaluation of the uncertainty of all rate parameters:
For a given chemical kinetic system,
all direct, indirect and theoretical results are collected
assessment of the uncertainty of input data
⇒ **new, physically meaningful rate parameters**
⇒ **information about the joint uncertainty of rate parameters**
⇒ **better simulation results**
⇒ **quantification of the uncertainty of the simulation results**

Acknowledgement

For the helpful discussions

Mike J. Pilling, Judit Zádor, János Tóth

Financial support

ERA Chemistry (NN100523)

TÁMOP 4.2.1/B-09/1/KMR-2010-0003

COST CM0901 Detailed Chemical Models for Cleaner Combustion

OTKA T68256, OTKA K84054

*Thank you all
for your attention!*

The role of uncertainty quantification within kinetic model improvement in combustion

Alison S. Tomlin

Development of complex kinetic mechanisms

UNIVERSITY OF LEEDS

In combustion complex chemical mechanisms built by:

- proposing sets of rules for species interactions:
mechanism protocol.
- developing **effective parameterisations** for the kinetics described within the mechanism.
- Ability to specify protocols well developed e.g. hydrocarbon oxidation.
- Large comprehensive mechanisms e.g. biodiesel surrogate methyl decanoate: 3012 sp., 8820 reacs (Herbinet et al., 2008)
- Many rate coefficients have to initially be estimated using rules related to chemical structure.
- **Does this lead to a robust mechanism? How can the model robustness be improved?**

Improving model robustness

UNIVERSITY OF LEEDS

Joint pdf of inputs

Probability distribution of predicted Y_i

We would like to narrow the output distribution as far as possible i.e. to reduce predictive error bars.

Sensitivity and uncertainty analysis

UNIVERSITY OF LEEDS

- **Uncertainty analysis (UA)** puts error bars on predictions.
- Overlap (or not) with experimental values tells us whether our model may be structurally robust.

Sensitivity analysis (SA) tries to determine how much each input parameter contributes to the output uncertainty (usually variance).

Global sensitivity/uncertainty methods

Global - attempts to cover whole input space using a sampling method.

Why global methods?

UNIVERSITY OF LEEDS

Sampling methods can be computationally costly so why bother.

- To simulate output distributions for available targets.
- To calculate the contribution of important parameters to these distributions however large their uncertainty ranges.
- To see how each target helps to constrain a parameter
 - Could be important for the use of optimisation approaches where parameter isolation helps to narrow constraints.
- To explore parameter interactions.

Sampling approaches

- Need efficient sampling approach where the output moments converge quickly with sample size.
- Quasi-random approaches usually work best.
- Sample from input distributions until predicted output mean and variance converge.
- Then need a method to investigate input-output relationships.

High Dimensional Model Representations (HDMR)

UNIVERSITY OF LEEDS

- Input-output relationship is expressed as a finite hierarchical function expansion:

$$f(\mathbf{x}) \equiv f_0 + \sum_{i=1}^n f_i(x_i) + \sum_{1 \leq i \leq j \leq n} f_{ij}(x_i, x_j) + \dots + f_{12\dots n}(x_1, x_2, \dots, x_n)$$

- Model replacement built using quasi random sample and approximation of component functions by orthonormal polynomials.
- Equivalent to ANOVA distribution so each term represents contribution to overall output variance.
- 1st & 2nd order sensitivity indices easily calculated from polynomial coefficients.

Monte Carlo (MC) simulations

- Component functions reveal independent mean effect of each parameter and highlight any non-linear responses.
- Local S'_i at the nominal value may be quite different from the overall effect across the feasible parameter range.
- Scatter reveals influence of other parameters.

Example from
flame calculation:
NOx prediction.

Highly
nonlinear

1st order sensitivities and ranking + component functions

UNIVERSITY OF LEEDS

Results

Ranking

	1.	2.	3.	4.	5.
Input	47	102	138	8	142
Si	0.2619	0.1328	0.1047	0.0506	0.0327

Sum Si = 0.8188

Plots

Output: 1

Input: 102

Tells us fraction of output variance due to each of the inputs.

Scatter

HDMR

Both

Scatter

HDMR

Both

$f_0 + f_{47}(x_{47})$

x_{47}

$f_0 + f_{102}(x_{102})$

x_{102}

Polynomial Order : 2
Sobol Index : 0.2619 (1.)
 r^2 Pearson : 0.2488 (1.)
 r^2 Spearman : 0.2313 (1.)

Polynomial Order : 3
Sobol Index : 0.1328 (2.)
 r^2 Pearson : 0.1234 (2.)
 r^2 Spearman : 0.1588 (2.)

Exit

2nd order component functions

Typical practice

- Constructed mechanism incorporated within model which simulates chosen experimental targets:
 - flame speeds, ignition delays, JSR concentration profiles
- Agreement with targets assessed and sensitivity analysis performed.

Updates made to key parameters e.g. through theory or direct experiments

Mechanism optimised using available targets from indirect experiments

UNIVERSITY OF LEEDS

Example 1

Methanol oxidation

Comparison of simulated ign. delays (Li et al. 2007) with data (Kumar & Sung, 2011)

UNIVERSITY OF LEEDS

Constraints from the experiments?

UNIVERSITY OF LEEDS

Impact of modifying rate
to Tsang value

Theoretical study of Skodje et al. (2010)

UNIVERSITY OF LEEDS

- Mechanism - Li et al. (2007); 18 species, 93 reactions.
- Target output - ignition delay time (τ) for stoichiometric mixtures of methanol and oxygen over a range of temperatures and pressures.
- Enthalpies of formation and A -factors varied over random sample.
- Using initial ranges one reaction dominates (up to 90% of total output variance) with strong **nonlinearities**.

Low scatter indicates low influence of all other parameters.

$$(T,P,\varphi)=(1150K, 5bar, 1)$$

Sensitivity mapping over P/T

- Can also test how sensitivities change outside of conditions where experimental data exists - although uncertainties in activation energies were not included in this study.
- No dramatic changes in this case.

Model Updates

- $\text{CH}_3\text{OH} + \text{HO}_2$ a key reaction with initial uncertainty (10^f) of 5.
- Transition state theory (TST) and variational TST (VTST) then used to re-estimate its rate coefficient (Klippenstein, 2011).
- Lower than value in Li at low T (**8 times i.e. larger than 5!**) with an **estimated** uncertainty of 2.

- Close agreement between new value and that of Tsang at low temperatures.
- Closer to Li value at high temperatures.

Results of model updates

$(T, P, \varphi) = (1150\text{K}, 5\text{bar}, 1)$

Further impacts?

- Modified rates from both studies are similar at low-intermediate temperatures - well constrained?
- Low sensitivity of high T shock tube simulations (Bowman 1975) and predicted flame speeds.
- High sensitivity to flow reactor data at 970 K and 2.5 atm.

How to combine knowledge?

UNIVERSITY OF LEEDS

- The reaction exhibits sensitivities for several reaction systems.
- Should start to become parameter focussed rather than mechanism/target focussed?
- Possibility to incorporate all sets of data to which a parameter is sensitive within a Bayesian framework.
- Does this get too messy for complex fuels?

Possible for H₂/O₂

UNIVERSITY OF LEEDS

$\text{HO}_2 + \text{OH} \rightarrow \text{H}_2\text{O} + \text{O}_2$, Burke et al. 2012

Data from TST, discharge flow, shock tubes used.

$\text{H} + \text{O}_2 \rightarrow \text{OH} + \text{O}$,
Turányi et al. 2012
Data from ignition delays, shock tubes

Larger fuels?

- Target predictions for more complex mechanisms are unlikely to be driven by only 1 or 2 parameters.
- What type of approach should be adopted?
- A hierarchical one where the simpler and better constrained systems are tackled first?
 - Turányi's approach only selects data which is strongly sensitive to parameters being constrained i.e. reasonably well isolates parameters.
- The resulting more tightly constrained parameters could then be included in studies of more complex fuels – helping to isolate the other reactions.

UNIVERSITY OF LEEDS

Example 2: Butane oxidation in a jet stirred reactor

Performance of EXGAS mech.

UNIVERSITY OF LEEDS

Isothermal jet-stirred reactor

1 atmosphere

Residence time : 6 s

Equivalence ratio of 1

4% butane as inlet mole fraction.

Methodology

UNIVERSITY OF LEEDS

- EXGAS mechanism - 1304 uncertain A-factors for forward reactions studied.
- Very large dimensional input parameter space.
- Screen out unimportant parameters before full global analysis.
- Linear sensitivities at several temperatures used for screening.
- Gives better coverage for remaining parameters allowing smaller sample size.

Global Analysis

UNIVERSITY OF LEEDS

- 31 A-factors selected for global runs based on the linear screening.
- Input uncertainty factors assigned from appropriate evaluation studies where available - C₀-C₂ reactions base (Baulch *et al.* 1994) .
- For calculated parameters within the primary and secondary mechanisms, 10^f ~ 3.
- n-butane + OH 10^f ~ 0.3 used based on (Sivaramakrishnan *et al.* 2009).

Global analysis (750 K)

Global sensitivities: no dominant reaction

UNIVERSITY OF LEEDS

JSR (T_{res} 6 s, P 1 atm, stoich, 4% *n*-butane, 750 K)

Improving model robustness?

UNIVERSITY OF LEEDS

- The ntc region appears to be highly uncertain.
- Many reactions contribute to uncertainty.
- Are there missing steps or are assumptions about input uncertainties optimistic?
- Should a hierarchical Bayesian approach be adopted?
 - Start first with H₂/O₂ chemistry.
 - Then tackle HCHO reactions.
 - Then C2 chemistry.
 - Then try to constrain reactions from C4 scheme.
- What other experiments could help to constrain these important parameters and how do we find out?

$\text{HO}_2 + \text{HO}_2$ (Zhou et al. 2012)

- TST calculations.
- Transition state ridge upward by 1 kcal/mol to better fit experiments of Patrick, Lightfoot and Kappel.
- Original f_{\max} (Baulch 1994) was 0.4.
- Probably could be reduced using optimisation approaches.

Aldheydes + HO₂

- Baulch (2005) suggests f_{max} of 0.7.
- Based on a single set of experimental measurements from 1976 (Colket et al.).

- Baulch (2005) suggests f_{max} of 0.4.
- Recent TST calcs. from Li *et al.* 2005
- Combined analysis?

What new sets of data could help to constrain these parameters better?

2nd oxygen addition reactions to form O₂QOOH

UNIVERSITY OF LEEDS

- Very scattered response but data hints that rate is might be lower than the nominal value used which was based on analogy to rate coefficients for propyl + O₂ from De Sain et al. (2003)
- Clearly a key reaction class driving fuel reactivity.
- QOOH+O₂ studied for propane and pentane theoretically by Bozzelli and Coworkers but not for butane.

2nd oxygen addition reactions to form O₂QOOH

UNIVERSITY OF LEEDS

- Rate used was estimated on the basis of analogy to rate coefficients for propyl + O₂ from De Sain et al. (2003)
- Recent theoretical calculations exist from Goldsmith et al. (2012) for the propyl + O₂ system suggest that for the main channel the reaction forming O₂QOOH is slower than the equivalent rate for propyl + O₂ at 750 K.
- An equivalent temperature dependant study for butyl would be very useful.
- Still large uncertainties for these types of reactions.
- If basic C1/H scheme was better constrained then then indirect experiments might help to constrain rates for reactions which are difficult to study experimentally.

Forward steps

- Could be useful to collate information about conditions over which certain reactions have high sensitivity coefficients.
i.e. parameter focus rather than experimental.
- Would involve simulating a lot of data sets over different temperatures and pressures for a lot of different fuels in a consistent way.
- Optimisation approaches which combine data sets are clearly a way forward in terms of reducing input uncertainty distributions.
- Possible for H₂/O₂ chemistry (last talk).
- How to do it for complex fuels raises all sorts of questions.

Towards a predictive combustion chemistry model – Uncertainty propagation and minimization

Hai Wang and David A. Sheen

University of Southern California, Los Angeles, California, USA

Model Hierarchy

Reaction Model Development

The Current Approach

proliferation of models

Kinetic Rate Parameter Uncertainties

- Uncertainty factor ~1.25
- Logarithmic sensitivity coefficient = 0.24 (ethylene-air, $f = 1$, $p = 1$ atm)

↓

- ±5% (± 4 cm/s) uncertainty in predicted flame speed due to R1 alone
- Key question: How do we propagate uncertainties in rate constants in combustion simulations?

Uncertainty Uncertainty Uncertainty Uncertainty Uncertainty Uncertainty

Uncertainty Uncertainty Uncertainty Uncertainty Uncertainty Uncertainty

MUM-PCE

- Method of Uncertainty Minimization – Polynomial Chaos Expansions
 - Mathematical foundation and numerical methods: Sheen & Wang “Kinetic uncertainty quantification and minimization using polynomial chaos expansions,” *Combustion and Flame*, DOI:10.1016/j.combustflame.2011.05.010.

- Model prediction presented as a (2-s) band of uncertainty resulting from kinetic parameter uncertainties.
- Model uncertainty may be constrained by experimental data (ignition delay, species-time history, flame speeds etc)

MUM-PCE: Methods

- **Stochastic Spectral Expansion:** express kinetic parameter x_i as a polynomial expansion of basis random variables

$$x_i = \color{red}{x_i^{(0)}} + \sum_{j=1}^m \color{red}{\alpha_{ij}} \xi_j + \sum_{k=1}^m \sum_{j=k}^m \color{red}{\beta_{ijk}} \xi_j \xi_k + \dots$$

Following N. Wiener (1938), D.B. Xiu, *et al.* (2002)

- **Solution Mapping:** use polynomial response surface to express the relation between a combustion response h and \mathbf{x}

$$\eta_r(\mathbf{x}) \equiv \eta_{r,0} + \sum_{i=1}^N a_{r,i} x_i + \sum_{i=1}^N \sum_{j \geq i}^N b_{r,ij} x_i x_j$$

Forward Uncertainty Propagation

— $\eta_r(\mathbf{x}) = \eta_{r,0} + \sum_{i=1}^n a_i x_i + \sum_{i=1}^n \sum_{j \geq i}^n b_{ij} x_i x_j$ **Response surface from solution mapping**

— $x_i = \frac{1}{2} \xi_i$

**Spectral representation of uncertainty in x's
(mean = 0, s = 0.5, each indep't of others)**

→ $\eta_r(\mathbf{x}, \boldsymbol{\xi}) = \eta_r(\mathbf{x}^{(0)}) + \sum_{i=1}^M \hat{\alpha}_{r,i} \xi_i + \sum_{i=1}^M \sum_{j=i}^M \hat{\beta}_{r,ij} \xi_i \xi_j$

Solution Mapping Method

- Fit a response surface to the model

Central-Composite
Factorial Design

Sensitivity Analysis
Based Design

MUM-PCE – Application in H₂/O₂ Combustion

- High-pressure data sensitize kinetics of hydrogen oxidation.
- A large number of models outside experimental uncertainty at high pressures.

Burke, *et al.* (2010)

- 2σ uncertainty band calculated by MUM-PCE, based on rate parameter uncertainties.
- Models are statistical samples of parameter uncertainties.

Sheen & Wang (2011)

Uncertainty Uncertainty Uncertainty Uncertainty Uncertainty Uncertainty

MUM-PCE

Method of Uncertainty Minimization

$$\mathbf{x} = \mathbf{x}_0 + \mathbf{a}\xi$$

*Chemical model
+ associated uncertainty*

$$\eta_r(\mathbf{x}) \equiv \eta_{r,0} + \sum_{i=1}^N a_{r,i} x_i + \sum_{i=1}^N \sum_{j \geq i}^N b_{r,ij} x_i x_j$$

Physics model

$$\eta_r(\mathbf{x}, \xi) = \eta_r(\mathbf{x}^{(0)}) + \sum_{i=1}^m \hat{\alpha}_{r,i} \xi_i + \sum_{i=1}^m \sum_{j=i}^m \hat{\beta}_{r,ij} \xi_i \xi_j$$

*Predictions
+ associated uncertainty*

$$\Phi(\mathbf{x}_0^*) = \min_{\mathbf{x}_0} \left\{ \sum_{r=1}^M \frac{[\eta_{r,0}^{\text{obs}} - \eta_r(\mathbf{x}_0)]^2}{(\sigma_r^{\text{obs}})^2} + \sum_{n=1}^N \frac{(x_{0,n})^2}{(\sigma_n)^2} \right\}$$

$$\Sigma = \left[\sum_{r=1}^n \frac{1}{(\sigma_r^{\text{obs}})^2} (\mathbf{b}\mathbf{x}_0^* \mathbf{x}_0^{*T} \mathbf{b} + \mathbf{a}\mathbf{x}_0^{*T} \mathbf{b} + \mathbf{b}^T \mathbf{x}_0^* \mathbf{a}^T + \mathbf{a}\mathbf{a}^T) + 4\mathbf{I} \right]^{-1}$$

$$\mathbf{a}^* = \Sigma^{1/2}$$

MUM-PCE – Application in H₂/O₂ Combustion

- Model uncertainty constraining
- JetSurF 2.0 H₂/CO submodel
 - 14 species, 41 reactions

Dataset 1: From Davis, *et al.* (2005):

	No.	P_0, P_5 (atm)	T_0, T_5 (K)	f
Laminar Flame Speeds	12	1-15	298	1.0-3.0
Ignition Delay Times	13	0.5-33	1000-2600	1.0-6.1
Flow Reactor Profiles	9	1.0-16	915-1040	0.3-1.0
Laminar Flame Profiles	2	0.047	400	1.9

Dataset 2:

From Burke, <i>et al.</i> (2010):	No.	P_0, P_5 (atm)	T_0, T_5 (K)	f
Laminar Flame Speeds	18	15-25	298	0.85-2.5 ₁₅

MUM-PCE – Application in H₂/O₂ Combustion

MUM-PCE – Application in H₂/O₂ Combustion

H₂/O₂/He mixtures at equivalence ratio 1

H₂/O₂/Ar mixtures at equivalence ratio 2.5

MUM-PCE – Application in H₂/O₂ Combustion

Dataset 1
Knowledge prior to 2010

+ Burke, *et al.* (2010)
Current knowledge

Weak constraint by experiments

Strong constraint by experiments

JetSurF – A Jet Surrogate Fuel Model

JetSurF is a detailed chemical reaction model for the combustion of jet-fuel surrogate. The model is being developed through a multi-university research collaboration and is funded by the [Air Force Office of Scientific Research](#). Project participants include

F. N. Egolfopoulos, Hai Wang

University of Southern California

R. K. Hanson, D. F. Davidson, C. T. Bowman, H. Pitsch

Stanford University

C. K. Law

Princeton University

N. P. Cernansky, D. L. Miller

Drexel University

W. Tsang

National Institute of Standards and Technology

R. P. Lindstedt

Imperial College, London

A. Violi

University of Michigan

New Release: **JetSurF Version 2.0 – A working model for the combustion of *n*-alkane up to *n*-dodecane, cyclohexane, and mono-alkylated cyclohexane up to *n*-butyl-cyclohexane**
(Release Date: September 19, 2010)

Old Releases: **JetSurF Version 1.1 – A interim model for the combustion of *n*-butyl-, *n*-propyl-, ethyl-, and methyl-cyclohexane and cyclohexane**
(Release Date: September 15, 2009)

JetSurF Validation – Species Concentrations behind reflected shock waves

B. Sirjean, E. Dames, D. A. Sheen, X.-Q. You, C. Sung, A. T. Holley, F. N. Egolfopoulos, H. Wang, S. S. Vasu, D. F. Davidson, R. K. Hanson, H. Pitsch, C. T. Bowman, A. Kelley, C. K. Law, W. Tsang, N. P. Cernansky, D. L. Miller, A. Violi, R. P. Lindstedt, A high-temperature chemical kinetic model of n-alkane oxidation, JetSurF version 1.0, September 15, 2009 (http://melchior.usc.edu/JetSurF/Version1_0/Index.html).

Plot stolen from Ron Hanson. Solid line: experiments; dashed line: JetSurF

Prediction Uncertainties in As-Compiled Model

Good nominal prediction with significant uncertainty!

Chemistry Model & Experimental Targets

- Modified JetSurF 1.0
 - 196 species, 1478 reactions

	No.	P_0, P_5 (atm)	T_0, T_5 (K)	f
Laminar Flame Speeds	4	1	353	0.8-1.4
Ignition Delay Times	11	1-4	1000-2600	0.5-2

	No.	P_5 (atm)	T_5 (K)	f
OH, H ₂ O, CO ₂ , C ₂ H ₄ , CH ₃ Species Profiles	11	1.6-2.4	1365-1545 K	1

Predictions of As-Compiled and Uncertainty-Minimized Models

Effect on Flame Speed Predictions

Considering no experiments

Model constrained by species profiles

Model constrained by species profiles
+ flame speeds

Effect on Flame Speed Predictions

What did uncertainty minimization do?

Model constrained by species profiles

CH_3, CH_2 , secondary chain branching, fuel breakup

Model constrained by flame speeds

H chain branching

What did uncertainty minimization do?

“Our” Approach

Acknowledgements

Previous students/postdocs

- Xiaoqing You
- Baptiste Sirjean

Current students/postdocs

- David Sheen
- Enoch Dames
- Bing yang

Collaborators

- Stephen Klippenstein (ANL)
- Chung-King Law (Princeton)
- Fokion Egolfopoulos (USC)
- Elke Goos (DLR)

The JetSurF team

Ron Hanson (Stanford)
Tom Bowman (Stanford)
Heinz Pitsch (Stanford)
Wing Tsang (NIST)
Angela Violi (UMich)
Peter Lindstedt (Imperial Col.)
Nick Cernansky (Drexel)
David Miller (Drexel)

Financial Support

AFOSR, AFRL, SERDP, DOE,
NSF

Measurements of Elementary Rate Constants, Ignition Delays and Species Histories in Shock Tubes

**R. K. Hanson, D. F. Davidson
Stanford University**

**1st International Workshop on Flame Chemistry
July 28-29, 2012**

- Shock Tube/Laser Approach
- Advances in Methodology
- Elementary Reaction Rate Studies
- Multi-Species Time-Histories

Kinetics
Shock
Tube 1
(30 atm)

Kinetics
Shock
Tube 2
(30 atm)

Stanford Shock Tubes

Aerosol
Shock
Tube
(10 atm)

High
Pressure
Shock
Tube
(500 atm)

New Constrained Reaction Volume (CRV) Facility

2 Configurations

CRV-1

Gas-Phase
Experiments
to 100 atm

CRV-2

Aerosol
Experiments
to 100 atm

First use of tunable dye lasers in shock tubes (1982)

Ultra-fast lasers used to extend UV tuning range (2009)

Stanford Laser Diagnostics

New lasers allow simple access to mid-IR (2007-10)

Ultraviolet

CH_3	216 nm
NO	225 nm
O_2	227 nm
HO_2	230 nm
OH	306 nm
NH	336 nm

Visible

CN	388 nm
CH	431 nm
NCO	440 nm
NO_2	472 nm
NH_2	597 nm
HCO	614 nm

Infrared

H_2O	2.5 μm
CO_2	2.7 μm
CH_4	3.4 μm
CH_2O	3.4 μm
CO	4.6 μm
NO	5.2 μm
C_2H_4	10.5 μm

Laser Absorption Yields High Sensitivity

Representative Detection Limits: Polyatomic Molecules

- Polyatomic molecules @ 1500K: 2-200 ppm

Laser Absorption Yields High Sensitivity

Representative Detection Limits: Diatomic Molecules

- Diatomic molecules @ 1500K:
 - sub-ppm detectivity for UV absorbers
 - ppm detectivity for IR absorbers

Advances in Shock Tube Methodology

1. Improved uniformity with driver inserts
2. Longer test times with tailored gas mixtures & extended driver
3. Reactive gas modeling:
problem and solutions

Improvement in Reflected Shock Temperature Uniformity Using Driver Inserts

- Conventional shock tube operation can provide near-ideal uniform flows for 1-3 ms
- But, boundary-layers and attenuation induce dP/dt and dT/dt at longer times

Improvement in Reflected Shock Temperature Uniformity Using Driver Inserts

- These effects reduce ignition delay times relative to Constant P case
- Solution: Driver Inserts

- Driver inserts modify flow to achieve uniform T and P at long test times

Improvement in Reflected Shock Temperature Uniformity Using Driver Inserts

- Result: $dP/dt = 0$ prior to ignition
- Proper τ_{ign} for comparison with Constant P simulations

Longer Test Times Achievable with Tailored Gas Mixtures & Extended Driver Sections

- Conventional shock tube operation: ~ 1-3 ms test time
- No overlap with RCM operation ~ 10-150 ms test time

Longer Test Times Achievable with Tailored Gas Mixtures & Extended Driver Sections

- Longer driver length and tailored gas mixtures can provide longer test times (> 40 ms)

2x Driver Extension

- Shock tubes now can overlap with RCMs

First Use of Long Test-Time Facility: Low Pressure n-Heptane Ignition in the NTC regime

- Test time = 45 ms at 725K
- Enables first low-pressure (~3 atm) n-heptane ignition data in NTC regime
- Clear evidence of 2-stage ignition: $\tau_1 = 8 \text{ ms}$, $\tau_2 = 20 \text{ ms}$
- Next step: add driver inserts to remove dP/dt & dT/dt
- How do the 3 atm data compare to high P data?

Low-Pressure, Low-Temperature Studies: New Results for n-Heptane in the NTC Regime

- Previous 12-55 atm data
- New 3 atm data
- How do measurements compare with current models?

Low-Pressure, Low-Temperature Studies: NTC Heptane, Comparison with Model

- LLNL C7 (2000) model performs reasonably well at high P
- Further tests needed at low P
- Reveals value of long test time experiments

Reactive Gasdynamics Modeling: A Problem

- Most current reflected shock modeling assumes Constant-Volume or Constant-Pressure

But:

- Exothermic energy release during oxidation or endothermic cooling during pyrolysis changes T & P behind reflected shocks
→ not a Constant-V or Constant-P process!
- Example: Heptane Ignition

Effect of Energy Release on P Profiles: n-Heptane Oxidation

- How does this compare with models?
- Not a constant P process!

Effect of Energy Release on P Profiles: n-Heptane Oxidation

- How does this compare with model?
- Not a constant P process!
- Not a Constant-V process, even for 0.4% fuel!
- So how can entire process be modeled?

3 Proposed Solutions to Enable Modeling through Entire Combustion Event

1. Minimize fuel loading to reduce exothermically- or endothermically-driven T and P changes
 - enabled by high-sensitivity laser diagnostics
2. Modified gasdynamics modeling to account for P and T change during combustion
 - work in progress (but computationally intensive: 1-D, 3-D)
3. Use new constrained reaction volume concept to minimize pressure perturbations
 - enables constant P (or specified P) modeling

Examples:

- 1) Use of dilute reactive mixtures
- 2) Use of constrained reaction volume

Example 1: Benefit of Dilute Mixtures

3-Pentanone Oxidation

Low Fuel Loading Experiment

OH Mole Fraction

- Pressure nearly constant throughout experiment
- Good agreement between Constant H,P model and expt.
- Model successfully includes temperature change

Example 2: Constrained Reaction Volume Approach

Hydrogen Ignition at 950 K

- Large reaction volume gives large energy release $\rightarrow \Delta P & \Delta T$
- CRV gives reduced energy release \rightarrow near-constant P

Example 2: Constrained Reaction Volume Approach

Hydrogen Ignition at 950 K

Conventional Shock Tube

Constrained Reaction Volume

- Conventional ST exhibits large pressure change!
- CRV pressure nearly constant throughout experiment!
- Allows kinetics modeling through ignition and combustion!

Elementary Reaction Rate Determinations

Goal

Near-direct determination of rate constants for specific reactions

Examples

OH + ketones:

acetone, 2-butanone, 2- & 3-pentanone

OH + alkanes

OH + butanol isomers

OH + methyl esters

Experimental Strategy

- TBHP used as a prompt OH precursor
 - Useful T range (850 to 1350 K)
 - Pioneered by Bott and Cohen (1984)
 - Also used at Argonne
- Fuel in excess, pseudo-first order experiment

Representative 3-Pentanone+OH Data: 1188 K and 1.94 atm

- High-quality data allows high-precision comparison with model
- Sensitivity analysis confirms pseudo-first order behavior
- Near-direct determination of reaction rate constant!

Results for 3-Pentanone + OH → Products

- No other high temperature data available
- NUI model (Serinyel et al.) in excellent agreement

Summary: OH+Ketones → Products

- How do data compare with Structural Activity Relationship (SAR) model?
- Data agree within 25% with SAR-estimated rate constants
- Similar measurements performed with methyl esters

Summary: OH+Methyl Esters → Products

- Data agree within 25% with SAR-estimated rate constants
- Current work: OH + aldehydes, alcohols

Multi-Species Time-Histories

Motivation

Multi-species provide greater constraint
on mechanism refinement/evaluation

Recent Work

Ketones: Acetone, Butanone, **3-Pentanone**

Alcohols: 1-, 2-, tert-,& iso-Butanol

Alkanes: n-Hexadecane

Esters: Methyl Formate, MA, MP, MB, EP

Multi-Species Approach: 3-Pentanone Pyrolysis

Excellent SNR, high sensitivity data

Comparison with Serinyel et al. (2010) Galway NUI

Two Differences: 1) 3-P decomposition rate; 2) CO/C₂H₄ yields

3-P Data Enables Revision of Decomposition Rate

3-Pentanone Sensitivity

Arrhenius Plot: 3-Pent → Products

- 3-P data show strong sensitivities to $k_1 + k_2$
- Revised k_{total} 3.5x Serinyel et al. rate
- CO yields still not correct!

CO Yield Resolved through Use of O-Atom Balance

3-P and CO data yield total O-atoms

O-atom concentration at 1.5 ms

Laser Absorption

3-Pentanone:	23%
CO:	69%
Sum:	92%

Simulation (with new k_1+k_2)

3-Pentanone:	23%
CO:	43%
CH_3CHCO :	27%
Sum:	93%

- Model underpredicts CO and overpredicts methyl ketene
- Why? Methyl ketene decomposition pathway missing in mechanism
- Introduce $\text{CH}_3\text{CHCO} \rightarrow \text{C}_2\text{H}_4 + \text{CO}$ (assume k the same as ketene decomp.)

Revised Model Improves 3-P Simulations

Final Modifications to Serinyel et al.

3-Pentanone Mechanism

- Revised decomposition rate:
 $\text{3-pentanone} \rightarrow \text{products}$
- Additional reaction:
 $\text{methylketene} \rightarrow \text{C}_2\text{H}_4 + \text{CO}$

- Good agreement with 3-P, CH_3 , CO, and Low-T C_2H_4 time-histories

Ongoing Work

- **Diagnostics development & spectroscopy:**
 - aldehydes (CH_2O , CH_3CHO)
 - alkyl radicals (C_2H_5)
 - methyl esters (methyl formate)
 - Alkenes (C_3H_6 , C_4H_8)
- **Continued improvement of shock tube methods:**
 - constrained reaction volume
- **Direct measurement of elementary reactions:**
 - OH + oxygenates (aldehydes, ethers, alcohols)
 - decomposition of oxygenates
 - CH_3 , HO_2 reactions with HC

Acknowledgements

- ARO, AFOSR, DOE, NSF
- Students:
- Genny Pang, Matt Campbell, Wei Ren, Brian Lam, Sijie Li, Sreyashi Chakraborty

The role of advanced diagnostics in combustion *chemistry* research

Katharina Kohse-Höinghaus

Bielefeld University, Germany

Fei Qi

USTC, China

Nils Hansen

Sandia National Lab, USA

Introduction: The problem

- Clean combustion: high efficiency, low emissions
- Alternative transportation fuels: new chemistry
- Novel combustion regimes: influences of p, T, phi, mixture

Needed: Systematic
knowledge on
combustion chemistry

Probing flame chemistry: Wanted

- In situ information on unknown species mix: identification.
- Large dynamic range of mole fractions, labile species.
- Quantitative set of concentration-reaction time profiles.
- ***Example:*** butane combustion, ~ 40 species.

Oßwald et al, Z Phys Chem 225, 2011, 1029

Probing flame chemistry: laser diagnostics

- Laser spectroscopy: Raman, LIF, CRDS, IR absorption, etc.
- Quantitative, non-intrusive, *small* molecules: e.g. CH, C₂
- Not suitable for complete flame analysis

M. Köhler et al, J Phys Chem A114, 2010, 4719

Small species and chemical mechanisms

- One species ***cannot*** validate mechanisms.
- Small species are at ***end*** of reaction chain.

M. Köhler et al, J Phys Chem A114, 2010, 4719

← methane
cyclopentene →

Probing flame chemistry: mass spectrometry

- Molecular-beam mass spectrometry (MBMS):
- **Complete** species set (?!); structure-sensitive, isomers
- Quantitative – **but:** fragmentation, overlaps, sampling,

Species- and structure-selective analysis

- Tunable VUV single-photon PI-MBMS:
- Distinction of intermediates in C/H, C/H/O, and C/H/O/N systems
- Mass & photoionization efficiency (PIE) spectra as discriminators

C.A. Taatjes et al, PCCP 10, 2008, 1

B. Yang et al, Combust Flame 148, 2007, 198

$m/z=41$, C_3H_5 , C_2H_2NH , CH_3NC (CH_3CN)

A. Lucassen et al, PROCI 34, 2012

Combining high mass + energy resolution

- Fuel complexity:
hydrocarbons →
oxygenates → fuel-N.
- More elements need
better *mass separation*:
→ EI-MBMS.
- Fuel structure and
intermediate mix need
isomer separation:
→ PI-MBMS.
- *Example:* morpholine
flame.

A. Lucassen et al, PROCI 32, 2009, 1269

Combining EI-MBMS+PI-MBMS+LIF+CRDS

- MBMS results for HCN, NH₃, NO, HNCO, CH₃, ...
- LIF temperature measurement
- CRDS results for NH₂, CN, CH, OH, ...

P. Nau et al, Exp Fluids 32, 2009, 1269

Experiment vs. model: (un)disturbed T profile

- ***T profile*** for optical or MBMS sampling must be considered in comparison with models – no shifts!
- ***Example:*** butanol flames.

U. Struckmeier et al, Z Phys Chem 223, 2009, 503

M. Sarathy et al, Combust Flame 159, 2012, 2028

New combustion details: study of isomeric fuels

- Quantitative but ***relative*** species measurement is more forgiving.
- Chemical trends are more obvious.
- Model can probe mechanistic differences.
- ***Example:*** ethanol and DME addition to propene.

A. Frassoldati et al, Combust Flame 158, 2011, 1264

Fuel-N conversion: biomass components

A. Lucassen et al, Combust Flame 159, 2012, 2254

Ethylamine vs. dimethylamine combustion

- NH_3 mole fractions much higher for EA.
- Model under-predicts NH_3 in both flame sets.
- High HCN mole fractions of up to 12%.
- Model under-predicts HCN.

A. Lucassen et al, Combust Flame 159, 2012, 2254

Low-temperature combustion chemistry

- Sampling from highly-diluted, preheated, partially-premixed DME flame at 1 bar with T = 1400 K.
- Partially-premixing species profiles are ***position*-dependent**.

Low-temperature combustion chemistry

➤ Highly diluted preheated DME combustion.
➤ Three stoichiometries: 0.85, 1.0, and 1.2.
Intermediate-T behavior; e.g. CH_3 vs. CH_2O .

→ 1E06 Mon

K. Zhang et al, PROCI 34, 2012

Low-temperature combustion chemistry

- Highly diluted DME oxidation in flow reactor.
- Three stoichiometries: 0.8, 1.0, and 1.2.
- Expected low-T behavior.**
- Compare with model/ to EtOH:
→ WIP!

1E07 Mon, W5P070 Fri

F. Herrmann et al, PROCI 34, 2012

Low-temperature combustion chemistry

- DME oxidation in low-T flow reactor.
- High mass resolution: fuel DME (**46.042**) and **formic acid** (**46.010**) at $T_h = 583$ K are separated.
- **Methyl formate** is detected.
- More species, VUV-PI-MBMS: →WIP!

1E07 Mon, W5P072 Fri

EI-MBMS and GC from the same volume

➤ In-situ isomer separation + EI-MBMS
➤ Example: butene flames, C_5H_8 m/z 68

Butene combustion as C4 chemistry subset

- Different fuel breakdown schemes for the 3 butene isomers.
- **C3 route** is of high importance for all butenes, almost exclusive for *i*-butene.
- Additional **C4 route** exists for the 2 linear butenes.

W2P081 Tue

Highly complex chemistry: Biomass pyrolysis

- Tunable VUV PI-MBMS for analysis of pyrolysis profiles (T, time) of second-generation biofuels.
- Fast-growing poplar wood as potential corn replacement; carbon conversion to biofuels.

J. Weng et al, PROCI 34, 2012

Poplar pyrolysis set-up

- Qstar triple quadrupole TOF-MS with mass range 30-20000 Da, **resolution 10000**.
- Reactor is heated to specific temperature, then sample inside the quartz pole is pushed into the furnace.
- Pyrolysis products pass through a repeller plate into the photoionization region, photoions are analyzed by the QTOF mass spectrometer.

Major products from poplar pyrolysis

J. Weng et al, PROCI 34, 2012

Time-resolved pyrolysis profiles

J. Weng et al, PROCI 34, 2012

MBMS in non-premixed flames

- **C₂H₂ flame at 30 Torr**
- **Mole fractions vs. fuel outlet**
- **Agreement with model by Jim Miller**

MBMS in non-premixed flames

- Radicals can be detected.
- Profiles appear shifted vs. model.

5E07 Fr

S.A.Skeen et al, PROCI 34, 2012

Flame-sampling aerosol mass spectrometry

Flame-sampling aerosol mass spectrometry

➤ Gas phase species and **50-100 nm particles** are sampled from 700 Torr counterflow flame with quartz microprobe.

➤ Particles are focused with aerodynamic lens onto heated copper plate and flash-vaporized.

➤ Molecular constituents are VUV-photoionized and detected by TOF mass spectrometry.

Particle chemical composition: surprises

- Mass spectra map chemical composition of the particles vs. distance from the fuel outlet; PIE spectra permit identification.
- **Example** $m/z=116$, normally only identified as indene, but PIE curve shows also *phenyl-substituted allene and propynes*.

Soot formation beyond benzene

- Many species beyond benzene to ~1000 Da.
- Mass spectra peak at around 202 Da, i.e. pyrene.
- Detailed analysis in progress.

Perspectives: Future trends and needs?

- **New combustion chemistry:** more elements, higher mass range, structure-selective quantitative analysis.
- **New measurement domains:** larger p and T range, pyrolysis vs. highly-diluted oxidative systems, particles, aerosols, homogeneous vs. heterogeneous combustion chemistry.
- **Time-resolved** analysis.
- **Support by theory:** ionization energies, structures, simulation of spectra, kinetics, thermochemistry.
- **Combination of methods:** optical&MS techniques, in situ GC-MBMS, IR-absorption, MS-MS, PEPICO,
- **Caveat:** Let's get sampling problem solved!

Elementary Kinetics Discussion Summary

Robert Tranter

- A number of topics were discussed extensively. The main points are summarized on the following slides and some principle points are given below. Interestingly, the group independently arrived at many conclusions similar to those of the Reaction Mechanism discussion group.
- A primary topic of discussion concerned making experimental and theoretical data available in a format that would enable future reevaluation.
- A secondary topic of some concern was the long term status of the NIST kinetics database. All participants in the discussion acknowledged the importance of this database to their research and it is clearly a significant tool for the kinetics research community.
- Concern was expressed, during presentation of the discussion groups findings, that there is only a very limited and shrinking number of people measuring elementary rate coefficients at flame temperatures.

- Sharing Data
 - Common structure for reporting data
 - XML type?
 - Infrastructure
 - PRIME type?
 - More use of supplementary information in journals
 - Attach XML files
 - ASCII files of data

- NIST Kinetics database
 - What is the current status?
 - What will be the long term availability?
 - Can the Combustion community provide support?
 - Can it made more open to help keep it up to date?
 - Upload your data
 - Feedback forms
 - Wikipedia type approach?

- Areas of need for flame chemistry
 - Low temperature chemistry
 - HO₂ reactions
 - Experiment
 - Theory
 - R + O₂
 - Experimental measurements

- Core reaction mechanism
 - C0, C1, C2....
 - Can a definitive set be established?
 - Is a single core mechanism desirable?
 - How would it be maintained and updated?

“Kinetic mechanisms” discussion Summary

Matt Oehlschlaeger

Challenges

- Expense of theoretical and experimental determinations of rate coefficient
 - ~30 rate theoretical rate predictions / year; similar annual experimental yield
 - Not all theoretical predictions are of equal value; QC tools in the wrong hands can be dangerous
- Development and optimization of rate rules for reactions that can't be calculated or measured
 - Is number of rules finite?

Challenges

- Never will be enough data to validate a model across all conditions found in a turbulent flame
 - Need to identify regimes where uncertainty & sensitivity exists
 - Multiple groups perform complimentary experiments
 - (Re)evaluate old data
- At high temperatures
 - Pyrolytic chemistry leaves fragments
 - Structure of fuel fragments (olefins) controls their reactivity
 - Design thoughtful experiment to probe these portions of the models; not always necessary to look at parent fuel
- Low temperatures: fuel specific chemistry important
- C₀ chemistry
 - Relatively small uncertainties (~25%) → high cost for small improvements
 - HO₂ chemistry a question, measurements needed

Challenges - What does industry care about?

- Real fuels
 - Blending effects – classes of components
 - Prediction of octane rating for fuel blends
 - Aromatics, olefins
 - N-alkanes (NTC energy release)
 - Alternative fuels farther off than public may think
- Mechanisms
 - Simplicity – number of reactions
 - Rate of heat release, transition from low- to high-T, temperature distribution, NOx, soot, noise (diesel), ignition delay
 - Resolve trends
 - Sensitivity of parameters on operation/performance
- Tools for: model development, surrogate formulation, rate prediction, etc.
 - Methods for dissemination and training
 - Industry is using: not predictive enough for computer design
 - No feedback
 - Little feedback even between kinetics and CFD communities
 - Translation of uncertainties in fundamental properties/predictions to uncertainties in applied outputs (engine performance)

How has the community changed?

- Today's perception: science will answer everything
- 1979: Irvin Glassman – “this soot problem keeps coming around”
 - Today – soot is still a problem
- First n-heptane mechanism ~1970
 - Still being worked on
 - First N-dodecane mechanism ~1990s
 - Similar fidelity to n-heptane
 - Still work need – NTC/low-T regions

Our work is directed by the problems facing industry

Roadmap/Collaborations

- Common community C₀ model
 - Optimized vs not
 - Dynamic vs fixed vs partially fixed
- Documentation
 - Data must be made available – necessary for simulation of exp
 - Models must be available, documented, and consistent (e.g., forward and reverse rates consistent with thermo)
 - Should further standardization of the requirements for reporting models and experiments exist?
- Cyber infrastructure for data/models/etc.
 - Models and data need to be on web
 - Improve the visibility of our work
 - Historical record of model changes
 - Prime?

Summary of Flame Chemistry Discussion Session at the 1st Flame Chemistry and Transport Workshop

**28-29 July 2012
Warsaw, Poland**

**Chairs:
Timothy Ombrello and Zheng Chen**

The Discussions Moved in the Direction of Trying to Understand
the Major Roles and Directions with Regard to Flame Chemistry

**Validation of Flame Chemistry Through Well Defined Platforms:
The Intermediate Users of the Chemistry**

What are the Major Burner Platforms?

1. Flat Flame/McKenna Burner	4. Heat Flux Burner
2. Counterflow Burner	5. Micro Tube/Reactor Flame
3. Spherically Propagating Flame	6. “Hencken” Type Burners
	7. Others?

Challenges

Do these platforms provide the detail and quantification needed?
Can they produce all of the information that is sought?

- Appropriate pressures and temperatures?
- 1-D, steady?
- Optical and probe access?

Three Major Types of Platforms Used for Fundamental Flame Studies – Their Strengths and Weaknesses

1. Flat Flame Burner

- $P \approx 0.03\text{-}1 \text{ atm}$
- molecular beam mass spectrometry measurements
- thickened flame zone for better spatial measurements
- how to clearly define B.C.'s, especially when using probes**
- losses to burner surface (heat and radicals)
- higher pressures?

2. Counterflow Burner

- $P \approx 0.5\text{-}5 \text{ (10?) atm}$
- ignition, extinction, flame speed measurements
- good optical access
- B.C. problems under certain conditions**
- speciation measurements?
- higher pressures?

3. Spherically Propagating Flame

- $P \approx 0.5\text{-}100 \text{ atm}$
- flame speed measurements
- limited to flame speed and structure measurements**

Other Relevant Areas of Discussion

Diagnostics

Quantification of new diagnostic techniques

Intrusive vs. non-intrusive measurements, especially at high pressure

-spatial resolution problems?

-time scale of measurement and quenching dependence

Transport and Thermo-Chemistry at High Pressure

Challenge of transport parameters of large intermediate species

Can we pull upon rocket community (high P and T)?

Flames provide a means of validation → how can diagnostics help?

Turbulence?

What about turbulence and flame chemistry interaction?

Should this be tackled at this point?

Defining Questions of Discussion

1. Do the current platforms provide data under relevant conditions (high pressure with and without turbulence) with high enough fidelity?

2. Can we think about developing new platforms differently than what was thought of 20-50 years ago because of the advancement of diagnostic techniques?

We Find That There is Not a Lack of Data, But Rather a Lack of Clearly Defined and Quantitative Experimental Data

How Can We Change?

The Way Forward - Two Paths:

1. Extend current techniques for higher pressure with and without turbulence and careful attention paid to quantification, systematic and measurement uncertainties, application of advanced diagnostics, etc.
2. Develop new “standardized” burner systems for high pressure flame studies
 - similar to how Sandia developed Turbulent Non-premixed Flames (TNF) library
 - clearly define boundary conditions
 - different types of burners to cover range of measurements
 - start at 1 atm and refine for higher pressures
 - heating and/or dilution at high pressure to thicken flame for better spatial resolution?
 - some intermediate between a flow reactor and flame regime?
 - 1-D and steady

The combustion and diagnostics fields have advanced to a point of allowing us to “reinvent” how we think about experiments and their use for development and validation of combustion chemistry.

Poster presentations at the 1st International Flame Chemistry Workshop

1. "One-dimensional (1-D) Nanostructured Metal Oxides for Catalytic Oxidation of Hydrocarbons" by Xiaolin Zheng, Stanford University
2. "A database of small molecule thermochemistry for combustion" by C. Franklin Goldsmith, Gregory R. Magoon, William H. Green, Massachusetts Institute of Technology
3. "Further Developments in Multi-Scale Combustion Models" by M.P. Burke, S.J. Klippenstein, L.B. Harding, C.F. Goldsmith, A.W. Jasper, L. Sheps, O. Welz, J. Zádor, H. Huang, C.A. Taatjes, Argonne National Lab. and Sandia National Lab.
4. "Pressure dependence in the competitive thermal isomerization decomposition of the cyclohexyl radical" by Enoch Dames and Hai Wang, University of Southern California
5. "A Chemical Kinetic Study of the Alternative Transportation Fuel, *tertiary*-Butanol", J. K. Lefkowitz*, J.S. Heyne, Y. Ju, F.L. Dryer, Princeton University
6. "Direct Numerical Simulations of Multistage Ignition for a Stratified HCCI Engine with Exhaust Gas Recirculation", by Hossam A. El-Asrag*and Yiguang Ju, Princeton University,
7. "Chemical Kinetic Uncertainty Minimization through Laminar Flame Speed Measurements," by Okjoo Park, Peter S. Veloo, Hai Wang, Fokion N. Egolfopoulos, University of Southern California
8. A Comparative Kinetic Study of Methyl and Ethyl Ester Oxidation in Diffusion Flames by Pascal Di évart, Jing Gong, Sang Hee Won, Yiguang Ju, Princeton University