Numerical Solution of Landau-Lifshitz-Gilbert-Slonczewski equation

Debasis Das

Department of Electrical and Computer Engineering, National University of Singapore

Abstract

will be added later

Keywords: MTJ, LLGS

1. Introduction

The basic equation that governs the motion of the nanomagnet is described by Landau-Lifshitz-Gilbert-Slonczewski(LLGS) equation. It is given by [eq. (8) of Ref. [1]]

$$\frac{d\hat{m}}{dt} = -\frac{\gamma\mu_0}{1+\alpha^2} \left(\hat{m} \times \overrightarrow{H}_{eff} \right) - \frac{\gamma\mu_0\alpha}{1+\alpha^2} \left(\hat{m} \times \hat{m} \times \overrightarrow{H}_{eff} \right) - \frac{1}{(1+\alpha^2)qN_s} \left(\hat{m} \times \hat{m} \times \overrightarrow{I}_s \right) + \frac{\alpha}{(1+\alpha^2)qN_s} \left(\hat{m} \times \overrightarrow{H}_{eff} \right) - \frac{1}{(1+\alpha^2)qN_s} \left(\hat{m} \times \widehat{H}_{eff} \right) - \frac{\alpha}{(1+\alpha^2)qN_s} \left(\hat{m} \times \widehat{H}_{eff} \right) -$$

Here $\gamma = 1.76 \times 10^{11} \text{ rad/(S.T)}$ is the Gyromagnetic ratio, $\mu_0 = 4\pi \times 10^{-7} \text{ T.m/A}$ is the free space permeability and α is the damping constant. \hat{m} is the unit magnetization vector whose dynamics we would describe by solving the LLGS equation. \vec{H}_{eff} is the effective magnetic field which consists of uniaxial field (\vec{H}_{uni}) , demagnetization field (\vec{H}_{demag}) , and applied field (\vec{H}_{app}) . These fields gives the deterministic motion, but apart from that thermal noise can also influence the motion. This can be included by adding the thermal field (\vec{H}_{Therm}) which is generated due to the thermal noise. So the effective field is given by

$$\overrightarrow{H}_{eff} = \overrightarrow{H}_{uni} + \overrightarrow{H}_{demag} + \overrightarrow{H}_{app} + \overrightarrow{H}_{Therm}$$
 (2)

 $\overrightarrow{H}_{therm}$ is given by the following formula

$$\overrightarrow{H}_{therm} = \sqrt{\frac{\alpha}{1 + \alpha^2} \frac{2K_B T_K}{\gamma M_s V \delta_t}} \overrightarrow{G}_{0,1}$$
(3)

Here, $K_B = 1.38 \times 10^{-23} \ J/K$ is the Boltzmann constant, T_K is the temperature, M_s is the saturation magnetization, V is the volume of the nanomagnet and δ_t is the simulation step. $\overrightarrow{G}_{0,1}$ is the Gaussian distribution with zero mean and unit standard deviation.

In Eq.(1), q is the electronic charge, $N_s = \frac{M_s V}{\mu_B}$ is the number of free spins that are present in the free layer of the MTJ(μ_B is the Bohr magneton). \overrightarrow{I}_s in Eq.(1) denotes the spin current vector that enters into the free layer. μ_B is written as $\mu_B = \frac{\gamma \hbar}{2}$, so total number of free spins N_s can be written as

$$N_s = \frac{M_s V}{\mu_B} = \frac{2M_s V}{\gamma \hbar}$$

Preprint submitted to Arxiv May 3, 2020

^{*}Corresponding author Debasis Das (eledd@nus.edu.sg)

Substituting this into Eq.(1), we get,

$$\frac{d\hat{m}}{dt} = -\frac{\gamma\mu_0}{1+\alpha^2} \left(\hat{m} \times \overrightarrow{H}_{eff} \right) - \frac{\gamma\mu_0\alpha}{1+\alpha^2} \left(\hat{m} \times \hat{m} \times \overrightarrow{H}_{eff} \right) - \frac{\gamma\hbar}{(1+\alpha^2)q2M_sV} \left(\hat{m} \times \hat{m} \times \overrightarrow{I}_s \right) + \frac{\alpha\gamma\hbar}{(1+\alpha^2)q2M_sV} \left(\hat{m} \times \overrightarrow{H}_{eff} \right) - \frac{\gamma\mu_0\alpha}{(1+\alpha^2)q2M_sV} \left(\hat{m} \times \overrightarrow{H}_{$$

This Eq. can further be simplified by considering $\overrightarrow{I}_s = |I_s| \hat{m}_p$, where $|I_s|$ denotes the magnitude of the spin current and \hat{m}_p is the spin polarization direction.

$$\frac{dm}{dt} = -\frac{\gamma\mu_0}{1+\alpha^2} \left(\hat{m} \times \overrightarrow{H}_{eff} \right) - \frac{\gamma\mu_0\alpha}{1+\alpha^2} \left(\hat{m} \times \hat{m} \times \overrightarrow{H}_{eff} \right) - \frac{\gamma\hbar|I_s|}{(1+\alpha^2)2qM_sV} \left(\hat{m} \times \hat{m} \times \hat{m}_p \right) + \frac{\alpha\gamma\hbar|I_s|}{(1+\alpha^2)2qM_sV} \left(\hat{m} \times \hat{m}_p \right)$$
(5)

The volume of the nanomagnet can be written as $V = A \times t_{FL}$, where A is the cross-sectional area and the t_{FL} is the thickness of the free layer MTJ. So, denoting $\frac{|I_s|}{A} = J_{MTJ}$, spin current density, we can modify Eq. (5), such that,

$$\frac{dm}{dt} = -\frac{\gamma\mu_0}{1+\alpha^2} \left(\hat{m} \times \overrightarrow{H}_{eff} \right) - \frac{\gamma\mu_0\alpha}{1+\alpha^2} \left(\hat{m} \times \hat{m} \times \overrightarrow{H}_{eff} \right) - \frac{\gamma\hbar J_{MTJ}}{(1+\alpha^2)2qM_s t_{FL}} \left(\hat{m} \times \hat{m} \times \hat{m}_p \right) + \frac{\alpha\gamma\hbar J_{MTJ}}{(1+\alpha^2)2qM_s t_{FL}} \left(\hat{m} \times \hat{m}_p \right)$$

$$(6)$$

Assume, $\beta = \frac{\gamma \hbar J_{MTJ}}{2q M_s t_{FL}}$ and substitute this in the above equation, we get,

$$\frac{dm}{dt} = -\frac{\gamma\mu_0}{1+\alpha^2} \left(\hat{m} \times \overrightarrow{H}_{eff} \right) - \frac{\gamma\mu_0\alpha}{1+\alpha^2} \left(\hat{m} \times \hat{m} \times \overrightarrow{H}_{eff} \right) - \frac{\beta}{1+\alpha^2} \left(\hat{m} \times \hat{m} \times \hat{m}_p \right) + \frac{\alpha\beta}{1+\alpha^2} \left(\hat{m} \times \hat{m}_p \right) \tag{7}$$

Eq. (7) denotes the final LLGS equation that we need to solve for the magnetization dynamics.

2. In-plane anisotropy

For in-plane anisotropy suppose the easy axis is along the z-axis and the demagnetization field is along the y-axis, perpendicular to plane. So the associated fields are:

<u>Uniaxial field</u>: $H_{uni}=[0,0,H_km_z]$, here $H_k=\frac{2K_u}{\mu_0M_s}$

Demagnetization field: H_{demag} =[0, $-H_d m_y$, 0], where $H_d = M_s$ (for S.I. unit)

<u>Critical current</u>: $I_{sc} = \frac{2q\alpha}{\hbar} \left[\mu_0 (H_k + 0.5 H_d) M_s V \right]$

3. Perpendicular anisotropy

For perpendicular anisotropy, both, uniaxial and the demagnetization field are perpendicular to plane but they oriented opposite to each other.

<u>Uniaxial field</u>: $H_{uni} = [0, 0, H_k m_z]$

Demagnetization field: $H_{demag} = [0, 0, -H_d m_z]$

<u>Critical current</u>: $I_{sc} = \frac{2q\alpha}{\hbar} \left[\mu_0 (H_k - H_d) M_s V \right]$

4. References

[1] A. Sengupta, K. Roy, Encoding neural and synaptic functionalities in electron spin: A pathway to efficient neuromorphic computing, Applied Physics Reviews 4 (4) (2017) 041105.