Software Correctness: The Construction of Correct Software Loop Testing

Stefan Hallerstede (sha@ece.au.dk)
Carl Peter Leslie Schultz (cschultz@ece.au.dk)

John Hatcliff (Kansas State University) Robby (Kansas State University)

Generating Test Cases from Implementations

Conditionals

Conditionals as Facts Choosing Branches Symbolic Execution

Unfolded Iteration

Bounded Iteration and Conditionals
Termination

Unfolded Recursion

Bounded Recursion and Conditionals

Termination

Program Verification

Summary

Test Case Generation

- In the preceding lectures we have seen various ways
 - to trace facts through programs
 - to consider programs themselves as facts
 - to derive facts about executions paths of programs by symbolic execution
- All of these perspectives of programs can be exploited for proof and for testing
- Considering testing, we are particularly interested in obtaining test cases
- In the last lecture we have looked at iteration and recursion unfolding
- This technique permits us to look at testing of iteration and recursion as special cases on testing of conditionals
- To generate test cases we need contracts and programs

Generating Test Cases from Implementations

Conditionals

Conditionals as Facts Choosing Branches Symbolic Execution

Unfolded Iteration

Bounded Iteration and Conditionals

Unfolded Recursion

Bounded Recursion and Conditionals

Termination

Program Verification

Summary

Generating Test Cases from Implementations

• Consider the following function for computing a step in a square root search

```
def sq root step() {
  Contract (
    Modifies(x, y)
  val z: Z = (x + y) / 2
  if (z * z \le n) {
    x = z
    else {
```


Generating Test Cases from Implementations

Consider the following function for computing a step in a square root search

```
def sq root step() {
  Contract (
    Modifies(x, y)
  val z: Z = (x + y) / 2
  if (z * z \le n) {
    x = z
    else {
```

Does the function preserve $x \star x \le n$? That is, is it an invariant of the function body?

Generating Test Cases from Implementations

We can specify the question in Slang

```
def sq root lb() {
  Contract (
    Requires (x * x \le n),
    Modifies (x, y),
    Ensures (x * x \le n)
  sq root step()
```


Generating Test Cases from Implementations

We can specify the question in Slang

```
def sq_root_lb() {
   Contract(
     Requires(x * x <= n),
     Modifies(x, y),
     Ensures(x * x <= n)
   )
   sq_root_step()
}</pre>
```

We can use Logika's inter-procedural check to see whether this holds

Generating Test Cases from Implementations

We can specify the question in Slang

```
def sq root lb() {
  Contract (
    Requires (x * x \le n),
    Modifies (x, y),
    Ensures (x * x \le n)
  sq root step()
```

- We can use Logika's inter-procedural check to see whether this holds
- Let's have a look at the fact corresponding to function sq_root_step

- Recall the facts corresponding to conditionals of the shapes
 - $C \Rightarrow S_{fact}$, where S is the program in the if-branch
 - $!C \Rightarrow T_{fact}$, where T is the program in the else-branch

- Recall the facts corresponding to conditionals of the shapes
 - $C \Rightarrow S_{fact}$, where S is the program in the if-branch
 - $!C \Rightarrow T_{fact}$, where T is the program in the else-branch
- If we want to test this program we have to choose specific branches

• The fact emanating from sq_root_step framed in the contract of sq_root_lb:

- Recall the facts corresponding to conditionals of the shapes
 - $C \Rightarrow S_{fact}$, where S is the program in the if-branch
 - $!C \Rightarrow T_{fact}$, where T is the program in the else-branch
- If we want to test this program we have to choose specific branches
- For instance, $z * z \le n$ to choose the if-branch

• The fact emanating from sq_root_step framed in the contract of sq_root_lb:

- Recall the facts corresponding to conditionals of the shapes
 - $C \Rightarrow S_{fact}$, where S is the program in the if-branch
 - $!C \Rightarrow T_{fact}$, where T is the program in the else-branch
- If we want to test this program we have to choose specific branches
- For instance, $z \star z \le n$ to choose the if-branch
- We can conjoin this choice with the fact

• The fact emanating from sq_root_step framed in the contract of sq_root_lb:

Summary

• The fact emanating from sq_root_step framed in the contract of sq_root_lb:

Those parts corresponding to the if-branch are selected by applying modus ponens

$$\frac{P \quad P \Rightarrow Q}{Q}$$

• The fact emanating from sq root step framed in the contract of sq root lb:

```
z * z <= n
At(x, 0) * At(x, 0) \le n & // Pre-condition from sq_root_lb
z == (At(x, 0) + At(y, 0)) / 2 & // Assignment to z in sq_root_step
(z * z \le n) \rightarrow (y = At(y, 0)) & // - Variable y unchanged in if-branch
(z * z \le n) \rightarrow (x == z) & // Assignment of z to x in if-branch
!(z * z \le n) \rightarrow (x == At(x, 0)) & // - Variable x unchanged in else-branch
!(z * z <= n) -> (y == z)
                                & // Assignment of z to v in else-branch
x * x \le n
                                  // Post-condition from sq root lb
```

Those parts corresponding to the if-branch are selected by applying modus ponens

$$\frac{P \quad P \Rightarrow Q}{Q}$$

Those parts corresponding to the if-branch are removed

• The fact emanating from sq root step framed in the contract of sq root lb:

```
z * z <= n
                                At(x, 0) * At(x, 0) \le n & // Pre-condition from sq_root_lb
z == (At(x, 0) + At(y, 0)) / 2 & // Assignment to z in sq_root_step
(z * z \le n) \rightarrow (y = At(y, 0)) & // - Variable y unchanged in if-branch
(z * z \le n) \rightarrow (x == z) & // Assignment of z to x in if-branch
!(z * z \le n) \rightarrow (x == At(x, 0)) & // - Variable x unchanged in else-branch
!(z * z <= n) -> (y == z)
                                & // Assignment of z to v in else-branch
x * x \le n
                                  // Post-condition from sq root lb
```

Those parts corresponding to the if-branch are selected by applying modus ponens

$$\frac{P \quad P \Rightarrow Q}{Q}$$

- Those parts corresponding to the if-branch are removed
- They do not constrain any variable because ! (z * z <= n) is false

• The fact emanating from sq_root_step framed in the contract of sq_root_lb:

Recall that At (x, 0) and At (y, 0) refer to the initial values of variables x and y

• The fact emanating from sq root step framed in the contract of sq root lb:

- Recall that At(x, 0) and At(y, 0) refer to the initial values of variables x and y
- Starting with
 input x == 0, y == 0, n == 0
 we should obtain the
 output x == 0, y == 0

Generating Test Cases from Implementations

Summary

- Recall that At(x, 0) and At(y, 0) refer to the initial values of variables x and y
- Starting with
 input x == 0, y == 0, n == 0
 we should obtain the
 output x == 0, y == 0
- If we added the post-condition n < y * y, this test case would no longer be valid

• The fact emanating from sq_root_step framed in the contract of sq_root_lb:

Summary

• The fact emanating from sq_root_step framed in the contract of sq_root_lb:

Setting all variables to 0 is not true

- Setting all variables to 0 is not true
- However, negating n < y * y it becomes true

- Setting all variables to 0 is not true
- However, negating n < y * y it becomes true
- So, we've found a counterexample!

- Setting all variables to 0 is not true
- However, negating n < y * y it becomes true
- So, we've found a counterexample!
- We would also have found it,
 had we used the test case just with n < y * y as post-condition

- Setting all variables to 0 is not true
- However, negating n < y * y it becomes true
- So, we've found a counterexample!
- We would also have found it,
 had we used the test case just with n < y * y as post-condition
- This information can be fed into the original fact (before choosing the if-branch)

• The fact emanating from sq root step framed in the contract of sq root lb:

```
At(x, 0) * At(x, 0) <= n
 == (At(x, 0) + At(y, 0)) / 2
(z * z \le n) -> (v == At(v, 0))
(z * z \le n) -> (x ==
!(z * z \le n) -> (v == z)
x * x <= n
n < v * v
```

```
& // Pre-condition from sg root lb
                                 & // Assignment to z in sq_root_step
                                 & // - Variable y unchanged in if-branch
                                 & // Assignment of z to x in if-branch
!(z * z \le n) \rightarrow (x == At(x, 0)) & // - Variable x unchanged in else-branch
                                 & // Assignment of z to y in else-branch
                                  & // Post-condition from sq root lb
                                    // Post-condition from sq root lb
```

We can mark those parts that are true


```
At (x, 0) * At (x, 0) <= n

z == (At (x, 0) + At (y, 0)) / 2

(z * z <= n) -> (y == At (y, 0))

(z * z <= n) -> (x == z)

! (z * z <= n) -> (x == At (x, 0))
! (z * z <= n) -> (y == z)

x * x <= n

n < y * y
```

```
% // Pre-condition from sq_root_lb
% // Assignment to z in sq_root_step
% // - Variable y unchanged in if-branch
% // Assignment of z to x in if-branch
% // - Variable x unchanged in else-branch
% // Assignment of z to y in else-branch
% // Post-condition from sq_root_lb
// Post-condition from sq_root_lb
```

- We can mark those parts that are true
- And those parts that are false

- We can mark those parts that are true
- And those parts that are false
- Now we can trace back the fact n < y * y to the point where y was modified

- We can mark those parts that are true
- And those parts that are false
- Now we can trace back the fact n < y * y to the point where y was modified
- And discover the we need the fact n < At(y, 0) * At(y, 0) initially

- We can mark those parts that are true
- And those parts that are false
- Now we can trace back the fact n < y * y to the point where y was modified
- And discover the we need the fact n < At(y, 0) * At(y, 0) initially
- In other words, we must add n < y * y as a pre-condition

Symbolic Execution of Square Root Search

```
def sq_root_lb_ub() {
   Contract( // modifies x, y
      Requires(x * x <= n),
      Ensures(x * x <= n, n < y * y)
   )
   sq_root_step()
}</pre>
```

• Executing sq_root_lb_ub() yields (x: X0, y: Y0, n: N), (PC:true)

Summary

Summary

```
def sq_root_step() { // modifies x, y
                                                      def sq_root_lb_ub() {
  val z: Z = (x + y) / 2
                                                        Contract ( // modifies x, v
                                                           Requires (x * x \le n),
  if (z * z <= n) {
                                                           Ensures (x * x \le n, n \le y * y)
    x = z
  } else {
    V = Z
                                                        sq_root_step()
  // return
  • Executing sg root 1b ub() yields (x: X0, y: Y0, n: N), (PC: true)
  • Executing Requires (x * x <= n) yields (x: X0, y: Y0, n: N), (PC: X0 * X0 <= N)
  • Executing sq_root_step() yields(x: X0, y: Y0, n: N), (PC: X0 * X0 <= N)
  • Executing val z: Z = (x + y) / 2 yields (x: X0, y: Y0, n: N, z: Z), (PC: X0 * X0 <= N, Z == (X0 + Y0) / 2)
```



```
def sq_root_step() {     // modifies x, y
                                                       def sq_root_lb_ub() {
  val z: Z = (x + y) / 2
                                                         Contract ( // modifies x, y
  if (z * z <= n) {
                                                            Requires (x * x \le n),
                                                            Ensures (x * x \le n, n \le y * y)
    x = z
  } else {
    V = Z
                                                          sq_root_step()
  // return
  • Executing sg root 1b ub() yields (x: X0, y: Y0, n: N), (PC: true)
  • Executing Requires (x * x <= n) yields (x: X0, v: Y0, n: N), (PC: X0 * X0 <= N)
  • Executing sq_root_step() yields(x: X0, y: Y0, n: N), (PC: X0 * X0 <= N)
  • Executing val z: Z = (x + y) / 2 yields (x: X0, y: Y0, n: N, z: Z), (PC: X0 * X0 <= N, Z == (X0 + Y0) / 2)

    Executing if (z * z <= n) { vields</li>

    (x: X0, y: Y0, n: N, z: Z), (PC: X0 * X0 <= N, Z == (X0 + Y0) / 2, Z * Z <= N)
```



```
def sq_root_step() {     // modifies x, y
                                                        def sq_root_lb_ub() {
  val z: Z = (x + y) / 2
                                                          Contract ( // modifies x, y
  if (z * z <= n) {
                                                             Requires (x * x \le n),
                                                             Ensures (x * x \le n, n \le y * y)
    x = z
  } else {
     V = Z
                                                           sq_root_step()
  // return
  • Executing sg root 1b ub() yields (x: X0, y: Y0, n: N), (PC: true)
  • Executing Requires (x * x <= n) yields (x: X0, v: Y0, n: N), (PC: X0 * X0 <= N)

    Executing sg root step() yields (x: X0, y: Y0, n: N), (PC: X0 * X0 <= N)</li>

  • Executing val z: Z = (x + y) / 2 yields (x: X0, y: Y0, n: N, z: Z), (PC: X0 * X0 <= N, Z == (X0 + Y0) / 2)
  • Executing if (z * z <= n) { yields
    (x: X0, y: Y0, n: N, z: Z), (PC: X0 * X0 <= N, Z == (X0 + Y0) / 2, Z * Z <= N)
  • Executing x = z yields
    (x: Z, y: Y0, n: N, z: Z), (PC: X0 * X0 <= N, Z == (X0 + Y0) / 2, Z * Z <= N)
```



```
def sq_root_step() {     // modifies x, y
                                                         def sq_root_lb_ub() {
  val z: Z = (x + y) / 2
                                                           Contract ( // modifies x, v
  if (z * z \le n) {
                                                              Requires (x * x \le n),
                                                              Ensures (x * x \le n, n \le y * y)
    x = z
  } else {
     V = Z
  // return
  • Executing sg root 1b ub() yields (x: X0, y: Y0, n: N), (PC: true)
  • Executing Requires (x * x <= n) yields (x: X0, y: Y0, n: N), (PC: X0 * X0 <= N)

    Executing sg root step() yields (x: X0, v: Y0, n: N), (PC: X0 * X0 <= N)</li>

  • Executing val z: Z = (x + y) / 2 yields (x: X0, y: Y0, n: N, z: Z), (PC: X0 * X0 <= N, Z == (X0 + Y0) / 2)
  • Executing if (z * z <= n) { yields
    (x: X0, y: Y0, n: N, z: Z), (PC: X0 * X0 <= N, Z == (X0 + Y0) / 2, Z * Z <= N)
  • Executing x = z vields
    (x: Z, y: Y0, n: N, z: Z), (PC: X0 * X0 <= N, Z == (X0 + Y0) / 2. Z * Z <= N)
  • Executina } // return yields
    (x: Z, v: Y0, n: N, z: Z), (PC: X0 * X0 <= N, Z == (X0 + Y0) / 2, Z * Z <= N)
```



```
def sq_root_step() { // modifies x, y
                                                         def sq_root_lb_ub() {
  val z: Z = (x + y) / 2
                                                            Contract ( // modifies x, v
  if (z * z \le n) {
                                                              Requires (x * x \le n),
    x = z
                                                              Ensures (x * x \le n, n \le y * y)
  } else {
     V = Z
                                                            sq_root_step()
  // return
  • Executing sg root 1b ub() yields (x: X0, y: Y0, n: N), (PC: true)
  • Executing Requires (x * x <= n) yields (x: X0, y: Y0, n: N), (PC: X0 * X0 <= N)

    Executing sg root step() yields (x: X0, v: Y0, n: N), (PC: X0 * X0 <= N)</li>

  • Executing val z: Z = (x + y) / 2 yields (x: X0, y: Y0, n: N, z: Z), (PC: X0 * X0 <= N, Z == (X0 + Y0) / 2)

    Executing if (z * z <= n) { vields</li>

    (x: X0, y: Y0, n: N, z: Z), (PC: X0 * X0 <= N, Z == (X0 + Y0) / 2, Z * Z <= N)
  • Executing x = z vields
    (x: Z, y: Y0, n: N, z: Z), (PC: X0 * X0 <= N, Z == (X0 + Y0) / 2. Z * Z <= N)
  • Executing } // return yields
    (x: Z, v: Y0, n: N, z: Z), (PC: X0 * X0 <= N, Z == (X0 + Y0) / 2, Z * Z <= N)
  • Executing Ensures (x * x <= n, n < y * y) yields
    (x: Z, y: Y0, n: N, z: Z), (PC: X0 * X0 <= N, Z == (X0 + Y0) / 2, Z * Z <= N, N < Y0 * Y0)
```


Generating Test Cases from Implementations

Summary

Generating Test Cases from Implementations

Conditionals

Conditionals as Facts Choosing Branches Symbolic Execution

Unfolded Iteration Bounded Iteration and Conditionals

Termination

Unfolded Recursion

Bounded Recursion and Conditionals

Termination

Program Verification

Summary

• We can implement the computation of an integer square root as a binary search

```
@pure def sq_root(n: Z): Z = {
  var x: Z = 0
  var y: Z = n + 1
  while (x + 1 != y) {
    val z: Z = (x + y) / 2
    if (z * z <= n) {
        x = z
    } else {
        y = z
    }
}
return x
}</pre>
```


• We can implement the computation of an integer square root as a binary search

```
@pure def sq_root(n: Z): Z = {
  var x: Z = 0
  var y: Z = n + 1
  while (x + 1 != y) {
    val z: Z = (x + y) / 2
    if (z * z <= n) {
        x = z
    } else {
        y = z
    }
}
return x
}</pre>
```

We can use symbolic execution or unfolding for test case generation

• Unfolded while-loop:

Generating Test Cases from Implementations

```
@pure def sq_root(n: Z): Z = {
 var x: Z = 0
 var v: Z = n + 1
 if (x + 1 != y) {
   val z: Z = (x + y) / 2
   if (z * z <= n) {
     x = z
    } else {
     y = z
    if (x + 1 != y) {
     val z: Z = (x + y) / 2
     if (z * z \le n) {
       x = z
      else
       y = z
     while (x + 1 != v) {
       val z: Z = (x + y) / 2
       if (z * z \le n) {
         x = z
        else (
         y = z
  return x
```


• Unfolded while-loop:

Generating Test Cases from Implementations

```
@pure def sq_root(n: Z): Z = {
 var x: Z = 0
 var v: Z = n + 1
 if (x + 1 != v) {
   val z: Z = (x + y) / 2
   if (z * z \le n) {
     x = z
    } else {
     y = z
    if (x + 1 != y) {
     val z: Z = (x + y) / 2
     if (z * z \le n) {
       x = z
      else
       y = z
     while (x + 1 != v) {
       val z: Z = (x + y) / 2
       if (z * z \le n) {
         x = z
        } else {
         y = z
  return x
```

• We don't want the final while-loop to be executed. Let's make this more precise

```
Opure def sq root(n: Z): Z = {
 var x: Z = 0
 var v: Z = n + 1
 if (x + 1 != v) {
   val z: Z = (x + y) / 2
   if (z * z \le n) {
     x = z
    | else {
     V = 2
    if (x + 1 != y) {
     val z: Z = (x + y) / 2
     if (z * z \le n) {
      else
       y = z
     if (x + 1 != v) {
       abort() // This location must never be reached
  return x
```


Example: Iterative Square Root

• We don't want the final while-loop to be executed. Let's make this more precise

```
Opure def sq root(n: Z): Z = {
  var x: Z = 0
 var v: Z = n + 1
 if (x + 1 != v) {
   val z: Z = (x + v) / 2
   if (z * z \le n) {
    | else {
     V = 2
    if (x + 1 != v) (
     val z: Z = (x + v) / 2
     if (z * z \le n) {
      else
       y = z
     if (x + 1 != v) {
       abort() // This location must never be reached
  return x
```

We use abort () to mark branches that we do not wish to consider

Example: Iterative Square Root

• We don't want the final while-loop to be executed. Let's make this more precise

```
Opure def sg root(n: Z): Z = {
  var x: Z = 0
 var v: Z = n + 1
 if (x + 1 != v) {
   val z: Z = (x + v) / 2
    if (z * z \le n) {
    else
     v = z
    if (x + 1 != v) (
     val z: Z = (x + v) / 2
     if (z * z \le n) {
      else
       y = z
     if (x + 1 != v) {
       abort() // This location must never be reached
  return x
```

- We use abort () to mark branches that we do not wish to consider
- This function is **not** equivalent to the original one

Example: Iterative Square Root

DEPARTMENT OF ELECTRICAL AND COMPLETE ENCANTERING

• We don't want the final while-loop to be executed. Let's make this more precise

```
Opure def sg root(n: Z): Z = {
  var x: Z = 0
 var v: Z = n + 1
 if (x + 1 != v) {
   val z: Z = (x + v) / 2
    if (z * z \le n) {
    else
     V = 2
    if (x + 1 != v) (
     val z: Z = (x + v) / 2
      if (z * z \le n) {
      else
       v = z
      if (x + 1 != v) {
        abort () // This location must never be reached
  return x
```

- We use abort () to mark branches that we do not wish to consider
- This function is **not** equivalent to the original one
- Using it we set a bound on the iteration when analysing the while-loop

• This becomes difficult to handle "manually"

- This becomes difficult to handle "manually"
- We can use Logika to inspect the formulas at different iteration depths

- This becomes difficult to handle "manually"
- We can use Logika to inspect the formulas at different iteration depths
- With an increasing number of iterations the formulas grow

- This becomes difficult to handle "manually"
- We can use Logika to inspect the formulas at different iteration depths
- With an increasing number of iterations the formulas grow
- The facts become complex

- This becomes difficult to handle "manually"
- We can use Logika to inspect the formulas at different iteration depths
- With an increasing number of iterations the formulas grow
- The facts become complex
- We still can understand and analyse them when we find errors

- This becomes difficult to handle "manually"
- We can use Logika to inspect the formulas at different iteration depths
- With an increasing number of iterations the formulas grow
- The facts become complex
- We still can understand and analyse them when we find errors
- But we must rely on Logika to generate and manage those facts

- This becomes difficult to handle "manually"
- We can use Logika to inspect the formulas at different iteration depths
- With an increasing number of iterations the formulas grow
- The facts become complex
- We still can understand and analyse them when we find errors
- But we must rely on Logika to generate and manage those facts
- Let's look at a few iterations


```
At[Z]("sq_root_lb.n", 0) >= 0;
At(n, 0) == At[Z]("sq_root_lb.n", 0);
x == 0;
y == At(n, 0) + 1;
!(x + 1 != y);
At(Res, 0) == x;
n == At[Z]("sq_root_lb.n", 0);
y == n + 1
```


Generating Test Cases from Implementations

Generating Test Cases from Implementations

```
At [Z] ("sq_root_lb.n", 0) >= 0;
At(n, 0) == At[Z]("sq_root_lb.n", 0);
At (x, 0) == 0;
At(v, 0) == At(n, 0) + 1;
At(x, 0) + 1 != At(v, 0);
At(z, 0) == (At(x, 0) + At(y, 0)) / 2;
(At(z, 0) * At(z, 0) \le At(n, 0)) ->: (v == At(v, 0));
(At(z, 0) * At(z, 0) \le At(n, 0)) ->: (x == At(z, 0));
!(At(z, 0) * At(z, 0) \le At(n, 0)) -> : (x == At(x, 0));
!(At(z, 0) * At(z, 0) \le At(n, 0)) -> : (v == At(z, 0));
!(x + 1 != y);
At (Res. 0) == x:
n == At[Z] ("sq root lb.n", 0);
x == 0;
v == n + 1
```



```
At [Z] ("sq_root_lb.n", 0) >= 0;
At(n, 0) == At[Z]("sq root lb.n", 0);
At(x, 0) == 0;
At(v, 0) == At(n, 0) + 1;
At(x, 0) + 1 != At(y, 0) :
At(z, 0) == (At(x, 0) + At(y, 0)) / 2;
(At(z, 0) * At(z, 0) \le At(n, 0)) \rightarrow : (At(x, 1) == At(z, 0));
!(At(z, 0) * At(z, 0) \le At(n, 0)) \rightarrow : (At(v, 1) == At(z, 0)):
At(x, 1) + 1 != At(y, 1);
At(z, 1) == (At(x, 1) + At(v, 1)) / 2;
(At(z, 1) * At(z, 1) \le At(n, 0)) \rightarrow (At(z, 0) * At(z, 0) \le At(n, 0)) \rightarrow (v == At(v, 0));
(At(z, 1) * At(z, 1) \le At(n, 0)) \rightarrow : !(At(z, 0) * At(z, 0) \le At(n, 0)) \rightarrow : (At(x, 1) == At(x, 0));
(At(z, 1) * At(z, 1) \le At(n, 0)) \rightarrow : !(At(z, 0) * At(z, 0) \le At(n, 0)) \rightarrow : (y == At(y, 1));
(At(z, 1) * At(z, 1) \le At(n, 0)) \rightarrow : (y == At(y, 1));
(At(z, 1) * At(z, 1) \le At(n, 0)) \rightarrow : (x == At(z, 1)):
!(At(z, 1) * At(z, 1) \le At(n, 0)) \rightarrow :(At(z, 0) * At(z, 0) \le At(n, 0)) \rightarrow :(At(v, 1) == At(v, 0)):
!(At(z, 1) * At(z, 1) <= At(n, 0)) -> :(At(z, 0) * At(z, 0) <= At(n, 0)) -> :(x == At(x, 1));
!(At(z, 1) * At(z, 1) \le At(n, 0)) \rightarrow : !(At(z, 0) * At(z, 0) \le At(n, 0)) \rightarrow : (x == At(x, 0));
!(At(z, 1) * At(z, 1) \le At(n, 0)) -> : (x == At(x, 1));
!(At(z, 1) * At(z, 1) \le At(n, 0)) \rightarrow : (y == At(z, 1));
!(x + 1 != y);
At (Res, 0) == x;
n == At[Z]("sq root lb.n", 0);
x == 0:
v == n + 1
```



```
At [Z] ("sq_root_lb.n", 0) >= 0;
 At(n, 0) == At[Z]("sq_root_lb.n", 0);
 At (x. 0) == 0:
 At(v, 0) == At(n, 0) + 1;
 At(x, 0) + 1 != At(v, 0);
 At(z, 0) = (At(x, 0) + At(y, 0)) / 2;
  (At(z, 0) + At(z, 0) \le At(n, 0)) \rightarrow : (At(x, 1) = At(z, 0));
 !(At(z, 0) * At(z, 0) \le At(n, 0)) \rightarrow :(At(v, 1) == At(z, 0));
 At(x, 1) + 1 != At(y, 1);
 At(z, 1) = (At(x, 1) + At(y, 1)) / 2;
  (At(z, 1) * At(z, 1) \le At(n, 0)) \implies (At(z, 0) * At(z, 0) \le At(n, 0)) \implies (At(x, 1) == At(x, 0));
 (At(z, 1) * At(z, 1) \le At(n, 0)) \rightarrow : (At(x, 2) = At(z, 1));
 ! (At(z, 1) * At(z, 1) <= At(n, 0)) ->: (At(z, 0) * At(z, 0) <= At(n, 0)) ->: (At(y, 1) == At(y, 0));
 !(At(z, 1) * At(z, 1) \le At(n, 0)) \rightarrow : (At(v, 2) == At(z, 1));
 At(x, 2) + 1 != At(v, 2);
 At(z, 2) = (At(x, 2) + At(y, 2)) / 2
  (At(z, 2) * At(z, 2) \le At(n, 0)) \rightarrow (At(z, 1) * At(z, 1) \le At(n, 0)) \rightarrow (At(z, 0) * At(z, 0) \le At(n, 0)) \rightarrow (v = At(n, 0)) \rightarrow (
  (At(z, 2) * At(z, 2) \le At(n, 0)) \longrightarrow (At(z, 1) * At(z, 1) \le At(n, 0)) \longrightarrow (At(z, 0) * At(z, 0) \le At(n, 0)) \longrightarrow (At(z, 1) \le At(n, 0
  (At(z, 2) + At(z, 2) \le At(n, 0)) \rightarrow (At(z, 1) + At(z, 1) \le At(n, 0)) \rightarrow (v = At(v, 1))
  (At(z, 2) * At(z, 2) <= At(n, 0)) ->: (At(z, 1) * At(z, 1) <= At(n, 0)) ->: (At(z, 0) * At(z, 0) <= At(n, 0)) ->: (At(x, 2) == At(x, 1));
  (At(z, 2) + At(z, 2) \le At(n, 0)) \implies (At(z, 1) + At(z, 1) \le At(n, 0)) \implies (At(z, 0) + At(z, 0) \le At(n, 0)) \implies (At(x, 2) = At(x, 0))
  (At(z, 2) + At(z, 2) \le At(n, 0)) \rightarrow : !(At(z, 1) + At(z, 1) \le At(n, 0)) \rightarrow : (At(x, 2) = At(x, 1)):
  (At(z, 2) * At(z, 2) \le At(n, 0)) \rightarrow : !(At(z, 1) * At(z, 1) \le At(n, 0)) \rightarrow : (v == At(v, 2));
  (At(z, 2) + At(z, 2) \le At(n, 0)) \rightarrow : (v = At(v, 2)):
  (At(z, 2) * At(z, 2) \le At(n, 0)) \rightarrow : (x == At(z, 2));
  !(At(z, 2) * At(z, 2) <= At(n, 0)) \rightarrow : (At(z, 1) * At(z, 1) <= At(n, 0)) \rightarrow : (At(z, 0) * At(z, 0) <= At(n, 0)) \rightarrow : (At(v, 2) == At(v, 0));
 !(At(z, 2) + At(z, 2) \le At(n, 0)) \rightarrow : (At(z, 1) + At(z, 1) \le At(n, 0)) \rightarrow : !(At(z, 0) + At(z, 0) \le At(n, 0)) \rightarrow : (At(y, 2) = At(y, 1));
  !(At(z, 2) + At(z, 2) \le At(n, 0)) \rightarrow :(At(z, 1) + At(z, 1) \le At(n, 0)) \rightarrow :(At(v, 2) == At(v, 1));
  !(At(z, 2) + At(z, 2) \le At(n, 0)) \rightarrow :(At(z, 1) + At(z, 1) \le At(n, 0)) \rightarrow :(x == At(x, 2));
  !(At(z, 2) + At(z, 2) \le At(n, 0)) \rightarrow : !(At(z, 1) + At(z, 1) \le At(n, 0)) \rightarrow : (At(z, 0) + At(z, 0) \le At(n, 0)) \rightarrow : (x == At(x, 1));
  !(At(z, 2) * At(z, 2) \le At(n, 0)) \implies !(At(z, 1) * At(z, 1) \le At(n, 0)) \implies !(At(z, 0) * At(z, 0) \le At(n, 0)) \implies !(x == At(x, 0));
 !(At(z, 2) * At(z, 2) \le At(n, 0)) \rightarrow : !(At(z, 1) * At(z, 1) \le At(n, 0)) \rightarrow : (x == At(x, 1));
 !(At(z, 2) * At(z, 2) <= At(n, 0)) ->: (x == At(x, 2));
 !(At(z, 2) * At(z, 2) \le At(n, 0)) \rightarrow : (v == At(z, 2));
 !(x + 1 != y);
 At (Res. 0) == x:
n == At[Z]("sq_root_lb.n", 0);
x == 0:
 v == n + 1
```

Generating Test Cases from Implementations

• Before, we have seen how to specify that a program terminates by way of a measure

- Before, we have seen how to specify that a program terminates by way of a measure
- The body of the loop decreases the measure at each iteration

- Before, we have seen how to specify that a program terminates by way of a measure
- The body of the loop decreases the measure at each iteration
- While the measure is bounded below by 0

- Before, we have seen how to specify that a program terminates by way of a measure
- The body of the loop decreases the measure at each iteration
- While the measure is bounded below by 0
- We can specify these properties of the measure using assertions

```
@pure def sq_root(n: Z): Z = {
    var x: Z = 0
    var y: Z = n + 1
    while (x + 1 != y) {
        val measure_yx_pre = y - x
        assert(measure_yx_pre >= 0)
    val z: Z = (x + y) / 2
    if (z * z <= n) {
        x = z
    } else {
        y = z
    }
    val measure_yx_post = y - x
        assert(measure_yx_post < measure_yx_pre)
}
return x</pre>
```


- Before, we have seen how to specify that a program terminates by way of a measure
- The body of the loop decreases the measure at each iteration
- While the measure is bounded below by 0
- We can specify these properties of the measure using assertions

```
@pure def sq_root(n: Z): Z = {
    var x: Z = 0
    var y: Z = n + 1
    while (x + 1 != y) {
        val measure_yx_pre = y - x
        assert(measure_yx_pre >= 0)
    val z: Z = (x + y) / 2
    if (z * z <= n) {
        x = z
    } else {
        y = z
}
    val measure_yx_post = y - x
    assert(measure_yx_post < measure_yx_pre)
}
return x</pre>
```

• Of course, we can unfold this function, too

- Before, we have seen how to specify that a program terminates by way of a measure
- The body of the loop decreases the measure at each iteration
- While the measure is bounded below by 0
- We can specify these properties of the measure using assertions

```
@pure def sq_root(n: Z): Z = {
    var x: Z = 0
    var y: Z = n + 1
    while (x + 1 != y) {
        val measure_yx_pre = y - x
        assert(measure_yx_pre >= 0)
    val z: Z = (x + y) / 2
    if (z * z <= n) {
        x = z
    } else {
        y = z
}
    val measure_yx_post = y - x
    assert(measure_yx_post < measure_yx_pre)
}
return x</pre>
```

• Of course, we can unfold this function, too

The assert statements are now considered in the fact of the unfolded function

Example: Iterative Square Root Measure Fact

```
At[Z] ("sq root lb term.n", 0) >= 0;
At (n, 0) == At[Z] ("sq_root_lb_term.n", 0);
At (x, 0) == 0;
At(v, 0) == At(n, 0) + 1;
At(x, 0) + 1 != At(v, 0);
At (measure_vx_pre, 0) == At (v, 0) - At (x, 0);
At (measure vx pre, 0) >= 0;
At(z, 0) == (At(x, 0) + At(v, 0)) / 2;
(At(z, 0) * At(z, 0) \le At(n, 0)) \longrightarrow (y == At(y, 0));
(At(z, 0) * At(z, 0) \le At(n, 0)) ->: (x == At(z, 0));
!(At(z, 0) * At(z, 0) \le At(n, 0)) -> : (x == At(x, 0));
!(At(z, 0) * At(z, 0) \le At(n, 0)) -> : (v == At(z, 0));
At (measure vx post, 0) == v - x;
At (measure vx post, 0) < At (measure vx pre, 0);
!(x + 1 != v);
At (Res, 0) == x;
n == At[Z] ("sq root lb term.n", 0):
x == 0:
v == n + 1
```


Generating Test Cases from Implementations

Example: Iterative Square Root Measure Fact

```
At[Z] ("sq root 1b term.n", 0) >= 0;
At(n, 0) == At[Z]("sq.root_lb.term.n", 0);
At(x, 0) == 0:
At(y, 0) == At(n, 0) + 1;
At(x, 0) + 1 != At(v, 0);
At (measure_yx_pre, 0) == At(y, 0) - At(x, 0);
At (measure vx pre, 0) >= 0;
At(z, 0) == (At(x, 0) + At(y, 0)) / 2;
(At(z, 0) * At(z, 0) \le At(n, 0)) \rightarrow : (At(x, 1) == At(z, 0));
!(At(z, 0) * At(z, 0) \le At(n, 0)) \implies (At(y, 1) == At(z, 0));
At (measure vx post, 0) == At (v, 1) - At(x, 1);
At(x, 1) + 1 != At(v, 1);
At (measure_yx_pre, 1) == At (y, 1) - At(x, 1);
At (measure vx pre, 1) >= 0;
At(z, 1) == (At(x, 1) + At(y, 1)) / 2;
(At(z, 1) * At(z, 1) \le At(n, 0)) \rightarrow (At(z, 0) * At(z, 0) \le At(n, 0)) \rightarrow (v == At(v, 0));
(At(z, 1) * At(z, 1) \le At(n, 0)) \rightarrow : !(At(z, 0) * At(z, 0) \le At(n, 0)) \rightarrow : (At(x, 1) == At(x, 0));
(At(z, 1) * At(z, 1) \le At(n, 0)) \longrightarrow (At(z, 0) * At(z, 0) \le At(n, 0)) \longrightarrow (y == At(y, 1));
(At(z, 1) * At(z, 1) \le At(n, 0)) \rightarrow : (v == At(v, 1));
(At(z, 1) * At(z, 1) \le At(n, 0)) \rightarrow (x == At(z, 1));
!(At(z, 1) * At(z, 1) \le At(n, 0)) \rightarrow : (At(z, 0) * At(z, 0) \le At(n, 0)) \rightarrow : (At(v, 1) == At(v, 0)):
!(At(z, 1) * At(z, 1) \le At(n, 0)) \rightarrow :(At(z, 0) * At(z, 0) \le At(n, 0)) \rightarrow :(x == At(x, 1));
!(At(z, 1) * At(z, 1) \le At(n, 0)) \rightarrow : !(At(z, 0) * At(z, 0) \le At(n, 0)) \rightarrow : (x == At(x, 0)):
!(At(z, 1) * At(z, 1) \le At(n, 0)) \rightarrow : (x == At(x, 1)):
!(At(z, 1) * At(z, 1) \le At(n, 0)) \rightarrow : (v == At(z, 1)):
At (measure_yx_post, 1) == y - x;
At (measure vx post, 1) < At (measure vx pre, 1);
!(x + 1 != v):
At (Res. 0) == x:
n == At[Z]("sg root lb term.n", 0);
x == 0:
v == n + 1
```


Generating Test Cases from Implementations

Generating Test Cases from Implementations

Conditionals

Conditionals as Facts Choosing Branches Symbolic Execution

Unfolded Iteration

Bounded Iteration and Conditionals

Unfolded Recursion

Bounded Recursion and Conditionals

Termination

Program Verification

Summary

Example: Recursive Square Root

• In the recursive version the local variables x and y become accumulator arguments

```
@pure def sq_root_rec(n: Z, x: Z, y: Z): Z = {
 if (x + 1 == y) {
    return x
   else {
   val z: Z = (x + y) / 2
   if (z * z \le n) {
      return sq root rec(n, z, v)
     else {
     return sq_root_rec(n, x, z)
@pure def sq root(n: Z): Z = {
 return sq_root_rec(n, 0, n+1)
```


Example: Recursive Square Root

• In the recursive version the local variables x and y become accumulator arguments

```
@pure def sq_root_rec(n: Z, x: Z, y: Z): Z = {
 if (x + 1 == y) {
    return x
   else {
   val z: Z = (x + y) / 2
   if (z * z \le n) {
      return sq root rec(n, z, v)
     else {
     return sq_root_rec(n, x, z)
@pure def sq root(n: Z): Z = {
 return sq_root_rec(n, 0, n+1)
```

• Let's look at the fact of the unfolded recursive square root function


```
At[Z]("sq_root_lb.n", 0) >= 0;
At[Z]("sq_root_unfold.n", 0) ==
    At[Z]("sq_root_lb.n", 0);
At(n, 0) == At[Z]("sq_root_unfold.n", 0);
At(x, 0) == 0;
At(y, 0) == At[Z]("sq_root_unfold.n", 0) + 1;
!(At(x, 0) + 1 == At(y, 0));
At(z, 0) == (At(x, 0) + At(y, 0)) / 2;
At(z, 0) * At(z, 0) <= At(n, 0);
n == At(n, 0);
x == At(z, 0);
y == At(y, 0)</pre>
```

```
At[Z]("sq_root_lb.n", 0) >= 0;
At[Z]("sq_root_unfold.n", 0) ==
    At[Z]("sq_root_lb.n", 0);
At(n, 0) == At[Z]("sq_root_unfold.n", 0);
At(x, 0) == 0;
At(y, 0) == At[Z]("sq_root_unfold.n", 0) + 1;
!(At(x, 0) + 1 == At(y, 0));
At(z, 0) == (At(x, 0) + At(y, 0)) / 2;
!(At(z, 0) * At(z, 0) <= At(n, 0);
n == At(n, 0);
x == At(x, 0);
y == At(z, 0)</pre>
```


Summary

```
At[Z]("sq root lb.n", 0) >= 0;
At[Z]("sq root unfold.n", 0) ==
  At[Z]("sq root lb.n", 0);
At(n, 0) ==
  At[Z]("sg root unfold.n", 0):
At(x, 0) == 0:
At(v, 0) ==
 At[Z] ("sq root unfold.n", 0) + 1;
!(At(x, 0) + 1 == At(y, 0));
At(z, 0) == (At(x, 0) + At(y, 0)) / 2:
!(At(z, 0) * At(z, 0) \le At(n, 0)):
At(n, 1) == At(n, 0):
At(x, 1) == At(x, 0):
At(v, 1) == At(z, 0):
!(At(x, 1) + 1 == At(y, 1)):
At(z, 1) == (At(x, 1) + At(y, 1)) / 2;
At(z, 1) * At(z, 1) \le At(n, 1):
n == At(n, 1):
x == At(z, 1):
v == At(v, 1)
```

Generating Test Cases from Implementations

```
At[2]("sq root 1b.n", 0) >= 0;
At[Z]("sg root unfold.n", 0) ==
  At [2] ("sq root lb.n", 0):
At(n, 0) ==
  At[2]("sg root unfold.n", 0);
At(x, 0) == 0:
At(v, 0) ==
 At[Z] ("sq root unfold.n", 0) + 1;
!(At(x, 0) + 1 == At(y, 0)):
At(z, 0) == (At(x, 0) + At(y, 0)) / 2;
At(z, 0) * At(z, 0) \le At(n, 0):
At(n, 1) == At(n, 0):
At(x, 1) == At(z, 0):
At(v, 1) == At(v, 0):
!(At(x, 1) + 1 == At(v, 1)):
At(z, 1) == (At(x, 1) + At(v, 1)) / 2;
!(At(z, 1) * At(z, 1) \le At(n, 1)):
n == At(n, 1):
x == At(x, 1):
v == At(z, 1)
```

```
At[Z]("sq root lb.n", 0) >= 0;
At[Z]("sg root unfold.n", 0) ==
  At [Z] ("sq root lb.n", 0);
At(n, 0) ==
  At[2]("sg root unfold.n", 0);
At(x, 0) == 0:
At(v, 0) ==
 At[Z] ("sq root unfold.n", 0) + 1;
!(At(x, 0) + 1 == At(y, 0));
At(z, 0) == (At(x, 0) + At(y, 0)) / 2:
!(At(z, 0) * At(z, 0) \le At(n, 0)):
At(n, 1) == At(n, 0):
At(x, 1) == At(x, 0):
At(v, 1) == At(z, 0):
!(At(x, 1) + 1 == At(y, 1)):
At(z, 1) == (At(x, 1) + At(y, 1)) / 2;
!(At(z, 1) * At(z, 1) \le At(n, 1)):
n == At(n, 1):
x == At(x, 1):
v == At(z, 1)
```

```
At[Z]("sq root lb.n", 0) >= 0:
At[Z]("sq root unfold.n", 0) ==
 At [2] ("sq root lb.n", 0);
At(n, 0) ==
 At[2]("sg root unfold.n", 0);
At(x, 0) == 0:
At(v, 0) ==
 At[Z] ("sq root unfold.n", 0) + 1;
!(At(x, 0) + 1 == At(v, 0));
At(z, 0) == (At(x, 0) + At(y, 0)) / 2;
!(At(z, 0) * At(z, 0) \le At(n, 0)):
At(n, 1) == At(n, 0):
At(x, 1) == At(x, 0);
At(v, 1) == At(z, 0):
!(At(x, 1) + 1 == At(y, 1)):
At(z, 1) == (At(x, 1) + At(y, 1)) / 2;
At(z, 1) * At(z, 1) \le At(n, 1):
n == At(n, 1):
x == At(z, 1):
v == At(v, 1)
```

Generating Test Cases from Implementations

```
At[Z]("sq root lb.n", 0) >= 0;
At[Z]("sg root unfold.n", 0) ==
  At [2] ("sq root 1b.n", 0):
At(n, 0) ==
  At[2]("sg root unfold.n", 0);
At(x, 0) == 0:
At(v, 0) ==
  At[Z]("sg root unfold.n", 0) + 1;
!(At(x, 0) + 1 == At(y, 0)):
At(z, 0) == (At(x, 0) + At(y, 0)) / 2:
At(z, 0) * At(z, 0) \le At(n, 0):
At(n, 1) == At(n, 0):
At(x, 1) == At(z, 0);
At(v, 1) == At(v, 0):
!(At(x, 1) + 1 == At(y, 1)):
At(z, 1) == (At(x, 1) + At(y, 1)) / 2;
!(At(z, 1) * At(z, 1) \le At(n, 1)):
n == At(n, 1):
x == At(x, 1):
v == At(z, 1)
```

```
At[Z]("sq root lb.n", 0) >= 0;
At[Z]("sg root unfold.n", 0) ==
  At [2] ("sq root 1b.n", 0):
At(n, 0) ==
 At[2]("sg root unfold.n", 0);
At(x, 0) == 0:
At(v, 0) ==
 At[Z]("sg root unfold.n", 0) + 1;
!(At(x, 0) + 1 == At(y, 0));
At(z, 0) == (At(x, 0) + At(y, 0)) / 2:
!(At(z, 0) * At(z, 0) \le At(n, 0)):
At(n, 1) == At(n, 0):
At(x, 1) == At(x, 0):
At(v, 1) == At(z, 0):
!(At(x, 1) + 1 == At(y, 1)):
At(z, 1) == (At(x, 1) + At(y, 1)) / 2;
!(At(z, 1) * At(z, 1) \le At(n, 1)):
n == At(n, 1):
x == At(x, 1):
v == At(z, 1)
```

```
At [Z] ("sq_root_lb.n", 0) >= 0;
                                                                               At[Z]("sq_root_lb.n", 0) >= 0;
                                                                                                                                                              At [Z] ("sq_root_lb.n", 0) >= 0;
                                                                                                                                                                                                                                              At[Z]("sq_root_lb.n", 0) >= 0;
At[Z]("sg root unfold.n", 0) ==
                                                                               At[Z]("sg root unfold.n", 0) ==
                                                                                                                                                              At[Z]("sg root unfold.n", 0) ==
                                                                                                                                                                                                                                              At[Z]("sg root unfold.n", 0) ==
   At [Z] ("sq_root_lb.n", 0);
                                                                                  At [Z] ("sq_root_lb.n", 0);
                                                                                                                                                                                                                                                At [Z] ("sq_root_lb.n", 0);
At(n, 0) == At[Z]("sq_root_unfold.n", 0);
                                                                              At (n. 0) we At [Z] ("sq root unfold.n", 0):
                                                                                                                                                              At(n, 0) == At[Z]("sq_root_unfold.n", 0);
                                                                                                                                                                                                                                              At (n. 0) www At [Z] ("sq root unfold.n", 0):
At (x, 0) == 0:
                                                                               At(x, 0) == 0:
                                                                                                                                                              At(x, 0) == 0;
                                                                                                                                                                                                                                              At(x, 0) == 0:
At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg 
!(At(x, 0) + 1 == At(y, 0));
                                                                               !(At(x, 0) + 1 == At(v, 0));
                                                                                                                                                               !(At(x, 0) + 1 == At(y, 0));
                                                                                                                                                                                                                                              !(At(x, 0) + 1 == At(v, 0));
At(z, 0) = (At(x, 0) + At(y, 0)) / 2;
                                                                               At(z, 0) = (At(x, 0) + At(y, 0)) / 2;
                                                                                                                                                              At(z, 0) = (At(x, 0) + At(y, 0)) / 2;
                                                                                                                                                                                                                                              At(z, 0) = (At(x, 0) + At(y, 0)) / 2;
!(At(z, 0) * At(z, 0) \le At(n, 0));
                                                                               !(At(z, 0) * At(z, 0) \le At(n, 0));
                                                                                                                                                              !(At(z, 0) * At(z, 0) \le At(n, 0));
                                                                                                                                                                                                                                              !(At(z, 0) * At(z, 0) \le At(n, 0));
At (n. 1) == At (n. 0):
                                                                              At (n. 1) == At (n. 0):
                                                                                                                                                              At(n, 1) == At(n, 0);
                                                                                                                                                                                                                                              At (n. 1) mm At (n. 0):
At(x, 1) == At(x, 0):
                                                                              At(x, 1) == At(x, 0):
                                                                                                                                                              At(x, 1) == At(x, 0):
                                                                                                                                                                                                                                              At(x, 1) == At(x, 0):
At(v, 1) == At(z, 0);
                                                                              At(v, 1) == At(z, 0);
                                                                                                                                                              At(v, 1) == At(z, 0);
                                                                                                                                                                                                                                              At(v, 1) == At(z, 0);
!(At(x, 1) + 1 == At(v, 1));
                                                                               !(At(x, 1) + 1 == At(v, 1));
                                                                                                                                                              !(At(x, 1) + 1 == At(y, 1));
                                                                                                                                                                                                                                              !(At(x, 1) + 1 == At(v, 1));
At(z, 1) == (At(x, 1) + At(y, 1)) / 2;
                                                                              At(z, 1) == (At(x, 1) + At(y, 1)) / 2;
                                                                                                                                                              At(z, 1) = (At(x, 1) + At(y, 1)) / 2;
                                                                                                                                                                                                                                              At(z, 1) == (At(x, 1) + At(y, 1)) / 2;
!(At(z, 1) * At(z, 1) \le At(n, 1));
                                                                               !(At(z, 1) * At(z, 1) \le At(n, 1));
                                                                                                                                                              At(z, 1) * At(z, 1) \le At(n, 1);
                                                                                                                                                                                                                                              At(z, 1) * At(z, 1) \le At(n, 1);
At(n, 2) == At(n, 1);
                                                                               At(n, 2) == At(n, 1);
                                                                                                                                                              At(n, 2) == At(n, 1);
                                                                                                                                                                                                                                              At(n, 2) == At(n, 1);
At(x, 2) == At(x, 1):
                                                                               At(x, 2) == At(x, 1):
                                                                                                                                                              At(x, 2) == At(z, 1):
                                                                                                                                                                                                                                              At(x, 2) == At(z, 1):
At(v, 2) == At(z, 1);
                                                                              At(v, 2) == At(z, 1);
                                                                                                                                                              At(v, 2) == At(v, 1);
                                                                                                                                                                                                                                              At(v, 2) == At(v, 1);
!(At(x, 2) + 1 == At(y, 2)):
                                                                               !(At(x, 2) + 1 == At(y, 2)):
                                                                                                                                                              !(At(x, 2) + 1 == At(y, 2)):
                                                                                                                                                                                                                                              !(At(x, 2) + 1 == At(y, 2)):
At(z, 2) = (At(x, 2) + At(y, 2)) / 2:
                                                                              At(z, 2) = (At(x, 2) + At(y, 2)) / 2:
                                                                                                                                                              At(z, 2) = (At(x, 2) + At(y, 2)) / 2:
                                                                                                                                                                                                                                              At(z, 2) = (At(x, 2) + At(y, 2)) / 2:
                                                                               !(At(z, 2) * At(z, 2) \le At(n, 2));
At(z, 2) * At(z, 2) \le At(n, 2);
                                                                                                                                                              !(At(z, 2) * At(z, 2) \le At(n, 2));
                                                                                                                                                                                                                                              At(z, 2) \star At(z, 2) \leq At(n, 2);
n == At(n, 2):
                                                                               n == At(n, 2):
                                                                                                                                                              n == At(n, 2):
                                                                                                                                                                                                                                              n == At(n, 2):
x == At(z, 2):
                                                                               x == At(x, 2):
                                                                                                                                                              x = At(x, 2):
                                                                                                                                                                                                                                              x == At(z, 2):
v == At(v, 2)
                                                                               v == At(z, 2)
                                                                                                                                                              v == At(z, 2)
                                                                                                                                                                                                                                              v == At(v, 2)
```



```
At [Z] ("sq_root_lb.n", 0) >= 0;
                                                                               At[Z]("sq_root_lb.n", 0) >= 0;
                                                                                                                                                             At [Z] ("sq_root_lb.n", 0) >= 0;
                                                                                                                                                                                                                                             At[Z]("sq_root_lb.n", 0) >= 0;
At[Z]("sg root unfold.n", 0) ==
                                                                               At[Z]("sg root unfold.n", 0) ==
                                                                                                                                                             At[Z]("sg root unfold.n", 0) ==
                                                                                                                                                                                                                                             At[Z]("sg root unfold.n", 0) ==
                                                                                                                                                                                                                                               At [Z] ("sq_root_lb.n", 0);
   At [Z] ("sq_root_lb.n", 0);
                                                                                 At [Z] ("sq_root_lb.n", 0);
At(n, 0) == At[Z]("sq_root_unfold.n", 0);
                                                                              At (n. 0) we At [Z] ("sq root unfold.n", 0):
                                                                                                                                                             At(n, 0) == At[Z]("sq_root_unfold.n", 0);
                                                                                                                                                                                                                                             At (n. 0) www At [Z] ("sq root unfold.n", 0):
At(x, 0) == 0:
                                                                               At(x, 0) == 0:
                                                                                                                                                             At(x, 0) == 0;
                                                                                                                                                                                                                                             At(x, 0) == 0:
At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg root unfold.n", 0) + 1; At(v, 0) == At[Z]("sg 
!(At(x, 0) + 1 == At(y, 0));
                                                                               !(At(x, 0) + 1 == At(v, 0));
                                                                                                                                                              !(At(x, 0) + 1 == At(y, 0));
                                                                                                                                                                                                                                             !(At(x, 0) + 1 == At(v, 0));
At(z, 0) = (At(x, 0) + At(y, 0)) / 2;
                                                                               At(z, 0) = (At(x, 0) + At(y, 0)) / 2;
                                                                                                                                                             At(z, 0) = (At(x, 0) + At(y, 0)) / 2;
                                                                                                                                                                                                                                             At(z, 0) = (At(x, 0) + At(y, 0)) / 2;
!(At(z, 0) * At(z, 0) \le At(n, 0));
                                                                               !(At(z, 0) * At(z, 0) \le At(n, 0));
                                                                                                                                                             !(At(z, 0) * At(z, 0) \le At(n, 0));
                                                                                                                                                                                                                                             !(At(z, 0) * At(z, 0) \le At(n, 0));
At (n. 1) == At (n. 0):
                                                                              At (n. 1) == At (n. 0):
                                                                                                                                                             At(n, 1) == At(n, 0);
                                                                                                                                                                                                                                             At(n, 1) == At(n, 0);
At(x, 1) == At(x, 0):
                                                                              At(x, 1) == At(x, 0):
                                                                                                                                                             At(x, 1) == At(x, 0):
                                                                                                                                                                                                                                             At(x, 1) == At(x, 0):
At(v, 1) == At(z, 0);
                                                                              At(v, 1) == At(z, 0);
                                                                                                                                                             At(v, 1) == At(z, 0);
                                                                                                                                                                                                                                             At(v, 1) == At(z, 0);
!(At(x, 1) + 1 == At(v, 1));
                                                                               !(At(x, 1) + 1 == At(v, 1));
                                                                                                                                                             !(At(x, 1) + 1 == At(y, 1));
                                                                                                                                                                                                                                             !(At(x, 1) + 1 == At(v, 1));
At(z, 1) == (At(x, 1) + At(y, 1)) / 2;
                                                                              At(z, 1) == (At(x, 1) + At(y, 1)) / 2;
                                                                                                                                                             At(z, 1) = (At(x, 1) + At(y, 1)) / 2;
                                                                                                                                                                                                                                             At(z, 1) == (At(x, 1) + At(y, 1)) / 2;
!(At(z, 1) * At(z, 1) \le At(n, 1));
                                                                               !(At(z, 1) * At(z, 1) \le At(n, 1));
                                                                                                                                                             At(z, 1) * At(z, 1) \le At(n, 1);
                                                                                                                                                                                                                                             At(z, 1) * At(z, 1) \le At(n, 1);
At(n, 2) == At(n, 1);
                                                                              At(n, 2) == At(n, 1);
                                                                                                                                                             At(n, 2) == At(n, 1);
                                                                                                                                                                                                                                             At (n, 2) == At (n, 1);
At(x, 2) == At(x, 1):
                                                                               At(x, 2) == At(x, 1):
                                                                                                                                                             At(x, 2) == At(z, 1):
                                                                                                                                                                                                                                             At(x, 2) == At(z, 1):
At(v, 2) == At(z, 1);
                                                                               At(v, 2) == At(z, 1);
                                                                                                                                                             At(v, 2) == At(v, 1);
                                                                                                                                                                                                                                             At(v, 2) == At(v, 1);
!(At(x, 2) + 1 == At(y, 2)):
                                                                               !(At(x, 2) + 1 == At(y, 2));
                                                                                                                                                             !(At(x, 2) + 1 == At(y, 2)):
                                                                                                                                                                                                                                             !(At(x, 2) + 1 == At(y, 2)):
At(z, 2) = (At(x, 2) + At(y, 2)) / 2:
                                                                              At(z, 2) = (At(x, 2) + At(y, 2)) / 2:
                                                                                                                                                             At(z, 2) = (At(x, 2) + At(y, 2)) / 2:
                                                                                                                                                                                                                                             At(z, 2) = (At(x, 2) + At(y, 2)) / 2:
At(z, 2) * At(z, 2) \le At(n, 2);
                                                                               !(At(z, 2) * At(z, 2) \le At(n, 2));
                                                                                                                                                             !(At(z, 2) * At(z, 2) \le At(n, 2));
                                                                                                                                                                                                                                             At(z, 2) * At(z, 2) \le At(n, 2);
n == At(n, 2):
                                                                               n == At(n, 2):
                                                                                                                                                             n == At(n, 2):
                                                                                                                                                                                                                                             n == At(n, 2):
x == At(z, 2):
                                                                               x == At(x, 2):
                                                                                                                                                             x = At(x, 2):
                                                                                                                                                                                                                                             x == At(z, 2):
v == At(v, 2)
                                                                               v == At(z, 2)
                                                                                                                                                             v == At(z, 2)
                                                                                                                                                                                                                                             v == At(v, 2)
```


• Termination of the recursion can be expressed by means of a measure

- Termination of the recursion can be expressed by means of a measure
- At each recursive call the measure is decreased while the measure is bounded below by 0

- Termination of the recursion can be expressed by means of a measure
- At each recursive call the measure is decreased while the measure is bounded below by 0
- As in the iterative implementation, we can specify these properties of the measure using assertions

```
@pure def sq_root_rec_unfold_term(n: Z, x: Z, y: Z): Z = {
    val measure_yx_entry: Z = y - x
    assert(measure_yx_entry >= 0)
    if (x + 1 == y) {
        return x
    } else {
        val z: Z = (x + y) / 2
        if (z * z <= n) {
            val measure_yx_call: Z = y - z
            assert(measure_yx_call < measure_yx_entry)
            return sq_root_rec_unfold_term(n, z, y)
    } else {
        val measure_yx_call: Z = z - x
            assert(measure_yx_call < measure_yx_entry)
        return sq_root_rec_unfold_term(n, x, z)
    }
}</pre>
```


- Termination of the recursion can be expressed by means of a measure
- At each recursive call the measure is decreased while the measure is bounded below by 0
- As in the iterative implementation,
 we can specify these properties of the measure using assertions

```
@pure def sq_root_rec_unfold_term(n: Z, x: Z, y: Z): Z = {
    val measure_yx_entry: Z = y - x
    assert(measure_yx_entry >= 0)
    if (x + 1 == y) {
        return x
    } else {
        val z: Z = (x + y) / 2
        if (z * z <= n) {
            val measure_yx_call: Z = y - z
            assert(measure_yx_call < measure_yx_entry)
            return sq_root_rec_unfold_term(n, z, y)
    } else {
        val measure_yx_call: Z = z - x
            assert(measure_yx_call < measure_yx_entry)
        return sq_root_rec_unfold_term(n, x, z)
    }
}</pre>
```

• The corresponding facts including the measures contain the asserted properties


```
At [Z] ("sq root lb term.n", 0) >= 0:
                                                      At [Z] ("sq root lb term.n", 0) >= 0:
At[Z] ("sq root unfold term.n", 0) ==
                                                      At[Z] ("sq root unfold term.n", 0) ==
 At[Z]("sq_root_lb_term.n", 0);
                                                       At[Z]("sq root lb term.n", 0);
                                                      At(n, 0) == At[Z]("sq root unfold term.n", 0):
At (n, 0) == At[Z] ("sq root unfold term.n", 0);
At(x, 0) == 0;
                                                      At(x, 0) == 0;
At(v, 0) == At[Z]("sq root unfold term.n", 0) + 1;
                                                     At(v, 0) == At[Z]("sq root unfold term.n", 0) + 1;
At (measure_yx_entry, 0) == At(y, 0) - At(x, 0);
                                                      At (measure_yx_entry, 0) == At(y, 0) - At(x, 0);
At (measure vx entry, 0) >= 0:
                                                      At (measure vx entry, 0) >= 0:
!(At(x, 0) + 1 == At(y, 0));
                                                      !(At(x, 0) + 1 == At(v, 0));
At(z, 0) == (At(x, 0) + At(v, 0)) / 2;
                                                      At(z, 0) == (At(x, 0) + At(v, 0)) / 2;
At(z, 0) * At(z, 0) \le At(n, 0):
                                                      !(At(z, 0) * At(z, 0) \le At(n, 0));
At (measure vx call, 0) == At (v, 0) - At (z, 0);
                                                      At (measure vx call, 0) == At (z, 0) - At(x, 0);
At (measure_yx_call, 0) < At (measure_yx_entry, 0);
                                                     At (measure_yx_call, 0) < At (measure_yx_entry, 0);
n == At(n, 0):
                                                      n == At(n, 0):
x == At(z, 0);
                                                      x == At(x, 0);
y == At(y, 0)
                                                      v == At(z, 0)
```


Generating Test Cases from Implementations

Generating Test Cases from Implementations

Conditionals

Conditionals as Facts

Choosing Branches

Symbolic Execution

Unfolded Iteration

Bounded Iteration and Conditionals

Termination

Unfolded Recursion

Bounded Recursion and Conditionals

Termination

Program Verification

Summary

• We have looked at various ways to verify programs

- We have looked at various ways to verify programs
 - (1) Full proof: This shows that any execution of a program is correct

- We have looked at various ways to verify programs
 - (1) Full proof: This shows that any execution of a program is correct
 - (2) Bounded proof: Using unfolding, this shows correctness up to a given depth

- We have looked at various ways to verify programs
 - (1) Full proof: This shows that any execution of a program is correct
 - (2) Bounded proof: Using unfolding, this shows correctness up to a given depth
 - (3) Testing: Using unfolding, this shows correctness for certain values up to a given depth

- We have looked at various ways to verify programs
 - (1) Full proof: This shows that any execution of a program is correct
 - (2) Bounded proof: Using unfolding, this shows correctness up to a given depth
 - (3) Testing: Using unfolding, this shows correctness for certain values up to a given depth
- In practice, one has to judge what is the most suitable approach for different parts of software

- We have looked at various ways to verify programs
 - (1) Full proof: This shows that any execution of a program is correct
 - (2) Bounded proof: Using unfolding, this shows correctness up to a given depth
 - (3) Testing: Using unfolding, this shows correctness for certain values up to a given depth
- In practice, one has to judge what is the most suitable approach for different parts of software
- In particular, it is a matter of time and effort

- We have looked at various ways to verify programs
 - (1) Full proof: This shows that any execution of a program is correct
 - (2) Bounded proof: Using unfolding, this shows correctness up to a given depth
 - (3) Testing: Using unfolding, this shows correctness for certain values up to a given depth
- In practice, one has to judge what is the most suitable approach for different parts of software
- In particular, it is a matter of time and effort
- Using the formal techniques discussed, testing can be made very effective by generating test cases from contracts and implementations

• We have looked at programming at different levels of abstraction

- We have looked at programming at different levels of abstraction
- High-level programs are often also good specifications

- We have looked at programming at different levels of abstraction
- High-level programs are often also good specifications
- For these we can generate test cases

- We have looked at programming at different levels of abstraction
- High-level programs are often also good specifications
- For these we can generate test cases
- Often high-level programs are close to specifications and follow the heuristic we have seen in equivalence partitioning

- We have looked at programming at different levels of abstraction
- High-level programs are often also good specifications
- For these we can generate test cases
- Often high-level programs are close to specifications and follow the heuristic we have seen in equivalence partitioning
- So, they will produce good test cases for implementations

- We have looked at programming at different levels of abstraction
- High-level programs are often also good specifications
- For these we can generate test cases
- Often high-level programs are close to specifications and follow the heuristic we have seen in equivalence partitioning
- So, they will produce good test cases for implementations
- Instead of proving an implementation correct with respect to a specification we can also generate test cases from the specification and use it to test the implementation

• The specification describes the required functionality with precision

- The specification describes the required functionality with precision
- The test cases generated provide evidence to argument for correctness

- The specification describes the required functionality with precision
- The test cases generated provide evidence to argument for correctness
- All of this is contained in the program itself to document the correctness argument for others

Summary

- The specification describes the required functionality with precision
- The test cases generated provide evidence to argument for correctness
- All of this is contained in the program itself to document the correctness argument for others
- In large software projects, the verification methods vary and the argument is complex

Generating Test Cases from Implementations

Conditionals

Conditionals as Facts

Choosing Branches

Symbolic Execution

Unfolded Iteration

Bounded Iteration and Conditional

Termination

Unfolded Recursion

Bounded Recursion and Conditionals

Termination

Program Verification

Summary

Summary

Summary

- We have seen how dealing with conditionals (and assignment) is sufficient for testing (and bounded proof)
- We can use termination measures for proof and for testing
- In practice, a mixes of verification techniques are used
- Note, that sometimes testing is necessary, e.g., when only some scenarios are known but a complete specification cannot be given

