Pyramidal cell model:

Adaptive exponential integrate-and-fire model $with\ leak,\ AMPA\ and\ GABA\ conductance$

$$C_{mP} \frac{dV_m}{dt} = -g_{LP}(V_m - E_{LP})$$

$$+ g_{LP} \triangle T_P e^{\frac{V_m - \theta_P}{\triangle T}} - w_P$$

$$- g_{AMPA} z(V_m - E_{Exc})$$

$$- g_{GABA} z(V_m - E_{Inh})$$

$$\tau_{wP} \frac{dw_P}{dt} = a_P(V_m - E_{LP}) - w_P$$

if V_m reaches θ_P :

 $V \to V_{resP}$ and stays there for t_{refP} and $w_P \to w_P + b_P$ (spike adatpation)

where:

$$\begin{split} g_{LP} &= 4.33*10^{-3} \mu S \\ \tau_{mP} &= 60ms \\ C_{mP} &= \tau_{mP} * g_{LP} \\ E_{LP} &= -70mV \\ \Delta T_P &= 2mV \\ \theta_P &= -50mV \\ g_{AMPA} : \tau_{PExc} \frac{dg_{AMPA}}{dt} &= -g_{AMPA} \\ g_{GABA} : \tau_{PInh} \frac{dg_{GABA}}{dt} &= -g_{GABA} \\ (\tau_{PExc} &= 10ms, \tau_{PInh} &= 3ms) \\ E_{Exc} &= 0mV \\ E_{Inh} &= -70mV \\ z &= 1nS \\ \tau_{wP} &= 300ms \\ a_P &= -0.8nS \\ b_P &= 0.04nA \end{split}$$

treshold: $\theta_P + 10 \triangle T_P = -30 mV$

reset: $V_{resP} = -53mV$ refactory: $t_{refP} = 5ms$

Basket cell model:

Integrate-and-fire model with leak, AMPA and GABA conductance

$$C_{mB} \frac{dV_m}{dt} = -g_{LB}(V_m - E_{LB})$$
$$-g_{AMPA}z(V_m - E_{Exc})$$
$$-g_{GABA}z(V_m - E_{Inh})$$

if V_m reaches θ_B :

 $V \to V_{resB}$ and stays there for t_{refB}

where:

$$g_{LB} = 5 * 10^{-3} \mu S$$

$$\tau_{mB} = 14ms$$

$$C_{mB} = \tau_{mB} * g_{LB}$$

$$E_{LB} = -70mV$$

$$g_{AMPA} : \tau_{BExc} \frac{dg_{AMPA}}{dt} = -g_{AMPA}$$

$$g_{GABA} : \tau_{BInh} \frac{dg_{GABA}}{dt} = -g_{GABA}$$

$$(\tau_{BExc} = 3ms, \tau_{PInh} = 1.5ms)$$

$$E_{Exc} = 0mV$$

$$E_{Inh} = -70mV$$

z = 1nS

treshold: $\theta_B = -50mV$ reset: $V_{resB} = -64mV$ refactory: $t_{refB} = 0.1ms$

Snapses:

Synapses are modelled as an instantaneous rise of the synaptic conductance $g_{syn}(t)$ from 0 to \bar{g}_{syn} at time t_0 , followed by an exponential decay, with a time constant τ .

$$g_{syn}(t) = \bar{g}_{syn}exp(\frac{t-t_0}{\tau})$$

Connections:

Pyramidal cell population (excitatory): 4000 neuron Basket cell population (inhibitory): 1000 neuron

Connection type	weight	sparseness	delay
$\text{Exc} \to \text{Exc}$	learned	0.16	3 ms
$\operatorname{Exc} \to \operatorname{Inh}$	4.5 nS	0.15	3 ms
$\mathrm{Inh} \to \mathrm{Exc}$	$0.15 \mathrm{\ nS}$	0.4	$1.5 \mathrm{\ ms}$
$\mathrm{Inh} o \mathrm{Inh}$	$0.25 \mathrm{\ nS}$	0.4	$1.5~\mathrm{ms}$

+ External input (to the pyramidal cell population): PoissonGroup with 5 Hz firing rate (weight = 5 nS)