Particle spectrograph

Wave operator and propagator

				7.5	$\frac{t_1)}{2 r_5 t_1}$. <u>1</u> 5 <i>t</i> 1
$\tau_{1^-}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{i}{kr_5+2k^3r_5}$	$\frac{i(6k^2r_5+t_1)}{\sqrt{2}k(1+2k^2)^2r_5t_1}$	0	$\frac{6k^2r_5+t_1}{(1+2k^2)^2r_5t_1}$
$\tau_{1^{}}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1^{-}\alpha}^{\#2}$	0	0	0	$-\frac{1}{\sqrt{2} \; (k^2 \; r_5 + 2 k^4 \; r_5)}$	$\frac{6 k^2 r_5 + t_1}{2 (k + 2 k^3)^2 r_5 t_1}$	0	$-\frac{i(6k^2r_5+t_1)}{\sqrt{2}k(1+2k^2)^2r_5t_1}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{1}{k^2 r_5}$	$-\frac{1}{\sqrt{2} (k^2 r_5 + 2 k^4 r_5)}$	0	$\frac{i}{k r_5 + 2 k^3 r_5}$
$\tau_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_5+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_5+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_1^{\#1}{}_+\alpha\beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$J_1^{#1} + \alpha \beta$	$\sigma_{1}^{#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#_1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#_{1}} +^{\alpha}$	$\tau_1^{\#2} + \alpha$

	$\sigma_{2}^{\#1}{}_{\alpha\beta}$	$ au_2^{\#1}_{lphaeta}$	$\sigma_{2-\alpha\beta\chi}^{\#1}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{t_1}$

l .	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_{2}^{\#1}{}_{\alpha\beta\chi}$
$\omega_{2}^{\#1}\dagger^{lphaeta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_2^{#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	<u>t</u> 1 2

$f_{1}^{\#2}$	0	0	0	<i>ikt</i> 1 3	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{3}$
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	€ 17	0	$-\frac{1}{3}i\sqrt{2}kt_1$
$\omega_{1^{^{-}}\alpha}^{\#1}$	0	0	0	$k^2 r_5 + \frac{t_1}{6}$	$\frac{t_1}{3\sqrt{2}}$	0	$-\frac{1}{3}$ Ikt ₁
$f_{1}^{\#1}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha\beta} f$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
	$k^2 r_5 - \frac{t_1}{2} \left -\frac{t_1}{\sqrt{2}} \right -$	$-\frac{t_1}{\sqrt{2}}$ 0	$\frac{ikt1}{\sqrt{2}} \qquad \qquad 0$	0 0	0 0	0 0	0 0

uge generators	Multiplicities	1	1	1	3	3	3	5	17	
Source constraints/gauge generators	SO(3) irreps	$\sigma_{0+}^{#1} == 0$	$\tau_{0+}^{\#1} == 0$	$\tau_{0+}^{\#2} == 0$	$t_1^{\#2}\alpha + 2ik \sigma_1^{\#2}\alpha = 0$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\tau_{1}^{\#1}{}^{\alpha\beta} + i k \sigma_{1}^{\#2}{}^{\alpha\beta} == 0$	$\tau_{2+}^{\#1}\alpha\beta$ - 2 ik $\sigma_{2+}^{\#1}\alpha\beta$ == 0 5	Total constraints:	

Quadratic (free) action

$$\begin{split} \mathcal{S} &== \\ &\iiint (f^{\alpha\beta} \ \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + \frac{1}{6} \, t_1 \, (2 \ \omega^{\alpha_I}_{\ \alpha} \ \omega_I^{\ \theta} - 4 \ \omega_{\alpha}^{\ \theta} \ \partial_I f^{\alpha_I} + 4 \ \omega_I^{\ \theta}_{\ \theta} \, \partial^I f^{\alpha}_{\ \alpha} - 2 \, \partial_I f^{\alpha_I} \, \partial_\theta f_{\alpha}^{\ \theta} + 4 \, \partial^I f^{\alpha}_{\ \alpha} \, \partial_\theta f_I^{\ \theta} - 6 \, \partial_\alpha f_{I\theta} \, \partial^\theta f^{\alpha_I} - 3 \, \partial_\alpha f_{\theta_I} \, \partial^\theta f^{\alpha_I} + \\ & 3 \, \partial_I f_{\alpha\theta} \, \partial^\theta f^{\alpha_I} + 3 \, \partial_\theta f_{\alpha_I} \, \partial^\theta f^{\alpha_I} + 3 \, \partial_\theta f_{I\alpha} \, \partial^\theta f^{\alpha_I} + 6 \ \omega_{\alpha\theta_I} \, (\omega^{\alpha_I\theta} + 2 \, \partial^\theta f^{\alpha_I})) + \\ & r_5 \, (\partial_I \omega_{\theta}^{\ \kappa} \, \partial^\theta \omega^{\alpha_I}_{\ \alpha} - \partial_\theta \omega_I^{\ \kappa} \, \partial^\theta \omega^{\alpha_I}_{\ \alpha} - (\partial_\alpha \omega^{\alpha_I\theta} - 2 \, \partial^\theta \omega^{\alpha_I}_{\ \alpha}) \, (\partial_\kappa \omega_I^{\ \kappa}_{\ \theta} - \partial_\kappa \omega_{\theta}^{\ \kappa})))[\\ & t, x, y, z] \, dz \, dy \, dx \, dt \end{split}$$

•	w_{0}^{+}	⁷ 0 ⁺) ₀ +	ω_{0}^{-1}	
$v_{0}^{\#1}$ †	0	0	0	0	
$f_{0}^{#1}$ †	0	0	0	0	
$f_{0}^{#2}$ †	0	0	0	0	
υ ^{#1} †	0	0	0	-t ₁	
_	$\sigma_0^{\sharp 1}$	$\tau_{0}^{\#1}$	$\tau_{0}^{\#2}$	$\sigma_0^{\#1}$	
$\sigma_{0}^{\#1}$ †	0	0	0	0	
$\tau_{0}^{\#1}$ †	0	0	0	0	
$\tau_{0}^{\#2}$ †	0	0	0	0	
σ ^{#1} †	0	0	0	$-\frac{1}{t_1}$	

 $\omega^{\#1} f^{\#1} f^{\#2} \omega^{\#1}$

Massive and massless spectra

(No massive particles)

Unitarity conditions

$$r_5 < 0 \&\& t_1 < 0 || t_1 > 0$$