Beyond spectral gap: The role of the topology in decentralized learning

Sergei Ovcharov, Anton Korznikov, Georgii Budnik

October 2023

Decentralized learning

The group of nodes is not coordinated by any centralized server. Each node locally holds f_i and exchanges information only with its immediate neighbors.

$$\min_{x_1,...,x_m \in \mathbb{R}^d} \sum_{i=1}^m f_i(x_i)$$
s.t. $x_1 = \ldots = x_m$.

The optimal point in the decentralized sense should be consensual and optimal, i.e.

$$x_1 = \ldots = x_m = x^* = \arg\min_{x \in \mathbb{R}^d} \frac{1}{m} \sum_{i=1}^m f_i(x).$$

Decentralized Stochastic Gradient Descent (D-SGD)

Algorithm:

```
Choose step-size \alpha>0 and pick any x_i^{(0)}\in\mathbb{R}^n; for k=0,1,\ldots do x_i^{(k+1)}=\sum_{j=1}^n w_{ij}x_j^{(k)}-\alpha\nabla f_i(x_i^{(k)}),\quad i=1,2,\ldots,m; end
```

Article overview

Beyond spectral gap: The role of the topology in decentralized learning

Thijs Vogels* Hadrien Hendrikx* Martin Jaggi EPFL EPFL EPFL EPFL

Abstract

In data-parallel optimization of machine learning models, workers collaborate to improve their estimates of the model; more accurate gradients allow them to

Spectral Gap vs Effective number of neighbors

The effective number of neighbors measures the ratio of the asymptotic variance of the processes:

$$n_{W}(\gamma) = lim_{t \to \infty} \frac{\sum_{i=1}^{n} Var[\mathbf{y}_{i}^{(t)}]}{\sum_{i=1}^{n} Var[\mathbf{z}_{i}^{(t)}]}$$

, where

$$egin{aligned} \mathbf{y}^{(t+1)} &= \sqrt{\gamma} * y^{(t)} + \xi^{(t)}, \ y^{(t)} \in \mathbb{R}, \ \xi^{(t)} \sim \mathcal{N}^n(0,1) \ \mathbf{z}^{(t+1)} &= \mathbf{W}\left(\sqrt{\gamma} * z^{(t)} + \xi^{(t)}
ight), \ z^{(t)} \in \mathbb{R}, \ \xi^{(t)} \sim \mathcal{N}^n(0,1) \end{aligned}$$

We call **y** and **z** random walks because workers repeatedly add noise to their state, somewhat like SGD's parameter updates. This should not be confused with a 'random walk' over nodes in the graph.

Paper's results

Figure: Cifar-10 training loss after 2.5k steps for all studied topologies with their optimal learning rates.

Our Reproduction of the Experiment

Figure: MNIST training loss after 200 steps for studied static topologies with their optimal learning rates.

Time Varying Topologies

Figure: MNIST training loss after 200 steps for all studied topologies with their optimal learning rates.

Regular and Irregular Graphs

Figure: Optimal convergence rate dependence from ENN and SG for Erdös-Rényi random graphs.

Figure: Optimal convergence rate dependence from ENN and SG for Barabási-Albert random graphs.

ENN for random graphs

Figure: Time Varying vs Constant random topologies.

Maximization of ENN for a Fixed Graph

G is a fixed graph, W is its weights.

$$\begin{aligned} \max_{W} n_{W}(\gamma) &:= \frac{\frac{1}{1-\gamma}}{\sum_{i} \frac{\lambda_{i}^{2}}{1-\gamma \lambda_{i}^{2}}} \\ \max_{W} n_{W}(\gamma) & \text{is equiv to } \min_{W} Tr \left(I - \gamma W^{2}\right)^{-1} \\ \text{s.t.} W^{T} &= W, W \mathbb{1} = \mathbb{1}, 0 \leq W \leq G \end{aligned}$$

$$\min_{W,X,Y} Tr X$$

$$\text{s.t.} W^{T} &= W, W \mathbb{1} = \mathbb{1}, 0 \leq W \leq G$$

$$\begin{bmatrix} X & I \\ I & Y \end{bmatrix} \succeq 0, \quad \begin{bmatrix} I - Y & W \\ W & \frac{1}{2}I \end{bmatrix} \succeq 0$$

DIGing Algorithm

Algorithm:

```
Choose step-size \alpha > 0 and pick any x^{(0)} \in \mathbb{R}^{n \times p};

Initialize y^{(0)} = \nabla f(x^{(0)});

for k = 0, 1, \dots do
x^{(k+1)} = W^{(k)}x^{(k)} - \alpha y^{(k)};
y^{(k+1)} = W^{(k)}y^{(k)} + \nabla f(x^{(k+1)}) - \nabla f(x^{(k)});
end
```

DIGing with static topologies

Figure: MNIST training loss after 200 steps for all studied topologies with their optimal learning rates.

DIGing with static and varying topologies

Figure: MNIST training loss after 200 steps for all studied topologies with their optimal learning rates.

DIGing with Erdos topologies

Figure: MNIST training loss after 200 steps for all studied topologies with their optimal learning rates.

DIGing with Varying Erdos topologies

Figure: MNIST training loss after 200 steps for all studied topologies with their optimal learning rates.

Comparison of DSGD and DIGing algorithms

Figure: MNIST training loss after 200 steps for all studied topologies with their optimal learning rates.

Thank you for your attention!