

DIPARTIMENTO DI

INGEGNERIA INDUSTRIALE

Objective

Calculate the *annual energy production* and *capacity factor* of a commercial PV module, assuming different mounting configurations:

- Fixed (either horizontal, or tilted facing South)
- Equipped with a tracking system

PV tracking systems

Reference PV module

Source :Offgridsun.com

Solar Module 100 W

Monocrystalline 36 cells

ELECTRICAL DATA			
MODULE		FU 100 M next	
Standard Test Conditions STC 1000 W/sqm - AM 1.5 - 25 °C - measuring tolerance <3%			
Module power (Pmax)	W	100	
Module efficiency	%	15.29	
Maximum power voltage (Vmpp) V_{mp}	p0 [∨]	18.40	
Maximum power current (Impp) I_{mpp}	20 A	5.43	
Open circuit voltage (Voc) V_{oc0}	٧	22.95	
Short circuit current (Isc) I_{sc0}	А	5.85	
Maximum system voltage	٧	1000	

TEMPERATURE RATINGS		
Temperature coefficient (Isc) χ	%/°C	0.02
Temperature coefficient (Voc) ξ	%/°C	-0.33
Temperature coefficient (Pmax)	%/°C	-0.48
NOCT *	°C	47
Operating temprature	°C	from -40 to +85

^{*} Nominal Operating Cell Temperature

MECHANICAL SPECIFICATIONS		
Dimensions	1200 x 540 x 30 mm	
Weight	6.7 kg	
Glass	Tempered, transparent, 3.2 mm	
Cell encapsulation	EVA (Ethylene Vinyl Acetate)	
Cells	36 five bus-bar monocrystalline cutted-cells	
Backsheet	Composite multilayer film	
Frame	Anodized aluminium frame with mounting and drainage holes	
Junction box	Junction box with or without cables	

PV module simplified model

Thermal model

Module temperature: $T_m = T_a + (NOCT - 20[^{\circ}C]) \frac{I}{800[\frac{W}{m^2}]}$, T_a : ambient temperature, $I\left[\frac{W}{m^2}\right]$ instantaneous incident radiation

OC voltage and SC current (functions of temperature and radiation):

$$I_{sc} = I_{sc0} (1 + \frac{\chi}{100} (T_m - 25[^{\circ}C])) \frac{I}{1000 [\frac{W}{m^2}]}, \quad V_{oc} = V_{oc0} (1 + \frac{\xi}{100} (T_m - 25[^{\circ}C]))$$

MPP current/voltage

We assume that the fill factor stays constant

$$FF = \frac{I_{mpp}V_{mpp}}{I_{sc}V_{oc}} = \frac{I_{mppo}V_{mppo}}{I_{sco}V_{oco}}$$

Power output: $P = FF \cdot I_{sc}V_{oc}$

Reference location

Trento, latitude $\phi = 46.07^{\circ}$

Given meteorological data (see Data.m):

- Global, beam and diffuse daily irradiation (monthly avg)
- Max./min. temperatures (monthly avg) → assume sinusoidal distribution, with peak at 2pm (solar time)

Estimation of radiation profiles (I - t) from daily data \rightarrow see attached reference