10+2 PCM NOTES

BY

JOYOSHISH SAHA

(PDF version handwritten notes of Maths, Physics and Chemistry for 10+2 competitive exams like JEE Main, WBJEE, NEST, IISER Entrance Exam, CUCET, AIPMT, JIPMER, EAMCET etc.)

* So esds have only vibrational motion as the constituents are in fixed positions.

* Two Types solids - a) Crystalline: constituents, arranged in a definite, orderly manner which repeats itself over long distances; have sharp melting points; anistropic - different properties in different directions; incompressible; clean clearage. b) Amorphous: constituente in a random manner; don't have sharp metting points ; pseudo solids; reotropic ; doit show clean clearage.

de Coystat: Homogeneous part of solice substance made by regular pattern of structural units bonded by blane surface making definite angles with each other.

* Types of Coystalline solids:

	Cons- tituent	Force	И.Р. (К)	B.E. (KJ/mole)	Conductivity	8x.
Some	-Anson	electro-	>1300K	400-4000	Conductor	Nocl.
Covaleny Natwork	Atons	Coralent Bond	>3960K	150-500	9nsulator	Sic,
Holecular	Molecules	Van Der Waals	443K.	240	Insulator	Dryle , I,
Holatic.	Atoms	Hetalic Bonds.	800~1000	80~1000	Conductor	All me- tals.

* Bragg's Equh: nx = 2dsnno.

n+order of reflection (generally 1)

2 = wavelength of X-Roys

d = distance between two layers of crystal

o = angle of meidence.

(beneficial for structure, dimension of Tonic coystalline solid, explaining properties of X-Rays)

Unit all : Have properties of the crystal. Charaterised by edge distances and angles.

Types: Sample, face-centered, body-centered, end-centered.

N	Cryslat	system	and	Branis	La-Hisces:
---	---------	--------	-----	--------	------------

Crystat System	Bravi's Ladice	Intercepts	Interfactal angle	Examples.
Cubic	Parmitive, Face-cen, Body-cen(3)	a=b=c	$\alpha = \beta = \gamma^2 = \frac{\pi}{2}$	Ag, Au, Diamond.
Ortho- Rombic	Primitive, Face, Body, End (1)	at bt c	d=B=0= R	K2504,KNO2
Tetragoral	Poim, Booly (2)	a=b≠c	$\alpha = \beta = \beta^2 = \frac{\pi}{2}$	Tio, Sno.
Honoclinic	Poim, End (2)	axbxc	$ \alpha = \beta = \frac{\pi}{2}, \gamma^0 \neq \frac{\pi}{2} $	Caso ₄ , 2 H ₂ 0
Torclinic	Porm (1)	a x 6 x c	at by th	Cuso, 5H20
Hexagonal	Porm(1)	a=b7c	$\alpha = \beta = \frac{R}{2}$ $\beta = 120^{\circ}$	Zn, Ng
Rhombohe	drak Ram (1)	a=b=c	$\alpha = \beta = 30 \neq 900$	Br, As, Sb.
	Tot -> 14		sone i ané, i	

a = b = C $a = \beta = 3 = \frac{\pi}{2}$ Cubic

 $a = b \neq c$ $a = \beta = \vartheta = \frac{\pi}{2}$ tetragonal

 $a \neq b \neq c$ $\alpha = \beta = \beta = \frac{\pi}{2}$ Or the stamble

 $a \neq b \neq c$ $d = \beta = \frac{\pi}{2}, 8 \neq \frac{\pi}{2}$ monoclinic.

 $Q = b \neq c$ $Q = \beta = \frac{\pi}{2}, p = 120^{\circ}$

Hexagonal

a=b=c $a\neq b\neq r=\frac{R}{2}$

Rism bohedral

Triclinic.

(CR) (HTO) (TOM).

Toyoshish Saha

S-la-le.

Solid , e. *- for hexagonal premitive unit call-height of * Cubic System: unit cell(h) = 40/23 & facking fraction = [0.74]

Property	Porm	FCC	Bec,
Diagonal	Factal 212m	facial 40	Body dragond
Edge length	a = 210	a=2122	4r. a= 4r.
Volume Occupied by sphere	Azton3	1×31503	2× 1/3 rc 3,
Volume of .	8003	(212m)3	(AT) 3.
Packing fraction	0.524	0.74	0.68
Pocentage of free space.	47.6 %.	26%	32%
C. No.	6	12	8
P = · ZH		of atoms in u	init cell
	NA, V-	volume of	coll
Interstetial v	roicls: roct ≥	0.41410-, n+= (CN-6) , tetoa	0·225 m-, (cn-4)
		≥ 0.1557, 7° (CN-3)	

((M-8)

Close packing in 2D-

7

*

Square close packing - 52.4% space occupied by spheres.

Hexagonal close packing - 60.4% space occupied.

Packing in 30 -Heragonal - 74% space occupied. CH (12).

cubic close packing - CN (12). Body antered cubic-Body centered cubic - CN(8).

* Structure of some somic componends:

Rock satt (Naci) Type: Close cubic packing, FCC.
Nat in octahedral voids, cn-6 cubic backing, FCC, (Lix, Hax, Kx, Aga, rt/r= 0.525 (Theory - 0.414). Agror, WHyce). Joyoshish Saha

```
ce in corner of cube, Cs+ in
      * Cace Type:
                  cubic void. CN-8, +1/10- = 0.93 (Theory-
      CsX, Tick,
                                                     0.732).
      TiBr, NHACE,
      WHY Br.
                                    alternote tetrahodral
      * Zus Type: , CCP, Zn24 For
                 voids , CN- 4.
      Ens, Cucl,
      Culbo, Cul, AgI,
      BeO.
     * fluorite structure (Cata Type):
                                       Caz+ ccp, f ->
                                       in tetrahedral void,
       Cafz, Bacia, Bafz, Sofz.
                                       CH (Ca2+) - 8 CN(F)-4
     + Antifluorite structure (Nago Type): 07 -> ccp
                                            Nat - tetrahedral
        Wa,0, 120.
                                            voids, CH(Ha+)-4,
                                            Ch(02-)-8
      * Normal Spinel Structure (AB204): A-Bivalent,
          Mg Alz 69 Mg+ - 1/8 th of tetrahedral voids B- Trivalent cation.
                   A23+ - 1/2 of octahedral voids catton.
         (Inter 04 may also have this structure).
                           en delephones, memory loops
       These are used
         computers as magnetic materials.
      * Structure of Fezoa (Hagnetite): Fe3+: Fe2+:: 2:1.
                                           0, - + ccb,
       Fe2+ - octahedral voids, fe3+ - oct, tet void.
      (Ugfer04 may have this stoucture).
      * Electronic Imperfection: Release of electron
                                  above OK, (So/Ge), free
      to more electron in crystal (antoinsic
      conduction).
      A Alomic Imperfection: Stoichiometric Defects:
                               a) Schottky Defect:
      Same number of positive and neg. son missing
      (high cut, size of cath an is equal). b) Inter-
      stettal defect - presence of gons in interstellar
           c) Frenkel defect: Cotron leaves 7to sight
                                 a moves to onterstetial
Joyoshish Saha
                                 site.
```

```
* Non Stoichiome-Iric Defect:
```

a) metal excess - Dhegative row absent , leaving (possessing schottley a hore (F-centres).

(excess of Na in Nacl - yellow crystal,

excess of K on Kee - violet, excess of Lightice - pronk).

ii) extra cation (Trenket defect) - Zus yellow collour.

b) metal deficiency: I cateon vacancy, (transition metal).

* $m_c + m_a = \frac{a}{2}$ (for fcc) $m_c + m_a = \frac{\sqrt{3}}{2}a$ (for bec)

* firmiting CN shape radius

x <0.155. 2 Kinear

0.155(x<0.225 3 Planar togangle

0.225 52 5 044 4 Totrahedral

0.414 £ x < 0.732 6 Octahedoal

0.7326x< 0.999 8 Body certared cubic.

* Cubic crystal has 23 elements of symmetry. Centre of symmetry = 1.

Plane of symanetry = 3+6=9.

Axes of symmetry = 3+4+6=13

* Theore-Iscal/calculated density of coystal=P=

Percentage occupancy. Pexperamental x100%.

V = abe (1-cos2 - cos2 - cos2 + 2 cos2 cos 3 cos2) 1/2

* Hiller indices (denoted as (h, k, 1)). To denote a plane in unit cell. Procedure to obtain Indices
axes entercepts as a multiple of

y a/b/c -> receptocal -> cleaning

1700- From (Demons) trac Frons (RCMukherjee + 704) * d- Spacings: Destance between two parallel planes en a cubic crystal. $d = \frac{a}{\sqrt{h^2 + \kappa^2 + \lambda^2}}$ [$a \rightarrow length$ of side of cube]. 4 No. of Schottky defect formed per cc (ns) Ms = Ne(-Ws/KT) N→ lattice sites.

Ws > work to born a schottky defect.

K → Boltzman Constant

T → abs. +emb nature T -1 abs. temp nature (X) * No. of Frenkel defect formed per cc (ng) My = VNW' Q (-WF/KT) | N-> lattice sites N'-> no. of attern native enter-station space/ce Octahedrat Voids = Wo. of particles. + In CSI3 molecule, Cs+ & I3 - rows are present.

the state of the s

talanta de la companya del companya de la companya del companya de la companya de