Houssam Zenati* 1*, Manon Romain* 1*, Chuan-Sheng Foo* 1, Bruno Lecouati* and Vijay Chandrasekhar*

1 CentraleSupélec, houssam.remail@student.ecp.fr

1 Ecole Polytechnique, monon.romain@polytechnique.edu

1 Télécom ParisTech

1 Institute for Infocomm Research, A*STAR, Ifoocsbruno-lecouat,vijay]@i2ra-staredu.sg

*Authors contributed equally to this work

Anomaly Detection II Adversarially Learned Anomaly Detection

Henrik Strangalies

Institute of Computer Science Freie Universität Berlin

Overview

- 1 Introduction
- 2 Technical Background
 - GANs and Bidirectional GANs (BiGANs)
 - Adversarially Learned Anomaly Detection (ALAD)
- 3 Experiments
 - Evaluation on tabular data
 - Evaluation on image data
- 4 My experiments
 - Evaluation on tabular data
 - Evaluation on image data
- 5 Summary

Table of Contents

Introduction

- 1 Introduction
- 2 Technical Background
 - GANs and Bidirectional GANs (BiGANs)
 - Adversarially Learned Anomaly Detection (ALAD)
- 3 Experiments
 - Evaluation on tabular data
 - Evaluation on image data
- 4 My experiments
 - Evaluation on tabular data
 - Evaluation on image data
- 5 Summary

Introduction to Anomaly Detection

Definition

Introduction

Anomaly detection is the identification of rare items, events or observations by differing significantly from the majority.

Outliers

Introduction

https://towardsdatascience.com/how-to-use-machine-learning-for-anomaly-detection-and-condition-monitoring-6742f82900d7
Henrik Strangalies

Applications of Anomaly Detection for Cybersecurity

- Detection of unauthorized access attempts (Intrusion detection).
- Detection of suspicious activity e.g. unusual types of requests.
- Prevent sensitive data leaks.

Table of Contents

- 2 Technical Background
 - GANs and Bidirectional GANs (BiGANs)
 - Adversarially Learned Anomaly Detection (ALAD)
- - Evaluation on tabular data
 - Evaluation on image data
- - Evaluation on tabular data
 - Evaluation on image data

•000000

Recap: Structure of GANs

- Generator maps random variables sampled from a latent distribution (typically Gaussian) to the input data space.
- Discriminator tries to distinguish real data samples from samples produced by Generator.
- Generator and discriminator are in competition whether generator can better fool the discriminator or the discriminator can better detect between real or fake image.

Anomaly Detection Task

How to **detect anomalies** from GANs?

Anomaly Detection Task

How to **detect anomalies** from GANs?

Assumption

Being able to learn the distribution of the normal data is key for the anomaly detection task.

Anomaly Detection Task

Two approaches for **Anomaly Detection** using GANs:

- Use sampling to estimate the likelihood of an input and determine if it is an outlier.
- 2 "Invert" the generator to find latent variables that minimize reconstruction error.

Anomaly Detection Task

Two approaches for **Anomaly Detection** using GANs:

- Use sampling to estimate the likelihood of an input and determine if it is an outlier.
- 2 "Invert" the generator to find latent variables that minimize reconstruction error.
- Both approaches are computationally expensive.
- It is neither possible to explicitly compute a likelihood nor obtain the latent representation for a given data sample directly using the vanilla GAN.

Anomaly Detection Task

Two approaches for **Anomaly Detection** using GANs:

- Use sampling to estimate the likelihood of an input and determine if it is an outlier.
- 2 'Invert" the generator to find latent variables that minimize reconstruction error.
- Both approaches are computationally expensive.
- It is neither possible to explicitly compute a likelihood nor obtain the latent representation for a given data sample directly using the vanilla GAN.

Structure of BiGANs

BiGANs

- Encoder should learn to invert the generator where both are not directly connected. They never see their outputs.
- The BiGAN encoder learns to predict **latent representations**.
- It has been demonstrated that these representations capture attributes of the data which can be considered as labels.

BiGAN for Anomaly Detection Task

How to **detect anomalies** with BiGAN?

BiGAN for Anomaly Detection Task

How to detect anomalies with BiGAN?

Assumption

Normal samples should be accurately reconstructed whereas anomalous samples will likely be poorly reconstructed.

BiGAN for Anomaly Detection Task

How to detect anomalies with BiGAN?

Assumption

Normal samples should be accurately reconstructed whereas anomalous samples will likely be poorly reconstructed.

 \Rightarrow Reconstruction is done by: $G(E(x)) \approx x$.

Problem of BiGAN for Anomaly Detection Task

- While in theory the joint distributions $p_G(x, z) = p_Z(z)p_G(x|z)$ and $p_E(x, z) = p_X(x)p_E(z|x)$ will be identical, in practice this is often not the case as training does not necessarily converge to a solution of the saddle-point problem.

Adversarially Learned Anomaly Detection (ALAD)

Objective of ALAD

The **Objective of ALAD** is defined as: $min_{G,E} max_{D_{xz},D_{xx},D_{zz}} V(D_{xz},D_{xx},D_{zz},E,G)$ where

$$V(D_{xz}, D_{xx}, D_{zz}, E, G) = V(D_{xz}, E, G) + V(D_{xx}, E, G) + V(D_{zz}, E, G)$$

Objective of ALAD

The **Objective of ALAD** is defined as: $min_{G,E} max_{D_{xz},D_{xx},D_{zz}} V(D_{xz},D_{xx},D_{zz},E,G)$ where

$$V(D_{xz}, D_{xx}, D_{zz}, E, G) = V(D_{xz}, E, G) + V(D_{xx}, E, G) + V(D_{zz}, E, G)$$

Known from the **BiGAN**:

$$V(D_{xz}, E, G) = \mathbb{E}_{x \sim p_x}[logD_{xz}(x, E(x))] + \mathbb{E}_{z \sim p_z}[1 - logD_{xz}(G(z), z)]$$

Objective of ALAD

The **Objective of ALAD** is defined as: $min_{G,E} max_{D_{xz},D_{xx},D_{zz}} V(D_{xz},D_{xx},D_{zz},E,G)$ where

$$V(D_{xz}, D_{xx}, D_{zz}, E, G) = V(D_{xz}, E, G) + V(D_{xx}, E, G) + V(D_{zz}, E, G)$$

Objective of ALAD

The **Objective of ALAD** is defined as: $min_{G,F}max_{D_{vv},D_{vv}}V(D_{xz},D_{xx},D_{zz},E,G)$ where

$$V(D_{xz}, D_{xx}, D_{zz}, E, G) = V(D_{xz}, E, G) + V(D_{xx}, E, G) + V(D_{zz}, E, G)$$

Known from the **ALICE framework**:

$$V(D_{\mathsf{xx}}, E, G) = \mathbb{E}_{\mathsf{x} \sim p_{\mathsf{x}}}[logD_{\mathsf{xx}}(\mathsf{x}, \mathsf{x})] + \mathbb{E}_{\mathsf{x} \sim p_{\mathsf{x}}}[1 - logD_{\mathsf{xx}}(\mathsf{x}, G(E(\mathsf{x})))]$$

Objective of ALAD

The **Objective of ALAD** is defined as: $min_{G,E} max_{D_{xz},D_{xx},D_{zz}} V(D_{xz},D_{xx},D_{zz},E,G)$ where

$$V(D_{xz}, D_{xx}, D_{zz}, E, G) = V(D_{xz}, E, G) + V(D_{xx}, E, G) + V(D_{zz}, E, G)$$

Objective of ALAD

The **Objective of ALAD** is defined as: $min_{G,E} max_{D_{xz},D_{xx},D_{zz}} V(D_{xz},D_{xx},D_{zz},E,G)$ where

$$V(D_{xz}, D_{xx}, D_{zz}, E, G) = V(D_{xz}, E, G) + V(D_{xx}, E, G) + V(D_{zz}, E, G)$$

For stabilizing GAN training, the **ALAD** Paper added another conditional entropy constraint:

$$V(D_{zz}, E, G) = \mathbb{E}_{z \sim p_z}[logD_{zz}(z, z)] + \mathbb{E}_{z \sim p_z}[1 - logD_{zz}(E(G(z)), z)]$$

Objective of ALAD

The **Objective of ALAD** is defined as: $min_{G,E} max_{D_{xz},D_{xx},D_{zz}} V(D_{xz},D_{xx},D_{zz},E,G)$ where

$$V(D_{xz}, D_{xx}, D_{zz}, E, G) = V(D_{xz}, E, G) + V(D_{xx}, E, G) + V(D_{zz}, E, G)$$

where

$$V(D_{xz}, E, G) = \mathbb{E}_{x \sim p_x}[logD_{xz}(x, E(x))] + \mathbb{E}_{z \sim p_z}[1 - logD_{xz}(G(z), z)]$$

$$V(D_{xx}, E, G) = \mathbb{E}_{x \sim p_x}[logD_{xx}(x, x)] + \mathbb{E}_{x \sim p_x}[1 - logD_{xx}(x, G(E(x)))]$$

$$V(D_{zz}, E, G) = \mathbb{E}_{z \sim p_z}[logD_{zz}(z, z)] + \mathbb{E}_{z \sim p_z}[1 - logD_{zz}(E(G(z)), z)]$$

ALAD for Anomaly Task

How to **detect anomalies** with ALAD?

ALAD for Anomaly Task

How to **detect anomalies** with ALAD?

Assumption

Normal samples should be accurately reconstructed whereas anomalous samples will likely be poorly reconstructed.

 \Rightarrow Reconstruction is done by: $G(E(x)) \approx x$.

ALAD for Anomaly Task

- It is necessary to **learn the manifold of the data** so as to recover precise latent representations that result in accurate reconstructions of normal samples.
- The other key component of ALAD is an **anomaly score** that quantifies the distance between the original samples and their reconstructions.

Anomaly Score Function

A **score function** A(x) based on the L_1 reconstruction error in the feature space is defined as:

$$A(x) = ||f_{xx}(x,x) - f_{xx}(x,G(E(x)))||_1$$

where f(.,.) denotes the activations of the layer before the logits in the D_{xx} network for the given pair of input sample.

Anomaly Score Function

A **score function** A(x) based on the L_1 reconstruction error in the feature space is defined as:

$$A(x) = ||f_{xx}(x,x) - f_{xx}(x,G(E(x)))||_1$$

where f(.,.) denotes the activations of the layer before the logits in the D_{xx} network for the given pair of input sample.

Corollary

Samples with larger values of A(x) are deemed more likely to be anomalous.

ALAD Algorithm

Algorithm 1 Adversarially Learned Anomaly Detection

Input $x, \sim p_{\mathcal{X}_{Test}}(x), E, G, f_{xx}$ where f_{xx} is the feature layer of D_{xx}

Output A(x), where A is the anomaly score

1: procedure INFERENCE

2: $\tilde{\boldsymbol{z}} \leftarrow E(\boldsymbol{x})$

▷ Encode samples

3: $\hat{\boldsymbol{x}} \leftarrow G(\tilde{\boldsymbol{z}}),$

▶ Reconstruct samples

4: $f_{\delta} \leftarrow f_{xx}(\boldsymbol{x}, \hat{\boldsymbol{x}})$

 $: f_{\alpha} \leftarrow f_{xx}(\boldsymbol{x}, \boldsymbol{x})$

6: return $||f_{\delta} - f_{\alpha}||_1$

7: end procedure

Table of Contents

- - GANs and Bidirectional GANs (BiGANs)
 - Adversarially Learned Anomaly Detection (ALAD)
- 3 Experiments
 - Evaluation on tabular data
 - Evaluation on image data
- - Evaluation on tabular data
 - Evaluation on image data

Experiment setup

- For each dataset, 80% of the whole official dataset is used for **training** and the remaining 20% as are kept as **test set**.
- 25% from the training set are taken for a validation set.
- Anomalous samples from both training and validation sets are discarded.

Evaluation on tabular data

Tabular dataset: KDDCup99

The KDDCup99 is a **network intrusion** dataset.

feature name	description	type
hot	number of ``hot" indicators	continuous
num_failed_logins	number of failed login attempts	continuous
logged_in	1 if successfully logged in; 0 otherwise	discrete
num_compromised	number of ``compromised" conditions	continuous
root_shell	1 if root shell is obtained; 0 otherwise	discrete
su_attempted	1 if ``su root'' command attempted; 0 otherwise	discrete
num_root	number of ``root'' accesses	continuous
num_file_creations	number of file creation operations	continuous
num_shells	number of shell prompts	continuous
num_access_files	number of operations on access control files	continuous
num_outbound_cmds	number of outbound commands in an ftp session	continuous
is_hot_login	1 if the login belongs to the ``hot" list; 0 otherwise	discrete
is_guest_login	1 if the login is a ``guest"login; 0 otherwise	discrete

Data setup: KDDCup99

- The dataset contains samples of 41 dimensions, where 34 of them are continuous and 7 are categorical.
- Preprocessing: For categorical features, one-hot representation are used to encode them resulting in a total of 121 features.
- Due to the high proportion of outliers in the KDD dataset, "normal" data samples are treated as anomalies.
- ullet 20% of samples with the highest anomaly scores A(x) are classified as anomalies (positive class).
- Used metrics: Precision, Recall, F1 score.

Architecture and Hyper-parameters: KDDCup99

Operation	Units	Non Linearity	Batch Norm.	Dropou
E(x)				
Dense	64	LReLU	×	0.0
Dense	1	None	×	0.0
G(z)				
Dense	64	ReLU	×	0.0
Dense	128	ReLU	×	0.0
Dense	121	None	×	0.0
$D_{xz}(x,z)$ Only on x				
Dense	128	LReLU	√	0.0
Only on z				
Dense	128	LReLU	×	0.5
Concatenate outputs				
Dense	128	LReLU	×	0.5
Dense	1	Sigmoid	×	0.0
$D_{xx}(x, x')$ Concatenate x and x'				
Dense	128	LReLU	×	0.2
Dense	1	Sigmoid	×	0.0
$D_{zz}(z,z')$ Concatenate z and z'				
Dense	32	LReLU	×	0.2
Dense	1	Sigmoid	×	0.0
Optimizer	Adam(c	$\alpha = 10^{-5}$	$\beta_1 = 0.5$	5)
Batch size	50			
Latent dimension	32			
Epochs	100			
LReLU slope	0.2			
Weight, bias init,	Xavier I	nitializer, Con	stant(0)	

Table XI KDD99 ALAD ARCHITECTURE AND HYPERPARAMETERS

◆□▶ ◆□▶ ◆□▶ ◆□▶ ■ 900

Binary Cross Entropy with Logits

The **Binary Cross Entropy with Logits** is defined as:

$$H_p(q) = -rac{1}{N} \sum_{i=1}^N y_i * log(\sigma(p(y_i))) + (1 - y_i) * log(1 - \sigma(p(y_i)))$$

Experiments 0000000

- Predictions can be just binary, i.e. belonging to positive class or negative one.
- When the observation belongs to positive class the first term of the formula becomes active and the second part vanishes (vice versa in the other case).

Ablation study: With(-out) spectral normalization (SN) or latent Discriminator (DL)

Model	Precision	Precision Recall		
	KDD99			
Baseline	0.948±0.007	0.963±0.007	0.955±0.007	
Baseline + DL	0.944 ± 0.008	0.959 ± 0.008	0.951±0.008	
Baseline + SN	0.942 ± 0.004	0.957±0.004	0.949±0.004	
Baseline + SN + DL	0.943 ± 0.002	0.958 ± 0.002	0.950 ± 0.002	

Ablation study: Various anomaly score functions

$$L_1$$
 : $A(x) = ||x - x'||_1$
 L_2 : $A(x) = ||x - x'||_2$
Logits : $A(x) = \log(D_{xx}(x, x'))$

Features :
$$A(x) = ||f_{xx}(x, x)||_1$$

reatures :
$$A(x) = ||f_{xx}(x, x) - f_{xx}(x, x)||_1$$

Model	Precision	Recall	F1 score			
KDD99						
L_1	0.9113 ± 0.0627	0.9258 ± 0.0637	0.9185 ± 0.0632			
L_2	0.9316 ± 0.0155	0.9464 ± 0.0157	0.9389 ± 0.0156			
Logits	0.9221 ± 0.0172	0.9368 ± 0.0174	0.9294 ± 0.0173			
Features	0.9427 ± 0.0018	0.9577 ± 0.0018	0.9501 ± 0.0018			

Operation	Units	Non Linearity	Batch Norm.	Dropout	
E(x)					
Dense	64	LReLU	×	0.0	
Dense	1	None	×	0.0	
G(z)					
Dense	64	ReLU	×	0.0	
Dense	128	ReLU	×	0.0	
Dense	121	None	×	0.0	
$D_{\varpi z}(\varpi, z)$ Only on x					
Dense	128	LReLU	✓	0.0	
Only on z					
Dense	128	LReLU	×	0.5	
Concatenate outputs					
Dense	128	LReLU	×	0.5	
Dense	1	Sigmoid	×	0.0	
$D_{xx}(x, x')$ Concatenate x and x'					
Dense	128	LReLU	×	0.2	
Dense	1	Sigmoid	×	0.0	
$D_{zz}(z,z')$					
Concatenate z and z'					
Dense	32	LReLU	×	0.2	
Dense	1	Sigmoid	×	0.0	
Optimizer	Adam(c	$\epsilon = 10^{-5}$.	$\beta_1 = 0.0$	5)	
Batch size	50				
Latent dimension	32				
Epochs	100				
LReLU slope	0.2				
Weight, bias init.	Xavier I	nitializer, Con-	stant(0)		

Table XI

KDD99 ALAD ARCHITECTURE AND HYPERPARAMETERS

Performance on tabular data

PERFORMANCE ON TABULAR DATASETS

Dataset	Model	Precision	Recall	F1 score
	OC-SVM	0.7457	0.8523	0.7954
	IF	0.9216	0.9373	0.9294
KDD99	DSEBM-r	0.8521	0.6472	0.7328
	DSEBM-e	0.8619	0.6446	0.7399
	DAGMM	0.9297	0.9442	0.9369
	AnoGAN	0.8786	0.8297	0.8865
	ALAD	0.9427	0.9577	0.9501

ly experimer

Evaluation on image data

Image dataset: CIFAR-10

The CIFAR-10 dataset contains 10 classes of images.

Experiment Setup

- **Preprocessing:** Pixels were scaled to be in range [-1,1].
- Ten different datasets each CIFAR-10 are computed where one class is deemed to be **normal** and considering images from the remaining 9 as **anomalous**.
- Used metrics: AUROC.

Architecture and Hyper-parameters: CIFAR-10

Operation	Kernel	Strides	Filters Units	Non Linearity	Batch Norm.
E(z)			Crisics	Linearny	AUTH.
Conv2D	4×4	2×2	128	LReLU	V
Conv2D	4×4	2 × 2	256	LReLU	
Conv2D	4×4	2×2	512	LReLU	×
Conv2D*	4×4	1 × 1	100	None	×
G(z)					
Trans. Conv2D*	4×4	2×2	512	ReLU	V
Trans. Conv2D	4×4	2×2	256	ReLU	**
Trans. Conv2D	4×4	2×2	128	ReLU	V
Trans. Conv2D	4×4	2×2	3	Tanh	V
$D_{xx}(x,z)$					
Only on x					
Conv2D	4×4	2×2	128	LReLU	×
Conv2D	4×4	2×2	256	LReLU	✓.
Conv2D	4×4	2×2	512	LReLU	✓
Only on z					
Conv2D [†]	4×4	2×2	512	LReLU	×
Conv2D [†]	4×4	2×2	512	LReLU	×
Concatenate outputs					
Com/2D†	1 × 1	1×1	1024	LReLU	×
Conv2D	1 × 1	1 × 1	1	LReLU	×
$D_{xx}(x, x')$					
Concatenate x and x'					
Conv2D [†]	5×5	2×2	64	LReLU	×
Com/2D†	5 × 5	2 × 2	128	LReLU	×
Dense	0 / 0	2 ^ 2	120	None	- û
$D_{zz}(z,z')$				None	^
$D_{ZZ}(Z,Z')$ Concatenate z and z'					
Dense †			64	LReLU	×
Dense [†]			32	LReLU	×
Dense [†]			1	LReLU	×
Optimizer		2 * 10	$^{-4}$, $\beta_1 =$	0.5)	
Batch size	32				
atent dimension	100				
Max Epochs	100				
Patience	10				
ReLU slope	0.2				
Weight &		iussian (μ =	$= 0, \sigma =$	0.01)	
bias initialization	Constant(0)				

イロト 不問 トイミト 不足ト

Table IX

CIFAR-10 AND SVHN ALAD ARCHITECTURE AND HYPERPARAMETERS

Ablation study: With(-out) spectral normalization (SN) or latent Discriminator(DL)

CIFAR-10					
Baseline	0.5701 ± 0.1282				
Baseline + DL	0.5361 ± 0.1348				
Baseline + SN	0.5991 ± 0.1308				
Baseline $+$ SN $+$ DL	0.5701 ± 0.1282 0.5361 ± 0.1348 0.5991 ± 0.1308 0.6072 ± 0.1201				

Ablation study: Various anomaly score functions

 L_1 : $A(x) = ||x - x'||_1$ L_2 : $A(x) = ||x - x'||_2$

Logits : $A(x) = \log(D_{xx}(x, x'))$

Features : $A(x) = ||f_{xx}(x, x) - f_{xx}(x, x')||_1$

CIEAD 10

CITAK-10				
L_1	$\begin{array}{c} 0.6066 \pm 0.1006 \\ 0.6012 \pm 0.1088 \end{array}$			
L_2	0.6012 ± 0.1088			
Logits	$\begin{array}{c} 0.5396 \pm 0.0783 \\ 0.6072 \pm 0.1201 \end{array}$			
Features	0.6072 ± 0.1201			

Operation	Kernel	Strides	Filters Units	Non Linearity	Batch Norm.
E(z)					
Conv2D	4×4	2×2	128	LReLU	V
Conv2D	4×4	2×2	256	LReLU	V
Conv2D	4×4	2×2	512	LReLU	V
Conv2D*	4×4	1×1	100	None	×
G(z)					
Trans. Conv2D*	4×4	2×2	512	ReLU	V
Trans. Conv2D	4×4	2×2	256	ReLU	×>>>
Trans. Conv2D	4×4	2×2	128	ReLU	V
Trans. Conv2D	4×4	2×2	3	Tanh	V
$D_{xx}(x,z)$					
Only on x					
Conv2D	4×4	2×2	128	LReLU	×
Conv2D	4×4	2×2	256	LReLU	✓
Conv2D	4×4	2×2	512	LReLU	✓
Only on z					
Conv2D [†]	4×4	2×2	512	LReLU	×
Conv2D [†]	4×4	2×2	512	LReLU	×
Concatenate outputs					
Conv2D†	1×1	1×1	1024	LReLU	×
Conv2D	1 × 1	1 × 1	1	LReLU	×
$D_{xx}(x, x')$	1 ^ 1			LIKELO	^
$Concatenate \ x \ and \ x'$					
Conv2D [†]	5×5	2 × 2	64	LReLU	
					×
Conv2D†	5×5	2×2	128	LReLU	×
Dense			1	None	×
$D_{zz}(z,z')$					
Concatenate z and z'					
Dense [†]			64	LReLU	×
Dense [†]			32	LReLU	×
Dense [†]			1	LReLU	×
Optimizer	Adam(cv.)	= 2 * 10	4. β ₁ =		
Batch size	32	10			
Latent dimension	100				
Max Epochs	100				
Patience	10				
LReLU slope	0.2				
Weight &	Isotropic g	aussian (44 =	$= 0, \sigma =$	0.01)	
bias initialization	Constant(0	0			

Performance on image data

Table of Contents

- 1 Introduction
- 2 Technical Background
 - GANs and Bidirectional GANs (BiGANs)
 - Adversarially Learned Anomaly Detection (ALAD)
- 3 Experiments
 - Evaluation on tabular data
 - Evaluation on image data
- 4 My experiments
 - Evaluation on tabular data
 - Evaluation on image data
- 5 Summary

Training setup: KDDCup99

- As in the Paper, due to the high proportion of outliers in the KDD dataset, "normal" data samples are treated as anomalies.
- **Exactly 19.82 (instead of 20%)** of samples with the highest anomaly scores A(x) are classified as **anomalies** (positive class).
- **Preprocessing**: The dataset contains samples of 41 dimensions, where 34 of them are continuous and 7 are categorical. For categorical features, one-hot representation are used to encode them resulting in a total of 121 features.
- Utilized a latent discriminator while the Paper's baseline model not.
- Used metrics: Precision, Recall, F1 score.

Performance on tabular data

Precision: 0.9481 **Recall**: 0.9417 **F1-Score**: 0.9449

000

Compared to Paper's result

Model	Precision	Recall	F1-Score
OC-SVM	0.7457	0.8523	0.7954
IF	0.9216	0.9373	0.9294
DSEBM-r	0.8532	0.6472	0.7328
DSEBM-e	0.8619	0.6446	0.7399
DAGMM	0.9297	0.9442	0.9369
AnoGAN	0.8786	0.8297	0.8865
ALAD	0.9427	0.9577	0.9501
Reproduction	0.9481	0.9417	0.9449

Experiment Setup

- Ten different datasets from CIFAR-10 are computed where one class is deemed to be **normal** and considering images from the remaining 9 as **anomalous**.
- **Preprocessing:** Pixels were scaled to be in range [-1,1].
- Used metrics: AUROC.
- Utilized a latent discriminator while the Paper's baseline model not.

Results

Compared to Paper's result

Table of Contents

- 1 Introduction
- 2 Technical Background
 - GANs and Bidirectional GANs (BiGANs)
 - Adversarially Learned Anomaly Detection (ALAD)
- 3 Experiments
 - Evaluation on tabular data
 - Evaluation on image data
- 4 My experiments
 - Evaluation on tabular data
 - Evaluation on image data
- 5 Summary

Take-Home Messages

- Being able to learn the distribution of the normal data is key for the anomaly detection task.
- Normal samples should be accurately reconstructed whereas anomalous samples will likely be poorly reconstructed.
- Measure distance of original sample and reconstruction and use it as a anomaly score to determine whether a sample is anomalous or stems from the normal distribution.

Thank You For Listening!

