

WHAT IS CLAIMED IS:

1 1. A current mirror, comprising:
2 a first leg comprising a reference current source operable to generate a
3 reference current;
4 a first mirror current leg comprising a first P-type CMOS transistor and a first
5 N-type transistor;
6 a second mirror current leg comprising a second P-Type CMOS transistor and
7 a second N-type transistor;
8 a load leg comprising a third P-type transistor and a load; and
9 compensation circuitry operable to compensate for gate current leakage in said
10 first, second and third P-type CMOS transistors.

1 2. The current source according to claim 1, wherein said reference current
2 is passed through an N-type CMOS transistor connected in a diode configuration.

1 3. The current mirror according to claim 1, wherein said compensation
2 circuitry comprises first and second P-type compensation transistors.

1 4. The current mirror according to claim 3, wherein said first
2 compensation transistor is connected in a diode configuration and is operable to sense
3 and provide the portion of the copied reference current that is lost due to gate current
4 leakage of said first, second and third P-type CMOS transistors.

1 5. The current mirror according to claim 4, wherein said second P-type
2 compensation transistor generates a compensation current equal to the portion of the
3 copied reference current that is lost due to the gate current leakage of said first,
4 second and third P-type CMOS transistors.

1 6. The current mirror according to claim 5, wherein said load comprises a
2 charge pump circuit for a phase-locked loop.

1 7. The current mirror according to claim 5, wherein said current mirror
2 comprises at least three output current sources.

1 8. The current mirror according to claim 7, wherein current mirror
2 comprises a first sensing transistor in a diode configuration and at least three
3 compensation devices to compensate for gate current leakage in said first, second and
4 third P-type CMOS transistors.

1 9. The current mirror according to claim 8, wherein said compensation
2 devices comprise P-type CMOS transistors.

1 10. The current mirror according to claim 9, wherein said three output
2 current sources each comprise at least one P-type CMOS transistor and wherein said
3 compensation devices compensate for gate current leakage in said P-type CMOS
4 transistors.

1 11. A method of operating a current mirror having a reference leg, first and
2 second mirror legs each comprising at least one P-type CMOS transistor and a load
3 leg, comprising:

4 generating a known reference current in said reference leg of said current
5 mirror circuit;

6 using said reference current to control the flow of current in said first and
7 second mirror legs and said load leg of said current mirror circuit;
8 compensating for gate current leakage in said P-type CMOS transistors in said
9 first and second mirror legs and the output load leg, thereby generating
10 a current flow in said load leg equal to the current flow in said
11 reference leg.

1 12. The method according to claim 11, wherein said reference current is
2 passed through an N-type CMOS transistor connected in a diode configuration.

1 13. The method according to claim 12, wherein said compensation
2 circuitry comprises first and second P-type compensation transistors.

1 14. The method according to claim 13, wherein said first compensation
2 transistor senses and generates the compensation current equal to the sum of all net
3 gate current leakage through the diode connection of the first P-type CMOS transistor
4 in the first mirror leg of said all P-type CMOS transistors.

1 15. The method according to claim 14, wherein said second P-type
2 compensation transistor copies the compensation current from the first P-type
3 compensation transistor and adds the compensation current to the mismatched output
4 current.

1 16. The method according to claim 15, wherein said load comprises a
2 charge pump circuit for a phase-locked loop.

1 17. The method according to claim 15, wherein said current mirror
2 comprises at least three output load legs.

1 18. The method according to claim 17, wherein said current mirror comprises
2 at least three compensation devices plus the very first sensing compensation device to
3 compensate for gate current leakage in said all legs containing a P-type CMOS
4 transistor.

1 19. The method according to claim 18, wherein said compensation devices
2 comprise P-type CMOS transistor.

1 20. The method according to claim 19, wherein said three output current
2 mirror legs each comprise at least one P-type CMOS transistor and said three current
3 compensation devices each provide compensation for all of said P-type CMOS
4 transistors.