ФКН ВШЭ, МНаД.

Линейная алгебра.

Лист задач 2. Базисы и координаты.

1. Найдите координатный вектор для:

- (a) Вектора $x=\begin{pmatrix}1\\1\end{pmatrix}$ в базисе $\mathcal{B}=\{b_1,b_2\}$ пространства \mathbb{R}^2 , если $b_1=\begin{pmatrix}2\\-4\end{pmatrix},\,b_2=\begin{pmatrix}3\\8\end{pmatrix}$.
- (b) Вектора p(x) = 4 + 5x в базисе $U = \{u_1, u_2\}$ пространства $\mathbb{R}[x, 1]$, если $u_1 = 1 + 2x$, $u_2 = -2 3x$.

Hint: нужно составить и решить две системы линейных уравнений:

$$P_{B\to S}[x]_B = [x]_S$$
 и $P_{U\to S}[p(x)]_U = [p(x)]_S$

- 2. В пространстве \mathbb{R}^2 задан базис $B=\{b_1,b_2\},$ где $b_1=\begin{pmatrix}1\\1\end{pmatrix},$ $b_2=\begin{pmatrix}2\\1\end{pmatrix}$
 - (a) Найдите матрицу перехода $P_{B\to S}$ от базиса B к стандартному базису S пространства \mathbb{R}^2 .
 - (b) Найдите матрицу перехода $P_{S \to B}$ от стандартного базиса S к базису B.
 - (с) Убедитесь, что эти матрицы являются обратными друг для друга.
- 3. В пространстве \mathbb{R}^2 задан базис $\mathcal{B} = \{b_1, b_2\}$, где $b_1 = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$, $b_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, а также базис $\mathcal{C} = \{c_1, c_2\}$, где $c_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $c_2 = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$.

Найдите:

- (a) Найдите матрицы перехода $P_{B\to S}$ и $P_{S\to B}$ от базиса $\mathcal B$ к стандартному базису и обратно.
- (b) Найдите матрицы перехода $P_{C \to S}$ и $P_{S \to C}$ от базиса $\mathcal C$ к стандартному базису и обратно.

Далее, воспользуемся знанием, что $P_{B\to S}[x]_B=[x]_S=P_{C\to S}[x]_C$ (на этом моменте спросите себя, понимаете ли вы, почему это так). Примените трюк с обратной матрицей и найдите матрицы перехода от базиса $\mathcal B$ к базису $\mathcal C$ и обратно, то есть $P_{B\to C}$ и $P_{C\to B}$. Приведите пример, как это работает, на конкретно взятом векторе.

4. Пусть $\mathbb V$ — множество всех верхнетреугольных (у которых элементы под главной диагональю всегда равны нулю) матриц размера 2×2 . Множество $\mathbb V$ является векторным пространством, и у него есть, например, стандартный базис:

$$\mathcal{A} = \left(\left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right] \right)$$

Найдите координаты элемента $D=\left[\begin{array}{cc} 2 & -1 \\ 0 & 1 \end{array}\right]$ относительно стандартного базиса $\mathcal A.$ Покажите, что это работает в виде линейной комбинации базисных векторов и координат, m.e. как мы обсуждали, что если $\{v_1,\ldots,v_n\}$ — базис, то $\forall x$ из векторного пространства $x=\alpha_1v_1+\ldots+\alpha_nv_n.$

Но также могут быть и другие базисы! Пусть:

$$\mathcal{B} = \left(\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right], \left[\begin{array}{cc} 0 & 1 \\ 0 & 1 \end{array} \right], \left[\begin{array}{cc} 1 & 0 \\ 0 & 2 \end{array} \right] \right)$$

является другим базисом для \mathbb{V} . Постройте матрицу $P_{B\to A}$ перехода от базиса \mathcal{B} к базису \mathcal{A} . Найдите координатный столбец $[D]_{\mathcal{B}}$, т.е. координаты элемента D относительно базиса \mathcal{B} .