Article Title

JOHN SMITH*

University of California john@smith.com

June 19, 2020

Abstract

The recent tensions on the measured value of the Hubble constant between CMB and astrophisical observations, has triggered the need of new methods for its determination. In view of this, an effort has been done by H0LiCoW to use the gravitational lensing of quasars as a probe for H0. This type of measurement requires a long term monitoring of lensed quasars (of the order of years). Since big telescopes have to deal with many observational requests, it is difficult to have a constant monitoring over the years, therefore this task can be achieved more easily by small/medium size telescopes. However, the number of lensed quasars with multiple images that can be resolved by these telescopes drops drastically. Here we present a method to deal with non resolved lensed quasars. This method has also the advantage of being less dependent on the microlensing effect of the lens galaxy.

I. Introduction

In the last years, the precision of the Planck experiment [cita], whose task was to analyse the Cosmic Microwave Background (CMB) anisotropies, has allowed to fully test our standard cosmological model (ACDM) which assumes the existence of Dark Energy (Λ) and Cold Dark Matter (CDM). In particular, in addition to the minimal 6 parameters describing ΛCDM, the CMB anisotropies allow to indirectly constrain other parameters, such as the current expansion rate of the Universe, H_0 , whose inference strongly depends on the assumed cosmological model. For example, relaxing the spatial flatness hypothesis of our Universe or the constant equation of state for the dark energy, would impact the H_0 estima-

In parallel, the are other independent methods to measure H_0 , such as the distance ladder [cita], water masers [cita], the time delay between multiple images of gravitational lensed quasars [1] and, gravitational waves [cita].

The highest precision reached by Plank has however shown a tension in the value of H_0

with respect to the distance ladder measurements, which has been further enhanced by the recent gravitational lensing results from the H0LiCOW collaboration [2], whose measured value is $H_0 = 73.3^{+1.7}_{-1.8} \text{ km s}^{-1} \text{ Mpc}^{-1}$, in agreement with the distance ladder results and, together with them, with a 5.3σ tension with the Planck analysis assuming flat Λ CDM. In this paper we will focus on the gravitational lensing: firstly suggested by Refsdal [3], this method directly relates the time delays between multiple images of the same source produced by a lensing object with H_0 in the form $\Delta_T \propto 1/H_0$. This method depends on the matter distribution in the source light trajectory, namely the lensing object (such as a galaxy) and objects along the line of sight, and it has a weaker dependence on the cosmological parameters if compared to the CMB analyses. In particular, it depends on the matter density Ω_m , the dark energy density Ω_{Λ} , the curvature parameter Ω_k and the dark energy equation of state ω [cita].

This method requires a long photometric monitoring of the multiple images of the source, of the order of years, and a good temporal sampling, to be able to observe the photometric

^{*}A thank you or further information

variations of the source. In this regard, the COSMOGRAIL collaboration has been monitoring 18 strongly lensed quasars since 2004 [4] with 1-2 m size telescopes. And the H0LiCOW collaboration has used part of these data to evaluate H_0 with a precision of 2.4% [2]. Improving the precision in the H_0 evaluation will help in finding the reason of this big discrepancy, and, it would also have a big impact in the results of the next cosmological surveys, up to a 40% improvement if H_0 is independent

II. Methods

dently known with 1% precision [5].

Maecenas sed ultricies felis. Sed imperdiet dictum arcu a egestas.

- Donec dolor arcu, rutrum id molestie in, viverra sed diam
- Curabitur feugiat
- turpis sed auctor facilisis
- arcu eros accumsan lorem, at posuere mi diam sit amet tortor
- Fusce fermentum, mi sit amet euismod rutrum
- sem lorem molestie diam, iaculis aliquet sapien tortor non nisi
- Pellentesque bibendum pretium aliquet

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Table 1: *Example table*

Name		
First name	Last Name	Grade
John	Doe	7.5
Richard	Miles	2

Text requiring further explanation¹.

III. RESULTS

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

$$e = mc^2 \tag{1}$$

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullam-corper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin.

¹Example footnote

Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

IV. Discussion

i. Subsection One

A statement requiring citation [?]. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

ii. Subsection Two

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

REFERENCES

- [1] The H0LiCOW Collaboration, MNRAS, Volume 468, Issue 3 (2017)
- [2] The H0LiCOW Collaboration, MNRAS, stz3094 (2020)
- [3] S. Refsdal, MNRAS, 128, 307 (1964)
- [4] The COSMOGRAIL Collaboration, arXiv:2002.05736v1 (2020)
- [5] D. Weinberg et al., *Phys. Rep.*, 530, 87 (2013)