Matematika I

31. máj 2019 08:00

Meno a priezvisko: Podpis: Podpis:
Ročník: Študijný program:
1. (7b) Daná je všeobecná rovnica kužeľosečky $4x^2 - y^2 + 8x = 0$.
Doplňte:
a) (2b) Kanonická rovnica (rovnica v štandardnom tvare) kužeľosečky je
b) (1b) Typ kužeľosečky je
c) (3b) Napíšte, ak existujú
c_1) súradnice stredu kužeľosečky:
d) (1b) Znázornite kužeľosečku a v náčrte popíšte jej charakteristické prvky.

2. (2b) Vyberte funkciu, ktorej definičný obor je znázornený na obrázku.

a)
$$f(x,y) = \ln(x^2 + y^2 - 1) + \sqrt{4 - x^2 - y^2}$$

b)
$$f(x,y) = \frac{\ln(4-x^2-y^2)}{\sqrt{x^2+y^2-1}}$$

c)
$$f(x,y) = \frac{\sqrt{x^2 + y^2 - 1}}{\ln(4 - x^2 - y^2)}$$

d)
$$f(x,y) = \sqrt{x^2 + y^2 - 1} - \ln(4 - x^2 - y^2)$$

3. (6b) Vypočítajte

$$\iint\limits_{M} xy \, dxdy,$$

kde množina M je mnohouholník s vrcholmi $A=[1,0],\,B=[2,0],\,C=[2,2],\,D=[1,3].$

Výsledok:

- **4.** (4b) Bod M má v cylindrickej súradnicovej sústave nasledujúce súradnice: $M = \left[2\sqrt{3}, \frac{11\pi}{6}, -2\right]$.
 - a) (2b) Vyberte správnu odpoveď: Súradnice bodu M v pravouhlej súradnicovej sústave sú:

a)
$$M = [-3, -\sqrt{3}, -2]$$

c)
$$M = [3, -\sqrt{3}, -2]$$

b)
$$M = [3, \sqrt{3}, -2]$$

d)
$$M = [-3, \sqrt{3}, -2]$$

b) (2b) Znázornite bod M v pravouhlej súradnicovej sústave.

Náčrt:

5. (8b) Daná je line	árna obyčajná diferenciálna rovnica (LODR) $y''(x) + 6y'(x) + 8y(x) = e^{-2x}$.
a) (2b) Napíšte o	charakteristickú rovnicu k danej diferenciálnej rovnici.
Charakteris	ická rovnica je:
b) (2b) Nájdite f nou.	undamentálny systém riešení diferenciálnej rovnice s nulovou pravou stra-
Fundamentá	lny systém riešení je
b) (2b) Nájdite p	partikulárne riešenie uvedenej nehomogénnej rovnice.
Partikulárne	e riešene je
c) (2b) Napíšte v	všeobecné riešenie danej lineárnej diferenciálnej rovnice.
Všeobecné r	iešenie danej LODR je
	$\lim_{[x,y]\to[0,0]}\frac{x}{x+y}.$
Výsledok:	
7. (6b) Nájdite rov $ v \text{ bode } T =$	nicu dotykovej roviny τ ku grafu funkcie $f(x,y)=\frac{1}{x+y}$ = $\left[4,y_0,\frac{1}{3}\right]$.
(2b) Nájdite į	y ₀ a uveďte súradnice dotykového bodu :
(4b) Rovnica	dotykovej roviny τ je:
8. (6b) Daná je fun	kcia $f(x,y) = \ln(x+2y)$, bod $A = [-2, 2]$ a vektor $\vec{l} = (1, -1)$.
a) (3b) Nájdite g	gradient funkcie $f(x, y)$ v bode A .
Gradient fur	kcie $f(x,y)$ v bode A je
b) (3b) Vypočíta	jte deriváciu funkcie $f(x,y)$ v bode A v smere vektora \vec{l} .
Derivácia fu	nkcie $f(x,y)$ v bode A v smere vektora \vec{l} je

a) Načrtnite oblasť M :	
Náčrt:	
Pomocou matematických vzťahov popíšte hranice oblast	i M:
(a) (2b) <i>AB</i>	
(b) (2b) BC	
(c) (2b) CD	
(d) (2b) AD	
b) (5b) Nájdite lokálne extrémy danej funkcie $f(x,y)$ v oblasti M . Ak hľadané lokálne extrémy nie sú, napíšte "nie sú".	
Doplňte odpoveď: Funkcia $f(x,y)$ má v bode	lokálne
c) Nájdite viazané lokálne extrémy danej funkcie $f(x,y)$ na hraniciac lokálny extrém nejestvuje, napíšte "nie je".	h oblasti M . Ak hľadaný
(a) (3b) Na hranici AB má funkcia $f(x,y)$ v bode vi	azané lokálne
(b) (3b) Na hranici BC má funkcia $f(x,y)$ v bode vi	azané lokálne
(c) (3b) Na hranici CD má funkcia $f(x,y)$ v bode vi	azané lokálne
(d) (3b) Na hranici AD má funkcia $f(x,y)$ v bode vi	azané lokálne
d) (2b) Nájdite najväčšiu a najmenšiu hodnotu funkcie $f(x,y)$ na o	blasti M .
Najväčšia hodnota funkcie $f(x,y)$ je:	
Najmenšia hodnota funkcie $f(x,y)$ je:	
f(x,y) joint in the standard $f(x,y)$ joint in the standard $f(x,y)$	

9. (27b) Daná je funkcia $f(x,y)=4x+6y-x^2-y^2$ a oblasť M. Oblasť M je mnohouholník ABCD s vrcholmi $A=[0,0],\ B=[4,0],\ C=[4,5]$ a D=[0,5].