Spatial Point Processes

Abraham Arbelaez

Department of Statistics Kansas State University

April 10, 2024

What is a spatial point pattern?

- A spatial point pattern is a dataset giving the observed spatial locations of things or events.
- One important task is to identify spatial trends in the density of points.

Types of points

- The points in a point pattern may carry all kind of attributes.
- These attributes are called marks

Example

Introduction 000

Fig 1. Location points for Grasshopper Sparrows in the Konza Prairie Biological Station located in Kansas from 2013 to 2021.

Point Process definition

A point process is a random mechanism whose outcome is a point pattern.

 We want to know the mechanism behind the generation of the points, not the points themselves.

Basics

• Suppose Area A is a subset of a Euclidean space; Then we can define the event ϵ of a point X_i for i=1,2,...,n as:

$$\epsilon_{X_n}(A) = \begin{cases} 1 & \text{if } X_n \in A \\ 0 & \text{if } X_n \notin A \end{cases}$$

 \bullet If we define the counting measure N, we can get the random number of points which fall in the Area A:

$$N(A) = \sum_{n} \epsilon_{X_n(A)}$$

• We define intensity λ as the expected number of points falling in the area A.

$$\mu(A) = EN(A) = \lambda$$

- Also called Complete Spatial Randomness (CSR)
- Has two key properties:
 - Homogeneity: Points have no preference for any spatial location
 - Independence: Points have no influence on the location of other points

Fig 2. Simulation of CSR with 50 points


```
set.seed(2024)
x <- runif(50, 0, 1)
y <- runif(50, 0, 1)
plot(x,y)</pre>
```


- We define a inhomogeneous Poisson point process (IPPP) when intensity λ is **spatially varying**.
- Key properties:
 - Intensity function: The expected number of points falling in a region A is the integral $\mu = \int_A \lambda(u) du$
 - Independence: Random patterns are independent of each other

Recall the example

Fig 1. Location points for Grasshopper Sparrows in the Konza Prairie Biological Station located in Kansas from 2013 to 2021.

Building a Inhomogeneous Point Process

- Lewis-Shedler rejection method (1979):
 - We start by simulating a homogeneous Poisson process with intensity λ_{max} .
 - We retain each event ϵ of the homogeneous process with probability $\frac{\lambda(\epsilon)}{\lambda_{\max}}.$

• First, we will create our intensity function lambda. In this case, $(xy)^2$:

```
set.seed(2024)
lambda <- function(x,y){
(x*y)*(x*y)
```

 We create a matrix points for the points that we will generate:

```
points <- matrix(NA, ncol = 2, n = 50)</pre>
```

We generate the for loop to create our points:

```
for(i in 1:50){
  repeat{
  x <- runif(1, 0, 1)
  y <- runif(1, 0, 1)
  if(runif(1) < lambda(x,y)) {
   points[i,] <- c(x,y)
  break}
  }
}</pre>
```


Building a Inhomogeneous Point Process

We plot matrix points for the points that we generate: plot(points[,1],points[,2])

Getting into the Point Process itself

- We know that our points are being generated from an intensity λ . Can we visualize our intensity function?
- We will start with a 10×10 grid:

```
# creating grid
x <- seq(from = 0.1, to = 1, by = 0.1)
y <- seq(from = 0.1, to = 1, by = 0.1)
# giving values to all grids
newp <- outer(lambda(x,1), lambda(1,y))
newp <- apply(newp, 2, rev)
newp</pre>
```

Getting into the Point Process itself

• Now we use the raster package:

```
# loading library
library(raster)
r <- raster(nrows=10, ncols=10, xmn=0,
xmx=1, ymn=0, ymx=1)
vals <- newp
r <- setValues(r, vals)
```

And we plot! plot(r)

Getting into the Point Process itself

• The more grids, the smoother it gets!

$$heta_i \sim \mathsf{Bern}(p_i)$$
 $p_i \sim \mathsf{IPPP}(\lambda_i)$ In $\lambda_i = eta_0 + eta_1 X_i + eta_2 Y_i$

Intensity function with a kernel density function

Our full model...for now

- Baddeley, A., Rubak, E. and Turner, R., 2015. Spatial point patterns: methodology and applications with R. CRC press.
- Cressie, N. and Moores, M.T., 2022. Spatial statistics. In Encyclopedia of Mathematical Geosciences (pp. 1-11). Cham: Springer International Publishing.
- Gelfand, A.E. and Schliep, E.M., 2018, January. Bayesian inference and computing for spatial point patterns. In NSF-CBMS regional conference series in probability and statistics (Vol. 10, pp. i-125). Institute of Mathematical Statistics and the American Statistical Association.
- Hobbs, N.T. and Hooten, M.B., 2015. Bayesian models: a statistical primer for ecologists. Princeton University Press.

- Resnick, S.I., 2013. Adventures in stochastic processes.
 Springer Science & Business Media.
- Lewis, P.A. and Shedler, G.S., 1979. Simulation of nonhomogeneous Poisson processes with degree-two exponential polynomial rate function. Operations Research, 27(5), pp.1026-1040.