

Architectural Considerations for Data Warehousing with Hadoop

Session ID#: 10251

github.com/hadooparchitecturebook/h adoop-arch-book/tree/master/ch11data-warehousing

Prepared by:

Mark Grover, Software Engineer Jonathan Seidman, Solutions Architect Cloudera, Inc.

@mark_grover

About Us

Mark

- Software Engineer at Cloudera
- Committer on Apache
 Bigtop, PMC member on
 Apache Sentry
 (incubating)
- Contributor to Apache Hadoop, Spark, Hive, Sqoop, Pig and Flume

Jonathan

- Senior Solutions
 Architect/Partner
 Engineering at Cloudera
- Previously, Technical Lead on the big data team at Orbitz Worldwide
- Co-founder of the Chicago Hadoop User Group and Chicago Big Data

About the Book

- @hadooparchbook
- hadooparchitecturebook.com
- github.com/hadooparchitectur ebook
- slideshare.com/hadooparchbo ok

Agenda

- Typical data warehouse architecture.
- Challenges with the existing data warehouse architecture.
- How Hadoop complements an existing data warehouse architecture.
- (Very) Brief intro to Hadoop.
- Example use case.
- Walkthrough of example use case implementation.

Example High Level Data Warehouse Architecture

Challenges with the Data Warehouse Architecture

Challenge – ETL/ELT Processing

FOR THE ORACLE COMMUNITY

Challenges – ETL/ELT Processing

Challenges – Data Archiving

- Full-fidelity data only kept for a short duration
- Expensive or sometimes impossible to look at historical raw data

Challenge – Disparate Data Sources

How do you join data from disparate sources with EDW?

Challenge – Lack of Agility

 Responding to changing requirements, mistakes, etc. requires lengthy processes.

Challenge – Exploratory Analysis in the EDW

Difficult for users to do exploratory analysis of data in the data warehouse.

Complementing the EDW with Hadoop

Data Warehouse Architecture with Hadoop

ETL/ELT Optimization with Hadoop

Active Archiving with Hadoop

Joining Disparate Data Sources with Hadoop

Agile Data Access with Hadoop

Schema-on-Write (RDBMS):

- Prescriptive Data Modeling:
 - Create static DB schema
 - Transform data into RDBMS
 - Query data in RDBMS format
- New columns must be added explicitly before new data can propagate into the system.
- Good for Known Unknowns (Repetition)

Schema-on-Read (Hadoop):

- Descriptive Data Modeling:
 - Copy data in its native format
 - Create schema + parser
 - Query Data in its native format
- New data can start flowing any time and will appear retroactively once the schema/parser properly describes it.
- Good for Unknown Unknowns (Exploration)

Exploratory Analysis with Hadoop

What is Apache Hadoop?

Apache Hadoop is an open source platform for data storage and processing that is...

- ✓ Scalable
- √ Fault tolerant
- Distributed

CORE HADOOP SYSTEM COMPONENTS

Hadoop Distributed File System (HDFS)

Self-Healing, High Bandwidth Clustered Storage

Parallel
Processing
(MapReduce,
Spark, Impala,
etc.)

Distributed Computing Frameworks

Has the Flexibility to Store and Mine Any Type of Data

- Ask questions across structured and unstructured data that were previously impossible to ask or solve
- Not bound by a single schema

Excels at Processing Complex Data

- Scale-out architecture divides workloads across multiple nodes
- Flexible file system eliminates ETL bottlenecks

Scales Economically

- Can be deployed on commodity hardware
- Open source platform guards against vendor lock

Oracle Big Data Appliance

All of the capabilities we're talking about here are available as part of the Oracle BDA.

Challenges of Hadoop Implementation

Challenges of Hadoop Implementation

Other Challenges – Architectural Considerations

FOR THE ORACLE COMMUNITY

Hadoop Third Party Ecosystem

Operational **Tools**

Data **Systems**

Infrastructure

Walkthrough of Example Use Case

Use-case

- Movielens dataset
- Users register by entering some demographic information
 - Users can update demographic information later on
- Rate movies
 - Ratings can be updated later on
- Auxillary information about movies available
 - e.g. release date, IMDB URL, etc.

Movielens data set

u.user

```
user id | age | gender | occupation | zip code
1|24|M|technician|85711
2|53|F|other|94043
3|23|M|writer|32067
4|24|M|technician|43537
5|33|F|other|15213
6|42|M|executive|98101
7|57|M|administrator|91344
```


Movielens data set

```
u.item
movie id | movie title | release date | video release date
| IMDb URL | unknown | Action | Adventure | Animation
|Children's | Comedy | Crime | Documentary | Drama
Fantasy | Film-Noir | Horror | Musical | Mystery | Romance
| Sci-Fi | Thriller | War | Western |
1|Toy Story (1995)|01-Jan-
1995||http://us.imdb.com/M/title-
exact?Toy%20Story%20(1995)|0|0|0|1|1|1|0|0|0|0|0|0|0|0|0
101010
2|GoldenEye (1995)|01-Jan-
1995||http://us.imdb.com/M/title-
exact?GoldenEye%20(1995)|0|1|1|0|0|0|0|0|0|0|0|0|0|0|0|1
1010
3|Four Rooms (1995)|01-Jan-
1995 | | http://us.imdb.com/M/title-
exact?Four%20Rooms%20(1995)|0|0|0|0|0
0 | 1 | 0 | 0
```

Movielens data set

u.data

```
user id | item id | rating | timestamp

196|242|3|881250949

186|302|3|891717742

22|377|1|878887116

24451|2|880606923

166|346|1|886397596
```


Movielens data set - OLTP

Data Modeling Considerations

- We need to consider the following in our architecture:
 - Storage layer HDFS? HBase? Etc.
 - File system schemas how will we lay out the data?
 - File formats what storage formats to use for our data, both raw and processed data?
 - Data compression formats?
- Hadoop is not a database, so these considerations will be different from an RDBMS.

Denormalization

- Why denormalize?
- When to do denormalize?
- How much to denormalize?

Why Denormalize?

- Regular joins are expensive in Hadoop
- When you have 2 data sets, no guarantees that corresponding records will be present on the same
- Such a guarantee exists when storing such data in a single data set

When to Denormalize?

- Well, it's difficult to say
- It depends

Movielens Data Set - Denormalization

Data Set in Hadoop

Tracking Updates (CDC)

- Can't update data in-place in HDFS
- HDFS is append-only filesystem
- We have to track all updates

Tracking Updates in Hadoop

Hadoop File Types

- Formats designed specifically to store and process data on Hadoop:
 - File based SequenceFile
 - Serialization formats Thrift, Protocol Buffers, Avro
 - Columnar formats RCFile, ORC, Parquet

Final Schema in Hadoop

Our Storage Format Recommendation

- Columnar format (Parquet) for merged/compacted data sets
 - user, user_rating, movie
- Row format (Avro) for history/append-only data sets
 - user_history, user_rating_fact

Ingestion – Apache Flume

Ingestion – Apache Kafka

Ingestion – Apache Sqoop

- Apache project designed to ease import and export of data between Hadoop and external data stores such as an RDBMS.
- Provides functionality to do bulk imports and exports of data.
- Leverages MapReduce to transfer data in parallel.

Sqoop Import Example – Movie

```
sqoop import --connect \
jdbc:mysql://mysql server:3306/movielens \
--username myuser --password mypass --query \
'SELECT movie.*, group concat(genre.name)
FROM movie
JOIN movie genre ON (movie.id =
movie genre.movie id)
JOIN genre ON (movie genre.genre id = genre.id)
WHERE ${CONDITIONS}
GROUP BY movie.id' \
--split-by movie.id --as-avrodatafile \
--target-dir /data/movielens/movie
```


Popular Processing Engines

- MapReduce
 - Programming paradigm
- Pig
 - Workflow language based
- Hive
 - Batch SQL-engine
- Impala
 - Near real-time concurrent SQL engine
- Spark
 - DAG engine

Final Schema in Hadoop

Merge Updates

```
hive>INSERT OVERWRITE TABLE user tmp
  SELECT user.*
  FROM user
    LEFT OUTER JOIN user upserts
    ON (user.id = user upserts.id)
  WHERE
    user upserts.id IS NULL
  UNION ALL
  SELECT
    id, age, occupation, zipcode,
TIMESTAMP (last modified)
  FROM user upserts;
```

Aggregations

Aggregations

```
hive>CREATE TABLE avg_movie_rating AS
SELECT
  movie_id,
  ROUND(AVG(rating), 1) AS rating
FROM
  user_rating
GROUP BY
  movie_id;
```


movie

Sqoop Export

```
sqoop export --connect \
jdbc:mysql:/mysql_server:3306/movie_dwh \
--username myuser --password mypass \
--table avg_movie_rating --export-dir \
/user/hive/warehouse/avg_movie_rating \
-m 16 --update-key movie_id --update-mode \
allowinsert --input-fields-terminated-by \
'\001' --lines-terminated-by '\n'
```


Final Architecture

You may complete the session evaluation either on paper or online via the mobile app

This is a slide title that can be up to two lines of text without losing readability

- This is the first bullet of text
- This is the second bullet of text at the same level
 - This is a sub-bullet of text
 - This is a secondary sub-bullet of text (and should be as far subbullets indent)
 - This tertiary sub-bullet will be seldom used, but available
 - This is another sub-bullet of text
- And this is the third bullet of text

This is a slide title (one or two lines)

- This is the first bullet of text
 - This is a sub-bullet of text
- This is the second bullet of text at the same level
 - This is a sub-bullet of text
 - This is a secondary subbullet of text
 - This tertiary sub-bullet that can be use
 - This is another sub-bullet of text

- Senior Solutions
 Architect/Partner
 Enablement at Cloudera
- Previously, Technical Lead on the big data team at Orbitz Worldwide

This is a slide title (one or two lines)

Subject number one

- This is the first bullet of text
 - This is a sub-bullet of text
- This is the second bullet of text at the same level
 - This is a sub-bullet of text
 - This is a secondary sub-bullet of text
 - This tertiary sub-bullet that can be use
 - This is another sub-bullet of text

Subject number two

- This is the first bullet of text
- This is the second bullet of text at the same level
 - This is a sub-bullet of text
 - This is a sub-bullet of text
 - This secondary sub-bullet
 - This is another sub-bullet of text
- And this is another bullet of text

This is a slide title for a slide with just the title line (e.g., images/diagrams below)

What is Hadoop?

Hadoop is an open-source system designed To store and process petabyte scale data.

That's pretty much what you need to know. Well almost...

Compression Codecs

Well, maybe. Not splittable.

Splittable, but no...

Our Compression Codec Recommendation

Snappy for all data sets (columnar as well as row based)

File Format Choices

Data set	Storage format	Compression Codec
movie	Parquet	Snappy
user_history	Avro	Snappy
user	Parquet	Snappy
user_rating_fact	Avro	Snappy
user_rating	Parquet	Snappy

