Inference Rules for Probability Logic by Marija Boricic

Logic Seminar Fall 2021

University of Hawai'i at Manoa

11/23/2021

From A to A[a, b]

- Start with a sentence A.
- Then A[a, b] means "The probability of A being true lies in the interval [a, b]".
- **NKprob** Probabilized natural deduction system.

Plan of the paper

- Develop the syntax i.e. get the best probability bounds for sentences that involve logical connectives.
- Prove the obtained logic is sound and complete.

The system **NKprob**

- I is a finite subset of [0,1] containing 0 and 1.
- I is closed under + as follows.
- $a + b := \min(1, a + b)$.
- $a+b-1 := \max(0, a+b-1)$.
- Example : $I = \{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, 1\}$ is such a set. If I_1, I_2 are two such sets then so is $I_1 \cap I_2$.

The system **NKprob**

Definition

For each propositional formula A and each $a, b \in I$, the object A[a, b] is called the *probabilized formula*.

- Write $A\emptyset$ when b < a.
- A[a, a] for a = b.
- Note that A[a, b] = A[c, c] for some $c \in [a, b]$.
- Every I and formula A generate a finite list of probabilized formulas A[a, b] for $a, b \in I$.

The system **NKprob**

- Combining probabilized formulas is not allowed.
- For example we cannot write things like $A[a, b] \wedge B[c, d]$.
- But we can infer, for instance, $(A \lor B)$ [?,?] from A[a, b] and B[c, d].

Axioms for **NKprob**

- For each propositional formula A provable in classical logic, A[1,1] is an axiom of **NKprob**.
- A list of rules of inference.

Conjunctions

$$\frac{A[a,b] \qquad B[c,d]}{(A \wedge B)[a+c-1,\min(b,d)]} (\mathsf{I} \wedge)$$

$$\frac{A[a,b] \quad (A \land B)[c,d]}{B[c,1+d-a]} (\mathsf{E} \land)$$

Disjunctions

$$\frac{A[a,b] \quad B[c,d]}{(A \lor B)[\max(a,c),b+d]} (I\lor)$$

$$\frac{A[a,b] \quad (A \lor B)[c,d]}{B[c-b,d]} (E\lor)$$

Implication

$$\frac{A[\mathsf{a},\mathsf{b}] \qquad B[\mathsf{c},\mathsf{d}]}{(\mathsf{A}\to\mathsf{B})[\mathsf{max}(1-\mathsf{b},\mathsf{c}),1-\mathsf{a}+\mathsf{d}]}\,(\mathsf{I}\!\to\!)$$

$$\frac{A[a,b] \quad (A \to B)[c,d]}{B[a+c-1,d]} (E_1 \to)$$

$$\frac{B[a,b] \quad (A \to B)[c,d]}{A[1-d,1-c+b]} (E_2 \to)$$

Negation

$$\frac{A[a,b]}{(\neg A)[1-b,1-a]}(I\neg)$$

$$\frac{(\neg A)[a,b]}{A[1-b,1-a]}(E\neg)$$

Let's take a break!

- We know $A \rightarrow B \equiv \neg A \lor B$.
- So we must have $(A \rightarrow B)[?,?] = (\neg A \lor B)[?,?]$ once we know A[a,b] and B[c,d].
- This is true indeed. By (I \neg) we get ($\neg A$)[1 b, 1 a] from A[a,b].
- By (I∨) we get

$$(\neg A \lor B)[\max(1-b,c),1-a+d].$$

• And by $(I \rightarrow)$ we have

$$(A \rightarrow B)[\max(1-b,c),1-a+d].$$

 It turns out this result can be generalized to all logically equivalent formulas in classical logic.

Additivity Rule

$$\frac{A[a,b] \quad B[c,d] \quad (A \land B)[e,f]}{(A \lor B)[a+c-f,b+d-e]} \text{(ADD)}$$

Monotonicity Rules

$$\frac{A[a,b] \quad A[c,d]}{A[\max(a,c),\min(b,d)]} (\mathsf{M}\downarrow)$$

$$\frac{A[a,b]}{A[c,d]} (\mathsf{M}\uparrow)$$

- For M \uparrow we suppose $[a, b] \subseteq [c, d]$.
- What $M\downarrow$ does is taking the intersection of [a, b] and [c, d].

Derivations in NKprob

A[a,b] is derived from a set of hypotheses Γ in **NKprob** if there is a finite sequence of probabilized formulas ending with A[a,b] such that each formula is either

- an axiom,
- from Γ, or
- obtained by a rule of inference in NKprob applied to some previous formulas from the sequence.

We denote this by $\Gamma \vdash A[a,b]$. Note that the inference rules can be expressed as derivation rules.

Rules for Inconsistency

Let $a, b \in I = \{c_1 \dots c_n\}$. Recall that $A\emptyset$ stands for A[a, b] with b < a. Then the rule $(I\emptyset)$ is the following.

• From $\Gamma \cup \{A[c_1, c_1]\} \vdash A\emptyset, \dots \Gamma \cup \{A[c_n, c_n]\} \vdash A\emptyset$ we can deduce $\Gamma \vdash A\emptyset$.

The rule $(E\emptyset)$ is

• From $\Gamma \vdash A\emptyset$ we can deduce $\Gamma \vdash B[a, b]$.

I'd like to stop here and discuss these two rules. 😂

Equivalent formulas have equal probabilities of being true

Lemma

If $A \leftrightarrow B$ is provable in classical logic and A[a, b] is provable in **NKprob**, then B[a, b] is provable in **NKprob**.

Proof.

- If $A \leftrightarrow B$ is provable in classical logic then both $(A \to B)[1,1]$ and $(B \to A)[1,1]$ are among the axioms of **NKprob**.
- From A[a, b] and $(A \rightarrow B)[1, 1]$ we obtain $B[a+1-1, 1] \equiv B[a, 1]$ by an application of $(E_1 \rightarrow)$.
- From A[a, b] and $(B \rightarrow A)[1, 1]$ we get $B[1-1, 1-1, b] \equiv B[0, b]$ by applying $(E_2 \rightarrow)$.
- Applying $(M \downarrow)$ to B[a, 1] and B[0, b] we get B[a, b].

Equivalent formulas have equal probabilities of being true

Corollary

If $A \leftrightarrow B$ is provable in classical logic and A[a, a] is provable in **NKprob**, then B[a, a] is provable in **NKprob**.

NKprob Theories

- An **NKprob** theory is a set of formulas derivable from a set of hypotheses $\{A_1[a_1, b_1] \dots A_n[a_n, b_n]\}$ in **NKprob**.
- This is denoted by **NKprob** $\{A_1[a_1, b_1] \dots A_n[a_n, b_n]\}.$
- The theory **NKprob** $\{A_1[a_1,b_1]\dots A_n[a_n,b_n]\}$ is inconsistent if there is a formula A so that both A[a,b] and A[c,d] are in the theory with $[a,b]\cap [c,d]=\emptyset$.

Consistent theories to Maximal consistent theories

Lemma

Each consistent **NKprob**-theory can be extended to a maximal consistent theory.

Proof.

Let \mathcal{T} be a consistent theory. Let A_0,A_1,\ldots be the list of all propositional formulas. Since I is finite we can order the elements of I and write $I=\{c_1,\ldots,c_m\}$. So we get the list of all probabilized formulas $A_0[c_1,c_1]\ldots A_n[c_m,c_m]\ldots$ Now build a sequence $\langle \mathcal{T}_n \rangle$ recursively as follows.

- Put $\mathcal{T}_0 = \mathcal{T}$
- Put $\mathcal{T}_{n+1} = \mathcal{T}_n \cup \{A_n[c_1, c_1]\}$ if $\mathcal{T}_n \cup \{A_n[c_1, c_1]\}$ is consistent.
- If NOT, put $\mathcal{T}_{n+1} = \mathcal{T}_n \cup \{A_n[c_2, c_2]\}$ if $\mathcal{T}_{n+1} = \mathcal{T}_n \cup \{A_n[c_2, c_2]\}$ is consistent.
- If NOT, put $\mathcal{T}_{n+1} = \mathcal{T}_n \cup \{A_n[c_m, c_m]\}.$

Now let $\mathcal{T}' = \bigcup_{n \in \omega} \mathcal{T}_n$.

Proof (Cont.)

• Claim: If \mathcal{T}_n is consistent, then \mathcal{T}_{n+1} is consistent. $\mathcal{T}_0 = \mathcal{T}$ is consistent. Suppose $\mathcal{T}_1 = \mathcal{T} \cup \{A_1[c_i, c_i]\}$ is not consistent for any $i \leq m-1$. Then $\mathcal{T} \cup \{A_1[c_m, c_m]\}$ must be consistent. If not, there's A so that

$$\mathcal{T} \cup \{A_1[c_m, c_m]\} \vdash A[a, b] \land A[c, d]$$

with $[a,b] \cap [c,d] = \emptyset$. So $\mathcal{T} \cup \{A_1[c_m,c_m]\} \vdash A\emptyset$ by $(M \downarrow)$. So for all $1 \le i \le m$ we have

$$\mathcal{T} \cup \{A_1[c_i,c_i]\} \vdash A\emptyset$$
,

and by $(E\emptyset)$

$$\mathcal{T} \cup \{A_1[c_i,c_i]\} \vdash A_1\emptyset$$

for all $1 \le i \le m$. But then by $(I\emptyset)$

$$\mathcal{T} \vdash A_1 \emptyset$$
.

Proof (Cont.)

Now by applying $(E\emptyset)$ one more time we get

$$\mathcal{T} \vdash A_1[a,b] \land A_1[c,d]$$

for some choice of $a, b, c, d \in I$ with $[a, b] \cap [c, d] = \emptyset$, contradiction.

• <u>Claim</u>: \mathcal{T}' is maximally consistent. Let \mathcal{T}^* be a proper extension of \mathcal{T}' . Then \mathcal{T}^* has some $A_k[a,b]$ which is not in \mathcal{T}' . But $A_k[a,b] \equiv A_k[c,c]$ for some $c \in [a,b]$. So $A_k[c,c] \notin \mathcal{T}'$. But $A_k[d,d] \in \mathcal{T}_{k+1}$ for some $d \in I$. So $c \neq d$. Since \mathcal{T}^* extends \mathcal{T}_{k+1} we have

$$\mathcal{T}^* \vdash A_k[c,c] \land A_k[d,d].$$

But $[c,c] \cap [d,d] = \emptyset$. Therefore \mathcal{T}^* is inconsistent. Hence \mathcal{T}' is maximally consistent. \square

NKprob-models

- For = the set of all propositional formulas.
- $I \subseteq [0,1]$, finite, contains 0 and 1, and closed under addition.
- A map $p : For \rightarrow I$ is an **NKprob**-model if

 - ② If $p(A \wedge B) = 0$, then $p(A \vee B) = p(A) + p(B)$.
 - 3 If $A \leftrightarrow B$ in classical logic, then p(A) = p(B).
- Satisfiability in a model : $\vDash_p A[a,b]$ iff $a \le p(A) \le b$.
- The inference rules can be justified now.

Towards Soundness of NKprob

1. $p(A) + p(B) = p(A \vee B) + p(A \wedge B)$. (Additivity Rule)

Proof.

$$p(A) = p(A \wedge B) + p(A \wedge \neg B)$$
 as $(A \wedge B) \wedge (A \wedge \neg B) \equiv \bot$.
Similarly, $p(A \vee B) = p((A \wedge \neg B) \vee B) = p(A \wedge \neg B) + p(B)$. So $p(A) + p(B) = p(A \vee B) + p(A \wedge B)$.

2. $p(\neg A) = 1 - p(A)$.

Proof.

By
$$p(\bot) = 0$$
, $p(A \land \neg A) = 0$. So $1 = p(\top) = p(A \lor \neg A) = p(A) + p(\neg A)$. So $p(\neg A) = 1 - p(A)$.

Towards Soundness of NKprob

3. If $A \to B$ in classical logic, then $p(A) \le p(B)$.

Proof.

$$p(\neg A) + p(B) = p(\neg A \lor B) + p(\neg A \land B)$$
. So $p(B) = p(\neg A \lor B) + p(\neg A \land B) - p(\neg A)$ Since $\neg A \lor B \equiv A \to B$ and $A \to B$ in classical logic, $p(\neg A \lor B) = 1$. So $p(B) = 1 + p(\neg A \land B) - 1 + p(A) \ge p(A)$.

4. $p(A) + p(B) - 1 \le p(A \land B) \le \min(p(A), p(B))$. (This is the rule $I \land$)

Proof.

Since

$$p(A \lor B) \le 1$$
, $p(A \land B) = p(A) + p(B) - p(A \lor B) \ge p(A) + p(B) - 1$.
 $p(A) = p((A \land B) \lor (A \land \neg B)) = p(A \land B) + p(A \land \neg B)$. Therefore $p(A \land B) = p(A) - p(A \land \neg B) \le p(A)$. Changing roles of A and $A \lor B$, $A \lor B$, $A \lor B$. So $A \lor B$. So $A \lor B$.

Towards Soundness of NKprob

- We can justify the rest of the rules similarly.
- If we can justify the rules $I\emptyset$ and $E\emptyset$ then **NKprob** is sound.
- So let's do that. ????

Towards Completeness . . . Canonical Model

- Cn(**NKprob**($\sigma_1 \dots \sigma_n$)) is the set of all **NKprob**($\sigma_1 \dots \sigma_n$)-provable formulas.
- ConExt(Cn(**NKprob**($\sigma_1 \dots \sigma_n$))) is the class of all maximally consistent extensions of Cn(**NKprob**($\sigma_1 \dots \sigma_n$)).
- Canonical Model: Let $X \in ConExt(Cn(\mathbf{NKprob}(\sigma_1 \dots \sigma_n)))$.
- Define $\vDash_{p^X} A[a, b]$ iff

$$a \le \max\{c : A[c,1] \in X\}$$

and

$$b \geq \min\{c : A[0,c] \in X\}.$$

• p^X is called a canonical model.

Towards Completeness . . . Canonical Model

- A canonical model is a model by virtue of the results we have in hand.
- We also have $\vDash_{p^X} A[a,b]$ iff $A[a,b] \in X$. This is due to the fact that X is maximally consistent/deductively closed.
- So if we have a consistent theory then we can extend it to a maximal consistent theory.
- Then we take a world X and the canonical model p^X .
- And by the second bullet point we have completeness of NKprob.
- So we'll prove the claims in the first two bullet points.

Canonical model is a model

Lemma

Let p^X be a canonical model. Then p^X is a model.

Proof.

Note because we are in the realm of X we have the additivity rule for free. So if $p^X(A \wedge B) = 0$, then $p^X(A \vee B) = p^X(A) + p^X(B)$. Also unravelling the definition of $\vDash_{p^X} A[a,b]$ proves $p^X(\top) = 1$ and $p^X(\bot) = 0$. Finally if $A \leftrightarrow B$ in classical logic, in X we have "the probability of A being true is the same as the probability of B being true". So $p^X(A) = p^X(B)$.

$\vDash_{p^X} A[a,b] \text{ iff } A[a,b] \in X$

Lemma

 $\vDash_{p^X} A[a,b] \text{ iff } A[a,b] \in X.$

Proof.

X is deductively closed. So we have the following. By $M \uparrow$, $A[a,1] \in X$ and $A[0,b] \in X$. By $M \downarrow$, $A[a,b] \in X$. Conversely suppose $A[a,b] \in X$. Then by $M \uparrow$, $A[a,1] \in X$. So

$$a \leq \max\{c: A[c,1] \in X\}.$$

By $M \uparrow$ again, $A[0, b] \in X$. So

$$b \ge \min\{c : A[0,c] \in X\}.$$

Hence
$$\vDash_{p^X} A[a, b]$$
.