Análisis de la serie de tiempo LakeHuron

Joel Alejandro Zavala Prieto

Contents

Información de contacto	2
Modelando la serie LakeHuron	3
Descripción	3
Visualización	3
Quitando la tendencia	4
Obteniendo la primera diferencia	4
Toma del modelo	4
\mathbf{ACF}	5
PACF	6
Estimando parámetros	7
Estimando la varianza	8
Modelo Final	8

Información de contacto

```
Mail: alejandro.zavala1001@gmail.com
Facebook: https://www.facebook.com/AlejandroZavala1001
Git: https://github.com/AlejandroZavala98

## Warning: package 'forecast' was built under R version 4.1.1

## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo

##

## Attaching package: 'forecast'

## The following object is masked from 'package:astsa':
##

## gas
```

Modelando la serie LakeHuron

Descripción

En esta parte se hara un análisis de la serie de tiempo "LakeHuron". Cuya descripción citare

"Mediciones anuales del nivel, en pies, del lago Huron 1875-1972."

Visualización

Mediciones anuales del nivel (en pies)

Si empleamos regresión lineal simple para ajustar los datos, la pendiente de la línea de regresión sería negativa

Quitando la tendencia

Obteniendo la primera diferencia

LakeHuron - Primera diferencia

Toma del modelo

Se decide por tomar la primera diferencia

ACF

Johnson&Johnson earnings per share


```
##
## Autocorrelations of series 'lakehuron_diff', by lag
##
                       2
                               3
                                              5
                                                             7
                1
    1.000 \quad 0.132 \ -0.187 \ -0.203 \ -0.087 \ -0.026 \ -0.053 \ -0.055 \quad 0.017 \quad 0.200 \quad 0.019
##
                                            16
              12
                      13
                              14
                                     15
                                                     17
                                                            18
                                                                    19
## -0.130 -0.112 -0.034 0.036 0.030 0.072 0.008 -0.072 -0.075 -0.183 -0.046
       22
               23
                      24
                              25
##
## 0.057 0.173 0.080 0.099
```

PACF

Johnson&Johnson earnings per share


```
##
## Partial autocorrelations of series 'lakehuron_diff', by lag
##
                                   5
                                          6
                                                7
                     3
##
   0.132 -0.208 -0.156 -0.081 -0.080 -0.115 -0.099 -0.033 0.144 -0.069 -0.093
##
             13
                   14
                          15
                                 16
                                       17
                                               18
                                                      19
                                                             20
## -0.058 -0.056 -0.024 -0.023 0.057 -0.030 -0.119 -0.063 -0.209 -0.075 -0.067
      23
             24
##
  0.049 -0.030 0.073
```

Estimando parámetros

Se propone modelar la serie de tiempo con un modelo AR(2), de tal modo el modelo es:

$$Y_{t} = \phi_{1}Y_{t-1} + \phi_{2}Y_{t-2} + Z_{t}$$

$$Z_{t} \sim N(0, \sigma_{z}^{2})$$

$$Y_{t} = x_{t} - x_{t-1}$$

Para estimar los parámetros $\hat{\phi}_i$ para i=1,2 se debe resolver el sistema:

$$b = R\hat{\phi}$$

Equivalente a:

$$\begin{bmatrix} r_1 \\ r_2 \end{bmatrix} = \begin{bmatrix} 1 & r_1 \\ r_1 & 1 \end{bmatrix} = \begin{bmatrix} \hat{\phi_1} \\ \hat{\phi_2} \end{bmatrix}$$

Donde b es igual a:

Donde nuestra matriz R es:

```
## [,1] [,2]
## [1,] 1.0000000 0.1319241
## [2,] 0.1319241 1.0000000
```

De tal modo resolviendo se tiene que:

Estimando la varianza

Estimando σ_z^2 del modelo AR(2) simulado es:

[1] 0.5219945

Cuya σ_z del modelo AR(2) simulado es:

[1] 0.7224919

Modelo Final

Con los parámetros obtenidos llegamos a:

$$Y_t = 0.159379Y_{t-1} - 0.208113Y_{t-2} + Z_t$$

$$Z_t \sim N(0, 0.0521994)$$

$$Y_t = x_t - x_{t-1}$$

De tal manera que finalmente se tiene:

$$x_t = 1.59379x_{t-1} - 0.367492x_{t-2} + 0.208113x_{t-3} + Z_t$$

$$Z_t \sim N(0, 0.0521994)$$