

**SINGLE-STRANDED FV INDUCING APOPTOSIS**

**Patent number:** WO0053634  
**Publication date:** 2000-09-14  
**Inventor:** FUKUSHIMA NAOSHI (JP); UNO SHINSUKE (JP)  
**Applicant:** CHUGAI PHARMACEUTICAL CO LTD (JP);  
FUKUSHIMA NAOSHI (JP); UNO SHINSUKE (JP)  
**Classification:**  
- **International:** C07K16/18; C07K16/30; C07K16/18; (IPC1-7):  
C07K16/18; A61K38/17; A61K39/395; A61P7/00;  
C07K16/46; C12N1/21; C12N5/16; C12N5/18;  
C12N15/12  
- **European:** C07K16/18; C07K16/30M  
**Application number:** WO2000JP01458 20000310  
**Priority number(s):** JP19990063557 19990310

English language  
equivalent of  
WO 00/53634  
obtained from EPO website

Also published as:

 EP1167388 (A1)  
 EP1167388 (A4)

Cited documents:

 WO9912973  
 XP002928899  
 XP002928900  
 XP002929109

[Report a data error here](#)

**Abstract of WO0053634**

A novel single-stranded Fv having a characteristic of inducing apoptosis of nuclear blood cells having integrin associated protein (IAP). This single-stranded Fv consists of an L chain containing the L chain V region of a mouse monoclonal antibody inducing apoptosis in human cells having IAP, an H chain containing the H chain V region of a mouse monoclonal antibody inducing apoptosis in human cells having IAP, and a linker linking these chains. The single-stranded Fv is useful as, for example, a remedy for blood diseases such as leukemia.

Data supplied from the **esp@cenet** database - Worldwide

PCT

世界知的所有権機関  
国際事務局  
特許協力条約に基づいて公開された国際出願

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |    |                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|----|------------------------------------------------------------------------------|
| <p>(51) 国際特許分類7<br/>C07K 16/18, C12N 15/12, C07K 16/46,<br/>C12N 5/18, 5/16, 1/21, A61K 38/17,<br/>39/395, A61P 7/00</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  | A1 | <p>(11) 国際公開番号<br/>WO00/53634</p> <p>(43) 国際公開日<br/>2000年9月14日(14.09.00)</p> |
| <p>(21) 国際出願番号 PCT/JP00/01458<br/>(22) 国際出願日 2000年3月10日(10.03.00)<br/>(30) 優先権データ<br/>特願平11/63557 1999年3月10日(10.03.99) JP<br/>(71) 出願人 (米国を除くすべての指定国について)<br/>中外製薬株式会社<br/>(CHUGAI SEIYAKU KABUSHIKI KAISHA)[JP/JP]<br/>〒115-8543 東京都北区浮間五丁目5番1号 Tokyo, (JP)<br/>(72) 発明者; および<br/>(75) 発明者/出願人 (米国についてのみ)<br/>福島 直(FUKUSHIMA, Naoshi)[JP/JP]<br/>宇野慎介(UNO, Shinsuke)[JP/JP]<br/>〒412-8513 静岡県御殿場市駒門一丁目135番地<br/>中外製薬株式会社内 Shizuoka, (JP)<br/>(74) 代理人<br/>高木千嘉, 外(TAKAGI, Chiyo et al.)<br/>〒102-0083 東京都千代田区麹町一丁目10番地<br/>麹町広洋ビル Tokyo, (JP)</p> <p>(81) 指定国 AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, 欧州特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG), ARIPO特許 (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM)</p> <p>添付公開書類<br/>国際調査報告書</p> |  |    |                                                                              |
| <p>(54) Title: SINGLE-STRANDED FV INDUCING APOPTOSIS<br/>(54)発明の名称 アポトーシスを誘起する一本鎖Fv</p> <p>(57) Abstract<br/>A novel single-stranded Fv having a characteristic of inducing apoptosis of nuclear blood cells having integrin associated protein (IAP). This single-stranded Fv consists of an L chain containing the L chain V region of a mouse monoclonal antibody inducing apoptosis in human cells having IAP, an H chain containing the H chain V region of a mouse monoclonal antibody inducing apoptosis in human cells having IAP, and a linker linking these chains. The single-stranded Fv is useful as, for example, a remedy for blood diseases such as leukemia.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |    |                                                                              |

(57)要約

本発明は、Integrin Associated Protein (IAP) を有する有核血液細胞にアポトーシスを誘起する特性を有する、新規一本鎖 Fv に関する。本発明の一本鎖 Fv は、ヒト IAP を有する細胞にアポトーシスを誘起するマウスモノクローナル抗体の L鎖V領域を含んで成る L鎖と、ヒト IAP を有する細胞にアポトーシスを誘起するマウスモノクローナル抗体の H鎖V領域を含んで成る H鎖と、これらを結合するリンカーから成る。また、本発明の一本鎖 Fv は、白血病等の血液疾患の治療薬等として有用である。

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

|                 |           |                   |               |
|-----------------|-----------|-------------------|---------------|
| AE アラブ首長国連邦     | DM ドミニカ   | KZ カザフスタン         | RU ロシア        |
| AG アンティグア・バーブーダ | DZ アルジェリア | LC セントルシア         | SD スーダン       |
| AL アルバニア        | EE エストニア  | LI リヒテンシュタイン      | SE スウェーデン     |
| AM アルメニア        | ES スペイン   | LK スリ・ランカ         | SG シンガポール     |
| AT オーストリア       | FI フィンランド | LR リベリア           | SI スロヴェニア     |
| AU オーストラリア      | FR フランス   | LS レソト            | SK スロヴァキア     |
| AZ アゼルバイジャン     | GA ガボン    | LT リトアニア          | SL シエラ・レオネ    |
| BA ボスニア・ヘルツェゴビナ | GB 英国     | LU ルクセンブルグ        | SN セネガル       |
| BB バルバドス        | GD グレナダ   | LV ラトヴィア          | SZ スウェーデン     |
| BE ベルギー         | GE グルジア   | MA モロッコ           | TD チャード       |
| BF ブルキナ・ファン     | GH ガーナ    | MC モナコ            | TG トーゴー       |
| BG ブルガリア        | GM ガンビア   | MD モルドバ           | TJ タジキスタン     |
| BJ ベナン          | GN ギニア    | MG マダガスカル         | TM トルクメニスタン   |
| BR ブラジル         | GR ギリシャ   | MK マケドニア旧ユーゴスラヴィア | TR トルコ        |
| BY ベラルーシ        | GW ギニアビサオ | 共和国               | TT トリニダード・トバゴ |
| CA カナダ          | HR クロアチア  | ML マリ             | TZ タンザニア      |
| CF 中央アフリカ       | HU ハンガリー  | MN モンゴル           | UA ウクライナ      |
| CG コンゴ          | ID インドネシア | MR キーリタニア         | UG ウガンダ       |
| CH スイス          | IE アイルランド | MW マラウイ           | US 米国         |
| CI コートジボアール     | IL イスラエル  | MX メキシコ           | UZ ウズベキスタン    |
| CM カメルーン        | IN インド    | MZ モザンビーク         | VN ベトナム       |
| CN 中国           | IS アイスランド | NE ニジェール          | YU ユーゴースラヴィア  |
| CR コスタ・リカ       | IT イタリア   | NL オランダ           | ZA 南アフリカ共和国   |
| CU キューバ         | JP 日本     | NO ノルウェー          | ZW ジンバブエ      |
| CY キプロス         | KE ケニア    | NZ ニュージーランド       |               |
| CZ チェコ          | KG キルギスタン | PL ポーランド          |               |
| DE ドイツ          | KP 北朝鮮    | PT ポルトガル          |               |
| DK デンマーク        | KR 韓国     | RO ルーマニア          |               |

## 明細書

## アポトーシスを誘起する一本鎖Fv

## 技術分野

本発明は、Integrin Associated Protein (IAP) を有する有核血液細胞にアポトーシスを誘起する特性を有する、新規一本鎖Fvに関する。当該一本鎖Fvは、白血病等の以下の血液疾患の治療薬等として有用である。

## 従来技術

従来、顆粒球コロニー刺激因子、例えば遺伝子組換え型顆粒球コロニー刺激因子(rG-CSF)は、主に顆粒球系細胞の分化、増殖を促進させる液性因子として知られている。また、マウスの *in vivo* の実験に基づき、当該rG-CSFを投与することにより、骨髄の造血亢進のみならず、脾臓でも著しい髄外造血が起こり造血幹細胞を始めとしてすべての造血前駆細胞が脾臓で増殖することが報告されている。このような脾臓での髄外造血のメカニズムとして、rG-CSFの刺激により脾臓の造血微小環境が変化し、造血支持能力が亢進したことにより造血が生じたものであると考えられた。

そこで、本発明者は、当該脾臓での造血機能を解明するため、rG-CSF連投後の脾臓の間質細胞に着目し、間質細胞を介したrG-CSFによる造血機能亢進の解析を試みるべく、rG-CSFを連投したマウス脾臓より造血間質細胞株(CF-1細胞)を樹立し、かかる造血間質細胞を用いてその造血支持能を検討したところ、*in vitro*でのコロニー刺激活性及び*in vivo*での造血幹細胞支持能を認めた[Blood, 80, 1914 (1992)]。

しかし、当該脾臓間質細胞については、その一部が細胞株(CF-1細胞)として樹立され、その細胞学的特性の検討等はなされているが、当該細胞表面抗原を認識する特定の抗体を作製することは全く行われておらず、ましてやその特性等については未だ全く知られていなかった。

そこで、本発明者は、脾臓間質細胞に関する前記知見と、従来の研究結果を踏まえ、脾臓間質細胞を識別し得る特定の抗体を開発することを目標として鋭意研究し、当該脾臓間質細胞株を感作抗原とするモノクローナル抗体の作製を試み、新規モノクローナル抗体を取得することに成功した。

さらに、前記取得されたモノクローナル抗体の特性について検討し、当該モノクローナル抗体は、骨髓系細胞にアポトーシスを誘起する特性を有するものであることを見い出した。

さらに、前記抗体が認識する抗原についても検討し、マウス Integrin Associated Protein (マウスIAP) (Genbank、Accession Number Z25524) であることを見出した。

さらに、前記抗体の作用を、マウスIAPを遺伝子導入した組み換え細胞を用いて検討した (特願平9-67499)。

以上の知見に基づき、ヒトの Integrin Associated Protein (以下ヒトIAPとする; J. Cell Biol., 123, 485-496, 1993にアミノ酸配列及び塩基配列が記載; Journal of Cell Science, 108, 3419-3425, 1995) を抗原とするモノクローナル抗体であって、当該抗原を有するヒト有核血液細胞にアポトーシスを誘起するモノクローナル抗体を得ることに成功した。

さらに、本発明者は、ヒトの Integrin Associated Protein (ヒトIAP) を有する有核血液細胞 (骨髓系細胞及びリンパ球) にアポトーシスを誘起させる特性を有する新規モノクローナル抗体を産生させるハイブリドーマを得ることに成功した。以下これらのハイブリドーマをMABL-1 (FERM BP-6100)、MABL-2 (FERM-BP-6101) とし、それぞれのハイブリドーマから産生されるモノクローナル抗体をそれぞれMABL-1抗体、MABL-2抗体とする。

#### 発明の開示

本発明者らは、以上説明したマウス由来の抗体であって、ヒトIAPを抗原とするモノクローナル抗体を用いて、上記の血液疾患の治療薬等として利用するべ

く銳意研究した。すなわち、本発明は、ヒトIAPを有する有核血液細胞にアボトーシスを誘起する特性を有する新規な一本鎖のFv領域を有する抗体を提供することを目的とする。本発明において、用語「一本鎖Fv」は、モノクローナル抗体のH鎖V領域及びL鎖V領域を含む一本鎖のポリペプチドを意味する。

また、前記得られた Integrin Associated Protein (IAP)を有する有核血液細胞にアボトーシスを誘起する物質を含有する血液疾患治療薬を提供することを目的とする。

本発明は、該マウス由来モノクローナル抗体を再構成一本鎖化した抗体に関する。より詳しくは、本発明はヒトIAPを有する有核血液細胞にアボトーシスを誘起する特性を有するマウスモノクローナル抗体の再構成一本鎖Fvに関する。

本発明はまた、該再構成一本鎖Fvのヒト型化抗体に関するものであり、さらに、これより遺伝子工学的方法により作製可能なヒト型化モノクローナル抗体、及びその抗体断片に関するものである。本発明はまた、該再構成一本鎖Fvの作製の過程で有用なヒト／マウスキメラ抗体を提供する。本発明はさらに、マウスモノクローナル抗体の再構成一本鎖Fv、ヒト型化再構成一本鎖Fv、ヒト型化モノクローナル抗体、ヒト型化モノクローナル抗体断片並びにキメラ抗体の製造のための遺伝子工学的方法に関する。

具体的には、本発明は、ヒトIAPを有する有核血液細胞にアボトーシスを誘起する前記マウスモノクローナル抗体 (MABL-1抗体、及びMABL-2抗体) のL鎖V領域、並びにH鎖V領域を含んで成る、ヒトIAPを有する有核血液細胞にアボトーシスを誘起する一本鎖Fvに関するものであり、さらには、このV領域のアミノ酸配列の一部を改変した一本鎖Fvに関するものである。

また、本発明は、ヒト抗体L鎖V領域のフレームワーク領域 (FR) 及び前記マウスモノクローナル抗体のL鎖V領域のCDRを含んで成る再構成ヒト型化L鎖V領域、及びヒト抗体H鎖V領域のFR及び前記マウスモノクローナル抗体のH鎖V領域のCDRを含んで成る再構成ヒト型化H鎖V領域から構成される、ヒトIAPを有する有核血液細胞にアボトーシスを誘起する再構成ヒト型化一本鎖Fv、再構成ヒト型化モノクローナル抗体及び再構成ヒト型化モノクローナル抗体断片に関するものであり、さらには、この配列の一部を改変し、同様の効果を

持つ再構成ヒト型化一本鎖Fv、再構成ヒト型化モノクローナル抗体及び再構成ヒト型化モノクローナル抗体断片に関する。

さらには、本発明は、ヒト抗体L鎖C領域、及び前記マウスモノクローナル抗体のL鎖V領域を含んで成るL鎖、並びに、ヒト抗体H鎖C領域、及び前記マウスモノクローナル抗体のH鎖V領域を含んで成るH鎖を含んで成る、ヒトIAPを有する有核血液細胞にアポトーシスを誘起するキメラ抗体に関するものである。

本発明はまた、前記種々の抗体をコードするDNA、該DNAを含んで成る組換えベクター、及び該組換えベクターにより形質転換された宿主に関する。

本発明はまた、上記の宿主を培養し、培養物から再構成一本鎖Fvを採取することを特徴とする、再構成一本鎖Fv及びその配列の一部を改変した再構成一本鎖Fvの製造方法に関する。

本発明はさらに、ヒトIAPを有する有核血液細胞にアポトーシスを誘起する再構成ヒト型化一本鎖Fv、再構成ヒト型化モノクローナル抗体及び再構成ヒト型化モノクローナル抗体断片、及びその配列の一部を改変した再構成ヒト型化一本鎖Fv、再構成ヒト型化モノクローナル抗体及び再構成ヒト型化モノクローナル抗体断片の製造方法に関する。

本発明はさらによく、ヒトIAPを有する有核血液細胞にアポトーシスを誘起するキメラ抗体の製造方法に関する。

本発明はまた、前記得られたIntegrin Associated Protein(IAP)を有する有核血液細胞にアポトーシスを誘起する物質を含有する血液疾患治療薬に関する。

再構成一本鎖Fvの製造方法であつて任意の特定の抗体に普遍的に適用し得る方法は存在せず、従つて、特定の抗原に対して十分に活性がある再構成一本鎖Fvを作製するためには種々の工夫が必要であるが、一般的に、モノクローナル抗体は次の方法で一本鎖化することができる。

すなわち、モノクローナル抗体に由来するH鎖V領域及びL鎖V領域をリンカーを用いて連結する方法である。得られる再構成一本鎖Fvは、もとのモノクローナル抗体の可変領域を含有し、相補性決定領域 (complementarity determining region; 以下CDRとする) を保存することから、もとのモノクローナル抗体と同一の特異性をもって抗原に結合すること

とを期待することができる。

本発明はまた、上記マウスCDRに相当する、マウス以外の哺乳動物由来のCDR、並びに当該CDRを含有するH鎖V領域及びL鎖V領域に関する。そのようなCDR、H鎖V領域及びL鎖V領域は、例えばヒト由来のCDR、該CDRを含有するヒト由来のH鎖V領域及びL鎖V領域である。

本発明は、この再構成一本鎖Fvの製造方法を用いたものである。

#### マウス抗体V領域をコードするDNAのクローニング

ヒトIAPに対するマウスモノクローナル抗体のV領域をコードするDNAをクローニングするためには、マウスモノクローナル抗体産生細胞からmRNAを調製した後、既知の方法により二本鎖cDNAに変換し、ポリメラーゼ連鎖反応（PCR）法を用いて、目的とするDNAを増幅することで得られる。このmRNAの供給源として、ヒトIAPに対するモノクローナル抗体を生産するハイブリドーマを作製することが必要である。この様なハイブリドーマとして、MABL-1 (FERM-BP-6100)、又はMABL-2 (FERM-BP-6101) を挙げることができる。以下ハイブリドーマMABL-1、MABL-2から産生されるモノクローナル抗体をそれぞれMABL-1抗体、MABL-2抗体という。ハイブリドーマMABL-1、又はMABL-2の作製方法を参考例1に後記する。

##### (1) 全RNAの採取

本発明において、全RNAを採取するため、ハイブリドーマ細胞をISOGENE N（ニッポンジーン社製）を用いて溶解し、イソプロパノール処理を行ったが、すでに他の蛋白質の遺伝子をクローニングする際に用いられた方法、例えばグアニジンチオシアネート処理後、塩化セシウム密度勾配遠心を行う方法 (Chirgwin, J. M. ら、*Biochemistry*, 18, 5294-5299, 1979) や、バナジウム複合体等のリボヌクレアーゼインヒビター存在下に界面活性剤処理、フェノール処理を行う方法 (Berger, S. L. ら、*Biochemistry*, 18, 5143-5149, 1979) を用いることができる。

##### (2) 二本鎖cDNAの採取

上記の如くして得た全RNAから一本鎖DNAを得るには、全RNAを鑄型にして、その3'末端にあるpolyA鎖に相補的なオリゴ(dT)をプライマーとして逆転写酵素で処理して全RNAに相補的な一本鎖DNA(cDNA)を合成する(Larrik, J. Wら、Bio/Technology, 7, 934-938, 1989)ことができる。また、その時に、ランダムプライマーを用いてもよい。

### (3) ポリメラーゼ連鎖反応(PCR)法によるマウス抗体V領域の増幅

次にポリメラーゼ連鎖反応(PCR)法を用いて前記cDNAからマウス抗体V領域の特異的増幅を行う。マウス抗体V領域の増幅には、Jones, S. T.らBio/Technology, 9, 88-89, 1991に記載されているプライマーを用いることができる。ハイブリドーマMABL-1、又はMABL-2が産生するマウスモノクローナル抗体のクローニングに用いるプライマーを決定するにあたり、H鎖及びL鎖のタイピングをして両鎖の型を決める必要がある。

ISOTYPING KIT (STRATAGENE社製)を用いて、該抗体のタイピングを行った結果、MABL-1抗体はκ型L鎖及びγ1型のH鎖を有することが明らかになった。また、MABL-2抗体はκ型L鎖及びγ2a型のH鎖を有することが明らかになった。タイピングについて参考例2に後記する。

次に、ポリメラーゼ連鎖反応(PCR)法を用いてMABL-1抗体のL鎖V領域を増幅するため、配列番号：1に示すオリゴヌクレオチドプライマー及び配列番号：2に示すオリゴヌクレオチドプライマーをそれぞれ5'ー末端プライマー及び3'ー末端プライマーとして使用する。また、MABL-2抗体のL鎖V領域を増幅するため、配列番号：1に示すオリゴヌクレオチドプライマー及び配列番号：2に示すオリゴヌクレオチドプライマーをそれぞれ5'ー末端プライマー及び3'ー末端プライマーとして使用する。

また、MABL-1抗体のH鎖V領域の増幅のため、配列番号：1に示すオリゴヌクレオチドプライマー及び配列番号：3に示すオリゴヌクレオチドプライマーをそれぞれ5'ー末端プライマー及び3'ー末端プライマーとして使用する。

さらに、MABL-2抗体のH鎖V領域の増幅のため、配列番号：1に示すオリ

ゴスクレオチドプライマー及び配列番号：4に示すオリゴスクレオチドプライマーをそれぞれ5'－末端プライマー及び3'－末端プライマーとして使用する。

なお、本実施例では5'－末端プライマーはその5'－末端近傍に制限酵素Hinf I切断部位を提供する配列GANTCを含有し、そして3'－末端プライマーはその5'－末端近傍に制限酵素Xma I切断部位を提供するスクレオチド配列CCCGGGを含有するものを使用している。これらの制限酵素切断部位は可変領域をコードする目的のDNA断片をクローニングベクターにサブクローニングするために用いられる限り、他の制限酵素切断部位でもよい。

次に、マウスモノクローナル抗体の目的とする可変領域をコードするDNA断片を得るために、增幅生成物を低融点アガロース又はカラム〔PCR産物精製用キット（QIAGEN等）、DNA精製用キット（GENECLEAN II等）など〕により、分離・精製を行う。他方、プラスミドpGEM-T Easyのごとき適当なクローニングベクターに前記DNA断片を連結することにより、マウスモノクローナル抗体の目的とする可変領域をコードするDNA断片を含むプラスミドを得る。

クローニングされたDNAの配列決定は任意の常法、例えば、自動DNAシークエンサー（Applied Biosystems社製）を用いて行うことができる。

目的とするDNAのクローニング及びその配列決定を実施例1及び2に具体的に記載する。

#### 相補性決定領域（CDR）

L鎖及びH鎖の各対のV領域は抗原結合部位を形成する。L鎖及びH鎖上の可変領域は共通性のある比較的保存された4個のフレームワークと3個の超可変又は相補佐決定領域（CDR）により連結されている（Kabat, E. A. ら、『Sequences of Proteins of Immunological Interest』US Dept. Health and Human Services 1983）。

前記4個のフレームワーク領域（FR）の多くの部分は $\beta$ -シート構造をとり、その結果3個のCDRはループを形成する。CDRはある場合には $\beta$ -シート構

造の一部分を形成することもある。3個のCDRはFRによって相互に立体的に非常に近い位置に保持され、そして対をなす領域の3個のCDRと共に抗原結合部位の形成に寄与する。

これらのCDR領域は、得られた抗体のV領域のアミノ酸配列と既知抗体のV領域の既知アミノ酸配列とを照合することによって、Kabat, E. A. ら、「Sequences Of Proteins of Immunological Interest」の経験則から見出すことができ、実施例3において具体的に説明する。

#### キメラ抗体の作製

ヒトIAPに対する抗体の再構成一本鎖Fvを設計するに先立って、使用するCDRが実際に抗原結合領域を形成することを確かめる必要がある。この目的のため、キメラ抗体を作製した。さらに実施例1に記載されるモノクローナル抗体MABL-1、MABL-2のクローニングされたDNAのヌクレオチド配列から推定されるアミノ酸配列を既知のマウス抗体のV領域と比較した。

モノクローナル抗体のL鎖及びH鎖V領域をコードするDNA断片がクローニングされれば、これらのマウスV領域をヒト抗体定常領域をコードするDNAと連結して発現させることによってキメラMABL-1抗体又はキメラMABL-2抗体が得られる。

キメラ抗体を作製するための基本的な方法は、クローニングされたcDNAに存在するマウスリーダー配列及びV領域配列を、哺乳類細胞発現ベクター中にすでに存在するヒト抗体C領域をコードする配列に連結することを含んで成る。

前記ヒト抗体C領域は任意のヒトL鎖C領域及びヒトH鎖C領域であることができ、例えばヒトL鎖C $\alpha$ あるいはH鎖 $\gamma-1C$ や $\gamma-4C$ を各々挙げができる。

キメラ抗体の製造のためには2種類の発現ベクター、すなわちエンハンサー/プロモーター系のごとき発現制御領域による制御のもとでマウスL鎖V領域及びヒトL鎖C領域をコードするDNAを含んで成る発現ベクター、並びにエンハンサー/プロモーター系のごとき発現制御領域のもとでマウスH鎖V領域及びヒトH鎖C領域をコードするDNAを含んで成る発現ベクターを作製する。次に、こ

これらの発現ベクターにより哺乳類細胞のごとき宿主細胞を同時形質転換し、そして形質転換された細胞をインービトロ又はインービボで培養してキメラ抗体を製造する（例えばWO 91-16928）。

あるいは、マウスL鎖V領域及びヒトL鎖C領域をコードするDNA並びにマウスH鎖V領域及びヒトH鎖C領域をコードするDNAを单一の発現ベクターに導入し、そして該ベクターを用いて宿主細胞を形質転換し、次にこの形質転換された宿主をインービボ又はインービトロで培養して目的とするキメラ抗体を生産させる。

キメラ抗体の作製を実施例4に記載する。

MABL-1、又はMABL-2抗体のL鎖リーダー領域及びV領域をコードするcDNAをPCR法を用いてサブクローン化し、ヒトゲノムL鎖C領域をコードするDNAを含有する発現ベクターに連結する。

MABL-1、又はMABL-2抗体の $\gamma$ 1型H鎖リーダー及びV領域をコードするcDNAを、PCR法を用いてサブクローン化し、ヒトゲノムL鎖C $\kappa$ 領域をコードするゲノムDNAを含有する発現ベクターに連結する。

特に設計されたPCRプライマーを用いて、MABL-1、MABL-2抗体のV領域をコードするcDNAをそれらの5'ー及び3'ー末端において適当な塩基配列を導入して、それらが発現ベクターに容易に挿入されるように、且つそれらが該発現ベクター中で適切に機能するようにした（例えば、本発明ではKozak配列の導入により転写効率を上げるように工夫されている）。次に、これらのプライマーを用いてPCRにより増幅して得たMABL-1、MABL-2抗体のV領域を、所望のヒトC領域をすでに含有するHEF発現ベクター（WO 92-19759参照）に挿入した。これらのベクターは、種々の哺乳類細胞系における遺伝子操作された抗体の一過性（transient）発現又は安定な発現のために適当である。

キメラMABL-1、MABL-2抗体はヒトIAPを有する細胞に結合する活性を示した。従って、正しいマウスV領域がクローニングされ、そして配列が決定されていたことが示された。

#### 再構成一本鎖Fv領域

ヒトIAPを有する細胞に対する再構成一本鎖Fvを作製するためには、ヒトIAPに対するモノクローナル抗体のH鎖V領域とL鎖V領域とをリンカー、より好ましくはペプチドリンカーを介して連結することにより得られる。ペプチドリンカーとしては、例えばアミノ酸12～19個から成る任意の一本鎖が挙げられるが、具体的な一例として配列番号19に記載のアミノ酸配列から成るペプチド断片が用いられる。

再構成一本鎖Fv領域の一例の具体的なアミノ酸配列を配列番号：20、23、24及び25に示し、このアミノ酸配列を有する一本鎖Fv領域を、本発明においてMABL1-scFvあるいはMABL2-scFvとし、実施例5において詳細に説明する。

本発明の再構成一本鎖Fv領域をコードするDNAは、すでに詳細に説明したMABL-1、MABL-2抗体のH鎖V領域をコードするDNA、及びMABL-1、MABL-2抗体のL鎖V領域をコードするDNAを鋳型とし、それらの配列の内の所望のアミノ酸配列をコードするDNA部分を、その両端を規定するプライマー対を用いてPCR法により増幅することにより得られる。

実施例5において、H鎖V領域と、L鎖V領域とを含んで成る再構成一本鎖Fv領域をコードするDNAの作製方法を具体的に記載する。

再構成一本鎖Fv領域の抗原結合活性は、ヒトIAPに対するマウスマABL-1、MABL-2抗体の結合阻害能を指標にして評価することができる。具体的には、濃度依存的にマウスマABL-2抗体のヒトIAP抗原への阻害作用が認められる。

また、必要な場合、特定の抗原に対して十分に活性がある再構成一本鎖Fv領域を作製するために、前記V領域のアミノ酸配列の一部を改変することも望ましい。

また、本発明における再構成一本鎖Fv領域は、従来の技術（例えば、Satoh, K.ら、Cancer Res., 53, 1-6 (1993) を参照のこと）を用いることによって、ヒト型化することが可能であり、また一旦ヒト型化Fv領域をコードするDNAが作製されれば、ヒト型化一本鎖Fv、ヒト型化一本鎖Fv断片、ヒト型化モノクローナル抗体あるいはヒト型化モノクローナル抗

体断片は、常法に従って容易に作出する事が可能である。さらに、必要な場合、これらのV領域のアミノ酸配列の一部を改変することも望ましい。

さらに、遺伝子工学における慣用技術を用いて上述のマウス由来のH鎖V領域及びL鎖V領域をコードするDNAから、これらに相当する他の哺乳動物由来のDNA、特にヒト由来のDNAを得ることができる。得られたDNAを用いて、他の哺乳動物、特にヒト由来の一本鎖Fv又はその断片、ヒト由来のモノクローナル抗体又はその断片を得ることができる。

以上のように、目的とする再構成一本鎖Fv領域、再構成ヒト型化一本鎖Fv領域、ヒト型化モノクローナル抗体及びヒト型化モノクローナル抗体断片をコードするDNAが作製されれば、それらを含有する発現ベクター、及び該発現ベクターにより形質転換された宿主は常法に従って得ることができ、また、その宿主を用いて常法に従って培養し、產生した再構成一本鎖Fv領域、再構成ヒト型化一本鎖Fv領域、ヒト型化モノクローナル抗体及びヒト型化モノクローナル抗体断片は、細胞内又は細胞外から分離し均一にまで精製することができる。この場合、通常の蛋白質で用いられる分離・精製方法を使用すればよく、何ら限定されるものではない。例えば各種クロマトグラフィー、限外濾過、塩析、透析等を適宜選択、組合せれば、キメラ抗体あるいはヒト型化抗体は分離・精製することができる。

ヒトIAPを有する細胞に対する本発明の再構成一本鎖Fv領域、再構成ヒト型化一本鎖Fv領域、ヒト型化モノクローナル抗体及びヒト型化モノクローナル抗体断片の製造のために任意の発現系、例えば真核細胞、例えば動物細胞、例えば樹立された哺乳類細胞系、真糸状菌細胞、及び酵母細胞、並びに原核細胞、例えば細菌細胞、例えば大腸菌細胞等を使用することができる。好ましくは、本発明のキメラ抗体又は再構成抗体は哺乳類細胞、例えばCOS7細胞又はCHO細胞中で発現される。

これらの場合、哺乳類細胞での発現のために有用な常用のプロモーターを用いることができる。例えば、ヒト・サイトメガロウイルス前期(human cytomegalovirus immediate early; HCMV)プロモーターを使用するのが好ましい。HCMVプロモーターを含有する発現ベク

ターの例には、HCMV-VH-HC $\gamma$ 1, HCMV-VL-HCK等であって、PSV2neoに由来するもの（国際公開WO92-19759参照）が含まれる。

また、その他に、本発明のために用いることのできる哺乳動物細胞における遺伝子発現のプロモーターとしてはレトロウイルス、ポリオーマウイルス、アデノウイルス、シミアンウイルス40（SV40）などのウイルスプロモーターやヒト・ポリペプチド・チェーン・エロングーション・ファクター1 $\alpha$ （HEF-1 $\alpha$ ）などの哺乳動物細胞由来のプロモーターを用いればよい。例えばSV40のプロモーターを使用する場合は、Mulligan, R. C. らの方法（Nature, 277, 108-114, (1979)）、また、HEF-1 $\alpha$ プロモーターを使用する場合は、Mizushima, S. らの方法（Nucleic Acids Research, 18, 5322, (1990)）に従えば容易に実施することができる。

複製起原（ori）としては、SV40、ポリオーマウイルス、アデノウイルス、牛バビローマウイルス（BPV）等の由来のoriを用いることができ、さらに宿主細胞系中での遺伝子コピー数増幅などのため、発現ベクターは選択マークとして、ホスホトランスフェラーゼAPH(3')IIあるいはI(neo)遺伝子、チミジンキナーゼ（TK）遺伝子、大腸菌キサンチングアミニホスホリボシルトランスフェラーゼ（Ecogpt）遺伝子、ジヒドロ葉酸還元酵素（DHFR）遺伝子等を含むことができる。

一般に、再構成一本鎖Fv領域はwhole IgGに比べ組織、腫瘍への移行性が優れており、今回構築したMABL2-scFvは白血病などの血液疾患治療薬としての利用が期待され、またRI標識によるイメージングへの利用も期待される。さらに、RI化合物やトキシンと結合させることにより、効力を増強させることも期待できる。

#### 図面の説明

図1は、ヒトIgG1抗体が、ヒトIAPを発現するL1210細胞（hIAP/L1210）に結合しないことを示すフローサイトメトリーの結果を示す図

である。

図2は、キメラMABL-1抗体が、ヒトIAPを発現するL1210細胞(hIAP/L1210)に特異的に結合することを示すフローサイトメトリーの結果を示す図である。

図3は、キメラMABL-2抗体が、ヒトIAPを発現するL1210細胞(hIAP/L1210)に特異的に結合することを示すフローサイトメトリーの結果を示す図である。

図4は、本発明にかかる一本鎖Fv領域の作成方法を模式的に示す図である。

図5は、本発明の一本鎖Fv領域をコードするDNAを、大腸菌にて発現させるために使用可能な発現プラスミドの一例の構造を示す。

図6は、本発明の一本鎖Fv領域をコードするDNAを、哺乳動物細胞にて発現させるために使用する発現プラスミドの一例の構造を示す。

図7は、実施例5、4で得られたウエスタンプロットの結果を示す写真である。左側より、分子量マーカー(上から97.4、66、45、31、21.5、14.5kDaを示す)、pCHO1導入COS7細胞培養上清、pCHOM2導入細胞培養上清。pCHOM2導入細胞培養上清に再構成MABL-2抗体一本鎖Fv領域(矢印)が明らかに含まれていることを示す。

図8は、コントロールとしてのpCOS1/L1210細胞には、コントロールとしてのpCHO1/COS7細胞培養上清の抗体は結合しないことを示すフローサイトメトリーの結果を示す図である。

図9は、コントロールとしてのpCOS1/L1210細胞には、MABL2-scFv/COS7細胞培養上清の抗体は結合しないことを示すフローサイトメトリーの結果を示す図である。

図10は、hIAP/L1210細胞に、コントロールとしてのpCOS1/COS7細胞培養上清の抗体は結合しないことを示すフローサイトメトリーの結果を示す図である。

図11は、hIAP/L1210細胞に、MABL2-scFv/COS7細胞培養上清の抗体は特異的に結合することを示すフローサイトメトリーの結果を示す図である。

図12は、実施例5、6で示すCompetitive ELISAの結果を示す図であり、本発明の一本鎖Fv領域(MABL2-scFv)の抗原結合活性を、コントロールとしてのpCHO1/COS7細胞培養上清と比較して、マウスモノクローナル抗体MABL-2の抗原結合に対する阻害を指標として示す図である。

図13は、実施例5、7のアポトーシス誘起効果の結果を示す図であり、コントロールとしてのpCOS1/L1210細胞には、コントロールとしてのpCHO1/COS7細胞培養上清抗体はアポトーシスを誘起しないことを示す。

図14は、実施例5、7のアポトーシス誘導効果の結果を示す図であり、コントロールとしてのpCOS1/L1210細胞には、MABL2-scFv/COS7細胞培養上清抗体はアポトーシスを誘起しないことを示す。

図15は、実施例5、7のアポトーシス誘導効果の結果を示す図であり、hIAP/L1210細胞には、コントロールとしてのpCHO1/COS7細胞培養上清抗体はアポトーシスを誘起しないことを示す。

図16は、実施例5、7のアポトーシス誘導効果の結果を示す図であり、hIAP/L1210細胞に対し、MABL2-scFv/COS7細胞培養上清抗体が特異的にアポトーシスを誘起することを示す。

図17は、実施例5、7のアポトーシス誘導効果の結果を示す図であり、CCR-F-CEM細胞には、コントロールとしてのpCHO1/COS7細胞培養上清抗体はアポトーシスを誘起しないことを示す(最終濃度50%)。

図18は、実施例5、7のアポトーシス誘導効果の結果を示す図であり、CCR-F-CEM細胞に対し、MABL2-scFv/COS7細胞培養上清抗体が特異的にアポトーシスを誘起することを示す(最終濃度50%)。

次に、本発明を下記の実施例により具体的に説明するが、これにより本発明の範囲が限定されるものではない。

## 実施例

### 参考例1 (ハイブリドーマの作製)

DBAマウス由来の白血病細胞株L1210細胞(ATCC株番号CCL-2

19, J. Natl. Cancer Inst. 10:179-192, 1949) にヒト Integrin Associated Protein (IAP) を高発現した細胞を以下のように作製して感作抗原として用いた。

ヒト IAP の遺伝子は、HL-60 細胞株の mRNA (CLONTECH 社製) より作製した cDNA を録型として PCR により増幅して用いた。

この PCR 産物をクローニングベクター pGEM-T vector (プロメガ社製) に組み込み大腸菌 JM109 (タカラ社製) にトランスフォーメーションし、Insert DNA の塩基配列を DNA シークエンサー (373A DNA sequencer, ABI 社製) にて確認後、発現ベクター pCOS1 に組換えた。

発現ベクター pCOS1 は、pEF-BOS (Nucleic Acids Research, 18, 5322, 1990) のデリバティブであり、ヒトエロングーション・ファクター-1 $\alpha$ をプロモーター/エンハンサーとして使用しネオマイシン耐性遺伝子を組み込んだベクターである。このヒト IAP を組み込んだ発現ベクターを L1210 細胞株に DMRIE-C (GIBCO-BRL 社製) を用いて遺伝子導入し Geneticin (最終濃度 1 mg/ml, GIBCO-BRL 社製) により選択し、さらに、遺伝子が導入された L1210 細胞は限界希釈法により細胞をクローニングした。得られたクローンについて、ヒト IAP を認識する抗 CD47 抗体 (ファーミンジェン社製) で抗原の発現を検討し、発現量の高いクローンを抗原感作の細胞として選択した。

上記細胞で免疫した、L1210 細胞と同系マウスである DBA/2 マウス (日本チャールズリバー繁殖) の脾臓細胞とマウス・ミエローマ細胞株 P3-U1 [Current Topics in Microbiology and Immunology, 81, 1-7 (1978)] とをポリエチレングリコールを用いた常法 [Clin. Exp. Immunol., 42, 458-462 (1980)] に従い細胞融合させた。

ヒト IAP を特異的に認識する活性を指標としてスクリーニングし、2 種類のハイブリドーマを樹立した。これらは MABL-1 及び MABL-2 と命名し、公的微生物寄託機関である通商産業省工業技術院生命工学工業技術研究所 (日本

国茨城県つくば市東1丁目1番3号)に、1997年9月11日に、受託番号それぞれFERM BP-6100、FERM-BP-6101として国際寄託されている。

#### 参考例2 (MABL-1、MABL-2抗体のサブクラス決定)

上記で得られたMABL-1、及びMABL-2抗体のサブクラスを決定する目的で、100ng/mlに調製したMABL-1、及びMABL-2抗体500μlを、ISOTYPING KIT (STRATAGENE社製)にスポットしたところ、MABL-1はIgG1, κであり、MABL-2はIgG2a, κであることが明らかとなった。

#### 実施例1 (ヒトIAPに対するマウスモノクローナル抗体のV領域をコードするDNAのクローニング)

ヒトIAPに対するマウスモノクローナル抗体MABL-1及びMABL-2の可変領域をコードするDNAを次のようにしてクローニングした。

##### 1.1 メッセンジャーRNA (mRNA) の調製

ハイブリドーマMABL-1及びMABL-2からのmRNAを、mRNA Purification Kit (Pharmacia Biotech社製)を用いて調製した。

##### 1.2 二本鎖cDNAの合成

約1μgのmRNAよりMarathon cDNA Amplification Kit (CLONTECH社製)を用いて二本鎖cDNAを合成し、アダプターを連結した。

##### 1.3 抗体可変領域をコードする遺伝子のPCR法による増幅

Thermal Cycler (PERKIN ELMER社製)を用いてPCR法を行った。

##### (1) MABL-1 L鎖V領域をコードする遺伝子の増幅

PCR法に使用するプライマーは、アダプターの部分配列とハイブリダイズする配列番号：1に示すアダプタープライマー1 (CLONTECH社製)、及びマウスカッパ型L鎖C領域配列とハイブリダイズする配列番号：2に示すMKC (Mouse Kappa Constant) プライマー (Bio/Tech

n o l o g y, 9, 88-89, 1991) を用いた。

PCR溶液50μlは、5μlの10×PCR BufferII、2mM MgCl<sub>2</sub>、0.16mM dNTPs (dATP, dGTP, dCTP, dTP)、2.5ユニットのDNAポリメラーゼAmpliTaq Gold (以上PERKIN ELMER社製)、0.2μMの配列番号：1に示すアダプターブライマーと0.2μMの配列番号：2に示すMKCブライマー及びMABL-1由来の二本鎖cDNA 0.1μgを含有し、94°Cの初期温度にて9分間そして次に94°Cにて1分間、60°Cにて1分間及び72°Cにて1分20秒間、この順序で加熱した。この温度サイクルを35回反復した後、反応混合物を更に72°Cで10分間加熱した。

#### (2) MABL-1 H鎖V領域をコードするcDNAの増幅

PCRのためのブライマーとして配列番号：1に示すアダプターブライマー1、及び配列番号：3に示すMHC-γ1 (Mouse Heavy Constant) ブライマー (Bio/Technology, 9, 88-89, 1991) を用いた。

cDNAの増幅は、0.2μMのMKCブライマーの代わりに0.2μMのMHC-γ1ブライマーを用いて増幅した点を除いて、前記1.3(1)においてL鎖V領域遺伝子の増幅について記載したのと同じ方法により増幅を行った。

#### (3) MABL-2 L鎖V領域をコードするcDNAの増幅

PCRのためのブライマーとして配列番号：1に示すアダプターブライマー1、及び配列番号：2に示すMKCブライマーを用いた。

cDNAの増幅は、MABL-1由来の二本鎖cDNA 0.1μgの代わりにMABL-2由来の二本鎖cDNA 0.1μgを用いて増幅した点を除いて、前記1.3(1)においてMABL-1 L鎖V領域遺伝子の増幅について記載したのと同じ方法により増幅を行った。

#### (4) MABL-2 H鎖V領域をコードするcDNAの増幅

PCRのためのブライマーとして配列番号：1に示すアダプターブライマー1、及び配列番号：4に示すMHC-γ2aブライマー (Bio/Technology, 9, 88-89, 1991) を用いた。

cDNAの増幅は、0.2 $\mu$ MのMKCプライマーの代わりに0.2 $\mu$ MのMHC- $\gamma$ 2aプライマーを用いて増幅した点を除いて、前記1.3(3)においてL鎖V領域遺伝子の増幅について記載したのと同じ方法により増幅を行った。

#### 1.4 PCR生成物の精製

前記のようにしてPCR法により増幅したDNA断片をQIAquick PCR Purification Kit (QIAGEN社製)を用いて精製し、1mM EDTAを含有する10mM Tris-HCl (pH 8.0)に溶解した。

#### 1.5 連結及び形質転換

上記のようにして調製したMABL-1由来マウスカッパ型L鎖V領域をコードする遺伝子を含んで成るDNA断片約140ngをpGEM-T Easyベクター (Promega社製) 50ngと、30mM Tris-HCl (pH 7.8)、10mM MgCl<sub>2</sub>、10mM ジチオスレイトール、1mM ATP及び3ユニット T4 DNAリガーゼ (Promega社製)を含有する反応混合液中で、15°Cにて3時間反応させ連結した。

次に、1 $\mu$ lの上記連結混合液を大腸菌DH5 $\alpha$ のコンピテント細胞 (東洋紡社製) 50 $\mu$ lに加え、そしてこの細胞を氷上で30分間、42°Cにて1分間そして再び氷上で2分間静置した。次いで100 $\mu$ lのSOC培地 (GIBCO BRL社製)を加え、100 $\mu$ g/mlのアンビシリン (SIGMA社製)を含有するLB (Molecular Cloning: A Laboratory Manual, Sambrookら, Cold Spring Harbor Laboratory Press, 1989) 寒天培地上にこの大腸菌を塗布し、37°Cにて一晩培養して大腸菌形質転換体を得た。

この形質転換体を、50 $\mu$ g/mlのアンビシリンを含有するLB培地3ml中で37°Cにて終夜培養し、そしてこの培養物からQIAprep Spin Miniprep Kit (QIAGEN社製)を用いてプラスミドDNAを調製した。

こうして得られた、ハイブリドーマMABL-1に由来するマウスカッパ型L鎖V領域をコードする遺伝子を含有するプラスミドをpGEM-M1Lと命名し

た。

上記の同じ方法に従って、ハイブリドーマMABL-1に由来するマウスH鎖V領域をコードする遺伝子を含有するプラスミドを精製DNA断片から作製し、pGEM-M1Hと命名した。

また、ハイブリドーマMABL-2に由来するマウスカッパ型L鎖V領域をコードする遺伝子を含有するプラスミドを精製DNA断片から作製し、pGEM-M2Lと命名した。

また、ハイブリドーマMABL-2に由来するマウスH鎖V領域をコードする遺伝子を含有するプラスミドを精製DNA断片から作製し、pGEM-M2Hと命名した。

#### 実施例2 (DNAの塩基配列の決定)

前記のプラスミド中のcDNAコード領域の塩基配列を、自動DNAシーケンサー (Applied Biosystem社製) 及びABI PRISM Dye Terminator Cycle Sequencing Ready Reaction Kit (Applied Biosystem社製) を用いて、メーカー指定のプロトコールに従って塩基配列を決定した。

プラスミドpGEM-M1Lに含まれるマウスMABL-1抗体のL鎖V領域をコードする遺伝子の塩基配列を配列番号：5に示す。

また、プラスミドpGEM-M1Hに含まれるマウスMABL-1抗体のH鎖V領域をコードする遺伝子の塩基配列を配列番号：6に示す。

また、プラスミドpGEM-M2Lに含まれるマウスMABL-2抗体のL鎖V領域をコードする遺伝子の塩基配列を配列番号：7に示す。

また、プラスミドpGEM-M2Hに含まれるマウスMABL-2抗体のH鎖V領域をコードする遺伝子の塩基配列を配列番号：8に示す。

#### 実施例3 (CDRの決定)

L鎖及びH鎖のV領域の全般的構造は、互いに類似性を有しており、それぞれ4つのフレームワーク部分が3つの超可変領域、即ち相補性決定領域 (CDR) により連結されている。フレームワークのアミノ酸配列は、比較的良く保存されているが、一方、CDR領域のアミノ酸配列の変異性は極めて高い (Kabat,

E. A. ら、「Sequences of Proteins of Immunological Interest」US Dept. Health and Human Services, 1983)。

このような事実に基づき、ヒト IAPに対するマウスモノクローナル抗体の可変領域のアミノ酸配列を Kabat らにより作製された抗体のアミノ酸配列のデータベースにあてはめ、相同性を調べることにより CDR 領域を決定した。その結果を表 1 に示す。

表 1

| プラスミド    | 配列番号 | CDR (1) | CDR (2) | CDR (3) |
|----------|------|---------|---------|---------|
| pGEM-M1L | 5    | 43-58   | 74-80   | 113-121 |
| pGEM-M1H | 6    | 50-54   | 69-85   | 118-125 |
| pGEM-M2L | 7    | 43-58   | 74-80   | 113-121 |
| pGEM-M1H | 8    | 50-54   | 69-85   | 118-125 |

実施例 4 (クローン化 cDNA の発現の確認 (キメラ MABL-1 抗体及びキメラ MABL-2 抗体の作製) )

#### 4.1 キメラ MABL-1 抗体発現ベクターの作製

キメラ MABL-1 抗体を発現するベクターを作製するため、それぞれマウス MABL-1 L鎖及びH鎖 V 領域をコードする cDNA クローン pGEM-M1L 及び pGEM-M1H を PCR 法により修飾した。そして HEF 発現ベクター (国際公開出願 WO 92-19759 参照) に導入した。

L鎖 V 領域のための前方プライマー MLS (配列番号: 9) 及び H鎖 V 領域のための前方プライマー MHS (配列番号: 10) は、各々の V 領域のリーダー配列の最初をコードする DNA にハイブリダイズし且つ Kozak コンセンサス配列 (J. Mol. Biol., 196, 947-950, 1987) 及び Hind III 制限酵素部位を有するように設計した。L鎖 V 領域のための後方プライマー MLAS (配列番号: 11) 及び H鎖 V 領域のための後方プライマー MHAS (配列番号: 12) は、J 領域の末端をコードする DNA 配列にハイブリダイズし且つスプライスドナー配列及び BamHI 制限酵素部位を有するように設計し

た。

PCR溶液100μlは、10μlの10×PCR Buffer II、2mM MgCl<sub>2</sub>、0.16mM dNTPs (dATP, dGTP, dCTP, dTTP)、5ユニットのDNAポリメラーゼAmpliTaq Gold、0.4μMずつの各プライマー、及び8ngの錆型DNA (pGEM-M1L及びpGEM-M1H) を含有し、94°Cの初期温度にて9分間そして次に94°Cにて1分間、60°Cにて1分間及び72°Cにて1分20秒間、この順序で加熱した。この温度サイクルを35回反復した後、反応混合物を更に72°Cで10分間加熱した。

PCR生成物をQIAquick PCR Purification Kit (QIAGEN社製) を用いて精製し、HindIII及びBamHIで消化し、そしてL鎖V領域については、HEF発現ベクターHEF-κに、H鎖V領域についてはHEF発現ベクターHEF-γにそれぞれクローニングした。DNA配列決定の後、正しいDNA配列を有するDNA断片を含むプラスミドをそれぞれHEF-M1L、HEF-M1Hと命名した。

#### 4.2 キメラMABL-2抗体発現ベクターの作製

cDNAの修飾及びクローニングは、pGEM-M1L及びpGEM-M1Hの代わりにpGEM-M2L及びpGEM-M2Hを錆型DNAに増幅した点を除いて、前記4.1において記載したのと同じ方法により増幅及びクローニングを行い、DNA配列決定の後、正しいDNA配列を有するDNA断片を含むプラスミドをそれぞれHEF-M2L、HEF-M2Hと命名した。

#### 4.3 COS7細胞への遺伝子導入

キメラMABL-1抗体及びキメラMABL-2抗体の一過性発現を観察するため、前記発現ベクターをCOS7細胞において試験した。

##### (1) キメラMABL-1抗体の遺伝子導入

HEF-M1LとHEF-M1Hベクターを、Gene Pulser装置 (BioRad社製) を用いてエレクトロポレーションによりCOS7細胞に同時形質転換した。各DNA (10μg) と、PBS中1×10<sup>7</sup>細胞/mlの0.8mlをキュベットに加え、1.5kV、25μFの容量にてパルスを与えた。

室温にて10分間の回復期間の後、エレクトロポレーション処理された細胞を、10%のマーグロブリンフリーウシ胎児血清を含有するD MEM培養液（GIBCO BRL社製）に加えた。72時間培養の後、培養上清を集め、遠心分離により細胞破片を除去して回収培養上清を得た。

#### (2) キメラMABL-2抗体の遺伝子導入

キメラMABL-2抗体遺伝子の導入は、HEF-M1LとHEF-M1Hベクターの代わりにHEF-M2LとHEF-M2Hベクターを用いた点を除いて、前記4.3(1)に記載したのと同じ方法によりCOS7細胞に同時形質転換し、回収培養上清を得た。

#### 4.4 フローサイトメトリー

抗原への結合を測定するため、前記COS7細胞培養上清を用いてフローサイトメトリーを行った。ヒトIAPを発現するマウス白血病細胞株L1210細胞 $4 \times 10^5$ 個に、キメラMABL-1抗体を発現させたCOS7細胞の培養上清あるいはキメラMABL-2抗体を発現させたCOS7細胞の培養上清あるいはコントロールとしてヒトIgG1抗体（SIGMA社製）を加え、氷上にてインキュベーション及び洗浄の後、FITC標識した抗ヒトIgG抗体（Cappel社製）を加えた。インキュベーション及び洗浄の後、FACScan装置（BECKON DICKINSON社製）にて蛍光強度を測定した。

その結果、キメラMABL-1抗体及びキメラMABL-2抗体は、ヒトIAPを発現するL1210細胞に特異的に結合したことにより、これらのキメラ抗体がマウスモノクローナル抗体MABL-1及びMABL-2のそれぞれのV領域の正しい構造を有することが明らかとなった（図1～3）。

#### 実施例5（再構成MABL-1抗体及び再構成MABL-2抗体一本鎖Fv（scFv）領域の作製）

##### 5.1 再構成MABL-1抗体一本鎖Fv領域の作製

再構成MABL-1抗体一本鎖Fv領域を次の様にして作製した。再構成MABL-1抗体H鎖V領域、及びリンカー領域、及び再構成MABL-1抗体L鎖V領域をそれぞれPCR法を用いて增幅し、連結することにより、再構成MABL-1抗体一本鎖Fv領域を作製した。この方法を図4に模式的に示す。再構成

MABL-1抗体一本鎖Fv領域の作製のために6個のPCRプライマー(A-F)を使用した。プライマーA、C及びEはセンス配列を有し、プライマーB、D及びFはアンチセンス配列を有する。

H鎖V領域のための前方プライマーVHS(プライマーA、配列番号:13)は、H鎖V領域のN末端をコードするDNAにハイブリダイズし且つNcoI制限酵素認識部位を有するように設計した。H鎖V領域のための後方プライマーベ HAS(プライマーB、配列番号:14)は、H鎖V領域のC末端をコードするDNAにハイブリダイズし且つリンカーにオーバーラップするように設計した。

リンカーのための前方プライマーレス(プライマーC、配列番号:15)は、リンカーのN末端をコードするDNAにハイブリダイズし且つH鎖V領域のC末端をコードするDNAにオーバーラップするように設計した。リンカーのための後方プライマーレス(プライマーD、配列番号:16)は、リンカーのC末端をコードするDNAにハイブリダイズし且つL鎖V領域のN末端をコードするDNAにオーバーラップするように設計した。

L鎖V領域のための前方プライマーベルス(プライマーE、配列番号:17)は、リンカーのC末端をコードするDNAにハイブリダイズし且つL鎖V領域のN末端をコードするDNAにオーバーラップするように設計した。L鎖V領域のための後方プライマーベルス-FLAG(プライマーF、配列番号:18)は、L鎖V領域のC末端をコードするDNAにハイブリダイズし且つFLAGペプチドをコードする配列(Hopp, T. P. ら、Bio/Technology, 6, 1204-1210, 1988)、2個の転写停止コドン及びEcoRI制限酵素認識部位を有するように設計した。

第一PCR段階において3つの反応A-B、C-D及びE-Fを行い、そして各PCR生成物を精製した。第一PCRから得られた3つのPCR生成物をそれら自体の相補性によりアッセンブルさせた。次に、プライマーA及びFを加えて、再構成MABL-1抗体一本鎖Fv領域をコードする全長DNAを増幅した(第二PCR)。なお、第一PCRにおいては、再構成MABL-1抗体H鎖V領域をコードするプラスミドpGEM-M1H(実施例2を参照)、Gly Gly Gly Gly Ser Gly Gly Gly Ser Gly

Gly Gly Gly Ser (配列番号: 19) からなるリンカー領域をコードするDNA配列 (Huston, J. S. ら、Proc. Natl. Acad. Sci. USA, 85, 5879-5883, 1988) を含んで成るプラスミドpSC-DP1、及び再構成MABL-1抗体L鎖V領域をコードするプラスミドpGEM-M1L (実施例2を参照) をそれぞれ鋳型として用いた。

第一PCR段階の溶液 50 μl は、5 μl の 10×PCR Buffer II、2 mM MgCl<sub>2</sub>、0.16 mM dNTPs、2.5 ユニットのDNAポリメラーゼAmpliTaq Gold (以上PERKIN ELMER社製)、0.4 μM ずつの各プライマー及び 5 ng の各鋳型DNAを含有し、94 °C の初期温度にて 9 分間そして次に 94 °C にて 1 分間、65 °C にて 1 分間及び 72 °C にて 1 分 20 秒間、この順序で加熱した。この温度サイクルを 35 回反復した後、反応混合物を更に 72 °C で 7 分間加熱した。

PCR生成物 A-B (371 bp)、C-D (63 bp)、及び E-F (384 bp) を QIAquick PCR Purification Kit (QIAGEN社製) を用いて精製し、第二PCRでアッセンブルした。第二PCRにおいて、鋳型として 120 ng の第一PCR生成物 A-B、20 ng の PCR 生成物 C-D 及び 120 ng の PCR 生成物 E-F、10 μl の 10×PCR Buffer II、2 mM MgCl<sub>2</sub>、0.16 mM dNTPs、5 ユニットのDNAポリメラーゼAmpliTaq Gold (以上PERKIN ELMER社製) を含有する 98 μl の PCR 混合液を、94 °C の初期温度にて 8 分間そして次に 94 °C にて 2 分間、65 °C にて 2 分間及び 72 °C にて 2 分間、この順序で加熱した。この温度サイクルを 2 回反復した後、それぞれ 0.4 μM のプライマー A 及び F を加えた。そして 94 °C の初期温度にて 1 分間そして次に 94 °C にて 1 分間、65 °C にて 1 分間及び 72 °C にて 1 分 20 秒間、この順序で加熱し、この温度サイクルを 35 回反復した後、反応混合物を 72 °C にて 7 分間加熱した。

第二PCRにより生じた 843 bp の DNA 断片を精製し、Nco I 及び Eco RI で消化し、得られたDNA断片を pSCFVT7ベクターにクローニングした。なお、本発現ベクター pSCFVT7 は、大腸菌ペリプラズム分泌発現系

に適するp<sub>el</sub>Bシグナル配列 (Lei, S. P. ら、J. Bacteriology, 169, 4379-4383, 1987) を含んでいる。DNA配列決定の後、再構成MABL-1抗体一本鎖Fv領域の正しいアミノ酸配列をコードするDNA断片を含むプラスミドをpscM1と命名した(図5を参照のこと)。本プラスミドpscM1に含まれる再構成MABL-1抗体一本鎖Fv領域の塩基配列及びアミノ酸配列を配列番号: 20に示す。

次に、哺乳動物細胞にて再構成MABL-1抗体一本鎖Fv領域を発現するベクターを作製するため、pscM1ベクターをPCR法により修飾した。そして得られたDNA断片をpCHO1発現ベクターに導入した。なお、本発現ベクター-pCHO1は、DHFR-△E-rvH-PM1-f (WO 92/19759参照) から、EcoRI及びSmaI消化により抗体遺伝子を削除し、EcoRI-NotI-BamHI Adaptor(宝酒造社製)を連結することにより構築したベクターである。

PCRに使用するプライマーは、前方プライマーとしてH鎖V領域のN末端をコードするDNAにハイブリダイズし且つSalI制限酵素認識部位を有する配列番号: 21に示すSalI-VHSプライマー及び後方プライマーとして第一フレームワーク配列の最後をコードするDNAにハイブリダイズする配列番号: 22に示すFRH1antiプライマーを用いた。

PCR溶液100μlは、10μlの10×PCR Buffer II、2mM MgCl<sub>2</sub>、0.16mM dNTPs、5ユニットのDNAポリメラーゼAmpliTaq Gold、0.4μMずつの各プライマー、及び8ngの雑型DNA(pscM1)を含有し、95°Cの初期温度にて9分間そして次に95°Cにて1分間、60°Cにて1分間及び72°Cにて1分20秒間、この順序で加熱した。この温度サイクルを35回反復した後、反応混合物を更に72°Cで7分間加熱した。

PCR生成物をQIAquick PCR Purification Kit (QIAGEN社製)を用いて精製し、SalI及びMbo IIで消化し、N末端側再構成MABL-1抗体一本鎖Fv領域をコードするDNA断片を得た。また、pscM1ベクターをMbo II及びEcoRIで消化し、C末端側再構

成MABL-1抗体一本鎖Fv領域をコードするDNA断片を得た。そして、Sal I-Mbo II DNA断片及びMbo II-Eco RI DNA断片をpCHO1-IgSベクターにクローニングした。DNA配列決定の後、正しいDNA配列を有するDNA断片を含むプラスミドをpCHOM1と命名した（図6を参照のこと）。なお、本発現ベクターpCHO1-IgSは、哺乳動物細胞分泌発現系に適するマウスIgG1シグナル配列（Nature, 322, 323-327, 1988）を含んでいる。本プラスミドpCHOM1に含まれる再構成MABL-1抗体一本鎖Fv領域の塩基配列及びアミノ酸配列を配列番号：23に示す。

#### 5.2 再構成MABL-2抗体一本鎖Fv領域の作製

再構成MABL-2抗体一本鎖Fv領域を前記5.1に従って作製した。第一PCRにおいては、pGEM-M1Hの代わりに再構成MABL-2抗体H鎖V領域をコードするプラスミドpGEM-M2H（実施例2を参照）、及びpGEM-M1Lの代わりに再構成MABL-2抗体L鎖V領域をコードするプラスミドpGEM-M2L（実施例2を参照）を使用し、再構成MABL-2抗体一本鎖Fv領域の正しいアミノ酸配列をコードするDNA断片を含むプラスミドpscM2を得た。本プラスミドpscM2に含まれる再構成MABL-2抗体一本鎖Fv領域の塩基配列及びアミノ酸配列を配列番号：24に示す。

また、pscM2ベクターの修飾により再構成MABL-2抗体一本鎖Fv領域の正しいアミノ酸配列をコードするDNA断片を含む哺乳動物細胞発現用pCHOM2ベクターを得た。本プラスミドpCHOM2に含まれる再構成MABL-2抗体一本鎖Fv領域の塩基配列及びアミノ酸配列を配列番号：25に示す。

#### 5.3 COS7細胞への遺伝子導入

再構成MABL-2抗体一本鎖Fv領域の一過性発現を観察するため、pCHOM2ベクターをCOS7細胞において試験した。

pCHOM2ベクターを、Gene Pulser装置（BioRad社製）を用いてエレクトロポレーションによりCOS7細胞に形質転換した。DNA（10 μg）と、PBS中1×10<sup>7</sup>細胞/mlの0.8mlをキュベットに加え、1.5kV、25 μFの容量にてパルスを与えた。

室温にて10分間の回復期間の後、エレクトロポレーション処理された細胞を、

10%のウシ胎児血清を含有するIMDM培養液（GIBCO BRL社製）に加えた。72時間培養の後、培養上清を集め、遠心分離により細胞破片を除去して回収培養上清を得た。

#### 5.4 COS7細胞培養上清中の再構成MABL-2抗体一本鎖Fv領域の検出

pCHOM2ベクターを遺伝子導入したCOS7細胞培養上清中における再構成MABL-2抗体一本鎖Fv領域をウェスタンプロットティング法により確認した。

pCHOM2ベクターを遺伝子導入したCOS7細胞培養上清及びコントロールとしてpCHO1ベクターを遺伝子導入したCOS7細胞培養上清についてSDS電気泳動を行い、REINFORCED NC膜（Schleicher & Schuell社製）に転写した。5%スキムミルク（森永乳業社製）にてプロッキングを行い、0.05% Tween20-PBSにて洗浄後、抗FLAG抗体（SIGMA社製）を加えた。室温にてインキュベーション及び洗浄の後、アルカリフィオスファターゼ結合抗マウスIgG抗体（Zymed社製）を加え、室温にてインキュベーション及び洗浄後、基質溶液（Kirkegaard Perry Laboratories社製）を添加し、発色させた（図7）。

その結果、pCHOM2ベクター導入COS7細胞培養上清中にのみFLAGペプチド特異的なタンパクが検出され、この培養上清中に再構成MABL-2抗体一本鎖Fv領域が分泌されていることが明らかとなった。

#### 5.5 フローサイトメトリー

抗原への結合を測定するため、前記COS7細胞培養上清を用いてフローサイトメトリーを行った。ヒトIntegrin Associated Protein (IAP)を発現するマウス白血病細胞株L1210細胞、あるいはコントロールとしてpCOS1ベクターを形質転換したL1210細胞 $2 \times 10^5$ 個に、再構成MABL-2抗体一本鎖Fv領域を発現させたCOS7細胞の培養上清あるいはコントロールとしてpCHO1ベクターを形質転換したCOS7細胞の培養上清を加え、氷上にてインキュベーション及び洗浄の後、マウス抗FLAG抗体（SIGMA社製）を加えた。インキュベーション及び洗浄の後、FIT

C標識した抗マウス IgG抗体（BECTON DICKINSON社製）を加えた。再度インキュベーション及び洗浄の後、FACScan装置（BECTON DICKINSON社製）にて蛍光強度を測定した。

その結果、再構成MABL-2抗体一本鎖Fv領域は、ヒトIAPを発現するL1210細胞に特異的に結合したことにより、この再構成MABL-2抗体一本鎖Fv領域がヒトIntegrin Associated Proteinに対するアフィニティーを有することが明らかとなった（図8～11）。

#### 5.6 Competitive ELISA

マウスモノクローナル抗体の抗原結合に対する阻害活性を指標に、再構成MABL-2抗体一本鎖Fv領域の抗原結合活性を測定した。

1 μg/mlに調整した抗FLAG抗体を96穴プレートの各穴に加え、37°Cにて2時間インキュベートした。洗浄後、1%BSA-PBSにてブロッキングを行った。室温にてインキュベート及び洗浄後、分泌型ヒトIAP抗原遺伝子（配列番号：26）を導入したCOS7細胞培養上清をPBSにて2倍希釈したものを各穴に加えた。室温にてインキュベート及び洗浄後、100ng/mlに調整したビオチン化MABL-2抗体50 μl及び順次希釈した再構成MABL-2抗体一本鎖Fv領域発現COS7細胞培養上清50 μlを混和したものを各穴に加えた。室温にてインキュベート及び洗浄後、アルカリリフォスマターゼ結合ストレプトアビシン（Zymed社製）を加えた。室温にてインキュベート及び洗浄後、基質溶液（SIGMA社製）を加え、次に405nmでの吸光度を測定した。

その結果、再構成MABL-2抗体一本鎖Fv領域（MABL2-scFv）は、コントロールのpCHO1導入COS7細胞培養上清に比較して明らかに濃度依存的にマウスマABL-2抗体のヒトIAP抗原への結合を阻害した（図12）。このことから、再構成MABL-2抗体一本鎖Fv領域は、マウスモノクローナル抗体MABL-2のそれぞれのV領域の正しい構造を有することが示唆された。

#### 5.7 In vitroでのアポトーシス誘起効果

ヒトIAPを遺伝子導入したL1210細胞、及びコントロールとしてpCO

S1ベクターを遺伝子導入したL1210細胞、及びCCR-F-CEM細胞を用い、再構成MABL-2抗体一本鎖Fv領域のアポトーシス誘起作用をAnnexin-V（ベーリンガーマンハイム社製）染色により検討した。

$1 \times 10^6$ 個の各細胞に、再構成MABL-2抗体一本鎖Fv領域発現COS7細胞培養上清あるいはコントロールとしてpCHO1ベクター導入COS7細胞培養上清を終濃度50%で添加し、24時間培養した。その後、Annexin-V染色を行い、FACScan装置（BECTON DICKINSON社製）にて蛍光強度を測定した。

Annexin-V染色による解析の結果を図13～18にそれぞれ示した。ここで、図の左下の領域にあるドットは生細胞を、右下の領域はアポトーシス初期の細胞を、右上の領域はアポトーシス後期の細胞を示す。その結果、再構成MABL-2抗体一本鎖Fv領域（MABL2-scFv）はL1210細胞においてヒトIAP抗原特異的に著しい細胞死を誘導した（図13～16）。また、CCR-F-CEM細胞においてもコントロールに比較して著しい細胞死を誘導した（図17～18）。

#### 産業上の利用可能性

本発明に係わるヒトIAPを有する有核血液細胞にアポトーシスを誘起する特性を有する新規な一本鎖Fvは以上説明したアミノ酸配列を有するものであり、ヒトIAPを有する有核血液細胞を特異的に認識し、かつ該細胞にアポトーシスを誘起することができる。従って、骨髓性白血病及びリンパ性白血病などの血液疾患治療薬として有用である。

## 請求の範囲

1. Integrin Associated Protein(IAP)を有する有核血液細胞にアボトーシスを誘起するモノクローナル抗体の可変領域から再構成されるポリペプチド。
2. 請求項1に記載のポリペプチドをコードするDNA。
3. Integrin Associated Protein(IAP)を有する有核血液細胞にアボトーシスを誘起する一本鎖Fv。
4. a) 配列番号5:

Met Lys Leu Pro Val Arg Leu Leu Val Met Phe Trp Ile Pro  
Ala Ser Ser Ser Asp Val Val Met Thr Gln Thr Pro Leu Ser Leu  
Pro Val Ser Leu Gly Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser  
Gln Ser Leu Leu His Ser Lys Gly Asn Thr Tyr Leu Gln Trp Tyr  
Leu Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile Tyr Lys Val  
Ser Asn Arg Phe Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly  
Ser Gly Thr Asp Phe Thr Leu Lys Ile Ser Arg Val Glu Ala Glu  
Asp Leu Gly Val Tyr Phe Cys Ser Gln Ser Thr His Val Pro Tyr  
Thr Ser Gly Gly Thr Lys Leu Glu Ile Lys

のアミノ酸配列、

- b) 配列番号7:

Met Lys Leu Pro Val Arg Leu Leu Val Met Phe Trp Ile Pro  
Gly Ser Ser Ser Asp Val Val Met Thr Gln Ser Pro Leu Ser Leu  
Pro Val Ser Leu Gly Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser  
Gln Ser Leu Val His Ser Asn Gly Lys Thr Tyr Leu His Trp Tyr  
Leu Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile Tyr Lys Val  
Ser Asn Arg Phe Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly  
Ser Val Thr Asp Phe Thr Leu Met Ile Ser Arg Val Glu Ala Glu  
Asp Leu Gly Val Tyr Phe Cys Ser Gln Ser Thr His Val Pro Tyr  
Thr Phe Gly Gly Thr Lys Leu Glu Ile Lys

のアミノ酸配列、又は

- c) a)もしくはb)のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、

置換もしくは付加されたアミノ酸配列  
から選択されるアミノ酸配列からなるL鎖V領域。

5. a) 配列番号6:

Met Glu Trp Ser Trp Ile Phe Leu Phe Leu Leu Ser Gly Thr Ala  
Gly Val His Ser Gln Val Gln Leu Gln Gln Ser Gly Pro Asp Leu  
Val Lys Pro Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly  
Tyr Thr Phe Val Asn His Val Met His Trp Val Lys Gln Lys Pro  
Gly Gln Gly Leu Glu Trp Ile Gly Tyr Ile Tyr Pro Tyr Asn Asp  
Gly Thr Lys Tyr Asn Glu Lys Phe Lys Gly Lys Ala Thr Leu Thr  
Ser Glu Lys Ser Ser Ala Ala Tyr Met Glu Leu Ser Ser Leu  
Ala Ser Glu Asp Ser Ala Val Tyr Tyr Cys Ala Arg Gly Gly Tyr  
Tyr Ser Tyr Asp Asp Trp Gly Gln Gly Thr Thr Leu Thr Val Ser  
Ser

のアミノ酸配列、

b) 配列番号8:

Met Glu Trp Ser Trp Ile Phe Leu Phe Leu Leu Ser Gly Thr Ala  
Gly Val His Ser Gln Val Gln Leu Gln Gln Ser Gly Pro Glu Leu  
Val Lys Pro Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly  
Tyr Thr Phe Ala Asn His Val Ile His Trp Val Lys Gln Lys Pro  
Gly Gln Gly Leu Glu Trp Ile Gly Tyr Ile Tyr Pro Tyr Asn Asp  
Gly Thr Lys Tyr Asn Glu Lys Phe Lys Asp Lys Ala Thr Leu Thr  
Ser Asp Lys Ser Ser Thr Thr Ala Tyr Met Asp Leu Ser Ser Leu  
Ala Ser Glu Asp Ser Ala Val Tyr Tyr Cys Ala Arg Gly Gly Tyr  
Tyr Thr Tyr Asp Asp Trp Gly Gln Gly Thr Thr Leu Thr Val Ser  
Ser

のアミノ酸配列、又は

c) a)もしくはb)のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、  
置換もしくは付加されたアミノ酸配列  
から選択されるアミノ酸配列からなるH鎖V領域。

6. 請求項4に記載のL鎖V領域をコードするDNA。

7. 請求項5に記載のH鎖V領域をコードするDNA。

8. L鎖V領域をコードするDNAが、

a) 配列番号5：

atg aag ttg cct gtt agg ctg ttg gtg ctg atg ttc tgg att cct 45  
 gcg tcc agc agt gat gtt gtg atg acc caa act cca ctc tcc ctg 90  
 cct gtc agt ctt gga gat caa gcc tcc atc tct tgc aga tct agt 135  
 cag agc ctt cta cac agt aaa gga aac acc tat tta caa tgg tac 180  
 cta cag aag cca ggc cag tct cca aag ctc ctg atc tac aaa gtt 225  
 tcc aac cga ttt tct ggg gtc cca gac agg ttc agt ggc agt gga 270  
 tca ggg aca gat ttc aca ctc aag atc agc aga gtg gag gct gag 315  
 gat ctg gga gtt tat ttc tgc tct caa agt aca cat gtt ccg tac 360  
 acg tcc gga ggg acc aag ctg gaa ata aaa c 394

の塩基配列からなるDNA、

b) 配列番号7：

atg aag ttg cct gtt agg ctg ttg gtg ctg atg ttc tgg att cct 45  
 ggt tcc agc agt gat gtt gtg atg acc caa agt cca ctc tcc ctg 90  
 cct gtc agt ctt gga gat caa gcc tcc atc tct tgc aga tca agt 135  
 cag agc ctt gtg cac agt aat gga aag acc tat tta cat tgg tac 180  
 ctg cag aag cca ggc cag tct cca aaa ctc ctg atc tac aaa gtt 225  
 tcc aac cga ttt tct ggg gtc cca gac agg ttc agt ggc agt gga 270  
 tca gtg aca gat ttc aca ctc atg atc agc aga gtg gag gct gag 315  
 gat ctg gga gtt tat ttc tgc tct caa agt aca cat gtt ccg tac 360  
 acg ttc gga ggg acc aag ctg gaa ata aaa c 394

の塩基配列からなるDNA、又は

c) a)もしくはb)のDNAとストリンジエントな条件でハイブリダイズするDNA

から選択される請求項6記載のDNA。

9. H鎖V領域をコードするDNAが、

a) 配列番号 6 :

atg gaa tgg agc tgg ata ttt ctc ttc ctc ctg tca gga act gca 45  
 ggt gtc cac tcc cag gtc cag ctg cag cag tct gga cct gac ctg 90  
 gta aag cct ggg gct tca gtg aag atg tcc tgc aag gct tct gga 135  
 tac acc ttc gtt aac cat gtt atg cac tgg gtg aag cag aag cca 180  
 ggg cag ggc ctt gag tgg att gga tat att tat cct tac aat gat 225  
 ggt act aag tac aat gag aag ttc aag ggc aag gcc aca ctg act 270  
 tca gag aaa tcc tcc agc gca gcc tac atg gag ctc agc agc ctg 315  
 gcc tct gag gac tct gcg gtc tac tac tgt gca aga ggg ggt tac 360  
 tat agt tac gac gac tgg ggc caa ggc acc act ctc aca gtc tcc 405  
 tca g 409

の塩基配列からなるDNA、

b) 配列番号 8 :

atg gaa tgg agc tgg ata ttt ctc ttc ctc ctg tca gga act gca 45  
 ggt gtc cac tcc cag gtc cag ctg cag cag tct gga cct gaa ctg 90  
 gta aag cct ggg gct tca gtg aag atg tcc tgc aag gct tct gga 135  
 tac acc ttc gct aac cat gtt att cac tgg gtg aag cag aag cca 180  
 ggg cag ggc ctt gag tgg att gga tat att tat cct tac aat gat 225  
 ggt act aag tat aat gag aag ttc aag gac aag gcc act ctg act 270  
 tca gac aaa tcc tcc acc aca gcc tac atg gac ctc agc agc ctg 315  
 gcc tct gag gac tct gcg gtc tat tac tgt gca aga ggg ggt tac 360  
 tat act tac gac gac tgg ggc caa ggc acc act ctc aca gtc tcc 405  
 tca g 409

の塩基配列からなるDNA、又は

c) a)もしくはb)のDNAとストリンジエントな条件でハイブリダイズするDNA

から選択される請求項 7 記載のDNA。

10. 前記一本鎖Fvが、Integrin Associated Protein(IAP)を有する有核血液細胞にアポトーシスを誘起するヒト型化一本鎖Fvである、請求項3に記載の一

本鎖Fv。

11. ヒト型化L鎖V領域である請求項4記載のL鎖V領域。
12. ヒト型化H鎖V領域である請求項5記載のH鎖V領域。
13. 請求項10に記載のヒト型化一本鎖FvをコードするDNA。
14. Integrin Associated Protein(IAP)を有する有核血液細胞にアポトーシスを誘起するヒト型化一本鎖Fvより作製可能なヒト型化モノクローナル抗体又はその断片。
15. 請求項14に記載のヒト型化モノクローナル抗体又はその断片をコードするDNA。
16. 請求項1、3、10、14のいずれかに記載の一本鎖Fv、モノクローナル抗体又はその断片を産生する動物細胞。
17. 請求項1、3、10、14のいずれかに記載の一本鎖Fv、モノクローナル抗体又はその断片を産生する微生物。
18. Integrin Associated Protein(IAP)を有する有核血液細胞にアポトーシスを誘起する物質を含有する血液疾患治療薬。
19. 前記血液疾患が、白血病であることを特徴とする請求項18に記載の血液疾患治療薬。
20. 前記物質が、請求項1、3、10、14のいずれかに記載の一本鎖Fv、モノクローナル抗体又はその断片であることを特徴とする請求項18に記載の血液疾患治療薬。

図 1



図 2



図 3



図 4



FIG 5



図 6



図 7



図 8



図 9



図 1 0



図 1 1



図 1 2



図 1 3



図 1 4



図 1 5



図 1 6



図 1 7



图 18



## 配列表

## SEQUENCE LISTING

&lt;110&gt; CHUGAI SEIYAKU KABUSHIKI KAISHA

&lt;120&gt; Single-chain antibody to induce apoptosis

&lt;130&gt; FOP-391

&lt;160&gt; 26

&lt;210&gt; 1

&lt;211&gt; 27

&lt;212&gt; DNA

&lt;213&gt; Artificial Sequence

&lt;220&gt;

&lt;223&gt; PCR primer

&lt;400&gt; 1

ccatcctaat acgactcact atagggc 27

&lt;210&gt; 2

&lt;211&gt; 27

&lt;212&gt; DNA

&lt;213&gt; Artificial Sequence

&lt;220&gt;

&lt;223&gt; PCR primer

&lt;400&gt; 2

ggatccggg tggatggtgg gaagatg 27

&lt;210&gt; 3

&lt;211&gt; 28

&lt;212&gt; DNA

&lt;213&gt; Artificial Sequence

&lt;220&gt;

&lt;223&gt; PCR primer

&lt;400&gt; 3

ggatccggg ccagtggata gacagatg 28

&lt;210&gt; 4

&lt;211&gt; 26

&lt;212&gt; DNA

&lt;213&gt; Artificial Sequence

&lt;220&gt;

&lt;223&gt; PCR primer

&lt;400&gt; 4

ggatccggg agtggataga ccgatg 26

&lt;210&gt; 5

&lt;211&gt; 394

&lt;212&gt; DNA

&lt;213&gt; Mus

&lt;220&gt;

&lt;221&gt; CDS

&lt;222&gt; (1)...(393)

&lt;223&gt; pGEM-M1L.1~57;signal peptide,58~394;mature peptide

&lt;400&gt; 5

atg aag ttg cct gtt agg ctg ttg gtg ctg atg ttc tgg att cct 45

Met Lys Leu Pro Val Arg Leu Leu Val Leu Met Phe Trp Ile Pro

5

10

15

gcg tcc agc agt gat gtt gtg atg acc caa act cca ctc tcc ctg 90

Ala Ser Ser Ser Asp Val Val Met Thr Gln Thr Pro Leu Ser Leu

20

25

30

cct gtc agt ctt gga gat caa gcc tcc atc tct tgc aga tct agt 135  
Pro Val Ser Leu Gly Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser  
35 40 45  
cag agc ctt cta cac agt aaa gga aac acc tat tta caa tgg tac 180  
Gln Ser Leu Leu His Ser Lys Gly Asn Thr Tyr Leu Gln Trp Tyr  
50 55 60  
cta cag aag cca ggc cag tct cca aag ctc ctg atc tac aaa gtt 225  
Leu Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile Tyr Lys Val  
65 70 75  
tcc aac cga ttt tct ggg gtc cca gac agg ttc agt ggc agt gga 270  
Ser Asn Arg Phe Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly  
80 85 90  
tca ggg aca gat ttc aca ctc aag atc agc aga gtg gag gct gag 315  
Ser Gly Thr Asp Phe Thr Leu Lys Ile Ser Arg Val Glu Ala Glu  
95 100 105  
gat ctg gga gtt tat ttc tgc tct caa agt aca cat gtt ccg tac 360  
Asp Leu Gly Val Tyr Phe Cys Ser Gln Ser Thr His Val Pro Tyr  
110 115 120  
acg tcc gga ggg ggg acc aag ctg gaa ata aaa c 394  
Thr Ser Gly Gly Gly Thr Lys Leu Glu Ile Lys  
125 130

<210> 6  
<211> 409  
<212> DNA  
<213> Mus  
<220>  
<221> CDS  
<222> (1)...(408)

<223> pGEM-M1H.1~57;signal peptide,58~409;mature peptide

<400> 6

atg gaa tgg agc tgg ata ttt ctc ttc ctc ctg tca gga act gca 45  
Met Glu Trp Ser Trp Ile Phe Leu Phe Leu Leu Ser Gly Thr Ala  
5 10 15  
ggt gtc cac tcc cag gtc cag ctg cag cag tct gga cct gac ctg 90  
Gly Val His Ser Gln Val Gln Leu Gln Gln Ser Gly Pro Asp Leu  
20 25 30  
gta aag cct ggg gct tca gtg aag atg tcc tgc aag gct tct gga 135  
Val Lys Pro Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly  
35 40 45  
tac acc ttc gtt aac cat gtt atg cac tgg gtg aag cag aag cca 180  
Tyr Thr Phe Val Asn His Val Met His Trp Val Lys Gln Lys Pro  
50 55 60  
ggg cag ggc ctt gag tgg att gga tat att tat cct tac aat gat 225  
Gly Gln Gly Leu Glu Trp Ile Gly Tyr Ile Tyr Pro Tyr Asn Asp  
65 70 75  
ggt act aag tac aat gag aag ttc aag ggc aag gcc aca ctg act 270  
Gly Thr Lys Tyr Asn Glu Lys Phe Lys Gly Lys Ala Thr Leu Thr  
80 85 90  
tca gag aaa tcc tcc agc gca gcc tac atg gag ctc agc agc ctg 315  
Ser Glu Lys Ser Ser Ala Ala Tyr Met Glu Leu Ser Ser Leu  
95 100 105  
gcc tct gag gac tct gcg gtc tac tac tgt gca aga ggg ggt tac 360  
Ala Ser Glu Asp Ser Ala Val Tyr Tyr Cys Ala Arg Gly Gly Tyr  
110 115 120  
tat agt tac gac gac tgg ggc caa ggc acc act ctc aca gtc tcc 405  
Tyr Ser Tyr Asp Asp Trp Gly Gln Gly Thr Thr Leu Thr Val Ser  
125 130 135

tca g 409

Ser

&lt;210&gt; 7

&lt;211&gt; 394

&lt;212&gt; DNA

&lt;213&gt; Mus

&lt;220&gt;

&lt;221&gt; CDS

&lt;222&gt; (1)...(393)

&lt;223&gt; pGEM-M2L. 1~57;signal peptide, 58~394;mature peptide

&lt;400&gt; 7

atg aag ttg cct gtt agg ctg ttg gtg ctg atg ttc tgg att cct 45

Met Lys Leu Pro Val Arg Leu Leu Val Leu Met Phe Trp Ile Pro

5

10

15

ggt tcc agc agt gat gtt gtg atg acc caa agt cca ctc tcc ctg 90

Gly Ser Ser Ser Asp Val Val Met Thr Gln Ser Pro Leu Ser Leu

20

25

30

cct gtc agt ctt gga gat caa gcc tcc atc tct tgc aga tca agt 135

Pro Val Ser Leu Gly Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser

35

40

45

cag agc ctt gtg cac agt aat gga aag acc tat tta cat tgg tac 180

Gln Ser Leu Val His Ser Asn Gly Lys Thr Tyr Leu His Trp Tyr

50

55

60

ctg cag aag cca ggc cag tct cca aaa ctc ctg atc tac aaa gtt 225

Leu Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile Tyr Lys Val

65

70

75

tcc aac cga ttt tct ggg gtc cca gac agg ttc agt ggc agt gga 270

Ser Asn Arg Phe Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly

80                    85                    90  
tca gtg aca gat ttc aca ctc atg atc agc aga gtg gag gct gag 315  
Ser Val Thr Asp Phe Thr Leu Met Ile Ser Arg Val Glu Ala Glu  
95                    100                    105  
gat ctg gga gtt tat ttc tgc tct caa agt aca cat gtt ccg tac 360  
Asp Leu Gly Val Tyr Phe Cys Ser Gln Ser Thr His Val Pro Tyr  
110                    115                    120  
acg ttc gga ggg ggg acc aag ctg gaa ata aaa c 394  
Thr Phe Gly Gly Thr Lys Leu Glu Ile Lys  
125                    130

<210> 8

<211> 409

<212> DNA

<213> Mus

<220>

<221> CDS

<222> (1)...(408)

<223> pGEM-M2H. 1~57;signal peptide, 58~409;mature peptide

<400> 8

atg gaa tgg agc tgg ata ttt ctc ttc ctc ctg tca gga act gca 45  
Met Glu Trp Ser Trp Ile Phe Leu Phe Leu Leu Ser Gly Thr Ala

5                    10                    15

ggt gtc cac tcc cag gtc cag ctg cag cag tct gga cct gaa ctg 90  
Gly Val His Ser Gln Val Gln Leu Gln Gln Ser Gly Pro Glu Leu

20                    25                    30

gta aag cct ggg gct tca gtg aag atg tcc aag gct tct gga 135  
Val Lys Pro Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly

35                    40                    45

tac acc ttc gct aac cat gtt att cac tgg gtg aag cag aag cca 180  
Tyr Thr Phe Ala Asn His Val Ile His Trp Val Lys Gln Lys Pro  
50 55 60  
ggg cag ggc ctt gag tgg att gga tat att tat cct tac aat gat 225  
Gly Gln Gly Leu Glu Trp Ile Gly Tyr Ile Tyr Pro Tyr Asn Asp  
65 70 75  
ggt act aag tat aat gag aag ttc aag gac aag gcc act ctg act 270  
Gly Thr Lys Tyr Asn Glu Lys Phe Lys Asp Lys Ala Thr Leu Thr  
80 85 90  
tca gac aaa tcc tcc acc aca gcc tac atg gac ctc agc agc ctg 315  
Ser Asp Lys Ser Ser Thr Thr Ala Tyr Met Asp Leu Ser Ser Leu  
95 100 105  
gcc tct gag gac tct gcg gtc tat tac tgt gca aga ggg ggt tac 360  
Ala Ser Glu Asp Ser Ala Val Tyr Tyr Cys Ala Arg Gly Gly Tyr  
110 115 120  
tat act tac gac gac tgg ggc caa ggc acc act ctc aca gtc tcc 405  
Tyr Thr Tyr Asp Asp Trp Gly Gln Gly Thr Thr Leu Thr Val Ser  
125 130 135  
tca g 409  
Ser

<210> 9  
<211> 32  
<212> DNA  
<213> Artificial Sequence  
<220>  
<223> PCR primer  
<400> 9  
cccaagcttc caccatgaag ttgcctgtta gg 32

<210> 10  
<211> 32  
<212> DNA  
<213> Artificial Sequence  
<220>  
<223> PCR primer  
<400> 10  
cccaaggcttc caccatggaa tggagctgga ta 32

<210> 11  
<211> 34  
<212> DNA  
<213> Artificial Sequence  
<220>  
<223> PCR primer  
<400> 11  
cgcggatcca ctcacgtttt atttccagct tggt 34

<210> 12  
<211> 34  
<212> DNA  
<213> Artificial Sequence  
<220>  
<223> PCR primer  
<400> 12  
cgcggatcca ctcacctgag gagactgtga gagt 34

<210> 13

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR primer

<400> 13

catgccatgg cgcaggcca gctgcagcag 30

<210> 14

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR primer

<400> 14

accaccacct gaggagactg tgagagt 27

<210> 15

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR primer

<400> 15

gtctccctcag gtgggtgg ttcgggt 27

<210> 16

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR primer

<400> 16

cacaacatcc gatccgccac cacccga 27

<210> 17

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR primer

<400> 17

ggcggatcgg atgttgtgat gacccaa 27

<210> 18

<211> 57

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR primer

<400> 18

ccggaattct cattattttat cgtcatcgtc tttgtagtct tttatttcca gcttggt 57

<210> 19

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Linker amino acid sequence and nucleotide sequence

<400> 19

ggt ggt ggt ggt tcg ggt ggt ggt tcg ggt ggt ggc gga tcg 45  
Gly Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser

5

10

15

<210> 20

<211> 828

<212> DNA

<213> Mus

<220>

<221>CDS

<222>(1)...(826)

<223> pscM1. MABL1-scFv

<400> 20

atg aaa tac cta ttg cct acg gca gcc gct gga ttg tta tta ctc 45  
Met Lys Tyr Leu Leu Pro Thr Ala Ala Ala Gly Leu Leu Leu

5

10

15

gct gcc caa cca gcc atg gcg cag gtc cag cag cag tct gga 90  
Ala Ala Gln Pro Ala Met Ala Gln Val Gln Leu Gln Ser Gly

20

25

30

cct gac ctg gta aag cct ggg gct tca gtg aag atg tcc tgc aag 135  
Pro Asp Leu Val Lys Pro Gly Ala Ser Val Lys Met Ser Cys Lys

35

40

45

gct tct gga tac acc ttc gtt aac cat gtt atg cac tgg gtg aag 180  
Ala Ser Gly Tyr Thr Phe Val Asn His Val Met His Trp Val Lys

50

55

60

cag aag cca ggg cag ggc ctt gag tgg att gga tat att tat cct 225  
Gln Lys Pro Gly Gln Gly Leu Glu Trp Ile Gly Tyr Ile Tyr Pro

| 65                                                              | 70  | 75  |
|-----------------------------------------------------------------|-----|-----|
| tac aat gat ggt act aag tac aat gag aag ttc aag ggc aag gcc 270 |     |     |
| Tyr Asn Asp Gly Thr Lys Tyr Asn Glu Lys Phe Lys Gly Lys Ala     |     |     |
| 80                                                              | 85  | 90  |
| aca ctg act tca gag aaa tcc tcc agc gca gcc tac atg gag ctc 315 |     |     |
| Thr Leu Thr Ser Glu Lys Ser Ser Ala Ala Tyr Met Glu Leu         |     |     |
| 95                                                              | 100 | 105 |
| agc agc ctg gcc tct gag gac tct gcg gtc tac tac tgt gca aga 360 |     |     |
| Ser Ser Leu Ala Ser Glu Asp Ser Ala Val Tyr Tyr Cys Ala Arg     |     |     |
| 110                                                             | 115 | 120 |
| ggg ggt tac tat agt tac gac gac tgg ggc caa ggc acc act ctc 405 |     |     |
| Gly Gly Tyr Tyr Ser Tyr Asp Asp Trp Gly Gln Gly Thr Thr Leu     |     |     |
| 125                                                             | 130 | 135 |
| aca gtc tcc tca ggt ggt ggt tcg ggt ggt ggt tcg ggt 450         |     |     |
| Thr Val Ser Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly             |     |     |
| 140                                                             | 145 | 150 |
| ggt ggc gga tcg gat gtt gtg atg acc caa act cca ctc tcc ctg 495 |     |     |
| Gly Gly Gly Ser Asp Val Val Met Thr Gln Thr Pro Leu Ser Leu     |     |     |
| 155                                                             | 160 | 165 |
| cct gtc agt ctt gga gat caa gcc tcc atc tct tgc aga tct agt 540 |     |     |
| Pro Val Ser Leu Gly Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser     |     |     |
| 170                                                             | 175 | 180 |
| cag agc ctt cta cac agt aaa gga aac acc tat tta caa tgg tac 585 |     |     |
| Gln Ser Leu Leu His Ser Lys Gly Asn Thr Tyr Leu Gln Trp Tyr     |     |     |
| 185                                                             | 190 | 195 |
| cta cag aag cca ggc cag tct cca aag ctc ctg atc tac aaa gtt 630 |     |     |
| Leu Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile Tyr Lys Val     |     |     |
| 200                                                             | 205 | 210 |
| tcc aac cga ttt tct ggg gtc cca gac agg ttc agt ggc agt gga 675 |     |     |

Ser Asn Arg Phe Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly  
215 220 225  
tca ggg aca gat ttc aca ctc aag atc agc aga gtg gag gct gag 720  
Ser Gly Thr Asp Phe Thr Leu Lys Ile Ser Arg Val Glu Ala Glu  
230 235 240  
gat ctg gga gtt tat ttc tgc tct caa agt aca cat gtt ccg tac 765  
Asp Leu Gly Val Tyr Phe Cys Ser Gln Ser Thr His Val Pro Tyr  
245 250 255  
acg tcc gga ggg ggg acc aag ctg gaa ata aaa gac tac aaa gac 810  
Thr Ser Gly Gly Thr Lys Leu Glu Ile Lys Asp Tyr Lys Asp  
260 265 270  
gat gac gat aaa taa tga 828  
Asp Asp Asp Lys

<210> 21  
<211> 31  
<212> DNA  
<213> Artificial Sequence  
<220>  
<223> PCR primer  
<400> 21  
acgcgtcgac tcccagggtcc agctgcagca g 31

<210> 22  
<211> 18  
<212> DNA  
<213> Artificial Sequence  
<220>  
<223> PCR primer

&lt;400&gt; 22

gaagggtgtat ccagaaggc 18

&lt;210&gt; 23

&lt;211&gt; 819

&lt;212&gt; DNA

&lt;213&gt; Mus

&lt;220&gt;

&lt;221&gt; CDS

&lt;222&gt;(1)...(813)

&lt;223&gt; pCHOM1. MABL1-scFv

&lt;400&gt; 23

atg gga tgg agc tgt atc atc ctc ttc ttg gta gca aca gct aca 45

Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr

5 10 15

ggt gtc gac tcc cag gtc cag ctg cag cag tct gga cct gac ctg 90

Gly Val Asp Ser Gln Val Gln Leu Gln Gln Ser Gly Pro Asp Leu

20 25 30

gta aag cct ggg gct tca gtg aag atg tcc tgc aag gct tct gga 135

Val Lys Pro Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly

35 40 45

tac acc ttc gtt aac cat gtt atg cac tgg gtg aag cag aag cca 180

Tyr Thr Phe Val Asn His Val Met His Trp Val Lys Gln Lys Pro

50 55 60

ggg cag ggc ctt gag tgg att gga tat att tat cct tac aat gat 225

Gly Gln Gly Leu Glu Trp Ile Gly Tyr Ile Tyr Pro Tyr Asn Asp

65 70 75

ggt act aag tac aat gag aag ttc aag ggc aag gcc aca ctg act 270

Gly Thr Lys Tyr Asn Glu Lys Phe Lys Gly Lys Ala Thr Leu Thr

80                    85                    90  
tca gag aaa tcc tcc agc gca gcc tac atg gag ctc agc agc ctg 315  
Ser Glu Lys Ser Ser Ser Ala Ala Tyr Met Glu Leu Ser Ser Leu  
95                    100                    105  
gcc tct gag gac tct gcg gtc tac tac tgt gca aga ggg ggt tac 360  
Ala Ser Glu Asp Ser Ala Val Tyr Tyr Cys Ala Arg Gly Gly Tyr  
110                    115                    120  
tat agt tac gac gac tgg ggc caa ggc acc act ctc aca gtc tcc 405  
Tyr Ser Tyr Asp Asp Trp Gly Gln Gly Thr Thr Leu Thr Val Ser  
125                    130                    135  
tca ggt ggt ggt ggt tcg ggt ggt ggt tcg ggt ggt ggc gga 450  
Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Gly  
140                    145                    150  
tcg gat gtt gtg atg acc caa act cca ctc tcc ctg cct gtc agt 495  
Ser Asp Val Val Met Thr Gln Thr Pro Leu Ser Leu Pro Val Ser  
155                    160                    165  
ctt gga gat caa gcc tcc atc tct tgc aga tct agt cag agc ctt 540  
Leu Gly Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu  
170                    175                    180  
cta cac agt aaa gga aac acc tat tta caa tgg tac cta cag aag 585  
Leu His Ser Lys Gly Asn Thr Tyr Leu Gln Trp Tyr Leu Gln Lys  
185                    190                    195  
cca ggc cag tct cca aag ctc ctg atc tac aaa gtt tcc aac cga 630  
Pro Gly Gln Ser Pro Lys Leu Leu Ile Tyr Lys Val Ser Asn Arg  
200                    205                    210  
TTT TCT GGG GTC CCA GAC AGG TTC AGT GGC AGT GGA TCA GGG ACA 675  
Phe Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr  
215                    220                    225  
gat ttc aca ctc aag atc agc aga gtg gag gct gag gat ctg gga 720

Asp Phe Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp Leu Gly  
230 235 240  
gtt tat ttc tgc tct caa agt aca cat gtt ccg tac acg tcc gga 765  
Val Tyr Phe Cys Ser Gln Ser Thr His Val Pro Tyr Thr Ser Gly  
245 250 255  
ggg ggg acc aag ctg gaa ata aaa gac tac aaa gac gat gac gat 810  
Gly Gly Thr Lys Leu Glu Ile Lys Asp Tyr Lys Asp Asp Asp  
260 265 270  
aaa taa tga 819

Lys

<210> 24

<211> 828

<212> DNA

<213> Mus

<220>

<221> CDS

<222> (1)...(822)

<223> pscM2. MABL2-scFv

<400> 24

atg aaa tac cta ttg cct acg gca gcc gct gga ttg tta tta ctc 45  
Met Lys Tyr Leu Leu Pro Thr Ala Ala Ala Gly Leu Leu Leu

5 10 15

gct gcc caa cca gcc atg gcg cag gtc cag ctg cag cag tct gga 90  
Ala Ala Gln Pro Ala Met Ala Gln Val Gln Leu Gln Gln Ser Gly

20 25 30

cct gaa ctg gta aag cct ggg gct tca gtg aag atg tcc tgc aag 135  
Pro Glu Leu Val Lys Pro Gly Ala Ser Val Lys Met Ser Cys Lys

35 40 45

gct tct gga tac acc ttc gct aac cat gtt att cac tgg gtg aag 180  
Ala Ser Gly Tyr Thr Phe Ala Asn His Val Ile His Trp Val Lys  
50 55 60  
cag aag cca ggg cag ggc ctt gag tgg att gga tat att tat cct 225  
Gln Lys Pro Gly Gln Gly Leu Glu Trp Ile Gly Tyr Ile Tyr Pro  
65 70 75  
tac aat gat ggt act aag tat aat gag aag ttc aag gac aag gcc 270  
Tyr Asn Asp Gly Thr Lys Tyr Asn Glu Lys Phe Lys Asp Lys Ala  
80 85 90  
act ctg act tca gac aaa tcc tcc acc aca gcc tac atg gac ctc 315  
Thr Leu Thr Ser Asp Lys Ser Ser Thr Thr Ala Tyr Met Asp Leu  
95 100 105  
agc agc ctg gcc tct gag gac tct gcg gtc tat tac tgt gca aga 360  
Ser Ser Leu Ala Ser Glu Asp Ser Ala Val Tyr Tyr Cys Ala Arg  
110 115 120  
ggg ggt tac tat act tac gac gac tgg ggc caa ggc acc act ctc 405  
Gly Gly Tyr Tyr Thr Tyr Asp Asp Trp Gly Gln Gly Thr Thr Leu  
125 130 135  
aca gtc tcc tca ggt ggt ggt tcg ggt ggt ggt tcg ggt 450  
Thr Val Ser Ser Gly Gly Ser Gly Gly Ser Gly  
140 145 150  
ggt ggc gga tcg gat gtt gtg atg acc caa agt cca ctc tcc ctg 495  
Gly Gly Gly Ser Asp Val Val Met Thr Gln Ser Pro Leu Ser Leu  
155 160 165  
cct gtc agt ctt gga gat caa gcc tcc atc tct tgc aga tca agt 540  
Pro Val Ser Leu Gly Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser  
170 175 180  
cag agc ctt gtg cac agt aat gga aag acc tat tta cat tgg tac 585  
Gln Ser Leu Val His Ser Asn Gly Lys Thr Tyr Leu His Trp Tyr

185 190 195  
ctg cag aag cca ggc cag tct cca aaa ctc ctg atc tac aaa gtt 630  
Leu Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile Tyr Lys Val  
200 205 210  
tcc aac cga ttt tct ggg gtc cca gac agg ttc agt ggc agt gga 675  
Ser Asn Arg Phe Ser Gly Val Pro Asp Arg Phe Ser Gly  
215 220 225  
tca gtg aca gat ttc aca ctc atg atc agc aga gtg gag gct gag 720  
Ser Val Thr Asp Phe Thr Leu Met Ile Ser Arg Val Glu Ala Glu  
230 235 240  
gat ctg gga gtt tat ttc tgc tct caa agt aca cat gtt ccg tac 765  
Asp Leu Gly Val Tyr Phe Cys Ser Gln Ser Thr His Val Pro Tyr  
245 250 255  
acg ttc gga ggg ggg acc aag ctg gaa ata aaa gac tac aaa gac 810  
Thr Phe Gly Gly Thr Lys Leu Glu Ile Lys Asp Tyr Lys Asp  
260 265 270  
gat gac gat aaa taa tga 828  
Asp Asp Asp Lys

&lt;210&gt; 25

&lt;211&gt; 819

&lt;212&gt; DNA

&lt;213&gt; Mus

&lt;220&gt;

&lt;221&gt; CDS

&lt;222&gt; (1)...(813)

&lt;223&gt; pCHOM2. MABL2-scFv

&lt;400&gt; 25

atg gga tgg agc tgt atc atc ctc ttc ttg gta gca aca gct aca 45

Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr  
5 10 15  
ggt gtc gac tcc cag gtc cag ctg cag cag tct gga cct gaa ctg 90  
Gly Val Asp Ser Gln Val Gln Leu Gln Gln Ser Gly Pro Glu Leu  
20 25 30  
gta aag cct ggg gct tca gtg aag atg tcc tgc aag gct tct gga 135  
Val Lys Pro Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly  
35 40 45  
tac acc ttc gct aac cat gtt att cac tgg gtg aag cag aag cca 180  
Tyr Thr Phe Ala Asn His Val Ile His Trp Val Lys Gln Lys Pro  
50 55 60  
ggg cag ggc ctt gag tgg att gga tat att tat cct tac aat gat 225  
Gly Gln Gly Leu Glu Trp Ile Gly Tyr Ile Tyr Pro Tyr Asn Asp  
65 70 75  
ggt act aag tat aat gag aag ttc aag gac aag gcc act ctg act 270  
Gly Thr Lys Tyr Asn Glu Lys Phe Lys Asp Lys Ala Thr Leu Thr  
80 85 90  
tca gac aaa tcc tcc acc aca gcc tac atg gac ctc agc agc ctg 315  
Ser Asp Lys Ser Ser Thr Thr Ala Tyr Met Asp Leu Ser Ser Leu  
95 100 105  
gcc tct gag gac tct gcg gtc tat tac tgt gca aga ggg ggt tac 360  
Ala Ser Glu Asp Ser Ala Val Tyr Tyr Cys Ala Arg Gly Gly Tyr  
110 115 120  
tat act tac gac gac tgg ggc caa ggc acc act ctc aca gtc tcc 405  
Tyr Thr Tyr Asp Asp Trp Gly Gln Gly Thr Thr Leu Thr Val Ser  
125 130 135  
tca ggt ggt ggt ggt tcg ggt ggt ggt tcg ggt ggt ggc gga 450  
Ser Gly Gly Gly Ser Gly Gly Ser Gly Gly Gly Gly  
140 145 150

tcg gat gtt gtg atg acc caa agt cca ctc tcc ctg cct gtc agt 495  
Ser Asp Val Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Ser  
155 160 165  
ctt gga gat caa gcc tcc atc tct tgc aga tca agt cag agc ctt 540  
Leu Gly Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu  
170 175 180  
gtg cac agt aat gga aag acc tat tta cat tgg tac ctg cag aag 585  
Val His Ser Asn Gly Lys Thr Tyr Leu His Trp Tyr Leu Gln Lys  
185 190 195  
cca ggc cag tct cca aaa ctc ctg atc tac aaa gtt tcc aac cga 630  
Pro Gly Gln Ser Pro Lys Leu Leu Ile Tyr Lys Val Ser Asn Arg  
200 205 210  
ttt tct ggg gtc cca gac agg ttc agt ggc agt gga tca gtg aca 675  
Phe Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Val Thr  
215 220 225  
gat ttc aca ctc atg atc agc aga gtg gag gct gag gat ctg gga 720  
Asp Phe Thr Leu Met Ile Ser Arg Val Glu Ala Glu Asp Leu Gly  
230 235 240  
gtt tat ttc tgc tct caa agt aca cat gtt ccg tac acg ttc gga 765  
Val Tyr Phe Cys Ser Gln Ser Thr His Val Pro Tyr Thr Phe Gly  
245 250 255  
ggg ggg acc aag ctg gaa ata aaa gac tac aaa gac gat gac gat 810  
Gly Gly Thr Lys Leu Glu Ile Lys Asp Tyr Lys Asp Asp Asp Asp  
260 265 270  
aaa taa tga 819  
Lys

&lt;210&gt; 26

&lt;211&gt; 456

&lt;212&gt; DNA

&lt;213&gt; Mus

&lt;220&gt;

&lt;221&gt; CDS

&lt;222&gt; (1)...(450)

&lt;223&gt; pCHO-shIAP. Soluble human IAP

&lt;400&gt; 26

atg tgg ccc ctg gta gcg gcg ctg ttg ctg ggc tcg gcg tgc tgc 45

Met Trp Pro Leu Val Ala Ala Leu Leu Leu Gly Ser Ala Cys Cys

5 10 15

gga tca gct cag cta cta ttt aat aaa aca aaa tct gta gaa ttc 90

Gly Ser Ala Gln Leu Leu Phe Asn Lys Thr Lys Ser Val Glu Phe

20 25 30

acg ttt tgt aat gac act gtc gtc att cca tgc ttt gtt act aat 135

Thr Phe Cys Asn Asp Thr Val Val Ile Pro Cys Phe Val Thr Asn

35 40 45

atg gag gca caa aac act act gaa gta tac gta aag tgg aaa ttt 180

Met Glu Ala Gln Asn Thr Thr Glu Val Tyr Val Lys Trp Lys Phe

50 55 60

aaa gga aga gat att tac acc ttt gat gga gct cta aac aag tcc 225

Lys Gly Arg Asp Ile Tyr Thr Phe Asp Gly Ala Leu Asn Lys Ser

65 70 75

act gtc ccc act gac ttt agt agt gca aaa att gaa gtc tca caa 270

Thr Val Pro Thr Asp Phe Ser Ser Ala Lys Ile Glu Val Ser Gln

80 85 90

tta cta aaa gga gat gcc tct ttg aag atg gat aag agt gat gct 315

Leu Leu Lys Gly Asp Ala Ser Leu Lys Met Asp Lys Ser Asp Ala

95 100 105

gtc tca cac aca gga aac tac act tgt gaa gta aca gaa tta acc 360

Val Ser His Thr Gly Asn Tyr Thr Cys Glu Val Thr Glu Leu Thr  
110 115 120  
aga gaa ggt gaa acg atc atc gag cta aaa tat cgt gtt gtt tca 405  
Arg Glu Gly Glu Thr Ile Ile Glu Leu Lys Tyr Arg Val Val Ser  
125 130 135  
tgg ttt tct cca aat gaa aat gac tac aag gac gac gat gac aag 450  
Trp Phe Ser Pro Asn Glu Asn Asp Tyr Lys Asp Asp Asp Lys  
140 145 150  
tga tag 456

**INTERNATIONAL SEARCH REPORT**

International application No.

**PCT/JP00/01458**

**A. CLASSIFICATION OF SUBJECT MATTER**

Int.Cl<sup>7</sup> C07K16/18, C12N15/12, C07K16/46, C12N5/18, C12N5/16, C12N1/21, A61K38/17, A61K39/395, A61P7/00

According to International Patent Classification (IPC) or to both national classification and IPC

**B. FIELDS SEARCHED**

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl<sup>7</sup> C07K16/18, C12N15/12, C07K16/46, C12N5/18, C12N5/16, C12N1/21, A61K38/17, A61K39/395, A61P7/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

SwissProt/PIR/GeneSeq, Genebank/EMBL/DDBJ/GeneSeq, BIOSOS (DIALOG), WPI (DIALOG)

**C. DOCUMENTS CONSIDERED TO BE RELEVANT**

| Category* | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                                              | Relevant to claim No.                |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| PX        | WO, 99/12973, A1 (Chugai Pharmaceutical Co., Ltd.)<br>18 March, 1999 (18.03.99)<br>& JP, 11-155569, A & AU, 9002898, A                                                                                                                                                                          | 1-20                                 |
| X/A       | Reinhard Kofler et al., "Genetic elements used for a murine lupus anti-DNA autoantibody are closely related to those for antibodies to exogenous antigens", J. Eep. Med. (1985), Vol. 161, No. 4, pp. 805-815                                                                                   | 4-13, 16-17/<br>1-3, 14-15,<br>18-20 |
| X/A       | R. Kofler et al., "Immunoglobulin κ Light Chain Variable Region gene Complex Organization and Immunoglobulin Genes Encoding Anti-DNA Autoantibodies in Lupus Mice", J. Clin. Invest. (1988), Vol. 82, No. 3, pp. 852-860                                                                        | 4-13, 16-17/<br>1-3, 14-15,<br>18-20 |
| A         | Frederik P. Lindberg et al., "Molecular Cloning of Integrin-associated Protein: An Immunoglobulin Family Member with Multiple Membrane-spanning Domains Implicated in α <sub>v</sub> β <sub>3</sub> -dependent Ligand Binding", The Journal of Cell Biology (1993) Vol. 123, No. 2, pp. 485-496 | 1-20                                 |

Further documents are listed in the continuation of Box C.  See patent family annex.

|                                                                                                                                                                         |                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • Special categories of cited documents:                                                                                                                                |                                                                                                                                                                                                                                                  |
| "A" document defining the general state of the art which is not considered to be of particular relevance                                                                | "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention                                              |
| "E" earlier document but published on or after the international filing date                                                                                            | "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone                                                                     |
| "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) | "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art |
| "O" document referring to an oral disclosure, use, exhibition or other means                                                                                            | "&" document member of the same patent family                                                                                                                                                                                                    |
| "P" document published prior to the international filing date but later than the priority date claimed                                                                  |                                                                                                                                                                                                                                                  |

Date of the actual completion of the international search  
1 June, 2000 (01.06.00)

Date of mailing of the international search report  
13.06.00

Name and mailing address of the ISA/  
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

## 国際調査報告

国際出願番号 PCT/JP00/01458

A. 発明の属する分野の分類 (国際特許分類 (IPC))  
 Int. Cl' C07K16/18, C12N15/12, C07K16/46, C12N5/18,  
 C12N5/16, C12N1/21, A61K38/17, A61K39/395, A61P7/00

## B. 調査を行った分野

調査を行った最小限資料 (国際特許分類 (IPC))

Int. Cl' C07K16/18, C12N15/12, C07K16/46, C12N5/18,  
 C12N5/16, C12N1/21, A61K38/17, A61K39/395, A61P7/00

最小限資料以外の資料で調査を行った分野に含まれるもの

## 国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

SwissProt/PIR/GeneSeq, Genebank/EMBL/DDBJ/GeneSeq,  
 BIOSIS (DIALOG), WPI (DIALOG)

## C. 関連すると認められる文献

| 引用文献の<br>カテゴリー* | 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示                                                                                                                                                                                    | 関連する<br>請求の範囲の番号                      |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| P X             | WO, 99/12973, A1 (中外製薬株式会社) 18.3月.19<br>99(18.03.99) & JP, 11-155569, A & AU, 900<br>2898, A                                                                                                                         | 1-20                                  |
| X/A             | Reinhard Kofler et al., "Genetic elements used for a murine<br>lupus anti-DNA autoantibody are closely related to those for<br>antibodies to exogenous antigens", J. Exp. Med. (1985) Vol. 161,<br>No. 4, p. 805-815 | 4-13, 16-17/<br>1-3, 14-15, 18<br>-20 |

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

## \* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの  
 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの  
 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献 (理由を付す)  
 「O」口頭による開示、使用、展示等に言及する文献  
 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献  
 「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの  
 「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの  
 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの  
 「&」同一パテントファミリー文献

|                        |                        |
|------------------------|------------------------|
| 国際調査を完了した日<br>01.06.00 | 国際調査報告の発送日<br>13.06.00 |
|------------------------|------------------------|

|                                                                         |                           |    |      |
|-------------------------------------------------------------------------|---------------------------|----|------|
| 国際調査機関の名称及びあて先<br>日本国特許庁 (ISA/JP)<br>郵便番号 100-8915<br>東京都千代田区霞が関三丁目4番3号 | 特許庁審査官 (権限のある職員)<br>本間 夏子 | 4N | 9637 |
|                                                                         | 電話番号 03-3581-1101 内線 3488 |    |      |

| C (続き) 関連すると認められる文献 |                                                                                                                                                                                                                                                                                     | 関連する<br>請求の範囲の番号                  |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| 引用文献の<br>カテゴリー*     | 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示                                                                                                                                                                                                                                                   |                                   |
| X/A                 | R. Kofler et al., "Immunoglobulin κ Light Chain Variable Region gene Complex Organization and Immunoglobulin Genes Encoding Anti-DNA Autoantibodies in Lupus Mice", J. Clin. Invest. (1988) Vol. 82, No. 3, p. 852-860                                                              | 4-13, 16-17/<br>1-3, 14-15, 18-20 |
| A                   | Frederik P. Lindberg et al., "Molecular Cloning of Integrin-associated Protein: An Immunoglobulin Family Member with Multiple Membrane-spanning Domains Implicated in $\alpha v \beta 3$ -dependent Ligand Binding", The Journal of Cell Biology (1993) Vol. 123, No. 2, p. 485-496 | 1-20                              |