TOSHIBA MOS MEMORY PRODUCTS

65,536 WORD×4 BIT DYNAMIC RAM SILICON MONOLITHIC N-CHANNEL SILICON GATE MOS TMM41464AP/AT/AZ-10, TMM41464AP/AT/AZ-12 TMM41464AP/AT/AZ-15

DESCRIPTION

The TMM41464AP/AT/AZ is N-channel dynamic RAM organized 65,536 words by 4 bit. The TMM41464 AP/AT/AZ utilizes TOSHIBA's N-channel/Silicon gate process technology as well as advanced circuit techniques to provide wide operating margins, both internally and to the system user.

Multiplexed address inputs permit the TMM41464AP/

FEATURES

- 65,536 words by 4 bit organization
- · Fast access time and cycle time

DEVICE	trac	tCAC	tRC
TMM41464AP/AT/AZ-10	100ns	50ns	190ns
TMM41464AP/AT/AZ-12	120ns	60ns	220ns
TMM41464AP/AT/AZ-15	150ns	75ns	260ns

 Single power supply of 5V ± 10% with a built-in V_{BB} generator

PIN CONNECTION

PIN NAMES

A0 ~ A7	Address Inputs
CAS	Column Address Strobe
1/01 ~ 1/04	Data Input/Output
RAS	Row Address Strobe
WRITE	Read/Write Input
ŌĒ	Output Enable
Vcc	Power (+5V)
V _{SS}	Ground

AT/AZ to be package in a standard 18 pin plastic DIP, 18 pin PLCC and 20 pin ZIP. The package size provides high system bit densities and is compatible with widely available automated testing and insertion equipment. System oriented features include single power supply of 5V ± 10% tolerance, direct interfacing capability with high performance logic familes such as schottky TTL.

- Lower Power:
 - 440mW MAX. Operating (TMM41464AP/AT/AZ-10) 396mW MAX. Operating (TMM41464AP/AT/AZ-12) 358mW MAX. Operating (TMM41464AP/AT/AZ-15) 28mW MAX. Standby
- Output unlatched at cycle end allows two-dimensional chip selection
- Read-Modify-Write, RAS only refresh, Hidden refresh, CAS before RAS refresh, and Page Mode capability
- All inputs and outputs TTL compatible
- 256 refresh cycles/4ms
- Package

Plastic DIP : TMM41464AP
Plastic Leaded Chip Carrier : TMM41464AT
Plastic ZIP : TMM41464AZ

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

ITEM	SYMBOL	RATING	UNITS	NOTES	
Input and Output Voltage	V _{IN} , V _{OUT}	−1 ~ 7	V		
Power Supply Voltage	V _{CC}	−1 ~ 7	V		
Operating Temperature	T _{OPR}	0 ~ 70	°C] ,	
Storage Temperature	T _{STG}	− 55 ~ 150	°C] '	
Soldering Temperature Time	T _{SOLDER}	260•10	°C•sec		
Power Dissipation	PD	1	W		
Short Circuit Output Current	LOUT	50	mA		

RECOMMENDED DC OPERATING CONDITIONS ($Ta = 0 \sim 70^{\circ}C$)

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNITS	NOTES
Vcc	Supply Voltage	4.5	5.0	5.5	V	
VIH	Input High Voltage	2.4		6.5	V	2
VIL	Input Low Voltage	-1.0	-	0.8	V	

DC ELECTRICAL CHARACTERISTICS ($V_{CC} = 5V \pm 10\%$, $Ta = 0 \sim 70^{\circ}C$)

SYMBOL	PARAMETER	MIN.	MAX.	UNITS	NOTES	
	OPERATING CURRENT Average Power Supply Operating Current	TMM41464AP/AT/AZ-10	_	80	80 72 mA 65	3, 4
I _{CC1}		TMM41464AP/AT/AZ-12		72		
.001	(RAS, CAS Cycling: tRC = tRC MIN.)	TMM41464AP/AT/AZ-15	_	65		<u> </u>
I _{CC2}	STANDBY CURRENT Power Supply Standby Current (RAS = CAS = V _{IH})		5	mA		
	RAS ONLY REFRESH CURRENT	TMM41464AP/AT/AZ-10	_	70		
I _{CC3}	Average Power Supply Current, RAS Only Refresh Mode	TMM41464AP/AT/AZ-12	_	62	mA	3
1003	(RAS Cycling, CAS = V _{IH} : t _{RC} = t _{RC} MIN.)	TMM41464AP/AT/AZ-15		55		
	PAGE MODE CURRENT Average Power Supply Current, Page Mode (RAS = V _{1L} , CAS Cycling: t _{PC} = t _{PC} MIN.)	TMM41464AP/AT/AZ-10	_	60	mA	
1004		TMM41464AP/AT/AZ-12		55		3, 4
1004		TMM41464AP/AT/AZ-15	_	50		
	CAS BEFORE RAS REFRESH CURRENT Average Power Supply Current, CAS Before RAS	TMM41464AP/AT/AZ-10	- 70			
I _{CC5}		TMM41464AP/AT/AZ-12	_	62		3
1	Mode (RAS, CAS Cycling, CAS Before RAS: t _{RC} = t _{RC} MIN.)	TMM41464AP/AT/AZ-15	_	55		
I _{1(L)}	INPUT LEAKAGE CURRENT Input Leakage Current, any input $(0V \le V_{1N} \le 6.5V$, All Other Pins Not Unter Test = $0V$)	-10	10	μΑ	
l _{O(L)}	OUTPUT LEAKAGE CURRENT (D _{OUT} is disabled, $0V \le V_{OUT} \le +5.5V$)		-10	10	μΑ	
V _{0H}	OUTPUT LEVEL Output "H" Level Voltage (I _{OUT} =-5mA)				V	
V _{OL}	OUTPUT LEVEL Output "L" Level Voltage (I _{OUT} = 4.2mA)	_	_	0.4	V	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

 $(V_{CC} = 5V \pm 10\%, Ta = 0 \sim 70^{\circ}C)$ (Notes 5, 6, 7)

CVAADOL	PARAMETER	TMM41 AT/A		TMM41- AT/A		TMM41 AT/A		UNITS	NOTES
SYMBOL	TANAMETER	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		<u> </u>
t	Random Read or Write Cycle Time	190	-	220	-	260		ns	
t _{RC}	Read-Modify Write Cycle Time	260	_	300		355		ns	<u> </u>
t _{PC}	Page Mode Cycle Time	100	_	120	_	145		ns	
tRAC	Access Time from RAS		100		120		150	ns	8, 10
teac	Access Time from CAS		50	_	60		75	ns	9, 10
toff	Output Buffer Turn-off Delay	0	30	0	35	0	40	ns	11
t _T	Transition Time (Rise and Fall)	3	50	3	50	3	50	ns	7
tRP	RAS Precharge Time	80	_	90	_	100		ns	
TRAS	RAS Pulse Width	100	10,000	120	10,000	150	10,000	ns	
	RAS Hold Time	50		60		75		ns	
t _{RSH}	CAS Hold Time	100		120	-	150		ns	
tcsH	CAS Pulse Width	50	10,000	60	10,000	75	10,000	ns	
tcas	RAS to CAS Delay Time	20	50	25	60	25	75	ns	13
†RCD	CAS to RAS Precharge Time	10		10	_	10		ns	
tCRP	CAS Precharge Time	20	 	20	_	25	T -	ns	
t _{CPN}	CAS Precharge Time	40	 	50		60	T _	ns	
t _{CP}	(for Page Mode Cycle Only)	40	-	50		- 00		1,5	
t _{ASR}	Row Address Set-Up Time	0		0		0		ns	
t _{RAH}	Row Address Hold Time	10	_	15		15		ns	
t _{ASC}	Column Address Set-Up Time	0		0	_	0		ns	-
t _{CAH}	Column Address Hold Time	20	_	25		35		ns	
t _{AR}	Column Address Hold Time Reference to RAS	70	_	85		110	_	ns	
	Read Command Set-Up Time	0	_	0	-	0		ns	
^t RCS	Read Command Hold Time Reference to CAS	0	_	0	_	0		ns	12
t _{RRH}	Read Command Hold Time Reference to RAS	10	_	15	_	20	_	ns	12
t	Write Command Hold Time	30	_	35	_	45		ns	
twch	Write Command Hold Time Reference to RAS	80	-	95	_	120	_	ns	
<u> </u>	Write Command Pulse Width	30	_	35	_	45	_	ns	
t _{WP}	Write Command to RAS Lead Time	30		35	_	45	_	ns	
t _{RWL}	Write Command to CAS Lead Time	30	 -	35		45	_	ns	<u> </u>
t _{CWL}	Data-In Set-Up Time	0	_	0	_	0	_	ns	14
t _{DS}	Data-In Hold Time	30	 -	35	T -	45		ns	14
t _{DH}	Data-In Hold Time Reference to RAS	80		95	_	120	_	ns	
t _{DHR}	Refresh Period		4	-	4	_	4	ms	
t _{REF}	Write Command Set-Up Time	0	_	0	_	0	_	ns	15
twcs	CAS to WRITE Delay	85	+=	100		120	_	ns	15
t cwo	RAS to WRITE Delay	135		160		195	_	ns	15
t _{RWD}	OE Access Time	-	25		30		40	ns	9,

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (Continued)

SYMBOL	PARAMETER	TMM41464AP/ AT/AZ-10		TMM41464AP/ AT/AZ-12		TMM41464AP/ AT/AZ-15		UNITS	NOTES
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
toED	OE to Data Delay	25	_	30	-	40		ns	
t _{OEZ}	Output Buffer Turn-Off Delay Time from OE	0	25	0	30	0	40	ns	
toeh	OE command Hold Time	25	_	30	_	40	_	ns	
t _{CHR}	CAS Hold Time for CAS Before RAS Refresh	30	_	30	-	30	-	ns	
t _{CSR}	CAS Set-Up Time for CAS Before RAS Refresh	10	_	10	_	10	_	ns	
tRPC	CAS Precharge to CAS Active Time	0	-	0	_	0	_	ns	
[†] CPT	CAS Precharge Time for CAS Before RAS Counter Test	20	_	25	_	35	_	ns	
tROH	OE Command Hold Time	10		10		10	-	ns	

CAPACITANCE ($V_{CC} = 5V \pm 10\%$, f = 1MHz, $T_a = 0 \sim 70^{\circ}$ C)

SYMBOL	PARAMETER	MIN.	MAX,	UNITS
C11	Input Capacitance (A0 ~ A7)		5	
CI2	Input Capacitance (RAS, CAS, WRITE, OE)		7	pF
Co	Input/Output Capacitance (I/01 ~ I/04)		7	

NOTES:

- Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.
- 2. All voltage are referenced to Vss.
- 3. l_{CC1} , l_{CC3} , l_{CC4} , l_{CC5} depend on cycle rate.
- 4. I_{CC1}, I_{CC4} depend on output loading. Specified values are obtained with the output open.
- 5. An initial pause of 200 µs is required after power-up followed by any 8 RAS cycles before proper device operation is achieved. In case of using internal refresh counter, a minimum of 8 CAS Before RAS initialization cycles instead of 8 RAS cycles are required.
- 6. AC measurements assume $t_T = 5$ ns.
- 7. V_{IH} (min.) and V_{IL} (max.) are reference levels for measuring timing of input signals. Also, transition times are measured between V_{IH} and V_{IL} .
- 8. Assumes that $t_{RCD} \le t_{RCD}$ (max.). If t_{RCD} is greater than the maximum recommended value shown in this table, t_{RAC} will increase by the amount that t_{RCD} exceeds the value shown.
- 9. Assumes that $t_{RCD} \ge t_{RCD}$ (max.).
- 10. Measured with a load equivalent to 2 TTL loads and 100 pF.
- t_{OFF} (max.) and t_{OEZ} (max.) define the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
- 12. Either t_{BCH} or t_{BBH} must be satisfied for a read cycle.
- 13. Operation within the t_{RCD} (max.) limit insures that t_{RAC} (max.) can be met. t_{RCD} (max.) is specified as a reference point only: If t_{RCD} is greater than the specified t_{RCD} (max.) limit, then access time is controlled exclusively by t_{CAC}.
- 14. These parameters are referenced to $\overline{\text{CAS}}$ leading edge in early write cycles and to $\overline{\text{WRITE}}$ leading edge in read-write or read-modify-write cycles.
- 15. twcs, t_{CWD} and t_{RWD} are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If twcs ≥ twcs (min.), the cycle is an early write cycle and the input/output pin will remain open circuits (high impedance) throughout the entire cycle; If t_{CWD} ≥ t_{CWD} (min.) and t_{RWD} ≥ t_{RWD} (min.), the cycle is a read-write cycle or read-modify-write cycle and the data out will contain data read from the selected cell: If neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.

• READ CYCLE

WRITE CYCLE (EARLY WRITE)

• WRITE CYCLE (OE CONTROLLED WRITE)

READ-WRITE/READ-MODIFY-WRITE CYCLE

PAGE MODE READ CYCLE

PAGE MODE WRITE CYCLE

• RAS ONLY REFRESH CYCLE

• CAS BEFORE RAS REFRESH CYCLE

Note: $\overline{\text{WRITE}}$, $\overline{\text{OE}}$, A0 \sim A7=Don't Care

• HIDDEN REFRESH CYCLE

Don't Care

• CAS BEFORE RAS REFRESH COUNTER TEST CYCLE

APPLICATION INFORMATION

ADDRESSING

The 16 address bits required to decode 1 of the 65,536 cell locations within the TMM41464AP/AT/AZ are multiplexed onto the 8 address inputs and latched into the on-chip address latches by externally applying two negative going TTL-level clocks.

The first clock, the Row Address Strobe (\$\overline{RAS}\$), latches the 8 row address bits into the chip. The second clock, the Column Address Strobe (\$\overline{CAS}\$), subsequently latches the 8 column address bits into the chip. Each of these signals, \$\overline{RAS}\$, and \$\overline{CAS}\$, triggers a sequence of events which are controlled by different delayed internal clocks.

The two clock chains are linked together logically in such a way that the address multiplexing operation is done outside of the critical path timing sequence for read data access. The later events in the $\overline{\text{CAS}}$ clock sequence are inhibited until the occurrence of a delayed signal derived from the $\overline{\text{RAS}}$ clock chain. This "gated $\overline{\text{CAS}}$ " feature allows the $\overline{\text{CAS}}$ clock to be externally activated as soon as the Row Address Hold Time specification (t_{RAH}) has been satisfied and the address inputs have been changed from Row address to Column address information.

Data Inputs

Data is written during a write or read-modify-write cycle.

The falling edge of CAS or WRITE strobes data into the on-chip data latches. In an early-write cycle, WRITE is brought low prior to CAS and the data is strobed in by CAS with setup and hold times referenced to this signal. In delayed write or read-modify-write cycle, CAS will already be low, thus the data will be strobed in by WRITE with setup and hold times referenced to this signal.

In delayed or read-modify-write, \overline{OE} must be high to bring the output buffer to high impedance prior to impressing data on the I/O lines.

Data Outputs

The three-state output buffers provide direct TTL compatibility with a fan-out of two standard TTL loads. Data-out is the same polarity as data-in. The outputs are in the high-impedance state until CAS is brought low. In a read cycle the outputs go active after the access time interval trace and toea are

satisfied.

The outputs become valid after the access time has elapsed and remains valid which \overline{CAS} and \overline{OE} are low. \overline{CAS} or \overline{OE} going high returns it to a high impedance state. In an early-write cycle, the outputs are always in the high-impedance state. In a delayed-write or read-modify-write cycle, the outputs will follow the sequence for the read cycle.

The $\overline{\text{OE}}$ controls the impedance of the output buffers. In the logic high position the buffers will remain in a high impedance state.

When the \overline{OE} input is brought to a logic low level, the output buffer are enabled. Both \overline{CAS} and OE can control the output. Thus in a read operation, either \overline{OE} or \overline{CAS} returning high forces the outputs into the high impedance state.

RAS ONLY REFRESH

Refresh of the dynamic cell matrix is accomplished by performing a memory cycle at each of the 256 row address (A $_{\rm o}\sim A_{\rm f}$) within each 4 millisecond time interval. Although any normal memory cycle will perform the refresh operation, this function is most easily accomplished with "RAS-only" cycles, RAS only refresh results in a substantial reduction in operating power. This reduction in power is reflected in the $I_{\rm CC3}$ specification.

CAS BEFORE RAS REFRESH

 $\overline{\text{CAS}}$ before $\overline{\text{RAS}}$ refreshing available on the TMM41464AP/AT/AZ offers an alternate refresh method. If $\overline{\text{CAS}}$ is held on low for the specified period (t_{CSR}) before $\overline{\text{RAS}}$ goes to low, on chip refresh control clock generators and the refresh address counter are enabled, and an internal refresh operation takes place. After the refresh operation is performed, the refresh address counter is automatically incremented in preparation for the next $\overline{\text{CAS}}$ before $\overline{\text{RAS}}$ refresh operation.

PAGE MODE

The "Page-Mode" feature of the TMM41464AP/AT/AZ allows for successive memory operations at multiple column locations of the same row address with increased speed without an increase in power. This is done by strobing the row address into the

chip and maintaining the \overline{RAS} signal at a logic 0 throughout all successive memory cycles in which the row address is common. This "Page Mode" of operation will not dissipate the power associated with the negative going edge of \overline{RAS} . Also, the time required for strobing in a new address is eliminated, thereby decreasing the access and cycle times.

HIDDEN REFRESH

An optional feature of the TMM41464AP/AT/AZ is that refresh cycles may be performed while maintaining valid data at the output pin. This is referred to as Hidden Refresh. Hidden Refresh is performed by holding $\overline{\text{CAS}}$ at V_{IL} and taking $\overline{\text{RAS}}$ high and after a specified precharge period (t_{RP}), executing a $\overline{\text{CAS}}$ before $\overline{\text{RAS}}$ refresh cycle. (see Figure below)

This feature allows a refresh cycle to be "hidden" among data cycles without affecting the data availability.

CAS BEFORE RAS REFRESH COUNTER TEST

The internal refresh operation of TMM41464AP/AT/AZ can be tested by CAS BEFORE RAS REFRESH COUNTER TEST. This cycle performs READ/WRITE operation taking the internal counter address as row address and the input address as column address.

The test is performed after a minimum of 8 $\overline{\text{CAS}}$ before $\overline{\text{RAS}}$ cycles as initialization cycles. The test procedure is as follows.

1) Write "0" into all the memory cells at normal

write mode.

- ② Select one certain column address and read "0" out and write "1" in each cell by performing CAS BEFORE RAS REFRESH COUNTER TEST (READ-WRITE CYCLE). Repeat this operation 256 times.
- (3) Check "1" out of 256 bits at normal read mode, which was written at (2).
- (4) Using the same column as (2), read "1" out and write "0" in each cell performing CAS BEFORE RAS REFRESH COUNTER TEST. Repeat this operation 256 times.
- (5) Check "0" out of 256 bits at normal read mode, which was written at (4).
- (6) Perform the above (1) to (5) to the complement data.

OUTLINE DRAWINGS

Plastic DIP

Unit in mm

Note: Each lead pitch is 2.54mm. All leads are located within 0.25mm of their true longitudinal position with respect to No. 1 and No. 18 leads. All dimensions are in millimeters.

Note: Toshiba does not assume any responsibility for use of any circuitry described; no circuit patent licenses are implied, and Toshiba reserves the right, at any time without notice, to change said circuitry.

• Plastic ZIP

Unit in mm

• Plastic LCC

Unit in mm

