Enhancing NHL Salary Evaluation through Dimensionality Reduction

Raphaël Fontaine McGill University Montreal, Canada raphael.fontaine@mail.mcgill.ca

Principal Component Analysis (PCA)

X_columns = X_data.columns

Split train and test data

Standardize the features

```
In [39]: import common
   import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   from sklearn.decomposition import PCA
   from IPython.display import Markdown

In [40]: df = common.load_dataset()
   # Split features and label
   X_data, y_data = common.split_dataset(df)
```

X_train, y_train, X_test, y_test = common.split_train_test(X_data, y_data)

X_train, X_test = common.standard_scaler(X_train, X_test)

Implementation 1: Singular Value Decomposition

```
In [41]: X = X_train.copy()
    n_samples, n_features = X.shape

# Center the data (subtract the mean of each feature)
X_centered = X - np.mean(X, axis=0)

# Singular Value Decomposition
U, S, Vt = np.linalg.svd(X_centered, full_matrices=False)

# Compute explained variance
explained_variance = (S**2) / (n_samples-1)
total_explained_variance = np.sum(explained_variance)
explained_variance_ratio = explained_variance / total_explained_variance

# Compute cumulative explained variance
cumsum = np.cumsum(explained_variance_ratio)
x_range = range(0, len(cumsum))
```

```
In [42]: plt.clf()
    plt.plot(range(0, len(cumsum)), cumsum)
    plt.title("Cumulative explained variance vs Number of components")
    plt.xlabel("Number of components")
    plt.ylabel("Cumulative explained variance")
    plt.xlim(0, 500)
    plt.grid()
    plt.show()
```



```
In [43]: str_output = ""

# Get the top 10 contributing features for the first 5 principal components
for i in range(5):
    # Get the component (row of Vt)
    component = Vt[i]

# Get the indices of the top 10 contributing features
    top_features_idx = np.argsort(np.abs(component))[-10:][::-1]

# Print the top 10 contributing features for the i-th principal component
    str_output += f"### Principal Component {i+1}:\n"
    str_output += f"Explained Variance: {explained_variance[i]:.4f}<br/>
    str_output += f"Explained Variance Ratio: {explained_variance_ratio[i]:.4
    f}<br/>
# Markdown(str_output)
```

Out[43]:

Principal Component 1:

Explained Variance: 283.8259
Explained Variance Ratio: 0.3714
Cumulative Explained Variance: 0.3714

Principal Component 2:

Explained Variance: 115.4110
Explained Variance Ratio: 0.1510
Cumulative Explained Variance: 0.5224

Principal Component 3:

Explained Variance: 46.7740
Explained Variance Ratio: 0.0612
Cumulative Explained Variance: 0.5836

Principal Component 4:

Explained Variance: 29.8602
Explained Variance Ratio: 0.0391
Cumulative Explained Variance: 0.6227

Principal Component 5:

Explained Variance: 15.2144
Explained Variance Ratio: 0.0199
Cumulative Explained Variance: 0.6426

```
In [44]: n_top_features = 10
    loadings_df = pd.DataFrame(Vt, index=X_data.columns)

for comp in range(5):
    plt.figure(figsize=(8, 4))
    # Sort features by absolute loading values for the current component
    top_features = loadings_df.iloc[:, comp].abs().nlargest(n_top_features)

# Plot
    top_features.sort_values().plot(kind='barh', color='skyblue')
    plt.title(f"Top {n_top_features} Features for Component {comp + 1}")
    plt.xlabel("Loading Value")
    plt.ylabel("Features")
    plt.grid(axis='x')
    plt.tight_layout()
    plt.show()
```



```
In [45]: variance_thresholds = [0.25, 0.50, 0.75, 0.90, 0.95]
         results = []
         for variance_threshold in variance_thresholds:
             # Select the components
             selected_components = np.where(cumsum >= variance_threshold)[0][0] + 1
             # Transform data into principal component space
             X_train_pca = np.dot(X_centered, Vt.T)
             X_train_pca = X_train_pca[:, :selected_components]
             # Adjust the features for testing
             X_test_centered = X_test - np.mean(X, axis=0)
             X_test_pca = np.dot(X_test_centered, Vt.T)
             X_test_pca = X_test_pca[:, :selected_components]
             # Train and evaluate the model
             results_df, predictions = common.train_and_evaluate(X_train_pca, y_train,
         X_test_pca, y_test)
             results_df["Components"] = selected_components
             results_df["Threshold"] = variance_threshold
             results.append(results_df)
         results_df = pd.concat(results)
         results_df.groupby(by="Threshold")[results_df.columns].apply(lambda x: x).drop
         (columns=["Threshold"])
```

		R2	MAE	Top-100 MAE	Top-50 MAE	SMAPE	Train time (sec)	Components
Threshold	Model							
0.25	Linear Regression	0.4851	1,524,628	1,913,240	2,537,464	0.3866	0.00	1
	Random Forest	0.2606	1,780,485	2,165,465	2,705,744	0.4309	0.73	1
	Support Vector	0.5016	1,482,780	1,966,063	2,577,555	0.3747	0.41	1
	K-Nearest Neighbors	0.3487	1,663,351	2,012,112	2,481,525	0.4086	0.00	1
0.50	Linear Regression	0.4986	1,496,771	1,869,011	2,339,426	0.3844	0.00	2
	Random Forest	0.4717	1,509,837	1,896,849	2,393,731	0.3784	0.73	2
	Support Vector	0.5150	1,457,700	1,879,472	2,343,895	0.3732	0.35	2
	K-Nearest Neighbors	0.4611	1,515,137	1,894,536	2,398,909	0.3804	0.00	2
0.75	Linear Regression	0.5675	1,334,535	1,834,847	2,284,677	0.3422	0.05	17
	Random Forest	0.5535	1,383,525	1,931,416	2,534,001	0.3538	2.20	17
	Support Vector	0.5680	1,322,788	1,863,102	2,357,359	0.3374	0.52	17
	K-Nearest Neighbors	0.5598	1,344,158	1,905,473	2,489,060	0.3423	0.00	17
0.90	Linear Regression	0.5684	1,341,923	1,917,990	2,377,233	0.3383	0.17	88
	Random Forest	0.4906	1,505,292	2,266,730	2,995,644	0.3815	4.44	88
	Support Vector	0.5681	1,325,428	1,912,240	2,432,140	0.3339	0.72	88
	K-Nearest Neighbors	0.5611	1,353,952	2,033,402	2,548,211	0.3450	0.00	88
0.95	Linear Regression	0.5799	1,306,634	1,858,033	2,361,751	0.3359	0.07	138
	Random Forest	0.4613	1,551,825	2,373,857	3,190,814	0.3922	5.58	138
	Support Vector	0.5947	1,275,063	1,819,979	2,366,959	0.3245	0.91	138
	K-Nearest Neighbors	0.5508	1,360,359	2,023,507	2,606,079	0.3442	0.00	138

In [46]: common.plot_metrics(results_df, "Threshold")
 common.plot_metrics(results_df, "Components")

Implementation 2: Covariance Matrix and Eigenvalues

```
In [47]: X = X_train.copy()
         n_samples, n_features = X.shape
         # Center the data (subtract the mean of each feature)
         X_centered = X - np.mean(X, axis=0)
         # Compute the covariance matrix
         C = (X.T @ X)/(n_samples-1)
         # Compute the eigenvalues and eigenvectors of the covariance matrix
         eigenvalues, eigenvectors = np.linalg.eigh(C)
         # Sort the eigenvalues and eigenvectors in descending order
         eigenvalues = np.flip(eigenvalues, axis=0)
         eigenvectors = np.flip(eigenvectors, axis=1)
         # Clip to positive for numerical stability
         eigenvalues[eigenvalues < 0.0] = 0.0
         Vt = eigenvectors.T
         # Compute explained variance
         explained variance = eigenvalues
         total_explained_variance = np.sum(explained_variance)
         explained_variance_ratio = explained_variance / total_explained_variance
         # Compute cumulative explained variance
         cumsum = np.cumsum(explained_variance_ratio)
         x_range = range(0, len(cumsum))
```

```
In [48]: plt.clf()
    plt.plot(range(0, len(cumsum)), cumsum)
    plt.title("Cumulative explained variance vs Number of components")
    plt.xlabel("Number of components")
    plt.ylabel("Cumulative explained variance")
    plt.xlim(0, 500)
    plt.grid()
    plt.show()
```



```
In [49]: str_output = ""

# Get the top 10 contributing features for the first 5 principal components
for i in range(5):
    # Get the component (row of Vt)
    component = Vt[i]

# Get the indices of the top 10 contributing features
    top_features_idx = np.argsort(np.abs(component))[-10:][::-1]

# Print the top 10 contributing features for the i-th principal component
    str_output += f"### Principal Component {i+1}:\n"
    str_output += f"Explained Variance: {explained_variance[i]:.4f}<br/>
    str_output += f"Explained Variance Ratio: {explained_variance_ratio[i]:.4
    f}<br/>
# Markdown(str_output)
```

Out[49]:

Principal Component 1:

Explained Variance: 283.8259
Explained Variance Ratio: 0.3714
Cumulative Explained Variance: 0.3714

Principal Component 2:

Explained Variance: 115.4110
Explained Variance Ratio: 0.1510
Cumulative Explained Variance: 0.5224

Principal Component 3:

Explained Variance: 46.7740
Explained Variance Ratio: 0.0612
Cumulative Explained Variance: 0.5836

Principal Component 4:

Explained Variance: 29.8602
Explained Variance Ratio: 0.0391
Cumulative Explained Variance: 0.6227

Principal Component 5:

Explained Variance: 15.2144
Explained Variance Ratio: 0.0199
Cumulative Explained Variance: 0.6426

```
In [50]: n_top_features = 10
    loadings_df = pd.DataFrame(Vt, index=X_data.columns)

for comp in range(5):
    plt.figure(figsize=(8, 4))
    # Sort features by absolute loading values for the current component
    top_features = loadings_df.iloc[:, comp].abs().nlargest(n_top_features)

# Plot
    top_features.sort_values().plot(kind='barh', color='skyblue')
    plt.title(f"Top {n_top_features} Features for Component {comp + 1}")
    plt.xlabel("Loading Value")
    plt.ylabel("Features")
    plt.grid(axis='x')
    plt.tight_layout()
    plt.show()
```



```
In [51]: results = []
         for variance_threshold in variance_thresholds:
             # Select the components
             selected_components = np.where(cumsum >= variance_threshold)[0][0] + 1
             # Transform data into principal component space
             X_train_pca = np.dot(X_centered, Vt.T)
             X_train_pca = X_train_pca[:, :selected_components]
             # Adjust the features for testing
             X_test_centered = X_test - np.mean(X, axis=0)
             X_test_pca = np.dot(X_test_centered, Vt.T)
             X_test_pca = X_test_pca[:, :selected_components]
             # Train and evaluate the model
             results_df, predictions = common.train_and_evaluate(X_train_pca, y_train,
         X_test_pca, y_test)
             results_df["Components"] = selected_components
             results_df["Threshold"] = variance_threshold
             results.append(results_df)
         results_df = pd.concat(results)
         results_df.groupby(by="Threshold")[results_df.columns].apply(lambda x: x).drop
         (columns=["Threshold"])
```

		R2	MAE	Top-100 MAE	Top-50 MAE	SMAPE	Train time (sec)	Components
Threshold	Model							
0.25	Linear Regression	0.4851	1,524,628	1,913,240	2,537,464	0.3866	0.00	1
	Random Forest	0.2606	1,780,485	2,165,465	2,705,744	0.4309	0.89	1
	Support Vector	0.5016	1,482,780	1,966,063	2,577,555	0.3747	0.44	1
	K-Nearest Neighbors	0.3487	1,663,351	2,012,112	2,481,525	0.4086	0.00	1
0.50	Linear Regression	0.4986	1,496,771	1,869,011	2,339,426	0.3844	0.02	2
	Random Forest	0.4717	1,509,837	1,896,849	2,393,731	0.3784	0.79	2
	Support Vector	0.5150	1,457,700	1,879,472	2,343,895	0.3732	0.30	2
	K-Nearest Neighbors	0.4611	1,515,137	1,894,536	2,398,909	0.3804	0.00	2
0.75	Linear Regression	0.5675	1,334,535	1,834,847	2,284,677	0.3422	0.00	17
	Random Forest	0.5406	1,392,487	1,968,800	2,592,782	0.3539	2.14	17
	Support Vector	0.5680	1,322,788	1,863,102	2,357,359	0.3374	0.55	17
	K-Nearest Neighbors	0.5598	1,344,158	1,905,473	2,489,060	0.3423	0.00	17
0.90	Linear Regression	0.5684	1,341,923	1,917,990	2,377,233	0.3383	0.21	88
	Random Forest	0.5005	1,481,944	2,250,514	2,994,564	0.3760	5.14	88
	Support Vector	0.5681	1,325,428	1,912,240	2,432,140	0.3339	0.97	88
	K-Nearest Neighbors	0.5611	1,353,952	2,033,402	2,548,211	0.3450	0.00	88
0.95	Linear Regression	0.5799	1,306,634	1,858,033	2,361,751	0.3359	1.39	138
	Random Forest	0.4731	1,543,489	2,303,649	3,111,511	0.3922	6.64	138
	Support Vector	0.5947	1,275,063	1,819,979	2,366,959	0.3245	1.24	138
	K-Nearest Neighbors	0.5508	1,360,359	2,023,507	2,606,079	0.3442	0.00	138

In [52]: common.plot_metrics(results_df, "Threshold")
 common.plot_metrics(results_df, "Components")

Sklearn PCA

```
results = []
In [53]:
         n_components = results_df["Components"].unique()
         for n, variance_threshold in enumerate(variance_thresholds):
             # Apply sklearn PCA
             pca = PCA(n_components=n_components[n])
             X_train_pca = pca.fit_transform(X_train)
             X_test_pca = pca.transform(X_test)
             # Train and evaluate the model
             results_df, predictions = common.train_and_evaluate(X_train_pca, y_train,
         X_test_pca, y_test)
             results_df["Components"] = n_components[n]
             results_df["Threshold"] = variance_threshold
             results.append(results_df)
         results_df = pd.concat(results)
         results_df.groupby(by="Threshold")[results_df.columns].apply(lambda x: x).drop
         (columns=["Threshold"])
```

		R2	MAE	Top-100 MAE	Top-50 MAE	SMAPE	Train time (sec)	Components
Threshold	Model							
0.25	Linear Regression	0.4851	1,524,628	1,913,240	2,537,464	0.3866	0.00	1
	Random Forest	0.2606	1,780,485	2,165,465	2,705,744	0.4309	0.84	1
	Support Vector	0.5016	1,482,780	1,966,063	2,577,555	0.3747	0.45	1
	K-Nearest Neighbors	0.3487	1,663,351	2,012,112	2,481,525	0.4086	0.00	1
0.50	Linear Regression	0.4986	1,496,771	1,869,011	2,339,426	0.3844	0.00	2
	Random Forest	0.4683	1,518,023	1,883,844	2,329,929	0.3805	0.77	2
	Support Vector	0.5150	1,457,700	1,879,472	2,343,895	0.3732	0.36	2
	K-Nearest Neighbors	0.4611	1,515,137	1,894,536	2,398,909	0.3804	0.00	2
0.75	Linear Regression	0.5674	1,334,550	1,834,987	2,284,685	0.3422	0.10	17
	Random Forest	0.5498	1,385,784	1,957,380	2,564,106	0.3541	2.48	17
	Support Vector	0.5680	1,322,608	1,863,055	2,357,856	0.3374	0.58	17
	K-Nearest Neighbors	0.5595	1,343,853	1,913,891	2,484,131	0.3422	0.00	17
0.90	Linear Regression	0.5697	1,331,858	1,801,437	2,269,818	0.3361	0.51	88
	Random Forest	0.4882	1,506,402	2,307,259	3,088,640	0.3807	5.17	88
	Support Vector	0.5684	1,321,029	1,852,178	2,369,520	0.3321	0.88	88
	K-Nearest Neighbors	0.5556	1,353,508	2,013,604	2,551,374	0.3445	0.00	88
0.95	Linear Regression	0.5763	1,312,559	1,875,333	2,376,525	0.3376	0.77	138
	Random Forest	0.4840	1,522,531	2,330,470	3,100,599	0.3863	7.24	138
	Support Vector	0.5910	1,277,788	1,869,213	2,424,537	0.3253	0.97	138
	K-Nearest Neighbors	0.5483	1,362,531	2,040,135	2,626,338	0.3447	0.00	138

In [54]: common.plot_metrics(results_df, "Threshold")
 common.plot_metrics(results_df, "Components")

