Genome Assembly

Lecture 18 Oct 14, 2016

Announcements

WHY DO YOU WANT TO ASSEMBLE A GENOME?

WHAT DO YOU NEED TO ASSEMBLE A GENOME?

ASSEMBLE A GENOME? GENERAL STRATEGIES

Genome size	Unlimited \$\$	Typical
>10Mb		
10Mb - 100Mb		
> 100 Mb		

GENOME SIZES

Assume sequencing produces such a large # fragments that almost all genome positions are *covered* by many fragments...

From these

...but we don't know what came from where

CTAGGCCCTCAATTTTT **GGCGTCTATATCT** CTCTAGGCCCTCAATTTTT **TCTATATCTCGGCTCTAGG** Reconstruct GGCTCTAGGCCCTCATTTTTT this From these CTCGGCTCTAGCCCCTCATTTT TATCTCGACTCTAGGCCCTCA **GGCGTCGATATCT** TATCTCGACTCTAGGCC **GGCGTCTATATCTCG** GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

Key term: coverage. Usually it's short for average coverage: the average number of reads covering a position in the genome.

CTAGGCCCTCAATTTTT CTCTAGGCCCTCAATTTTT GGCTCTAGGCCCTCATTTTTT CTCGGCTCTAGCCCCTCATTTT TATCTCGACTCTAGGCCCTCA **TATCTCGACTCTAGGCC** TCTATATCTCGGCTCTAGG **GGCGTCTATATCTCG GGCGTCGATATCT GGCGTCTATATCT** 35 nucleotides GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

177 nucleotides

Average coverage = $177 / 35 \approx 7x$

OTHER ASSEMBLY TERMS

Unitig

Contig

scaffold

Complicated by:

How to assemble puzzle without the benefit of knowing what the finished product looks like?

• Complicated by:

• Work flow:

• 3 assembly strategies:

OLC Assembly

• OLC Assembly: Characteristics

Directed graph G(V, E) consists of set of vertices, V and set of directed edges, E

Directed edge is an *ordered pair* of vertices. First is the *source*, second is the *sink*.

Vertex is drawn as a circle

Edge is drawn as a line with an arrow connecting two circles

 $E = \{ (a, b), (a, c), (c, b) \}$

Sink

 $V = \{a, b, c, d\}$

Source

Vertex also called *node* or *point*

Edge also called arc or line

Directed graph also called digraph

Build overlap graph

to_every_thing_turn_turn_turn_there_is_a_season L=4, k=7

Build overlap graph

Vertices (reads): { a: CTCTAGGCC, b: GCCCTCAAT, c: CAATTTTT }

Edges (overlaps): { (*a*, *b*), (*b*, *c*) }

