Data and Computer Communications

Chapter 3 – Data Transmission

Eighth Edition by William Stallings

Lecture slides by Lawrie Brown

Data Transmission

Toto, I've got a feeling we're not in Kansas anymore. Judy Garland in The Wizard of Oz

Transmission Terminology

- data transmission occurs between a transmitter & receiver via some medium
- guided medium
 - eg. twisted pair, coaxial cable, optical fiber
- unguided / wireless medium
 - eg. air, water, vacuum

Transmission Terminology

- direct link
 - no intermediate devices
- point-to-point
 - direct link
 - only 2 devices share link
- multi-point
 - more than two devices share the link

Transmission Terminology

- > simplex
 - one direction
 - eg. television
- half duplex
 - either direction, but only one way at a time
 - eg. police radio
- > full duplex
 - both directions at the same time
 - eg. telephone

Frequency, Spectrum and Bandwidth

- time domain concepts
 - analog signal
 - various in a smooth way over time
 - digital signal
 - maintains a constant level then changes to another constant level
 - periodic signal
 - pattern repeated over time
 - aperiodic signal
 - pattern not repeated over time

Analogue & Digital Signals

Periodic Signals

Sine Wave

- peak amplitude (A)
 - maximum strength of signal
 - volts
- frequency (f)
 - rate of change of signal
 - Hertz (Hz) or cycles per second
 - period = time for one repetition (T)
 - T = 1/f
- ▶ phase (\phi)
 - relative position in time

Varying Sine Waves $s(t) = A \sin(2\pi ft + \Phi)$

Wavelength (λ)

- > is distance occupied by one cycle
- between two points of corresponding phase in two consecutive cycles
- \triangleright assuming signal velocity ν have $\lambda = \nu T$
- > or equivalently $\lambda f = v$
- especially when v=c
 - $c = 3*10^8 \text{ ms}^{-1}$ (speed of light in free space)

Frequency Domain Concepts

- signal are made up of many frequencies
- components are sine waves
- Fourier analysis can shown that any signal is made up of component sine waves
- can plot frequency domain functions

Addition of Frequency Components (T=1/f)

 \rightarrow c is sum of f & 3f

Frequency Domain Representations

- freq domain func of Fig 3.4c
- freq domain func of single square pulse

Spectrum & Bandwidth

- > spectrum
 - range of frequencies contained in signal
- absolute bandwidth
 - width of spectrum
- effective bandwidth
 - often just bandwidth
 - narrow band of frequencies containing most energy
- DC Component
 - component of zero frequency

Data Rate and Bandwidth

- any transmission system has a limited band of frequencies
- this limits the data rate that can be carried
- square have infinite components and hence bandwidth
- but most energy in first few components
- limited bandwidth increases distortion
- have a direct relationship between data rate & bandwidth

Analog and Digital Data Transmission

- > data
 - entities that convey meaning
- signals & signalling
 - electric or electromagnetic representations of data, physically propagates along medium
- transmission
 - communication of data by propagation and processing of signals

Acoustic Spectrum (Analog)

Audio Signals

- freq range 20Hz-20kHz (speech 100Hz-7kHz)
- easily converted into electromagnetic signals
- varying volume converted to varying voltage
- can limit frequency range for voice channel to 300-3400Hz

Video Signals

- USA 483 lines per frame, at frames per sec
 - have 525 lines but 42 lost during vertical retrace
- > 525 lines x 30 scans = 15750 lines per sec
 - 63.5μs per line
 - 11μs for retrace, so 52.5 μs per video line
- max frequency if line alternates black and white
- horizontal resolution is about 450 lines giving 225 cycles of wave in 52.5 μs
- max frequency of 4.2MHz

Digital Data

- as generated by computers etc.
- has two dc components
- bandwidth depends on data rate

User input at a PC is converted into a stream of binary digits (1s and 0s). In this graph of a typical digital signal, binary one is represented by Đ5 volts and binary zero is represented by +5 volts. The signal for each bit has a duration of 0.02 msec, giving a data rate of 50,000 bits per second (50 kbps).

Analog Signals

Digital Signals

Digital Signals: Represent data with sequence of voltage pulses Digital Signal Analog Signal Codec Digital Signal Digital Data -Digital Transceiver

Advantages & Disadvantages of Digital Signals

- cheaper
- less susceptible to noise
- but greater attenuation
- digital now preferred choice

Transmission Impairments

- signal received may differ from signal transmitted causing:
 - analog degradation of signal quality
 - digital bit errors
- most significant impairments are
 - attenuation and attenuation distortion
 - delay distortion
 - noise

Attenuation

- where signal strength falls off with distance
- depends on medium
- received signal strength must be:
 - strong enough to be detected
 - sufficiently higher than noise to receive without error
- so increase strength using amplifiers/repeaters
- is also an increasing function of frequency
- so equalize attenuation across band of frequencies used
 - eg. using loading coils or amplifiers

Delay Distortion

- > only occurs in guided media
- propagation velocity varies with frequency
- hence various frequency components arrive at different times
- particularly critical for digital data
- since parts of one bit spill over into others
- causing intersymbol interference

Noise

- additional signals inserted between transmitter and receiver
- > thermal
 - due to thermal agitation of electrons
 - uniformly distributed
 - white noise
- > intermodulation
 - signals that are the sum and difference of original frequencies sharing a medium

Noise

- > crosstalk
 - a signal from one line is picked up by another
- > impulse
 - irregular pulses or spikes
 - eg. external electromagnetic interference
 - short duration
 - high amplitude
 - a minor annoyance for analog signals
 - but a major source of error in digital data
 - a noise spike could corrupt many bits

Channel Capacity

- max possible data rate on comms channel
- is a function of
 - data rate in bits per second
 - bandwidth in cycles per second or Hertz
 - noise on comms link
 - error rate of corrupted bits
- limitations due to physical properties
- want most efficient use of capacity

Nyquist Bandwidth

- consider noise free channels
- ▶ if rate of signal transmission is 2B then can carry signal with frequencies no greater than B
 - ie. given bandwidth B, highest signal rate is 2B
- > for binary signals, 2B bps needs bandwidth B Hz
- can increase rate by using M signal levels
- \triangleright Nyquist Formula is: C = 2B log₂M
- so increase rate by increasing signals
 - at cost of receiver complexity
 - limited by noise & other impairments

Shannon Capacity Formula

- consider relation of data rate, noise & error rate
 - faster data rate shortens each bit so bursts of noise affects more bits
 - given noise level, higher rates means higher errors
- Shannon developed formula relating these to signal to noise ratio (in decibels)
- > SNR_{db}=10 log₁₀ (signal/noise)
- Capacity C=B log₂(1+SNR)
 - theoretical maximum capacity
 - get lower in practise

Summary

- looked at data transmission issues
- frequency, spectrum & bandwidth
- analog vs digital signals
- transmission impairments