10/09 OIPE

RAW SEQUENCE LISTING

DATE: 6/18/1701 TIME: 18:80:35 PATENT APPLICATION: US/09/851,410

Input Set : N:\Crf3\RULE60\09851410.txt Output Set: N:\CRF3\06152001\1851410.raw

SEQUENCE LISTING

```
ENTERED
      3 (1) GENERAL INFORMATION:
             (1) APPLICENT: Reyes, Gregory R
                             Yarpough, Patrice o
                             Bradley, Daniel W
      8
                             Hrawczynski, Krzysztol Z
                             Tam, Albert
     10
                             Fry, Kirk E
            (ii) TITLE OF INVENTION: ENA de montes of Enteridally Transmitted
     1.3
                                       Non-A/Non-B Hepatitis Viral Agent
           (iii) NUMBER OF SEQUENCES: 20
     1 -,
     1
            (iv) CORRESPONDENCE ADDRESS:
     18
                   ·A) ADDRESSEE: Dehlinger & Associates
     1.4
                   B) STREET: 350 Cambridge Avenue, Suite 250
     .16
                   C) CITY: Pale Alto
     .11
                   E) STATE: CA
                   E) COUNTRY: USA
                   ·F) ZIE: 94306
     : 12
             (v) COMPUTER READABLE FORM:
                   (A: MEDIUM TYPE: Floppy disk
     = \tilde{T}_{i}
                   (B) COMPUTER: IBM PC compatible
                   (C) OPERATING SYSTEM: FC-DOS/MS-DOS
     _ {:
                   (D) SOFTWARE: PatentIr Release #1.0, Version #1.25
     .19
            (vi) CURRENT APPLICATION DATA:
     \pm 1
C--> 32
                   (A) APPLICATION NUMBER: US/09/851,410
C--> 33
                   (B) FILING DATE: 07-May-2001
     f_{+} \in
           (vii) PEIOR APPLICATION DATA:
                   (A) APPLICATION NUMBER: 09/128,275
     a for
     37
                   (B) FILING DATE:
                   (A) APPLICATION NUMBER: US 07/681,078
     40
                   (B) FILING DATE: 05-AFR-1991
     41
                   (A) APPLICATION NUMBER: US COUNTY, 838
     44
     4.0
                   (B) FILING DATE: (S-AFR-1996
                   (A) APPLICATION NUMBER: US 07 42.,921
     . {-
     49
                   B) FILING DATE: 13-OCT-1989
                   A) APPLICATION NUMBER: US 07 367,480
                   B) FILING DATE: 16-JUN-1989
     3.5
                   (A) APPLICATION NUMBER: US CO 530,672
     D O
                   (B) FILING DATE: 11-AFR-1943
                   (A) APPLICATION NUMBER: US 100.05, 440
     60
                   (B) FILING DATE: IN-JUN-1984
     61
          (viii) ATTORNEY AGENT INFORMATION:
     63
                   WAL NAME: Fetithory, Coanne B.
     64
                   (P) REGISTRATION NUMBER: 40, 42
     6.5
                   (N) REFERENCE TOURET NUMBER: 40
                                                    θú
             (ix) TELECOMMUNICATION INFORMATION:
     \mathbf{e}^{-2}
```

JAC TELEFRONE: 165 C 304= 65

 ϵz_j

RAW SEQUENCE LISTING

FATENT APPLICATION: US/09/851,410

TATE: 6-15 1 1 TIME: 15:56:05

Input Set : N:\Crf3\RULE60\09851410.txt
Output Set: N:\CRF3\06152001\1851410.raw

```
(B) TFLEFAM: .0501 324-1961
     72 (2) INFORMATION FOR SEQ 1D NO: 1:
            (i) SEQUENCE CHARACTERISTICS:
                   (A) LENGTH: 1295 base pairs
     76
                   (B) TYPE: nucleic acid
     -- 7
                   (C) STRANDEDNESS: double
                  (D) TOFOLOGY: linear
W --> 80
            (ii) MOLECULE TYPE: DNA
           (iii) HYFOTHETICAL: NO
     ÷.3
     8.4
           (iv) ANTI-SENSE: NO
     86
            (vi) DRIGINAL SOURCE:
     ξ.
                  (C) INDIVIDUAL ISOLATE: 1.38 kb EdeRI insert of ET1.1,
     £ ...
                                           forward sequence
     \zeta_{1}\rightarrow
           (ix) FEATURE:
     91
                  (A) NAME/HEY: CDS
     9.1
                  (B) LOCATION: 1..1293
     94 (ix) FEATURE:
     95,
                  (A) NAME/KEY: CDS
     g_{i,j}
                  (B) LOCATION: 2..1294
     9 -
            (ix) FEATURE:
     9+
                  (A) NAME/KEY: CDS
                   (B) LOCATION: 3..1295
     100
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:
     10.3
     1) & AGADOTGTOD CTGTTGCAGO PGTTCTACCA CCCTGCCCCG AGCTCGAACA GGGCCTTCTC
                                                                                  60
     10.7 TAGCTSCCCC AGGAGCTCAC CACCTGTGAT AGTGTCGTAA CATTTGAATT AACAGACATT
                                                                                 120
     109 STGCASTGCC GCATGGCCSC CCCSASCCAS CGCAAGGCCG TGCTGTCCAC ACTCGTGGGC
                                                                                 180
     111 OGSTAGGGGG GTOGGGAGAAA GSTGTAGAAT GSTTGGGACT GTGATGTTGG GGAGTGTGTG
                                                                                 240
     118 GOOGSTTTTA TOCOGGOCAT TEGOCOCCTA CAGGTTACAA CTTGTGAATT GTACGAGCTA
                                                                                 300
     115 STGGABSCCA TGGTCGAGAA GGGCCAGGAT GGCTCCGCCG TCCTTGAGCT TGATCTTTGC
                                                                                 361.
     117 AACCSTBACG TSTCCAGGAT CACCTTCTC CAGAAAGATT GTAACAAGTT CACCACAGGT
                                                                                 420
     119 GAGACCATTG COCATGGTAA AGTEGECCAG GGCATCTCGG CCTGGAGCAA GACCTTCTGC
                                                                                 480
     1.1 GCCCTCTTG GCCCTTGGIT CCGCGCTATT GAGAAGGCTA TTCTGGCCCT GCTCCCTCAG
                                                                                 540
                                                                                 -6 (H)
     113 GGTGTGTTTT ACGGTSATGC CTTTGATGAC ACCGTCTTCT CGGCGGCTGT GGCCGCAGCA
     115 AAGGCATCCA TESTSTTTEA GAARSACTTE TOTGASTTTG ACTOCACCCA GAATAACTTT
                                                                                 660
     107 TOTOTGESTO TAGAGTGTEC TATTATGGAG GAGTGTGGGA TGCCGCAGTG GCTCATCCGC
                                                                                 720
     1:9 CTGTATCACC TTATAASGIC TGCSTSSATC TTGCASGCCC UGAAGGAGTC TCTGCGAGGG
                                                                                 786
     1:1 FTTTGGAAGA AACACTCC3G TGA3CCCGGC ACTCTTCTAT GGAATACTGT CIGGAATATG
                                                                                 840
     183 GOOGTTATTA COCACTETTA TEACTFOOGS GATTTTCAGG TEGCTECCTT TAAAGGTGAT
                                                                                 900
     195 GATTOGATAG TGCTTTGCAG TGAGTATCGT CAGAGTTCCAG GAGCTGCTGT CCTGATCGCC
                                                                                 960
     1:7 GEOTETESCT TGAASTTGAA GETASATITE CGCCCPATCG STITGTATGC AGGTGTTGTG
                                                                                1021
     139 BIGGOCODOS GOCTIGACAS GOTOCOTRAT GITGIGAGOT ICACOGGOCA GOTTACOGAS
                                                                                1080
     141 AAGAATT33G GCCCTG3CCC TGA3C33GC3 GAGCAGCTCC GCCTCGCTGT TAGTGATTTC
                                                                                114
     143 DICOSCAAGO TOACGAATST AGCTCAGATS TGTGTGGATS TTGTTTCCCG TGTTTATGGG
                                                                                1200
     145 STTTOCCOTG GACTOGTTCA TAACCIGATI GGCATSCTAC AGGCTGTTGC TGATGGCAAG
                                                                                1260
     14% GCACATTICA CIUAGICAUI AAAACIAGIG CICHA
                                                                                1295
     150 (2) INFORMATION FOR SEQ ID NO: 2:
              (1) SEQUENCE CHARACTERISTICS:
     152
                   WA, DENGTH: 431 amino arido
     153
                   QF TYPE: amino acid
     154
```


DATE: 0.16 .01 TIME: 15:80:00

RAW SEQUENCE LISTING

FATENT APPLICATION: US/09/851,410

Input Set : N:\Crf3\RULE60\09851410.txt
Output Set: N:\CRF3\06152001\1851410.raw

155					orol:	OCY:	lir.	ear								
181		(11	1 101		ET	TEE:	pro:	teir.								
15 ;		/xi) SE	WEN.	TE DI	ESCRI	IFTI:	ON:	1211		: .	:				
								Val					2			41.4
16.1	1		• • • •		5,							2.			- 5	
	Gla	Glu	T AND		T117		£ vi ·	31r.					·*	Len		4.4
16	OLII	OTÀ	LCU	- C.A		2.5		٠	The second				- 1 -	2 1 - 2 pr	-	
	Wal.	mh.	Els.s	100		·***	Zor	Tie	-, -,	11 1	*	٠,,	≥4, . .	. 1		1
16:	v a ı	1111.	35	بدلاك	ಎ೮೪		HSP		v 34 ±		1	751 4	**************************************	n_a	mia	11.
	Car	77.		7 1113	w 5			44 Ser	Th. 5				14 A	m.,,,		
	941	5111	MIJ	1.,5	.r a	v (. i ⊥.	55	261			1 _	3 + 1	74.1 j	. 1 1		22.4
171	70.		т.	т.				a				U.U.	n	T		1
		Thr	Lys	Leu	ı yr		Ala	Ser	HIS		wsb.	ia!	Arq	Asp	15 to 27	
1 7		_				70		1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			(D.)		n O
	Ala	Arq	Fne	lle		Ä⊥ä	116	Gly	F10	10.14.4	3 . 11	d.	Thr	'l'hr		15 L II
17:					¥5					110					95	
	Leu	Туг	Glu		Val	Glu	Ala	Met		Glu	Lys	Gly	Gln		Gly	Ser
18:				100					105					110		
192	A La	Val	Leu	Glu	Leu	Asp	Leu	Cys	Asn	Arg	Asp	Val	Ser	Arg	lle	Thr
1			115					120					125			
150	Prie	Phe	Glr.	Lys	qs A	Cys	Asn	Lys	Fhe	Thr	Thr	917	Glu	Thr	Ile	Ala
136		130					135					140				
138	His	Gly	Lys	Val	Gly	Gln	Gly	Ile	Ser	Ala	Trp	Ser	Lys	Thr	Phe	Cys
	145	•	-		_	150	-				155					160
191	Ala	Leu	Phe	Glv	Pro	Trp	Phe	Arg	Ala	110	Glu	Lys	Ala	Ιlο	Leu	Ala
1 9.				4	165			_		170		•			175	
	I:1	T. (2)	Pro	Gln		Val	Phe	Tyr	Glv		Ala	Phia	Asp	Aso	Thr	Val
1.0	ш. д	L-5-4		180	G ± y	141	1		185					190		
	Die ze.	Sar	A 1 =		:	2.2	Z 1 =	Ala		2.13	Sar	1.1 <u>∠.</u> 4-	Val	-	Glu	Asn
198		.⊃. c. .	195	nia	v UL i	n.a	nia	200	₩	44	A 10 A	'	205	1110	\J 1. (4	214911
		51-		71.,	rı.		(°	Thr		m		111		T 2.3	/*1 ··	1 (22)
			261	ard	rne	ASP	215	1111	9.11	7117	21.5	2.20	r. G. T	LC.	(3 ± ₂	11 (7.1
	G1	214	D 3			Z13.1		(3	,		Ews		There.	1	T 1	7. 5. ~
		$\cup yz$	Alc	115	r.et.		GIU	СУЗ	(1 +).	AND TO		. 11 11	110	136704	Lite	
	225	m			- 1	230		n 1 -	m	+ 1	235	/33 _	n 1 -	D	T	240
	コモロ	$T_{\mathcal{J}}^{*}$	HIS	±00		Arg	ser	Ala	irp		eu	J_II	Ald	FIO		GIU
201	_	_	_	- 1	245					250			-		255	
	Ser	1.011	Arg		rhe	irp	_\'S	178		502	- 1	1124	Fro		Thr	Leu
210				260		_			265		- 3			270	4.50	
	Leu	Trp		Thr	Val	Trp	Asn	Met	Ala	V â ±	C	Thr		Cla	Tyr	Asp
1			275					280					285			
			Asp	Fhe	Gln	Val		Ala	Phe	Lys	G72.	Asp	Asp	Ser	176	Va⊥
							2195					3.70				
		C7.3	Ser	3111	Tyr		Gin	Ser	Fro		Ali	Al a	$\nabla . \mathbf{i} \stackrel{:}{=}$	Leu		Ala
	305					310					1.7					327
221	Gly	Суз	Gly	Let	Lys	Leu	Lys	.1.	Asp		A1 4	Fre	I je	91 <u>y</u>	1.04	Tyr
224					32.5										335	
22:	Ala	Gly	$\nabla \alpha \bar{L}$	$\overline{v}_{i,i}\perp$	Val	Ala	$F {\bf r} \circ$	317	Leu	- 11 - 1	A14	Leu	$\Gamma_{\Sigma_{n}}$		∵al.	. 4 .
22				3.1										35.1		
22"	Arq	Phe	Ala	317	Āi j	1.90	77	221	1.7.3	$\mathcal{F}_{\mathcal{M}}$: $\mathcal{F}_{\mathcal{M}}$	713	127	Γ :	1.	1.1	:: <u>:</u> ::
225			3 14 15					54					* t ² ',			

18

20

RAW SEQUENCE LISTING

HATENT APPLICATION: US/09/851,410

TATE: 6:15 2001 TIME: 15:50:08

Input Set : N:\Crf3\RULE60\09851410.txt Sutput Set: N:\CRF3\06152001\I851410.raw 230 Arg Ala Glo Glo Dea Ard Lea Ala Mal Cer Ala The Lea Ard Lya Lea

233 Thr Ash Val Ala 31h Met Cys Mal Asp Val Val der Arg Val Cyr 31y JH1 385 390 1300 Val Ser Pro Bly Leu Val His Ash Leu 110 Bly Met Leu Bin Ala Val 405 dis Ala Asp Gly bys Ala His Phe Thr Glu der Vai bys Pro Val Leu

420 .1: (2) INFORMATION FOR SEQ ID NO: 3:

212 i) SEQUENCE CHARACTERISTICS: A) LENGIH: 13 base pairs ± 4.6 .:4-B) TYPE: nucleic acid . 42° dTRANDEDNESS: single

D) TDF0LOGY: linear

(11) MOLECULE TYPE: DNA W--> 251 153 (iii) HYPOTHETICAL: NO

..49

..55

...€

193

200

.. 80

. }- .4

, 19th,

. 41

.

2.486 . '...

(1)

:01

155 (LV) ANTI-SENSE: NO 257

(vi) ORIGINAL SOURCE:

3) INDIVIDUAL ISCLATE: linker - top (5') sequence

(wi) SEQUENCE DESCRIPTION: SEQ ID NO: 3: $\{e_i\}$ LAL GGAATTOGOS SICGOTOS

105 (2) INFORMATION FOR SEQ ID NO: 4:

267 (i) SEQUENCE CHARACTERISTICS:

A) LENGTH: 2) base pairs

HET TYPE: nucleic acid 3) STRANDELMESS: single

+D: TOPOLOGY: linear

(11) MOLECULE TYPE: DNA W--> 273

(iii) HYPOTHETICAL: NO

(1v) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

(C) INDIVIDUAL ISCLATE: linker - bottom (3') sequence

(x1) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

282 L84 CGAGCGGCCG CGAATTCCTT

L86 (2) INFORMATION FOR SEC ID NO: 5:

(1) SEQUENCE CHARACTERISTICS: . F 3

A) LENGIH: 1235 base pairs

B) TYPE: nurleic acid

C) STRANDELNESS: double

D) TOPOLOGY: linear

(11) MOLECULE TYPE: DNA W--> 294

(iii) HYFOTHETICAL: NO

(LV) ANTI-SENSE: NO

("i) ORIGINAL SOURCE:

(C) INDIVIDUAL ISOLATE: 1.33 kb Ecoki insert of ET1.1,

.112 reverse sequence

(Mi) SEQUENCE DESCRIPTION: MEQ ID NO: 5:

+07 TCGAGCACTG GTTTTAGTGA CTGAGTGAAA TGT F GTTFO GATGAGAAA AGGCTGTAGG 60 309 ATGCCAATCA GUTTATGARG GAGTOOAGG GARAGOOGAT AARGAGGAGAGAAACATG

RAW SEQUENCE LISTING

TIME: 15:40:14 PATENT APPLICATION: US/09/851,410

Input Set : N:\Crf3\RULE60\09851410.txt Output Set: N:\CRF3\06152001\1851410.raw

Capacitica, M. Comercia	
311 ACADADATOT CAGOTACATT OGTGAGCTTG OGGAGGAAAT CACTAACAGO GAGGCGGAGC	130
	2.40
31° TG:T"OG:TO COTOAGGGCO AGGGCOCCAA TICTTOITG TAMBOCGATA CAAACCGATC 31° ACAA:TAT 'AG GGAGGGGCC AAGGCCGGGG GCCACCACAT TOLGGADAGC AGCTCCTGGA	300
	3.50
31 GGGC GARAT CTACCTTCAA CTTCAAGCCA CAGC GGCCACCTGA 31 GTTTGAC AT ACTCACTGCA AAGCACTATC GAATCATCAC CTTTAAAGGC AGCCACCTGA 31 GTTTGAC AT ACTCACTGCA AAGCACTATG ACGCCCTTAT TCCAGACAGT ATTCCATAGA	420
314 CTITAD AT ACTORCTSCA AAGLAULAID GARLIAITAT TOOLGLOST ATTOCATAGA	430
319 GTOTMAD AT ACTORCTOCA ARGUATIATO GARLOATORO OTTAMINOS MOTOCATAGA 321 ARATIGOMGA ACTORTRACA GIGUGIARTA ACGGOCATAT TOCAGACAGO ATTOCATAGA 321 ARATIGOMGA ACTORTRACA GIGUGIARTA ACGGOCATAT TOCAGACAGO COTTOGGGGCO	540
	600
	660
	720
	780
	840
3:1 ACRGTRITAT MAAGGUATO ACUGIRAAAA ACAGCAGAA AGGTCTTGCT CCAGGCCGAG 3:3 TTCTCAATAG GCGGAACCA AUGGCCAAAAA AGGTCGAGAAAAATCT	900
	96J
9-9 ATUCHCT PGC MCACTTTADO ATUGO AGGACGTO TOSTONADO AAGGACGGCG 3-7 TTCTGCAAGA AGGIGATCOT MGACAMGTCA CGGTTGCAAA GATCAAGCTO AAGGACGGCG 3-7 TTCTGCAAGA AGGIGATCOT MGACAMGTCA TCCACTAGCT MGTACAATTO ACAAGTTGTA	
3 - TTOTGCAAGA AGGIGATOOT GAJA GICA CGGIIGCAAN GHIGHAGATIC ACAAGIIGIA 3 59 GAGCCATOOT GGCOOTTOTO GACCATGGCO ICCACTAGOT CGTACAATIC ACAAGIIGIA 3 59 GAGCCATOOT GGCOOTTOTO GACCATGAAA GATCGCGAAC ATCAGAGIIGA	1020
	1(180
	1140
	1200
34% TTGCGCTGGC TCGGGGGGGGG (ATGCGGGGC AGGTAGAGAA GGCCCTGTTC GAGCTCGGGGG 34% ACACTATCAC AGGTGGTGAG (TCCTGGGGC AGGTAGAGAA GGCCCTGTTC GAGCTCGGGG	1260
340 ACACTATCAD AGGT GATGAD TODAY AND COTOT	1295
34 ACASTATE AS ASSISTED AACASTATA GETOT	
34 % CASSACTE THE SEPTION FOR	
374 (1) SEQUENCE CHAFACTERISTICS:	
305 (A) LENGTH: 7195 base pairs	
3:6 (E) TYPE: nu:leic acid	
31.6 (E) Tite: he here acts	
H 367 (C) STRANDEDNESS: HEV - Burma strain	
W> 367 (C) STRANDEDNESS: HEV - Burma strain	
W> 367 (C) STRANDEDNESS: HEV - Burma strain (F) TOFOLOGY: linear W-> 360 (ii) MOLECULE TYPE: DNA	
W> 367 (C) STRANDEDNESS: HEV - Burma strain (E) TOPOLOGY: linear W> 360 (ii) MOLECULE TYPE: DNA (iii) HYEOTHETICAL: IX	
W> 367 (C) STRANDEDNESS: HEV - Burma strain (E) TOPOLOGY: linear W> 360 (ii) MOLECULE TYPE: DNA (iii) HYFOTHETICAL: IX (iv) ANTI-SENSE: DC	
W> 367 (C) STRANDEDNESS: HEV - Burma strain (E) TOPOLOGY: linear W> 360 (ii) MOLECULE TYPE: DNA (iii) HYFOTHETICAL: IX (iv) ANTI-SENSE: DC	
W> 367 (C) STRANDEDNESS: HEV - Burma strain (E) TOPOLOGY: linear W> 360 (ii) MOLECULE TYPE: DNA (iii) HYEOTHETICAL: 18 (iv) ANTI-SENSE: 18 (vi) OFIGINAL COURCE: (vi) FEATURE:	
W> 367 (C) STRANDEDNESS: HEV - Burma strain (E) TOPOLOGY: linear W> 360 (ii) MOLECULE TYPE: DNA (iii) HYLOTHETICAL: IX (iv) ANTI-SENSE: DR (vi) OFIGINAL COURCE: (iv) FEATURE: (iv) NAME FEY: CDS	
W> 367 (C) STRANDEDNESS: HEV - Burma strain (E) TOFOLOGY: linear W> 360 (ii) MOLECULE TYPE: DNA (iii) HYF DTHETICAL: IX (iv) ANTI-SENSE: IX (iv) OFIGINAL COUPCE: (iv) OFIGINAL COUPCE: (iv) FEATURE: (A) NAME FEY: CDS	
W> 367 (C) STRANDEDNESS: HEV - Burma strain (E) TOFOLOGY: linear W> 360 (ii) MOLECULE TYPE: DNA (iii) HYF DTHETICAL: IX (iv) ANTI-SENSE: IX (iv) ANTI-SENSE: IX (iv) OFIGINAL COUPCE: (iv) FEATUPE: (A) NAME FEY: CDS (B) LOCATION: 28.5106	
W> 367 (C) STRANDEDNESS: HEV - Burma strain (E) TOPOLOGY: linear W> 360 (ii) MOLECULE TYPE: DNA (iii) HYLDTHETICAL: IX (iv) ANTI-SENSE: DE (iv) OFIGINAL COURCE: (iv) FEATURE: (A) NAME REY: CDS (B) LOCATION: 18.5106 (ix) FEATURE:	
W> 367 (C) STRANDEDNESS: HEV - Burma strain (F) TOFOLOGY: linear W> 360 (ii) MOLECULE TYPE: DNA (iii) HYF DTHECTICAL: IX (iv) ANTI-SENSE: IX (iv) OFIGINAL COUPCE: (iv) FEATUPE: (i	
W> 367 (C) STRANDEDNESS: HEV - Burma strain (E) TOFOLOGY: linear W> 360 (ii) MOLECULE TYPE: DNA 362 (iii) HYF DTHETICAL: IX 364 (iv) ANTI-SENSE: IX 366 (vi) OFIGINAL COURCE: 369 (ix) FEATUFE: 371 (B) LOCATION: 38.5106 373 (ix) FEATUFE: 47 MAME FEY: CDS 48 MAME FEY: CDS 49 (ix) FEATUFE: 47 MAME FEY: CDS 48 MAME FEY: CDS 49 (ix) FEATUFE: 49 MAME FEY: CDS	
W> 367 (C) STRANDEDNESS: HEV - Burma strain (E) TOFOLOGY: linear W> 360 (ii) MOLECULE TYPE: DNA (iii) HYF DTHETICAL: IX (iv) ANTI-SENSE: US (iv) OSIGINAL COUPCE: (iv) FEATURE: (A) NAME FEY: CDS (B) LOCATION: 28.5106 (iv) FEATURE: (iv) IMME (REY: CDS	
W> 367 (C) STRANDEDNESS: HEV - Burma strain (E) TOFOLOGY: linear W> 360 (ii) MOLECULE TYPE: DNA (iii) HYF DTHETICAL: IX (iv) ANTI-SENSE: US (iv) OBIGINAL COUPCE: (iv) FEATURE: (A) NAME FEY: CDS (B) LOCATION: 28.5106 (iv) FEATURE:	
W> 367 (C) STRANDEDNESS: HEV - Burma strain (F) TOFOLOGY: linear W> 360 (ii) MOLECULE TYPE: DNA 362 (lii) HYF DTHECTICAL: IX 364 (iv) ANTI-SENSE: IX 366 (vi) OFIGINAL COURCE: 366 (vi) OFIGINAL COURCE: 370 (A) NAME FEY: CDS 371 (B) LOCATION: 38.5106 373 (ix) FEATURE: 374 A: NAME FEY: CDS 377 (ix) FEATURE: 378 (ix) FEATURE: 379 (ix) FEATURE: 370 (ix) FEATURE: 370 (ix) FEATURE: 371 (ix) FEATURE: 372 (ix) FEATURE: 373 (ix) FEATURE: 374 (ix) FEATURE: 375 (ix) FEATURE: 377 (ix) FEATURE: 378 (ix) FEATURE: 379 (ix) FEATURE: 370 (ix) FEATURE: 370 (ix) FEATURE: 371 (ix) FEATURE: 372 (ix) FEATURE: 373 (ix) FEATURE: 374 (ix) FEATURE: 375 (ix) FEATURE: 377 (ix) FEATURE: 378 (ix) FEATURE: 378 (ix) FEATURE: 379 (ix) FEATURE: 370 (ix) FEATURE: 370 (ix) FEATURE: 370 (ix) FEATURE: 370 (ix) FEATURE: 371 (ix) FEATURE: 371 (ix) FEATURE: 372 (ix) FEATURE: 373 (ix) FEATURE: 374 (ix) FEATURE: 375 (ix) FEATURE: 377 (ix) FEATURE: 378 (ix) FEATURE: 378 (ix) FEATURE: 379 (ix) FEATURE: 370 (ix) FEATURE: 371 (ix) FEATURE: 371 (ix) FEATURE: 372 (ix) FEATURE: 373 (ix) FEATURE: 374 (ix) FEATURE: 375 (ix) FEATURE: 377 (ix) FEATURE: 378 (ix) FEATURE: 378 (ix) FEATURE: 379 (ix) FEATURE: 370 (ix) FEATU	ďΩ.
W> 367 (C) STRANDEDNESS: HEV - Burma strain (E) TOPOLOGY: linear W> 360 (ii) MOLECULE TYPE: DNA 362 (iii) HYPOTHETICAL: NO 364 (iv) ANTI-SENSE: DO 366 (vi) OFFISINAL DOUBCE: 366 (vi) OFFISINAL DOUBCE: 376 (iii) FEATUFE: 377 (iii) FEATUFE: 377 (iv) FEATUFE: 377 (iv) FEATUFE: 377 (iv) FEATUFE: 377 (iv) FEATUFE: 378 (iv) FEATUFE: 379 (iv) FEATUFE: 379 (iv) FEATUFE: 370 (iv) FEATUFE: 370 (iv) FEATUFE: 371 (iv) FEATUFE: 372 (iv) FEATUFE: 373 (iv) FEATUFE: 374 (iv) FEATUFE: 375 (iv) FEATUFE: 377 (iv) FEATUFE: 378 (iv) FEATUFE: 379 (iv) FEATUFE: 370 (iv) FEATUFE: 3	60
W> 367 318 (C) STRANDEDNESS: HEV - Burma strain (E) TOFOLOGY: linear W> 360 (ii) MOLECULE TYPE: DNA 362 362 363 (iv) ANTI-SENSE: NO 364 (iv) OFIGINAL COUPCE: 366 (iv) FEATURE: 367 (iv) FEATURE: 368 (iv) FEATURE: 369 (iv) FEATURE: 369 (iv) FEATURE: 360 (iv) FE	120
W> 367 218 (E) TOFOLOGY: linear W> 360 (ii) MOLECULE TYPE: DNA 362 364 (iv) ANTI-SENSE: DE 366 (vi) OFIGINAL COUPCE: 366 (vi) OFIGINAL COUPCE: 367 (iv) FEATURE: 368 (iv) FEATURE: 369 (iv) FEATURE: 369 (iv) FEATURE: 360 (iv) FEATURE: 360 (iv) FEATURE: 361 (iv) FEATURE: 362 (iv) FEATURE: 363 (iv) FEATURE: 364 (iv) FEATURE: 365 (iv) FEATURE: 366 (iv) FEATURE: 367 (iv) FEATURE: 368 (iv) FEATURE: 369 (iv) FEATURE: 360 (iv)	120 180
W> 367 (E) TOPOLOGY: linear W> 360 (ii) MOLECULE TYPE: DNA 362 3111 HYPOTHECICAL: IN 364 (iv) ANTI-SENSE: DE 366 (vi) OFIGINAL COUPCE: 367 371 (E) LOCATION: 385106 371 (E) LOCATION: 51407126 377 (IX) FEATURE: 378 (IX) FEATURE: 379 (IX) FEATURE: 371 (IX) FEATURE: 372 (IX) FEATURE: 373 (IX) FEATURE: 374 (IX) FEATURE: 375 (IX) FEATURE: 376 (IX) FEATURE: 377 (IX) FEATURE: 378 (IX) FEATURE: 379 (IX) FEATURE: 370 (IX) FEATURE: 370 (IX) FEATURE: 371 (IX) FEATURE: 371 (IX) FEATURE: 372 (IX) FEATURE: 373 (IX) FEATURE: 374 (IX) SEQUENCE DESCRIPTION: SEQ ID NO: 6: 375 (IX) SEQUENCE DESCRIPTION: SEQ ID NO: 6: 376 ATGAUTACTE CTATISASIA SECTIONIA SAGGGGGCA ACTETECCET GEOGRATICAL 38 OTESTASITA 38 OTE	120 180 240
W> 367 (C) STRANDEDNESS: HEV - Burma strain (P) TOFGLOSY: linear W> 360 (ii) MOLECULE TYPE: DNA 362 (iii) HYFDTHETICAL: NO 364 (iv) ADTI-SENSE: DE 366 (vi) OFFGLOSE: (iv) FFATURE: (iv) FFATU	120 180 240 300
W> 367 (C) STRANDEDNESS: HEV - Burma strain (E) TOFOLOGY: linear W> 360 (ii) MOLECULE TYPE: DNA 362 (iii) HYFOTHETICAL: DE 364 (iv) ADTI-SENSE: DE 366 (vi) OFIGINAL COURCE: 369 (iv) FEATURE: 370 (iv) FEATURE: 371 (iv) FEATURE: 374 (iv) FEATURE: 375 (iv) FEATURE: 376 (iv) FEATURE: 377 (iv) FEATURE: 378 (iv) FEATURE: 379 (iv) FEATURE: 370 (iv) FEATURE: 370 (iv) FEATURE: 371 (iv) FEATURE: 372 (iv) FEATURE: 373 (iv) FEATURE: 374 (iv) FEATURE: 375 (iv) FEATURE: 376 (iv) FEATURE: 377 (iv) FEATURE: 378 (iv) FEATURE: 379 (iv) FEATURE: 370 (iv) FEATURE: 371 (iv) FEATURE: 372 (iv) FEATURE: 373 (iv) FEATURE: 374 (iv) FEATURE: 375 (iv) FEATURE: 377 (iv) FEATURE: 378 (iv) FEATURE: 378 (iv) FEATURE: 379 (iv) FEATURE: 370 (iv) FEATURE: 3	120 180 240 300 360
W> 367 318 W> 360 (i) MOLECULE TYPE: DNA 362 364 (iv) MOLECULE TYPE: DNA 3652 364 (iv) ADTI-SENSE: DS 366 (vi) OFIGINAL COUPCE: 366 (vi) OFIGINAL COUPCE: 367 (iv) FEATURE: 368 (iv) FEATURE: 369 (iv) FEATURE: 369 (iv) FEATURE: 360 (iv) FEATURE: 360 (iv) FEATURE: 360 (iv) FEATURE: 360 (iv) FEATURE: 361 (iv) FEATURE: 361 (iv) FEATURE: 362 (iv) FEATURE: 363 (iv) FEATURE: 364 (iv) FEATURE: 365 (iv) FEATURE: 366 (iv) FEATURE: 367 (iv) FEATURE: 368 (iv) FEATURE: 369 (iv) FEATURE: 360 (iv) FEATUR	120 180 240 300 360 420
W> 367 (C) STRANDEDNESS: HEV - Burma strain (P) TOFOLOGY: linear W> 360 (ii) MOLECULE TYPE: DNA 362 :lii) HIT THETTOCH: IX 364 (iv) ADTIT-SENSE: IX 366 (vi) OFFISINAL COUPOR: 370 (a) MAME YEY: COS 371 (b) LOCATION: 38.19106 371 (ii) FEATURE: 374 A MAME YEY: JOS 371 (iii) FEATURE: 374 A MAME YEY: JOS 377 (iii) FEATURE: 378 (a) MAME YEY: DOS 379 (iii) FEATURE: 370 (iii) FEATURE: 371 (iii) FEATURE: 372 (iii) FEATURE: 373 (iii) FEATURE: 374 (a) MAME YEY: JOS 474 ABSTAGACIA CATATITITE DESCRIPTION: SE2 ID NO: 6: 475 ATTAGACIA GOCATION: SIGN. 5474 476 ATTAGACIA GOCATATITE TOTOCACIAG CAGATIGAGA TOTOCATAAA GOCATACAA 477 ATTAGACIA GOCATATICA DOCAGACIA CAGATIGAGA TOTOCATAAA GOCATACAA 478 ATTAGACIA GOCATATICA DOCAGACIA CAGATIGAGA TOTOCATAAA GOCATATICACAA 479 ATTAGACIA GOCATATICA DOCAGACIA CAGATIGAGA TOTOCATAAA GOCATATICACAA 470 ATTAGACIA GOCATATICA DOCAGACIA CAGATIGAGA COCACCAA GOCATACAA 471 ATTAGACIA GOCATATICA CAGACATATA CAGATIGACAA 472 ATTAGACIA GOCATATICA CAGACATATA CAGATICACAA GOCATATICAA 473 ATTAGACIA GOCATATICA CAGACATATA CAGATICACAA GOCATATICAA 474 ATTAGACIA GOCATATICA CAGACATATA CAGATICACAA GOCATATICAAAA CAGATIGACAA 475 ATTAGACAAAA TAGACAAAAAAAAAAAAAAAAAAAAAA	120 180 240 300 360 420 480
W> 367 (C) STRANDEDNESS: HEV - Burma strain (P) TOFOLOGY: linear W> 360 (ii) MOLECULE TYPE: DNA 362 :lii) HIT THETTOCH: IX 364 (iv) ADTIT-SENSE: IX 366 (vi) OFFISINAL COUPOR: 370 (a) MAME YEY: COS 371 (b) LOCATION: 38.19106 371 (ii) FEATURE: 374 A MAME YEY: JOS 371 (iii) FEATURE: 374 A MAME YEY: JOS 377 (iii) FEATURE: 378 (a) MAME YEY: DOS 379 (iii) FEATURE: 370 (iii) FEATURE: 371 (iii) FEATURE: 372 (iii) FEATURE: 373 (iii) FEATURE: 374 (a) MAME YEY: JOS 474 ABSTAGACIA CATATITITE DESCRIPTION: SE2 ID NO: 6: 475 ATTAGACIA GOCATION: SIGN. 5474 476 ATTAGACIA GOCATATITE TOTOCACIAG CAGATIGAGA TOTOCATAAA GOCATACAA 477 ATTAGACIA GOCATATICA DOCAGACIA CAGATIGAGA TOTOCATAAA GOCATACAA 478 ATTAGACIA GOCATATICA DOCAGACIA CAGATIGAGA TOTOCATAAA GOCATATICACAA 479 ATTAGACIA GOCATATICA DOCAGACIA CAGATIGAGA TOTOCATAAA GOCATATICACAA 470 ATTAGACIA GOCATATICA DOCAGACIA CAGATIGAGA COCACCAA GOCATACAA 471 ATTAGACIA GOCATATICA CAGACATATA CAGATIGACAA 472 ATTAGACIA GOCATATICA CAGACATATA CAGATICACAA GOCATATICAA 473 ATTAGACIA GOCATATICA CAGACATATA CAGATICACAA GOCATATICAA 474 ATTAGACIA GOCATATICA CAGACATATA CAGATICACAA GOCATATICAAAA CAGATIGACAA 475 ATTAGACAAAA TAGACAAAAAAAAAAAAAAAAAAAAAA	120 180 240 300 360 420
W> 367 318 W> 360 (i) MOLECULE TYPE: DNA 362 364 (iv) MOLECULE TYPE: DNA 3652 364 (iv) ADTI-SENSE: DS 366 (vi) OFIGINAL COUPCE: 366 (vi) OFIGINAL COUPCE: 367 (iv) FEATURE: 368 (iv) FEATURE: 369 (iv) FEATURE: 369 (iv) FEATURE: 360 (iv) FEATURE: 360 (iv) FEATURE: 360 (iv) FEATURE: 360 (iv) FEATURE: 361 (iv) FEATURE: 361 (iv) FEATURE: 362 (iv) FEATURE: 363 (iv) FEATURE: 364 (iv) FEATURE: 365 (iv) FEATURE: 366 (iv) FEATURE: 367 (iv) FEATURE: 368 (iv) FEATURE: 369 (iv) FEATURE: 360 (iv) FEATUR	120 180 240 300 360 420 480

VERIFICATION SUMMARY

PATENT APPLICATION: US/09/851,410

DATE: 06 15 0 1 TIME: 15:56:06

Imput Set : N:\Crf3\RULE60\09851410.txt
Output Set: N:\CRF3\06152001\I851410.raw

L:32 M:220 C: Keyword misspelled or invalid format, [A) APPLICATION NUMBER:] L:33 M:220 C: Keyword misspelled or invalid format, [B FILING DATE:] 1:50 M:346 M: Invalid value of Alpha Sequence Header Field, [MOLECULE TYLE:], SeqNo=1 1:231 M:246 W: Invalid value of Alpha Sequence Header Field, [MOLECULE TYFE:], SeqMo=3 L:273 M:246 W: Invalid value of Alpha Sequence Header Field, [MOLECULE TYFE:], SeqNo=4 1:294 M:246 W: Invalid value of Alpha Sequence Header Field, [MOLECULE TYPE:], SeqNo=5 L:367 M:227 C: Keyword misspelled or invalid r rmat, [300 STRANDEDNESS:] L:367 M:246 W: Invalid value of Alpha Sequence Header Field, [STRANDEDNECS:], SeqNo=6 1:36] M:240 W: Invalid value of Alpha Sequence Header Field, [MOLECULE TYPE:], SeqMc=6 L:1142 M:.:10 C: Keyword misspelled or invalid :c:mat, [.c) STRANDELNESS: L:1142 M:1:6 W: Invalid value of Alpha Sequence Header Field, [STRANDEDNESS:], SeqNo=10 L:1135 M:346 W: Invalid value of Alpha Sequence Header Field, [MOLECULE TYFE:], SeqNo=10 L:14:3 M:230 C: Reyword misspelled or invalid format, [10] STRANDEDNESS: L:14() M:146 W: Invalid value of Alpha Sequence Header Field, [STFANDEDNESS:], SeqUe=11 L:1396 M:146 W: Invalid value of Alpha Sequence Header Field, [MCLECULE TYFE:], SeqNo=11 L:1477 M:L10 C: Reyword misspelled or invalid format, [(C) STRANDEDNESS:) L:1477 M::46 W: Invalid value of Alpha Sequence Header Field, [STFANDEDNESS:], SeqNo=12 1:1470 M:146 W: Invalid value of Alpha Sequence Header Field, [MCLECULE TYPE:], SeqNo=12 L:1651 M: 20 C: Neyword misspelled or invalid format, [(C) STEANDEDNESS:] L:1651 M:146 W: Invalid value of Alpha Sequence Header Field, [STFANDEDNESS:], SeqNo=17 L:1600 M:220 C: Feyword misspelled or invalid format, ((C) STFANDEDNESS:) L:1650 M:346 W: Invalid value of Alpha Sequence Header Field, [STFANDEDNESS:], SeqNo=18 L:1708 M:230 C: Keyword misspelled or invalid format, ((C) STEANDEDNESS:) L:1708 M:246 W: Invalid value of Alpha Sequence Header Field, [STFANDEDNESS:], SeqNc=19 L:1736 M:220 C: Feyword misspelled or invalid format, [(C) STFANDEDNESS:) L:1736 M:246 W: Invalid value of Alpha Sequence Header Field, [STFANDEDNESS:], SeqNo=20