PATENT ABSTRACTS OF JAPAN

(11)Publication number:

05-185987

(43) Date of publication of application: 27.07.1993

(51)Int.Cl.

B63H 25/24 B63H 25/08

(21)Application number : **04-004886**

(71)Applicant: TOKIMEC INC

(22)Date of filing:

14.01.1992

(72)Inventor: MIYAYAMA TOSHIO

OSUGI SHOZO

YAMADA HIDEMITSU TAKAHASHI MAMORU

(54) AUTOMATIC STEERING DEVICE PROVIDED WITH MULTIPLE UNITS

(57)Abstract:

PURPOSE: To improve expansion ability by providing a plurality of units having different functions for each unit and a transmission route for connecting these units with each other to transmit information, and by adding a unit having a desired function when expansion of performance is required.

CONSTITUTION: An automatic steering device 8 comprises distributed function units such as an automatic steering unit 1, a steering control unit 2, a display operation unit 3, and a transmission route 9. The automatic steering unit 1 comprises an input azimuth part 44, a course setter 45, and a CPU 4 for calculating optimal steering angle, instructing the steering angle, and for carrying out communication and information

transmission among the units. The steering control unit 2 comprises a steering control part 46 based on the instruction of steering angle, a steering alarm input part 49 to which an operational signal is added from each part of a steering control system, and a CPU 5 for carrying out communication and information transmission among the units. The display operational unit 3 comprises am operational part 43 for setting parameters for switching systems and modes, a display part 42, an alarm process part 7, and a CPU 6 for carrying out

Searching PAJ Page 2 of 2

communication and information transmission among the units, and each function is processed in a distributed manner.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出類公開各号

特開平5-185987

(43)公開日 平成5年(1993)7月27日

(51)Int.CL5

識別記号

庁内整理番号

FΙ

技術表示箇所

B 6 3 H 25/24 25/08

Z 7721-3D

7721-3D

審査請求 未請求 請求項の数 8(全 6 頁)

(21)出期举号

特類平4-4886

(22)出駐日

平成 4年(1992) 1月14日

(71)出題人 000003388

株式会社トギメック

泉京都大田区南蒲田2丁目16番46号

(72)発明者 宮山 俊雄

東京都大田区南蒲田2丁目16番48号 株式

会社トキメック内

(72)発明者 大衫 正三

東京都大田区南涌田2丁目16番48号 株式

会社トキメック内

(72)発明者 山田 秀光

東京都大田区南藩田 2 丁目16番46号 株式

会社トキメック内

(74)代理人 弁理士 三品 岩男 (外2名)

最終頁に続く

(54)【発明の名称】 複数ユニットを有する自動操舵装置

(57)【要約】

【目的】拡張性の高い自動操舵装置を提供する。

【構成】自動操舵装置8は、方位情報と針路設定値を受 けて、舵取機47に舵の操作置を送り、舵取機47は、 舵を動かし、能取機47により船48の舵が動かされ る。自動操舵装置8は自動操舵ユニット1、舵制御ユニ ット2、表示操作ユニット3の機能分散ユニットと、伝 送路9とを有する。

1

【特許請求の箇囲】

【請求項1】設定針路と実際の針路に基づき舵機を制御 して船を設定針路上に保持する自動操舵装置において、 ユニットごとに異なる機能を有する複数のユニットと、 上記ユニット間を接続し、情報転送を行う伝送路とを有 することを特徴とする自動操舵装置。

【請求項2】設定針路と実際の針路に基づき舵機を制御 して船を設定針路上に保持する自動操舵装置において、 設定針路と実際の針路に基づき、緑能指令を出力する自 動操能ユニットと、

上記自動操舵ユニットからの指令に基づき舵制御信号を 出力する舵制御ユニットと

模能の状態を表示する表示操作ユニットと、

上記ユニット間を接続し、情報転送を行う伝送路とを有 することを特徴とする自動操舵装置。

【請求項3】請求項1または2記載の自動操舵装置にお

上記ユニットは、中央処理装置を有することを特徴とす。 る自動操舵装置。

において、

上記任送路は、ユニット相互間をループ状に接続するこ とを特徴とする自動操舵装置。

【請求項5】請求項4記哉の自動操舵装置において、 上記ループ上の伝送路は、2重化されていることを特徴 とする自動操舵装置。

【請求項6】請求項4または5記載の自動操舵装置にお

上記自動操舵ユニットおよび舵制御ユニットは、おのお の複数のユニットと、各ユニットを伝送路に接続するた 30 めの切替器とを有し、

一方のユニットが故障した時に他方に切り替えることを 特徴とする自動操舵装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、舵機を制御して船を設 定針路に保針する自動操舵装置、特に異なる機能を有す るユニットよりなる機能分散型の自動操舵装置に関す る。

[0002]

【従来の技術】従来、自動操舵装置としては、例えば図 4に示すようなものがある。

【0003】自動操舵装置50は、方位情報と針路設定 値を受けて、能取機4.7に能の操作量を送り、能取機4. 7は、舵を動かし、舵取機47により船48の能が動か される。自動操舵装置50は、中央処理装置(CPU) 41と、CPU41への指示を入力する操作部43と、 CPU41が計算した結果等を表示する表示部42と、 船の現在の方位情報が入力される方位入力部44と、設 等の各部で異常が発生したときに整報情報を入力する整 報入力部49と、CPUから舱角指令を受けて能取機4 7を制御する能制御部46とを有する。

【①①04】船が設定された針路を保針する様に、CP U41は、船型、船積ならびに積荷の状況などに基づく 船体動特性推定、船の位置や航路の計算、海泉条件を考 虚した最適操能制御、システムなどの自己点検や警報表 示などの各種機能を備えている。上記CPUを含む1つ のユニットを介して録船に係わる全ての操作が行われて 10 いた。

[0005]

【発明が解決しようとする課題】しかしながら、このよ うな従来の自動操舵装置にあっては、単一のユニットで 全てのユーザの要求を満たすようにする場合、高性能で 多機能を備えたCPUを使う必要があるが、このような CPUは規模が大きく、使用者側の要求仕様に応じて多 数の機能の中から必要な機能のみを選択して使用するた め、システムが不経済である。

【0006】また、システムの拡張性、柔軟性に欠け、 【請求項4】請求項1、2または3記載の自動操能装置 20 オブション機能の付加が迅速に行えないばかりでなく、 最小の機能を有するシステム機成とする場合に無駄が多 La.

> 【①①①7】また、CPUを含む演算制御部内で故障が 発生すると、規模が大きく且つコストが高いモジュール 全体の交換を行わなければならない。

> 【りり08】また、バックアップシステムが容易に得ら れないので信頼性向上が図れないという問題点があっ

【①①①9】本発明は、このような従来の問題点に着目 してなされたもので、拡張性の高い自動操舵装置を提供 することを目的とする。

[0010]

【課題を解決するための手段】上記目的を達成するため に、本発明は、設定針路と実際の針路に基づき能機を制 御して船を設定針路上に保持する自動操舵装置におい

て、ユニットごとに異なる機能を有する複数のユニット と、上記ユニット間を接続し、情報転送を行う伝送路と を育することとしたものである。

[0011]

40 【作用】設定針路と実際の針路に基づき舵機を制御して 船を設定針路上に保持する自動操舵装置において、複数 のユニットは、ユニットごとに異なる機能を有し、伝送。 路により上記ユニット間を接続し、情報転送を行う。こ のため、機能を拡張するためには、拡張したい機能を有 するユニットを追加すれば良く、柔軟性がある。

[0012]

【実能例】以下、本発明の実施例を図面に基づいて説明 する。

【①①13】図1は、本発明の一箕筋倒を示す図であ 定したい針路が入力される針路設定器45と、操舵装置 50 る。まず構成を説明する。自動操舵装置8は、方位情報

3

と針路設定値を受けて、舵取機4.7に舵の操作量を送 り、能取機47は、舵を動かし、舵取機47により船4 8の能が動かされる。自動操舵装置8は自動操舵ユニッ ト1、舵制御ユニット2、表示操作ユニット3の機能分 散ユニットと、伝送路9とを有する。

【① ①14】自動操舵ユニット1は、針路や予定航路を 設定し、船の現在の針路からその偏差を検知して、針路 保針のための操舵指令の発生、ならびに船体動特性や最 適制御の演算などが行われる。

からの指令に基づき針路の保持や変針のための能制御信 号の能取機47への供給。ならびに能制御系各部ユニッ トの故障点検が行われる。

【① 016】表示操作ユニット3は、実舵角、操舵方 向、偏角、旋回角速度などの表示、自己点検や各種部位 の故障警報、ならびにモード切替、制御用パラメータの 設定。デイマなどの操作が行われる。

【0017】機能分散された上記コニットは個別にコン トロール機能を備えているので、それぞれのハードは規 模が小さくでき、保守点鏡が容易で、サービスコストが、20 り正常ユニット間にて作動が継続して行え、信頼性が向 低減できる。

【①①18】各ユニットのCPU間の通信は、伝送路9 と変復調器により各ユニット間でインタフュースをとっ て双方向に行われ、インタフェースはRS232c.R \$422などに規格化されて、ユニット内部の変更は通 信へ影響しないように行える。

【10019】従って本装置は、システムの拡張性、柔軟 性ならびに信頼性が向上できる。

【①①20】さらに、各ユニットについて詳細に述べ る。自動操舵ユニット1は、船の現在の針踏を示すジャ 30 イロコンパスなどからの方位信号が加わる入力方位部4 4. 針路設定器45、針路保持のための最適舵角演算な らびに舵角指令およびユニット間の通信や情報転送を行 うCPU4を有する。

【①021】能制御ユニット2は、自動操舵ユニット1 からの舵角指令に基づく舵副御信号を出力する舵副御部 4.6 舵制御系の各部位からの作動信号が加わる能警報 入力部49、ユニット間の通信や情報転送を行うCPU 5を有する。

ード切替、制御用パラメータ設定などの操作部43、操 舵モード、実能角、緑舵方向、偏角、旋回角速度などの 表示部42、各種部位の作動レベルと関値との比較によ る異常報知などの警報処理部7、ユニット間の通信や情 報転送を行うCPU6を有する。

【0023】 各機能を分散処理することにより、安価な CPUを使用したユニットを用い全体として高性能なら びに高機能を備えたシステムが構成できる。

【0024】各ユニットは個別に独立した機能を分担し 且つ各ユニット間の通信が規格化できるので、ユニット 50 たユニットとそうでないユニットが混在しても構成可能

の機能変更や仕様変更が容易になりシステムは柔軟性や 拡張性が向上できる。

【0025】機能拡張を行う場合も基本ユニットを変更 する必要がない。

【①026】図2には、他の実施例を示す。

【0027】自動綠蛇装置25は、方位情報と針路設定 値を受けて(図示しない) 舵取機47に舵の操作置を 送り、舵取機4?は、舵を動かし、舵取機47により船 4.8の舵が動かされる。自動操舵装置2.5は自動操舵ユ 【0015】範訓御ユニット2は、自動縁蛇ユニット1 10 ニット21、範訓御ユニット22、表示繰作ユニット2 3の機能分散ユニットと 任送路26とを有する。

> 【0028】機能分散されたユニットは相互接続する伝 送路26がループ状をなすように配置する。各ユニット はコントロール機能を分散して値え、受信した情報を伝 送路26へ再度送信すると共に当該ユニットの情報も送 信する。この結果何れのユニット間の通信も行える。ま た破線にて示す任送路27を付加すると、通信ならびに 情報転送の方向が反転できるので、伝送路26、27の 一部断線やユニットが不良になっても折り返し通信によ 上できる。

> 【①①29】この実施例によると、送信、受信各一系統 のループ状伝送路を用いて各ユニット間の通信が行え て、オプションユニットが容易に追加できシステムの拡 張性が向上できる。

> 【① 030】逆方向に伝送する送信。受信のループを設 けると、ループに一部断線やユニット不良が発生して も、正常ユニット間の通信ができ作動が継続できるので 信頼性が向上できる。

【①①31】図3には、さらに他の実施例を示す。自動 操舵装置31は、方位情報と針路設定値を受けて(図示 しない〉、舵取機A47A、舵取機B47Bに能の操作 置を送る。自動操舵装置31は自動操舵ユニットA3 2. 自動操舵ユニットB33、舵制御ユニットA34、 舵副御ユニットB35、表示操作ユニット36の機能分 散ユニットと、伝送路37と、切替器38を有する。

【①①32】自動操舵及び舵制御ユニットはそれぞれこ 重化され、どちらか一方が通信器に接続されるように模 成する。自動操能ユニット、舵制御ユニット及び舵取機 [0022]表示操作ユニット3は、システム切替、モ 40 は信頼性向上の為に2系統設けて、切替使用できるよう にする。故障の場合に各ユニットを切替器38を介して 通信路に接続することで、 故障が発生したユニットを正 焦ユニットに切り替えたり、故障ユニットを切り能した。 りして使用することができ、冗長性を有したシステムを 容易に構成することができる。これは特に二重化されて いるユニットと二重化されていないユニットがシステム 内に混在している場合に有効である。

> 【①①33】この実施例によると、冗長性を有した様々 なシステム機成が容易に実現できる。また、二重化され

5

でシステムの自由な組み合せができる。

[0034]

【発明の効果】以上説明してきたように、本発明によれ は、拡張性の高い自動線能装置を提供することができ ス

【図面の簡単な説明】

【図1】この発明の一実施例を示す自動媒施装置を含む 船のブロック図。 *【図2】この発明の他の実施例を示す自動操舵装置を含む船のブロック図。

【図3】この発明のさらに他の実施例を示す自動操舵装 置を含む船のブロック図。

【図4】従来の自動媒舵装置を含む船のブロック図。 【符号の説明】

1…自動操舵ユニット、2…舵制御ユニット、3…豪示 操作ユニット、8…自動操能装置、9…伝送路。

[図1]

[🔯 2]

2 2

[23]

3

フロントページの続き

(72)発明者 高橋 護

東京都大田区南浦田2丁目16番46号 株式

会社トキメック内