Descomposición en Valores Singulares (SVD)

Clase 06 - 15/05/2024

Métodos Numéricos - 1er Cuatrimestre 2024 Gonzalo Ruarte

■ Sea $A \in \mathbb{R}^{m \times n}$ una matriz con rango $r \leqslant min(n, m)$

- Sea $A \in \mathbb{R}^{m \times n}$ una matriz con rango $r \leq min(n, m)$
- Entonces A se puede factorizar como $A = U\Sigma V^t$ donde:

- Sea $A \in \mathbb{R}^{m \times n}$ una matriz con rango $r \leqslant min(n, m)$
- Entonces A se puede factorizar como $A = U\Sigma V^t$ donde:
 - $U \in \mathbb{R}^{m \times m}$ es ortogonal.
 - $V \in \mathbb{R}^{n \times n}$ es ortogonal.
 - $\Sigma \in \mathbb{R}^{n \times n}$ es diagonal.

- Sea $A \in \mathbb{R}^{m \times n}$ una matriz con rango $r \leqslant min(n, m)$
- Entonces A se puede factorizar como $A = U\Sigma V^t$ donde:
 - $U \in \mathbb{R}^{m \times m}$ es ortogonal.
 - $V \in \mathbb{R}^{n \times n}$ es ortogonal.
 - $\Sigma \in \mathbb{R}^{n \times n}$ es diagonal.
 - $\sigma_{11} \geqslant \sigma_{22}... \geqslant \sigma_{rr} > 0$
 - $\sigma_{ii} = 0 \ \forall \ i > r$

- Sea $A \in \mathbb{R}^{m \times n}$ una matriz con rango $r \leqslant min(n, m)$
- Entonces A se puede factorizar como $A = U\Sigma V^t$ donde:
 - $U \in \mathbb{R}^{m \times m}$ es ortogonal.
 - $V \in \mathbb{R}^{n \times n}$ es ortogonal.
 - $\Sigma \in \mathbb{R}^{n \times n}$ es diagonal.
 - $\sigma_{11} \geqslant \sigma_{22}... \geqslant \sigma_{rr} > 0$
 - $\sigma_{ii} = 0 \ \forall \ i > r$
 - Los σ_{ii} son los valores singulares (en general los notamos con σ_i en lugar de σ_{ii}).

■ Sea $B \in \mathbb{R}^{n \times n}$, qué podemos decir de B si es simétrica? (recordar práctica 5).

- Sea $B \in \mathbb{R}^{n \times n}$, qué podemos decir de B si es simétrica? (recordar práctica 5).
- $\blacksquare B = QDQ^t$

- Sea $B \in \mathbb{R}^{n \times n}$, qué podemos decir de B si es simétrica? (recordar práctica 5).
- $\blacksquare B = QDQ^t$
- Sea $A \in \mathbb{R}^{m \times n}$ una matriz con rango $r \leqslant min(n, m)$ tal que $A = U \Sigma V^t$.

- Sea $B \in \mathbb{R}^{n \times n}$, qué podemos decir de B si es simétrica? (recordar práctica 5).
- $\blacksquare B = QDQ^t$
- Sea $A \in \mathbb{R}^{m \times n}$ una matriz con rango $r \leqslant min(n, m)$ tal que $A = U\Sigma V^t$. ¿Cómo podemos hacer uso de la propiedad anterior?

- Sea $B \in \mathbb{R}^{n \times n}$, qué podemos decir de B si es simétrica? (recordar práctica 5).
- $\blacksquare B = QDQ^t$
- Sea $A \in \mathbb{R}^{m \times n}$ una matriz con rango $r \leqslant min(n, m)$ tal que $A = U\Sigma V^t$. ¿Cómo podemos hacer uso de la propiedad anterior? ¿Podemos construir una matriz simétrica a partir de A?

- Sea $B \in \mathbb{R}^{n \times n}$, qué podemos decir de B si es simétrica? (recordar práctica 5).
- $\blacksquare B = QDQ^t$
- Sea $A \in \mathbb{R}^{m \times n}$ una matriz con rango $r \leqslant min(n, m)$ tal que $A = U\Sigma V^t$. ¿Cómo podemos hacer uso de la propiedad anterior? ¿Podemos construir una matriz simétrica a partir de A?
- \blacksquare AA^t

- Sea $B \in \mathbb{R}^{n \times n}$, qué podemos decir de B si es simétrica? (recordar práctica 5).
- $\blacksquare B = QDQ^t$
- Sea $A \in \mathbb{R}^{m \times n}$ una matriz con rango $r \leqslant min(n, m)$ tal que $A = U\Sigma V^t$. ¿Cómo podemos hacer uso de la propiedad anterior? ¿Podemos construir una matriz simétrica a partir de A?
- $AA^t = (AA^t)^t$ (es simétrica)

- Sea $B \in \mathbb{R}^{n \times n}$, qué podemos decir de B si es simétrica? (recordar práctica 5).
- $\blacksquare B = QDQ^t$
- Sea $A \in \mathbb{R}^{m \times n}$ una matriz con rango $r \leqslant min(n, m)$ tal que $A = U\Sigma V^t$. ¿Cómo podemos hacer uso de la propiedad anterior? ¿Podemos construir una matriz simétrica a partir de A?
- $AA^t = (AA^t)^t = U\Sigma V^t (U\Sigma V^t)^t$

- Sea $B \in \mathbb{R}^{n \times n}$, qué podemos decir de B si es simétrica? (recordar práctica 5).
- $\blacksquare B = QDQ^t$
- Sea $A \in \mathbb{R}^{m \times n}$ una matriz con rango $r \leqslant min(n, m)$ tal que $A = U\Sigma V^t$. ¿Cómo podemos hacer uso de la propiedad anterior? ¿Podemos construir una matriz simétrica a partir de A?
- $AA^t = (AA^t)^t = U\Sigma V^t (U\Sigma V^t)^t = U\Sigma V^t V\Sigma^t U^t$

- Sea $B \in \mathbb{R}^{n \times n}$, qué podemos decir de B si es simétrica? (recordar práctica 5).
- $\blacksquare B = QDQ^t$
- Sea $A \in \mathbb{R}^{m \times n}$ una matriz con rango $r \leqslant min(n, m)$ tal que $A = U\Sigma V^t$. ¿Cómo podemos hacer uso de la propiedad anterior? ¿Podemos construir una matriz simétrica a partir de A?
- $AA^t = (AA^t)^t = U\Sigma V^t (U\Sigma V^t)^t = U\Sigma V^t V \Sigma^t U^t = U\Sigma \Sigma^t U^t$

- Sea $B \in \mathbb{R}^{n \times n}$, qué podemos decir de B si es simétrica? (recordar práctica 5).
- $\blacksquare B = QDQ^t$
- Sea $A \in \mathbb{R}^{m \times n}$ una matriz con rango $r \leqslant min(n, m)$ tal que $A = U\Sigma V^t$. ¿Cómo podemos hacer uso de la propiedad anterior? ¿Podemos construir una matriz simétrica a partir de A?
- $AA^t = (AA^t)^t = U\Sigma V^t (U\Sigma V^t)^t = U\Sigma V^t V\Sigma^t U^t = U\Sigma \Sigma^t U^t$ $(\Sigma = \Sigma^t?)$

- Sea $B \in \mathbb{R}^{n \times n}$, qué podemos decir de B si es simétrica? (recordar práctica 5).
- $\blacksquare B = QDQ^t$
- Sea $A \in \mathbb{R}^{m \times n}$ una matriz con rango $r \leqslant min(n, m)$ tal que $A = U\Sigma V^t$. ¿Cómo podemos hacer uso de la propiedad anterior? ¿Podemos construir una matriz simétrica a partir de A?
- $AA^t = (AA^t)^t = U\Sigma V^t (U\Sigma V^t)^t = U\Sigma V^t V\Sigma^t U^t = U\Sigma \Sigma^t U^t$ = UDU^t con $D = \Sigma \Sigma^t$

- Sea $B \in \mathbb{R}^{n \times n}$, qué podemos decir de B si es simétrica? (recordar práctica 5).
- $\blacksquare B = QDQ^t$
- Sea $A \in \mathbb{R}^{m \times n}$ una matriz con rango $r \leqslant min(n, m)$ tal que $A = U\Sigma V^t$. ¿Cómo podemos hacer uso de la propiedad anterior? ¿Podemos construir una matriz simétrica a partir de A?
- Con un razonamiento similar llegamos a $A^tA = VD'V^t$ con $D' = \Sigma^t\Sigma$

- Sea $B \in \mathbb{R}^{n \times n}$, qué podemos decir de B si es simétrica? (recordar práctica 5).
- $\blacksquare B = QDQ^t$
- Sea $A \in \mathbb{R}^{m \times n}$ una matriz con rango $r \leqslant min(n, m)$ tal que $A = U\Sigma V^t$. ¿Cómo podemos hacer uso de la propiedad anterior? ¿Podemos construir una matriz simétrica a partir de A?
- $AA^t = (AA^t)^t = U\Sigma V^t (U\Sigma V^t)^t = U\Sigma V^t V\Sigma^t U^t = U\Sigma \Sigma^t U^t$ = UDU^t con $D = \Sigma \Sigma^t$
- Con un razonamiento similar llegamos a $A^tA = VD'V^t$ con $D' = \Sigma^t\Sigma$ (D = D'?)

- Sea $B \in \mathbb{R}^{n \times n}$, qué podemos decir de B si es simétrica? (recordar práctica 5).
- $\blacksquare B = QDQ^t$
- Sea $A \in \mathbb{R}^{m \times n}$ una matriz con rango $r \leqslant min(n, m)$ tal que $A = U\Sigma V^t$. ¿Cómo podemos hacer uso de la propiedad anterior? ¿Podemos construir una matriz simétrica a partir de A?
- $AA^t = (AA^t)^t = U\Sigma V^t (U\Sigma V^t)^t = U\Sigma V^t V\Sigma^t U^t = U\Sigma \Sigma^t U^t$ = UDU^t con $D = \Sigma \Sigma^t$
- Con un razonamiento similar llegamos a $A^tA = VD'V^t$ con $D' = \Sigma^t\Sigma$
- Qué podemos decir de U y de V?

- Sea $B \in \mathbb{R}^{n \times n}$, qué podemos decir de B si es simétrica? (recordar práctica 5).
- $\blacksquare B = QDQ^t$
- Sea $A \in \mathbb{R}^{m \times n}$ una matriz con rango $r \leqslant min(n, m)$ tal que $A = U\Sigma V^t$. ¿Cómo podemos hacer uso de la propiedad anterior? ¿Podemos construir una matriz simétrica a partir de A?
- $AA^t = (AA^t)^t = U\Sigma V^t (U\Sigma V^t)^t = U\Sigma V^t V\Sigma^t U^t = U\Sigma \Sigma^t U^t$ = UDU^t con $D = \Sigma \Sigma^t$
- Con un razonamiento similar llegamos a $A^tA = VD'V^t$ con $D' = \Sigma^t\Sigma$
- Qué podemos decir de U y de V?
- Sea v_i columna de V con $1 \le i \le n$ (para u_i y U el razonamiento es similar):

■ Sea $B \in \mathbb{R}^{n \times n}$, qué podemos decir de B si es simétrica? (recordar práctica 5).

- $\blacksquare B = QDQ^t$
- Sea $A \in \mathbb{R}^{m \times n}$ una matriz con rango $r \leqslant min(n, m)$ tal que $A = U\Sigma V^t$. ¿Cómo podemos hacer uso de la propiedad anterior? ¿Podemos construir una matriz simétrica a partir de A?
- $AA^t = (AA^t)^t = U\Sigma V^t (U\Sigma V^t)^t = U\Sigma V^t V\Sigma^t U^t = U\Sigma \Sigma^t U^t$ = UDU^t con $D = \Sigma \Sigma^t$
- Con un razonamiento similar llegamos a $A^tA = VD'V^t$ con $D' = \Sigma^t\Sigma$
- Qué podemos decir de U y de V?
- Sea v_i columna de V con $1 \le i \le n$ (para u_i y U el razonamiento es similar):
- $\blacksquare A^t A v_i$

■ Sea $B \in \mathbb{R}^{n \times n}$, qué podemos decir de B si es simétrica? (recordar práctica 5).

- $\blacksquare B = QDQ^t$
- Sea $A \in \mathbb{R}^{m \times n}$ una matriz con rango $r \leqslant min(n, m)$ tal que $A = U\Sigma V^t$. ¿Cómo podemos hacer uso de la propiedad anterior? ¿Podemos construir una matriz simétrica a partir de A?
- $AA^t = (AA^t)^t = U\Sigma V^t (U\Sigma V^t)^t = U\Sigma V^t V\Sigma^t U^t = U\Sigma \Sigma^t U^t$ = UDU^t con $D = \Sigma \Sigma^t$
- Con un razonamiento similar llegamos a $A^tA = VD'V^t$ con $D' = \Sigma^t\Sigma$
- Qué podemos decir de U y de V?
- Sea v_i columna de V con $1 \le i \le n$ (para u_i y U el razonamiento es similar):
- $A^t A v_i = V \Sigma^t \Sigma V^t v_i$

■ Sea $B \in \mathbb{R}^{n \times n}$, qué podemos decir de B si es simétrica? (recordar práctica 5).

- $\blacksquare B = QDQ^t$
- Sea $A \in \mathbb{R}^{m \times n}$ una matriz con rango $r \leqslant min(n, m)$ tal que $A = U\Sigma V^t$. ¿Cómo podemos hacer uso de la propiedad anterior? ¿Podemos construir una matriz simétrica a partir de A?
- $AA^t = (AA^t)^t = U\Sigma V^t (U\Sigma V^t)^t = U\Sigma V^t V\Sigma^t U^t = U\Sigma \Sigma^t U^t$ = UDU^t con $D = \Sigma \Sigma^t$
- Con un razonamiento similar llegamos a $A^tA = VD'V^t$ con $D' = \Sigma^t\Sigma$
- Qué podemos decir de U y de V?
- Sea v_i columna de V con $1 \le i \le n$ (para u_i y U el razonamiento es similar):
- $A^t A v_i = V \Sigma^t \Sigma V^t v_i = V \Sigma^t \Sigma e_i$

■ Sea $B \in \mathbb{R}^{n \times n}$, qué podemos decir de B si es simétrica? (recordar práctica 5).

- $\blacksquare B = QDQ^t$
- Sea $A \in \mathbb{R}^{m \times n}$ una matriz con rango $r \leqslant min(n, m)$ tal que $A = U\Sigma V^t$. ¿Cómo podemos hacer uso de la propiedad anterior? ¿Podemos construir una matriz simétrica a partir de A?
- $AA^t = (AA^t)^t = U\Sigma V^t (U\Sigma V^t)^t = U\Sigma V^t V\Sigma^t U^t = U\Sigma \Sigma^t U^t$ = UDU^t con $D = \Sigma \Sigma^t$
- Con un razonamiento similar llegamos a $A^tA = VD'V^t$ con $D' = \Sigma^t\Sigma$
- Qué podemos decir de U y de V?
- Sea v_i columna de V con $1 \le i \le n$ (para u_i y U el razonamiento es similar):
- $A^t A v_i = V \Sigma^t \Sigma V^t v_i = V \Sigma^t \Sigma e_i = V \Sigma^t \sigma_i e_i$

■ Sea $B \in \mathbb{R}^{n \times n}$, qué podemos decir de B si es simétrica? (recordar práctica 5).

- $\blacksquare B = QDQ^t$
- Sea $A \in \mathbb{R}^{m \times n}$ una matriz con rango $r \leqslant min(n, m)$ tal que $A = U\Sigma V^t$. ¿Cómo podemos hacer uso de la propiedad anterior? ¿Podemos construir una matriz simétrica a partir de A?
- $AA^t = (AA^t)^t = U\Sigma V^t (U\Sigma V^t)^t = U\Sigma V^t V\Sigma^t U^t = U\Sigma \Sigma^t U^t$ = UDU^t con $D = \Sigma \Sigma^t$
- Con un razonamiento similar llegamos a $A^tA = VD'V^t$ con $D' = \Sigma^t\Sigma$
- Qué podemos decir de U y de V?
- Sea v_i columna de V con $1 \le i \le n$ (para u_i y U el razonamiento es similar):
- $A^t A v_i = V \Sigma^t \Sigma V^t v_i = V \Sigma^t \Sigma e_i = V \Sigma^t \sigma_i e_i = V \Sigma^t e_i \sigma_i$

■ Sea $B \in \mathbb{R}^{n \times n}$, qué podemos decir de B si es simétrica? (recordar práctica 5).

- $\blacksquare B = QDQ^t$
- Sea $A \in \mathbb{R}^{m \times n}$ una matriz con rango $r \leqslant min(n, m)$ tal que $A = U\Sigma V^t$. ¿Cómo podemos hacer uso de la propiedad anterior? ¿Podemos construir una matriz simétrica a partir de A?
- $AA^t = (AA^t)^t = U\Sigma V^t (U\Sigma V^t)^t = U\Sigma V^t V\Sigma^t U^t = U\Sigma \Sigma^t U^t$ = UDU^t con $D = \Sigma \Sigma^t$
- Con un razonamiento similar llegamos a $A^tA = VD'V^t$ con $D' = \Sigma^t\Sigma$
- Qué podemos decir de U y de V?
- Sea v_i columna de V con $1 \le i \le n$ (para u_i y U el razonamiento es similar):
- $A^t A v_i = V \Sigma^t \Sigma V^t v_i = V \Sigma^t \Sigma e_i = V \Sigma^t \sigma_i e_i = V \Sigma^t e_i \sigma_i = V e_i \sigma_i \sigma_i$

■ Sea $B \in \mathbb{R}^{n \times n}$, qué podemos decir de B si es simétrica? (recordar práctica 5).

- $\blacksquare B = QDQ^t$
- Sea $A \in \mathbb{R}^{m \times n}$ una matriz con rango $r \leqslant min(n, m)$ tal que $A = U\Sigma V^t$. ¿Cómo podemos hacer uso de la propiedad anterior? ¿Podemos construir una matriz simétrica a partir de A?
- $AA^t = (AA^t)^t = U\Sigma V^t (U\Sigma V^t)^t = U\Sigma V^t V\Sigma^t U^t = U\Sigma \Sigma^t U^t$ = UDU^t con $D = \Sigma \Sigma^t$
- lacksquare Con un razonamiento similar llegamos a $A^tA=VD'V^t$ con $D'=\Sigma^t\Sigma$
- Qué podemos decir de U y de V?
- Sea v_i columna de V con $1 \le i \le n$ (para u_i y U el razonamiento es similar):
- $A^t A v_i = V \Sigma^t \Sigma V^t v_i = V \Sigma^t \Sigma e_i = V \Sigma^t \sigma_i e_i = V \Sigma^t e_i \sigma_i = V e_i \sigma_i \sigma_i$ = $v_i \sigma_i^2 = \sigma_i^2 v_i$

- Sea $B \in \mathbb{R}^{n \times n}$, qué podemos decir de B si es simétrica? (recordar práctica 5).
- $\blacksquare B = QDQ^t$
- Sea $A \in \mathbb{R}^{m \times n}$ una matriz con rango $r \leqslant min(n, m)$ tal que $A = U\Sigma V^t$. ¿Cómo podemos hacer uso de la propiedad anterior? ¿Podemos construir una matriz simétrica a partir de A?
- Con un razonamiento similar llegamos a $A^tA = VD'V^t$ con $D' = \Sigma^t\Sigma$
- Qué podemos decir de U y de V?
- Sea v_i columna de V con $1 \le i \le n$ (para u_i y U el razonamiento es similar):
- $A^t A v_i = V \Sigma^t \Sigma V^t v_i = V \Sigma^t \Sigma e_i = V \Sigma^t \sigma_i e_i = V \Sigma^t e_i \sigma_i = V e_i \sigma_i \sigma_i$ = $v_i \sigma_i^2 = \frac{\sigma_i^2 v_i}{\sigma_i^2}$, entonces v_i es autovector de $A^t A$ con autovalor σ_i^2 asociado.

■ Sea $A \in \mathbb{R}^{m \times n}$ una matriz con rango $r \leqslant min(n, m)$ tal que $A = U\Sigma V^t$. Sean v_i, u_i columnas de V y de U respectivamente con $1 \leqslant i \leqslant r$.

- Sea $A \in \mathbb{R}^{m \times n}$ una matriz con rango $r \leqslant min(n, m)$ tal que $A = U\Sigma V^t$. Sean v_i, u_i columnas de V y de U respectivamente con $1 \leqslant i \leqslant r$.
- $A = U\Sigma V^t \Rightarrow Av_i = U\Sigma V^t v_i$

- Sea $A \in \mathbb{R}^{m \times n}$ una matriz con rango $r \leqslant min(n, m)$ tal que $A = U\Sigma V^t$. Sean v_i, u_i columnas de V y de U respectivamente con $1 \leqslant i \leqslant r$.
- $A = U \Sigma V^t \Rightarrow A v_i = U \Sigma V^t v_i = U \Sigma e_i$

- Sea $A \in \mathbb{R}^{m \times n}$ una matriz con rango $r \leqslant min(n, m)$ tal que $A = U\Sigma V^t$. Sean v_i, u_i columnas de V y de U respectivamente con $1 \leqslant i \leqslant r$.
- $A = U\Sigma V^t \Rightarrow Av_i = U\Sigma V^t v_i = U\Sigma e_i = U\sigma_i e_i$

- Sea $A \in \mathbb{R}^{m \times n}$ una matriz con rango $r \leqslant min(n, m)$ tal que $A = U\Sigma V^t$. Sean v_i, u_i columnas de V y de U respectivamente con $1 \leqslant i \leqslant r$.
- $A = U\Sigma V^t \Rightarrow Av_i = U\Sigma V^t v_i = U\Sigma e_i = U\sigma_i e_i = Ue_i\sigma_i$

- Sea $A \in \mathbb{R}^{m \times n}$ una matriz con rango $r \leqslant min(n, m)$ tal que $A = U\Sigma V^t$. Sean v_i, u_i columnas de V y de U respectivamente con $1 \leqslant i \leqslant r$.
- $A = U\Sigma V^t \Rightarrow Av_i = U\Sigma V^t v_i = U\Sigma e_i = U\sigma_i e_i = Ue_i\sigma_i = u_i\sigma_i$ $\Rightarrow u_i = Av_i/\sigma_i$
- Análogamente $v_i = A^t u_i / \sigma_i$

$$A^{t} = V \Sigma U^{t} \Rightarrow A^{t} U_{i} = V \Sigma U^{t}_{U_{i}} = V \Sigma e_{t} = V e_{t} e_{i} = V_{i} e_{i}$$

$$\Rightarrow V^{*}_{i} = \frac{A^{t} U_{i}}{U^{*}_{i}}$$

■ Sea $A \in \mathbb{R}^{m \times n}$ una matriz con rango $r \leqslant min(n, m)$ tal que $A = U\Sigma V^t$. Sean v_i, u_i columnas de V y de U respectivamente con $1 \leqslant i \leqslant r$.

SVD

- $A = U\Sigma V^t \Rightarrow Av_i = U\Sigma V^t v_i = U\Sigma e_i = U\sigma_i e_i = Ue_i \sigma_i = u_i \sigma_i$ $\Rightarrow u_i = Av_i/\sigma_i$
- Análogamente $v_i = A^t u_i / \sigma_i$
- De qué nos sirve esto?

■ Sea $A \in \mathbb{R}^{m \times n}$ una matriz con rango $r \leqslant min(n, m)$ tal que $A = U \Sigma V^t$. Sean v_i, u_i columnas de V y de U respectivamente con $1 \leqslant i \leqslant r$.

SVD

- $A = U\Sigma V^t \Rightarrow Av_i = U\Sigma V^t v_i = U\Sigma e_i = U\sigma_i e_i = Ue_i \sigma_i = u_i \sigma_i$ $\Rightarrow u_i = Av_i/\sigma_i$
- Análogamente $v_i = A^t u_i / \sigma_i$
- De qué nos sirve esto? En principio podemos obtener las primeras r columnas de U a partir de V (y Σ) y viceversa.
- Para las columnas restantes qué hacemos? Nos basta con calcular los autovectores y autovalores de A^tA para conseguir tanto V como U?

■ Pensemos la factorización SVD en bloques: $A = U\Sigma V^t = \begin{pmatrix} U_{11} & U_{12} \end{pmatrix} \begin{pmatrix} \sum_{11} & \sum_{12} \\ \sum_{21} & \sum_{22} \end{pmatrix} \begin{pmatrix} V_{21} \\ V_{21} \end{pmatrix}$ con $\Sigma_{11} \in \mathbb{R}^{r \times r}$.

- Pensemos la factorización SVD en bloques: $A = U\Sigma V^t = \begin{pmatrix} u_{11} & u_{12} \end{pmatrix} \begin{pmatrix} \sum_{11} & \sum_{12} \\ \sum_{21} & \sum_{22} \end{pmatrix} \begin{pmatrix} v_{11} \\ v_{21} \end{pmatrix}$ con $\Sigma_{11} \in \mathbb{R}^{r \times r}$.
- Entonces $\Sigma_{12} \in \mathbb{R}^{r \times n r}$, $\Sigma_{21} \in \mathbb{R}^{m r \times r}$, $\Sigma_{22} \in \mathbb{R}^{m r \times n r}$, $U_{11} \in \mathbb{R}^{m \times r}$, $U_{12} \in \mathbb{R}^{m \times m r}$, $V_{11} \in \mathbb{R}^{r \times n}$, $V_{21} \in \mathbb{R}^{n r \times n}$.

- Pensemos la factorización SVD en bloques: $A = U\Sigma V^t = \begin{pmatrix} U_{11} & U_{12} \end{pmatrix} \begin{pmatrix} \sum_{11} & \sum_{12} \\ \sum_{21} & \sum_{22} \end{pmatrix} \begin{pmatrix} V_{11} \\ V_{21} \end{pmatrix}$ con $\Sigma_{11} \in \mathbb{R}^{r \times r}$.
- Entonces $\Sigma_{12} \in \mathbb{R}^{r \times n-r}$, $\Sigma_{21} \in \mathbb{R}^{m-r \times r}$, $\Sigma_{22} \in \mathbb{R}^{m-r \times n-r}$, $U_{11} \in \mathbb{R}^{m \times r}$, $U_{12} \in \mathbb{R}^{m \times m-r}$, $V_{11} \in \mathbb{R}^{r \times n}$, $V_{21} \in \mathbb{R}^{n-r \times n}$.
- Además $\Sigma_{12}, \Sigma_{21}, \Sigma_{22} = 0$

- Pensemos la factorización SVD en bloques: $A = U\Sigma V^t = \begin{pmatrix} \upsilon_{11} \ \upsilon_{12} \end{pmatrix} \begin{pmatrix} \Sigma_{11} \ \Sigma_{22} \end{pmatrix} \begin{pmatrix} V_{21} \ V_{21} \end{pmatrix}$ con $\Sigma_{11} \in \mathbb{R}^{r \times r}$.
- Entonces $\Sigma_{12} \in \mathbb{R}^{r \times n r}$, $\Sigma_{21} \in \mathbb{R}^{m r \times r}$, $\Sigma_{22} \in \mathbb{R}^{m r \times n r}$, $U_{11} \in \mathbb{R}^{m \times r}$, $U_{12} \in \mathbb{R}^{m \times m r}$, $V_{11} \in \mathbb{R}^{r \times n}$, $V_{21} \in \mathbb{R}^{n r \times n}$.
- Además $\Sigma_{12}, \Sigma_{21}, \Sigma_{22} = 0$
- Resumen: $A = U\Sigma V^t = \begin{pmatrix} U_{11} & U_{12} \end{pmatrix} \begin{pmatrix} \Sigma_{11} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} V_{11} \\ V_{21} \end{pmatrix}$

■ Pensemos la factorización SVD en bloques: $A = U\Sigma V^t = \begin{pmatrix} \upsilon_{11} \ \upsilon_{12} \end{pmatrix} \begin{pmatrix} \Sigma_{11} \ \Sigma_{22} \ \Sigma_{21} \ \Sigma_{22} \end{pmatrix} \begin{pmatrix} v_{11} \ \upsilon_{21} \end{pmatrix}$ con $\Sigma_{11} \in \mathbb{R}^{r \times r}$.

- Entonces $\Sigma_{12} \in \mathbb{R}^{r \times n r}$, $\Sigma_{21} \in \mathbb{R}^{m r \times r}$, $\Sigma_{22} \in \mathbb{R}^{m r \times n r}$, $U_{11} \in \mathbb{R}^{m \times r}$, $U_{12} \in \mathbb{R}^{m \times m r}$, $V_{11} \in \mathbb{R}^{r \times n}$, $V_{21} \in \mathbb{R}^{n r \times n}$.
- Además $\Sigma_{12}, \Sigma_{21}, \Sigma_{22} = 0$
- Resumen: $A = U \Sigma V^t = \begin{pmatrix} U_{11} & U_{12} \end{pmatrix} \begin{pmatrix} \Sigma_{11} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} V_{11} \\ V_{21} \end{pmatrix}$

SVD

• Si hacemos las cuentas nos queda $A = U_{11}\Sigma_{11}V_{11}$.

■ Pensemos la factorización SVD en bloques: $A = U\Sigma V^t = \begin{pmatrix} U_{11} & U_{12} \end{pmatrix} \begin{pmatrix} \sum_{11} & \sum_{12} \\ \sum_{21} & \sum_{22} \end{pmatrix} \begin{pmatrix} V_{21} \\ V_{21} \end{pmatrix}$ con $\Sigma_{11} \in \mathbb{R}^{r \times r}$.

- Entonces $\Sigma_{12} \in \mathbb{R}^{r \times n-r}$, $\Sigma_{21} \in \mathbb{R}^{m-r \times r}$, $\Sigma_{22} \in \mathbb{R}^{m-r \times n-r}$, $U_{11} \in \mathbb{R}^{m \times r}$, $U_{12} \in \mathbb{R}^{m \times m-r}$, $V_{11} \in \mathbb{R}^{r \times n}$, $V_{21} \in \mathbb{R}^{n-r \times n}$.
- Además $\Sigma_{12}, \Sigma_{21}, \Sigma_{22} = 0$
- Resumen: $A = U \Sigma V^t = \begin{pmatrix} U_{11} & U_{12} \end{pmatrix} \begin{pmatrix} \Sigma_{11} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} V_{11} \\ V_{21} \end{pmatrix}$

SVD

- Si hacemos las cuentas nos queda $A = U_{11}\Sigma_{11}V_{11}$.
- La slide anterior nos decía que de las primeras r columnas de U podemos ir a las primeras r columnas de V trivialmente y viceversa.

SVD 5/10

Propiedades

Pensemos la factorización SVD en bloques: $A = U\Sigma V^t = \begin{pmatrix} U_{11} & U_{12} \end{pmatrix} \begin{pmatrix} \sum_{11} & \sum_{12} \\ \sum_{21} & \sum_{22} \end{pmatrix} \begin{pmatrix} V_{11} \\ V_{21} \end{pmatrix}$ con $\Sigma_{11} \in \mathbb{R}^{r \times r}$.

- Entonces $\Sigma_{12} \in \mathbb{R}^{r \times n r}$, $\Sigma_{21} \in \mathbb{R}^{m r \times r}$, $\Sigma_{22} \in \mathbb{R}^{m r \times n r}$, $U_{11} \in \mathbb{R}^{m \times r}$, $U_{12} \in \mathbb{R}^{m \times m r}$, $V_{11} \in \mathbb{R}^{r \times n}$, $V_{21} \in \mathbb{R}^{n r \times n}$.
- Además $\Sigma_{12}, \Sigma_{21}, \Sigma_{22} = 0$
- Resumen: $A = U\Sigma V^t = \begin{pmatrix} U_{11} & U_{12} \end{pmatrix} \begin{pmatrix} \Sigma_{11} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} V_{11} \\ V_{21} \end{pmatrix}$
- Si hacemos las cuentas nos queda $A = U_{11}\Sigma_{11}V_{11}$.
- La slide anterior nos decía que de las primeras r columnas de U podemos ir a las primeras r columnas de V trivialmente y viceversa.
- Ahora además sabemos que para las columnas de U restantes (o filas de V^t) debemos completarlas de forma tal que nos quede una matriz ortogonal, pero no es necesario conseguir los autovectores y autovalores tanto de A^tA como de AA^t , con una sola de ellas nos basta.

Con esto pueden hacer toda la práctica 6.

SVD 6/10

Con esto pueden hacer toda la práctica 6.

- 7) Sea $A \in \mathbb{R}^{n \times n}$, con A una matriz simétrica definida positiva. Demostrar que los autovalores de A coinciden con sus valores singulares.
- $A \text{ es SDP} \Rightarrow A = LL^t$

- 7) Sea $A \in \mathbb{R}^{n \times n}$, con A una matriz simétrica definida positiva. Demostrar que los autovalores de A coinciden con sus valores singulares.
 - $A \text{ es SDP} \Rightarrow A = LL^t$
 - $L = U\Sigma V^t$

- 7) Sea $A \in \mathbb{R}^{n \times n}$, con A una matriz simétrica definida positiva. Demostrar que los autovalores de A coinciden con sus valores singulares.
 - $A \text{ es SDP} \Rightarrow A = LL^t$
 - $L = U\Sigma V^t$
 - lacktriangle Por ej 1 P6 U son los autovectores de A puestos como columnas. Por definición de SVD en Σ están ordenados de mayor a menor los valores singulares de L.

- 7) Sea $A \in \mathbb{R}^{n \times n}$, con A una matriz simétrica definida positiva. Demostrar que los autovalores de A coinciden con sus valores singulares.
- $A \text{ es SDP} \Rightarrow A = LL^t$
- $L = U\Sigma V^t$
- Por ej 1 P6 U son los autovectores de A puestos como columnas. Por definición de SVD en Σ están ordenados de mayor a menor los valores singulares de L.
- $II^t = U\Sigma V^t V\Sigma^t U^t$

- 7) Sea $A \in \mathbb{R}^{n \times n}$, con A una matriz simétrica definida positiva. Demostrar que los autovalores de A coinciden con sus valores singulares.
- $A \text{ es SDP} \Rightarrow A = LL^t$
- $L = U\Sigma V^t$
- Por ej 1 P6 U son los autovectores de A puestos como columnas. Por definición de SVD en Σ están ordenados de mayor a menor los valores singulares de L.
- $II^t = U\Sigma V^t V\Sigma^t U^t$

- 7) Sea $A \in \mathbb{R}^{n \times n}$, con A una matriz simétrica definida positiva. Demostrar que los autovalores de A coinciden con sus valores singulares.
- $A \text{ es SDP} \Rightarrow A = LL^t$
- $L = U\Sigma V^t$
- Por ej 1 P6 U son los autovectores de A puestos como columnas. Por definición de SVD en Σ están ordenados de mayor a menor los valores singulares de L.
- $\blacksquare LL^t = U\Sigma V^t V\Sigma^t U^t = U\Sigma \Sigma^t U^t$

- 7) Sea $A \in \mathbb{R}^{n \times n}$, con A una matriz simétrica definida positiva. Demostrar que los autovalores de A coinciden con sus valores singulares.
- $A \text{ es SDP} \Rightarrow A = LL^t$
- $L = U\Sigma V^t$
- Por ej 1 P6 U son los autovectores de A puestos como columnas. Por definición de SVD en Σ están ordenados de mayor a menor los valores singulares de L.
- $\blacksquare LL^t = U\Sigma V^t V\Sigma^t U^t = U\Sigma \Sigma^t U^t$
- Nombro $D = \Sigma \Sigma^t$, y obtengo $A = UDU^t$

- 7) Sea $A \in \mathbb{R}^{n \times n}$, con A una matriz simétrica definida positiva. Demostrar que los autovalores de A coinciden con sus valores singulares.
 - $A \text{ es SDP} \Rightarrow A = LL^t$
 - $L = U\Sigma V^t$
 - Por ej 1 P6 U son los autovectores de A puestos como columnas. Por definición de SVD en Σ están ordenados de mayor a menor los valores singulares de L.
 - $\blacksquare LL^t = U\Sigma V^t V\Sigma^t U^t = U\Sigma \Sigma^t U^t$
 - Nombro $D = \Sigma \Sigma^t$, y obtengo $A = UDU^t$
 - Si en Σ los valores de la diagonal están ordenados de mayor a menor, en D también porque son los mismos valores al cuadrado.

7) Sea $A \in \mathbb{R}^{n \times n}$, con A una matriz simétrica definida positiva. Demostrar que los autovalores de A coinciden con sus valores singulares.

SVD

- $A \text{ es SDP} \Rightarrow A = LL^t$
- $L = U\Sigma V^t$
- Por ej 1 P6 U son los autovectores de A puestos como columnas. Por definición de SVD en Σ están ordenados de mayor a menor los valores singulares de L.
- $\blacksquare LL^t = U\Sigma V^t V\Sigma^t U^t = U\Sigma \Sigma^t U^t$
- Nombro $D = \Sigma \Sigma^t$, y obtengo $A = UDU^t$
- Si en Σ los valores de la diagonal están ordenados de mayor a menor, en D también porque son los mismos valores al cuadrado.
- Obtuve una diagonalización (ortogonal) de A que a su vez cumple con la definición de SVD.

- 7) Sea $A \in \mathbb{R}^{n \times n}$, con A una matriz simétrica definida positiva. Demostrar que los autovalores de A coinciden con sus valores singulares.
 - $A \text{ es SDP} \Rightarrow A = LL^t$
 - $L = U\Sigma V^t$
 - Por ej 1 P6 U son los autovectores de A puestos como columnas. Por definición de SVD en Σ están ordenados de mayor a menor los valores singulares de L.
 - $\blacksquare LL^t = U\Sigma V^t V\Sigma^t U^t = U\Sigma \Sigma^t U^t$
 - Nombro $D = \Sigma \Sigma^t$, y obtengo $A = UDU^t$
 - Si en Σ los valores de la diagonal están ordenados de mayor a menor, en D también porque son los mismos valores al cuadrado.
 - Obtuve una diagonalización (ortogonal) de A que a su vez cumple con la definición de SVD.
 - Por lo tanto los valores singulares de A coinciden con sus autovalores.

- 8) Supongamos que $A \in \mathbb{R}^{m \times n}$ tiene columnas ortogonales w1, w2, ..., wn donde $||w_i||_2 = \alpha_i > 0$. Calcular A^tA y hallar las matrices U, Σ y V de una descomposición en valores singulares de A.
 - A tiene columnas ortogonales $\Rightarrow (A^tA)_{ij} =$

- 8) Supongamos que $A \in \mathbb{R}^{m \times n}$ tiene columnas ortogonales w1, w2, ..., wn donde $||w_i||_2 = \alpha_i > 0$. Calcular A^tA y hallar las matrices U, Σ y V de una descomposición en valores singulares de A.
 - A tiene columnas ortogonales $\Rightarrow (A^t A)_{ij} = \alpha_i^2$ si i=j, 0 sino.

- 8) Supongamos que $A \in \mathbb{R}^{m \times n}$ tiene columnas ortogonales w1, w2, ..., wn donde $||w_i||_2 = \alpha_i > 0$. Calcular A^tA y hallar las matrices U, Σ y V de una descomposición en valores singulares de A.
 - A tiene columnas ortogonales $\Rightarrow (A^t A)_{ij} = \alpha_i^2$ si i=j, 0 sino.
 - Entonces $A^tA \in \mathbb{R}^{n \times n}$ es diagonal con sus elementos de la diagonal positivos.

- 8) Supongamos que $A \in \mathbb{R}^{m \times n}$ tiene columnas ortogonales w1, w2, ..., wn donde $||w_i||_2 = \alpha_i > 0$. Calcular A^tA y hallar las matrices U, Σ y V de una descomposición en valores singulares de A.
 - A tiene columnas ortogonales $\Rightarrow (A^t A)_{ij} = \alpha_i^2$ si i=j, 0 sino.
 - Entonces $A^t A \in \mathbb{R}^{n \times n}$ es diagonal con sus elementos de la diagonal positivos.
 - Sus autovectores son la base canónica (matriz identidad).

8) Supongamos que $A \in \mathbb{R}^{m \times n}$ tiene columnas ortogonales w1, w2, ..., wn donde $||w_i||_2 = \alpha_i > 0$. Calcular A^tA y hallar las matrices U, Σ y V de una descomposición en valores singulares de A.

- A tiene columnas ortogonales $\Rightarrow (A^t A)_{ij} = \alpha_i^2$ si i=j, 0 sino.
- Entonces $A^t A \in \mathbb{R}^{n \times n}$ es diagonal con sus elementos de la diagonal positivos.
- Sus autovectores son la base canónica (matriz identidad).
- Si $\alpha_1 \geqslant \alpha_2 \geqslant ... \geqslant \alpha_n$, entonces podría decir que $\Sigma = D$ con $d_{ii} = \alpha_i$ y $V = I_n$

- 8) Supongamos que $A \in \mathbb{R}^{m \times n}$ tiene columnas ortogonales w1, w2, ..., wn donde $||w_i||_2 = \alpha_i > 0$. Calcular A^tA y hallar las matrices U, Σ y V de una descomposición en valores singulares de A.
 - A tiene columnas ortogonales $\Rightarrow (A^t A)_{ij} = \alpha_i^2$ si i=j, 0 sino.
 - Entonces $A^tA \in \mathbb{R}^{n \times n}$ es diagonal con sus elementos de la diagonal positivos.
 - Sus autovectores son la base canónica (matriz identidad).
 - Si $\alpha_1 \geqslant \alpha_2 \geqslant ... \geqslant \alpha_n$, entonces podría decir que $\Sigma = D$ con $d_{ii} = \alpha_i$ y $V = I_n$
 - Para obtener U pongo los w_i/α_i como columnas (para que tengan norma = 1) y completo con el complemento ortogonal.

8) Supongamos que $A \in \mathbb{R}^{m \times n}$ tiene columnas ortogonales w1, w2, ..., wn donde $||w_i||_2 = \alpha_i > 0$. Calcular A^tA y hallar las matrices U, Σ y V de una descomposición en valores singulares de A.

- A tiene columnas ortogonales $\Rightarrow (A^t A)_{ij} = \alpha_i^2$ si i=j, 0 sino.
- Entonces $A^t A \in \mathbb{R}^{n \times n}$ es diagonal con sus elementos de la diagonal positivos.
- Sus autovectores son la base canónica (matriz identidad).

SVD

- Si $\alpha_1 \geqslant \alpha_2 \geqslant ... \geqslant \alpha_n$, entonces podría decir que $\Sigma = D$ con $d_{ii} = \alpha_i$ y $V = I_n$
- Para obtener U pongo los w_i/α_i como columnas (para que tengan norma = 1) y completo con el complemento ortogonal.
- Como no estamos seguros de que $\alpha_1 \geqslant \alpha_2 \geqslant ... \geqslant \alpha_n$ defino matrices de permutación B y C que reordenan los elementos de D de mayor a menor.

8) Supongamos que $A \in \mathbb{R}^{m \times n}$ tiene columnas ortogonales w1, w2, ..., wn donde $||w_i||_2 = \alpha_i > 0$. Calcular A^tA y hallar las matrices U, Σ y V de una descomposición en valores singulares de A.

- A tiene columnas ortogonales $\Rightarrow (A^t A)_{ij} = \alpha_i^2$ si i=j, 0 sino.
- Entonces $A^t A \in \mathbb{R}^{n \times n}$ es diagonal con sus elementos de la diagonal positivos.
- Sus autovectores son la base canónica (matriz identidad).

SVD

- Si $\alpha_1 \geqslant \alpha_2 \geqslant ... \geqslant \alpha_n$, entonces podría decir que $\Sigma = D$ con $d_{ii} = \alpha_i$ y $V = I_n$
- Para obtener U pongo los w_i/α_i como columnas (para que tengan norma = 1) y completo con el complemento ortogonal.
- Como no estamos seguros de que $\alpha_1 \geqslant \alpha_2 \geqslant ... \geqslant \alpha_n$ defino matrices de permutación B y C que reordenan los elementos de D de mayor a menor.
- Entonces $A = UB^tBDCC^tV^t = U'\Sigma'V'^t$ donde $U' = UB^t, \Sigma' = BDC, V'^t = C^tV^t = C^t$

- 9) Sea $A \in \mathbb{R}^{m \times n}$, $m \geqslant n$, con $A = Q \begin{pmatrix} R \\ 0 \end{pmatrix}$ descomposición QR de A (con $R \in \mathbb{R}^{n \times n}$). Hallar una descomposición SVD de A asumiendo que $R = U \Sigma V^t$ es una descomposición SVD de R.
 - $A = Q(\begin{smallmatrix} R \\ 0 \end{smallmatrix}) = Q(\begin{smallmatrix} U \Sigma V^t \\ 0 \end{smallmatrix})$

- 9) Sea $A \in \mathbb{R}^{m \times n}$, $m \geqslant n$, con $A = Q \begin{pmatrix} R \\ 0 \end{pmatrix}$ descomposición QR de A (con $R \in \mathbb{R}^{n \times n}$). Hallar una descomposición SVD de A asumiendo que $R = U \Sigma V^t$ es una descomposición SVD de R.
 - $A = Q(\begin{smallmatrix} R \\ 0 \end{smallmatrix}) = Q(\begin{smallmatrix} U\Sigma V^t \\ 0 \end{smallmatrix})$
 - Podemos reescribir esto convenientemente como una multiplicación de matrices?

- 9) Sea $A \in \mathbb{R}^{m \times n}$, $m \geqslant n$, con $A = Q \begin{pmatrix} R \\ 0 \end{pmatrix}$ descomposición QR de A (con $R \in \mathbb{R}^{n \times n}$). Hallar una descomposición SVD de A asumiendo que $R = U \Sigma V^t$ es una descomposición SVD de R.
 - $A = Q(\begin{smallmatrix} R \\ 0 \end{smallmatrix}) = Q(\begin{smallmatrix} U\Sigma V^t \\ 0 \end{smallmatrix})$
 - Podemos reescribir esto convenientemente como una multiplicación de matrices?

- 9) Sea $A \in \mathbb{R}^{m \times n}$, $m \geqslant n$, con $A = Q \begin{pmatrix} R \\ 0 \end{pmatrix}$ descomposición QR de A (con $R \in \mathbb{R}^{n \times n}$). Hallar una descomposición SVD de A asumiendo que $R = U \Sigma V^t$ es una descomposición SVD de R.
 - $A = Q(\begin{smallmatrix} R \\ 0 \end{smallmatrix}) = Q(\begin{smallmatrix} U\Sigma V^t \\ 0 \end{smallmatrix})$
 - Podemos reescribir esto convenientemente como una multiplicación de matrices?
 - $\bullet \left(\begin{smallmatrix} U\Sigma V^t \\ 0 \end{smallmatrix}\right) = \left(\begin{smallmatrix} U\Sigma \\ 0 \end{smallmatrix}\right) V^t$
- $\begin{pmatrix} U\Sigma \\ 0 \end{pmatrix} = \begin{pmatrix} U & 0 \\ 0 & I \end{pmatrix} \begin{pmatrix} \Sigma \\ 0 \end{pmatrix}$ metemos la I para asegurarnos la ortogonalidad de la matriz.

- 9) Sea $A \in \mathbb{R}^{m \times n}$, $m \geqslant n$, con $A = Q \begin{pmatrix} R \\ 0 \end{pmatrix}$ descomposición QR de A (con $R \in \mathbb{R}^{n \times n}$). Hallar una descomposición SVD de A asumiendo que $R = U \Sigma V^t$ es una descomposición SVD de R.
 - $A = Q(\begin{smallmatrix} R \\ 0 \end{smallmatrix}) = Q(\begin{smallmatrix} U\Sigma V^t \\ 0 \end{smallmatrix})$
 - Podemos reescribir esto convenientemente como una multiplicación de matrices?
 - $\bullet \left(\begin{smallmatrix} U\Sigma V^t \\ 0 \end{smallmatrix}\right) = \left(\begin{smallmatrix} U\Sigma \\ 0 \end{smallmatrix}\right) V^t$
 - $\binom{U\Sigma}{0} = \binom{U}{0}\binom{0}{I}\binom{\Sigma}{0}$ metemos la I para asegurarnos la ortogonalidad de la matriz.
 - $A = Q\begin{pmatrix} R \\ 0 \end{pmatrix} = Q\begin{pmatrix} U & 0 \\ 0 & I \end{pmatrix}\begin{pmatrix} \Sigma \\ 0 \end{pmatrix}V^t$ es la descomposición SVD que buscábamos.

- 9) Sea $A \in \mathbb{R}^{m \times n}$, $m \geqslant n$, con $A = Q \begin{pmatrix} R \\ 0 \end{pmatrix}$ descomposición QR de A (con $R \in \mathbb{R}^{n \times n}$). Hallar una descomposición SVD de A asumiendo que $R = U \Sigma V^t$ es una descomposición SVD de R.
 - $A = Q(\begin{smallmatrix} R \\ 0 \end{smallmatrix}) = Q(\begin{smallmatrix} U\Sigma V^t \\ 0 \end{smallmatrix})$
 - Podemos reescribir esto convenientemente como una multiplicación de matrices?
 - $\bullet \left(\begin{smallmatrix} U\Sigma V^t \\ 0 \end{smallmatrix}\right) = \left(\begin{smallmatrix} U\Sigma \\ 0 \end{smallmatrix}\right) V^t$
 - $\binom{U\Sigma}{0} = \binom{U}{0}\binom{0}{I}\binom{\Sigma}{0}$ metemos la I para asegurarnos la ortogonalidad de la matriz.
 - $A = Q\begin{pmatrix} R \\ 0 \end{pmatrix} = Q\begin{pmatrix} U & 0 \\ 0 & I \end{pmatrix}\begin{pmatrix} \Sigma \\ 0 \end{pmatrix}V^t$ es la descomposición SVD que buscábamos.
 - $U' = Q(\begin{smallmatrix} U & 0 \\ 0 & I \end{smallmatrix})$, producto de ortogonales es ortogonal.

Ejercicio de parcial

Sea $A \in \mathbb{R}^{n \times n}$ una matriz tal que $\operatorname{rg}(A) = r > 1$ y $A = U \Sigma V^t$ su descomposición SVD. Sean además $u_1, ..., u_n$ las columnas de U, $v1, ..., v_n$ las columnas de V, y $\sigma_1, ..., \sigma_r$ sus valores singulares no nulos. Siendo B = A - $\sigma_1 u_1 v_1^t$, probar:

- 1. $v_1 \in Nu(B)$
- 2. Bw = Aw para todo vector w ortogonal a v_1 .
- 3. $\sigma_2, ..., \sigma_r$ son valores singulares de B.
- 4. Los vectores $v_2, ..., v_r$ se encuentran en el espacio fila de B.

SVD