Welcome to the UV Cotastrophe.

Blackbody radiation A black body is an idealised object that
- Does not reflect my light at any wavelength
- Absorbs internally all incident light (none
shines out the other side) > ie is perfectly black (vontablack is close) All bodies on crist electromagnetic energy.
Paul Hollywood (and other humans) Penits at
300K > infrared
300K army night vision goggles For the blackbody, the emission spectrum is only from this thermal emission (no reflection etc.) Hotter things are brighter and bluer (high energy) short wavelength) Think of hotter flores going blue Blackbody Radiation Spectra 11 Classical themodynamic gets the blackbody spectrum totally wrong - especially at small wavelengths or "i'm catastrople"

Blackbody spectrum:

I(1) 1 Theory

that T

low T

IR

I(1) is the intensity per wavelength, at a wavelength \ I, intensity, is the total energy per time, I=SI(A) D ie Pont pet area, adding up all colours

I is one under curve > total light

Empirial results:

· Stefan - Bottzmann Law:

$$I = 6T4$$

$$5 \text{ lefan - Bottzmann constant}$$

$$6 = 5.67 \times 10^{8}$$

$$W \text{ m}^{2} \text{ K}^{-4}$$

- Why does classical thermodynamics break? Model I(1) spectrum by slotting standing waves into a cavity Consider a 17 cavity of leigh L N=1 N=2 N=3 N=(Big number)"Covity modes" - He only allowed waves in there Amplitud: $af(x) = Sin(\frac{N\pi x}{L})$, $n = 1, 2, 3... \infty$ Thode number? - Relationship between n and 1 $\lambda = \frac{2L}{n}$ (look at the pictures above:) =) number of modes per wavelength, $n(\lambda) = \frac{2L}{\lambda}$

Classically: $I(\lambda) \propto \frac{1}{\lambda} (k_{BT}) \propto \frac{1}{\lambda^{2}}$ \wedge $(\lambda) \wedge \frac{1}{\lambda}$ derinty of modes at a modes at a $I(\lambda)$ $\lambda \frac{1}{\lambda^2}$ \rightarrow for $\lambda \Rightarrow 0$, $I(\lambda) \Rightarrow \infty$ => CATASTROPHE - In 3P, same argument gives $\Lambda(\lambda) = \frac{1}{\sqrt{3}}$ => $I(\lambda) = \frac{2\pi c}{\sqrt{4}} k_B T$ (Rayleigh-Jeans Law) CATASTROPHE - works at large λ though The problem is the 'koT' bit. The assumption is that all cavity modes have an average energy koT - "Equiportition Theorem" - you will meet this in later courses. In brief: Probability distribution of energies is Boltzmann distribution: $P(E) = \frac{e^{-k_{B}T}}{k_{B}T} = \frac{e^{-k_{B}T$ Average energy: $E = \int_{0}^{\infty} E \rho(E) dE = k_{B}T$ $= k_{B}T$ $= k_{B}T$ (see problem set)

rugers (desperate Compy!):	5
Energy comes in discrete packets 'quenta', that are proportional to frequency	
Stiking this into the Partition Function of Statistical mechanics (will learn this in later	
Striking this into the Partition Function of statistical mechanics (will learn this in later courses, don't worry now!), we get an average energy: E(1) = hc/x instead of ksi E(1) = hc/x	
Looking at limits:	
F (1-300): hc << 1 hc keT Lander consultation of the consult	
So $E(1) \simeq \frac{hc}{\lambda}$ Region states $\frac{hc}{\lambda} = \frac{hc}{\lambda}$	
Classical behavious recovered at low energy	

