

FACULTÉ DES SCIENCES ET DE GÉNIE
DÉPARTEMENT DE GÉNIE ÉLECTRIQUE ET DE GÉNIE INFORMATIQUE

GEL-19962 Analyse de signaux Jérôme Genest

Examen partiel

Date: Mercredi le 5 novembre 2008

Durée: de 13h30 à 15h20

SALLE: VCH-2850

Cet examen vaut 40% de la note finale.

Remarques:

- i) L'utilisation d'une calculatrice est permise.
- ii) Aucun document n'est permis durant l'examen.
- iii) Seule la liste des formules fournie à la fin du questionnaire est permise.
- iv) Votre carte d'identité doit être placée sur votre bureau en conformité avec le règlement de la Faculté.

Problème 1 (15 points)

Fonction périodique

- a) Calculez la transformation de Fourier $F(\omega)$ de la fonction f(t) illustrée ci-haut.
- b) Tracez le spectre $F(\omega)$
- c) Quel est le ratio entre la puissance totale du signal et la puissance contenue sur l'intervalle $\omega = [4\pi, 8\pi]$?
- d) Quel est le taux de décroissance des modes de ce spectre?

Problème 2 (10 points)

- a) Calculez et tracez la transformation de Fourier de f(t) = Rect(t-10) + Rect(t+10).
- b) Calculez et tracez la transformation de Fourier de $g(t) = f(t) \times \cos(100t)$.

Problème 3 (15 points)

Soit un peigne de fréquence décalé et limité par une boîte:

$$F(\omega) = \delta_{\omega_s}(\omega - \omega_o) \times \text{Rect}(\frac{\omega - \omega_o}{5\omega_s})$$

avec $\omega_s = 1$ et $\omega_o = 100.5$ pour simplifier les calculs.

- a) Tracez le spectre $F(\omega)$.
- b) Est-ce un signal à énergie finie ? Est-ce un signal à puissance finie ? Pourquoi ?
- c) Exprimez $F(\omega)$ comme une somme d'impulsions. Écrire explicitement chaque impulsion (i.e. ne pas utiliser la notation Σ).
- d) Calculez f(t) la transformation inverse de $F(\omega)$.
- e) Soit un second peigne $G(\omega)$ tel que:

$$G(\omega) = \delta_{1.1\omega_s}(\omega - \omega_o) \times \text{Rect}(\frac{\omega - \omega_o}{5\omega_o})$$

Tracez le spectre des deux peignes sur le même graphique.

- f) Écrire la transformation de Fourier inverse du second peigne.
- g) Un photodétecteur mesure $h(t) = f(t) \times g(t)$. Calculez les 25 fréquences présentes dans le spectre de battement $H(\omega)$ et tracez $H(\omega)$, la transformation de Fourier de h(t).
- h) Fournissez une interprétation de l'impact du second peigne sur le premier en utilisant la propriété de décalage spectral.
- i) Qu'est-ce qui se arrive à $H(\omega)$ si un mécanisme (comme une raie d'absorption d'un gaz) retire une des dents à $\omega = 100.5$? Considérez que seule la dent du 1er peigne disparait, puis ensuite que seule la dent du second peigne et évaluez enfin l'impact sur $H(\omega)$ si les raies de chaque peigne à $\omega = 100.5$ disparaissent.
- j) Si les fréquences décalées des peignes sont trop rapides pour être mesurées par de l'équipement électronique moderne, pouvez-vous proposer une méthode permettant de déduire toute altération d'un des spectres originaux $F(\omega)$ et $G(\omega)$ en observant $H(\omega)$? Dans le cas présent, par quel facteur les appareils peuvent-ils être plus lents que s'ils mesuraient directement les fréquences de $F(\omega)$ ou de $G(\omega)$?