Introdução aos Sistemas Digitais

CPCX – UFMS
Prof. Renato F. dos Santos

1.2 Sistemas Analógicos e Digitais

- Um Sistema digital é uma combinação de dispositivos projetados para manipular informações lógicas ou quantidades físicas que são representadas no formato digital.
 - Esses dispositivos, são na maioria das vezes, eletrônicos, mas podem ser mecânicos, magnéticos ou pneumáticos.

1.2 Sistemas Analógicos e Digitais (Continuação)

- Um sistema analógico contém dispositivos que manipulam quantidades físicas que são representadas na forma analógica.
 - Exemplo, amplificadores de áudio, equipamentos de gravação/reprodução de fita magnética e um simples regulador de luminosidade (dimmer).

Vantagens das técnicas digitais

 Cada vez mais aplicações na eletrônica utilizam técnicas digitais para implementar suas funções

Vantagens das técnicas digitais (Continuação)

- Os principais motivos da migração para a tecnologia digital são:
 - 1. Os sistemas digitais são geralmente mais fáceis de serem projetados.
 - 2. O armazenamento de informações é mais fácil.
 - 3. É mais fácil manter a precisão e exatidão em todo o sistema.
 - 4. As operações podem ser programadas.
 - 5. Os circuitos digitais são menos afetados por ruído.

Vantagens das técnicas digitais (Continuação)

6. CIs (chips) digitais podem ser fabricados com mais dispositivos internos.

Limitações das técnicas digitais

- Há poucas desvantagens quando se usam técnicas digitais.
- Os dois principais problemas são:
 - O mundo real é quase totalmente analógico.
 Processar sinais digitalizados leva tempo.
- Como exemplo temos:
 - A temperatura, a pressão, a posição, a velocidade, o nível de um líquido e a vazão, entre outros.

Limitações das técnicas digitais (Continuação)

- Para obter as vantagens das técnicas digitais quando lidamos com entradas e saídas analógicas quatro passos devem ser seguidos:
 - 1. Converter a variável física em um sinal elétrico (analógico)
 - 2. Converter as entradas elétricas (analógicas) do mundo real no formato digital.
 - 3. Realizar o processamento (operação) da informação digital.
 - 4. Converter as saídas digitais de volta ao formato analógico (o formato do mundo real)

FIGURA 1.1 Diagrama de um sistema de controle de temperatura de precisão que utiliza processamento digital.

Limitações das técnicas digitais (Continuação)

- É comum ocorrer o uso das técnicas analógica e digital no mesmo sistema
- Nos sistemas híbridos a dificuldade é definir onde usar cada técnica

1.3 Sistemas de numeração digital

- Há muitos sistemas de numeração em uso na tecnologia digital
- Os mais comuns são:
 - Decimal
 - Binário
 - Octal
 - Hexadecimal

Sistema decimal

- Composto de 10 numerais ou símbolos
 - 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9.
- Sistema de valor posicional no qual o valor de cada dígito depende de sua posição no número.
 - Considere o número decimal 453
 - 4 → 4 centenas
 - $5 \rightarrow 5$ dezenas
 - $3 \rightarrow 3$ unidades

Sistema decimal (Continuação)

- MSD Dígito mais significativo
 - Possui maior peso
- LSD Dígito menos signigicativo
 - Possui o menor peso
- No decimal 453
 - 4 é o dígito de maior peso (MSD)
 - 3 é o dígito de menor peso (LSD)

Sistema decimal (Continuação)

- Em geral, qualquer número é simplesmente uma soma de produtos do valor de cada dígito pelo seu valor posicional (peso)
- Podem ser expressos em potências de 10
- A vírgula decimal separa as potências com expoente positivo das potências com expoente negativo

$$2745,214_{10} = (2 \times 10^{+3}) + (7 \times 10^{+2}) + (4 \times 10^{+1}) + (5 \times 10^{0}) + (2 \times 10^{-1}) + (1 \times 10^{-2}) + (4 + 10^{-3})$$

Contagem decimal

- Começamos com o 0 na posição das unidades e passamos progressivamente até chegarmos ao 9.
- A contagem ocorre de forma crescente na contagem, de acordo com a posição das:
 - unidades (LSD) a cada passo;
 - dezenas a cada 10 passos;
 - centenas a cada 100 passos
 - e assim por diante

Contagem decimal (Continuação)

- Usando apenas duas casas decimais podemos contar 100 números diferentes (0 a 99)²
 - $10^2 = 100$
- Com três posições decimais podemos contar 1000 número diferentes (000 a 999)³
 - $10^3 = 1000$
- Com N posições ou dígitos decimais, podemos contar 10ⁿ números diferentes
- Começa-se pelo zero incluindo-o na contagem
- O maior número sempre será 10ⁿ 1

Sistema binário

- Não é conveniente implementar o sistema decimal
- É fácil projetar circuitos eletrônicos que trabalham com apenas dois níveis de tensão
- Quase todos os sistemas digitais utilizam o sistema de numeração binário
- Funciona de forma semelhante ao sistema binário
- Também é um sistema de valor posicional

Sistema binário (Continuação)

- Cada dígito binário tem um valor próprio (peso) expresso como uma potência de 2
- A vírgula decimal separa as potências com expoente positivo das potências com expoente negativo
- São usados subscritos (2 e 10) para indicar a base na qual o número em questão é expresso

$$1011,101_2 = (1 \times 2^3) + (0 \times 2^2) + (1 \times 2^1) + (1 \times 2^0) + (1 \times 2^{-1}) + (0 \times 2^{-2}) + (1 \times 2^{-3}) = (8 + 0 + 2 + 1 + 0,5 + 0 + 0,125) = 11,625_{10}$$

Contagem binária

- Quando usamos binário estamos restritos a um número específico de bits
- A sequência começa com todos os bits em 0
- Para cada contagem sucessiva, a posição de peso unitário (2º) alterna
- Quando o bit de peso unitário muda de 1 para 0
 a posição de peso 2 (2¹) alterna (muda de estado)
- Quando o bit de peso 2 muda de 1 para 0 o bit de peso 4 (2²) alterna
- Do mesmo modo, cada vez que o bit de peso 4
 passa de 1 para 0, o bit de peso 8 (2³) alterna

Contagem binária (Continuação)

- Assim como no sistema decimal, a sistemática é a mesma no sistema binário
- Usando N bits ou posições, podemos contar 2ⁿ números
 - com 2 bits podemos contar $2^2 = 4$ contagens (00 até 11)
 - com 4 bits podemos teremos 2⁴ = 16 contagens (0000 até 1111)
- A ultima contagem sempre conta todos os bits em 1, que é igual a 2ⁿ -1 no sistema decimal
- Por exemplo

$$1111_2 = 2^4 - 1 = 15_{10}$$

Exemplo

— Qual é o maior número que pode ser representado usando 8 bits?

Solução

$$2^{N} - 1 = 2^{8} - 255_{10} = 11111111_{2}$$

Exercícios

- Qual é o número decimal equivalente a 1101011₂?
- Qual é o número binário seguinte a 10111,?
- Qual é o valor do maior número decimal que pode ser representado usando 12 bits?