SZAKDOLGOZAT

Falak közé zárt kvantum részecske homogén térben: "Schrödinger macskája dobozban"

KÜRTI ZOLTÁN
Fizika BSc., fizikus szakirány

Témavezetők:

DR. CSERTI JÓZSEF egyetemi tanár

DR. GYÖRGYI GÉZA egyetemi docens

Eötvös Loránd Tudományegyetem Komplex Rendszerek Fizikája Tanszék 2021

Kivonat

Kvantummechanikai iskolapélda a homogén térbe helyezett egydimenziós részecske. Ezt három dimenzióra kiterjesztve és két fal közé zárva keressük az energia sajátállapotokat. Annyi előrelátható, hogy a nyílt vagy félig nyílt esetekben használható, reguláris Airy függvény itt nem elegendő a megoldáshoz, ennyiben túlmegyünk a tankönyvi feladaton. Az aszimptotikus függvényalakok segítségével előállítjuk a magasan gerjesztett állapotok energiáit és hullámfüggvényeit, s ezeket összehasonlítjuk a közvetlenül a Bohr–Sommerfeld-módszerrel kapott eredménnyel. Numerikusan szemléltetjük fizikailag érdekes kezdőállapotok időfejlődését. Vizsgáljuk a rezolvenst és az állapotsűrűséget, továbbá a sokrészecske rendszerekre való általánosítás lehetőségét.

Egydimenziós, m tömegű, lineáris Fx potenciálban mozgó kvantumos részecskét zárjunk L hosszú, merev falú dobozba (ekvivalens a padló és mennyezet között függőlegesen pattogó kvantum labdával). A stacionárius Schrödingeregyenletből kiindulva, a határfeltételek figyelembe vételével, írjuk fel az energia sajátértékeket meghatározó szekuláris egyenletet, melyet oldjunk meg numerikusan. Ábrázoljuk az alacsonyabb nívókat a doboz méretének változtatása mellett, és szemléltessük grafikusan a stacionárius hullámfüggvényeket. A szekuláris egyenletben fellépő függvények aszimptotikáinak ismeretében a magasabb nívókra próbáljunk egyszerűbb implicit formulát adni. Végezzük el a szemiklasszikus kvantálást is, hasonlítsuk össze az előző közelítő eredménnyel, és numerikusan néhány, az egzakt egyenletből kapott nívóval.

További kérdések: (a) Számítsuk ki a nívókat expliciten, kicsiny L-ek mellett. (b) Mely paraméterek mellett esik egybe FL éppen az alapállapoti energiával? (Ilyenkor a klasszikus labda éppen eléri a mennyezetet.) (c) Mutassuk meg, hogy e határesetnél kisebb L belméret mellett minden nívó FL fölé esik. (d) Írjuk fel a szemiklasszikus stacionárius hullámfüggvényeket, s grafikusan hasonlítsuk össze őket az egzaktakkal – mikor jó a közelítés? (e) Írjuk fel a kicsiny L melletti hullámfüggvényeket expliciten, ezeket szintén hasonlítsuk össze a valódiakkal.

- -Miért nem Rodnik osztályba tartozik
- -fx, fy = 0 külön tárgyalás
- -program leírása

Köszönetnyilvánítás

Tartalomjegyzék

Ábrák jegyzéke

Táblázatok jegyzéke

1. Bevezetés

notin

2. Egy dimenziós eset

A probléma egy 1D doboba zárt résecske homogén erőtérben. F(x) = -F, azaz V(x) = Fx. Az egyenlethez tartozó határfeltételek, ha a doboz hossza L:

$$\phi|_{0} = \phi|_{L} = 0 \tag{2.1}$$

A megoldandó időfüggetlen Schrödinger-egyenlet:

$$-\frac{\hbar^2}{2m}\frac{d^2\phi}{dx^2} + Fx\phi = E\phi \tag{2.2}$$

$$\frac{d^2\phi}{dx^2} - \frac{2mFx}{\hbar^2}\phi = -\frac{2mE}{\hbar^2}\phi\tag{2.3}$$

$$\frac{d^2\phi}{dx^2} - \left(\frac{2mF}{\hbar^2}x - \frac{2mE}{\hbar^2}\right)\phi = 0 \tag{2.4}$$

Az Airy egyenlet ilyen alakra hozható a változó affin lineáris transzformációjával:

$$\frac{d^2y}{dx'^2} - x'y = 0 (2.5)$$

x' = ax - bE, azaz $\frac{d}{dx} = a\frac{d}{dx'}$:

$$\frac{d^2y}{dx^2} - (a^3x - a^2bE)y = 0 (2.6)$$

Az együtthatók összevetése alapján $a=\sqrt[3]{\frac{2mF}{\hbar^2}}$ és $b=\sqrt[3]{\frac{2m}{\hbar^2F^2}}$. Így a Schrödingergyenlet megoldása:

$$\phi(x) = y(x') = y\left(\sqrt[3]{\frac{2mF}{\hbar^2}}x - \sqrt[3]{\frac{2m}{\hbar^2 F^2}}E\right)$$
 (2.7)

, ahol $y(x) = \alpha {\rm Ai}\,(x) + \beta {\rm Bi}\,(x)$. A $\phi|_0 = 0$ feltételből következik, hogy $\phi \propto {\rm Bi}\,(-bE)$ Ai (ax-bE) Ai (-bE) Bi (ax-bE). A második határfeltétel pedig meghatározza a lehetséges energiákat. A feltétel:

$$Bi(-bE) Ai(aL - bE) - Ai(-bE) Bi(aL - bE) = 0$$
(2.8)

$$TiaL - bE - Ti - bE = 0 (2.9)$$

$$\operatorname{Ti}\sqrt[3]{\frac{2mF}{\hbar^2}}L - \sqrt[3]{\frac{2m}{\hbar^2F^2}}E - \operatorname{Ti}-\sqrt[3]{\frac{2m}{\hbar^2F^2}}E = 0$$
 (2.10)

2.1. ábra. Energiaszintek L függvényében

Amikor $FL \ll \frac{\pi^2\hbar^2}{2mL^2}$, a potenciál jól közelíthető konstans potenciállal, mivel az alapállapot energiájához képest is elhanyagolható a lineáris potenciál eltérése a konstans potenciáltól. Eben a esetben $E \propto n^2$. $E \ll FL$ esetben az energiaszintek jó közelítéssel konstanssá válnak. Ennek az oka, hogy $\lim_{L \to \infty} \psi(x) = \alpha \text{Ai} (ax - b)$, mert a Bi (x) exponenciálisan növekszik nagy x-ek esetén. Ebben az eseten az energiaszinteket a Ai $\left(-\sqrt[3]{\frac{2m}{\hbar^2 F^2}}E\right) = 0$ egyenlet határozza meg. Ezeket az aszimptotikus viselkedéseket a 2.1. ábra jól mutatja.

TODO: link 1D videóról

2.1. Kvantumos közelítése

 $x \to \infty$ aszimptotikus alak:

Ai
$$(-x) = \frac{1}{\sqrt{\pi}x^{1/4}}\cos\left(\frac{2}{3}x^{3/2} - \frac{\pi}{4}\right) + \mathcal{O}\left(x^{-5/4}\right)$$
 (2.11)

Bi
$$(-x) = -\frac{1}{\sqrt{\pi}x^{1/4}}\sin\left(\frac{2}{3}x^{3/2} - \frac{\pi}{4}\right) + \mathcal{O}\left(x^{-5/4}\right)$$
 (2.12)

$$\operatorname{Ti}(-x) = -\cot\left(\frac{2}{3}x^{3/2} - \frac{\pi}{4}\right) + \mathcal{O}\left(x^{-5/4}\right)$$
 (2.13)

Ezzel a közelítéssel a 2.9. egyenlet alakja:

$$\cot\left(\frac{2}{3}(bE - aL)^{3/2} - \frac{\pi}{4}\right) = \cot\left(\frac{2}{3}(bE)^{3/2} - \frac{\pi}{4}\right)$$
 (2.14)

, azaz

$$\frac{2}{3} (bE)^{3/2} - \frac{2}{3} (bE - aL)^{3/2} = n\pi$$
 (2.15)

. Az a és b behelyettesítésével az egyenlet

$$\frac{2\sqrt{2m}}{3F\hbar} \left(E^{3/2} - (E - FL)^{3/2} \right) = n\pi \tag{2.16}$$

Ez megegyezik a szemiklasszikus kvantálással kapott eredménnyel, ami azt jelenti, hogy a szemiklasszikus közelítés jól működik nagy energiáknál, hibája $\mathcal{O}\left(E^{-5/4}\right)$ nagyságrendű.

2.2. Szemiklasszikus közelítés

$$nh = \oint p \, dq = \tag{2.17}$$

E/F < L esete:

$$2\int_{0}^{E/F} \sqrt{2m(E-Fx)} dx = -\frac{2}{3mF} \left(2m(E-Fx)\right)^{\frac{3}{2}} \Big|_{0}^{E/F} = \frac{4\sqrt{2m}E^{3/2}}{3F} \quad (2.18)$$

$$E_n = \left(\frac{3nhF}{4\sqrt{2m}}\right)^{2/3} \tag{2.19}$$

E/F > L esete:

$$-\frac{2}{3mF} \left(2m \left(E - Fx\right)\right)^{\frac{3}{2}} \bigg|_{0}^{L} = \frac{4\sqrt{2m}}{3F} \left(E^{3/2} - \left(E - FL\right)^{3/2}\right) = nh$$
 (2.20)

 $E\gg FL$ esetén a különbség az $E^{3/2}$ függvény deriváltjának segítségével helyettesíthető:

$$nh \approx 2\sqrt{2m}E^{1/2}L \tag{2.21}$$

$$E_n \approx \frac{n^2 h^2}{8mL^2} \tag{2.22}$$

2.2. ábra. Szemiklasszikus közelítés

2.3. ábra. Szemiklasszikus közelítés

2.3. Green függvény

A rezolvens operátor definíciója

$$\hat{G}(E) = \frac{1}{\hat{H} - E} \tag{2.23}$$

és ezen operátorhoz tartozó két változós függvény a Green-függény.

$$G(x, y; E) = \langle x | G(E) | y \rangle \tag{2.24}$$

A Green-függvény név indokolt, és ennek a segítségével fogom meghatározni a Green-függvényeket konkrét esetben. A teljességi reláció beszúrásával látható, hogy a kvantummechanikai Green-függény megegyezik a differenciálegyenletek elméletéből ismert Green-függvénnyel.

$$\left(\hat{H} - E\right)\hat{G}\left(E\right) = \hat{I} \tag{2.25}$$

$$\int dx' \langle x | \left(\hat{H} - E \right) | x' \rangle \langle x' | \hat{G}(E) | y \rangle = \langle x | \hat{I} | y \rangle = \delta (x - y)$$
 (2.26)

A $\langle x|\left(\hat{H}-E\right)|x'\rangle$ maggal vett konvolúció a $\hat{H}-E$ operátor hatása. Ezért

$$\left(\hat{H}_x - E\right)G\left(x, y; E\right) = \delta\left(x - y\right) \tag{2.27}$$

ami a differenciálegyenletek elméletéből ismert Green-függvény definíciója. Ebben a konkrét esetben

$$\left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + Fx - E\right)G(x, y; E) = \delta(x - y)$$
 (2.28)

2.3.1. Egzakt Green-függvény

ami azt jelenti, hogy az x < y tartományban

$$G(x,y;E) = C_1 \operatorname{Ai}\left(\sqrt[3]{\frac{2mF}{\hbar^2}}x - \sqrt[3]{\frac{2m}{\hbar^2F^2}}E\right) + C_2 \operatorname{Bi}\left(\sqrt[3]{\frac{2mF}{\hbar^2}}x - \sqrt[3]{\frac{2m}{\hbar^2F^2}}E\right)$$
(2.29)

illetve az x > y tartományban

$$G(x, y; E) = C_3 \operatorname{Ai} \left(\sqrt[3]{\frac{2mF}{\hbar^2}} x - \sqrt[3]{\frac{2m}{\hbar^2 F^2}} E \right) + C_4 \operatorname{Bi} \left(\sqrt[3]{\frac{2mF}{\hbar^2}} x - \sqrt[3]{\frac{2m}{\hbar^2 F^2}} E \right)$$
(2.30)

, ahol a C együtthatók függhetnek y és E értékétől. A C együtthatók meghatározásához a doboz eredeti határfeltételeit x=0 és x=L pontban, valamint az x=y pontban a 2.28. egyenlet y körüli integrálásából kapott feltételeket kell felhasználni. A doboz falára vonatkozó határfeltételek:

$$G(x, y; E)|_{x=0} = 0$$
 (2.31)

$$G(x, y; E)|_{x=L} = 0$$
 (2.32)

A 2.28. egyenlet $\int_{y-\epsilon}^{y+\epsilon} \mathrm{d}x' \int_y^{x'} \mathrm{d}x$ szerinti integrálja az $\epsilon \to 0^+$ határesetben:

$$\lim_{\epsilon \to 0^+} G(x, y; E)|_{x=y-\epsilon}^{x=y+\epsilon} = 0 \tag{2.33}$$

A jobb oldal integrálja $(x-y)\theta(x-y)|_{x=y-\epsilon}^{x=y+\epsilon}$, ami a határesetben 0. Az (Fx-E)G(x,y;E) integrálja is 0 a határesetben, mert az erdeti függvény is folytonos, így az integrálja is. A 2.28. egyenlet x szerinti integrálja y körüli ϵ sugarú környezetében az $\epsilon \to 0^+$ határesetben:

$$\lim_{\epsilon \to 0^{+}} \frac{\partial}{\partial x} G(x, y; E) \Big|_{x=y-\epsilon}^{x=y+\epsilon} = -\frac{2m}{\hbar^{2}}$$
 (2.34)

Itt a jobb oldal integrálja $\theta(x-y)|_{x=y-\epsilon}^{x=y+\epsilon}=1$ a határesetben. A bal oldalon az előzőhöz hasonló módon csak a derivált integrálja marad meg. A 2.29. és a 2.30. egyenlet behelyettesítése meghatározza a C együtthatókra vonatkozó egyenleteket:

$$\frac{C_2}{C_1} = -\text{Ti}\left(-bE\right) \tag{2.35}$$

$$\frac{C_4}{C_3} = -\text{Ti}\left(aL - bE\right) \tag{2.36}$$

$$\frac{C_3}{C_1} = \frac{\operatorname{Ti}(ay - bE) - \operatorname{Ti}(-bE)}{\operatorname{Ti}(ay - bE) - \operatorname{Ti}(aL - bE)}$$
(2.37)

TODO: b lecserélése bE-re az előző részekben.

$$C_{1} = -\frac{2m}{a\hbar^{2}} \frac{1}{\left(\left(\frac{C_{3}}{C_{1}} - 1\right) \operatorname{Ai}'(ay - bE) + \left(\frac{C_{4}}{C_{3}} \frac{C_{3}}{C_{1}} - \frac{C_{2}}{C_{1}}\right) \operatorname{Bi}'(ay - bE)\right)}$$
(2.38)

$$C_{1} = -\frac{a^{2}}{F} \frac{1}{\left(\left(\frac{C_{3}}{C_{1}} - 1\right) \operatorname{Ai}'(ay - bE) + \left(\frac{C_{4}}{C_{3}} \frac{C_{3}}{C_{1}} - \frac{C_{2}}{C_{1}}\right) \operatorname{Bi}'(ay - bE)\right)}$$
(2.39)

A ??-??, 2.29. és a 2.30. egyenletek explicit, analitikus módon előállítják a G(x, y; E) Green-függvényt. Valós energiákra $G(x, y; E) = G(y, x; E)^*$. Ebből következik, hogy a Green-függvény x < y eset y függése kiemelhető lesz, és megegyezik az x > y eset x függésével. Ezek szerint Ai (ay - bE) – Ti (aL - bE) Bi (ay - bE) kiemelhető a C_1 együtthatóból,

$$C_{1} = \frac{a^{2}}{F} \frac{\operatorname{Ai}(ay - bE) - \operatorname{Ti}(aL - bE)\operatorname{Bi}(ay - bE)}{\left(\operatorname{Ti}(-bE) - \operatorname{Ti}(aL - bE)\right)\left(\operatorname{Bi}(-bE)\operatorname{Ai}'(-bE) - \operatorname{Ai}(-bE)\operatorname{Bi}'(-bE)\right)}.$$
(2.40)

Az algebrai átalakításokon túl fel kellett használni, hogy Ai (ay - bE) Bi' (ay - bE) – Bi (y - bE) Ai' (ay - bE) y-tól független konstans tehát y = 0 helyettesíthető bele. Ez onnan látható, hogy y szerinti deriváltja 0,

$$\left(\operatorname{Ai}\left(ay - bE\right)\operatorname{Bi}'\left(ay - bE\right) - \operatorname{Bi}\left(ay - bE\right)\operatorname{Ai}'\left(ay - bE\right)\right)' = \tag{2.41}$$

A rezolvens operátornak pólusai vannak a rendszer E_k sajátenergiáinál:

$$\hat{G}(E) = \sum_{n} \frac{|n\rangle \langle n|}{E_n - E}$$
(2.42)

Így ha E kielégíti a 2.9. egyenletet, akkor a rezolvensnek és ezért a Green-függénynek is pólusa kell hogy legyen. Ezt a C_1 szingularitásán lehet a leg könnyebben belátni.

Ha C_1 szinguláris, az összes többi C együttható is, és így a Green-függvény is. A 2.9. egyenlet szerint a $\frac{C_3}{C_1}$ számlálójának és nevezőének ,ásodik tagjai egyenlőek. Első tagjuk bármely E esetén egyenlő, így hányadosuk 1, valamint a 2.9. egyenlet esetén $\frac{C_2}{C_1} = \frac{C_4}{C_3}$. Ezeknek a következtében mind $\frac{C_3}{C_1} - 1$, mind $\frac{C_4}{C_3} \frac{C_3}{C_1} - fracC_2C_1$ 0-val egyenlő, így a C_1 -re vonatkozó kifejezés nevezője 0. Ezek a $\frac{1}{E_n-E}$ típusú pólusok a ??. egyenletből.

Egy érdekes matematikai eredmény, hogy a Green-függvényre vonatkozó differenciál egyenlet megoldásával elvégeztem a $\ref{eq:constraint}$. egyenlet összegzését. Ez az összeg az Airy függvények szorzatának összege lenne, osztva E_k-E -vel és a megfelelő normálási faktorral, ami Airy függvények szorzatának 0 és L közötti integrálj, valamint E_k -t a 2.9. transzcendens egyenlet határozza meg. A Green-függvényre vonatkozó differenciálegyenlet nélkül az összeg elvégzése reménytelennek látszana.

$$\rho(E) = \frac{1}{\pi} \lim_{\epsilon \to 0^{+}} \operatorname{Im} \operatorname{Tr} \hat{G}(E + i\epsilon)$$
 (2.43)

2.4.ábra. Állapotsűrűség a Green-függvényből

2.5. ábra. Állapotok száma a Green-függvényből

2.3.2. Green-függvény perturbáció számítással

A perturbációszámításhoz a Hamilton operátort két részre bontom fel:

$$\hat{H} = \hat{H}_0 + \hat{V} \tag{2.44}$$

A \hat{H}_0 operátorhoz tartozó rezolvens $\hat{G}_0(E)$. \hat{H} és \hat{H}_0 kifejezhetőek a rezolvenseikkel. Ha a kifejezéseket behelyettesítjük a fenti egyenletbe, implicit egyenletet kapunk opG(E)-re nézve, melyet fel lehet használni perturbációszámításra. Az egyenletet balról $\hat{G}_0^{-1}(E)$ -vel, jobbról $\hat{G}^{-1}(E)$ -vel szorzunk.

$$\hat{G}^{-1}(E) + E = \hat{G}_0^{-1}(E) + E + \hat{V}$$
(2.45)

$$\hat{G}(E) = \hat{G}_0(E) - \hat{G}_0(E) \hat{V} \hat{G}(E)$$
 (2.46)

Az alábbi módon definiálva $\hat{G}_n(E)$ operátort, a ??. egyenlethez hasonló rekurziós összefüggés áll fent:

$$\hat{G}_n(E) = \hat{G}_0(E) \sum_{k=0}^n \left(-\hat{V}\hat{G}_0(E) \right)^k$$
 (2.47)

$$\hat{G}_{n+1}(E) = \hat{G}_0(E) - \hat{G}_0(E) \hat{V} \hat{G}_n(E)$$
(2.48)

Ha $\|\hat{V}\hat{G}_0(E)\| < 1$ akkor a \hat{G}_n sorozat konvergál, és kielégíti a ??. egyenletet. Ezért konvergencia esetén:

$$\hat{G}(E) = \hat{G}_0(E) \sum_{n=0}^{\infty} \left(-\hat{V}\hat{G}_0(E) \right)^n$$
 (2.49)

A perturbbálatlan operátornak a lineáris potenciál nélküli dobozba zárt részecske Hamilton operátorát választom, $\hat{H}_0 = \frac{1}{2m}\hat{p}^2$, így a lineáris potenciál marad a perturbáció $\hat{V} = F\hat{x}$. A perturbálatlan $\hat{G}_0(E)$ Green-függvényt is a ??-??, 2.29. és a 2.30. egyenletek alapján határozom meg.

$$G_{0}(x, y; E) = \begin{cases} -\frac{2m}{k\hbar^{2}} \frac{1}{\sin(kL)} \sin(k(y - L)) \sin(kx) & x \leq y \\ -\frac{2m}{k\hbar^{2}} \frac{1}{\sin(kL)} \sin(k(x - L)) \sin(ky) & x > y \end{cases}$$
(2.50)

, ahol $k = \frac{\sqrt{2mE}}{\hbar}$.

2.6. ábra. Konvergenciája a két különbző perturbáló potnciálnak.

3. Kiterjesztés több dimenzióra

A rendszer egy téglatest alakú dobozba zárt részecske. A doboz mérete L_x , L_y és L_z . A dobozban homogén erőtér hat a részecskére, azaz $\mathbf{F} = const$. A potenciál így $V(x,y,z) = -\mathbf{F}_x x - \mathbf{F}_y y - \mathbf{F}_z z$. Mivel az a potenciál lineáris x y és z-ben, a Schrödinger egyenlet szeparálható.

$$\psi_{klm}\left(x,y,z\right)=\phi_{k}\left(x'\right)\phi_{l}\left(y'\right)\phi_{m}\left(z'\right) \tag{3.1}$$
 Ahol $x'=\sqrt[3]{\frac{2m\boldsymbol{F}_{x}}{\hbar^{2}}}x-\sqrt[3]{\frac{2m}{\hbar^{2}\boldsymbol{F}_{x}^{2}}}E_{k}, E_{k}$ pedig az 1 dimenziós probléma, Ti $\sqrt[3]{\frac{2m\boldsymbol{F}_{x}}{\hbar^{2}}}L-\sqrt[3]{\frac{2m}{\hbar^{2}\boldsymbol{F}_{x}^{2}}}E-$ Ti $-\sqrt[3]{\frac{2m}{\hbar^{2}\boldsymbol{F}_{x}^{2}}}E=0, k. \ \phi_{k}\left(x'\right)$ az 1D-s rész TODO:REFERENCIA hullámfüggvénye. $y', z',$ valamint E_{l} és E_{m} hasonlóan vannak definiálva a hozzájuk tartozó 1 dimenziós

probléma alapján. A 3D-s hullámfüggvényhez tartozó energia az 1D-s megoldásokhoz tartozó energiák összege.

$$E = E_k + E_l + E_m \tag{3.2}$$

Amennyiben valamelyik irányú komponense \mathbf{F} -nek 0, abban az esetben a hozzá tartozó 1D-s pprobléma a híres végtelen mély potenciálgödör, ahol

$$\phi_n = \sqrt{\frac{2}{L}} \sin\left(\frac{nx\pi}{L}\right) \tag{3.3}$$

valamint

$$E_n = \frac{\hbar^2 n^2}{2mL^2} \tag{3.4}$$

TODO: ÁBRA AZ EGYSZER FÜGGŐLEGES ESET ENERGIÁIRÓL, esetleg szintén L függvényében.

TODO: ábra 2D -quantum chaos in billiards-

TODO: 2D (3D?) videó link időfelődésről

4. Numerikus számítások

4.1. Momentumok időfejlődése

4.1. ábra. Várható értékek és szórások időfejlődése

4.2. Hullámfüggvény időfejlődése

4.2.1. 1D

4.2.2. 2D

5. Plafon érintés 1D

Azokat a parmaétereket keresem, ahol az alapállapot E=FL:

$$\operatorname{Ti}\sqrt[3]{\frac{2mF}{\hbar^2}}L - \sqrt[3]{\frac{2m}{\hbar^2F^2}}FL - \operatorname{Ti}-\sqrt[3]{\frac{2m}{\hbar^2F^2}}FL = 0$$
 (5.1)

, azaz

$$Ai - \sqrt[3]{\frac{2mF}{\hbar^2}}L = 0 \tag{5.2}$$

. Az első gyöke az Airy függvénynek megadja azt az esetet, amikor az alapállapot energiája FL, és nem pedig valamelyik gerjesztett állapoté.

$$-a_1 = \sqrt[3]{\frac{2mF}{\hbar^2}} L \approx 2.338 \tag{5.3}$$