Face Emotion Recognition

By: David Aarhus (2291228) and Andy Anguiano (2316199)

Problem

Emotional Face Recognition

- Evaluate human faces to predict emotion

Real World Applications

- Evaluate customers experience
- Level of happiness in business environment
- Give insight on customer satisfaction
- Emotional trends concurring with world events

Input Data

HAPPY

SAD

ANGRY

FEARFUL

NEUTRAL

DISGUST

SURPRISED

POSITIVE

NEGATIVE

Primary Data Analysis

~100 MB of data

7000 positive photos

7000 negative photos

Black and White

Wide variety of people

48 pixels

48 pixels

Neural Network Details - First Basic Convnet NN

- Data
 - Training: 5000 (each) images
 - Testing: 1000 (each) images
 - Validation: 1000 (each) image
- Layers
 - Activation
 - Relu
 - Sigmoid (last-layer activation)
 - Loss
 - Binary Cross-Entropy
 - MaxPooling2D
 - 2 x 2
 - Convolution Layer
 - 32,64,128
 - Kernel Dimensions
 - 3 x 3

- Epochs
 - 30
- Drop out
 - None
- Data Augmentation
 - None
- Transfer Learning
 - None

First Basic Convnet NN - Results

Accuracy Score: ~83% Precision Score: ~84% Recall Score: ~83%

Neural Network Details - Second Convnet NN

- Data
 - Training: 5000 (each) images
 - Testing: 1000 (each) images
 - Validation: 1000 (each) image
- Layers
 - Activation
 - Relu
 - Sigmoid (last-layer activation)
 - Loss
 - Binary Cross-Entropy
 - MaxPooling2D
 - 2 x 2
 - Convolution Layer
 - 32,64,128
 - Kernel Dimensions
 - 3 x 3

- Epochs
 - 100
- Drop out
 - 0.5 drop out rate
- Data Augmentation
 - rotation_range=40
 - width_shift_range=0.2
 - height_shift_range=0.2
 - shear_range=0.2
 - zoom_range=0.2
- Transfer Learning
 - None

Second Convnet NN - Results

Accuracy Score: ~ 76% Precision Score: ~77% Recall Score: ~73%

Neural Network Details - Third Pre-trained Convnet NN

- Epochs
 - 120
- Drop out
 - 0.5 drop out rate
- Transfer Learning
 - Pre-trained
 - VGGFace
 - A series of models developed for face recognition. Created by members of the Visual Geometry Group (VGG) at Oxford University

VGGface Results

Accuracy Score: ~ 66% Precision Score: ~66% Recall Score: ~67%

In the Future

- Using spyder instead of Jupyter Notebooks
- Attempt models on colored images
- More data
- Attempt another pre-trained model (FaceNet)
- Began to see if there was a gender bias from the model, did not produce sufficient results in time to show class

References

- https://stackoverflow.com/questions/37372603/how-to-remove-specific-substrings-from-a-set-of-strings-in-python
- https://stackoverflow.com/questions/26392336/importing-images-from-a-directory-python-to-list-or-dictionary
- http://faculty.neu.edu.cn/yury/AAI/Textbook/Deep%20Learning%20with%20Python.pdf
- https://stackoverflow.com/questions/3397752/copy-multiple-files-in-python/3399299
- https://machinelearningmastery.com/how-to-perform-face-recognition-with-vggface2-convolutional-neural-network-inkeras/
- https://stackoverflow.com/questions/44054082/keras-utils-to-categorical-name-keras-not-defined