EE 044252: Digital Systems and Computer Structure Spring 2018

Lecture 5: Finite State Machines

EE 044252: Digital Systems and Computer Structure

Topic	wk	Lectures	Tutorials	Workshop	Simulation
Arch	1	Intro. RISC-V architecture	Numbers. Codes		
	2	Switching algebra & functions	Assembly programming		
Comb	3	Combinational logic	Logic minimization	Combinational	
	4	Arithmetic. Memory	Gates		Combinational
	5	Finite state machines	Logic		
500	6	Sync FSM	Flip flops, FSM timing	Sequential	Sequential
Seq	7	FSM equiv, scan, pipeline	FSM synthesis		
	8	Serial comm, memory instructions	Serial comm, pipeline		
	9	Function call, single cycle RISC-V	Function call		
	10	Multi-cycle RISC-V	Single cycle RISC-V		Multi-cycle
μArch	μ Arch 11 Interrupts, pipeline RISC-V Multi-cycle RISC		Multi-cycle RISC-V		
	12	Dependencies in pipeline RISC-V	Microcode, interrupts		
	13		Depend. in pipeline RISC-V		

Agenda

- Finite State Machine
 - Mealy and Moore FSM
 - Regular Expression
- FSM Synthesis

מערכת סדרתית / מערכת עקיבה / מכונת מצבים

מערכת סדרתית (Sequential Circuit)

מערכת צירופית (Combinational Circuit)

- מערכת צירופית + זיכרון הזוכר "מצב"
 - המצב "זוכר היסטוריה"
- ערכי הפלט תלויים בערכי הקלט ובמצב הקיים
- ערכי המצב החדש גם הם תלויים בערכי הקלט ובמצב הקיים

ערכי הפלט תלויים אך ורק בערכים הנוכחיים של משתני הקלט

אם מספר המצבים סופי, זו מכונת מצבים סופית (FSM)

> יש גם מכונות אינסופיות (לפחות בתיאוריה), למשל מחשב

מערכת סדרתית / מערכת עקיבה / מכונת מצבים

- מערכת עקיבה נמצאת בכל רגע נתון ב"מצב" מסוים
 - המצב מיוצג ע"י ערכי הזיכרון של מערכת העקיבה
- המערכת יכולה לעבור ממצב אחד למצב אחר, בתלות במצב ובכניסות
 - ממצב אחד למצב העוקב, לכן יימערכת עקיבהיי
 - סדרת מצבים וסדרת מעברים בין מצבים, לכן יימערכת סדרתיתיי
 - מערכת עקיבה סינכרונית יכולה לעבור ממצב אחד למצב אחר רק בזמנים מסוימים
- מערכת סינכרונית מקבלת אות שעון, והשעון קובע מתי יתבצעו מעברי המצב

מערכת סדרתית / מערכת עקיבה / מכונת מצבים

מערכת סדרתית (Sequential Circuit) מערכת צירופית (Combinational Circuit)

דוגמה 1 —מנעול סדרתי

- סדרת הפתיחה של המנעול היא 803
 - קודם 8, אחר כך 0, לבסוף 3
 - מצבים אפשריים במנעול:
 - A, מצב התחלתי
- (X הוכנס המספר $(A \cap X)$ הוכנס המספר $(A \cap X)$
- C אוכנס המספר 0 (לאחר שקודם לכן הוכנס 8)
 - יציאה אפשרית Z ממכונת המצבים:
 - ס, נעול o –
 - **–** 1, פתוח
 - המכונה ניתנת לתיאור על ידי דיאגרמת מצבים (State Diagram)
- על כל מעבר מסומנים הכניסה שגרמה לו והיציאה
 - מכונת מילי (Mealy): תיאור סדרתי עקרוני – זמן מופשט

 $X \neq 8/Z = 0$ $X \neq 8/Z = 0$ X = 8/Z = 0 $X \neq 0/Z = 0$ $X \neq 0/Z = 0$

• בתוך המסכם נשמר הנשא בין שלב לשלב

− מצב A—נשא 0

1 מצב B – מצב −

	NS (Next State), Z (Output				
PS (Present State)	00	01	11	10	
А	A,0	A,1	В,О	A,1	
В	A,1	В,О	B,1	В,0	

	N		Z (Ou	itput)				
	inputs (x ₁ x ₂)				inputs	(x ₁ x ₂))	
PS (Present State)	00	01	11	10	00	01	11	10
0	0	0	1	0	0	1	0	1
1	0	1	1	1	1	0	1	0

- נמיר את תיאור המכונה מדיאגרמת מצבים לטבלת מצבים
 - נסדר עמודות לפי קוד גריי
 - נפריד את הטבלה ל-Output ,NS
 - הקצאת מצבים: נקצה ספרות לסימון המצבים • A=0, B=1 –

	NS (Next State)					Z (Ou	ıtput)	
	inputs (x ₁ x ₂)				inputs	(x ₁ x ₂)		
PS (Present State)	00	01	11	10	00	01	11	10
0	0	0	1	0	0	1	0	1
1	0	1	1	1	1	0	1	0

$$NS = x_1x_2 + PS \cdot x_1 + PS \cdot x_2 = C_0$$
 $Z = x_1 \oplus x_2 \oplus PS = Sum$

- Z,NS נחשב את שתי הפונקציות
 למשל על ידי מפת קרנו (הטבלה כבר מסודרת בהתאם)
 - הפונקציות (כמובן) זהות לאלו של
- במימוש, נשתמש ב-DFF לשמירת המצב
 - השעון קובע מעבר בין שלבים
 - מכונת מילי—זמן מופשט

Sequence Detector גלאי מחרוזת —3

- : נתכנן מערכת
 - כניסה אחת
 - יציאה אחת
- היציאה 1 אם"ם (אם ורק אם) מתגלה בכניסה המחרוזת 1010

Sequence Detector גלאי מחרוזת —3

PS	NS,z		
	X=0	X=1	
Α	B,0	A,0	
В	B,0	C,0	
С	D,0	A,0	
D	B,0	C,1	

PS	$NS(Y_1Y_2),Z$		
y ₁ y ₂	X=0	X=1	
A=00	01,0	00,0	
B=01	01,0	11,0	
C=11	10,0	00,0	
D=10	01,0	11,1	

$$\begin{vmatrix} Y_1 = xy_1' y_2 + x' y_1 y_2 + xy_1 y'_2 \\ Y_2 = x' y'_1 + y'_1 y_2 + y_1 y'_2 \\ z = xy_1 y'_2 \end{vmatrix}$$

מסוג מילי • תכן FSM מסוג מילי

- טבלת מצבים
- הקצאת מצבים (שני משתני מצב)
 - חישוב הפונקציות הצירופיות

Sequence Detector גלאי מחרוזת —3 דוגמה 3

$$Y_1 = xy_1'y_2 + x'y_1y_2 + xy_1y'_2$$

 $Y_2 = x'y'_1 + y'_1y_2 + y_1y'_2$
 $z = xy_1y'_2$

סיבוכיות: 15 שערים של 2 כניסות

Sequence Detector גלאי מחרוזת —3 דוגמה 3

PS	NS,z		
	X=0	X=1	
А	B,0	A,0	
В	B,0	C,0	
С	D,0	A,0	
D	B,0	C,1	

PS	$NS(Y_1Y_2),Z$		
y ₁ y ₂	X=0	X=1	
A=00	01,0	00,0	
B=01	01,0	10,0	
C=10	11,0	00,0	
D=11	01,0	10,1	

$$Y_1 = x' y_1 y'_2 + xy_2$$

$$Y_2 = x'$$

$$z = xy_1 y_2$$

Sequence Detector גלאי מחרוזת —3 דוגמה 3

סיבוכיות: 6 שערים של 2 כניסות (לעומת 15 במימוש קודם)

ביטוי רגולרי כתיאור מתמטי של מערכת סדרתית

- מערכת סדרתית שמגלה מחרוזות ניתנת לתיאור מתמטי
 - המערכת יימקבלתיי מחרוזת (יימילהיי) השייכת לשפה
 - השפה מתוארת על ידי ביטוי רגולרי
- L[a] או $\{a\}$ או השפה את עתאר את רגולרי אויי ($a\in\Sigma$ לכל a , Σ לכל a , Σ נתון אלפבית סופי
- $L[R] \cup L[S]$ אם R, ביטויים רגולרים אז R $\mid S$ הוא ביטוי רגולרי המתאר את השפה R
 - שפה בה מילה שייכת או לשפה האחת או לשניה —
 - $L[R]\cdot L[S]$ אם R, ביטויים רגולרים אז $R\cdot S$ הוא ביטוי רגולרי המתאר את השפה R.
- שפה בה מילה היא שרשור של שתי מלים, אחת שייכת לשפה האחת והשנייה שייכת לשפה השנייה
 - $\mathrm{L}[\mathrm{R}^{^*}]$ הוא ביטוי רגולרי המתאר את השפה R * •
 - L[R] שפה בה מילה מורכבת ממספר כלשהו (כולל אפס) של מלים השייכות לשפה
 - בדוגמה 3, המכונה מקבלת מלים השייכות לשפה *(0101)
- י בשימוש פרקטי מרחיבים את ההגדרה. מה מתארים הביטויים הרגולריים 8 05 $^{\circ}$ 1 י $^{\circ}$ 201[6-8] י

- מערכת עקיבה ממומשת עייי מכונת מצבים סופית (Finite State-Machine, FSM) המוגדרת באמצעות מרכיביה
 - - $X=\{x_1,x_2,...,x_L\}$ קבוצה סופית של כניסות בינאריות -
 - $Z=\{z_1,z_2,\ldots,z_M\}$ קבוצה סופית של יציאות בינאריות –
- את המצב הבא $x_1,x_2,...,x_L$ את המצב הבא וערכי הכניסות אירוף של אירוף של מצב נוכחי וערכי הכניסות $x_1,x_2,...,x_L$ את המצב הבא s_i^*
 - את $x_1,x_2,...,x_L$ וערכי הכניסות s_i וערכי אירוף של מצב נוכחי לכל אירוף חמגדירה חמגדירה $\Omega_{\rm MEALY}(S\times 2^X oubleq 2^Z)$ את ערכי היציאות ערכי היציאות בי,..., $z_1,z_2,...,z_M$
 - $t_{
 m cC-Q},\,t_{
 m pC-Q}$ תזמוני כניסה $t_{
 m S},\,t_{
 m H}$ ותיזמוני יציאה
 - Mealy מכונת מצבים כזו קרויה עיש•
 - י לעומתה, במכונת Moore שונה פונקצית היציאה והיא תלויה במצב הנוכחי בלבד $\Omega_{ ext{MOORE}}(S op 2^Z)$

?Mealy או Moore – מכונת מצבים

?Mealy או Moore – מכונת מצבים

- לתיאור תיאורטי Mealy •
- המכונה מוגבלת לגילוי מלים השייכות לשפה
- לא נשתמש לבניית מערכות ספרתיות המורכבות ממספר מכונות
- הסיבה תובהר בהמשך (קושי בהגבלת האורך של מסלולים צירופיים)
 - Moore לבניית מערכות מורכבות
 - נמנע מסלול צירופי מכניסה ליציאה

Mealy במקום מכונת Moore נתאר את המערכת כמכונת •

דרושים יותר מצבים... Reset 10,01 00 11 A(c=0)D(c=1) 11/1 00/0 01|10 11 01|10 00 11 00 11/0 В 00/1 B(c=0) 01,10/1 01,10/0 00

11

10,01

מעבר ממכונת Mealy למכונת

- Moore ארבע דרכים להמיר מכונת
 - Moore תכנון מחדש כמכונת
 - הוספת רגיסטרים בכניסה
 - הוספה רגיסטרים ביציאה –
- הוספת מצבים לטבלת המצבים היכן שהמוצא אינו זהה לכל הכניסות
 - דוגמאות להלן ללימוד עצמי

ה. כעת המוצא תלוי במצב הנוכחי בלבד. קיבלנו מכונת Moore

תזמון במכונת מצבים: זמן המחזור

תזמון במכונת מצבים: זמן SETUP

כללי התזמון

- ישנם ארבעה מסלולים, שניים שראינו : שעון \leftarrow שעון, שעון \leftarrow קלט, ושניים נוספים : פלט \leftarrow קלט, פלט \leftarrow שעון
 - בכדי להבטיח פעולה תקינה של מערכת עקיבה יש להקפיד על שני כללים לכל מסלול. נרשום חלק מהם:
 - :T משך מחזור השעון –

$$T \ge t_{pC-Q} + t_{pd}(C.Logic) + t_{S}$$

- $t_s(input)$ במשך במשך: $t_s(input)$ בערכים הנכונים במשך: $t_s(input) \geq t_{od}(C.Logic) + t_s$
 - של הזיכרונות t $_{H}$ של ארוך מאשר להיות ארוך להיות במערכת הצירופית במערכת במערכת t_{cd} (C.Logic) + t $_{c-Q}$ –
- th(input) הכניסות למערכת הצירופית צריכות להיות תקפות בערכים הנכונים במשך th(input) הכניסות למערכת הצירופית בריכות להיות הקפות בערכים הנכונים במשך th(input) \geq th- tcd(C.Logic) המקיים

שלבי התכנון של מערכת עקיבה

- 1. למד את התיאור המילולי של המערכת הנדרשת
- הבנת הדרישות: מספר כניסות, יציאות, מצבי זיכרון
 - 2. בנה טבלת מצבים או דיאגרמת מצבים
 - (צמצם את טבלת המצבים נלמד בהמשך) 3
 - 4. בחר הקצאת מצבים ובחר רכיבי זיכרון
 - D-FF מסוג
 - 5. רשום את טבלת המעברים ואת טבלת היציאה
 - . מצא את פונקציות המעבר ופונקציות היציאה
 - 7. שרטט את המעגל המממש את המערכת

דוגמה 4—גלאי 11 בכניסה

- x(0), x(1), x(2), ... : נתונה סדרת קלט x(n) כאשר n הוא מונה זמן בדיד
 - z(n)=x(n)•x(n-1)-יש לחשב סדרת פלט מתאימה (z(n) v(n-1) יש לחשב סדרת פלט מתאימה
 - z(0)=0 נגדיר "תנאי שפה" •
- x נצייר את דיאגרמת המצבים (מסוג Mealy). צריך לזכור רק את הערך האחרון של

n	0	1	2	3	4	5	6	7	8	
X	1	0	0	1	0	1	1	1	0	
Z	0	0	0	0	0	0	1	1	0	

דוגמה 4—גלאי 11 בכניסה

	NS(Y),z		
PS(y)	x=0	x=1	
A=0	0,0	1,0	
B=1	0,0	1,1	

$$Y = x$$
$$z = x \cdot y$$

Mealy נתכנן מימוש מכונת •

Mealy תזמון במכונת

• נבחן מה קורה בכל רגע

המרה למכונת Moore על ידי הוספת רגיסטר בכניסה

דוגמה: מונה בינרי מודולו 8 (לימוד עצמי)

x יציאת המונה 1 עם קבלת ה- '1' השמיני, הששה עשר, העשרים ורביעי, בקלט

	NS,z		
PS	x=0	x=1	
S ₀	S ₀ ,0	S ₁ ,0	
S_1	S ₁ ,0	S ₂ ,0	
S ₂	S ₂ ,0	S ₃ ,0	
S ₃	S ₃ ,0	S ₄ ,0	
S ₄	S ₄ ,0	S ₅ ,0	
S ₅	S ₅ ,0	S ₆ ,0	
S ₆	S ₆ ,0	S ₇ ,0	
S ₇	S ₇ ,0	S ₀ ,1	

דוגמה: מונה בינרי מודולו 8 (לימוד עצמי)

המימוש מצויר בהפשטה—החיבורים המפורשים מסתתרים בתוך BUS

