有限元法基础

STAPpp 大作业报告

第一组

何育航、林昊田、路翔宇、彭梓权、唐辛雨

目录

1基本单元设计

1.1	Q4 单元	3
1.1.1	单元基本原理	3
1.1.2	输入文件	4
1.1.3	刚度矩阵存储	5
1.1.4	分片试验	5
1.1.5	分收敛率分析	6
1.2	T3 单元	7
1.2.1	单元基本原理	7
1.2.2	刚度矩阵存储	8
1.2.3	输入文件与分片试验	8
1.2.4	收敛性分析	11
1.3	H8 单元	12
1.3.1	单元基本原理	12
1.3.2	分片试验	12
1.3.3	收敛性分析	14
1.4	梁单元	15
1.4.1	单元基本原理	15
1.4.2	输入文件	17
1.4.3	分片试验	18
1.4.4	收敛率分析	20
1.5	板单元	21
1.5.1	单元基本原理	21
1.5.2	刚度矩阵存储	24
153	输入文件	2/

1.5.4	应力计算	25
1.5.5	板单元算例验证	25
1.6	平板壳单元	26
1.6.1	单元基本原理	26
1.6.2	输入文件	28
1.6.3	分片试验	28
(A)	面内应力分片试验	28
(B)	弯曲应力分片试验	30
1.6.4	算例验证	32
1.6.5	收敛性分析	32
1.7	无限单元	34
1.7.1	单元基本原理	34
2.1	单元组装的代码实现	36
2.2	单元组装的算例实现	37
3.1 T	ECPLOT 后处理	39
4.1	小组分工	40
4.2	汝谢	40
4.3 肾	付录	41
4.3.1	T3 单元收敛率分析输入文件	41

Part1 基本单元设计

1.1 Q4 单元

1.1.1 单元基本原理

Q4 单元具有 8 个自由度, 位移向量为:

$$d^e = [u_1 \quad v_1 \quad u_2 \quad v_2 \quad u_3 \quad v_3 \quad u_4 \quad v_4]$$

引入坐标变换:

$$\xi = \frac{2x}{l} - 1$$

$$\eta = \frac{2y}{l} - 1$$

令I为单元四个节点的编号(逆时针),单元的形函数为:

$$N_I^{Q4} = \frac{1}{4}(1 + \xi_I \xi)(1 + \eta_I \eta)$$

单元的 Jacobi 矩阵为:

$$J^{e} = \frac{1}{4} \begin{bmatrix} x_{21}(1-\eta) - x_{43}(1+\eta) & y_{21}(1-\eta) - y_{43}(1+\eta) \\ x_{41}(1-\xi) + x_{32}(1+\xi) & y_{41}(1-\xi) + y_{32}(1+\xi) \end{bmatrix}$$

单元的应变矩阵为:

$$B^{e} = \begin{bmatrix} N_{1,x}^{\text{Q4}} & 0 & N_{2,x}^{\text{Q4}} & 0 & N_{3,x}^{\text{Q4}} & 0 & N_{4,x}^{\text{Q4}} & 0 \\ 0 & N_{1,y}^{\text{Q4}} & 0 & N_{2,y}^{\text{Q4}} & 0 & N_{3,y}^{\text{Q4}} & 0 & N_{4,y}^{\text{Q4}} \\ N_{1,y}^{\text{Q4}} & N_{1,x}^{\text{Q4}} & N_{2,y}^{\text{Q4}} & N_{2,x}^{\text{Q4}} & N_{3,y}^{\text{Q4}} & N_{3,x}^{\text{Q4}} & N_{4,y}^{\text{Q4}} & N_{4,x}^{\text{Q4}} \end{bmatrix}$$

其中, 形函数对物理坐标的梯度由下式给定

$$[B^e] = \begin{bmatrix} N_{1,x}^{\mathrm{Q4}} & N_{2,x}^{\mathrm{Q4}} & N_{3,x}^{\mathrm{Q4}} & N_{4,x}^{\mathrm{Q4}} \\ N_{1,y}^{\mathrm{Q4}} & N_{2,y}^{\mathrm{Q4}} & N_{3,y}^{\mathrm{Q4}} & N_{4,y}^{\mathrm{Q4}} \end{bmatrix} = (J^e)^{-1} G N^{\mathrm{Q4}}$$

上式中GNQ4为形函数对广义坐标的梯度矩阵:

$$GN^{Q4} = \begin{bmatrix} \frac{\partial N_1^{Q4}}{\partial \xi} & \frac{\partial N_2^{Q4}}{\partial \xi} & \frac{\partial N_3^{Q4}}{\partial \xi} & \frac{\partial N_4^{Q4}}{\partial \xi} \\ \frac{\partial N_1^{Q4}}{\partial \eta} & \frac{\partial N_2^{Q4}}{\partial \eta} & \frac{\partial N_3^{Q4}}{\partial \eta} & \frac{\partial N_4^{Q4}}{\partial \eta} \end{bmatrix}$$

利用 Gaussian 求积,完全积分计算得到单元刚度矩阵为:

$$K^e = \int_{\Omega^e} B^{e\mathbf{T}} D^e B^e d\Omega = \int_{-1}^1 \int_{-1}^1 B^{e\mathbf{T}} D^e B^e |J^e| d\xi d\eta$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} W_{i} W_{j} B^{eT}(\xi_{i}, \eta_{j}) D^{e} B^{e}(\xi_{i}, \eta_{j}) |J^{e}(\xi_{i}, \eta_{j})|$$

1.1.2 输入文件

本程序 CPS4 单元的输入格式基于 STAP++程序的输入格式调整,一个输入

				_					
A -	test	of	CPS4 E	lleme	ents				
4	4	1	1	1					
	1	1	1	1	0	1	0		
4	2	1	1	1	0	0	0		
	3	0	0	1	2	0.5	0		
4	4	0	0	1	2	1	0		
	1	2							
	1	2	-20						
4	4	2	-20						
4	2	1	1						
	1	3.0	E7 0.3	}					
	1	1	2	3	4	1			
sto	ор								

样例如下:

输入中,第一行为标题行,用于简要描述算例。第二行为控制行,输入入依次 为节点个数、单元组总数、载荷工况数和求解模式,具体定义与 STAP++程序 一致。

控制行之后为节点数据行,每行依次输入节点编号,x、y和z方向平移边界条件代码,节点x、y和z坐标。由于本单元被设计为计算平面受力分析的单元,z方向的边界条件必须被设为固定,且所有节点应具有相同的z坐标。若需计算空间问题,应使用板壳单元或实体单元。

之后是载荷数据输入,对格式的要求与STAP++程序完全一致。

最后是单元组数据输入,每个单元组数据输入的第一行为控制行,依次输入单元类型(2 为平面四边形单元)、本单元组中的单元总数和截面/材料性质组数。控制行之后是截面/材料性质输入,每行依次输入截面组号、材料杨氏模量和泊松比。最后为单元数据输入,依次输入单元编号、节点序号(4 个)和截面/材料性质组号。根据本程序对 Jacobi 行列式的定向,节点序号需按逆时针顺序输入。

1.1.3 刚度矩阵存储

由于程序中在平面应力问题中引入了 z 自由度,单元刚度矩阵的形式与存储需要相应的调整。记只考虑 x 和 y 方向时,单元刚度矩阵(8×8)为

$$K^e = \begin{bmatrix} K_{11} & \cdots & K_{18} \\ \vdots & \ddots & \vdots \\ K_{18} & \cdots & K_{88} \end{bmatrix}$$

引入 z 方向后,由于本单元只考虑平面应力问题,任何节点的任意力在任何 节点 z 方向上引起的位移为零,任意节点 z 方向的力在所有自由度上引起的位 移均为零。若节点 z 方向自由度紧接该节点 y 方向自由度编号,需要在原有的 刚度矩阵中每隔两行(列)插入一行(列)零元素,将原有刚度阵元素划成若 干个 2×2 的分块,以保证一维变带宽格式的正常运行。

这里给出调整后的刚度阵前三行和三列,以更清晰地说明:

$$K^{e'} = \begin{bmatrix} K_{11} & K_{12} & 0 \\ K_{21} & K_{22} & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

1.1.4 分片试验

采用课本例题 4-5 的算例进行 C 类分片试验,各节点坐标、位移精确解及载荷情况如表 1 所示。

节点	XI	УI	$u_{\rm I}$	V_{I}	F_x	Fy
号						
1	0.0	0.0	0.0	0.0	-10	0
2	2.5	0.0	0.025	0.0	15	0
3	2.5	3.0	0.025	-0.009	15	0
4	0.0	2.0	0.0	-0.006	-10	0
5	0.5	0.5	0.005	-0.0015	0	0
6	2.0	0.75	0.02	-0.00225	0	0
7	1.75	1.75	0.0175	-0.00525	0	0
8	0.65	1.6	0.0065	-0.0048	0	0

表 1 分片试验各节点坐标、位移及载荷

根据表 1 的算例,约束为节点 1 完全固定,节点 2 y 方向固定,各节点 z 方向固定。程序计算的位移如下:

NODE	X-DISPLACEMENT	Y-DISPLACEMENT	
Z-DISPLACEMENT			
1	0.00000e+00	0.00000e+00	
0.00000e+00			
2	2.50000e-02	0.00000e+00	
0.00000e+00			
3	2.50000e-02	-9.00000e-03	
0.00000e+00			
4	−2. 88398e−17	-6.00000e-03	
0.00000e+00			
5	5.00000e-03	-1.50000e-03	
0.00000e+00	0.0000	0.05000.00	
6	2.00000e-02	-2. 25000e-03	
0.00000e+00	1 75000 00	F 0F000 00	
0.00000e+00	1.75000e-02	-5. 25000e-03	
0.00000e+00	6.50000e-03	-4.80000e-03	
0.00000e+00	0. 5000000 03	4. 000000 03	
0.000000			

计算结果在双精度范围内与精确解一致,程序通过 C 类分片试验,可以正确地计算平面应力问题。

1.1.5 分收敛率分析

4Q 单元应当可以精确重构线性多项式。采用一个正方形算例,给定位移场 $u = 0.002x^3$,材料杨氏模量取 1000,泊松比取 0。

当只有一个单元时,算例的节点坐标与载荷如表 2。

九 F_{x} F_{y} $\mathbf{x}_{\mathbf{I}}$ Уı 号 1 0.0 1.0 0 0 2 0.0 0 0 0.03 1.0 0.0 3 0 4 1.0 1.0 3 0

表 2 例题 4-1 算例

分别计算划分1、4和16单元时的误差,结果如图1所示。

根据图 1 计算,程序中编写的线性四边形单元 x 方向位移误差收敛率约为 1.82,符合理论预期。

图 1 位移误差-单元参考尺寸图

1.2 T3 单元

1. 2. 1 单元基本原理

T3 单元具有 6 个自由度, 位移向量为:

$$d^e = [u_1 \quad v_1 \quad u_2 \quad v_2 \quad u_3 \quad v_3]$$

其中,单元节点123要求逆时针编号。

本单元形函数在物理空间中有简易的线性表达式:

单元的面积为

$$A_e = \frac{1}{2} \det \left(\begin{bmatrix} x_1 - x_2 & y_1 - y_2 \\ x_2 - x_3 & y_2 - y_3 \end{bmatrix} \right)$$

单元的应变矩阵为

$$B^e = \frac{1}{2A_e} \begin{bmatrix} b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}$$

注意到应变矩阵在整个单元内为常数,单元刚度矩阵可以直接积分,为:

$$K^e = \int_{O^e} B^{e\mathsf{T}} \, D^e B^e d\Omega = \frac{1}{2} A_e \int_{O^e} B^{e\mathsf{T}} \, D^e B^e$$

1. 2. 2 刚度矩阵存储

由于程序中在平面应力问题中引入了 z 自由度,单元刚度矩阵的形式与存储需要相应的调整。记只考虑 x 和 y 方向时,单元刚度矩阵(6×6)为

$$K^e = \begin{bmatrix} K_{11} & \cdots & K_{16} \\ \vdots & \ddots & \vdots \\ K_{16} & \cdots & K_{66} \end{bmatrix}$$

引入 z 方向后,由于本单元只考虑平面应力问题,任何节点的任意力在任何节点 z 方向上引起的位移为零,任意节点 z 方向的力在所有自由度上引起的位移均为零。若节点 z 方向自由度紧接该节点 y 方向自由度编号,需要在原有的刚度矩阵中每隔两行(列)插入一行(列)零元素,将原有刚度阵元素划成若干个 2×2 的分块,以保证一维变带宽格式的正常运行。

这里给出调整后的刚度阵前三行和三列,以更清晰地说明:

$$K^{e'} = \begin{bmatrix} K_{11} & K_{12} & 0 \\ K_{21} & K_{22} & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

1.2.3 输入文件与分片试验

本程序 CPS3 单元的输入格式基于 STAP++程序的输入格式调整,在分片实验中讲解详细的输入方式,一个输入样例如下:

输入中,第一行为标题行,用于简要描述算例。

第二行为控制行,输入入依次为节点个数、单元组总数、载荷工况数和求解模式,具体定义与 STAP++程序一致。

控制行之后为节点数据行,每行依次输入节点编号,x、y和z方向平移边界条件代码,节点x、y和z坐标。由于本单元被设计为计算平面受力分析的单元,z方向的边界条件必须被设为固定,且所有节点应具有相同的z坐标。若需计算空间问题,应使用板壳单元或实体单元。

之后是载荷数据输入,对格式的要求与 STAP++程序完全一致。

最后是单元组数据输入,每个单元组数据输入的第一行为控制行,依次输入单元类型(3为平面三节点三角形单元)、本单元组中的单元总数和截面/材料

Cab	les to	test S'	TAP++				
9	1	1	1				
1	1	1	1	0.0	0.0	0.0	
2	0	0	1	2.0	0.0	0.0	
3	0	1	1	3.0	0.0	0.0	
4	0	0	1	0.0	2.0	0.0	
5	0	0	1	1.5	1.5	0.0	
6	0	0	1	3.0	2.0	0.0	
7	0	0	1	0.0	3.0	0.0	
8	0	0	1	2.0	3.0	0.0	
9	0	0	1	3.0	3.0	0.0	
1	5						
3	1	10					
6	1	15					
9	1	5					
7	1	-5					
4	1	-15					
3	8	1					
1	1000	(). 3				
1	1	2	4	1			
2	2	5	4	1			
3	2	3	5	1			
4	3	6	5	1			
5	4	5	7	1			
6	5	8	7	1			
7	5	6	8	1			
8	6	9	8	1			

性质组数。控制行之后是截面/材料性质输入,每行依次输入截面组号、材料杨氏模量和泊松比。最后为单元数据输入,依次输入单元编号、节点序号(3个)和截面/材料性质组号。根据本程序对 Jacobi 行列式的定向,节点序号需按逆时针顺序输入。

采用如下图的算例进行 C 类分片试验,各节点坐标、位移精确解及载荷情况如表 1 所示,简要形状如下图 2 所示。

图 2 T3 单元分片示意图

表 3 分片试验各节点坐标、位移及载荷

节点号	ΧI	УI	$u_{\rm I}$	VI	F _x	Fy
1	0.0	0.0	0.0	0.0	-10	0
2	2.0	0.0	0.02	0.0	0	0
3	3.0	0.0	0.03	0.0	10	0
4	0.0	2.0	0.0	-0.006	-15	0
5	1.5	1.5	0.015	-0.0045	0	0
6	3.0	2.0	0.03	-0.006	15	0
7	0.0	3.0	0.0	-0.009	-5	0
8	2.0	3.0	0.02	-0.009	0	0
9	3.0	3.0	0.03	-0.009	5	0

根据表 3 的算例,约束为节点 1 完全固定,节点 3y 方向固定,各节点 z 方向固定。程序计算的位移如下。

计算结果在双精度范围内与精确解一致,程序通过 \mathbb{C} 类分片试验,可以正确地计算平

NODE	X-DISPLACEMENT	Y-DISPLACEMENT	Z-DISPLACEMENT
1	0.00000e+00	0.00000e+00	0.00000e+00
2	2.00000e-02	9.75782e-19	0.00000e+00
3	3.00000e-02	0.00000e+00	0.00000e+00
4	-1.04083e-17	-6.00000e-03	0.00000e+00
5	1.50000e-02	-4.50000e-03	0.00000e+00
6	3.00000e-02	-6.00000e-03	0.00000e+00
7	-9.05309e-18	-9.00000e-03	0.00000e+00
8	2.00000e-02	-9.00000e-03	0.00000e+00
9	3.00000e-02	-9.00000e-03	0.00000e+00

面应力问题。

1. 2. 4 收敛性分析

T3 单元是常应变单元,可以精确计算线性位移场,因此为了进行收敛率分析,采用一个正方形解析算例,给定均匀面力 σ =6,材料杨氏模量取 1000,泊松比取 0,材料正方形边长 l=12,在单元尺寸 h=12,6,4,3 时计算 L2 误差范数并进行对比。

利用 matlab, 与精确解结果 ux=0.006*(12x-x^2), uy=0 进行比较,得到 L2 误差 范数与 lg(h)的关系为下图

图 3 T3 单元位移误差-单元参考尺寸图 可见程序中编写的 T3 单元位移误差收敛率约为 1.7964,符合理论预期。

1.3 H8 单元

1.3.1 单元基本原理

对于三维线弹性问题,单元刚度阵的计算公式为:

$$\begin{split} K^{e} &= \int_{\Omega_{e}} B^{eT} D^{e} B^{e} \; \mathrm{d}\Omega \\ &= \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} B^{eT} D^{e} B^{e} \left| J^{e}(\xi, \eta, \zeta) \right| \mathrm{d}\xi \mathrm{d}\eta \mathrm{d}\zeta \\ &= \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{k=1}^{2} W_{i} W_{j} W_{k} B^{eT} D^{e} B^{e} \left| J^{e}(\xi_{i}, \eta_{j}, \zeta_{k}) \right| \end{split}$$

其中:

其中元素为单元形函数在物理坐标系中各方向的梯度。H8 单元形函数为:

$$N_I = (1 + \xi_I \xi) (1 + \eta_I \eta) (1 + \zeta_I \zeta), (I = 1, 2, \dots, 8)$$

另外,上式中的雅各比矩阵:

$$\mathcal{J}^e = \left[egin{array}{ccc} x_{,\xi} & y_{,\xi} & z_{,\xi} \ x_{,\eta} & y_{,\eta} & z_{,\eta} \ x_{,\zeta} & y_{,\zeta} & z_{,\zeta} \end{array}
ight] = G^{H8}[x^ey^ez^e]$$

其中, G^{H8} 为形函数矩阵在自然坐标系中的梯度矩阵。

1. 3. 2 分片试验

如图 4 所示,所选取进行分片试验的算例为一个由 7 个不规则六面体单元拼成的 $1\times1\times1$ 的正方体,选取(0,0,0)为坐标原点建立右手系。材料的基本参数为: E=1000, v=0.3。

使用 C 类分片试验。考虑 z 方向单向压缩应力状态,假设总体位移场精确解为:

$$\begin{bmatrix} u_x \\ u_y \\ u_z \end{bmatrix} = \begin{bmatrix} 0.6x \\ 0.6y \\ 2z \end{bmatrix} \times 10^{-3}$$

将面力边界条件等效转化为结点力,即在结点 5、6、7、8 上施加大小为-0.5N,方向竖直向下的结点力。对于 H8 单元,需要消除 6 个刚体模态,因此除了固定底部 1、2、3、4 结点 z 方向位移外,还需额外固定 1 结点的 y 方向和 3 结点的 x 方向。

各节点的坐标以及分片试验的结果如下表 4 所示:

图 4 H8 单元分片示意图

表 4 H8 单元分片试验结果

编号	x_I	y_I	z_I	$d_{x_{ex}}$	$d_{y_{ex}}$	$d_{z_{ex}}$	d_{x_h}	d_{y_h}	d_{z_h}
1	0.0	0.0	0.0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
2	1.0	0.0	0.0	6.00E-04	0.00E+00	0.00E+00	6.00E-04	0.00E+00	0.00E+00
3	1.0	1.0	0.0	6.00E-04	6.00E-04	0.00E+00	6.00E-04	6.00E-04	0.00E+00
4	0.0	1.0	0.0	0.00E+00	6.00E-04	0.00E+00	0.00E+00	6.00E-04	0.00E+00
5	0.0	0.0	1.0	0.00E+00	0.00E+00	-2.00E-03	9.80E-19	2.17E-19	-2.00E-03
6	1.0	0.0	1.0	6.00E-04	0.00E+00	-2.00E-03	6.00E-04	-4.33E-19	-2.00E-03
7	1.0	1.0	1.0	6.00E-04	6.00E-04	-2.00E-03	6.00E-04	6.00E-04	-2.00E-03
8	0.0	1.0	1.0	0.00E+00	6.00E-04	-2.00E-03	1.37E-18	6.00E-04	-2.00E-03
9	0.3	0.3	0.1	1.80E-04	1.80E-04	-2.00E-04	1.80E-04	1.80E-04	-2.00E-04
10	0.7	0.3	0.1	4.20E-04	1.80E-04	-2.00E-04	4.20E-04	1.80E-04	-2.00E-04
11	0.7	0.7	0.1	4.20E-04	4.20E-04	-2.00E-04	4.20E-04	4.20E-04	-2.00E-04
12	0.3	0.7	0.1	1.80E-04	4.20E-04	-2.00E-04	1.80E-04	4.20E-04	-2.00E-04
13	0.2	0.2	0.8	1.20E-04	1.20E-04	-1.60E-03	1.20E-04	1.20E-04	-1.60E-03
14	0.8	0.2	0.8	4.80E-04	1.20E-04	-1.60E-03	4.80E-04	1.20E-04	-1.60E-03
15	0.8	0.8	0.8	4.80E-04	4.80E-04	-1.60E-03	4.80E-04	4.80E-04	-1.60E-03

由分片试验的结果可知,有限元解结点位移误差均小于**10**⁻¹⁶,可以证明所编写的单元收敛。

1.3.3 收敛性分析

H8 单元能够精确解出线性位移场,因此为了验证计算结果的误差随单元尺寸减小的收敛率,需要考虑 2 次位移场的问题。考虑一底面固支的 $1\times1\times1$ 的正方体,材料的基本参数为: E=1000, v=0.0,其受到均匀体力 $b_z=-10$ 的作用。则此时的位移场精确为:

$$\begin{bmatrix} u_x \\ u_y \\ u_z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \frac{1}{2}z^2 - z \end{bmatrix} \times 10^{-2}$$

在 STAP++程序中添加计算 L_2 误差范数的函数,按照计算公式:

$$||e||_{L_2} = (\int_V (u^{ex} - u^h)^2 dV)^{\frac{1}{2}}$$

由于位移场的最高阶次为 2,故使用 3 点高斯求积计算积分。分别在单元尺寸 1,0.5,0.25 的的网格尺寸下计算 L_2 误差范数,得到收敛率曲线如图 5 所示。

图 5 H8 单元收敛性分析 从图中可以看出,收敛率近似为 2,符合预期。

1.4 梁单元

1.4.1 单元基本原理

考虑到评估测例与实现难度,本例选用伯努利-欧拉梁单元。本单元假设变 形前垂直于梁中性轴的平截面在变形后仍然能为平面且与变形后的轴线相垂 直,忽略了剪切形变,因此只可用于细长梁。

根据弯矩平衡方程与剪力平衡方程,可以得到伯努利-欧拉梁单元的平衡方程(4阶微分方程):

$$EI\frac{d^4u}{dx^4} - p = 0$$

其边界条件为:

$$w|_{\Gamma_{u}} = \overline{w}$$

$$\frac{dw}{dx}|_{\Gamma_{\theta}} = \overline{\theta}$$

$$mn = EI \frac{d^{2}w}{dx^{2}} n|_{\Gamma_{m}} = \overline{m}$$

$$sn = -EI \frac{d^{3}w}{dx^{3}} n|_{\Gamma_{s}} = \overline{s}$$

在方程两端乘权函数w(x)在全域内积分得到:

$$\int_{\Omega} w(EI\frac{d^4u}{dx^4} - p)dx = 0$$

经过两次分部积分可以得到弱形式:

$$\int_{\Omega} EI \frac{d^2w}{dx^2} \frac{d^2u}{dx^2} dx = \int_{\Omega} wpdx + w\overline{s}n|_{\Gamma_s} + (\frac{dw}{dx}\overline{m})n|_{\Gamma_m}$$

对于二维梁单元,每个节点有四个自由度:

$$d^e = \begin{bmatrix} u_1 & \theta_1 & u_2 & \theta_2 \end{bmatrix}$$

引入坐标变换:

$$\xi = \frac{2x}{l^e} - 1$$

在母坐标系中三次 Hermite 插值形函数为:

$$N_{w1}(\xi) = \frac{1}{4}(1-\xi)^2(2+\xi)$$

$$N_{\theta 1}(\xi) = \frac{1}{8}(1 - \xi)^2(1 + \xi)$$

$$N_{w2}(\xi) = \frac{1}{4}(1+\xi)^2(2-\xi)$$
$$N_{\theta 2}(\xi) = \frac{1}{8}(1+\xi)^2(\xi-1)$$

B矩阵为:

$$\mathbf{B}^{e} = \frac{1}{l^{e}} \begin{bmatrix} 6\xi \\ l^{e} \end{bmatrix} 3\xi - 1 - \frac{6\xi}{l^{e}} 3\xi + 1$$

可以得到刚度阵与整体节点力阵以及有限元格式:

$$Kd = f + r$$

$$\mathbf{K}^{e} = \int_{\Omega^{e}} E^{e} I^{e} \mathbf{B}^{eT} \mathbf{B}^{e} dx = \frac{E^{e} I^{e}}{l^{e3}} \begin{bmatrix} 12 & 6l^{e} & -12 & 6l^{e} \\ 6l^{e} & 4l^{e2} & -6l^{e} & 2l^{e^{2}} \\ -12 & -6l^{e} & 12 & -6l^{e} \\ 6l^{e} & 2l^{e2} & -6l^{e} & 4l^{22} \end{bmatrix}$$

对于三维空间里的伯努利-欧拉梁,可以看作两个杆单元和两个梁单元的组合。其中两个杆单元分别提供拉压与扭转方向的形变,两个梁单元为 xoy 与 xoz 平面的梁单元,分别提供 y、z 方向的挠度与弯矩。因此单元自由度为 12:

$$d^e = [u_1 \quad v_1 \quad w_1 \quad \alpha_1 \quad \beta_1 \quad \gamma_1 \quad u_1 \quad v_2 \quad w_2 \quad \alpha_2 \quad \beta_2 \quad \gamma_2]$$
 整体刚度阵由四个组成部分的刚度阵组装而成:

考虑到输入梁单元的固连坐标系并不一定与整体坐标系一致,因而需要考虑坐标变换。并将单元刚度阵转到整体坐标系之下,其中坐标转换矩阵为:

$$K^e = R^{eT}K^{e'}R^e$$

编程思路与前述大致相同,分别计算局部坐标系下的单元刚度阵与坐标变换矩阵,并通过 Eigen 库实现高效的矩阵乘法。此外,为了进一步提高计算效率,不需要每次调用函数都重新从弱形式积分得到刚度阵,只需要将刚度阵非零元素的代数表达式输入矩阵即可。

1.4.2 输入文件

本程序 Beam 单元的输入格式基于 STAP++程序的输入格式调整,一个输入样例如下:

```
A test of Beam units
           1
  2
      1
 1
      1
           1
                1
                     1 1 1
                                 0
                                       0
0
  2
      0
          0
                0
                     0 0
                              0
                                   100 0
  1
       4
          -5E4
  1
      3
  1
      5
            8.333E5
  2
      3
           -5E4
  2
      3
           -8.333E5
  5
      1
  1
      1E10
              0. 1 0. 5
                           0.5
                                  0.2
                                        1
           2
  1
              1
      1
stop
```

输入中,第一行为标题行,用于简要描述算例。第二行为控制行,输入入 依次为节点个数、单元组总数、载荷工况数和求解模式,具体定义与 STAP++ 程序基本一致。

控制行之后为节点数据行,每行依次输入节点编号,x、y和z方向平移边界条件代码,节点x、y和z坐标。由于节点自由度改为6,边界条件代码数需要变为6,单元坐标仍然只需要输入xyz单位方向坐标。

由于本单元为三维实体单元,各个方向的边界条件可以设为自由。

之后是载荷数据输入,对格式的要求与STAP++程序完全一致。

最后是单元组数据输入,每个单元组数据输入的第一行为控制行,依次输入单元类型(5为梁单元)、本单元组中的单元总数和截面/材料性质组数。控制行之后是截面/材料性质输入,每行依次输入材料组号、材料杨氏模量、梁单元x方向与y方向惯性矩、泊松比以及材料密度。

最后为单元数据输入,依次输入单元编号、节点序号(2个)和截面/材料性质组号。

1.4.3 分片试验

采用课本例题 4-5 的算例进行 C 类分片试验,各节点坐标、位移精确解及载荷情况如表 5 所示。

表 5 分片试验各节点坐标、位移及载荷

节点号	$u_{\rm I}$	VI	WI	M _x	M_{y}	M_z	Fx	Fz	Fz
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4	1.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5	2.0	0.0	0.0	0.0	1E10	0.0	0.0	0.0	0.0

图 6 固支梁在均布载荷下变形示意图

根据表 5 的算例,约束为节点 1 完全固定,其他节点不固定,为悬臂梁节构。梁单元形函数为 3 次完全多项式,位移收敛率为 4,可以精确重构 3 阶位移场。本例仅有 z 方向的挠度 w,位移场为二阶: $w=0.01x^2$ 。因此在计算时仅需在节点 5 施加弯矩为 $M_y=EI_y\frac{d^2w}{dx^2}=-0.02EI_y$ 。取材料杨氏模量取 1e10,截面取 0.1,y 与 z 方向的惯性矩为 0.5,泊松比取 0.2,材料密度为 1。程序运行结果如下表所示:

改变程序输出精度并与精确解对比, 计算结果在双精度范围内与精确解一

NODE	Z-DISPLACEMENT	Y-ROTATION
1	0.00000e+00	0.00000e+00
2	-2.50000e-03	1.00000e+00
3	-1.00000e-02	2.00000e+00
4	-1.44000e-02	2.40000e+00
5	-4.00000e-02	4.00000e+00

致,程序通过 C 类分片试验,可以正确地计算平面应力问题,位移解如下图所示:

图 7 梁单元分片试验结果

1.4.4 收敛率分析

梁单元应当可以精确重构三次完全多项式。仍然采用悬臂梁算例,固定最左侧节点,仅考虑 z 方向应变,给定位移场:

$$w(x) = \frac{px^2}{24EI}(x^2 + 6L^2 - 4Lx)$$

材料杨氏模量取 1e10,截面取 0.1, y 与 z 方向的惯性矩为 0.5, 泊松比取 0.2, 材料密度为 1。通过弱形式计算在仅有均布载荷时的等效节点力阵列为:

$$f = \int_{0}^{l^{e}} N^{eT} p dx = \frac{p^{e} l}{12} [6 - l^{e} \ 6 \ l^{e}]^{T}$$

例如当只有一个单元时,算例的节点坐标与载荷如表 6。

 节点号
 x
 My
 Fz

 1
 0.0
 8.333e5
 -5e4

 2
 100.0
 -8.333e5
 -5e4

表 6 梁单元收敛性分析算例示例

分别计算划分 1、2、4 和 8 单元时的误差 L2 范数(本例中只有 z 方向位移),可以通过 Gaussian.cpp 中的函数逐单元进行高斯积分,通过最小二次拟合直线得到结果如图 8 所示。

图 8 梁单元收敛性分析结果

拟合直线方程为: y=4.786 x - 18.43。根据图 8 计算,程序中编写的伯努利 - 欧拉梁单元 x 方向位移误差收敛率约为 4.786,而理论位移误差收敛率应为 4,与本单元计算结构有一些差距但基本相符。这可能是由于本算例中,所施加的 节点弯矩载荷数值上不是精确的,其解析解是循环小数,在输入.dat 文件时认为进行了舍入,从而导致一定的误差。

1.5 板单元

1.5.1 单元基本原理

对于矩形薄板,考虑图9所示模型,

图 9 薄板弯曲模型

有:

$$egin{aligned} arepsilon_x &= z rac{\partial heta_y}{\partial x} \ arepsilon_y &= -z rac{\partial heta_x}{\partial y} \ arepsilon_z &= 0 \ \gamma_{xy} &= -z rac{\partial heta_x}{\partial x} + z rac{\partial heta_y}{\partial y} \ \gamma_{xz} &= heta_y + rac{\partial w}{\partial x} \ \gamma_{yz} &= - heta_x + rac{\partial w}{\partial y} \end{aligned}$$

为了表示方便,引入与挠度的梯度方向相同方向的一组"转角":

$$\hat{\theta} = \nabla w$$

根据模型以及 Kirchoff-Love 薄板假设,可得应力与应变之间的关系:

$$egin{bmatrix} \sigma_x \ \sigma_y \ au_{xy} \end{bmatrix} = rac{E}{1-
u^2} egin{bmatrix} 1 &
u & 0 \
u & 1 & 0 \ 0 & 0 & rac{1-
u}{2} \end{bmatrix} egin{bmatrix} arepsilon_x \ arepsilon_y \ \gamma_{xy} \end{bmatrix}$$

利用弯矩和应力之间的关系,可以得到作用在微元体中面上的广义内力(弯矩和扭矩)为:

$$egin{aligned} \mathbb{M} &= -\mathbb{D}
abla_S \hat{ heta} \ \mathbb{M} &= egin{bmatrix} M_x & M_y & M_{xy} \end{bmatrix}^T \ \mathbb{D} &= D_0 egin{bmatrix} 1 &
u & 0 \
u & 1 & 0 \ 0 & 0 & rac{1-
u}{2} \end{bmatrix} \end{aligned}$$

根据模型,得到微元体的剪力:

$$S = lpha(
abla w - \hat{ heta})$$

由于参数中的剪切模量 G 对于薄板来说是无穷,故剪力需要通过平衡方程求出。有微元体的平衡方程:

$$abla^T \mathbf{S} + q = 0$$
 $abla^T_S \mathbf{MI} - \mathbf{S} = 0$

利用前面已经得到的弯矩和剪力的表达式,可得薄板的平衡方程:

$$D_0igg(rac{\partial^4 w}{\partial x^4} + 2rac{\partial^4 w}{\partial^2 x \partial^2 y} + rac{\partial^4 w}{\partial y^4}igg) - q = 0$$

对强形式进行加权余量法积分,经过两次分部积分可以得到对应的弱形式,以及虚功原理的表达式。然后可以进行有限元离散。

有限元格式中,单元任一点的广义应变(曲率)为:.

$$egin{aligned} oldsymbol{\kappa}^e &= B^e d^e \ oldsymbol{B}^e &=
abla_{
m S}
abla oldsymbol{N}^e &= egin{bmatrix} \partial^2 \mathbf{N}^e / \partial x^2 \ \partial^2 \mathbf{N}^e / \partial y^2 \ \partial \partial^2 oldsymbol{N}^e / \partial x \partial y \end{bmatrix} \end{aligned}$$

由于每个节点具有 3 个自由度,单元总体具有 12 个自由度,位移向量为: $d^e = [W_1 \quad \theta_{X1} \quad \theta_{Y1} \quad W_2 \quad \theta_{X2} \quad \theta_{Y2} \quad W_3 \quad \theta_{X3} \quad \theta_{Y3} \quad W_4 \quad \theta_{X4} \quad \theta_{Y4}]$ 所以近似函数取 12 项。即:

$$\mathbf{p} = \begin{bmatrix} 1, x, y, x^2, xy, y^2, x^3, x^2y, xy^2, y^3, x^3y, xy^3 \end{bmatrix}$$

$$\alpha^e = \begin{bmatrix} a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9, a_{10}, a_{11}, a_{12} \end{bmatrix}^T$$

引入坐标变换

$$\xi = \frac{x - x_c}{a}$$

$$\eta = \frac{y - y_c}{b}$$

令*I*为单元四个节点的编号(逆时针),可得单元的显式形函数。代入单元应变矩阵中,结合复合函数求导,可得应变矩阵为:

$$B_I^e = rac{1}{4ab} egin{bmatrix} -3rac{b}{a}\xi_I\xi(1+\eta_I\eta) & 0 & -b\xi_I(1+3\xi_I\xi)(1+\eta_I\eta) \ -3rac{b}{a}\eta_I\eta(1+\xi_I\xi) & a\eta_I(1+3\eta_I\eta)(1+\xi_I\xi) & 0 \ \xi_I\eta_Iig(4-3\xi^2-3\eta^2ig) & b\xi_Iig(3\eta^2+2\eta_I\eta-1ig) & a\eta_Iig(1-2\xi_I\xi-3\xi^2ig) \end{bmatrix}$$

整体应变矩阵为:

$$B^e = [B_1 \quad B_2 \quad B_3 \quad B_4]$$

利用 Gaussian 求积, 3 次积分计算得到单元刚度矩阵为:

$$\begin{split} K^e &= \int_{\varOmega^e} B^{e\mathbf{T}} \, D^e B^e d\Omega = \int_{-1}^1 \int_{-1}^1 B^{e\mathbf{T}} \, D^e B^e |J^e| d\xi d\eta \\ &= \sum_{i=1}^n \sum_{j=1}^n W_i \, W_j B^{e\mathbf{T}}(\xi_i, \eta_j) D^e B^e(\xi_i, \eta_j) |J^e(\xi_i, \eta_j)| \end{split}$$

1.5.2 刚度矩阵存储

按照上文所述利用高斯积分求得的矩阵是 12 维的,而板单元的实际自由度 NDF 为 6,在实际得到最终 24 维单元刚度矩阵时,类比单元刚度矩阵组装得到总体刚度矩阵的思想,将 3 自由度对应的刚度矩阵按照实际自由度: 3 4 5 9 10 11 15 16 17 21 22 23 组装到单元刚度矩阵中。得到单元刚度矩阵后,按照上三角存储格式进行存储。

1.5.3 输入文件

本程序 plate 单元的输入格式基于 STAP++程序的输入格式调整,与前文 CPS4 单元类似。输入中,第一行为标题行,用于简要描述算例。第二行为控制行,输入入依次为节点个数、单元组总数、载荷工况数和求解模式,具体定义与 STAP++程序一致。

控制行之后为节点数据行,每行依次输入节点编号, \mathbf{x} 、 \mathbf{y} 、 \mathbf{z} 、 $\theta_{\mathbf{x}}$ 、 $\theta_{\mathbf{y}}$ 和 $\theta_{\mathbf{z}}$ 边界条件代码,节点 \mathbf{x} \mathbf{y} \mathbf{x} \mathbf{y} \mathbf{x} \mathbf{y} \mathbf{y} \mathbf{x} \mathbf{y} $\mathbf{y$

之后是载荷数据输入,对格式的要求与 STAP++程序完全一致,而需要注意的是,在板单元中,对于弯矩的方向,遵照书中微元体推导时定义的方向,即 x 方向正应力对应的弯矩应为第 5 个加载方向。

最后是单元组数据输入,每个单元组数据输入的第一行为控制行,依次输入单元类型、本单元组中的单元总数和截面/材料性质组数。控制行之后是截面/材料性质输入,每行依次输入截面组号、材料杨氏模量、板厚、泊松比和材料密度。

最后为单元数据输入,依次输入单元编号、节点序号(4 个)和截面/ 材料性质组号。根据本程序对单元特征长度的计算方法,节点序号需按矩形 板左下节点到左上节点顺序输入。

1.5.4 应力计算

应用公式: $\mathbf{M} = \mathbf{DBd}$ 进行弯矩的计算,然后利用弯矩和正应力的关系得到应力,以 \mathbf{x} 方向正应力为例: $\sigma_{xx} = \frac{12*M_y}{h^3} * \mathbf{z}$.

1.5.5 板单元算例验证

选择算例:长宽均为 10 的平板,厚度为 1,泊松比为 0.3,左边固支,右边一个均布为 1 的线载荷,划分为 4 个单元,分别在 stap++程序中计算和在 abaqus 中仿真,计算挠度,在 stap++中计算得到的结果经过 tecplot 处理后如图 10 和图 11。

图 10 stap++算例计算挠度结果

图 11 abaqus 算例计算挠度结果

对比发现,板单元计算效果和 abaqus 计算结果相差不大。

板单元的分片实验与收敛性分析合并在平板壳单元中完成, 此处不再赘述。

1.6 平板壳单元

1.6.1 单元基本原理

平板壳单元可以看作 CPS4 单元与板单元的叠加,共具有 24 个自由度,位移向量为:

$$d^e = [d_1 \quad d_2 \quad d_3 \quad d_4]$$

其中:

$$d_i = \begin{bmatrix} u_i & v_i & w_i & \theta_{xi} & \theta_{vi} & \theta_{zi} \end{bmatrix}$$

引入坐标变换

$$\xi = \frac{x - x_c}{a}$$

$$\eta = \frac{y - y_c}{h}$$

考虑两种单元的叠加效果时,将 4Q 单元对应的面内变形和板单元对应的弯曲变形分开,对应一个节点的位移也可以分为:

$$d_i = \begin{bmatrix} d_{4Q} & d_p \end{bmatrix}$$

$$d_{4Q} = \begin{bmatrix} u_i & v_i \end{bmatrix}$$

$$d_p = [w_i \quad \theta_{xi} \quad \theta_{yi}]$$

对于 4Q 部分: 单元的 Jacobi 矩阵为:

$$J^{e} = \frac{1}{4} \begin{bmatrix} x_{21}(1-\eta) - x_{43}(1+\eta) & y_{21}(1-\eta) - y_{43}(1+\eta) \\ x_{41}(1-\xi) + x_{32}(1+\xi) & y_{41}(1-\xi) + y_{32}(1+\xi) \end{bmatrix}$$

单元的应变矩阵为

$$B^{e} = \begin{bmatrix} N_{1,x}^{\mathrm{Q4}} & 0 & N_{2,x}^{\mathrm{Q4}} & 0 & N_{3,x}^{\mathrm{Q4}} & 0 & N_{4,x}^{\mathrm{Q4}} & 0 \\ 0 & N_{1,y}^{\mathrm{Q4}} & 0 & N_{2,y}^{\mathrm{Q4}} & 0 & N_{3,y}^{\mathrm{Q4}} & 0 & N_{4,y}^{\mathrm{Q4}} \\ N_{1,y}^{\mathrm{Q4}} & N_{1,x}^{\mathrm{Q4}} & N_{2,y}^{\mathrm{Q4}} & N_{2,x}^{\mathrm{Q4}} & N_{3,y}^{\mathrm{Q4}} & N_{3,x}^{\mathrm{Q4}} & N_{4,y}^{\mathrm{Q4}} \end{bmatrix}$$

其中,形函数对物理坐标的梯度由下式给定:

$$[B^e] = \begin{bmatrix} N_{1,x}^{Q4} & N_{2,x}^{Q4} & N_{3,x}^{Q4} & N_{4,x}^{Q4} \\ N_{1,y}^{Q4} & N_{2,y}^{Q4} & N_{3,y}^{Q4} & N_{4,y}^{Q4} \end{bmatrix} = (J^e)^{-1}GN^{Q4}$$

上式中GNQ4为形函数对广义坐标的梯度矩阵:

$$GN^{Q4} = \begin{bmatrix} \frac{\partial N_1^{Q4}}{\partial \xi} & \frac{\partial N_2^{Q4}}{\partial \xi} & \frac{\partial N_3^{Q4}}{\partial \xi} & \frac{\partial N_4^{Q4}}{\partial \xi} \\ \frac{\partial N_1^{Q4}}{\partial \eta} & \frac{\partial N_2^{Q4}}{\partial \eta} & \frac{\partial N_3^{Q4}}{\partial \eta} & \frac{\partial N_4^{Q4}}{\partial \eta} \end{bmatrix}$$

利用 Gaussian 求积,完全积分计算得到 4Q 部分单元刚度矩阵为:

$$K_{4Q}^{e} = \int_{\Omega^{e}} B^{e\mathbf{T}} D^{e} B^{e} d\Omega = \int_{-1}^{1} \int_{-1}^{1} B^{e\mathbf{T}} D^{e} B^{e} |J^{e}| d\xi d\eta$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} W_{i} W_{j} B^{e\mathbf{T}} (\xi_{i}, \eta_{j}) D^{e} B^{e} (\xi_{i}, \eta_{j}) |J^{e} (\xi_{i}, \eta_{j})|$$

对于板单元部分,应变矩阵:

$$B_I^e = rac{1}{4ab} egin{bmatrix} -3rac{b}{a}\xi_I\xi(1+\eta_I\eta) & 0 & -b\xi_I(1+3\xi_I\xi)(1+\eta_I\eta) \ -3rac{b}{a}\eta_I\eta(1+\xi_I\xi) & a\eta_I(1+3\eta_I\eta)(1+\xi_I\xi) & 0 \ \xi_I\eta_Iig(4-3\xi^2-3\eta^2ig) & b\xi_Iig(3\eta^2+2\eta_I\eta-1ig) & a\eta_Iig(1-2\xi_I\xi-3\xi^2ig) \end{bmatrix}$$

整体应变矩阵为:

$$B^e = [B_1 \quad B_2 \quad B_3 \quad B_4]$$

利用 Gaussian 求积, 3 次积分计算得到单元刚度矩阵为:

$$K_p^e = \int_{\Omega^e} B^{e\mathbf{T}} D^e B^e d\Omega = \int_{-1}^1 \int_{-1}^1 B^{e\mathbf{T}} D^e B^e |J^e| d\xi d\eta$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} W_{i} W_{j} B^{eT}(\xi_{i}, \eta_{j}) D^{e} B^{e}(\xi_{i}, \eta_{j}) |J^{e}(\xi_{i}, \eta_{j})|$$

得到两个单元部分的应变矩阵后,类比单元刚度矩阵组装得到总体刚度矩阵的思想,将 4Q 部分 2 自由度对应的刚度矩阵按照实际自由度:127813141920组装到单元刚度阵中;将板单元3自由度对应的刚度矩阵按照实际自由度34591011151617212223组装到单元刚度矩阵中。得到单元刚度矩阵后,按照上三角存储格式进行存储。

1.6.2 输入文件

本程序 shell 单元的输入格式基于 STAP++程序的输入格式调整,与前文 CPS4 单元类似。输入中,第一行为标题行,用于简要描述算例。第二行为 控制行,输入入依次为节点个数、单元组总数、载荷工况数和求解模式,具 体定义与 STAP++程序一致。

控制行之后为节点数据行,每行依次输入节点编号, \mathbf{x} 、 \mathbf{y} 、 \mathbf{z} 、 $\theta_{\mathbf{x}}$ 、 $\theta_{\mathbf{y}}$ 和 $\theta_{\mathbf{z}}$ 边界条件代码,节点 \mathbf{x} \mathbf{y} \mathbf{z} 坐标。在计算平面问题时, $\theta_{\mathbf{z}}$ 自由度应固定。

之后是载荷数据输入,对格式的要求与 STAP++程序完全一致,而需要注意的是,在板单元中,对于弯矩的方向,遵照书中微元体推导时定义的方向,即 x 方向正应力对应的弯矩应为第 5 个加载方向。

最后是单元组数据输入,每个单元组数据输入的第一行为控制行,依次输入单元类型、本单元组中的单元总数和截面/材料性质组数。控制行之后是截面/材料性质输入,每行依次输入截面组号、材料杨氏模量、板厚、泊松比和材料密度。

最后为单元数据输入,依次输入单元编号、节点序号(4个)和截面/ 材料性质组号。根据本程序对单元特征长度的计算方法,节点序号需按矩 形板左下节点到左上节点顺序输入。

1.6.3 分片试验

对于平板壳单元,面内应力部分和弯曲应力部分分别进行分片实验。

(A) 面内应力分片试验

采用课本例题 4-5 的算例进行 C 类分片试验,各节点坐标、位移精确解及载荷情况如表 7 所示。

表 7 分片试验各节点坐标、位移及载荷

节点号	XI	У	$\mathbf{u}_{\scriptscriptstyle \mathrm{I}}$	V _I	F _x	F _y
1	0.0	0.0	0.0	0.0	-10	0
2	2.5	0.0	0.025	0.0	15	0
3	2.5	3.0	0.025	-0.009	15	0
4	0.0	2.0	0.0	-0.006	-10	0
5	0.5	0.5	0.005	-0.0015	0	0
6	2.0	0.75	0.02	-0.00225	0	0
7	1.75	1. 75	0.017	-0.00525	0	0
			5			
8	0.65	1.6	0.006	-0.0048	0	0
			5			

根据表 7 的算例,约束为节点 1 完全固定,节点 2 y 方向固定,各节点 z 方向固定。程序计算的位移如图 12。

NODE	X-DISPLACEMENT	Y-DISPLACEMENT	Z-DISPLACEMENT
1	0.00000e+00	0.00000e+00	0.00000e+00
2	2.50000e-02	0.00000e+00	0.00000e+00
3	2.50000e-02	-9.00000e-03	0.00000e+00
4	-1.01915e-16	-6.00000e-03	0.00000e+00
5	5.00000e-03	-1.50000e-03	0.00000e+00
6	2.00000e-02	-2.25000e-03	0.00000e+00
7	1.75000e-02	-5.25000e-03	0.00000e+00
8	6.50000e-03	-4.80000e-03	0.00000e+00
8	6. 50000e-03	-4. 80000e-03	0. 00000e+00

图 12 面内应力分片试验程序计算的位移

计算结果在双精度范围内与精确解一致,程序通过 C 类分片试验,可以正确地计算平面应力问题。在 tecplot 中进行后处理,画出各节点对应的 x、方向位移云图如图 13.

图 13 面内应力分片试验各节点坐标、x 方向位移

(B) 弯曲应力分片试验

对于弯曲应力部分分片实验,考虑到需要对转角进行检验。设置算例, 挠度场不可能为线性,假设为 $w=-x^2$,将特征长度为 5、厚度为 1、泊松比 为 0 的矩形板左边固支,右边施加大小为 1 的弯矩。考虑到分片实验需要不 规则的单元,故划分大小不同的 4 个矩形单元。

各节点坐标、转角精确解表 2 所示。程序计算的位移如图 14。计算结果在双精度范围内与精确解一致,程序通过 C 类分片试验. 在 tecplot 中进行后处理,画出各节点转角云图如图 15.

0. 00000e+00 7. 20000e+00 1. 20000e+01 0. 00000e+00 7. 20000e+00 1. 20000e+01 0. 00000e+00 7. 20000e+00 1. 20000e+01

图 14 弯曲应力分片试验程序计算的转角位移

表 8 分片试验各节点坐标、转角

节点号	X _I	$y_{_{ m I}}$	θ_x
1	-5	5	0
2	1	5	7.2
3	5	5	12
4	-5	1	0
5	1	1	7.2
6	5	1	12
7	-5	-5	0
8	1	-5	7.2
9	5	5	12

图 15 弯曲分片试验各节点坐标、转角

1.6.4 算例验证

选择书中算例,四边固支正方形薄板受到横向均布载荷,即例题 6-4. 将板划分为 4 个单元,将均布载荷转化为节点载荷,编写输入文件进行计算,将计算结果与 python 算例结果进行对比,发现几乎一致。书中给出结果为-3. 309e-4. 程序计算的结果如图 16.

图 16 例 6-4 算例

1.6.5 收敛性分析

收敛性分析部分,选择四边固支板壳,中间加集中力,查阅资料后发现,该问题存在解析解,中心的挠度 $w=0.0056*\frac{PL^2}{D}$, 其中 D 为理论部分的弯曲刚度,L 为板边长。

设置算例为特征长度为 5, 厚度为 1, 弹性模量为 1E9, 泊松比为 0.3 的板,中心处施加大小为 10 的集中力。可以得到中心处挠度解析解为 6.1152E-8。

利用程序,分别划分 4、16、64、256 个单元进行计算。画出其中两个算例经过后处理得到的挠度云图,如图 17,图 18。

图 17 4 单元算例

图 18 16 单元算例

得到单元长度的对数与误差的对数如表 9。

表 9 收敛性分析双对数表

Log(h)	Log(error)
1.609437912	-19. 4766
0.81093	-18. 9511
0. 117783	-19. 9293
-0. 47	-20. 96177

画出双对数曲线如图 19,进行分析,可以发现,对于板壳单元,由于单元非协调,收敛并不是单调的,依照收敛平稳阶段的斜率,可以看出收敛率在 2 左右,符合理论预期。分析收敛率不完全是 2 的原因,可能是由于厚度设置还不是非常理想得符合薄板的情况。(提交输入文件中更改了泊松比等参数,发现仍然可以收敛)

图 19 log(h)-log(error)图

1.7 无限单元

1.7.1 单元基本原理

许多问题会涉及无限空间,这是可以选择利用无限单元进行求解。无限单元是一种非等参单元,坐标变换也与其他单元有所区别。在几何映射中,无限单元采用三点映射的办法,将-1,0,1 三点映射到 r_1, r_2 以及无穷处,如图 20。

图 20 无限单元映射

形函数为:

$$N_1(\xi) = -\frac{2\xi}{1-\xi}$$

 $N_2(\xi) = \frac{1+\xi}{1-\xi}$

进一步可以得到函数近似为:

$$\theta^{e}(\xi) = \frac{1}{2}\xi(\xi - 1)\theta_{1}^{e} + (1 - \xi^{2})\theta_{2}^{e}$$

类似于四边形单元,可以将两个方向的形函数做张量积,而将一维无限单元 考虑其中,可以得到二维四节点无限单元,如图 21。

图 21 二维无限单元映射

类似于四边形单元的一系列求解流程,其中应变矩阵为:

$$[B^e] = (J^e)^{-1}GN^{3T}$$

其中雅克比矩阵的求法为:

$$[J] = GN*[x \quad y]$$

而梯度矩阵类似于四边形单元的求导方法可以求得。无限单元在程序中为 CInf。

Part2 单元组装

2.1 单元组装的代码实现

在组员分别开发一个单元后,我们进行了组装。主要难点是解决 NDF=3 和 6 的单元的不协调性。

将 element.h 中加入一个随单元绑定的变量 elementNDF,在每个类型的单元中将此变量依照自己的 NDF 进行分别赋值。再将组装 LM 矩阵处的变量循环范围改为<elementNDF。这样做的好处是大家的输入文件经过修改后格式统一协调,bcode 的大小都是 6,对于三角形和四边形单元,LM 矩阵实际上只寻找前 3 个,即 elementNDF = 3.

代码改动处如图 22, 23, 24。

```
class CFlement
{
protected:

//! Number of nodes per element
    unsigned int NEN_;

//! Nodes of the element
    CNode** nodes_;

//! Material of the element
    CMaterial* ElementMaterial_; //!< Pointer to an element of MaterialSetList[][]

//! Location Matrix of the element
    unsigned int* LocationMatrix_;

//! Dimension of the location matrix
    unsigned int ND_;

unsigned int ElementNDF;
```

图 22 代码改动

图 23 代码改动

```
virtual void GenerateLocationMatrix()
{
    unsigned int i = 0;
    for (unsigned int N = 0; N < NEN_; N++)
        for (unsigned int D = 0; D < ElementNDF; D++)
            LocationMatrix_[i++] = nodes_[N]->bcode[D];
}
```

图 24 代码改动

2.2 单元组装的算例实现

经过试验,我们可以成功地在一套程序中运行所有单元。特别地,我们将Q4单元与T3单元组合起来进行了分片实验,对应结果如下:

图 25 Q4 与 T3 单元组装示意图

Cables to test STAP++ 9 2 1 1 1 1 1 0.0 0.0 0.0 2 0 0 1 2.0 0.0 0.0 3 0 1 1 3.0 0.0 0.0 4 0 0 1 0.0 2.0 0.0	
1 1 1 1 0.0 0.0 0.0 2 0 0 1 2.0 0.0 0.0 3 0 1 1 3.0 0.0 0.0	
2 0 0 1 2.0 0.0 0.0 3 0 1 1 3.0 0.0 0.0	
3 0 1 1 3.0 0.0 0.0	
4 0 0 1 0.0 2.0 0.0	
5 0 0 1 1.5 1.5 0.0	
6 0 0 1 3.0 2.0 0.0	
7 0 0 1 0.0 3.0 0.0	
8 0 0 1 2.0 3.0 0.0	
9 0 0 1 3.0 3.0 0.0	
1 5	
3 1 10	
6 1 15	
9 1 5	
7 1 -5	
4 1 -15	
2 1 1	
1 1000 0.3	
1 1 2 5 4 1	
3 6 1	
1 1000 0.3	
1 2 3 5 1	
2 3 6 5 1	
3 4 5 7 1	
4 5 8 7 1	
5 5 6 8 1	

可以看到计算结果在双精度范围内与精确解一致,组合的平面单元程序也通过

NODE	X-DISPLACEMENT	Y-DISPLACEMENT	Z-DISPLACEMENT
1	0.00000e+00	0.00000e+00	0.00000e+00
2	2.00000e-02	6.72205e-18	0.00000e+00
3	3.00000e-02	0.00000e+00	0.00000e+00
4	-1.64799e-17	-6.00000e-03	0.00000e+00
5	1.50000e-02	-4.50000e-03	0.00000e+00
6	3.00000e-02	-6.00000e-03	0.00000e+00
7	-1.14925e-17	-9.00000e-03	0.00000e+00
8	2.00000e-02	-9.00000e-03	0.00000e+00
9	3.00000e-02	-9.00000e-03	0.00000e+00

C 类分片试验,可以正确地计算平面应力问题。

Part3 后处理模块

3.1 Tecplot 后处理

将程序计算得到的需要进行后处理的变量一同写在 tecplot 软件所需要的输入文件中,一个 zone 对应一个单元,设置单元类型和节点信息。板单元进行后处理的一个算例的输入文件如图 26。

图 26 Tecplot 后处理输入文件

Part4 其他

4.1 小组分工

序号	分工任务	负责人
1	Q4 单元	何育航
2	T3 单元	彭梓权
3	H8 单元	路翔宇
4	梁单元	林昊田
5	板壳单元	唐辛雨
6	后处理	唐辛雨
7	无限单元	唐辛雨
8	单元组装	唐辛雨、彭梓权
9	程序整合上传	林昊田
10	报告整合	路翔宇
11	PPT 整合	何育航

4.2 致谢

非常感谢张雄老师生动的教学和悉心的指导,以及李家盛助教在作业、程序安装等方面给予的许多帮助。本次 STAP++大作业小组的每位同学都付出了很多,大家通力合作,共同克服困难。

通过这次大作业,我们对于 C++、matlab 等编程技能有了更加全面、深入的掌握,对使用 github 合作分工的方式也有了一定的了解,同时,也初步掌握了 ABAQUS、Tecplot 等商用软件,收获良多。

4.3 附录

4.3.1 T3 单元收敛率分析输入文件

在 h=12 时,输入:

3 1 0 1 0.0 12.0 0.0 4 0 0 1 12.0 12.0 0.0 1 2	4	1	1	1			
3 1 0 1 0.0 12.0 0.0 4 0 0 1 12.0 12.0 0.0 1 2 2 1 288 4 1 144 3 2 1 1 1000 0.0 1 1 2 3 1 1 2 3	1	1	1	1	0.0	0.0	. 0
4 0 0 1 12.0 12.0 0.0 1 2 2 1 288	2	0	1	1	12.0	0.0	0.0
1 2 2 1 288 4 1 144 3 2 1 1 1000 0.0 1 1 2 3 1	3	1	0	1	0.0	12.0	0.0
2 1 288 4 1 144 3 2 1 1 1000 0.0 1 1 2 3 1	4	0	0	1	12.0	12.0	0.0
4 1 144 3 2 1 1 1000 0.0 1 1 2 3 1	1	2					
3 2 1 1 1000 0.0 1 1 2 3 1	2	1	288				
1 1000 0.0 1 1 2 3 1	4	1	144				
1 1 2 3 1	3	2	1				
	1	1000		0.0			
2 2 4 3 1	1	1	2	3	1		
	2	2	4	3	1		

输出:

NODE	X-DISPLACEMENT	Y-DISPLACEMENT	Z-DISPLACEMENT
1	0.00000e+00	0.00000e+00	0.00000e+00
2	5. 28000e-01	0.00000e+00	0.00000e+00
3	0.00000e+00	-4.80000e-02	0.00000e+00
4	3.36000e-01	4.80000e-02	0.00000e+00

在 h=6 时,输入/输出:

	TAP++		
	1		
1	1	0.0	0.0
1	1	6.0	0.0
1	1	12.0	0.0
0	1	0.0	6.0
0	1	6.0	6.0
0	1	12.0	6.0
0	1	0.0	12.0
0	1	6.0	12.0
0	1	12.0	12.0
)			
108			
72			
216			
108			
108			
36			
1			
	1 1 1 0 0 0 0 0 0 0 0 0 0 108 72 216 108 108 36	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 0.0 1 1 6.0 1 1 12.0 0 1 0.0 0 1 6.0 0 1 12.0 0 1 0.0 1 12.0 1 12.0 1 18.7 1 1

NODE	X-DISPLACEMENT	Y-DISPLACEMENT	Z-DISPLACEMENT	
1	0.00000e+00	0.00000e+00	0.00000e+00	
2	3. 39783e-01	0.00000e+00	0.00000e+00	
3	4. 74822e-01	0.00000e+00	0.00000e+00	
4	0.00000e+00	-8. 89118e-03	0.00000e+00	
5	3. 26347e-01	-4. 52976e-03	0.00000e+00	
6	4. 34418e-01	1.79507e-02	0.00000e+00	
7	0.00000e+00	-1.54256e-02	0.00000e+00	
8	3. 03524e-01	-5. 67158e-03	0.00000e+00	
9	3. 84342e-01	2.67688e-02	0.00000e+00	

在 h=4 时,输入/输出:

16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1	es to tes 1 1 0 0 0 1 0 0 1 0 0 1 0 0	1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0. 0 4. 0 8. 0 12. 0 0. 5 4. 0 8. 0 12. 0 0. 0 4. 0 8. 0 12. 0 0. 0 4. 0 8. 0	0. 0 0. 0 0. 0 0. 0 4. 0 4. 0 4. 0 8. 0 8. 0 8. 0 12. 0 12. 0 12. 0	0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0				
2 3	1 1	48 48					NODE	X-DISPLACEMENT	Y-DISPLACEMENT	Z-DISPLACEMENT
4	1	32					1	0.00000e+00	0.00000e+00	0.00000e+00
6 7	1 1	96 96					2	2. 31962e-01	0.00000e+00	0.00000e+00
8	1	48					3	3.80771e-01	0.00000e+00	0.00000e+00
10	1	96								
11	1	96 48					4	4. 40138e-01	0.00000e+00	0.00000e+00
12 14	1 1	48 48					5	0.00000e+00	3. 10397e-03	0.00000e+00
15	1	48					6	2. 23082e-01	-2. 31333e-03	0.00000e+00
16	1	16					7	3.73902e-01	-1. 69292e-03	0.00000e+00
3 1	18 1000	1 0. 0					8	4. 24559e-01	4. 61937e-03	0.00000e+00
1	1	2	5	1						
2	2	6	5	1			9	0.00000e+00	1. 67883e-03	0.00000e+00
$\frac{3}{4}$	2 3	3 7	6 6	1 1			10	2. 31815e-01	-2. 74441e-03	0.00000e+00
5	3	4	7	1			11	3.71814e-01	-1.34903e-03	0.00000e+00
6 7	4 5	8 6	7 9	1 1			12	4.17858e-01	6. 71790e-03	0.00000e+00
8	6	10	9	1			13	0.00000e+00	-1.88906e-04	0.00000e+00
9	6	7	10	1			14	2. 31089e-01	-3. 19769e-03	0.00000e+00
10 11	7 7	11 8	10 11	1 1			15	3.64644e-01	-1.57673e-03	0.00000e+00
12	8	12	11	1						
13	9	10	13	1			16	3. 99874e-01	9. 94761e-03	0.00000e+00
14 15	10 10	14 11	13 14	1						
16	11	15	14	1						
17	11	12	15	1						
18	12	16	15	1			1			

在 h=3 时,输入/输出:

1	Cable	es to tes	st STAP++					7			
2	25	1	1								
3											
4	3										
6			1		9.0	0.0	0.0				
7											
8											
10					6.0	3.0	0.0				
11	1										
12											
13											
15	13	0	0	1	6.0	6.0	0.0				
16											
17											
19	17				3.0	9.0	0.0				
20											
21											
23											
24 0 0 1 1 9.0 12.0 0.0 0 0.0000e+00											
25								1	0.00000e+00	0.00000e+00	
2 1.9169e-01 0.00000e+00 3 1 27 4 1 27 5 1 18 7 1 54 8 1 54 9 1 54 9 1 54 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						12. 0		0.00000e+00			
2			0.5					2	1.91169e-01	0.00000e+00	
4	2 3										
5											
Section Sect	5							3	3. 28865e-01	0.00000e+00	
9								0.00000e+00			
10								4	4. 13766e-01	0.00000e+00	
13			27					0.00000e+00			
14								5	4 473916-01	0.00000e+00	
15									1. 110010 01	0.000000.00	
18 1 54 19 1 54 20 1 27 22 1 27 23 1 27 24 1 27 25 1 9 3 32 1 1 1000 0.0 1 1 2 6 1 1 2 6 2 2 7 6 3 2 3 7 1 4 3 8 7 1 4 3 8 7 1 4 3 4 8 1 6 4 9 8 1 7 1.00000e+00 1 0.0000e+00 4 3.88 1 0.0000e+00 6 4 9 8 1 7 1 1 0.0000e+00 9 6 7 11 1 10 7 12 11 1 10 7 12 11 1 10 7 12 11 1 10 0.0000e+00 0 0	15		27					0.00000e+00			
19								6	0.00000e+00	-1.44983e-03	
20								0.00000e+00			
23	20	1	27					7	1.90602e-01	-1.36877e-03	
24 1 27 25 1 9 3 32 1 1 1000 0.0 1 1 2 6 1 2 2 2 7 6 1 3 2 3 7 1 4 3 8 7 1 5 3 4 8 1 6 4 9 8 1 7 4 5 9 1 8 5 10 9 1 8 5 10 9 1 8 8 3.27391e-01 -8.34349e-04 0.00000e+00 10 4.38476e-01 4.72849e-03 11 0.00000e+00 11 0.00000e+00 12 1 0.00000e+00 13 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								0. 00000e+00			
25									2 07201 . 01	0.2424004	
1 1000 0.0 1 1 2 6 1 2 2 7 6 1 3 2 3 7 1 4 3 8 7 1 5 3 4 8 1 6 4 9 8 1 7 4 5 9 1 8 5 10 9 1 9 6 7 11 1 10 7 12 11 1 11 7 8 12 1 12 8 13 12 1 13 8 9 13 1 14 9 14 13 1		1							3. 27391e-01	-8. 34349e-04	
1 1 2 6 1 2 2 7 6 1 3 2 3 7 1 4 3 8 7 1 5 3 4 8 1 6 4 9 8 1 7 4 5 9 1 8 5 10 9 1 9 6 7 11 1 10 7 12 11 1 11 7 8 12 1 12 8 13 12 1 13 8 9 13 1 14 9 14 13 1	1							0.00000e+00			
2 2 7 6 1 0.00000e+00 3 2 3 7 1 1 4 3 8 7 1 5 3 4 8 1 0.00000e+00 6 4 9 8 1 1 7 4 5 9 1 1 0.00000e+00 8 5 10 9 1 0.00000e+00 9 6 7 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_			6	1			9	4. 10344e-01	5. 63796e-04	
4 3 8 7 1 5 3 4 8 1 6 4 9 8 1 7 4 5 9 1 8 5 10 9 1 9 6 7 11 1 10 7 12 11 1 11 7 8 12 1 12 8 13 12 1 13 8 9 13 1 14 9 14 13 1	2	2						0.00000e+00			
4 3 8 7 1 5 3 4 8 1 6 4 9 8 1 7 4 5 9 1 8 5 10 9 1 9 6 7 11 1 10 7 12 11 1 11 7 8 12 1 12 8 13 12 1 13 8 9 13 1 1 14 9 14 13 1					_			10	4. 38476e-01	4. 72849e-03	
6 4 9 8 1 7 4 5 9 1 8 5 10 9 1 9 6 7 11 1 10 7 12 11 1 11 7 8 12 1 12 8 13 12 1 13 8 9 13 1 14 9 14 13 1	1				_			0.000000+00			
8 5 10 9 1 9 6 7 11 1 10 7 12 11 1 11 7 8 12 1 12 1.89292e-01 -2.40994e-03 0.00000e+00 12 8 13 12 1 13 8 9 13 1 14 9 14 13 1	1				1						
9 6 7 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					-			11	0.00000e+00	-2. 69729e-03	
10 7 12 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1				-			0.00000e+00			
11 7 8 12 1 12 8 13 12 1 13 8 9 13 1 14 9 14 13 1	1							12	1.89292e-01	-2. 40994e-03	
13 8 9 13 1 13 3. 24573e-01 -1. 23639e-03	1				1			0.00000e+00			
14 9 14 13 1					1			13	3. 24573e-01	-1. 23639e-03	