Automne-1999, partiel II

Question1

Établissez le diagramme d'état complet pour le circuit suivant. Note: X = entrée externe et CLK = signal d'horloge, il y a 2 bascules 'D'. Les sorties du circuit sont directement les sorties des bascules.

Solution avec $Q_2 = MSB$

1) Écrire les équations, du circuit on a

$$D_1 = Q_2 + \overline{Q_1}$$
 et $Z = Q_1 + \overline{Q_2}$
$$D_2 = X \cdot \overline{Q_2}$$

2) Table PS-NS (état présent - état suivant)

		PS – –	Z	stimı	ilation	- NS	
	X	Q_2 Q	\mathbf{z}	D_2	D_1	Q_2	Q_1
0)	0	0 0	1	0	1	0	1
1)	0	0 1	1	0	0	0	0
2)	0	1 0	0	0	1	0	1
3)	0	1 1	1	0	1	0	1
4)	1	0 0	1	1	1	1	1
5)	1	0 1	1	1	0	1	0
6)	1	1 0	0	0	1	0	1
7)	1	1 1	1	0	1	0	1

$$Q_1 + \overline{Q}_2$$
 \longrightarrow selon table 6-1 on a que $Q_{N+1} = D_N$ pour Flip Flop "D"

3) Diagramme d'état

On obtient le diagramme de la table PS-NS

Question 1 : Solution avec $Q_1 = MSB$

Q1 : Écrire les équations du circuit, on a:

$$D_1 = Q_2 + \overline{Q_1}$$

et
$$Z = Q_1 + \overline{Q_2}$$

PS

$$D_2 = X\overline{Q}_2$$

2º table PS-NS

pareil bascule D

		•
Sortie	Stimulation	NS

	X	Q_1	Q_2	Z	D_1	D_2	Q_1	Q_2
0)	0	0	0	1	1	0	1	0
1)	0	0	1	0	1	0	1	0
2)	0	1	0	1	0	0	0	0
3)	0	1	1	1	1	0	1	0
4)	1	0	0	1	1	1	1	1
5)	1	0	1	0	1	0	1	0
6)	1	1	0	1	0	1	0	1
7)	1	1	1	1	1	0	1	0

Question 2

Établissez le diagramme d'état complet pour le circuit suivant employant un registre à décalage 74164. Justifiez votre démarche. Le circuit est-il auto-correcteur? Q3 = MSB (bit le + significatif)

Solution:

Séquence ?

Question 3

On vous demande de faire le design du circuit qui implante le diagramme d'état suivant. Il faut employer un nombre minimum de bascules JK. On tolère un décodeur pour les sorties.

- Table PS->NS avec explications et méthodes des variables conditionnelles vue en classe (0 pt si autre méthode employée).
- Équations de stimulation des bascules
- Schéma complet du circuit.

Solution:

1) 4 états conc 2 FF suffisent, appelons-les Q_BQ_A

2) Table PS - NS (état présent -> état suivant), variables conditionnelles

PS		NS		Stimulation			
Q_{B}	Q_{A}	Q_{B}	Q_{A}	J_{B}	K_{B}	J_A	K_A
0	0	$\overline{R+S}$	$\overline{R+S}$	$\overline{R+S}$	X	$\overline{R+S}$	X
0	1	0	R	О	X	X	\overline{R}
1	0	1	1	X	0	1	X
1	1	\bar{S}	S	X	S	X	\overline{S}

Justification côté NS

État 01, directions possibles : État 00, directions possibles

État 11, directions possibles: État 10 -> inconditionnel

Justification, côté stimulation

- transition
$$0 \to \overline{R+S}$$

$$\begin{cases} 0 \to 1 \text{ si } \overline{R+S} = 1 \Rightarrow 1 \ X \\ 0 \to 0 \text{ si } \overline{R+S} = 0 \Rightarrow 0 \ X \end{cases} \begin{array}{c} J \quad K \\ \overline{R+S} \quad X \end{array}$$

idem (pas inversé)

- transition
$$0 \rightarrow 0 \Rightarrow \frac{J \ K}{0 \ X}$$
, (table 6.1)

J K

- transition
$$1 \to R$$

$$\begin{cases} 1 \to 1 & \text{si} \quad R = 1 \Rightarrow X \quad 0 \\ 1 \to 0 & \text{si} \quad R = 0 \Rightarrow X \quad 1 \end{cases} \begin{array}{c} J & K \\ \overline{R} & \overline{R} \end{array}$$

inverse

- transition
$$1 \rightarrow 1 \Rightarrow \frac{J \ K}{X \ 0}$$
 , (table 6.1)

- transition
$$0 \rightarrow 1 \Rightarrow \frac{J \ K}{1 \ X}$$
, (table 6.1)

- transition
$$1 \to S$$
 idem à $1 \to R$ avec $R = S$
$$1 \to \overline{S}$$
 idem à $1 \to R$ avec $R = \overline{S}$

3) Table de Karnaugh

$$J_A = (\overline{R+S}) \ \overline{Q_B} + Q_B$$
 $K_A = \overline{R} \ \overline{Q_B} + \overline{S} \ Q_B$

Rappel
$$X + XY = X + Y$$
 (ad jonction)

$$J_A = Q_B + \overline{R + S}$$

$$K_B = Q_A S$$

$$J_B = \overline{Q_A} (\overline{R + S})$$
 4) Circuit :

5) décodage des sorties, se fait avec un décodeur simple (DEMUX):

Eı	ntrées		Sorties			
Q_{B}	Q_A	Q_3	Q_2	Q_1	Q_0	
0	0	1	0	0	0	
0	1	0	0	0	1	
1	0	0	0	1	0	
1	1	0	1	0	0	

Question 4

On vous demande de réaliser un module de commande pour une minuterie simple en employant un CB4CLED, voir figure. Il y a 3 entrées (boutons-poussoir) U, S, A. Les sorties sont la sonnette H (activée si H = 1) et aussi l'affichage (vous assumer qu'un décodeur 7 segment est à votre disposition, vous avez aussi accès à une horloge de 1 Hz).

La minuterie permet de réalisez les séquences suivantes: 1 -> 0, 2 -> 1 -> 0, 3 -> 2 -> 1 -> 0. (pour simplifier, le problème ce sont les seules séquences possibles).

La sonnette est activée à la fin de chaque séquence, pour une période d'horloge.

Le fonctionnement de la minuterie est le suivant:

1° on pousse sur U pour sélectionner la valeur de départ (0, 1, 2, 3; la valeur affichée s'incrémente de 1 chaque fois qu'on pousse sur U, au de là de 3 on retombe à 00).

2° on pousse sur S pour faire démarrer la minuterie.

- * Si on appuie sur A, il y a retour à 0.
- * A tout moment l'affichage 7 segments présente le compte courant (soit 0, 1, 2, 3).
- * La minuterie fonctionne même si on relâche les boutons poussoirs, dès que leur valeur est enregistrée au prochain coup d'horloge.

On vous demande:

- Établir le diagramme d'état
- Donnez la table des actions, de commandes et de données
- Dessinez le plan complet du circuit sans simplifier les multiplexeurs Fournissez les explications requises.

Minuterie simple

- Minuterie compte $1 \rightarrow 0, 2 \rightarrow 1 \rightarrow 0, 3 \rightarrow 2 \rightarrow 1 \rightarrow 0$
- Assumer un décodeur 7 segments disponible
- Horloge 1 Hz disponible
- Fonctionnement a) Sélectionner le chiffre de départ avec Δ b) Presser sur Start
- Dès que Stop pressé => retour à 0

Entrées U-UP bouton-poussoir
S- Start à être pressé pendant 1 sec-min pour signal reconnu valide

Sorties H - Sonnerie (Haut-parleur), active si H = 1 bits pour l'affichage

Solution (diagramme):

à l'état 0, la seule variable d'intérêt = U

					Actions	possibles	
	U	S	A	Up	Arrêt	Start	Sur place
	0	0	0				1
	0	0	1			1	
	0	1	0		1		
X	0	1	1	_	_	-	_
	1	0	0	1			
X	1	0	1	_	_	_	_
X	1	1	0	_	_	_	_
X	1	1	1	_	_	_	_
•				=>U	=>A	=> S	$\Rightarrow \overline{UAS}$

cas impossibles on ne presse pas 2 boutons en même temps (ils n'existent pas).

Note:
$$\overline{UAS} = \overline{U+A+S} = K$$

Comme 1 est répété 3 fois, il nous faut 2 bits cachés!

=> 4 bits au total

Table des actions:

Table du Load:

О	A+S	A+S	A+S
X	1	X	A
X	X	X	X
X	1	X	X

Table de CE:

U	U	0	U
X	О	X	О
X	X	X	X
X	О	X	X

Table Up/Down:

1	1	X	1
X	X	X	X
X	X	X	X
X	X	X	X

=> U/D toujours à 1

Table des Datas:

D_3			
X	О	О	О
X	О	X	Ā
X	X	X	X
X	О	X	X

D_2			
X	О	S	S
X	О	X	0
X	X	X	X
X	О	X	X

D_1			
X	О	S	О
X	О	X	0
X	X	X	X
X	О	X	X

D_0			
X	О	О	S
X	О	X	Ā
X	X	X	X
X	О	X	X

À l'état 1, directions possibles

 $=>A+S \leftrightarrow L$ et $K+U \leftrightarrow CE$ en fait on pourrait mettre $CE \leftrightarrow U$

(pareil pour état 2 et 3)

État 5, 9: Load inconditionnel

Table des datas:

À l'état 2, directions possibles

À l'état 3, directions possibles

	0	0	0	0	si A	
U	0	1	1	0	si S	
	0	S	S	0		

À l'état 6, directions possibles

On emploit des mux 4 à 1, plusieurs pourraient être simplifiés

Pour la sonnette, on l'active aux états 1, 1*, 1**

