Hierarchical community structure in networks

Pre-prints available

arXiv:2009.07196 arXiv:2009.07525 Leto Peel Maastricht University @PiratePeel

Hierarchies?

Building the hierarchy

infer communities

Observed network

Multigraph

Multigraph

Adjacency matrix with hierarchy

Inferring hierarchical structure

There's no free lunch!

(especially true for virtual conferences!)

When are hierarchies identifiable?

Assigning branches to levels

Assigning branches to levels

Assigning branches to levels

Order of agglomeration

Order of agglomeration

Order of agglomeration

Number of levels

The Stochastic Blockmodel (SBM)

Mixing Matrix

Adjacency Matrix

Spectral methods of inference

Adjacency matrix [Donath and Hoffmann 1972]

Laplacian [Fiedler 1973]

Modularity Matrix -- e.g., [Newman 2006], [Nadakuditi & Newman 2012]

Non-Backtracking matrix --- e.g., [Krzakala et al 2013]

Regularized spectral clustering --- e.g., [Rohe 2011], [Le et al 2016]

Bethe Hessian --- [Saade et al. 2014], [Le & Levina 2015]

Spectral methods of inference

Adjacency matrix [Donath and Hoffmann 1972]

Laplacian [Fiedler 1973]

Modularity Matrix -- e.g., [Newman 2006], [Nadakuditi & Newman 2012]

Non-Backtracking matrix --- e.g., [Krzakala et al 2013]

Regularized spectral clustering --- e.g., [Rohe 2011], [Le et al 2016]

Bethe Hessian --- [Saade et al. 2014], [Le & Levina 2015]

structural probabilistic equivalence* relaxation $oldsymbol{A} = oldsymbol{H} oldsymbol{\Theta} oldsymbol{H}^ op$ generalization probabilistic equitable relaxation partition (EP) $AH = HA^{\pi}$ generalization probabilistic external equitable relaxation partition (EEP)

 $oldsymbol{L}oldsymbol{H} = oldsymbol{H}oldsymbol{L}^{\pi}$

stochastic $ext{equivalence*} egin{aligned} \mathbb{E}[oldsymbol{A}] &= oldsymbol{H} oldsymbol{\Omega} oldsymbol{H}^ op \end{aligned}$

generalization

stochastic equitable partition (sEP)

$$\mathbb{E}[m{A}]m{H} = m{H}\mathbb{E}[m{A}]^\pi$$

stochastic external equitable partition (sEEP)

$$\mathbb{E}[oldsymbol{L}]oldsymbol{H} = oldsymbol{H}\mathbb{E}[oldsymbol{L}]^{\pi}$$

this paper

structural equivalence*

stochastic equivalence* _

$$\mathbb{E}[oldsymbol{A}] = oldsymbol{H} oldsymbol{\Omega} oldsymbol{H}^ op$$

SBM

 $A = H\Theta H^{\top}$

generalization

equitable partition (EP)

 $AH = HA^{\pi}$

external equitable partition (EEP)

$$\boldsymbol{L}\boldsymbol{H} = \boldsymbol{H}\boldsymbol{L}^{\pi}$$

probabilistic relaxation

stochastic equitable partition (sEP) $\mathbb{E}[A]H = H\mathbb{E}[A]^{\pi}$ stochastic external equitable partition (sEEP) $\mathbb{E}[L]H = H\mathbb{E}[L]^{\pi}$

this paper

structural equivalence* $A = H\Theta H^{\mathsf{T}}$

stochastic equivalence*

$$\mathbb{E}[A] = \boldsymbol{H}\boldsymbol{\Omega}\boldsymbol{H}^\top$$

external equitable partition (EEP)

$$oldsymbol{L}oldsymbol{H} = oldsymbol{H}oldsymbol{L}^{\pi}$$

stochastic external equitable partition (sEEP)

$$\mathbb{E}[oldsymbol{L}]oldsymbol{H} = oldsymbol{H}\mathbb{E}[oldsymbol{L}]^{\pi}$$

Generate a simple hierarchy...

Constant probability between groups at each hierarchical level

Spectral properties

 $\mathbb{E}[A]$

First 4 Eigenvectors of the Laplacian

Node index

If we could just "see" the expected adjacency matrix, then we could just look for constant eigenvectors

If we could just "see" the expected adjacency matrix, then we could just look for constant eigenvectors

Expected projection error

Adjacency matrix

Expected projection error

Expected projection error

It's fast, but does it work?

So what method should I use?

When do we have enough data to support a hierarchy?

- When do we have enough data to support a hierarchy?
- How do we account for identifiability issues when measuring performance?

- When do we have enough data to support a hierarchy?
- How do we account for identifiability issues when measuring performance?
- Can we stop overloading terms? (community, hierarchy, higher-order, etc.)

In collaboration with

Michael Schaub (RWTH Aachen)

"It's EEPs all the way down"

Pre-prints available

arXiv:2009.07196 arXiv:2009.07525 Contact:

I.peel@maastrichtuniversity.nl @PiratePeel

In collaboration with

Michael Schaub (RWTH Aachen)

"It's EEPs all the way down"

Pre-prints available

arXiv:2009.07196 arXiv:2009.07525 <u>Contact:</u>

I.peel@maastrichtuniversity.nl @PiratePeel