Arhitectura Calculatoarelor

Oprițoiu Flavius flavius.opritoiu@cs.upt.ro

6 Octombrie, 2021 13 Octombrie, 2021 20 Octombrie, 2021 27 Octombrie, 2021

Cap. 1 Analiza funcțională și sinteza dispozitivelor de adunare și scădere, binară și zecimală

Ripple Carry Adder (RCA): utilizează celule dedicate de însumare pentru fiecare rang binar

propagarea carry-ului: către poziția mai semnificativ (la stânga) Arhitectură RCA pe n biți:

Simbolul unui sumator RCA pe n biţi:

Full Adder Cell (FAC):

► simbol:

 $c_{i+1} \leftarrow FAC \leftarrow c_i$

		x_i	y _i		
I	nput	s	Outputs		
Χį	Уi	Ci	Zi	c_{i+1}	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

tabel de adevăr:

ecuatiile iesirilor:

$$\begin{cases}
z_i = x_i \oplus y_i \oplus c_i \\
c_{i+1} = x_i \cdot y_i + x_i \cdot c_i + y_i \cdot c_i
\end{cases}$$

Sinteza FAC:

(A) porți de tip EXOR, AND, OR:

(B) porți de tip EXOR, NAND:

Sinteza FAC:

(C) multiplexoare:

D porți de tip NAND:

Dacă $c_0 = 0 \Rightarrow$ cea mai din dreapta FAC poate fi simplificată:

ecuațiile ieșirilor:
$$\begin{cases} z_0 = x_0 \oplus y_0 \oplus c_0 = x_0 \oplus y_0 \\ c_1 = x_0 \cdot y_0 + x_0 \cdot c_0 + y_0 \cdot c_0 = x_0 \cdot y_0 \end{cases}$$

simbol:

Sinteza Half Adder Cell (HAC):

A') porți de tip EXOR, AND:

Sinteza HAC:

 $\stackrel{\textstyle \mbox{\ \ }}{\mbox{\ \ }}$ porți de tip NOR

justificare implementare:

$$z_{0} = x_{0} \oplus y_{0} = x_{0} \cdot \overline{y_{0}} + \overline{x_{0}} \cdot y_{0} = x_{0} \cdot (\overline{x_{0}} + \overline{y_{0}}) + y_{0} \cdot (\overline{x_{0}} + \overline{y_{0}})$$

$$= (x_{0} + y_{0}) \cdot (\overline{x_{0}} + \overline{y_{0}}) = \overline{(x_{0} + y_{0}) \cdot (\overline{x_{0}} + \overline{y_{0}})}$$

$$= \overline{x_{0} + y_{0}} + \overline{\overline{x_{0}} + \overline{y_{0}}}$$

$$c_{1} = x_{0} \cdot y_{0} = \overline{x_{0} \cdot y_{0}} = \overline{x_{0} + \overline{y_{0}}}$$

Sinteza HAC:

(C') porți de tip NAND

justificare implementare:

$$z_{0} = \underbrace{x_{0} \oplus y_{0} = x_{0} \cdot \overline{y_{0}} + \overline{x_{0}} \cdot y_{0} = x_{0} \cdot (\overline{x_{0}} + \overline{y_{0}}) + y_{0} \cdot (\overline{x_{0}} + \overline{y_{0}})}_{= \overline{x_{0} \cdot (\overline{x_{0}} + \overline{y_{0}}) + y_{0} \cdot (\overline{x_{0}} + \overline{y_{0}})}} = \overline{x_{0} \cdot \overline{x_{0} \cdot \overline{y_{0}}} \cdot \overline{y_{0}} \cdot \overline{y_{0}} \cdot \overline{y_{0}} \cdot \overline{y_{0}}}$$

$$c_{1} = x_{0} \cdot y_{0} = \overline{x_{0} \cdot y_{0}}$$

Calea critică:

- calea de propagare din intreg circuitul corespunzatoare intarierii maxime de propagare a semnalelor
 - orice element de circuit furnizeaza semnalele de iesire cu o intarziere in raport cu semnalele de la intrare

Ipoteze simplificatoare:

- orice poarta primitiva are latența 1d (o unitate de timp)
 - ▶ indiferent de numărul de intrări si timpul portii primitive
- ▶ inversoarele nu introduc întârzieri (au intarziere 0d)
- ▶ porțile EXOR au latență de 2d (Q: de ce ?)
- toți operanzii sunt disponibili la momentul *0d*

Calea critică pentru un RCA pe 2 biți:

Întârizerea unui segment RCA pe n biți:

$$\begin{array}{l} D_{RCA}^{c_{out}} = 2nd \\ D_{RCA}^{z} = 2nd \end{array}$$

Condiții speciale ale adunării:

- rezultat nul
- carry out (transport) generat din rangul mai semnificativ
- rezultat negativ
- overflow

Overflow aritmetic:

rezultatul operației aritmetice depășește capacitatea de stocare

Overflow aritmetic la operarea numerelor fără semn:

ightharpoonup se consideră $X=35,\ Y=33$ fără semn, pe 6 biți

dacă X și Y erau reprezentați pe 7 biți:

Notă: Overflow-ul la operarea numerelor fără semn apare când este generat un transport din Most Significant Bit (MSB).

Overflow aritmetic la operarea numerelor cu semn (C2):

ightharpoonup se consideră $X=+19,\ Y=+14$ fără semn, pe 6 biți

▶ dacă X și Y erau reprezentați pe 7 biți:

Note: Overflow-ul la operarea numerelor cu semn apare când adunărea a doua numere de acelasi semn produce un rezultat de semn contrar.

Întrebare: Poate genera overflow adunarea a două numere de semne diferite?

Determinarea condiției de overflow la adunarea numerelor cu semn:

▶ operanzii X şi Y, pe n biţi, în C2

Z: rezultatul adunării lui X și Y

ightharpoonup semnele celor 3 numere: x_{n-1}, y_{n-1} și z_{n-1}

ightharpoonup simbol overflow: ν

Tabel de adevar pentru determinarea condiției de overflow:

	Inputs	Outputs		
x_{n-1}	y _{n−1}	c_{n-1}	z_{n-1}	ν
0	0	0	0	0
0	0	1	1	1
0	1	0	1	0
0	1	1	0	0
1	0	0	1	0
1	0	1	0	0
1	1	0	0	1
1	1	1	1	0

Forma minimă a condiției de overflow este obținuta ca:

$$\nu = \overline{x_{n-1}} \cdot \overline{y_{n-1}} \cdot c_{n-1} + x_{n-1} \cdot y_{n-1} \cdot \overline{c_{n-1}}$$

Condiția de overflow pentru adunarea numerelor cu semn poate fi exprimată într-o forma mai simplă

Identităti booleene utile:

- $I_1: (A \oplus B) \cdot C = A \cdot C \oplus B \cdot C$
- I_2 : $(A+B)=A\oplus B\oplus A\cdot B$
- $I_2': A \oplus B = (A+B) \oplus A \cdot B$

Forma simplificată a conditiei de overflow este obtinuta ca:

$$\nu = \overline{x_{n-1}} \cdot \overline{y_{n-1}} \cdot c_{n-1} + x_{n-1} \cdot y_{n-1} \cdot \overline{c_{n-1}}$$

$$\stackrel{l}{=} \overline{x_{n-1}} \cdot \overline{y_{n-1}} \cdot c_{n-1} \oplus x_{n-1} \cdot y_{n-1} \cdot \overline{c_{n-1}}$$

$$= \overline{x_{n-1}} \cdot \overline{y_{n-1}} \cdot c_{n-1} \oplus x_{n-1} \cdot y_{n-1} \cdot (1 \oplus c_{n-1})$$

$$\stackrel{l}{=} \overline{x_{n-1}} \cdot \overline{y_{n-1}} \cdot c_{n-1} \oplus x_{n-1} \cdot y_{n-1} \cdot c_{n-1} \oplus x_{n-1} \cdot y_{n-1}$$

$$\stackrel{l}{=} (\overline{x_{n-1}} \cdot \overline{y_{n-1}} \oplus x_{n-1} \cdot y_{n-1}) \cdot c_{n-1} \oplus x_{n-1} \cdot y_{n-1}$$

$$\stackrel{l'}{=} (\overline{x_{n-1}} \cdot \overline{y_{n-1}} + x_{n-1} \cdot y_{n-1}) \cdot c_{n-1} \oplus x_{n-1} \cdot y_{n-1}$$

$$= (x_{n-1} \oplus y_{n-1} \oplus 1) \cdot c_{n-1} \oplus x_{n-1} \cdot y_{n-1}$$

$$\stackrel{l}{=} x_{n-1} \cdot c_{n-1} \oplus y_{n-1} \cdot c_{n-1} \oplus x_{n-1} \cdot y_{n-1} \oplus c_{n-1}$$

$$\stackrel{l'}{=} (x_{n-1} \cdot c_{n-1} + y_{n-1} \cdot c_{n-1} + x_{n-1} \cdot y_{n-1}) \oplus c_{n-1}$$

$$\nu = c_n \oplus c_{n-1}$$

17 / 45

Sumator RCA pentru numere pe n biți cu generarea condițiilor speciale ale adunării:

Adunarea cu o constantă:

- se consideră doar constante impare
- Întrebare: de ce?▶ operanzii X și Y pe n biți
- Y constant

$$\begin{cases} X = x_{n-1}x_{n-2}\cdots x_0 \\ Y = y_{n-1}y_{n-2}\cdots y_0 \\ Z = X + Y \end{cases}$$

dacă
$$y_i = 0$$
:
$$\left\{ \begin{array}{ll} z_i = & x_i \oplus \emptyset \oplus c_i = & x_i \oplus c_i \\ c_{i+1} = & x_i \oplus 0 + x_i \cdot c_i + 0 \end{array} \right.$$

dacă
$$y_i=1$$
:
$$\left\{ \begin{array}{ccc} z_i=&x_i\oplus 1\oplus c_i=&\overline{x_i}\oplus c_i\\ c_{i+1}=&x_i\cdot 1+x_i\cdot c_i+1\cdot c_i=&x_i+c_i \end{array} \right\} \mathsf{HAC}^*$$

Exemplu de adunare cu o constantă având operanzi pe 6 biți:

- $X = x_5 x_4 x_3 x_2 x_1 x_0$
- $Y = y_5 y_4 y_3 y_2 y_1 y_0$ operand constant
 - fie $Y = 110100_2$
- ightharpoonup Z = X + Y, cu $c_0 = 0$

Cei mai puțin semnificativi 3 biți ai lui Z sunt determinați astfel:

$$z_0 = x_0 \oplus 0 \oplus 0 = x_0$$
 $c_1 = x_0 \cdot 0 + x_0 \cdot 0 + 0 \cdot 0 = 0$
 $z_1 = x_1 \oplus 0 \oplus 0 = x_1$ $c_2 = x_1 \cdot 0 + x_1 \cdot 0 + 0 \cdot 0 = 0$
 $z_2 = x_2 \oplus 1 \oplus 0 = \overline{x_2}$ $c_3 = x_2 \cdot 1 + x_2 \cdot 0 + 1 \cdot 0 = x_2$

Pentru celelalte ranguri ale lui Z se folosesc celule HAC si HAC*:

1.2 - Sumatoare zecimale bazate pe propagarea serială a transportului

Obiectiv: utilizarea sumatoarelor binare pentru adunarea numerelor zecimale

Tabel comparativ coduri zecimale de reprezentare:

Decimal	Fixed-point decimal codes				
digit	BCD8421	Excess of 3	Two-out-of-five		
0	0000	0011	11000		
1	0001	0100	00011		
2	0010	0101	00101		
3	0011	0110	00110		
4	0100	0111	01001		
5	0101	1000	01010		
6	0110	1001	01100		
7	0111	1010	10001		
8	1000	1011	10010		
9	1001	1100	10100		

1.2.1 - Sumatoare BCD

Fie X_i, Y_i, Z_i cifre BCD, Z_i reprezentând cifra sumă a lui $X_i + Y_i$

$$X_i = x_3 x_2 x_1 x_0, Y_i = y_3 y_2 y_1 y_0, Z_i = z_3 z_2 z_1 z_0$$

$$X_i + Y_i < rac{Z_i}{c_{i+1}}$$
 : cifra sumă către cifra mai semnificativă

dacă
$$X_i + Y_i < 10$$
 $< c_{i+1} = 0$

dacă
$$X_i + Y_i \ge 10$$
 $< \frac{Z_i = X_i + Y_i - 10}{c_{i+1} = 1}$

Pentru cazul $X_i + Y_i \ge 10$, scăderea lui 10 din $X_i + Y_i$ este interpretată ca un pas de corecție.

Adunând X_i și Y_i (2 numere pe 4 biți) se obține un rezultat pe 5 biți: $X_i + Y_i = c^* z_3^* z_2^* z_1^* z_0^*$.

Pentru că doar cazul $X_i+Y_i\geq 10$ necesită corecție, se impune analiza acestuia. În acest sens, inegalitatea $X_i+Y_i\geq 10$ devine $c^*z_3^*z_2^*z_1^*z_0^*\geq 10$, inegalitate din urmă care poate fi rescrisă astfel:

$$\begin{cases} 10 \leq c^{\star} z_{3}^{\star} z_{2}^{\star} z_{1}^{\star} z_{0}^{\star} < 16 & \text{(condiția C1), SAU} \\ c^{\star} z_{3}^{\star} z_{2}^{\star} z_{1}^{\star} z_{0}^{\star} \geq 16 & \text{(condiția C2)} \end{cases}$$

Condiția C1 implică:

$$\left\{egin{array}{ll} c^\star=0 & ext{, SI} \ z_3^\star z_2^\star z_1^\star z_0^\star \geq 10 \end{array}
ight.$$

Pentru rezolvarea inegalității $z_3^\star z_2^\star z_1^\star z_0^\star \geq 10$, în urma minimizării se obține următoarea expresie booleană: $z_3^\star \cdot z_2^\star + z_3^\star \cdot z_1^\star = 1$

Condiția C1 poate, deci, fi rescrisă în forma următoare:

$$\overline{c^{\star}}\cdot \left(z_3^{\star}\cdot z_2^{\star}+z_3^{\star}\cdot z_1^{\star}\right)$$

Inegalitatea asociată condiției C2, $c^*z_3^*z_2^*z_1^*z_0^* \ge 16$, este adevărată dacă:

$$c^{\star}=1$$

Expresia booleană de identificare a cazului $X_i + Y_i \ge 10$ se obține ca disjuncție logică a condițiilor C1 și C2:

$$X_{i} + Y_{i} \ge 10 \equiv c^{*} + \overline{c^{*}} \cdot (z_{3}^{*} \cdot z_{2}^{*} + z_{3}^{*} \cdot z_{1}^{*})$$
$$= c^{*} + z_{3}^{*} \cdot z_{2}^{*} + z_{3}^{*} \cdot z_{1}^{*}$$

Scăderii valorii 10 din expresia lui $X_i + Y_i$ pentru obținerea cifrei sumă curentă, are ca rezultat un număr binar pe 4 biți. Astfel

$$(X_i + Y_i - 10) \mod 2^4 = (X_i + Y_i + 16 - 10) \mod 2^4$$

= $(X_i + Y_i + 6) \mod 2^4$

Scăderea lui 10, pe 4 biți, poate fi implementată prin adunarea lui 6 ignorând transportul de ieșire din rangul cel mai semnificativ.

Corectia lui Z_i depinde de următoarea condiție booleană:

$$c^{\star} + z_{3}^{\star} \cdot z_{2}^{\star} + z_{3}^{\star} \cdot z_{1}^{\star}$$

$$\begin{vmatrix} 1 \\ (X_{i} + Y_{i} \ge 10) \end{vmatrix} \Rightarrow \begin{cases} Z_{i} = z_{3}^{\star} & z_{2}^{\star} & z_{1}^{\star} & z_{0}^{\star} & + \\ & 0 & 1 & 1 & 0 & (6) \end{cases}$$

$$c_{i+1} = 1$$

$$c_{i+1} = 1$$

$$c_{i+1} = 1$$

$$c_{i+1} = 0$$

$$c_{i+1} = 0$$

Transportului de ieșire,
$$c_{i+1}$$
 se obține ca: $c_{i+1} = c^* + z_3^* \cdot z_2^* + z_3^* \cdot z_1^*$

Stagiul de corecție pt. Z_i devine: $Z_i = \begin{bmatrix} z_3^\star & z_2^\star & z_1^\star & z_0^\star & + \\ 0 & c_{i+1} & c_{i+1} & 0 \end{bmatrix}$

Sumatorul pentru tetrade BCD:

având simbolul:

Sumator pentru numere BCD a câte k-cifre:

1.2.2 - Sumatoare Exces de 3

Fie $X_{i_{E3}},\,Y_{i_{E3}},\,Z_{i_{E3}}$ cifre E3, $Z_{i_{E3}}$ fiind cifra sumă a $X_{i_{E3}}+Y_{i_{E3}}$

Fiecărei din cele 3 cifre E3 îi corespunde câte o cifră BCD:

$$X_{i_{E3}} = X_i + 3$$
, $Y_{i_{E3}} = Y_i + 3$, $Z_{i_{E3}} = Z_i + 3$

$$X_{i_{E3}} + Y_{i_{E3}} < \frac{Z_{i_{E3}}}{c_{i+1}}$$
 : transportul către cifra mai semnificativă

dacă
$$X_i + Y_i < 10$$
 $\left. \left< \frac{Z_i = X_i + Y_i}{c_{i+1} = 0} \right|_{+6} \Rightarrow Z_{i_{E3}} = X_{i_{E3}} + Y_{i_{E3}} - 3 \right.$

dacă
$$X_i + Y_i \ge 10$$
 $Z_i = X_i + Y_i - 10 \Big|_{+6} \Rightarrow Z_{i_{E3}} = X_{i_{E3}} + Y_{i_{E3}} - 13$

Pentru ambele cazuri $Z_{i_{E3}}$ necesită câte un pas de corecție.

Condiția care diferențiază cele 2 cazuri, poate fi rescrisă astfel:

$$X_i + Y_i \ge 10 \Big|_{+6} \Rightarrow X_{i_{E3}} + Y_{i_{E3}} \ge 16$$

Adunând $X_{i_{E3}}$ și $Y_{i_{E3}}$ (2 numere pe 4 biți) se obține un rezultat pe 5 biți: $X_{i_{E3}}+Y_{i_{E3}}=c''z_3''z_2''z_1''z_1''$.

Ținând cont de formatul binar pe 5 biți al sumei $X_{i_{E3}} + Y_{i_{E3}}$ de mai sus, condiția care diferențiază cele 2 cazuri de corecție devine:

$$X_{i_{F3}} + Y_{i_{F3}} \ge 16 \equiv c'' = 1$$

Se poate demonstra faptul că scăderea lui 3 pe 4 biți poate fi realizată prin adunarea lui 13 cu ignorarea transportului de ieșire din rangul cel mai semnificativ (a se vedea discuția privind scăderea valorii 10 pe 4 biți la adunarea BCD). În mod simetric, scăderea lui 13 pe 4 biți poate fi realizată prin adunarea lui 3 cu ignorarea transportului de ieșire din rangul cel mai semnificativ.

Corecția lui $Z_{i_{F3}}$ depinde de următoarea condiție booleană:

$$c'' \begin{cases} 1 \\ (X_i + Y_i \ge 10) \end{cases} \Rightarrow \begin{cases} Z_{i_{E3}} = z_3'' & z_2'' & z_1'' & z_0'' & + \\ 0 & 0 & 1 & 1 & (3) \end{cases}$$

$$c_{i+1} = 1$$

$$(X_i + Y_i < 10) \Rightarrow \begin{cases} Z_{i_{E3}} = z_3'' & z_2'' & z_1'' & z_0'' & + \\ 1 & 1 & 0 & 1 & (13) \end{cases}$$

$$c_{i+1} = 0$$

Transportului de ieșire, c_{i+1} se obține ca: $c_{i+1} = c''$

Stagiul de corecție pentru $Z_{i_{E3}}$ devine:

$$Z_{i_{E3}} = \begin{array}{ccc} z_3'' & z_2'' & z_1'' & z_0'' & + \\ \hline c_{i+1} & \overline{c_{i+1}} & c_{i+1} & 1 \end{array}$$

Sumatorul pentru tetrade E3:

având simbolul:

Pentru adunarea operanzilor în E3 pe k-cifre zecimale se conecteaza k sumatoare de tetradă E3, înlănțuite prin lanțul de transport (vezi sumatorul pentru operanzi pe k-cifre zecimale, reprezentați în BCD).

Avantajele adunării în E3:

- transportul de iesire generat mai rapid
 - ▶ ⇒ adunarea va fi efectuată mai rapid
- poate utiliza sumatoare binare
 - este necesar accesul la transporturile generate între tetrade

1.3 - Scazatoare bazate pe propagarea seriala a transportului/imprumutului

Operația de scădere:

- \blacktriangleright X: scăzător, $X = x_{n-1}x_{n-2}\cdots x_1x_0$
- ightharpoonup Y: descăzut, $Y = y_{n-1}y_{n-2}\cdots y_1y_0$
- ightharpoonup difereța celor 2 operanzi: Z = Y X

Modalități de realizare a operației de scădere

A Utilizând sumatoare binare: Y - X = Y + (-X)

$$s < 1: Z = Y + \overline{X} + 1 = Y - X$$

 $0: Z = Y + X + 0 = Y + X$

B) Scăzătoare dedicate

Utilizarea celulelor Full Subtracter Cells (FSCs):

- transportul este înlocuit de împrumut
- operație implementată:

$$y_i - x_i - b_i < \frac{z_i}{b_{i+1}}$$

Arhitectură de scăzător pe n biți:

FSC:

► tabel de adevăr:

I	nput	S	Outputs		
Уi	Xi	bi	Zi	b_{i+1}	
0	0	0	0	0	
0	0	1	1	1	
0	1	0	1	1	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	0	
1	1	0	0	0	
1	1	1	1	1	

ecuatiile iesirilor:

$$z_i = y_i \oplus x_i \oplus b_i$$

Sinteza FSC, utilizând porți de tip EXOR, AND, OR, INV:

C Scăzătoare BCD

Se consideră:

- $Y^{(k)}, X^{(k)}$ 2 numere BCD pe k-cifre
 - $Y^{(k)} = Y_{k-1} Y_{k-2} \cdots Y_0$
 - $X^{(k)} = X_{k-1}X_{k-2}\cdots X_0$
 - ightharpoonup cu Y_j și X_j cifre BCD, $\forall j \in [0, k-1]$
- \triangleright și $Z^{(k)} = Y^{(k)} X^{(k)}$, diferența celor 2 numere

Se definește complementul de 9 al unei cifre BCD, X_i , ca fiind:

$$\overline{X_i^{\star}} = 9 - X_i$$

Se definește complementul de 9 al numărului BCD pe k-cifre, $X^{(k)}$:

$$\overline{X^{\star}}^{(k)} = \overline{X^{\star}_{k-1}} \overline{X^{\star}_{k-2}} \cdots \overline{X^{\star}_{0}}
\leftarrow \langle k \rangle \text{ digits} \longrightarrow
= 9 9 \cdots 9 -
X_{k-1} X_{k-2} \cdots X_{0}$$

$$\overline{X^{\star}}^{(k)} = 10^{k} - 1 - X^{(k)}$$

Diferența $Z^{(k)}$ poate fi scrisă astfel:

$$Z^{(k)} = (Y^{(k)} - X^{(k)}) \mod 10^k$$

$$= (Y^{(k)} + 10^k - 1 - X^{(k)} + 1) \mod 10^k$$

$$= (Y^{(k)} + \overline{X^*}^{(k)} + 1) \mod 10^k$$

$$Z^{(k)} = (Y^{(k)} + \overline{X^{\star}}^{(k)} + 1)$$

Proiectarea unui modul pentru determinarea complementului de 9 a unei cifre zecimale:

- ightharpoonup cifra BCD de convertit, $X_i = x_3x_2x_1x_0$
- complementul de 9 a lui X_i : $\overline{X_i^{\star}} = x_3^{\star} x_2^{\star} x_1^{\star} x_0^{\star}$

Tabel de adevăr al unității pentru calcularea complementului de 9:

Inputs				Outputs			
<i>X</i> 3	<i>x</i> ₂	<i>x</i> ₁	<i>x</i> ₀	<i>x</i> ₃ *	<i>x</i> ₂ *	x_1^{\star}	<i>x</i> ₀ *
0	0	0	0	1	0	0	1
0	0	0	1	1	0	0	0
0	0	1	0	0	1	1	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	0	1
0	1	0	1	0	1	0	0
0	1	1	0	0	0	1	1
0	1	1	1	0	0	1	0
1	0	0	0	0	0	0	1
1	0	0	1	0	0	0	0

În urma minimizării cei 4 biți ai ieșirii au expresiile următoare:

$$x_3^{\star} = \overline{x_3 + x_2 + x_1}$$

$$x_2^{\star} = x_2 \oplus x_1$$

$$x_1^* = x_1$$

$$x_0^{\star} = \overline{x_0}$$

Arhitectura și simbolul unității de calculare a complementului de 9:

Arhitectura unui scăzător pentru numere BCD pe k-cifre:

1.4 - Calculul paralel al sumei 1.4.1 Sumator Carry Lookahead

Un sumator Carry Lookahead complet (F-CLA), este caracterizat de ecuatia:

$$c_{i+1} = x_i \cdot y_i + c_i \cdot (x_i + y_i)$$
 $g_i = x_i \cdot y_i$ - variabilă generate $p_i = x_i + y_i$ - variabilă propagate

Astfel, c_{i+1} poate fi scris ca: $c_{i+1} = g_i + p_i \cdot c_i$. Utilizand definiția recursivă a lui c_{i+1} , acesta devine:

$$c_{i+1} = g_i + p_i \cdot c_i$$

$$= g_i + p_i \cdot g_{i-1} + p_i \cdot p_{i-1} \cdot c_{i-1}$$

$$= \cdots$$

$$= g_i + p_i \cdot g_{i-1} + \cdots + p_i \cdot p_{i-1} \cdots p_1 \cdot g_0 + p_i \cdot p_{i-1} \cdots p_0 \cdot c_0$$

Dezavantaje: < fan-out ridicat: p_i este utilizat de i+1 termeni fan-in ridicat: c_{i+1} are i+2 termeni

⇒ Sumatoarele F-CLA operează numere de lățime redusă

1.4.1 Sumator Carry Lookahead (contin.)

Sumator F-CLA pe 2 biți:

Întârizerea F-CLA pe n biți:

$$D_{F-CLA}^{c_{out}} = 3d$$
$$D_{F-CLA}^{z} = 5d$$

$$D_{F-CLA}^z = 5d$$