

Ch—05 Magnetism and Matter Daily Practice Problem 04

- **Q1.** A magnet weighs 75 g and its magnetic moment is $2 \times 10^{-4} Am^2$. If the density of the material of the magnet is $7.5 \times 10^3 \ kg \ m^{-3}$, calculate the intensity of magnetization.
- **Q2.** Obtain the earth's magnetisation. Assume that the earth's field can be approximated by a gaint bar magnet of magnetic moment $8.0 \times 10^{22} \, Am^2$. The earth's radius is 6400 km.
- **Q3.** A solenoid of 500 turns/m is carrying a current of 3 A. Its core is made of iron which has a relative permeability of 5000. Determine the magnitudes of the magnetic intensity, magnetisation and the magnetic field inside the core.
- **Q4.** The absolute magnetic permeability is measured to be $0.12 \, T \, A^{-1} \, m$. Find its relative permeability and susceptibility.

- **Q5.** A magnetizing field of 1500 A/m produces a magnetic flux of $2.4 \times 10^{-5} Wb$ in a bar of iron of cross-section $0.5 cm^2$. Calculate permeability and susceptibility of iron bar used.
- **Q6.** The magnetizing field of $1600 \, A \, m^{-1}$ produces a magnetic flux of $2.4 \times 10^{-5} \, weber$ in a bar of iron of cross-section $0.2 \, cm^2$. Calculate relative permeability, intensity of magnetization and susceptibility of the bar.
- **Q7.** An iron rod of volume $10^{-4}m^3$ and relative permeability 1000 is placed inside a -long solenoid wound with 5 turns per cm. If a current of 0.5 A is passed throw; the solenoid, find the magnetic moment of the rod.

ANSWERS

1. 20 *A/m*

2. 73 A/m

3. $1500 Am^{-1}$;

 $7.5 \times 10^6 Am^{-1}$; 9.4 T

4. 9.55×10^4 ; 9.55×10^4

5. $3.2 \times 10^{-4} \frac{Tm}{A}$; 254

6. 596.8; 9.534×10^{-1} ;

595.8

7. $25 Am^2$