Resumen teoremas

Alejandro Zubiri

Mon Nov 11 2024

Contents

1	Teorema de Taylor	2
2	Regla de L'Hôpital	3
3	Teorema de Weierstrass	4
4	TFC del cálculo integral	5
5	Corolario del TFC	6
6	Teorema del valor medio	7
7	Derivable implica continua	7
8	Derivada par o impar	8
9	Teorema de Rolle	8
10	Convergencia del método de la secante	9

1 Teorema de Taylor

Teorema 1 (Teorema de Taylor). Sea f(x) una función derivable n+1 veces. Sean $x, x_0 \in (a, b)$:

$$\exists \varepsilon \in (x, x_0) / f(x) - Pn(f, x_0)(x) = \frac{f^{n+1}(\varepsilon)}{(n+1)!} (x - x_0)^{n+1}$$
 (1)

Demostración. Supongamos que $x_0 < x$ (el caso contrario es análogo). Vamos a definir una función auxiliar:

$$h(s) = f(s) + \sum_{k=1}^{n} \frac{f^k(s)}{k!} (x - s)^k$$
 (2)

Primero, h(s) es contínua y derivable. Vamos a evaluar h(s) en:

•
$$h(x) = f(x) + \sum_{k=1}^{n} \frac{f^{k}(x)}{k!} (x - x)^{k} = f(x)$$

•
$$h(x_0) = f(x_0) + \sum_{k=1}^n \frac{f^k(x_0)}{k!} (x - x_0)^k = P_n(f, x_0)(x)$$

Ahora vamos a derivar la función:

$$h'(s) = f'(s) + \sum_{k=1}^{n} \frac{f^{k+1}(s)}{k!} (x-s)^k + \sum_{k=1}^{n} \frac{f^k(s)}{k!} k(x-s)^{k-1} \cdot -1$$

$$= f'(s) + \sum_{k=1}^{n} \frac{f^{k+1}(s)}{k!} (x-s)^k - \sum_{k=1}^{n} \frac{f^k(s)}{(k-1)!} (x-s)^{k-1}$$

$$= f'(s) + \sum_{k=1}^{n} \frac{f^{k+1}(s)}{k!} (x-s)^k - f'(s) - \sum_{k=2}^{n} \frac{f^k(s)}{(k-1)!} (x-s)^{k-1}$$

$$= \sum_{k=1}^{n} \frac{f^{k+1}(s)}{k!} (x-s)^k - \sum_{k=2}^{n} \frac{f^k(s)}{(k-1)!} (x-s)^{k-1}$$

$$= \frac{f^{n+1}(s)}{n!} (x-s)^n$$
(3)

Vamos a crear una segunda función auxiliar:

$$g(s) = (x - s)^{n+1} (4)$$

•
$$q'(s) = -(n+1)(x-s)^n$$

•
$$q(x) - q(x_0) = (x - x)^{n+1} - (x - x_0)^{n+1} = -(x - x_0)^{n+1}$$

•
$$q'(c) = -(n+1)(x-c)^n$$

Si ahora aplicamos el teorema del valor medio, podemos afirmar que:

$$\exists c \in [x, x_0] / \frac{h(x) - h(x_0)}{g(x) - g(x_0)} = \frac{h'(c)}{g'(c)}$$
 (5)

Ahora evaluamos e igualamos:

$$\frac{h(x) - h(x_0)}{g(x) - g(x_0)} = \frac{f(x) - P_n(f, x_0)(x)}{-(x - x_0)^{n+1}}$$
(6)

$$\frac{h'(c)}{g'(c)} = \frac{\frac{f^{n+1}(c)}{n!}(x-c)^n}{-(n+1)(x-c)^n}
= \frac{f^{n+1}(c)}{-n!(n+1)}
= -\frac{f^{n+1}(c)}{(n+1)!}$$
(7)

$$\frac{f(x) - P_n(f, x_0)(x)}{-(x - x_0)^{n+1}} = -\frac{f^{n+1}(c)}{(n+1)!}$$

$$f(x) - P_n(f, x_0)(x) = \frac{f^{n+1}(c)}{(n+1)!}(x - x_0)^{n+1}$$
(8)

QED

Para memorizar

- Definimos $h(s) = f(s) + \frac{\sum f^{k)(s)}}{k!} (x s)^k$
- Evaluar $h(x), h(x_0)$
- Sacar derivada h'(s)
- Definir $g(s) = (x-s)^{n+1}$
- Aplicar TVM para h(s) y g(s) en $[x, x_0]$ y despejar.

2 Regla de L'Hôpital

Teorema 1 (Regla de L'Hôpital). Sea f,g derivables en un entorno de un punto x=a y $\lim_{x\to a} f(x)=0$ y $\lim_{x\to a} g(x)=0$ y \exists $\lim_{x\to a} \frac{f'(x)}{g'(x)}$

entonces

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} \tag{9}$$

Demostraci'on. Supongamos que f(a) = 0 y que g(a) = 0

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{\frac{f(x) - f(a)}{x - a}}{\frac{g(x) - g(a)}{x - a}}$$
(10)

Si tomamos $\lim_{x\to a}$ en ambos lados

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{\frac{f(x) - f(a)}{x - a}}{\frac{g(x) - g(a)}{g(x) - g(a)}} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$
(11)

QED

3 Teorema de Weierstrass

Teorema de Weierstrass. Si una función continua en un intervalo compacto (cerrado y acotado), sabemos que hay, al menos, dos puntos $x_1, x_2 \in [a, b]$ donde f alcanza valores extremos absolutos:

$$f(x_1) \le f(x) \le f(x_2) \tag{12}$$

 $Teorema\ del\ valor\ medio\ para\ integrales.$ Si una función es continua en [a,b] entonces existe un punto:

$$c \in (a,b)/f(c)(b-a) = \int_{c}^{b} f(x) dx$$
 (13)

Demostración. Sea f(x) como en el enunciado:

• Si f es constante en [a, b]:

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} c dx = f(x)(b - a)$$
 (14)

Si no es constante, sean M,m el valor máximo y mínimo, respectivamente. Sea g(x)=m:

$$m \le f(x) \le M \implies g(x) \le f(x)$$
 (15)

Por tanto

$$\int_{a}^{b} g(x) dx \le \int_{a}^{b} f(x) dx \implies m(b-a) \le \int_{a}^{b} f(x) dx \tag{16}$$

Y análogamente, sea h(x) = M:

$$m(b-a) \le \int_{a}^{b} f(x) \, \mathrm{d}x \le M(b-a)$$

$$m \le \frac{1}{b-a} \int_{a}^{b} f(x) \, \mathrm{d}x \le M$$

$$(17)$$

Ahora por Weierstrass, sabemos que f alcanza el máximo y el mínimo en [a, b],

$$\exists (x_1, x_2) \subset [a, b] / f(x_1) = m \land f(x_2) = M \tag{18}$$

Por tanto, sea
$$c \in (x_1, x_2)/f(c) = \frac{1}{b-a} \int_a^b f(x) dx$$

$$m \le f(c) \le M$$
(19)

Como f(x) va a alcanzar todos los valores en el intervalo, entonces:

$$f(c) = \frac{1}{b-a} \int_a^b f(x) \, \mathrm{d}x \tag{20}$$

Para memorizar:

- Caso constante, trivial.
- Definir dos funciones que sean el máximo y el mínimo y hacer desigualdad.
- "Aplicar" integrales a ambos lados y despejar máximo y mínimo.
- Aplicar Weierstrass

4 TFC del cálculo integral

Teorema fundamental del cálculo integral. Sea f una función continua en [a,b], y sea $F(x) = \int_a^x f(t) \, \mathrm{d}t / x \in [a,b] \implies F$ es derivable y

$$F'(x) = f(x) \forall x \in [a, b]$$
(21)

Demostración.

$$F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h} = \lim_{h \to 0} \frac{\int_x^{x+h} f(t) dt}{h}$$
 (22)

Ahora podemos aplicar el teorema del valor medio para integrales:

$$\exists c \in [x, x+h]/f(c) \cdot h = \int_{x}^{x+h} f(t) \, \mathrm{d}t$$
 (23)

Por tanto

$$F'(x) = \frac{1}{h} \int_{x}^{x+h} f(t) dt = \lim_{h \to 0} \frac{f(c) \cdot h}{h} = \lim_{h \to 0} f(c) = f(x)$$
 (24)

Para memorizar:

- Definir $F(x) = \int_a^x f(t) dt$.
- Aplicar derivada por definición.
- Usar el TVM para integrales.

5 Corolario del TFC

Corolario del TFC. Sea f una función continua en [a,b]:

$$F(x) = \int_{q(x)}^{h(x)} f(t) dt$$
 (25)

Si g(x), h(x) son derivables entonces:

$$F'(x) = f(h(x))h'(x) - f(g(x))g'(x)$$
(26)

Teorema de Barrow. Sea una función continua f y F(x) una primitiva de f(x):

$$\int_{a}^{b} f(x) dx = F(b) - F(a) \tag{27}$$

Demostración. Sea $g(x)=\int_a^x f(t)\,\mathrm{d}t.$ Por TFC, g(x) es primitiva de f(x):

$$g(x) - F(x) = c \in \mathbb{R} \implies g(x) = F(x) + c$$
 (28)

En x = a:

$$g(a) = \int_{a}^{a} f(t) dt = 0 = g(a) = F(a) + c \implies c = -F(a)$$
 (29)

En x = b:

$$g(b) = \int_{a}^{b} f(t) dt = F(b) + c = F(b) - F(a)$$
 (30)

Por tanto

$$\int_{a}^{b} f(t) dt = F(b) - F(a) \tag{31}$$

Para memorizar:

- Usar $g(x) = \int_a^x f(t) dt$.
- ullet Evaluar en a y en b y despejar.

6 Teorema del valor medio

Teorema 1. Sean dos funciones $f, g : f : \mathbb{R} \to \mathbb{R} \land g : \mathbb{R} \to \mathbb{R}$, continuas y derivables en [a, b].

$$\exists c \in (a,b) : (f(b) - f(a))g'(c) = (g(b) - g(a))f'(c) \tag{32}$$

Demostración. Sea una función real y continua en [a, b]

$$h(x) = (f(b) - f(a))g(x) - (g(b) - g(a))f(x)$$
(33)

Si evaluamos h(a) tenemos que

$$h(a) = f(b)g(a) - g(b)f(a)$$
(34)

Y h(b) es

$$h(b) = f(b)g(a) - g(b)f(a)$$
(35)

Por tanto,

$$h(a) = h(b) \Rightarrow \exists c \in [a, b] : h'(c) = 0$$
(36)

Es decir

$$h'(c) = (f(b) - f(a))g'(c) - (g(b) - g(a))f'(c) = 0$$
(37)

Que implica que

$$(f(b) - f(a))g'(c) = (g(b) - g(a))f'(c)$$
(38)

QED

Para memorizar:

- La función h(x) = [f(b) f(a)]g(x) [g(b) g(a)]f(x)
- Aplicar teorema de Rolle.

7 Derivable implica continua

Teorema 1 (Teorema). Si una función es derivable en un punto x = a, entonces también es continua.

Demostración. Queremos demostrar que

$$\lim_{x \to a} f(x) = f(a) \iff \lim_{x \to a} f(x) - f(a) = 0 \tag{39}$$

que es la definición de continuidad.

Partimos de que nuestra función es derivable, lo que implica que

$$\exists f'(a) \Rightarrow \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \in \mathbb{R}$$
 (40)

$$\lim_{x \to a} f(x) - f(a) = \lim_{x \to a} (f(x) - f(a)) \cdot \frac{x - a}{x - a} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \cdot \lim_{x \to a} x - a$$
(41)

Podemos identificar que el primer término es la definición de derivada, que sabemos que existe y que es menor a ∞ . El segundo término tiende a 0.

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} \cdot \lim_{x \to a} x - a = f'(a) \cdot 0 = 0$$
 (42)

Obteniendo así que

$$\lim_{x \to a} f(x) - f(a) = 0 \tag{43}$$

8 Derivada par o impar

Teorema 1 (Teorema). Sea $f:[a,b] \to \mathbb{R}$ una k+1 derivable en (a,b). Sea $c \in (a,b)$, si $f'(c) = f'(c) = \cdots = f^k(c) = 0$ y $f^{k+1}(c) \neq 0$:

- $Si\ k\ es\ impar,\ f(c)\ es\ un\ máximo\ relativo.$
- $Si\ k\ es\ par,\ f(c)\ es\ un\ punto\ de\ inflexión.$

9 Teorema de Rolle

Teorema 1. Sea una función $f : \mathbb{R} \to \mathbb{R}$ continua en [a,b] y derivable en (a,b), si $f(a) = f(b) \Rightarrow \exists c \in (a,b) : f'(c) = 0$.

Demostración. Para demostrarlo, vamos a partir de que toda función contínua en un intervalo cerrado y acotado alcanza un valor máximo y un valor mínimo absolutos en dicho intervalo.

Como el máximo y el mínimo son análogos, vamos a demostrar para el máximo. Caso 1: el máximo no pertenece a (a,b), que implica que Max = f(a) o Max = f(b). Si $f(a) = f(b) \Rightarrow Max = Min \Rightarrow f(x) = cte \Rightarrow f'(x) = 0$.

Caso 2: Supongamos que $m \in (a,b)$ es el máximo. Como f(x) es derivable $\Rightarrow \exists f'(m)$. Como m es un punto máximo, f(x) es creciente en a < x < m:

$$\lim_{x \to m^{-}} \frac{f(x) - f(m)}{x - m} \ge 0$$

$$\lim_{x \to m^{+}} \frac{f(x) - f(m)}{x - m} \le 0$$
(44)

Al ser derivable, ambos límites deben coincidir, por lo que si se debe cumplir que

$$f'(m) \ge 0$$

$$f'(m) \le 0$$
 (45)

Entonces

$$f'(m) = 0 (46)$$

Para memorizar demostración:

- Hacer casos para los cuales $Max \in (a,b)$ y los que no.
- Hacer derivada por definición de f'(max) y hacer $\leq y \geq$.

10 Convergencia del método de la secante

Teorema 1. El orden de convergencia de la secante es

$$\phi = \frac{1+\sqrt{5}}{2} \tag{47}$$

Demostración. Sea $\varepsilon_k = |\xi - x_k| = E_a(x_k)$. Como $f(\xi) = 0$:

$$\varepsilon_{n+1} = x_{n+1} - \xi = x_n - f(x_n) \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} - \xi
= x_n - f(x_n) \frac{x_n - \xi - x_{n-1} + \xi}{f(x_n) - f(x_{n-1})}
= \varepsilon_n - \frac{f(x_n)\varepsilon_n + f(x_n)\varepsilon_{n-1}}{f(x_n) - f(x_{n-1})}
= \frac{\varepsilon_n(f(x_n) - f(x_{n-1})) - f(x_n)(\varepsilon_n - \varepsilon_{n-1})}{f(x_n) - f(x_{n-1})}
= \frac{\varepsilon_{n-1}f(x_n) - \varepsilon_n f(x_{n-1})}{f(x_n) - f(x_{n-1})} \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}
= \frac{\varepsilon_{n-1}f(x_n) - \varepsilon_n f(x_{n-1})}{x_n - x_{n-1}} \frac{f(x_n) - f(x_{n-1})}{f(x_n) - f(x_{n-1})}
= \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} \frac{f(x_n) - f(x_{n-1})}{\varepsilon_n - x_{n-1}} (\varepsilon_n \varepsilon_{n-1})$$

Ahora hacemos el polinomio de Taylor de orden 2 centrado en ξ para $f(x_n)$ y $f(x_{n-1})$.

Nota: $\varepsilon_n = x_n - \xi$:

$$f(x_n) = f(\xi) + f'(\xi)\varepsilon_n + \frac{1}{2}f''(\xi)\varepsilon_n^2 + O(n^3)$$

$$= f'(\xi)\varepsilon_n + \frac{1}{2}f''(\xi)\varepsilon_n^2 + O(n^3)$$

$$\frac{f(x_n)}{\varepsilon_n} = f'(\xi) + \frac{1}{2}f''(\xi)\varepsilon_n + O(\varepsilon_n^2)$$

$$\frac{f(x_{n-1})}{\varepsilon_{n-1}} = f'(\xi) + \frac{1}{2}f''(\xi)\varepsilon_{n-1} + O(\varepsilon_{n-1}^2)$$
(49)

$$\frac{f(x_n)}{\varepsilon_n} - \frac{f(x_{n-1})}{\varepsilon_{n-1}} = \frac{1}{2}f''(\xi)(\varepsilon_n - \varepsilon_{n-1}) + O(\varepsilon_{n-1}^2)$$
 (50)

A medida que $n \to \infty, O(\varepsilon_{n-1}^2) \to 0$

$$\frac{f(x_n)}{\varepsilon_n} - \frac{f(x_{n-1})}{\varepsilon_{n-1}} \approx \frac{1}{2} f''(\xi) (\varepsilon_n - \varepsilon_{n-1})$$
 (51)

Ahora volviendo a nuestra ecuación inicial:

$$\varepsilon_{n+1} = \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} \frac{\frac{1}{2} f''(\xi) (\varepsilon_n - \varepsilon_{n-1})}{x_n - x_{n-1}} (\varepsilon_n - \varepsilon_{n-1})$$
 (52)

Ahora volviendo:

$$\varepsilon - \varepsilon_{n-1} = x_n - \xi - x_{n-1} + \xi = x_n - x_{n-1} \tag{53}$$

Además:

$$\forall x_n, x_{n-1} \text{ cercanos a } \xi \implies \frac{x_n - x_{n-1}}{f(x_n - f(x_{n-1}))} \approx f'(\xi)$$
 (54)

Sea $L = f'(\xi) \frac{1}{2} f''(\xi) < \infty$

$$\varepsilon_{n+1} \approx f'(\xi) \frac{1}{2} f''(\xi) \varepsilon_n \varepsilon_{n-1}$$

$$= L \varepsilon_n \varepsilon_{n-1}$$
(55)

Para hallar el orden de convergencia exacto supongemos un $A \in \mathbb{R}$, una relación entre los errores $\varepsilon_k, \varepsilon_{k+1}$:

$$|\varepsilon_{k+1}| \le A|\varepsilon_k|^{\alpha}$$

$$|\varepsilon_{k+1}| = A^{-1}|\varepsilon_k|^{\frac{1}{\alpha}} \implies |\varepsilon_{n+1}| = A|\varepsilon_n|^{\alpha}$$

$$= L\varepsilon_n\varepsilon_{n-1} = L|\varepsilon_n|(A^{-1}|\varepsilon_n|^{\frac{1}{\alpha}})$$
(56)

$$A|\varepsilon_n|^{\alpha} = L \cdot A^{-1}|\varepsilon_n|^{1+\frac{1}{\alpha}}$$

$$A^{1-\frac{1}{\alpha}} \cdot L^{-1} = |\varepsilon_n|^{1+\frac{1}{\alpha}-\alpha}$$
(57)

Como no depende de n,ambos lados deben ser independientes, y por tanto, si $n\to\infty$:

$$1 + \frac{1}{\alpha} - \alpha = 0 \tag{58}$$

Que tiene como única solución positiva a la cual converge:

$$\alpha = \frac{1 + \sqrt{5}}{2} \tag{59}$$