

24675

SEARCH REQUEST FORM

Requestor's
Name:

Date: 9/12/02

Serial
Number:

Art Unit: 302

GAMZEL / 1644

Phone: 302 3997

Search Topic:

Please write a detailed statement of search topic. Describe specifically as possible the subject matter to be searched. Define any terms that may have a special meaning. Give examples or relevant citations, authors, keywords, etc., if known. For sequences, please attach a copy of the sequence. You may include a copy of the broadest and/or most relevant claim(s).

SEQ + SEQ INTERFERENCE
SEARCH

SEQ ID NO: 26

8

30 - 512 - 39 - 43

MP2 - 9/12 -

173 ✓

174 ✓

175 ✓

176 ✓

177 ✓

178 ✓

179 ✓

2nd quest

IN Thank

STAFF USE ONLY

Date completed: 9/13/02

Searcher: user

Terminal time: 25

Elapsed time:

CPU time: 10

Total time:

Number of Searches:

Number of Databases:

Search Site

 STIC CM-I Pre-S

Type of Search

 N.A. Sequence A.A. Sequence Structure Bibliographic

Vendors

 IG

MP2

 STN

C&I

 Dialog APS Geninfo SDC DARC/Questel Other

GenCore version 4.5
Copyright (c) 1993 - 2000 Compugen Ltd.

OM nucleic - nucleic search, using sw model

Run on: September 13, 2000, 01:18:33 ; Search time 2504.47 Seconds
(without alignments)
9990.683 Million cell updates/sec

Title: US-08-819-669E-8
Perfect score: 5674
Sequence: 1 CCGGGCACACTGGCATC.....TAATGATCTTGGTGGATCC 5674

Scoring table: IDENTITY NUC Gapop 10.0 , Gape~~1.0~~ 1.0

Searched: 5247842 seqs, 2204914090 residues

Total number of hits satisfying chosen Parameters: 10495684

Minimum DB seq length: 0
Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%
Maximum Match 100%
Listing first 45 summaries

Database : ESTI:
1: em_est1:
2: em_est2:
3: em_est3:
4: em_est4:
5: em_est5:
6: em_est6:
7: em_est7:
8: em_est8:
9: em_est9:
10: em_est10:
11: em_est11:
12: em_est12:
13: em_est13:
14: em_est14:
15: em_est15:
16: em_est16:
17: em_est17:
18: em_est18:
19: em_est19:
20: gb_est1:
21: gb_est2:
22: gb_est3:
23: gb_est4:
24: gb_est5:
25: gb_est6:
26: gb_est7:
27: gb_est8:
28: gb_est9:
29: gb_est10:
30: gb_est11:
31: gb_est12:
32: gb_est13:
33: gb_est14:
34: gb_est15:
35: gb_est16:
36: gb_est17:
37: gb_est18:
38: gb_est19:
39: gb_est20:
40: gb_est21:
41: gb_est22:
42: gb_est23:
43: gb_est24:
44: gb_est25:
45: gb_est26:
46: gb_est27:
47: gb_est28:
48: gb_est29:
49: em_est20:
50: em_est21:
51: em_est22:
52: em_est30:
53: gb_est31:
54: gb_est32:
55: em_est23:
56: em_est24:
57: em_est25:
58: em_est26:
59: gb_est33:
60: gb_est34:
61: gb_est35:
62: gb_est36:
63: gb_est37:
64: gb_est38:
65: em_est22:
66: em_est28:
67: em_est29:
68: em_est30:
69: gb_est39:
70: gb.est40:
71: gb.est41:
72: gb.est42:
73: gb.est43:
74: gb.est44:
75: em.est31:
76: em.est32:
77: em.est33:
78: em.est34:
79: gb.est5:
80: gb.est6:
81: gb.est7:
82: em.est35:
83: em.est36:
84: em.est37:
85: gb.est8:
86: gb.est9:
87: gb.est10:
88: gb.est51:
89: gb.est52:
90: gb.est53:
91: gb.est54:
92: gb.est55:
93: gb.gss1:
94: gb.gss2:
95: gb.gss3:
96: gb.gss4:
97: em.gss5:
98: em.gss2:
99: em.gss3:
100: em.gss4:
101: gb.gss5:
102: gb.gss6:
103: em.gss5:
104: em.gss6:
105: gb.gss10:
111: gb.gss11:
112: em.gss9:
113: em.gss10:
114: em.gss11:
115: em.gss12:
116: gb.gss12:

117: qb_gss13;*
 118: qb_gss14;*
 119: qb_gss15;*
 120: qb_gss16;*
 121: qb_gss17;*
 122: qb_gss18;*
 123: qb_gss19;*
 124: em_gss13;*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Match Length	DB ID	Description
C 1	427.4	7.5	869	AI798898
C 2	413	7.3	414	AW103876
C 3	392.6	6.9	728	AI805537
C 4	375.4	6.6	670	AW183186
C 5	349.6	6.2	533	AW183186
C 6	328.2	5.8	578	AI044464
C 7	328.1	5.8	599	AI044465
C 8	286	5.0	644	AW673548
C 9	285	5.0	504	AI045429
C 10	275.2	4.9	493	AI863022
C 11	272.6	4.8	511	AW145614
C 12	270.6	4.8	481	AA195045
C 13	270.6	4.8	495	AW194089
C 14	260.2	4.6	521	AW50219
C 15	257.2	4.5	559	AI224339
C 16	251.2	4.4	451	AI805352
C 17	247.6	4.4	430	AW28104
C 18	246.4	4.3	415	AI200443
C 19	243.4	4.3	519	AW245872
C 20	225.4	4.0	534	AI247017
C 21	222.8	3.9	394	AA857809
C 22	220.2	3.9	457	AN731700
C 23	218.6	3.9	566	AI194145
C 24	215.4	3.8	780	AI793447
C 25	212.4	3.7	386	AN73455
C 26	212.2	3.7	638	AI248864
C 27	206.8	3.6	514	AW664428
C 28	205.2	3.6	399	AW193638
C 29	201	3.5	488	AI830281
C 30	193.8	3.4	378	AW103946
C 31	193.2	3.4	467	AI142010
C 32	188.8	3.4	459	AA17338
C 33	188.4	3.3	597	AK249285
C 34	181.2	3.2	338	R06041
C 35	181.6	3.2	630	AI954607
C 36	178.6	3.1	256	T29724
C 37	176.4	3.1	457	AZ070711
C 38	175	3.1	387	R062
C 39	166	2.9	466	AA104513
C 40	164	2.9	293	T29745
C 41	163.2	2.9	345	AI8756056
C 42	159	2.8	324	AA905816
C 43	157.2	2.8	467	AI032153
C 44	155.4	2.7	441	R23773
C 45	150.6	2.7	523	AQ838824

ALIGNMENTS

QY	4723	TATGCTATGAGTCAGTGTCACTGAGTCCAGTCCTGCTGAGCAGT	4782
Db	630	CATACTAAGATGGTAAGACCCATTCACCCCTGCTGAAGGGCT	571
QY	4783	TTGAG	4842
Db	570	TTGAG	514

RESULT AI798898/C EST CDNA clone

LOCUS AI798898

DEFINITION IMAGE:2348732 3, similar to SW:MAG_2_HUMAN P43316

18-DEC-1999

EST

CDNA

clone

Site_2: Smal; A mini-library was made by cloning products derived from ORESTES PCR (U.S. Letters Patent application No. 196,716 - Ludwig Institute for Cancer Research) profiles into the pUC 18 vector. Reverse transcription of tissue mRNA and cDNA amplification were performed under low stringency conditions."	
b	481 CTCAGTAGGTCTGTTAACATGGGCCATCTTCACTCCTGTTGAGAAATAATGTCAGTGT 4 22
b	4940 CTCAGTAGGTCTGTTAACATGGGCCATCTTCACTCCTGTTGAGAAATAATGTCAGTGT 4 999
b	421 CTAGTAGGTCTGTTAACATGGGCCATCTTCACTCCTGTTGAGAAATAATGTCAGTGT 3 62
b	5000 ATGTTCAATGTTTATTGGATGGTGAACACTCAGATCCAGTTATGTTAAGGAAAGTCAGTGT 5 059
b	361 ATGTTGAATGTTACCTTAAATGGTGAATTAACCTCAGATCCAGTTATGTTAAGGAAAGTCAGTGT 3 03
b	5060 ATGACAGGACACATTCCTGTTTATTGGATGGTGAACACTCAGATCCAGTTATGTTAAGGAAAGTCAGTGT 5 119
b	302 ATGTTAGTAACTATGGCTTAAATAGTTAGGTTAAGGTTAAGGCTTGTGTTAT 2 43
b	5120 TCGATTGGAAATCCATTCTATTGGTAATGGTGAATGGG --ATAATAACAGCAGTGGAAATAA 5 176
b	242 TCACTGGAAATTCATTCTATTGGTGAATGGCATAATAACAGCAGTGGAGATA 1 83
b	5177 GTACTTAAATGCAAAATGCACTAAAGAACTAAAGAAATAAAGAAATAA 5 236
b	182 GTATTAGTGTG --AATTCACCGTCAATTGGTAATGGCATGTTGGATGATGAT --AAATA 1 38
b	5237 AGAGATAGCAATCTGCCTATACCTCAGCTTATCTGTTAAATT-TTAAAGATATA 5 295
b	137 AARGATACCTAACTCCCGCTTATGCCCTAGTCATTCTGTTAAATTAAATAATAATA 7 8
b	5296 TGCATACCTGGATTCCPGGCTCTTGAGAAATGTANGAGAAATAATCTGAATAAG 5 355
b	77 GCATACCTGGATTCCPGGCTCTTGAGAAATGTANGAGAAATAATCTGAATAAT 2 21
b	5356 ATTCTTCCTGTTCA 5 370
b	20 ATTCTTCCTGTTAA 6
RESULT 5	
	AW83186 533 bp mRNA EST 04-FEB-2000
	LOCUS PM3 HT0344-151299-004-h01 Homo sapiens cDNA, mRNA sequence.
	DEFINITION Homo sapiens cDNA, mRNA sequence.
	ACCESSION AW83186
	VERSION 1
	KEYWORDS Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
	ORGANISM Human
	COMMENT Unpublished (1999)
	CONTACT Simpson A.J.G.
	Laboratory of Cancer Genetics
	Ludwig Institute for Cancer Research
	Rua Prof. Antonio Prudente 109, 4 andar, 01509-010, São Paulo-SP, Brazil
	Tel: +55-11-2704922
	Fax: +55-11-2707001
	Email: asimpson@ludwig.org.br
	This sequence was derived from the FAPESP/LICR Human Cancer Genome Project. This entry can be seen in the following URL (http://www.ludwig.org.br/scripts/gethm12.P1?t1=PM3&t2=HT0344-151299-004-h01&t3=1999-12-15&t4=1)
	REFERENCE Seq. primer: puc 18 forward
	AUTHORS High quality sequence start: 21
	JOURNAL High quality sequence stop: 533.
	FEATURES Location/Qualifiers
	source 1..533
	/organism="Homo sapiens"
	/clonetyp="HT0344"
	/dev_stage="Adult"
	/locus="Homo sapiens, Vector: puc18, site 1, Smal"
	COMMENT Contact: Ansorge W
	MIPS An Klopferspitze 18a D-82152 Martinsried, Germany
	This is the 5' sequence of the clone insert
	Clone from S. Niemann, Molecular Genome Analysis, German Cancer

6

source	ATTRIBUTES	COUNT
<p>Research Center (DKFZ); Email s.wiemann@dkfz-heidelberg.de; sequenced by EMBL (European Molecular Biology Laboratories, Heidelberg/Germany) within the cDNA sequencing consortium of the German Genome Project. s1 sequence also available.</p> <p>This clone (DKFZp4_34H022) is available at the RZPD in Berlin-Buch/ Berlin-Charlottenburg, GERMANY; Email: clone@rzpd.de.</p>	<p>Please contact the RZPD: Ressourcenzentrum, Heubnerweg 6, 14059 Berlin-Charlottenburg, GERMANY; Email: clone@rzpd.de.</p> <p>Location/Qualifiers</p> <p>1..578</p> <p>/organism="Homo sapiens" /db_xref="Taxon:19606" /clone=DKFZp4_34H022" /clone.lib="434 (synonym: htes3)" /tissue_type="testis" /dev_stage="adult" /lab.host="DH10B" /note="Vector: psp01; Site_1: NotI; Site_2: SalI"</p>	130 a 136 c 196 g 116 t

VERSION	Al044465.1	GI:	5432683
KEYWORDS			
SOURCE	EST,		
ORGANISM	human.		
REFERENCE	Homo sapiens		
AUTHORS	Mammalyota; Eutheraia; Pri- 1 (bases 1 to 599)		
TITLE	Anзорге, W., Benes, V., K-		
JOURNAL	Wiemann, S.		
COMMENT	Unpublished (1999) Contact: Anзорге, W MPIBS		
	Am Klopferspitze 18a D-8 This is the 3' sequence Clone from S. Wiemann, Research Center (DKFZ), sequenced by EMBL (Euro- pean Molecular Biology Labora- tory, Heidelberg, Germany). German Genome Project.		

Query Match	Score	Length	EST
best local similarity 78.0% matches 453; Conservative 0;	Score 331; DB 47; Pred. No. 5.4e-72; Mismatches 115; Indels 13; Gaps 4;	578;	
2531 GTTGGGGCCCTAGGGAGATGGGTCCTGGGTAAAGGGGATGTACTCATGTC		2590	
1 GGTGGGAACTCAGGAGATAAGTGTGGTAAASAGGACTGTGTGCATT -A 58			
2591 GGAATGGGGTTGAAAGAACCCAGAACCAAGAACCGACGGCTGGAGATAAGTGTGAGCACAGCA		2650	
59 GGGGTGGGGTTGAAAGGGCACTCCCTGGAGATAAGTGTGAGCACAGCA		118	
2651 AGGCATATGGATCCAACCCAGAACCAALAGGGTCAACCTGAGCACCTAC-----		2704	
119 AGCCCATATACTGTICACCTAGAACCAAAGGGTCAGCCCTGGAGAACAGCACGTGGGG 178			
2705 --CCAGGATGGGCTCTTCACTCCCTGTTCAAGATCTCTGGGAGGTGAGCACCTC		2761	
179 GTACAGATGGC--CCCTCTACCTCTGGGACTCTGTTCAAGATCTCGGGACCTTGATGACCT 237			
2762 ATTCTACAGGGTACCTAGGTCAACTGAAAGGACCCCCATCTGGCTCTAAAGAACAGAGGG 2821			
238 GTTTCAGAAGSTGACTCAAGTCAACACAGGGCCCCATCTGTCGACAGATTCAGTGG 297			
2822 TCCAGGATCTCCATGCTGGTGGGAGAACATGAGGGAGGGTACCTGGTACCCAGG 2881			
298 TCTAGATCTGCCAGGATCAGTGTGAGGCTGAGGTAGATTGAGGTGACCCCTG 357			
2882 ACCAGACACTGA-GGGAGACTGCAAGAAATCACCCCTGCCCTGCMTCACCCAGAG 2940			
358 GCORGATGAGACAGGGGCCCATAGAATCTGCCCCTGGGTTTACTTCAGAG 417			
2941 AGCGGGGGCTGGCGCTCTGGCGTCCTGGGTATCTGGGATCATGTGATGTCAGGG 3000			
418 ACCCTGGCAGGGCTGAGGTGAGCTCCATATCTGGGATCTGTGTCAGGGTCAAGG 477			
3001 AGGGGGGGCTGGCTGAGAAAGCTGCGCTCAGGTCAAGTGAAGGGGAGCCTGCC 3060			
478 AAGGGGGGCGCTGGCTGAGGGCTGGACTCAAGTCAAGGGGAGCTCAGCC 3101			
538 CTGCCAGAAGTGGACCTGAGCCAGAACAGGGCTCAGCC 578			

VERSION	AL044465.1	GI:	5432683
KEYWORDS			
SOURCE	EST.		
ORGANISM	Homo sapiens		
REFERENCE	Mammalia: Eutheria; Primates; Catarrhini; Hominidae; Homo. 1 (bases 1 to 5997)		
AUTHORS	Anzalone, N., Benes, J., Krieger, S., Mewes, H.W., Gassenhuber, J. and Wiemann, S.		
TITLE	EST (Ansorge, Benes, et al.)		
JOURNAL	Unpublished (1999)		
COMMENT	Contact: Ansorge W MIPS		
	Am Klopferspitz 18a D-82152 Martinsried Germany		
	This is the 3'-sequence of the clone Insert		
	Clone from S. Wiemann, Molecular Genome Analysis, German Cancer Research Center (DKFZ); Email: s.wiemann@dkfz-heidelberg.de;		
	sequenced by EMBL (European Molecular Biology Laboratories, Heidelberg Germany) within the cDNA sequencing consortium of the German Genome Project.		

Tissue Procurement: DCTD/DTP cDNA Library Preparation: Ling Hong/Rubin Laboratory cDNA Library Arrayed by: The I.M.A.G.E. Consortium (ILNN) DNA Sequencing by: Berkeley MGC sequencing project Clone distribution: MGC clone distribution information can be found through the I.M.A.G.E. Consortium/LNNU at: www.bio.llnl.gov/bmhp/image/image.html Base Calling / Quality Scores: PAREd from University of Washington Genome Center. Vector TRIMMING: cross.match from University of Washington Genome Center PHRAP suite. Poly-T Identification: PatchPatch_P1 from Berkeley Drosophila Genome Project, University of Washington Genome Center: <http://www.genome.washington.edu/polyadenylation/>: Based upon the presence of a XhoI site followed by a run of 14 or more T residues polyadenylated.

Plate: LNCM10 **row:** N **column:** 3 **High quality sequence stop:** 427.

Location/Qualifiers

- 1. .511

/lab_host="PhiX10B (phage-resistant)"
 /note="organ: lung; Vector: pORTB;" Site_1: XhoI; Site_2:
 EcoRI; cDNA made by oligo-dT priming. Directionally
 cloned into EcoRI/XhoI sites using the following 5'
 adaptor: GGCACGAG(G). Size selected >500bp for average
 insert size 1.8kb. Library constructed by Ling Hong in
 the laboratory of Gerald M. Rubin (University of
 California, Berkeley) using ZAP-cDNA synthesis kit
 (Stratagene) and Superscript II RT (Life Technologies)."

QY	5331	TAGGAAATTATTCGATAAAGATT	5359
Db	39	CAACCGAAATTATTCGATTAATT	11
RESULT	1.2		
LOCUS	AA995045/c	AA995045	481 bp
DEFINITION	out3e0.s1	NCI_CGAP_Br2	mRNA
			mRNA sequence.
ACCESSION	AA995045		
VERSION	AA995045.1		
KEYWORDS	EST.		
SOURCE	human.		
ORGANISM	Homo sapiens		
REFERENCE		Mammalia; Chordata; Crustacea;	
AUTHORS		Metazoa; Eutheria; Primates; Ca-	
TITLE		1 (bases 1 to 481)	
JOURNAL		NCI-CGAP http://www.ncbi.nlm.nih-	
COMMENT		Tumor Gene Index	
		Unpublished (1997)	
		On May 18, 1998 this sequence was	
		Contact: Robert Strausberg, Ph.D.	
		Tel: (301) 496-1550	
		Email: Robert_Strausberg@nih.gov	
		cDNA Library Preparation: Christopher	
		Emmett-Buck, M.D., Ph.D.	
		DNA Sequencing by: Greg L.	
		cDNA Library Preparation: M. Be-	
		Clone distribution: NCI-CGAP cl-	
		found through the T.M.A.G.E. Con-	
		www-bio.llnl.gov/bbr/image/Image	
		Insert Length: 1718 Std Error:	

FEATURES	Source	High quality sequence stop: 446.
Location/Qualifiers		
1..481		
/organism="Homo sapiens"		
/db_xref="taxon:9606"		
/clone="IMAGE:1631446"		
/clone_id="NCI_CGAP_BR_2"		
/sex="female; pooled"		
/tissue-type="breast"		
/note="Vector: PT7R3D-Pac (Pharmacia) with a modified polylinker; 1st strand cDNA was prepared from pooled breast tumor tissue, and was then primed with Not I - Oligo(dT) primer. Double-stranded cDNA was ligated to Eco RI adaptors (Pharmacia), digested with Not I and cloned into the Not I and Eco RI sites of the modified pRT3 vector. This library is the normalized version of NCI_CGAP_BR1. Library was constructed by Bento Soares and M. Fatima Bonaldo."		
base count	165 a	91 c
origin	71 g	154 t
Query Match	4.9%	Score 272.6; DB 69; Length 511;
Best Local Similarity	81.7%	Pred. No. 2.2e-57;
Matches 416; Conservative	0; Mismatches 74; Indels 19; Gaps 8;	
b	4862 CAGGGCCGCCAGCTCCATGCGCTTCCTGCCTGACATGAGGCCATTCTCACTC-- 491.9	
b	511 CGGGCCGATCCCTTAATGCCAACCTGCTCTGACTGCTCTCACTT 452	
y	4920 TGAAGAGCCGGCAGTGTCTCGTTCTATTGGGTCAGCTGGAGAT 4979	
b	451 TGAAGCCGGCAGCTTGGGTTTGGTGGAGAT 392	
y	4980 TATCTTGTCTCTTTGGATTGTCAAAGTTTTAAGGGATGGTGAATGAA 5039	
b	391 TATCTTGTCTCTGTGGATTGTCAAATG TTCCCTTTAACGGATGGTGAATGAG 333	
y	5040 CTICAGCATCCAAGTTATGAAATGACGAGTCACAC-- AGTCTGTGTATATAGTTAA 5097	
b	332 CGTAGCATCCAGTTATGAAATGACGAGTCACATGCTGTATATGTTAG 273	
y	5098 GGCTAAAGASTCCTGTTTCACTGATGGGAAATCCATTCTATTGGAAATTGGG-- 5155	
b	272 GAGPAAGAGCTCTGTTTCACTCAATGGAAATCCATTCTGGAAATTGTGAC 213	
y	,5156 ATTAACAGCAGTGAATAGTA -- CTTAGAAATGTCGA-AAAATGAGCACTAAATA 5210	
b	212 ATTAATATGACAGCTGTTAAAGTATTGCTTAAATGCGGAAATTACAATA 153	
y	5211 GATGAGATAAAAGRACTAAAGATAATGCAAACTTCIGCTTAACTCTGACTCT 5270	
b	152 CATGAGAT--AACTCAAGAAATCAAAGATAGTGAATTGCTTGTACCTCAATA 97	
y	5271 ATTCTGTTAAATTTAAAGATAATGCAATGGATTCTCTGGCTTCTTGGAAATG 5330	
b	96 ATTGTGTTAAAGATTAAACAAATGCAACCAGATTCTCTGACTCTTGGAAATG 40	
Query Match	4.8%	Score 270.6; DB 33; Length 481;
Best Local Similarity	84.6%	Pred. No. 6.8e-57;
Matches 402; Conservatve	0; Mismatches 54;	Gaps 19;
Qy	4902 GAGGCCATTCTCACTC-TGAAAGAGGGCTCAGTTCTCAGTAGGTGTTCTGTT 4959	
Db	481 GAGGCCATTCTCACTCTGAGGAGCTCACATTCTAGPAGTGCGTTCTGTT 422	
Qy	4960 CTATTGGTGACTTGGAGATTATCTTGTTCTCAGTTCTGAAATTGTTCAATGTTTTT 5019	
Db	421 CTGTTGGATGACTTATGAAATTCTGTTCTGTTGGGTGTTGTTCAATG-TTCCTT 363	
Qy	5020 TTAAGGGATGGTTGAACTTCACATCCAAGTTATGAAATGACGAGTCAC--A 5079	

Db	362	TTAACGGGATGGTGAATGAGNCAGCATCAGGTATTGATGACAGTACACATA	303	Query Match Score 4.9%; Best Local Similarity 81.9%; Matches 417; Conservative 0; Mismatches 64; Indels 28; Gaps 0
Qy	5078	GTCCTGTTATACTGTTAAGGGTAAAGCTCTGTTTATTGAGATTGGAAATCCAT	5137	Qy 4871 GTCCACAGCTTCCTCGCTCGTGACATGAGGCCATTCTCACTC---TGAAGAG 4926
Db	302	GTGCTGTTATACTGTTAAGGGTAAAGCTCTGTTTATTGAGATTGGAAATCCAT	243	Db 494 GTGCACAGCTCCCTGGCTCGTGACATGAGGCCATTCTCACTGTTGAGAA 435
Qy	5138	TGATTTGTAATTGGG-ATATACACCGCTGGATAAGTA---CTAGAATGTC	5191	Qy 4927 AGGGTAGTGTCTCAGTAGTGGTCTATGGTACTGGAGATTATCTT 4986
Db	242	TCCATTGTTGTAATTGGTACATATAATGGCTTAAATGTC	183	Db 434 AATAGCAGTGTCTTGTAGTGGTTCTATTTGATGACTGGAGATTATCTC 375
Qy	5192	A-AAAATGAGCATAAATAGATGAGATAAGAACTAAAGAAATTAGAGATGTCATT	5250	Qy 4987 TGTCTCTTGGATTGTCAAATGTTTTAAGGGATGTTGATGAACTTCAGC 5046
Db	182	AGGAATTAGCAATACATACATGAGT---AACTAAGAAATCAAGATAGTGTATT	127	Db 374 TGTCTCTTAACTATGTTAAAGGATATATGCACTCTGGATT 5310
Qy	5251	CCTGCCTTATACCTCAGTCTATTCTGTAATAATTAAAGGATATATGCACTCTGGATT	5310	Qy 5047 ATCCAGTT ATGATGAAAGCACTACACAGTCTGGTATAGTTAAGGTAGA 5100
Db	126	CITGCCCTGTACCTCAATCTATCTGTAATACTGTTAAACAGGATT	70	Db 315 ATCCAGTTAATGATGATGAACTCTGTTAAATAGTTAGGTTAGA 256
Qy	5311	CCTGGCTCTTCAGATTGAGAAATTAATCTGAAATAAGAATTCTCCT	5365	Qy 5106 GTCTCTGTTTATCAGATTGGAAATCCATTCTTGTGATATTGGGG---ATAATAA 5162
Db	69	CCCTGACTCTTCAGATTGCAAGTCARGCAGATAATCTGAAATAATTCCTCCT	15	Db 255 GTCTGTGTTTATCAGATTGGAAATCCGGTCTATTTGTGATTGGACATAATA 196
RESULT	13			
LOCUS	AW194089	495 bp mRNA	EST	29-NOV-1999
DEFINITION	xm12a03.x1 NCI_CGAP_Ut4	Homo sapiens cDNA clone IMAGE:2683948	3 ,	mRNA sequence.
VERSION	AW194089.1	GI:6472822		
KEYWORDS	EST.			
SOURCE	human.			
ORGANISM	Human			
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;				
Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.				
1 (bases 1 to 495)				
1 (bases 1 to 495)				
NCI-CGAP http://www.ncbi.nlm.nih.gov/ncicgap.				
National Cancer Institute, Cancer Genome Anatomy Project (CGAP),				
Tumor Gene Index				
Upublished (1997)				
JOURNAL	On Oct 30, 1998 this sequence version replaced gi:3817926.			
COMMENT	Contact: Robert Strausberg, Ph.D.			
	Tel: (301) 496-1550			
	Email: Robert.Strausberg@nih.gov			
	Tissue Procurement: Christopher Moskaluk, M.D., Ph.D., Michael R.			
	Emmett-Buck, M.D., Ph.D.			
	CDNA Library Preparation: Life Technologies, Inc.			
	DNA Sequencing by: Washington University Genome Sequencing Center			
	Clone distribution: NCI-OGAP Clone distribution information can be found through the I.M.A.G.E. Consortium/LLNL at: www-bio.llnl.gov/bbrp/image/image.html			
Possible reversed clone: polyT not found				
Seq Primer: -40UP from Gibco				
High Quality sequence stop: 408 .				
Location/Qualifiers				
1..495	/organism="Homo sapiens"			
	/db_xref="taxon:9606"			
	/clone="IMAGE:2683948"			
	/tissue_type="serous papillary carcinoma, high grade, 2			
	/pooled_tumors"			
	/lab_host="DH10B"			
	/note="Organ: uterus; Vector: pCMV-SPORT6; Site_1: Sali; Site_2: NotI; Cloned unidirectionally. Primer: Oligo dT. Average insert size 1.48 kb. Life Technologies catalog #: 11542-016"			
FEATURES	Source			
BASE COUNT	186 a	95 c	68 g	146 t
ORIGIN				

FEATURES	Source	SEQUENCE COUNT ORIGIN
presence of a XbaI site followed by a run of 14 or more T residues at the beginning of the sequence, this cDNA insert was Polyadenylated.		
Plate: LICM9	row: J column: 10	
High quality sequence stop: 453.	Location/Qualifiers	
1..521		
/organism="Homo sapiens"		
/db_xref="taxon:9606"		
/clone="IMAGE:28222505"		
/clone_id="NIH_MGC_7"		
/tissue_type="small cell carcinoma"		
/cellline="MGC33"		
/lab_host="DH10B (phage-resistant)"		
/note="Organ: lung Vector: pOTB"; Site_1: XbaI; Site_2:		
EcoRI; cDNA made by oligo-dT priming. Directionally cloned into EcoRI/XbaI sites using the following 5 adaptor: GGCACCA(G). Size-selected >500bp for average insert size 1.8kb. Library constructed by Ling Hong in the laboratory of Gerald M. Rubin (University of California, Berkeley) using ZAP-cDNA synthesis kit (Stratagene) and Superscript II RT (Life Technologies)."		
184 a	100 c	87 g
		150 t

VERSION	All222439.1	GI:	3804642
EST.			
SOURCE	human.		
ORGANISM	Homo sapiens		
REFERENCE	1 (bases 1 to 459)		
AUTHORS	NCI-CGAP	http://www.nci	
TITLE	National Cancer Institute		
JOURNAL	Tumor Gene Index		
COMMENT	Unpublished (1997)		
CONTACT	Robert Straus		
TEL	(301) 496-1550		
EMAIL	Robert_Straube		
This clone is available			
IMAGE Consortium	Info		
Insert Length:	770	S	
Seq Primer:	-40UP from		
High quality sequence			
LOCATION/QUAL			
1.	459		
FEATURES	/organism="Homo		
source	/db_xref="tax		
	/clone="IMAGE		

Qy 5338 AATTAATCTGATAAAGAAATTCTTCCCTGTCA 5370
||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| |||
Db 47 AATTAATCTGATAAAGAAATTCTTCCCTGTCA 15

Search completed: September 13, 2000, 02:38:16
Job time: 4783 sec

Release 3.1A John F. Collins, Biocomputing Research Unit.
Copyright (C) 1993-1998 University of Edinburgh, U.K.

Distribution rights by Oxford Molecular Ltd
MPSrch_PP protein - protein database search, using Smith-Waterman algorithm

Run on: Wed Sep 13 07:14:42 2000: MasPar time 3.43 Seconds

40.218 Million cell updates/sec
Tabular output not generated.

Title: >US-08-819-669E-26
Description: (1-9) from US08819669E.pep

Perfect Score: 61

Sequence: 1 EADPTGHSY 9

Scoring table: PAM 150

Gap 15

Searched:

Post-processing: Minimum Match 0%
Listing first 45 summaries

a-is issued

1:15A_COMB 2:5B_COMB 3:6_COMB 4:PCT_COMB 5:backfiles1

Statistics: Mean 14.653; Variance 34.108; scale 0.430

Pred. No. is the number of results Predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Query	Match	Length	DB	ID	Description	Pred. No.
1	61 100.0	9	2	US-09-036-	Sequence 1, Application 1.24e-01		
2	61 100.0	9	2	US-08-986-	Sequence 1, Application 1.24e-01		
3	61 100.0	9	1	US-07-938-	Sequence 1, Application 1.24e-01		
4	61 100.0	9	1	US-08-443-	Sequence 12, Application 1.24e-01		
5	61 100.0	9	1	US-08-787-	Sequence 49, Application 1.24e-01		
6	61 100.0	9	1	US-08-073-	Sequence 12, Application 1.24e-01		
7	61 100.0	9	3	US-08-159-	Sequence 99, Application 1.24e-01		
8	61 100.0	9	3	US-08-354-	Sequence 12, Application 1.24e-01		
9	61 100.0	9	2	US-08-902-	Sequence 21, Application 1.24e-01		
10	61 100.0	9	2	US-08-142-	Sequence 26, Application 1.24e-01		
11	61 100.0	9	4	PCT-US95-0	Sequence 2, Application 1.24e-01		
12	61 100.0	9	4	PCT-US95-0	Sequence 1, Application 1.24e-01		
13	61 100.0	9	1	US-08-299-	Sequence 26, Application 1.24e-01		
14	61 100.0	9	2	US-08-498-	Sequence 4, Application 1.24e-01		
15	61 100.0	9	3	US-08-967-	Sequence 26, Application 1.24e-01		
16	61 100.0	9	1	US-08-186-	Sequence 25, Application 1.24e-01		
17	61 100.0	10	3	US-08-602-	Sequence 25, Application 1.24e-01		
18	61 100.0	10	1	US-08-796-	Sequence 5, Application 1.24e-01		
19	61 100.0	10	2	US-08-498-	Sequence 4, Application 1.24e-01		
20	61 100.0	12	2	US-08-560-	Sequence 4, Application 1.24e-01		
21	61 100.0	12	1	US-08-190-	Sequence 24, Application 1.24e-01		
22	61 100.0	309	1	US-08-465-	Sequence 10, Application 1.24e-01		
23	61 100.0	309	2	US-08-993-	Sequence 6, Application 1.24e-01		

ALIGNMENTS

RESULT 1
ID US-09-036-582-1
XX STANDARD;
AC PRT;
XXXXX 9 AA.

Sequence 1, Application US/09036582A
CC Patent No. 565381
CC GENERAL INFORMATION:
CC APPLICANT: van der Bruggen, Pierre
CC TITLE OF INVENTION: DELIVERY OF PROTEINS INTO EUKARYOTIC CELLS
CC TITLE OF INVENTION: WITH RECOMBINANT YERSINIA
FILE REFERENCE: 11154
CURRENT APPLICATION NUMBER: US/09/036, 582A.
CURRENT FILING DATE: 1998-03-06
NUMBER OF SEQ ID NOS: 39
SOFTWARE: PatentIn Ver. 2.0
SEQ ID NO 1
CC LENGTH: 9
CC TYPE: PRT
CC ORGANISM: Human MAGE 1 peptide
SEQUENCE 9 AA: 976 MW: 576 CN:

Query Match 100.0%; Score 61; DB 2; Length 9;
Best Local Similarity 100.0%; Pred. No. 1.24e-01;
Matches 9; Conservative 0; Mismatches 0; Indels 0; Gaps 0; /
Db 1 EADPTGHSY 9
QQ 1 EADPTGHSY 9
XX STANDARD;
AC PRT;
XXXXX 9 AA.

RESULT 2
ID US-08-986-234-1
XX STANDARD;
AC PRT;
XXXXX 9 AA.

Sequence 1, Application US/08986234
CC Patent No. 5981706

GENERAL INFORMATION:
 CC APPLICANT: Wallen, et al.
 CC TITLE OF INVENTION: Methods for Synthesizing Heat Shock Protein Complexes
 CC FILE REFERENCE: UNME-0008-1
 CC CURRENT APPLICATION NUMBER: US/08/9886,234
 CC CURRENT FILING DATE: 1997-12-05
 CC NUMBER OF SEQ ID NOS: 114
 CC SOFTWARE: PatentIn Ver. 2.0
 SEQ ID NO: 1
 LENGTH: 9
 CC TYPE: PRT
 CC ORGANISM: human
 SEQUENCE: 9 AA; 976 MW; 576 CN;

Query Match Score 61; DB 1; Length 9;
 Best Local Similarity 100.0%; Pred. No. 1.24e-01;
 Matches 9; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Db 1 EADPTGHSY 9
 Qy 1 EADPTGHSY 9

RESULT 4
 ID US-08-443-341-12 STANDARD; PRT; 9 AA.
 XX
 AC xxxxxxxx

Query Match Score 61; DB 2; Length 9;
 Best Local Similarity 100.0%; Pred. No. 1.24e-01;
 Matches 9; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Db 1 EADPTGHSY 9
 Qy 1 EADPTGHSY 9

RESULT 3
 ID US-07-938-334C-1 STANDARD; PRT; 9 AA.
 XX
 AC xxxxxxxx

Sequence 1, Application US/07938334C
 Sequence 1, Application US/07938334C
 GENERAL INFORMATION:
 PATENT NO. 5415940
 TITLE OF INVENTION: ISOLATED NONAPEPTIDES DERIVED FROM
 NUMBER OF SEQUENCES: 22
 CORRESPONDENCE ADDRESS:
 CC APPLICANT: Boon, Thierry; van der Bruggen, Pierre;
 CC De Plaein, Etienne; Lurquin, Christophe; Traversari, Catia
 CC TITLE OF INVENTION: ISOLATED NONAPEPTIDES DERIVED FROM
 NUMBER OF SEQUENCES: 22
 CC CORRESPONDENCE ADDRESS:
 CC STREET: 805 Third Avenue
 CC CITY: New York City
 CC STATE: New York
 CC COUNTRY: USA
 CC ZIP: 10022
 COMPUTER READABLE FORM:
 CC MEDIUM TYPE: Diskette, 5.25 inch, 360 kb storage
 CC COMPUTER: IBM PS/2
 CC OPERATING SYSTEM: PC-DOS
 CC SOFTWARE: Wordperfect
 CURRENT APPLICATION DATA:
 CC APPLICATION NUMBER: US/07/938,334C
 CC FILING DATE: 31-AUG-1992
 CC CLASSIFICATION: 435
 CC PRIORITY APPLICATION DATA:
 CC APPLICATION NUMBER: 08/073,103
 CC FILING DATE: 7-JUNE-1993
 CC PRIOR APPLICATION DATA:
 CC APPLICATION NUMBER: 07/938,334
 CC FILING DATE: 17-MAY-1995
 CC CLASSIFICATION: 435
 CC PRIORITY APPLICATION DATA:
 CC APPLICATION NUMBER: 08/037,230
 CC FILING DATE: 26-MARCH-1993
 CC ATTORNEY/AGENT INFORMATION:
 CC NAME: Hanson, No. 540594 Oman D.
 CC REGISTRATION NUMBER: 30,946
 CC REFERENCE/DOCKET NUMBER: IUD 5293,5
 CC TELECOMMUNICATION INFORMATION:
 CC TELEPHONE: (212) 688-9200
 CC TELEFAX: (212) 838-3884
 CC INFORMATION FOR SEQ ID NO: 1:
 CC SEQUENCE CHARACTERISTICS:
 CC LENGTH: 9 amino acid residues
 CC TYPE: amino acid
 CC STRANDEDNESS: single
 CC TOPOLOGY: linear
 CC MOLECULE TYPE: protein
 CC NAME/KEY: MAGE-1 derived nonapeptide
 SEQUENCE: 9 AA; 976 MW; 576 CN;

Query Match Score 61; DB 1; Length 9;

Best Local Similarity 100.0%; Pred. No. 1.24e-01; Indels 0; Gaps 0; AC xxxxxx

Matches 9; Conservative 0; Mismatches 0; Indels 0; Gaps 0; AC xxxxxx

Db 1 EADPTGHSY 9
Qy 1 EADPTGHSY 9

RESULT 5 ID US-08-787-547-49 STANDARD; PRT: 9 AA.

XX DT DE XX AC XXXXXX

Sequence 49, Application US/08787547

GENERAL INFORMATION:
PATENT NO. 5783567
CITY: Boston
STATE: MA
COUNTRY: US
ZIP: 02110-2804
NUMBER OF SEQUENCES: 107

COMPUTER READABLE FORM:
ADDRESS: Fish & Richardson, P.C.
STREET: 225 Franklin Street
CITY: Boston
STATE: MA
COUNTRY: US
ZIP: 02110-2804
NUMBER OF SEQUENCES: 107

COMPUTER READABLE FORM:
MEDIUM TYPE: Diskette
COMPUTER: IBM Compatible
OPERATING SYSTEM: Windows 95
SOFTWARE: FASTSEQ for Windows Version 2.0

CURRENT APPLICATION DATA:
APPLICATION NUMBER: US/08/787-547
FILING DATE: 22-JAN-1997
CLASSIFICATION: 514
PRIORITY APPLICATION DATA:
APPLICATION NUMBER:
FILING DATE:
ATTORNEY/AGENT INFORMATION:
NAME: Fraser, Janis K.
REGISTRATION NUMBER: 34,819
REFERENCE/DOCKET NUMBER: 08191/003001
TELECOMMUNICATION INFORMATION:
TELEPHONE: 617-542-5070
TELEFAX: 617-542-8906
TELEX: 200154
SEQUENCE NUMBER: 49;

SEQUENCE CHARACTERISTICS:
LENGTH: 9 amino acids
TYPE: amino acid
TOPOLOGY: linear
MOLECULE TYPE: peptide
SEQUENCE 9 AA: 976 MW: 576 CN:

Query Match Score 61; DB 1; Length 9;
Best Local Similarity 100.0%; Pred. No. 1.24e-01; Indels 0; Gaps 0; AC xxxxxx

Db 1 EADPTGHSY 9
Qy 1 EADPTGHSY 9

RESULT 6 ID US-08-73-103A-12 STANDARD; PRT: 9 AA.

XX DT DE XX AC XXXXXX

Sequence 12, Application US/08073103A
Sequence 12, Application US/08073103A
GENERAL INFORMATION:
PATENT NO. 5462871
APPLICANT: Boon-Falleur, Thierry
APPLICANT: van der Bruggen, Pierre
APPLICANT: De Plaein, Etienne
APPLICANT: Lurquin, Christophe
APPLICANT: Traversari, Catic
APPLICANT: Gaugler, Beatrice
APPLICANT: Van den Eynde, Benoit
TITLE OF INVENTION: ISOLATED MONOPEPTIDES DERIVED FROM MAGE-3 GENE AND PRESENTED BY HLA-A1 AND USES THEREOF
NUMBER OF SEQUENCES: 22
CORRESPONDENCE ADDRESS:
ADDRESSEE: Felfe & Lynch
STREET: 805 Third Avenue
CITY: New York City
STATE: New York
COUNTRY: USA
ZIP: 10022
COMPUTER READABLE FORM:
MEDIUM TYPE: Diskette, 5.25 inch, 360 kb storage
COMPUTER: IBM PS/2
OPERATING SYSTEM: PC-DOS
SOFTWARE: Wordperfect
CURRENT APPLICATION DATA:
APPLICATION NUMBER: US/08/073,103A
FILING DATE: 7-JUNE-1993
CLASSIFICATION: 435
PRIOR APPLICATION DATA:
APPLICATION NUMBER: 07/938 334
FILING DATE: 31 AUG-1992
ATTORNEY/AGENT INFORMATION:
NAME: Hasson, No. 5462871man D.
REGISTRATION NUMBER: 30,946
TELECOMMUNICATION INFORMATION:
TELEPHONE: (212) 688-9200
TELEFAX: (212) 838-3884
SEQUENCE CHARACTERISTICS:
LENGTH: 9 amino acids
TYPE: amino acid
STRANDEDNESS: single
TOPOLOGY: linear
MOLECULE TYPE: protein
SEQUENCE 9 AA: 976 MW: 576 CN:

Query Match Score 61; DB 1; Length 9;
Best Local Similarity 100.0%; Pred. No. 1.24e-01; Indels 0; Gaps 0; AC xxxxxx

Db 1 EADPTGHSY 9
Qy 1 EADPTGHSY 9

RESULT 7 ID US-08-159-339A-99 STANDARD; PRT: 9 AA.

XX DT DE XX AC XXXXXX

Sequence 99, Application US/08159339A
Sequence 99, Application US/08159339A

Patent No. 6037135
 GENERAL INFORMATION:
 APPLICANT: Kubo, Ralph T.
 APPLICANT: Sette, Alessandro
 APPLICANT: Celis, Esteban
 TITLE OF INVENTION: HLA Binding peptides and their
 TITLE OF INVENTION: Uses
 NUMBER OF SEQUENCES: 1254
 CORRESPONDENCE ADDRESS:
 ADDRESSEE: Townsend and Townsend and Crew LLP
 STREET: Two Embarcadero Center, Eighth Floor
 CITY: San Francisco
 STATE: CA
 ZIP: 94111-3834

COMPUTER READABLE FORM:
 COMPUTER: IBM Compatible
 OPERATING SYSTEM: DOS
 SOFTWARE: FastSQL for Windows Version 2.0
 CURRENT APPLICATION DATA:
 APPLICATION NUMBER: US/08/159, 339A
 FILING DATE: 29-NOV-1993
 CLASSIFICATION: 424
 PRIOR APPLICATION DATA:
 APPLICATION NUMBER: US 07/926, 666
 FILING DATE: 07-AUG-1992
 APPLICATION NUMBER: US 08/027, 746
 FILING DATE: 05-MAR-1993
 APPLICATION NUMBER: US 08/103, 395
 FILING DATE: 06-AUG-1993
 ATTORNEY/AGENT INFORMATION:
 NAME: Weber, Ellen Lauver
 REGISTRATION NUMBER: 32,762
 REFERENCE/DOCKET NUMBER: 018623-005030US
 TELECOMMUNICATION INFORMATION:
 TELEPHONE: (415) 570-0200
 TELEFAX: (415) 576-0300
 TELEX:
 INFORMATION FOR SEQ ID NO: 99:
 SEQUENCE CHARACTERISTICS:
 LENGTH: 9 amino acids
 TYPE: amino acid
 STRANDEDNESS: single
 TOPOLOGY: linear
 MOLECULE TYPE: Peptide
 SEQUENCE 9 AA; MW: 576 CN;

TELECOMMUNICATION INFORMATION:

TELEPHONE: (415) 570-0200

TELEFAX: (415) 576-0300

TELEX:

INFORMATION FOR SEQ ID NO: 99:

SEQUENCE CHARACTERISTICS:

LENGTH: 9 amino acids

TYPE: amino acid

STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: Peptide

SEQUENCE 9 AA; MW: 576 CN;

TELECOMMUNICATION INFORMATION:

TELEPHONE: (415) 570-0200

TELEFAX: (415) 576-0300

TELEX:

INFORMATION FOR SEQ ID NO: 99:

SEQUENCE CHARACTERISTICS:

LENGTH: 9 amino acids

TYPE: amino acid

STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: Peptide

SEQUENCE 9 AA; MW: 576 CN;

TELECOMMUNICATION INFORMATION:

TELEPHONE: (415) 570-0200

TELEFAX: (415) 576-0300

TELEX:

INFORMATION FOR SEQ ID NO: 99:

SEQUENCE CHARACTERISTICS:

LENGTH: 9 amino acids

TYPE: amino acid

STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: Peptide

SEQUENCE 9 AA; MW: 576 CN;

TELECOMMUNICATION INFORMATION:

TELEPHONE: (415) 570-0200

TELEFAX: (415) 576-0300

TELEX:

INFORMATION FOR SEQ ID NO: 99:

SEQUENCE CHARACTERISTICS:

LENGTH: 9 amino acids

TYPE: amino acid

STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: Peptide

SEQUENCE 9 AA; MW: 576 CN;

TELECOMMUNICATION INFORMATION:

TELEPHONE: (415) 570-0200

TELEFAX: (415) 576-0300

TELEX:

INFORMATION FOR SEQ ID NO: 99:

SEQUENCE CHARACTERISTICS:

LENGTH: 9 amino acids

TYPE: amino acid

STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: Peptide

SEQUENCE 9 AA; MW: 576 CN;

TELECOMMUNICATION INFORMATION:

TELEPHONE: (415) 570-0200

TELEFAX: (415) 576-0300

TELEX:

INFORMATION FOR SEQ ID NO: 99:

SEQUENCE CHARACTERISTICS:

LENGTH: 9 amino acids

TYPE: amino acid

STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: Peptide

SEQUENCE 9 AA; MW: 576 CN;

TELECOMMUNICATION INFORMATION:

TELEPHONE: (415) 570-0200

TELEFAX: (415) 576-0300

TELEX:

INFORMATION FOR SEQ ID NO: 99:

SEQUENCE CHARACTERISTICS:

LENGTH: 9 amino acids

TYPE: amino acid

STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: Peptide

SEQUENCE 9 AA; MW: 576 CN;

TELECOMMUNICATION INFORMATION:

TELEPHONE: (415) 570-0200

TELEFAX: (415) 576-0300

TELEX:

INFORMATION FOR SEQ ID NO: 99:

SEQUENCE CHARACTERISTICS:

LENGTH: 9 amino acids

TYPE: amino acid

STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: Peptide

SEQUENCE 9 AA; MW: 576 CN;

TELECOMMUNICATION INFORMATION:

TELEPHONE: (415) 570-0200

TELEFAX: (415) 576-0300

TELEX:

INFORMATION FOR SEQ ID NO: 99:

SEQUENCE CHARACTERISTICS:

LENGTH: 9 amino acids

TYPE: amino acid

STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: Peptide

SEQUENCE 9 AA; MW: 576 CN;

TELECOMMUNICATION INFORMATION:

TELEPHONE: (415) 570-0200

TELEFAX: (415) 576-0300

TELEX:

INFORMATION FOR SEQ ID NO: 99:

SEQUENCE CHARACTERISTICS:

LENGTH: 9 amino acids

TYPE: amino acid

STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: Peptide

SEQUENCE 9 AA; MW: 576 CN;

TELECOMMUNICATION INFORMATION:

TELEPHONE: (415) 570-0200

TELEFAX: (415) 576-0300

TELEX:

INFORMATION FOR SEQ ID NO: 99:

SEQUENCE CHARACTERISTICS:

LENGTH: 9 amino acids

TYPE: amino acid

STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: Peptide

SEQUENCE 9 AA; MW: 576 CN;

TELECOMMUNICATION INFORMATION:

TELEPHONE: (415) 570-0200

TELEFAX: (415) 576-0300

TELEX:

INFORMATION FOR SEQ ID NO: 99:

SEQUENCE CHARACTERISTICS:

LENGTH: 9 amino acids

TYPE: amino acid

STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: Peptide

SEQUENCE 9 AA; MW: 576 CN;

TELECOMMUNICATION INFORMATION:

TELEPHONE: (415) 570-0200

TELEFAX: (415) 576-0300

TELEX:

INFORMATION FOR SEQ ID NO: 99:

SEQUENCE CHARACTERISTICS:

LENGTH: 9 amino acids

TYPE: amino acid

STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: Peptide

SEQUENCE 9 AA; MW: 576 CN;

TELECOMMUNICATION INFORMATION:

TELEPHONE: (415) 570-0200

TELEFAX: (415) 576-0300

TELEX:

INFORMATION FOR SEQ ID NO: 99:

SEQUENCE CHARACTERISTICS:

LENGTH: 9 amino acids

TYPE: amino acid

STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: Peptide

SEQUENCE 9 AA; MW: 576 CN;

TELECOMMUNICATION INFORMATION:

TELEPHONE: (415) 570-0200

TELEFAX: (415) 576-0300

TELEX:

INFORMATION FOR SEQ ID NO: 99:

SEQUENCE CHARACTERISTICS:

LENGTH: 9 amino acids

TYPE: amino acid

STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: Peptide

SEQUENCE 9 AA; MW: 576 CN;

TELECOMMUNICATION INFORMATION:

TELEPHONE: (415) 570-0200

TELEFAX: (415) 576-0300

TELEX:

INFORMATION FOR SEQ ID NO: 99:

SEQUENCE CHARACTERISTICS:

LENGTH: 9 amino acids

TYPE: amino acid

STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: Peptide

SEQUENCE 9 AA; MW: 576 CN;

TELECOMMUNICATION INFORMATION:

TELEPHONE: (415) 570-0200

TELEFAX: (415) 576-0300

TELEX:

INFORMATION FOR SEQ ID NO: 99:

SEQUENCE CHARACTERISTICS:

LENGTH: 9 amino acids

TYPE: amino acid

STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: Peptide

SEQUENCE 9 AA; MW: 576 CN;

TELECOMMUNICATION INFORMATION:

TELEPHONE: (415) 570-0200

TELEFAX: (415) 576-0300

TELEX:

INFORMATION FOR SEQ ID NO: 99:

SEQUENCE CHARACTERISTICS:

LENGTH: 9 amino acids

TYPE: amino acid

STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: Peptide

SEQUENCE 9 AA; MW: 576 CN;

TELECOMMUNICATION INFORMATION:

TELEPHONE: (415) 570-0200

TELEFAX: (415) 576-0300

TELEX:

INFORMATION FOR SEQ ID NO: 99:

SEQUENCE CHARACTERISTICS:

LENGTH: 9 amino acids

TYPE: amino acid

STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: Peptide

SEQUENCE 9 AA; MW: 576 CN;

TELECOMMUNICATION INFORMATION:

TELEPHONE: (415) 570-0200

TELEFAX: (415) 576-0300

TELEX:

INFORMATION FOR SEQ ID NO: 99:

SEQUENCE CHARACTERISTICS:

LENGTH: 9 amino acids

TYPE: amino acid

STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: Peptide

SEQUENCE 9 AA; MW: 576 CN;

TELECOMMUNICATION INFORMATION:

TELEPHONE: (415) 570-0200

OPERATING SYSTEM: PC-DOS/MS-DOS
 SOFTWARE: PatentIn Release #1.0, Version #1.25
 CURRENT APPLICATION DATA:
 CC APPLICATION NUMBER: US/08/902,516
 CC FILING DATE: 29-JUL-1997
 CC CLASSIFICATION: 424
 CC ATTORNEY/AGENT INFORMATION:
 CC NAME: Campbell, Cathryn A.
 CC REGISTRATION NUMBER: 31,815
 CC REFERENCE/DOCKET NUMBER: P-TM 2442
 CC TELECOMMUNICATION INFORMATION:
 CC TELEPHONE: (619)535-9001
 CC TELEFAX: (619)535-8949
 CC INFORMATION FOR SEQ ID NO: 21:
 CC SEQUENCE CHARACTERISTICS:
 CC LENGTH: 9 amino acids
 CC TYPE: amino acid
 CC TOPOLOGY: linear
 CC MOLECULE TYPE: Peptide
 CC SEQUENCE 9 AA; 976 MW; 576 CN;
 Query Match 100.0%; Score 61; DB 2; Length 9;
 Best Local Similarity 100.0%; Pred. No. 1.24e-01;
 Matches 9; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
 Db 1 EADPFGHSY 9
 Qy 1 EADPFGHSY 9

RESULT 10
 ID US-08-142-368A-26 STANDARD; PRT; 9 AA.
 XX XXXXXXXX
 AC XXXXX
 XX DT
 XX DE Sequence 26, Application US/08142368A
 XX CC Sequence 26, Application US/08142368A
 CC Patent No. 5923729
 CC GENERAL INFORMATION:
 CC APPLICANT: Boon-Falleur, Thierry; Van der Bruggen, Thierry;
 CC De Plaein, Etienne; Van den Eynde, Beno t.; Van Pel, Aline; De Plaein, Etienne;
 CC APPLICANT: Lurquin, Christophe; Chomez, Patrick; Traversari, Catia
 CC TITLE OF INVENTION: Tumor Rejection Antigen Precursors, Tumor
 CC NUMBER OF SEQUENCES: 26
 CC CORRESPONDENCE ADDRESS:
 CC ADDRESSEE: Felfe & Lynch
 CC STREET: 805 Third Avenue
 CC CITY: New York City
 CC STATE: New York
 CC ZIP: 10036
 CC COMPUTER READABLE FORM:
 CC MEDIUM TYPE: Diskette, 5.25 inch, 360 kb storage
 CC COMPUTER: IBM
 CC OPERATING SYSTEM: PC-DOS
 CC SOFTWARE: Wordperfect
 CC CURRENT APPLICATION DATA:
 CC APPLICATION NUMBER: US/08/142,368A
 CC FILING DATE: 02-MAY-1994
 CC CLASSIFICATION: 435
 CC PRIOR APPLICATION DATA:
 CC APPLICATION NUMBER: PCT/US92/04354
 CC FILING DATE: 22-MAY-1992
 CC PRIOR APPLICATION DATA:
 CC APPLICATION NUMBER: 07/807,043
 CC FILING DATE: 12-DECEMBER-1991
 CC PRIOR APPLICATION DATA:
 CC APPLICATION NUMBER: 07/764,364
 CC FILING DATE: 23-SEPTEMBER-1991
 CC PRIOR APPLICATION DATA:

APPLICATION NUMBER: 07/728,838
 CC APPLICATION NUMBER: 9-JULY-1991
 CC PRIOR APPLICATION DATA:
 CC APPLICATION NUMBER: 07/705,702
 CC FILING DATE: 23-MAY-1991
 CC ATTORNEY/AGENT INFORMATION:
 CC NAME: Hanson, No. 592579man D.
 CC REGISTRATION NUMBER: 30,946
 CC REFERENCE/DOCKET NUMBER: LUD 5253.4-US
 CC TELECOMMUNICATION INFORMATION:
 CC TELEPHONE: (212) 658-9200
 CC TELEFAX: (212) 838-3884
 CC INFORMATION FOR SEQ ID NO: 26:
 CC SEQUENCE CHARACTERISTICS:
 CC LENGTH: 9 amino acids
 CC TYPE: amino acids
 CC TOPOLOGY: linear
 CC MOLECULE TYPE: protein
 CC SEQUENCE 9 AA; 976 MW; 576 CN;
 Query Match 100.0%; Score 61; DB 2; Length 9;
 Best Local Similarity 100.0%; Pred. No. 1.24e-01;
 Matches 9; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
 Db 1 EADPFGHSY 9
 Qy 1 EADPFGHSY 9

RESULT 11
 ID PCT-US95-04975-2 STANDARD; PRT; 9 AA.
 XX XXXXXXXX
 AC XXXXX
 XX DT
 XX DE Sequence 2, Application PC/TUS9504975
 XX CC Sequence 2, Application PC/TUS9504975
 CC GENERAL INFORMATION:
 CC APPLICANT: Nikolic-Zugic, Janko
 CC APPLICANT: Dyall, Rubenda
 CC TITLE OF INVENTION: INDUCTION OF CYTOTOXIC T LYMPHOCYTES (CTL) USING
 CC NUMBER OF SEQUENCES: 19
 CC CORRESPONDENCE ADDRESS:
 CC ADDRESSEE: Cooper & Dunham LLP
 CC STREET: 1185 Avenue of the Americas
 CC CITY: New York
 CC STATE: New York
 CC COUNTRY: USA
 CC ZIP: 10036
 CC COMPUTER READABLE FORM:
 CC MEDIUM TYPE: Floppy disk
 CC COMPUTER: IBM PC compatible
 CC OPERATING SYSTEM: PC-DOS/MS-DOS
 CC SOFTWARE: PatentIn Release #1.24
 CC CURRENT APPLICATION DATA:
 CC APPLICATION NUMBER: PCT/US95/04975
 CC FILING DATE:
 CC CLASSIFICATION:
 CC PRIOR APPLICATION DATA:
 CC APPLICATION NUMBER: 08/233,496
 CC FILING DATE: April 22, 1994
 CC ATTORNEY/AGENT INFORMATION:
 CC NAME: White Esq., John P.
 CC REGISTRATION NUMBER: 28,678
 CC REFERENCE/DOCKET NUMBER: 45059/JPW/MSC/AMB
 CC TELECOMMUNICATION INFORMATION:
 CC TELEPHONE: 212-278-0400
 CC TELEFAX: 212-391-0525
 CC INFORMATION FOR SEQ ID NO: 2:
 CC SEQUENCE CHARACTERISTICS:

LENGTH: 9 amino acids
 TYPE: amino acids
 TOPOLOGY: Linear
 MOLECULE TYPE: Peptide
 HYPOTHETICAL: N
 ANTI-SENSE: N
 SEQUENCE - 9 AA; 976 MW; 576 CN;

Query Match Score 61; DB 4; Length 9;
 Best Local Similarity 100.0%; Pred. No. 1.24e-01;
 Matches 9; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Db 1 EADPTGHSY 9
 Qy 1 EADPTGHSY 9

RESULT 13 ID US-08-299-849B-26 STANDARD: PRT: 9 AA.
 XX XX DE Sequence 26, Application US/08299849B
 XX CC Sequence 26, Application US/08299849B
 CC Patent No. 5612201
 GENERAL INFORMATION:
 CC APPLICANT: De Plaein, Etienne; Boon-Falleur, Thierry;
 Charles; Leth, Bernard; Szikora, Jean-Pierre;
 De Smet, Charles;
 CC APPLICANT: Chomez, Patrick
 CC TITLE OF INVENTION: Isolated Nucleic Acid Molecules Useful In Determining Expression Of A Tumor Antigen Precursor
 CC NUMBER OF SEQUENCES: 48
 CORRESPONDENCE ADDRESS:
 CC ADDRESSEE: Felfe & Lynch
 STREET: 805 Third Avenue
 CITY: New York City
 STATE: New York
 ZIP: 10022
 COMPUTER READABLE FORM:
 CC MEDIUM TYPE: Diskette, 5.25 inch, 360 kb storage
 COMPUTER: IBM
 OPERATING SYSTEM: PC-DOS
 SOFTWARE: Wordperfect
 CURRENT APPLICATION DATA:
 CC APPLICATION NUMBER: US/08/299,849B
 FILING DATE: 1-SEPTEMBER-1994
 CLASSIFICATION: A35
 CC PRIOR APPLICATION DATA:
 CC APPLICATION NUMBER: 08/037,230
 CC FILING DATE: 26-MARCH-1993
 CC PRIOR APPLICATION DATA:
 CC APPLICATION NUMBER: PCT/US92/04354
 FILING DATE: 22-MAY-1992
 CC PRIOR APPLICATION DATA:
 CC APPLICATION NUMBER: 07/807,043
 CC FILING DATE: 12-DECEMBER-1991
 CC PRIOR APPLICATION DATA:
 CC APPLICATION NUMBER: 07/764,364
 FILING DATE: 23-SEPTEMBER-1991
 CC PRIOR APPLICATION DATA:
 CC APPLICATION NUMBER: 07/728,838
 CC FILING DATE: 9-JULY-1991
 CC PRIOR APPLICATION DATA:
 CC APPLICATION NUMBER: 07/705,702
 FILING DATE: 23-MAY-1991
 CC ATTORNEY/AGENT INFORMATION:
 NAME: Hanson, No. 5612201man D.
 REGISTRATION NUMBER: 30,946
 REFERENCE/DOCKET NUMBER: LOD 5355
 TELECOMMUNICATION INFORMATION:
 TELEPHONE: (206) 467-5600
 TELEFAX: (415) 543-5043
 INFORMATION FOR SEQ ID NO: 1:
 SEQUENCE CHARACTERISTICS:
 LENGTH: 9 amino acids
 TYPE: amino acid
 STRANDEDNESS: unknown
 TOPOLOGY: linear
 MOLECULE TYPE: Peptide
 SEQUENCE 9 AA; 976 MW; 576 CN;
 Query Match 100.0%; Score 61; DB 4; Length 9;

Query Match 100.0%; Score 61; DB 1; Length 9;
 Best Local Similarity 100.0%; Pred. No. 1.24e-01;

Matches 9; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Db 1 EADPTGHSY 9

 |||||||

Qy 1 EADPTGHSY 9

RESULT 14 ID US-08-498-461-4 STANDARD; PRT; 9 AA.

XX

AC

XXXXXX

DE Sequence 4, Application US/08498461

XX

CC Sequence 4, Application US/08498461

CC PRIORITY NUMBER: 582/073

CC GENERAL INFORMATION:

CC APPLICANT: Luescher, Immanuel; Anjiere, Fabienne;

CC APPLICANT: Layer, Andre; Romero, Pedro; Cerottini, Jean-Charles

CC TITLE OF INVENTION: Photoreactive Peptide Derivatives

CC NUMBER OF SEQUENCES: 16

CC CORRESPONDENCE ADDRESS:

CC ADDRESSEE: Feife & Lynch

CC STREET: 805 Third Avenue

CC CITY: New York City

CC STATE: New York

CC ZIP: 10022

CC COMPUTER READABLE FORM:

CC MEDIUM TYPE: Diskette, 3.5 inch, 1.44 kb storage

CC COMPUTER: IBM

CC OPERATING SYSTEM: PC-DOS

CC SOFTWARE: Wordperfect

CC CURRENT APPLICATION DATA:

CC APPLICATION NUMBER: US/08/967,727

CC FILING DATE:

CC CLASSIFICATION: 435

CC PRIOR APPLICATION DATA:

CC APPLICATION NUMBER: 08/037,230

CC FILING DATE: 26-MARCH-1993

CC APPLICATION NUMBER: PCT/US92/04354

CC FILING DATE: 22-MAY-1992

CC PRIOR APPLICATION DATA:

CC APPLICATION NUMBER: 07/807,043

CC FILING DATE: 12-DECEMBER-1991

CC PRIOR APPLICATION DATA:

CC APPLICATION NUMBER: 07/764,365

CC FILING DATE: 23-SEPTEMBER-1991

CC PRIOR APPLICATION DATA:

CC APPLICATION NUMBER: 07/728,838

CC FILING DATE: 9-JULY-1991

CC PRIOR APPLICATION DATA:

CC APPLICATION NUMBER: 07/705,702

CC FILING DATE: 23-MAY-1991

CC ATTORNEY/AGENT INFORMATION:

CC NAME: Hanson, No. 6025474man D.

CC REGISTRATION NUMBER: 30,946

CC REFERENCE/DOCKET NUMBER: LUD 5353

CC TELECOMMUNICATION INFORMATION:

CC TELEPHONE: (212) 688-9200

CC TELEFAX: (212) 838-3884

CC INFORMATION FOR SEQ ID NO: 4:

CC SEQUENCE CHARACTERISTICS:

CC LENGTH: 9 amino acids

CC TYPE: amino acids

CC TOPOLOGY: linear

CC MOLECULE TYPE: protein

CC SEQUENCE 9 AA; 976 MW; 576 CN;

Sequence 26, Application US/08967727

PATENT NO. 6025474

GENERAL INFORMATION:

APPLICANT: Gaugler, B atrice; Van den Eynde, Beno t;

APPLICANT: van der Bruggen, Pierre; Bonn-Faileur, Thierry

TITLE OF INVENTION: Isolated Nucleic Acid Molecules Coding For

TITLE OF INVENTION: Tumor Rejection Antigen Precursor Mage-3 And Uses There

NUMBER OF SEQUENCES: 30

CORRESPONDENCE ADDRESS:

ADDRESSEE: Feife & Lynch

STREET: 805 Third Avenue

CITY: New York City

STATE: New York

ZIP: 10022

COMPUTER READABLE FORM:

MEDIUM TYPE: Diskette, 5.25 inch, 360 kb storage

COMPUTER: IBM

OPERATING SYSTEM: PC-DOS

SOFTWARE: Wordperfect

CURRENT APPLICATION DATA:

APPLICATION NUMBER: US/08/967,727

FILING DATE:

CLASSIFICATION: 435

PRIOR APPLICATION DATA:

APPLICATION NUMBER: 08/037,230

FILING DATE: 26-MARCH-1993

APPLICATION NUMBER: PCT/US92/04354

FILING DATE: 22-MAY-1992

PRIOR APPLICATION DATA:

APPLICATION NUMBER: 07/807,043

FILING DATE: 12-DECEMBER-1991

PRIOR APPLICATION DATA:

APPLICATION NUMBER: 07/764,365

FILING DATE: 23-SEPTEMBER-1991

PRIOR APPLICATION DATA:

APPLICATION NUMBER: 07/728,838

FILING DATE: 9-JULY-1991

PRIOR APPLICATION DATA:

APPLICATION NUMBER: 07/705,702

FILING DATE: 23-MAY-1991

PRIOR APPLICATION DATA:

NAME: Hanson, No. 6025474man D.

REGISTRATION NUMBER: 30,946

REFERENCE/DOCKET NUMBER: LUD 5353

TELECOMMUNICATION INFORMATION:

TELEPHONE: (212) 688-9200

TELEFAX: (212) 838-3884

SEQUENCE CHARACTERISTICS:

LENGTH: 9 amino acids

TYPE: amino acids

TOPOLOGY: linear

MOLECULE TYPE: protein

SEQUENCE 9 AA; 976 MW; 576 CN;

Query Match 100.0%; Score 61; DB 3; Length 9;

Best Local Similarity 100.0%; Pred. No. 1.24e-01;

Matches 9; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Db 1 EADPTGHSY 9

 |||||||

Qy 1 EADPTGHSY 9

RESULT 15 ID US-08-567-727-26 STANDARD; PRT; 9 AA.

XX

AC

XX

DT

XX

DE Sequence 26, Application US/08967727

DE XX

Query Match 100.0%; Score 61; DB 3; Length 9;
 Best Local Similarity 100.0%; Pred. No. 1.24e-01;

Matches 9; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Db 1 EADPTGHSY 9

 |||||||

Qy 1 EADPTGHSY 9

RESULT 16 ID US-08-186-265-1 STANDARD; PRT; 9 AA.

XX

AC

XX

DT

XX

DE Sequence 1, Application US/08186266

DE XX

Sequence 1, Application US/08186266
 Patent No. 566907
 GENERAL INFORMATION:
 APPLICANT: KUBO, Ralph T.
 APPLICANT: SETE, Howard M.
 APPLICANT: SETE, Alessandro
 APPLICANT: CELIS, Esteban
 TITLE OF INVENTION: INDUCTION OF ANTI-TUMOR CYTOTOXIC T LYMPHOCYTES IN HUMANS USING SYNTHETIC PEPTIDE EPITOPE
 NUMBER OF SEQUENCES: 20
 CORRESPONDENCE ADDRESS:
 ADDRESSEE: Townsend and Townsend Khourie and Crew
 STREET: Stewart Street Tower, One Market Plaza
 CITY: San Francisco
 STATE: California
 COUNTRY: US
 ZIP: 94105-1493
 COMPUTER READABLE FORM:
 MEDIUM TYPE: Floppy disk
 COMPUTER: IBM PC compatible
 OPERATING SYSTEM: PC-DOS/MS-DOS
 SOFTWARE: PatentIn Release #1.0, Version #1.25
 CURRENT APPLICATION DATA:
 APPLICATION NUMBER: US/08/186,266
 FILING DATE: 25-JAN-1994
 CLASSIFICATION: 424
 PRIOR APPLICATION DATA:
 APPLICATION NUMBER: US 08/159,339
 FILING DATE: 29-NOV-1993
 PRIOR APPLICATION DATA:
 APPLICATION NUMBER: US 08/103,396
 FILING DATE: 06-AUG-1993
 PRIOR APPLICATION DATA:
 APPLICATION NUMBER: US 08/027,746
 FILING DATE: 05-MAR-1993
 PRIOR APPLICATION DATA:
 APPLICATION NUMBER: US 07/926,666
 FILING DATE: 07-AUG-1992
 ATTORNEY/AGENT INFORMATION:
 NAME: Bastian, Kevin L.
 REGISTRATION NUMBER: 34,774
 PRACTICE/DOCKET NUMBER: 14137-50-4
 TELECOMMUNICATION INFORMATION:
 TELEPHONE: (415) 543-9600
 TELEFAX: (415) 543-5043
 INFORMATION FOR SEQ ID NO: 1:
 SEQUENCE CHARACTERISTICS:
 LENGTH: 9 amino acids
 TYPE: amino acid
 TOPOLOGY: linear
 MOLECULE TYPE: Peptide
 SEQUENCE 9 AA: 976 MW: 576 CN:
 Query Match 100.0%; Score 61; DB 1; Length 9;
 Best Local Similarity 100.0%; Pred. No. 1.24e-01;
 Matches 9; Conservative 0; Mismatches 0; Indels 0
 RESULT 17
 ID US-08-602-506A-25 STANDARD; PRT; 10 AA.
 Db 1 EADPTGHSY 9
 XX |||||
 AC 1 EADPTGHSY 9
 XX XXXXX
 Sequence 25, Application US/08602506A
 XX DT
 DE DT
 XX DE
 CC CC

Patent No. 6060257
 GENERAL INFORMATION:
 CC APPLICANT: Herman, Jean; Coulie, Pierre;
 CC APPLICANT: Boon-Falleur, Thierry; van der Bruggen, Pierre;
 CC APPLICANT: Luescher, Immanuel.
 CC TITLE OF INVENTION: Tumor Rejection Antigens Presented By HLA-
 CC NUMBER OF SEQUENCES: 30
 CC CORRESPONDENCE ADDRESS:
 CC ADDRESSEE: Feijfe & Lynch
 CC STREET: 805 Third Avenue
 CC CITY: New York City
 CC STATE: New York
 CC ZIP: 10022
 COMPUTER READABLE FORM:
 CC MEDIUM TYPE: Diskette, 3.5 inch, 360 kb storage
 CC COMPUTER: IBM
 CC OPERATING SYSTEM: PC-DOS
 CC SOFTWARE: Wordperfect
 CURRENT APPLICATION DATA:
 CC APPLICATION NUMBER: US/08/602-506A
 CC FILING DATE: 20-FEBRUARY-1996
 CC CLASSIFICATION: 435
 PRIOR APPLICATION DATA:
 CC APPLICATION NUMBER: 08/531,864
 CC FILING DATE: 21-SEPTEMBER-1995
 PRIOR APPLICATION DATA:
 CC APPLICATION NUMBER: 08/373,636
 CC FILING DATE: 17-JANUARY-1995
 PRIOR APPLICATION DATA:
 CC APPLICATION NUMBER: 08/253,503
 CC FILING DATE: 3-JUNE-1994
 ATTORNEY/AGENT INFORMATION:
 CC NAME: Hanson, No. 6060257man D.
 CC REGISTRATION NUMBER: 30,446
 CC REFERENCE/DOCKET NUMBER: LUD 5436
 CC TELECOMMUNICATION INFORMATION:
 CC TELEPHONE: (212) 688-9200
 CC TELEFAX: (212) 838-3884
 CC INFORMATION FOR SEQ ID NO: 25:
 CC SEQUENCE CHARACTERISTICS:
 CC LENGTH: 10 amino acids
 CC TYPE: amino acid
 CC TOPOLOGY: linear
 CC MOLECULE TYPE: protein
 FEATURE:
 CC NAME/KEY: MAGE-1/HLA-B44
 CC SEQUENCE: 10 AA; 1104 MW; 684 CN;
 SQ Query Match 100.0%; Score 61; DB 3; Length 10;
 Best Local Similarity 100.0%; Pred. No. 1.2e-01;
 Matches 9; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
 DE Sequence 25, Application US/08796883
 XX RESULT 18
 DE ID US-08-796-883-25 STANDARD; PRT; 10 AA.
 XX AC XXXXXX
 DT
 XX
 DE Sequence 25, Application US/08796883
 CC Sequence 25, Application US/08796883
 CC PRT; 10 AA.
 CC PATENT NO. 5744353
 GENERAL INFORMATION:
 CC APPLICANT: Herman, Jean; Coulie, Pierre;
 CC APPLICANT: Boon-Falleur, Thierry; van der Bruggen, Pierre;
 CC APPLICANT: Luescher, Immanuel.

TITLE OF INVENTION: TUMOR Rejection Antigens Presented By
 CC TITLE OF INVENTION: HLA-B44 Molecules, And Uses Thereof
 CC NUMBER OF SEQUENCES: 30
 CC CORRESPONDENCE ADDRESS:
 CC ADDRESS SEE: Felipe & Lynch
 STREET: 805 Third Avenue
 CITY: New York City
 STATE: New York
 ZIP: 10022
 COMPUTER READABLE FORM:
 CC MEDIUM TYPE: Diskette, 3.5 inch, 360 kb storage
 COMPUTER: IBM
 OPERATING SYSTEM: PC-DOS
 SOFTWARE: Wordperfect
 CURRENT APPLICATION DATA:
 APPLICATION NUMBER: US/08/796, 883
 FILING DATE: 06-FEB-1997
 CLASSIFICATION: 435
 PRIOR APPLICATION DATA:
 APPLICATION NUMBER: 08/602, 506
 FILING DATE: 20-FEBRUARY-1996
 APPLICATION NUMBER: 08/531, 864
 FILING DATE: 21-SEPTEMBER-1995
 PRIOR APPLICATION DATA:
 APPLICATION NUMBER: 08/373, 636
 FILING DATE: 17-JANUARY-1995
 PRIOR APPLICATION DATA:
 APPLICATION NUMBER: LUD 5436
 FILING DATE: 3-JUNE-1994
 ATTORNEY/AGENT INFORMATION:
 NAME: Hanson, No. 5744353man D.
 REGISTRATION NUMBER: 30, 946
 REFERENCE/DOCKET NUMBER: LUD 5436
 TELECOMMUNICATION INFORMATION:
 TELEPHONE: (212) 688-9200
 TELEFAX: (212) 838-3884
 INFORMATION FOR SEQ ID NO: 25:
 SEQUENCE CHARACTERISTICS:
 LENGTH: 10 amino acids
 TYPE: amino acid
 TOPOLOGY: linear
 MOLECULE TYPE: protein
 FEATURE:
 NAME/KEY: MAGE-1/HLA-B44
 SEQUENCE 10 AA: 1104 NW; 684 CN;
 SQ Query Match Similarity 100.0%; Score 61; DB 1; Length 10;
 Best Local Similarity 100.0%; Pred. No. 1.24e-01;
 Matches 9; Conservative 0; Mismatches 0; Indels 0;
 Db 2 EADPTGHSY 10
 1 EADPTGHSY 9
 RESULT 19
 ID US-08-498-461-5 STANDARD PRT; 10 AA.
 XX
 AC XXXXX
 DT XX
 DE Sequence 5, Application US/08498461
 XX Sequence 5, Application US/08498461
 CC GENERAL INFORMATION:
 CC Patent No. 5821073
 CC APPLICANT: Luescher, Emmanuel; Anjuve, Fabiene;
 CC APPLICANT: Layer, Andreas; Ronero, Pedro; Cerottini, Jean
 CC TITLE OF INVENTION: Photoreactive Peptide Derivatives
 CC NUMBER OF SEQUENCES: 16
 CC CORRESPONDENCE ADDRESS:
 CC ADDRESSEE: Felipe & Lynch

STREET: 805 Third Avenue
 CITY: New York City
 STATE: New York
 ZIP: 10022
 COMPUTER READABLE FORM:
 MEDIUM TYPE: Diskette, 3.5 inch, 1.44 kb storage
 COMPUTER: IBM
 OPERATING SYSTEM: PC-DOS
 SOFTWARE: Wordperfect
 CURRENT APPLICATION DATA:
 APPLICATION NUMBER: US/08/498,461
 FILING DATE: 5-JULY-1995
 CLASSIFICATION: 435
 ATTORNEY/AGENT INFORMATION:
 NAME: Hanson, No. 5827-073man D.
 REGISTRATION NUMBER: 30,946
 RECOMMENDATION NUMBER: LUD 5403
 TELECOMMUNICATION INFORMATION:
 TELEPHONE: (212) 688-0200
 TELEFAX: (212) 838-3884
 INFORMATION FOR SEQ ID NO: 5:
 SEQUENCE CHARACTERISTICS:
 LENGTH: 10 amino acids
 TYPE: amino acid
 TOPOLOGY: linear
 OTHER INFORMATION:
 OTHER INFORMATION: The xaa is iodinated 2',
 OTHER INFORMATION: 3'-4-azidosalicyloyl]-diaminoglycyl-
 SEQUENCE 10 AA; 1086 MW; 695 CN;
 Score 61; DB 2; Length 10
 Best Local Similarity 100 %; Pred. No. 1.24e-01;
 Matches 9; Conservative 0; Mismatches 0; Indels 0
 Db 2 EADPFGHSY 10
 ||||||| 9
 Qy 1 EADPFGHSY 9
 RESULT 20 Application US/08560024
 ID US-08-560-024-4 STANDARD PRT; 12 AA.
 XX XXXXXXXX
 AC
 DT
 AX
 DE Sequence 4 , Application US/08560024
 XX Sequence 4 , Application US/08560024
 CC Patent No. 583448
 GENERAL INFORMATION:
 CC APPLICANT: Chen, Yao-Tseng; Stockert, Elisabeth;
 CC APPLICANT: Chen, Yachi; Garin-Chesa, Pilar; Retig,
 CC APPLICANT: van der Bruggen, Pierre; Boon-Faillieur,
 CC APPLICANT: Old, Lloyd J.
 TITLE OF INVENTION: MONOCLONAL ANTIBODIES WHICH BIND
 TITLE OF INVENTION: TUMOR REJECTION ANTIGEN PRECURSORS
 NUMBER OF SEQUENCES: 4
 CORRESPONDENCE ADDRESS:
 ADDRESSEE: Felice & Lynch
 STREET: 805 Third Avenue
 CITY: New York City
 STATE: New York
 ZIP: 10022
 COMPUTER READABLE FORM:
 MEDIUM TYPE: Diskette, 5.25 inch, 360 kb storage
 COMPUTER: IBM
 OPERATING SYSTEM: PC-DOS
 SOFTWARE: Wordperfect
 CURRENT APPLICATION DATA:
 APPLICATION NUMBER: US/08/560,024
 FILING DATE:

CLASSIFICATION: 514
 PRIORITY APPLICATION NUMBER: US/08/190,411
 FILING DATE: 01-FEBRUARY-1994
 APPLICATION NUMBER: 037,230
 FILING DATE: 26-MARCH-1993
 PRIORITY APPLICATION DATA:
 APPLICATION NUMBER: PCT/US92/04354
 FILING DATE: 22-MAY-1992
 PRIORITY APPLICATION DATA:
 APPLICATION NUMBER: 07/807,043
 FILING DATE: 12-DECEMBER-1991
 PRIORITY APPLICATION DATA:
 APPLICATION NUMBER: 07/764,364
 FILING DATE: 23-SEPTEMBER-1991
 PRIORITY APPLICATION DATA:
 APPLICATION NUMBER: 07/705,702
 FILING DATE: 23-MAY-1991
 ATTORNEY/AGENT INFORMATION:
 NAME: Hansson, NC, 581348man D.
 REGISTRATION NUMBER: 30,946
 REFERENCE/DOCKET NUMBER: LUD 5354
 TELECOMMUNICATION INFORMATION:
 TELEPHONE: (212) 688-9200
 TELEFAX: (212) 838-3884
 INFORMATION FOR SEQ ID NO: 4:
 SEQUENCE CHARACTERISTICS:
 LENGTH: 12 amino acid residues
 TYPE: amino acid
 TOPOLOGY: linear
 MOLECULE TYPE: Protein
 SEQUENCE 12 AA: 1318 MW; 944 CN;
 Query Match Similarity 100.0%; Score 61; DB 2; Length 12;
 Best Local Similarity 100.0%; Pred. No. 1.24e-01;
 Matches 0; Mismatches 0; Gaps 0;
 Indels 0;

Db 4 EADPFGHSY 12
 |||||
 1 EADPFGHSY 9

RESULT 21
 ID US-08-411A-4 STANDARD: PRT; 12 AA.
 XX XXXXXX
 AC
 DT
 XX
 DE Sequence 4, Application US/08190411A
 CC Sequence 4, Application US/08190411A
 CC Patent No. 5541104
 CC GENERAL INFORMATION:
 CC APPLICANT: van der Bruggen, Pierre; Boon-Falleur, Thierry;
 CC APPLICANT: Chen, Yao-Tseng; Stockert, Elisabeth; Wolfgang J.;
 CC APPLICANT: Chen, Yachi; Garin-Chesa, Pilar; Rettig,
 CC APPLICANT: Old, Lloyd J.
 CC TITLE OF INVENTION: MONOCLONAL ANTIBODIES WHICH BIND TO
 CC TITLE OF INVENTION: TUMOR REJECTION ANTIGEN PRECURSOR MAGE-1, RECOMBINANT MAGE
 CC TITLE OF INVENTION: AND MAGE-1 DERIVED IMMUNOGENIC PEPTIDES
 CC NUMBER OF SEQUENCES: 4
 CC CORRESPONDENCE ADDRESS:
 CC ADDRESSEE: Elfie S. Lynch
 CC STREET: 805 Third Avenue
 CC STATE: New York City
 CC ZIP: 10022
 CC COMPUTER READABLE FORM:
 CC MEDIUM TYPE: Diskette, 5.25 inch, 360 kb storage

CC COMPUTER: IBM
 CC OPERATING SYSTEM: PC-DOS
 CC SOFTWARE: Nordperfect
 CC CURRENT APPLICATION DATA:
 CC APPLICATION NUMBER: US/08/190,411A
 CC FILING DATE: 01-FEBRUARY-1994
 CC CLASSIFICATION: 46
 CC PRIOR APPLICATION DATA:
 CC APPLICATION NUMBER: 037,230
 CC FILING DATE: 26-MARCH-1993
 CC PRIOR APPLICATION DATA:
 CC APPLICATION NUMBER: PCT/US92/04354
 CC FILING DATE: 12-DECEMBER-1991
 CC PRIOR APPLICATION DATA:
 CC APPLICATION NUMBER: 07/764,364
 CC FILING DATE: 23-SEPTEMBER-1991
 CC PRIOR APPLICATION DATA:
 CC APPLICATION NUMBER: 07/705,702
 CC FILING DATE: 23-MAY-1991
 CC ATTORNEY/AGENT INFORMATION:
 CC NAME: Hansson, NC, 5541104man D.
 CC REGISTRATION NUMBER: 30,946
 CC REFERENCE/DOCKET NUMBER: LUD 5354
 CC TELECOMMUNICATION INFORMATION:
 CC TELEPHONE: (212) 688-9200
 CC TELEFAX: (212) 838-3884
 CC INFORMATION FOR SEQ ID NO: 4:
 CC SEQUENCE CHARACTERISTICS:
 CC LENGTH: 12 amino acid residues
 CC TYPE: amino acid
 CC TOPOLOGY: linear
 CC MOLECULE TYPE: Protein
 CC SEQUENCE 12 AA: 1318 MW; 944 CN;
 CC Query Match Similarity 100.0%; Score 61; DB 1; Length 12;
 CC Best Local Similarity 100.0%; Pred. No. 1.24e-01;
 CC Matches 0; Mismatches 0; Gaps 0;
 CC Indels 0;

Db 4 EADPFGHSY 12
 |||||
 1 EADPFGHSY 9

RESULT 22
 ID US-08-465-167A-24 STANDARD: PRT; 309 AA.
 XX XXXXXX
 AC
 DT
 XX
 DE Sequence 24, Application US/08465167A
 CC Sequence 24, Application US/08465167A
 CC GENERAL INFORMATION:
 CC Paten No. 5750395
 CC APPLICANT: Fikes, John D.
 CC APPLICANT: Livingston, Brian D.
 CC APPLICANT: Sette, Alessandro D.
 CC APPLICANT: Sidney, John C.
 CC TITLE OF INVENTION: DNA ENCODING MAGE-1 C-TERMINAL
 CC NUMBER OF SEQUENCES: 51
 CC CORRESPONDENCE ADDRESS:
 CC ADDRESSEE: Townsend and Townsend and Crew LLP
 CC STREET: Two Embarcadero Center, 8th Floor
 CC CITY: San Francisco
 CC STATE: CA

CC COUNTRY: USA
 CC ZIP: 98111
 CC COMPUTER READABLE FORM:
 CC MEDIUM TYPE: Floppy disk
 CC COMPUTER: IBM PC compatible
 CC OPERATING SYSTEM: PC-DOS/MS-DOS
 CC SOFTWARE: Patentnet Release #1.0, version #1.25
 CC CURRENT APPLICATION DATA:
 CC APPLICATION NUMBER: US/08/465,167A
 CC FILING DATE: 05 JUN 1995
 CC CLASSIFICATION: 435
 CC PRIORITY APPLICATION NUMBER: US 08/103,623
 CC APPLICATION NUMBER: US 08/465,167A
 CC FILING DATE: 06-AUG-1993
 CC ATTORNEY/AGENT INFORMATION:
 CC NAME: Parmelee, Steven W.
 CC REGISTRATION NUMBER: 31,990
 CC REFERENCE/DOCKET NUMBER: 14137-60-1
 CC TELECOMMUNICATION INFORMATION:
 CC TELEPHONE: 206-457-9500
 CC TELEFAX: 415-576-0000
 CC INFORMATION FOR SEQ ID NO: 24:
 CC SEQUENCE CHARACTERISTICS:
 CC LENGTH: 309 amino acids
 CC TYPE: amino acid
 CC STRANDEDNESS: single
 CC TOPOLOGY: linear
 CC MOLECULE TYPE: protein
 CC SEQUENCE 309 AA: 34342 MW: 512752 CN:
 Query Match Similarity 100.0%; Score 61; DB 1; Length 309;
 Best Local Similarity 100.0%; Pred. No. 1.24e-01;
 Matches 9; Conservative 0; Indels 0; Gaps 0;
 Db 161 EADPTGHSY 169
 Qy 1 EADPTGHSY 9

RESULT 23
 ID US-08-993-118-10 STANDARD PRT: 309 AA.
 XX XXXXXX
 AC DT
 DE Sequence 10, Application US/08993118
 CC CORRESPONDENCE ADDRESS:
 CC ADDRESSEE: Feifei & Lynch
 CC STREET: 805 Third Avenue
 CC CITY: New York City
 CC STATE: New York
 CC COUNTRY: USA
 CC ZIP: 10022
 CC COMPUTER READABLE FORM:
 CC MEDIUM TYPE: Diskette, 3.5 inch, 360 kb storage
 CC COMPUTER: IBM PS/2
 CC OPERATING SYSTEM: PC-DOS
 CC SOFTWARE: Wordperfect
 CC CURRENT APPLICATION DATA:
 CC APPLICATION NUMBER: US/08/845,528C
 CC FILING DATE: April 25, 1997
 CC REFERENCE/DOCKET NUMBER: LUD 5455
 CC TELECOMMUNICATION INFORMATION:
 CC TELEPHONE: (212) 688-9200
 CC INFORMATION FOR SEQ ID NO: 10:
 CC SEQUENCE CHARACTERISTICS:
 CC LENGTH: 309

CC
CC
CC
CC
SEQUENCE 309 AA; 34342 MN; 512752 CN;
Query Match 100.0%; Score 61; DB 3; Length 309;
Best Local Similarity 100.0%; Pred. No. 1.24e-01;
Matches 9; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
Db 161 EADPTGHSY 169
|||||||
Qy 1 EADPTGHSY 9

Search completed: Wed Sep 13 07:14:50 2000
Job time : 8 secs.

25	1762.6	31.1	4204	9	HSU03735	Human MAGE-Sequence 13
26	1678.8	29.6	2531	5	I36938	I36928 Human MAGE-Sequence 14
27	1678.8	29.6	2531	5	I36939	I36929 Human MAGE-Sequence 14
28	1567.7	29.6	3871	10	HSU10691	U10691 Human MAGE-Sequence 15
29	1555.6	27.4	43927	11	HSU9568	U69568 Human Xq28
30	1555	27.4	118440	50	AC016939	AC016939 Homo sapi
31	1536.4	27.1	3680	10	HSU10692	U10692 Human MAGE-Sequence 16
32	1535.3	27.1	111560	50	AC016940	AC016940 Homo sapi
33	1504.6	26.5	2305	5	I36932	I36932 Human MAGE-Sequence 17
34	1410.8	24.9	2226	5	I36931	I36931 Human MAGE-Sequence 16
35	1396.6	24.6	74299	50	AC016941	AC016941 Homo sapi
36	1353.8	23.9	73360	11	HSU06083	U6083 Human contig
37	1247.4	22.0	3839	10	HSU10693	U10693 Human MAGE-Sequence 18
38	1226.6	21.6	2931	10	HSU10694	U10694 Human MAGE-Sequence 18
39	1051.	18.5	3672	10	HSU10686	U10686 Human MAGE-Sequence 19
40	988.8	17.4	1640	5	I36926	I36926 Human MAGE-Sequence 11
41	955.8	16.8	16556	69	AC024727	AC024727 Homo sapi
42	900.2	15.9	1810	5	I36935	I36935 Human MAGE-Sequence 11
43	866	15.3	3510	10	HSU10685	U10685 Human MAGE-Sequence 11
44	863.4	15.2	165648	69	AC024727	AC024727 Homo sapi
45	834.4	14.7	1094	5	AR05273	AR05273 Sequence

ALIGNMENTS

RESULT	1	REFERENCE	
06060975	AR060975	AUTHORS	Chen, Y., Garin-Chesa, P., Rettig, W.J. and Old, L.J.
DEFINITION	5674 bp	LOCATION	Stockert, E.
SEQUENCE	Sequence 1 from patent US 5843448.	QUALIFIERS	Old,L.J.
ACCESSION	AR060975	TITLE	Tumor rejection antigen precursor
VERSION	AR060975.1	PATENT	US 5843448 A 1 01-DEC-1998;
KEYWORDS	GI:5988666	SOURCE	Location/Qualifiers
UNKNOWN	Unknown.	1.	1..5674
ORGANISM	Unclassified.	ORGANISM	/Organization="unknown"
SOURCE	1 (bases 1 to 5674)	COUNT	1276 a 1644 c 1569 g 1185 t
REFERENCE	Old,L.J.	LINE	1276 a 1644 c 1569 g 1185 t

Db	1381	CGTTGCCCTGCTCAACCCAGGAACCCCTGATGTGAACCACGTACT	1440
Qy	1441	TGAACCTCAGATCTGAGGAAGCCAGGTCAATTAACTGGTCTGAG	1500
Db	1441	TGAACCTCAGATCTGAGGAAGCCAGGTCAATTAACTGGTCTGAG	1500
Qy	1501	ATCCACTGAGGAACTGGTGTAGGCTCTGGAGGAAAGGTGCTAGGGAGG	1560
Db	1501	ATCCACTGAGGAACTGGTGTAGGCTCTGGAGGAAAGGTGCTAGGGAGG	1560
Qy	1561	ACTGGAGGAAACACCCAGTAGTCACCCCCAATGATCCAGTACACCCCTGCTG	1620
Db	1561	ACTGGAGGAAACACCCAGTAGTCACCCCCAATGATCCAGTACACCCCTGCTG	1620
Qy	1621	CCAGCCTGGACCAACCCGGCAGGACAGATGTCAGCTGGCCCGTCC	1680
Db	1621	CCAGCCTGGACCAACCCGGCAGGACAGATGTCAGCTGGCCCGTCC	1680
Qy	1681	CACGCCACTAACCCACAGGCATCTTAACTAGTGTAGGCGGGCAGGTT	1740
Db	1681	CACGCCACTAACCCACAGGCATCTTAACTAGTGTAGGCGGGCAGGTT	1740
Qy	1741	GTCAGAGGAGGAGGGCAAGGATCAAGTCAGCCGGCATAGGTCAAG	1800
Db	1741	GTCAGAGGAGGAGGGCAAGGATCAAGTCAGCCGGCATAGGTCAAG	1800
Qy	1801	ACCTGGAGGAACTGAGGTTCCCAACCTGTCCTCCATCAGCCGACC	1860
Db	1801	ACCTGGAGGAACTGAGGTTCCCAACCTGTCCTCCATCAGCCGACC	1860
Qy	1861	CCACTCACATCCCATACTACCCCAACCTCATCTGTCAAGATCCCTGCTG	1920
Db	1861	CCACTCACATCCCATACTACCCCAACCTCATCTGTCAAGATCCCTGCTG	1920
Qy	1921	TCAAACCCAGGAACGCAACGGCAAGGGCAAGGGCAATCCATCCA	1980
Db	1921	TCAAACCCAGGAACGCAACGGCAAGGGCAAGGGCAATCCATCCA	1980
Qy	1981	GGCTGTAGTGGAAAGGGCTGAACTGGCTCAAGGGAGGGCCCTAC	2040
Db	1981	GGCTGTAGTGGAAAGGGCTGAACTGGCTCAAGGGAGGGCCCTAC	2040
Qy	2041	TGGAGATAGGGAGGCTTAAGGACCCCTAGACCGCACCTGCTAG	2100
Db	2041	TGGAGATAGGGAGGCTTAAGGACCCCTAGACCGCACCTGCTAG	2100
Qy	2101	ACTGGGGTCACACTCTGCCCTCAAGAATCAGACATGGGACTCATGGG	2160
Db	2101	ACTGGGGTCACACTCTGCCCTCAAGAATCAGACATGGGACTCATGGG	2160
Qy	2161	GTGGGACCCAGGCTGCAAGGCTTAAGGACCCCTAGACGGGACCTT	2220
Db	2161	GTGGGACCCAGGCTGCAAGGCTTAAGGACCCCTAGACGGGACCTT	2220
Qy	2221	GGAACTCAGATCAGGAGGAGGTCTACGGGGAGGAGGAGGACTCATG	2280
Db	2221	GGAACTCAGATCAGGAGGAGGTCTACGGGGAGGAGGAGGACTCATG	2280
Qy	2281	GCCCCATATTCCTGCACTCTGAGGTGAGGAGGAGGACTCATGGGGC	2340
Db	2281	GCCCCATATTCCTGCACTCTGAGGTGAGGAGGAGGAGGACTCATGGGGC	2340
Qy	2341	TCAAGTCAACAGAGGAGGAGGTCTACGGGATCCATATGGCCAAAGATG	2400
Db	2341	TCAAGTCAACAGAGGAGGAGGTCTACGGGATCCATATGGCCAAAGATG	2400
Qy	2401	AGGATGGGATATCCTGGAGGAGGAGGAGGAGGAGGAGGACTCCAC	2460
Db	2401	AGGATGGGATATCCTGGAGGAGGAGGAGGAGGAGGAGGACTCCAC	2460
Qy	2461	TTAGTAGTCCTAGGGGACCAAGGACACATAGGGATGGCGTAGTCACTGTACCA	2520
Db	2461	TTAGTAGTCCTAGGGGACCAAGGACACATAGGGATGGCGTAGTCACTGTACCA	2520

VERSION	I24013.1	GI:1603883
KEYWORDS	Unknown	
ORGANISM	Unknown	
REFERENCE	Unclassified.	
AUTHORS	Chen,Y., Stockert,E., Chen,Y., Garin-Chesa,P., Rettig,W.J., van der Brugge,P., Boon-Falleur,T. and Old,L.J.	
TITLE	Monoclonal antibodies which bind to tumor rejection antigen precursor image-1	
JOURNAL	Patent: US 5541104-A 1 30-JUL-1996;	
FEATURES	Location/Qualifiers	
source	1..5674 /organism="unknown"	
BASE COUNT	1276 a 1644 c 1569 g 1185 t	
ORIGIN		
Query Match	100.0% Score 5674; DB 5; Length 5674;	
Best Local Similarity	100.0%; Pred. No. 0;	
Matches	5674; Conservative 0; Mismatches 0; Indels 0; Gaps 0;	
Qy	1 CCGGGGACCCACTGGCATTCCTACCCCCAATCCTCCTAACGCCACC 60	
Db	1 CCGGGGACCCACTGGATTCCTACCCCCAATCCTCCTAACGCCACC 60	
Qy	61 ATCCAAACATCTTCAAGCTAACCCCCAACGCCAACGGCAATCGGTTCACCCCTG 120	
Db	61 ATCCAAACATCTTCAAGCTAACCCCCAACGCCAACGGCAATCGGTTCACCCCTG 120	
Qy	121 CTCTAACACGGAAACCCAAAGTGGCCACTGACTTGACATTAGTG 180	
Db	121 CTCTAACACGGAAACCCAAAGTGGCCACTGACTTGACATTAGTG 180	
Qy	181 TTAGAGAAAGGAGGGTTTCGGCTGAAGGGGGCTTGATCGGGAGGAACGG 240	
Db	181 TTAGAGAAAGGAGGGTTTCGGCTGAAGGGGGCTTGATCGGGAGGAACGG 240	
Qy	241 CCCAGCTCTGTAAGGGCAAGTGTGACATGCTGAGGACACTTACCCC 300	
Db	241 CCCAGCTCTGTAAGGGCAAGTGTGACATGCTGAGGACACTTACCCC 300	
Qy	301 AGATAGAGGACCCAAATAATCCTCTATGCGACTCTGAGCATGTTGGGACATC 360	
Db	301 AGATAGAGGACCCAAATAATCCTCTATGCGACTCTGAGCATGTTGGGACATC 360	
Qy	361 TCAAGGTGGCACCCCCAGGCCCTTGCGCTTAACCATGGGACTCAAGTCAG 420	
Db	361 TCAAGGTGGCACCCCCAGGCCCTTGCGCTTAACCATGGGACTCAAGTCAG 420	
Qy	421 CTCCGTGTTGATCAGGGAGGGCTGTTAGGGAGGGCACGGTCCAGGCTCGCCAGCAT 480	
Db	421 CTCCGTGTTGATCAGGGAGGGCTGTTAGGGAGGGCACGGTCCAGGCTCGCCAGCAT 480	
Qy	481 CATGCTCAGGATTCTCAAGGAGGGCTGACCCACCCCTCTCATTCAGCTGACCCAAAC 540	
Db	481 CATGCTCAGGATTCTCAAGGAGGGCTGACCCACCCCTCTCATTCAGCTGACCCAAAC 540	
Qy	541 CCCCACTCCAACTGCTCACTCCGACCAACCCCTCTCATTCAGCTGACCCAAAC 600	
Db	541 CCCCACTCCAACTGCTCACTCCGACCAACCCCTCTCATTCAGCTGACCCAAAC 600	
Qy	601 CCCCAACTCCCCACCCATCCCTACCCCTGATGCCATTCGCCCCAGCTTCCACCC 660	
Db	601 CCCCAACTCCCCACCCATCCCTACCCCTGATGCCATTCGCCCCAGCTTCCACCC 660	
Qy	661 CACCCCACTCCCCACCCCAAGCCCAACTCCACCCCTGATGCCATTCGCCCCAGCTTCCACCC 720	
Db	661 CACCCCACTCCCCACCCCAAGCCCAACTCCACCCCTGATGCCATTCGCCCCAGCTTCCACCC 720	
Qy	721 CCAGGAAACATCCTGGGTGCGGGGAGGTGAGGGTCCAGGGCAAGAGA 780	
Db	721 CCAGGAAACATCCTGGGTGCGGGGAGGTGAGGGTCCAGGGCAAGAGA 780	

Db	4 021	CACTGTGGTCAAAGATCTCCAGAGTCAGCGCTTCCACTAC	4 080
Qy	4 081	CATCAACTTCACTGACAGGGCAACCCAGTGGGTTCAGCGCTGAAAGGGGG	4 140
Db	4 081	CATCAACTTCACTGACAGGGCAACCCAGTGGGTTCAGCGCTGAAAGGGGG	4 140
Qy	4 141	GCCAGGCACCTCTGATCCTGGAGTCTCCCTGTTCCAGGATTAATCAAGAGGTGC	4 200
Db	4 141	GCCAGGCACCTCTGATCCTGGAGTCTCCCTGTTCCAGGATTAATCAAGAGGTGC	4 200
Qy	4 201	TGATTGGTGGTTTCGGCTCTGGTCAAATATCGAGCCAGCACAAAGGCCA	4 260
Db	4 201	TGATTGGTGGTTTCGGCTCTGGTCAAATATCGAGCCAGCACAAAGGCCA	4 260
Qy	4 261	AATGCTGGAGAGTGTCACTCAAAAATACAAAGCACTGTTCTCGCAAAAGC	4 320
Db	4 261	AATGCTGGAGAGTGTCACTCAAAAATACAAAGCACTGTTCTCGCAAAAGC	4 320
Qy	4 321	CTCTGAGTCCTTGCAGCTCTGGCATTTGGTGAAGGAGCCACCGCCA	4 380
Db	4 321	CTCTGAGTCCTTGCAGCTCTGGCATTTGGTGAAGGAGCCACCGCCA	4 380
Qy	4 381	CTCCPATGTCCTGACCTGCCAGGCTCTCTCTATGAGCCTGCGTGTATAATCA	4 440
Db	4 381	CTCCPATGTCCTGACCTGCCAGGCTCTCTCTATGAGCCTGCGTGTATAATCA	4 440
Qy	4 441	GATCATGCCAAAGAGGGCTTCCCTGATAATGTCCTGGCATGATGGCAATGGGG	4 500
Db	4 441	GATCATGCCAAAGAGGGCTTCCCTGATAATGTCCTGGCATGATGGCAATGGGG	4 500
Qy	4 501	CCATGCTCCGAGGGAAATCTGGAGGCTCTGGCTAGTGATGGTATGGGAG	4 560
Db	4 501	CCATGCTCCGAGGGAAATCTGGAGGCTCTGGCTAGTGATGGTATGGGAG	4 560
Qy	4 561	GGAGCACAGTCCTATGGGAGGCCAGGAAGCTGCTCACCAAGATTTGGCAGAAA	4 620
Db	4 561	GGAGCACAGTCCTATGGGAGGCCAGGAAGCTGCTCACCAAGATTTGGCAGAAA	4 620
Qy	4 621	GTACCTGGTAGTCAGCAGGGCAGACTGATCCCGAACGCTPATGAGTTCTGGGGT	4 680
Db	4 621	GTACCTGGTAGTCAGCAGGGCAGACTGATCCCGAACGCTPATGAGTTCTGGGGT	4 680
Qy	4 681	CCAAAGGCCCTGCCTGAAACACGATGATGGTAAGTCTGAGTGTACAGTCAGT	4 740
Db	4 681	CCAAAGGCCCTGCCTGAAACACGATGATGGTAAGTCTGAGTGTACAGTCAGT	4 740
Qy	4 741	GCAAGAGTTGCTCTTCTCCATCCCCTCGTGAAGCAGCTTGAGAGGGAAAGAG	4 800
Db	4 741	GCAAGAGTTGCTCTTCTCCATCCCCTCGTGAAGCAGCTTGAGAGGGAAAGAG	4 800
Qy	4 801	GGAGCTGACATGAGTGGAGCCAGGGCAAGTGGGAGGGACTGGSCACCTT	4 860
Db	4 801	GGAGCTGACATGAGTGGAGCCAGGGCAAGTGGGAGGGACTGGSCACCTT	4 860
Qy	4 861	CCAGGCCCCGCTCCAGGCTCCAGGCTCCAGGCTCCAGGCTCCAGGCTCCAGG	4 920
Db	4 861	CCAGGCCCCGCTCCAGGCTCCAGGCTCCAGGCTCCAGGCTCCAGGCTCCAGG	4 920
Qy	4 921	GAAGAGGGCTCACTGTCTCAGTAGAGTGTCTGATGGGAGCTGGAGATT	4 980
Db	4 921	GAAGAGGGCTCACTGTCTCAGTAGAGTGTCTGATGGGAGCTGGAGATT	4 980
Qy	4 981	TATCTTGTCTCTGGATTGTCATAAGTGTCTTAAAGGATGGTGAATGAC	5 040
Db	4 981	TATCTTGTCTCTGGATTGTCATAAGTGTCTTAAAGGATGGTGAATGAC	5 040
Qy	5 041	TTCAGATCCAAAGTTATGAAATGACAGCTCACAGTCTGTTATAGTTAAAGG	5 100
Db	5 041	TTCAGATCCAAAGTTATGAAATGACAGCTCACAGTCTGTTATAGTTAAAGG	5 100
Qy	5 101	TAAGACTCTGTGTTTATCAGATGGGAAATCCATCTATTTGTGATTTGGGAT	5 160
Db	5 101	TAAGACTCTGTGTTTATCAGATGGGAAATCCATCTATTTGTGATTTGGGAT	5 160

Db	2281	GCCCATATTCCTGCATPTGAGGTGAGGAACAGGTGAGGGC 2340
Qy	2341	TCAAGTCAAGAAGGGAGGTTCCAGGATCCATATGGCCAAGATGTCCTTCATG 2400
Db	2341	TCAAGTCAAGAAGGGAGGTTCCAGGATCCATATGGCCAAGATGTCCTTCATG 2400
Qy	2401	AGGACTGGGATAATCCCGCTCAAAGGAACTCCACAGTCTGTCGCCCTT 2460
Db	2401	AGGACTGGGATAATCCCGCTCAAAGGAACTCCACAGTCTGTCGCCCTT 2460
Qy	2461	TTAGTAGCTCTAGGGGACAGATCAGGGTGGGGTATCTACTTGACCA 2520
Db	2461	TAGTAGCTCTAGGGGACAGATCAGGGTGGGGTATCTACTTGACCA 2520
Qy	2521	CAGCAGGAAGTTGGGGCCCTCAGGGAGATGGGTCTGGGTAAGGGGGATGCT 2580
Db	2521	CAGCAGGAAGTTGGGGCCCTCAGGGAGATGGGTCTGGGTAAGGGGGATGCT 2580
Qy	2581	ACTATGTCAGGGATTGGGGCTGGAGGAACTGGGAGGATAAAGATGAGT 2640
Db	2581	ACTATGTCAGGGATTGGGGCTGGAGGAACTGGGAGGATAAAGATGAGT 2640
Qy	2641	GAGCACAGAGGTTATGGATCTGAAGCTAACCCAGGTCACCCCTGGACACC 2700
Db	2641	GAGCACAGAGGTTATGGATCTGAAGCTAACCCAGGTCACCCCTGGACACC 2700
Qy	2701	TCACOAGGAGTGGCTTCACTCTGTTCACTCTGTTCACTCTGGGAGGTGGACCT 2760
Db	2701	TCACOAGGAGTGGCTTCACTCTGTTCACTCTGGGAGGTGGACCT 2760
Qy	2761	CATTCTAGGGGTOACTCTGGTCACTGGGACCTGGCTTAAGAACAGGG 2820
Db	2761	CATTCTAGGGGTOACTCTGGGACCTGGCTTAAGAACAGGG 2820
Qy	2821	GTCAGGAGGATGCGATGGCTGGGAGACTGGTCACTGGGACCTGGGACCTGG 2880
Db	2821	GTCAGGAGGATGCGATGGCTGGGAGACTGGTCACTGGGACCTGGGACCTGG 2880
Qy	2881	GACCGAAACCTGGGAGCTGCAGAAATCAGGGAAACATGGGAGGACTGGGACCTGG 2940
Db	2881	GACCGAAACCTGGGAGCTGCAGAAATCAGGGAAACATGGGAGGACTGGGACCTGG 2940
Qy	2941	AGCAGGGCTGGGCTGGCTGGGAGCTGGCTGGGAGCTGGCTGGGAGCTGG 3000
Db	2941	AGCAGGGCTGGGCTGGCTGGGAGCTGGCTGGGAGCTGGCTGGGAGCTGG 3000
Qy	3001	ACGGGAGGCCCCCTGGCTGAGGAAGGCTGGCTCACTAGCAGGGAGGCTGG 3060
Db	3001	ACGGGAGGCCCCCTGGCTGAGGAAGGCTGGCTCACTAGCAGGGAGGCTGG 3060
Qy	3061	CTGCCAGGAGCTCAAGGTGAGGACCAAGGGCGGACTCCACCAAGACATTAATCCAAAT 3120
Db	3061	CTGCCAGGAGCTCAAGGTGAGGACCAAGGGCGGACTCCACCAAGACATTAATCCAAAT 3120
Qy	3121	GAATTTGATATCCTTGCCTTCATCCCTATCACTGGTGAACCTCTGATGGGATCTCG 3180
Db	3121	GAATTTGATATCCTTGCCTTCATCCCTATCACTGGTGAACCTCTGATGGGATCTCG 3180
Qy	3181	GTCCCCCTCTGTCCTTCATCCCTATCACTGGTGAACCTCTGATGGGATCTCG 3240
Db	3181	GTCCCCCTCTGTCCTTCATCCCTATCACTGGTGAACCTCTGATGGGATCTCG 3240
Qy	3241	ACCGAAAGGGCAGGATCAGGCCCTGGGAAATAAGGGCTGGCTGGTGAAGA 3300
Db	3241	ACCGAAAGGGCAGGATCAGGCCCTGGGAAATAAGGGCTGGTGAAGA 3300
Qy	3301	CAGAGGGGTTCATCCACTGATGAGGTGGGATGTCACAGAGTCAGGCCACCCCTCTG 3360
Db	3301	CAGAGGGGTTCATCCACTGATGAGGTGGGATGTCACAGAGTCAGGCCACCCCTCTG 3360
Qy	3361	GTAGGACTGGAAGCAGGGCTGAGGCCCTGGGATGTCACAGAGTCAGGCCACCCCTCTG 3420
Db	3361	GTAGGACTGGAAGCAGGGCTGAGGCCCTGGGATGTCACAGAGTCAGGCCACCCCTCTG 3420

Qy	4501	CCATGCTCCTGAGGAGGAATCTGGAGGAGGTGAGTGTGAGGGGTATGATGGAG 4 560	Db	5581	GTGGAGTGTAATGCCCTGAGCTGGCATTTGGAAACCTGGCTCTTC 5640
Db	4501	CCATGCTCCTGAGGAGGAATCTGGAGGAGGTGAGTGTGAGGGGTATGATGGAG 4 560	Qy	5641	GGGGAGCTGATTTGGATCTCTGGGATTC 5674
Qy	4561	GGAGCACACTGCTATGGGAGCCAGGCTACCCAGATTGGTAGGAAA 4 620	Db	5641	GGGGAGCTGATTTGGATTC 5674
Db	4561	GGAGCACACTGCTATGGGAGCCAGGCTACCCAGATTGGTAGGAAA 4 620	Qy	4621	GTAAGCTGGAGTACGGCAGGTGGCGAACAGTGTGATCCCACGGTAGTGTGGGT 4 680
Db	4621	GTAAGCTGGAGTACGGCAGGTGGCGAACAGTGTGATCCCACGGTAGTGTGGGT 4 680	Db	82670	275159 bp DNA Homo sapiens chromosome Xq28 pSHMG17 Pseudogene, complete sequence; and melanoma antigen family A1 (MAGEA1) and zinc finger protein 275 (ZNF275) genes, complete cds. U82670 U82672
Qy	4681	CAAGGGGCCTCGCTGAGAACAGCTATGTAAGTCTTGTAGTATGTGAGTCAGT 4 740	Qy	4681	CAAGGGGCCTCGCTGAGAACAGCTATGTAAGTCTTGTAGTATGTGAGTCAGT 4 740
Db	4681	CAAGGGGCCTCGCTGAGAACAGCTATGTAAGTCTTGTAGTATGTGAGTCAGT 4 740	Qy	4741	CGAGAGTCGCTTTCTCCATCCCTGGGACTGGCCAGTGGAGGAGAG 4 800
Db	4741	CGAGAGTCGCTTTCTCCATCCCTGGGACTGGCCAGTGGAGGAGAG 4 800	Db	4801	GGAGTCGAGATGAGTGGCAGCAAGGGCAGTGGAGGGACTGGCCAGTGGCACCT 4 860
Qy	4801	GGAGTCGAGATGAGTGGCAGCAAGGGCAGTGGAGGGACTGGCCAGTGGCACCT 4 860	Db	4801	GGAGTCGAGATGAGTGGCAGCAAGGGCAGTGGAGGGACTGGCCAGTGGCACCT 4 860
Db	4801	GGAGTCGAGATGAGTGGCAGCAAGGGCAGTGGAGGGACTGGCCAGTGGCACCT 4 860	Qy	4861	CAAGGGCCGGTCCAGGAGCTTCCCTTGCTGTGACATGGGCCCATTTCACTCT 4 920
Db	4861	CAAGGGCCGGTCCAGGAGCTTCCCTTGCTGTGACATGGGCCCATTTCACTCT 4 920	Db	4861	CAAGGGCCGGTCCAGGAGCTTCCCTTGCTGTGACATGGGCCCATTTCACTCT 4 920
Qy	4921	GAAGAGCCGGTCAAGTGTCTCAGTAGGGTCACTGGTGACTGGAGAC 4 980	Qy	4921	GAAGAGCCGGTCAAGTGTCTCAGTAGGGTCACTGGTGACTGGAGAC 4 980
Db	4921	GAAGAGCCGGTCAAGTGTCTCAGTAGGGTCACTGGTGACTGGAGAC 4 980	Db	4981	TATCTTGTCTCTTGGAAATTGTCAAATGTTTAAAGGGATGTTGAATGAAAC 5040
Qy	4981	TATCTTGTCTCTTGGAAATTGTCAAATGTTTAAAGGGATGTTGAATGAAAC 5040	Db	4981	TATCTTGTCTCTTGGAAATTGTCAAATGTTTAAAGGGATGTTGAATGAAAC 5040
Db	4981	TATCTTGTCTCTTGGAAATTGTCAAATGTTTAAAGGGATGTTGAATGAAAC 5040	Qy	5041	TTCAGCATCAAGTTATGAAATGACAGGTACACAGTTCTGTATACTTTAAAGG 5100
Db	5041	TTCAGCATCAAGTTATGAAATGACAGGTACACAGTTCTGTATACTTTAAAGG 5100	Db	5041	TTCAGCATCAAGTTATGAAATGACAGGTACACAGTTCTGTATACTTTAAAGG 5100
Qy	5041	TTCAGCATCAAGTTATGAAATGACAGGTACACAGTTCTGTATACTTTAAAGG 5100	Db	5101	TAAGACTCTGTTTATTCAGTTGGAAATTCATCTTATTTGGGATTAAT 5160
Db	5101	TAAGACTCTGTTTATTCAGTTGGAAATTCATCTTATTTGGGATTAAT 5160	Qy	5161	AACAGCAGTGGAAATAGTACTTAAATGAAATAGCCTAAATAGTGTGAGATAA 5220
Qy	5161	AACAGCAGTGGAAATAGTACTTAAATGAAATAGCCTAAATAGTGTGAGATAA 5220	Db	5161	AACAGCAGTGGAAATAGTACTTAAATGAAATAGCCTAAATAGTGTGAGATAA 5220
Db	5221	AGAACTAAAGAAATTAAGCATAGTAACTTCCCTTATCTGCTTAAATAGGAGATAAT 5280	Qy	5221	AGAACTAAAGAAATTAAGCATAGTAACTTCCCTTATCTGCTTAAATAGGAGATAAT 5280
Db	5221	AGAACTAAAGAAATTAAGCATAGTAACTTCCCTTATCTGCTTAAATAGGAGATAAT 5280	Db	5281	ATTTTAAGATATATGCACTACCTGGATTCTGGCTCTTGAGAAATGAGAAAT 5340
Qy	5281	ATTTTAAGATATATGCACTACCTGGATTCTGGCTCTTGAGAAATGAGAAAT 5340	Db	5281	ATTTTAAGATATATGCACTACCTGGATTCTGGCTCTTGAGAAATGAGAAAT 5340
Db	5341	TAATCTGAAATTAAGAAATCTCCCTGTCACTGGCTCTTCTCATGACTGAGCA 5400	Qy	5341	TAATCTGAAATTAAGAAATCTCCCTGTCACTGGCTCTTCTCATGACTGAGCA 5400
Db	5341	TAATCTGAAATTAAGAAATCTCCCTGTCACTGGCTCTTCTCATGACTGAGCA 5400	Db	5401	TCTGCTTGGAAAGCCCTGGGTAGTGGAGATGCTAAGCTGGCTCTTC 5460
Qy	5401	TCTGCTTGGAAAGCCCTGGGTAGTGGAGATGCTAAGCTGGCTCTTC 5460	Db	5401	TCTGCTTGGAAAGCCCTGGGTAGTGGAGATGCTAAGCTGGCTCTTC 5460
Db	5461	CCACCCATAGGTCTTGAATGCTTCTGGAGCTGCACTCACTCATTAATGAGGTGCAAGATGC 5520	Qy	5461	CCACCCATAGGTCTTGAATGCTTCTGGAGCTGCACTCACTCATTAATGAGGTGCAAGATGC 5520
Db	5461	CCACCCATAGGTCTTGAATGCTTCTGGAGCTGCACTCACTCATTAATGAGGTGCAAGATGC 5520	Db	5521	CTCTAAAGATTAAGGAAATCTGGAAATGAGGGTCACTCTGGCTTGGGAGGTG 5580
Qy	5521	CTCTAAAGATTAAGGAAATCTGGAAATGAGGGTCACTCTGGCTTGGGAGGTG 5580	Db	5521	CTCTAAAGATTAAGGAAATCTGGAAATGAGGGTCACTCTGGCTTGGGAGGTG 5580
Qy	5581	GTGGAGTGTCAAATGCCCTGACCTGGAAACTGCACTGGCTTGGGAAACTGCACTGGCTTCTCT 5640	Qy	5581	GTGGAGTGTCAAATGCCCTGACCTGGAAACTGCACTGGCTTGGGAAACTGCACTGGCTTCTCT 5640

```

repeat_region /rpt_family="LTR8"
  complement(3818..5353)
repeat_region /rpt_family="MSTA-internal"
repeat_region /rpt_family="MSTA"
repeat_region 5946..6175
repeat_region /rpt_family="HERVR"
repeat_region 6553..721
repeat_region /rpt_family="HUERS-P3"
repeat_region complement(7422..7887)
repeat_region /rpt_family="LTR19A"
repeat_region 7588..7902
repeat_region /rpt_family="HUERS-P3"
repeat_region complement(8146..8460)
repeat_region 8603..9022
repeat_region /rpt_family="AluJb"
repeat_region 9443..9437
repeat_region /rpt_family="MSTA"
repeat_region complement(9872..1036)
repeat_region /rpt_family="MER41A"
repeat_region 1037..1038
repeat_region /rpt_family="L2"
repeat_region complement(10383..11111)
repeat_region /rpt_family="MER1-internal"
repeat_region complement(11112..11400)
repeat_region /rpt_family="AluSg1"
repeat_region complement(11401..11700)
repeat_region /rpt_family="MER1-internal"
repeat_region complement(11700..11089)
repeat_region /rpt_family="MER4-internal"
repeat_region complement(13073..13190)
repeat_region /rpt_family="MER7-internal"
repeat_region complement(13787..13807)
repeat_region /rpt_family="MER57-internal"
repeat_region complement(13903..14255)
repeat_region /rpt_family="MER57-internal"
repeat_region 14274..15228
repeat_region /rpt_family="LIPAS5"
repeat_region 15217..18398
repeat_region /rpt_family="LIPAS5"
repeat_region 18442..18975
repeat_region /rpt_family="LIPAS5"
repeat_region 19013..19652
repeat_region /rpt_family="LTR49"
repeat_region 19335..52906
repeat_region /organism="Homo sapiens"
repeat_region /db_xref="ntaxon:9606"
repeat_region /clone="LK0813"
repeat_region 19653..20413
repeat_region /rpt_family="L1M3"
repeat_region 21078..21748
repeat_region /rpt_family="MER31-internal"
repeat_region 21752..21886
repeat_region /rpt_family="AluYa5/8"
repeat_region 21819..22268
repeat_region /rpt_family="MER31-internal"
repeat_region 22269..22477
repeat_region /rpt_family="AluJc"
repeat_region 22240..22618
repeat_region /rpt_family="MER31-internal"
repeat_region 22256..22957
repeat_region /rpt_family="MER31-internal"
repeat_region 22268..23269
repeat_region /rpt_family="AluJc"
repeat_region 23285..23685
repeat_region /rpt_family="L1M4"
repeat_region complement(24864..25145)
repeat_region /rpt_family="AluJb"
repeat_region 25444..25454
repeat_region /rpt_family="(GAA)n"
repeat_region complement(23765..25894)
repeat_region /rpt_family="MLT1H"

misc_feature 25769..26426
  /note="DSS52; acc. no. GDB:187392"
repeat_region 25918..26172
repeat_region /rpt_family="AluY"
repeat_region complement(26173..26252)
repeat_region /rpt_family="polypurine"
repeat_region 26252..26359
repeat_region /rpt_family="(TA)n"
repeat_region complement(26798..26907)
repeat_region /rpt_family="NIR"
repeat_region 31846..32441
repeat_region /note="CPG Island: 64.8 %GC, o/e=0.93, #CPGs=62"
repeat_region complement(32209..32167)
repeat_region /rpt_family="AluJc"
repeat_region complement(33163..33210)
repeat_region /rpt_family="AluJc"
repeat_region 34175..34216
repeat_region /rpt_family="MSTD"
repeat_region 34754..34823
repeat_region /rpt_family="MSTD"
repeat_region 35068..35384
repeat_region /rpt_family="MSTD"
repeat_region 35436..37928
repeat_region /rpt_family="HERVL"
repeat_region complement(38008..38402)
repeat_region /rpt_family="AluY"
repeat_region 38510..38962
repeat_region /rpt_family="LTR16B"
repeat_region 39463..39779
repeat_region /rpt_family="AluSx"
repeat_region complement(40031..40384)
repeat_region /rpt_family="L2"
repeat_region complement(40610..40802)
repeat_region /rpt_family="LIME1"
repeat_region complement(40759..40937)
repeat_region /rpt_family="LIM4"
repeat_region complement(41210..41395)
repeat_region /rpt_family="LIME"
repeat_region 41398..41663
repeat_region /rpt_family="L2"
repeat_region complement(41928..41993)
repeat_region /rpt_family="MLTFB"
repeat_region 41994..42022
repeat_region /rpt_family="(GA)n"
repeat_region complement(42033..42381)
repeat_region /rpt_family="MLTFB"
source 42155..103943
repeat_region /organism="Homo sapiens"
repeat_region /db_xref="taxon:9606"
repeat_region /clone="RPI-T11:K1776"
repeat_region /rpt_family="MLTFB"
repeat_region complement(42824..43114)
repeat_region 43685..44167
repeat_region /rpt_family="MLTFD"
repeat_region 44916..45363
repeat_region /rpt_family="MER41B"
repeat_region 47017..47143
repeat_region /rpt_family="MER85"
repeat_region complement(47288..47344)
repeat_region /rpt_family="L2"
repeat_region 47349..47645
repeat_region /rpt_family="AluJb"
repeat_region 48693..49693
repeat_region /rpt_family="THE1C-internal"

Query Match 98.18; Score 5566.2; DB 50; Length 275159;
Best Local Similarity 99.6%; Pred. No. 0; Mismatches 5654; Conservative 0; Indels 7; Gaps 7;
Matches 1 CCGGGGCCACCTGCGATCCCTCCCTACTACCCCCAACTCCCTCCCTAACGCCACCC 60
Qy ||||| 127368 CCGGGGCCACCTGCGATCCCTCCCTACTACCCCCAACTCCCTCCCTAACGCCACCC 127309

```

Qy	61	ATCCAAACATCTTCAAGCTCACCCCCAGGCCAACGGAGAAATCGGTTCCACCCCTG	120
Ddb	127308	ATCCAAACATCTTCAAGCTCACCCCCAGGCCAACGGAGAAATCGGTTCCACCCCTG	122249
Qy	121	CTCTCAACCCACGGAAACCCAGGTGCCACTGACTGAGCATTAATGTT	180
Ddb	127248	CTCTCAACCCACGGAAACCCAGGTGCCACTGACTGAGCATTAATGTT	121789
Qy	181	TTAGAGAAGACCGAGGTTTCGGTCTGAGGGGGGGTTGAGATCGTGGAGGAAGGGG	240
Ddb	127188	TTAGAGAAGACCGAGGTTTCGGTCTGAGGGGGGGTTGAGATCGTGGAGGAAGGGG	127129
Qy	241	CCCA - GCTCTGTAAGGGCAGGTGACATCTGAGGGGAGACTGGGACCACTTACCC	299
Ddb	127128	CCCAAGGGCTCTGTAAGGGCAGGTGACATCTGAGGGGAGACTGGGACCACTTACCC	127069
Qy	300	CAGATAAGGCCCAAATAATCCCTCATGCCAGTCCTGGACCATCTGGTGTGACTT	359
Ddb	127068	CAGATAAGGCCCAAATAATCCCTCATGCCAGTCCTGGACCATCTGGTGTGACTT	127009
Qy	360	CTCAGGGTGGCACCCAGGCCCTTGCGCTTAACACMTGGGACTGGTAATCAGA	419
Ddb	127008	CTCAGGGTGGCACCCAGGCCCTTGCGCTTAACACMTGGGACTGGTAATCAGA	126949
Qy	420	GTCCTGGTGTGATCAGGAAGGCTGCTTAGAGAAGGGCTCAAGGCTGGAGACA	479
Ddb	126948	AACTCGTTGTGATCAGGAAGGCTGCTTAGAGAAGGGCTCAAGGCTGGAGACA	126889
Qy	480	TATGTCAGGATTCTAAGGGGGCTGAGGGTCCCTAAGGCCCAACTCGTGCACCAA	539
Ddb	126888	TATGTCAGGATTCTAAGGGGGCTGAGGGTCCCTAAGGCCCAACTCGTGCACCAA	126829
Qy	540	CCGCCACTCCATGTCACTCCGGTACCCCAACCCCTCTCATGTCATGCCAACCCC	599
Ddb	126828	CCGCCACTCCATGTCACTCCGGTACCCCAACCCCTCTCATGTCATGCCAACCCC	126769
Qy	600	ACCCCAATCCCCACCCATGCCCTAACCTGATGCCATGCCGACGGATTGCC	659
Ddb	126768	ACCCCAATCCCCACCCATGCCCTAACCTGATGCCATGCCGACGGATTGCC	126709
Qy	660	TGACCCCCACCCACCCCAACCCCACTCCACCCOCACCCAGGGAGGATCGTTCCC	719
Ddb	126708	TGACCCCCACCCACCCCAACCCCACTCCACCCOCACCCAGGGAGGATCGTTCCC	126649
Qy	720	GCGAGGAACATCGGTGCGGATGTCGGAATGTTGGGGAG	779
Ddb	126648	GCGAGGAACATCGGTGCGGATGTCGGAATGTTGGGGAG	126589
Qy	780	AGAAGCAGGGTTCCATCTGAGGGAGGGTAGATGTTGGGGAG	839
Ddb	126588	AGAAGCAGGGTTCCATCTGAGGGAGGGTAGATGTTGGGGAG	126529
Qy	840	GCTCTGTGAGGAGGCCAGGTGAGGGTGTGAGGGACTGAGGACCCCACTCAAAT	899
Ddb	126528	GCTCTGTGAGGAGGCCAGGTGAGGGTGTGAGGGACTGAGGACCCCACTCAAAT	126469
Qy	900	AGAGAGCCCCAATATTCCAGGCCCTTCCTGCCAGGGAAACTGCCAG	959
Ddb	126468	AGAGAGCCCCAATATTCCAGGCCCTTCCTGCCAGGGAAACTGCCAG	126409
Qy	960	ACCTCTAGCTGGCTGCCCTGCCAGGCCCTTCCTCCAAAAGCCTTGAGAGCACCAAGGT	1019
Ddb	126408	ACCTCTAGCTGGCTGCCCTGCCAGGCCCTTCCTCCAAAAGCCTTGAGAGCACCAAGGT	126349
Qy	1020	CTTCCTCCAAAGTCTGAAATCAAGAGTTGACCGGGAGACTGTTAGAGG	1079
Ddb	126348	CTTCCTCCAAAGTCTGAAATCAAGAGTTGACCGGGAGACTGTTAGAGG	126289
Qy	1080	GGCAGGGCACAGGCCCTTCAGCCAGAACCTAGACCCAGGGAGGGTGGGCC	1139
Ddb	126288	GGCAGGGCACAGGCCCTTCAGCCAGAACCTAGACCCAGGGAGGGTGGGCC	126229
Qy	2217	CTTGTAAATCGAATCAAGATCAAGTGTGGACCTCGGCCAGCTAGGGGACA	2276

Db 125149	CCTGGAAATCCAGATCAGTGGACCTCGGCCCTGAGAGTCAGGGCACGCCACA	125090	Qy	3357	CCTGGTACCACTGAGAACCCAGGGTCAAGGCTGAGCTGCGCTGAGGCCCGGTGAT	3416	
Qy	2277	TATGGCCCATATTCTGATCTTGAGGTGACAGGACAGTGAGCTGCGCTGAGAAGTGG	2336	Db	124010	CCTGGTACCACTGAGAACCCAGGGTCAAGGCTGAGCTGCGCTGAGGCCCGGTGAT	123951
Db	125089	TATGGCCCATATTCTGATCTTGAGGTGACAGGACAGTGAGCTGCGCTGAGAAGTGG	125030	Qy	3417	TCCCTCTCTGGCTCCAGGACTCCAGAACCCAGGACTGGCTTGAGACAGTATCCCA	3476
Qy	2337	GGCCCTAGGTAAACAGGGAGGTCCAGGATCCAGGATCCATAGGCCAAAGATGCCCCCT	2396	Db	123950	TCCCTCTCTGGCTCCAGAACCCAGGACTGGCTTGAGACAGTATCCCA	123891
Db	125029	GGCCCTAGGTAAACAGGGAGGTCCAGGATCCATAGGCCAAAGATGCCCCCT	124970	Qy	3447	GGTACAGAGCAGAGGATGCAAGGGTGCAGAGCTGGCTTGAGCTGAGTATCCCA	3536
Qy	2397	CATGGACTGGGATAATCCGGTCAAGAGGGACTCCAGAACACTCGCTGTC	2456	Db	123890	GGTACAGAGCAGAGGATGCAAGGGTGCAGAGCTGGCTTGAGCTGAGTATCCCA	123831
Db	124969	CATGGACTGGGATAATCCGGTCAAGAGGGACTCCAGAACACTCGCTGTC	124910	Qy	3537	CCAAGGGCCCAACTGCAAGACAGATAGGACTCCAGAGTCTGGCTCACCTCC	3596
Qy	2457	CCTTTAGTACTCTAGGGGACCAAGATGGATGGGTATTTCAATTCACTGT	2516	Db	123830	CCAAGGGCCCACTGGCACAGACAGATAGGACTCCAGAGTCTGGCTCACCTCC	123771
Db	124909	CCTTTAGTACTCTAGGGGACCAAGATGGATGGGTATTTCAATTCACTGT	124850	Qy	3597	ACGTCTAGTCCTGAGATGCACTGACCTCTGGCTGTACCTGAGTACCTCTCACT	3656
Qy	2517	ACACAGGAGGAAGTGGGGCTTCTGGTAAGAAGGGGAT	2576	Db	123770	ACGTCTAGTCCTGAGATGCACTGACCTCTGGGGCTGTACCTGAGTACCTCTCACT	123711
Db	124849	ACACAGGAGGAAGTGGGGATATCCGGTCAAGAGGGACTCCACAGTC	124790	Qy	3657	TCCCTCTCAGGTTTCAAGGGACAGGAGGATCCCTGGAGGAC	3716
Qy	2577	GTCTACTCATGTCAGGAAATGGGGTGTGGCAAGGAATAAGAT	2636	Db	123710	TCCNCCTCTCAGGTTTCAAGGGACAGGAGGATCCCTGGAGGAC	123651
Db	124789	GTCTACTCATGTCAGGAAATGGGGTGTGGCAAGGAATAAGAT	124730	Qy	3717	AGAGGACCAAGGAGGAGGAGATGTAGTAGGSCCTTGTAGTGA	3776
Qy	2637	GTGTGAGACACAAGGCTATGGATAATCCACAGGGTCAAGCCTGSA	2696	Db	123650	AGAGGACCAAGGAGGAGATGTAGTAGGSCCTTGTAGTGA	123591
Db	124729	GTGTGAGACACAAGGCTATGGATAATCCACCCAGACACAAGGTC	124670	Qy	3777	TCTAGCCTGGGGCTCTACACACTCCCTCCTCCAGGCTCTGCTGCTATGGCC	3836
Qy	2697	CACTTACCCAGATGTGGCTCTTTCACTCCCTGGGAGGTGAG	2756	Db	123590	TCTAGCCTGGGGCTCTACACCTCCCTCCTCCAGGCTCTGCTGCTATGGCC	123531
Db	124669	CACTTACCCAGGATGTGGCTCTTTCACTCCAGTCAGTCAGTGGAG	124611	Qy	3837	AGCCTCTGCCACACTCTGGCTCTGCTGCCCTGAGGAGTCATCATGCTCTGAGA	3896
Qy	2757	ACCTCATTCAGAGGGTGAATCTGTCAGTGGACCCCATCTGTC	2815	Db	123530	AGCCTCTGCCACACTCTGGCTCTGCTGCCCTGAGGAGTCATCATGCTCTGAGA	123471
Db	124610	ACCTCATTCAGAGGGTGAATCTGTCAGTGGACCCCATCTGTC	124551	Qy	3897	GGAGTCTGACTGCAAGCTGAGGAAGCCCTGGAGGCCAACAGGCCCCTGG	3956
Qy	2817	CGAGGACCAACTCTGGGAGACTCTGCACTGAGTGGGGTACCC	2876	Db	123470	GGAGTCTGACTGCAAGCTGAGGAAGCCCTGGAGGCCAACGCCCCTGG	123411
Db	124550	ACGGTCCCAAGATCTGCCATGTCATGGTGGGGTAGGGTACCC	124491	Qy	3957	TGTCGCACTCTGGCTCAAGAGATCTCCAGAGTCTGGCTGGAGG	4016
Qy	2877	CGAGGACCAACTCTGGGAGACTCTGCACTGAGTGGGGTACCC	2936	Db	123410	TGTCGCACTCTGGCTCAAGAGTCTGGCTGGAGGG	123351
Db	124490	CGAGGACCAACTCTGGGAGACTCTGCACTGAGTGGGGTACCC	124431	Qy	4017	TGCCCACTCTGGCTCAAGAGATCTCCAGAGTCTGGCTGGCTTCCCA	4076
Qy	2937	AGAGCATGGCTGGCCCTCTCCGTTATCTGGGATCATGTC	2996	Db	123350	TGCCCACTCTGGCTCAAGAGTCTGGCTGGCTTCCAGGAGG	123291
Db	124430	AGAGCATGGCTGGCCCTCTCCGTTATCTGGGATCATGTC	124371	Qy	4077	CTACCATCAACTTACTGAGACAGGGAAACCCAGTGGCTGAGGG	4136
Qy	2997	AGGACGGAGGCGCTGGCTCCATGTCAGTGGCTAGTGGAGGTCCA	3056	Db	123290	CTACCATCAACTTACTGAGACAGGGAAACCCAGTGGCTGAGGG	123231
Db	124370	AGGACGGAGGCGCTGGCTCCATGTCAGTGGAGGTCCA	124311	Qy	4137	AGGGCCAGCACCTCTGATCTGGCTGAGGAGTATCACTAAGAGG	4196
Qy	3057	GCCCMGCAAGGAGTAAGGTGAGGACCAAGGGACCTAACATTIC	3116	Db	123230	AGGGCCAGCACCTCTGATCTGGCTGAGGAGTATCACTAAGAGG	123171
Db	124310	GCCCMGCAAGGAGTAAGGTGAGGACCAAGGGACCTAACATTIC	124251	Qy	4197	TGGCTGATTCGCTGGTGTGCTGAGGAGTATCACTAAGAGG	4256
Qy	3117	CAATGAAATTGATATCTCTGCTGCCCTCCCAAGGACCTAGCTGGCAGAT	3176	Db	123170	TGGCTGATTCGCTGGTGTGCTGAGGAGTATCACTAAGAGG	123111
Db	124250	CAATGAAATTGATATCTCTGCTGCCCTCCCAAGGACCTAGCTGGCAGAT	124191	Qy	4257	CAGAAATGTTGGAGAGTGTCAAAATTACAGCTGTTCTCGCCA	4316
Qy	3177	GTTTGCCCTGCTGCTTCCATTCATGAGTGTAACTCTGATTTGGATTIC	3216	Db	123110	CAGAAATGTTGGAGATGTCATCAAAATTACAGCTGTTCTCGCCA	123051
Db	124190	GTTTGCCCTGCTGCTTCCATTCATGAGTGTAACTCTGATTTGGATTIC	124131	Qy	4317	AAGCTCTGAGTCCTGAGTGTGCTGAGGAGTCAAGCCCCACG	4376
Qy	3237	TCAGCAGGAAAAGGGCAGGATCCAGGCCCTGGCTGAGGAAATAA	3296	Db	123050	AAGCTCTGAGTCCTGAGTGTGCTGAGGAGTCAAGCCCCACG	122991
Db	124130	TCAGCAGGAAAAGGGCAGGATCCAGGCCCTGGCTGAGGAAATAA	124071	Qy	4377	GCCACTCTGATGTCCTGCTGAGGAGTCAAGGAGTCAAGGAGTCA	4436
Qy	3297	AGACAGGGGGTCACTGCACTGAGTGGGATGCAAGTCCAGGCCACCC	3336	Db	122990	GCCACTCTGATGTCCTGCTGAGGAGTCAAGGAGTCAAGGAGTCA	122931
Db	124070	AGAACAGAGGGGGTCACTGCACTGAGTGGGATGCAAGTCCAGGCCACCC	124011				

QY	1	CCGGGGGACCATGGATCCCCTACCCCCAATCCGCCCTTAAGCCACCC	60	
Db	9070	CCGGGGCACCATGGATCCCCTACCCCCAATCCGCCCTTAAGCCACCC	9011	
QY	61	ATCCAACATCTTCACCTCACTTCACTTCACTTCACTTCACTTCACTT	120	
Db	9010	ATCCAACATCTTCACCTCACTTCACTTCACTTCACTTCACTTCACTT	8951	
QY	121	CCTCAACCAGGAAGCCCAAGGTGGCAGATGTGACGCCACTGTACTTG	180	
Db	8950	CCTCAACCAGGAAGCCCAAGGTGGCAGATGTGACGCCACTGTACTTG	8891	
QY	181	TAGAGAAAGGAGGGTTTCGGTCAGGGGGCTTGAGATCGTGGCCAG	240	
Db	8890	TAGAGAAAGGAGGGTTTCGGTCAGGGGGCTTGAGATCGTGGCCAG	8831	
QY	241	CCCA-GCTCTGAAAGGGCAAGGTGACATGGAGGACTGGTGTGACTT	299	
Db	8830	CCAGGCTCTGAAAGGGCAAGGTGACATGGAGGACTGGTGTGACTT	8771	
QY	300	CAGATAGGACCCAAAATAATCCCTCATGCAGCCTGACCATCTGGTGTGACTT	359	
Db	8770	CAGATAGGACCCAAAATAATCCCTCATGCAGCCTGACCATCTGGTGTGACTT	8711	
QY	360	CTCAGCTGGACCCAGCCCTGGTAAACCACTGGGACTGAACTCAGA	419	
Db	8710	CTCAGCTGGACCCAGCCCTGGTAAACCACTGGGACTGAACTCAGA	8651	
QY	420	GTCCTGGTGTGATAGGAAAGGCTGCTTAGAGGAACTGGCTGAGGAGA	479	
Db	8650	AGTCCTGGTGTGATAGGAAAGGCTGCTTAGAGGAACTGGCTGAGGAGA	8591	
QY	480	TCTAGCTCAGGATTCTCAGGGGGCTGAGGCTGGCTCCTAACGCCAA	539	
Db	8590	TCTAGCTCAGGATTCTCAGGGGGCTGAGGCTGGCTCCTAACGCCAA	8531	
QY	540	CCCCACCTCCATATGCTCACTCCGTCATCTCAACCCCC	599	
Db	8530	CCCCACCTCCATATGCTCACTCCGTCATCTCAACCCCC	8471	
QY	600	ACCCACATCCCCACCCCCATCTCAACCTGATGCCCATATCTCAACCCCC	659	
Db	8470	ACCCACATCCCCACCCCCATCTCAACCTGATGCCCATATCTCAACCCCC	8411	
QY	660	TCAACCCACCCCCACCCCCACCTCCACCCACAGGGGATCGTTCC	719	
Db	8410	TCAACCCACCCCCACCCCCACCTCCACCCACAGGGGATCGTTCC	8351	
QY	720	CCAGGAAACATTCGGGATGTGGGGAGATGTGGGGAGAG	779	
Db	8350	CCAGGAAACATTCGGGATGTGGGGAGATGTGGGGAGAG	8291	
QY	780	AGAGCGAGGTTTCACATCTGAGGGAGGGCTAGAGTCCGCCAG	839	
Db	8290	AGAGCGAGGTTTCACATCTGAGGGAGGGCTAGAGTCCGCCAG	8231	
QY	840	GCCTCTGAGGGCAAGGTGAGGCTGAGGGACTGAGGACCCGCACTC	899	
Db	8230	GCCTCTGAGGGCAAGGTGAGGCTGAGGGACTGAGGACCCGCACTC	8171	
QY	900	AGAGGCCAAATAATTCCAGGGCCCTGGCCACCCGGGAAG	959	
Db	8170	AGAGGCCAAATAATTCCAGGGCCCTGGCCACCCGGGAAG	8111	
QY	960	AGTCTCAGCCGGCTGCCCTGCCCCAGACCCCTGAGAGACCCAGGTT	1019	
Db	8110	AGTCTCAGCCGGCTGCCCTGCCCCAGACCCCTGAGAGACCCAGGTT	8051	
QY	1020	CTTCCTCCAAAGTCTGAAATAGAGTTGCTGAGGGCAGSACTGTAGAG	1079	
Db	8050	CTTCCTCCAAAGTCTGAAATAGAGTTGCTGAGGGCAGSACTGTAGAG	7991	
QY	1080	GGAGGGACAGGCTCTGCCAACGCTGAGGAGGAGGAGGAGGAGGAG	1139	
Db	7990	GGCAGGGCCAGGGATCTGCCCTTCCACAGGGAGGGCTGTGGSCC	7931	
QY	1140	CCCAAGACTGACTCCTGACCTTCCACCTGGCATTCCTCCACCC	1199	
Db	7930	CCCAAGACTGACTCCTGACCTTCCACCTGGCATTCCTCCACCC	7871	
QY	1200	CCCCATCTCTAGCTACCTCACCCTACTCCACTCTACTCCACTGTG	1259	
Db	7870	CCCCATCTCTAGCTACCTCACCCTACTCCACTCTACTCCACTGTG	7811	
QY	1260	CCCCCTGGCCAGCACGCCCAACCCCTGTCACCCCTACGTG	1319	
Db	7810	CCCCCTGGCCAGCACGCCCAACCCCTCTGCCACCTACTGCCCA	7751	
QY	1320	CCCCACCCATCTCTCATCTCTCATGTGCCCTCCACTGCCATCTG	1379	
Db	7750	CCCCACCCATCTCTCATGTGCCCTCCACTGCCATCTGCA	7691	
QY	1380	CGGTGTTGCCCTGCTCACAACCGGGAAGCCCTGGTAGGCCGATG	1439	
Db	7690	CGGTGTTGCCCTGCTCACAACCGGGAAGCCCTGGTAGGCCGATG	7631	
QY	1440	TTGAACTCTACAGATCTGGAGAGGCCAGGTCTATTAAAGGTTCTG	1499	
Db	7630	TTGAACTCTACAGATCTGGAGAGGCCAGGTCTATTAAAGGTTCTG	7571	
QY	1500	GATCCACTGAGGGAGGTGGTTTGGCTCTGTGAGGAGCAAGGTG	1559	
Db	7570	GATCCACTGAGGGAGGTGGTTTGGCTCTGTGAGGAGCAAGGTG	7511	
QY	1560	GACTGAGGGCACACCCAGTAGATGGCCCAAATATGATCAGPACCA	1619	
Db	7510	GACTGAGGGCACACCCAGTAGATGGCCCAAATATGATCAGPACCA	7451	
QY	1620	GCCAGCCCTGGACCCGCCAGGACAGATGGTGTGAGGAGCACCC	1679	
Db	7450	GCCAGCCCTGGACCCGCCAGGACAGATGGTGTGAGGAGCACCC	7391	
QY	1680	CCACTGCCCACCTTAACCCACAGGAATCTGTAGTCACTCTATG	1739	
Db	7390	CCACTGCCCACCTTAACCCACAGGAATCTGTAGTCACTCTATG	7331	
QY	1740	TGGTAGGAGA-GCCAGGGCCAGGCATTAAGGTCATCAGGTC	1797	
Db	7330	TGGTAGGAGGAGGGAGGCCAGGCATTAAGGTCATCAGGTC	7271	
QY	1798	AGGACCTGGAGGGAACTGGGTTCCACCTGCTACCC	1857	
Db	7270	AGGACCTGGAGGGAACTGGGTTCCACCTGCTACCC	7211	
QY	1858	ACCCACTCATCCACCTCCACCTACCCCTACCCCAACCTCATCT	1917	
Db	7150	ACCCACTCATCCACCTCCACCTACCCCTACCCCAACCTCATCT	7091	
QY	1918	CTGTCAACCCAGGAACTGCTGAGGAACTGCTGAGCTTC	1977	
Db	7090	CTGTCAACCCAGGAACTGCTGAGGAACTGCTGAGCTTC	7032	
QY	2038	TACTGGAGATGAGGGGCTCAGAGGCCAACCTAGAACCC	2097	
Db	7031	TACTGGAGATGAGGGGCTCAGAGGCCAACCTAGAACCC	6972	
QY	2098	GAGACTGAGGCTGCACTCTGGCTCAGAAACGATGGGAC	2156	
Db	6971	GAGACTGAGGCTGCACTCTGGCTCAGAAACGATGGGAC	6912	
QY	2157	GGGCTGGACCCAGGCTGCAAGGCTTACGGGAGGAGGAGGAGG	2216	

Db	6911	AGGGTGGACCCAGGCTGCAAGGTTAACGGAGGAAGGAGGACTCAGGGAA 6852	Qy	3297	AGAACAGGGGTCACTGCATGAGACTGGGATGTCACAGTGTGAGAATGGCCACCT 3356
Qy	2217	CTTGGAAATCCAGATCAGTGTGACCCCTGAGGTCACGCGTGGCACA 2276	Db	5775	AGAACAGGGGTCACTGCATGAGACTGGGATGTCACAGTGTGAGAATGGCCACCT 5716
Db	6851	CCTTGGAAATCCAGATCAGTGTGACCCCTGAGGTCACGCGTGGCACA 6792	Qy	3357	CTGGPAGCACTGAGACCGGCTGACCCCTGAGGTCACAGTGTGAGAATGGCCACCT 3416
Qy	2217	TATGGCCCATATTCCGATTTGGGTGAGAATGGCTGAGAATGGCTGAGTGG 2336	Db	5715	CTGGPAGCACTGAGACCGGCTGACCCCTGAGGTCACAGTGTGAGAATGGCCACCT 5656
Db	6791	TATGGCCCATATTCCGATTTGGGTGAGAATGGCTGAGAATGGCTGAGTGG 6732	Qy	3417	TCCTCTTCTGGAGCAGGCTGAGGAAACGGCAGTGACCCCTGGTCAAGTACCTCA 3476
Qy	2337	GCCTCTAGGTCAACAGGGAGGAGTCAGGATCCAGATGCCAAAGATGCCCCCT 2396	Db	5655	TCCTCTTCTGGAGCAGGCTGAGGAAACGGCAGTGACCCCTGGTCAAGTACCTCA 5596
Db	6731	GCCTCTAGGTCAACAGGGAGGAGTCAGGATCCAGATGCCAAAGATGCCCCCT 6672	Qy	3477	GTCACAGGGAGGATGACAGGGTGTGCCAGCATGAGATGTTGCCCTGAATGACA 3536
Qy	2397	CATGAGGACTGGGATAATCCGGCTCAGAAAAGGGACATGCCACACAGTGTGCT 2456	Db	5595	GTCACAGGGAGGATGACAGGGTGTGCCAGCATGAGATGTTGCCCTGAATGACA 5536
Db	6671	CATGAGGACTGGGATAATCCGGCTCAGAAAAGGGACATGCCACACAGTGTGCT 6612	Qy	3537	CCAAGGGCCACCTGGCACAGGACACATAGAACCTACAGAGTCAGGCTCACCTCCCT 3596
Qy	2457	CTTTTACTGGCTTAAGGGGACCAAGATCACGGATGCCGATGTCCTCACTCT 2516	Db	5535	CCAAGGGCCACCTGGCACAGGACACATAGAACCTACAGAGTCAGGCTCACCTCCCT 5416
Db	6611	CTTTTACTGGCTTAAGGGGACCAAGATCACGGATGCCGATGTCCTCACTCT 6552	Qy	3597	ACTGTCAGTCCTGTGAAATGCCCTGACCCCTGACCCCTGAGTACCCCTCTACT 3656
Qy	2517	ACCAAGGGAAAGTGGGGCCCTCAGGGAGATGGCTTGGGTAAAGGGGAT 2576	Db	5475	ACTGTCAGTCCTGTGAAATGCCCTGACCCCTGACCCCTGAGTACCCCTCTACT 5416
Db	6551	ACCAAGGGAAAGTGGGGCCCTCAGGGAGATGGCTTGGGTAAAGGGAT 6495	Qy	3657	TCCTCTTCTGGAGGATGGGGACAGGCCACCCAGGGAGGATGGGGCTGGGCCAC 3716
Qy	2577	GRCATACATGCGGAAATGGGGTGAAGCAGGGCTGGCAGGAATAAGAT 2636	Db	5415	TCCTCTTCTGGAGGATGGGGACAGGCCACCCAGGGAGGAGGATGGGGCTGGGCCAC 5356
Db	6494	GRCATACATGCGGAAATGGGGTGAAGCAGGGCTGGCAGGAATAAGAT 6435	Qy	3717	AGAGGGCACAAGGGAAAGATCTGTAAGTGGCTTGTGAGTCAAGGTTCTAGT 3776
Qy	2637	GAGTGAGACAGAAAGCTATGGAAATCCACACCCAGAACCAAAGGGTGA 2696	Db	5355	AGAGGGCACAAGGGAAAGATCTGTAAGTGGCTTGTGAGTCAAGGTTCTAGT 5296
Db	6434	GAGTGAGACAGAAAGCTATGGAAATCCACACCCAGAACCAAAGGGTGA 6375	Qy	3777	TCTCACTTGGGCCCTTCACACTCCCTCTCCAGGGCTGGGCTTCATGCC 3836
Qy	2697	CACCTCAACCAGGATGTGGCTCTTTCACCTCTGGTCCAGATGGCCAGGTGAGC 2756	Db	5295	TCTCACTTGGGCCCTTCACACTCCCTCTCCAGGGCTGGGCTTCATGCC 5236
Db	6374	CACCTCAACCAGGATGTGGCTCTTTCACCTCTGGTCCAGATGGCCAGGTGAGC 6316	Qy	3837	AGCTCTGCCAACACTCTGCTGGCCCTTGAACAGGAGTCACTGCTTGAGCAGA 3896
Qy	2757	ACCTCATCTCAGGGGTGACTCGGGTCACTGGGACCCATCTGGCTAAAGACAG 2816	Db	5235	AGCTCTGCCAACACTCTGCTGGCCCTTGAACAGGAGTCACTGCTTGAGCAGA 5176
Db	6315	ACCTCATCTCAGGGGTGACTCGGGTCACTGGGACCCATCTGGCTAAAGACAG 6256	Qy	3897	GGAGTGTGCACTGCCAGGCTGGGACCCCTGAACAGGAGGCTGGCTGGCTGG 3956
Qy	2817	AGGGTGGCCAGGATCTCCATCGGTCAGGGAGACATGGGGAGGACTGGGTAC 2876	Db	5175	GGAGTGTGCACTGCCAGGCTGGGACCCCTGAACAGGAGGCTGGCTGGCTGG 5116
Db	6255	AGGGTGGCCAGGATCTCCATCGGTCAGGGAGACATGGGGAGGACTGGGTAC 6196	Qy	3957	TGTGTTGTGAGGCTGGCTCCCTCTCCCTCTGGGACCCCTGGGAGGAGG 4016
Qy	2877	CCAGGACCAAGACCTGGGGAGACTCCACAGAAATCAGGCTCTGGCTGTCACCC 2936	Db	5115	TGTGTTGTGAGGCTGGCTCCCTCTCCCTCTGGGCTGGCTGGCTGGGAGG 5056
Db	6195	CCAGGACCAAGACCTGGGGAGACTCCACAGAAATCAGGCTCTGGCTGTCACCC 6136	Qy	4017	TGCCCTACTGCTGGGCAACAGATCTCCCGGAGAAGTCCTGGGCTCTGGCTGG 4076
Qy	2937	AGAGGATGGCTGGCGCTGGCCAGGCTGGCTGGCTGGCTGGCTGGCTGGCTGG 2996	Db	5055	TGCCCTACTGCTGGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGG 4996
Db	6135	AGAGGATGGCTGGCGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGG 6076	Qy	4077	CTACCATCAACTTCACCTGACAGGGAAACCCAGGAGGTTCTCAAGCGCTGTAAGAGG 4136
Qy	2997	AGGACGGGGAGGCGCTGGTCTGGTCTGGTCTGGTCTGGCTGGCTGGCTGGCTGG 3056	Db	4995	CTACCATCAACTTCACCTGACAGGGAAACCCAGGAGGTTCTCAAGCGCTGTAAGAGG 4936
Db	6075	AGGACGGGGAGGCGCTGGTCTGGTCTGGTCTGGTCTGGCTGGCTGGCTGG 6016	Qy	4197	TGGCTGATTTGGTGTGGTTCTGCTCTCAAATAATGAGGCCAGGTCAAAAGG 4256
Qy	3057	CCGCCCTGCAAGGAGTCAGGTGAGGACCAAGGGGACCTACCCAGGACACATTAA 3116	Db	4875	TGGCTGATTTGGTGTGGTTCTGCTCTCAAATAATGAGGCCAGGTCAAAAGG 4816
Db	6015	CCGCCCTGCAAGGAGTCAGGTGAGGACCAAGGGGACCTACCCAGGACACATTAA 5956	Qy	4257	CAGAAATGCTGAGACTGTCATCAAATAATGAGGCCAGGTCAAAAGG 4316
Qy	3117	CAATGAATTTCAGGAGTCAGGTGAGGACCAAGGGGACCTACCCAGGACACATTAA 3176	Db	4815	CAGAAATGCTGAGACTGTCATCAAATAATGAGGCCAGGTCAAAAGG 4756
Db	5955	CAATGAATTTCAGGAGTCAGGTGAGGACCAAGGGGACCTACCCAGGACACATTAA 5896	Qy	4317	AAAGCCCTCTGGACTCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGG 4376
Qy	3177	GTTTGTCCCCTGCTGCTCTCATTCCTATCATGGATGTAACCTCTGATTGATTTC 3236	Db	4755	AAAGCCCTCTGGACTCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGG 4696
Db	5895	GTTTGTCCCCTGCTGCTCTCATTCCTATCATGGATGTAACCTCTGATTGATTTC 5836	Qy	3237	TCAGACCAAAAGGGCAATCCAGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGG 3296
Qy	5835	TCAGACCAAAAGGGCAATCCAGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGG 5776	Db		


```

repeat_region    4837 . 5414
  /rpt_family="LIMC5"
  /evidence="not_experimental
  complement(21306 . 21496)
  /rpt_family="MIRB"
  /evidence="not_experimental
  complement(21670 . 21839)
repeat_region    5566 . 6545
  /rpt_family="LIM4"
  /evidence="not_experimental
  complement(6905 . 6963)
repeat_region    7611 . 7697
  /rpt_family="MIR"
  /evidence="not_experimental
  note="L11 with 85% homology to L12"
  /rpt_type="inverted"
  /evidence="not_experimental
  7844 . 7981
  /note="Thomology = 66.10%, score = 48, counts = 28"
  /rpt_type="tandem
  /rpt_unit="cccac
  /evidence="not_experimental
  7814 . 8708
  /note="GC score = 44.00 (895bp)"
  /note="Region: GC content"
  /evidence="not_experimental
  8294 . 8511
  /note="CPG Island score = 0.74, GC = 66.50%, CGs = 17"
  /note="Region: CPG island"
  /evidence="not_experimental
  9054 . 8831
  /note="L12 with 85% homology to L11"
  /rpt_type="inverted
  /evidence="not_experimental
  9050 . 11121
  /gene="MAGE10"
  /note="1. 2072 of gblu106851HSU10685 Human
  MAGE-10 antigen (MAGE10) gene, complete cds. 6/95 P = 0.0
  S = 9975,
  9936 . 10064
  /note="GC score = 5.60 (129bp)"
  /note="Region: GC content"
  /evidence="not_experimental
  10412 . 10533
  /note="GC score = 8.80 (122bp)"
  /note="Region: GC content"
  /evidence="not_experimental
  11391 . 49375
  /note="Region: Cosmid 3h5"
repeat_region    12154 . 12482
  /rpt_family="LIM5"
  /evidence="not_experimental
  complement(12670 . 12980)
  /rpt_family="AlusX"
  /evidence="not_experimental
  complement(11281 . 14525)
  /rpt_family="MIP"
  /evidence="not_experimental
  complement(16047 . 17011)
  /rpt_family="LTR5"
  /evidence="not_experimental
  17635 . 17747
  /rpt_family="LIME1"
  /evidence="not_experimental
  17800 . 17815
  /rpt_family="LIM4"
  /evidence="not_experimental
  17843 . 17817
  /rpt_family="LIM4"
  /evidence="not_experimental
  20010 . 20829
  /rpt_family="LIMC/D"
  /evidence="not_experimental
  complement(20859 . 21195)
  /rpt_family="MLT2E"
  /evidence="not_experimental
  21198 . 21305
repeat_region    22796 . 23134
  /rpt_family="LIM4"
  /evidence="not_experimental
  23127 . 23300
  /rpt_family="LIMD3"
  /evidence="not_experimental
  23271 . 23837
  /rpt_family="LIMC5"
  /evidence="not_experimental
  24267 . 250
  /rpt_family="LIM4"
  /evidence="not_experimental
  26071 . 26817
  /note="Region: GC content"
  /evidence="not_experimental
  26655 . 26726
  /rpt_type="tandem
  /rpt_unit="atacc
  /evidence="not_experimental
  27233 . 27358
  /note="homology = 65.90%, score = 34, counts = 21"
  /rpt_type="tandem
  /rpt_unit="ccccca
  /evidence="not_experimental
  27403 . 27510
  /note="CPG island score = 1.29, GC = 61.10%, CGs = 9"
  /note="Region: CPG island"
  /evidence="not_experimental
  27829 . 27906
  /note="homology = 79.20%, score = 36, counts = 12"
  /rpt_type="tandem
  /rpt_unit="atccc
  /evidence="not_experimental
  28990 . 29073
  /note="homology = 69.00%, score = 26, counts = 14"
  /rpt_type="tandem
  /rpt_unit="ccccaa
  /evidence="not_experimental
  30461 . 30520
  /note="GC score = 5.00 (160bp)"
  /note="Region: GC content"
  /evidence="not_experimental
  30896 . 30958
  /note="homology = 82.50%, score = 20, counts = 3"
  /rpt_type="tandem
  /rpt_unit="aggcttagggatcaccagg
  /evidence="not_experimental
  31110 . 31778
  /gene="undefined MAGE"
  /note="1. 185 of gpb1D2077 HUMMAGEC_1 Homo
  sapiens Human mRNA for MAGE-41 protein, complete_P =
  6 . 0e-15
  S = 592 . 193 . 283 of gpb1D2076 HUMMAGEB_1 Homo
  sapiens Human mRNA for MAGE-6 protein, complete_cds; P =
  1.5e-80
  S = 3556
  31172 . 31331
  /note="GC score = 13.00 (160bp)"
repeat_region    32219 . 32814
  /rpt_family="LIMC/D"
  /evidence="not_experimental
  32271 . 32814
  /rpt_family="LIMC/D"
  /evidence="not_experimental
  32296 . 32814
  /rpt_family="LIMC/D"
  /evidence="not_experimental
  32317 . 32814
  /rpt_family="LIMD3"
  /evidence="not_experimental
  32327 . 32837
  /rpt_family="LIMC5"
  /evidence="not_experimental
  32427 . 3250
  /rpt_family="LIM4"
  /evidence="not_experimental
  326071 . 326817
  /note="Region: GC content"
  /evidence="not_experimental
  326655 . 326726
  /rpt_type="tandem
  /rpt_unit="atacc
  /evidence="not_experimental
  327233 . 327358
  /note="homology = 65.90%, score = 34, counts = 21"
  /rpt_type="tandem
  /rpt_unit="ccccca
  /evidence="not_experimental
  327403 . 327510
  /note="CPG island score = 1.29, GC = 61.10%, CGs = 9"
  /note="Region: CPG island"
  /evidence="not_experimental
  327829 . 327906
  /note="homology = 79.20%, score = 36, counts = 12"
  /rpt_type="tandem
  /rpt_unit="atccc
  /evidence="not_experimental
  328990 . 329073
  /note="homology = 69.00%, score = 26, counts = 14"
  /rpt_type="tandem
  /rpt_unit="ccccaa
  /evidence="not_experimental
  330461 . 330520
  /note="GC score = 5.00 (160bp)"
  /note="Region: GC content"
  /evidence="not_experimental
  330896 . 330958
  /note="homology = 82.50%, score = 20, counts = 3"
  /rpt_type="tandem
  /rpt_unit="aggcttagggatcaccagg
  /evidence="not_experimental
  331110 . 331778
  /gene="undefined MAGE"
  /note="1. 185 of gpb1D2077 HUMMAGEC_1 Homo
  sapiens Human mRNA for MAGE-41 protein, complete_P =
  6 . 0e-15
  S = 592 . 193 . 283 of gpb1D2076 HUMMAGEB_1 Homo
  sapiens Human mRNA for MAGE-6 protein, complete_cds; P =
  1.5e-80
  S = 3556
  331172 . 331331
  /note="GC score = 13.00 (160bp)"

```


Db	29225	AAGCCCTGTGGGAGTAAGGGGGCTCAGGAACCCAGGTCCTAGATGGGGTCC 29284	Qy	2083	ACCGCACCCCTGTCTGAGCTGAG - GCTGCCACTTCTGGCTCAAGATCAGAACATG 2140	Db	29285	ACTCAACCCCTGTCTGAGCTGAGCTGAGCTCCTTCATCTGGCATAGGGATG 29344
Db	29405	GGGAGGACTCAGTGGATGGGGCTGAGGCTTACCGGGAGAAGAGGA 2200	Qy	2141	GGGAGGACTCAGTGGATGGGGCTGAGGCTTACCGGGAGAAGAGGA 2200	Db	29345	GAGGACTCAGTGGGGCTGAGGCTTACCGGGAGAAGAGGA 29404
Db	29405	GGGAGGACTCAGTGGATGGGGCTGAGGCTTACCGGGAGAAGAGGA 2260	Qy	2201	GGGAGGACTCAGTGGATGGGGCTGAGGCTTACCGGGAGAAGAGGA 2260	Db	29405	GGGAGGACTCAGTGGATGGGGCTGAGGCTTACCGGGAGAAGAGGA 29464
Db	29525	GGCAGCGGCCCCATATGCCATATTCCGCATATTGGGGCAT - - - AGGAGAG 2316	Qy	2261	GGCAGCGGCCCCATATGCCATATTCCGCATATTGGGGCAT - - - AGGAGAG 2316	Db	29465	GTGGCACAGGGCCACCTGTAGCCCATGTCGACCTCTGGTGCACAAAGGGAG 29524
Db	29525	GGCAGCGGCCCCATATGCCATATTGGGGCAT - - - AGGAGAG 29584	Qy	2317	GGCAGCGGCCCCATATGCCATATTGGGGCAT - - - AGGAGAG 29584	Db	29585	GCCCCAAGATGTGCCCTCATAGGGACTGGGGATATCCGGCTCAGAAAGAGGGAC 2436
Db	29644	TCCACACAGCTGCTGCCCTTCTAGGGGACAGACAGGGATGGGG 2496	Qy	2437	TCCACACAGCTGCTGCCCTTCTAGGGGACAGACAGGGATGGGG 2496	Db	29703	CCCCAGACAGCTGCTGCCCTCATGGGACAGGGATGGGG 29703
Db	29704	TATGTCCTTCTACTTGACCCAGGGGAGTTGGGGCTTAGGGAGATGGG 2556	Qy	2497	TATGTCCTTCTACTTGACCCAGGGGAGTTGGGGCTTAGGGAGATGGG 2556	Db	29763	TCTGGGGTAAGGGGGATGTCTACTTGACGGGATTTGGGGTGGAGACAG 2616
Db	29764	TCTGCACTGAAAGGGGGATGTCTACTTGACGGGATTTGGGGTGGAG 29823	Qy	2617	TCTGCACTGAAAGGGGGATGTCTACTTGACGGGATTTGGGGTGGAG 29823	Db	29824	GCCCCATACGGGACAGGGGATGTCTACTTGACGGGATTTGGGGTGGAG 29879
Db	29880	CCAAAGGGGTCTACCTGACCCATGTCGGGTGACGGGTAGC-TCCATCICAT 29938	Qy	2728	TCCCTGTTCCAGATCTGGGCAAGTGGGGCTCATTCAGAGGGTACTCAGGTCAAC 2787	Db	29939	TCCCTGTTCCAGATCTGGGCAAGTGGGGCTCATTCAGAGGGTACTCAGGTCAAC 29998
Db	29999	GTAGGACATGGGGCAAGTGGGGCTGAGGACTTCTGGGATGCTGGGT 2847	Qy	2788	GTAGGACATGGGGCAAGTGGGGCTGAGGACTTCTGGGATGCTGGGT 2847	Db	30058	GAGGAACACATGGGGCAAGTGGGGCTGAGGACTTCTGGGATGCTGGGT 30058
Db	30059	GAGGAACATGGGGCAAGTGGGGCTGAGGACTTCTGGGATGCTGGGT 30118	Qy	2848	GAGGAACACATGGGGCAAGTGGGGCTGAGGACTTCTGGGATGCTGGGT 30118	Db	30119	GAGGAACATGGGGCAAGTGGGGCTGAGGACTTCTGGGATGCTGGGT 30178
Db	30119	GAAATCTGCCCTGCCCCTGTTGACTCCAGGCTGAGGACTTCTGGGATGCTGGGT 30178	Qy	2908	GAAATCTGCCCTGCCCCTGTTGACTCCAGGCTGAGGACTTCTGGGATGCTGGGT 2908	Db	30179	GAAATCTGCCCTGCCCCTGTTGACTCCAGGCTGAGGACTTCTGGGATGCTGGGT 30237
Db	30179	GAAATCTGCCCTGCCCCTGTTGACTCCAGGCTGAGGACTTCTGGGATGCTGGGT 30237	Qy	3026	CITGGCTCAGTCACTGAGTGGAGGCTGAGGACTTCTGGGATGCTGGGT 3026	Db	30298	AGGGGCCACCTGAGTGGAGGCTGAGGACTTCTGGGATGCTGGGT 30357
Db	30298	AGGGGCCACCTGAGTGGAGGCTGAGGACTTCTGGGATGCTGGGT 30357	Qy	3028	CITGACTCAGTCACTGAGTGGAGGCTGAGGACTTCTGGGATGCTGGGT 30297	Db	31315	GCCGTAAGAGGGGGCCAAGGACCTCTGATCTGGCTCCAGGAGCT 31374
Db	31315	GCCGTAAGAGGGGGCCAAGGACCTCTGATCTGGCTCCAGGAGCT 31374	Qy	4125	GCCGTAAGAGGGGGCCAAGGACCTCTGATCTGGCTCCAGGAGCT 4125	Db	31375	ACCAAGAAGAGGGGGCCAAGGACCTCTGATCTGGCTCCAGGAGCT 31434

QY	4185	TCACTAAGGAGGGCGCTGATTTGGTTCTGCGCTTCTGAGTCAGTGCTGAAATGAGCCAGGGC	4244
Db	31435	TCACTAAGGAGGGCGCTGATTTGGTTCTGCGCTTCTGAGTCAGTGCTGAAATGAGCCAGGGC	31494
QY	4245	CAGICACAAAGGCGAAATCTGAGATGTCATCAAATTAACACACTTTCCTG	4304
Db	31495	CGGTACACAAAGGCGAAATCTGAGACCGTCAATCAAATTAACACACTTTCCTG	31554
QY	4305	AGATCTTCGCAAGGCGCTGAGTCAGTGCTGAGTCAGTGCTGAAAGAAG	4364
Db	31555	AGATCTTCGCAAGGCGCTGAGTCAGTGCTGAGTCAGTGCTGAAAGAAG	31614
QY	4365	CAGACCCACCGGCCACTGCTGCGCTGAGTCAGTGCTGAAAGAAG	4424
Db	31615	CAGACCCACCGGCCACTGCTGCGCTGAGTCAGTGCTGAAAGAAG	31672
QY	4425	TGCTGGGTGATAATCAGATCAATGCCAACAGCGCTCTGATAATTGTCCTGCTGATGA	4484
Db	31673	TGCTGGGTGATAATCAGATCAATGCCAACAGCGCTCTGATAATTGTCCTGCTGATGA	31730
QY	4485	TTGCAATGGGGGGCATGCTCTGAGGGAAATCTGGGAGGCTGTAGTGATGG	4544
Db	31731	TTGCAATGGGGGGCATGCTCTGAGGGAAATCTGGGAGGCTGTAGTGATGA	31790
QY	4545	AGGCTATGATGTCGGGAGGACACACTGCTATGGGAGGCCACACAAAG	4604
Db	31791	AGGCTATGATGTCGGGAGGACACACTGCTATGGGAGGCCACACAAAG	31850
RESULT			
QY	4605	ATTGGTGGAGGAAAGTACTGGAGTA-CGGAGGTGCCAGACTGATCCGGAGCT	4663
Db	31851	ATTGGTGGAGGAAAGTACTGGAGGTGCCAGACTGATCCGGAGCT	31910
QY	4664	ATGAGTCCCTGGGGCTCAAGGGCCCTGCTGAAACAGCTATGTGAAAGGCTCTTGT	4723
Db	31911	ATGAGTCACTGGGTCAAGGGCACCTGCTGAGGAGCAGCT	31960
QY	4724	ATGTGATCAGGTAGTGGAAAGAACTGGCTTCCCTGGTAAAGCAGCTT	4783
Db	31961	ACGGGTCAGGGCAATGAAAGCTTCATTCCTGGTAAAGCAGCTT	32020
QY	4784	TGAGAGGGAGGAGGGAGGCTGACCATGAGTGGAGGGGA	4843
Db	32021	TGAGAGGGAGGAGGGAGGAGGGAGGCTGAGCTGAGGATGAGCTGAGG	32080
QY	4844	CTGGCCAGTGCACTTCCAGGGCCGCTCAGAGCTTCCCTGCC-TGCTGTGACATG	4902
Db	32081	CTGGCCAGTGCACTTCCAGGGTCCGTCAAGTGTGACATG	32140
QY	4903	AGGCCATTTCACTC - TGAAGAGGGCTGAGTCAGTGTCTGTC	4960
Db	32141	AGGCCATTTCACTCAGTGTCTGTCAGTGTCTGTC	32200
QY	4961	TATGGGTGACTGGAGATTATCTTGTCTTGGAAATGTTCTT	5020
Db	32201	TATGGGTGACTGGAGATTGTGCTTGGAAATGTTCTT	32259
QY	5021	TAAGGGATGGTGAATGAACTTCAGCATCOAGTTTACATGAGCAGTCAC - AG	5078
Db	32260	TAATGGGTGATGAACTTCAGCATCOAATTGATGAGCTGCTACATAG	32319
QY	5079	TTCTGGTGTATAAGGTAAAGGTTGCTGTTTATCAGATGGAAATCCATT	5138
Db	32320	TGCTGGTTTATAGTGTAGGTAAGACTGTTGTTTATCAGATGGAAATCCATT	32379
QY	5139	CTATTTGGAAATGGG - ATAAAACAGGAGTGGAAATGACTTA-GAAATGTA	5195
Db	32380	CCATTTGGAAATGGACATAGTACAGTGGAAATGATCATTAGTAATGTGA	32439
QY	5196	ATGACGAGTAAATGATGAGAAAGACTTAAGGAGATGTCATTCTGC	5255
Db	32440	ATGACGAGTAAATGATGCA-----TAAAGAAATTAAAGATATTCTGC	32491
RESULT			
HS10687	7	HS10687 11495 bp DNA	PRI
LOCUS		Human MAGE-4a antigen (MAGE4a) gene, complete cds.	
DEFINITION			
VERSION	U10687	11495 bp	23-JUN-1995
VERSION	U10687.1	GI:533514	
KEYWORDS			
ORGANISM	Homo sapiens		
EUTHERIA; METAZOA; CHORIOPA; CRANIATA; VERTEBRATA; MAMMALIA;			
PRIMATES; CATARRHINI; HOMINIDAE; HOMO.			
REFERENCE	1 (bases 1 to 11495)		
AUTHORS	De Paeen,E., Traversari,C., Gaforio,J.J., Szikora,J.P., Lurquin,C.		
DE Smet,C., Brusseur,F., van der Bruggen,P., Lethe,B., De Backer,O., Cavenee,W. and Boon,T.			
Brasseur,R., Chomez,P.			
STRUCTURE, CHROMOSOMAL LOCALIZATION, AND EXPRESSION OF 12 GENES OF THE MAGE FAMILY			
TITLE	JOURNAL		
JOURNAL	Immunogenetics	40 (5), 360-369 (1994)	
MEDLINE			
REFERENCE	2 (bases 1 to 11495)		
AUTHORS	De Paeen,E.		
TITLE	Direct Submission		
JOURNAL	Submitted (14-JUN-1994) Etienne De Paeen, Ludwig Institute for Cancer Research, 74 Avenue Hippocrate, Brussels, 1200, Belgium		
FEATURES	Location/Qualifiers		
SOURCE	1. .11495		
/organism="Homo sapiens"			
/isolate="Patient MZ2"			
/db_xref="Taxon 9606"			
/chromosome="X"			
/sex="female"			
/cell_type="lymphocyte"			
/tissue_type="blood"			
/dev_stage="adult"			
exon	450..510		
	/note="exon 1-1"		
	836..937		
	/note="exon 1-2"		
	1418..1556		
	/note="exon 1-3"		
	2108..2246		
	/note="exon 1-4"		
	2836..2928		
	/note="exon 1-5"		
exon	3508..3607		
	/note="exon 1-6"		
	5256..5313		

JOURNAL Submitted (19-DEC-1996) Genome Analysis, Institut for Molecular
Biotchnology, Beuttenbergrstrasse 11, Jena 07745, Germany

FEATURES Location/Qualifiers

source 1..15898 /organism="Homo sapiens"
/db_xref="Taxon:9606"
/chromosome="X"
/map=Xq28:
1..39138 /note="Region: cosmid IF064"
1..106 /rpt_family="LIPall"
/evidence="not_experimental"
213..282 /rpt_family="LIMB3"
/evidence="not_experimental"
complement(1180..1244)
/note="GRAIL, score = 43.000%, comment = marginal"
exon /evidence="not_experimental"
complement(1683..1767)
/note="MZF, score = 60%"
/evidence="not_experimental"
complement(2062..2120)
/note="FEXHB, score = 11.76%"
repeat_region /evidence="not_experimental"
complement(2637..2710)
/rpt_family="LIME2"
/evidence="not_experimental"
complement(2859..3038)
/rpt_family="LIME3A"
/evidence="not_experimental"
complement(2911..2918)
/note="MZF, score = 79.7%"
/evidence="not_experimental"
4230..4311 /note="GRAIL, score = 52.000%, comment = good shadow"
/evidence="not_experimental"
complement(4639..4866)
/rpt_family="LIMA2"
/evidence="not_experimental"
complement(4893..5233)
/rpt_family="LIMA2"
/evidence="not_experimental"
complement(4974..5117)
/note="GRAIL, score = 61.000%, comment = good"
repeat_region /evidence="not_experimental"
complement(5206..5561)
/rpt_family="LIMA2"
/evidence="not_experimental"
complement(5562..5602)
/rpt_family="LIMA9"
/evidence="not_experimental"
complement(5619..5655)
/rpt_family="LIMA5"
/evidence="not_experimental"
complement(6084..6254)
/rpt_family="MLTID"
/evidence="not_experimental"
complement(6362..6322)
/rpt_family="MLTID"
/evidence="not_experimental"
complement(6384..6519)
/rpt_family="MLTID"
/evidence="not_experimental"
6664..6771 /note="homology = 89.80%, score = 82, counts = 27"
/rpt_type=tandem
/rpt_unit=tctt
/evidence="not_experimental"
exon 6807..6884 /note="FEXHB, score = 10.83%"
/evidence="not_experimental"
repeat_region 7337..7454 /evidence="not_experimental"

/rpt_family="L1"
/evidence="not_experimental"
7483..733 /note="FEXHB, score = 12.95%"
repeat_region 7950..8010 /rpt_family="MSTA"
/evidence="not_experimental"
8147..8338 /rpt_family="MSTA"
/evidence="not_experimental"
8245..8286 /rpt_family="MSTA"
/evidence="not_experimental"
8287..8361 /rpt_family="MSTC1"
/evidence="not_experimental"
8878..8921 /note="homology = 97.70%, score = 20, counts = 2"
repeat_region /rpt_type=tandem
/rpt_unit=gatttaatgtcaaggcgcta
/evidence="not_experimental"
complement(9471..9526)
/note="MZF, score = 85.6%"
/evidence="not_experimental"
complement(9474..9529)
/note="FEXHB, score = 12.02%"
/evidence="not_experimental"
9618..9660 /rpt_family="MER3"
/evidence="not_experimental"
10066..10099 /note="GRAIL, score = 61.000%, comment = good"
/evidence="not_experimental"
11110..11190 /note="GRAIL, score = 76.000%, comment = excellent"
/evidence="not_experimental"
11257..11275 /note="FEXHB, score = 19.61%"
/evidence="not_experimental"
11360..11419 /note="homology = 91.70%, score = 20, counts = 2"
/rpt_type=tandem
/rpt_unit=aggccaaatagctagaactttatcatcaggc
/evidence="not_experimental"
11613..11637 /note="Xbound exon prediction, score = 68% (0%)"
/evidence="not_experimental"
complement(12650..12662)
/note="FEXHB, score = 13.07%"
/evidence="not_experimental"
13530..13600 /rpt_family="MLT2B2"
/evidence="not_experimental"
13607..13760 /rpt_family="MLT2B2"
/evidence="not_experimental"
13820..13947 /note="GRAIL, score = 88.000%, comment = excellent"
/evidence="not_experimental"
13924..13977 /rpt_family="MLT2D"
/evidence="not_experimental"
13978..14043 /note="homology = 75.80%, score = 23, counts = 6"
/rpt_type=tandem
/rpt_unit=tcttcctcttt
/evidence="not_experimental"
14054..14087 /note="homology = 94.10%, score = 28, counts = 17"
/rpt_type=tandem
/rpt_unit=tg
/evidence="not_experimental"

Db	58825	GAGGAGGCCAACCCAAAGATAGA -GGAACCCAATAATCCAGCGCAGCTCTGCNGGCCA	58883
Qy	1624	GCCGTGGCACCGGCCAGAGAGATTCAGCTGGACACCCCCGTCGTCAC	1683
Db	58884	GTCCTGGCACACCGG - -GGAAAGACTCTCA - -GGCTGGCATCCAGCTCCAC	58936
Qy	1684	TGCCACTTAACCCACAGGCACTGTAGTACATAGCTATGGACCCGGCAGGGTTGT	1743
Db	58937	TGCACTTAAGCTACAGGGACTCTAGTCAAGAGTTGTGTGCCA - - - -	58985
Qy	1744	CAGGAGGCAGGGCAAGGATCAAGTCAGCATCGCCGGCATTAGGGTCAAGGAC	1803
Db	58986	- - - - -AGCAAGGCCAGC -	59025
Qy	1804	CTGGAGGGAACTGAGGGTTCCACCCACACTGTCCTCATCACCACCCCA	1863
Db	59026	TTCAGGAACTGAGGGCTAACCCACCTGGCTCATCACCACCCCA	59075
Qy	1864	CTACATTCGCCATACCTACCCCTACCCCAACCTCACTGTCAATCCTGCTCA	1923
Db	59076	TGCCAGGCCATCCCAACTCGTTTGCAAGATTCATTTC - - - - TCCCTGCACTCA	59131
Qy	1924	ACCCAGGAAAGCCACGGGAAATGGGGAGGACTGGATCTGAATCCTCAGGG	1983
Db	59132	ACCCGGAAAGACCTGGAAAT - - - CAGGZACTCGATCTGAATCCTACATCGAGG	59188
Qy	1984	TCTGTAGGGAAAGGG - - - - - - GCTGAACAGGGCTCAAGGGAGGAG - - -	2032
Db	59189	CTGAAGGGGAAAGGGTGTATCATGAGGCTCAAGGTACAGAGGAGAAC	59248
Qy	2033	- -GCCCTACTGGAGATGAGGGAGGCTCAAGGGACCCCTAGGACACCG - - -	2086
Db	59249	CTGCCCNCTGGAGATGAGGAAGGGCTCAAGGACCCAGAACCTAAGGGGCC	59308
Qy	2087	- -CACCCCTCTGAGCTG - - - QCTGCCACTCTGGCTCAAGATCGAAAGATG	2140
Db	59309	CACCCACCCGCTGAGATGAGGCTCTCTTCTAGCTCAGAAATCCAGGATG	59368
Qy	2141	GGACTCTGATTCATGGGGGG - -CCCAAGGCTGAAGGCTAACGGGAGG	2198
Db	59369	GCAACTCGGTCAAGGGGGGGTCAAGGGCTCAAGGCTTCAGGATCAAGGAGAC	59428
Qy	2199	CAGGGAGGACTCAGGGGACATATGGCCATATTCCTGAGCTGGACCTGGCT	2258
Db	59429	GAGGGAGGATTCAGGGGCTTCAGGATTCAGGAGGACTCTGGAGGTC	59488
Qy	2259	CAGGGAGGCTGCCAACATGGCCATATTCCTGAGCTGGACCTGGCT	2314
Db	59489	CTGGCAAGGTACCTGACTCTCATACTTCCTGAGCTGGACCTGGCT	59548
Qy	2315	AGAGCTGCTGAGAAGTGGGCTCAAGGTCACAGAGGGAGGACTCCAGGATCAT	2374
Db	59549	AGGCTCATGGTCAAGGGTACTCAGGCTGGGACTCCAGGATTCAC	59608
Qy	2434	GACTCCAGACAGTGGCTGGCCTTCTAGCTGGGAGGATCAAGGATGGTGG	2493
Db	59669	ATGGCCCAAGGATGGCTCCACTCTCACTGAGCTGGGATATCCGGCTCAAGAGG	59728
Qy	2494	CGGTATGTCATTCACCTGACGGGAACTGGGGCCCTCAAGGAGATG	2553
Db	59609	AGGACCCAGGATGGTGCACACTTCAGGAAATGGGATACCTGTGCTCAAGGAGAT	59668
Qy	2554	GGCTCTGGGTAAAGGGGGAGTGTCACTCATGAGGAACTTCAGGAGG	2613
Db	59729	CCCTATGTCACATTCACTGTGTCACAGGAACTGGTGGGAAGG	59848
Qy	2614	CAGCGCTGGCACAAATAAGATGAGTCAGAACGGCTATGGAAATCCACCCA	2673
Db	59849	CAGGCCCTGTCAGGGCAACAGGATGAGTCAGAACGGCTATGGAAATCCACCCA	59925
Qy	2674	GAACCAAAGGGTCAGGGCTCACCTGGACACCTCACCTGGAGGTGT	2725
Db	59909	GAACCAAAGGGTCAGGGCTCACCTGGACACCCACAGGGTGCAC	59968
Qy	2726	ACTCTGTTCCAGATGGGGAGGACTCTAGGGTGAATCTAGGGTACTC	2785
Db	59969	ATTCTGATTCCAGATCTCACTGAGGACTCTAGGGTACTCAGGGT	60028
Qy	2786	ACGTAAGGACCCCCTATGGCTAAAGACAGAGGGCATTGGCCATGGTGG	2845
Db	60029	CCACAGGACCCCCATGGGTTACACACACAGGGTCCAGGGAGACTCTG	60088
Qy	2846	CTGAGGAACATGAGGGGGACTGAGGGTACCCAGGGACACAGGAGACTGCA	2905
Db	60069	GTGAGGAATGTGGGGATTGGGGTACCAACAGGGCACGCAATGACCCA	60148
Qy	2906	CAGAACATGGCCCTGCTGGTCACCCAGAGAACATGGGCTGGCCCTGGCAG	2965
Db	60149	CAGAACATGGCCCTGCTGGTCACCCAGAGAACATGGGCTGGCAG	60208
Qy	2966	GRCCCTTCGTTATCTGGGATCATGTTGCTGGAGGGCTGGCTCTGAGAAGG	3025
Db	60209	GRCCCTTCCTTATCCGGATCACTGGTCTGGACTGGGCTGGCTGAGGG	60268
Qy	3026	CTRGCGCAGGGTAGGAGGCTGGGCTCCAGGGTGAAGTGGAGGACCA	3085
Db	60269	CTGCAACCCAGGTCAGTGGAGGAGGTTGGGGTCAAGGGTACACCA	60328
Qy	3086	AGGGGACCTAACCGAGACATTATCAATGATTTGATCTCTGTCGCTCC	3145
Db	60329	AGCAGGCTCCGGATCCAGGACATGGGCTCAATGATTGACATCTGCTGT	60388
Qy	3146	TC-CCCAAGGACCTAGGACCTGGACCTGGCTGGCAGATGTTTCCCTCCATCTCT	3204
Db	60399	TCTCGGAAAGCTTAGGAGGCTAGGAGGTTGGGAGATGTTCTAGGFCCT - -GTTCC	60445
Qy	3205	TATCATGGATGTCAGCTGTTGGATTCTCTGAGGATCCAGGATCCAGG	3264
Db	60446	TCTCAGSGATGAGGCTGCTGATCTGTTGGATGTCAGCTGAGTGGGATCAGG	60505
Qy	3265	CCTGGCAAGGAAATAAGGGCCCTGGGAGAAGGGGCTGATCCACTGGTGA	3324
Db	60506	CCTGGCCTGGAGAAATGTGGGGATGATCCTGAGTGGGGATCAGCTGAGTGGG	60565
Qy	3325	GACTGGGGATGTCAGAGTGGCCACCTGGGAGGAGGGGCTGATGGGACT	3384
Db	60566	GRTGGGGAGCTTCAGAGTGGGGACTCTGGGACTGAGGGGGGTGT	60625
Qy	3385	CTTGGCGGCTGACCTGGGGCTGGGGCTGGGGCTGGGGCTGGGGCTGGGG	3444
Db	60626	GCTTACAGTGTGACCTTAAGGGCCCTGGATTCCCTAGGGTCCAGGAACAGG	60685
Qy	3445	CAGTGGAGGCCTGGCTGAGAGCTTGGGAGGATGGCACAGGAGGATGG	3504
Db	60686	CAGTGGAGGTGGCTGAGAGCTGGGAGGATGGCACAGGAGGATGG	60745
Qy	3505	TGCCAGGAGTGAATGTTGGCTGAATGGCACAGGAGGACACA	3564
Db	60746	TGGCAGGAGTGAATGTTGGCTGAATGGCACAGGAGGACACA	60805
Qy	3555	TAGGACCCACAGGAGGATTCCTGGCTCACCTCCCTACTGTCAGTGGCTGAAATGGCTCT	3624
Db	60806	TAGGACCTCCAAAGGTGTGGCTCACCTCCCTACCCATCAATCTGGCAAGTGGCTCT	60865
Qy	3625	CTGGCCSCTGTAACCTGGCTGAGTGGCTGAGGAGGAGGAGG	3683
Db	60866	CTGGCCGCGTACCCCTGAGGAGGAGGAGGAGGAGGAGGAGG	60925
Qy	3684	CCAACCCAGGAGGACGATTCTGGGAGGCCACCTGGCCACAGGAGGATCTGTA	3743
Db	60936	CCAACCCAGGAGGATCCGGGAGGCCACCTGGCCACAGGAGGAGGAGG	60984

AUTHORS	De Plaen,E., Arden,K., Traversari,C., Gaforio,J.J., Szikora,J.-P., De Smet,C., Brasseur,F., van der Bruggen,P., Lethe,B., Lurquin,C.	Qy 1838 GTCTGCCTATCTCACCGCCACCACTCACATCCCCATACCTTACCCCACAC 1897
Brasseur,R., Chomez,P., De Becker,O., Cavenee,W., and Boon,T.	Db 927 CATCGCATC----- -CAACATCCAGGCCATCCCCAACCTGTTTGCAAGA 976	
Structure, chromosomal localization, and expression of 12 genes of the MAGE family	Qy 1898 TCAVCTTGTCAGATUCCUGCTGTAACCCACGGAAAGACCGGAAGGGCAGGCAC 1957	
JOURNAL Immunogenetics 40 (5), 360-369 (1994)	Db 977 TCCATTGTTT---TCCCTCGCACTGAACTGGAAATGT---CAGSCAC 1029	
MEDLINE 95014257	Qy 1958 TCGGATCTGACGTCTCCCATCCAGGTCTGATGGAAAGGG---- -GCTTGAAAG 2010	
REFERENCE 2 (bases 1 to 4895)	Db 1030 TCGATCTGACATCACATCGAGGGCTAGAAGGAAACTTGGATATGAGC 1089	
AUTHORS De Plaen,E.	Db 1090 AGCCATCGGGTAGAGGGAGGCCCTGCCCCTCTGGAGATGAGAAGGGCTCAGGA 1149	
TITLE Direct Submission	Db 1095 GACCCAGCCCC----- -TAGGACACCGCACCCCTGTCAGACTGAG -- GCTGCCA 2113	
JOURNAL Submitted (14-JUN-1994) Etienne De Plaen, Ludwig Institute for Cancer Research, 74 Avenue Hippocrate, Brussels, 1200, Belgium	Qy 2011 GGCCTCACTCGAGATGAGGGGGAGG---- -GCCCTACTCGAGATGAGGGCTCAGAG 2064	
LOCATION/QUALIFIERS 1.	Db 1150 GACCCATCGGGAGCCACCCACCCCTGTCAGAAAGGGCTCAG 1209	
/organism="Homo sapiens"	Qy 2114 CTCTGGCTCTCAAATCGAAACATGGGACTCAGATTGCTGGGGGGGA -CCAG 2171	
/isolate="Patient M22"	Db 1210 CCTTAGCTCAGGATCAGGAACTAGGAGGAGGAGGTTCCAG 1269	
/chromosome="X"	Qy 2172 GCCTGCAAGGCCTTACGGAGGAGGAGGACTCAGGGACCTTGGAAATCCAGAT 2231	
/db_xref="Taxon: 9606"	Db 1270 CCCTTCAGGATCAAGGAAGGAGGAGGATTCAGGGCCCTTGCACTCCAGAT 1329	
/sex="female"	Qy 2232 CAGTTGACCTGGCCCTGAGCTGGCCAGGGTACATGGCCATATTC 2291	
/cell_type="lymphocyte"	Db 1330 CAGTGGAGGACTGGCCCTGGAGGTCCCTGGCAAGGAGGCCACATGGCC 1389	
/tissue_type="blood"	Qy 2292 CTGCATCTTGAGGT--- -GACAGAACAGCTGGGTGAGAGTGGGGCTCAGGT 2347	
/dev_stage="adult"	Db 1390 CTGCATCTGAGGTACAGGAGGCTACAGAGGAGGGCTATGGCTGAGGGT 1449	
2777 .. 2848	Qy 2348 AACAGGGAGGAGGTCCAGGATCCATGGCCAGATGGCTGAGGGCT 2406	
/number="2	Db 1450 CGAGAGGGAGGAGGAGGATCACAGAGGAGGGCTAGGGTGGCAACTTCAGGGAA 1509	
2924 .. 4491	Qy 2407 GGGATATCCGGCTCAGAAAGGGGACTCTGGCTGTCCTTTAGAA 2465	
/number="3	Db 1510 GGATACCTGGGTCAAAAGGGGCCAACAGCTGGCTGCCCCCTCTTA 1560	
2989 .. 3942	Qy 2467 GCTCPAGGGGACCAGATCAGGGATGGGGTATGTTCCACTCTTCACTGTTACAGGCA 2526	
/gene="MAGE4b"	Db 1570 GCTCAGGGGACCAGAGGGATGGGGTATGGCCCTATGGCCAAATTCACTTTCAGGGCA 1629	
2989 .. 3942	Qy 2527 GGAAGTTGGGGCCCTCAAGGAGATGGGCTCTGGGTAAGGGGGGTGCTACTCT 2585	
/gene="MAGE4b"	Db 1630 GGAAGTTGGGAAACCTTCAGGGAGTGGGGATGGAAAGGGCAATGTTGCTAT 1689	
/codon_start=1	Qy 2587 GTCAGGGAAATTGGGATTCAGACCCAGAACGGCTGGGAAATAAGTGAATGAGA 2641	
/product="MAGE-4b antigen"	Db 1690 CTCAAGGGGTTGGGGTTGGAGAAGGGAGGCCCTGAGGACCTTCACCC 1743	
/protein_id="AA68877.1"	Qy 2647 GACAAGGGTATTGGATTCAGACCCAGAACGGCTGGGAAATGGCTAAAGCACAG 2705	
/db_xref="GI: 533217"	Db 1749 CAGGGCCATCAGAACCTTCACCCAGAACGGCTGGGCAACCCAC 1808	
/translation="MSEEQKSQHCKPKEEGVEAQEEBALGLYQAQAPTEEQEAVSSSS	Qy 2707 AG----- -GATGGCTCTTTCACCTCTGTTCAAGATGGGGAGGGAGGC 2578	
PLVPGTLEEVPAESGPPQPQGAELPITFISFCWQRQAEPEKLVKPEVIFGKAEPSLDA	Db 1809 AGGGGACAGATGTGGCTCTTCATTCGATTCAGATTCAGGGTACAC 1868	
ESIPLERLSNVDELAHFILRKYAKELTHKAEMLERVKPEVIFGKAEPSLDA	Qy 2759 CTCATCTCAGAGGGTGAATCAGGTCAACCTGAGGACCCCATCTGGTCAAGACAG 2819	
MIFGIDKWEDETNTVYLVCLGSDREHTYGEPKSLTQDWDYENLYLRQVEGSNPARYEFLWP	Db 1889 CTGGTCCAGGATCTGCAAGGATGAGGATGGGGTACAGGAGGATGGCTACAG 1943	
RLAIWELSYKVYLEHVYRVNAVRVIAPIYSSRLREALLEEEVV"	Qy 2819 CGGTCCAGGATCTGCAAGGATGAGGACTGAGGGTACGGTAAAGCACAG 2878	
polyA_signal 4472 .. 4477	Db 1929 TGGTCCAGGATCTGCAAGGATGAGGACTGAGGGTACGGTAAAGCACAG 1988	
BASE COUNT 1134 a 1235 c 1433 g 1093 t	Qy 2879 AGGACCAAGAACACTGAGGGAGACTGAGGGTACGGTAAAGCACAG 2938	
ORIGIN	Db 2879 AGGACCAAGAACACTGAGGGAGACTGAGGGTACGGTAAAGCACAG 2938	

QY 5064 ACACCGAGTCACACAGCTGTTGTATATAAGGGTAAGAGTCCTGTGTTTATTCTAG 5123
 Db 4202 GTGGTAACTGATATTGTGTTAATAGTTCAG 4261
 QY 5124 ATGGGAAATCATTCTTGTGAATTGG --ATAATACAGCAAGTAAAGTAC 5180
 Db 4262 ATGGGAAATCCTTGTGAATTGGCAAAATACAGCAAGTAAAGTAT 4321
 QY 5181 TAGAACATGCAAAATGCAACTAAATAGTGAGATAAAGAAATAAGAG 5240
 Db 4322 TTGAAAGTGC--AATTCACCTGAAATAATGGTGTGAT-----AAATPAAAAG 4366
 QY 5241 ATAGCAATTCTGCCCTATACTCAGCTATCTGTAATAAGATATATGCT 5300
 Db 4367 ATACTTAATTCGGCCATTGCTCACATCTGTGAAATAATTTAAATATATGCT 4426
 QY 5301 ACCGGATTCTCCTGGCTCTTGAAAGATAAATCTGAATAAGATT 5360
 Db 4427 ACCGGATTCTCCTGGCTCTGGCTC--GTGATGTGAGAAATAATATTTC 4483
 QY 5361 TCCGTGTCACGGCTCTTCTCCATGGCACTGAGCATGTCGTTTGGAGGCCCT 5420
 Db 4484 TTCTGTAACTGGCTATTCTCTATGGACTGAGCATGTCGCTGTGGAGGCCA 4543
 QY 5421 GGTTAGTAGGGAGATCTAAGTAACCACTAGGGTCGTAGAG 5480
 Db 4544 GGAATAGTAGGGAGATCTAAGTAACCACTAGGGTCGTAGGGATTAAGA 4603
 Query Match Score 2429 / 6; DB 10; Length 4736
 Best Local Similarity 75.9%; Pred. No. 0;
 Matches 3736; Conservative 0; Mismatches 47;
 QY 715 TTCCGCCAGAAAATCCGGTGCCTGGATGAGCAGCTGCTGGGG 774
 Db 15 TTCAACCCGGGATCCGGGATCCCTGGTGCAGATGCTGGCACTGTTGAGTT 74
 QY 716 CAGGAAAGGGGGTTTCATTCTGAGGACGGGGTAGGTGGCCGAGCTGGT 74
 Db 75 CGGAGAAAGGGCTGCTGGGGCAGG-TGGAGATAGCTGAGGGAGCTG 133
 QY 835 CCAGGCTCTGAGGGCAAGGGTAGGGACTGGGGGGACTGGGGCCAC 894
 Db 134 CCCTGCCTGTGAGGATGAGGGTATCCACCC 193
 QY 895 CAATAGAGGGCCCAATAATTCCAG--CCCGCCCTCTGGCAGGGCCACCC 951
 Db 194 CTGGPAGTGGAGGAAATATCCAGTGCACCTCTGGTGGACCATCC 253
 QY 952 GCGGAGAGCTCTAGCMGGCGCCAGACGGCTGGCTGGAGAG 1011
 Db 254 AGGGCAGGACTCTTGTGGCTGGGACCCAGTCCCACCGGTTAACCGGG 312
 QY 1012 ACCAGGTCTCTCCCAAAGTCTGGAAATGAGGTGGTGTGACCAGGGACTGT 1071
 Db 313 -----CTCAGGAGAAGACTCTGGATGACGGCAGACTGGT 352
 Homo sapiens Eukarya; Metazoa; Chordata; Craniata; Vertebrata; Mammalia;
 DEFINITION Human MAGE-5b antigen (MAGE5b) gene, complete cds. 23-JUN-1995
 ACCESSION U10690
 VERSION GI:533520
 KEYWORDS human
 SOURCE human
 ORGANISM Homo sapiens
 Eukarya; Primates; Catarrhini; Hominidae; Homo.
 REFERENCE 1 (bases 1 to 4736)
 AUTHORS De Plaein,E., Arden,K., Traversari,C., Geforio,J.J., Szikora,J.P.,
 De Smet,C., Brasseur,F., van der Bruggen,P., Lethe,B., Lurquin,C.,
 Brasseur,R., Chomere,P., De Baecher,O., Cavenee,W. and Boon,T.
 TITLE Structure, chromosomal localization, and expression of 12 genes of
 the MAGE family
 JOURNAL Immunogenetics 40 (5), 360-369 (1994)
 MEDLINE 95012457
 REFERENCES 2 (bases 1 to 4736)
 AUTHORS De Plaein,E.
 TITLE Direct Submission
 JOURNAL Submitted (14-JUN-1994) Etienne De Plaein, Ludwig Institute for
 Cancer Research, 74 Avenue Hippocrate, Brussels, 1200, Belgium
 FEATURES Location/Qualifiers 1. 4736
 source /organism="Homo sapiens"
 QY 1312 GCCCCAAACCCACCCACTCTCATGTCCCCACTCCATGCCCTCCCCATCTG 1371

			-----	CCCTATCCTG	530
Db	513	TCCCCA -	-----		
Qy	1372	GCAGAATCGTT - TGCCCTGTCTCACCCAGGGANGCCCTGGTAGGCCCATGTGAA	1430		
Db	531	GCAGAATCGATTCTGCCCCTGATTCACCCGGGGCTAGCTGAA	590		
Qy	1431	ACACTGACTTGACCTACAGATCTGAGAAGCCAGTCAATTAAATGGTCTGAGGG	1490		
Db	591	GCTCTGACTTGACATGGGTCAGAGAACTGAA	644		
Qy	1491	GGCTGTGAGATCCTAGGGAGTGGGGAGTGGTTAGGTGAGATGAGATG	1550		
Db	645	GCGACTAGATAGAGGGAAATGGCCGGCTGTGGAGGAGCAAGTGAGCC	704		
Qy	1551	CT-GAGGGAGACTGAGGGACACACCCAGGTAGATGGCCCCAAATGANTCAGTAC	1609		
Db	705	CCCGAGGAGATGGAGGAGGCTTACCC - AGATAGAAACCCAAATAATCCAGTAC	762		
Qy	1610	CACCCCTGTGCCAGGCCCTGGACACCCGGCCGGACAGATGNTCTCACTGGACCACCC	1669		
Db	763	TACCTCTGTGCCAGGCCCTGGACAC - - CCAGGGCAGACTCTCAGCTGAACTTC	818		
Qy	1670	CCGCCCGCNCCTAACCTGCTGCCACTTAAACCCAGGGAAATCTGAGTACATT - ATGTAC	1728		
Db	819	C---CCCTCCCCTACTGCCACTTAAACCCAGGGAAATCTGAGTACATT - ATGTAC	875		
Qy	1729	CGGGCAGGGTTGTCAGSGAGGCCAGCATGGTCCAGGATCCAGATCCGCCGGC	1788		
Db	876	CAGGAAGGGCCGGTAGAGGAGG - - - - - GCGGGCCAGGCTCGTCAGC	922		
Qy	1789	ATTAGGGTCAGGCCCTGGAGGAACCTGGGTTCCCAACCCACCTGTCTCTCATC	1848		
Db	923	ATCAAATGGACCCCTGAGAGAAATTGGGCCACCCATAACCCATCC	912		
Qy	1849	TCCACCGCACCACACTCAATTCCATCTACC --- CCPТАCCCAACCTCATCT	1904		
Db	983	CTAACCCATACCCACTCTACTGCACTCCAGCCCATCCCACCTAACCCATCT	1042		
Qy	1905	GTCAGAA - - - - - TCCCTGTCAACCCACGGAAAGCCAGGGAAATGGCGCAGG	1954		
Db	1043	GGCAGAACTGTGTCTCTCTCGAGTAACCCACAGGGCCACAGAGACAG	1102		
Qy	1955	CACRGGATCTGACGTCCCATCGGGTCTGAGGTGAGGG - - - - - GCTTGTAA	2007		
Db	1103	CACACCCATTCTGACGTCACTCCAGGGCTGAGGGAAAGGCCTAGTATCATAG	1162		
Qy	2008	CAGGGCCTAGGGAGCAGGG - - - GGGGCCCTACTCGAGATGGAGGCCTCAGA	2063		
Db	1163	CAGGGCCTAGGGAGTCTGCTCTCAAGCCCTCTGGAGTAAGGGAGGCTCAG	1222		
Qy	2064	GGACCCAGCACCTAGGA - - - - - CACCGAACCCCTGTCGAGCTGAGG - - TGCC	2112		
Db	1223	GAACCCAGGCTCAGGATGGGGTCCACTCAACCCCTGTCAGACTAGGGCCNCC	1282		
Qy	2113	ACHTCTGGCTCAAGAATGAGGATGGGACTCTGCACTGGGGTGGACCTCAG	2172		
Db	1283	TCTTTCATCTCGGAATACAGGATGGGACTACGTCAAGGAGGGGGCCCAAC	1342		
Qy	2173	CCPGCAAGGCTTACGGGAGGAAGGGAGGAGGACTCAGGGACCTCTGCAARTCAGAT	2232		
Db	1343	CCPSCCAGGATCAAGGAGAAAGGGAGGACTACGTCAAGTGGCTCAGTCCAG	1402		
Qy	2233	AGTTGGACCTCGGCCCTAGAGGTCAGGTCAGCTGACATGGCCCATATTTC	2292		
Db	1403	AATGGGACCTTSCCCSGAGSTCCAGTGCACAGTGTACCCCATGCTTC	1462		
Qy	2293	TGATCTTGTAGGTGAC - - - AGACAGACCTGTTGAGAATGGGGCTAGGTA	2348		
Db	1463	TGACCTCTGGGAGCAAAAGGGAGGGCTGNGTCAAGGTACTAGGACTAGGICA	1522		
Qy	2349	ACAGGGAGGAGTCCAGATCCATATGCCCAAAGATGTGCCCCATGTGAGGACTG	2408		
Db	1523	GCAGAGGGAGGAGTCCAGATCTGAGATGCCCTGAGGGCTCTGCTGCCCCATGTGAGTGG	1584		
Qy	2409	GGATATCCCGGGCTCAAGAAAAGGGACTCCACAGATCTGGCTGCCCTTGTAGTAGC	2468		
Db	1583	GGACA - CCCTGGCTCAAGAAGGGACCCACAGTCGGCTGCCCTGATTTGTC	1641		
Qy	2469	TCTAGGGGACCAATCAGGATGCCATCTGGATGGCTATGTCATCTCACTGTCACACGGAGG	2528		
Db	1642	TCAGAGGGACCAATCAAGATACCCTCATGTCACAGGACAGAAAG	1701		
Qy	2529	AAGTGGGGCCCTCAGGAGATGGGGTGTCACTATGT	2588		
Db	1702	AAGTGAAGGGCTGAGTAAAGGGGGCTAGTGTGAGACAGA	1761		
Qy	2589	CAGGAATTGGGGTGGCCAGGATAAGATGAGTGTGAGACAGA	2643		
Db	1762	CAGGGGTTICAGGTTGAGAATGCCAGGCCATACGTGAGAGTAA	1819		
Qy	2649	CAAGCTATGGGAATCACAACCCAGAACAAAGGGTCAAGCCCTGACACCTCA	2703		
Db	1820	---AGCCATAGAAACACTCCAGAACAAAGGGTCAACCCATGTGTC	1875		
Qy	2704	---CCAGGATGGGGCTCTTTTCACTCTGTTCCACATCTGGGAGGTGAGGACC	2759		
Db	1877	GGGTGACAGGATGAGCT - CCATCTCATCTGGTGGAGAATGGGGACCTT	1935		
Qy	2760	TCACTCTCAAGGGTGGACTAGGGCAACCTCTGCTAAAGAGAGC	2813		
Db	1936	TTGTTCTCCGAGGATGACTAGGICAACAGGGCCCCATCTGGTGTAGACAGT	1995		
Qy	2820	GGTCCCAGGATCTGCACTGGCTGGGAAACATGGGAGGACTGAGGGTACCCA	2879		
Db	1996	GGTCCAGGATCTGTCAGTGTAGTTCGGTGGAGAATGGGGACCTTGGGGACCTT	2055		
Qy	2880	GGACCAAGAACACTGGGAGACTGCAAGAAATCAGGCCCTGGCCCTGCTGACCCAGA	2939		
Db	2056	GGGCCAGAAATCAGGCCCTGGCCCTGCTGCTGACCTTGGGGACCTTGGGGACCTT	2115		
Qy	2940	GAGCATGGCTGGGCGCTCTGGCCAGGCTCTTC - GTTATCCTGGATCATCTGTC	2997		
Db	2116	GAGCATGGGAGGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTG	2175		
Qy	2998	GGACGGGAGGGCCGGCTGGAGGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGG	3057		
Db	2176	GTGATGGGGAGGTCTGTCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTG	2234		
Qy	3058	GCCCTGCCAGGAGTCAAGGTGAGGACCAAGGGCCACTCAGCCAGCACATTATTC	3117		
Db	2235	GCCCTGCCAGGAGTCAAGGTGAGGACCAAGGGCCACTCAGCCAGCACATTATTC	2291		
Qy	3118	AATGAAATTGATCTCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTG	3176		
Db	2295	AATGAAATTGATCTCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTG	2351		
Qy	3177	GTGTTGCCCTCCCTCCCTCCCTCCCTCCCTCCCTCCCTCCCTCCCTCCCTCC	3233		
Db	2355	GTGATGCTCTCTCATGTCCT -- - GTCCTCATGTCCTCATGTCCT	2411		
Qy	3237	TCAAGACGAAAGGGCAAGGATGAGCTGAGGAGGAAATAATAGGGCCCTGCTGTG	3295		
Db	2412	TCAAGACGAAAGGGCAAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGG	2471		
Qy	3297	AGAACAGGGGGCTTCAGGCTGAGTGTGACAGTGGGACTCTGCTGCTGCTGCTG	3356		
Db	2472	AGCACAGGGGACCTTACGCCAGAGGTGGAAACCTTCAGGTTCCAGCTTCC	2531		
Qy	3357	CCTGGTACCTGAGAGGGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTG	3416		
Db	2532	CCTGTTAGCACTGGGGCTGAGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTG	2591		
Qy	3417	TCCTCTCCCTGAGGCTGAGCTGAGCTGAGCTGAGCTGAGCTGAGCTGAGCTG	3476		
Db	2592	TCCCTCTCCCTGAGGCTGAGCTGAGCTGAGCTGAGCTGAGCTGAGCTGAGCTG	2651		

			RESULT	11
Qy	3477	GGTCACAGCAGGAGATGGCACAGGGT---GTGCCAGGTGAATGTTGCCCTGTAATG	3532	HSU10689
Db	2652	GGTCACAGCAGGAGATGGCACAGGGTGAATGTTGCCCTGTAATGTTGCCCTGTAATG	2711	HSU10689
Qy	3533	CNCACAGGCCCCACCCCAAGGACAGAACATAGACTCACAAGTGCGCTCA-OC	3551	4741 bp
Db	2712	CACACTAATGCCCTCATCCGCCCAAGAACATAGACTCACAAGTGCGCTCAACCC	2771	DNA
Qy	3592	TCCCTACTGTAGTCGTCGTAATGACCTCTGTCGGGGCTGTACCCGTACCCCTC	3651	Human MAGE-5a antigen (MAGE5a) gene, complete cds.
Db	2772	TCTCTACTGTAGTCGTCGTAATGACCTCTGTCGGGGCTGTACCCGTACCCCTC	2831	PRI
Qy	3652	TCACHTCCTCCTTCAGGTTTCAGGGACAGGCCAACCCAGGAC-----A	3698	4741 bp
Db	2832	TCACHTTTCCTTCAGGTTTCAGGGACAGGCCAACCCAGGAC-----A	2891	DNA
Qy	3699	GGATTCCTGGGGCACAGGGCACAGGGCACAGGGCACAGGATACCAGAAAGTCAGA	3757	23-JUN-1995
Db	2892	GGATTCCTGGGGCACAGGGCACAGGGCACAGGGCACAGGAGTCAGA	2951	DEFINITION
Qy	3758	AGAGTCTCCAGGTTCAAGTCTCAAGCTCAAGCACTTCACCCCTCTCCTCCAGG	3817	
Db	2952	AGAGTCTCCAGGTTCAAGTCTCAAGCTCAAGCACTTCACCCCTCTCCTCCAGG	3011	
Qy	3818	CTGGGGCTCTCATGCCCAGCTCTGCCCACACTCTGCCCAGCTCTGCCCAGG	3877	
Db	3012	CTGGGGCTCTCATGCCCAGCTCTGCCCACACTCTGCCCAGCTCTGCCCAGG	3071	
Qy	3878	ATCATCTCTCTGAGCAGGAGGTCTGCACTGCAGCCAGCTCTCAGCTGCA	3937	
Db	3072	GTATGTCCTGTCAGAAGAGTAGCAGCTGCAAGCTGCAAGCTGCA	3131	
Qy	3938	CAAGAGGCCCTGGGCTCTGCTGTGCAAGCTGCACTGCACTGCACTGCA	3976	
Db	3132	GAAGAGGCCCTGGGCTCTGCACTGCACTGCACTGCACTGCACTGCA	3191	
Qy	3977	TCCTCTCTCTCTCTGGCTCTGGCACCTGGGCAACTCTGGTGGTCACAAC	4036	
Db	3192	TCCTCTCTCTCTCTGGCTCTGGCACCTGGGCACTCTGGTGGTCACAAC	3251	
Qy	4037	GATCCCTCCCAGAGTCCTCAGGAGCTCAGGAGCTCCCTACCATCACTTACTCA	4096	
Db	3252	GATCCCTCCCAGAGTCCTCAGGAGCTCAGGAGCTCCCTACCATCACTTACTCA	3311	
Qy	4097	CAGAGCAACCCAGCTGGGCTCCAGCCAGGCGTGAAGAGGAGGGCCACCC	4156	
Db	3312	TGGAGCAATTCAAAGGGTCCAGCAACCAAGAGGAGGGCCACCC	3371	
Qy	4157	ATCCCTGGAGCTCTGGCTCCAGCAGTAATCACTAAAGAAGGGCTGATTTGGT	4216	
Db	3372	GACCCAGAGGT	3431	
Qy	4217	CTGCTCTCTCAAATAICGAGGAGGCCAGTCAAAAGCAGAAATGCTGGAGGTG	4276	
Db	3432	CTGCTCTCTCAAATAAGCTGCAAGGAGCCGCTCAGGAGACGCTGCTG	3491	
Qy	4277	ATCAAAAATACAAGCACTGTTCTGAGATCTCGGCCAGCTGCTGCTG	4336	
Db	3492	ATCAAAAATACAAGCGCTCTTCCTGAGATCTCGGCCAGCTGCTGCTG	3551	
Qy	4337	CTGGCTTGGCATGAGTGAAGAGGAGCCACCGCCACTCCPAATGTCGTC	4396	
Db	3552	CTGGCTTGGCATGAGTGAAGAGGAGCCACCCACCCPAACCTTCGTC	3611	
Qy	4397	ACCTGCCTCTGAGTCGTCCTGAGTAAATCACTGCCCCAAAGACA	4456	
Db	3612	ACCTGCCTGGG---ACCTCTATGATGCTGGGGT-TATCAATCATGCCAAAGAC	3667	
Qy	4457	GGCTCTCTGATAATGTCCTGGCTCATGATGCAATGGAGGGCCATGTCCTGAGG	4516	
Db	3668	GGCTCTCTGATAATGTCCTGGCTCATGATGCAATGGAGGGCCATGTCCTGAGG	3727	

Qy	2064	GACCCAGCACCTAGGA-----CACCGCACCCCTGTCTGAGACTGAG--GCTGCC	2112	Qy	3118	AATGAATTTCATATCCTGCTGCCCTTCCCCA-AGGACCTAGGCACCTGGCCAGAT	3176
Db	1223	GAACCGAGCTCTAGGATGGGGTCACTTCAACCTGAGTGAATGGCC	1282	Db	2295	AATGCATTCTAGCATTCTCTCTCCATGAGCTTACCTGAGCTTACCTGGCCAGAT	2344
Qy	2113	ACTTCTGCCTCAAGAACGATGGGACTCAGATTGATGGGGTGGGACCCAGG	2172	Qy	3117	GTTTGCCCCCTCTGCTCCATCCTTATCATGGATGAACTCTTGATTGGATTIC	3235
Db	1283	TCTTCATCTGGAACTACAGGATGAGTCACTGAGCTTACAGGGTGGGCCAAC	1342	Db	2355	GTGAGTCCTCATGTCCT - GTTACCTCATGGATGAGCTCTTAACTCAGTTC	2411
Qy	2173	CCTGAAGGTTAGGGTAGGGAGGAGACTCAGGGACCTGGGATCCAGATC	2232	Qy	3237	TCAAGCAGAAAAAGGCAAGATGGGGCTGGGAGAAAATAAGGCCCTGGCAGTG	3295
Db	1343	CCTCCAGGATCAAGGAGGAAAGGGAGGACTCAGGTACGGTCAAGAAC	1402	Qy	3297	AGAACAGGGGTATCAGCTGGGATGTCAGAGTCAAGGTCAGCCACCC	3355
Qy	2233	AGTGTGACCTGGCCCMGAGAGTCCAGGGAGGGGACTCAGGGACCTGGG	2292	Db	2412	TCAGGCAAGAAAAGTGGGATCAGGGTGGGAGTGGGGAAAGTGAAGGCC	2471
Db	1403	ATGGGGACCTTGGCCCGGGAGGGTCAAGTGGGAGGAGCTGGG	1462	Db	2472	ACACAGGGGACCATTCACGGTCAAGGGTGGGACCTGGGACCTAACCT	2531
Qy	2293	TGATCTTGGGGTAC-----AGGACAGGCTGGGTGAGGAAAGTGGGCTCAGSTCA	2348	Qy	3357	CCTGGPAGCAGTGGAGGAGGAGGCTGGCTGGCTGGCTGGCTGGGGCTG	3416
Db	1463	TGCACTCTGGGTGAGCAAGGGAGGACTCAGGTACGGTCAAGAAC	1522	Db	2532	CTGTTAGACCTGGGGCTGGGGCTGGGGCTGGGGCTGGGGCTGGGGCTG	2591
Qy	2349	ACAGAGGGAGGAGTCCAGGATCCATATGGCCCATATGGGATATTCC	2408	Qy	3417	TCTCTPTCTGAGCTCAGGTCAGGTCAGGTCAGTGGCTGAGAGTATCCTCA	3476
Db	1523	GAAGGGGGAGGATGGGCTGAGAACAGTGTGCCCCCTCATAGGAGACTGG	1582	Db	2592	TCTCTPTCTCAGAGCTCAGGTCAGGTCAGGTCAGTGGCTGAGACCTGACCTCA	2651
Qy	2409	GATATCCCGGCTCAGGATCCACAGGGACTCCACAGGGCTGAGTGG	2468	Qy	3477	GGTCAAGGAGGAGGAGGATGACAGGGT-----GTGCAAGGAGTGTGCTGAA	3532
Db	1583	GAATA-CCTTGTCTGAGGAGCCCAGCATTCAGGAGGAGCCCAGG	1641	Db	2652	GGTCAZAGGAGGAGGAGGAGGAGGAGGAGTGGCTGAGCTTGGCTGAA	2711
Qy	2469	TCTAGGGGACGAGTCAAGGATGGGATGGGTATGTCATTCTCACTTGATCAGG	2528	Qy	3533	CACACAGGGACCCACCTGGCAGACAGGACATAGGACATGGCTGGCCNCA	3591
Db	1642	TCAAGGGGACCAATCAGGATAGCCATTGTCACCTATTTGCCCCAAG	1701	Db	2712	CAACATGGGCCCCATGGCCCAACACATGGGACTCAGGACCTGGCTCACCC	2771
Qy	2529	AAGTGGGGGGCTCAGGATGGGCTCTGGGATGGGTCTGGGTAAGGGGG	2588	Qy	3592	TCCCTACTGTCAGTCTGTTAGAATGTCAGCCTGACAGCTGCGGCTGTPACCTG	3651
Db	1702	AAGTGAAGAAGCCCTCAGGGTGTGGGCTCTGAGAAAGGGGCTGTCACCT	1761	Db	2772	TCTCTATGTCAGTCTGACAATTCAGCCTGTCAGGCTGACCTGCCCC	2831
Qy	2589	CAGGAATTTGGGGTTGAGGAAGCACGGCTGGGAGAAATAAGTGGAGA	2648	Qy	3652	TCACTTCCTCTCAGGTTTCAAGGTTTCAAGGTTTCAAGGTTTCAAGG	3698
Db	1762	CAGGGGGTTCTAGGATGGGATGGGAGGCCCCTCATCGATAGAGTAACCCACGG	1819	Db	2832	TCACTTTTCTCAGGTTTCAAGGTTTCAAGGTTTCAAGGTTTCAAGG	2891
Qy	2649	CAAGGCTATTGGAAATCCACACCCAGAACAAAGGGCTGGACACCTCA	2703	Qy	3699	GGATCCCTGAGGGCACAGGAGGACACAGGAGGACACAGGAGGAC-----	3757
Db	1820	- -AGCCATGAACACTACCCAGAACACGGGCTCATCTGGACACCCATGG	1876	Db	2892	GGATCCCTGAGGGCACAGGAGGACACAGGAGGACACAGGAGGAC-----	2951
Qy	2704	- -CCAGGATGTTGCTCTCTCTCACTCTGGGCTGGGCAAGTGAGGACC	2759	Qy	3758	AGAGTCICAAGGTTAGTTCACTGAGGCTCTCAACACTCCCTCTCCAGGC	3817
Db	1877	GGTACAGATGAGTAGC-TCCAICTCATCCTGTTAGGAGGTGAGAAC	1935	Db	2952	AGAGCTTCAGGTTAGTTCACTGAGGCTCTCAACACTCCCTCTCCAGGC	3011
Qy	2760	TCACTCTCAGAGGGTGAATCTGGGACCCCCATCTGGCTAAAGACAGAGC	2819	Qy	3818	CITGTGGSTCTTCATGGCCACACCTCTGGCTGCGCTGAGAGTC	3871
Db	1936	TGTCTCTCCAGGATGAGTCAACAGGGCCCCCATTGGNGATAAGACAGT	1995	Db	3012	CAGTGGGTTCTCATGGCCAGCTCTGGCCACACCTCTGGCTGAGGAGAGTC	3071
Qy	2880	GACCAAAACATAGGGAGACTCACAGAACATGGGAGGAGCTGGCCCTGTG	2939	Qy	3878	ATCATGTCCTCTGAGGAGGAGTCTGCACTGGGAGGAGCCCTGAGCCAA	3937
Db	2056	GGCCAGAACACAGATGAGGAGGAGCTACGGAAATGCTGGCCCTGAGA	2879	Qy	3977	TCTTCCTCTCTGCTGGCTGGGACCTGGAGGAGTCTGGCTGGCTAACCA	4035
Db	1996	GGTCCAGGATCTGGGAGGCTGGGCTGGGAGGCTCTGGCTGAGGGAGCT	2055	Db	3192	TCTTCCTCTGCTGGCTGGCTGGCTGGCTGAGGGAGCTGGCTAACCA	3251
Qy	2940	GAGATGGGGGGGGGGTGGGGCTGGCTGGGAGCTGGGAGCTGGGAGCT	2997	Qy	4037	GATCCMCCCTCAGGAGCTCAGGAGCTCAGGAGCTCAGGAGCTCAGG	4095
Db	2116	GAGCATGGGCAAGGCTGTCAGTGGGAGCTGGGAGCTGGGAGCTGGT	2175	Db	3252	GTCCTCTCAGGAGCTCAGGAGCTCAGGAGCTCAGGAGCTCAGGAG	3311
Qy	2998	GGAGGG	3057	Db	3192	TCTTCCTCTGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTAACCA	3251
Db	2176	GGATGGGGAGGCTGGGCTGGGAGGCTGGCTGGCTGGCTGGCTGGCT	2234	Qy	4097	CAGGGCAACCGAGTGGGTCAAGGGTCAAGGGTCAAGGGTCAAGGGT	4156
Qy	3058	GCTCTGGCAAGGAGTCAAGGGAGCACTACCCAGACATTAATTC	3117	Db	3312	TGGAGGCAATCCATTAAAGGGTCTCCAGCAACAGGAGGAGGAGGAG	3371
Db	2235	GCCCTGCCAGGAGGAGCTGGGAGGAGGAGGAGGAGGAGGAGGAGGAG	294	Qy	4157	ATCCCTGGAGTCCTTGTCTCGAGCAAGGAGGAGGAGGAGGAGGAGG	4215

				RESULT	13
Qy	3616	CGACCTCTGCCGGCTGTACCCCTGAGTACCCCTCACTTCCTCAGTTTCAG	3675	GAACCACTA C T A N T G A A A G T C C T G A G A T G T G A T C A A G G T C A G T G C A A G G T C A G T G C G C T T 4755	
Dy	361	CCACCTCTGCCGGCTGTACCCCTGAGTACCCCTCACTTCCTCAGTTTCAG	420		
Dy	3676	GGACAGGCCAACCCAGGGACAGGATTCCCTGGGACAGGCCAACAGGAGAA	3735		
Dy	421	GGACAGGCCAACCCAGGGACAGGATTCCCTGGGACAGGCCAACAGGAGAA	480		
Dy	3736	GATCTGAAGTAGGCCCTTGTAGAGTCTCAGGTTCACTGAGGCCCTCA	3795		
Dy	481	GATCTGAAGTAGGCCCTTGTAGAGTCTCAGGTTCACTGAGGCCCTCA	540		
Dy	3796	CACACTCCCTCTCCCAAGGCCTGGGTCAGCTCCAGGAACTCCT	3855		
Dy	541	CACACTCCCTCTCCCAAGGCCTGGGTCAGCTCCAGGAACTCCT	600		
Dy	3856	GCTGCTGCCCTGAGCAGAGTCATCACTGTCCTTGAGCAGGAGTGTGCA	3915		
Dy	601	GCTGCTGCCCTGAGCAGAGTCATCACTGTCCTTGAGCAGGAGTGTGCA	660		
Dy	3916	TGAGGAAGCCCTTGAAGCCCAAAGGGCTGGGCTGGCTGCTGAGGTG	3975		
Dy	661	TGAGGAAGCCCTTGAAGCCCAAAGGGCTGGGCTGGCTGCTGAGGTG	720		
Dy	3976	CGCTCTCCCTCTCTGCTGGCACCTGGGCCACTGCTGGGTCAC	4035		
Dy	721	CGCTCTCCCTCTCTGCTGGCACCTGGGCCACTGCTGGGTCAC	780		
Dy	4036	AGATCCCTCCCAGAGTCTCAAGGAGCTCAGGCTGCTGAGCTC	4095		
Dy	781	AGATCCCTCCCAGAGTCTCAAGGAGCTCAGGCTGCTGAGCTC	840		
Dy	4096	ACAGGGCAACCCAGTGGGTTCCAGGCGCTTAATCACTAAGCCCTTG	4155		
Dy	781	ACAGGGCAACCCAGTGGGTTCCAGGCGCTTAATCACTAAGCCCTTG	900		
Dy	4156	TATCCTGGAGTCTTCTGGCTGGAGCTAATCACTAAGGGAGCTGGTT	4215		
Dy	901	TATCCTGGAGTCTTCTGGCTGGAGCTAATCACTAAGGGAGCTGGTT	960		
Dy	4216	TCTGCTCTCAATAATCAGGCCAGGAGCCAGTACAAGGCGAAATGCTG	4275		
Dy	961	TCTGCTCTCAATAATCAGGCCAGGAGCCAGTACAAGGCGAAATGCTG	1020		
Dy	4276	CATCAAAAATAGAACGACTGTTCTCTGAGTCTGGCTGAGTCCTGCA	4335		
Dy	1021	CATCAAAAATAGAACGACTGTTCTCTGAGTCTGGCTGAGTCCTGCA	1080		
Dy	4336	GCCTGGCTTGGCATGCTGAGGAGCAAGCCCACTCTCTCTCTGT	4395		
Dy	1081	GCCTGGCTTGGCATGCTGAGGAGCAAGCCCACTCTCTCTCTGT	1140		
Dy	4396	CACTGCTCTGGCTGAGGAGCAAGCCCACTCTCTCTCTGT	4455		
Dy	1141	CACTGCTCTGGCTGAGGAGCAAGCCCACTCTCTCTCTGT	1200		
Dy	4456	AGGCTTCTGATATTGCTCTGGCTGAGGAGCAAGCTGCTGAGA	4515		
Dy	1201	AGGCTTCTGATATTGCTCTGGCTGAGGAGCAAGCTGCTGAGA	1260		
Dy	4516	GGAAATCAGGCCAGGAGCTACCCAGAATTTGCTGAGAAGTACGG	4575		
Dy	1261	GGAAATCAGGCCAGGAGCTACCCAGAATTTGCTGAGAAGTACGG	1320		
Dy	4576	TGGGAGGCCAGGAGCTACCCAGAATTTGCTGAGAAGTACGG	4635		
Dy	1321	TGGGAGGCCAGGAGCTACCCAGAATTTGCTGAGAAGTACGG	1380		
Qy	4636	CAGTGGCCGACAGTGGCTCCAGGCTATGAGTTCTGGGTCAGGGCCCTGCT	4695		
Dy	1381	CAGTGGCCGACAGTGGCTCCAGGCTATGAGTTCTGGGTCAGGGCCCTGCT	1440		
RESULT	13				PAT
AR0073_31					AR0073_31 2420 bp
LOCUS					Sequence 23 from patient US 5750395.
DEFINITION					
04-DEC-1998					04-DEC-1998

QY	5115	TCTTATTAGAGATGGAAATCCATTCTTATTGTTGAAATTACAGCACTGGAAAT 5174	intron		/cell_line="M22-MEL-43"
Db	1861	TTTATTAGAGATGGAAATCCATTCTTATTGTTGAAATTACAGCACTGGAAAT 1920		1..412	/partial
QY	5175	AGTACTCTAGAAATGCTGAAATGCACTAAATAGATGAGATAAAGAACATAAGAAAT 5234			/gene="MAGE-1"
Db	1921	AGTACTCTAGAAATGCTGAAATGCACTAAATGAGATAAAGAACATAAGAAAT 1980	exon	number1	413..485
QY	5235	TAAGAGTAGCAGAACATCTTGCTTAAACCCAGCTTATCTGAAATTAAAGATAT 5294			/gene="MAGE-1"
Db	1981	TAAGAGTAGCAGAACATCTTGCTTAAACCCAGCTTATCTGAAATTAAAGATAT 2040	intron	number2	join(413..485, 561..2111)
QY	5295	ATGCATACCTGTGATTCTGGTCTTCAGTCACTGTTGAAATGAAATTCTGATAAA 5354			/gene="MAGE-1"
Db	2041	ATGCATACCTGTGATTCTGGTCTTCAGTCACTGTTGAAATGAAATTCTGATAAA 2100	exon	561..2111	/gene="MAGE-1"
QY	5355	GAATTCTTCCTTCACTGGCCTTCTCCATGCACTGCTTGTCTTTGGAA 5414			/number3
Db	2101	GAATTCTTCCTTCACTGGCCTTCTCCATGCACTGCTTGTCTTTGGAA 2160	gene	626..1555	/gene="MAGE-1"
QY	5415	GACCTCGGGTAAAGTAAAGCTAAACCCACCATAGGGTC 5474			/gene="MAGE-1"
Db	2161	GCCCCGGGTAGTAGTGGAGTGGAGCTAACCCATAGGGTC 2220			/codon_start=1
QY	5475	CTAGAGCTCTAGAGGCTCAGTCACGTAATCGGTTGGCAAGATGTCCTCTAAAGATGTAG 5534			/product="MAGE-1"
Db	2221	CTAGAGCTCTAGAGGCTCAGTCACGTAATCGGTTGGCAAGATGTCCTCTAAAGATGTAG 2280			/protein_id="GI:416115"
QY	5535	GGAAAGTGGAGCAGGGGTGAGGGTGTGGGCTCCTGGTGAAGCTGGTGAATG 5594			/db_xref="MSL:QSLHCKPPEALEAQEALGGLCYCOAATSSSPLVIGLE"
Db	2281	GGAAAGTGGAGCAGGGGTGAGGGTGTGGGCTCCTGGTGAAGCTGGTGAATG 2340			/EVPTAGSDPPQDPQGAAKPTINFRRQRQPSSEEGPSSEEEPSLILSPLVIGLE
QY	5595	CCCTGAGTGGCCATTGGGAAACTGGCTTGGGAGCTGGTGCATTG 2400			/TKVADLGFLFGLSYDGLNDIMPKTGFLIVLYMAMEGHAPAEPEWELL
Db	2341	CCCTGAGTGGCCATTGGGCTTGGGAGCTGGTGCATTG 2420			/SVNEYDREHSYGEPKLKLTDIVQEKLEYRQFDSDPARYELWGPRALEYSY
QY	5655	TAATGATCTGGTGGATC 5674			/VKLEYVVKVSARVRFFPSLREALREEEGV
Db	2401	TAATGATCTGGTGGATC 2420			/2005..2100
					/gene="MAGE-1"
					/partial
					/number=3
			BASE COUNT	562 a	
			ORIGIN	582 c	
				677 g	
				599 t	
RESULT	14		Query Match	42.4%	Score 2408; DB 9; Length 2420;
HUMMAG1A		PRI	Best Local Similarity	100.0%	Pred. No. 0;
LOCUS			Matches 2419; Conserv.	0;	Mismatches 0;
DEFINITION	Human antigen (MAGE-1) gene, complete cds.		Indels 1;		Gaps 1;
ACCESSION	M77481..1				
VERSION	GI:416114				
KEYWORDS					
SOURCE	Homo sapiens (individual_isolate patient M22) melanoma				
ORGANISM	metastasis of melanoma DNA.				
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Mammalia;					
Butharia; Primates; Catarrhini; Hominidae; Homo.					
REFERENCE	1 (bases 785 to 1286)				
AUTHORS	van der Bruggen, P., Traversari, C., Chomez, P., Lurquin, C., De Plen, E., Van den Ende, B., Kruth, A. and Boon, T.				
TITLE	A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma				
JOURNAL	Science 254, 1543-1547 (1991)				
MEDLINE	9208661				
REFERENCE	2 (bases 1 to 2420)				
AUTHORS	van der Bruggen, P.				
TITLE	Direct Submission				
JOURNAL	Submitted (05-FEB-1992) Pierre van der Bruggen, Ludwig Institute for Cancer Research, Brussels Branch, Avenue Hippocrate, 74, UCL 7459, Brussels, B-1000, Belgium				
COMMENT	On Nov 15, 1993 his sequence version replaced gi:187294.				
FEATURES	Location/Qualifiers				
SOURCE	1..2420				
	/db_xref="Organism=Mono sapiens"				
	/map="X"				
	/sex="female"				
	361 CGACCTCTGTTGGCCAGCAGCAATGTTGCCCTGATGCAACAAAGGCC				
	3616 CGACCTCTGTTGGCCAGCAGCAATGTTGCCCTGATGCAACAAAGGCC				
	3661 CGACGGTGTGGCCAGCAGCAATGTTGCCCTGATGCAACAAAGGCC				
	3661 CGACGGTGTGGCCAGCAGCAATGTTGCCCTGATGCAACAAAGGCC				

QY	3.676	GGACAGGCCCCAACCCAGGAGCACAGGATTOCTTGAGGCCAACAGGAGAACAGGAA	3735	Db	1501	TTCCTCCATCCCGTGAAGCTTGAGAGGGAAAGGGCATG	1569
Db	4.21	GGACAGGCCCCAACCCAGGAGCACAGGATTOCTTGAGGCCAACAGGAGAACAGGAA	480	QY	4.815	AGTGCAGCAAGGCCACTGGGGGACTGGSCCAGTCAGTGTGCAAGGGCGGTCC	4874
QY	3.736	GACCTGTAAGTAGGCCCTTGTAGCTCAAGGTCAAGTTCTAGTGTAGCTCTCA	3795	Db	1561	AGTGCAGCAAGGCCACTGGGGGACTGGSCCAGTCAGTGTGCAAGGGCGGTCC	1620
QY	3.796	CACACTCCCTCTCCCAAGGCCCTGTGGGTCTCATGCCAGTCAGGTCAAGCTCT	3855	Db	1681	GTGTCAGTCAGTAGTGTGTCGTTGCTGAGCTGGAGATTATTTGTTCTCT	4999
Db	5.41	CACACTCCCTCTCCCAAGGCCCTGTGGGTCTCATGCCAGTCAGTGTAGCTCT	600	QY	4.995	TTGGAAATTTCATAAATGTTTTAAGGATGTTGATGAACTTCAGTCAGTCAG	5054
QY	3.856	GCTCTGCTGCCTGAGTCATGCTCTGAGGAGTCAGTGTGAGCTGCAACCC	3915	Db	1741	TTTGGAAATTGTCAAAATGTTTTAAGGATGTTGATGAACTTCAGTCAGTCAG	1800
Db	6.01	GCTCTGCTGCCTGAGTCATGCTCTGAGGAGTCAGTGTGAGCTGCAACCC	660	QY	5.055	TTATGATGACAGCAGTCACAGCTCATATTTGTAAGGTTAAGAGTCAGTCAG	5114
QY	3.916	TGAGGAAGCCCTTGTGGGCCCTGGCTGGTGTGAGCTGAGCTGCAAC	3975	Db	1801	TTATGATGACAGCAGTCACAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG	1860
Db	6.61	TGAGGAAGCCCTTGTGGGCCCTGGCTGGTGTGAGCTGAGCTGCAAC	720	QY	5.115	TTTATCAGATTGGAAACCATCTATTTGTAATGGATAAACAGCAGTCAG	5171
QY	3.976	CT	4035	Db	1861	TTTATCAGATTGGAAACCATCTATTTGTAATGGATAAACAGCAGTCAG	1920
Db	7.21	CT	840	QY	5.175	AAGTACTTACAATGTGAAATGCACTGAGTAAATGAGATAAGAACTAAAGAA	5231
QY	4.036	AGATCCTCCAGAGTCTCAGGCTTCAGGAGTCAGTGTGAGCTACTCTG	4095	Db	1921	AAGTACTTACAATGTGAAATGCACTGAGTAAATGAGATAAGAACTAAAGAA	1980
Db	7.81	AGATCCTCCAGAGTCTCAGGAGCTTCAGGAGTCAGGAGTCAGGAG	840	QY	5.235	TAAGAGATAGTCATTCTCCCTATACCTCAGTCTATCTGTAATTTAAGATA	5291
QY	4.096	ACAGAGGCAACCCAGTGTAGGTTCTAGCAGCCGAGCCAGACCTCTG	4155	Db	1981	TAAGAGATAGTCATTCTCCCTATACCTCAGTCTATCTGTAATTTAAGATA	2040
Db	8.41	ACAGAGGCAACCCAGTGTAGGTTCTAGCAGCCGAGCCAGACCTCTG	900	QY	5.295	ATGCAACCTGGATTCCTGGCTCTTGTGAAATGTAAGAAATAATCTGATAAA	5353
QY	4.156	TATCTGGAATCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCT	4215	Db	2041	ATGCAACCTGGATTCCTGGCTCTTGTGAAATGTAAGAAATAATCTGATAAA	2100
Db	9.01	TATCTGGAATCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCT	960	QY	5.355	GAATTCCTCTGTGTCATGCTGCTCTCTCTCTCTCTCTCTCTCTCTCT	5414
QY	4.216	TCTGCT	4275	Db	2101	GAATTCCTCTGTGTCATGCTGCTCTCTCTCTCTCTCTCTCTCTCTCT	2160
Db	9.61	TCTGCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCT	1020	QY	5.415	GGCCCTGGGTAGTGTGAGATGCTAAGGTCAGACTCATCCACCCATAGGGTC	5471
QY	4.276	CATAAAAAAATACAGCACTGTCTCTCTCTCTCTCTCTCTCTCTCT	4335	Db	2161	GGCCCTGGGTAGTGTGAGATGCTAAGGTCAGACTCATCCACCCATAGGGTC	2220
Db	10.21	CATCAAATATACAGCACTGTCTCTCTCTCTCTCTCTCTCTCT	1080	QY	5.475	GTAGAGTCAGGTGCACTGAGTCAGTCACTGAACTGTCCTAAAGATGTG	5534
QY	4.336	GCTGGCTCTGGCATTTGAGCTGGAGAACAGAACCCCCACTCTCTG	4395	Db	2221	GTAGAGTCAGGTGCACTGAGTCAGTCACTGAACTGTCCTAAAGATGTG	2280
Db	10.81	GCTGGCTCTGGCATTTGAGCTGGAGAACAGAACCCCCACTCTCTG	1140	QY	5.535	GGAAAAGTGAAGAGGGTGGGGCTGGGTGAGGTGTGAGTGTGAACTG	5594
QY	4.396	CACCTGGCTTGTGCTCTCTCTCTCTCTCTCTCTCTCTCTCTCT	4455	Db	2281	GGAAAAGTGAAGAGGGTGGGGCTGGGTGAGGTGTGAACTGTCCTAAAG	2340
Db	11.41	CACCTGGCTTGTGCTCTCTCTCTCTCTCTCTCTCTCTCTCT	1200	QY	5.595	CCCTGAGCTGGCAATTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGG	5654
QY	4.456	AGGTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCT	4515	Db	2341	CCCTGAGCTGGCAATTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGG	2400
Db	12.01	AGGTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCT	1260	QY	5.655	TAATGATCTGGTGGTGGATCC	5674
QY	4.516	GGAAATCTGGAGGAGCTGAGTGTGAGGGTGTGATGAGGGG	4575	Db	2401	TAATGATCTGGTGGTGGATCC	2420
Db	12.61	GGAAATCTGGAGGAGCTGAGTGTGAGGGGATGAGGGG	1320	QY	4.695	TGAACCAAGGAGCTGTCATGCCAGCTGGTGTGAGGGGAGCTG	4754
QY	4.576	TGGGAGGCCAGGAGCTGTCATGCCAGCTGGTGTGAGGGG	4694	Db	1381	TGGGAGGCCAGGAGCTGTCATGCCAGCTGGTGTGAGGGGAGCTG	4754
Db	13.21	TGGGAGGCCAGGAGCTGTCATGCCAGCTGGTGTGAGGGG	1380	QY	4.635	GCAGGTGGGGAGCACTGTCAGTCAGTCAGTCAGTCAGTCAGTC	4814
QY	4.695	TGAACCAAGGAGCTGTCATGCCAGCTGGTGTGAGGGGAGCTG	4754	Db	1441	TGAACCAAGCTATGTCATGCCAGCTGGTGTGAGGGGAGCTG	4754
QY	4.755	TTCTCTCCGATCCCTGCTGTAAGCTCTGATGTCAGTCAGTC	4754	Db	1441	TGAACCAAGCTATGTCATGCCAGCTGGTGTGAGGGGAGCTG	4754

misc_feature	25118.	29998	/note="assembly_fragment"	
misc_feature	30099.	.34538	/note="assembly_fragment"	
misc_feature	34539.	.39508	/note="assembly_fragment"	
misc_feature	39619.	.46103	/note="assembly_fragment"	
misc_feature	46204.	.52117	/note="assembly_fragment"	
misc_feature	522218.	.58555	/note="assembly_fragment"	
misc_feature	58656.	.65212	/note="assembly_fragment"	
misc_feature	65313.	.72795	/note="assembly_fragment"	
misc_feature	72896.	.78614	/note="assembly_fragment"	
misc_feature	78715.	.89051	/note="assembly_fragment"	
misc_feature	89152.	.100736	/note="assembly_fragment"	
misc_feature	100837.	.117851	clone_end;sp6 vector_side:right"	
misc_feature	111952.	.1135700	vector_side:right"	
misc_feature	133801.	.153915	/note="assembly_fragment"	
misc_feature	15016.	.178515	/note="assembly_fragment"	
misc_feature	34971.	a 34971 c	/note="assembly_fragment"	
BASE COUNT	54258	a 34971 c 35239 g 51342 t		
ORIGIN				
Query Match	41.0%	Score 2328;	DB 74	
Best Local Matches	37901	Similarity 71.9%;	Pred. No. 0;	
		Conservative	Mismatches 1140	
QY	1	CCCGGGACCACTGCGATCCTTACCCCCCTACACCCCCAACTC		
Ddb	73670	CCATGAGAACCCCCATCCCTCCAGGGCCCACTACTCTCATC		
QY	61	ATCCAAACACTCTCACGCTCACCCCCAGGGCAAGCCAGGGAG		
Ddb	73730	CATTACCTACCTTACCCCCCTATCCCTACATCTGGTAG		
QY	121	CTTCACCCAGGGAG -CCCAAGGTGCCAGATGTGACGCCA		
Ddb	73790	CTTCACCCAGGGATCCGGCCGATGTGACGCCA		
QY	180	GTTAGAGAAAGCCAGGTTCCTGGCTGAGGTGAGCTCTGGAG		
Ddb	73849	GTCAGATAGGGCCCAAATATCCAGCACTCTGGCTTGGAG		
QY	240	GCCCA -GCTCTGTAAAGGGCAAGTGACSTGCTTGGGGG		
Ddb	73909	GTGGGACTCTCTGTAAAGGGCAAGTGAGCTTAAGGGGG		
QY	299	CCAGATAGGGCCCAAATATCCAGCACTCTGGCTTGGAG		
Ddb	73969	CCAGATAGGGCCCAAATATCCAGCACTCTGGCTTGGAG		
QY	350	TGGGGACTCTCTGTGGCTGGCAACCCCCAGGCCCT-----		
Ddb	74029	GGGGGACTCTCTGTGGCACTCCGGCACTACTCTGGCTGCG		
QY	401	CTGGGACTC -GAAGTCAGGCTCCGTGATCAGGGAAAGGG		

Db	74089	CAAGGACTCTGGATCAGACTCTGGTGACCAAGGGAGGGTAGGGTGTAGGGAGGGCAG 7414
Qy	460	CGTCAGGGCTCTGGAGACATCATGCTCAGGATCTCAAGGGGGCTGAGGGTCCCTAAG 519
Db	74149	TGGCAAGCTGCGAGGCATCACATGGCTCACATGGACCCCTAACTGGGCCCRAC 7420
Qy	520	ACCC-----CATCCCCACTCCATGCTCACTCCGTTGACCCACCCC 576
Db	74209	CCCCATCCCATTCCCATCCCCATCCCCATCCCCATCCCCATCCCCATCCCCATCCCC 7426
Qy	577	TCTTCATGTCATCCAACCCCCACCCACCCACCCATCCCCACCCATCCCCACCTGATGC 636
Db	74269	CCAGAACCCCTATCCGCCACCCATTCCACCCAGAACCCCTATCCGCACTCCACCCC 695
Qy	637	CCATGGCCAGGCTTACCCCTACCCCTACCCCTACCCCTACCCCTACCCCTACCC 7432
Db	74329	TACTCCACCATTCATCTCCATCTCCACCCCTGACCTCTCTCCATCCACCC 7438
Qy	696	CCACCAAGGAGGAACCTGGGG-----TTCGGCAGAATCCGGGAGGCGCG 7442
Db	74389	ACACCTGGCAAACTGGGTCTGGATCTGGTACCTGGTACCA 7444
Qy	743	GATGTAACGCCACTGACTCTGGCATTTGGGGTCCATTCTGGAG 802
Db	74449	GATGTTGGGACTCTGTCACATTGAGGTCCTGGAGAAGGAGGGCTCTCTGAG 7450
Qy	803	GGACCGGTAGATGTTGGCCGAAGAACCTGACCCAGGCTCTGAGGGCAAGGTGAG 862
Db	74509	GGGCACCT-GGGAGATCAGCTGGGGCAGCTGGGCTCTGGGCTCTGGGATGGCTGGAG 7456
Qy	863	AGGTAGGGGACTGAGACCCGGCAACTCCAAATAAGAGGCCAAATAATTCACCC 922
Db	74568	ATGGCTGGGGAGGACTAAGGATATCCCACCCCTGGTGTGGACCCCAAATAATCTCAGTG 7462
Qy	923	CCGCCT---CTTGCTCGACGCCCTGGCCACCCGGGGAGACGTCCTAGCCTGGCTGCC 979
Db	74628	CCACCTCTCTGGCTGGTAGCTGACCTCCAGGGAGACTCTGGGGCTGGCTGG 7468
Qy	980	CCAGAACCCCTGCTCCAAAAGCCTTGAGGACACCGGTTCTCTCCCAAGGTCTGGAA 1039
Db	74688	CCCAAGGCCCCACCTGTTAGCGGGGGAA-----CTAGGAG 7472
Qy	1040	TCAGAGGTCTGGCTGACCCAGGAGACCTGGCTTGGAGAGGGCACAGGGCTCTGCC 1099
Db	74727	ACAGAGGTGTTGATGACCGGGAGACTCTGGTTAGAGGGACAGCTCCAGGTCTGCC 7478
Qy	1100	AGGCACTAACGATCAGCACCCAAAGGGGGCTGTTGGCCCCCZAGACTGACTCAATC 1159
Db	74787	AGGAACAACGCTGAGAACCTAAAGGGAAAGCTGACCTGGCTGG 7482
Qy	1160	CCCACTCCACCCATTGGAATCCATCCCCAACCCCACTCTCTGAGCTACAC 1219
Db	74830	-----C-CAC 7483
Qy	1220	CTCCACCCCATCCCTACTCTGACCTGGTACCTGGACCCACCTCCAGGCCAGGCC 1279
Db	74833	GCACAACTCTATTCTGTCCTACCTGGCTGACCTGGCTGGGGGGCTGAGCTATCC 7488
Qy	1280	AGCCCAACCCCTCTGCCACCTACCTGGCCACCCCTACCTGGACTCTCACTCTCTCA 1339
Db	74888	CACCCATCTCCACCGCTPATCCCAATCCCCA-----CTGG 7492
Qy	1340	TGTGCCCACTCTCCATCGCCTCCCATCTGGCAAGAATCCGGTT-----TGGCTCTCA 1398
Db	74927	-----CCCTATCTGGCAAACTGGCTCCCTGAGCTGGGGCTGAGCTATGGGGTCAGA 7495
Qy	1399	ACCAAGGGAGCCCTGGTAGGCCCATGATGGTGAATGGGGCTGAGCTGGGGCTGG 1518
Db	74966	ACCCAGGGAGCCCTGGGGCCGATGATGGTGAATGGGGCTGAGCTGGGGCTGG 7502
Qy	1459	GAAACCCAGGTTCTATTIAATGGTCTGAGGCTGAGCTCACTGGGGCTGG 1518
Db	75026	GAAATCAAGG-----GGATGGTTCTGGAAAGCCGACTGAGATCAGGGCAATGG 7507

Qy	1519	TITTAGGCTCTGTGAGGGAGCAAGGTGAGA-TGCTGAGGGAGACTGAGGGACACAC	1577
Db	75080	GCCCCGGTCTGTGAGGGAGCAAGGTGAGGGCCATGAGGATGAGGAAGGCCTAAC	75139
Qy	1578	CCCAAGGTAGTGGGCCCARAATGTCCTACACCCCTCTGCGAGCCGTGACCCAC	1637
Db	75140	CC - AGATAGAAACCCCAATAATCCAGTAACCTTGTCAGGCTTGACCACT-	75195
Qy	1638	GGCCAGGACAGATGTCCTACGTGACCCCGTCCACIGCAGCTAACCA	1697
Db	75196	-CCGGGGCAGACTCTCGCTGGACCTTTCC - CCGTCCCACCTGACACTAACCA	75250
Qy	1698	CAGGGCAATTGTAGCTCATAGCT - ATGTAACCGGGCAGGGTGTGAGGGCAGG	1756
Db	75251	CAAGGGACTCTGGAGTCAGMCCCTGGTGTGACCCGGGAGGGGTGAGGG ---	75306
Qy	1757	GCCCCAGGGCATCAAGGTCAGCATCGCCGGCATTAGGGTCAAGGAGGAACT	1816
Db	75307	----- - CGAGGGCCAGCTGTCAATGAGCTAACATGAGGAGGAAATT	75357
Qy	1817	GAGGGTTCCCACCCACACTGTCTCCATCTCACCGCACCCACTCACATCCCCAT	1876
Db	75358	GAGGGCCCCAACCCCCAACCTCTAACCCCTATCCCCATCACCGCACCCACTCTACATGCCATT	75417
Qy	1877	ACCTACC --- CCCTACCCCAACCTCATCTCCATCTGCCATT	1922
Db	75418	CCCCAGCCCCATCCCCAACCCCTACCCCATCTGGCAGAACTCTGTTCTCCCTGCACTC	75477
Qy	1923	AACCCACGGAAAGCCAGGGAAATGGGGGAGGAACTCGGATCTTGACGCCATCCAGG	1982
Db	75478	AAACCCACAGAGGCCAGGZATGACAGAGGGCACCCATTCTGACGTCAATCCAGG	75537
Qy	1983	GTCITGATGGAGGGAGGG - - - - GCTGAACAGGGCTCAAGGGAGGAGG --- GA	2031
Db	75538	GCTGAGGGAGGGAAAGGGTAGTATGAGCAGGGCTCAAGGGCTCTGCTCTC	75597
Qy	2032	GGGCCCTACTGCGAGATGAGGGAGCCCTCAAGGACCCAGCACCTAGA - - - - C	2082
Db	75598	AAGCCCTGCTGGAGTAAGGGAGCCCTAAGGACCCAGTCCATAGGGTTCT	75657
Qy	2083	ACCGAACCCCTGTGAGCTGAG - - GCTGCCACTCTGCCCTCAAGATCAAACGATG	2140
Db	75658	ACTCCAACCTGTGAGCTGAGGCTCTGGGAGGGCTGAGGCTGAGGAGGATG	75717
Qy	2141	GGGACTCAGATTGCTATGGGGTGGGACCCAGGGCTGCAAGCTACGGGAGGAGGA	2200
Db	75718	GAGACTCACCTCAGAGGGTGGGCCAACCTGCGAGCATCAAGGGAGGAGA	75777
Qy	2201	GGGAGGACTCTAGGGACCATATGGAACTCCAGATCAGTGTGGCCCTGAGGGTCA	2260
Db	75778	GGGAGGACTCTAGGTACCTTGAGGACCATGGGAACTTGGCCTGGGAGGTCA	75837
Qy	2261	GGGCAAGGGCCACATAAGGCCATATTTGCCATTTGAGGTGAC - - AGGACAG	2316
Db	75838	GTGGCACTGTCACCTGTGACCCATTGTCACCTCTGGTACAAGGAGGAG	75897
Qy	2317	AGCTGTGTTGAGAGTGGGCTCAAGGGAGGAGTCCAGGTCCAT	2376
Db	75898	GGCCTGGTCAAGAGCTGTTGACTGAGGTGACTCGSTCAGAGGGAGGAGTCAG	75957
Qy	2377	GGCCCAAGATGTCGCCCTCATGAGGACTGGGATATCCGGCTCAAGAAAGGGAC	2436
Db	75958	GCCCCAATGTGTCGCCCTCATGAGGAGTGGGATCTTGGGAGGAGTCAG	76016
Qy	2437	TCCACAGACTGTGGTGGGAGGAGTGGGAGGAGTGGGAGGAGTCAG	2496
Db	76017	CCCAAGAGCTCACTTGTGAGGAGGAGGAGTGGGAGGAGTCAG	76076
Qy	2497	TATGTCCCATCTCACTTGTGAGGAGGAGGAGTGGGAGGAGTCAG	2556
Db	76077	CCCAAGAGCTCACTTGTGAGGAGGAGGAGTGGGAGGAGTCAG	76136
Qy	3620	CTCTGGCTGAGGGCTGACCTCTCACTTGTGAGGAGGAGTGGGAGGAGTCAG	3675

lease 3-1A John F. Collins, Biocomputing Research Unit.
Copyright (c) 1993-1998 University of Edinburgh, U.K.
Distribution rights by Oxford Molecular Ltd.

protein - protein database search, using Smith-Waterman algorithm
run on: Tue Sep 12 13:19:06 2000; MasPar time 5.54 Seconds.

Title: >US-08-819-669E-26
Tabular output not generated.

Sequence: 1 EADPTGHSY 9 perfect Score: 61 / 61

scoring table: PAM 150 Gap 15

- Listing first 45 summaries

Database: pir64

Statistics: Mean 20.662; Variance 21.178; scale 0.976

No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

result No.	Score	Query Length	Match Length	DB ID	Description	Pred. No.
1	61	100.0	280	2	JC2358 tumor-associated anti MAGE-8 antigen - huma	1.51e-04
2	54	88.5	234	2	I38667 MAGE-9 antigen - huma	1.43e-02
3	54	88.5	315	2	I38667 MAGE-10 antigen - huma	1.43e-02
4	52	85.2	369	2	I38659 MAGE-11 antigen - huma	5.00e-02
5	51	83.6	129	2	E72655 hypothetical protein	9.24e-01
6	48	78.7	129	2	E72655 hypothetical protein	5.60e-01
7	48	78.7	269	2	A49334 Ras homolog Rad - hum	5.60e-01
8	48	78.7	925	1	A39216 plasma cell membrane protein protein (III)	1.01e+01
9	47	77.0	497	1	S33935 MAGE 5 protein - huma	1.79e+00
10	46	75.4	9	2	PH1293 tumor-associated anti type I site-specific	1.79e+00
11	46	75.4	314	2	JC2350 S02166 hypothetical protein	3.17e+00
12	45	73.8	1033	2	F70763 hypothetical protein	5.55e+00
13	44	72.1	98	2	F70763 hypothetical protein	5.55e+00
14	44	72.1	128	2	T09932 nucleotide Pyrophosph	5.55e+00
15	44	72.1	461	2	T09932 sulfite oxidase (EC 1	5.55e+00
16	44	72.1	488	1	S55874 sulfite oxidase (EC 1	5.55e+00
17	44	72.1	488	1	A53101 myelin transcription	5.55e+00
18	44	72.1	725	2	A45033 hypothetical protein	9.63e+00
19	43	70.5	197	2	A70832 hypothetical protein	9.63e+00
20	43	70.5	243	2	S64312 tumor-associated anti	9.63e+00
21	43	70.5	314	2	JC2361 matrix metalloproteinase	9.63e+00
22	43	70.5	347	2	T38029 matrix-Xp protein - hum	9.63e+00
23	43	70.5	669	2	T38029 matrix metalloproteinase	9.63e+00

```

24      43    70.5   745      2   T10924   3C3.15c protein - Str 9.62e+00
25      43    70.5   875      2   T12794   hypothetical yomp pro 9.63e+00
26      43    70.5   878    2,5   S44143   hypothetical protein 9.63e+00
27      42    68.9   156      2   B36505   conserved hypothetical 1.66e+01
28      42    68.9   283      2   E69626   methyltransferanoylof 1.66e+01
29      42    68.9   288      2   A56219   carbon-monoxide dehydro 1.66e+01
30      42    68.9   301      2   C71194   hypothetical protein 1.66e+01
31      42    68.9   317      2   JC2359   tumor-associated anti 1.66e+01
32      42    68.9   326      1   S44753   C13G5.2 protein - Cae 1.66e+01
33      42    68.9   348      1   DEEPBOT  dihydroorotate (EC 3. 1.66e+01
34      42    68.9   461      2   B47093   probable oxidoreducta 1.66e+01
35      42    68.9   503      2   H70509   hypothetical protein 1.66e+01
36      42    68.9   503      2   G70506   hypothetical protein 1.66e+01
37      42    68.9   508      1   ISRIS5   protein disulfide-iso 1.66e+01
38      42    68.9   555      1   RGA5WA   regulatory protein we 1.66e+01
39      42    68.9   700      2   S38928   translation elongatio 1.66e+01
40      42    68.9   747      2   B47093   cellulase (EC 3.2.1.4 1.66e+01
41      42    68.9   1052     2   T14313   zinc finger RNA bindi 1.66e+01
42      42    68.9   3396     1   A42551   genome polyrnp - 1.66e+01
43      41    67.2   366      2   A53286   cell-surface glycopro 2.82e+01
44      41    67.2   637      2   T03842   fission yeast Skb1 pr 2.82e+01
45      41    67.2   3898     1   A44217   genome polyprotein - 2.82e+01

                                ALIGNMENTS

RESULT      1          JC2358   #type complete
ENTRY       TITLE      tumor-associated antigen MAGE-1 - human
TITLE       ORGANISM #common_name man
ORGANISM   DATE      20-Feb-1995 #sequence_revision 20-Feb-1995 #text_change
DATE        04-Sep-1998

ACCESSIONS JC2358
REFERENCE JC2358
#authors Ding, M.; Beck, R.J.; Keller, C.J.; Fenton, R.G.
#journal Biochem. Biophys. Res. Commun. (1994) 203:549-555
#cross-references Cloning and analysis of MAGE-1-related genes.
#cross-references MUID:94311935
#accession JC2358
##molecule_type mRNA
##residues 1-280 #label DIN
##experimental_source melanoma cell line DM150

GENETICS
#gene MAGE
CLASSIFICATION #superfamily tumor associated protein MAGE
FEATURE SUMMARY #region HLA-A1 binding #status predicted
#length 280 #molecular-weight 30932 #checksum 4677

Query Match Score 61; DB 2; Length 280;
Best Local Similarity 100.0%; Pred. No. 1.5le-04;
Matches 9; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
DATE      24-Sep-1999

ACCESSIONS I38667
REFERENCE De Plaen, E.; Arden, K.; Traversari, C.; Gaforio, J.J.; Szikora, J.P.; De Smet, C.; Brassasseur, F.; van der Bruggen, P.; Lethe, B.; Lurquin, C.; Brassasseur, R.; Chomez, P.; De Backer, O.; Cavégnin, W.; Boon, T.
#authors Immunogenetics (1994) 40:360-369
#journal #title #cross-references chromosomal localization, and expression of 12 genes of the MAGE family.

```

```

#cross-references MUID:95012457
#accession I38667
#status preliminary; translated from GB/EMBL/DBBJ
##molecule-type DNA
##residues 1-234 #label RES
##cross-references EMBL:U10694; NID:g533525; PIDN:AAA68876.1;
#cross-references EMBL:U10694; NID:g533525; PIDN:AAA68876.1;

GENETICS
#gene GDB:MAGEA8; MAGEB
##cross-references GDB:311123
#map_position Xq28-Xq28
#introns #status absent
#classification #superfamily tumor associated protein MAGE
#summary #length 234 #molecular-weight 25197 #checksum 311

Query Match 88.5%; Score 54; DB 2; Length 234;
Best Local Similarity 77.8%; Pred. No. 1.43e-02;
Matches 7; Conservative 1; Mismatches 1; Indels 0; Gaps 0;

Db 171 EVDPTGHSY 179
Qy 1 EADPTGHSY 9

RESULT 3 I38668 #type complete
ENTRY MAGE9 antigen - human
TITLE #formal_name Homo sapiens #common_name man
ORGANISM #sequence_revision 07-Jun-1996 #text_change
DATE 07-Jun-1996 #sequence_revision 07-Jun-1996 #text_change
24-Sep-1999

ACCESSIONS I38668
REFERENCE I38659
#authors De Piaen, E.; Arden, K.; Traversari, C.; Gaforio, J.J.; Brugge, S.; Sikora, J.P.; De Smet, C.; Brasseur, F.; van der Bruggen, P.; Lethe, B.; Lurquin, C.; Brassier, R.; Chomez, P.; De Backer, O.; Cavenee, W.; Boon, T.

#journal Immunogenetics (1994) 40:360-369
#title Structure, chromosomal localization, and expression of 12 genes of the MAGE family.
#cross-references EMBL:U10694; NID:g533525; PIDN:AAA68876.1;
#accession I38668
#status preliminary; translated from GB/EMBL/DBBJ
##molecule-type DNA
##residues 1-315 #label RES
##cross-references EMBL:U10694; NID:g533525; PIDN:AAA68876.1;
#cross-references EMBL:U10694; NID:g533525; PIDN:AAA68876.1;

GENETICS
#gene GDB:MAGEA8; MAGEB
##cross-references GDB:311123
#map_position Xp21.3-Xp1.3
#introns #status absent
#classification #superfamily tumor associated protein MAGE
#summary #length 315 #molecular-weight 30088 #checksum 24668

Query Match 88.5%; Score 54; DB 2; Length 315;
Best Local Similarity 77.8%; Pred. No. 1.43e-02;
Matches 7; Conservative 1; Mismatches 1; Indels 0; Gaps 0;

Db 167 EVDPTGHSY 179
Qy 1 EADPTGHSY 9

RESULT 4 I38659 #type complete
ENTRY MAGE10 antigen - human
TITLE #formal_name Homo sapiens #common_name man
ORGANISM #sequence_revision 07-Jun-1996 #text_change
DATE 24-Sep-1999

ACCESSIONS I38659
REFERENCE I38659
#authors De Piaen, E.; Arden, K.; Traversari, C.; Gaforio, J.J.; Brugge, S.; Sikora, J.P.; De Smet, C.; Brasseur, F.; van der Bruggen, P.; Lethe, B.; Lurquin, C.; Brassier, R.; Chomez, P.; De Backer, O.; Cavenee, W.; Boon, T.

#journal Immunogenetics (1994) 40:360-369
#title Structure, chromosomal localization, and expression of 12 genes of the MAGE family.
#cross-references EMBL:U10694; NID:g533525; PIDN:AAA68876.1;
#accession I38660
#status preliminary; translated from GB/EMBL/DBBJ
##molecule-type DNA
##residues 1-319 #label RES
##cross-references EMBL:U10694; NID:g533525; PIDN:AAA68876.1;
#cross-references EMBL:U10694; NID:g533525; PIDN:AAA68876.1;

GENETICS
#gene GDB:MAGEA11; MAGEB11
##cross-references GDB:311128
#map_position Xq18-Xq28
#introns #status absent
#classification #superfamily tumor associated protein MAGE
#summary #length 319 #molecular-weight 35536 #checksum 9402

Query Match 83.6%; Score 51; DB 2; Length 319;
Best Local Similarity 77.8%; Pred. No. 9.24e-02;
Matches 7; Conservative 1; Mismatches 1; Indels 0; Gaps 0;

Db 171 EVDPTGHSY 179
Qy 1 EADPTGHSY 9

RESULT 6 E72685 #type complete
ENTRY E72685
TITLE Hypothetical protein APE0301 - Aeropyrum pernix (strain K1)
ORGANISM #formal_name Aeropyrum pernix
#sequence_revision 20-Aug-1999 #sequence_change
DATE 20-Aug-1999 #sequence_revision 20-Aug-1999 #sequence_change

```

#formal_name Homo sapiens #common_name man
 DATE 10-Sep-1999 #sequence_revision 10-Sep-1999 #text_change
 ACCESSIONS E72450
 REFERENCE #authors Kawarabayasi, Y.; Hino, Y.; Horikawa, H.; Yamazaki, S.; Baba, S.; Ankei, A.; Kosugi, H.; Takahashi, M.; Seine, M.; Fukui, S.; Nagai, Y.; Nishijima, K.; Nakazawa, H.; Hosoya, A.; Matsuda, S.; Funahashi, T.; Tanaka, T.; Kudo, Y.; Yamazaki, J.; Kusuda, N.; Oguchi, A.; Aoki, K.; Kubota, K.; Nakamura, Y.; Nomura, N.; Saito, Y.; Kikuchi, H.
 #journal DNA Res. (1999) 6:83-101
 #title Complete genome sequence of an aerobic hyper-thermophilic Crenarchaeon, Aeropyrum pernix K1.
 #cross-references MUID:9310339
 #accession E72685
 #status Preliminary
 #molecule-type DNA
 #cross-references 1-129 #label KAW
 #cross-references DBJ:AP000060; NID:95104188; PID:BA79885.1;
 #cross-references PID:di3671; PID:95104570
 #experimental_source strain K1
 GENETICS #gene APE0901
 SUMMARY #length 129 #molecular-weight 14303 #checksum 2150
 Query Match 78.7% Score 48; DB 2; Length 129;
 Best Local Similarity 85.7% Pred. No. 5.60-01;
 Matches 6; Conservative 1; Mismatches 0; Indels 0; Gaps 0;
 Db 115 DPAGHSY 1.21
 QY 3 DPAGHSY 9
 RESULT 7 A49334 #type complete
 ENTRY Ras homolog Rad - human
 TITLE Ras associated with diabetes (Rad)
 ALTERNATE_NAMES Ras associated with diabetes (Rad)
 ORGANISM #formal_name Homo sapiens #common_name man
 DATE 07-Oct-1994 #sequence_revision 07-Oct-1994 #text_change
 28-Aug-1998
 A49334
 REFERENCE A49334
 #authors Reynt, C.; Kahn, C.R.
 #journal Science (1993) 262:1441-1444
 #title Rad: a member of the Ras family overexpressed in muscle of type II diabetic humans.
 #cross-references MUID:94069319
 #accession A49334
 #status Preliminary
 #molecule-type mRNA
 #residues 1-269 #label REY
 #cross-references GB:124564
 KEYWORDS alternative initiators: GTP binding; P-loop
 FEATURE 59-66 #region nucleotide-binding motif A (P-loop)\n 164-167 #region GTP-binding NXKD motif
 SUMMARY #length 269 #molecular-weight 29262 #checksum 9237
 Query Match 78.7% Score 48; DB 2; Length 269;
 Best Local Similarity 55.6%; Pred. No. 5.60e-01;
 Matches 5; Conservative 4; Mismatches 0; Indels 0; Gaps 0;
 Db 80 EAFAAHTY 88
 QY 1 EADPTGHSY 9
 RESULT 8 A39216 #type complete
 ENTRY plasma cell membrane glycoprotein PC-1 - human
 TITLE phosphoprotein (EC 3.6.1.9); phosphodiesterase I
 CONTAINS (EC 3.1.4.1)
 FEATURE 1-111 #region domain transmembrane #status Predicted
 #map-position 6922-6923
 CLASSIFICATION #superfamily nucleotide Pyrophosphatase; somatomedin B homology
 KEYWORDS glycoprotein; phosphoprotein; phosphoric diester hydrolase;
 GENETICS #genes GDB:DPNP1; M6SI; NPBS
 #cross-references GDB:132615; OMIM:173355
 #map-position 6922-6923
 #domain somatomedin B homology #label SBH1\\
 #domain somatomedin B homology #label SBH2\\
 FEATURE 77-97 #domain transmembrane #status Predicted #label TMN
 104-144 #map-position 6922-6923
 145-198 #domain somatomedin B homology #label SBH1\\
 179-185,341,477,
 731-748 #binding_site carbohydrate (Asn) (covalent) #status Predicted
 256 #binding_site AMP (Thr) (covalent) #status Predicted
 #length 925 #molecular-weight 104924 #checksum 7446
 SUMMARY #length 925 #molecular-weight 104924 #checksum 7446
 Query Match 78.7% Score 48; DB 1; Length 925;
 Best Local Similarity 66.7%; Pred. NO. 5.60e-01;
 Matches 6; Conservative 3; Mismatches 0; Indels 0; Gaps 0;
 Db 374 EPDSSGHSY 382
 QY 1 EADPTGHSY 9

CC -!- FUNCTION: NOT KNOWN, THOUGH MAY PLAY A ROLE IN EMBRYONAL
 CC DEVELOPMENT AND TUMOR TRANSFORMATION OR ASPECTS OF TUMOR
 CC PROGRESSION. ANTIGEN RECOGNIZED ON A MELANOMA BY AUTOLOGOUS
 CC CYTOLYTIC T LYMPHOCYTES.
 CC -!- SUBCELLULAR LOCATION: CYTOPLASMIC.
 CC -!- TISSUE SPECIFICITY: EXPRESSED IN MANY TUMORS OF SEVERAL TYPES,
 CC SUCH AS MELANOMA, HEAD AND NECK SQUAMOUS CELL CARCINOMA, LUNG
 CC CARCINOMA AND BREAST CARCINOMA, BUT NOT IN NORMAL TISSUES EXCEPT
 CC FOR TESTES. NEVER EXPRESSED IN KIDNEY TUMORS, LEUKEMIAS AND
 CC LYMPHOMAS.
 CC -!- SIMILARITY: THE VARIANT AT POSITION 32 LIKELY REPRESENTS A
 CC POLYMORPHISM OF THE MAG-1 GENE.
 CC -!- SIMILARITY: BELONGS TO THE MAGE FAMILY.

CC This SWISS-PROT entry is copyright. It is produced through a collaboration
 CC between the Swiss Institute of Bioinformatics and the EMBL outstation -
 CC the European Bioinformatics Institute. There are no restrictions on its
 CC use by non-profit institutions as long as its content is in no way
 CC modified and this statement is not removed. Usage by and for commercial
 CC entities requires a license agreement (See <http://www.isb-sib.ch/announce/>
 CC or send an email to license@isb-sib.ch).

CC DR EMBL; U10693; AAA68876; 1; - .
 CC DR PFAM; PF01454; MAGE; 1.
 CC KW Antigen; Multigene family; Tumor antigen.
 CC FT DOMAIN 40 43 POLY-SER.
 CC SQ SEQUENCE 234 AA; 25197 MW; 058A2EE6003A9B2 CRC64; 0;

CC Query Match Score 54; DB 1; Length 234;
 CC Best Local Similarity 77.8%; Pred. No. 4.36e-03;
 CC Matches 7; Conservative 1; Mismatches 1; Indels 0; Gaps 0;
 CC DR 171 EVDPAGHSY 179
 CC QY 1 EADPTGHSY 9

CC RESULT 3
 CC ID MAG9_HUMAN STANDARD; PRT; 315 AA.
 CC AC PA3362; Q92910;
 CC DT 01-NOV-1995 (Rel. 32, Created)
 CC DT 01-NOV-1995 (Rel. 32, Last sequence update)
 CC DT 01-NOV-1997 (Rel. 35, Last annotation update)
 CC DE MELANOMA-ASSOCIATED ANTIGEN 9 (MAGE-9 ANTIGEN).
 CC OS Homo sapiens (Human).
 CC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 CC Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
 CC RN [1]
 CC RP SEQUENCE FROM N.A.
 CC MEDLINE; 95012457.
 CC RA de Plaein E., Arden K., Traversari C., Gaforio J.J., Szikora J.-P.,
 CC RA de Smet C., Brassseur F., van der Bruggen P., Lethe B., Turquin C.,
 CC RA Brassseur R., Chomez P., de Backer O., Cavenee W., Boon T.;
 CC RT "Structure, chromosomal localization, and expression of 12 genes of
 CC the MAGE family,"
 CC RL Immunogenetics 40:360-369(1994).
 CC RN [2]
 CC RP SEQUENCE FROM N.A.
 CC RA Timms K.M., Bondeson M.L., Ansari-Lari M.A., Lagerstedt K.,
 CC RA Nelson D.L., Pettersson U., Gibbs R.A.;
 CC RL Submitted (Sep-1996) to the EMBL/Genbank/DBJ databases.
 CC -!- FUNCTION: NOT KNOWN, THOUGH MAY PLAY A ROLE IN EMBRYONAL
 CC DEVELOPMENT AND TUMOR TRANSFORMATION OR ASPECTS OF TUMOR
 CC PROGRESSION.
 CC -!- TISSUE SPECIFICITY: EXPRESSED IN MANY TUMORS OF SEVERAL TYPES,
 CC SUCH AS MELANOMA, HEAD AND NECK SQUAMOUS CELL CARCINOMA, LUNG
 CC CARCINOMA AND BREAST CARCINOMA, BUT NOT IN NORMAL TISSUES EXCEPT
 CC FOR TESTES AND PLACENTA.
 CC -!- SIMILARITY: BELONGS TO THE MAGE FAMILY.

CC DR EMBL; U10694; AAA68877; 1; - .
 CC DR PFAM; PF01454; MAGE; 1.
 CC KW Antigen; Multigene family; Tumor antigen.
 CC FT DOMAIN 34 37 POLY-GLU.
 CC FT DOMAIN 87 90 POLY-GLU.
 CC SQ SEQUENCE 315 AA; 35088 MW; 7FD2ED10D680D928 CRC64; 0;

CC This SWISS-PROT entry is copyright. It is produced through a collaboration
 CC between the Swiss Institute of Bioinformatics and the EMBL outstation -
 CC the European Bioinformatics Institute. There are no restrictions on its
 CC use by non-profit institutions as long as its content is in no way
 CC modified and this statement is not removed. Usage by and for commercial
 CC entities requires a license agreement (See <http://www.isb-sib.ch/announce/>
 CC or send an email to license@isb-sib.ch).

CC DR EMBL; U10695; AAA68888; 1; - .
 CC DR PFAM; PF01454; MAGE; 1.
 CC KW Antigen; Multigene family; Tumor antigen.
 CC FT DOMAIN 34 37 POLY-GLU.
 CC FT DOMAIN 87 90 POLY-GLU.
 CC SQ SEQUENCE 315 AA; 35088 MW; 7FD2ED10D680D928 CRC64; 0;

CC This SWISS-PROT entry is copyright. It is produced through a collaboration
 CC between the Swiss Institute of Bioinformatics and the EMBL outstation -
 CC the European Bioinformatics Institute. There are no restrictions on its
 CC use by non-profit institutions as long as its content is in no way
 CC modified and this statement is not removed. Usage by and for commercial
 CC entities requires a license agreement (See <http://www.isb-sib.ch/announce/>
 CC or send an email to license@isb-sib.ch).

CC DR EMBL; U10696; AAA68889; 1; - .
 CC DR PFAM; PF01454; MAGE; 1.
 CC KW Antigen; Multigene family; Tumor antigen.
 CC FT DOMAIN 34 37 POLY-GLU.
 CC FT DOMAIN 87 90 POLY-GLU.
 CC SQ SEQUENCE 315 AA; 35088 MW; 7FD2ED10D680D928 CRC64; 0;

Query Match 78.7%; Score 48; DB 1; Length 268;
 Best Local Similarity 55.6%; Pred. No. 2.19e-01; Gaps 0;
 Matches 5; Conservative 0; Indels 0; Gaps 0;

Db 80 EAEEAAGHTY 88

[1:::1::1]

Oy 1 EADPFGHSD 9

RESULT 7
 ID RAD_HUMAN STANDARD; PRT; 269 AA.

AC P55042;

DT 01-OCT-1996 (Rel. 34, Created)

DT 01-OCT-1996 (Rel. 34, Last sequence update)

DT 01-NOV-1997 (Rel. 35, Last annotation update)

DE GTP-BINDING PROTEIN RAD (RAS ASSOCIATED WITH DIABETES) (RAD1).

DE RND OR RAD.

GN Homo sapiens (Human); Chordata; Craniata; Vertebrata; Euteleostomi;

OC Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.

RN [1]

SEQUENCE FROM N.A.

PC TISSUE=SKELETAL MUSCLE;

MEDLINE; 94069319.

RA Reynt C.; Kahn C.R.;

RT "Rad: a member of the Ras family overexpressed in muscle of type II

RT diabetic humans";

RL Science 262:1441-1444 (1993).

CC -!- TISSUE SPECIFICITY: SKELETAL AND CARDIAC MUSCLE, LUNG, LESSER

AMOUNTS IN PLACENTA AND KIDNEY, DEFECTED IN ADIPOSE TISSUE.

CC -!- OVEREXPRESSED IN MUSCLE OF TYPE II DIABETIC HUMANS.

CC -!- SIMILARITY: BELONGS TO THE RAD/GEM FAMILY OF GTP-BINDING

PROTEINS.

CC This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (See <http://www.isb-sib.ch/announce/> or send an email to license@isb-sib.ch).

CC

OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 OC Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
 RN [1] SEQUENCE FROM N.A.
 RP MEDLINE; 9109202.
 RX
 RA Furukoshi I., Kato H., Horie K., Yano T., Hori Y., Kobayashi H.,
 RA Inoue T., Suzuki H., Fukui S., Tsukahara M., Kajii T.,
 RA Yamashina I.,
 RT "Molecular cloning of cDNAs for human fibroblast nucleotide
 RT phosphorylase.",
 RT P295180-187(1992).
 RL Arch. Biochem. Biophys.
 CC -!- FUNCTION: MAY HAVE A ROLE IN THE REGULATION OF N-GLYCOSYLATION.
 CC -!- CATALYTIC ACTIVITY: HYDROLYTICALLY REMOVES 5'-NUCLEOTIDES
 CC SUCCESSIVELY FROM THE 3'-HYDROXY TERMINI OF OLIGO-NUCLEOTIDES.
 CC -!- CATALYTIC ACTIVITY: A DINUCLEOTIDE + H(2)O = 2 MONONUCLEOTIDE.
 CC -!- SUBUNIT: HOMODIMER. DISULFIDE-LINKED.
 CC -!- SUBCELLULAR LOCATION: TYPE II MEMBRANE PROTEIN.
 CC -!- TISSUE SPECIFICITY: EXPRESSED IN PLASMA CELLS AND ALSO IN A NUMBER
 CC OF NON-LYMPHOID TISSUES, INCLUDING THE DISTAL CONVOLUTED TUBULE
 CC OF THE KIDNEY, CHONDROCYTES, AND EPIDIDYMIS.
 CC -!- SIMILARITY: CONTAINS 2 SOMATOMEDIN-B TYPE DOMAINS.

CC ---
 CC This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (See <http://www.isb-sib.ch/announce/> or send an email to license@isb-sib.ch).
 CC ---
 CC DR M57736; AA63237.1;
 CC DR EMBL; M57736; AA63237.1;
 CC DR PIR; A39216; A39216.
 DR MIM: 173335;
 DR PF01663; Phosphodiester; 1.
 DR PFAM; PF01033; Semaphorin_B;
 DR PRINTS; PRO0022; SOMATOMEDINB.
 DR PROSITE; PS00524; SOMATOMEDIN_B;
 KW Glycoprotein; Transmembrane; Diphcation; Signal-anchor; Hydrolase.
 FT DOMAIN; 1 24 CITOPLASMIC (POTENTIAL).
 FT DOMAIN; 25 45 SIGNAL-ANCHOR (TYPE-II MEMBRANE PROTEIN)
 FT DOMAIN; 46 873 EXTRACELLULAR (POTENTIAL).
 FT DOMAIN; 52 92 SOMATOMEDIN-B LIKE.
 FT DOMAIN; 93 136 SOMATOMEDIN-B LIKE.
 FT CABBOHYD 127 127 POTENTIAL.
 FT CABBOHYD 233 233 POTENTIAL.
 FT CABBOHYD 289 289 POTENTIAL.
 FT CABBOHYD 425 425 POTENTIAL.
 FT CABBOHYD 533 533 POTENTIAL.
 FT CABBOHYD 591 591 POTENTIAL.
 FT CABBOHYD 648 648 POTENTIAL.
 FT CABBOHYD 679 679 POTENTIAL.
 SQ SEQUENCE 873 AA; 93929 MW; 872808C20B048070 CRC64;

Query Match 78.7%; Score 48; DB 1; Length 269;
 Best Local Similarity 55.6%; Pred. No. 2.19e-01; Gaps 0;
 Matches 5; Conservative 0; Indels 0; Gaps 0;

Db 80 EAEEAAGHTY 88

[1:::1::1]

Oy 1 EADPFGHSD 9

RESULT 8
 ID PCL_HUMAN STANDARD; PRT; 873 AA.

AC P22413;

DT 01-AUG-1991 (Rel. 19, Created)

DT 15-FEB-2000 (Rel. 39, Last sequence update)

DE PLASMA CELL MEMBRANE GLYCOPROTEIN PC-1 [INCLUDES: ALKALINE

DE PHOSPHODIESTERASE I (EC 3.1.4.1); NUCLEOTIDE PYROPHOSPHATASE

(EC 3.6.1.9) (NPASE)].

GN PDNP1 OR PC1 OR NPPS.

OS Homo sapiens (Human).

OS

OC

Query Match 78.7%; Score 48; DB 1; Length 873;
 Best Local Similarity 66.7%; Pred. No. 2.19e-01;
 Matches 3; Mismatches 0; Indels 0; Gaps 0;

Db 322 EPDSGGHSY 330

1:::1::1

Qy 1 EADPTGHSY 9

CC the European Bioinformatics Institute. There are no restrictions on its
 CC use by non-profit institutions as long as its content is in no way
 CC modified and this statement is not removed. Usage by and for commercial
 CC entities requires a license agreement (see <http://www.isb-sib.ch/announce/>
 CC or send an email to license@isb-sib.ch).

CC DR EMBL; U93163; AAC23619_1; .
 DR EMBL; AC005185; AAD10637_1; .
 DR MIM; 300153; .

DR PFAM; PF04454; MAGE_1.
 KW Antigen; Multigene family.

SEQUENCE 346 AA; 38923 MW; 804F260BD50F036A CRC64;
 SQ

Query Match 75.4%; Score 46; DB 1; Length 346;
 Best Local Similarity 66.7%; Pred. No. 7.58e-01; Indels 0; Gaps 0;

Matches 6; Conservative 1; Mismatches 2; Indels 0; Gaps 0;

Db 168 EVNPHTSY 176
 QY 1 ADPFGHST 9

RESULT 12
 ID VP57_BDV STANDARD; PRT; 503 AA.
 AC P52638; .

DT 01-OCT-1996 (Rel. 34, Created)

DT 01-OCT-1996 (Rel. 34, Last sequence update)

DT 01-NOV-1997 (Rel. 35, Last annotation update)

CC -1- SUBCELLULAR LOCATION: INTEGRAL MEMBRANE PROTEIN (POTENTIAL).

CC This SWISS-PROT entry is copyright. It is produced through a collaboration

CC between the Swiss Institute of Bioinformatics and the EMBL outstation -

CC the European Bioinformatics Institute. There are no restrictions on its

CC use by non-profit institutions as long as its content is in no way

CC modified and this statement is not removed. Usage by and for commercial

CC entities requires a license agreement (See <http://www.isb-sib.ch/announce/>

CC or send an email to license@isb-sib.ch).

CC DR EMBL; U04608; AAA20227_1; .

KN GLYCOPROTEIN; Transmembrane.

FT TRANSEM 5 25 POTENTIAL.

FT TRANSEM 274 294 POTENTIAL.

FT TRANSEM 468 488 POTENTIAL.

FT CARBOHD 63 63 POTENTIAL.

FT CARBOHD 109 109 POTENTIAL.

FT CARBOHD 139 139 POTENTIAL.

FT CARBOHD 192 192 POTENTIAL.

FT CARBOHD 196 196 POTENTIAL.

FT CARBOHD 202 202 POTENTIAL.

FT CARBOHD 221 221 POTENTIAL.

FT CARBOHD 230 230 POTENTIAL.

FT CARBOHD 235 235 POTENTIAL.

FT CARBOHD 321 321 POTENTIAL.

FT CARBOHD 328 328 POTENTIAL.

FT CARBOHD 388 388 POTENTIAL.

FT CARBOHD 438 438 POTENTIAL.

SEQUENCE 503 AA; 56652 MW; 081B5347DF91A08 CRC64;

SQ Query Match 73.8%; Score 45; DB 1; Length 503;
 Best Local Similarity 55.6%; Pred. No. 1.39e-00; Indels 0; Gaps 0;

Matches 5; Conservative 2; Mismatches 2; Indels 0; Gaps 0;

CC	Db 416 ETDPINHAY 424
CC	QY 1 ADPFGHST 9
CC	RESULT 13
CC	ID TIRI_ECOLI STANDARD; PRT; 1033 AA.
CC	AC P10486; .
CC	DT 01-JUL-1989 (Rel. 11, Created)
CC	DT 01-JUL-1989 (Rel. 11, Last sequence update)
CC	DT 15-DEC-1998 (Rel. 37, Last annotation update)
CC	GN HSR OR HSR.
CC	OS Escherichia coli.
CC	OS Plasmid IncFIV R124/3.
CC	OC Bacteria; Proteobacteria; gamma subdivision; Enterobacteriaceae;
CC	OC Escherichia.
CC	RN [1]
CC	RP SEQUENCE FROM N.A.
CC	RX MEDLINE; 89178628.
CC	RA Price C.; Lingner J.; Bickle J.; Firman T.A.; Glover S.W.; Ecor124/3
CC	RT "basis for changes in DNA recognition by the EcoR124 and EcoR124/3
CC	RT TYPE I DNA restriction and modification enzymes.";
CC	RL J. Mol. Biol. 205:115-125(1989).
CC	-1- FUNCTION: THE ECOR124/3 I ENZYME RECOGNIZES 5'GAA(N)RTCG.
CC	-1- SUBUNIT: SUPUNIT R IS REQUIRED FOR BOTH NUCLEASE AND ATPASE
CC	CC ACTIVITIES: BUT NOT FOR MODIFICATION.
CC	-1- SUBUNIT: THE TYPE I RESTRICTION & MODIFICATION SYSTEM IS COMPOSED
CC	CC OF THREE POLYPEPTIDES R, M AND S.
CC	-1- MISCELLANEOUS: TYPE I RESTRICTION AND MODIFICATION ENZYMES ARE
CC	CC COMPLEX, MULTIFUNCTIONAL SYSTEMS WHICH REQUIRE ATP, S-ADENOSYL
CC	CC METIONINE AND MG (+) AS CO-FACTORS AND, IN ADDITION TO THEIR
CC	CC ENDONUCLEOLYTIC AND METHYLASE ACTIVITIES, ARE POTENT DNA-DEPENDENT
CC	CC ATPIASES.
CC	-1- SIMILARITY: WITH APASES.
CC	CC This SWISS-PROT entry is copyright. It is produced through a collaboration
CC	CC between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC	CC the European Bioinformatics Institute. There are no restrictions on its
CC	CC use by non-profit institutions as long as its content is in no way
CC	CC modified and this statement is not removed. Usage by and for commercial
CC	CC entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC	CC or send an email to license@isb-sib.ch).
CC	CC EMBL; X13145; CAA21543_1; .
CC	DR PIR; S02168; S02168.
CC	DR RELEASE: RB0089; ECOR124II.
CC	KW Plasmid; Restriction System; Hydrolase; DNA-binding; ATP-binding.
CC	SQ SEQUENCE 1033 AA; 119656 MW; B55F3991356C1506 CRC64;
CC	Query Match 73.8%; Score 45; DB 1; Length 1033;
CC	Best Local Similarity 75.0%; Pred. No. 1.39e+00; Indels 0; Gaps 0;
CC	Matches 6; Conservative 1; Mismatches 1; Indels 0; Gaps 0;
CC	Db 23 AEPTGDSY 30
CC	QY 2 ADPFGHST 9
CC	RESULT 14
CC	ID YD22_MYCTU STANDARD; PRT; .
CC	AC Q10635; .
CC	DT 01-OCT-1996 (Rel. 34, Created)
CC	DT 01-OCT-1996 (Rel. 34, Last sequence update)
CC	DT 15-FEB-2000 (Rel. 39, Last annotation update)
CC	DE HYPOTHETICAL 11.3 KDA PROTEIN RV1322.
CC	GN RV1322 OR MTGY130_07.
CC	OS Mycobacterium tuberculosis.
CC	OC Actinomycetales; Firmicutes; Actinobacteria; Actinomycetidae;
CC	OC Bacteria; Firmicutes; Corynebacteriaceae; Mycobacteriaceae; Mycobacter
CC	RN [1]
CC	RP SEQUENCE FROM N.A.
CC	RC STRAIN=H37RV;

RX	LINK	98295987.
RA	Cole S.T., Broesch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S.V., Eiglemeier K., Gas S., Barry C.E., III, Tekaiwa F., Badcock K., Basham D., Brown D., Chillingworth T., Connor P., Davies R., Devlin K., Feltwell T., Gentles S., Hamlin N., Holroyd S., Hornsby T., Jagels K., Krogh A., McLean J., Moule S., Murphy L., Oliver S., Osborne J., Quail M.A., Rajandream M.A., Rogers J., Rutter S., Seeger K., Skelton S., Squares S., Squires R., Sulston J.B., Taylor K., Whitehead S., Barrell B.G.,	
RA	"Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence." Nature 393:537-544 (1998).	
RT	TUBERCULIST; Rv1322; -.	
RT	KW Hypothetical protein.	
CC	This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation of the European Bioinformatics Institute. There are no restrictions on use by non-profit institutions as long as its content is in no modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (See http://www.isb-sib.ch/announcements.html or send an email to license@isb-sib.ch).	
CC	EMBL; 273905; CA980086.1; -.	
DR	DR TUBERCULIST; Rv1322; -.	
DR	DR TUBERCULIST; Rv1322; -.	
SQ	SEQUENCE 98 AA; 1134 MN; 72DF33AG8405AE4B CRC64;	
Query Match	Score 44; DB 1; Length 98;	
Best Local Similarity	66.7%; Pred. No. 2.5±0.00;	
Matches	6; Conservative 0; Mismatches 3; Indels 0; Gaps 0	
Db	24 EAGPDGEY 32	
Qy	1 EADPTGHSY 9	
RESULT 15	STANDARD; PRT; 488 AA.	
ID	SD00_HUMAN	
AC	P51687;	
DT	01-OCT-1996 (Rel. 34, Created)	
DT	01-OCT-1996 (Rel. 34, Last sequence update)	
DT	15-JUL-1998 (Rel. 36, Last annotation update)	
DE	SULFITE OXIDASE PRECURSOR (EC 1.8.3.1).	
GN	SOX	
OS	Homo sapiens (Human).	
OC	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;	
OC	Mammalia; Eutheria; Primates; Catarrhini; Homidae; Homo.	
RN	[1]	
RP	SEQUENCE FROM N.A.	
TC	TISSUE-LIVER;	
RX	LINK	
RA	Garrett R.M., Bellissimo D.B., Rajagopalan K.V.;	
RT	"Molecular cloning of human liver sulfite oxidase." ;	
RL	Biochim. Biophys. Acta 1262:147-149 (1995).	
RN	[2]	
RA	VARIANTS GIN-160; ASP-208; TYR-370 AND ASP-473.	
RX	LINK	
RA	Kisker C., Schindelin H., Pacheco A., Wehbi W.A., Garrett R.M., Rajagopalan K.V.;	
RA	"Human sulfite oxidase R160Q: identification of the mutation in a sulfite oxidase-deficient patient and expression and characterization of the mutant enzyme." ;	
RT	Proc. Natl. Acad. Sci. U.S.A. 95:6394-6398 (1998).	
RL	-1 - CATALYTIC ACTIVITY: SULFITE + O(2) + H(2)O = SULFATE + H(2)O (2).	
CC	-1 - COFACTOR: MOLYBDENUM (POLYDOPOTERIN) AND ONE PROTHOME GROUP.	
CC	-1 - PATHWAY: TERMINAL REACTION IN THE OXIDATIVE DEGRADATION OF SULFUR	

Release 3.1A John F. Collins, Biocomputing Research Unit.

Copyright (c) 1993-1998 University of Edinburgh, U.K.
 Distribution rights by Oxford Molecular Ltd

MPsrch_pp Protein - protein database search, using Smith-Waterman algorithm

Run on: Tue Sep 12 13:18:37 2000; MasPar time 8.87 Seconds

Tabular output not generated.
 70.368 Million cell updates/sec

Title: >US-08-819-669E-26

Description: (1-e) from US08819669E.pep

Perfect Score: 61

Sequence: 1 EADPTGHSY 9

Scoring table: PAM 150
 Gap 15

Searched: 225578 seqs, 69334122 residues

Post-processing: Minimum Match 0%
 Missing first 45 summaries

Database: sptremb12

sptremb12
 1:sp-archaea 2:sp-bacteria 3:sp-mammal 4:sp-fungi 5:sp-human
 5:sp-invertibrate 6:sp-mammal 7:sp-mhc 8:sp-organelle
 9:sp-phage 10:sp-plant 11:sp-rodent 12:sp-unclassified
 13:sp-vertebrate 14:sp-virus

Statistics:

Mean 20.592; Variance 19.613; scale 1.050

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query	Match	Length	DB ID	Description	Pred. No.
1	49	B0.3	347	4	000601	DAM10=DSS-AHC CRITICAL	2.04e-01
2	49	B0.3	807	4	075862	MAGE-B1	2.04e-01
3	48	78.7	129	1	Q9YDL2	129AA LONG HYPOTHETICA	3.86e-01
4	48	78.7	308	11	088667	RAS-LIKE GTP-BINDING P	3.86e-01
5	48	78.7	308	4	Q92788	RAD GTPASE	3.86e-01
6	47	77.0	3942	11	088737	BASSOON	7.24e-01
7	46	75.4	1187	2	Q59278	ENDOXYLASE (EC 3.2.1.1)	1.35e+00
8	45	73.8	131	2	088701	HYPOTHETICAL 14.2 KD P	2.48e+00
9	45	73.8	330	11	Q66763	MELANOMA ANTIGEN, RELA	2.48e+00
10	45	73.8	330	11	060761	MELANOMA ANTIGEN, RELAT	2.48e+00
11	45	73.8	353	14	Q88626	ORFIV	2.48e+00
12	45	73.8	503	14	Q9YNA0	GLYCOPROTEIN GP94	2.48e+00
13	45	73.8	503	14	010403	P57 (FRAGMENT)	2.48e+00
14	45	73.8	503	14	010399	P57 (FRAGMENT)	2.48e+00
15	45	73.8	503	14	010394	P57 (FRAGMENT)	2.48e+00
16	45	73.8	503	14	085459	GLYCOPROTEIN	2.48e+00
17	45	73.8	503	14	010400	P57 (FRAGMENT)	2.48e+00
18	45	73.8	503	14	Q8857	GLYCOPROTEIN	2.48e+00
19	45	73.8	503	14	Q10397	P57 (FRAGMENT)	2.48e+00
20	45	73.8	1032	11	Q61989	INTEGRIN ALPHA-4 SUBUN	2.48e+00

ALIGNMENTS

RESULT	1	PRELIMINARY;	PRF;	347 AA.
ID	000601			
AC	000601; 1			
DT	01-JUL-1997	(TREMBLrel. 04, Created)		
DT	01-JUL-1997	(TREMBLrel. 04, Last sequence update)		
DE	DAM10=DSS-AHC CRITICAL INTERVAL MAGE SUPERFAMILY PROTEIN.			
GN	DAM10.			
OS	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Mammalia; Homo sapiens (Human).			
OC	Eutheria; Primates; Catarrhini; Hominidae; Homo.			
RN	[1..]			
RP	SEQUENCE FROM N.A.			
RC	TISSUE=TESTIS;			
RX	MEDLINE; 96081328.			
RA	DABOVIC B., ZANARIA E., BARDONI B., LISA A., BORDIGNON C., CAMERNO G;			
RA	MAPESSI C., TRAVERSARI C.;			
RT	"A family of rapidly evolving genes from the sex reversal critical region in Xp11.2."			
RT	RT			
RL	Genome 6:571-580(1995).			
DR	EMBL; S80936; AAC97145; 1; -.			
DR	PFAM; PRO1454; MABE; 1.			
SQ	SEQUENCE 347 AA; 39049 MW; AE96D5BB CRC32;			

Query	Match	Length	DB	Score	DB 4;	Score	DB 4;
Query	Match	Length	DB	Score	DB 4;	Score	DB 4;
Best Local	Similarity	55.6%					
Matches	5;	Conservative					
3;	Mismatches	1;					
Indels	0;	Gaps					
Db	167	EDNPSGRHRY 175					
QY	1	EADPTGHSY 9					

RESULT	2	PRELIMINARY;	PRF;	347 AA.
ID	075862;			
AC	075862;			
DT	01-NOV-1998 (TREMBLrel. 08, Created)			
DT	01-NOV-1998 (TREMBLrel. 08, Last sequence update)			
DE	DAM10.			
GN	MAGE-B1.			
OS	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Mammalia; Homo sapiens (Human).			
OC	Eutheria; Primates; Catarrhini; Hominidae; Homo.			

RN [1]	SEQUENCE FROM N.A.	RA FINLIN B.S., ANDRES D.A.;
RP MUZNY D., ARENSON A.D., ADAMS C., BRUNDAGE E., BUNAC S., CARVELLI K., CHACKO J., CHEN J., DI W., DING Y., DURBIN S., FORCUM J., GANESWAN R., GARCIA C., GOODMAN M., GORRELL J.H., HAYWOOD M., HERNANDEZ J.J., JACKSON L., JIN S., KAMPAL R., KARFATHY S., KOVAR C., LEAL B., LI Y., LICHATARGE O., LIU W., LOGAN O., LU J., LY T., MARTINEZ C., OSWALD G., PEREZ L., RASHID N.D., ROWLAND K., SAVAGE L., SCHERRER S.E., SHEN H., SIMON M., STOVALL K., TIDDS K.M., TODD J., VO Q., WILLIAMSON A., WORLEY K.C., YU W., CHINAULT C., NELSON D., GIBBS R.A.;	RT "Cloning of the mouse Rad gene.";	
RT Submitted (AUG-1998) to the EMBL/GenBank/DDBJ databases.	RL Submitted (AUG-1998) to the EMBL/GenBank/DDBJ databases.	
RA AF084466; AAC33133.1;	DR HSSP; P10114; 2RAP.	
RA AF084466; AAC33133.1;	DR PEM; PF00071; ras; 1.	
RA SEQUENCE 308 AA;	DR SEQUENCE 308 AA;	
Db 167 EDNPQSHY 175	Query Match 78.7%; Score 48; DB 11; Length 308;	
OY 1 EADPTGHSY 9	Best Local Similarity 55.6%; Pred. No. 3.86e-01; Matches 5; Conservative 4; Indels 0; Gaps 0;	
Db 119 EAEEAGHTY 127	Query Match 78.7%; Score 48; DB 11; Length 308;	
OY 1 EADPTGHSY 9	Best Local Similarity 55.6%; Pred. No. 3.86e-01; Matches 5; Conservative 4; Indels 0; Gaps 0;	
RESULT 5	RESULT 5	
ID Q9YD12 PRELIMINARY; PRT; 308 AA.	ID Q97788 PRELIMINARY; PRT; 308 AA.	
AC Q9YD12;	AC Q97788;	
DR 01-NOV-1999 (TREMBLrel. 12, Created)	DR 01-FEB-1997 (TREMBLrel. 02, Last sequence update)	
DR 01-NOV-1999 (TREMBLrel. 12, Last annotation update)	DR 01-NOV-1997 (TREMBLrel. 02, Last annotation update)	
DR 129AA LONG HYPOTHETICAL PROTEIN.	DR 129AA LONG HYPOTHETICAL PROTEIN.	
GN APE0911.	GN APE0911.	
OS Aeropelix pernix.	OS Aeropelix pernix.	
OC Archaea; Crenarchaeota; Aeropyrum.	OC Archaea; Crenarchaeota; Aeropyrum.	
RN [1]	RN [1]	
RP SEQUENCE FROM N.A.	RP SEQUENCE FROM N.A.	
RC STRAIN=K1.	RC STRAIN=K1.	
RX MEDLINE; 99310339.	RX MEDLINE; 94060319.	
RA KAWABAYASI Y., HINO Y., HORIKAWA H., YAMAZAKI S., HAIKAWA Y., JIN-NO K., TAKAHASHI M., SEKINE M., BABA S., ANKAI A., KOGUCHI H., HOSOYAMA A., FUKUI S., NAGAI Y., NISHIJIMA K., NAKAZAWA H., MASUDA S., KUSHIDA N., OGUCHI A., TANAKA T., KUDOH Y., NOMURA N., SAKO Y., KIKUCHI H.;	RA REYNET C., KAHN R.C.;	
RA YAMAZAKI J., KUSHIDA N., OGUCHI A., AOKI K., KUROTA K., NAKAMURA Y., RT "Complete genome sequence of an aerobic hyper-thermophilic	RT "Rad: a member of the Ras family overexpressed in muscle of type II diabetic humans.";	
RT crenarchaeon, Aeropyrum pernix K1.";	RT Science 262:1441-1444 (1993).	
RT DNA Res. 6:83-101(1999).	RT DNA Res. 6:83-101(1999).	
RT EMBL; AP000060; BAA19985.1;	RT EMBL; AP000060; BAA19985.1;	
DR SEQUENCE 129 AA;	DR SEQUENCE 129 AA;	
DR 14303 MW;	DR 14303 MW;	
SQ A25B2774 CRC32;	SQ A25B2774 CRC32;	
Db 119 EAEEAGHTY 127	Query Match 78.7%; Score 48; DB 4; Length 308;	
OY 1 EADPTGHSY 9	Best Local Similarity 55.6%; Pred. No. 3.86e-01; Matches 5; Conservative 4; Indels 0; Gaps 0;	
RESULT 6	RESULT 6	
ID 088667 PRELIMINARY; PRT; 3942 AA.	ID 088667 PRELIMINARY; PRT; 3942 AA.	
AC 088667;	AC 088667;	
DR 01-NOV-1998 (TREMBLrel. 08, Created)	DR 01-NOV-1998 (TREMBLrel. 08, Last sequence update)	
DR 01-NOV-1998 (TREMBLrel. 08, Last sequence update)	DR 01-NOV-1998 (TREMBLrel. 08, Last sequence update)	
DR 01-NOV-1999 (TREMBLrel. 12, Last annotation update)	DR 01-NOV-1998 (TREMBLrel. 08, Last annotation update)	
DR RAS-LIKE GTP-BINDING PROTEIN RAD.	DR RAS-LIKE GTP-BINDING PROTEIN RAD.	
OS Mus musculus (Mouse).	OS Mus musculus (Mouse).	
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Mammalia;	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Mammalia;	
Eutheria; Rodentia; Sciurognathi; Murinae; Mus.	Eutheria; Rodentia; Sciurognathi; Murinae; Mus.	
GN BASSCON.	GN BASSCON.	
RN [1]	RN [1]	
RP SEQUENCE FROM N.A.	RP SEQUENCE FROM N.A.	
RC STRAIN=129 SWJ;	RC STRAIN=129 SWJ;	
RX MEDLINE; 98345363.	RX MEDLINE; 98345363.	
RA DICK S., SAMMARTI-VILLA L., LANGNAESE K., RICHTER K., KINDLER S., SOYKE A., WEX H., SMALLA K.H., KAMPF U., FRANZER J.T., STUMM M., GARNER C.C., GUNDELTINGER E.D.,	RA DICK S., SAMMARTI-VILLA L., LANGNAESE K., RICHTER K., KINDLER S., SOYKE A., WEX H., SMALLA K.H., KAMPF U., FRANZER J.T., STUMM M., GARNER C.C., GUNDELTINGER E.D.,	

RT	"Bassoon, a novel zinc-finger CAG/glutamine-repeat protein selectively localized at the active zone of presynaptic nerve terminals.";
RL	J. Cell Biol. 142:499-509(1998).
EMBL; Y17034;	CAA76598.1;
DR	JOINED.
EMBL; Y17035;	CAA76598.1;
DR	JOINED.
EMBL; Y17036;	CAA76598.1;
DR	JOINED.
EMBL; Y17037;	CAA76598.1;
DR	JOINED.
EMBL; Y17038;	CAA76598.1;
DR	JOINED.
SQ	SEQUENCE 3942 AA; 41B739 MW; 9D6C5BC6 CRC32;
Query Match	Score 47; DB 11; Length 3942; Best Local Similarity 55.6%; Pred. No. 7.24e-01; Gaps 0;
Matches 5;	Mismatches 0; Indels 0;
Qy 1 EADPFGHSY 9	
RESULT 7	PRELIMINARY; PRT: 1187 AA.
ID Q59278	
AC Q59278;	
DT 01-NOV-1996 (TREMBLrel. 01, Created)	
DT 01-NOV-1996 (TREMBLrel. 01, Last sequence update)	
DT 01-NOV-1995 (TREMBLrel. 12, Last annotation update)	
DE ENDOXylanase (EC 3.2.1.8) (ENDO-1,4-BETA-XYLANASE)	
DE (1,4-BETA-D-XYLAN XYLANOHYDROLASE).	
GN XNC.	
OS Cellulomonas fimi.	
OC Bacteria; Firmicutes; Actinobacteria; Actinobacteridae; Actinomycetales; Micrococcales; Cellulomonadaceae; Cellulomonas.	
RN [1]	
RP SEQUENCE OF 1-352 FROM N.A.	
RX MEDLINE: 9524531.	
RA CLARKE J.H., DAVIDSON K., GILBERT H.J., FONTES C.M., HAZLEWOOD G.P.;	
RT A modular xylanase from mesophilic Cellulomonas fimi contains the same cellulose-binding and thermostabilizing domains as xylanases from thermophilic bacteria. ^a	
RT FEMS Microbiol. Lett. 139:27-35(1996).	
RL [2]	
RP SEQUENCE FROM N.A.	
RA CLARKE J.H.;	
RL Submitted (AUG-1995) to the EMBL/GenBank/DDBJ databases.	
CC -1- CATALYTIC ACTIVITY: ENDOHYDROLYSIS OF 1,4-BETA-D-XYLOSIDIC LINKAGES IN XYLANS.	
EMBL; 250866; CAA90745.1; -.	
DR HSSP; P14758; ICLX	
DR PFAM; PF00331; Glyco_hydro_10; 1.	
DR PRINTS; PRO0134; GLYHYDRASE10	
DR PFAM; PF0122; Polyac_desact; 1.	
DR Xylan degradation; Hydrolase; Glycosidase.	
KW Sequence	
SQ SEQUENCE 1187 AA; 125378 MW; 92B3994 CRC32;	
Query Match	Score 46; DB 2; Length 1187;
Best Local Similarity 75.0%; Pred. No. 1.35e+00; Gaps 0;	
Matches 6;	Mismatches 0; Indels 0;
Qy 2 ADPFGHSY 9	
RESULT 8	PRELIMINARY; PRT: 131 AA.
ID Q85701	
AC Q85701;	
DT 01-NOV-1998 (TREMBLrel. 08, Created)	
DT 01-NOV-1998 (TREMBLrel. 08, Last sequence update)	
DT 01-NOV-1998 (TREMBLrel. 08, Last annotation update)	
DE HYPOTHETICAL 14.2 KD PROTEIN.	
OS Streptomyces lividans.	
OC Bacteria; Firmicutes; Actinobacteria; Actinomycetaceae; Streptomyces.	
OC Actinomycetales; Streptomyces; Streptomyctaceae; Streptomyces.	
RN [1]	

CC TYPES BUT NOT IN NORMAL TISSUES EXCEPT TESTIS.
 CC -!- SIMILARITY: BELONGS TO THE MAGE FAMILY.
 DR EMBL; U16031; AAA86096.1; ALT-INIT.
 DR EMBL; U19032; AAA85097.1; -.

DR MGD; MGI:105117; Mageb2.
 DR PFAM; PPF01454; MageF; 1.

KW Antigen; Tumor antigen
 SEQUENCE 330 AA;

35936 MW; 36D760C5 CRC32;

Query Match 73.8%; Score 45; DB 11; Length 330;

Best Local Similarity 66.7%; Pred. No. 2.48e+00; Indels 0; Gaps 0;
 Matches 6; Conservative 1; Mismatches 2; Indels 0; Gaps 0;

Db 161 ETDPGHSY 169

Qy . 1 EADPTGHSY 9

RESULT 11 PRELIMINARY; PRT; 353 AA.

ID Q88626; PRELIMINARY; PRT; 353 AA.

AC Q88626; PRELIMINARY; PRT; 353 AA.

DR 01-NOV-1996 (TREMBLrel. 01, Created)

DT 01-NOV-1996 (TREMBLrel. 01, Last sequence update)

DT 01-NOV-1998 (TREMBLrel. 08, Last annotation update)

DE ORFIV.

OS Borna disease virus (BDV).

CC ssRNA negative-strand viruses; Mononegavirales.

RN [1]

RP SEQUENCE FROM N.A.

RX MEDLINE; 94149825.

RA CUBITI B., OLDSTONE C., LA TORRE J.;

RT "Sequence and genome organization of Borna disease virus.";

RL J. Virol. 68:1382-1396 (1994).

DR EMBL; L2077; AA:2066.1; -.

SQ SEQUENCE 353 AA; 39939 MW; 555715F0 CRC32;

Query Match 73.8%; Score 45; DB 14; Length 353;

Best Local Similarity 55.6%; Pred. No. 2.48e+00; Indels 0; Gaps 0;
 Matches 5; Conservative 2; Mismatches 2; Indels 0; Gaps 0;

Db 266 ETDPINHAY 274

Qy . 1 EADPTGHSY 9

RESULT 12 PRELIMINARY; PRT; 503 AA.

ID Q9WN00; PRELIMINARY; PRT; 503 AA.

AC Q9WN00; PRELIMINARY; PRT; 503 AA.

DR 01-NOV-1999 (TREMBLrel. 12, Created)

DT 01-NOV-1999 (TREMBLrel. 12, Last sequence update)

DT 01-NOV-1999 (TREMBLrel. 12, Last annotation update)

DE GLYCOPROTEIN GP94.

OS Borna disease virus (BDV).

CC Viruses; ssRNA negative-strand viruses; Mononegavirales.

RN [1]

RP SEQUENCE FROM N.A.

RC STRAIN=RN98;

RX MEDLINE; 99329142.

RA PLANZ O., RENTZSCHE C., BATRA A., BATRA A., WINIKLER T., BIETTNER M.,

RA RZIHA H.-J., STITZ L.,

RT "Pathogenesis of Borna disease virus: granulocyte fractions of psychiatric patients harbor infectious virus in the absence of antiviral antibodies."

RT J. Virol. 73:6551-6556 (1999).

DR EMBL; AF158633; AAP45291.1; -.

SQ 503 AA; 56588 MW; EC993A56 CRC32;

Query Match 73.8%; Score 45; DB 14; Length 503;

Best Local Similarity 55.8%; Pred. No. 2.48e+00; Indels 2; Mismatches 2; Indels 0; Gaps 0;

Db 416 ETDPINHAY 424

Qy . 1 EADPTGHSY 9

RESULT 15 PRELIMINARY; PRT; 503 AA.

ID Q10394; PRELIMINARY; PRT; 503 AA.

AC Q10394; PRELIMINARY; PRT; 503 AA.

DR 01-JUL-1997 (TREMBLrel. 04, Created)

DT 01-JUL-1997 (TREMBLrel. 04, Last sequence update)

DT 01-AUG-1998 (TREMBLrel. 07, Last annotation update)

DE P57 (FRAGMENT).

OS Borna disease virus (BDV).

CC Viruses; ssRNA negative-strand viruses; Mononegavirales.

RN [1]

RP SEQUENCE FROM N.A.

RC STRAIN=436;

RA ZIMMERMANN W., KOKORSCH J., LUNDGREN A.L., LUDWIG H.;

RT Submitted (MAR-1997) to the EMBL/GenBank/DBJ databases.

DR EMBL; U94866; AAC53715.1; -.

SQ NON_TER 503 MW; 56578 MW; B543AFCA CRC32;

Query Match 73.8%; Score 45; DB 14; Length 503;
Best Local Similarity 55.6%; Pred. No. 2, 48e+00;
Matches 5; Conservative 2; Mismatches 2; Indels 0; Gaps 0;
Db 416 FNDPINHAY 424
Qy 1 EADPTGHSY 9

Search completed: Tue Sep 12 13:18:50 2000
Job time : 13 secs.

autologous CD4+ cell; MAGE-3 related disease; cancer; melanoma;
osteosarcoma; leukemia; carcinoma.
Homo sapiens.
W0991/329-A1.
PD 25-MAR-1999; 018601.
PR 12-SEP-1997; US-928615.
PA (LUDWIG) LUDWIG INST CANCER RES.
PA (UYTR) UNIV VRIJE BRUSSEL.
PI Boon-Falleur T, Chaux P, Corthals J, Heirman C,
Luiten R, Stroobant V, Thielemans K, Van Der Bruggen P;
PT Isolated peptides that bind to human leucocyte antigen class II
molecules
PS Disclosure; Page 27; 88PP; English.
CC The present sequence represents an exemplary tumour associated peptide
CC antigen. The specification describes a MAGE-3 tumour associated peptide
CC antigen. Peptides (Y01721-25) that bind human leucocyte antigen (HLA) Class II
CC molecules can be derived from the MAGE-3 protein. These peptides and
CC autologous CD4+ cells that bind to a complex of MAGE-3 peptide
CC and HLA Class II, are used to treat MAGE-3 related diseases,
CC particularly cancers (e.g. melanoma, osteosarcoma, leukemia and
CC various forms of carcinoma). The peptides are also used to produce
CC specific antibodies. Detection of the peptides, e.g. in binding
CC assays, particularly with antibodies, is used for diagnosis of such
CC diseases.
SQ Sequence 9 AA;

Query Match 3 standard; Peptide; 9 AA.
ID Y10633;
AC Y10633;
DT 12-MAY-1999 (first entry)
DE Peptide antigen SEQ ID N:563.
KW Cytotoxic T-lymphocyte response; CTL; antigen; lymphatic system;
KW immunisation; tumour; infectious disease; immunotherapy; cancer;
KW malignant melanoma; viral disease; hepatitis; AIDS.
OS Homo sapiens.
PN W09902183-A2.
PD 21-JAN-1998; 014289.
PR 10-DEC-1997; US-988320.
PR 10-JUL-1997; CA-2020815.
PA (CTLI) CTL IMMUNOTHERAPIES CORP.
PI Kuendig TM, Simard JJL;
DR WPI: 99-120514/10.
PT Inducing a cytotoxic T lymphocyte response - by maintaining a level
PT of antigen in the lymphatic system of a mammal so as to provide a
PT sustained CTL response, used to treat, e.g. AIDS
PS Disclosure; Page 52; 199PP; English.

CC The present invention describes a method of inducing and/or sustaining
CC an immunological cytotoxic T lymphocyte (CTL) response in a mammal. The
CC method comprises: (a) delivering an antigen to the mammal at a level to
CC induce an immunological CTL response in the mammal's lymphatic system to maintain
CC the level of the antigen in the mammal's lymphatic system to maintain
CC the immunologic CTL response. The method can be used for the delivery of
CC e.g. a differentiation antigen, a tumour-specific multilneage antigen,
CC an embryonic antigen, an oncogene antigen, a mutated tumour-suppressor
CC gene antigen, or a viral antigen. They can be used for the treatment of
CC disease such as cancer, e.g. malignant melanoma or infectious disease,
CC e.g. viral disease such as hepatitis or AIDS. Sustained antigen delivery
CC to the lymphatic system provides for potent CTL stimulation that takes
CC place in the milieu of the lymphoid organ, and it sustains stimulation
CC that is necessary to keep CTL active, cytotoxic and recirculating

CC through the body. Y100071 to Y10639 represent examples of peptide
CC antigens given in the present invention.
Sequence 9 AA;

Query Match 4 standard; Peptide; 9 AA.
ID Y06683;
AC Y06683;
DT 12-MAY-1999 (first entry)
DE Tumour antigen booster peptide MAGE-1 HLA-A1.
KW Tumour antigen; booster Peptide; immune response modulation; allergy;
KW immune response enhancer; tumour cell; autoimmune disease;
KW leukocyte antigen-presenting molecule; autoimmune disease;
KW allograft rejection.
OS Homo sapiens.
PN W09858956-A2.

RESULT 4
ID Y06683;
AC Y06683;
DT 12-MAY-1999 (first entry)
DE Tumour antigen booster peptide MAGE-1 HLA-A1.
KW Tumour antigen; booster Peptide; immune response modulation; allergy;
KW immune response enhancer; tumour cell; autoimmune disease;
KW leukocyte antigen-presenting molecule; autoimmune disease;
KW allograft rejection.
OS Homo sapiens.
PN W09858956-A2.
PR 23-JUN-1998; US-880579.
PD 30-DEC-1998.
PP 19-JUN-1998; US-12894.
PA (LUDWIG) LUDWIG INST CANCER RES.
PI Boon-Falleur T, Uyttenhoeve C, Warrier G;
DR WPI: 99-105612/09.
PT Immunization methods using viruses expressing antigen for priming
PT and booster immunizations - useful for modulating immune responses
PT against antigen, e.g. enhancing immune response against tumour cells
PT expressing tumour rejection antigens
PS Claim 3; Page 9; 33PP; English.
CC This sequence represents a tumour antigen booster peptide that can be
CC used in the method of the invention. The method is for modulating an
CC immune response in a mammal against an antigen, and comprises:
CC (A) inducing an immune response by: (i) administering a virus containing
CC a nucleic acid molecule encoding the antigen of its precursor to generate
CC an immune response; and (ii) administering at least one booster dose
CC comprising a peptide including the antigen, in an adjuvant, in a combined
CC amount effective to enhance the initial immune response; or
CC (B) reducing an immune response as defined for (A) but using a
CC non-adjuvant with the peptide which includes the antigen, in an amount
CC effective to reduce the initial immune response. Method (A) is used to
CC enhance the immune response against tumour cells expressing tumour
CC rejection antigens, and against pathogens in subjects having human
CC leukocyte antigen-presenting molecules. Method (B) is used to reduce the
CC immune response in allergy, autoimmune disease, and allograft rejection.
CC Method (A) provides an immunisation method which, unlike prior art, is
CC not limited by the host immune response against viral vectors.
SQ Sequence 9 AA;

Query Match 5 standard; Peptide; 9 AA.
ID Y10424;
AC Y10424;
DT 12-MAY-1999 (first entry)
DE HLA Class I motif peptide SEQ ID NO:354.
KW Cytotoxic T-lymphocyte response; CTL; antigen; lymphatic system;
KW immunisation; tumour; infectious disease; immunotherapy; cancer;
KW malignant melanoma; viral disease; hepatitis; AIDS.
OS Synthetic.
PT Y10424;
PR 1 EADPTGHSY 9
PS 1 EADPTGHSY 9

RESULT 5
ID Y10424;
AC Y10424;
DT 12-MAY-1999 (first entry)
DE HLA Class I motif peptide SEQ ID NO:354.
KW Cytotoxic T-lymphocyte response; CTL; antigen; lymphatic system;
KW immunisation; tumour; infectious disease; immunotherapy; cancer;
KW malignant melanoma; viral disease; hepatitis; AIDS.
OS Synthetic.
Homo sapiens.

PN WO9902183-A2.
 PD 21-JAN-1999; U14289.
 PF 10-DEC-1998; US 988320.
 PR 10-JUL-1997; US 988320.
 PR 10-JUL-1997; CA-209815.
 (CTLI-) CTL IMMUNOTHERAPIES CORP.
 PI Kuendig TM, Simard JUJ;
 WPI; 99-120514/10.
 DR
 PT Inducing a cytotoxic T lymphocyte response - by maintaining a level of antigen in the lymphatic system of a mammal so as to provide a sustained CTL response, used to treat, e.g. AIDS.
 PS Disclosure; Page 39; 199pp; English.
 CC The present invention describes a method of inducing and/or sustaining an immunological cytotoxic T lymphocyte (CTL) response in a mammal. The method comprises: (a) delivering an antigen to the mammal at a level to induce an immunological CTL response in the mammal; and (b) maintaining the level of the antigen in the mammal's lymphatic system to maintain the immunologic CTL response. The method can be used for the delivery of e.g. a differentiation antigen, a tumour-specific multilneage antigen, an embryonic antigen, an oncogene antigen, a mutated tumour-suppressor gene antigen, or a viral antigen. They can be used for the treatment of disease such as cancer, e.g. malignant melanoma or infectious disease, e.g. viral disease such as hepatitis or AIDS. Sustained antigen delivery to the lymphatic system provides for potent CTL stimulation that takes place in the milieu of the lymphoid organ, and it sustains stimulation that is necessary to keep CTL active, cytotoxic and recirculating through the body. Y10071 to Y10639 represent examples of Peptide sequence 9 AA;

Query Match 100.0%; Score 61; DB 1; Length 9;
 Best Local Similarity 100.0%; Pred. No. 2.32e-01;
 Matches 9; Conservative 0; Mismatches 0; Gaps 0;
 SQ

Db 1 EADPTGHSY 9
 QY 1 EADPTGHSY 9

RESULT 6
 ID R50281 standard; Peptide; 9 AA.
 AC Y10623- standard; Peptide; 9 AA.
 DT 12-MAY-1999 (first entry)
 DE Peptide antigen SEQ ID NO:53.
 KW Cytotoxic T-lymphocyte response; CTL; antigen; lymphatic system;
 KW immunisation; tumour; infectious disease; immunotherapy; cancer;
 KW malignant melanoma; viral disease; hepatitis; AIDS.
 OS Synthetic.
 OS Homo sapiens.
 PN WO9902183-A2.
 PD 21-JAN-1999.
 PR 10-DEC-1997; U14289.
 PR 10-DEC-1997; CA 209815.
 PA (CTLI-) CTL IMMUNOTHERAPIES CORP.
 PI Kuendig TM, Simard JUJ;
 WPI; 99-120514/10.
 DR
 PT Inducing a cytotoxic T lymphocyte response - by maintaining a level of antigen in the lymphatic system of a mammal so as to provide a sustained CTL response, used to treat, e.g. AIDS.
 PS Disclosure; Page 51; 199pp; English.
 CC The present invention describes a method of inducing and/or sustaining an immunological cytotoxic T lymphocyte (CTL) response in a mammal. The method comprises: (a) delivering an antigen to the mammal; and (b) maintaining the level of the antigen in the mammal's lymphatic system to maintain the immunologic CTL response. The method can be used for the delivery of e.g. a differentiation antigen, a tumour-specific multilneage antigen, an embryonic antigen, an oncogene antigen, a mutated tumour-suppressor gene antigen, or a viral antigen. They can be used for the treatment of disease such as cancer, e.g. malignant melanoma or infectious disease, e.g. viral disease such as hepatitis or AIDS. Sustained antigen delivery to the lymphatic system provides for potent CTL stimulation that takes

CC place in the milieu of the lymphoid organ, and it sustains stimulation that is necessary to keep CTL active, cytotoxic and recirculating through the body. Y10071 to Y10639 represent examples of peptide sequence 9 AA; in the present invention.

Query Match 100.0%; Score 61; DB 1; Length 9;
 Best Local Similarity 100.0%; Pred. No. 2.32e-01;
 Matches 9; Conservative 0; Mismatches 0; Gaps 0;
 SQ

Db 1 EADPTGHSY 9
 QY 1 EADPTGHSY 9

RESULT 7
 ID W54622 standard; peptide; 9 AA.
 AC W54622;
 DT 23-SEP-1998 (first entry)
 DE Peptide from Mage-1 161-169.
 KW Mannose; antigen-presenting cell; mannosylated peptide; T cell; vaccine; treatment.
 OS Synthetic.
 PN W9813378-A1.
 PD 02-APR-1998.
 PR 25-SEP-1996; EP-202701.
 PA (URL-) RIJKSUNIV LEIDEN.
 DR W98-230631/20.
 PT Increasing uptake and presentation of antigen(s) - by adding mannose residues(s) to antigen for increasing T cell response, useful in, e.g. vaccines against viral infection(s)
 PS Disclosure; Page 28; 47PP; English.
 CC The peptides W5459-W54809 are examples of peptides to which at least 1 (preferably 2) mannose can be attached to increase their uptake as antigens by antigen-presenting cells. Uptake of agonist mannosylated peptides will increase the T cell response, whereas uptake of antagonist peptides blocks the T cell response. Blocking binding of immunogenic autoantigens can be used in treatment of type I diabetes, rheumatoid arthritis, graft rejection etc., also to induce T-cell non-responsiveness. Vaccines containing mannosylated antigen are used to prevent or treat infections by, e.g. bacteria, viruses, fungi, helminths and parasites.
 CC Sequence 9 AA;

Query Match 100.0%; Score 61; DB 1; Length 9;
 Best Local Similarity 100.0%; Pred. No. 2.32e-01;
 Matches 9; Conservative 0; Mismatches 0; Gaps 0;
 SQ

Db 1 EADPTGHSY 9
 QY 1 EADPTGHSY 9

RESULT 8
 ID R50281 standard; Protein; 9 AA.
 AC R50281;
 DT 26-SEP-1994 (first entry)
 DE MAGE-1 nonapeptide.
 KW histocompatibility; cancer; melanoma; breast; cancer; HLA; therapy; vaccine.
 OS Synthetic.
 PN WO45304-A.
 PR 30-AUG-1994.
 PR 31-AUG-1992; US-938334.
 PR 26-MAR-1993; US-0373103.
 PR 07-JUN-1993; US-073103.
 PA (LUDW-) LUDWIG INST CANCER RES.
 PI Boon-faillieu T, De Plaen E, Lurquin C, Traversari C,
 Van Derbruggen P;

Page 4

RESULT 12
ID W77125; standard; peptide; 9 AA.
AC W77125;
DT 16-NOV-1998 (first entry)
DE gp75/TRP-1 synthetic peptide epitope 1.
KW Tyrosinase; tyrosinase cytotoxic lymphocyte response;
cytotoxic T lymphocyte; cysteine-depleted; melanoma;
Synthetic.
OS W0983810-A2.
PN 06-AUG-1998.
PD 29-JAN-1998; 001592.
PR 30-JAN-1997; US-037781.
(CVRL) ONT VIRGINIA PATENT FOUND.
PI Engelhard VH, Hunt DF, Kittlesen D, Slingluff CL;
WPI; 98-437389/37.
PT Disease specific immunogen - comprises disease specific cytotoxic T lymphocyte epitope used to elicit melanoma specific CTL response
PS Disclosure: Page 27; 93pp; English.
CC The peptide epitope W7719-W77138 were created for human tumour-specific cytotoxic T lymphocyte. These peptides are are cysteine-depleted mutants of a native disease-specific CTL epitope. The cysteine-depleted CTL epitopes elicit a stronger or more specific CTL response in a disease-specific than the native epitope. The epitopes can be used in a disease-specific immunogen to protect a mammal against disease in particular melanomas.
CC The Peptides may also be used to screen a sample for the presence of an antigen with the same epitope, or with a different cross-reactive epitope.
CC Sequence 9 AA;

Query Match 100.0%; Score 61; DB 1; Length 9;
Best Local Similarity 100.0%; Pred. No. 2.32e-01;
Matches 9; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Db 1 EADPTGHSY 9
QY 1 EADPTGHSY 9

RESULT 14
ID W00897; standard; Peptide; 9 AA.
AC W00897;
DT 23-MAY-1997 (first entry)
DE Human melanoma MAGE1 tumour associated antigen p161-169.
KW Adeno-associated virus; vector; liposome; transfection;
dendritic cell; melanoma; MAGE1; adoptive immunotherapy;
KW tumour associated antigen.
OS Homo sapiens.
PN WO970303-A1.
PD 06-FEB-1997.
PR 19-JUL-1996; U12012.
PR 21-JUL-1995; US-001312.
PR 01-NOV-1995; US-007184.
PR 01-DEC-1995; US-566286.
PA (RHON) RHONE POULEN RORER PHARM INC.
PI Lebkowski JS, Phillip R;
DR WPI; 97-142208/13
PT Adeno-associated virus:liposome complexes for transfecting dendritic cells - for inducing immune response, useful for treating e.g. neoplasia or infections
PT Example 5; Page 58; 134pp; English.
PS Tumour associated antigens (W3660-61, W00878-903) can be loaded into dendritic cells and used to induce antitumour immunity.
CC Alternatively, the dendritic cells are transfected with adeno-associated virus plasmid DNA (which includes DNA encoding the tumour associated antigen) complexed with cationic liposomes. The antigen loaded or transfected dendritic cells can be used to generate tumour antigen-specific cytotoxic T lymphocytes for use in adoptive immunotherapy in a patient having the corresponding tumour. A suitable antigen comprises amino acids 161-169 (W00897) of human melanoma MAGE1.
SQ Sequence 9 AA;

Query Match 100.0%; Score 61; DB 1; Length 9;
Best Local Similarity 100.0%; Pred. No. 2.32e-01;
Matches 9; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Db 1 EADPTGHSY 9
QY 1 EADPTGHSY 9

RESULT 15
ID W75736; standard; Peptide; 9 AA.
AC W75736;
DT 19-NOV-1998 (first entry)
DE Peptidase-resistant peptide 4.
KW Tumour antigen MZ2-E; T-cell; immunotherapy; cytolytic T-cell; CML;
human leucocyte antigen; MHC; lysis; vaccine.
KW Synthetic.
Key Location/Qualifiers
Misc_difference 2
Misc_difference 8
FT /note= "D-form residue"
FT /note= "D-form residue"
PN W09833511-A1.
PD 06-AUG-1998.
PR 19-NOV-1997; U21296.
(CNRS) CNRS NAT RECH SCI.
PA (LUDWIG INST CANCER RES.) LUDWIG INST CANCER RES.
PI Ayyoub M, Gairin JE, Matargull H, Monsarrat B, Van Den Eynde B;
DR WPI; 98-431166/37.
PT Peptidase-resistant peptide(s) that bind to HLA molecules and related antibodies - particularly for treatment of cancer by inducing proliferation of cytotoxic T cells
PT Claim 20; Page 20; 32pp; English.
PS Sequences W75733-W7736 are peptidase-resistant peptides which are analogues of the tumour antigen MZ2-E. This antigen is a potential target for T-cell based immunotherapy and can also be used to stimulate the antigen-specific CTL, however its use as a therapeutic agent is limited due to its degradation by peptidase. The MZ2-E antigen peptide analogues were modified at both peptidase sensitive portions, and were all shown to exhibit a longer half-life relative to peptidase degradation as well as the ability to bind a human leucocyte antigen (HLA). The
CC Key Location/Qualifiers
FT Modified_site 2
FT /note= "N-Methyl-Alanine"

FT	Modified-site	8	/note= "N-Methyl-Serine"		Matches	9;	Conservative	0;	Mismatches	0;	Indels	0;	Gaps	0;
FT	W0933511-A1.				Db	1	EADPTGHSY 9							
PN	06-AUG-1998.													
PD	06-NOV-1997; U21296.				QY	1	EADPTGHSY 9							
PR	05-FEB-1997; US-79733.													
PA	(CNRS) CENT NAT RECH SCI.													
PA	(LUDW.) LUDWIG INST CANCER RES.													
PI	Ayyoub M, Gairin JE, Nazarquiel H, Monsarrat B, Van Den Eynde B;													
DR	WPI: 98-43716/37.													
PT	Peptidase-resistant peptide(s) that bind to HLA molecules and													
PT	related antibodies - particularly for treatment of cancer by													
PT	inducing proliferation of cytotoxic T cells													
PS	Claim 20; Page 20; 32pp; English.													
PS	Sequences W75733-W75736 are Peptidase-resistant peptides which are													
CC	analogues of the tumour antigen M22-E. This antigen is a potential													
CC	target for T-cell based immunotherapy, and can also be used to stimulate													
CC	the antigen-specific CTL, however its use as a therapeutic agent is													
CC	limited due to its degradation by peptidase. The M22-E antigen peptide													
CC	analogue were modified at both peptidase sensitive portions, and were													
CC	all known to exhibit a longer half-life relative to peptidase degradation													
CC	as well as the ability to bind a human leucocyte antigen (HLA).													
CC	specific peptides W75733 and W75735 were established to have a comparable													
CC	affinity for the MHC as the tumour antigen, and W75735 was found to be													
CC	the ideal peptide analog to use due to it also being able to sensitise													
CC	the target cells to lysis by effector molecules at similar concentrations													
CC	to those of the antigen M22-E. These peptide analogues can be used in													
CC	vaccines to induce an immune response for treating conditions in which													
CC	abnormal HLA-peptide complexes are present on the surface of cells.													
Sequence	9 AA;													
Query Match	Score 61; DB 1; Length 9;													
Best Local Similarity	100.0%; Pred. No. 2.32e-01;													
Matches	9; Conservative 0; Mismatches 0; Indels 0; Gaps 0;													
Db	1 EADPTGHSY 9													
QY	1 EADPTGHSY 9													
RESULT	16													
ID	R8288 standard; Peptide; 9 AA.													
AC	R82888													
DT	26-FEB-1996 (first entry)													
DE	P815 antigen; P1A antigen;													
KW	Synthetic.													
OS	W0932387-A1.													
PN	08-SEP-1995.													
PF	23-FEB-1995; U02203.													
PR	01-MAR-1994; US-204727.													
PR	10-MAR-1994; US-205172.													
PR	01-SEP-1994; US-239849.													
PR	30-NOV-1994; US-346774.													
PA	(LUDW.) LUDWIG INST CANCER RES.													
PA	Boon-Falleur T, Brasseur F, Chomez P, De Plaen E,													
PI	De Smet C, Gaugler B, Lethe B, Marchand M, Patard J;													
PI	Szikora J, Van Den Eynde B, Van DeBruggen P, Weynants P;													
PI	WPI: 95-20865/41.													
PT	Determination of cancerous condition(s) - using a nucleic acid as a primer to determine expression of a MAGE tumour rejection antigen													
PT	precursor.													
PS	Example 13; Page 22; 121pp; English.													
CC	Using the sequence of the P115A antigen precursor gene P1A (R01176), an antigenic peptide (R82908) which was A+B+ (i.e.													
CC	characteristic of cells which express both A and B antigens) was produced. The peptide lysed PC-RTR cells in the presence of													
CC	cytolytic T lymphocyte cell lines, and may be useful as a vaccine component.													
SQ	Sequence 9 AA;													
Query Match	Score 61; DB 1; Length 9;													
Best Local Similarity	100.0%; Pred. No. 2.32e-01;													
CC	OS													

RESULT 17
ID R90692 standard; peptide; 9 AA.
AC R90692; R90695.
DT 31-JUL-1996 (first entry)
DE Human leukocyte antigen (HLA-A1) presented peptide MZ2-E.
KW Human leukocyte antigen; HLA-A1; MAGE-1 derived;
KW blood mononuclear cell; BMC; CD8-beta+ cell; cytolytic T cell;
KW CTL cell; treatment; tumour cell; diagnosis; assay;
KW presented peptide.
OS Synthetic.
PN W0955500-A1.
PD 28-DIC-1995.
PP 14-JUN-1995; U07559.
PR 17-JUN-1994; US-261541.
PA (LUDW.) LUDWIG INST CANCER RES.
PI Boon-Falleur T, Coulie P, Van Der Bruggen P;
DR WPI: 96-05851/06.
PT Product of specific cytolytic T cell sub-populations - by contacting blood mononuclear cells with specific peptide(s) and a population of CD8-beta(+) cells
PT Claim 5; Page 19; 25pp; English.
PS The present peptide is the human leukocyte antigen (HLA-A1), MAGE-1 derived presented peptide, MZ2-E. By contacting a sample of blood mononuclear cells (BMC) with the peptide (which binds directly to HLA-A1 mol's. on the surface of the BMC) and CD8-beta cells (which stimulate peptide/HLA-A1 complex specific cytolytic T (CTL) cell subpopulation can be obtd. The CTL cells obt'd can be administered to a patient to treat tumour cell related conditions, and can be used in diagnostic methods, e.g. in assays for the peptide/HLA-A1 complex.
SQ Sequence 9 AA;

Query Match Score 61; DB 1; Length 9;
Best Local Similarity 100.0%; Pred. No. 2.32e-01;
Matches 9; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
OS Synthetic.
PN W0956779 standard; peptide; 9 AA.
AC W0956779; W095678.
DT 31-JUL-1998 (first entry)
DE MAGE-1 antigenic partial peptide sequence (residues 161-169).
KW MAGE; replication defective; adenovirus; tumour; antigen; cancer;
KW immunotherapy; tumour rejection antigen precursor; TRAP; CTL;
KW synthetic.
OS Synthetic.
PN W095638-A2.
PD 16-APR-1998.
PP 06-OCT-1997; U17948.
PR 06-OCT-1996; US-027891.
PA (LUDW.) LUDWIG INST CANCER RES.
PI Cerrutiini J, Jongeneel CV, Reed DS, Rimoldi D,
PI Romero P;
DR WPI: 98-240824/21.
PT New replication-defective adenoviruses - comprise insert encoding immunotherapy antigen precursor(s), useful for, e.g. cancer Examples; Page 42; 56pp; English.
PS CC This is a partial sequence of the MAGE-1 antigenic peptide used in the method of the invention. The specification provides a new nucleic acid molecule comprising a replication-defective adenovirus genome containing CC

Query Match Score 61; DB 1; Length 9;
Best Local Similarity 100.0%; Pred. No. 2.32e-01;

an insert encoding a tumour rejection antigen Precursor (TRAP). The replicating-defective adenovirus genome is useful as a vector for introducing a TRAP molecule into mammalian (especially human) cells. The recombinant adenovirus is preferably targeted to tumour cells, e.g. by binding a ligand to the virus coat. The TRA peptides which are generated from the expressed TRAP are presented by human leukocyte antigen (HLA) molecules and as a result cytolytic T lymphocyte (CTL) production is increased (claimed). The CTL's then kill the TRAP-expressing tumour cells. Also, cells transfected by the recombinant adenovirus can be used for assessing the processing of TRAPs, including post-translational modifications. The adenovirus (genome) can be administered by injection, topical application or intracavitory in 106-1010 pfu doses. The range of TRA peptides produced by replication-defective adenovirus means that patients with a range of HLA phenotypes can be treated. Also, host cell immune response to TRA's is enhanced, e.g. by induction of tumour-specific cytolytic T lymphocytes.

Sequence 9 AA;
 Query Match 100.0%; Score 61; DB 1; Length 9;
 Best Local Similarity 100.0%; Pred. No. 2.32e-01; Indels 0; Gaps 0;
 Matches 9; Conservative 0; Mismatches 0;

Db 1 EADPTGHSY 9
 Qy 1 EADPTGHSY 9

RESULT 19
 ID R7554 standard; Peptide; 9 AA.
 AC R7554;
 DT 06-MAR-1996 (first entry)
 DE Melanoma antigen (MAGE-1) epitope.
 KW melanoma antigen; vaccine; immune response; immunogenic peptide; cytotoxic T lymphocyte response; CTL; melanoma; breast cancer; antibody; Homo sapiens.
 OS W09519783 A1.
 PD 27-JUL-1995.
 PF 25-JAN-1995; U010000.
 PR 25-JAN-1994; US-185266.
 PA (CYTE-) CYTEL CORP.
 PI Cells E, Grey HM, Kubo RT, Sette A;
 WP; 95-269270/35.

PT Immunogenic peptide(s) that induce immune response to cancer cells - that express a MAGE-3 protein peptide epitope used in vaccines or adoptive immunotherapy to induce cytotoxic T lymphocytes

PS Example: Page 33; 44PP; English.

CC R7554 is derived from MAGE-1 protein. It was used to show the specificity of CTL response to MAGE-3. Peptides shown in R75942-53. CC R7542 is derived from the sequence of the melanoma antigen (MAGE-3) protein and can be used to elicit a primary cytotoxic T lymphocyte response against cells expressing MAGE-3. Synthetic Peptides R75945-53 can be used therapeutically to elicit CTL responses to melanoma, breast, colon, prostate, or other cells which express proteins with this epitope. CC The peptides have specific HLA-A1 binding capacity.

SQ Sequence 9 AA;

Query Match 100.0%; Score 61; DB 1; Length 9;
 Best Local Similarity 100.0%; Pred. No. 2.32e-01; Indels 0; Gaps 0;
 Matches 9; Conservative 0; Mismatches 0;

Db 1 EADPTGHSY 9
 Qy 1 EADPTGHSY 9

RESULT 21
 ID W78838 standard; peptide; 9 AA.
 AC W78838;
 DT 17-NOV-1998 (first entry)
 DE MAGE-1 Protein fragment 161-169.
 KW Microparticle; delivery; polymeric matrix; autoantigen; tumour antigen; class II associated peptide; Pathogen; gene therapy; genetic disease; infection; downregulation; immune response.
 OS Homo sapiens.
 PS New Preparations of microparticiles - comprising a synthetic polymer matrix and nucleic acid comprising an expression vector for use in gene therapy

PN W09831398 A1.

PD 23-JUL-1998.
 PF 22-JAN-1998; U01499
 PR 06-JAN-1998; US-003253.
 DT 22-APR-1997 (first entry)

PA (PANG-) PANGAEA PHARM INC.
 PI Curley JM, Hedley ML, Langer RS, Lunsford LB;
 DR WPI; 98-421556/36.

PT New Preparations of microparticiles - comprising a synthetic polymer matrix and nucleic acid comprising an expression vector for use in gene therapy

PS Disclosure; Page 10; 101PP; English.

CC A microparticle preparation (MP) has been developed, consisting of microparticles having a diameter of less than 100 μm. The MP comprises:
 CC (a) a polymeric matrix (PM) consisting of one or more synthetic polymers
 CC (a) a polymeric matrix (PM) consisting of one or more synthetic polymers
 CC having a solubility in water of less than 1 mg/l; and (b) an expression
 CC vector selected from RNA molecules (at least 50% of which are closed
 CC circles) or circular Plasmid DNA (at least 50% of which are supercoiled).
 CC Also described is a MP of at most 20 microns in diameter, comprising: (a)

RESULT 20
 ID R99343 standard; Protein; 9 AA.
 AC R99343;
 DT 22-APR-1997 (first entry)

DE MAGE-1 nonapeptide,
 HLA binding Peptide,
 tumour rejection antigen Precursor; TRA; MAGE-1; tumour; cancer; cell;
 antibody; melanoma; universal effector cell; vaccine; breast cancer; CTL;

RW therapy.
 OS Homo sapiens.
 PN WO9626214 A1.
 PD 29-AUG-1996; U01489.
 PR 23-FEB-1995; US-393273.
 PA (LUDW) LUDWIG INST CANCER RES.
 PI Boon-Palleur T, De Plaen E, Gaugler B, Lurquin C;
 Romero P, Traversari C, Van Den Eynde B, Van Der Bruggen P;
 DR WPI; 96-402317/40.
 DR N-PSDB; T35408.
 PT New nona:peptide(s) that bind to HLA molecule(s) and induce lysis by specific cytolytic T cells, for diagnosis and treatment of tumours and to expand T cells in vitro.
 PS Example 4; Fig 4; 41PP; English.
 CC R99343-R93350 represent MAGE nonapeptides, based on the tumour rejection antigen region of the full length MAGE sequences. These peptides were used to design the nonapeptides of the invention (see R99337-R9342), which bind to a HLA molecule on a cell, and provoke lysis by cytolytic T cells (CTLs) specific for a complex of the HLA molecule and nonapeptide. The nonapeptides can be used diagnostically to identify tumours expressing a particular HLA molecule, or to identify cancer cells. The peptides can also be used therapeutically, to induce a CTL response to tumours (where the peptides are optionally coupled to tumour-specific antibodies), or to induce a response by CTLs that are otherwise inactive. The peptide sequences may also be used to expand specific CTLs in vitro for later return to the patient, such as for treating melanoma. Tumour cells can be identified by using DNA encoding the nonapeptides as probes. Non-human cells transformed with the HLA-A1 gene and a DNA sequence encoding one of the peptides, can be used to generate CTLs, or to detect the presence of CTLs in human samples. The non-human transformed cells, when polytransfected, are universal effector cells, and can be used in vaccines, or for treating melanoma or breast cancer.

SQ Sequence 9 AA;
 Query Match 100.0%; Score 61; DB 1; Length 9;
 Best Local Similarity 100.0%; Pred. No. 2.32e-01; Indels 0; Gaps 0;
 Matches 9; Conservative 0; Mismatches 0;

Db 1 EADPTGHSY 9
 Qy 1 EADPTGHSY 9

RESULT 21
 ID W78838 standard; peptide; 9 AA.
 AC W78838;
 DT 17-NOV-1998 (first entry)
 DE MAGE-1 Protein fragment 161-169.
 KW Microparticle; delivery; polymeric matrix; autoantigen; tumour antigen; class II associated peptide; Pathogen; gene therapy; genetic disease; infection; downregulation; immune response.
 OS Homo sapiens.
 PS New Preparations of microparticiles - comprising a synthetic polymer matrix and nucleic acid comprising an expression vector for use in gene therapy

PN W09831398 A1.

PD 23-JUL-1998.
 PF 22-JAN-1998; U01499
 PR 06-JAN-1998; US-003253.
 DT 22-JAN-1997; US-787847.

PA (PANG-) PANGAEA PHARM INC.
 PI Curley JM, Hedley ML, Langer RS, Lunsford LB;

a PM; and (b) a NAM comprising an expression control sequence operatively linked to a coding sequence, where the coding sequence encodes an expression product selected from: (1) a polypeptide at least 7 amino acids in length, having a sequence identical to the sequence of: (i) a fragment of a naturally-occurring mammalian protein; or (ii) a fragment of a naturally occurring protein from an infectious agent which infects a mammal; (2) a peptide having a length and sequence which permits it to bind to an MHC class I or II molecule; and (3) the polypeptide or the peptide linked to trafficking sequence, W69763 to W6975, and W78793 to W78897 are peptide fragments for use in the present invention. The MPS are highly effective vehicles for the delivery of polynucleotides into phagocytic cells. They can be used for gene therapy, e.g. for treating genetic diseases, infections or tumours or for downregulating an immune response.

Sequence 9 AA;

Query Match 100.0%; Score 61; DB 1; Length 9;
Best Local Similarity 100.0%; Pred. No. 2.32e-01;
Matches 9; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Db 1 EADPTGHSY 9
| | | | | | |
Qy 1 EADPTGHSY 9

RESULT 22

ID R65112 standard; peptide: 9 AA.
AC R65112;
DT 06-OCT-1995 (first entry)
DE MAGE 1 immunogenic peptide 161-169;
KW DE MAGE 1 immunogenic peptide 161-169;
KW in vitro activation; cancer; AIDS; bacterial infections; malaria;
KW fungal infections; tuberculosis; hepatitis.
OS Homo sapiens.
PN WO9504811-A.
PD 16-FEB-1995.
PR 01-AUG-1994; US-5672.
PR 06-AUG-1993; US-103401.

(CYTE-) CYTEL CORP.

PI Celis E, Kubo R, Serra H, Tsai V, Wentworth P;
DR WPI: 95-090895/12.
PT In vitro activation of cytotoxic T cells for selected killing of target cells - for treating e.g. cancer, AIDS, hepatitis etc. by incubating them with antigen presenting cells loaded with appropriate immunogenic peptide
PS Example 3: Page 35; 53PP; English.
CC R65109-R65115 are immunogenic peptides, they are used in a new method for the in vitro activation of cytotoxic T cells (Ctc). This is achieved by incubating the CTCs with antigen presenting cells loaded with an appropriate immunogenic peptide (e.g. one of the above peptides). By selecting the peptides used the following diseases and infections can be treated: cancer, AIDS, hepatitis, other viral and bacterial infections, malaria and tuberculosis. Sequence 9 AA;

Query Match 100.0%; Score 61; DB 1; Length 9;
Best Local Similarity 100.0%; Pred. No. 2.32e-01;
Matches 9; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Db 1 EADPTGHSY 9
| | | | | | |
Qy 1 EADPTGHSY 9

RESULT 23

ID R63675 standard; Protein; 9 AA.
AC R63675;
DT 22-JUN-1995 (first entry)
DE Synthetic peptide derived from exon 3.1 of MAGE 1.
KW Melanoma antigen-1; MAGE-1; cytolytic T cells; antigen E; exon 3.1.
OS Synthetic.
PN WO9423031-A.

PD 13-OCT-1994.
PF 17-MAR-1994; US-02877.

PR 26-MAR-1993; US-03230.
PA (LUDWIG) LUDWIG INST CANCER RES.

PI Boon-faïeur T, Gaugier B, Van DER BRUGGEN P;
DR WPI: 94-33197/41.
PT New tumour resection antigen precursor MAGE3 - useful in treatment and diagnosis of cancer.

PS Example 34; Page 36; 105PP; English.
CC R6375 is a synthetic peptide derived from exon 3.1 of melanoma antigen-1 (MAGE-1), it was used to transfer antigen E cytolytic T lymphocyte sensitivity to normally non-sensitive cells.

SQ Sequence 9 AA;

Query Match 100.0%; Score 61; DB 1; Length 9;
Best Local Similarity 100.0%; Pred. No. 2.32e-01;
Matches 9; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Db 1 EADPTGHSY 9
| | | | | | |
Qy 1 EADPTGHSY 9

RESULT 24

ID R78324 standard; peptide: 9 AA.
AC R78324;
DT 26-OCT-1996 (first entry)
DE MAGE-1 cytotoxic T lymphocyte epitope.
KW DE MAGE-1; cytotoxic T cell; epitope; helper T; lymphocyte; cell; viruses; parasites; tumours; antigens; disease prevention; KW treatment; Homo sapiens.
OS PN WO922317-A1.
PD 24-AUG-1995.
PR 16-FEB-1995; US-137484.
PA (CITE-) CYTEL CORP.
PI Cells E, Chestnut RW, Grey H, Sette AD, Vitiello MA;
DR WPI: 95-102545/39.

PT Compsn. inducing cytotoxic T lymphocyte response to pref. viral, bacterial, parasitic or tumour antigens - useful in the treatment and prevention of diseases associated with the antigen e.g. PT hepatitis B
PS Disclosure; Page 17; 109PP; English.
CC A compsn. which induces a cytotoxic T lymphocyte (CTL) response to an antigen (Ag) in a mammal comprising a CTL Ag response inducing CC peptide (1.e. R7884-R7853) and a lipid conjugated helper T cell CC inducing Peptide. The compsn. induces a CTL response to bacterial, CC viral or tumour Ags, and is therefore useful in the treatment and CC prevention of diseases associated with the Ag.
SQ Sequence 9 AA;

Query Match 100.0%; Score 61; DB 1; Length 9;
Best Local Similarity 100.0%; Pred. No. 2.32e-01;
Matches 9; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Db 1 EADPTGHSY 9
| | | | | | |
Qy 1 EADPTGHSY 9

RESULT 25

ID R65135 standard; peptide: 9 AA.
AC R65135;
DT 09-OCT-1995 (first entry)
DE MAGE 1 immunogenic peptide A01.
KW MAGE 1; immunogenic peptide A01; cytotoxic T cells; in vitro activation; cancer; AIDS; bacterial infections; malaria;
OS PN WO944811-A.
PD 16-FEB-1994; US-08672.
PP 01-AUG-1994; US-08672.

RESULT	26	R49224 standard; Protein: 9 AA.
ID	R49224	AC R49224 standard; Protein: 9 AA.
AC		
DT	31-AUG-1994	(first entry)
HLA-A1	MAGE 1 antigen peptide fragment	958-01.
ImmunoGenic:	HIA-A3 2;	HIA-A1: HIA-A1: binding motif: MHC molecule
KW	immune response; viral infection; cancer; prostate cancer; lymphoma; hepatitis; AIDS; antibody; diagnosis; melanoma antigen.	
KW	Synthetic.	
OS		
PN	WO943205-A.	
PD	17-FEB-1994.	
PR	06-AUG-1993; U07421.	
PR	07-AUG-1992; US-926666.	
PR	05-MAR-1993; US-927746.	
PA	(CYTE-) CYTEL CORP.	
PI	Grey HM, Kubo RT, Sette A;	
DR	WPI: 94-065403/08.	
PT	Peptide which specifically binds selected MHC allele - used to induce an immune response for treatment or prevention of viral infection or cancer, or for diagnosis.	
PT	Baxmple 16; Page 116; 150PP; English.	
PS	The sequences given in R17304-33 and R19201-44 are immunogenic peptides which have a HLA-A3.2, HLA-A1 or a HLA-A11 binding motif.	
CC	These Peptides may be used in the composition of the invention.	
CC	These Peptides are capable of binding selected MHC molecules and inducing an immune response. They can be used to treat and/or prevent viral infection and cancer, eg. prostate cancer, lymphoma, hepatitis or AIDS. They can also be used to produce antibodies for use as diagnostic or therapeutic agents. The peptides can also be used as diagnostic or therapeutic agents.	
CC	Sequence 9 AA:	
SQ		
Query Match	100.0%	Score 61; DB 1; Length 9;
Best Local Similarity	100.0%	Pred. No. 2.32e-01;
Matches	9;	Mismatches 0;
Conservative		Indels 0; Gaps
Db	1 EADPFGHSY 9	
Qy	1 EADPFGHSY 9	

SQ	Sequence	10 AA;	Score 61; DB 1; Length 10;	CC R70969. These peptides are useful for defining epitopes that
	Query Match	100.0%;	Pred. No. 2.32e-01;	CC engender a HLA-restricted cytotoxic lymphocyte activity against
	Best Local Similarity	100.0%;	MAGE-1 antigens. Compns. containing these peptides can be	
	Matches	9;	administered, as a vaccine to patients susceptible to MAGE	
			associated tumours, e.g. melanomas.	
Db	2	EADPTGHSY 10	0; Mismatches 0; Indels 0; Gaps 0;	SQ sequence 309 AA;
Qy	1	EADPTGHSY 9	0; Mismatches 0; Indels 0; Gaps 0;	
RESULT	29			
ID	R80520;	standard; Protein; 12 AA.		
AC	R80520;			
DT	28-FEB-1996	(first entry)		
DE	Immunoactive peptide of tumour rejection antigen (MAGE-1).			
KW	Tumour rejection antigen; MAGE-1; monoclonal antibody; Mab; diagnosis; immunoassay; cancer; immunogen; antisera.			
KW	Homo sapiens.			
OS	W0920974-A1.			
PN	05-JAN-1995; US0095;			
PD	01-FEB-1994; US19041.			
PR	05-JAN-1995; US19041.			
PA	(LUDWIG INST CANCER RES.			
PA	(SLOK) SLOAN KETTERING INST CANCER RES. CENT.			
PA	(SLOK) MEMORIAL SLOAN-KETTERING CANCER CENT.			
PI	Boon-failler T, Chen Y, Garin-chesa P, Old LJ, Retting WJ;			
PI	Stockert E, Van der Bruggen P;			
DR	WPI: 95-233606/37.			
PT	New monoclonal antibody binding specifically to MAGE-1 - useful for diagnosis and monitoring of cancer, also new hybridomas, recombinant MAGE-1 and immunoactive Peptide(s)			
PT	Claim 12; Page 20; 33PP; English.			
PS	A monoclonal antibody directed against the tumour rejection antigen (MAGE-1) can be used to detect MAGE-1 in samples by standard immunoassay methods for diagnosis and monitoring of cancer etc. The monoclonal antibody is designated MA454 and is produced by the hybridoma deposited as ATCC HB11540. The monoclonal antibody is specific for MAGE-1, having no reactivity for MAGE-2 or MAGE-3. Peptide fragments of MAGE-1 (See R80618-20) may be useful as immunogens for production of the monoclonal antibody and antisera.			
CC	Sequence 12 AA;			
CC	Query Match	100.0%;	Score 61; DB 1; Length 12;	Score 61; DB 1; Length 309;
CC	Best Local Similarity	100.0%;	Pred. No. 2.32e-01;	Pred. No. 2.32e-01;
CC	Matches	9;	Mismatches 0; Indels 0; Gaps 0;	Mismatches 0; Indels 0; Gaps 0;
CC	SQ			
Db	4	EADPTGHSY 12		
Qy	1	EADPTGHSY 9		
RESULT	30			
ID	R70909 standard; Protein; 309 AA.			
AC	R70909;			
DT	09-OCT-1995	(first entry)		
DE	Human melanoma antigen MAGE-1.			
KW	Human melanoma antigen; MAGE-1; vaccines; MAGE associated tumours; HLA-restricted cytotoxic T-lymphocyte activity.			
OS	Homo sapiens.			
PN	W0950542-A.			
PD	16-FEB-1995.			
PR	02-AUG-1994; US08721.			
PR	06-AUG-1993; US103623.			
PA	(CYTE) CYTEL CORP.			
PI	Pikes JD, Livingston BD, Sette AD, Sidney JC;			
DR	N-PSDB; Q85435.			
PI	Human melanoma antigen, MAGE-1, peptide(s) - useful for stimulating immune response against melanoma			
PS	Example 1; Fig 1; 59PP; English.			
CC	Q85435 encodes R70909 human melanoma antigen MAGE-1, it was used to produce the C-terminal MAGE-1 peptides described in R70915 to			

Search completed: Wed Sep 13 07:14:24 2000
Job time : 7 secs.

Release 3.1A John F. Collins, Biocomputing Research Unit.
 Copyright (c) 1993-1998 University of Edinburgh, U.K.

Distribution rights by Oxford Molecular Ltd

Mpsrch_pp protein - protein database search, using Smith-Waterman algorithm

Run on: Tue Sep 12 13:23:01 2000: MasPar time 5.52 Seconds
 76.943 Million cell updates/sec

Tabular output not generated.

Title: >US-08-819-669E-26
 Description: (1-9) from US08819669E.pep
 Perfect Score: 61

Sequence: 1 EADPTGHSY 9

Scoring table: PAM 150
 Gap 15

Searched: 142080 seqs, 47172406 residues

Post-processing: Minimum Match 0.8
 Listing first 1000 summaries
 Maximum DB seq length 9

Database: Pir64

1:pir1 2:pir2 3:pir3 4:pir4
 Mean 20.662; Variance 21.178; scale 0.976

Statistics:
 Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query Match	Length	DB ID	Description	Pred. No.
1	46	75.4	9	2 PH1299	MAGE 5 protein - huma	1.79e+00

Note: Post processor removed 999 summaries from list due to search parameters chosen.

ALIGNMENTS

RESULT	1	PH1299	#type fragment
ENTRY		MAGE 5 protein - human (fragment)	
TITLE		MAGE 5I protein	
ALTERNATE NAMES		#formal name Homo sapiens #common_name man	
ORGANISM		30-Sep-1993 #sequence_revision 30-Sep-1993 #text_change	
DATE		03-Aug-1998	
ACCESSIONS		PH1299; PH1300	
REFERENCE		Traversari, C.; van der Bruggen, P.; Luescher, I.F.; Lurquin, C.; Chomez, P.; Van Pele, A.; De Blaen, E.; Amar-Costelet, A.; Boon, T.	
#authors		J. Exp. Med. (1992) 176:1453-1457	
#journal		A nonapeptide encoded by human gene MAGE-1 is recognized on HLA-A1 by cytolytic T lymphocytes directed against tumor	
#title			

***** Release 3.1A John F. Collins, Biocomputing Research Unit.
***** Copyright (C) 1993-1998 University of Edinburgh, U.K.
***** Distribution rights by Oxford Molecular Ltd

Mpsrch_pp protein - protein database search, using Smith-Waterman algorithm

Run on: Tue Sep 12 13:20:57 2000; MasPar time 3.60 Seconds

Tabular output not generated.

Title: >US-08-819-669E-26

Description: (1-9) from US0819669E.pep

Perfect Score: 61

Sequence: 1 EADPQHSHY 9

Scoring table: PAM 150
Gap 15

Searched: 85661 seqs, 30989116 residues

Post-processing: Minimum Match 08
Listing first 1000 summaries
Maximum DB seq length 9

Database: swiss-prot38
1:swissprot

Statistics: Mean 21.172; Variance 19.906; scale 1.064

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Query	Match Length	DB ID	Description	Pred. NO.
------------	-------	--------------	-------	-------------	-----------

No matches found.

Search completed: Tue Sep 12 13:21:37 2000

Job time : 40 secs.

Result No.	Query	Match Length	DB ID	Description	Pred. NO.
------------	-------	--------------	-------	-------------	-----------

Release 3.1A John F. Collins, Biocomputing Research Unit.

Copyright (c) 1993-1998 University of Edinburgh, U.K.

Distribution rights by Oxford Molecular Ltd.

MPSrch_PP protein - protein database search, using Smith-Waterman algorithm

Description: >US-08-819-669E-26
(1-9) from US08819669E.pep

Perfect Score: 61

Sequence: 1 EADPTGHSY 9

Tabular output not generated.

Title: >US-08-819-669E-26

Run on: Wed Sep 13 06:32:58 2000; MasPar time 3.59 Seconds

59.387 Million cell updates/sec

Scoring table: PAM 150

Gap 15

Searched: 188963 seqs, 23686106 residues

Post-processing: Minimum Match 0%
Listing first 1000 summaries
Maximum DB seq length 9

Database: a-geneseq36

1:geneseq36

Statistics: Mean 15.425; Variance 35.537; scale 0.434

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query Match	Length	DB ID	Description	Pred. No.
1	61	100.0	9	1 W98945	HLA-A1 binding peptide	2.32e-01
2	61	100.0	9	1 Y01727	Exemplary antigenic peptide	2.32e-01
3	61	100.0	9	1 Y10633	Peptide antigen SEQ ID	2.32e-01
4	61	100.0	9	1 Y00685	Tumour antigen booster	2.32e-01
5	61	100.0	9	1 Y10424	HLA Class I motif Pept	2.32e-01
6	61	100.0	9	1 Y10623	Peptide antigen SEQ ID	2.32e-01
7	61	100.0	9	1 W54622	Peptide from Mage-1 16	2.32e-01
8	61	100.0	9	1 R50281	MAGE-1 nonapeptide.	2.32e-01
9	61	100.0	9	1 R83932	MHC class I restricted Antigen E peptide	2.32e-01
10	61	100.0	9	1 R29769	Human MAGE-1 Peptide b	2.32e-01
11	61	100.0	9	1 W68371	gp75/TRP-1 synthetic p	2.32e-01
12	61	100.0	9	1 W77125	Peptides-resistant peptide	2.32e-01
13	61	100.0	9	1 W75734	Human melanoma MAGE1 t	2.32e-01
14	61	100.0	9	1 W00897	Peptides-resistant peptide	2.32e-01
15	61	100.0	9	1 W75736	PB15 antigenic peptide	2.32e-01
16	61	100.0	9	1 R82988	Human leukocyte antigen	2.32e-01
17	61	100.0	9	1 R90692	MAGE-1 antigen part1	2.32e-01
18	61	100.0	9	1 W56729	Melanoma antigen (MAGE	2.32e-01
19	61	100.0	9	1 R75954	MAGE-1 nonapeptide	2.32e-01
20	61	100.0	9	1 R99343	MAGE-1 protein fragment	2.32e-01
21	61	100.0	9	1 W8838	MAGE-1 immunogenic pep	2.32e-01
22	61	100.0	9	1 R65112	The Present invention describes peptides which bind to an HLA-A2	2.32e-01

Note: Post-processor removed 932 summaries from list due to search parameters chosen.

ALIGNMENTS

RESULT	1	Standard; peptide; 9 AA.
ID	W88945,	(first entry)
AC	W88945;	HLA-A1 binding peptide derived from MAGE-1.
DT	08-MAY-1999	HLA Class I motif Pept
DE	W88945	MAGE-3 nonapeptide.
DE	R49122	Peptide antigen SEQ ID
DE	W75942	MAGE-41 nonapeptide.
DE	Y10603	Peptide antigen SEQ ID
DE	R50281	MAGE-41 nonapeptide.
DE	W88945	MAGE-4 nonapeptide.
DT	23-JUN-1997	Peptide antigen SEQ ID
DR	99-105609/09	MAGE-4 nonapeptide.
PT	WIFI	Identify HLA-A2 positive cells and provoke T cells
PT	Example 7, Page 18, 45pp; English.	The Present invention describes peptides which bind to an HLA-A2
PS	CC	

CC molecule and have Val at the carboxy terminus, and either: (a) Ala, Tyr or Phe at the amino terminus, and Ala at position 2 (P1); or (b) Glu at the amino terminus, and Ala, Leu, or Met at positions 2 and 3, with the provision that Ala is not at both positions (P2). The peptides of the present invention are used to identify HLA-A2 positive cells, provoke T cells, and determine the presence of particular T cells including cytolytic T cells (CTLs). They provide a better target than the prior art CTL-stimulating peptide. The present sequence represents a peptide used in an example from the present invention.

Sequence 9 AA:
 Query Match Score 61; DB 1; Length 9;
 Best Local Similarity 100.0%; Pred. No. 2.32e-01;
 Matches 0; Mismatches 0; Indels 0; Gaps 0;

Db 1 EADPTGHSY 9
 Qy 1 EADPTGHSY 9

RESULT

ID Y01727 standard; Peptide; 9 AA.

AC 04-127;

DT 25-JUN-1999 (first entry)

DE Exemplary antigenic peptide derived from MAGE-1.

KW MAGE-3; tumour associated gene; human leucocyte antigen Class II;

KW autologous CD4+ cell; MAGE-3 related disease; cancer; melanoma;

KW osteosarcoma; leukemia; carcinoma.

OS Homo sapiens.

PN WO914346-A1.

PD 25-MAR-1999.

PE 04-SEP-1998; U188601.

PR 12-SEP-1997; US-948615.

PA (LUDWIG) LUDWIG INST CANCER RES.

CC (UYVR-) UNIV VRIJE BRUSSEL.

PI Boon-Falleur T, Chaux P, Corthals J, Heirman C,

PI Luitjen R, Stroobant V, Thielemans K, Van Der Bruggen P;

DR WPI: 99-244031/20.

PT Isolated peptides that bind to human leucocyte antigen class II

PT molecules

PS Disclosure: Page 27; 88pp; English.

CC The present sequence represents an exemplary tumour associated peptide

CC antigen. The specification describes a MAGE-3 tumour associated gene.

CC Peptides (Y01721-35) that bind human leucocyte antigen (HLA) Class II

CC molecules can be derived from the MAGE-3 protein. These peptides and

CC analogous CD4+ cells that bind to a complex of MAGE-3 peptide

CC and HLA Class II, are used to treat MAGE-3 related diseases,

CC particularly cancers (e.g. melanoma, osteosarcoma, leukemia and

CC various forms of carcinoma). The peptides are also used to produce

CC specific antibodies. Detection of the peptides, e.g. in binding

CC assays, particularly with antibodies, is used for diagnosis of such

CC diseases.

CC Sequence 9 AA;

Query Match Score 61; DB 1; Length 9;

Best Local Similarity 100.0%; Pred. No. 2.32e-01;

Matches 0; Mismatches 0; Indels 0; Gaps 0;

Db 1 EADPTGHSY 9
 Qy 1 EADPTGHSY 9

RESULT

ID Y10633 standard; Peptide; 9 AA.

AC Y10633;

DT 12-MAY-1999 (first entry)

DE Peptide antigen SEQ ID NO:563.

KW Cytotoxic T-lymphocyte response; CTL; antigen; lymphatic system;

KW immunisation; tumour; infectious disease; immunotherapy; cancer;

KW malignant melanoma; viral disease; hepatitis; AIDS.

OS Synthetic.

OS Homo sapiens.

WO9902183-A2.

PN 21-JAN-1999.

PD 10-TUL-1998; U14289.

PF 10-DEC-1997; US-988320.

PR 10-TUL-1997; CA-299815.

PA (CTLI-) CTL IMMUNOTHERAPIES CORP

PA Kuendig TM, Simard JJL;

DR WPI: 99-12054/10.

PT Inducing a cytotoxic T lymphocyte response - by maintaining a level

PT of antigen in the lymphatic system of a mammal so as to provide a

PT sustained CTL response, used to treat, e.g. AIDS

PS Disclosure: Page 52; 199pp; English.

The present invention describes a method of inducing and/or sustai

an immunological cytotoxic T lymphocyte (CTL) response in a mammal.

CC The method comprises: (a) delivering an antigen to the mammal at a level

CC to induce an immunological CTL response in the mammal; and (b) maintaining

CC the level of the antigen in the mammal's lymphatic system to maintain

CC the immunologic CTL response. The method can be used for the delivery of

CC e.g. a differentiation antigen, a tumour-specific multilineage antigen,

CC an embryonic antigen, an oncogene antigen, a mutated tumour-suppressor

CC gene antigen, or a viral antigen. They can be used for the treatment

CC of disease such as cancer, e.g. malignant melanoma or infectious disease

CC e.g. viral disease such as hepatitis or AIDS. Sustained antigen delivery

CC to the lymphatic system provides for potent CTL stimulation that take

CC place in the milieu of the lymphoid organ, and it sustains stimulati

CC that is necessary to keep CTL active, cytotoxic and recirculating

CC through the body. Y10071 to Y10639 represent examples of peptide

CC antigens given in the present invention.

SQ Sequence 9 AA;

Query Match Score 61; DB 1; Length 9;

Best Local Similarity 100.0%; Pred. No. 2.32e-01;

Matches 0; Mismatches 0; Indels 0; Gaps 0;

Db 1 EADPTGHSY 9
 Qy 1 EADPTGHSY 9

RESULT

ID Y00685 standard; peptide; 9 AA.

AC Y00685;

DT 12-MAY-1999 (first entry)

DE Tumour antigen booster Peptide MAGE-1 HLA-A1.

KW tumour antigen; booster peptide; immune response modulation; allergy;

KW immune response enhancer; tumour cell; tumour rejection antigen;

KW leukocyte antigen-presenting molecule; autoimmune disease;

KW allograft rejection.

OS Homo sapiens.

PN WO9856956-A2.

PD 30-DEC-1998.

PR 19-JUN-1997; U12894.

PA (LUDWIG) LUDWIG INST CANCER RES.

PI Bon-Rallent T, Uttenhove C, Warnier G;

DR WPI: 99-105612/09.

PT Immunization methods using viruses expressing antigen for priming

PT and booster immunizations - useful for modulating immune responses

PT against antigen, e.g. enhancing immune response against tumour cells

PT expressing tumour rejection antigens.

PS Claim 3; Page 9; 33pp; English.

CC This sequence represents a tumour antigen booster Peptide that can be

CC used in the method of the invention. The method is for modulating an

CC immune response in a mammal against an antigen, and comprises:

CC (A) inducing an immune response by: (i) administering a virus containing

CC a nucleic acid molecule encoding the antigen or its precursor to generate

CC an immune response; and (ii) administering at least one booster dose

CC comprising peptide including the antigen, in an adjuvant, in a combined

CC amount effective to enhance the initial immune response; or

CC (B) reducing an immune response as defined for (A) but using an amount

CC non-adjuvant with the peptide which includes the antigen, in an amount

CC effective to reduce the initial immune response. Method (A) is used to

CC enhance the immune response against tumour cells expressing tumour

rejection antigens, and against pathogens in subjects having human CC leucocyte antigen presenting molecules. Method (B) is used to reduce the CC immune response in allergy, autoimmune disease, and allograft rejection. CC Method (A) provides an immunisation method which, unlike prior art, is CC not limited by the host immune response against viral vectors.

Sequence 9 AA;

Query Match 100.0% Score 61; DB 1; Length 9;

Best Local Similarity 100.0% Pred. No. 2.32e-01;

Matches 9; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 1 EADPTGHSY 9

RESULT 5
ID Y10424 standard Peptide: 9 AA.

AC Y10424; 12-MAY-1999 (first entry)

DE HLA Class I motif peptide SEQ ID NO:354.

CC Cytoxic T-lymphocyte response; CTL; antigen; lymphatic system;

KW immunisation; tumour; infectious disease; immunotherapy; cancer;

KW malignant melanoma; viral disease; hepatitis; AIDS.

OS Synthetic.

OS Homo sapiens.

PN WO9902183-A2.

PI Kuendig TM, Simard JJJ;

PR WPI; 99-120514/10.

PT Inducing a cytotoxic T lymphocyte response - by maintaining a level

of antigen in the lymphatic system of a mammal so as to provide a

PT sustained CTL response, used to treat, e.g. AIDS

PS Disclosure: Page 39; 199pp; English.

CC The present invention describes a method of inducing and/or sustaining

an immunological cytotoxic T lymphocyte (CTL) response in a mammal. The

method comprises: (a) delivering an antigen to the mammal at a level to

induce an immunological CTL response in the mammal; and (b) maintaining

the level of the antigen in the mammal's lymphatic system to maintain

the immunologic CTL response. The method can be used for the delivery

e.g. a differentiation antigen,

an embryonic antigen, an oncogene antigen, a mutated tumour-suppressor

gene antigen, or a viral antigen. They can be used for the treatment

of disease such as cancer, e.g. malignant melanoma or infectious disease

e.g. viral disease such as hepatitis or AIDS. Sustained antigen delivery

to the lymphatic system provides for potent CTL stimulation that takes

place in the milieu of the lymphoid organ, and it sustains stimulation

that is necessary to keep CTL active, cytotoxic and recirculating

through the body. Y10071 to Y10639 represent examples of Peptide

Sequence 9 AA;

Query Match 100.0% Score 61; DB 1; Length 9;

Best Local Similarity 100.0% Pred. No. 2.32e-01;

Matches 9; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 1 EADPTGHSY 9

RESULT 6
ID Y10623 standard Peptide: 9 AA.

AC Y10623; 12-MAY-1999 (first entry)

DE Peptide antigen SEQ ID NO:553.

CC Cytoxic T-lymphocyte response; CTL; antigen; lymphatic system;

KW immunisation; tumour; infectious disease; immunotherapy; cancer;

KW malignant melanoma; viral disease; hepatitis; AIDS.

OS Synthetic.

OS Homo sapiens.

PN WO9902183-A2.

PI Kuendig TM, Simard JJJ;

PR WPI; 99-120514/10.

PT Inducing a cytotoxic T lymphocyte response - by maintaining a level

of antigen in the lymphatic system of a mammal so as to provide a

PT sustained CTL response, used to treat, e.g. AIDS

PS Disclosure: Page 51; 199pp; English.

CC The present invention describes a method of inducing and/or sustaining

an immunological cytotoxic T lymphocyte (CTL) response in a mammal. The

method comprises: (a) delivering an antigen to the mammal at a level to

induce an immunological CTL response in the mammal; and (b) maintaining

the level of the antigen in the mammal's lymphatic system to maintain

the immunologic CTL response. The method can be used for the delivery

e.g. a differentiation antigen,

an embryonic antigen, an oncogene antigen, a mutated tumour-suppressor

gene antigen, or a viral antigen. They can be used for the treatment

of disease such as cancer, e.g. malignant melanoma or infectious disease

e.g. viral disease such as hepatitis or AIDS. Sustained antigen delivery

to the lymphatic system provides for potent CTL stimulation that takes

place in the milieu of the lymphoid organ, and it sustains stimulation

that is necessary to keep CTL active, cytotoxic and recirculating

through the body. Y10071 to Y10639 represent examples of Peptide

Sequence 9 AA;

Query Match 100.0% Score 61; DB 1; Length 9;

Best Local Similarity 100.0%; Pred. No. 2.32e-01; Matches 9; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Db 1 EADPTGHSY 9
AC |||||||
QY 1 EADPTGHSY 9

RESULT 8
JD R50281; standard; Protein; 9 AA.
AC R50281;
DT 26-SEP-1994 (first entry)
DE MAGE-1 nonapeptide.
KW nonapeptide; cancer; melanoma; breast cancer; HLA;
KW histocompatibility; human leucocyte antigen; probe; treatment;
KW therapy; vaccine.
OS Synthetic.

PN W940304.A.
PD 17-MAR-1994.
PF 30-AUG-1993; U08157.
PR 31-AUG-1992; US-93834.
PR 26-MAR-1993; US-037230.
PA (LUDWIG) LUDWIG INST CANCER RES.
PI Bon-Dalleur T, De Plaein E, Lurquin C, Traversari C;
Van Derbruggen P;
DR WPI: 94-108844/1-2.
DR N-PSDD: Q44751.
PT New nonapeptide derived from tumour rejection antigen precursor
- presented by HLA-A1 cancer cells, for use in diagnosis or
therapy of esp. melanoma and breast cancer.
PS Disclosure; Page 19; 33pp; English.
CC An isolated nonapeptide having the amino acid sequence Glu-Val-Asp-
Pro-Ile-Gly-His-Leu-Tyr is derived from the tumour rejection antigen
precursor encoded by the MAGE-3 gene and present by HLA-A1. The
nonapeptide can be used in a vaccine to treat a cancerous condition
involving HLA-A1 subtype cancerous cells. The nucleic acid encoding
the nonapeptide can be used as a probe to identify tumour cells.
CC This sequence is homologous to the peptide described and is encoded
by the MAGE-1 gene.
SQ Sequence 9 AA;

Query Match Score 61; DB 1; Length 9;
Best Local Similarity 100.0%; Pred. No. 2.32e-01; Matches 9; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Db 1 EADPTGHSY 9
AC |||||||
QY 1 EADPTGHSY 9

RESULT 9
ID R83932 standard; peptide; 9 AA.
AC R83932;
DT 05-JUN-1996 (first entry)
DE MHC class I restricted antigenic Peptide #2.
KW MHC class I; antigen; MAGE; melanoma; breast cancer; bladder cancer;
KW Tittermax; Cytotoxic T-lymphocyte; tumour; Pathogenic disease; bacteria;
KW parasite; human; animal.
OS Synthetic.

PN W0952958-A1.
PD 02-NOV-1995.
PF 21-APR-1995; U01975.
PR 22-APR-1994; US-233496.
PA (SLOK) SLOAN KETTERING INST CANCER RES.
PI Dyall R, Nikolic-Zugic J;
DR WPI: 95-38848/49.
PT Cytotoxic T-cell induction by MHC class I-restricted peptide in
pathogenic diseases
PT Adjacent - useful for treating tumours and bacterial or parasitic
pathogenic diseases
PS Claim 11; Page 38; 50PP; English.
CC The sequences given in R83931-49 are MHC class I restricted 8-12
amino acid antigenic peptides. This peptide is derived from MAGE

and is present in melanoma, breast and bladder cancer. These peptides may be administered to a subject in combination. These peptides may be used in the treatment of a tumour or a pathogenic disease, esp. diseases of bacterial or parasitic origin, in humans and animals, e.g. monkeys, dogs, cows, horses, etc.

Query Match Score 61; DB 1; Length 9;
Best Local Similarity 100.0%; Pred. No. 2.32e-01;
Matches 9; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Db 1 EADPTGHSY 9
QY 1 EADPTGHSY 9

RESULT 10
ID R27769 standard; peptide; 9 AA.
AC R27769;
DT 22-APR-1993 (first entry)
DE Antigen E peptide.
KW Antigen; tumorigenic cell; A+ B+; T-cell; response; syngeneic;
KW animal; mouse; tumour rejection antigen precursor; TRAP; PLA;
OS Homo sapiens.
PN WO20336-A.
PD 26-NOV-1992.
PF 22-MAY-1992; U04354.
PR 23-MAY-1991; US-764364.
PR 09-JUL-1991; US-728838.
PR 23-SEP-1991; US-764364.
PR 12-DEC-1991; US-807043.
PA (LUDWIG) LUDWIG INST CANCER RES.
PI Boon T, Chomez P, De Plaein E, Lurquin C, Traversari C;
PI Van Den Bynden B, Van Der Bruggen P, Van Pel A;
DR WPI: 92-415160/50.
PT Nucleic acid mol. encoding a human tumour rejection antigen
precursor - useful as an immunostimulant in a vaccine for
treating and preventing cancers; also useful in diagnosis
PS Disclosure; Page 9; 142pp; English.
CC This sequence represents the sequence of the antigen E. Antigens such
as this one cause a T-cell response to be elicited which transplanted
CC into a syngeneic animal, usually a mouse. This antigen is derived from
CC the cell line MEL3.1. See also Q32351.
SQ Sequence 9 AA;

Query Match Score 61; DB 1; Length 9;
Best Local Similarity 100.0%; Pred. No. 2.32e-01;
Matches 9; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Db 1 EADPTGHSY 9
AC |||||||
QY 1 EADPTGHSY 9

RESULT 11
ID W68371 standard; peptide; 9 AA.
AC W68371;
DT 14-OCT-1998 (first entry)
DE Human MAGE-1 Peptide binds HLA-A1.
KW Antigen; major histocompatibility complex; MHC; lymphocyte; detection
KW immobilization; cytotoxic T-cell; tumour; leukaemia; lymphoma;
OS Synthetic.
OS Homo sapiens.
PN W0944657-A2.
PD 27-NOV-1997.
PF 21-MAY-1997; F00892.
PR 21-MAY-1996; US-051925.
PA (INRM) INSEM INST NAT SANTE & RECH MEDICALE.
PA (INSP) INST PASTEUR.
PI Abastado J, Kourilsky P, Langlade-Demoyen P, Lone Y;
DR WPI: 96-018653/02.

PT Detection, purification and elimination of antigen-specific lymphocytes - for producing cytotoxic T cells for immuno-therapy of cancers and viral infection
 PT Disclosure; Page 30; 22pp; French.
 PS Peptides W68301-W68384 are examples of antigens (Ag) which can be loaded onto recombinantly produced major histocompatibility complex (MHC) molecules in a method of detecting antigen-specific lymphocytes. The MHC-antigen complex is then immobilised on a solid support and a sample containing cells recognising the MHC-Ag complex may be isolated. This peptide is derived from the human MAGE-1 protein and binds the human leukaocyte antigen A1 (HLA A1). A similar method is used to isolate, purify or eliminate Ag-specific T-cells or to produce Ag-specific cytotoxic T-cells (CTL). The method is also used to detect and quantify tumour-specific T-cells and to generate CRC for specific killing of tumour cells (solid tumours, leukaemia or lymphoma) by injection into a human or animal, but also for treating viral infections.

SQ Sequence 9 AA;

Query Match	Score 61;	DB 1;	Length 9;
Best Local Similarity 100.0%	Pred. No. 2.32e-01;	Indels 0;	Gaps 0;
Matches 9;	Conservative 0;	Mismatches 0;	Gaps 0;

Db 1 EADPTGHSY 9
 Qy 1 EADPTGHSY 9

RESULT 12
 ID W7125 standard peptide; 9 AA.
 AC W77125;
 DT 16-NOV-1998 (first entry)
 DE 9P75/FRP-1 synthetic peptide 1.

PA (UYVI-)UNIV VIRGINIA PATENT FOUND.
 PI Engelhardt VH, Hunt DF, Kettlesen D, Slingluff CL,
 DR 98-437388/37.
 PT Disease specific immunogen - comprises disease specific cytotoxic T lymphocyte epitope used to elicit melanoma specific CTL response
 PS Disclosure; Page 27; 93pp; English.

The peptide epitope W7119-W7138 were created for human tumour-specific cytotoxic T lymphocyte response. These peptides are are cysteine-depleted mutants of a native disease-specific CTL epitope. The cysteine-depleted CTL epitopes elicit a stronger or more specific CTL response than the native epitope. The epitopes can be used in a disease-specific immunogen to protect a mammal against disease in particular melanomas. The peptides may also be used to screen a sample for the presence of an antigen with the same epitope, or with a different cross-reactive epitope.
 SQ Sequence 9 AA;

Query Match	Score 61;	DB 1;	Length 9;
Best Local Similarity 100.0%	Pred. No. 2.32e-01;	Indels 0;	Gaps 0;
Matches 9;	Conservative 0;	Mismatches 0;	Gaps 0;

Db 1 EADPTGHSY 9
 Qy 1 EADPTGHSY 9

RESULT 13
 ID W75734 standard; peptide; 9 AA.
 AC W75734;
 DT 19-NOV-1998 (first entry)

PS Peptidase-resistant peptide 2.
 PA Tumour antigen M22-E; T-cell; immunotherapy; cytolytic T-cell; CTL, therapeutic agent; peptidase; M22-E antigen peptide analogue; HLA; human leucocyte antigen; MHC; lysis; vaccine.

OS Synthetic. Location/Qualifiers
 FH Key
 FT Misc_difference 2 /note= "D-form residue"
 FT Misc_difference 8 /note= "D-form residue"
 FT WO9833511-A1.
 PD 06 AUG-1998.
 PF 19 NOV-1997; U21295.
 PR 05 FEB-1997; US-75733.
 PA (CNRS) CENT NAT RECH SCI.
 PA (LUDW-) LUDWIG INST CANCER RES.
 PI Ayoub N, Gairin JE, Mazarguil H, Monsarrat B, Van Den Eynde B;
 DR WPI; 98-437166/37.
 PT Peptidase-resistant peptide(s) that bind to HLA molecules and related antibodies - particularly for treatment of cancer by inducing proliferation of cytotoxic T cells
 PS Claim 20; Page 20; 32pp; English.
 CC Sequences W75733-W75736 are peptidase-resistant peptides which are analogues of the tumour antigen M22-E. This antigen is a potential target for T-cell based immunotherapy and can also be used to stimulate the antigen-specific CTL, however its use as a therapeutic agent is limited due to its degradation by peptidase. The M22-E antigen peptide analogues were modified at both peptidase sensitive portions, and were all shown to exhibit a longer half-life relative to peptidase degradation as well as the ability to bind a human leucocyte antigen (HLA). The specific peptides W75733 and W75735 were established to have a comparable affinity for the MHC as the tumour antigen, and W75735 was found to be the ideal peptide analog to use due to it also being able to sensitize the target cells to lysis by effector molecules at similar concentrations to those of the antigen M22-E. These peptide analogues can be used in vaccines to induce an immune response for treating conditions in which abnormal HLA-peptide complexes are present on the surface of cells.
 SQ Sequence 9 AA;

Query Match	Score 61;	DB 1;	Length 9;
Best Local Similarity 100.0%	Pred. No. 2.32e-01;	Indels 0;	Gaps 0;
Matches 9;	Mismatches 0;	Indels 0;	Gaps 0;

Db 1 EADPTGHSY 9
 Qy 1 EADPTGHSY 9

RESULT 14
 ID W00897 standard; Peptide; 9 AA.
 AC W00897;
 DT 23-MAY-1997 (first entry)
 PA Human melanoma MAGE1 tumour associated antigen p161-169.
 PI Adeno-associated virus vector; liposome; transfection;
 DR dendritic cell; melanoma; MAGE1; adoptive immunotherapy;
 KW tumour associated antigen.
 OS Homo sapiens.
 PN W009703703-A1.
 PD 06 FEB-1997.
 PR 19-JUL-1996; U12012.
 PR 21-JUL-1995; US-001312.
 PR 01-NOV-1995; US-007184.
 PR 01-DEC-1995; US-566286.
 PA (RION) RHOE POULENC RORER PHARM INC.
 DR Lebkowski JS; Philip R;
 PT Adeno-associated virus:liposome complexes for transfecting dendritic cells - for inducing immune response, useful for treating e.g. neoplasia or infections
 PS Example 5; Page 58; 134pp; English.
 CC Tumour associated antigens (W13660-61, W00878-903) can be loaded into dendritic cells and used to induce antitumour immunity.
 CC Alternatively, the dendritic cells are transfected with adeno
 CC associated virus plasmid DNA (which includes DNA encoding the tumour associated antigen), complexed with cationic liposomes. The CC antigen loaded or transfected dendritic cells can be used to generate tumour antigen-specific cytotoxic T lymphocytes for use in

CC adoptive immunotherapy in a patient having the corresponding tumour. A suitable antigen comprises amino acids 161-169 (W008997)
 CC of human melanoma MAGE1.
 SQ Sequence 9 AA;

Query Match Score 61; DB 1; Length 9;
 Best Local Similarity 100.0%; Pred. No. 2.32e-01;
 Matches 0; Mismatches 0; Indels 0; Gaps 0;

Db 1 EADPTGHSY 9
 Qy |||||||
 1 EADPTGHSY 9

RESULT 15

ID W75736 standard; peptide; 9 AA.

AC W75736;
 DT 19-NOV-1998 (first entry)
 DE Peptidase-resistant peptide 4.
 DE Tumour antigen M22-E; T-cell; immunotherapy; cytolytic T-cell; CTL;
 KW therapeutic agent; Peptidase; M22-E antigen peptide analogue; HLA; lysis; vaccine.
 KW human leucocyte antigen; MHC; lysis; vaccine.
 OS Synthetic.

FH

Key Location/Qualifiers

FT Modified_site 2 /note= "N-Methyl-Alanine"

FT Modified_site 8 /note= "N-Methyl-Serine"

FT PN W0983511-A1.

PD 06-AUG-1998.

PR 05-FEB-1997; US-795733.

PA (CNRS) CENT NAT RECH SCI.

(LUDW-) LUDWIG INST CANCER RES.

PI Ayoub, M., Gairin, JE., Mazarquil, H., Monsarrat, B., Van Den Eynde, B;

WP, 98-43716/6-37.

Peptidase-resistant peptide(s) that bind to HLA molecules and related antibodies - particularly for treatment of cancer by inducing proliferation of cytotoxic T cells

Claim 20; Page 20; 32pp; English.

Sequences W75733-W75736 are peptidase-resistant peptides which are analogues of the tumour antigen M22-E. This antigen is a potential target for T-cell based immunotherapy and can also be used to stimulate the antigen specific CTL, however its use as a therapeutic agent is limited due to its degradation by peptidase. The M22-E antigen peptide analogues were modified at both peptidase sensitive portions, and were all shown to exhibit a longer half-life relative to peptidase degradation as well as the ability to bind a human leucocyte antigen (HLA). The specific peptides W75733 and W75735 were established to have a comparable affinity for the MHC as the tumour antigen, and W75735 was found to be the ideal peptide analog to use due to it also being able to sensitise the target cells to lysis by effector molecules at similar concentrations to those of the antigen M22-E. These peptide analogues can be used in CC to induce an immune response for treating conditions in which abnormal HLA/peptide complexes are present on the surface of cells.
 Sequence 9 AA;

Query Match Score 61; DB 1; Length 9;
 Best Local Similarity 100.0%; Pred. No. 2.32e-01;
 Matches 0; Mismatches 0; Indels 0; Gaps 0;

SQ

1 EADPTGHSY 9

Qy |||||||

1 EADPTGHSY 9

CC adoptive immunotherapy in a patient having the corresponding tumour. A suitable antigen comprises amino acids 161-169 (W008997)
 CC of human melanoma MAGE1.
 SQ Sequence 9 AA;

Query Match Score 61; DB 1; Length 9;
 Best Local Similarity 100.0%; Pred. No. 2.32e-01;
 Matches 0; Mismatches 0; Indels 0; Gaps 0;

Db 1 EADPTGHSY 9

Qy |||||||

1 EADPTGHSY 9

WO9523874-A1.

PN 08-SEP-1995; U02203.
 PD 23-FEB-1995; US-209172.
 PF 01-MAR-1994; US-204727.
 PR 10-MAR-1994; US-209172.
 PR 01-SEP-1994; US-239849.
 PR 30-NOV-1994; US-346774.
 PA (LUDW-) LUDWIG INST CANCER RES.

PI Bon-Falleur, T., Brassier, F., Chomez, P., De Plaein, E.;
 PI De Smet, C., Gauguer, B., Lethe, B., Marchand, M., Patard, J.;
 PI Szklora, J., Van Den Eynde, B., Van Derbruggen, P., Weynants, P.;
 DR WPI; 95-320586/41.
 PT Determn. of cancerous condition(s) - using a nucleic acid as a PT primer to determine expression of a MAGE tumour rejection antigen PT precursor.

PT Example 13; Page 22; 121pp; English.
 PS Using the sequence of the P815 antigen precursor gene PIA
 CC (TU01176), an antigenic Peptide (R82988) which was A+B+ (i.e. characteristic of cells which express both A and B antigens) was produced. The peptide lysed PO-HTR cells in the presence of cytolytic T lymphocyte cell lines, and may be useful as a vaccine component.

CC Sequence 9 AA;
 SQ

Query Match Score 61; DB 1; Length 9;
 Best Local Similarity 100.0%; Pred. No. 2.32e-01;
 Matches 0; Mismatches 0; Indels 0; Gaps 0;

Db 1 EADPTGHSY 9

Qy 1 EADPTGHSY 9

RESULT 17

ID R90632 standard; peptide; 9 AA.

AC R90632; (first entry)
 DT 31-JUL-1996 Human leukocyte antigen (HLA-A1) presented Peptide M22-E.
 DE Human leukocyte antigen; HLA-A1; MAGE-1 derived;
 KW blood mononuclear cell; BMC; CD8-beta+ cell; cytolytic T cell;
 KW CTL cell; treatment; tumour cell; diagnosis; assay;
 KW presented peptide.

OS Synthetic.
 PN W0955500-A1.

PT 28-DEC-1995. PR 14-JUN-1995; U07559.
 PA (LUDW-) LUDWIG INST CANCER RES.

PI Bon-Falleur, T., Coulier, P., Van Der Bruggen, P.;
 DR WPI; 96-058510/06. PT Prod'n. of specific cytolytic T cell sub-populations - by contacting CC blood mononuclear cells with specific peptide(s) and a population of CC CD8-beta+ cells
 PT Claim 5; Page 19; 25pp; English.
 CC The present peptide is the human leucocyte antigen (HLA-A1), MAGE-1 CC derived presented Peptide, M22-E. By contacting a sample of blood CC mononuclear cells (BMC) with the peptide (which binds directly to CC HLA-A1 mols. on the surface of the BMC) and CD8-beta+ cells (which CC stimulate peptide/HLA-A1 complex specific cytolytic T (CTL) cell CC subpopulation can be obt'd. The CTL cells obt'd. can be administered CC to a patient to treat tumour cell related conditions, CC and can be used in diagnostic methods, e.g. in assays for the CC peptide/HLA-A1 complex.

PS Sequence 9 AA;

Query Match Score 61; DB 1; Length 9;
 Best Local Similarity 100.0%; Pred. No. 2.32e-01;
 Matches 0; Mismatches 0; Indels 0; Gaps 0;

Db 1 EADPTGHSY 9

Qy 1 EADPTGHSY 9

RESULT 16

ID RB298 standard; Peptide; 9 AA.
 AC RB2988; (first entry)
 DT 26-FEB-1996

DE PB15 antigenic Peptide.

KW PB15 antigen; PIA antigen; cancer; vaccine.
 OS Synthetic.

Query Match Score 61; DB 1; Length 9;
 Best Local Similarity 100.0%; Pred. No. 2.32e-01;
 Matches 0; Mismatches 0; Indels 0; Gaps 0;

Db 1 EADPTGHSY 9

Qy 1 EADPTGHSY 9

RESULT 18
 ID W56729; standard peptide; 9 AA.
 AC W56729;
 DT 31-JUN-1998 (first entry)
 DE MAGE-1 antigenic partial Peptide sequence (residues 161-169).
 KW MAGE; replication defective; adenovirus; tumour; antigen; cancer;
 KW immunotherapy; tumour rejection antigen; HLA; cytotoxic T lymphocyte.
 OS Synthetic.
 PN W09815638-A2.
 PD 16-APR-1998.
 PF 06-OCT-1997; U11948.
 PA (LUDW.) LUDWIG INST CANCER RES.
 PI Cerrotti J, Jongeneel CV, Reed DS, Rimoldi D,
 PI Romero P;
 DR WPI; 98-240824/21.
 PT New replication defective adenoviruses - comprise insert encoding
 PT tumour rejection antigen Precursor(s), useful for, e.g. cancer
 PT immuno-therapy
 Examples: Page 42; 56PP; English.
 This is a partial sequence of the MAGE-1 antigenic peptide used in the
 methods of the invention. The specification provides a new nucleic acid
 molecule comprising a replication defective adenovirus genome containing
 an insert encoding a tumour rejection antigen precursor (TRAP). The
 replication defective adenovirus genome is useful as a vector for
 introducing a TRAP molecule into mammalian (especially human) cells. The
 recombinant adenovirus is preferentially targeted to tumour cells, e.g. by
 binding a ligand to the virus coat. The TRA peptides which are generated
 from the expressed TRAP are presented by human leukocyte antigen (HLA)
 molecules and as a result cytolytic T lymphocyte (CTL) production is
 increased (claimed). The CTL's then kill the TRAP-expressing tumour
 cells. Also, cells transfected by the recombinant adenovirus can be used
 for assessing the processing of TRAs, including post-translational
 modifications. The adenovirus (genome) can be administered by injection,
 topical application or intracavicularly in 106-1010 pfu doses. The range
 of TRA peptides produced by replication defective adenovirus means that
 patients with a range of HLA phenotypes can be treated. Also, host cell
 immune response to TRA's is enhanced, e.g. by induction of tumour-
 specific cytolytic T lymphocytes.
 Sequence 9 AA;

Query Match Score 61; DB 1; Length 9;
 Best Local Similarity 100.0%; Pred. No. 2.32e-01;
 Matches 0; Mismatches 0; Indels 0; Gaps 0;

Db 1 BADPTGHSY 9
 |||||||
 Qy 1 BADPTGHSY 9

RESULT 19
 ID R75942; standard peptide; 9 AA.
 AC R75942;
 DT 06-MAR-1996 (first entry)
 DE Melanoma antigen (MAGE-1) epitope.
 KW MAGE-1; melanoma antigen; vaccine; immune response; immunogenic peptide;
 KW cytotoxic T lymphocyte response; CTL; melanoma; breast cancer; antibody.
 OS Homo sapiens.
 PN W09511783-A1.
 PD 25-JAN-1995; U01000.
 PR 25-JAN-1994; US-186266.
 PA (CYTE) CYTEL CORP.
 PI Celis E, Grey HM, Kubo RT, Sette A;
 DR WPI; 95-269270/35.
 PT Immunogenic peptide(s) that induce immune response to cancer cells
 - that express a MAGE-3 protein peptide epitope used in vaccines or
 PT adoptive immuno-therapy to induce cytotoxic T lymphocytes
 Examples: Page 33; 44PP; English.
 R75942, is derived from MAGE-1 protein. It was used to show the

CC specificity of CTL response to MAGE-3 peptides shown in R75942-53.
 CC R75942 is derived from the sequence of the melanoma antigen (MAGE-3).
 CC Protein and can be used to elicit a primary cytotoxic T lymphocyte
 response against cells expressing MAGE-3. Synthetic Peptides R75945-5
 CC can be used therapeutically to elicit CTL responses to melanoma, breast
 CC colon, prostate, or other cells which express proteins with this epitope.
 CC The peptides have specific HLA-A1 binding capacity.
 SQ Sequence 9 AA;

Query Match Score 61; DB 1; Length 9;
 Best Local Similarity 100.0%; Pred. No. 2.32e-01;
 Matches 0; Mismatches 0; Indels 0; Gaps 0;

Db 1 BADPTGHSY 9
 |||||||
 Qy 1 BADPTGHSY 9

RESULT 20
 ID R99443 standard; protein; 9 AA.
 AC R99443;
 DT 22-APR-1997 (first entry)
 DE MAGE-1 nonapeptide.
 KW HLA binding Peptide; cell lysis; cytolytic T cell; MAGE family; human
 KW tumour rejection antigen Precursor; TRA; MAGE-1; tumour; cancer cell;
 KW antibody; melanoma; universal effector cell; vaccine; breast cancer; CTL;
 KW therapy.
 OS Homo sapiens.
 PN W0922621-A1.
 PD 29-AUG-1996;
 PF 01-FEB-1996; U01489.
 PR 23-FEB-1995; US-333273.
 PA (LUDW.) LUDWIG INST CANCER RES.
 PI Bon-Falleur T, De Plaein E, Gaugler B, Lurquin C;
 PI Romao P, Traversari C, Van Den Eynde B, Van Der Bruggen P;
 DR WPI; 96-402317/40.
 DR N-PDB; T35408.

PT New nonapeptide(s) that bind to HLA molecule(s) and induce lysis
 PT by specific cytolytic T cells, for diagnosis and treatment of
 PT tumours and to expand T cells in vitro.
 Example 4; Fig 4; 11PP; English.
 PS R99433-R99350 represent MAGE nonapeptides, based on the tumour reject on
 CC antigen region of the full length MAGE sequences. These peptides were
 CC used to design the nonapeptides of the invention (see R99337-R99342),
 CC which bind to a HLA molecule on a cell, and provoke lysis by cytolytic T
 CC cells (CTLs) specific for a complex of the HLA molecule and nonapeptide.
 CC The nonapeptides can be used diagnostically to identify tumours. Tum
 CC cells can also be used therapeutically, or to identify cancer cells. T
 CC peptides can also be used therapeutically, to induce a CTL response to
 CC tumours (where the peptides are optionally coupled to tumour-specific
 CC antibodies), or to induce a response by CTLs that are otherwise inactive.
 CC The peptide sequences may also be used to expand specific CTLs in vitro.
 CC for later return to the patient, such as for treating melanoma. Tumo
 CC cells can be identified by using DNA encoding the nonapeptides as probes.
 CC Non-human cells transformed with the HLA-A1 gene and a DNA sequence
 CC encoding one of the peptides, can be used to generate CTLs, or to deb ct
 CC the presence of CTLs in human samples. The non-human transformed cel
 CC when polytransfected, are universal effector cells, and can be used 1
 CC vaccines, or for treating melanoma or breast cancer.
 SQ Sequence 9 AA;

Query Match Score 61; DB 1; Length 9;
 Best Local Similarity 100.0%; Pred. No. 2.32e-01;
 Matches 0; Mismatches 0; Indels 0; Gaps 0;

Db 1 BADPTGHSY 9
 |||||||
 Qy 1 BADPTGHSY 9

RESULT 21
 ID W79838 standard; peptide; 9 AA.
 AC W79838;

DT 17-NOV-1998 (first entry)
DE MAGE-1 protein fragment 161-169.
KW Microparticle; delivery; Polymeric matrix; autoantigen; tumour antigen;
KW class II associated peptide; Pathogen; gene therapy; genetic disease;
KW infection; downregulation; immune response.
OS Homo sapiens.
OS Synthetic.
PN WO983198-A1.
PD 23-JUL-1998; U01499.
PF 22-JAN-1998; US-003253.
PR 22-JAN-1997; US-787547.
PA (PANG-) PANGAEA PHARM INC.
Curley JM, Hedley ML, Langer RS, Lumsford LB;
WPI; 98-427556/36.
DR New preparations of microparticiles - comprising a synthetic polymer
PT matrix and nucleic acid comprising an expression vector for use in
PT gene therapy.
PS Disclosure: Page 10: 101pp; English.
CC A microparticle preparation (MP) has been developed, consisting of
CC microparticles having a diameter of less than 100 μm. The MP comprises:
CC (a) a polymeric matrix (PM) consisting of one or more synthetic polymers
CC having a solubility in water of less than 1 mg/ml; and (b) an expression
CC vector selected from RNA molecules (at least 50% of which are closed
CC circles) or circular plasmid DNA (at least 20 microns in diameter) comprising: (a)
CC also described is a MP of at most 20 microns in diameter comprising: (a)
CC a PM; and (b) a NAM comprising an expression control sequence operatively
CC linked to a coding sequence, where the coding sequence encodes at least 7 amino
CC acids in length, having a sequence identical to the sequence of: (i) a
CC fragment of a naturally-occurring mammalian protein; or (ii) a fragment
CC of a naturally-occurring protein from an infectious agent which infects
CC a mammal; (2) a peptide having a length and sequence which permits it to
CC bind to an MHC class I or II molecule; and (3) the polypeptide or the
CC peptide linked to a trafficking sequence, W6963 to W6965, and W7873
CC to W7887 are peptide fragments for use in the present invention. The
CC MPs are highly effective vehicles for the delivery of polynucleotides
CC into phagocytic cells. They can be used for gene therapy, e.g. for
CC treating genetic diseases, infections or tumours or for downregulating
CC an immune response.
SQ Sequence 9 AA;

Query Match 100.0%; Score 61; DB 1; Length 9;
Best Local Similarity 100.0%; Pred. No. 2.32e-01;
Matches 9; Conservative 0; Gaps 0; Indels 0; Gaps 0;

Db 1 EADPTGHSY 9
Qy 1 EADPTGHSY 9

RESULT 22
ID R65112 standard; peptide; 9 AA.
R65112-1995.
DT 06-OCT-1995 (first entry)
PA MAGE 1 immunogenic peptide 161-169.
KW MAGE 1; immunogenic peptide 161-169; cytotoxic C cells;
KW in vitro activation; cancer; AIDS; bacterial infections; malaria;
KW fungal infections; tuberculosis; hepatitis.
OS Homo sapiens.
PN WO950481-A.
PD 16-FEB-1995.
PF 01-AUG-1994; U08672.
PR 06-AUG-1993; US-103401.

PA (CYTE-) CYTEL CORP.
Cellis E, Kubo R, Serra H, Tsai V, Wentworth P;
WPI; 95-090895/12.
DR In vitro activation of cytotoxic T cells for selected killing of
PT target cells - for treating e.g. cancer, AIDS, hepatitis etc. by
PT incubating them with antigen presenting cells loaded with
PT appropriate immunogenic peptide
PS Example 3; Page 35; 59PP; English.
CC R65109-R65145 are immunogenic peptides, they are used in a new

method for the in vitro activation of cytotoxic T cells (CTC).
CC This is achieved by incubating the CTCs with antigen presenting
CC cells loaded with an appropriate immunogenic peptide (e.g. one
CC of the above peptides). By selecting the peptides used the
CC following diseases and infections can be treated; cancer, AIDS,
CC hepatitis, other viral and bacterial infections, malaria and
CC tuberculosis.
CC Sequence 9 AA;

Query Match 100.0%; Score 61; DB 1; Length 9;
Best Local Similarity 100.0%; Pred. No. 2.32e-01;
Matches 9; Conservative 0; Gaps 0; Indels 0; Gaps 0;

Db 1 EADPTGHSY 9
Qy 1 EADPTGHSY 9

RESULT 23
ID R63675 standard; Protein; 9 AA.
AC R63675;
DT 22-JUN-1995 (first entry)
DE Synthetic peptide derived from exon 3.1 of MAGE 1.
KW Melanoma antigen-1; MAGE-1; cytolytic T cells; antigen E; exon 3.1.
OS Synthetic.
PN WO923031-A.
PD 13-OCT-1994.
PF 17-MAR-1994; U02877.
PR 26-MAR-1993; US-037230.
PA (LUDWIG INST CANCER RES.
PI Boon falleur E, Gaugier B, Van DER BRUGGEN P;
DR WPI; 94-3319241.
PT New tumour refection antigen precursor MAGB3 - useful in
PT treatment and diagnosis of cancer.
PS Example 34; Page 36; 105PP; English.
CC R63675 is a synthetic peptide derived from exon 3.1 of melanoma
CC antigen-1 (MAGE-1), it was used to transfer antigen E cytolytic T
CC lymphocyte sensitivity to normally non-sensitive cells.
SQ Sequence 9 AA;

Query Match 100.0%; Score 61; DB 1; Length 9;
Best Local Similarity 100.0%; Pred. No. 2.32e-01;
Matches 9; Conservative 0; Gaps 0; Indels 0; Gaps 0;

Db 1 EADPTGHSY 9
Qy 1 EADPTGHSY 9

RESULT 24
ID R78024 standard; peptide; 9 AA.
AC R78024;
DT 26-MAR-1996 (first entry)
DE MAGE 1 cytotoxic T lymphocyte epitope.
KW MAGE 1; cytotoxic T; CTL; epitope; helper T; HIV; lymphocyte;
KW cell; viruses; parasites; tumours; antigens; disease prevention;
KW treatment.
OS Homo sapiens.
PN WO9522317-A1.
PD 24-AUG-1995.
PF 16-FEB-1995; U02121.
PR 16-FEB-1994; US-191484.
PA (CYTE-) CYTEL CORP.
PI Cellis E, Chestnut RW, Grey H, Sette AD, Vitiello MA;
DR WPI; 95-302545/39.
PT Compon. inducing cytotoxic T lymphocyte response to pref. viral,
PT bacterial, parasitic or tumour antigens - useful in the treatment
PT and prevention of diseases associated with the antigen e.g.
PT hepatitis B.
PS Disclosure: Page 17; 109PP; English.
CC A compsn. which induces a cytotoxic T lymphocyte (CTL) response to
CC an antigen (Ag) in a mammal comprises, a CTL Ag response inducing
CC peptide (i.e. R78824-R78853) and a lipid conjugated helper T cell

CC inducing peptide. The compsn. induces a CTL response to bacterial,
 CC viral or tumor Ags and is therefore useful in the treatment and
 CC prevention of diseases associated with the Ag.
 Sequence 9 AA;

Query Match 25 Score 61; DB 1; Length 9;
 Best Local Similarity 100.0%; Pred. No. 2.32e-01;
 Matches 9; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
 KW in vitro activation; cancer; AIDS; bacterial infections; malaria;
 KW fungal infections; tuberculosis; hepatitis; hepatitis.
 OS Homo sapiens.
 PN WO950817-A.

RESULT 25 ID R65135; standard; peptide; 9 AA.
 AC R65135;
 DT 09-OCT-1995 (first entry)
 DE MAGE 1 immunogenic Peptide A01.
 PR MAGE 1; Immunogenic peptide A01; cytotoxic C cells;
 KW in vitro activation; cancer; AIDS; bacterial infections; malaria;
 KW hepatitis; hepatitis; tuberculosis; hepatitis; hepatitis.
 PT In vitro activation of cytotoxic T cells for selected killing of
 target cells - for treating e.g. cancer, AIDS, hepatitis etc. by
 PT incubating them with antigen presenting cells loaded with
 PT appropriate immunogenic peptide.
 PS Example 3: Page 38, 53PP; English.
 CC R65109-R65145 are immunogenic peptides, they are used in a new
 method for the in vitro activation of cytotoxic T cells (CTC).
 CC This is achieved by incubating the CTCs with antigen presenting
 cells loaded with an appropriate immunogenic peptide (e.g. one
 of the above peptides). By selecting the peptides used the
 CC following diseases and infections can be treated: cancer, AIDS,
 CC hepatitis, other viral and bacterial infections, malaria and
 CC tuberculosis. Sequence 9 AA;

Query Match 100.0% Score 61; DB 1; Length 9;
 Best Local Similarity 100.0%; Pred. No. 2.32e-01;
 Matches 9; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Db 1 EADPTGHSY 9
 Qy 1 EADPTGHSY 9

PT infection or cancer; or for diagnosis
 PS Example 16; Page 116; 150PP; English.
 CC The sequences Given in R47304-53 and R49201-44 are immunogenic
 CC peptides which have a HLA-A3.2; HLA-A1 or a HLA-A11 binding motif.
 CC These peptides may be used in the composition of the invention.
 CC These peptides are capable of binding selected MHC molecules and
 CC inducing an immune response. They can be used to treat and/or
 prevent viral infection and cancer, eg. prostate cancer, lymphoma,
 hepatitis or AIDS. They can also be used to produce antibodies for
 use as diagnostic or therapeutic agents. The peptides can also be
 used as diagnostic agents.

Sequence 9 AA;

Query Match 26 ID R49224; standard; Protein; 9 AA.
 AC R49224;
 DT 31-AUG-1994 (first entry)
 DE HLA-A1 MAGE 1 antigen peptide fragment 958.01.
 PR Immunogenic; HLA-A3.2; HLA-A1; binding motif; MHC molecule;
 KW immune response; viral infection; cancer; prostate cancer; lymphoma;
 KW hepatitis; AIDS; antibody; diagnosis; melanoma antigen.
 OS Synthetic.
 PN WO9403205-A.
 PD 17-FEB-1994.
 PR 06-AUG-1993; U07421.
 PR 07-AUG-1992; US-926666.
 PR 05-MAR-1993; US-027746.
 PA (CYTE-) CYTEL CORP.
 PI Cells E, Grey HM, Kubo RT, Sette A;
 DR WPI 94-065403/08.
 PT Peptide which specifically binds selected MHC allele - used to
 PT induce an immune response for treatment or prevention of viral
 PT infection or cancer, or for diagnosis
 PS Example 8; Page 52; 150PP; English.
 PS The sequences given in R47304-53 and R49201-44 are immunogenic
 CC peptides which have a HLA-A3.2; HLA-A1 or a HLA-A11 binding motif.
 CC These peptides may be used in the composition of the invention.
 CC These peptides are capable of binding selected MHC molecules and
 CC inducing an immune response. They can be used to treat and/or
 prevent viral infection and cancer, eg. prostate cancer, lymphoma,
 hepatitis or AIDS. They can also be used to produce antibodies for
 use as diagnostic or therapeutic agents. The peptides can also be
 used as diagnostic agents.

Sequence 9 AA;

Query completed: Wed Sep 13 06:33:38 2000
 Job time : 40 secs.

PT infection or cancer; or for diagnosis
 PS Example 16; Page 116; 150PP; English.
 CC The sequences Given in R47304-53 and R49201-44 are immunogenic
 CC peptides which have a HLA-A3.2; HLA-A1 or a HLA-A11 binding motif.
 CC These peptides may be used in the composition of the invention.
 CC These peptides are capable of binding selected MHC molecules and
 CC inducing an immune response. They can be used to treat and/or
 prevent viral infection and cancer, eg. prostate cancer, lymphoma,
 hepatitis or AIDS. They can also be used to produce antibodies for
 use as diagnostic or therapeutic agents. The peptides can also be
 used as diagnostic agents.

Sequence 9 AA;

Query Match 27 ID R47330 standard; Protein; 9 AA.
 AC R47330;
 DT 31-AUG-1994 (first entry)
 DE HLA-A1 MAGE 1 antigen peptide fragment 161-169.
 PR Immunogenic; HLA-A3.2; HLA-A1; binding motif; MHC molecule;
 KW immune response; viral infection; cancer; prostate cancer; lymphoma;
 KW hepatitis; AIDS; antibody; diagnosis; melanoma antigen.
 OS Synthetic.
 PN WO9403205-A.

RESULT 27 ID R47330 standard; Protein; 9 AA.

AC R47330;

DT 31-AUG-1994 (first entry)

DE HLA-A1 MAGE 1 antigen peptide fragment 161-169.

PR Immunogenic; HLA-A3.2; HLA-A1; binding motif; MHC molecule;

KW immune response; viral infection; cancer; prostate cancer; lymphoma;

KW hepatitis; AIDS; antibody; diagnosis; melanoma antigen.

OS Synthetic.

PN WO9403205-A.

PD 17-FEB-1994.

PR 06-AUG-1993; U07421.

PR 07-AUG-1992; US-926666.

PR 05-MAR-1993; US-027746.

PA (CYTE-) CYTEL CORP.

PI Cells E, Grey HM, Kubo RT, Sette A;

DR WPI 94-065403/08.

PT Peptide which specifically binds selected MHC allele - used to

PT induce an immune response for treatment or prevention of viral

PT infection or cancer, or for diagnosis

PS Example 8; Page 52; 150PP; English.

PS The sequences given in R47304-53 and R49201-44 are immunogenic

CC peptides which have a HLA-A3.2; HLA-A1 or a HLA-A11 binding motif.

CC These peptides may be used in the composition of the invention.

CC These peptides are capable of binding selected MHC molecules and

CC inducing an immune response. They can be used to treat and/or

prevent viral infection and cancer, eg. prostate cancer, lymphoma,

KW hepatitis or AIDS. They can also be used to produce antibodies for

use as diagnostic or therapeutic agents. The peptides can also be

used as diagnostic agents.

Sequence 9 AA;

Query Match 28 ID R49224 standard; Protein; 9 AA.
 AC R49224;

DT 31-AUG-1994 (first entry)

DE HLA-A1 MAGE 1 antigen peptide fragment 958.01.

PR Immunogenic; HLA-A3.2; HLA-A1; binding motif; MHC molecule;

KW immune response; viral infection; cancer; prostate cancer; lymphoma;

KW hepatitis; AIDS; antibody; diagnosis; melanoma antigen.

OS Synthetic.

PN WO9403205-A.

PD 17-FEB-1994.

PR 06-AUG-1993; U07421.

PR 07-AUG-1992; US-926666.

PR 05-MAR-1993; US-027746.

PA (CYTE-) CYTEL CORP.

PI Cells E, Grey HM, Kubo RT, Sette A;

DR WPI 94-065403/08.

PT Peptide which specifically binds selected MHC allele - used to

induce an immune response for treatment or prevention of viral