Package 'fastQR'

February 4, 2025

Type Package

Title Fast QR Decomposition and Update
Version 1.0.0
Date 2025-01-25
Author Mauro Bernardi [aut, cre], Claudio Busatto [aut], Manuela Cattelan [aut]
Maintainer Mauro Bernardi <pre><mauro.bernardi@unipd.it></mauro.bernardi@unipd.it></pre>
Description Efficient algorithms for performing, updating, and downdating the QR decomposition, R decomposition, or the inverse of the R decomposition of a matrix as rows or columns are added or removed. It also includes functions for solving linear systems of equations, normal equations for linear regression models, and normal equations for linear regression with a RIDGE penalty. For a detailed introduction to these methods, see the book by Golub and Van Loan (2013, <doi:10.1007 978-3-319-05089-8="">) for complete introduction to the methods.</doi:10.1007>
License GPL (>= 2)
Imports Rcpp (>= 1.0.10), RcppEigen, Rdpack
LinkingTo Rcpp, RcppArmadillo, RcppEigen
Encoding UTF-8
RoxygenNote 7.3.2
RdMacros Rdpack
SystemRequirements GNU make
NeedsCompilation yes
Repository CRAN
Date/Publication 2025-02-04 08:40:01 UTC
Contents
qr
1

2 qr

Index																								28
	rupdate	 •	 •	•		•	•	•	•	•	 •	•	•	•		 •	•			•	 •		•	24
	rdowndate .																							
	rchol																							
	qrupdate																							17
	qrsolve																							15
	qrridge_cv .																							14
	qrridge																							13
	qrmridge_cv																							11
	qrmridge															 								10
	qrmls															 								9
	qrls															 								7
	qrdowndate																							4

qr

The QR factorization of a matrix

Description

qr provides the QR factorization of the matrix $X \in \mathbb{R}^{n \times p}$ with n > p. The QR factorization of the matrix X returns the matrices $Q \in \mathbb{R}^{n \times n}$ and $R \in \mathbb{R}^{n \times p}$ such that X = QR. See Golub and Van Loan (2013) for further details on the method.

Arguments

X a $n \times p$ matrix.

type either "givens" or "householder".

nb integer. Defines the number of block in the block recursive QR decomposition.

See Golud and van Loan (2013).

complete logical expression of length 1. Indicates whether an arbitrary orthogonal com-

pletion of the Q matrix is to be made, or whether the R matrix is to be completed

by binding zero-value rows beneath the square upper triangle.

Value

A named list containing

Q the Q matrix.

R the R matrix.

qrchol 3

References

Golub GH, Van Loan CF (2013). *Matrix computations*, Johns Hopkins Studies in the Mathematical Sciences, Fourth edition. Johns Hopkins University Press, Baltimore, MD. ISBN 978-1-4214-0794-4; 1-4214-0794-9; 978-1-4214-0859-0.

Björck Å (2015). *Numerical methods in matrix computations*, volume 59 of *Texts in Applied Mathematics*. Springer, Cham. ISBN 978-3-319-05088-1; 978-3-319-05098-8, doi:10.1007/9783319-050898.

Björck Å (2024). *Numerical Methods for Least Squares Problems: Second Edition*. Society for Industrial and Applied Mathematics, Philadelphia, PA. doi:10.1137/1.9781611977950, https://doi.org/10.1137/1.9781611977950

Bernardi M, Busatto C, Cattelan M (2024). "Fast QR updating methods for statistical applications." 2412.05905, https://arxiv.org/abs/2412.05905.

Examples

```
## generate sample data
set.seed(1234)
n <- 10
p <- 6
X \leftarrow matrix(rnorm(n * p, 1), n, p)
## QR factorization via Givens rotation
output <- qr(X, type = "givens", complete = TRUE)
       <- output$Q
       <- output$R
## check
round(Q %*% R - X, 5)
max(abs(Q %*% R - X))
## QR factorization via Householder rotation
output <- gr(X, type = "householder", complete = TRUE)
       <- output$0
R
       <- output$R
## check
round(Q %*% R - X, 5)
max(abs(Q %*% R - X))
```

grchol

Cholesky decomposition via QR factorization.

Description

qrchol, provides the Cholesky decomposition of the symmetric and positive definite matrix $X^{\top}X \in \mathbb{R}^{p \times p}$, where $X \in \mathbb{R}^{n \times p}$ is the input matrix.

4 grdowndate

Usage

```
qrchol(X, nb = NULL)
```

Arguments

X an $(n \times p)$ matrix.

nb number of blocks for the recursive block QR decomposition, default is NULL.

Value

an upper triangular matrix of dimension $p \times p$ which represents the Cholesky decomposition of $X^{\top}X$.

grdowndate

Fast downdating of the QR factorization

Description

qrdowndate provides the update of the QR factorization after the deletion of m>1 rows or columns to the matrix $X\in\mathbb{R}^{n\times p}$ with n>p. The QR factorization of the matrix $X\in\mathbb{R}^{n\times p}$ returns the matrices $Q\in\mathbb{R}^{n\times n}$ and $R\in\mathbb{R}^{n\times p}$ such that X=QR. The Q and R matrices are factorized as $Q=\begin{bmatrix}Q_1&Q_2\end{bmatrix}$ and $R=\begin{bmatrix}R_1\\R_2\end{bmatrix}$, with $Q_1\in\mathbb{R}^{n\times p}$, $Q_2\in\mathbb{R}^{n\times (n-p)}$ such that $Q_1^\top Q_2=Q_2^\top Q_1=0$

and $R_1 \in \mathbb{R}^{p \times p}$ upper triangular matrix and $R_2 \in \mathbb{R}^{(n-p) \times p}$. qrupdate accepts in input the matrices Q and either the complete matrix R or the reduced one, R_1 . See Golub and Van Loan (2013) for further details on the method.

Usage

```
qrdowndate(Q, R, k, m = NULL, type = NULL, fast = NULL, complete = NULL)
```

Arguments

Q a $n \times n$ matrix.

R a $n \times p$ upper triangular matrix.

k position where the columns or the rows are removed.

m number of columns or rows to be removed. Default is m=1.

type either 'row' of 'column', for deleting rows or columns. Default is 'column'.

fast mode: disable to check whether the provided matrices are valid inputs. De-

fault is FALSE.

complete logical expression of length 1. Indicates whether an arbitrary orthogonal com-

pletion of the Q matrix is to be made, or whether the R matrix is to be completed

by binding zero-value rows beneath the square upper triangle.

qrdowndate 5

Value

A named list containing

Q the updated Q matrix.

R the updated R matrix.

References

Golub GH, Van Loan CF (2013). *Matrix computations*, Johns Hopkins Studies in the Mathematical Sciences, Fourth edition. Johns Hopkins University Press, Baltimore, MD. ISBN 978-1-4214-0794-4; 1-4214-0794-9; 978-1-4214-0859-0.

Björck Å (2015). *Numerical methods in matrix computations*, volume 59 of *Texts in Applied Mathematics*. Springer, Cham. ISBN 978-3-319-05088-1; 978-3-319-05098-8, doi:10.1007/9783319-050898.

Björck Å (2024). *Numerical Methods for Least Squares Problems: Second Edition*. Society for Industrial and Applied Mathematics, Philadelphia, PA. doi:10.1137/1.9781611977950, https://doi.org/10.1137/1.9781611977950

Bernardi M, Busatto C, Cattelan M (2024). "Fast QR updating methods for statistical applications." 2412.05905, https://arxiv.org/abs/2412.05905.

```
## Remove one column
## generate sample data
set.seed(10)
       <- 10
       <- 6
       <- matrix(rnorm(n * p, 1), n, p)
## get the initial QR factorization
output <- fastQR::qr(X, type = "householder",
                      nb = NULL,
                      complete = TRUE)
       <- output$Q
Q
R
       <- output$R
## select the column to be deleted
## from X and update X
k <- 2
X1 \leftarrow X[, -k]
## downdate the QR decomposition
out <- fastQR::qrdowndate(Q = Q, R = R,</pre>
                           k = k, m = 1,
                           type = "column",
                           fast = FALSE,
                           complete = TRUE)
## check
round(out$Q %*% out$R - X1, 5)
max(abs(out$Q %*% out$R - X1))
```

6 qrdowndate

```
## Remove m columns
## generate sample data
set.seed(10)
      <- 10
       <- 6
       <- matrix(rnorm(n * p, 1), n, p)
## get the initial QR factorization
output <- fastQR::qr(X, type = "householder",
                     nb = NULL,
                     complete = TRUE)
       <- output$Q
       <- output$R
\#\# select the column to be deleted from X
## and update X
m <- 2
k <- 2
X1 <- X[, -c(k,k+m-1)]
## downdate the QR decomposition
out <- fastQR::qrdowndate(Q = Q, R = R,
                           k = k, m = 2,
                           type = "column",
                           fast = TRUE,
                           complete = FALSE)
## check
round(out$Q %*% out$R - X1, 5)
max(abs(out$Q %*% out$R - X1))
## Remove one row
## generate sample data
set.seed(10)
       <- 10
       <- 6
       <- matrix(rnorm(n * p, 1), n, p)
## get the initial QR factorization
output <- fastQR::qr(X, type = "householder",
                     nb = NULL,
                     complete = TRUE)
Q
       <- output$Q
       <- output$R
## select the row to be deleted from X and update X
k <- 5
X1 \leftarrow X[-k,]
## downdate the QR decomposition
out <- fastQR::qrdowndate(Q = Q, R = R,</pre>
                          k = k, m = 1,
```

qrls 7

```
type = "row",
                           fast = FALSE,
                           complete = TRUE)
## check
round(out$Q %*% out$R - X1, 5)
max(abs(out$Q %*% out$R - X1))
## Remove m rows
## generate sample data
set.seed(10)
       <- 10
       <- 6
       <- matrix(rnorm(n * p, 1), n, p)
## get the initial QR factorization
output <- fastQR::qr(X, type = "householder",
                      nb = NULL,
                      complete = TRUE)
       <- output$Q
       <- output$R
\#\# select the rows to be deleted from X and update X
k <- 5
m <- 2
X1 \leftarrow X[-c(k,k+1),]
## downdate the QR decomposition
out <- fastQR::qrdowndate(Q = Q, R = R,</pre>
                           k = k, m = m,
                           type = "row",
                           fast = FALSE,
                           complete = TRUE)
## check
round(out$Q %*% out$R - X1, 5)
max(abs(out$Q %*% out$R - X1))
```

qrls

Ordinary least squares for the linear regression model

Description

qrls, or LS for linear regression models, solves the following optimization problem

$$\min_{\beta} \, \frac{1}{2} \|y - X\beta\|_2^2,$$

for $y \in \mathbb{R}^n$ and $X \in \mathbb{R}^{n \times p}$, to obtain a coefficient vector $\widehat{\beta} \in \mathbb{R}^p$. The design matrix $X \in \mathbb{R}^{n \times p}$ contains the observations for each regressor.

8 qrls

Usage

```
qrls(y, X, X_{test} = NULL, type = NULL)
```

Arguments

y a vector of length-n response vector. X an $(n \times p)$ full column rank matrix of predictors. X_test an $(q \times p)$ full column rank matrix. Test set. By default it set to NULL. type either "QR" or "R". Specifies the type of decomposition to use: "QR" for the QR decomposition or "R" for the Cholesky factorization of $A^{\top}A$. The default is "QR".

Value

A named list containing

```
coeff a length-p vector containing the solution for the parameters \beta. fitted a length-p vector of fitted values, \hat{y} = X\hat{\beta}.
```

residuals a length-*n* vector of residuals, $\varepsilon = y - \hat{y}$.

residuals_norm2 the L2-norm of the residuals, $\|\varepsilon\|_2^2$.

y_norm2 the L2-norm of the response variable. $||y||_2^2$.

XTX_Qmat Q matrix of the QR decomposition of the matrix $X^{\top}X$.

XTX_Rmat R matrix of the QR decomposition of the matrix $X^{\top}X$.

QXTy $QX^{\top}y$, where Q matrix of the QR decomposition of the matrix $X^{\top}X$.

R2 R^2 , coefficient of determination, measure of goodness-of-fit of the model.

predicted predicted values for the test set, $X_{\text{test}}\widehat{\beta}$. It is only available if X_test is not NULL.

```
## generate sample data
set.seed(10)
          <- 30
          <- 6
          <- matrix(rnorm(n * p, 1), n, p)
Χ
X[,1]
eps
          <- rnorm(n, sd = 0.5)
beta
          <- rep(0, p)
beta[1:3] <- 1
beta[4:5] <- 2
          <- X %*% beta + eps
          <- matrix(rnorm(5 * p, 1), 5, p)
          <- fastQR::qrls(y = y, X = X, X_test = X_test)
output
output$coeff
```

grmls 9

qrmls

Ordinary least squares for the linear multivariate regression model

Description

qrmls, or LS for linear multivariate regression models, solves the following optimization problem

$$\min_{\beta} \frac{1}{2} \|Y - XB\|_2^2,$$

for $Y \in \mathbb{R}^{n \times q}$ and $X \in \mathbb{R}^{n \times p}$, to obtain a coefficient matrix $\widehat{B} \in \mathbb{R}^{p \times q}$. The design matrix $X \in \mathbb{R}^{n \times p}$ contains the observations for each regressor.

Arguments

Y a matrix of dimension $(n \times q \text{ response variables.})$

X an $(n \times p)$ full column rank matrix of predictors.

 X_{test} an $(q \times p)$ full column rank matrix. Test set. By default it set to NULL.

type either "QR" or "R". Specifies the type of decomposition to use: "QR" for the

QR decomposition or "R" for the Cholesky factorization of $A^{T}A$. The default

is "QR".

Value

A named list containing

coeff a matrix of dimension $p \times q$ containing the solution for the parameters B.

fitted a matrix of dimension $n \times q$ of fitted values, $\widehat{Y} = X\widehat{B}$.

residuals a matrix of dimension $n \times q$ of residuals, $\varepsilon = Y - \widehat{Y}$.

XTX the matrix $X^{\top}X$.

Sigma_hat a matrix of dimension $q \times q$ containing the estimated residual variance-covariance matrix.

df degrees of freedom.

R R matrix of the QR decomposition of the matrix $X^{T}X$.

XTy $X^{\top}y$.

 \mathbb{R}^2 , coefficient of determination, measure of goodness-of-fit of the model.

predicted predicted values for the test set, $X_{\text{test}}\widehat{B}$. It is only available if X_test is not NULL.

PMSE

10 qrmridge

Examples

```
## generate sample data
set.seed(10)
           <- 30
           <- 6
p
           <- 3
q
           <- matrix(rnorm(n * p, 1), n, p)
Χ
X[,1]
           <- 1
eps
           <- matrix(rnorm(n*q), n, q)
           <- matrix(0, p, q)
B[,1]
           \leftarrow rep(1, p)
B[,2]
           \leftarrow rep(2, p)
B[,3]
           <- rep(-1, p)
           <- X %*% B + eps
           \leftarrow matrix(rnorm(5 * p, 1), 5, p)
X_test
output
           <- fastQR::qrmls(Y = Y, X = X, X_test = X_test, type = "QR")
output$coeff
```

qrmridge

RIDGE estimator for the linear multivariate regression model

Description

qrmridge, or LS for linear multivariate regression models, solves the following optimization problem

$$\min_{\beta}\,\frac{1}{2}\|Y-XB\|_2^2,$$

for $Y \in \mathbb{R}^{n \times q}$ and $X \in \mathbb{R}^{n \times p}$, to obtain a coefficient matrix $\widehat{B} \in \mathbb{R}^{p \times q}$. The design matrix $X \in \mathbb{R}^{n \times p}$ contains the observations for each regressor.

Arguments

Y a matrix of dimension $(n \times q \text{ response variables.}$ X an $(n \times p)$ full column rank matrix of predictors.

lambda a vector of lambdas.

 X_{test} an $(q \times p)$ full column rank matrix. Test set. By default it set to NULL.

type either "QR" or "R". Specifies the type of decomposition to use: "QR" for the

QR decomposition or "R" for the Cholesky factorization of $A^{\top}A$. The default

is "QR".

Value

A named list containing

coeff a matrix of dimension $p \times q$ containing the solution for the parameters B.

fitted a matrix of dimension $n \times q$ of fitted values, $\widehat{Y} = X\widehat{B}$.

qrmridge_cv 11

residuals a matrix of dimension $n \times q$ of residuals, $\varepsilon = Y - \widehat{Y}$.

XTX the matrix $X^{\top}X$.

Sigma_hat a matrix of dimension $q \times q$ containing the estimated residual variance-covariance matrix.

df degrees of freedom.

R R matrix of the QR decomposition of the matrix $X^{T}X$.

XTy $X^{\top}y$.

 ${\bf R2} \ R^2$, coefficient of determination, measure of goodness-of-fit of the model.

predicted predicted values for the test set, $X_{\text{test}}\widehat{B}$. It is only available if X_test is not NULL.

PMSE

Examples

```
## generate sample data
set.seed(10)
          <- 30
          <- 6
          <- 3
          <- matrix(rnorm(n * p, 1), n, p)
X[,1]
eps
          <- matrix(rnorm(n*q), n, q)</pre>
          <- matrix(0, p, q)
B[,1]
          <- rep(1, p)
B[,2]
          \leftarrow rep(2, p)
B[,3]
          <- rep(-1, p)
          <- X %*% B + eps
X_test
          <- matrix(rnorm(5 * p, 1), 5, p)
          <- fastQR::qrmridge(Y = Y, X = X, lambda = 1, X_test = X_test, type = "QR")
output
output$coeff
```

qrmridge_cv

Cross-validation of the RIDGE estimator for the linear multivariate regression model

Description

qrmridge_cv, or LS for linear multivariate regression models, solves the following optimization problem

$$\min_{\beta} \frac{1}{2} \|Y - XB\|_2^2,$$

for $Y \in \mathbb{R}^{n \times q}$ and $X \in \mathbb{R}^{n \times p}$, to obtain a coefficient matrix $\widehat{B} \in \mathbb{R}^{p \times q}$. The design matrix $X \in \mathbb{R}^{n \times p}$ contains the observations for each regressor.

12 qrmridge_cv

Arguments

Y a matrix of dimension $(n \times q \text{ response variables.})$ X an $(n \times p)$ full column rank matrix of predictors.

lambda a vector of lambdas.

k an integer vector defining the number of groups for CV.

seed ad integer number defining the seed for random number generation.

X_test an $(q \times p)$ full column rank matrix. Test set. By default it set to NULL.

type either "QR" or "R". Specifies the type of decomposition to use: "QR" for the QR decomposition or "R" for the Cholesky factorization of $A^{\top}A$. The default is "QR".

Value

A named list containing

coeff a matrix of dimension $p \times q$ containing the solution for the parameters B.

fitted a matrix of dimension $n \times q$ of fitted values, $\widehat{Y} = X\widehat{B}$.

residuals a matrix of dimension $n \times q$ of residuals, $\varepsilon = Y - \widehat{Y}$.

XTX the matrix $X^{\top}X$.

Sigma_hat a matrix of dimension $q \times q$ containing the estimated residual variance-covariance matrix.

df degrees of freedom.

R R matrix of the QR decomposition of the matrix $X^{T}X$.

XTy $X^{\top}y$.

 $\mathbf{R2}$ R^2 , coefficient of determination, measure of goodness-of-fit of the model.

predicted predicted values for the test set, $X_{\text{test}}\widehat{B}$. It is only available if X_test is not NULL.

PMSE

```
## generate sample data
set.seed(10)
          <- 30
          <- 6
          <- matrix(rnorm(n * p, 1), n, p)
X[,1]
          <- 1
          <- matrix(rnorm(n*q), n, q)</pre>
eps
          <- matrix(0, p, q)
B[,1]
          <- rep(1, p)
B[,2]
          \leftarrow rep(2, p)
B[,3]
          <- rep(-1, p)
          <- X %*% B + eps
X_test
          <- matrix(rnorm(5 * p, 1), 5, p)
          <- fastQR::qrmridge_cv(Y = Y, X = X, lambda = c(1,2),
output
```

qrridge 13

$$k = 5$$
, seed = 12, $X_{test} = X_{test}$, type = "QR")

output\$coeff

grridge

RIDGE estimation for the linear regression model

Description

Imridge, or RIDGE for linear regression models, solves the following penalized optimization problem

$$\min_{\beta} \frac{1}{n} \|y - X\beta\|_2^2 + \lambda \|\beta\|_2^2,$$

to obtain a coefficient vector $\widehat{\beta} \in \mathbb{R}^p$. The design matrix $X \in \mathbb{R}^{n \times p}$ contains the observations for each regressor.

Usage

```
qrridge(y, X, lambda, X_test = NULL, type = NULL)
```

Arguments

y a vector of length-n response vector.

X an $(n \times p)$ matrix of predictors.

lambda a vector of lambdas.

 X_{test} an $(q \times p)$ full column rank matrix. Test set. By default it set to NULL.

type either "QR" or "R". Specifies the type of decomposition to use: "QR" for the

QR decomposition or "R" for the Cholesky factorization of $A^{\top}A$. The default

is "QR".

Value

A named list containing

mean_y mean of the response variable.

mean_X a length-p vector containing the mean of each column of the design matrix.

path the whole path of estimated regression coefficients.

ess explained sum of squares for the whole path of estimated coefficients.

GCV generalized cross-validation for the whole path of lambdas.

GCV min minimum value of GCV.

GCV_idx inded corresponding to the minimum values of GCV.

coeff a length-p vector containing the solution for the parameters β which corresponds to the minimum of GCV.

lambda the vector of lambdas.

scales the vector of standard deviations of each column of the design matrix.

14 qrridge_cv

Examples

```
## generate sample data
set.seed(10)
          <- 30
          <- 6
          <- matrix(rnorm(n * p, 1), n, p)
Χ
X[,1]
eps
          <rnorm(n, sd = 0.5)
beta
          <- rep(0, p)
beta[1:3] <- 1
beta[4:5] <- 2
          <- X %*% beta + eps
X_test
          <- matrix(rnorm(5 * p, 1), 5, p)
output
          <- fastQR::qrridge(y = y, X = X,
                              lambda = 0.2,
                              X_test = X_test)
output$coeff
```

qrridge_cv

Cross-validation of the RIDGE estimator for the linear regression model

Description

qrridge_cv, or LS for linear multivariate regression models, solves the following optimization problem

$$\min_{\beta} \frac{1}{2} \|Y - XB\|_2^2,$$

for $Y \in \mathbb{R}^{n \times q}$ and $X \in \mathbb{R}^{n \times p}$, to obtain a coefficient matrix $\widehat{B} \in \mathbb{R}^{p \times q}$. The design matrix $X \in \mathbb{R}^{n \times p}$ contains the observations for each regressor.

Arguments

y a vector of length-n response vector.

X an $(n \times p)$ full column rank matrix of predictors.

lambda a vector of lambdas.

k an integer vector defining the number of groups for CV.

seed ad integer number defining the seed for random number generation.

 X_{test} an $(q \times p)$ full column rank matrix. Test set. By default it set to NULL.

type either "QR" or "R". Specifies the type of decomposition to use: "QR" for the

QR decomposition or "R" for the Cholesky factorization of $A^{\top}A$. The default

is "QR".

qrsolve 15

Value

```
A named list containing
```

coeff a length-p vector containing the solution for the parameters β .

fitted a length-*n* vector of fitted values, $\hat{y} = X\hat{\beta}$.

residuals a length-*n* vector of residuals, $\varepsilon = y - \hat{y}$.

residuals_norm2 the L2-norm of the residuals, $\|\varepsilon\|_2^2$.

y_norm2 the L2-norm of the response variable. $||y||_2^2$.

XTX the matrix $X^{\top}X$.

XTy $X^{\top}y$.

sigma_hat estimated residual variance.

df degrees of freedom.

Q matrix of the QR decomposition of the matrix $X^{T}X$.

R R matrix of the QR decomposition of the matrix $X^{T}X$.

QXTy $QX^{\top}y$, where Q matrix of the QR decomposition of the matrix $X^{\top}X$.

R2 R^2 , coefficient of determination, measure of goodness-of-fit of the model.

predicted predicted values for the test set, $X_{\text{test}}\widehat{\beta}$. It is only available if X_test is not NULL.

Examples

```
## generate sample data
set.seed(10)
          <- 30
          <- 6
          <- matrix(rnorm(n * p, 1), n, p)
Χ
X[,1]
eps
          <- rnorm(n)
beta
          <- rep(1, p)
          <- X %*% beta + eps
          <- matrix(rnorm(5 * p, 1), 5, p)
X_test
          <- fastQR::qrridge_cv(y = y, X = X, lambda = c(1,2),
output
                                 k = 5, seed = 12, X_{test} = X_{test}, type = "QR")
output$coeff
```

qrsolve

Solution of linear system of equations, via the QR decomposition.

Description

solves systems of equations Ax = b, for $A \in \mathbb{R}^{n \times p}$ and $b \in \mathbb{R}^n$, via the QR decomposition.

Usage

```
qrsolve(A, b, type = NULL, nb = NULL)
```

16 qrsolve

Arguments

Α	an $(n \times p)$ full column rank matrix.
b	a vector of dimension n .
type	either "QR" or "R". Specifies the type of decomposition to use: "QR" for the QR decomposition or "R" for the Cholesky factorization of $A^{\top}A$. The default is "QR".
nb	number of blocks for the recursive block QR decomposition, default is NULL.

Value

x a vector of dimension p that satisfies Ax = b.

References

Golub GH, Van Loan CF (2013). *Matrix computations*, Johns Hopkins Studies in the Mathematical Sciences, Fourth edition. Johns Hopkins University Press, Baltimore, MD. ISBN 978-1-4214-0794-4; 1-4214-0794-9; 978-1-4214-0859-0.

Björck Å (2015). *Numerical methods in matrix computations*, volume 59 of *Texts in Applied Mathematics*. Springer, Cham. ISBN 978-3-319-05088-1; 978-3-319-05098-8, doi:10.1007/9783319-050898.

Björck Å (2024). *Numerical Methods for Least Squares Problems: Second Edition*. Society for Industrial and Applied Mathematics, Philadelphia, PA. doi:10.1137/1.9781611977950, https://doi.org/10.1137/1.9781611977950

Bernardi M, Busatto C, Cattelan M (2024). "Fast QR updating methods for statistical applications." 2412.05905, https://arxiv.org/abs/2412.05905.

```
## generate sample data
set.seed(1234)
n <- 10
p <- 4
A <- matrix(rnorm(n * p, 1), n, p)
b <- rnorm(n)

## solve the system of linear equations using qr
x1 <- fastQR::qrsolve(A = A, b = b)
x1

## solve the system of linear equations using rb qr
x2 <- fastQR::qrsolve(A = A, b = b, nb = 2)
x2

## check
round(x1 - solve(crossprod(A)) %*% crossprod(A, b), 5)
round(x2 - solve(crossprod(A)) %*% crossprod(A, b), 5)</pre>
```

grupdate

Fast updating of the QR factorization

Description

qrupdate provides the update of the QR factorization after the addition of m>1 rows or columns to the matrix $X \in \mathbb{R}^{n \times p}$ with n > p. The QR factorization of the matrix X returns the matrices $Q \in$ $\mathbb{R}^{n\times n}$ and $R\in\mathbb{R}^{n\times p}$ such that X=QR. The Q and R matrices are factorized as $Q=\begin{bmatrix}Q_1&Q_2\end{bmatrix}$

and
$$R = \begin{bmatrix} R_1 \\ R_2 \end{bmatrix}$$
, with $Q_1 \in \mathbb{R}^{n \times p}$, $Q_2 \in \mathbb{R}^{n \times (n-p)}$ such that $Q_1^\top Q_2 = Q_2^\top Q_1 = 0$ and $R_1 \in \mathbb{R}^{p \times p}$

upper triangular matrix and $R_2 \in \mathbb{R}^{(n-p)\times p}$. qrupdate accepts in input the matrices Q and either the complete matrix R or the reduced one, R_1 . See Golub and Van Loan (2013) for further details on the method.

Usage

```
grupdate(Q, R, k, U, type = NULL, fast = NULL, complete = NULL)
```

Arguments

Q	a n	X	p	matrix.
---	-------	---	---	---------

R a $p \times p$ upper triangular matrix.

k position where the columns or the rows are added.

U either a $n \times m$ matrix or a $p \times m$ matrix of columns or rows to be added. either 'row' of 'column', for adding rows or columns. Default is 'column'. type

fast

fast mode: disable to check whether the provided matrices are valid inputs. De-

fault is FALSE.

complete logical expression of length 1. Indicates whether an arbitrary orthogonal com-

pletion of the Q matrix is to be made, or whether the R matrix is to be completed

by binding zero-value rows beneath the square upper triangle.

Value

A named list containing

Q the updated Q matrix.

R the updated R matrix.

References

Golub GH, Van Loan CF (2013). Matrix computations, Johns Hopkins Studies in the Mathematical Sciences, Fourth edition. Johns Hopkins University Press, Baltimore, MD. ISBN 978-1-4214-0794-4; 1-4214-0794-9; 978-1-4214-0859-0.

Björck Å (2015). Numerical methods in matrix computations, volume 59 of Texts in Applied Mathematics. Springer, Cham. ISBN 978-3-319-05088-1; 978-3-319-05098-8, doi:10.1007/9783319-050898.

Björck Å (2024). *Numerical Methods for Least Squares Problems: Second Edition*. Society for Industrial and Applied Mathematics, Philadelphia, PA. doi:10.1137/1.9781611977950, https://doi.org/10.1137/1.9781611977950

Bernardi M, Busatto C, Cattelan M (2024). "Fast QR updating methods for statistical applications." 2412.05905, https://arxiv.org/abs/2412.05905.

```
## Add one column
## generate sample data
set.seed(1234)
n <- 12
p <- 5
X \leftarrow matrix(rnorm(n * p, 1), n, p)
## get the initial QR factorization
output <- qr(X, complete = TRUE)
       <- output$Q
       <- output$R
R
## create column u to be added
u <- matrix(rnorm(n), n, 1)</pre>
X1 \leftarrow cbind(X, u)
## update the QR decomposition
out <- fastQR::qrupdate(Q = Q, R = R,
                        k = k, U = u,
                        type = "column",
                        fast = FALSE,
                        complete = TRUE)
## check
round(out$Q %*% out$R - X1, 5)
max(abs(out$Q %*% out$R - X1))
## Add m columns
## create data: n > p
set.seed(1234)
n <- 10
p <- 5
X \leftarrow matrix(rnorm(n * p, 1), n, p)
## get the initial QR factorization
output <- fastQR::qr(X, complete = TRUE)</pre>
       <- output$Q
R
       <- output$R
## create the matrix of two columns to be added
## in position 2
k <- 2
m < -2
U <- matrix(rnorm(n*m), n, m)</pre>
```

```
X1 \leftarrow cbind(X[,1:(k-1)], U, X[,k:p])
# update the QR decomposition
out <- fastQR::qrupdate(Q = Q, R = R,
                         k = k, U = U, type = "column",
                        fast = FALSE, complete = TRUE)
## check
round(out$Q %*% out$R - X1, 5)
max(abs(out$Q %*% out$R - X1))
## Add one row
## create data: n > p
set.seed(1234)
n <- 12
p <- 5
X \leftarrow matrix(rnorm(n * p, 1), n, p)
## get the initial QR factorization
output <- fastQR::qr(X, complete = TRUE)</pre>
       <- output$Q
       <- output$R
R
R1
       <- R[1:p,]
## create the row u to be added
u <- matrix(data = rnorm(p), p, 1)</pre>
k <- n+1
if (k<=n) {
 X1 \leftarrow rbind(rbind(X[1:(k-1), ], t(u)), X[k:n, ])
} else {
  X1 <- rbind(rbind(X, t(u)))</pre>
}
## update the QR decomposition
out <- fastQR::qrupdate(Q = Q, R = R,</pre>
                         k = k, U = u,
                         type = "row",
                         complete = TRUE)
## check
round(out$Q %*% out$R - X1, 5)
max(abs(out$Q %*% out$R - X1))
## Add m rows
## create data: n > p
set.seed(1234)
n <- 12
p <- 5
X \leftarrow matrix(rnorm(n * p, 1), n, p)
## get the initial QR factorization
output <- fastQR::qr(X, complete = TRUE)</pre>
     <- output$Q
```

20 rchol

```
<- output$R
R1
       <- R[1:p,]
## create the matrix of rows U to be added:
## two rows in position 5
  <- 2
U <- matrix(data = rnorm(p*m), p, m)</pre>
if (k \le n) {
  X1 <- rbind(rbind(X[1:(k-1), ], t(U)), X[k:n, ])</pre>
} else {
  X1 <- rbind(rbind(X, t(U)))</pre>
## update the QR decomposition
out <- fastQR::qrupdate(Q = Q, R = R,</pre>
                         k = k, U = U,
                          type = "row",
                          complete = FALSE)
## check
round(out$Q %*% out$R - X1, 5)
max(abs(out$Q %*% out$R - X1))
```

rchol

Cholesky decomposition via R factorization.

Description

rchol, provides the Cholesky decomposition of the symmetric and positive definite matrix $X^{\top}X \in \mathbb{R}^{p \times p}$, where $X \in \mathbb{R}^{n \times p}$ is the input matrix.

Arguments

X an $(n \times p)$ matrix, with $n \ge p$. If n < p an error message is returned.

Value

an upper triangular matrix of dimension $p \times p$ which represents the Cholesky decomposition of $X^{\top}X$.

References

Golub GH, Van Loan CF (2013). *Matrix computations*, Johns Hopkins Studies in the Mathematical Sciences, Fourth edition. Johns Hopkins University Press, Baltimore, MD. ISBN 978-1-4214-0794-4; 1-4214-0794-9; 978-1-4214-0859-0.

Björck Å (2015). *Numerical methods in matrix computations*, volume 59 of *Texts in Applied Mathematics*. Springer, Cham. ISBN 978-3-319-05088-1; 978-3-319-05098-8, doi:10.1007/9783319-050898.

rdowndate 21

Björck Å (2024). *Numerical Methods for Least Squares Problems: Second Edition*. Society for Industrial and Applied Mathematics, Philadelphia, PA. doi:10.1137/1.9781611977950, https://doi.org/10.1137/1.9781611977950. Bernardi M, Busatto C, Cattelan M (2024). "Fast QR updating methods for statistical applications." 2412.05905, https://arxiv.org/abs/2412.05905.

Examples

```
set.seed(1234)
n <- 10
p <- 6
X <- matrix(rnorm(n * p, 1), n, p)

## compute the Cholesky decomposition of X^TX
S <- fastQR::rchol(X = X)
S

## check
round(S - chol(crossprod(X)), 5)</pre>
```

rdowndate

Fast downdating of the R matrix

Description

rdowndate provides the update of the thin R matrix of the QR factorization after the deletion of $m \geq 1$ rows or columns to the matrix $X \in \mathbb{R}^{n \times p}$ with n > p. The R factorization of the matrix X returns the upper triangular matrix $R \in \mathbb{R}^{p \times p}$ such that $X^\top X = R^\top R$. See Golub and Van Loan (2013) for further details on the method.

Usage

```
rdowndate(R, k = NULL, m = NULL, U = NULL, fast = NULL, type = NULL)
```

Arguments

R	a $p \times p$ upper triangular matrix.
k	position where the columns or the rows are removed.
m	number of columns or rows to be removed.
U	a $p \times m$ matrix of rows to be removed. It should only be provided when rows are being removed.
fast	fast mode: disable to check whether the provided matrices are valid inputs. Default is FALSE.
type	either 'row' of 'column', for removing rows or columns.

Value

R the updated R matrix.

22 rdowndate

References

Golub GH, Van Loan CF (2013). *Matrix computations*, Johns Hopkins Studies in the Mathematical Sciences, Fourth edition. Johns Hopkins University Press, Baltimore, MD. ISBN 978-1-4214-0794-4; 1-4214-0794-9; 978-1-4214-0859-0.

Björck Å (2015). *Numerical methods in matrix computations*, volume 59 of *Texts in Applied Mathematics*. Springer, Cham. ISBN 978-3-319-05088-1; 978-3-319-05098-8, doi:10.1007/9783319-050898.

Björck Å (2024). *Numerical Methods for Least Squares Problems: Second Edition*. Society for Industrial and Applied Mathematics, Philadelphia, PA. doi:10.1137/1.9781611977950, https://doi.org/10.1137/1.9781611977950

Bernardi M, Busatto C, Cattelan M (2024). "Fast QR updating methods for statistical applications." 2412.05905, https://arxiv.org/abs/2412.05905.

```
## Remove one column
## generate sample data
set.seed(10)
      <- 10
       <- 6
       <- matrix(rnorm(n * p, 1), n, p)
## get the initial QR factorization
output <- fastQR::qr(X, type = "householder",
                     nb = NULL,
                     complete = TRUE)
       <- output$0
       <- output$R
       <- R[1:p,]
## select the column to be deleted from X and update X
k <- 2
X1 \leftarrow X[, -k]
## downdate the R decomposition
R2 \leftarrow fastQR::rdowndate(R = R1, k = k,
                        m = 1, type = "column")
## check
max(abs(crossprod(R2) - crossprod(X1)))
## Remove m columns
## generate sample data
set.seed(10)
      <- 10
       <- 6
       <- matrix(rnorm(n * p, 1), n, p)
## get the initial QR factorization
output <- fastQR::qr(X, type = "householder",
                     nb = NULL.
```

rdowndate 23

```
complete = TRUE)
       <- output$Q
R
       <- output$R
R1
       <- R[1:p,]
\#\# select the column to be deleted from X and update X
k <- 2
X1 <- X[, -c(k,k+1)]
## downdate the R decomposition
R2 \leftarrow fastQR::rdowndate(R = R1, k = k,
                         m = 2, type = "column")
## check
max(abs(crossprod(R2) - crossprod(X1)))
## Remove one row
## generate sample data
set.seed(10)
       <- 10
       <- 6
Χ
       <- matrix(rnorm(n * p, 1), n, p)
## get the initial QR factorization
output <- fastQR::qr(X, type = "householder",</pre>
                      nb = NULL,
                      complete = TRUE)
Q
       <- output$Q
R
       <- output$R
       <- R[1:p,]
\# select the row to be deleted from X and update X
k <- 5
X1 \leftarrow X[-k,]
U <- as.matrix(X[k,], p, 1)</pre>
## downdate the R decomposition
R2 \leftarrow rdowndate(R = R1, k = k, m = 1,
                  U = U, fast = FALSE, type = "row")
max(abs(crossprod(R2) - crossprod(X1)))
## Remove m rows
## create data: n > p
set.seed(10)
       <- 10
       <- 6
       <- matrix(rnorm(n * p, 1), n, p)
output <- fastQR::qr(X, type = "householder",</pre>
                     nb = NULL,
                      complete = TRUE)
Q
       <- output$Q
```

rupdate

Fast updating of the R matrix

Description

updates the R factorization when $m \geq 1$ rows or columns are added to the matrix $X \in \mathbb{R}^{n \times p}$, where n > p. The R factorization of X produces an upper triangular matrix $R \in \mathbb{R}^{p \times p}$ such that $X^{\top}X = R^{\top}R$. For more details on this method, refer to Golub and Van Loan (2013). Columns can only be added in positions p+1 through p+m, while the position of added rows does not need to be specified.

Arguments

R a $p \times p$ upper triangular matrix.

U either a $n \times m$ matrix or a $p \times m$ matrix of columns or rows to be added.

type either 'row' of 'column', for adding rows or columns.

fast mode: disable to check whether the provided matrices are valid inputs. De-

fault is FALSE.

Value

R the updated R matrix.

References

Golub GH, Van Loan CF (2013). *Matrix computations*, Johns Hopkins Studies in the Mathematical Sciences, Fourth edition. Johns Hopkins University Press, Baltimore, MD. ISBN 978-1-4214-0794-4; 1-4214-0794-9; 978-1-4214-0859-0.

Björck Å (2015). *Numerical methods in matrix computations*, volume 59 of *Texts in Applied Mathematics*. Springer, Cham. ISBN 978-3-319-05088-1; 978-3-319-05098-8, doi:10.1007/9783319-050898.

Björck Å (2024). *Numerical Methods for Least Squares Problems: Second Edition*. Society for Industrial and Applied Mathematics, Philadelphia, PA. doi:10.1137/1.9781611977950, https://doi.org/10.1137/1.9781611977950

Bernardi M, Busatto C, Cattelan M (2024). "Fast QR updating methods for statistical applications." 2412.05905, https://arxiv.org/abs/2412.05905.

```
## Add one column
## generate sample data
set.seed(1234)
n <- 12
p <- 5
X \leftarrow matrix(rnorm(n * p, 1), n, p)
## get the initial QR factorization
output <- fastQR::qr(X, complete = TRUE)</pre>
       <- output$Q
       <- output$R
R
       <- R[1:p,]
R1
## create column to be added
u <- matrix(rnorm(n), n, 1)</pre>
X1 \leftarrow cbind(X, u)
## update the R decomposition
R2 \leftarrow fastQR::rupdate(X = X, R = R1, U = u,
                        fast = FALSE, type = "column")
max(abs(crossprod(R2) - crossprod(X1)))
## Add m columns
## generate sample data
set.seed(1234)
n <- 10
p <- 5
X \leftarrow matrix(rnorm(n * p, 1), n, p)
## get the initial QR factorization
output <- fastQR::qr(X, complete = TRUE)</pre>
       <- output$Q
       <- output$R
R
       <- R[1:p,]
## create the matrix of columns to be added
U <- matrix(rnorm(n*m), n, m)</pre>
X1 \leftarrow cbind(X, U)
# QR update
R2 \leftarrow fastQR::rupdate(X = X, R = R1, U = U,
                        fast = FALSE, type = "column")
```

```
## check
max(abs(crossprod(R2) - crossprod(X1)))
## Add one row
## generate sample data
set.seed(1234)
n <- 12
p <- 5
X \leftarrow matrix(rnorm(n * p, 1), n, p)
## get the initial QR factorization
output <- fastQR::qr(X, complete = TRUE)</pre>
       <- output$Q
R
       <- output$R
R1
      <- R[1:p,]
## create the row u to be added
u <- matrix(data = rnorm(p), p, 1)</pre>
k <- 5
if (k<=n) {
  X1 \leftarrow rbind(rbind(X[1:(k-1), ], t(u)), X[k:n, ])
} else {
  X1 <- rbind(rbind(X, t(u)))</pre>
}
## update the R decomposition
R2 \leftarrow fastQR::rupdate(R = R1, X = X,
                       U = u,
                       type = "row")
## check
max(abs(crossprod(R2) - crossprod(X1)))
## Add m rows
## generate sample data
set.seed(1234)
n <- 12
p <- 5
X \leftarrow matrix(rnorm(n * p, 1), n, p)
## get the initial QR factorization
output <- fastQR::qr(X, complete = TRUE)</pre>
Q
       <- output$Q
R
       <- output$R
R1
       <- R[1:p,]
## create the matrix of rows to be added
U <- matrix(data = rnorm(p*m), p, m)</pre>
k <- 5
if (k<=n) {
  X1 \leftarrow rbind(rbind(X[1:(k-1), ], t(U)), X[k:n, ])
```

Index

```
qr, 2
qrchol, 3
qrdowndate, 4
qrls, 7
qrmls, 9
qrmridge, 10
qrmridge_cv, 11
qrridge_cv, 14
qrsolve, 15
qrupdate, 17
rchol, 20
rdowndate, 21
rupdate, 24
```