Neural Networks

What Are Neural Networks

- Simple computational elements forming a large network
 - Emphasis on learning (pattern recognition)
 - Local computation (neurons)

- Definition of NNs is vague
 - Often (but not always) inspired by biological brain

History

Roots of work on NN are in:

- Neurobiological studies (more than one century ago):
 - How do nerves behave when stimulated by different magnitudes of electric current?
 - Is there a minimal threshold needed for nerves to be activated?
 - Given that no single nerve cell is long enough, how do different nerve cells communicate with each other?
- Psychological studies:
 - How do animals learn, forget, recognize and perform other types of tasks?
- Psycho-physical experiments helped to understand how individual neurons and groups of neurons work.
- McCulloch and Pitts introduced the first mathematical model of single neuron, widely applied in subsequent work.

NN Topics

Supervised

- Data: Labeled examples
 - Pairs (input, desired output)
- Tasks:
 - Classification
 - Regression
- NN models:
 - Perceptron
 - Adaline
 - Feed-forward NN
 - Radial Basis Functions
 - **Support Vector Machines**

Unsupervised

- Data: Unlabeled examples
 - Different realizations of the input
- Tasks:
 - Clustering
 - Content addressable memory
- NN models:
 - Self-organizing Maps (SOM)
 - Hopfield networks

NNs: Goal and Design

A NN is specified by:

- An architecture: a set of neurons and links connecting neurons. Each link has a weight,
- A neuron model: the information processing unit of the NN,
- A learning algorithm: used for training the NN by modifying the weights in order to solve the particular learning task correctly on the training examples.

The aim is to obtain a NN that generalizes well

Network Architectures

- Three different classes of network architectures
 - single-layer feed-forward \(\) neurons are organized
 - multi-layer feed-forward in acyclic layers
 - recurrent

The architecture of a neural network is linked with the learning algorithm used to train

Single Layer Feed-Forward NN

Multi Layer Feed-Forward

3-4-2 Network

Hidden Layer

Recurrent Network

Recurrent Network with **hidden neuron**: unit delay operator **z**¹ is used to model a dynamic system

The Neuron

The Neuron

- The neuron is the basic information processing unit of a NN.
- It consists of:
 - A set of links, describing the neuron inputs, with weights $W_1, W_2, ..., W_m$
 - An adder function (linear combiner) for computing the weighted sum of the inputs (real numbers): $v = \sum w_j x_j$
 - Activation function (squashing function) arphi3 for limiting the amplitude of the neuron output.

$$y = \varphi(v+b)$$

Bias as Extra Input

The bias is an external parameter of the neuron. It can be

12

Neuron Models

The choice of φ determines the neuron model. Examples:

Step function:
$$\varphi(v) = \begin{cases} a & \text{if } v < c \\ b & \text{if } v > c \end{cases}$$

Rectified Linear (ReLU) function:

$$\varphi(v) = \begin{cases} 0 & \text{if } v < 0 \\ v & \text{otherwise} \end{cases}$$

Sigmoid function with z,x,y parameters

$$\varphi(v) = z + \frac{1}{1 + \exp(-xv + y)}$$

Gaussian function:

$$\varphi(v) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2} \left(\frac{v-\mu}{\sigma}\right)^2\right)$$

Learning Algorithms

- Depend on the network architecture:
 - Error correcting learning (Perceptron)
 - Delta rule (AdaLine, Backpropagation)
 - Competitive Learning (Self Organizing Maps)

Applications

- Classification:
 - Image recognition
 - Speech recognition
 - Medical diagnostics
 - Fraud detection
- Regression:
 - Forecasting (prediction on base of past history)
- Pattern association:
 - Retrieve an image from a corrupted one: denoising, inpainting
- Clustering:
 - Client profiles
 - Disease subtypes

Single Layer Perceptron

Single Layer Perceptron = feed-forward NN with one layer

- The output units are independent of each other
- Each weight only affects one of the outputs
- It is sufficient to study single layer Perceptrons with just one

neuron:

Perceptron: Neuron Model

 The (McCulloch-Pitts) perceptron is a single layer NN with a non-linear φ, the sign function

$$\varphi(v) = \begin{cases} 1 & \text{if } v \ge 0 \\ -1 & \text{if } v < 0 \end{cases}$$

Perceptron for Classification

- The perceptron is used for binary classification.
- Given training examples of classes y=-1,y=1, train the perceptron in such a way that it classifies correctly the training examples:
 - The output of the perceptron is the class number
- Geometrically, we try to find a hyper-plane that separates the examples of the two classes.

Perceptron Learning Algorithm

Variables and parameters at iteration n of the learning algorithm:

- x (n) = input vector
- = $[+1, x_1(n), x_2(n), ..., x_m(n)]^T$
- w(n) = neuron weight vector
- = $[b(n), w_1(n), w_2(n), ..., w_m(n)]^T$
- b(n) = bias
- y(n) = actual response
- = d(n) = desired response
- η = learning rate parameter

Perceptron Learning Algorithm

```
n=1;
initialize w(n) randomly;
while (there are misclassified training examples)
   Select a misclassified example (x(n),d(n))
   w(n+1) = w(n) + \eta d(n)x(n);
   n = n+1;
end-while:
\eta = learning rate parameter (real number)
```

Example

- Consider the 2-dimensional training set $C_1 \cup C_2$,
- $C_1 = \{(1,1), (1,-1), (0,-1)\}$ with class label 1
- $C_2 = \{(-1,-1), (-1,1), (0,1)\}$ with class label -1
- Train a perceptron on $C_1 \cup C_2$

A Possible Implementation

Consider the augmented training set $C'_1 \cup C'_2$, with first entry fixed to 1 (to deal with the bias as extra weight): (1, 1, 1), (1, 1, -1), (1, 0, -1), (1, -1, -1), (1, -1, 1), (1, 0, 1)

Replace x with -x for all $x \in C_2$ and use the following update rule:

$$w(n+1) = \begin{cases} w(n) + \eta x(n) & \text{if } w^T(n)x(n) \le 0\\ w(n) & \text{else} \end{cases}$$

Epoch = application of the update rule to all examples of the training set. Execution of the learning algorithm terminates when the weights do not change after one epoch.

Epoch 1

• w(1)=(1,0,0), $\eta = 1$, and transformed inputs (1, 1, 1), (1, 1, -1), (1, 0, -1), (-1, 1, 1), (-1, 1, -1), (-1, 0, -1)

Adjusted pattern		w(n) x(n)	Update?	New weight
(1, 1, 1)	(1, 0, 0)	1	No	(1, 0, 0)
(1, 1, -1)	(1, 0, 0)	1	No	(1, 0, 0)
(1,0,-1)	(1, 0, 0)	1	No	(1, 0, 0)
(-1,1, 1)	(1, 0, 0)	-1	Yes	(0, 1, 1)
(-1,1, -1)	(0, 1, 1)	0	Yes	(-1, 2, 0)
(-1,0, -1)	(-1, 2, 0)	1	No	(-1, 2, 0)

End epoch 1

Epochs 2 and 3

Adjusted pattern		w(n) <mark>ጃ</mark> h)	Update?	New weight
(1, 1, 1)	(-1, 2, 0)	1	No	(-1, 2, 0)
(1, 1, -1)	(-1, 2, 0)	1	No	(-1, 2, 0)
(1,0, -1)	(-1, 2, 0)	-1	Yes	(0, 2, -1)
(-1, 1, 1)	(0, 2, -1)	1	No	(0, 2, -1)
(-1, 1, -1)	(0, 2, -1)	3	No	(0, 2, -1)
(-1,0, -1)	(0,2,-1)	1	No	(0, 2, -1)

End epoch 2

At epoch 3 no weight changes. (check!) \Rightarrow stop execution of algorithm.

Final weight vector: (0, 2, -1). \Rightarrow decision hyperplane is $2x_1 - x_2 = 0$.

Result

25

Suppose the classes C_1 , C_2 are linearly separable (that is, there exists a hyper-plane that separates them). Then the perceptron algorithm applied to $C_1 \cup C_2$ terminates successfully after a finite number of iterations.

Proof:

Consider the set C containing the inputs of $C_1 \cup C_2$ transformed by replacing x with -x for each x with class label -1.

For simplicity assume w(1) = 0, $\eta = 1$.

Let $\mathbf{x}(1)$... $\mathbf{x}(k) \in C$ be the sequence of inputs that have been used after k iterations. Then

$$\begin{array}{lll} w(2) & = w(1) + x(1) \\ w(3) & = w(2) + x(2) \\ & \vdots & \vdots & \vdots \\ w(k+1) & = w(k) + x(k) \end{array} \\ \Longrightarrow w(k+1) = x(1) + \dots + x(k)$$

- Since C_1 and C_2 are linearly separable then there exists \mathbf{w}^* such that $w_*^T \mathbf{x} > \mathbf{0}, \ \forall \mathbf{x} \in C$
- Let $\alpha = \min w_*^T \mathbf{x} > 0$
- Then $w_*^T w(k+1) = w_*^T \mathbf{x}(1) + ... + w_*^T \mathbf{x}(k) > k\alpha$
- By the Cauchy-Schwarz inequality we get: $||w_*||^2||w(k+1)||^2 > (w_*^T w(k+1))^2$
- $||w(k+1)||^2 \ge \frac{(k\alpha)^2}{||w_*||^2}$

Now we go on another route

$$w(k+1) = w_k + \mathbf{x}(k)$$

$$||w(k+1)||^2 = ||w(k)||^2 + ||\mathbf{x}(k)||^2 + 2w(k)^T \mathbf{x}(k)$$

$$\leq 0 \text{ since x is misclassified}$$

$$||w(k+1)||^2 \leq ||w(k)||^2 + ||\mathbf{x}(k)||^2$$

$$||w(2)||^2 \leq ||w(1)||^2 + ||\mathbf{x}(1)||^2$$

$$||w(3)||^2 \leq ||w(2)||^2 + ||\mathbf{x}(2)||^2$$

$$\vdots$$

$$||w(k+1)||^2 \leq \sum_{i=1}^k ||\mathbf{x}(i)||^2$$

- Finally, let $\beta = \max_{i} ||\mathbf{x}(i)||^2$
- $\blacksquare \text{ Hence } ||w(k+1)||^2 \le k\beta$
- Remember $||w(k+1)||^2 \ge \frac{(k\alpha)^2}{||w_*||^2}$
- We obtain a contradiction if k is very large.
- Maximum k is when we have equality

$$\frac{(k_{max}\alpha)^2}{||w_*||^2} = k_{max}\beta \Rightarrow k_{max} = \frac{||w_*||^2\beta}{\alpha^2}$$

Hence the algorithm terminates in maximum $\frac{\beta||w_*||^2}{2}$ steps

LMS Algorithm

- Perceptron training algorithm may not converge if points are not linearly separable
- Another approach: Least Mean Squares with gradient descent
- Error function =

$$E(w) = \frac{1}{2} \sum_{i=1}^{N} (d(i) - w^{T} x(i))^{2}$$

Gradient:

$$\nabla E(w) = \sum_{i=1}^{N} (d(i) - w^{T} x(i)) x(i)$$

Update iterations: i=1

$$w \leftarrow w + \eta \sum_{i=1}^{N} (d(i) - w^{T} x(i)) x(i)$$

Gradient Descent Issues

- Converging to the local minimum can be very slow
 - Might need many iterations
- Alternative: Stochastic Gradient Descent
 - Update the weights after each training example rather than all at once

$$w \leftarrow w + \eta x(i)(d(i) - w^T x(i))$$

- Takes less memory
- Can sometimes avoid local minima
- η must decrease with time in order for it to converge

Multi-layer Neural Networks

- Single perceptron can only learn linearly separable functions
 - Also known as ADALINE (Adaptive Linear Neuron)
- Would like to make networks of perceptrons, but how do we determine the contribution to the output for an internal node?
- Solution: Backpropagation Algorithm

XOR

- XOR: non-linearly separable function
 - two input arguments with values in {-1,1}
 - returns one output in {-1,1}

\mathbf{X}_{1}	X_2	$\mathbf{x}_1 \mathbf{xor} \mathbf{x}_2$
-1	-1	-1
-1	1	1
1	-1	1
1	1	-1

- Mimics the logical exclusive or:
 - **true** if and only if the two inputs have different values.

XOR Example

- Problem: Separate green and red circles.
- Not linearly separable.
- We have to use two lines (yellow)
- NN with two hidden nodes
 - Each hidden node describes one of the two yellow lines.

- NN uses the sign activation function.
- Green arrows = directions of the weight vectors of the two hidden nodes, (1,-1) and (-1,1).
- Output node combines the outputs of the two hidden nodes.

ALVINN

Camera image

Automated driving at 70 mph on a public highway

30 outputs for steering 4 hidden units

30x32 pixels as inputs

30x32 weights into one out of the four hidden units

NETtalk (Sejnowski & Rosenberg, 1987)

- Task: learn to pronounce English text from examples.
- Training data
 - 1024 words from a side-by-side English/phoneme source
- Input
 - 7 consecutive characters from written text
 - Presented in a moving window that scans text
- Output
 - phoneme code giving the pronunciation of the letter at the center of the input window
- Network topology:
 - 7x29 inputs (26 chars + punctuation marks)
 - 80 hidden units
 - 26 output units (phoneme code).
 - Sigmoid units in hidden and output layer.

36

NETtalk (Sejnowski & Rosenberg, 1987)

- Training protocol:
 - 95% accuracy on training set after 50 epochs of training by full gradient descent.
 - 78% accuracy on a set-aside test set.
- Comparison against Dectalk (a rule based expert system):
 - Dectalk performs better; it represents a decade of analysis by linguists.
 - NETtalk learns from examples alone and was constructed with little knowledge of the task.

Types of Decision Regions

Network with a single node

One-hidden layer network that realizes the convex region: each hidden node realizes one of the lines bounding the convex region

two-hidden layer network that realizes the union of three convex regions: each box represents a one hidden layer network realizing one convex region

Feed Forward NN NEURON MODEL

- The classical learning algorithm of FFNN is based on the gradient descent method. For this reason the activation function used in FFNN is continuous and differentiable
- A typical activation function that can be viewed as a continuous approximation of the step (threshold) function is the Sigmoid Function.

$$\varphi(v_j) = \frac{1}{1 + e^{-av_j}}, \ a > 0$$

where
$$v_j = \sum_i w_{ji} y_i$$

- \mathbf{w}_{ji} = weight from node i to node j
- y_i = output of node i
- When $a \to \infty$ then φ becomes the step function

The Back-Propagation Algorithm

- Searches for weights that minimize the total error of the network over the training set.
- Repeated application of the following two passes:
 - Forward pass:
 - one example is passed through the network
 - the error of the output layer is computed.
 - Backward pass:
 - update the weights (credit assignment) based on the error
 - more complex than the LMS algorithm for Adaline, because hidden nodes are linked to the error not directly but by means of the nodes of the next layer.
 - Starting at the output layer, the error is propagated backwards through the network, layer by layer.
 - This is done by recursively computing the local gradient of each neuron.

Back-Propagation

Back-propagation training algorithm

Backprop adjusts the weights of the NN in order to minimize the network total mean squared error.

Total Mean Squared Error

■ The error of output neuron / after the activation of the network on the *n*-th training example (x(n), d(n)) is:

$$e_j(n) = d_j(n) - y_j(n)$$

The network error = sum of the squared errors of the output neurons:

$$E(n) = \frac{1}{2} \sum_{j \text{ output node}} e_j^2(n)$$

■ The total mean squared error = average of the network errors over the training examples:

$$E_{AV} = \frac{1}{N} \sum_{n=1}^{N} E(n)$$

Weight Update Rule

- Input of neuron j is: $v_j = \sum w_{ji} y_i$
- Using the chain rule we can write:

$$\frac{\partial E}{\partial w_{ji}} = \frac{\partial E}{\partial v_j} \frac{\partial v_j}{\partial w_{ji}}$$

Define the local gradient of neuron j as:

$$\delta_j = -\frac{\partial E}{\partial v_j}$$

Then from

$$\frac{\partial v_j}{\partial w_{ii}} = y_i$$

we get the change for updating wii

$$\Delta w_{ji} = \eta y_i \delta_j$$

Weight Update of Output Neuron

- To compute Δw_{ii} we need to know the local gradient δ_i of neuron j.
- Two cases, depending whether j is an output or a hidden neuron.
- If j is an output neuron then using the chain rule we obtain:

$$-\frac{\partial E}{\partial v_j} = -\frac{\partial E}{\partial e_j} \frac{\partial e_j}{\partial y_j} \frac{\partial y_j}{\partial v_j} = -e_j(-1)\varphi'(v_j)$$

because $e_i = d_i - y_i$ and $y_j = \varphi(v_j)$

lacksquare So if j is an output node then the weight w_{ii} from neuron i to neuron j is updated by:

$$\Delta w_{ji} = \eta y_i (d_j - y_j) \varphi'(v_j)$$

Weight Update of Hidden Neurons

- If j is a hidden neuron then its local gradient δ_j is computed using the local gradients of all the neurons of the next layer.
- Using the chain rule we have: $\delta_j = -\frac{\partial E}{\partial v_i} = -\frac{\partial E}{\partial y_j} \frac{\partial y_j}{\partial v_i}$
- And

$$-\frac{\partial E}{\partial y_j} = \sum_{k \in C} (-\frac{\partial E}{\partial v_k}) \frac{\partial v_k}{\partial y_j} = \sum_{k \in C} \delta_k w_{kj}$$

- $\blacksquare \quad \text{Hence} \ -\frac{\partial E}{\partial y_j} = \sum_{k \text{ in next layer}} \delta_k w_{kj} \text{ and } \ \frac{\partial y_j}{\partial v_j} = \varphi'(v_j)$
- So if j is a hidden node then the weight w_{ji} from neuron i to neuron j is updated by:

$$\Delta w_{ji} = \eta y_i \delta_j = \eta y_i \varphi'(v_j) \sum_{k \text{ in next layer}} \delta_k w_{kj}$$

Error Backpropagation

The flow-graph below illustrates how errors are back-propagated to hidden neuron *j*

$$\delta_j = \varphi'(v_j) \sum_{k \text{ in next layer}} \delta_k w_{kj}$$

Summary: Weight Update Rule

• Update weights by $\Delta w_{ji} = \eta y_i \delta_j$

$$\delta_j = \begin{cases} \varphi'(v_j)(d_j - y_j) & \text{if } j \text{ output node} \\ \varphi'(v_j) & \sum_{k \text{ in next layer}} \delta_k w_{kj} & \text{if } j \text{ hidden node} \end{cases}$$

where
$$\varphi'(v_j) = ay_j(1-y_j)$$

Momentum

Learning difficulties:

- If η is small \rightarrow slow learning
- If η is large \rightarrow unstable behavior with oscillations of the weight values.

Momentum

- A technique that keeps most of the previous update.
- We obtain the following generalized Update rule:

$$\Delta w_{ji}(n) = \alpha \Delta w_{ji}(n-1) + \eta \delta_j(n) y_i(n)$$
 α momentum constant $0 \le \alpha < 1$

- Accelerates the descent in steady downhill directions.
- Has a stabilizing effect in directions that oscillate in time.

Other techniques: η adaptation

Other heuristics for accelerating the convergence of the back-propagation algorithm through η adaptation:

- Heuristic 1: Every weight has its own η .
- Heuristic 2: Every η is allowed to vary from one iteration to the next.

Back-Propagation Learning algorithm (incremental-mode)

```
n=1;
initialize w(n) randomly;
while (stopping criterion not satisfied and n<max_iterations)
     for each example (x, a)
     - run the network with input x and compute the output y
     - update the weights in backward order starting from those of the
         output layer:
         w_{ii}(n) = w_{ii}(n-1) + \Delta w_{ii}(n-1)
     with \Delta w_{ii}(n) computed using the (generalized) update rule
     end-for
     n = n+1;
```

end-while;

Back-Propagation Algorithm

 In the batch-mode the weights are updated only after all examples have been processed, using the formula

$$w_{ji} = w_{ji} + \sum_{\text{example } x} \Delta w_{ji}^x$$

- The learning process continues on an epoch-by-epoch basis until the stopping condition is satisfied.
- In the incremental mode from one epoch to the next choose a randomized ordering for selecting the examples in the training set in order to avoid poor performance.

Initialization of Weights

- In general, initial weights are randomly chosen, with typical values between -1.0 and 1.0 or -0.5 and 0.5.
- If some inputs are much larger than others, random initialization may bias the network to give much more importance to larger inputs. In such a case, weights can be initialized as follows:

$$\mathbf{w}_{ji} = \pm \frac{1}{2N} \sum_{i=1,...,N} \frac{1}{|\mathbf{x}_i|}$$

For weights from the input to the first layer

$$\mathbf{w}_{kj} = \pm \frac{1}{2N} \sum_{i=1,...,N} \frac{1}{\varphi(\sum_{w_{ji}x_{i}})}$$

For weights from the first to the second layer

Training

- Rule of thumb:
 - the number of training examples should be at least five to ten times the number of weights of the network.
- Other rule of thumb:

$$N > \frac{|W|}{1-a}$$
 |W|= number of weights a = expected accuracy on test set

When to Stop Learning

- Learn until error on the training set is below some threshold
 - Bad idea! Can result in overfitting
 - If you match the training examples too well, your performance on the real problems may suffer
 - Early stopping
- Learn trying to get the best result on a validation set
 - Stop when the performance seems to be decreasing on this, while saving the best network seen so far.
 - There may be local minima, so watch out!
 - Keep many solutions during the optimization

Representational Capabilities

- Boolean functions Every boolean function can be represented exactly by some network with one hidden layer
 - Size may be exponential on the number of inputs
- Continuous functions Can be approximated to arbitrary accuracy with one hidden layer
- Arbitrary functions Any function can be approximated to arbitrary accuracy with two hidden layers

Applications of FFNN

Classification, pattern recognition:

- FFNN can be applied to tackle non-linearly separable learning problems.
 - Recognizing printed or handwritten characters,
 - Face recognition
 - Classification of loan applications into credit-worthy and noncredit-worthy groups
 - Analysis of sonar radar to determine the nature of the source of a signal

Regression and forecasting:

 FFNN can be applied to learn non-linear functions (regression) and in particular functions whose inputs is a sequence of measurements over time (time series).

Conclusions

- Neural Networks
 - Feed-forward NN → Back-Propagation Algorithm
 - Recurrent NN
 - Self Organizing Maps (Unsupervised Learning)
- Pros
 - Fast
 - Can learn any function with any degree of accuracy
- Cons
 - Hard to train
 - Steepest descent can get stuck in local optima
 - A randomized version (stochastic gradient descent) could help
 - Must be careful to avoid overfitting
 - Use a validation set