Závěrečná olympiáda - Fyzika mladší

1. Hezký obrázek, zrádná rovnice (12 bodů)

Uvažujte v rovině hmotný bod, který má v čase t=0 polohu a rychlost

$$\vec{r_0} = (1;0), \quad \vec{v_0} = (0;2)$$
 (1)

a má v závislosti na poloze zrychlení

$$\vec{a}(x,y) = (-9x, -4y).$$
 (2)

Zapište $\vec{r}(t)$, $\vec{v}(t)$ a $\vec{a}(t)$.

Nápověda: Vzpomeňte si na obrázky, co jsme si malovali. (osmička, trojosmička apod.)

Bonus pro machry: Nakreslete trajektorii.

2. Fotbálkista Coriolis (8 bodů)

Účastníci nejmenovaného matfyzáckého soustředění na 50° severní šířky se věnují bohulibé zábavě - fotbálku. V noci je ovšem navštívili zloději a ukradli všechny figurky kromě brankářů a celá hra se tím zjednodušila - střílí se přes celé hřiště a soupeř stíhá reagovat na všechny směry střel. Střelec se tedy spolehne na Coriolisovu sílu. Střílí na vzdálenost 1 metr přímo přes hřiště rychlostí 5 m·s⁻¹, fotbálek je orientován v severojižním směru. Jak velký posun ve směru tyče způsobí Coriolisova síla?

3. Velký pán Kepler (14 bodů)

Planeta 123 Nyan
Cat obíhá kolem svého slunce po trajektorii tvaru elipsy s číselnou excentrici
tou $\epsilon=e/a=4/5$. Z perihelia se do vedlejšího vrcholu dostane za 1 pozemský rok. Jaká je její oběžná doba?

 $N\acute{a}pov\check{e}da$: Plocha elipsy o poloosách a a b je $\pi \cdot a \cdot b$.

4. Kepler na skateboardu (9 bodů)

Kepler si na oslavu úspěchu z úlohy 3 nalil pivo do kelímku se čtvercovou podstavou o straně a do výšky a. Nyní s ním jede domů na naleštěném skateboardu (f=0) a drží ho jednou stěnou kolmo na směr jízdy. Sjíždí z kopce se sklonem α . Jaký je tvar hladiny v kelímku?

5. 9b- pro francouzské mravence (8 bodů)

Po vteřinové ručce plynule běžících stopek o délce R leze mravenec od středu k obvodu se stálým zrychlením ve směru ručičky a_0 . Jeho počáteční rychlost byla nulová, počáteční poloha ručičky byla 0 s. Vypočtěte:

- a) úhlovou rychlost ručky ω (2 body)
- b) polohový vektor mravence $\vec{r}(t)$ (3 body)
- c) vektor rychlosti mravence $\vec{v}(t)$. (3 body)

6. Válec (10 bodů)

Dřevěný válec plave ponořený ve vodě do 2/3 své výšky. Jakou práci je nutno vykonat na vytažení válce tak, že jeho spodní podstava se zvedne do výšky 20 cm nad hladinu? Poloměr válce je 10 cm a jeho výška 60 cm.

7. Zářit, či nezářit... (10 bodů)

Skleněný hranol (n=1.5) má úhly 45°, 45° a 90°. Jestliže paprsek dopadá kolmo na odvěsnu hranolu, dochází na přeponě k úplnému odrazu?

8. Kudy kam? (7 bodů)

Na skleněný hranol (n = 1.5) s úhly 30°, 60° a 90° dopadá paprsek kolmo na delší odvěsnu. V jakém směru vychází paprsek z kratší odvěsny?

9. Polarizovat, či nepolarizovat... (10 bodů)

Světlo ze vzduchu (n = 1) dopadá na skleněnou desku (n = 1.52). Při jakém úhlu dopadu jsou odražený a lomený paprsek kolmé?

10. Svícení o pomoc (12 bodů)

Potápěč v hloubce 3 m posvítí nahoru pod úhlem 30° ke kolmici k vodní hladině. V jaké vodorovné vzdálenosti od potápěče musí být člověk ve člunu, aby viděl světlo? Oči pozorovatele jsou 1 m nad vodní hladinou, index lomu vody je n=1.33.