HW7: Measuring VaR and Expected Shortfall using Extreme Value Theory

Gaetan Bakalli

November 10th, 2020

Introduction

Extreme Value Theory (EVT): What's happening in the tails of distributions.

Why EVT

- Center of distribution have specific form which might be different from the tails.
- Measures of risk (VaR, ES) are influenced by the tail distribution.
- Usual methods (Gaussian), undershoot the true value of risk measures.

Peaks-Over-Threshold (POT)

The Peaks-Over-Threshold (POT) approach assumes that the losses \boldsymbol{Y} , conditionally on being above a threshold u, are distributed as a generalised Pareto distribution (GPD), hence

$$Z \sim GPD(\xi, u, \sigma)$$

with cumulative density function:

$$F_{\xi,u,\sigma}(z) = 1 - \left(1 + \xi\left(\frac{z-u}{\sigma}\right)\right)^{-1/\xi}, \quad \text{ for } \ \xi \neq 0,$$

I the case of this HW the location parameter u, i.e. is the threshold value, is such that $u=10\cdot 10^6$, or $u=20\cdot 10^6$. It's the threshold at which we consider an observation "extreme".

We have two parameters to estimate: $\hat{\xi}$ and $\hat{\sigma}$.

Methods of Moments Estimator (MM)

Estimators

$$\widehat{\xi}_{MM} = \frac{1}{2} \left(1 - \frac{(\bar{m} - u)^2}{S^2} \right), \qquad \widehat{\sigma}_{MM} = \frac{\bar{m} - u}{2} \left(\frac{(\bar{m} - u)^2}{S^2} + 1 \right), \quad (1)$$

where \bar{m} is the empirical mean and S^2 the empirical variance.

Implementation

- ① Compute the Empirical mean with numpy functions mean and var.
- ② Compute the closed form estimators as described in Equation (1).

Maximum Likelihood Estimator (MLE)

Derive from the CDF the following PDF for the GPD

Estimators

$$\frac{1}{\sigma}(1+\xi z)^{-\left(\frac{1+\xi}{\xi}\right)},\tag{2}$$

and compute $\hat{\sigma}_{MLE}$ and $\hat{\xi}_{MLE}$.

Implementation

- Create a function GPDLogLikelihood, with the Log-Likelihood function derived from Equation (7), with parameter σ , ξ , and y, i.e. the observations (z u).
- Optimize the function GPDLogLikelihood using fmin.

VaR and ES estimators

Having computed the estimators for $\hat{\xi}$ and $\hat{\sigma}$ either by MLE or MM, we can plugin those estimates in the following closed form solutions for the VaR and ES:

VaR

$$extstyle extstyle VaR = ilde{\mu} + rac{ ilde{\sigma}}{\xi} \left((1-
ho)^{-\xi} - 1
ight).$$

where $\alpha=1\%$ and

$$\tilde{\sigma} = \sigma (1 - P[Y \le u])^{\xi}$$

$$\tilde{\mu} = u - \frac{\tilde{\sigma} \left((1 - P[Y \le u])^{-\xi} - 1 \right)}{\xi}$$

where $1 - P[Y \le u]$ is the proportion of of Y = z - u above the threshold u.

VaR and ES estimators

Finally, we can compute the estimator for the ES as:

ES

$$ES = VaR - \frac{\tilde{\sigma}}{(\xi - 1)}\alpha^{-\xi}$$