

improving human health and the health of our planet

Microbial Ecology in a Photobioreactor

Alex Zevin

Swette Center for Environmental Biotechnology

Most transportation is fueled by a finite resource!!

The Photobioreactor (PBR)

- Purpose: Carbon neutral production of jet fuel
 - Mutant Synechocystis sp. PCC 6803 secretes laurate into media

- Laurate is harvested and catalytically converted into undecane (jet fuel)
- Carbon neutral because each C burnt as fuel was fixed by Synechocystis as CO₂

Microbial Ecology

Contaminants invade the PBR culture!

Microbial Ecology

 Rising contamination levels are correlated to decreasing laurate production!

Goals:

- Determine the structure of the microbial community in the PBR when Synechocystis is:
 - » Healthy and growing
 - » Unhealthy and dying

- Determine how heterotrophic members of the community interact with Synechocystis
 - » Are there good/bad heterotrophs?

Tools:

- Microscopy
 - Light and fluorescent
- Microbiology
 - Isolate species that can grow on laurate, sequence 16S rDNA

Ехр	Closest BLAST match
4.6	Novosphingobium subterraneum strain B1AT14
	Aquabacterium fontiphilum strain CS-6
3.6	Uncultured bacterium clone ESM-3
	Bacillus cereus strain 9D
	Staphylococcus sp. CIFRI PTSB-29
	Sphingomonas sp. NBRC 15917
1.5	Uncultured Pseudomonas sp.
	Pseudomonas mendocina strain S100E
2.5	Agrobacterium sp. PNS-1
	Novosphingobium subterraneum strain B1AT14
	Achromobacter sp. OPB3

T-RFLP

Amplify 16S rDNA with labeled primers

Analyze size of fragments

Each species produces a unique fragment length

Monitoring the community across time:

Synechocystis does not produce a peak in this window, allowing us to "magnify" the other bacterial species present in the PBR culture

1. The culture is predominantly Synechocystis

2. Everything else gets "washed out"

- 1. Verify that Synechocystis DNA has been removed using qPCR
- 2. Submit samples for pyrosequencing to analyze non-*Synecho* community members

Strategies to control scavengers

Effects of Antibiotics on Isloated Pseudomonas

High salt

Antibiotics

Future Directions

 Employ deep sequencing techniques to determine phylogenetic distribution of heterotrophic bacteria in the PBR culture

Use flow cytometry to determine total contamination levels

 Continue searching for effective and sustainable scavenger mitigation strategies

Thank You

- Dr. Bruce Rittmann
- Dr. Rosa Krajmalnik-Brown
- Dr. Willem Vermaas
- Dr. Ravi Vannela
- Dr. Cesar Torres
- Dr. Prathap
 Parameswaran

- Jon Badalamenti
- Daniel Masters
- Diane Hagner
- PBR Team
- EB
- You guys

Questions?

