Game Physics

GPR350, Fall 2019 Daniel S. Buckstein

Course Introduction Week 1

License

 This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Introductions

Course Instructor:

Dan Buckstein

M.Sc, Computer Science, UOIT

B.IT, *Game Development* & Entrepreneurship

- #uoitgamedev
- Favourite games: Dragon Quest I-VI,
 Super Mario 64, Banjo-Kazooie

PHYSICSSSSSSSSS

- What is this course?
- GAME PHYSICS: physics as a game programmer should know physics. Period.

What is this course?

- What is this course to you?
- Fundamentally two things:

1. Portfolio building

Projects are creative in nature, and will show employers what you can do in this domain

2. Engineering

Low-level & tools programming that applies all you have learned thus far in your courses

How to succeed in this course

- Practice programming often
- Do work often and on time
- Attend all lectures and tutorials
- Attend office hours to clarify issues
- Do not procrastinate.

This is your education... make the best of it!

How to succeed in this course

Additional readings will be provided

 Do your own research to excel with the course content

...or just come find me

SYLLABUS REVIEW

- Course syllabus is posted on <u>Canvas</u>
- Find course link for GPR-350: Game Physics
- Syllabus is posted under the 'Syllabus' tab
- Other stuff posted under 'Modules'

Impostor Syndrome

Accessibility

- Again, feel free to approach me to discuss
- Works both ways...

- Please sit closer to the front
- Please speak up
- Please do not mumble

Zero Tolerance for Plagiarism

Do not plagiarize.

Questions???

Questions so far???

Metaphor: what is this?

- Your survival in this course (and the rest of the program) relies partially on your ability to distinguish between tools and applications
- TOOLS: mathematical formulas, algorithms, theories, concepts, definitions...
- APPLICATIONS: use in your games!

Example: LERP

```
TOOL: The algorithm implemented in C/C++ vec3 lerp(vec3 v0, vec3 v1, float t) {...}
```

APPLICATION: Move a character from A to B

```
myPos = lerp(posA, posB, posT);
```

APPLICATION: Colour blending

```
darkCyan = lerp(blue, green, 0.5);
```

- Math and programming go hand-in-hand!!!
- TOOLS vs. APPLICATIONS
- Algorithms are just mathematical formulas!!!
 - Tools
- Implementation of an algorithm is in code
 - Applications

"It's Just Data"

- Course motto: "It's just data."
- Remember this always!
- Algorithms can be used in many ways!
- Moral of the story: we are using algorithms to process data
- Different purposes call for different applications of the same tools!!!

"It's Just Data"

- Variables are just numbers
- Algorithms are just functions that take in and spit out variables

```
variable → algorithm → variable → algorithm → ...
float, int, vec2, vec3, mat4, frame,
keyframe, sequence, skeleton...
```

At the end of the day, it's just stuff we process!

Use version control

- Recommended SCMs:
 - Mercurial (a.k.a. Hg), TortoiseHg for GUI
 - Git

Course materials delivered using Hg

Highly-Recommended Software

DIY:

- Visual Studio
- Tortoise Hg (and plugin)
- p4merge
- Rapid Environment Editor
- FMOD Sound System
- Everything Search
- 7zip
- cmake
- TeXstudio & MiKTeX

- → programming IDE
- → source control
- → visual diff tool (life saver)
- → env. var. editor
- → sound library & API
- → super fast file search
- → compression
- → cross-platform config tool
- → for fancy PDFs

The end.

Questions? Comments? Concerns?

