Uniwersytet Warszawski

Wydział Matematyki, Informatyki i Mechaniki

Filip Binkiewicz

Nr albumu: 332069

Własność A dla kompleksów kostkowych CAT(0)

Praca licencjacka na kierunku MATEMATYKA

> Praca wykonana pod kierunkiem prof. dr hab. Sławomira Nowaka Instytut Matematyki

Czerwiec 2015

Oświadczenie kierującego pracą

Potwierdzam, że niniejsza praca została przygotowana pod moim kierunkiem i kwalifikuje się do przedstawienia jej w postępowaniu o nadanie tytułu zawodowego.

Data

Podpis kierującego pracą

Oświadczenie autora (autorów) pracy

Świadom odpowiedzialności prawnej oświadczam, że niniejsza praca dyplomowa została napisana przeze mnie samodzielnie i nie zawiera treści uzyskanych w sposób niezgodny z obowiązującymi przepisami.

Oświadczam również, że przedstawiona praca nie była wcześniej przedmiotem procedur związanych z uzyskaniem tytułu zawodowego w wyższej uczelni.

Oświadczam ponadto, że niniejsza wersja pracy jest identyczna z załączoną wersją elektroniczną.

Data

Podpis autora (autorów) pracy

Streszczenie

Praca ta skupia się na dowodzie, iż kompleksy kostkowe CAT(0) mają własność A.

Słowa kluczowe

Kompleks kostkowy CAT(0), własność A

Dziedzina pracy (kody wg programu Socrates-Erasmus)

- 11.0 Matematyka, Informatyka:
- 11.1 Matematyka

Klasyfikacja tematyczna

14 Algebraic Geometry

Tytuł pracy w języku angielskim

Property A for CAT(0) cube complexes

Spis treści

M	otywacja	Ę
1.	Wprowadzenie	7
	1.1. Własność A	7
	1.2. Przestrzenie CAT(0)	Ć
	1.3. Kompleksy kostkowe $CAT(0)$	10
	1.4. Kombinacje	15
2.	Kompleksy kostkowe CAT(0) a własność A	17
Bi	ibliografia	

Motywacja

Kompleksy kostkowe są pewnym naturalnym uogólnieniem pojęcia grafu na większą liczbę wymiarów - zaś własność CAT(0) odpowiada za "brak cykli", uogólniając analogicznie przypadek szczególny - drzewa. Nie jest więc zaskakujące pytanie o ich własności - poniższa praca wprowadza podstawowe pojęcia przestrzeni CAT(0) oraz kompleksów kostkowych. W poszukiwaniach głębszej literatury polecam zajrzeć do [1], [6] bądź też [5].

W swojej pracy skupiam się na dowodzie twierdzenia mówiącego, że każdy skończenie wymiarowy kompleks kostkowy ma własność A, opierając się na [3]. Własność A, po raz pierwszy zdefiniowana przez Yu (więcej informacji w [7] lub [2]) jest pewnym uogólnieniem pojęcia średniowalności, zdefiniowanym dla grup. Definicja nawet optycznie przypomina pewne kryterium średniowalności, a więc istnienie ciągu Følnera. Istotne jest to, iż własność A jest niezmiennikiem relacji zgrubnej równoważności, coraz częściej pojawiającej się w literaturze (więcej informacji o geometrii zgrubnej można znaleźć w [4]).

Dowód głównego twierdzenia poparty będzie przykładem, w którym udowodnimy w niestandardowy sposób własność A dla konkretnego kompleksu kostkowego CAT(0), przestrzeni euklidesowej \mathbb{R}^d . Dalsze postępowanie okaże się równoległe, choć nieco bardziej skomplikowane technicznie.

Jako główny wkład własny w treść pracy traktuję nie treść dowodu głównego twierdzenia, zawartego już w [3], a w który ingerowałem jedynie sporadycznie, przedstawiając odrobinę różniące się dowody poszczególnych lematów, lecz rozdział ten dowód poprzedzający. Zawarłem w nim zebrane z różnych źródeł definicje, lematy i przykłady dotyczące pojęć związanych blisko z tematem mojej pracy, w szczególności własności A, geometrii zgrubnej, przestrzeni $CAT(\kappa)$ w przypadku szczególnym $\kappa=0$ oraz kompleksów kostkowych.

Dla zainteresowanych starałem się w odpowiednich miejscach pozostawić odnośniki do głębszej literatury dotyczącej każdego z tych tematów.

Rozdział 1

Wprowadzenie

Pierwszy rozdział tej pracy poświęcę przypomnieniu podstawowych definicji, twierdzeń i przykładów dotyczących jej tematu. Aby zachować ciągłość pracy, postaram się uniknąć przytaczania rozległych dowodów. Dla zainteresowanych w odpowiednich miejscach znajdą się odsyłacze do literatury.

1.1. Własność A

Własność A jest pewnym przeniesieniem pojęcia średniowalności na przestrzenie metryczna. Przed właściwym wprowadzeniem tego pojęcia przypomne kilka podstawowych definicji dotyczących geometrii zgrubnej.

Przez X, Y będziemy oznaczać przestrzenie metryczne, d będzie oznaczać metrykę pochodzącą z przestrzeni, z której pochodzą jej argumenty. Jeśli będzie to konieczne, przez d_X, d_Y bedziemy dla ścisłości oznaczać metryki pochodzące odpowiednio z X i Y.

Definicja 1.1.1. Powiemy, że funkcja $\varphi:X\to Y$ jest **zgrubna**, jeśli spełnia następujące dwa warunki:

• (Bornologiczność) Dla każdego R > 0 istnieje S > 0 takie, że

$$d(x_1, x_2) < R \Rightarrow d(\varphi(x_1), \varphi(x_2)) < S$$

• (Właściwość) Dla każdego S>0 istnieje R>0 takie, że

$$d(\varphi(x_1), \varphi(x_2)) < S \Rightarrow d(x_1, x_2) < R$$

Przykład 1.1.1. Zanurzenie $\mathbb{Z} \hookrightarrow \mathbb{R}$ jest zgrubne. Każde przekształcenie liniowe $\mathbb{Z} \to \mathbb{Z}$, $n \to an+b$ jest zgrubne. Przekształcenie $\mathbb{Z} \ni n \to n^2 \in \mathbb{Z}$ nie jest zgrubne, bo nie jest bornologiczne $(d(n,n+1)=1, \text{ a } d(n^2,n^2+2n+1)=|2n+1|$ jest dowolnie duże).

Powiemy, że dwa przekształcenia $f_1, f_2: X \to Y$ są blisko, jeśli istnieje C > 0 takie, że

$$d(f_1(x), f_2(x)) < C$$
 dla każdego $x \in X$

Zbiór $A \subset X$ jest r-gęsty, jeśli dla każdego $x \in X$ istnieje element $a \in A$ taki, że d(x, a) < r. Zbiór A jest zgrubnie gęsty, jeśli jest r-gęsty dla pewnego r > 0.

Definicja 1.1.2. Powiemy, że przestrzenie X,Y są **zgrubnie równoważne**, jeśli istnieją przekształcenia zgrubne $\varphi: X \to Y, \ \psi: Y \to X$ takie, że $\varphi \circ \psi$ jest blisko id $_X$, zaś $\psi \circ \varphi$ jest blisko id $_X$. Przestrzenie X,Y są zgrubnie równoważne wtedy i tylko wtedy, gdy istnieje $\varphi: X \to Y$ takie, że $\varphi(X) \subset Y$ jest podzbiorem zgrubnie gęstym.

Uwaga 1.1.1. Każda przestrzeń metryczna X zawiera dyskretny podzbiór zgrubnie gęsty.

Dowód. Ustalmy $\varepsilon > 0$. Niech $\mathcal{D} = \{D \subset X : \forall_{x_1, x_2 \in D, x_1 \neq x_2} d(x_1, x_2) > \varepsilon\}$. Rodzina \mathcal{D} jest niepusta oraz każdy łańcuch jest ograniczony z góry przez swoją sumę. Wobec lematu Kuratowskiego- Zorna istnieje więc maksymalny element $D_0 \in \mathcal{D}$. Jest on ε - gęstym podzbiorem X. Istotnie, załóżmy przeciwnie - istnieje $x \in X$ taki, że $d(x, D_0) > \varepsilon$. Wtedy zbiór $D_0 \cup \{x\}$ należy do rodziny \mathcal{D} i zawiera w sobie D_0 , co przeczy maksymalności $D_0 \subseteq \mathbb{D}$

Definicja 1.1.3. Przestrzeń dyskretna X ma **własność A**, jeśli dla każdego R > 0 oraz $\varepsilon > 0$ istnieje rodzina niepustych, skończonych zbiorów $A_x \subset X \times \mathbb{N}$ indeksowana $x \in X$ oraz stała S > 0 taka, że spełnione są następujące warunki:

1. Dla każdych dwóch $x, x' \in X$ zachodzi

$$d(x, x') < R \Rightarrow \frac{\#(A_x \Delta A_{x'})}{\#A_x} < \varepsilon$$

2. Dla dowolnego elementu $(x', n) \in A_x$ zachodzi

$$d(x, x') \leqslant S$$

Dowolna przestrzeń metryczna ma własność A, jeśli zawiera zgrubnie gęsty podzbiór o tej własności.

Symbol # oznacza liczbę elementów zbioru, zaś symbol Δ - operację różnicy symetrycznej (a więc $A\Delta B=(A\setminus B)\cup(B\setminus A)$)

Uwaga 1.1.2. Własność A jest niezmiennikiem zgrubnej równoważności przestrzeni dyskretnych. Dokładniej, jeśli przestrzenie dyskretne X, Y są zgrubnie równoważne, to X ma własność A wtedy i tylko wtedy, gdy Y ma własność A.

Uwaga ta jest bezpośrednia konsekwencja poniższego lematu:

Lemat 1.1.1. Jeśli $\varphi: X \to Y$ jest przekształceniem zgrubnym przestrzeni dyskretnych oraz Y ma własność A, to X ma własność A.

Dowód. Łatwo sprawdzić, że istnieje funkcja $\psi: Y \to X$ taka, że

$$d(y, \varphi(\psi(y))) \leq d(y, \varphi(X))$$
 dla każdego $y \in Y$

W tym celu wystarczy dla każdego $y \in Y$ wybrać $x \in X$ taki, że $\varphi(x)$ jest odpowiednio blisko y i ustalić $x = \psi(y)$.

Ustalmy teraz $R>0,\ \varepsilon>0$. Przekształcenie φ jest zgrubne, zatem istnieje R_0 takie, że

$$d(x, x') < R \Rightarrow d(\varphi(x), \varphi(x')) < R_0$$

Dla stałych R_0, ε istnieje rodzina $\{B_y \subset Y \times \mathbb{N}\}_{y \in Y}$ indeksowana $y \in Y$ oraz stała S' spełniającaewarunki definicji własności A. Zdefiniujmy teraz

$$X \times \mathbb{N} \supset A_x = \{(x', n) : n \leqslant \#\{(y, m) \in B_{\varphi(x)} : \psi(y) = x'\}\}$$

Sprawdzimy, że rodzina ta spełnia warunki definicji 1.3.3. Jeśli d(x,x') < R, to $d(\varphi(x),\varphi(x')) < R'$, a więc

$$\frac{\#(A_x \Delta A_{x'})}{\#A_x} \leqslant \frac{\#B_{\varphi(x)} \Delta B_{\varphi(x')}}{\#B_{\varphi(x)}} < \varepsilon$$

Załóżmy wreszcie, że $(x', n) \in A_x$. Wówczas istnieje para $(y, m) \in B_{\varphi(x)}$ taka, że $\psi(y) = x'$. Wówczas $d(y, \varphi(x)) \leq S'$ oraz

$$d(\varphi(x), \varphi(x')) \leqslant d(\varphi(x), y) + d(y, \varphi(x')) = d(\varphi(x), y) + d(y, \varphi(\psi(y))) \leqslant 2S' + 1$$

Korzystając znów ze zgrubności φ , możemy znaleźć stałą S taką, aby

$$d(\varphi(x), \varphi(x')) < 2S' + 1 \Rightarrow d(x, x') < S$$

Otrzymujemy więc, że d(x, x') < S, co kończy dowód.

W dalszych rozważaniach będziemy korzystać z następującej charakteryzacji własności A:

Stwierdzenie 1.1.1. Dyskretna przestrzeń metryczna X ma własność A wtedy i tylko wtedy, gdy istnieje ciąg rodzin funkcji o skończonym nośniku $f_{n,x}: X \to \mathbb{N} \cup \{0\}$, indeksowany $x \in X$, oraz ciąg $S_n \in \mathbb{R}_+$ taki, że

- 1. Dla każdego n oraz x nośnikiem $f_{n,x}$ jest $B(S_n,x)$.
- 2. Dla każdego R > 0 ciąg

$$\frac{\|f_{n,x} - f_{n,x'}\|}{\|f_{n,x}\|}$$

zbiega jednostajnie do zera na zbiorze $\{(x,x'): d(x,x') \leq R\}$ przy $n \to \infty$. Norma $\|\cdot\|$ oznacza normę ℓ_1 na przestrzeni funkcji na o skończonym nośniku określonych na X.

Dowód. Powyższe warunki są równoważne z następującym: dla każdego $R>0,\ \varepsilon>0$ istnieje rodzina funkcji o skończonym nośniku $f_x:X\to\mathbb{N}\cup\{0\}$, indeksowana $x\in X$, oraz S>0 takie, że supp $f_x=B(S,x)$ oraz

$$d(x, x') \leqslant R \Rightarrow \frac{\|f_x - f_{x'}\|}{\|f_x\|} < \varepsilon$$

Konieczność tego warunku wynika stąd, że przekształcenie $f_x(y) = \# (A_x \cap (\{y\} \times \mathbb{N}))$ spełnia powyższe warunki, zaś dostateczność - stąd, iż $A_x = \{(y, n) \in X \times \mathbb{N} : 1 \le n \le f_x(y)\}$ spełnia warunki definicji 1.3.3.

1.2. Przestrzenie CAT(0)

Niech (X,d) będzie przestrzenią metryczną. Odcinkiem geodezyjnym nazywamy przekształcenie izometryczne $\mathbb{R} \supset I \xrightarrow{\rho} X$, gdzie I = [a,b] jest odcinkiem. Przestrzeń X nazwiemy (jednoznacznie) geodezyjną, jeśli każde dwa punkty można połączyć (jednoznacznie wyznaczonym) odcinkiem geodezyjnym.

Przykład 1.2.1. Każda przestrzeń euklidesowa \mathbb{R}^n jest jednoznacznie geodezyjna, jak również każdy jej wypukły podzbiór. Sfera S^2 jest geodezyjna, ale nie jednoznacznie - dwa bieguny można połączyć ścieżką geodezyjną na nieskończenie wiele sposobów. Każdy spójny graf metryczny jest przestrzenią geodezyjną.

Dalej będziemy rozważać przestrzenie geodezyjne. Dla wygody przez [x, y] będziemy oznaczać (dowolny) odcinek geodezyjny łączący $x \in X$ z $y \in X$ (a dokładniej obraz tego odcinka).

Zwróćmy uwagę, że jeśli X jest przestrzenią geodezyjną, to dla każdej trójki $(x,y,z) \in X^3$ istnieje trójka $(\overline{x},\overline{y},\overline{z}) \in (\mathbb{R}^2)^3$ taka, że $d(x,y) = d_{\mathbb{R}^2}(\overline{x},\overline{y}), \ d(x,z) = d_{\mathbb{R}^2}(\overline{x},\overline{z}), \ d(y,z) = d_{\mathbb{R}^2}(\overline{y},\overline{z}).$ Innymi słowy, każdemu trójkątowi z X można przypisać trójkąt z przestrzeni euklidesowej \mathbb{R}^2 o bokach takiej samej długości. Taki trójkąt jest wyznaczony jednoznacznie z dokładnością do izometrii przestrzeni \mathbb{R}^2 i nazwiemy go trójkątem porównania (x,y,z).

Definicja 1.2.1. Powiemy, że przestrzeń geodezyjna X jest CAT(0), jeśli dla każdej trójki $(x, y, z) \in X^3$ oraz punktu $p \in [y, z]$ oraz odpowiadającym im trójkątowi porównania $(\overline{x}, \overline{y}, \overline{z}) \in (\mathbb{R}^2)^3$ i punktowi $\overline{p} \in [\overline{y}, \overline{z}]$ zachodzi nierówność:

$$d(x,p) \leqslant d_{\mathbb{R}^2}(\overline{x},\overline{p})$$

Innymi słowy, w przestrzeniach CAT(0) trójkąty są "szczuplejsze" niż w przestrzeni euklidesowej. O takich przestrzeniach powiemy, że mają niedodatnią krzywizne.

Przykład 1.2.2. Nietrudno jest o kilka przykładów takich przestrzeni:

- Każda przestrzeń euklidesowa \mathbb{R}^n jest CAT(0). Wówczas wymieniona nierówność jest po prostu równością.
- Graf metryczny jest przestrzenią CAT(0) wtedy i tylko wtedy, gdy jest drzewem.

Uwaga 1.2.1. Każda przestrzeń CAT(0) jest jednoznacznie geodezyjna.

Dowód. Przypuśćmy przeciwnie i niech $x,y \in X$ łączą dwa różne odcinki geodezyjne, powiedzmy $[x,y], \overline{[x,y]}$. Wówczas istnieją $[x,y] \ni p \neq \overline{p} \in \overline{[x,y]}$ takie, że $d(x,p) = d(x,\overline{p})$ oraz $d(y,p) = d(y,\overline{p})$. Wówczas trójkątowi (x,y,\overline{p}) w \mathbb{R}^2 odpowiada trójkąt zdegenerowany, zaś $d(p,\overline{p}) > 0$, co przeczy nierówności CAT(0)

Wniosek 1.2.1. Sfera S^2 nie jest przestrzenią CAT(0). Płaszczyzna \mathbb{R}^2 wyposażona w metrykę pochodzącą od normy ℓ_1 nie jest przestrzenią CAT(0)

1.3. Kompleksy kostkowe CAT(0)

Niech $K = [0, 1]^n$ będzie n-wymiarową kostką. Będzie to podstawowy "budulec" interesujących nas przestrzeni. Przez ścianę o kowymiarze równym 1 będziemy rozumieć zbiór

$$F_{i,\varepsilon} = \{x \in K : x_i = \varepsilon\}, \text{ dla } i = 1 \dots n \text{ oraz } \varepsilon \in \{0,1\}$$

Wszystkie ściany o niższym kowymiarze (o wyższym wymiarze) można otrzymać jako przecięcie ścian o wyższym kowymiarze.

Definicja 1.3.1. Niech K, K' będą dwiema kostkami oraz $F \subset K$, $F' \subset K'$ będą ich ścianami. **Sklejeniem** (lub **przyłączeniem**) K z K' nazwiemy izometrię $\varphi : F \to F'$.

Definicja 1.3.2. Przypuśćmy, że \mathcal{K} jest zbiorem kostek (dla każdego $K \in \mathcal{K}$ istnieje $n(K) \in \mathbb{N}$ takie, że $K \simeq [0,1]^{n(K)}$), zaś \mathcal{S} - zbiorem sklejeń elementów \mathcal{K} (każdemu $\varphi \in \mathcal{S}$ odpowiadają kostki $K = K(\varphi), K' = K'(\varphi) \in \mathcal{K}$ oraz ściany $F \subset K, F' \subset K'$. Załóżmy wreszcie, że taka para $(\mathcal{K}, \mathcal{S})$ spełnia następujące warunki:

- 1. Žadna kostka nie jest sklejona sama ze sobą.
- 2. Dla każdych dwóch kostek $K \neq K'$ istnieje co najwyżej jedno sklejenie K z K'.

Wówczas w następujący sposób można zdefiniować kompleks kostkowy:

$$X = \left(\bigsqcup_{K \in \mathcal{K}} C\right) /_{\sim}$$

gdzie \sim dla każdego $\varphi \in \mathcal{S}$ utożsamia dziedzinę φ z jego obrazem, to znaczy:

$$\{x \sim \varphi(x) \mid \varphi \in \mathcal{S}, \ x \in \text{dom}(\varphi)\}\$$

Jeśli istnieje stała M > 0 taka, że dla każdego $K \simeq [0,1]^{n(K)} \in \mathcal{K}$ zachodzi n(K) < M, to kompleks kostkowy X jest **skończenie wymiarowy**. Wtedy **wymiarem** tego kompleksu nazwiemy liczbę

$$\dim X = \max_{K \in \mathcal{K}} n(K)$$

Uwaga 1.3.1. W ten sposób zdefiniowany kompleks kostkowy jest przestrzenią metryczną, przy czym metryka długości indukowana jest z metryki euklidesowej na $[0,1]^n \subset \mathbb{R}^n$. Odległość punktów x,y mierzona w metryce długości jest to infinum długości krzywych $\gamma:[a,b]\to X$ łączących x z y. Długość krzywej definiujemy następująco:

$$l(\gamma) = \sup_{a=t_0 \leqslant \dots \leqslant t_n = b} \sum_{i=0}^{n-1} d(\gamma(t_i), \gamma(t_{i+1}))$$

Stwierdzenie 1.3.1. Z powyższej definicji łatwo wynikają następujące fakty:

- Obcięcie rzutowania $p: \bigsqcup_{K \in \mathcal{K}} \to X$ do jednej kostki $K \in \mathcal{K}$ jest iniekcją.
- Niepuste przecięcie dwóch kostek jest ścianą obydwu.

Przykład 1.3.1. Łatwo o kilka prostych przykładów kompleksów kostkowych:

- Rozważmy graf metryczny bez wierzchołków izolowanych, w którym każda krawędź ma długość 1. Każda krawędź jest izometryczna z [0, 1], zaś sklejenia to po prostu izometrie punktów. Jest to prosty przykład kompleksu kostkowego.
- Torus można interpretować jako kompleks kostkowy. Rozważmy zbiór $[0,3] \times [0,3] \subset \mathbb{R}^2$, w którym można wprowadzić podział na dziewięć części izometrycznych z $[0,1]^2$. Wtedy odpowiednie izometrie prowadzą do konstrukcji torusa (rysunek).

Uwaga 1.3.2. Na zbiorze wierzchołków można wprowadzić metrykę długości krawędziowej, gdzie odległość dwóch wierzchołków to minimum długości łączących ich ścieżek złożonych z krawędzi kompleksu (przez krawędź rozumiemy ścianę o wymiarze 1). Z naszego punktu widzenia możemy utożsamić te metryki, z uwagi na następujący fakt:

Stwierdzenie 1.3.2. Niech X będzie kompleksem kostkowym CAT(0). Metryka długości na zbiorze wierzchołków X jest zgrubnie równoważna z metryką długości krawędziowej. Jeśli X jest skończenie wymiarowy, to zbiór wierzchołków z pierwszą bądź drugą z tych metryk jest sobie zgrubnie równoważny.

 $Dow \acute{o}d.$

Kompleksy kostkowe CAT(0) posiadają strukturę kombinatoryczną. Zbiór wierzchołków drogowo spójnego kompleksu kostkowego CAT(0) można podzielić na dwa drogowo spójne podzbiory zbioru wierzchołków. Taki podział nazwiemy **hiperpłaszczyzną**, zaś oba spójne podzbiory nazwiemy **półprzestrzenią**.

Dwie hiperpłaszczyzny tworzą podział kompleksu na cztery przecięcia półpłaszczyzn. Jeśli wszystkie są niepuste, to hiperpłaszczyzny **przecinają się**. Dwa wierzchołki x, y są**oddzielone** przez hiperpłaszczyznę H, jeśli należą do różnych wyznaczonych przez nią półprzestrzeni.

¹length metric

Zbiór hiperpłaszczyzn oddzielających x od y będziemy oznaczać przez $\mathfrak{H}(x,y)$. **Odcinkiem** łączącym x oraz y nazwiemy przecięcie wszystkich półprzestrzeni zawierających obydwa te punkty i oznaczymy [x,y]. Zbiór wierzchołków V nazwiemy **wypukłym**, jeśli dla każdych $x,y\in V$ również $[x,y]\subset V$.

Dla trzech wierzchołków w, x, y możemy wyróżnić ich **medianę**, zdefiniowaną jako jedyny wierzchołek należący do $[w, x] \cap [x, y] \cap [w, y]$

Dla kompleksu kostkowego CAT(0) X możemy wprowadzić brzeg kombinatoryczny. Niech funkcja σ przypisuje hiperpłaszczyźnie X jedną z wyznaczonych przez nią półprzestrzeni, przy czym dla każdych dwóch hiperpłaszczyzn H_1, H_2 zachodzi $\sigma(H_1) \cap \sigma(H_2) \neq \emptyset$. Taką funkcję nazwiemy **ultrafiltrem**.

Wierzchołek x definiuje takie przekształcenie: dla hiperpłaszczyzny H wyznacza półprzestrzeń H_x zawierającą x (rzeczywiście, dla każdych dwóch hiperpłaszczyzn H, K mamy $x \in H \cap K$). Jeśli więc oznaczymy przez $\mathfrak U$ zbiór wszystkich ultrafiltrów na X, zaś przez V(X) - zbiór wierzchołków X, to wskazaliśmy iniekcję

$$\iota:V(X)\to\mathfrak{U}$$

Wówczas elementy zbioru

$$\partial X = \mathfrak{U} \setminus \iota(V(X))$$

nazwiemy **krawędziami w nieskończoności**. Utożsamiając z wierzchołkiem x ultrafiltr $\iota(x)$, możemy więc zdefiniować

$$\overline{X} = X \cup \partial X$$

Powyższy zbiór nazwiemy **dopełnieniem w nieskończoności** kompleksu X.

Możemy przenieść podstawowe kombinatoryczne własności kompleksu kostkowego CAT(0) na jego dopełnienie w nieskończoności. Jeśli $z,w\in\overline{X}$, to dla hiperpłaszczyzny H przez H_z,H_w będziemy oznaczać obraz z,w (jako ultrafiltrów) na H, a więc odpowiednią półprzestrzeń (wtedy powiemy, że H_z zawiera z. Hiperpłaszczyzna H oddziela x od w, jeśli $H_z\neq H_w$. Można więc na \overline{X} uogólnić definicję zbioru $\mathfrak{H}(x,w)$. Podobnie możemy zdefiniować odcinek [x,w] jako

$$[x,w] = \bigcap H_{x,w}$$
 $x,w \in H_{x,w}$, $H_{x,w}$ półprzestrzeń

Zwróćmy uwagę, że każdy odcinek [x, w] jest wypukły. Wynika to stąd, że przecięcie zbiorów wypukłych takie jest. Oczywiste jest również następujące stwierdzenie:

Stwierdzenie 1.3.3. Niech $x, y, w \in X$ oraz $x \in \overline{X}$. Jeśli $w \in [x, z]$ oraz $y \in [y, w]$, to $\mathfrak{H}(y, w) \subset \mathfrak{H}(y, z)$

Uwaga 1.3.3. Na zbiorze \overline{X} trudno wprowadzić metrykę, można natomiast w naturalny sposób zrobić z niego przestrzeń topologiczną. Powiemy, że ciąg wierzchołków $\{x_j\}_{j=1}^{\infty} \subset X$ zbiega do wierzchołka $x \in \overline{X}$, jeśli dla każdej hiperpłaszczyzny H zachodzi $H \in \mathfrak{H}(x_j, x)$ jedynie dla skończenie wielu j. Piszemy wówczas, że

$$x_j \xrightarrow{j \to \infty} x$$

Sekcję tę zakończymy serią lematów i twierdzeniem łączącym kompleks kostkowy z przestrzenią euklidesową.

Lemat 1.3.1. Niech $\{x_j\}_{j=1}^{\infty} \subset X, x \in \overline{x} \text{ oraz niech } x_j \to x \text{ przy } j \to \infty$. Hiperplaszczyzna H oddziela y od x wtedy i tylko wtedy, gdy oddziela y od prawie wszystkich² x_j . Inaczej:

$$\mathfrak{H}(y,x) = \bigcup_{k=1}^{\infty} \bigcap_{j=k}^{\infty} \mathfrak{H}(y,x_j)$$

²wszystkich, oprócz skończenie wielu

Dowód. Wystarczy wspomnieć definicję: H oddziela y od x wtedy i tylko wtedy, gdy $H_y \neq H_z$, a więc wtedy i tylko wtedy, gdy $H_y \neq H_{x_j}$ dla prawie wszystkich $j \in \mathbb{N}$.

Lemat 1.3.2. Niech $\{x_j\}_{j=1}^{\infty} \subset X, x \in \overline{X}$ oraz niech $x_j \to x$ przy $j \to \infty$. Ponadto niech $y, z \in X$. Wówczas jeden i tylko jeden z poniższych warunków jest prawdziwy.

- $y \in [z, x_j]$ dla prawie wszystkich $j \in \mathbb{N}$ (wtedy $y \in [z, x]$).
- $y \notin [z, x_j]$ dla prawie wszystkich $j \in \mathbb{N}$ (wtedy $y \notin [z, x]$).

Dowód. Negacją warunku pierwszego jest warunek: $y \notin [z, x_j]$ dla nieskończenie wielu $j \in \mathbb{N}$. Wynika on łatwo z drugiego warunku. Pokażemy, że warunek drugi jest mu równoważny.

Jeśl $y \notin [z, x_j]$, to istnieje $H \in \mathfrak{H}(y, z)$ taka, że $H_z = H_{x_j}$. Jeśli jest tak dla nieskończenie wielu j, to ze skończoności zbioru $\mathfrak{H}(y, z)$ wynika, że istnieje hiperpłaszczyzna $H \in \mathfrak{H}(y, z)$ taka, że $H_z = H_{x_j}$ dla nieskończenie wielu $j \in \mathbb{N}$. Zatem $H_z = H_x = H_{x_j}$ dla prawie wszystkich $j \in \mathbb{N}$. W szczególności $y \notin [z, x_j]$ dla niemal wszystkich j, a więc $y \notin [z, x_j]$.

Pozostaje wykazać, że pierwszy warunek pociąga za sobą, że $y \in [z,x]$. Załóżmy że $y \notin [z,x]$. Istnieje więc hiperpłaszczyzna $H \in \mathfrak{H}(y,z)$ taka, że $H_x = H_z$, a więc $H_{x_j} = H_z$ dla niemal wszystkich $j \in \mathbb{N}$. A więc $y \notin [z,x_j]$ dla prawie wszystkich $j \in \mathbb{N}$ i otrzymujemy sprzeczność.

Lemat 1.3.3. Niech $x, y \in X$ oraz $z \in \overline{X}$. Wówczas przecięcie odcinków [x, y], [x, z], [y, z] składa się z pojedynczego wierzchołka z X.

Dowód. Najpierw wykażemy, że przecięcie to jest niepuste, następnie - że ma tylko jeden element.

Niech $\{z_j\}_{j=1}^{\infty} \subset X$ będzie ciągiem wierzchołków zbieżnym do z. Odcinek [x,y] jest skończony i zawiera mediany $m_j = m(x,y,z_j)$. Istnieje więc $m \in [x,y]$ taki, że $m = m_j \in [x,z_j]$ dla nieskończenie wielu $j \in \mathbb{N}$. Z poprzedniego lematu wynika więc, że $m \in [x,z_j]$ dla niemal wszystkich $j \in \mathbb{N}$ oraz $m \in [x,z]$. Podobnie $m \in [y,z]$.

Załóżmy teraz, że $m \neq m'$ należą do $[x,y] \cap [x,z] \cap [y,z]$ i niech $H \in \mathfrak{H}(m,m')$. Któreś dwie z półprzestrzenie H_x, H_y, H_z są sobie równe; dla ustalenia uwagi niech $H_x = H_y$. Skoro $H_m \neq H_{m'}$, tylko jedno z nich może być równe H_x , zatem znowu dla ustalenia uwagi niech $H_m \neq H_x$. Wtedy $m \notin [x,z]$, co daje sprzeczność.

Uwaga 1.3.4. W powyższym dowodzie skorzystaliśmy z faktu, że mamy ciąg $X \ni z_j \to z \in \overline{X}$. Istnienie takiego ciągu nie jest zupełnie oczywiste - aby je uzasadnić, należy rozważyć zbiór wszystkich hiperpłaszczyzn H_1, H_2, \ldots (jest on przeliczalny) oraz dla każdego $j \in \mathbb{N}$ wybrać z_j należące do zbioru

$$\bigcap_{i=1}^{j} (H_i)_z$$

Aby uzasadnić, że powyższy zbiór jest niepusty, wystarczy skorzystać z twierdzenia Helly'ego mówiącego o przecięciach zbiorów wypukłych.

Dla $x \in X, z \in \overline{X}$ przez $\mathfrak{R}_z(x)$ oznaczymy podzbiór $\mathfrak{H}(x,z)$ złożony z tych hiperpłaszczyzn, które oddzielają x od z oraz pewnego sąsiada x.

Lemat 1.3.4. Niech X będzie kompleksem kostkowym CAT(0) oraz $\dim X < \infty$. Ponadto niech $x \in X, z \in \overline{X}$. Wówczas $\#\mathfrak{R}_z(x) \leq \dim X$

Dowód. Dowód można znaleźć w (BCGNW) lemat 1.13

W następnym twierdzeniu uzasadnimy, że odcinki łączące wierzchołki (być może w nieskończoności) zanurzają się w odpowiednio dużą przestrzeń euklidesową. W oczywisty sposób \mathbb{R}^d możemy postrzegać jako kompleks kostkowy (patrz przykład 1.3.1). Zbiorem wierzchołków jest krata \mathbb{Z}^d . Odcinkami są prostopadłościany - dokładniej, jeśli $\overline{x}=(x_1,\ldots,x_d), \overline{y}=(y_1,\ldots,y_d)\in\mathbb{Z}^d$, to odcinkiem $[\overline{x},\overline{y}]$ jest powłoka wypukła podzbioru \mathbb{Z}^d złożonego z tych liczb, których i-ta współrzędna jest z przedziału $[x_i,y_i]$ lub $[y_i,x_i]$. Żeby włączyć do naszych rozważań wierzchołki w nieskończoności, dopuszczamy możliwość, że x_i lub $y_i=\pm\infty$ dla pewnego $i=1\ldots d$.

Twierdzenie 1.3.1. Niech X będzie skończenie wymiarowym kompleksem kostkowym CAT(0), dim X = d oraz niech $x, y \in \overline{X}$. Wówczas odcinek [x, y] zanurza się izometrycznie w kompleksie kostkowym \mathbb{R}^d .

Wprowadźmy na zbiorze $\mathfrak{H}(x,y)$ częściowy porządek w następujący sposób:

$$H \leq K \iff H_x \subset K_x$$

Lemat 1.3.5. Dwie płaszczyzny $H, K \in \mathfrak{H}(x,y)$ nie są porównywalne w tym porządku wtedy i tylko wtedy, gdy się przecinają.

Dowód. Oczywiste jest, że $H_x \cap K_x \neq \emptyset \neq H_y \cap K_y$. Dalej, $H_x \cap K_y = \emptyset \iff H_x \subset K_x \wedge H_y \cap K_x = \emptyset \iff K_x \subset H_x$. H oraz K są więc nieporównywalne przez \leq wtedy i tylko wtedy, gdy $K_x \not\subset H_x$ oraz $H_x \not\subset K_x$, a więc wtedy, gdy wszystkie cztery przecięcia są niepuste.

Lemat 1.3.6 (Dilworth). Niech (S, \preceq) będzie zbiorem częściowo uporządkowanym. Łańcuchem nazwiemy podzbiór S, którego elementy są parami porównywalne, antyłańcuchem - podzbiór S nieposiadający dwóch różnych elementów porównywalnych. Jeśli zbiór S nie zawiera antyłańcucha o mocy m+1, to S jest sumą rozłączną m łańcuchów.

Dowód. Można znaleźć w (Dilworth, a decomposition theorem for partially ordered sets). \square

Wniosek 1.3.1. Zbiór częściowo uporządkowany $(\mathfrak{H}(x,y),\preceq)$ jest sumą rozłączną d łańcuchów.

Dowód. Wystarczy skorzystać z twierdzenia Helly'ego, lematu Dilwortha oraz lematu 1.3.5

Dowód twierdzenia 1.3.1. Dowód tego twierdzenia przeprowadzimy tylko dla przypadku, gdy x jest wierzchołkiem X. Weźmy rozkład zbioru $\mathfrak{H}(x,y)$ na łańcuchy, którego istnienia dostarcza poprzedni lemat

$$\mathfrak{H}(x,y) = \bigsqcup_{i=1}^{d} \mathfrak{B}_i$$

Niech teraz

$$X \supset [x,y] \ni z \to \overline{z} = (\overline{z_1}, \dots, \overline{z_d}) \in \mathbb{Z}^d, \ \overline{z_i} = \#\{H \in \mathfrak{B}_i: \ z \in H_y\}$$

Wówczas $\overline{x}=0$, zaś $\overline{y}=(\overline{y_1},\ldots,\overline{y_d})$, gdzie $\overline{y_i}=\#\mathfrak{B}_i, i=1\ldots d$. Dla każdego $z\in[x,y]$ współrzędne \overline{z} są skończone oraz $\overline{z}\in[\overline{x},\overline{y}]$.

Funkcja $z \to \overline{z}$ zanurzeniem izometrycznym. Żeby to sprawdzić, wystarczy obliczyć:

$$d(\overline{v}, \overline{w}) = \sum_{i=1}^{d} \#\{H \in \mathfrak{B}_i: H \in \mathfrak{H}(v, w)\} = \#\mathfrak{H}(v, w) = d(v, w)$$

1.4. Kombinacje

Funkcje, spełniające warunki Stwierdzenia 1.1.1. będziemy konstruować przy użyciu dwumianu Newtona, a więc funkcji $\binom{n}{k}$. Kombinatorycznie funkcja ta oznacza liczbę k-podzbiorów n-zbioru, w szczególności jej definicja jest poprawna dla całkowitych $n \ge k \ge 0$. Przy użyciu łatwej interpretacji kombinatorycznej można udowodnić relację rekurencyjną:

- $\binom{n}{0} = \binom{n}{n} = 1$ dla $n \ge 0$.
- $\bullet \ \binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$

Można łatwo uogólnić tę funkcję dla wszystkich $n,k\in\mathbb{Z}$ poprzez relację:

- $\binom{n}{0} = 1$ dla $n \ge 0$ oraz $\binom{n}{n} = 1$ dla $n \in \mathbb{Z}$
- $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$ dla wszystkich $n, k \in \mathbb{Z}$

Z powyższej definicji łatwo udowodnić kilka własności:

- $\binom{n}{k} = 0$ dla $k < 0 \le n$
- $\bullet \ \binom{n}{k} = (-1)^{n+k} \binom{-1-r}{-1-n}$

Szczególnie przydatna okaże się druga własność, dla k=-1. Przyjmuje wtedy ona formę

$$\binom{n}{-1} = (-1)^{n-1} \binom{0}{-1-n}$$

Rozdział 2

Kompleksy kostkowe CAT(0) a własność A

W tym rozdziale skupimy się na dowodzie twierdzenia łączącego kompleksy kostkowe CAT(0) z własnością A. Zaczniemy od przykładu motywującego dowód głównego twierdzenia. O funkcjach $f_{n,x}$ wymienionych w Stwierdzeniu 1.1.1. będziemy mówić jako o $funkcjach \ wagowych$. Również z warunków podanych w tym stwierdzeniu korzystać będziemy zamiast definicji własności A.

Ustalmy również pewien wymiar $\mathbb{N}\ni N\geqslant d$. Niektóre lematy prawdziwe będą również dla przypadku N=d-1 - zostanie to odpowiednio podkreślone.

2.1. Własność A dla przestrzeni euklidesowych

Przykład 2.1.1. Niech T będzie \mathbb{R} -drzewem, a więc spójnym grafem niezawierającym cykli. Aby pokazać, że T ma własność A, ustalmy korzeń K. Dla każdego wierzchołka $x \in X$ oraz $n \in \mathbb{N}$ definiujemy funkcję wagową

$$\tilde{f}_{n,x}(y) = \begin{cases} 1 & \text{jeśli } y \neq K \\ n - d(x,y) & \text{jeśli } y = K \end{cases}$$

Wówczas ciąg rodzin funkcji $f_{n,x}(y) = \tilde{f}_{n,x}(y) \cdot \mathbb{1}_{B(x,n)}(y)$ spełnia warunki Stwierdzenia 1.1.1

Pewna intuicja stojąca za tym przykładem jest następująca: przy n dążącym do nieskończoności rozkładamy wagę równomiernie na kuli B(x,n), nadmiar zrzucając na ustalony korzeń. W pewien sposób intuicja ta okaże się użyteczna w przypadku wielowymiarowym, być może przy więcej niż jednym punkcie rozkładu nadmiaru.

Będziemy dalej oznaczać $\mathbf{0} = (0, \dots, 0) \in \mathbb{R}^d$.

Definicja 2.1.1. Niedostatkiem punktu kratowego $(y_1, \ldots, y_d) = y \in \mathbb{Z}^d$ nazwiemy liczbę

$$\delta(y) = N - \#\{1 \le j \le d : y_i \ne 0\}$$

Definicja 2.1.2. Dla wierzchołka $x \in \mathbb{Z}^d$ możemy zdefiniować ciąg rodzin funkcji wagowych następująco:

$$f_{n,x}(y) = \begin{pmatrix} n - d(x,y) + \delta(y) \\ \delta(y) \end{pmatrix} \cdot \mathbb{1}_{[\mathbf{0},x]}(y)$$

Nietrudno zauważyć kilka własności tego ciągu. Przy założeniu, iż $N \ge d-1$ mamy $\delta(y) \ge (-1)$, a więc funkcja $f_{n,x}$ przyjmuje nieujemne wartości całkowite dla każdego $x \in \mathbb{Z}^d$ oraz $n \in \mathbb{N}$. Funkcje te zależą również od niewymienionego explicite we wzorze N. Ponadto

$$\# \operatorname{supp} f_{x,n} = \#[\mathbf{0}, x] < \infty$$

Przy tak zdefiniowanych wagach można pokazać, iż przestrzeń \mathbb{Z}^d ma własność A. Przez normę ||f(y)|| na przestrzeni funkcji o skończonym nośniku będziemy rozumieć

$$||f|| = ||f||_{\ell_1} = \sum_{x \in \text{dom}(f)} |f(x)|$$

Lemat 2.1.1. Niech $N \ge d-1$ oraz $x \in \mathbb{Z}^d$. Wówczas dla tak zdefiniowanych funkcji mamy

$$||f_{n,x}|| = \binom{n+N}{N}$$

Dowód. Dowód przeprowadzimy przez indukcję ze względu na d, dla wygody oznaczeń napiszemy więc $f_{n,x} \equiv f_{n,x}^d$. Przypadek d=0 jest trywialny, gdyż $\delta(y)=N$. Załóżmy więc, że d>0. Skorzystamy z rzutowania $\mathbb{Z}^d\ni (z_1,\ldots,z_d)=z\to \hat{z}=(z_2,\ldots,z_d)\in \mathbb{Z}^{d-1}$. Niech $x=(x_1,\ldots,x_d)\in \mathbb{Z}^d$. Wówczas odcinek $[\mathbf{0},x]$ można utożsamić z $[0,x_1]\times [\mathbf{0},\hat{x}]$, tym samym otrzymując dla każdego $\hat{y}\in [\mathbf{0},\hat{x}]$ ciąg $y^0,y^1,\ldots,y^{|x_1|}$ (w wypadku, gdyby $x_1<0$, rozważamy na odcinku $[0,x_1]$ porządek $0<1<2\cdots< x_1$

Pokażemy, że dla każdego $\hat{y} \in [\mathbf{0}, \hat{x}]$ zachodzi

$$\sum_{j=0}^{|x_1|} f_{n,x}^d(y^j) = f_{n,\hat{x}}^{d-1}(\hat{y})$$
(2.1)

Zalóżmy jednak na moment, że to prawda. Możemy wtedy obliczyć normę $f_{n,x}^d$:

$$\begin{split} \|f_{n,x}^d\| &= \sum_{z \in \mathbb{Z}^d} f_{n,x}^d(z) = \sum_{z \in [\mathbf{0},x]} f_{n,x}^d(z) \\ &= \sum_{\hat{y} \in [\mathbf{0},\hat{x}]} \sum_{j=0}^{|x_1|} f_{n,x}^d(z) (y^j) \stackrel{2.1}{=} \sum_{\hat{y} \in [\mathbf{0},\hat{x}]} f_{x,n}^{d-1}(\hat{y}) \\ &= \sum_{\hat{y} \in \mathbb{Z}^{d-1}} f_{n,x}^{d-1}(\hat{y}) = \binom{n+N}{n} \end{split}$$

Aby udowodnić 2.1, należy zauważyć, iż $\delta(y^{i+1}) = \delta(\hat{y}) - 1$ dla $i \ge 0$ oraz iż $d(x, y^i) = d(x, y^{i+1}) + 1$, a następnie skorzystać z indukcji względem $i = |x_1|$. Dokładnie obliczenia zostawiam czytelnikowi.

Uwaga 2.1.1. Z powyższego lematu wynika dość zaskakujący, ale przydatny fakt - norma $f_{n,x}$ nie zależy od wyboru d ani x, jedynie n oraz N.

W celu udowodnienia własności A dla przestrzeni Euklidesowych \mathbb{R}^n należy znaleźć pewne oszacowanie normy $f_{n,x} - f_{n,x'}$ dla $x, x' \in \mathbb{Z}^n$ w rozsądnej odległości od siebie. Odpowiada za to poniższy lemat:

Lemat 2.1.2. Dla każdego $N \geqslant d$ i <u>sąsiednich</u> wierzchołków $x, x' \in \mathbb{Z}^d$ mamy

$$||f_{n,x} - f_{n,x'}|| = 2 \binom{n+N-1}{N-1}$$

Dowód. Będziemy rozróżniać funkcje wagowe dla różnych N, na potrzeby dowodu wprowadzimy więc oznaczenie $f_{n,x} \equiv f_{n,x}^N$. Mamy dla $n,k \in \mathbb{Z}$ tożsamość $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$, a więc

$$\binom{n}{k} - \binom{n-1}{k} = \binom{n-1}{k-1} \tag{2.2}$$

Niech x, x' będą sąsiednimi krawędziami i bez utraty ogólności możemy założyć, że x' jest bliżej $\mathbf{0}$ niż x. Wówczas $[\mathbf{0}, x'] \subset [\mathbf{0}, x]$ i dla każdego $y \in [\mathbf{0}, x']$ mamy $x' \in [y, x]$. Wówczas również d(x, y) = d(x', y) + 1. Wybierając takie y, możemy napisać:

$$\begin{split} f^N_{n,x'} - f^N_{n,x} &= \binom{n - d(x',y) + \delta(y)}{\delta(y)} - \binom{n - d(x,y) + \delta(y)}{\delta(y)} \\ &= \binom{n - d(x',y) + \delta(y)}{\delta(y)} - \binom{n - d(x',y) + \delta(y) - 1}{\delta(y)} \\ &\stackrel{2.2}{=} \binom{n - d(x',y) + \delta(y) - 1}{\delta(y) - 1} \\ &= f^{N-1}_{n,x'}(y) \end{split}$$

Z poprzedniego lematu wynika zatem, że $\sum_{y\in[\mathbf{0},x']}\left|f_{n,x'}^N-f_{n,x}^N\right|=\|f_{n,x'}^{N-1}\|=\binom{n+N-1}{N-1}$. Do obliczenia normy $f_{n,x'}^N-f_{n,x}^N$ brakuje więc tylko ogona $\sum_{y\in[\mathbf{0},x]\setminus[\mathbf{0},x']}f_{n,x'}^N(y)-f_{n,x}^N(y)$. Łatwo go obliczyć, zauważywszy, że z lematu 2.1.1. wynika, iż

$$\sum_{y \in [\mathbf{0}, x]} f_{n, x'}^{N} = \sum_{y \in [\mathbf{0}, x]} f_{n, x}^{N}$$

Jest tak, gdyż obie strony są równe normie, która przecież jest niezależna od x.

Lewą stronę można rozpisać jako $\sum_{y \in [\mathbf{0},x']} f_{n,x'}^N + \sum_{y \in [\mathbf{0},x] \setminus [\mathbf{0},x']} f_{n,x'}^N$, podobnie prawą. Otrzymujemy wtedy:

$$\sum_{y \in [\mathbf{0}, x']} f_{n, x'}^N - f_{n, x}^N = \sum_{y \in [\mathbf{0}, x] \setminus [\mathbf{0}, x']} f_{n, x'}^N - f_{n, x}^N$$

Teza lematu jest już jasna:

$$||f_{n,x'} - f_{n,x}|| = \sum_{y \in [\mathbf{0},x]} f_{n,x'}(y) - f_{n,x}(y)$$

$$= \sum_{y \in [\mathbf{0},x']} f_{n,x'}(y) - f_{n,x}(y) + \sum_{y \in [\mathbf{0},x] \setminus [\mathbf{0},x']} f_{n,x'}(y) - f_{n,x}(y)$$

$$= 2 \sum_{y \in [\mathbf{0},x']} f_{n,x'}(y) - f_{n,x}(y) = 2 \binom{n+N-1}{N-1}$$

Powyższe wyniki prowadza już do następującego twierdzenia:

Twierdzenie 2.1.1. Przestrzeń euklidesowa \mathbb{R}^d ma własność A.

Dowód. Korzystamy ze stwierdzenia 1.1.1. Odpowiedni ciąg stałych to $S_n = n$. Fakt, że nośnikiem kolejnych funkcji $f_{n,x}$ jest B(x,n), wynika stąd, że wyrażenie $\binom{n-d(x,y)+\delta(y)}{\delta(y)}$ znika dla $n-d(x,y)+\delta(y)<\delta(y)$. Zbieżność wynika z ostatnich dwóch lematów, a dokładniej:

$$\frac{\|f_{n,x'} - f_{n,x}\|}{\|f_{n,x}\|} = 2 \frac{\binom{n+N-1}{N-1}}{\binom{n+N}{N}} = 2 \frac{N}{n+N} \xrightarrow{n \to \infty} 0$$

przy czym zbieżność jest jednostajna na zbiorze $\{(x,x'):\ d(x,x')\leqslant 1\}$

Przedstawiony właśnie dowód własności A dla przestrzeni \mathbb{R}^d będzie motywacją. Dokładniej, wprowadzimy funkcje wagowe o dokładnie tych samych własnościach dotyczących normy. Do tego potrzebne będą nam odpowiednie włókna przy rzutowaniu, a także zmodyfikowana definicja niedostatku.

2.2. Własność A dla skończenie wymiarowych kompleksów kostkowych CAT(0)

Niech X będzie kompleksem kostkowym CAT(0) oraz $d = \dim X < \infty$. Tak jak w poprzednim przypadku punktem bazowym (korzeniem) było $\mathbf{0} = (0, \dots, 0) \in \mathbb{Z}^d$, tak teraz ustalmy dowolny korzeń $O \in X$. Ustalmy ponadto pewien wymiar otoczki $N \ge d - 1$. Wtedy:

Definicja 2.2.1. Niedostatkiem wierzchołka $y \in X$ nazwiemy liczbę

$$\delta(y) = N - \#\Re_O(y)$$

Tu $\mathfrak{R}_O(y)$, tak jak w poprzednim rozdziale, oznacza liczbę hiperpłaszczyzn sąsiadujących z y oraz oddzielających ten wierzchołek od korzenia.

Powyższa definicja pokrywa się z definicją niedostatku w przypadku, gdy $X = \mathbb{R}^d$, ponieważ wówczas liczba $\#\mathfrak{R}_0(y)$ równa się liczbie niezerowych współrzędnych y.

Naśladując poprzedni rozmiar definiujemy wiec funkcje wagowe

Definicja 2.2.2. Niech $x \in X$ będzie krawędzią. Możemy wówczas ciąg rodzin funkcji wagowych zdefiniować następująco:

$$f_{n,x}(y) = \binom{n - d(x,y) + \delta(y)}{\delta(y)} \cdot \mathbb{1}_{[O,x]}(y)$$

Wykorzystamy teraz twierdzenie 1.3.1., mówiące, iż każdy odcinek [0,x] zanurza się izometrycznie w przestrzeń Euklidesową \mathbb{R}^d . Nazwijmy to zanurzenie σ , dla uproszczenia notacji będziemy jednak pisać $\sigma(y) = \hat{y} \in \mathbb{Z}^d$ Nie tracąc na ogólności, możemy założyć, że obraz O przy tym zanurzeniu to $\mathbf{0} \in \mathbb{R}^d$.

Definicja 2.2.3. Niech $y \in [O, x]$, przy czym $\sigma(y) = \hat{y} = (\hat{y}_1, \dots, \hat{y}_d) \in \mathbb{Z}^d$. Wówczas i (lub i-ta współrzędna) jest y-związane, jeśli wierzchołek $(\hat{y}_1, \dots, \hat{y}_i - 1, \dots, \hat{y}_d) \in \mathbb{Z}^d$ jest w obrazie $\sigma(X)$. W przeciwnym przypadku i jest y-wolne.

Definicja 2.2.4. Niech $y \in [0, x]$. **Włóknem** odcinka $I = [\hat{O}, \hat{x}]$ nad \hat{y} nazwiemy zbiór krawędzi $\mathfrak{F}_y \subset \mathbb{Z}^d$, taki, że dla każdego $a \in \mathfrak{F}_y$ spełnione są następujące warunki:

- jeśli *i* jest *y*-związany, to $a_i = \hat{y}_i$
- jeśli *i* jest *y*-wolny, to $0 \le a_i \le \hat{y}_i$

Należy zwrócić uwagę, że włókno \mathfrak{F}_y jest odcinkiem łączącym punkt $O_y = (O_{y,1}, \ldots, O_{y,d}), \ O_{y,i} = \hat{y}_i[i \text{ jest } y\text{-związany}])$ z punktem \hat{y} . W szczególności dla każdego $y \in [O, x]$ zachodzi $\hat{y} \in \mathfrak{F}_y$

Stwierdzenie 2.2.1. Odcinek $I = [\hat{O}, \hat{x}]$ jest sumą rozłączną włókien wierzchołków odcinka [O, x], dokładniej:

$$I = \bigsqcup_{y \in [O,x]} \mathfrak{F}_y$$

Dodatkowo każde włókno przecina się z odcinkiem $J = \sigma([O, x])$ w dokładnie jednym punkcie.

Jest to konsekwencja poniższych dwóch lematów:

Lemat 2.2.1. Dla każdego $y \neq z, y, z \in [O, x]$ przecięcie włókien $\mathfrak{F}_y, \mathfrak{F}_z$ jest puste.

$$Dow \acute{o}d.$$

Lemat 2.2.2. Dla każdego $a \in I = [\hat{O}, \hat{x}]$ istnieje $y \in [O, x]$ taki, że $a \in \mathfrak{F}_y$

Dowód. Niech $\hat{y} \in [a, \hat{x}]$, przy czym wybierzmy \hat{y} tak, aby odległość a od $[a, \hat{x}] \cap J$ była najmniejsza. Oczywiście $\hat{y}_i \geqslant a_i$ dla wszystkich $i = 1, \ldots, d$. Ale każda y-związana współrzędna i mamy $\hat{y}_i \leqslant a_i$, bo gdyby było inaczej, to $(\hat{y}_1, \ldots, \hat{y}_i - 1, \hat{y}_d) \in [a, \hat{x}] \cap J$, co przeczy doborowi \hat{y} . Zatem $a \in \mathfrak{F}_y$.

W dalszej części rozważań przyjmiemy konwencję notacyjną, dla $x \in [z,y]$ pisząc

$$n_z(x) \stackrel{\text{def}}{=} \# \mathfrak{R}_z(x)$$

Zwróćmy uwagę, że dla $a \in \mathbb{Z}^d$ liczba $n_{\mathbf{0}}(a)$ równa jest liczbie niezerowych współrzędnych a, zaś gdy $y \in [O, x]$ jest jedynym takim wierzchołkiem, iż $a \in \mathfrak{F}_y = [O_y, \hat{x}]$, to $n_{O_y}(a)$ równa się liczbie niezerowych, y-wolnych współrzędnych a.

Lemat 2.2.3. Dla każdego wierzchołka $y \in [O, x]$ liczba y-związanych współrzędnych wynosi $n_O(y)$. Ponadto dla $a \in \mathfrak{F}_y$ zachodzi relacja:

$$n_{\mathbf{0}}(a) = n_{O_{y}}(a) + n_{O}(y)$$

Dowód. Jeśli i-ta współrzędna jest y-związana, wybierzmy $z \in [O,x]$ tak, aby obrazy \hat{y} oraz \hat{z} różniły się tylko na i-tej współrzędnej, dla której $\hat{z}_i = \hat{y}_i - 1$. Wówczas oczywiście $d(y,z) = d(\hat{y},\hat{z}) = 1$, a także d(O,y) = d(O,z) + 1. Zatem jedyna $H \in \mathfrak{H}(y,z)$ należy również do $\mathfrak{H}(O,y)$. Pokażemy, że przyporządkowanie $i \to H$ jest bijekcją. Różnowartościowość wynika z Wniosku 1.3.1., gdyż hiperpłaszczyzna H należy do i-tego łańcucha. Aby wykazać surjektywność, należy zauważyć, iż jeśli $H \in \mathfrak{R}_O(y)$, to $H \in \mathfrak{H}(O,x)$, a więc H jest obrazem i takiego, że $H \in \mathfrak{B}_i$. To dowodzi pierwszej części.

Aby uzyskać drugą część, wystarczy skorzystać z tego, że każda niezerowa współrzędna a jest albo y-związana, albo y-wolna, nigdy jednocześnie. Pierwszy składnik odpowiada za to drugie, zaś drugi - za to pierwsze.

W końcu możemy przejść do dowodu twierdzenia zamykającego tę pracę:

Twierdzenie 2.2.1. Niech X będzie kompleksem kostkowym CAT(0) oraz $d = \dim X < \infty$. Wówczas X ma własność A.

Dowód przebiega bez zmian względem dowodu własności A dla przestrzeni euklidesowych, wykorzystując przy okazji następujące lematy:

Lemat 2.2.4. Niech X będzie kompleksem kostkowym o wymiarze nie większym niż $d < \infty$. Przyjmijmy pewien wymiar otoczki $N \geqslant d-1$. Niech wreszcie $x \in X$ będzie wierzchołkiem Wówczas

$$||f_{n,x}|| = \binom{n+N}{n}$$

Dowód. Przyjmijmy, że $\sigma([O, x]) = J \subset I = [\mathbf{0}, \hat{x}]$ dla ustalonego $x \in X$.

Funkcje wagowe zależą od n, x, ale także od wymiaru otoczki N, a także kompleksu, na którym je rozpatrujemy, X. Zależność tę będziemy wykorzystywać w dowodzie, zatem przyjmiemy notację

$$f_{n,x} \equiv f_{n,x}^{N,X}$$

Podobnie będziemy oznaczać niedostatek: $\delta(y) \equiv \delta(y)^{N,X}(y)$. Elementy włókna mają dwa niedostatki, jeden względem $\hat{O} \in I$, drugi zaś względem punktu bazowego O_y takiego, że $\mathfrak{F}_y = [O_y, \hat{x}]$. Będziemy oznaczać je odpowiednio $\delta^{N,I}(a)$ oraz $\delta^{N,\mathfrak{F}_y}(a)$. Zachodzi wówczas wzór

$$\delta^{N,I}(a) = \delta^{N_y,\mathfrak{F}_{\eta}}(a), \quad N_y = N - n_O(y) \tag{2.3}$$

Dowód tej tożsamości jest dość prosty. Zgodnie z definicją mamy:

$$\delta^{N,I}(a) = N - n_{\hat{O}}(a), \quad \delta^{N,\mathfrak{F}_y}(a) = \left(N - n_{O_y}(a), \quad \delta^{N,X} = N - n_{O}(y)\right),$$

co razem z Lematem 2.2.3. daje 2.3

Nasz lemat jest łatwym zastosowaniem następującej równości:

$$f_{n,x}^{N,X}(y) = \sum_{a \in \mathfrak{F}_{x}} f_{n,\hat{x}}^{N,\mathbb{R}^d}$$

$$\tag{2.4}$$

Rzeczywiście, załóżmy na moment, że to prawda. Wówczas, korzystając ze Stwierdzenia 2.2.1., mówiącego, iż odcinek I jest rozłączną sumą włókien, otrzymamy ciąg równości:

$$\begin{aligned} \|f_{n,x}^{N,X}\| &= \sum_{y \in [O,x]} f_{n,x}^{N,X}(y) \\ &= \sum_{y \in [0,x]} \sum_{a \in \mathfrak{F}_y} f_{n,\hat{x}}^{N,\mathbb{R}^d}(a) = \sum_{a \in I} f_{n,\hat{x}}^{N,\mathbb{R}^d}(a) \\ &= \|f_{n,\hat{x}}^{N,\mathbb{R}^d}(a)\| \stackrel{\text{lemat 2.1.1.}}{=} \binom{n+N}{n} \end{aligned}$$

Pozostaje udowodnić 2.4. W tym celu ustalmy $y \in [O, x]$. Możemy założyć $d(x, y) \leq n$, gdyż w przeciwnym wypadku obie strony znikają.

Wykorzystując więc 2.3, możemy otrzymać 2.4:

$$\begin{split} f_{n,\hat{x}}^{N,\mathbb{R}^d}(a) &= \binom{n - d(\hat{x}, a) + \delta^{N,I}}{\delta^{N,I}(a)} \\ &= \binom{(n - d(\hat{x}, \hat{y})) - d(\hat{y}, a) + \delta^{N_y,\mathfrak{F}_y}(a)}{\delta^{N_y,\mathfrak{F}_y}(a)} \\ &= f_{n - d(\hat{x}, \hat{y}), \hat{y}}^{N,\mathfrak{F}_y}(a) \end{split}$$

Pamiętając, że $x \to \hat{x}$ jest izometrią, oraz sumując po $a \in \mathfrak{F}_y$, otrzymujemy:

$$\sum_{a \in \mathfrak{F}_y} f_{n,\hat{x}}^{N,\mathbb{R}^d}(a) = \|f_{n-d(x,y),\hat{y}}^{N_y,\mathfrak{F}_y}\|$$

$$= \binom{n - d(x,y) + N_y}{N_y} = \binom{n - d(x,y) + \delta^{N,X}(y)}{\delta^{N,X}(y)},$$

przy czym ostatnia równość wynika z 2.3. Wobec tego 2.4 zostało udowodnione, a więc i cały lemat. $\hfill\Box$

Lemat 2.2.5. Niech X będzie kompleksem kostkowym CAT(0) o wymiarze $d = \dim X < \infty$. Dla każdej pary sąsiednich wierzchołków x, x' zachodzi:

$$||f_{n,x'} - f_{n,x}|| = 2 \binom{n+N-1}{N-1}$$

Dowód, zarówno tego lematu, jak i całego twierdzenia, jest identyczny jak w przypadku euklidesowym.

Bibliografia

- [1] Pierre Emmanuel Caprace. Lectures on proper cat(0) spaces and their isometry groups. 2012.
- [2] Piotr Nowak oraz Guoliang Yu. What is... properly a? Notices of the American Mathematical Society 55 (2008), no. 4, 474–475., 2008.
- [3] J. Brodzki S. J. Campbell E. Guentner G. A. Niblo oraz N. J. Wright. Property a and cat(0) cube complexes. *Journal of Functional Analysis*.
- [4] John Roe. Lectures on coarse geometry, volume 31 of University Lecture Series. American Mathematical Society, Providence, Rhode Island, 2003.
- [5] Michah Sageev. Cat(0) cube complexes and groups. AS/Park City Mathematics Series.
- [6] Petra Schwer. Lecture notes on cat(0) cubical complexes). 2013.
- [7] Rufus Willett. Some notes on property a. arXiv:math/0612492v2, 2006.