Ejemplos de funciones exponenciales
$$2^{x}$$
, 4^{x} , 10^{x} , $\left(\frac{1}{2}\right)^{x}$ y $\left(\frac{1}{8}\right)^{x}$

Si la base es mayor que 1, 671, la función asciente de izquierda a derecha.

Algunos de los valores de fcx)=2 x son:

X -00 -10 -5	$\frac{3cx}{2^{-0}} = \frac{1}{1024} \approx 0.001$ $\frac{1}{2^{10}} = \frac{1}{1024} \approx 0.001$ $\frac{1}{2^{5}} = \frac{1}{32}$ $\frac{1}{2} = 0.5$	(0,1)	1D !R R (0,00)
0 1 5 2 ⁽⁰	$2^{0} = 1$ $2^{1} = 2$ $2^{5} = 37$ $2^{10} = 1029$ $2^{\infty} \rightarrow + \infty$	Caso b>1 Si b>1 Observe que lim $b^{x} = 0$ y $x^{4-\infty}$ $b^{-\infty} \to 0$	lim bx = 00 x + 00 b > 0

1, 0 < b < 1, la función desciende de izquierda a derecha Si la base es menor que

Por ejemplo, en la fonción $g(x) = \left(\frac{1}{2}\right)^x = 2^{-x}$ reescribula con exponente

Esta función es siempre positiva.

Al observar la gráfica de cada caso se encuentra que:

· Dominio IR Rango IR+

· Intercepto-y: (0,1) Intercepto-x: ninguno

· Son funciones una a uno.

. No sun ni pares ni impares.

. Timen una AH en y = 0 (pero sólo de on lado)

Reglas de los exponentes.

Suma de Exponentes: $b^{x}b^{y} = b^{x+y}$

Resta de Exponentes: $\frac{b^x}{b^y} = b^{x-y}$

(bx) = 6x4

 $\frac{\pi^7}{\pi^4} = \pi^3$

8385 = 88

 $(5^3)^{2/3} = 5^2$

 $(bc)^{x} = b^{x}c^{x}$ Distributivas:

 $\left(\frac{b}{c}\right)^{\chi} = \frac{b^{\chi}}{c^{\chi}}$

61=6

 $(3 \cdot X)^3 = 3^3 x^3 = 27 x^3$

 $\left(\frac{\sqrt{2}}{\sqrt{6}}\right)^2 = \frac{\left(\sqrt{2}\right)^2}{\left(\sqrt{6}\right)^2} = \frac{2}{6} = \frac{1}{3}$

Exponente 1:

Multiplicación :

10002 = 10,002

Exponente 0:

60 = 1

50 = 51 = 1

Expunertes Reciprocos:

 $b^{-x} = \frac{1}{b^{x}}$

10-8= 108

Ejercicio l' Grafique las siguientes funciones. Encuentre los interceptos

y las asintotas horizontales

4) f(x /= 4x - 4

Duminio : 12

Intercepto-y FCO)=1-4=-3, (0,-3)

Interceptorx $4x-4=0 \Rightarrow x=1, (1,0)$

4.45 lin yx-y=0-y=-4

young lin 4x-4=+0 y=+4

resplace 4x 4 uds. hacia abajo.

b. $g(x) = \left(\frac{1}{2}\right)^{\chi-2}$ La gráfica de $\left(\frac{1}{2}\right)^{\chi}$ se desplaza dos unidades

hacia la derecha

Dominio 12

Intercepto-y:
$$g(0) = \left(\frac{1}{2}\right)^{-2} = 2^2 = 4$$

el proto (0,4).

Intercento -
$$\times$$
 como $\left(\frac{1}{z}\right)^{\times -2} > 0$

No hay ringun intercepto.

AHS:
$$\lim_{\chi \to \infty} \left(\frac{1}{2}\right)^{\chi-2} = 0$$
 $2^{-0} \to 0$

No hay ringen intercepto.

AHS:
$$\lim_{\chi \to \infty} \left(\frac{1}{2}\right)^{\chi-2} = 0$$
 $2^{\infty} \to 0$
 $\chi \to \infty$
 $\chi \to \infty$

Derivadas de funciones Exponenciales.

La función expunencial más utilizada es la función exponencial natural.

Utilice la definición de la derivada para encontrar la derivada de y = e x

$$y'(x) = \lim_{h \to 0} \frac{y(x+h) - y(x)}{h} = \lim_{h \to 0} \frac{e^{x+h} - e^x}{h} = e^x \left(\lim_{h \to 0} \frac{e^{h-1}}{h} \right) = e^x$$

El límite anterior es igual a uno y es la definición del número en

Derivada de ex
$$\frac{\partial}{\partial x}(e^{x}) = e^{x}$$

Ejemplo: Calcule la primera, segunda y tercera derivada de h14/=4et-4t²
respecto at.

h1(t) = 4et-8t

h"(t) = 4et -8

h " (t) = 4et

Ejercicio 1: Encuentre la ecuación de la recta tangente a y=ex+9x+x2 en x=a

Decivada: y'(x)= ex +4 + 2x

Pendiente: y1(0)= 1+4+0=5

Coordenada-y: yco)= 1+0+0=1

Recta Tangente: y = y(0) + y'(0)(x-0) y = 1 + 5x

3.2 Regla del Producto

Encuentre la derivada de f(x) = (x4+x2)(2x5+5)

Por el nomento sólo se puede simplificar la expresión y después utilizar la regla de la potencia para cada término

$$F(x) = 2x^9 + 5x^4 + 2x^7 + 5x^2$$

 $F'(x) = 18x^8 + 20x^5 + 14x^6 + 10x$

En muchos problemas la multiplicación es extensa como en $(x^3+x^2+x)(x^4-x^2+8)$, i en $(x+1)^{10}(x-s)^q$ o no es posible simplificar la función como en x^2e^x , $x^3\ln x$, $\sqrt{x^7}\sin x$.

La regla del producto.

Sify g son dos funciones diferenciables, entunces el producto fg es diferenciable y (fg)' = f'g + fg'

Ejercicio 1: Derive las siguientes funciones.

Ejercicio 1: Derive las siguitados
$$F(x) = (4x^3 + 2x)(2x^5 + 5) + (x^4 + x^2) \frac{10x^4}{4}$$

a. $F(x) = (x^4 + x^2)(2x^5 + 5)$
 $F(x) = (4x^3 + 2x)(2x^5 + 5) + (x^4 + x^2) \frac{10x^4}{4}$
 $F(x) = (4x^3 + 2x)(2x^5 + 5) + (x^4 + x^2) \frac{10x^4}{4}$

 $F'(x) = 8x^8 + 20x^3 + 4x^6 + 10x + 10x^8 + 10x^6 = 18x^8 + 20x^3 + 14x^6 + 10x$

$$G'(x) = \left(\frac{1}{2}x^{-1/2}+1\right)(x^{1/2}-x)+(x^{1/2}+x-2)\left(\frac{1}{2}x^{-1/2}-1\right)$$

c.
$$H(x) = e^{x}(x^{5} + e^{x} + x^{3})$$

 $H'(x) = e^{x}(x^{5} + e^{x} + x^{3}) + e^{x}(5x^{4} + e^{x} + 3x^{2})$

6. En alguages problemas es preferible simplificar la expresión antes que derivar.

Si se utiliza la regla del producto de primero, la simplificación es más extensa

Simplifique: d'(x) = 1 + 4x1+1-4x1 = 2 misma respuesta

$$e(x) = x^{1008}$$
 $e'(x) = 1008 \times 1007$

$$f(x) = (x^{3/2} - 4)(x^{3/2} + 4)$$
 Diferencia de cuadradus.

$$f(x) = (x^3 - 16)$$

 $f(x) = x^3 - 16$

$$f(x) = \chi^{3} - 16.$$

$$g(x) = (\chi + Z)(\chi^{2} - 2\chi + 4)$$

$$g(x) = \chi^{3} + 8$$

$$\alpha(x) = x^3 + 8$$

Si no se simplifica g(x), la derivación y simplificación es más extensa.

Si no se simp

$$g(x) = \frac{1(x^2 - 2x + 4) + (x + 2)(2x - 2)}{1(x^2 - 2x + 4) + 2x^2 - 2x + 4x - 4} = 3x^2 - 4x + 4x = 3x^2$$

 $g(x) = x^2 - 2x + 4 + 2x^2 - 2x + 4x - 4 = 3x^2$