Index

Note: Page numbers followed by b indicate boxes, f indicate figures, and t indicate tables.

A	feeding behavior (see Blind cavefish)
Adaptive evolution, 221	genetic analysis, 203, 204f
Adaptive traits, 145–146	genetic variation (see Standing genetic
Agastoschizomus lucifer, 35, 65	variation)
Aggressiveness	invasion by lineages, 85–87
CF, 348, 349–350	locomotor activity, 317–318
heterosis effect, 346	Meckel's cartilage, 212–213, 213f
innate behavior, 346	metabolism, 319f, 320–321
losses, 344–346, 344f	nervous system patterning (see Neural
neural circuits, 346–347	development and evolution)
nonaggressive behavior, 346	perpetual darkness (see Spatial mapping)
SF, 348–349	phenotype (see Phenotypic evolution)
stickleback males, 344	Phreatichthys andruzzii, 325-326
AIM. See Astyanax International Meeting	pigmentation (see Pigment regression)
(AIM)	QTL mapping, 298
Albinism, 102–104, 158, 166f, 167–168	recording systems, 297–298, 297f
AlphaA-crystallin (cryaa), 181–182	reduced sleep, 300-301
Anelpistina quinterensis, 66, 72	regressive (see Regressive evolution)
Arroyo Lagartos, 42	retinomotor movements, 321
Arroyo Seco, 42	rudimental eye, 175
Astyanax community	sensory adaptation (see Sensory system)
AIM, 394–395, 395 <i>f</i>	Sierra de El Abra region (see Sierra de El
El Abra region, 41	Abra region)
linking phenotype to genotype, 129	sleep, 318, 319f
QTL, 394	social behavior, 335-343, 337f, 339f, 342f
Astyanax International Meeting (AIM),	surface-cave hybrids, 298
394–395, 395 <i>f</i>	tastebud, 216, 216f
Astyanax mexicanus, 14t, 43	taxonomy (see Taxonomy)
adult dentition, 210–212, 210 <i>f</i> , 214, 214 <i>f</i>	
adults vs. larvae, 299–300	
aggressiveness, 344–350, 344f	В
allelic variation (<i>see</i> Quantitative trait locus	Balitorid cavefishes, 95–97
(QTL))	Base excision repair (BER), 325
behavioral and electrophysiological	Basic helix-loop-helix (bHLH), 310
proper-ties (see Sleep)	Bats, 63, 64 <i>t</i>
cave populations, 298, 299f	Bee Cave (Sótano de las Colmenas), 28
constructive traits, 209	β-adrenergic receptors, 302
craniofacial (see Craniofacial evolution)	Biodiversity
craniofacial alterations, 194, 195t	cave communities, 59
depigmentation (see Depigmentation)	nacimientos, 61
development, 313–314	Sierra de Guatemala subregion, 60
DNA repair system, 325	Sotanochactas elliotti, 60, 60f
environment/geographic isolation event,	Blind cavefish
137–139, 142–145, 146, 147–148	apelin, 278–279
eye degeneration mechanism (see Eye	appetite-related peptides, 271, 272t, 274f
degeneration)	CART, 275–276

Blind cavefish (Continued)	Sótano de Venadito, 20–21, 23f
CCK, 277–278	Western Hemisphere, 20
feeding behavior, 269–270	CCK. See Cholecystokinin (CCK)
ghrelin, 278	CF. See Cave-adapted fish (CF)
metabolism and responses, fasting, 270-271	Chamal-Ocampo area, 28
monoamine neurotransmitters, 279-280	Channelrhodopsin-2 (ChR2), 386
orexins, 271–275	Characiformes, 77, 78f
PYY, 276–277	Chemosensation, 236–238
TOR, 281	Cholecystokinin (CCK)
tyrosine hydroxylase, 279–280	apelin, 279
Brown phenotype, 104	brain expression, 277–278
	CART, 275–276
	peripheral injections, 277
C	TOR, 281
Canalization, 137-139, 138b, 140-141	tyrosine hydroxylase, 279
Carassius auratus, 271	Circadian clocks
CART. See Cocaine-and amphetamine-	advantage, 309
regulated transcript (CART)	cave animals, 311–313, 312 <i>t</i>
Cartography methods, 22, 24–25	cave model (see Astyanax mexicanus)
Cave adaptation	DNA repair, 322–325, 324f
inner ear sensory system, 259–260	field studies, 327
pineal light-sensing organs, 260–261	light and dark cycle, 309
tactile sensing, 260–261	melatonin, 321–322
Cave-adapted fish (CF)	pineal gland, 321–322
foraging, 348	rhythmic conditions, laboratory, 314–316,
hierarchy, 343	315 <i>f</i>
locomotor activity, 336	wild cavefish, 315 <i>f</i> , 316–317
loss of aggressiveness, 349–350	zebrafish, 310–311
reproduction, 337–338, 337f	Cocaine-and amphetamine-regulated transcript
restored eyes and restored visual function,	(CART), 275–276
345–346	Compensatory plasticity, 370
schooling behavior, 339–340	Convergent evolution
seasonal flooding, changes, 336	feeding-associated sensory processes,
zigzag swimming, 341, 342f	300–301
Cave ecology	lineages, 85
bats, 63	sleep loss, 297–298, 297f, 299f
cavefish food, 62–63	Craniofacial evolution
crustaceans, 63–65	circumorbital bone, 193, 194, 194 <i>f</i> , 195 <i>t</i>
hazards, 61–62	coordinated changes, 201–202
temperature, 62	cranial neural crest, 204–205
Cave exploration and mapping	demography, 196
AMCS work, 19	genetic analyses, 202–203, 204 <i>f</i>
Anoptichthys jordani, 18	geographically-and evolutionarily-distinct
bioreserves, 17–18	populations, 193–194, 194 <i>f</i> , 196
cartography methods, 22, 24–25	mechanisms, 199–201
Cueva Chica, 18	morphological changes, 198–199
El Abra range, 20	SO3 fragmentation, 193, 194 <i>f</i>
fieldwork, 18	suborbital bone fusion, 196–198, 197 <i>f</i>
Micos area, 19–20	troglomorph, 196
Nacimiento del Río Choy, 21, 24 <i>f</i>	Cryptic variation, 137–141, 138 <i>b</i>
Nacimiento del Río Mante, 21, 24 <i>f</i>	Cryptochrome (<i>cry</i>), 310
Robert W. Mitchell's research group, 19, 20 <i>f</i>	Ctenopharyngodon idellus, 276
Sótano del Tigre, 20–21, 21 <i>f</i> , 22 <i>f</i>	Cueva Chica, 37. See also La Cueva Chica

Cueva de El Pachón, 28	natural selection, 183
Cueva de la Curva, 37	neutral mutation, 183, 185-186, 188-189
Cueva del Lienzo, 37	outgrowth phase, 176–178, 176f, 179
Cueva de los Sabinosis, 36, 70–72	<i>Pax6</i> protein, 175–176, 177 <i>f</i> , 178
Cueva del Río Subterráneo, 37	photoreceptor cells, 175–176, 178–179
Cueva de Otates, 37	Phreatichthys andruzzii, 184–185
Cupula, 253–254	reversed transplantation, 180–181
Cyprinus carpio, 275–276	Rhamdia, 183–184
- Jr	RPE, 175–176
	Sinocyclocheilus, 184
D	specification phase, 176–178, 176 <i>f</i> , 177 <i>f</i> , 179
<i>De novo</i> mutation, 137–140, 138 <i>b</i> , 138 <i>f</i>	teleosts, 175, 176 <i>f</i>
Dentition	trade-off hypothesis, 186–187, 188–189
caudal teeth, 210 <i>f</i> , 211, 213–214	Eye regression, 258–259, 261, 262 <i>f</i>
early tooth development, 214, 214 <i>f</i>	j ,
ethmoid cartilage, 213	_
intraosseus tooth development, 214–215	F
mandibular symphysis, 210f, 211	5-hydroxytryptamine (5-HT), 347
maxillary bone, 210f, 212	
Meckel's cartilage, 212–213, 213 <i>f</i>	G
multicuspid, 210–211, 210 <i>f</i> , 213–214	_
ossification, 212–213, 213 <i>f</i>	Gadus morhua, 271–275
palatoquadrate cartilage, 213	Gene flow, 148–149 Genetically encoded calcium indicators
premaxillary bone, 210 <i>f</i> , 211, 212	(GECIs), 386
Depigmentation	Genetic assimilation, 137–139, 138 <i>b</i>
CAT-dependent processes, 169-170	Genetic drift, 168–169, 185–186
direct/indirect natural selection, 168, 169	Geographic information system (GIS), 25–26
genetic basis, 164–168, 165t	Gómez Farías area. See Sierra de Guatemala
lateral stripe/diamond-shaped spot, 157f, 158	Green fluorescent protein (GFP), 381–382
melanogenic substrate assay, 163–164, 163f	1 (1 /// 1
neural crest cells, 162, 163, 163 <i>f</i>	
neutral mutation/genetic drift, 168–169	Н
RPE pigmentation, 162	Heat shock protein 90 (HSP90)
Dicentrarchus labrax, 277	capacitor of evolution, 141–142
Diphtheria toxin A-subunit (DTA), 385–386	cavefish evolution, 142–145, 144f
Direct natural selection, 168, 169	definition, 137–139, 138 <i>b</i>
Drosophila melanogaster, 140	Hedgehog (<i>Hh</i>) signaling, 261, 262f
	Hoplobunus boneti, 72
F	Hydrogeology of caves Astyanax, 57
Epinephelus coioides, 271–275	Astyanax, 57 dating, 49, 50
Evolutionary developmental biology	drainage divide, 54, 55
(EvoDevo), 361–362	erosion, 49–50
Expression QTL (eQTL), 128–129	features, 51t
Eye degeneration, 183	Galápagos tortoises, 53–54
ciliary marginal zone, 176–178, 176 <i>f</i> , 179	geology, 46–47
crystalline lens, 175–176, 176 <i>f</i>	limestone, chemical erosion, 47, 48
differentiation phase, 176–179,	molecular clocks, 48
176 <i>f</i> , 177 <i>f</i>	Pachón cave, 53
energy conservation hypothesis, 187–189	rivers of El Abra region, 41, 44 <i>f</i>
growth-maintenance phase, 176–178, 176 <i>f</i> ,	Soyate cave entrance, 50
177 <i>f</i> , 179	surface rivers, 50–53, 52f
lens PCD, 177f, 178–179, 180, 181–182	tectonic folding, 56

Hydrogeology of caves (Continued)	N
underground drainages, 45-46	Nacimiento del Río Coy, 43–45, 44 <i>f</i>
uplift, 49	Nacimiento de San Rafael de los Castros, 46
Hypocretin (Hcrt), 296–297	Nasal epithelium, 255f, 258
Hypothalamus, 347	Natural selection, 183, 220
Hypotheses test	Neural crest cells, 162, 163, 163f, 200–201
eyes regression, 95–100	Neural development and evolution
hallmarks of selection, 95, 100–102	adult brain anatomy and networks, 229-231,
polarity differences, patterns, 95	229f
tighter eye size QTL, 95, 100–102	brain neurochemistry, 228, 239-240
	chemosensation, 236–238
1	early embryonic development, 233–235, 234f
Ictalurus punctatus, 275–276	larval brain development, 235–236
Indirect natural selection, 168, 169	mechanosensation, 236-237, 238-239
Invasion, 85–87	morphological differences, 227–228
Iridophores, 156–158	quantitative variations, 228
r,	visual system degeneration, 231–233, 232f
	Neural plate patterning, 233–234, 234f
L	Neuromasts, 201
La Cueva Chica, 66–70	canal neuromasts, 251 <i>f</i> , 252–253
Lienzo caves, 45	superficial neuromasts, 251f, 252–254
Light input pathway	transparent extracellular mucus structure,
DNA repair, 322–325, 324 <i>f</i>	253–254
melatonin, 321–322	Neutral mutation, 168–169, 183, 185–186 Newportia sabina Chamberlin, 66
pineal gland, 321–322	Noradrenergic signaling, 303
Lineages, 82–84, 83 <i>f</i> , 85–87 Los Cuates, 37	Noradienergie signamig, 303
Los Cuates, 37	
	0
M	Ocular and cutaneous albinism-2 (<i>Oca2</i>),
MAO. See Monoamine oxidase (MAO)	239–240
Mechanosensory lateral line, 236–237, 238–239	Olfactory system, 257 Oncorhynchus mykiss, 277
American Amblyopsid cavefish, 250–252	Oral jaws
canal neuromasts, 251 <i>f</i> , 252–253	adaptive evolution, 221
neural tracing and neurophysiological	adult dentition and jaw bones (see Dentition)
studies, 254	constructive traits, 209
superficial neuromasts, 251 <i>f</i> , 252–254	limited food resources, 209
Meckel's cartilage, 212–213, 213f	modularity evolution, 221
Melanocortin 1 receptor (mc1r) gene, 161f,	natural selection, 220
166–167, 166 <i>f</i> Melanogenesis, 160–162, 161 <i>f</i>	regressive and constructive changes, 217
Melanophores, 156–158, 157 <i>f</i> , 158 <i>b</i> , 159 <i>t</i>	tastebuds, 215–216, 216 <i>f</i>
Messenger RNA (mRNA) expression, 271–275	teeth, 217–219
Micos area valley, 37, 46	teeth-eye linkages, 219-220
Micropthalmia-related transcription factor	tooth-tastebud linkages, 219
(<i>mitf</i>), 160–161, 161 <i>f</i>	Orbital bones, 142–145, 144 <i>f</i>
Mirror test, 344–345, 344 <i>f</i>	Oreochromis mossambicus, 276
Mitochondrial information, 85	Orexins (OXs), 271–275
Modularity evolution, 221	Ossification, 212–213, 213 <i>f</i>
Molecular clocks, 48	
Monoamine oxidase (MAO), 239, 240, 347	Р
Multiple interval mapping (MIM), 106	-
wintiple interval mapping (willwi), 100	Pachón population, 42
Mutations, 137	Pachón population, 42 Paired box 6 (<i>Pax6</i>) protein, 175–176

Paradoxical sleep, 291	multiple behavioral/morphological traits,
Peptide YY (PYY), 276–277	255–256
Per-arnt-sim (PAS) domain transcription	multiple genomic loci, 254, 255f
factors, 310	pleiotropic genes, 186, 187
Phenotypic evolution	population scans, 126
advantages, 2	sampling, 126–128
cave environment, 3	troglomorphy in Astyanax, 114f
evolutionary genetics, 2–3	Quantitative trait nucleotide (QTN)
free-swimming ancestral surface, 4	accuracy and precision, 124–125
geology, ecology, and biodiversity, 4–5	albinism, 122
intense selection pressure, 3	alleles identification, 121-122
molecular and genetic tools, 1-2	brown pigmentation, 122–123
morphological/behavioral changes, 1	eye size/lens degeneration, 123
regressive evolution, 4	genome scans, 127–128
Photoreceptor cells, 175-176, 321	laboratory-based mapping, 124
Phreatichthys andruzzii, 184–185	signaling factors, 123
Pigment regression, 156, 157 <i>f</i> , 170	
albinism, oca2 gene, 158, 166f, 167-168	R
iridophores, 156–158	
mc1r gene, 161f, 166–167, 166f	Raphe nucleus, 343, 349
melanogenesis, 160–162, 161f	Rapid eye movement (REM) sleep, 291
melanophores differentiation, 156-158,	Regressive evolution
157f, 158b, 159t, 160, 161f	albinism, 102–104
teleosts, 160	brown phenotype, 104
troglomorphy, 155-156	hypotheses test (see Hypotheses test)
xanthophores, 156–158, 157 <i>f</i>	mapping and QTL analysis, 106
Pleiotropic trade-off hypothesis, 177 <i>f</i> , 186–187	oca2 and mc1r, 104–105
Programmed cell death (PCD), 177f, 178–179,	pigmentation, 106–107
180, 181–182	Tinaja/surface cross, 106
Promoters of period (per), 310	Restriction site associated DNA sequencing
Propranolol, 302	(RADseq), 303
Proteus anguinus, 95–97	Retinal pigmented epithelium (RPE), 104,
Pseudosinella petrustrinatii Christiansen, 66	175–178, 176 <i>f</i> , 321
Pygocentrus nattereri, 271	Rhamdia, 183–184
	Río Boquillas, 42, 45
	Río Choy, 42
Q	Río Comandante, 42
QTN. See Quantitative trait nucleotide (QTN)	Río Coy, 43–45, 44 <i>f</i>
Quantitative trait locus (QTL), 121-123, 394	Río Frío, 42
accuracy and precision, 124-126	Río Gallinas, 43 Río Mante, 42
CF and SF, 115–119, 116t, 126–127	· · · · · · · · · · · · · · · · · · ·
chemical sensors, 258	Río Naranjo, 43
craniofacial phenotypes, 203	Río Puerco, 43
cryaa, 181–182	Río Santa Clara, 42
Danio genomes, 120	Río Santa María, 43
definition, 112, 137-139, 138b, 145, 146	Río Subterráneo, 45
depigmentation, 164-165	Río Tampaón, 43
eQTL, 128-129	Río Tantoán, 42
eye size, 255–256, 261, 262 <i>f</i>	Río Valles, 43
F ₂ hybrids, 255–256	
genome scans, 126, 127–128	S
genotype-to-phenotype-to-fitness, 129	Sabinos area, 35
Mendelian vs. quantitative traits, 112–115, 113f	Salmo salar, 276

Salmo trutta, 278	Sleep
San Rafael de los Castros, 42, 46	Danio rerio (see Zebrafish)
Schistura jaruthannini, 97–98	electrophysiological methods, 291-292
Schistura kaysoniae, 97–98	genetically amenable model systems, 292
Schizothorax davidi, 278	pharmacological interrogation, 301–303
Sensory system	REM sleep, 291
chemical sensory system, 255f,	sleep duration and architecture, 292
257–258	sleep loss (see Astyanax mexicanus)
chemosensation, 236–238	SNP. See Single-nucleotide polymorphism (SNP)
detecting vibrations (see Mechanosensory	Social behavior
lateral line)	alarm reaction, 341-342, 342f
foraging behavior (see Vibration attraction	reproductive behavior, 335–338, 337f
behavior (VAB))	schooling behavior, 338–340, 339f
hh signaling, 261, 262 <i>f</i>	shoaling, 340
inner ear, 259–260	territoriality and hierarchy, 342–343
mechanosensation, 236–237, 238–239	Sotanito de Montecillos, 36
pineal light-sensing organs, 260–261	Sotanochactas elliotti, 60, 60f, 65
tactile sensing, 260–261	Sótano de Japonés, 35
visual system, 258–259	Sótano (Resumidero) de Jineo, 26, 27 <i>f</i>
Serotonin, 347	Sótano de Jos, 36
Sierra Cucharas, 28	Sótano de la Palma Seca, 36–37
Sierra de El Abra region, 9–10, 10 <i>f</i> , 45–46	Sótano de la Roca, 36
Astyanax caves, 14t	Sótano del Arroyo, 36
cave exploration and mapping (see Cave	Sótano de Las Piedras, 36
exploration and mapping (see early	Sótano de la Tinaja, 36
Cretaceous period, 11	Sótano del Caballo Moro, 28
GIS, 25–26	Sótano del Toro, 37
Huastecan Province, 10	Sótano de Matapalma, 35
hydrogeology of caves (see Hydrogeology	Sótano de Molino, 26–27
of caves)	Sótano de Pichijumo, 36
karst, 11	Sótano de Soyate, 36, 72–74
limestone, 16–17	Sótano de Vasquez, 28
map, 12f, 13f	Sótano de Venadito, 28
Nacimientos (springs), 16t	Sótano de Yerbaníz, 28–35, 30 <i>f</i> , 31 <i>f</i> , 33 <i>f</i> , 65–66
Prietella lundbergi, 17	Sótano Escondido's, 27–28
Sierra de Guatemala, 26–37	Sound localization, 259–260
Sierra de Guatemala, 45	Southern El Abra, 37
Agastoschizomus lucifer, 35	Spatial mapping
AMCS cave map symbols, 32f	absence of vision, 368–370
Chamal-Ocampo area, 28	active nonvisual sensing, 366
Micos area, 37	Bronze corydoras, 366–368
Sabinos area, 35	computer-generated model, 364–365
Sótano (Resumidero) de Jineo, 26, 27 <i>f</i>	EvoDevo, 361–362
Sótano de Molino, 26–27	eyesight loss, humans, 371
Sótano de Yerbaníz, 29, 30 <i>f</i> , 31 <i>f</i> , 33–34, 33 <i>f</i>	habituation period, 364–365
Sótano Escondido's, 27–28	human sensory deprivation, 370
Southern El Abra, 37	mammals, 362–363
subregion, 60	Maze designs, 364, 365 <i>f</i>
Sierra Tamalave, 28	space mapping, 370
Single-nucleotide polymorphism (SNP),	swimming velocity and wall-hugging
147–148	behavior, 366, 367f
Sinocyclocheilus, 184	tastebuds, 368
2	

vertical and horizontal movements, 365f, 366–368 Zebrafish, 363–364 Speocirolana bolivari, 63–65, 65f Speocirolana pelaezi, 65 Sphaeromicola cirolanae Rioja, 71 Standing genetic variation adaptive trait, 145–146	Transgenesis development and anatomy, 381–383 genetic causality, 383–384 gene transfer experiments, 379–380 homologous recombination, 380 low efficiency, 380 neuronal activity, monitoring, 384–386 Troglomorphy, 155–156, 196, 199. See also
Astyanax mexicanus, 147–148, 149 canalization, 140–141 cryptic variation, 140–141	Quantitative trait locus (QTL) Tyrosine hydroxylase (TH), 279–280
vs. de novo mutation, 137–140, 138b, 138f detection, 146–147 gene flow, 148–149 heritable adaptations, 137	U Ultraviolet (UV) light, 323–325
HSP90, 141–145, 144 <i>f</i> mutations, 137 Surface fish (SF) aggressiveness, 348–349 hierarchy, 343 hybrids, 346 lens enucleation, 339 locomotor activity, 336 predation pressure, 340 substrates, 336 swim isolation, 338, 339 <i>f</i> territoriality, 342–343 visual cues, 337–338, 337 <i>f</i>	Ventrolateral preoptic (VLPO) area, 295–296, 296 <i>f</i> Vibration attraction behavior (VAB), 187 adults <i>vs.</i> larvae cavefish, 299–300 Astyanax cavefish population, 248–250, 249 <i>f</i> genetics, 251 <i>f</i> , 254–257 laboratory setting, 248–250, 249 <i>f</i> standing variation, 248–250, 249 <i>f</i> surface fish, 248–250, 249 <i>f</i> tuning, 250, 251 <i>f</i> W "Waddington's widget", 140–141
Target of rapamycin (TOR), 281	X Xanthophores, 156–158, 157 <i>f</i>
Tastebud system, 251 <i>f</i> , 257–258 Taxonomy, 79 A. aeneus, 80–82, 81 <i>f</i> , 82 <i>f</i> delimitation of species, 80, 81 <i>f</i> genomic islands, 80 interbreeding, 79–80 lineages, 82–84, 83 <i>f</i> phylogenetic structure, 84 sensu (Rosen), 84 troglobite populations, 78–79, 84 Teleosts, 160, 175, 176 <i>f</i> Thalassoma pavo, 271	Z Zebrafish arousal threshold, 294 behavioral quiescence, 293–294 developmental mechanisms, 2 developmental stages, 295 genetic and transgenic tools, 293 sensory stimuli, 293–294, 295 sleep systems, 295–297, 296f spatial mapping, 363–364