

Dr. Yue (Katherine) FENG

Recap: Overfitting Problem!

Name	Balance	Age	Default
Mike	123,000	50	No
Mary	51,100	40	Yes
Bill	68,000	55	No
Jim	74,000	46	Yes
Dave	23,000	44	No
Anne	100,000	50	Yes
•••			
Henry	61,100	35	???
Amy	68,000	52	???
Allen	22,000	21	???
Tom	123,000	60	???
Jane	100,000	47	???

Data

universe

Data you have (a subset/sample from the universe of the data) **Build** model Model Apply to new data

Overfitting: the pattern learned is too specific to be generalized to the universe.

Recap: Symptom of Overfitting

Error rate = 1 - Accuracy

Evaluation

Two Types of Evaluation

- > Data-driven Evaluation
 - e.g., training-testing split, cross-validation
- > Domain Knowledge Evaluation
 - using model as an interface between modelers and stakeholders
 - important to have a model that is comprehensible to stakeholders
 - compare with existing knowledge
 - get expert assessment of model

Agenda

- From Holdout Evaluation to Cross-Validation
- II. Accuracy
- III. Confusion Matrix
- IV. ROC Analysis
- V. Performance Evaluation for Regression

From Holdout Evaluation to Cross-Validation

Holdout Evaluation

- Accuracy on training data:
 "in-sample" accuracy
- Accuracy on test data:
 "out-of-sample" accuracy
 (generalization accuracy)

- > Given only one data set, we **hold out** some data for which we know the value of the target variable for evaluation.
- > Holdout set for final evaluation is called the test set.

Simple Holdout Set

Do you trust the accuracy measure?

Questions:

- 1) what if by accident you selected a particularly easy/hard test set?
- 2) do you have an idea of the variation in model accuracy due to the split?

Drawbacks of the Simple Holdout Method

- > The holdout estimate of the error can be highly variable across different splits.
 - Since it is a single train-and-test experiment, the holdout estimate of error rate will be misleading if we happen to get an "abnormal" split (e.g., very difficult test set).
 - This is particularly true when we have a small dataset.

Solution: k-fold cross-validation!

Cross-Validation (CV)

- > Better use of a limited dataset:
 - Partition data into k folds (randomly)
 - Run training/test evaluation k times
 - For each of k experiments, use k-1 folds for training and a different fold for testing
- > Estimate the true performance
 - Provide statistics on estimated performance (e.g., mean and variance)
 - Assess confidence in the performance estimate

- ✓ Each fold is tested once (rest are combined for training set)
- ✓ Tests on all data (each data point once)
- ✓ Can calculate average and variance of accuracy measure(s)

How Many Folds Are Needed?

- > In practice, the choice of the number of folds depends on the size of the dataset
 - For large datasets, even 3-fold cross-validation will be quite accurate
 - For very sparse/small datasets, we may have to use more folds in order to train on as many examples as possible (e.g., k=N, leave-one-out cross-validation)
- > A common practice for *k*-fold cross-validation is *k*=5 (by default in Python) or 10

Statistics on Estimated Performance by Cross-validation

Accuracies of Classification Trees

Average accuracy: 68.6%

Standard deviation: 1.1

Accuracies of Logistic Regression

Average accuracy: 64.1%

Standard deviation: 1.3

This dataset contains 20,000 examples

Accuracy

Evaluation for Classification: Accuracy/Error rate

- >Accuracy: the percentage of correct predictions
- > Error rate: the percentage of incorrect predictions

> Too simplistic...and sometimes misleading (especially when the class distribution is unbalanced or skewed)

Accuracy on a Balanced Sample

Both models correctly classify **80%** of the balanced population.

Accuracy on an Unbalanced Sample

Model A's accuracy declines to 64% while model B's accuracy rises to 96%.

Evaluation for Classification

- > Naïve rule: majority-class classifier
 - Classifying everyone as belonging to the majority class.
 - Can be used as a baseline or benchmark for evaluating the performance of unbalanced samples.

Confusion Matrix

Confusion Matrix

> A table that is used to describe the performance of a classification model. Entries are **counts** of correct and incorrect predictions.

Precision and Recall Measures

- > **Precision** is the number of correctly classified positive examples divided by the total number of examples that are predicted as positive.
- > **Recall** is the number of correctly classified positive examples divided by the total number of actual positive examples.

Precision (+) =
$$\frac{TP}{TP + FP}$$

Recall (+) =
$$\frac{TP}{TP + FN}$$

Exercises

Q: What is the accuracy, precision, and recall for each model?

Other Evaluation Measure

- > There is a tradeoff between precision and recall, where it is possible to increase one at the cost of reducing the other.
 - F1 Score (F Score):
 A harmonic mean of precision and recall

$$F score = 2 * \frac{precision * recall}{precision + recall}$$

The higher the F1 score, the model performance is better.

Uneven Cost for Two Types of Errors

- > In many applications, different types of errors have different costs.
 - Wrongly approve a credit card application costs a lot more than wrongly deny an application.
 - Wrongly filter out a good email costs a lot more than wrongly accept a spam.
 - Wrongly diagnose an ill patient as normal costs a lot more than wrongly diagnose a normal people as ill.

Bad Positives and Harmless Negatives

- > Positive examples
 - An unusual condition is present: e.g., detect a disease, fraud case
 - Often rare and worthy of attention or alarm
- > Negative examples
 - A normal or uninteresting outcome
- > The number of mistakes on negative examples (false positive errors) may dominate, while the cost of mistakes on positive examples (false negative errors) will be higher.

Using Expected Value to Frame Model Evaluation

Confusion Matrix (N=110)

	Actual +	Actual -
Predicted +	56	7
Predicted -	5	42

Cost/Benefit Matrix

EV=p(TP)*v(TP)+p(FP)*v(FP)+
p(TN)*v(TN)+p(FN)*v(FN)

ROC Analysis

ROC Analysis

- > ROC Receiver Operating Characteristic
 - Developed in 1950s for signal detection theory to analyze noisy signals.
 - A systematic way to evaluate the quality of probability estimates.
 - Independent of class proportions and cost structures.

TPR and FPR

True Positive Rate(TPR), Recall =
$$\frac{TP}{TP + FN}$$

Decision Threshold

> Given the class probability estimates (PE), changing decision threshold could change TP or FP rate.

_	PE for +	Prediction (0.5 threshold)	Prediction (o.8 threshold)	True value
4 examples	0.3	-	-	
	0.55	+	-	+
	0.75	+	-	-
	0.9	+	+	
_	True positive rate	1/1	0/1	
	False positive rate	2/3	1/3	
	Accuracy rate	2/4=0.5	2/4=0.5	

ROC Analysis

- > Each decision threshold corresponds to a pair of TPR (on the y-axis) against FPR (on the x-axis), given a particular model.
- > Changing the decision threshold changes the location of the point.

ROC Curve

- > Connecting dots to get a curve for a model.
- > Different models have different curves.
- > The **bigger** the area under ROC curve (**AuROC**), the **better** the model is.

What do the corners, (0,0), (0,1), and (1,1), and the diagonal line on ROC Curve mean?

AuROC vs. Accuracy

- > Area under ROC curve: AuROC
 - Measure prediction performance under different decision threshold.

- > AuROC is a "deeper" measurement
 - Measure the quality of probability estimates.
 - Better measure when uneven costs are unknown.
 - Better measure if the class proportion is unbalanced.

Performance Evaluation for Regression

Evaluation Measures for Regression

> Mean Squared Error (MSE): the average of squares of the differences between actual values and predicted values.

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

> Root Mean Squared Error (RMSE)

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

> Mean Absolute Error (MAE)

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

Evaluation Measures for Regression

> R squared (R^2): the proportion of the variation in the dependent variable (y) that is predictable from the independent variables (X).

$$R^{2} = 1 - \frac{\sum_{i} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i} (y_{i} - \overline{y})^{2}} = 1 - \frac{SS_{residual}}{SS_{total}}$$

- When the sum of squares of residuals $SS_{res} = 0$, $R^2 = 1$
- When all the predictions are \bar{y} , $R^2 = 0$ (baseline)
- Models with worse predictions than the baseline will have a negative \mathbb{R}^2 .

Confusion Matrix Output in Python

		Predicted	
		-(0)	+(1)
Actual	-(0)	True	False
		Negative	Positive
	+(1)	False	True
		Negative	Positive

Thank You!

