Arithmetic Functions

Fixed and Floating Point

2s Complement Numbers

- Numbers as Integers
- Numbers as Fractions
- Numbers as Fractions with Scale

Adding Signed Integers

- Single Precision, Fixed Point
- Add numbers, use 2s complement representation for negative numbers.
- Multiple Precision
- Add multiple numbers (48, 64 bit arithmetic)
- Need to add (subtract) with Carry

Adding Fractions

 Can follow same methodology, with fixed "binary point"

Numbers must position the binary point in the same place.

2s complement works for fractions

Numbers with Scale

 Can Represent as Integer or Fraction with Scale

Adding Numbers Requires COMMON SCALE

e.g., 32 bits, + scale N, where N represents multiplier of 2^{N} .

Negative Fractions, using 2's Complement

- Where do we put the binary point?
- Can put it to the right of the sign bit, and assign the sign a value of 1.
- Therefore, the value to the right of the sign is ½, and the value of the sign is -1!

Example Signed Fractional Add

- 0.1000000 scale 0 means + $\frac{1}{2}$
- 1.1000000 scale 0 means $-\frac{1}{2}$
- Adding them together produces:
- 0.000000000 scale 0

Note: shifting right requires sign propagation!

Example Signed Fraction with Scale

0.0001000 , scale $0 \Rightarrow 1/16$

0.1000000, scale $0 => \frac{1}{2}$

Add them together, we get

0.1001000, scale $0 \Rightarrow 9/16$

Fraction with scale

- 0.1000000 scale $3 = \frac{1}{2} * (2**3) = 4$
- 0.1000000 scale $0 = \frac{1}{2}$
- Add them together?
- Have to put them on common scale first: right-shift the number with the smaller scale by the difference between the scales:
- 0.0001000 scale $3 = \frac{1}{2}$
- Now add them to get 0.1001000, scale 3

Normalization

 Shift left N bits until the sign bit does not equal the adjacent bit

• 0.0000100 scale 0 = 0.1000000 scale -4 = 1/32

Multiplication

Unsigned Decimal Multiplication

multiplier x multiplicand = product

Unsigned Binary Multiplication

```
0011 (3 x 3)

x 0011

0011 subtotal 1

+00110

= 01001 subtotal 2

+000000

= 001001 subtotal 3

+0000000

= 0001001 subtotal 4 (3x3=9)
```

Unsigned Binary Multiplication

```
0111 (7x5)

x 0101

0111 subtotal 1

+000000

= 000111 subtotal 2

+011100

= 100011 subtotal 3

+0000000

= 0100011 subtotal 4 (0x23 = 35)
```

Unsigned Binary Multiplication

```
1111 (15x15)

x 1111

01111 subtotal 1

+11110

= 101101 subtotal 2

+ 111100

= 11110001 subtotal 3

+ 1111000 subtotal 4
```

Maximum value of unsigned 15x15 = 0xE1 = 225

Multiplier Logic Elements

Example scaled fraction

0.10000000

Division

```
10010
1000 | 10010100
-1000
1
10
101
1010
-1000
10
```

ALU Divider Circuit

MIPS Math Operations

- div fixed point divide (Lo=quot; Hi=rmdr)
- divu
- mult fixed point mult (hi,lo) = R[Rs]*R[Rt]
- multu
- mfhi Move from hi register
- mflo Move from lo register
- Uses "high" and "low" registers

Floating Point Operations

- Require a standard representation for floating point (scaled numeric) numbers
- Typically operate using a sign-magnitude with an exponent
- IEEE 754 is a standard representation for single and double precision
- Single: 1 sign, 8 exponent, 23 fraction
- Double: 1 sign, 11 exponent, 53 fraction
- Double Extended, 1 sign, 15 exponent, 64 "fraction"
- Quad (128) and Half (16) precision also possible

Format vs. Operations

- IEEE 754 is Storage format, but doesn't describe internal operation
- Floating Point Operations can be done as software subroutines
- Coprocessor main processor waits for FPU
- 'Coprocessor 1' on MIPS
- Independent FP Regs (32 Single, 16 Double) on MIPS.

Extending Precision

- If Single Precision, then fraction fits within 32 bits (it's only 23 bits!) so we can perform normal addition or subtraction operations (after we place the fractions on a common scale) with 32 bit arithmetic
- If Double Precision, then fraction is bigger than a 32 bit word, and we have to use extended precision using adds with carry.

Implementation using IEEE 754

- The "hidden sign" and "bias" used by IEEE 754 are not readily useful for internal arithmetic.
- Best practice: Prefix your floating point operation by "unpacking" the IEEE 754 value into variables that easily represent the fraction and scale. These should be easily convertible to 2's complement numbers.
- After the operation, repack the number using the IEEE 754 convention.

Before we begin:

IEEE 754 funny values

- Plus zero = 0
- Minus zero has sign=1, remaining portion = 0
- Plus Infinity, sign=0, exponent=11111's, fraction is 0
- Minus infinity, sign=1, exponent=11111's, fraction is 0
- Not A Number "NaN", sign=0, exponent=11111's, fraction is not zero.

Use of "Bias"

 The Bias value (127 or 1023) is subtracted from the exponent to get the actual power of 2 exponent.

 This means we can compare (sort) floating point numbers as if they were signed integers!

Extracting the Exponent

- In IEEE 754 Single Precision, the "biased exponent" is located in bits 23-30 (an 8 bit field)
- If the entire word is zero (see previous slide), the value is zero. Add operations of zero do nothing.
- The bias amount is decimal 127. To obtain the "real" exponent, subtract 127 from the biased exponent to product a signed number. Use 2's complement representation for the internal exponent.

Obtaining the Fractional Portion

- If the floating point number is not zero, then the fractional portion has a hidden '1' bit, whose value is 1.0.
- The fraction (hidden 1) can be placed in bit 30 of a 2's complement representation for the fraction.
- The remaining fraction bits are placed in the next 23 bits to the right of the hidden 1 (bits 6-29). Bits 0-5 are set to 0.
- The fraction thus takes 25 bits, including a reserved sign bit, with the binary point being located between bits 29 and 30.

Represent Fraction as Signed, 2's Complement

- IFF the floating point number is negative (i.e., the sign=1), then negate the fraction using standard 2's Complement arithmetic.
- Now represented as a 2's complement number, the fraction's sign bit will be 1 if it is negative.

Unpack 754 Method (single prec) Summary

- Test for zero if so, set everything to 0.
- Move fraction to internal fraction, shifted right 2 bits.
- Set 0 as sign bit, '1' as next bit (hidden 1). Fraction thus appears a positive number
- Extract exponent, subtract 127
- Add '1' to exponent to account for shift right above.
- Convert fraction to negative using 2's complement negate *if sign=1*.

Internal Representation

- The IEEE floating point number is now represented by two 2's Complement numbers:
- A signed Exponent, E, consisting of an exponential multiplier 2^E.
- A Signed Fraction F, with a binary point two bits from the left edge. The value of the number is thus:

F x 2^E

Floating Point Add

- Place two operands on a common scale operand with smaller scale gets shifted right N bits and scales are set to the same value.
- Shift right 1 bit before adding to avoid overflow; do not forget to compensate scale by adding +1!
- Numbers must be negated using 2's complement convention if sign is 1.
- Fractions are added
- Result must be negated if sign is 1; set sign of result.
- Result is normalized.

Example Floating Number: -3.5

- IEEE 754 value: 0xC0600000
- Sign = 1 (negative)
- Exponent, E, = 128 127 = 0x00000001
- Fraction, $F_r = (1 +)$, or 0x70000000
- 2's Complement Fraction: (negative)
 0x90000000

Shifting Rule

- Can shift a number right or left, keeping its value by adjusting exponent.
- For Example:

0x9000000 with Exponent 1 is equal to:

0xC8000000 with Exponent 2, also equal to:

0xF9000000 with Exponent 5

Add 1 to Exponent for every bit shifted right, Subtract 1 from Exponent for every bit shifted left.

Example Floating Number: +0.5

- IEEE 754 value: 0x3F000000
- Sign = 0 (positive)
- Exponent, E, = 126 127 = -1 = 0xFFFFFFFF
- Fraction, $F_r = (1 +)0$, or 0x40000000
- 2's Complement Fraction: (positive) (same)

Avoiding Overflow

- Because each number may consist of leading
 1, need to shift each number right before
 adding them, adjusting the (common) scale by
 +1. Common scale is now 2.
- Add Numbers (shifted right):

C8000000

+08000000

D000000

Add the Numbers

- Have to place on common scale.
- Number with lower Exponent gets its fraction shifted right N positions
- +0.5 has lower Exponent (-1), and the difference N is 1-(-1) = 2.
- New scaled number (B) is:

Exp = +1, Fraction = 0x10000000

Take 2's Complement of Negative

- D0000000 negated is: 0x30000000 (Exp 2).
- Set sign flag in result (negative).
- Normalize Fraction: 0x60000000 (Exp 1)
- Resulting sign=1, Exponent=127+1 = 128
- Removing hidden '1', Fract = 0b1000...., or 1.5
- Result value is $-(2^1 \times 1.5) = -3.0$

How To Normalize

- Test Fraction to see if 0. If so, result is 0!
- While the Fraction does not have a '1' in the '1' position (left of the binary point)
 {
 - shift left 1 bit decrement Exponent
 - }

Pack Result Back to IEEE 754 Format

- Set Sign (Bit 31)
- Bias is 127
- Set Exponent + Bias in Bits 30-23
- Lose Bit 30 of Fraction (hidden '1')
- Move Fraction Bits 29-6 to IEEE Fraction

Floating Point Negate

Change Sign Bit

Floating Point Multiply

- Obtain "internal" 2's Complement Representations of Exponents and Fractions, as above
- Multiply Fractions using Fixed Point Multiply
- Add Exponents
- Normalize
- Repack as IEEE Single Precision

Example:

- IEEE 754 value for 1.0 is: 0x3F800000
- sign=0, exponent=0x7E=127, fraction=0
- hidden '1' therefore, 1x2⁰

Internal format is: f=0x40000000
 e=0x00000001

Example

- -8.5 = 0xC1080000
- sign=1, exp=130, fract=0001000...

Extracted value:

```
fraction=0x44000000, exp=(130-127) +1 = 4 neg., 2's compl=0xBC000000
```

MIPS mult Instruction

- Assumes binary point is between bits 30 and 31 (immediately to the right of the sign)
- However, our internal representation assumes it is one bit to the right of that (between bits 29 and 30)!
- Multiplying our fractions causes the result to be shifted two bits to the right
- Have to multiply by 4 after mult to compensate. (shift left 2 bits)

mult, Example

```
.data
arg1:
         .word
                   0x40000000
                                      # +1.0, fixed point
                   0x40000000 # + 1.0, binary point between bits 29&30
arg2:
         .word
.text
#
         Note: mult instruction assumes binary point immediately
#
         after sign bit! Therefore, We have to scale up by 4 after mult.
                   $t1, arg1 # argument a (scaled by 1/2)
main:
         lw
                   $t2, arg2 # argument b (scaled by 1/2)
         lw
                   $t1, $t2 # compute a*b
         mult
         mfhi
                   $t0 # high portion of product
                   $t0,$t0, 2 # scale x 4 (correct for binary point)
         sll
                                      # the product is in $t0
```

Convert/Pack IEEE 854

- Convert 2's complement fraction to sign s and magnitude fraction.
- If not zero, shift fraction left 1 and decrement exponent.
- Convert exponent to IEEE 754 format by adding "bias" value of 127.
- Store sign, biased exponent, and fraction portion into IEEE 754 result.

Special Cases

- Exponent Overflow produce special values for plus/minus infinity (if exponent too bit)
- Exponent Underflow can be replaced with 0 if resulting number too small.
- Significand underflow possible rounding if bits flow off the right edge when placing on a common scale
- Significand overflow can be fixed by realignment.

Examples

```
TEST: 0.0
f = 0.000000, f(hex) = 00000000, Special case: ZERO
d = 0.000000, d(hex) = 00000000 00000000, Special case: ZERO
TFST: 1.0
f = 1.000000, f(hex) = 3F800000, fraction = .00000000, (1 + fraction) \times 2**0
d = 1.000000, d(hex) = 3FF00000 00000000, fraction(hi) = .00000000, (1 + fraction) x 2**0
TEST: -1.0
f = -1.000000, f(hex) = BF800000, fraction = .00000000, (1 + fraction) \times 2**0
d = -1.000000, d(hex) = BFF00000 00000000, fraction(hi) = .00000000, (1 + fraction) x 2**0
TEST: 0.5
f = 0.500000, f(hex) = 3F000000, fraction = .00000000, (1 + fraction) \times 2^{**}-1
d = 0.500000, d(hex) = 3FE00000 00000000, fraction(hi) = .00000000, (1 + fraction) x 2**-1
TEST: 0.25
f = 0.250000, f(hex) = 3E800000, fraction = .00000000, (1 + fraction) \times 2^{**}-2
d = 0.250000, d(hex) = 3FD00000 00000000, fraction(hi) = .00000000, (1 + fraction) x 2**-2
```

Examples

```
TEST: 32.0
f = 32.000000, f(hex) = 42000000, fraction = .00000000, (1 + fraction) x 2**5
d = 32.000000, d(hex) = 40400000 00000000, fraction(hi) = .00000000, (1 + fraction) x
2**5
TEST: 67.0
f = 67.000000, f(hex) = 42860000, fraction = .0C000000, (1 + fraction) x 2**6
d = 67.000000, d(hex) = 4050C000 00000000, fraction(hi) = .0C000000, (1 + fraction) x
2**6
TEST: 33554431
f = 33554432.000000, f(hex) = 4C000000, f(raction = .00000000), f(1 + f(raction)) \times 2**25
d = 33554431.000000, d(hex) = 417FFFFF F0000000, fraction(hi) = .FFFFF000, (1 +
fraction) x 2**24
```

Examples

```
TEST: 1.0 / 0.0
f = \inf_{x \in \mathbb{R}} f(hex) = 7F800000, fraction = .00000000, (1 + fraction) x 2**128
d = \inf_{x \in \mathbb{R}} d(hex) = 7FF00000 000000000, fraction(hi) = .000000000, (1 + fraction) x
2**1024
TEST: -1.0 / 0.0
f = -\inf, f(hex) = FF800000, fraction = .00000000, (1 + fraction) x 2**128
d = -\inf_{x \in A} d(hex) = FFF00000 00000000, fraction(hi) = .000000000, (1 + fraction) x
2**1024
TEST: 0.0 / 0.0
f = -nan, f(hex) = FFC00000, fraction = .80000000, (1 + fraction) \times 2**128
d = -nan, d(hex) = FFF80000 00000000, fraction(hi) = .80000000, (1 + fraction)
x 2**1024
```

IEEE 754 Additions

Half Precision: 16 bits,
 Sign, 5 bits of Exponent (Bias 15),
 10 bits of Fraction

Quad Precision: 128 bits,
 Sign, 15 bits of Exponent (Bias 16383),
 112 bits of Fraction

Floating Point Implementation

- Software Subroutine Library
- Coprocessor
- Runs as I/O Device
- Runs in parallel with CPU
- Can run asynchronously
- Can have multiple instances
- Extension to Instruction Set

FPU as Coprocessor

IEEE 754- HOWTO

- Extract/Unpack IEEE 754 number
- have internal representation that uses 2's complement.
- fraction and exponent stored as 32-bit words in MIPS registers
- fraction is stored in high-order portion of 32-bit word, with binary point to the right of sign bit.
- exponent stored as a 2's complement, signed integer.

Shifting with Special Hardware

- Speeds Up Arithmetic Operations
- Can Shift Right or Left

Shift Register – Right Shift

Loadable Shift Register

Optional Load/Shift

Bidirectional Shift Registers

• Shift Left OR Right

Barrel Shifter

