```
#1. Menentukan Library yang digunakan
import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn import svm
from sklearn.metrics import accuracy_score
#2. Load Dataset
diabetes_dataset = pd.read_csv('diabetes.csv')
```

diabetes_dataset.head()

₹		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
	0	6	148	72	35	0	33.6	0.627	50	1
	1	1	85	66	29	0	26.6	0.351	31	0
	2	8	183	64	0	0	23.3	0.672	32	1
	3	1	89	66	23	94	28.1	0.167	21	0
	4	0	137	40	35	168	43.1	2.288	33	1

diabetes_dataset.shape

→ (768, 9)

diabetes_dataset['Outcome'].value_counts()

count

Outcome 0 500 1 268

#Memisahkan data dan label

X = diabetes_dataset.drop(columns='Outcome', axis=1)
Y = diabetes_dataset['Outcome']

print(X)

₹		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	١
	0	6	148	72	35	0	33.6	
	1	1	85	66	29	0	26.6	
	2	8	183	64	0	0	23.3	
	3	1	89	66	23	94	28.1	
	4	0	137	40	35	168	43.1	
	763	10	101	76	48	180	32.9	
	764	2	122	70	27	0	36.8	
	765	5	121	72	23	112	26.2	
	766	1	126	60	0	0	30.1	
	767	1	93	70	31	0	30.4	

	DiabetesPedigreeFunction	Age
0	0.627	50
1	0.351	31
2	0.672	32
3	0.167	21
4	2.288	33
	•••	
763	0.171	63
764	0.340	27
765	0.245	30
766	0.349	47
767	0.315	23

[768 rows x 8 columns]

print(Y)

_	0	1
	1	0
	2	1
	3	0

```
4 1 ...
763 0 764 0 765 0 766 1 767 0
```

Name: Outcome, Length: 768, dtype: int64

#Memisahkan data training dan data testing
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, stratify=Y, random_state=2)

print(X.shape, X_train.shape, X_test.shape)

```
→ (768, 8) (614, 8) (154, 8)
```

#Membangun model menggunakan SVM
classifier = svm.SVC(kernel='linear')

classifier.fit(X_train, Y_train)

#Membuat model evaluasi untuk mengukur tingkat akurasi
X_train_prediction = classifier.predict(X_train)
training_data_accuracy = accuracy_score(X_train_prediction, Y_train)
print('Akurasi data training adalah = ', training_data_accuracy)

Akurasi data training adalah = 0.7833876221498371

X_test_prediction = classifier.predict(X_test)
test_data_accuracy = accuracy_score(X_test_prediction, Y_test)
print('Akurasi data testing adalah = ', test_data_accuracy)

Akurasi data testing adalah = 0.7727272727272727

from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay

```
# Hitung confusion matrix
cm = confusion_matrix(Y_test, X_test_prediction)
```

Tampilkan confusion matrix
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=classifier.classes_)
disp.plot()

from google.colab import drive
drive.mount('/content/drive')

```
#Membuat model prediksi
input_data = (6, 148, 72, 35, 0, 33.6, 0.627, 50)
input_data_as_numpy_array = np.array(input_data)
input_data_reshaped = input_data_as_numpy_array.reshape(1, -1)
\# Initialize the StandardScaler and fit it to the training data (X)
scaler = StandardScaler()
scaler.fit(X) # Fit the scaler to your training data
std_data = scaler.transform(input_data_reshaped) # Now you can use transform
print(std_data)
prediction = classifier.predict(std_data)
print(prediction)
if (prediction[0] == 0):
    print('Pasien Tidak Terkena Diabetes')
    print('Pasien Terkena Diabetes')
→ [[ 0.63994726 0.84832379 0.14964075 0.90726993 -0.69289057 0.20401277
        0.46849198 1.4259954 ]]
     [0]
     Pasien Tidak Terkena Diabetes
     /usr/local/lib/python3.10/dist-packages/sklearn/utils/validation.py:2739: UserWarning: X does not have valid feature names, but Star
       warnings.warn(
     /usr/local/lib/python3.10/dist-packages/sklearn/utils/validation.py:2739: UserWarning: X does not have valid feature names, but SVC
       warnings.warn(
    4
import pickle
filename = 'diabetes_model.sav'
```

pickle.dump(classifier, open(filename, 'wb'))