Proximal Policy Optimization

YIKANG, GANG

Outline

- 1. Background (Gang)
- 2. Theoretical Part (YiKang)
- 3. Algorithm and Experiment (Gang)

Review of Policy Gradient

 $\circ \nabla J(\theta) = E_{\pi(a|S;\theta)}[R \nabla \log \pi(a|S;\theta)]$

- \circ Reinforce: R = G_t
- Actor-Critic: R = Q(s, a; w) or $\Delta V(s)$
- A2C: R = A(s, a; w)

Limitations of Policy Gradient

Data Inefficient

- Sample once, update once
- On-policy learning can be extremely inefficient.

Not Robust

Consider a family of policies with parametrization:

$$\pi_{\theta}(a) = \left\{ \begin{array}{ll} \sigma(\theta) & a = 1 \\ 1 - \sigma(\theta) & a = 2 \end{array} \right.$$

Figure: Small changes in the policy parameters can unexpectedly lead to big changes in the policy.

On-Policy -> Off-Policy

REINFORCE algorithm:

1. sample
$$\{\tau^i\}$$
 from $\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$ (run the policy)
2. $\nabla_{\theta}J(\theta) \approx \sum_i \left(\sum_t \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_t^i|\mathbf{s}_t^i)\right) \left(\sum_t r(\mathbf{s}_t^i, \mathbf{a}_t^i)\right)$
3. $\theta \leftarrow \theta + \alpha \nabla_{\theta}J(\theta)$

$$\nabla J(\theta) = E_{\pi(a|S;\,\theta)} \big[A^{\theta}(s,a) \, \nabla \log \pi(a|S;\,\theta) \big]$$

- Use π_{θ} to collect data. When θ is updated, we have to sample training data again.
- \circ Goal: Using the sample from $\pi_{\theta'}$ to train θ .

 θ' is fixed, so we can collect a batch of sample data and then training.

Two Important Classes

- Line search methods
 - Find a direction of improvement
 - Select a step length
- Trust region methods
 - Select a trust region (analog to max step length)
 - Find a point of improvement in the region

YIKANG, GANG

Trust Region Methods

- Idea:
 - Approximate objective f with a simpler objective \tilde{f}
 - Solve $\tilde{x}^* = argmin_{\chi}\tilde{f}(x)$
- Problem: The optimum \tilde{x}^* might be in a region where \tilde{f} poorly approximates f and therefore \tilde{x}^* might be far from optimal
- Solution: restrict the search to a region where we trust \tilde{f} to approximate f well.

YIKANG, GANG

- Solve $\tilde{x}^* = argmin_{x \in trustRegion} f(x)$

Trust Region Methods

- We often optimize a surrogate objective (approximation of V)
- Surrogate objective may be trustable (close to V) only in a small region
- Limit search to small trust region

Trust Region for Policies

- Let θ be the parameters for policy $\pi_{\theta}(s|a)$
- We can define a region around θ : $\{\theta' | D(\theta, \theta') < \delta\}$ or around π_{θ} : $\{\theta' | D(\pi_{\theta}, \pi_{\theta'}) < \delta\}$ where D is a distance measure
- V often varies more smoothly with π_{θ} than θ small change in π_{θ} usually small change in V small change in θ large change in V
- Hence, define policy trust regions

Why Does Policy Gradient Work?

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t}) \hat{A}_{i,t}^{\pi}$$

- 1. Estimate $\hat{A}^{\pi}(\mathbf{s}_t, \mathbf{a}_t)$ for current policy π
- 2. Use $\hat{A}^{\pi}(\mathbf{s}_t, \mathbf{a}_t)$ to get improved policy π'

look familiar?

policy iteration algorithm:

- 1. evaluate $A^{\pi}(\mathbf{s}, \mathbf{a})$
- 2. set $\pi \leftarrow \pi'$

Policy Gradient as Policy Iteration

$$\begin{split} J(\theta') - J(\theta) &= J(\theta') - E_{\mathbf{s}_0 \sim p(\mathbf{s}_0)} \left[V^{\pi_{\theta}}(\mathbf{s}_0) \right] \\ &= J(\theta') - E_{\tau \sim p_{\theta'}(\tau)} \left[V^{\pi_{\theta}}(\mathbf{s}_0) \right] \\ &= J(\theta') - E_{\tau \sim p_{\theta'}(\tau)} \left[\sum_{t=0}^{\infty} \gamma^t V^{\pi_{\theta}}(\mathbf{s}_t) - \sum_{t=1}^{\infty} \gamma^t V^{\pi_{\theta}}(\mathbf{s}_t) \right] \\ &= J(\theta') + E_{\tau \sim p_{\theta'}(\tau)} \left[\sum_{t=0}^{\infty} \gamma^t (\gamma V^{\pi_{\theta}}(\mathbf{s}_{t+1}) - V^{\pi_{\theta}}(\mathbf{s}_t)) \right] \\ &= E_{\tau \sim p_{\theta'}(\tau)} \left[\sum_{t=0}^{\infty} \gamma^t r(\mathbf{s}_t, \mathbf{a}_t) \right] + E_{\tau \sim p_{\theta'}(\tau)} \left[\sum_{t=0}^{\infty} \gamma^t (\gamma V^{\pi_{\theta}}(\mathbf{s}_{t+1}) - V^{\pi_{\theta}}(\mathbf{s}_t)) \right] \\ &= E_{\tau \sim p_{\theta'}(\tau)} \left[\sum_{t=0}^{\infty} \gamma^t r(\mathbf{s}_t, \mathbf{a}_t) + \gamma V^{\pi_{\theta}}(\mathbf{s}_{t+1}) - V^{\pi_{\theta}}(\mathbf{s}_t) \right] \\ &= E_{\tau \sim p_{\theta'}(\tau)} \left[\sum_{t=0}^{\infty} \gamma^t A^{\pi_{\theta}}(\mathbf{s}_t, \mathbf{a}_t) \right] \end{split}$$

Policy Gradient as Policy Iteration

$$J(\theta') - J(\theta) = E_{\tau \sim p_{\theta'}(\tau)} \left[\sum_{t} \gamma^t A^{\pi_{\theta}}(\mathbf{s}_t, \mathbf{a}_t) \right]$$
 expectation under $\pi_{\theta'}$ advantage under π_{θ}

importance sampling

$$E_{x \sim p(x)}[f(x)] = \int p(x)f(x)dx$$

$$= \int \frac{q(x)}{q(x)}p(x)f(x)dx$$

$$= \int q(x)\frac{p(x)}{q(x)}f(x)dx$$

$$= E_{x \sim q(x)}\left[\frac{p(x)}{q(x)}f(x)\right]$$

$$E_{\tau \sim p_{\theta'}(\tau)} \left[\sum_{t} \gamma^{t} A^{\pi_{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] = \sum_{t} E_{\mathbf{s}_{t} \sim p_{\theta'}(\mathbf{s}_{t})} \left[E_{\mathbf{a}_{t} \sim \pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t})} \left[\gamma^{t} A^{\pi_{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \right]$$

$$= \sum_{t} E_{\mathbf{s}_{t} \sim p_{\theta'}(\mathbf{s}_{t})} \left[E_{\mathbf{a}_{t} \sim \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \left[\frac{\pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t})}{\pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \gamma^{t} A^{\pi_{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \right]$$

is it OK to use $p_{\theta}(\mathbf{s}_t)$ instead?

Bounding The Distribution Change

Claim: $p_{\theta}(\mathbf{s}_t)$ is close to $p_{\theta'}(\mathbf{s}_t)$ when π_{θ} is close to $\pi_{\theta'}$

Simple case: assume π_{θ} is a deterministic policy $\mathbf{a}_t = \pi_{\theta}(\mathbf{s}_t)$

 $\pi_{\theta'}$ is close to π_{θ} if $\pi_{\theta'}(\mathbf{a}_t \neq \pi_{\theta}(\mathbf{s}_t)|\mathbf{s}_t) \leq \epsilon$

$$p_{\theta'}(\mathbf{s}_t) = (1 - \epsilon)^t p_{\theta}(\mathbf{s}_t) + (1 - (1 - \epsilon)^t) p_{\text{mistake}}(\mathbf{s}_t)$$

probability we made no mistakes some other distribution

$$|p_{\theta'}(\mathbf{s}_t) - p_{\theta}(\mathbf{s}_t)| = (1 - (1 - \epsilon)^t)|p_{\text{mistake}}(\mathbf{s}_t) - p_{\theta}(\mathbf{s}_t)| \le 2(1 - (1 - \epsilon)^t)$$
useful identity: $(1 - \epsilon)^t \ge 1 - \epsilon t$ for $\epsilon \in [0, 1]$ $\le 2\epsilon t$

What We Get So Far?

$$\theta' \leftarrow \arg\max_{\theta'} \sum_{t} E_{\mathbf{s}_{t} \sim p_{\theta}(\mathbf{s}_{t})} \left[E_{\mathbf{a}_{t} \sim \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \left[\frac{\pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t})}{\pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \gamma^{t} A^{\pi_{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \right] \qquad \circ \nabla J(\theta) = E_{\pi'(a|S;\theta')} \left[\frac{\pi(a|S;\theta)}{\pi'(a|S;\theta')} A^{\theta'}(s, a) \nabla \log \pi(a|S;\theta) \right]$$
such that $|\pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t}) - \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})| \leq \epsilon$

for small enough ϵ , this is guaranteed to improve $J(\theta') - J(\theta)$

$$\circ \nabla J(\theta) = E_{\pi(a|S;\,\theta)} \big[A^{\theta}(s,a) \, \nabla \log \pi(a|S;\,\theta) \big]$$

$$\nabla J(\theta) = E_{\pi'(a|S;\theta')} \left[\frac{\pi(a|S;\theta)}{\pi'(a|S;\theta')} A^{\theta'}(s,a) \nabla \log \pi(a|S;\theta) \right]$$

- \circ Sample the data from θ' .
- \circ Use the data to train θ many times.

$$\circ \hat{\jmath}(\theta) = E_{\pi'(a|S;\theta')} \left[\frac{\pi(a|S;\theta)}{\pi'(a|S;\theta')} A^{\theta'}(s,a) \right]$$

PPO Algorithm (Adaptive KL Penalty)

Trust Region Policy Optimization (TRPO)

Proximal Policy Optimization (PPO)

maximize
$$\hat{\mathbb{E}}_t \left[\frac{\pi_{\theta}(a_t \mid s_t)}{\pi_{\theta_{\text{old}}}(a_t \mid s_t)} \hat{A}_t \right]$$

subject to $\hat{\mathbb{E}}_t \left[\text{KL}[\pi_{\theta_{\text{old}}}(\cdot \mid s_t), \pi_{\theta}(\cdot \mid s_t)] \right] \leq \delta.$

$$\underset{\theta}{\text{maximize }} \hat{\mathbb{E}}_t \left[\frac{\pi_{\theta}(a_t \mid s_t)}{\pi_{\theta_{\text{old}}}(a_t \mid s_t)} \hat{A}_t - \beta \operatorname{KL}[\pi_{\theta_{\text{old}}}(\cdot \mid s_t), \pi_{\theta}(\cdot \mid s_t)] \right]$$

Computation is complicated.

• Compute
$$d = \hat{\mathbb{E}}_t[\text{KL}[\pi_{\theta_{\text{old}}}(\cdot \mid s_t), \pi_{\theta}(\cdot \mid s_t)]]$$

- If $d < d_{\text{targ}}/1.5$, $\beta \leftarrow \beta/2$
- If $d > d_{\text{targ}} \times 1.5$, $\beta \leftarrow \beta \times 2$

PPOv2 Algorithm (Clip)

$$L^{CLIP}(\theta) = \hat{\mathbb{E}}_t \left[\min(r_t(\theta) \hat{A}_t, \operatorname{clip}(r_t(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_t) \right]$$

$$r_t(\theta) = \frac{\pi_{\theta}(a_t \mid s_t)}{\pi_{\theta_{\text{old}}}(a_t \mid s_t)}$$

Comparison

No clipping or penalty: $L_t(\theta) = r_t(\theta) \hat{A}_t$

Clipping: $L_t(\theta) = \min(r_t(\theta)\hat{A}_t, \text{clip}(r_t(\theta)), 1 - \epsilon, 1 + \epsilon)\hat{A}_t$

KL penalty (fixed or adaptive) $L_t(\theta) = r_t(\theta) \hat{A}_t - \beta \text{ KL}[\pi_{\theta_{\text{old}}}, \pi_{\theta}]$

algorithm	avg. normalized score		
No clipping or penalty	-0.39		
Clipping, $\epsilon = 0.1$	0.76		
Clipping, $\epsilon = 0.2$	0.82		
Clipping, $\epsilon = 0.3$	0.70		
Adaptive KL $d_{\text{targ}} = 0.003$	0.68		
Adaptive KL $d_{\text{targ}} = 0.01$	0.74		
Adaptive KL $d_{\text{targ}} = 0.03$	0.71		
Fixed KL, $\beta = 0.3$	0.62		
Fixed KL, $\beta = 1$.	0.71		
Fixed KL, $\beta = 3$.	0.72		
Fixed KL, $\beta = 10$.	0.69		

PPOv2 Pseudocode

Algorithm 1 PPO-Clip

- 1: Input: initial policy parameters θ_0 , initial value function parameters ϕ_0
- 2: **for** k = 0, 1, 2, ... **do**
- 3: Collect set of trajectories $\mathcal{D}_k = \{\tau_i\}$ by running policy $\pi_k = \pi(\theta_k)$ in the environment.
- 4: Compute rewards-to-go \hat{R}_t .
- 5: Compute advantage estimates, \hat{A}_t (using any method of advantage estimation) based on the current value function V_{ϕ_k} .
- 6: Update the policy by maximizing the PPO-Clip objective:

$$\theta_{k+1} = \arg\max_{\theta} \frac{1}{|\mathcal{D}_k|T} \sum_{\tau \in \mathcal{D}_k} \sum_{t=0}^{T} \min\left(\frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_k}(a_t|s_t)} A^{\pi_{\theta_k}}(s_t, a_t), \ g(\epsilon, A^{\pi_{\theta_k}}(s_t, a_t))\right),$$

typically via stochastic gradient ascent with Adam.

7: Fit value function by regression on mean-squared error:

$$\phi_{k+1} = \arg\min_{\phi} \frac{1}{|\mathcal{D}_k|T} \sum_{\tau \in \mathcal{D}_k} \sum_{t=0}^{T} \left(V_{\phi}(s_t) - \hat{R}_t \right)^2,$$

YIKANG, GANG

typically via some gradient descent algorithm.

8: end for

<u>PPO-PyTorch/PPO.py at master · nikhilbarhate99/PPO-PyTorch (github.com)</u>

19

Experiments in Continuous Domain

Figure 3: Comparison of several algorithms on several MuJoCo environments, training for one million timesteps.

Experiments in Atari Domain

	A2C	ACER	PPO	Tie
(1) avg. episode reward over all of training	1	18	30	0
(2) avg. episode reward over last 100 episodes	1	28	19	1

Table 2: Number of games "won" by each algorithm, where the scoring metric is averaged across three trials.

21

Reference

- 1. Schulman, John et al. "Trust Region Policy Optimization." ArXiv abs/1502.05477 (2015): n. pag.
- 2. Schulman, John et al. "Proximal Policy Optimization Algorithms." *ArXiv* abs/1707.06347 (2017): n. pag.
- 3. Proximal Policy Optimization Spinning Up documentation (openai.com)
- 4. <u>PowerPoint Presentation (berkeley.edu)</u>