First Hit Fwd Refs

Previous Doc Next Doc Go to Doc#

Generate Collection Print

L18: Entry 1 of 5

File: USPT

Nov 23, 2004

DOCUMENT-IDENTIFIER: US 6823333 B2

TITLE: System, method and apparatus for conducting a keyterm search

#### Brief Summary Text (4):

The vast amount of text and other types of information available in electronic form have contributed substantially to an "information glut." In response, researchers are creating a variety of methods to address the need to efficiently access electronically stored information. Current methods are typically based on finding and exploiting patterns in collections of text. Variations among the methods and the factions are primarily due to varying allegiances to linguistics, quantitative analysis, representations of domain expertise, and the practical demands of the applications. Typical applications involve finding items of interest from large collections of text, having appropriate items routed to the correct people, and condensing the contents of many documents into a summary form.

# <u>Detailed Description Text</u> (5):

For one embodiment, the contextual associations of a term provide contextual meaning of the term. For example, the term "fatigue" can refer to human physical tiredness such as "Fatigue impaired the person's judgment." Or "fatigue" can refer to breakdown of the structure of a material such as "Metal fatigue caused the aluminum coupling to break." A first aggregation of associations between term pairs such as: "fatigue" and "person", "fatigue" and "impaired", and "fatigue" and "judgment" can be clearly differentiated from a second aggregation of associations such as "metal" and "fatigue", "fatigue" and "aluminum", "fatigue" and "coupling", and "fatigue" and "break". Thus, when searching a database of subsets for subsets containing the notion of "fatigue" in the sense of human physical tiredness, subsets having greater similarity to the first aggregation of associations are more likely to include the appropriate sense of "fatigue", so these subsets would be retrieved. Further, the contextual associations found in the retrieved subsets can both refine and extend the contextual meaning of the term "fatigue".

# <u>Detailed Description Text</u> (8):

Relevance ranking a collection of models is a method of quantifying the degree of similarity of a first model (i.e., a criterion model) and each one of the models in the collection, and assigning a rank ordering to the models in the collection according to their degree of similarity to the first model. The same rank ordering can also be assigned, for example, to the collection of identifiers of the models in the collection, or a collection of subsets of a database represented by the models of the collection. The features of the criterion model are compared to the features of each one of the collection of other models. As will be described in more detail below, the features can include the relations and the contextual measurements, i.e. the relational metric values of the relations in the models. The collection of other models is then ranked in order of similarity to the criterion model. As an example: the criterion model is a model of a query. The criterion model is then compared to a number of models of narratives. Then each one of the corresponding narratives is ranked according to the corresponding level of similarity of that narrative's corresponding model to the criterion model. As another alternative, the criteria model can represent any level of text and combination of text, or data from the database, or combination of segments of sets of databases.

## Detailed Description Text (274):

Phrase generation is one of several methods that display phrases contained in collections of text as a way to assist a user in domain analysis or query formulation and refinement. Phrase generation, described herein, includes an implicit phrase representation that can provide all possible phrases from the database. In contrast, other methods such as Godby (1994), Gutwin, Paynter, Witten, Nevill-Manning, and Frank (1998), Normore, Bendig, and Godby (1999), Zamir and Etzioni (1999), and Jones and Staveley (1999), maintain explicit and incomplete lists of phrases. In addition, phrase generation can provide the essence of multiple, similar phrases, which can be used as queries in a phrase search. The option of using the flexible matching of phrase search allows the generated query phrases to match both identical and nearly identical phrases in the text. This ensures that inconsequential differences do not spoil the match.

#### Detailed Description Text (312):

FIG. 22D illustrates one embodiment of emphasizing the locally relevant phrases and de-emphasizing the globally relevant phrases in block 2238 of FIG. 22B. First the re-weighted model is selected in block 2260 and the processed phrases are selected in block 2262. Alternatively, a weight could also be determined for each one of the processed phrases. The weight for each one of the processed phrases could also be set to a pre-selected value such as 1. A frequency of occurrence of the phrase within the selected relevant text could also be determined and used as the phrase weight. The selected phrases are then compared to the re-weighted model in block 2264. The selected phrases are then ranked in order of relevance to the re-weighted model in block 2266. The comparison in block 2264 can be a process similar to the comparison process in keyterm search described in FIG. 10 above. Thus, each phrase is modeled as a subset of the database, and the re-weighted model is used as a criterion model. The criterion model (that is, the re-weighted model) is compared with the subset models which represent the phrases to determine the degree of similarity of the criterion model and each of the phrase models. In addition, the ranking of the phrases in block 2266 can be done using the process of ranking subsets in keyterm search described above. Thus, the phrases are ranked on their degree of <u>similarity</u> to the re-weighted model.

## Detailed Description Text (326):

The above described methods and processes of keyterm search, phrase search, phrase generation and phrase discovery have been described and illustrated in terms of information retrieval (IR) embodiments. In IR: terms are symbols or elements of a data set, subsets are collections of symbols, databases are collections of subsets, each relation is binary and links a symbol pair, and quantification of relations is based on contextual associations of symbols within subsets. Further, models are collections of symbol relations, the models can be aggregated, the models can represent subsets, databases, and queries, models can be ranked on similarity to other models, and sequentially grouped terms are derived from models and subsets.

### <u>Detailed Description Text</u> (328):

As with term pair relations in the IR embodiment, quantification of entity pair relations in the real world can also be based on contextual associations. In the real world, the scope of that context is space, time, causality, and thought. Thus, the notion of context is not limited to proximity relations among symbols within a subset. Instead, real-world context is a much broader concept, one that is more fully represented by the term "metonymy" in the sense developed by Roman Jakobson (Jakobson, R.: "Two aspects of language and two types of aphasic disturbances" (1956), (pp. 95-114) and "Marginal notes on the prose of the poet Pasternak" (1935), (pp. 301-317), in K. Pomorska and S. Rudy (Eds.), Language in Literature. Belknap Press, Cambridge, Mass., 1987). Jakobson asserted that the interpretation of a symbol or entity is derived from both its similarity to others and its contextual association with others. Thus, the contextual meaning of a symbol or entity is determined by its connections with others in the same context,

that is, by its metonymic relations with others. This notion of metonymy, of contextual meaning, is a fundamental structural component of narrative text, symbol systems, and human behavior, according to Jakobson.

Previous Doc Next Doc Go to Doc#