Misura della caratteristica I-V di un transistor BJT

Matteo Bonazzi, Massimo D'Alessandro Schmidt Turno 2, tavolo 12

17 dicembre 2022

Sommario

Misura della caratteristica I-V di un transistor BJT in configurazione a emettitore comune, in due valori della corrente di base.

Dal fit lineare dei dati nella regione attiva, per la configurazione con $I_b=-100\,\mu A$ si ottengono i valori $V_{Ea,-100\,\mu A}=(15.9\pm0.9)\,V$ e $g_{-100\,\mu A}=(1.09\pm0.06)\,m\Omega^{-1}$, per la configurazione con $I_b=-200\,\mu A$ si ottengono $V_{Ea,-200\,\mu A}=(13\pm1)V$ e $g_{-200\,\mu A}=(2.20\pm0.14)\,m\Omega^{-1}$. Si stima il guadagno del transistor $\beta=(137\pm38)$.

Indice

1	Introduzione	1
2	Materiali e strumenti	2
3	Analisi dati	9
4	Conclusioni	4
5	Appendice	Ę
	5.1 Dati sperimentali	ŀ
	5.2 Calcolo degli errori	f

1 Introduzione

Per la misura è stato utilizato un transistor BJT di tipo pnp, cioè un transistor avente emettitore e colletore fatte di semiconduttore drogato p, e base di semiconduttore drogato n; il transistor è in configurazione a base comune, con base e collettore collegati a due potenziometri e l'emettitore collegato a terra.

Si vogliono misurare la tensione di Early e la resistenza del transistor, da cui si ricava la conduttanza, e si vuole fornire una stima del guadagno in corrente del transistor; la corrente di Early corrisponde all'intercetta della retta definita dalla caratteristica I-V nella regione attiva, con l'asse delle tensioni.

Il circuito è realizzato con due potenziometri regolabili, uno regolante la corrente di base I_b con una resitenza di $100k\Omega$, e uno regolante la corrente di collettore I_c , con resitenza pari a $1k\Omega$, come in Figura 1.

Inizialmente si misura la resistenza di base tramite il multimetro, fissandola a $-50\mu A$, per non bruciare il transistor, e poi si fissa I_b al valore desiderato, misurando la corrente con il multimetro collegato tra i punti

B e D. Prima di misurare la caratteristica è necessario collegare il multimetro ai punti A e C, e l'oscilloscopio al punto C (e al ground); si procede variando la resistenza del potenziometro collegato al collettore e si registrano i valori di voltaggio, dati dall'oscilloscopio, e i valori di corrente, forniti dal multimetro. È stato scelto di effettuare la maggior parte delle misure nel range $-1 \sim -3V$, corrispondente alla regione attiva del transistor, per avere una miglior stima del fit; poichè è noto che tutte le grandezze di tensione e corrente misurate sul transistor in questa configurazione sono negative, nel seguito si sceglie di tralasciare il loro segno.

Figura 1: Foto del circuito realizzato: in alto il potenziometro collegato al collettore, in basso quello collegato alla base; l'emettitore è collegato a terra.

2 Materiali e strumenti

Sono stati utilizzati:

- \bullet Potenzio
emtro da $1k\Omega$
- $\bullet\,$ Potenziometro da $100k\Omega$
- Multimetro (Metex M-3650D)
- Oscilloscopio (IsoTech ISR622)
- Alimentatore a bassa tensione
- Transistor pnp 2N3906(BU) al Silicio, in configurazione a emettitore comune

3 Analisi dati

Per V_{ce} nel range 1-4V, cioè nella regione attiva del transistor, si opera un fit lineare secondo la funzione:

$$V_{ce} = a + bI_c \tag{1}$$

Dove a rappresenta la tensione di Early V_{Ea} , e b
 rappresenta la resistenza del circuito.

Caratteristiche I-V $-I_c(mA)$ 35 30 25 20 15 Punti sperimentali $I_b = 100 \mu A$ 10 $I_b = 200 \mu A$ Fit lineare a $100\mu A$ Fit lineare a $200\mu A$ 500 1000 1500 2000 2500 3000 3500 $-V_{ce}(mV)$

Figura 2: Grafico delle caratterste I-V del transistor, nelle due configurazioni delle correnti di base I_b ; per maggiore chiarezza grafica, di tutte la quantità è graficato l'opposto

Dal fit si ottengono i seguenti valori:

$$V_{Ea,-100 \mu A} = (15.9 \pm 0.9) V$$

$$R_{-100 \mu A} = (903 \pm 50) \Omega$$

$$V_{Ea,-200 \mu A} = (13 \pm 1) V$$

$$R_{-200 \mu A} = (458 \pm 31) \Omega$$
(2)

Dalle stime fornite dal fit è possibile ricavare i valori delle conduttanze, che risultano essere:

$$g_{-100 \,\mu A} = (1.09 \pm 0.06) \, m\Omega^{-1}$$

 $g_{-200 \,\mu A} = (2.20 \pm 0.14) \, m\Omega^{-1}$ (3)

Definendo il guadagno del trasinstor, a tensione fissata, come:

$$\beta = \frac{\Delta I_c(V)}{\Delta I_b} \tag{4}$$

è possibile calc
larne il valore a $V_{ce}=3\ V$ che risulta pari a

$$\beta = (137 \pm 38) \tag{5}$$

4 Conclusioni

Il guadagno stimato per il transistor è pari a $\beta = (137 \pm 38)$, mentre le tensioni di Early e i valori della conduttanza a $I_b = -100 \mu A$ sono $V_{Ea,-100 \,\mu A} = (15.9 \pm 0.9) \, V$ e $g_{-100 \,\mu A} = (1.09 \pm 0.06) \, m \Omega^{-1}$; a $I_b = -200 \, \mu A$ si ha $V_{Ea,-200 \,\mu A} = (13 \pm 1) \, V$ e $g_{200 \,\mu A} = (2.20 \pm 0.14) \, m \Omega^{-1}$.

I valori ottenuti per le tensioni di Early si si discostano dal range tipico di valori (50-100 V) per transistor BJT, effetto probabilmente dovuto alla grande variabilità della tensione di Early in base alla struttura interna e al modello di transistor.

5 Appendice

5.1 Dati sperimentali

Nella configurazione con $I_b=-200\mu A,$ si misurano i seguenti valori per V_{ce} e I_c :

17 (17)	Errore V	Risoluzione	Fondo scala
$V_{ce} (\mathrm{mV})$	(mV)	(mV)	(mV/div)
4000	160	200	1000
3800	150	200	1000
3600	150	200	1000
3400	143	200	1000
3200	139	200	1000
3000	135	200	1000
2900	100	200	500
2700	95	200	500
2500	90	100	500
2400	88	100	500
2200	83	100	500
2000	78	100	500
1900	76	100	500
1700	71	100	500
1500	67	100	500
1400	65	100	500
1200	41	40	200
1120	39	40	200
1000	36	40	200
800	31	40	200
720	29	40	200
500	18	20	100
400	16	20	100
300	10	10	50
200	7.8	10	50
50	5.2	10	50

$I_c \text{ (mA)}$	errore I_c	Risoluzione	Fondo scala
16 (11111)	(mA)	(mA)	(mA)
36.9	0.54	0.1	200
36.5	0.54	0.1	200
36	0.53	0.1	200
35.6	0.53	0.1	200
35.1	0.52	0.1	200
34.7	0.52	0.1	200
34.6	0.52	0.1	200
34.2	0.51	0.1	200
33.6	0.50	0.1	200
33.6	0.50	0.1	200
33.1	0.50	0.1	200
32.5	0.49	0.1	200
32.5	0.49	0.1	200
32	0.48	0.1	200
31.4	0.48	0.1	200
31.2	0.47	0.1	200
30.8	0.47	0.1	200
30.6	0.47	0.1	200
30.2	0.46	0.1	200
29.8	0.46	0.1	200
28.9	0.45	0.1	200
26.5	0.42	0.1	200
24.4	0.39	0.1	200
22	0.36	0.1	200
17.08	0.095	0.01	20
4.5	0.033	0.01	20

Tabella 1: Valori di V_{ce} e I_c , per $I_b = -200 \,\mu A$

Nella configurazione con $I_b=-100\mu A,$ si misurano i seguenti valori per V_{ce} e I_c :

$V_{ce} (\mathrm{mV})$	Errore V	Risoluzione	Fondo scala
	(mV)	(mV)	(mV/div)
4000	156	200	1000
3800	152	200	1000
3600	147	200	1000
3400	143	200	1000
3200	108	200	1000
3000	135	200	1000

$I_c \text{ (mA)}$	errore I_c	Risoluzione	Fondo scala
I_c (IIIA)	(mA)	(mA)	(mA)
21.7	0.36	0.1	200
21.6	0.39	0.1	200
21.3	0.36	0.1	200
21.1	0.35	0.1	200
21	0.35	0.1	200
21	0.35	0.1	200

2900	100	100	500
2700	95	100	500
2500	90	100	500
2400	87	100	500
2200	83	100	500
2000	78	100	500
1900	76	100	500
1700	71	100	500
1500	67	100	500
1400	65	100	500
1200	41	50	200
1080	38	50	200
1000	36	50	200
800	31	50	200
720	29	50	200
500	18	20	100
400	15	20	100
300	10	10	50
200	8	10	50
50	5	10	50
		TD 1 11 6	X 7 1 · 1 · T 7

20.7	0.35	0.1	200
20.4	0.34	0.1	200
20.4	0.34	0.1	200
20.2	0.34	0.1	200
19.96	0.11	0.01	20
19.84	0.11	0.01	20
19.72	0.11	0.01	20
19.49	0.11	0.01	20
19.26	0.11	0.01	20
19.14	0.11	0.01	20
18.81	0.10	0.01	20
18.69	0.10	0.01	20
18.58	0.10	0.01	20
18.42	0.10	0.01	20
18.29	0.10	0.01	20
17.74	0.099	0.01	20
17.11	0.096	0.01	20
15.78	0.089	0.01	20
12.46	0.072	0.01	20
3.19	0.026	0.01	20

Tabella 2: Valori di V_{ce} e I_c , per $I_b = -100 \,\mu A$

5.2 Calcolo degli errori

Per il calcolo degli errori sulle correnti, si fa riferimento alle informazioni fornite dal costruttore del multimetro:

MODEL	FUNCTION	RANGE	ACCURACY	RESOLUTION
M-3610D		200 uA	$\pm 0.5\%$ of rdg +1 dgt	0.1 uA
M-3630D		2 mA		1 uA
M-3650D	DC CURRENT	20 mA		10 uA
		200 mA	$\pm 1.2\%$ of rdg +1 dgt	100 uA
		20 A	±2.0% of rdg +5 dgt	100 mA
		200 uA	$\pm 1.0\%$ of rdg +3 dgts	0.1 uA
		2 mA		1 uA
	AC CURRENT	20 mA		10 uA
		200 mA	$\pm 1.8\%$ of rdg +5 dgts	100 uA
		20 A	±3.0% of rdg +5 dgts	10 mA

Per il calcolo degli errori sul multimetro, si utilizza la seguente formula:

$$\sigma = \sqrt{\sigma_c^2 + \sigma_l^2 + \sigma_z^2} \tag{6}$$

con $\sigma_c^2 = misura * 0.03$ errore del costruttore, $\sigma_l^2 = \frac{fondoscala}{5} * 1/2$ errore sulla lettura (con apprezabilità di mezza tacchetta sull'oscilloscopio) e $\sigma_z^2 = \frac{fondoscala}{5} * 1/2$ errore sullo zero.