Examenul național de bacalaureat 2021

Proba E. c) Matematică *M şt-nat*

BAREM DE EVALUARE ȘI DE NOTARE

Testul 1

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$a = 3 + 4\sqrt{3} - (2 + \sqrt{3})^2 = 3 + 4\sqrt{3} - (7 + 4\sqrt{3}) =$	3 p
	$=3+4\sqrt{3}-7-4\sqrt{3}=-4$, care este număr întreg	2p
2.	$f(a) = g(a) \Leftrightarrow 2a + 3 = 4a^2 + 2a \Leftrightarrow a^2 = \frac{3}{4}$	3 p
	$a = -\frac{\sqrt{3}}{2} \text{sau } a = \frac{\sqrt{3}}{2}$	2p
3.	$2^{x^2+4x+2} = 2^6 \cdot 2^x \Leftrightarrow x^2 + 4x + 2 = 6 + x \Leftrightarrow x^2 + 3x - 4 = 0$	3 p
	x = -4 sau $x = 1$	2p
4.	Mulțimea A are 5 elemente, deci sunt 5 cazuri posibile	2p
	Numerele a din mulțimea A care verifică inegalitatea $\sqrt{a^2 - 2a + 1} \ge 3$ sunt -2 și 4, deci sunt 2 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{2}{5}$	1p
5.	$MQ \parallel NP \Rightarrow m_{MQ} = m_{NP}$, deci $m_{MQ} = 4$	3p
	Ecuația dreptei MQ este $y-3=4(x-2)$, deci $y=4x-5$	2p
6.	$\frac{BC}{\sin A} = \frac{AB}{\sin B} = \frac{AB}{\sin C} = 2R \text{ si, cum } R = 5 \text{, obținem } \sin A = \frac{BC}{10} \text{, } \sin B = \frac{AB}{10} \text{ si } \sin C = \frac{AB}{10}$	3p
	$\sin A \cdot \sin B \cdot \sin C = \frac{BC}{10} \cdot \frac{AC}{10} \cdot \frac{AB}{10} = \frac{AB \cdot AC \cdot BC}{1000}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(1,0) = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix} \Rightarrow \det(A(1,0)) = \begin{vmatrix} 1 & -1 \\ 1 & -1 \end{vmatrix} =$	2p
	=-1-(-1)=0	3 p
b)	$\det(A(a,b)) = \begin{vmatrix} a & a-2 \\ b+1 & b-1 \end{vmatrix} = 2(b-a+1), \text{ pentru orice numere reale } a \text{ şi } b$	2p
	$a \in (-\infty,0)$ și $b \in (0,+\infty) \Rightarrow b-a+1>1 \Rightarrow \det(A(a,b)) \neq 0$, deci $A(a,b)$ este inversabilă	3 p
c)	$A(1,3) = \begin{pmatrix} 1 & -1 \\ 4 & 2 \end{pmatrix}$, $\det(A(1,3)) = 6$, $\det(A(1,3$	3р
	$X = (A(1,3))^{-1} \cdot A(2,1) \text{ si, cum } A(2,1) = \begin{pmatrix} 2 & 0 \\ 2 & 0 \end{pmatrix}, \text{ obtinem } X = \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix}$	2p

Ministerul Educației Centrul Național de Politici și Evaluare în Educație

2.a)	$1 \circ (-1) = 3 \cdot 1 \cdot (-1) - (1 + (-1)) + \frac{2}{3} =$	2p
	$=-3+\frac{2}{3}=-\frac{7}{3}$	3p
b)	$x \circ y = 3xy - x - y + \frac{1}{3} + \frac{1}{3} = 3x\left(y - \frac{1}{3}\right) - \left(y - \frac{1}{3}\right) + \frac{1}{3} =$	3p
	$= \left(y - \frac{1}{3}\right)(3x - 1) + \frac{1}{3} = 3\left(x - \frac{1}{3}\right)\left(y - \frac{1}{3}\right) + \frac{1}{3}, \text{ pentru orice numere reale } x \text{ si } y$	2p
c)	$x \circ \frac{1}{3} = \frac{1}{3}$ și $\frac{1}{3} \circ y = \frac{1}{3}$, pentru orice numere reale x și y	2p
	$1 \circ \frac{1}{\sqrt{2}} \circ \frac{1}{\sqrt{3}} \circ \dots \circ \frac{1}{\sqrt{2021}} = \left(\left(1 \circ \frac{1}{\sqrt{2}} \circ \frac{1}{\sqrt{3}} \circ \dots \circ \frac{1}{\sqrt{8}} \right) \circ \frac{1}{3} \right) \circ \frac{1}{\sqrt{10}} \circ \dots \circ \frac{1}{\sqrt{2021}} =$	3p
	$=\frac{1}{3}\circ\left(\frac{1}{\sqrt{10}}\circ\dots\circ\frac{1}{\sqrt{2021}}\right)=\frac{1}{3}$	Эр

SUBIECTUL al III-lea

(30 de puncte)

SUDII	(So de pui	ncie
1.a)	$f'(x) = 1' - \frac{1' \cdot (x^2 + 1) - 1 \cdot (x^2 + 1)'}{(x^2 + 1)^2} =$	2p
	$= -\frac{-2x}{(x^2+1)^2} = \frac{2x}{(x^2+1)^2}, \ x \in \mathbb{R}$	3р
b)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(1 - \frac{1}{x^2 + 1} \right) = 1 \Rightarrow y = 1 \text{ este ecuația asimptotei spre } +\infty \text{ la graficul funcției } f \text{ , deci panta asimptotei spre } +\infty \text{ la graficul funcției } f \text{ este egală cu } 0$	3р
	Panta dreptei de ecuație $y = 2021$ este egală cu 0, deci asimptota spre $+\infty$ la graficul funcției f și dreapta de ecuație $y = 2021$ sunt paralele, deoarece au pante egale	2p
c)	$f''(x) = \frac{2(1-3x^2)}{(x^2+1)^3}, x \in \mathbb{R} \text{ si } f''(x) = 0 \Leftrightarrow x = -\frac{1}{\sqrt{3}} \text{ sau } x = \frac{1}{\sqrt{3}}$	2p
	$f''(x) \le 0$, pentru orice $x \in \left(-\infty, -\frac{1}{\sqrt{3}}\right]$, $f''(x) \ge 0$, pentru orice $x \in \left[-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right]$ şi $f''(x) \le 0$, pentru orice $x \in \left[\frac{1}{\sqrt{3}}, +\infty\right)$, deci $x = -\frac{1}{\sqrt{3}}$ şi $x = \frac{1}{\sqrt{3}}$ sunt punctele de inflexiune ale funcției f	3р
2.a)	$\int_{1}^{2} \frac{f(x)}{\sin x} dx = \int_{1}^{2} \frac{e^{x} \sin x}{\sin x} dx = \int_{1}^{2} e^{x} dx =$	2p
	$\begin{vmatrix} e^{x} & e^{2} & e^{2} - e = e(e - 1) \\ e^{\pi} & e^{\pi} & \pi & \pi \end{vmatrix} = e^{\pi} e^{\pi}$	3p
b)	$\int_{0}^{\frac{\pi}{2}} e^{x} \sin x dx = e^{x} \sin x \left \frac{\pi}{2} - \int_{0}^{\frac{\pi}{2}} e^{x} (\sin x)' dx \right = e^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} e^{x} \cos x dx = e^{\frac{\pi}{2}} - e^{x} \cos x \left \frac{\pi}{2} - \int_{0}^{\frac{\pi}{2}} e^{x} \sin x dx \right = e^{x} \sin x dx$	3р
	$= e^{\frac{\pi}{2}} + 1 - \int_{0}^{\frac{\pi}{2}} e^{x} \sin x dx, \det \int_{0}^{\frac{\pi}{2}} e^{x} \sin x dx = \frac{e^{\frac{\pi}{2}} + 1}{2}$	2p
Probă sc	crisă la matematică <i>M_şt-nat</i>	estul 1
	de evaluare și de notare teoretică, profilul real, specializarea științe ale naturii Pagina 2 din 3	

Ministerul Educației Centrul Național de Politici și Evaluare în Educație

$$\begin{vmatrix}
\frac{\pi}{2} f\left(x - \frac{\pi}{2}\right) \\
\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} f\left(x - \frac{\pi}{2}\right) \\
f\left(x\right) dx = \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} e^{x - \frac{\pi}{2}} \sin\left(x - \frac{\pi}{2}\right) \\
e^{x} \sin x dx = -e^{-\frac{\pi}{2}} \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \cos x dx = -\frac{1}{\sqrt{e^{\pi}}} \cdot \ln|\sin x| \frac{\pi}{2} = \\
= -\frac{1}{\sqrt{e^{\pi}}} \left(\ln\left(\sin\frac{\pi}{2}\right) - \ln\left(\sin\frac{\pi}{6}\right)\right) = -\frac{1}{\sqrt{e^{\pi}}} \left(\ln 1 - \ln\frac{1}{2}\right) = -\frac{\ln 2}{\sqrt{e^{\pi}}}$$
2p