

آزمایش ۱۲

روش ارسال پیش گزارش

آزمایش ۱۳

تقویت کننده امیتر-مشترک

مدار زیر را بر روی برد بورد مونتاژ کرده و جدول مربوطه را کامل کنید. شرایط منبع ورودی V_s باید به گونه ای باشد، که خروجی یک شکل موج سینوسی متقارن و بدون اعوجاج باشد (فرکانس منبع مقداری باشد که خروجی بیشترین دامنه خود را دارا باشد).

آزمایش ۱۳

تقویت کننده امیتر-مشترک

$$A_{V_1} = \frac{V_0(NL)}{V_i} =$$

$$A_{V_2} = \frac{V_0(FL)}{V_i} =$$

$$A_{V_3} = \frac{V_O(NL)}{V_S} =$$

$$A_{V_4} = \frac{V_O\left(FL\right)}{V_S} =$$

۲. بهره ولتاژ، بهره جریان، مقاومت ورودی، مقاومت خروجی

$V_o(NL)$	V _o (FL)		V_s	V _i
$A_{vs}(NL)$			$A_{vs}(FL)$	
$A_{vs} = \frac{V_o(NL)}{V_s} =$			$A_{vs} = \frac{V_o(FL)}{V_s} =$	
I _o			\mathbf{I}_i	A_i
$I_o = \frac{V_o(NL)}{R_c} = I_i = \frac{V_s - I_s}{R_s}$		$I_i = \frac{V_s - V_i}{R_s}$	=	$A_i = \frac{I_o}{I_i} =$
R_i			R _o	
$R_i = \frac{V_i}{I_i} =$	$R_{o} = \frac{V_{o}(NL) - V_{o}(FL)}{V_{o}(FL)}$		$\frac{V_o(FL)}{L)} \times R_L =$	

BJT Small-Signal Analysis

ترانزیستورهای BJT در مقابل سیگنال های کوچک(تقویت کننده ها)

در مدار زیر با فرض اینکه سیگنال ورودی کوچک باشد و ظرفیت خازن ها نیز بزرگ مطلوب است

COMMON-EMITTER

نام تقویت کننده: امیتر مشترک

شرایط لازم برای تقویت کردن:

۱- ترانزیستور در ناحیه فعال(خطی) باشد. ۲- سیگنال ورودی کوچک باشد.

$$V_i = V_m \sin \omega t$$
$$V_m \langle V_T$$

خازن در حالت AC اتصال کوتاه

خازن در حالت DC اتصال باز

 C_E :خازن بای پس

 $egin{array}{l} C_1 & \vdots \\ C_2 & \end{array}$

$$V_{CC} = 10^V$$

$$R_1 = 20^{K\Omega}$$

$$R_2 = 10^{K\Omega}$$

$$R_C = 1.2^{K\Omega}$$

$$R_E = 1^{K\Omega}$$

$$\beta = 120$$

$$V_T = 26^{mV}$$

$$r_o = \infty$$

$$R_{th} = 20^K | 10^K = 6.66^{K\Omega}$$

$$V_{th} = \frac{10^K}{10^K + 20^K} \times 10 = 3.33^V$$

$$R_{th} = 20^K | 10^K = 6.66^{K\Omega}$$

 $V_{th} = \frac{10^K}{10^K + 20^K} \times 10 = 3.33^V$

$$I_B=20.6^{\mu A}$$
 DC $I_C=eta I_B=2.47^{mA}$ $I_E=(eta+1)I_B=2.49^{mA}$

$$V_{CE} = 4.55^{V}$$

$$r_{\pi} = \frac{V_T}{I_B} = \frac{26^m}{20.6^{\mu}} = 1.262^{k\Omega}$$

$$g_m = \frac{I_c}{V_T} = \frac{2.47^m}{26^m} = 95^m$$

$$V_i = V_m \sin \omega t$$
$$V_m \langle V_T$$

شرایط لازم برای تقویت کردن:

۱- ترانزیستور در ناحیه فعال(خطی) باشد. ۲- سیگنال ورودی کوچک باشد.

$$g_m = \frac{I_C}{V_T}$$

$$r_{\pi} = \frac{V_T}{I_B}$$

$$r_o = \frac{|V_A|}{I_C}$$

$$r_{\pi} = \frac{\beta}{g_m}$$

نحلیل AC

1)...
$$A_V = \frac{V_O}{V_i} = \frac{-g_m V_{\pi} R_C}{V_{\pi}} = -g_m R_C = -114$$

$$2)...Z_i = R_1 | |R_2| | |r_{\pi}|$$

$$3)...Z_O \bigg|_{V_i=0} = R_C$$

4)...
$$A_i = \frac{I_o}{I_i} = -A_V \frac{Z_i}{Z_o}$$

$$A_{i} = \frac{I_{o}}{I_{i}} = \frac{-\frac{V_{o}}{Z_{o}}}{\frac{V_{i}}{Z_{i}}} = \frac{-V_{o}}{V_{i}} \times \frac{Z_{i}}{Z_{o}} = -A_{V} \frac{Z_{i}}{Z_{o}}$$

1)...
$$A_V = \frac{V_O}{V_i} = \frac{-g_m V_{\pi} R_c}{V_{\pi}} = -g_m R_c = -114$$

2)... $Z_i = R_1 | |R_2| |r_{\pi}$ 3)... $Z_i = R_1 | |R_2| |r_{\pi}$

$$2)...Z_i = R_1 | |R_2| | |r_{\pi}|$$

$$3)...Z_O \bigg|_{V_i=0} = R_C$$

4)...
$$A_i = \frac{I_o}{I_i} = -A_V \frac{Z_i}{Z_o}$$