

N U M E R I K P R O J E K T

Titel ggf. mehrzeilig

ausgeführt am

unter der Anleitung von

Name des Betreuers

durch

Markus Rinke

Matrikelnummer: 1402581

Stefan Schrott

Matrikelnummer: 1607388

Inhaltsverzeichnis

Inhaltsverzeichnis

1	Grundlagen	1
2	Implementierung von Aufgabe a 2.1 Tests	2
3	Implementierung von Aufgabe b Version 1 3.1 Tests	2
4	Implementierung von Aufgabe b Version 2 4.1 Tests	2
5	Implementierung von adaptiver Schrittweite 5.1 Tests	2
6	6.2 Details der Implementierung	2 3 4
7	Anhang: Code-Listings	5

1 Grundlagen

Die Grundlage für die folgenden Überlegung ist der Hauptsatz über implizite Funktionen im Spezialfall von Funktionen $F: A \times B \to \mathbb{R}$, wobei A und B der Einfachheit halber offene Intervalle seien

Satz: Seien a < b sowie $c < d \in \mathbb{R}$ und $F : (a,b) \times (c,d) \to \mathbb{R}$ stetig differenzierbar. Seien $x_0 \in (a,b)$ und $y_0 \in (c,d)$, sodass $F(x_0,y_0) = 0$ und $\frac{\partial F}{\partial y}(x_0,y_0) \neq 0$.

Dann existieren $a_0, b_0 \in \mathbb{R}$ mit $a < a_0 < x_0 < b_0 < b$ und eine stetig differenzierbare Funktion $f: (a_0, b_0) \to \mathbb{R}$ mit $f(x_0) = y_0$, sodass

$$\forall x \in (a_0, b_0) : F(x, f(x)) = 0$$

und

$$\forall x \in (a_0, b_0) : f'(x) = -\frac{\frac{\partial F}{\partial x}(x, f(x))}{\frac{\partial F}{\partial y}(x, f(x))}.$$
 (1)

Beweis: Unter den gegebenen Voraussetzungen ist der Hauptsatz über implizite Funktionen anwendbar und liefert Umgebungen U von x_0 und V von y_0 und eine Funktion $f: U \to V$ mit den geforderten Eigenschaften. Da x_0 ein innere Punkt von U ist, enthält U ein Intervall (a_0, b_0) mit den geforderten Eigenschaften.

Die Umgebung $V \subseteq \mathbb{R}$ in der Zielmenge von f kann durch ganz \mathbb{R} ersetzt werden, da wir nur behauptet haben, dass y = f(x) eine Lösung von $F(x, \cdot) = 0$ ist, allerdings nicht dass diese eindeutig ist.

Satz: Sei unter den Vorraussetzungen des vorherigen Satz F zwei mal stetig differenzierbar.

Dann ist $f \in C^2((a_0, b_0))$ mit f''(x) =

$$\frac{-\frac{\partial^2 F}{\partial^2 x}(x,f(x))\left(\frac{\partial F}{\partial y}(x,f(x))\right)^2 + 2\frac{\partial^2 F}{\partial x \partial y}(x,f(x))\frac{\partial F}{\partial x}(x,f(x))\frac{\partial F}{\partial y}(x,f(x)) - \frac{\partial^2 F}{\partial^2 y}(x,f(x))\left(\frac{\partial F}{\partial x}(x,f(x))\right)^2}{\left(\frac{\partial F}{\partial y}(x,f(x))\right)^3}.$$

Außerdem gilt:

$$\forall x \in (a_0, b_0) \exists \xi \in (x_0, x) \cup (x, x_0) : f(x) = y_0 + \frac{\frac{\partial F}{\partial x}(x_0, y_0)}{\frac{\partial F}{\partial y}(x_0, y_0)} (x - x_0) + \frac{f''(\xi)}{2} (x - x_0)^2.$$

Beweis: Aus $F \in \mathbb{C}^2$ folgt mit der Kettenregel und Einsetzen der Darstellung (1) für f':

$$\begin{split} \frac{d}{dx} \left(\frac{\partial F}{\partial x}(x, f(x)) \right) &= \left(\frac{\partial^2 F}{\partial^2 x}(x, f(x)), \frac{\partial^2 F}{\partial x \partial y}(x, f(x)) \right) \cdot \begin{pmatrix} 1 \\ f'(x) \end{pmatrix} \\ &= \frac{\partial^2 F}{\partial^2 x}(x, f(x)) - \frac{\partial^2 F}{\partial x \partial y}(x, f(x)) \frac{\frac{\partial F}{\partial x}(x, f(x))}{\frac{\partial F}{\partial y}(x, f(x))}. \end{split}$$

Für $\frac{d}{dx}\left(\frac{\partial F}{\partial y}(x,f(x))\right)$ erhält man analog eine ähnliche Darstellung. Damit kann man den Ausdruck (1) mithilfe der Quotientenregel differenzieren und erhält durch Erweitern mit $\frac{\partial F}{\partial y}(x,f(x))$ obige Darstellung für f''.

Die zweite Aussage folgt aus dem Satz von Taylor und der Tatsache, dass f'' als Komposition stetiger Funktionen stetig ist.

2 Implementierung von Aufgabe a

- 2.1 Tests
- 3 Implementierung von Aufgabe b Version 1
- 3.1 Tests
- 4 Implementierung von Aufgabe b Version 2
- 4.1 Tests
- 5 Implementierung von adaptiver Schrittweite
- 5.1 Tests

6 Implementierung von Niveaulinien

6.1 Problemstellung und Idee der Implementierung

Die bisherigen Algorithmen finden Paare $(x_i, y_i)_{i=1,...N}$, sodass für $F(x_i, y_i) = 0$ für i = 1,..., N und stellen damit die Nullstellenmenge von F (oder nur einen Teil davon) näherungsweise graphisch dar.

Im Folgenden sind $c_1, \ldots, c_k \in \mathbb{R}$ gegeben und es sollen für $j = 1, \ldots, k$ die Teilmengen von $\{(x,y) \in \mathbb{R}^2 : F(x,y) = c_j\}$ graphisch dargestellt werden.

Grundsätzlich ist dieses Problem einfach auf die vorherigen Algorithmen zurückzuführen, indem man die Nullstellenmengen der Funktionen $F_j(x,y) := F(x,y) - c_j$ graphisch darstellt.

Bei den vorherigen Algorithmen musste ein Startwert $(x_0, y_0) \in \mathbb{R}^2$ übergeben werden, für den gilt $F(x_0, y_0) = 0$, also müsste in diesem Fall k Startwerte $(x_j, y_j) \in \mathbb{R}^2$ übergeben werden, sodass

$$F(x_i, y_i) = c_i$$
 $j = 1, \dots k$.

Dies stellt sich in der Praxis als sehr benutzerunfreundlich heraus, da die Gleichungen $F(x_j, y_j) = c_j$ im Allgemeinen nicht einfach zu lösen sind.

Aus diesem Grund wurde ein Algorithmus implementiert, der in einem gegebenen Intervall $[a,b] \times [c,d] \subseteq \mathbb{R}^2$ entsprechende (x_j,y_j) sucht und anschließend für $j=1,\ldots,k$ einen der vorherigen Algorithmen mit der Funktion F_j und den Startwerten (x_j,y_j) aufruft.

Der wesentliche Schritt ist also, nach Möglichkeit Nullstellen von F_j in $[a,b] \times [c,d]$ zu finden. Das Newton-Verfahren im \mathbb{R}^n steht hier nicht zur Verfügung, da nur es für Funktionen $G: \mathbb{R}^n \to \mathbb{R}^n$ anwendbar ist. Wegen der Regularitätsforderung an die Jacobi-Matrix von G, ist es auch nicht möglich etwa $G(x,y):=\binom{F(x,y)}{0}$ oder $G(x,y):=\binom{F(x,y)}{F(x,y)}$ zu setzen und damit das Newton-Verfahren zu verwenden.

Es wird daher folgende Strategie verwendet:

- Sei $m := \binom{m_x}{m_y} := \binom{(a+b)/2}{(c+d)/2}$. Berechne F(m). Falls F(m) = 0 sind wir fertig, falls F(m) < 0 betrachte -F. Wir können also im folgenden annehmen F(m) > 0.
- Werte mithilfe geeigneter Schleifen F an verschiedenen $(x,y) \in [a,b] \times [c,d]$ aus, bis (x,y) mit $F(x,y) \leq 0$ gefunden wird. Tritt dies nicht ein, bricht der Algorithmus an der Stelle ohne Ergebnis ab. Ist F(x,y) = 0 sind wir fertig. Wir können also im Folgenden annehmen, dass F(x,y) < 0 ist.
- Sei nun $\Psi: [0,1] \to \mathbb{R}^2: t \mapsto \binom{m_x}{m_y} + t\binom{x-m_x}{y-m_y}$. Dann ist $G:=\Psi \circ F: [0,1] \to \mathbb{R}$ stetig mit G(0) > 0 und G(1) < 0. Mithilfe des Bisektionsverfahrens kann man eine Nullstelle t_0 von G finden.
- Dann ist $\Psi(t_0) \in [a, b] \times [c, d]$ eine Nullstelle von F.

Diese Strategie hat in unseren Tests immer die Nullstellen gefunden. Nullstellen die gleichzeitig Extremstellen der Funktion F sind, können damit nur durch großen Zufall gefunden werden, da die Funktion bei ihnen keinen Vorzeichenwechsel macht. Das ist kein großer Mangel, da diese Nullstellen aber unterinteressant sind, denn dort ist $\frac{\partial F}{\partial x} = 0$ und $\frac{\partial F}{\partial y} = 0$, was sie als Startwerte eher unbrauchbar macht.

6.2 Details der Implementierung

Es wurde also eine Funktionen der Art

nivlines (F, dFx, dFy, Z, A, B, C, D, Steps, StepWidth)

implementiert. Dabei sind:

- Z ein Vektor ist, der die Funktionswerte enthält, zu denen Niveaulinien geplottet werden sollen. Bezeichne k im Folgenden die Länge von Z).
- A, B, C, D jeweils Vektoren der Länge k, sodass ein Startwert für die Niveaulinie zu Z(j) im Intervall [A(j), B(j)]×[C(j), D(j)] gesucht wird. Alternativ können auch Skalare übergeben werden, die wie Vektoren mit konstanten Einträgen behandelt werden.
- ullet Steps und StepWidth sind ebenfalls Vektoren der Länge k oder Skalare, die die Schrittanzahl bzw. Schrittweite übergeben.

Die Implementierung der Funktion sieht dann im Wesentlichen (Assertions etc. wurden im

Listing weggelassen) so aus:

```
1 \mid  function [ X ,Y ] =nivlines4 (F, dFx, dFy, Z, A, B, C, D, Steps,
      StepWidth)
2
  X = cell(k,1);
4|Y = cell(k,1);
6 \times 0 = zeros(1,k);
  Y0=zeros(1,k);
  for j = 1:k
9
      X{j}=zeros(Steps(j)+1,1);
10
      Y{j}=zeros(Steps(j)+1,1);
11
      Fj = Q(x,y)F(x,y) - Z(j);
12
       [XO(j),YO(j),err]=findZero(Fj,A(j),B(j),C(j),D(j));
13
      if err ~= 0 % kein Startwert gefunden
15
           X{j}=zeros(0); %leerer Vektor, damit nichts geplotet
16
     wird
           Y\{j\}=zeros(0);
17
18
      else
           [X{j},Y{j}] = implicitCurveXXX(Fj, dFx, dFy, XO(j), YO(
19
     j), Steps(j), StepWidth(j) );
       end
20
  end
21
22
  end
```

Listing 1: Ich bin ein Beispiel-Lisitng

Da Niveaulinien zu unterschiedlichen Funktionswerten sehr unterschiedlich lang sein können, ist es nicht sinnvoll, alle das die x- bzw. y-Werte der Punkte für die einzelnen Niveaulinien in Matrix $X \in \mathbb{R}^{k \times maxSteps}$ zu schreiben. Stattdessen bietet sich ein cell-Arays an, der k Vektoren der Länge Steps enthält. Der Zugriff auf die einzelnen Vektoren erfolgt durch $X\{j\}$.

6.3 Tests

Sei

$$F(x,y) := \frac{1}{x^2 + y^2 + 10^{-2}} + \frac{1}{(x - 0.5)^2 + y^2 + 10^{-2}}$$

Sei Z := (10, 15, 20, 25, 800/29, 30, 40, 60, 80, 30, 40, 60, 80) der Vektor der Funktionswerte, für die Niveau-Linien geplottet werden sollen. Für alle Werte wurden Startpunkte im Intervall $[0, 1/4] \times [0, 1]$ gesucht, für jene Werte, die im Vektor Z doppelt vorkommen, wurde zusätzlich im Intervall $[1/2, 3/4] \times [0, 1]$ nach einem Startwert gesucht. Die Motivation für die Auswahl des Wertes 800/29 ist, dass F(1/4, 0) = 800/29 und DF(1/4, 0) = (0, 0).

Die Schrittweite betrug $2\cdot 10^{-3}$ die Schrittanzahl 2000 für die ersten fünf Niveaulinien bzw. 500 für die Restlichen.

7 Anhang: Code-Listings

```
function [x0,y0,err] = findZero (F, a, b, c, d)
2 \% finde (x0,y0) in [a,b]x[c,d] mit F(x0,y0)=0
3
4 | mx = (a+b)/2;
5 | my = (c+d)/2;
7 if isZero(F(mx,my))
      x0y0 = [mx, my];
8
9 else
      if F(mx, my) > 0
10
           x0y0 = findZero2 (F,a,b,c,d);
11
12
      else
          x0y0 = findZero2 (@(x,y)-F(x,y),a,b,c,d);
13
```

```
end
14
15 end
16 \times 0 = \times 0 \times 0 (1);
17 | y0 = x0y0(2);
18
if isZero(F(x0,y0))
      err=0;
20
21 else
22
      err=1;
23 end
24 end
26 function [XOYO, err] = findZero2 (F, a, b, c, d)
27 | % finde (x0,y0) in [a,b]x[c,d] mit F(x0,y0)=0
28 % fuer den Spezialfall F(mx,my) > 0
29
30 | mx = (a+b)/2;
31 \text{ my} = (c+d)/2;
34 Kfinde Funktionswert kleiner null, der nach mglichkeit nahe an
     mx, my ist
|x0y0,err| = findNegVal(F,a,b,c,d,4,20);
36
37 if err == 1
       [x0y0,err]=findNegVal(F,a,b,c,d,4,99); %99 statt 100 um
     andere Funktionswerte zu treffen
39 end
40 if err == 1
      XOYO = [0, 0];
41
      return; %kein vorzeichen welchsel, also wird es nix
43 end
44
45
46
47 \% transformiere auf Funktion F(Psi)=G: [0,1]-> R
48 Psi1 = Q(t) mx + t*(x0y0(1)-mx);
49 Psi2 = @(t) my + t*(x0y0(2)-my);
G = Q(t) F(Psi1(t), Psi2(t));
51
52
53 %finde Nullstelle von G in [0,1]
54 t0 = bisection(G, 0, 1);
55
56 %transfomiere Nullstelle in [0,1] zurck auf NSt in R^2
```

```
57 \mid X0Y0 = [mx+t0*(x0y0(1)-mx), my+t0*(x0y0(2)-my)];
59 end
60
61
              [x0y0, err] = findNegVal(F,a,b,c,d,k,n)
62 function
63 % n anzahl der einzelnen zerteilung
64 % k anzahl der intervallverkleinerungen
66 \text{ mx} = (a+b)/2;
67 \text{ my} = (c+d)/2;
68 | err = 0;
71 for j = k : -1 : 1
       [x0y0, err2] = findNegVal2(F, mx-(b-a)/2^j, mx+(b-a)/2^j, my-(d)
72
     -c)/2^j,my+(d-c)/2^j,n);
      suche_in = [[mx-(b-a)/2^j, mx+(b-a)/2^j], [my-(d-c)/2^j, my+(d-c)/2^j]
73
     -c)/2<sup>j</sup>]]
       if err2==0
75
           return;
76
       end
77 end
78 % wenn man bis daher kommt wurde nix gefunden
79 warning('gar keine NSt gefunden');
80 err=1;
81 \times 0 = [0, 0];
82
83 end
85 function [x0y0,err]=findNegVal2(F,a,b,c,d,n)
86 % n gibt die Feinheit der Suche an: [a,b] resp [c,d] wird in ca
     2n
87 %intervalle zerlegt
88
89 err=0;
91 | mx = (a+b)/2;
92 | my = (c+d)/2;
94 dx = (b-a)/(2*n);
95 dy = (d-c)/(2*n);
97 | for j=-n:n
98
      for k=-n:n
```

```
%[mx+j*dx,my+k*dy]
99
            if F(mx+j*dx,my+k*dy) < 0
100
                 x0y0 = [mx+j*dx, my+k*dy];
101
                 return;
102
103
            \verb"end"
       end
104
105 end
106
107 % wenn wir bis daher kommen waren wir erfolglos
108 x0y0 = [0,0];
109 err=1;
110 %warning('jetzt keine NSt gefunden');
111
112 end
```

Listing 2: Implementierung der Nullstellensuche im \mathbb{R}^2