Introduction to Assembly Chapter 2

SECOND EDITION

MUHAMMAD ALI MAZIDI SEPEHR NAIMI SARMAD NAIMI

Sepehr Naimi

<u>www.NicerLand.com</u> <u>www.MicroDigitalEd.com</u>

Topics

- AVR's CPU
 - Its architecture
 - Some simple programs
- Data Memory access
- Program memory
- RISC architecture

AVR's CPU

- AVR's CPU
 - ALU
 - 32 General Purpose registers (R0 to R31)
 - PC register
 - Instruction decoder

Some simple instructions

1. Loading values into the general purpose registers

LDI (Load Immediate)

- LDI Rd, k
 - Its equivalent in high level languages:

$$Rd = k$$

- Example:
 - LDI R16,53
 - R16 = 53
 - LDI R19,\$27
 - LDI R23,0x27
 - R23 = 0x27
 - LDI R23,0b11101100

Some simple instructions

2. Arithmetic calculation

- There are some instructions for doing Arithmetic and logic operations; such as:
 ADD, SUB, MUL, AND, etc.
- ADD Rd,Rs
 - Rd = Rd + Rs
 - Example:
 - ADD R25, R9

$$R25 = R25 + R9$$

- ADD R17,R30
 - R17 = R17 + R30

A simple program

Write a program that calculates 19 + 95

```
LDI R16, 19;R16 = 19

LDI R20, 95;R20 = 95

ADD R16, R20 ;R16 = R16 + R20
```


A simple program

Write a program that calculates 19 + 95 + 5

```
LDI R16, 19 ;R16 = 19

LDI R20, 95 ;R20 = 95

LDI R21, 5 ;R21 = 5

ADD R16, R20 ;R16 = R16 + R20

ADD R16, R21 ;R16 = R16 + R21
```

```
LDI R16, 19 ;R16 = 19

LDI R20, 95 ;R20 = 95

ADD R16, R20 ;R16 = R16 + R20

LDI R20, 5 ;R20 = 5

ADD R16, R20 ;R16 = R16 + R20
```

Some simple instructions

2. Arithmetic calculation

- SUB Rd,Rs
 - Rd = Rd Rs
- Example:
 - SUB R25, R9
 - R25 = R25 R9
 - SUB R17,R30
 - R17 = R17 R30

Some simple instructions

2. Arithmetic calculation

- INC Rd
 - Rd = Rd + 1
- Example:
 - INC R25
 - R25 = R25 + 1
- DEC Rd
 - Rd = Rd 1
- Example:
 - DEC R23
 - R23 = R23 1

Data Address Space

ress	Name
1/0	
\$16	TIFR1
\$17	TIFR2
\$18	-
\$19	-
\$1A	-
\$1B	PCIFR
\$1C	EIFR
\$1D	EIMSK
\$1E	GPIOR 0
\$1F	EECR
\$20	EEDR
\$21	EEARL
\$22	EEARH
\$23	GTCCR
\$24	TCCR0A
\$25	TCCR0B
\$26	TCNT0
\$27	OCR0A
\$28	OCR0B
\$29	
\$2A	GPIOR1
\$2A	GPIOR2
	\$16 \$17 \$18 \$19 \$1A \$1B \$1C \$1D \$1E \$1F \$20 \$21 \$22 \$23 \$24 \$25 \$26 \$27 \$28 \$29 \$2A

Address		Name
Mem.	1/0	
\$4C	\$2C	SPCR0
\$4D	\$2D	SPSR0
\$4E	\$2E	SPDR0
\$4F	\$2F	-
\$50	\$30	ACSR
\$51	\$31	DWDR
\$52	\$32	-
\$53	\$33	SMCR
\$54	\$34	MCUSR
\$55	\$35	MCUCR
\$56	\$36	-
\$57	\$37	SPMCSR
\$58	\$38	-
\$59	\$39	-
\$5A	\$3A	-
\$5B	\$3B	-
\$5C	\$3C	-
\$5D	\$3D	SPL
\$5E	\$3E	SPH
\$5F	\$3F	SREG

\$0060
Extended I/O Memory
\$00FF
\$0100
Internal SRAM
External SRAM
\$FFFF
ATmega328

ATmega64 ATmega128 Example: What does t

LDS R20,2

Answer:

It copies the conte

Example: Store 0x53 into the SPH register. The address of SPH is 0x5E

Data Address Space

Machine Language

ADD R0,R1

```
000011 00 0000 0001 operand
```

LDI R16, 2
 LDI R17, 3
 ADD R16, R17

1110 0000 0000 0010 1110 0000 0001 0011 0000 1111 0000 0001 Status Register (SREG)

Assembler

Assembler Directives .EQU and .SET

- .EQU name = value
 - Example:

```
.EQU COUNT = 0x25

LDI R21, COUNT ; R21 = 0x25

LDI R22, COUNT + 3 ; R22 = 0x28
```

- .SET name = value
 - Example:

```
.SET COUNT = 0x25

LDI R21, COUNT ; R21 = 0x25

LDI R22, COUNT + 3 ; R22 = 0x28

.SET COUNT = 0x19

LDI R21, COUNT ; R21 = 0x19
```

Assembler Directives .ORG

.ORG address

Assembler Directives .INCLUDE

.INCLUDE "filename.ext"

Flash memory and PC register

```
LDI R16,
0x25
          R17, $34
     LDI
          R18,
     LDI
0x31
          R16, R17
     ADD
          R16, R18
     ADD
          R17, 11
     LDI
          R16, R17
     ADD
          SUM, R16
     STS
HERE: JMP HERE
```


Fetch and execute

Old Architectures

Pipelining

Pipelining

How to speed up the CPU

- Increase the clock frequency
 - More frequency

 More power consumption & more heat
 - Limitations
- Change the architecture
 - Pipelining
 - RISC

Changing the architecture RISC vs. CISC

- CISC (Complex Instruction Set Computer)
 - Put as many instruction as you can into the CPU
- RISC (Reduced Instruction Set Computer)
 - Reduce the number of instructions, and use your facilities in a more proper way.

- Feature 1
 - RISC processors have a fixed instruction size. It makes the task of instruction decoder easier.
 - In AVR the instructions are 2 or 4 bytes.
 - In CISC processors instructions have different lengths
 - E.g. in 8051

```
CLR C ; a 1-byte instruction
```

- ADD A, #20H; a 2-byte instruction
- LJMP HERE ; a 3-byte instruction

- Feature 2: reduce the number of instructions
 - Pros: Reduces the number of used transistors
 - Cons:
 - Can make the assembly programming more difficult
 - Can lead to using more memory

- Feature 3: limit the addressing mode
 - Advantage
 - hardwiring
 - Disadvantage
 - Can make the assembly programming more difficult

Feature 4: Load/Store

```
LDS R20, 0x200
LDS R21, 0x220
ADD R20, R21
STS 0x230, R20
```


 Feature 6: more than 95% of instructions are executed in 1 machine cycle

- Feature 7
 - RISC processors have at least 32 registers.
 Decreases the need for stack and memory usages.
 - In AVR there are 32 general purpose registers (R0 to R31)