مدارهای الکتریکی و الکترونیکی فصل دوم: قوانین ولتاژ و جریان

استاد درس: محمود ممتازپور ceit.aut.ac.ir/~momtazpour

فهرست مطالب

- □ قوانین ولتاژ و جریان
- □ مدارهای سری و موازی
 - □ تقسیم ولتاژ و جریان

گره، شاخه، مسیر، حلقه، مش

- □ این دو مدار معادلند.
- □ در این مثال، ۳ گره و ۵ شاخه وجود دارد.
- □ یک مسیر، ترتیبی از گرهها و شاخههای متصل کننده آنها است.
 - 🗖 یک حلقه، یک مسیر مدور و بسته است.
- □ یک مش، یک حلقه ساده است که از وسط آن شاخهای رد نشده است.

قانون جریان کرشهف

□ KCL: جمع جبری جریانهایی که وارد یک گره میشوند صفر است.

$$i_A + i_B + (-i_C) + (-i_D) = 0$$

شکلهای دیگر قانون KCL

□ جمع جریانهای ورودی صفر است.

$$i_A + i_B + (-i_C) + (-i_D) = 0$$

جمع جریانهای خروجی صفر است. $(-i_A)+(-i_B)+i_C+i_D=0$

$$\Box$$
 جمع جریانهای ورودی = خروجی \Box

$$i_A + i_B = i_C + i_D$$

مثالی از کاربرد KCL

اگر جریان منبع ولتاژ lpha آمپر باشد، جریان مقاومت R_3 را بیابید. \Box

قانون ولتاژ كرشهف

KVL: جمع جبرى اختلاف ولتاژها در یک حلقه صفر است.

$$v_1 + (-v_2) + v_3 = 0$$

شکلهای دیگر قانون KVL

(B جمع افزایش ولتاژ صفر است (در جهت حرکت عقربه ساعت از ا
$$v_1 + (-v_2) + v_3 = 0$$

(B جمع کاهش ولتاژ صفر است (در جهت حرکت عقربه ساعت از $(-v_1) + v_2 + (-v_3) = 0$

□ جمع ولتاژ از دو مسیر بین دو

 $^{0}v_{3}$ نقطه A و B مساوی است.

$$v_1 = (-v_3) + v_2$$

مثالی از کاربرد KVL

. ولتاژ v_x و v_{R2} ولتاثر v_{R2}

اعمال KCL ،KVL و قانون اهم

مثال: جریان i_{x} و ولتاژ v_{x} را بیابید. \square

اعمال KCL ،KVL و قانون اهم

مثال ۲: جریان i_{x} و ولتاژ v_{x} را بیابید. \Box

اتصال سری

□ المانهایی که در یک مسیر قرار دارند و یک جریان یکسان از همه آنها میگذرد، اصطلاحاً به صورت سری به همدیگر متصلاند.

اتصال موازى

المانهایی که دو سر آنها به همدیگر متصل است و اختلاف ولتاژیکسانی بین دو سر آنها وجود دارد، اصطلاحاً به صورت موازی به همدیگر متصل اند.

مثال: مدار با یک حلقه

□ توان جذب شده توسط هر المان را بیابید.

مثال: مدار با یک جفت گره

ولتاژ $\, v \,$ و جریانهای $\, i_1 \,$ و جریانهای $\, \Box \,$

مثال ۲: مدار با یک جفت گره

ولتاژ $\,
u \,$ و توان تولید شده توسط منبع مستقل را بیابید.

تركيب منابع ولتاژ سرى

□ منابع ولتاژ که به صورت سری متصلاند را میتوان با هم ترکیب کرد.

ترکیب منابع جریان موازی

□ منابع جریان که به صورت موازی متصلاند را میتوان با هم ترکیب کرد.

مدارهای غیرممکن

□ از آنجایی که مدلهای ما ایدهآل هستند، وجود مدارهای زیر غیرممکن و رفتار آنها غیرقابل توضیح است.

منابع ولتاژ موازی (a) و منابع جریان سری (c) مدارهای غیرممکن هستند.

مقاومتهای سری

□ با استفاده از KVL، می توان نشان داد (در خانه انجام دهید):

$$R_{eq} = R_1 + R_2 + ... + RN$$

مثال: سادهسازی مدار

ورید. او توان تولیدی منبع λ ولت را بهدست آورید. i

مقاومتهای موازی

□ با استفاده از KCL، می توان نشان داد (در خانه انجام دهید):

$$\frac{1}{R_{\text{eq}}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N}$$

محاسبه مقاومت معادل دو مقاومت موازی

- □ یک راه ساده برای محاسبه مقدار دو مقاومت موازی:
 - □ ضرب مقاومتها تقسیم بر جمع مقاومتها

$$R_{\text{eq}} = R_1 || R_2$$

$$= \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}}$$

$$R_{\rm eq} = \frac{R_1 R_2}{R_1 + R_2}$$

تقسيم ولتاژ

□ ولتاژ اعمالی بر روی مقاومتهای سری به صورت زیر بین آنها تقسیم میشود.

$$v_1 = \frac{R_1}{R_1 + R_2} v$$

$$v_2 = \frac{R_2}{R_1 + R_2} v$$

تقسيم ولتاژ

.مثال: ولتاث v_{x} را بيابيد \square

تقسيم جريان

□ جریان اعمالی به مقاومتهای موازی به صورت زیر بین آنها تقسیم میشود.

$$i_1 = i \frac{R_2}{R_1 + R_2}$$

$$i_2 = i \frac{R_1}{R_1 + R_2}$$

تقسیم جریان

مثال: جریان $i_3(t)$ را بیابید. \square

خلاصه مطالب

- □ مطالبی که در این اسلاید فراگرفتید:
- □ قوانین KVL و KCL و نحوه استفاده از آنها در تحلیل مدار
 - □ منابع سری و موازی و ترکیب منابع
- □ مقاومتهای سری و موازی و نحوه محاسبه مقاومت معادل
- □ قوانین تقسیم ولتاژ و جریان بین مقاومتهای سری و موازی

تمرین کلاسی

را به شرط $g_m=322m$ را به شرط V_{out}

