Bibliography

- [AG60] Maurice Auslander and Oscar Goldman, *Maximal orders*, Trans. Amer. Math. Soc. **97** (1960), 1–24. MR 0117252
- [Alb42] A. A. Albert, Non-associative algebras. I. Fundamental concepts and isotopy, Ann. of Math. (2) 43 (1942), 685–707. MR 0007747
- [Alb52] _____, On simple alternative rings, Canadian J. Math. 4 (1952), 129–135. MR 0048420
- [Bae02] John C. Baez, The octonions, Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 2, 145–205. MR 1886087 (2003f:17003)
- [BH06] Colin J. Bushnell and Guy Henniart, *The local Langlands conjecture for* GL(2), Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 335, Springer-Verlag, Berlin, 2006. MR 2234120 (2007m:22013)
- [BK51] R. H. Bruck and Erwin Kleinfeld, *The structure of alternative division rings*, Proc. Amer. Math. Soc. **2** (1951), 878–890. MR 0045099
- [BO13] Grégory Berhuy and Frédérique Oggier, An introduction to central simple algebras and their applications to wireless communication, Mathematical Surveys and Monographs, vol. 191, American Mathematical Society, Providence, RI, 2013, With a foreword by B. A. Sethuraman. MR 3086869
- [Bre14] Matej Brešar, Introduction to noncommutative algebra, Universitext, Springer, Cham, 2014. MR 3308118
- [Bum97] Daniel Bump, Automorphic forms and representations, Cambridge Studies in Advanced Mathematics, vol. 55, Cambridge University Press, Cambridge, 1997. MR 1431508 (97k:11080)
- [cas67] Algebraic number theory, Proceedings of an instructional conference organized by the London Mathematical Society (a NATO Advanced Study Institute) with the support of the International Mathematical Union. Edited by J. W. S. Cassels and A. Fröhlich, Academic Press, London; Thompson Book Co., Inc., Washington, D.C., 1967. MR 0215665 (35 #6500)

- [Cas78] J. W. S. Cassels, Rational quadratic forms, London Mathematical Society Monographs, vol. 13, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1978. MR 522835
- [Chi09] Nancy Childress, *Class field theory*, Universitext, Springer, New York, 2009. MR 2462595 (2009i:11134)
- [Coh07] Henri Cohen, Number theory. Vol. I. Tools and Diophantine equations, Graduate Texts in Mathematics, vol. 239, Springer, New York, 2007. MR 2312337 (2008e:11001)
- [Cox13] David A. Cox, *Primes of the form* $x^2 + ny^2$, second edition ed., Pure and Applied Mathematics (Hoboken), John Wiley & Sons, Inc., Hoboken, NJ, 2013, Fermat, class field theory, and complex multiplication. MR 3236783
- [CR06] Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, AMS Chelsea Publishing, Providence, RI, 2006, Reprint of the 1962 original. MR 2215618 (2006m:16001)
- [CS03] John H. Conway and Derek A. Smith, On quaternions and octonions: their geometry, arithmetic, and symmetry, A K Peters, Ltd., Natick, MA, 2003. MR 1957212 (2004a:17002)
- [DV13] Lassina Dembélé and John Voight, Explicit methods for Hilbert modular forms, Elliptic curves, Hilbert modular forms and Galois deformations, Adv. Courses Math. CRM Barcelona, Birkhäuser/Springer, Basel, 2013, pp. 135–198. MR 3184337
- [EHH⁺90] H.-D. Ebbinghaus, H. Hermes, F. Hirzebruch, M. Koecher, K. Mainzer, J. Neukirch, A. Prestel, and R. Remmert, *Numbers*, Graduate Texts in Mathematics, vol. 123, Springer-Verlag, New York, 1990, With an introduction by K. Lamotke, Translated from the second German edition by H. L. S. Orde, Translation edited and with a preface by J. H. Ewing, Readings in Mathematics. MR 1066206
- [Epp73] Susanna S. Epp, Submodules of Cayley algebras, J. Algebra 24 (1973), 104–126.
 MR 0314762
- [Epp76] Susanna Samuels Epp, The Brandt condition in Cayley algebras, J. Algebra 38 (1976), no. 1, 213–224. MR 0417251
- [FP09] Alice Fialowski and Michael Penkava, The moduli space of 3-dimensional associative algebras, Comm. Algebra 37 (2009), no. 10, 3666–3685. MR 2561869 (2010k:16041)
- [FT93] A. Fröhlich and M. J. Taylor, Algebraic number theory, Cambridge Studies in Advanced Mathematics, vol. 27, Cambridge University Press, Cambridge, 1993. MR 1215934 (94d:11078)

- [Ger08] Larry J. Gerstein, Basic quadratic forms, Graduate Studies in Mathematics, vol. 90, American Mathematical Society, Providence, RI, 2008. MR 2396246
- [GJPM96] Edgar G. Goodaire, Eric Jespers, and César Polcino Milies, Alternative loop rings, North-Holland Mathematics Studies, vol. 184, North-Holland Publishing Co., Amsterdam, 1996. MR 1433590
- [Gro87] Benedict H. Gross, *Heights and the special values of L-series*, Number theory (Montreal, Que., 1985), CMS Conf. Proc., vol. 7, Amer. Math. Soc., Providence, RI, 1987, pp. 115–187. MR MR894322 (89c:11082)
- [GS06] Philippe Gille and Tamás Szamuely, Central simple algebras and Galois cohomology, Cambridge Studies in Advanced Mathematics, vol. 101, Cambridge University Press, Cambridge, 2006. MR 2266528 (2007k:16033)
- [Has80] Ki-ichiro Hashimoto, Some examples of integral definite quaternary quadratic forms with prime discriminant, Nagoya Math. J. 77 (1980), 167–175. MR 556316
- [Has95] _____, Explicit form of quaternion modular embeddings, Osaka J. Math. **32** (1995), no. 3, 533–546. MR 1367889
- [HK71] Kenneth Hoffman and Ray Kunze, Linear algebra, Second edition, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1971. MR 0276251
- [Ibu82] Tomoyoshi Ibukiyama, On maximal orders of division quaternion algebras over the rational number field with certain optimal embeddings, Nagoya Math. J. 88 (1982), 181–195. MR 683249
- [Jan96] Gerald J. Janusz, Algebraic number fields, second edition ed., Graduate Studies in Mathematics, vol. 7, American Mathematical Society, Providence, RI, 1996. MR 1362545 (96j:11137)
- [Kap69] Irving Kaplansky, Submodules of quaternion algebras, Proc. London Math. Soc. (3) 19 (1969), 219–232. MR 0240142
- [Kat07] Svetlana Katok, p-adic analysis compared with real, Student Mathematical Library, vol. 37, American Mathematical Society, Providence, RI; Mathematics Advanced Study Semesters, University Park, PA, 2007. MR 2298943 (2008j:12010)
- [KKS00] Kazuya Kato, Nobushige Kurokawa, and Takeshi Saito, Number theory. 1, Translations of Mathematical Monographs, vol. 186, American Mathematical Society, Providence, RI, 2000, Fermat's dream, Translated from the 1996 Japanese original by Masato Kuwata, Iwanami Series in Modern Mathematics. MR 1728620 (2000i:11002)
- [KKS11] _____, Number theory. 2, Translations of Mathematical Monographs, vol. 240, American Mathematical Society, Providence, RI, 2011, Introduction to class field theory, Translated from the 1998 Japanese original by Masato Kuwata and Katsumi Nomizu, Iwanami Series in Modern Mathematics. MR 2817199 (2012f:11001)

- [Kna07] Anthony W. Knapp, *Advanced algebra*, Cornerstones, Birkhäuser Boston, Inc., Boston, MA, 2007, Along with a companion volume *Basic algebra*. MR 2360434 (2009d:00001)
- [Lam05] T. Y. Lam, Introduction to quadratic forms over fields, Graduate Studies in Mathematics, vol. 67, American Mathematical Society, Providence, RI, 2005. MR 2104929
- [Lan94] Serge Lang, Algebraic number theory, second edition ed., Graduate Texts in Mathematics, vol. 110, Springer-Verlag, New York, 1994. MR 1282723 (95f:11085)
- [Mara] Kimball Martin, Modular Forms course notes (Spring 2011), http://www.math.ou.edu/~kmartin/mfs/.
- [Marb] _____, Number Theory II course notes (Spring 2010), http://www.math.ou.edu/~kmartin/ntii/.
- [MR03] Colin Maclachlan and Alan W. Reid, *The arithmetic of hyperbolic 3-manifolds*, Graduate Texts in Mathematics, vol. 219, Springer-Verlag, New York, 2003. MR 1937957 (2004i:57021)
- [Neu99] Jürgen Neukirch, Algebraic number theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 322, Springer-Verlag, Berlin, 1999, Translated from the 1992 German original and with a note by Norbert Schappacher, With a foreword by G. Harder. MR 1697859 (2000m:11104)
- [O'M00] O. Timothy O'Meara, *Introduction to quadratic forms*, Classics in Mathematics, Springer-Verlag, Berlin, 2000, Reprint of the 1973 edition. MR 1754311
- [Pie82] Richard S. Pierce, *Associative algebras*, Graduate Texts in Mathematics, vol. 88, Springer-Verlag, New York-Berlin, 1982, Studies in the History of Modern Science, 9. MR 674652 (84c:16001)
- [Piz76] Arnold Pizer, On the arithmetic of quaternion algebras, Acta Arith. **31** (1976), no. 1, 61–89. MR 0432601 (55 #5588)
- [Piz77] _____, The action of the canonical involution on modular forms of weight 2 on $G_0(M)$, Math. Ann. **226** (1977), no. 2, 99–116. MR 0437463 (55 #10393)
- [Piz80] _____, An algorithm for computing modular forms on $\Gamma_0(N)$, J. Algebra **64** (1980), no. 2, 340–390. MR 579066 (83g:10020)
- [Rei70] Irving Reiner, A survey of integral representation theory, Bull. Amer. Math. Soc. **76** (1970), 159–227. MR 0254092
- [Rei03] I. Reiner, Maximal orders, London Mathematical Society Monographs. New Series, vol. 28, The Clarendon Press, Oxford University Press, Oxford, 2003, Corrected reprint of the 1975 original, With a foreword by M. J. Taylor. MR 1972204 (2004c:16026)

- [RV99] Dinakar Ramakrishnan and Robert J. Valenza, Fourier analysis on number fields, Graduate Texts in Mathematics, vol. 186, Springer-Verlag, New York, 1999. MR 1680912 (2000d:11002)
- [Sch95] Richard D. Schafer, An introduction to nonassociative algebras, Dover Publications, Inc., New York, 1995, Corrected reprint of the 1966 original. MR 1375235
- [Ser73] J.-P. Serre, A course in arithmetic, Springer-Verlag, New York-Heidelberg, 1973, Translated from the French, Graduate Texts in Mathematics, No. 7. MR 0344216 (49 #8956)
- [Ser79] Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979, Translated from the French by Marvin Jay Greenberg. MR 554237 (82e:12016)
- [Shi10] Goro Shimura, Arithmetic of quadratic forms, Springer Monographs in Mathematics, Springer, New York, 2010. MR 2665139
- [ST02] Ian Stewart and David Tall, Algebraic number theory and Fermat's last theorem, third ed., A K Peters, Ltd., Natick, MA, 2002. MR 1876804 (2002k:11001)
- [SV00] Tonny A. Springer and Ferdinand D. Veldkamp, Octonions, Jordan algebras and exceptional groups, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2000. MR 1763974
- [TW02] Jacques Tits and Richard M. Weiss, *Moufang polygons*, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2002. MR 1938841
- [vdBS59] F. van der Blij and T. A. Springer, The arithmetics of octaves and of the group G_2 , Nederl. Akad. Wetensch. Proc. Ser. A 62 = Indag. Math. **21** (1959), 406–418. MR 0152555
- [Vig80] Marie-France Vignéras, Arithmétique des algèbres de quaternions, Lecture Notes in Mathematics, vol. 800, Springer, Berlin, 1980. MR 580949 (82i:12016)
- [Voi] John Voight, *The arithmetic of quaternion algebras*, In preparation. Partial draft available at http://math.dartmouth.edu/~jvoight/.
- [Voi05] John Michael Voight, Quadratic forms and quaternion algebras: Algorithms and arithmetic, ProQuest LLC, Ann Arbor, MI, 2005, Thesis (Ph.D.)—University of California, Berkeley. MR 2707756
- [Wei95] André Weil, *Basic number theory*, Classics in Mathematics, Springer-Verlag, Berlin, 1995, Reprint of the second (1973) edition. MR 1344916 (96c:11002)

Index

$(a,b)_F, 107$	p-adic valuation, 35
A_{∞} , 134	\hat{A}^{\times} , 134
$B_0, 103$	$\hat{\mathcal{O}}^{ imes}$, 134
C_F° , 54	ind, 80
$M_k(N), 165$	inv, 85
$M_k(\mathcal{O}), 177$	tr, 81
N, 81	$\operatorname{tr}_{A/F}$, 81
N_0 , 103	$\varpi_F, 27$
$N_{A/F}$, 81	$e_{K/F}, 33$
PB^{\times} , 105	$f_{K/F}$, 33
$R^{\times}n$, 10	$h(\mathcal{O}), 48, 129$
$S_k(N), 167$	$h_2(\mathcal{O}), 130$
$[\mathcal{I}], 129$	h_A , 129
$[\mathcal{I}]_2,130$	h_F , 48
\mathbb{A}_{F}^{1} , 53	h_F^F , 55
\mathbb{A}_F , 50	$h_{2,A}$, 130
$Cl(\mathcal{O})$, 129	m_{α} , 81
Cl ⁺ , 55	p_{α} , 81
$\operatorname{Cl}_2(\mathcal{O}), 130$	t_A , 138
$\operatorname{Cl}_l(\mathcal{O}), \ 129$	v_A , 180 v_D , 120
$\operatorname{Cl}_r(\mathcal{O}), 129$	$v_{\mathfrak{p}},27$
$\operatorname{Frac}(\mathcal{O}), 125$	v_p , 22
$\operatorname{Frac}_2(\mathcal{O}), 125$	$(\frac{a,b}{F})$, 88
$\operatorname{Frac}_l(\mathcal{O}), 125$	(\overline{F}) , 80
$\operatorname{Frac}_r(\mathcal{O}), 125$	$\left(\frac{a,b,c}{F}\right),\ 191$
GL , 76	absolute value, 34
O(V), 101	adele, 50, 134
SL, 76	Albert-Brauer-Hasse-Noether, 84
SO, 77	algebra, 57
SO(V), 101	algebraic group, 76
Stab, 129	alternative, 188
$Sym^k(V), 176$	anisotropic, 97
\mathcal{O}^{\perp} , 147	archimedean, 34
\mathcal{O}_D , 121	, 0 -
$\mathcal{O}_F^{(m)}$, 29	basis, 17
	bilinear form, 95
disc, 148	Brandt groupoid, 127
p-adic absolute values, 35	Brandt matrix, 172

Brauer group, 85	Frobenius' theorem, 83
. 1	full, 124
canonical involution, 92	fundamental identity, 28, 33
Cayley algebra, 191	
Cayley–Dickson algebra, 194	general linear group, 76
Cayley-Dickson double, 191	Gravesian integers, 197
center, 13, 57, 188	groupoid, 128
central, 71	Haar measure, 159
centralizer, 77	,
characteristic polynomial, 61, 80, 192	Hasse invariant, 85, 108
class group, 130	Hasse's norm theorem, 84
class number, 48, 129, 130	Hasse–Minkowski theorem, 109
complete, 124	Hecke operator, 171
complete lattice, 114	higher unit group, 29
completion, 38	Hilbert reciprocity, 141
composition algebra, 191	Hilbert symbol, 88, 107
conductor, 47	homomorphism, 59, 187
CSA, 71	Hurwitz integers, 113
cusp form, 167	ideal, 44, 45, 64, 123
cyclic, 15	ideal class, 129, 130
cyclic algebra, 84	ideal class groupoid, 138
DOT T	idele, 50
DCT, 77	idele class group, 54
Dedekind domain, 110	indefinite, 97, 103
definite, 97, 103	index, 80
degree, 79	inert, 41
different, 148	
dimension, 58, 96	inertia degree, 28, 33, 36
direct sum, 13	integral, 127, 196
discrete valuation, 33	integral domain, 110
discrete valuation ring, 23	integral domain, 110
discriminant, 96, 148, 151, 153	integral element, 111
division algebra, 58	invariant, 85
double, 191	inverse, 125
double centralizer theorem, 77	invertible, 133, 190
dual lattice, 147	involution, 92
T: 11 1 110 150	isometric, 100
Eichler order, 119, 150	isometry, 98
Eichler's condition, 131	isomorphism, 59
Eichler's theorem, 131	isotropic, 97
Eisenstein, 169	Jacquet–Langlands correspondence, 181
equivalent, 98	Jordan algebra, 187
extension of scalars, 19, 62	
Fano plano 184	Jordan–Zassenhaus theorem, 130
Fano plane, 184	Kronecker product, 62
free module, 14	r

lattice, 42, 113	proper ideal, 64
left order, 119	pure quaternions, 103
Legendre's three squares theorem, 160	
level, 150, 152	quadratic form, 96
Lie algebra, 187	quadratic module, 96
Lipschitz integer, 115	quadratic space, 96
localization, 20, 39, 45	quasi-subfield, 74
locally principal, 47, 133	quaternion algebra, 87
	quaternionic modular form, 168, 177
maximal ideal, 64	ramification index, 28, 33, 40
maximal subfield, 74	ramified, 28, 41, 86, 121
minimal ideal, 64	
minimal polynomial, 61, 80, 192	rank, 14
modular form, 165	reduced characteristic polynomial, 80
module, 12, 66	reduced norm, 80
Moufang identities, 189	reduced trace, 80
norman aloga enoun EE	residue field, 28
narrow class group, 55	restricted direct product, 49
narrow class number, 55	restricted norm form, 103
non-archimedean, 34	right order, 119
non-associative algebra, 186	Schur index, 80
non-associative ring, 186	semisimple, 64
non-degenerate, 96	separable, 116
norm, 25, 35, 61, 80, 120, 185	signature, 101
norm (ideal), 35, 131, 155	similar, 105
norm form, 191	simple, 15, 64
normal, 126	Skolem–Noether theorem, 72
nucleus, 187	special linear group, 76
octonion algebra, 191	special orthogonal group, 77, 101
octonions, 184	split, 41, 76, 86, 195
opposite algebra, 66	splitting field, 76
optimal embedding, 156	subalgebra, 187
order, 43, 114, 196	subfield, 74
orthogonal, 100	subring, 187
orthogonal complement, 100	Sylvester's law of inertia, 100
orthogonal group, 101	symmetric, 95
orthogonal group, 101	symmetric power representation, 177
place, 35	symmetric tensors, 176
power associative, 188	symmetric tensors, 170
prime, 35	tensor product, 17
prime ideal, 126	topological group, 158
principal ideal, 129	torus, 76
principal unit group, 29	totally definite, 131
projective group, 105	trace, 61, 80
proper, 127, 129	trace form, 98
rr, +, +	

```
trivial, 125
trivial ideal, 64
type, 138
type number, 138
ultrametric, 34
uniformizer, 26, 121
unital, 9, 57
universal, 100
unramified, 28, 33, 41, 86
valuation, 33, 120
Wedderburn's theorem, 69
```