

HIGH TEMPERATURE OXIDATION OF TUNGSTEN AND MOLYBDENUM

N. M. Ghoniem

The University of California at Los Angeles (UCLA) Los Angeles, CA. 90095-1597, USA

APEX STUDY GROUP MEETING

UCLA

November 2-3, 1998

Research Sponsored by

US Department of Energy (DOE/OFE)

PRESENTATION OUTLINE

- (1) IMPACT OF OXIDATION ON DESIGN WITH REFRACTORY ALLOYS.
- (2) MODELING OF HIGH-TEMPERATURE OXIDATION.
 - 2.1. Thermodynamics of Reactions
 - **2.2.** Non-equilibrium Analysis
- (3) RESULTS FOR TUNGSTEN.
- (4) RESULTS FOR MOLYBDENUM.
- (5) CONCLUSIONS.

DESIGN IMPACT

- **@** At Normal temperatures and pressures, the chemical reaction of a gas with the solid generally results in condensed products.
- @ At high temperatures and low pressures, the formation of volatile products is thermodynamically favored over the growth of the condensed phase.
- @ The upper temperature limit for design with refractory metals with a helium coolant will be influenced by the formation of volatile oxides.
 - @ The present investigation is concerned with W/He and Mo/He designs.

MODELING HIGH-TEMPERATURE OXIDATION

APPROACH:

- @ Quasi-equilibrium Treatment of Heterogeneous Reactions for the systems: O-W and O-Mo.
- @ Rate Limiting Step is the Trapping (adsorption) of Oxygen atoms until equilibrium.
- @ Assume that the helium pressure is P_{sys} , and its temperature T^* . The oxygen partial pressure is given by:

$$P_{O_2'} = appm \times 10^{-6} P_{sys}$$

THERMODYNAMICS OF CHEMICAL REACTIONS

@ The rate at which oxygen molecules collide with unit area of the wall surface is given by:

$$Z_{O_2} = P_{O_2} \sqrt{2pM_{O_2}RT}$$

@ For Tungsten, the following thermodynamic reactions take place:

$$x W(s) + \frac{1}{2} y O_2(g) \Leftrightarrow W_x O_y(g)$$

@ For Molybdenum, similar reactions occur. In addition, for T~1500-2500 K:

$$Mo(s) + \frac{1}{2}(3-\mathbf{a}) O_2(g) \Leftrightarrow Mo O_2(g) + (1-\mathbf{a})Mo O_3(g)$$

FORMATION ENTHALPIES & ENTROPIES OF OXIDES

Tungsten		Molybdenum		
Species	DHf _{298.15} (kcal/g.mole)	Species	DHf _{298.15} (kcal/g.mole)	DSf _{298.15} (cal/g.mole.K)
O(g)	59.559	O(g)	61.3	16
$\mathbf{W} \mathbf{O}(\mathbf{g})$	101.6	Mo O(g)	95	25.5
$WO_2(g)$	18.3	$MoO_{2}\left(g\right)$	11.0	9.0
$\mathbf{W} \mathbf{O}_3(\mathbf{g})$	-70.0	Mo O ₃ (g)	-80	-15.5
$W_2 O_6 (g)$	-278.2	$Mo_2 O_6 (g)$	-270	-72
$W_3O_8(g)$	-408.7	$Mo_3O_8(g)$	-400	-118
$W_3O_9(g)$	-483.6	$Mo_3O_9(g)$	-463	-132
$W_4O_{12}(g)$	-670.2	Mo ₄ O ₁₂ (g)	-640	-190

QUASI-EQUILIBRIUM TREATMENT OF BATTY & STICKNEY*

- @ Collisions of O_2 with the surface can lead to either: (1) adsorption and equilibration, or (2) reflection.
- @ Define the equilibration probability as:

$$\mathbf{z}_{i} = \Gamma_{i} / Z_{i}$$

@ For oxygen molecules at a temperature T^* , different from the wall temperature T, the equilibrated oxygen flux is:

$$\Gamma_{O_2'} = \mathbf{z}_{O_2'} Z_{O_2'}$$

J.C. Batty and R.E. Stickney, Journ. Chem. Physics, Volume 51, No. 10, (1969) p 4475

QUASI-EQUILIBRIUM TREATMENT OF BATTY & STICKNEY* (Cont.)

- @ Let $i = W_x O_y(g)$, and the Gibbs Energy as: $\Delta G_i(T) = \Delta H_i(T) T\Delta S_i(T)$
- @ Now, we have the following system:

$$K_{i} = \frac{P_{i}}{(P_{O_{2}})^{y/2}} = \exp(-\Delta G_{i}(T) / RT) \qquad i = 1, 2, ..., N$$

$$P_{O} = \sqrt{P_{O_{2}}} \exp(-\Delta G_{O} / RT)$$

$$P_{O_{2}'} = P_{O_{2}} + P_{O} + \sum_{1}^{N} P_{i}$$

@ P_{O2} ' is obtained from G_{O2} '. Requires equilibration probability

EQUILIBRATION PROBABILITY IS DETERMINED EXPERIMENTALLY

$$\mathbf{z}_{o_2} = \exp[10.3498 - \frac{2.7607 \times 10^4}{T}]$$
, $\mathbf{T} (^{\mathbf{0}}\mathbf{K})$

Experimental Data on W Oxidation Z_{02} '=1.2x10¹⁷ cm⁻² s⁻¹

Experimental Data on W Oxidation Z_{02} '=1.2x10¹⁷ cm⁻² s⁻¹

Experimental Data on W Oxidation Z_{02} '=1.2x10¹⁷ cm⁻² s⁻¹

Calculated W Oxidation Rates Experiment at Z_{02} '=1.2x10¹⁷ cm⁻² s⁻¹

EXPERIMENTAL RESULTS FOR MOLYBDENUM

CONCLUSIONS

- (1) HIGH-TEMPERATURE OXIDATION SETS SEVERE LIMITS ON HELIUM COOLING OF REFRACTORY ALLOYS.
- (2) FOR TUNGSTEN AND MOLYBDENUM OPERATING AT 50 ATM. HELIUM COOLANT, AT 0.1 PPM OXYGEN, THE UPPER TEMPERATURE IS ESTIMATED AT 1200- 1300 °C.
- (3) IF HIGHER TEMPERATURES ARE BENIFICIAL TO DESIGN OBJECTIVES, THE FOLLOWING IS TO BE IMPLEMENTED:
 - @ Reduce the oxygen impurity concentration to the ppp range.
 - @ use oxidation-resistant coatings in the high-temperature zones.