

Introducción a Ciencia de la Computación

Práctica Calificada 4
Pregrado
2020-II
Jaime Farfán
Lab 1.03

Indicaciones específicas:

- Esta evaluación contiene 7 páginas (incluyendo esta página) con 4 preguntas. El total de puntos son 20.
- El tiempo límite para la evaluación es 100 minutos.
- Cada pregunta deberá ser respondida en un solo archivo con el número de la pregunta y tu código de estudiante. Por ejemplo:
 - 1. p1_2020010202.py
 - 2. p2_2020010202.py
 - 3. p3_2020010202.py
 - 4. p4_2020010202.py
- Luego deberás incluir estos archivos en una carpeta con nombre pc4; para que finalmente envíes esta carpeta comprimida pc4.zip a www.gradescope.com
- Tome en cuenta que de no seguir de manera adecuada las indicaciones señaladas, la(s) pregunta(s) serán calificadas con 0.

Competencias:

- Para los alumnos de la carrera de Ciencia de la Computación
 - Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina. (Usar)
- Para los alumnos de las carreras de Ingeniería
 - Capacidad de aplicar conocimientos de ingeniería (nivel 2).

Calificación:

Tabla de puntos (sólo para uso del professor)

Question	Points	Score
1	5	
2	5	
3	5	
4	5	
Total:	20	

- 1. (5 points) Crear un programa que lea el archivo de precios.txt y copie los nombres de los medicamentos, nombre de la farmacia y precios en el archivo medicamentos.txt, cada medicamento y su precio debe estar en una línea separado por comas.
 - Debe mostrar en pantalla el nombre del producto, farmacia y precio unitario del producto mas caro.

Algunos ejemplos de diálogo de este programa serían:

Listing 1: Ejemplo 1

```
** Farmacia que vende mas caro **

Nombre de producto: IVERMECTINA 6 mg/ mL Solucion Oral
Farmacia: BOTICA CENTRAL FARMA ...
Precio unitario: 35
```

La rúbrica para esta pregunta es:

Criterio	Logrado	Parcialmente Logrado	No Logrado
Algoritmo	Es preciso, finito y	Es preciso, finito y hace	Hace menos de la mitad
	hace exactamente lo	la mitad o más de lo	de lo que el enunciado
	que el enunciado re-	que el enunciado re-	requiere (0pts)
	quiere (2pts)	quiere (1pts)	
Sintáxis	Todas las sentencias	Mas de la mitad de las	Menos de la mitad de
	son correctas y no	sentencias son correc-	las sentencias son cor-
	hay errores de sintáxis	tas y no hay errores de	rectas (0pts)
	(1pts)	sintáxis (0.5pts)	
Legible	El algoritmo es cor-	El algoritmo es correcto	El algoritmo es correcto
	recto y el nombre de to-	y el nombre de la mitad	y el nombre de menos la
	das las variables y fun-	de las variables y fun-	mitad de las variables y
	ciones son descriptivas	ciones son descriptivas	funciones son descripti-
	(1pts)	(0.5 pts)	vas (0 pts)
Archivos	Lee y escribe archivos	Lee o escribe archivos	No hace uso de lectura
	de forma óptima (1pts)	de forma parcial	ni escritura de archivos
		(0.5pts)	(0pts)

2. (5 points) Desarrolle un algoritmo que implemente una función recursiva que permita contar cuántos dígitos tiene un cadena.

Algunos ejemplos de diálogo de este programa serían:

Listing 2: Ejemplo 1

Input: 12Hola34Utec56789

Output: 9

Listing 3: Ejemplo 2

```
Input: H3o415a6u7t8e9c
Output: 7
```

La rúbrica para esta pregunta es:

Criterio	Logrado	Parcialmente Logrado	No Logrado
Algoritmo	Es preciso, finito y	Es preciso, finito y hace	Hace menos de la mitad
	hace exactamente lo	la mitad o más de lo	de lo que el enunciado
	que el enunciado re-	que el enunciado re-	requiere (0pts)
	quiere (3pts)	quiere (1.5 pts)	
Sintáxis	Todas las sentencias	Mas de la mitad de las	Menos de la mitad de
	son correctas y no	sentencias son correc-	las sentencias son cor-
	hay errores de sintáxis	tas y no hay errores de	rectas (0pts)
	(1pts)	sintáxis (0.5pts)	
Legible	El algoritmo es cor-	El algoritmo es correcto	El algoritmo es correcto
	recto y el nombre de to-	y el nombre de la mitad	y el nombre de menos la
	das las variables y fun-	de las variables y fun-	mitad de las variables y
	ciones son descriptivas	ciones son descriptivas	funciones son descripti-
	(1pts)	(0.5 pts)	vas (0 pts)

- 3. (5 points) Implemente una función para ordenar los datos que hay en una lista de listas de alumnos y sus notas, con la siguiente estructura: Nombre, nota practicas, nota laboratorios, nota proyecto; la función debe tomar dos parámetros: la lista de listas y la columna por cual ordenar.
 - * No puede usar la funcion sort de python, debe implementar alguno de los algoritmos usados en clase Ejemplo de la data:

Listing 4: Ejemplo 1

```
data= [
  ['Ana',13,15,16],
  ['Juan',18,13,17],
  ['Jorge',19,19,18],
  ['Mario',3,18,19],
  ['Marlon',14,5,12],
  ['Julio',13,7,13],
]
```

Considere, que los datos ya están en el programa, no necesita ingresar la matriz de datos, y realize el siguiente proceso:

- Solicite al usuario que ingrese la columna a ordenar: nombre, prac,lab, proy
- Ordenar los datos de forma ascendente, por la columna elegida.

• Imprimir los datos ordenados en forma de tabla

También calcule cuál es la complejidad del algoritmo implementado y gra que la curva de la complejidad. Algunos ejemplos de diálogo de este programa serían

Listing 5: Ejemplo 1

```
Columna: nombre
nombre, prac, lab, proy
'Ana',13,15,16
'Jorge',19,19,18
'Juan',18,13,17
'Julio',13,7,13
'Mario',3,18,19
'Marlon',14,5,12
```

Listing 6: Ejemplo 2

```
Columna: prac

nombre, prac, lab, proy

'Mario',3,18,19

'Ana',13,15,16

'Julio',13,7,13

'Marlon',14,5,12

'Juan',18,13,17

'Jorge',19,19,18
```

La rúbrica para esta pregunta es:

Criterio	Logrado	Parcialmente Logrado	No Logrado
Algoritmo	Es preciso, finito y	Es preciso, finito y hace	Hace menos de la mitad
	hace exactamente lo	la mitad o más de lo	de lo que el enunciado
	que el enunciado re-	que el enunciado re-	requiere (0pts)
	quiere (2pts)	quiere (1pts)	
Sintáxis	Todas las sentencias	Mas de la mitad de las	Menos de la mitad de
	son correctas y no	sentencias son correc-	las sentencias son cor-
	hay errores de sintáxis	tas y no hay errores de	rectas (0pts)
	(1pts)	sintáxis (0.5pts)	
Legible	El algoritmo es cor-	El algoritmo es correcto	El algoritmo es correcto
	recto y el nombre de to-	y el nombre de la mitad	y el nombre de menos la
	das las variables y fun-	de las variables y fun-	mitad de las variables y
	ciones son descriptivas	ciones son descriptivas	funciones son descripti-
	(1pts)	(0.5 pts)	vas (0 pts)
Analiza	Analiza en forma pre-		No analiza o no se
	cisa la complejidad del		aproxima a la com-
	algoritmo (1pts)		plejidad del algoritmo
			(0pts)

- 4. (5 points) Implemente una función, utilizando el algoritmo de busqueda binaria, para buscar datos que están en una lista de diccionarios sobre notas, con la siguiente estructura: nombre, notas de teoría y notas de práctica. La función debe recibir un parámetro (el nombre a buscar) y debe devolver las notas de teoría y práctica.
 - * Debe usar el algoritmo de búsqueda binaria, no puede usar SORT Un ejemplo de una lista sería:

Listing 7: Ejemplo 1

```
data = [
    {'nombre': 'Ana', 'teoria':13, 'lab':11},
    {'nombre': 'Jorge', 'teoria':15, 'lab':13},
    {'nombre': 'Juan', 'teoria':17, 'lab':15},
    {'nombre': 'Marlon', 'teoria':11, 'lab':17},
    {'nombre': 'Lucas', 'teoria':14, 'lab':19},
    {'nombre': 'Derek', 'teoria':19, 'lab':20}
]
```

Considere, que los datos ya están en el programa, no necesita ingresar la lista de notas, y realize el siguiente proceso:

- Solicite al usuario que ingrese un nombre.
- Buscar las notas del alumno
- Imprimir las notas de teoría y práctica

También calcule cuál es la complejidad del algoritmo implementado y grafique la curva de la complejidad. Algunos ejemplos de diálogo de este programa serían:

Listing 8: Ejemplo 1

Ingrese nombre: Derek

Nota Teoria: 19 Nota Practica: 20

Output:

Listing 9: Ejemplo 2

Ingrese nombre: Jorge

Nota Teoria: 15 Nota Practica: 13

La rúbrica para esta pregunta es:

Criterio	Logrado	Parcialmente Logrado	No Logrado
Algoritmo	Es preciso, finito y	Es preciso, finito y hace	Hace menos de la mitad
	hace exactamente lo	la mitad o más de lo	de lo que el enunciado
	que el enunciado re-	que el enunciado re-	requiere (0pts)
	quiere (2pts)	quiere (1pts)	
Sintáxis	Todas las sentencias	Mas de la mitad de las	Menos de la mitad de
	son correctas y no	sentencias son correc-	las sentencias son cor-
	hay errores de sintáxis	tas y no hay errores de	rectas (0pts)
	(1pts)	sintáxis (0.5pts)	
Legible	El algoritmo es cor-	El algoritmo es correcto	El algoritmo es correcto
	recto y el nombre de to-	y el nombre de la mitad	y el nombre de menos la
	das las variables y fun-	de las variables y fun-	mitad de las variables y
	ciones son descriptivas	ciones son descriptivas	funciones son descripti-
	(1pts)	(0.5 pts)	vas (0 pts)
Analiza	Analiza en forma pre-		No analiza o no se
	cisa la complejidad del		aproxima a la com-
	algoritmo (1pts)		plejidad del algoritmo
			(0pts)