EXPLOITING USER PRIVACY USING SENSOR DATA EXTRACTED FROM SMART-DEVICES

Project-1 (CSD300)

Presented By :

Puneet Saluja (2015KUCP1019) Tanmay Sonkusle (2015KUCP1023)

Krishna Sharma (2015KUCP1040)

Supervisor:

Dr. Smita Naval

INDIAN INSTITUTE OF INFORMATION TECHNOLOGY, KOTA

May 4, 2018

Overview

- INTRODUCTION
- OBJECTIVES
- 3 LITERATURE REVIEW
- USER ACTIVITY DETECTION
- USER INPUT DETECTION
- **6** INPUT POSITION INFERENCE
- FUTURE WORK
- **REFERENCES**

INTRODUCTION

- Internet of things (IoT), which adds sensors and internet capability to everyday physical objects has transformed the lives of individuals dramatically.
- Nowadays, users rely on these devices to carry their personal data such as email account, bank details, medical information to name a few.
- An attacker can exploit this data to extract the private details of the user as it has been seen in the past that security restrictions on sensors are negligible.

Permission required	Permission not required			
	Accelerometer, Gyroscope,			
Camera, GPS, Microphone	Magnetometer, Proximity Sensor			

OBJECTIVES

- Exploiting the privacy of user using sensors in smart devices.
- Create awareness among users regarding privacy breach through sensors.
- Demonstrate with the help of experiments that user's private information can be leaked through sensor data.

LITERATURE REVIEW [1/2]

Paper	Objective			
Raphael spreitzer <i>et. al.</i> ^[6]	Infer user PIN input using ambient			
(SPSM, 2014)	light sensor.			
Chao shen <i>et. al.</i> [2] (2015)	Infer user input using			
Chao shen et. al. (2013)	accelerometer and magnetometer.			
Arunab verma <i>et. al.</i> ^[7] (CCS, 2014)	Decoding vibrations from nearby			
	keyboard using acceleromter			
	sensor.			
Dan Boneh <i>et. al.</i> ^[9] (CCS, 2014)	Recognizing Speech from			
	Gyroscope Signals.			
	Investigate security issues in smart			
Xiangyu liu <i>et. al.</i> ^[4] (CCS, 2015)	watches using accelerometer and			
	microphone.			

LITERATURE REVIEW [2/2]

Paper	Objective				
He wang et. al. [5] (MobiCom,	Mine acceleromter and gyroscope				
2015)	data from smart watches to infer				
2015)	user input.				
	Learn user tap and gesture-based				
Adam J. Aviv <i>et. al.</i> ^[1]	input using accelerometer sensor				
	data.				
Zhi Xu <i>et. al.</i> ^[3]	Infer password of screen lock using				
ZIII Au et. ai.	motion sensors.				
Hidayet Aksu et. al. [8] (USENIX,	A Context-aware Sensor-based				
2017)	Attack Detector for Smart				
2017)	Devices.				

USER ACTIVITY DETECTION [1/2]

	T1.x	T1.y	T1.z		Class
User1					w
User2					S
User3					s
User10					w

Feature Vector

USER ACTIVITY DETECTION [2/2]

- Device Used: Samsung Galaxy J2 2016.
- Sensor Used: Accelerometer.

Data Collection:

- Developed an Android application to log sensor data without any user permission.
- Collected data from 10 different volunteers for activities: Stationary, Jogging, Walking upstairs, Walking downstairs, Normal walking.
- Used 10 fold cross-validation to train and test data using different classification technique such as Random Forest, Naive Bayes on WEKA.
- Random Forest correctly classified user's activity data with the best accuracy of 94%.

Project-1 (CSD300) ———— Pres

INPUT ACTION DETECTION [1/2]

- Device Used: One Plus 5.
- Sensor Used: Accelerometer and Gyroscope.

Data Collection:

- Developed an Android application to log sensor data without any user permission.
- The application can run in the background and can be used to log the data from these sensors in a .csv file.
- Since Android does not impose any security restriction on these sensors hence, no permission is required at the time of installation.
- Collected data from 10 different users, where each user entered 50 random pins of 4 digit.

INPUT ACTION DETECTION [2/2]

- To accurately detect the occurrence of an input action, we used $AccSum = x^2 + y^2 + z^2$ where x, y, z are the accelerometer values in three axis.
- AccSum represents the magnitude of the external force F on the touch screen.

REMOVAL OF GRAVITY COMPONENT [1/2]

- Raw accelerometer data include the gravity component, which makes it hard to accurately reflect the motion change of smart-phone.
- Gravity component can be considered as the constant component and acceleration data as the alternating component.
- Thus, some filtering technique is needed in order to remove the gravity component from acceleration data.
- We plot a graph of AccSum vs time-stamp and observed distinguished peaks at each key press event.
- This curve exhibits periodic and obvious peaks, which can be used to measure the occurrence of the input action with a high accuracy.

REMOVAL OF GRAVITY COMPONENT [2/2]

SCREEN DIVISION

- A user might enter valuable information such as password, pin via an interface from smart-phone.
- These interfaces are usually composed of a similar layout which includes one display interface and one input interface.
- Thus, this input interface can be easily divided into different areas, each of which corresponds to a single digit on a number pad.

OBSERVATIONS AND ASSUMPTIONS

- We observed a right-handed person will slightly tilt the smart-phone towards right side while he enters the pin digits in the middle and left column i.e 1, 2, 4, 5, 7, 8 because while making any input user will try to push the smart-phone display towards his thumb.
- We assumed that user holds smart-phone in his right hand while making any pin input.
- We ignored the case when smart-phone is laying on a flat surface because in this case there will be only minor changes in the readings of the sensor data

INPUT MAPPING

- The input interface usually consists of several buttons for a user to enter information.
- One can obtain the tapped button by simply mapping the inferred position to the input interface.
- During the training phase, we recorded the pressed number and labeled it as a class corresponding to the readings of sensor data.

FEATURE EXTRACTION

- To pre-process the raw data, we applied min-max normalization on data.
- Feature vector includes the readings of the accelerometer and gyroscope with timestamp as a feature.
- It also includes additional descriptive-statistical attributes of A_x , A_y , A_z , G_x and G_v like min, max, median, kurtosis, mean, standard-deviation and variance.

TRAINING AND TESTING

- Used the Random Forest Classifier to train and test the data using 10 fold cross-validation on WEKA.
- Model correctly predicted the entered digits with an accuracy 57.3%.
- input: 2 4 8 3 5 9 6 1st attempt predictions: 2 4 8 3 5 6 5 2nd attempt predictions: 2 4 8 3 5 3 6
- It is observed that digits 5, 8, and 9 are hard to predict for a right hand user.

CONCLUSION

- We have presented a study of analyzing accelerometer and gyroscope data extracted from smart-devices to infer user input on an Android smart-phone.
- We were able to detect user motion activity using accelerometer data with an accuracy of 94%.
- In our second experiment, we were correctly able to infer each individual key press on a number pad with an accuracy of 57.3%.
- With this work, we have successfully demonstrated that the leaked information from these sensors can act as a side channel to compromise user's privacy.

FUTURE WORK

- This work could be extended in future to infer other kinds of attack like inferring user input text.
- We can use some more sensors such as a magnetometer and ambient light sensor or use combination of these sensors to carry out more attacks.

REFERENCES[1/2]

- 1 Adam J. Aviv, Benjamin Sapp, Matt Blaze and Jonathan M. Smith, "Practicality of Accelerometer Side Channels on Smartphones", in *Proceedings of the 28th Annual Computer Security Applications Conference*, Pages 41-50.
- 2 ChaoShen, Shichao Pei, Zhenyu Yanga, Xiaohong Guan, "Input extraction via motion-sensor behavior analysis on smartphones", Volume 53 Issue C, September 2015, Pages 143-155.
- 3 Zhi Xu, Kun Bai, Sencun Zhu, "TapLogger: Inferring User Inputs On Smartphone Touchscreens Using On-board Motion Sensors", in the Proceedings of the fifth ACM conference on Security and Privacy in Wireless and Mobile Networks, Pages 113-124.
- 4 Xiangyu Liu, Zhe Zhou, Wenrui Diao, Zhou Li, Kehuan Zhang, "When Good Becomes Evil: Keystroke Inference with Smartwatch", in *the Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security*, Pages 1273-1285.

REFERENCES[2/2]

- 5 He Wang, Ted Tsung-Te Lai, Romit Roy Choudhury, "MoLe: Motion Leaks through Smartwatch Sensors", in *Proceedings of the 21st Annual International Conference on Mobile Computing and Networking*, Pages 155-166.
- 6 Raphael Spreitzer, "PIN Skimming: Exploiting the Ambient-Light Sensor in Mobile Devices", in *Proceedings of the 4th ACM Workshop on Security and Privacy in Smartphones and Mobile Devices*.
- 7 Philip Marquardt, Arunabh Verma, Henry Carter, Patrick Traynor, "iPhone: Decoding Vibrations From Nearby Keyboards Using Mobile Phone Accelerometers", in *Proceedings of the 18th ACM conference on Computer and communications security*, Pages 551-562.
- 8 Amit Kumar Sikder, Hidayet Aksu, and A. Selcuk Uluagac, "6thSense: A Context-aware Sensor-based Attack Detector for Smart Devices", in the Proceedings of the 26th USENIX Security Symposium, 2017.
- 9 Yan Michalevsky and Dan Boneh, "Gyrophone: Recognizing Speech from Gyroscope Signals", *Proceedings of the 23rd USENIX Security Symposium*, 2014.