Sprint 3:

RSNA-MICCAI Brain Tumor Radiogenomic Classification

Team members: Zhaowen Zhou

Rahaf Alharbey

Jiawei Zhao

Shuyi Fan

Contents

- 1. Data Preparation
- 2. Model 1: ResNet Model
- 3. Model 2: EfficientNet 3D
- 4. Next Step

Data Preparation

Input Data

FLAIR Picture

T1w Picture

Input Data

T1wCE Picture

T2w Picture

Data Augmentation

Rotation

250 - 500 -

Contrasting

Model 1: ResNet Model

Resnet50

Our Model

Resnet50

Number of CNN related publication in science direct

Resnet50 Features

- 1. Faster computational time.
- 2. Higher achieved accuracy.
- 3. Better flow of optimization loss.
- 4. Compatible with transfer learning.
- 5. Most useful CNN algorithms from 2015 for classification.

Result

Accuracy and Loss

Output prediction

Discussion

- Based on the result on the training set and validation model got overfitted in the train set and needs more epochs for training.
- The result of the work is better than other famous CNN algorithms like VGG16 and VGG32.
- Achieved accuracy on test set is 74% which proves the needs for training the model with more procedure for regularization.
- The last layer which had been added is a dense layer with 2 neurons for classification specification about number of neurons can get changed based on number of classes

Model 2: EfficientNet PytTorch 3D

GitHub open source:

https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet

[1] Tan, M., & Le, Q.V. (2019). EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. *ArXiv*, *abs/1905.11946*.

Model Scaling

Figure 2. Model Scaling. (a) is a baseline network example; (b)-(d) are conventional scaling that only increases one dimension of network width, depth, or resolution. (e) is our proposed compound scaling method that uniformly scales all three dimensions with a fixed ratio.

ImageNet Accuracy

Train

Use models with only one MRI type, then ensemble the 4 models

	BraTS21ID	MGMT_value	MRI_Type
446	645	0	FLAIR
529	777	1	FLAIR
420	607	1	FLAIR
406	589	0	FLAIR
475	690	1	FLAIR

	BraTS21ID	MGMT_value	MRI_Type
446	645	0	T1wCE
529	777	1	T1wCE
420	607	1	T1wCE
406	589	0	T1wCE
475	690	1	T1wCE

	BraTS21ID	MGMT_value	MRI_Type
446	645	0	T1w
529	777	1	T1w
420	607	1	T1w
406	589	0	T1w
475	690	1	T1w

	BraTS21ID	MGMT_value	MRI_Type
446	645	0	T2w
529	777	1	T2w
420	607	1	T2w
406	589	0	T2w
475	690	1	T2w

Models & Test

Predict: FLAIR-e1-loss0.693-auc0.500.pth FLAIR (117, 3)

Predict: T1w-e8-loss0.683-auc0.529.pth T1w (117, 3)

Predict: T1wCE-e8-loss0.688-auc0.510.pth T1wCE (117, 3)

Predict: T2w-e5-loss0.693-auc0.533.pth T2w (117, 3)

Validation ensemble AUC: 0.5931

	MGMT_value	MRI_Type
BraTS21ID		
1	0.511575	T2w
13	0.543372	T2w
15	0.516285	T2w
27	0.536630	T2w
37	0.526855	T2w
826	0.517826	T2w
829	0.513860	T2w
833	0.518291	T2w
997	0.498467	T2w
1006	0.516734	T2w

Next:

Compare and choose the best model; Make products easier to applicate.

THANK YOU