Prepared for submission to JHE	Prepared	ed for	submission	to JHE
--------------------------------	----------	--------	------------	--------

Prob/Stats Cheatsheet

Steve Young

Abstract: Everything I know about prob/stats/maybe information theory too..

Contents

1	Conventions	1
2	Distributions	1
	2.1 Gaussians	1
	2.2 Bernoulli	1
3	Prob and stats	2
	3.1 Covariance	2
4	Information Theory	2
5	Bayesian	2
6	Optimal Stopping Theory	2

1 Conventions

Math Notation

2 Distributions

2.1 Gaussians

To start with, remember that

$$\int_{-\infty}^{\infty} dx \, e^{-\alpha x^2} = \left(\frac{\pi}{\alpha}\right)^{1/2}, \qquad \alpha = \frac{1}{2\sigma^2}$$
 (2.1)

where σ^2 is the variance of a Gaussian distribution.

2.2 Bernoulli

For $x \in \{0, 1\}$, Bernoulli dist parametrized by μ , with

$$p(x; \mu) = \mu^{x} (1 - \mu)^{1 - x}$$
(2.2)

- 3 Prob and stats
- 3.1 Covariance
- 4 Information Theory
- KL divergence:

$$KL[p(x)||q(x)] = \sum_{x_i} p(x_i) \log \left(\frac{p(x_i)}{q(x_i)}\right) = -\sum_{x_i} p(x_i) \log \left(\frac{q(x_i)}{p(x_i)}\right)$$

$$= -\sum_{x_i} p(x_i) \log q(x_i) + \sum_{x_i} p(x_i) \log p(x_i)$$

$$= H(p, q) - H(p)$$

$$(4.1)$$

where H(p, q) is the cross entropy, and H(p) is the entropy.

- 5 Bayesian
- 6 Optimal Stopping Theory