Proof of Less Work

BY CHENG WANG Alephium Project

1 Introduction

This paper is about PoLW to reduce the energy consumption of Nakamoto PoW[1]. This paper is inspired by the recent and great paper from Itay, Alexander and Ittay [2] which describes several algorithms with reduced external costs. It's also inspired by the white paper of Alephium project [3] which introduces dynamic mining rewards with lockup. We propose two algorithms (linear PoLW and exponential PoLW) which could reduce the energy consumption of Nakamoto PoW.

From Section 2 to Section 6 we discuss about our linear PoLW. Then generalize it to other PoLW.

2 Linear PoLW

Let W be the amount of work needed for one block. Let the maximal block reward be 1 coin. The miner could choose to get only α coin reward $(0 < \alpha \le 1)$. If the actual work of the new block is W', then the weighted work is $\left(1 + \frac{1-\alpha}{\gamma}\right)W'$, where $\gamma \le 1$ is a system parameter. Each miner could choose a different α to ample it's mining work. The idea is that the $1-\alpha$ coins are burned for some amount of weighted work.

 $\begin{array}{ll} W & \text{amount of work needed for a regularly mined block} \\ W' & \text{actual work the miner produces} \\ \alpha \leqslant 1 & \text{actual block rewards. maximal is 1 coin} \\ \beta & \text{cost for regular block mining} \\ \gamma \leqslant 1 & \text{system parameter for weight calculation} \end{array}$

Table 1.

3 Mining Strategy

The question arises that which α should a miner use to maximize its return. Let's say a miner M has x coin to use for mining the block. Let β coin be the resource cost of W work for the regular Nakamoto mining. Then in the equilibrium case, the probability of M getting the block is

$$p_M = \frac{x\left\{1 + \left(1 - \alpha_M\right)/\gamma\right\}}{\beta}$$

The expected return is

$$p_M \alpha_M - x = \left(1 + \frac{1 - \alpha_M}{\gamma}\right) \alpha_M \frac{x}{\beta} - x$$

The maxmized return is

$$\max\left(p_{M}\alpha_{M}-x\right)=\max\left(\left(1+\frac{1-\alpha_{M}}{\gamma}\right)\alpha_{M}\right)\frac{x}{\beta}-x$$

We could easily deduce that

$$\alpha_M = \frac{1+\gamma}{2}$$

Therefore, the long term strategy S for a miner is to set α to be $\frac{1+\gamma}{2}$ to mine new blocks. However, in short term, the miner could adjust its α for better expected return. We show that strategy S is an equilibrium strategy by an ideal analysis.

Note that even if the Miner M's mining algorithm or machine is more efficient than the others, the optimal value of α_M is still $\frac{1+\gamma}{2}$.

4 Equilibrium Strategy

Let's assume that all the miners work together and use the same α to try to maximize the return of mining. In order to make the weighted work reach the target work W, the miners need to cost $\frac{\beta}{1+(1-\alpha)/\gamma}$ coin. The actual return of the miners is

$$R(\alpha) = \alpha - \frac{\beta}{1 + (1 - \alpha)/\gamma}$$

With some calculation, we get the following result

$$\max R(\alpha) = \begin{vmatrix} 1 + \gamma - 2\sqrt{\beta\gamma} & \text{when } \gamma \leqslant \beta \leqslant \frac{(1+\gamma)^2}{4\gamma}, \text{with } \alpha = 1 + \gamma - \sqrt{\beta\gamma} \\ 1 - \beta & \text{when } \beta < \gamma, \text{with } \alpha = 1 \\ 0 & \text{when } \beta > \frac{(1+\gamma)^2}{4\gamma}, \text{do not mine} \end{vmatrix}$$

We see here that when the mining cost is very low, the miners will set $\alpha=1$ and it degenerates to the classic Nakamoto mining. However, as the mining cost goes up, the miners will have to set $\alpha=1+\gamma-\sqrt{\beta\gamma}$ to maxize its return. Therefore, we see that in the non-equilibrium case, the miners could set α to be different from $\frac{1+\gamma}{2}$ for better mining return.

Equilibrium Case. In equilibrium, max $R(\alpha)$ should be equal to 0. In such case, we have $\beta > \gamma$ and $1 + \gamma - 2\sqrt{\beta\gamma} = 0$. Therefore

$$\beta = \frac{(1+\gamma)^2}{4\gamma}$$

$$\alpha = 1+\gamma - \sqrt{\beta\gamma} = \frac{1+\gamma}{2}$$

We now show that α will be $\frac{1+\gamma}{2}$ for all the miners in the equilibrium case. Therefore, \mathcal{S} is the equilibrium strategy in the case where mining is negligible to 0.

5 Security Analysis

We only compare our algorithm to the classic Nakamoto PoW algorithm to see the security differencies. In Nakamoto PoW, an attacker needs to first invest 1 coin to mine a new block and then get the reward back in the equilibrium case.

In our new algorithm, the cost for an attacker A to mine a new block with α_A is

$$\text{Cost}_A = 1 - R_A = 1 - \alpha_A + \frac{\beta}{1 + (1 - \alpha_A) / \gamma}$$

In equilibrium where $\beta = \frac{(1+\gamma)^2}{4\gamma}$, $\alpha = \frac{1+\gamma}{2}$, the cost of the attacker is $2\sqrt{\beta\gamma} - \gamma = 1$. Therefore, we show that our new PoWW algorithm has same security as Nakamoto PoW in terms of new block generation cost.

We ignore the other metrics analysis similar to that of paper [2], which should be intuitive.

6 Energy consumption.

The actual work done by the miner is $\frac{\beta}{1+(1-\alpha)/\gamma}$ coin. In equilibrium where $\beta = \frac{(1+\gamma)^2}{4\gamma}$, $\alpha = \frac{1+\gamma}{2}$, the work amount is equal to the mining reward $\frac{1+\gamma}{2}$, less than 1 coin. Therefore, it costs less energy compared to Nakamoto PoW.

7 Generalization & exponential PoLW

Let's assume now that the weights of work is calculated by $1 + f(1 - \alpha)$. In our previous analysis, $f = \frac{1-\alpha}{\gamma}$. Similarly, let's first find out the optimal α for miners in long term.

$$p_M = \frac{x\{1 + f(1 - \alpha_M)\}}{\beta}$$

The expected return is

$$p_M \alpha_M - x = \{1 + f(1 - \alpha_M)\} \alpha_M \frac{x}{\beta} - x$$

The maxmized return is

$$\max (p_M \alpha_M - x) = \max (\{1 + f(1 - \alpha_M)\}\alpha_M) \frac{x}{\beta} - x$$

The optimal mining parameter would be better to satisfy the following equation of derivative.

$$1 - f'(1 - \alpha_M)\alpha_M + f(1 - \alpha_M) = 0$$

We want to choose good function f such that $0 < \alpha_M < 1$. As in the equilibrium case, the energy cost would be close to α_M , we also want the optimal α_M to be small if possible. There might be many ways to choose such kind of functions. We focus on this following simple case.

Case $f(1-\alpha) = e^{\gamma(1-\alpha)} - 1$ ($\gamma \ge 1$). In this case, we have

$$\max(\{1+f(1-\alpha_M)\}\alpha_M) = \max(\alpha_M e^{\gamma(1-\alpha_M)})$$

With simple calculation, we know that the optimal $\alpha_M = \frac{1}{\gamma}$.

In the following, we apply the similar analysis as before, without repeating all the details.

Equilibrium. The actual return of miners is

$$R(\alpha) = \alpha - \beta e^{-\gamma(1-\alpha)}$$

$$R'(\alpha) = 1 - \beta \gamma e^{-\gamma(1-\alpha)}$$

$$\max R(\alpha) = \left| \begin{array}{l} \alpha - \frac{1}{\gamma} & \text{when } \beta \geqslant \frac{1}{\gamma}, \text{with } \alpha = 1 - \frac{\lg(\beta\gamma)}{\gamma} \\ 1 - \beta & \text{when } \beta < \frac{1}{\gamma}, \text{with } \alpha = 1 \end{array} \right|$$

In equilibrium, we have $\alpha - \frac{1}{\gamma} = 0$ and $\alpha = 1 - \frac{\lg(\beta\gamma)}{\gamma}$, therefore

$$\beta = \frac{e^{\gamma+1}}{\gamma}$$
$$\alpha = \frac{1}{\gamma}$$

Therefore, using $\alpha = \frac{1}{\gamma}$ is an equilibrium mining strategy.

Security. The cost of Attack A is

$$Cost_A = 1 - R_A = 1 - \alpha_A + \beta e^{-\gamma(1-\alpha_A)}$$

In equilibrium, the cost is 1 coin.

Energy consumption. In equilibrium, the actual mining cost (i.e. energy consumption) is $\frac{1}{\gamma}$. If we choose γ to be large enough, this could be close to 0.

8 Parameter Selection

Let's call our two PoLW algorithms as linear PoLW $(f = \frac{1-\alpha}{\gamma}, \gamma \leq 1)$ and exponential PoLW $(f(1-\alpha) = e^{\gamma(1-\alpha)} - 1, \gamma \geq 1)$.

In linear PoLW, we could choose γ close to zero so that the energy cost could be reduce to close to $\frac{1}{2}$. However, when γ is small, the weight $1+\frac{(1-\alpha)}{\gamma}$ to the actual mining work would be huge, this will make double spending more feasible with less actual mining work.

Same in exponential PoLW, we could choose γ large so that the energy cost could be reduced to close to 0. However, when γ is big, the weight $e^{\gamma(1-\alpha)}$ to the actual minging work would be huge, this will make double spending more feasible as well.

One way to ease this issue is to set the lower bound of α to be the optimal α . When mining is in equilibrium, the attackers could not get better weight than the other miners.

The issue is still serious before mining reaching a equilibrium state. One possible solution is to adjust γ when the blockchain evolves, so that the weights are lower from the beginning, but getting higher eventually. For example, we could adjust γ based on the currently work target.

9 Implementation considerations.

The only thing to change is to use weighted work instead of the classic work. Therefore, there is neglagible implementation overhead.

10 Discussion.

It would be good to analysis PoLW in more complicated models.

Bibliography

- [1] Satoshi Nakamoto et al. Bitcoin: a peer-to-peer electronic cash system. 2008.
- [2] Itay Tsabary, Alexander Spiegelman, and Ittay Eyal. Just enough security: reducing proof-of-work ecological footprint. ArXiv preprint arXiv:1911.04124, 2019.
- [3] Cheng Wang. Alephium: a scalable cryptocurrency system based on blockow. https://github.com/alephium/white-paper/raw/master/white-paper.pdf, 2018.