CLAIMS

What is claimed is:

1 2 3 4 5 6 r	 A heat dissipation device, comprising: a base having a first base surface; at least one fin extending from said first base surface; a spring clip channel defined proximate said at least one fin; and a load centering mechanism within said spring clip channel, said load centering mechanism integrally associated with said first base surface.
1 2	2. The heat dissipation device of claim 1, wherein said load centering mechanism comprises a pedestal extending from said first base surface.
1 2 3	3. The heat dissipation device of claim 1, wherein said spring clip channel further includes at least one sloped side adapted to orient a spring clip on said load centering mechanism.
1 2	4. The heat dissipation device of claim 1, wherein said load centering mechanism includes at least one sloped side adapted to orient a spring clip thereon.

- The heat dissipation device of claim 1, further including at least one depression defined in said base from said first base surface that defines said load centering mechanism.
- 1 6. A microelectronic assembly, comprising:
- 2 a microelectronic device; and
- a heat dissipation device, including a base having a first base surface and an
- opposing second surface, wherein said heat dissipation device makes thermal contact
- with said microelectronic device, and including at least one fin extending from said first
- base surface, a spring clip channel defined proximate said at least one fin, and a load
- 7 centering mechanism within said spring clip channel, said load centering mechanism
- 8 integrally associated with said first base surface.
- 1 7. The microelectronic assembly of claim 6, wherein said load centering mechanism of said heat comprises a pedestal extending from said first base surface.
- 1 8. The microelectronic assembly of claim 6, wherein said spring clip channel
- 2 further includes at least one sloped side adapted to orient a spring clip on said load
- 3 centering mechanism.
- 1 9. The microelectronic assembly of claim 6, wherein said load centering
- 2 mechanism includes at least one sloped side adapted to orient a spring clip thereon.

1	10.	The microelectronic assembly of claim 6, further including at least one
2	depression defined in said base from said first base surface that defines said load	
3	centering mec	hanism.

- 1 11. A method for fabricating a heat dissipation device, comprising:
 2 forming a base having a first base surface;
 3 forming at least one fin extending from said first base surface;
 4 forming a spring clip channel defined proximate said at least one fin; and
 5 forming a load centering mechanism within said spring clip channel, said load
 6 centering mechanism integrally associated with said first base surface.
- 1 12. The method of claim 11, wherein said forming said base, forming said at
 2 least one fin, forming said spring clip channel, and forming said load centering
 3 mechanism occur substantially simultaneously in a molding process.
- 1 13. The method of claim 11, wherein forming said load centering mechanism 2 comprises forming a pedestal extending from said first base surface.
- 1 14. The method of claim 11, wherein forming said load centering mechanism 2 comprises attaching said load centering mechanism to said base first surface within said 3 spring clip channel.

- 1 15. The method of claim 11, wherein forming said base, forming said at least
 2 one fin, and forming said spring clip channel occur substantially simultaneously in a
 3 extrusion process, and forming said load centering mechanism comprises milling away a
 4 portion of said spring clip channel.
- 1 16. The method of claim 11, wherein forming said load centering mechanism 2 comprises forming at least one depression extending into said base from said base first 3 surface within said spring clip channel.
- 1 17. The method of claim 11, wherein forming said spring clip channel further
 2 includes forming at least one sloped side adapted to orient a spring clip on said load
 3 centering mechanism.
- 1 18. The method of claim 11, wherein forming said load centering mechanism 2 further includes forming at least one sloped side adapted to orient a spring clip thereon.
- 1 19. A method for fabricating a microelectronic assembly, comprising:
 2 providing a microelectronic device;
 3 providing a heat dissipation device including a base having a first base surface
 4 and an opposing second base surface, at least one fin extending from said first base
 5 surface, a spring clip channel defined proximate said at least one fin, and a load centering

- 6 mechanism within said spring clip channel, said load centering mechanism integrally
- 7 associated with said first base surface;
- 8 placing said heat dissipation device second base surface in thermal contact and
- 9 microelectronic device; and
- placing a spring clip within said spring clip channel.
- 1 20. The method of claim 19, further including placing said microelectronic
- 2 device in a socket, and securing said spring clip to said socket.