Heat conduction

General energy conservation:

Consider the limit of pure rock

$$\phi = 0$$
, $q = 0$ and $p_s = p$ $K_s = K$ $C_{p,s} = C_p$ radiogenic source term:

$$\hat{f}_s = pH_o$$
 $H = heat production [$\frac{W}{Kg}$]$

$$\Rightarrow \text{ Heat equation}$$

$$pc_{p} \frac{\partial T}{\partial t} - \nabla \cdot [\kappa \nabla T] = pH$$

- Transient -> changes with time
- radiogenic source term

Steady heat conduction - Crustal Geotherm

Stead -> no change in time

Same equation we have solved for groundwater flow, except for source term. >> know how to solve?

$$q_s$$
 = surface heat flow
 q_m = mantle heart flow
 h = ave. thickness of cont. crust
We know appoximately:
 q_s = $65 \cdot 10^{-3} \frac{W}{m^2}$
 p = 2700 $\frac{129}{m^3}$
 h = 35 km
 k = 3.35 $\frac{W}{m k}$
 H = 9.6 · $10^{-10} \frac{W}{kg}$ (at surface)

We don't know qu.

Assuming
$$q_m = 3$$

 $q_s = \int_0^\infty \rho H dz = \rho H h = 90.72 \cdot 10^3 \frac{W}{m^2}$

bigger than measured value

Because other quantities are reasonably well known

Ho = suface heat production

hr= decay depth of radiogenic heating

z = olipth below surface

Following ID heat conduction problem:

PDE:
$$-\kappa \frac{d^2T}{dz^2} = \rho H_0 e^{-z} h_V$$
 $z \in [0, h]$
BC: $T(z=c) = T_s$, $\kappa \frac{dT}{dz} = q_m$

Here que and he are unknown

Note: Because z points down upward heat flows are negative?

Relation between 9s and 9m dg=pHoe⁻²/hr

integrale
$$q_m - q_s = \rho l_s \int_0^h e^{-z} h_r dz$$

 $= -\rho h_r H_o \left(e^{-h/h_r} - e^{-z} \right)$
 $q_m - q_s \approx \rho h_r H_o$
 $q_m = -|q_m|$ $q_s = -|q_s|$
 $-|q_m| + |q_s| \approx \rho h_r H_o$

Provides a way to
estimate unturous

que and he from

surface data?

Analytic solution for geothern Integrating twice

T(z) =
$$-\frac{19m}{k} - \frac{19m}{k} - \frac{19m}{k$$

Implementation:

solve:
$$\underline{L} \underline{u} = f_s$$
 $\underline{u} = T(\underline{x})$

What about source term?

Continuous:
$$f_s = \rho H_o e^{-x/h_r}$$

Discrete
$$f_s = f_s(\underline{x}_c)$$

This will converge to correct answer with mesh refinement, but ou coarse grid we have errors in susface heat flux.

Problem: We simply evaluate source term

in cell centr > may not be good representation of average heat production in the cell.

We can directly compute average over a all

$$\langle f_{s,i} \rangle = \frac{1}{\Delta x} \int_{x_{f,i}}^{x_{f,i+1}} \rho H_o e^{-x_{hr}} dx =$$

$$\langle f_{s,i} \rangle = \frac{\rho H_o h_r}{\Delta x} \left[exp \left(-\frac{x_{f,i}}{h_r} \right) - exp \left(-\frac{x_{f,i+1}}{h_r} \right) \right]$$

⇒ cusure that the correct amount of heat is added even on course grid ?