西安交通大学实验报告

课程:			实	验	日	期
专业班号	组	别	交	报台	告 日	期
姓 名	学	号	报	告	退	发
同组者			教	室审	批签	字

实验名称

实验六 气流速度测量实验

一、实验目的

- 1. 通过实验,掌握利用空气动力探针测量风管内气流速度的方法,以及相关仪器仪表的使用。
- 2. 通过实验,掌握毕托管和三孔探针测量气流速度的原理,并了解其结构。

二、实验装置简图

气流速度测量装置简图 1 风机 2 实验风管 3 整流栅 4 毕托管 5 三孔探针 6 流量调节阀 7 坐标架 8 压力计排

三、原始数据

用毕托管测量气体流速

符号	名称	单位	1	2	3	4	5	6	7	8
h ₀	中孔与大气压差	Pa	1495.7	1485.9	1471.2	1505.4	1525.0	1554.3	1583.6	1613.0
Δh_2	中孔与侧孔压差	Pa	977.6	884.7	782.0	684.3	596.3	488.8	391.0	293.3
p _a	大气压	Pa	96700	96700	96700	96700	96700	96700	96700	96700
t	环境温度	$^{\circ}$	23.1	23.1	23.1	23.1	23.1	23.1	23.1	23.1

用三孔探针测量气体流速

符号	名称	单位	1	2	3	4	5	6	7	8
Δh_{2-1}	中孔2与侧孔1压差	Pa	1026.4275	977.55	782.04	674.5095	596.3055	430.122	312.816	205.2855
Δh_2	中孔 2 与大气压差	Pa	1309.917	1349.019	1368.57	1388.121	1412.55975	1427.223	1466.325	1505.427
p _a	大气压	Pa	96700	96700	96700	96700	96700	96700	96700	96700
t	环境温度	$^{\circ}$	23.1	23.1	23.1	23.1	23.1	23.1	23.1	23.1

四、数据处理

毕托管测速数据处理

名称	公式	单位	1	2	3	4	5	6	7	8
气流压力	$p = p_a + (h_0 - \Delta h_2)$	Pa	97218.1	97301.2	97389.2	97521.1	97628.7	97765.5	97892.6	98019.7
气流密度	$\rho = \frac{p}{R \times (t + 273)}$	kg/m³	1.144	1.145	1.146	1.148	1.149	1.150	1.152	1.153
气流动压	$p_d = k_u \times \Delta h_2$	Pa	975.59	882.91	780.48	682.92	595.11	487.80	390.24	292.68
气流速度	$u = \sqrt{\frac{2p_d}{\rho}}$	m/s	41.30	39.27	36.91	34.50	32.19	29.12	26.03	22.53

注: $k_u = 0.998$

三孔探针测速数据处理

名称	公式	单位	1	2	3	4	5	6	7	8
气流静压	$p_s = \Delta h_2 - \frac{k_0 \times \Delta h_{2-1}}{k_0 - k_1}$	Pa	281.4	369.5	585.0	712.3	815.1	996.2	1152.9	1299.7
气流密度	$\rho = \frac{p_a + p_s}{R \times (t + 273)}$	kg/m³	1.141	1.142	1.145	1.146	1.147	1.150	1.151	1.153
气流动压	$p_d = \frac{\Delta h_2}{k_0 - k_1}$	Pa	1312.5	1346.3	1365.8	1385.3	1409.7	1424.4	1463.4	1502.4
气流速度	$u = \sqrt{\frac{2p_d}{\rho}}$	m/s	47.96	48.55	48.85	49.16	49.57	49.78	50.42	51.05

注: $k_0 = 1, k_0 - k_1 = 0.998$

毕托管测得气流速度与压差曲线图

三孔探针测得气流速度与压差曲线图

五、思考题

1. 什么是气流压力和气流静压? 他们之间有什么关系?

气流压力是气流总压,包括动压和静压的两部分,气流压力是气流制止时对制止点壁面造成的压力,气流静压是气流运动时对壁面造成的压力。

2. 毕托管和三孔探针各有何优缺点?

毕托管要求必须正对来流方向,三孔探针可以选择使用对向测量和非对向测量,非 对向测量的方法不要求必须正对来流方向。毕托管结构简单、价格便宜、原理上可以达 到较高精度,三孔探针非对向时使用查表法,原理上不如毕托管好。

3. 影响测量精度的因素有哪些?

导流板的效果、测压管是否正对来流方向、电源波动、鼓风机进口附近人员走动导 致阻力变化、U形管中液体稳定时间。

4. 分析测量误差和曲线图。

三孔探针的波动较大可能是因为稳定时间不够引起的,需要尝试加长稳定时间,以得到更好的数据。

三孔探针角度与压差关系记录表

单位: 0.1mmH₂O

角度(°)	10	20	30	40	50	60	70	80	90	100
Δh_{3-1}	1160	1300	1480	1520	1530	1420	930	120	-630	-920
Δh_{2-1}	1030	1470	1500	1200	710	120	-460	-990	-1340	-1390
Δh_2	-100	-200	-100	240	650	1000	1210	1310	1300	1170
Δh_1	-930	-1270	-1400	-1440	-1360	-1120	-750	-320	40	220
Δh_3	230	30	80	80	170	300	180	-200	-590	-700

注: 前三组数据是测量得到的,后两组数据是根据前三组数据计算得到的。

原始数据图

三孔探针角度与压差关系图

数据分析

 Δh_3 可能因为是因为连续叠加了两个差值,误差较大,图形不太规则。 从图中可以看到量角器在 83° 左右时是三孔探针正对来流方向,此时 1、3 两孔压力相等。