

Universidade do Minho Escola de Ciências

Departamento de Matemática

Análise Matemática para Engenharia

Licenciatura em Engenharia Informática

Teste 2 A :: 14 de maio de 2024

Nome (Número 💮
		ſ		
Em cada	a uma das questões seguintes, assi apresenta Cada resposta certa vale 1 valor	r qualquer justi	ficação.	
Questão 1.	Os pontos críticos da função $f\left(x,y\right)$	$y) = x^2 + 2xy + y$, ³ são	
•	$(0,0) \in \left(-\frac{2}{3},\frac{2}{3}\right)$	0	$(0,0), \left(\frac{2}{3}, -\frac{2}{3}\right)$	$) e \left(-\frac{2}{3}, \frac{2}{3}\right)$
0	$(0,0) \in \left(\frac{2}{3}, -\frac{2}{3}\right)$	0	$(0,0), \left(\frac{2}{3},\frac{2}{3}\right)$	$e\left(-\frac{2}{3},-\frac{2}{3}\right)$
Questão 2.	Considere a função $f(x, y) = \frac{3}{2}x^2 - \frac{3}{2}x^2$	$xy^2 + \frac{1}{2}y^2$. O po	onto $(0,0)$	
•	é um minimizante local de f	0	é um ponto d	e sela de f
0	é um maximizante local de f	0	não é ponto c	rítico de <i>f</i>
Questão 3. f res	Considere a função $f(x,y)=x^2+y$ trita ao conjunto C	² — 5 <i>ху</i> е о сопји	$C = \{(x, y) \mid$	$\in \mathbb{R}^2$: $x^2 + y^2 = 1$ }. A função
0	tem um valor máximo, mas não tem mínimo	um valor	tem um valor	máximo e tem um valor mínimo
0	não tem um valor máximo, mas tem mínimo		não tem um v mínimo	alor máximo nem tem um valo
	Sejam $f,g:\mathbb{R}^2 o\mathbb{R}$ funções de cla $g(y)=0$ e que esse mínimo é atingido er			
	$\nabla f(P_0) = (3, -1)$ $\nabla g(P_0) = (-1, \frac{1}{3})$	$\nabla f(P_1) = (1, 0)$ $\nabla g(P_1) = (0, 1)$	$\nabla f(P_2) = 0$ $\nabla g(P_2) = 0$	(2, 1) -1, -2)
Poder	mos concluir que o mínimo de f é ati	ngido em		

Questão 5. Seja $\mathcal D$ o quadrado cujos vértices são $(\pm a, \pm a), \ a>0$. Se $I=\int_{\mathcal D} xy\,d(x,y),$ então

 \bigcirc P_0 e P_2

$$I = 0$$

$$I = 4 \int_0^a \int_0^a xy \, dx \, dy$$

 \bigcirc P_2

$$O I = 2 \int_0^a \int_0^a xy \, dx \, dy$$

 P_1 e P_2

$$\bigcirc I = 4a^2$$

 $ightharpoonup P_0$

Questão 6. O integral $\int_0^1 \int_{-x^2}^x f(x,y) \, dy dx$ pode escrever-se como

Questão 7. O ponto de coordenadas cilíndricas $(\rho, \theta, z) = \left(1, \frac{3\pi}{4}, 1\right)$ tem coordenadas esféricas (r, θ, ϕ)

$$\bigcirc \quad \left(1, \frac{3\pi}{4}, \frac{\pi}{4}\right)$$

$$\bigcirc \qquad \left(1, \frac{3\pi}{4}, \frac{3\pi}{4}\right)$$

$$\left(\sqrt{2},\frac{3\pi}{4},\frac{\pi}{4}\right)$$

$$\bigcirc \quad \left(1, \frac{3\pi}{4}, \frac{\pi}{4}\right) \qquad \bigcirc \quad \left(1, \frac{3\pi}{4}, \frac{3\pi}{4}\right) \qquad \bullet \quad \left(\sqrt{2}, \frac{3\pi}{4}, \frac{\pi}{4}\right) \qquad \bigcirc \quad \left(\sqrt{2}, \frac{3\pi}{4}, \frac{3\pi}{4}\right)$$

Questão 8. Seja $\mathcal{V} = \left\{ (x,y,z) \in \mathbb{R}^3 : x^2 + y^2 \le z^2, \ 0 \le z \le 1 \right\}$ e $I = \iiint_{\mathcal{V}} \frac{z + \sqrt{x^2 + y^2}}{\sqrt{(x^2 + y^2 + z^2)^3}} \, d(x,y,z)$. Então I pode ser escrito em coordenadas esféricas como

$$\bigcirc \int_0^{2\pi} \int_0^{\frac{\pi}{4}} \int_0^{\frac{1}{\cos\phi}} (\sec\phi\cos\phi + \cos^2\phi) \, dr d\phi d\theta \qquad \bullet \qquad \int_0^{2\pi} \int_0^{\frac{\pi}{4}} \int_0^{\frac{1}{\cos\phi}} (\sec\phi\cos\phi + \sin^2\phi) \, dr d\phi d\theta$$

$$\int_0^{2\pi} \int_0^{\frac{\pi}{4}} \int_0^{\frac{1}{\cos\phi}} (\sin\phi\cos\phi + \sin^2\phi) \, dr d\phi d\theta$$

$$\bigcirc \int_0^{\frac{\pi}{4}} \int_0^{2\pi} \int_0^{\frac{1}{\cos\phi}} (\cos^2\phi \sin\phi + \sin^2\phi) \, dr d\theta d\phi \quad \bigcirc \int_0^{2\pi} \int_0^{\frac{\pi}{2}} \int_0^{\frac{1}{\cos\phi}} (\sin\phi \cos\phi + \sin^2\phi) \, dr d\phi d\theta$$

$$\int_0^{2\pi} \int_0^{\frac{\pi}{2}} \int_0^{\frac{1}{\cos\phi}} (\sin\phi\cos\phi + \sin^2\phi) dr d\phi d\theta$$

П

Responda às seguintes questões nos espaços indicados, sem apresentar os seus cálculos.

[1 valor] Seja $f: \mathbb{R}^2 \to \mathbb{R}$ uma função derivável cujas curvas de nível não vazias são circunferências centradas na origem e seja $S=\{1\}\times[-1,1]$. Sabendo que f(S)=[1,2], f(1,1)=2 e $\nabla f(1,y)\neq(0,0)$, $\forall y \in \mathbb{R}$, indique o máximo e o mínimo de $f_{|_S}$ e as coordenadas dos pontos onde são atingidos.

O máximo é 2 e é atingido nos pontos (1,-1) e (1,1). O mínimo é 1 e é atingido no ponto (1,0).

Apresente um esboço da região cuja área é dada pelo integral $\int_{\frac{\pi}{2}}^{\pi} \int_{0}^{2 \operatorname{sen} \theta} \rho \, d\rho \, d\theta.$ Questão 2. [1.5 valores]

Questão 3. [1.5 valores] O volume do sólido cónico delimitado pelas superfícies $z^2 = 4$ e $z^2 = y^2 + x^2$ pode exprimir-se, em coordenadas cilíndricas, pela expressão integral

$$\int_0^2 \int_0^{2\pi} \int_\rho^2 \rho \, dz \, d\theta \, d\rho + \int_0^2 \int_0^{2\pi} \int_{-2}^{-\rho} \rho \, dz \, d\theta \, d\rho = 2 \int_0^2 \int_0^{2\pi} \int_\rho^2 \rho \, dz \, d\theta \, d\rho.$$

Questão 4. [2 valores] Considere a região R do espaço que se encontra no interior do cilindro $x^2 + y^2 = 1$ e é limitada pelos paraboloides $z = x^2 + y^2$ e $z = -(x^2 + y^2)$. Exprima o volume desta região:

- a) usando integrais duplos: $\int_0^1 \int_0^{2\pi} 2\rho^3 \, d\theta \, d\rho = \int_{-1}^1 \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} 2(x^2 + y^2) \, dy \, dx.$
- b) usando integrais triplos (coordenadas cilíndricas): $\int_0^1 \int_0^{2\pi} \int_{-\rho^2}^{\rho^2} \rho \, dz \, d\theta \, d\rho = 2 \int_0^1 \int_0^{2\pi} \int_0^{\rho^2} \rho \, dz \, d\theta \, d\rho$

Ш

As respostas às questões deste grupo devem ser convenientemente justificadas.

Questão 1. [3 valores] Determine e classifique os pontos críticos da função $f(x, y) = 3xy - x^3 - y^3$.

A função f é de classe \mathscr{C}^∞ logo os pontos críticos de f são pontos onde o vetor gradiente de f se anula.

$$\nabla f(x, y) = (3y - 3x^2, 3x - 3y^2).$$

$$\nabla f(x, y) = (0, 0) \Leftrightarrow (x, y) = (0, 0) \lor (x, y) = (1, 1).$$

A matriz hessiana de f em cada ponto $(x, y) \in \mathbb{R}^2$ é $\begin{pmatrix} -6x & 3 \\ 3 & -6y \end{pmatrix}$.

 $\det \operatorname{Hess} f(0,0) = -9 < 0$, $\log (0,0)$ é ponto de sela.

Hess $f(1,1) = \begin{pmatrix} -6 & 3 \\ 3 & -6 \end{pmatrix}$ e o seu determinante é 27 > 0, logo (1,1) é ponto de máximo, uma vez que $f_{xx}(1,1) = -6 < 0$.

Questão 2. [3 valores] Considere a região $\mathcal{D} = \{(x,y) \in \mathbb{R}^2 : y \ge x^2 - 1, y \le 1 - x, y \le x + 1\}$.

- a) Esboce a região \mathcal{D} .
- b) Calcule a área de \mathcal{D} usando integrais duplos.

Área de
$$\mathcal{D} = \int_{-1}^{0} \int_{x^2 - 1}^{1 + x} dy \, dx + \int_{0}^{1} \int_{x^2 - 1}^{1 - x} dy \, dx$$

$$= 2 \int_{-1}^{0} \int_{x^2 - 1}^{1 + x} dy \, dx = 2 \int_{-1}^{0} (2 + x - x^2) \, dx$$

$$= \frac{7}{3}.$$

Área de $\mathcal{D} = \int_{-1}^{0} \int_{-\sqrt{y+1}}^{\sqrt{y+1}} dx \, dy + \int_{0}^{1} \int_{y-1}^{1-y} dx \, dy$ $= \frac{7}{3}.$