Section 2.4 – Chain Rule

Functions of Two Variables

Theorem – Chain Rule for Functions of Two Independent Variables

If w = f(x, y) is differentiable and if x = x(t), y = y(t) are differentiable functions of t, then the composite w = f(x(t), y(t)) is a differentiable function of t and

$$\frac{dw}{dt} = f_x(x(t), y(t)) \cdot x'(t) + f_y(x(t), y(t)) \cdot y'(t)$$

$$\frac{dw}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$$

Chain Rule

Example

Use the Chain Rule to find the derivative of w = xy with respect to t along the path $x = \cos t$, $y = \sin t$. What is the derivative's value at $t = \frac{\pi}{2}$?

Solution

$$\frac{dw}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$$

$$= \frac{\partial (xy)}{\partial x} \frac{d}{dt} (\cos t) + \frac{\partial (xy)}{\partial y} \frac{d}{dt} (\sin t)$$

$$= y(-\sin t) + x(\cos t)$$

$$= (\sin t)(-\sin t) + (\cos t)(\cos t)$$

$$= -\sin^2 t + \cos^2 t$$

Functions of Three Variables

Theorem – Chain Rule for Functions of Three Independent Variables

If w = f(x, y, z) is differentiable and if x, y, and z are differentiable functions of t, then w is a differentiable function of t and

$$\frac{dw}{dt} = \frac{\partial w}{\partial x}\frac{dx}{dt} + \frac{\partial w}{\partial y}\frac{dy}{dt} + \frac{\partial w}{\partial z}\frac{dz}{dt}$$

Chain Rule

Example

Find
$$\frac{dw}{dt}$$
 if $w = xy + z$, $x = \cos t$, $y = \sin t$, $z = t$

In this example the values of w(t) are changing along the path of a helix as t changes. What is the derivative's value at t = 0?

Solution

$$\frac{dw}{dt} = \frac{\partial w}{\partial x} \frac{dx}{dt} + \frac{\partial w}{\partial y} \frac{dy}{dt} + \frac{\partial w}{\partial z} \frac{dz}{dt}$$

$$= (y)(-\sin t) + (x)(\cos t) + (1)(1)$$

$$= (\sin t)(-\sin t) + (\cos t)(\cos t) + 1$$

$$= -\sin^2 t + \cos^2 t + 1$$

$$= \cos 2t + 1$$

$$\frac{dw}{dt}\Big|_{t=0} = \cos(0) + 1 = 2$$

Functions Defined on Surfaces

Theorem – Chain Rule for Two Independent Variables and Three Intermediate Variables

Suppose that w = f(x, y, z), x = g(r, s), y = h(r, s), and z = k(r, s). If all four functions are differentiable, then w has partial derivatives with respect to r and s, given by the formulas

$$\frac{\partial w}{\partial r} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial r} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial r}$$

$$\frac{\partial w}{\partial s} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial s} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial s}$$

Example

Express $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ in terms of r and s if $w = x + 2y + z^2$, $x = \frac{r}{s}$, $y = r^2 + \ln s$, z = 2r **Solution**

$$\frac{\partial w}{\partial r} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial r} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial r}$$

$$= (1) \left(\frac{1}{s}\right) + (2)(2r) + (2z)(2)$$

$$= \frac{1}{s} + 4r + (4r)(2)$$

$$= \frac{1}{s} + 12r$$

$$\frac{\partial w}{\partial s} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial s} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial s}$$

$$= (1) \left(-\frac{r}{s^2} \right) + (2) \left(\frac{1}{s} \right) + (2z)(0)$$

$$= -\frac{r}{s^2} + \frac{2}{s}$$

➤ If
$$w = f(x, y)$$
, $x = g(r, s)$ and $y = h(r, s)$, then
$$\frac{\partial w}{\partial r} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial r} \quad and \quad \frac{\partial w}{\partial s} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial s}$$

Example

Express $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ in terms of r and s if $w = x^2 + y^2$, x = r - s, y = r + sSolution

$$\frac{\partial w}{\partial r} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial r}$$
$$= (2x)(1) + (2y)(1)$$
$$= 2(r-s) + 2(r+s)$$
$$= 2r - 2s + 2r + 2s$$
$$= 4r$$

$$\frac{\partial w}{\partial s} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial s}$$

$$= (2x)(-1) + (2y)(1)$$

$$= -2(r-s) + 2(r+s)$$

$$= -2r + 2s + 2r + 2s$$

$$= 4s$$

$$ightharpoonup$$
 If $w = f(x)$, $x = g(r, s)$, then

$$\frac{\partial w}{\partial r} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial r} \quad and \quad \frac{\partial w}{\partial s} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial s}$$

Implicit Differentiation Revisited

Theorem – A Formula for Implicit Differentiation

Suppose that F(x, y) is differentiable and that the equation F(x, y) = 0 defines y as a differentiable function of x. Then at any point where $F_y \neq 0$,

$$\frac{dy}{dx} = -\frac{F_x}{F_y}$$

$$\frac{dz}{dx} = -\frac{F_x}{F_z}$$

$$\frac{dz}{dy} = -\frac{F_y}{F_z}$$

Example

Find
$$\frac{dy}{dx}$$
 if $y^2 - x^2 - \sin xy = 0$

Solution

$$F(x, y) = y^{2} - x^{2} - \sin xy$$

$$\frac{dy}{dx} = -\frac{F_{x}}{F_{y}}$$

$$= -\frac{-2x - y\cos xy}{2y - x\cos xy}$$

$$= \frac{2x + y\cos xy}{2y - x\cos xy}$$

Example

Find
$$\frac{dz}{dx}$$
 and $\frac{dz}{dy}$ at $(0, 0, 0)$ if $x^3 + z^2 + ye^{xz} + z\cos y = 0$

Solution

$$F(x, y, z) = x^{3} + z^{2} + ye^{xz} + z\cos y$$

$$F_{x} = 3x^{2} + yze^{xz}, \quad F_{y} = e^{xz} - z\sin y, \quad and \quad F_{z} = 2z + xye^{xz} + \cos y$$

$$F(0, 0, 0) = 0 \quad F_{z} = 1 \neq 0$$

$$\frac{dz}{dx} = -\frac{F_{x}}{F_{z}}$$

$$= -\frac{3x^{2} + yze^{xz}}{2z + xye^{xz} + \cos y} \Big|_{(0,0,0)}$$

$$= -\frac{0}{1}$$
$$= 0$$

$$= -\frac{0}{1}$$

$$= 0$$

$$\frac{dz}{dy} = -\frac{F_y}{F_z}$$

$$= -\frac{e^{xz} - z\sin y}{2z + xye^{xz} + \cos y} \Big|_{(0,0,0)}$$

$$= -\frac{1}{1}$$

$$= -1$$

Exercises Section 2.4 – Chain Rule

- (1-6) Express $\frac{dw}{dt}$ as a function of t, then evaluate $\frac{dw}{dt}$ at the given value of t.
- 1. $w = x^2 + y^2$, $x = \cos t$, $y = \sin t$, $t = \pi$
- 2. $w = x^2 + y^2$, $x = \cos t + \sin t$, $y = \cos t \sin t$, t = 0
- 3. $w = \ln(x^2 + y^2 + z^2)$, $x = \cos t$, $y = \sin t$, $z = 4\sqrt{t}$, t = 3
- **4.** $w = z \sin xy$, x = t, $y = \ln t$, $z = e^{t-1}$, t = 1
- 5. $w = \sin(xy + \pi), \quad x = e^t, \quad y = \ln(t+1), \quad t = 0$
- **6.** $w = xe^y + y\sin z \cos z$, $x = 2\sqrt{t}$, $y = t 1 + \ln t$, $z = \pi t$, t = 1
- 7. Express $\frac{\partial z}{\partial u}$ and $\frac{\partial z}{\partial v}$ as functions of u and v if $z = 4e^x \ln y$, $x = \ln(u \cos v)$, $y = u \sin v$, then evaluate $\frac{\partial z}{\partial u}$ and $\frac{\partial z}{\partial v}$ at the point $(u, v) = \left(2, \frac{\pi}{4}\right)$.
- **8.** Express $\frac{\partial w}{\partial u}$ and $\frac{\partial w}{\partial v}$ as functions of u and v if w = xy + yz + xz, x = u + v, y = u v, z = uv, then evaluate $\frac{\partial w}{\partial u}$ and $\frac{\partial w}{\partial v}$ at the point $(u, v) = \left(\frac{1}{2}, 1\right)$.
- 9. Express $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$ and $\frac{\partial u}{\partial z}$ as functions of x, y and z if $u = e^{qr} \sin^{-1} p$, $p = \sin x$, $q = z^2 \ln y$, $r = \frac{1}{z}$, then evaluate $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$ and $\frac{\partial u}{\partial z}$ at the point $(x, y, z) = \left(\frac{\pi}{4}, \frac{1}{2}, -\frac{1}{2}\right)$.
- **10.** Find the values of $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if $z^3 xy + yz + y^3 2 = 0$ at the point (1, 1, 1)
- 11. Find the values of $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if $\sin(x+y) + \sin(y+z) + \sin(x+z) = 0$ at the point (π, π, π)
- 12. Find the values of $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if $xe^y + ye^z + 2\ln x 2 3\ln 2 = 0$ at the point $(1, \ln 2, \ln 3)$
- 13. Find $\frac{\partial w}{\partial r}$ when r = 1, s = -1 if $w = (x + y + z)^2$, x = r s, $y = \cos(r + s)$, $z = \sin(r + s)$
- **14.** Find $\frac{\partial z}{\partial u}$ when u = 0, v = 1 if $z = \sin xy + x \sin y$, $x = u^2 + v^2$, y = uv
- **15.** Find $\frac{\partial z}{\partial u}$ and $\frac{\partial z}{\partial v}$ when $u = \ln 2$, v = 1 if $z = 5 \tan^{-1} x$, $x = e^{u} + \ln v$

16. Find $\frac{\partial z}{\partial u}$ and $\frac{\partial z}{\partial v}$ when u = 1, v = -2 if $z = \ln q$, $q = \sqrt{v + 3}$ $\tan^{-1} u$

17. Find $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ when $r = \pi$ and s = 0 if $w = \sin(2x - y)$, $x = r + \sin s$, y = rs

18. Assume that $w = f(s^3 + t^2)$ and $f'(x) = e^x$. Find $\frac{\partial w}{\partial t}$ and $\frac{\partial w}{\partial s}$

(19-22) Evaluate the derivatives

19. w'(t), where $w = xy \sin z$, $x = t^2$, $y = 4t^3$, and z = t + 1

20. w'(t), where $w = \sqrt{x^2 + y^2 + z^2}$, $x = \sin t$, $y = \cos t$, and $z = \cos t$

21. w_s and w_t , where w = xyz, x = 2st, $y = st^2$, and $z = s^2t$

22. w_r , w_s , and w_t , where $w = \ln(xy^2)$, x = rst, and y = r + s

23. The voltage V in a circuit that satisfies the law V = IR is slowly dropping as the battery wears out. At the same time, the resistance R is increasing as the resistor heats up. Use the equation

$$\frac{dV}{dt} = \frac{\partial V}{\partial I} \frac{dI}{dt} + \frac{\partial V}{\partial R} \frac{dR}{dt}$$

To find how the current is changing at the instant when $R = 600 \Omega$, I = 0.04A,

 $\frac{dR}{dt} = 0.5 \text{ ohm / sec}$, and $\frac{dV}{dt} = -0.01 \text{ volt / sec}$

- **24.** The lengths a, b, and c of the edges of a rectangular box are changing with time. At the instant in question, a = 1 m, b = 2 m, c = 3 m, $\frac{da}{dt} = \frac{db}{dt} = 1 m / \sec$, and $\frac{dc}{dt} = -3 m / \sec$. At what rates the box's volume V and surface area S changing at that instant? Are the box's interior diagonals increasing in length or decreasing?
- **25.** Let T = f(x, y) be the temperature at the point (x, y) on the circle $x = \cos t$, $y = \sin t$, $0 \le t \le 2\pi$ and suppose that

$$\frac{\partial T}{\partial x} = 8x - 4y, \quad \frac{\partial T}{\partial y} = 8y - 4x$$

a) Find where the maximum and minimum temperatures on the circle occur by examining the derivatives $\frac{dT}{dt}$ and $\frac{d^2T}{dt^2}$.

b) Suppose that $T = 4x^2 - 4xy + 4y^2$. Find the maximum and minimum values of T on the circle.

(26-33) Evaluate $\frac{dy}{dx}$

26.
$$x^2 - 2y^2 - 1 = 0$$

29.
$$ye^{xy} - 2 = 0$$

26.
$$x^2 - 2y^2 - 1 = 0$$
 29. $ye^{xy} - 2 = 0$ **32.** $y \ln(x^2 + y^2) = 4$ **27.** $x^3 + 3xy^2 - y^5 = 0$ **30.** $\sqrt{x^2 + 2xy + y^4} = 3$ **33.** $2x^2 + 3xy - 3y^4 = 2$

$$27. \quad x^3 + 3xy^2 - y^5 = 0$$

$$30. \quad \sqrt{x^2 + 2xy + y^4} = 3$$

33.
$$2x^2 + 3xy - 3y^4 = 2$$

28. $2\sin xy = 1$

31.
$$y \ln(x^2 + y^2 + 4) = 3$$

(34 – 37) Find $\frac{dz}{dx}$ and $\frac{dz}{dy}$ at the given point.

34.
$$z^3 - xy + yz + y^3 - 2 = 0$$
; (1, 1, 1)

35.
$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} - 1 = 0;$$
 (2, 3, 6)

36.
$$\sin(x+y) + \sin(y+z) + \sin(x+z) = 0; (\pi, \pi, \pi)$$

37.
$$xe^y + ye^z + 2\ln x - 2 - 3\ln 2 = 0$$
; (1, $\ln 2$, $\ln 3$)

Consider the surface and parameterized curves C in the xy-plane 38.

$$z = 4x^2 + y^2 - 2$$
; $C: x = \cos t$, $y = \sin t$, for $0 \le t \le 2\pi$

- a) Find z'(t) on C.
- b) Imagine that you are walking on the surface directly above C consistent with the positive orientation of C. Find the values of t for which you are walking uphill.

39. Consider the surface and parameterized curves C in the xy-plane

$$z = 4x^2 - 2y^2 + 4$$
; $C: x = 2\cos t$, $y = 2\sin t$, for $0 \le t \le 2\pi$

- a) Find z'(t) on C.
- b) Imagine that you are walking on the surface directly above C consistent with the positive orientation of C. Find the values of t for which you are walking uphill.

Find the value of the derivative of f(x, y, z) = xy + yz + xz with respect to t on the curve $x = \cos t$, $y = \sin t$, $z = \cos 2t$ at t = 1

Define y as a differentiable function of x for $2xy + e^{x+y} - 2 = 0$, find the values of $\frac{dy}{dx}$ at point $P(0, \ln 2)$