$egin{array}{lll} \mbox{Задание 1.} \mbox{ Вычислить} & \mbox{значение Z и оценить абсолютную и относительную погрешности результата, считая, что значения исходных данных полученыв результате округления по дополнению. Записать результат с учетом погрешности. Указать верные цифры.$

N	Z	N	Z
1	$\cos 3.14 + 2.15 - 3.0^3$	2	$1.4^3 - 1.89^2 - 2.02$
3	$e^{1.64} - 3^{-0.88} + 3.4$	4	$\cos 1.57 - \sqrt{3.007 - 1.4}$
5	$(2^{\sqrt{5.12}} - 3^{\sqrt{1.21}})/5.8$	6	$1.25^3 + 1.687 - 2.2^2$
7	$\frac{1}{3.09^2} - 5.4^2 + 3.09$	8	$\frac{2.2}{0.84} - \ln(1.354)$
9	$e^{-3.55} + 2.068 - \frac{1}{\sqrt{2.068}}$	10	$5.05^2 - 0.21 - \frac{1}{1.718}$
11	$\frac{1}{\sqrt{4.00}} - 0.11^2 - 3.6$	12	$\sqrt[3]{7.98} + 1.5 - 1.04^3$
13	$(e^{-0.248} + e^{-0.343})/(-0.248 + 0.343)$	14	$\log_2 2.01 - 2^{-1.006 + 2.0}$
15	$\ln(\cos(0.25 + 0.52 + \sqrt{0.25 \cdot 0.52}))$	16	$\sqrt[3]{3.44} - 1.600 - \cos 2.0$
17	$\sqrt{\sin(0.895)} - \cos(0.7 + 1.7)$	18	$e^{0.22+1.22}/\sqrt{0.429}$
19	$1.06e^{2.252} - 1.3e^{1.06}$	20	$\ln(5.358 + \sqrt{5.538})/2.21$
21	$3^{-0.4} - (2.44 + 0.44)^3$	22	$3.7(\cos(3.7\cdot1.7))^2\sin(1.7)$
23	$\sin(e^{2.15} - \sqrt{2.51}) + \sqrt{6.523}$	24	$\sqrt[3]{e^{-3.03} - e^{3.03}} \cdot 5.5$
25	$0.5e^{2.45} + 6.061e^{-2.45}$	26	$\sqrt[3]{15.0 - 8.09 \cdot 8.766}$
27	$15.324\sin(13.538) + 13.538\sin(15.324)$	28	$e^{\sqrt{3.18}}/(0.21^2+0.893)$
29	$2.1e^{-4.6} - 4.6e^{2.1} + 1.535e^{-4.6}$	30	$\sqrt{7.9^2 + 1.7^3 + 2^4}$

Задание 2. Локализовать корень нелинейного уравнения f(x)=0 и найти его методом бисекции с точностью $\varepsilon=0.01$.

N	f(x)	N	f(x)	N	f(x)
1	$\cos x + 2 - x^3$	2	$x^3 - x^2 + 3x - 2$	3	$e^x - 3^{-x} + 3$
4	$3\cos x - \sqrt{3x-1}$	5	$e^{-x} - x - 3$	6	$x^3 + x - 3$
7	$\frac{1}{(x+1)^2} - x^2 + 2$	8	$\frac{1}{2+x} - \ln(x+1)$	9	$e^{x-3} + 2 - \frac{1}{\sqrt{x}}$
10	$x^2 - 3x - \frac{1}{x+1}$		$\frac{1}{x-2} - \sqrt{x} + 1$	12	$\sqrt[3]{x+1} + 1 - x^3$
13		14	$\log_2 x - 2^{-x}$	15	$\ln(x+1) + x^2 - 3$
16	$\sqrt[3]{3x} - 1 - \cos x$	17	$\cos x + (x - 0.5)^3$	18	$e^x - x^2 + 3x$
19	$e^x + x + 1$	20	$\ln x + 2 - \frac{1}{x}$	21	$3^x + (x-2)^3$
22	$e^x - (x-3)^2 + 2$	23	$e^x + x - 2$	24	$\sin x + (x - 1.5)^3$
25	$e^x + 2x - 2$	26	$\sin x - \sqrt{x-1}$	27	$\ln x - \sqrt{x-2}$
28	$\sqrt{x+1}-x+2$	29	$\sqrt{x-1}-x+4$	30	$\ln(x+1) - \sqrt{x-1}$

Задание 3.

Найти корень нелинейного уравнения из задачи 2 методом простой итерации. Для этого преобразовать уравнение f(x)=0 к виду, удобному для итераций и проверить выполнение условия сходимости. В качестве отрезка локализации взять отрезок, полученный методом бисекции при решении задачи 2. Найти корень методом простой итерации с точностью $\varepsilon=0.0001$.

УКАЗАНИЕ. Для поиска экстремумов функции допускается построение ее графика в любом математическом пакете. Соответствующий график должен быть приведен при оформлении задачи.

1

Задание 4. Найти корень нелинейного уравнения f(x)=0, локализованный на отрезке [a,b], методом Ньютона с точностью $\varepsilon=10^{-8}$.

N	f(x)	[a,b]	N	f(x)	[a,b]	N	f(x)	[a,b]
1	$\frac{1}{2\sqrt{x+1}} - \frac{1}{x}$	[4, 6]	2	$\ln(x+3) + 6x + 1$	[-2,1]	3	$x-\frac{1}{x}-2$	[2,4]
4	$2x - 5 + \frac{1}{(x+1)^2}$	[1, 3]	5	$2x + e^{2-x} - 6$	[0, 2]	6	$3x^2 - \frac{1}{x} - 5$	[1,3]
7	$x - \frac{1}{\sqrt{x-1}} - 2$	[2, 5]	8	$e^x + 2x + 1$	[-1,1]	9	$3e^x + 2x - 6$	[0, 3]
10	$2x + \frac{1}{\sqrt{x-1}} - 6$	[2, 5]	11	$x - 2e^{-x} - 1$	[1,3]	12	$\ln x - e^{-x} + 1$	[0.5, 2]
13	$e^x - \sin x - 2$	[0, 3]	14	$2\cos x - \frac{1}{2\sqrt{x+3}}$	[4, 6]	15	$e^x - \frac{1}{2\sqrt{x+4}}$	[-2, 0]
16	$3\cos x + \ln x + 1$	[3, 5]	17	$2x - 2 - \frac{1}{x+1}$	[0, 3]	18	$x - \cos x$	[-1, 1]
19	$2x + \sin 2x - 2$	[0, 2]	20	$2x + \cos x + 1$	[-1,1]	21	$x - e^{-x-1}$	[-1, 1]
22	$\frac{1}{(x+1.5)^2} - 2x + 3$	[1, 3]	23	$(x-1)e^{-x} + 3$	[-2, 1]	24	$3(x-2) - \frac{1}{x+1}$	[2,4]
25	$3(x-1)^2 - \sin 2x$	[1, 3]	26	$4x^3 - \frac{3}{\sqrt{x+3}}$	[0, 3]	27	$2x - \cos x + 8$	[-5, -3]
28	$e^{x-2} - \frac{1}{2\sqrt{x+2}}$	[0, 2]	29	$e^{x-1} - x^2$	[-2,0]	30	$4x^3 - \cos x$	[-1, 1]

Задание 5. Решить систему уравнений Ax=b методом Гаусса (схема единственного деления).

N			A		b	N			A		b	N		I	A		b
	-4	-7	-3	-2	-18		-1	-8	7	-5	122		9	2	9	-6	65
1	40	61	29	11	238	2	7	61	-40	34	-884	3	45	13	40	-39	256
	40	7	29	-52	652		4	27	-30	27	-518		36	11	36	-34	233
	24	87	41	25	36		6	78	-23	-16	-512		-54	-3	-64	15	-534
	1	7	3	-5	77		- 9	-9	-8	5	-106		-4	-4	3	3	-26
4	5	26	17	-30	325	5	45	51	37	-23	532	6	-12	-4	5	8	-38
	4	91	5	8	728		63	75	48	-27	702		24	32	-27	-14	206
	-8	-128	27	-40	-1061		-36	-12	-26	-9	-12		20	-4	-33	22	70
	-9	8	6	3	54		-10	-4	8	0	102		8	0	-4	-2	0
7	9	0	-11	1	-154	8	80	28	-66	8	-910	9	-16	-6	1	7	2
	18	-80	32	-39	727		-70	-32	50	5	621		-48	-36	-9	32	32
	81	-72	-42	-27	-390		-30	20	28	-74	1068		8	48	70	-19	0
	-3	-3	- 9	-1	-37		6	5	8	-7	-189		-2	-10	-7	4	26
10	-27	-28	-78	-3	-364	11	-18	-10	-29	16	512	$\begin{vmatrix} 12 \end{vmatrix}$	10	46	32	-20	-134
	21	31	34	-58	596		12	35	-5	-40	-684		6	6	-2	-19	-117
	21	31	30	-41	503		-6	-35	34	43	489		20	124	133	18	-126
	-2	-2	-8	-10	60		9	-8	-6	5	-53		-5	7	8	-10	-51
13	10	15	41	44	-276	14	81	-63	-55	35	-509	15	-25	42	48	-51	-268
	-14	1	-46	-97	567		-63	-34	53	71	730		50	-91	-101	100	531
	20	-15	24	204	-1287		-81	0	68	79	1007		20	-91	-89	32	227

N		A		b	N			A		b	N		A	<u> </u>		b
	2 9	-1	-1	-7		7	-9	-1	8	-106		-6	-1	-2	0	67
16	$\begin{vmatrix} -20 & -81 \end{vmatrix}$	4	3	59	17	35	-38	2	44	-577	18	48	12	21	-4	-534
	$\begin{vmatrix} 4 & -9 \end{vmatrix}$	14	22	4	•	49	-77	-12	42	-651		-30	23	15	-26	391
	0 18	-24	9	-117		-70	48	-23	-117	1409		54	13	-27	1	-346
	-5 -10	-4	7	12		-10	-4	7	-1	8		-7	4	-5	-4	53
19	5 17	2	-12	-38	20	60	31	-39	4	-113	$\begin{vmatrix} \\ 21 \end{vmatrix}$	56	-38	30	40	-406
	$\begin{vmatrix} -40 & -52 \end{vmatrix}$	-42	33	-36		20	36	-1	-14	-296		28	-34	-7	31	-200
	10 -43	14	16	60		-30	-61	9	-52	317		-42	-18	-121	98	753
	7 4	-5	1	-11		-6	-7	-2	9	-76		-3	4	7	6	-27
22	-7 -12	1	-4	-48	23	36	43	9	-57	450	$\begin{vmatrix} 24 \end{vmatrix}$	18	-27	-39	-41	266
	35 -12	-43	-6	-312		18	12	38	8	274		-18	51	22	74	-965
	-49 -4	31	18	62		0	0	0	3	-18		6	19	22	-33	345
	-8 8	-4	9	-74		-1	-9	-7	9	-101		3	4	-5	8	-25
$\begin{vmatrix} 25 \end{vmatrix}$	40 -45	25	-38	366	$\begin{vmatrix} 26 \end{vmatrix}$	1	10	6	-2	71	$\begin{vmatrix} 27 \end{vmatrix}$	-30	-46	49	-83	287
	-48 88	-66	-2	-408		7	59	59	-90	828		-3	-40	5	-24	241
	-24 34	-20	8	-208		2	17	-3	-30	239		21	64	25	82	-451
	4 1	0	0	-32		8	1	9	5	51		-5	-5	-9	-5	25
28	4 5	7	0	-70	29	40	2	35	15	213	$\begin{vmatrix} \\ 30 \end{vmatrix}$	20	26	30	17	-178
	20 21	30	6	-308		-72	18	11	50	-90		35	23	76	32	4
	-28 25	52 -	-14	-96		-24	-24	-109	-116	-388		5	-43	54	51	540

Задание 6. Записать LU разложение матрицы A из задачи 5 (не проводя дополнительных расчетов). Используя полученное разложение, найти решение системы Ax=d.

N	d	N	d	N	d	N	d	N	d	N	d	N	d	N	d
	-58		99		-74		-46		199		-47		93		-140
1	558	2	-701	3	-501	4	-160	5	-1036	6	-89	7	-37	8	1196
1	486		-335	0	-416	4	-660	"	-1485		279	'	-641		-893
	658		-937		125		1003		729		-283		-885		-1002
	-60		-72		-12		-105		104		-54		-91		4
9	44	10	-646	11	1	$\begin{vmatrix} 12 \end{vmatrix}$	500	13	-462	14	-472	15	-465	16	-31
	-64		506		-188		200		978		271		889		26
	606		427		336		935		-1968		604		181		333
	18		-17		-31		-111		39		-38		80		-62
17	82	18	160	19	47	20	637	$\begin{vmatrix} 21 \end{vmatrix}$	-398	$\begin{vmatrix} \\ 22 \end{vmatrix}$	50	$\begin{vmatrix} 23 \end{vmatrix}$	-495	$\begin{vmatrix} 24 \end{vmatrix}$	359
	145		115		-176		106		-414		-124		-38		-332
	-115		357		-46		-139		-362		438		27		-458
	-64		-12		-53		27		-23		40				
25	368	$\frac{1}{26}$	38	27	534	28	21	29	-101	30	-130				
	-770		-48	- •	81		163		59		-322				
	-306		78		-319		-357		307		-324				

Задание 7. Решить систему уравнений Ax=b методом Холецкого.

N		A		b	N		A		b	N		A		b
	25	30	10	-95		49	21	14	-350		36	0	30	318
1	30	40	30	-270	2	21	90	69	-1023	3	0	49	14	-147
	10	30	110	-990		14	69	134	-1589		30	14	93	671
	16	0	4	-28		64	40	24	-24		4	6	6	34
4	0	25	10	-95	5	40	34	24	48	6	6	25	25	99
	4	10	54	-388		24	24	43	29		6	25	29	123
	36	6	12	84		81	36	54	-918		1	2	5	-66
7	6	5	6	-6	8	36	80	80	-608	9	2	5	11	-145
	12	6	17	17		54	80	89	-815		5	11	30	-383
	64	16	48	-704		4	2	0	20		9	24	21	138
10	16	8	16	-200	11	2	5	12	26	12	24	89	96	473
	48	16	65	-577		0	12	40	56		21	96	129	522
	36	0	48	-504		36	42	30	-138		9	9	24	-156
13	0	4	12	-104	14	42	113	99	-865	15	9	25	36	-324
	48	12	116	-1080		30	99	114	-969		24	36	137	-670
	9	9	12	-129		16	4	4	-172		25	15	20	190
16	9	58	33	-423	17	4	17	33	-379	18	15	34	52	99
	12	33	89	-746		4	33	129	-1099		20	52	116	-88
	25	5	20	35		36	6	24	-72		64	56	48	-576
19	5	37	34	-263	20	6	82	76	474	21	56	50	50	-580
	20	34	42	-194		24	76	89	384		48	50	149	-1530
	64	16	48	-144		1	5	3	-22		1	6	9	-45
22	16	5	16	-34	23	5	50	20	-265	24	6	72	60	-102
	48	16	101	47		3	20	91	227		9	60	163	-1025
	16	16	20	-208		1	2	8	61		25	45	15	-150
25	16	32	40	-336	26	2	20	16	42	27	45	97	43	-382
	20	40	75	-520		8	16	65	497		15	43	26	-205
	49	49	28	-280		16	28	0	-272		9	24	9	9
28	49	130	91	134	29	28	65	24	-652	30	24	68	42	-60
	28	91	69	178		0	24	37	-266		9	42	126	-585

Задание 8. Решить систему уравнений Ax=b методом прогонки. УКАЗАНИЕ. Промежуточные результаты вычислять с шестью знаками после запятой.

N			A			b	N			A			b	N			A			b
	4	2	0	0	0	-28		8	4	0	0	0	-48		4	-2	0	0	0	22
	-6	20	-4	0	0	-36		3	10	2	0	0	52		5	13	-2	0	0	70
1	0	-3	7	-1	0	58	2	0	0	2	-1	0	8	3	0	-1	6	-2	0	1
	0	0	1	6	-3	11		0	0	-6	14	2	-82		0	0	4	16	5	97
	0	0	0	5	8	76		0	0	0	-1	2	14		0	0	0	-2	4	12

N	A	b N	A	b N	A	b
	9 -5 0 0 0	-43	5 -3 0 0 0		10 -5 0 0 0	-50
	-1 10 4 0 0	$\begin{vmatrix} -33 \end{vmatrix}$	$\begin{bmatrix} 2 & 11 & -4 & 0 & 0 \end{bmatrix}$		$\begin{bmatrix} 2 & 7 & 2 & 0 & 0 \end{bmatrix}$	-76
4	0 0 2 2 0	$\begin{vmatrix} & & & & 12 & & & 12 & & & 1 \end{vmatrix}$	0 -4 11 2 0		0 2 14 -6 0	-6
	0 0 3 7 1	44	$\begin{bmatrix} 0 & 0 & -4 & 16 & -4 \end{bmatrix}$	112	0 0 -5 16 4	-91
	0 0 0 2 4	20	0 0 0 4 8	92	0 0 0 -3 6	-36
	7 4 0 0 0	12	4 -2 0 0 0	-14 10	0 5 0 0 0	-40
	-3 18 -6 0 0	-96	-6 22 -6 0 0	32 -	4 16 4 0 0	-108
7	0 -3 17 -6 0	46 8	$\begin{bmatrix} 0 & 0 & 11 & -6 & 0 \end{bmatrix}$	$-1 \parallel 9 \mid 0$	-6 22 -6 0	218
	0 0 -5 22 -6	2	0 0 0 4 3	$-24 \parallel 0$	0 0 -1 13 -6	-105
	0 0 0 -3 5	-10	$\begin{bmatrix} 0 & 0 & 0 & -1 & 2 \end{bmatrix}$	17 0	0 0 0 2 4	-40
	8 -4 0 0 0	88	4 -2 0 0 0	-4 6	i −3 0 0 0	3
	-3 8 1 0 0	-101	0 0 1 0 0	4 -	2 12 5 0 0	-93
10	0 -6 16 3 0	$\begin{vmatrix} -18 & 11 \end{vmatrix}$	0 -5 17 -4 0	$_{88}$ \parallel 12 \mid 0	-2 13 -5 0	-45
	0 0 0 1 -1	-2	$\begin{bmatrix} 0 & 0 & 0 & 11 & -6 \end{bmatrix}$	-1 0	0 0 -6 14 -1	75
	0 0 0 1 2	-26	0 0 0 -1 2	-13 0	0 0 4 8	8
	4 -2 0 0 0	22	11 -6 0 0 0	113	5 3 0 0 0	22
	-2 11 4 0 0	3	1 10 5 0 0	-13	3 17 -6 0 0	38
13	0 1 12 -5 0	$\begin{vmatrix} 31 & 14 \end{vmatrix}$	0 0 8 4 0	84 15	0 -5 21 -6 0	118
	0 0 5 17 4	174	0 0 1 14 -6	72	0 0 -3 13 4	-64
	0 0 0 4 7	46	0 0 0 -3 5	-10	0 0 0 -5 9	-35
	12 -6 0 0 0	72	$10 -6 \ 0 \ 0 \ 0$	26	9 -5 0 0 0	48
	4 16 5 0 0	-80	3 14 5 0 0	110	0 2 -2 0 0	-2
16	0 4 15 -4 0	120 17	0 1 6 3 0	$-60 \parallel 18 \parallel$	0 5 20 5 0	50
	0 0 2 9 -3	-32	0 0 0 2 2	-22	0 0 -1 6 -3	-76
	0 0 0 -6 10	-32	0 0 0 -2 4	-2	0 0 0 2 4	6
	4 2 0 0 0	-2	8 -5 0 0 0 0	1	6 -3 0 0 0	9
	-6 14 -2 0 0	6	1 2 1 0 0		-1 4 -1 0 0	-15
19	0 3 11 -3 0	$\begin{vmatrix} -134 & 20 \end{vmatrix}$	0 -6 16 -3 0	$-100 \parallel 21 \parallel$	0 -5 21 -6 0	-23
	0 0 -5 18 5	146	0 0 5 17 -4	95	0 0 2 12 5	-40
	0 0 0 -6 12	-114	0 0 0 -5 8	-86	0 0 0 5 9	42
	8 -4 0 0 0	-80	$\begin{bmatrix} 2 & 1 & 0 & 0 & 0 \end{bmatrix}$		8 4 0 0 0	4
20	2 9 -3 0 0	35	-2 11 -4 0 0		0 10 -5 0 0	-5
22	0 -5 22 -6 0	$-154 \parallel 23$	0 3 12 3 0		0 -3 12 4 0	103
	0 0 3 16 -6	61	0 0 -2 10 -3		0 0 -6 20 4	130
	0 0 0 -5 8	-36	0 0 0 -4 7		0 0 0 -5 8	29
	6 -3 0 0 0	-42	5 -3 0 0 0 0		4 -2 0 0 0	-8
25	-2 13 -5 0 0	$\begin{vmatrix} -9 \end{vmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0 8 5 0 0	-62
25	0 -4 17 -5 0	$\begin{vmatrix} -29 \end{vmatrix} 26$	0 -3 14 -5 0	.	0 3 12 4 0	-88
	0 0 -4 12 -2	-78	$\begin{bmatrix} 0 & 0 & 4 & 11 & -2 \end{bmatrix}$		0 0 -2 6 -2	18
	0 0 0 -2 4	20	0 0 0 3 5	1	0 0 0 1 2	-13

N			A			b	N			A	•		b	N			A			b
	6	3	0	0	0	-3		6	3	0	0	0	-30		5	-3	0	0	0	-8
	2	5	-1	0	0	34		5	18	4	0	0	-152		5	14	-3	0	0	103
28	0	-1	6	-2	0	-49	29	0	2	4	-1	0	-1	30	0	1	7	-3	0	-21
	0	0	0	10	-5	-35		0	0	1	11	-5	96		0	0	3	7	1	6
	0	0	0	-2	4	28		0	0	0	-5	10	-25		0	0	0	-2	4	0

Задание 9.

Вычислить нормы $\|\cdot\|_1, \|\cdot\|_E, \|\cdot\|_\infty$ матрицы A и нормы $\|\cdot\|_1, \|\cdot\|_2, \|\cdot\|_\infty$ вектора b. Считая, что компоненты вектора b получены в результате округления по дополнению, найти его относительную погрешность в каждой из трех указанных норм.

N		A		b	N		A		b
11	1 745		0.700		IN	1.00		0.500	
1	-1,745		0,792	-6,1	2	-1,96	-1,222		1
	-2,556	0,574	0,138	4,8	_	-2,923	-2,797	,	7
		-2,972		-2,16			0,497		-7,03
3	2,816	0,824	-0,625	-4,46	4	-2,944	-0,709	1,536	-2, 18
0		-2,488		-4,13	4	-1,447	0,334	-1,093	6
	-0,539	1,33	<u> </u>	-3		0,431		-0,122	-1, 2
	1,134	2,352	0,434	-5		0,829		-2,256	-2,88
5	1,239	-1, 12	0,835	-6,7	6	0,44	1,035	-1,65	7, 7
	-2,731	1,764	0,501	5, 5		-0,037	1,321	-1,284	6,95
	1,773	1,842	-0,726	1,47		0,509	-2,981	-0,549	-5,788
7	2,917	2,345	0,941	1	8	-2,176	-1,786	-0,402	1
	-0,289	-1,379	2,441	0		-0,762	0,336	2,336	2,37
	-0,057	0,398	-0,91	0, 11		0,464	2,201	-1,852	-5, 2
9	2,762	-1,753	-2,831	-6,965	10	0,924	1,257	0,924	-6, 3
	0,112	0,202	1,602	2,8		1,461	-0,391	-0,629	7,8
	-0,344	2,454	-1,559	4,6		-1,36	-2,552	-2,58	5
11	-0,574	0,372	-1,448	3,02	12	0,088	2,616	0,441	7,63
	0,988	-0,302	-2,208	7		-0,712	0,629	-1,236	-4,077
	-2,693	2,013	2,284	-3		-0,038	-2,187	1,202	4, 3
13	-2,487	-2,574	-0,792	-3,87	14	2,673	1,444	-2,185	8
	1,602	2,557	1,563	8		-1,131	2,712	-2,789	-5, 1
	1,219	0,363	0,283	-2		1,019	-2,231	1,309	7, 29
15	1,187	-0,667	-2,812	3,207	16	0,232	-2,264	-0,847	7,4
	2,566	1,86	-0,704	3		2,363	-0,113	2,507	7
	-2,569	-2,904	-0,453	4,3		1,288	-0,097	-2,373	2,577
17	1,809	-2,605	-2,498	4,8	18	-1,407	0,092	-2,951	2,95
	2,277	1,788	-0,871	2,503		-2,663	-1,315	2,515	-3
	-2,695	0,657		-7, 5		0,029		-2,799	-4,7
19		-2,658		-4,73	20		0,947		1,166
	-0,451	-0,985	1,347	1,9			1,194		7,65

N	I	A	b	N		A		b
	0,868 2,	22 -2, 21	-5,28		-2,718	-1,261	0,143	-7
21	2,728 -2	,54 -2,091	-4,54	22	2,381	0,141	-0,221	1,419
	-1,536 $0,1$	134 -0.813	-8		-0,456	2,681	-0,301	2, 5
	-2,085 $-1,$	303 1,091	-2,18		1,663	1,876	-1,421	-6,371
23	-1,664 2,6	682 -0.821	1	24	-1,249	0,684	2,117	1,92
	-2,111 0,	05 -1,182	-3,85		-2,299	1,04	-0,965	2,4
	2,638 $2,6$	608 -1,243	-5,37		0,342	2,414	-0,688	5, 166
25	-2,124 1,	171 2,869	-0,08	26	0,769	-0,252	-1,107	-4
	2,568 1,9	997 1,864	7,839		0,244	0,498	1,622	3,66
	1,96 $-2,4$	446 0,211	1,323		-0,514	-2,803	-1,346	5,509
27	0,506 $0,3$	58 -2,357	-6,39	28	-2,457	1,093	-2,704	-1, 4
	0,451 1,1	04 2,43	-6,115		-1,348	-0,913	0,718	1,664
	-1,681 -1	,86 -2,946	5,882		2,842	0,963	-1,457	2
29	1,49 2,6	658 -2,824	-4,42	30	2,49	-2,205	2,416	-1,041
	-0,659 2,	538 2,351	-0, 4		0,671	2,602	-2,504	-1, 9

Задание 10.

Вычислив норму обратной матрицы A^{-1} , оценить погрешность решения СЛАУ Ax = b в каждой из трех указанных норм для найденных в задании 9 погрешностей вектора b.

Задание 11.

Дана система уравнений Ax=b. Привести ее к виду, удобному для итераций, проверить выполнение достаточного условия сходимости указанных ниже методов. Выполнить три итерации по методу Якоби и три итерации по методу Зейделя. Определить, во сколько раз уменьшится норма невязки в каждом случае. Используя апостериорную оценку, вычислить погрешность приближенного решения, полученного на третьей итерации каждого метода.

УКАЗАНИЕ. Для обеспечения выполнения достаточного условия сходимости воспользоваться перестановкой строк в исходной системе уравнений.

N		I	A		b	N		A	1		b	N		I	A		b
	4	-10	151	-10	119		-10	8	-8	158	-1594		93	-7	5	-7	-417
1	78	2	5	-8	-629	$\begin{vmatrix} 2 \end{vmatrix}$	86	-1	9	0	-406	3	-9	6	6	150	1359
	-9	3	-3	83	149	_	-9	62	1	-3	-295		5	129	9	-10	468
	1	59	3	-7	-71		4	-5	76	5	112		-1	-2	91	-7	-798
	97	-4	9	3	-824		-6	-6	0	79	-632		4	2	-4	76	-48
4	-9	0	90	-3	891	5	52	0	2	7	-522	6	6	5	137	-10	496
	8	-2	6	93	-34		4	120	6	6	1002		127	-9	-6	5	-895
	-4	148	-9	-9	1139		9	-3	132	-7	80		-3	124	-4	-9	-243
	7	94	-5	-1	914		0	8	7	101	753		-4	64	6	-2	260
7	-4	5	6	92	-19	8	-2	1	79	-7	-764	9	-10	6	-8	154	-314
'	46	-2	-4	-1	198		-5	115	-4	-8	92		114	-2	6	-9	-396
	5	5	100	-1	-735		92	1	3	9	-46		-8	-9	137	-2	1105
	-7	8	5	121	208		6	-6	0	89	623		12	2	1	0	87
10	84	9	0	-6	111	11	6	3	95	1	790	$\begin{vmatrix} 12 \end{vmatrix}$	-9	-9	-7	169	1134
	6	113	2	-9	-563		7	123	-8	5	-1077		-4	111	8	7	-815
	8	9	118	-6	431		112	-5	7	-3	-814		2	6	42	1	269

N		A	A		b	N		A	L		b	N		I	4		b
	-2	-8	-3	66	-629		99	-7	-7	4	318		-7	-10	-4	152	407
13	67	4	0	-5	507	14	-7	130	-9	2	829	15	8	4	118	6	-508
	0	-10	86	-1	-562		-10	4	-6	145	671		-2	64	-1	6	137
	0	115	9	-6	-348		-4	4	105	9	792		77	-2	-6	-3	556
	0	86	7	7	51		-10	8	180	9	-1390		-7	-2	-6	101	679
16	9	4	124	3	164	17	-1	43	0	-3	316	18	-2	54	-2	-4	218
	-7	2	-4	83	-542		7	-4	3	110	-513		-7	- 9	114	-1	-1161
	86	8	2	-7	568		94	-4	-8	-1	-242		73	-1	6	-7	-325
	1	127	-7	- 9	559		1	9	83	0	-597		6	5	-6	130	-208
19	98	3	-4	-3	630	20	7	-2	-10	108	563	$\begin{vmatrix} 21 \end{vmatrix}$	6	141	9	8	-1459
	-3	7	-3	73	183		129	5	-9	-8	-885		9	1	120	-10	-998
	-10	<u>-9</u>	185	9	-1743		-6	96	1	-6	-91		61	-10	0	-1	590
	-3	4	80	3	745		-7	83	-7	1	-785		7	3	9	130	-186
22	-7	143	-8	-5	449	23	121	-10	4	-3	353	$\begin{vmatrix} 24 \end{vmatrix}$	92	8	5	1	-479
	-4	7	2	101	640		-6	3	7	89	-285		-8	5	99	-3	-160
	154	-8	9	-7	469		-10	-10	158	-3	553		-1	30	2	3	-32
	3	135	9	-9	-717		7	4	110	9	636		-8	3	-3	103	209
25	-8	1	84	-1	-209	26	3	105	-8	-1	-147	27	131	- 9	5	-6	336
	9	-2	-3	74	348		-7	7	-1	88	-284		-7	9	94	-2	-871
	44	0	2	7	200		98	-5	-4	-2	85		-4	92	-6	-6	30
	88	- 9	-2	-6	-175		-6	-7	-1	96	-820		-5	7	-1	108	762
28	7	8	1	124	-1286	29	2	-7	99	-7	412	30	-2	121	6	9	-401
	-8	-8	97	-3	-19		76	2	9	5	84		128	8	7	5	-886
	-5	86	-5	4	-278		9	87	-5	-2	527		0	-3	80	-9	29

Задание 12.

Выполнить три итерации по методу Зейделя для системы уравнений Ax=b (не переставляя строк). В качестве начального приближения взять нулевой вектор. Изобразить графически поведение итерационного процесса. Сопоставить наблюдаемое поведение метода с выполнением достаточных условий сходимости метода.

N	A	4	b	N		A	b	N	A	4	b	N		A	b	N	I	4	b
1	5	2	5	2	2	2	2	3	2	1	2	4	1	5	5	5	2	2	6
	2	5	20	_	2	-2	-6		1	2	4		5	1	2		1	2	2
6	1	2	2	7	1	1	3	8	5	6	10	9	5	-5	25	10	4	5	16
	1	1	2	·	1	2	8		5	5	25		5	5	20		5	4	4
11	3	3	9	12	4	3	16	13	3	3	3	14	3	3	3	15	1	4	2
	3	5	10		3	4	16		4	3	3		5	3	6		4	1	3
16	4	3	20	17	1	3	5	18	5	1	20	19	5	4	5	20	3	3	15
	3	4	16		3	3	3		1	5	5		4	5	5		3	-3	-6
21	2	5	8	22	4	4	20	23	4	3	8	24	2	1	8	25	2	1	6
	5	2	6		4	3	6		3	4	12		1	2	8		1	2	2

N	A	4	b	N	A	1	b	N	I	1	b	N	I	A	b	N	A	A	b
26	1	2	4	27	5	2	25	28	3	4	3	29	2	3	6	30	2	4	10
	2	1	5	21	2	5	25	20	4	3	15	2.5	3	2	8	30	4	4	20

Задание 13.

Функция y=y(x) задана таблицей своих значений. Применяя метод наименьших квадратов, приблизить функцию многочленами 1-й и 2-й степеней. Для каждого приближения определить величину среднеквадратичной погрешности. Построить на одном чертеже точечный график функции и графики многочленов.

		-	.110 110					I					
N				блица			N				блица Г		
1	X	-4,8	-2,4	0	2,4	4,8	2	X	-1	-0,5	0	0,5	1
	у	-2,9	-3,3	-5,6	-7,4	-9,2		у	0,1	0,7	-1,3	-2	-2,9
3	x	-1	-0,5	0	0,5	1	4	X	-2,4	-1,2	0	1,2	2,4
	у	3,9	0,8	4	7,6	9,8		у	0,9	3,8	5,1	5,7	8,4
5	x	-5	-2,5	0	2,5	5	6	x	-2,4	-1,2	0	1,2	2,4
	у	-0,9	-1,1	1,8	3,8	5,7		у	3,5	7,1	9,5	11,8	14,8
7	x	-5,2	-2,6	0	2,6	5,2	8	X	-4,4	-2,2	0	2,2	4,4
	у	1,8	-0,6	-3,4	-0,5	1,8		у	0,4	2,2	4	3,9	3,2
9	x	-5,2	-2,6	0	2,6	5,2	10	X	-5,2	-2,6	0	2,6	5,2
	у	1,5	-0,2	0,2	1,4	2,7		у	2,2	3,5	6,3	4,4	1,8
11	x	-1,4	-0,7	0	0,7	1,4	12	X	-3,6	-1,8	0	1,8	3,6
	у	-3,4	-1,7	0,6	-1,5	-2,7		у	-1,9	-2,9	-5,2	-6,1	-9,7
13	x	-5,2	-2,6	0	2,6	5,2	14	X	-5,8	-2,9	0	2,9	5,8
	у	-1,7	-3,4	-4,7	-4,8	-8		у	-2,7	-4,9	-5,5	-7,3	-11,1
15	x	-1	-0,5	0	0,5	1	16	x	-1,4	-0,7	0	0,7	1,4
	у	2,9	3,2	6,7	4,8	4,7		у	-1,3	1,7	5,5	7,3	11
17	x	-3,2	-1,6	0	1,6	3,2	18	х	-5,8	-2,9	0	2,9	5,8
	у	0	-2,1	-5	-8,9	-9,1		у	-2,2	-4,2	-6,5	-9,9	-11,4
19	x	-3,6	-1,8	0	1,8	3,6	20	x	-1,2	-0,6	0	0,6	1,2
	у	-0,3	-1,6	-4,3	-7,6	-7,7		у	-3,8	-0,4	0,4	3,8	4,7
21	х	-5,8	-2,9	0	2,9	5,8	22	х	-3	-1,5	0	1,5	3
	у	-3,7	-1,9	-2	-4,8	-6,1		у	-2,1	-0,5	0,4	3,1	6
23	x	-1,2	-0,6	0	0,6	1,2	24	х	-5,6	-2,8	0	2,8	5,6
	у	2,5	0,2	-2,3	-3,7	-4,5		у	-3,4	-3,4	-5,9	-9,2	-11,6
25	x	-4,2	-2,1	0	2,1	4,2	26	X	-5,6	-2,8	0	2,8	5,6
	у	-3,3	-2,3	-1,1	0,7	1,5		у	2,3	-1,5	-2,3	-4,6	-5,8
27	x	-4,8	-2,4	0	2,4	4,8	28	X	-2	-1	0	1	2
	у	-2	-0,9	-0,1	1,5	4,8		у	-1,6	-2,3	-4,9	-6,6	-6,6
29	x	-4,2	-2,1	0	2,1	4,2	30	X	-1,4	-0,7	0	0,7	1,4
	у	0,5	-1,5	1,8	3,8	4,5		у	3,5	0,9	2,6	5,9	7,5
	_ J	0,0	1,0		0,0	1,0		J	0,0	0,0	,0	0,0	1,0

Задание 14. Функция y=y(x) задана таблицей своих значений. Применяя метод наименьших квадратов, приблизить ее функцией вида $\Phi(x)=a\varphi_0(x)+b\varphi_1(x)$ Определить величину среднеквадратичной погрешности. Построить на одном чертеже точечный график исходных данных и график функции $\Phi(x)$.

N	$\varphi_0(x)$	$\varphi_1(x)$				табл	ица		
1	x	3^{x-4}	x	1,7	3,1	3,5	5,2	6	6,7
			y	2,234	4,142	4,723	7,881	10,5	14,536
2	x	$\cos(x/2)$	x	2,3	2,9	3	3,2	3,4	4
			у	10,875	12,094	12,29	12,68	13,072	14,294
3	x	$\cos 2x$	x	2,9	3,1	5,3	5,8	6,2	6,3
			у	8,02	8,813	5,04	10,268	12,794	12,987
4	x	$\ln(x+0.2)$	x	3	3,1	3,7	5,8	5,9	6,9
			у	13,212	13,642	16,199	24,949	25,361	29,458
5	1	$\sin x$	x	0,1	1,5	3,6	4,4	5,9	6,6
			у	0,95	1,399	0,679	0,424	0,713	1,056
6	x-2	$\sin x$	x	2,5	2,7	2,9	4,4	5,2	5,5
			у	3,876	4,483	5,05	9,811	13,968	15,877
7	$\sin x$	$\sin 3x$	x	3,8	4,7	5,4	5,6	5,8	6,7
			у	-3,95	-0,701	-3,405	-3,935	-3,677	3,398
8	$\cos x$	$\cos 2x$	x	0,8	3,2	5,4	5,7	6,3	6,5
			у	0,499	3,472	-0,284	2,483	5,297	4,872
9	$\cos x$	$\cos 3x$	x	3,4	3,8	3,9	4	6,3	6,8
			у	-5,052	-1,982	-1,189	-0,497	5,797	3,175
10	$\sin x$	$\sin 2x$	x	1,9	3,5	4	4,5	5	5,1
			у	3,128	-1,031	-2,352	-3,298	-3,519	-3,45
11	$\sin x$	$\cos 2x$	x	3,8	3,9	4	5,1	5,2	5,5
			у	-0,214	-0,881	-1,543	-3,389	-2,896	-1,046
12	x-3	$\cos x$	x	1,7	4,1	4,5	4,8	6,4	6,8
			у	-5,729	2,728	5,497	7,651	17,019	18,275
13	1	x^2	x	0,9	2,2	3,9	5,3	6	6,7
			у	3,562	4,368	6,442	9,018	10,6	12,378
14	x	x^2	x	0,4	1,8	2,3	4,9	6,3	6,6
			у	0,648	7,452	11,592	47,628	77,112	84,348
15	1	$\sin(1/x)$	x	0,3	1,2	2	3,3	4,7	5,5
			у	2,176	3,758	3,315	3,007	2,859	2,807
16	x	x^3	x	3,4	4	4,3	5,7	6,2	6,8
			у	145,574	235,2	291,385	673,535	865,421	1140,115
17	1	1/(x+1)	x	1	3,1	4,7	5,5	5,8	6,3
			у	6,1	5,229	4,996	4,923	4,9	4,866
18	1	$(x-3)^3$	x	1,6	3	5	5,4	5,9	6,5
			у	-8,381	0,4	26	44,637	78,445	137,6
19	1	1/(x+0.5)	x	1,8	2,2	5,4	5,6	5,8	6,5
			y y	2,504	2,311	1,708	1,692	1,676	1,629

N	$\varphi_0(x)$	$\varphi_1(x)$				табл	———— ица		
20	1	3^{x-3}	x	3,6	4,1	4,2	4,7	5,4	6,7
			у	2,227	3,783	4,211	7,22	15,463	64,183
21	x	$\ln(x + 0.5)$	x	4	4,9	5,3	5,5	6,1	6,8
			у	5,261	6,023	6,336	6,488	6,925	7,407
22	1	2^{x-3}	x	0,1	4,6	$5,\!1$	5,7	5,8	6
			y	3,869	14,01	18,405	26,143	27,775	31,4
23	1	e^{x-4}	x	2,7	3,5	$4,\!5$	5,3	5,8	6,6
			у	2,191	2,425	3,154	4,569	6,235	11,425
24	1	$\cos(2x)$	x	1,4	3,6	4,3	5	6	6,8
			у	-2,852	3,816	-1,718	-2,408	4,829	3,4
25	1	e^{x-3}	x	3,7	4,6	5,3	5,5	6,3	6,8
			y	6,234	13,583	26,135	31,656	68,982	112,953
26	1	$\cos(x-1)$	x	0,8	2,3	$4,\!4$	5,7	6,1	6,5
			у	3,894	3,68	3,31	3,596	3,713	3,813
27	1	$1/(x+0.2)^2$	x	1,4	4,7	5,2	5,9	6	6,3
			у	3,017	2,912	2,91	2,908	2,908	2,907
28	1	$\cos x$	x	3,7	4,4	5,3	5,6	6,4	6,6
			у	0,767	1,362	2,31	2,553	2,793	2,745
29	1	$(x-1)^2$	x	1,2	3,7	5,4	5,6	5,8	6,9
			у	0,784	16,009	41,356	45,136	49,084	73,801
30	1	$\sin(x+2)$	x	3,5	4,7	$5,\!1$	5,8	5,9	6,4
			у	-0,153	0,402	0,564	0,699	0,699	0,627

Задание 15. Для функции y = y(x), заданной таблицей своих значений, построить интерполяционные многочлены в форме Лагранжа и Ньютона. Используя их, вычислить приближенное значение функции в точке \widetilde{x} .

N		Т	абли	ца		\widetilde{x}	N		Та	абли	ца		\widetilde{x}	N		Та	абли	ца		\widetilde{x}
1	х	-2	-1	0	1	-1,33	2	x	-2	-1	0	1	-0,85	3	x	-4	-3	-2	-1	-3,5
	у	1	3	0	1			у	-3	-1	0	2			у	-3	0	-1	2	
4	x	-4	-3	-2	-1	-2,85	5	X	-2	-1	0	1	-0,74	6	x	4	5	6	7	$\left 5,14 \right $
	у	0	2	2	1			у	-5	-2	0	1			у	2	-3	0	-4	
7	x	-1	0	1	2	-0,13	8	X	-2	-1	0	1	-0,14	9	x	1	2	3	4	1,23
	у	0	1	4	-2			у	0	-5	-5	-2			у	1	-4	0	1	
10	х	-1	0	1	2	0,57	11	X	-2	-1	0	1	-1,61	12	х	-5	-4	-3	-2	-4,2
	у	0	2	1	4			у	-5	0	1	-1			у	1	0	4	1	
13	x	0	1	2	3	0,22	14	x	0	1	2	3	1,79	15	x	0	1	2	3	$\left \begin{array}{c} 1,21 \end{array}\right $
	у	1	4	0	1			у	0	3	-2	-5			у	-5	-3	0	2	
16	x	1	2	3	4	1,66	17	x	0	1	2	3	1,3	18	x	-3	-2	-1	0	-1,83
	у	0	3	-4	4			у	-1	0	-2	1			у	0	-2	1	2	
19	х	0	1	2	3	0,78	20	x	2	3	4	5	3,18	21	x	-5	-4	-3	-2	-3,86
	у	0	-2	-3	2			у	3	1	0	2			у	2	3	0	-2	

N		Та	абли	ца		\widetilde{x}	N		Та	абли	ца		\widetilde{x}	N		Та	абли	ца		\widetilde{x}
22	x	4	5	6	7	4,82	23	x	3	4	5	6	3,87	24	x	-3	-2	-1	0	-1,55
	у	0	-1	1	-1			у	3	0	2	3			у	0	-4	-2	-4	
25	x	2	3	4	5	3,85	26	x	-3	-2	-1	0	-1,51	27	x	3	4	5	6	3,4
	у	-1	2	0	-2			у	0	3	-5	3			у	2	-1	0	1	
28	x	3	4	5	6	3,37	29	x	-3	-2	-1	0	-2,3	30	x	-1	0	1	2	0,32
	у	0	4	1	1			у	-3	0	4	-1			у	-4	0	-5	-4	

Задание 16.

Функция y=y(x) задана таблицей своих значений. Вычислить приближенное значение функции в точке \widetilde{x} , используя интерполяционные многочлены Ньютона первой, второй и третьей степеней. Для каждого вычисленного значения найти практическую оценку погрешности. Записать все результаты с учетом погрешности.

УКАЗАНИЕ. Перед построением многочленов следует переупорядочить таблицу, расположив точки в порядке удаления от \tilde{x} .

N			таб	блица			\widetilde{x}	N			та	блица			\widetilde{x}
1	x	1	1,8	2,2	2,6	3	2,35	2	X	3	3,4	3,8	4,2	4,6	3,63
	у	3	5,6	7,3	9,4	11,7			у	11,7	14,4	17,4	20,7	24,3	
3	x	0	0,8	1,6	2	2,8	0,96	4	х	0	0,4	1,2	1,6	2,4	1,47
	у	1	2,5	4,8	6,4	10,5			у	1	1,8	3,5	4,8	8,3	
5	х	3	3,4	3,8	4,2	5	3,61	6	X	0	0,8	1,6	2	2,8	1,83
	у	11,7	14,4	17,4	20,7	28,2			у	1	2,5	4,8	6,4	10,5	
7	x	1	1,4	1,8	2,2	2,6	$\begin{array}{ c c c c c } \hline 2 & \end{array}$	8	X	4	4,4	5,2	5,6	6	4,59
	у	3	4,1	5,6	7,3	9,4			у	19	22,5	30,3	34,7	39,4	
9	x	3	3,8	4,6	5	5,8	3,96	10	x	3	3,8	4,6	5,4	5,8	4,8
	у	11,7	17,4	24,3	28,2	37			у	11,7	17,4	24,3	32,5	37	
11	x	3	3,4	4,2	4,6	5,4	3,58	12	x	2	2,4	2,8	3,2	3,6	2,64
	у	11,7	14,4	20,7	24,3	32,5			у	6,4	8,3	10,5	13	15,9	
13	x	4	4,4	5,2	5,6	6,4	5,38	14	X	0	0,4	1,2	2	2,4	0,69
	у	19	22,5	30,3	34,7	44,5			у	1	1,8	3,5	6,4	8,3	
15	x	1	1,4	2,2	2,6	3	1,59	16	X	2	2,4	2,8	3,6	4	$2,\!56$
	у	3	4,1	7,3	9,4	11,7			у	6,4	8,3	10,5	15,9	19	
17	x	0	0,8	1,2	1,6	2,4	0,99	18	X	2	2,8	3,2	4	4,4	3,39
	у	1	2,5	3,5	4,8	8,3			у	6,4	10,5	13	19	22,5	
19	x	3	3,8	4,6	5,4	5,8	4,05	20	X	1	1,8	2,2	3	3,8	2,46
	у	11,7	17,4	24,3	32,5	37			у	3	5,6	7,3	11,7	17,4	
21	x	1	1,8	2,6	3,4	3,8	2,04	22	x	4	4,8	5,2	5,6	6	$5,\!41$
	у	3	5,6	9,4	14,4	17,4			у	19	26,2	30,3	34,7	39,4	
23	x	4	4,8	5,2	6	6,4	5,44	24	x	1	1,8	2,2	2,6	3	2,47
	у	19	26,2	30,3	39,4	44,5			у	3	5,6	7,3	9,4	11,7	
25	x	1	1,4	2,2	3	3,4	2,35	26	х	4	4,4	4,8	5,2	5,6	4,53
	у	3	4,1	7,3	11,7	14,4			у	19	22,5	26,2	30,3	34,7	

N			таб	блица			\widetilde{x}	N			таб	блица			\widetilde{x}
27	x	2	2,4	2,8	3,6	4	2,63	28	x	2	2,8	3,2	3,6	4,4	3,09
	у	6,4	8,3	10,5	15,9	19			у	6,4	10,5	13	15,9	22,5	
29	x	3	3,4	4,2	5	5,4	4,45	30	x	0	0,4	1,2	2	2,8	1,45
	у	11,7	14,4	20,7	28,2	32,5			у	1	1,8	3,5	6,4	10,5	

Задание 17.

Функция y = y(x) задана таблицей своих значений:

X	0	1	2	3
у	y_0	y_1	y_2	y_3

Построить параболический сплайн дефекта 1 для функции y=y(x), если известно также дополнительное

условие. На одном чертеже построить график сплайна и указать исходные точки $(x_i, y_i), i = 0, \dots, 3$. УКАЗАНИЕ. Для упрощения вычислений записать многочлен на отрезке $[x_{i-1}, x_i]$ в виде $P_i(x) = a_{i,0} + a_{i,0} + a_{i,0} + a_{i,0}$ $a_{i,1}(x-x_{i-1}) + a_{i,2}(x-x_{i-1})(x-x_i).$

N	y_0	y_1	y_2	y_3	Доп. условие	N	y_0	y_1	y_2	y_3	Доп. условие
1	-1	5	14	18	S''(3) = -8	2	4	0	-10	-22	S''(1-0) = S''(1+0)
3	0	2	7	10	S''(3) = -12	4	-3	2	5	14	S''(2-0) = S''(2+0)
5	0	0	4	2	S'(3) = -8	6	-1	-4	-6	-12	S'(0) = -5
7	-5	-7	-7	-4	S''(1-0) = S''(1+0)	8	-1	-6	-10	-15	S''(3) = -2
9	2	7	9	5	S''(0) = 2	10	-3	-3	-8	-20	S'(3) = -17
11	1	1	0	-11	S''(3) = -12	12	5	-2	-8	-12	S'(0) = -5
13	6	-10	-29	-58	S''(2-0) = S''(2+0)	14	-6	-9	-13	-26	S'(3) = -18
15	-2	-1	-4	-15	S''(0) = 0	16	-2	0	7	18	S'(3) = 14
17	-3	-2	-1	3	S''(3) = 4	18	-5	-7	-11	-13	S'(3) = 3
19	5	1	-12	-30	S''(0) = -6	20	2	-5	-18	-30	S''(1-0) = S''(1+0)
21	4	5	6	3	S'(0) = -1	22	-3	-1	-6	-17	S''(2-0) = S''(2+0)
23	0	6	12	14	S''(0) = 2	24	-2	-1	8	25	S''(3) = 8
25	-4	-3	-1	1	S'(0) = 5	26	4	-5	-13	-16	S'(0) = -6
27	-3	-5	-11	-17	S'(3) = -4	28	-5	-3	9	25	S''(1-0) = S''(1+0)
29	-3	-5	-9	-12	S'(3) = -1	30	12	-8	-28	-58	S''(2-0) = S''(2+0)