

EXAME NACIONAL DO ENSINO SECUNDÁRIO 2013

- 1.ª FASE -

DISCIPLINA: MATEMÁTICA A _ PROVA 635

Grupo II

Item 1.1. (15 pontos)

<u>Situação 1</u>: O examinando escreve $2cis\frac{3\pi}{4}=-\sqrt{2}+\sqrt{2}i$, obtém z_1 na forma algébrica, calcula $\frac{z_1}{z_2}$ na forma algébrica, refere que $\sqrt[4]{w}=\frac{z_1}{z_2}$, determina w na forma trigonométrica e obtém w na forma algébrica.

Classificação proposta: 15+(-1)(CG20)

<u>Situação 2</u>: O examinando escreve $2cis\frac{3\pi}{4}=-\sqrt{2}+\sqrt{2}i$, obtém z_1 na forma algébrica, calcula $\frac{z_1}{z_2}$ na forma algébrica, refere que $w=\left(\frac{z_1}{z_2}\right)^4$ e determina $\left(\frac{z_1}{z_2}\right)^4$ na forma algébrica.

Classificação proposta: 2+1+3+3+6

Adaptação do critério específico

Escrever $2cis \frac{3\pi}{4}$ na forma algébrica
Obter z_1 na forma algébrica
Escrever $\left(\frac{z_1}{z_2}\right)$ na forma algébrica
Referir que $w = \left(\frac{z_1}{z_2}\right)^4$
Determinar $\left(\frac{z_1}{z_2}\right)^4$ na forma algébrica
Escrever $\left(\frac{z_1}{z_2}\right)^4 = \left(\frac{z_1}{z_2}\right)^2 \times \left(\frac{z_1}{z_2}\right)^2$ (ou equivalente) 2 pontos
Calcular $\left(\frac{z_1}{z_2}\right)^2$
Obter w na forma algébrica

Item 1.2. (10 pontos)

<u>Situação 1</u>: O examinando determina $z_3+\overline{z}_2$ na forma algébrica, escreve $sen \ \alpha-1=0$ e obtém $\alpha=\frac{\pi}{2}+2k\pi$, $k\in \mathbb{Z}$

Classificação proposta: 4+3+1(CG13)

<u>Situação 2</u>: O examinando determina $z_3+\overline{z}_2$ na forma algébrica, escreve $sen~\alpha-1=0$ e conclui que $\alpha=-\frac{3\pi}{2}$

Classificação proposta: 10

<u>Situação 3</u>: O examinando substitui z_3 por a+bi, determina $z_3+\overline{z}_2$ na forma algébrica, escreve $b=1 \wedge |z_3|=1$ e conclui que $z_3=i$ e que $\alpha=-\frac{3\pi}{2}$

Classificação proposta: 10

<u>Situação 4</u>: O examinando substitui z_3 por a+b i, determina $z_3+\overline{z}_2$ na forma algébrica, escreve b=1 e conclui que $z_3=i$ e que $\alpha=-\frac{3\pi}{2}$.

Classificação proposta: 4+1(CG13)+3

Item 2.1. (15 pontos)

<u>Situação 1</u>: O examinando refere que a caixa tem, por exemplo, 50 bolas. Resolve o item partindo deste pressuposto e obtém a probabilidade pedida.

Classificação proposta: 15

Item 2.2. (15 pontos)

Situação 1: O examinando escreve $\frac{\frac{3}{5}^n C_2}{{}^n C_2} = \frac{7}{20}$ e determina n

Classificação proposta: 15 (CG4)

Adaptação do critério específico

Seja C o acontecimento «as duas bolas são brancas».

Podem ser admitidas outras designações para o acontecimento.

Referir que, se existem n bolas, então estão $\frac{2}{5} \times n$ bolas pretas na caixa

<u>Situação 2</u>: O examinando considera n=25, refere que, nesse caso, há 10 bolas pretas e 15 bolas brancas e verifica que a probabilidade de ambas as bolas serem brancas é $\frac{7}{20}$

Classificação proposta: 0+2+5(CG12)

<u>Situação 3</u>: O examinando refere que a probabilidade de a primeira bola ser branca é $\frac{3}{5}$, que a probabilidade de ambas as bolas serem brancas é $\frac{3}{5} \times \frac{x-1}{n-1}$, e afirma que $\frac{3}{5} \times \frac{x-1}{n-1}$ é igual a $\frac{7}{20}$ se x-1 for 14 e n-1 for 24, concluindo que n=25

Classificação proposta: 0+2+5(CG12)

Item 3. (15 pontos)

<u>Situação 1</u>: O examinando escreve $P(\overline{A} \cup \overline{B}) = P(\overline{A}) + P(\overline{B}) - P(\overline{A} \cap \overline{B})$, calcula $P(\overline{A} \cap \overline{B})$ e obtém P(A)

Classificação proposta: 15 (CG4)

Adaptação do critério específico

Escrever $P(\overline{A} \cup \overline{B}) = P(\overline{A}) + P(\overline{B}) - P(\overline{A} \cap \overline{B})$	2 pontos
Obter $P(\overline{B})$	2 pontos
Obter $P(\overline{A}) - P(\overline{A} \cap \overline{B})$	2 pontos
Escrever $P(\overline{A} \mid \overline{B}) = \frac{P(\overline{A} \cap \overline{B})}{P(\overline{B})}$	2 pontos
Obter $P(\overline{A} \mid \overline{B})$	2 pontos
Obter $P(\overline{A})$	3 pontos
Obter <i>P</i> (<i>A</i>)	2 pontos

Item 4.1. (15 pontos)

Situação 1: O examinando calcula apenas $\lim_{x\to 0^-} f(x)$, escrevendo $\lim_{x\to 0^-} \frac{4(e^{4x}-1)}{4x} = 4$

Classificação proposta: 7+0+0

Situação 2: O examinando determina apenas $\lim_{x\to 0^-} f(x)$, utilizando processos cientificamente corretos, não devidamente justificados, e escreve $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} (x \ln x) = 0$

Classificação proposta: 4(1+3(CG13))+1(1+0(CG7))+0

Item 4.2. (15 pontos)

<u>Situação 1</u>: O examinando determina g'(x), determina o zero de g'(x) em $]0,+\infty[$, estuda g quanto à monotonia em $]0,+\infty[$ e conclui que g tem um mínimo em $]0,+\infty[$, apresentando uma tabela.

Classificação proposta: 6+2+4+1+0

<u>Situação 2</u>: O examinando determina g'(x), determina o zero de g'(x) em]0,e], estuda g quanto à monotonia em]0,e] e conclui que g tem dois extremos em]0,e], apresentando uma tabela.

Classificação proposta: 15

Item 4.3. (15 pontos)

<u>Situação 1</u>: O examinando equaciona o problema, digita $\ln(x^2)$ em vez de $\ln^2 x$, reproduz o(s) gráfico(s) da(s) função(ões) visualizado(s) e obtém as abcissas de dois pontos.

Classificação proposta: 7+4+2(CG9)

<u>Situação 2</u>: O examinando equaciona incorretamente o problema, escreve $g(x) = \frac{2}{3}$, digita $\ln(x^2)$ em vez de $\ln^2 x$, reproduz o(s) gráfico(s) da(s) função(ões) visualizado(s) e obtém a abcissa de um ponto.

Classificação proposta: 5(3+2)+4+1(CG9)

<u>Situação</u> 3: O examinando considera $\overline{AB} = 2$, equaciona o problema, escrevendo |g(x)| = 1, reproduz o(s) gráfico(s) da(s) função(ões) visualizado(s) e obtém as abcissas de três pontos.

Classificação proposta: 6(CG11)+4+3(2+1)

Item 6. (15 pontos)

Situação 1: O examinando equaciona o problema, determina g'(x), escreve

$$g'\left(-\frac{\pi}{6}\right) = 2\cos\left(-\frac{\pi}{3}\right) + \sin\left(-\frac{\pi}{6}\right) = \frac{1}{2}$$
 e conclui que $a = -\frac{\pi}{6}$

Classificação proposta: 15

Item 7. (15 pontos)

<u>Situação 1</u>: O examinando apenas calcula f(-a)-f(0) e f(0)-f(a) e escreve $(f(-a)-f(0))\times (f(0)-f(a))<0$

Classificação proposta: 0+0+2+2+3+0+0

<u>Situação 2</u>: O examinando não refere que f(x) = f(x+a) é equivalente a f(x) - f(x+a) = 0, mas conclui que a condição f(x) = f(x+a) tem, pelo menos, uma solução em -a, 0, referindo o teorema de Bolzano.

Classificação proposta: 0