Indexation automatique d'images

Thomas Weber

Introduction

- Une association de protection des chiens souhaite classer par race l'ensemble de ses pensionnaires.
- Données disponibles: Stanford Dogs Dataset 20 580 images pour 120 races.
- Objectif: Réaliser un algorithme de détection de la race du chien à partir d'une photo, afin d'accélérer le travail d'indexation.

Deux approches étudiées

Approche classique

- Pré-traitement des images (filtres)
- Extraction de features (SIFT)
- Réduction de dimensions (clustering)
- Visual bag-of-words
- Classification

Approche CNN (réseaux de neurones convolutionnels)

- CNN basique à partir de zéro (from scratch)
 - Intérêt de la data augmentation
- Utilisation du transfer learning:
 - 1/ En bloquant la base convolutionnelle et sans data augmentation
 - 2/ En bloquant la base convolutionnelle et avec data augmentation
 - 3/ En bloquant uniquement les premières couches de la base convolutionnelle et avec data augmentation

Approche classique – Pré-traitement

- Redimensionnement: 500x375 px
- Passage en niveaux de gris
- Test de plusieurs filtres:
 - Egalisation d'histogrammes
 - Filtres moyenneur, gaussien, médian, « non-local means »
 - Whitening

Pré-traitement - Equalization

• Egalisation d'histogrammes:

Améliore le contraste

Donne de la clarté aux détails

Pré-traitement - Filtre moyenneur

Pré-traitement - Filtre gaussien

Pré-traitement - Filtre médian

Pré-traitement – Filtre « Non-local means »

Pré-traitement – Whitening

Choix des filtres

Extraction de features

Caractéristiques d'une « bonne » feature:

Répétable

Distinctive

Locale

Extraction de features - SIFT

Clustering - KMeans

- Nombre de descripteurs SIFT élevé:
 - 2 races: 272 515 descripteurs
 - 3 races: 400 402 descripteurs
 - 5 races: 659 758 descripteurs
- Utilisation de KMeans pour réduire la dimension
- Nombre de clusters testés:
 - Pour 2 races: [10, 20, 50, 100, 125, 150, 175, 200]
 - Pour 3 races: [150, 225, 300, 375, 450, 600, 750]
- Pour chaque image, on détermine ensuite le nombre de descripteurs dans chaque cluster: bag-of-words visuels

Nombre de clusters optimal

Accuracy en fonction du nombre de clusters 3 races

Classification – Régression logistique

• Grid Search pour trouver la meilleure valeur de C

• Par exemple, pour 2 races:

Résultats

Accuracy en fonction du nombre de races

Approche CNN

- 2 stratégies:
 - CNN from scratch
 - Transfer learning
- Redimensionnement des images en 100x100
- Utilisation des images en couleur
- Séparation train/validation/test: 60 %/20 %/20 %

CNN from scratch

CNN from scratch – 2 races

Accuracy sur jeu de test: 82.35%

Overfitting

Sans data-augmentation

Avec data-augmentation

Résultats

3 races: 70.59 %

5 races: 52.60 %

120 races: 12.95 %

Transfer Learning

Modèle pré-entrainé utilisé: VGG16

Transfer Learning – Extraction de features (5 races)

Sans data-augmentation: 60.42 %

Avec data-augmentation: 62.50 %

Transfer Learning – Extraction de features (120 races)

Sans data-augmentation: 21.58 %

Avec data-augmentation: 21.94 %

Transfer Learning – Fine tuning

 On repart des poids obtenus précédemment avec l'extraction de features

• On re-entraîne aussi les dernières couches de convolution (6 sur 13)

Résultats

Nombre de races	Accuracy
2	91.18 %
3	93.28 %
5	72.40 %
60	39.49 %
120	32.10 %

Comparaison des performances

Conclusions

- Les résultats illustrent l'efficacité des réseaux de neurones convolutionnels
- Points importants:
 - Data augmentation pour éviter l'over-fitting si le nombre de données est faible
 - Fine tuning pour améliorer rapidement les performances
- Pistes pour améliorer le modèle:
 - Aller plus loin dans le fine tuning en bloquant moins de couches
 - Obtenir plus de données