

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО «МГТУ «СТАНКИН»)

Факультет Информационных технологий и систем управления Кафедра «Робототехники и мехатроники»

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

ПРИКЛАДНАЯ МЕХАНИКА РОБОТОВ

Для обучающихся очной формы обучения

Направление подготовки 15.03.06 «Мехатроника и робототехника»

Направленность (профиль) Робототехника и робототехнические системы: разработка и применение

Квалификация бакалавр

Фонд оценочных средств предназначен для контроля знаний обучающихся по дисциплине

ПРИКЛАДНАЯ МЕХАНИКА РОБОТОВ

Составитель	047	Егоров О.Д.
«15» клоня 2016 г.		
Фонд оценочных средств с	обсужден и утвержде	н на заседании кафедры
от « <u>21</u> » <u>суру 9</u> 20 <u>16</u> г. г	тротокол № <i>12</i>	
Заведующий кафедрой	одпись)	граев Ю.В.
Согласовано: Проректор по УР	Opm	Харин А.А.
«06» certialis 2016	(подпись) <u>—</u> Г.	
Начальник УУ	(подпись)	Зиневич Н.Н.
« <u>28</u> » — «2016		
Декан факультета	(nopnuce)	Сазанов И.И.
«30 cuppo 2016	г.	
Председатель УМК	Сазано	ов И.И.
(noonuc	·b)	

Паспорт фонда оценочных средств по дисциплине «Прикладная механика роботов»

№ п/п	Контролируемые разделы (темы) дисциплины*	Контролируемые компетенции (или их части)	Кол-во заданий
1	Базовые понятия и определения в области робототехники. Виды роботов. Примеры современных роботов. Назначение, конструктивные особенности и структурные закономерности роботов.	ОК-7, ОПК-1,ПК-1, ПК-4, ПК-9	7
2	Структурный анализ и синтез исполнительных механизмов роботов.	ПК-1,ПК-3, ОК-7, ОПК- 1, ОПК-2, ПК-4	38
3	Кинематический, кинетостатический и динамический анализы исполнительных механизмов роботов.	ОК-7, ОПК-1, ОПК-2, ПК-4, ПК-1, ПК-2,ПК-3, ПК-9, ПК-10, ПК-11.	47
4	Трение, изнашивание, коэффициент полезного действия механизмов роботов.	ОК-7 ОПК-1, ОПК-2, ПК-1, ПК-3, ПК-4, ПК-11 ПК-10	10
Всего:		1	102

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО «МГТУ «СТАНКИН»)

Кафедра «Робототехники и мехатроники»

Комплект заданий,

для первой контрольной работы

по дисциплине «Прикладная механика роботов»

- 1. Для заданной структурной схемы механизма робототехнического устройства определить:
 - подвижность механизма;
 - число избыточных контурных связей;
 - число лишних контурных подвижностей;
 - число степеней подвижности механизма.

минобрнауки россии

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО «МГТУ «СТАНКИН»)

Кафедра «Робототехники и мехатроники»

Комплект заданий,

для второй контрольной работы

по дисциплине «Прикладная механика роботов»

1. Для заданной схемы робота решить прямую задачу кинематики.

Составитель к.т.н., доцент Егоров О.Д.

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО «МГТУ «СТАНКИН»)

Кафедра «Робототехники и мехатроники»

Вопросы для подготовки к

экзамену

по дисциплине «Прикладная механика роботов»

- 1. Робототехника область мехатроники. Робот. Промышленный робот. Классификация ПР.
- 2. Структура ПР и его исполнительного устройства.
- 3. Структура исполнительных механизмов роботов.
- 4. Кинематические пары, степени подвижности и их классификация.
- 5. Кинематические цепи и их виды.
- 6. Движения исполнительного механизма робота и обобщенные координаты.
- 7. Компоненты привода исполнительного устройства робота.
- 8. Структурный анализ механизмов роботов.
- 9. Структурная и конструктивная избыточность механизма робота.
- 10. Число степеней подвижности механизма и его подвижность.
- 11. Синтез основных структурных схем исполнительных механизмов роботов.
- 12. Синтез схем механизмов роботов со структурной избыточностью.
- 13. Синтез замкнутых механизмов робототехнических устройств, а также разомкнутых механизмов с местными замкнутыми контурами при помощи структурных групп со структурной избыточностью.
- 14. Векторный способ кинематического анализа механизмов роботов.
- 15. Матричный способ кинематического анализа механизмов роботов.
- 16. Силы и моменты, действующие в механизмах роботов.
- 17. Силовой расчёт механизмов роботов.
- 18. Динамическая модель механизма робототехнического устройства.
- 19. Условие кинетостатической определимости кинематических цепей механизмов робототехнических устройств.
- 20. Силы в кинематических парах робототехнических устройств.
- 21. Расчет износа цилиндрических и сферических кинематических пар.
- 22. Приведение моментов сил в механизмах роботов.
- 23. Силы трения во вращательной кинематической паре робота.
- 24. Линейные и угловые скорости и ускорения точек и звеньев механизмов роботов.
- 25. Линейный износ соприкасающихся тел механизмов роботов.
- 26. Силы трения в поступательной кинематической паре робота.

- 27. Уравнение движения механизма робототехнического устройства в дифференциальной форме при вращательном движении звена приведения.
- 28. Расчет ресурса цилиндрических подшипников скольжения роботов.
- 29. Приведение моментов инерции в механизмах роботов.
- 30. Уравнение движения механизма робототехнического устройства в энергетической форме при поступательном движении звена приведения.
- 31. Уравнение движения механизма робототехнического устройства в энергетической форме при вращательном движении звена приведения.
- 32. Приведение сил в механизмах роботов.
- 33. Приведение масс в механизмах роботов.
- 34. Уравнение движения механизма робототехнического устройства в дифференциальной форме при поступательном движении звена приведения.
- 35. Виды расчетов износа соприкасающихся тел механизмов роботов.
- 36. Кинематическая точность механизмов роботов.
- 37. Виды изнашивания соприкасающихся тел механизмов роботов.
- 38. Силы трения в механизмах роботов.
- 39. Виды трения в механизмах роботов.
- 40. Коэффициент полезного действия механизмов роботов

Составитель к.т.н., доцент Егоров О.Д.

федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технологический университет «СТАНКИН»

(ФГБОУ ВО «МГТУ «СТАНКИН»)

2016/ 2017 учебный год

мехатроники.

Робот.

Кафедра «Робототехники и мехатроники»

1. Робототехника

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №1

По дисциплине «Прикладная механика роботов» Для обучающихся 2 курса

Направление 15.03.06 «Мехатроника и робототехника»

Промышленный робот. Классификация ПР.

2. Расчет износа цилиндрических и сферических кинематических пар.

область

Зав. кафедрой		Подураев Ю.В
	подпись	