

Department of Computer Engineering

Academic Year: 2022-23(EVEN)

TUTORIAL NO:4

Subject : TCS Semester: IV

Course Outcome	CO3				
Question No.	1 a	1b	Total		
Marks Obtained					
Marks Allotted	10	10	20		

TA 1	r			
	a	m	Ω	•
1.4			ı	•

Batch:

Roll No.:

Signature of Faculty:

Department of Computer Engineering

Academic Year: 2022-23

(EVEN)

TUTORIAL NO:4

Subject : TCS Semester:		IV				
1.	a	Obtain leftmost derivation, rightmost derivation & derivation tree for the string "ababab". The grammar is:		CO3	BT4	10M
		$S \rightarrow aSbS \mid bSaS \mid \varepsilon$				
	Also check whether the grammar is ambiguous or not					
1.	b	Consider the following Grammar G=(V,T,P,S), V={A,B} Start Symbol: A and productions P are:	$T=\{a, b\},$	CO3	BT3	10M
		$S \rightarrow AB$ $A \rightarrow aA \mid bB \mid b$ $B \rightarrow b$				
		Convert this grammar in Greibach Normal Form (GNF)				

Course Outcomes (CO) Students will be able to:

- CO1: Identify the central concepts in theory of computation and differentiate between deterministic and nondeterministic automata, also obtain equivalence of NFA and DFA.
- CO2: Infer the equivalence of languages described by finite automata and regular expressions.
- CO3: Devise regular, context free grammars while recognizing the strings and tokens.
- CO4: Design pushdown automata to recognize the language.
- CO5: Develop an understanding of computation through Turing Machine.
- CO6: Acquire fundamental understanding of decidability and undecidability.

Bloom's Taxonomy

BT1- Remember, BT2- Understand, BT3- Apply, BT4- Analyze, BT5- Evaluate, BT6- Create

Subject Incharge DQA Member HOD