ELEC 330

Digital Systems Engineering

Dr. Ron Hayne

Images Courtesy of Ramesh Gaonkar and Delmar Learning

Hardware Counters and Timers

- Counter (register)
 - Can be decremented or incremented per clock cycle
- Time calculation
 - Find difference between beginning count and last count
 - Multiply the count difference by the clock period

Hardware Counters and Timers

- Counter (register)
 - Replace the clock with a signal from an event
 - Count is incremented (or decremented)
 - Total number of events can be counted

Types of Counters

- Up-counter
 - Counter is incremented at every clock cycle
 - When count reaches the maximum count, a flag is set
 - Counter can be reset to zero or to the initial value
- Down-counter
 - Counter is decremented at every clock cycle
 - When count reaches zero, a flag is set
 - Counter can be reset to the maximum or the initial value
- Free-running counter
 - Counter runs continuously and only readable
 - When it reaches the maximum count, a flag is set

Timer Applications

- Time delay
- Pulse wave generation
- Pulse width or frequency measurement
- Timer as an event counter

Capture, Compare, and PWM (CCP) Modules

- CCP modules are common in recent MCUs
 - Registers specially designed to perform the following functions (in conjunction with timers)
 - Capture: The CCP pin can be set as an input to record the arrival time of a pulse.
 - Compare: The CCP pin is set as an output, and at a given count, it can be driven low, high, or toggled.
 - Pulse width modulation (PWM): The CCP pin is set as an output and the duty cycle of a pulse can be varied.

Pulse Width Modulation

- Duty cycle
 - Percentage ratio of on time of a pulse to its period
- Changing of the duty cycle is defined as PWM
 - CCP pin is set as an output
 - Count for period and duty cycle loaded into CCP registers
 - Varying the duty cycle generates PWM

PIC18 Timers

- PIC18 timers
 - All up-counters
 - 8-bit and 16-bit
- Timer0
 - 8-bit or 16-bit timer
- Timer1 (and Timer3)
 - 16-bit timers
- Timer2 (and Timer4)
 - 8-bit timer
- SFRs
 - T0CON-T2CON

- 8-bit or 16-bit timer
 - Readable and writable
 - Parameters in T0CON register
 - Eight pre-scale values (Bit2-Bit0)
 - Clock source (Bit5)
 - Internal (instruction cycle)
 - External clock connected to pin RA4/T0CK1
 - Rising edge or falling edge (Bit4)
 - Generates an interrupt or sets a flag when it overflows
 - TMR0IF
 - Flag must be cleared to start the timer again

- ◆ 16-bit counter/timer
 - Two 8-bit registers (TMR1H and TMR1L)
 - Four prescale values (Bit5-Bit4)
 - Clock source (Bit1)
 - Internal (instruction cycle)
 - External (pin RC0/T13CK1) on rising edge

- Interrupt
 - Generates an interrupt or sets a flag when it overflows
 - TMR1IF
 - Flag must be cleared to start the timer again
- Resetting Timer1 using CCP module
 - CCP1 in the Compare mode
 - Timer1 and CCP1compared at every cycle
 - When a match is found, Timer1 is reset

330_11

12

- 8-bit timer (TMR2)
 - 8-bit period register (PR2)
 - TMR2 and PR2 are readable and writable
 - Three prescale values (Bit1-Bit0)
 - 16 postscale values (Bit6-Bit3)
 - Flag (TMR2IF) is set when TMR2 matches PR2

0000 = 1:1

 Can generate an interrupt B7 B6 **B5 B4 B**3 B₂ B₁ B0 TOUTPS3 TOUTPS2 | TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 Postscale Select Bits Prescale Select Bits 1 = EnablesTimer 1111 = 1:16 1X = 1:161110 = 1:150 = Disables Timer 01 = 1:400 = 1:10001 = 1:2

- Timer2 operation
 - 8-bit number is loaded in PR2
 - When TMR2 and PR2 match
 - Output pulse is generated and the timer is reset
 - Output pulse goes through postscaler
 - Sets the flag TMR2IF

CCP Modules

- Capture, Compare, and Pulse Width Modulation (PWM)
- CCPR1H (high) and CCPR1L (low)
 - 16-bit Capture register
 - 16-bit Compare register
 - Duty-cycle PWM register
- Timer1 used as clock for Capture and Compare
- Timer2 used as clock for PWM

CCP in the Capture Mode

- ◆ CCPR1 captures the 16-bit value of Timer1
 - When an event occurs on pin RC2/CCP1
- Interrupt request flag bit CCP1IF is set
 - Must be cleared for the next operation
- To capture an event
 - Set up pin RC2/CCP1 of PORTC as the input
 - Initialize Timer1
 - T1CON register
 - Initialize CCP1
 - CCP1CON register

CCP in the Compare Mode

- CCPR1 constantly compared with TMR1
- When a match occurs
 - Pin RC2/CCP1 on PORTC
 - Driven high, low, or toggled
 - Interrupt flag bit CCP1IF is set
- To set up CCP1 in Compare mode
 - Set up pin RC2/CCP1 of PORTC as output
 - Initialize Timer1 and CCP1
 - Clear the flag CCP1IF

330_11

17

PWM Mode

- CCP module with Timer2
 - Output a pulse wave form for a given frequency/duty cycle
- Duty cycle
 - CCPR1 register
- Period
 - PR2 register
- When TMR2 is equal to PR2
 - TMR2 is cleared
 - Pin RC2/CCP1 of PORTC is set high
 - PWM duty-cycle byte loaded into CCPR1