import pandas as pd

Read the data into a pandas dataframe data = pd.read_csv("/content/insurance.csv")

Display the first few rows to check the data data.head()

		age	sex	bmi	children	smoker	region	charges
	0	19	female	27.900	0	yes	southwest	16884.92400
	1	18	male	33.770	1	no	southeast	1725.55230
	2	28	male	33.000	3	no	southeast	4449.46200
	3	33	male	22.705	0	no	northwest	21984.47061
	4	32	male	28.880	0	no	northwest	3866.85520

Check the summary of the dataframe data.info()

Get descriptive statistics for numerical columns data.describe()

</pre RangeIndex: 1338 entries, 0 to 1337 Data columns (total 7 columns):

#	Column	Non-N	Null Count	Dtype			
0	age	1338	non-null	int64			
1	sex	1338	non-null	object			
2	bmi	1338	non-null	float64			
3	children	1338	non-null	int64			
4	smoker	1338	non-null	object			
5	region	1338	non-null	object			
6	charges	1338	non-null	float64			
<pre>dtypes: float64(2),</pre>			int64(2),	object(3)			
memory usage: 73.3+ KB							

	age	bmi	children	charges
count	1338.000000	1338.000000	1338.000000	1338.000000
mean	39.207025	30.663397	1.094918	13270.422265
std	14.049960	6.098187	1.205493	12110.011237
min	18.000000	15.960000	0.000000	1121.873900
25%	27.000000	26.296250	0.000000	4740.287150
50%	39.000000	30.400000	1.000000	9382.033000
75%	51.000000	34.693750	2.000000	16639.912515
max	64.000000	53.130000	5.000000	63770.428010

import matplotlib.pyplot as plt

```
# Plot histograms for all numerical feature
data.hist(bins=20, figsize=(15, 10))
plt.tight_layout()
```



```
import seaborn as sns

# Boxplot to detect outliers for numerical features
sns.boxplot(data=data[['age', 'bmi', 'children', 'charges']])
plt.show()
```



```
import pandas as pd
from scipy import stats
import numpy as np # Import numpy library
# Z-score method to identify outliers
z_scores = stats.zscore(data[['age', 'bmi', 'children', 'charges']])
abs_z_scores = np.abs(z_scores) # Now np is defined and can be used
outliers = (abs z scores > 3).all(axis=1)
outliers_data = data[outliers]
# Display rows with outliers
outliers_data
₹
        age sex bmi children smoker region charges
# Check for missing values
missing_values = data.isnull().sum()
# Display missing values count per column
print(missing_values)
0
     bmi
     children
                0
     smoker
                0
     region
     charges
```

dtype: int64