# On the minimal number of generators of a finite group

Diogo Santos

November 12, 2024

## Introduction

ullet Finding the minimal number of gentators of a finite group H

### Introduction

- Finding the minimal number of gentators of a finite group H
   Can be reduced to:
  - Finding the minimal number of gentators of a finite group H such that  $d(H/N) \le m$  for every non-trivial normal subgroup N, but d(H) > m

## The case m=1

#### Theorem

Let H be a finite nilpotent group such that  $d(H/N) \leq 1$  for every non-trivial normal subgroup N, but d(H) > 1. Then  $H \cong \mathbb{Z}_p \times \mathbb{Z}_p$  for some prime p.

# The case m = 1

#### **Theorem**

Let H be a finite nilpotent group such that  $d(H/N) \leq 1$  for every non-trivial normal subgroup N, but d(H) > 1. Then  $H \cong \mathbb{Z}_p \times \mathbb{Z}_p$  for some prime p.

#### Proof.

•  $H = P_1 \times ... \times P_n$  where  $P_i$  is a Sylow  $p_i$ -subgroup for  $1 \le i \le n$  and  $p_1, ..., p_n$  are distinct primes.

## The case m=1

#### **Theorem**

Let H be a finite nilpotent group such that  $d(H/N) \leq 1$  for every non-trivial normal subgroup N, but d(H) > 1. Then  $H \cong \mathbb{Z}_p \times \mathbb{Z}_p$  for some prime p.

- $H = P_1 \times ... \times P_n$  where  $P_i$  is a Sylow  $p_i$ -subgroup for  $1 \le i \le n$  and  $p_1, ..., p_n$  are distinct primes.
- If  $P_1, \ldots, P_n$  are cyclic, we obtain  $H \cong \mathbb{Z}_{p_1 \ldots p_n}$  which contradicts d(H) > 1. Without loss of generality we can thus assume that  $P_1$  is not cyclic.

# The case m=1

#### **Theorem**

Let H be a finite nilpotent group such that  $d(H/N) \leq 1$  for every non-trivial normal subgroup N, but d(H) > 1. Then  $H \cong \mathbb{Z}_p \times \mathbb{Z}_p$  for some prime p.

- $H = P_1 \times ... \times P_n$  where  $P_i$  is a Sylow  $p_i$ -subgroup for  $1 \le i \le n$  and  $p_1, ..., p_n$  are distinct primes.
- If  $P_1, \ldots, P_n$  are cyclic, we obtain  $H \cong \mathbb{Z}_{p_1 \ldots p_n}$  which contradicts d(H) > 1. Without loss of generality we can thus assume that  $P_1$  is not cyclic.
- $n \ge 2 \implies P_1 \cong H/(1 \times P_2 \dots \times P_n)$  and thus  $d(P_1) = d(H/(1 \times P_2 \dots \times P_n)) = 1$ , contradiction.



# The case m = 1

#### **Theorem**

Let H be a finite nilpotent group such that  $d(H/N) \leq 1$  for every non-trivial normal subgroup N, but d(H) > 1. Then  $H \cong \mathbb{Z}_p \times \mathbb{Z}_p$  for some prime p.

- $H = P_1 \times ... \times P_n$  where  $P_i$  is a Sylow  $p_i$ -subgroup for  $1 \le i \le n$  and  $p_1, ..., p_n$  are distinct primes.
- If  $P_1, \ldots, P_n$  are cyclic, we obtain  $H \cong \mathbb{Z}_{p_1 \ldots p_n}$  which contradicts d(H) > 1. Without loss of generality we can thus assume that  $P_1$  is not cyclic.
- $n \ge 2 \implies P_1 \cong H/(1 \times P_2 \dots \times P_n)$  and thus  $d(P_1) = d(H/(1 \times P_2 \dots \times P_n)) = 1$ , contradiction.
- Since  $d(H) = d(H/\Phi(H)), \Phi(H) = 1.$



## The case m=1

## Proof.

•  $H \cong H/\Phi(H)$  is a  $\mathbb{Z}_{p_1}$ -vector space and thus  $H = (\mathbb{Z}_{p_1})^q$ 

## The case m=1

- $H \cong H/\Phi(H)$  is a  $\mathbb{Z}_{p_1}$ -vector space and thus  $H = (\mathbb{Z}_{p_1})^q$
- *q* = 2 since

$$q-1=d((\mathbb{Z}_{p_1})^{q-1})=d(H/(\mathbb{Z}_{p_1}\times 1\times \ldots \times 1))=1.$$



# The groups $L_k$

Throughout L will always denote a finite group with a unique minimal normal subgroup M. Furthermore if M is abelian, we also assume that M is complemented in L.

# The groups $L_k$

Throughout L will always denote a finite group with a unique minimal normal subgroup M. Furthermore if M is abelian, we also assume that M is complemented in L.

#### Definition

Given a positive integer k, the group  $L_k$  is a subgroup of  $L^k$  defined by:

$$L_k = \{(I_1, \ldots, I_k) \in L^k | I_1 M = \ldots = I_k M \}.$$

The group  $L_k$  can be described as  $diag(L^k)M^k$ .



• 
$$soc(L_k) = M^k$$

- $soc(L_k) = M^k$
- $\bullet \ L_k/M^k \cong L/M$

- $soc(L_k) = M^k$
- $L_k/M^k \cong L/M$
- If M is abelian and complemented by C in L, then  $M^k$  is complemented by  $diag(C^k)$

- $soc(L_k) = M^k$
- $L_k/M^k \cong L/M$
- If M is abelian and complemented by C in L, then  $M^k$  is complemented by  $diag(C^k)$
- The quotient of  $L_{k+1}$  by any of its minimal normal subgroups is isomorphic to  $L_k$

- $soc(L_k) = M^k$
- $L_k/M^k \cong L/M$
- If M is abelian and complemented by C in L, then  $M^k$  is complemented by  $diag(C^k)$
- The quotient of  $L_{k+1}$  by any of its minimal normal subgroups is isomorphic to  $L_k$
- The sequence  $d(L_k)_{k\in\mathbb{N}}$  is unlimited and non-decreasing.

- $soc(L_k) = M^k$
- $L_k/M^k \cong L/M$
- If M is abelian and complemented by C in L, then  $M^k$  is complemented by  $diag(C^k)$
- The quotient of  $L_{k+1}$  by any of its minimal normal subgroups is isomorphic to  $L_k$
- The sequence  $d(L_k)_{k\in\mathbb{N}}$  is unlimited and non-decreasing.
- For all  $k \in \mathbb{N}$ ,  $L_{k+1} \leq L_k$ .



## The function *f*

#### Definition

Given a group L we define f(L, m) = k + 1 if and only if  $d(L_k) = m < d(L_{k+1})$ . When L can be identified from the context, we denote f(L, m) as f(m).

## The function *f*

#### Definition

Given a group L we define f(L, m) = k + 1 if and only if  $d(L_k) = m < d(L_{k+1})$ . When L can be identified from the context, we denote f(L, m) as f(m).

• Thus the function f gives us the integer k+1 for which any proper quotient of  $L_{k+1}$  has minimal number of generators smaller or equal to m but  $d(L_{k+1}) > m$ .

# The function f

#### Definition

Given a group L we define f(L, m) = k + 1 if and only if  $d(L_k) = m < d(L_{k+1})$ . When L can be identified from the context, we denote f(L, m) as f(m).

- Thus the function f gives us the integer k+1 for which any proper quotient of  $L_{k+1}$  has minimal number of generators smaller or equal to m but  $d(L_{k+1}) > m$ .
- It follows from the last 2 properties of the groups  $L_k$  that this function is non-decreasing and unbounded.

## General Case

#### **Theorem**

Let m be an integer with  $m \ge 1$  and H a finite group such that  $d(H/N) \le m$  for every non-trivial normal subgroup N, but d(H) > m. Then there exists a group L which has a unique minimal normal subgroup M and is such that M is either non-abelian or complemented in L and  $H \cong L_{f(L,m)}$ .

The proof is divided in 2 cases:

• H has a unique minimal normal subgroup

- H has a unique minimal normal subgroup
- *H* has more than one minimal normal subgroup

- H has a unique minimal normal subgroup
- H has more than one minimal normal subgroup
  - Abelian minimal normal subgroups

- H has a unique minimal normal subgroup
- H has more than one minimal normal subgroup
  - Abelian minimal normal subgroups
  - Non-abelian minimal normal subgroups

# Proof: H has a unique minimal normal subgroup

Let M denote the unique minimal normal subgroup of L.

# Proof: H has a unique minimal normal subgroup

Let M denote the unique minimal normal subgroup of L.

• If *M* is not abelian there is nothing to prove.

# Proof: H has a unique minimal normal subgroup

Let M denote the unique minimal normal subgroup of L.

- If *M* is not abelian there is nothing to prove.
- If M is abelian then we need to prove that it is complemented. Since  $\Phi(H)=1$ , then there exists a maximal subgroup K that does not contain M. We have that  $K\cap M \triangleleft K$  and  $K\cap M \triangleleft M$  (since M is abelian). Thus  $K\cap M \triangleleft KM=H$  and since  $K\cap M \subset M$ ,  $K\cap M=1$ .

# Sketch of Proof: H has more than one minmal normal subgroup

• Let  $N_1$  be a minimal normal subgroup of H. For any other minimal normal subgroups  $N_r$  of H ( $N_1 \neq N_r$ ), there exists a subgroup  $K_r$  of H that complements both  $N_1$  and  $N_r$  in H.

# Sketch of Proof: H has more than one minmal normal subgroup

- Let  $N_1$  be a minimal normal subgroup of H. For any other minimal normal subgroups  $N_r$  of H ( $N_1 \neq N_r$ ), there exists a subgroup  $K_r$  of H that complements both  $N_1$  and  $N_r$  in H.
- The projections  $\pi_r: K_r \cap (N_1 \times N_r) \to N_1$  and  $\rho_r: K_r \cap (N_1 \times N_r) \to N_r$  are isomorphisms. Thus there is an isomorphism  $\phi_r: N_1 \to N_r$ , specifically  $\phi_r = \rho_r \pi_r^{-1}$ .

# Sketch of Proof: H has more than one minmal normal subgroup

- Let  $N_1$  be a minimal normal subgroup of H. For any other minimal normal subgroups  $N_r$  of H ( $N_1 \neq N_r$ ), there exists a subgroup  $K_r$  of H that complements both  $N_1$  and  $N_r$  in H.
- The projections  $\pi_r: K_r \cap (N_1 \times N_r) \to N_1$  and  $\rho_r: K_r \cap (N_1 \times N_r) \to N_r$  are isomorphisms. Thus there is an isomorphism  $\phi_r: N_1 \to N_r$ , specifically  $\phi_r = \rho_r \pi_r^{-1}$ .

From this follows that either all the minimal normal subgroups of H are abelian or all of them are non-abelian.

# Sketch of Proof: *H* has abelian normal subgroups

• We have that soc(H) is complemented in H, say by K.

# Sketch of Proof: H has abelian normal subgroups

- We have that soc(H) is complemented in H, say by K.
- Let  $L = N_1 K$ . For each minimal normal subgroup  $N_r$  of H complemented in soc(H), say by  $C_r$  there exists a surjective homomorphism  $\Psi_r \colon H \to L$  with  $\ker \Psi_r = C_r$ .

- We have that soc(H) is complemented in H, say by K.
- Let  $L = N_1 K$ . For each minimal normal subgroup  $N_r$  of H complemented in soc(H), say by  $C_r$  there exists a surjective homomorphism  $\Psi_r \colon H \to L$  with  $\ker \Psi_r = C_r$ .
- There exists a positive integer q such that the function

$$\Psi \colon H \longrightarrow L_q$$

$$ks \mapsto (\Psi_1(ks), \Psi_2(ks), \dots, \Psi_q(ks))$$

is an isomorphism.



- We have that soc(H) is complemented in H, say by K.
- Let  $L = N_1 K$ . For each minimal normal subgroup  $N_r$  of H complemented in soc(H), say by  $C_r$  there exists a surjective homomorphism  $\Psi_r \colon H \to L$  with  $\ker \Psi_r = C_r$ .
- There exists a positive integer q such that the function

$$\Psi \colon H \longrightarrow L_q$$

$$ks \mapsto (\Psi_1(ks), \Psi_2(ks), \dots, \Psi_q(ks))$$

is an isomorphism.

• The group L has a unique minimal normal subgroup, namely  $N_1$ , and it is complemented by K.



• Let  $\alpha_1 \colon H \to Aut \ N_1$  that sends each  $h \in H$  to

$$\alpha_1(h) \colon \mathcal{N}_1 \to \mathcal{N}_1$$
  
 $x \mapsto hxh^{-1}.$ 

Let L denote the image of  $\alpha_1$ .

• Let  $\alpha_1 \colon H \to Aut \ N_1$  that sends each  $h \in H$  to

$$\alpha_1(h) \colon \mathcal{N}_1 \to \mathcal{N}_1$$
  
 $x \mapsto hxh^{-1}.$ 

Let L denote the image of  $\alpha_1$ .

• The group *L* has a unique minimal normal subgroup.

• Let  $\alpha_1 : H \to Aut N_1$  that sends each  $h \in H$  to

$$\alpha_1(h) \colon N_1 \to N_1$$
  
 $x \mapsto hxh^{-1}.$ 

Let L denote the image of  $\alpha_1$ .

- The group L has a unique minimal normal subgroup.
- For r > 1, we define  $\alpha_r \colon H \to Aut \ N_1$  as the homomorphism that sends  $h \in H$  to

$$\alpha_r(h) \colon \mathcal{N}_1 \to \mathcal{N}_1$$
  
  $x \mapsto \phi_r^{-1}(h\phi_r(x)h^{-1}).$ 

• Let  $\alpha_1 \colon H \to Aut \ N_1$  that sends each  $h \in H$  to

$$\alpha_1(h) \colon N_1 \to N_1$$
  
 $x \mapsto hxh^{-1}.$ 

Let L denote the image of  $\alpha_1$ .

- The group L has a unique minimal normal subgroup.
- For r > 1, we define  $\alpha_r \colon H \to Aut \ N_1$  as the homomorphism that sends  $h \in H$  to

$$\alpha_r(h) \colon \mathcal{N}_1 \to \mathcal{N}_1$$
  
  $x \mapsto \phi_r^{-1}(h\phi_r(x)h^{-1}).$ 

 Taking q as the number of minimal normal subgroups of H, the function

$$\Psi \colon H \to L_q$$

$$h \mapsto (\alpha_1(h), \dots, \alpha_q(h))$$

is an isomorphism.



# Sketch of Proof: q = f(L, m)

Regardless of which case we consider, what was proved was that  $H\cong L_q$  for some positive integer q by some isomorphism  $\Psi$ . Since the image of a minimal normal subgroup by an isomorphism is again a minimal normal subgroup we obtain that for any minimal normal subgroup  $N_r$  of H,  $H/N_r\cong L_q/\Psi(N_r)$  and  $H/N_r\cong L_{q-1}$ . Since  $H/N_r$  is a proper non-trivial quotient of H we get that

$$d(L_{q-1}) = d(H/N_r) < d(H) = d(L_q).$$

This is precisely the definition of the function f.  $\square$ 

### Definition

Given a surjective homomorphism  $\beta\colon L_k\to L/M$ , we define the set  $\mathscr{S}_\beta$  as the set of normal subgroups N of  $L_k$  arising as kernels of those homomorphisms of  $L_k$  onto L which composed with the natural projection  $\pi_L\colon L\to L/M$  yield  $\beta$ .

### Theorem

Let us assume M is abelian. Given a surjective homomorphism  $\beta \colon L_k \to L/M$ , the set  $\mathscr{S}_\beta$  is identical to the set of kernels of surjective L/M-homomorphisms  $\nu \colon M^k \to M$  with the above group actions.

### Theorem

Let us assume that M is not abelian. Given a surjective homomorphism  $\beta \colon L_k \to L/M$ , the cardinality of the set  $\mathscr{S}_\beta$  is k.

#### Definition

Let F be a free group of rank m. Given a surjective homomorphism  $\beta \colon F \to L/M$ , we define the set  $\mathscr{R}_{\beta}$  as the set of normal subgroups N of F arising as kernels of those homomorphisms of F onto L which composed with the natural projection  $\pi_L \colon L \to L/M$  yield  $\beta$ .

#### Definition

Let F be a free group of rank m. Given a surjective homomorphism  $\beta \colon F \to L/M$ , we define the set  $\mathscr{R}_{\beta}$  as the set of normal subgroups N of F arising as kernels of those homomorphisms of F onto L which composed with the natural projection  $\pi_I \colon L \to L/M$  yield  $\beta$ .

### Theorem

Let F be a free group of rank  $m \geq d(L)$ . Given a surjective homomorphism  $\beta \colon F \to L/M$ , the cardinality of the set  $\mathscr{R}_\beta$  is  $\phi_L(m)/|\Gamma|\phi_{L/M}(m)$ , where  $\Gamma$  denotes the set of all automorphisms of L that act trivially on L/M.

#### Theorem

Let F be a free group of rank  $m \geq d(L)$  and  $\beta \colon F \to L/M$  a surjective homomorphism. The group  $F/(\bigcap_{N \in \mathscr{R}_\beta} N)$  is isomorphic to  $L_q$  for some positive integer q. Furthermore q is the biggest integer for which there exists a surjective homomorphism  $\Psi \colon F \to L_q$  such that

$$\pi_{L_q} \circ \Psi = \beta.$$

### Theorem

Let  $m \ge d(L)$  and q be the number of (L/M)-endomorphisms of M when M is abelian. Then

$$f(m) = 1 + \begin{cases} \phi_L(m)/(|\Gamma|\phi_{L/M}(m)) \text{ if M is not abelian,} \\ \log_q(1 + (q-1)\phi_L(m)/|\Gamma|\phi_{L/M}(m)) \text{ if M is abelian.} \end{cases}$$

• Let F denote a free group of rank m. There exists a surjective homomorphism  $\beta\colon F\to L/M$  such that k is the biggest integer for which there exists a surjective homomorphism  $F\to L_k$ .

- Let F denote a free group of rank m. There exists a surjective homomorphism  $\beta\colon F\to L/M$  such that k is the biggest integer for which there exists a surjective homomorphism  $F\to L_k$ .
- $F/\ker \Psi_k$  is the largest quotient of F isomorpic to  $L_i$  for some i; since F is a free group of rank m this means that

$$f(m)=1+k.$$



- Let F denote a free group of rank m. There exists a surjective homomorphism  $\beta\colon F\to L/M$  such that k is the biggest integer for which there exists a surjective homomorphism  $F\to L_k$ .
- $F/\ker \Psi_k$  is the largest quotient of F isomorpic to  $L_i$  for some i; since F is a free group of rank m this means that

$$f(m)=1+k.$$

•  $N\mapsto N/R\mapsto \phi(N/R)$  is a bijection between  $\mathscr{R}_{\beta}$  and  $\mathscr{S}_{\bar{\beta}\circ\phi^{-1}}$ , where  $\phi\colon F/\ker\Psi_k\to L_k$  is an isomorphism



Applying the theorems before we obtain:

$$rac{\phi_L(m)}{|\Gamma|\phi_{L/M}(m)} = |\mathscr{R}_{eta}| = \ |\mathscr{S}_{ar{eta}\circ\phi^{-1}}| = egin{cases} k & ext{if $M$ is not abelian,} \ (q^k-1)/(q-1) & ext{if $M$ is abelian.} \end{cases}$$