

Exercício 1: Crie um novo projeto com o nome proj1Aula4 e coloque na pasta DEV:

Leia 1 valor inteiro N (2 < N < 1000). A seguir, mostre a tabuada de N:

 $1 \times N = N$

 $2 \times N = 2N$

...

 $10 \times N = 10N$

Exemplo de Entrada	Exemplo de Saída
140	1 x 140 = 140 2 x 140 = 280 3 x 140 = 420 4 x 140 = 560 5 x 140 = 700 6 x 140 = 840 7 x 140 = 980 8 x 140 = 1120 9 x 140 = 1260 10 x 140 = 1400

Exercício 2: Crie um novo projeto com o nome proj2Aula4 e coloque na pasta DEV:

Leia 2 valores inteiros X e Y. A seguir, calcule e mostre a soma dos números ímpares entre eles.

Entrada

O arquivo de entrada contém dois valores inteiros.

Saída

O programa deve imprimir um valor inteiro. Este valor é a soma dos valores ímpares que estão entre os valores fornecidos na entrada que deverá caber em um inteiro.

Exemplo de Entrada	Exemplo de Saída
6 -5	5
15 12	13
12 12	O)

Exercício 3: Crie um novo projeto com o nome proj3Aula4 e coloque na pasta DEV:

Fazer um programa para ler uma temperatura em Celsius e mostrar o equivalente em Fahrenheit. Perguntar se o usuário deseja repetir (s/n). Caso o usuário digite "s", repetir o programa:

Fórmula:

Celsius To Fahrenheit

$$F = \frac{9}{5}C + 32$$

Exemplo:

Digite a temperatura em Celsius: 30.0

Equivalente em Fahrenheit: 86.0

Deseja repetir (s/n)? s

Digite a temperatura em Celsius: 21.0

Equivalente em Fahrenheit: 69.8

Deseja repetir (s/n)? s

Digite a temperatura em Celsius: -10.5

Equivalente em Fahrenheit: 13.1

Deseja repetir (s/n)? n

Exercício 4: Crie um novo projeto com o nome proj4Aula4 e coloque na pasta DEV:

Leia um valor inteiro \mathbf{X} (1 <= \mathbf{X} <= 1000). Em seguida mostre os ímpares de 1 até \mathbf{X} , um valor por linha, inclusive o \mathbf{X} , se for o caso.

Entrada

O arquivo de entrada contém 1 valor inteiro qualquer.

Saída

Imprima todos os valores ímpares de 1 até X, inclusive X, se for o caso.

Exemplo de En	trada	Exemplo de Saída
8	1	
	3	
	5	
	7	

Exercício 5: Crie um novo projeto com o nome proj5Aula4 e coloque na pasta DEV:

Leia um valor inteiro **N**. Este valor será a quantidade de valores inteiros **X** que serão lidos em seguida. Mostre quantos destes valores **X** estão dentro do intervalo [10,20] e quantos estão fora do intervalo, mostrando essas informações.

Entrada

A primeira linha da entrada contém um valor inteiro N (N < 10000), que indica o número de casos de teste.

Cada caso de teste a seguir é um valor inteiro \mathbf{X} (-107 < \mathbf{X} <107).

Saída

Para cada caso, imprima quantos números estão dentro (**in**) e quantos valores estão fora (**out**) do intervalo.

Exemplo de Entrada	Exemplo de Saída
4	2 in
14	2 out
123	
10	
-25	

Exercício 6: Crie um novo projeto com o nome proj6Aula4 e coloque na pasta DEV:

Leia 1 valor inteiro N, que representa o número de casos de teste que vem a seguir. Cada caso de teste consiste de 3 valores reais, cada um deles com uma casa decimal. Apresente a média ponderada para cada um destes conjuntos de 3 valores, sendo que o primeiro valor tem peso 2, o segundo valor tem peso 3 e o terceiro valor tem peso 5.

Entrada

O arquivo de entrada contém um valor inteiro **N** na primeira linha. Cada **N** linha a seguir contém um caso de teste com três valores com uma casa decimal cada valor.

Saída

Para cada caso de teste, imprima a média ponderada dos 3 valores, conforme exemplo abaixo.

Exemplo de Entrada	Exemplo de Saída
3	5.7
6.5 4.3 6.2	6.3
5.1 4.2 8.1	9.3
8.0 9.0 10.0	

Exercício 7: Crie um novo projeto com o nome proj7Aula4 e coloque na pasta DEV:

Leia 20 valores inteiros. Apresente então o maior valor lido e a posição dentre os 20 valores lidos.

Entrada

O arquivo de entrada contém 20 números inteiros, positivos e distintos.

Saída

Apresente o maior valor lido e a posição de entrada, conforme exemplo abaixo.

Exemplo de Saída
34565
4

Exercício 8: Crie um novo projeto com o nome proj8Aula4 e coloque na pasta DEV:

Maria acabou de iniciar seu curso de graduação na faculdade de medicina e precisa de sua ajuda para organizar os experimentos de um laboratório o qual ela é responsável. Ela quer saber no final do ano, quantas cobaias foram utilizadas no laboratório e o percentual de cada tipo de cobaia utilizada.

Este laboratório em especial utiliza três tipos de cobaias: sapos, ratos e coelhos. Para obter estas informações, ela sabe exatamente o número de experimentos que foram realizados, o tipo de cobaia utilizada e a quantidade de cobaias utilizadas em cada experimento.

Entrada

A primeira linha de entrada contém um valor inteiro N que indica os vários casos de teste que vem a seguir. Cada caso de teste contém um inteiro Quantia (1 $\leq Quantia \leq 15$) que representa a quantidade de cobaias utilizadas e um caractere Tipo ('C', 'R' ou 'S'), indicando o tipo de cobaia (R:Rato S:Sapo C:Coelho).

Saída

Apresente o total de cobaias utilizadas, o total de cada tipo de cobaia utilizada e o percentual de cada uma em relação ao total de cobaias utilizadas, sendo que o percentual deve ser apresentado com dois dígitos após o ponto.

Exercício 8: Continuação

Exemplo de Entrada	Exemplo de Saída
10	Total: 92 cobaias
10 C	Total de coelhos: 29
6 R	Total de ratos: 40
15 S	Total de sapos: 23
5 C	Percentual de coelhos: 31.52 %
14 R	Percentual de ratos: 43.48 %
9 C	Percentual de sapos: 25.00 %
6 R	
8 S	
5 C	
14 R	

Exercício 9: Crie um novo projeto com o nome proj9Aula4 e coloque na pasta DEV:

Leia um valor inteiro **N** que é a quantidade de casos de teste que vem a seguir. Cada caso de teste consiste de dois inteiros **X** e **Y**. Você deve apresentar a soma de todos os ímpares existentes *entre* **X** e **Y**.

Entrada

A primeira linha de entrada é um inteiro **N** que é a quantidade de casos de teste que vem a seguir. Cada caso de teste consiste em uma linha contendo dois inteiros **X** e **Y**.

Saída

Imprima a soma de todos valores ímpares *entre* X e Y.

Exemplo de Entrada	Exemplo de Saída	
7	0	
4 5	11	
13 10	5	
6 4	0	
3 3	0	
3 5	0	
3 4	12	
3 8		

Exercício 10: Crie um novo projeto com o nome proj10Aula4 e coloque na pasta DEV:

Escreva um programa que leia dois valores **X** e **Y**. A seguir, mostre uma sequência de 1 até Y, passando para a próxima linha a cada **X** números.

Entrada

O arquivo de entrada contém dois valores inteiros, (1 < X < 20) e (X < Y < 100000).

Saída

Cada sequência deve ser impressa em uma linha apenas, com 1 espaço em branco entre cada número, conforme exemplo abaixo. Não deve haver espaço em branco após o último valor da linha.

Exemplo de Entrada	Exemplo de Saída
3 99	1 2 3
	4 5 6
	7 8 9
	10 11 12
	97 98 99

Exercício 11: Crie um novo projeto com o nome proj11Aula4 e coloque na pasta DEV:

Faça um algoritmo para ler um valor A e um valor N. Imprimir a soma de A + i para cada i com os valores (0 <= i <= N-1). Enquanto N for negativo ou ZERO, um novo N(apenas N) deve ser lido.

Entrada

A entrada contém somente valores inteiros, podendo ser positivos ou negativos. Todos os valores estão na mesma linha.

Saída

A saída contém apenas um valor inteiro.

Exemplo de Entrada	Exemplo de Saída
3 2	7
3 -1 0 -2 2	7

Exercício 12: Crie um novo projeto com o nome proj12Aula4 e coloque na pasta DEV:

Faça um programa que leia dois inteiros: **X** e **Z** (devem ser lidos tantos valores para **Z** quantos necessários, até que seja digitado um valor maior do que **X** para ele). Conte quantos números inteiros devem ser somados em sequência (considerando o **X** nesta soma) para que a soma ultrapasse a **Z** o mínimo possível. Escreva o valor final da contagem.

A entrada pode conter, por exemplo, os valores 21 21 15 30. Neste caso, é então assumido o valor 21 para **X** enquanto os valores 21 e 15 devem ser desconsiderados pois são menores ou iguais a **X**. Como o valor 30 está dentro da especificação (maior do que **X**) ele será válido e então deve-se processar os cálculos para apresentar na saída o valor 2, pois é a quantidade de valores somados para se produzir um valor maior do que 30 (21 + 22).

Entrada

A entrada contém somente valores inteiros, um por linha, podendo ser positivos ou negativos. O primeiro valor da entrada será o valor de **X**. A próxima linha da entrada irá conter **Z**. Se **Z** não atender a especificação do problema, ele deverá ser lido novamente, tantas vezes quantas forem necessárias.

Saída

Imprima uma linha com um número inteiro que representa a quantidade de números inteiros que devem ser somadas, de acordo com a especificação acima.

Exemplo de Entrada	Exemplo de Saída	
3	5	
1		
20		

Exercício 13: Crie um novo projeto com o nome proj13Aula4 e coloque na pasta DEV:

Mariazinha quer resolver um problema interessante. Dadas as informações de população e a taxa de crescimento de duas cidades quaisquer (A e B), ela gostaria de saber quantos anos levará para que a cidade menor (sempre é a cidade A) ultrapasse a cidade B em população. Claro que ela quer saber apenas para as cidades cuja taxa de crescimento da cidade A é maior do que a taxa de crescimento da cidade B, portanto, previamente já separou para você apenas os casos de teste que tem a taxa de crescimento maior para a cidade A. Sua tarefa é construir um programa que apresente o tempo em anos para cada caso de teste.

Porém, em alguns casos o tempo pode ser muito grande, e Mariazinha não se interessa em saber exatamente o tempo para estes casos. Basta que você informe, nesta situação, a mensagem "Mais de 1 seculo.".

Entrada

A primeira linha da entrada contém um único inteiro **T**, indicando o número de casos de teste (1 \leq **T** \leq 3000). Cada caso de teste contém 4 números: dois inteiros **PA** e **PB** (100 \leq **PA** < 1000000, **PA** < **PB** \leq 1000000) indicando respectivamente a população de A e B, e dois valores **G1** e **G2** (0.1 \leq **G1** \leq 10.0, 0.0 \leq **G2** \leq 10.0, **G2** < **G1**) com um digito após o ponto decimal cada, indicando respectivamente o crescimento populacional de A e B (em percentual).

Atenção: A população é sempre um valor inteiro, portanto, um crescimento de 2.5 % sobre uma população de 100 pessoas resultará em 102 pessoas, e não 102.5 pessoas, enquanto um crescimento de 2.5% sobre uma população de 1000 pessoas resultará em 1025 pessoas. Além disso, não utilize variáveis de precisão simples para as taxas de crescimento.

Exercício 13: Continuação....

Saída

Imprima, para cada caso de teste, quantos anos levará para que a cidade A ultrapasse a cidade B em número de habitantes. Obs.: se o tempo for mais do que 100 anos o programa deve apresentar a mensagem: Mais de 1 seculo. Neste caso, acredito que seja melhor interromper o programa imediatamente após passar de 100 anos, caso contrário você poderá receber como resposta da submissão deste problema "Time Limit Exceeded".

Exemplo de Entrada	Exemplo de Saída
6	51 anos.
100 150 1.0 0	16 anos.
90000 120000 5.5 3.5	12 anos.
56700 72000 5.2 3.0	Mais de 1 seculo.
123 2000 3.0 2.0	10 anos.
100000 110000 1.5 0.5	100 anos.
62422 484317 3.1 1.0	