RANCANG BANGUN *PROTYPE* SISTEM OTOMASI DAN MONITORING SUHU DAN KELEMBAPAN PADA PETERNAKAN AYAM BROILER BERBASIS IOT

PRA PROPOSAL PROYEK TINGKAT

Diajukan sebagai syarat untuk mengikuti Sidang Komite Proyek tingkat

oleh:

NUR ISMY AFIAH 6705184081

D3 TEKNOLOGI TELEKOMUNIKASI FAKULTAS ILMU TERAPAN UNIVERSITAS TELKOM 2020

Latar Belakang

Indonesia adalah negara yang memiliki bidang peternakan yang sangat besar, hampir setiap penduduk Indonesia adalah sebagai peternak ayam, sapi, kambing dan terutama ayam broiler.

Broiler adalah istilah untuk menyebut strain ayam hasil budidaya teknologi yang memiliki karakteristik ekonomis, dengan ciri khas pertumbuhan cepat sebagai penghasil daging, konversi pakan irit, siap dipotong pada usia relatif muda, serta menghasilkan daging berkualitas serat lunak (Rasidi, 2000).

Dalam pemeliharaan broiler banyak faktor lingkungan yang mempengaruhi salah satunya adalah suhu dan kelembapan yang harus stabil. Kusnadi (2006) menyatakan bahwa tingginya suhu lingkungan di daerah tropis pada siang hari dapat mengakibatkan terjadinya penimbunan panas dalam tubuh, sehingga ternak mengalami cekaman panas. Ayam broiler termasuk hewan homeothermis, akan mempertahankan suhu tubuhnya dalam keadaan relatif konstan antara lain melalui peningkatan frekuensi pernafasan dan jumlah konsumsi air minum serta penurunan konsumsi ransum.

Pada kandang ayam jens open house peternak masih menggunakan cara manual untuk mengatur suhu yaitu menggunakan insting dan pengalaman dalam pemeliharaannya. Hal ini dapat menyebabkan kelalaian peternak yang mengganggu pertumbuhan ayam broiler.

Semakin berkembangnya teknologi *Internet Of Things* saat ini, menjadi suatu pilihan yang tepat untuk diterapkan pada bidang peternakan khusunya peternakan ayam broiler agar dapat membantu para peternak dalam melakukan pemantauan dan pengendalian kondisi kandang ayam. Oleh karena itu dbuatlah suatu alat otomasi dan *monitoring* suhu dan kelembapan berbasis IoT dengan menggunakan mikrokontroller Wemos D1 R2 sebagai kendali dan kontrol utama dalam alat tersebut.

Alat ini berfungsi menyalakan pemanas untuk menghangatkan kandang jika suhu kurang dari suhu normal, dan menyalakan kipas jika suhu lebih dari suhu normal secara otomatis menggunakan sensor suhu DHT22. Dalam penggunaanya kondisi

suhu dan kelembapan ayam dapat dipantau pada website yang telah disediakan agar peternak dapat mengetahui dan mengawasi kondisi kandang ayam.

Studi Literatur Penelitian Terkait

Tabel 1 Merupakan hasil studi literature terhadap penelitian yang terkait dengan judul yang diangkat.

Tabel 1 Hasil Studi Literatur

No	Judul Penelitian /Karya Ilmiah	Tahun	Keterangan
1.	Perancangan Sistem Pengaturan Suhu Ruangan Otomatis Berbasis Mikrokontroler [1]	2019	Dalam penelitian ini penulis membuat suatu sistem pengaturan suhu pada ruangan server dengan menggunakan sensor suhu, Arduino mega serta website untuk monitoring namun tidak dilengkapi dengan fitur otomasi.
2.	Sistem Otomasi dan Monitoring Suhu dan Kelembaban Pada Peternakan Ayam Potong [2]	2018	Dalam penelitian ini penulis membuat suatu sistem yang menggunakan sensor suhu, mikrokontroller, untuk otomasi menggunakan lampu pijar dan fan dc dimana data yang dikumpulkan dapat dpantau memlalui LCD.
3.	SaveYourChicken! Sistem Monitoring Suhu di dalam Kandang Ayam menggunakan Perangkat berbasis Internet of Things (IoT) [3]	2017	Dalam penelitian yang berkelompok ini penulis membuat suatu aplikasi pada android yang dapat melakukan monitoring suhu pada kandang ayam tanpa melakukan otomasi.
4.	Perancangan dan Analisis Sistem Pengatur Suhu Otomatis pada Peternakan Ayam Broiler Berbasis Wireless Sensor Network [4]	2018	Dalam penelitian ini penulis membuat suatu rancangan sistem yang dapat melakukan otomasi dengan menggunakan modul zigbee, relay, dan dc, Arduino nano, dan sesor suhu dht11. Dalam pengujian sistemnya sensor akan mengirimkan data ke website untuk dapat dimonitoring namun pada

			pengujian sistem tidak menggunakan penghangat untuk menaikkan suhu
			kandang ayam broler.
5.	Rancangan Bangun Sistem Kontrol	2018	Dalam penelitian ini penulis membuat suatu sistem yang menggunakan
			Arduino Mega 2560, dan sensor DHT11 yang berfungsi sebagai komponen
	Otomatis Pengatur Suhu dan Kelembapan Kandang Ayam Broiler Menggunakan		untuk memonitor suhu dan kelembaban kandang ayam broiler. Kontrol
	Arduino [5]		sistem Otomatis suhu dan kelembaban kandang ayam memanfaatkan panas
	Ardumo [3]		cahaya lampu dan kipas, kemudian melalui komunikasi Ethernet Shield
			dengan Blynk, pemilik ternak bias memonitoring suhu dan kelembaban
			secara real time dengan android. Output sistem yaitu berupa fan dc, lcd,
			lampu dan aplikasi android (Blynk).
6. Prototipe Sistem kendali Pengaturan Suhu 2017		2017	Dalam penelitian ini penulis merancang sebuah alat untuk menstabilkan
	dan Kelembaban Kandang Ayam Broiler		kelembapan ruangan kandang ternak boiler yaitu dengan menghidupkan dan
	Bersasis Mikrontroller Atmega 328 [6]		mematikan pompa air secara otomatis menggunakan sensor kelembapan
			yang dihubungkan pada Mikrokontroller Arudino dan memerintahkan
			pompa air berdasarkan standarisasi suhu yang telah di tetapkan.
7.	Perancangan sistem pengontrolan	2019	Dalam penelitian ini penulis merancang sebuah alat untuk melakukan
	kipas angin berbasis mikrokontroller		pengontrolan kipas angina ac dengan menggunakan Arduino uno sebagai
	[7]		pengendali utamanya. dan sensor LM35 untuk membaca suhu ruangan serta
	r- J		Sensor PIR untuk mendeteksi bayangan. Ketika suhu ≥25 -≥30 derajat kipas
			berada pada ON 1 yaitu kipas menyala dengan kecepatan rendah, ketika
			suhu ≥ 35 derajat kipas berada pada ON 2 yaitu kipas menyala dengan

	kecepatan sedang dan ketika suhu ≥40 - ≥45 derajat kipas berada pada ON 3
	yaitu kipas menyala dengan kecepatan tinggi.

Rancangan Sistem

Pada penelitian ini penulis merancang sebuah sistem otomasi dan monitoring suhu dengan menggunakan sensor DHT22, dan *Wemos D1 R2* sebagai mikrokontroller kendali utamanya. Ketika sensor mendeteksi suhu diatas atau dibawah suhu normal maka penghangat atau kipas angin AC akan menyala. Kecepatan kipas angin AC pada alat ini akan dibuat otomatis dengan 3 kecepatan (rendah, sedang, tinggi) bergantung pada threshold yang telah ditentukan. Sistem ini terdiri dari sub bab model sistem, diagram alir perancangan sistem, proses pembacaan suhu oleh sensor, analisa kebutuhan sistem, realisasi sistem dan skenario pengujian. Adapun model sistem *monitoring* yang telah dibuat dapat dilihat pada Gambar 1 dibawah ini.

Gambar 1. Model Sistem Otomasi dan Monitoring Suhu Pada Peternakan Ayam Broiler Berbasis IoT

- Sensor DHT22 membaca suhu dan kelembapan kandang dan mengirimkannya ke Wemos D1 R2.
- 2. Setelah data dikirim oleh sensor DHT22, *Wemos* akan memproses data dan memberikan respon ke relay untuk diteruskan ke kipas angin atau pemanas.

- a) Jika kondisi suhu kandang jauh diatas suhu normal maka kipas angin bergerak dengan kecepatan tinggi.
- b) Jika kondisi suhu kandang sedikit mendekati suhu normal maka kipas angin bergerak dengan kecepatan sedang.
- c) Jika kondisi suhu kandang mendekati suhu normal maka kipas angin bergerak dengan kecepatan rendah.
- d) Jika kondisi suhu kandang dibawah suhu normal maka pemanas akan menyala
- 3. Wemos D1 R2 akan mengirim data suhu dan kelembapan ke server melalui jaringan internet melaui modul ESP8266.
- 4. Jika koneksi dengan *server* berhasil, data suhu dan kelembapan akan disimpan didalam *database*.
- 5. Pengguna dapat memantau suhu dan kelembapan melalui website. Dimana aplikasi tersebut akan menampilkan data yang sudah tersimpan didalam *database* sesuai dengan interval waktu yang telah ditentukan.

Referensi

- [1] I. W. G. Pratama, I. K. G. Suhartana and I. W. Supriana, "Perancangan Sistem Pengaturan Suhu Ruangan Otomatis Berbasis Mikrokontroler," *Elektronik Ilmu Komputer Udayana*, 2019.
- [2] A. B. G. Isyanto, G. I. Hapsari and A. Sularsa, "Sistem Otomasi dan Monitoring Suhu dan Kelembaban pada Peternakan Ayam Potong," 2018.
- [3] M. L. Albert, A. R. Pratama and E. P. Tarigan, "SaveYourChicken! Sistem Monitoring Suhu di dalam Kandang Ayam menggunakan Perangkat berbasis Internet of Things (IoT)," 2017.
- [4] D. Wicaksono, D. Perdana and R. Mayasari, "Perancangan dan Analisis Sistem Pengatur Suhu Otomatis pada Peternakan Ayam Broiler Berbasis Wireless Sensor Network," 2018.
- [5] M. F. Mansyur, "Rancangan Bangun Sistem Kontrol Otomatis Pengatur Suhu dan Kelembapan Kandang Ayam Broiler Menggunakan Arduino," *Journal Of Computer and Information System*, 2018.
- [6] E. W. S. Budianto, Ramadiani and A. H. Kridalaksana, "Prototipe Sistem kendali Pengaturan Suhu dan Kelembaban Kandang Ayam Broiler Bersasis Mikrontroller Atmega 328," *Prosiding Seminar Nasional Ilmu Komputer dan Teknologi Informasi*, 2017.
- [7] A. Hanafie, Sriwati, Muliawati and R. R. Usman, "Perancangan sistem pengontrolan kipas angin berbasis mikrokontroller," *Journal Ilmu Teknik*, 2019.

Form Kesediaan Membimbing Proyek Tingkat

PROYEK TINGKAT SEMESTER GANJIL|GENAP* TA 2020/2021

Tanggal: 9 Desember 2020

Kami yang bertanda tangan dibawah ini:

CALON PEMBIMBING 1

Kode : DUM

Nama: <u>Dadan Nur Ramadan, S.pd., M.T.</u>

CALON PEMBIMBING 2

Kode : TND

Nama: Tri Nopiani Damayanti, S.T., M.T.

Menyatakan bersedia menjadi dosen pembimbing Proyek Tingkat bagi mahasiswa berikut,

NIM : <u>6705184081</u>

Nama : Nur Ismy Afiah

Prodi / Peminatan : D3TT/Internet of Things

Calon Judul PA

Rancang Bangun Prototype Sistem Otomasi dan Monitoring Suhu dan Kelembapan

pada Peternakan Ayam Broiler Berbasis IoT

Dengan ini akan memenuhi segala hak dan kewajiban sebagai dosen pembimbing sesuai dengan Aturan Proyek Tingkat yang berlaku.

Calon Pembimbing 1

(<u>Dadan Nur Ramadan, S.pd., M.T.)</u>

(Tri Nopiani Damayanti, S.T., M.T.)

alon Pembimbing 2

CATATAN:

- 1. Aturan Proyek Akhir versi terbaru dapat diunduh dari : http://dte.telkomuniversity.ac.id/panduan-proyek-akhir/
- 2. Keputusan akhir penentuan pembimbing berada di tangan Ketua Kelompok Keahlian dengan memperhatikan aturan yang berlaku.
- 3. Pengajuan pembimbing boleh untuk kedua pembimbing sekaligus atau untuk salah satu pembimbing saja

Telkom UniversityJl. Telekomunikasi No.1, Terusan Buah Batu
Bandung 40257
Indonesia

DAFTAR NILAI HASIL STUDI MAHASISWA

NIM (Nomor Induk Mahasiswa)

: 6705184081

Dosen Wali Program Studi : TAR / TENGKU AHMAD RIZA

Nama

: NUR ISMY AFIAH

: D3 Teknologi Telekomunikasi

Mata Kuliah yang Lulus

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
1	DTH1F3	DASAR SISTEM TELEKOMUNIKASI	BASIC TELECOMMUNICATIONS SYSTEM	3	А
1	DTH1C3	DASAR TEKNIK KOMPUTER DAN PEMROGRAMAN	BASIC COMPUTER ENGINEERING AND PROGRAMMING	3	АВ
1	DTH1A2	K3 DAN LINGKUNGAN HIDUP	K3 AND ENVIRONMENT	2	А
1	DUH1A2	LITERASI TIK	ICT LITERACY	2	А
1	DTH1B3	MATEMATIKA TELEKOMUNIKASI I	MATHEMATICS TELECOMMUNICATIONS I	3	А
1	I I HIIHIAA I		RELIGIOUS EDUCATION AND ETHICS - ISLAM	2	А
1	DTH1D3	RANGKAIAN LISTRIK	ELECTRICAL CIRCUITS	3	AB
1	1 DTH1E2 MEKANIKAL DAN		MECHANICAL AND ELECTRICAL WORKSHOP	2	АВ
2	LUH1B2	BAHASA INGGRIS I	ENGLISH I	2	А
2	2 HUH1G3 PANCASILA DAN KEWARGANEGARAAN		PANCASILA AND CITIZENSHIP	3	А
2	DTH1K3	ELEKTROMAGNETIKA	ELECTROMAGNETIC	3	В
2	2 DTH1J2 BENGKEL ELEKTRONIKA		ELECTRONICS WORKSHOP	2	АВ
2	2 DTH1I3 ELEKTRONIKA ANALOG		ANALOG ELECTRONIC	3	AB
2	DTH1H3	TEKNIK DIGITAL	DIGITAL TECHNIQUES	3	AB
2	DMH1A2	OLAH RAGA	SPORT	2	А
2	DTH1G3	MATEMATIKA TELEKOMUNIKASI II	MATHEMATICS TELECOMMUNICATIONS II	3	В
3 DTH2A2 BAHASA INGGRIS TEKNIK I		ENGLISH TECHNIQUE I	2	А	

Jumlah SKS	81	3.61
------------	----	------

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
3	DTH2D3	APLIKASI MIKROKONTROLER DAN ANTARMUKA	MICROCONTROLLER APPLICATIONS AND INTERFACES	3	АВ
3	DTH2C2	BENGKEL INTERNET OF THINGS	INTERNET OF THINGS WORKSHOP	2	А
3	DTH2B3	KOMUNIKASI DATA BROADBAND	BROADBAND DATA COMMUNICATIONS	3	А
3	DTH2E3	SISTEM KOMUNIKASI	COMMUNICATIONS SYSTEMS	3	AB
3	DTH2G3	SISTEM KOMUNIKASI OPTIK	OPTICAL COMMUNICATION SYSTEMS	3	АВ
3	DTH2F3	TEKNIK TRANSMISI RADIO	RADIO TRANSMISSION TECHNIQUES	3	С
4	DTH2M3	SISTEM KOMUNIKASI SELULER	CELLULAR COMMUNICATION SYSTEMS	3	АВ
4	DTH2L3	TEKNIK ANTENNA DAN PROPAGASI	ANTENNA TECHNIQUES AND PROPAGATION	3	AB
4	DTH2K3	ELEKTRONIKA TELEKOMUNIKASI	ELECTRONICS TELECOMMUNICATIONS	3	А
4	DTH2J2	TEKNIK TRAFIK	TRAFFIC ENGINEERING	2	AB
4	DTH2I3	DASAR KOMUNIKASI MULTIMEDIA	BASIC COMMUNICATION MULTIMEDIA	3	АВ
4	DTH2H3	JARINGAN DATA BROADBAND	BROADBAND DATA NETWORK	3	AB
4	DMH2A2	KERJA PRAKTEK	INTERSHIP	2	А
4	DMH1B2	PENGEMBANGAN PROFESIONALISME	PROFESSIONAL DEVELOPMENT	2	А
		81	3.61		

Mata Kuliah yang Belum Lulus

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
3	VTI2C3	PERANGKAT TELEKOMUNIKASI BROADBAND	BROADBAND TELECOMMUNICATION DEVICES	3	
4	VTI2H2	BAHASA INGGRIS TEKNIK II	ENGLISH TECHNIQUES II	2	
4	UKI2C2	BAHASA INDONESIA	INDONESIAN LANGUAGE	2	
4	VTI2K3	JARINGAN TELEKOMUNIKASI BROADBAND	BROADBAND DATA NETWORKS	3	
5	VTI3D3	KEAMANAN JARINGAN	NETWORK SECURITY	3	
5	UWI3E1	HEI	HEI	1	

Jumlah SKS

18

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
5	VTI3E2	CLOUD COMPUTING	CLOUD COMPUTING	2	
5	UWI3A2	KEWIRAUSAHAAN	ENTREPRENEURSHIP	2	
	Jur	18			

Tingkat I	: 41 SKS	Belum Lulus	IPK: 3.66
Tingkat II	: 81 SKS	Belum Lulus	IPK: 3.61
Tingkat III	: 81 SKS	Belum Lulus	IPK: 3.61
Jumlah SKS	: 81 SKS		IPK: 3.61

Total SKS dan IPK dihitung dari mata kuliah lulus dan mata kuliah belum lulus. Nilai kosong dan T tidak diikutkan dalam perhitungan IPK.

Pencetakan daftar nilai pada tanggal 09 Desember 2020 15:31:52 oleh NUR ISMY AFIAH