TEMA 11. INTRODUCCIÓN A HEP.

La Fénice de particulas (o tinia de Altas Energias - HEP-) es un campo de las ciencias naturales que busca desentration la estructura Weltima de la materia.

¿ Cômo se conigue?

i) Buscar partículas elementales (les viltimos constitujentes de la materia)

nil Clarficar qué interacciones actuan sobre dichas particulas elementales para formas la materia tal y como la conse mos.

Vannos a hacer un repaso listórico de la listoria moderna de las panticulas elementeles

ScXIX	10 -10 m	Stomo	Experimentos
1892	Thomson	e-	Rayos Cortódicos.
1911	Putlo ford	model, atonico	Jsotopos.
1932	chaduick	neutorón	Isotopot.
1937	Anderson etal.	món	Naps edsuricos.
1947	Powell etd.	72 y extravos	Rays édanicos.
1955	Segre	P	Bevatrón
1976	Cowain	J	Deacter.
1964	Soruiss et al.	2	Reactor BNL
1974	Ting et al.	JM&c	BNL
1975	Pearl	2	Spear
1978	be der down	7 8 6	Fernilab
1983	Rubbia et d	l. W& 2°	SPPS
1994	Mudros	E	Tevatosa ZEP
1998	Totsuka et	d. Posil.	Rayos Cosmios
2012	Muchos	Higgs	Afler, CMS
		(10-19 ₁₁	$f = \sqrt{\frac{46}{cT}} = 0 \text{ m}$

-121-

1911	Rutherford	Madela atónico
P29-30	Hersemberg Pauli	QFT
1930	Dirac	Ec. Dirac
1930	Pauli	Neutrino
1934	Ferni	Weak int.
1935	Ynkana	meson theory
1946-49	Tomonega Schningen	QED
	Feynman	((, , , , , ,))
1954	young, Mills	Non abelieu YM H.
1976	young, bee	tislación paridad
KT8	Feynman et al.	Vector-Axial Heory
1960	Nambe	Rupt. espout. sinetia.
1964	Gell-Maura et d.	anal K model
1964		Violation CP
1964	Miggs et al.	Mecavierro Wiggs.
1961-69	8 Glashow, Salam Weinberg.	Unificación electrodetril
1971	Veltura, 't Uo	off Penormalização'u EN

197 3

Kabayashi

KM model CP

Mas Kawa

1973

Politer, Gross

Wilczek

aco, litertad asistótica.

i y ahora? Nada.

Propiedades de los ponticulas elementales:

1) ma particula està "esperialmente balitada en cada instante" y su nivero es contable.

 $E = \frac{mc^2}{\sqrt{1-v^2}}, \quad p' = \frac{mv^i}{\sqrt{1-v^2_{c2}}}$

Défininces massa y relocidad a pontir de

energier y momento

 $E^{2} = (pc)^{2} + (mc^{2})^{2}$ $= p^{2} = p^{2} = 0$ $= p^{2} = 0$ $= p^{2} = 0$ = 0 = 0 = 0 = 0 = 0 = 0 = 0

(2) Una ponticula puede ser creada o aciqui-

$$e^{+} + e^{-} \rightarrow \gamma + \gamma$$

$$\pi^{-} + \rho \rightarrow \kappa^{\circ} + \Lambda$$

$$\pi^{+} \longrightarrow \mu^{+} + \lambda_{\mu}$$

Concluioù importante: no nos sirve Schrödinger porque il la probabilided de aistencia de ma pontrala no se conserva!!

Come falter AFT (tiene en wenta creación y destrucción de jonticular).

(3) Corolonio de 2. Una particula no es necescionmente exteble.

la probabilidad de que la penticuler "mueren"

en et n su violer media es ? $= \frac{dN}{N} = -\frac{dt}{2} \Rightarrow N(t) = N_0 e^{-t/2}$

Pero, en Mecanica Cueintica, la "probabilidad de ceistencia" de ma panticular es r 141², luego o 141² r $e^{-t/\tau}$ Consideremos ma panticular en ma autoatedo de

Consideremos ma pontícula en mante alo de energia.

Y(xit) a Y(x) e - i Et/k

Hagamas E= Eo-in. Entines:

|4(+1) = 14(x) e - i (Eo - i P/2) + /4 |2 =

= 14(x) 12 e - 17+ /th , lugo

1 - t/2 y se tieve que

Ineitable => E & d aou I = Im (E)>0

c' Como sera la destribución de masor (energier) de la jonticular?

(4) Una ponticula tiene spin y otios grados de libertad.
· (E,pi): gl. externos => simetives
· (conga, spin, color, isospin,): g.l. internos
(Simetrias)
(5) Inda particula tiene su correspondiente
antipanticula.
p(m, 2, s) - p(m, 2, s)
P(Sz, hint) -> P (-Sz, hint)
(consentario Ta PT).
6 Clarificación stantomer: neuten fuerte fuerte septembres : no la neuten.
Hadrones : servientero: bariones: p, n, 1, 5, = 1 Hadrones : servieno: mesones: r, k, l r comprentos de generks (S=1/2)
Comprentos de guarks (S=112)

Resi	men que	son Eculo	S					
	Spin	Q	T ₃	Gu	Generación			
	·			I	I	III		
gnarks	1/2	+2/3	+1/2	и	C	t		
1	(2	-113	- 1/2	al	S	6		
leptones	1	0	+1/2	Je	Jan	Vz		
	1 2	-1	- 112	e	p	2		

No Sunen
intermisses
fundamentales

12 x 2 x	simetro,	Tooking	Portador	Potencial	Reugo (m) &*	Interiod	Frente	Tuesa
significado	SV(3)	RCD.	glubn (5=1,8 /205)	させたとう	8	0. 1	Ricolor	tue/te
(+ sin significado si d>10" m par el epoto		(Yutawa)	(meson te)	(e-wz ()	(10-15)	(10)	(hardoon)	(Nuclear)
m par el	(B)A		(S=1)	~ -	8	1/137	Qe	M
epto de	U(1) × SU(2)		W+ No	7 May 5	10-18	0,5	Edel	dehil
confrainch de qu	Grupo Poincare	Net. Several	28 rantole?	5/-	8	(0-42	tas	Sawdad