## **CHUONG II** TÍCH VÔ HƯỚNG CỦA HAI VECTƠ VÀ ÚNG DỤNG

# I. GIÁ TRỊ LƯỢNG GIÁC CỦA MỘT GÓC BẤT KÌ $\mathbf{T}\dot{\mathbf{U}}$ 00 $\mathbf{D}\dot{\mathbf{E}}\mathbf{N}$ 1800

#### 1. Định nghĩa

Lấy M trên nửa đường tròn đơn vi tâm O. Xét góc nhon  $\alpha = xOM$ . Giả sử M(x; y).

$$\sin \alpha = y (tung \ d\hat{\phi})$$

$$\cos \alpha = x \left( ho \grave{a} nh \, d\hat{\varphi} \right)$$

$$tan \alpha = \frac{y}{x} \left( \frac{tung \, d\hat{\varphi}}{ho \grave{a} nh \, d\hat{\varphi}} \right) \qquad (x \neq 0)$$

$$cot \alpha = \frac{x}{y} \left( \frac{ho \grave{a} nh \, d\hat{\varphi}}{tung \, d\hat{\varphi}} \right) \qquad (y \neq 0)$$

$$\cot \alpha = \frac{x}{y} \left( \frac{ho \grave{a} n h \, d\hat{\varphi}}{tung \, d\hat{\varphi}} \right) \qquad (y \neq 0)$$



 $-N\acute{e}u \alpha tù thì \cos\alpha < 0, \tan\alpha < 0, \cot\alpha < 0.$ 

 $-\tan\alpha$  chỉ xác định khi  $\alpha \neq 90^{\circ}$ , cot $\alpha$  chỉ xác định khi  $\alpha \neq 0^{\circ}$  và  $\alpha \neq 180^{\circ}$ .

## 2. Tính chất

### • Góc phụ nhau

$$\sin(90^0 - \alpha) = \cos \alpha$$
$$\cos(90^0 - \alpha) = \sin \alpha$$

$$\tan(90^0 - \alpha) = \cot \alpha$$

$$\cot(90^0 - \alpha) = \tan \alpha$$

### • Góc bù nhau

$$\sin(180^0 - \alpha) = \sin \alpha$$

$$\cos(180^0 - \alpha) = -\cos\alpha$$

$$\tan(180^0 - \alpha) = -\tan \alpha$$

$$\cot(180^0 - \alpha) = -\cot \alpha$$

## 3. Giá trị lượng giác của các góc đặc biệt

|               | 00 | $30^{0}$             | 45 <sup>0</sup>      | $60^{0}$             | 90° | $180^{0}$ |
|---------------|----|----------------------|----------------------|----------------------|-----|-----------|
| $\sin lpha$   | 0  | $\frac{1}{2}$        | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{3}}{2}$ | 1   | 0         |
| $\cos \alpha$ | 1  | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{1}{2}$        | 0   | -1        |
| an lpha       | 0  | $\frac{\sqrt{3}}{3}$ | 1                    | $\sqrt{3}$           |     | 0         |
| $\cot \alpha$ | II | $\sqrt{3}$           | 1                    | $\frac{\sqrt{3}}{3}$ | 0   | II        |

#### 4. Các hệ thức cơ bản

$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha} \quad (\cos \alpha \neq 0)$$

$$\sin^2 \alpha + \cos^2 \alpha = 1$$

$$\cot \alpha = \frac{\cos \alpha}{\sin \alpha} \quad (\sin \alpha \neq 0)$$

$$\tan \alpha \cdot \cot \alpha = 1 \quad (\sin \alpha \cdot \cos \alpha \neq 0)$$

$$1 + \cot^2 \alpha = \frac{1}{\sin^2 \alpha} \quad (\sin \alpha \neq 0)$$

$$1 + \cot^2 \alpha = \frac{1}{\sin^2 \alpha} \quad (\sin \alpha \neq 0)$$

Chú ý:  $0 \le \sin \alpha \le 1$ ;  $-1 \le \cos \alpha \le 1$ . **Bài 1.** Tính giá trị các biểu thức sau:

- a)  $a \sin 0^0 + b \cos 0^0 + c \sin 90^0$
- b)  $a\cos 90^{0} + b\sin 90^{0} + c\sin 180^{0}$
- c)  $a^2 \sin 90^0 + b^2 \cos 90^0 + c^2 \cos 180^0$
- d)  $3-\sin^2 90^0 + 2\cos^2 60^0 3\tan^2 45^0$
- e)  $4a^2 \sin^2 45^0 3(a \tan 45^0)^2 + (2a \cos 45^0)^2$

Bài 2. Tính giá tri của các biểu thức sau:

- a)  $\sin x + \cos x$  khi x bằng  $0^{0}$ ;  $45^{0}$ ;  $60^{0}$ .
- b)  $2\sin x + \cos 2x$  khi x bằng  $45^{\circ}$ ;  $30^{\circ}$ .

Bài 3. Cho biết một giá trị lượng giác của một góc, tính các giá trị lượng giác còn lại:

- a)  $\sin \beta = \frac{1}{4}$ ,  $\beta$  nhọn.
- b)  $\cos \alpha = -\frac{1}{2}$
- c)  $\tan x = 2\sqrt{2}$

**Bài 4.** Biết  $\sin 15^0 = \frac{\sqrt{6} - \sqrt{2}}{4}$ . Tinh  $\cos 15^0$ ,  $\tan 15^0$ ,  $\cot 15^0$ .

Bài 5. Cho biết một giá trị lượng giác của một góc, tính giá trị của một biểu thức:

- a)  $\sin x = \frac{1}{3}$ ,  $90^0 < x < 180^0$ . Tính  $A = \frac{\tan x + 3\cot x + 1}{\tan x + \cot x}$ .
- b)  $\tan \alpha = \sqrt{2}$ . Tính  $B = \frac{\sin \alpha \cos \alpha}{\sin^3 \alpha + 3\cos^3 \alpha + 2\sin \alpha}$

Bài 6. Chứng minh các đẳng thức sau:

- a)  $(\sin x + \cos x)^2 = 1 + 2\sin x \cdot \cos x$
- b)  $\sin^4 x + \cos^4 x = 1 2\sin^2 x \cdot \cos^2 x$
- c)  $\tan^2 x \sin^2 x = \tan^2 x \cdot \sin^2 x$
- d)  $\sin^6 x + \cos^6 x = 1 3\sin^2 x \cdot \cos^2 x$
- e)  $\sin x \cdot \cos x (1 + \tan x)(1 + \cot x) = 1 + 2\sin x \cdot \cos x$

Bài 7. Đơn giản các biểu thức sau:

- a)  $\cos y + \sin y \cdot \tan y$
- b)  $\sqrt{1 + \cos b} \cdot \sqrt{1 \cos b}$  c)  $\sin a \sqrt{1 + \tan^2 a}$
- d)  $\frac{1-\cos^2 x}{1-\sin^2 x} + \tan x \cdot \cot x$  e)  $\frac{1-4\sin^2 x \cdot \cos^2 x}{(\sin x + \cos x)^2}$
- f)  $\sin(90^0 x) + \cos(180^0 x) + \sin^2 x(1 + \tan^2 x) \tan^2 x$

Bài 8. Tính giá trị các biểu thức sau:

- a)  $\cos^2 12^0 + \cos^2 78^0 + \cos^2 1^0 + \cos^2 89^0$  b)  $\sin^2 3^0 + \sin^2 15^0 + \sin^2 75^0 + \sin^2 87^0$

Bài 9.

a)

# II. TÍCH VÔ HƯỚNG CỦA HAI VECTO

#### 1. Góc giữa hai vecto

Cho  $\vec{a}, \vec{b} \neq \vec{0}$ . Từ một điểm O bất kì vẽ  $OA = \vec{a}, OB = \vec{b}$ .

Khi đó  $|(\vec{a}, \vec{b}) = \widehat{AOB}|$  với  $0^0 \le \widehat{AOB} \le 180^0$ .



$$+ (\vec{a}, \vec{b}) = 90^0 \Leftrightarrow \vec{a} \perp \vec{b}$$

$$+ (\vec{a}, \vec{b}) = 0^0 \Leftrightarrow \vec{a}, \vec{b} \text{ cùng hướng}$$

$$+ (\vec{a}, \vec{b}) = 180^0 \Leftrightarrow \vec{a}, \vec{b}$$
 ngược hướng

$$+(\vec{a},\vec{b})=(\vec{b},\vec{a})$$

## 2. Tích vô hướng của hai vecto

• Định nghĩa: 
$$|\vec{a}.\vec{b}| = |\vec{a}| \cdot |\vec{b}| \cdot \cos(\vec{a}, \vec{b})$$
.

• Đặc biệt:  $|\vec{a}.\vec{a}| = |\vec{a}|^2 \cdot |\vec{a}|^2$ .

Đặc biệt: 
$$\vec{a} \cdot \vec{a} = \vec{a}^2 = |\vec{a}|^2$$

• Tính chất: Với  $\vec{a}, \vec{b}, \vec{c}$  bất kì và  $\forall k \in R$ , ta có:

$$+ \vec{a}.\vec{b} = \vec{b}.\vec{a};$$

$$\vec{a}(\vec{b}+\vec{c}) = \vec{a}.\vec{b} + \vec{a}.\vec{c}$$
;

$$\vec{a} \cdot \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a};$$
  $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c};$   
 $(k\vec{a}) \cdot \vec{b} = k(\vec{a} \cdot \vec{b}) = \vec{a} \cdot (k\vec{b});$   $\vec{a}^2 \ge 0; \vec{a}^2 = 0 \Leftrightarrow \vec{a} = \vec{0}.$ 

$$\vec{a}^2 \ge 0$$
;  $\vec{a}^2 = 0 \Leftrightarrow \vec{a} = \vec{0}$ .

$$+(\vec{a}+\vec{b})^2 = \vec{a}^2 + 2\vec{a}.\vec{b} + \vec{b}^2;$$
  $(\vec{a}-\vec{b})^2 = \vec{a}^2 - 2\vec{a}.\vec{b} + \vec{b}^2;$ 

$$(\vec{a} - \vec{b})^2 = \vec{a}^2 - 2\vec{a}.\vec{b} + \vec{b}^2$$
;

$$\vec{a}^2 - \vec{b}^2 = (\vec{a} - \vec{b})(\vec{a} + \vec{b}).$$

$$+\vec{a}.\vec{b} > 0 \Leftrightarrow (\vec{a},\vec{b})$$
 nhọn  $+\vec{a}.\vec{b} < 0 \Leftrightarrow (\vec{a},\vec{b})$  tù

$$+ \vec{a}.\vec{b} < 0 \Leftrightarrow (\vec{a},\vec{b})$$
 tù

$$\vec{a}.\vec{b} = 0 \Leftrightarrow (\vec{a},\vec{b})$$
 vuông.

### 3. Biểu thức toạ độ của tích vô hướng

• Cho 
$$\vec{a} = (a_1, a_2), \vec{b} = (b_1, b_2)$$
. Khi đó:

$$\vec{a}.\vec{b} = a_1b_1 + a_2b_2.$$

$$\bullet \ |\vec{a}| = \sqrt{a_1^2 + a_2^2}$$

• Cho 
$$\vec{a} = (a_1, a_2), \ \vec{b} = (b_1, b_2).$$
 Khi đó: 
$$\vec{a}.\vec{b} = a_1b_1 + a_2b_2$$
•  $|\vec{a}| = \sqrt{a_1^2 + a_2^2};$  
$$\cos(\vec{a}, \vec{b}) = \frac{a_1b_1 + a_2b_2}{\sqrt{a_1^2 + a_2^2}.\sqrt{b_1^2 + b_2^2}}; \qquad \vec{a} \perp \vec{b} \Leftrightarrow a_1b_1 + a_2b_2 = 0$$

$$\vec{a}\perp\vec{b} \Longleftrightarrow a_1b_1+a_2b_2=0$$

• Cho 
$$A(x_A; y_A)$$
,  $B(x_B; y_B)$ . Khi đó:  $AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$ 

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$
.

- **Bài 1.** Cho tam giác ABC vuông tại A, AB = a, BC = 2a. Tính các tích vô hướng:
  - a) *AB.AC*
- b) AC.CB

- **Bài 2.** Cho tam giác ABC đều cạnh bằng a. Tính các tích vô hướng:
  - a) *AB.AC*
- b) AC.CB

c) AB.BC

- Bài 3. Cho bốn điểm A, B, C, D bất kì.
  - a) Chúng minh: DA.BC + DB.CA + DC.AB = 0.
  - b) Từ đó suy ra một cách chứng minh định lí: "Ba đường cao trong tam giác đồng qui".
- Bài 4. Cho tam giác ABC với ba trung tuyến AD, BE, CF. Chứng minh:

$$\overrightarrow{BC}.\overrightarrow{AD} + \overrightarrow{CA}.\overrightarrow{BE} + \overrightarrow{AB}.\overrightarrow{CF} = 0$$
.

- **Bài 5.** Cho hai điểm M, N nắm trên đường tròn đường kính AB = 2R. Gọi I là giao điểm của hai đường thẳng AM và BN.
  - a) Chứng minh: AM.AI = AB.AI, BN.BI = BA.BI.
  - b) Tính AM.AI + BN.BI theo R.
- **Bài 6.** Cho tam giác ABC có AB = 5, BC = 7, AC = 8.
  - a) Tính AB.AC, rồi suy ra giá trị của góc A.

- b) Tính CA.CB.
- c) Gọi D là điểm trên CA sao cho CD = 3. Tính CD.CB.

Bài 7. Cho hình vuông ABCD cạnh a. Tính giá trị các biểu thức sau:

- a) AB.AC
- b) (AB + AD)(BD + BC)
- c) (AC-AB)(2AD-AB)

- d) AB.BD
- e) (AB + AC + AD)(DA + DB + DC)
- HD: a)  $a^2$

- b)  $a^2$  c)  $2a^2$  d)  $-a^2$
- e) 0

**Bài 8.** Cho tam giác ABC có AB = 2, BC = 4, CA = 3.

- a) Tính AB.AC, rồi suy ra cosA.
- b) Gọi G là trọng tâm của ΔABC. Tính AG.BC.
- c) Tính giá tri biểu thức S = GA.GB + GB.GC + GC.GA.
- d) Gọi AD là phân giác trong của góc BAC (D  $\in$  BC). Tính AD theo AB,AC, suy ra AD.

HD: a) 
$$\overrightarrow{AB}.\overrightarrow{AC} = -\frac{3}{2}$$
,  $\cos A = -\frac{1}{4}$  b)  $\overrightarrow{AG}.\overrightarrow{BC} = \frac{5}{3}$  c)  $S = -\frac{29}{6}$ 

- d) Sử dụng tính chất đường phân giác  $\overrightarrow{DB} = \frac{AB}{AC}.\overrightarrow{DC} \implies \overrightarrow{AD} = \frac{3}{5}\overrightarrow{AB} + \frac{2}{5}\overrightarrow{AC}$ ,  $AD = \frac{\sqrt{54}}{5}$

**Bài 9.** Cho tam giác ABC có AB = 2, AC = 3, A =  $60^{\circ}$ . M là trung điểm của BC.

- a) Tính BC, AM.
- b) Tính IJ, trong đó I, J được xác định bởi:  $2IA + IB = \vec{0}$ , JB = 2JC.

HD: a) BC = 
$$\sqrt{19}$$
, AM =  $\frac{\sqrt{7}}{2}$  b) IJ =  $\frac{2}{3}\sqrt{133}$ 

Bài 10. Cho tứ giác ABCD.

- a) Chứng minh  $AB^2 BC^2 + CD^2 DA^2 = 2\overrightarrow{AC}.\overrightarrow{DB}$ .
- b) Suy ra điều kiên cần và đủ để tứ giác có hai đường chéo vuông góc là:

$$AB^2 + CD^2 = BC^2 + DA^2$$

Bài 11. Cho tam giác ABC có trực tâm H, M là trung điểm của BC. Chứng minh:

$$\overrightarrow{MH}.\overrightarrow{MA} = \frac{1}{4}BC^2$$
.

Bài 12. Cho hình chữ nhật ABCD, M là một điểm bất kì. Chứng minh:

- a)  $MA^2 + MC^2 = MB^2 + MD^2$
- b) MA.MC = MB.MD
- c)  $MA^2 + \overrightarrow{MB}.\overrightarrow{MD} = 2\overrightarrow{MA}.\overrightarrow{MO}$  (O là tâm của hình chữ nhật).

**Bài 13.** Cho tam giác ABC có A(1; -1), B(5; -3), C(2; 0).

- a) Tính chu vi và nhận dạng tam giác ABC.
- b) Tìm toạ độ điểm M biết CM = 2AB 3AC.
- c) Tìm tâm và bán kính đường tròn ngoại tiếp tam giác ABC.

**Bài 14.** Cho tam giác ABC có A(1; 2), B(-2; 6), C(9; 8).

- a) Tính AB.AC. Chứng minh tam giác ABC vuông tại A.
- b) Tìm tâm và bán kính đường tròn ngoại tiếp tam giác ABC.
- c) Tìm toạ độ trực tâm H và trọng tâm G của tam giác ABC.
- d) Tính chu vi, diên tích tam giác ABC.
- e) Tìm toạ độ điểm M trên Oy để B, M, A thẳng hàng.
- f) Tìm toạ độ điểm N trên Ox để tam giác ANC cân tại N.
- g) Tìm toạ độ điểm D để ABDC là hình chữ nhật.
- h) Tìm toạ độ điểm K trên Ox để AOKB là hình thang đáy AO.
- i) Tìm toạ độ điểm T thoả  $TA + 2TB 3TC = \vec{0}$

- k) Tìm toạ độ điểm E đối xứng với A qua B.
- 1) Tìm toạ độ điểm I chân đường phân giác trong tại đỉnh C của ΔABC.

Bài 15. Cho tam giác ABC. tìm tập hợp những điểm M sao cho:

a) 
$$MA^2 = 2\overrightarrow{MA}.\overrightarrow{MB}$$

b) 
$$(\overrightarrow{MA} - \overrightarrow{MB})(2\overrightarrow{MB} - \overrightarrow{MC}) = 0$$

c) 
$$(\overrightarrow{MA} + \overrightarrow{MB})(\overrightarrow{MB} + \overrightarrow{MC}) = 0$$

d) 
$$2MA^2 + \overrightarrow{MA}.\overrightarrow{MB} = \overrightarrow{MA}.\overrightarrow{MC}$$

Bài 16. Cho hình vuông ABCD cạnh a, tâm O. Tìm tập hợp những điểm M sao cho:

a) 
$$\overrightarrow{MA}.\overrightarrow{MC} + \overrightarrow{MB}.\overrightarrow{MD} = a^2$$

b) 
$$\overrightarrow{MA}.\overrightarrow{MB} + \overrightarrow{MC}.\overrightarrow{MD} = 5a^2$$

c) 
$$MA^2 + MB^2 + MC^2 = 3MD^2$$

d) 
$$(\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC})(\overrightarrow{MC} - \overrightarrow{MB}) = 3a^2$$

**Bài 17.** Cho tứ giác ABCD, I, J lần lượt là trung điểm của AB và CD. Tìm tập hợp điểm M sao cho:  $\overrightarrow{MA}.\overrightarrow{MB} + \overrightarrow{MC}.\overrightarrow{MD} = \frac{1}{2}IJ^2$ .

Bài 18.

a)

# III. HỆ THỰC LƯỢNG TRONG TAM GIÁC

Cho  $\triangle$ ABC có: -độ dài các cạnh: BC = a, CA = b, AB = c

www.MATHVN.com Trang 16

- độ dài các đường trung tuyến vẽ từ các đỉnh A, B, C:  $m_a$ ,  $m_b$ ,  $m_c$
- độ dài các đường cao vẽ từ các đỉnh A, B, C:  $h_a$ ,  $h_b$ ,  $h_c$
- bán kính đường tròn ngoại tiếp, nội tiếp tam giác: R, r
- nửa chu vi tam giác: p
- diện tích tam giác: S

#### 1. Định lí côsin

$$a^2 = b^2 + c^2 - 2bc \cdot \cos A$$
;  $b^2 = c^2 + a^2 - 2ca \cdot \cos B$ ;  $c^2 = a^2 + b^2 - 2ab \cdot \cos C$ 

#### 2. Định lí sin

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$

#### 3. Đô dài trung tuyến

$$m_a^2 = \frac{2(b^2 + c^2) - a^2}{4}$$
;  $m_b^2 = \frac{2(a^2 + c^2) - b^2}{4}$ ;  $m_c^2 = \frac{2(a^2 + b^2) - c^2}{4}$ 

$$m_b^2 = \frac{2(a^2 + c^2) - b^2}{4}$$
;

$$m_c^2 = \frac{2(a^2 + b^2) - c^2}{4}$$

## 4. Diện tích tam giác

$$\begin{split} \mathbf{S} &= \frac{1}{2}ah_a = \frac{1}{2}bh_b = \frac{1}{2}ch_c \\ &= \frac{1}{2}bc\sin A = \frac{1}{2}ca\sin B = \frac{1}{2}ab\sin C \\ &= \frac{abc}{4R} \\ &= pr \\ &= \sqrt{p(p-a)(p-b)(p-c)} \quad \text{(công thức Hê-rông)} \end{split}$$

Giải tam giác là tính các cạnh và các góc của tam giác khi biết một số yếu tố cho trước.

## 5. Hệ thức lượng trong tam giác vuông (nhắc lai)

Cho ΔABC vuông tại A, AH là đường cao.

• 
$$BC^2 = AB^2 + AC^2$$
 (định lí Pi–ta–go)

• 
$$AB^2 = BC.BH$$
.  $AC^2 = BC.CH$ 

• 
$$AH^2 = BH.CH$$
,  $\frac{1}{AH^2} = \frac{1}{AR^2} + \frac{1}{AC^2}$ 



- AH.BC = AB.AC
- $b = a \cdot \sin B = a \cdot \cos C = c \tan B = c \cot C$ ;  $c = a \cdot \sin C = a \cdot \cos B = b \tan C = b \cot C$

## 6. Hệ thức lượng trong đường tròn (bổ sung)

Cho đường tròn (O; R) và điểm M cố định.

• Từ M vẽ hai cát tuyến MAB, MCD.

$$P_{\text{M/(O)}} = \overrightarrow{MA}.\overrightarrow{MB} = \overrightarrow{MC}.\overrightarrow{MD} = MO^2 - R^2$$

• Nếu M ở ngoài đường tròn, vẽ tiếp tuyến MT.

$$P_{\text{M/(O)}} = MT^2 = MO^2 - R^2$$



#### Chứng minh rằng trong mọi tam giác ABC ta có;

- a)  $a = b \cdot \cos C + c \cdot \cos B$
- b)  $\sin A = \sin B \cos C + \sin C \cos B$

c)  $h_a = 2R \sin B \sin C$ 

d)  $m_a^2 + m_b^2 + m_c^2 = \frac{3}{4}(a^2 + b^2 + c^2)$ 

e) 
$$S_{\Delta ABC} = \frac{1}{2} \sqrt{AB^2 \cdot AC^2 - \left(\overrightarrow{AB} \cdot \overrightarrow{AC}\right)^2}$$

Bài 2. Cho tam giác ABC. Chứng minh rằng:

a) Nếu 
$$b + c = 2a$$
 thì  $\frac{2}{h_a} = \frac{1}{h_b} + \frac{1}{h_c}$ 

a) Nếu b + c = 2a thì  $\frac{2}{h_c} = \frac{1}{h_c} + \frac{1}{h_c}$  b) Nếu  $bc = a^2$  thì  $\sin B \sin C = \sin^2 A$ ,  $h_b h_c = h_a^2$ 

c) A vuông 
$$\Leftrightarrow m_b^2 + m_c^2 = 5m_a^2$$

Cho tứ giác lồi ABCD, gọi α là góc hợp bởi hai đường chép AC và BD.

- a) Chứng minh diện tích S của tứ giác cho bởi công thức:  $S = \frac{1}{2}AC.BD.\sin\alpha$ .
- b) Nêu kết quả trong trường hợp tứ giác có hai đường chéo vuông góc.

Cho  $\triangle$ ABC vuông ở A, BC = a, đường cao AH.

- a) Chứng minh  $AH = a.\sin B.\cos B$ ,  $BH = a.\cos^2 B$ ,  $CH = a.\sin^2 B$ .
- b) Từ đó suy ra  $AB^2 = BC.BH$ ,  $AH^2 = BH.HC$ .

Cho  $\triangle$ AOB cân đỉnh O, OH và OK là các đường cao. Đặt OA = a,  $AOH = \alpha$ . Bài 5.

- a) Tính các canh của ΔOAK theo a và α.
- b) Tính các canh của các tam giác OHA và AKB theo a và α.
- c) Từ đó tính  $\sin 2\alpha$ ,  $\cos 2\alpha$ ,  $\tan 2\alpha$  theo  $\sin \alpha$ ,  $\cos \alpha$ ,  $\tan \alpha$ .

Giải tam giác ABC, biết:

a) 
$$c = 14$$
;  $\hat{A} = 60^{\circ}$ ;  $\hat{B} = 40^{\circ}$ 

b) 
$$b = 4.5$$
;  $\hat{A} = 30^{\circ}$ ;  $\hat{C} = 75^{\circ}$ 

c) 
$$c = 35$$
;  $\hat{A} = 40^{\circ}$ ;  $\hat{C} = 120^{\circ}$ 

d) 
$$a = 137.5$$
;  $\hat{B} = 83^{\circ}$ ;  $\hat{C} = 57^{\circ}$ 

Bài 7. Giải tam giác ABC, biết:

a) 
$$a = 6,3$$
;  $b = 6,3$ ;  $\hat{C} = 54^0$ 

b) 
$$b = 32$$
;  $c = 45$ ;  $\hat{A} = 87^0$ 

c) 
$$a = 7$$
;  $b = 23$ ;  $\hat{C} = 130^0$ 

d) 
$$b = 14$$
;  $c = 10$ ;  $\hat{A} = 145^0$ 

Bài 8. Giải tam giác ABC, biết:

a) 
$$a = 14$$
;  $b = 18$ ;  $c = 20$ 

b) 
$$a = 6$$
;  $b = 7.3$ ;  $c = 4.8$ 

c) 
$$a = 4$$
;  $b = 5$ ;  $c = 7$ 

d) 
$$a = 2\sqrt{3}$$
;  $b = 2\sqrt{2}$ ;  $c = \sqrt{6} - \sqrt{2}$ 

Bài 9.

a)

## BÀI TẬP ÔN CHƯƠNG II

Bài 1. Chứng minh các đẳng thức sau:

www.MATHVN.com Trang 18

a) 
$$\frac{\sin x}{1 + \cos x} + \frac{1 + \cos x}{\sin x} = \frac{2}{\sin x}$$

b) 
$$\frac{\sin^3 x + \cos^3 x}{\sin x + \cos x} = 1 - \sin x \cdot \cos x$$

c) 
$$\left(\frac{\tan^2 x - 1}{2\tan x}\right)^2 - \frac{1}{4\sin^2 x \cdot \cos^2 x} = -1$$
 d)  $\frac{\cos^2 x - \sin^2 x}{\sin^4 x + \cos^4 x - \sin^2 x} = 1 + \tan^2 x$ 

d) 
$$\frac{\cos^2 x - \sin^2 x}{\sin^4 x + \cos^4 x - \sin^2 x} = 1 + \tan^2 x$$

e) 
$$\frac{\sin^2 x}{\cos x (1 + \tan x)} - \frac{\cos^2 x}{\sin x (1 + \cot x)} = \sin x - \cos x$$

f) 
$$\left(\tan x + \frac{\cos x}{1 + \sin x}\right) \cdot \left(\cot x + \frac{\sin x}{1 + \cos x}\right) = \frac{1}{\sin x \cdot \cos x}$$

g) 
$$\cos^2 x(\cos^2 x + 2\sin^2 x + \sin^2 x \tan^2 x) = 1$$

**Bài 2.** Biết  $\sin 18^0 = \frac{\sqrt{5-1}}{4}$ . Tính  $\cos 18^0$ ,  $\sin 72^0$ ,  $\sin 162^0$ ,  $\cos 162^0$ ,  $\sin 108^0$ ,  $\cos 108^0$ ,  $\tan 72^0$ .

Bài 3. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức:

a) 
$$A = \cos^4 x - \cos^2 x + \sin^2 x$$

b) 
$$B = \sin^4 x - \sin^2 x + \cos^2 x$$

**Bài 4.** Cho các vecto  $\vec{a}, \vec{b}$ .

a) Tính góc  $(\vec{a}, \vec{b})$ , biết  $\vec{a}, \vec{b} \neq \vec{0}$  và hai vector  $\vec{u} = \vec{a} + 2\vec{b}$ ,  $\vec{v} = 5\vec{a} - 4\vec{b}$  vuông góc.

b) Tính 
$$|\vec{a} + \vec{b}|$$
, biết  $|\vec{a}| = 11$ ,  $|\vec{b}| = 23$ ,  $|\vec{a} - \vec{b}| = 30$ .

c) Tính góc 
$$(\vec{a}, \vec{b})$$
, biết  $(\vec{a} + 3\vec{b}) \perp (7\vec{a} - 5\vec{b})$ ,  $(\vec{a} - 4\vec{b}) \perp (7\vec{a} - 2\vec{b})$ .

d) Tính 
$$|\vec{a} - \vec{b}|$$
,  $|2\vec{a} + 3\vec{b}|$ , biết  $|\vec{a}| = 3$ ,  $|\vec{b}| = 2$ ,  $(\vec{a}, \vec{b}) = 120^{\circ}$ .

e) Tính 
$$|\vec{a}|, |\vec{b}|$$
, biết  $|\vec{a} + \vec{b}| = 2, |\vec{a} - \vec{b}| = 4, (2\vec{a} + \vec{b}) \perp (\vec{a} + 3\vec{b})$ .

**Bài 5.** Cho tam giác ABC có AB = 3, AC = 4, BC = 6.

a) Tính AB.AC và cosA.

b) M, N là hai điểm được xác định bởi  $\overrightarrow{AM} = \frac{2}{3} \overrightarrow{AB}$ ,  $\overrightarrow{AN} = \frac{3}{4} \overrightarrow{AC}$ . Tính MN.

**Bài 6.** Cho hình bình hành ABCD có AB =  $\sqrt{3}$ , AD = 1,  $\widehat{BAD} = 60^{\circ}$ .

a) Tính AB.AD, BA.BC.

b) Tính độ dài hai đường chéo AC và BD. Tính  $\cos(\overline{AC}, \overline{BD})$ .

Bài 7. Cho tam giác ABC có góc A nhọn. Về phía ngoài tam giác vẽ các tam giác vuông cân đỉnh A là ABD và ACE. Gọi I là trung điểm của BC. Chứng minh AI  $\perp$  DE.

Bài 8. Cho tứ giác ABCD có hai đường chéo cắt nhau tai O. Goi H, K lần lượt là trực tâm của các tam giác ABO và CDO. Gọi I, J lần lượt là trung điểm của AD và BC. Chứng minh HK  $\perp$  IJ.

Bài 9. Cho hình vuông ABCD có cạnh bằng 1, M là trung điểm cạnh AB. Trên đường chéo AC lấy điểm N sao cho  $\overrightarrow{AN} = \frac{3}{4}\overrightarrow{AC}$ .

a) Chứng minh DN vuông góc với MN.

b) Tính tổng DN.NC + MN.CB.

Bài 10. Cho tam giác ABC. Tìm tập hợp các điểm M sao cho:

a) 
$$\overrightarrow{AB}.\overrightarrow{AM} - \overrightarrow{AC}.\overrightarrow{AM} = 0$$

b) 
$$\overrightarrow{AB}.\overrightarrow{AM} + \overrightarrow{AC}.\overrightarrow{AM} = 0$$

c) 
$$(MA + MB)(MA + MC) = 0$$

d) 
$$(\overrightarrow{MA} + \overrightarrow{MB} + 2\overrightarrow{MC})(\overrightarrow{MA} + 2\overrightarrow{MB} + \overrightarrow{MC}) = 0$$

Bài 11. Chứng minh rằng trong mọi tam giác ABC ta có:

a) 
$$b^2 - c^2 = a(b \cdot \cos C - c \cdot \cos B)$$

a) 
$$b^2 - c^2 = a(b \cdot \cos C - c \cdot \cos B)$$
 b)  $(b^2 - c^2) \cos A = a(c \cdot \cos C - b \cdot \cos B)$ 

b)  $\sin A = \sin B \cdot \cos C + \sin C \cdot \cos B = \sin(B+C)$ 

### Bài 12. Cho ΔABC. Chứng minh rằng:

a) Nếu (a+b+c)(b+c-a) = 3bc thì  $\hat{A} = 60^{\circ}$ .

b) Nếu 
$$\frac{b^3 + c^3 - a^3}{b + c - a} = a^2$$
 thì  $\hat{A} = 60^0$ .

- c) Nếu cos(A+C)+3cos B=1 thì  $\hat{B}=60^{\circ}$ .
- d) Nếu  $b(b^2 a^2) = c(a^2 c^2)$  thì  $\hat{A} = 60^0$ .

## Bài 13. Cho ΔABC. Chứng minh rằng:

a) Nếu  $\frac{b^2 - a^2}{2c} = b\cos A - a\cos B$  thì  $\triangle$ ABC cân đỉnh C.

b) Nếu  $\frac{\sin B}{\sin C} = 2\cos A$  thì  $\triangle$ ABC cân đỉnh B.

c) Nếu  $a = 2b \cdot \cos C$  thì  $\triangle$ ABC cân đỉnh A.

d) Nếu  $\frac{b}{\cos B} + \frac{c}{\cos C} = \frac{a}{\sin B \cdot \sin C}$  thì  $\triangle$ ABC vuông tại A.

e) Nếu  $S = 2R^2 \sin B \cdot \sin C$  thì  $\triangle$ ABC vuông tại A.

**Bài 14.** Cho  $\Delta$ ABC. Chứng minh điều kiện cần và đủ để hai trung tuyến BM và CN vuông góc với nhau là:  $b^2 + c^2 = 5a^2$ .

#### Bài 15. Cho $\triangle$ ABC.

a) Có a=5, b=6, c=3. Trên các đoạn AB, BC lần lượt lấy các điểm M, K sao cho BM =2, BK =2. Tính MK.

b) Có  $\cos A = \frac{5}{9}$ , điểm D thuộc cạnh BC sao cho  $\widehat{ABC} = \widehat{DAC}$ , DA = 6,  $BD = \frac{16}{3}$ . Tính chu vi tam giác ABC.

HD: a) 
$$MK = \frac{8\sqrt{30}}{15}$$
 b)  $AC = 5$ ,  $BC = \frac{25}{3}$ ,  $AB = 10$ 

**Bài 16.** Cho một tam giác có độ dài các cạnh là:  $x^2 + x + 1$ ; 2x + 1;  $x^2 - 1$ .

a) Tìm x để tồn tại một tam giác như trên.

b) Khi đó chứng minh tam giác ấy có một góc bằng  $120^{0}$  .

**Bài 17.** Cho  $\triangle$ ABC có  $\hat{B}$  <  $90^{\circ}$ , AQ và CP là các đường cao,  $S_{\triangle ABC} = 9S_{\triangle BPO}$ .

a) Tính cosB.

b) Cho PQ =  $2\sqrt{2}$  . Tính bán kính R của đường tròn ngoại tiếp  $\Delta ABC$ .

*HD*: a) 
$$\cos B = \frac{1}{3}$$
 b)  $R = \frac{9}{2}$ 

#### Bài 18. Cho $\triangle$ ABC.

a) Có  $\hat{B}=60^{0}$ , R = 2, I là tâm đường tròn nội tiếp. Tính bán kính của đường tròn ngoại tiếp  $\Delta ACI$ .

b) Có  $\hat{A} = 90^{0}$ , AB = 3, AC = 4, M là trung điểm của AC. Tính bán kính đường tròn ngoại tiếp  $\Delta$ BCM.

c) Có  $a=4,\,b=3,\,c=2,\,M$  là trung điểm của AB. Tính bán kính của đường tròn ngoại tiếp  $\Delta BCM$ .

HD: a) 
$$R = 2$$
 b)  $R = \frac{5\sqrt{13}}{6}$  c)  $R = \frac{8}{3}\sqrt{\frac{23}{30}}$ 

**Bài 19.** Cho hai đường tròn (O<sub>1</sub>, R) và (O<sub>2</sub>, r) cắt nhau tại hai điểm A và B. Một đường thẳng tiếp xúc với hai đường tròn tại C và D. Gọi N là giao điểm của AB và CD (B nằm giữa

www.MATHVN.com Trang 20

A và N). Đặt 
$$\widehat{AO_1C} = \alpha$$
,  $\widehat{AO_2D} = \beta$ .

- a) Tính AC theo R và  $\alpha$ ; AD theo r và  $\beta$ .
- b) Tính bán kính của đường tròn ngoại tiếp ΔACD.

HD: 
$$a) AC = 2R \sin \frac{\alpha}{2}, AD = 2r \sin \frac{\beta}{2}$$
 b)  $\sqrt{Rr}$ .

- **Bài 20.** Cho tứ giác ABCD nội tiếp trong đường tròn đường kính AC, BD = a,  $\widehat{CAB} = \alpha$ ,  $\widehat{CAD} = \beta$ .
  - a) Tính AC.
- b) Tính diện tích tứ giác ABCD theo a,  $\alpha$ ,  $\beta$ .

HD: 
$$a) AC = \frac{a}{\sin(\alpha + \beta)}$$
  $b) S = \frac{a^2 \cos(\beta - \alpha)}{2 \sin(\alpha + \beta)}$ .

- **Bài 21.** Cho  $\triangle$ ABC cân đỉnh A,  $\widehat{A} = \alpha$ , AB = m, D là một điểm trên cạnh BC sao cho BC = 3BD.
  - a) Tính BC, AD.
  - b) Chứng tỏ rằng đường tròn ngoại tiếp các tam giác ABD, ACD là bằng nhau. Tính  $\cos\alpha$  để bán kính của chúng bằng  $\frac{1}{2}$  bán kính R của đường tròn ngoại tiếp  $\Delta ABC$ .

HD: a) 
$$BC = 2m\sin\frac{\alpha}{2}$$
,  $AD = \frac{m}{3}\sqrt{5+4\cos\alpha}$  b)  $\cos\alpha = -\frac{11}{16}$ .

Bài 22.

a)