

Фигура 1: Вляво, първото правило. Вдясно, един (не)желан? резултат.

Разглеждаме въпроса за принадлежност на дума към език, зададен с контекстносвободна граматика:

Вход: $G=\langle \Sigma, \mathcal{N}, P, S \rangle$ к.св. граматика, $w \in \Sigma^*$. Въпрос: $w \in \mathcal{L}(G)$?

Оттук нататък ще предполагаме, че $G = \langle \Sigma, \mathcal{N}, P, S \rangle$ е фиксирана, а $\bullet \not\in \Sigma \cup \mathcal{N}$ е специален символ. Също така ще предполагаме, че $w = a_1 a_2 \dots a_n$ е дадената дума w с букви $a_i \in \Sigma$. С $w[j..i] = a_j \dots a_i$ означаваме поддумата на w от позиция $j \leq i+1$ до позиция i. В частност $w[j+1..j] = \varepsilon$ и w[1..n] = w.

Въпросът, разбира се, е еквивалентен на това дали:

$$S \Rightarrow^* w$$

и тъй като S е нетерминал, а w е съставена само от терминали, то е приложено поне едно правило:

$$S \Rightarrow \beta \Rightarrow^* w$$
.

Ако това правило е $S \to \beta = X_1 \dots X_s$, вж. фиг. 1, то това правило съответства на дърво (храстче) на извод с корен S и листа X_1, \dots, X_s . Ако това правило наистина извежда w = w[1..n], то ще има позиции:

$$0 = p_0 \le p_1 \le p_2 \dots \le p_s = n$$
, така че $X_i \Rightarrow^* w[p_{i-1} + 1..p_i]$,

което визуално може да бъде изобразено като на фиг. 1, дясно. За съжаление, не знаем кои са (npaвилните?) позиции p_i , ако такива изобщо има. Ако *знаехме* кои са те бихме могли да определим извода $S \Rightarrow^* w[1..n]$ рекурсивно така:

for
$$i=1$$
 to s do $X_i \Rightarrow^* w[p_{i-1}+1..p_i]$

Дори в този опростен вариант, виждаме, че картинката на фиг. 1 не възниква наведнъж, а дърветата с корен X_i се появяват едно по едно от ляво надясно, което съответства на стъпките на цикъла for.

Това, до коя итерация на този цикъл е достигнало генерирането, ще бележим с точка − • и може да служи за мотивация за следната дефиниция:

Дефиниция 0.1. Точкувано правило за контекстносвободна граматика $G = \langle \Sigma, \mathcal{N}, P, S \rangle$ наричаме $(A \to \alpha \bullet \beta, j)$, където $A \to \alpha \beta \in P$, а $j \in \mathbb{N}$.

Вж. фиг 2, ляво. Ако искаме да прилагаме горния подход наистина рекурсивно, трябва да си представим не само корена — аксиомата S, но и произволен вътрешен връх в това дърво, който ще изведе поддума на w. Това, което ще видим тогава е цял изведен префикс на w, $w[1..j] = a_1 \dots a_j$, който е вляво от A. Това е смисълът на втория аргумент в точкуванато правило $(A \to \alpha \bullet \beta, j)$. Съответно в началото на рекурсивното извикване, A ще разгледа правилата си $A \to \beta \in P$ едно по едно и ще изпадне в ситуация, подобна на тази на фигура 2 по средата, $(A \to \bullet \beta, j)$. След това, целта ще бъде точката да започне да се движи надясно, както е показано на фигура 2, влясно.

Параметърът j указва началната позиция на поддумата w[j+1..], която се интересуваме дали извежда A. Това, което не може и не виждаме как да опишем удобно и точно е: Kos/u са крайните позиции $i: A \Rightarrow^* w[j+1..i]$?

Често, когато възникват такива (неудобни) въпроси, вместо да им отговаряме, може да ги обърнем и да питаме: $Kou\ ca\ ones u\ A,\ sa\ \kappaoumo:\ A\Rightarrow^* w[j+1..i]$? Така всъщност се оказваме в ситуация, в която може да си мислим, че $i\le n$ е дадено – именно това, което липсваше като информация по-горе.

Ако вместо нетерминала A, пишем точкуваното правило $(A \to \beta_1 \bullet \beta_2, j)$, което кодира откъде е започнал да работи нетерминала A и докъде е стигнал с правилото си $A \to \beta_1\beta_2$ в своя for-цикъл, получаваме достатъчно предпоставки за следната:

Фигура 2: Ляво: общата ситуация пред нетерминала A. По средата: A избира правило и то е преди първата итерация на цикъла for. Дясно: след първата итерация на for-цикъла.

Дефиниция 0.2. За естествено число i между 0 и n c R_i означаваме следното множество от точкувани правила за G:

$$R_i = \{ (A \to \beta_1 \bullet \beta_2, j) \mid \exists \gamma (S \Rightarrow^* w[1..j] A \gamma) \ u \ \beta_1 \Rightarrow^* w[j+1..i] \}.$$

Оттук нататък методът/алгоритъмът на Earley може да се разглежда като итеративно изчисляване на множествата R_i . Визуално те съответстват на следните конфигурации, вж. фигури 3 и 4. Това, което е съществено е, че

Фигура 3: Ляво:инициализация. Среда: обобщената ситуация на инициализация, която съответства на рекурсивно извикване $(A \to \bullet X_1 \dots X_s, j) \in R_j$; Дясно: връщането от рекурсивното извикване за A.

Фигура 4: Ляво: стъпка във for-цикъла (общо); Среда: стъпка във for-цикъла, когато има терминал a; Дясно: цикълът е завършил, връщане от рекурсията, вж. и горе вдясно.

условието $(X \to \beta \bullet, j) \in R_i$ означава $\beta \Rightarrow^* w[j+1..i]$ и следователно $X \Rightarrow^* w[j+1..i]$.

Свойство 0.1. Следните са еквивалентни:

1. $w \in \mathcal{L}(G)$.

2. има правило $S \to \beta \in P$, за което $(S \to \beta \bullet, 0) \in R_n$.

 \mathcal{A} оказателство. Ако $w \in \mathcal{L}(G)$, то има извод $S \Rightarrow_G \beta \Rightarrow_G^* w$ за някое правило $S \to \beta \in P$. Но тогава $\beta \Rightarrow^* w[0+1..n] = w[1..n] = w$ и тъй като $S \Rightarrow^* S = \varepsilon S = w[1..0]S$, то по дефиниция:

$$(S \to \beta \bullet, 0) \in R_n.$$

Обратно, ако $(S \to \beta \bullet, 0) \in R_n$, то $\beta \Rightarrow^* w[0+1..n] = w$ и тъй като $S \to \beta \in P$, то $S \Rightarrow \beta \Rightarrow^* w$, тоест $w \in \mathcal{L}(G)$. \square

Свойство 0.2. Ако $S \to \beta \in P$ е правило, то $(S \to \bullet \beta, 0) \in R_0$.

Доказателство. Тъй като $S \Rightarrow^* S = w[1..0]S$ и $\varepsilon \Rightarrow^* \varepsilon = w[0+1..0]$, то по дефиниция $(S \to \bullet \beta, 0) \in R_0$.

Свойство 0.3 (scan). *Ако* $(A \to \beta_1 \bullet a\beta_2, j) \in R_i \ u \ a = a_{i+1}, \ mo \ (A \to \beta_1 a \bullet \beta_2, j) \in R_{i+1}.$

Доказателство. Тъй като $(A \to \beta_1 \bullet a\beta_2, j) \in R_i$, то по дефиниция има дума $\gamma \in (\Sigma \cup \mathcal{N})^*$:

$$S \Rightarrow^* w[1..j]A\gamma$$
 и $\beta_1 \Rightarrow^* w[j+1..i]$.

Тъй като $a=a_{i+1}$, то $\beta_1 a \Rightarrow^* w[j+1..i]a=w[j+1..i]a_{i+1}=w[j+1..i+1]$. Следователно:

$$S \Rightarrow^* w[1..j]A\gamma$$
 и $\beta_1 a \Rightarrow^* w[j+1..i+1],$

което по дефиниция означава, че $(A \to \beta_1 a \bullet \beta_2, j) \in R_{i+1}$.

Свойство 0.4 (call). $A \kappa o \ (A \to \beta_1 \bullet X \beta_2, j) \in R_i \ u \ X \to \beta \in P, \ mo \ (X \to \bullet \beta, i) \in R_i.$

Доказателство. Тъй като $X \to \beta$ е правило, то $(X \to \bullet \beta, i)$ е точкувано правило. От това, че $(A \to \beta_1 \bullet X \beta_2, j) \in R_i$, по дефиниция има дума $\gamma \in (\Sigma \cup \mathcal{N})^*$:

$$S \Rightarrow^* w[1..j]A\gamma$$
 и $\beta_1 \Rightarrow^* w[j+1..i]$.

Освен това, $A \to \beta_1 X \beta_2$ е правило, следователно:

$$S \Rightarrow^* w[1..j]A\gamma \Rightarrow w[1..j]\beta_1 X\beta_2 \gamma \Rightarrow^* w[1..j]w[j+1..i]X\beta_2 \gamma = w[1..i]X\beta_2 \gamma.$$

Сега $\gamma' = \beta_2 \gamma$ свидетелства за това, че $S \Rightarrow^* w[1..i] X \gamma'$ и тъй като очевидно $\varepsilon \Rightarrow^* \varepsilon = w[i+1..i]$, то по дефиниция:

$$(X \to \bullet \beta, i) \in R_i$$
.

Свойство 0.5 (backtrack). $A \kappa o \ (A \to \beta_1 \bullet X \beta_2, j) \in R_k \ u \ (X \to \beta \bullet, k) \in R_i, \ mo \ (A \to \beta_1 X \bullet \beta_2) \in R_i.$

Доказателство. Тъй като $(X \Rightarrow \beta \bullet, k) \in R_i$, то $\beta \Rightarrow^* w[k+1..i]$. Тъй като $(A \to \beta_1 \bullet X\beta_2, j) \in R_k$, то има дума $\gamma \in (\Sigma \cup \mathcal{N})^*$, за която:

$$S \Rightarrow^* w[1..j]A\gamma$$
 и $\beta_1 \Rightarrow^* w[j+1..k]$.

Тъй като $X \Rightarrow \beta \Rightarrow^* w[k+1..i]$, то получаваме, че:

$$\beta_1 X \Rightarrow^* w[j+1..k]w[k+1..i] = w[j+1..i].$$

Сега е ясно, че $(A \to \beta_1 X \bullet \beta_2, j) \in R_i$.

Конструкция 0.1 (Метод/алгоритъм на Earley). При вход $G = \langle \Sigma, \mathcal{N}, P, S \rangle$ и дума $w = a_1 \dots a_n$, итеративно строи множества от точкувани правила \widetilde{R}_i като прилага свойства 2, 3, 4 и 5 докато това е възможно. Връща истина, ако \widetilde{R}_n има свойството 1.

- 1. $\widetilde{R}'_0 \stackrel{init}{=} \{ (S \to \bullet \beta, 0) \mid S \to \beta \in P \}.$
- 2. $\widetilde{R}_0 = C_{\varepsilon}(\widetilde{R}, \widetilde{R}'_0, 0)$.
- 3. за i om 0 до n-1 направи:

(a)
$$\widetilde{R}'_{i+1} \stackrel{scan}{=} \{ (A \to \beta_1 a \bullet \beta_2, j) \mid (A \to \beta_1 \bullet a\beta_2, j) \in \widetilde{R}_i \ u \ a = a_{i+1} \}.$$

(6)
$$\widetilde{R}_{i+1} = C_{\varepsilon}(\widetilde{R}, \widetilde{R}'_{i+1}, i+1).$$

4. върни $\widetilde{R}_n \cap \{(S \to \beta \bullet, 0) \mid S \to \beta \in P\} \neq \emptyset$.

 $Tyк\ C_{arepsilon}(\widetilde{R},\widetilde{R}'_i,i)$ скрива прилагането на свойства 4 и 5, започвайки от \widetilde{R}'_i и използвайки \widetilde{R}_j за j < i вместо R_j . По-точно $C_{arepsilon}(\widetilde{R},\widetilde{R}'_i,i)$ се дефинира така:

- 1. $C^{(-1)} = \emptyset$, $C^{(0)} = \widetilde{R}'_i$, s = 0.
- 2. докато $C^{(s)} \neq C^{(s-1)}$, направи:

(a)

$$C^{(s+1)} = C^{(s)} \cup \underbrace{\{(X \to \bullet \beta, i) \mid \text{ uma } (A \to \beta_1 \bullet X\beta_2, j) \in C^{(s)} \text{ u } X \to \beta \in P\}}_{\text{call } \textbf{0.4}}$$

$$\cup \underbrace{\{(A \to \beta_1 X \bullet \beta_2, j) \mid (A \to \beta_1 \bullet X\beta_2, j) \in C^{(s)} \text{ u } \text{uma } (X \to \beta \bullet, i) \in C^{(s)}\}}_{\text{backtrack } \textbf{0.5:k=i,}}$$

$$\cup \underbrace{\{(A \to \beta_1 X \bullet \beta_2, j) \mid \text{ uma } \beta \text{ u } k < i : ((A \to \beta_1 \bullet X\beta_2, j) \in \widetilde{R}_k \text{ u } (X \to \beta \bullet, k) \in C^{(s)})\}}_{\text{backtrack } \textbf{0.5:k=i,}}.$$

(6) $s \leftarrow s + 1$.

3. върни $C^{(s)}$.

3абележка 0.1. Да забележим, че при дефиницията на $C^{(s)}$ в $C_{\varepsilon}(\widetilde{R},\widetilde{R}'_i,i)$, е в сила, че

$$C^{(s)}\subseteq C^{(s+1)}\subseteq \{(A\to\beta_1\bullet\beta_2,j)\,|\,j\le i\text{ if }A\to\beta_1\beta_2\in P\}.$$

Тъй като последното множество е крайно, то може да има само краен брой строги включвания $C^{(s)} \subsetneq C^{(s+1)}$ в тази процедура. Следователно тя завършва, тоест стъпка 3: върни $C^{(s)}$ на стъпва.

Твърдение 0.1. След изпълнението на метода на Earley, $\widetilde{R}_i \subseteq R_i$ за всяко $i \le n$.

 $\mathit{Идея}.$ От свойство 2, $\widetilde{R}'_0\subseteq R_0$. Също така, от свойство 3, ако $\widetilde{R}_i\subseteq R_i$, то $\widetilde{R}'_{i+1}\subseteq R_{i+1}$. Накрая, ако $\widetilde{R}_j\subseteq R_j$ за всяко j< i, то $C^{(0)}=\widetilde{R}'_i\subseteq R_i$. Да допуснем сега, че $C^{(s)}\subseteq R_i$. Тогава $C^{(s+1)}$ се получава от правила в $C^{(s)}$ и $\widetilde{R}_j\subseteq R_j$ за j< i, за които се прилагат свойства 4 и 5. Но тогава всички новодобавени правила в $C^{(s+1)}$ ще бъдат и от R_i . Така $C^{(s)}\subseteq R_i$ за всяко i, а следователно и резултатът от $C_\varepsilon(\widetilde{R},\widetilde{R}'_i,i)$ е подмножество на R_i . Следователно, $\widetilde{R}_i\subseteq R_i$, ако $\widetilde{R}_j\subseteq R_j$ за j< i. Сега с индукция по i заключаваме, че $\widetilde{R}_i\subseteq R_i$ за всяко i.

Твърдение 0.2. Нека за някои $j \leq k \leq i$ е изпълнено, че $(A \to \beta_1 \bullet \beta_2 \beta_3, j) \in \widetilde{R}_k$ и $\beta_2 \Rightarrow^* w[k+1..i]$. Тогава $(A \to \beta_1 \beta_2 \bullet \beta_3, j) \in \widetilde{R}_i$.

Доказателство. Нека \prec е лексикографската наредба в $\mathbb{N} \times \mathbb{N}$. С индукция $(n, |\beta_2|)$ в $(\mathbb{N} \times \mathbb{N}, \prec)$ ще покажем, че за всеки $j \leq k \leq i$ и правило $A \to \beta_1 \beta_2 \beta_3 \in P$, за които:

$$(A \to \beta_1 \bullet \beta_2 \beta_3, j) \in \widetilde{R}_k \text{ if } \beta_2 \Rightarrow^{(n)} w[k+1..i],$$

е изпълнено, че $(A \to \beta_1 \beta_2 \bullet \beta_3, j) \in R_i$.

Да допуснем, че това твърдение е вярно за всички двойки $(n',m') \prec (n,|\beta_2|)$. Нека още е изпълнена предпоставката:

$$(A \to \beta_1 \bullet \beta_2 \beta_3, j) \in \widetilde{R}_k \text{ if } \beta_2 \Rightarrow^{(n)} w[k+1..i].$$

Ще покажем, че $(A \to \beta_1 \beta_2 \bullet \beta_3, j) \in \widetilde{R}_i$.

1. $\beta_2 = a\beta_2'$ и $a \in \Sigma$. Тогава a = w[k+1]. Тъй като $(A \to \beta_1 \bullet a\beta_2'\beta_3, j) \in \widetilde{R}_k$, то $(A \to \beta_1 a \bullet \beta_2'\beta_3, j) \in \widetilde{R}_{k+1}' \subseteq \widetilde{R}_{k+1}$. Cera:

$$aeta_2'\Rightarrow^{(n)}w[k+1..i]$$
 и $a=w[k+1]$, влекат, че $eta_2'\Rightarrow^{(n)}w[k+2..i].$

Но тогава, $(n, |\beta_2'|) = (n, |\beta_2| - 1) \prec (n, |\beta_2|)$ и от индуктивното предположение, $(A \to \beta_1 a \beta_2' \bullet \beta_3 \in \widetilde{R}_i$, тоест $(A \to \beta_1 \beta_2 \bullet \beta_3 \in \widetilde{R}_i)$.

2. Нека сега $\beta_2 = X\beta_2'$ за някой нетерминал $X \in \mathcal{N}$. Тогава от $X\beta_2' \Rightarrow^{(n)} w[k+1..i]$ следва, че има $i' \leq i$ и $1 \leq n_1 \leq n$, за които:

$$X \Rightarrow^{(n_1)} w[k+1..i'] \bowtie \beta_2' \Rightarrow^{(n-n_1)} w[i'+1..i].$$

Следователно има правило $X \to \beta \in P$, за което:

$$X \Rightarrow \beta \Rightarrow^{(n_1-1)} w[k+1..i'].$$

Тъй като $(A \to \beta_1 \bullet X \beta_2' \beta_3, j) \in \widetilde{R}_k$, то това точуквано правило е попаднало в някое от множествата $C^{(s)}$, които определят \widetilde{R}_k . Но тогава, от правилото (call) 0.4, $(X \to \bullet \beta, k)$ ще бъде добавено към $C^{(s+1)}$ и следователно:

$$(X \to \bullet \beta, k) \in \widetilde{R}_k.$$

Сега от индкутивното предположение за $(n_1 - 1, |\beta|) \prec (n_1, |\beta|) \preceq (n, |\beta_2|)$ и тъй като:

$$(X \to \bullet \beta, k) \in \widetilde{R}_k \text{ if } \beta \Rightarrow^{(n_1-1)} w[k+1..i'],$$

получаваме, че $(X \to \beta \bullet, k) \in \widetilde{R}_{i'}$. Следователно $(X \to \beta \bullet, k) \in C^{(s)}$ за някое s, участва в пресмятането на $\widetilde{R}_{i'}$. Тъй като $(A \to \beta_1 \bullet X \beta_2' \beta_3, j) \in \widetilde{R}_k$, то правилото (backtrack) 0.5, $(A \to \beta_1 X \bullet \beta_2' \beta_3, j)$ ще бъде добавено към $C^{(s')}$ за някое s'. Следователно $(A \to \beta_1 X \bullet \beta_2' \beta_3, j) \in \widetilde{R}_{i'}$.

Накрая, тъй като:

$$(A \to \beta_1 X \bullet \beta_2' \beta_3, j) \in \widetilde{R}_{i'} \bowtie \beta_2' \Rightarrow^{(n-n_1)} w[i'+1..i]$$

и $n-n_1 \le n-1 < n$, индуктивната хипотеза, приложена за $(n-n_1, |\beta_2'|) \prec (n, |\beta_2|)$, дава, че:

$$(A \to \beta_1 X \beta_2' \bullet \beta_3, j) \in \widetilde{R}_i.$$

Това завършва доказателството.

Твърдение 0.3. За всяко $i \leq n, \ \widetilde{R}_i = R_i.$

Доказателство. Знаем, че $\widetilde{R}_i \subseteq R_i$ за всяко $i \le n$. Остава да докажем обратното вклчване:

$$R_i \subset \widetilde{R}_i$$
.

За целта е достатъчно да покажем, че винаги когато $(A \to \beta_1 \bullet \beta_2, j) \in R_i$ е в сила, че $(A \to \beta_1 \bullet \beta_2, j) \in \widetilde{R}_i$.

Това ще направим отново по индукция в $(\mathbb{N} \times \mathbb{N}, \prec)$. На всяко правило $\rho = (A \to \beta_1 \bullet \beta_2, j) \in R_i$ ще съпоставим двойка $(i, d(\rho))$ от естествени числа. i е номерът на множеството R_i , на което принадлежи ρ . Втората величиниа, $d(\rho)$ ще използва информацията:

$$S \Rightarrow^* w[1..j]A\gamma$$
 за някоя дума $\gamma \in (\Sigma \cup \mathcal{N})^*$.

По-точно, от това, че $S \Rightarrow^* w[1..j]A\gamma$ следва, че има дърво на извод T с корен S и $word(T) = w[1..j]A\gamma$. В частност $A = T(\alpha_A)$ е етикетът на първото листо етикет терминал α_A в T и то си има дълбочина в T.

Нека тогава $d(\rho)$ е най-малката дълбочина на листото α_A измежду всички дървета на извод T, за които:

$$T(\varepsilon) = S$$
 и $word(T) = w[1..j]A\gamma$ за някоя дума γ .

Да допуснем сега, че $\rho = (A \to \beta_1 \bullet \beta_2, j) \in R_i$ и нека за всички точкувани правила $\rho' \in R_j$, за които $(j, d(\rho')) \prec (i, d(\rho))$ е в сила, че $\rho' \in \widetilde{R}_j$. Тъй като $(A \to \beta_1 \bullet \beta_2, j) \in R_i$, то по дефиниция:

$$S \Rightarrow^* w[1..j]A\gamma$$
 и $A \to \beta_1\beta_2 \in P$.

Следователно $\rho' = (A \to \bullet \beta_1 \beta_2, j) \in R_j$. От предишното твърдение, ако $\rho' \in \widetilde{R}_j$, следва, че $\rho = (A \to \beta_1 \bullet \beta_2, j) \in \widetilde{R}_i$. Следователно е достатъчно да докажем, че $\rho' \in \widetilde{R}_j$:

- 1. j < i. Тогава $(j, d(\rho')) \prec (i, d(\rho))$ и от индуктивната хипотеза, $\rho' = (A \to \bullet \beta_1 \beta_2, j) \in \widetilde{R}_j$.
- 2. $i=j,\ d(\rho')>0$. Тогава $d(\rho')=d(\rho)$. Нека T е дърво на извод с дума $word(T)=w[1..j]A\gamma$, в което $|\alpha_A|=d(\rho)$. Тъй като $d(\rho)>0$, то $\alpha_A=\alpha_B\cdot s$ е s-ти син на баща си α_B в T. Нека $B=T(\alpha_B)$. Тогава е ясно, че думата на дървото на извод $T-T_{\alpha_B}$ (T, от което сме махнали всички наследници на α_B) ще има дума:

$$word(T-T_{\alpha_B})=w[1..j']B\gamma'$$
 където $j'\leq j,\gamma'$ е суфикс на γ и $B=T(\alpha_B)$.

Следователно ако правилото, което определя α_B в T е $\rho'' = B \to \beta_1' A \beta_2'$, където $|\beta_1'| = s$, има свойството, че:

$$\beta_1' \Rightarrow^* w[j'+1..j] \text{ if } S \Rightarrow^* w[1..j']B\gamma'.$$

Това означава, че $(B \to \beta_1' \bullet A \beta_2', j') \in R_j$ и тъй като $j' \le j$ и $d(\rho'') \le |\alpha_B| < |\alpha_A| = d(\rho')$, то $(j', d(\rho'')) \prec (j, d(\rho'))$ и от индуктивната хипотеза, $\rho'' \in \widetilde{R}_j$. Следователно от правило (call) 0.4, ε -затварянето на \widetilde{R}_j' ще добави:

$$\rho' = (A \to \bullet \beta_1 \beta_2, j) \in \widetilde{R}_i.$$

3. $i=j,\ d(\rho')=0$. Тогава има дърво на извод T с $T(\varepsilon)=S,\ word(T)=w[1..j]A\gamma$, в което $|\alpha_A|=0$. Но това означава, че $\alpha_A=\varepsilon$ и следователно $A=T(\varepsilon)=S$ и тъй като α_A е листо, то word(T)=S, в частност j=0. Но сега правилото $\rho'=(S\to \bullet\beta_1\beta_2,0)$ и по дефиниция то е в $\widetilde{R}'_0=\widetilde{R}'_i$.