Membrane Wing Aerodynamics for μ AV Applications

Wei Shyy, Yongsheng Lian & Peter Ifju

Department of Mechanical and Aerospace Engineering
University of Florida
Gainesville, FL 32611
Wei-shyy@ufl.edu

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding an DMB control number.	ion of information. Send comments arters Services, Directorate for Info	regarding this burden estimate or regarding this burden estimate or regarding this properties.	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 26 JUL 2004		2. REPORT TYPE N/A		3. DATES COVERED		
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
Membrane Wing Aerodynamics for μAV Applications				5b. GRANT NUMBER		
				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Department of Mechanical and Aerospace Engineering University of Florida Gainesville, FL 32611 8. PERFORMING ORGANIZATION REPORT NUMBER						
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited						
13. SUPPLEMENTARY NOTES See also ADM001685, CSP 02-5078, Proceedings for Aerodynamic Issues of Unmanned Air Vehicles (UAV)., The original document contains color images.						
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	ABSTRACT UU	OF PAGES 26	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Scope of This Talk

- Overview of Univ. Florida μAV
- Summarize computational capabilities for fluid/structure interactions: membrane and surrounding viscous flow.
- Present the aerodynamics of self-excited membrane and MAV implications.
- Discuss the wing shape optimization for μAV Applications.

Characteristics of μAV

- ➤ Micro Air Vehicle (µAV) smaller than 6", Speed 10m/s. Many applications.
- Low Reynolds number (10⁴-10⁵) condition: degraded L/D
- Flight environment intrinsically unsteady.

The Great Flight Diagram (modified from Tennekes) weight $\sim l^3$ wing loading $\sim l$ wing beat freq. $\sim l^{-1}$ stall speed $\sim (2\text{W/rSC}_l)$ $\sim l^{0.5}$

 $P/W = (D/L)V \sim l^{0.5}$

Small Birds:
Can fly slower,
Need to flap faster,
Need less energy density,
But can store MUCH less,
Can sustain
higher impact velocity.

μΑV: Geometric & Aerodynamic Scaling

Geometric Scaling: If aerodynamics is unchanged, the power requirement decreases as the vehicle size is reduced.

Aerodynamic Scaling: Aerodynamic performance degrades as the vehicle size, and hence Re, decreases.

$$P = W \left(\frac{C}{\frac{D}{C^{3/2}}} \right) \sqrt{\left(\frac{2}{\rho} \right) \left(\frac{W}{S} \right)}$$

Low Reynolds Number Airfoils

•Gusts affect small birds and µAVs more than large ones

Representative Low-Reynolds-Number Airfoils (from Lissaman)

Selected Airfoil Profiles

Effects of Re, Airfoil Shape, and AoA on Power Index

Membrane-Based μAV Concept at U. Florida

- Wingspan: 6 inches
- Length: 5.5 inches
- Weight w/payload, video camera: 2 ounces
- Range: 0.5 mile with off the shelf components
- Endurance: 10 minutes
- ➤ Speed Range: 10 35 miles/hour
- ➤ Propulsion: electric motor
- ➤ Batteries: rechargeable Lithium polymer
- ➤ Altitude: up to 500 feet AGL

Bat Wing Morphology

Adaptive Washout for Gust Suppression

Computational Fluid/Structure Interaction

- Fluid solver: Calculate the external force.
- Structure solver: Calculate the shape change.
- Moving boundary: Regenerate the CFD grid
- Interface: Exchange information between fluid and structure solvers.

Approach

- Structure model
 - Dynamic membrane model with finite element.
 - Expect substantial deformation: nonlinearity.
- > Fluid flow solver
 - A pressure-based method for 3-D full Navier-Stokes equations
- Grid regeneration
 - 3-stage algebraic TFI-like method.
- Interpolation
 - Thin Plate Spline (TPS) interpolation method

Displacement of trailing edge at mid-span

- Steady Free Stream, Re= 9x10⁴, AoA=6°
- Periodic oscillation of the trailing edge point.
- Frequency=67Hz. (Typical wind gust: 1 Hz)
- The effective angle of attack reduced.

Wing Cross Section: Optimization?

Optimization Scope and Approach

Minimize C_D/C_L

Subject to

1:
$$C_L \ge C_{L \text{baseline}}$$

2: Convexity constraint:
$$Y_1 \ge \frac{Y_2 + y_2 - Y_0}{x_2 - x_0} (x_1 - x_0) + y_0 - y_1 + \varepsilon$$

3:
$$Y_i^L \le Y_i \le Y_i^U$$
, $i = 1, N$

- ➤ Maximize L/D; Maintain lift; Keep cross-section convex.
- A direct optimization of membrane wing is time-demanding: Optimize the rigid wing as a surrogate.
- Design Optimization Tools (DOT) used as the optimizer.
- An automatic grid regeneration tool is used to regenerate the CFD grid as each analysis.

Choice of Design Variables

- The baseline design is based results from Xfoil (Drela): which uses a two-equation boundary layer integral formulation & inviscid-BL coupling.
- ≥ 6 Design Variables: Three each on battens1 and 2.

Airfoil Shapes in Spanwise Direction

- Compared to the baseline, camber decreases near the root while increases near the tip.
- \triangleright Overall, the camber is still higher at the root (4.8%) than at the tip (4%).
- ➤ In optimization we maintain angle of attack at 6°.
 - Department of Mechanical and Aerospace Engineering
 Computational Thermo-Fluids Group

Spanwise Aerodynamics at Design Point: Rigid Wing at AoA=6°

- ➤ Optimization can improve L/D.
- The improvement is largely located within 70% of the inner wing.
- Lift coefficient maintains the same even though camber reduces.
- The improvement is largely due to lower form drag.

Velocity Profile Near Root: Rigid Wing

- >AoA=6°
- The optimized wing suppresses the flow separation.

Spanwise Aerodynamics at Off-Design Point: Rigid Wing at AoA=3°

- The improvement is substantial at low AoA, and consistent with the design point, is largely located within 70% of the inner wing.
- Same as the design point, the lift maintains the same even though camber reduces, and the improvement is largely due to lower form drag.

Spanwise Aerodynamics at Off-Design Point: Rigid Wing at AoA=9°

➤ At large AoA, improvement with the optimized shape diminishes.

Aerodynamics Between Membrane & Rigid Wings

- Optimized shape improves L/D consistently.
- ➤ Optimized membrane wing varies less in L/D versus AoA.

Optimized Membrane Wing at AoA=6°

While there seem substantial variations in time, the frequency (about 70Hz) is higher than that environmental fluctuation or vehicle response.

Outstanding Issues/Opportunities

- Optimized materials properties for passive flow control.
- Sensor and simplified aerodynamic model to facilitate autonomous flight control.
- Detailed wind tunnel measurements and numerical simulations to assess the unsteady flight environment.
- Efficient propulsion.