LISTING OF CLAIMS

This listing of claims replaces all prior versions and listings of claims in the application.

Claim 1. (Withdrawn) A method of controlling ectoparasites on a mammal comprising administering to said mammal a compound of formula I

wherein

R₁ is hydrogen, halogen, cyano, OH, SH, NO₂, COOH, COOR₂, CONH₂, CONR₂R₃, SO₃H, SO₂NR₂R₃, C₁-C₆-alkyl, halo-C₁-C₆-alkyl, C₁-C₆-alkoxy, halo-C₁-C₆-alkoxy, C₂-C₆-alkenyl, halo-C₂-C₆-alkenyl, C₂-C₆-alkinyl, C₃-C₆-cycloalkyl, halo-C₃-C₆-cycloalkyl, C₃-C₆-cycloalkyloxy, C₃-C₆-cycloalkylthio, C₂-C₆-alkenyloxy, halo-C₂-C₆-alkenyloxy, C₁-C₆-alkylthio, halo-C₁-C₆-alkylsulfonyloxy, halo-C₁-C₆-alkylsulfonyloxy, C₁-C₆-alkylsulfinyl, halo-C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl, halo-C₁-C₆-alkylsulfonyl, C₂-C₆-alkenylthio, halo-C₂-C6-alkenylthio, C2-C6-alkenylsulfinyl, halo-C2-C6-alkenylsulfinyl, C2-C6-alkenylsulfonyl, halo-C2-C6-alkenylsulfonyl, NR2R3, unsubstituted or one- to five-fold substituted aryl or unsubstituted or substituted hetaryl, the substituents selected from the group consisting of halogen, cyano, OH, SH, NO₂, COOH, COOR₂, CONH₂, CONR₂R₃, SO₃H, SO₂NR₂R₃, C₁-C₆-alkyl, halo-C₁-C₆alkyl, C_1 - C_6 -alkoxy, halo- C_1 - C_6 -alkoxy, C_2 - C_6 -alkenyl, halo- C_2 - C_6 -alkenyl, C_3 - C_6 -alkenyl, C_6 - C_6 -CC₆-cycloalkyl, halo-C₃-C₆-cycloalkyl, C₃-C₆-cycloalkyloxy, C₃-C₆-cycloalkylthio, C₂-C₆alkenyloxy, halo-C2-C6-alkenyloxy, C1-C6-alkylthio, halo-C1-C6-alkylthio, C1-C6alkylsulfonyloxy, halo-C₁-C₆-alkylsulfonyloxy, C₁-C₆-alkylsulfinyl, halo-C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl, halo-C₁-C₆-alkylsulfonyl, C₂-C₆-alkenylthio, halo-C₂-C₆-alkenylthio, C₂-C₆alkenylsulfinyl, halo-C2-C6-alkenylsulfinyl, C2-C6-alkenylsulfonyl, halo-C2-C6-alkenylsulfonyl and NR₂R₃;

R₂ and R₃, independently of one another, signify hydrogen, C₁-C₆-alkyl, halo-C₁-C₆-alkyl, formyl, C₁-C₆-alkylcarbonyl, halo-C₁-C₆-alkylcarbonyl, C₁-C₆-alkoxycarbonyl, halo-C₁-C₆-alkylcarbonyl, C₁-C₆-alkylaminocarbonyl or unsubstituted or one- to five-fold substituted benzyl, the substituents selected from the group consisting of halogen, cyano, OH, SH, NO₂, COOH, COOR₂, CONH₂, CONR₂R₃, SO₃H, SO₂NR₂R₃, C₁-C₆-alkyl, halo-C₁-C₆-alkyl, C₁-C₆-alkoxy, halo-C₁-C₆-alkoxy, C₂-C₆-alkenyl, halo-C₂-C₆-alkenyl, C₂-C₆-alkenyl, C₃-C₆-cycloalkyl, halo-C₃-C₆-cycloalkyl, C₃-C₆-cycloalkyloxy, C₃-C₆-cycloalkylthio, C₂-C₆-alkenyloxy, halo-C₂-C₆-alkenyloxy, C₁-C₆-alkylthio, halo-C₁-C₆-alkylthio, C₁-C₆-alkylsulfonyloxy, halo-C₁-C₆-alkylsulfonyloxy, C₁-C₆-alkylsulfinyl, halo-C₁-C₆-alkylsulfinyl, halo-C₁-C₆-alkylsulfinyl, halo-C₁-C₆-alkylsulfinyl, halo-C₁-C₆-alkenylsulfinyl, halo-C₂-C₆-alkenylsulfinyl, halo-C₂-C₆-alkeny

R₄, R₅, R₆, R₇, R₈, R₉, R₁₀, R₁₁, R₁₂ and R₁₃, independently of one another, are hydrogen, halogen, cyano, nitro, OH, SH, NO2, COOH, COOR2, CONH2, CONR2R3, SO3H, SO2NR2R3, C₁-C₆-alkyl, halo-C₁-C₆-alkyl, C₁-C₆-alkoxy, halo-C₁-C₆-alkoxy, C₂-C₆-alkenyl, halo-C₂-C₆alkenyl, C₂-C₆-alkinyl, C₃-C₆-cycloalkyl, C₂-C₆-alkenyloxy, halo-C₂-C₆-alkenyloxy, C₁-C₆alkylthio, halo-C₁-C₆-alkylthio, C₁-C₆-alkylsulfonyloxy, halo-C₁-C₆-alkylsulfonyloxy, C₁-C₆alkylsulfinyl, halo-C1-C6-alkylsulfinyl, C1-C6-alkylsulfonyl, halo-C1-C6-alkylsulfonyl, C2-C6alkenylthio, halo-C₂-C₆-alkenylthio, C₂-C₆-alkenylsulfinyl, halo-C₂-C₆-alkenylsulfinyl, C₂-C₆alkenylsulfonyl, halo-C₂-C₆-alkenylsulfonyl, C₁-C₆-alkylamino, di-C₁-C₆-alkylamino, C₁-C₆alkylsulfonylamino, halo-C₁-C₆-alkylsulfonylamino, C₁-C₆-alkylcarbonyl, halo-C₁-C₆alkylcarbonyl, C_1 - C_6 -alkoxycarbonyl, C_1 - C_6 -alkylaminocarbonyl, di- C_1 - C_6 -alkylaminocarbonyl, or unsubstituted or one- to five-fold substituted aryl or unsubstituted or substituted hetaryl, the substituents selected from the group consisting of halogen, cyano, OH, SH, NO₂, COOH, COOR₂, CONH₂, CONR₂R₃, SO₃H, SO₂NR₂R₃, C₁-C₆-alkyl, halo-C₁-C₆-alkyl, C₁-C₆-alkoxy, halo-C₁-C₆-alkoxy, C₂-C₆-alkenyl, halo-C₂-C₆-alkenyl, C₂-C₆-alkinyl, C₃-C₆-cycloalkyl, halo-C₃-C₆-cycloalkyl, C₃-C₆-cycloalkyloxy, C₃-C₆-cycloalkylthio, C₂-C₆-alkenyloxy, halo-C₂-C₆alkenyloxy, C₁-C₆-alkylthio, halo-C₁-C₆-alkylthio, C₁-C₆-alkylsulfonyloxy, halo-C₁-C₆alkylsulfonyloxy, C₁-C₆-alkylsulfinyl, halo-C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl, halo-C₁-C₆- alkylsulfonyl, C_2 - C_6 -alkenylthio, halo- C_2 - C_6 -alkenylthio, C_2 - C_6 -alkenylsulfinyl, halo- C_2 - C_6 -alkenylsulfonyl, halo- C_2 - C_6 -alkenylsulfonyl and NR_2R_3 ; X_1 and X_2 , independently of one another, are $C(R_{14})(R_{15})$, NR_{14} , O, S, SO or SO_2 ; and R_{14} and R_{15} , independently of one another, signify hydrogen, C_1 - C_6 -alkyl, formyl, C_1 - C_6 -alkylcarbonyl or halo- C_1 - C_6 -alkylcarbonyl.

Claim 2. (Withdrawn) The method of claim 1, wherein R₁ is hydrogen, halogen, NO₂, C₁-C₆-alkyl, halo-C₁-C₆-alkyl, C₁-C₆-alkoxy, halo-C₁-C₆-alkoxy, halo-C₃-C₆-cycloalkyl, halo-C₃-C₆-cycloalkyl, C₃-C₆-cycloalkyloxy, C₃-C₆-cycloalkylthio, C₁-C₆-alkylthio.

Claim 3. (Withdrawn) The method of claim 1, wherein R₁ is hydrogen, halogen, NO₂, C₁-C₆-alkyl, halo-C₁-C₆-alkyl, C₁-C₆-alkoxy or halo-C₁-C₆-alkoxy.

Claim 4. (Withdrawn) The method of claim 1, wherein R₁ is hydrogen, C₁-C₆-alkyl or C₁-C₆-alkoxy.

Claim 5. (Withdrawn) The method of claim 1, wherein

R₂ and R₃, independently of one another, signify hydrogen, C₁-C₆-alkyl, formyl, C₁-C₆-alkylcarbonyl, C₁-C₆-alkoxycarbonyl, C₁-C₆-alkylaminocarbonyl, di-C₁-C₆-alkylaminocarbonyl or unsubstituted or one- to five-fold substituted benzyl, the substituents selected from the group consisting of halogen, cyano, OH, SH, NO₂, COOH, COOR₂, CONH₂, CONR₂R₃, SO₃H, SO₂NR₂R₃, C₁-C₆-alkyl, halo-C₁-C₆-alkyl, C₁-C₆-alkoxy, halo-C₁-C₆-alkoxy, C₂-C₆-alkenyl, halo-C₂-C₆-alkenyl, C₃-C₆-cycloalkyl, halo-C₃-C₆-cycloalkyl, C₃-C₆-cycloalkylthio, C₂-C₆-alkenyloxy, halo-C₂-C₆-alkenyloxy, C₁-C₆-alkylthio, halo-C₁-C₆-alkylsulfonyloxy, halo-C₁-C₆-alkylsulfonyloxy, C₁-C₆-alkylsulfinyl, halo-C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl, halo-C₁-C₆-alkylsulfinyl, C₂-C₆-alkenylsulfinyl, halo-C₁-C₆-alkenylsulfinyl, C₂-C₆-alkenylsulfonyl and halo-C₂-C₆-alkenylsulfonyl.

Claim 6. (Withdrawn) The method of claim 1, wherein R₂ and R₃, independently of one another, signify hydrogen, C₁-C₄-alkyl, formyl, C₁-C₄-alkylcarbonyl or benzyl.

Claim 7. (Withdrawn) The method of claim 1, wherein R₂ and R₃, independently of one another, signify hydrogen, C₁-C₂-alkyl, benzyl or formyl.

Claim 8. (Withdrawn) The method of claim 1, wherein

R₄, R₅, R₆, R₇, R₈, R₉, R₁₀, R₁₁, R₁₂ and R₁₃, independently of one another, are hydrogen, halogen, cyano, nitro, C₁-C₆-alkyl, halo-C₁-C₆-alkyl, C₁-C₆-alkoxy, halo-C₁-C₆-alkoxy, C₃-C₆-cycloalkyl, C₁-C₆-alkylthio, halo-C₁-C₆-alkylthio or unsubstituted or one- to five-fold substituted aryl or unsubstituted or substituted hetaryl, the substituents selected from the group consisting of halogen, cyano, OH, SH, NO₂, COOH, COOR₂, CONH₂, CONR₂R₃, SO₃H, SO₂NR₂R₃, C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, halo-C₁-C₆-alkoxy, C₂-C₆-alkenyl, halo-C₂-C₆-alkenyl, C₂-C₆-alkenyl, halo-C₂-C₆-alkenyl, C₃-C₆-cycloalkyl, halo-C₃-C₆-cycloalkyl, C₃-C₆-cycloalkylthio, halo-C₁-C₆-alkylthio, halo-C₁-C₆-alkylthio, halo-C₁-C₆-alkylsulfonyloxy, halo-C₁-C₆-alkylsulfonyloxy, C₁-C₆-alkylsulfinyl, halo-C₁-C₆-alkylsulfinyl, halo-C₁-C₆-alkylsulfinyl, halo-C₁-C₆-alkenylsulfinyl, halo-C₂-C₆-alkenylsulfinyl, halo-C₂-C₆-alkenylsulfonyl, halo-C

Claim 9. (Withdrawn) The method of claim 1, wherein R₄, R₅, R₆, R₇, R₈, R₉, R₁₀, R₁₁, R₁₂ and R₁₃, independently of one another, are hydrogen, halogen, nitro, C₁-C₄-alkyl, halo-C₁-C₄-alkyl, C₁-C₄-alkoxy or halo-C₁-C₄-alkoxy.

Claim 10. (Withdrawn) The method of claim 1, wherein R₄, R₅, R₆, R₇, R₈, R₉, R₁₀, R₁₁, R₁₂ and R₁₃, independently of one another, are hydrogen, halogen, nitro, C₁-C₂-alkyl or halo-C₁-C₂-alkyl.

Claim 11. (Withdrawn) The method of-claim 1, wherein R₄, R₅, R₆, R₇, R₈, R₉, R₁₀, R₁₁, R₁₂ and R₁₃, independently of one another, are hydrogen, halogen, nitro or CF₃.

Claim 12. (Withdrawn) The method of claim 1, wherein X_1 and X_2 , independently of one another, are NR_{14} , O or S.

Claim 13. (Withdrawn) The method of claim 1, wherein X_1 and X_2 , independently of one another, are NH, O or S.

Claim 14. (Withdrawn) The method of claim 1, wherein X_1 and X_2 are Q.

Claim 15. (Withdrawn) The method of claim 1, wherein R₁₄ and R₁₅, independently of one another, signify hydrogen, C₁-C₄-alkyl, formyl, C₁-C₄alkylcarbonyl.

Claim 16. (Withdrawn) The method of claim 1, wherein R₁₄ and R₁₅, independently of one another, signify hydrogen or C₁-C₄-alkyl.

Claim 17. (Withdrawn) The method of claim 1, wherein R₁₄ and R₁₅ signify hydrogen.

Claim 18. (Withdrawn) The method of claim 1, wherein R₁ is hydrogen, halogen, NO₂, C₁-C₆-alkyl, halo-C₁-C₆-alkyl, C₁-C₆-alkoxy, halo-C₁-C₆-alkoxy, C₃-C₆-cycloalkyl, halo-C₃-C₆-cycloalkyl, C₃-C₆-cycloalkylthio, C₁-C₆-cycloalkylthio, C₁-C₆-cycloalkyl alkylthio or halo-C₁-C₆-alkylthio;

 R_2 and R_3 , independently of one another, signify hydrogen, C_1 - C_6 -alkyl, formyl, C_1 - C_6 -alkylaminocarbonyl, C_1 - C_6 -alkylaminocarbonyl or benzyl;

R₄, R₅, R₆, R₇, R₈, R₉, R₁₀, R₁₁, R₁₂ and R₁₃, independently of one another, are hydrogen, halogen, cyano, nitro, C₁-C₆-alkyl, halo-C₁-C₆-alkyl, C₁-C₆-alkoxy, halo-C₁-C₆-alkoxy, C₃-C₆-cycloalkyl, C₁-C₆-alkylthio, halo-C₁-C₆-alkylthio or unsubstituted or one- to five-fold substituted aryl or unsubstituted or substituted hetaryl, the substituents selected from the group consisting of halogen, cyano, OH, SH, NO₂, COOH, COOR₂, CONH₂, CONR₂R₃, SO₃H, SO₂NR₂R₃, C₁-C₆-alkyl, halo-C₁-C₆-alkyl, C₁-C₆-alkoxy, halo-C₁-C₆-alkoxy, C₂-C₆-alkenyl, halo-C₂-C₆-alkenyl, C₂-C₆-alkenyl, C₃-C₆-cycloalkyl, halo-C₃-C₆-cycloalkyl, C₃-C₆-cycloalkylthio, halo-C₁-C₆-alkylthio, C₂-C₆-alkenyloxy, halo-C₂-C₆-alkenyloxy, C₁-C₆-alkylsulfinyl, halo-C₁-C₆-alkylsulfinyl, halo-C₁-C₆-alkylsulfinyl, halo-C₁-C₆-alkylsulfinyl, halo-C₁-C₆-alkylsulfinyl, halo-C₁-C₆-alkenylsulfinyl, halo-C₂-C₆-alkenylsulfinyl, halo-C₂-C₆-alkenylsulfinyl, halo-C₂-C₆-alkenylsulfinyl, halo-C₂-C₆-alkenylsulfinyl, halo-C₂-C₆-alkenylsulfonyl and NR₂R₃;

 X_1 and X_2 , independently of one another, are NR_{14} , O or S; and R_{14} signifies hydrogen, C_1 - C_4 -alkyl, formyl, C_1 - C_4 -alkylcarbonyl.

Claim 19. (Withdrawn) The method of claim 1, wherein

R₁ is hydrogen, halogen, NO₂, C₁-C₆-alkyl, halo-C₁-C₆-alkyl, C₁-C₆-alkoxy or halo-C₁-C₆-alkoxy;

 R_2 and R_3 , independently of one another, signify hydrogen, C_1 - C_4 -alkyl, formyl, C_1 - C_4 -alkylcarbonyl or benzyl;

 R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} , independently of one another, are hydrogen, halogen, nitro, C_1 - C_4 -alkyl, halo- C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy or halo- C_1 - C_4 -alkoxy; and X_1 and X_2 , independently of one another, are NH, O or S.

Claim 20. (Withdrawn) The method of claim 1, wherein R₁ is hydrogen, C₁-C₆-alkyl or C₁-C₆-alkoxy; R₂ and R₃, independently of one another, signify hydrogen, C₁-C₂-alkyl, formyl or benzyl;

PAGE 9/16 * RCVD AT 7/14/2008 2:17:28 PM [Eastern Daylight Time] * SVR:USPTO-EFXRF-6/0 * DNIS:2738300 * CSID:336 387 1407 * DURATION (mm-ss):04-20

33596-US-PCT Page 8

 R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} , independently of one another, are hydrogen, halogen, nitro, C_1 - C_2 -alkyl or halo- C_1 - C_2 -alkyl; and X_1 and X_2 are O.

Claim 21. (Withdrawn) The method of claim 1, wherein R_1 is hydrogen, C_1 - C_6 -alkyl or C_1 - C_6 -alkoxy; R_2 and R_3 , independently of one another, signify hydrogen, C_1 - C_2 -alkyl, formyl or benzyl; R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} , independently of one another, are hydrogen, halogen, nitro or CF_3 ; and X_1 and X_2 are O.

Claim 22. (Currently amended) An ectoparasiticidal composition comprising a compound of the formula I of claim 1

wherein

R₁ is hydrogen, halogen, cyano, OH, SH, NO₂, COOH, COOR₂, CONH₂, CONR₂R₃, SO₃H, SO₂NR₂R₃, C₁-C₆-alkyl, halo-C₁-C₆-alkyl, C₁-C₆-alkoxy, halo-C₁-C₆-alkoxy, C₂-C₆-alkenyl, halo-C₂-C₆-alkenyl, C₃-C₆-cycloalkyl, halo-C₃-C₆-cycloalkyl, C₃-C₆-cycloalkylthio, C₂-C₆-alkenyloxy, halo-C₂-C₆-alkenyloxy, C₁-C₆-alkylthio, halo-C₁-C₆-alkylthio, C₁-C₆-alkylsulfonyloxy, halo-C₁-C₆-alkylsulfonyloxy, C₁-C₆-alkylsulfinyl, halo-C₁-C₆-alkylsulfinyl, C₂-C₆-alkenylsulfinyl, halo-C₂-C₆-alkenylthio, C₂-C₆-alkenylsulfinyl, halo-C₂-C₆-alkenylsulfinyl, halo-C₂-C₆-alkenylsulfinyl, C₂-C₆-alkenylsulfonyl, halo-C₂-C₆-alkenylsulfonyl, NR₂R₃, unsubstituted or one- to five-fold substituted aryl or unsubstituted or substituted hetaryl, the substitutents selected from the group consisting of halogen, cyano, OH, SH, NO₂, COOH, COOR₂, CONH₂, CONR₂R₃, SO₃H, SO₂NR₂R₃, C₁-C₆-alkyl, halo-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkenyl, C₂-C₆-alkinyl, C₃-C₆-alkinyl, C₃-C₆-alkoxy, halo-C₁-C₆-alkoxy, halo-C₁-C₆-alkenyl, halo-C₂-C₆-alkenyl, halo-C₂-C₆-alkinyl, C₃-C₆-alkinyl, C₃-C₆-alkinyl, C₃-C₆-alkinyl, C₃-C₆-alkinyl, C₃-C₆-alkinyl, C₂-C₆-alkinyl, C₃-C₆-alkinyl, C₃-C₆-alkinyl,

 $\begin{array}{l} \underline{C_{6}\text{-cycloalkyl, halo-}C_{3}\text{-}C_{6}\text{-cycloalkyl, }C_{3}\text{-}C_{6}\text{-cycloalkyloxy, }C_{3}\text{-}C_{6}\text{-cycloalkylthio, }C_{2}\text{-}C_{6}\text{-}} \\ \underline{alkenyloxy, halo-}C_{2}\text{-}C_{6}\text{-}\underline{alkenyloxy, }C_{1}\text{-}C_{6}\text{-}\underline{alkylthio, halo-}C_{1}\text{-}C_{6}\text{-}\underline{alkylsulfinyl, halo-}C_{1}\text{-}C_{6}\text{-}\underline{alkylsulfinyl, halo-}C_{1}\text{-}C_{6}\text{-}\underline{alkylsulfinyl, halo-}C_{1}\text{-}C_{6}\text{-}\underline{alkylsulfinyl, halo-}C_{2}\text{-}C_{6}\text{-}\underline{alkylsulfinyl, halo-}C_{2}\text{-}C_{6}\text{-}\underline{alkenylsulfinyl, halo-}C_{2}$

R₂ and R₃, independently of one another, signify hydrogen, C₁-C₆-alkyl, halo-C₁-C₆-alkyl, formyl, C₁-C₆-alkylcarbonyl, halo-C₁-C₆-alkylcarbonyl, C₁-C₆-alkylcarbonyl, halo-C₁-C₆-alkylcarbonyl, C₁-C₆-alkylaminocarbonyl, di-C₁-C₆-alkylaminocarbonyl or unsubstituted or one- to five-fold substituted benzyl, the substituents selected from the group consisting of halogen, cyano, OH, SH, NO₂, COOH, COOR₂, CONH₂, CONR₂R₃, SO₃H, SO₂NR₂R₃, C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, halo-C₁-C₆-alkoxy, C₂-C₆-alkenyl, halo-C₂-C₆-alkenyl, C₂-C₆-alkenyl, halo-C₂-C₆-alkenyl, C₃-C₆-cycloalkyl, halo-C₁-C₆-alkylthio, halo-C₁-C₆-alkylthio, halo-C₁-C₆-alkylsulfonyloxy, halo-C₁-C₆-alkylsulfinyl, halo-C₁-C₆-alkylsulfinyl, halo-C₁-C₆-alkylsulfinyl, halo-C₁-C₆-alkylsulfinyl, halo-C₁-C₆-alkylsulfinyl, halo-C₂-C₆-alkenylsulfinyl, h

R₄, R₅, R₆, R₇, R₈, R₉, R₁₀, R₁₁, R₁₂ and R₁₃, independently of one another, are hydrogen, halogen, cyano, nitro, OH, SH, NO₂, COOH, COOR₂, CONH₂, CONR₂R₃, SO₃H, SO₂NR₂R₃, C₁-C₆-alkyl, halo-C₁-C₆-alkyl, C₁-C₆-alkoxy, halo-C₁-C₆-alkoxy, C₂-C₆-alkenyl, halo-C₂-C₆-alkenyl, halo-C₂-C₆-alkenyloxy, C₁-C₆-alkylthio, halo-C₁-C₆-alkylthio, C₁-C₆-alkylsulfonyloxy, halo-C₁-C₆-alkylsulfonyloxy, C₁-C₆-alkylsulfinyl, halo-C₁-C₆-alkylsulfinyl, C₂-C₆-alkylsulfinyl, halo-C₁-C₆-alkylsulfinyl, C₂-C₆-alkenylsulfinyl, halo-C₂-C₆-alkenylsulfinyl, C₂-C₆-alkenylsulfinyl, halo-C₂-C₆-alkenylsulfinyl, C₂-C₆-alkenylsulfinyl, halo-C₂-C₆-alkylsulfinyl, C₂-C₆-alkylsulfonyl, halo-C₂-C₆-alkylsulfonyl, halo-C₁-C₆-alkylsulfonyl, halo-C₁-C₆-alkylsulfonyl, halo-C₁-C₆-alkylsulfonyl, halo-C₁-C₆-alkylsulfonylamino, halo-C₁-C₆-alkylsulfonyl

COOR₂, CONH₂, CONR₂R₃, SO₃H, SO₂NR₂R₃, C₁-C₆-alkyl, halo-C₁-C₆-alkyl, C₁-C₆-alkoxy, halo-C₁-C₆-alkoxy, C₂-C₆-alkenyl, halo-C₂-C₆-alkenyl, C₂-C₆-alkinyl, C₃-C₆-cycloalkyl, halo-C₃-C₆-cycloalkyl, C₃-C₆-cycloalkyloxy, C₃-C₆-cycloalkylthio, C₂-C₆-alkenyloxy, halo-C₂-C₆-alkenyloxy, halo-C₂-C₆-alkylthio, halo-C₁-C₆-alkylthio, C₁-C₆-alkylsulfonyloxy, halo-C₁-C₆-alkylsulfonyloxy, halo-C₁-C₆-alkylsulfonyl, halo-C₁-C₆-alkylsulfonyl, C₁-C₆-alkylsulfonyl, halo-C₂-C₆-alkylsulfonyl, C₂-C₆-alkenylthio, halo-C₂-C₆-alkenylthio, C₂-C₆-alkenylsulfonyl and NR₂R₃; X₁ and X₂, independently of one another, are C(R₁₄)(R₁₅), NR₁₄, O, S, SO or SO₂; and R₁₄ and R₁₅, independently of one another, signify hydrogen, C₁-C₆-alkyl, formyl, C₁-C₆-alkylcarbonyl or halo-C₁-C₆-alkylcarbonyl; and at least one of a physiologically acceptable carrier and/or or dispersant.

Claim 23. (Previously presented) The ectoparasiticidal composition according to claim 22 wherein said composition is in a pour-on or spot-on formulation.

Claim 24. (Withdrawn) A method of controlling ectoparasites comprising administering an effective amount of at least one compound of formula I according to claim 1 to the habitat of the parasites.

Claims 25-26. (Cancelled)

Claim 27. (New) An ectoparasiticidal composition comprising a compound of formula I

$$\begin{array}{c} R_{11} \\ R_{12} \\ R_{13} \\ R_{2} \\ R_{3} \end{array}$$

wherein R_1 is hydrogen, halogen, NO_2 , C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, halo- C_1 - C_6 -alkyl, halo- C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkylthio, C_1 - C_6 -alkylthio or halo- C_1 - C_6 -alkylthio;

R₂ and R₃, independently of one another, signify hydrogen, C₁-C₆-alkyl, formyl, C₁-C₆-alkylcarbonyl, C₁-C₆-alkylaminocarbonyl, di-C₁-C₆-alkylaminocarbonyl or benzyl;

R₄, R₅, R₆, R₇, R₈, R₉, R₁₀, R₁₁, R₁₂ and R₁₃, independently of one another, are hydrogen, halogen, cyano, nitro, C₁-C₆-alkyl, halo-C₁-C₆-alkyl, C₁-C₆-alkoxy, halo-C₁-C₆-alkoxy, C₃-C₆-cycloalkyl, C₁-C₆-alkylthio, halo-C₁-C₆-alkylthio or unsubstituted or one- to five-fold substituted aryl or unsubstituted or substituted hetaryl, the substituents selected from the group consisting of halogen, cyano, OH, SH, NO₂, COOH, COOR₂, CONH₂, CONR₂R₃, SO₃H, SO₂NR₂R₃, C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, halo-C₁-C₆-alkoxy, C₂-C₆-alkenyl, halo-C₂-C₆-alkenyl, C₂-C₆-alkenyl, C₃-C₆-cycloalkyl, halo-C₃-C₆-cycloalkyl, C₃-C₆-cycloalkylthio, C₂-C₆-alkenyloxy, halo-C₂-C₆-alkenyloxy, C₁-C₆-alkylthio, halo-C₁-C₆-alkylthio, C₁-C₆-alkylsulfonyloxy, halo-C₁-C₆-alkylsulfonyloxy, C₁-C₆-alkylsulfinyl, halo-C₁-C₆-alkylsulfinyl, halo-C₁-C₆-alkylsulfinyl, halo-C₁-C₆-alkenylsulfonyl, halo-C₂-C₆-alkenylsulfonyl, halo-C₂-C₆-alkenylsulfonyl, halo-C₂-C₆-alkenylsulfonyl, halo-C₂-C₆-alkenylsulfonyl, halo-C₂-C₆-alkenylsulfonyl, halo-C₂-C₆-alkenylsulfonyl and NR₂R₃;

 X_1 and X_2 , independently of one another, are NR_{14} , O or S;

R₁₄ signifies hydrogen, C₁-C₄-alkyl, formyl, C₁-C₄-alkylcarbonyl; and at least one of a physiologically acceptable carrier or dispersant.

Claim 28. (New) The composition of claim 27, wherein

R₁ is hydrogen, halogen, NO₂, C₁-C₆-alkyl, halo-C₁-C₆-alkyl, C₁-C₆-alkoxy or halo-C₁-C₆-alkoxy;

 R_2 and R_3 , independently of one another, signify hydrogen, C_1 - C_4 -alkyl, formyl, C_1 - C_4 -alkylcarbonyl or benzyl;

 R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} , independently of one another, are hydrogen, halogen, nitro, C_1 - C_4 -alkyl, halo- C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy or halo- C_1 - C_4 -alkoxy; and X_1 and X_2 , independently of one another, are NH, O or S.

Claim 29. (New) The composition of claim 27, wherein R₁ is hydrogen, C₁-C₆-alkyl or C₁-C₆-alkoxy;

PACE 13/16 * RCVD AT 7/14/2008 2:17:28 PM [Eastern Daylight Time] * SVR: USPTO-EFXRF-6/0 * DNIS: 2738300 * CSID: 336 387 1407 * DURATION (mm-ss): 04-20

33596-US-PCT Page 12

 R_2 and R_3 , independently of one another, signify hydrogen, C_1 - C_2 -alkyl, formyl or benzyl; R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} , independently of one another, are hydrogen, halogen, nitro, C_1 - C_2 -alkyl or halo- C_1 - C_2 -alkyl; and X_1 and X_2 are O.

Claim 30. (new) The composition of claim 27, wherein R_1 is hydrogen, C_1 - C_6 -alkyl or C_1 - C_6 -alkoxy; R_2 and R_3 , independently of one another, signify hydrogen, C_1 - C_2 -alkyl, formyl or benzyl; R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} , independently of one another, are hydrogen, halogen, nitro or CF_3 ; and X_1 and X_2 are O.