Chapter 2. Getting to Know Your Data

Data Objects and Attribute Types

Basic Statistical Descriptions of Data

Data Visualization

Measuring Data Similarity and Dissimilarity

Summary

Similarity, Dissimilarity, and Proximity

もつかいろか รุกาง พังนุงันุมา 1 มังชัน ที่เราใส่ Data เท้าไป270 แล้วไปต่องมาว่า 210นั้ similarity hotwoon two also. Similarity measure or similarity function A real-valued function that quantifies the similarity between two objects Measure how two data objects are alike: The higher value, the more alike ו-ס ערנא ז שלא ז ו מערכם לעקלעם הי סירוא ז ואלא מו אין ביו אר ארונים וויים או אין ביו אריבור ביו אריבור וויים אין Often falls in the range [0,1]: 0: no similarity; 1: completely similar - no similarity ily 0 which high hardy ily 0 which ill 0 which ily 0 which ill 0 การไม่ พมังน Dissimilarity (or distance) measure กัวกว่า Data เหมือนหวัง เพ่ากัน ชาใง จานิเลกหั้ Numerical measure of how different two data objects are - รายะหาง ห็วข เพรือนมาก In some sense, the inverse of similarity: The lower, the more alike Minimum dissimilarity is often 0 (i.e., completely similar) Range [0, 1] or $[0, \infty)$, depending on the definition **Proximity** usually refers to either similarity or dissimilarity

3. Wy Similarity uso dissimilarity osi lo ano to

Data Matrix and Dissimilarity Matrix Matrix

- Data matrix
 - A data matrix of n data points with *I* dimensions

$$D = \begin{vmatrix} x_{21} & x_{22} & \dots & x_2 \\ \vdots & \vdots & \ddots & \vdots \end{vmatrix}$$

- Dissimilarity (distance) matrix
 - n data points, but registers only the distance d(i, j)(typically metric)

- Usually symmetric, thus a triangular matrix
- Distance functions are usually different for real, boolean, categorical, ordinal, ratio, and vector variables
- Weights can be associated with different variables based on applications and data semantics

$$\begin{pmatrix} 0 & & & & \\ d(2,1) & 0 & & \\ \vdots & \vdots & \ddots & \\ d(n,1) & d(n,2) & \dots & 0 \end{pmatrix}$$

Standardizing Numeric Data

My VIV AMA

 $z = \frac{x - \mu}{2}$

- Z-score:
 - X: raw score to be standardized, μ : mean of the population, σ : standard deviation
 - the distance between the raw score and the population mean in units of the standard deviation
 - negative when the raw score is below the mean, "+" when above
- An alternative way: Calculate the mean absolute deviation

$$s_f = \frac{1}{n}(|x_{1f} - m_f| + |x_{2f} - m_f| + ... + |x_{nf} - m_f|)$$

where

$$m_f = \frac{1}{n} (x_{1f} + x_{2f} + \dots + x_{nf})$$

- standardized measure (z-score): $z_{if} = \frac{x_{if} m_f}{S_f}$
- Using mean absolute deviation is more robust than using standard deviation

Example: Data Matrix and Dissimilarity Matrix

Data Matrix feature, 2 whom

point	attribute1	attribute2
x1	1 x	2 y
<i>x2</i>	3	5
<i>x3</i>	2	0
x4	4	5

Dissimilarity Matrix (by Euclidean Distance)

	x1	<i>x2</i>	<i>x3</i>	<i>x4</i>
x1	\int 0	3,61	2.14	4.29
x^2	2.61	0	5,1	1
<i>x3</i>	2.24	5.1	0	5 .
<i>x4</i>	4.24	1	5.39	0

Distance on Numeric Data: Minkowski Distance

■ Minkowski distance: A popular distance measure

$$d(i,j) = \sqrt[p]{|x_{i1} - x_{j1}|^p + |x_{i2} - x_{j2}|^p + \dots + |x_{il} - x_{jl}|^p}$$

where $i = (x_{i1}, x_{i2}, ..., x_{il})$ and $j = (x_{j1}, x_{j2}, ..., x_{jl})$ are two l-dimensional data objects, and p is the order (the distance so defined is also called L-p norm)

- Properties
 - □ d(i, j) > 0 if $i \neq j$, and d(i, i) = 0 (Positivity)
 - \Box d(i, j) = d(j, i) (Symmetry)
 - $d(i, j) \le d(i, k) + d(k, j)$ (Triangle Inequality)
- A distance that satisfies these properties is a metric
- Note: There are nonmetric dissimilarities, e.g., set differences

Special Cases of Minkowski Distance

- \square p = 1: (L₁ norm) Manhattan (or city block) distance
 - E.g., the Hamming distance: the number of bits that are different between two binary vectors $d(i,j) = |x_{i1} x_{j1}| + |x_{i2} x_{j2}| + \cdots + |x_{il} x_{jl}|$
- \square p = 2: (L₂ norm) Euclidean distance

$$d(i,j) = \sqrt{|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + \dots + |x_{il} - x_{jl}|^2}$$

- $ightharpoonup p
 ightharpoonup \infty$: (L_{max} norm, L_{\infty} norm) "supremum" distance
 - ☐ The maximum difference between any component (attribute) of the vectors

$$d(i,j) = \lim_{p \to \infty} \sqrt[p]{|x_{i1} - x_{j1}|^p + |x_{i2} - x_{j2}|^p + \dots + |x_{il} - x_{jl}|^p} = \max_{f=1}^l |x_{if} - x_{jf}|$$

Example: Minkowski Distance at Special Cases

point	attribute 1	attribute 2
x1	1	2
x2	3	5
х3	2	0
x4	4	5

Manhattan (L₁)

L	x1	x2	х3	x4
x1	0			
x2	5	0		
х3	3	6	0	
x4	6	1	7	0

Euclidean (L₂)

L2	x1	x2	х3	x4
x1	0			
x2	3.61	0		
х3	2.24	5.1	0	
x4	4.24	1	5.39	0

Supremum (L_{xx})

L_{∞}	x 1	x2	х3	x4
x1	0			
x2	3	0		
х3	2	5	0	
x 4	3	1	5	0

Example

point	attribute 1	attribute 2
x1	1	2
x2	3	5
х3	2	0
x4	4	5

A Zen Tunosa	C1 = 01 + P1
•	s 3 + 2
	- 7 ° ¢
	(s (y
<i>:</i> .	C . Jis = 3.61 X

point	attribute 1	attribute 2
x1	1	2
x2	3	5
х3	2	0
x4	4	5

point	attribute 1	attribute 2
x1	1	2
x2	3	5
х3	2	0
x4	4	5

Linear Algebra

ระนาว เรีย 4 + 6 จะ มาการ นาวาทกับ อักเส้นเสมอ