מטריצות בסיסיות

1.1 כפל מטריצה במטריצה

:הבאה

$A\in M_{n imes m}\left(R ight), B\in M_{m imes p}\left(R ight)$ הגדרה 1.1 יהא R חוג ויהיו מטריצות מטריצות. נגדיר כפל מטריצות מטריצות. נגדיר כפל

 $(A \cdot B)_{i,j} = \sum_{k=1}^{n} a_{i,k} \cdot b_{k,j}$

1.1.1 טענות לגבי כפל מטריצות:

$$A\cdot B=\left(egin{array}{cccc}A\cdot C_1(B)‐ & A\cdot C_n(B)\\ & & & & \end{array}
ight)$$
 2.1 משפט 1. $\left(egin{array}{cccc}-&R_1(A)\cdot B&-\end{array}
ight)$

$$A\cdot B=\left(egin{array}{cccc} -&R_1(A)\cdot B&-\ &dots\ -&R_n(A)\cdot B&- \end{array}
ight)$$
 3.1 משפט

- $A\cdot B\cdot C=A\cdot (B\cdot C)$.1. אסוציאטיביות הכפל:
 - 2. חוק הפילוג.
 - $A \cdot (\alpha \cdot B) = \alpha \cdot (A \cdot B)$.3
- ר. בפל ב־0 וב־1: $A\cdot 0=0\cdot A=0$, $A\in M_{m imes n}(\mathbb{F})$:1-2. 4. $I_m\cdot A=A$, $A\cdot I_n=A$

1.2 פעולות אלמנטריות

- $R_i \leftrightarrow R_j$. להחליף סדר בין משוואות.
- $R_i
 ightarrow lpha \cdot R_i$.2 בקבוע.
 - $R_i o R_i + R_i$. לחבר משוואות.

כולן משמרות את הפתרונות של המטריצה, ואת המרחב כולן $\operatorname{rank}\left(A\right)$ ואת ואת $R\left(A\right)$

arphi מטריצות בך ש־ $A\cdot B$ מוגדר, ותהא א משפט 4.1 משפט אזי: משפטרית. אזי:

$$\varphi\left(A\cdot B\right) = \varphi\left(A\right)\cdot B$$

 φ המטריצה האלמנטרית: לכל פעולה אלמנטרית הגדרה האלמנטרית שורות, נגדיר מטריצה שורות עם m שורות, נגדיר מטריצה אלמנטרית ידי $E_{\varphi}\coloneqq \varphi\left(I_{m}\right)$ ידי

לכל מטריצה φ , מתקיים אלמנטרית ופעולה אלמנטרית א $A\in M_{m\times n}\left(\mathbb{F}\right)$ מתקיים שי $\varphi\left(A\right)=E_{\omega}\cdot A$

בנוסף מטריצות אלמנטריות הפיכות, והמטריצה של הפעולה בנוסף מטריצות אלמנטריות הפיכות, ההופכית של $\left(E_{\omega} \right)^{-1}$

2 דירוג ודירוג קנוני

2.1 הגדרות

בצורה מדורגת:

- .1 משוואות 0 (מהצורה b מהצורה (מהצורה 1
- 2. המשתנה הפותח בכל משוואה נמצא מימין ממש למשתנים הפותחים במשוואות מעליו.

משתנה חופשי הוא משתנה שלא מקדם פותח של אף שורה.

בנוסף, בצורה מדורגת קנונית:

- 3. המקדם של כל משתנה פותח הוא 1
- 4. לכל משתנה פותח של משוואה, המקדם של המשתנה בשאר המשוואות הוא 0.

לכל מטריצה קיימת צורה מדורגת קנונית יחידה ששקולה לה.

3 בוחן תת מרחב

אמ"מ: אמ"מ היא תת מרחב אמ $U\subseteq F^n$

- בור. סגורה לחיבור. U
- .2 סגורה לכפל בסקלר. U
- $.U
 eq \emptyset$ ניתן ניתן להחליף את התנאי ב $.\overline{0} \in U$.3

נובע מכאן גם שחיתוך של תתי מרחבים הוא תת מרחב.

4 צירופים לינאריים

תקרא תקרא ($\overline{v_1},\dots,\overline{v_k}$) $\in (\mathbb{F}^m)^k$ חיות חיות אבדרה 1.4 הגדרה לנארית (בת"ל) אם לכל $\overline{b}\in\mathbb{F}^m$ אם לכל היותר פתרון $\sum_{i=1}^k x_i\overline{v_i}=\overline{b}$ אחד למשוואה

משפט 2.4 סדרת וקטורים $(v_1,\dots,v_m)\subseteq\mathbb{F}^n$ סדרת וקטורים בלתי סדרת לינארי של איבר אינו איבר אינו איבר אינו לינארי של הודמיו.

היות: ($\overline{v_1},\ldots,\overline{v_k}$) את מרחב התלויות של (גדיר את מרחב התלויות של

$$LD\left((\overline{v_1},\dots,\overline{v_k})\right) = \left\{ \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \in \mathbb{F}^n \mid \alpha_1 \overline{v_1} + \dots + \alpha_k \overline{v_k} = 0 \right\}$$

 $LD(\overline{v_1},\ldots,\overline{v_k})=\{0\}\iff \overline{v_1},\ldots,\overline{v_k}$ בנוסף

בסיס 4.1

הגדרה 4.4 (משפט 2 מתוך 3) יהי $\mathbb F$ שדה, B תת קבוצה של $\mathbb F^n$ אז B נקראת בסיס של $\mathbb F^n$ אם שניים מהתנאים הבאים מתקיימים:

בת"ל.

 \mathbb{F}^n את פורשת B .2

.m=n .3

כל שניים מוכיחים גם את השלישי.

Bהתנאים הבאים שקולים לכך ש־

- ממש בת"ל מקסימלית B^{-1} בת"ל וכל קבוצה המכילה ממש את B הינה תלויה לינארית.
- ממש מינימלית B פורשת וכל קבוצה שמוכלת ממש 2. ביB אינה פורשת.
- Bיש הצגה יחידה כצירוף של וקטורים מ־ $v\in\mathbb{F}^n$ לכל.

4.1.1 למת ההחלפה של ריס

יהי V מ"ו, ותהא (v_1,\dots,v_n) סדרה פורשת ב־V, וד סדרה בת"ל. אזי: (u_1,\dots,u_m)

- (u_1, \dots, u_m) קיימים $1 \leq i_1 < i_2 < \dots < i_m \leq n$ כך ש־ .1 ($v_j \mid j \notin \{i_1, \dots, i_m\}$)
 - $m \leq n$.2

כלומר אפשר להחליף איברים כלשהם של סדרה פורשת באיבריה של כל סדרה בת"ל.

5 שחלוף והפיכות

משפט 1.5 חוקי Transpose:

- . (אם החיבור מוגדר) (A+B) $^T=A^T+B^T$ מוגדר).
 - $\left(lpha A
 ight) ^{T}=lpha \left(A^{T}
 ight)$:כפל בסקלר:

הגדרה 2.5 מטריצה $A\in M_{m imes n}(\mathbb{F})$ מטריצה מטריצה

- כך $B\in M_{n imes m}(\mathbb{F})$ כלימת מטריצה אם קיימת אם $B\cdot A=I_n$ ט ש
- כך $B\in M_{n imes m}(\mathbb{F})$ כך הפיכה מימין: אם קיימת מטריצה $A\cdot B=I_m$ כך
- $A\cdot B=$ כך ש $B\in M_{n imes m}(\mathbb{F})$ כל שפיימת מטריצה מטריצה. אם קיימת הופכית הידה. $B\cdot A=I_n$ וגם I_m

 $A\in M_{m imes n}(\mathbb{F})$ משפט 3.5 משפט

- יש פתרון $A\cdot \overline{x}=0$ למערכת \longrightarrow לשמאל הפיכה משמאל הפיכה למערכת להעמודות של $M\cdot \overline{x}=0$ יחיד (כלומר סדרת העמודות של $M\cdot \overline{x}=0$
- לכל מימין הפיכה $\overline{a}\cdot \overline{x}=\bar{b}$ למערכת לשעריה מימין איש פתרון לכל הפיכה מימין לכל סדרת העמודות של $\bar{b}\in \mathbb{F}^m$

- למערכת $\overline{x}=\bar{b}$ יש פתרון יחיד $A\cdot \overline{x}=\bar{b}$ למערכת לכל $\bar{b}\in \mathbb{F}^m$ לכל לכל (כלומר סדרת העמודות של $\bar{b}\in \mathbb{F}^m$).
 - בפרט מטריצה הפיכה היא ריבועית.

:טענות

- לא A לא שורת אפסים אז $A\in M_{m\times n}(\mathbb{F})$ לא במטריצה .1 הפיכה מימין.
 - . אם A הפיכה A^T הפיכה.
 - $(A^T)^{-1} = (A^{-1})^T$.3
- הפיכה $A\cdot B$ אם $A\cdot B$ הפיכות, אז $A\in M_{m\times k}(\mathbb{F}), B\in M_{k\times n}(\mathbb{F})$.4 .4 . $\left(A\cdot B\right)^{-1}=B^{-1}\cdot A^{-1}$

5.1 תנאים שקולים להפיכות במטריצה ריבועית

- I_n שקולת שורות ל- I_n
- . יש פתרון יחיד. $\overline{b}\in\mathbb{F}^n$ יש פתרון יחיד. 2
 - . יש פתרון יחיד. $A\overline{x}=\overline{b}$ למערכת $\overline{b}\in\mathbb{F}^n$
- גם אפשר בת"ל. אפשר בת"ל. אפשר הפיכה A .4 שורות לפי 6 .6
- גם אפשר הפיכה מימין כלומר עמודות A פורשות. אפשר גם A .5 שורות לפי 6.
 - .6 הפיכה A^T

ובנוסף $A \cdot B \iff$ והפיכות הפיכה. A, B הפיכה.

דטרמיננטה

פיתוח דטרמיננטה לפי עמודה נ:

$$\det_{j}^{(n)}(A) = \sum_{k=1}^{n} (A)_{k,j} \cdot (-1)^{k+j} \cdot \det^{(n-1)}(A_{(k j)})$$

:טענות

1. לינאריות לפי שורה:

$$\det \begin{pmatrix} -A_1 - \\ \vdots \\ -\alpha \cdot B + \beta \cdot C - \\ \vdots \\ -A_n - \end{pmatrix} = \alpha \cdot \det \begin{pmatrix} -A_1 - \\ \vdots \\ -B - \\ \vdots \\ -A_n - \end{pmatrix} + \beta \cdot \det \begin{pmatrix} -A_1 - \\ \vdots \\ -C - \\ \vdots \\ -A_n - \end{pmatrix}$$

- N(I) = 1 נרמול: 2.
- $\det\left(\varphi\left(A
 ight)
 ight)=x_{arphi}\cdot\det\left(A
 ight)$ אם arphi פעולה אלמנטרית אז arphi החלפת שורה arphi=-1, אם arphi כפל בסקלר $x_{arphi}=\lambda^{-1}$, ואם arphi הוספת שורה אז λ

. אם A לא הפיכה אז $\det(A)=0$ אז $\det(A)=0$ הפיכה אז Φ געם לא Φ .5 אם $\det(A)=x_{\varphi_1}\cdot\dots\cdot x_{\varphi_n}$ וואס $\det(A)\neq 0$ פעולות הדירוג.

לכן אפשר גם להפעיל פעולות .
det $(A) = \det \left(A^T\right)$.6 עמודה, שהן פעולות שורה על השחלוף.

 $\forall j < i.\,(A)_{i,j} =$ במטריצה משולשית עליונה או תחתונה (ל $i < j.\,(A)_{i,j} = 0$ או ס או ל $i < j.\,(A)_{i,j} = 0$, הדטרמיננטה היא מכפלת האלכסון.

משפט 1.6 (דטרמיננטה לפי תמורות):

$$\det(A) = \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) \cdot \prod_{i=1}^n (A)_{i,\sigma(i)}$$

כלל קרמר: תהא לכל $\overline{b}\in\mathbb{F}^n$ לכל הפיכה, אז לכל למערכת תהא $\overline{b}\in\mathbb{F}^n$ למערכת מער: (שתי דרכים לתאר $A\overline{x}=\overline{b}$ אותו)

$$.c = A^{-1} \cdot \overline{b}$$
 .1

$$.B_{j}\left(C_{1}\left(A
ight),\ldots,C_{j-1}\left(A
ight),\overline{b},\ldots,C_{n}\left(A
ight)
ight)$$
 כאשר $c_{j}=rac{|B_{j}|}{|A|}$.2

6.1 מטריצה מוצמדת

$$(\operatorname{adj}(A))_{i,j} = (-1)^{j+i} \cdot \det \left(A_{(j\,i)}\right)$$
 נגדיר:

מתקיים:

$$.(\operatorname{adj}(A))^{T} = \operatorname{adj}(A^{T}) .1$$

 $A\cdot\operatorname{adj}\left(A
ight)=$ מטריצת האפס אז: מטריצת הפיכה מוA לא בי .2 .adj $(A)\cdot A=$

$$A^{-1} = \frac{1}{|A|} \cdot \operatorname{adj}(A)$$
 in $A \cdot \operatorname{adj}(A) = I \cdot \det(A)$.3

7 תמורות

7.1 הגדרות

 $J_n o J_n$ פורמלית, אה קבוצת הפונקציות הפונקציות זה הח"ע פורמלית. כאשר $J_n = \{1,\dots,n\}$

סימונים לתמורות:

- .1 אח"ע ועל. $\sigma:J_n o J_n$
- $.igg(egin{array}{cccc} 1 & 2 & 3 & 4 \\ \sigma\left(1
 ight) & \sigma\left(2
 ight) & \sigma\left(3
 ight) & \sigma\left(4
 ight) \end{pmatrix}$:2 .2

$$A = \begin{pmatrix} | & | \\ e_{\sigma(1)} & \dots & e_{\sigma(n)} \\ | & | \end{pmatrix}$$

sign **7.2**

מוגדרת (σ של הסיגנטורה (הסיגנטורה אל sign (σ) מוגדרת (הסיגנטורה אל sign (σ) (σ) מוגדרת רבין הסיגנטורה (σ)

 $1\leq i\leq n$ לכל הגדרה שקולה: תהא $\sigma\in S_n$ תמורה. לכל $z_\sigma(i)=$ ו $N(\sigma)=|\{(i,j)\mid j>i\wedge\sigma(j)<\sigma(i)\}|$ נגדיר את נגדיר את $|\{(i,j)\mid j>i,\sigma(i)<\sigma(j)\}|$ נגדיר את $|\{(i,j)\mid j>i,\sigma(i)<\sigma(j)\}|$ את sign $(\sigma)=(-1)^{N(\sigma)}$ היות:

 $\operatorname{sign}\left(\sigma au
ight)=\operatorname{sign}\left(\sigma
ight)\cdot\operatorname{sign}\left(au
ight)$ 3.7 משפט

8 מרחב וקטורי

8.1 הגדרות

הגדרה 1.8 (מרחב וקטורי): מרחב וקטורי מעל שדה \mathbb{F} זו שלשה ($V,+,\cdot$) כך ש:

- תבורה חילופית. $\langle V, + \rangle$.1
- :בסקיימת: בסקלר, פעולה שמקיימת: $\mathbb{F} \times V o V$.2

 $orall lpha,eta\in\mathbb{F}.orall\overline{v}\in V.eta\cdot(lpha\cdot\overline{v})=(eta\cdotlpha)\cdot$ אסוצייטיביות. (א) .v

. $orall \overline{v} \in V.1_{\mathbb{F}} \cdot \overline{v} = \overline{v}$ (ב)

3. חוק הפילוג:

 $. \forall \alpha, \beta \in \mathbb{F}. \forall \overline{v} \in V. (\alpha + \beta) \cdot \overline{v} = \alpha \cdot \overline{v} + \beta \cdot \overline{v}$ (x)

 $. \forall a \in \mathbb{F}. \forall \overline{v_1}, \overline{v_2} \in V. \alpha \cdot (\overline{v_1} + \overline{v_2}) = \alpha \cdot \overline{v_1} + \alpha \cdot \overline{v_2}$ (2)

9 בסיס האמל

- $v_1,\dots,v_n\in X$ לכל אם לכל גקראת בת"ל נקראת א נקראת א גקראת און אינוארי א בת"ל. כלומר אין איברים מ־ v_1,\dots,v_n של איברים מ־X שיוצא v_1,\dots,v_n
 - $\operatorname{sp}\left(X
 ight)=V$ מרשת פורשת $X\subseteq V$ נקראת •
- היא בת"ל גקראת בסיס האמל אם היא בת"ל לבוצה $X\subseteq V$ ופורשת.

10 מימד

הגדרה 1.10 (מימד): יהי V מ"ו מעל \mathbb{F} בעל בסיס, המימד של V הינו עוצמת בסיס כלשהו (והמימד יחיד). מסמנים כV הינו עוצמת בסיס כלשהו (והמימד יחיד).

משפט 2.10 (משפט המימדים הראשון):

$$\dim (U_1 + U_2) = \dim (U_1) + \dim (U_2) - \dim (U_1 \cap U_2)$$

U=V אז $\dim U=\dim V$ מסקנה: אם $U\subseteq V$ ו־ $U\subseteq U$

T:V o U משפט (משפט המימדים השני): עבור 3.10 משפט

$$\dim(V) = \dim(\ker(T)) + \dim(Im(T))$$

11 סכום ישר

 $U_1\oplus\cdots\oplus U_n$ הגדרה: נאמר כי $U_1+\cdots+U_n$ הוא סכום ישר הנדרה: נאמר כי $\overline{u_1},\ldots,\overline{u_n}\in U_i$ היימת ויחידה סדרה $\overline{v}\in U_1+\cdots+U_n$ כך ש־ $\overline{v}=\sum_{i=1}^n\overline{u_i}$ נקרא גם הצגה יחידה.

משפט האיפיון: יהיו $U_1,\dots,U_n\subseteq U$ יהיו שקולים:

- $.U_1\oplus \cdots \oplus U_n$.1
- $B_1 \frown B_2 \frown \cdots \frown$ לכל סדרות בת"ל B_i ב־"ל. בהשרשור .2 בת"ל. B_n
 - $.U_i\cap\left(\sum_{j=1,j
 eq i}^nU_j
 ight)=\left\{\overline{0}
 ight\}$, $1\leq i\leq n$ גלכל. $.U_1\cap U_2=\left\{\overline{0}
 ight\}$,n=2 בפרט אם

12 מרחב העמודות והשורות

:תהא $A\in M_{m imes n}\left(\mathbb{F}
ight)$ נגדיר, מגדרה: תהא

- . Sols $(A)=\left\{x\in\mathbb{F}^n\mid Ax=\overline{0}
 ight\}$.1
- $.C\left(A
 ight)=\operatorname{sp}\left(C_{1}\left(A
 ight),\ldots,C_{n}\left(A
 ight)
 ight)$:מרחב העמודות: .2
- $.R\left(A
 ight)=\operatorname{sp}\left(R_{1}\left(A
 ight),\ldots,R_{m}\left(A
 ight)
 ight)$.3

משפט 1.12 $\dim\left(R\left(A
ight)
ight) = \dim\left(C\left(A
ight)
ight)$. Rank (A)

 $\mathcal{N}\left(A
ight)=\dim\left(\operatorname{Sols}\left(A
ight)
ight)$ בנוסף נסמן

משפט 2.12 (משפט הדרגה): פעולות דירוג משמרות את משפרות (Rank (A) גם את (A) אבל לא בהכרח משמרות את (A).

 $\operatorname{Rank}\left(A
ight)+\mathcal{N}\left(A
ight)=n$:(משפט הדרגה והאפסות)

 $\operatorname{Rank}\left(A
ight)=n\iff$ הפיכה A

 $A \in M_{m imes n}\left(\mathbb{R}
ight)$ לכל מטריצה : rank

- $\operatorname{Rank}(A) \leq \min(n,m)$.1
- $\operatorname{Rank}(A \cdot B) \leq \min(\operatorname{Rank}(A), \operatorname{Rank}(B))$.2
 - $\operatorname{Rank}(A+B) \leq \operatorname{Rank}(A) + \operatorname{Rank}(B)$.3
- $\mathrm{Rank}\,(A\cdot B)=$ אם אז הפיכה אז הפיכה A אם 4.4 $\mathrm{Rank}\,(B\cdot A)=\mathrm{Rank}\,(B)$

13 העתקות לינאריות

העתקה $T:V \to U$ כי נאמר מ"ו מעל \mathbb{F} , מ"ו מעל ע"ה יהיו יהיו אם:

- $\forall v_1, v_2 \in V.T(v_1 + v_2) = T(v_1) + T(v_2)$.1
 - . $\forall \alpha \in \mathbb{F}. \forall v \in V.T (\alpha \cdot v) = \alpha \cdot T (v)$ הומוגניות 2.

הגדרות נוספות:

- - .T של התמונה של $Im\left(T
 ight)=\left\{ T\left(\overline{v}
 ight)\mid\overline{v}\in V
 ight\} \subseteq U$.2

T בנוסף $\ker (T), Im (T)$ תמ"ו של

13.1 תכונות בסיסיות

תהא T:V o U לינארית,

- . נשמר לינארי לינארי כל $^{\tau}T\left(\sum_{i=1}^{n}\alpha_{i}v_{i}\right)=\sum_{i=1}^{n}\alpha_{i}T\left(v_{i}\right)$. 1
 - .2 בפליות. $T\left(-\overline{v}
 ight) = -T\left(\overline{v}
 ight)$
 - $T(\overline{0}_V) = \overline{0}_U$.3
 - $\ker(T) = {\overline{0}} \iff \mathsf{V}$ יע.
 - (טריויאלי). Im $(T) = U \iff T$.5
- אז V אם פורשת פורשת (u_1,\dots,u_n) .6 אם $Im\left(T\right)$ סדרה פורשת של של וואס סדרה $(T\left(u_1\right),\dots,T\left(u_k\right))$
- $LD\left(v_1,\ldots,v_n
 ight)$ \subseteq , $\left(v_1,\ldots,v_n
 ight)$.7. $LD\left(T\left(v_1
 ight),\ldots,T\left(v_n
 ight)\right)$
- בת"ל. (v_1,\ldots,v_n) בת"ל אז $(T\left(v_1\right),\ldots,T\left(v_n\right))$ בת"ל.
- $T\left(v_{i}
 ight)\in\operatorname{sp}\left(v_{1},\ldots,v_{i-1},v_{i+1},\ldots,v_{n}
 ight)$ גם $\operatorname{sp}\left(T\left(v_{1}
 ight),\ldots,T\left(v_{i-1}
 ight),T\left(v_{i+1}
 ight),\ldots,T\left(v_{n}
 ight)
 ight)$
- $LD\left(T\left(v_{1}\right),\ldots,T\left(v_{n}\right)
 ight) =$ אז תח"ע, חח"ע, גו אם $LD\left(v_{1},\ldots,v_{n}\right)$
- V אם T חח"ע, אז T מעבירה סדרה פורשת של לסדרה פורשת של U.
- 8. יהיו V,U מ"ו. יהי V,U מ"ו. יהיו V,U מ"ו. יהיו U,U אז קיימת ויחידה $u_1,\dots,u_n\in U$ וקטורים כלשהם. אז קיימת ויחידה העתקה לינארית U,U כלומר העתקה לינארית נקבעת ביחידות U,U לפי U,U כלומר העתקה לינארית נקבעת ביחידות לפי U,U

 $\dim\left(V
ight) = \dim\left(\ker\left(T
ight)
ight) +$ המימדים השני: . $\dim\left(Im\left(T
ight)
ight)$

13.2 הטלה

יהי $V=U\oplus W$ תמ"ו כך $U,W\subseteq V$. ראינו כי $\overline{v}\in V$ מ"ו, וידי מ"ו, וידי להציג באופן יחיד:

$$\overline{v} = \overline{u} + \overline{w}, \overline{u} \in U, \overline{w} \in W$$

 $:\!U$ על V על את ההטלה של

$$\begin{split} P_{(U,W)}: V &\to U \\ P_{(W,U)}: V &\to W \\ P_{(U,W)}\left(\overline{v}\right) &= \iota x \in U. \exists y \in W. \overline{v} = x + y \end{split}$$

כלומר זה ייצוג לאחד מהאיברים בהצגה היחידה של וקטור.

:טענות

- . הטלה $P_{(U,W)}$ היא העתקה לינארית.
- $.P_{(U,W)} + P_{(W,U)} = Id_V$, $P_{(U,W)} \circ P_{(U,W)} = P$.2
 - $.P_{(U,W)}^{-1}\left[\{0\}
 ight]=W$, ${
 m Im}\left(P_{(U,W)}
 ight)=U$.3

13.3 איזומורפיזם

13.3.1 הגדרות

היא $f:V \to U$ כי נאמר מ"ו מעל \mathbb{F} , מ"ו מעל איזומורפיזם של מ"ו אם:

- .1 חח"ע ועל.
- .(חיבורית והומוגנית). f .2

איזומורפיזם משמר את הפתרונות של $v=\sum_{i=1}^n x_i\overline{u_i}$ של איזומורפיזם משמר את הערונות $v,\overline{u_1},\dots,\overline{u_n}\in V$

שני מרחבים וקטוריים מעל אותו שדה נקראים איזומורפיים שני מרחבים וקטוריים מעל אז קיים איזומורפיזם $T:V \to U$ ומסומנים שקילות ".

 $V \simeq U \iff$ אז סופית, אז מ"ו נוצרים עוצרים V,U מ"ו $\dim{(V)} = \dim{(U)}$

משפט 1.13 (2 מתוך 3 להעתקות לינאריות): כל 2 מתוך 3 הבאים שקולים לכך ש־T איזומורפיזם.

- $\dim(V) = \dim(U)$.1
 - ע."ע.T .2
 - .3 על.

13.3.2 קואורדינטות

יהי ,dim V=n נסמן ,t בסיס של B , $\mathbb F$ נימים, איימים, מעל $\overline v\in V$ בסיס. על פי משפט, לכל $\overline v\in V$ בסיס. על פי משפט, לכל בסיס אויימים ויחידים $B=(b_1,\dots,b_n)$ כך ש־ $\alpha_1,\dots,\alpha_n\in\mathbb F$ נגדיר את הקואורדינטות של $\overline v$ לפי B להיות:

$$[\overline{v}]_B = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \in \mathbb{F}^n$$

העתקת הקואורדינטות תסומן V^{-n} ל- V^{-n} גם בתור היזומורפיזם מ- $[\cdot]_B:V\to \mathbb{F}^n$ גם בתור

13.4 מרחב ההעתקות

מרחב ${
m Hom}\,(V,U)=\left\{T\in U^V\mid {
m T\ is\ linear}
ight\}$. ההעתקות. זה תת מרחב של $\langle U^V,+,\cdot\rangle$

משפט: $\dim\left(\mathrm{Hom}\left(V,U\right)\right)=\dim\left(V\right)\cdot\dim\left(U\right)$ זה נכון אפילו לא נוצרים סופית. אט V,U

מטריציונית 13.5

ההעתקה את נגדיר את אראה, $A\in M_{m\times n}\left(\mathbb{F}\right)$ מטריצה לכל לכל המטריצה לכל המתאימה ל- $T_A:\mathbb{F}^n o\mathbb{F}^m$ את המתאימה ל-

$$T_A(\overline{v}) = A\overline{x}$$

 $A\in$ פונקציה f נקראת מטריציונית אם קיימת מטריצה f בונקציה $f=T_A$ כך ש־ $M_{m\times n}\left(\mathbb{F}\right)$

:היא: [T] היא:

$$[T] = \begin{pmatrix} T \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} & T \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix} & \dots & T \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix} \end{pmatrix}$$

 $T\iff T$ העתקה לינארית אזי $T:\mathbb{F}^n o\mathbb{F}^m$ משפט: תהא מטריציונית.

:טענות

- $. Sols(A) = T_A^{-1} [\{\overline{0}\}] = \ker(T_A) . 1$
 - $.C(A) = Im(T_A)$.2
- על איז ריבועית אם פורשות. אם היא ריבועית אז א עמודות ל \iff T_A .3 גם הפיכה.
- עמודות היט, כי אין שתי דרכים אין אין שתי דרכים להגיע אותו הדבר. A אותו הדבר.
 - .5 הפיכה $A\iff$ עמודות A בסיס $A\iff$ הפיכה.
 - $[T + S] = [T] + [S], [\alpha \cdot T] = \alpha \cdot [T], [S \circ T] = [S] \cdot [T]$.6

14 מטריצה מייצגת

B הגדרה: תהא V,U צ"ל $T:V\to U$ הגדרה: תהא המייצגת בסיס של C, ונדיר את ההעתקה המייצגת בסיס של $T^{\dim(V)}\to\mathbb{F}^{\dim(U)}$

$$T_C^B = Q_C \circ T \circ Q_B$$
$$[T]_C^B = [T_C^B]$$

:טענות

$$.C_i\left(\left[T_C^B
ight]
ight)=T_C^B\left(e_i
ight)$$
 .1 . $.[T]_C^B=\left(egin{array}{ccc} \mid & & \mid & & \mid & \\ \mid T\left(b_1
ight)\mid_C & \dots & \mid T\left(b_n
ight)\mid_C \end{matrix}
ight)$ כלומר

- $[T]_{C}^{B} \cdot [v]_{B} = [T(v)]_{C}$.2
- $.[\overline{v}]_{B}\in\mathrm{Sols}\left(\left[T
 ight]_{C}^{B}
 ight)\iff\overline{v}\in\ker\left(T
 ight)$, $\overline{v}\in V$.3
- $\mathcal{N}\left(\left[T\right]_{C}^{B}\right)=\dim\left(\ker\left(T\right)\right),\operatorname{Rank}\left(\left[T\right]_{C}^{B}\right)=\dim\left(\operatorname{Im}\left(T\right)\right)$

- הפיכה, בנוסף $\left[T\right]_C^B\iff$ הפיכה הפיכה בנוסף הפיכה הפיכה הפיכה החלב ה $\left(\left[T\right]_C^B\right)^{-1}=\left[T^{-1}\right]_B^C$
 - $[S \circ T]_{D}^{B} = [S]_{D}^{C} \cdot [T]_{C}^{B}$.6

אלגוריתם לחישוב המטריצה המייצגת: נבחר בסיס שנוח לחשב בו קואורדינטות בU בדרך כלל הבסיס הסטנדרטי. $W=(w_1,\ldots,w_n)$

באופן דומה לאיך שמחשבים מטריצה הופכית.

הגדרה 1.14 מטריצות שינוי הקואורדינטות: יהיו B,C שני בסיסים של מ"ו V אז נגדיר את מטריצת שינוי בסיסים של מ"ו V ל ידי: $Id_V|_C^B$

- $[Id_V]_C^B \cdot [\overline{v}]_B = [\overline{v}]_C$, $\overline{v} \in V$.1
- . $[T]_C^B = [Id]_C^{C'} \cdot [T]_{C'}^{B'} \cdot [Id_V]_{B'}^B$.2

15 מטריצות דומות

יהיו אם דומות אם בי $A,B\in M_n(\mathbb{F})$ יהיו יהיו גאמר כי א $A,B\in M_n(\mathbb{F})$ יהיו מטריצה הפיכה כך ש־P כד הפיכה מטריצה מטריצה ה

משפט: נתון $A,B\in M_n\left(\mathbb{F}
ight)$ ריבועיות, הבאים שקולים:

- .1 A, B דומות
- $[T]_C=$ של V כך של C,C' ובסיסים T:V o V כך של .2 .4. $A,[T]_{C'}=B$
- , $[T]_C=A$ אם על V כך של C , אם קיים בסיס , $T:V\to V$ אז קיים בסיס , אז קיים בסיס V של C' של בסיס , אז קיים בסיס

ואם A,B דומות אז:

- ..Rank (A) = Rank(B), $\mathcal{N}(A) = \mathcal{N}(B)$.1
- $\operatorname{tr}(A) = \sum_{i=1}^{n} (A)_{i,i}$ כאשר $\operatorname{tr}(A) = \operatorname{tr}(B)$.2
 - $\det(A) = \det(B)$.3

16 אלגוריתמים

16.1 צמצום סדרה לבת"ל

16.1.1 לפי שורות

יהיו v_1,\dots,v_n נשים את $v_1,\dots,v_n\in\mathbb{F}^m$ יהיו $B=\begin{pmatrix}v_1^t\\\vdots\\v_n^t\end{pmatrix}\in M_{n\times m}(\mathbb{F})$

(כלומר, בעמודה של מקדם הפותח יש רק 1 במקום אחד והשאר אפסים, אבל המקדמים הפותחים לא ממוינים). השורות שהתאפסו מתאימות לוקטורים שהיו תלוים לינארית באחרים, וסדרת השורות שלא התאפסו הן סדרה בת"ל.

16.1.2 לפי עמודות

נשים את $A=(v_1\dots v_n)$ כעמודות, v_1,\dots,v_n נדרג ונבדוק שיש רק פתרון טריויאלי למערכת ההומוגנית ($A\mid 0$), כלומר שאין אף משתנה חופשי.

16.2 השלמה של סדרה בת"ל לבסיס

תהא (u_1,\ldots,u_m) סדרה בת"ל, וד (v_1,\ldots,v_k) סדרה פורשת. נבנה מטריצה שעמודותיה:

$$(v_1,\ldots,v_k,u_1,\ldots,u_m)$$

נדרג את המטריצה, ונסתכל על העמודות מu שנפתחה בהן מדרגה. את הuים המתאימים נוסיף לסדרת הuים, ונקבל בסיס.