1 Image Réciproque d'un Singleton par une Application Continue

Soit f une application de \mathbb{R} dans \mathbb{R} . L'image réciproque de $\{0\}$ par f est définie par :

$$f^{-1}(\{0\}) = \{x \in \mathbb{R} : f(x) = 0\}$$

Si f est une application continue, alors $f^{-1}(\{0\})$ est un fermé dans \mathbb{R} , car $\{0\}$ est un fermé dans \mathbb{R} et l'image réciproque d'un fermé par une application continue est un fermé.

2 Adhérence et Densité

Comme $f^{-1}(\{0\})$ est fermé (sous l'hypothèse que f est continue), on a :

$$\mathrm{Adh}(f^{-1}(\{0\}))=f^{-1}(\{0\})$$

où Adh(A) désigne l'adhérence de l'ensemble A.

Pour que $f^{-1}(\{0\})$ soit dense dans \mathbb{R} , il faut par définition que son adhérence soit \mathbb{R} tout entier :

$$Adh(f^{-1}(\{0\})) = \mathbb{R}$$

Ce qui implique $\mathbb{R} \subseteq Adh(f^{-1}(\{0\}))$.

3 Conséquence de la Densité

Si l'on suppose que f est continue et que $f^{-1}(\{0\})$ est dense dans \mathbb{R} , alors nous avons deux conditions :

- 1. $Adh(f^{-1}(\{0\})) = f^{-1}(\{0\})$ (car f continue $\implies f^{-1}(\{0\})$ fermé)
- 2. $Adh(f^{-1}(\{0\})) = \mathbb{R} (car f^{-1}(\{0\}) dense)$

En combinant ces deux égalités, on obtient :

$$f^{-1}(\{0\}) = \mathbb{R}$$

Ceci est équivalent à dire que pour tout $x \in \mathbb{R}$, f(x) = 0.

3.1 Conclusion

Alors, si f est une application continue de \mathbb{R} dans \mathbb{R} et si l'ensemble de ses zéros $f^{-1}(\{0\})$ est dense dans \mathbb{R} , cela implique nécessairement que f est l'application nulle :

$$f^{-1}(\{0\})$$
 est dense dans $\mathbb{R} \implies f^{-1}(\{0\}) = \mathbb{R} \iff \forall x \in \mathbb{R}, f(x) = 0.$