a) Berechnen Sie die Hessematrix $D^2 f$ der Funktion

$$f(x) = x_1^2 x_2 + 2x_1 x_2^2 + x_1 x_2.$$

Beweis: Da f als Polynom in C^2 liegt, folgt:

$$\nabla f(x) = \begin{pmatrix} 2x_1x_2 + 2x_2^2 + x_2 \\ x_1^2 + 4x_1x_2 + x_1 \end{pmatrix} \text{ und damit } D^2 f(x) = \begin{pmatrix} 2x_2 & 2x_1 + 4x_2 + 1 \\ 2x_1 + 4x_2 + 1 & 4x_1 \end{pmatrix}$$

b) Implementieren Sie eine Funktion DsqF(X), die zu gegebenem Interval $X \in \mathbb{IR}^2$ die (eintragsweise) natürliche Intervallerweiterung D^2F von D^2f zurück gibt.

DsqF soll ein (2,2,2)-Array zurück geben, deren Einträge (i,j,1) die Unter- und (i,j,2) die Obergrenze von $F_{i,j}(X)$ enthalten, $i,j \in \{1,2\}$. Die Box X soll als (2,2)-Array übergeben werden, deren Einträge (i,1) die Untergrenze \underline{x}_i und (i,2)die Obergrenze \overline{x}_i , $i \in \{1, \dots, n\}$ der jeweiligen Intervalle enthalten. Nutzen Sie für die Grundrechenarten der Intervallarithmetik die Funktionen aus Aufgabe S. 3.2.

```
import numpy as np
from math import sqrt
def interval_hull(A):
       result=np.array([min(A), max(A)])
return result
def interval_add(x,y):
    result= np.array([x[0]+y[0],x[1]+y[1]])
        return result
def interval_subtract(x,y):
    result= np.array([x[0]-y[1],x[1]-y[0]])
    return result
def interval_multiply(x,y):
    A=np.array([x[0]*y[0],x[1]*y[1],x[0]*y[1],x[1]*y[0]])
    result= interval_hull(A)
    return result
def boxweite(x):
    result = (x[1]-x[0])
        return result
def mittelpunkt(x):
        result = ((x[0]+x[1])/2)
       return result
def DsqF(X):
    result1=np.array(2*X[1,:])
    result2= interval_add(2*X[0,:],4*X[1,:])+1
    result3=interval_add(2*X[0,:],4*X[1,:])+1
    result4=np.array(4*X[0,:])
    result4=np.array(4*X[0,:])
       res=np.array([[result1,result2],[result3,result4]])
return res
```

Es seien $A(x) = D^2 f(x)$ die (n, n)-Hessematrix einer Funktion f und alle Einträge a_{ij} faktorisierbar. Für eine Box $X \in \mathbb{R}^n$ bezeichne A(X) diejenige Matrix, deren Einträge A_{ij} natürliche Intervallerweiterung von a_{ij} sind.

Implementieren Sie eine Funktion $lambda_min$ die für eine Box X und die Matrix A(X) eine Unterschranke β des kleinsten Eigenwertes $\lambda_{\min}(D^2f(x))$ auf X berechnet. Verwenden sie hierfür die Formel aus Skript S. 146.

Die intervallwertige Hessematrix A soll dabei als (n, n, 2)-Array übergeben werden, deren Einträge (i, j, 1) die Unter- und (i, j, 2) die Obergrenze von $F_{i,j}(X)$ enthalten, $i, j \in \{1, \ldots, n\}$. Die Box X soll als (n, 2)-Array übergeben werden, deren Einträge (i, 1) die Untergrenze \underline{x}_i und (i, 2) die Obergrenze \overline{x}_i , $i \in \{1, \ldots, n\}$ der jeweiligen Intervalle enthalten.

Betrachten Sie nun wieder die Funktion

$$f(x) = x_1 2x_2 + 2x_1 x_2^2 + x_1 x_2$$

auf der Box $X = [0, 1] \times [-1, 1]$.

a) Nutzen Sie Ihre in Aufgabe S. 4.1. implementierte Funktion, um die Matrix $D^2F(X)$ auszugeben. Verwenden Sie Ihre in Aufgabe 4.2 implementierte Fkt. $lambda_min$, um eine Unterschranke β des kleinsten Eigenwertes der Hessematrix D^2f auf X zu berechnen und geben Sie diese aus.

Beweis:

```
def lambda_min(A):
      n=np.size(A[:,0,0])
      b=np.zeros(n)
      for i in range (0,n):
            R=np.zeros(n)
            for j in range (0,n):
                  if j!=i:
                       R[j]=max(A[i,j,0],A[i,j,1])
                       print(R[j])
            print(R)
            \hat{\mathbf{b}}[\mathbf{i}] = \hat{\mathbf{A}}[\hat{\mathbf{i}}, \mathbf{i}, \mathbf{0}] - \operatorname{sum}(\mathbf{R})
      print(b)
      res=min(b)
      return res
X=np.array([[0,1],[-1,1]])
A=DsqF(X)
print(A)
beta = lambda _ min(A)
print(beta)
[[[-2 2]
   [-3 7]]
 [[-3 7]
[ 0
7.0
[ 0. 7.]
7.0
[ 7. 0.]
[-9. -7.]
```

b) Bestimmen Sie mit Hilfe von Aufgabenteil a) eine konvexe Relaxierung \hat{f}_{α} der Funktion f auf X. Geben Sie diese auf der schriftlichen Abgabe an.

Beweis:

$$\hat{f}_{\alpha} = x_1^2 x_2 + 2x_1 x_2^2 + x_1 x_2 + \frac{9}{2} \left(-x_1 + x_1^2 + x_2^2 - 1 \right)$$

c) Plotten Sie die beiden Funktionen \hat{f}_{α} und f auf X in eine Grafik, sodass gut erkennbar ist, dass \hat{f}_{α} konvexe Relaxierung von f auf X ist.

Beweis:

def f(x_1,x_2):
 result = x_1**2*x_2+2*x_1*x_2**2+x_1*x_2
 return result

def psi(x_1,x_2):
 result = 1/2*((-x_1)*(1-x_1)+(-1-x_2)*(1-x_2))
 return result

def fdach_alpha(x_1,x_2,a):
 result = f(x_1,x_2)+a*psi(x_1,x_2)

 return result

import numpy as np
from matplotlib import pyplot as plt
import numpy as np
from matplotlib notebook
from mpl_toolkits.mplot3d import axes3d
from matplotlib import cm

x = np.arange(0,1,0.1)
x,y = np.arange(-1,1,0.1)
x,y = np.arange(-1,1,0.1)
x,y = np.arange(-1,0.1)
x,y = f(x,y)
z = x.plot_surface(x,y,z,c)
surf1 = ax.plot_surface(x,y,z,c)
plt.show()

0.0 0.2 0.4 0.6 0.8 -0.50 -0.5

d) Welche Teilboxen X^1 und X^2 ergeben sich, wenn die Box entsprechend Algorithmus 3.3 halbiert wird? Mit der Notation von Algorithmus 3.3: Plotten Sie f auf X, \hat{f}^1_{α} auf X^1 und \hat{f}^2_{α} auf X^2 in eine Grafik.

Beweis: Nach Algorithmus 3.3

$$X^1 = [0, 1] \times [-1, 0], \quad X^2 = [0, 1] \times [0, 1]$$

e) Bestimmen Sie nun mit der Funktion $lambda_min$ individuelle Unterschranken des kleinsten Eigenwertes der Hessematrix D^2f auf X^i , $i \in \{1,2\}$ und geben Sie diese aus. Nutzen Sie diese, um (möglicherweise) bessere Relaxierungen $\hat{f}_{\alpha_1}^1$ und $\hat{f}_{\alpha_2}^2$ zu bestimmen. Plotten Sie f auf X, $\hat{f}_{\alpha_1}^1$ auf X^1 und $\hat{f}_{\alpha_2}^2$ auf X^2 in eine Grafik. Vergleichen Sie Ihr Ergebnis mit Aufgabenteil d).

```
X_1=np.array([[0,1],[-1,0]])
X_2=np.array([[0,1],[0,1]])
 A_1=DsqF(X_1)
 A_2=DsqF(X_2)
 beta_1=lambda_min(A_1)
 beta_2=lambda_min(A_2)
 print(beta_1)
 print(beta_2)
 3.0
[ 0. 3.]
3.0
 [ 3. 0.]
 [-5. -3.]
 7.0
[ 0. 7.]
7.0
[ 7. 0.]
 [-7. -7.]
 -5.0
-7.0
x = np.arange(0,1,0.1)
y = np.arange(-1,1,0.1)
 X,Y = np.meshgrid(x,y)
x1 = x
y1 = np.arange(-1,0,0.1)
 x1, y1 = np.meshgrid(x1, y1)
 x2 = x
 y2 = np.arange(0,1,0.1)
y2 = np.arange(0,1,0.1)
X2,Y2 = np.meshgrid(x2,y2)
Z = f(X,Y)
Z1 = fdach_alpha_1(X1,Y1,5)
Z2 = fdach_alpha_2(X2,Y2,7)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
surf1 = ax.plot_surface(X, Y, Z, cmap=cm.coolwarm)
surf2 = ax.plot_surface(X1, Y1, Z1, cmap=cm.coolwarm)
surf3 = ax.plot_surface(X2, Y2, Z2, cmap=cm.coolwarm)
plt.show()
plt.show()
                                                                                                                   2.5
                                                                                                                   2.0
                                                                                                                   1.5
                                                                                                                  1.0
                                                                                                                  0.5
                                                                                                                  0.0
                                                                                                                 -0.5
                                                                                                                 -1.0
                              0.0
                                       0.2
```

f) Bestimmen Sie Optimalpunkte von $\hat{f}_{\alpha_1}^1$ auf X^1 und $\hat{f}_{\alpha_2}^2$ auf X^2 mit einem Solver Ihrer Wahl. Runden Sie das Ergebnis auf zwei Nachkommastellen. Bestimmen Sie \tilde{v} und \hat{v}^* ? Begründen Sie: Würde X^1 oder X^2 als X^* für die nächste Iteration von Algorithmus 3.3 verwendet werden?

```
Beweis: Es ist \hat{x}^1 \approx (0.26, -0.47), \ \hat{x}^2 \approx (0.38, 0.35)
\Rightarrow \tilde{x} = \hat{x}^1
\tilde{v} = f(\hat{x}^1) \approx -0.1982, \ \hat{v}^* = \hat{f}_{\alpha_1}(\hat{x}^1) \approx -1.4099
\Rightarrow x^* = x^1, \ \text{da} \ \hat{v}^1 = \min_{l=1,2} \hat{v}^l
```

```
from scipy.optimize import minimize
def fdach_alpha_1(x):
    result = f(x[0],x[1])+5*psi_1(x[0],x[1])
     return result
def fdach_alpha_2(x):
    result = f(x[0],x[1])+7*psi_2(x[0],x[1])
     return result
res_1 = minimize(fdach_alpha_1,np.array([0.5,-0.5]))
res_2 = minimize(fdach_alpha_2,np.array([0.5,0.5]))
res 1.x
array([ 0.62258489, -0.46863049])
res_2.x
array([ 0.37714705, 0.35030619])
f(0.62,-0.47)
-0.198152
f(0.38,0.35)
0.27664
fdach_alpha_1(res_1.x)
-1.409923900695528
fdach_alpha_2(res_2.x)
-1.3442389749970767
```

g) Bestimmen Sie, aufbauend auf Aufgabenteil f), ein möglichst kleines Intervall, in dem der optimale Zielfunktionswert v liegt.

Beweis: Es ist

$$-1.4099 \le v \le -0.1982 \iff v \in [-1.4099, -0.1982]$$

h) Was passiert, wenn Sie versuchen mit dem in Aufgabenteil d) verwendeten Solver das Minimum von f aufX mit Startpunkt $x_0 = (0,0)^T$ auszurechnen? Vergleichen Sie Ihr Ergebnis mit Aufgabenteil f) und g).

Beweis: Mit dem Solver kommt als Minimalpunkt $x^* = (0,0)$ raus, da

$$f((0,0)) = 0 \notin [-1.4099, -0.1982],$$

liegt der Optimalwert im Vergleich zu den vorherigen Aufgaben über der Oberschranke $\tilde{v}=-0.1982\Rightarrow$ schlechteres Ergebnis.

Gegeben seien stetige Funktionen $f, g: X \to \mathbb{R}$, auf einer konvexen und kompakten Menge $X \subseteq \mathbb{R}^n$, die nicht notwendigerweise eine Box ist. Darüber hinaus sei f nicht konvex und

$$\hat{f} := f + q$$

eine konvexe Relaxierung von f auf X.

Sei o.B.d.A X nicht-leer, dann sonst ist in den folgenden Teilaufgaben nichts zu zeigen.

a) Folgt hieraus, dass g eine konvexe Funktion ist? Beweisen Sie Ihre Behauptung.

Beweis: Die gilt im Allgemeinen nicht. Betrachtet man den Fall n = 2 und $X = [-1, 1]^2$ (wodurch X konvex ist), so folgt mit

$$f(x) = \frac{1}{2} (3x_1^2 - x_2^2)$$
 und $\tilde{g}(x) = \frac{1}{2} (-x_1^2 + 3x_2^2)$,

dass f und g als Polynome in $C^1(X)$ liegen. Außerdem sind f, g nicht konvex, was aus Satz 2.2.2 (C^1 -Charakterisierung von Konvexität) folgt, da

$$f\left(\begin{pmatrix}1\\1\end{pmatrix}\right) = 1 \le 1 + 2 = f\left(\begin{pmatrix}1\\-1\end{pmatrix}\right) + \left\langle\begin{pmatrix}3\\1\end{pmatrix}, \begin{pmatrix}1\\1\end{pmatrix} - \begin{pmatrix}1\\-1\end{pmatrix}\right\rangle$$
$$\tilde{g}\left(\begin{pmatrix}1\\-1\end{pmatrix}\right) = 1 \le 1 + 2 = \tilde{g}\left(\begin{pmatrix}-1\\-1\end{pmatrix}\right) + \left\langle\begin{pmatrix}1\\-3\end{pmatrix}, \begin{pmatrix}1\\-1\end{pmatrix} - \begin{pmatrix}-1\\-1\end{pmatrix}\right\rangle$$

Es gilt außerdem, dass

$$\frac{3}{2}x_1^2 \ge f(x) \ge -\frac{1}{2}x_2^2$$

für alle $x \in X$, sodass $f(x) \in [-0.5, 1.5]$ und analog $\tilde{g}(x) \in [-0.5, 1.5]$. Somit folgt mit g := g - 1.5, dass als Verschiebung von \tilde{g} die Funktion g ebenfalls nicht konvex ist, $\hat{f}(x) = f(x) + g(x) = x_1^2 + x_2^2 - 1.5 \le f(x)$ für alle $x \in X$. Außerdem ist \hat{f} in $C^2(X)$ als Polynom und damit

$$D^2\hat{f} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \succ 0$$

wodurch \hat{f} nach Satz 2.5.3 (C^2 -Charakterisierung von Konvexität) konvex ist. Insgesamt erhalten wir eine konvexe Funktion \hat{f} für die $\hat{f}(x) \leq f(x)$ gilt, d.h. \hat{f} ist eine konvexe Relaxierung.

b) Nun gelte $g(x) \ge -2$ für alle $x \in X$. Zeigen Sie, dass für die Minimalwerte v bzw. \hat{v} von f bzw. \hat{f} auf X gilt:

$$0 \le v - \hat{v} \le 2.$$

Beweis: Da f und g nach Aufgabe stetig sind, ist \hat{f} auch stetig. Somit nehmen, f, \hat{f} und g als stetige Funktionen auf der kompakten Menge X nach dem Satz von Weierstraß (Satz 1.2.10) ihr Minimum an. Nach a) bzw. Definition 3.2.2 (Konvex relaxierte Funktion), ist $\hat{f}(x) \leq f(x)$ für alle $x \in X$, und damit auch

$$\min_{x \in X} \hat{f}(x) \le \min_{x \in X} f(x) \iff 0 \le \min_{x \in X} f(x) - \min_{x \in X} \hat{f}(x) = v - \hat{v}$$

Nach Voraussetzung ist

$$g(x) \ge -2 \iff -g(x) \le 2.$$

Es folgt mit Übung 1.3.1 (Skalare Vielfache und Summen):

$$\min_{x \in X} \hat{f}(x) = \min_{x \in X} \left(f(x) + g(x) \right) \ge \min_{x \in X} f(x) + \min_{x \in X} g(x)$$

$$\iff \min_{x \in X} \hat{f}(x) - \min_{x \in X} f(x) \geq \min_{x \in X} g(x) \iff v - \hat{v} \leq -\min_{x \in X} g(x) = \max_{x \in X} -g(x) \leq 2,$$

wobei wir im letzten Schritt Ausgenutzt haben, dass 2 eine Oberschranke von -g ist, d.h.

$$0 < v - \hat{v} < 2$$

c) Nun seien $X \in \mathbb{IR}$, $f \in C^2(X,\mathbb{R})$, D^2f faktorisierbar und $g = \alpha \psi(x)$ per αBB Methode bestimmt. Zeigen Sie, dass für die Minimalwerte v bzw. \hat{v} von f bzw. \hat{f}

auf X die folgende Abschätzung gilt

$$v - \hat{v} \le \frac{\alpha}{8} w(X)^2$$

Beweis: Da die Voraussetzungen von a) und b) gelten und nach Übung 3.4.1

$$\psi(x) \ge \min_{x \in X} \psi(x) = -\frac{1}{8} w(X)^2,$$

folgt die Behauptung aus b), indem man

$$g(x) \coloneqq \alpha \psi(x) \quad \forall x \in X$$

setzt, damit nicht $g(x) \ge -2$ sondern $g(x) \ge \alpha \min_{x \in X} \psi(x) = -\frac{\alpha}{8} w(X)^2$, und da nach Satz 3.4.3 folgt, dass $\hat{f} = f + \psi$ eine konvexe Relaxierung von f auf X ist. \square

d) Geben Sie eine Funktion f, eine Box X und ein $\alpha \geq 0$ an, sodass das die Voraussetzungen aus c) erfüllt und die Ungleichung aus c) mit Gleichheit erfüllt ist.

Beweis: a \Box