Condensed Matter Physics

Compiled by: Mohammad Yasir Updated: November 2, 2023

Part B - Advanced

Quick Note: Condensed Matter Physics is not included in the Core Part A syllabus.

1. Lead is superconducting below 7 K and has a critical magnetic field 800×10^{-4} tesla close to 0 K. At 2 K the critical current that flows through a long lead wire of radius 5 mm is closest to (February 15, 2022)

4 1 Tab 4

- **A.** 1760 A
- **B.** 1670 A
- **C.** 1950 A
- **D.** 1840 A
- **2.** A lattice is defined by the unit vectors $\vec{a_1} = a\hat{i}$, $\vec{a_2} = -\frac{a}{2}\hat{i} + \frac{a\sqrt{3}}{2}\hat{j}$, and $\hat{a_3} = a\hat{k}$, where a > 0 is a constant. The spacing between the (100) planes of the lattice is (November 19, 2020)
- **A.** $\sqrt{3}a/2$
- **B.** a/2
- $\mathbf{C}. a$
- **D.** $\sqrt{2}a$

3. A tight binding model of electrons in one dimension has the dispersion relation $\varepsilon(k) = -2t(1-\cos ka)$, where t>0, a is the lattice constant and $\frac{-\pi}{a} < k < \frac{\pi}{a}$. Which of the following figures best represents the density of states over the range $\frac{\pi}{2a} \le k < \frac{\pi}{a}$? (November 19, 2020)

 \mathbf{A}

В.

 $\mathbf{C}.$

D.

4. The energy density I of a black body radiation at temperature T is given the Planck's distribution function

$$I(\nu, T) = \frac{8\pi\nu^2}{c^3} \frac{h\nu}{(e^{\frac{h\nu}{k_BT}} - 1)}$$

- where ν is the frequency. The frequency $I(\nu, T)$ for two different temperatures T_1 and T_2 are shown above: If the two curves coincide when $I(\nu, T)\nu^a$ is plotted against ν^b/T , then the values of a and b are, respectively, (November 19, 2020)
- **A.** 2 and 1
- **B.** -2 and 2
- **C.** 3 and -1
- **D.** -3 and 1
- **5.** For an ideal gas consisting of N distinguishable particles in a volume V, the probability of finding exactly 2 particles in a volume $\delta V \ll V$, in the limit $N, V \to \infty$, is (November 19, 2020)
- **A.** $2N\delta V/V$
- **B.** $(N\delta V/V)^2$
- C. $\frac{(N\delta V)^2}{2V^2}e^{-N\delta V/V}$
- **D.** $\left(\frac{\delta V}{V}\right)^2 e^{-N\delta V/V}$