

Preet Kanwal
Department of Science & Engineering

Finite State Machines
or
Finite State Automata
or
Finite Automata

Classification of Finite State Machines

Basic Notations:

```
Alphabet (\Sigma)
String (w)
Empty String (\epsilon or \lambda)
Length of a String (|w|)
Power of an Alphabet (\Sigma^i)
Kleens Closure or Kleens Star ( \Sigma^* )
Kleens Plus ( \Sigma^+ )
Language (L)
```


Basic Notations:

Alphabet - Finite Set of Symbols, denoted by Σ

Example:

- Binary Alphabet {0, 1}
- English Alphabet {a, b, c, z}
- ASCII

Basic Notations:

String - Denoted by w is a finite sequence of symbols from the alphabet Σ .

Example:

• Empty String - $\{\epsilon\}$ or $\{\lambda\}$

Lets say, $\Sigma = \{0, 1\}$ then, various strings that can be generated are:

 ϵ , 0, 1, 01, 10, 11, 00, 101,111, 110, 011, 010, and so on

Basic Notations:

Length of a String - It is the number of symbols in a String w. Denoted as |w|.

Example:

- Empty String $\{\epsilon\}$ or $\{\lambda\}$ has length 0
- If w = 0100 then, |w| = 4

PES UNIVERSITY ONLINE

Basic Notations:

Power of an Alphabet - Denoted by $\Sigma^{\rm i}$ is the set of strings of length i.

Example:

```
if \Sigma = \{0, 1\} then,
```

 $\Sigma^0 = {\lambda}$ set of strings of length 0

 $\Sigma^1 = \{0,1\}$ set of strings of length 1

 $\Sigma^2 = \{00, 01, 10, 11\}$ set of strings of length 2

••••

•••••

Basic Notations:

Kleene Closure(Kleene Star) - Denoted by Σ^* is the set of strings of length >=0 i.e. $\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \Sigma^3 \cup \ldots$

Kleene Plus - Denoted by Σ^+ is the set of strings of length > 0

i.e.
$$\Sigma^+ = \Sigma^1 \cup \Sigma^2 \cup \Sigma^3 \cup ...$$

Basic Notations:

Language - Denoted by L is the set of strings obtained from Σ^* .

Language L is a subset of Σ^* ,

$$L \subseteq \Sigma^*$$

Example:

Language over $\Sigma = \{0, 1\}$ containing strings that contain equal number of 0's and 1's.

$$L = \{ \lambda, 01, 10, 1100, 0101, 1010, 1100, \}$$

Basic Notations:

```
Language - Finite or Infinite
Example:
Finite Language
L = set of string over \Sigma = \{0, 1\} such that |w| = 2
L = \{00, 01, 10, 11\}
Infinite Language
L = set of string over \Sigma = \{0, 1\} such that |w| > 2
L = \{00, 101, 010, 011, 100, 110, 001, 111,
1100, ..... }
```


For Infinite languages
we need a finite
representation which
we can store in memory
and is able to do the
same kind of check

5-tuple or quintuple

 $M = (Q, \Sigma, \delta, q_0, F)$

M - Machine/Automata

Q - Set of States (finite)

 Σ - Set of Input Symbols

 δ - Transition Function

q₀ - Start State

F - Set of Final States $F \subseteq Q$

Summary:

- An *automaton* is an idealized mathematical computing machine.
- A language is a set of strings.
- The automata we study will accept as input a string and (attempt to) determine whether that string is contained in a particular language.
- A finite automaton is a simple type of mathematical machine for determining whether a string is contained within some language.

Machine M can be defined in 3 different ways:

- 1) Transition Diagram
- 2) Transition Table
- 3) Transition Function

Automata Formal Languages & Logic

Final State

Unit 1 - Finite state Machines

Each finite automaton consists of a set of states connected by transitions. Symbols used in Constructing a Finite Automata as

 $\delta(q_n, a) = q_n$

THANK YOU

Preet Kanwal

Department of Science & Engineering

preetkanwal@pes.edu

+91 80 6666 3333 Extn 724