EPITA

Mathematics

Final exam S3

December 2022

Duration: 3 hours

Name:
First name:
Class:
MARK:
The marking system is for a mark between 0 and 40. It will be divided by 2, to get a mark between 0 and 20
Instructions:
 — Documents and pocket calculators are not allowed. — Write your answers on the stapled sheets provided for answering. No other sheet will be corrected.

1

— Please, do not use lead pencils for answering.

Exercise 1 (6 points)

An internet service provider has an hotline service, in order to assist the customers having connection problems. For a 1-hour time interval, consider the random variable

X = "Number of calls to the hotline service during this 1-hour time interval"

Assume that the numbers of calls, in two non-overlapping time intervals, are independent random variables. We accept without proof that, in this hypothesis, there exists $\lambda > 0$ such that $X \leadsto \operatorname{Poisson}(\lambda)$, that is,

$$X(\Omega) = \mathbb{N}$$
 and $\forall n \in \mathbb{N}, P(X=n) = e^{-\lambda} \frac{\lambda^n}{n!}$

The hotline service is opened 10 hours each day (from 9:00 to 19:00), and the value of λ is the same for all 1-hour time interval contained in the opening hours.

	1 0
1.	Find the generating function $G_X(t)$ of variable X. First, express $G_X(t)$ as a power series, then express it with the usual functions.
2.	Compute the expectation and the variance of X .
3.	Consider a day d and the random variable
	Y = "Number of calls to the hotline service during the whole day"
	(a) Find the generating function G_Y of variable Y. Justify accurately.
	(b) Deduce the distribution of Y .

Exercise 2 (6.5 points)

Consider the linear map $f: \left\{ \begin{array}{ccc} \mathbb{R}_2[X] & \longrightarrow & \mathbb{R}^2 \\ P & \longmapsto & \left(P(1), P(2)\right) \end{array} \right.$

1. Let $P = aX^2 + bX + c \in \mathbb{R}_2[X]$. Write the conditions on (a, b, c) for $P \in \text{Ker}(f)$. Then find a basis of Ker(f).

2. Find the rank of f, then Im(f).

3. In $\mathbb{R}_2[X]$, consider the polynomials $P_1 = -X + 2$ and $P_2 = X - 1$. Compute $P_i(1)$ and $P_i(2)$ for $i \in \{1, 2\}$.

4. Find a basis \mathcal{B} of $\mathbb{R}_2[X]$ such that the matrix of f in this basis \mathcal{B} as input basis and in the standard output basis is $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.

5. Find the set S of all the polynomials $P \in \mathbb{R}_2[X]$ such that f(P) = (42, 1).

Exercise 3 (8 points)

Consider the matrices $A = \begin{pmatrix} -1 & -1 & -2 \\ 2 & 2 & 2 \\ 2 & 1 & 3 \end{pmatrix}$ and $B = \begin{pmatrix} -4 & -2 & 4 \\ -6 & -5 & 8 \\ -6 & -4 & 7 \end{pmatrix}$.

1.	Compute in factorized form the characteristic polynomials of A and B . Check that the eigenvalues of A are 1 and 2 and that the eigenvalues of B are 0 and -1 .
2.	Are matrices A and B diagonalizable in $\mathcal{M}_3(\mathbb{R})$? If they are, find P and D. Be accurate in your reduction.

Consider $\mathcal{B}_1=(e_1,\cdots,e_n)$ a basis of F and $\mathcal{B}_2=(e_1,\cdots,e_n)$ a basis of G . Assume that the concatenated family $\mathcal{B}=(e_1,\cdots,e_n,e_1,\cdots,e_p)$ is a basis of E . 1. What can be said about F and G in this case? 2. Prove this property.	Let E be a finite-dimensional vector space, F and G two linear subsp	aces of E of non-zero dimensions n and p .
Assume that the concatenated family $\mathcal{B}=(e_1,\cdots,e_n,\varepsilon_1,\cdots,\varepsilon_p)$ is a basis of E . 1. What can be said about F and G in this case? 2. Prove this property.		
1. What can be said about F and G in this case? 2. Prove this property.		
2. Prove this property.		Dasis of E.
	1. What can be said about F and G in this case:	
	2. Prove this property.	

Exercise 5: building a symmetry (8 points)

Let us work in the vector space $E = \mathbb{R}^3$ and its standard basis \mathcal{B} . Consider the linear subspaces

 $F = \{(x, y, z) \in E, \ x - y + 2z = 0\} \qquad \text{and} \qquad G = \left\{(x, y, z) \in E, \ \middle| \begin{array}{ccc} x + y + z & = & 0 \\ x - y + z & = & 0 \end{array} \right\}$

1.	Find a basis of F and a basis of G .
2.	Show that $E = F \oplus G$.
3.	According to the previous question, we know that for all $u \in E$, there exists a unique $(v, w) \in F \times G$ such that $u = v + w$
	Consider the endomorphism $s: u \longmapsto v - w$. (a) Assume that $u \in F$. What is the value of $s(u)$?
	(a) Assume that $u \in F$. What is the value of $s(u)$:
	(b) Assume that $u \in G$. What is the value of $s(u)$?

(c)	Let \mathcal{B}' be the concatenation of the bases of F and G that you got at question 1. We know that it is a basis of E What is the matrix of s in basis \mathcal{B}' as input and output basis. This matrix is denoted by A' .
(d)	Let A be the matrix of s in the standard basis as input and output basis. Write the formula which enables one to compute A. We don't ask you to do the computation.
Exerc	ise 6: Probabilities (5 points)
	0,1[. Consider a random variable X which is geometric-distributed with parameter p .
_	rite explicitly the distribution of X .
1. W.	The explicitly the distribution of A.
• •	
	Show that $P(X>n)=q^n$ where $q=1-p$.
	Hint: you can start by writing $P(X>n) = \sum_{k=n+1}^{+\infty} P(X=k)$ or, alternatively, $P(X>n) = 1 - \sum_{k=1}^{n} P(X=k)$.
(b)	Explain why $P(X=n+k \cap X>n) = P(X=n+k)$.
(c)	Compute the conditional probability $P(X=n+k\mid X>n)$. Compare your result with the value of $P(X=k)$.

(d) Explain why we say that the distribution of X is "memoryless".	
3. Consider a random variable Y such that	
$Y(\Omega) = \mathbb{N}^*$ and $\forall (k, n) \in (\mathbb{N}^*)^2$, $P(Y = n + k \mid Y > n) = P(Y = k)$	
Let (p_n) be the sequence defined for all $n \in \mathbb{N}^*$ by: $p_n = P(Y=n)$. (a) Express $P(Y>1)$ as a function of p_1 .	
(b) By using the events "Y>1", "Y=1" and "Y=2", express $\frac{p_2}{p_1}$ as a function of p_1 .	
(c) Similarly, for all $n \in \mathbb{N}^*$, by using the events "Y>1", "Y=n" and "Y=n+1", find a simple expression of	$\frac{p_{n+1}}{p_n}$.
(d) Deduce the value of p_n as a function of n . How do we call the distribution of Y ?	