Simionesei Loredana-Marinela Prisacaru Elena-Cătălina grupa A5 anul 1

Tema 1 Algoritmica Grafurilor

Problema 3

a) Presupunem că G=(V,E) este un graf.

R-COV(G,k) returnează "Yes" dacă \exists o mulțime T \subseteq V(E), T-vertex cover pentru G, $|T| \le k \le n$.

1. If $E(G) = \emptyset$ then return ("Yes", \emptyset);

În această secvență se verifică dacă G nu are muchii, iar în cazul în care $E(G) = \emptyset$, răspunsul primit va fi că există o mulțime $T \subseteq V(G)$, T-vertex cover.

2. If|E(G)| > k(|V(G)|-1) then return "No";

Considerăm o mulțime de k noduri, fiecare nod din această mulțime poate fi adiacent cu cel mult n-1 noduri (poate fi adiacent cu oricare din celelalte noduri), de unde rezultă că fiecare nod poate parcurge cel mult k(n-1) muchii. Așadar, răspunsul trebuie să fie "No" dacă |E(G)| > k(n-1).

- 3. Let $\{u,v\} \in E(G)$;
- 4. If R-COV(G-u,k-1) return ("Yes",T) then return ("Yes", $T \cup \{u\}$)
- 5. else if R-COV(G-v,k-1) return ("Yes",T) then return ("Yes", $T \cup \{v\}$)

Considerăm acum orice muchie $(u,v) \in E(G)$.

Considerăm o mulțime de noduri $T \subseteq V(G)$.

Dacă T-vertex cover pentru G, atunci înseamnă că măcar o extremitate a muchiei (u,v) aparține lui T, adică măcar nodul u sau nodul v este din mulțimea T.

Dacă eliminăm nodul u sau nodul v din G, trebuie să eliminăm și toate muchiile incidente cu acest nod. Obținem în felul acesta un subgraf G' al grafului G. Facem aceeași eliminare și din $T \subseteq V(G)$ obținând astfel o mulțime $T' \subseteq V(G')$, T'-vertex cover pentru G'.

6. else return ("No");

De aceea R-COV(G,k) returnează "Yes" dacă R-COV(G-u,k-1) sau R-COV(G-v,k-1) returnează "Yes". Altfel, returnează "No", adică nici u și nici v nu aparțin lui T.

b) Presupunem k-constantă.

Atunci când alegem o muchie (u,v) din E(G), există cel mult $\binom{n}{2}$ iterații ($\binom{n}{2} = \frac{n(n-1)}{2} = >$ complexitate O(n^2)).

Pentru fiecare muchie $(u,v) \in E(G) \exists$ cel mult două apeluri recursive (unul pentru nodul u şi altul pentru nodul v). Acest apel recursiv formează de fapt un arbore binar de adâncime maximă k-1. Numărul maxim de noduri într-un arbore binar de adâncime cel mult k-1 este 2^k -1=>

•
$$T(n,k) = O(2^k n^2)$$

k-constantă => T(n,k)= $O(n^2)$.

Problema 1

a) Vom arăta că $\{B_1^+, B_2^+, \dots, B_p^+\}$ este o partiție a lui V(D).

Dacă un vertex $v \in \text{unor componente } B_i^+$, $B_j^+ \subseteq \{B_1^+, B_2^+, \dots, B_p^+\}$, $i, j \in \{1, 2, \dots, p\}$ spunem că $x \in B_i^+ \cap B_j^+$, atunci \exists un arc de la $x \in B_i$ spre v şi un alt arc de la $y \in B_j$ spre v.

(Observație ! Două noduri a și b au un "common prey" dacă $a^+ \cap b^+ \neq \emptyset$).

Atunci x şi y împart acelaşi "common prey" - nodul v, deci este o muchie în G_{cp} de la x la y, ceea ce contrazice faptul că x şi y fac parte din componente diferite ale lui G_{cp} . Astfel, componentele B_1^+ , B_2^+ ,..., B_p^+ sunt separate.

 \forall B_z⁺, z \in {1,2,...,p} pentru că în orice nod w \in B_z⁺, z \in {1,2,...,p} este un arc cu extremitatea în w (adică pleacă din nodul w).

Din ipoteză => faptul că în orice vertex din $B_1^+, B_2^+, \dots, B_p^+$ există un arc care intră în nodul $w \in B_z^+, z \in \{1,2,\dots,p\}$. În concluzie, $\{B_1^+, B_2^+, \dots, B_p^+\}$ este o partiție a lui V(D).

Analog pentru $\{A_1^-, A_2^-, \dots, A_k^-\}$

Vom arăta că $\{A_1^-,\,A_2^-\,,\dots,A_k^-\}$ este o partiție a lui V(D).

Dacă un vertex $v \in \text{unor componente } A_i^-, A_j^- \subseteq \{A_1^-, A_2^-, \dots, A_k^-\}, i,j \in \{1,2,\dots,k\}$ spunem că $v \in A_i^- \cap A_j^-$, atunci \exists un arc de la v spre $x \in A_i$ și un alt arc de la v spre $y \in A_j$.

(Observație! Două noduri a și b au un "common enemy" dacă $a^- \cap b^- \neq \emptyset$).

Atunci x şi y împart acelaşi "common enemy" - nodul v, deci este o muchie în G_{ce} de la x la y, ceea ce contrazice faptul că x şi y fac parte din componente diferite ale lui G_{ce} . Astfel, componentele $A_1^-, A_2^-, \ldots, A_k^-$ sunt separate.

 \forall A_z^- , $z\in\{1,2,\ldots,k\}$ pentru că în orice nod $w\in A_z^-$, $z\in\{1,2,\ldots,k\}$ un arc cu vârful în w (adică intră din nodul w).

Din ipoteză => faptul că în orice vertex din $A_1^-, A_2^-, \ldots, A_k^-$ există un arc care iese în nodul $w \in A_z^-, z \in \{1,2,\ldots,k\}$. În concluzie, $\{A_1^-, A_2^-, \ldots, A_k^-\}$ este o partiție a lui V(D).

b) Presupunem că \exists două vârfuri u şi $v \in B_1^+$. Dacă u şi v împart acelaşi "common prey" $w \in B_1$, atunci ele împart şi acelaşi "common enemy", de unde obținem că sunt adiacente în G_{ce} .

Roşu pentru Gcp ("common prey"). Albastru pentru Gce ("common enemy")

Pe de altă parte avem $b_1,b_t \in B_1$ în care exită un arc $[b_1, u]$ şi un arc $[b_t, v] => \exists$ un drum de lungime minimă de la b_1 la b_t în G_{cp} .

Pentru că b_1 şi b_2 sunt adiacente în G_{lp} ele împart acelaşi "common prey" în u_1 , apoi u şi n_1 împart acelaşi "common enemy" prin $b_1 => u$ i u_1 sunt adiacente în $G_{ce} => \exists (u, u_1) \in E(G_{ce})$.

Generalizare:

Pentru că b_i şi b_{i+1} sunt adiacente în G_{cp} ele împart un "common prey" îp u_i . Apoi u_{i-1} şi u_i împart un "common enemy" în $B_i => u_{i-1}$ şi u_i unt adiacente în G_{ce} . Aşadar, u şi v fac parte din aceeaşi componentă convexă din $G_{ce} =>$ componentele conexe din B_i^+ , i $\in \{1,2,\ldots,p\}$, apartin unei componente din A_j^+ , $j \in \{1,2,\ldots,k\} => B_i$ şi A_j sunt bijective şi p=k.

Analog pentru $A_{jsi}B_{i}$.

Presupunem că \exists două vârfuri u şi $v \in A_1^-$. Dacă u şi v împart acelaşi "common enemy" $w \in A_1$, atunci ele împart şi acelaşi "common prey", de unde obţinem că sunt adiacente în G_{cp} .

Pe de altă parte avem $a_1, a_t \in A_1$ în care există un arc $[a_1, c]$ și un arc $[s_t, v] => \exists$ un drum de lungime minimă de la a_1 la a_t în G_{ce} .

Pentru că a_1 şi a_2 sunt adiacente în G_{ce} ele împart acelaşi "common enemy" în u_1 , apoi u şi u_1 împart acelaşi "common prey" prin $a_1 => u$ şi u_1 sunt adiacente în $G_{rp} => \exists (u, u_1) \in E(G_{ce})$.

Generalizare:

Pentru că a_i şi o_{i+1} sunt adiacente în G_{ce} ele împart un "common enemy" în u_n . Apoi u_{i-1} şi u_i împart un "common prey" în $A_j => u_{i-1}$ şi u_i sunt adiacente îp G_{cp} . Aşadar, u şi v fac parte din aceeaşi componentă convexă din $G_{cp} =>$ componentele conexe din A_e^- , $i \in \{1,2,\ldots,k\}$, aparțin unei componente din B_i^+ , $i \in \{1,2,\ldots,p\} => A_j$ şi B_i sunt bijective şi p=k.

Din cele două cazuri => că G_{cp} și G_{ce} au același număr de componente conexe.

Problema 2

a) D=(V,E) are proprietatea că \forall nod $v \in V(D)$, $d^+(v) = d^-(v)=1$.

Din această proprietate deducem faptul că pentru \forall nod $v \in V(D)$, $\exists x,y \in V(D)$ astfel încât arcele (x,v) şi $(v,y) \in E(D)$.

Tot din proprietatea $d^+(v) = d^-(d)=1$ deducem faptul că în digraful cu cel puțin 3 noduri se formează un circuit.

Presupunem că pentru \forall i<n (n=numărul de vârfuri), alegând orice mulțime $S \subset V$, cu |S|=i, \exists un nod v din V(D) astfel încât $|S \cap v^+| \equiv 1 \mod 2$.

P(1): pentru k=1, |S|=1, adică conține un nod v, \exists un nod y $\in~V(D)$ și arcul (y,v) \in

E(D)astfel încât $|y^+ \cap S| \equiv \ 1 \bmod 2 => S$ conține un singur vârf => "A"

Vom considera P(k) adevărată și demonstrăm că P(k+1) adevărată.

P(k): pentru \forall mulţime $S \subset V(D)$, |S| = k. \exists un vârf $v \in V(D)$ astfel încât $|v^+ \cap S| \equiv 1 \mod 2$. Vom nota această mulţime S cu A.

P(k+1): \forall S ⊂ V, $|S| = k+1 = > \exists$ un vârf w ∈ V(D) astfel încât $|w^+ \cap S| \equiv 1 \mod 2$. Vom nota această mulțime S cu B.

Vom considera că $\{B\}=\{A\}\cap \{v\},\ v\in V(D),\ dar\ nu\in A,\ adică v\in V(D)\setminus A.$

 $\forall \ nodul \ v \in \ V(D) \backslash A, \ \exists \ un \ nod \ i \ astfel \ \hat{n} \\ nc\hat{a}t \ (y,v) \in \ E(D) => y^+ = \{v\}, \ adică \ nu \ \exists \ un \ alt \ nod \ care \ să \ plece \ din \ y => |\ y^+| = 1.$

 $|y^+ \cap \{v\}| = |y^+ \cap \{A \cup v\}| \equiv 1 \mod 2 = >P(k+1)$ "A". Deci, conform principiului inducției matematice => în digraful D nu \exists mulțime pară.

b)

x este inițial "solo-prey" pentru u; z este inițiat "solo-prey" pentru w; y este "commno-prey" pentru u și w; După ce facem modificările necesare obținem D $_{uw}$.

Acum y o să fie "solo-prey" pentru w, iar z o să fie "common-prey" pentru u şi w. Vom demonstra că digraful inițial D are o mulțime pară $\langle = \rangle$ D $_{uw}$ are o muțime pară. $|\mathbf{u}^+|=|\mathbf{x}|+|\mathbf{x}_i|+|\mathbf{c}|+|\mathbf{c}_i|$ $|\mathbf{w}^+|=|\mathbf{y}|+|\mathbf{y}_i|+|\mathbf{c}|+|\mathbf{c}_i|$, unde $|\mathbf{x}|,|\mathbf{y}|$ -toate "solo-prey" ale lui u,w care nu sunt în S

 $|\mathbf{x}_i|, |\mathbf{y}_i|$ -toate "solo-prey" ale lui u,w care sunt în S $|\mathbf{c}|$ -toate "common-prey" ale lui u şi w care nu sunt în S $|\mathbf{c}_i|$ toate "common-prey" ale lui u şi w care sunt în S

 $|\mathbf{x}_i + \mathbf{c}_i| \equiv 0 \mod 2$ $|\mathbf{y}_i + \mathbf{c}_i| \equiv 0 \mod 2$, unde x_i, y_i, c_i au *aceeasi* paritate

 $|\mathbf{u}^+| = |\mathbf{x}| + |\mathbf{x}_i| + |\mathbf{y}| + |\mathbf{y}_i|$ $|\mathbf{w}^+| = |\mathbf{c}| + |\mathbf{c}_i| + |\mathbf{y}| + |\mathbf{y}_i|$

Mulţimea de "solo-prey" pentru w devine mulţimea de "comlon-prey" pentru u şi w, iar "common-prey" devine "solo-prey" pentru w.

 $|\mathbf{u}^+ \cap \mathbf{S}| = \mathbf{x}_i + \mathbf{u}_i \equiv 0 \mod 2$

Pentru că \exists o mulțime pară în D $_{uw} => \exists$ o mulțime pară și în digraful inițial.

d) Fie matricea de adiacență A a lui D cu elemente din corpul GF(2).

Presupunem că există o mulțime S pară.

Fie nodul $v \in \text{lui } S$. Adunăm toate coloanele corespunzătoare nodurilor din S pe coloana v.

```
A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1v} & \dots & a_{1m} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2v} & \dots & a_{2m} \\ \vdots & \vdots & \vdots & \ddots & a_{3v} & \dots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nv} & \dots & a_{nm} \end{bmatrix}
```

```
m=nr_de_linii
n=nr_de_coloane

for (int i=0; i<nr_linii;i++)
{
    for(int j=0;j<nr_coloane;j++)
{
        a[i][v]+=a[i][j];
}
}
Dacă obţinem pe coloana v doar 0 (a[i][j]=0 pentru orice i=0,i<nr_linii)
= > det(A)=0 = > mulţimea S este mulţime pară de vârfuri = > că digraful D are o mulţime pară de vârfuri.
```