Épreuve : Statistique mathé-

matique

Durée : 02 Heures Date : 12/01/2023

Nbre de pages : 02 pages

Université de Sousse

Institut des Hautes Études Commerciales de Sousse Niveau: M1

Finance & Actuariat

Enseignant: Hamrita

Mohamed Essaied

Session principale

La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la clarté entreront pour une part importante dans l'appréciation des copies. Téléphone portable et documents interdits.

Exercice 1 (9 points)

Soit $(x_1, x_2, ..., x_n)$ un n-échantillon aléatoire indépendant et identiquement distribué selon la loi normale de paramètres m et $\sigma^2 = \theta$ inconnus tous les deux.

- 1) Déterminer la fonction de vraisemblance en logarithme de l'échantillon.
- 2) Déterminer par la méthode du maximum de vraisemblance des estimateurs des paramètres m et θ .
- 3) Les estimateurs sont-ils sans biais? Sinon, donner des estimateurs sans biais.
- 4) Déterminer la matrice des variances-covariance de $(\widehat{m},\widehat{\theta})$. Étudier l'efficacité des estimateurs.
- 5) Un échantillon aléatoire de taille n=10 a donné les observations suivantes :

$$x = (2.83, 1.72, 1.64, 2.09, 4.25, 2.83, 3.31, 4.50, 3.17, 1.57);$$
 $\sum x_i = 27.91, \sum x_i^2 = 87.81$

- a) Calculer les valeurs des estimateurs de m et de θ . Calculer la valeur de vraisemblance correspondante.
- b) Donner la matrice Hessienne empirique. En déduire l'estimation de la matrice

1

des variances-covariances des estimateurs de m et θ .

c) Écrire les codes R nécessaires pour répondre aux questions précédentes (vraisemblance, estimateurs, matrice hessienne et la matrice des variances-covariances).

Exercice 2 (11 points)

Soit le modèle linéaire suivant : $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$ où $\varepsilon \stackrel{i.i.d}{\sim} N(0,1)$. Un échantillon aléatoire de taille n = 20 a donné les observations suivantes :

On donne: $\sum x_i = 19$; $\sum y_i = 14$; $\sum x_i y_i = 93$ et $\sum x_i^2 = 85$.

On souhaite estimer $\beta = (\beta_0, \beta_1)$ par la méthode du maximum de vraisemblance.

- 1) Écrire la densité de la variable $y_i|x_i$. En déduire sa vraisemblance en logarithme.
- 2) Déterminer le vecteur score $s(\beta|y_i)$, la matrice hessienne $H(\beta|y_i)$ et la quantité d'information de Fisher $I_n(\beta|y_i)$.
- 3) Déterminer l'estimateur du vecteur ${\pmb \beta}$ par la méthode du maximum de vraisemblance. Étudier ses qualités.
- 4) Tester, au seuil $\alpha = 5\%$, $H_0: \beta_0 = -2$ et $\beta_1 = 1$ par le trigoly (LR, Wald et LM) tout en précisant, à chaque fois, la statistique à utiliser et la règle de décision. (On donne $\chi^2_{0.05}(2) = 6$).
- 4) Reprendre les questions en écrivant les codes R nécessaires.

Bon travail