Proyek Analisis Data: Bike Sharing Dataset

• Nama: Sylvie Lee

• Email: sylvielee273@gmail.com

• ID Dicoding: sylvielee

from google.colab import drive

Menentukan Pertanyaan Bisnis

- 1. Bagaimana pengaruh hari kerja terhadap rata-rata jumlah pengguna bike sharing harian?
- 2. Bagaimana pengaruh kondisi cuaca terhadap rata-rata jumlah pengguna bike sharing harian?
- 3. Bagaimana hubungan antara musim dan rata-rata jumlah pengguna bike sharing harian?
- 4. Bagaimana pola peningkatan dan penurunan rata-rata jumlah pengguna bike sharing harian dalam kurun waktu tertentu?

Import Semua Packages/Library yang Digunakan

```
drive.mount('/content/drive')
    Mounted at /content/drive

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from statistics import mean, median, mode, StatisticsError
import math
from scipy.stats import norm
import seaborn as sns
from babel.numbers import format_currency
sns.set(style='dark')
```

Data Wrangling

Gathering Data

1. Importing The Dataset

Note: I only use day.csv for analysis data

df1 = pd.read_csv("/content/drive/MyDrive/Bike-sharing-dataset.zip (Unzipped F
df1.head()

	instant	dteday	season	yr	mnth	holiday	weekday	workingday	weathersi
0	1	2011- 01-01	1	0	1	0	6	0	
1	2	2011- 01-02	1	0	1	0	0	0	
2	3	2011- 01-03	1	0	1	0	1	1	
3	4	2011- 01-04	1	0	1	0	2	1	
4	5	2011- 01-05	1	0	1	0	3	1	

2. Dropping Unused Column

df1 = df1.drop(["temp", "atemp", "hum", "windspeed"], axis=1)
df1.head()

	instant	dteday	season	yr	mnth	holiday	weekday	workingday	weathersi
0	1	2011- 01-01	1	0	1	0	6	0	
1	2	2011- 01-02	1	0	1	0	0	0	
2	3	2011- 01-03	1	0	1	0	1	1	
_	A	2011-		^		^	_	4	

→ 3. Rename and Convert for better understanding

	user_id	datetime	season	year	month	holiday	weekday	workingday	weat
0	1	2011-01- 01	1	0	1	0	6	0	
1	2	2011-01- 02	1	0	1	0	0	0	
2	3	2011-01- 03	1	0	1	0	1	1	
3	4	2011-01- 04	1	0	1	0	2	1	
4	5	2011-01- 05	1	0	1	0	3	1	

```
# Data convertion for understanding
```

```
# Converting 'season' : 1:Winter, 2:Spring, 3:Summer, 4:Fall
df1.season.replace((1,2,3,4), ('Winter','Spring','Summer','Fall'), inplace=Tru
# Converting 'year' : 0:2011, 1:2012
df1.year.replace((0,1), (2011,2012), inplace=True)
```

```
# Converting 'month' : 1:Jan, 2:Feb, 3:Mar, 4:Apr, 5:May, 6:Jun, 7:Jul, 8:Aug
df1.month.replace((1,2,3,4,5,6,7,8,9,10,11,12),('Jan','Feb','Mar','Apr','May',

# Converting 'weathersit' : 1:Clear, 2:Misty, 3:Light_RainSnow 4:Heavy_RainSnow
df1.weather_condition.replace((1,2,3,4), ('Clear','Misty','Light_RainSnow','He

# Comverting'weekday' : 0:Sun, 1:Mon, 2:Tue, 3:Wed, 4:Thu, 5:Fri, 6:Sat
df1.weekday.replace((0,1,2,3,4,5,6), ('Sunday','Monday','Tuesday','Wednesday',

# Converting 'workingday' : 0:No, 1:Yes
df1.workingday.replace((0,1), ('No', 'Yes'), inplace=True)

# Converting 'holiday' : 0:No, 1:Yes
df1.holiday.replace((0,1), ('No', 'Yes'), inplace=True)
```

	user_id	datetime	season	year	month	holiday	weekday	workingday	T/s
0	1	2011-01- 01	Winter	2011	Jan	No	Saturday	No	
1	2	2011-01- 02	Winter	2011	Jan	No	Sunday	No	
2	3	2011-01- 03	Winter	2011	Jan	No	Monday	Yes	
3	4	2011-01- 04	Winter	2011	Jan	No	Tuesday	Yes	
4	5	2011-01- 05	Winter	2011	Jan	No	Wednesday	Yes	
95	96	2011-04- 06	Spring	2011	Apr	No	Wednesday	Yes	
96	97	2011-04- 07	Spring	2011	Apr	No	Thursday	Yes	
97	98	2011-04- 08	Spring	2011	Apr	No	Friday	Yes	
98	99	2011-04- 09	Spring	2011	Apr	No	Saturday	No	
99	100	2011-04- 10	Spring	2011	Apr	No	Sunday	No	

¹⁰⁰ rows × 12 columns

Assessing Data

→ 1. Missing Value

df1.isnull().sum()

user_id	0
datetime	0
season	0
year	0
month	0
holiday	0
weekday	0
workingday	0
weather_condition	0
casual	0
registered	0
total_count	0
dtype: int64	

2. Duplicated Data

df1.duplicated().sum()

0

→ 3. Data info

df1.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 731 entries, 0 to 730 Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	user_id	731 non-null	int64
1	datetime	731 non-null	object
2	season	731 non-null	object
3	year	731 non-null	int64
4	month	731 non-null	object
5	holiday	731 non-null	object
6	weekday	731 non-null	object
7	workingday	731 non-null	object
8	weather_condition	731 non-null	object
9	casual	731 non-null	int64
10	registered	731 non-null	int64
11	total_count	731 non-null	int64
1.1	' ' ' (/ -) ' '	. / ¬ \	

dtypes: int64(5), object(7)
memory usage: 68.7+ KB

4. Cleaning Data

1. Convert Datatype

```
df1['user id'] = df1.user id.astype('category')
df1['datetime'] = pd.to_datetime(df1['datetime'])
df1['season'] = df1.season.astype('category')
df1['month'] = df1.month.astype('category')
df1['holiday'] = df1.holiday.astype('category')
df1['weekday'] = df1.weekday.astype('category')
df1['workingday'] = df1.workingday.astype('category')
df1['weather condition'] = df1.weather condition.astype('category')
df1.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 731 entries, 0 to 730
    Data columns (total 12 columns):
         Column
                            Non-Null Count
                                             Dtype
         user_id
                             731 non-null
                                             category
     1
         datetime
                            731 non-null
                                             datetime64[ns]
     2
                            731 non-null
         season
                                             category
     3
         vear
                            731 non-null
                                             int64
     4
                            731 non-null
         month
                                             category
     5
                            731 non-null
         holiday
                                             category
     6
         weekday
                            731 non-null
                                             category
     7
         workingday
                            731 non-null
                                             category
         weather_condition 731 non-null
                                             category
     9
                             731 non-null
         casual
                                             int64
     10
        registered
                            731 non-null
                                             int64
                             731 non-null
     11 total count
                                             int64
    dtypes: category(7), datetime64[ns](1), int64(4)
```

```
df1.to csv("all data.csv", index=False)
```

memory usage: 57.6 KB

- Exploratory Data Analysis (EDA)
- Explore Data Statistic

df1.describe()

	year	casual	registered	total_count
count	731.000000	731.000000	731.000000	731.000000
mean	2011.500684	848.176471	3656.172367	4504.348837
std	0.500342	686.622488	1560.256377	1937.211452
min	2011.000000	2.000000	20.000000	22.000000
25%	2011.000000	315.500000	2497.000000	3152.000000
50%	2012.000000	713.000000	3662.000000	4548.000000
75%	2012.000000	1096.000000	4776.500000	5956.000000
max	2012.000000	3410.000000	6946.000000	8714.000000

df1.describe(include='all')

<ipython-input-37-f89e5509e305>:1: FutureWarning: Treating datetime data as
 df1.describe(include='all')

	user_id	datetime	season	year	month	holiday	weekday	worki
count	731.0	731	731	731.000000	731	731	731	
unique	731.0	731	4	NaN	12	2	7	
top	1.0	2011-01- 01 00:00:00	Summer	NaN	Aug	No	Monday	
freq	1.0	1	188	NaN	62	710	105	
first	NaN	2011-01- 01 00:00:00	NaN	NaN	NaN	NaN	NaN	
last	NaN	2012-12- 31 00:00:00	NaN	NaN	NaN	NaN	NaN	
mean	NaN	NaN	NaN	2011.500684	NaN	NaN	NaN	
std	NaN	NaN	NaN	0.500342	NaN	NaN	NaN	
min	NaN	NaN	NaN	2011.000000	NaN	NaN	NaN	
25%	NaN	NaN	NaN	2011.000000	NaN	NaN	NaN	
50%	NaN	NaN	NaN	2012.000000	NaN	NaN	NaN	
75%	NaN	NaN	NaN	2012.000000	NaN	NaN	NaN	
max	NaN	NaN	NaN	2012.000000	NaN	NaN	NaN	

Berdasarkan data di atas, kita dapat mengetahui bahwa:

- Pengguna Kasual Bike Sharing berjumlah 2 hingga 3410 per hari pada tahun 2011 dan 2012
- Pengguna Register Bike Share berjmlah 20 hingga 6946 per hari pada tahun 2011 dan 2012
- Jumlah keseluruhan pengguna (Kasual dan Register) Bike Sharing berjumlah 22 hingga 8714 per hari pada tahun 2011 dan 2012

2. Grouping Data

```
import pandas as pd
import matplotlib.pyplot as plt

# Assuming 'result' is the DataFrame obtained from the previous aggregation
df1.groupby(by="datetime").agg({
    "casual": ["max", "min", "mean"],
    "registered": ["max", "min", "mean"],
    "total_count": ["max", "min", "mean"]
})
```

	casu	al		registered		total_count			
	max	min	mean	max	min	mean	max	min	mean
datetime									
2011-01-01	331	331	331.0	654	654	654.0	985	985	985.0
2011-01-02	131	131	131.0	670	670	670.0	801	801	801.0
2011-01-03	120	120	120.0	1229	1229	1229.0	1349	1349	1349.0
2011-01-04	108	108	108.0	1454	1454	1454.0	1562	1562	1562.0
2011-01-05	82	82	82.0	1518	1518	1518.0	1600	1600	1600.0
2012-12-27	247	247	247.0	1867	1867	1867.0	2114	2114	2114.0
2012-12-28	644	644	644.0	2451	2451	2451.0	3095	3095	3095.0
2012-12-29	159	159	159.0	1182	1182	1182.0	1341	1341	1341.0
2012-12-30	364	364	364.0	1432	1432	1432.0	1796	1796	1796.0
2012-12-31	439	439	439.0	2290	2290	2290.0	2729	2729	2729.0

731 rows × 9 columns

df1.groupby('weather_condition')['total_count'].mean().reset_index().sort_valu

	weather_condition	total_count
1	Light_RainSnow	1803.285714
2	Misty	4035.862348
0	Clear	4876.786177

df1.groupby('workingday')['total_count'].mean().reset_index().sort_values("tot

	workingday	total_count
0	No	4330.168831
1	Yes	4584.820000

df1.groupby('season')['total_count'].mean().reset_index().sort_values("total_c

	season	total_count
3	Winter	2604.132597
0	Fall	4728.162921
1	Spring	4992.331522
2	Summer	5644.303191

Visualization & Explanatory Analysis

Pertanyaan 1: Bagaimana pengaruh hari kerja terhadap rata-rata jumlah pengguna keseluruhan (kasual dan register) bike sharing harian?

```
plt.figure(figsize=(10, 5))
sns.boxplot(x="workingday", y="total_count", data=df1)
plt.title("Jumlah Bike Sharing Harian pada non-Workingday dan Workingday")
plt.xlabel("Workingday")
plt.ylabel("Jumlah Bike Sharing Harian")
plt.show()
```


Jumlah Bike Sharing Harian pada non-Workingday dan Workingday

Berdasarkan visualisasi di atas, kita dapat mengetahui bahwa rata-rata jumlah pengguna bike-sharing harian pada **hari kerja** lebih besar daripada **hari non-kerja**.

Pertanyaan 2: Bagaimana pengaruh kondisi cuaca terhadap rata-rata jumlah pengguna keseluruhan (kasual dan register)bike sharing?

```
weather = df1.groupby('weather_condition')['total_count'].mean().reset_index()
plt.figure(figsize=(7, 3))
sns.barplot(x='total_count', y='weather_condition', hue='weather_condition', d
plt.title('Rata - Rata Total Pengguna Bike Sharing Harian berdasarkan Kondisi
plt.xlabel('Total pengguna')
plt.ylabel('Kondisi Cuaca')
```

Text(0, 0.5, 'Kondisi Cuaca')

Berdasarkan visualisasi di atas, kita dapat mengetahui bahwa rata-rata jumlah pengguna bike-sharing harian paling banyak terjadi pada saat kondisi cuaca **clear** dan paling sedikit terjadi saat kondisi cuaca **Light_Rainsnow**.

Kondisi cuaca sangat mempengaruhi tingkat pengguna bike-sharing harian. Makin baik kondisi cuaca, maka total pengguna bike-sharing akan makin meningkat, sebaliknya Makin buruk kondisi cuaca, maka total pengguna bike-sharing akan makin menurun.

Pertanyaan 3: Bagaimana hubungan antara musim dan rata-rata jumlah pengguna keseluruhan (kasual dan register) bike sharing?

```
season = df1.groupby('season')['total_count'].mean()
names = ['Spring', 'Summer', 'Fall', 'Winter']
plt.bar(names, season)
plt.xlabel('Musim')
plt.ylabel('Rata-rata jumlah pengguna')
plt.title('Pengaruh Musim Terhadap rata-rata jumlah Pengguna Bike-Sharing Hari
plt.show()
```


Berdasarkan visualisasi di atas, kita dapat mengetahui bahwa urutan musim dengan rata-rata jumlah pengguna bike-sharing harian dari yang paling banyak hingga yang paling sedikit secara berurutan adalah Fall, Summer, Spring, dan Winter.

4. Bagaimana Pola Peningkatan dan Penurunan rata-rata jumlah Pengguna Bike-Sharing Harian dalam kurun waktu tertentu?

Set the Seaborn style to whitegrid
sns.set_style('whitegrid')

```
# Assuming 'cnt', 'casual', and 'registered' are the columns you want to mean
count_by_day = df1.groupby('datetime')[['total_count', 'casual', 'registered']
plt.figure(figsize=(10, 6)) # Adjust the figure size as needed
# Use 'count_by_day.index' for x-axis and respective columns for y-axis
plt.plot(count_by_day.index, count_by_day['total_count'], label='Total Bikes S
plt.plot(count_by_day.index, count_by_day['casual'], label='Pengguna Kasual')
plt.plot(count_by_day.index, count_by_day['registered'], label='Pengguna Regis
# Add max values for x and y axes
max_x = count_by_day['total_count'].idxmax()
max_y = count_by_day['total_count'].max()
plt.annotate(f'Max: ({max_x}, {max_y})', xy=(max_x, max_y), xytext=(max_x, max_y)
plt.xlabel('Waktu')
plt.ylabel('Total Pengguna')
plt.title('Total Pengguna Bikes Sharing Harian')
plt.legend()
plt.grid(True)
plt.show()
```


Berdasarkan visualisasi di atas, kita dapat mengetahui bahwa terdapat pola rata-rata jumlah penggunaan bike-sharing lebih besar terjadi pada Bulan **Mei** hingga Bulan **Oktober** per tahunnya.

Conclusion

A. Pertanyaan 1: rata-rata jumlah pengguna bike-sharing harian pada hari kerja lebih besar daripada hari non-kerja.

Peningkatan jumlah penyewaan pada hari kerja kemungkinan menunjukkan adanya kebutuhan masyarakat untuk melaksanakan kegiatan sehari-hari seperti bekerja, bersekolah, atau berbelanja. Pemilihan sepeda sebagai sarana transportasi mungkin menjadi pilihan yang diminati untuk perjalanan singkat, terutama pada hari-hari ketika orang memiliki kegiatan rutin mereka.

B. Pertanyaan 2: rata-rata jumlah pengguna bike-sharing harian paling banyak terjadi pada saat kondisi cuaca clear dan paling sedikit terjadi saat kondisi cuaca Light_Rainsnow.

Kondisi cuaca sangat mempengaruhi tingkat pengguna bike-sharing harian. Makin baik kondisi cuaca, maka total pengguna bike-sharing akan makin meningkat. Sebaliknya, makin buruk kondisi cuaca, maka total pengguna bike-sharing akan makin menurun.

Cuaca yang cerah cenderung menciptakan suasana yang lebih menyenangkan untuk melakukan kegiatan di luar ruangan, seperti bersepeda. Pada saat cuaca cerah, orang lebih condong untuk menggunakan sepeda karena kelangsungan aktivitas tersebut tidak terhambat oleh hujan atau kondisi cuaca yang tidak mendukung.

C. Pertanyaan 3: Urutan musim dengan rata-rata jumlah pengguna bike-sharing harian dari yang paling banyak hingga yang paling sedikit secara berurutan adalah Fall, Summer, Spring, dan Winter.

Kondisi di atas kemungkinan terjadi karena:

- Musim fall sering dihubungkan dengan suhu yang nyaman, pemandangan yang indah karena daun-daun berguguran, dan kondisi cuaca yang stabil. Semua faktor ini dapat membuat orang lebih termotivasi untuk bersepeda, baik untuk kegiatan rekreasi maupun transportasi.
- Musim dingin dapat menjadi tantangan bagi aktivitas sepeda karena cuaca yang dingin, bersalju, atau berawan. Kondisi ini dapat mengurangi minat orang untuk menggunakan sepeda, terutama untuk perjalanan.

D. Pertanyaan 4: Pola rata-rata jumlah penggunaan bike-sharing lebih besar terjadi pada Bulan **Mei** hingga Bulan **Oktober** per tahunnya.

Pola ini bersesuaian dengan rata-rata jumlah penggunaan bike sharing terbesar yang terjadi pada musim fall dan summer. Bulan Mei hingga Bulan Oktober berada dalam rentang kedua musim tersebut.