Matrix Factorization

Date @2021/09/15

	괌	파리	로마	하와이	베니스
마이콜	2	8	9	1	8
사오정	8	2	1	8	1
길동	1	5	?	1	7
팔계	7	2	1	8	1
오공	1	8	9	2	9
둘리	9	1	2	?	2
삼장법사	6	1	2	7	2

- 특성이 비슷한 장소에 대해 특정 유저가 어떤 선호도를 보일 것인지 예측하는 것
- 유저가 이 정도 규모가 아닌 무수히 많아진다면...?

개념

⇒ 임의에 x에 대해서 연산이 된 후 결과가 나온 다는 것을 알 수 있다.

	Weight														
	Weight										괌	파리	로마	하와이	베니스
마이콜	.									마이콜	2	8	9	1	8
사오정										사오정	8	2	1	8	1
		x		괌	파리	로마	하와이	베니스		길동	1	5	?	1	7
길동		^	Weight						=	팔계	7	2	1	8	1
팔계										오공	1	8	9	2	9
오공										둘리	9	1	2	?	2
둘리										삼장법사	6	1	2	7	2
삼장															

따라서 정리하면 이 모습처럼 결과를 예측할 수 있다. 하지만 단순한 차원으로 인해 결과 역 시 단조로울 수 있다.

차원을 늘릴 수로 예측이 상세하게 나오지만, 그만큼의 시간 소모가 들어가게 될 것이다.

$$mse = \sum_{u,i \in k} (p_u q_i + b_u + b_i - r_{ui})^2$$

경사 하강법

편미분을 하면 그래프의 기울기를 구할 수 있기에, 이를 반복하면 포물선 그래프에서의 최소 값을 확인할 수 있다.

$$p_{u(new)} = p_u - \gamma \sum (p_u q_i + b_u + b_i - r_{ui}) q_i$$

$$b_{u(new)} = b_u - \gamma \sum (p_u q_i + b_u + b_i - r_{ui})$$

$$q_{i(new)} = q_i - \gamma \sum (p_u q_i + b_u + b_i - r_{ui}) p_u$$

$$b_{i(new)} = b_i - \gamma \sum (p_u q_i + b_u + b_i - r_{ui})$$

실제 코드

```
iteration = 5000
k = 3
R = np.array([
     [2, 8, 9, 1, 8],
     [8, 2, 1, 8, 1],
                                                               8.0
1.9
4.9
2.0
8.0
1.0
                                                                     8.9
1.0
7.4
0.9
9.0
2.0
1.9
                                                                             0.9
8.0
1.0
7.9
2.0
9.2
6.9
                                                                                   Ŏ.9]
7.0]
     [1, 5, -1, 1, 7],
                                                                                   1.0]
                                                         [7.ŏ
     [7, 2, 1, 8, 1],
                                                                                   8.9]
1.9]
     [1, 8, 9, 2, 9],
                                                                                   2.0]]
     [9, 1, 2, -1, 2],
     [6, 1, 2, 7, 2]])
predicted_R = matrix_factorization(R, k, iteration)
print(predicted_R)
```

```
def matrix_factorization(R, k, iteration):
                                                                    p_{u(new)} = p_u - \gamma \sum_{i} (p_u q_i + b_u + b_i - r_{ui}) q_i
   user_count, item_count = R.shape
                                                                    b_{u(new)} = b_u - \gamma \sum_{i} (p_u q_i + b_u + b_i - r_{ui})
   P = np.random.normal(size=(user_count, k))
   Q = np.random.normal(size=(item_count, k))
                                                                    q_{i(new)} = q_i - \gamma \sum (p_u q_i + b_u + b_i - r_{ui}) p_u
   bu = np.zeros(user_count)
   bi = np.zeros(item_count)
   for iter in range(iteration):
                                                                    b_{i(new)} = b_i - \gamma \sum (p_u q_i + b_u + b_i - r_{ui})
       for u in range(user_count):
          for i in range(item_count):
                   error = prediction(P[u, :], Q[i, :], bu[u], bi[i]) - r
                   delta_Q, delta_bi = gradient(error, P[u, :])
                   delta_P, delta_bu = gradient(error, Q[i, :])
                   P[u, :] -= delta_P
                   bu[u] -= delta_bu
                   Q[i, :] -= delta_Q
                   bi[i] -= delta_bi
   return P.dot(Q.T) + bu[:, np.newaxis] + bi[np.newaxis:, ]
```

```
def gradient(error, weight):  \begin{aligned} &\text{learning\_rate} = \textbf{0.005} \\ &\text{weight\_delta} = \text{learning\_rate} * \text{np.dot(weight.T, error)} \\ &\text{bias\_delta} = \text{learning\_rate} * \text{np.sum(error)} \\ &\text{return weight\_delta, bias\_delta} \end{aligned} \qquad \begin{aligned} &p_{u(new)} = p_u - \gamma \sum (p_u q_i + b_u + b_i - r_{ui}) q_i \\ &b_{u(new)} = b_u - \gamma \sum (p_u q_i + b_u + b_i - r_{ui}) \end{aligned} \\ &q_{i(new)} = q_i - \gamma \sum (p_u q_i + b_u + b_i - r_{ui}) p_u \\ &b_{i(new)} = b_i - \gamma \sum (p_u q_i + b_u + b_i - r_{ui}) \end{aligned}
```