

Public Key Encryption from trapdoor permutations

RSA in practice

RSA With Low public exponent

To speed up RSA encryption use a small e: $c = m^e \pmod{N}$

- Minimum value: **e=3** (gcd(e, $\varphi(N)$) = 1)
- Recommended value: **e=65537=2**¹⁶+1

Encryption: 17 multiplications

Asymmetry of RSA: fast enc. / slow dec.

ElGamal (next module): approx. same time for both.

Key lengths

Security of public key system should be comparable to security of symmetric cipher:

	RSA
Cipher key-size	Modulus size
80 bits	1024 bits
128 bits	3072 bits
256 bits (AES)	15360 bits

Implementation attacks

Timing attack: [Kocher et al. 1997] , [BB'04]

The time it takes to compute c^d (mod N) can expose d

Power attack: [Kocher et al. 1999)

The power consumption of a smartcard while it is computing c^d (mod N) can expose d.

Faults attack: [BDL'97]

A computer error during c^{d} (mod N) can expose d.

A common defense: check output. 10% slowdown.

An Example Fault Attack on RSA (CRT)

A common implementation of RSA decryption: $x = c^d$ in Z_N

decrypt mod p:
$$x_p = c^d$$
 in Z_p combine to get $x = c^d$ in Z_N decrypt mod q: $x_q = c^d$ in Z_q

Suppose error occurs when computing x_q , but no error in x_p

Then: output is x' where $x' = c^d$ in Z_p but $x' \neq c^d$ in Z_q

$$\Rightarrow$$
 $(x')^e = c \text{ in } Z_p \text{ but } (x')^e \neq c \text{ in } Z_q \Rightarrow \gcd((x')^e - c, N) =$

RSA Key Generation Trouble [Heninger et al./Lenstra et al.]

OpenSSL RSA key generation (abstract):

```
prng.seed(seed)
p = prng.generate_random_prime()
prng.add_randomness(bits)
q = prng.generate_random_prime()
N = p*q
```

Suppose poor entropy at startup:

- Same p will be generated by multiple devices, but different q
- N_1 , N_2 : RSA keys from different devices \Rightarrow gcd(N_1 , N_2) = p

RSA Key Generation Trouble [Heninger et al./Lenstra et al.]

Experiment: factors 0.4% of public HTTPS keys!!

Lesson:

 Make sure random number generator is properly seeded when generating keys

Further reading

Why chosen ciphertext security matters, V. Shoup, 1998

Twenty years of attacks on the RSA cryptosystem,
 D. Boneh, Notices of the AMS, 1999

OAEP reconsidered, V. Shoup, Crypto 2001

Key lengths, A. Lenstra, 2004

End of Segment