Optimisation en nombres entiers

Définitions

Optimisation en nombres entiers

Un problème d'optimisation en nombres entiers est un problème d'optimisation dont toutes les variables sont contraintes à ne prendre que des valeurs entières.

- Variables discrètes : nombre d'objets à considérer, nombre d'actions à effectuer, etc.
 - Nombres de vélos à installer sur le campus.
 - Nombres d'ouvriers à affecter à un chantier.
- Variables binaires (0/1): oui/non, allumer/éteindre, etc.
 - Utiliser la voiture ou pas.
 - Construire un pont ou pas.
 - Allumer la climatisation ou pas.

Définitions

Optimisation mixte en nombres entiers

Un problème d'optimisation mixte en nombres entiers est un problème d'optimisation dont certaines variables sont contraintes à ne prendre que des valeurs entières.

- Mobilité :
 - Décision binaire : acheter une seconde voiture ou non.
 - Décision continue : nombre de kilomètres à effectuer.
- Energie:
 - Décision binaire : installer une nouvelle chaudière électricité/gaz.
 - Décision continue : quantité de gaz à brûler.

Introduction

• Problème d'optimisation linéaire en nombres entiers

$$\min_{x \in \mathbb{R}^n} c^T x$$

sous contraintes

$$Ax = b$$

$$x \ge 0$$

$$x \in \mathbb{N}$$

Introduction

• Problème d'optimisation linéaire binaire

$$\min_{x \in \mathbb{R}^n} c^T x$$

sous contraintes

$$Ax = b$$

$$x \ge 0$$

$$x \in \{0, 1\}$$

Introduction

Approche intuitive immédiate :

- Ignorer les contraintes d'intégralité.
- Résoudre le problème linéaire.
- Si la solution n'est pas entière, arrondir à l'entier le plus proche.

En général, cela ne fonctionne pas!

Exemple

$$\min_{x \in \mathbb{R}^2} -3x_1 - 13x_2$$

sous contraintes

$$2x_1 + 9x_2 \le 40$$

 $11x_1 - 8x_2 \le 82$
 $x_1, x_2 \ge 0$
 x_1, x_2 entiers

Exemple: polytope des contraintes

Exemple : solution du problème continu

Exemple: contraintes d'intégralité

Exemple: voisins non admissibles

Exemple : solution du problème discret

Problèmes

- Il y a 2ⁿ façons d'arrondir une solution non entière. Laquelle choisir ?
- Arrondir une solution non entière peut générer une solution non admissible.
- La solution arrondie peut se trouver très loin de la solution optimale.

- Une société désire investir dans l'énergie hydro-électrique.
- Les ingénieurs ont identifié 4 sites potentiels pour la construction de barrages.
- Pour chaque site, ils ont évalué les coûts d'investissement, et le bénéfice attendu sur le long terme.
- La société a une capacité d'investissement de 1400 k\$.
- Quels barrages doit-elle construire ?

Barrage	Coût	Bénéfice	Rendement
1	500	1600	3.20
2	700	2200	3.14
3	400	1200	3.00
4	300	800	2.67

Modélisation:

• Variables de décision: x_1 , x_2 , x_3 , x_4 .

$$x_i = \begin{cases} 1 & \text{si le barrage } i \text{ est choisi,} \\ 0 & \text{sinon.} \end{cases}$$

• Fonction objectif : maximiser le bénéfice

$$\max 16x_1 + 22x_2 + 12x_3 + 8x_4$$

Contrainte : capacité d'investissement

$$5x_1 + 7x_2 + 4x_3 + 3x_4 \le 14$$

Problème linéaire continu :

$$\max_{x \in \mathbb{R}^4} 16x_1 + 22x_2 + 12x_3 + 8x_4$$

sous contraintes

$$5x_1 + 7x_2 + 4x_3 + 3x_4 \le 14$$

$$x_1, x_2, x_3, x_4 \ge 0.$$

$$x_1 = 2.8, x_2 = 0, x_3 = 0, x_4 = 0.$$

Solution optimale:

$$x_1 = 2.8, x_2 = 0, x_3 = 0, x_4 = 0.$$

• Décision : ne construire que le barrage 1.

• Coût: 500 k\$

• Somme non investie: 900 k\$

• Bénéfice : 1600 k\$

Problème linéaire continu 2 :

$$\max_{x \in \mathbb{R}^4} 16x_1 + 22x_2 + 12x_3 + 8x_4$$

sous contraintes

$$5x_1 + 7x_2 + 4x_3 + 3x_4 \le 14$$

$$0 \le x_1, x_2, x_3, x_4 \le 1.$$

$$x_1 = 1, x_2 = 1, x_3 = 0.5, x_4 = 0.$$

$$x_1 = 1, x_2 = 1, x_3 = 0.5, x_4 = 0.$$

- Décision : construire les barrages 1 et 2.
- Barrage 3 : plus assez d'argent pour le construire.
- Coût: 1200 k\$
- Somme non investie: 200 k\$
- Bénéfice : 3800 k\$

Problème linéaire discret :

$$\max_{x \in \mathbb{R}^4} 16x_1 + 22x_2 + 12x_3 + 8x_4$$

sous contraintes

$$5x_1 + 7x_2 + 4x_3 + 3x_4 \le 14$$

$$x_1, x_2, x_3, x_4 \in \{0, 1\}$$

$$x_1 = 0, x_2 = 1, x_3 = 1, x_4 = 1.$$

Solution optimale:

$$x_1 = 0, x_2 = 1, x_3 = 1, x_4 = 1.$$

• Décision : construire les barrages 2, 3 et 4.

• Coût: 1400 k\$

Somme non investie : 0 k\$

• Bénéfice : 4200 k\$

 Le barrage correspondant au plus haut rendement n'est pas sélectionné.

Conclusion: l'approche "intuitive" ne fonctionne pas.

Conditions d'optimalité

- Il n'est pas possible de caractériser la solution optimale d'un problème d'optimisation en nombres entiers.
- Autrement dit, il n'y a pas de conditions d'optimalité pour l'optimisation discrète.
- Cela complique considérablement la résolution du problème.
- Il y a essentiellement deux manières d'aborder le problème.

Algorithmes

1. Méthodes exactes:

- la solution optimale est fournie,
- mais le temps nécessaire pour la trouver est une fonction exponentielle de la taille du problème.

2. Méthodes heuristiques :

- une "bonne" solution est fournie,
- aucune garantie d'optimalité,
- aucune mesure de qualité de la solution,
- performances évaluées empiriquement sur des problèmes connus.

Branch & bound

Idées:

- Parcours systématique de l'ensemble admissible.
- Diviser pour conquérir.
- Utilisation de bornes sur le coût optimal pour éliminer des régions admissibles sans les explorer.

Soit le problème d'optimisation P

$$\min f(x)$$

sous contraintes

$$x \in F$$

- F est l'ensemble des solutions admissibles.
- Soit une partition de *F*

$$F = F_1 \cup \ldots \cup F_K$$
.

• Soit x_k^* la solution optimale du problème P_k

$$\min f(x)$$

sous contraintes

$$x \in F_k$$

- Pour tout k, x_k^* est admissible pour le problème P.
- Soit i tel que

$$f(x_i^*) \le f(x_k^*), \ \forall k = 1, \dots, K.$$

- Alors, x_i^* est la solution optimale du problème P.
- Motivation : chaque sous-problème est plus simple que le problème initial.

Et chaque problème peut à nouveau être partitionné.

- Le nombre de sous-problèmes devient vite très grand.
- Il faut éviter de passer toutes les combinaisons possibles en revue.
- Idée : utiliser des bornes.

Bound

Soit le sous-problème P_k

$$\min f(x)$$

sous contraintes

$$x \in F_k$$

• On suppose que l'on peut calculer facilement une borne inférieure b_k

$$b_k \le f(x), \ \forall x \in F_k.$$

- Soit $y \in F$ une solution admissible du problème P.
- Si

$$f(y) \le b_k \le f(x), \ \forall x \in F_k,$$

alors cela ne vaut pas la peine de résoudre le problème P_k .

Algorithme de branch & bound

A chaque instant on maintient

- une liste de sous-problèmes actifs $\{P_1, P_2, \ldots\}$,
- la valeur U=f(y) de la meilleure solution admissible obtenue jusque là.
- Initialisation :
 - soit $U = +\infty$,
 - soit U = f(x) avec x admissible connu.

Algorithme de branch & bound

Itération:

- Soit P_k un sous-problème actif.
- Si P_k est non admissible, le supprimer de la liste.
- Sinon, calculer la borne b_k .
- Si $U \leq b_k$, supprimer P_k de la liste.
- Sinon,
 - soit résoudre P_k directement,
 - soit partitionner F_k et créer de nouveaux sous-problèmes, qui sont ajoutés à la liste.

- Sur un chantier, il faut affecter 4 ouvriers à 4 tâches.
- L'ouvrier i effectue la tâche j en c_{ij} heures :

Ouvrier	Tâche 1	Tâche 2	Tâche 3	Tâche 4
A	9	2	7	8
В	6	4	3	7
С	5	8	1	8
D	7	6	9	4

• Comment répartir les tâches pour que le nombre total d'heures soit le plus petit possible ?

Modélisation:

Variables de décision :

$$x_{ij} = \begin{cases} 1 & \text{si l'ouvrier } i \text{ effectue la tâche } j, \\ 0 & \text{sinon.} \end{cases}$$

• Fonction objectif:

$$\min \sum_{ij} c_{ij} x_{ij}$$

- Contraintes:
 - 1. Chaque ouvrier doit effectuer exactement une tâche :

$$\sum_{j} x_{ij} = 1 \ \forall i.$$

2. Chaque tâche doit être effectuée par exactement un ouvrier :

$$\sum_{i} x_{ij} = 1 \ \forall j.$$

Ouvrier	Tâche 1	Tâche 2	Tâche 3	Tâche 4
A	9	2	7	8
В	6	4	3	7
С	5	8	1	8
D	7	6	9	4

Calcul de la borne :

- La tâche la plus rapide pour A prend 2 heures.
- La tâche la plus rapide pour B prend 3 heures.
- La tâche la plus rapide pour C prend 1 heure.
- La tâche la plus rapide pour D prend 4 heures.

Impossible de faire mieux que 10 heures.

- Problèmes actifs : $\{P_0\}$
- $U = +\infty$
- $b_0 = 10 < U$: on partitionne P_0 .
 - P_{01} : on décide que A effectue la tâche 1,
 - P_{02} : on décide que A effectue la tâche 2,
 - P_{03} : on décide que A effectue la tâche 3,
 - P_{04} : on décide que A effectue la tâche 4.
- Chacun de ces problèmes revient à affecter 3 ouvriers à 3 tâches.
- Ils sont chacun plus simples que P_0 .
- Notation : $P_k[b_k]$

$$U = +\infty$$

Calcul des bornes.

Ouvrier	Tâche 1	Tâche 2	Tâche 3	Tâche 4
Α	9	2	7	8
В	6	4	3	7
С	5	8	1	8
D	7	6	9	4

- La tâche la plus rapide pour B prend 3 heures.
- La tâche la plus rapide pour C prend 1 heure.
- La tâche la plus rapide pour D prend 4 heures.

$$b_{01} = 9 + 8 = 17$$
 $b_{02} = 2 + 8 = 10$
 $b_{03} = 7 + 8 = 15$
 $b_{04} = 8 + 8 = 16$

$$U = +\infty$$

- Problèmes actifs : $\{P_0, P_{01}, P_{02}, P_{03}, P_{04}\}$
- $U = +\infty$
- P_{02} est le plus prometteur car associé à la meilleure borne.
- On partitionne P_{02}
 - P_{021} : on décide que B effectue la tâche 1,
 - P_{022} : on décide que B effectue la tâche 2,
 - P_{023} : on décide que B effectue la tâche 3,
 - P_{024} : on décide que B effectue la tâche 4.
- P_{022} est non admissible.
- Chacun des autres problèmes revient à affecter 2 ouvriers à 2 tâches.

$$U = +\infty$$

Calcul des bornes.

Ouvrier	Tâche 1	Tâche 2	Tâche 3	Tâche 4
Α	9	2	7	8
В	6	4	3	7
С	5	8	1	8
D	7	6	9	4

- La tâche la plus rapide pour C prend 1 heure.
- La tâche la plus rapide pour D prend 4 heures.

$$b_{021} = 2+6+5 = 13$$

 $b_{023} = 2+3+5 = 10$
 $b_{024} = 2+7+5 = 14$

- Problèmes actifs : $\{P_0, P_{01}, P_{02}, P_{03}, P_{04}, P_{021}, P_{023}, P_{024}\}$
- $U = +\infty$
- P_{023} est le plus prometteur car associé à la meilleure borne.
 - P_{0231} : on décide que C effectue la tâche 1,
 - P_{0232} : on décide que C effectue la tâche 2,
 - P_{0233} : on décide que C effectue la tâche 3,
 - P_{0234} : on décide que C effectue la tâche 4.
- P_{0232} et P_{0233} sont non admissible.
- Chacun des autres problèmes est trivial à résoudre.
- P_{0231} : A(2), B(3), C(1), D(4).
- Temps total : 2 + 3 + 5 + 4 = 14.
- P_{0234} : A(2), B(3), C(4), D(1).
- Temps total : 2 + 3 + 8 + 7 = 20.

- Solution optimale de P_{023} trouvée. Valeur : 14
- Problèmes actifs : $\{P_0, P_{01}, P_{02}, P_{03}, P_{04}, P_{021}, P_{024}\}$
- U = 14
- Notation : $P_k(f(x_k^*))$

U = 14

• On peut maintenant supprimer les sous-problèmes dont la borne est plus grande ou égale à U.

U = 14

- Problèmes actifs : $\{P_0, P_{02}, P_{021}\}$
- U = 14
- On partitionne P_{021}
 - P_{0211} : on décide que C effectue la tâche 1,
 - P_{0212} : on décide que C effectue la tâche 2,
 - P_{0213} : on décide que C effectue la tâche 3,
 - P_{0214} : on décide que C effectue la tâche 4.
- P_{0211} et P_{0212} sont non admissibles.
- Chacun des autres problèmes est trivial à résoudre.
- P_{0213} : A(2), B(1), C(3), D(4).
- Temps total : 2 + 6 + 1 + 4 = 13.
- P_{0214} : A(2), B(1), C(4), D(3).
- Temps total : 2 + 6 + 8 + 9 = 25.

$$U = 13$$

$$U = 13$$

Branch & Bound

Classe d'algorithmes avec

- différentes méthodes pour partitionner,
- différentes méthodes pour choisir le sous-problème à traiter,
- différentes méthodes pour calculer les bornes.

Relaxation

Soit le problème d'optimisation P

$$\min f(x)$$

sous contraintes

$$g(x) \leq 0$$

$$h(x) = 0$$

$$x \in \mathbb{Z}$$

Le problème relaxé R(P) est obtenu en ignorant les contraintes d'intégralité

$$\min f(x)$$

sous contraintes

$$g(x) \leq 0$$

$$h(x) = 0$$

Branch

- Soit x_R^* la solution optimale de R(P).
- Si toutes les composantes sont entières, alors x_R^* est aussi solution optimale de P.
- Sinon, il existe au moins une composante i non entière $(x_R^*)_i$.
- Le problème P est alors partitionné :

P_ℓ	P_r			
$\min f(x)$	$\min f(x)$			
sous contraintes	sous contraintes			
$g(x) \leq 0$	$g(x) \leq 0$			
h(x) = 0	h(x) = 0			
$x \in \mathbb{Z}$	$x \in \mathbb{Z}$			
$x_i \leq \lfloor (x_R^*)_i \rfloor$	$x_i \geq \lceil (x_R^*)_i \rceil$			

Branch

- Toute solution admissible de P est solution admissible soit de P_{ℓ} , soit de P_r . Il s'agit donc bien d'une partition de l'ensemble admissible.
- La solution x_R^* n'est pas admissible pour les relaxations des nouveaux sous-problèmes $R(P_\ell)$ et $R(P_r)$.
- En effet, comme $(x_R^*)_i$ est non entier, les contraintes

$$x_i \leq \lfloor (x_R^*)_i \rfloor$$
 et $x_i \geq \lceil (x_R^*)_i \rceil$

sont violées par $(x_R^*)_i$.

• La solution optimale des problèmes relaxés sera donc différente de x_R^* .

Bound

- Soit x^* la solution optimale de P.
- Soit x_R^* la solution optimale de R(P).
- On a toujours

$$f(x_R^*) \le f(x^*).$$

- On obtient donc une borne inférieure en résolvant le problème relaxé.
- Attention : cela ne fonctionne que si on peut trouver l'optimum global de R(P).
- C'est le cas en particulier si le problème d'optimisation est linéaire.

Soit le problème P_0

$$\min x_1 - 2x_2$$

sous contraintes

$$-4x_1 + 6x_2 \leq 9$$

$$x_1 + x_2 \leq 4$$

$$x_1, x_2 \geq 0$$

$$x_1, x_2 \in \mathbb{N}.$$

Note: (0,0) est admissible. Donc U=0.

Problème relaxé $R(P_0)$.

$$\min x_1 - 2x_2$$

sous contraintes

$$-4x_1 + 6x_2 \leq 9$$

$$x_1 + x_2 \leq 4$$

$$x_1, x_2 \geq 0$$

- Solution optimale de $R(P_0)$: (1.5, 2.5)
- Borne pour P_0 : $b_0 = -3.5$
- $x_2 = 2.5$ est non entier. Partition :

P_{01}		P_{02}			
$\min x_1 - 2x_2$		$\min x_1 - 2x_2$			
S.C.			S.C.		
$-4x_1 + 6x_2$	\leq	9	$-4x_1 + 6x_2$	\leq	9
$x_1 + x_2$	\leq	4	$x_1 + x_2$	\leq	4
x_1, x_2	\geq	0	x_1, x_2	\geq	0
x_1, x_2	\in	\mathbb{N}	x_1, x_2	\in	\mathbb{N}
x_2	\leq	2	x_2	\geq	3

U = 0

 P_{02} est non admissible.

• Problème P_{01} : $\min x_1 - 2x_2$ sous contraintes

$$-4x_1 + 6x_2 \leq 9$$

$$x_1 + x_2 \leq 4$$

$$x_1, x_2 \geq 0$$

$$x_2 \leq 2$$

$$x_1, x_2 \in \mathbb{N}.$$

• Problème relaxé $R(P_{01})$: $\min x_1 - 2x_2$ sous contraintes

$$-4x_1 + 6x_2 \leq 9$$

$$x_1 + x_2 \leq 4$$

$$x_1, x_2 \geq 0$$

$$x_2 \leq 2$$

- Solution optimale de $R(P_{01})$: (0.75, 2)
- Borne pour P_{01} : $b_{01} = -3.25$
- $x_1 = 0.75$ est non entier. Partition :

P_{011}			P_{012}		
$\min x_1 - 2x_2$		$\min x_1 - 2x_2$			
S.C.			S.C.		
$-4x_1 + 6x_2$	\leq	9	$-4x_1 + 6x_2$	\leq	9
$x_1 + x_2$	\leq	4	$x_1 + x_2$	\leq	4
x_1, x_2	\geq	0	x_1, x_2	\geq	0
x_1, x_2	\in	\mathbb{N}	x_1, x_2	\in	\mathbb{N}
x_2	\leq	2	x_2	\leq	2
x_1	\leq	0	$ x_1 $	\geq	1

$$U = 0$$

• Problème P_{011} : $\min x_1 - 2x_2$ sous contraintes

$$-4x_1 + 6x_2 \leq 9$$

$$x_1 + x_2 \leq 4$$

$$x_1, x_2 \geq 0$$

$$x_2 \leq 2$$

$$x_1 \leq 0$$

$$x_1, x_2 \in \mathbb{N}.$$

• Problème relaxé $R(P_{01})$: $\min x_1 - 2x_2$ sous contraintes

$$-4x_1 + 6x_2 \leq 9$$

$$x_1 + x_2 \leq 4$$

$$x_1, x_2 \geq 0$$

$$x_2 \leq 2$$

$$x_1 \leq 0$$

- Solution optimale de $R(P_{011})$: (0, 1.5)
- Borne pour P_{011} : $b_{011} = -3$

• Problème P_{012} : $\min x_1 - 2x_2$ sous contraintes

$$-4x_1 + 6x_2 \leq 9$$

$$x_1 + x_2 \leq 4$$

$$x_1, x_2 \geq 0$$

$$x_2 \leq 2$$

$$x_1 \geq 1$$

$$x_1, x_2 \in \mathbb{N}.$$

• Problème relaxé $R(P_{01})$: $\min x_1 - 2x_2$ sous contraintes

$$-4x_1 + 6x_2 \leq 9$$

$$x_1 + x_2 \leq 4$$

$$x_1, x_2 \geq 0$$

$$x_2 \leq 2$$

$$x_1 \geq 1$$

- Solution optimale de $R(P_{012})$: (1,2)
- Solution entière.
- C'est donc la solution optimale pour P_{012} .
- U = -3.

$$U = -3$$

- U a été modifié.
- Les sous-problèmes dont la borne est plus grande ou égale à U peuvent être supprimés.

$$U = -3$$

$$U = -3$$

$$U = -3$$

Résumé

- Optimisation en nombres entiers = problème difficile.
- Utiliser l'algorithme du simplexe et arrondir les solutions ne fonctionne en général pas.
- Méthode exacte : branch & bound
- Branch:
 - Diviser pour conquérir.
 - Partitionner l'ensemble admissible.
 - On obtient une série de problèmes plus simples.
- Bound:
 - Calculer une borne inférieure pour un problème avant de le résoudre.
 - Si cette borne est moins bonne que la meilleure solution trouvée jusque là, pas besoin de résoudre le problème.

Résumé

- Utilisation de la relaxation. C'est un problème continu.
 - Branch : éliminer les solutions non entières = "couper" le polytope.
 - Bound : solution du problème relaxé = borne pour le problème non relaxé.
- Les variantes sont nombreuses.
- Exemple : utilisation de la dualité (relaxation lagrangienne).

