MTH20014 Mathematics 3B. Tutorial 4

1. Find matrix functions $\exp(\mathbf{A}t)$, $\sin(\mathbf{A}t)$ and $\cos(\mathbf{A}t)$ if **A** is

(a)
$$\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
; (b) $\begin{bmatrix} 4 & -1 \\ 2 & 1 \end{bmatrix}$; (c) $\begin{bmatrix} 4 & 1 \\ 3 & 2 \end{bmatrix}$.

Observe the pattern in your answers.

2. Determine the type of quadratic curves given by the following equations by converting them to a canonical form:

(a)
$$11x_1^2 + 6x_1x_2 + 3x_2^2 = 1$$
; (b) $x_1^2 + 8x_1x_2 + 7x_2^2 = 1$; (c) $x_1^2 - 4x_1x_2 - 2x_2^2 = 1$.

Give expressions for the canonical coordinates (y_1, y_2) in terms of the original coordinates (x_1, x_2) in each case.

Answers

1.

(a)
$$\exp(\mathbf{A}t) = \frac{1}{2} \begin{bmatrix} e^{3t} + e^{-t} & e^{3t} - e^{-t} \\ e^{3t} - e^{-t} & e^{3t} + e^{-t} \end{bmatrix},$$

$$\sin(\mathbf{A}t) = \frac{1}{2} \begin{bmatrix} \sin(3t) - \sin(t) & \sin(3t) + \sin(t) \\ \sin(3t) + \sin(t) & \sin(3t) - \sin(t) \end{bmatrix},$$

$$\cos(\mathbf{A}t) = \frac{1}{2} \begin{bmatrix} \cos(3t) + \cos(t) & \cos(3t) - \cos(t) \\ \cos(3t) - \cos(t) & \cos(3t) + \cos(t) \end{bmatrix};$$
(b) $\exp(\mathbf{A}t) = \begin{bmatrix} 2e^{3t} - e^{2t} & e^{2t} - e^{3t} \\ 2e^{3t} - 2e^{2t} & 2e^{2t} - e^{3t} \end{bmatrix},$

$$\sin(\mathbf{A}t) = \begin{bmatrix} 2\sin(3t) - \sin(2t) & \sin(2t) - \sin(3t) \\ 2\sin(3t) - 2\sin(2t) & 2\sin(2t) - \sin(3t) \end{bmatrix},$$

$$\cos(\mathbf{A}t) = \begin{bmatrix} 2\cos(3t) - \cos(2t) & \cos(2t) - \cos(3t) \\ 2\cos(3t) - 2\cos(2t) & 2\cos(2t) - \cos(3t) \end{bmatrix};$$
(c) $\exp(\mathbf{A}t) = \frac{1}{4} \begin{bmatrix} 3e^{5t} + e^t & e^{5t} - e^t \\ 3e^{5t} - 3e^t & e^{5t} + 3e^t \end{bmatrix},$

$$\sin(\mathbf{A}t) = \frac{1}{4} \begin{bmatrix} 3\sin(5t) + \sin(t) & \sin(5t) - \sin(t) \\ 3\sin(5t) - 3\sin(t) & \sin(5t) + 3\sin(t) \end{bmatrix},$$

$$\cos(\mathbf{A}t) = \frac{1}{4} \begin{bmatrix} 3\cos(5t) + \cos(t) & \cos(5t) - \cos(t) \\ 3\cos(5t) - 3\cos(t) & \cos(5t) + 3\cos(t) \end{bmatrix};$$

2.

(a) ellipse
$$2y_1^2 + 12y_2^2 = 1$$
, $\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{10}}(x_1 - 3x_2) \\ \frac{1}{\sqrt{10}}(3x_1 + x_2) \end{bmatrix}$;

(b) hyperbola
$$9y_1^2 - y_2^2 = 1$$
, $\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{5}}(x_1 + 2x_2) \\ \frac{1}{\sqrt{5}}(2x_1 - x_2) \end{bmatrix}$;

(c) hyperbola
$$2y_1^2 - 3y_2^2 = 1$$
, $\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{5}}(2x_1 - x_2) \\ \frac{1}{\sqrt{5}}(x_1 + 2x_2) \end{bmatrix}$.