1

DIVISIBLUTA)

a ele uteni a 70 a divide b 20 cle le un votero ex tole de b = 9 K.

alb

b e <u>nultiflo</u> di a

3115 -15/160 7/21

PROPOSIZIONE

fer opri u + 0, alo e ala. Nouchi 11b

0=a.0 = K=0

a=a.1 => K=1

b=1.b > X=b

(2) Se albeble, allre alc

(3) Se albe alc, ellera

al(sb+tc)

fer tutti gli unteri

set.

Se a=2, 216 réputrue che bet PARI

NUMERL PRIMI

Un numero 4>1 & duralul volo par 1 e resterso i un mucro prino. un motero n>1 de un el prino e aniforto

TEOREMA DEI NUMERI PRIMI

TT(X) et il runoso di primi enferoria x. Allro

 $TT(x) \approx \frac{x}{mx}$

nel seuroche; $\frac{\text{Puroche}}{\text{dim}} = 1$ $\frac{X}{\text{kn} \times X}$

Il sumo, di primi a 100 afrè e

 $\pi (10^{100}) - \pi (10^{99}) 2$

 $2 \frac{10^{100}}{\text{En } 10^{100}} - \frac{1099}{\text{In } 10^{99}} \approx 3.9 \times 10^{97}$

L'astorcció di Erstorteus sagli n > 2 mtcro 2,3,4,...,(m-1),n PARTO DA 2 PASSO 1 concelle opri multiple di 2 e use! 4,6,8,19,12 --concella ogni multiflo di3 6,9,12,15,18,21 concelle ogn' meltylodi 5 10,15,70,25_-Continua four al mours pour pe Carcella Sutti i miltfli 2/,3/,4/,--Consende al remoro per pui quider de Vn e FERMA. I remi de murigino mes tratti 1 primi 2 LP LM Risultato V20 ≥ 4.47 6 M=20 (3,5,7,11,13,17,19) 1234567891011121314151617181920 * | * | * | * |

The First 1,000 Primes (the 1,000th is 7919)
For more information on primes see http://primes.utm.edu/

	FOI HOI	e mioi	Inacion	OII DI II	iles see	nccp.,	/ pr 11		,
2	3	5	7	11	13	17	19	23	29
31		41	43	47		59	61	67	71
73			89	97	101	103	107	109	113
127	131	137	139	149	151	157	163	167	173
179	181	191	193	197	199	211	223	227	229
233	239	241	251	257	263	269	271	277	281
283	293	307	311	313	317	331	337	347	349
353	359	367	373	379	383	389	397	401	409
419	421	431	433	439	443	449	457	461	463
467	479	487	491	499	503	509	521	523	541
547	557	563	569	571	577	587	593	599	601
607	613	617	619	631	641	643	647	653	659
661	673	677		691	701	709	719	727	733
739	743	751	757	761	769	773	787	797	809
811	821	823	827	829	839	853	857	859	863
877	881	883	887	907	911	919	929	937	941
947	953	967	971	977	983	991	997	1009	1013
1019	1021	1031	1033	1039	1049	1051		1063	1069
1087	1091	1093	1097	1103	1109	1117			1151
1153	1163	1171	1181	1187	1193	1201	1213		1223
1229	1231	1237	1249	1259		1279		1289	1291
1297	1301	1303	1307		1321	1327	1361	1367	1373
1381	1399	1409	1423	1427	1429	1433	1439	1447	1451
1453	1459	1471	1481	1483	1487	1489	1493	1499	1511
1523	1531	1543	1549	1553	1559	1567	1571	1579	1583
1597	1601	1607	1609	1613	1619	1621	1627	1637	1657
1663	1667	1669	1693	1697	1699	1709	1721	1723	1733
1741	1747	1753	1759		1783	1787			1811
1823	1831	1847	1861	1867		1873		1879	1889 1987
1901	1907	1913	1931	1933		1951 2027	1973 2029	1979 2039	2053
1993	1997	1999	2003	2011	2017	2027	2029	2039	2129
2063	2069	2081	2083	2087 2153	2089 2161	2179	2203	2207	2213
2131	2137	2141	2143 2243	2153	2267	2269	2273	2281	2213
2221	2237 2297	2239 2309	2311	2333	2339	2341		2351	2357
2293	2297	2309	2311		2393	2399		2417	2423
2371 2437	2441	2447	2363				2503		2531
2539	2543	2549	2551				2593		2617
2621	2633	2647	2657	2659	2663	2671	2677	2683	2687
2689	2693	2699	2707	2711	2713	2719	2729	2731	2741
2749	2753	2767	2777	2789	2791	2797	2801	2803	2819
2833	2837	2843	2851	2857	2861	2879	2887	2897	2903
2909	2917	2927	2939	2953	2957	2963	2969	2971	2999
3001	3011	3019	3023	3037	3041	3049	3061	3067	3079
3083	3089	3109	3119	3121	3137	3163	3167	3169	3181
3187	3191	3203	3209	3217	3221	3229	3251	3253	3257
3259	3271	3299	3301	3307	3313	3319	3323	3329	3331
3343	3347	3359	3361	3371	3373	3389	3391	3407	3413
3433	3449	3457	3461	3463	3467	3469	3491	3499	3511
3517	3527	3529	3533	3539	3541	3547	3557	3559	3571
3581	3583	3593	3607	3613	3617	3623	3631	3637	3643
3659	3671	3673	3677	3691	3697	3701	3709	3719	3727
3733	3739	3761	3767	3769	3779	3793	3797	3803	3821
3823	3833	3847	3851	3853	3863	3877	3881	3889	3907
3911	3917	3919	3923	3929	3931	3943	3947	3967	3989
4001	4003	4007	4013	4019	4021	4027	4049	4051	4057
4073	4079	4091	4093	4099	4111	4127	4129	4133	4139
4153	4157	4159	4177	4201	4211	4217	4219	4229	4231
4241	4243	4253	4259	4261	4271	4273	4283	4289	4297
4327	4337	4339	4349	4357	4363	4373	4391	4397	4409

	4421	4423	4441	4447	4451	4457	4463	4481	4483	4493
	4507	4513	4517	4519	4523	4547	4549	4561	4567	4583
	4591	4597	4603	4621	4637	4639	4643	4649	4651	4657
	4663	4673	4679	4691	4703	4721	4723	4729	4733	4751
	4759	4783	4787	4789	4793	4799	4801	4813	4817	4831
	4861	4871	4877	4889	4903	4909	4919	4931	4933	4937
	4943	4951	4957	4967	4969	4973	49 87	4993	4999	5003
	5009	5011	5021	5023	5039	5051	5059	5077	5081	5087
	5099	5101	5107	5113	5119	5147	5153	5167	5171	5179
	5189	5197	5209	5227	5231	5233	5237	5261	5273	5279
	5281	5297	5303	5309	5323	5333	5347	5351	5381	5387
	5393	5399	5407	5413	5417	5419	5431	5437	5441	5443
	5449	5471	5477	5479	5483	5501	5503	5507	5519	5521
	5527	5531	5557	5563	5569	5573	5581	5591	5623	5639
	5641	5647	5651	5653	5657	5659	5669	5683	5689	5693
	5701	5711	5717	5737	5741	5743	5749	5779	5783	5791
	5801	5807	5813	5821	5827	5839	5843	5849	5851	5857
	5861	5867	5869	5879	5881	5897	5903	5923	5927	5939
	5953	5981	5987	6007	6011	6029	6037	6043	6047	6053
	6067	6073	6079	6089	6091	6101	6113	6121	6131	6133
	6143	6151	6163	6173	6197	6199	6203	6211	6217	6221
	6229	6247	6257	6263	6269	6271	6277	6287	6299	6301
	6311	6317	6323	6329	6337	6343	6353	6359	6361	6367
	6373	6379	6389	6397	6421	6427	6449	6451	6469	6473
	6481	6491	6521	6529	6547	6551	6553	6563	6569	6571
	6577	6581	6599	6607	6619	6637	6653	6659	6661	6673
	6679	6689	6691	6701	6703	6709	6719	6733	6737	6761
	6763	6779	6781	6791	6793	6803	6823	6827	6829	6833
	6841	6857	6863	6869	6871	6883	6899	6907	6911	6917
	6947	6949	6959	6961	6967	6971	6977	6983	6991	6997
	7001	7013	7019	7027	7039	7043	7057	7069	7079	7103
	7109	7121	7127	7129	7151	7159	7177	7187	7193	7207
	7211	7213	7219	7229	7237	7243	7247	7253	7283	7297
	7307	7309	7321	7331	7333	7349	7351	7369	7393	7411
	7417	7433	7451	7457	7459	7477	7481	7487	7489	7499
	750 7	7517	7523	7529	7537	7541	7547	7549	7559	7561
	7573	7577	7583	7589	7591	7603	7607	7621	7639	7643
	7649	7669	7673	7681	7687	7691	7699	7703	7717	7723
	7727	7741	7753	7757	7759	7789	7793	7817	7823	7829
	7841	7853	7867	7873	7877	7879	7883	7901	7907	7919
е	nd.									
_	•									

25/03/2007

A farete 2 tutti i primi sono DISPARI (2) Si partiscuo in due ELASSI (1) $p \equiv 1 \pmod{4}$ (2) p=3 (mod 4) Per la (1) vale la formula percetik p=4K+1 13 17 29 37. 41 h=1 3 4 7 8

Per la (2) vale la formula per certi K

$$P = 4 + 4 + 3$$

$$p = 3, 7, 11, 19, 23, 31, 43$$

$$k = 0 + 2 + 5 + 10$$

A partle 2e3, tullin primi DISPARI

sono prubuli ruelle forma $p = 6 \times \pm 1$, for anti Ke

e cool $p \equiv \pm 1 \pmod{6}$

+--+-

test diprivoluto di m movo tutti i muri (6+ ±1) EVM

re n'é curperto, and es $n = p \times q$ allua uno dei due, $p \circ q$, deve enere $\leq \sqrt{n}$

Texamo oqui unter n>2 è modotto di 3) mini. La fontinitavama è unica $504=2^3\cdot 3^2\cdot 7$ $1124=3^7\cdot 5^3$ $2=1\cdot 2$

Lemma. se p è prime e p devole une prodotte di enteri a b, ellera p 1 ab allera o: p 1 a; appre: p 1 b pui un generale se p 1 ali... z allera p ocera devidere ano de fortiri a, b, z.

MASSIMO COMUN DIMSORE

gca(a, le) = d

med(a, le) = d

mi grude che

deride na a de le

se med(a, le) = 1

allore a e le mo "primi tra luo"

o "coprimi"

o "primi relation"

4

$$mcd(1728, 135)$$

 $1728 = 2632$; $135 = 335$
 $mcd(1728, 135) = 3^{2}$

ALGORITMO DI EUCLIDE

gcd (482, 1180) awide 1180 per 482 'dwided' dwidendor 1180 = went devine + resto wel devine

quoriente=27 resto > dume > dudendo > gra resto = 216 del gi dr 2 482 = 2,216 + 50

216 = 4.50 + 16

50= 3.16 + 2 ×gcd

16= 8.2+0] ultimo usto +0

MCD (2) ALGORITMO DI EUCLIDE m, n > 0 mcd(n,m)=05 m/m mcd(0,0)=
= indefinito mcd(0,n)=n $\operatorname{mcd}(n,n)=n$ mcd(n,m) m(d(4, m)=1= mcd(mmodn, n)ADES. mcd (12,18)= mcd(18mod12,12)= mcd (6,12) = mcd (12 mod 6, 6) = mcol(0,6) = 6runeni primi mca(n, m)=1 nlm; mln

innere "ridotto" de le de l'annere "Compago" rende (3) Comprende i resideti che mo muneri primi an m Pi 1626(m) $\mathbb{Z}_{m}^{*}|=\varphi(m)$ FUNZIONE FI DI EULERO FUNZIONE/TOZIENTE/ m=p è primo allora (p(p) = p-1)tutti i residu tronne lo 0 mcd(0,b)=P.X Se m = p.9 cm peg mimi $\varphi(p.q) = (p-1)(q-1)$ $\Psi(21) = \Psi(3x7) = (3-1)(7-1) = 2x6 = 12$

for esempio
$$m=6$$

$$X = \begin{bmatrix} 0,1,2,3,4,5 \end{bmatrix}$$
Quali somo privi con 6?
$$6 = 2 \times 3 \quad \text{prodotto di num}$$
mini

1?
$$mcd(1,6)=1$$
 \\
2? $mcd(2,6)=2-N1$

3?
$$m(d(3,6) = 3 - NO)$$

$$\varphi(6) = 2 = | \mathbb{Z}_{6}^{*} |$$

$$(9(6)=(9(2\times3)=(2-1)(3-1)]=2$$

NOTAZIONE STINTSON a) b = 21 mcd(a,b) · 20= 9121+ 22 20 12=0 allera bla e mcd (9, 6)= b a é multyte di b. regto allora のを= 92を2+でる cutiva fuvou de Eniti mcd (a, a) = 2m € 12=93 13+24 dele olynur 0 7n-2 = 912+ 2n 0 2M1=9 2m+0 20/2/22-) 2M mcd(12345, 11111) = 1 durderolo quante durane resto PASSO 12345=1, 11111+ 1234 1 11 11 1 = 9, 1234 + 5 1234 = 246,5 + 4 K-1=4 5 = 1 . 4 + 1 4 = 4 · 1 + 0 k = 5 mcd (20,71) = mcd(21,22) = -- = mcd(24,-1,24)=2m

NOTAZIONE STINISON

0 to=0; t=1

eneudo $t_i = t_{i-2} - 9_{i-1} t_{i-1}$ (26-i < m)

(a, b) $a = \{a, b\}$ $b = \{a, b\}$ $\{a, b\}$ $\{a, b\}$

0 30=1 ; 31=0

 $o \ 3i = 3i - 2 - 9i - 3i - 1 \ (2 \le i \le n)$

0516m

1 で;=かな+ちた1

Jx il nui guole tx il him

 $z_0 = \int_0^{\infty} c_0 + t_0 x_1 = c_0$ $= c_0 \qquad c_0 = 0$ 7=371+t,7= S=0 =71 per j=1 >

TM = In To + tm Z1=mcd(rots)

Nel TRAPPE pli noligi di Euchole (10) mas rhoughesti (a>b) poi vor Euchole Extero pundle (b>a) e sone

il pui piccolo

(b)a) $ax_{m} + by_{m} = mcd(a_{1}a_{2})$ (no)ni) $z_{1}t + z_{0}s_{m} = mcd(z_{1}, z_{0})$ qui voli $x \rightarrow t$ x no lifting $x \mapsto s$ t no lifting

TRAPPE STINTSON

STINISON+D = (a, a) ore a=ro) b=r1 a=20= 9, 2, + 22 b=21 = 42 22+ 23 JUST = 9373+ 74 7 = 9 m-1 2 m-1+ 2 m | tm 2m-1 = 9m 2m + 0 70=a 7m+1=0 571=p Ellate home ti (X)(Y)

ad ogni posso O Libn multa 1がなりせばなりこでじ $n_0 = Q$ 21=p 15 (05 e per i= M per i=n 5na+tnb=2nmod a, ho 2e pudo (1) tnb=2n (moda) $mcd(a_1b)=1$ e coe allua $t_m b \equiv 1 \pmod{4}$ $t_m = b^{-1} \pmod{a}$ Risulta anche tirs=ri, 26i6n 几1=5 (tib=ri) (moda)

ESEMPLO
$$4=26$$
 $b=2$ $a>b$
 $b=7$ $26=2x/3$ $mcd(7,26)=1$
 $a>b$
 $a>b$

war usulta suche (13) porno2 $\int_3 a + t_3 b = 2 = R_3 \leftarrow$ (-1)26+4x7=2 -26 + 28 = 2 129+ EZb = 5=72 1x 26+(-3)x7=5 26 - 21 = 5E moltre 七、て」=と eseupro t3 21= 23 (mod 20) t3=4; R1=7; R3=2 > 4x7=2 28 = 2 (mod 26) t2 21= 52 oppuse (mod 70) tz=-3; z=7; z=5 (-3)x7=5 $-21=5 \pmod{26}$

ultimo quodobo

$$-16(-24) - 11x35 = 1$$

 $384 - 385 = -1 (n ford)$

1180=9=20 ク=X mcd (1180,482) 482=6=21 a)b 20721 2,482 + 216 4 2-216 + 504 2 4,50 + 16 29 4 50 = 8.2 16 = 1180=590 482 = 241 re orb t modelhor il pui niccolo 9 x 15 482x71+ (-29)1180= 34222 - 34220 =2 re onero l'ultimo produto « dividox 2 241x71 - 29x590 olet to sui - tm Juti tn. m+1 - In tn+1 = 1111 refatti $tn = \overline{b}$ $tntl = \frac{a(t)^n}{2n(t)}$ $s_n = \overline{a}$ (modb) $\Delta_{n+1} = \frac{b}{\sigma_n} (-1)^{n+1}$

per oblimostrere le (1)

$$\begin{cases}
Sh1 = \frac{b}{2n} (-1)^{n+1} \\
t_{n+1} = \frac{a}{2n} (-1)^{n}
\end{cases}$$

$$\begin{cases}
t_{n+1} = \frac{a}{2n} (-1)^{n} \\
t_{n+1} = \frac{a}{2n} (-1)^{n}
\end{cases}$$

$$\begin{cases}
t_{n+1} = \frac{a}{2n} (-1)^{n} \\
t_{n+1} = \frac{a}{2n} (-1)^{n}
\end{cases}$$

$$\begin{cases}
t_{n+1} = \frac{a}{2n} (-1)^{n} \\
t_{n+1} = \frac{a}{2n} (-1)^{n}
\end{cases}$$

$$\begin{cases}
t_{n+1} = \frac{a}{2n} (-1)^{n} \\
t_{n+1} = \frac{a}{2n} (-1)^{n}
\end{cases}$$

$$\begin{cases}
t_{n+1} = \frac{a}{2n} (-1)^{n} \\
t_{n+1} = \frac{a}{2n} (-1)^{n}
\end{cases}$$

$$\begin{cases}
t_{n+1} = \frac{a}{2n} (-1)^{n} \\
t_{n+1} = \frac{a}{2n} (-1)^{n}
\end{cases}$$

$$\begin{cases}
t_{n+1} = \frac{a}{2n} (-1)^{n} \\
t_{n+1} = \frac{a}{2n} (-1)^{n}
\end{cases}$$

$$\begin{cases}
t_{n+1} = \frac{a}{2n} (-1)^{n} \\
t_{n+1} = \frac{a}{2n} (-1)^{n}
\end{cases}$$

$$\begin{cases}
t_{n+1} = \frac{a}{2n} (-1)^{n} \\
t_{n+1} = \frac{a}{2n} (-1)^{n}
\end{cases}$$

$$\begin{cases}
t_{n+1} = \frac{a}{2n} (-1)^{n} \\
t_{n+1} = \frac{a}{2n} (-1)^{n}
\end{cases}$$

$$\begin{cases}
t_{n+1} = \frac{a}{2n} (-1)^{n} \\
t_{n+1} = \frac{a}{2n} (-1)^{n}
\end{cases}$$

$$\begin{cases}
t_{n+1} = \frac{a}{2n} (-1)^{n} \\
t_{n+1} = \frac{a}{2n} (-1)^{n}
\end{cases}$$

$$\begin{cases}
t_{n+1} = \frac{a}{2n} (-1)^{n} \\
t_{n+1} = \frac{a}{2n} (-1)^{n}
\end{cases}$$

$$\begin{cases}
t_{n+1} = \frac{a}{2n} (-1)^{n} \\
t_{n+1} = \frac{a}{2n} (-1)^{n}
\end{cases}$$

$$\begin{cases}
t_{n+1} = \frac{a}{2n} (-1)^{n} \\
t_{n+1} = \frac{a}{2n} (-1)^{n}
\end{cases}$$

$$\begin{cases}
t_{n+1} = \frac{a}{2n} (-1)^{n} \\
t_{n+1} = \frac{a}{2n} (-1)^{n}
\end{cases}$$

$$mcd(33,12)$$

$$\frac{1}{33} = 2 \times 12 + 9 - 2 \\
2 | 12 = 1 \times 9 + 3 | 3 - 1$$

$$m = 3 | 9 = 3 \times 3 | -1| 4$$
dusoni

$$(-1)^3 =$$

$$3x4 - (-1x-0) = 12-11=1$$
 $n dyn$

$$3 \times 12 + (-1)^{33} = 3$$

 $36 - 33 = 3$

$$-2 \times 12 + 1 \times 33 = 9$$

$$\frac{33}{12} = 2 + \frac{1}{1 + \frac{1}{3}} = 2 + \frac{3}{4} = \frac{11}{4}$$

Frozemi antinue

Algoritomo di ECCLIDE mcol (a,b) a>b 9=20 70 = 9 = 9, b + 7221=b=9282+83 12=9382+84 72 = 94771 + 72070/12/22/ 7 m== 9m. Em + 0 --->Z / R $mcd(a_1b)=7n$ (a>b) 570P2m+1=0

pono scurell $\frac{a}{b} = 91 + \frac{1}{92 + \frac{1}{93 + \frac{1}{93 + \frac{1}{9n}}}}$ Infatti $q = 91 + 72 \left(0 \le 72 \le b\right)$ $\frac{a}{b} = 91 + \frac{72}{b} \left(0 \le \frac{22}{b} \le 1\right)$

Congruence

Definizione

Sion a, le, n uteri en n + 0. Si dræch

$$q \equiv b \pmod{n}$$

se a-b e multylo (pontub o regotino) di n e ave n/(a-b)

n obvide (a-b)

 $a \equiv b \pmod{n}$

din. a= b+ kn (kutar

a = b + kn (Kutar protesto)

ES.

 $32 \equiv 7 \pmod{5}$

5|(32-7)=5|25

25=5× §

appre

 $31 = 7 + 5 \times 5$ K = 5

tropowane a,b,c,n utteriau $n\neq 0$ $q\equiv 0 \pmod{n}$ reerolose m/qSious $q \equiv q \pmod{n}$ $9 \equiv b \pmod{n}$ se volo se be a (mod a) (4) Se q=beb=c (mod y) allue $q \equiv c \pmod{n}$. Gli uten modulo n (mod n) mo offortlut; all'usera $Z = \{0,1,2...n-1\}$ $q \equiv 7 \pmod{n}$ $a = n.9 + r \left(\angle r \langle n \rangle \right)$

 $a = n \cdot q + r$ (xr<n r = resti = restidui 0 < r<n Profontul

a,b,c,d,m uten an $n \neq 0$, e supprisions $a \equiv b \pmod{n} \quad (\equiv d \pmod{n})$

Albra

q+c=b+d, a-c=b-d, ac 至 bd (mod m)

addition, sottrature e noltylecotime et! Hurre alla dellance

a.b (mod n)

se a.b < n or a.b (mod n)=ab

ne a.b > n allna

 $\pi = a.b - \left\lfloor \frac{aa}{n} \right\rfloor \times n = \left\lfloor \frac{a.b}{n} \right\rfloor \times n + 70$

ah (modn) = z

Tabelle di addixipa xmod6

234

Talello di metylana mod 6

X 0 (2 3 4 5)

0 0 0 0 0 0 0

1 0 1 2 3 4 5

2 0 2 4 0 2 4

3 0 3 0 3 0 3

4 0 4 8 0 4 2

5 0 5 4 3 2 1

Risolvere

$$X = 3 - 7 = -4 = 13 \pmod{17}$$

DIVISIONE

Si può dividere per a (mod n) se mod(a,n)=1 e avet se aln.

Profonktive some a, ly, c, n when con $m \neq 0$ e cu $\gcd(a, n) = 1$. Se $ab \equiv ac$ (mod n), elling $b \equiv c \pmod{n}$. Se $a \perp n$ principle della confidence a lati della conquentar for a.

(4) (mod 17) 2x+7=3 E) Eupro 2x = 3 - 7 = -4(mod 17) x = -2 = 15allere se duroto ver 2117 Sufferuo mcd(a, n) = 1 (a $\leq n$) se t when tali che $a \neq n$ et nindividuano au l'algentous di Endesse esters. Allere at = 1 mord n' $at \equiv 1 \pmod{n}$ moltylecontre inverso allow sell dia mod n i a madn $t \equiv \bar{a}$ (modn) $11111 \times \equiv 4 \pmod{12345}$ 0×1 $1 \times 2 \times 4 \times 4 \times 1$ $1 \times 2 \times 1$ $1 \times 1 \times 1$ 1×1 $=\frac{929.1234 + 5}{10-9}$ = 93 246) 5 \pm 4 24 -24 \pm 2215 3 1234 = 94 1.4 + 1 25 2471/2224 = 954 1 + 0 n=5 = 5 + 4

3

do justo riha

11111×2471 - 12345×2224 = 1

e croel

11111 x2471 = 1 (mod 12345)

e col

2471= (11111) (mod 12345)

allera

X = 4 × 2471 = 9884 (mod 12845)

Procedurer per visolvere la congruenzar del tipo $ax \equiv b \pmod{n}$

quoudo mcd(a,n)=d>1

1. re dt b marche soluture

2. se d/b albra considera la mova origruenza pa/v=b r m

 $\binom{a}{d} x \equiv \frac{b}{a} \pmod{\frac{n}{a}}$

 $\frac{a}{d}$; $\frac{b}{d}$ e $\frac{n}{d}$ somo witerie $mcd(\frac{a}{d}, \frac{a}{d})=1$

l'insolve un l'algoriture di Euclide entrois e nottiene la volurione Xo.

3. le soluzioni sono allera nel minuo di 161 \times_{o} ; \times_{o} + $\frac{n}{\alpha}$; \times_{o} + $2(\frac{n}{\alpha})$; ... Xo+ (d-1) m.

Per eneugrus 12×=21 (mod 39) (1) mcd(12,39)=3 de duride 21. La (1) deventa 4x=7 (mod 13) X0=5: le tre rolumini sono X=5, 18,31 (mod 39)

Piccolo Teorema di

Allno	(mo reuvere
	$1.2.3. (p-1) \equiv (a+1)(a\cdot2)(a\cdot3) \cdot [a(p-1)]$
	$(p-1)! \equiv q^{p-1}(p-1)! \pmod{p}$
e	$1 = 2 \pmod{p}$
questo	lega l'esponente (5-1) moduloise
al m	odula P.
Ad	es. /p=11 3111
	mendrous 3=1 (mod 11)
	$3^{53} \equiv (3^{10})^5 \cdot 3^3 \equiv 5 \pmod{11}$
	= = 2 (mod 10) = 1
	53 33
	$f = 3 \pmod{1}$

Cisualmente se $2 \equiv 1 \pmod{n}$ allere
n é mino
Mon run rempre 560=3.11.17 ma
$2.560 \pm 1 \pmod{561}$
ma quette eccorum mo rose
Personso 2n 1 (mod n) allua molso
probabilité n é privo.
Bassas, Questo e un modo fer Cercure i rienes
min wondo 2(n-1) norm di colcolo per
opri en oueuxiale modulaile.
Si foi an seyli un punto di fontenda
no e testor tubti i rumen DISPARI
$ m > m_0 $
escer e cuit rollon 2
$0 = 1 \pmod{n}$
Se u follisce, scorba e va avaitor. Le mo
Jama il test allore la chetto vamente
venticoto se me muo (muolog coso)

TEOREMA DI EUCERO

Tevene di Lay range m>0 a Im prendo un $\bar{a}' = q^{(p(m)-1)} \mod m$ Si offlice for a EZM Format, p-2 m=p a=a modpo eve (pm)= 1/ (p-pi) m=60 60= $2^{7}.3-5$ $4(60) = (2^2 - 2^1)(3 - 1)(5 - 1) = 16$ Formot ((p)=(p-1)

-

Exponentials modulous X^4 (mod n) 1234 2 mod (789) potenie curearité de 2 modulo 789 1233 voete curearité expline $2^2 \equiv 4 \pmod{789}$ $2^4 \equiv 4^2 \equiv 16$ $2^8 \equiv 16^2 \equiv 256$ $2^{16} \equiv 256^2 \equiv 49$ $2^{32} \equiv 367$ $2^{128} \equiv 59$ $2^{128} \equiv 59$ $2^{128} \equiv 580$	
2 mod (789) Noterie cureative di 2 modulo 789 1233 volte cureative offine $2^2 \equiv 4 \pmod{789}$ $2^4 \equiv 4^2 \equiv 16$ $2^8 \equiv 16^2 \equiv 2.56$ $2^{16} \equiv 256^2 \equiv 49$ $2^{32} \equiv 36$ $2^{128} \equiv 559$ $2^{128} \equiv 559$ $2^{128} \equiv 580$ $2^{1024} \equiv 2.86$	
2 $mod(789)$ Noterie auxembre di 2 $modulo 789$ 1233 votte auxembre effine $2^2 \equiv 4 \pmod{789}$ $2^4 \equiv 4^2 \equiv 16$ $2^8 \equiv 16^2 \equiv 256$ $2^{16} \equiv 256^2 \equiv 49$ $2^{32} \equiv 36$ $2^{128} \equiv 36$ $2^{128} \equiv 559$ $2^{128} \equiv 37$ $2^{128} \equiv 37$ $2^{1024} \equiv 286$	1
2 $mod(789)$ Noterie auxembre di 2 $modulo 789$ 1233 votte auxembre effine $2^2 \equiv 4 \pmod{789}$ $2^4 \equiv 4^2 \equiv 16$ $2^8 \equiv 16^2 \equiv 256$ $2^{16} \equiv 256^2 \equiv 49$ $2^{32} \equiv 36$ $2^{128} \equiv 36$ $2^{128} \equiv 559$ $2^{128} \equiv 37$ $2^{128} \equiv 37$ $2^{1024} \equiv 286$	
Totale cureative of 2 modulo 789 1233 volte cureative offine $2^2 \equiv 4 \pmod{789}$ $2^4 \equiv 4^2 \equiv 16$ $2^8 \equiv 16^2 \equiv 256$ $2^{16} \equiv 256^2 \equiv 49$ $2^{32} \equiv 367$ $2^{128} \equiv 367$ $2^{128} \equiv 37$ $2^{512} \equiv 580$ $2^{1024} \equiv 286$	
Totale cureative of 2 modulo 789 1233 volte cureative offine $2^2 \equiv 4 \pmod{789}$ $2^4 \equiv 4^2 \equiv 16$ $2^8 \equiv 16^2 \equiv 256$ $2^{16} \equiv 256^2 \equiv 49$ $2^{32} \equiv 367$ $2^{128} \equiv 367$ $2^{128} \equiv 37$ $2^{512} \equiv 580$ $2^{1024} \equiv 286$	
offine $2^{2} \equiv 4 \pmod{789}$ $2^{4} \equiv 4^{2} \equiv 16$ $2^{8} \equiv 16^{2} \equiv 2.56$ $2^{16} \equiv 2.56^{2} \equiv 4.9$ $2^{32} \equiv 34$ $2^{64} \equiv 36.7$ $2^{128} \equiv 5.59$ $2^{256} \equiv 3.7$ $2^{512} \equiv 5.80$ $2^{1024} \equiv 2.86$	
offine $2^{2} \equiv 4 \pmod{789}$ $2^{4} \equiv 4^{2} \equiv 16$ $2^{8} \equiv 16^{2} \equiv 2.56$ $2^{16} \equiv 2.56^{2} \equiv 4.9$ $2^{32} \equiv 34$ $2^{64} \equiv 36.7$ $2^{128} \equiv 5.59$ $2^{256} \equiv 3.7$ $2^{512} \equiv 5.80$ $2^{1024} \equiv 2.86$	 +
offine $2^{2} \equiv 4 \pmod{789}$ $2^{4} \equiv 4^{2} \equiv 16$ $2^{8} \equiv 16^{2} \equiv 2.56$ $2^{16} \equiv 2.56^{2} \equiv 4.9$ $2^{32} \equiv 34$ $2^{64} \equiv 36.7$ $2^{128} \equiv 5.59$ $2^{256} \equiv 3.7$ $2^{512} \equiv 5.80$ $2^{1024} \equiv 2.86$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ 2^{16} \pm 2^{15}6^{2} \pm 4^{9} $ $ 2^{32} \pm 3^{4} $ $ 2^{64} \pm 3^{6}7 $ $ 2^{128} \pm 5^{9} $ $ 2^{28} \pm 3^{7} $ $ 2^{512} \pm 5^{8}0 $ $ 2^{624} \pm 2^{8}6 $	-
$ 2^{16} \pm 2^{15}6^{2} \pm 4^{9} $ $ 2^{32} \pm 3^{4} $ $ 2^{64} \pm 3^{6}7 $ $ 2^{128} \pm 5^{9} $ $ 2^{28} \pm 3^{7} $ $ 2^{512} \pm 5^{8}0 $ $ 2^{624} \pm 2^{8}6 $	
$ 2^{16} \pm 2^{15}6^{2} \pm 4^{9} $ $ 2^{32} \pm 3^{4} $ $ 2^{64} \pm 3^{6}7 $ $ 2^{128} \pm 5^{9} $ $ 2^{28} \pm 3^{7} $ $ 2^{512} \pm 5^{8}0 $ $ 2^{624} \pm 2^{8}6 $	
$ 2^{16} \pm 2^{15}6^{2} \pm 4^{9} $ $ 2^{32} \pm 3^{4} $ $ 2^{64} \pm 3^{6}7 $ $ 2^{128} \pm 5^{9} $ $ 2^{28} \pm 3^{7} $ $ 2^{512} \pm 5^{8}0 $ $ 2^{624} \pm 2^{8}6 $	
$ \begin{array}{c} 2^{32} = 34 \\ 2^{64} = 367 \\ 2^{128} = 559 \\ 2^{256} = 37 \\ 2^{512} = 580 \\ 2^{1024} = 286 \end{array} $	
$ \begin{array}{c} 2^{32} = 34 \\ 2^{64} = 367 \\ 2^{128} = 559 \\ 2^{256} = 37 \\ 2^{512} = 580 \\ 2^{1024} = 286 \end{array} $	
$ \begin{array}{ccccccccccccccccccccccccccccccccc$	
21024 = 286	
21024 = 286	
21024 = 286	
21024 = 286	ļ ļ
╎╸ ┪	
1234 = 1024 + 128 + 64 + 16 + 2	
1 Le	_
=((00 10(00(0)) aclica	-

21234 286-559.367 49.4 = 481 (mod 789) Col Square & Multiply per colore q (mod n) servino al mousimo 2 los (le) moltiflicorum mod n labore un syera mai n? a, le en mo rumen à 100 cifre décimali ma hastone 2. log (b.) = 500. STEP Ununo mu quole ha 200 afre des unes * 2350223 105

Colcolo di esponenziali modulari del tro x 6 mod m.

Due metooli

- Square and multiply - Enclide exteror, che vale volo se l'esforienziale n'infensce ad ma inversione

mit pude, mhe kht $k = \lfloor lof_2 m \rfloor + 1$

l'addition di due dutin n'fa i'm tento O(16), me le moltiplicatione réhiede O(16).

ora la volutione modulo m di un inneviole può esse ridotta quella di moltificaturi niccessisse

 $x = x, y \in \mathbb{Z}_{m} (0 \leq x, y \leq m-1)$

xy mod m

fræno prima xy (me intero a 2k brt)

e fri riduco modulo m

ge zeb mod me allora ho (b-1) moltiflica

zroni da fare «x·x=x²? b-1 moltiflicazari

· XX=XP)

SPUARES MULTIPLY

riduce invece il numero delle moltylicatori 2l, ore

e = [logb]+1

e'il numero di bit di b (esforente).

In realte il numero di moltyficationi e' 'l' se b e fatto di tutti tat=0, mentre e'2e' sobtanto se b e compesto da tutto but =1.

Porro infatti force b in notazine binana

$$b = \sum_{i=0}^{\ell-1} b_i 2^{-i}$$

requestralmente Z = x b mod m e colcolore

SQUARE & MUCTO	PLY x exporuentiali
e_{s} $7^{(11)}m$	od 26
74: 17. 1	entre la ristro
PACTO SEMIN	et 1011
SOUNCE SLUTTING 1 $1^2 \times 7 =$	7 23 mod 76
Source 0	23 (mod 76 11
SQUAREBRUING 1 2 X7 =	15)
SQUARE 11	PISULTATO FINALLE
7 mod 26 =	-15

__

Fermat afferma: se a E Zp, allna $a^{P-1} \equiv 1 \pmod{p}$ e moè un caso particolare di lagrange: re a $\in \mathbb{Z}_{m}^{*}$ (m virtero), allura $q \equiv 1 \pmod{m}$ l'ordine di un elemento e' l'interon >0 pui piccolo tale che

 $a^n \equiv 1 \pmod{m}$

lu elevento dE Zp ha ordine p-1

el minutivo, se e solo se, genera tatti pli elementi di Zp* (1;2;-,1p-1)

{ \ai \(\frac{1}{4} \) \(i \) \(\partial \) = \(\frac{1}{2} \) \(\frac{1}{2} \)

opris elements BEZ# 2 esprime une B=~ ; 1=1 = p-1 e adine di Be $\frac{p-1}{\operatorname{mcd}(p-1,i)} \equiv 1 \pmod{p}$ e use B pui avere ordine sotto multiplo oli p-1; se mcd (p-1, i)=1 e uve se i L(p-1), allra l'ordine ch'B e' esottomente p-1 ed e' ouche lui un elemento primitivo: B = 1 (mod p) Albra tulti gli i (1 si \(p-1) che mo primi an (p-1) mo erattement. Numerojelementi - ((p-1) mi wein Z#

Attocke p-1=TT qi; qi mimi) 0

X é primitivo, se e solo se

(1) (1) (1) (1) (1)

(1) (2) (1) (1)

(1) (2) (3)

(1) (4) (4) (4)

(1) (4) (4) (4) (4)

(1) (4) (4) (4) (4)

(1) (4) (4) (4) (4)

(1) (4) (4) (4) (4) (4)

(4) (4) (4) (4) (4) (4)

(4) (4) (4) (4) (4)

(4) (4) (4) (4) (4)

(4) (4) (4) (4) (4)

(4) (4) (4) (4) (4)

(4) (4) (4) (4) (4)

(4) (4) (4) (4) (4)

(4) (4) (4) (4) (4)

(4) (4) (4) (4) (4)

(4) (4) (4) (4) (4)

(4) (4) (4) (4) (4)

(4) (4) (4) (4) (4)

(4) (4) (4) (4) (4)

(4) (4) (4) (4) (4)

(4) (4) (4) (4) (4)

(4) (4) (4) (4) (4)

(4) (4) (4) (4) (4)

(4) (4) (4) (4) (4)

(4) (4) (4) (4) (4)

(4) (4) (4) (4) (4)

(4) (4) (4) (4) (4)

(4) (4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4) (4) (4) (4)

(4)

Se d'è una radie printere di Zp, p primo>0, allera Per n intero>0: j; k interizo: $\int_{A} d = d \pmod{p}, \text{ we solve}$ $\int_{A} d = d \pmod{p-1}$ Gréathi (1) je n = 0 (mod p-1), allra allnow i ha n = (p-1)m , fer centimization in n = (p-1)m , fer centimization in n = (m) p-1 = 1 (mod p)

applicander il teorema di Feranat (se d E Zp e m intero, anche d'EZp)

anche d'mod p E Zp se d E Zp


```
Z={1;2;3;4;6;5}
Escupio 1/2=7
    b-1=6=2x3
     Q(6)=1×2=2 to due elembri printin
Fermont a \in \mathbb{Z}_2 a^6 \equiv 1 \pmod{7}
Veolianno re 6 e primervo.
  \begin{cases} 6 \neq 1 ? 6^{3} = 216 = 6 \pmod{7} \\ 6^{3} \neq 1 ? 6^{2} = 36 = 1 \text{ No!} \end{cases}
NON

NON

of princtive, ma affliande Fernat, 2 he
     che 6 = 1 \pmod{7}
                6^6 \equiv 46656 \equiv 1 \pmod{7}
 me l'ordine di 6 e 2 (élesponte pui priccole)
      tole che 6^2 \equiv 1 \pmod{7} 6 ha ordine?
                                             2 \text{ ha notive } 3
8 \equiv 1 \text{ No!}
Vediono se 2 é ministro
                  23 # 1 (mod7)
VE drano 1e 3 è primbres
             \begin{cases} 3^{3} = 27 = 6 \pmod{7} \\ 3^{2} = 9 = 2 \pmod{7} \end{cases}
                                                    si!
                                                  30 mutulo
```

```
l'ordine di 3 è p-1
          729 = 36=1 (mod7)
 Ora venifichions la propriéto
             \begin{cases} 3^{4} = 3^{x+1} \pmod{7} \\ 4 = x+1 \pmod{6} \end{cases}
l'ubtime requestire duce che
                4 = 6 m +x+1, m rutero
            x= 3-6m
  \mu m=0 \rightarrow x=3
       m=-1 \rightarrow x=9
        M=-2 > X=15
 rufath
               34=310=316=4 (mod7)
                4= 10=16 (mod.6)
 L'altro elevento mintero E Z è è 5
     \int 5^{3} = 125 = 6 \pmod{7}
\int 5^{2} = 25 = 4 \pmod{7}
                43=04 mod7=1 1/42=16=20K
   4 herolus
```

$$4^{2} = 16 = 5 \neq 1$$
 $4^{5} = 2^{10} = 1704 = 1$
 $8^{2} = 8148 = 4 \neq 1$
 $9^{5} = 3^{10} = 59049 = 1 \text{ No } 9 \text{ of quelos}$
 $10^{2} = 100 = 1 \text{ No}$

$$10^{2} = 100 = 1 \text{ No}$$

$$6^{2} = 36 = 3 \neq 1$$

$$6^{5} = 7776 = 10 \neq 1 \text{ of}$$

$$6^{10} = 1 \text{ of}$$

$$8^{2} = 64 = 9 \neq 1$$

$$8^{3} = 2^{15} = 32768 = 10 \neq 1 \text{ of}$$

$$2^{30} = 1073741824 = 1 \text{ of}$$

Periodni quadratici p mino > 2, oli yeni $a \in \mathbb{Z}_{b}^{\pi}$ $a \perp p$ quoli $q \equiv b^{2} \pmod{p}$? $a = \{1, 2, -- (p-1)], (h-1) \text{ residuit in } \mathbb{Z}_p^r$ # radici prisme = 4(p-1) (p-1) (p)=p-1 iendni quadratici toliche e use a ha due radici Per cololere i producti en Zp prevelle $b = 1, 2, 3 \cdots \frac{(p-1)}{7}$ e fur b mod p per i vivoubi 4 (p=1)+1, (p-1)+2 --- (p-1) unlbono tuni = - b (modp) res Ochemi

fer la preusue zi mo metre degli elements di Zx, nel muo di (+1), che mu quadradi. ES. p=11 ={1,2,3,4,5,6,7,8,9,10) (p-1)=10 eleubi ½ = 5 eleubi mo producti e mo residui procedatici gli alti P-1=5 eleuti nu nur zen'olu i renolui sono: 6 $|^2 = 1$ 22=4 a= 1,3,4,5,9 3=9 4=16=5 5=25=3 t un revolu mo: $a_{\overline{q}} = 2_{1}6_{1}7_{1}8_{1}10$ -b2 62=36=3 (-4) - 7°= 49=5 nu de b=9 (modp) (-3)= 8=64=9 -2)=92=81=4 (-1)=102=100=1

d=g e un elembo perereta di Zp Ceu i poni con i desforn' 97 = 91 ES. A=11 es.g=2 p-1=10=2x5 g = g = 2=32=10≠/ oc 分号 9 年 2 = 4 年 1 aq = 9 36=64=(9 2=128=7 28=28=(3) 29=512=6 210= loz4=1 p-1

CONSULTING

 $\chi \equiv a \pmod{p}$

rovere i resolui que chatici eli Z 3 = 1, 2, 3, 4, 5, 6, 7, 8, 9, 19, 11, 12 } 12 = 3×2 PQ n residu Trovo un elevaso primutivo es. 2 = 24 = 16 = B (mod 13) = 26 = 64 = 12 (mod 13) 7 1 $6^2 = 36 = 10$

D CIFRARIO $E_k(P)=0$ APPINE

CA Chhertext KCongrelite ESEMPLO $C \equiv (a P + l_1) \pmod{m}$ padue uiteri a, le ; sur b E Zn e de na poi -1(c-a) (mod m) fer ai a' entre se a EZm er aver 2e mod (a,m)=1. la charé è (g,le)=t ove le { Zm e a { Zm | K | = | a | · | b | = 4 (m) · m = m 4 (m)

Key sporce = m 4 (m)

Prendramo l'afabeto Naliono M=21 m=3.7=21=4.9 ABCDE -- STUVZ } 01234 -- 617181920 quale chare $K \equiv (a, a) il testo$ quale charge $K \equiv (a, a)$ viene afrado d'augueno P₁, P₂ = SI P=16 -> C=11 in C, C2 = NO R=87 C=12 Resolvanno un métrico di anyruence a due uncofrute a e lu [1] S11= a16+le (mod21) [2] / 12 = a 8 + le (mod 21) noltglier la [2] pa 2 e sottragge la [1] 13= lu (mod 21) e poi sostitusco nelle [2] a 8+13=12 (mod 21) a8=1=20

Potence a mod n 34 mod 2 (a.a.a.a) mod n 81 mod 2 = 1 3^4 mod 2^4 mod 2^4 = $(1)^4$ = 1 (mod 2) $8 \mod 21 \equiv (8^5, 8^5, 8) \mod 21 =$ (85 mod 21)2. 8/mod 21 $[(2 \mod 21)^2, 8] = [(32.768 \mod 21)^2, 8]$ = [32,768 - [32,768].21]².8 mod 21

5.
$$|3 + (4.16)| = 65 + 64 = 1$$

(mod 16)

 $\Delta = t_n \cdot s_{n+1} - s_n \cdot t_{n+1} = (-1)^{n+1} = 1$
vale anche che

$$\int_{n} m + t_{n} q = 1 = 2n$$

 $(-4).16 + 5.13 = 1 \pmod{16}$

ama oruche

$$\begin{array}{l} 3_{m-1} + t_{m-1} = 2_{m-1} \\ 3_2 \cdot 16 + t_2 \cdot 13 = 22 \\ 1 \cdot 16 + -1 \cdot 13 = 3 \end{array}$$

Cong white $\alpha X \equiv b \pmod{m}$ exemple m = 26 = 2.13 $x \equiv \bar{a}' \cdot b \pmod{m}$ (f(m)=12 se m cd (a,m)=1 $aX \equiv b \pmod{m}$ se mcd(a,m)=d> 2 db allra har soluzione se d to NON he rolivaine escupir $2x \equiv 1 \pmod{6}$ mcol(2,6)=d=2ma dxb

NON HA SOLUZIONE

Se unvelope (1) $15 \times = 6 \pmod{21}$ (2) allua mcd(15,21) = d = 3e d=3 166 a mo d=3 solutioni la robotione to delle arignenta derivoita de (1) $\frac{15}{d} \chi_0 \equiv \frac{6}{d} \pmod{\frac{21}{d}}$ 199 d=3 5x=2 (mod 7) allue $\chi = 5.2 \pmod{7} / 45!$ $= 1 \mod{7} = 5 \mod{7} = 3 \qquad \binom{\text{mcol}(5,7)=1}{5 \mod{7}}$ $5 \mod 7 \equiv 5 \mod 7 \equiv 3$ $p=7 \rightarrow 4-2=5$ SOLVETON X = & mod ? 26; 13; 204 e le altre du solution : mo $|3=X_1=X_0+1\cdot\frac{M}{d}=6+7=13$ $20=X_2=X_0+2\cdot\frac{M}{d}=6+14=20$

$$3.m + tq = 1$$

mcd (m, a)=1

porriones oronche

$$m=p$$
 e a=9 primi $p>9$
quiudi $mcd(p,g)=1$

eche na n= p.9

allnow promo sonivere che se $X \equiv K \pmod{n}$

allnow $f X \equiv b_1 \mod p$ $f X \equiv b_2 \mod q$

45. $X = 26 \pmod{35}$ p = 7 q = 5 n = 35

allna $X = 26 = 5 \mod 7$ $b_1 = 5$ $X = 26 = 1 \mod 5$ $b_2 = 1$

vale allroche

 $x \mod n = b_2 s + b_1 t q$ $x \mod n = b_2 s + b_1 t q$ $x \mod n = b_2 s + b_1 t q$ $x \mod n = b_2 s + b_1 t q$

$$7 = 1.5 + 2$$

$$5 = 2.2 + 1$$

$$2 = 2.11 + 0$$

$$7 = 2.11 + 0$$

allusu

$$\times \mod 35 = 1.(-2).7 + 5.3.5 =$$

$$= -14 + 75 = 61 = 26$$

$$\times = 26 \mod 35$$

mya
niha che
$$t = \bar{a} e = m$$

max
max
max
max
mod m
mod a

$$J_{mox} = -2 = 3 \mod 5 = (7 \mod 5) \mod 5 = 2 \mod 5$$