AKARYA ÜNİVERSİTESİ, TEKNOLOJİ FAKÜLTESİ, ELEKTRİK-ELEKTRONİK MÜH. 2014-2015, GÜZ YARIYILI, ELEKTRİK DEVRELERİ I, ARA SINAV, 17.11.2014 Adı Soyadı: No: 1 2 3 4 5 TOPLAM

SÜRE: 90 dk.	Başarılar Dilerim.	Doç. Dr. İhsan PEHLİVAN

SORU 1. [20 puan]

Şekildeki devrede, a-b uçları arasına bağlanacak yük direncine **maksimum güç** aktarılmak isteniyor. **Yük direnç değerini ve maksimum gücü** bulunuz.

SORU 2. [20 puan]

1. sorudaki devrede a-b uçları arasına 1.9 Ohm luk direnç bağlayarak, kaynaklara ait güçleri bulunuz. (Çevre Akımları Yöntemiyle çözünüz.)

SORU 3. [20 puan]

1. sorudaki devrede a-b uçları arasını kısa devre ederek, **Süperpozisyon(Toplamsallık) Teoremi** ile $\dot{\mathbf{I}}_{\Delta}$ akımını bulunuz.

SORU 4. [20 puan]

Şekildeki devreyi **Düğüm Gerilimleri Yöntemiyle** çözerek, kaynak akımını, opampın çıkış akımını, ve I_v yük akımını bulunuz. (Opamp idealdir.)

SORU 5. [20 puan]

Şekildeki devre için $V_{\rm O}$ çıkış gerilimini $V_{\rm i}$ giriş gerilimine bağlı olarak hesaplayınız. (Opamplar idealdir.)

$$I_{\Delta} = I_{\Delta}' + I_{\Delta}'' + I_{\Delta}''' = \frac{7}{3} - \frac{1}{3} + 0$$

$$(I_{\Delta} = 2 \text{ Amper})$$

Soldaki poralel koldaki 6 In = 0 IA"=0 (4)

ORCAD-PSPICE SİMÜLASYONLARI

1. SORU: Aşağıdaki devre simülasyonda RL yük direnci, 1 ohm'dan 15 ohm'a kadar değiştirilerek, harcadığı güç çizdirilmiştir. Görüldüğü gibi cevap anahtarında olduğu gibi **yüke aktarılan güç, yük direncinin 6 ohm değeri için maksimum olmaktadır.** (Devre parametrelerini değiştirerek "Parametrik simülasyon" ilerleyen haftalarda, derste anlatılacaktır.)

2. SORU: Aşağıda görüldüğü gibi, simülasyon ile bulunan kaynak güçleri, ve cevap anahtarında bulunan kaynaklara ait güçler aynı çıkmıştır.

3. SORU: Aşağıda görüldüğü gibi, simülasyonda bulunan \dot{I}_{Δ} akımı ile, cevap anahtarında bulunan \dot{I}_{Δ} akımı aynı değerde çıkmıştır.

4. SORU: Aşağıda görüldüğü gibi, simülasyon sonuçları ile, cevap anahtarında bulunan sonuçlar aynı değerde çıkmıştır.

5. SORU: Aşağıda görüldüğü gibi, simülasyondaki çıkış gerilimi, cevap anahtarında olduğu gibi, giriş geriliminden 3 Volt düşüktür.

