Coreference & Coherence

Ling571
Deep Processing Techniques for NLP
March 6, 2017

Roadmap

- Coreference algorithms:
 - Data-driven techniques
 - Deterministic sieves
- Discourse structure
 - Cohesion
 - Topic segmentation
 - Coherence
 - Discourse parsing

Data-driven Reference Resolution

- Prior approaches: Knowledge-based, hand-crafted
- Data-driven machine learning approach
 - Coreference as classification, clustering, ranking problem
 - Mention-pair model:
 - ── For each pair NPi,NPj, do they corefer?
 - Cluster to form equivalence classes
 - Entity-mention model
 - \dashv For each pair NP_k and cluster C_{i,,} should the NP be in the cluster?
 - Ranking models
 - \dashv For each NP_k, and all candidate antecedents, which highest?

NP Coreference Examples

Link all NPs refer to same entity

Queen Elizabeth set about transforming her husband, King George VI, into <u>a viable monarch</u>. Logue, a renowned speech therapist, was summoned to help the King overcome his <u>speechimpediment</u>...

Annotaated Corpora

- Available shared task corpora
 - → MUC-6, MUC-7 (Message Understanding Conference)
 - → 60 documents each, newswire, English
 - → ACE (Automatic Content Extraction)
 - Originally English newswire
 - Later include Chinese, Arabic; blog, CTS, Usenet, etc.

Treebanks

- English Penn Treebank (OntoNotes)
- German, Czech, Japanese, Spanish, Catalan, Medline

Feature Engineering

- Other coreference (not pronominal) features
 - String-matching features:
 - → Mrs. Clinton <->Clinton
 - Semantic features:
 - Can candidate appear in same role w/same verb?
 - WordNet similarity
 - Wikipedia: broader coverage
 - Lexico-syntactic patterns:
 - → E.g. X is a Y

Typical Feature Set

- → 25 features per instance: 2NPs, features, class
 - → lexical (3)
 - string matching for pronouns, proper names, common nouns
 - → grammatical (18)
 - pronoun_1, pronoun_2, demonstrative_2, indefinite_2, ...
 - number, gender, animacy
 - appositive, predicate nominative
 - binding constraints, simple contra-indexing constraints, ...
 - → span, maximalnp, ...
 - semantic (2)
 - same WordNet class
 - alias
 - positional (1)
 - distance between the NPs in terms of # of sentences
 - knowledge-based (1)
 - naïve pronoun resolution algorithm

Coreference Evaluation

- Key issues:
 - Which NPs are evaluated?
 - Gold standard tagged or
 - Automatically extracted
 - → How good is the partition?
 - Any cluster-based evaluation could be used (e.g. Kappa)
 - MUC scorer:
 - Link-based: ignores singletons; penalizes large clusters
 - Other measures compensate

Clustering by Classification

- Mention-pair style system:
 - → For each pair of NPs, classify +/- coreferent
 - Any classifier
 - Linked pairs form coreferential chains
 - Process candidate pairs from End to Start
 - All mentions of an entity appear in single chain
 - F-measure: MUC-6: 62-66%; MUC-7: 60-61%
 - Soon et. al, Cardie and Ng (2002)

Multi-pass Sieve Approach

── Raghunathan et al., 2010

Key Issues:

- Limitations of mention-pair classifier approach
- Local decisions over large number of features
 - → Not really transitive
 - Can't exploit global constraints
 - Low precision features may overwhelm less frequent, high precision ones

Multi-pass Sieve Strategy

- Basic approach:
 - Apply tiers of deterministic coreference modules
 - Ordered highest to lowest precision
 - Aggregate information across mentions in cluster
 - Share attributes based on prior tiers
 - Simple, extensible architecture
 - Outperforms many other (un-)supervised approaches

Multi-Pass Sieve

Pre-Processing and Mentions

- Pre-processing:
 - Gold mention boundaries given, parsed, NE tagged
- For each mention, each module can skip or pick best candidate antecedent
 - Antecedents ordered:
 - Same sentence: by Hobbs algorithm
 - Prev. sentence:
 - ── For Nominal: by right-to-left, breadth first: proximity/recency
 - ── For Pronoun: left-to-right: salience hierarchy
 - W/in cluster: aggregate attributes, order mentions
 - Prune indefinite mentions: can't have antecedents

Multi-pass Sieve Modules

- ─ Pass 1: Exact match (N): P: 96%
- Pass 2: Precise constructs
 - Predicate nominative, (role) appositive, re;. pronoun, acronym, demonym
- Pass 3: Strict head matching
 - → Matches cluster head noun AND all non-stop cluster wds AND modifiers AND non i-within-I (embedded NP)
- ─ Pass 4 & 5: Variants of 3: drop one of above

Multi-pass Sieve Modules

- Pass 6: Relaxed head match
 - → Head matches any word in cluster AND all non-stop cluster wds AND non i-within-I (embedded NP)
- Pass 7: Pronouns
 - Enforce constraints on gender, number, person, animacy, and NER labels

Multi-pass Effectiveness

	MUC			
Passes	P	R	F1	
{1}	95.9	31.8	47.8	
{1,2}	95.4	43.7	59.9	
{1,2,3}	92.1	51. 3	65.9	
{1,2,3,4}	91.7	51.9	6	
{1,2,3,4,5}	91.1	52.6	0	
{1,2,3,4,5,6}	89.5	53.6		
{1,2,3,4,5,6,7}	83.7			

Sieve Effectiveness

ACE Newswire

This work (sieve)	838	73.	J; .1
This work (single pass)	8 .	71 . S	76
Haghighi and Klein (2009) +S	7 .7 0	. 9	765
Poon and Domingos (2008)	71	70.5	709
Finkel and Manning (2008) +G	78.7	58.5	r67 ·

Questions

- Good accuracies on (clean) text. What about...
 - Conversational speech?
 - → Ill-formed, disfluent
 - → Dialogue?
 - Multiple speakers introduce referents
 - Multimodal communication?
 - How else can entities be evoked?
 - → Are all equally salient?

More Questions

- Good accuracies on (clean) (English) text: What about..
 - Other languages?
 - Salience hierarchies the same
 - Other factors
 - Syntactic constraints?
 - → E.g. reflexives in Chinese, Korean,...
 - Zero anaphora?
 - ── How do you resolve a pronoun if you can't find it?

Reference Resolution Algorithms

- Many other alternative strategies:
 - Linguistically informed, saliency hierarchy
 - Centering Theory
 - Machine learning approaches:
 - Supervised: Maxent
 - Unsupervised: Clustering
 - Heuristic, high precision:
 - Cogniac

Conclusions

- Co-reference establishes coherence
- Reference resolution depends on coherence
- Variety of approaches:
 - Syntactic constraints, Recency, Frequency, Role
- Similar effectiveness different requirements
- Co-reference can enable summarization within and across documents (and languages!)

Discourse Structure

Why Model Discourse Structure? (Theoretical)

- Discourse: not just constituent utterances
 - Create joint meaning
 - Context guides interpretation of constituents
 - ─ How????
 - → What are the units?
 - How do they combine to establish meaning?
 - → How can we derive structure from surface forms?
 - What makes discourse coherent vs not?
 - How do they influence reference resolution?

Why Model Discourse Structure?(Applied)

- Design better summarization, understanding
- Improve speech synthesis
 - Influenced by structure
- Develop approach for generation of discourse
- Design dialogue agents for task interaction
- Guide reference resolution

Discourse Topic Segmentation

Separate news broadcast into component stories

On "World News Tonight" this Thursday, another bad day on stock markets, all over the world global economic anxiety. ||
Another massacre in Kosovo, the U.S. and its allies prepare to do something about it. Very slowly. ||
And the millennium bug, Lubbock Texas prepares for catastrophe, Bangalore in India sees only profit.||

Discourse Segmentation

- Basic form of discourse structure
 - Divide document into linear sequence of subtopics
- Many genres have conventional structures:
 - Academic: Into, Hypothesis, Methods, Results, Concl.
 - Newspapers: Headline, Byline, Lede, Elaboration
 - Patient Reports: Subjective, Objective, Assessment, Plan
- Can guide: summarization, retrieval

Cohesion

- Use of linguistics devices to link text units
 - Lexical cohesion:
 - Link with relations between words
 - Synonymy, Hypernymy
 - → Peel, coreand slice the pears and the apples. Add the fruit to the skillet.
 - Non-lexical cohesion:
 - E.g. anaphora
 - → Peel, core and slice the pears and the apples. Add them to the skillet.
 - Cohesion chain establishes link through sequence of words
 - Segment boundary = dip in cohesion

TextTiling (Hearst '97)

- Lexical cohesion-based segmentation
 - Boundaries at dips in cohesion score
 - ─ Tokenization, Lexical cohesion score, Boundary ID
- Tokenization
 - Units?
 - White-space delimited words
 - Stopped
 - Stemmed
 - → 20 words = 1 pseudo sentence

Lexical Cohesion Score

- Similarity between spans of text
 - → b = 'Block' of 10 pseudo-sentences before gap
 - \neg a = 'Block' of 10 pseudo-sentences after gap
 - → How do we compute similarity?
 - Vectors and cosine similarity (again!)

$$sim_{cosine}(b, a) = \frac{\sum_{b \bullet a} \sum_{i=1}^{N} b \times a}{\sqrt{\sum_{i=1}^{N} b_i^2} \sqrt{\sum_{i=1}^{N} a_i^2}}$$

Segmentation

- Depth score:
 - Difference between position and adjacent peaks
 - -1 E.g., $(y_{a1}-y_{a2})+(y_{a3}-y_{a2})$

