Problem Set 10

Jaan Tollander de Balsch

April 1, 2020

H_{10.1}

Vertex Cover

- Instance: An undirected graph G = (V, E) and an integer B.
- Question: Is there a subset $C \subseteq V$ with $|C| \leq B$ such that for every $(i,j) \in E$, either $i \in C$ or $j \in C$?

Given a graph, is there a set of vertices of size at most given threshold such each edge has at least one end point in the set?

Directed Cycle Cover

• Instance: A directed graph G = (V, E) and an integer K.

• Question: Is there a subset $F \subseteq E$ with $|F| \le K$ such that any directed cycle in the graph G contains at least one arc (directed edge) from set F?

Given a directed graph, is there a set of arcs of size at most given threshold that need to be removed to make it acyclic?

Directed Cycle Cover is in ${\bf NP}.$ We can check the certificate in polynomial time as follows.

Proof: Given a directed graph G = (V, E) and subset $F \subseteq E$ with $|F| \leq K$, check if graph $G' = (V, E \setminus F)$ is acyclic using depth first search which runs in polynomial time $O(|V| + |E \setminus F|) = O(|V| + |E|)$.

We show that Directed Cycle Cover is ${\bf NP}$ -hard by log space reduction from Vertex Cover.

1) Let the undirected graph G=(V,E) and integer B be an instance of vertex cover.

FIXME: solution is not correct

- 2) Then, we transform it into an instance of directed cycle cover G' = (V, E') where for each edge $(i, j) \in E$, there we create a cycle by creating arcs $(i, j) \in E'$ and $(j, i) \in E'$. The transformation can be computed in logspace.
- 3) Since the arcs form a cycle, Directed Cycle Cover is forced to choose one of them.
- 4) Let $F \subseteq E'$ with $|F| \le B$ be a solution for directed cycle cover. Then, the solution for vertex cover is $C = \{i \mid (i,j) \in F\}$ with $|C| \le B$.

Proof: F is directed cycle cover $\Leftrightarrow C$ is vertex cover

 \Rightarrow :

 \Leftarrow :

H_{10.2}

H10.3