集成运算放大电路

雷飞

010-67392914 leifei@bjut.edu.cn

5.1 集成运算放大电路概述

集成电路简称 IC (Integrated Circuit)

功 能 模拟集成电路

类 型

集成运算放大器;集成功率放大器;

集成高频放大器; 集成中频放大器;

集成比较器;集成乘法器;集成稳压

器;集成数/模或模/数转换器等。

集成电路的外形

(a) 双列直插式

(c)扁平式

集成电路的外形

1 集成运放的电路结构特点

- 一. 对称性好, 适用于构成差分放大电路。
- 二. 集成电路中电阻, 其阻值范围一般在几十欧到几十千欧之间, 如需高阻值电阻时, 要在电路上另想办法。
- 三. 在芯片上制作三极管比较方便,常常用三极管代替电阻(特别是大电阻)。
- 四. 在芯片上制作比较大的电容和电感非常困难,电路通常采用直接耦合电路方式。
- 五. 集成电路中的 NPN 、 PNP管的 β 值差别较大,通常 PNP 的 $\beta \le 10$ 。常采用复合管的形式。

2 集成运放电路的组成及其各部分的作用

实质上是一个具有高放大倍数的多级直接耦合放大电路。

集成运算的基本组成

一、输入级 差分电路,大大减少温漂。

二、中间级 采用有源负载的共发射极电路,增益大。

三、输出级 互补对称 电路,带负载能力强

四、偏置电路电流源电路,为各级提供合适的静态工作点。

5.2 集成运放中的电流源电路

集成运放电路中的晶体管和场效应管除了作为放大管外,还构成电流源电路,为各级提供合适的静态电流;

作为<mark>有源负载取代高阻值电阻</mark>,从而增大放大电路的 电压放大倍数。

基本电流源电路

一、镜像电流源 (电流镜 Current Mirror)

基准电流
$$I_{REF} = \frac{V_{CC} - U_{BE1}}{R}$$

由于 $U_{BF1} = U_{BF2}$, T_1 与 T_2 参数 基本相同,则

$$I_{B1} = I_{B2} = I_{B}; I_{C1} = I_{C2} = I_{C}$$

$$I_{C2} = I_{C1} = I_{REF} - 2I_{B} = I_{REF} - 2\frac{I_{C2}}{\beta}$$
所以 $I_{C2} = I_{REF} \frac{1}{1 + \frac{2}{1 + \frac{2}{1$

具有温度补偿作用。
$$I_{\text{C2}} = I_{\text{REF}} = \frac{V_{\text{CC}} - U_{\text{BEI}}}{R}$$

改进型镜像电流源电路

问题:镜像电流源电路在月很小时, 16和 162相差很大

$$I_{C2} = I_{C1} = I_{REF} - I_{B3}$$

$$= I_{REF} - I_{E3} / (\beta + 1)$$

$$= I_{REF} - \frac{2I_{B2}}{\beta + 1} = I_{REF} - \frac{2I_{C2}}{\beta(\beta + 1)}$$

$$\therefore I_{C2} = \frac{I_{REF}}{1 + \frac{1}{\beta(\beta + 1)}} \approx I_{REF}$$
如 $\beta = 10$ $I_{C2} = 0.982 I_{REF}$

增加电阻Rea 目的是使IFa增大。

比例电流源

由图可得

$$U_{\text{BE1}} + I_{\text{E1}}R_1 = U_{\text{BE2}} + I_{\text{E2}}R_2$$

由于 U_{BF1}≈ U_{BF2},则

$$I_{\text{E1}}R_1 \approx I_{\text{E2}}R_2$$

忽略基极电流,可得

$$\boldsymbol{I}_{\mathrm{C2}} pprox rac{R_1}{R_2} \boldsymbol{I}_{\mathrm{C1}} pprox rac{R_1}{R_2} \boldsymbol{I}_{\mathrm{REF}}$$

比例电流源

两个三极管的集电极电流之比近似与发射极电阻的 阻值成反比,故称为比例电流源。

三、微电流源

引入 $R_{\rm e}$ 使 $U_{\rm RF2} < U_{\rm BF1}$,且 $I_{\rm C2} <<$ I_{C1} ,即在 R_{e} 值不大的情况下 ,得到一个比较小的输出电 流 /cz。

$$\boldsymbol{U}_{\mathrm{BE1}} - \boldsymbol{U}_{\mathrm{BE2}} = \boldsymbol{I}_{\mathrm{E2}} \boldsymbol{R}_{\mathrm{e}} \approx \boldsymbol{I}_{\mathrm{C2}} \boldsymbol{R}_{\mathrm{e}}$$

$$I_{\text{C2}} \approx \frac{U_{\text{BE1}} - U_{\text{BE2}}}{R_{\text{e}}}$$

微电流源

四、多路电流源

$$I_{CO} = I_{EO} = I_{REF} - \sum I_{B}/(\beta+1)$$

当β较大时 $I_{CO} = I_{REF}$

由于各管的β, U_{BF}相同,

多路电流源

$$I_{E0}R_{E0} \approx I_{REF}R_{E0} = I_{E1}R_{E1}$$

= $I_{E2}R_{E2} = I_{E3}R_{E3}$ 所以

$$\begin{cases} I_{C1} \approx I_{E1} = I_{REF} R_{E0} / R_{E1} \\ I_{C2} \approx I_{E2} = I_{REF} R_{E0} / R_{E2} \\ I_{C3} \approx I_{E3} = I_{REF} R_{E0} / R_{E3} \end{cases}$$

例图示电路是F007的电流源部分。其中T10与T11为纵向NPN 管;T₁₂与T₁₃是横向PNP管,它们的β为5,b-e间电压值约为 0.7V, 试求各管的电电流。

$$I_{\text{REF}} = \frac{V_{\text{CC}} + V_{\text{CC}} - U_{\text{BE12}} - U_{\text{BE11}}}{R_{5}}$$

≈0.73mA

$$U_{\mathrm{T}} \ln \frac{I_{R}}{I_{C10}} \approx I_{C10} R_{4}$$

I_{C10}≈28uA

$$I_{\text{C13}} = I_{\text{C12}} = I_{\text{R}} \frac{\beta}{\beta + 2} \approx 0.52 \text{mA}$$

五、电流源用作有源负载

在集成运放中,常用电流源电路取代R_C或R_d ,这样在电源电压不变的情况下,既可获得合适的静态电流,对于交流信号,又可获得很大的等效R_C或R_d的。

$$I_{\text{C1Q}} \approx I_{\text{REF}} = \frac{U_{\text{CC}} - U_{\text{BE}}}{R} \approx \frac{U_{\text{CC}}}{R}$$

T₁放大管交流等效电阻大,故 放大倍数可做得很大,每级电压 放大倍数可达1000或更高,是 用纯电阻作负载所无法达到的

电流源负载

例 有源负载共射放大电路

- 1.电路图
- 3.动态分析

2.静态分析(求参考电流,略)

$$\dot{A}_{\rm U} = -\frac{\beta_1 (r_{\rm ce1} // r_{\rm ce2} // R_{\rm L})}{R_{\rm b} + r_{\rm be1}}$$

$$\dot{A}_{\mathrm{U}} = -\frac{\beta_{\mathrm{l}} R_{\mathrm{L}}}{R_{\mathrm{b}} + r_{\mathrm{be}}}$$

5.3 差分放大电路

1. 直接耦合放大电路的零点漂移现象

一、零点漂移现象及其产生的原因

直接耦合时,输入电压为零,但输出电压离开零点,并缓慢 地发生不规则变化的现象。

原因: 放大器件的参数受温 度影响而使 Q 点不稳定。也 称温度漂移。

放大电路级数愈多,放大倍数 愈高,零点漂移问题愈严重。

- 二、抑制温度漂移的方法:
 - (1) 引入直流负反馈以稳定 Q点;
 - (2) 利用热敏元件补偿放大器的零漂;

利用热敏元件补偿零漂

(3) 采用差分放大电路。

2. 差分放大电路

差分放大电路是构成多级直接耦合放大电路的基本单元电路

一、电路的组成

管子特性也相同 参数完全相同,

差分放大电路也称为差 动放大电路

电路以两只管子集电极 电位差为输出,可克服 温度漂移

差分放大电路

差分放大电路的改进图

将发射极电阻合二为一、 对差模信号R。相当于短路

典型差分放大电路

长尾式差分放大电路 便于调节静态工作点, 电源和信 号源能共地

共模信号

输入信号 411和 412大小 相等,极性相同

差模信号

输入信号 411 和 412 大小 相等,极性相反

差分放大电路

二、长尾式差分放大电路分析

基于不同的应用场合,有双、单端输入和双、单端输出的情况

所谓"单端"指一端接地。

<A> 双入、双出

 双入、单出

<C> 单入、双出

<D> 单入、单出

"单端"的情况,还具有共模抑制能力吗?

如何进一步改进呢?

<A>双入双出

长尾式差分放大电路

 $U_0 = 0$

$$I_{B1} = I_{B2} = \frac{V_{EE} - U_{BE}}{R_b + 2(1 + \beta)R_e}$$

$$\approx \frac{V_{EE} - U_{BE}}{2(1 + \beta)R_e}$$

$$I_{E1} = I_{E2} = (1 + \beta)I_B$$

$$U_{CEQ} = V_{CC} + V_{EE} - I_{CQ}R_C - 2(1 + \beta)I_B R_e$$

2) 动态分析-共模信号

$$i_{b} = -\frac{u_{i}}{R_{b} + r_{be} + 2(1 + \beta) Re}$$
 $i_{c} = \beta i_{b}$
 $i_{c} = u_{0c2} = -i_{c} * R_{c}$
 $I_{a} = I_{c2} = \frac{u_{0c1}}{u_{i}}$
 $I_{a} = -\frac{\beta R_{c}}{R_{b} + r_{be} + 2(1 + \beta) Re}$

共模增益
$$A_{c} = \frac{u_{0c1} - u_{0c2}}{u_{i}} = 0$$

动态分析-共模信号

共模信号的输入使两管集电极电压有 相同的变化。

所以
$$u_{oc} = u_{oc1} - u_{oc2} \approx 0$$

电路参数的理想对称性,温度变化时 管子的电流变化完全相同, 故可以将 温度漂移等效成共模信号,差分放大 电路对共模信号有很强的抑制作用。

射极电阻R。对共模信号的负反馈作用,抑制了每只晶体管集电极电流的变 化,从而抑制集电极的电位的变化。

3) 动态分析-差模信号

差分放大电路加差模信号

分析时注意二个"虚地"

E点电位在差模信号作用下不变 ,相当于接"地"。

负载电阻的中点电位在差模信号作 用下不变,相当于接"地"。

3) 动态分析-差模信号

$$i_{b} = \frac{u_{i}}{2R_{b} + 2r_{be}}$$

$$i_{c} = \beta i_{b}$$

$$u_{0d1} = -\beta i_{b} * R_{c} / \frac{1}{2} R_{L}$$

$$u_{0d2} = \beta i_{b} * R_{c} / \frac{1}{2} R_{L}$$

$$A_{d1} = \frac{u_{0d1}}{u_{i}} = -\frac{\beta(R_{c} / \frac{1}{2} R_{L})}{2(R_{b} + r_{be})}$$

差模增益

$$A_{\rm d} = \frac{u_{\rm od1} - u_{\rm od2}}{u_{\rm i}} = \frac{-2\beta * R_{\rm c} / / \frac{1}{2} R_{\rm L}}{2(R_{\rm b} + r_{\rm be})} = \frac{-\beta * R_{\rm c} / / \frac{1}{2} R_{\rm L}}{R_{\rm b} + r_{\rm be}}$$

3) 动态分析-差模信号

$$R_{\text{od}} = 2R_{\text{C}}$$
 共模抑制比 $K_{\text{CMR}} = \left| \frac{A_{\text{D}}}{A_{\text{C}}} \right|$ dB

 $R_{id} = 2 (R_b + r_{be})$

差模信号作用下的等效电路

双端输出,理想情况 $K_{CMR} = \infty$

3) 动态分析-差模信号

电压传输特性

放大电路的输出电压和输入电压之间的关系曲线。

$$u_{\rm o} = f(u_{\rm I})$$

双入单出

长尾式差分放大电路

1) 静态分析

$$I_{B1} = I_{B2} = \frac{V_{EE} - U_{BE}}{R_b + 2(1 + \beta)R_e}$$

$$\approx \frac{V_{EE} - U_{BE}}{2(1 + \beta)R_e}$$

$$I_{E1} = I_{E2} = (1 + \beta)I_B$$

$$U_{CEQ1} = V_C + V_{EE} - 2(1 + \beta)I_B R_e$$

$$U_{CEQ2} = V_{CC} + V_{EE} - \beta I_{BRC} - 2(1 + \beta) I_{B} R_{e}$$

$$U_0 = 0$$

2) 动态分析-共模信号

$$i_{b} = -\frac{u_{i}}{R_{b} + r_{be} + 2(1 + \beta) R_{e}}$$

$$i_{c} = \beta i_{b}$$

$$u_{0c} = -i_c * R_c // R_L$$

$$A_{\rm c} = \frac{{\rm u}_{\rm 0}}{{\rm u}_{\rm i}}$$

$$= -\frac{\beta R_{\rm c} //R_{\rm L}}{R_{\rm b} + r_{\rm be} + 2(1 + \beta) R_{\rm e}}$$

3) 动态分析-差模信号

$$i_{b} = \frac{u_{i}}{2R_{b} + 2r_{be}}$$

$$i_{c} = \beta i_{b}$$

$$u_{0} = -\beta i_{b} * R_{c} // R_{L}$$

$$A_{d} = \frac{u_{0}}{u_{i}} = -\frac{\beta (R_{c} // R_{L})}{2(R_{b} + r_{be})}$$

放大倍数比双出降了一半

$$R_{id} = 2 (R_b + r_{be})$$

$$R_{od} = R_{C}$$

<C>单入双出

1) 静态分析同双入双出

$$I_{B1} = I_{B2} = \frac{V_{EE} - U_{BE}}{R_b + 2(1 + \beta)R_e}$$

$$\approx \frac{V_{EE} - U_{BE}}{2(1 + \beta)R_e}$$

$$I_{E1} = I_{E2} = (1 + \beta)I_{B}$$

$$U_{CEQ1} = V_C + V_{EE} - 2(1 + \beta)I_B R_e$$
 $U_{CEQ2} = V_{CC} + V_{EE} - \beta I_B R_C - 2(1 + \beta)I_B R_e$

$$U_0 = 0$$

动态分析-共模信号

输入引入了共模干扰, 但被双输出抑制

差模分析计算与双入双 出相同

<D>单入单出

长尾式差分放大电路

1) 静态分析同双入单出

$$I_{B1} = I_{B2} = \frac{V_{EE} - U_{BE}}{R_b + 2(1 + \beta)R_e}$$

$$\approx \frac{V_{EE} - U_{BE}}{2(1 + \beta)R_e}$$

$$I_{E1} = I_{E2} = (1 + \beta)I_B$$

$$U_{CEQ1} = V_C + V_{EE} - 2(1 + \beta)I_B R_e$$

$$U_{CEQ2} = V_{CC} + V_{EE} - \beta I_{BRC} - 2(1 + \beta) I_{B} R_{e}$$

$$U_0 = 0$$

动态分析-共模信号

$$i_{b} = -\frac{u_{i} / 2}{R_{b} + r_{be} + 2(1 + \beta) \text{ Re}}$$

$$i_{c} = \beta i_{b}$$

$$u_{0c} = -i_{c} * R_{c} / / R_{L}$$

$$A_{c} = \frac{u_{0}}{u_{i} / 2}$$

$$= -\frac{\beta R_{c} / / R_{L}}{R_{b} + r_{be} + 2(1 + \beta) \text{ Re}}$$

输入方式引入了共模干扰

3) 动态分析-差模信号

差模信号分析同双入单出

$$i_{b} = \frac{u_{i}}{2R_{b} + 2r_{be}}$$

$$i_{c} = \beta i_{b}$$

$$u_{0d} = -\beta i_{b} * R_{c} // R_{L}$$

$$A_{d} = \frac{u_{0}}{u_{i}} = -\frac{\beta(R_{c} // R_{L})}{2(R_{b} + r_{be})}$$

放大倍数比双出降了一半

$$R_{id}=2(R_b + r_{be})$$

 $R_{od}=R_C$

差动放大器动态参数计算总结

(1)差模电压放大倍数

与单端输入还是双端输入无关,只与输出方式有关:

双端输出时:

$$A_{vd} = -\frac{\beta (R_c // \frac{R_L}{2})}{R_b + r_{be}}$$

单端输出时:

$$A_{vd} = \pm \frac{\beta (R_c // R_L)}{2(R_b + r_{be})}$$

(2)共模电压放大倍数

与单端输入还是双端输入无关,只与输出方式有关:

双端输出时: $A_{vc} = 0$ 单端输出时: $A_{vc} \approx -\frac{R'_L}{2R}$

(3)差模输入电阻

不论是单端输入还是双端输入,差模输入电阻R_{id}是基本放大电路的两倍。

$$R_{\rm id} = 2(R_b + r_{\rm be})$$

(4)输出电阻

单端输出时
$$R_o = R_c$$
 双端输出时 $R_o = 2R_c$

(5)共模抑制比

共模抑制比K_{CMR}是差分放大器的一个重要指标

$$K_{\rm CMR} = \left| \frac{A_{\rm vd}}{A_{\rm vc}} \right|$$

或
$$K_{\text{CMR}} = 20 \lg \left| \frac{A_{\text{vd}}}{A_{\text{vc}}} \right| \text{(dB)}$$

双端输出时K_{CMR}可认为等于无穷大,

单端输出时共模抑制比:

$$K_{\rm CMR} = \frac{-\beta R'_{\rm L}/2(R_{\rm b} + r_{\rm be})}{-R'_{\rm L}/2R_{\rm e}} \approx \frac{\beta R_{\rm e}}{R_{\rm b} + r_{\rm be}}$$

三、恒流源差分放大电路

为减小共模放大倍数,增加Re,Re增加的同时为 保证偏置电流,VEE也要增大。

Re无穷大,用电流源保证偏置电流,构成恒流源式 差分放大电路

恒流源式差分放大电路

静态分析

$$U_{R_{b1}} = \frac{R_{b1}}{R_{b1} + R_{b2}} (V_{CC} + V_{EE})$$

$$U_{R_{b1}} - U_{BEQ3}$$

$$I_{\text{CQ3}} \approx I_{\text{EQ3}} = \frac{U_{R_{\text{b1}}} - U_{\text{BEQ3}}}{R_{\text{e}}}$$

$$I_{\text{CQ1}} = I_{\text{CQ2}} \approx \frac{1}{2} I_{\text{CQ3}}$$

$$U_{\mathrm{CQ1}} = U_{\mathrm{CQ2}} = V_{\mathrm{CC}} - I_{\mathrm{CQ1}} R_{\mathrm{C}}$$

$$I_{\text{BQ1}} = I_{\text{BQ2}} \approx I_{\text{CQ1}}/\beta_{1}$$

$$U_{\text{BO1}} = U_{\text{BO2}} = -I_{\text{BO1}}R$$

恒流源的差分放大电路

2) 动态分析

由于恒流三极管相当于一个阻值很大的长尾电阻, 它的作用也是引入一个共模负反馈,对差模电压放大倍 数没有影响,所以与长尾式交流通路相同。

差模电压放大倍数为

$$A_{\rm d} = \frac{\Delta u_{\rm O}}{\Delta u_{\rm I1} - \Delta u_{\rm I2}} = -\frac{\beta (R_{\rm C} // \frac{N_{\rm L}}{2})}{R + r_{\rm be}}$$

差模输入电阻为

$$R_{\rm id} = 2(R + r_{\rm be})$$

差模输出电阻为 $R_0 = 2R_0$

四、其他类型差分放大电路

具有电流源的差分放大电路

带调零措施的恒流源差分放大电路

调节电位器Rw的滑动端位置可使 电路在u_{I1}=u_{I2}=0时, u₀=0

5.4 集成运放电路简介

典型的集成运放 **EXAMPLE EXAMPLE EXAMPL**

1. 双极型集成运放 F007

F007 的引脚及连接示意图

F007 电路原理图

1) 偏置电路

基准电流:

$$\boldsymbol{I}_{\text{REF}} = \frac{\boldsymbol{V}_{\text{CC}} + \boldsymbol{V}_{\text{EE}} - \boldsymbol{U}_{\text{BE12}} - \boldsymbol{U}_{\text{BE11}}}{\boldsymbol{R}_{5}}$$

基准电流产生各放 大级所需的偏置电流。

2)输入级

T₁、T₂、T₃、T₄组成共集-共基差分放大电路;

T₁、T₂基极接收差分输入信号。

T₅、T₆有源负载;

Ta集电极送出单端 输出信号至中间级。

 R_{W} 调零电阻,R外接电阻。

 T_7 与 R_2 组成射极 输出器。

若暂不考虑 T₇ 和调零电路则电路可简化为:

- (1). T₁、T₂ 共集组态,具有较高的差模输入电阻和共模输入电压。
- (2). 共基组态的 T_3 、 T_4 ,与有源负载 T_5 、 T_6 组合,可以得到很高的电压放大倍数。
 - (3). T₃、T₄ 共基接法能改善频率响应。
- (4). 该电路具有共模负反馈,能减小温漂,提高共模抑制比。

3) 中间级

输入来自 T4 和 T6集电 极;

输出接在输出级的两个 互补对称放大管的基极。

中间级 T₁₆、 T₁₇ 组成 复合管,T₁₃作为其有源负 载。

8、9两端外接30pF 校正电容防止产生自激振荡。

中间级示意图

4. 输出级

T₁₄、 T₁₈ 、 T₁₉ 准互 补对称电路;

$$D_1$$
、 D_2 、 R_9 、 R_{10}
过载保护电路;

T₁₅、R₇、R₈ 为功率 管提供静态基流。

 $U_{\text{CE15}} \approx \frac{R_7 + R_8}{R_0} U_{\text{BE15}} \approx (1 + \frac{R_7}{R_0}) \times 0.7 \text{ V}$ F007 输出级原理电路

调节R₇、R₈阻值可调节两个功率管之间的电压差。这 种电路称为URF倍增电路。

5.6 集成运放在信号放大及运算方面的应用

一、电子信息系统组成

二、理想运放

1. 性能指标

开环差模电压增益 $A_{od} = \infty$;

差模输入电阻 r_{id} = ∞;

输出电阻 $r_0 = 0$;

共模抑制比 K_{CMR} = ∞;

$$U_{10} = 0$$
, $I_{10} = 0$, $\alpha_{U10} = \alpha_{10} = 0$;

输入偏置电流 /_{IB} = 0;

- 3 dB 带宽 f_H = ∞

二、理想运放

2. 工作区:线性区和非线性区

3. 线性区: 虚短虚断

输出电压与其两个输入端的电压之间存在线性放大关系:

$$u_{o} = A_{od}(u_{+} - u_{-})$$

理想运放工作在线性区特点:

1) 理想运放的差模输入电压等于零

$$(u_+ - u_-) = \frac{u_O}{A_{od}} = 0$$
 即 $u_+ = u_-$ "虚短"

2) 理想运放的输入电流等于零

由于 $r_{id} = \infty$, 两个输入端均没有电流,即

4. 非线性区

1) uo 的值只有两种可能

当
$$u_P > u_N$$
时, $u_O = + U_{OM}$
当 $u_P < u_N$ 时, $u_O = - U_{OM}$

在非线性区内, $(u_P - u_N)$ 可能很大,即 $u_P \neq u_N$ 。 "虚地" 不存在

2) 理想运放的输入电流等于零

$$i_{P}=i_{N}=0$$

三、基本运算电路

集成运放的应用首先表现在它能够构成各种运算 电路上。

在运算电路中,集成运放必须工作在线性区,在深度负反馈条件下,利用反馈网络能够实现各种数学运算。

基本运算电路包括:

比例、加减、积分、微分、对数、指数

1. 比例运算电路

1) 反相比例运算电路

由于"虚断",
$$i_{+}=0$$
, $u_{+}=0$;

由于"虚短",
$$u_{-} = u_{+} = 0$$

——"虚地"

$$\frac{u_{\mathrm{I}} - u_{-}}{R_{-}} = \frac{u_{-} - u_{\mathrm{o}}}{R_{-}}$$

$$u_{o} = -\frac{R_{F}}{R_{I}}u_{I}$$
 $A_{uf} = \frac{u_{o}}{u_{I}} = -\frac{R_{F}}{R_{I}}$

* $R_2 = R_1 // R_F$

反相输入端"虚地",电路的输入电阻为 $R_{if} = R_1$

输出电阻为 $R_{\text{of}} = 0$

由;=;得

2) T型网络反相比例运算电路

电阻 R_2 、 R_3 和 R_4 构成T形网络电路

节点N的电流方程为

$$\frac{u_{\scriptscriptstyle \rm I}}{R_{\scriptscriptstyle \rm I}} = \frac{-u_{\scriptscriptstyle \rm M}}{R_{\scriptscriptstyle 2}} = i_{\scriptscriptstyle 2}$$

FILL
$$i_3 = -\frac{u_M}{R_3} = -\frac{R_2}{R_1 R_3} u_1$$

T型网络反相比例运算电路

$$i_4 = i_5 + i_5$$
 输出电压 $u_0 = -i_2 R_2 - i_4 R_4$

将各电流代入上式
$$u_{o} = -\frac{R_{2} + R_{4}}{R_{I}} (1 + \frac{R_{2} // R_{4}}{R_{3}}) u_{I}$$

3) 同相比例运算电路

根据"虚短"和"虚断"的特点,可知

$$i_{+} = i_{-} = 0;$$

所以
$$u_{-} = \frac{R_1}{R_1 + R_E} u_0$$

又
$$u_{\scriptscriptstyle \perp} = u_{\scriptscriptstyle \perp} = u_{\scriptscriptstyle \perp}$$
 所以

得:
$$u_{\rm o} = (1 + \frac{R_{\rm F}}{R_{\rm I}})u_{\rm I}$$

$$A_{uf} = \frac{u_{O}}{u_{I}} = 1 + \frac{R_{F}}{R_{I}}$$

$$*R_2 = R_1 // R_F$$

$$\frac{R_1}{R_1 + R_F} u_O = u_I$$

4) 电压跟随器

当
$$R_F = 0$$
 或 $R_1 = \infty$ 时

$$u_0 = u_1$$

$$A_{uf} = 1$$

计算方法小结

- 1.列出关键结点的电流方程,如N点和P点。
- 2.根据虚短(地)、虚断的原则,进行整理。

5) 差分比例运算电路

在理想条件下,由于"虚断", $i_{+} = i_{-} = 0$

$$u_+ = \frac{R_{\mathrm{F}}'}{R_1' + R_{\mathrm{F}}'} u_{\mathrm{I}}'$$

$$u_{-} = \frac{R_{\rm F}}{R_1 + R_{\rm F}} u_{\rm I} + \frac{R_1}{R_1 + R_{\rm F}} u_{\rm O}$$

由于"虚短", $U_+ = U_-$, 所以:

$$\frac{R_{\rm F}}{R_1 + R_{\rm F}} u_{\rm I} + \frac{R_1}{R_1 + R_{\rm F}} u_{\rm O} = \frac{R_{\rm F}'}{R_1' + R_{\rm F}'} u_{\rm I}'$$
电压放大倍数
$$A_{\rm uf} = \frac{u_{\rm O}}{u_{\rm I} - u_{\rm I}'} = -\frac{R_{\rm F}}{R_1}$$

ル_Iの ル_Iの 上 ル_Iの 差分比例运算电路

差模输入电阻

 $R_{\rm if} = 2R_1$

例 比例电路应用实例

两个放大级。结构对称的 A₁、A₂组成第一级,互相 抵消漂移和失调。

A₃ 组成差分放大级,将差分输入转换为单端输出。

三运放数据放大器原理图

当加入差模信号 u_1 时,若 $R_2 = R_3$,则 R_1 的中点为交流 地电位, A_1 、 A_2 的工作情况将如下页图中所示。

由同相比例运放的电压 放大倍数公式,得

$$\frac{u_{01}}{u_{11}} = 1 + \frac{R_2}{R_1/2} = 1 + \frac{2R_2}{R_1}$$

$$u_{O1} = (1 + \frac{2R_2}{R_1})u_{I1}$$

改变 R_1 , 即可调节 放大倍数。

FILL
$$u_{O1} - u_{O2} = (1 + \frac{2R_2}{R_1})(u_{I1} - u_{I2}) = (1 + \frac{2R_2}{R_1})u_{I}$$

则第一级电压放大

$$\frac{u_{o1} - u_{o2}}{u_{I}} = 1 + \frac{2R_2}{R_1}$$

A₃ 为差分比例放大电路。

当 $R_4 = R_5$, $R_6 = R_7$ 时,得第二级的电压放大倍数为

$$\frac{u_{\rm O}}{u_{\rm O1} - u_{\rm O2}} = -\frac{R_6}{R_4}$$

所以总的电压放大倍数为

$$A_{u} = \frac{u_{o}}{u_{I}} = \frac{u_{o}}{u_{o1} - u_{o2}} \cdot \frac{u_{o1} - u_{o2}}{u_{I}} = -\frac{R_{6}}{R_{4}} (1 + \frac{2R_{2}}{R_{1}})$$

在电路参数对称的条件下,差模输入电阻等于两个同相比例电路的输入电阻之和

$$R_{\rm i} = 2(1 + \frac{R_1}{R_1 + 2R_2} A_{\rm od}) R_{\rm id}$$

2.加减运算电路

1) 反相求和运算电路

所以:
$$i_1 + i_2 + i_3 = i_F$$

FILL:
$$\frac{u_{11}}{R_1} + \frac{u_{12}}{R_2} + \frac{u_{13}}{R_3} = -\frac{u_0}{R_F}$$

当
$$R_1 = R_2 = R_3 = R$$
 时, $u_0 = -\frac{R_F}{R_1}(u_{I1} + u_{I2} + u_{I3})$

2) 同相求和运算电路

由于"虚断", i+ = 0, 所以:

$$\underbrace{\frac{u_{11}-u_{+}}{R'_{1}}+\frac{u_{12}-u_{+}}{R'_{2}}+\frac{u_{13}-u_{+}}{R'_{3}}=\frac{u_{+}}{R'}}_{}$$

$$u_{+} = \frac{R_{+}}{R_{1}'} u_{I1} + \frac{R_{+}}{R_{2}'} u_{I2} + \frac{R_{+}}{R_{3}'} u_{I3}$$

其中:
$$R_+ = R_1' // R_2' // R_3' // R'$$
 由于"虚短", $u_+ = u_-$

解得:
$$u_{\text{O}} = (1 + \frac{R_{\text{F}}}{R_{\text{1}}})u_{\text{-}} = (1 + \frac{R_{\text{F}}}{R_{\text{1}}})u_{\text{+}}$$

$$= (1 + \frac{R_{\rm F}}{R_1})(\frac{R_+}{R_1'}u_{\rm I1} + \frac{R_+}{R_2'}u_{\rm I2} + \frac{R_+}{R_3'}u_{\rm I3})$$

3) 加减混合运算电路

利用叠加原理求解

图(a)为反相求和运算电路

$$u_{\text{O1}} = -(\frac{R_{\text{F}}}{R_{\text{I}}}u_{\text{I1}} + \frac{R_{\text{F}}}{R_{\text{2}}}u_{\text{I2}})$$

图(b)为同相求和运算电路

若 $R_1//R_2//R_f = R_3//R_4//R_5$

$$u_{O2} = \left(\frac{R_{F}}{R_{3}}u_{I3} + \frac{R_{F}}{R_{4}}u_{I4}\right)$$

$$u_{O} = R_{F}\left(\frac{u_{I3}}{R_{3}} + \frac{u_{I4}}{R_{4}} - \frac{u_{I1}}{R_{1}} - \frac{u_{I2}}{R_{2}}\right)$$

若电路只有二个输入,且参数 对称,电路如图

上式则为
$$u_{\rm o} = \frac{R_{\rm F}}{R} (u_{\rm I2} - u_{\rm I1})$$

电路实现了对输入差模信号的比 例运算

改进电路图: 高输入电阻差分比例运算电路

$$u_{o1} = (1 + \frac{R_{F1}}{R_{I}})u_{I1}$$
 $u_{o} = -\frac{R_{F2}}{R_{3}}u_{o1} + (1 + \frac{R_{F2}}{R_{3}})u_{I2}$

若
$$R_1 = R_{F2}$$
, $R_3 = R_{F1}$ $u_0 = (1 + \frac{R_{F2}}{R_3})(u_{I2} - u_{I1})$

例:用集成运放实现以下运算关系

$$u_{\rm O} = 0.2u_{\rm I1} - 10u_{\rm I2} + 1.3u_{\rm I3}$$

$$\frac{R}{R}: u_{O1} = -\left(\frac{R_{F1}}{R_1}u_{I1} + \frac{R_{F1}}{R_3}u_{I3}\right) = -\left(0.2u_{I1} + 1.3u_{I3}\right)$$

$$u_{\rm O} = -(\frac{R_{\rm F2}}{R_2}u_{\rm O1} + \frac{R_{\rm F2}}{R_4}u_{\rm I2}) = -(u_{\rm O1} + 10u_{\rm I2})$$

$$u_{\text{O1}} = -(\frac{R_{\text{F1}}}{R_1}u_{\text{I1}} + \frac{R_{\text{F1}}}{R_3}u_{\text{I3}}) = -(0.2u_{\text{I1}} + 1.3u_{\text{I3}})$$

$$u_{o} = -(\frac{R_{F2}}{R_{A}}u_{o1} + \frac{R_{F2}}{R_{2}}u_{I2}) = -(u_{o1} + 10u_{I2})$$

比较得:

$$\frac{R_{\text{F1}}}{R_1} = 0.2$$
, $\frac{R_{\text{F1}}}{R_3} = 1.3$, $\frac{R_{\text{F2}}}{R_4} = 1$, $\frac{R_{\text{F2}}}{R_2} = 10$

选
$$R_{F1} = 20 \text{ k}\Omega$$
,得: $R_1 = 100 \text{ k}\Omega$, $R_3 = 15.4 \text{ k}\Omega$

选
$$R_{F2} = 100 \text{ k}\Omega$$
, 得: $R_4 = 100 \text{ k}\Omega$, $R_2 = 10 \text{ k}\Omega$

$$R'_1 = R_1 // R_3 // R_{F1} = 8 \text{ k}\Omega$$

 $R'_2 = R_2 // R_4 // R_{F2} = 8.3 \text{ k}\Omega$

3. 积分运算电路和微分运算电路

1) 积分运算电路

由于"虚地",
$$u_{-} = 0$$
, 故
$$u_{0} = -u_{C}$$

由于"虚断", $i_1 = i_C$,故

$$u_1 = i_1 R = i_C R$$

得:
$$u_{O} = -u_{C} = -\frac{1}{C} \int i_{C} dt = -\frac{1}{RC} \int u_{I} dt$$

$$\tau = RC$$

—积分时间常数

2) 微分运算电路

由于"虚断",
$$i_c = 0$$
,故 $i_c = i_R$ $u_1 \circ \frac{1}{i_c}$

又由于"虚地",
$$u_{+} = u_{-} = 0$$

$$u_{\mathcal{O}} = -i_{R}R = -i_{C}R = -RC\frac{\mathrm{d}u_{\mathcal{C}}}{\mathrm{d}t}$$

可见,输出电压正比于输入电压对时间的微分。

微分电路的作用:

微分电路的作用有移相功能。 实现波形变换,如将方波变成双向尖顶波。

实用微分运算电路

基本微分运算电路在输入信号时,集成运放内部的放大管会进入饱和或截止状态,以至于即使信号消失,管子还不能脱离原状态回到放大区,出现阻塞现象。

比例积分运算电路-PI调节器

$$i_f = i_1 = \frac{u_i}{R_1}$$

$$u_{c} = \frac{1}{C_{F}} \int i_{f} dt = \frac{1}{R_{I} C_{F}} \int u_{i} dt$$

$$u_{o} = -i_{f}R_{F} - u_{C} = -\frac{R_{F}}{R_{1}}u_{i} - \frac{1}{R_{1}C_{F}}\int u_{i}dt$$

比例微分运算电路-PD调节器

$$u_{o} = -\left(\frac{R}{R_{i}}u_{i} - RC\frac{\mathrm{d}u_{i}}{\mathrm{d}t}\right)$$

比例、积分、微分运算电路---PID电路

$$u_{o} = -\left(\frac{R_{2}}{R_{1}} + \frac{C_{1}}{C_{2}}\right)u_{I} - R_{2}C_{1}\frac{du_{I}}{dt} - \frac{1}{R_{1}C_{2}}\int u_{I}dt$$

4.对数运算电路和指数运算电路

1) 对数运算电路

由二极管方程知
$$i_{\mathrm{D}} = I_{\mathrm{S}}(\mathrm{e}^{\frac{u_{\mathrm{D}}}{U_{T}}}-1)$$

当
$$u_D >> U_T$$
时, $i_D \approx I_S e^{\frac{u_D}{U_T}}$

或: $u_{\rm D} \approx U_T \ln \frac{i_{\rm D}}{I_{\rm S}}$

利用"虚地"原理,可得:

$$u_{\rm O} = -u_{\rm D} \approx -U_{T} \ln \frac{i_{\rm D}}{I_{\rm S}} = -U_{T} \ln \frac{i_{R}}{I_{\rm S}} = -U_{T} \ln \frac{u_{\rm I}}{I_{\rm S}R}$$
用三极管代替二极管可获得较大的工作范围。

2) 指数运算电路

当 $u_l > 0$ 时,根据集成运放反相输入端"虚地"及"虚断"的特点,可得:

$$i_{\mathrm{I}} \approx I_{\mathrm{S}} \mathrm{e}^{\frac{u_{\mathrm{BE}}}{U_{T}}} = I_{\mathrm{S}} \mathrm{e}^{\frac{u_{\mathrm{I}}}{U_{T}}}$$

指数运算电路

所以:
$$u_{\mathrm{O}} = -i_{R}R = -i_{\mathrm{I}}R = -I_{\mathrm{S}}Re^{\overline{U_{T}}}$$

可见,输出电压正比于输入电压的指数。