All 4 tableaux in this example represent 4 different problems:

Thaving the same feasible region

2 the same z-value on the feasible region.

From tableau 3, Xs will enter

No column A-ratios

$$X_1$$
 X_4
 X_5
 X_7
 X_8
 X_9
 X_9

A pivot on 6 produces Tableau 4

١	X,	N2	X3	74	7/5	Z	<u> </u>
X	1	0	-1 .	5	0	0	9
X	0	\mathcal{O}	-7	금	1	0	フ
72	0	1	6	-7	,0	0 0	2
						1	

This tableau is optimal because it satisfies the optimality criterion:

1) The objective row coefficients of basic variables are all 0.

(2) The objective row coefficients (not including the objective value) are all >0.

Tableau 4 represents the problem

Maximize
$$Z = 41 - \frac{5}{3} \chi_3 - \frac{4}{3} \chi_4$$
 s.t.

$$-\frac{1}{6} \chi_3 + \frac{5}{6} \chi_4 \leq 9$$

$$-\frac{1}{6} \chi_3 + \frac{7}{6} \chi_4 \leq 7$$

$$-\frac{1}{6} \chi_3 - \frac{7}{6} \chi_4 \leq 2$$

Any feasible change in χ_3 or χ_4 is an increase (from 0), (auxing Z to decrease. The optimal solution is $\begin{bmatrix} \chi_1 \\ \chi_3 \\ \chi_4 \end{bmatrix} = \begin{bmatrix} 9 \\ 0 \\ 0 \end{bmatrix}$

This problem has only 1 optimal solution.

because the coefficients of 73 and 74 in the objective row are $\neq 0$ If $z = 41 - 0.73 - \frac{4}{3}$ x_4 were the case Cuhere x_3 has "0" in the objective row), x_3 could enter without any change in the objective (giving another

optimal solution)

Graphical Solution

Note: In the simplex solution in Xs exited, then re-entered

In many problems, a variable will enter and later exit.

From now on, we drop the Z column but any objective row represents an equation including the term + z.

Notes on "An unbounded Problem" which is: Maximize $Z = 9x. + 10x_2 - 8x_3 - 9x_4$ s.t.

 $2\%_{1}+2\%_{2}-3\%_{3}-2\%_{4}+\%_{5}=6$

 $-6\chi_{1}-\chi_{2}+9\chi_{3}-\chi_{4}+\chi_{6}=7$ $\chi_{1}\geqslant0,\chi_{2}\geqslant0,\chi_{3}\geqslant0,\chi_{4}\geqslant0,\chi_{5}\geqslant0,\chi_{6}\geqslant0.$

From Tableau V. X2 will enter

 $\begin{array}{c|c}
\gamma_5 & \frac{b}{2} & \gamma_6 & \text{exits} \\
\gamma_6 & \frac{7}{b} & \end{array}$

The X2-column O-ratios are

A routine pivot leads to Tableau @

Now χ_3 enters; χ_3 -column θ -ratios are

$$\begin{array}{c|c} \chi_2 & \frac{3}{-3/2} \\ \chi_6 & \frac{10}{15/2} & \chi_6 \text{ will exit} \end{array}$$

From Tableau 3 we would enter χ_i . θ -ratios are both here denominators ≤ 0 . No variable can feasibly exit. The -10<0 in the objective row and the coefficient of χ_i otherwise ≤ 0 , indicates the problem is unbounded.

Next day, bring

- (1) An Unbounded Problem
- 2) A Degenerate Optimal Solution