

هادی عاشری

مقدمه

- جبر خطی یکی از پایههای اساسی در یادگیری ماشین و یادگیری عمیق است
 و کاربردهای گستردهای دارد:
 - ძ نمایش دادهها بهصورت بردار، ماتریس، تنسور
 - ملیات شبکههای عصبی با استفاده از تبدیلهای خطی 🚤
- روشهایی مانند تجزیه مقادیر منفرد و تجزیـه مقـادیر ویـژه بـرای کـاهش ابعـاد دادههـا و انتخاب ویژگیها بر پایه جبر خطی کار میکنند.
- الگوریتمهای بهینهسازی مانند روش گرادیان نزولی بـرای تنظـیم وزنهـا از جبـر خطـی بهـره میبرند.
- ך تبدیلهای ماتریسی ماننـد تبـدیل فوریـه بـرای فشردهسـازی و تحلیـل دادههـای تصـویری استفاده میشوند.

جبر خطی: نمایش دادهها بهصورت بردار

تجزیه مقادیر ویژه برای کاهش بعد

بردارها

- 🔵 تعریف:
- رداریک موجودیت ریاضی است.
- ♦ معمولاً به صورت آرایهای از اعداد به شکل زیر نمایش داده میشود:

$$\boldsymbol{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$$

🧹 بردار دارای جهت و اندازه است.

بازنمایی ویدیو

در بینایی ماشین، یک ویدیوی HD سیاهسفیدیک ویدیوی ۳۰ سیاهسفیدی تانیای از تانیای از به عنوان دنبالهای ۳۰ تایی از بردارهای دوبعدی/ با ابعاد بردارهای دوبعدی/ با ابعاد بعدی) بازنمایی شود.

عملیات جبری: جمع بردارها

$$u + v = [u_1 + v_1, u_2 + v_2, ..., u_n + v_n]$$

عملیات جبری: تفریق بردارها

$$u - v = [u_1 - v_1, u_2 - v_2, ..., u_n - v_n]$$

u - v is the vector from the terminal point of v to the terminal point of u.

عملیات جبری: ضرب اسکالر

$$c\boldsymbol{v} = [cv_1, cv_2, \dots, cv_n]$$

عملیات جبری: ضرب داخلی

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n = \|\mathbf{v}\| \|\mathbf{u}\| \cos \theta$$

سنجش مشابهت بردارها

میتوان از ضرب داخلی برای تعیین میزان مشابهت بین دو بردار ویژگی استفاده کرد.

$$\boldsymbol{u}.\,\boldsymbol{v} = \|\boldsymbol{u}\|\|\boldsymbol{v}\|\cos\theta$$

🖊 تشابه کسینوسی:

$$\cos\theta = \frac{u.v}{\|u\|\|v\|}$$

شهود ضرب داخلی

- ضرب داخلی یعنی اندازهی همجهتی دو بردار.
- اگر بردارها کاملاً همجهت باشند، ضرب داخلیشان بیشترین مقدار ممکن است.
 - اگر کاملاً عمود باشند، ضرب داخلیشان صفر است (چون هیچ همجهتی ندارند).
 - اگر خلاف جهت باشند، ضرب داخلیشان منفی میشود (یعنی در جهت مخالف هماند)

ماتریسها

- ماتریس یک آرایه دوبعدی از اعداد است که در سطرها و ستونها سازماندهی شده
 است.
 - 🧹 معمولاً به صورت زیر نشان داده میشود:

$$\mathbf{A} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} = [a_{ij}]$$

- در یادگیری ماشین میتوان یک داده را با یک بردار ویژگی و مجموعهای از دادهها را با یک ماتریس نیز نمایش داد.
 - 🧹 تنسور تعمیمیافتهی ماتریس به بیش از دو بُعد یعنی یک آرایه چند بعدی است.

فضای برداری

- یک فضای برداری (Vector Space) مجموعهای از بردارها/اشیاء است که دو
 عمل جمع برداری و ضرب عددی (ضرب اسکالر) بر روی آنها تعریف شده و
 مجموعهای از اصول (آکسیومها) را برآورده میکند:
 - بسته بودن نسبت به جمع: اگر u و v بردارهای فضای برداری باشند:
 - آنگاه u+v نیز باید در فضای برداری وجود داشته باشد.
- بسته بودن نسبت به ضرب اسکالر: برای هر بردار $oldsymbol{u}$ و هر عدد حقیقی c، بردار $coldsymbol{u}$ نیز در فضای برداری وجود دارد.
 - وجود بردار صفر: برداری که با هر برداری جمع شود همان بردار را به دست میدهد.
 - وجود معکوس جمعی: برای هر بردار u، قاعده u+(-u)=0 برقرار است.

فضای برداری: مثالها

- مولفه حقیقی n فضای \mathbb{R}^n مجموعه تمام بردارهای با lacktree
- n مجموعه تمام چندجملهایها با درجه کمتر یا مساوی
 - 🔷 فضای ویژگی در یادگیری ماشین
- تصاویر دیجیتال که به صورت ماتریسهای پیکسلی نمایش داده میشوند
 میتوانند به تنسور تبدیل شوند.
 - تبدیل کلمات به بردار و ایجاد فضای برداری کلمات با استفاده از

 Word2Vec، GloVe یا FastText

عملیات روی ماتریسها

مع ماتریسی بهصورت درایه به درایه انجام میشود:

$$(\mathbf{A} + \mathbf{B})_{ij} = a_{ij} + b_{ij}$$

🔷 ضرب ماتریسی با ضرب سطرهای ماتریس اول در ستونهای ماتریس دوم:

$$(\mathbf{A}\mathbf{B})_{ij} = \sum_{k} a_{ik} b_{kj}$$

🧹 برای حل سیستمهای معادلات خطی میتوان از این مفاهیم استفاده کرد.

تبدیلهای خطی

- حیل خطی مثل یک «ماشین تغییر شکل» است که روی بردارها عمـل میکند.
- هر برداری که وارد آن شـود، خروجـی قابـل پیشبینـی و مـنظم اسـت.
 هیچ پیچیدگی غیرخطی یا اعوجاجی ندارد.
- بردار ورودی چرخش داده میشود، کشیده یا فشرده میشود، بازتاب میشود.
- اگـر دو بـردار در ورودی همراسـتا باشـند، در خروجـی هـم همراسـتا میمانند.
 - 🧹 خطها، صفحهها و نسبتها حفظ میشوند.

تبديلهاي خطي

- حبدیل خطی T باید دو شرط را رعایت کند:
 - 🖊 جمعپذیری:

$$\mathsf{T}(u+v)=T(u)+T(v)$$

🧹 ضربپذیری با عدد اسکالر:

$$T(c.u) = c.T(u)$$

اگر بردارهای ورودی را ترکیب کنیم، تبدیل خطی همان ترکیب را روی خروجیها اعمال میکند.

$$T(a.u + b.v) = a.T(u) + b.T(v)$$

تبدیلهای خطی

هر تبدیل خطی در فضای برداری میتواند بهوسیله یک ماتریس نشان

داده شود که بردار ورودی را به بردار خروجی نگاشت میکند:

$$y = Ax$$

حفظ جمع

$$A(u+v)=Au+Av$$

🧹 حفظ ضرب اسكالر

$$A(cv) = cAv$$

استفاده از ماتریسهای چرخش برای تغییر جهت دادهها هنگام

پیشپردازش.

🖊 انجام نرمالسازی یا استانداردسازی با ماتریسهای مخصوص.

تصویر تبدیل خطی

رتبه ماتریس/تبدیل خطی

- رتبه مثل «میزان استقلال اطلاعات» در یک ماتریس یا تبدیل خطی است.
 - در نظر بگیرید هر ستون ماتریس یک بردار در فضاست.
- اگر هر یک از بردارهای ستونی جهت متفاوتی داشته باشند و هیچکدام ترکیب خطی دیگری نباشند، یعنی اطلاعات جدیدی دارند.
 - اگر همه بردارها روی یک راستا/خط باشن رتبه 1 lacksquare
 - اگر روی یک صفحه باشن ولی نه روی یک خطlacktriangle رتبه 2
 - \mathbf{n} اگر فضا را پر کند (در فضای \mathbf{n} بعدی) \rightarrow رتبه
- رتبه میگوید «چند جهت مستقل» در ماتریس وجود دارد. بعبارت دیگر، رتبه تبدیل خطی برابر است با بعد تصویر تبدیل.

ماتریس رتبه کامل

- رتبه یک ماتریس به تعـداد سـتونهای مسـتقل خطـی یـا سـطرهای مسـتقل
 خطی آن اشاره دارد.
- ◄ یعنی رتبه، بعد فضای برداریای است که توسط ستونها یا سطرهای ماتریس◄ ساخته میشود.
 - 🧹 رتبه تعداد بُعدها یا اطلاعات منحصربهفردی است که ماتریس دارد.
 - حیک ماتریس مربعی رتبه کامل، معکوسپذیر است

جمعبندی مفهوم رتبه

تفسير	تعریف	مفهوم
چند جهت مستقل در ستونها	تعداد ستونهای مستقل خطی	رتبه ماتریس
تعداد ابعاد قابل دستیابی در فضای خروجی	بعد تصویر تبدیل	رتبه تبدیل خطی

رتبه تبدیل خطی

خروجی نمونه کد تبدیل رتبه ناکامل

Original Data in 3D Space

Transformed Data in 3D Space

دترمينان

دترمینان عددی است که برخی خصوصیات یک ماتریس(مانند معکوسپذیری) را تعیین میکند.

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \to |\mathbf{A}| = a_{11}a_{22} - a_{12}a_{21}$$

محاسبه دترمینان یک ماتریس داده جهت تصمیمگیری دربارهی استفاده از روشهای حل معادلات خطی.

معكوس ماتريس

- $A^{-1} = AA^{-1} = A$ معکوس ماتریس A است، به طـوری کـه $A^{-1} = AA^{-1}$ کـه ماتریس همانی است.
 - در صورتی که دترمینان غیرصفر باشد، ماتریس معکوسپذیر است.
- برای حل دستگاه معادلات خطی b=Ax میتوان از معکوس استفاده کرد.

$$x = A^{-1}b$$

در کاربردهای رگرسیون ساده میتوان به کمک معکوس ماتریس یک سیستم معادلات خطی را حل کرد.

مثال: رگرسیون خطی

فرض میکنیم بین متغیرهای ورودی و خروجی یک سیستم ارتباطی از نوع
 رگرسیون خطی برقرار است:

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_d x_d$$

حیتاستی با n داده با بعد d در اختیار داریم 🤇

$$X = \begin{bmatrix} x_{11} & \cdots & x_{1d} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nd} \end{bmatrix}, y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$

میخواهیم پارامترهای مدل رگرسیون خطی (بردار $oldsymbol{eta}$) را تخمین بزنیم

مثال: رگرسیون خطی

- اگر آنگاه b=0 این تبدیل کاملاً خطی و معادل تبدیل خطی تعریف شده در بالا است.
- در غیر اینصورت، یک تبدیل affine است که در بسیاری از کاربردها هنوز هم
 به عنوان «تبدیل خطی» شناخته میشود:
 - چرخش (rotation)، کشش یا فشردگی (scaling)، بازتاب (reflection)، جابجایی
 (translation)
 - 🧲 خطوط، همچنان خط باقی میمانند.
 - 🖊 نقاطی که روی یک خط بودند، بعد از تبدیل هم روی یک خط هستند.
 - 🔷 نسبت فاصلهها بین نقاط روی یک خط حفظ میشود.

مثال: رگرسیون خطی

$$\overline{X} = \begin{bmatrix} 1 & x_{11} & \cdots & x_{1d} \\ 1 & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \cdots & x_{nd} \end{bmatrix}$$

🖊 فرم ماتریسی

$$\overline{X}\beta = y$$

حل دستگاه معادلات خطی

$$\overline{X} \beta = y \Longrightarrow \overline{X}^T \overline{X} \beta = \overline{X}^T y \Longrightarrow \beta = (\overline{X}^T \overline{X})^{-1} \overline{X}^T y$$

حل دستگاه معادلات خطی

```
\begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 20 \\ 10 \end{bmatrix}\begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 5 \\ 0 \end{bmatrix}
```

```
000
import numpy as np
# Define the coefficient matrix A
A = np.array([[4, 3],
             [2, 1]])
print(A)
# Define the constants vector B
b = np.array([20, 10])
# Calculate the determinant of matrix A
determinant = np.linalg.det(A)
# Check if the determinant is zero (singular matrix)
if determinant == 0:
    print("Matrix A is singular and cannot be inverted.")
else:
    # Calculate the inverse of matrix A
    A_inverse = np.linalg.inv(A)
   x = np.dot(A_inverse, b)
    print("\nSolution (X):")
    print("x0 =", x[0])
    print("x1 =", x[1])
```


زير فضا

- یک زیرفضا W از فضای برداری ،۷زیرمجموعهای از ۷ است که خودشیک فضای برداری با عملیات تعریف شده در ۷ محسوب میشود.
 - $0 \in W$ وجود بردار صفر \bullet
 - بسته بودن نسبت به جمع

 $u, v \in W \rightarrow u + v \in W$

بسته بودن نسبت به ضرب اسکالر

 $u \in W, c \in \mathbb{R} \rightarrow cu \in W$

زير فضا: مثالها

- در فضای \mathbb{R}^3 یک خط یا یک صفحه که از مبدأ عبور میکند زیرفضا محسوب میشوند.
- با محاسبه مولفههای اصلی (Principal Components) ،دادههای با ابعاد با ابعاد با ابعاد با ابعاد با ابعاد بالا به یک فضای با بعد کمتر نگاشت میشوند.
- الگوریتم SVM سعی میکند یک ابرصفحه (یک زیرمجموعه از فضای برداری)
 پیدا کند که کلاسها را از یکدیگر جدا کند.
 - بسیاری از الگوریتمهای خوشهبندی فرض میکنند که نقاط داده در چندین زیرفضای متفاوت قرار دارند.

فضای تھی

x فضای تهی (یا هسته، Kernel) یک ماتریس A مجموعهای از بردارهای lacktreal

است که در آنها رابطه Ax=0 برقرار است:

$$Null(A) = \{x \in \mathbb{R}^n \mid Ax = 0\}$$

- فضای تهی یک زیرفضا از فضای برداری اصلی است
- اگر ماتریس A دارای \mathbf{n} ستون باشد، بعد فضای تهی عبارتاست از:

$$nullity(A) = n - Rank(A)$$

فضاي تهي: مثالها

در مسائل رگرسیون خطی، ماتریس X شامل ویژگیهای داده است. اگر ستونهای X دچار همبستگی باشند، برخی از آنها به صورت خطی وابسته خواهند بود. این یعنی وجود بردارهای غیر صفر v در فضای تهی به گونهای است که:

$$Xv = 0$$

در تحلیل مولفههای اصلی (PCA) ،ماتریس کوواریانس دادهها تشکیل
 میشود. جهتهایی که دادهها هیچ واریانسی در آنها ندارند، متناظر با
 بردارهایی هستند که برابر با فضای تهی هستند.

مقادیر ویژه و بردارهای ویژه

- در نظر بگیرید یک ماتریس مانند یک «تغییر شکلدهنده» در فضا عمل
 میکند.
- وقتی این ماتریس روی یک بردار عمل میکند، معمولاً جهت و اندازهی آن بردار تغییر میکند.
- اما گاهی بردار (های) خاصی وجود داره که وقتی ماتریس روی آن اعمال میشود، فقط طول آن تغییر میکند و جهت آن ثابت میماند.
- این بردار خاص، بردار ویژه (Eigenvector) نامیده میشود و و ضریبی که طول بردار را تغییر میدهد، مقدار ویژه (Eigenvalue) نامیده میشود.

مقادیر ویژه و بردارهای ویژه

برای ماتریس A، اگر بردار v و اسکالر λ وجود داشته باشند که

$$Av = \lambda v$$

. آنگاه v بردار ویژه و λ مقدار ویژه نامیده میشود $oldsymbol{v}$

مقادیر ویژه و بردارهای ویژه

اگر مقدار ویژه بزرگتر از یک باشد، Av_i مربوطه منبسط میشود و بالعکس \blacktriangleleft

قطریسازی

در نظر بگیرید A یک ماتریس 2×2 است \blacktriangleleft

$$A[oldsymbol{v}_1 \quad oldsymbol{v}_2] = [\lambda_1 oldsymbol{v}_1 \quad \lambda_2 oldsymbol{v}_2] = [oldsymbol{v}_1 \quad oldsymbol{v}_2] egin{bmatrix} \lambda_1 & 0 \ 0 & \lambda_2 \end{bmatrix}$$

$$AV = V\Lambda$$

ماتریس مربعی A قطریپذیر است اگر بتوانیم آن را به یک ماتریس
 قطری تبدیل کنیم:

$$V^{-1}AV = \Lambda$$

اگر ماتریس n imes n قطریپذیر باشد آنگاه n بردار ویژه مستقل خطی دارد.

ویژگیهای مهم مقادیر و بردارهای ویژه

- 🧹 حاصلضرب مقادیر ویژه برابر با دترمینان است.
- 🧹 برای محاسبه توانهای ماتریس میتوان از آنها استفاده کرد:

$$A^k = V \Lambda^k V^{-1}$$

- اگر A منفرد باشد، مقدار ویژه 0 دارد.
- مقادیر ویژه و بردارهای ویژه میتوانند اعداد مختلط باشند.

بردارها و مقادیر ویژه چه میگویند؟

- وقتی ماتریس کوواریانس دادهها رو محاسبه میکنیم، در واقع داریم بررسی میکنیم که دادهها در کدام جهتها بیشترین تغییر (واریانس) را دارند.
 - با تجزیه این ماتریس به بردارهای ویژه و مقادیر ویژه، به این نتایج
 میرسیم:
- بردارهای ویژه: جهتهایی در فضای ویژگیها که دادهها بیشترین یا کمترین تغییر را
 در آنها دارند.
 - 🥒 مقادیر ویژه: میزان واریانس دادهها در امتداد هر بردار ویژه.

ارتباط با کاهش بعد

- بعد واقعی دادهها (Intrinsic Dimensionality) یعنی تعداد جهتهایی که
 واقعاً دادهها در آنها یخش شدهاند.
- مثلاً اگر دادهای در فضای 100 بعدی باشد، ولی فقط در 3 جهت اصلی تغییر کند،
 بعد واقعی آن 3 است. در این حالت، فقط 3 مقدار ویژه بزرگ داریم و بقیه
 تقریباً صفرند.
 - مقادیر ویژه بزرگتر → جهتهایی که اطلاعات بیشتری دارند
 - مقادیر ویژه کوچکتر \leftarrow جهتهایی که تقریباً نویز هستند یا اطلاعات کمی دارند \blacktriangleleft
 - با انتخاب بردارهای ویژه متناظر با بزرگترین مقادیر ویژه، میتوانیم دادهها را روی یک فضای کوچکتر فشرده کنیم، بدون اینکه بخش مهمی از اطلاعات را از دست بدهیم.

تجزيه مقادير منفرد

- ◄ SVD ابزاری قدرتمند برای تجزیه و تحلیل دادهها است که در تحلیلهای یادگیری ماشین نقش اساسی دارد.
 - 🔷 تعمیمی از تجزیه مقادیر ویژه است
 - سنای یک ماتریس A با ابعاد m×n: ﴿

 $\mathbf{A} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\mathbf{T}}$

- ماتریس ${
 m U}$ با ابعاد m imes m و ستونهای متعامد lacktree
- ماتریس قطری Σ با عناصر غیر صفر مرتب نزولی به عنوان مقادیر منفرد
 - $\mathbf{n}{ imes}n$ ابعاد V^{T} ماتریس V^{T} ترانهاده ماتریس متعامد

خصوصیات و نکات کلیدی

- ارتباط با مقادیر ویژه
- بهطور غیر مستقیم به تحلیل مقادیر ویژه AA^{T} مرتبط است.
 - مقادیر منفرد σ_i ریشههای مثبت مقادیر ویژه lacksquare
 - 🧹 کاهش بعد
- ◄ در الگوریتمهایی نظیر ،PCAاستفاده از SVD به جداسازی مولفههای اصلی دادهها و بهبود
 عملکرد مدلهای یادگیری ماشین کمک میکند.
 - 🧹 فشردهسازی تصاویر و توصیهگرها
- ربا نگهداشتن تنها مقادیر منفرد بزرگ، دادههای اصلی با نـویز و اطلاعـات جزئـی حـذف شـده بهدست میآید.
 - 🔵 کاهش نویز در دادهها
 - 🗸 نگهداشتن تنها مؤلفههای اصلی و حذف نویزهای کوچک.

سوالات رایج

- 🧹 تفاوت بین ضرب داخلی و ضرب ماتریسی چیست؟
- 🧹 چگونه میتوان از مفهوم مقادیر ویژه در کاهش ابعاد استفاده کرد؟
 - چه ارتباطی بین PCA و SVD وجود دارد؟
 - 🔷 موارد ذیل را برای بردار ویژه و مقدار ویژه ثابت کنید:

$$A^k v = \lambda^k v$$

$$A^{-1}v = \lambda^{-1}v$$

$$(\mathbf{A} + c\mathbf{I})\mathbf{v} = (\lambda + c)\mathbf{v}$$

منابع پیشنهادی

- Strang, G. (2000). Linear algebra and its applications.
- Oolub, G. H., & Van Loan, C. F. (2013). Matrix computations. JHU press.

