### MA1508E: LINEAR ALGEBRA FOR ENGINEERING

#### Lecture 10 Notes

## References

- 1. Elementary Linear Algebra: Application Version, Section 5.1, 6.3-6.4
- 2. Linear Algebra with Application, Section 3.3, 8.1

## 5.3 Gram-Schmidt Process

We will now provide an algorithm to construct orthogonal and orthonormal basis for a subspace  $V \subseteq \mathbb{R}^n$ .

Let  $V \subseteq \mathbb{R}^n$  be a subspace, and suppose  $S = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$  is a basis for V. Our goal is to first construct an orthogonal basis  $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k\}$  (from S), and then by normalizing, we obtain an orthonormal basis

$$\left\{\mathbf{w}_1 = \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|}, \mathbf{w}_2 = \frac{\mathbf{v}_2}{\|\mathbf{v}_2\|}, ..., \mathbf{w}_k = \frac{\mathbf{v}_k}{\|\mathbf{v}_k\|}\right\}.$$

We will construct the  $\mathbf{v}_i$  inductively, for i = 1, ..., k. We will first let  $\mathbf{v}_1 = \mathbf{u}_1$ . Then  $\mathrm{span}\{\mathbf{v}_1\} = \mathrm{span}\{\mathbf{u}_1\}$  and  $\{\mathbf{v}_1\}$  is an orthogonal set.

Suppose we have constructed an orthogonal set  $\{\mathbf{v}_1,...,\mathbf{v}_{i-1}\}$  such that span $\{\mathbf{v}_1,...,\mathbf{v}_{i-1}\}$  = span $\{\mathbf{u}_1,...,\mathbf{u}_{i-1}\}$ . We then find the projection of  $\mathbf{u}_i$  onto the subspace span $\{\mathbf{v}_1,...,\mathbf{v}_{i-1}\}$  = span $\{\mathbf{u}_1,...,\mathbf{u}_{i-1}\}$ . From lecture 9, we know that since  $\{\mathbf{v}_1,...,\mathbf{v}_{i-1}\}$  is an orthogonal set, the projection is given by

$$\left(\frac{\mathbf{v}_1 \cdot \mathbf{u}_i}{\|\mathbf{v}_1\|^2}\right) \mathbf{v}_1 + \left(\frac{\mathbf{v}_2 \cdot \mathbf{u}_i}{\|\mathbf{v}_2\|^2}\right) \mathbf{v}_2 + \dots + \left(\frac{\mathbf{v}_{i-1} \cdot \mathbf{u}_i}{\|\mathbf{v}_{i-1}\|^2}\right) \mathbf{v}_{i-1}.$$

So, if we let

$$\mathbf{v}_{i} = \mathbf{u}_{i} - \left(\frac{\mathbf{v}_{1} \cdot \mathbf{u}_{i}}{\|\mathbf{v}_{1}\|^{2}}\right) \mathbf{v}_{1} - \left(\frac{\mathbf{v}_{2} \cdot \mathbf{u}_{i}}{\|\mathbf{v}_{2}\|^{2}}\right) \mathbf{v}_{2} - \dots - \left(\frac{\mathbf{v}_{i-1} \cdot \mathbf{u}_{i}}{\|\mathbf{v}_{i-1}\|^{2}}\right) \mathbf{v}_{i-1}$$
(4)

then  $\mathbf{v}_i$  is the subtraction of  $\mathbf{u}_i$  from its projection onto  $\operatorname{span}\{\mathbf{v}_1,...,\mathbf{v}_{i-1}\}=\operatorname{span}\{\mathbf{u}_1,...,\mathbf{u}_{i-1}\}$ . Thus, by construction,  $\mathbf{v}_i$  is orthogonal to the subspace  $\operatorname{span}\{\mathbf{v}_1,...,\mathbf{v}_{i-1}\}=\operatorname{span}\{\mathbf{u}_1,...,\mathbf{u}_{i-1}\}$  and so it is orthogonal to  $\mathbf{v}_j$  for all j < i. Therefore  $\{\mathbf{v}_1,...,\mathbf{v}_{i-1},\mathbf{v}_i\}$  is an orthogonal set. By equation  $\{\mathbf{u}_1, \mathbf{u}_i\}$  is a linear combination of  $\{\mathbf{v}_1,...,\mathbf{v}_{i-1},\mathbf{v}_i\}$ , we have  $\operatorname{span}\{\mathbf{u}_1,...,\mathbf{u}_{i-1},\mathbf{u}_i\}\subseteq\operatorname{span}\{\mathbf{v}_1,...,\mathbf{v}_{i-1},\mathbf{v}_i\}$ . But since  $\mathbf{v}_j$  is a linear combination of  $\mathbf{v}_1,...,\mathbf{v}_{i-1}$  for j < i, from equation  $\{\mathbf{u}_1,...,\mathbf{u}_{i-1},\mathbf{u}_i\}=\operatorname{span}\{\mathbf{v}_1,...,\mathbf{v}_{i-1},\mathbf{v}_i\}$ .

We will give a visualization of the Gram-Schmidt process in  $\mathbb{R}^3$ .



**Theorem** (Gram-Schmidt Process). Let  $S = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$  be a linearly independent set. Let

$$\begin{aligned} \mathbf{v}_1 &= \mathbf{u}_1 \\ \mathbf{v}_2 &= \mathbf{u}_2 - \left(\frac{\mathbf{v}_1 \cdot \mathbf{u}_2}{\|\mathbf{v}_1\|^2}\right) \mathbf{v}_1 \\ \mathbf{v}_3 &= \mathbf{u}_3 - \left(\frac{\mathbf{v}_1 \cdot \mathbf{u}_3}{\|\mathbf{v}_1\|^2}\right) \mathbf{v}_1 - \left(\frac{\mathbf{v}_2 \cdot \mathbf{u}_3}{\|\mathbf{v}_2\|^2}\right) \mathbf{v}_2 \\ &\vdots \\ \mathbf{v}_i &= \mathbf{u}_i - \left(\frac{\mathbf{v}_1 \cdot \mathbf{u}_i}{\|\mathbf{v}_1\|^2}\right) \mathbf{v}_1 - \left(\frac{\mathbf{v}_2 \cdot \mathbf{u}_i}{\|\mathbf{v}_2\|^2}\right) \mathbf{v}_2 - \dots - \left(\frac{\mathbf{v}_{i-1} \cdot \mathbf{u}_i}{\|\mathbf{v}_{i-1}\|^2}\right) \mathbf{v}_{i-1} \\ &\vdots \\ \mathbf{v}_k &= \mathbf{u}_k - \left(\frac{\mathbf{v}_1 \cdot \mathbf{u}_k}{\|\mathbf{v}_1\|^2}\right) \mathbf{v}_1 - \left(\frac{\mathbf{v}_2 \cdot \mathbf{u}_k}{\|\mathbf{v}_2\|^2}\right) \mathbf{v}_2 - \dots - \left(\frac{\mathbf{v}_{k-1} \cdot \mathbf{u}_k}{\|\mathbf{v}_{k-1}\|^2}\right) \mathbf{v}_{k-1}. \end{aligned}$$

Then  $\{\mathbf{v}_1,\mathbf{v}_2,...,\mathbf{v}_k\}$  is an orthogonal set of nonzero vectors. Hence,

$$\left\{\mathbf{w}_1 = \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|}, \mathbf{w}_2 = \frac{\mathbf{v}_2}{\|\mathbf{v}_2\|}, ..., \mathbf{w}_k = \frac{\mathbf{v}_k}{\|\mathbf{v}_k\|}\right\}$$

is an orthonormal set such that  $span\{\mathbf{w}_1,...,\mathbf{w}_k\} = span\{\mathbf{u}_k,...,\mathbf{u}_k\}.$ 

### Exercise:

- 1. Show that  $\mathbf{v}_i \neq \mathbf{0}$  for all i = 1, ..., k (otherwise  $\frac{1}{\|\mathbf{v}_i\|^2}$  is undefined).
- 2. What happens if S is not linearly independent?

**Example.** We will use the Gram-Schmidt process to convert  $S = \left\{ \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \right\}$  into an orthonormal basis for  $\mathbb{R}^3$ .

$$\mathbf{v}_{1} = \begin{pmatrix} 1\\2\\1 \end{pmatrix}$$

$$\mathbf{v}_{2} = \begin{pmatrix} 1\\1\\1 \end{pmatrix} - \frac{1+2+1}{1^{2}+2^{2}+1^{2}} \begin{pmatrix} 1\\2\\1 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 1\\-1\\1 \end{pmatrix}, \text{ let } \mathbf{v}_{2} = \begin{pmatrix} 1\\-1\\1 \end{pmatrix} \text{ instead}$$

$$\mathbf{v}_{3} = \begin{pmatrix} 1\\1\\2 \end{pmatrix} - \frac{1+2+2}{1^{2}+2^{2}+1^{2}} \begin{pmatrix} 1\\2\\1 \end{pmatrix} - \frac{1-1+2}{1^{2}+(-1)^{2}+1^{2}} \begin{pmatrix} 1\\-1\\1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} -1\\0\\1 \end{pmatrix}$$

$$\text{let } \mathbf{v}_{3} = \begin{pmatrix} -1\\0\\1 \end{pmatrix} \text{ instead.}$$

Why are we allowed to take  $\mathbf{v}_2$  and  $\mathbf{v}_3$  to be a multiple of the original vector found?

So 
$$\left\{ \frac{1}{\sqrt{6}} \begin{pmatrix} 1\\2\\1 \end{pmatrix}, \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\-1\\1 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} -1\\0\\1 \end{pmatrix} \right\}$$
 is an orthonormal basis for  $\mathbb{R}^3$ .

## 5.4 Least Square Approximation

Let **A** be a  $m \times n$  matrix and  $\mathbf{b} \in \mathbb{R}^m$ . Recall that  $\mathbf{b} \in \text{Col}(\mathbf{A})$  if and only if  $\mathbf{A}\mathbf{x} = \mathbf{b}$  is consistent.

More often, in real life application, the data collected or the mathematical model used might not be very accurate, and thus there might not be a solution to the system  $\mathbf{A}\mathbf{x} = \mathbf{b}$ . However, we might want to find an approximation (vis-à-vis dismissing the model or data)  $\mathbf{b}'$  such that  $\mathbf{A}\mathbf{x} = \mathbf{b}'$  is consistent, and  $\mathbf{b}'$  is the "closest' to  $\mathbf{b}$ . In other words, we want a  $\mathbf{b}' \in \operatorname{Col}(\mathbf{A})$  in the column space of  $\mathbf{A}$  that has the shortest distance to  $\mathbf{b}$ ,

$$\|\mathbf{b}' - \mathbf{b}\| = d(\mathbf{b}', \mathbf{b}) \le d(\mathbf{w}, \mathbf{b}) = \|\mathbf{w} - \mathbf{b}\|$$

for any  $\mathbf{w} \in \text{Col}(\mathbf{A})$ .

Since  $\mathbf{A}\mathbf{x} = \mathbf{b}'$  is consistent, we can find a  $\mathbf{u} \in \mathbb{R}^n$  such that  $\mathbf{A}\mathbf{u} = \mathbf{b}'$ . Recall also that  $\operatorname{Col}(\mathbf{A}) = \{ \mathbf{A}\mathbf{v} \mid \mathbf{v} \in \mathbb{R}^n \}$ . So,  $\mathbf{A}\mathbf{u} = \mathbf{b}'$  being the closest in the column space  $\operatorname{Col}(\mathbf{A})$  to  $\mathbf{b}$  means

$$\|Au-b\|\leq \|Av-b\|$$

for any  $v \in \mathbb{R}^n$ . Then **u** is the best approximation to the system  $\mathbf{A}\mathbf{x} = \mathbf{b}$ . We will now give the formal definition.

Let **A** be a  $m \times n$  matrix and  $\mathbf{b} \in \mathbb{R}^m$ . A vector  $\mathbf{u} \in \mathbb{R}^n$  is a <u>least square solution</u> to  $\mathbf{A}\mathbf{x} = \mathbf{b}$  if for every vector  $\mathbf{v} \in \mathbb{R}^n$ ,

$$\|\mathbf{A}\mathbf{u}-\mathbf{b}\| \leq \|\mathbf{A}\mathbf{v}-\mathbf{b}\|.$$

Geometrically, the vector  $\mathbf{b}'$  in a subspace V closest to a vector  $\mathbf{b}$  is the projection of  $\mathbf{b}$  onto the subspace V.



**Theorem.** Let **A** be a  $m \times n$  matrix and  $\mathbf{b} \in \mathbb{R}^m$ .  $\mathbf{u} \in \mathbb{R}^n$  is a least square solution to  $\mathbf{A}\mathbf{x} = \mathbf{b}$  if and only if  $\mathbf{A}\mathbf{u}$  is the projection of  $\mathbf{b}$  onto the column space of  $\operatorname{Col}(\mathbf{A})$ .

The previous theorem gives us an algorithm to find least square solutions. For  $\mathbf{u}$  is a least square solution to  $\mathbf{A}\mathbf{x} = \mathbf{b}$  if and only if  $\mathbf{A}\mathbf{u}$  is the projection of  $\mathbf{b}$  onto  $\mathrm{Col}(\mathbf{A})$ , which is equivalent to  $(\mathbf{A}\mathbf{u} - \mathbf{b}) \perp \mathrm{Col}(\mathbf{A})$ . Recall from lecture 9 that  $\mathbf{w} \perp \mathrm{span}\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$  if and only if  $\mathbf{w} \in \mathrm{Null}(\mathbf{A}^T)$ , where  $\mathbf{A} = (\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_k)$ . Hence,  $\mathbf{u}$  is a least square solution of  $\mathbf{A}\mathbf{x} = \mathbf{b}$  if and only if  $\mathbf{A}^T(\mathbf{A}\mathbf{u} - \mathbf{b}) = \mathbf{0}$ , or  $\mathbf{A}^T\mathbf{A}\mathbf{u} = \mathbf{A}^T\mathbf{b}$ . Thus, we arrive at the following theorem.

**Theorem.** Let **A** be a  $m \times n$  matrix and  $\mathbf{b} \in \mathbb{R}^m$ . A vector  $\mathbf{u} \in \mathbb{R}^n$  is a least square solution to  $\mathbf{A}\mathbf{x} = \mathbf{b}$  if and only if **u** is a solution to  $\mathbf{A}^T \mathbf{A}\mathbf{x} = \mathbf{A}^T \mathbf{b}$ .

**Remark.** 1. Note that even though projection is unique, least square solution may not be unique.

2. The previous theorem seems to suggest that  $\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$  is always consistent. Why is that so?

Example. Let 
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 2 & 1 & 1 \end{pmatrix}$$
 and  $\mathbf{b} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ . Then 
$$\begin{pmatrix} 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 1 & 2 & 1 & 1 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & -1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

This shows that  $\mathbf{b} \notin \text{Col}(\mathbf{A})$ . We will find a least square solution of  $\mathbf{A}\mathbf{x} = \mathbf{b}$ .

A general solution is  $\begin{pmatrix} 0\\2/3\\0\\0 \end{pmatrix} + s \begin{pmatrix} 1\\-1\\1\\0 \end{pmatrix} + t \begin{pmatrix} -1\\0\\0\\1 \end{pmatrix}$ ,  $s,t \in \mathbb{R}$ . We may choose s=0=t,

then  $\mathbf{u} = \begin{pmatrix} 0 \\ 2/3 \\ 0 \\ 0 \end{pmatrix}$  is a least square solution. Then the projection of  $\mathbf{b}$  onto the column

space is  $\mathbf{A}\mathbf{u} = \frac{2}{3} \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$ .

Notice that  $\begin{pmatrix} 1 \\ -1 \\ 1 \\ 0 \end{pmatrix}$  and  $\begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$  are in the nullspace of **A**, and hence for any choice of

s and t, the projection  $\mathbf{A}\mathbf{u}$  is unique.

The theorem above also gives us an alternative way to find orthgonal projection without having to (use Gram-Schmidt Process to) construct an orthonormal basis.

**Theorem.** Let  $V \subseteq \mathbb{R}^n$  be a subspace and  $S = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$  be a basis for V. Then the orthogonal projection of a vector  $\mathbf{w} \in \mathbb{R}^n$  onto V is  $\mathbf{A}(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T\mathbf{w}$ , where  $\mathbf{A} = (\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_k)$ .

*Proof.* Since S is a basis for V, the columns of **A** are linearly independent, and thus  $\mathbf{A}^T \mathbf{A}$  is invertible. Hence,

$$\mathbf{u} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{w}$$

is the unique solution to  $\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{w}$ . And hence,  $\mathbf{A} \mathbf{u} = \mathbf{A}((\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{w})$  is the projection of  $\mathbf{w}$  onto  $\text{Col}(\mathbf{A}) = V$ .

**Example.** Let 
$$S = \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \right\}$$
 and  $V = \operatorname{span}(S)$ . Let  $\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \\ 0 & 0 \end{pmatrix}$ . Then the orthogonal projection of  $\mathbf{w} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$  onto  $V$  is

$$\mathbf{A}(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T\mathbf{w} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}^{-1} \begin{pmatrix} x+y \\ x-y \end{pmatrix} = \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x+y \\ x-y \end{pmatrix} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}.$$

Indeed, since V is the xy-plane in  $\mathbb{R}^3$ .

# 6 Diagonalization

# 6.1 Eigenvalues and Eigenvectors

Let **A** be a square matrix of order n. Then notice that for any vector  $\mathbf{u} \in \mathbb{R}^n$ ,  $\mathbf{A}\mathbf{u}$  is also a vector in  $\mathbb{R}^n$ . So we may think of **A** as a map  $\mathbb{R}^n \to \mathbb{R}^n$ , taking a vector and transforming it to another vector in the same Euclidean space.

Example. 1.

$$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Geometrically the matrix **A** reflects a vector along the line x = y.

$$\mathbf{A} \begin{pmatrix} -2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \end{pmatrix},$$

$$\mathbf{A} \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix},$$

$$\mathbf{A} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$







Observe that any vector on the line x = y gets transform back to itself, and any vector along x = -y line get transformed to the negative of itself.

2.

$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

The matrix A takes a vector and maps it to a vector along the line x = y such that both coordinates in  $\mathbf{A}\mathbf{v}$  are the sum of the coordinates in  $\mathbf{v}$ .

$$\mathbf{A} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix},$$

$$\mathbf{A} \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \qquad \mathbf{A} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}.$$

$$\mathbf{A} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$







Observe that any vector **v** along the line x = y is mapped to twice itself,  $\mathbf{A}\mathbf{v} = 2\mathbf{v}$ , and it take any vector  $\mathbf{v}$  along the line x = -y to the origin,  $\mathbf{A}\mathbf{v} = \mathbf{0}$ .

Let **A** be a square matrix of order n. A real number  $\lambda \in \mathbb{R}$  is an eigenvalue of **A** if there is a nonzero vector  $\mathbf{v} \in \mathbb{R}^n$ ,  $\mathbf{v} \neq \mathbf{0}$ , such that  $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$ . In this case, the nonzero vector  $\mathbf{v}$  is called an eigenvector associated to  $\lambda$ . In other words,  $\mathbf{A}$  transforms its eigenvectors by scaling it by a factor of the associated eigenvalue.

**Remark.** Note that for v to be an eigenvector associate to  $\lambda$ , necessarily  $\mathbf{v} \neq \mathbf{0}$ . Otherwise,  $A0 = \lambda 0$  for any  $\lambda \in \mathbb{R}$  and thus every number is an eigenvalue, which makes the definition pointless.

**Example.** 1. For 
$$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
,  $\mathbf{A} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ ,  $\mathbf{A} \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} = -\begin{pmatrix} -1 \\ 1 \end{pmatrix}$ .

| Eigenvalue     | Eigenvector                                                   |
|----------------|---------------------------------------------------------------|
| $\lambda = 1$  | $\mathbf{v}_{\lambda} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ |
| $\lambda = -1$ | $\mathbf{v}_{\lambda} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$  |

2. For 
$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
,  $\mathbf{A} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ ,  $\mathbf{A} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = 0 \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ .

| Eigenvalue    | Eigenvector                                                    |
|---------------|----------------------------------------------------------------|
| $\lambda = 2$ | $\mathbf{v}_{\lambda} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$  |
| $\lambda = 0$ | $\mathbf{v}_{\lambda} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ |

Observe that if **v** is an eigenvector of **A** associated to eigenvalue  $\lambda$ , then for any  $s \in \mathbb{R}$ ,

$$\mathbf{A}(s\mathbf{v}) = s(\mathbf{A}\mathbf{v}) = s(\lambda\mathbf{v}) = \lambda(s\mathbf{v}).$$

So for any  $s \neq 0$ ,  $s\mathbf{v}$  is also an eigenvector associated to eigenvalue  $\lambda$ . Next,  $\mathbf{A}\mathbf{v} = \lambda\mathbf{v}$  if and only if  $\mathbf{0} = \lambda\mathbf{v} - \mathbf{A}\mathbf{v} = (\lambda\mathbf{I} - \mathbf{A})\mathbf{v}$ . This means that  $\lambda$  is an eigenvalue of  $\mathbf{A}$  if and only if the homogeneous system  $(\lambda\mathbf{I} - \mathbf{A})\mathbf{x} = \mathbf{0}$  has nontrivial solutions.

**Theorem.** Let **A** be a square matrix of order n.  $\lambda \in \mathbb{R}$  is an eigenvalue of **A** if and only if the homogeneous system  $(\lambda \mathbf{I} - \mathbf{A})\mathbf{x} = \mathbf{0}$  has nontrivial solutions.

Recall that the homogeneous system associated to a square matrix has nontrivial solutions if and only if the matrix is not invertible, which is equivalent to the determinant of the matrix begin 0. Hence, by the theorem above,  $\lambda$  is an eigenvalue of  $\mathbf{A}$  if and only if  $\det(\lambda \mathbf{I} - \mathbf{A}) = 0$ .

**Lemma.** Let **A** be a square matrix of order n. Then  $det(x\mathbf{I} - \mathbf{A})$  is a polynomial of degree n.

**Example.** Let  $\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$  be an order 2 square matrix. Then the characteristic polynomial of  $\mathbf{A}$  is

$$\begin{vmatrix} x - a & -b \\ -c & x - d \end{vmatrix} = (x - a)(x - d) - bc = x^2 - (a + d)x + ad - bc.$$

It is a degree 2 polynomial.

This means that  $\lambda$  is an eigenvalue of **A** if and only if it is a root of the polynomial  $\det(x\mathbf{I} - \mathbf{A})$ . This motivates the following definition.

Let **A** be a square matrix of order n, the <u>characteristic polynomial</u> of **A**, denoted as  $char(\mathbf{A})$ , is the degree n polynomial

$$char(\mathbf{A}) = \det(x\mathbf{I} - \mathbf{A}).$$

So, we have the following theorem.

**Theorem.** Let **A** be a square matrix of order n.  $\lambda \in \mathbb{R}$  is an eigenvalue of **A** if and only if  $\lambda$  is a root of the characteristic polynomial  $\det(x\mathbf{I} - \mathbf{A})$ .

Example. 1.  $\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ ,

$$\det(x\mathbf{I} - \mathbf{A}) = \begin{vmatrix} x & -1 \\ -1 & x \end{vmatrix} = x^2 - 1.$$

So the eigenvalues of **A** are  $\lambda = \pm 1$ .

$$2. \ \mathbf{A} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix},$$

$$\det(x\mathbf{I} - \mathbf{A}) = \begin{vmatrix} x - 1 & -1 \\ -1 & x - 1 \end{vmatrix} = (x - 1)^2 - 1 = x(x - 2).$$

So the eigenvalues of **A** are  $\lambda = 0$  and  $\lambda = 2$ .

$$3. \ \mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 3 & 1 \end{pmatrix},$$

$$\det(x\mathbf{I} - \mathbf{A}) = \begin{vmatrix} x - 1 & 0 & 0 \\ 0 & x & 2 \\ 0 & -3 & x - 1 \end{vmatrix} = (x - 1)[x(x - 1) - 6)] = (x - 1)(x + 2)(x - 3).$$

So the eigenvalues of **A** are  $\lambda = 1$ ,  $\lambda = -2$ , and  $\lambda = 3$ .

**Theorem.** A square matrix A is invertible if and only if 0 is not an eigenvalue of A.

*Proof.* 0 is an eigenvalue of  $\mathbf{A} \Leftrightarrow 0$  is a root of the polynomial  $\det(x\mathbf{I} - \mathbf{A}) \Leftrightarrow 0 = \det(0\mathbf{I} - \mathbf{A}) = \det(\mathbf{A}) \Leftrightarrow \mathbf{A}$  not invertible.

We will add this to our list of equivalent statements for invertibility.

**Theorem.** Let **A** be a square matrix of order n. The following statements are equivalent.

- (i) A is invertible.
- (ii) A has a left inverse.
- (iii) A has a right inverse.
- (iv) The reduced row-echelon form of A is the identity matrix  $I_n$ .
- (v) A is a product of elementary matrices.
- (vi) The homogeneous linear system  $\mathbf{A}\mathbf{x} = \mathbf{0}$  has only the trivial solution, that is,  $\text{Null}(\mathbf{A}) = \{\mathbf{0}\}.$
- (vii) The linear system  $\mathbf{A}\mathbf{x} = \mathbf{b}$  has a unique solution for every  $\mathbf{b}$ .
- (viii) The determinant of **A** is nonzero,  $det(\mathbf{A}) \neq 0$ .

- (ix) The columns/rows of A are linearly independent.
- (x) The columns/rows of **A** spans  $\mathbb{R}^n$ ,  $\operatorname{Col}(\mathbf{A}) = \mathbb{R}^n/\operatorname{Row}(\mathbf{A}) = \mathbb{R}^n$ .
- (xi) 0 is not an eigenvalue of A.

Recall that the determinant of a triangular matrix is the product of the diagonal entries. Suppose **A** is a triangular matrix. Then  $x\mathbf{I} - \mathbf{A}$  is also a triangular matrix. Hence, we have the following statement.

**Lemma.** The eigenvalues of a triangular matrix are the diagonal entries.

Proof. 
$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix}$$

$$\Rightarrow \begin{vmatrix} x - a_{11} & -a_{12} & \cdots & -a_{1n} \\ 0 & x - a_{22} & \cdots & -a_{2n} \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & x - a_{nn} \end{vmatrix} = (x - a_{11})(x - a_{22}) \cdots (x - a_{nn}).$$

Let  $\lambda$  be an eigenvalue of **A**. The <u>algebraic multiplicity</u> of  $\lambda$  is the largest integer  $r_{\lambda}$  such that

$$\det(x\mathbf{I} - \mathbf{A}) = (x - \lambda)^{r_{\lambda}} p(x),$$

for some polynomial p(x). Alternatively,  $r_{\lambda}$  is the positive integer such that in the above equation,  $\lambda$  is not a root of p(x).

Suppose **A** is an order n square matrix such that  $det(x\mathbf{I} - \mathbf{A})$  can be factorize into linear factors completely. Then we can write

$$\det(x\mathbf{I} - \mathbf{A}) = (x - \lambda_1)^{r_1}(x - \lambda_2)^{r_2} \cdots (x - \lambda_k)^{r_k}$$

where  $r_1 + r_2 + \cdots + r_k = n$ , and  $\lambda, \lambda_2, ..., \lambda_k$  are the distinct eigenvalues of **A**. Then the algebraic multiplicity of  $\lambda_i$  is  $r_i$  for i = 1, ..., k.

**Example.** 1.  $\mathbf{A} = \mathbf{0}_n$ . Then  $\det(x\mathbf{I} - \mathbf{0}) = \det(x\mathbf{I}) = x^n$ . The multiplicity of the eigenvalue 0 is  $n, r_0 = n$ .

- 2.  $\mathbf{A} = \begin{pmatrix} 1 & 2 & 5 \\ 0 & 1 & -2 \\ 0 & 0 & 3 \end{pmatrix}$ . Then  $\det(x\mathbf{I} \mathbf{A}) = (x 1)^2(x 3)$ . The eigenvalue 1 has multiplicity 2, while the eigenvalue 3 has multiplicity 1,  $r_1 = 2$ ,  $r_3 = 1$ . Observe that in general, the algebraic multiplicity of an eigenvalue  $\lambda$  of an triangular matrix  $\mathbf{A}$  is the number of diagonal entries that takes the value  $\lambda$ .
- 3.  $\mathbf{A} = \begin{pmatrix} 3 & 1 & -1 \\ 1 & 3 & -1 \\ 0 & 0 & 2 \end{pmatrix}$ . Then  $\det(x\mathbf{I} \mathbf{A}) = (x 2)^2(x 4)$ . The eigenvalue 2 has multiplicity 2, while the eigenvalue 4 has multiplicity 1,  $r_2 = 2$ ,  $r_4 = 1$ .

4. 
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$
. Then  $\det(x\mathbf{I} - \mathbf{A}) = (x - 1)(x^2 + 1)$ . The only real eigenvalue of  $\mathbf{A}$  is 1 with multiplicity 1,  $r_1 = 1$ . The other eigenvalues are complex numbers (lecture 12).

Now suppose **u** and **v** are eigenvectors of **A** associated to the eigenvalue  $\lambda$ . Then for any real numbers  $\alpha, \beta \in \mathbb{R}$ ,

$$\mathbf{A}(\alpha \mathbf{u} + \beta \mathbf{v}) = \alpha(\mathbf{A}\mathbf{u}) + \beta(\mathbf{A}\mathbf{v}) = \alpha(\lambda \mathbf{u}) + \beta(\lambda \mathbf{v}) = \lambda(\alpha \mathbf{u} + \beta \mathbf{v}).$$

This means that the set of all vectors that satisfies the relation  $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$  is closed under linearly combination. In particular, if  $\alpha \mathbf{u} + \beta \mathbf{v} \neq \mathbf{0}$ , then it is also an eigenvector associated to  $\lambda$ . This shows that the collection of all eigenvectors associated to an eigenvalue  $\lambda$ , together with the zero vector, form a subspace. This motivates the following definition.

The eigenspace associated to an eigenvalue  $\lambda$  of **A** is

$$E_{\lambda} = \{ \mathbf{v} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{v} = \lambda \mathbf{v} \} = \text{Null}(\lambda \mathbf{I} - \mathbf{A}).$$

The geometric multiplicity of an eigenvalue  $\lambda$  is the dimension of its associated eigenspace,

$$\dim(E_{\lambda}) = \text{nullity}(\lambda \mathbf{I} - \mathbf{A}).$$

Example. 
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$
.

$$\det(x\mathbf{I} - \mathbf{A}) = \begin{vmatrix} x - 1 & -1 & 0 \\ -1 & x - 1 & -1 \\ 0 & 0 & x - 2 \end{vmatrix} = (x - 2)((x - 1)^2 - 1) = x(x - 2)^2.$$

The eigenvalues of **A** are 0 and 2, with algebraic multiplicities  $r_0 = 1$  and  $r_2 = 2$ . Since 0 is an eigenvalue of **A**, **A** is not invertible.

Now find the eigenspace.

 $\lambda = 0$ :

$$0\mathbf{I} - \mathbf{A} = \begin{pmatrix} 0 - 1 & -1 & 0 \\ -1 & 0 - 1 & -1 \\ 0 & 0 & 0 - 2 \end{pmatrix} = \begin{pmatrix} -1 & -1 & 0 \\ -1 & -1 & -1 \\ 0 & 0 & -2 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

So 
$$E_0 = \operatorname{span} \left\{ \begin{pmatrix} -1\\1\\0 \end{pmatrix} \right\}.$$

 $\lambda = 2$ :

$$2\mathbf{I} - \mathbf{A} = \begin{pmatrix} 2 - 1 & -1 & 0 \\ -1 & 2 - 1 & 0 \\ 0 & 0 & 2 - 2 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

So 
$$E_2 = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$$

So the geometric multiplicity of  $\lambda = 0$  is  $\dim(E_0) = 1$  and the geometric multiplicity of  $\lambda = 2$  is  $\dim(E_2) = 2$ .

## Appendix to Lecture 10

**Theorem.** Let  $V \subseteq \mathbb{R}^n$  be a subspace and  $\mathbf{b} \in \mathbb{R}^n$ . Let  $\mathbf{b}_p \in V$  be the orthogonal projection of  $\mathbf{b}$  onto V. Then for any  $\mathbf{w} \in V$ ,

$$\|\mathbf{b}_p - \mathbf{b}\| = d(\mathbf{b}_p, \mathbf{b}) \le d(\mathbf{w}, \mathbf{b}) = \|\mathbf{w} - \mathbf{b}\|,$$

that is, the distance between  $\mathbf{b}$  and the projection  $\mathbf{b}_p$  is the minimum distance between  $\mathbf{b}$  and any vector  $\mathbf{w} \in V$ .

*Proof.* Write  $\mathbf{b} = \mathbf{b}_p + \mathbf{b}_n$ , where  $\mathbf{b}_p \in \text{Col}(\mathbf{A})$  is the projection of  $\mathbf{b}$  onto the column space of  $\mathbf{A}$ , and  $\mathbf{b}_n$  is orthogonal to  $\text{Col}(\mathbf{A})$ . Let  $\mathbf{w}$  be any vector in V. Since  $\mathbf{w}$  and  $\mathbf{b}_p$  are in the subspace V and  $\mathbf{b}_n \perp V$ ,  $(\mathbf{w} - \mathbf{b}_p) \cdot \mathbf{b}_n = 0$ . So

$$\|\mathbf{w} - \mathbf{b}\|^{2} = (\mathbf{w} - \mathbf{b}_{p} - \mathbf{b}_{n}) \cdot (\mathbf{w} - \mathbf{b}_{p} - \mathbf{b}_{n})$$

$$= (\mathbf{w} - \mathbf{b}_{p}) \cdot (\mathbf{w} - \mathbf{b}_{p}) - 2(\mathbf{w} - \mathbf{b}_{p}) \cdot \mathbf{b}_{n} + \mathbf{b}_{n} \cdot \mathbf{b}_{n}$$

$$= \|\mathbf{w} - \mathbf{b}_{n}\|^{2} + \|\mathbf{b}_{n}\|^{2}.$$
(5)

So 
$$\|\mathbf{w} - \mathbf{b}\| \ge \|\mathbf{b}_n\| = \|\mathbf{b}_p - \mathbf{b}\|.$$

**Theorem.** Let **A** be a  $m \times n$  matrix and  $\mathbf{b} \in \mathbb{R}^m$ .  $\mathbf{u} \in \mathbb{R}^n$  is a least square solution to  $\mathbf{A}\mathbf{x} = \mathbf{b}$  if and only if  $\mathbf{A}\mathbf{u}$  is the projection of  $\mathbf{b}$  onto the column space of  $\operatorname{Col}(\mathbf{A})$ .

*Proof.* ( $\Rightarrow$ ) Suppose **u** is a least square solution to  $\mathbf{A}\mathbf{x} = \mathbf{b}$ . Since the projection  $\mathbf{b}_p \in \operatorname{Col}(\mathbf{A})$  is in the column space, there must be a  $\mathbf{v} \in \mathbb{R}^n$  such that  $\mathbf{A}\mathbf{v} = \mathbf{b}_p$ . Then by equation ( $\boxed{5}$ ),

$$\|\mathbf{A}\mathbf{u} - \mathbf{b}_p\|^2 + \|\mathbf{b}_n\|^2 = \|\mathbf{A}\mathbf{u} - \mathbf{b}\|^2 \le \|\mathbf{A}\mathbf{v} - \mathbf{b}\|^2 = \|\mathbf{b}_p - \mathbf{b}\|^2 = \|\mathbf{b}_n\|^2,$$

which happens if and only if  $\mathbf{A}\mathbf{u} = \mathbf{b}_p$ , that is,  $\mathbf{A}\mathbf{u}$  is the projection of  $\mathbf{b}$  onto  $\operatorname{Col}(\mathbf{A})$ .

( $\Leftarrow$ ) Suppose  $\mathbf{A}\mathbf{u} = \mathbf{b}_p$  is the projection of  $\mathbf{b}$  onto  $\mathrm{Col}(\mathbf{A})$ . Then by the theorem above, and the fact that  $\mathrm{Col}(\mathbf{A}) = \{ \mathbf{A}\mathbf{v} \mid \mathbf{v} \in \mathbb{R}^n \},$ 

$$\|\mathbf{A}\mathbf{u} - \mathbf{b}\| = \|\mathbf{b}_p - \mathbf{b}\| \le \|\mathbf{A}\mathbf{v} - \mathbf{b}\|$$

for any  $\mathbf{v} \in \mathbb{R}^n$ , that is,  $\mathbf{u}$  is a least square solution to  $\mathbf{A}\mathbf{x} = \mathbf{b}$ .