

DSC 204A: Scalable Data Systems Winter 2024

Machine Learning Systems

Big Data

Cloud

Foundations of Data Systems

Where We Are

Machine Learning Systems

Big Data

Cloud

2000 - 2016

Foundations of Data Systems

1980 - 2000

Recap: Networking

- Q1: True _ False X Protocols specify the implementation
- Q2: True _ False x Congestion control takes care of the sender not overflowing the receiver
- Q3: True X False _ A random access protocol is efficient at low utilization
- Q4: True _ False X At the data link layer, hosts are identified by IP addresses
- Q5: True X False _ The physical layer is concerned with sending and receiving bits

Recap: Networking

- Q1: True _ False X Layering improves application performance
- Q2: True **X** False _ Routers forward a packet based on its destination address
- Q3: True _ False X "Best Effort" packet delivery ensures that packets are delivered in order
- Q4: True _ False X Port numbers belong to network layer

Today's topic

- Network Basics
- Layering and protocols
- Collective communication

Communication

Communication: Point-to-point communication

- 1. Establish TCP connection
- 2. Application sends data
- 3. Data goes down 5 layers, through the network, and arrives in receiver

Program P2P communication: Very Simple in Ray


```
def send(array: np.array):
    # Running on sender processs
    ref = ray.put(array)
    return ref

def receive(ref):
    # Running on receiver process
    array = ray.get(ref)
    print(array)
```

Case study: Gradient update in DL

Gradient / backward computation

$$oldsymbol{ heta}^{(t)} = oldsymbol{ heta}^{(t-1)} + eta \cdot
abla_{\mathcal{L}} (oldsymbol{ heta}^{(t-1)}, oldsymbol{D}^{(t)})$$

What If Data is super Big?

What if Data is Super Big?

Big Data

Case study: Gradient update

Gradient / backward computation

$$oldsymbol{ heta}^{(t)} = oldsymbol{ heta}^{(t-1)} + oldsymbol{arepsilon} oldsymbol{ heta}_{\mathcal{L}}(oldsymbol{ heta}^{(t-1)}, oldsymbol{D}^{(t)})$$

$$m{ heta}^{(t+1)} = m{ heta}^{(t)} + m{arepsilon} \sum_{p=1}^P
abla_{\mathcal{L}}(m{ heta}^{(t)}, D_p^{(t)})$$
How to perform this sum?

Collective Primitive: Reduce

Program This?

```
@ray.remote(num_gpus=1)
class GPUWorker:
    def __init__(self):
        self.gradients = cupy.ones((10,), dtype=cupy.float32)

def put_gradients(self):
    return ray.put(self.gradients)

def reduce_gradients(self, grad_id_refs):
    grad_ids = ray.get(grad_id_refs)
    reduced_result = cupy.ones((10,), dtype=float32)
    for grad_id in grad_ids:
        array = ray.get(grad_id)
        reduced_result += array
    result id = ray.put(reduced_result)
    return result_id
```

```
# Allreduce the gradients using Ray APIs
# Let all workers to put their gradients into the Ray object store.
gradient_ids = [worker.put_gradients.remote() for worker in workers]
ray.wait(graident_ids, num_returns=len(graident_ids, timeout=None))
```

```
# Let worker 0 reduce the gradients
reduced id ref = workers[0].reduce gradients.remote(gradient ids)
```

Analyze Performance

- Message over networks: 3*N.
- Can we do better?

Not Yet Finished: Synchronization

For each worker

$$m{ heta}^{(t+1)} = m{ heta}^{(t)} + m{arepsilon} \sum_{p=1}^P
abla_{\mathcal{L}}(m{ heta}^{(t)}, D_p^{(t)})$$
How to perform this sum?

Problem: We need All-Reduce

Program This?

```
@ray.remote(num_gpus=1)
                                                              # Allreduce the gradients using Ray APIs
class GPUWorker:
                                                              # Let all workers to put their gradients into the Ray object store.
 def __init__(self):
                                                              gradient_ids = [worker.put_gradients.remote() for worker in workers]
      self.gradients = cupy.ones((10,), dtype=cupy.float32)
                                                              ray.wait(graident_ids, num_returns=len(graident _ids, timeout=None))
 def put_gradients(self):
     return ray.put(self.gradients)
                                                             # Let worker 0 reduce the gradients
                                                              reduced_id_ref = workers[0].reduce_gradients.remote(gradient_ids)
 def reduce_gradients(self, grad id refs):
     grad ids = ray.get(grad id refs)
     reduced_result = cupy.ones((10,), dtype=float32)
     for grad_id in grad_ids:
          array = ray.get(grad_id)
                                                             # All others workers get the reduced gradients
          reduced_result += array
                                                              results = []
     result_id = ray.put(reduced_result)
                                                              for i, worker in enumerate(workers):
     return result_id
                                                                  results.append(worker.get_reduced_gradient.remote([red
 def get_reduced_gradient(self, reduced gradient id ref):
                                                              uced_id_ref]))
                                                              ray.get(results)
      reduced_gradient_id = ray.get(reduced_gradient_id_ref)
      reduced_gradient = ray.get(reduced_gradient_id)
     # do whatever with the reduced gradients
     return True
```

Performance

- Message size over networks:
 - Sum: 3N
 - Send Sum back: 3N
 - \bullet = 6N
- Can we do better?
 - Hint: we cannot do better than 3N

Why Collective Communication?

- Programming Convenience
 - Use a set of well-defined communication primitives to express complex communication patterns
- Performance
 - Since they are well defined and well structured, we can optimize them to the extreme
- ML Systems Collective communication

Make it Formal

• A 1D Mesh of workers (or devices, or nodes)

Model of Parallel Computation

- a node can send directly to any other node (maybe not true)
- a node can simultaneously receive and send
- cost of communication
 - sending a message of length n between any two nodes

$$\alpha + n\beta$$

• if a message encounters a link that simultaneously accommodates M messages, the cost becomes

$$\alpha + Mn\beta$$

Collective Communications

- Broadcast
- Reduce(-to-one)
- Scatter
- Gather
- Allgather
- Reduce-scatter
- Allreduce

Broadcast

Reduce(-to-one)

Broadcast/Reduce(-to-one)

Scatter

Gather

Scatter/Gather

Allgather

Reduce-scatter

Allgather/Reduce-scatter

Allreduce

Two Family of Mainstream Algorithms/Implementations

- Small message: Minimum Spanning Tree algorithm
 - Emphasize low latency
- Large Message: Ring algorithm
 - Emphasize bandwidth utilization

- There are 50+ different algorithms developed in the past 50 years by a community called "High-performance computing"
 - Last year Turing award

General principles

message starts on one processor

General principles

divide logical linear array in half

General principles

 send message to the half of the network that does not contain the current node (root) that holds the message

General principles

 send message to the half of the network that does not contain the current node (root) that holds the message

General principles

continue recursively in each of the two halves

Broadcast

Let us view this more closely

ullet Red arrows indicate startup of communication (leading to latency, lpha)

• Green arrows indicate packets in transit (leading to a bandwidth related cost proportional to eta and the length of the packet

Cost of minimum spanning tree broadcast

Reduce(-to-one)

Cost of minimum spanning tree reduce(-to-one)

$$\lceil log(p) \rceil (\alpha + n\beta + n\gamma)$$

Scatter

Cost of minimum spanning tree scatter

$$\sum_{k=1}^{\log(p)} \left(\alpha + \frac{n}{2^k} \beta \right)$$

$$=$$

$$\log(p) \quad \alpha + \frac{p-1}{p} n \beta$$

Gather

Cost of minimum spanning tree gather

$$\sum_{k=1}^{\log(p)} \left(\alpha + \frac{n}{2^k} \beta \right)$$

$$=$$

$$\log(p) \quad \alpha + \frac{p-1}{p} n \beta$$

Using the building blocks

Allgather (short vector)

Cost of gather/broadcast allgather

gather
$$\log(p)\alpha + \frac{p-1}{p}n\beta$$
 broadcast
$$\frac{\log(p)(\alpha+n\beta)}{2\log(p)\alpha + \left(\frac{p-1}{p} + \log(p)\right)n\beta}$$

Reduce-scatter (small message)

Reduce-scatter (short vector)

Reduce-scatter (short vector)

Cost of Reduce(-to-one)/scatter Reduce-scatter

Reduce(-to-one)
$$log(p)(\alpha + n\beta + n\gamma)$$

scatter $log(p)\alpha + \frac{p-1}{p}n\beta$

$$\frac{2log(p)\alpha + \left(\frac{p-1}{p} + log(p)\right)n\beta + log(p)n\gamma}{}$$

Allreduce (Latency-optimized)

Allreduce (Latency-optimized)

Allreduce (short vector)

Cost of reduce(-to-one)/broadcast Allreduce

Reduce(-to-one)
$$log(p)(\alpha + n\beta + n\gamma)$$

 $broadcast$ $log(p)(\alpha + n\beta)$
 $2log(p)\alpha + 2log(p)n\beta + log(p)n\gamma$

Reduce(-to-one)

$$log(p)(\alpha + n\beta + n\gamma)$$

Scatter
$$log(p)\alpha + \frac{p-1}{p}n\beta$$

Gather
$$log(p)\alpha + \frac{p-1}{p}n\beta$$

Broadcast

$$log(p)(\alpha + n\beta)$$

Reduce-scatter

Allreduce

Reduce(-to-one)

$$log(p)(\alpha + n\beta + n\gamma)$$

Scatter
$$log(p)\alpha + \frac{p-1}{p}n\beta$$

Gather
$$log(p)\alpha + \frac{p-1}{p}n\beta$$

Broadcast

$$log(p)(\alpha + n\beta)$$

Reduce-scatter

$$2\log(p)\alpha + \log(p)n(\beta + \gamma) + \frac{p-1}{p}n\beta$$

Allreduce

Reduce(-to-one)

$$log(p)(\alpha + n\beta + n\gamma)$$

Scatter
$$log(p)\alpha + \frac{p-1}{p}n\beta$$

Gather $log(p)\alpha + \frac{p-1}{p}n\beta$

Broadcast

$$log(p)(\alpha + n\beta)$$

Reduce-scatter

$$2\log(p)\alpha + \log(p)n(\beta + \gamma) + \frac{p-1}{p}n\beta$$

Allreduce

$$2log(p)\alpha + log(p)n(2\beta + \gamma)$$

Allgather
$$2log(p)\alpha + log(p)n\beta + \frac{p-1}{p}n\beta$$

Reduce(-to-one)

$$log(p)(\alpha + n\beta + n\gamma)$$

Scatter
$$log(p)\alpha + \frac{p-1}{p}n\beta$$

Gather
$$log(p)\alpha + \frac{p-1}{p}n\beta$$

Broadcast

$$log(p)(\alpha + n\beta)$$

Reduce-scatter

$$2\log(p)\alpha + \log(p)n(\beta + \gamma) + \frac{p-1}{p}n\beta$$

Allreduce

 $2log(p)\alpha + log(p)n(2\beta + \gamma)$

Reduce(-to-one)

$$log(p)(\alpha + n\beta + n\gamma)$$

Scatter
$$log(p)\alpha + \frac{p-1}{p}n\beta$$

Gather
$$log(p)\alpha + \frac{p-1}{p}n\beta$$

Broadcast

$$log(p)(\alpha + n\beta)$$

$$2\log(p)\alpha + \log(p)n(\beta + \gamma) + \frac{p-1}{p}n\beta$$

Allreduce

$$2log(p)\alpha + log(p)n(2\beta + \gamma)$$

Allgather
$$2log(p)\alpha + log(p)n\beta + \frac{p-1}{p}n\beta$$

Summary of MST algorithms

- Small message: Minimum Spanning Tree algorithm
 - Emphasize low latency
- Can we do better

- Problem of Minimum Spanning Tree Algorithm?
 - It prioritize latency rather than bandwidth
 - Hence: Some links are idle

Next class: Large message size algorithm