

AD-A192 396 SYNTHESIS AND MOLECULAR STRUCTURE OF CLOSO-3-(ETR
6-CH₃C₆H₅)-312-FEC₂B₉H₁. (U) CALIFORNIA UNIV LOS
ANGELES DEPT OF CHEMISTRY AND BIOCHEMISTR.

1/1

UNCLASSIFIED H C KANG ET AL. 25 JUN 87 TR-129

F/G 7/3

NL

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

DTIC FILE COPY

(12)

AD-A182 396

OFFICE OF NAVAL RESEARCH

Contract N00014-85-K-0772

Work Unit No. 4326-808

TECHNICAL REPORT NO. 129

DTIC
ELECTED
S D
JUL 01 1987
P D

Synthesis and Molecular Structure of
closo-3-(η^6 -CH₃C₆H₅)-3,1,2-FeC₂B₉H₁₁ and
closo-3-(η^6 -1,4-(CH₃)₂C₆H₄)-3,1,2-FeC₂B₉H₁₁

by

Han Chyul Kang, Carolyn B. Knobler and M. Frederick Hawthorne*

Prepared for Publication

in

Inorganic Chemistry

University of California at Los Angeles
Department of Chemistry and Biochemistry
Los Angeles, California 90024

June, 1987

Reproduction in whole or in part is permitted for
any purpose of the United States Government

This document has been approved for public release and sale;
its distribution is unlimited

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

ADA182396

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED		1b. RESTRICTIVE MARKINGS													
2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/AVAILABILITY OF REPORT Distribution list enclosed													
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE															
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 129		5. MONITORING ORGANIZATION REPORT NUMBER(S)													
6a. NAME OF PERFORMING ORGANIZATION UCLA Dept. of Chem. & Biochem.	6b OFFICE SYMBOL (if applicable)	7a. NAME OF MONITORING ORGANIZATION Office of Naval Research													
6c. ADDRESS (City, State, and ZIP Code) 6115 Young Hall 405 Hilgard Avenue Los Angeles, CA 90024		7b. ADDRESS (City, State, and ZIP Code) Department of the Navy Arlington, VA 22217													
8a. NAME OF FUNDING/SPONSORING ORGANIZATION Office of Naval Research	8b OFFICE SYMBOL (if applicable)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER N00014-85-K-0772/RNT Code: 4135004													
8c. ADDRESS (City, State, and ZIP Code)		10. SOURCE OF FUNDING NUMBERS													
		PROGRAM ELEMENT NO	PROJECT NO.												
			TASK NO.												
			WORK UNIT ACCESSION NO 4326-808												
11. TITLE (Include Security Classification) Synthesis and Molecular Structure of $\text{closo-3-(}\eta^6\text{-CH}_3\text{C}_6\text{H}_5\text{)}\text{-3,1,2-FeC}_2\text{B}_9\text{H}_{11}$ and $\text{closo-3-(}\eta^6\text{-1,4-(CH}_3\text{)}_2\text{C}_6\text{H}_4\text{)}\text{-3,1,2-FeC}_2\text{B}_9\text{H}_{11}$.															
12. PERSONAL AUTHOR(S) Han Chyul Kang, Carolyn B. Knobler and M. Frederick Hawthorne*															
13a. TYPE OF REPORT Technical Report	13b TIME COVERED FROM _____ TO _____	14. DATE OF REPORT (Year, Month, Day) 06/25/87	15 PAGE COUNT												
16. SUPPLEMENTARY NOTATION To be published in Inorganic Chemistry															
17. COSATI CODES <table border="1"><tr><th>FIELD</th><th>GROUP</th><th>SUB-GROUP</th></tr><tr><td> </td><td> </td><td> </td></tr><tr><td> </td><td> </td><td> </td></tr><tr><td> </td><td> </td><td> </td></tr></table>		FIELD	GROUP	SUB-GROUP										18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Arene, Metallacarborane, Complex, Ferracarboranes, Arene Complex, Carboranes	
FIELD	GROUP	SUB-GROUP													
19. ABSTRACT (Continue on reverse if necessary and identify by block number) The reaction of $K[nido-7,8-\text{C}_2\text{B}_9\text{H}_{12}]$ with ferric chloride and triethylamine in ether toluene or <i>p</i> -xylene solution afforded neutral mixed sandwich (arene)ferracarborane complexes $\text{closo-3-(}\eta^6\text{-CH}_3\text{C}_6\text{H}_5\text{)}\text{-3,1,2-FeC}_2\text{B}_9\text{H}_{11}$ (1) or $\text{closo-3-(}\eta^6\text{-1,4-(CH}_3\text{)}_2\text{C}_6\text{H}_4\text{)}\text{-3,1,2-FeC}_2\text{B}_9\text{H}_{11}$ (2), respectively. The molecular structures of the complexes have been determined from single-crystal X-ray diffraction data. Both ferracarboranes adopt a closo geometry for the d^6 MC_2B_9 icosahedra. The arene rings occupying the other coordination sites of Fe are planar and nearly parallel to the C_2B_9 plane of the carborane ligand. Complex 1 crystallized in I, the monoclinic space group $P\bar{2}_1/c$ with $a = 7.7452(7)$, $b = 8.8974(9)$, $c = 19.6596(20)$ Å, $\beta = 90.195(3)$, $V = 1355$ Å ³ and $Z = 4$. Complex 2 crystallized in the orthorhombic space group $Pna2_1$ with $a = 12.862(3)$, $b = 7.491(2)$, $c = 15.002(3)$ Å, $V = 1445$ Å ³ and $Z = 4$.															
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT <input checked="" type="checkbox"/> UNCLASSIFIED/UNLIMITED <input type="checkbox"/> SAME AS RPT <input type="checkbox"/> DTIC USERS		21. ABSTRACT SECURITY CLASSIFICATION Unclassified													
22a. NAME OF RESPONSIBLE INDIVIDUAL M. F. Hawthorne		22b. TELEPHONE (Include Area Code) (213)825-7378	22c. OFFICE SYMBOL												

**Synthesis and Molecular Structure of
*clos*o-3-(η^6 -CH₃C₆H₅)-3,1,2-FeC₂B₉H₁₁ and
*clos*o-3-(η^6 -1,4-(CH₃)₂C₆H₄)-3,1,2-FeC₂B₉H₁₁**

Han Chyul Kang, Carolyn B. Knobler, and M. Frederick Hawthorne*

Department of Chemistry and Biochemistry

University of California, Los Angeles

Los Angeles, California 90024

SECTION FOR	
THIS DRAWING	<input checked="" type="checkbox"/>
AND TAB	<input type="checkbox"/>
IS LOCATED	<input type="checkbox"/>
IN THE DRAWING	<input type="checkbox"/>
BY	
DATE	/
RELEVANT CODES	
AND/OR	
SPECIAL	

A-1

Abstract

The reaction of K[*nido*-7,8-C₂B₉H₁₂] with ferric chloride and triethylamine in either toluene or *p*-xylene solution afforded neutral mixed sandwich (arene)ferracarborane complexes *clos*o-3-(η^6 -CH₃C₆H₅)-3,1,2-FeC₂B₉H₁₁(1) or *clos*o-3-(η^6 -1,4-(CH₃)₂C₆H₄)-3,1,2-FeC₂B₉H₁₁(2), respectively. The molecular structures of the complexes have been determined from single-crystal X-ray diffraction data. Both ferracarboranes adopt a *clos*o geometry for the d⁶ MC₂B₉ icosahedra. The arene rings occupying the other coordination sites of Fe are planar and nearly parallel to the C₂B₃ plane of the carborane ligand. Complex 1 crystallized in the monoclinic space group P2₁/c with *a* = 7.7452(7), *b* = 8.8974(9), *c* = 19.6596(20) Å, β = 90.195(3) $^\circ$, *V* = 1355 Å³, and *Z* = 4. Complex 2 crystallized in the orthorhombic space group Pna2₁ with *a* = 12.862(3), *b* = 7.491(2), *c* = 15.002(3) Å, *V* = 1445 Å³, and *Z* = 4.

Synthesis and Molecular Structures of
closo-3-(η^6 -CH₃C₆H₅)-3,1,2-FeC₂B₉H₁₁ and
closo-3-(η^6 -1,4-(CH₃)₂C₆H₄)-3,1,2-FeC₂B₉H₁₁

Han Chyul Kang, Carolyn B. Knobler, and M. Frederick Hawthorne*

Department of Chemistry and Biochemistry
University of California, Los Angeles
Los Angeles, California 90024

The chemistry of mixed-sandwich transition metal complexes of the type $[(\eta^6\text{-arene})M(\eta^5\text{-Cp})]$ has been well documented in the literature.¹ In view of the close structural and electronic similarity of the dicarbollide ligand to that of the cyclopentadienyl ligand,² the former would be expected to form analogous mixed ligand complexes with arenes and transition metals. However, only a few of these complexes have been reported.³ As part of our ongoing investigation of metallacarborane derivatives, we have prepared (η^6 -arene)ferracarborane complexes incorporating toluene; *closo*-3-(η^6 -CH₃C₆H₅)-3,1,2-FeC₂B₉H₁₁(1), or *p*-xylene; *closo*-3-(η^6 -1,4-(CH₃)₂C₆H₄)-3,1,2-FeC₂B₉H₁₁(2), directly from the reactions of K[*nido*-7,8-C₂B₉H₁₂], ferric chloride and triethylamine in either toluene or *p*-xylene solution. This simple route for the formation of (η^6 -arene)ferracarborane was originally employed for the synthesis of boron-substituted carborane cage derivatives using ferric chloride promoted oxidative coupling of K[*nido*-7,8-C₂B₉H₁₂] with Lewis base L.⁴

Both a symmetrically and an asymmetrically substituted zwitterionic neutral carborane.⁵

nido-10-N(C₂H₅)₃-7,8-C₂B₉H₁₁⁶ and *nido*-9-N(C₂H₅)₃-7,8-C₂B₉H₁₁⁷ were found in the above reaction mixture and characterized by spectroscopic techniques. While complexes **1**, **2** and triethylamine-substituted neutral species were obtained in low yield, the known complex [Fe^{III}(η^5 -C₂B₉H₁₁)₂]⁻(**3**)^{2b} was afforded as a major product. The basicity of triethylamine is apparently sufficient to deprotonate the *nido*-7,8-C₂B₉H₁₂⁻ ion to form a dicarbollide *nido*-7,8-C₂B₉H₁₁²⁻ which functions as a ligand in these complexes. When less basic nitrogen-containing ligands such as pyridine and acetonitrile were employed in this reaction, ligand substituted neutral carboranes were exclusively formed in high yields.⁸ When ferrous chloride was used instead of ferric chloride in this reaction, only the iron sandwich complex **3** was detected. This result suggests that the formation of **1** and **2** may take place while Fe²⁺ ion is supplied slowly in small amounts from the oxidative substitution reaction as a reduced species. The complexes **1** and **2** are thermally stable neutral orange crystals, although their solutions show color change after exposure to air for three days. Their ¹¹B FT NMR spectra are consistent with those of other η^6 -arene metallacarborane complexes of MC₂B₉,^{3a} showing a relative area ratio 1:1:2:2:2:1. In ¹H FT NMR spectra, the peaks assigned to the aromatic ring protons exhibit the upfield shift which has been found for the protons of the complexed arenes.⁹

The structure of **1** was determined by a single crystal X-ray diffraction study and the molecule is illustrated in Figure 1. Selected interatomic distances and angles are listed in

Figure 1

Table I. Due to the disorder present in the crystal, the bond distances and angles in the

Table I

toluene ligand in species **1** could not be determined accurately. Thus, we decided to obtain the structure of the closely related complex **2**. The molecular structure of **2** is illustrated in Figure 2 and selected interatomic distances and angles are listed in Table II. As can be seen

Figure 2

Table II

in the figures, the structures of **1** and **2** exhibit a similar sandwich type geometry with the iron flanked by both the arene ring and the C_2B_3 face of the C_2B_9 cage. C_2B_3 bonding faces in **1** and **2** are planar (maximum deviation; 0.023 Å and 0.015 Å, respectively) with the iron approximately centered over the ring at distances of 1.494 Å and 1.480 Å, respectively, from the C_2B_3 plane.¹⁰ The iron atom is also bound in a symmetrical fashion to the arene ring in **1** and **2** with distances of 1.566 Å and 1.575 Å from the C_6 plane,¹¹ respectively. The C_6 arene rings in **1** and **2** are also planar (maximum deviation in **2**; 0.016 Å) and almost parallel to the C_2B_3 plane with dihedral angles 1.8° and 2.2°, respectively.¹² The average Fe-C (arene) distances of 2.098(20) Å in **1** and 2.115(9) Å in **2** are similar to those of other *closo*- FeC_2B_9 arene complexes; e.g. 2.116(10) Å in *closo*-2-(η^6 -CH₃C₆H₅)-1,7-(CH₃)₂-2,1,7- $FeC_2B_9H_9$ ¹³ and 2.123(14) Å in *closo*-3-(η^6 -(CH₃)₃C₆H₃)-3,1,2- $FeC_2B_9H_{11}$,^{3a} and slightly longer than the average distance of 2.038(9) Å in the smaller cage complex 1-(η^6 -CH₃C₆H₅)Fe-2,3-(C₂H₅)₂C₂B₄H₄.^{3c}

The orientation of the arene rings with respect to the carborane ligand is of interest and in Figure 3, the arene and the C_2B_3 rings of the carborane ligands in each molecule are

Figure 3

projected onto a common plane. Both the C_6 rings are staggered with respect to the carbon-carbon edge (C(01)-C(02)). In molecule **1** the C_6 ring is eclipsed with respect to one of the boron-boron edges (B(04)-B(08)); however, in molecule **2** the arene ring shows a nearly eclipsed arrangement to the other boron-boron edge (B(07)-B(08)). The orientation of the methyl groups precludes any possible symmetry in either molecule, although the methyl groups were expected to lie between the carbon-carbon edge of the C_2B_3 face. The fact that the orientation of one of the methyl groups of xylene in **2** and the methyl group of toluene in **1** is similar, suggests that they are energetically similar and that they utilize their most favorable conformations. There are no significant intermolecular contacts in either crystal structure.

Experimental Section.

All manipulations were carried out in an inert atmosphere with standard Schlenk techniques.¹⁴ All solvents were purified by standard procedures and distilled under nitrogen prior to use. Triethylamine was distilled before use. Infrared spectra were recorded using KBr pellets on a Beckman Model FT 1100 FT-IR. ¹H NMR spectra were obtained using a Bruker WP-200 FT-NMR spectrometer at 200.133 MHz. ¹¹B NMR spectra were recorded on a Bruker AM-500 FT-NMR spectrometer at 160.463 MHz. Elemental analysis was performed by Galbraith Laboratories, Knoxville, TN.

Preparation of *cis*-3-(η^6 -CH₃C₆H₅)-3,1,2-FeC₂B₉H₁₁ (1). A 1-L three-neck flask was fitted with a reflux condenser having a gas outlet, a pressure equalized addition funnel and a gas inlet which was connected to a nitrogen manifold. To the flask were added 1.07 g (6.2 mmol) of K[nido-7,8-C₂B₉H₁₂] along with 50 mL of toluene, 11 mL of triethylamine and a magnetic stir bar. The solution was heated to reflux and a solution of 2.10 g (13 mmol) of anhydrous ferric chloride in 400 mL of toluene was added dropwise over a period of 1 hr to the refluxing solution. The color of the solution slowly changed to dark red. After approximately 15 hr of reflux, the reaction mixture was cooled and filtered, and the precipitate washed with 100 mL of hot benzene. The combined red filtrates were washed with 200 mL portions of distilled water 3 times. The washed toluene solution was dried over anhydrous magnesium sulfate, evaporated *in vacuo* to a volume of 20 mL, and then let stand for a period of one week. Brown rod-shape crystals were formed (0.035 g, 3 % yield). ¹H NMR (ppm, reference residual solvent protons = 5.32, CD₂Cl₂, 298 K): 6.2 (m, 3H, aromatic protons), 6.0 (m, 2H, aromatic protons), 3.8 (s, 2H, carborane CH), 2.5 (s, 3H, CH₃). ¹¹B NMR (ppm, reference BF₃·OEt₂, THF, 298 K): 0.1, -3.1, -9.9, -11.1, -21.2, -26.3 (1:1:2:2:2:1).

Preparation of *cis*-3-(η^6 -1,4-(CH₃)₂C₆H₄)-3,1,2-FeC₂B₉H₁₁ (2).

The trimethylammonium salt of [nido-7,8-C₂B₉H₁₂]⁺ (3.10 g, 15 mmol), anhydrous ferric

chloride (2.43 g, 15 mmol) and 20 mL of triethylamine were treated with *p*-xylene in a manner similar to that described above. Orange crystals were obtained (0.15 g, 5.1 % yield). Anal. Calcd for $C_{10}H_{21}B_9Fe$: C, 40.79; H, 7.19; B, 33.05; Fe, 18.97. Found: C, 40.58; H, 6.91; B, 31.71; Fe, 18.42. IR: 3039(w), 2613(m), 2530(vs, br), 1489(m), 1452(w), 1375(m), 1106(w), 1016(s), 987(s), 865(w) cm^{-1} . ^1H NMR (ppm, CD_2Cl_2 , 298 K): 5.9 (s, 4H, aromatic protons), 3.6 (s, 2H, carborane CH), 2.4 (s, 6H, CH_3). ^{11}B NMR (ppm, reference $\text{BF}_3 \cdot \text{OEt}_2$, THF, 298 K): 0.8, -3.0, -9.4, -10.2, -20.6, -25.6 (1:1:2:2:2:1).

Collection and Reduction of X-ray Data for 1. An air-stable crystal, obtained from toluene solution, was mounted on a thin glass fiber on a diffractometer constructed by Professor C. E. Strouse of this department. Systematic absences were found for reflections $0k0$, $k = 2n + 1$, and for $h0l$, $l = 2n + 1$. Unit cell parameters were determined from a least-squares fit of 43 accurately centered reflections ($9.5^\circ < 2\theta < 20.5^\circ$). These dimensions and other parameters, including conditions of data collection, are summarized in Table III. Data were collected in the $\theta - 2\theta$ scan mode. Three intense reflections (2,0,6), (2,0,-6), and (2,3,-1) were monitored every 97 reflections to check stability. Intensities of these reflections fluctuated only slightly, $ca \pm 4\%$, during the course of the experiment. Of the 2386 unique reflections measured, 1588 were considered observed ($I > 3\sigma(I)$) and were used in the subsequent structure analysis. Data were corrected for Lorentz and polarization, but not for absorption effects. Programs used in this work include locally modified versions of the programs listed in the reference section.¹⁵

Solution and Refinement of the Structure of 1. Atoms were located by use of the heavy-atom method. Although they are not quite identical, reflections hkl and $hk-l$ are similar in magnitude. Fe lies approximately in a "mirror" plane which bisects the C_2B_9 icosahedron giving positional overlap with large thermal ellipsoids. The arene is disordered about this plane. All calculations were performed on the VAX 11/750 crystallographic

computer. All carborane hydrogen atoms were kept in located positions and all arene hydrogen atoms were included in calculated positions, C-H = 1.0 Å, with assigned u values of 0.04 and 0.11 Å² for cage and ring and for methyl H, respectively. Anisotropic thermal parameters were refined for Fe and for cage non-hydrogen atoms. The arene was refined in 2 positions with occupancies x and 1-x which refined to about 60/40. Each arene ring was constrained to be a rigid hexagon, C-C = 1.395 Å, and each methyl group was constrained to be tetrahedral, H-C-H = 109.5°. Scattering factors for H were obtained from Stewart *et al.*¹⁶ and for other atoms were taken from The International Tables for X-ray Crystallography.¹⁷ Anomalous dispersion terms were applied to the scattering of Fe. A final difference electron density map was essentially featureless, the maximum and minimum peaks being about 0.7 e/Å³. Final positional and thermal parameters for non-hydrogen atoms are given in Table IV.

Collection and Reduction of X-ray Data for 2. An air-stable crystal, obtained from THF/heptane solution, was mounted on a thin glass fiber on a diffractometer constructed by Professor C. E. Strouse of this department. Systematic absences were found for reflections $0kl$, $k + l = 2n + 1$, and for $h0l$, $h = 2n + 1$. Unit cell parameters were determined from a least-squares fit of 22 accurately centered reflections ($9.5^\circ < 2\theta < 18^\circ$). These dimensions and other parameters, including conditions of data collection, are summarized in Table III. Data were collected in the $\theta - 2\theta$ scan mode. Three intense reflections (1,1,3), (3,-1,2) and (3,1,-2) were monitored every 97 reflections to check stability. Intensities of these reflections fluctuated only slightly, ca ± 3 %, during the course of the experiment. Of the 978 unique reflections measured, 848 were considered observed ($I > 3 \sigma(I)$) and were used in the subsequent structure analysis. Data were corrected for Lorentz and polarization, but not for absorption effects.¹⁵

Solution and Refinement of the Structure of 2. Atoms were located by use of the heavy-atom method. All calculations were performed on the VAX 11/750

crystallographic computer. All carborane hydrogen atoms were kept in located positions and all xylyl hydrogen atoms were included in calculated positions, C-H = 1.0 Å, with assigned B values of 4.0 and 7.0 Å² for cage and ring and for methyl H, respectively. Anisotropic thermal parameters were refined for Fe and for arene non-hydrogen atoms. Scattering factors for H were obtained from Stewart *et al.*¹⁶ and for other atoms were taken from The International Tables for X-ray Crystallography.¹⁷ Anomalous dispersion terms were applied to the scattering of Fe. A final difference electron density map was essentially featureless, the maximum and minimum peaks being about 0.6 e/Å³. Final positional and thermal parameters for non-hydrogen atoms are given in Table V.

Acknowledgement. We gratefully acknowledge financial support provided by the Office of Naval Research. We also thank Dr. A. Varadarajan for informative discussions.

Supplementary Material Available: Tables of positional and thermal parameters of hydrogen atoms, anisotropic thermal parameters, interatomic distances and angles, and observed and calculated structure factors (29 pages). Ordering information is given on any current masthead page.

References

1. a) Silverthorn, W. E. *Adv. Organomet. Chem.*, **1975**, *13*, 47. b) Watts, W. E. In "Comprehensive Organometallic Chemistry"; Wilkinson, G., Stone, F. G. A., Abel, E., Eds.; Pergamon Press: Oxford, 1982; Vol. 8, Chap 59, pp 1013-1071.
2. a) Hawthorne, M. F.; Young, D. C.; Wegner, P. A. *J. Am. Chem. Soc.* **1965**, *87*, 1818. b) Hawthorne, M. F.; Young, D. C.; Andrews, T. D.; Howe, D. V.; Pilling, R. L.; Pitts, A. D.; Reintjes, M.; Warren, Jr. L. F.; Wegnere, P. A. *J. Am. Chem. Soc.* **1968**, *90*, 879. c) Hawthorne, M. F. *Acc. Chem. Res.* **1968**, *1*, 281.
3. a) Hanusa, T. P.; Huffman, J. C.; Todd, L. J. *Polyhedron* **1982**, *1*, 77. b) Garcia, M. P.; Green, M.; Stone, F. G. A.; Somerville, R. G.; Welch, A. J. *J. Chem. Soc., Chem. Commun.* **1981**, 871. c) Maynard, R. B.; Swisher, R. G.; Grimes, R. N. *Organometallics* **1983**, *2*, 500. d) Swisher, R. G.; Sinn, E.; Grimes, R. N. *Organometallics* **1983**, *2*, 506. e) Micciche, R. D.; Sneddon, L. G. *Organometallics* **1983**, *2*, 674. f) Hanusa, T. P.; Huffman, J. C.; Curtis, T. L.; Todd, L. J. *Inorg. Chem.* **1985**, *24*, 787.
4. Young, D. C.; Howe, D. V.; Hawthorne, M. F. *J. Am. Chem. Soc.* **1969**, *91*, 859.
5. Manuscript for the formation of neutral carborane derivatives in preparation.
6. Spectroscopic data : IR spectrum (KBr): 2989(w), 2590(s), 2549(vs), 1458(m), 1397(m), 1183(w), 1164(w), 1091(w), 1025(m), 1011(m), 940(w), 917(m), 822(w), 788(w), 742(w) cm⁻¹. ¹H NMR (ppm, CD₂Cl₂, 298 K): 3.1 (qrt, 6H, -CH₂-), 2.0 (s, 2H, carborane CH), 1.3 (t, 9H, -CH₃). ¹¹B(¹H) NMR (ppm, THF, 298 K): -12.8, -17.7, -19.8, -22.3, -38.5 (2:3:1:2:1).
7. Spectroscopic data : IR spectrum (KBr): 2984(w), 2544(vs), 1474(m), 1458(m), 1388(s), 1184(w), 1152(m), 1099(w), 1049(w), 1029(w), 1005(s), 975(w), 958(w), 934(w), 835(w), 743(w) cm⁻¹. ¹H NMR (ppm, CD₂Cl₂, 298 K): 3.2 (qrt, 6H, -CH₂-), 2.3 (s, 1H, carborane CH), 1.9 (s, 1H, carborane CH), 1.3 (t, 9H, -CH₃).

¹¹B{¹H} NMR (ppm, THF, 298 K): 2.8, -6.0, -17.5, -18.1, -19.4, -26.5, -28.5, -32.6, -38.9 (1:1:1:1:1:1:1:1).

8. Young, D. C. Ph.D. thesis, University of California, Riverside, 1966.
9. Gastinger, R. G.; Klabunde, K. J. *Trans. Met. Chem.* 1971, 4, 1.
10. Fe-C₂B₃ plane distances: a) 1.48 Å in [C₆(CH₃)₃H₃]FeC₂B₉H₁₁. ref 3a. b) 1.49 Å in (C₅H₅)FeC₂B₉H₁₁. Zalkin, A.; Templeton, D. H.; Hopkins, T. E. *J. Am. Chem. Soc.* 1965, 87, 3988. c) 1.58 Å in Cs₂[(C₂B₉H₁₁)₂Fe₂(CO)₄]·(CH₃)₂CO·H₂O. Greene, P. T.; Briyan, R. F. *Inorg. Chem.* 1970, 9, 1464.
11. Fe-arene plane distances: a) 1.60 Å in [C₆(CH₃)₃H₃]FeC₂B₉H₁₁. ref 3a. b) 1.58(1) Å in [C₆(CH₃)₆]Fe(C₅H₅). Astruc, D.; Hamon, J. -R.; Althoff, G.; Roman, E.; Batail, P.; Michand, P.; Mariot, J. -P.; Varret, F.; Cozak, D. *J. Am. Chem. Soc.* 1979, 101, 5445. c) 1.59 Å in [Fe{η-C₅H₄(CH₂)₃-η-C₆H₅}][PF₆]. Nesmeyanov, A. N.; Tolstaya, M. V.; Rybinskaya, M. I.; Shul'pin, G. B.; Bokii, N. G.; Batsanov, A. S.; Struchkov, Yu. T. *J. Organomet. Chem.* 1977, 142, 89. d) 1.548 Å in (C₆H₆)Fe[(C₂H₅)₂C₂B₄H₄]; 1.539 Å in [C₆(CH₃)₃H₃]Fe[(C₂H₅)₂C₂B₄H₄]; 1.554 Å in [C₆(CH₃)₆]Fe[(C₂H₅)₂C₂B₄H₄]. ref 3d.
12. C₆ plane-C₂B₃ plane dihedral angles: a) 2.5° in (CH₃C₆H₅)Fe[C₂B₉H₉(CH₃)₂]. ref 3b. b) 2.9° in [C₆(CH₃)₃H₃]FeC₂B₉H₁₁. ref 3a. c) 3.30° in (C₅H₅)FeC₂B₉H₁₀(OCOCF₃-8). Zakharkin, L. I.; Kobak, V. V.; Kovredov, A. I.; Funanova, N. G.; Struchkov, Y. T. *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1979, 1097 d) 2.08° in (C₆H₆)Fe[(C₂H₅)₂C₂B₄H₄]; 2.83° in [C₆(CH₃)₃H₃]Fe-[(C₂H₅)₂C₂B₄H₄]. ref 3d. e) 1.2° in (CH₃C₆H₅)Fe[(C₂H₅)₂C₂B₄H₄]. ref 3e.
13. Garcia, M. P.; Green, M.; Stone, F. G. A.; Somerville, R. G.; Welch, A. J.; Briant, C. E.; Cox, D. N.; Mingos, D. M. P. *J. Chem. Soc. Dalton Trans.* 1985, 2343.
14. Shriver, D. F. "The Manipulation of Air-Sensitive Compounds"; McGraw-Hill: New York, 1969.

15. CARESS (Broach, Coppens, Becker and Blessing), peak profile analysis, Lorentz and polarization corrections; ORFLS (Busing, Martin and Levy), structure factor calculation and full-matrix least-squares refinement, ORTEP (Johnson), figure plotting; and SHELX76 (Sheldrick), structure analysis package.
16. Stewart, R. F.; Davidson, E. R.; Simpson, W. T. *J. Chem. Phys.* **1965**, *42*, 3175.
17. "International Tables for X-ray Crystallography"; Kynoch Press: Birmingham, England, 1974; Vol. IV.

Table I. Selected Bond Distances and Angles for 1.

Bond Distances (Å)							
Fe(03) - C(01)	2.043(13)	Fe(03) - C(02)	2.049(13)				
Fe(03) - B(04)	2.082(15)	Fe(03) - B(07)	2.065(15)				
Fe(03) - B(08)	2.140(14)	Fe(03) - C(31)	2.09 (2)				
Fe(03) - C(32)	2.082(16)	Fe(03) - C(33)	2.090(10)				
Fe(03) - C(34)	2.11 (2)	Fe(03) - C(35)	2.11 (2)				
Fe(03) - C(36)	2.105(11)	C(01) - C(02)	1.60 (2)				
C(01) - B(04)	1.67 (2)	C(01) - B(05)	1.70 (2)				
C(01) - B(06)	1.72 (2)	C(02) - B(06)	1.73 (2)				
C(02) - B(07)	1.69 (2)	C(02) - B(11)	1.67 (2)				
B(04) - B(05)	1.78 (2)	B(04) - B(08)	1.76 (2)				
B(04) - B(09)	1.82 (2)	B(07) - B(08)	1.75 (2)				
B(07) - B(11)	1.80 (2)	B(07) - B(12)	1.80 (2)				
B(08) - B(09)	1.78 (2)	B(08) - B(12)	1.81 (2)				
Bond Angles (deg)							
C(01) Fe(03) C(02)	46.1(5)	C(01) Fe(03) B(04)	47.8(6)				
C(01) Fe(03) B(07)	81.9(6)	C(01) Fe(03) B(08)	82.3(5)				
C(01) Fe(03) C(35)	97.9(6)	C(01) Fe(03) C(36)	103.6(6)				
C(02) Fe(03) B(04)	82.0(6)	C(02) Fe(03) B(07)	48.6(5)				
C(02) Fe(03) B(08)	82.9(5)	C(02) Fe(03) C(31)	100.1(6)				
C(02) Fe(03) C(36)	100.0(6)	B(04) Fe(03) B(08)	49.3(6)				
B(04) Fe(03) C(34)	92.9(6)	B(04) Fe(03) C(35)	104.5(6)				
B(07) Fe(03) B(08)	49.3(5)	B(07) Fe(03) C(31)	100.5(6)				
B(07) Fe(03) C(32)	94.4(6)	B(08) Fe(03) C(32)	103.5(6)				
B(08) Fe(03) C(33)	92.2(6)	C(31) Fe(03) C(32)	39.1(6)				
C(31) Fe(03) C(36)	38.9(6)	C(32) Fe(03) C(33)	39.1(6)				
C(33) Fe(03) C(34)	38.8(6)	C(34) Fe(03) C(35)	38.6(6)				
C(35) Fe(03) C(36)	38.6(6)	C(02) C(01) B(04)	111.7(10)				
C(01) C(02) B(07)	109.6(10)	C(01) B(04) B(08)	106.4(10)				
C(02) B(07) B(08)	107.1(10)	B(04) B(08) B(07)	105.0(10)				

Table II. Selected Bond Distances and Angles for 2.

Bond Distances (Å)							
Fe(03) - C(01)	2.040(10)		Fe(03) - C(02)	2.044(11)			
Fe(03) - B(04)	2.116(11)		Fe(03) - B(07)	2.104(13)			
Fe(03) - B(08)	2.110(11)		Fe(03) - C(31)	2.130(9)			
Fe(03) - C(32)	2.095(9)		Fe(03) - C(33)	2.094(9)			
Fe(03) - C(34)	2.132(9)		Fe(03) - C(35)	2.113(9)			
Fe(03) - C(36)	2.127(9)		C(01) - C(02)	1.633(13)			
C(01) - B(04)	1.706(14)		C(01) - B(05)	1.721(16)			
C(01) - B(06)	1.742(16)		C(02) - B(06)	1.719(15)			
C(02) - B(07)	1.706(15)		C(02) - B(11)	1.700(15)			
B(04) - B(05)	1.797(15)		B(04) - B(08)	1.772(15)			
B(04) - B(09)	1.752(15)		B(05) - B(06)	1.745(17)			
B(05) - B(09)	1.736(15)		B(05) - B(10)	1.736(16)			
B(06) - B(10)	1.764(15)		B(06) - B(11)	1.783(16)			
B(07) - B(08)	1.797(17)		B(07) - B(11)	1.788(17)			
B(07) - B(12)	1.760(17)		B(08) - B(09)	1.806(15)			
B(08) - B(12)	1.808(15)		B(09) - B(10)	1.746(15)			
B(09) - B(12)	1.777(15)		B(10) - B(11)	1.791(16)			
B(10) - B(12)	1.811(15)		B(11) - B(12)	1.757(15)			
C(31) - C(32)	1.404(13)		C(31) - C(36)	1.416(14)			
C(31) - C(37)	1.523(17)		C(32) - C(33)	1.417(14)			
C(33) - C(34)	1.430(16)		C(34) - C(35)	1.379(13)			
C(34) - C(38)	1.515(15)		C(35) - C(36)	1.427(14)			
Bond Angles (deg)							
C(01)	Fe(03)	C(02)	47.14(38)	C(01)	Fe(03)	B(04)	48.40(41)
C(01)	Fe(03)	B(07)	83.90(46)	C(01)	Fe(03)	B(08)	83.76(40)
C(01)	Fe(03)	C(35)	100.39(36)	C(01)	Fe(03)	C(36)	98.31(38)
C(02)	Fe(03)	B(04)	82.56(44)	C(02)	Fe(03)	B(07)	48.53(41)
C(02)	Fe(03)	B(08)	83.39(42)	C(02)	Fe(03)	C(31)	96.80(41)
C(02)	Fe(03)	C(36)	103.99(40)	B(04)	Fe(03)	B(08)	49.59(40)
B(04)	Fe(03)	C(34)	94.76(43)	B(04)	Fe(03)	C(35)	98.95(43)

Table II. continued

B(07)	Fe(03)	B(08)	50.48(46)	B(07)	Fe(03)	C(31)	104.93(45)
B(07)	Fe(03)	C(32)	91.19(45)	B(08)	Fe(03)	C(33)	91.53(42)
B(08)	Fe(03)	C(34)	101.95(41)	C(31)	Fe(03)	C(32)	38.80(35)
C(31)	Fe(03)	C(36)	38.85(37)	C(32)	Fe(03)	C(33)	39.54(39)
C(33)	Fe(03)	C(34)	39.53(42)	C(34)	Fe(03)	C(35)	37.91(35)
C(35)	Fe(03)	C(36)	39.34(40)	C(02)	C(01)	B(04)	110.60(82)
C(01)	C(02)	B(07)	112.13(87)	C(01)	B(04)	B(08)	105.63(77)
C(02)	B(07)	B(08)	104.18(86)	B(04)	B(08)	B(07)	107.42(77)
Fe(03)	C(31)	C(37)	130.55(87)	C(32)	C(31)	C(36)	120.00(88)
C(32)	C(31)	C(37)	120.16(89)	C(36)	C(31)	C(37)	119.74(84)
C(31)	C(32)	C(33)	120.25(92)	C(32)	C(33)	C(34)	119.79(88)
Fe(03)	C(34)	C(38)	131.29(72)	C(33)	C(34)	C(35)	119.37(96)
C(33)	C(34)	C(38)	119.02(94)	C(35)	C(34)	C(38)	121.55(108)
C(34)	C(35)	C(36)	121.49(92)	C(31)	C(36)	C(35)	119.02(83)

Table III. Details of Crystallographic Data collection.

compound	1	2
temp/K	298	298
crystal size/mm	0.13 x 0.26 x 0.45	0.2 x 0.3 x 0.4
normal to faces	101, 103, 010	100, 010, 001
appearance	parallelepiped	parallelepiped
radiation (graphite monochromator)	Mo K α	Mo K α
wavelength/ \AA	0.7107	0.7107
space group	P2 $_1$ /c	Pna2 $_1$
a/ \AA	7.7452(7)	12.862(3)
b/ \AA	8.8974(9)	7.491(2)
c/ \AA	19.6596(20)	15.002(3)
β/deg	90.195(3)	
V/ \AA^3	1355	1445
Z	4	4
ρ (calcd)/g cm^{-3}	1.37	1.35
μ/cm^{-1}	10.8	10.2
scan width, below $K\alpha_1$	1.3	1.3
above $K\alpha_2$	1.6	1.6
scan rate/deg min $^{-1}$	3.0	3.0
number of unique reflections	2386	978
number of observed ($I > 3 \sigma(I)$) reflections	1588	848
2 θ max/deg	50	45
data collected	+ h , + k , $\pm l$	+ h , + k , + l
number of parameters refined	148	125
R	0.08	0.045
R _w	0.11	0.056
GOF	3.49	1.81

Table IV. Positional and Equivalent Isotropic Thermal Parameters for 1.

Atom	x	y	z	<u Squared>
Fe(1)	0.2495(3)	0.1931(1)	0.9035(1)	0.065
B(08)	0.2490(17)	-0.0465(16)	0.9127(7)	0.066
C(02)	0.3523(16)	0.1465(15)	0.8099(6)	0.073
B(04)	0.0682(19)	0.0345(18)	0.8722(7)	0.074
B(07)	0.4284(18)	0.0350(17)	0.8729(7)	0.070
C(01)	0.1453(17)	0.1447(16)	0.8104(7)	0.074
B(10)	0.2486(23)	-0.1374(22)	0.7711(9)	0.084
B(12)	0.3657(22)	-0.1535(20)	0.8497(9)	0.081
B(09)	0.1399(21)	-0.1533(19)	0.8490(8)	0.078
B(11)	0.4257(21)	-0.0213(20)	0.7847(8)	0.081
B(05)	0.0639(21)	-0.0240(20)	0.7855(8)	0.085
B(06)	0.2462(23)	0.0511(21)	0.7455(9)	0.088
C(36)	0.268(3)	0.429(1)	0.9033(5)	0.035(4) *
C(35)	0.103(3)	0.388(1)	0.9247(5)	0.063(6) *
C(34)	0.083(3)	0.284(1)	0.9773(5)	0.069(6) *
C(33)	0.229(3)	0.222(1)	1.0086(5)	0.050(5) *
C(32)	0.393(3)	0.263(1)	0.9872(5)	0.053(5) *
C(31)	0.413(3)	0.367(1)	0.9346(5)	0.055(5) *
C(21)	0.182(5)	0.424(2)	0.904(1)	0.03(1) *
C(22)	0.360(5)	0.406(2)	0.911(1)	0.06(1) *
C(23)	0.427(5)	0.309(2)	0.961(1)	0.14(2) *

Table IV. (continued)

Atom	x	y	z	$\langle u^2 \rangle$
C(24)	0.315(5)	0.229(2)	1.003(1)	0.03(1) *
C(25)	0.137(5)	0.246(2)	0.996(1)	0.05(1) *
C(26)	0.070(5)	0.344(2)	0.946(1)	0.07(1) *
C(37)	0.604(3)	0.390(3)	0.916(1)	0.10(1) *
C(37')	-0.107(4)	0.386(4)	0.918(2)	0.07(1) *

Carbons from C(31) to C(37) are of the arene in the position of major occupancy.

Carbons from C(21) to C(26) and C(37') belong to the disordered arene in the position of lower occupancy. Units of $\langle u^2 \rangle$ are \AA^2 . Units of each E.S.D., in parentheses, are those of the least significant digit of the corresponding parameters. * Denotes an atom refined with an isotropic thermal parameter. Other isotropic values are $[1 / 8 \pi^2]$ times the "equivalent B value" for an anisotropic atom, as defined by W. C. Hamilton (1959)

Acta Cryst. 12, 609-610.

Table V. Positional and Equivalent Isotropic Thermal Parameters for 2.

Atom	x	y	z	Ux10E4
Fe(03)	0.1710(1)	0.0889(1)	0.0000	320(6)
C(01)	0.2203(8)	0.2532(14)	-0.0999(6)	437(25)*
C(02)	0.2011(8)	0.0476(14)	-0.1322(7)	433(25)*
B(04)	0.1125(8)	0.3350(14)	-0.0478(8)	389(25)*
B(05)	0.1416(9)	0.3923(15)	-0.1614(8)	448(29)*
B(06)	0.2014(9)	0.2105(16)	-0.2129(9)	477(29)*
B(07)	0.0817(10)	-0.0299(18)	-0.1014(8)	454(34)*
B(08)	0.0216(8)	0.1572(13)	-0.0470(8)	387(24)*
B(09)	0.0166(8)	0.3303(15)	-0.1307(7)	424(26)*
B(10)	0.0688(8)	0.2571(16)	-0.2317(8)	454(28)*
B(11)	0.1101(8)	0.0315(15)	-0.2140(8)	431(28)*
B(12)	-0.0049(8)	0.1048(14)	-0.1624(7)	403(25)*
C(31)	0.2669(7)	-0.1205(13)	0.0497(6)	430(57)
C(32)	0.1634(7)	-0.1441(13)	0.0770(6)	431(55)
C(33)	0.1097(8)	-0.0040(15)	0.1207(6)	445(63)
C(34)	0.1613(8)	0.1618(15)	0.1371(6)	457(59)
C(35)	0.2617(8)	0.1855(14)	0.1071(7)	491(64)
C(36)	0.3169(7)	0.0457(14)	0.0631(6)	451(60)
C(37)	0.3237(7)	-0.2698(14)	0.0009(13)	671(59)
C(38)	0.1024(10)	0.3104(16)	0.1834(8)	741(86)

$U_{eq} = [1/6 \pi^2] \times \sum \sum \beta_{ij} a_i a_j$. * Denotes an atom refined with an isotropic thermal parameter.

Figure Captions

Figure 1. Molecular structure of *closo*-3-(η^6 -CH₃C₆H₅)-3,1,2-FeC₂B₉H₁₁(1) showing atom-labeling scheme. All hydrogen atoms have been omitted for clarity.

Figure 2. Molecular structure of *closo*-3-(η^6 -1,4-(CH₃)₂C₆H₄)-3,1,2-FeC₂B₉H₁₁(2) showing atom-labeling scheme. All hydrogen atoms have been omitted for clarity.

Figure 3. Projections of arene rings onto carborane C₂B₃ planes.

B

C

DL/1113/86/2

TECHNICAL REPORT DISTRIBUTION LIST, GEN

	<u>No.</u> <u>Copies</u>		<u>No.</u> <u>Copies</u>
Office of Naval Research Attn: Code 1113 800 N. Quincy Street Arlington, Virginia 22217-5000	2	Dr. David Young Code 334 NORDA NSTL, Mississippi 39529	1
Dr. Bernard Douda Naval Weapons Support Center Code 50C Crane, Indiana 47522-5050	1	Naval Weapons Center Attn: Dr. Ron Atkins Chemistry Division China Lake, California 93555	1
Naval Civil Engineering Laboratory Attn: Dr. R. W. Drisko, Code L52 Port Hueneme, California 93401	1	Scientific Advisor Commandant of the Marine Corps Code RD-1 Washington, D.C. 20380	1
Defense Technical Information Center Building 5, Cameron Station Alexandria, Virginia 22314	12 high quality	U.S. Army Research Office Attn: CRD-AA-IP P.O. Box 12211 Research Triangle Park, NC 27709	1
DTNSRDC Attn: Dr. H. Singerman Applied Chemistry Division Annapolis, Maryland 21401	1	Mr. John Boyle Materials Branch Naval Ship Engineering Center Philadelphia, Pennsylvania 19112	1
Dr. William Tolles Superintendent Chemistry Division, Code 6100 Naval Research Laboratory Washington, D.C. 20375-5000	1	Naval Ocean Systems Center Attn: Dr. S. Yamamoto Marine Sciences Division San Diego, California 91232	1

END

8-87

DTIC