Hidden Markov Models

Laboratory of Bioinformatics I Module 2

March 23, 2017

Emidio Capriotti
http://biofold.org/

Department of Biological, Geological, and Environmental Sciences (BiGeA) University of Bologna

Formal Definition

A HMM is a stochastic generator of sequences characterized by:

- N states
- A set of transition probabilities between two states $\{a_{kj}\}$

$$a_{ki} = P(\pi(i) = j | \pi(i-1) = k)$$

• A set of starting probabilities $\{a_{\theta k}\}$

$$a_{0k} = P(\pi(1) = k)$$

• A set of ending probabilities $\{a_{k\theta}\}$

$$a_{k0} = P(\pi(i) = END | \pi(i-1) = k)$$

- An alphabet *C* with *M* characters.
- A set of emission probabilities for each state $\{e_k(c)\}$

$$e_{k}(c) = P(s^{i} = c \mid \pi(i) = k)$$

•Constraints:

$$\Sigma_{k} a_{0k} = 1$$

$$a_{k0} + \Sigma_{j} a_{kj} = 1$$

$$\Sigma_{c \in C} e_{k}(c) = 1$$

$$\forall k$$

s: sequence, π : path through the states

Hidden Markov Models

HMMs interpret an observable sequence (residue sequence or DNA/RNA sequence) as «generated» by an underlying (hidden) process.

Transition topology and probabilities define a global grammar

Emission probabilities cast the propensity of observable symbols in each state

Secondary Structure

SALKMNYTREIMVASNQ

 $\texttt{c} \ \alpha_1 \, \alpha_2 \, \alpha_3 \, \alpha_3 \, \alpha_3 \, \alpha_3 \, \texttt{c} \ \texttt{c} \ \texttt{c} \ \texttt{c} \ \texttt{c} \ \beta_1 \, \beta_2 \, \beta_2 \, \beta_2 \, \texttt{c} \ \texttt{c}$

 $c \alpha \alpha \alpha \alpha \alpha \alpha \alpha c c c c \beta \beta \beta \beta c c Y(\pi)$: labels

s: sequence

 π : path

Generating HMM Sequence

GpC Islands Model

Probability of a sequence s with a given path π

S: A G C G C G T A A T C T G
T: Y Y Y Y Y N N N N N

Emission: $0.1 \times 0.4 \times 0.4 \times 0.4 \times 0.4 \times 0.4 \times 0.1 \times 0.25 \times 0.25$

Transition: $0.2 \times 0.7 \times 0.7 \times 0.7 \times 0.7 \times 0.7 \times 0.7 \times 0.2 \times 0.8 \times 0.8 \times 0.8 \times 0.8 \times 0.8 \times 0.8 \times 0.1$

Joint Probability

Calculate the joint probability of the sequence (s) ad the path (π) given the model (M)

$$P(s,\pi \mid M) = P(s \mid \pi, M) \cdot P(\pi \mid M)$$

$$P(\pi \mid M) = a_{0\pi(1)} \cdot \prod_{i=2}^{T} a_{\pi(i-1)\pi(i)} \cdot a_{\pi(T)0}$$

$$P(s \mid \pi, M) = \prod_{i=1}^{T} e_{\pi(i)}(s^{i})$$

$$P(s,\pi \mid M) = a_{\pi(T)0} \cdot \prod_{i=1}^{T} a_{\pi(i-1)\pi(i)} \cdot e_{\pi(i)}(s^{i})$$

Sequence Probability

$$P(s|M) = \sum_{\pi} P(s, \pi|M)$$

2¹³ different paths

Summing over all the path will give the probability of having the sequence

Forward Algorithm

On the basis of preceding observations the computation of P(s I M) can be decomposed in simplest problems

For each state k and each position i in the sequence, we compute:

$$F_k(i) = P(s^1 s^2 s^3 \dots s^i, \pi(i) = k \mid M)$$

Initialization:
$$F_{BEGIN}(0) = 1$$
 $F_i(0) = 0$ $\forall i \neq BEGIN$

Recurrence:
$$F_l(i+1) = P(s^l s^2 ... s^i s^{i+1}, \pi(i+1) = l) =$$

$$= \sum_k P(s^l s^2 ... s^i, \pi(i) = k) \cdot a_{kl} \cdot e_l(s^{i+1}) =$$

$$= e_l(s^{i+1}) \cdot \sum_k F_k(i) \cdot a_{kl}$$

Termination:
$$P(s) = P(s^1 s^2 s^3s^T, \pi(T+1) = END) = \Sigma_k P(s^1 s^2s^T, \pi(T) = k) \cdot a_{k0}$$

= $\Sigma_k F_k(T) \cdot a_{k0}$

Forward Algorithm: Example

S: ATGCG *Initialization*: $F_{BEGIN}(0) = 1$ $F_i(0) = 0$ $\forall i \neq BEGIN$

Recurrence: $F_l(i+1) = e_l(s^i) \cdot \Sigma_k F_k(i) \cdot a_{kl}$

Termination: $P(s) = \sum_{k} F_{k}(T) \cdot a_{k0}$

	-	Α	Т	G	С	G	-
Begin	1	0	0	0	0	0	0
Υ	0	0.2x0.1	2e-2x0.7x0.1+ +0.2x0.1x0.1= =3.4e-3	3.4e-3x0.7x0.4+ +4.1e-2x0.1x0.4= =2.59e-3	2.59e-3x0.7x0.4+ +8.37e-3x0.1x0.4= =1.06056e-3	1.06056e-3x0.7x0.4+ +1.8036e-3x0.1x0.4= =3.691008e-4	
N	0	0.8x0.25	2e-2x0.2x0.25+ +0.2x0.8x0.25= =4.1e-2	3.4e-3x0.2x0.25+ +4.1e-2x0.8x0.25= =8.37e-3	2.592e-3x0.2x0.25+ +8.37e-3x0.8x0.25= =1.8036e-3	1.06056e-3x0.2x0.25+ +1.8036e-3x0.8x0.25= =4.13748e-4	
End	0	0	0	0	0	0	3.69e-4x0.1+ +4.13e-4x0.1= =7.82e-5

Backward Algorithm

Similar to the Forward algorithm: it computes P(s I M), reconstructing the sequence from the end

For each state k and each position i in the sequence, we compute:

$$B_k(i) = P(s^{i+1}s^{i+2}s^{i+3}....s^T | \pi(i) = k)$$

Initialization:
$$B_k(T) = P(\pi(T+1) = END \mid \pi(T) = k) = a_{k0}$$

Recurrence:
$$B_{l}(i-1) = P(s^{i}s^{i+1}...s^{T} | \pi(i-1) = l) =$$

$$= \sum_{k} P(s^{i+1}s^{i+2}...s^{T} | \pi(i) = k) \cdot a_{lk} \cdot e_{k}(s^{i}) =$$

$$= \sum_{k} B_{k}(i) \cdot e_{k}(s^{i}) \cdot a_{lk}$$

Termination:
$$P(s) = P(s^1 s^2 s^3s^T | \pi(0) = BEGIN) =$$

= $\sum_k P(s^2 ...s^T | \pi(1) = k) \cdot a_{0k} \cdot e_k(s^1) =$
= $\sum_k B_k(1) \cdot a_{0k} \cdot e_k(s^1)$

Computational Complexity

Naïf method

$$P(s | M) = \Sigma_{\pi} P(s, \pi | M)$$

There are **N**^T possible paths.

Each path requires about **2**·**T** operations.

The time for the computation is $O(T \cdot N^T)$

Forward Algorithm

T positions, **N** values for each position

Each element requires about 2 · N product and 1 sum

The time for the computation is $O(T \cdot N^2)$

Complexity Plot

Hidden Paths

$$\pi^* = \operatorname{argmax}_{\pi} [P(\pi \mid s, M)]$$
$$= \operatorname{argmax}_{\pi} [P(\pi, s \mid M)]$$

2¹³ different paths

Viterbi path: path that gives the best joint probability

s: Z	Ą	G	C	G	C	G	T	A	A	T	C	T	G
π_1 : 3	Z	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
π_2 : 3	'	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	N
π_3 : 3	7	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	N	Y
π_4 : 3	7	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	N	N
π_5 : 3	7	Y	Y	Y	Y	Y	Y	Y	Y	Y	N	Y	Y

Searching the Hidden Path

Viterbi decoding

Among all the possible path, choose the path π^* that maximizes the $P(\pi \mid s, M)$

$$\pi^* = \operatorname{argmax}_{\pi} [P(\pi \mid s, M)] = \operatorname{argmax}_{\pi} [P(\pi, s \mid M)]$$

A Posteriori decoding

For each position choose the state $\underline{\pi}(i)$:

$$\underline{\pi}(i) = \operatorname{argmax}_{k} [P(\pi(i) = k | s, M)]$$

The contribution to this probability derives from all the paths that go through the state k at position i.

The A posteriori path can be a non-sense path (it may not be a legitimate path if some transitions are not permitted in the model)

Viterbi Algorithm

$$\pi^* = \operatorname{argmax}_{\pi} [P(\pi, s | M)]$$

The computation of $P(s,\pi^*|M)$ can be decomposed in simplest problems

Let $V_k(i)$ be the probability of the most probable path for generating the subsequence $s^1s^2s^3....s^i$ ending in the state k at iteration i.

Initialization:
$$V_{BEGIN}(0) = 1$$
 $V_i(0) = 0$ $\forall i \neq BEGIN$

Recurrence:
$$V_l(i+1) = e_l(s^{i+1}) \cdot \text{Max}_k(V_k(i) \cdot a_{kl})$$

$$ptr_i(l) = argmax_k(V_k(i) \cdot a_{kl})$$

Termination:
$$P(s, \pi^*) = Max_k(V_k(T) \cdot a_{k0})$$

$$\pi^*(T) = \operatorname{argmax}_k(V_k(T) \cdot a_{k0})$$

Traceback:
$$\pi^*(i-1) = \operatorname{ptr}_i(\pi^*(i))$$

Viterbi Algorithm: Example

S: ATGCG *Initialization*: $V_{BEGIN}(0) = 1$ $V_i(0) = 0$ $\forall i \neq BEGIN$

Recurrence:
$$V_l(i) = e_l(s^i) \cdot \text{Max}_k(V_k(i-1) \cdot a_{kl}) - ptr_i(l) = argmax_k(V_k(i-1) \cdot a_{kl})$$

Termination:
$$P(s, \pi^*) = Max_k(V_k(T) \cdot a_{k0}) - \pi^*(T) = argmax_k(V_k(T) \cdot a_{k0})$$

Traceback:
$$\pi^*(i-1) = \operatorname{ptr}_i(\pi^*(i))$$

	1	Α	Т	G	С	G	-
Begin	1	0	0	0	0	0	0
Υ	0	0.2x0.1= =2e-2 ptr=Begin	Max(2e-2x0.7x0.1; 0.2x0.1x0.1) 2e-3; ptr=N	Max(2e-3x0.7x0.4; 1.6e-2x0.1x0.4) 6.4e-4; ptr= N	Max(6.4e-4x0.7x0.4; 3.2e-4x0.1x0.4) 1.79e-4; ptr= Y	Max(1.79e-4x0.7x0.4; 6.4e-5x0.1x0.4) 5.02e-5; ptr= Y	
N	0	0.8x0.25= =0.2 ptr=Begin	Max(2e-2x0.2x0.25; 0.2x0.8x0.25) 1.6e-2; ptr= N	Max(2e-3x0.2x0.25; 1.6e-2x0.8x0.25) 3.2e-4; ptr=N	Max(6.4e-4x0.2x0.25; 3.2e-4x0.8x0.25) 6.4e-5; ptr=N	Max(1.79e-4x0.2x0.25 ;6.4e-5x0.8x0.25) 1.28e-5; ptr=N	
End	0	0	0	0	0	0	Max(5.01e-5x0.1; 1.28e-5x0.1) 5.02e-6; ptr= Y

A Posteriori Decoding

For each position choose the state $\underline{\pi}(t)$:

$$\underline{\pi}(i) = \operatorname{argmax}_{k} [P(\pi(i) = k | s, M)]$$

How to compute $P(\pi(i) = k | s, M)$ for any state k and any position i?

$$P(\pi(i) = k \mid s, M) = \frac{P(\pi(i) = k, s \mid M)}{P(s \mid M)}$$

$$P(\pi(i) = k, s \mid M) = P(s^1 s^2 ... s^i, \pi(i) = k \mid M) \cdot P(s^{i+1}, s^{1+2}, ... s^T \mid \pi(i) = k, M) = P(\pi(i) = k, s \mid M) = P(s^1 s^2 ... s^i, \pi(i) = k \mid M) \cdot P(s^{i+1}, s^{1+2}, ... s^T \mid \pi(i) = k, M) = P(\pi(i) = k, s \mid M) = P(\pi(i) = k, s \mid$$

$$= F_k(i) \cdot B_k(i)$$

$$P(\pi(i) = k \mid s, M) = \frac{F_k(i) \cdot B_k(i)}{P(s \mid M)}$$

Elements of the Forward and Backward matrices

Computed with Forward or Backward algorithm termination steps

Exercise

Using the BLAST tool at Uniprot, retrieve all the SwissProt sequences that are similar with an E-value <0,001 to the Rhodopseudomonas cytochrome C (P00091).

Download the sequences in Fasta format and align with ClustalW, Muscle or T-Coffee

Analyse the conserved positions in the alignments

Repeat with the Arabidopsis (Q93VA3) and the human (P99999) sequences

Compare the results, an in particular the pattern of conserved residues