求广义指派决策问题最优解的有效算法

黄德才 (浙江工业大学信息工程学院·杭州,310014)

摘 要 分析和研究 一类广义指派 决策问题,给出了该问题的线性规划模型,并把该问题转化 为传统指派决策问题, 使得该问题可以用著名的匈牙利算法求其最优解, 从而为该问题找到 一 个理想、简便而有效的求解方法。给出了一个数值例子。

关键词 指派问题,线性规划,有效算法 分类号 0232

1 引 言

文献[1] 在传统指派决策问题的基础上提出了一个较为一般的指派决策问题, 文献[2] 根

设有n 项工作欲安排 m(m-n) 个人去做,每个人安排且仅安排一项工作,做第i 项工作

据企业管理决策的实际需要,提出了一个更广义的指派决策问题,可叙述如下:

可以由 b; 个人共同去做, 其中 b; 是待求的未知数, $b_i = m$ 。已知第i 个人做第j 项工作的效

益为 a_{ij} (i = 1, 2, ..., m; j = 1, 2, ..., n), 试确定使总效益最大的最优指派。 对以上的广义指派决策问题(简称 GAP), 当 $b_i(i = 1, 2, ..., n)$ 预先给定时, 它就是[1] 中

的问题; 当m=n时, 它就是传统意义下的平衡指派决策问题^[3]。因此, GAP 比传统指派决策问 题更具一般性。对于GAP, [2] 给出了一个基于动态规划的求解方法。从理论上讲, 能用动态规

划解GAP,不失为一种可行的方法。但作者没有充分利用问题的性质和特点,使 GAP 的求解 显得过于复杂, 且因动态规划求解需由递归和回代过程完成, 存在"维数障碍"的弱点, 给算法 的实现和实际应用带来困难和不便。

本文在建立了该问题的整数线性规划模型基础上,经过对问题和模型的分析与研究,非常 巧妙地把这个 GAP 转化为传统指派决策问题,后者可以用著名的匈牙利算法求最优解,从而 为该问题找到了一个理想、简便而有效的最优求解方法。

问题的数学模型描述 2

广义指派决策问题可以用以下整数线性规划模型描述

$$\min Z = \underset{i=1 \ j=1}{\underset{j=1}{a_{ij}}} a_{ij} \times X_{ij}$$
s.t. $X_{ij} = 1, \quad i = 1, 2, ..., m$ (1)

$$M_{n} = M_{n}$$

$$(X_{ij}) = M$$

(2)

(3)

 $X_{\bar{j}} = 0, 1$ i = 1, 2, ..., m; j = 1, 2, ...n?1994-2016 China Academic Journal Electronic Publishing House. All rights reserved.

(4)

其中 $X_{ij} = 1$ 表示第 i 个人安排去做第 j 项工作,否则 $X_{ij} = 0$ 。由 a_{ij} 组成的矩阵 $A = (a_{ij})_{m \times n}$ 称为GAP的效益矩阵。为了把GAP转化为传统指派问题求解,下面先简单介绍一下传统指派

3 问题的转换

3.1 传统指派决策问题简介^[3]

安排且仅安排一项工作、设已知第i个人做第i项工作的效益为 c_{i} (i=1,2,...,m; i=1,2,...m), 试确定使总效益最大的最优指派(简称 AP)。

求效益最大的传统指派决策问题可描述如下: 现有m 项工作欲安排m 个人去做, 每个人

由 c_{ij} 组成的矩阵 $C = (c_{ij})_{m \times m}$ 称为 A P 的效益矩阵。所以、求 A P 的最优解等价于从矩阵 C 中选出 m 个元素满足:

1) 每列中恰有一个元素被选出,以保证每项工作有且仅有一人去做:

决策问题, 以研究比较两者之间的差异, 再给出问题的转换与求解方法。

- 2) 每行中恰有一个元素被选出,以保证每人有且仅有一项工作要做:
- 3) 被选出的 n 个元素之和最大。
- AP 可用著名的 '匈牙利算法 "来求解。文献[3] 中可找到 '匈牙利算法 "的计算步骤。

3.2 把 GAP 转换为 AP

从上面的讨论,我们仍然很难看出 GAP 与 AP 之间有什么直接联系。下面的讨论将巧妙 地把GAP 转化为 AP。

1) 每列中至少有一个元素被选出. 保证每项工作至少有一人去做:

用矩阵 A 来描述. GAP 的最优解等价干从矩阵 A 中选出 m 个元素满足条件:

- 2) 每行中有且仅有一个元素被选出,保证每个人有且仅有一项工作要做;
- 3) 被选出的 m 个元素之和最大。 $\mathsf{M}A$ 中选出 m 个元素满足以上三个条件的 GAP 与 AP 选出元素的主要区别是: 前者要求

每列中至少有一个元素被选出,而后者要求每列中有且仅有一个元素被选出。因此,如果对 GAP 能构造一个矩阵使每列有且仅有一个元素被选出且其和恰是 GAP 的最优解,问题就解 决了。为此我们引入以下定义:

 $\mathbf{h}(m-n+1)$ 个矩阵A 构成的矩阵R=(A,A,...,A) 是一个有m 行、n(m-1)n+1) 列的矩阵, 称为 GAP 的扩展矩阵。

R 矩阵的意义相当于增加了n(m-n) 项工作, 这样工作数量比人数多。因此, 用扩展矩阵 R 来描述 GAP 的最优解, 等价于从矩阵 R 中选出 m 个元素满足:

1) 每列中至多有一个元素被选出, 说明每项工作要么有人做, 要么没人做;

- 2) 每行中有且仅有一个元素被选出,保证每个人被指派一项且仅一项工作:
- 3) 被选出的 n 个元素之和最大。

 M R 中选 m 个元素满足以上三个条件的问题, 是一个非平衡指派决策问题, 我们在 m × n(m-n+1) 的矩阵 R 中增加(m-n)(n-1) 的行零元素, 可得如下矩阵

这样创建剂值China Agademic Journal Elec的矩阵,他相当宇增加了创加证的标准served个人ttp只

是这些人去做任何工作的效益均为0。这样从R 中选出m 个元素之和最大的问题就等价于从C

中选出 n(m-n+1) 个元素满足:

- 1) 每列中恰有一个元素被选出,保证每项工作有且仅有一人去做;
- 2) 每行中恰有一个元素被选出,保证每个人被指派一项且仅一项工作;
- 3) 被选出的 *m* (*n m* + 1) 个元素之和最大。

这就是问题 AP。从以上分析可得如下定理:

定理 1 GAP 的最优解等价于以(4) 式确定的矩阵 C 为效益矩阵的问题 AP 的最优解,因

由此可得 GAP 的求解步骤为:

而可用 '匈牙利算法" 求最优解。

Step 1 按定义 1 介绍的方法构造矩阵 R. 然后按(4) 的方法构造矩阵 C:

Step 2 用 '匈牙利算法 "求矩阵 C 对应 AP 的最优解;

Step 3 求 GAP 的最优解:

1) AP 的解所指定的在 C 中的每个元素 $C_{ip}(1-p-n(m-n+1); i=1,2,...,m)$ 之和, 就是 GAP 的最优解对应的效益值:

- がた GAP 的最化解列型的 X 無 恒; 2) 设 W_i 为做第j 项工作的人员集合, 开始时置为空。对 AP 的最优解所确定的每个元素 $C_{ip}(1-p-n(m-n+1); i=1,2,...,m)$, 把 p 分解成: p=kn+j(0-k-m-n,1-j)
 - n),则说明第i 个人安排去做第j 项工作,所以令 $W_j = W_j \{i\}$;
 - (3) 集合 (W_i) 的元素个数是指派做工作 (i) 的人数 (b_i) , (W_i) 中的元素 (i) 对应于第 (i) 个人。

4 数值例子

例 $^{(1)}$ 设m=4,n=3,效益矩阵为A。对GAP,试确定使总效益最大的最优指派。

解 Step 1 因为 m - n + 1 = 2,可构造出对应的矩阵 R 和矩阵 C,上面已给出。 Step 2 用匈牙利算法求 C 对应的指派决策问题的最优解。

由于匈牙利算法是求以 C 为效益矩阵的最小化指派决策问题的, 而 AP 是最大化问题, 必须转化为最小化问题。经过转化, 以 C 为效益矩阵的最小化问题的最优解就是以 C 为效益矩阵最大化问题的最优解 $^{(3)}$ 。

$$C = \begin{bmatrix} 6 & 4 & 5 & 6 & 4 & 5 \\ 2 & 7 & 6 & 2 & 7 & 6 \\ 7 & 0 & 4 & 7 & 0 & 4 \\ 5 & 3 & 1 & 5 & 3 & 1 \\ 9 & 9 & 9 & 9 & 9 & 9 \end{bmatrix}, \quad C = \begin{bmatrix} 2 & 0 & 1 & 2 & 0 & 1 \\ 0 & 5 & 4 & 0 & 5 & 4 \\ 7 & 0 & 4 & 7 & 0 & 4 \\ 4 & 2 & 0 & 4 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$?1994-2016 \text{ China Academ9c J9ur9al 2leQronic Publisoin 9 Hous 0 A0 rights reserved.} \quad \text{http://views.}$$

按照匈牙利算法由C可得矩阵C,在矩阵中已可找出的不同行不同列上的6个零元(矩阵

中用下划线标出)。它们对应于 C 中元素为: $C_{12} = 5$, $C_{21} = 7$, $C_{35} = 9$, $C_{46} = 8$, $C_{54} = 0$, $C_{63} = 0$ 。 所以 A P 的最优解对应的效益为 B = 5 + 7 + 9 + 8 = 29。

Step 3 令 $W_1 = \cong$, $W_2 = \cong$, $W_3 = \cong$, $W_4 = \cong$, $W_5 = \cong$, $W_6 = \cong$, 对于元素 C_{12} , 由 2 = 0 × n + 2 可得 $W_2 = W_2$ {1} = {1}。同样对 C_{21} , C_{35} , C_{46} 进行讨论,最终可得 $W_1 = \{2\}$, $W_2 = \{1,3\}$, $W_3 = \{4\}$ 。

由此得到一个最优指派为: 第2个人做第1项工作, 第1个人和第3个人做第2项工作, 第4个人做第3项工作, 其最大效益是29。

参考文献

- 1 程仕军. 一个最优指派决策问题及其算法. 工科数学, 1992, (1): 48-49
- 2 秦学志, 王学华. 一类最优指派决策问题的动态规划模型. 数学的实践与认识, 1996, 26(3): 212—216
- 3 刘泉, 万敏(译). 运筹学的理论与实践. 北京: 中国商业出版社, 1987, 70—100

An Efficiency Algorithm for Solving the Optimal Solution of a Generalized Assignment Problem

Huang Decai

(Zhejiang University of Technology)

Abstract This paper presented an integer linear programming model for the generalized assignment problem. So the generalized assignment problem is ingeniously reduced to a traditional assignment problem, and its optimal solution can be easily obtained by the famous: Hungary algorithm. Finally, an example is given to illustrate the solving steps of the generalized assignment problem.

Key words assignment problem, linear programming, efficiency algorithm

作 者 简 介

黄德才 1958 年生。获理学硕士和工学博士学位, 现为浙江工业大学信息工程学院副教授。主要研究领域为决策理论与方法, 生产排序理论, 离散最优化方法等。

(上接第271页)

作者简介

恒庆海 1964 年生。1996 年于哈尔滨工业大学自动控制理论及应用专业获工学博士学位,1998 年于天津大学电工学科获博士后证书,现为天津大学电气自动化与能源工程学院副教授。目前研究方向为 *H* 控制,锅炉过热汽温及电机控制等。

王广雄 1933 年生。哈尔滨工业大学教授,博士生导师。主要研究方向为H 控制理论及应用,高精度伺服系统的设计。

?1994-2016 China Academic Journal Electronic Publishing House. All rights reserved. http://v