Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет компьютерных систем и сетей

Кафедра электронных вычислительных машин

Дисциплина: Моделирование

ОТЧЕТ по лабораторной работе № 2 на тему ПОСТРОЕНИЕ И ИССЛЕДОВАНИЕ АНАЛИТИЧЕСКОЙ МОДЕЛИ ДИСКРЕТНО-СТОХАСТИЧЕСКОЙ СМО ВАРИАНТ № 3

студент:	Сякачев 11.Б.
Проверила:	Ю.О. Герман

1. Цель работы

Изучить методы анализа поведения дискретно-стохастической системой массового обслуживания.

2. Краткие теоретические сведения

Случайный процесс, протекающий в системе, называется марковским процессом (цепь Маркова) или процессом без последействия, если для каждого момента времени ti вероятность любого последующего состояния системы зависит только от текущего состояния и не зависит от того, когда и каким путем система пришла в это состояние (т.е. от того, как развивался процесс в прошлом).

Сумма предельных вероятностей всех состояний системы равна единице:

$$\sum_{i=1}^n P_i = 1.$$

Это так называемое нормировочное уравнение. При моделировании систем процесс их функционирования удобно представлять в виде графа, вершинами которого являются состояния Si, а направленные дуги описывают переходы между состояниями. Если процесс является марковским и известны вероятности переходов из состояния в состояние, то вероятности состояний Pi могут быть найдены исходя из того, что вероятность любого состояния Si равна сумме произведений вероятностей состояний Sj, из которых есть переход в данное состояние на вероятности этих переходов pji, т.е

$$P_i = \sum_j P_J p_{ji}$$

Поглощающие марковские цепи содержат невозвратные состояния, называемые поглощающими. Из поглощающего состояния нельзя перейти ни в какое другое. На графе поглощающему состоянию соответствует вершина, из которой не выходит ни одна дуга. В установившемся режиме поглощающему состоянию соответствует вероятность равная 1.

3. Задание

Пусть матрица переходных вероятностей Р:

Таблица 3.1 – матрица переходных вероятностей

	S0	S1	S2	S3
S0	0,1	0,2	0,6	0,1
S 1	0,3	0,5	0,1	0,1
S2	0,2	0,1	0,3	0,4
S3	0,3	0,4	0,1	0,2

- 3.1 Найти установившиеся вероятности состояний системы: P_0 , P_1 , P_2 , P_3 .
- 3.2 Рассчитать вероятности состояний системы на третьем шаге (k = 3).
- 3.3 Рассчитать число шагов до попадания в поглощающее состояние для матрицы вероятностей переходов

Таблица 3.2 – матрица вероятностей переходов

	S0	S1	S2	S 3
S0	0,1	0,2	0,6	0,1
S1	0,3	0,5	0,1	0,1
S2	0,2	0,1	0,3	0,4
S3	0	0	0	1

4. Ход работы

4.1 Нахождение установившиеся вероятности состояний системы: P_0 , P_1 , P_2 , P_3 .

Составим систему уравнений:

Посчитаем матрицу коэффициентов и столбец свободных членов:

Таблица 4.1.1 – матрица коэффициентов

1	1 ' 11 '		
S0	S1	S2	S 3
-0,9	0,2	0,6	0,1
0,3	-0,5	0,1	0,1
0,2	0,1	-0,7	0,4
1	1	1	1

Таблица 4.1.2 – столбец свободных членов

P1	0
P2	0
P3	0
1	1

Найдём определитель матрицы (не должен быть равен нулю) и обратную матрицу:

Таблица 4.1.3 – обратная матрица

-0,90659	0,054945	-0,41209	0,25
-0,3022	-1,64835	-0,13736	0,25
0,247253	0,43956	-0,7967	0,25
0,961538	1,153846	1,346154	0,25

Теперь путём перемножения столбца свободных членов и полученной обратной матрицы найдём установившиеся вероятности:

Таблица 4.1.4 – установившиеся вероятности

P0	0,25
P1	0,25
P2	0,25
P3	0,25

4.2 Расчёт вероятности состояний системы на третьем шаге (k = 3).

Пусть вектор начальных состояний системы:

Таблица 4.2.1 – Вектор начальных состояний системы

S0	S1	S2	S 3
1	0	0	0

Тогда вероятности состояния системы на шаге k вычисляются по формуле, где P^k-k -ая степень матрицы:

$$R(k) = R(0) \cdot P^{k}.$$

Тогда векторы вероятности системы на шагах 1, 2 и 3 будут принимать значение:

Таблица 4.2.2 – Вектора состояний системы на шагах 1, 2 и 3

Шаг	S 0	S 1	S2	S 3
1	0,1	0,2	0,6	0,1
2	0,22	0,22	0,27	0,29
3	0,229	0,297	0,264	0,21

4.3 Расчёт числа шагов до попадания в поглощающее состояние для матрицы вероятностей переходов

Из таблицы 3.2 удалим все строки или столбцы в которой хотя бы один из элементов содержит единицу, так как они приведут к поглощающему состоянию. Получим матрицу Q.

Таблица 4.3.1 – Матрица Q

	1		
	S0	S1	S2
S0	0,1	0,2	0,6
S1	0,3	0,5	0,1
S2	0,2	0,1	0,3

Теперь запишем формулу среднего количества шагов в следующем виде:

$$T = Q * T + I$$

Рассчитываем по ней:

Подставим:

Матрица Т выражается в виде формулы:

$$T = (I - Q)^{-1}$$
.

Матрица (I - Q) высчитывается путём вычитания из диагональной единичной матрицы I, матрицы Q:

Таблица 4.3.2 – Матрица I

1	0	0
0	1	0
0	0	1

Таблица 4.3.3 -Матрица I - Q

0,9	-0,2	-0,6
-0,3	0,5	-0,1
-0,2	-0,1	0,7

Теперь найдём обратную матрицу Т:

Таблица 4.3.4 – Матрица Т

	S 0	S 1	S2
S0	1,868132	1,098901	1,758242
S1	1,263736	2,802198	1,483516
S2	0,714286	0,714286	2,142857

При переходе из состояния S0 она попадёт в поглощающие состояние за 5 (от 4,725) шага, при переходе из состояния S1- за 6 (от 5,549) шага, а при переходе из состояния S2- за 4 (от 3,571) шага.

5. Вывод

Изучены методы анализа поведения дискретно-стохастической СМО.