ConvNeXt Based Lung Cancer Survival Prediction using Dual Energy CT

Advisor: Ruey-Feng Chang, Ph.D.

張瑞峰教授

Student: Chao-Hsun Yang

楊朝勛

Contents

Introduction

Lung cancer
Survival prediction

• Material

Dual Energy CT Clinical Data

Methods

Preprocessing Classification

Experiments

Discussion

Conclusion

Contents

Introduction

- Material
- Methods
 - Experiments
 - Discussion
 - Conclusion

Lung Cancer

Leading Cause of Mortality

- Patients with the same clinical and pathological status may experience different survival times.
- Considering survival as a new and distinct marker is essential in making informed decisions regarding further treatment for patients.

Survival Prediction

Machine Learning

- Support vector machine on the Surveillance, Epidemiology, and End Results (SEER) data.
- Random forest classifier on radiomic features extracted from computed tomography (CT) images.

Deep Neural Network (DNN)

 Four hidden layers, each with 40 neurons, with rectifed linear unit (ReLU) on clinical data.

3D Convolution Neural Network

Study Objective:

 3D CNNs can capture spatial relationships and contextual information across multiple slices.

Our approach:

- Leverage 3D CNNs to extract features from Dual Energy CT.
- Integrate the extracted features with clinical data for survival prediction.

Contents

• Introduction

Material

Methods

Experiments

Discussion

Conclusion

Dataset

Dual Energy CT

- From Department of Medical Imaging at National Taiwan University Hospital;
- July 2018 to October 2022;
- 236 patients in total (40-140 keV, with an interval of 10 keV);
- Image size: slices × 512 × 512 (pixel³) in DICOM format.

Clinical data

• Clinical and pathological information.

n = 236					
Deceased	Survivor				
34	202				

Dual Energy CT

Clinical Data

Clinical information

 gender, port-a/resection, differentiation, lymphovascular invasion (LVI), clinical staging, smoking, pack per day (PPD), hypertension (HTN), diabetes mellitus (DM), family history of lung cancer, complications, forced vital capacity (FVC), forced expiratory volume in one second (FEV1), FEV1/FVC

Pathological information

• tumor size, tumor location, anaplastic lymphoma kinase (ALK), ROS-1, epidermal growth factor receptor (EGFR), EGFR mutation, pathological staging, metastasis, recurrence

Contents

- Introduction
- Material

Methods

Preprocessing

Dual Energy CT

Clinical data

Classification

ConvNeXt

Attention Block

Damper Block

Focal Loss

- **Experiments**
- Discussion
 - Conclusion

Survival Prediction Workflow

Clinical information

gender, port-a/resection, differentiation, LVI,
 clinical staging, smoking, PPD, HTN, DM,
 family history of lung cancer, complications,
 FVC, FEV1, FEV1/FVC

Pathological information

tumor size, tumor location, tumor size, ALK,
 ROS-1, EGFR, EGFR mutation, pathological
 staging, metastasis, recurrence

Dual Energy CT

- Set the window center and window width to focus on the relevant organ structures like lung.
- Perform a Volume of Interest (VOI) cropping, where we center the images around the VOI and cut them into 128×224×224 dimensions from the original size.

Window center = -300Window width = 1400

VOI cropping

- VOI Cropping Classification Air with a Hounsfield Unit (HU) value of -1000

Dual Energy CT

Window Setting

Preprocessing

- Water with a HU value of 0
 - Bones with HU values ranging from 400 to 1000

Clinical Data

One Hot Encoding

Preprocessing

Clinical Data

 One hot encoding used to convert categorical variables, such as text or non-ordinal data, into numerical representations.

• Obtain a total of 150 clinical features.

Data Id	Size (cm)	Metastasis
1	1.8	Bone
2	2.4	-
3	11.2	Brain, bone
4	2.5	-

Dual Energy CT	Clinical Data
Preprocessing	Preprocessing
Window Setting	One Hot Encoding
VOI Cropping	
Classif	ication

Data Id	Size<1	Size<2	Size<3	Size>=3
1	0	1	0	0
2	0	0	1	0
3	0	0	0	1
4	0	0	1	0

Data Id	Lymph Node	Brain	Bone	Liver	Kidney	Others	No Metastasis
1	0	0	1	0	0	0	0
2	0	0	0	0	0	0	1
3	0	1	1	0	0	0	0
4	0	0	0	0	0	0	1

Classification

- Use ConvNeXt as the backbone.
- Bring in damper block to integrate the VOI size as an effect parameter.
- Combine image features with clinical data.

ConvNeXt

- Derive from ResNet and ResNeXt and mimic certain aspects of Vision Transformers.
- Reduce number of ConvNeXt blocks.
- Reduce channel numbers in each ConvNeXt block.

Classification

- Employed channel attention block to distinguish features with varying levels of importance within the channels.
- Combine SE block and GCT block to one channel attention block.

Squeeze and Excitation (SE)

- A channel attention block.
- Allow the network to focus on informative channels and suppress less useful ones.

Squeeze:
$$y_c = F_{sq}(x) = \frac{1}{D \times H \times W} \sum_{i=1}^{D} \sum_{j=1}^{H} \sum_{k=1}^{W} x_c(i, j, k)$$

Excitation:
$$z = F_{ex}(y) = \sigma(W_2\delta(W_1y))$$

Weight recalibration:
$$\tilde{\mathbf{x}} = \mathbf{F}_{scale}(\mathbf{x}, \mathbf{z}) = z_c x_c$$

Gated Channel Transformation (GCT)

- A channel attention block.
- Enhance the channel-wise feature representation, similar with SE block.

Embedding:
$$y_c = \mathbb{F}_{embedding}(\mathbf{x}) = \alpha_c ||x_c||_2 = \alpha_c \{ \left[\sum_{i=1}^{D} \sum_{j=1}^{H} \sum_{k=1}^{W} x_c(i,j,k)^2 \right] + \epsilon \}^{\frac{1}{2}}$$

Normalization:
$$\mathbf{z} = \mathbf{F}_{normalization}(\mathbf{y}) = \frac{\sqrt{c}y_c}{\|\mathbf{y}\|_2} = \frac{\sqrt{c}y_c}{\left[\left(\sum_{c=1}^{c}y_c^2\right) + \epsilon\right]^{\frac{1}{2}}}$$

Gating:
$$\tilde{\mathbf{x}} = \mathbf{F}_{gating}(\mathbf{x}, \mathbf{z}) = x_c[1 + \sigma(\gamma_c z_c + \beta_c)]$$

Proposed Attention Block

- Combine SE block and GCT block to one channel attention block.
- Allow the network to focus on informative channels and suppress

Conv3D

ConvNeXt

Damper block

• In the proposed CNN model, the size of input images is fixed. Thus, the output features do not capture information about the size of the VOI.

Damper Operation:
$$\tilde{\mathbf{x}} = I - \frac{Sum(I.*V)}{n(I.*V)}$$

Conv3D

ConvNeXt

Stage 3

Downsample

ConvNeXt

Block, 8

ConvNeXt

ConvNeXt

ConvNeXt

Attention

Stage 4

ConvNeXt

Focal Loss

- Help the model pay greater attention to challenging samples.
- \bullet γ allows the reduction of the loss for easily predictable samples.
- \bullet α assigns different weights to each class, further reducing the loss.
- The accumulated loss for easily predictable samples will not be too large.

$$p_t = f(p, y) = \begin{cases} p, & y = 1\\ 1 - p, & y = 0 \end{cases}$$

$$CL(p_t) = -\log(p_t)$$

Focal Loss =
$$FL(p_t) = -\alpha (1 - p_t)^{\gamma} \log(p_t)$$

- *p*: predicted probability
- *y*: label
- γ : modulating factor
- α : modulating factor

Contents

- Introduction
- Material
- Methods
- **Experiments**
 - Dual Energy CT with 40, 70, 100, 140 keV
 - **Different Attention Blocks**
 - Positions of the Attention Block
 - With and Without the Damper Block
 - Cross Entropy Loss or Focal Loss
 - Comparison with Other Models
- Discussion
 - Conclusion

Dual Energy CT with Four Different keV

• Select 40, 70, 100, and 140 keV as the experimental settings and compared the results with and without contrast agents.

• "-": without contrast, while "+": contrast

keV	ACC (%)	SEN (%)	SPEC (%)	PPV (%)	NPV (%)	AUC
C-40	85.60±6.42	82.86±11.95	86.19±7.85	54.38 ± 18.51	96.70±2.32	0.8871 ± 0.0523
C-70	85.18±6.17	76.19 ± 8.91	86.64 ± 7.17	52.72 ± 18.70	95.63 ± 1.48	0.8867 ± 0.0571
C-100	85.18±6.17	82.86±11.95	85.69 ± 7.63	53.29 ± 18.25	96.69 ± 2.32	$0.8887\!\pm\!0.0495$
C-140	84.75 ± 6.25	73.33 ± 7.22	86.64±7.17	51.81 ± 18.97	95.09 ± 1.27	0.8853 ± 0.0571
C+40	85.59±6.09	73.33 ± 12.42	87.62 ± 8.11	56.94±25.07	95.24 ± 1.89	$0.8900\!\pm\!0.0467$
C+70	85.59 ± 6.09	73.81 ± 11.42	87.64±8.24	57.34 ± 24.93	95.23 ± 1.92	0.8742 ± 0.0654
C+100	85.60±6.42	80.00 ± 16.29	86.69 ± 8.78	57.71±25.29	96.28±2.82	0.8858 ± 0.0486
C+140	86.03±6.45	82.86±11.95	86.69±7.84	55.29 ± 18.35	96.72±2.33	0.8908±0.0470 ²³

Different Attention Blocks

- We compared the performances using different attention blocks.
- Include Bottleneck Attention Module (BAM) and Convolutional block Attention Module (CBAM).

	ACC (%)	SEN (%)	SPEC (%)	PPV (%)	NPV (%)	AUC
SE	85.59±6.09	73.33±7.22	87.62±7.29	53.81±18.06	95.16±1.19	0.8889±0.0499
GCT	84.32±6.47	82.38±6.21	84.67±8.51	51.98±18.63	96.66±0.88	0.8788±0.0583
BAM	85.62±7.48	70.48±17.63	88.19±9.39	59.72±28.09	94.79±2.68	0.9002±0.0381
CBAM	84.75±5.48	76.19±13.47	86.14±8.01	51.99±17.96	95.78±2.37	0.8712±0.0550
SE + GCT	86.03±6.45	82.86±11.95	86.69±7.84	55.29±18.35	96.72±2.33	0.8908±0.0470
BAM + GCT	84.77±7.50	76.19±8.91	86.19±8.61	54.72±26.88	95.60±1.52	0.9037±0.0410
CBAM + GCT	84.76±5.01	70.48±2.13	87.17±5.82	51.21±18.38	94.61±0.29	0.8740±0.0574

Positions of Attention Block

- We placed the Attention block at different stages of the ConvNeXt blocks.
- We primarily placed the attention block in the third and fourth stages because these stages capture more detailed features.

ConvNeXt Block										
Stage 1	Stage 2		age 3	Stage 4	ACC (%)	SEN (%)	SPEC (%)	PPV (%)	NPV (%)	AUC
					84.32±6.47	79.52±12.55	85.17±9.47	55.31±25.77	96.24±1.81	0.8926±0.0405
			>		86.03±6.45	82.86±11.95	86.69±7.84	55.29±18.35	96.72±2.33	0.8908±0.0470
		/ \	//		85.59±6.09	76.19±8.91	87.12±7.17	53.61±18.04	95.66±14.59	0.8845±0.0438
				√	85.59±5.71	76.67±12.42	87.14±7.33	54.23±16.85	95.71±2.14	0.8836±0.0458
			~	/ /	84.75±5.48	77.14±16.29	86.19±7.85	52.83±16.93	95.74±2.86	0.8858±0.0507
\checkmark	√	/ \	//	/ /	84.75±6.25	64.76±7.22	88.14±8.12	55.14±26.14	93.71±1.14	0.8830±0.0496

Ablation Studies

• Comparison between the model with and without the damper block.

Damper Block	ACC (%)	SEN (%)	SPEC (%)	PPV (%)	NPV (%)	AUC
Without	85.15±5.26	76.67±7.22	86.60±5.83	50.75±9.85	95.60±1.59	0.9163±0.0404
With	86.03±6.45	82.86±11.95	86.69±7.84	55.29±18.35	96.72±2.33	0.8908±0.0470

• Comparison between Cross Entropy Loss and Focal Loss.

	ACC (%)	SEN (%)	SPEC (%)	PPV (%)	NPV (%)	AUC
Cross Entropy Loss	85.19±6.14	80.00±16.29	86.21±8.33	54.05±17.63	96.26±2.87	0.8954±0.0358
Focal Loss	86.03±6.45	82.86±11.95	86.69±7.84	55.29±18.35	96.72±2.33	0.8908±0.0470

Comparison with Other Models

- We compared different CNN models.
- The proposed model achieves the highest performance.

CNNs	ACC (%)	SEN (%)	SPEC (%)	PPV (%)	NPV (%)	AUC
ResNet	84.32±8.06	79.52±7.45	85.14±9.19	51.53±16.94	96.04±1.70	0.8747±0.0428
ResNeXt	84.77±4.47	76.67±12.42	86.21±6.90	52.23±16.58	95.73±1.98	0.8787±0.0508
ResNeSt	84.30±6.18	79.52±16.11	85.10±6.47	49.05±11.99	96.12±3.20	0.8785±0.0319
Swin Transformer	83.48±5.03	82.86±11.95	83.71±6.99	48.00±10.41	96.66±2.21	0.8940±0.0495
Proposed Model	86.03±6.45	82.86±11.95	86.69±7.84	55.29±18.35	96.72±2.33	0.8908±0.0470

ROC curve

- Swin Transformer achieves the highest AUC.
- We manly focus on sensitivity > 0.8 and (1 specificity) < 0.2.

Contents

• Introduction

Material

Methods

Experiments

Discussion

Conclusion

Discussion

- Utilize ConvNeXt and incorporated channel attention block in filtering image features.
- Bring in damper block to combines detailed image features with tumor size features.

Merge the features from the images with clinical and pathology

information.

Cross Entropy Loss vs Focal Loss

• Two samples that model predicts correctly with focal loss, but predicts wrongly with cross entropy loss.

Deceased, brain metastasis

Survivor

Model With or Without Damper Block - Deceased

- Two deceased samples are predicted correctly from model with damper block, but wrongly from model without damper block.
- Incorporating damper block, model predicts survival outcome correctly for the data that tumor size > 5 cm.

Model With or Without Damper Block - Survivor

Model predicts wrongly after adding damper block.

• Model predicts correctly after adding damper block.

Train the model simultaneously using 40, 70, and 140 keV

• Train the model simultaneously using 40, 70, and 140 keV with contrast agent enhancement.

keV

C+40, C+70, C+140

C+140

Comparison with Other Papers

- We compared the performances of different papers.
- The Dataset is not the same.

CNNs	ACC (%)	SEN (%)	SPEC (%)	PPV (%)	NPV (%)	AUC
Agrawal, A., et al.	85.50 (48952/57254)	-	-	-	-	0.8870
Lai, Y-H., et al.	75.44 (129/171)	-	-	-	-	0.8163
He, B., et al.	84.00 (63/75)	83.78 (31/37)	84.21 (32/38)	83.78 (31/37)	84.21 (32/38)	-
Chang Sin-You	80.78 (353/437)	73.57 (103/140)	84.18 (250/297)	68.67 (103/150)	87.11 (250/287)	0.8425
Proposed Model	86.02 (203/236)	82.35 (28/34)	86.63 (175/202)	50.91 (28/55)	96.69 (175/181)	0.8767

Contents

- Introduction
 - Material
- Methods
 - Experiments
- Discussion
 - Conclusion

Conclusion

The study:

- Design a CNN to predict the 3-year survival outcomes of lung cancer patients.
- We achieved favorable results by making certain architectural adjustments and integrating image and clinical, pathological data.
- Address the issue of label imbalance in the dataset.

Future work:

 Continuous data collection and ongoing improvement to the proposed model are necessary.

Thank you.