1.2.1 Solving the Flow Equations

3 equations, 3 unknowns, no constants

- ➤ No unique solution
- ➤ All solutions equivalent modulo the scale factor

Additional constraint forces uniqueness:

$$r_y + r_a + r_m = 1$$

> Solution:
$$r_y = \frac{2}{5}$$
, $r_a = \frac{2}{5}$, $r_m = \frac{1}{5}$

Flow equations:

$$r_y = r_y/2 + r_a/2$$

 $r_a = r_y/2 + r_m$

 $r_m = r_a/2$

□Gaussian elimination method (高斯消元法/高斯消去法) works for small examples, but we need a better method for large web-size We need a new formulation!

1.2.2 PageRank: Matrix Formulation

□1、Stochastic adjacency matrix(邻接矩阵) M

- \triangleright Let page *i* has d_i out-links
- ▶If $i \rightarrow j$, then $M_{ji} = 1/d_i$ else $M_{ji} = 0$ ▶M is a **column stochastic matrix**, columns sum to 1
- ➤ Note: M also is called Web transition matrix(Web转移矩阵) in some literature

$$M = \begin{bmatrix} y & a & m \\ 1/2 & 1/2 & 0 \\ 1/2 & 0 & 1 \\ 0 & 1/2 & 0 \end{bmatrix}$$

-类方阵,其元素为非负实数,且行和或列和为1. 如果行和和列和都为1,则称为双随机矩阵

1.2.2 PageRank: Matrix Formulation

- \square 2、Rank vector(秩向量)r: vector with an entry per page
 - r_i is the importance score of page *i*
 - \triangleright Initial, each page has 1/n importance score, when total n pages.

$$\sum_i r_i = 1$$

$$r = \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix}$$

■Now, the flow equations can be written

$$r = M \cdot r$$

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

■M fixed. How to calculate r?

1.2.2 Example

- \square Remember the flow equation: $r_j = \sum_{i \to i} \frac{r_i}{d_i}$
- □ Flow equation in the matrix form: $M \cdot r = r$
 - ➤ Suppose page *i* links to 3 pages, including *j*

Both two forms mean the same thing!

1.2.2 Example

□With the given example, we can give the "flow" model, and the matrix formulation:

(1) the "flow" model

$$r_{j} = \sum_{i \to j} \frac{r_{i}}{d_{i}}$$

$$r_{y} = r_{y}/2 + r_{a}/2$$

$$r_{a} = r_{y}/2 + r_{m}$$

$$r_{m} = r_{a}/2$$

(2) the matrix formulation

$$M = \begin{bmatrix} y & a & m \\ y & \frac{1}{2} & \frac{1}{2} & 0 \\ a & \frac{1}{2} & 0 & 1 \\ m & 0 & \frac{1}{2} & 0 \end{bmatrix}$$

1.2.2 Eigenvector Formulation

☐ The flow equations can be written

$$r = M \cdot r$$

【备注线性代数相关知识】: x is an eigenvector (特征向量) with the corresponding eigenvalue (特征值) λ if: $Ax = \lambda x$

- □So the rank vector r is an eigenvector (特征向量) of the stochastic web matrix M
 - ➤In fact, its first or principal eigenvector (主特征向量, 最大特征值对应的特征向量) with corresponding eigenvalue 1 (最大特征值为1)
 - Largest eigenvalue of *M* is 1, since *M* is column stochastic (columns sum to 1)

 \square We can now efficiently solve for r! The method is called Power iteration (幂迭代法)

2025/3/25

1.2.2 Power Iteration Method

- □Given a web graph with *N* nodes, where the nodes are pages and edges are hyperlinks
- ■Power iteration: a simple iterative scheme
 - ➤ Suppose there are *N* web pages
 - ► Initialize: $\mathbf{r}^{(0)} = [1/N,, 1/N]^T$
 - ightharpoonup Iterate: $\mathbf{r}^{(t+1)} = \mathbf{M} \cdot \mathbf{r}^{(t)}$
 - ► Stop when $|\mathbf{r}^{(t+1)} \mathbf{r}^{(t)}|_1 < \varepsilon$

 $|\mathbf{x}|_1 = \sum_{1 \le i \le N} |x_i|$ is the \mathbf{L}_1 norm Can use any other vector norm, e.g., Euclidean

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{\mathbf{d}_i}$$

d_i out-degree of node i

1.2.2 PageRank: How to solve?

□Example:

	y	a	m
y	1/2	1/2	0
a	1/2	0	1
m	0	1/2	0

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

■Power Iteration:

► Set
$$r_j = 1/N$$

$$ightharpoonup$$
1: $r'_j = \sum_{i \to j} \frac{r_i}{d_i}$

>2:
$$r = r'$$

Iteration 0, 1, 2, ...

1.2.2 PageRank: How to solve?

Example:

	y	a	m
y	1/2	1/2	0
a	1/2	0	1
m	0	1/2	0

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

■Power Iteration:

► Set
$$r_j = 1/N$$

$$ightharpoonup$$
1: $r'_j = \sum_{i \to j} \frac{r_i}{d_i}$

>2:
$$r = r'$$

➤Go to 1

Iteration 0, 1, 2, ...

1.2.3 Random Walk Interpretation

□Imagine a random web surfer(随机冲浪者):

- ➤ At any time t, surfer is on some page i
- At **time** t + 1, the surfer follows an out-link from i uniformly at random
- ➤ Ends up on some page j linked from i
- Process repeats indefinitely

□Let:

- p(t) ... vector whose i^{th} coordinate is the prob. that the surfer is at page i at time t
- So, p(t) is a probability distribution over pages(概率分布向量)

1.2.3 The Stationary Distribution

\square Where is the surfer at time t+1?

➤ Follows a link uniformly at random

$$p(t+1) = M \cdot p(t)$$

- \square Suppose the random walk reaches a state $p(t+1) = M \cdot p(t) = p(t)$ then p(t) is stationary distribution (稳态分布) of a random walk
- \Box Our original rank vector r satisfies $r = M \cdot r$
 - \triangleright So, r is a stationary distribution for the random walk

1.2.3 Existence and Uniqueness

□A central result from the theory of random walks (a.k.a. Markov processes, 马尔科夫过程):

For graphs that satisfy <u>certain conditions</u>, the <u>stationary distribution is unique</u> and eventually will be reached <u>no matter what</u> the initial probability distribution at time **t = 0**

2025/3/25

Section 1.3: PageRank, The Google Formulation

Content

- PageRank Problems
- Spider Traps → Teleports
- Dead Ends → Teleports
- 4 Google Matrix

1.3.1 PageRank: Three Questions

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{\mathbf{d_i}}$$
 or equivalently $r = Mr$

- □Does this converge(收敛)?
- **□** Does it converge to what we want?
- **□**Are results reasonable?

1.3.1 Does this converge?

□Example:

$$r = Mr$$

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

无法收敛! 这是一个典型的蜘蛛陷阱问题(后续马上会讲)

1.3.1 Does it converge to what we wapthiptnaps-beta should computer science & chold formular science & chold for the chold formular science & chold for the chold formular science & chold for the chold for the

□Example:

$$r = Mr$$

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

$$r_a = 1 \quad 0 \quad 0 \quad 0$$
 $r_b \quad 0 \quad 1 \quad 0 \quad 0$
iteration 0, 1, 2, ...

收敛了但不是我们想要的结果! 这是一个典型的死角问题(后续马上会讲)

1.3.1 Are results reasonable?

□以下为同一个网页的部分内容截图示例:

美国绝密战争计划,居然这样泄露了

牛弹琴 03-25 08:22

摘要:

NO!

美国国家安全顾问沃尔兹在加密应用上讨论轰炸也门行动时,错将《大西洋月刊》主编戈 德堡加入群朝,导致绝密战争计划泄露。更有趣的是,群朝还曝光了副总统万斯反对轰炸 行动、高层对欧洲的厌恶以及美国要经济回报等不为人知的内幕。

华尔街见闻	法律信息
关于我们	版权声明
广告投放	用户协议
版权与商务合作	付费内容订阅协议
联系方式	商品购买协议
意见反馈	隐私政策
声明	违法和不良信息
未经许可,任何人不得复制、转载、或以其他 方式使用本网站的内容。 评论前请阅读网站"照帖评论自律管理承诺书"	举报电话: 021-60675200 (周一到周五9:30-11:30, 13:00-18:30) 举报邮箱: contact@wallstreetcn.com 网站举报: 点击这里 违法和不良信息举报受理和处置管理办法 清朝 财经违规内容专项整治公告 涉企虚假不实信息举报专区 提交举报

每个链接被跳转的概率是一样么?

Random Surfer Model vs Reasonable Surfer Model

【备注】在我们后续的学习中还是采用基础的Random Surfer Model

1.3.1 PageRank: Problems

There maybe 2 problems:

- □(1) Some pages are dead ends (死角问题, 死胡同问题, 或称终止点 have no out-links)
 - > Random walk has "nowhere" to go to
 - ➤ Such pages cause importance to "leak out"

- □(2) Spider traps: (蜘蛛陷阱问题, 或称采集器陷阱, all out-links are within the group)
 - ➤ Random walked gets "stuck" in a trap
 - ➤ And eventually spider traps absorb all importance

2025/3/25

1.3.2 Problem: Spider Traps

□Power Iteration:

$$ightharpoonup \operatorname{Set} r_i = 1/N$$

$$ightharpoonup r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

And iterate

m is a spider trap

	y	a	m
y	1/2	1/2	0
a	1/2	0	0
m	0	1/2	1

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2$$

$$r_m = r_a/2 + r_m$$

□Example:

All the PageRank score gets "trapped" in node m.

1.3.2 Solution: Teleports(随机跳转)!

- □The Google solution (called taxation method, 抽税法) for spider traps: At each time step, the random surfer has two options
 - \blacktriangleright With prob. β (也叫阻尼系数), follow a link at random. Note, common values for β are in the range 0.8 to 0.9
 - \triangleright With prob. **1-** β , jump to some random page

□Surfer will teleport out of spider trap within a few time steps

2025/3/25 43

1.3.3 Problem: Dead Ends

□Power Iteration:

$$ightharpoonup \operatorname{Set} r_i = 1/N$$

$$ightharpoonup r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

• And iterate

	y	a	m
y	1/2	1/2	0
a	1/2	0	0
m	0	1/2	0

m is a dead end

$$r_{y} = r_{y}/2 + r_{a}/2$$

$$r_{a} = r_{y}/2$$

$$r_m = r_a/2$$

□Example:

Here the PageRank "leaks" out since the matrix is not stochastic.

1.3.3 Solution: Always Teleport!

□Taxation (抽税法, or Teleports): Follow random teleport links with probability 1.0 from dead-ends

➤ Adjust matrix accordingly

	У	a	m		_	y	a	m
у	1/2	1/2	0	,	7	1/2	1/2	1/3
a	1/2	0	0		ı [1/2	0	1/3
m	0	1/2	0	m	1 [0	1/2	1/3

2025/3/25 45

1.3.3 Why Teleports Solve the Problem 常中外在大学 计算机科学与技术学院 Schold Computer Science Artechnology, HUST

- □Why are dead-ends and spider traps a problem and why do teleports solve the problem?
- □Spider-traps are not a problem, but with traps PageRank scores are **not** what we want
 - >Solution: Never get stuck in a spider trap by teleporting out of it in a finite number of steps'

■Dead-ends are a problem

- The matrix is not column stochastic so our initial assumptions are not met
- Solution: Make matrix column stochastic by always teleporting when there is nowhere else to go

2025/3/25 46

1.3.4 Solution: Random Teleports

- □Google's solution (Taxation, 抽税法) that does it all: At each step, random surfer has two options:
 - \triangleright With probability β , follow a link at random
 - \triangleright With probability $1-\beta$, jump to some random page
- □PageRank equation [Brin-Page, 98]

$$r_{j} = \sum_{i \to j} \beta \frac{r_{i}}{d_{i}} + (1 - \beta) \frac{1}{N}$$

$$d_{i \text{ out-degree of node i}}$$

【备注】This formulation assumes that *M* has no dead ends. We can either preprocess matrix *M* to remove all dead ends or explicitly follow random teleport links with probability 1.0 from dead-ends.

2025/3/25

1.3.4 The Google Matrix

□PageRank equation [Brin-Page, '98]

$$r_j = \sum_{i \to j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}$$

☐ The Google Matrix A:

$$A = \beta M + (1 - \beta) \left[\frac{1}{N} \right]_{N \times N}$$
 [1/N]_{NxN}...N by N matrix where all entries are 1/N

- ■What is β ? In practice $\beta = 0.8, 0.9$ (make 5 steps on avg., jump)
- □We have a recursive problem: $r = A \cdot r$, and the Power iteration method still works!

1.3.4 Random Teleports (β = 0.8)

Previously, all the PageRank score gets "trapped" in node m.

But now taxation solves it!

Section 1.4: Computing PageRank

2

Block-based Update Step

Basic Update Step

The Complete PageRank Algorithm

Content

Block-Stripe Update Step

1.4.1 Computing PageRank

■Key step is matrix-vector multiplication

□Easy if we have enough main memory to hold A, rold, rnew

$$\mathbf{A} = \beta \bullet \mathbf{M} + (1 - \beta) [1/N]_{N \times N}$$

$$A = 0.8 \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 1 \end{bmatrix} + 0.2 \begin{bmatrix} 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \end{bmatrix}$$

- We need 4 bytes for each entry (say)
- ▶ r^{old}, r^{new}: 2 billion entries for vectors, approx 8GB
- ➤ A: Matrix **A** has N² entries
 - 10¹⁸ is a large number!

$$= \begin{vmatrix} 7/15 & 7/15 & 1/15 \\ 7/15 & 1/15 & 1/15 \\ 1/15 & 7/15 & 13/15 \end{vmatrix}$$

【备注】观察矩阵A和M可知, Matrix A dense matrix! Matrix M sparse matrix