Digital Systems

Digital systems vs. Analog systems

- Digital systems: input and output signals are represented by discrete values
- Analog systems: input and output signals take on a continuous range of values

Binary Digital Systems

- The simplest form of digital systems
- Inputs and outputs are coded in binary digits (bits), "1" or "0"
- Binary values "1" and "0" are easy to encode with physical quantities:
 - Voltages: "1"- 5V, "0"- 0V
 - Magnetic polarizations: "1"- North, "0"- South

Switches

> Truth tables

e.g.: Half adder

Α	В	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Boolean Algebra

❖ e.g.: Half adder

$$Sum = (AB') + (A'B)$$

> Blocks

Block Diagram of Full Adder

- Behaviors
 - Hardware description languages: VHDL, Verilog

Digital Subsystems

- Combinational logic
 - Output depends only on the present value of the input
 - Chapter 3
- Sequential logic
 - Output is determined by the current input and the previous state of the circuit
 - ❖ Input + memory → output
 - Chapter 4

Number Systems

- Non-positional number systems
 - Ancient Egyptian base-10 number system
 - \Box 1A1 = 11A = A11
- Positional number systems
 - $N = a_{n-1}r^{n-1} + a_{n-2}r^{n-2} + \dots + a_2r^2 + a_1r^1 + a_0$
 - □ n: the number of digits, r: radix/base, 0 <= a_i <r

Number Systems

Decimal number

$$• 7642_{10} = 7 \times 10^3 + 6 \times 10^2 + 4 \times 10 + 2$$

Binary number

*
$$101111_2 = 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2 + 1 = 47_{10}$$

Octal number

$$4 \cdot 1352_8 = 1 \times 8^3 + 3 \times 8^2 + 5 \times 8 + 2 = 746_{10}$$

Hexadecimal number

$$2EA_{16} = 2 \times 16^2 + 14 \times 16 + 10 = 746_{10}$$

Summary of Base Conversion

- ▶ Binary, Octal, Hexadecimal → Decimal
 - Evaluate the power series
- ➤ Decimal → Binary
 - Successive division by radix 2
 - Collect remainders in the reverse order
- ▶ Decimal → Octal
 - Successive division by radix 8
 - Collect remainders in the reverse order
- ➤ Decimal → Hexadecimal
 - Successive division by radix 16
 - Collect remainders in the reverse order

Base-s => Base-r

INTEGER: Perform a sequence of division by r (in base-s arithmetic) and keep track of the remainders

While the fraction is not zero do:

- 1. Divide the base-s number/Quotient by r
- Remainder = first coefficient of the number in base-r
- 3. Drop the remainder
- 4. Repeat from 1 until the quotient is zero

FRACTION: Perform a sequence of multiplications by r (in base-s arithmetic) and keep track of the integers

- Multiply the base-s number by r
- 2. Integer = first coefficient of the number in base-r
- 3. Drop the integer
- Repeat from 1 until zero or reach the desired precision.

▶ Binary ←→ Octal: group 3 bits into an octal digit, convert an octal digit into 3 bits

$$001 \ 011 \ 101 \ 010_2 = 1352_8$$

▶ Binary ← → Hexadecimal: group 4 bits into a hexadecimal digit, convert a hexadecimal digit into 4 bits

$$\frac{0010}{2} \frac{1110}{F} \frac{1010_2}{A} = 2EA_{16}$$