Przetwarzanie strumieni danych w systemach Big Data wprowadzenie

Krzysztof Jankiewicz

Jaki jest świat danych?

Wsadowy czy strumieniowy?

Dlaczego?

Już w 2015 roku Databricks przeprowadziła badanie wśród swoich użytkowników dotycząca wykorzystywania przez nich mechanizmów Spark Streaming

Okazało się, że 56% z nich korzysta z nich, a 48% uważa, że jest kluczowy element w ich biznesie.

Dlaczego?

czyli jak slajd nie powinien wyglądać

- Real-time analytics: Przetwarzanie strumieni danych umożliwia analizę danych w czasie rzeczywistym,
 co umożliwia przedsiębiorstwom natychmiastowe reagowanie na zmiany w danych i podejmowanie
 lepszych decyzji biznesowych. Dzięki temu firmy mogą szybciej dostosowywać swoje strategie i
 podejmować odpowiednie działania, co przekłada się na poprawę wyników finansowych.
- **Efektywność operacyjna**: Przetwarzanie strumieni danych pozwala na automatyzację procesów biznesowych i eliminację opóźnień w przetwarzaniu danych, co przekłada się na znaczne usprawnienie działalności przedsiębiorstw. Dzięki temu zespoły mają więcej czasu na podejmowanie decyzji biznesowych i rozwijanie strategii.
- **Zwiększenie konkurencyjności**: Przetwarzanie strumieni danych umożliwia przedsiębiorstwom szybkie i efektywne wykorzystanie danych do podejmowania decyzji biznesowych. Dzięki temu firmy mogą lepiej dostosować się do zmieniającego się otoczenia rynkowego i zwiększyć swoją konkurencyjność.
- Ulepszona jakość usług: Przetwarzanie strumieni danych umożliwia przedsiębiorstwom
 monitorowanie jakości swoich usług w czasie rzeczywistym i natychmiastowe reagowanie na sytuacje
 awaryjne. Dzięki temu przedsiębiorstwa mogą zwiększyć zadowolenie klientów poprzez zapewnienie
 im lepszej jakości usług.
- Redukcja kosztów: Przetwarzanie strumieniowe strumieni danych przedsiębiorstwom na
 automatyzację procesów biznesowych i eliminację opóźnień w przetwarzaniu danych, co przekłada się
 na redukcję kosztów operacyjnych. Dodatkowo, dzięki szybszemu dostępowi do informacji, firmy
 mogą podejmować decyzje biznesowe na podstawie bardziej aktualnych danych, co pozwala uniknąć
 kosztownych błędów.
- *Możliwość szybkiego reagowania na problemy*: Przetwarzanie strumieni danych pozwala na szybkie wykrycie problemów w procesach biznesowych i natychmiastowe podjęcie działań mających na celu ich rozwiązanie. Dzięki temu przedsiębiorstwa mogą uniknąć kosztownych przerw w działalności i utrzymanie ciągłości biznesowej.

Przetwarzanie Strumieni Danych

- What,
- Where,
- When, and
- How of Large-Scale Data Processing

Streaming Systems

Tyler Akidau, Slava Chernyak, Reuven Lax
O'Reilly Media, II wydanie, 2019

Wstęp

Czym jest strumień?

 Czym jest silnik/system przetwarzania strumieni danych?

Aplikacje przetwarzające strumienie danych

Czym jest strumień?

- Dwa wymiary pojęcia: liczność i natura
- Liczność
 - Dane ograniczone (bounded data) zbiór danych, który ma skończony rozmiar
 - Dane nieograniczone (unbounded data) zbiór danych, który ma nieskończony (teoretycznie) rozmiar
- Natura (charakter)
 - Tabela zbiór danych z określonego momentu w czasie
 - Strumień dane, które prezentują, element po elemencie, ewolucję (zmianę) danych w czasie.

Przykłady strumieniowych źródeł danych

- Transakcje giełdowe w czasie rzeczywistym
- Zarządzanie zapasami w handlu
- Aplikacje do udostępniania przejazdów
- Gry dla wielu graczy
- Internet of Things
- Systemy śledzenia lokalizacji
- Transakcje bankowe

Czym jest silnik/system przetwarzania strumieni danych?

Typ silnika przetwarzania danych zaprojektowany z myślą o nieskończonych zbiorach danych

Przetwarzanie Batch, Micro-Batch, Stream

 Skończone zbiory danych – przetwarzanie wsadowe.

- Nieskończone zbiory danych
 - Przetwarzanie mikro-wsadowe
 - stałe okna problem kompletności danych
 - okna sesyjne rozbicie danych pomiędzy mikro-wsadami
 - Przetwarzanie strumieni danych (ciągłe/pełnowymiarowe)

Architektury systemów Big Data – przypomnienie

Ewolucja systemów przetwarzania strumieni danych

Początki w ramach projektów badawczych, ale także komercyjnych 1990

Generacje rozproszonych systemów przetwarzania strumieni danych:

- Pierwsza generacja (2011)
 - małe opóźnienia
 - niskopoziomowe API
 - brak obsługi etykiet zdarzeń brak powtarzalności, spójności i dokładności wyników
 - gwarancje "at-least once"
 - wykorzystanie w architekturze Lambda

- Druga generacja (2013)
 - API wysokiego poziomu
 - lepsza obsługa awarii
 - zwiększona przepustowość
 - zwiększone opóźnienia
 - nadal oparcie się na czasie i kolejności przybywania zdarzeń
- Trzecia generacja (2015)
 - wykorzystanie etykiet zdarzeń
 - gwarancje "exactly-once"
 - możliwość konfigurowania przepustowości/opóźnienia
 - możliwość obsługi danych bieżących oraz historycznych
 - wyniki powtarzalne, spójne i dokładne
 - możliwe wykorzystanie architektury Kappa

Hueske, Fabian; Kalavri, Vasiliki.

Stream Processing with Apache Flink; O'Reilly Media

Czym się charakteryzują systemy przetwarzania strumieni danych (Stream Data Processing)?

- Odbierają dane w sposób ciągły
- Działają 24/7 duża waga mechanizmów obsługi awarii
- Przetwarzają dane na bieżąco
- Wyniki dostępne są z tzw. niską latencją
- Miejsca docelowe o dodatkowej funkcjonalności
 - Duża częstotliwość operacji
 - Możliwa potrzeba aktualizacji danych (a nie tylko dopisywania nowych)
- Możliwe ograniczenia dotyczące dokładności wyniku, stosowania przybliżeń, heurystyk
- Stosunkowo mniejsza przepustowość (rozłożona w czasie)

Aplikacje przetwarzające strumienie danych Przypadki zastosowań

- Analiza lokalizacji
- Wykrywanie oszustw
- Transakcje giełdowe w czasie rzeczywistym
- Marketing, sprzedaż i analityka biznesowa
- Aktywność klienta / użytkownika (aplikacji, portalu, urządzeń)
- Monitorowanie i raportowanie wewnętrznych systemów informatycznych
- Monitorowanie dzienników: rozwiązywanie problemów z systemami, serwerami, urządzeniami i nie tylko
- Uczenie maszynowe i sztuczna inteligencja: łączenie przeszłych i obecnych danych

- SIEM (Security Information and Event Management): analizowanie dzienników i danych o zdarzeniach w czasie rzeczywistym w celu monitorowania, pomiarów i wykrywania zagrożeń
- Zapasy w handlu detalicznym / magazynie: zarządzanie zapasami we wszystkich kanałach i lokalizacjach oraz zapewnianie bezproblemowej obsługi na wszystkich urządzeniach
- Zarządzanie pojazdami współdzielonymi: łączenie danych dotyczących lokalizacji, użytkownika i cen na potrzeby analiz predykcyjnych; dopasowywanie kierowców do najlepszych kierowców pod względem bliskości, miejsca docelowego, cen i czasu oczekiwania

Główne przykłady zastosowań

- Aplikacje oparte na zdarzeniach (rekomendacje czasu rzeczywistego, wykrywanie wzorców, CEP, wykrywanie anomalii)
- Przepływy danych
- Analityka strumieni danych (monitorowanie jakości, zachowania użytkowników)

Aplikacje oparte na zdarzeniach

Event-driven Applications

- Cechy
 - odczyt z jednego lub wielu źródeł strumienia zdarzeń
 - natychmiastowa reakcja na pojawiające się zdarzenia
- Rozwiązania klasyczne vs strumieniowe

- Zalety
 - znacznie większa przepustowość
 - mniejsze opóźnienia
- Przykłady:
 - detekcja anomalii
 - detekcja oszustw
 - alarmy, których definicje oparte są na regułach
 - monitorowanie przetwarzania procesów biznesowych
 - aplikacje internetowe (analiza ruchu, aktywności użytkowników)

https://flink.apache.org/usecases.html

Przepływy danych

Data Pipeline Applications

- Cechy
 - odpowiednik operacji ETL
 - transformacja i przenoszenie danych realizowane w sposób ciągły
- Rozwiązania klasyczne vs strumieniowe

Periodic ETL Data Pipeline

Zalety

https://flink.apache.org/usecases.html

- mniejsze opóźnienia
- znacznie większa liczba przypadków użycia
- Główne obszary zastosowań
 - tworzenie indeksów dla silników wyszukiwani
 - ETL czasu rzeczywistego

Analityka strumieni danych Data Analytics Applications

- Cechy
 - analiza danych pochodzących ze źródeł
 - wyniki analiz są zapisywane lub bezpośrednio prezentowane
- Rozwiązania klasyczne vs strumieniowe

- Zalety:
 - zmniejszone opóźnienia
 - prostsza architektura
- Przykłady zastosowań
 - Monitorowanie jakości usług (np. sieci telekomunikacyjnych)
 - Analiza danych grafowych dużej skali
 - Analiza danych szybko zmieniających się (np.: zachowania użytkowników, współpracowników, maszyn)

https://flink.apache.org/usecases.html

Pytania?