Speech sounds and their spectral characterization

Speech Information Systems, Exercise 2

Speech Information Systems – Speech sounds and their spectral characterization

Speech Acoustics Laboratory

Gabor Kiss: kiss.gabor@vik.bme.hu

David Sztahó: sztaho.david@vik.bme.hu

What is this exercise about?

Microsoft Form survey

- What is the definition of fundamental frequency?
 - The periodicity of the voiced sound at the vocal cords.
- How would you determine the fundamental frequency?
 - Time domain solution
 - Reading the period duration
 - Frequency domain solution
 - Reading the location of the fundamental frequency on a line spectrum
- What is a formant?
 - The resonance frequencies of the cavities of the vocal tract.
- How would you determine the formants F1 and F2?
 - Frequency domain solution
 - Reading the maximum locations of the envelope

- Answer based on what you have learned about the line spectrum.
 - a) What does a **spectrum** show regarding speech?
 - b) What Fourier method can theoretically determine the line spectrum?
 - c) Draw the approximate spectrum of the sound pressure-time function measured in the larynx above the vocal cords when a woman pronounces the sound "á".
 - d) How many **harmonics** can we count in the diagram of answer c) up to the point of 4000 Hz?
 - e) Draw an approximation of the line spectrum of the sound pressure-time function of the sound "á" emitted from the lips (also take what you have learned about the vowel triangle as a basis).
 - Radiation resistance
 - Vowel triangle

- a) What does a **spectrum** show regarding speech?
 - Does it have a fundamental frequency and harmonics?
 - Yes: voiced sound
 - Are there highlights in the spectrum?
 - Yes: formant structure
 - Indirect conclusions:
 - Speaker gender (if the underlying tone can be read)
 - Naming a sound from reading the formants (if they can be read)
- b) What Fourier method can theoretically determine the line spectrum?
 - Fourier series, Fourier transform

$$f(x) \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx)$$

$$a_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos kx \, dx \, (k = 0, 1, 2 \dots)$$

$$b_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin kx \, dx \, (k = 0, 1, 2 \dots)$$

Sawtooth sign:

$$f(x) = 2\sum_{k=1}^{\infty} (-1)^{k+1} \frac{\sin kx}{k}$$

- c) Draw the approximate spectrum of the sound pressure-time function measured in the larynx above the vocal cords when **a woman** pronounces the sound "á".
 - 'a' sound: vowel → line spectrum
 - Female voice: fundamental frequency range approx. 150-250 Hz
 - Harmonic structure: at integer multiples of the fundamental frequency
 - Amplitude reduction: 12 dB/octave
 - Draw a line spectrum with a selected fundamental harmonic and harmonics for integer multiples from 150-250 Hz
- d) How many **harmonics** can we count in the diagram of answer c) up to the point of 4000 Hz?
 - $\frac{4000}{fundamental\ frequency} 1 = \frac{4000}{200} 1 = 19$ (fundamental frequency not included!)
- e) Draw an approximation of the line spectrum of the sound pressure-time function of the sound "á" emitted from the lips (also take into account what you have learned about the vowel triangle).
 - Draw a spectrum with the following parameters:
 - Line spectrum
 - 150-250 Hz fundamental frequency and associated harmonics
 - Formant structure with two formants at approximately 900 and 1500 Hz
 - Amplitude reduction: 6 dB/octave

- Outline the characteristic properties of the spectrum of a sine wave with a frequency of 110Hz and a vowel with the same fundamental frequency and explain the concepts learned in this regard!
 - Sine:
 - Line spectrum
 - One frequency component (110 Hz)
 - Vowel:
 - Line spectrum
 - Fundamental frequency + harmonics
 - Formants
 - Drawing based on parameters
 - Concepts: fundamental frequency, harmonics, formants

- Describe the process of acoustic formation of the vowel and the formation of the final spectral image.
 - Steps:
 - The path of air from the lungs, through the vocal cords and the vocal cavity, through the mouth and into the open space
 - Vocal cords: creating sound
 - Vocal cavity
 - Formants, radiation resistance
 - Mouth: passes through almost unhindered

(theory: speech as an acoustic product)

- Illustrate it using any vowel! Use diagrams too!
 - See previous figure

- When analyzing a speech fragment, we see a line spectrum.
 What data can we infer?
 - it is a voiced sound
 - Is the spectrum linear? Is there a fundamental frequency visible?
 - It is a vowel
 - Is the spectrum linear? Is there a fundamental? Are there formants?
 - Difficult question!
 - it is a consonant
 - Is the spectrum noisy?
 - the length of a sound
 - Do we see temporal information on a spectrum?
 - age of the speaker
 - How does age affect speech?
 - it is in a declarative or question sentence
 - Modality is determined by: prosody
 - Can you see this?

- In a telephone system, the following harmonics were measured: 400Hz, 800Hz, 1000Hz. What could be the fundamental frequency?
 - Important note: Did we ONLY measure these, or could there be harmonics BESIDES THESE?
 - Harmonics are integer multiples of the fundamental frequency.
 - Solution options
 - 150Hz
 - 100Hz
 - 200Hz
 - 400Hz
 - 20Hz
 - 80Hz

- A male radio announcer from Kossuth Radio is being examined in the laryngology department. He has to pronounce the sad word, which are recorded first with a high-quality microphone, and secondly via a landline telephone. The audio recordings are analyzed. Answer the questions asked with justification.
 - a) What can be the fundamental frequency of the announcer?
 - Male announcer: average fundamental frequency of about 100 Hz
 - b) Draw the pressure-time function of the announcer's voice. Characterize it. 2 cm=10 ms
 - Figure parameters:
 - Drawing a waveform, quasi-sawtooth signal, period: 0.01 s
 - c) How many harmonics can we count in the sound "a" in the microphone recording?
 - Harmonics are integer multiples of the fundamental frequency.
 - Depends on the sampling frequency:

$$\# harmonics = \frac{sampling\ frequency}{fundamental\ frequency} - 1$$

harmonics can be read up to about 4000 Hz)

- d) How many harmonics can we count in the sound "a" on the landline telephone recording?
 - Telephone speech transmission frequency: 300-3400 Hz
 - This may not include the first harmonic!
- e) Draw the spectrum measured in the middle of the vowel of the sound sequence recorded with the microphone. Specify the points of the spectrum characteristic of the vowel.
 - See previous task
- f) Draw the spectrum measured in the middle of the first sound of the audio sequence recorded with the microphone. Specify the characteristic points of the spectrum.
 - "s":
 - Noise-like spectrum, emphasized frequency range: from approx. 2500 Hz
- g) Describe with sound symbols what the doctor can hear when listening to the sound sequence obtained from the two types of audio recordings.
 - phone band recording cuts off most of the energy
 - Although the fundamental frequency itself is cut off by the telephone band filter, we will hear the harmonics
 - We will probably understand.
 - Our brain "completes" it based on our learned vocabulary
 - If the context would be confusing, then any sound that has the same formation, differing only in the upper frequencies (e.g. "f") is good.

- You need to generate the time function of the word "kacsa" from the time function of the word "kasa" using a standard audio editing program. How do you complete the task?
 - "s" \rightarrow "cs"
 - Remains unvoiced
 - ficative sound → affricate sound
 - Duration difference
- Sounds heard according to the duration of friction noise
 - t > 100 ms → fricative sound
 - 50 < t < 100 ms → affricate
 - $t < 50 \text{ ms} \rightarrow \text{stop sound}$
 - BUT: the producing location is the same

- Analyze the meaningful English word shown in the spectrogram below.
 - Draw the boundaries of speech sounds. Give reasons.
 - Describe the characteristics of speech sounds based on what you have learned.
 - Try to define the tone sequence. Give reasons.
 - For each sound, specify the type of excitation (in detail) and location.
 - Is the spectrogram a female, male, or child's speech? Explain your

15

- Complete the diagram by writing the appropriate symbols in the boxes. Explain the concepts you have learned in this regard.
- To which type of speech sound does the spectrum shown in the figure belong?
 - Line spectrum
 - Fundamental frequency: sonore
 - Clearly visible formant structure
 - vowel

Fundamental, harmonics

- In what frequency range is the spectrum of the "sz" sound most intense?
 - approx. 30Hz-100Hz
 - approx. 100Hz-300Hz
 - approx. 300Hz-1000Hz
 - approx. 1000Hz-3kHz
 - approx. 3kHz-10kHz
 - approx. 10kHz-20kHz

Praat tutorial

https://www.fon.hum.uva.nl/praat/

Thank you for your attention!

Questions? Test!

Speech sound and their spectral characeristics

20