Haskell

un'implementazione in StandardML

Carboni Francesco Cicio Ionuţ ?? Giovanni Mazzella Marco

Indice

1 Haskell	3
1.1 Grammatica	3
1.2 Semantica operazionale lazy static	3
1.2.1 Valutazione di un'espressione	3
2 Monadi	5
Bibliografia	6

1 Haskell

1.1 Grammatica

Il primo obiettivo è quello di introdurre gli strumenti necessari per poter implementare 3 tipi di programmi:

- un programma che permetta di verificare che la semantica operazionale sia lazy (e non eager)
- un programma che permetta di verificare che la semantica operazionale sia **statica** (e non dinamica)
- un programma che calcoli il fattoriale (per non fare qualcosa di troppo banale)

La grammatica **non è minimale** per rendere più agevole la scrittura in sintassi astratta dei programmi in questa prima fase del progetto.

$$k \coloneqq \mathbb{Z} \mid \mathbb{R} \mid \text{`a'} \mid \text{`b'} \mid \dots \mid \mathsf{true} \mid \mathsf{false}$$

$$\operatorname{Exp} \coloneqq k \mid x \mid A \Longrightarrow B \mid M = N \mid M \cdot N \mid M - N \mid$$
 if B then M else $N \mid \operatorname{let} x = M$ in $N \mid \operatorname{fun} fx = M$ in $N \mid fN$

1.2 Semantica operazionale lazy static

L'ambiente per la valutazione assume la forma tipica di una semantica operazionale lazy static: alle variabili sono associati:

- un'espressione da valutare
- l'ambiente in cui valutare l'espressione

La particolarità è che, oltre alle variabili, vengono salvate anche le *chiusure* delle funzioni:

- il nome della funzione (in questa prima fase non si possono definire funzioni senza nome)
- il nome dell'argomento
- il corpo della funzione
- il programma da eseguire dopo aver dichiarato la funzione

$$\operatorname{Env}:\operatorname{Ident}\stackrel{\operatorname{fin}}{\rightharpoonup}\operatorname{Exp}\times\operatorname{Env}\cup\operatorname{Ident}\times\operatorname{Exp}\times\operatorname{Env}$$

$$\rightsquigarrow\subseteq\operatorname{Env}\times\operatorname{Exp}\times\operatorname{Val}$$

1.2.1 Valutazione di un'espressione

Di seguito le regole di derivazione

$$E \vdash k \rightsquigarrow k$$

$$\frac{E' \vdash M \rightsquigarrow v}{E \vdash x \rightsquigarrow v} \text{ (se } E(x) = (M, E'))$$

$$\frac{E \vdash A \rightsquigarrow \text{true}}{E \vdash A \implies \text{true}} \stackrel{E \vdash B \rightsquigarrow \text{true}}{E \vdash A \implies \text{false}} \stackrel{E \vdash B \rightsquigarrow \text{true}}{E \vdash A \implies \text{false}} \stackrel{E \vdash B \rightsquigarrow \text{true}}{E \vdash A \implies \text{false}} \stackrel{E \vdash B \rightsquigarrow \text{true}}{E \vdash A \implies \text{false}} \stackrel{E \vdash B \rightsquigarrow \text{true}}{E \vdash A \implies \text{false}} \stackrel{E \vdash B \rightsquigarrow \text{true}}{E \vdash A \implies \text{false}} \stackrel{E \vdash B \rightsquigarrow \text{true}}{E \vdash A \implies \text{false}} \stackrel{E \vdash M \rightsquigarrow m}{E \vdash M \implies \text{false}} \text{ (se } m = n)$$

$$\frac{E \vdash M \rightsquigarrow m}{E \vdash M \implies \text{false}} \stackrel{E \vdash M \rightsquigarrow m}{E \vdash M \implies \text{false}} \text{ (se } m \neq n)$$

$$\frac{E \vdash M \rightsquigarrow m}{E \vdash M \bowtie \text{false}} \stackrel{E \vdash N \rightsquigarrow n}{E \vdash M \rightsquigarrow \text{false}} \text{ (se } v = m \cdot n)$$

$$\frac{E \vdash M \rightsquigarrow m}{E \vdash M \rightsquigarrow n \implies v} \text{ (se } v = m \cdot n)$$

$$\frac{E \vdash M \rightsquigarrow m}{E \vdash M \rightsquigarrow n \rightsquigarrow v} \text{ (se } v = m - n)$$

$$\frac{E \vdash B \rightsquigarrow \text{true}}{E \vdash M \rightsquigarrow m} \stackrel{E \vdash N \rightsquigarrow n}{E \vdash \text{if } B \text{ then } M \text{ else } N \rightsquigarrow m}$$

$$\frac{E \vdash B \rightsquigarrow \text{false}}{E \vdash \text{if } B \text{ then } M \text{ else } N \rightsquigarrow n}$$

$$\frac{E(x, (M, E)) \vdash N \rightsquigarrow n}{E \vdash \text{let } x = M \text{ in } N \rightsquigarrow n}$$

$$\frac{E(f, (x, M, E)) \vdash N \rightsquigarrow n}{E \vdash \text{fun } fx = M \text{ in } N \rightsquigarrow n}$$

$$\frac{E(f, (x, M, E')) \vdash M \rightsquigarrow m}{E \vdash \text{fun } fx = M \text{ in } N \rightsquigarrow n}$$

2 Monadi

Bibliografia

https://github.com/shwestrick/smlfmtbook/docs/ TODO: smlnj TODO: millet

https://smlhelp.github.io/