Final Quiz - Calculus (2012-2s-ME100)

	rmai Quiz –	Calculus	(2012-28-WIE100
Class:	Seq No:	Name:	

Problem 1. Find extrema of $f(x, y, z) = 1 + x^2 + y^2 - xy - z^2$ subject to $x^2 + y^2 = 1$ and $z^2 = xy$. Fill the blanks to solve the problem: (total 30%)

a) Define Lagrangian as follows:(total 6%, each 2%)

$$L(x,y,z;\lambda,\mu) = \underline{\hspace{1cm}} + \lambda \underline{\hspace{1cm}} + \mu \underline{\hspace{1cm}}$$

b) Find the critical values of $L(x, y, z; \lambda, \mu)$: (total 14%, each 2%, 2%, 2%, 8%)

- c) Extrema exist since _____. (2%)
- d) Maxima: _____ and minimum: _____ (total 8%, each 4%)

Problem 2. Describe the Fubini formula for double integration in Cartesian Coordinates under the assumption: suppose that f(x,y) is continuous on $D \subseteq \mathbb{R}^2$ and $D = \{(x,y) \in \mathbb{R}^2 | c \leqslant y \leqslant d, g_1(y) \leqslant x \leqslant g_2(y)\}$. (10%)

Problem 3. Evaluate $\int \int_D x dA$ where $D = \{0 \le y \le x + 1 \le 2\}$ (20%)

Problem 4. Evaluate the double integral:

$$\int \int_{D} e^{-2x^2+2xy-y^2} dA$$

where
$$D = \{(x, y) \in \mathbb{R}^2 | 0 \le y < \infty \}$$
 (20%)

Problem 5. Evaluate the following integrals: (20%)

$$\iint\limits_{\{x^{2/3}+y^{2/3}+z^{2/3}\leqslant 4, \text{ and } x,y,z\geqslant 0\}}1\,dV$$

1. a)
$$2 - xy - z^2 + \lambda(1 - x^2 - y^2) + \mu(z^2 - xy)$$

b)
$$(-y - 2\lambda x - \mu y, -y - 2\lambda x - \mu y, -2z + 2\mu z)$$

c)
$$\begin{cases} (x, y, z) = (\pm 1, 0, 0), (0, \pm 1, 0) \\ (x, y, z) = \pm \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \pm \frac{1}{\sqrt{2}}\right) \end{cases}$$

d) x, y and z are bounded.

e) maximum: 2, minimum: 1

2.

3.

$$\iint_{D} x dA = \int_{-1}^{1} dx \int_{0}^{x+1} x dy$$
$$= \int_{-1}^{1} x(x+1) dx = 2/3$$

4.

$$I = \int_0^\infty dy \int_{-\infty}^\infty e^{-2(x-\frac{y}{2})^2} e^{-\frac{1}{2}y^2} dx$$
$$= \sqrt{\frac{\pi}{2}} \int_0^\infty e^{-\frac{1}{2}y^2} dy$$
$$= \sqrt{\frac{\pi}{2}} \frac{\sqrt{\pi}}{\sqrt{2}} = \frac{\pi}{2}$$

$$\int \int \int 1 dV$$

$$\{x^{2/3} + y^{2/3} + z^{2/3} \leqslant 4, \text{ and } x, y, z \geqslant 0\}$$

$$= \int \int \int \int 27X^2Y^2Z^2dXdYdZ$$

$$\{X^2 + Y^2 + Z^2 \leqslant 4, \text{ and } X, Y, Z \geqslant 0\}$$

$$= 27 \int_0^2 d\rho \int_0^{\pi/2} d\theta \int_0^{\pi/2} \rho^8 \cos^2\theta \sin^2\theta \sin^5\phi \cos^2\phi d\phi$$

$$= 96\pi \left(\frac{8}{105}\right)$$

5.