NMIT2 Numerik 2	Serie 5	Zürcher Hochschule für Angewandte Wissenschaften
Autoren	Rémi Georgiou, André Stocker	School of
Datum	18. Oktober 2015	Engineering
		avv

Aufgabe 2

$$\begin{split} \frac{dy}{dx} &= \frac{x^2}{y} \\ 0 &\leq x \leq 2.1, \quad y_0 = y(0) = 2 \\ \text{Exakte L\"osung der DGL}: \qquad y(x) &= \sqrt{\frac{2x^3}{3} + 4} \end{split}$$

a) Lösen mittels Eulerverfahren, h=0.7

i	x_i	y_i	abs_err
0	$x_0 = 0$	$y_0 = 2$	$\left \sqrt{4}-2\right =0$
1	$x_1 = x_0 + h = 0.7$	$y_1 = y_0 + h \cdot \left(\frac{x_0^2}{y_0}\right) = 2 + 0.7 \cdot \frac{0^2}{2} = 2$	$\left \sqrt{2 \cdot \frac{(0.7)^3}{3} + 4} - 2 \right = 0.0564$
2	$x_2 = x_1 + h = 1.4$	$y_2 = y_1 + h \cdot \left(\frac{x_1^2}{y_1}\right) = 2 + 0.7 \cdot \frac{(0.7)^2}{2} = 2.1715$	$\left \sqrt{2 \cdot \frac{(1.4)^3}{3} + 4} - 2.1715 \right = 0.2429$
3	$x_3 = x_2 + h = 2.1$	$y_3 = y_2 + h \cdot \left(\frac{x_2^2}{y_2}\right) = 2.1715 + 0.7 \cdot \frac{(1.4)^2}{2.1715}$ = 2.8033	$\left \sqrt{2 \cdot \frac{(2.1)^3}{3} + 4} - 2.8033 \right = 0.3863$

b) Lösen mittels Mittelpunktverfahren, h=0.7

i	x_i	y_i	abs_err
0	$x_0 = 0$	$y_0 = 2$	$\left \sqrt{4}-2\right =0$
1	$x_1 = x_0 + h = 0.7$ $x_{\frac{h}{2}} = x_0 + \frac{h}{2}$	$y_{\frac{h}{2}} = y_0 + \frac{h}{2} \cdot \left(\frac{x_0^2}{y_0}\right) = 2 + 0.35 \cdot \frac{0^2}{2} = 2$	$\left \sqrt{2 \cdot \frac{(0.7)^3}{3} + 4} - 2.0429 \right = 0.0135$
	= 0 + 0.35 = 0.35	$y_1 = y_0 + h \cdot \left(\frac{x_h^2}{\frac{N}{2}}\right) = 2 + 0.7 \cdot \frac{(0.35)^2}{2} = 2.0429$	
2	$x_2 = x_1 + h = 1.4$ $x_{\frac{h}{2}} = x_1 + \frac{h}{2} = 1.05$	1 (2)	$\left \sqrt{2 \cdot \frac{(1.4)^3}{3} + 4} - 2.4057 \right = 0.0087$
		$y_2 = y_1 + h \cdot \left(\frac{x_h^2}{\frac{2}{2}}\right) = 2.0429 + 0.7 \cdot \frac{(1.05)^2}{2.1268}$ = 2.4057	
3	$x_3 = x_2 + h = 2.1$ $x_{\frac{h}{2}} = x_3 + \frac{h}{2} = 1.75$	$y_{\frac{h}{2}} = y_2 + \frac{h}{2} \cdot \left(\frac{x_2^2}{y_2}\right) = 2.4057 + 0.35 \cdot \frac{(1.4)^2}{2.4057}$ $= 2.6908$	$\left \sqrt{2 \cdot \frac{(2.1)^3}{3} + 4} - 3.2024 \right = 0.0127$
		$y_3 = y_2 + h \cdot \left(\frac{x_h^2}{\frac{y}{2}}\right) = 2.4057 + 0.7 \cdot \frac{(1.75)^2}{2.6908}$ = 3.2024	

NMIT2 Numerik 2	Serie 5	Zürcher Hochschule für Angewandte Wissenschaften
Autoren	Rémi Georgiou, André Stocker	School of
Datum	18. Oktober 2015	Engineering
		avv

c) Lösen mittels modifiziertem Eulerverfahren, h=0.7

i	x_i	y_i	abs_err
0	$x_0 = 0$	$y_0 = 2$	$ \sqrt{4}-2 =0$
1	$x_1 = x_0 + h = 0.7$	$y_1^{Euler} = y_0 + h \cdot \left(\frac{x_0^2}{y_0}\right) = 2$ $k_1 = \frac{x_0^2}{y_0} = \frac{0^2}{2} = 0$ $k_2 = \frac{x_1^2}{y_1^{Euler}} = \frac{(0.7)^2}{2} = 0.245$ $y_1 = y_0 + h \cdot \left(\frac{k_1 + k_2}{2}\right) = 2 + 0.7 \cdot \frac{0.245}{2}$ $= 2.0858$	$\sqrt{2 \cdot \frac{(0.7)^3}{3} + 4 - 2.0858} = 0.0294$
2	$x_2 = x_1 + h = 1.4$	$y_2^{Euler} = y_1 + h \cdot \left(\frac{x_1^2}{y_1}\right) = 2.2502$ $k_1 = \frac{x_1^2}{y_1} = \frac{(0.7)^2}{2.0858} = 0.2349$ $k_2 = \frac{x_2^2}{y_2^{Euler}} = \frac{(1.4)^2}{2.2502} = 0.871$ $y_2 = y_1 + h \cdot \left(\frac{k_1 + k_2}{2}\right) = 2.0858 + 0.7 \cdot \frac{1.1059}{2}$ $= 2.4728$	$\left \sqrt{2 \cdot \frac{(1.4)^3}{3} + 4} - 2.4728 \right = 0.0584$
3	$x_3 = x_2 + h = 2.1$	$y_3^{Euler} = y_2 + h \cdot \left(\frac{x_2^2}{y_2}\right) = 3.0276$ $k_1 = \frac{x_2^2}{y_2} = \frac{(1.4)^2}{2.4728} = 0.7926$ $k_2 = \frac{x_3^2}{y_3^{Euler}} = \frac{(2.1)^2}{3.0276} = 1.4566$ $y_3 = y_2 + h \cdot \left(\frac{k_1 + k_2}{2}\right) = 2.4728 + 0.7 \cdot \frac{2.2492}{2}$ $= 3.26$	$\left \sqrt{2 \cdot \frac{(2.1)^3}{3} + 4} - 3.26 \right = 0.0703$