Semaine 8 – Équivalences logiques et lois de Boole

Objectifs pédagogiques

- Comprendre les lois de l'algèbre de Boole.
- Reconnaître et démontrer des équivalences logiques à l'aide de tables de vérité.
- Simplifier des expressions logiques.
- Appliquer ces simplifications pour optimiser des conditions dans des scripts ou filtres.

Contexte pour l'analyse de données

En analyse de données, les expressions logiques sont souvent utilisées pour :

- Filtrer des jeux de données avec des conditions complexes.
- Optimiser des requêtes en évitant la redondance ou les calculs inutiles.
- Tester des cas dans des boucles ou des décisions conditionnelles.

Contenu du cours

1. Équivalences logiques

Deux expressions sont équivalentes si elles ont la même table de vérité.

Exemples courants:

- Double négation : ¬(¬A) ≡ A
- Idempotence: $A \lor A \equiv A$, $A \land A \equiv A$
- Domination : A ∨ Vrai = Vrai, A ∧ Faux = Faux
- Loi de De Morgan:
 - \circ $\neg (A \land B) \equiv \neg A \lor \neg B$
 - \circ $\neg (A \lor B) \equiv \neg A \land \neg B$

2. Loi de l'algèbre de Boole

Nom	Expression	Équivalence	Interprétation /
			Signification
Identité	A∧Vrai≡A;	A reste	Combiner A avec Vrai (en
	A ∨ Faux ≡ A	inchangé	ET) ou Faux (en OU) ne
			change pas sa valeur.
Domination	A ∧ Faux ≡ Faux	Résultat	Le Faux impose le résultat
	A ∨ Vrai ≡ Vrai	imposé	dans un ET ; le Vrai impose
			le résultat dans un OU.
Idempotence	$A \lor A \equiv A$	Pas de	Répéter la même variable
	$A \wedge A \equiv A$	duplication	n'a aucun effet.
Inverse	A ∨ ¬A ≡ Vrai	Contradiction	Une variable et son
(complémentaire)	A ∧ ¬A ≡ Faux	totale	contraire couvrent tout
			(toujours vrai) ou
			s'annulent (toujours faux).
Double négation	¬(¬A) ≡ A	Retour à	Nier deux fois revient à la
		l'original	valeur initiale.
Commutativité	$A \lor B \equiv B \lor A$	Ordre sans	L'ordre des variables
	$A \wedge B \equiv B \wedge A$	importance	n'influence pas le résultat.
Associativité	$(A \lor B) \lor C \equiv A \lor (B \lor C)$	Regroupement	On peut regrouper les
		libre	opérations sans changer
			le résultat.
Distributivité	$A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$	Développement	Fonctionne comme la
			distributivité en
			arithmétique.
De Morgan	¬(A ∨ B) ≡ ¬A ∧ ¬B	Inversion OU/ET	La négation inverse le type
			de liaison (OU devient ET,
			et inversement).

3. Méthode de démonstration d'équivalence

- Construire les **tables de vérité** des deux expressions.
- Vérifier qu'elles produisent exactement les **mêmes valeurs** pour toutes les combinaisons de A, B, (et C s'il y en a).

Exemple:

Comparer ($\neg A \lor B$) et ($A \Rightarrow B$)

Α	В	٦A	¬A∨B	A⇒B
0	0	1	1	1
0	1	1	1	1
1	0	0	0	0
1	1	0	1	1

Exemple en langage naturel

Énoncé logique : S'il pleut (A), alors la route est mouillée (B).

C'est une **implication** : $A \Rightarrow B$

Voyons les cas possibles :

Il pleut (A)	eut La route est "Si il pleut, alors la route est mouillée" mouillée (B)		¬A \(\begin{align*} B \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Faux (0)	Faux (0)	✓ Vrai (car il ne pleut pas, donc la promesse n'est pas violée)	
Faux (0)	Vrai (1)	✓ Vrai (il ne pleut pas, mais la route est quand même mouillée)	
Vrai (1)	Faux (0)	X Faux (il pleut, mais la route n'est pas mouillée — contradiction)	X
Vrai (1)	Vrai (1)	✓ Vrai (il pleut et la route est bien mouillée)	

Les deux colonnes sont identiques \Rightarrow expressions équivalentes.

Travaux dirigés

Exercice 1 : Tables de vérité

Vérifier si les expressions suivantes sont équivalentes :

- 1. $\neg (A \land B) \equiv \neg A \lor \neg B$
- 2. $A \wedge (A \vee B) \equiv A$
- 3. $A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$
- 4. $(A \wedge B) \vee (A \wedge \neg B) \equiv A$
- 5. $\neg (A \lor B) \equiv \neg A \land \neg B$
- 6. $\neg (A \Rightarrow B) \equiv A \land \neg B$

Exercice 2 - Utilisation de De Morgan

Simplifie:

- a) $\neg (A \lor B)$
- b) $\neg (A \land B)$
- c) $\neg (\neg A \lor \neg B)$

Indice : Applique les lois de De Morgan et de double négation.

Exercice 3 – Absorption

Simplifie:

- a) $A \vee (A \wedge B)$
- b) $A \wedge (A \vee B)$
- c) $A \vee (B \wedge A) \vee (A \wedge C)$

Indice: Utilise la loi d'absorption pour réduire les répétitions inutiles.

Exercice 4 - Distributivité

Simplifie:

- a) $A \wedge (B \vee C)$
- b) $(A \lor B) \land (A \lor C)$
- c) $(A \wedge B) \vee (A \wedge \neg B)$

Indice : Utilise la distributivité puis les lois de complément et d'identité.

Exercice 5 - Combinaison de plusieurs lois

Simplifie au maximum:

a)
$$\neg (A \land \neg B)$$

b)
$$(A \lor B) \land (A \lor \neg B)$$

c)
$$(\neg A \lor B) \land (A \lor B)$$

d)
$$(A \wedge B) \vee (\neg A \wedge B)$$

Indice: Combine De Morgan, distributivité, absorption, et idempotence.

Exercice 6 - Expressions avec implication

Simplifie:

a)
$$A \Rightarrow B$$

b)
$$\neg (A \Rightarrow B)$$

c)
$$(A \Rightarrow B) \land (B \Rightarrow C)$$

d)
$$(A \Rightarrow B) \lor (A \Rightarrow \neg B)$$

Indice: Rappelle-toi que $A \Rightarrow B \equiv \neg A \lor B$.

Exercice 7 – Équivalences complexes

Simplifie:

a)
$$\neg(\neg A \lor \neg B) \lor (A \land B)$$

b)
$$(\neg A \land \neg B) \lor (A \land \neg B) \lor (A \land B)$$

c)
$$(A \lor B) \land (A \lor \neg B) \land (\neg A \lor B)$$

Indice : Observe les répétitions et cherche à factoriser avec distributivité.