TOÁN HỌC TỔ HỢP VÀ CẤU TRÚC RỜI RẠC

Chương 3

MỘT SỐ KỸ THUẬT ĐẾM KHÁC

lvluyen@hcmus.edu.vn

⚠ http://www.math.hcmus.edu.vn/~luyen/cautrucroirac

FB: fb.com/cautrucroirac

Đại học Khoa Học Tự Nhiên Tp. Hồ Chí Minh https://fb.com/tailieudientucntt

lvluyen@hcmus.edu.vn

Nội dung

Chương 2. MỘT SỐ KỸ THUẬT ĐẾM KHÁC

- 1. Sử dụng sơ đồ Ven
- 2. Nguyên lý bù trừ

cuu duong than cong . com

3.1. Sử dụng sơ đồ Ven

Nhận xét. Xét sơ đồ Ven

Ta ký hiệu

- $\bullet~\mathcal{U}$ là tập vũ trụ
- ullet \overline{A} là phần bù của A trong $\mathcal U$
- ullet N(A) là số phần tử của A.
- $N = N(\mathcal{U})$

lvluyen@hcmus.edu.vn

Khi đó

$$N(\overline{A} \cap \overline{B}) = N - N(A) - N(B) + N(A \cap B)$$
 (1)

3/16

Ví dụ. Một trường học có 100 sinh viên, trong đó có 50 sinh viên học tiếng Anh, 40 sinh viên học tiếng Pháp và 20 sinh viên học cả tiếng Anh và tiếng Pháp. Hỏi có bao nhiêu sinh viên không học tiếng Anh lẫn không học tiếng Pháp?

Giải. Gọi là $\mathcal U$ là tập hợp sinh viên của trường. Gọi A là tập hợp sinh viên học tiếng Anh và P là tập hợp sinh viên học tiếng Pháp. Ta có

$$N = N(\mathcal{U}) = 100, N(A) = 50, N(P) = 40$$
 và $N(A \cap P) = 20.$

Theo yêu cầu bài toán chúng ta cần tính $N(\overline{A} \cap \overline{P})$. Ta có

$$N(\overline{A} \cap \overline{P}) = N - N(A) - N(P) + N(A \cap P)$$

= 100 - 50 - 40 + 20 = 30

Ví dụ. Có bao nhiều hoán vị các chữ số $0, 1, 2, \dots, 9$ sao cho chữ số đầu lớn hơn 1 và chữ số cuối nhỏ hơn 8?

Giải. Gọi \mathcal{U} là tập tất cả các hoán vị của 0, 1, 2, ..., 9; A là tập tất cả các hoán vị với chữ số đầu là 0 hoặc 1 và B là tập tất cả các hoán vị với $\frac{\partial}{\partial B}$ chữ số cuối là 8 hoặc $\frac{\partial \mathcal{W}}{\partial B}$ hiệc đố vị chư cầu với a bài toán là tính $\frac{N(\overline{A} \cap \overline{B})}{D}$.

Ta có $N=10!, N(A)=2\times 9!, \ N(B)=2\times 9!, \ N(A\cap P)=2\times 2\times 8!.$ Áp dụng công thức (1) ta được

$$N(\overline{A} \cap \overline{B}) = N - N(A) - N(B) + N(A \cap B)$$

= 10! - (2 \times 9!) - (2 \times 9!) + (2 \times 2 \times 8!) = 2338560

Câu hỏi. Nếu ta mở rộng công thức (1) cho trường hợp 3 tập hợp thì như thế nào?

Đáp án. Khi đó công thức là

$$N(\overline{A} \cap \overline{B} \cap \overline{C}) = N - N(A) - N(B) - N(C) + N(A \cap B) + N(A \cap C) + N(B \cap C)$$

https://tb.eon/tailieuthentucht

(2)

ng.com

Đối với trường hợp 3 tập hợp là $A_1,A_2,A_3,$ ta có thể viết công thức (2) như sau:

$$N(\overline{A}_1 \cap \overline{A}_2 \cap \overline{A}_3) = N - \sum_i N(A_i) + \sum_{i \neq j} N(A_i \cap A_j) - N(A_1 \cap A_2 \cap A_3)$$

Ví dụ. Một trường có 100 sinh viên trong đó có 40 sinh viên học tiếng Anh, 40 sinh viên học tiếng Pháp, 40 sinh viên học tiếng Đức, mỗi cặp ngôn ngữ có 20 sinh viên học và có 10 sinh viên học cả 3 ngôn ngữ. Hỏi có bao nhiều sinh viên không học cả 3 tiếng Anh, Pháp và Đức?

Giải. Ta có
$$N = 100, N(A) = N(P) = N(D) = 40, N(A \cap P) = N(P \cap D) = N(A \cap D) = 20, và $N(A \cap P \cap D) = 10$. Theo công thức (2) ta được$$

$$N(\overline{A} \cap \overline{P} \cap \overline{D}) = 100 - (40 + 40 + 40) + (20 + 20 + 20) - 10 = 30.$$

Ví dụ. Có bao nhiêu số nguyên dương ≤ 70 mà nguyên tố cùng nhau với 70?

https://fb.com/tailieudientucntt

Nhận xét. Số các số nguyên dương $\leq n$ mà chia hết cho k là phần nguyên [n/k].

Giải. Gọi \mathcal{U} là tập hợp các số nguyên dương ≤ 70 . Ta có ước nguyên tố của 70 là 2, 5 và 7. Do đó muốn đếm các số nguyên tố cùng nhau với 70 ta cần đếm những số không chia hết cho 2, 5 hoặc 7.

Gọi A_1,A_2 và A_3 lần lượt là tập các số nguyên trong $\mathcal U$ chia hết cho 2,5 và 7. Khi đó đáp án cần tìm của bài toán là $N(\overline{A}_1\cap\overline{A}_2\cap\overline{A}_3)$. Ta có

$$N = 70, \quad N(A_1) = [70/2] = 35,$$

 $N(A_2) = [70/5] = 14, \quad N(A_3) = [70/7] = 10$

Ta có một số chia hết cho 2 và 5 khi và chỉ khi số đó chia hết cho 10. Do đó $N(A_1 \cap A_2) = [70/10] = 7$. Tương tự ta có,

$$N(A_2 \cap A_3) = \left\lceil \frac{70}{5 \times 7} \right\rceil = 2, \ N(A_1 \cap A_3) = \left\lceil \frac{70}{2 \times 7} \right\rceil = 5.$$

https://fb.com/tailieudientucntt

$$N(A_1 \cap A_2 \cap A_3) = \left[\frac{70}{2 \times 5 \times 7}\right] = 1.$$

Áp dụng công thức (2) ta có

$$N(\overline{A}_1 \cap \overline{A}_2 \cap \overline{A}_3) = 70 - (35 + 14 + 10) + (7 + 2 + 5) - 1 = 24.$$

 $\mbox{\bf V\'i}$ dụ.
(tự làm) Có bao nhiêu số nguyên dương ≤ 1000 mà nguyên tố cùng nhau với

a) 50

lvluyen@hcmus.edu.vn

b) 210

cuu duong than cong . com

3.2. Nguyên lý bù trừ

Trong phần này chúng ta sẽ mở rông công thức ở phần 1 cho trường hợp n tập hợp A_1, A_2, \ldots, A_n . Để đơn giản về mặt ký hiệu chúng ta viết " \cap " như là phép nhân. Ví du $A_1 \cap A_2 \cap A_3$ sẽ được viết thành $A_1A_2A_3$. Bằng việc sử dụng ký hiệu này, ta có số lương phần tử không thuộc tất cả các tập A_1, A_2, \ldots, A_n sẽ được viết là $N(\overline{A}_1 \overline{A}_2 \ldots \overline{A}_n)$.

Dinh lý. Cho tâp vũ tru U có N phần tử và A_1, A_2, \ldots, A_n là n tâp hợp con của U. Ta đặt S_k là tổng số phần tử của tất cả tập giao của đúng k tập hợp từ các $\{A_i\}_{i=1,\ldots,n}$, cụ thể

$$S_1 = \sum_i N(A_i), \ S_2 = \sum_{i \neq j} N(A_i A_j), \dots, \ S_n = N(A_1 A_2 \dots A_n).$$
 Khi đó

$$N(\overline{A}_1\overline{A}_2\dots\overline{A}_n)=N+\sum_k (-1)^k S_k$$

$$=N-S_1+S_2-\dots+(-1)^k S_k+\dots+(-1)^n S_n$$
https://fb.com/tailieudientucntt

Hệ quả. Cho A_1, A_2, \ldots, A_n là n tập hợp con của tập vũ trụ U. Khi đó

$$N(A_1 \cup \ldots \cup A_n) = \sum_{k \ge 1} (-1)^{k-1} S_k$$

= $S_1 - S_2 + \ldots + (-1)^{k-1} S_k + \ldots + (-1)^{n-1} S_n$

Chứng minh. Từ Đinh lý trên ta có

$$N(\overline{A}_1 \dots \overline{A}_n) = N - S_1 + S_2 - \dots + (-1)^k S_k + \dots + (-1)^n S_n$$

= $N - \left(S_1 - S_2 + \dots + (-1)^{k-1} S_k + \dots + (-1)^{n-1} S_n \right).$

Măt khác

$$N(A_1 \cup \ldots \cup A_n) = N - N(\overline{A}_1 \ldots \overline{A}_n).$$

Do đó ta có điều phải chứng mình

Ví du. Tìm số nghiệm nguyên không âm của phương trình

$$x_1 + x_2 + x_3 + x_4 = 18$$
 (*)

thỏa điều kiện $x_i \leq 7$, $\forall i = 1, \dots, 4$.

Giải. Gọi $\mathcal U$ là tập hợp các nghiệm nguyên không âm của phương trình (*). Ta có

$$N = N(\mathcal{U}) = K_4^{18} = \begin{pmatrix} 4+18-1\\18 \end{pmatrix} = 1330.$$

Gọi A_i là tập hợp các nghiệm nguyên không âm của phương trình (*) thỏa tính chất $x_i \geq 8$. Khi đó kết quả của bài toán là $N(\overline{A_1}\overline{A_2}\overline{A_3}\overline{A_4})$.

Bằng việc giải những bài toán tìm số nghiêm nguyên ta được

•
$$N(A_i) = K_4^{10} = \begin{pmatrix} 13 \\ 10 \end{pmatrix}$$
 • $N(A_i A_j) = K_4^2 = \begin{pmatrix} 5 \\ 2 \end{pmatrix}$
• $N(A_i A_j A_k) = 0$ • $N(A_1 A_2 A_3 A_4) = 0$

Vì vai trò của các A_i $(1 \le i \le 4)$ như nhau nên ta có:

•
$$S_1 = \sum_i N(A_i) = 4 \begin{pmatrix} 13 \\ 10 \end{pmatrix} = 1144$$

•
$$S_2 = \sum_{i \neq j} N(A_i A_j) = \begin{pmatrix} 4 \\ 2 \end{pmatrix} \begin{pmatrix} 5 \\ 2 \end{pmatrix} = 60$$

ng.com $S_3=0, S_4=0$ https://fb.com/tailieudientucntt

Áp dụng Định lý, ta có

$$N(\overline{A}_1 \overline{A}_2 \overline{A}_3 \overline{A}_4) = N - S_1 + S_2 - S_3 + S_4$$

= 1330 - 1144 + 60 - 0 + 0 = 246

Ví dụ. Có bao nhiều cách lấy 6 lá bài từ bộ bài 52 lá sao cho

- a) có đầy đủ 4 chất (cơ, rô, chuồn, bích).
- b) ít nhất một chất không có

Giải. Gọi \mathcal{U} là tất cả bộ 6 lá bài được lấy từ bộ bài và A_1 , A_2 , A_3 , A_4 lần lượt là tất cả bộ 6 lá bài mà không có chất cơ, rô, chuồn và bích. Ta có

•
$$N = N(\mathcal{U}) = \begin{pmatrix} 52 \\ 6 \end{pmatrix}$$

•
$$N(A_1) = \begin{pmatrix} 39 \\ 6 \end{pmatrix}$$

lvluyen@hcmus.edu.vn

•
$$N(A_1A_2A_3) = \begin{pmatrix} 13 \\ 6 \end{pmatrix}$$

•
$$N(A_1A_2A_3A_4) = 0$$

https://fb.com/tailieudientucntt

Vì vai trò A_1, A_2, A_3, A_4 giống nhau nên ta có

•
$$S_1 = 4 \begin{pmatrix} 39 \\ 6 \end{pmatrix}$$

• $S_2 = \begin{pmatrix} 4 \\ 2 \end{pmatrix} \begin{pmatrix} 26 \\ 6 \end{pmatrix}$
• $S_4 = 0$

- a) $N(\overline{A}_1 \overline{A}_2 \overline{A}_3 \overline{A}_4) = N S_1 + S_2 S_3 + S_4 = 8682544$
- b) $N(A_1 \cup A_2 \cup A_3 \cup A_4) = S_1 S_2 + S_3 S_4 = 11675976$

Ví dụ.(tự làm) Tìm số nghiệm nguyên không âm của phương trình

$$x_1 + x_2 + x_3 + x_4 = 25 \qquad (*)$$

thỏa điều kiện $x_1 \le 5$, $x_2 \le 6$, $x_3 \le 7$.

Ví dụ. (tự làm) Tìm số nghiệm nguyên không âm của phương trình $x_1+x_2+x_3+x_4+x_5+x_6=20$ thỏa điều kiện $x_i\leq 8\,(i=1,\ldots 7)$

Dịnh lý. Cho tập vũ trụ U có N phần tử và $A_1, A_2, \ldots A_n$ là n tập hợp con của U. Khi đó số phần tử thuộc vào đúng m tập hợp, ký hiệu N_m , la

$$N_m = \sum_{i=0}^{n-m} (-1)^i \binom{m+i}{m} S_{m+i}$$
$$= S_m - \binom{m+1}{m} S_{m+1} + \dots + (-1)^{n-m} \binom{n}{m} S_n$$

Nếu ta gọi N_m^* là số phần tử thuộc ít nhất m tập hợp thì

$$N_m^* = \sum_{i=0}^{n-m} (-1)^i \binom{m+i}{m-1} N_{m+i}$$

$$= S_m - \binom{m}{m-1} S_{m+1} + \dots + (-1)^{n-m} \binom{n-1}{m-1} S_n.$$

 \mathbf{V} í dụ. Có bao nhiêu chuỗi tam phân (chỉ gồm 0, 1, 2) độ dài 4 thỏa mãn

a) chứa đúng 2 chữ số 1 b) chứa nhiều hơn 2 chữ số 1

Giải. Gọi \mathcal{U} là tập hợp tất cả những chuỗi tam phân có độ dài 4. Gọi A_i là tập hợp tất cả các chuỗi tam phân có chữ số tại vị trí i là 1. Ta có

•
$$N=3^4$$

• $S_1=\begin{pmatrix}4\\1\end{pmatrix}3^3$ ong than $S_3=\begin{pmatrix}4\\3\\3\end{pmatrix}3^1$

$$\bullet \ S_2 = \left(\begin{array}{c} 4\\2 \end{array}\right) 3^2 \qquad \bullet \ S_4 = \left(\begin{array}{c} 4\\4 \end{array}\right) 3^0$$

Áp dụng định lý trên ta có:

a)
$$N_2 = S_2 - {3 \choose 2} S_3 + {4 \choose 2} S_4 = 24.$$

b)
$$N_2^* = S_2 - {2 \choose 1} S_3 + {3 \choose 1} S_4 = 33$$
.

https://tb.dom/tailieudientucntt

 \mathbf{V} í dụ. Có 5 lá thư và 5 phong bì ghi sẵn địa chỉ. Bỏ ngẫu nhiên các lá thư vào phong bì.

- a) Hỏi xác xuất để không lá thư nào đúng địa chỉ là bao nhiêu?
- b) Hỏi xác xuất để đúng 3 lá thư đúng địa chỉ là bao nhiêu?

Sau đó tổng quát hóa bài toán cho n và $k \leq n$

cuu duong than cong . com

cuu duong than cong . com