Progress Update

Angelika Stefan & Mihai Constantin

Agenda

- 1. Project Scope
- 2. Analysis Plan
- 3. Specific Questions
- 4. Deliverables

Project Scope

Research Question

Project Scope

The goal of the current project is to assess the accuracy of four tests used in diagnosing *Schistosoma Mansoni*.

Challenges

Project Scope

- None of the methods yields a perfect diagnosis.
 - Accuracy must be estimated from data.
- Preference to use Latent Class Analysis (LCA) to answer the Research Question.

Our Role

Project Scope

- Inspect and clean the data.
- Propose a feasible analysis plan.
- Provide easy-to-use analysis scripts.
- Aid the interpretation of the results.

Analysis Plan

Current Plan: Latent Class Analysis

Analysis Plan

KK	CCA	CAA	PCR
1	1	1	1
1	1	1	0
1	1	0	1
1	1	0	0
1	0	1	1
1	0	1	0
1	0	0	1
1	0	0	0
0	1	1	1
0	1	1	0
0	1	0	1
0	1	0	0
0	0	1	1
0	0	1	0
0	0	0	1
0	0	0	0

Results For The Current Plan

Analysis Plan

Results For The Current Plan

Analysis Plar

Input For The Current Plan

Analysis Plan

All diagnostic patterns may occur

KK	CCA	CAA	PCR	Total
1	1	1	1	113
1	1	1	0	2
1	1	0	1	4
1	1	0	0	17
1	0	1	1	22
1	0	1	0	1
1	0	0	1	14
1	0	0	0	18
0	1	1	1	1
0	1	1	0	3
0	1	0	1	10
0	1	0	0	11
0	0	1	1	24
0	0	1	0	11
0	0	0	1	3
0	0	0	0	0

However, what we get looks like...

KK	CCA	CAA	PCR	Total
1	1	1	1	128
1	1	1	0	4
1	1	0	1	10
1	1	0	0	0
1	0	1	1	0
1	0	1	0	0
1	0	0	1	0
1	0	0	0	0
0	1	1	1	0
0	1	1	0	0
0	1	0	1	0
0	1	0	0	0
0	0	1	1	0
0	0	1	0	0
0	0	0	1	0
0	0	0	0	0

Is This Model Appropriate?

Analysis Plan

KK	CCA	CAA	PCR
1	1	1	1
1	1	1	0
1	1	0	1
1	1	0	0
1	0	1	1
1	0	1	0
1	0	0	1
1	0	0	0

determined by design, not by prevalence and test accuracy

specificity and sensitivity will be biased due to the design choices

Apply LCA model on data from measurement occasions other than baseline

sensitivity and specificity

Use a unified model that integrates data from multiple measurement occasions

Analysis Plan

Can we assume that sensitivity and specificity are invariant across time points?

What priors to use for sensitivity and specificity?

PCR (95% confidence interval + expected value)

Deliverables

What We Can Provide

Deliverables

- Script for LCA that can be used out of the box.
- Simulated data for all measurement occasions.
- General directions on how to interpret the results.
- Results summarized as:
 - table with parameter estimates and credible intervals
 - density plots of the posterior distributions

1 December 2020

Analysis Plan

How shall we handle a trace outcome for the POC-CCA test?

Thanks!