Logic, Sets, Number Theory, and Counting

Walker Smith

November 24, 2012

Contents

1	\mathbf{Intr}	roduction	4
2	Pro	positional Logic	5
	2.1	Proposition	5
	2.2	Negation of p	5
	2.3	Conjunction of p and q	5
	2.4	Disjunction of p and q	5
	2.5	Exclusive or of p and q	5
	2.6	Conditional statement	5
	2.7	Converse	6
	2.8	Contrapositive	6
	2.9	Inverse	6
	2.10	Biconditional statement	6
		Logical Equivalence	6
	2.12	Propositional Function	6
	2.13	Propositional Multivariable Function	7
	2.14	Universal Quantification	7
	2.15	Existential Quanification	7
	2.16	Quantifaction Equivalences	7
	2.17	Quantification of Two Variables	7
3	Law	vs of Logical Equivalence	9
	3.1	De Morgan's Laws	9
	3.2	Identity Laws	9
	3.3	Domination Laws	9
	3.4	Idempotent Laws	9
	3.5	Double Negation	9
	3.6	Communative Laws	9
	3.7	Associative Laws	10
	3.8	Distributive Laws	10
	3.9	Absorption Laws	10
	3.10	Absorption Laws	10
4	Sets	3	11
	4.1	Set	11
	4.2		11

	4.3	Set Membership	11
	4.4	Roster Notation	11
	4.5	Set Builder Notation	11
	4.6	Null Set	11
	4.7	Singleton Set	12
	4.8	Subset	12
	4.9	Proper Subset	12
	4.10	Set Equality	12
	4.11	Cardinality	12
	4.12	Power Set	12
	4.13	Ordered n-tuples	13
	4.14	Ordered n-tuples Equality	13
	4.15	Ordered n-tuples Equality	13
	4.16	Union	13
	4.17	Intersect	13
	4.18	Disjoint Sets	14
	4.19	Difference	14
5	Rela	ations	15
	5.1	Reflexive	15
	5.2	Symmetric	15
	5.3	Anti-Symmetric	15
	5.4	Transative	15
6	Nun	nber Theory and Cryptography	16
	6.1	Coprime	16
	6.2	Euler's Theorm	16
7	Cra	nh Theory	17

1 Introduction

2 Propositional Logic

2.1 Proposition

A proposition is a declartive sentence that is either true or false.

$$p (1)$$

2.2 Negation of p

The negation of p has the opposite truth value of p.

$$\neg p$$
 (2)

2.3 Conjunction of p and q

The conjunction of p and q is true when both p and q are true and false otherwise.

$$p \wedge q$$
 (3)

2.4 Disjunction of p and q

The disjunction of p and q is false when both p and q are false and true otherwise.

$$p \vee q$$
 (4)

2.5 Exclusive or of p and q

The exclusive or of p and q is true when exactly one of p and q are true and false otherwise.

$$p \oplus q$$
 (5)

2.6 Conditional statement

The conditional statement if p then q is false when p is true and q is false and true otherwise.

$$p \to q$$
 (6)

2.7 Converse

The converse of $p \to q$ is the conditional statement

$$q \to p$$
 (7)

2.8 Contrapositive

The contrapositive of p \rightarrow q is the conditional statement

$$\neg q \to \neg p$$
 (8)

2.9 Inverse

The inverse of p \rightarrow q is the conditional statement

$$\neg p \to \neg q$$
 (9)

2.10 Biconditional statement

The biconditional statement p if and only if q is true when p and q have the same truth value and false otherwise.

$$p \leftrightarrow q$$
 (10)

2.11 Logical Equivalence

compound propositions p and q are logically equivalent if p if and only if q is a tautology, that is the compound proposition is true no matter the truth values of the propositional variables.

$$p \equiv q \tag{11}$$

2.12 Propositional Function

Value of a propositional function P at x. Function defined by it's predicate,P and subject, x where x is the subject of the statement and P refers to a property that the subject has.

$$P(x) \tag{12}$$

2.13 Propositional Multivariable Function

Value of a propositional function P at the n-tuple (x_1, x_2, \ldots, x_n) .

$$P(x_1, x_2, \dots, x_n) \tag{13}$$

2.14 Universal Quantification

Universal quantification of P(x) is true when P(x) is true for every x and false when there is an x for which P(x) is false.

$$\forall x P(x) \tag{14}$$

2.15 Existential Quanification

Existential quantification of P(x) is true when there exists an element x in the domain such that P(x) and false when P(x) is false for every x.

$$\exists x P(x) \tag{15}$$

2.16 Quantifaction Equivalences

Statement is true when there is an x for which P(x) is false and false when P(x) is true for every x.

$$\neg \forall x P(x) \equiv \exists x \neg P(x) \tag{16a}$$

Statement is true when for every x P(x) is true and false when there is an x for which P(x) is true.

$$\neg \exists x P(x) \equiv \forall x \neg P(x) \tag{16b}$$

2.17 Quantification of Two Variables

P(x,y) is true for every pair x,y and false when there is a pair x,y for which P(x,y) is false.

$$\forall x \forall y P(x, y) \tag{17a}$$

$$\forall y \forall x P(x, y) \tag{17b}$$

For every x there is a y for which P(x,y) is true. There is an x such that P(x,y) is false for every y.

$$\forall x \exists y P(x, y) \tag{17c}$$

There is an x for which P(x,y) is true for every y. For every x there is a y for which P(x,y) is false.

$$\exists x \forall y P(x, y) \tag{17d}$$

There is a pair x,y for which P(x,y) is true. P(x,y) is false for every pair x,y.

$$\exists x \exists y P(x, y) \tag{17e}$$

$$\exists y \exists x P(x, y) \tag{17f}$$

3 Laws of Logical Equivalence

3.1 De Morgan's Laws

$$\neg (p \land q) \equiv \neg p \lor \neg q \tag{1a}$$

$$\neg (p \lor q) \equiv \neg p \land \neg q \tag{1b}$$

3.2 Identity Laws

$$p \wedge T \equiv p \tag{2a}$$

$$p \vee F \equiv p \tag{2b}$$

3.3 Domination Laws

$$p \vee T \equiv T \tag{3a}$$

$$p \wedge F \equiv F \tag{3b}$$

3.4 Idempotent Laws

$$p \lor p \equiv p \tag{4a}$$

$$p \wedge p \equiv p \tag{4b}$$

3.5 Double Negation

$$\neg(\neg p) \equiv p \tag{5}$$

3.6 Communative Laws

$$p \lor q \equiv q \lor p \tag{6a}$$

$$p \wedge p \equiv q \wedge p \tag{6b}$$

3.7 Associative Laws

$$(p \lor q) \lor r \equiv p \lor (q \lor r) \tag{7a}$$

$$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r) \tag{7b}$$

3.8 Distributive Laws

$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r) \tag{8a}$$

$$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r) \tag{8b}$$

3.9 Absorption Laws

$$p \lor (p \land q) \equiv p \tag{9a}$$

$$p \wedge (p \vee q) \equiv p \tag{9b}$$

3.10 Absorption Laws

$$p \vee \neg p \equiv T \tag{10a}$$

$$p \land \neg p \equiv F \tag{10b}$$

4 Sets

4.1 Set

A set is an unordered collection of elements where elements are referred to as members of the set.

$$S$$
 (1)

4.2 Set Membership

s is a member of the set S.

$$s \in S \tag{2}$$

4.3 Set Membership

s is not a member of the set S.

$$s \notin S \tag{3}$$

4.4 Roster Notation

Roster notation desribes a set by listing the set's elements

$$S = \{s_1, \dots, s_n\} \tag{4}$$

4.5 Set Builder Notation

Set builder notation determines membership an element s in a set S based on a property or properties, P(s)

$$S = \{ s \mid P(s) \} \tag{5}$$

4.6 Null Set

The null set, \emptyset , contains no elements

$$\{\} \tag{6}$$

4.7 Singleton Set

The singleton set contains exactly one element, the null set

$$\{\emptyset\} \tag{7}$$

4.8 Subset

The set A is a subset of set B, denoted $A \subseteq B$, is true if all members of A are also members of B and false if there is a single $a \in A$ such that $x \notin B$

$$\forall x (x \in A \to x \in B) \tag{8}$$

4.9 Proper Subset

The set A is a proper subset of a set B, denoted $A \subset B$, is true if A is a subset of B and there exists an x of B that is not an element of A

$$\forall x (x \in A \to x \in B) \land \exists x (x \in B \land x \notin A) \tag{9}$$

4.10 Set Equality

Two sets are equal, denoted A = B, if and only if they have the same elements

$$\forall x (x \in A \leftrightarrow x \in B) \tag{10}$$

4.11 Cardinality

The set A with n distinct elements, where n is a non negative integer, has a cardinality or size of n.

$$|A| \tag{11}$$

4.12 Power Set

Given a set A, the power set of A is the set of all subsets of the set A

$$\mathcal{P}\left(S\right) \tag{12}$$

4.13 Ordered n-tuples

An ordered collection (a_1, a_2, \ldots, a_n) has a_1 as its first element, a_2 as its second element, ..., and a_n as its last element.

$$(a_1, a_2, \dots, a_n) \tag{13}$$

4.14 Ordered n-tuples Equality

Two ordered n-tuples, (a_1, a_2, \ldots, a_n) and (b_1, b_2, \ldots, b_n) are equal if and only if $a_i = b_i$ for $i = 1, 2, \ldots, n$

$$(a_1, a_2, \dots, a_n) = (b_1, b_2, \dots, b_n)$$
 (14)

4.15 Ordered n-tuples Equality

The cartesian product is the set of all ordered pairs (a,b), where $a \in A$ and $b \in B$

$$A \times B = \{(a, b) \mid a \in A \land b \in B\}$$
(15)

4.16 Union

The of union of set A and B , denoted is the set containing members of the set A or B

$$A \cup B = \{ s \mid s \in A \lor s \in B \}$$

$$(16)$$

4.17 Intersect

The of intersect of set A and B is the set containing members of sets A and B

$$A \cap B = \{ s \mid s \in A \land s \in B \}$$

$$(17)$$

4.18 Disjoint Sets

Two sets are disjoint if their intersect is the set containing no elements

$$A \cap B = \emptyset \tag{18}$$

4.19 Difference

The of difference of set A and B is the set containing members of sets A that are members of B

$$A - B = \{ s \in A \mid s \notin B \}$$
 (19)

5 Relations

5.1 Reflexive

The relation R on a set A is reflexive if a ordered pair $(a,a) \in R$ for every $a \in A$

$$\forall a \in A((a, a) \in R) \tag{1}$$

5.2 Symmetric

The relation R on a set A is symmetric if the ordered pairs $(a,b) \in R$ then $(b,a) \in R$

$$\forall a \forall b \, ((a,b) \in R \to (b,a) \in R) \tag{2}$$

5.3 Anti-Symmetric

The relation R on a set A is antisymmetric if the ordered pairs $(a,b) \in R$ and $(b,a) \in R$ then a = b

$$\forall a \forall b (((a,b) \in R \land (b,a) \in R \rightarrow (a=b))$$
 (3)

5.4 Transative

The relation R on a set A is transative if the ordered pairs $(a,b) \in R$ and $(b,c) \in R$ then $(a,c) \in R$

$$\forall a \forall b \forall c (((a,b) \in R \land (b,c) \in R \to (a,c) \in R)$$
(4)

6 Number Theory and Cryptography

6.1 Coprime

Integers m and n are relatively prime if

$$\gcd(m,n) = 1 \tag{1}$$

6.2 Euler's Theorm

If n and m are relatively prime for some m,n $\in \mathbb{Z}^+$

$$n^{\Phi(m)} \equiv 1 \mod m \tag{2a}$$

$$n^{\Phi(m)} - 1 \equiv 0 \mod m \tag{2b}$$

7 Graph Theory