

Hyperloop 48 V

PROJEKTARBEIT Studiengang Elektrotechnik

Vorgelegt von Oliver, Schmidt Studiengang Elektrotechnik Matr. Nr. 7023462

Emden, 10. August 2024

Betreut von Prof. Dr.-Ing. Kane

Rechtliche Erklärung

Erklärung

[ja|nein-] Die vorliegende Arbeit enthält vertrauliche / kommerziell nutzbare Informationen, deren Rechte außerhalb der Hochschule Emden/Leer liegen. Sie darf nur den am Prüfungsverfahren beteiligten Personen zugänglich gemacht werden, die hiermit auf ihre Pflicht zur Vertraulichkeit hingewiesen werden (Sperrvermerk).

[-ja|nein] Soweit meine Rechte berührt sind, erkläre ich mich einverstanden, dass die vorliegende Arbeit Angehörigen der Hochschule Emden/Leer für Studium / Lehre / Forschung uneingeschränkt zugänglich gemacht werden kann.

Eidesstattliche Versicherung

Ich, der Unterzeichnende, erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Alle Quellenangaben und Zitate sind richtig und vollständig wiedergegeben und in den jeweiligen Kapiteln und im Literaturverzeichnis wiedergegeben. Die vorliegende Arbeit wurde nicht in dieser oder einer ähnlichen Form ganz oder in Teilen zur Erlangung eines akademischen Abschlussgrades oder einer anderen Prüfungsleistung eingereicht.

Mir ist bekannt, dass falsche Angaben im Zusammenhang mit dieser Erklärung strafrechtlich verfolgt werden können.

Emden, 10. August 2024 Oliver Schmidt

Inhaltsverzeichnis

5	Ank	nang																					7
4	Konklusion													6									
3	Imp	olemen	tierun	g																			5
	2.5	Simuli	ink				٠																4
	2.4		paln .																				
	2.3	Verdra	ahtung																				4
			Sinus																				
			BLDO																				
		Golder																					
		Konze	pet .																				
2	Kor	nzepet																					3
		1.2.3	Baute	eilbes	chaf	fun	g						•			 •					•		2
			Verdr																				
		1.2.1	Steue	rung																			2
	1.2	Aufga	benstel	lung																			1
		1.1.1																					1
	1.1	_	ation.																				1
1	Ein	leitung	r																				1
	Abb	ildungs	verzeic	hnis			•		٠	•	•	٠	•	•	•	 ٠	٠	٠	•	•	•	•	111
		ntliche l																					
	D a al	a+l:aba l	[7:1-1::																				т

Abbildungsverzeichnis

2.1 10 KW BLDC Motor Liquid Cooled				Cooled	Liquid	BLDC Motor	10 KW	2.1
------------------------------------	--	--	--	--------	--------	------------	-------	-----

Einleitung

1.1 Motivation

Die Motivation des Projekts liegt in der Realisierung eines Fahrzeugs für den Hyperloop, das mit einer Batterie und einem Motor betrieben werden soll. Die Steuerung soll mittels Simulink erfolgen.

1.1.1 Konzept von Hyperloop

Der Hyperloop ist ein Konzept für ein Hochgeschwindigkeitstransportsystem, das von Elon Musk [1] populär gemacht wurde. Es besteht im Wesentlichen aus einer oder mehreren Kapseln, die sich durch fast luftleere Röhren bewegen. Die Idee ist, Reibung und Luftwiderstand, die zwei größten Hindernisse für hohe Geschwindigkeiten, zu minimieren.

Durch die Reduzierung von Luft- und Rollwiderstand können Hyperloop-Kapseln Geschwindigkeiten von über 1000 km/h erreichen. Dies ermöglicht extrem schnelle Reisen zwischen Städten, die weit voneinander entfernt sind.

Angesichts der globalen Bemühungen zur Reduzierung der CO2-Emissionen und zur Bekämpfung des Klimawandels könnte Hyperloop eine umweltfreundlichere Alternative zu Autos und Flugzeugen bieten.

1.2 Aufgabenstellung

Im Rahmen dieses Projekts soll ein Pod für den Hyperloop mit einer Bordspannung von 48 V ausgelegt werden. Ziel ist es, die Machbarkeit dieser Spannung zu überprüfen und umzusetzen. Dazu gehören die Realisierung der Verdrahtung und der Sensorik sowie die Beschaffung der erforderlichen Bauteile. Die Logik- und Signalverarbeitung wird mithilfe von Simulink auf einem Speedgoat-System durchgeführt.

1.2.1 Steuerung

Die Steuerung erfolgt über Simulink, ein Bestandteil von Matlab. Position und Beschleunigung des Pods sollen erfasst werden, während der Motor über ein zusätzliches Steuergerät angesteuert wird. Motor und Steuergerät stammen von dem englischen Unternehmen Golden Motor. Die Steuerung soll als eine Automatensteuerung umgesetzt werden.

1.2.2 Verdrahtung

Die Verdrahtung des Pods muss entsprechend der Bordspannung von 48 V realisiert werden. Dazu muss ein Schaltplan erstellt werden das mit der Software QElectroTech erstellt wird.

1.2.3 Bauteilbeschaffung

Es müssen alle erforderlichen Bauteile für die Umsetzung der Bordspannung, Verdrahtung und Sensorik beschafft werden.

Konzepet

2.1 Konzepet

Der Pod wird von einem BLDC-Motor angetrieben, wobei die elektrische Energie in einem Lithium-Ionen-Akku gespeichert wird. Der Motor wird durch einen Sinuswellen-Generator gesteuert. Mit dem Speedgoat-System werden die Eingangssignale des Sinuswellen-Generators sowie andere Aktoren gesteuert.

2.2 Golden Motor

Golden Motor ist ein Anbieter von Elektromotoren und elektrischen Antriebssystemen. Das Unternehmen bietet eine breite Palette von Produkten an, darunter: Motoren und Komplettsysteme für Elektrofahrräder, Industrielle BLDC-Motoren, Elektrische Antriebe für Boote.

2.2.1 BLDC Motor

Ein BLCD Motor wird mit Gleichspannung angetrieben, wobei eine Leistungssteuerung (Sinuswellen-Generator) die Gleichspannung in ein nutzbares Drehstom umwandelt, dies verhalten wird in Abschnitt 2.2.2 näher erläutert.

Da der Motor keine Schleifkontakte (Kohlebürsten) hat, entsteht kein abrieb. Die Kommutierung, also die Umschaltung der Stromrichtung in den Spulen, erfolgt elektronisch.

Im Rotor (dem rotierenden Teil) befinden sich Permanentmagnete. Im Stator (dem feststehenden Teil) sind Spulen angeordnet. Durch gezieltes Ansteuern der Spulen wird ein magnetisches Drehfeld erzeugt, das den Rotor mit den Permanentmagneten mitnimmt.

INSERT PICTURE

Abbildung 2.1: 10 KW BLDC Motor Liquid Cooled

- 2.2.2 Sinuswellen-Generator
- 2.3 Verdrahtung
- 2.4 Schaltpaln
- 2.5 Simulink

Implementierung

Konklusion

Anhang

Hier ist ein Zitat [2].

LITERATUR 8

Literatur

- [1] Wikipedia Contributors. *Hyperloop*. [Abschnitt: Hyperloop;Online; abgerufen am 28-Juli-2024]. 2024. URL: https://de.wikipedia.org/wiki/Hyperloop.
- [2] Khedr Kanaan. "Development and implementation of industry 4.0 laser cutter module (Construction and Electronics)". Magisterarb. Hochschule Emden/Leer, University of Applied Sciences, 2022.