CS 305 Lab Tutorial Lab 5 DNS

Dept. Computer Science and Engineering Southern University of Science and Technology

Topic

- DNS
 - DNS Message Structure
 - DNS Message head
 - RR in DNS
- EDNS (aka. Extension mechanisms for DNS)
 - DNSSEC
- Tool : dig

Part A.1 Domain Name System

DNS is a distributed database.

Recursive/Iterative Query

Part A.2 DNS Message Structure

the question for the name server

RRs answering the question

RRs pointing toward an authority

RRs holding additional information

同一对query的i d号是一样的

DNS协议报文格式

RFC 2929 DNS Message Headers

Domain Name System (DNS) IANA Considerations

- Set QR bit to 0 indicates the header is a query, otherwise is a response.
- OpCode 0 indicates this is a standard query.
- AA, TC, RD, RA, AD, CD stands for Authoritative Answer, Truncated, Recursion Desired, Recursion Available, Authentic Data, Checking Disabled
- Z is a reserved flag.

OpCode	Name	Reference
0 1 2	Query IQuery (Inverse Query) Status	[RFC 1035] [RFC 1035] [RFC 1035]
3 4 5 5-15	available for assignment Notify Update available for assignment	[RFC 1996] [RFC 2136]

Example Structure Code in C:

```
//DNS header structure
struct DNS HEADER {
  unsigned short id:
                       // identification number
  unsigned char qr:1;
                        // query/response flag
  unsigned char opcode :4; // purpose of message
  unsigned char aa:1;
                        // authoritive answer
  unsigned char tc:1;
                        // truncated message
                       // recursion desired
  unsigned char rd:1;
  unsigned char ra:1;
                        // recursion available
  unsigned char z:1;
                        // its z reserved
  unsigned char ad:1;
                        // authenticated data
  unsigned char cd:1;
                        // checking disabled
  unsigned char rcode :4; // response code
  unsigned short q_count; // number of question entries
```

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

ID

ID

QR| Opcode |AA|TC|RD|RA| Z|AD|CD| RCODE |

QDCOUNT/ZOCOUNT

ANCOUNT/PRCOUNT

NSCOUNT/UPCOUNT

ARCOUNT
```

```
unsigned short q_count; // number of question entries
unsigned short ans_count; // number of answer entries
unsigned short auth_count; // number of authority entries
unsigned short add_count; // number of resource entries
};
```


Decode Message Header in Python

```
class DNSHeader:
 Struct = struct.Struct('!6H')
 def __init__(self):
    self.__dict__ = {
      field: None
      for field in ('ID', 'QR', 'OpCode', 'AA', 'TC', 'RD', 'RA', 'Z',
      'RCode', 'QDCount', 'ANCount', 'NSCount', 'ARCount')}
 def parse_header(self, data):
    self.ID, misc, self.QDCount, self.ANcount, self.NScount, self.ARcount = DNSHeader.Struct.unpack from(data)
    self.QR = (misc \& 0x8000) != 0
    self.OpCode = (misc \& 0x7800) >> 11
    self.AA = (misc \& 0x0400) != 0
    self.TC = (misc \& 0x200) != 0
    self.RD = (misc \& 0x100) != 0
                                                                                 |AA|TC|RD|RA| Z|AD|CD|
    self.RA = (misc \& 0x80) != 0
    self.Z = (misc \& 0x70) >> 4 \# Never used
    self.RCode = misc \& 0xF
 def __str__(self):
    return '<DNSHeader {}>'.format(str(self.__dict__))
```


A query message of DNS

nslookup www.baidu.com

of Science and Technology

A response message of DNS

nslookup www.baidu.com

Part A.3 RR in DNS

Resource record (RR) fields

Field	Description	Length (octets)
NAME	Name of the node to which this record pertains	Variable
TYPE	Type of RR in numeric form (e.g., 15 for MX RRs)	2
CLASS	Class code 网络类型	2
TTL	Count of seconds that the RR stays valid (The maximum is 2 ³¹ –1, which is about 68 years)	4
RDLENGTH	Length of RDATA field (specified in octets)	2
RDATA	Additional RR-specific data	Variable, as per RDLENGTH

RRs of Answers

nslookup www.baidu.com

of Science and Technology

RRs of authoritative name servers

nslookup www.baidu.com

```
∨ Domain Name System (response)

    Transaction ID: 0x0006
  > Flags: 0x8180 Standard query response, No error
    Ouestions: 1
    Answer RRs: 3
    Authority RRs: 5
                         the value of rdata depend on
    Additional RRs: 4
                         the type
  > Oueries
  > Answers
    Authoritative nameservers

✓ a.shifen.com: type (NS), class IN, ns ns3.a.shifen.com

         Name: a.shifen.com
         Type: (NS) (authoritative Name Server) (2)
         Class: IN (0x0001)
         Time to live: 66
         Data length: 6
         Name Server: ns3.a.shifen.com
     > a.shifen.com: type NS class IN, ns ns2.a.shifen.com
     > a.shifen.com: type NS class IN, ns ns1.a.shifen.com
     > a.shifen.com: type NS class IN, ns ns5.a.shifen.com
     > a.shifen.com: type NS class IN, ns ns4.a.shifen.com
    Additional records
    [Request In: 83]
    [Time: 0.001829000 seconds]
```


RRs of Additional records

nslookup www.baidu.com

versity of Science and Technology

Part B EDNS (aka. Extension mechanisms for DNS)

EDNS: a backward compatible mechanisms for allowing the DNS protocol to grow.

- The Domain Name System's wire protocol includes a number of fixed fields whose range has been or soon will be exhausted and does not allow clients to advertise their capabilities to servers.
- DNS (see [RFC1035]) specifies a Message Format and within such messages there are standard formats for encoding options, errors, and name compression. The maximum allowable size of a DNS Message is fixed.
- Many of DNS's protocol limits are too small for uses which are or which are desired to become common. There is no way for implementations to advertise their capabilities.

https://tools.ietf.org/html/rfc2671

EDNS

One **OPT pseudo-RR** can be added to the **additional data section** of either a request or a response. An OPT is called a pseudo-RR because it pertains to a particular transport level message and not to any actual DNS data.

EDNS query

```
∨ Domain Name System (query)

    Transaction ID: 0xe9d8
  > Flags: 0x0120 Standard query
    Questions: 1
    Answer RRs: 0
                                                        Field Name Field Type
                                                                                   Description
    Authority RRs: 0
                                                                                   empty (root domain)
                                                        NAME
                                                                    domain name
    Additional RRs: 1
                                                        TYPE
                                                                    u_int16_t
  > Oueries
                                                                                   sender's UDP payload size
                                                        CLASS
                                                                    u_int16_t
                                                                                   extended RCODE and flags
                                                        TTL
                                                                    u int32 t

→ Additional records

                                                        RDLEN
                                                                    u_int16_t
                                                                                   describes RDATA

∨ <Root>: type OPT

                                                                                   {attribute, value} pairs
                                                        RDATA
                                                                     octet stream
          Name: <Root>
         Type: OPT (41)
         UDP payload size: 4096
         Higher bits in extended RCODE: 0x00
         EDNS0 version: 0
       Z: 0x0000
            0... = DO bit: Cannot handle DNSSEC security RRs
            .000 0000 0000 0000 = Reserved: 0x0000
         Data length: 12
       > Option: COOKIE
```


EDNS response

```
v Domain Name System (response)
    Transaction ID: 0xe9d8
  > Flags: 0x8180 Standard query response, No error
                                                                               Field Type
    Ouestions: 1
                                                                  Field Name
                                                                                               Description
    Answer RRs: 3
                                                                  NAME
                                                                                domain name
                                                                                               empty (root domain)
    Authority RRs: 5
                                                                  TYPE
                                                                               u int16 t
    Additional RRs: 5
                                                                                               sender's UDP payload size
                                                                  CLASS
                                                                               u_int16_t
  > Queries
                                                                  TTL
                                                                                               extended RCODE and flags
                                                                               u int32 t
  > Answers
                                                                  RDLEN
                                                                               u int16 t
                                                                                               describes RDATA
                                                                                               {attribute, value} pairs
  > Authoritative nameservers
                                                                                octet stream
                                                                  RDATA

→ Additional records

    > ns1.a.shifen.com: type A, class IN, addr 61.135.165.224
    > ns2.a.shifen.com: type A, class IN, addr 220.181.33.32
    > ns3.a.shifen.com: type A, class IN, addr 112.80.255.253
    > ns5.a.shifen.com: type A, class IN, addr 180.76.76.95
    <Root>: type OPT
         Name: <Root>
         Type: OPT (41)
         UDP payload size: 4096
         Higher bits in extended RCODE: 0x00
         EDNS0 version: 0
       7: 0x0000
           0... - DO bit: Cannot handle DNSSEC security RRs
            .000 0000 0000 0000 = Reserved: 0x0000
         Data length: 0
```


Part C dig

- dig is a flexible tool for interrogating DNS name servers.
 - It performs DNS lookups and displays the answers that are returned from the name server(s) that were queried.
 - Most DNS administrators use **dig** to troubleshoot DNS problems because of its flexibility, ease of use and clarity of output.

Bind is a Toolset which includes dig as a component Bind could be get from https://www.isc.org/bind/

Using dig

- A typical invocation of dig looks like: dig @server name type
 - server: the name or IP address of the name server to query. This can be an IPv4 address or an IPv6 address. When the supplied server argument is a hostname, dig resolves that name before querying that name server.
 - name: the name of the resource record that is to be looked up.
 - **Type** indicates what type of query is required: ANY, A, MX, SIG, etc. and A record is default when using dig.
 - Some useful options: -h, +tcp, +noedns, +bufsize,+trace, .etc.

Tip 1

Use nslookup command to check your local DNS server.

```
C:\Users\wqhrb>nslookup www.baidu.com
服务器: nsl.sustech.edu.cn
Address: 172.18.1.92
非权威应答:
名称: www.a.shifen.com
Addresses: 14.215.177.38
14.119.104.189
Aliases: www.baidu.com
```

- Some common public DNS server
 - 114 DNS Preferred address: 114.114.114.114, alternative address: 114.114.115.115
 - Baidu DNS IPv4 address:180.76.76.76, IPv6 address: 2400:da00::6666
 - Google Public DNS IPv4 address: 8.8.8.8, DNS IPv6: 2001:4860:4860::8888

Practice 5.1

把自己变成I ocal dns

- Make the query of "www.sina.com.cn" by using "dig" with option "+trace".
- Capture screenshots on the command and its output, answer the questions by analyzing the packets:
 - How many queries are sent form the local host? Do they share the same "transaction id"? 3, 不一样 0x05cd 0x05ae 0x0501
 - How many responses are received by local host? 3
 - what's the value of 'RD' field in query? what's the value of 'RA' field in response from the local DNS server? 0,0
 - which server sent the last response, is it the local DNS server of the local host or is it the Authoritative DNS server? 权威dns
 - List the name, IP address and port number of the server which sent the last response to the local host. www.sina.com.cn 183.60.92 53
 - · Is there any answer in the response? What's the value of 'AA' field in this response?
 - try the same query again

Tip 2

Use "ipconfig /displaydns" to list DNS buffer of local host.

Use "ipconfig /flushdns" to clear DNS buffer.

```
C:\Users\wq>ipconfig /flushdns
Windows IP 配置
已成功刷新 DNS 解析缓存。
```


Practice 5.2

- Make an DNS query for "www.bilibili.com" with 'EDNS0' option.
- Capture the packages using Wireshark and answer the following questions:
 - What is the content of the query message
 - what's the destination IP address and destination port of the query?
 - what's the name, type and class of this query?
 - what's the opcode of these query, what does it mean?
 - Is there any additional RR, what's the type of the RR?
 - What is the content of the response message
 - Is there any answers, what's life time of each answer?
 - Is there any authority RRs, what's the type of each RR?

Practice 5.3 Implement a DNS client

• Function:

- Invoke DNS queries.
 - Support common query types: A, AAAA, CNAME, NS, MX
 - EDNS implementation is not required.
 - Implement both queries with 'RD' equals to 0 and 1.
- Check out the response.
 - Display the answer, check who sends the answer? Whether the answer is from authority Name Server or not? How to judge that?
- Do the iterative query while 'RD' equals to 0 to get the desired answer which is identified in the query.

• Tips:

- using "dig" with "+trace" option to invoke the iterative query, using Wireshark to capture the packets of the iterative query.
- while using "dig" with "+trace" option, the desired answer may not be got. for example: the desired answer is A type record in query while "dig" ends the iterative query while it got the 1st answer which maybe the CNAME type.

Tip 3: Using dns.resolver of python(1)

Using pip to install dnspython

 pip is the package installer for Python. You can use pip to install packages from the Python Package index and other indexes.

A demo of using query of dns.resolver

If 'pip' is not installed on your computer, get it from https://pypi.org/project/pip/

Get more information about dnspython, get it from https://pypi.org/project/dnspython/

```
>>> import dns.resolver
>>> dns.resolver.query("www.baidu.com",'a')
<dns.resolver.Answer object at 0x000002316AF22860>
>>> a = dns.resolver.query("www.baidu.com",'a')
>>> a
<dns.resolver.Answer object at 0x000002316AF277F0>
>>> for i in a.response.answer:
... for j in i.items:
... print(j)
...
www.a.shifen.com.
163.177.151.110
163.177.151.109
>>>
```


Tip 3: Using dns.resolver of python(2)

query in dns.resolver of python

- query(self, qname, rdtype=1, rdclass=1, tcp=False, source=None, raise_on_no_answer=True, source_port=0)
 - Query nameservers to find the answer to the question.
 - The qname, rdtype, and rdclass parameters may be objects of the appropriate type, or strings that can be converted into objects of the appropriate type. E.g. For rdtype the integer 2 and the the string 'NS' both mean to query for records with DNS rdata type NS.

Parameters:

- qname (dns.name.Name object or string) the query name
- rdtype (int or string) the query type
- rdclass (int or string) the query class
- tcp (bool) use TCP to make the query (default is False).
- source (IP address in dotted quad notation) bind to this IP address (defaults to machine default IP).
- raise_on_no_answer (bool) raise NoAnswer if there's no answer (defaults is True).
- source_port (int) The port from which to send the message. The default is 0.

Tip 4: UDP socket progamming

UDP Server

```
dudp_c.py | dudp_s.py |

from socket import *
serverPort = 12000

serverSocket = socket(AF_INET, SOCK_DGRAM)
serverSocket.bind(('', serverPort))
print ("The server is ready to receive")

while True:
message, clientAddress = serverSocket.recvfrom(2048)
modifiedMessage = message.decode().upper()
serverSocket.sendto(modifiedMessage.encode(),clientAddress)
```

d:\python_test>python udp_s.py The server is ready to receive

UDP Client

```
indp_c.pyX indp_s.pyX

from socket import *
serverName = '127.0.0.1'
serverPort = 12000

clientSocket = socket(AF_INET, SOCK_DGRAM)
message = input('Input lowercase sentence:')
clientSocket.sendto(message.encode(),(serverName, serverPort))
modifiedMessage, serverAddress = clientSocket.recvfrom(2048)
print(modifiedMessage.decode())
clientSocket.close()
```

d:\python_test>python udp_c.py Input lowercase sentence:azs AZS

