a place of mind

ELEC 341: Systems and Control

Lecture 18

Nyquist stability criterion: Introduction

Course roadmap

Modeling

Laplace transform

Transfer function

Models for systems

- Electrical
- Electromechanical
- Mechanical
- Linearization, delay

Analysis

Stability

• Routh-Hurwitz

Time response

- ✓ Transient
 - Steady state

Frequency response

• Bode plot

Design

Design specs

Root locus

Frequency domain

PID & Lead-lag

Design examples

Matlab simulations

Frequency response (review)

- Steady state output $y_{ss}(t) = A |G(j\omega)| \sin(\omega t + \angle G(j\omega))$
 - ullet Frequency is same as the input frequency $\,\omega\,$
 - Amplitude is that of input (A) multiplied by $|G(j\omega)|$
 - Phase shifts $\angle G(j\omega)$

Gain

- Frequency response function (FRF): G(jω)
- Bode plot: Graphical representation of $G(j\omega)$

Stability of feedback system

Consider the feedback system

- Fundamental questions
 - If G and C are stable, is the closed-loop system always stable?
 - If G and C are unstable, is the closed-loop system always unstable?

Closed-loop stability criterion

 Closed-loop stability can be determined by the roots of the characteristic equation

$$1 + L(s) = 0, L(s) = G(s)C(s)$$

- Closed-loop system is stable if the Ch. Eq. has all roots in the open left half plane.
- How to check the closed-loop stability?
 - Computation of all the roots
 - Routh-Hurwitz stability criterion
 - Nyquist stability criterion: Open-loop FRF $L(j\omega)$ contains information of closed-loop stability.

Nyquist plot

Nyquist path

Nyquist plot

This plane is called $L(j\omega)$ -plane or w-plane.

Nyquist Plot or Polar Plot

- Nyquist Plots were invented by Nyquist who worked at Bell Laboratories, the premiere technical organization in the U.S. at the time.
- Nyquist Plots are a way of showing frequency responses of linear systems.
- There are several ways of displaying frequency response data, including Bode plots and Nyquist plots.
- Bode plots use frequency as the horizontal axis and use *two separate plots* to display amplitude and phase of the frequency response. This was covered earlier.
- Nyquist plots display both amplitude and phase angle on *a single plot*, using frequency as a parameter in the plot.
- Nyquist plots have properties that allow you to see whether a system is stable or unstable.

Nyquist Plot

- Simply put, a **Nyquist plot** is basically a **polar plot** of the frequency response function of a linear system.
- That means a Nyquist plot is a plot of the transfer function, G(s) with $s = j\omega$. Here, you will be plotting $G(j\omega)$.
- $G(j\omega)$ is a complex number for any angular frequency, ω , so the plot is a plot of complex numbers.
- The complex number, $G(j\omega)$, depends upon frequency, so frequency will be a parameter if you plot the imaginary part of $G(j\omega)$ against the real part of $G(j\omega)$.

Sketch the Polar Plot of Frequency Response

- To sketch the polar plot of $G(j\omega)$ for the entire range of frequency ω , i.e., from 0 to infinity, there are four key points that usually need to be known:
 - 1) The start of plot where $\omega = 0$,
 - 2) The end of plot where $\omega = \infty$,
 - 3) Where the plot crosses the real axis, i.e., $Im(G(j\omega)) = 0$, and
 - 4) Where the plot crosses the imaginary axis, i.e., $Re(G(j\omega)) = 0$.

Example 1: Polar Plot of Integrator

Consider a first order system, $G(s) = \frac{1}{s}$

Representing G(s) in the frequency response form $G(j\omega)$ by replacing $s = j\omega$:

$$G(j\omega) = \frac{1}{j\omega} = \frac{-j}{\omega}$$

The magnitude of $G(j\omega)$, i.e., $|G(j\omega)|$, is obtained as $|G(j\omega)| = 1/\omega$

The phase of $G(j\omega)$, denoted by, ϕ , is obtained as $\angle G(j\omega) = -90^{\circ}$

$$\angle G(j\omega) = -90^{\circ}$$

Example 1 (cont'd): Polar Plot of Integrator

$$G(s) = \frac{1}{s}$$

Nyquist plot:

Example 2: Polar Plot of First Order System

Consider a first order system $G(s) = \frac{1}{1 + sT}$ where T is the time constant.

Representing G(s) in the frequency response form $G(j\omega)$ by replacing $s = j\omega$:

$$G(j\omega) = \frac{1}{1 + j\omega T}$$

The **magnitude** of $G(j\omega)$, i.e., $|G(j\omega)|$, is obtained as;

$$|G(j\omega)| = \frac{1}{\sqrt{1 + \omega^2 T^2}}$$

The **phase** of $G(j\omega)$, denoted by, ϕ , is obtained as;

$$\angle G(j\omega) = -\arctan(\omega T)$$

Example 2 (cont'd): Polar Plot of First Order System

The start of plot where $\omega = 0^+$

$$|G(j\omega)| = \frac{1}{\sqrt{1+0}} = 1$$

$$|G(j\omega)| = \frac{1}{\sqrt{1+0}} = 1$$
, For $\omega = 0^+$: $\angle G(j, 0^+) = -\tan^{-1}(0^+, T) = 0^\circ$

The end of plot where $\omega = +\infty$

$$|G(j\omega)| = \frac{1}{\sqrt{1+\infty}} = 0$$

$$|G(j\omega)| = \frac{1}{\sqrt{1+\infty}} = 0$$
, For $\omega = +\infty$: $\angle G(j.(+\infty)) = -\tan^{-1}(+\infty.T) = -90^\circ$

The mid part of plot where $\omega = 1/T$

$$|G(j\omega)| = \frac{1}{\sqrt{1+1}} = \frac{1}{\sqrt{2}}$$
, For $\omega = \frac{1}{T}$: $\angle G(j, \frac{1}{T}) = -\tan^{-1}(\frac{1}{T}, T) = -\tan^{-1}(1) = -45^{\circ}$

Example 2 (cont'd): Polar Plot of First Order System

	$ G(j\omega) $	$\angle G(j\omega)$
$\omega = 0^+$	1	0
$\omega = \frac{1}{T}$	$\frac{1}{\sqrt{2}}$	-45°
$\omega = + \infty$	0	-90°

Bode Plot

Polar Plot

Example 2 (cont'd): Polar Plot of First Order System

Nyquist plot:

For T = 2.

Example 3: (Bode & Nyquist plots)

• First order system $L(s) = \frac{1}{s+1}$

Example 4: (Bode & Nyquist plots)

• Second order system $L(s) = \frac{1}{(s+1)^2}$

Example 5: (Bode & Nyquist plots)

• Third order system $L(s) = \frac{1}{(s+1)^3}$

Nyquist stability criterion

CL system is stable $\Leftrightarrow Z = P + N = 0$

Z: # of CL poles in open RHP

P: # of OL poles in open RHP (given)

N: # of clockwise/counterclockwise encirclement of -1 by Nyquist plot of OL transfer function L(s) (counted by using Nyquist plot of L(s))

Remark: A negative value for N means a counterclockwise encirclement. For example, N = -2 means we encircle point -1 twice and in counterclockwise direction.

Encirclements in Nyquist plot

Clockwise

Counter-clockwise

Remark

• If Nyquist plot passes the point -1, it means that the closed-loop system has a pole on the imaginary axis (and thus, marginally stable).

Example 6 (for 2nd order *L*(*s*))

Example 7 (for 3rd order *L*(*s*))

How to count # of encirclement

- A ray is drawn from -1 point in any convenient direction. Then,
- N=(# of crossing of ray by Nyquist plot in clockwise direction) -(# of crossing of ray by Nyquist plot in counterclockwise direction)

Notes on Nyquist stability criterion

- Nyquist stability criterion allows us to determine the stability of CL system from knowledge of the OL system.
- It can deal with time delay (next lecture), which Routh-Hurwitz criterion cannot.
- We often draw only half of Nyquist plot. The other half is mirror image with respect to real axis.
- Nyquist plot in MATLAB: nyquist(sys).

Example 8 (for unstable *L*(*s*))

$$L(s) = \frac{8}{(s-1)(s+2)(s+3)}$$

Example 8 (for unstable L(s), cont'd)

$$L(s) = \frac{11}{(s-1)(s+2)(s+3)}$$

$$P = 1, N = 1 \Rightarrow CL$$
 unstable

$$P = 1, N = 0 \Rightarrow CL$$
 unstable

Example 8 (for unstable *L*(*s*), cont'd): Interpretation by root locus

Nyquist criterion: A special case

CL system is stable $\Leftrightarrow Z = P + N = 0$

• If P = 0 (i.e., if L(s) has no pole in open RHP)

CL system is stable $\Leftrightarrow N = 0$

This fact is very important since open-loop systems in many practical problems have no pole in open RHP!

Example 9 (when P = 0)

$$L(s) = \frac{1}{(s+1)^3} \text{ Im}$$

$$-1$$

$$L(j\omega)$$

$$L(s) = \frac{15}{(s+1)^3} \text{ Im}$$

$$-1$$

$$L(j\omega)$$

CL stable

CL unstable

Example 10 (for stable L(s), cont'd)

$$L(s) = \frac{20}{(s+1)(s+2)(s+3)}$$

$$L(s) = \frac{100}{(s+1)(s+2)(s+3)}$$

Example 10 (Interpretation by root locus, cont'd)

Example 11

a place of mind

Sketch the Nyquist diagram for the system shown in the following figure, and then determine the system stability using the Nyquist criterion.

The open-loop transfer function:
$$G(s)H(s) = \frac{500}{(s+1)(s+3)(s+10)}$$
.

Replacing s with $j\omega$ yields the frequency response of G(s)H(s), i.e.,

$$G(j\omega)H(j\omega) = \frac{500}{(j\omega+1)(j\omega+3)(j\omega+10)} = \frac{500}{(-14\omega^2+30)+j(43\omega-\omega^3)}$$
$$= 500 \frac{(-14\omega^2+30)-j(43\omega-\omega^3)}{(-14\omega^2+30)^2+(43\omega-\omega^3)^2} \longrightarrow \text{(a)}$$

Example 11 (cont'd)

LXample 11 (co

Magnitude response:

$$|G(j\omega)H(j\omega)| = \sqrt{\text{Re}^2 + \text{Im}^2} = \frac{500}{\sqrt{(-14\omega^2 + 30)^2 + (43\omega - \omega^3)^2}}$$

Phase response:

$$\angle G(j\omega)H(j\omega) = \tan^{-1}\left(\frac{\operatorname{Im}}{\operatorname{Re}}\right) = \tan^{-1}\left(\frac{-\left(43\omega - \omega^3\right)}{-14\omega^2 + 30}\right)$$

Now that when we have expressions for the magnitude and phase of the frequency response, we can sketch the polar plot using the 4 key points.

Point 1: The start of plot where $\omega = 0$

$$|G(0)H(0)| = \frac{500}{\sqrt{(30)^2}} = 16.67$$
 $\angle G(0)H(0) = \tan^{-1}\frac{0}{30} = 0^{\circ}$

Example 11 (cont'd)

Point 2: The end of plot where $\omega = \infty$

$$|G(\infty)H(\infty)| = \frac{500}{\sqrt{\infty}} = 0$$

$$\angle G(\infty)H(\infty) = \tan^{-1}\infty = -270^{\circ}$$

Point 3: Where the plot crosses the real axis, i.e., $Im(G(j\omega)H(j\omega)) = 0$

Take the imaginary part of equation (a), and set it equal to zero, to get the value of frequency ω at the interception of real axis:

$$\frac{-(43\omega - \omega^3)}{(-14\omega^2 + 30)^2 + (43\omega - \omega^3)^2} = 0 \Rightarrow \begin{cases} 43\omega - \omega^3 = 0 & \Rightarrow \omega = 0 \text{ and } \omega = 6.56 \text{ rad/s} \\ \omega = \infty \end{cases}$$

Example 11 (cont'd)

Point 4: Where the plot crosses the imaginary axis, $Re(G(j\omega)H(j\omega)) = 0$

Take the real part of equation (a), and set it equal to zero, to get the value of frequency ω at the interception of imaginary axis:

$$\frac{-14\omega^2 + 30}{(-14\omega^2 + 30)^2 + (43\omega - \omega^3)^2} = 0 \Rightarrow \begin{cases} -14\omega^2 + 30 = 0 & \Rightarrow \omega = 1.46 \text{ rad/s} \\ \omega = \infty \end{cases}$$

Key Points of the polar plot:

	GH	∠GH	
$\omega = 0$	16.67	0°	
$\omega = \infty$	0	-270°	
Re Crossing:			
$\omega = 0$	16.67	0°	
$\omega = \infty$	0	-270°	
$\omega = 6.56 \text{ rad/s}$	0.874	-180°	
Im Crossing:			
$\omega = \infty$	0	-270°	
$\omega = 1.46 \text{ rad/s}$	8.36	-90°	

Nyquist diagram

P=0, N=0 (no encirclements of -1). So based on Z=P+N=0 (CL is stable).

a place of mind

Summary

- Nyquist stability criterion for feedback stability
- Examples for Nyquist stability criterion
- Next
 - Relative stability