Universität des Saarlandes Fakultät für Mathematik und Informatik Fachrichtung Mathematik

Prof. Dr. Roland Speicher Dr. Tobias Mai

Präsenzübungen zur Vorlesung Höhere Mathematik für Ingenieure I Wintersemester 2020/21

Blatt 5 A

 $L\"{o}sungshinweise$

Aufgabe 1: Finden Sie Polynome q und r mit der Eigenschaft

$$x^4 + 3x^3 + 4x^2 + 4x + 1 = (2x^3 + 2x^2 + 3x + 1)q(x) + r(x).$$

Lösung: Durch Polynomdivision erhalten wir

$$\left(\begin{array}{c} x^4 + 3x^3 + 4x^2 + 4x + 1 \\ -x^4 - x^3 - \frac{3}{2}x^2 - \frac{1}{2}x \\ \hline 2x^3 + \frac{5}{2}x^2 + \frac{7}{2}x + 1 \\ -2x^3 - 2x^2 - 3x - 1 \\ \hline \frac{1}{2}x^2 + \frac{1}{2}x \\ \hline \end{array} \right) = \frac{1}{2}x + 1 + \frac{\frac{1}{2}x^2 + \frac{1}{2}x}{2x^3 + 2x^2 + 3x + 1}$$

und damit

$$q(x) = \frac{1}{2}x + 1$$
 und $r(x) = \frac{1}{2}x^2 + \frac{1}{2}x$.

Aufgabe 2: Beweisen Sie die Identität

$$\cos^2(x) = \frac{1}{1 + \tan^2(x)} \quad \text{für alle } x \in (-\pi/2, \pi/2)$$

und folgern Sie, dass

$$\cos(\arctan(x)) = \frac{1}{\sqrt{1+x^2}}$$
 für alle $x \in \mathbb{R}$.

Lösung: Für $x \in (-\pi/2, \pi/2)$ gilt wegen

$$\sin^2(x) + \cos^2(x) = 1,$$

dass

$$\frac{1}{1+\tan^2(x)} = \frac{1}{1+\frac{\sin^2(x)}{\cos^2(x)}} = \frac{\cos^2(x)}{\cos^2(x) + \sin^2(x)} = \cos^2(x).$$

Da arctan: $\mathbb{R} \to (-\pi/2, \pi/2)$ die Umkehrfunktion von tan: $(-\pi/2, \pi/2) \to \mathbb{R}$ ist, gilt

$$\tan(\arctan(x)) = x$$

für alle $x \in \mathbb{R}$. Beachtet man, dass $\cos\left((-\pi/2, \pi/2)\right) \subseteq [0, \infty)$, so lässt sich aus der obigen Identität folgern, dass

$$\cos(\arctan(x)) = \sqrt{\cos^2(\arctan(x))} = \sqrt{\frac{1}{1 + \tan^2(\arctan(x))}} = \frac{1}{\sqrt{1 + x^2}}$$

für alle $x \in \mathbb{R}$.

Aufgabe 3: Es seien $I \subseteq \mathbb{R}$ ein Intervall, $f: I \to \mathbb{R}$ eine streng monoton wachsende (fallende) Funktion und J := f(I) das Bild von f. Zeigen Sie, dass $f: I \to J$ bijektiv ist und dass die Umkehrfunktion $f^{-1}: J \to I$ streng monoton wachsend (fallend) ist.

Lösung: Wir behandeln den Fall, dass f streng monoton wachsend ist. Der Fall, dass f streng monoton fallend ist, wird analog durch Vertauschen aller Ordnungszeichen bewiesen.

Es seien $x_1, x_2 \in I$ mit $x_1 \neq x_2$. Dann gilt entweder $x_1 > x_2$ oder $x_1 < x_2$, sodass entweder $f(x_1) > f(x_2)$ oder $f(x_1) < f(x_2)$ gilt, da f streng monoton wachsend ist. In jedem Fall gilt $f(x_1) \neq f(x_2)$, sodass f injektiv (und damit $f: I \to J$ bijektiv) ist.

Nun seien $y_1, y_2 \in J$ mit $y_1 < y_2$. Dann gibt es $x_1, x_2 \in I$ mit $f(x_1) = y_1$ und $f(x_2) = y_2$. Da f streng monoton wachsend ist, muss $x_1 < x_2$ gelten, weil sich sonst ein Widerspruch zu $f(x_1) = y_1 < y_2 = f(x_2)$ ergeben würde. Damit gilt also $f^{-1}(y_1) = x_1 < x_2 < f^{-1}(y_2)$. Somit ist f^{-1} streng monoton wachsend.

Aufgabe 4: Geben Sie ein Beispiel für eine surjektive gerade Funktion $f: \mathbb{R} \to \mathbb{R}$.

Hinweis: Finden Sie zunächst eine surjektive Funktion $g:(0,\infty)\to\mathbb{R}$.

Lösung: Eine surjektive (und sogar bijektive) Funktion $g:(0,\infty)\to\mathbb{R}$ ist gegeben durch $g(x)=\ln(x)$. Diese setzen wir durch Spiegelung an der y-Achse zu einer geraden und surjektiven (jedoch nicht mehr injektiven) Funktion $\tilde{g}:\mathbb{R}\setminus\{0\}\to\mathbb{R}, x\mapsto\ln(|x|)$ fort. Schließlich setzen wir \tilde{g} durch einen beliebigen Wert in 0 zu einer geraden und nach wie vor surjektiven Funktion auf ganz \mathbb{R} fort. Beispielsweise hat damit

$$f \colon \mathbb{R} \longrightarrow \mathbb{R}, \quad x \longmapsto \begin{cases} \ln(|x|), & x \neq 0 \\ 0, & x = 0 \end{cases}$$

die gewünschten Eigenschaften.

Eine Funktion, die von der gleichen Bauart ist und ebenfalls die geforderten Eigenschaften besitzt, ist

$$f \colon \mathbb{R} \longrightarrow \mathbb{R}, \quad x \longmapsto x \sin(x).$$

Tatsächlich stellt f eine gerade und offensichtlich surjektive Funktion dar.

