6.006	Lecture 7	Sept. 29, 2011
Today: Linear-Time Sorting - comparison model		
- lower be	sunds:	
- O(n) sor	ing: 12 (n lg n) ting algorithms ting sort	(for small integers)
- vadi>	(Sort	Stheorem Sproof
Lower bounds - searching items re	g among n prep	rocessed n) time
→ bin	ary search. All.	tree search optimal ves S2(n lg n), rt. AVL sort optimal
Comparison - input it	model of comp ems are black support comparis	boxes (ADTs) sons (<1>1 ≤1etc.) risons
- time c	ost = # compa	risons

Search lower bound:

- # leaves > # possible answers

> n (at least 1 per A[i7) - decision tree is binary

height $\geq \lg \Theta(n) = \lg n \pm \Theta(1)$ Sorting lower bound:

- leaf specifies answer as permutation: $A[3] \leq A[1] \leq A[9] \leq -$ - all n' are possible answers ⇒#leaves ≥ n \Rightarrow height $\geq \log n!$ = $\log (1 \cdot 2 \cdot \cdots \cdot (n-1) \cdot n)$ = $\log 1 + \log 2 + \cdots + \log (n-1) + \log n$ 2 lg i > 5 lg i $\geq \frac{2}{2} \left(\frac{1}{2} \right) = \frac{1}{2} - 1$ = \frac{1}{2} lg n - \frac{1}{2} = \frac{1}{2} (n lg n) in fact lg n! = nlgn - O(n) via: Sterling's formula: $n! \sim \sqrt{2\pi n'} \left(\frac{n}{e}\right)^h$ $\Rightarrow \lg n! \sim n \lg n - (\lg e) n + \frac{1}{2} \lg n + \frac{1}{3} \lg (2\pi)$ Linear-time sorting: stitting in a word if n keys are integers $\in \{0,1,\dots,k-1\}$, can do more than compare them \Rightarrow lower bounds don't apply - if $k = n^{O(1)}$, can sort in O(n) time OPEN: O(n) time possible for all k? Counting Sorti

- L = array of k empty lists } O(k)

linked or Python lists? - for j in range(n):

L[key(A[j])]-append(A[j]) 30(1) 30(1)

random access using integer key

output = []

for i in range(k):

output.extend(L[i]) = O(k+n) Time: O(n+k)
-also O(n+k) space Intuition: count key occurrences using RAM output (count) copies of each key in order -- but item is more than just a key CLRS has cooler implementation of counting sort with counters, no lists ~ but time bound is the same

Radix sort: - imagine each integer in base b

all log k digits & {0,1,...,b-1}

- sort by least significant digit > can

- sort by most significant digit (0(1) time

5 sort must be stable:

preserve relative order of items

with the same key > don't mess up previous sorting 7348346 2535523 2 9 5 5 7344638 **3 5** 9779605 3 468473 5 3 53325 4577 7277 720 839 Sorted - use counting sort for digit sort $\Rightarrow \Theta(n+b)$ per digit $\Rightarrow \Theta((n+b)d) = \Theta((n+b)\log_b k)$ total time — minimized when b=n $\Rightarrow \Theta(n \log_n k)$ = O(nc) if $k \le n^c$

MIT OpenCourseWare http://ocw.mit.edu

6.006 Introduction to Algorithms Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.