Qualifying Exam: Analysis

Spring 2012. January 18, 6:00 p.m. to 9:00 p.m.

Examiners: Prof. Bob Burckel and Prof. Marianne Korten

Name:			
rvame:			

1. Let E be a Lebesgue measurable set in \mathbb{R}^n , λ_n be the Lebesgue measure in \mathbb{R}^n , and $\{f_k\}$ be a sequence of measurable real-valued functions on E. Show that if there exists $\phi \in L^1(E)$ such that $|f_k| \leq \phi$ a.e. for all k, then

$$\int_{E} \limsup_{k \to \infty} f_k \ge \limsup_{k \to \infty} \int_{E} f_k.$$

- 2. Let $E \subset \mathbb{R}^2$ be Lebesgue measurable such that for λ_1 a.e. $x \in \mathbb{R}$, $E_x = \{y \in \mathbb{R} : (x,y) \in E\}$ is a λ_1 null set. Show that E is a λ_2 null set and for λ_1 a.e. $y \in \mathbb{R}$, $E^y = \{x \in \mathbb{R} : (x,y) \in E\}$ is a λ_1 null set too.
- 3. Prove that if $f_k \to f$ in L^p , $1 \le p < \infty$, $g_k \to g$ pointwise, and $|g_k| \le M$ for all k, then $f_k g_k \to f g$ in L^p .
- 4. Let B(0,1) be the unit ball in \mathbb{R}^n , χ its indicator function, λ_n the Lebesgue measure in \mathbb{R}^n . Let $K(x) = \frac{\chi(x)}{\lambda_n(B(0,1))}$ for $x \in \mathbb{R}^n$, and $K_{\epsilon}(x) = \frac{1}{\epsilon^n}K(x/\epsilon)$. Let $L^1_{loc}(\mathbb{R}^n)$ stand for the set of Lebesgue measurable functions that are integrable over each compact subset of \mathbb{R}^n . Prove in detail that for every $f \in L^1_{loc}(\mathbb{R}^n)$ and every Lebesgue point x of f

$$\lim_{\epsilon \to 0} (f * K_{\epsilon})(x) = f(x).$$

5. (i) Using the identity $\cos t = (\exp it + \exp(-it))/2$, show that for a > 1

$$\int_0^{2\pi} \frac{1}{a + \cos t} dt = -2\pi i \int_{|z|=1} \frac{1}{z^2 + 2az + 1} dz,$$

where the unit circle is parameterized in the counterclockwise direction.

(ii) Using (i) and the residue theorem, find the numerical value of this integral.

6. Let Ω be an open connected subset of the complex plane \mathcal{C} , and f be holomorphic in Ω . Suppose that f has a continuous logarithm F, that is, $F:\Omega \to \mathcal{C}$ is continuous and $f=\exp F$. Prove that necessarily F is holomorphic and find F'.

Hints: You may assume f is not constant. Then if $z, z_0 \in \Omega$ and $0 < |z - z_0|$ is sufficiently small, $f(z) \neq f(z_0)$ (why?), so $F(z) \neq F(z_0)$ and we have (why?)

$$\frac{F(z) - F(z_0)}{z - z_0} = \frac{f(z) - f(z_0)}{z - z_0} \left(\frac{\exp F(z) - \exp F(z_0)}{F(z) - F(z_0)}\right)^{-1}.$$
 (*)

As $z \to z_0$ in (*), $F(z) \to F(z_0)$ (why?) and the parenthetic quotient does what?

7. Let $I\!\!D = \{z \in I\!\!C : |z| < 1\}$. Prove that there is no continuous logarithm in $I\!\!D \setminus \{0\}$, that is, no continuous function $L : I\!\!D \setminus \{0\} \to I\!\!C$ satisfies $\exp L(z) = z$ for all $z \in I\!\!D \setminus \{0\}$.

Hint: According to the preceding problem, any such L would be holomorphic. What does this say about $\int_{|z|=1/2} \frac{1}{z} dz$?

- 8. The function f is holomorphic in $\mathbb{D} \setminus \{0\}$.
 - (i) Define the residue of f at 0 and describe how to compute it.
 - (ii) Show that for this number, call it c, the function f(z) c/z has a primitive, that is, f(z) c/z = F'(z) for some holomorphic function F(z).

Hint: f(z) has a series representation in (positive and negative) integer powers z^n (why?). Which z^n have primitives in $\mathbb{D} \setminus \{0\}$? (Recall the preceding problem.)