Introduzione a UML

versione 19 marzo 2010

© Adriano Comai http://www.analisi-disegno.com

Obiettivo di questa introduzione

- fornire alcuni elementi di base su UML
- introdurre i diagrammi
- fornire indicazioni sulle modalità di utilizzo di UML
- ⇒ questi temi sono approfonditi, con esercitazioni, nel corso "Sviluppo di applicazioni con UML":

http://www.analisi-disegno.com/a_comai/corsi/sk_uml.htm

Unified Modeling Language (UML)

- linguaggio (e notazione) universale, per rappresentare qualunque tipo di sistema (software, hardware, organizzativo, ...)
- standard OMG (Object Management Group), dal nov.1997
- originatori:
 - Grady Booch
 - Ivar Jacobson
 - Jim Rumbaugh

Cos'è UML (e cosa non è)

- è un linguaggio di rappresentazione dei sistemi
- serve a specificare le caratteristiche di un nuovo sistema, oppure a documentarne uno già esistente
- è uno strumento di comunicazione tra i diversi ruoli coinvolti nello sviluppo e nell'evoluzione dei sistemi

UML non è una "metodologia"

- è un linguaggio, non un metodo completo
- notazione, sintassi e semantica sono standard
- ma UML non è legato ad uno specifico processo, e non fornisce indicazioni sul proprio utilizzo
- quindi può essere (ed è) utilizzato da persone e gruppi che seguono approcci diversi (è "<u>indipendente</u> <u>dai metodi</u>")

UML come standard

- è stato definito con il contributo di molti metodologi, e delle più importanti società di software mondiali
- la sua evoluzione è a carico dell'OMG, e soggetta a procedure ben definite per ogni cambiamento
 - > versione attuale: 2.2
 - documenti ufficiali: http://www.omg.org

Storia versioni di UML

novembre 1997: 1.1

dicembre 1998: 1.2

giugno 1999: 1.3

maggio 2001: 1.4

marzo 2003: 1.5

agosto 2005: 2.0

aprile 2006: 2.1

maggio 2008: 2.2

Diagrammi UML (versioni 1.x)

diagrammi "strutturali": diagramma delle classi (class) diagramma dei componenti (component) diagramma di distribuzione (deployment) implementation

diagrammi "comportamentali":

```
diagramma dei casi d'uso (use case)
diagramma di sequenza (sequence)
diagramma di collaborazione (collaboration)
diagramma di stato (statechart)
diagramma delle attività (activity)
```

Diagrammi UML (versioni 2.x)

diagrammi "strutturali":

diagramma delle classi (class)

diagramma degli oggetti (object)

diagramma dei componenti (component)

diagramma delle strutture composite (composite structure)

diagramma di deployment (deployment)

diagramma dei package (package)

diagrammi "comportamentali":

diagramma dei casi d'uso (use case)

diagramma di stato (statechart)

diagramma delle attività (activity)

diagrammi "comportamentali di interazione":

diagramma di sequenza (sequence)

diagramma di comunicazione (communication)

diagramma dei tempi (timing)

diagramma di sintesi dell'interazione (interaction overview)

hanno molti aspetti in comune

hanno molti

aspetti in comune

Package diagram

UML 2.0

in UML 1.x non è un diagramma "ufficiale"

Class diagram

Object diagram

UML 2.0

in UML 1.x non è un diagramma "ufficiale"

Component diagram

Composite structure diagram

Deployment diagram

Use case diagram

Activity diagram

Statechart diagram

in UML 1.x si chiama "collaboration"

Communication diagram

Interaction overview diagram

Timing diagram

UML: meta-modello e diagrammi

- UML è basato su un meta-modello integrato, composto da numerosi elementi, collegati tra loro secondo regole precise
- utilizzando gli elementi del meta-modello è possibile creare i modelli per i sistemi da rappresentare
- molti elementi hanno una icona che li rappresenta graficamente
- gli elementi del meta-modello possono comparire in diagrammi di diverso tipo
- le regole permettono verifiche di correttezza

Strumenti: visual modeling UML

Una lista molto parziale (ne esistono decine...)

- Rose; Rational Modeler ed Architect (IBM Rational)
- Together (Borland)
- Visio (Microsoft)
- TAU (IBM Telelogic)
- Objecteering (Softeam)
- Poseidon (Gentleware)
- Enterprise Architect (Sparx Systems)
- Magic Draw (No Magic)
- Argo (open source)
- StarUML (open source)

Strumenti UML: criteri di scelta

Tra i fattori da considerare:

- costo
- aderenza allo standard UML
- supporto al lavoro di gruppo
- generazione codice / reverse engineering
- integrazione con altre tipologie di strumenti:
 - gestione requisiti
 - programmazione (IDE)
 - gestione test
 - gestione configurazione

UML è complesso

- intende rappresentare qualunque tipo di sistema software, a diversi livelli di astrazione
- il numero degli elementi è elevato, e in molti casi è possibile scegliere tra forme di rappresentazione diverse
- UML non suggerisce, né tantomeno prescrive una sequenza di realizzazione dei diversi diagrammi
- offre un'ampia gamma di possibili modalità di utilizzo, tra le quali i progettisti sono liberi di scegliere

UML va adattato alle proprie esigenze

Tra i fattori da considerare:

- settore di attività (es. militare, finanziario)
- tipologia di progetto (rischio, complessità)
- processo di sviluppo adottato
- esigenze di conformità a norme e standard
- comunicazione con committenti e stakeholders
- comunicazione con fornitori
- composizione e distribuzione del gruppo di lavoro

⇒ non ha senso che tutti usino UML nello stesso modo

UML in sintesi

- è uno standard: uniformità nei concetti e nelle notazioni utilizzate, interoperabilità tra strumenti di sviluppo, indipendenza dai produttori, dalle tecnologie, dai metodi
- è articolato: può rappresentare qualunque sistema software, a diversi livelli di astrazione
- è complesso: va adattato ("ritagliato") in base alle specifiche esigenze dei progettisti e dei progetti, utilizzando solo ciò che serve nello specifico contesto

Video: come si usa UML

- Prima parte Cosa è UML:
 - 1) http://www.youtube.com/watch?v=alMsj1Tssbo
 - 2) http://www.youtube.com/watch?v=kxfBpQofTWA
- Seconda parte UML in pratica:
 - 3) http://www.youtube.com/watch?v=P2DkCyyJzYg
 - 4) http://www.youtube.com/watch?v=8t_qga7CEjw
 - 5) http://www.youtube.com/watch?v=_LNp-Ogtopo

Bibliografia

- Jim Rumbaugh, Ivar Jacobson, Grady Booch: The Unified Modeling Language Reference Manual (2nd Edition) -Addison Wesley 2005
- Bruce Powel Douglass: Real Time UML (3nd Edition) Addison Wesley 2004
- Martin Fowler: *UML Distilled* (3nd Edition) Addison Wesley 2003
- Robert Martin : UML for Java Programmers Prentice Hall 2003
- Craig Larman : Applying UML and Patterns (3nd Edition) -Prentice Hall 2005
- ⇒ http://www.omg.org

Grazie per l'attenzione!

Per approfondimenti e altri materiali:

http://www.analisi-disegno.com