o4 – Spatial Demography Concepts and Databases II

J.S. Onésimo Sandoval Sociology Saint Louis University

Outline

- Education Attainment Index
- Theil Index of Income Inequality
- GINI Coefficient of Income Inequality
- Normalization of variables and Creating an Index

EDUCATION ATTAINMENT INDEX

Education Attainment

Let's say that 85% of the U.S adult population had at least high school diploma, 27.7% had a bachelor's degree, and 10.2% had a graduate degree.

The education attainment score is

$$.85 + .277 + .102 = 1.228$$
.

Note:

Maximum score is 3

Minimum score is 0

You should scale the score for ease of interpretation

Saint Louis City (2006-2010 ACS) 80.6% had at least a high school diploma 26.9% had at least a bachelor's degree 04.0% had at least a graduate degree.

The education score is .806+.269+.040=1.115.

STATA Code

1. Educational Attainment for Population 25

Years and Over

Universe: Population 25 Years and Over

Name: T₂₅

Variables:

To25_ooi: Population 25 Years and Over:

To25_002: Less than High School To25_003: High School Graduate

(Includes Equivalency)

To25 004: Some College

To25_005: Bachelor's Degree

To25_006: Master's Degree

To25_007: Professional School Degree

To25_oo8: Doctorate Degree

*EDUCATION ATTAINMENT.

gen Eo3=To25_003/To25_001

gen E04=T025_004/T025_001

gen E05=T025_005/T025_001

gen Eo6=To25_006/To25_001

gen E07=T025_007/T025_001

gen Eo8=To25_008/To25_001

gen ED_HS=(E03+E04+E05+E06+E07+E08)

gen ED_BS=(E05+E06+E07+E08)

gen ED_GD=(Eo6+Eo7+Eo8)

gen ED_TOT=ED_HS+ED_BS+ED_GD

INCOME INEQUALITY

Lorenz Curve

- Lorenz Curve
 - Max O. Lorenz
 - 1905
 - Represent inequality of the wealth distribution
 - Measures inequalities in the distribution of wealth or income
 - Depict the state of concentration of population and of other demographic aggregates'

Lorenz/Concentration Curve for Well-Being

Gini Concentration Ratio

- Corrado Gini 1912
- Measures the proportion of the total area under the diagonal that lies in the area between the diagonal and the Lorenz Curve.

Gini Concentration Ratio

- The coefficient varies between
- o which reflects complete equality
- 1 which indicates complete inequality
- (one person has all the income or consumption, all others have none).
- The Gini coefficient can be used to indicate how the distribution of income has changed within a country over a period of time
- It can be used to compare income distributions across different population sectors as well as countries

GINI Coefficient

$$G_i = 1 - \sum_{i=1}^{N} (X_i - X_{i-1})(Y_i + Y_{i+1})$$

- X=Cum. Per. of Income Distribution (i.e, households or family)
- Y=Cum. Per. of Aggregate Income Distribtuion (need to use midpoint)

Theil-index

- While less commonly used than the Gini coefficient, the Theil-index of inequality has the advantage of being additive across different subgroups or regions in the country.
- The Theil index, however, does not have a straightforward representation and lacks the appealing interpretation of the Gini coefficient.
- The Theil index is part of a larger family of measures referred to as the General Entropy class.

Theil Income Inequality T statistic

$$H_{(y)} = \sum_{i=1}^{m} \left\{ \left(\frac{p_i}{P} \right) * \left(\frac{y_i}{\mu} \right) * \ln \left(\frac{y_i}{\mu} \right) \right\}$$

where:

p_i is the population of the group i,

P is the total population,

y_i is the average income in group i,

 μ is the average income across the entire population

Decomposition of the Global City Index

- The sum of the neighborhoods will equal the index for the city
- Between Income Groups (within tracts)
- Within Income Groups (Between tracts)
- For example
- .146 is the index for a city, we may ask how much of the inequality is within the tracts or between the tracts
 - (1) Calculate the weights for each tract P_{I}
 - (2) Calculate the between group score $A = H_y * P_L = .062$ (43%)
 - (3) Calculate the within group score $B = P_{I_i} * \ln \left(P_{I_i} * \left(\sum_{i=1}^{5} IG / IG_i \right) \right) = .084 (57\%)$

Example of Theil Income Inequality

Mid Point Average						Total	Average	Inequality
Income	\$25,000	\$45,000	\$60,000	\$75,000	\$95,000	Population	Income	Within Tract
Neighborhood 1	130	1	1	1	47	180	\$43,861	0.213
Neighborhood 2	20	40	60	40	20	180	\$60,000	0.054
Neighborhood 3	0	0	0	0	180	180	\$95,000	0.000
Neighborhood 4	180	0	0	0	0	180	\$25,000	0.000
Neighborhood 5	36	36	36	36	36	180	\$60,000	0.085

Example NH 2 - Individuals in the top two income groups contribute positive elements. Individuals in the middle income group contributes nothing to the Theil's T Statistic because the group average salary is equal to the population average. Individuals in the bottom two groups contribute negative elements

STATA Code – Part 1 – Calculate Midpoint for the Income Group

2. Household Income (In <DollarYear> Inflation Adjusted Dollars)

To56_017:

*compute midpoint values for each income Universe: Households category aka as Yi. T56 Name: Variables: gen mpo1=5000 To56 ooi: Households: gen mpo2=12499 To56 002: Less than \$10,000 gen mpo3=17499 To56 003: \$10,000 to \$14,999 gen mpo4=22499 To56_004: \$15,000 to \$19,999 gen mpo5=27499 To56_005: \$20,000 to \$24,999 gen mpo6=32499 To56_006: \$25,000 to \$29,999 gen mpo7=37499 To56_007: \$30,000 to \$34,999 gen mpo8=42499 To56 008: \$35,000 to \$39,999 To56_009: \$40,000 to \$44,999 gen mpo9=47499 To56_010: \$45,000 to \$49,999 gen mp10=54499 To56_011: \$50,000 to \$59,999 gen mp11=67499 To56_012: \$60,000 to \$74,999 gen mp12=87499 To56_013: \$75,000 to \$99,999 gen mp13=112499 To56_014: \$100,000 to \$124,999 gen mp14=137499 To56_015: \$125,000 to \$149,999 gen mp15=174999 To56 016: \$150,000 to \$199,999 gen mp16=325000

\$200,000 or More

Data and Methods

• Theil Income Inequality T statistic

$$H_{(y)} = \sum_{i=1}^{m} \left\{ \left(\frac{p_i}{P} \right) * \left(\frac{y_i}{\mu} \right) * \ln \left(\frac{y_i}{\mu} \right) \right\}$$

where:

p_i is the population of the group i,

P is the total population,

y_i is the average income in group i,

 μ is the average income across the entire population

STATA Code – Part 2 – Calculate Average Income for census tracts

2. Household Income (In <DollarYear> Inflation Adjusted Dollars)

Universe: Households

T56 Name:

Variables:

To₅6_oo₁: Households:

Less than \$10,000 To56 002:

To56 003: \$10,000 to \$14,999

To56_004: \$15,000 to \$19,999

To56_005: \$20,000 to \$24,999

To56_006: \$25,000 to \$29,999

To56_007: \$30,000 to \$34,999

To56 008: \$35,000 to \$39,999

To56_009: \$40,000 to \$44,999

To56_010: \$45,000 to \$49,999

To56_011: \$50,000 to \$59,999

To56_012: \$60,000 to \$74,999

To56_013: \$75,000 to \$99,999

To56_014: \$100,000 to \$124,999

To56_015: \$125,000 to \$149,999

To56 016: \$150,000 to \$199,999

To56_017: \$200,000 or More *Compute total income in each category. This will allow

us to calculate average income.

gen Io1=To56_002*mpo1

gen Io2=To56_oo3*mpo2

gen Io3=To56_004*mpo3

gen Io4=To56_oo5*mpo4

gen Io5=To56_oo6*mpo5

gen Io6=To56_oo7*mpo6

gen Io7=To56_oo8*mpo7

gen Io8=To56_oog*mpo8

gen Io9=To56_010*mpo9

gen I10=T056_011*mp10

gen I11=T056_012*mp11

gen I12=T056_013*mp12

gen I13=T056_014*mp13

gen I14=T056_015*mp14

gen I15=T056_016*mp15

gen I16=T056_017*mp16

gen

INC=(I01+I02+I03+I04+I05+I06+I07+I08+I09+I10+I11+I12

+113+114+115+116)

gen AVEINC=INC/To56_ooi

Data and Methods

• Theil Income Inequality T statistic

$$H_{(y)} = \sum_{i=1}^{m} \left\{ \left(\frac{p_i}{P} \right) * \left(\frac{y_i}{\mu} \right) * \ln \left(\frac{y_i}{\mu} \right) \right\}$$

where:

p_i is the population of the group i,

P is the total population,

y_i is the average income in group i,

 μ is the average income across the entire population

STATA Code – Part 3 – Calculate Part 1 of the formula

*Compute Part 1 of the formula - Proportion Breakdown within Neighborhood for Income Groups.

```
gen Po1=To56 002/To56 001
gen Po2=To56_oo3/To56_oo1
gen Po3=To56_oo4/To56_oo1
gen Po4=To56_oo5/To56_oo1
gen Po5=To56_oo6/To56_oo1
gen Po6=To56 007/To56 001
gen Po7=To56_oo8/To56_oo1
gen Po8=To56_oo9/To56_oo1
gen Po9=To56_010/To56_001
gen P10=T056_011/T056_001
gen P11=T056 012/T056 001
gen P12=T056_013/T056_001
gen P13=T056_014/T056_001
gen P14=T056_015/T056_001
gen P15=T056_016/T056_001
gen P16=T056_017/T056_001
gen PTOT=(P01+P02+P03+P04+P05+P06+P07+P08+P09+P10+P11+P12+P13+P14+P15+P16)
```

Data and Methods

• Theil Income Inequality T statistic

$$H_{(y)} = \sum_{i=1}^{m} \left\{ \left(\frac{p_i}{P} \right) * \left(\frac{y_i}{\mu} \right) * \ln \left(\frac{y_i}{\mu} \right) \right\}$$

where:

p_i is the population of the group i,

P is the total population,

y_i is the average income in group i,

 μ is the average income across the entire population

STATA Code – Part 4 – Calculate Part 2 of the formula

```
*Compute Part 2 of the formula Yi/m m=average income.
gen T101=mp01/AVEINC
gen T102=mp02/AVEINC
gen T103=mpo3/AVEINC
gen T104=mp04/AVEINC
gen T105=mpo5/AVEINC
gen T106=mp06/AVEINC
gen T107=mpo7/AVEINC
gen T108=mp08/AVEINC
gen T109=mpo9/AVEINC
gen T110=mp10/AVEINC
gen T111=mp11/AVEINC
gen T112=mp12/AVEINC
gen T113=mp13/AVEINC
gen T114=mp14/AVEINC
gen T115=mp15/AVEINC
gen T116=mp16/AVEINC
```

Data and Methods

• Theil Income Inequality T statistic

$$H_{(y)} = \sum_{i=1}^{m} \left\{ \left(\frac{p_i}{P} \right) * \left(\frac{y_i}{\mu} \right) * \ln \left(\frac{y_i}{\mu} \right) \right\}$$

where:

p_i is the population of the group i,

P is the total population,

y_i is the average income in group i,

 μ is the average income across the entire population

STATA Code – Part 5 – Calculate Part 3 of the formula

```
*Compute Part 3 of the fomula ln(Yi/m) m=average income.
gen T201=ln(T101)
gen T202=ln(T102)
gen T203=ln(T103)
gen T204=ln(T104)
gen T205=ln(T105)
gen T206=ln(T106)
gen T207=ln(T107)
gen T208=ln(T108)
gen T209=ln(T109)
gen T210=ln(T110)
gen T211=ln(T111)
gen T212=ln(T112)
gen T213=ln(T113)
gen T214=ln(T114)
gen T215=ln(T115)
gen T216=ln(T116)
```

Data and Methods

• Theil Income Inequality T statistic

$$H_{(y)} = \sum_{i=1}^{m} \left\{ \left(\frac{p_i}{P} \right) * \left(\frac{y_i}{\mu} \right) * \ln \left(\frac{y_i}{\mu} \right) \right\}$$

where:

p_i is the population of the group i,

P is the total population,

y_i is the average income in group i,

 μ is the average income across the entire population

STATA Code – Part 6 – Calculate Part 4 of the formula

```
*Compute Part 4 of the formula Parto1*Parto2*Parto3.
gen T301=P01*T101*T201
gen T302=P02*T102*T202
gen T303=P03*T103*T203
gen T304=P04*T104*T204
gen T305=P05*T105*T205
gen T306=P06*T106*T206
gen T307=P07*T107*T207
gen T308=P08*T108*T208
gen T309=P09*T109*T209
gen T310=P10*T110*T210
gen T311=P11*T111*T211
gen T312=P12*T112*T212
gen T313=P13*T113*T213
gen T314=P14*T114*T214
gen T315=P15*T115*T215
gen T316=P16*T116*T216
```

^{*}Create your income inequality score gen theil15=(T301+T302+T303+T304+T305+T306+T307+T308+T309+T310+T311+T312+T313+T314+T315+T316)

OTHER STATA CODE

3. Poverty Status in 2015 for Children Under 18

Universe: Population Under 18 Years of Age for whom poverty status Is determined

Name: T114

Variables:

T114_001: Population Under 18 Years of Age for Whom Poverty Status Is Determined:

T114_002: Living in Poverty

T114_003: At or Above Poverty Level

4. Poverty Status in 2015 for Population Age 18 to 64

Universe: Population Age 18 to 64 for whom poverty status Is determined

Name: T115

Variables:

T115_001: Population Age 18 to 64 for Whom Poverty Status Is Determined:

T115_002: Living in Poverty

T115_003: At or Above Poverty Level

5. Poverty Status in 2015 for Population Age 65 and Over

Universe: Population Age 65 and Over for whom poverty status Is determined

Name: T116

Variables:

T116_001: Population Age 65 and Over for Whom Poverty Status Is Determined:

T116_002: Living in Poverty

T116_003: At or Above Poverty Level

*percent poverty=living in poverty/Population for Whom Poverty Status Is Determined

gen poi=(T114_002+T115_002+T116_002)/(T114_001+T115_001+T116_001)

6. Health Insurance

Universe: Civilian Noninstitutionalized Population

Name: T₁₄₅

Variables:

T145_001: Total:

T145_002: No Health Insurance Coverage

T145_003: With Health Insurance Coverage:

T145_004: Public Health Coverage

T145_005: Private Health Insurance

^{*}percent no health insurance=0 Health Insurance Coverage/Total gen nhi15=T145_002/T145_001

NORMALIZATION

Index

Conceptual Formula for the Index

$$(1) V_i = \left(\frac{X_j - Y_i}{Z_i - Y_i}\right)$$

 V_i is the standarized index score for each observation

 X_i = actual value for each observation

 Y_i =minimum value in the universe of observations

 Z_i =maximum value in the universe of observations

$$(2) S_i = \frac{\sum_{i=1}^{N} V_i}{N}$$

 S_i is the index sore for each grid cell N is the number of dimensions

*gen ed_sc15(ED_TOT-min)/(max-min)

*gen mhi_sc15=(log(mhi15)-log(min))/(log(max)-log(min))

*Income Inequality Scale - High values are bad and low values are good

*gen inc_sc15=(theil15-min)/(max-min)

*Recode income Inequality Scale - High values are good and low values are bad

*gen rinc_sc15=1-inc_sc15

*gen indexo1=(ed_sc15+rinc_sc15+mhi_sc15)/3

STATA Code

summarize theil15 ED_TOT mhi15

- *Education Scale High values are good and low values are bad gen ed_sc15=(ED_TOT-.5626781)/(2.433559-.5626781)
- *Income Inequality Scale High values are bad and low values are good gen inc_sc15=(theil15-.1302825)/(.744298-.1302825)
- *Recode income Inequality Scale High values are good and low values are bad gen rinc_sc15=1-inc_sc15
- *Median Income High is good and low is bad gen $mhi_sc15=(log(mhi15)-log(9782))/(log(196286)-log(9782))$
- *High is good and low is bad all variables are equal gen indexoi=(ed_sci5+rinc_sci5+mhi_sci5)/3
- *High is good and low is bad education is 50%, inequality is 25% and income is 25% gen indexo2=(ed_sc15*.5)+(rinc_sc15*.25)+(mhi_sc15*.25)

PROCEDURE

Methodology

- Run STATA code to produce parto1.xlsx
 - FIPS needs to be renamed GEOID10
- Work to modify shapefiles to the Saint Louis CBSA
 - Create a variable called keep
 - Export this our to a folder
- Run STATA code to read shapefile
- Run STATA code to merge, produce final.xlsx
- Join files in ArcMap

Run STATA code to produce parto1.xlsx

infile using "R11318018.dct", using("C:\Dropbox\soc5670\data\R11318018_SL140.txt") log using analysis.log, replace *Sex Ratio gen sr15=T004_002/T004_003 *Dependency Ratio gen depc15=T008_002+T008_003+T008_004 $gen\ age15=T008_005+T008_006+T008_007+T008_008+T008_009+T008_010+T008_011+T008_012+T008_013+T008_014+T008_015+T008_016+T008_017+T008_018$ gen deps15=Too8_019+Too8_020+Too8_021+Too8_022+Too8_023+Too8_024 gen dp15=(depc15+deps15)/age15 gen check=(depc15+age15+deps15)-Too8_oo1 *Child Dependency Ratio gen cdp15=depc15/age15 *Senior Dependency Ratio gen sdp15=deps15/age15 *Ageing Index gen ai15=deps15/depc15 *Racial Diversity Score gen other15=T014_005+T014_006+T014_007+T014_008+T014_009 gen pwht15=T014_003/T014_001 Make sure add the new GEOID10 variable gen pblk15=T014_004/T014_001 gen phis15=T014_010/T014_001 gen poth15=other/To14_oo1 gen ptot15=pwht15+pblk15+phis15+poth15 gen ewht15=pwht15*ln(pwht15) gen eblk15=pblk15*ln(pblk15) gen ehis15=phis15*ln(phis15) gen eoth15=poth15*ln(poth15) recode ewht15(mis = o) recode eblk15(mis = o) recode ehis15(mis = o) recode eoth15(mis = o) gen e15=abs(ewht+eblk+ehis+eoth)/ln(4) *recode some variables gen wht15=T014_003 gen blk15=T014_004 gen lat15=T014_010 gen GEOID10=FIPS

save "C:\Dropbox\soc5670\data\stl_parto1.dta", replace

export excel GEOID10 dp15 cdp15 sdp15 ai15 e15 wht15 blk15 lat15 using "C:\Dropbox\soc5670\data\parto1.xlsx", firstrow(variables) nolabel replace,

log close exit

set more off

Work to modify shapefiles to the Saint Louis CBSA (See Previous Lab Notes)

STATA code to read shapefile

First, we need to export shapefile out the geodatabase Second, install shp2dta if it is not installed Third, import shapefile into geodatabase

clear
set more off
cd C:\Dropbox\soc567o\gis\
shp2dta using stl_o2, database(geo_stl) coordinates(uscd)

Run STATA code to merge & produce final.xlsx

use "C:\Dropbox\soc5670\gis\geo_stl.dta"

gen GEOID10=GEOID

sort GEOID10

set more off

save "C:\Dropbox\soc5670\gis\geo_stlo1.dta", replace

use "C:\Dropbox\soc5670\data\parto2.dta"

sort GEOID10

merge 1:1 GEOID10 using "C:\Dropbox\soc5670\gis\geo_stlo1.dta"

keep if keep==1

*Data Normalization =x-MIN/MAX/MIN replace min and max values.

*gen ED_SCALE=(ED_TOT-min)/(max-.min)
*gen INC_SCALE=(LN(V26)-LN(min))/(LN(max)-LN(min))
*gen INDEX=(ED_SCALE+INC_SCALE)/2

summarize theil15 ED_TOTmhi15

	Variable		Mean	Std. Dev	. Min	Max
*	theil15		80129	.0840118	.1302825	.744298
*	ED_TOT	614	1.315936	.3371135	.5626781	2.433559
*	mhi15	614 57	7267.08	26618.61	9782	106286

- *Education Scale High values are good and low values are bad gen ed_sc15= $(ED_TOT-.5626781)/(2.433559-.5626781)$
- *Income Inequality Scale High values are bad and low values are good gen inc_sc15=(theil15-.1302825)/(.744298-.1302825)
- *Recode income Inequality Scale High values are good and low values are bad gen rinc_sc15=1-inc_sc15
- *Median Income High is good and low is bad gen mhi_sc15=(log(mhi15)-log(9782))/(log(196286)-log(9782))
- *High is good and low is bad all variables are equal gen indexo1=(ed_sc15+rinc_sc15+mhi_sc15)/3
- *High is good and low is bad education is 50%, inequality is 25% and income is 25% gen indexo2=(ed_sc15*.5)+(rinc_sc15*.25)+(mhi_sc15*.25)

export excel GEOID10 theil15 ED_TOT po1 nhi15 mhi15 indexo1 indexo2 using "C:\Dropbox\soc5670\data\final.xlsx", firstrow(variables) nolabel replace,

save "C:\Dropbox\soc5670\mas_stl.dta", replace

Add shapefile "o2," "final," and "parto1"

Join "partoı" to shapefile "o2" and make the join permanent by creating a new shapefile "o3"

Join "final" to shapefile "o3" and make the join permanent by creating a new shapefile "o4"

Project the final version of the shapefile "04"

Change Data Frame Property to match projection

