

Probability and Stochastic Processes

Lecture 14: Continuous Random Variables, Probability Density Function (PDF), Example PDFs

Karthik P. N.

Assistant Professor, Department of Al

Email: pnkarthik@ai.iith.ac.in

19 September 2025

Discrete Random Variable

Definition (Discrete Random Variable)

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$. Let $X : \Omega \to \mathbb{R}$ be a random variable (RV).

Let \mathbb{P}_X denote the probability law of X.

The RV X is said to be **discrete** if there exists a **countable** set $E \subset \mathbb{R}$, say $E = \{e_1, e_2, \ldots\}$, such that

$$\mathbb{P}_X(E) = 1.$$

• By countable additivity,

$$1=\mathbb{P}_X(E)=\mathbb{P}_X\left(igsqcup_{i\in\mathbb{N}}\{e_i\}
ight)=\sum_{i\in\mathbb{N}}\mathbb{P}_X(\{e_i\})=\sum_{i\in\mathbb{N}}p_X(e_i).$$

• For any Borel set $B \in \mathscr{B}(\mathbb{R})$,

$$\mathbb{P}_X(B) = \mathbb{P}_X(B \cap E) = \sum_{i: e_i \in B} \mathbb{P}_X(\{e_i\}) = \sum_{i: e_i \in B} p_X(e_i).$$

Discrete Random Variable

Definition (Discrete Random Variable)

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$. Let $X : \Omega \to \mathbb{R}$ be a random variable (RV).

Let \mathbb{P}_X denote the probability law of X.

The RV X is said to be **discrete** if there exists a **countable** set $E \subset \mathbb{R}$, say $E = \{e_1, e_2, \ldots\}$, such that

$$\mathbb{P}_X(E)=1.$$

PMF ---- CDF for a Discrete RV

The following implications are noteworthy:

$$p_X \stackrel{X \text{ discrete}}{\longleftarrow} \mathbb{P}_X \stackrel{\text{any } X}{\longleftarrow} F_X$$

PMF = complete probabilistic description for discrete RV.

Continuous Random Variables

Continuous Random Variable

Definition (Continuous Random Variable)

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$. Let $X : \Omega \to \mathbb{R}$ be a random variable (RV). Let \mathbb{P}_X denote the probability law of X.

The RV X is said to be **continuous** if \mathbb{P}_X satisfies the following property:

$$\text{If} \quad \lambda(B) = 0, \qquad \text{then} \quad \mathbb{P}_X(B) = 0.$$

Here, λ denotes the Lebesgue measure on $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$.

The above property

"If
$$\lambda(B) = 0$$
, then $\mathbb{P}_X(B) = 0$ "

is called absolute continuity property

- In words: " P_X is absolutely continuous with respect to λ "
- Mathematical notation: $\mathbb{P}_{X} \ll \lambda$

An Important Result from Measure Theory

Theorem (Radon-Nikodym Theorem — A Special Case)

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$. Let $X : \Omega \to \mathbb{R}$ be a random variable.

Let \mathbb{P}_X and λ denote respectively the probability law and the Lebesgue measure on $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$.

If $\mathbb{P}_X \ll \lambda$, then there exists a non-negative, measurable function $f_X : \mathbb{R} \to [0, +\infty)$ such that

$$\forall x \in \mathbb{R}, \qquad \mathbb{P}_X \big((-\infty, x] \big) = \int_{-\infty}^x f_X(t) \, \mathrm{d}t.$$

• The function f_X is called the **probability density function (PDF)** of X

Important

PDF in probability theory has its roots in the Radon-Nikodym Theorem of measure theory.

CDF of Continuous RV

Proposition (CDF of Continuous RV)

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$. Let $X : \Omega \to \mathbb{R}$ be a random variable. If X is continuous, then the following properties hold.

1. The CDF F_X is continuous at every point $x \in \mathbb{R}$. That is, the CDF does not have any jumps. Therefore, for all $x, a, b \in \mathbb{R}$ and a < b,

$$\mathbb{P}_{X}ig((-\infty,x)ig) = \int_{-\infty}^{x} f_{X}(t) \, \mathrm{d}t \quad orall x \in \mathbb{R},$$

$$\mathbb{P}_X((a,b)) = \mathbb{P}_X([a,b)) = \mathbb{P}_X([a,b]) = \mathbb{P}_X([a,b]) = \int_a^b f_X(t) \, \mathrm{d}t \quad orall - \infty < a < b < +\infty.$$

- 2. The CDF F_x is absolutely continuous.
- 3. The CDF is differentiable everywhere except possibly on a Borel set B with $\lambda(B)=0$.

Tidbits About PDFs

About PDFs

$$ext{PDF}
eq ext{probability}, ext{Integral of PDF} = ext{probability},$$
 $f_X \xrightarrow{X ext{continuous}} F_X \xrightarrow{\text{any } X} \mathbb{P}_X.$

- A PDF can be any arbitrary non-negative function that satisfies: $\int_{-\infty}^{\infty} f_X(t) dt = 1$.
- A proof of why PDF must integrate to 1:

$$\int_{-\infty}^{\infty} f_X(t) \, \mathrm{d}t = \lim_{n o \infty} \int_{-\infty}^n f_X(t) \, \mathrm{d}t = \lim_{n o \infty} \, \mathbb{P}_Xig((-\infty,n]ig) = \mathbb{P}_X\left(igcup_{n \in \mathbb{N}}(-\infty,n]
ight) = \mathbb{P}_X(\mathbb{R}) = 1.$$

• If X is continuous, then its PMF p_X satisfies $p_X(x)=0$ for all $x\in\mathbb{R}$

Examples

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $X : \Omega \to \mathbb{R}$ be a random variable.

• Fix $a, b \in \mathbb{R}$ with a < b. X is said to be Uniformly distributed on [a, b] (denoted $X \sim \text{Unif}[a, b]$) if:

$$f_X(x) = egin{cases} rac{1}{b-a}, & x \in [a,b], \ 0, & ext{otherwise.} \end{cases}$$
 $F_X(x) = egin{cases} 0, & x < a, \ rac{x-a}{b-a}, & a \leq x < b, \ 1, & x \geq b. \end{cases}$

Notice that:

- $-F_X$ is differentiable everywhere except at $x\in\underbrace{\{a,b\}}_{p}$, and $\lambda(B)=0$
- $\ \mathbb{P}(\{X \in [a,b]\}) = 1$, i.e., X takes values in [a,b] with probability 1

Examples

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $X : \Omega \to \mathbb{R}$ be a random variable.

• Fix $\mu > 0$. X is said to be **Exponentially distributed** with parameter μ (denoted $X \sim \text{Exp}(\mu)$) if:

$$f_X(x) = egin{cases} \mu \, e^{-\mu \, x}, & x \geq 0, \\ 0, & ext{otherwise}, \end{cases} \qquad F_X(x) = egin{cases} 0, & x < 0, \\ 1 - e^{-\mu \, x}, & x \geq 0. \end{cases}$$

Notice that:

- F_X is differentiable everywhere except x=0, and $\lambda(\{0\})=0$
- $\mathbb{P}(\{X \geq 0\}) = 1$, i.e., X takes non-negative values with probability 1
- $-F_X$ does not touch the value 1 anywhere!
- − F_X is strictly increasing on $[0, +\infty)$

Examples

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $X: \Omega \to \mathbb{R}$ be a random variable.

- Fix $\mu \in \mathbb{R}$, $\sigma > 0$.
 - X is said to be Gaussian distributed with parameters (μ, σ^2) (denoted $X \sim \mathcal{N}(\mu, \sigma^2)$) if:

$$orall x \in \mathbb{R}, \quad f_X(x) = rac{1}{\sqrt{2\pi}} \, \exp\left(-rac{(x-\mu)^2}{2\sigma^2}
ight), \qquad F_X(x) = \int_{-\infty}^x f_X(t) \, \mathrm{d}t = \mathrm{Erf}(x)$$

Notice that:

- $-F_X$ is differentiable everywhere
- \mathbb{P} ({*X* ∈ \mathbb{R} }) = 1, i.e., *X* takes all real values with probability 1
- F_X does not touch either 0 or 1 anywhere
- $-F_X$ is strictly increasing
- -~ If $\mu=0$ and $\sigma=1$, then X is said to be **Normal distributed (denoted** $X\sim\mathcal{N}(0,1)$)