EECS 336 Problem 1.2

a. False

Counterexample: f(n) = 1, g(n) = 2

First we prove f(n) is $\Omega(g(n))$

 $\exists n_0 = 1, C = \frac{1}{3}$ (both are constants), such that $\forall n > n_0$,

$$f(n) = 1 > \frac{1}{3} \cdot 2 = Cg(n)$$

Therefore, f(n) is $\Omega(g(n))$

Then we prove that log(f(n)) is not $\Omega(log(g(n)))$ by contradiction:

Suppose log(f(n)) is $\Omega(log(g(n)))$, which implied by definition

 $\exists n_1, C_1 > 0$ (both are constants), such that $\forall n > n_1$,

$$log(f(n)) \ge C_1 log(g(n)).$$

$$0 \ge C_1 log(2)$$

Since
$$C_1 > 0 \Rightarrow C_1 log(2) > 0$$
,

This contradicts the supposition that C_1 is a positive constant. Therefore, the supposition is false.

b. False

Counterexample: $f(n) = 2e^n, g(n) = e^n$

Firstly we prove f(n) is $\theta(g(n))$:

$$\exists n_0 = 1, C_0 = 3$$
, such that, $\forall n > n_0, f(n) = 2e^n < 3e^n = C_0g(n)$
 $\Rightarrow f(n)$ is $\Omega(g(n))$

Similarly,
$$\exists n_1 = 1, C_1 = 1$$
, such that, $\forall n > n_0, f(n) = 2e^n > e^n = C_1g(n)$
 $\Rightarrow f(n)$ is $O(g(n))$

Therefore, f(n) is $\theta(g(n))$

Then we prove that $2^{f(n)}$ is not $\theta(2^{g(n)})$ by contradiction:

Suppose that $2^{f(n)}$ is $\theta(2^{g(n)})$, then $2^{f(n)}$ is $O(2^{g(n)})$, which implies

$$\exists n_2, C_2(constants), \text{ such that } \forall n > n_2, 2^{f(n)} \le C_2 2^{g(n)} \Rightarrow C_2 \ge 2^{f(n) - g(n)} = 2^{e^n}$$

Since $\lim_{n\to+\infty} 2^{e^n} = +\infty$, C_2 cannot be a constant. This contradicts the supposition that C_2 is a constant. Hence the supposition is false.

c. True

Since f(n) is $\theta(g(n))$, f(n) is both $\Omega(g(n))$ and O(g(n)).

1). Since
$$f(n)$$
 is $\Omega(g(n))$, $\exists n_0, C_0$ (constants), $\forall n > n_0, f(n) \geq C_0 g(n)$

Because $x^{0.5}$ is a monotonically increasing function, $f(n)^{0.5} \ge (C_0 g(n))^{0.5}$ $\Rightarrow \sqrt{f(n)} \ge \sqrt{C_0} \sqrt{g(n)}$

Then
$$\exists n_1 = n_0, C_1 = \sqrt{C_0}$$
, such that $\forall n > n_1, \sqrt{f(n)} \ge C_1 \sqrt{g(n)}$

So
$$\sqrt{f(n)}$$
 is $\Omega(\sqrt{g(n)})$

2). Since
$$f(n)$$
 is $O(g(n))$, $\exists n_2, C_2$ (constants), $\forall n > n_2, f(n) \leq C_2 g(n)$

Because $x^{0.5}$ is a monotonically increasing function, f(n), C_2 and g(n) are all positive, $f(n)^{0.5} \leq (C_2 g(n))^{0.5} \Rightarrow \sqrt{f(n)} \leq \sqrt{C_2} \sqrt{g(n)}$

Then
$$\exists n_3 = n_2, C_3 = \sqrt{C_2}$$
 (so that $C_3 > 0$), such that $\forall n > n_1, \sqrt{f(n)} \le C_3 \sqrt{g(n)}$

So
$$\sqrt{f(n)}$$
 is $O(\sqrt{g(n)})$

By combining 1) and 2), $\sqrt{f(n)}$ is $\theta(\sqrt{g(n)})$

d. False

counterexample:
$$f(n) = 2log(n), g(n) = log(n) + 1$$

Firstly we prove that f(n) is $\theta(g(n))$:

$$\exists n_0 = 5, C_0 = 1$$
, such that $\forall n > n_0, f(n) = 2log(n) \ge log(n) + 1 = C_0g(n)$
 $\Rightarrow f(n)$ is $\Omega(g(n))$

$$\exists n_1 = 1, C_1 = 3$$
, such that $\forall n > n_1, f(n) = 2log(n) \le 3log(n) + 3 = 3g(n) = C_1g(n) \Rightarrow f(n)$ is $O(g(n))$

Therefore f(n) is $\theta(g(n))$.

Secondly we prove that f(n) - log(n) is not $\theta(g(n) - log(n))$ by contradiction:

Suppose that f(n) - log(n) is $\theta(g(n) - log(n))$, then f(n) - log(n) is O(g(n) - log(n)).

So
$$\exists n_2, C_2$$
, such that $\forall n > n_2, f(n) - \log(n) \leq C_2(g(n) - \log(n))$

$$\Rightarrow 2log(n) - log(n) = log(n) \le C_2(log(n) - log(n) + 1) = C_2$$

Since $\lim_{n\to+\infty} \log(n) = +\infty$, C_2 cannot be a constant. This contradicts the supposition that C_2 is a constant. So the supposition is false.