John Gargalionis

PHD STUDENT · PARTICLE PHENOMENOLOGY

CoEPP, University of Melbourne, Parkville, AUS

C +61418637727 | ■ garj@student.unimelb.edu.au | O johngargalionis.com | O johngargalionis.com

Education

University of Melbourne Melbourne Melbourne

DOCTOR OF PHILOSOPHY (THEORETICAL PARTICLE PHYSICS)

2016 — 2019

- Prospective thesis title: Studies in particle and collider phenomenology
- Primary supervisor: Prof. Raymond Volkas
- Research topics: Models of lepton-flavour non-universality to explain the anomalies in $R_{K^{(*)}}$ and $R_{D^{(*)}}$, GUT model building, radiative neutrino mass, effective field theories for model building, machine learning and data analysis in high-energy physics
- · Main outcomes:
 - Developed an algorithm to find the UV-completions of effective operators, used to enumerate all possible, minimal radiative models of Majorana neutrino mass. The algorithm and computational framework can be extended to other EFTs
 - Developed phenomenological models to explain the recent anomalies in charged- and neutral-current B decays. An emphasis of our
 work is the natural connection these models have with radiative neutrino mass models
 - Applied unsupervised machine-learning techniques to quark/gluon identification with the CMS Open Data. To undertake our analysis we built a new data-analysis pipeline for working with the open data
- Expected graduation: Late 2019

MASTER OF SCIENCE (WITH DISTINCTION)

2014 - 2016

- · Thesis title: Neutrino mass through leptoquarks: a new radiative model and its experimental prospects
- Supervisors: Prof. Raymond Volkas and Prof. Elisabetta Barberio
- Coursework: General Relativity, Non-equilibrium Statistical Mechanics, Particle Physics, Quantum Field Theory, Quantum Mechanics, Science Communication, String Theory
- · Research outcomes:
 - Research project split between experiment and theory
 - Developed a new model of radiative neutrino mass involving two scalar leptoquarks. Explored the 13 TeV reach of this model at the LHC.
- · Average mark: 87%

Bachelor of Science 2010 — 2014

- · Specialisations: Physics, Neuroscience, Ancient Languages
- Average mark: 80%

Publications

Research publications

Training on data: quark/gluon discrimination with the CMS Open Data

2019

Noel Dawe, Matthew J. Dolan & John Gargalionis

Manuscript in preparation

- arXiv:19xx.xxxxx
 - Unsupervised learning techniques used to train directly on real data provided by CMS
 - Built a computational framework for processing and analysing the data

EXPLODING OPERATORS FOR MAJORANA NEUTRINO MASSES

2019

John Gargalionis & Raymond R. Volkas

Manuscript in preparation

arXiv:19xx.xxxxx

- Wrote an algorithm to automate the procedure of generating models of Majorana neutrino mass from $\Delta L=2$ effective operators
- · Wrote smaller modules implementing methods from tensor calculus and group theory in Python
- Technique can be expanded to other EFTs

A SCALAR MODEL OF NEUTRINO MASS DERIVED FROM A DIMENSION-11 EFFECTIVE OPERATOR

2019

John Gargalionis, Iulia Popa-Mateiu & Raymond R. Volkas

Manuscript in preparation

arXiv:19xx.xxxxx

• Explores the phenomenology of the first model derived from a dimension-11 operator, found using the algorithm and code I wrote for 'Exploding operators for Majorana neutrino masses'

2019

Submitted to JHEP

Innes Bigaran, John Gargalionis & Raymond R. Volkas

arXiv:1906.01870

 Addresses the shortcomings of the model developed in our paper arXiv:1704.05849 by adding another scalar leptoquark

RECONSIDERING THE ONE LEPTOQUARK SOLUTION: FLAVOUR ANOMALIES AND NEUTRINO MASS

2017

Yi Cai, John Gargalionis, Michael A. Schmidt & Raymond R. Volkas

JHEP

arXiv:1704.05849, https://doi.org/10.1007/JHEP10(2017)047

- Explored the extent to which a popular one-leptoquark model could explain the recent B-meson anomalies
- Results showed varied ability of the model to explain the discrepancies in different regions of its parameter space
- We highlighted a previously overlooked contribution of this model to the charged-current anomaly that has come to be favoured in light of recent measurements

EXPLAINING THE 750 GEV DIPHOTON EXCESS WITH A COLOURED SCALAR CHARGED UNDER A NEW CONFINING GAUGE INTERACTION

2016

Robert Foot & John Gargalionis

PRD

arXiv:1604.06180, https://doi.org/10.1103/PhysRevD.94.011703

- Built a simple model to explain the 2015/2016 750 GeV diphoton excess
- The model involved a new, confining $\mathrm{SU}(N)$ bound state of scalars decaying to two photons

Other publications

SOLUTIONS TO PROBLEMS AT LES HOUCHES SUMMER SCHOOL ON EFT

2019

2/4

Marcel Balsiger, Marios Bounakis, Medhi Drissi, John Gargalionis, Erik Gustafson, Greg Jackson, Matthew Leak, Christopher Lepenik, Scott Melville, Daniel Moreno, Michele Tommaro, Selim Touati & Timothy Trott

Chapter in preparation

arXiv:19xx.xxxxx

- Worked solutions to high-level problem sets given throughout the Les Houches 2017 Summer School
 on Effective Field Theories, solved and written voluntarily by subset of students
- Will be published as a chapter in the book 'Lecture Notes of the Les Houches School on Effective Field Theories' by the Oxford University Press
- Will be uploaded to the arXiv

General Skills_

Programming

Python, Mathematica (Wolfram Language), C/C++, Clojure(Script), Scheme (and Racket), Haskell, Elm

- $\bullet \ \ \text{Familiar with the use of scripting languages like Python and Racket for large-scale (thousands of lines) package development}$
- Practised in test-driven software development
- Have taught scientific computation in both C/C++ (to undergraduates) and Python (to graduate students)
- Confident in the use of the SciPy suite (SciPy, NumPy, SymPy, Jupyter, etc.) for high-performance and scientific computation
- Experience with common algorithms, data structures and computational methods
- Limited experience in web-application development with ClojureScript and Elm
- · Hobbyist interest in functional and logic programming

Data analysis

ROOT, SciPy, Pandas, Dask, h5py, SQLite

- · Extensive experience with R-style data-frame objects in Pandas and Mathematica for data analysis and analytics
- ROOT objects and their Pythonic interface through rootpy
- Use of scalable data structures from Dask and h5py
- SQL database management including cross-table references and complex queries

Machine learning

TensorFlow, Keras, (Un)supervised learning, Image classification

- Experience with Keras' functional API for defining complex machine-learning models with TensorFlow backend
- · Have used unsupervised and supervised learning techniques in image classification problems
- Understanding of common machine-learning architectures including feed-forward, convolutional and max-out

Communication

Public speaking, scientific writing, science communication

- Confident public speaker (see invited and contributed talks, scientific outreach and teaching)
 - Published year-12 study guide for writing English essays 'How to write that A+ English Language essay' (2010)

Visualisation

Matplotlib, Seaborn, pgf-plots, TikZ, gnu-plot, quil

- Confident with many scientific plotting libraries
- · Vector graphics and visual arts in TikZ and quil

Management

Git, Cluster computing, GNU Make, FTP, Unix command line

- Confident with git for version control
- Proficient in common Unix tools and bash for shell scripting
- Working knowledge of make for writing Makefiles

Markup

T_FX, HTML, Markdown, org

- Typesetting of academic texts with mathematical content in MTFX
- Preparation of high-quality slides with beamer and reveal.js
- Translation between various markup languages with pandoc

Academic Skills_____

Model building and model exploration

Radiative neutrino mass, group theory, flavour phenomenology, GUTs

- · Constructing and analysing extensions of the Standard Model, experience mostly in models of radiative neutrino mass
- Expertise in the group theory of SU(N) and SO(N) in the context of GUT model building
- Knowledgable about new-physics explanations of the B-meson anomalies and their connection to other topics in flavour
- Confident in analysing the viability of BSM models, especially in the context of flavour and collider constraints

Effective Field Theory

SMEFT, WET, $\Delta L=2$ EFT

- Worked extensively with the Standard Model EFT at mass-dimension 6 and higher
- On top of current developments in operator-basis generation (i.e. Hilbert series and computational techniques)

Collider phenomenology

ROOT, CMSSW, MadGraph, Pythia, Fastjet, Delphes

- Confident in the generation of Monte-Carlo data starting from a Lagrangian
- Experience with the CMS analysis framework through the use of their publicly available data
- · Well acquainted with concepts in experimental analysis, experience with a range of physics objects and signatures

Calculation and fitting

LieArt, Package-X, FeynRules, FeynArts, FormCalc, LoopTools, Flavio

- Calculating loop-level amplitudes by hand and with Mathematica packages (both analytically and numerically)
- Confident with the use of Flavio for flavour calculations and fits

Invited Seminars _____

Oct 2018	Belle II Theory Interface Platform, Leptoquarks and flavour	KEK, Japan
May 2018	Monash University , Radiative neutrino mass and the flavour anomalies: a circumstantial	Melbourne, Australia
	case	Melbourne, Australia
May 2017	Instant workshop on B-meson anomalies , Reconsidering the 'one leptoquark' solution:	CERN. Switzerland
	flavour anomalies and neutrino mass, https://cds.cern.ch/record/2265323	CERN, SWILZERIUNG

Contributed Seminars _____

Sep 2017	Geoff Opat Seminar Series , Radiative neutrino mass and the flavour anomalies: a	Melbourne, Australia	
3ep 2011	circumstantial case	Meibourne, Australia	
Aug 2017	Technische Universität Dortmund , Radiative neutrino mass and the flavour anomalies: a	Dortmund, Germany	
Aug 2011	circumstantial case	Dorumana, Germany	
Aug 2017	Technische Universität München , Radiative neutrino mass and the flavour anomalies: a	Garching, Germany	
Aug 2011	circumstantial case	Garcining, Germany	
Dec 2016	APPC-AIP Congress, Reconsidering the 'one leptoquark' solution: flavour anomalies and	Brisbane, Australia	
DEC 2010	neutrino mass	Drisburie, Australia	
Jun 2016	University of Melbourne, Light leptoquarks at the LHC: neutrino mass and flavour physics	Melbourne, Australia	
Nov 2015	MSc completion seminar, Radiative neutrino mass through leptoquarks	Melbourne, Australia	

Training_

Summer schools

Aug 2017 Joint Challenges for Cosmology and Colliders, MITP Mainz, Germany Jul 2017 **EFT in Particle Physics and Cosmology**, Ecole de Physique des Houches Les Houches, France Jul 2016 Pre-SUSY School, University of Melbourne Melbourne, Australia

Summer research projects

Dark matter and heavy-flavoured quarks

ATLAS EXOTICS GROUP

- Supervisor: Dr. Francesca UNGARO
- Main outcomes:
 - Suggested a more stringent criterion for the identification of *b*-quark jets in the analysis
 - Explored the potential of various kinematic variables to improve the reach of the search

Melbourne, Australia

Jan 2016

Honours & Awards _____

2018	Science Abroad Travel Scholarship, University of Melbourne	Melbourne, Australia
2017	Research poster award, CoEPP	Adelaide, Australia
2016 – 2019	Australian Postgraduate Award (APA), Australian Research Council	Melbourne, Australia
2015	Prof. Kernot Research Scholarship in Physics, University of Melbourne	Melbourne, Austria
2014	N. D. Goldsworthy Scholarship, University of Melbourne	Melbourne, Austria

Teaching _____

	ty of Melbourne
2018, 2019 Grader , 3rd year Quantum Mechanics Universit	y or merbourne
2018 Tutor , Advanced Scientific Programming in Python (Asia–Pacific) <i>Melbourne</i>	Bioinformatics
2016 – 2019 Teaching assistant and course content creator , 3rd year Subatomic Physics <i>Universit</i>	ty of Melbourne
2014 – 2016 Curriculum designer and language teacher, Modern and Ancient Greek Centre for A	Adult Education
Laboratory demonstrator , 1st year Physics Lab, 3rd year Particle Lab, 2nd year 2014 – 2018 Universit	University of Melbourne
Computational Physics	
2010 – 2019 Private Tutor , Physics, Mathematics, Greek	

Scientific Outreach _____

2018, 2019	CoEPP Work Experience Program, Introductory talk: The Standard Model	University of Melbourne
2017	Physics Workshops, Project coordinator	Hume Central Secondary
2016	Undergraduate Seminar Series , Research talk targeted at undergraduate physics students	University of Melbourne
2015, 2016	International Masterclass in Particle Physics	South Oakleigh Grammar
2015	CoEPP Work Experience Program, Organising committee	University of Melbourne
2015	International Masterclass in Particle Physics	University of Melbourne

Other____

Citizenship	Australian	(in the process of also	acquiring Greek citizenship)
-------------	------------	-------------------------	------------------------------

Birth year

1991

Languages English (native), Greek (fluent)