第三章 习题

§ 3.1 二维随机变量

一、填空题

1. 设 (X,Y) 的分布函数为 $F(x, y) = \begin{cases} 1-3^{-x}-3^{-y}+3^{-x-y}, & x \ge 0, y \ge 0 \\ 0, & x \le 0 \end{cases}$ 其它

(X,Y) 的联合概率密度 $f(x,y) = \frac{\partial^2 F}{\partial x \partial y} = \begin{cases} 3^{-x-y} \ln^2 3, & x \ge 0, y \ge 0 \\ 0, & \text{其它} \end{cases}$.

2 设随机变量(X,Y)的分布函数为 $F(x,y) = A(B + arctg \frac{x}{2})(C + arctg \frac{y}{3})$, 则 A =

$1/\pi^2$, $B = \pi/2$, $C = \pi/2$, $(A \neq 0)$,

3. 用 (X,Y) 的联合分布函数 F(x,y) 表示概率 $P(a < X \le b, Y \le c) = F(b,c) - F(a,c)$.

4. 设
$$(X,Y)$$
 联合密度为 $f(x, y) = \begin{cases} Ae^{-x-y}, & x > 0, y > 0 \\ 0, &$ 其它

二、单项选择题

1. 设 $F_1(x)$ 与 $F_2(x)$ 分别为随机变量 X_1 和 X_2 的分布函数,为使 $F(x) = aF_1(x) - bF_2(x)$

是某一随机变量X的分布函数,在下列给定的各组数值中应取 (A)

(A)
$$a = \frac{3}{5}$$
, $b = -\frac{2}{5}$; (B) $a = \frac{2}{3}$, $b = \frac{2}{3}$; (C) $a = -\frac{1}{2}$, $b = \frac{3}{2}$; (D) $a = \frac{1}{2}$, $b = -\frac{3}{2}$;

- 2. 设随机变量 X_i \sim $\begin{pmatrix} -1 & 0 & 1 \\ 1 & 1 & 1 \\ \hline 4 & 2 & 4 \end{pmatrix}$, i = (1, 2),满足 $P(X_1X_2 = 0) = 1$,则 $P(X_1 = X_2) = (A)$
- (A) 0;
- (B) 1/4
- (C) 1/2
- (D) 1.

三、计算下列各题

1. 已知随机变量 X 和 Y 的联合密度为 $f(x, y) = \begin{cases} 4xy, & 0 \le x \le 1, 0 \le y \le 1 \\ 0, & \text{其它} \end{cases}$,求 X 和 Y 的

联合分布函数 F(x, y).

解 因为
$$F(X,Y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(x,y) dx dy$$

- (1) x < 0 或 y < 0 时,由 f(x, y) = 0,得 F(x, y) = 0
- (2) $0 \le x \le 1$, $0 \le y < 1$ $\exists y \in Y$, $Y = \int_0^x \int_0^y 4xy dx dy = x^2 y^2$
- (3) x > 1, $0 \le y \le 1$ by, $F(x, y) = \int_0^1 \int_0^y 4xy dx dy = y^2$

(4)
$$0 \le x \le 1$$
, $y > 1$ \exists $f(x, y) = \int_0^x \int_0^1 4xy dx dy = x^2$
(5) $x > 1$, $y > 1$ \exists $f(x, y) = 1$

$$f(x, y) = \begin{cases} 0, & x < 0 \Rightarrow y < 0 \\ x^2 y^2, & 0 \le x \le 1, & 0 \le y < 1 \\ y^2, & x > 1, & 0 \le y \le 1 \\ x^2, & 0 \le x \le 1, & y > 1 \\ 1, & x > 1, & y > 1 \end{cases}$$

2. 一个箱子装有 12 只开关,其中 2 只是次品,现随机地无放回抽取两次,每次取一只,以 *X* 和 *Y* 分别表示第一次和第二次取出的次品数,试写出 *X* 和 *Y* 的概率分布律.

M4.
$$P(X=0,Y=0) = \frac{C_{10}^1 C_9^1}{C_{12}^1 C_{11}^1} = \frac{45}{66}, \quad P(X=1,Y=0) = \frac{C_2^1 C_{10}^1}{C_{12}^1 C_{11}^1} = \frac{10}{66}.$$

$$P(X=0,Y=1) = \frac{C_{10}^{1}C_{2}^{1}}{C_{12}^{1}C_{11}^{1}} = \frac{10}{66}, \quad P(X=1,Y=1) = \frac{C_{2}^{1}C_{1}^{1}}{C_{12}^{1}C_{11}^{1}} = \frac{1}{66}$$

3. 给定非负函数
$$g(x)$$
,它满足 $\int_0^{+\infty} g(x)dx = 1$,又设 $f(x, y) = \begin{cases} \frac{2g(\sqrt{x^2 + y^2})}{\pi\sqrt{x^2 + y^2}}, 0 < x, y < \infty \\ 0,$ 其它

问 f(x,y) 是否是随机变量 X 和Y 的联合概率密度?说明理由.

解 f(x, y) 是 X 和 Y 的联合概率密度只要满足 $f(x, y) \ge 0$ 与 $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) v dx dy = 1$ 由于 $0 < x, y < \infty$, $\sqrt{x^2 + y^2} > 0$, g(x) 非负, 所以 $g(\sqrt{x^2 + y^2}) \ge 0$, 故 $f(x, y) \ge 0$,

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{2g(\sqrt{x^2 + y^2})}{\pi \sqrt{x^2 + y^2}} dx dy = \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{+\infty} \frac{g(r)}{r} r dr = 1$$

所以 f(x,y) 是随机变量 X 和Y 的联合概率密度.

4. 设随机变量 (X,Y) 的联合密度为 $f(x, y) = \begin{cases} a(1-\sqrt{x^2+y^2}), & x^2+y^2 < 1 \\ 0, &$ 其它

求 (1) 系数 a, (2) 概率 $P(X^2 + Y^2 \le \frac{1}{4})$.

$$\mathbf{P} (1) \quad \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = \int_{0}^{2\pi} d\theta \int_{0}^{1} a(1 - r) r dr = \frac{\pi a}{3} = 1 \Rightarrow a = \frac{3}{\pi}.$$

(2)
$$P(X^2 + Y^2 \le \frac{1}{4}) = \iint_{X^2 + Y^2 \le \frac{1}{4}} f(x, y) dx dy = \int_0^{2\pi} d\theta \int_0^{\frac{1}{2}} \frac{3}{\pi} (1 - r) r dr = \frac{1}{2}.$$

§ 3.2 边缘分布

§ 3.3 相互独立的随机变量

一、填空题

1. 设平面区域D由曲线 $y = \frac{1}{x}$ 及直线 y = 0, x = 1, $x = e^2$ 所围成. (X, Y) 在D上均匀分布,则(X, Y) 关于 X 的边缘密度在 x = 2 处值为 0.25 .

2. 若(X, Y)的分布律为

X Y	1	2	3
1	1/6	1/9	1/18
2	1/3	α	β

$$\alpha$$
, β 应满足条件是 $\alpha + \beta = \frac{1}{3}$.

若
$$X$$
 与 Y 相互独立则 α = 2/9 , β = 1/9 .

3. 设 X_1, X_2, \cdots, X_n 独立同分布,都服从 $N(\mu, \sigma^2)$,则(X_1, X_2, \cdots, X_n)的概率密度函

数为
$$f(x_1, x_2, \dots, x_n) = (2\pi)^{\frac{-n}{2}} \sigma^{-n} e^{\frac{-1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2}, \quad -\infty < x_i < +\infty, \quad i = 1, 2, \dots, n$$
.

二、单项选择题

设两随机变量 X 和Y 独立同分布 P(X=-1)=P(Y=-1)=1/2, P(X=1)=P(Y=1)=1/2, 则下列各式成立的是(A)

(A)
$$P(X = Y) = 1/2$$
; (B) $P(X = Y) = 1$; (C) $P(X + Y = 0) = 1/4$; (D) $P(XY = 1) = 1/4$.

三、计算下列各题

1. 设二维随机变量 (X,Y) 的概率密度为 $f(x,y) = \frac{6}{\pi^2(4+x^2)(9+y^2)}$, $-\infty < x < +\infty$,

 $-\infty < v < +\infty$ (1) 求关于 X 和Y 的边缘概率密度. (2) 问 X 与Y 是否独立?

解 (1)
$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \int_{-\infty}^{+\infty} \frac{6}{\pi^2 (4 + x^2)(9 + y^2)} dy = \frac{2}{\pi (4 + x^2)}, -\infty < x < +\infty$$

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \int_{-\infty}^{+\infty} \frac{6}{\pi^2 (4 + x^2)(9 + y^2)} dx = \frac{3}{\pi (9 + y^2)}, -\infty < y < +\infty$$
(2) $f(x, y) = f_Y(x) f_Y(y)$, 所以 X, Y 独立.

2. 雷达的圆形屏幕的半径为R,设目标出现点(X,Y)在屏幕上均匀分布,(1) 求X,Y的边缘概率密度,(2) 问X,Y是否独立?

解
$$f(x,y) = \begin{cases} 1/(\pi R^2), & x^2 + y^2 \le R^2 \\ 0, & 其它$$

(1)
$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \begin{cases} \int_{-\sqrt{R^2 - x^2}}^{+\sqrt{R^2 - x^2}} \frac{1}{\pi R^2} dy = \frac{2\sqrt{R^2 - x^2}}{\pi R^2}, & |x| \le R \\ 0, & & \text{#$\dot{\Sigma}$} \end{cases}$$

$$|x| \le R$$

(2) $f(x,y) \neq f_X(x) f_Y(y)$, 所以X和Y不独立.

3. 设二维随机变量
$$(X,Y)$$
 的概率密度 $f(x,y) = \begin{cases} Ae^{-y}, & 0 < x < y \\ 0, & \text{其它} \end{cases}$

随机变量X,Y的边缘密度,(3)概率 $P(X+Y \le 1)$ …

解 (1)
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = A \int_{0}^{+\infty} dx \int_{x}^{+\infty} e^{-y} dy = A$$
, 得 $A = 1$.

(2)
$$x > 0$$
, $f_X(x) = \int_x^{+\infty} e^{-y} dy = e^{-x}$, $f_X(x) = \begin{cases} e^{-x}, & x > 0 \\ 0, & x \le 0 \end{cases}$, $\exists x \in A$,

(3)
$$P(X + Y \le 1) = \iint_{x+y \le 1} f(x, y) dx dy = \int_0^{\frac{1}{2}} dx \int_x^{1-x} e^{-y} dy = 1 + e^{-1} - 2e^{-\frac{1}{2}}.$$

4. 知随机变量
$$X, Y$$
 的概率分布: $X \sim \begin{bmatrix} -1 & 0 & 1 \\ 1/4 & 1/2 & 1/4 \end{bmatrix}$, $Y \sim \begin{bmatrix} 0 & 1 \\ 1/2 & 1/2 \end{bmatrix}$.

且 $P(X_1X_2 = 0) = 1$. (1) 求 X,Y 的联合分布, (2) 问 X,Y 是否独立? 为什么?

解 因为
$$P(X_1X_2=0)=1$$
, 所以,有 $P(X_1=-1,X_2=1)=P(X_1=1,X_2=1)=0$,

YX	-1	0	1	P. j
0	P ₁₁	P ₂₁	P ₃₁	1/2
1	0	P ₂₂	0	1/2
$P_{i.}$	1/4	1/2	1/4	1

则
$$p_{11} = 0.25, p_{31} = 0.25, p_{22} = 0.5,$$
 由于 $p_{21} + p_{22} = 0.5,$ 故 $p_{21} = 0.5 - 0.5 = 0$

因此,(X,Y)的联合分布律为

YX	-1	0	1
0	1/4	0	1/4
1	0	1/2	0

(2) 由于 $p_{21} = 0 \neq 0.5 \times 0.5$, 故 $X_1 = X_2$ 不相互独立

§ 3.3 多维随机变量函数的分布

一、填空题

1. 设 X 与 Y 独立同分布,且 X 的分布律为 P(X=0)=0.5,P(X=1)=0.5,则随机变量 $Z=\max\{X,Y\}$ 的分布律为 P(Z=0)=0.25, P(Z=1)=0.75.

2. 设 X 与 Y 两随机变量,且 $P(X \ge 0)$, $Y \ge 0) = \frac{3}{7}$, $P(X \ge 0) = \frac{4}{7}$, $P(Y \ge 0) = \frac{4}{7}$,则 $P(\max(X, Y) \ge 0) = \frac{5/7}{2}$.

3. 若 $X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2)$,相互独立,X - Y 服从分布为 $N(\mu_1 - \mu_2, \sigma_1^2 + \sigma_2^2)$.

二、单项选择题

- 1. 设随机变量 X 服从指数分布,则随机变量 $Y = \min\{X, 2\}$ 的分布函数 (D)
- (A) 是连续函数; (B) 至少两个间断点; (C) 是阶梯函数; (D) 恰有一个间断点。
- 2. 设随机变量 X 与 Y 独立同分布,其概率分布为: $\begin{pmatrix} -1 & 1 \\ 0.5 & 0.5 \end{pmatrix}$,则下列式子正确的是(C)
 - (A) X = Y; (B) P(X = Y) = 0; (C) P(X = Y) = 0.5; (D) P(X = Y) = 1.

三、计算下列各题

1. 设两个独立随机变量 X 与Y 的分布律为 P(X=1)=0.3, P(X=3)=0.7, P(Y=2)=0.6, P(X=4)=0.4,求(1) Z=X+Y的分布律,(2) W=X-Y的分布律.

解 由独立性可得

(X,Y)	(1, 2)	(1, 4)	(3, 2)	(3, 4)
P(X=x,Y=y)	0.18	0.12	0.42	0.28
X + Y	3	5	5	7
X - Y	-1	-3	1	-1

所以
$$Z = X + Y$$
 的分布律为 $\begin{pmatrix} 3 & 5 & 7 \\ 0.18 & 0.54 & 0.28 \end{pmatrix}$, $W = X - Y$ 的分布律为 $\begin{pmatrix} -3 & -1 & 1 \\ 0.12 & 0.46 & 0.42 \end{pmatrix}$

2. 设 X,Y 独立, $X \sim N(\mu, \sigma^2),Y$ 在[$-\pi$, π] 服从均匀分布,Z = X + Y,求Z 的概率密度.(用标准正态分布函数 $\Phi(x)$ 表示).

解 由已知
$$X$$
 的密度函数为 $f_X(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, -\infty < x < +\infty$

Y 在[-
$$\pi$$
 , π] 服从均匀分布,则 $f_{Y}(y) = \begin{cases} \frac{1}{2\pi}, & -\pi \leq y \leq \pi \\ 0, & \text{其它} \end{cases}$, X 和 Y 独立,由公式(1)

$$f_{Z}(z) = \int_{-\infty}^{+\infty} f_{X}(z - y) \ f_{Y}(y) \ dy = \int_{-\pi}^{\pi} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(z - y - \mu)^{2}}{2\sigma^{2}}} \cdot \frac{1}{2\pi} dy, \quad \stackrel{\triangle}{\Rightarrow} t = \frac{z - y - \mu}{\sigma}$$

$$= \frac{1}{\sqrt{2\pi}} \int_{\frac{z - \pi - \mu}{\sigma}}^{\frac{z + \pi - \mu}{\sigma}} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^{2}}{2}} dt = \frac{1}{\sqrt{2\pi}} \left[\Phi \left(\frac{z + \pi - \mu}{\sigma} \right) - \Phi \left(\frac{z - \pi - \mu}{\sigma} \right) \right]$$

3. 已知随机变量(X,Y) 服从二维正态分布,其联合密度为 $f(x,y) = \frac{1}{2\pi}e^{-\frac{1}{2}(x^2+y^2)}$,

 $-\infty < x < +\infty$, $-\infty < y < +\infty$, 求随机变量 $Z = \frac{1}{3}(X^2 + Y^2)$ 的概率密度函数.

APP
$$F_Z(z) = P\left(\frac{1}{3}(X^2 + Y^2) \le z\right) = \iint_{\frac{1}{3}(X^2 + Y^2) \le z} f(x, y) dx dy$$

当 $z \le 0$ 时, $F_z(z) = 0$,当 z > 0时, $F_z(z) = \frac{1}{2\pi} \int_0^{2\pi} d\theta \int_0^{\sqrt{3z}} e^{-\frac{1}{2}r^2} r dr = 1 - e^{-\frac{3}{2}z}$,
所以 $f_z(z) = \begin{cases} 0, & z \le 0 \\ \frac{3}{2}e^{-\frac{3}{2}z}, & z > 0 \end{cases}$

4. 设随机变量 (X,Y) 的联合概率密度 $f(x,y) = \begin{cases} 3x, & 0 < x < 1, & 0 < y < x \\ 0, &$ 其它 , 求 Z = X - Y 的概率密度.

$$\mathbf{F}_{Z}(z) = P(X - Y \le z) = \begin{cases} 0, & z < 0 \\ \int_{0}^{z} dx \int_{0}^{x} 3x dy + \int_{z}^{1} dx \int_{x-z}^{x} 3x dy = \frac{3}{2}z - \frac{1}{2}z^{3}, & 0 \le z \le 1 \\ 1, & z \ge 1 \end{cases}$$

所以, Z的密度函数为 $f_Z(z) = \begin{cases} \frac{3}{2} - \frac{3}{2}z^2, & 0 < z < 1 \\ 0, & 其它 \end{cases}$

5. 假设电路装有三个同种电器元件,其状况相互独立,且无故障工作时间都服从参数为 λ 的指数分布,当三个元件都无故障时,电路正常工作,否则整个电路不正常工作.试求电路正常工作时间 T 的概率分布.

 \mathbf{M} 以 X_i 表示第i 个元件无故障工作时间,则 X_1, X_2, X_3 独立且分布函数为

$$F_{X_i}(t) = \begin{cases} 1 - e^{-\lambda t}, & t > 0 \\ 0, & t \le 0 \end{cases}, \quad i = 1, 2, 3, \quad T = \min\{X_1, X_2, X_3\}.$$

 $F_T(t) = 1 - \prod_{i=1}^3 (1 - F_{X_i}(t)) = \begin{cases} 1 - e^{-3\lambda t}, & t > 0 \\ 0, & t \le 0 \end{cases}.$ 所以 T 服从参数为 3 λ 的指数分布