

CMOS, +1.8 V to +5.5 V/ \pm 2.5 V, 2.5 Ω Low-Voltage, 8-/16-Channel Multiplexers

ADG706/ADG707

FEATURES

+1.8 V to +5.5 V Single Supply ± 2.5 V Dual Supply 2.5 Ω ON Resistance 0.5 Ω ON Resistance Flatness 100 pA Leakage Currents 40 ns Switching Times Single 16-to-1 Multiplexer ADG706 Differential 8-to-1 Multiplexer ADG707 28-Lead TSSOP Package Low-Power Consumption TTL/CMOS-Compatible Inputs

APPLICATIONS
Data Acquisition Systems
Communication Systems
Relay Replacement
Audio and Video Switching
Battery-Powered Systems

GENERAL DESCRIPTION

The ADG706 and ADG707 are low-voltage, CMOS analog multiplexers comprising 16 single channels and eight differential channels, respectively. The ADG706 switches one of 16 inputs (S1–S16) to a common output, D, as determined by the 4-bit binary address lines A0, A1, A2, and A3. The ADG707 switches one of eight differential inputs to a common differential output as determined by the 3-bit binary address lines A0, A1, and A2. An EN input on both devices is used to enable or disable the device. When disabled, all channels are switched OFF.

Low-power consumption and operating supply range of 1.8~V to 5.5~V make the ADG706 and ADG707 ideal for battery-powered, portable instruments. All channels exhibit break-before-make switching action preventing momentary shorting when switching channels. These devices are also designed to operate from a dual supply of $\pm 2.5~V$.

These multiplexers are designed on an enhanced submicron process that provides low-power dissipation yet gives high switching speed, very low ON resistance, and leakage currents. ON resistance is in the region of a few ohms and is closely matched between switches and very flat over the full signal range. These parts can operate equally well as either multiplexers or demultiplexers and have an input signal range that extends to the supplies.

The ADG706 and ADG707 are available in small 28-lead TSSOP packages.

FUNCTIONAL BLOCK DIAGRAMS

PRODUCT HIGHLIGHTS

- 1. Single-/dual-supply operation. The ADG706 and ADG707 are fully specified and guaranteed with 3 V and 5 V single-supply and ± 2.5 V dual-supply rails.
- 2. Low ON resistance (2.5 Ω typical)
- 3. Low-power consumption (<0.01 μ W)
- 4. Guaranteed break-before-make switching action
- 5. Small 28-lead TSSOP package

REV. A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700 www.analog.com
Fax: 781/326-8703 © Analog Devices, Inc., 2002

$\textbf{ADG706/ADG707-SPECIFICATIONS}^{1} \ (\textbf{V}_{DD} = 5 \ \textbf{V} \pm 10\%, \ \textbf{V}_{SS} = 0 \ \textbf{V}, \ \textbf{GND} = 0 \ \textbf{V}, \ \textbf{unless otherwise noted.})$

Parameter	25°C	-40°C to +85°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		$0~\mathrm{V}$ to V_{DD}	V	
ON Resistance (R _{ON})	2.5		Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = 10 \text{ mA};$
	4.5	5	Ω max	Test Circuit 1
ON Resistance Match Between		0.3	Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = 10 \text{ mA}$
Channels (ΔR_{ON})		0.8	Ω max	,
ON Resistance Flatness (R _{FLAT(ON)})	0.5		Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = 10 \text{ mA}$
		1.2	Ω max	
LEAKAGE CURRENTS				V _{DD} = 5.5 V
Source OFF Leakage I _S (OFF)	±0.01		nA typ	$V_D = 4.5 \text{ V/1 V}, V_S = 1 \text{ V/4.5 V};$
source off Bearinge is (off)	±0.1	±0.3	nA max	Test Circuit 2
Drain OFF Leakage I _D (OFF)	±0.01	20.5	nA typ	$V_D = 4.5 \text{ V/1 V}, V_S = 1 \text{ V/4.5 V};$
ADG706	± 0.4	±1.5	nA max	Test Circuit 3
ADG707	±0.2	±1.5	nA max	rest direction
Channel ON Leakage I _D , I _S (ON)	± 0.21	± 1	nA typ	$V_D = V_S = 1 \text{ V, or } 4.5 \text{ V;}$
ADG706	± 0.01 ± 0.4	±1.5	nA typ	Test Circuit 4
ADG700 ADG707	$\pm 0.4 \\ \pm 0.2$	±1.5 ±1	nA max	1 Cot Circuit 4
	10.2	<u> </u>	IIA IIIax	
DIGITAL INPUTS		2.4		
Input High Voltage, V _{INH}		2.4	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current			_	
I_{INL} or I_{INH}	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}
		± 0.1	μA max	
C _{IN} , Digital Input Capacitance	5		pF typ	
DYNAMIC CHARACTERISTICS ²				
t _{TRANSITION}	40		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, Test Circuit 5
		60	ns max	$V_{S1} = 3 \text{ V/0 V}, V_{S16} = 0 \text{ V/3 V}$
Break-Before-Make Time Delay, t _D	30		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
		1	ns min	$V_S = 3 V$, Test Circuit 6
t_{ON} (EN)	32		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
		50	ns max	$V_S = 3 V$, Test Circuit 7
t _{OFF} (EN)	10		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
		14	ns max	$V_S = 3 \text{ V}$, Test Circuit 7
Charge Injection	±5		pC typ	$V_S = 1 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF};$
,				Test Circuit 8
OFF Isolation	-60		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$;
	-80		dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 1 MHz;$
				Test Circuit 9
Channel-to-Channel Crosstalk	-60		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$;
	-80		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
				Test Circuit 10
−3 dB Bandwidth				
ADG706	25		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 9
ADG707	36		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 9
C_{S} (OFF)	13		pF typ	f = 1 MHz
C _D (OFF)				
ADG706	180		pF typ	f = 1 MHz
ADG707	90		pF typ	f = 1 MHz
C_D , C_S (ON)				
ADG706	200		pF typ	f = 1 MHz
ADG707	100		pF typ	f = 1 MHz
POWER REQUIREMENTS			1 -JF	$V_{DD} = 5.5 \text{ V}$
	0.001		IIA tres	$V_{DD} = 5.5 \text{ V}$ Digital Inputs = 0 V or 5.5 V
I_{DD}	0.001	1.0	μA typ	Digital illputs – 0 v or 5.5 v
		1.0	μA max	

-2-

 $^{^{1}}$ Temperature range is -40° C to $+85^{\circ}$ C.

²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

$\label{eq:special_special} \textbf{SPECIFICATIONS}^1 \; (\textbf{V}_{\text{DD}} = 3 \; \textbf{V} \; \pm \; 10\%, \, \textbf{V}_{\text{SS}} = 0 \; \textbf{V}, \, \textbf{GND} = 0 \; \textbf{V}, \, \textbf{unless otherwise noted.})$

Parameter	25°C	-40°C to +85°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		$0~\mathrm{V}$ to V_{DD}	V	
ON Resistance (R_{ON})	6	O V to VDD	ν Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = 10 \text{ mA};$
ON Resistance (R _{ON})	11	12	Ω max	Test Circuit 1
ON Resistance Match Between	11	0.4		$V_S = 0 \text{ V to } V_{DD}, I_{DS} = 10 \text{ mA}$
			Ω typ	$V_S = 0$ V to V_{DD} , $I_{DS} = 10$ HIA
Channels (ΔR_{ON})		1.2	Ω max	V = 0 V t = V
ON Resistance Flatness (R _{FLAT(ON)})		3	Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = 10 \text{ mA}$
LEAKAGE CURRENTS				$V_{DD} = 3.3 \text{ V}$
Source OFF Leakage I _S (OFF)	±0.01		nA typ	$V_S = 3 \text{ V/1 V}, V_D = 1 \text{ V/3 V};$
	±0.1	± 0.3	nA max	Test Circuit 2
Drain OFF Leakage I _D (OFF)	± 0.01		nA typ	$V_S = 3 \text{ V/1 V}, V_D = 1 \text{ V/3 V};$
ADG706	± 0.4	±1.5	nA max	Test Circuit 3
ADG707	±0.2	±1	nA max	
Channel ON Leakage I _D , I _S (ON)	±0.01		nA typ	$V_{S} = V_{D} = 1 \text{ V or } 3 \text{ V};$
ADG706	±0.4	±1.5	nA max	Test Circuit 4
ADG707	±0.2	±1	nA max	Total Should I
DIGITAL INPUTS		2.0	37:	
Input High Voltage, V _{INH}		2.0	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current				
I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}
		± 0.1	μA max	
C _{IN} , Digital Input Capacitance	5		pF typ	
DYNAMIC CHARACTERISTICS ²				
t _{TRANSITION}	45		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, Test Circuit 5
THE CONTROL		75	ns max	$V_{S1} = 2 \text{ V/0 V}, V_{S16} = 0 \text{ V/2 V}$
Break-Before-Make Time Delay, t _D	30		ns typ	$R_{L} = 300 \Omega, C_{L} = 35 pF;$
		1	ns min	$V_S = 2 \text{ V}$, Test Circuit 6
t_{ON} (EN)	40	•	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
ton (211)	10	70	ns max	$V_S = 2 \text{ V}$, Test Circuit 7
t _{OFF} (EN)	20	70	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
toff (Liv)	20	28	ns max	$V_S = 2 \text{ V}$, Test Circuit 7
Charge Injection	±5	20	pC typ	$V_S = 1 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF};$
Charge injection	- 5		pC typ	$V_S = 1 V_1 K_S = 0.52$, $C_L = 1 \text{ m}^2$, Test Circuit 8
OFF Isolation	60		JD	
OFF Isolation	-60		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$;
	-80		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
Character Character Character	60		1D	Test Circuit 9
Channel-to-Channel Crosstalk	-60		dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 10 MHz;$
	-80		dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 1 MHz;$
2 ID D 1 111				Test Circuit 10
-3 dB Bandwidth	2.5			D 5000 5 5 5 5 6
ADG706	25		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 9
ADG707	36		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 9
C_{S} (OFF)	13		pF typ	f = 1 MHz
C_D (OFF)			_	
ADG706	180		pF typ	f = 1 MHz
ADG707	90		pF typ	f = 1 MHz
$C_D, C_S (ON)$				
	200		pF typ	f = 1 MHz
ADG706	100		pF typ	f = 1 MHz
ADG706 ADG707	100		Pr typ	1 1 11112
ADG707	100		pr typ	
	0.001		μA typ	$V_{DD} = 3.3 \text{ V}$ Digital Inputs = 0 V or 3.3 V

REV. A -3-

¹Temperature range is −40°C to +85°C.

²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

 $\textbf{DUAL SUPPLY}^{1} \; (\textit{V}_{DD} = +2.5 \; \textit{V} \; \pm 10\%, \, \textit{V}_{SS} = -2.5 \; \textit{V} \; \pm 10\%, \, \text{GND} = 0 \; \textit{V}, \, \text{unless otherwise noted.})$

Parameter	25°C	-40°C to +85°C	Unit	Test Conditions/Comments
	250	10 103 C	CIII	1 Cot Conditions/Comments
ANALOG SWITCH		V to V	V	
Analog Signal Range ON Resistance (R _{ON})	2.5	V_{SS} to V_{DD}	Ω typ	V = V to $V = I = 10 mA$
ON Resistance (R _{ON})	4.5	5	Ω max	$V_S = V_{SS}$ to V_{DD} , $I_{DS} = 10$ mA; Test Circuit 1
ON Resistance Match Between	4.5	5 0.3		$V_S = V_{SS}$ to V_{DD} , $I_{DS} = 10$ mA
Channels (ΔR_{ON})		0.8	Ω typ Ω max	$\mathbf{v}_{S} - \mathbf{v}_{SS}$ to \mathbf{v}_{DD} , $\mathbf{r}_{DS} - \mathbf{r}_{O}$ min
ON Resistance Flatness ($R_{FLAT(ON)}$)	0.5	0.6	Ω typ	$V_S = V_{SS}$ to V_{DD} , $I_{DS} = 10$ mA
OIV Resistance Flatness (RFLAT(ON))	0.5	1.2	Ω max	vs - vss to vpp, rps - ro mr
LEAKAGE CURRENTS				$V_{DD} = +2.75 \text{ V}, V_{SS} = -2.75 \text{ V}$
Source OFF Leakage I _S (OFF)	±0.01		nA typ	$V_S = +2.25 \text{ V/}-1.25 \text{ V}, V_D = -1.25 \text{ V/}+2.25 \text{ V};$
	±0.1	± 0.3	nA max	Test Circuit 2
Drain OFF Leakage I _D (OFF)	±0.01		nA typ	$V_S = +2.25 \text{ V/}-1.25 \text{ V}, V_D = -1.25 \text{ V/}+2.25 \text{ V};$
ADG706	± 0.4	± 1.5	nA max	Test Circuit 3
ADG707	±0.2	± 1	nA max	
Channel ON Leakage ID, IS (ON)	±0.01		nA typ	$V_S = V_D = +2.25 \text{ V/}-1.25 \text{ V}$, Test Circuit 4
ADG706	±0.4	± 1.5	nA max	
ADG707	±0.2	± 1	nA max	
DIGITAL INPUTS				
Input High Voltage, V _{INH}		1.7	V min	
Input Low Voltage, V _{INL}		0.7	V max	
Input Current				
$ m I_{INL}$ or $ m I_{INH}$	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}
		± 0.1	μA max	
C _{IN} , Digital Input Capacitance	5		pF typ	
DYNAMIC CHARACTERISTICS ²				
transition	40		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, Test Circuit 5
HARVOITION		60	ns max	$V_{S1} = 1.5 \text{ V/0 V}, V_{S16} = 0 \text{ V/1.5 V}$
Break-Before-Make Time Delay, t _D	15		ns typ	$R_{L} = 300 \Omega, C_{L} = 35 pF;$
• -		1	ns min	$V_S = 1.5 \text{ V}$, Test Circuit 6
t_{ON} (EN)	32		ns typ	$R_{L} = 300 \Omega, C_{L} = 35 \mathrm{pF};$
		50	ns max	$V_S = 1.5 \text{ V}$, Test Circuit 7
t_{OFF} (EN)	16		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
		26	ns max	$V_S = 1.5 \text{ V}$, Test Circuit 7
Charge Injection	±8		pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF};$
OPPL 1			15	Test Circuit 8
OFF Isolation	-60		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$;
	-80		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
Champal to Champal Crosstalls	60		dD access	Test Circuit 9
Channel-to-Channel Crosstalk	-60 80		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$;
	-80		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; Test Circuit 10
−3 dB Bandwidth				Test Chedit 10
ADG706	25		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 9
ADG707	36		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 9
$C_{\rm S}$ (OFF)	13		pF typ	f = 1 MHz
$C_{\rm D}$ (OFF)			Pr typ	
ADG706	180		pF typ	f = 1 MHz
ADG707	90		pF typ	f = 1 MHz
$C_D, C_S (ON)$			F- JF	
ADG706	200		pF typ	f = 1 MHz
ADG707	100		pF typ	f = 1 MHz
POWER REQUIREMENTS			1 -	
I _{DD}	0.001		μA typ	$V_{\rm DD} = +2.75 \text{ V}$
		1.0	μA max	Digital Inputs = 0 V or 2.75 V
I_{SS}	0.001		μA typ	$V_{SS} = -2.75 \text{ V}$
	1	1.0	μA max	Digital Inputs = 0 V or 2.75 V

REV. A -4-

NOTES

¹Temperature range is -40°C to +85°C.

²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

Storage Temperature Range65°C to +150°C
Junction Temperature
TSSOP Package
θ_{IA} Thermal Impedance 97.9°C/W
$\theta_{\rm IC}$ Thermal Impedance
Lead Temperature, Soldering (10 sec) 300°C
IR Reflow, Peak Temperature \ldots
NOTES

¹Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

²Overvoltages at A, EN, S, or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG706BRU	-40°C to +85°C	Thin Shrink Small Outline Package (TSSOP) Thin Shrink Small Outline Package (TSSOP)	RU-28
ADG707BRU	-40°C to +85°C		RU-28

PIN CONFIGURATIONS

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG706/ADG707 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

REV. A -5-

Table I. ADG706 Truth Table

A3	A2	A1	A0	EN	ON Switch
X	X	X	X	0	NONE
0	0	0	0	1	1
0	0	0	1	1	2
0	0	1	0	1	3
0	0	1	1	1	4
0	1	0	0	1	5
0	1	0	1	1	6
0	1	1	0	1	7
0	1	1	1	1	8
1	0	0	0	1	9
1	0	0	1	1	10
1	0	1	0	1	11
1	0	1	1	1	12
1	1	0	0	1	13
1	1	0	1	1	14
1	1	1	0	1	15
1	1	1	1	1	16

X = Don't Care

Table II. ADG707 Truth Table

A2	A1	A0	EN	ON Switch Pair
X	X	X	0	NONE
0	0	0	1	1
0	0	1	1	2
0	1	0	1	3
0	1	1	1	4
1	0	0	1	5
1	0	1	1	6
1	1	0	1	7
1	1	1	1	8

X = Don't Care

TERMINOLOGY

$\overline{V_{DD}}$	Most positive power supply potential	C _D (OFF)	"OFF" Switch drain capacitance. Measured	
V_{SS}	Most negative power supply in a dual-supply application. In single-supply applications, this should be tied to ground at the device.	$C_D, C_S (ON)$	with reference to ground. "ON" Switch capacitance. Measured with reference to ground.	
I_{DD}	Positive supply current	C_{IN}	Digital input capacitance	
I_{SS}	Negative supply current	t _{TRANSITION}	Delay time measured between the 50% and	
GND	Ground (0 V) reference		90% points of the digital inputs and the switch "ON" condition when switching from one	
S	Source terminal. May be an input or output.		address state to another	
D	Drain terminal. May be an input or output.	t _{on} (EN)	Delay time between the 50% and 90% points	
AX	Logic control input		of the EN digital input and the Switch "ON"	
EN	Active high device enable		condition	
$V_D(V_S)$	Analog voltage on terminals D, S	t_{OFF} (EN)	Delay time between the 50% and 90% points of the EN digital input and the Switch "OFF"	
R_{ON}	Ohmic resistance between D and S		condition	
$\Delta R_{\rm ON}$	ON Resistance match between any two channels, i.e., $R_{\rm ON}$ max – $R_{\rm ON}$ min	t _{OPEN}	"OFF" Time measured between the 80% points of both switches when switching from one	
$R_{FLAT(ON)}$	Flatness is defined as the difference between the maximum and minimum value of ON resistance as measured over the specified analog signal	Charge Injection	address state to another Measure of the glitch impulse transferred from the digital input to the analog output during	
	range.	mjection	switching	
I _S (OFF)	Source leakage current with the Switch "OFF"	OFF Isolation	Measure of unwanted signal coupling through	
I_D (OFF)	Drain leakage current with the Switch "OFF"		an "OFF" switch	
I_D , I_S (ON)	Channel leakage current with the Switch "ON"	Crosstalk	Measure of unwanted signal that is coupled	
V_{INL}	Maximum input voltage for Logic "0"		through from one channel to another as a resu of parasitic capacitance	
V_{INH}	Minimum input voltage for Logic "1"	Bandwidth	Frequency at which the output is attenuated	
$I_{INL}(I_{INH})$	Input current of the digital input		by 3 dB	
C _S (OFF)	"OFF" Switch Source Capacitance. Measured	ON Response	Frequency response of the "ON" Switch	
	with reference to ground.	Insertion Loss	Loss due to the ON Resistance of the switch	

-6-

REV. A

Typical Performance Characteristics—ADG706/ADG707

TPC 1. ON Resistance as a Function of V_D (V_S) for Single Supply

TPC 2. ON Resistance as a Function of V_D (V_S) for Different Temperatures, Single Supply

TPC 3. ON Resistance as a Function of V_D (V_S) for Different Temperatures, Dual Supply

TPC 4. ON Resistance as a Function of V_D (V_S) for Dual Supply

TPC 5. ON Resistance as a Function of V_D (V_S) for Different Temperatures, Single Supply

TPC 6. Leakage Currents as a Function of V_D (V_S)

TPC 7. Leakage Currents as a Function of V_D (V_S)

TPC 8. Leakage Currents as a Function of V_D (V_S)

*SIMILAR CONNECTION FOR ADG707

**CONNECT TO 2.4V FOR BANDWIDTH MEASUREMENTS
OFF ISOLATION = 20LOG₁₀(V_{OUT}/V_S)

INSERTION LOSS = 20LOG₁₀

V_{OUT} WITH SWITCH
V_{OUT} WITHOUT SWITCH)

TPC 9. Leakage Currents as a Function of Temperature

REV. A -7-

TPC 10. Leakage Currents as a Function of Temperature

TPC 11. ON Response vs. Frequency

TPC 12. Supply Currents vs. Input Switching Frequency

TPC 13. OFF Isolation vs. Frequency

TPC 14. Charge Injection vs. Source Voltage

-8-

TPC 15. Crosstalk vs. Frequency

REV. A

TEST CIRCUITS

Test Circuit 1. ON Resistance

Test Circuit 2. I_S (OFF)

Test Circuit 4. I_D (ON)

Test Circuit 5. Switching Time of Multiplexer, $t_{TRANSITION}$

Test Circuit 6. Break-Before-Make Delay, t_{OPEN}

REV. A

Test Circuit 7. Enable Delay, t_{ON} (EN), t_{OFF} (EN)

Test Circuit 8. Charge Injection

Test Circuit 9. OFF Isolation and Bandwidth

Test Circuit 10. Channel-to-Channel Crosstalk

-10- REV. A

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

28-Lead TSSOP (RU-28)

REV. A –11–

C01001-0-5/02(A)

PRINTED IN U.S.A.

ADG706/ADG707

Revision History

Location	Page
5/02—Data Sheet changed from REV. 0 to REV. A.	
Edits to FEATURES and PRODUCT HIGHLIGHTS	1
Changes to SPECIFICATIONS	2
Edits to ABSOLUTE MAXIMUM RATINGS notes	5
Edits to TPCs 2, 3, 4, 6–9, 12, 14	7–8
Edits to Test Circuits 9 and 10	10