

Note:

- During the attendance check a sticker containing a unique code will be put on this exam.
- This code contains a unique number that associates this exam with your registration number.
- This number is printed both next to the code and to the signature field in the attendance check list.

Circuit Theory

Exam: 1203 / EDE Date: Tuesday 25th July, 2023

Examiner: Dr.-Ing. Michael Joham **Time:** 15:00 – 16:40

	P 1	P 2	P 3	P 4	P 5	P 6	P 7
Ι							

Working instructions

- This exam consists of **18 pages** with a total of **7 problems**. Please make sure now that you received a complete copy of the exam.
- The total amount of achievable credits in this exam is 90 credits.
- Detaching pages from the exam is prohibited.
- Allowed resources:
 - 5 double-sided DIN A4 pages of notes
 - one analog dictionary English \leftrightarrow native language
- Subproblems marked by * can be solved without results of previous subproblems.
- Answers are only accepted if the solution approach is documented. Give a reason for each answer unless explicitly stated otherwise in the respective subproblem.
- Do not write with red or green colors nor use pencils.
- Physically turn off all electronic devices, put them into your bag and close the bag.

Left room from	to/	Early submission at

Problem 1 Circuit Analysis (17 credits)

Consider the following circuit with a CCCS, three resistors, and a voltage source.

 $\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$

a)* What is the number of nodes n and the number of branches b of this circuit?

N=3 b=5

0 1 b) Give the number of node voltages for above circuit.

n-1=2

 $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$

c) What is the number of linearly independent KCL equations in nullspace representation?

n-1=2

 $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$

d) Give the number of linearly independent KVL equations in nullspace representation.

b-(n-1) = 3

1 =

e)* Define the branch voltage vector \boldsymbol{u} and the branch current vector \boldsymbol{i} .

i=[i, i, i, is, i4, i5]^T

y = [u, u2, u3, u4, 45] T

0

f)* Give the number of equations for the KVL in rangespace representation.

b= 5

h)* Determine the node incidence matrix A.

$$-i_1 + i_3 = 0$$

 $-i_3 + i_2 + i_4 + i_5 = 0$

$$-i_{1} + i_{3} = 0$$

$$-i_{3} + i_{2} + i_{4} + i_{5} = 0$$

$$Ai = \begin{bmatrix} -1 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & 1 & 1 \end{bmatrix} i_{2}$$

i) Based on **A** and **B**, show that the Tellegen's theorem is fulfilled.

j) Find i_3 depending on u_4 .

Problem 2 Resistor Network (10 credits)

The following circuit with four resistors and a current source is given.

0 = a

a)* Give the current i_R depending on u_0 .

0

b)* Determine the overall conductance G_{overall} of the parallel connection of R with G_1 .

 $_{1}^{0}$

c)* Find the voltage u_2 depending on i_2 .

0

d)* What is the overall resistance R_{overall} of the series connection of R_2 and R_3 ?

0

e) Hence, what are the voltages u_2 and u_3 depending on u_0 ?

$$U_{R} = U_{r} = U_{0}$$

$$U_{L} = \frac{R_{2}}{R_{2} + R_{3}} U_{0}$$

$$U_{S} = \frac{R_{3}}{R_{3} + R_{3}} U_{0}$$

g) Determine i_2 depending on i_0 .

$$\frac{R_{3}}{R_{2}+R_{3}} = \frac{\frac{1}{R_{2}+R_{3}}}{\frac{1}{R}+G+\frac{1}{R_{2}+R_{3}}} = \frac{\frac{1}{R_{2}+R_{3}}}{\frac{1}{R}+G+\frac{1}{R_{2}+R_{3}}} = \frac{\frac{1}{R_{2}+R_{3}}}{\frac{1}{R}+G+\frac{1}{R_{2}+R_{3}}}$$

Problem 3 Linearization of a One-Port (7 credits)

The characteristic of the one-port \mathcal{D} is given by

$$u = r_{\mathcal{D}}(i) = U_0 + U_0 \sin\left(\frac{i - I_0}{I_0}\right)$$

with the constants U_0 and I_0 .

 $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$

a)* Give the port-quantities that control \mathcal{D} .

In the operating point, the current is $I = 2I_0$.

 ${0 \atop 1}$

b)* Find the operating point value U of the voltage across \mathcal{D} .

$$U = \Gamma_D(2I_0) = U_0 + U_0 \sin\left(\frac{2I_0 - I_0}{I_0}\right) + U_0 + U_0 \sin(I)$$

In following, consider the different operating point $(U,I) = (U_0,I_0)$.

c)* Determine the linearization $r_{\mathcal{D},\text{lin}}(i)$ of \mathcal{D} in the given operating point $(U,I)=(U_0,I_0)$.

$$| \int D_{lin}(i) | = \frac{df_D(i)}{di} \Big|_{i=I_0} \cdot (i-I_0) + U_0$$

$$= \frac{U_0}{I_0} \cos(\frac{I_0-I_0}{I_0}) \cdot (i-I_0) + U_0$$

$$= \frac{U_0}{I_0} (i-I_0) + U_0$$

$$= \frac{U_0}{I_0} (i-I_0) + U_0$$

Problem 4 Linear Two-Port (9 credits)

The resistance matrix of the two-port \mathcal{S} reads as

$$oldsymbol{R}_{\mathcal{S}} = egin{bmatrix} 0 & -rac{1}{G_{ ext{d}}} \ rac{1}{G_{ ext{d}}} & 0 \end{bmatrix}$$

with finite G_d .

0 a)* Ba

a)* Based on the given resistance matrix $R_{\mathcal{S}}$, show that the two-port \mathcal{S} is not reciprocal.

0 1 b)* What special two-port is S?

 $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$

c)* Determine the conductance matrix $G_{\mathcal{S}}$ of \mathcal{S} .

$$G_{5} = \frac{1}{\det R} \begin{bmatrix} 0 & \overleftarrow{G} \\ -\overleftarrow{G} & 0 \end{bmatrix} = \frac{1}{\det R} \begin{bmatrix} 0 & \overleftarrow{G} \\ -\overleftarrow{G} & 0 \end{bmatrix} = \frac{1}{\det R} \begin{bmatrix} 0 & \overleftarrow{G} \\ -\overleftarrow{G} & 0 \end{bmatrix}$$

$$= \frac{1}{\det R} \begin{bmatrix} 0 & \overleftarrow{G} \\ -\overleftarrow{G} & 0 \end{bmatrix}$$

$$= \frac{1}{\det R} \begin{bmatrix} 0 & \overleftarrow{G} \\ -\overleftarrow{G} & 0 \end{bmatrix}$$

A different two-port \mathcal{Z} has got the conductance matrix

$$oldsymbol{G}_{\mathcal{Z}} = egin{bmatrix} 0 & -G_{
m d} \ 2G_{
m d} & 0 \end{bmatrix}.$$

0

d)* Why is \mathcal{Z} lossy?

The two-ports $\mathcal S$ and $\mathcal Z$ are connected in parallel to get the two-port $\mathcal X$.

0

e) Find a two-port matrix for the two-port \mathcal{X} .

$$\frac{1}{2} \int_{-\infty}^{\infty} dx = \frac{1}{2} \int_{-\infty}^{\infty} dx + \frac{1}{2} \frac{1$$

f) Give expressions for u_1 and i_1 of \mathcal{X} .

$$\begin{bmatrix} i_1 J = \int_{a_1} \begin{bmatrix} u_1 J \\ u_2 \end{bmatrix} \\ i_1 = 0 \\ i_2 = \int_{a_1} \int_{a_2} \int_{a_1} \int_{a_2} \int_{a_2}$$

g) What special two-port is \mathcal{X} ?

Problem 5 Complex Phasor Analysis (16 credits)

Given is the following circuit with two capacitors.

The angular frequency of the sinusoidal excitation $u_{\rm in}(t)$ is $\omega > 0$.

a)* Give $i_{C1}(t)$ depending on $u_{C1}(t)$.

Let I_{C1} denote the phasor corresponding to $i_{C1}(t)$ and U_{C1} the phasor for $u_{C1}(t)$.

 $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$

b) What is the current phasor I_{C1} depending on the voltage phasor U_{C1} ?

c)* Find the voltage phasor U_{C1} depending on the voltage phasor U_{out} (independent of other current or voltage phasors) taking into account that $I_{\text{out}} = 0$.

$$KVL: -Uc_1 + RI_{R2} + Uouf = 0$$

$$ic_2 = iR_2(t) \qquad :: Uc_1 = j\omega \cdot RC_2 Uouf + Uouf$$

$$UC_2(t) = Uouf$$

$$I(c_2 = j\omega \cdot C_2 Uouf$$

d) Determine the current phasor I_{R1} depending on the voltage phasor U_{out} .

KCL:
$$i_{R1} = i_{R2} + i_{C_1}$$

$$I_{R1} = j^2 \omega^2 \cdot RC_1C_2 \text{ Mout}$$

$$I_{C_1} = j\omega \cdot C_1U_{C_1}$$

$$I_{R2} = j\omega \cdot C_2 \text{ Mout}$$

$$f_j\omega \cdot C_2 \text{ Mout}$$

With the time constant τ , the transfer function of another circuit can be written as

$$H(\mathbf{j}\,\omega) = \frac{U_{\mathrm{out}}(\mathbf{j}\,\omega)}{U_{\mathrm{in}}(\mathbf{j}\,\omega)} = \frac{1}{(\mathbf{j}\,\omega\tau)^2 + \frac{3}{2}\,\mathbf{j}\,\omega\tau + 1}.$$

f)* Investigate $|H(j\omega)|$ at $\omega = 0$, $\omega = \frac{1}{\tau}$, and $\omega \to \infty$.

 $\omega \rightarrow \omega$: $|H(j\omega)| = 0$

g) What filter type (lowpass, highpass, bandpass, bandstop, all pass) is the transfer function $H(j\omega)$? Justify your answer based on above results.

Lowpass

The input voltage is given by $u_{\rm in}(t) = 6\,{\rm V}\,\cos(\frac{2}{\tau}\,t + \frac{\pi}{4}).$

h)* Give the phasor U_{in} corresponding to the given $u_{\text{in}}(t)$.

i) Find the output phasor $U_{\rm out}$ in polar form, i.e., as the product of magnitude and the exponential depending on the phase.

$$\begin{aligned} \text{Mat} &= \text{H(j2) Uin} \\ \text{H(j2)} &= \frac{1}{\text{Cj2}2^4 3j + 1} \\ -4 &= \frac{3}{12} \end{aligned} = \frac{1}{3\text{J}^2} = \frac{1}{3\text{J}^2}$$

$$\text{H(j2)} &= \frac{1}{3\text{J}^2} \text{e}^{j\frac{\pi}{4}} = \frac{1}{3\text{J}^2} =$$

Let the output phasor be given by

$$U_{\text{out}} = 2 \,\text{V e}^{j \,\frac{\pi}{3}}$$
.

Problem 6 Second-Order Circuit (16 credits)

Given is the following second-order circuit with the two inductors L_1 and L_2 connected to a CCCS and two resistors.

KL1 , KL2

b) Define the state vector \boldsymbol{x} .

 $X = \begin{bmatrix} iL_1 \\ iL_2 \end{bmatrix}$

c)* Find u_{L1} depending on u_{L2} and i_R .

ULI = RiR + UL2

d)* Give i_{L2} depending on i_R .

FR = 12

e)* Determine u_{L1} depending on u_G .

U(I = UL)

f) Express u_{L1} depending on i_{L1} without using any time derivatives.

$$KCL: -i_{L_2} + U_GG_1 + i_{L_1} + i_R = 0 \qquad U_G = U_{L_1}$$

$$U_{L_1} = \frac{1}{G_1} i_{L_1}$$

 $\begin{bmatrix} 0\\1 \end{bmatrix}$

 $\begin{bmatrix} 0\\1 \end{bmatrix}$

g) Find u_{L2} depending on i_{L1} and i_{L2} .

 $\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$

h) Give the state equations for the given circuit.

The state equations for another second-order system read as

$$\dot{x}_1 = -2x_1$$

$$\dot{x}_2 = -3x_1 + x_2$$

with the state vector $\boldsymbol{x} = [x_1, x_2]^{\mathrm{T}}$.

 $\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$

i)* Find the state matrix \boldsymbol{A} .

$$\dot{X} = AX$$

$$A = \begin{bmatrix} -2 & 0 & 7 \\ -3 & 1 & 3 \end{bmatrix}$$

0 1 2 j) Determine the eigenvalues of $\boldsymbol{A}.$

$$\det (A - \frac{1}{\lambda}) = (-2 - \lambda) (|-\lambda|) = 0$$

$$\lambda = -2 \quad \text{or} \quad \lambda = 1$$

 $\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$

k) Investigate **both** eigenvalues and explain why the circuit is unstable.

$$\lambda_1 = -2$$
: stable eigenvalue $\lambda_2 = 1$: unstable eigenvalue Due to λ_2 , the circuit is unstable

Problem 7 Non-Linear Two-Port (15 credits)

The current-controlled characteristic of the non-linear two-port \mathcal{T} can be written as

$$oldsymbol{u} = egin{bmatrix} u_1 \\ u_2 \end{bmatrix} = oldsymbol{r}_{\mathcal{T}}(oldsymbol{i}) = egin{bmatrix} U_0(rac{i_1}{I_0} + rac{i_2^2}{I_0^2}) \\ R_0i_1 + 2R_0i_2 \end{bmatrix} \quad ext{Ro}\left(egin{bmatrix} oldsymbol{i} & oldsymbol{i} & oldsymbol{i} \end{pmatrix}$$

with the constants U_0 , I_0 , and $R_0 = \frac{U_0}{I_0}$.

 $\begin{bmatrix} 0\\1 \end{bmatrix}$

- $\frac{0}{1}$

a)* Find u_1 and u_2 of the two-port \mathcal{T} for $i_1 = 0$ and $i_2 = 0$.

$$V_1 = 0$$
 $V_2 = 0$

b) Argue why the two-port is sourcefree.

c)* Determine $r_{\mathcal{T}}([i_2,i_1]^{\mathrm{T}})$.

$$\Gamma_{\tau}(\Gamma_{i_1}, \Gamma_{i_1}) = \begin{bmatrix} R_0 \, i_2 + R_0 \, \frac{k_1^2}{\Gamma_0} \\ R_0 \, i_2 + 2R_0 \, i_1 \end{bmatrix}$$

d) Argue why the two-port \mathcal{T} is not symmetric.

e why the two-port 7 is not symmetric.

$$\Gamma_{\mathsf{T}}([i_1, i_1]^{\mathsf{T}}) \neq [[0, i_1]^{\mathsf{T}}(i)]$$

e)* Why does the hybrid-controlled characteristic of \mathcal{T} not exist?

f)* Find the inverse hybrid representation of \mathcal{T} .

$$H^{-1} = \frac{1}{\Gamma_{11}} \begin{bmatrix} 1 & -\Gamma_{12} & 1 & -\frac{1}{R_0} & \frac{1}{R_0} & -\frac{1}{R_0} & \frac{1}{R_0} & \frac{1}{R_0$$

g) Determine the corresponding operating point (U_1, U_2, I_1, I_2) .

Short circuit:
$$U_1 = 0$$
 $U_2 = 0 + 2U_0 - U_0$

$$I_2 = I_0 = U_0$$

$$I_1 = -\frac{I_0}{I_0} = -I$$

Now the two-port is connected to the voltage source U_0 at port two as illustrated below.

 $_{0}$ h)* What is u_{2} depending on U_{0} ?

o 1 Express i_2 depending on i_1 and I_0 . Remember that $R_0 = \frac{U_0}{I_0}$.

j) What is the power p_2 at port two?

Additional space for solutions—clearly mark the (sub)problem your answers are related to and strike out invalid solutions.

