1.5 AMP NEGATIVE ADJUSTABLE VOLTAGE REGULATOR APPROVED TO DESC DRAWING 7703406

Three Terminal, Precision Adjustable Negative Voltage Regulator In Hermetic Style Packages (LM137A)

FEATURES

- · Similar To Industry Standard LM137A
- Approved To DESC Standardized Military Drawing Number 7703406
- · Built In Thermal Overload Protection
- · Short Circuit Current Limiting
- Available In Six Package Styles
- Maximum Output Voltage Tolerance Is Guaranteed to ± 1%

DESCRIPTION

These three terminal negative regulators are supplied in hermetically sealed packages. All protective features are designed into the circuit, including thermal shutdown, current-limiting, and safe-area control. With heat sinking, these devices can deliver up to 1.5 amps of output current. The LCC-20 device is limited to .5 amps. The unit also features output voltages that can be fixed from -1.2 volts to -37 volts using external resistors.

ABSOLUTE MAXIMUM RATINGS T_c @ 25°C

Power Dissipation	
Case 2	
Case-All Others	20 W
Input - Output Voltage Differential	40 V
Operating Junction Temperature Range	
Storage Temperature Range	65°C to + 150°C
Lead Temperature (Soldering 10 seconds)	300°C
Thermal Resistance, Junction to Case:	
Case 2, LCC-20	17°C/W
Case U & M, TO-257 (Isol) and SMD-3	4.2°C/W
Case T&N, TO-257 (Non-Isol) and SMD-1	3.5°C/W
Case Y, TO-3	3.0°C/W
Maximum Output Current:	
Case 2	
Case-All Others	1.5A
Recommended Operating Conditions:	
Output Voltage Range	1.2 to -37 VDC
Ambient Operating Temperature Range (T _A)	55°C to + 125°C
Input Voltage Range	4.25 to -41.25 VDC

3.5

OM1325NTM, OM1325STM, OM1325NKM, OM1325SMM, OM1325NMM, OM1325N2M

ELECTRICAL CHARACTERISTICS -55°C T $_{\rm A}$ 125°C, I $_{\rm L}$ = 8mA (unless otherwise specified) OM1325NTM, OM1325STM, OM1325SMM, OM1325NMM

Parameter	Symbol	Test Conditions		Min.	Max.	Unit
Reference Voltage	V _{REF}	V _{DIFF} = 3.0V, T _A = 25°C		-1.262	-1.238	
		V _{DIFF} = 3.0V	•	-1.280	-1.220	V
		V _{DIFF} = 40V	•	-1.280	-1.220	
Line Regulation	R _{LINE}	3.0 V V _{DIFF} 40V, T _A = 25°C		-4.5	4.5	
(Note 1)		3.0V V _{DIFF} 40V	•	-13.8	13.8	mV
Load Regulation	R _{LOAD}	$ V_{DIFF} = 5V, 8mA I_L 1.5A$	•	-25	25	
(Note 1)		V _{DIFF} = 12V, 8mA I _L 1.5A, T _A = 25°C		-25	25	mV
		V _{DIFF} 40V, 8mA I _L 1.5A, T _A = 25°C		-25	25	
		$ V_{DIFF} = 40V, 8mA I_L 1.5A$	•	-50	50	
Thermal Regulation	V_{RTH}	V _{in} = -14.6V, I _L = 1.5A		-5	5	mV
		P _d = 20 Watts, t = 10 ms, T _A = 25°C				
Ripple Rejection	R _N	$f = 120 \text{ Hz}, V_{\text{out}} = V_{\text{ref}}$	•	66		dB
(Note 2)		$C_{Adj} = 10 \mu F$				
Adjustment Pin Current	I _{Adj}	V _{DIFF} = 3.0V	•		100	
		V _{DIFF} = 40V	•		100	μΑ
Adjustment Pin	I _{Adj}					
Current Change	(line)	3V V _{DIFF} 40V	•	-5	5	μΑ
	I _{Adj}					
	(load)	$ V_{DIFF} = 5V, 8mA I_L 1.5A$	•	-5	5	μΑ
Miminum Load Current	I _{Lmin}	V _{DIFF} = 3.0V, V _{out} = -1.4V (forced)	•		3.0	
		V _{DIFF} = 10V, V _{out} = -1.4V (forced)	•		3.0	mA
		V _{DIFF} = 40V, V _{out} = -1.4V (forced)	•		5.0	
Current Limit	I _{CL}	V _{DIFF} 5V	•	1.5	3.5	
(Note 2)		V _{DIFF} = 40V, T _A = 25°C		0.24	1.2	Α

Notes:

- 1. Load and Line Regulation are specified at a constant junction temperature. Pulse testing with low duty cycle is used. Changes in output voltage due to heating effects must be taken into account separately.
- 2. If not tested, shall be guaranteed to the specified limits.
- 3. The denotes the specifications which apply over the full operating temperature range.

PART NUMBER DESIGNATOR					
Standard Military Drawing Number	Omnirel Part Number	Omnirel Package Designation			
7703406M	OM1325SMM	SMD-3			
7703406U	OM1325STM	TO-257 (Isolated)			
7703406T	OM1325NTM	TO-257 (non-Isolated)			
7703406Y	OM1325NKM	TO-3			
7703406N	OM1325NMM	SMD-1			
77034062	OM1325N2M	LCC-20			

3.5

OM1325NTM, OM1325STM, OM1325NKM, OM1325SMM, OM1325NMM, OM1325N2M

ELECTRICAL CHARACTERISTICS -55°C T $_{\rm A}$ 125°C, I $_{\rm L}$ = 8mA (unless otherwise specified) OM1325N2M

Parameter	Symbol	Test Conditions		Min.	Max.	Unit
Reference Voltage	V _{REF}	V _{DIFF} = 3.0V, T _A = 25°C		-1.262	-1.238	
		V _{DIFF} = 3.0V	•	-1.280	-1.220	V
		V _{DIFF} = 40V	•	-1.280	-1.220	
Line Regulation	R _{LINE}	3.0 V V _{DIFF} 40V, T _A = 25°C		-4.5	4.5	
(Note 1)		3.0V V _{DIFF} 40V	•	-13.8	13.8	mV
Load Regulation	R _{LOAD}	V _{DIFF} = 5V, 8mA I 200 mA	•	-25	25	
(Note 1)		V _{DIFF} = 15V, 8mA I _L 200m, AT _A = 25°C		-25	25	mV
		$ V_{DIFF} $ 40V, 8mA $ V_{L} $ 150 mA, AT $_{A}$ = 25°C		-25	25	
		V _{DIFF} = 40V, 8mA I _L 50 mA	•	-50	50	
Thermal Regulation	V _{RTH}	V _{in} = -16.25V, I _L =330 mA		-5	5	mV
		P _d =5 Watts, t = 10 ms, T _A = 25°C				
Ripple Rejection	R _N	$f = 120 \text{ Hz}, V_{\text{out}} = V_{\text{ref}}$	•	66		dB
(Note 2)		$C_{Adj} = 10 \mu F$				
Adjustment Pin Current	I _{Adj}	V _{DIFF} = 3.0V	•		100	
		V _{DIFF} = 40V	•		100	μΑ
Adjustment Pin	I _{Adj}					
Current Change	(line)	3V V _{DIFF} 40V	•	-5	5	μΑ
	I _{Adj}					
	(load)	$ V_{DIFF} = 5V$, 8mA $ V_{L} = 500$ mA	•	-5	5	μΑ
Miminum Load Current	I _{Lmin}	V _{DIFF} = 3.0V, V _{out} = -1.4V (forced)	•		3.0	
		V _{DIFF} = 10V, V _{out} = -1.4V (forced)	•		3.0	mA
		V _{DIFF} = 40V, V _{out} = -1.4V (forced)	•		5.0	
Current Limit	I _{CL}	V _{DIFF} 5V	•	0.5	1.8	
(Note 2)		V _{DIFF} = 40V, T _A = 25°C		0.15	0.65	А

Notes:

- 1. Load and Line Regulation are specified at a constant junction temperature. Pulse testing with low duty cycle is used. Changes in output voltage due to heating effects must be taken into account separately.
- 2. If not tested, shall be guaranteed to the specified limits.
- 3. The denotes the specifications which apply over the full operating temperature range.

TYPICAL APPLICATION

- * $\,$ C_{in} is required if regulator is located more than 4 inches from power supply filter. A 1 μF solid tantalum or 10 μF aluminum electrolytic is recommended.
- ** C $_{o}$ is necessary for stability. A 1 μF solid tantalum or 10 μF aluminum electrolytic is recommended.

$$V_{out} = -1.25 \text{ V } (1 + \frac{R_2}{R_1})$$

3.5

${\tt OM1325NTM,\,OM1325STM,\,OM1325NKM,\,OM1325SMM,\,OM1325NMM,\,OM1325N2M}$

MECHANICAL OUTLINE

OM1325SMM

Front View
Pin 1 - Adjust
Pin 2 - Output
Pin 3 - Input
Case - Isolated

OM1325STM Isolated Front View

Pin 1 - Adjust Pin 2 - Input Pin 3 - Output Tab - Isolated

OM1325NTM Non-Isolated

Front View
Pin 1 - Adjust
Pin 2 - Input
Pin 3 - Output
Tab - Input

0.135 MAX. O.450 O.250 O.312 MIN. SEATING PLANE 2 PLCS.

OM1325NMM

Pin 1 - Adjust Pin 2 - Output Pin 3 - Input

OM1325NKM

Pin 1 - Adjust Pin 2 - Output Case - Input

Pin 1	V_{OUT}	Pin 11	VIN
Pin 2	V _{OUT} (Sense)	Pin 12	NC
Pin 3	NC	Pin 13	NC
Pin 4	NC	Pin 14	NC
Pin 5	NC	Pin 15	NC
Pin 6	NC	Pin 16	ADJUST
Pin 7	NC	Pin 17	NC
Pin 8	NC	Pin 18	NC
Pin 9	NC	Pin 19	NC
Pin 10	NC	Pin 20	NC

For additional information please see the mechanical outline section.

