Matemática Discreta

Relações de Recorrência 1

Universidade de Aveiro 2016/2017

http://moodle.ua.pt

Relações de recorrência

Dependências recursivas simples

Equações de recorrência lineares homogéneas

Equação característica e raiz característica

Método geral de resolução de uma equação linear homogénea

Exercícios resolvidos

Relações de recorrência

 Alguns problemas combinatórios admitem uma solução que pode ser obtida recursivamente através de uma relação de recorrência:

$$a_n = f(n, a_{n-1}, \ldots, a_{n-k}).$$
 (1)

- A relação de recorrência (1) diz- de ordem k ou que tem profundidade k.
- A solução de um problema de ordem n é expressa em função das soluções de problemas idênticos de ordem inferior.

Exemplo (de factorial)

$$F_n = n \cdot F_{n-1}, \qquad n = 2, 3, \dots,$$

onde F_n denota o factorial de n (n!) e $F_1 = 1$.

Solução de uma equação de recorrência

- Uma sucessão $(a_n)_{n\in\mathbb{N}\cup\{0\}}$ diz-se uma solução de uma relação de recorrência se os seus termos satisfazem a relação de recorrência.
- Resolver uma relação de recorrência consiste na determinação de uma fórmula não recursiva (ou fórmula fechada) para a_n. Em geral, é preferível calcular o valor de a_n com uma fórmula não recursiva (com uma fórmula recursiva são executadas n iterações).

Exemplo

 $a_n = 3n$ é uma solução de $a_n = 2a_{n-1} - a_{n-2}$, fazendo $a_1 = 3$, $a_2 = 6$ e uma vez que

$$3n = 2(3(n-1)) - 3(n-2)$$

Dependências recursivas simples

- Determinação de uma solução (método ingénuo):
 - 1. Depois da observação de alguns termos, propor uma fórmula não recursiva.
 - 2. Provar que a fórmula proposta é válida recorrendo, por exemplo, ao princípio de indução.

Exemplo

Vamos determinar o número de permutações do conjunto

$$[n] = \{1, 2, \ldots, n-1, n\}.$$

Solução. Seja a_n = número de permutações do conjunto [n], $n \in \mathbb{N}$. Para determinar a_n calcula-se o número de possibilidades para a posição do número $n \longrightarrow n$ e o número de permutações dos restantes n-1 números $\longrightarrow a_{n-1}$. Assim, pelo princípio da multiplicação, $a_n = na_{n-1}$, $n \ge 2$.

Solução da equação de recorrência

Proposta de uma solução:

$$\left. \begin{array}{l}
 a_1 = 1 \\
 a_2 = 2 \times 1 \\
 a_3 = 3 \times a_2 = 3 \times 2 \times 1
 \end{array} \right\}$$

Será $a_n = n!$, $n \in \mathbb{N}$?

• Prova por indução:

 $n = 1 \longrightarrow a_1 = 1$ (coincide com o n^{ϱ} de permutações do conjunto $\{1\}$)

Hipótese de indução: suponha que para $n \in \mathbb{N}$ (fixo) $a_n = n!$.

- Então $a_{n+1} = (n+1)a_n = ^{\text{(H.I.)}} (n+1)n! = (n+1)!$.
- Conclusão: $a_n = n!$ para todo o $n \in \mathbb{N}$.

Equações de recorrência lineares homogéneas

 Uma equação de recorrência linear homogénea de ordem r é uma equação de recorrência do tipo:

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_r a_{n-r},$$

onde c_i é uma constante, para i = 1, 2, ..., r.

- Para determinar uma solução são necessárias *r* condições iniciais.
- Equação característica: $x^r c_1 x^{r-1} c_2 x^{r-2} \cdots c_r = 0$.
- Raízes características: raízes reais ou complexas da equação característica.

Equação característica e raiz característica

Equação característica e raiz característica

Lema 1

Sejam α e β as raízes (não nulas) da equação característica

$$x^2 - c_1 x - c_2 = 0$$

que corresponde à equação de recorrência $a_n=c_1a_{n-1}+c_2a_{n-2}$. Se $\alpha\neq\beta$, então a solução geral vem dada por

$$a_n = C_1 \alpha^n + C_2 \beta^n,$$

caso contrário ($\alpha = \beta$),

$$a_n = (C_1 + C_2 n)\alpha^n.$$

Em ambos os casos, os coeficientes C_1 e C_2 são determinados pelas condições iniciais.

Resolução de uma equação linear homogénea

Exercício

Determinar a solução da equação de recorrência

$$a_n = 3a_{n-1} - 2a_{n-2}, \ n = 2, 3 \dots,$$

com
$$a_0 = 0$$
 e $a_1 = -2$.

Equação característica: $x^2 - 3x + 2 = 0$.

Raízes características: 1 e 2 (ambas com multiplicidade 1)

Solução geral: $a_n = C_1 + C_2 2^n$, $n \in \mathbb{N} \cup \{0\}$.

Determinação das constantes
$$C_1$$
 e C_2 :
$$\begin{cases} a_0 = 0 \\ a_1 = -2 \end{cases} \Leftrightarrow$$

$$\left\{ \begin{array}{l} C_1 + C_2 = 0 \\ C_1 + 2C_2 = -2 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} C_1 = -C_2 \\ C_2 = -2 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} C_1 = 2 \\ C_2 = -2 \end{array} \right.$$

Solução:
$$a_n = 2 - 2^{n+1}$$
, $n \in \mathbb{N} \cup \{0\}$.

Resolução de uma equação linear homogénea

Lema 2. Sejam $\alpha_1, \ldots, \alpha_k$ as raízes da equação característica $x^r - c_1 x^{r-1} - c_2 x^{r-2} - \cdots - c_r = 0$ da equação de recorrência $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_r a_{n-r}$. (1)

Supondo que para cada $i \in \{1, ..., k\}$ α_i tem multiplicidade m_i , pelo que $m_1 + \cdots + m_k = r$, então

 $X^{r} - C_1 X^{r-1} - \cdots - C_r = (X - \alpha_1)^{m_1} (X - \alpha_2)^{m_2} \dots (X - \alpha_k)^{m_k}$ e

$$a_{n} = (D_{0} + D_{1}n + \dots + D_{m_{1}-1}n^{m_{1}-1})\alpha_{1}^{n} + (E_{0} + E_{1}n + \dots + E_{m_{2}-1}n^{m_{2}-1})\alpha_{2}^{n} + \dots + (Z_{0} + Z_{1}n + \dots + Z_{m_{k}-1}n^{m_{k}-1})\alpha_{k}^{n}$$
(2)

é a solução da equação de recorrência, onde as constantes

$$D_0, \ldots, D_{m_1-1}, E_0, \ldots, E_{m_2-1}, \ldots, Z_0, \ldots, Z_{m_k-1}$$

são determinadas pelas condições iniciais.

Prova do Lema 2

Sendo α_1 uma raiz de multiplicidade m_1 da equação característica, então α_1 é raiz dos seguintes polinómios:

•
$$p(x) = x^n - c_1 x^{n-1} - \cdots - c_r x^{n-r}$$
, pelo que α_1^n verifica (1) e $D_0 \alpha_1^n = \sum_{i=1}^r c_i D_0 \alpha_1^{n-i}$;

• $xp'(x) = nx^n - c_1(n-1)x^{n-1} - \cdots - c_r(n-r)x^{n-r}$, pelo que $n\alpha_1^n$ verifica (1) e

$$D_{1}n\alpha_{1}^{n} = \sum_{i=1}^{r} c_{i}D_{1}(n-i)\alpha_{1}^{n-i};$$
• $x(xp'(x))' = n^{2}x^{n} - c_{1}(n-1)^{2}x^{n-1} - \cdots - c_{r}(n-r)^{2}x^{n-r},$
pelo que $n^{2}\alpha_{1}^{n}$ verifica (1) e
$$D_{2}n^{2}\alpha_{1}^{n} = \sum_{i=1}^{r} c_{i}D_{2}(n-i)^{2}\alpha_{1}^{n-i};$$

• $x(\dots(xp^r(x))^r \dots)^r = n^{m_1-1}x^n - \dots - c_r(n-r)^{m_1-1}x^{n-r}$, pelo que $n^{m_1-1}\alpha_1^n$ verifica (1) e $D_{m_1-1}n^{m_1-1}\alpha_1^n = \sum_{i=1}^r c_i D_2(n-i)^{m_1-1}\alpha_1^{n-i}.$

Método geral de resolução de uma equação linear homogénea

Prova do Lema 2 (cont)

$$c_{1}\left(\sum_{j=0}^{m_{1}-1}D_{j}(n-1)^{j}\right)\alpha_{1}^{n-1} + \ldots + c_{r}\left(\sum_{j=0}^{m_{1}-1}D_{j}(n-r)^{j}\right)\alpha_{1}^{n-r}$$
Consequentemente,
$$a_{n} = D_{0}\alpha_{1}^{n} + D_{1}n\alpha_{1}^{n} + \cdots + D_{m_{1}-1}n^{m_{1}-1}\alpha_{1}^{n} = \left(\sum_{j=0}^{m_{1}-1}D_{j}n^{j}\right)\alpha_{1}^{n}$$

é solução de (1) e o mesmo se aplica para $\alpha_2, \ldots, \alpha_k$, pelo que

$$a_n = \left(\sum_{i=0}^{m_1-1} D_j n^i\right) \alpha_1^n + \left(\sum_{i=0}^{m_2-1} E_j n^i\right) \alpha_2^n + \dots + \left(\sum_{i=0}^{m_k-1} Z_j n^i\right) \alpha_k^n.$$

Método geral de resolução de uma equação linear homogénea

Observação

De acordo com o Lema 2, quando as raízes da equação característica são todas distintas, ou seja, k = r e

$$m_1=m_2=\cdots=m_r=1,$$

podemos concluir que

$$a_n = C_1 \alpha_1^n + \cdots + C_r \alpha_r^n,$$

com $C_1 = D_0$, $C_2 = E_0$, ..., $C_r = Z_0$, de acordo com a expressão (2).

Exercício 1

Vamos resolver a equação de recorrência

$$a_n = 2a_{n-1} + 15a_{n-2} + 4a_{n-3} - 20a_{n-4}, \ n \ge 4,$$

com condições iniciais $a_0 = 6$, $a_1 = 3$, $a_2 = 71$ e $a_3 = 203$.

Resolução. Equação característica:

$$x^4 - 2x^3 - 15x^2 - 4x + 20 = 0 \Leftrightarrow (x+2)^2(x-1)(x-5) = 0$$
. Raízes características:

- ► -2 (com multiplicidade 2),
- ▶ 1 e 5 (ambas com multiplicidade 1).

Solução geral:
$$a_n = (C_1 + C_2 n)(-2)^n + C_3 + C_4 5^n, n \in \mathbb{N} \cup \{0\}.$$

Determinação das constantes

Determinação das constantes c₁, c₂, c₃ e c₄:

$$\begin{cases} a_0 = 6 \\ a_1 = 3 \\ a_2 = 71 \\ a_3 = 203 \end{cases} \Leftrightarrow \begin{cases} C_1 + C_3 + C_4 = 6 \\ -2(C_1 + C_2) + C_3 + 5C_4 = 3 \\ 4(C_1 + 2C_2) + C_3 + 25C_4 = 71 \\ -8(C_1 + 3C_2) + C_3 + 125C_4 = 203 \end{cases}$$

$$\begin{cases} C_1 = 3 \\ C_2 = 1 \\ C_3 = 1 \\ C_4 = 2 \end{cases}$$

Solução final:
$$a_n = (3+n)(-2)^n + 1 + 2 \cdot 5^n, n \in \mathbb{N} \cup \{0\}.$$

Exercício 2

Vamos determinar a solução da equação de recorrência

$$a_n = -6a_{n-1} - 9a_{n-2}$$

com condições iniciais: $a_0 = 1$, $a_1 = -9$. Resolução.

- ► Equação característica: $x^2 + 6x + 9 = 0$.
- ► Raízes características: -3 com multiplicidade 2.
- ► Solução geral: $a_n = (C_1 + C_2 n)(-3)^n, n \in \mathbb{N} \cup \{0\}.$
- Determinação das constantes C₁ e C₂:

$$\left\{\begin{array}{ll} a_0=1\\ a_1=-9 \end{array} \Leftrightarrow \left\{\begin{array}{ll} C_1=1\\ -3(C_1+C_2)=-9 \end{array} \right. \Leftrightarrow \left\{\begin{array}{ll} C_1=1\\ C_2=2 \end{array} \right.$$

• Solução: $a_n = (1 + 2n)(-3)^n, n \in \mathbb{N} \cup \{0\}.$