

SScademy

Contents

- 1. Components
- 2. OSI Model
- 3. Classification
- 4. Devices
- 5. Home Network
- 6. IP Addresses
- 7. Protocols
- 8. DNS & DHCP
- 9. Network commands

What is computer networking

SScademy

Communication between two or more network interfaces.

COMPONENTS OF COMPUTER NETWORK

- 1. Two or more computers/devices
- 2. Cables as links between the computers
- 3. A NETWORK INTERFACE CARD (NIC) ON EACH
- 4. COMPUTER
- 5. SWITCHES
- 6. ROUTERS
- 7. SOFTWARE CALLED OPERATING SYSTEM(OS)

OSI Model

- People around the world uses computer network to communicate with each other
- For worldwide data communication, system must be developed which are compatible to communicate with each other
- There should be standard communication methods & devices
- ISO (International Organization of Standardization) has developed this standard
- This communication model is called as Open System Interconnection (OSI)
- ISO-ISI model is a seven layer architecture developed in 1984

OSI Model

The basic elements of a layered model are

- Services
- Protocols
- And Interfaces
- 1. A Service is a set of actions that a layer offer to another (higher) layer
- 2. A Protocol is a set of rules that a layer uses to exchange information
- 3. A Interface is communication between the layers

OSI Model

OSI Model	DoD Model	protocols		devices/apps
layer 5, 6, 7	application	dns, dhcp, ntp, snmp, https, ftp, ssh, telnet, http, pop3 others		web server, mail server, browser, mail client
layer 4	host-to-host	tcp	udp	gateway
layer 3	internet	ip, icmp, igmp		router, firewall layer 3 switch
layer 2	network	arp (mac), rarp		bridge layer 2 switch
layer 1	access	ethernet, token ring		hub

SScademy

Classification of Network by Geography

- 1. LAN (LOCAL AREA NETWORK)
- 2. WAN (WIDE AREA NETWORK)
- 3. MAN (METROPOLITAN AREA NETWORK)
- 4. CAN (CAMPUS AREA NETWORK)
- 5. PAN (Personal Area Network)

Switches

Switches facilitates the sharing of resources by connecting together all the devices, including computers,

printers, and servers, in a small business network.

Routers

A Router receives and sends data on computer networks. Routers are sometime confused with network Hubs, modems, or network switches. However, routers can combine multiple networks together.

IP Address

SScademy

IPv4 Address: IPv4 is a 32-bit binary number which we mostly see in decimal format. Like 192.168.100.1

IPv4 Range

SScademy

- 0.0.0.0 255.255.255.255
- 0000000.00000000.00000000.00000000 (0.0.0.0)
- 11111111.11111111.11111111.1111111 (255.255.255.255)

Public & Private IP Division

- Public IP => InternetE.g. 54.86.23.90
- Private IP => For local network design
- E.g. 192.168.1.1

IP Address Classes

SScademy

- Class A: 0.0.0.0 127.255.255.255
- Class B: 128.0.0.0 191.255.255.255
- Class C: 192.168.0.0 223.255.255.255
- Class D & Class E: It is used for research and multi-casting

Protocols

In the networking and communication area, a protocol is the formal specification that defines the procedures That must be followed when transmitting or receiving the data. Protocols define the format, timing, sequence And error checking used on the network.

Protocols and Port numbers

Label on	Service Name	UDP and TCP Port	
Column		Numbers Included	
DNS	Domain Name Service – UDP	UDP 53	
DNS TCP	Domain Name Service – TCP	TCP 53	
HTTP	Web	TCP 80	
HTTPS	Secure Web (SSL)	TCP 443	
SMTP	Simple Mail Transport	TCP 25	
POP	Post Office Protocol	TCP 109, 110	
SNMP	Simple Network Management	TCP 161,162 UDP 161,162	
TELNET	Telnet Terminal	TCP 23	
FTP	File Transfer Protocol	TCP 20,21	
SSH	Secure Shell (terminal)	TCP 22	
AFP IP	Apple File Protocol/IP	TCP 447, 548	

Networking Commands

SScademy

- ifconfig
- ping
- vi /etc/hosts
- tracert www.google.com
- netstat –antp : It will show all the TCP open ports
- ss –tunlp : Its new command
- dig <u>www.google.com</u>
- nslookup www.google.com
- route –n
- route
- mtr www.google.com
- telnet 192.168.1.100 22
- history

Contact us for more details

+ 918296373001