Regularization, Data Augmentation and Self-supervised Learning

Efficient Deep Learning - Session 4

2022

Course organisation

Sessions

- Introduction/Refresher on Deep Learning
- Quantization,
- Pruning,
- Regularization, Data Augmentation,
- 5 Factorization,
- 6 Distillation,
- Embedded Software and Hardware for DL,
- 8 Final session.

Course organisation

Sessions

- Introduction/Refresher on Deep Learning
- Quantization,
- 3 Pruning,
- 4 Regularization, Data Augmentation,
- 5 Factorization,
- 6 Distillation,
- Embedded Software and Hardware for DL,
- 8 Final session.

Regularization

Constrain the training for faster convergence and better generalization.

Data Augmentation (DA)

Help generalization by sampling training examples from a larger distribution using randomized transforms.

Self-supervised Learning (SSL)

Exploit DA and regularization tricks for learning representations, without labels

- In some (most?) cases, DA regularizes training and is needed.
- Large networks can't be trained without regularization.

Regularization

Constrain the training for faster convergence and better generalization.

Data Augmentation (DA)

Help generalization by sampling training examples from a larger distribution using randomized transforms.

Self-supervised Learning (SSL)

Exploit DA and regularization tricks for learning representations, without labels

- In some (most?) cases, DA regularizes training and is needed.
- Large networks can't be trained without regularization.

Regularization

Constrain the training for faster convergence and better generalization.

Data Augmentation (DA)

Help generalization by sampling training examples from a larger distribution using randomized transforms.

Self-supervised Learning (SSL)

Exploit DA and regularization tricks for learning representations, without labels

- In some (most?) cases, DA regularizes training and is needed.
- Large networks can't be trained without regularization.

Regularization

Constrain the training for faster convergence and better generalization.

Data Augmentation (DA)

Help generalization by sampling training examples from a larger distribution using randomized transforms.

Self-supervised Learning (SSL)

Exploit DA and regularization tricks for learning representations, without labels

- In some (most?) cases, DA regularizes training and is needed.
- Large networks can't be trained without regularization.

Regularization

Weight Decay

An old idea (Krogh and Herz 1991): ℓ_2 penatly term is added to the loss, limits the growth of model weights.

Has been shown to increase generalization and suppresses irrelevant model weights.

Ressources:

- https://proceedings.neurips.cc/paper/1991/file/ 8eefcfdf5990e441f0fb6f3fad709e21-Paper.pdf
- https://ja.d21.ai/chapter_deep-learning-basics/ weight-decay.html
- Readily available in pytorch (optimizer options)

Regularization

Dropout

Randomly "drops" some units during training with a certain probability.

(b) After applying dropout.

- Was introduced to train very large networks
- Can prevent overfitting
- Adds hyperparameters: where to drop? How often? https://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

Regularization

Batch Normalization (Ioffe & Szegedy, 2015)

Normalize feature distributions to the standard distribution by learning batch statistics.

- Consider a batch X
- Calculate m = E(X) and $\sigma = Var(X)$
- Compute $\hat{X} = \frac{X-m}{\sigma}$
- $lue{}$ m and σ are continuously updated across batches using running statistics

Notes

- Has been shown to accelerate training, increase generalization
- Can remove the need for DropOut
- Should be included by default after convolutions

Data Augmentation using image transformations

Translations, rotations, Scaling, Shifting in RGB, Crops,

Image from Albumentations https://albumentations.ai/docs/examples/pytorch_classification/

Mixup, Cutout and Cutmix

Mixup

For a network F trained using Cross Entropy (CE),

- Sample x_i , x_j from the training data, associated to labels y_i , y_j .
- Defined mixed up data samples as $\tilde{x} = x_i + (1 \lambda)x_j$
- $loss = \lambda CE(F(\tilde{x}), y_i) + (1 \lambda)CE(F(\tilde{x}), y_i)$, where $\lambda \in [0, 1]$
- Train with backprop

Notes

- Has been shown to regularize training and achieves better generalization.
- Should be included most of the time when training classification networks!
- See Lab4.md for a proposed implementation

https://arxiv.org/pdf/1710.09412.pdf

Mixup, Cutout and Cutmix

Image	ResNet-50	Mixup [47]	Cutout [3]	CutMix
Label	Dog 1.0	Dog 0.5 Cat 0.5	Dog 1.0	Dog 0.6 Cat 0.4
ImageNet	76.3	77.4	77.1	78.6
Cls (%)	(+0.0)	(+1.1)	(+0.8)	(+2.3)
ImageNet	46.3	45.8	46.7	47.3
Loc (%)	(+0.0)	(-0.5)	(+0.4)	(+1.0)
Pascal VOC	75.6	73.9	75.1	76.7
Det (mAP)	(+0.0)	(-1.7)	(-0.5)	(+1.1)

Table 1: Overview of the results of Mixup, Cutout, and our CutMix on ImageNet classification, ImageNet localization, and Pascal VOC 07 detection (transfer learning with SSD [23] finetuning) tasks. Note that CutMix significantly improves the performance on various tasks.

https://openaccess.thecvf.com/content_ICCV_2019/papers/Yun_CutMix_Regularization_Strategy_to_Train_Strong_Classifiers_With_Localizable_Features_ICCV_2019_paper.pdf

Application to Self supervised Learning

Self-Supervised Learning

Learn representations of input samples without labels or annotations

How?

Train encoders (e.g. ResNet) on pre-text tasks:

- Self-Prediction
- Contrastive Learning

Trained encoders are expected to learn general features that generalize to supervised tasks.

Application to Self supervised Learning

Self-Supervised Learning

Learn representations of input samples without labels or annotations

How?

Train encoders (e.g. ResNet) on pre-text tasks:

- Self-Prediction
- Contrastive Learning

Trained encoders are expected to learn general features that generalize to supervised tasks.

Application to Self supervised Learning

Contrastive Learning: SimCLR.

Figure 2. A simple framework for contrastive learning of visual representations. Two separate data augmentation operators are sampled from the same family of augmentations ($t \sim \mathcal{T}$ and $t' \sim \mathcal{T}$) and applied to each data example to obtain two correlated views. A base encoder network $f(\cdot)$ and a projection head $g(\cdot)$ are trained to maximize agreement using a contrastive loss. After training is completed, we throw away the projection head $g(\cdot)$ and use encoder $f(\cdot)$ and representation h for downstream tasks.

https://arxiv.org/pdf/2002.05709.pdf