Istanbul Technical University- Fall 2017 BLG527E Machine Learning, Homework 3

Purpose: nonparametric methods, decision trees, linear discrimination, MLPs

Total worth: 6% of your grade.

Handed out: Monday, November 13, 2017.

Due: Monday, November 27, 2017 23:00. (through ninova!)

Instructor: Zehra Cataltepe (<u>cataltepe@itu.edu.tr</u>), **Assistant:** Hakan Gündüz (hakangunduz@itu.edu.tr),

Policy: Collaboration in the form of discussions is acceptable, but you should write your own answer/code by yourself. Cheating is highly discouraged for it could mean a zero or negative grade from the homework.

If a question is not clear, please let us know (via email, during office hour or in class).

Submission Instructions: Please submit through the class ninova site.

Please zip and upload all your files using filename studentID_HW3.zip. You must provide all functions you wrote with your zipped file. Functions you do not submit may cause you lose a portion of your grade. You must also include a .doc or pdf file with answers to the questions and how to call your python or matlab functions for each question so that we can run and check the results.

OUESTIONS:

Dataset:

Optdigits data by Alpaydin and Kaynak, from UCI Machine Learning Repository: ftp://ftp.ics.uci.edu/pub/ml-repos/machine-learning-databases/optdigits/

You need the files:

optdigits.names explanation of data

optdigits.tra training data optdigits.tes test data

Q1) [6pts] [knn (2pt), linear discrimination (2pt), multilayer perceptron (2pt)]

Partition the optdigits.tra data randomly into 90% train and 10% validation sets.

For the following 3 methods: knn, linear discrimination, multilayer perceptron (you can use any available R packages, make sure you indicate what you used in your report):

- Train on training data and determine the best hyper-parameters (e.g. k for knn, number of layers for MLP, etc.) based on the validation accuracy (You need to determine at least 2 parameters for each classifier).
- Using those parameters, train on the whole training data. Measure the training time.
- Test the trained models on the test data, measure the test time.
- Output the training and test confusion matrices and training and test times.

Q2) [2pts] Compare the training and test confusion matrices between the 3 models in terms of accuracy for each class and which classes are confused with each other the most. Also compare the training and test times of the 3 models.

Q3) [4pts] a) Given the decision tree below and w10=10, w20=20, which class does the data point $[25,23]^T$ belong to?

b) Implement a decision tree using the entropy as the impurity criterion and evaluate its performance with Optdigits data. Determine the best hyper-parameters based on the validation accuracy and output the training and test confusion matrices.