Representing Additive Models as Mixed Models

Notations Cheat Sheet

Truncated Power Basis

 $y = \theta_0 + \theta_1 x + \theta_2 x^2 + \dots + \theta_d x^d + \sum_{k=1}^K \theta_{dk} (x - \kappa_k)_+^d$

 θ_l coefficients

 κ_k kth knot

K number of knots

Additive Models

$$y = \sum_{j=1}^{p} V_j \xi_j + U\gamma$$

p number of covariates

 V_i design matrices for non-linear effects

 ξ_j non-linear parameters

U design matrix for linear effects

 γ linear parameter vectors

 $b_k(.)$ basis function for kth knot

 λ_j roughness penalty

 K_j penalty matrix

Mixed Models

$$y_i = \underbrace{X_i \beta}_{\text{fixed effects}} + \underbrace{Z_i b_i}_{\text{fixed effects}} + \epsilon_i$$

 β_j parameter for the fixed effects

 b_i parameter for the random effects

X design matrix for the fixed effects

Z design matrix for the random effects

Representation

$$\xi_j = \tilde{X}_j \beta_j + \tilde{Z}_j b_j$$

 Σ_i covariance matrix of prior

 τ_i^2 variance of prior

 β_j non-penalized part of ξ_j

 b_j penalized part of ξ_j

Inference

W diagonal matrix of σ^2

Q block diagonal matrix of $\tau_j^2 I_{kj}$