	<u>TP4 Aero - Fabri Vernhet</u>	Pt		Α	в с	D	Note	
I.	Modélisation							
1	Donner le nom de la grandeur réglante.	1	Α				1	
2	Donner le nom d'une perturbation.	1	Α				1	
3	Compléter le schéma TI pour faire apparaître la boucle de régulation.	1	Α				1	
	Proposer un schéma fonctionnel de la régulation en faisant apparaître la perturbation.	1	Α				1	
5	Déterminer un modèle du premier ordre (Broïda sans retard) du procédé en utilisant la méthode de simple, pour un échelon de commande de 50% à 90%.	1	С				0,35	
6	Donner la fonction de transfert du procédé H(p).	1	С				0,35	
II.	Détermination d'un correcteur							
1	Exprimer la fonction de transfert C(p) en fonction du gain A.	1	С				0,35	
	Exprimer la fonction de transfert en boucle ouverte T(p) en fonction de A.	1	С	Ш			0,35	
3	Exprimer la fonction de transfert en boucle fermée F(p) en fonction de A.	2	Α				2	
	Quelle est la valeur du gain statique de la boucle fermée F(0) ?	1	Α				1	
	En déduire la valeur de l'erreur statique.	1	С				0,35	
6	Déterminer x(t), la réponse à un échelon de consigne de 10%.	1	В				0,75	
7	En déduire la valeur de A pour avoir un temps de réponse à $\pm 5\%$ égale à $ au/10$.	1	С				0,35	
III.	Performances							
	Quelle est la valeur de la bande proportionnelle correspondante à la réponse II.7 ?	1	Α				1	
2	Donner le sens d'action à régler sur votre régulateur. Justifier votre réponse.	1	В				0,75	
3	Procéder au réglage de votre régulateur conformément au paragraphe II.	1					0	
4	Relever la réponse à un échelon de consigne de 10%. Choisir une consigne proche des températures obtenues à la question I.5.	1					0	
5	Donner alors le temps de réponse à ± 5 %, l'erreur statique, ainsi que le premier dépassement. On fera apparaitre toutes les constructions.	1					0	
6	Commenter les différences par rapport à la réponse indicielle attendue.	1	Not				0	

TP4 Aerotherme

1/ grandeur réglant puissance de chauffe de la résistance 2/ grandeur perturbatrice température de l'aire aspiré 3/

6/ Fonction de transfert : H(p)=
$$\frac{K*e^{-Tp}}{1+thoP}$$

II. Détermination d'un correcteur

1/Les régulateur dans la salle sont mixte du coup C(p)=A* $\frac{1+Ti*p+Ti*Td*p^2}{Ti*p}$

2/T(p) en fonction de A:

$$T(p)=C(p)*H(p)$$

$$T(p)=A* \frac{1+tho*p}{tho*p} *= \frac{K}{1+tho*p} A* \frac{K}{1+tho*p}$$

3/ F(p) en fonction de A

$$F(p)=T(p)/1+T(p)$$

=1/(1+1/\(\Delta(1+tho^{\frac{1}{2}}\)

$$=1/(1+1/A((1+tho*p)/t*p)*(K/1+tho*p))$$

=1/(1+tho*p/AK)

4/ on a : F(p)=1/(1+t*p/AK)

donc: F(0)=1

5/ Pour déduire l'erreur statique on a : F(p)=x(p)/w(p)

Pour F(0) on sait que le gain vaut 1 on déduit que x(0)/w(0)=1 on peut donc affirmer que x(0)=w(0) le gain va être nul

```
6/pour déterminer x(t) on a : x(p)=10/p*((A*K/tho)(A*K/tho+p)) donc x(t)=(1-e^{(-AK)/tho)*10} 7/ on déduit la valeur de A : on applique la formule si-dessus :x(t)=(1-e^{(-AK)/tho)*10} (1-e^{(-AK)/tho)*10=9,5} A=9,5 car A = -tho(0,905/t*K)=9,5
```

III. Performances

1/pour calculer la bande proportionnel Xp on a comme formule A= 100/Xp donc on a Xp=100/A Xp=100/9,5 Xp=10,52%

2/le sens d'action a régler sur le régulateur est inverse car quand on augmente la commande la mesure augmente et donc le procédé est inverse

3/

4/