Fimmta laugardagsæfingin í eðlisfræði 2021

Ath: Pað verður engin laugardagsæfing í vorhlénu

Nafn:

Bekkur:

Fastar

Nafn	Tákn	Gildi
Hraði ljóss í tómarúmi	c	$3.00 \cdot 10^8 \mathrm{ms^{-1}}$
Þyngdarhröðun við yfirborð jarðar	$\mid g \mid$	$9.82{\rm ms^{-2}}$
Frumhleðslan	e	$1,602 \cdot 10^{-19} \mathrm{C}$
Massi rafeindar	m_e	$9.11 \cdot 10^{-31} \mathrm{kg}$
Gasfastinn	R	$8,3145\mathrm{J}\mathrm{mol}^{-1}\mathrm{K}^{-1}$
Fasti Coulombs	k_e	$8,988 \cdot 10^9 \mathrm{N m^2 C^{-2}}$
Rafsvörunarstuðull tómarúms	ϵ_0	$8.85 \cdot 10^{-12} \mathrm{C^2 s^2 m^{-3} kg^{-1}}$
Pyngdarfastinn	G	$6.67 \cdot 10^{-11} \mathrm{m}^3 \mathrm{kg}^{-1} \mathrm{s}^{-2}$
Geisli jarðarinnar	R_{\oplus}	$6.38 \cdot 10^6 \mathrm{m}$
Geisli sólarinnar	R_{\odot}	$6.96 \cdot 10^8 \mathrm{m}$
Massi jarðarinnar	M_{\oplus}	$5.97 \cdot 10^{24} \mathrm{kg}$
Massi sólarinnar	M_{\odot}	$1,99 \cdot 10^{30} \mathrm{kg}$
Stjarnfræðieiningin	AU	$1,50 \cdot 10^{11} \mathrm{m}$

Krossar

Hver kross gildir 3,5 stig. Vinsamlegast skráið svörin ykkar við tilheyrandi krossi hér fyrir neðan:

K1	K2	K 3	K 4	K 5	K6	K7	K8	K9	K10
С	A	Е	A	D	A	D	С	E	В

K11	K12	K13	K14	K15	K16	K17	K18	K19	K20
${ m E}$	A	С	D	D	E	В	В	D	D

Krossar (70 stig)

K1. Hreyfiorka hlutar með massa m og hraða v er táknuð með K. Hún er skilgreind þannig að $K = \frac{1}{2}mv^2$. Hverjar eru SI-einingar hreyfiorku?

(A) kg m/s (B) $kg m/s^2$ (C) $kg m^2/s^2$ (D) $kg m^2/s$ (E) $kg^2 m^2/s^2$

Lausn: Athugum að:

$$[K] = \left[\frac{1}{2}mv^2\right] = [m][v]^2 = \text{kg} (\text{m/s})^2 = \text{kg m}^2/\text{s}^2$$

K2. Straumbreytir á Íslandi tekur 240 V og skilar 19,0 V jafnspennu við 5,00 A. Hvert er hámarksafl sem raftæki má draga úr straumbreytinum án þess hann skemmist?

(A) 95.0 W

(B) 245 W (C) 1700 W (D) 3.80 W

(E) 12.6 W

Lausn: Athugum að:

$$P = IV = 5.0 \,\mathrm{A} \cdot 19.0 \,\mathrm{V} = 95.0 \,\mathrm{W}.$$

K3. Guðrún göngugarpur fer upp á Everest þar sem loftþrýstingurinn er 0,40 atm. Á toppnum opnar Guðrún loftþétt nestisbox sem hefur flatarmál 0,023 m², fær sér samloku, og lokar því svo aftur. Guðrún gengur svo niður og fer alla leið að sjávarmáli þar sem loftþrýstingurinn er 1,0 atm. Hversu miklum krafti, hornrétt á lok nestisboxins, þarf Guðrún að beita til þess að opna nestisboxið við sjávarmál? (1 atm = 101, 3 kPa)

(A) $210 \,\mathrm{N}$ (B) $450 \,\mathrm{N}$

(C) $850 \,\mathrm{N}$ (D) $960 \,\mathrm{N}$

(E) 1400 N

Lausn: Athugum að:

$$F = \Delta PA = 0.6 \cdot 101.3 \cdot 10^3 \,\mathrm{Pa} \cdot 0.023 \,\mathrm{m}^2 = 1400 \,\mathrm{N}.$$

K4. Litlum bolta er kastað lárétt fram af borðsbrún með upphafshraða v. Boltinn lendir á jörðinni í láréttri fjarlægð D frá borðinu. Tilraun er framkvæmd þannig að mismunandi gildi á v og tilheyrandi gildi á D eru skráð niður í töflu. Hvert af eftirfarandi gröfum mun gefa beina línu?

- (A) v sem fall af D.
- (B) v^2 sem fall af D.
- (C) v sem fall af D^2 .
- (D) v sem fall af $\frac{1}{D}$.
- (E) v sem fall af $\frac{1}{\sqrt{D}}$.

Lausn: Athugum að D=vt og $h=\frac{1}{2}gt^2$. Seinni jafnan gefur gefur þá að $t=\sqrt{\frac{2h}{g}}$ svo efri jafnan verður $D=v\sqrt{\frac{2h}{g}}$. En þá ályktum við að v sem fall af D mun gefa beinlínugraf með hallatölu $\sqrt{\frac{g}{2h}}$.

K5. Kappakstursbíll tekur af stað úr kyrrstöðu og nær hraðanum 100 km/klst eftir 2,5 s. Hver er meðalhröðun hans á þeim tíma?

(A) $1.3 \,\mathrm{m/s^2}$

- (B) $4.5 \,\mathrm{m/s^2}$ (C) $7.7 \,\mathrm{m/s^2}$ (D) $11 \,\mathrm{m/s^2}$ (E) $45 \,\mathrm{m/s^2}$

Lausn: Meðalhröðunin er þá

$$a_m = \frac{\Delta v}{\Delta t} = \frac{\left(\frac{100}{3.6}\right)}{2.5} = 11 \,\text{m/s}^2.$$

K6. Skenkur með massa $m=25\,\mathrm{kg}$ er dreginn eftir hrjúfu yfirborði með F= $52\,\mathrm{N}$ krafti yfir horni $\theta=34^\circ$ miðað við lárétt. Núningsstuðullinn milli skenksins og hrjúfa yfirborðsins er $\mu = 0, 20$. Hversu stór núningskraftur verkar á skenkinn þegar hann er dregin með jöfnum hraða?

- (A) 43 N (B) 56 N (C) 83 N (D) 120 N (E) 560 N

Lausn: Fáum þá að $F_{\text{nún}} = F \cos \theta = 43 \,\text{N}.$

K7. Viðarkubb af þyngd 30 N er haldið undir vatni. Uppdrifskrafturinn sem verkar á kubbinn er 50 N þegar hann er allur undir vatni. Nú er kubbnum sleppt þannig að hann flýtur á vatninu. Hversu stórt hlutfall af kubbnum er sýnilegt fyrir ofan vatnsyfirborðið?

(A) 1/15 (B) 1/5 (C) 1/3 (D) 2/5 (E) 3/5

Lausn: Látum p tákna hlutfallið af rúmmáli hlutarins sem er sökkt undir vatni þá er í jafnvægi samkvæmt Arkímedesi:

$$mg = \rho V_{\mathrm{undir}} g = \rho p V g \implies p = \frac{mg}{\rho V g} = \frac{30}{50} = \frac{3}{5}.$$

En það sem stendur upp úr er þá $\frac{2}{5}$.

K8. Staða agnar er gefin með: $x(t) = x_0 \cos(\omega t + \pi/6)$, þar sem $x_0 = 6.0$ m og $\omega = 2.0$ rad/s. Hver er mesti hraði agnarinnar?

(A) $3.0 \,\mathrm{m/s}$

- (B) $6.0 \,\mathrm{m/s}$ (C) $12 \,\mathrm{m/s}$ (D) $24 \,\mathrm{m/s}$ (E) $36 \,\mathrm{m/s}$

Lausn: Fæst með því að diffra:

$$v(t) = \dot{x}(t) = -x_0 \omega \sin\left(\omega t + \frac{\pi}{6}\right)$$

Svo hámarkshraðinn er $v_{\rm max} = x_0 \omega = 12 \, {\rm m/s}$.

K9. Ef teiknað er línurit sem sýnir hraða hlutar á hreyfingu eftir beinni línu sem fall af tíma, þá er hallatala ferilsins í hverjum punkti jöfn

- (A) hreyfiorkunni (B) færslunni (C) hraðanum (D) meðalhraðanum
- (E) hröðuninni

Svar: Hröðuninni.

- K10. Ef teiknað er línurit sem sýnir hraða hlutar á hreyfingu eftir beinni línu sem fall af tíma, þá er flatarmál svæðisins undir ferlinum jafnt
 - (B) færslunni (C) hraðanum (D) meðalhraðanum (A) hreyfiorkunni (E) hröðuninni

Svar: Færslunni.

K11. Straumur í gegnum viðnám er mældur við mismunandi spennu. Niðurstöður úr mælingunum eru sýndar á myndinni hér til hægri. Hver er stærð viðnámsins?

(A) $0.5 \,\mathrm{k}\Omega$

(B) 10Ω (C) 50Ω (D) $0.5 \mathrm{m}\Omega$

(E) $2.0 \,\mathrm{k}\Omega$

Lausn: Athugum að $V=IR \implies I=\frac{1}{R}V$ svo að hallatalan er $\frac{1}{R}=\frac{1}{2} \implies R=2,0\,\mathrm{k}\Omega.$

K12. Keli rennur beint áfram á skíðum á jafnsléttu með jafna hraðanum $v_1 = 1.0 \,\mathrm{m/s}$. Massi Kela er $m=25\,\mathrm{kg}$. Hver er heildarkrafturinn, F, sem verkar á hann?

(A) 0.0 N

(B) $5.0 \,\mathrm{N}$

(C) 10 N (D) 25 N (E) 250 N

Lausn: Hann er með jafnan hraða svo samkvæmt fyrsta lögmáli Newtons er $F = 0.0 \,\mathrm{N}.$

K13. Seinna um daginn er snjórinn orðinn blautur svo núningsstuðullinn milli skíðanna og snjósins er orðinn $\mu = 0.10$ (áður var hann $\mu = 0$). Keli rennur aftur eftir beinni línu á jafnsléttu og hefur í upphafi hraðnn $v = 2.0 \,\mathrm{m/s}$. Massi Kela er $m = 25 \,\mathrm{kg}$. Hvað rennur hann langt þar til hann stoppar alveg?

 $(A) 0.2 \,\mathrm{m}$

(B) $1.0 \,\mathrm{m}$ (C) $2.0 \,\mathrm{m}$ (D) $4.6 \,\mathrm{m}$

(E) 25 m

Lausn: Þá gefur vinnulögmálið að:

$$\frac{1}{2}mv^2 - \mu mgd = 0 \implies d = \frac{v^2}{2\mu g} = 2.0 \,\mathrm{m}.$$

K14. Gerum ráð fyrir að ísjaki sé teningur með hliðarlengdir L. Ísbjörn með massa 500 kg leitar nú að ísjaka í sjónum til að hvíla sig á. Hver má hliðarlengd ísjakans minnst vera til þess að hann sökkvi ekki með ísbjörninn? Eðlismassi sjós er $1028 \,\mathrm{kg/m^3}$ og eðlismassi hafíss er $920 \,\mathrm{kg/m^3}$.

(A) $0.79 \,\mathrm{m}$ (B) $0.82 \,\mathrm{m}$ (C) $1.38 \,\mathrm{m}$ (D) $1.67 \,\mathrm{m}$ (E) $2.15 \,\mathrm{m}$

Lausn: Höfum þá að:

$$F_{\rm upp} = \rho_{\rm vatn} L^3 g = m_b g + \rho_{\rm is} L^3 g \implies L = \left(\frac{m_b}{\rho_{\rm vatn} - \rho_{\rm is}}\right)^{1/3} = 1,67 \,\mathrm{m}$$

K15. Í rásinni hér til hægri er rafhlaðan með spennu $V = 7.0 \,\mathrm{V}$ og viðnámin eru $R_1 = 2.0 \Omega$ og $R_2 = 6.0 \Omega$. Hver er straumurinn um rafhlöðuna?

- (A) 0,21 A (B) 0,88 A (C) 1,8 A

- (D) $4.7 \,\mathrm{A}$ (E) $10 \,\mathrm{A}$

Lausn: Viðnámin eru hliðtengd svo:

$$R_{\text{heild}} = \left(\frac{1}{R_1} + \frac{1}{R_2}\right)^{-1} = 1.5 \,\Omega.$$

En þá er $V=IR_{\rm heild} \implies I=rac{V}{R_{\rm heild}}=rac{7.0\,{
m V}}{1.5\,\Omega}=4.7\,{
m A}.$

- K16. Sleði með massa 2,0 kg rennur (núninglaust) niður 10 m háan hól og klessir á annan 3,0 kg sleða neðst í brekkunni með þeim afleiðingum að þeir festast saman. Hver verður hraði þeirra eftir áreksturinn?
 - (A) $1.2 \,\mathrm{m/s}$

- (B) $2.3 \,\mathrm{m/s}$ (C) $3.4 \,\mathrm{m/s}$ (D) $4.5 \,\mathrm{m/s}$ (E) $5.6 \,\mathrm{m/s}$

Lausn: Fáum þá að:

$$m_1gh = \frac{1}{2}m_1v^2 \implies v = \sqrt{2gh}$$

Er hraði kubbsins rétt fyrir áreksturinn. En þá er hraðinn eftir áreksturinn:

$$(m_1 + m_2)u = m_1v \implies u = \frac{m_1v}{m_1 + m_2} = \frac{m_1}{m_1 + m_2}\sqrt{2gh} = 5.6 \,\text{m/s}$$

- K17. Maður stendur á vigt sem sýnir 90 kg á jörðinni. Hvað myndi vigtin sýna á tunglina, þar sem þyngdarhröðunin er $a = 1.63 \,\mathrm{m/s^2}$.

 - (A) $11 \,\mathrm{kg}$ (B) $15 \,\mathrm{kg}$ (C) $30 \,\mathrm{kg}$ (D) $90 \,\mathrm{kg}$ (E) $540 \,\mathrm{kg}$

Lausn: Þá höfum við að vogin sýnir:

$$\frac{ma}{g} = 14.9 \,\mathrm{kg}.$$

- K18. Ímyndum okkur að öreind að nafninu bixitrixeind sé eins og rafeind að öllu leyti nema hvað hún hafi massann m_{ix} í stað massa rafeindar m_e . Sé tveimur bixitrixeindum komið fyrir í 13,0 mm fjarlægð frá hvor annarri verkar þyngdarkraftur og rafstöðukraftur milli þeirra þannig að heildarkafturinn er núll. Hver er massinn m_{ix} ?
- (A) $1.31 \cdot 10^{-12} \,\mathrm{kg}$ (B) $1.86 \cdot 10^{-9} \,\mathrm{kg}$ (C) $3.46 \cdot 10^{-18} \,\mathrm{kg}$ (D) $1.71 \cdot 10^{-24} \,\mathrm{kg}$ (E) $7.62 \cdot 10^{-7} \,\mathrm{kg}$

Lausn: Fáum þá að:

$$\frac{Gm_{\rm ix}^2}{r^2} = \frac{ke^2}{r^2} \implies m_{\rm ix} = \sqrt{\frac{k}{G}}e = 1.86 \cdot 10^{-9} \,\mathrm{kg}.$$

K19. Stelpa rennir sér á sleða niður 60 m langa brekku með halla 30°. Í upphafi er hún kyrrstæð en neðst í brekkunni er hraði hennar 20 m/s. Hver er núningsstuðull brekunnar? (Ábending: Hugsið ykkur brekkuna sem langhlið í rétthyrndum þríhyrningi og sleppið því að gera ráð fyrir loftmótstöðu).

(A) 0,67 (B) 0,13 (C) 1,02 (D) 0,19 (E) 0,48

Lausn: Fáum þá að hröðunin hennar var gefin með

$$2a\Delta s = v^2 - v_0^2 \implies a = \frac{v^2}{2\Delta s} = \frac{20^2}{2\cdot 60} = 3,33\,\mathrm{m/s^2}.$$

En við vitum að fyrir slík skábretti er hröðunin niður skábrettið gefin með $a=g(\sin\theta-\mu\cos\theta)$ svo við fáum að

$$\mu = \frac{g\sin\theta - a}{g\cos\theta} = 0.19.$$

K20. Á myndinni hér til hægri sést línurit yfir hlaupahraða Elínar sem fall af tíma. Hvað hleypur Elín langt á þessum 20 sekúndum?

(A) 100 m (B) 125 m (C) 150 m (D) 175 m (E) 225 m

Lausn: Þá er flatarmálið undir ferlinum:

$$s = \frac{1}{2} \cdot 5 \cdot 15 + \frac{1}{2} \cdot 5 \cdot 5 + 10 \cdot 10 + \frac{1}{2} \cdot 10 \cdot 5 = 175 \,\mathrm{m}.$$

Dæmi 1: Tveir kubbar á skábretti (15 stig)

Lítum á skábretti sem hallar um horn θ miðað við lárétt. Á skábrettinu standa tveir kubbar í kyrrstöðu. Kubburinn sem stendur neðar á skábrettinu hefur massa m_A og núningsstuðullinn milli kubbsins og skábrettisins er μ_A . Kubburinn sem stendur ofar á skábrettinu hefur massa m_B og núningsstuðullinn milli kubbsins og skábrettisins er μ_B . Í þessu dæmi gerum við ráð fyrir að skábrettið sé svo langt að kubbarnir nái ekki að renna niður á enda þess, að tan $\theta > \mu_A > \mu_B$ og að vegalengdin (samsíða skábrettinu) milli kubbanna sé d.

- (a) (4 stig) Ákvarðið hröðun kubbsins, a_A , með massa m_A í stefnuna samsíða skábrettinu.
- (b) (1 stig) Ákvarðið hröðun kubbsins, a_B , með massa m_B í stefnuna samsíða skábrettinu.
- (c) (3 stig) Finnið tímann t_1 sem líður frá því að kubbunum er sleppt samtímis úr kyrrstöðu og þar til að þeir skella saman í fyrsta skipti.
- (d) (7 stig) Gerum ráð fyrir að $m = m_A = m_B$ og að kubbarnir lendi í alfjaðrandi árekstri, en það þýðir að bæði skriðþungi og orka kerfisins er varðveitt við áreksturinn. Ákvarðið tímann t_2 sem líður frá því að kubbarnir rekast saman í fyrsta skipti og þar til að þeir rekast saman í annað skipti.

Lausn:

(a) Við fáum þá að kraftajafnan verður

$$\begin{pmatrix} m_A a_A \\ 0 \end{pmatrix} = \begin{pmatrix} m_A g \sin \theta - \mu_A \mathbf{P} \\ \mathbf{P} - m_A g \cos \theta \end{pmatrix}$$

En það gefur því að $P = m_A g \cos \theta$ sem gefur þá að $a_A = (\sin \theta - \mu_A \cos \theta) g$.

- **(b)** Eins fæst að $a_B = (\sin \theta \mu_B \cos \theta) g$.
- (c) Þeir munu þá skella saman þegar:

$$d = \frac{1}{2}(a_B - a_A)t_1^2 \implies t_1 = \sqrt{\frac{2d}{(a_B - a_A)}}.$$

(d) Þar sem að afstæður hraði kubbanna er varðveittur í alfjaðrandi árekstri og þeir hafa jafn mikinn massa, m, þá skiptast þeir á hröðum. Við fáum þá að tíminn t_2 sem líður þar til að þeir lenda aftur í árekstri er fundinn með:

7

$$a_B t_1 t_2 + \frac{1}{2} a_A t_2^2 = a_A t_1 t_2 + \frac{1}{2} a_B t_2^2 \implies t_2 = 2 \frac{(a_B - a_A) t_1}{a_B - a_A} = 2 t_1.$$

Dæmi 2: Gormur (15 stig)

Óli prik, sem hefur massa m_p , stendur við hliðina á gormi í jafnvægisstöðu með gormstuðul k. Ofan á gorminum er massalaus pallur og bolti með massa m_b . Síðan stígur Óli varlega ofan á pallinn og tekur upp boltann. Þá þjappast gormurinn saman í nýja jafnvægisstöðu sem er í fjarlægðinni d lóðrétt frá upphaflegu jafnvægisstöðunni.

- (a) (2 stig) Ákvarðið fjarlægðina d (notið stærðirnar k, m_p , m_b og/eða g í svarinu).
- (b) (3 stig) Ef Óli sleppir nú boltanum fer gormurinn að sveiflast með tíma. Hvert verður útslag sveifluhreyfingarinnar, A_1 , áður en boltinn lendir á pallinum (notið stærðirnar k, m_p , m_b og/eða g í svarinu)?
- (c) (5 stig) Pegar boltinn lendir loks á pallinum hefur gormurinn lokið nákvæmlega einni sveiflu. Ákvarðið hæðina h sem boltanum var sleppt úr (notið stærðirnar k, m_p , m_b og/eða g í svarinu).
- (d) (5 stig) Boltinn festist við pallinn þegar hann lendir, þ.e. áreksturinn milli boltans og pallsins er fullkomlega ófjaðrandi. Ákvarðið útslag sveifluhreyfingarinnar, A_2 , eftir að boltinn lendir á gorminum (notið stærðirnar k, m_p , m_b og/eða g í svarinu).

Lausn:

- (a) Pá er $m_p g = kd \implies d = \frac{m_p g}{k}$.
- (b) Þegar hann sleppir boltanum þá lyftist pallurinn upp um vegalengd $A_1 = \frac{m_b g}{k}$.
- (c) Tíminn sem sveiflan tekur er gefin með $T=2\pi\sqrt{\frac{m_p}{k}}$ og boltinn fellur hæðina

$$h = \frac{1}{2}gT^2 = \frac{2\pi^2 m_p g}{k}.$$

(d) Hraði boltans þegar hann lendir er $v=gT=2\pi g\sqrt{\frac{m_p}{k}}$ en hraði pallsins er núll. Skriðþungavarðveislan gefur þá að hraði kerfisins eftir áreksturinn verður:

$$u = \frac{m_b v}{m_b + m_p}$$

En þá er nýja útslagið:

$$A_2 = \sqrt{A_1^2 + \left(\frac{u}{\omega}\right)^2}.$$

Þar sem $\omega = \sqrt{\frac{k}{m_p + m_b}}$. Niðurstaðan hér að ofan leiðir beint af orkuvarðveislu:

$$\frac{1}{2}kA_2^2 = \frac{1}{2}(m_b + m_p)u^2 + \frac{1}{2}kA_1^2 \implies A_2 = \sqrt{A_1^2 + \left(\frac{u}{\omega}\right)^2}.$$

8