CS 151 Homework 2: Keith Wesa

Question 2.1

The problem

Q2.1 For any integer x, if x + y > 50, then x > 20 or y > 30.

Compound Logic Form: $\forall x \in \mathbb{Z}, \forall y \in \mathbb{Z}, x+y > 50 \rightarrow x > 20 \lor y > 30$

Simplify Variables: x + y = p, x = q, y = r

Rewrite: $p \rightarrow q \lor r$

Thoughts on the problem: We can do a direct proof or a contrapositive proof. I will do both.

Contrapositive: $\neg q \land \neg r \rightarrow \neg p$

Proof by Cases

Proof. If x + y > 50, then x > 20 or y > 30.

Case 1: $x \le 20$ and $y \le 30$

Let x = 20 and y = 30 they are both integers.

Then x + y = 50 this is True.

Case 2: $x \le 20$ and y > 30

Let x = 20 and y = 31 they are both integers.

Then x + y = 51 this is True.

Case 3: x > 20 and $y \le 30$

Let x = 21 and y = 30 they are both integers.

Then x + y = 51 this is True.

Case 4: x > 20 and y > 30

Let x = 21 and y = 31 they are both integers.

Then x + y = 52 this is True.

Therefore, since it is true for all cases, the statement is true.

Proof by Contrapositive

Proof. If $x \le 20$ and $y \le 30$, then $x + y \le 50$.

Let x = 20 and y = 30 they are both integers.

Then x + y = 50 this is True.

Since, the contrapositive is true, the original statement is true. By the law of contrapositive.