PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-143251

(43)Date of publication of application: 23.05.2000

(51)IntCI.

C016 51/00 H01B 1/08 H01L 27/10 H01L 27/108 H01L 21/8242

(21)Application number: 10-316305

(71)Applicant:

MITSUBISHI MATERIALS CORP

(22)Date of filing:

06.11.1998

(72)Inventor:

MORI AKIRA

SOYAMA NOBUYUKI KAGEYAMA KENSUKE

(54) SOLUTION FOR FORMING THIN OXIDE FILM

(57)Abstract:

PROBLEM TO BE SOLVED: To improve the preservation stability and to prevent the formation of a precipitate even when a soln. is preserved for a long period by incorporating the respective carboxylates of La, Sr and Co into an org. solvent in a specified molar ratio and further specifying the concns. of the respective metals and the water content of the soln.

SOLUTION: Respective carboxylates of La, Sr and Co are incorporated into an org. solvent in a molar ratio corresponding to LaxSr1xCoO3 (where 0.1≤x≤0.6). The content of La is controlled to ≤8 wt.%, that of Sr to ≤10 wt.% and that of Co to ≤10 wt.%, and the water content is controlled to ≤1 wt.% to prepare a soln. for forming the thin film of an LaSrCo multiple oxide. The soln. is applied on a substrate and heated to form a thin oxide film. The thin oxide film is heat-treated and crystallized to form the thin film of the LaSrCo multiple oxide having a perovskite structure. A hydrocarbonic solvent immiscible with water is preferably used as the org. solvent.

_EGAL STATUS

[Date of request for examination]

31.03.2000

[Date of sending the examiner's decision of rejection]

09.09.2003

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of

rejection]

[Date of extinction of right]

Copyright (C): 1998,2003 Japan Patent Office

EST AVAILABLE COP

JAPANESE [JP,2000-143251,A]

:LAIMS DETAILED DESCRIPTION TECHNICAL FIELD PRIOR ART EFFECT OF THE INVENTION TECHNICAL PROBLEM MEANS XAMPLE

Translation done.]

NOTICES *

PO and NCIP1 are not responsible for any amages caused by the use of this translation.

- .This document has been translated by computer. So the translation may not reflect the original precisely.
- .**** shows the word which can not be translated.
- .In the drawings, any words are not translated.

LAIMS

Claim(s)]

Claim 1] the inside of an organic solvent — each of a lanthanum, strontium, and cobalt — the solution for LaSrCo multiple oxide thin ilm formation which consists of a solution which contains carboxylate by the mole fraction corresponding to formula:Lax Sr1-x Co O3 0.1 < x < 0.6, and is characterized by for the concentration of each metal in a solution being less than [La:8 % of the weight], less han [Sr:10 % of the weight], and less than [Co:10 % of the weight], and the moisture concentration of a solution being 1 or less % of he weight.

Claim 2] The membrane formation approach of a LaSrCo multiple oxide thin film including the process which applies the solution for hin film formation of claim 1 to a base, the process which heats a paint film and forms an oxide thin film, and the process which heat-reats the obtained oxide thin film and is crystallized.

Claim 3] The LaSrCo multiple oxide thin film with the perovskite crystal structure formed from the solution for oxide thin film ormation according to claim 1.

Translation done.]

PO and NCIPI are not responsible for any amages caused by the use of this translation.

.This document has been translated by computer. So the translation may not reflect the original precisely.

.**** shows the word which can not be translated.

.In the drawings, any words are not translated.

ETAILED DESCRIPTION

Detailed Description of the Invention]

0001]

Field of the Invention] This invention is the multiple oxide of the perovskite crystal structure containing a lanthanum, strontium, and obalt. (a LaSrCo multiple oxide or LSCO, and brief sketch) It is related with the membrane formation approach of an oxide thin film nd the obtained oxide thin film using the solution for oxide thin film formation for forming a thin film with a wet method, i.e., a sol-gel nethod, and this solution. The formed oxide thin film is useful although the thin film for electrodes of semiconductor memory, such as erroelectric nonvolatile memory, is formed.

0002]

Description of the Prior Art] DRAM currently used for the current Lord as rewritable memory is volatile memory, it is necessary to ass a current periodically because of storage maintenance, and it has been a problem from the environmental side that power onsumption is large. Then, it is nonvolatile, since storage can be held for a long period of time, there is little power consumption, and he ferroelectric random-access memory which is compatible with DRAM attracts attention. Ferroelectric random-access memory eplaces the capacitor part of DRAM with a ferroelectric thin film, and gives a memory storage function to this thin film using the systems of phenomenon of the spontaneous polarization of a ferroelectric. PZT (PbZrx Ti1-x O3, 0< x<1) with large spontaneous olarization as a ferroelectric thin film material of this ferroelectric random-access memory etc. — the perovskite mold oxide a a gredient and the stratified superlattice mold oxide ingredient are suitable.

0003] In order to form the thin film of these oxide ingredients, heat treatment in an oxidizing atmosphere is needed for crystallization. In that case, a front face oxidizes that a lower electrode is the usual metal, and a device property deteriorates remarkably. Therefore, table platinum is conventionally used as an electrode material chemically.

0004] since [however,] platinum has the trouble that the adhesion with SiO2 which is not good is bad — ruthenium oxide (RuO2) etc. — the oxide electrode which consists of a noble-metals oxide has come to be tried as an electrode of nonvolatile memory. It is said hat an oxide electrode can improve the fatigue resistance of this thin film remarkably when the oxygen deficiency of the ferroelectric hin film which is the memory ingredient of a ferroelectric can be prevented.

0005] as the ingredient of such an oxide electrode — Jpn.J.Appl.Phys.Vol. — 37 (1998) and pp.L936–38 **** — MgO Forming the 'ZT ferroelectric capacitor thin film which used upwards the electrode which consists of a LaSrCo multiple oxide with a sol-gel nethod is reported. The solution of commercial 0.25 M concentration is used for membrane formation of a LaSrCo multiple oxide. 0006] Unlike the gaseous-phase forming-membranes methods, such as the sputtering method, the laser ablation method, and reactant acuum deposition, in addition to the advantage that it is easy and suitable for mass production, presentation control of the film is easy or the wet forming-membranes methods, such as a sol-gel method, and they have the features that membrane formation thickness is comparatively uniform.

0007]

Problem(s) to be Solved by the Invention] However, the sol-Ringer's injection for LaSrCo multiple oxide membrane formation by which surrent marketing is carried out has low preservation stability, and precipitate is produced in about one month. If the solution which produced precipitate even when it was very small is used, the electrical property of the obtained film becomes heterogeneous, and since the dependability of a product is spoiled greatly, it cannot but discard. Therefore, there was much futility and an improvement of the preservation stability of a solution was desired. This invention makes it a technical problem to offer the solution for oxide thin film ormation for LaSrCo multiple oxide membrane formation which does not produce precipitate even if preservation stability improves emarkably from elegance conventionally, for example, it carries out a mothball.

00081

Means for Solving the Problem] As a result of repeating examination that the above-mentioned technical problem should be solved, his invention persons used carboxylate as a source of supply of each metal, are restricting the atomic ratio of La and Sr, and the concentration and moisture concentration of each metal carboxylate in a solution, knew that the above-mentioned technical problem vould be solvable, and completed this invention.

0009] A lanthanum, strontium, and cobalt this invention each in an organic solvent here carboxylate Formula: It consists of a solution contained by the mole fraction corresponding to Lax Sr1-x Co O3 (0.1<=x<=0.6). It is the solution for LaSrCo multiple oxide thin film ormation characterized by for the concentration of each metal in a solution being less than [La:8 % of the weight], less than [Sr:10 % of the weight], and less than [Co:10 % of the weight], and the moisture concentration of a solution being 1 or less % of the weight. 0010] According to this invention, the membrane formation approach of the oxide thin film which includes the process which applies he above-mentioned solution for oxide thin film formation to a base, the process which heats a paint film and forms an oxide thin film, and the process which heat-treats the obtained oxide thin film and is crystallized again is offered. Moreover, the thin film of a LaSrCo nultiple oxide with the perovskite crystal structure formed from the above-mentioned solution for oxide thin film formation is also offered by this invention.

0117

imbodiment of the Invention] The thin film formed with the solution for oxide thin film formation of this invention is a multiple oxide ontaining La, and Sr and Co. (namely, a LaSrCo multiple oxide or LSCO) It is a thin film. This multiple oxide may be contained if other etallic elements are little in addition to La, Sr, and Co. Ce, Pr, Nb, Rh, and Ir are mentioned as an example of other metallic elements which are made to contain and it deals.

1012] Since a LaSrCo multiple oxide is generally the conductive ingredient of low resistance, the thin film of this multiple oxide may inction as an oxide electrode. However, especially the application of a thin film is not restricted in this invention. It can also be used or other applications [say / the barrier layer made to intervene between an electrode and a ferroelectric capacitor in addition to an lectrode].

)013] As for a desirable multiple oxide, a metallic element serves as La only from Sr and Co. such a multiple oxide — general — Lax r1-x Co O3 (0< x<1) — although it can express with a formula — this invention — x values — 0.1-0.6 It considers as the range. x alues are 0.1. The following or 0.6 super-*****, and the storage stability of liquid fall, and it becomes easy to generate precipitate uring storage. In addition, Lax Sr1-x Co O3 Generally in the film, the surface electrical resistance of a thin film is changed by uctuation of x values within the limits of 10-4 - a 10-1 ohm-cm base.

3014] The solution for oxide thin film formation of this invention contains each metal which constitutes the multiple oxide which should arm membranes, i.e., the oxide precursor of La, Sr, and Co**. An oxide precursor is a compound which changes with heating to an xide. As this common kind of an oxide precursor, although a metal alkoxide, a metal acetylacetonato complex, metal carboxylate, etc. re often used, by this invention, carboxylate is used about both La, and Sr and Co. If an alkoxide and an acetylacetonato complex are sed, it will become easy to generate precipitation during liquid storage.

3015] Although especially the carboxylate used as an oxide precursor of each metal is not restricted, the salt of the carboxylic acid of arbon numbers 1-10, for example, acetate, propionate, butyrate, a hexane salt, 2-ethyl hexane salt, an octanoic-acid salt, a decanoic-cid salt, etc. are desirable. It is 2-ethyl hexanoic-acid salt which pyrolyzes especially desirable carboxylate at low temperature omparatively about every metal of La, Sr, and Co.

0016] The oxide precursor of each metal of a raw material, i.e., each carboxylate of La, and Sr and Co, (the oxide precursor of other netals can also be used by the case) Predetermined metal atomic ratio (namely, shown by Lax Sr1-x Co O3 x within the limits of 0.1-1.6) If it is made to dissolve in a suitable organic solvent by the mole ratio to produce, the solution for oxide thin film formation will be obtained.

0017] Although the solvent of water miscibilities, such as alcohol and a ketone, can also be used as an organic solvent, an organic olvent of water immiscibility like a hydrocarbon system solvent is desirable. As an example of a desirable organic solvent, aliphatic eries or alicyclic hydrocarbon, such as aromatic hydrocarbon, such as benzene, toluene, and a xylene, a hexane, an octane, and a yylenexane, etc. are mentioned.

0018] Only by dissolving the metal carboxylate of a raw material in an organic solvent by the predetermined ratio, the obtained solution is lacking in stability, and precipitate generates it within a short period of time, and it becomes impossible however, to use it or membrane formation. Therefore, in this invention, the concentration and moisture concentration of each metallic compounds in a solution are restricted. That is, as a content of metal conversion, La in a solution and concentration of each carboxylate of Sr and Co are made into less than [La:8 % of the weight], less than [Sr:10 % of the weight], and less than [Co:10 % of the weight], and the noisture concentration of a solution carries out them to 1 or less % of the weight. This metal concentration is less than [La:2 % of the veight], less than [Sr:3 % of the weight], and less than [Co:3 % of the weight] preferably. The moisture concentration in a solution is 1.5 preferably. It carries out to below weight %. If either of each metal concentration or moisture concentration in a solution exceeds the above-mentioned upper limit, the stability of a solution will fall and a mothball will become difficult.

0019] The concentration of each metal carboxylate is the amount of the organic solvent used. (namely, dilution by the organic solvent) t can adjust easily. About moisture, since the metal carboxylate of a raw material generally has water of crystallization, the solution which dissolved this contains the moisture originating in the water of crystallization of carboxylate. Furthermore, when an organic solvent is a solvent with a high water miscibility like alcohol or a ketone, if it is left, the moisture in air will be absorbed and the noisture concentration of a solution will increase. Therefore, the moisture mixed into a solution by such cause will be removed. 0020] What is necessary is to heat under reduced pressure preferably and for evaporation or distillation just to remove water, after dissolving the metal carboxylate of a raw material in an organic solvent, in order to remove the moisture introduced by the water of crystallization etc. into a solution from the metal carboxylate of a raw material and to dehydrate a solution. In this case, as an organic solvent, it is more desirable than water that the boiling point uses a high thing, the case where an organic solvent is water immiscibility although it may be performed making this heating condense without flowing back — reflux heating (that is, the organic solvent which remains after separating water from a distillate is flowed back — making) It can also carry out. Heating time is set up so that moisture may be removed nearly completely.

[0021] Thus, the solution of the dehydrated metal carboxylate is diluted with an organic solvent if needed, and concentration is adjusted. The organic solvent used for the dissolution and dilution of a raw material of metal carboxylate has the desirable thing of water immiscibility, as mentioned above. It is because the organic solvent of the water miscibility represented with alcohol tends to absorb moisture during preservation and use and a solution tends to become unstable.

[0022] The solution for oxide thin film formation concerning this invention can be saved at stability, without producing precipitate substantially over the long period of time beyond several months thru/or one year, or it, if sealed and saved. Therefore, according to a sol-gel method, the thin film of a LaSrCo multiple oxide can be easily formed using this solution.

[0023] Membrane formation actuation is the same as that of the conventional sol-gel method, and is good. First, the above-mentioned solution is applied on a base. Although spreading is usually performed with a spin coat method, other applying methods, such as roll coating, spraying, immersion, and a doctor blade, are applicable. A paint film is dried after spreading if needed, and a solvent is removed. although this drying temperature changes also with classes of solvent — usually — 80 - 200 ** extent — it is — for example, — It is good in the range of 100 - 180 **. However, since a solvent is removed in the temperature up in the case of heating for making it

onvert into the following metallic oxide, the desiccation process of a paint film is necessarily unnecessary.

3024] Then, heat the applied base, the metallic compounds of a precursor are made to convert into a metallic oxide, and the film which onsists of a metallic oxide is formed. Although especially a heating ambient atmosphere is not restricted, it is usually air. Generally it heating temperature. It is the range of 300 - 400 **, and heating time is a 1 - 15-minute about room.

J025] When not becoming thickness required of one spreading, it is the above-mentioned spreading. (desiccation) Heating is repeated nd the film of the metallic oxide of desired thickness is obtained. In this way, since the obtained film is amorphous, or its crystallinity inadequate and its conductivity is inadequate, it is not suitable for using it as an electrode.

3026] Therefore, finally, it heat—treats at the temperature beyond the crystallization temperature of the metallic oxide, and considers s the metallic-oxide thin film of a crystalline substance with the crystal structure of a perovskite mold. In addition, although heat reatment for crystallization finally may not be performed by once but you may carry out after the above-mentioned heating for every ach applied paint film, it is economically more advantageous to carry out by collecting at the end, since it is necessary to repeat heat reatment in an elevated temperature repeatedly.

9027] The heat treatment temperature for this crystallization is usual. It is the range of 650 - 800 **. The heat treatment time amount or crystallization is usually 1 minute - about 1 hour, and although especially a heat treatment ambient atmosphere is not restricted, it is usually air.

0028] Thus, although the thin film of the formed LaSrCo multiple oxide is useful as the oxide electrode and barrier layer of a erroelectric RAM as mentioned above for example, since it is excellent in conductivity, an application is not restricted to this. 0029]

Example] 2-ethyl hexanoic-acid lanthanum and 2-ethyl hexanoic-acid strontium which have water of crystallization, respectively, and -ethyl hexanoic-acid cobalt were dissolved in the xylene at a rate which produces a predetermined metal atomic ratio, and the olution of 10 % of the weight of solid content was prepared. It is under reduced pressure of 100 Torr, stirring this solution by the tirrer in an eggplant flask. It heated and condensed by 110 - 120 **, and moisture was removed. Heating time was changed and the olution with which moisture concentration differs was obtained. After cooling the obtained concentration liquid radiationally to a room emperature, it diluted with the xylene to predetermined concentration, and the solution for LaSrCo multiple oxide film formation was obtained. The moisture concentration of the obtained solution was measured by Karl Fischer titration.

0030] Each solution was sealed in the glass bottle, and was kept for three months at the room temperature, and the existence of recipitate generating after storage was observed visually. About a result, they are La in a solution, Sr, and cobalt group conversion oncentration. (it analyzes by the ICP method) And with moisture concentration, it is shown in Table 1. In Table 1, the underline ection is the value of this invention out of range.

0031] Each solution before storage was used and the oxide thin film shown by formula:La0.5Sr0.5CoO3 of perovskite type structure on silicon substrate with an oxide film was formed. Membrane formation is in the air after applying a solution with a spin coat method. Desiccation for [300 degree-Cx] 3 minutes It is in air to a crystallization sake in the last after forming an oxide thin film with heating or [450 degree-Cx] 10 minutes and repeating this actuation a total of 3 times. It carried out by performing heat treatment for [750 legree-Cx] 30 minutes. The result of having measured the surface electrical resistance of the obtained oxide thin film is also written ogether to Table 1.

0032]

Table 1]

K	No.	液中金属濃度(%)			水分	<u>_</u>	沈澱	薄膜の
分		La	Sr	Co	(%)	х値	発生 の有無	表面抵抗
本発明例	1	1.0	5. 7	4. 2	0. 7	0.1	無	1 × 10-1
	2	3.8	9. 6	8. 1	0. 5	0. 2	無	5 × 10-1
	3	6. 0	8. 9	8, 5	0. 3	0.3	無	2 × 10 ⁻²
	4	8.0	7. 6	8. 5	0.8	0.4	無	2 × 10-1
	5	2. 0	1. 3	1. 7	0. 9	0_ 5	無	1 × 10-4
	6	1.0	0. 6	0.8	1. 0	0.5	無	1 × 10-4
	7	B. 0	2. 5	4. 2	0.8	0.6	無	1 × 10-3
比較例	8	9.0	5. 7	7. 6	0. 9	0.5	有	3 × 10 ⁻⁴
	9	<u>11. 0</u>	<u>10. 4</u>	<u>11.7</u>	0. 8	0.4	有	5 × 10-3
	10	4. 0	0. 6	2. 1	0, 8	0, 8	有	8 × 10-3
	11	4. 8	3. 0	4. 1	<u>1. 5</u>	0.5	有	3 × 10 ⁻¹

¹ La.Sr.-.CoO. におけるx値

0033] As shown in Table 1, precipitate did not occur that the concentration of each carboxylate of La, Sr, and Co in a solution was moisture concentration] 1 or less % of the weight in less than [La:8 % of the weight], less than [Sr:10 % of the weight], and less han [Co:10 % of the weight] during three-month storage, but the solution was able to be saved at stability for a long period of time. When such concentration exceeded at least one upper limit, the stability of a solution falls, and precipitate had occurred and it was mpossible on the other hand, to use a solution during the storage which is three months, as shown in the example of a comparison. 0034] x values about surface electrical resistance 0.1-0.6 It turns out that the oxide thin film of enough low resistance is obtained by

within the limits. In addition, although surface electrical resistance was measured also about the oxide thin film which formed nembranes similarly about the example of this invention using the solution after three-month neglect, surface electrical resistance was aving been shown in Table 1, and this level. 3035]

Effect of the Invention] Stability is improved by this invention and the solution for LaSrCo multiple oxide thin film formation in which rolonged preservation is possible is obtained, without producing precipitate. Even after keeping this solution at a long period of time, it an form the same LaSrCo multiple oxide film of low resistance as storage before. Therefore, by this invention, a wet method enables it is stabilize a LaSrCo multiple oxide thin film and to form membranes, and membranous dependability increases. Moreover, the futility of n expensive solution decreases and membrane formation cost falls.

Translation done.]

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2000-143251 (P2000-143251A)

(43)公開日 平成12年5月23日(2000.5.23)

(51) Int.Cl. ⁷		識別記号	FI			テーマコート*(参考)
C01G	51/00		C01G	51/00	Α	4G048
H01B	1/08		H01B	1/08		5 F O 8 3
H01L	27/10	451	H01L	27/10	451	5 G 3 O 1
	27/108				6 5 1	
	21/8242					

審査請求 未請求 請求項の数3 OL (全 5 頁)

(21)出顯番号	特膜平10-316305	(71)出願人	000005264
			三菱マテリアル株式会社
(22)出顧日	平成10年11月6日(1998.11.6)	,	東京都千代田区大手町1丁目5番1号
		(72)発明者	森晓
			兵庫県三田市テクノパーク12-6 三菱マ
			テリアル株式会社三田工場内
	·	(72)発明者	曾山 信幸
			兵庫県三田市テクノパーク12-6 三菱マ
		ĺ	テリアル株式会社三田工場内
		(74)代理人	
	•		弁理士 広瀬 章一
		1	

最終頁に続く

(54) 【発明の名称】 酸化物薄膜形成用溶液

(57)【要約】

【課題】 沈殿を生じずに長期間安定に保存できる、La とSrとRuを含む複合酸化物薄膜 [例、La, Sr₁₋, Co O₃ (0.1≤x≤0.6)] の湿式成膜用の溶液を提供する。

【解決手段】 有機溶媒中にランタンとストロンチウム とコバルトのそれぞれカルボン酸塩を含有する溶液から なり、溶液中の各金属の濃度がLa:8重量%以下、Sr: 10重量%以下、Co:10重量%以下であり、かつ溶液の水 分濃度が1重量%以下である、LaSrCo複合酸化物薄膜形 成用溶液。

- る。この複合酸化物は、LaとSrとCo以外に、他の金属元素も少量であれば含有しうる。含有させうる他の金属元素の例としてはCe、Pr、Nb、Rh、Irが挙げられる。

【0012】LaSrCo複合酸化物は、一般に低抵抗の導電性材料であるので、この複合酸化物の薄膜は酸化物電極として機能しうる。しかし、本発明においては、薄膜の用途は特に制限されない。電極以外に、電極と強誘電体キャパシタとの間に介在させるバリア層といった、他の用途に使用することもできる。

【0013】好ましい複合酸化物は、金属元素がLaとSr 10 とCoのみからなるものである。このような複合酸化物は、一般にLa、Sr.-、Co 0。(0<x<1)なる式で表すことができるが、本発明ではx値を0.1 \sim 0.6の範囲とする。x値が0.1未満または0.6超になると、液の貯蔵安定性が低下し、保管中に沈殿が発生し易くなる。なお、La、Sr.-、Co 0。膜において、x値の変動により一般に薄膜の表面抵抗は 10^{-1} \sim 10 $^{-1}$ Ω ·cm台の範囲内で変動する。

【0014】本発明の酸化物薄膜形成用溶液は、成膜すべき複合酸化物を構成する各金属、即ち、LaとSrとCo、の酸化物前駆体を含有する。酸化物前駆体は加熱により酸化物に変化する化合物である。一般のこの種の酸化物前駆体としては、金属アルコキシド、金属アセチルアセトナト錯体、金属カルボン酸塩等がよく使用されているが、本発明では、LaとSrとCoのいずれについてもカルボン酸塩を使用する。アルコキシドやアセチルアセトナト錯体を使用すると、液保管中に沈澱が発生しやすくなる。

【0015】各金属の酸化物前駆体として使用するカルボン酸塩は特に制限されないが、炭素数1~10のカルボ 30ン酸の塩、例えば、酢酸塩、プロピオン酸塩、酪酸塩、ヘキサン塩、2ーエチルヘキサン塩、オクタン酸塩、デカン酸塩などが好ましい。La、Sr、Coのどの金属についても、特に好ましいカルボン酸塩は、比較的低温で熱分解する2-エチルヘキサン酸塩である。

【0016】原料の各金属の酸化物前駆体、即ち、LaとSrとCoの各カルボン酸塩(場合により他の金属の酸化物前駆体も使用できる)を、所定の金属原子比(即ち、La、Sri、Co 0。で示され、xが 0.1~0.6 の範囲内)を生ずるモル比で適当な有機溶媒に溶解させると、酸化物 40 薄膜形成用溶液が得られる。

【0017】有機溶媒としては、アルコールやケトンといった水混和性の溶媒も使用できるが、好ましいのは炭化水素系溶媒のような水不混和性の有機溶媒である。好ましい有機溶媒の例としては、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ヘキサン、オクタン、シクロヘキサン等の脂肪族もしくは脂環式炭化水素類などが挙げられる。

【0018】しかし、原料の金属カルボン酸塩を所定比率で単に有機溶媒に溶解させただけでは、得られた溶液 50

は安定性に乏しく、短期間のうちに沈殿が生成して成膜に使用できなくなる。そのため、本発明では、溶液中の各金属化合物の濃度と、水分濃度を制限する。即ち、溶液中のLaとSrとCoの各カルボン酸塩の濃度を、金属換算の含有量として、La:8重量%以下、Sr:10重量%以下、Co:10重量%以下とし、かつ溶液の水分濃度が1重量%以下にする。この金属濃度は、好ましくはLa:2重量%以下、Sr:3重量%以下、Co:3重量%以下である。溶液中の水分濃度は好ましくは0.5 重量%以下とする。溶液中の各金属濃度のいずれか、または水分濃度が上記の上限を超えると、溶液の安定性が低下し、長期保存が難しくなる。

【0019】各金属カルボン酸塩の濃度は、有機溶媒の使用量(即ち、有機溶媒による希釈度)により容易に調整できる。水分については、原料の金属カルボン酸塩が一般に結晶水を持つため、これを溶解した溶液はカルボン酸塩の結晶水に由来する水分を含有する。さらに、有機溶媒が、例えばアルコールやケトンのように水混和性が高い溶媒である場合には、放置しておくと空気中の水分を吸収して、溶液の水分濃度が増大する。従って、このような原因で溶液中に混入する水分を除去することになる。

【0020】原料の金属カルボン酸塩からその結晶水等により溶液中に導入される水分を除去して溶液を脱水するには、原料の金属カルボン酸塩を有機溶媒に溶解させた後、好ましくは減圧下で加熱して水を蒸発または蒸留により除去すればよい。この場合、有機溶媒としては、水より沸点が高いものを使用することが好ましい。この加熱は、還流を行わずに濃縮させつつ行ってもよいが、有機溶媒が水不混和性の場合には、還流加熱により(即ち、留出物から水を分離した後に残る有機溶媒を還流させて)行うこともできる。加熱時間は、水分がほぼ完全に除去されるように設定する。

【0021】このようにして脱水した金属カルボン酸塩の溶液を、必要に応じて有機溶媒で希釈して濃度を調整する。原料の金属カルボン酸塩の溶解と希釈に使用する有機溶媒は、前述したように、水不混和性のものが好ましい。アルコールで代表される水混和性の有機溶媒は、保存中や使用中に水分を吸収しやすく、溶液が不安定になり易いからである。

【0022】本発明に係る酸化物薄膜形成用溶液は、密栓して保存すれば数カ月ないし1年またはそれ以上の長期にわたって、実質的に沈殿を生ずることなく安定に保存することができる。従って、この溶液を用いてゾルーゲル法に準じて手軽にLaSrCo複合酸化物の薄膜を成膜することができる。

【0023】成膜操作は、従来のゾルーゲル法と同様でよい。まず、基体上に上記溶液を塗布する。塗布は、スピンコート法により行うのが普通であるが、ロール塗布、噴霧、浸漬、ドクターブレードなど他の塗布法も適

に、溶液の安定性が低下し、3カ月の保管中に沈殿が発生しており、溶液を使用することができなくなっていた。

【0034】表面抵抗については、x値が 0.1~0.6 の 範囲内で十分に低抵抗の酸化物薄膜が得られることがわ かる。なお、本発明例については、3カ月放置後の溶液 を用いて同様に成膜した酸化物薄膜についても表面抵抗 を測定したが、表面抵抗は表1に示したのと同レベルで あった。

* [0035]

【発明の効果】本発明により、安定性が改善され、沈殿を生じさせずに長期間の保存が可能な、LaSrCo複合酸化物薄膜形成用溶液が得られる。この溶液は、長期に保管した後も、保管前と同様の低抵抗のLaSrCo複合酸化物膜を成膜することができる。従って、本発明により湿式法によりLaSrCo複合酸化物薄膜を安定して成膜することが可能となり、膜の信頼性が高まる。また、高価な溶液の無駄が少なくなり、成膜コストが低下する。

フロントページの続き

(72)発明者 影山 謙介

埼玉県大宮市北袋町1丁目297番地 三菱 マテリアル株式会社総合研究所内 ※ ※ F ターム (参考) 4G048 AA03 AA08 AB02 AB05 AC02 AC08 AD08 AE08 5F083 FR01 JA03 JA13 PR23 PR33 5G301 CA02 CA30 CD02 CE01