Отчет о выполнении лабораторной работы 2.3.1 "Получение и измерение вакуума"

Калашников Михаил, Б03-205

Цель работы: измерение объемов форвакуумной и высоковакуумной частей установки; определение скорости откачки системы в стационарном режиме, а также по ухудшению и по улучшению вакуума

В работе используются:

- вакуумная установка;
- маслянный манометр;
- термопарный манометр;
- ионизационный манометр;

1. Теоретическая часть

Вакуумом называют состояние газа при котором его давление меньше атмосферного $(P < P_0)$. Различают следующие типы вакуума: низкий, когда средняя длина свободного пробега молекул газа значительно меньше характерного линейного размера рассматриваемого объёма, т.е. $\lambda < d$; средний, когда $\lambda \sim d$; высокий (или глубокий), когда $\lambda \gg d$ (рис. 1).

Рис. 1: Понятие о вакууме

Запишем основное уравнение вакуумной техники, связывающее основные параметры вакуумной системы:

$$\frac{1}{S_0} = \frac{1}{S_{\scriptscriptstyle \mathrm{H}}} + \frac{1}{U}$$

где S_0 — эффективная скорость откачки камеры, $S_{\rm H}$ — быстродействие насоса, а U — пропускная спопособность вакуумпровода.

Определим время откачки. Пусть за время $\mathrm{d}t$ давление в откачиваемом объеме V_0 снизилось на $\mathrm{d}P$. Тогда за время $\mathrm{d}t$ в трубку поступает $S_0P\,\mathrm{d}t$ газа. С другой стороны это количество равно $-V_0\,\mathrm{d}P$. Из этого равенства следует, что:

$$\frac{\mathrm{d}P}{P} = -\frac{S_0}{V_0} \,\mathrm{d}t$$

Количественной характеристикой течи является натекание:

$$Q_{\scriptscriptstyle \rm H} = V \frac{P_{\scriptscriptstyle \rm K} - P_{\scriptscriptstyle \rm H}}{\Delta t}$$

Число Кнудсена определяется как

$$Kn = \frac{\lambda}{d}$$

где λ — длина свободного пробега молекул в газе, d — характерный линейный размер емкости.

2. Экспериментальная установка

2.1. Общие сведения

Экспериментальный стенд выполнен на основе компактного высоковакуумного откачного поста Edwards серии EXPT с пластинчато-роторным и турбомолекулярным насосами, вакууметров Edwards и вакуумных компонентов. Управление основными функциями откачного поста, контроль и запись параметров установки осуществляется блоком управления (БУ) через цифровой интерфейс RS-232 с помощью специального программного обеспечения TIC PC Monitor10. Схема экспериментального стенда и его внешний вид представлены на рис. 2-3.

Рис. 2: Схема экспериментальной установки

Вакуумный пост Edwards EXPT выполнен на базе пластинчато-роторного форвакуумного насоса E2M1.5 (ПРН) и турбомо-лекулярного насоса EXT70H (ТМН). Откачка вакуумной камеры (К) может происходить как двумя насосами (ТМН и ДН) через шиберный затвор (ШЗ) и мембранные краны 1 и 4 (МК1, МК4), так и только форвакуумным насосом (ПРН) по схеме «байпас», выполненной на основе вакуумных компонентов: сильфонов (С), мембранных кранов 2 и 4 (МК2, МК4), тройников (Т), переходников.

Для контроля и измерения давления в вакуумной камере используются цифровые вакууметры APG100-XM (B1) типа Пирани (терморезисторный) ($\varepsilon_P=15\%$), AIM-X (B2) инверсно-магнетронный ($\varepsilon_P=30\%$) и AIGX-S (B3) термоэлектронный (с накалённым катодом) ($\varepsilon_P=15\%$).

Рис. 3: Внешний вид экспериментальной установки

Контролированный напуск воздушной атмосферы в камеру осуществляется через кран-натекатель LV10K (КН) с регулируемым потоком. Дополнительный выход с краном 3 (МК3) закрыт заглушкой (3) и служит для присоединения дополнительного объёма в случае необходимости.

2.2. Пластинчато-роторный насос

В цилиндрическом корпусе (1) пластинчато-роторного насоса (рис. 4) со смещением эксцентрично размещен ротор (2), касающийся корпуса с одной стороны. Ротор снабжен пластинами (3), которые прижимаются к стенкам и скользят по внутренней поверхности. Газ, попадающий на вход (4) проталкивается пластинами и выталкивается из насоса через выпускной клапан (5).

2.3. Турбомолекулярный насос

Откачка в турбомолекулярном насосе (рис. 5) осуществляется за счет соударения частиц газа с быстродвижущимися турбинными лопатками дисков ротора (1) специальной геометрии, которые придают им дополнительный импульс в заданном направлении потока. Между дисками ротора находятся диски статора (2) с обратно обращенными лопатками, направляющие поток молекул на следующие диски турбины по оптимальной траектории, минимизируя обратный поток. Каждая пара пластин ротора-статора образует одну ступень. Насос состоит из нескольких ступеней расположенных последовательно, каждая последующая ступень имеет меньшие геометрические размеры, что при постоянном потоке газа приводит к постепенному повышению давления до выпускного форвакуумного. Скорость вращения

Рис. 4. Конструкция одноступенчатого пластинчато-роторного насоса

Рис. 4: Конструкция одноступенчатого пластинчато-роторного насоса

ротора современных турбомолекулярных насосов достигает нескольких десятков тысяч оборотов в минуту.

1 — ротор, 2 — статор, 3 — корпус насоса, 4 — электродвигатель, 5 — нижний шарикоподшипник, 6 — высоковакуумный входной фланец, 7 — выпускной форвакуумный фланец

Рис. 5: Конструкция турбомолекулярного насоса

2.4. Терморезисторный вакуумметр (Пирани)

Принцип действия тепловых манометров основан на зависимости теплопроводности газа от давления. Чувствительным элементом терморезисторного датчика (рис. 6) является тонкая металлическая нить накала, помещенная

в атмосферу откачиваемого газа. Сопротивление нити зависит от её температуры. Нить включена в одно из плеч мостовой схемы и разогрета до нескольких сотен градусов пропускаемым по ней током. Джоулево тепло, выделяемое нитью, отводится в основном через газовую среду со скоростью, зависящей от коэффициента теплопроводности.

Рис. 6: Принципиальная схема терморезисторного вакуумметра (Пирани)

2.5. Магнетронный вакуумметр (с холодным катодом)

Измерительный объём магнетронного датчика (рис. 7) находится между катодом и анодом, между которыми приложено напряжение, а также помещен в постоянное магнитное поле. Случайным образом возникшие вблизи катода электроны будут двигаться к аноду под действием скрещенных электромагнитных полей по удлиненной траектории. При этом повышается вероятность соударения электронов с молекулами откачиваемого газа и их ионизация. Образовавшиеся ионы ускоряются в электрическом поле анодно-катодного промежутка и выбивают из материала катода вторичные электроны, которые также ионизируют газ, двигаясь к аноду по сложной циклической траектории. В результате описанного процесса возникает электрический разряд, ток которого в достаточно широком диапазоне зависит от давления.

Рис. 7: Принципиальная схема инверсно-магнетронного вакуумметра и траектории электронов в них

2.6. Термоэлектронный вакуумметр (с накалённым катодом)

Катодом термоэлектронного вакуумметра является накаливаемаянить (1) (рис. 8). Эмитируемые накаленным катодом электроны под действием ускоряющего электрического поля устремляются по направлению к аноду (2), создавая в его цепи (5) электронный ток. Анод, как правило, выполнен в виде спирали или сетки с большим шагом, поэтому значительная часть электронов проходит между витками анода и тормозится полем коллектора 3, имеющего по отношению к катоду отрицательный потенциал. Не дойдя до коллектора ионов, электроны останавливаются и начинают движение обратно к аноду-сетке. Снова значительная часть электронов проходит между витками анода и тормозится уже полем катода. Каждый электрон может сделать несколько таких колебаний, прежде чем попасть на сетку. Времени жизни электронов в откачиваемом объеме достаточно, чтобы ионизировать значительную часть находящегося в датчике газа. Ионы притягиваются полем коллектора, рекомбинируют на его поверхности, создавая в цепи коллектора 6 ионный ток. Ионный ток в цепи коллектора пропорционален плотности газа и служит мерой давления.

Рис. 8: Принципиальная схема термоэлектронного вакуумметра

3. Проведение эксперимента

1. Зафиксируем температуру и атмосферное давление в лаборатории:

$$T_0 = 297, 9 \pm 0, 1$$
 K, $P_0 = 98, 77 \pm 0, 01$ кПа

- 2. Выровняем давление во всей установке, открыв все краны и шиберный затвор. Впустим в установку атмосферный воздух.
- 3. Подготовим установку к форвакуумной откачке, перекрыв доступ атмосферы в установку, закрыв кран МК3 и шиберный затвор ШЗ.
- 4. Подключим установку к компьютеру и настроим программу так, чтобы показания вакууметров записывались в файл каждые 2 секунды.
- 5. Включим ПРН и откачаем систему до предельного значения.
- 6. Соблюдая правила вакуумной гигиены, присоединим к установке сильфон с воздухом при атмосферном давлении.

- 7. Закроем кран MK2. Выровняем давление в сильфоне и вакуумной камере медленным поворотом крана MK3.
- 8. Закроем краны МК1 и МК4. Выровняем давление в вакуумной камере и форвакуумной магистрали установки плавным поворотом крана МК2.
- 9. Теперь же аккуратно откроем кран МК1, чтобы выровнять давление во всей установке, включая объем насоса ТМН.
- 10. Заполним установку воздухом при атмосферном давлении с помощью крана КН, предварительно отключив ПРН.
- 11. Изолируем установку от атмосферы, закрым кран КН.
- 12. Повторим пункты 5-11 еще один раз.
- 13. Теперь проведем измерение скорости откачки турбомолекулярного насоса. Отсоединим сильфон от установки, соблюдая правила вакуумной гигиены.
- 14. Откачаем установку форвакуумным насосом.
- 15. Откроем шиберный затвор и закроем кран МК2. Запустин насос ТМН. Таким образом он откачает воздух из объема всей установки. Откачаем установку до предельного давления, определяемого динамикой показаний манометров В2 и В3.
- 16. Проведем обезгаживаение манометра В3.
- 17. Определим уровень течей, изолировав вакуумную камеру перекрытием шибера ШЗ. Дождавшись момента, когда давление достигнет 10^{-3} Па, откроем шибер.
- 18. Повторим предыдущий пункт еще два раза.

4. Обработка данных

- 1. Перенесем данные из файла, содержащего измерения, на компьютер.
- 2. Зная объем V_0 воздуха в сильфоне, находящегося там под атмосферным давлением P_0 , найдем по закону Бойля-Мариотта полный объём установки V, объем высоковакуумной части V_1 , форвакуумной магистраи V_2 , и объем насоса ТМН V_3 .

$$V_0 + V_1 = V_0 \frac{P_1}{P_0}$$

$$V_0 + V_1 + V_2 = (V_0 + V_1) \frac{P_2}{P_1}$$

$$V_0 + V_1 + V_2 + V_3 = (V_0 + V_1 + V_2) \frac{P_3}{P_2}$$

Давления $P_1 - P_3$ найдем из полученных данных, как среднее значение давления перед пропусканием воздуха в следующую часть установки.

3. Теперь определим эффективную скорость откачки форвакуумным насосом. Будем делать это в диапазоне от давлений от 10^2 Па до 10^4 Па, так как в этом диапазоне скорость откачки почти постоянна. Построим по отобранным точкам зависимость $\ln P$ от t. Получим прямую с коэффициентом наклона k. Отсюда скорость откачки:

$$\ln \frac{P}{P_0} = -\frac{S_1}{V}t = kt, \quad S_1 = -kV$$

4. Повторим предыдущий пункт для определения скорости откачки турбомолекулярного насоса в диапазоне от 10^{-3} Па до 10^{-1} Па. Отдельно посчитаем скорость для измерений проведенных с помощью разных манометров.

$$\ln \frac{P}{P_0} = -\frac{S_2}{V}t = kt, \quad S_{21} = -k_1V, \quad S_{22} = -k_2V$$

5. Рассчитаем натекание воздуха в установку. Построим зависимость давления от времени после закрытия шиберного затвора. Проведем через точки прямую. Тогда коэффициент наклона k равен $\frac{\mathrm{d}P}{\mathrm{d}t}$. Отсюда найдем величину натекания:

$$Q_{\scriptscriptstyle \rm H} = V_1 \frac{\mathrm{d}P}{\mathrm{d}t} = kV_1$$

Усредним величину по всем проведенным измерениям для обоих манометров.

6. Оценим число Кнудсена:

$$Kn = \frac{\lambda}{L} = \frac{1}{\sigma nL} = \frac{kT}{4\pi r^2 PL}$$

где r = 200 пм – средний радиус молекулы в воздухе.

5. Расчет погрешностей

Найдем погрешность определения объемов установки.

$$\varepsilon_{V_0+V_1} = \sqrt{\varepsilon_{P_0}^2 + \varepsilon_P^2} \approx \varepsilon_P = 15,0\%$$

$$\varepsilon_{V_0+V_1+V_2} = \sqrt{\varepsilon_{V_0+V_1}^2 + 2\varepsilon_P^2} = \sqrt{3}\varepsilon_P = 26,0\%$$

$$\varepsilon_{V_0+V_1+V_2+V_3} = \sqrt{\varepsilon_{V_0+V_1+V_2}^2 + 2\varepsilon_P^2} = \sqrt{5}\varepsilon_P = 33,5\%$$

Пренебрегая ε_{V_0} , получим, что:

$$V_1 = 650 \pm 100$$
 мл, $V_1 + V_2 = 830 \pm 170$ мл, $V = 1240 \pm 420$ мл

Теперь посчитаем погрешность скорости откачки:

$$\varepsilon_{S_i} = \sqrt{\varepsilon_{k_i}^2 + \varepsilon_V^2} = \sqrt{\varepsilon_{k_i}^2 + 5\varepsilon_P^2} = 33,8\%$$

$$\begin{split} S_1 &= 1, 2 \pm 0, 4 \,\, \frac{\text{M}^3}{\text{q}} \\ \varepsilon_{S_{21}} &= 69, 3\%, \quad \varepsilon_{S_{22}} = 44, 3\% \\ S_{21} &= 1, 6 \pm 1, 1 \,\, \frac{\text{M}^{\text{J}}}{\text{c}}, \quad S_{22} = 1, 7 \pm 0, 8 \,\, \frac{\text{M}^{\text{J}}}{\text{c}} \end{split}$$

Погрешность натекания:

$$\begin{split} \varepsilon_{Q_{\mathrm{H}i}} &= \sqrt{\varepsilon_{k_i}^2 + \varepsilon_{V_1}^2} = \sqrt{\varepsilon_{k_i}^2 + \varepsilon_P^2} \\ \varepsilon_{Q_{\mathrm{H}1}} &= 16,3\%, \quad \varepsilon_{Q_{\mathrm{H}2}} = 15,4\% \\ Q_{\mathrm{H}1} &= 1,18 \pm 0,16 \ \frac{\mathrm{MJ} \cdot \Pi \mathrm{a}}{\mathrm{c}}, \quad Q_{\mathrm{H}2} = 0,97 \pm 0,15 \ \frac{\mathrm{MJ} \cdot \Pi \mathrm{a}}{\mathrm{c}} \end{split}$$

Оценим погрешность числа Кнудсена по формуле (результаты занесем в таблицу 1):

$$\varepsilon_{Kn} = \sqrt{\varepsilon_T^2 + \varepsilon_P^2 + \varepsilon_L^2}$$

6. Вывод

В ходе работы получилось определить скорость откачки насоса ПРН. Она практически совпала с табличной, равной $1.8~{\rm M}^3/{\rm u}$. Однако скорость откачки турбомолекулярного насоса оказалась далека от настоящего значения, примерно равного $50~{\rm n}/c$. Очевидно, что полученное значение неверно, так как так при такой скорости откачки не получилось бы поддерживать измеряемое давление.

Полученные числа Кнудсена наглядно демонстрируют степень разреженности газа при откачке разными насосами.

7. Приложения

Объем	V_0	V_1	V_2	V_3
Hacoc	$L = 25 \pm 5 \text{ mm}$	$(L = 40 \pm 5 \text{ mm})$	$(L=16\pm 5 \mathrm{\ MM})$	$(L = 94 \pm 5 \text{ mm})$
$ \begin{array}{c} \Pi PH \\ (P = 20 \Pi a) \end{array} $	$0,016 \pm 0,004$	$0,010 \pm 0,002$	$0,026 \pm 0,009$	$0,0044 \pm 0,0007$
TMH $(P = 1 \text{ M}\Pi a)$	-	204 ± 40	510 ± 180	87 ± 14

Таблица 1: Зависимость числа Кнудсена в различных частях установки при работе каждого из насосов

Рис. 9: Показания манометра В1 за все время проведения работы

Рис. 10: Показания манометра В1 при измерении объемов установки

Рис. 11: Зависимость $\ln P/P_0$ от $t-t_0$ при откачке насосом ПРН ($P_0=100~\Pi \mathrm{a},\,t_0$ — время начала данной части работы). Показания манометра В1

Рис. 12: Зависимость $\ln P/P_0$ от $t-t_0$ при откачке насосом ТМН. ($P_0=1$ мПа, t_0 – время начала данной части работы). Показания манометров В2 (снизу) и В3 (сверху)

Рис. 13: Три повторных измерения повышения давления в установке из-за течей (t_0 – время начала данной части работы). Показания манометров B2 (сверху) и B3 (снизу)