

# **Probabilidad:** Variables aleatorias continuas: conceptos básicos

Escuela de Matemática

Semana 10

Giovanni Sanabria Brenes Carrera Retana

Luis Ernesto

Erick Chacón Vargas

Mario Marin Sánchez

Rebeca Solís Ortega

## 1. Variables aleatorias continuas

En general una variable aleatoria es continua si cumple que al poder alcanzar cualquier par de valores a < b reales entonces puede alcanzar cualquier valor que esté en el intervalo [a,b]. En el caso de variables aleatorias continuas se tienen las siguientes definiciones:

#### Definición 1.

Si X es una variable aleatoria continua una distribución de probabilidad para X es una función  $f_X$  que cumple las siguientes propiedades:

- 1.  $f_X(x) > 0 \ \forall x$ .
- 2. Si a < b se tiene  $P[a \le X \le b] = \int_a^b f_X(x) dx$ .
- 3.  $\int_{-\infty}^{\infty} f_X(x) dx = 1.$

Además se define la función de distribución acumulada por:

$$F_X(x) = P[X \le x] = \int_{-\infty}^x f_X(t) dt.$$

#### Teorema 1.

Se cumple que

$$P[a \le X \le b] = F(b) - F(a),$$
  
$$P[X = b] = 0.$$

## Ejemplo 1.

Sea X una variable aleatoria continua cuya distribución de probabilidad es

$$f_X(x) = \begin{cases} (1+k)e^{-3x+2} & si \ x \ge 0 \\ 0 & si \ x < 0 \end{cases}$$

- 1. Determine el valor de *k*.
- 2. Pruebe que  $F_X(y) = (k+1) (\frac{1}{3}e^2 \frac{1}{3}e^{2-3y})$  para  $y \in \mathbb{R}^+$ .
- 3. Calcule P(3 < X < 5) (este valor puede expresarlo en términos de k.

#### Solución

1. Determine el valor de *k*.

$$(1+k)\int_0^\infty e^{-3x+2} dx = \frac{1}{3}e^2(k+1) = 1$$
$$k = -\frac{1}{e^2}(e^2 - 3) = -0.593994$$

2. Pruebe que  $F_X(y) = (k+1) \left( \frac{1}{3} e^2 - \frac{1}{3} e^{2-3y} \right)$  para  $y \in \mathbb{R}^+$ .

$$F_X(y) = (1+k) \int_0^y e^{-3x+2} dx = (k+1) \left(\frac{1}{3}e^2 - \frac{1}{3}e^{2-3y}\right)$$

3. Calcule P(3 < X < 5) (este valor puede expresarlo en términos de k)

$$P(3 < X < 5) = F_X(5) - F_X(3)$$

$$= (k+1) \left(\frac{1}{3}e^2 - \frac{1}{3}e^{2-15}\right) - (k+1) \left(\frac{1}{3}e^2 - \frac{1}{3}e^{2-9}\right)$$

$$= \frac{1}{3}(k+1) \left(e^{-7} - e^{-13}\right) = 3.03207 \times 10^{-4}(k+1)$$

## 2. Parámetros en una Distribución Continua

Al igual que las distribuciones discretas, para una distribución continua se pueden definir la *media* y la *varianza*.

Las definiciones y teoremas son prácticamente los mismos que los vistos para variables discretas con la distinción de que esta sección se usa integrales en lugar de sumas.

## Definición 2.

Si X es una variable aleatoria continua se denota la media o esperanza de X

 $\mu_X$  o bien por E(X)

Y se define por

$$\mu_X = \int_{-\infty}^{\infty} x f_X(x) \, dx,\tag{1}$$

con la condición de que

$$\int_{-\infty}^{\infty} |x| f_X(x) \, dx < \infty.$$

## Ejemplo 2.

Determine la esperanza de una variable aleatoria continua X con distribución de probabilidad de la forma

$$f_X(x;\lambda) = \begin{cases} \lambda e^{-\lambda x} : & \text{Para } x > 0 \\ 0 : & \text{En cualquier otro caso} \end{cases}$$

Solución Usando integración por partes, se tiene que:

$$\mu_X = \int_0^\infty x \lambda e^{-\lambda x} dx$$

$$= \lambda \int_0^\infty x e^{-\lambda x} dx$$

$$= \left( -x e^{-\lambda x} \right) \Big|_0^\infty - \int_0^\infty e^{-\lambda x} dx$$

$$= -x e^{-\lambda x} - \frac{e^{-\lambda x}}{\lambda} \Big|_0^\infty$$

$$= \frac{1}{\lambda}.$$

## Definición 3.

Si h(x) es una función real y X es una variable aleatoria continua se tiene que

$$E(h(X)) = \mu_{h(X)} = \int_{-\infty}^{\infty} h(x) f_X(x) dx, \qquad (2)$$

con la condición de que

$$\int_{-\infty}^{\infty} |h(x_i)| f_X(x_i) \, dx < \infty.$$

## Definición 4.

Si X es una variable aleatoria con distribución de probabilidad  $f_X$ , y media  $\mu_X$  se denota la varianza de X como

$$\sigma_X^2$$
 o bien  $VAR(X)$ 

y se define como  $E((X - \mu_X)^2)$ .

Note que la varianza de una variable aleatoria es

$$\sigma_X^2 = \mu_{(X - \mu_X)^2} = \int_{-\infty}^{\infty} (x - \mu_X)^2 f_X(x) \, dx. \tag{3}$$

Similarmente a variables discretas, se puede demostrar el siguiente teorema.

#### Teorema 2.

Si X es una variable aleatoria continua cuya media y varianza existen se tiene que  $VAR(X) = E(X^2) - [E(X)]^2$ .

## Ejemplo 3.

Sea X una variable aleatoria continua con distribución de probabilidad dada por

$$f(x) = \begin{cases} \frac{k}{x^2} & \text{si } 1 \le x \le 15\\ 0 & \text{en otro caso.} \end{cases}$$

- 1. Determine el valor de k.
- 2. Calcule  $P([-2 < X \le 5])$ .
- 3. Calcule VAR(X).

#### Solución

1. Dado que 
$$\int_{-\infty}^{\infty} \frac{k}{x^2} dx = \frac{-k}{x} \Big|_{1}^{15} = \frac{-k}{15} - \frac{-k}{1} = \frac{14k}{15}$$
,  $k$  debe ser  $\frac{15}{14}$ .

2. 
$$P([-2 < X \le 5]) = \int_{1}^{5} \frac{15}{14x^{2}} dx = \frac{15}{4} \left( -\frac{1}{5} + 1 \right) = \frac{6}{7}.$$

3. 
$$E(X) = \int_{1}^{15} x \frac{15}{14x^2} dx = \int_{1}^{15} \frac{15}{14x} dx = \frac{15}{14} (\ln(15) - \ln(1)) = \frac{15}{14} \ln(15),$$

$$E(X^2) = \int_{1}^{15} x^2 \frac{15}{14x^2} dx = \int_{1}^{15} \frac{15}{14} dx = 15,$$

$$VAR(X) = E(X^2) - (E(X))^2 = 15 - \left(\frac{15}{14}\ln(15)\right)^2.$$

Las propiedades fundamentales de la esperanza y variancia son las mismas que las vistas para variables discretas.

## Teorema 3.

Si X y Y son variables aleatorias continuas y c es una constante, entonces se cumplen las siguientes afirmaciones:

1. El valor esperado de una variable aleatoria constante es la misma constante.

$$\mu_c = c$$
.

2. El valor esperado de una variable aleatoria multiplicada por una constante es la constante por el valor esperado de la variable.

$$\mu_{(cX)} = c\mu_X$$
.

3. El valor esperado de una suma de dos variables aleatorias es la suma de los valores esperados de las variables.

$$\mu_{X+Y} = \mu_X + \mu_Y$$
.

#### Teorema 4.

Si X y Y son variables aleatorias continuas independientes cuyas varianzas existen y c es una constante, se cumplen las siguientes afirmaciones:

1. La varianza de una variable aleatoria constante es cero.

$$VAR(c) = 0.$$

2. La varianza de una variable aleatoria multiplicada por una constante es la constante al cuadrado por la varianza de la variable.

$$VAR(cX) = cVAR(X).$$

3. La varianza de una suma de dos variables aleatorias es la suma de las varianzas de las variables.

$$VAR(X + Y) = VAR(X) + VAR(Y).$$

## Definición 5.

Si X es una variable aleatoria continua se llama función generadora de momentos a la esperanza de  $e^{tX}$  y se denota por  $m_X(t)$ , es decir:

$$m_X(t) = E(e^{tX}) = \int_{-\infty}^{\infty} e^{tx} \cdot f_X(x) \, dx. \tag{4}$$

#### Teorema 5.

Si X es una variable aleatoria con función generadora de momentos  $m_X(t)$  se tiene que

$$m_X^{(n)}(0) = E(X^n).$$
 (5)

#### Ejemplo 4.

Sea X una variable aleatoria continua con distribución de probabilidad

$$f(x) = \begin{cases} \frac{e^{-x}}{1 - e^{-5}} & si \quad 0 < x < 5 \\ 0 & sino \end{cases}$$

- 1. Determine la función generadora de momentos de  $X: m_X(t)$  para t < 1.
- 2. Utilice lo anterior para determinar E(X).
- 3. Determine  $E(e^{-3x})$ .

#### Solución

1. Determine la función generadora de momentos de  $X : m_X(t)$  para t < 1.

$$\int_0^5 \frac{e^{-x}}{1 - e^{-5}} dx = 1$$

$$m_{x}(t) = E(e^{xt}) = \int_{0}^{5} \frac{e^{-x}e^{xt}}{1 - e^{-5}} dx = \frac{1}{1 - e^{-5}} \int_{0}^{5} e^{(t-1)x} dx$$
$$= \frac{1}{1 - e^{-5}} \frac{e^{(t-1)x}}{t - 1} \Big|_{0}^{5} = \frac{1}{1 - e^{-5}} \left(\frac{e^{5(t-1)} - 1}{t - 1}\right)$$

2. Utilice lo anterior para determinar E(X).

$$m'(t) = \frac{1}{1 - e^{-5}} \frac{\left(5e^{5(t-1)}\right)(t-1) - \left(e^{5(t-1)} - 1\right)}{(t-1)^2},$$

$$E(X) = m'(0) = \frac{1}{1 - e^{-5}} \frac{-5e^{-5} - \left(e^{-5} - 1\right)}{1} = \frac{-6e^{-5} + 1}{-e^{-5} + 1} \approx 0,966082$$

3. Determine  $E(e^{-3x})$ .

$$E\left(e^{-3x}\right) = m_x\left(-3\right) = \frac{1}{1 - e^{-5}} \left(\frac{e^{5(-3 - 1)} - 1}{-3 - 1}\right) = \frac{e^{-20} - 1}{4\left(e^{-5} - 1\right)} \approx 0,251696$$

## 3. Ejercicios propuestos

1. Una variable *X* es tal que distribuye de acuerdo a:

$$f_X(x) = \begin{cases} \frac{2x}{15} & \text{si } 1 < x < 4 \\ 0 & \text{en otro caso} \end{cases}$$

a) Determine la función generadora de momentos.

Solución:

$$\int_{1}^{4} \frac{2}{15} x e^{tx} dx = \frac{2}{15} \left[ \frac{x e^{tx}}{t} - \frac{1}{t^{2}} e^{tx} \right]_{1}^{4}$$
$$= \frac{2}{15} \left[ \frac{4e^{4t}}{t} - \frac{e^{4t}}{t^{2}} - \frac{e^{t}}{t} + \frac{e^{t}}{t^{2}} \right]$$

b) Use la definición de media para calcular  $\mu_X$ .

Solución:

$$\int_{1}^{4} \frac{2}{15} x^{2} dx = \frac{2}{15} \frac{x^{3}}{3} \Big|_{1}^{4} = \frac{2}{15} \left[ \frac{64}{3} - \frac{1}{3} \right] = \frac{42}{15}$$

2. Suponga que una variable aleatoria *X* se distribuye de acuerdo a la distribución de probabilidad siguiente:

$$f_X(x) = \begin{cases} \frac{k}{x^3} & \text{si } 4 < x \\ 0 & \text{en otro caso} \end{cases}$$

a) Determine el valor de k

Solución:

$$\int_{4}^{\infty} \frac{k}{x^3} dx = \frac{kx^{-2}}{-2} \Big|_{4}^{\infty} = \frac{k}{32}$$

Por lo que k = 32.

b) Determine la distribución de probabilidad acumulada para X,  $F_X(x)$ .

Solución:

$$P[x \le w] = \int_4^w \frac{32}{x^3} dx = \frac{-32}{2x^2} \Big|_4^w = \frac{-16}{w^2} + 1$$

$$F_X(x) = \begin{cases} 0 & \text{si } x < 4 \\ 1 - \frac{16}{x^2} & \text{si } x \ge 4 \end{cases}$$

3. Sea X una variable aleatoria cuya función de densidad se da por la fórmula:

$$f(x) = \begin{cases} \beta \cdot x & \text{si } 0 < x < 4 \\ \frac{4}{3} \cdot x^{-2} & \text{si } x > 4 \end{cases}$$

a) Determine el valor de  $\beta$  para que f(x) sea una función de distribución de probabilidad.

#### Solución:

Para determinar el valor de  $\beta$  para que f(x) sea una función de distribución de probabilidad debe resolverse la identidad:

$$\int_{-\infty}^{\infty} f(x) \, dx = 1$$

Dadas las condiciones del problema esto equivale a:

$$\int_0^4 \beta x \, dx + \int_4^\infty \frac{4}{3} \cdot x^{-2} \, dx = 1 \Rightarrow \beta \frac{x^2}{2} \Big|_0^4 + \lim_{M \to \infty} \frac{4x^{-3}}{-9} \Big|_4^M = 1$$

Esto conduce a la ecuación  $8\beta + \frac{1}{144} = 1$  de donde sale  $\beta$ .

b) Determine la distribución acumulada de X.

#### Solución:

Se calcula de acuerdo a la definición:

$$F(x) = \begin{cases} \beta \frac{x^2}{2} & \text{si } 0 < x < 4 \\ 8\beta + \left(\frac{4x^{-3}}{-9} + \frac{1}{144}\right) & \text{si } x > 4 \end{cases}$$

c) Calcule  $P(3 \le X \le 7)$ .

Solución:

Calcule F(7) - F(3)

4. Determine la función generadora de momentos para una distribución continua uniforme en el intervalo [a,b].

Solución:

$$M_X(t) = \int_a^b \frac{1}{b-a} e^{tx} dx = \frac{e^b - e^a}{t(b-a)}$$

Puede usted obtener la media usando la generadora de momentos.

5. El tiempo de reacción en segundos a cierto estímulo es una variable aleatoria continua con distribución

$$f(x) = \begin{cases} \frac{3}{2} \cdot \frac{1}{x^2} & 1 \le x \le 3\\ 0 & \text{en otro caso.} \end{cases}$$

a) Obtenga la probabilidad de que el tiempo de reacción sea inferior a 2,5 segundos.

Solución:

$$\int_{1}^{2,5} \frac{1}{x^2} dx$$

b) Obtenga la probabilidad de que el tiempo de reacción esté entre 1,5 y 2,5 segundos.

Solución:

$$\int_{1.5}^{2.5} \frac{1}{x^2} dx$$

c) ¿Cuál es el tiempo esperado de reacción?

Solución:

$$\int_{1}^{2} \frac{1}{x} dx$$

6. Suponga que una variable aleatoria discreta X se distribuye de acuerdo a la distribución de probabilidad siguiente:

$$f(x) = \begin{cases} kn^2 & \text{si } 0 \le n \le 20\\ 0 & \text{en otro caso.} \end{cases}$$

■ Determine el valor de *k* 

**Solucin:** 

Tenemos 
$$1 = k(1+4+9+\cdots+n^2)$$
 y esa suma da  $\frac{n(n+1)(2n+1)}{6}$  y despeja  $k$ 

Determine la probabilidad de que X sea superior a 6

**Solucin:** 

$$1 - (k)(1 + 4 + 9 + 16 + 25 + 36)$$

- 7. Una persona recibe un tratamiento, una pastilla por ejemplo. Por muchos años de estudio y estadísticas se sabe que el tiempo que tarda un persona en reaccionar es una variable aleatoria, en minutos, cuya distribución de probabilidad de de la forma  $f_X(x) = \frac{1}{x^2}$  si x > 2 y 0 en cualquier otro caso.
  - a) ¿Es correcta la distribución de probabilidad enunciada anteriormente?

#### Solución:

Para estar seguros de que esto es en realidad un distribución de probabilidad, pues bien bastaría con chequear que

$$\int_{1}^{\infty} \frac{dx}{x^2} = 1$$

lo cual es cierto pues

$$\int_{1}^{\infty} \frac{dx}{x^2} = \lim_{M \longrightarrow \infty} \int_{1}^{M} \frac{dx}{x^2} = \lim_{M \longrightarrow \infty} \left(\frac{-1}{M} - \frac{-1}{1}\right) = 1$$

b) Determine la probabilidad de que una persona elegida al azar reaccione antes de dos horas.

Solución:

Tenemos:

$$P[X < 120] = \int_{1}^{120} \frac{dx}{x^2} = (\frac{-1}{120} - \frac{-1}{1}) = \frac{119}{120}$$

8. Una función  $f_X(x)$  tiene la forma.

$$f_X(n) = \begin{cases} ke^{-2x} & \text{Si} & x \in [0, 6] \\ 0 & \text{Otros Casos} \end{cases}$$

Determine el valor de k para que  $f_X$  sea distribución de probabilidad y determine la probabilidad de que X sea mayor que 3.

## Solución:

La condición necesaria es que

$$1 = \int_0^6 ke^{-2x} = k\left(\frac{e^{-12}}{-2} - \frac{1}{-2}\right)$$

de allí  $k = \frac{2}{1 - e^{-12}}$ 

El segundo ejercicio es similar y da

$$\frac{2}{1 - e^{-12}} \left( \frac{e^{-12}}{-2} - \frac{e^{-6}}{-2} \right)$$