DIGITAL ELECTRONICS CIRCUIT(BCA 103)

DEPARTMENT OF COMPUTER SCIENCE PROGRAMME: BCA

CENTRAL UNIVERSITY OF ODISHA KORAPUT

DIGITAL LOGIC

- Since Boolean functions are expressed in terms of AND, OR, and NOT operations, it is easier to implement a Boolean function with these type of gates.
- Factors to be weighed in considering the construction of other types of logic gates are:
- (1) the feasibility and economy of producing the gate with physical components,
- (2) the possibility of extending the gate to more than two inputs,
- (3) the basic properties of the binary operator, such as commutativity and associativity, and
- (4) the ability of the gate to implement Boolean functions alone or in conjunction with other gates.

- There are 2^{2n} functions for n binary variables.
- Thus, for two variables, n = 2, and the number of possible Boolean functions is 16.
- The 16 functions listed can be subdivided into three categories:
 - 1. Two functions that produce a constant 0 or 1.
 - 2. Four functions with unary operations: complement and transfer.
 - **3. Ten** functions with binary operators that define eight different operations: AND, OR, NAND, NOR, exclusive-OR, equivalence, inhibition, and implication.
- Of the 16 functions, two are equal to a constant and four are repeated.
- There are only 10 functions left to be considered as candidates for logic gates.

- Two—inhibition and implication—are not commutative or associative and thus are impractical to use as standard logic gates.
- The other eight—complement, transfer, AND, OR, NAND, NOR, exclusive-OR, and equivalence—are used as standard gates in digital design.

DIGITAL LOGIC GATES

Name	Graphic symbol	Algebraic function	Tru	
			х	y 1
	x —		0	0 (
AND	yF	$F = x \cdot y$	0	1 (
	,		1	0 (
			1	1 1
			x	y I
OR	x — F	F 1	0	0 (
Oic	y —	F = x + y	0	1 1
	1		1	0 1
			1	1 1
			x	F
Inverter	x	F = x'	0	1
			1	0
	, which		x	F
Buffer	xF	F = x	-	
		* - *	0	0
			1	1
			x	y 1
	x	Y ()/	0	0 1
NAND	y	F = (xy)'	0	1 1
			1	0 1
			1	1 (
			x	y 1
	x —		0	0 1
NOR)O——F	F = (x + y)'	0	1 (
	y		1	0 (
			1	1 (
			x	y I
Exclusive-OR	$x \longrightarrow$	F = xy' + x'y	0	0 (
(XOR))——F	$= x \oplus y$	0	1
()	y - H	- A W J	1	0 1
			1	1 (
			х	y 1
Exclusive-NOR	x — — — — — — — — — — — — — — — — — — —	F = xy + x'y'	0	0 1
or	y	$= (x \oplus y)'$	0	1 (
equivalence		8	1	0 (
			1	1
			(#)	# I 3

- Each gate has one or two binary input variables, designated by x and y, and one binary output variable, designated by F.
- The inverter circuit inverts the logic sense of a binary variable, producing the NOT, or complement, function.
- The small circle in the output of the graphic symbol of an inverter (referred to as a *bubble*) designates the logic complement.
- The triangle symbol by itself designates a buffer circuit.
- A buffer produces the *transfer* function, but does not produce a logic operation, since the binary value of the output is equal to the binary value of the input.
- This circuit is used for power amplification of the signal and is equivalent to two inverters connected in cascade.

- The NAND function is the complement of the AND function, as indicated by a graphic symbol that consists of an AND graphic symbol followed by a small circle.
- The NOR function is the complement of the OR function and uses an OR graphic symbol followed by a small circle.
- NAND and NOR gates are used extensively as standard logic gates and are in fact far more popular than the AND and OR gates.
- This is because NAND and NOR gates are easily constructed with transistor circuits and because digital circuits can be easily implemented with them.
- The exclusive-OR gate has a graphic symbol similar to that of the OR gate, except for the additional curved line on the input side.
- The equivalence, or exclusive-NOR, gate is the complement of the exclusive-OR, as indicated by the small circle on the output side of the graphic symbol.

EXTENSION TO MULTIPLE INPUTS

- The gates, except for the inverter and buffer—can be extended to have more than two inputs.
- A gate can be extended to have multiple inputs if the binary operation it represents is commutative and associative.
- The AND and OR operations, defined in Boolean algebra, possess these two properties.
- For the OR function, we have

$$x + y = y + x$$
 (commutative) and $(x + y) + z = x + (y + z) = x + y + z$ (associative)

which indicates that the gate inputs can be interchanged and that the OR function can be extended to three or more variables.

12/15/2020

- The NAND and NOR functions are commutative, and their gates can be extended to have more than two inputs, provided that the definition of the operation is modified slightly.
- The difficulty is that the NAND and NOR operators are not associative (i.e., $(x \downarrow y) \downarrow z \neq x \downarrow (y \downarrow z)$)
- i.e. $(x \downarrow y) \downarrow z = [(x + y)' + z]' = (x + y)z' = xz' + yz'$ $x \downarrow (y \downarrow z) = [x + (y + z)']' = x'(y + z) = x'y + x'z$
- To overcome this difficulty, we define the multiple NOR (or NAND) gate as a complemented OR (or AND) gate. Thus, by definition, we have:

NOR: $x \downarrow y \downarrow z = (x + y + z)$

NAND: $x \uparrow y \uparrow z = (xyz)$

• In writing cascaded NOR and NAND operations, one must use the correct parentheses to signify the proper sequence of the gates.

Demonstrating the non-associativity of the NOR operator

- The exclusive-OR and equivalence gates are both commutative and associative and can be extended to more than two inputs.
- However, multiple-input exclusive-OR gates are uncommon from the hardware standpoint.
- The definition of the function must be modified when extended to more than two variables.
- Exclusive-OR is an *odd* function (i.e., it is equal to 1 if the input variables have an odd number of 1's).
- The output (Exclusive-OR) F is equal to 1 if only one input is equal to 1 or if all three inputs are equal to 1 (i.e., when the total number of 1's in the input variables is odd).

Three-input exclusive-OR gate

0	0	0	()
0	0	1	1
0	1	0	1
0	1 1 0		()
1	0	0	1
1	0	1	()
1	1	0	0
1	1	1	1

Gate-Level Minimization

- Gate-level minimization is the design task of finding an optimal gate-level implementation of the Boolean functions describing a digital circuit.
- This task is well understood, but is difficult to execute by manual methods when the logic has more than a few inputs.
- Fortunately, computer-based logic synthesis tools can minimize a large set of Boolean equations efficiently and quickly.
- The complexity of the digital logic gates that implement a Boolean function is directly related to the complexity of the algebraic expression from which the function is implemented.
- Although the truth table representation of a function is unique, when it is expressed algebraically it can appear in many different, but equivalent, forms.

The Map Method

- The map method provides a simple, straightforward procedure for minimizing Boolean functions.
- This method may be regarded as a pictorial form of a truth table. The map method is also known as the *Karnaugh map* or *K-map*.
- A K-map is a diagram made up of squares, with each square representing one minterm of the function that is to be minimized.
- Since any Boolean function can be expressed as a sum of minterms, it follows that a Boolean function is recognized graphically in the map from the area enclosed by those squares whose minterms are included in the function.
- In fact, the map presents a visual diagram of all possible ways a function may be expressed in standard form.

- The simplified expressions produced by the map are always in one of the two standard forms: sum of products or product of sums.
- It will be assumed that the simplest algebraic expression is an algebraic expression with a minimum number of terms and with the smallest possible number of literals in each term.
- This expression produces a circuit diagram with a minimum number of gates and the minimum number of inputs to each gate.
- The simplest expression is not unique: It is sometimes possible to find two or more expressions that satisfy the minimization criteria.
- In that case, either solution is satisfactory.

Two-Variable K-Map

y	0	1
0	$\mathbf{m_0}$	m ₁
1	m_2	m_3

Two-Variable K-Map

• Ex: xy

Two-Variable K-Map

• Ex: x + y

These squares are found from the minterms of the function:

$$m_1 + m_2 + m_3 = x'y + xy' + xy = x'y + x(y + y') = x'y + x = (x + y)(x + x') = x + y$$

X	y	0	1
71	0	x'y'	x ⁴ y
	1	xy'	xy

- There are eight minterms for three binary variables; therefore, the map consists of eight squares.
- Note that the minterms are arranged, not in a binary sequence, but in a sequence similar to the Gray code.
- The characteristic of this sequence is that only one bit changes in value from one adjacent column to the next.

• To understand the usefulness of the map in simplifying Boolean functions, we must recognize the basic property possessed by adjacent squares:

Any two adjacent squares in the map differ by only one variable, which is primed in one square and unprimed in the other.

- From the postulates of Boolean algebra, the sum of two minterms in adjacent squares can be simplified to a single product term consisting of only two literals.
- Any two minterms in adjacent squares (vertically or horizontally, but not diagonally, adjacent) that are ORed together will cause a removal of the dissimilar variable.
- Ex: $m_5 + m_7 = xy'z + xyz = xz(y' + y) = xz$ Here, the two squares differ by the variable y, which can be removed when the sum of the two minterms is formed.

• Simplify the Boolean function $F(x, y, z) = \sum (2, 3, 4, 5)$

y x	00	01	11	10	y x	00	01	11	10
0	x'y'z'	x'y'z	x'yz	x'yz'	0	\mathbf{m}_0	m_1	\mathbf{m}_3	m_2
1	xy'z'	xy'z	xyz	xyz'	1	m_4	m_5	m_7	m_6
y x	00	01	11	10	y x	00	01	11	10
0	0	0	1	1	0	0	0	1	1
1	1	1	0	0	1	1	1	0	0

•
$$m_3 + m_2 = x'yz + x'yz' = x'y$$

•
$$m_4 + m_5 = xy'z' + xy'z = xy'$$
 Hence, $F(x, y, z) = \sum (2, 3, 4, 5) = x'y + xy'$

• Simplify the Boolean function $F(x, y, z) = \sum (3, 4, 6, 7)$

y x	00	01	11	10	y x	00	01	11	10
0	x'y'z'	x'y'z	x'yz	x'yz'	0	\mathbf{m}_0	m ₁	m_3	$\mathbf{m_2}$
1	xy'z'	xy'z	xyz	xyz'	1	m_4	m_5	m_7	m_6
y x	00	01	11	10	y x	00	01	11	10
0	0	0	1	0	0	0	0	1	0
1	1	0	1	1	1	1	0	1	1

•
$$m_3 + m_7 = x'yz + xyz = yz$$

•
$$m_4 + m_6 = xy'z' + xyz' = xz'$$
 Hence, $F(x, y, z) = \sum (3, 4, 6, 7) = yz + xz'$

- The number of adjacent squares that may be combined must always represent a number that is a power of two, such as 1, 2, 4, and 8.
- As more adjacent squares are combined, we obtain a product term with fewer literals.
 - One square represents one minterm, giving a term with three literals.
 - Two adjacent squares represent a term with two literals.
 - Four adjacent squares represent a term with one literal.
 - Eight adjacent squares encompass the entire map and produce a function that is always equal to 1.

• Simplify the Boolean function $F(x, y, z) = \sum (0, 2, 4, 5, 6)$

y x	00	01	11	10	y x	00	01	11	10
0	x'y'z'	x'y'z	x'yz	x'yz'	0	\mathbf{m}_0	m ₁	\mathbf{m}_3	$\mathbf{m_2}$
1	xy'z'	xy'z	xyz	xyz'	1	m_4	m_5	m_7	m_6
y	00	01	11	10	y x	00	01	11	10
0	1	0	0	1	0	1	0	0	1
					V				

•
$$m_0 + m_2 + m_4 + m_6 = x'y'z' + x'yz' + xy'z' + xyz' = z'$$

•
$$m_4 + m_5 = xy'z' + xy'z = xy'$$
 Hence, $F(x, y, z) = \sum (0, 2, 4, 5, 6) = z' + xy'$

- If a function is not expressed in sum-of-minterms form, it is possible to use the map to obtain the minterms of the function and then simplify the function to an expression with a minimum number of terms.
- It is necessary, however, to make sure that the algebraic expression is in sum-of-products form.
- Each product term can be plotted in the map in one, two, or more squares. The minterms of the function are then read directly from the map.

- For the Boolean function F = A'C + A'B + AB'C + BC
 - (a) Express this function as a sum of minterms. $F = A'C + A'B + AB'C + BC = \sum (1, 2, 3, 5, 7)$
 - (b) Find the minimal sum-of-products expression.

x y	00	01	11	10	x y	00	01	11	10
0	A'B'C'	A'B'C	A'BC	A'BC'	0	\mathbf{m}_0	\mathbf{m}_1	m_3	\mathbf{m}_2
1	AB'C'	AB'C	ABC	ABC'	1	m_4	m_5	m_7	m_6
y x	00	01	11	10	x y	00	01	11	10
0	0	1	1	1	0	0	1	1	1
1	0	1	1	0	1	0	1	1	0

•
$$m_1 + m_3 + m_5 + m_7 = A'B'C + A'BC + AB'C + ABC = C$$

•
$$m_3 + m_2 = A'BC' + A'BC' = A'B$$
 Hence, $F(A, B, C) = \sum (1, 2, 3, 5, 7) = C + A'B$

yz wx	00	01	11	10
00	w'x'y'z'	w'x'y'z	w'x'yz	w'x'yz'
01	w'xy'z'	w'xy'z	w'xyz	w'xyz'
11	wxy'z'	wxy'z	wxyz	wxyz'
10	wx'y'z'	wx'y'z	wx'yz	wx'yz'
yz wx	00	01	11	10
00	\mathbf{m}_0	\mathbf{m}_1	m_3	\mathbf{m}_2
01	m_4	m_5	m_7	m_6
11	m ₁₂	m ₁₃	m ₁₅	m ₁₄
10	m_8	m_9	m ₁₁	m_{10}

• Simplify the Boolean function $F(w, x, y, z) = \sum (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$

yz wx	00	0	1	11	10					
00	w'x'y'z'	w'x'	y'z	w'x'yz	w'x'yz'	$\mathbf{m_0}$	m ₁	\mathbf{m}_3	$\mathbf{m_2}$	
01	w'xy'z'	w'xy	z'Z	w'xyz	w'xyz'	m_4	m_5	m_7	m_6	
11	wxy'z'	wxy	'Z	wxyz	wxyz'	m ₁₂	m ₁₃	m ₁₅	m ₁₄	
10	wx'y'z'	wx'y	, 'Z	wx'yz	wx'yz'	m_8	m_9	m ₁₁	m_{10}	
yz wx	00	01	11	10	yz wx	00	01	11	10	
00	1	1	0	1	00	1	1	0	1	
01	1	1	0	1	01	1	1	0	1	
11	1	1	0	1	11	1	1	0	1	
10	1	1	0	0	10	1	1	0	0	

• Simplify the Boolean function $F(w, x, y, z) = \sum (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$

yz wx	00	0)1	11	10					
00	w'x'y'z	, w'x	'y'z	w'x'yz	w'x'yz'	\mathbf{m}_0	$\mathbf{m_1}$	\mathbf{m}_3	\mathbf{m}_2	
01	w'xy'z'	w'x	y'z	w'xyz	w'xyz'	m_4	m_5	m_7	m_6	
11	wxy'z'	WXJ	'' Z	wxyz	wxyz'	m ₁₂	m ₁₃	m ₁₅	m ₁₄	
10	wx'y'z'	wx'	y'z	wx'yz	wx'yz'	m_8	m_9	m ₁₁	m ₁₀	
yz wx	00	01	11	10	yz wx	00	01	11	10	
00	1	1	0	1	00	1	1	0	1	
01	1	1	0	1	01	1	1	0	1	
11	1	1	0	1	11	1	1	0	1	
10	1	1	0	0	10	1	1	0	0	

• Simplify the Boolean function $F(w, x, y, z) = \sum (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$

yz wx	00	0	1	11	10					
00	w'x'y'z	z' w'x	'y'z	w'x'yz	w'x'yz'	$\mathbf{m_0}$	m ₁	m ₃	$\mathbf{m_2}$	
01	w'xy'z'	w'x	y'z	w'xyz	w'xyz'	m_4	m_5	m_7	m_6	
11	wxy'z'	WXJ	/ ' Z	wxyz	wxyz'	m ₁₂	m ₁₃	m ₁₅	m ₁₄	
10	wx'y'z'	wx'	y'z	wx'yz	wx'yz'	m_8	m_9	m ₁₁	m_{10}	
yz wx	00	01	11	10	yz wx	00	01	11	10	
00	1	1	0	1	00	1	1	0	1	
01	1	1	0	1	01	1	1	0	1	
11	1	1	0	1	11	1	1	0	1	
10	1	1	0	0	10	1	1	0	0	

- i) $m_0 + m_1 + m_4 + m_5 + m_8 + m_9 + m_{12} + m_{13}$ = w'x'y'z' + w'x'y'z + w'xy'z' + wx'y'z' + wx
- ii) $m_0 + m_2 + m_4 + m_6 = w'x'y'z' + w'x'yz' + w'xyz' + w'xyz'$ = w'z'
- iii) $m_4 + m_6 + m_{12} + m_{14} = w'xy'z' + w'xyz' + wxy'z' + wxyz'$ = xz'
- Hence, $F(w, x, y, z) = \sum (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$ = y' + w'z' + xz'