Proof of Theorem 3.20 (i) => (ii): x* vertex => 3 ce R": cTx* < cTy YyeP\ {xx} By contradiction assure that x* is not an extreme point, i.e., x*= \. y , (1- x) & with y, 2 EPX {x*}, \ E [0,1] $\Rightarrow cTx^* = \lambda \cdot cTy + (\lambda - \lambda) \cdot cTz \Rightarrow cTx^*$ (ii) => (iii): x* extrem point, I := {ienon: a. x = 6; } Assume by contradiction that rank Ea: lie I > u. => 3 deR"\ 20 with at d=0 VieI Let x:= x*+ E.d and y:= x*- E.d for E>O. Claim: x,yeP for E>0 small enough (this is a contradiction to x* extreme point) Proof of Claim: For iEI: a; x = a; x*+ e a; d = a; x* = 8; For it I: a; - x = a; x + E · a; · d > 6; for E sul >6; Claim

(iii) => (i): X* basic feasible solution, I:= { ieMUN | a. x = 6; } => rank {a: lie]}=u $c := \sum_{i \in T} a_i \cdot x^* = \sum_{i \in T} a_i \cdot x^* = \sum_{i \in T} \delta_i$ For $x \in P$: $c^*x = \sum_{i \in I} a_i^*x \ge \sum_{i \in I} s_i$ cTx = \(\Sigma\); \(\sigma\);

Proof of Theorem 3.20

$$(iii) \longrightarrow (i)': x^*$$
 basic feasible solution, $I := \{i \in M \cup N \mid a_i^T \cdot x^* = b_i\}$

$$c := \sum_{i \in I} a_i, \qquad c^T \cdot x^* = \sum_{i \in I} a_i^T \cdot x^* = \sum_{i \in I} b_i.$$

For
$$x \in P$$
: $c^T \cdot x = \sum_{i \in I} \underbrace{a_i^T \cdot x}_{>b_i} \ge \sum_{i \in I} b_i$ and

$$c^T \cdot x = \sum_{i \in I} b_i \iff a_i^T \cdot x = b_i \ \forall i \in I \iff x = x^*$$

since there are n linearly independent vectors in $\{a_i \mid i \in I\}$.

$$(i) \Longrightarrow (ii)': x^* \text{ vertex} \Longrightarrow \exists c \in \mathbb{R}^n: c^T \cdot x^* < c^T \cdot y \quad \forall y \in P \setminus \{x^*\}$$

By contradiction assume that

$$x^* = \lambda y + (1 - \lambda)z$$
 with $y, z \in P \setminus \{x^*\}, \ \lambda \in [0, 1].$

Then,
$$c^T \cdot x^* = \lambda \underbrace{c^T \cdot y}_{>c^T \cdot x^*} + (1 - \lambda) \underbrace{c^T \cdot z}_{>c^T \cdot x^*} > c^T \cdot x^*.$$

M. Skutella

ADM I (winter 2019/20)

Proof of Theorem 3.20 (Cont.)

 $(ii) \Longrightarrow (iii)': x^*$ extreme point, $I := \{i \in M \cup N \mid a_i^T \cdot x^* = b_i\}$

Assume by contradiction that rank $\{a_i \mid i \in I\} < n$.

Then, there exists $d \in \mathbb{R}^n \setminus \{0\}$ with $a_i^T \cdot d = 0$ for all $i \in I$.

Let $x := x^* + \varepsilon d$ and $y := x^* - \varepsilon d$ for some $\varepsilon > 0$.

Claim: $x, y \in P$ for $\varepsilon > 0$ small enough. $(\Longrightarrow \text{contradiction!})$

Proof: For
$$i \in I$$
, $a_i^T \cdot x = \underbrace{a_i^T \cdot x^*}_{-b_i} + \varepsilon \underbrace{a_i^T \cdot d}_{=0} = b_i$;

for
$$i \notin I$$
, $a_i^T \cdot x = \underbrace{a_i^T \cdot x^*}_{>b_i} + \varepsilon a_i^T \cdot d \ge b_i$ for $\varepsilon > 0$ small.

The same holds for y instead of x.

M. Skutella

Existence of Extreme Points

Definition 3.21.

A polyhedron P is called pointed if it contains at least one vertex.

Definition 3.22.

A polyhedron $P \subseteq \mathbb{R}^n$ contains a line if there is $x \in P$ and a direction $d \in \mathbb{R}^n \setminus \{0\}$ such that

$$x + \lambda \cdot d \in P$$
 for all $\lambda \in \mathbb{R}$.

Theorem 3.23.

Consider non-empty $P \subseteq \mathbb{R}^n$ as on Slide 55. The following are equivalent:

- P is pointed.
- ii P does not contain a line.
- $\min \text{ rank}\{a_i \mid i \in M \cup N\} = n.$

M Skutella ADM I (winter 2019/20) 61

Proof of Theorem 3.23

```
(i) \Longrightarrow (iii)': x^* extreme point \Longrightarrow x^* basic feasible solution
```

- \implies There are *n* linearly independent constraints that are active at x^* .
- \implies There are *n* linearly independent vectors in $\{a_i \mid i \in M \cup N\}$.

$$(iii) \Longrightarrow (ii)'$$
: By contradiction assume that $x \in P$, $d \in \mathbb{R}^n \setminus \{0\}$ with

$$x + \lambda d \in P$$
 for all $\lambda \in \mathbb{R}$.

$$\implies a_i^T \cdot (x + \lambda d) = a_i^T \cdot x + \lambda a_i^T \cdot d \ge b_i \text{ for } i \in M \cup N, \ \lambda \in \mathbb{R}$$

$$\implies$$
 $a_i^T \cdot d = 0$ for all $i \in M \cup N$.

$$\implies$$
 rank $\{a_i \mid i \in M \cup N\} < n.$

Proof of Theorem 3.23 (Cont.)

'(ii)
$$\Longrightarrow$$
(i)': Choose $x \in P$ maximizing $\left|\underbrace{\left\{i \in M \cup N \mid a_i^T \cdot x = b_i\right\}}\right|$.

If $rank\{a_i \mid i \in I\} = n$, then x is an extreme point and we are done.

Otherwise, there is $d \in \mathbb{R}^n \setminus \{0\}$ with $a_i^T \cdot d = 0$ for all $i \in I$.

$$\implies a_i^T \cdot (x + \lambda d) = a_i^T \cdot x = b_i \text{ for all } i \in I, \ \lambda \in \mathbb{R}.$$

Since P does not contain a line, $x + \lambda' d \notin P$ for some $\lambda' \in \mathbb{R}$.

$$\implies a_i^T \cdot (x + \lambda' d) < b_i \text{ for some } i \in M \setminus I.$$

Assume w.l.o.g. $\lambda' > 0$ (otherwise replace d with -d) and let

$$\lambda_0 := \max\{\lambda \mid a_i^T \cdot (x + \lambda d) \ge b_i \ \forall i \in M \cup N\} < \lambda'.$$

Notice: $\lambda_0 > 0$ since $a_i^T \cdot d = 0 \ \forall i \in I$ and $a_i^T \cdot x > b_i \ \forall i \in M \setminus I$.

Moreover, there is an $i \in M \setminus I$ with $a_i^T \cdot (x + \lambda_0 d) = b_i$.

$$\implies$$
 At least $|I|+1$ constraints active at $x+\lambda_0$ $d\in P$.

M. Skutella

ADM I (winter 2019/20)

63

Existence of Extreme Points (Cont.)

Corollary 3.24.

- A non-empty polytope contains an extreme point.
- **b** A non-empty polyhedron in standard form contains an extreme point.
- **c** Polyhedron $P \neq \emptyset$ is pointed if and only if rec(P) is pointed.

Proof of b:

$$\begin{array}{ccc}
A \cdot x &= b \\
x &\geq 0
\end{array}
\iff
\begin{pmatrix}
A \\
-A \\
I
\end{pmatrix}
\cdot x \geq
\begin{pmatrix}
b \\
-b \\
0
\end{pmatrix}$$

Example:

$$P = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 \,\middle|\, \begin{array}{ccc} x_1 & + & x_2 & \geq 1 \\ x_1 & + & 2x_2 & \geq 0 \end{array} \right\}$$

contains a line since $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \in P$ for all $\lambda \in \mathbb{R}$.

Characterization of Polytopes

Theorem 3.25.

A polytope is equal to the convex hull of its vertices.

Proof: Follows from Theorem 3.20 (see exercise).

Theorem 3.26.

A set $P \subseteq \mathbb{R}^n$ is a polytope if and only if there exists a finite set $V \subseteq \mathbb{R}^n$ such that P is the convex hull of V.

Proof: '⇒': Follows from Theorem 3.25 since a polytope has only finitely many basic feasible solutions (vertices).

'← ': See exercise session.

M. Skutella ADM I (winter 2019/20) 6

Valid Inequalities, Supporting Hyperplanes, Faces, Facets

Definition 3.27.

Let $c \in \mathbb{R}^n \setminus \{0\}$ and $\gamma \in \mathbb{R}$.

- The linear inequality $c^T \cdot x \ge \gamma$ is valid for P if $P \subseteq \{x \mid c^T \cdot x \ge \gamma\}$.
- **b** $H = \{x \in \mathbb{R}^n \mid c^T \cdot x = \gamma\}$ is a supporting hyperplane of P if $c^T \cdot x \ge \gamma$ is valid for P and $P \cap H \ne \emptyset$.
- The intersection of P with a supporting hyperplane is a face of P. Also P and \emptyset are faces of P; the others are called proper faces.
- d The inclusion-wise maximal proper faces are called facets.

Remarks.

- Every face of P is itself a polyhedron.
- ► Every vertex of *P* is a 0-dimensional face of *P*.
- ▶ The optimal LP solutions form a face of the underlying polyhedron.