光子探测效率及能谱测量

试模拟 γ 源 ¹³⁷Cs(E_0 =0.662MeV)在 NaI(Tl) 闪烁体中的输运情况。

计算模型:

- ● 闪烁体尺寸 Φ4×4cm, 即半径 R=2cm、高 H=4cm
 (选做: 闪烁体外部包裹 0.2cm 厚的铝)。
- ¹³⁷Cs 点源在闪烁体中轴线上,与闪烁体顶面距离 D=20cm,粒子垂直向下入射进入晶体。

要求计算光子在 NaI(TI)闪烁体内的能量沉积谱:

用直接模拟法模拟光子在 NaI(TI)闪烁体内的输运,记录单个光子在闪烁体内损失的能量,如果发生了光电效应,则认为损失了全部能量,如果是康普顿散射,沉积能量为碰撞前后的能量差,最后获得光子的总沉积能量。

考虑到测量系统的分辨率,实际记录的能量为沉积能量的高斯展宽,且在能量 E 处的半高宽 $FWHM(E)=0.01+0.05\sqrt{E+0.4E^2}$,其中能量 E 的单位为 MeV。即记录能量为

 $E' = E + \sigma \cdot x$, $\sigma = FWHM / 2\sqrt{2 \ln 2} \approx 0.4247 \cdot FWHM$, x 为服从标准正态分布的随机变量。

作业要求编写光子能谱测量的蒙卡模拟程序,根据计算结果整理出报告,报告应包括以下几部分内容。

1) 计算探测效率和峰总比,并估计相对误差。

探测效率= N_m/N

峰总比 $=N_p/N_m$

N = 进入闪烁体的总粒子数

 $N_m = 探测到的总计数 (能量沉积 E>0 的光子计数)$

 $N_n = 2$ 全能峰的总计数(按 $E_0 \pm 3$ σ 范围统计计数)

误差估计取置信水平 $1-\alpha=0.95$, $\lambda_{\alpha}\approx 2.0$ 。

- 2) 统计 γ 谱每道的计数,画出 γ 能谱图。 能量范围取 0~0.85 MeV,按每道为 0.002 MeV 的间隔划分。
- 3) 根据γ能谱图,估计测量系统在 0.662 MeV 处的能量分辨率。 (直接根据γ能谱图全能峰的半高宽进行估算)

对于编程语言不作要求,C++、matlab 等都可以。 如有疑问,可通过微信群、电子邮件(lingian@tsinghua.edu.cn)答疑。

NaI(TI)闪烁体宏观截面数据:

能量	康普顿效应截面	光电效应截面
(MeV)	(cm ⁻¹)	(cm ⁻¹)
1.000E-03	2. 1712E-02	2. 8604E+04
1.035E-03	2. 2915E-02	2. 6589E+04
1.072E-03	2. 4171E-02	2. 4721E+04
1.072E-03	2. 4174E-02	2. 9081E+04
1.500E-03	3. 9086E-02	1. 3950E+04
2.000E-03	5. 6555E-02	7. 0354E+03
3.000E-03	9. 0245E-02	2. 5701E+03
4.000E-03	1.2082E-01	1. 2298E+03
4.557E-03	1. 3623E-01	8. 7603E+02
4.557E-03	1. 3623E-01	2. 4167E+03
4. 702E-03	1.4005E-01	2. 2629E+03
4.852E-03	1.4397E-01	2. 1191E+03
4.852E-03	1.4397E-01	2. 8329E+03
5.000E-03	1.4775E-01	2. 6707E+03
5. 188E-03	1.5249E-01	2. 4262E+03
5. 188E-03	1.5249E-01	2. 7907E+03
6.000E-03	1.7172E-01	1. 9440E+03
8.000E-03	2. 1282E-01	9. 1346E+02
1.000E-02	2. 4703E-01	5. 0463E+02
1.500E-02	3. 0865E-01	1.6772E+02
2.000E-02	3. 4729E-01	7. 5675E+01
3.000E-02	3.9159E-01	2. 4248E+01
3. 317E-02	4.0003E-01	1.8247E+01
3. 317E-02	4.0003E-01	1.0922E+02
4.000E-02	4. 1361E-01	6. 6941E+01
5.000E-02	4. 2462E-01	3. 6920E+01
6.000E-02	4. 2902E-01	2. 2427E+01
8.000E-02	4. 2756E-01	1. 0078E+01
1.000E-01	4. 1985E-01	5. 3655E+00
1.500E-01	3. 9306E-01	1. 6853E+00
2.000E-01	3. 6700E-01	7. 4097E-01
3.000E-01	3. 2516E-01	2. 3785E-01
4.000E-01	2. 9393E-01	1.0962E-01
5. 000E-01	2.6978E-01	6. 1803E-02
6.000E-01	2.5037E-01	3. 9599E-02
8.000E-01	2. 2064E-01	2.0508E-02

铝(AI)的宏观截面数据:

能量	康普顿效应截面	光电效应截面
(MeV)	(cm ⁻¹)	(cm ⁻¹)
1.00E-03	1. 7264E+00	1. 4310E+05
1.50E-03	2. 9970E+00	4. 8411E+04
1.56E-03	3. 1374E+00	4. 3551E+04
1.56E-03	3. 1374E+00	4. 7844E+05
2.00E-03	4. 0824E+00	2. 7351E+05
3.00E-03	5. 7240E+00	9. 5148E+04
4.00E-03	7. 0281E+00	4. 3443E+04
5.00E-03	8. 2107E+00	2. 3252E+04
6.00E-03	9. 3096E+00	1. 3821E+04
8.00E-03	1. 1240E+01	5. 9886E+03
1.00E-02	1. 2798E+01	3. 0915E+03
1.50E-02	1. 5304E+01	9. 0909E+02
2.00E-02	1. 6583E+01	3. 7503E+02
3.00E-02	1. 7715E+01	1. 0552E+02
4.00E-02	1.8077E+01	4. 2390E+01
5.00E-02	1.8095E+01	2. 0779E+01
6.00E-02	1. 7942E+01	1. 1570E+01
8.00E-02	1. 7407E+01	4. 5765E+00
1.00E-01	1. 6789E+01	2. 2262E+00
1.50E-01	1. 5331E+01	6. 0399E-01
2.00E-01	1. 4129E+01	2. 4219E-01
3.00E-01	1. 2347E+01	6. 9471E-02
4.00E-01	1.1084E+01	2. 9997E-02
5.00E-01	1. 0130E+01	1.6257E-02
6.00E-01	9. 3798E+00	1. 0163E-02
8.00E-01	8. 2431E+00	5. 1435E-03