Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 13 & 14: Raggiungibilità e controllabilità di sistemi a tempo discreto

Corso di Laurea Magistrale in Ingegneria Meccatronica
A.A. 2019-2020

In questa lezione

- ▶ Raggiungibilità e controllabilità: definizioni generali
 - ▶ Raggiungibilità di sistemi lineari a t.d.
 - ▶ Calcolo dell'ingresso di controllo
 - ▶ Sistemi non raggiungibili: forma di Kalman
 - ▶ Test PBH di raggiungibilità
 - ▶ Controllabilità di sistemi lineari a t.d.

Raggiungibilità e controllabilità

sistema con stato x(t) e ingresso u(t)

Raggiungibilità = possibilità di raggiungere un **qualsiasi** stato desiderato \bar{x} a partire da uno stato x_0 **fissato** agendo su u(t)

Controllabilità = possibilità di raggiungere uno stato desiderato x_0 **fissato** a partire da un **qualsiasi** stato \bar{x} agendo su u(t)

Stati e spazi raggiungibili

sistema con stato x(t) e ingresso u(t)

$$u(t)$$
 \sum $y(t) = x(t)$

Definizione: Uno stato \bar{x} si dice raggiungibile dallo stato x_0 al tempo \bar{t} se esiste un ingresso u(t), $t_0 \le t \le \bar{t}$, tale che $x(t_0) = x_0$, $x(\bar{t}) = \bar{x}$.

Definizione: L'insieme $X_R(\bar{t})$ di tutti gli stati raggiungibili dallo stato x_0 al tempo \bar{t} è detto spazio raggiungibile al tempo \bar{t} .

(tipicamente:
$$x_0 = 0$$
, $t_0 = 0$)

Giacomo Baggio IMC-TdS-1920: Lez. 13 & 14 November 11-12, 2019

Esempio introduttivo

$$x_1(t) = v_{C_1}(t), x_2(t) = v_{C_2}(t)$$

Se
$$C_1 = C_2$$
 e $x_1(0) = x_2(0)$:

$$\Rightarrow x_1(t) = x_2(t), \forall u(t), \forall t \geq 0$$

$$\Rightarrow X_R(t) = \{x_1 = x_2\}, \forall t \geq 0$$

Stati e spazi controllabili

sistema con stato x(t) e ingresso u(t)

$$y(t) \longrightarrow \sum y(t) = x(t)$$

Definizione: Uno stato \bar{x} si dice controllabile allo stato x_0 al tempo \bar{t} se esiste un ingresso u(t), $t_0 \le t \le \bar{t}$, tale che $x(t_0) = \bar{x}$ e $x(\bar{t}) = x_0$.

Definizione: L'insieme $X_C(\bar{t})$ di tutti gli stati controllabili allo stato x_0 al tempo \bar{t} è detto spazio controllabile al tempo \bar{t} .

(tipicamente:
$$x_0 = 0$$
, $t_0 = 0$)

Giacomo Baggio IMC-TdS-1920: Lez. 13 & 14 November 11-12, 2019

Raggiungibilità e controllabilità: interpretazione grafica

Raggiungibilità di sistemi a tempo discreto: setup

matrice di raggiungibilità in t passi

$$x(t+1) = Fx(t) + Gu(t), \ x(0) = x_0$$

$$u(t) \in \mathbb{R}^m \longrightarrow \sum \qquad x(t) \in \mathbb{R}^n$$

$$x(t) = F^t x_0 + \sum_{k=0}^{t-1} F^{t-k-1} Gu(k) = F^t x_0 + \mathcal{R}_t u_t$$

$$\mathcal{R}_t = \begin{bmatrix} G & FG & \cdots & F^{t-1}G \end{bmatrix} \qquad u_t = \begin{bmatrix} u(t-1) \\ u(t-2) \\ \vdots \\ u(0) \end{bmatrix}$$
That rice di raggiungibilità in t passi

Giacomo Baggio IMC-TdS-1920: Lez. 13 & 14 November 11-12, 2019

Raggiungibilità di sistemi a tempo discreto: setup

$$x(t+1) = Fx(t) + Gu(t), \ x(0) = 0$$

$$u(t) \in \mathbb{R}^m \longrightarrow \sum \qquad x(t) \in \mathbb{R}^n$$

$$x(t) = \sum_{k=0}^{t-1} F^{t-k-1} Gu(k) = \mathcal{R}_t u_t$$

$$\mathcal{R}_t = \begin{bmatrix} G & FG & \cdots & F^{t-1}G \end{bmatrix} \qquad u_t = \begin{bmatrix} u(t-1) \\ u(t-2) \\ \vdots \\ u(0) \end{bmatrix}$$
matrice di raggiungibilità in t passi

Giacomo Baggio IMC-TdS-1920: Lez. 13 & 14 November 11-12, 2019

Raggiungibilità di sistemi a tempo discreto: setup

$$x(t+1) = Fx(t) + Gu(t), x(0) = 0$$

$$u(t) \in \mathbb{R}^m \longrightarrow \sum \qquad x(t) \in \mathbb{R}^n$$

$$x(t) = \sum_{k=0}^{t-1} F^{t-k-1} Gu(k) = \mathcal{R}_t u_t$$

Insieme di stati \bar{x} raggiungibili al tempo t (= in t passi) a partire da x(0) = 0?

Quando possiamo raggiungere tutti i possibili stati $\bar{x} \in \mathbb{R}^n$?

Spazio raggiungibile

$$X_R(t) = \text{spazio raggiungibile in } t \text{ passi} = \text{Im}(\mathcal{R}_t)$$

Teorema: Gli spazi raggiungibili soddisfano:

$$X_R(1) \subseteq X_R(2) \subseteq X_R(3) \subseteq \cdots$$

Inoltre, esiste un primo intero $i \leq n$ tale che

$$X_R(i) = X_R(j), \forall j \geq i.$$

i = indice di raggiungibilità

 $X_R \triangleq X_R(i) = \text{(massimo) spazio raggiungibile}$

Criterio di raggiungibilità

Definizione: Un sistema Σ a t.d. si dice (completamente) raggiungibile se $X_R = \mathbb{R}^n$. Un sistema Σ a t.d. si dice (completamente) raggiungibile in t passi se $X_R(t) = \mathbb{R}^n$, con t indice di raggiungibilità.

$$\mathcal{R} \triangleq \mathcal{R}_n = \text{matrice di raggiungibilità del sistema}$$

$$\Sigma$$
 raggiungibile \iff $\mathsf{Im}(\mathcal{R}) = \mathbb{R}^n \iff \mathsf{rank}(\mathcal{R}) = n$

$$m = 1$$
: Σ raggiungibile \iff $\det(\mathcal{R}) = n$

$$m > 1$$
: Σ raggiungibile \iff $\det(\mathcal{R}\mathcal{R}^{\top}) = n$

Esempi

1.
$$x(t+1) = \begin{bmatrix} f_1 & 0 \\ 1 & f_2 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t), f_1, f_2 \in \mathbb{R} \implies \text{non raggiungibile}$$

2.
$$x(t+1) = \begin{bmatrix} f_1 & 0 \\ 1 & f_2 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t), f_1, f_2 \in \mathbb{R} \implies \text{raggiungibile (in 2 passi)}$$

3.
$$x(t+1) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} u(t) \implies \text{raggiungibile (in 2 passi)}$$

Giacomo Baggio

Raggiungibilità ed equivalenza algebrica

$$x(t+1) = Fx(t) + Gu(t) \xrightarrow{z=T^{-1}x} z(t+1) = \bar{F}z(t) + \bar{G}u(t)$$
$$\bar{F} = T^{-1}FT, \ \bar{G} = T^{-1}G$$
$$\bar{\mathcal{R}} = \begin{bmatrix} \bar{G} & \bar{F}\bar{G} & \cdots & \bar{F}^{n-1}\bar{G} \end{bmatrix} = T^{-1}\mathcal{R}$$

 $\operatorname{rank}(\bar{\mathcal{R}}) = \operatorname{rank}(\mathcal{R}) \implies \operatorname{cambio} \operatorname{di} \operatorname{base} \operatorname{non} \operatorname{modifica} \operatorname{la} \operatorname{raggiungibilità} !!$

Inoltre, se Σ raggiungibile: $\bar{\mathcal{R}}\mathcal{R}^{\top} = \mathcal{T}^{-1}\mathcal{R}\mathcal{R}^{\top} \implies \mathcal{T} = \mathcal{R}\mathcal{R}^{\top}(\bar{\mathcal{R}}\mathcal{R}^{\top})^{-1}$

Calcolo dell'ingresso di controllo

Se Σ è raggiungibile in t passi, come costruire un ingresso u_t per raggiungere un qualsiasi stato $\bar{x} \in \mathbb{R}^n$ in t passi?

Caso
$$x_0 = 0$$
: 1. $\bar{x} = x(t) = \mathcal{R}_t u_t$
2. $u_t = \mathcal{R}_t^{\top} \eta_t$, $\eta_t \in \mathbb{R}^{mt} \implies \eta_t = (\mathcal{R}_t \mathcal{R}_t^{\top})^{-1} \bar{x}$
3. $u_t = \mathcal{R}_t^{\top} (\mathcal{R}_t \mathcal{R}_t^{\top})^{-1} \bar{x}$
Caso $x_0 \neq 0$: $u_t = \mathcal{R}_t^{\top} (\mathcal{R}_t \mathcal{R}_t^{\top})^{-1} (\bar{x} - F^t x_0)$

Calcolo dell'ingresso di controllo: osservazioni

1. Ingresso u_t generalmente non unico! Insieme dei possibili ingressi:

$$\mathcal{U}_t = \{u'_t = u_t + \bar{u}, \ \bar{u} \in \ker(\mathcal{R}_t)\}.$$

2. Ingresso $u_t = \text{ingresso a minima energia}$:

$$u_t = \arg\min_{u_t' \in \mathcal{U}_t} \|u_t'\|^2$$

3. Gramiano di raggiungibilità del sistema in *t* passi:

$$\mathcal{W}_t = \mathcal{R}_t \mathcal{R}_t^ op = \sum_{k=0}^{t-1} A^{t-1} B B^ op (A^ op)^{t-1}.$$

Autovalori di W_t quantificano l'energia richiesta per controllare il sistema.

Esempi

$$\mathbf{1.} \ \ x(t+1) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} u(t)$$

ingressi u'(t) per raggiungere $\bar{x} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ da $x_0 = 0$ in 2 passi?

$$u'(0)=egin{bmatrix}1\\\alpha\end{bmatrix}$$
, $lpha\in\mathbb{R}$, $u'(1)=egin{bmatrix}1\\0\end{bmatrix}$. $u(0)=egin{bmatrix}1\\0\end{bmatrix}$, $u(1)=egin{bmatrix}1\\0\end{bmatrix}$ min. energia

Proprietà importante

Definizione: Data una matrice $F \in \mathbb{R}^{n \times n}$, uno spazio vettoriale W si dice Finvariante se

$$\forall v \in W \implies Fv \in W$$
.

Proprietà: Lo spazio raggiungibile X_R è F-invariante e contiene Im(G).

Forma canonica di Kalman

$$\Sigma$$
 non raggiungibile \implies rank $(\mathcal{R}) = k < n$

Obiettivo: costruire un cambio di base T in modo da "separare" la parte raggiungibile del sistema da quella non raggiungibile!

$$T = \begin{bmatrix} v_1 & \cdots & v_k & \tilde{v}_1 & \cdots & \tilde{v}_{n-k} \end{bmatrix}, \quad X_R = \operatorname{span} \{v_1, v_2, \dots, v_k\}$$

$$\forall v \in X_R, \quad w = Fv \in X_R \implies \underbrace{\begin{bmatrix} F_{11} & F_{12} \\ F_{21} & F_{22} \end{bmatrix}}_{T^{-1}FT} \underbrace{\begin{bmatrix} v_1 \\ 0 \end{bmatrix}}_{v} = \underbrace{\begin{bmatrix} w_1 \\ 0 \end{bmatrix}}_{w}, \quad \forall v_1 \implies F_{21} = 0$$

$$\operatorname{Im}(G) \subseteq X_R \implies \underbrace{\begin{bmatrix} G_1 \\ G_2 \end{bmatrix}}_{T^{-1}G}, \quad G_2 = 0$$

Forma canonica di Kalman

$$\begin{bmatrix} x_R \\ x_{NR} \end{bmatrix} \triangleq T^{-1}x, \quad F_K \triangleq T^{-1}FT = \begin{bmatrix} F_{11} & F_{12} \\ 0 & F_{22} \end{bmatrix}, \quad G_K \triangleq T^{-1}G = \begin{bmatrix} G_1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x_R(t+1) \\ x_{NR}(t+1) \end{bmatrix} = \begin{bmatrix} F_{11} & F_{12} \\ 0 & F_{22} \end{bmatrix} \begin{bmatrix} x_R(t) \\ x_{NR}(t) \end{bmatrix} + \begin{bmatrix} G_1 \\ 0 \end{bmatrix} u(t)$$

$$x_R(t+1) = F_{11}x_R(t) + F_{12}x_{NR}(t) + G_1u(t)$$
: sottosistema raggiungibile

$$x_{NR}(t+1) = F_{22}x_{NR}(t)$$
: sottosistema non raggiungibile

Forma canonica di Kalman

$$\begin{bmatrix} x_R \\ x_{NR} \end{bmatrix} \triangleq T^{-1}x, \quad F_K \triangleq T^{-1}FT = \begin{bmatrix} F_{11} & F_{12} \\ 0 & F_{22} \end{bmatrix}, \quad G_K \triangleq T^{-1}G = \begin{bmatrix} G_1 \\ 0 \end{bmatrix}$$
$$\mathcal{R}_K = T^{-1}\mathcal{R} = \begin{bmatrix} G_1 & F_{11}G_1 & \cdots & F_{11}^{n-1}G_1 \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$

$$\operatorname{rank}(\mathcal{R}_K) = \operatorname{rank}\left(\begin{bmatrix} G_1 & F_{11}G_1 & \cdots & F_{11}^{n-1}G_1 \end{bmatrix}\right) = k$$

Esempi

1.
$$F = \begin{bmatrix} 2 & 1 & \frac{1}{2} \\ 0 & 2 & 4 \\ \hline 0 & 0 & 1 \end{bmatrix}, G = \begin{bmatrix} 0 \\ 1 \\ \hline 0 \end{bmatrix} \implies$$

sistema in forma di Kalman con

$$F_{11} = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$$
, $G_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

2.
$$F = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ \hline 0 & 0 & 1 \end{bmatrix}$$
, $G = \begin{bmatrix} 1 \\ 1 \\ \hline 0 \end{bmatrix} \implies$ sistema **non** in forma di Kalman

Forma canonica di Kalman e matrice di trasferimento

$$F_{K} \triangleq T^{-1}FT = \begin{bmatrix} F_{11} & F_{12} \\ 0 & F_{22} \end{bmatrix}, \quad G_{K} \triangleq T^{-1}G = \begin{bmatrix} G_{1} \\ 0 \end{bmatrix}, \quad H_{K} \triangleq HT = \begin{bmatrix} H_{1} & H_{2} \end{bmatrix}$$

$$W(z) = H(zI - F)^{-1}G + J$$

$$= \begin{bmatrix} H_{1} & H_{2} \end{bmatrix} \begin{bmatrix} zI - F_{11} & -F_{12} \\ 0 & zI - F_{22} \end{bmatrix}^{-1} \begin{bmatrix} G_{1} \\ 0 \end{bmatrix} + J$$

$$= \begin{bmatrix} H_{1} & H_{2} \end{bmatrix} \begin{bmatrix} (zI - F_{11})^{-1} & \star \\ 0 & (zI - F_{22})^{-1} \end{bmatrix} \begin{bmatrix} G_{1} \\ 0 \end{bmatrix} + J$$

$$= H_{1}(zI - F_{11})^{-1}G_{1} + J$$

W(z) = matrice di trasferimento del sottosistema raggiungibile !!

Test di Popov, Belevitch e Hautus (PBH)

$$\Sigma: x(t+1) = Fx(t) + Gu(t)$$

Teorema: Il sistema Σ è raggiungibile se e solo se la matrice PBH di raggiungibilità

$$\begin{bmatrix} zI - F & G \end{bmatrix}$$

ha rango pieno per ogni $z \in \mathbb{C}$. Se il sistema non è raggiungibile, la matrice PBH di raggiungibilità ha rango non pieno per tutti e soli i valori di z che sono autovalori del sottosistema non raggiungibile di Σ .

N.B. La matrice PBH può essere valutata solo per gli z che sono autovalori di F!

Test di Jordan

$$\Sigma : z(t+1) = F_J z(t) + G_J u(t), \ z(0) = z_0$$

Corollario: Il sistema Σ (in forma di Jordan) è raggiungibile se e solo se per ciascun autovalore λ_i di F_j , le righe di G_J in posizione corrispondente alle ultime righe dei miniblocchi di Jordan relativi a λ_i sono linearmente indipendenti.

Esempi

1.
$$F = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
, $G = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$

$$\implies$$
 raggiungibile

2.
$$F = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, $G = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

3.
$$F = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$
, $G = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

⇒ non raggiungibile

Controllabilità di sistemi a tempo discreto: setup

$$x(t+1) = Fx(t) + Gu(t), x(0) = \bar{x}$$

$$u(t) \in \mathbb{R}^m \longrightarrow \sum \qquad x(t) \in \mathbb{R}^n$$

$$x_0 = x(t) = F^t x_0 + \sum_{k=0}^{t-1} F^{t-k-1} Gu(k) = F^t x_0 + \mathcal{R}_t u_t$$

Controllabilità di sistemi a tempo discreto: setup

$$x(t+1) = Fx(t) + Gu(t), x(0) = \bar{x}$$

$$u(t) \in \mathbb{R}^m \longrightarrow \sum \qquad x(t) \in \mathbb{R}^n$$

$$0 = x(t) = F^{t}x_{0} + \sum_{k=0}^{t-1} F^{t-k-1}Gu(k) = F^{t}x_{0} + \mathcal{R}_{t}u_{t}$$

Insieme di stati \bar{x} controllabili al tempo t (= in t passi) allo stato x(t) = 0?

Quando possiamo controllare a zero tutti i possibili stati $\bar{x} \in \mathbb{R}$?

Spazio controllabile

$$X_C(t) = \text{spazio controllabile in } t \text{ passi} = \{x \in \mathbb{R}^n : F^t x \in \text{Im}(\mathcal{R}_t)\}$$

Teorema: Gli spazi di controllabilità soddisfano:

$$X_C(1) \subseteq X_C(2) \subseteq X_C(3) \subseteq \cdots$$

Inoltre, esiste un primo intero $i \leq n$ tale che

$$X_C(i) = X_C(j), \forall j \geq i.$$

i = indice di controllabilità

$$X_C \triangleq X_C(i) =$$
(massimo) spazio controllabile

Criterio di controllabilità

Definizione: Un sistema Σ a t.d. si dice (completamente) controllabile se $X_C = \mathbb{R}^n$. Un sistema Σ a t.d. si dice (completamente) controllabile in t passi se $X_C(t) = \mathbb{R}^n$. con t indice di controllabilità.

$$\Sigma$$
 controllabile \iff $\mathsf{Im}(F^n) \subseteq \mathsf{Im}(\mathcal{R}_t) = X_R$

$$\Sigma$$
 raggiungibile $(X_R = \mathbb{R}^n) \Rightarrow \Sigma$ controllabile

 Σ controllabile $\Rightarrow \Sigma$ raggiungibile !!!

Esempi

1.
$$x(t+1) = \begin{bmatrix} f_1 & 0 \\ 1 & f_2 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t), f_1, f_2 \in \mathbb{R} \implies \text{non raggiungibile } \forall f_1, f_2 \text{ ma controllabile se } f_1 = 0$$

2.
$$x(t+1) = \begin{bmatrix} f_1 & 0 \\ 1 & f_2 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t), f_1, f_2 \in \mathbb{R} \implies \begin{array}{c} \text{raggiungibile e quindi} \\ \text{controllabile} \end{array}$$

3.
$$x(t+1) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(t)$$
 \implies non raggiungibile ma controllabile (in 2 passi)

Controllabilità e forma canonica di Kalman

$$\begin{bmatrix} x_R \\ x_{NR} \end{bmatrix} \triangleq T^{-1}x, \quad F_K \triangleq T^{-1}FT = \begin{bmatrix} F_{11} & F_{12} \\ 0 & F_{22} \end{bmatrix}, \quad G_K \triangleq T^{-1}G = \begin{bmatrix} G_1 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} x_R(t+1) \\ x_{NR}(t+1) \end{bmatrix} = \begin{bmatrix} F_{11} & F_{12} \\ 0 & F_{22} \end{bmatrix} \begin{bmatrix} x_R(t) \\ x_{NR}(t) \end{bmatrix} + \begin{bmatrix} G_1 \\ 0 \end{bmatrix} u(t)$$

$$x_{NR}(t) = F_{22}^t x_{NR}(0)$$

- 1. Σ controllabile $\iff \exists \bar{t} : F_{22}^{\bar{t}} = 0 \iff$ autovalori di F_{22} tutti nulli
- **2.** $X_R \subseteq X_C$ e $X_R = X_C$ se F_{22} invertibile
- **3.** Σ reversibile (F invertibile) $\implies F_{22}$ invertibile $\implies X_R = X_C$

Giacomo Baggio IMC-TdS-1920: Lez. 13 & 14

Test PBH di controllabilità

$$\Sigma: x(t+1) = Fx(t) + Gu(t)$$

Teorema: Il sistema Σ è controllabile se e solo se la matrice PBH di raggiungibilità

$$\begin{bmatrix} zI - F & G \end{bmatrix}$$

ha rango pieno per ogni $z \in \mathbb{C}$ con $z \neq 0$.

N.B. La matrice PBH può essere valutata solo per gli $z \neq 0$ che sono autovalori di F!