Теория вероятности

Храбров Александр Игоревич

24 марта 2023 г.

Содержание

1.	Эле	ментарная теория вероятностей	1
	1.1	Основные понятия	2
	1.2	Предельные теоремы для схем Бернулли	5
2.	Оби	цая теория вероятностей	9
	2.1	Колмогоровская модель теории вероятности	10
	2.2	Случайные величины	11
	2.3	Совместное распределение	14
	2.4	Математическое ожидание и дисперсия	16
	2.5	Сходимость последовательностей случайных величин	21
	2.6	Производящие функции	24
3.	. Метод характеристических функций		26
	3.1	Характеристические функции случайных величин	27

Глава #1

1. Элементарная теория вероятностей

1.1. Основные понятия

Определение 1.1. $\Omega = \{\omega_1, \dots, \omega_n\}$ – пространство элементарных событий (исходов).

- 1. равновозможные
- 2. несовместные
- 3. одно всегда реализуется

Определение 1.2. Событие $A \subset \Omega$

$$P(A) = \frac{\#A}{\#\Omega}$$

Свойства. вероятности

- 1. $P(\emptyset) = 0, P(\Omega) = 1, P(A) \in [0, 1]$
- 2. Если $A \cap B = \emptyset$, то $P(A \cup B) = P(A) + P(B)$

3.
$$\underbrace{P(A \cup B)}_{=P(A)+P(B\setminus (A\cap B))} = P(A) + P(B) - P(A\cap B)$$

- 4. $P(\overline{A}) = 1 P(A)$, где $\overline{A} = \Omega \setminus A$
- 5. $P(A_1 \cup A_2 \cdots \cup A_m) = \sum_{i=1}^m P(A_i) \sum_{i \neq j} P(A_i \cap A_j) + \sum_{i \neq j, \ i \neq k, \ j \neq k} P(A_i \cap A_j \cap A_k) \cdots + (-1)^{m-1} \cdot P(A_1 \cap \cdots \cap A_m)$ формула включений-исключений.

Доказательство. Индукция по m.

База m=2.

Переход $m \to m+1$:

$$B_i = A_i \cup A_{m+1}$$

$$P(\underbrace{A_1 \cup \dots \cup A_m}_{=:B} \cup A_{m+1}) = P(B \cup A_{m+1}) = \underbrace{P(B)}_{\text{это умеем расписывать по инд. предп.}} + P(A_{m+1}) - P(B \cap A_{m+1})$$

$$A_{m+1}) =$$

$$= \sum_{j=1}^{m+1} P(A_j) - sum_{i\neq j}^m P(A_i \cap A_j) + \sum_{i\neq j\neq k}^m P(A_i \cap A_j \cap A_k) - \underbrace{P(A_{m+1} \cap B)}_{=P(B_1 \cup B_2 \cdots \cup B_m)}, \text{ где } B_i :=$$

$$A_i \cap A_{m+1}$$
.

6. $P(A \cup B) \le P(A) + P(B)$

$$P(A_1 \cup \cdots \cup A_m) \le \sum_{j=1}^m P(A_j)$$

Определение 1.3. Условная вероятность.

$$B \neq \emptyset, P(B) > 0.$$

Знаем, что выполнилось событие B, хотим узнать вероятность наступления A.

$$P(A|B) = \frac{\#(A \cap B)}{\#B} = \frac{\frac{\#(A \cap B)}{\#\Omega}}{\frac{\#B}{\#\Omega}} = \frac{P(A \cap B)}{P(B)}$$

Свойства. 1. P(A|A) = 1, если $B \subset A$, то P(A|B) = 1

2. Если $A_1 \cap A_2 = \emptyset$, то $P(A_1 \cup A_2|B) = P(A_1|B) + P(A_2|B)$ В частности: $P(A|B) + P(\overline{A}|B) = 1$ Замечание. $P(A|B) + P(A|\overline{B})$ не обязана быть 1.

Пример: игральный кубик, B – выпало четное число, A – выпало кратное трем.

$$P(A|B) = \frac{1}{3}, \ P(A|\overline{B}) = \frac{1}{3}$$

Теорема 1.1. Формула полной вероятности.

Пусть
$$\Omega = \bigsqcup_{j=1}^m B_j, \ P(B_j) > 0.$$

Тогда
$$P(A) = \sum_{j=1}^{m} P(A|B_j) \cdot P(B_j)$$

Доказательство.
$$\sum_{j=1}^{m} \underbrace{P(A|B_{j})}_{P(B_{j})} \cdot P(B_{j}) = \sum_{j=1}^{m} P(A \cap B_{j}) = P(A \cap \bigsqcup_{j=1}^{m} B_{j}) = P(A)$$

Пример. І. 3 белых шара, 5 черных шаров

II. 5 белых, 5 черных

2 шара из I положили в II, затем вынули 1 шар из II, P(вынули белый) =?

A — вынули из II белый шар.

 $B_0,\ B_1,\ B_2,$ где B_j – переложили j белых шаров из I в II.

Тогда
$$P(A|B_0) = \frac{5}{12}, \ P(A|B_1) = \frac{1}{2}, \ P(A|B_2) = \frac{7}{12}.$$

$$P(B_0) = \frac{C_5^2}{C_8^2} = \frac{5}{14}$$

$$P(B_1) = \frac{15}{C_8^2} = \frac{15}{28}$$

$$P(B_2) = \frac{C_3^2}{C_8^2} = \frac{3}{28}$$

Подставляем в формулу:

$$P(A) = \frac{331}{336}$$

Теорема 1.2. Формула Байеса.

Пусть
$$P(A) > 0$$
, $P(B) > 0$, тогда $P(B|A) = \frac{P(A|B) \cdot P(B)}{P(A)}$

Доказательство. Расписываем P(A|B), получаем в правой части: $\frac{P(A\cap B)}{P(B)} \cdot P(B) \cdot \frac{1}{P(A)}$.

Теорема 1.3. Байеса.

Пусть
$$P(A) > 0, \ P(B_j) > 0, \ \Omega = \bigsqcup_{j=1}^m B_j,$$
 тогда

$$P(B_j|A) = \frac{P(A|B_j) \cdot P(B_j)}{P(A|B_1)P(B_1) + \dots + P(A|B_m)P(B_m)}$$

Пример. Есть 2 монеты (одна симметричная, вторая $P(\text{орла}) = \frac{1}{3}$, $P(\text{решка}) = \frac{2}{3}$). Взялу наугад монету, побросили и выпал орел. Какова вероятность, что мы взяли симметричную монету?

A – выпал орел, B – монета симметричная (\overline{B} – монета кривая).

$$P(B|A) = \frac{P(A|B)P(B)}{P(A|B)P(B) + P(A|\overline{B})P(\overline{B})} = \frac{\frac{1}{2} \cdot \frac{1}{2}}{\frac{1}{2} \cdot \frac{1}{2} + \frac{1}{3} \cdot \frac{1}{2}} = \frac{3}{5}$$

Определение 1.4. Независимые события.

Рассуждения: A не зависит от B, если $P(A) = P(A|B) = \frac{P(A \cap B)}{P(B)}$.

Опр. $A,\ B$ независимые события, если $P(A\cap B)=P(A)\cdot P(B)$

Определение 1.5. События A_1, A_2, \dots, A_m – независимы в совокупности, если

$$P(A_{i_1}\cap A_{i_2}\cap\cdots\cap A_{i_k})=P(A_{i_1})\cdot P(A_{i_2})\cdot\cdots\cdot P(A_{i_k})$$
 – для любых индексов i_j .

Замечание. Независимость в совокупности \implies попарная независимость.

Наоборот неверно.

Пример. Есть два игральных кубика.

A – на первом кубике выпало четное число.

B – на втором выпало четное число.

C – сумма на кубиках четная.

Пространство элементарных исходов это все пары (i, j), где $i, j \in \{1, 2, 3, 4, 5, 6\}, \#\Omega = 36$.

$$P(A) = \frac{1}{2}, \ P(B) = \frac{1}{2}, \ P(C) = \frac{1}{2}.$$

$$A \cap B = A \cap C = B \cap C = A \cap B \cap C.$$

 $P(A \cap B) = \frac{1}{4} = \frac{1}{2} \cdot \frac{1}{2} = P(A) \cdot P(B)$, остальные равенства тоже выполняются \implies попарная независимость.

$$P(A \cap B \cap C) = \frac{1}{4} \neq \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = P(A) \cdot P(B) \cdot P(C) \implies$$
 нет независимости в совокупности.

Упражнение. Д-ть, что $A_1, \dots A_m$ независимы в совокупности $\Leftrightarrow P(B_1 \cap B_2 \cap \dots \cap B_m) = P(B_1) \dots P(B_m)$, где $B_j = A_j$ или $\overline{A_j}$ (все 2^m равенств).

Замечание. Небольшое обобщение.

$$\Omega = \{\omega_1, \dots, \omega_n\}$$
 – пр-во элементарных исходов.

Также у нас есть
$$p_1, \dots p_n : \sum_{i=1}^n p_i = 1, \ \forall i : \ p_i \ge 0.$$

$$P(A) = \sum_{j: \ \omega_i \in A} p_j.$$

Теорема 1.4. Схема Бернулли.

$$open = ycnex = 1.$$

решка
$$=$$
 неудача $=$ 0.

$$P(\text{орел}) = p, \ 0$$

$$P(\text{решка}) = 1 - p$$

Бросаем монету n раз, получаем последовательность исходов:

$$\Omega = \{x_1, x_2, \dots, x_n\} : x_i = 0$$
 или 1.

$$\omega = (x_1, x_2, \dots, x_n), \ P(\{\omega\}) = p^{\#i: \ x_i = 1} \cdot q^{\#i: \ x_i = 0} = p^{\sum x_i} \cdot q^{n - \sum x_i}$$

Хотим узнать:

$$P$$
(выпало ровно k орлов) = $C_n^k p^k q^{n-k}$

P(i-ое подбрасывание = орел) – независимые в совокупности по i = 1, 2, ..., n.

Теорема 1.5. Полиномиальная схема.

$$p_1, p_2, \ldots, p_m : \sum p_i = 1.$$

$$P(x_i = k) = p_k$$
, где $x_i \in \{1, 2, \dots, m\}$

$$\Omega = \{(x_1, x_2, \dots, x_n)\}, \ \omega = (x_1, x_2, \dots, x_n)$$

$$P(\{\omega\}) = p_1^{\#\{i:x_i=1\}} \cdot \dots \cdot p_m^{\#\{i:x_i=m\}}$$

$$k_1 + k_2 + \dots + k_m = n$$

$$P(k_1 \text{ раз выпало } 1, k_2 \text{ раз выпало } 2, ...) = \underbrace{\binom{n}{k_1, k_2, \dots, k_m}}_{=\frac{n!}{k_1! - k_m!}} \cdot p_1^{k_1} \cdot \dots \cdot p_m^{k_m}$$

Теорема 1.6. Эрдёша-Мозера

Рассмотрим турнир на n команд. При каком наибольшем k можно всегда выбрать команды $A_1, A_2 \dots A_k$, так, что A_i выиграла у A_j , если i < j? При $k \le 1 + [2\log_2 n]$

Доказательство. Предположим, что $k \ge 2 + [2\log_2 n] > 1 + 2\log_2 n$. Хотим показать, что при таких k точно найдётся турнир, в котором нельзя выбрать k команд.

Рассмотрим случайный турнир(Всего встреч $\binom{n}{2}$, тогда $2^{\binom{n}{2}}$ разных турниров. Случайный - берём из этой кучи наугад).

P(A выиграла у $B) = \frac{1}{2}$.

Рассмотрим $A_1, A_2, \dots A_k$ команды.

- 1. $P(A_1, A_2 \dots A_k \text{ подходят}) = (\frac{1}{2})^{\binom{k}{2}}$.
- 2. $P(A_1, A_2 ... A_k$ можно переименовать, так, что они подошли) $\leq \frac{k!}{2\binom{k}{2}}$
- 3. P(какие-то k команд подошли $) \leqslant \binom{n}{k} \cdot \frac{k!}{2\binom{k}{2}}$

Нужно понять, что если $k \geqslant 2 + [2\log_2 n]$, то $\binom{n}{k} \frac{k!}{2\binom{k}{2}} < 1$.

Действительно,
$$\binom{n}{k} \frac{k!}{2\binom{k}{2}} = \frac{n(n-1)(n-2)\dots(n-k+1)}{2^{\frac{k(k-1)}{2}}} < \frac{n^k}{(2^{\frac{k-1}{2}})^k} = \left(\frac{n}{2^{\frac{k-1}{2}}}\right)^k$$

Мы знаем, что $k>1+2\log_2 n \Leftrightarrow \frac{k-1}{2}>\log_2 n \implies 2^{\frac{k-1}{2}}>n$. И тогда $\left(\frac{n}{2^{\frac{k-1}{2}}}\right)^k<1$. Это значит, что вероятность, что никакие команды не подходят - положительная, значит есть турнир, в котором k команд выбрать нельзя.

1.2. Предельные теоремы для схем Бернулли

Определение 1.6. Схема Бернулли с вероятностью успеха $p \in (0,1)$. S_n - число успехов при n испытаниях. $P(S_n = k) = \binom{n}{k} p^k q^{n-k}$

Что будет больше $P(S_{1000}=220)$ при $p=\frac{1}{5}$ или $P(S_{2000})=360$ при $p=\frac{1}{6}$. Точные вычисления дают 0.008984 и 0.006625 соответственно.

Теорема 1.7. Пуассона

Схема Бернулли с n испытаниями и вероятностью успеха p_n - зависит от n. Если $np_n \to \lambda > 0$. Тогда $P(S_n = k) \to \frac{\lambda^k}{k!} e^{-\lambda}$

Замечание. Если $np_n=\lambda,$ то теорема верна при $k=o(\sqrt{n})$

Доказательство.
$$P(S_n = k) = \binom{n}{k} p^k (1-p)^{n-k} = \frac{n(n-1)\dots(n-k+1)}{k!} p^k (1-p)^{n-k} \sim \frac{n^k}{k!} p^k (1-p)^{n-k} = \frac{(np)^k}{k!} (1-p)^{n-k} \sim \frac{\lambda^k}{k!} (1-p)^{n-k}.$$

Осталось показать, что $(1-p)^{n-k} \sim e^{-\lambda}$. Прологарифмируем: $\ln(1-p)^{n-k} = (n-k)\ln(1-p) \sim -np \sim -\lambda$

Доказательство замечания:

Нам нужно показать, что $n(n-1)\dots(n-k+1)\sim n^k$, все остальные переходы будут верны. $\frac{n(n-1)\dots(n-k+1)}{n^k}=1\cdot(1-\frac{1}{n})\dots\cdot(1-\frac{k-1}{n})\underbrace{\geqslant}_{(*)}1-\frac{1}{n}-\dots-\frac{k-1}{n}=1-\frac{k(k-1)}{2n}\to 1$

(*) Неравенство
$$(1-x_1)\dots(1-x_k)\geqslant 1-x_1-x_2-\dots-x_k$$
 при $0\leqslant x_i\leqslant 1$ - индукция.

Теорема 1.8. Прохорова

Если
$$\lambda = np$$
, то $\sum_{i=0}^{+\infty} |P(S_n = k) - \frac{\lambda^k}{k!} e^{-\lambda}| \leqslant \frac{2\lambda}{n} \cdot \min(2, \lambda)$

Пример. Игра в рулетку: 36 чисел и ноль.

$$p = \frac{1}{37}, n = 111, np = 3 = \lambda.$$

$$P(S_{111} = 3) = {111 \choose 3} (\frac{1}{37})^3 (1 - \frac{1}{37})^{111-3} = 0.227127$$

Из Пуассона
$$\frac{\lambda^3}{3!}e^{-\lambda} = 0.224$$

Видим, что приближение хорошее.

$$P(\text{выигрыш}) = 1 - P(S_{111} = 0) - P(S_{111} = 1) - P(S_{111} = 2) - P(S_{111} = 3) = 1 - \frac{\lambda^0}{0!}e^{-\lambda} - \frac{\lambda^1}{1!}e^{-\lambda} - \frac{\lambda^2}{2!}e^{-\lambda} - \frac{\lambda^3}{3!}e^{-\lambda} = 0.352754$$

А по формулам 0.352768

Теорема 1.9. Локальная предельная теорема Муавра-Лапласа

Схема Бернулии с вероятностью успеха $p \in (0,1), \ q=1-p, \ x=\frac{k-np}{\sqrt{npq}}.$

$$P(S_n = k) \sim_{n \to +\infty} \frac{1}{\sqrt{2\pi npq}} e^{\frac{-x^2}{2}}$$

Если $|x| \leq T$, то есть равномерность.

Доказательство.

1.
$$k = np + x\sqrt{npq} \geqslant np - T\sqrt{npq} \rightarrow +\infty$$

2.
$$n-k = nq - x\sqrt{npq} \geqslant nq - T\sqrt{npq} \rightarrow +\infty$$

$$P(S_n = k) = \binom{n}{k} p^k q^{n-k} = \frac{n!}{k!(n-k)!} p^k q^{n-k}$$
. Напишем формулу Стирлинга:

$$\frac{\frac{n^n e^{-n} \sqrt{2\pi n} p^k q^{n-k}}{k^k e^{-k} \sqrt{2\pi n} (n-k)^{n-k} e^{-(n-k)} \sqrt{2\pi (n-k)}}}{\frac{(\frac{k}{n})^k \cdot (\frac{n-k}{n})^{n-k} \cdot \sqrt{2\pi \frac{k}{n} (1-\frac{k}{n}) n}}} \cdot 3$$
аметим, что $\frac{k}{n} = p + \frac{x \sqrt{pq}}{\sqrt{n}} \to p$ и $\frac{n-k}{n} \to q$

Поэтому остаётся доказать, что $\frac{(\frac{k}{n})^k \cdot (\frac{n-k}{n})^{n-k}}{p^k q^{n-k}} \to e^{\frac{x^2}{2}}$. Прологарифмируем:

Получим:
$$k \ln \frac{k}{n} + (n-k) \ln \frac{n-k}{n} - k \ln p - (n-k) \ln q \to \frac{x^2}{2}$$

Введём обозначения: $\alpha = \frac{k}{n} \to p, \beta = \frac{n-k}{n} \to q$. Тогда $k = n\alpha, n-k = n\beta$ и всё перепишется в виде:

$$n\alpha \ln \alpha + n\beta \ln \beta - n\alpha \ln p - n\beta \ln q = \underbrace{n\alpha \ln \frac{\alpha}{p} + n\beta \ln \frac{\beta}{q}}_{(*)} \rightarrow \frac{x^2}{2}$$

Мы знаем, что $\frac{\alpha}{p}=1+x\sqrt{\frac{q}{np}}$ и $\frac{\beta}{q}=1-x\sqrt{\frac{p}{nq}}$ - из первых двух тождеств в доказательстве.

Напишем Тейлора:

$$\ln \frac{\alpha}{p} = \ln(1 + x\sqrt{\frac{q}{np}}) = x\sqrt{\frac{q}{np}} - \frac{1}{2}x^2\frac{q}{np} + o(\frac{1}{n})$$

$$\ln \frac{\beta}{q} = \ln(1 - x\sqrt{\frac{p}{nq}}) = -x\sqrt{\frac{p}{nq}} - \frac{1}{2}x^2 \frac{p}{nq} + o(\frac{1}{n})$$

Тогда
$$(*) = x\sqrt{pq}\sqrt{n} + x^2q - \frac{1}{2}x^2q + o(\frac{1}{n}) - x\sqrt{pq}\sqrt{n} + x^2p - \frac{1}{2}x^2p + o(\frac{1}{n}) = x^2(\frac{q}{2} + \frac{p}{2}) + o(1) = \frac{x^2}{2} + o(1)$$

Замечание. Если $\varphi(n)=o(n^{\frac{2}{3}})$ и $|k-np|\leqslant \varphi(n)$, то теорема тоже верна

Пример. Всё та же рулетка. n=222, k=111. Пытаемся ставить на четное/нечётное(кроме 0). $p=\frac{18}{37}$

$$P(S_{222} = 111) \approx \frac{1}{\sqrt{2\pi n p q}} e^{\frac{-x^2}{2}} \approx 0.049395...$$

Если считать точно, то получим 0.0493228...

Теорема 1.10. Интегральная теорема Муавра-Лапласа

$$0 . $P(a < \frac{S_n - np}{\sqrt{npq}} \le b) \to_{n \to \infty} \frac{1}{\sqrt{2\pi}} \int_a^b e^{-\frac{t^2}{2}} dt$$$

Стремление равномерно по $a, b \in \mathbb{R}$.

Теорема 1.11. Берри-Эссеена

Обозначение:
$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$$

$$\left| P(\frac{S_n - np}{\sqrt{npq}} \leqslant x) - \Phi(x) \right| \leqslant \frac{p^2 + q^2}{\sqrt{npq}} \cdot \frac{1}{2}$$

Замечание. Константа лучше, чем $\frac{c}{\sqrt{n}}$ не бывает.

Замечание.
$$P(a < S_n \leqslant b) = P(\frac{a-np}{\sqrt{npq}} < \frac{S_n-np}{\sqrt{npq}} \leqslant \frac{b-np}{\sqrt{npq}}) \to \Phi(\frac{b-np}{\sqrt{npq}}) - \Phi(\frac{a-np}{\sqrt{npq}})$$

Отсюда получили, что лучше всего писать полуцелые a и b.

Замечание. Если p или q очень маленькие, то произведение np маленькое и оценка будет плохой. В таких случаях хорошо использовать Пуассона. Муавра-Лаплас же хорош, когда np большое.

Пример.
$$p=q=\frac{1}{2}$$
. Вопрос: $P(S_{2n}=n)=\binom{2n}{n}\frac{1}{2^{2n}}\sim \frac{4^n}{\sqrt{\pi n}}\frac{1}{4^n}=\frac{1}{\sqrt{\pi n}}$.

Ho
$$P(S_{2n} < n) = P(S_{2n} > n)$$
.

Тогда
$$P(S_{2n} \leqslant n) = \frac{1+P(S_{2n}=n)}{2} = \frac{1}{2} + \frac{1}{2\sqrt{\pi n}} + o(\frac{1}{\sqrt{n}})$$

Муавра-Лаплас нам говорит, что $P(S_{2n} \leq n) \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{0} e^{-\frac{t^2}{2}} dt = \frac{1}{2}$

Ho
$$P(S_{2n} \leq n) = \frac{1}{2} + \frac{1}{2\sqrt{\pi n}} + o(\frac{1}{\sqrt{n}})$$

Пример. Задача о театре

Есть театр и 2 входа. У каждого входа расположен гардероб. В театре n=1600 мест. Хотим сделать размер гардероба как можно меньше, но чтобы переполнения случались как можно реже.

Пусть c мест в итоге в гардеробе.

$$p=q=\frac{1}{2}$$
. Нужно, чтобы $n-c\leqslant S_n\leqslant c$.

$$P(n-c \leqslant S_n \leqslant c) = P(\frac{n-c-\frac{n}{2}}{\sqrt{n\cdot\frac{1}{4}}}) \leqslant \frac{S_n-\frac{n}{2}}{\sqrt{n\cdot\frac{1}{4}}} \leqslant \frac{c-\frac{n}{2}}{\sqrt{n\cdot\frac{1}{4}}} = P(\frac{800-c}{20}) \leqslant \frac{S_n-800}{20} \leqslant \frac{c-800}{20} \to \Phi(\frac{800-c}{20}) - \Phi(\frac{800-c}{20}) = \frac{1}{20} \int_{-\infty}^{\infty} \frac{c-800}{20} e^{-\frac{t^2}{20}} dt > \frac{29}{20}$$

$$\Phi\left(\frac{c-800}{20}\right) = \frac{1}{\sqrt{2\pi}} \int_{\frac{800-c}{20}}^{\frac{c-800}{20}} e^{-\frac{t^2}{2}} dt > \frac{29}{30}$$

$$\Phi_0(\frac{c-800}{20}) > \frac{29}{60}$$
. Тогда $c=843$.

Пример. Случайное блуждание на прямой

Есть прямая, будем считать, что у нас блуждания исключительно по целым точкам.

В каждой точке подбрасываем монетку. С вероятностью p идём вперёд, q - идём назад.

$$a_{n+1} = a_n + 1$$
 с вероятностью p

$$a_{n+1} = a_n - 1$$
 с вероятностью q

$$a_n \equiv n \mod 2$$

Это почти похоже на схему Бернулли: $2S_n - n = a_n$

$$P(a_n=k)=P(S_n=rac{n+k}{2})=egin{cases} 0,\ ext{ecли}\ n
ot\equiv k\mod 2 \ \left(rac{n+k}{2}
ight)p^{rac{n+k}{2}}q^{rac{n-k}{2}},\ ext{иначе} \end{cases}$$

Теорема 1.12. ван дер Вардена

Рассмотрим числа $1, 2 \dots k$ и покрасим их в 2 цвета.

Тогда существует k_n , такое, что, если $k > k_n$, то при любой раскраске найдётся одноцветная n-членная арифметическая прогрессия.

Теорема 1.13. Эрдеша-Радо

$$k_{n+1} \geqslant \sqrt{n \cdot 2^{n+1}}$$

Доказательство. $A_1, A_2 \dots A_m$ - все арифметические прогрессии длины n+1 из чисел $1, 2 \dots k$.

С разностью 1: k-n прогрессий.

 ${\bf C}$ разностью 2:k-2n прогрессий.

. . .

С разностью $\left[\frac{k}{n}\right]: k-\left[\frac{k}{n}\right]\cdot n$ прогрессий

Тогда $m=(k-n)+(k-2n)+\ldots+k-\left[\frac{k}{n}\right]\cdot n=k\cdot \left[\frac{k}{n}\right]-n\cdot \frac{\left[\frac{k}{n}\right]\cdot \left(\left[\frac{k}{n}\right]+1\right)}{2}=\left[\frac{k}{n}\right](k-\frac{1}{2}n(\left[\frac{k}{n}\right]+1))<\frac{k}{n}(k-\frac{1}{2}\cdot n\cdot \frac{k}{n})=\frac{k^2}{2n}$ - это оценка сверху.

 $P(A_i$ - одноцветная) = $2 \cdot \frac{1}{2^{n+1}} = \frac{1}{2^n}$ (2 - выбор цвета).

P(какое-то A_i - одноцветно $)=\sum_{i=1}^m P(A_i$ - одноцветно $)=\frac{m}{2^n}<\frac{k^2}{2n}\cdot\frac{1}{2^n}=(\frac{k}{\sqrt{2^{n+1}\cdot n}})^2\leqslant 1$ (если так, то найдётся, на которой не выполнится)

2. Общая теория вероятностей

2.1. Колмогоровская модель теории вероятности

Определение 2.1. (Ω, \mathcal{F}, P) - вероятностное пространство.

 Ω - множество или пространство элементарных исходов.

 ${\cal F}$ - σ -алгебра подмножеств Ω . Элементы ${\cal F}$ - случайный события.

P - мера на \mathcal{F} с условием $P(\Omega) = 1$.

Замечание. Если Ω не более чем счётно, то можно взять $\mathcal{F}=2^{\Omega}$

Определение 2.2. Условная вероятность. A - событие, такое, что P(A) > 0. Тогда $P(B|A) = \frac{P(B \cap A)}{P(A)}$, где $A, B \in \mathcal{F}$.

Определение 2.3. Независимые события A и B. Если $P(A \cap B) = P(A) \cdot P(B)$

Определение 2.4. Независимость в совокупности $A_1, A_2 \dots A_n$. $P(A_{i_1} \cap \dots \cap A_{i_k}) = P(A_{i_1}) \cdot \dots \cdot P(A_{i_k})$ для всевозможных наборов индексов.

Определение 2.5. Последовательность событий $A_1, A_2 \dots$ независимы - любой конечный набор событий независим в совокупности.

Лемма. Бореля-Кантелли

 A_1, A_2, \ldots случайные события.

- 1. Если $\sum_{n=1}^{\infty} P(A_n) < +\infty$, то вероятность, что случилось бесконечное число из них равна 0.
- 2. Если A_1,A_2,\ldots независимы и $\sum_{n=1}^{\infty}P(A_n)=+\infty$, тогда P(случилось бесконечное число из $A_n)=1$.

Доказательство. $B = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$ - это переформулировка события из условия в терминах множеств

 $\omega \in B \Longleftrightarrow \omega \in \bigcup_{k=n}^{\infty} A_k \ \forall n \Longleftrightarrow w \in A_k$ для бесконечного количества индексов k.

Док-во этого факта:

- 1. \Leftarrow : Лежит в каждом объединении, значит лежит в B.
- 2. \Rightarrow : ω лежит в пересечении. Пусть лежит в конечном возьмём самый большой номер и получим противоречие.

Док-во теоремы:

1. Хотим доказать, что P(B) = 0 $B \subset \bigcup_{k=n}^{\infty} A_k \Rightarrow P(B) \leqslant P(\bigcup_{k=n}^{\infty} A_k) \leqslant \sum_{k=n}^{\infty} P(A_k)$ - это хвост сходящегося ряда, а он стремится к нулю.

2. Давайте смотреть на $\bar{A}_1, \bar{A}_2, \ldots$ - независимые события.

$$P(\bigcap_{k=1}^{n} \bar{A_k})$$
 $\stackrel{\text{независимость}}{=} \prod_{k=1}^{n} P(\bar{A_k}) \rightarrow_{n \to \infty} \prod_{k=1}^{\infty} P(\bar{A_k}) = \prod_{k=1}^{\infty} (1 - P(A_k))$ А ещё $P(\bigcap_{k=1}^{n} \bar{A_k}) \rightarrow P(\bigcap_{k=1}^{\infty} \bar{A_k})$ так как множества вложены в друг ди

А ещё $P(\bigcap_{k=1}^n \bar{A}_k) \to P(\bigcap_{k=1}^\infty \bar{A}_k)$, так как множества вложены в друг друга и есть монотонность меры.

Значит
$$P(\bigcap_{k=n}^{\infty} \bar{A}_k) = \prod_{k=n}^{\infty} (1 - P(A_k)) \stackrel{\text{логарифмируем}}{\Longleftrightarrow} \ln P(\bigcap_{k=n}^{\infty} \bar{A}_k) =$$

= $\sum_{k=n}^{\infty} \ln(1 - P(A_k)) \stackrel{\ln(1-t) \leqslant -t}{\leqslant} \sum_{k=n}^{\infty} (-P(A_k)) = -\infty$ - хвост расходящегося ряда.

А значит мы логарифмировали $0 \Rightarrow P(\bigcap_{k=n}^{\infty} \bar{A}_k) = 0 \Rightarrow P(\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} \bar{A}_k) = 0 \Rightarrow P(\bar{B}) = 0 \stackrel{(*)}{\Rightarrow} P(B) = 1$

$$(*)$$
 $\overline{\bigcup_{n=1}^{\infty}\bigcap_{k=n}^{\infty}\bar{A}_k} = \bigcap_{n=1}^{\infty}\bigcup_{k=n}^{\infty}A_k = B$

Теорема 2.1. Закон нуля и единицы

Если $A_1, A_2 \dots$ независимы, то P(B) = 0 или P(B) = 1.

Пример. Испытания Бернулли, успех с вероятностью p,

 $P(OPO \ встречается бесконечное число раз) = ?.$

 $A_n =$ случилось OPO на позициях n, n+1, n+2.

Тогда A_1, A_4, A_7, \dots независимы. $P(A_i) = pqp = p^2q > 0$.

Лемма Бореля-Кантелли говорит: бесконечное кол-во A_{3k+1} случится, если $\sum_{k=1}^{\infty} P(A_{3k+1}) = +\infty \implies P(\text{OPO встречается бесконечное число раз}) = 1.$

2.2. Случайные величины

Определение 2.6. (Ω, \mathcal{F}, P) - вероятностное пространство.

 $\xi:\Omega\to\mathbb{R}$ - случайная величина, если это измеримая функция.

Определение 2.7. Распределение случайное величины

 P_{ξ} - вероятностная мера на борелевских подмножествах $\mathbb R$

A – борелевское мн-во, $P_{\xi}(A) = P(\omega \in \Omega : \xi(\omega) \in A)$

Определение 2.8. Случаный величины ξ и η одинаково распределены, если $P_{\xi} = P_{\eta}$

Замечание. P_{ξ} однозначно определяются своими значениями на ячейках.

$$P_{\xi}(a,b] = P_{\xi}(-\infty,b] - P_{\xi}(-\infty,a] = P(\xi \leqslant b) - P(\xi \leqslant a)$$

Определение 2.9. Функция распределения случайной величины

$$F_{\xi}(x) = P(\xi \leqslant x)$$

Свойства. 1. Функция распределения однозначно определяет распределение случайной величины.

Доказательство. Функция распределения однозначно задаёт значения на ячейках

- 2. $0 \leqslant F_{\varepsilon}(x) \leqslant 1 \,\forall x \in \mathbb{R}$
- 3. $\lim_{x \to -\infty} F_{\xi}(x) = 0$

$$\lim_{x \to +\infty} F_{\xi}(x) = 1$$

Доказательство. берём
$$x_n \to -\infty, A_n = \{\xi \leqslant x_n\}$$
 Тогда $A_{n+1} \subset A_n$. Тогда $\lim_{n \to \infty} P(A_n) = P(\bigcap_{n=1}^{\infty} A_n) = P(\varnothing) = 0$

- 4. F_{ξ} монотонно возрастает
- 5. Непрерывность справа: $\lim_{y\to x+} F_{\xi}(y) = F_{\xi}(x)$

Доказательство. берём y_n убывающие и $y_n \to x$. Тогда $A_n = \{\xi \leqslant y_n\}$. $A_{n+1} \subset A_n$. А тогда $\lim P(A_n) = P(\bigcap_{n=1}^{\infty} A_n) = P(\xi \leqslant x) = F_{\xi}(x)$. Но с другой стороны $\lim P(A_n) = \lim P(\xi \leqslant y_n) = \lim F_{\xi}(y_n)$

6. $\lim_{y \to x^{-}} F_{\xi}(y) = P(\xi < x)$

Доказательство. берём y_n возрастающие и $y_n \to x$. $B_n = \{\xi \leqslant y_n\}$ и $B_n \subset B_{n+1}$. $\lim P(B_n) = P(\bigcup B_n) = P(\xi < x)$. Но с другой стороны $\lim P(B_n) = \lim F_{\xi}(y_n)$

7. $F_{\xi+a}(x) = F_{\xi}(x-a)$

Доказательство.
$$\{\xi + a \leqslant x\} = \{\xi \leqslant x - a\}$$

8. $F_{c\xi} = F_{\xi}(\frac{x}{c})$

Доказательство.
$$\{c\xi \leqslant x\} = \{\xi \leqslant \frac{x}{c}\}$$

Замечание. Фукнция, обладающая свойствами 3, 4, 5 - это фукнция распределения некоторой случайной величины.

Доказательство. пусть g - такая функция. Тогда $\nu_g(a,b] = g(b) - g(a)$. $\Omega = \mathbb{R}$, \mathcal{F} - измеримо по Лебегу, случайная величина $\xi(w) = w$. Тогда $F_{\xi} = g$

Определение **2.10.** Случайная величина имеет дискретное распределение, если её множество значений не более чем счётное.

Замечание. 1. $\xi \to \{y_1, y_2, \ldots\}$

Если
$$x \neq y_k$$
, то $P(\xi = x) = 0$, т.е. $P_{\xi}(\{x\}) = 0$

2. $P_{\xi}(A) = \sum_{k:y_k \in A} P(\xi = y_k)$. Тут счётное число слагаемых, поэтому сумма корректно определена.

Распределение однозначно определяется набором вероятностей $P(\xi=y_k)$

3. $F_{\xi}(x) = \sum_{k:y_k \leq x} P(\xi = y_k)$

Определение 2.11. Случайная величина имеет непрерывное распределение, если $P(\xi = x) = 0$

Замечание. 1. Это значит, что фукнция распределения непрерывна.

2. Непрерывные распределения бывают не очень хорошими, например Канторова лестница.

Определение 2.12. Случайная величина имеет абсолютно непрерывное распределение, если существует $p_{\xi}(t) \ge 0$, измеримая, т.ч. $F_{\xi}(x) = \int_{-\infty}^{x} p_{\xi}(t) dt \ (p_{\xi}(t) - \text{плотность распределения}).$

 $m{Ceoйcmea.}$ 1. $A\subset \mathbb{R}$ – борелевское, то $P_{\xi}(A)=\int_{A}p_{\xi}(t)\,dt$

Доказательство. слева мера и справа написаны меры. На лучах они совпадают по определению, значит совпадают на ячейках, а значит и совпадают везде

$$P_{\xi}(a,b] = F_{\xi}(b) - F_{\xi}(a) = \int_{a}^{b} p_{\xi}(t) dt$$

2.
$$\int_{-\infty}^{+\infty} p_{\xi}(t) dt = 1$$

- 3. p_{ξ} определена однозначно с точностью до почти везде (из теории меры)
- 4. F_{ξ} почти везде диффиренцируема и $F'_{\xi}(x) = p_{\xi}(x)$

Доказательство. без доказательства

Пример. Вероятностные распределения

1. Биномиальное распределение: $\xi \sim Binom(p, n), 0$

$$\xi: \Omega \to \{0, 1, \dots n\}. \ P(\xi = k) \binom{n}{k} p^k (1-p)^{n-k}$$

2. Распределение Пуассона: $\xi \sim Poisson(\lambda), \lambda > 0$.

$$\xi: \Omega \to \{0, 1, \ldots\}. \ P(\xi = k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

3. Геометрическое распределение: $\xi \sim Geom(p), 0$

$$\xi: \Omega \to \{1, 2, \ldots\}. \ P(\xi = k) = p(1-p)^{k-1}.$$

4. Дискретные равномерные распределения: $\xi \sim U(...)$

$$\xi: \Omega \to \{1, 2, \dots n\}. \ P(\xi = k) = \frac{1}{n}$$

5. Непрерывно равномерное распределение: $\xi \sim U([a,b])$

$$\xi: \Omega \to [a, b]. \ p_{\xi}(t) = \frac{1}{b-a} \cdot \mathbb{1}_{[a,b]}(t)$$

6. Нормальное распределение: $\xi \sim \mathcal{N}(a, \sigma^2), a \in \mathbb{R}, \sigma > 0$

$$\xi: \Omega \to \mathbb{R}. \ p_{\xi}(t) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(t-a)^2}{2\sigma^2}}$$

Стандартное нормальное распределение: $\mathcal{N}(0,1)$

7. Экспонециальное распределение: $\xi \sim Exp(\lambda), \lambda > 0$.

$$\xi:\Omega \to [0,+\infty].$$
 $p_\xi(t)= egin{cases} \lambda e^{-\lambda t}, \ \text{при } t\geqslant 0 \\ 0, \ \text{в других точках} \end{cases}$

Замечание. 1.
$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$$
.

На самом деле это функция распределения стандартной нормальной случайной величины.

2. Если $\nu \sim \mathcal{N}(0,1)$, то $\xi = \sigma \nu + a$. $\xi \sim \mathcal{N}(a,\sigma^2)$

$$F_{\xi}(x) = P(\sigma \nu + a \leqslant x) = P(\nu \leqslant \frac{x-a}{\sigma}) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\frac{x-a}{\sigma}} e^{-\frac{t^2}{2}} dt$$

Замена $t = \frac{s-a}{\sigma}$. Тогда $dt = \frac{ds}{\sigma}$

Тогда:
$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\frac{x-a}{\sigma}} e^{-\frac{t^2}{2}} dt = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{x} e^{-\frac{(s-a)^2}{2\sigma^2}} ds$$

2.3. Совместное распределение

Определение 2.13. Совместное (многомерное) распределение.

$$\bar{\xi} = (\xi_1, \xi_2, \dots, \xi_n) : \Omega \to \mathbb{R}^n$$

$$P_{ar{\xi}}(A) = P(ar{\xi} \in A),$$
 где A - борелевское подмножество \mathbb{R}^n

Замечание. $P_{\overline{\xi}}$ однозначно определяет распределение P_{ξ_k} , но не наоборот

Пример. $\xi, \eta : \Omega \to \{0, 1\}$ с равными вероятностями.

Если это были независимые подбрасывания: $(\xi, \eta): \Omega \to \{(0,0), (0,1), (1,0), (1,1)\}$ с равными вероятностями.

Если
$$\xi = \eta$$
, то $(\xi, \eta) : \Omega \to \{(0, 0), (1, 1)\}.$

То есть получили 2 разных совместных распределения, при это координатное распределение только одно

Определение 2.14. Случайные величины $\xi_1, \xi_2 \dots \xi_n$ независимы, если для любых борелевских подмножеств $A_1, A_2 \dots A_n \subset \mathbb{R}$, события $\{\xi_1 \in A_1\}, \dots, \{\xi_n \in A_n\}$ независимы

Замечание.
$$P(\xi_1 \in A_1, \dots, \xi_n \in A_n) = P(\xi_1 \in A_1) \cdot \dots \cdot P(\xi_n \in A_n)$$

Теорема 2.2. $\xi_1, \xi_2 \dots \xi_n$ независимы $\iff P_{\bar{\xi}} = P_{\xi_1} \times \dots \times P_{\xi_n}$

Доказательство. 1.
$$\Leftarrow P(\xi_1 \in A_1, \dots, \xi_n \in A_n) = P_{\xi_1, \dots, \xi_n}(A_1 \times \dots \times A_n) = P_{\xi_1}(A_1) \cdot \dots \cdot P_{\xi_n}(A_n)$$

2. \Rightarrow . Достаточно проверить совпадение на ячейках, то есть, что $P(\bar{\xi} \in (a,b]) = P_{\xi_1}(a_1,b_1] \cdot \ldots \cdot P_{\xi_n}(a_n,b_n]$. А это просто определение независимости.

Определение 2.15. Совместная (многомерная) функция распределения.

$$\bar{\xi}=(\xi_1\dots\xi_n).\ F_{\bar{\xi}}:\mathbb{R}^n o\mathbb{R}.$$
 и $F_{\bar{\xi}}(\bar{x})=P(\xi_1\leqslant x_1,\dots,\xi_n\leqslant x_n)$

Cooucmea. 1. $0 \leqslant F_{\bar{\xi}} \leqslant 1$

- 2. Монотонно возрастает по каждой координате
- 3. $\lim_{x_i \to -\infty} F_{\bar{\xi}}(\bar{x}) = 0$ $\lim_{x_1, \dots, x_n \to +\infty} F_{\bar{\xi}}(\bar{x}) = 1$

4.
$$\lim_{x_i \to +\infty} F_{\bar{\xi}}(\bar{x}) = F_{\xi_1,\dots,\xi_{i-1},\xi_{i+1},\dots}$$

Определение 2.16. Совместная плотность $p_{\bar{\xi}}(\bar{t})$ - неотрицательная измеримая функция, такая, что $F_{\bar{\xi}}(\bar{\xi}) = \int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_n} p_{\bar{\xi}}(\bar{t}) \, dt_n \dots dt_1$

Теорема 2.3.
$$\xi_1 \dots \xi_n$$
 независимы $\iff F_{\bar{\xi}}(\bar{x}) = F_{\xi_1}(x_1) \cdot \dots \cdot F_{\xi_n}(x_n)$

Доказательство. 1. Докажем
$$\Rightarrow$$
. Независимость \Rightarrow $(*)P_{\bar{\xi}} = P_{\xi_1} \times \ldots \times P_{\xi_n} \Rightarrow P_{\bar{\xi}}((-\infty, x_1] \times \ldots \times (-\infty, x_n]) = P_{\xi_1}(-\infty, x_1] \cdot \ldots \cdot P_{\xi_n}(-\infty, x_n]$

2. Хотим проверить совпадение на ячейках, чтобы доказать (*) ещё и в другую сторону.

$$P_{\bar{\xi}}((a_1, b_1] \times (a_2, b_2]) = F_{\bar{\xi}}(b_1, b_2) + F_{\bar{\xi}}(a_1, a_2) - F_{\bar{\xi}}(a_1, b_2) - F_{\bar{\xi}}(a_2, b_1) = (F_{\xi_1}(b_1) - F_{\xi_1}(a_1)) \cdot (F_{\xi_2}(b_2) - F_{\xi_2}(a_2)) = P_{\xi_1}(a_1, b_1] \cdot P_{\xi_2}(a_2, b_2]$$

Следствие. $\xi_1 \dots \xi_n$ - абсолютно непрерывные случайные величины. Тогда $\xi_1 \dots \xi_n$ независимы $\iff p_{\bar{\xi}}(\bar{t}) = p_{\xi_1}(t_1) \cdot \dots \cdot p_{\xi_n}(t_n)$

В частности, в случае независимости $\bar{\xi}$ абсолютно непрерывна.

Доказательство. 1. Докажем \Rightarrow .

Независимость $\Rightarrow F_{\bar{\xi}}(\bar{x}) = F_{\xi_1}(x_1) \cdot \ldots \cdot F_{\xi_n}(x_n) = \int_{-\infty}^{x_1} p_{\xi_1}(t_1) dt_1 \cdot \ldots \cdot \int_{-\infty}^{x_n} p_{\xi_n}(t_n) dt_n = \int_{-\infty}^{x_1} \ldots \int_{-\infty}^{x_n} p_{\xi_1}(t_1) \ldots p_{\xi_n}(t_n) dt_n \ldots dt_1.$

Запихали всё под один интеграл, то что под интегралом и есть совместная плотность.

2. Докажем ←.

Просто проинтегрируем равенство.

$$\int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_n} p_{\xi}(\bar{t}) dt_n \dots dt_1 = \int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_n} p_{\xi_1}(t_1) \dots p_{\xi_n}(t_n) dt_n \dots dt_1 = F_{\xi_1}(x_1) \dots F_{\xi_n}(x_n)$$

по т. Тонелли можно выносить интегралы

Замечание. Напоминание.

Свертка последовательностей: $\{a_n\}, \{b_n\}$ это $\{c_n\},$ такая что $c_n = a_0b_n + a_1b_{n-1} + \ldots + a_nb_0$.

Мотивировка: $(\sum_{n=0}^{\infty} a_n z^n) \cdot (\sum_{n=0}^{\infty} b_n z^n) = \sum_{n=0}^{\infty} c_n z^n$ (при наличии хоть каких-нибудь кругов сходимости у обоих рядов).

Замечание. Свертки мер

 μ и ν - конечные меры на борелевских подмножествах \mathbb{R} .

$$\mu*\nu(A)=\int_{\mathbb{R}}\mu(A-x)\,d\nu(x)$$
 - это свертка мер, где $(A-x):=\{a-x\mid a\in A\}.$

Свойства. Свойства свёртки

1.
$$\mu * \nu(A) = \int_{\mathbb{R}^2} \mathbb{1}_A(x+y) d\mu(x) d\nu(y)$$

Доказательство.
$$\mu*\nu(A)=\int_{\mathbb{R}}\mu(A-x)\,d\nu(x)\stackrel{\mu(A-x)=\int_{\mathbb{R}}\mathbb{1}_{A-x}d\mu(y)}{=}\int_{\mathbb{R}}\int_{\mathbb{R}}\mathbb{1}_{A-x}(y)d\mu(y)\,d\nu(x)$$

2. $\mu * \nu = \nu * \mu$

3.
$$\mu_1 * \ldots * \mu_n(A) = \int_{\mathbb{R}^n} \mathbb{1}_A(x_1 + \ldots + x_n) d\mu_1(x_1) \ldots d\mu_n(x_n)$$

4.
$$(\mu_1 * \mu_2) * \mu_3 = \mu_1 * (\mu_2 * \mu_3)$$

5.
$$(\mu_1 + \mu_2) * \nu = \mu_1 * \nu + \mu_2 * \nu$$

6. δ_x - мера с единичной нагрузкой в точке x. Тогда $\mu * \delta_0 = \mu$.

Получили линейное пространство относительно + и *

Доказательство.
$$\mu * \delta_0(A) = \delta_0 * \mu(A) = \int_{\mathbb{R}} \delta_0(A-x) \, d\mu(x) \stackrel{\delta_0=1 \Leftrightarrow 0 \in A-x \Leftrightarrow x \in A}{=} \int_{\mathbb{R}} \mathbb{1}_A d\mu(x) = \mu A$$

Теорема 2.4. Пусть μ и ν имеют плотности p_{μ} и p_{ν}

Тогда $\mu * \nu$ имеет плотность $p(t) = \int_{\mathbb{R}} p_{\mu}(t-s)p_{\nu}(s) ds$

Доказательство. Возьмём функцию, определяемую этой формулой и проверим, что подходит.

$$\int_{A} p(t) dt = \int_{A} \int_{\mathbb{R}} p_{\mu}(t-s) p_{\nu}(s) ds dt = \int_{\mathbb{R}} \int_{\mathbb{R}} \mathbb{1}_{A}(t) p_{\mu}(t-s) p_{\nu}(s) ds dt = (*).$$

Положим
$$u=t-s$$
. Тогда $(*)=\int_{\mathbb{R}^2}\mathbbm{1}_A(u+s)p_\mu(u)p_\nu(s)\,ds\,du=\int_{\mathbb{R}^2}\mathbbm{1}_A(u+s)\,d\nu(s)\,d\mu(u)=\mu*\nu(A)$

Теорема 2.5. Если ξ и η независимые случайный величины, то $P_{\xi+\eta} = P_{\xi} * P_{\eta}$

Доказательство. Нужно взять какое-то борелевское множество и понять как устроено там распределение суммы.

Пусть
$$B = \{(x, y) : x + y \in A\}$$

$$P_{\xi+\eta}(A) = P(\xi + \eta \in A) = P((\xi, \eta) \in B) = P_{\xi,\eta}(B) = \int_{\mathbb{R}^2} \mathbb{1}_B(x, y) dP_{\xi}(x) dP_{\eta}(y) = \int_{\mathbb{R}^2} \mathbb{1}_A(x + y) dP_{\xi}(x) dP_{\eta}(y) = P_{\xi} * P_{\eta}(A)$$

Пример. 1. Свертка с дисректным распределением

$$\nu = \sum_{k=1}^{\infty} p_k \delta_{x_k}$$
. Тогда $\mu * \nu(A) = \int_{\mathbb{R}} \mu(A-x) \, d\nu(x) = \sum_{k=1}^{\infty} \mu(A-x_k) p_k$

2. $\xi_i \sim Poisson(\lambda_i)$. ξ_1 и ξ_2 независимы.

$$P_{\xi_1+\xi_2}(\{n\}) = \sum_{k=0}^{+\infty} P_{\xi_1}(\{n-k\}) \cdot \frac{\lambda_2^k e^{-\lambda_2}}{k!} = \sum_{k=0}^n \frac{\lambda_1^{n-k} e^{-\lambda_1}}{(n-k)!} \cdot \frac{\lambda_2^k e^{-\lambda_2}}{k!} = e^{-\lambda_1} e^{-\lambda_2} \sum_{k=0}^n \frac{\lambda_1^{n-k} \lambda_2^k}{k!(n-k)!} = \frac{(\lambda_1+\lambda_2)^n e^{-\lambda_1-\lambda_2}}{n!}$$

$$\xi_1 + \xi_2 \sim Poisson(\lambda_1 + \lambda_2)$$

2.4. Математическое ожидание и дисперсия

Определение 2.17. $\xi:\Omega\to\mathbb{R}$ - случайная величина ($\xi\geq0$, либо суммируемая функция). $\mathbb{E}\xi=\int_{\mathbb{R}}\xi(\omega)\,dP(\omega)$ - математическое ожидание (среднее значение случайной величины).

Ceouches. 1.
$$a, b \in \mathbb{R}$$
: $\mathbb{E}(a\xi + b\eta) = a\mathbb{E}\xi + b\mathbb{E}\eta$

- 2. Если $\xi \geqslant 0$, с вероятностью 1, то $\mathbb{E}\xi \geqslant 0$ (по сути написано, что если функция почти везде неотрицательна, то интеграл неотрицателен).
- 3. Если $\xi \geqslant \eta$ с вероятностью 1, то $\mathbb{E}\xi \geqslant \mathbb{E}\eta$
- 4. $\mathbb{E}\xi = \int_{\mathbb{R}} x \, dP_{\xi}(x)$

5. Если $f:\mathbb{R}^n \to \mathbb{R}$ - измерима относительно борелевской σ -алгебры.

Тогда
$$\mathbb{E} f(\xi_1, \xi_2 \dots \xi_n) = \int_{\mathbb{R}^n} f(x_1, \dots, x_n) dP_{\xi_1, \dots, \xi_n}(x_1, \dots, x_n)$$

Доказательство:
$$f=\mathbbm{1}_A$$
. Тогда $\mathbb{E}\mathbbm{1}_A(\xi_1,\ldots\xi_n)=\int_\Omega\mathbbm{1}_A(\xi_1(w),\ldots,\xi_n(w))dP(\omega)=P(\omega\in\Omega:\bar{\xi}\in A)=\int_{\mathbb{R}^n}\mathbbm{1}_A(x_1,\ldots,x_n)dP_{\bar{\xi}}(x_1,\ldots,x_n).$

Тогда по линейности верно для простых.

Теперь берём f_j неотрицательный простые, такие, что возрастают и $\to f$. И предельный переход по теореме Леви.

6. Если ξ_1 и ξ_2 независимы, то $\mathbb{E}(\xi \cdot \eta) = \mathbb{E}\xi \cdot \mathbb{E}\eta$

Доказательство: $\mathbb{E}(\xi\eta) = \int_{\mathbb{R}^2} xy dP_{\xi,\eta}(x,y) =$

$$= \int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mathbb{R}} xy dP_{\xi}(x) dP_{\eta}(y) = \int_{\mathbb{R}} y \int_{\mathbb{R}} x dP_{\xi}(x) dP_{\eta}(y) = \mathbb{E}\xi \cdot \mathbb{E}\eta$$
 независимость сл. вел.

- 7. Если $\xi\geqslant 0$, то $\mathbb{E}\xi=\int_0^{+\infty}P(\xi\geqslant t)\,dt$ из теории меры.
- 8. Если p,q>1 и $\frac{1}{p}+\frac{1}{q}=1$, то $\mathbb{E}|\xi\eta|\leqslant (\mathbb{E}|\xi|^p)^{\frac{1}{p}}(\mathbb{E}|\eta|^q)^{\frac{1}{q}}$ неравенство Гёльдера
- 9. Неравенство Ляпунова

$$0 < r < s$$
, тогда $(\mathbb{E}|\xi|^r)^{\frac{1}{r}} \leqslant (\mathbb{E}|\xi|^s)^{\frac{1}{s}}$.

Доказательство:
$$p = \frac{s}{r} > 1, \ \frac{1}{q} = 1 - \frac{1}{p} = \frac{s-r}{s} < 1.$$

Тогда запишем Гельдера для ξ и $\eta = 1$:

$$\mathbb{E}|\xi|^r|1| \le (\mathbb{E}(|\xi|^r)^p)^{\frac{1}{p}} \cdot (\mathbb{E}1^q)^{\frac{1}{q}} = (\mathbb{E}|\xi|^s)^{\frac{r}{s}}.$$

Замечание. $\mathbb{E}(\xi\eta) = \mathbb{E}\xi \cdot \mathbb{E}\eta$ без независимости неверно. Пример.

Теорема 2.6. Неравенство Маркова

Если
$$\xi \geqslant 0, p, t > 0$$
, то $P(\xi \geqslant t) \leqslant \frac{\mathbb{E}\xi^p}{t^p}$.

Доказательство. Неравенство Чебышёва из теории меры.

 ${\it Onpedenehue}$ 2.18. 1. Моменты случайной величины. $\mathbb{E}(\xi^k)$ - k-ый момент.

- 2. Центральный момент. $\mathbb{E}(\xi \mathbb{E}\xi)^k$ k-ый центральный момент.
- 3. Абсолютный момент. $\mathbb{E}|\xi|^k$ k-ый абсолютный момент.

Определение 2.19. Медиана случайной величины. m - медиана ξ , если $P(\xi \geqslant m) \geqslant \frac{1}{2}$ и $P(\xi \leqslant m) \geqslant \frac{1}{2}$.

Замечание. Медиана не единственна.

Возьмём кубик. $\xi = 1, 2, \dots, 6$ с вероятностью $\frac{1}{6}$. Тогда любое число $m \in [3, 4]$ подходит.

Чаще всего всё равно берут середину, чтобы была единственность.

Пример. Есть организация из 1000 человек. 1 начальник и 999 подчиненных.

Зарплата начальника 1.000.000\$, а подчинённых 1000\$.

$$\mathbb{E} = \frac{999}{1000} \cdot 1000 + \frac{1}{1000} \cdot 1000000 = 1999$$

m = 1000 - медиана лучше характеризует ситуацию в этом случае.

 $Onpedenetue \ 2.20.$ Дисперсия. $\mathbb{D}\xi = \mathbb{E}(\xi - \mathbb{E}\xi)^2$ - второй центральный момент.

Обозначение в англоязычной литературе: $Var\xi$

Ceoucmea. 1. $\mathbb{D}\xi = \mathbb{E}\xi^2 - (\mathbb{E}\xi)^2$

Доказательство: Пусть $a = \mathbb{E}\xi$.

Тогда
$$\mathbb{D}\xi = \mathbb{E}(\xi - a)^2 = \mathbb{E}\xi^2 - 2a\mathbb{E}\xi + a^2$$

2. $\mathbb{D}\xi \geqslant 0$ и если $\mathbb{D}\xi = 0$, то $P(\xi = c) = 1$

Доказательство: Если $\mathbb{D}\xi = 0$, то $\int_{\Omega} (\xi - a)^2 dP = 0$, значит $(\xi - a)^2 = 0$ почти везде.

3. $\mathbb{D}(\xi + a) = \mathbb{D}\xi$

Доказательство: $\mathbb{E}(\xi+a) = \mathbb{E}\xi + a$. А тогда $(\xi+a) - \mathbb{E}(\xi+a) = \xi - \mathbb{E}\xi$

4. $\mathbb{D}(c\xi) = c^2 \mathbb{D}\xi$

Доказательство: $\mathbb{D}(c\xi) = \mathbb{E}(c\xi)^2 - (\mathbb{E}(c\xi))^2$

5. Если ξ и η независимы, то $\mathbb{D}(\xi + \eta) = \mathbb{D}\xi + \mathbb{D}\eta$

Доказательство: $\mathbb{D}(\xi+\eta)=\mathbb{E}(\xi+\eta)^2-(\mathbb{E}(\xi+\eta))^2=\mathbb{E}\xi^2+2\mathbb{E}(\xi\eta)+\mathbb{E}\eta^2-(\mathbb{E}\xi)^2-2\mathbb{E}\xi\mathbb{E}\eta-(\mathbb{E}\eta)^2=\mathbb{D}\xi+\mathbb{D}\eta$

6. Аналогично предыдущему, но для *п* случайных величин.

Доказательство: индукция

7. $\mathbb{E}|\xi - \mathbb{E}\xi| \leq \sqrt{\mathbb{D}\xi}$

Доказательство: $\mathbb{E}|\xi - \mathbb{E}\xi| \leqslant (\mathbb{E}|\xi - \mathbb{E}\xi|^2)^{\frac{1}{2}} = \sqrt{\mathbb{D}\xi}$ - написали Ляпунова.

8. Неравенство Чебышёва

$$P(|\xi - \mathbb{E}\xi| \geqslant t) \leqslant \frac{\mathbb{D}\xi}{t^2}$$
, где $t > 0$

Доказательство: $P(|\xi - \mathbb{E}\xi| \geqslant t) \leqslant \frac{\mathbb{E}|\xi - \mathbb{E}\xi|^2}{t^2} = \frac{\mathbb{D}\xi}{t^2}$ - неравенство Маркова для p=2.

Определение **2.21**. Стандартное отклонение $\sigma = \sqrt{\mathbb{D}\xi}$

Пример. 1. $\xi \sim U[0,1]$.

Тогда
$$\mathbb{E}\xi = \int_0^1 x \, dx = \frac{x^2}{2} \bigg|_0^1 = \frac{1}{2}.$$

$$\mathbb{E}\xi^2 = \int_0^1 x^2 dx = \frac{x^3}{3} \Big|_0^1 = \frac{1}{3}$$
. А тогда $\mathbb{D}\xi = \mathbb{E}\xi^2 - (\mathbb{E}\xi)^2 = \frac{1}{12}$

2. $\xi \sim U[a,b]$.

Если $\eta \sim U[0,1]$ и $\xi = (b-a)\eta + a \sim U[a,b]$. Тогда $\mathbb{E}\xi = \mathbb{E}((b-a)\eta + a) = \frac{a+b}{2}$

$$\mathbb{D}((b-a)\eta + a) = \mathbb{D}((b-a)\eta) = (b-a)^2 \mathbb{D}\eta = \frac{(b-a)^2}{12}$$

3. $\xi \sim \mathcal{N}(0,1)$

 $\mathbb{E}\xi=\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}xe^{\frac{-x^2}{2}}\,dx=0$, так как функция нечётная.

Значит
$$\mathbb{D}\xi = \mathbb{E}\xi^2 = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} x^2 e^{-\frac{x^2}{2}} dx = -\frac{e^{\frac{-x^2}{2}}x}{\sqrt{2\pi}} \bigg|_{-\infty}^{+\infty} + \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-\frac{x^2}{2}} dx = 1$$

4. $\xi \sim \mathcal{N}(a, \sigma^2)$

Если $\eta \sim \mathcal{N}(0,1)$, то $\xi = \sigma \eta + a \sim \mathcal{N}(a,\sigma^2)$.

$$\mathbb{E}\xi = \mathbb{E}(\sigma\eta + a) = \sigma\mathbb{E}\eta + a = a$$

$$\mathbb{D}\xi = \mathbb{D}(\sigma\eta + a) = \sigma^2\mathbb{D}\eta = \sigma^2$$

Определение **2.22.** Пусть $\mathbb{E}\xi^2 < +\infty$ и $\mathbb{E}\eta^2 < +\infty$.

Ковариация $cov(\xi, \eta) = \mathbb{E}((\xi - \mathbb{E}\xi)(\eta - \mathbb{E}\eta))$

 $Cov(\xi, \xi) = \mathbb{D}\xi$

- 2. $cov(\xi, \eta) = cov(\eta, \xi)$
- 3. $cov(c\xi, \eta) = c \cdot cov(\xi, \eta)$
- 4. $cov(\xi_1 + \xi_2, \eta) = cov(\xi_1, \eta) + cov(\xi_2, \eta)$
- 5. $cov(\xi, \eta) = \mathbb{E}(\xi \eta) \mathbb{E}\xi \mathbb{E}\eta$

Доказательство: $\mathbb{E}\xi = a, \mathbb{E}\eta = b$

$$cov(\xi, \eta) = \mathbb{E}((\xi - a)(\eta - b)) = \mathbb{E}(\xi \eta) - a\mathbb{E}\eta - b\mathbb{E}\xi + ab$$

- 6. Если ξ и η независимы, то $cov(\xi, \eta) = 0$
- 7. $\mathbb{D}(\xi + \eta) = \mathbb{D}\xi + \mathbb{D}\eta + 2cov(\xi, \eta)$
- 8. $\mathbb{D}(\xi_1 + \xi_2 + \ldots + \xi_n) = \mathbb{D}\xi_1 + \mathbb{D}\xi_2 + \ldots + \mathbb{E}\xi_n + 2\sum_{i < j} cov(\xi_i, \xi_j).$

Пример. P(ycnex) = p. Делаем n подбрасываний. $\eta =$ количество переходов от орла к решке.

Пусть $\xi_i = 1$, если на i позиции орёл, на i+1 позиции решка, иначе $\xi_i = 0$.

$$\eta = \xi_1 + \ldots + \xi_{n-1}$$
. Тогда $\mathbb{E}\eta = \sum_{i=1}^{n-1} \mathbb{E}\xi_i = (n-1)pq$.

$$\mathbb{D}\eta = \sum_{i=1}^{n-1} \mathbb{D}\xi_i + 2\sum_{i < j} cov(\xi_i, \xi_j).$$

Если i+1 < j, то ξ_i и ξ_j независимы, поэтому в сумме почти везде нули.

Значит
$$\mathbb{D}\eta = \sum_{i=1}^{n-1} \mathbb{D}\xi_i + 2\sum_{i=1}^{n-1} cov(\xi_i, \xi_{i+1}).$$

$$\mathbb{D}\xi_i = \mathbb{E}\xi_i^2 - (\mathbb{E}\xi_i)^2 = pq - p^2q^2.$$

$$cov(\xi, \xi_{i+1}) = \mathbb{E}(\xi_i \xi_{i+1}) - \mathbb{E}\xi_i \mathbb{E}\xi_{i+1} = -p^2 q^2$$

Замечание. 1. $\{\xi: \mathbb{E}\xi^2 < +\infty\}$

 $\langle \xi, \eta \rangle = \mathbb{E}(\xi \eta)$ - скалярное произведение.

 $\mathbb{E}\xi$ - ортогональная проекция на константы.

2. $\langle \xi, \eta \rangle = cov(\xi, \eta)$ - тоже скалярное произведение.

Норма - это стандартное отклонение.

Теорема 2.7. Выбор двудольного подграфа

Есть граф G с n вершинами и m рёбрами. Хотим стереть некоторое количество рёбер(как можно меньше) так, чтобы остался двудольный подграф.

Тогда G содержит двудольный подграф с $\geqslant \frac{m}{2}$ рёбрами.

Доказательство. A - те вершины, на которых выпал орёл, B - на которых выпала решка.

Будем интересоваться матожидание количества рёбер в такой ситуации.

$$\xi_{xy} = \begin{cases} 1, & \text{если x, y из разных долей} \\ 0, & \text{иначе} \end{cases}$$

$$\mathbb{E}\xi = \sum_{xy \in E} \mathbb{E}\xi_{xy} = \frac{m}{2}$$
, а значит есть реализация с $\frac{m}{2}$.

Определение 2.23. Коэффициент корреляции. $\rho(\xi,\eta)=\frac{cov(\xi,\eta)}{\sqrt{\mathbb{D}\xi}\sqrt{\mathbb{D}\eta}}\in[-1,1]$

Определение 2.24. Если $cov(\xi, \eta) = 0$, то это некоррелирующие случайные величины.

Теорема 2.8. $v_1, v_2 \dots v_n \in \mathbb{R}^n$ - единичные векторы, тогда существует расстоновка знаков $\varepsilon_1 = \pm 1, \dots, \varepsilon_n = \pm 1$, такие, что $||\varepsilon_1 v_1 + \dots + \varepsilon_n v_n|| \leqslant \sqrt{n}$.

Замечание. Эта оценка не улучшаема, если все вектора попарно ортогональны, тогда длина вектора \sqrt{n} .

Доказательство. Пусть $\varepsilon_1 \dots \varepsilon_n$ - независимые случайные величины, $\varepsilon_i = 1$, с вероятностью $\frac{1}{2}$ и $\varepsilon_i = -1$, с вероятностью $\frac{1}{2}$

 $\xi = ||\varepsilon_1 v_1 + \ldots + \varepsilon_n v_n||$. И тогда $\mathbb{E}\xi = E\langle v, v \rangle = \mathbb{E}(\sum_{i,j=1}^n \varepsilon_i \varepsilon_j \langle v_i, v_j \rangle) = \sum_{i,j=1}^n \langle v_i, v_j \rangle \mathbb{E}\varepsilon_i \varepsilon_j = \sum_{i=1}^n \langle v_i, v_j \rangle = n$.

- 1. Если i=j, то $\mathbb{E}\varepsilon_i\varepsilon_j=1$
- 2. Если $i \neq j$, то $\mathbb{E}\varepsilon_i\varepsilon_j = 0$

Теорема 2.9. $v_1, v_2 \dots v_n \in \mathbb{R}^n$ - единичные векторы. $||v_i \leqslant 1||, p_i \in [0, 1]$ и $w = p_1 v_1 + \dots + p_n v_n$ Тогда существует $\varepsilon_1 = 0$ или $1, \dots \varepsilon_n = 0$ или 1, такие, что $v = \varepsilon_1 v_1 + \dots + \varepsilon_n v_n$ и $||v - w|| \leqslant \frac{\sqrt{n}}{2}$

Доказательство. Пусть $\varepsilon_1 \dots \varepsilon_n$ - независимые случайные величины.

$$\varepsilon_i = \begin{cases} 1, & \text{с вероятностью } p_i \\ 0, & \text{иначе} \end{cases}$$

Интересуемся $\xi = ||v - w||$. $\mathbb{E}\xi = \mathbb{E}(\sum_{i,j=1}^{n} (\varepsilon_i - p_i)(\varepsilon_j - p_j) \langle v_i, v_j \rangle) = \sum_{i,j=1}^{n} \langle v_i, v_j \rangle \mathbb{E}(\varepsilon_i - p_i)(\varepsilon_j - p_j) = \sum_{i=1}^{n} \langle v_i, v_i \rangle (p_i - p_i^2) \leqslant \frac{n}{4}$.

- 1. Если i=j, то $cov(\varepsilon_i,\varepsilon_j)=\mathbb{D}\varepsilon_i\varepsilon_j=p_i-p_i^2\leqslant \frac{1}{4}$
- 2. Если $i \neq j$, то $cov(\varepsilon_i, \varepsilon_j) = 0$

Пример. $\Omega = \{1, 2 \dots n\}$, пусть $\nu(k)$ - число различных простых B разложении k.

Теорема 2.10. Харди-Рамануджана

Если
$$w(n) \to +\infty$$
, то $P(k : |\nu(k) - \ln \ln n| \geqslant w(n) \sqrt{\ln \ln n}) \to 0$

Доказательство. Пусть $m = \sqrt[10]{n}$. $p \le m$ - простое и

$$\xi_p = \begin{cases} 1, & \text{если } k \text{ делится на } p \\ 0, & \text{иначе} \end{cases}$$

 $\xi = \sum_{p \leqslant m} \xi_p$ - количество различных простых $\leqslant m$. Тогда $\nu(k) - 10 \leqslant \xi(k) \leqslant \nu(k)$. Посчитаем матожидание ξ .

$$\mathbb{E}\xi_p=rac{[rac{n}{p}]}{n}\leqslantrac{rac{n}{p}}{n}=rac{1}{p}.$$
 С другой стороны, $\mathbb{E}\xi_p\geqslantrac{rac{n}{p}-1}{n}=rac{1}{p}-rac{1}{n}.$

Значит $\mathbb{E}\xi = \sum_{p\leqslant m} \mathbb{E}\xi_p$. $\sum_{p\leqslant m} \frac{1}{p} - \frac{m}{n} \leqslant \sum_{p\leqslant m} \mathbb{E}\xi_p \leqslant \sum_{p\leqslant m} \frac{1}{p} = \ln\ln m + \mathcal{O}(1) = \ln\ln n + \mathcal{O}(1)$. Оценка в другую сторону аналогично, потому что $\frac{m}{n} \leqslant 1$.

Теперь считаем дисперсию.

 $\mathbb{D}\xi_p = \mathbb{E}\xi_p^2 - (\mathbb{E}\xi_p)^2 = \mathbb{E}\xi_p - (\mathbb{E}\xi_p)^2 \leqslant \frac{1}{p} - \frac{1}{p^2} + \frac{1}{n}$. С другой стороны $\mathbb{E}\xi_p^2 - (\mathbb{E}\xi_p)^2 \geqslant \frac{1}{p} - \frac{1}{n} - \frac{1}{p^2}$.

 $\sum_{p \leqslant m} \mathbb{D}\xi_p \sum_{p \leqslant m} \frac{1}{p} - \frac{1}{p^2} + \mathcal{O}(\frac{1}{n}) = \ln \ln n + \mathcal{O}(1).$

 $cov(\xi_p,\xi_q) = \mathbb{E}\xi_p\xi_q = \mathbb{E}(\xi_p\xi_q) - \mathbb{E}\xi_p\mathbb{E}\xi_q$. Здесь $\frac{1}{pq} - \frac{1}{n} \leqslant \mathbb{E}\xi_p\xi_q \leqslant \frac{1}{pq}$. Тогда $cov(\xi_p,\xi_q) \leqslant \frac{1}{pq} - (\frac{1}{p} - \frac{1}{n})(\frac{1}{q} - \frac{1}{n}) = \frac{1}{n}(\frac{1}{p} + \frac{1}{q}) - \frac{1}{n^2} \leqslant \frac{1}{n}(\frac{1}{p} + \frac{1}{q})$. Также оцениваем в другую сторону.

$$-\frac{m^2}{n} = \mathcal{O}(1) \leqslant \sum_{p \neq q} cov(\xi_p, \xi_q) \leqslant \frac{1}{n} \left(\sum_{p \neq q} \left(\frac{1}{p} + \frac{1}{q} \right) \right) = \frac{2m}{n} \sum_{p \leqslant m} \frac{1}{p} = \mathcal{O}(1).$$

 $\mathbb{D}\xi = \ln \ln n + \mathcal{O}(1)$. Теперь применим Чебышёва.

 $P(|\xi - \mathbb{E}\xi| \geqslant t) \leqslant \frac{\mathbb{D}\xi}{t^2}$. В качестве t подставим $w(n)\sqrt{\ln \ln n}$.

Тогда $P(|\nu - \ln \ln n| \geqslant w(n)\sqrt{\ln \ln n}) < P(|\xi - \mathbb{E}\xi| \geqslant w(n)\sqrt{\ln \ln n}) \leqslant \frac{\mathbb{D}\xi}{w^2(n)\ln \ln n} \to 0.$

Замечание.

Теорема 2.11. Эрдёша-Каца

$$P(k \in \Omega : a \leqslant \frac{|\nu(k) - \ln \ln n|}{\sqrt{\ln \ln n}} \leqslant b) \to \frac{1}{\sqrt{2\pi}} \int_a^b e^{-\frac{t^2}{2}} dt$$

2.5. Сходимость последовательностей случайных величин

Теорема 2.12. ξ_1, ξ_2, \ldots - независимые случайные величины, $f_i : \mathbb{R}^{n_i} \to \mathbb{R}$ - измерима, относительно борелевской σ -алгребры.

Тогда $f_1(\xi_1,\ldots\xi_{n_1}), f_2(\xi_{n_1+1},\ldots,\xi_{n_1+n_2})$ - независимые случаные величины.

Доказательство. $f: \mathbb{R}^m \to \mathbb{R}$ и $g: \mathbb{R}^n \to \mathbb{R}$. $f(\xi_1 \dots \xi_m)$ и $g(\eta_1, \eta_n)$ независимые.

Возьмём \tilde{A} и $\tilde{B} \in \mathbb{R}$ борелевские. Надо доказать, что $P(f(\xi_1 \dots \xi_m) \in \tilde{A}) \cdot P(g(\eta_1 \dots \eta_n) \in \tilde{B}) = P(f(\xi_1, \dots, \xi_m) \in \tilde{A}, g(\eta_1, \eta_n) \in \tilde{B}).$

$$P((\xi_1, \dots, \xi_m) \in f^{-1}(\tilde{A}) = A) \cdot P((\eta_1, \dots, \eta_m) \in f^{-1}(\tilde{B}) = B) = P(\dots)$$

Поймём это для ячеек.

A = (a, b], что такое $P((\xi_1, \dots, \xi_m) \in (a, b]) = P(\xi_1 \in (a_1, b_1], \dots, \xi_m \in (a_m, b_m]) = P(\dots) \cdot \dots \cdot P(\dots)$.

Если A_j дизъюнктны $P((\xi_1,\ldots,\xi_m)\in A_j)\cdot P((\eta_1,\ldots,\eta_m)\in B)=P(\ldots)$. Просуммируем $P((\xi_1,\ldots,\xi_m)\in\bigsqcup A_j)\cdot P((\eta_1,\ldots,\eta_m)\in B)=P(\ldots)$

Определение 2.25. $\xi, \xi_1, \xi_2, ...: \Omega \to \mathbb{R}$.

- 1. ξ_n сходится к ξ почти наверное, если $P(w \in \Omega : \lim_{n \to \infty} \xi_n(w) = \xi(w)) = 1$
- 2. ξ_n сходится к ξ в среднем порядка r>0, если $\mathbb{E}(|\xi_n-\xi|^r)\to_{n\to\infty}0$
- 3. ξ_n сходится к ξ по вероятности, если $\forall \varepsilon>0,\ P(|\xi_n-\xi|\geqslant \varepsilon)\to_{n\to\infty}0$
- 4. $\xi_n:\Omega_n\to\mathbb{R}$. ξ_n сходится к ξ по распределению, если $\lim_{n\to\infty}F_{\xi_n}(x)=F_{\xi}(x)$ во всех точках непрерывности F_{ξ}

Связь между ними $1 \Rightarrow 3, 2 \Rightarrow 3$ (неравенство Маркова). При этом $3 \not\Rightarrow 1, 2 \not\Rightarrow 1$ TODO

 $4 \not\Rightarrow 3$. Да и вообще они на разных вероятностных пространствах, так что постановка вопроса в целом неверная.

 $3 \Rightarrow 4. \{\xi_n > x\} \supset \{\xi > x + \varepsilon\} \cap \{|\xi_n - \xi| < \varepsilon\}$. Также верно обратное: $\{\xi_n \leqslant x\} \subset \{\xi \leqslant x + \varepsilon\} \cup \{|\xi_n - \xi| \geqslant \varepsilon\}$.

Тогда $F_{\xi_n}(x) \leqslant F_{\xi}(x+\varepsilon) + P(|\xi_n - \xi| \geqslant \varepsilon)$. $\lim_{n \to \infty} F_{\xi_n}(x) \leqslant F_{\xi}(x+\varepsilon) + \lim_{n \to \infty} P(|\xi_n - \xi| \geqslant \varepsilon) = F_{\xi}(x+\varepsilon)$. $\{\xi_n > x\} \subset \{\xi > x - \varepsilon\} \cup \{|\xi_n - \xi| \geqslant \varepsilon\}$ - запишем через вероятности. $1 - F_{\xi_n}(x) \leqslant 1 - F_{\xi}(x-\varepsilon) + P(|\xi_n - \xi| \geqslant \varepsilon)$. То есть $\lim_{n \to \infty} F_{\xi_n}(x) \geqslant F_{\xi}(x-\varepsilon) - \lim_{n \to \infty} P(|\xi_n - \xi| \geqslant \varepsilon) = F_{\xi}(x-\varepsilon)$.

То есть $F_{\xi}(x-\varepsilon) \leqslant \underline{\lim} F_{\xi_n}(x) \leqslant \overline{\lim} F_{\xi_n}(x) \leqslant F_{\xi}(x+\varepsilon)$ - верно для любого n. Устремим $\varepsilon \to 0$. Тогда $F_{\xi}(x) \leqslant \underline{\lim} F_{\xi_n}(x) \leqslant \overline{\lim} F_{\xi_n}(x) \leqslant F_{\xi}(x)$, но левая и правая штука равны.

Теорема 2.13. Закон больших чисел

 ξ_1, ξ_2, \ldots - попарно некоррелируемые случайные величины и $\mathbb{D}\xi_n = o(n)$.

$$S_n = \xi_1 + \xi_2 + \ldots + \xi_n.$$

Тогда $\frac{S_n}{n} - \mathbb{E} \frac{\xi_n}{n} \to_P 0$. То есть вероятность того, что $P(|\frac{S_n}{n} - \mathbb{E} \frac{S_n}{n}| \geqslant \varepsilon) \to 0$

Cnedcmeue. Если $\mathbb{D}\xi_n$ ограничены, то такой же вывод.

Доказательство.
$$P(\left|\frac{S_n}{n} - \mathbb{E}\frac{S_n}{n}\right| \geqslant \varepsilon) \leqslant \frac{\mathbb{D}\frac{S_n}{n}}{\varepsilon^2} = \frac{\mathbb{D}S_n}{\varepsilon^2 n^2} = \frac{\sum_{k=1}^n \mathbb{D}\xi_k}{\varepsilon^2 n^2} \to_{\text{Штольц}} \lim_{n \to \infty} \frac{\mathbb{D}\xi_n}{\varepsilon^2 (2n-1)} = 0.$$

Следствие. ЗБЧ в форме Чебышёва

 ξ_1, ξ_2, \dots независимые, одинаково распределенённые случайные величины с конечной дисперсией. $a=\xi_{\mathbb{F}}$.

Тогда
$$P(\left|\frac{S_n}{n}-a\right|\geqslant arepsilon) o 0$$
 или же $\frac{S_n}{n} o_P a$

Следствие. ЗБЧ для схем Бернулли

Есть схема Бернулли с вероятностью успеха p.

Тогда
$$\frac{S_n}{n} \to_P p$$

Теорема 2.14. Усиленный ЗБЧ

 ξ_1, ξ_2, \dots - независимые случайные величины. $\mathbb{E}(\xi_n - \mathbb{E}\xi_n)^4 \leqslant C$.

Тогда $\frac{S_n}{n} - \mathbb{E} \frac{S_n}{n} \to 0$ почти наверное.

Доказательство. $\frac{S_n}{n} - \mathbb{E} \frac{S_n}{n} = \frac{1}{n} (S_n - \mathbb{E} S_n) = \frac{1}{n} (\sum_{k=1}^n (\xi_k - \mathbb{E} \xi_k))$. Задвинем все матожидания в ноль.

Тогда по условию $\mathbb{E}\xi_n^4\leqslant C$ и надо доказать, что $\frac{S_n}{n}\to 0$ почти наверное.

Пусть $A_n = \{\left|\frac{S_n}{n}\right| \ge \varepsilon\}$. Нам нужно понять, что бесконечное количество A_n случаются с нулевой вероятностью.

Из леммы Бореля-Кантелли, если $\sum_{k=1}^{\infty} \sum_{k=1}^{\infty} P(A_n) < +\infty$, то нужное нам условие выполнено.

Напишем неравенство Маркова: $P(A_n) \leqslant \frac{\mathbb{E}\frac{S_n^4}{n^4}}{\varepsilon^4} = \frac{\mathbb{E}S_n^4}{n^4\varepsilon^4}$. Достаточно доказать, что $\mathbb{E}S_n^4 = \mathcal{O}(n^2)$, тогда ряд сойдётся. Раскроем все скобки.

$$\mathbb{E}(\xi_1 + \ldots + \xi_n)^4 = \sum_{i=1}^n \mathbb{E}\xi_i^4 + 4\sum_{i \neq j} \mathbb{E}\xi_i^3 \xi_j + 6\sum_{i \neq j} \mathbb{E}\xi_i^2 \xi_j^2 + 12\sum_{i \neq j \neq k} \mathbb{E}\xi_i^2 \xi_j \xi_k + 24\sum_{i \in \mathcal{E}} \mathbb{E}\xi_i \xi_j \xi_k \xi_m$$

- 1. $\mathbb{E}\xi_i\xi_i\xi_k\xi_m=0$
- 2. $\mathbb{E}\xi_i^2\xi_i\xi_k=0$

Итого получаем $\sum_{i=1}^n \mathbb{E}\xi_i^4 + 6\sum \mathbb{E}x_i^2\mathbb{E}\xi_j^2$ (*). По неравенству Ляпунова $\mathbb{E}\xi_i^2 \leqslant \sqrt{\mathbb{E}\xi_i^4} \leqslant \sqrt{C}$.

Значит $(*) = nC + 6n(n-1)\sqrt{C}\sqrt{C} \leqslant 6Cn^2 = \mathcal{O}(n^2)$, значит ряд сходится и лемма Бореля-Кантелли выполняется.

Следствие. Усиленный ЗБЧ для схем Бернулли

В схеме Бернулли с вероятностью успеха $p:\frac{S_n}{r}\to p$ почти наверное.

Доказательство. Нужно проверить, что $\mathbb{E}(\xi_i - p)^4$ - конечно, раскроем скобки, получим какие-то константы и ξ_i^p .

Теорема 2.15. Усиленный ЗБС в форме Колмогорова

 ξ_1, ξ_2, \ldots - независимо, одинаково распределённые случайные величины.

Тогда $\frac{S_n}{n} \to a \in \mathbb{R}$ почти наверное $\Leftrightarrow a = \mathbb{E}\xi_1$

Метод Монте-Карло

Ф - ограниченная фигура на плоскости. Хотим примерно узнать её площадь.

Берём случайную точку в прямоугольнике и выясняем, попала она в фигуру или нет.

$$\xi_i = egin{cases} 1, & ext{точка попала в } \Phi \ 0, & ext{иначе} \end{cases}$$

Вероятность успеха $\frac{Area(\Phi)}{Area(прямоугольника)}$. Тогда усиленный ЗБЧ говорит, что $\frac{S_n}{n} \to p$ почти наверное.

Теорема 2.16. ξ_1, ξ_2, \dots последовательность случайных величин, $\xi_n \to_P a \in \mathbb{R}$. f ограниченная функция, непрерывная в точке a.

Тогда $\mathbb{E}f(\xi_n) \to f(a)$

Доказательство. $|\mathbb{E}f(\xi_n) - f(a)| = |\mathbb{E}(f(\xi_n) - f(a))| \leqslant \mathbb{E}|f(\xi_n) - f(a)| = \mathbb{E}|f(\xi_n - f(a))| \cdot \mathbb{1}_{\{\xi_n - a < \varepsilon\}} + \mathbb{E}|f(\xi_n - f(a))| \cdot \mathbb{1}_{\{\xi_n - a \ge \varepsilon\}} = (*).$

Пусть f ограничена константой M.

$$\mathbb{E}|f(\xi_n - f(a))| \cdot \mathbb{1}_{\{\xi_n - a \geqslant \varepsilon\}} \leqslant 2M \mathbb{E} \mathbb{1}_{\{\xi_n - a \geqslant \varepsilon\}}$$

$$|f(\xi_n - f(a))| \cdot \mathbb{1}_{\{\xi_n - a < \varepsilon\}} \le \sup_{|x - a| < \varepsilon} |f(x) - f(a)|$$

Тогда (*) $\leq \sup_{|x-a|<\varepsilon} |f(x)-f(a)| + 2MP(|\xi_n-a| \geqslant \varepsilon).$

 $\overline{\lim} |\mathbb{E} f(\xi_n) - f(a)| \leqslant \sup_{|x-a| < \varepsilon} |f(x) - f(a)| + 2M\overline{\lim} P(|\xi_n - a| \geqslant \varepsilon) \leqslant \sup_{|x-a| < \varepsilon} |f(x) - f(a)| \to 0$ при $\varepsilon \to 0$.

Тогда
$$0 \leqslant \underline{\lim} \leqslant \overline{\lim} \leqslant 0 \Rightarrow \lim |\mathbb{E}f(\xi_n) - f(a)| = 0$$

Замечание. В условии теоремы $|\mathbb{E}f(\xi_n)-f(a)|\leqslant \sup_{|x-a|<arepsilon}|f(x)-f(a)|+2MP(|\xi_n-a|\geqslant arepsilon)$

Теорема 2.17. Вейерштрасса

 $f \in C[a,b]$, то существует последовательность многочленов P_n , такая, что $P_n \rightrightarrows f$ на [a,b]

Доказательство. Можно считать, что всё на [0,1]. Рассмотрим схему Бернулли с вероятностью успеха p. Тогда $\frac{S_n}{n} \to p$. Подставим $\xi_n = \frac{S_n}{n}$ в замечание.

$$|\mathbb{E}f(\frac{S_n}{n}) - f(p)| \leqslant \sup_{|x-a| < \varepsilon} |f(x) - f(a)| + 2MP(|\frac{S_n}{n} - p| \geqslant \varepsilon) = (*)$$

Из неравенства Чебышёва $P(\left|\frac{S_n}{n}-p\right|\geqslant \varepsilon)\leqslant \frac{\mathbb{D}\frac{S_n}{n}}{\varepsilon^2}=\frac{np(1-p)}{n^2\varepsilon^2}\leqslant \frac{1}{4n\varepsilon^2}.$

И тогда $(*) \leq \sup_{|x-y|<\varepsilon} |f(x)-f(y)| + \frac{M}{2n\varepsilon^2}$. При $n=\frac{1}{\varepsilon^3}$ правое слагаемое оценивается ε' , а первое слагаемое мало из равномерной непрерывности.

Значит $\mathbb{E} f(\frac{S_n}{n}n) - f(p) \rightrightarrows 0$. $\mathbb{E} f(\frac{S_n}{n}) = \sum_{k=0}^n f(\frac{k}{n}) \cdot \binom{n}{k} p^k (1-p)^{n-k}$ - многочлен Бернштейна. \square

Определение 2.26. Многочлен Бернштейна $B_n(x) = \sum_{k=0}^n f(\frac{k}{n}) \binom{n}{k} x^k (1-x)^{n-k}$

Cnedcmeue. 1. $B_n(0) = f(0)$

2.
$$B_n(1) = f(1)$$

3.
$$B'_n(0) = n(f(\frac{1}{n}) - f(0))$$

$$B'_n(1) = n(f(1) - f(\frac{n-1}{n}))$$

Доказательство: $B'_n(x) = \sum_{k=0}^n f(\frac{k}{n})\binom{n}{k}(kx^{k-1}(1-x)^{n-k} - (n-k)x^k(1-x)^{n-k-1}) = \sum_{k=0}^n f(\frac{k}{n})\binom{n}{k}x^{k-1}(1-x)^{n-k-1}(k-nx)$

4.
$$B'_n(x) = \sum_{k=0}^n f(\frac{k}{n}) f(\frac{k}{n}) {n \choose k} x^{k-1} (1-x)^{n-k-1} (k-nx)$$

5.
$$B_n(\alpha f + \beta g, x) = \alpha B_n(f, x) + \beta B_n(g, x)$$

Кривые Безье

 $\sum_{k=0}^n a_k \binom{n}{k} t^k (1-t)^{n-k}, a_k \in \mathbb{R}^2$. Получается отображение $\gamma: [0,1] \to \mathbb{R}^2$.

- 1. n = 1: a(1-t) + bt отрезок соединяющий точки a и b.
- 2. n=2 : $a(1-t)^2+2bt(1-t)+ct^2$. Мы знаем, что B'(0)=2(b-a) и B'(1)=2(c-b). Это кривая из точки a в c, параметр b задаёт касательную в a и c.
- 3. n = 3: $a(1-t)^3 + 3bt(1-t)^2 + 3ct^2(1-t) + dt^3$.

Здесь B(0)=a, B(1)=d, B'(0)=3(b-a), B'(1)=3(d-c). Кривая выходит из точки a с касательной 3(b-a), а заходит в точку d с касательной 3(d-c).

2.6. Производящие функции

Определение 2.27. $\xi:\Omega\to\{1,2,\ldots\}$ - случайная величина.

$$G_{\xi}(z) = \sum_{n=0}^{\infty} P(\xi=n) z^n$$
 - производящая фукнция

Свойства. 1. G_{ξ} однозначно определяет распределение

- 2. $G_{\xi}(1) = 1$ и G_{ξ} сходится в круге |z| < 1.
- 3. $G_{\xi}(x) = \mathbb{E} x^{\xi}$, где $x \in \mathbb{R}$

Доказательство: $\mathbb{E}x^{\xi} = \sum_{n=0}^{\infty} x^n \cdot P(\xi = n) = G_{\xi}(x)$

4. $G'_{\varepsilon}(1) = \mathbb{E}\xi$

Доказательство: $G'_{\xi}(x) = \sum_{n=1}^{\infty} P(\xi = n) n x^{n-1}$ - если подставить единицу - получим матожидание.

5. $\mathbb{E}\xi^2 = G_{\xi}''(1) + G_{\xi}'(1)$

Доказательство: $G''_{\xi}(x) = \sum_{n=2}^{\infty} P(\xi = n) n(n-1) x^{n-2}$ - если подставить единицу - получим матожидание.

- 6. $\mathbb{D}\xi = \mathbb{E}\xi^2 (\mathbb{E}\xi)^2 = G_{\xi}''(1) + G_{\xi}'(1) (G_{\xi}'(1))^2$
- 7. G_{ξ} возрастает и выпукла на [0,1]
- 8. Если ξ и η независимы, то $G_{\xi+\eta}(z) = G_{\xi}(z) \cdot G_{\eta}(z)$

Доказательство: x^{ξ} и x^{η} независимы, а тогда $\mathbb{E}(x^{\xi} \cdot x^{\eta}) = \mathbb{E}x^{\xi} \cdot \mathbb{E}x^{\eta}$

Пример. 1. Равномерное распределение на $\{0, 1, ..., n-1\}$.

Тогда $G_{\xi}(z) = \frac{1}{n}(1+z+z^2+\dots z^{n-1}) = \frac{1-z^n}{1-z}\cdot \frac{1}{n}$. Пусть хотим посчитать матожидание и диспресию, но единицу то подставить нельзя в свернутую формулу. Решается эта проблема так:

Давайте скажем, что z=1+y. Тогда $G_{\xi}(1+y)=\frac{(1+y)^n-1}{ny}=1+\binom{n}{2}\frac{y}{n}+\binom{n}{3}\frac{y^2}{n}\dots$

Тогда
$$G'_{\xi}(1) = \frac{\binom{n}{2}}{n} = \frac{n-1}{2}, \mathbb{E}\xi^2 = G''_{\xi}(1) + G'_{\xi}(1) = 2\frac{n(n-1)(n-2)}{6n} + \frac{n-1}{2} = \frac{n-1}{2}(\frac{2n-4}{3}+1) = \frac{n-1}{2} \cdot \frac{2n-1}{3}.$$
 И тогда $\mathbb{D}\xi = \mathbb{E}\xi^2 - (\mathbb{E}\xi)^2 = \frac{n-1}{2} \cdot \frac{n+1}{6} = \frac{n^2-1}{12}$

2. Задача Галилея

Есть 3 правильных кубика, бросили и посчитали сумму значений. Интересуемся вероятностью того, что в сумме выпало 10.

P(B cymme 10) = ?

 ξ_i - значение на i-том кубике. Тогда $G_{\xi_i}(z) = \frac{1}{6}(z+z^2+\ldots+z^6) = \frac{z(1-z^6)}{1-z}\cdot\frac{1}{6}$. Кубика у нас три, поэтому нас интересует $G_{\xi_1+\xi_2+\xi_3} = G_{\xi_1}\cdot G_{\xi_2}\cdot G_{\xi_3} = \left(\frac{z(1-z^6)}{1-z}\cdot\frac{1}{6}\right)^3 = (*)$

 $\frac{1}{(1-z)^3}=\sum_{n=0}^{\infty}{n+2\choose n}z^n$. Тогда $(*)=\frac{1}{6^3}(z^3-3z^9+3z^15-z^21)$ \cdot $\sum_{n=0}^{\infty}{n+2\choose n}z^n$. Коэффициент при z^{10} будет такой $\frac{1}{6^3}(1\cdot{9\choose 7}-3\cdot{3\choose 1})=\frac{1}{6^3}(36-3^2)=\frac{1}{8}$

3. Метод характеристических функций

3.1. Характеристические функции случайных величин

Определение 3.1. Комплекснозначная случайная величина $\xi = \text{Re } \xi + i \, \text{Im } \xi$, где $\text{Re } \xi$ и $\text{Im } \xi$ вещественнозначные случайные величины.

Определение 3.2. $\xi:\Omega\to\mathbb{C}$

$$\mathbb{E}\xi = \mathbb{E}\operatorname{Re}\xi + i\mathbb{E}\operatorname{Im}\xi$$

Coourmea. 1. $\mathbb{E}(i\xi) = i\mathbb{E}\xi$

- 2. Комплексная линейность $\mathbb{E}(\alpha\xi + \beta\eta) = \alpha\mathbb{E}\xi + \beta\mathbb{E}\eta$, где $\alpha, \beta \in \mathbb{C}, \xi, \eta : \Omega \to \mathbb{C}$ Доказательство: $\mathbb{E}(\alpha\xi) = \mathbb{E}(a+ib)\xi = \mathbb{E}(a\xi) + \mathbb{E}(b\xi i) = (a+bi)\mathbb{E}\xi$
- 3. $\overline{\mathbb{E}\xi} = \mathbb{E}\overline{\xi}$
- 4. $|\mathbb{E}\xi| \leq \mathbb{E}|\xi|$

 \mathcal{A} оказательство: Возьмём $c \in \mathbb{C}$, |c| = 1, такой, что $\mathbb{E}(c\xi) = |\mathbb{E}\xi|$, то есть $c = \frac{\mathbb{E}\xi}{|\mathbb{E}\xi|}$ Тогда $|\mathbb{E}\xi| = \mathbb{E}(c\xi) = \mathbb{E}(\operatorname{Re}(c\xi)) \leqslant \mathbb{E}|\operatorname{Re}(c\xi)| \leqslant \mathbb{E}|c\xi| = \mathbb{E}|\xi|$

Определение 3.3. Ковариация $cov(\xi, \eta) = \mathbb{E}(\xi - \mathbb{E}\xi)\overline{(\eta - \mathbb{E}\eta)}$

 ${\it Onpedenehue}$ 3.4. Дисперсия $\mathbb{D}\xi=\mathbb{E}|\xi-\mathbb{E}\xi|^2$

$$cov(\xi,\xi) = \mathbb{D}\xi$$

 ${\it Onpedenehue}$ 3.5. $\xi:\Omega\to\mathbb{R}.$ Назовём характеристической функцией ξ :

$$\phi_{\xi}(t) = \mathbb{E}e^{it\xi}$$
, где $t \in \mathbb{R}$

Свойства. 1. $\phi_{\xi}(0) = 1$ и $|\phi_{\xi}(t)| \leq 1$

Доказательство: $|\phi_{\xi}(t)| \leq |\mathbb{E}e^{it\xi}| \leq \mathbb{E}|e^{it\xi}| = 1$

2. $\phi_{a\xi+b}(t) = e^{ibt}\phi_{\xi}(at)$

Доказательство: $\phi_{a\xi+b}(t) = \mathbb{E}e^{i(a\xi+b)t} = \mathbb{E}e^{ibt}e^{i\xi at} = e^{ibt}\mathbb{E}e^{i\xi(at)} = \phi_{\xi}(at)e^{ibt}$

3. Если ξ и η независимы, то $\phi_{\xi+\eta}(t) = \phi_{\xi}(t) \cdot \phi_{\eta}(t)$

 $\ensuremath{\mathcal{A}}$ оказательство: $e^{i\xi t}$ и $e^{i\eta t}$ независимы и пишем произведение матожиданий

4. $\overline{\phi_{\xi}(t)} = \phi_{\xi}(-t)$

Доказательство: $\overline{\phi_{\xi}(t)} = \overline{\mathbb{E}e^{i\xi t}} = \mathbb{E}\overline{e^{i\xi t}} = \mathbb{E}e^{-i\xi t} = \phi_{\xi}(-t)$

5. ϕ_{ξ} равномерно непрерывна на \mathbb{R}

Доказательство: ТООО

Пример. $\xi \sim \mathcal{N}(a, \sigma^2)$. Хотим посчитать характеристическую функцию.

Возьмём $\eta \sim \mathcal{N}(0,1)$. Тогда $\xi = \sigma \eta + a$ - имеет нужное нам распределение.

$$\phi_{\sigma\eta+a}(t) = e^{ita}\phi_{\eta}(\sigma t)$$

Считаем для η : $\phi_{\eta}(t) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{itx} e^{-\frac{x^2}{2}} dx = e^{-\frac{t^2}{2}} \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-\frac{(x-it)^2}{2}} dx = (*) \int_{\mathbb{R}} e^{-\frac{(x-it)^2}{2}} dx = \int_{\mathrm{Im}=-it} e^{-\frac{z^2}{2}} dz$ $\int_{\Gamma_{\mathcal{D}}} e^{-\frac{z^2}{2}} dz = 0$, потому что нет особых точек.

С другой стороны: $\int_{\Gamma_R} e^{-\frac{z^2}{2}} dz = \int_{-R-it}^{R-it} + \int_{R}^{R} + \int_{-R}^{-R} + \int_{-R}^{-R-it} \to I - \sqrt{2\pi}$. Значит $I = \sqrt{2\pi}$ (тут было потеряно несколько переходов)

Тогда
$$(*) = e^{-\frac{t^2}{2}} \frac{1}{\sqrt{2\pi}} \sqrt{2\pi}$$

Теорема 3.1. Пусть $\mathbb{E}|\xi|^n < +\infty$.

Тогда при $k \leqslant n$ верно, что $\varphi^{(k)}(t) = \mathbb{E}((i\xi)^k e^{i\xi t})$. В частности, $\varphi^k(0) = i^k \mathbb{E} \xi^k$

 \pmb{C} ледствие. Если $\mathbb{E}\xi^2<+\infty$, то $\mathbb{E}\xi=-i\varphi'(0)$ и $\mathbb{D}\xi=-\varphi''(0)+(\varphi'(0))^2$

Доказательство. Индукция по k

База k=0 - определение φ .

Переход
$$k \to k + 1$$
. $\varphi^{(k+1)}(t) = \lim_{h \to 0} \frac{\varphi^{(k)}(t+h) - \varphi^{(k)}(t)}{h} =$

$$=\lim_{h\to 0}\frac{\mathbb{E}(i\xi)^ke^{i\xi(t+h)}-\mathbb{E}(i\xi)^ke^{i\xi(t)}}{h}=\lim_{h\to 0}\mathbb{E}((i\xi)^ke^{it\xi}\cdot\frac{e^{ih\xi}-1}{h})=\mathbb{E}((i\xi)^ke^{it\xi}\cdot\lim_{h\to 0}\frac{e^{ih\xi}-1}{h}), \text{ а предел - это }i\xi.$$

Почему можно было запихать предел по матожидание?

 $\lim \int_{\mathbb{R}} (ix)^k e^{itx} \frac{e^{ihx}-1}{h} = \int_R \lim_{h\to 0} ((ix)^k e^{itx} \frac{e^{ihx}-1}{h})$ - нужна суммируемая мажоранта.

$$\left| (ix)^k e^{itx} \frac{e^{ihx} - 1}{h} \right| = |x|^k \left| \frac{e^{ihx} - 1}{h} \right| = (*).$$

- 1. Если $|xh| \geqslant 1$, то $\left| \frac{e^{ihx} 1}{h} \leqslant \frac{2}{|h|} \leqslant 2|x| \right|$
- 2. Если |xh| < 1, то $e^{ihx} = 1 + \mathcal{O}(1 + ihx) \Rightarrow \left| \frac{e^{ihx} 1}{h} \right| = \left| \frac{\mathcal{O}(hx)}{h} \right| = \mathcal{O}(x)$. То есть (*) = $\mathcal{O}(|x|^{k+1})$, а ещё есть конечный момент, значит всё выполняется.

Теорема 3.2. Если существует $\varphi''_{\xi}(0)$, то $\mathbb{E}\xi^2 < +\infty$

Замечание. Если существует $\varphi_{\xi}^{(2n)},$ то $\mathbb{E}\xi^{2n}<+\infty$

Доказательство. $\mathbb{E}\xi^2 = \int_{\mathbb{R}} x^2 dP_{\xi}(x) = (*)$ - хотим доказать, что этот интеграл конечен.

Заметим, что $x=\lim_{t\to 0}\frac{\sin(tx)}{t}$ и подставим вместо x. Тогда:

 $(*) = \int_{\mathbb{R}} \lim_{t \to 0} \frac{\sin^2(tx)}{t^2} dP_{\xi}(x) \leqslant \underline{\lim}_{t \to 0} \int_{\mathbb{R}} -\frac{e^{2itx} + e^{-2itx} - 2}{4t^2} dP_{\xi}(x) = (*)$ - лемма Фату и расписали синус.

$$(*) = \underline{\lim}_{t \to 0} \int_{\mathbb{R}} -\frac{\varphi_{\xi}(2t) - \varphi_{\xi}(-2t) - 2}{4t^2} = (*). \ \Pi$$
ричём $\varphi_{\xi}(u) = 1 + \varphi'_{\xi}(0) \cdot u + \frac{\varphi''_{\xi}(0)u^2}{2} + o(u^2).$

Тогда
$$\varphi_{\xi}(2t) + \varphi_{\xi}(-2t) = 2 + \frac{\varphi_{\xi}''(0)(2t)^2}{2} + o(t^2)$$
, а тогда $(*) = \underline{\lim}_{t\to 0}(-\varphi_{\xi}''(0) + o(1))$

Теорема 3.3. Формула обращения

Пусть
$$a < b$$
 и $P_{\xi}(\{a\}) = P_{\xi}(\{b\}) = 0$

Тогда
$$P(\xi \in [a,b]) = \lim_{T \to +\infty} \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-iat} - e^{ibt}}{it} \varphi_{\xi}(t) dt$$

To ecte
$$v.p.\frac{1}{2\pi}\int_{-T}^{T}\frac{e^{-iat}-e^{ibt}}{it}\varphi_{\xi}(t) dt$$

Доказательство. $\xi = \frac{a+b}{2} + \frac{b-a}{2}\eta$, тогда $P(\xi \in [a,b]) \Leftrightarrow P(\eta \in [-1,1])$, в частности $P_{\eta}(\{\pm 1\}) = 0$ $\varphi_{\xi}(t) = e^{i\frac{a+b}{2}t}\varphi_{\eta}(\frac{b-a}{2}t)$ - подставим в наш интеграл.

$$\int_{-T}^{T} \frac{e^{-iat} - e^{-ibt}}{it} \varphi_{\xi}(t) dt = \int_{-T}^{T} \frac{e^{-iat} - e^{-ibt}}{it} e^{i\frac{a+b}{2}t} \varphi_{\eta}(\frac{b-a}{2}t) dt =$$

$$=\int_{-T}^{T}rac{e^{-irac{a-b}{2}t}-e^{-irac{b-a}{2}t}}{it}arphi_{\eta}(rac{b-a}{2})\,dt=\int_{-rac{b-a}{2}T}^{rac{b-a}{2}T}rac{e^{is}-e^{-is}}{is}arphi_{\eta}(s)\,ds,$$
 здесь замена $s=rac{b-a}{t}$

Глава #3

Можно считать, что a = -1, а b = 1

 $\int_{-T}^{T} \frac{e^{it}-e^{-it}}{it} \varphi_{\xi}(t) \, dt = \int_{-T}^{T} \int_{\mathbb{R}} \frac{e^{it}-e^{-it}}{it} e^{itx} dP_{\xi}(x) \, dt = (*)$ - давайте переставим местами интегралы. Нужна суммируемость того, что под интегралом, а она есть, всё ограничено какой-то суммируемой константой.

$$(*)=\int_{\mathbb{R}}\int_{-T}^{T}\frac{e^{it}-e^{-it}}{it}e^{itx}\,dt\,dP_{\xi}(x)$$
. Пусть $\Phi_{T}(x)=\frac{e^{it}-e^{-it}}{it}e^{itx}\,dt$

 $\lim_{T\to+\infty}\int_{-T}^T \frac{e^{it}-e^{-it}}{it} \varphi_\xi(t)\,dt=\lim_{T\to+\infty}\int_{\mathbb{R}}\Phi_T(x)dP_\xi(x)=\int_{\mathbb{R}}\lim_{T\to+\infty}\Phi_T(x)\,dP_\xi(x)$ - хотим понять, почему можно внести предел под интеграл, но разберемся с этим позже.

$$\lim_{T \to +\infty} \Phi_T(x) = \lim_{T \to +\infty} \int_{-T}^T \int_{-1}^1 e^{iut} \, du \, e^{itx} \, dt = \lim_{T \to +\infty} \int_{-1}^1 \int_{-T}^T e^{it(u+x)} \, dt \, du = (*).$$

Заметим, что
$$\frac{e^{it(u+x)}}{i(u+x)}\Big|_{t=-T}^{t=+T} = \frac{2\sin((u+x)T)}{u+x}$$

Тогда
$$(*) = \lim_{T \to +\infty} \int_{-1}^{1} \frac{2\sin((u+x)T)}{u+x} du = (*)$$
. Сделаем замену $y = (u+x)T$, тогда $dy = T \cdot du$.

Тогда
$$(*)=\lim_{T\to +\infty}\int_{(-1+x)T}^{(1+x)T} \frac{2\sin y}{y}\,dy= egin{cases} 0, & \text{при } x>1 \\ 0, & \text{при } x<-1 \\ \int_{\mathbb{R}} \frac{2\sin y}{y}\,dy=2\pi, & \text{иначе} \end{cases}$$

Получили
$$2\pi \int_{\mathbb{R}} \mathbb{1}_{[-1,1]}(x) dP_{\xi}(x) = 2\pi P_{\xi}([-1,1]).$$

Вспомним, что мы не доказали по дороге один переход. Нужно понять, почему $\int_a^b \frac{\sin y}{y} \, dy$ ограничен - интеграл по лучу сходится, значит первообразная в бесконечностях имеет предел, значит в середине тоже ограничена, потому что непрервность - обоснование примерно такое.

Следствие. 1. Если $\varphi_{\xi}(t) = \varphi_{\eta}(t)$, то $P_{\xi} = P_{\eta}$

Доказательство: Рассмотрим $A = \{a \in \mathbb{R} : a \text{ - точка непрервности функции распределения}\}.$

Тогда $\mathbb{R} \setminus A$ - не более чем счётное. Если a < b и $a, b \in A$, то $P_{\xi}([a, b]) = P_{\eta}([a, b])$

Пусть $a \in \mathbb{R}, b \in A$. Рассмотрим $a_n \in A$, такие, что $a_n \to a$ и убывают.

$$P_{\xi}((a,b]) = \lim_{n \to \infty} P_{\xi}([a_n, b_n]) = \lim_{n \to \infty} P_{\eta}([a_n, b_n]) = P_{\eta}((a,b]).$$

Пусть a < b произвольные. Возьмём $b_n \in A$, такие, что $b_n \to b$ и убывают. Тогда $P_{\xi}((a,b]) = \lim_{n\to\infty} P_{\xi}(a,b_n] = \lim P_{\eta}(a,b_n] = P_{\eta}(a,b] \Rightarrow P_{\xi} = P_{\eta}$ на ячейках, а тогда по единственности продолжения везде совпадают.

2. Если $\int_{\mathbb{R}} |\varphi_{\xi}(t)| dt < +\infty$, то ξ имеет плотность распределения $p_{\xi}(x) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{-itx} \varphi_{\xi}(t) dt$ преобразование Фурье.

Доказательство: Из суммируемости $\varphi_{\xi}(t) \Rightarrow P_{\xi}((a,b]) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{e^{-iat} - e^{-ibt}}{it} \varphi_{\xi}(t) dt$.

Проверим, что $P_{\varepsilon}(a,b] = \int_a^b p_{\varepsilon}(x) dx$.

 $\int_a^b p_{\xi}(x) \, dx = \frac{1}{2\pi} \int_a^b \int_{\mathbb{R}} e^{-itx} \varphi_{\xi}(t) \, dt \, dx = (*)$. Под внутренним интегралом суммируемая функция, значит можно переставлять местми интегралы.

Тогда
$$(*) = \frac{1}{2\pi} \int_{\mathbb{R}} \int_{a}^{b} e^{-itx} dx \varphi_{\xi}(t) dt$$

Теорема 3.4. $\xi_k \sim \mathcal{N}(a_k, \sigma_k^2), \, c_k \in \mathbb{R}$ не все нулевые и ξ_k - независимы.

Тогда
$$\xi = a_0 + \sum_{k=1}^n c_k \xi_k \sim \mathcal{N}(a, \sigma^2)$$
, где $a = a_0 + \sum_{k=1}^n c_k a_k$ и $\sigma^2 = \sum_{k=1}^n c_k^2 \sigma_k^2$

Доказательство.
$$\varphi_{\xi}(t) = \varphi_{a_0}(t)\varphi_{c_1\xi_1}(t)\dots\varphi_{c_n\xi_n}(t) = e^{ita_0}(t)\varphi_{\xi_1}(c_1t)\dots\varphi_{\xi_n}(c_nt) = e^{ita_0}e^{ia_1c_1t}e^{-\frac{(c_1\sigma_1t)^2}{2}}\dots$$
 $e^{ita}e^{-\frac{\sigma^2t^2}{2}}$