Trainity Assignment-6

Muthiah Sivavelan S Ph: 8525021258

Excel Document: Bank Loan Case Study

Project Description:

Imagine you're a data analyst at a finance company that specializes in lending various types of loans to urban customers. Your company faces a challenge: some customers who don't have a sufficient credit history take advantage of this and default on their loans. Your task is to use Exploratory Data Analysis (EDA) to analyse patterns in the data and ensure that capable applicants are not rejected.

The goal in this project is to use EDA to understand how customer attributes and loan attributes influence the likelihood of default.

Through this project, we also try to identify patterns that indicate if a customer will have difficulty paying their instalments. This information can be used to make decisions such as denying the loan, reducing the amount of loan, or lending at a higher interest rate to risky applicants. The company wants to understand the key factors behind loan default so it can make better decisions about loan approval.

Tech-Stack Used:

I have used Microsoft Excel 2019 for this project, since that's the version that came preinstalled with my laptop and it has most of functionalities similar to Microsoft Excel 2022.

Tasks:

A. Identify Missing Data and Deal with it Appropriately: As a data analyst, you come across missing data in the loan

application dataset. It is essential to handle missing data effectively to ensure the accuracy of the analysis.

Approach:

First, I have checked the relevant columns used for this project. Then, I imported the necessary files required (application_data.csv and previous_application.csv). I, then deleted the irrelevant columns that are not required for this project. For the remaining columns, I imputed the missing values with the median value/ mode value/ mean value/ logical imputing/ linear regression, etc.

• Occupation_Type column:

I removed the spaces surrounding the words in each row and removed any invisible spaces available. Then, I imputed the blanks with value Unknown. I then, found out the mode of this column(excluding Unknown) based on their counts and imputed with this mode value.

• External sources columns:

I imputed the columns with the median value for each column.

• AMT_GOODS_PRICE column:

I did mean imputation for this column.

• AMT_ANNUITY column:

For this, column, I first found out the correlation with AMT_INCOME_TOTAL column, AMT_CREDIT column, AMT_GOODS_PRICE column and I found out that the correlation with AMT_CREDIT and AMT_GOODS_PRICE column is very high and I decided to use Linear Regression for finding the coefficients and imputed the value using linear regression.

• NAME_TYPE_SUITE column:

For this column, I used NAME_FAMILY_STATUS as a helper column for imputation. My logic of imputation was if family status is single/not married, widow or separated, the NAME_TYPE_SUITE column should be Unaccompanied while if the family status is married or civil marriage, the NAME_TYPE_SUITE column is

Spouse, partner. If the NAME_FAMILY_STATUS is Unknown then the NAME_TYPE_SUITE column will also be unknown. In the second step of imputation, I imputed the unknown values with the maximum occurrence of the NAME_TYPE_SUITE column(mode value, i.e., Unaccompanied).

Name_Family_Status 💌	NAME_TYPE_SUITE_MAPPING	
Single / not married	Unaccompanied	
Married	Spouse, partner	
Civil marriage	Spouse, partner	
Widow	Unaccompanied	
Separated	Unaccompanied	
Unknown	Unknown	
Number of unknown in imp	uted column 1:	
1		
We will use the maximum o	ccurrence to impute the rows with l	Jnknown value

NAME_TYPE_SUITE COMPOSITION

- **B. Identify Outliers in the Dataset:** Outliers can significantly impact the analysis and distort the results. You need to identify outliers in the loan application dataset.
 - Task: Detect and identify outliers in the dataset using Excel statistical functions and features, focusing on numerical variables.

Approach:

I copied the required numberical variables in a separate sheet after imputing the missing values. I, then created a table containing the required columns as the rows and the columns as 25th Quartile, 75th Quartile, IQR(Inter Quartile Range), Lower_Bound value, Upper_Bound value.

I used the following formulas for the respective columns to fill up the table.

```
25<sup>th</sup> Quartile:
=QUARTILE.EXC(Table15[AMT_INCOME_TOTAL],1)
75<sup>th</sup> Quartile:
=QUARTILE.EXC(Table15[AMT_INCOME_TOTAL],3)
IQR:
=[@[75th Quartile(Q3)]]-[@[25th Quartile(Q1)]]
Lower_Bound:
=[@[25th Quartile(Q1)]]-1.5*[@IQR]
Upper_Bound:
=[@[75th Quartile(Q3)]]+1.5*[@IQR]
```

The values which are not in the range of Lower Bound and Upper Bound are the outliers. I, then verified this using the box plots for the required columns. I used conditional formatting to highlight the values that are not in the range of Lower_Bound and Upper_Bound.

MT_INCOME_TOTAL 🔻	AMT_CREDIT 💌	AMT_ANNUITY 🔻	AMT_GOODS_PRICE 🔻	EXT_SOURCE_1 ~	EXT_SOURCE_2	EXT_SOURCE_3 ×
202500	406597.5	24700.5	351000	0.083036967	0.262948593	0.13937578
270000	1293502.5	35698.5	1129500	0.311267311	0.622245775	0.53527625
67500	135000	6750	135000	0.506883944	0.555912083	0.729566691
135000	312682.5	29686.5	297000	0.506883944	0.65044169	0.53527625
121500	513000	21865.5	513000	0.506883944	0.322738287	0.53527625
99000	490495.5	27517.5	454500	0.506883944	0.354224732	0.621226338
171000	1560726	41301	1395000	0.774761413	0.723999852	0.492060094
360000	1530000	42075	1530000	0.506883944	0.714279286	0.54065445
112500	1019610	33826.5	913500	0.587334047	0.205747288	0.751723715
135000	405000	20250	405000	0.506883944	0.746643629	0.53527625
112500	652500	21177	652500	0.319760172	0.651862333	0.363945239
38419.155	148365	10678.5	135000	0.72204445	0.555183162	0.652896552
67500	80865	5881.5	67500	0.464831117	0.715041819	0.176652579
225000	918468	28966.5	697500	0.506883944	0.566906613	0.77008707
189000	773680.5	32778	679500	0.721939769	0.642656205	0.53527625
157500	299772	20160	247500	0.115634337	0.346633981	0.678567689
108000	509602.5	26149.5	387000	0.506883944	0.23637784	0.062103038
81000	270000	13500	270000	0.506883944	0.683513346	0.53527625
	1			1	1	

Name	25th Quartile(Q1)	75th Quartile(Q3)	IQR ▼	Lower_Bound 💌	Upper_Bound ▼
AMT_INCOME_TOTAL	112500	202500	90000	-22500	337500
AMT_CREDIT	270000	808650	538650	-537975	1616625
AMT_ANNUITY	16456.5	34596	18139.5	-10752.75	61805.25
AMT_GOODS_PRICE	238500	679500	441000	-423000	1341000
EXT_SOURCE_1	0.506883944	0.506883944	0	0.506883944	0.506883944
EXT_SOURCE_2	0.392217599	0.66316296	0.270945	-0.014200443	1.069581002
EXT_SOURCE_3	0.417099668	0.638043528	0.220944	0.085683878	0.969459318

- C. Analyze Data Imbalance: Data imbalance can affect the accuracy of the analysis, especially for binary classification problems.

 Understanding the data distribution is crucial for building reliable models.
 - Task: Determine if there is data imbalance in the loan application dataset and calculate the ratio of data imbalance using Excel functions.

Approach:

I copied the target column into a new sheet and removed the duplicates. I created a new table with this column and added the columns, Frequency and Percentage. I used the countif function to

find the frequency and for the percentage, I divided the frequency with total number of rows and multiplied by 100.

I found that 91.94 % of the target column, contained the value 0 and only 8.05 % of the target column contained the value 1. This shows there is imbalance in the data.

I found the ratio of data imbalance by calculating the ratio between minimum percentage to maximum percentage, i.e, 8.05/91.94

I visualised the results using pie chart, horizontal bar chart.

D. Perform Univariate, Segmented Univariate, and Bivariate

Analysis: To gain insights into the driving factors of loan default, it is important to conduct various analyses on consumer and loan attributes.

• Task: Perform univariate analysis to understand the distribution of individual variables, segmented univariate analysis to compare variable distributions for different scenarios, and bivariate analysis to explore relationships between variables and the target variable using Excel functions and features.

Approach:

I have done the univariate analysis first itself, while imputing the various columns (finding the mean, median, mode of numerical columns and stuff). My main focus here, was to find the relation of each variable to the target variable.

Demographic factors:

• Gender & payment difficulty:

I created a pivot table from the gender column and target column where the rows contained the distinct values of gender column, columns contained the distinct values of target column and the values themselves are the count of target variable. After this, I found the proportion facing difficulty and I found out that 6.898 % of the females are facing payment difficulties while 10.26 % of the men are facing payment difficulties.

From this, I arrived at a conclusion that men face more difficulties in payment compared to women.

Count of TARGET	Column Label 🔻		
Row Labels	▼ 0	1 Grand Total	Proportion facing difficutly
F	30559 220	64 32823	6.897602291
М	15412 170	62 17174	10.25969489
XNA	2	2	
Grand Total	45973 403	26 49999	Men face more difficulties in payment compared to women.

• Income & Payment Difficulty:

First, I found the median of AMT_INCOME_TOTAL column. Then, I created a pivot table containing the target as columns and income as the rows, count of target variable as the values. I grouped the rows into two groups based on the median value (Group1- lower income group and Group2- higher income group).

I found the proportion of the population facing payment difficulties in both the groups and I came to a conclusion that, people with lower income face more difficulties towards payment when compared to people with higher income.

 ⊕ Group1 22879 2119 249 ⊕ Group2 23094 1907 250 	
⊕ Group2 23094 1907 250	001
Grand Total 45973 4026 499	999
Median Proportion	
145800 8.476678	
7.627695	
Yes, people with lower income face more difficulties toward	ds pay

• Age & Payment Difficulty:

I created a pivot table containing the rows as the DAYS_BIRTH column, target as the columns, count of target variable as the values. I found out the median, minimum and the maximum values of the DAYS_BIRTH column.

I created a new table with DAYS_BIRTH column from the pivot table. I used the logic to sum the column where target=1 if value of DAYS_BIRTH column in the table is greater than the median value and less than the maximum value for finding the count of people who are younger and are facing payment difficulties. Similarly, I found the count of the older people who are facing payment difficulties (sum if DAYS_BIRTH is less than or equal to median value and greater than or equal to the minimum value). It is important to note that, DAYS_BIRTH column is negative.

I found out that the people who are younger face more difficulties in payment when compared to the older people.

Median	Min	Max
-15731	-25184	-7680
Group	Count faci	ng difficulty
Younger	2449	
Older	1577	
Answer:		
Yes, young	er audience	e face more
difficulty in	n payments	

Payment Difficulty vs Age

3000
2500
2000
1577
Chart Area
500
O
Younger
Older
Age

Loan Characteristics:

• Loan Amount & Payment Difficulty:

First, I copied the AMT_CREDIT and Target columns to a new sheet. I checked the correlation between the two columns and I found that they were slightly negative. This shows that lower loan amount is associated with increased payment difficulty. To verify this, I first found the median of the AMT_CREDIT column. Then, I created a pivot table from the two columns with the AMT_CREDIT being the rows and Target being the columns and the count of target variable being the values. I then, grouped the rows based on the median value, if row less than median value then it belongs to Group1(Lower loan amount) otherwise Group2(Higher loan amount). I found out the proportion of the

population facing payment difficulty in both the groups. I verified that the lower loan amount group had the higher payment difficulty proportion when compared to the higher loan amount group.

Correlation					
-0.032428347					
Median					
Loan_Amount	514777.5				
Total Count	49999				
# Facing difficulty	4026				
High Loan_Amount:					
Total Count	25003				
# Facing difficulty	1919				
Proportion (in %)	7.675079				
Low Loan_Amount:					
Total Count	24996				
# Facing difficulty	2107				
Proportion (in %)	8.429349				
Answer:					
No, lower loan amou	ınts is asso	ciated with	increased	payment di	fficulty

Loan Type & Payment Difficulty:
 Similar to the approach I used for the Loan Amount & Payment Difficulty part, here also I did the same with
 NAME_CONTRACT_TYPE and Target columns.

Distinct Loan_Type									
Cash Ioans									
Revolving loans	Total Count	49999							
	# Facing difficulty	4026	Cor	unt of Target	Column Labels				
			Roy	w Labels	0	1	Grand Total		
	Loan_Type = Cash loans		Cas	sh Ioans	91.62%	8.38%	100.00%		
	Count	45276	Rev	volving loans	95.05%	4.95%	100.00%		
	# Facing difficulty	3792	Gra	and Total	91.95%	8.05%	100.00%		
	Proportion	8.375298							
	Loan_Type = Revolving Loan_Type	oans							
	Count	4723							
	# Facing difficulty	234							
	Proportion	4.954478							
	Answer:								
	Yes, Cash loans are assoc	Yes, Cash loans are associated with more payment difficulties than Revolving loans.							

External Factors and Creditworthiness:

• External Ratings & Payment Difficulty:

I copied the target and external source columns to a new sheet. I found out the mean, mode, median of these columns first. I, then found out the correlation of each of the columns with the target column. I created a new column containing the average of all the external source ratings. Surprisingly, the correlation of this column with the target variable is more than that of each of the columns. The correlation was negative which shows that lower the external scores, the higher the target is.

Therefore, Lower scores from external sources correlates with increased payment difficulties.

Name	Mean	Mode	Median	
Target	0.080522	0	0	
EXT_SOURCE_1	0.504864	0.506884	0.506884	
EXT_SOURCE_2	0.513954	0.565585	0.565585	
EXT_SOURCE_3	0.516534	0.535276	0.535276	
Correlation	Target			
EXT_SOURCE_1	-0.09974			
EXT_SOURCE_2	-0.15829			
EXT_SOURCE_3	-0.15818			
AVG_EXT_SOURCE	-0.22185			

Employment & Occupation:

• Employment Duration & Payment Difficulty:
I first copied the Target column, DAYS_EMPLOYED column into a new sheet. Then, I created a table with these columns, I added a column named ADJ_DAYS_EMPLOYED. This column would contain -1*(DAYS_EMPLOYED) column, if the result is negative, then it is imputed with the abs(median(DAYS_EMPLOYED)) column. Then, I found out

the median of the DAYS_EMPLOYED column. It is important to note that DAYS_EMPLOYED column contains negative values.

I found out the correlation between Target column and ADJ_DAYS_EMPLOYED column. It came out to be slightly negative which shows that people who had shorter employment duration has more difficulties in payment. To verify this, I found the count of people who were employed less than the median value of DAYS_EMPLOYED and the count of people who were employed more than the median value of DAYS_EMPLOYED. For these two groups, I found out the count of people who are having payment difficulties. Then, I found out the proportion of people who are facing payment difficulties in each group separately. Therefore, I verified that clients with shorter employment duration has more difficulties in payment.

and target t duration has more since, the corre 49999 4026				ery slight	tly nega	tive(tru	ue upto	some exte
t duration has mo e since, the corre 49999				ery slight	tly nega	tive(tru	ue upto	some exte
t duration has mo e since, the corre 49999				ery slight	ly nega	tive(tru	ue upto	some exte
e since, the corre				ery slight	rly nega	tive(tru	ue upto	some exte
e since, the corre				ery slight	tly nega	tive(tru	ue upto	some exte
49999	lation is aln	nost neut	ral but ve	ery slight	tly nega	tive(tru	ue upto	some exte
1020								
rt Area 4985								
2253								
0.017410446								
25014								
1773								
7.088030703								
7.	25014 1773 .088030703	2253 .017410446 .017410446 .017410446 .017410446 .017410446 .017410446	2253 .017410446 .017410446 .017410446 .017410446 .017410446 .017410446	2253 .017410446 .017410446 .017410446 .017410446 .017410446 .017410446	2253 .017410446 .017410446 .017410446 .017410446 .017410446 .017410446 .017410446	2253 .017410446 .025014 .088030703	2253 .017410446 .025014 .088030703	2253 .017410446 25014 1773

• Occupation Type & Payment Difficulty:
I created a pivot table with OCCUPATION_TYPE as rows,
Target as columns and count of target variable as the values. I
then, sorted the values according to the count of target from
largest to smallest. I, then changed the values to show them as
the percentage of the row total. I used conditional formatting to
highlight the top 40 % of the percentage where the target is 1.
This would give us the OCCUPATION_TYPE who generally
have more difficulty in payment. Therefore, it was clear that
people with certain Occupation Type had more Payment
Difficulty when compared to others.

Count of TARGET	Column Labels 🔻		
Row Labels	0	1	Grand Total
Laborers	92.09%	7.91%	100.00%
Sales staff	90.47%	9.53%	100.00%
Drivers	88.90%	11.10%	100.00%
Core staff	94.36%	5.64%	100.00%
Managers	93.04%	6.96%	100.00%
Security staff	89.04%	10.96%	100.00%
High skill tech staff	93.63%	6.37%	100.00%
Medicine staff	92.44%	7.56%	100.00%
Cooking staff	89.51%	10.49%	100.00%
Accountants	95.00%	5.00%	100.00%
Cleaning staff	90.80%	9.20%	100.00%
Low-skill Laborers	82.91%	17.09%	100.00%
Private service staff	91.72%	8.28%	100.00%
Waiters/barmen staff	89.04%	10.96%	100.00%
Realty agents	89.43%	10.57%	100.00%
Secretaries	95.75%	4.25%	100.00%
HR staff	91.09%	8.91%	100.00%
IT staff	95.00%	5.00%	100.00%
Grand Total	91.95%	8.05%	100.00%

Count of TARGET	Column Labels 🔻		
Row Labels	0	1	Grand Total
Laborers	22660	1946	24606
Sales staff	4668	492	5160
Drivers	2706	338	3044
Core staff	4184	250	4434
Managers	3246	243	3489
Security staff	1015	125	1140
High skill tech staff	1734	118	1852
Medicine staff	1297	106	1403
Cooking staff	862	101	963
Accountants	1540	81	1621
Cleaning staff	671	68	739
Low-skill Laborers	296	61	357
Private service staff	410	37	447
Waiters/barmen staff	203	25	228
Realty agents	110	13	123
Secretaries	203	9	212
HR staff	92	9	101
IT staff	76	4	80
Grand Total	45973	4026	49999

In the given dataset, Laborers, Sales staff, Drivers, core staff have more difficulty in payment Taking into account of the proportions in the total population,

it seems Low-skill Laborers, Drivers, Security Staff, Waiters, Realty agents and cooking staff have more difficulty in payment

Application Details:

• Application Timing & Payment Difficulty:

I, first copied the Target column,
WEEKDAY_APPR_PROCESS_START column,
HOUR_APPR_PROCESS_START column into a new sheet and
created a table with the column names, Target, WeekDay, Hour.

I wrote separately in the sheet, what I mean by a weekend (Saturday, Sunday while other days are working days) and late hours (from 9 pm to morning 6 am while left out timing is working hours).

I added two more columns named IS_LATE_HOUR and IS_WEEKEND. These columns act as helper column to find out if it is a late hour and if it is a weekend.

	Н	I	J
1			
2		From	То
3	Weekends:	SATURDAY	SUNDAY
4	Late Hours:	21	6

I used the following formulas for filling out the IS_LATE_HOUR and IS_WEEKEND column:

```
IS_LATE_HOUR:
=IF(OR([@Hour]>$I$4,[@Hour]<$J$4),1,0)

IS_WEEKEND:
=IF(OR([@WeekDay]="SATURDAY",[@WeekDay]="SUNDAY"),1,0)
```

I calculated the total number of people who are facing the payment difficulty using the countif function. Then, I calculated the total number of people who are facing payment difficulty and have done the payment in late hours (IS_LATE_HOUR=1). Similarly, I calculated the number of people who are facing payment difficulty

and have done the payment in weekend. I calculated the total number of late hours and total number of weekends. Using this, I calculated the proportion of people who are facing payment difficulty in late hours and in weekends separately.

After this, I calculated the total number of weekdays, total number of working hours. Then, I calculated the number of people who were facing difficulties in payment during the workdays and the number of people who were facing difficulties in payment during the normal hours. From this, I calculated the proportion of people who were facing difficulties in normal hours and in work days.

Comparing the above proportions with the proportions which were calculated earlier, I came to a conclusion that payment difficulty during late hours(after 9pm and before 6am) is more when compared to normal hours and payment difficulty during weekends is less when compared to work days.

Total Difficulty:	4026	
Total Late Hours:	1195	
Total Weekends:	8083	Proportion(%)
Difficulty in Late Hours:	127	10.62761506
Difficulty in Weekends:	634	7.843622417
Difficulty in Weekdays:	3392	8.092375227
Difficulty in Normal hours:	3899	7.989099254
Total weekdays:	41916	
Total normal hours:	48804	

Payment difficulty du	ring lat	te hours(after 9pm	and before	e 6am) is more w	hen comp	ared to nor	late hours
Payment difficulty du	iring we	eekends is less whe	n compare	d to non weeke	nd days.		
Count of Target		Column Labels 🔻					
Row Labels	~	0	1	Grand Total			
0		44905	3899	48804			
1		1068	127	1195			
Grand Total		45973	4026	49999			

Property and Reality:

Property Ownership & Payment Difficulty:
First, I copied the columns Target, FLAG_OWN_CAR and
FLAG_REALTY to new sheet. I added a new column named
OWN_EITHER. This column would contain TRUE if any of the
other two columns contains Yes otherwise FALSE. I used OR
function for this. Using this column, I calculated the number of
people who owns either of the property and then I calculated the
number of people who owns neither of the property. I, then
calculated the number of people who has payment difficulties
and owns some property. I also calculated the number of people
who has payment difficulties and doesn't own any property. I
calculated the proportion for the both and I found out that,
people who dont own any property has more payment issues
when compared to those who own some property.

People who own		
Either of property	39855	
Neither of property	10144	
Has Payment issues		Proportion
Own Either property	3132	7.858487015
Own Neither property	894	8.813091483

People who don't	own any property h	as more pa	yment issues w	hen co	mpare	to thos	se who own so	ome proper
Count of Target	Column Label	s 🔻						
	■N		N Total	∃Y		Y Total	Grand Total	
Row Labels	▼ N	Y		N	Υ			
0	9	250 20926	30176	4784	11013	15797	45973	
1		894 1879	2773	380	873	1253	4026	
Grand Total	10	144 22805	32949	5164	11886	17050	49999	
				_				

• Family Size & Payment Difficulty:

Here, I considered that the people who has more than 2 children as a large family.

I, first copied the columns Target, CNT_CHILDREN to a new sheet. I added a new column named IS_LARGE_FAMILY, this would contain 1 if it is a large family (CNT_CHILDREN>2).

I counted the total number of large families and small families using the helper column. Then, I calculated the number of people who were facing difficulties and is a large family. Similarly, I calculated for the small family as well. After this, I calculated the proportion of people who were facing difficulties for each group.

From this, I came to a conclusion, that large families(more than 2 children) get payment difficulty more often when compared to small families.

Client's Region & Payment Difficulty:
 I, first copied the columns, Target, REGION_RATING,

REGION_RATING_W_CITY into a new sheet and cree

REGION_RATING_W_CITY into a new sheet and created a table. I created a pivot table with REGION_RATING as rows and Target as columns and count of target as values. I created another pivot table with REGION_RATING_W_CITY as rows and Target as columns and count of target as values.

From the pivot tables, I found out the proportion of the population facing difficulty for each rating in the REGION RATING and then REGION RATING W CITY.

From this, I found out that, as the REGION_RATING increases, the Target increases (proportion of people facing payment difficulties increases) and as the REGION_RATING_W_CITY increases, the Target increases (proportion of people facing payment difficulties increases).

I verified this relation using correlation function as well.

Count of Target		Column Labels		
Row Labels	~	0	1	Grand Total
1		5006	220	5226
2		34043	2921	36964
3		6924	885	7809
Grand Total		45973	4026	49999
Region Rating		Proportion(in %)		
	1	4.209720628		
	2	7.902283303		
	3	11.33307722		

Count of Target	Column Labels 🔻		
Row Labels	0	1	Grand Total
1	5320	241	5561
2	34379	2962	37341
3	6274	823	7097
Grand Total	45973	4026	49999
Region_Rating_w_City	Proportion(in %)		
1	4.333752922		
	7.932299617		
3	11.5964492		

Region Rating	Proportion(in %)			Region_Rating_w_City	Proportion(in %)
1	4.209720628			1	4.333752922
2	7.902283303			2	7.932299617
3	11.33307722			3	11.5964492
	is target increases(proportion s target increases(proportion	 		•	s)
Correlation with target					
	-> Region_Rating		Cha	rt Area	
0.067079294	-> Region_Rating_w_City				

E. Identify Top Correlations for Different

Scenarios: Understanding the correlation between variables and the target variable can provide insights into strong indicators of loan default.

• Task: Segment the dataset based on different scenarios (e.g., clients with payment difficulties and all other cases) and identify the top correlations for each segmented data using Excel functions.

Approach:

First, I copied all the numerical variables, Target separately into a new sheet. Then, I filtered the target column to have only 1. I copied the resultant rows to a new sheet and formed a new table.

Then, I changed the filter so that the target only has the value 0. I copied the resultant rows to a new sheet and formed a new table. This is how I segmented the data based on target variable. Correlation of each variable with the target variable in each segment gives division by zero error since, the target variable is constant.

Then, I installed the data analysis toolpak from the add-ins menu present inside the options menu. For each of the segmented data, I selected the segment and clicked on the Data Analysis icon present in Data menu. I then clicked on Correlation matrix. I deleted the main diagonal, since it has 1 (we already know that correlation of a column to itself is 1, and I don't want to include those cells while ranking the correlation).

I selected the correlation matrix and I used 3-color scale conditional formatting on it for colouring negative, positive and neutral correlation differently. I then, copied this correlation matrix and then filled out the abs of the values (so that I can rank positive correlation and negative correlation based on intensity and not based on sign). I then, created a format similar to the correlation matrix but for the values I used the following formula:

=RANK.EQ(C23,\$C\$22:\$P\$35,0)

Here, 0 denotes the descending order ranking, that is I want the strongest correlation to have the first rank. I then filled out the table. I used conditional formatting on the ranks table to highlight the bottom 10 % and I summarised the results for each of the segments separately.

	Target	Cnt Children	Amt Income Total	Amt Cradit	Annuity	Goods Price	DILLI ATION	AVC DIDTI	C FMDLO	DATING	TIME CUE	DD DDOCE	T COURCE	T SOURCE	T SOURCE
T	rurget	CII_CIIIUI EII	Ant_income_rotur	Ant_Creuit	Annuity	JOOUS_PTICE	POLATION	MI3_DINIF	3_EIVIPLU	_KATING_	TIIVG_CLIE	Ph_Phoce.	I_SOUNCE,	I_SOUNCE	I_3OOKC
Target															
Cnt_Children	#DIV/0!														
Amt_Income_	#DIV/0!	0.010110177													
Amt_Credit	#DIV/0!	0.007601905	0.01527												
Annuity	#DIV/0!	0.029172977	0.01800	0.74967											
Goods_Price	#DIV/0!	-0.001167452	0.01326	0.98213	0.74933										
REGION_POPU	#DIV/0!	-0.020359154	-0.00618	0.06778	0.07312	0.07650									
DAYS_BIRTH	#DIV/0!	0.2496732	0.00903	-0.14251	-0.00875	-0.14097	-0.01647								
DAYS_EMPLO	#DIV/0!	-0.189324184	-0.01156	0.01604	-0.07956	0.02018	0.00774	-0.58148							
REGION_RATI	#DIV/0!	0.055515557	-0.01285	-0.04502	-0.06158	-0.05120	-0.43003	0.04503	-0.00915						
REGION_RATI	#DIV/0!	0.054802235	-0.01267	-0.05295	-0.07942	-0.05659	-0.43168	0.03809	-0.00414	0.95077					
HOUR_APPR_	#DIV/0!	-0.006884357	0.01448	0.04540	0.04489	0.05752	0.15605	0.05789	-0.05207	-0.27888	-0.25307				
EXT_SOURCE_	#DIV/0!	-0.118205866	0.00128	0.11220	0.03190	0.11413	0.06113	-0.39635	0.18218	-0.03681	-0.04141	0.01450			
EXT_SOURCE_	#DIV/0!	-0.015410537	-0.01623	0.11919	0.11370	0.13334	0.15922	-0.11141	-0.01880	-0.23905	-0.23918	0.13390	0.06602		
EXT_SOURCE_	#DIV/0!	-0.014958105	-0.02646	0.04584	0.01773	0.04757	-0.02159	-0.13959	0.08319	0.02150	0.01782	-0.02579	0.08087	0.04734	

_3	_SOURCE_	_SOURCE_T	_SOURCE_T	_PROCE T	CLIEPR	TING_	_RATING_	S_EMPLOY	AYS_BIRTH	PULATION.	Goods_Price	Annuity	Amt_Credit	mt_Income_Tot	nt_Childre	C
																Cnt_Children
															81	Amt_Income_
														73	86	Amt_Credit
													3	66	58	Annuity
												4	1	77	91	Goods_Price
											33	34	35	88	63	REGION_POPU
										69		84	18		11	DAYS_BIRTH
									5	85		31	71			DAYS_EMPLO
								82	51	7		37	52		42	REGION_RATI
							2	89	55	6		32	44			REGION_RATI
					10		9	45	39			53	50		87	HOUR_APPR_
				75	54		56	15	8	38		57	27			EXT_SOURCE_
			36	21	12		13	65	28			26	23		72	EXT_SOURCE_
		48	30	60	67		62	29	20	61	47	68	49	59	74	EXT_SOURCE_
riable with its	on of a var	ne correlati	excluding th	rder and e	ending o	ı desce	re done ir	he ranks a								
												Correlation	G2	G1	Rank	
												0.98213	Amt_Credit	Goods_Price	1	
												0.95077	GION_RATING_CLIEN	REGION_RATIN	2	
												0.74967	Amt_Credit	Annuity	3	
												0.74933	Annuity	Goods_Price	4	
												-0.58148	DAYS BIRTH	DAYS EMPLOY	-	

	Target	Cnt_Children	Amt_Income_Total	Amt_Credit	Annuity	300ds_Price	PULATION	AYS_BIRTH	'S_EMPLO\	I_RATING_	TING_CLIE	PR_PROCE	T_SOURCE	T_SOURCE	T_SOURCE_
Target	1														
Cnt_Childr	#DIV/0!	1													
Amt_Incor	#DIV/0!	0.036319722	1												
Amt_Credi	#DIV/0!	0.005705458	0.377965752	1											
Annuity	#DIV/0!	0.026384785	0.451134889	0.770773157	1										
Goods_Pri	#DIV/0!	0.001547629	0.384548363	0.986904954	0.775728	1									
REGION_P	#DIV/0!	-0.024912809	0.181941261	0.095539444	0.117279	0.098939	1								
DAYS_BIRT	#DIV/0!	0.335876269	0.073769425	-0.051084182	0.00991	-0.04868	-0.03044	1							
DAYS_EMF	#DIV/0!	-0.243591518	-0.162702675	-0.077367219	-0.113	-0.07514	-0.00661	-0.61529	1						
REGION_R	#DIV/0!	0.021288992	-0.205031899	-0.102556478	-0.12992	-0.1049	-0.53933	0.009025	0.040506	1					
REGION_R	#DIV/0!	0.017873365	-0.220044862	-0.111639948	-0.1432	-0.11319	-0.53686	0.007084	0.042899	0.950468	1				
HOUR_API	#DIV/0!	-0.005272551	0.08543156	0.056524809	0.053565	0.065358	0.167612	0.096389	-0.09236	-0.28282	-0.26176	1			
EXT_SOUR	#DIV/0!	-0.100014976	0.060504292	0.113361371	0.081712	0.116968	0.065702	-0.35455	0.136695	-0.07785	-0.07677	0.018594	1		
EXT_SOUR	#DIV/0!	-0.013466448	0.156172404	0.136259888	0.130023	0.143251	0.201089	-0.08033	-0.03409	-0.29442	-0.28906	0.155796	0.126386	1	
EXT_SOUR	#DIV/0!	-0.039263601	-0.073475401	0.028989838	0.018671	0.031215	-0.01388	-0.17908	0.098573	0.002023	0.003246	-0.04745	0.090395	0.068882	1

Ranks:														
	Cnt_Children	Amt_Income_Total	Amt_Credit	Annuity	Goods_Pric	OPULATION	AYS_BIRT	S_EMPLO	_RATING_	TING_CLIE	PR_PROCE	_SOURCE	T_SOURCE	T_SOURCE
Cnt_Child	ren													
Amt_Inco	r 70													
Amt_Cred	i 87	10												
Annuity	75	8	4											
Goods_Pr	91	9	1	3										
REGION_F	76	21	46	34	43									
DAYS_BIR	1 12	56	64	83	65	73								
DAYS_EM	17	24	53	38	55	86	5							
REGION_F	77	19	41	32	40	6	84	68						
REGION_F	80	18	39	28	37	7	85	67	2					
HOUR_AP	l 88	49	62	63	60	23	45	47	15	16				
EXT_SOUR	42	61	36	50	35	59	11	29	52	54	79			
EXT_SOUR	82	25	30	31	. 27	20	51	71	13	14	26	33		
EXT_SOUR	69	57	74	78	72	81	22	44	90	89	66	48	58	
Rank	G1	G2	Correlation			The ranks	are done ir	descending	g order and	d excluding t	he correlati	on of a va	riable with i	itself
1	Goods_Price	Amt_Credit	0.986904954											
2	REGION_RATING	GION_RATING_CLIE	0.950468157											
3	Goods_Price	Annuity	0.775728255											
4	Annuity	Amt_Credit	0.770773157											
5	DAYS_EMPLOYE	DAYS_BIRTH	-0.615289978											

Insights:

The banks should be more careful in providing the loans to the people who has payment difficulties more often. The following are the factors that affect the payment difficulties generally:

- Most people have the OCCUPATION TYPE as Laborers.
- Most of the people are Unaccompanied.
- EXT_SOURCE_1 has the most outliers and it should be removed while EXT_SOURCE_2 has the least outliers.
- There is a huge data imbalance in the target class, 0 value constitutes over 91.75% while value 1 constitutes just 8.05%.
- Men face more difficulties in payment compared to women.
- People with lower income face more difficulties towards payment when compared to people with higher income.
- People who are younger face more difficulty in payments when compared to people who are older.
- Lower loan amounts is associated with increased payment difficulty.
- Cash loans are associated with more payment difficulties than Revolving loans.
- Lower scores from external sources correlates with increased payment difficulties.

- Clients with shorter employment duration has more difficulties in payment.
- Low-skill Laborers, Drivers, Security Staff, Waiters, Realty agents and cooking staff have more difficulty in payment when compared to other occupations.
- Payment difficulty during late hours (after 9pm and before 6am) is more when compared to normal hours.
- Payment difficulty during weekends is less when compared to week days.
- People who don't own any property has more payment issues when compared to those who own some property.
- Large families(more than 2 children) get payment difficulty more often when compared to small families.
- As the REGION_RATING increases, the proportion of people facing payment difficulties increases.
- As the REGION_RATING_W_CITY increases, the proportion of people facing payment difficulties increases.
- AMT_GOODS_PRICE and AMT_CREDIT has the strongest correlation in both the segments when the people were facing payment difficulties and when the people weren't facing payment difficulties.

Result:

From this project, I have learnt how banks use EDA (Exploratory Data Analysis) to prevent business loss (loss in customers) and financial loss. I felt like, this project really simulated the real-world scenario and I understood the complete practical applications of Excel.

I understood about various loan attributes, customer attributes and their influence in the likelihood of default. I understood the patterns that indicate if a customer will have difficulty paying their instalments. This information can be used to make decisions such as denying the loan, reducing the amount of loan, or lending at a higher interest rate to risky applicants. The companies can make better decisions about loan approval from this project.