Sommaire de l'activité

Partie1: Définir l'héritage et le polymorphisme

Partie2: Connaitre l'encapsulation

Partie3: Caractériser l'abstraction

Description de l'activité

Compétences visées

- Maitrise des concepts de base relatifs à l'héritage, les types d'héritage et la redéfinition des méthodes
- Maitrise du principe de polymorphisme: types de variables, types des objets, appel des méthodes, etc.
- Maitrise du principe de l'encapsulation, intérêt et la distinction entre les différents niveaux de visibilité des membres d'une classe.
- Bonne utilisation des classes abstraites et des interfaces

Recommandations clés

Bonne compréhension des notions et des exemples présentés.

Activité 2

CONNAITRE LES PRINCIPAUX PILIERS DE LA POO

Partie1: Définir l'héritage et le polymorphisme

QCM

1. Quelle assertion se rapproche le plus du concept d'héritage?

- A. C'est un mécanisme qui permet de changer le type des objets.
- B. C'est une relation de spécialisation entre une classe et ses classes filles.
- C. C'est un synonyme du concept « instanciation ».
- D. Cela permet à un objet de connaître la valeur d'un attribut d'un autre objet.

Définir un algorithme

2. Qu'est-ce qu'une « super classe »

- A. une classe mère
- B. une classe ayant des membres publiques
- C. une classe possédant des privilèges

QCM (suite)

- 3. La classe B hérite de la classe A. Si A possède 3 méthodes et que B en possède 2 qui lui sont propres, combien de méthodes différentes un objet de type B pourra-t-il utiliser?
- A. 3
- B. 5
- C. 6
- 4. l'héritage multiple est un mécanisme dans lequel une classe
- A. Peut hériter des méthodes et des attributs de plus d'une super-classe
- B. Peut hériter des méthodes et des attributs d'une seule super-classe
- C. Peut hériter des méthodes d'une des classes filles

QCM (suite)

5. Dans la redéfintion d'une méthode:

- A. La nom de la méthode est modifiée
- B. Le corps de la méthode est modifié
- C. Le nom et le corps de la méthode sont modifiés

Exercice 1

Soient les classes suivantes:

Analysez ces classes et utilisez la généralisation pour factoriser au mieux la description des propriétés.

Banque	Directeur	Employé	Client	
-nomDirecteur : String -capital : int -adresseSiege : String	-nom : String -prenom : String -revenu : float	-nom : String -prenom : String -dateEmbauche : Date	-nom : String -prenom : String -adresse : String	
+getNomDirecteur(): String +setNomDirecteur(String n) +getCapital():int +setCapital(int capital) +getAdresseSiege():String +setAdresseSiege(String s) Banque(String Adresse)	+getNom(): String +setNom (String n) +getPrenom ():String +setPrenom(String p) +getRevenu():float +setRevenu(float s)	+getNom: String +setNom(String n) +getPrenom():String +setPrenom(String s) +getDate(): Date +setDate(Date s) mutation(Agence g): boolean	-conseiller: Employer -agence: Agence -comptes: [1N] Compte +getNom: String +setNom(String n) +getPrenom():String +setPrenom(String s) +getDate(): Date +setDate(Dates)	
CompteNonRémunéré	Agence	CompteRémunéré	mutation(Agence g):boolean	
-solde : float -numero : int	-nomAgence :String -adresseAgence : String	-solde : float -numero : int		
	+getNomAgence() : String +setNomAgence(String n)	-taux : float verserInteret() : void		

Exercice 2

Soient les variables a, b, c suivantes qui font référence à des objets de type classe Mère ou Fille.

Exercice 2 (suite)

Dites si il est possible d'accéder aux membres des classes Mère et Fille à partir d'une variable. Compléter le tableau par Vrai ou Faux

	а	b	С
attributsMere			
methodesMère()			
attributsFille			
methodesFille()			

Correction QCM

- 1. Quelle assertion se rapproche le plus du concept d'héritage?
- B. C'est une relation de spécialisation entre une classe et ses classes filles.
- 2. Qu'est-ce qu'une « super classe »
- A. une classe mère
- B. 3. La classe B hérite de la classe A. Si A possède 3 méthodes et que B en possède 2 qui lui sont propres, combien de méthodes différentes un objet de type B pourra-t-il utiliser?

B.5

- 4. l'héritage multiple est un mécanisme dans lequel une classe
- A. Peut hériter des méthodes et des attributs de plus d'une super-classe

Correction QCM (suite)

- 5. Dans la redéfintion d'une méthode:
- B. Le corps de la méthode est modifié

Correction Exercice 1

1. Demander d'analyser les classes et de dégager les attributs et méthodes communs entre les classes présentées.

Correction Exercice1(suite)

Correction Exercice 2

1. Rappelez le principe de polymorphisme: le type de la variable est utilisé par le compilateur pour déterminer si on accède à un membre (attribut ou méthode) valide. Exemple du cours

- b1.MethodeA() → OK car b1 est de type déclaré B qui hérite de A
- b1.MethodeB() → OK car b1 est de type déclaré B
- a2.MethodeA() → OK car a2 est de type déclaré A
- a2.MethodeB()→ ERREUR car a2 est de type A (même si le type l'objet référencé est B)

Correction Exercice2 (suite)

2. Demander de s'inspirer de l'exemple du cours et de compléter le tableau par Vrai ou Faux

	a	b	С
attributsMere	vrai	vrai	vrai
methodeMère()	vrai	vrai	vrai
attributsFille	faux	vrai	faux
methodeFille()	faux	vrai	faux

Activité 2

CONNAITRE LES PRINCIPAUX PILIERS DE LA POO

Partie2: Connaitre l'encapsulation

QCM

1. Parmi ces qualités, laquelle n'est pas un bénéfice majeur de l'utilisation de l'encapsulation?

Définir un algorithme

- A. Modularité
- B. Amélioration des performances
- C. Sécurité du code
- D. Facilité d'évolution du code
- 2. La portée « protégée » empêche l'accès aux méthodes et attributs qui suivent depuis l'extérieur de la classe, sauf:
- A. Dans les classe filles
- B. Dans le prog principal
- C. Dans a classe mère

QCM (suite)

- 3. Quelles méthodes et variables peuvent être utilisées dans une classe héritée?
- A. publiques ou protégées
- B. Toutes
- C. Privées ou publiques
- D. privées ou protégées
- 4. Comment rendre les attributs et les méthodes accessibles uniquement aux classes filles? En les définissant:
- A. Publiques
- B. Privés
- C. Abstraits
- D. Protégés

Exercice 1

Soit les classes A, B et C tel que B hérite de A. Compléter par Vrai ou Faux le tableau suivant des affirmations

	Affirmation	V/F	А
1	La classe B hérite de AttributsPubliquesA		
2	Dans la classe B on peut accéder à Dans la classe B on peut accéder à AttributsPubliquesA depuis l'instance courante.		AttributsPubliquesA AttributsPrivésA AttributsProtégésA
3	La classe B hérite de AttributsProtégésA		
4	Dans la classe B on peut accéder à AttributsProtégésA depuis l'instance courante		
5	La classe B hérite de AttributsPrivésA		В
6	Dans la classe B on peut accéder à AttributsPrivésA depuis l'instance courante.		
7	Dans la classe C on peut accéder à AttributsPubliquesA depuis un référence sur un objet de type A.		
8	Dans la classe C on peut accéder à AttributsProtégésA depuis un référence sur un objet de type		С

Exercice 1

Soit les classes A, B et C tel que B hérite de A. Compléter par Vrai ou Faux le tableau suivant des affirmations

	Affirmation	V/F
9	Dans la classe C on peut accéder à AttributsPrivésA depuis un référence sur un objet de type A.	
10	Dans la classe C on peut accéder à AttributsPubliquesA depuis un référence sur un objet de type B.	
11	Dans la classe C on peut accéder à AttributsProtégésA depuis un référence sur un objet de type	
12	Dans la classe C on peut accéder à AttributsPrivésA depuis un référence sur un objet de type B.	

С

Correction QCM

- 1. Parmi ces qualités, laquelle n'est pas un bénéfice majeur de l'utilisation de l'encapsulation?
- B. Amélioration des performances
- 2. La portée « protégée » empêche l'accès aux méthodes et attributs qui suivent depuis l'extérieur de la classe, sauf:
- A. Dans les classe filles
- 3. Quelles méthodes et variables peuvent être utilisées dans une classe héritée?
- A. publiques ou protégées
- 4. Comment rendre les attributs et les méthodes accessibles uniquement aux classes filles en les définissant?
- D. Protégés

Correction Exercice 1

- 1. Rappelez les règles de visibilité des membres des classes vues précédemment.
- 2. Résumez ces règles dans le tableau suivant:

Accès :	même classe	Classes dérivées dans le même package	Classes du même package	Classes dérivées dans un autre package	Classes des autres packages
public	X	X	X	X	X
protected	X	X	X	X	
private	X				

Correction Exercice 1 (suite)

	Affirmation	V/F
1	La classe B hérite de AttributsPubliquesA	V
2	Dans la classe B on peut accéder à AttributsPubliquesA depuis l'instance courante.	V
3	La classe B hérite de AttributsProtégésA	V
4	Dans la classe B on peut accéder à AttributsProtégésA depuis l'instance courante	V
5	La classe B hérite de AttributsPrivésA	V
6	Dans la classe B on peut accéder à AttributsPrivésA depuis l'instance courante.	F
7	Dans la classe C on peut accéder à AttributsPubliquesA depuis un référence sur un objet de type A.	V
8	Dans la classe C on peut accéder à AttributsProtégésA depuis un référence sur un objet de type	F

Correction Exercice 1(suite)

	Affirmation	V/F
9	Dans la classe C on peut accéder à AttributsPrivésA depuis un référence sur un objet de type A.	F
10	Dans la classe C on peut accéder à AttributsPubliquesA depuis un référence sur un objet de type B.	V
11	Dans la classe C on peut accéder à AttributsProtégésA depuis un référence sur un objet de type B	F
12	Dans la classe C on peut accéder à AttributsPrivésA depuis un référence sur un objet de type B.	F

Activité 2

CONNAITRE LES PRINCIPAUX PILIERS DE LA POO

Partie3: Caractériser l'abstraction

QCM

	1.	Pour factoriser des	attributs et	méthodes co	mmunes à 1	olusieurs d	classes filles,	on utilise une	classe
--	----	---------------------	--------------	-------------	------------	-------------	-----------------	----------------	--------

- A. protégée
- B. abstraite
- C. Concrète
- D. Publique
- 2. Est-il possible de créer un objet à partir d'une classe abstraite?
- A. Oui toujours
- B. Non
- C. Oui, si elle est publique

QCM (suite)

- 3. Quelle est l'assertion qui correspond le mieux à la définition d'une interface?
- A. C'est une méthode vide d'une classe.
- B. C'est un moyen donné à l'utilisateur d'une application OO d'interagir avec celle-ci.
- C. C'est l'ensemble des signatures d'opérations publiques d'une classe.
- D. C'est l'ensemble des attributs publics d'une classe.
- 4. Une interface peut-elle être instanciée?
- A. oui si elle est publique
- B. oui si elle n'est pas privée
- C. Non

QCM (suite)

4. Qu'est-ce qui est faux pour les interfaces?

- A. Une Interface peut être le type d'une référence
- B. Une Interface déclare des méthodes sans les implémenter
- C. Une Interface peut être implémentée
- D. Une Interface peut être instanciée

Exercice 1

On vous demande d'analyser chacun des cas suivants d'une manière indépendante des autres. Pour chaque cas, dites s'il y a des instructions erronées.

Cas 1:

- X de type C1 fait reference à un objet de type C4
- Y de type C1 fait reference à un objet de type C5
- X=Y

<u>Cas 2</u>:

- X de type I fait reference à un objet de type C4
- Y de type C3 fait reference à un objet de type C4
- X=Y

Cas 4:

- X de type C3 fait reference à un objet de type C5
- Y de type C6 fait reference à un objet de type C6
- X=Y

Exercice 1 (suite)

On vous demande d'analyser chacun des cas suivants d'une manière indépendante des autres. Pour chaque cas, dites s'il y a des instructions erronées.

Cas 4:

- X de type I fait reference à un objet de type C4
- Y de type I fait reference à un objet de type C2
- X=Y

<u>Cas 5</u>:

- X de type C1 fait reference à un objet de type C2
- Y de type I fait reference à un objet de type C2
- X=Y

<u>Cas 6</u>:

- X de type C3 fait reference à un objet de type C5
- Y de type C5 fait reference à un objet de type C5
- X=Y

Correction QCM

- 1. Pour factoriser des attributs et méthodes communes à plusieurs classes filles, on utilise une classe:
- B. abstraite
- 2. Est-il possible de créer un objet à partir d'une classe abstraite?
- B. Non
- 3. Quelle est l'assertion qui correspond le mieux à la définition d'une interface?
- C. C'est l'ensemble des signatures d'opérations publiques d'une classe.
- 4. Une interface peut-elle être instanciée?
- C. Non

Correction QCM (suite)

- 4. Qu'est-ce qui est faux pour les interfaces?
- D. Une Interface peut être instanciée

Correction Exercice 1

1. Rappeler les notions suivantes vues dans le cours:

- Une classe abstraite n'est pas instanciable mais elle peut être le type d'une variable
- Une interface n'est pas instanciable mais elle peut être le type d'une variable
- Si on a 2 variables a et b, l'instruction a=b est correcte si le type de a est plus générique que le type de b
- Une variable de type une classe de Base peut référencer un objet d'une classe Dérivée

2. Demander d'appliquer ces règles pour faire l'exercice

Correction Exercice 1 (suite)

Cas 1: correcte

- X de type C1 fait reference à un objet de type C4→ correcte
- Y de type C1 fait reference à un objet de type C5 → correcte
- $X=Y \rightarrow correcte$

Cas 2: Faux

- X de type I fait reference à un objet de type C4→ correcte
- Y de type C3 fait reference à un objet de type C4→ correcte
- X=Y→ fausse (car C3 n'implémente pas I)

Cas 3: Faux

- X de type C3 fait reference à un objet de type C5→ correcte
- Y de type C6 fait reference à un objet de type C6→ fausse (C6 est abstraite non instanciable)
- X=Y

34

Correction Exercice 1 (suite)

Cas 4: correcte

- X de type I fait reference à un objet de type C4→ correcte
- Y de type I fait reference à un objet de type C2→ correcte
- X=Y-→ correcte

Cas 5: faux

- X de type C1 fait reference à un objet de type C2→ correcte
- Y de type I fait reference à un objet de type C2→ correcte
- X=Y→ fausse (C2 implémente I pas le contraire)

Cas 6: faux

- X de type C3 fait reference à un objet de type C5→ correcte
- Y de type C5 fait reference à un objet de type C5→ correcte
- Y=X→ fausse (C3 classe mère de C5 pas le contraire)